IN THE CLAIMS:

Claims 29, 36, and 43 are amended herein. No claims are canceled or added. All pending claims and their present status are produced below.

1	29.	(Currently amended) A method for use in a detector device for controlling access to
2		information on a network including a plurality of interconnected devices, the detector
3		device coupled to the network between a first device and a second device, the method
4		comprising:
5		monitoring, independent of the first device and the second device, a plurality of
6		request signals for data between the first device and the second device in the
7		network, at least one request signal including a user identification parameter;
8		determining whether a user identified by the user identification parameter in the at
9		<u>least one</u> request signal is permitted access to the data <u>being requested</u> ;
10		comparing a predetermined parameter associated with the user with a pre-determined
11		predetermined parameter associated with the data to determine permission to
12		access the data; and
13		generating in response to the, providing a response to the request signal to alter
14		communications between the first device and the second device in response to
15		the comparison providing a first result and not altering communications
16		between the first device and the second device in response to the comparison
17		providing a second result,[[; and]]
18		in response to an operational failure within the detector device[[,]] allowing the
19		plurality of request signals to pass uninterrupted between the first device and
20		the second device regardless of the first result or the second result in response

21	to an operational failure of the detector device, the operational failure
22	comprising a non-functioning operation.

- 1 30. (Previously presented) A method of controlling access of claim 29, wherein the
 2 provided response comprises allowing access to the data when the predetermined
 3 parameter associated with the user is greater than or equal to a predetermined
 4 parameter associated with the data.
- 1 31. (Previously presented) A method of controlling access of claim 29, wherein the
 2 provided response comprises allowing access to the data when the predetermined
 3 parameter associated with the user is less than or equal to a predetermined parameter
 4 associated with the data.
- (Previously presented) The method of claim 29, wherein the provided response

 comprises re-directing the data signal to a third device in response to the

 predetermined parameter associated with the user being less than the predetermined

 value associated with the data, the third device allowing for a re-setting of the

 predetermined parameter to a new parameter comprising a value greater than or equal

 to the predetermined parameter associated with the data.
- 1 33. (Previously presented) The method of claim 29, wherein the predetermined parameter
 2 is one from a group comprising a positive monetary value, a positive time value, a
 3 bandwidth value, a quality of service value, and a content rating.
- 1 34. (Previously presented) The method of claim 33, further comprising allowing access to 2 one from a group comprised of voice data, video data, and a real-time application in

4		greater than or equal to a threshold parameter.
1	35.	(Previously presented) The method of claim 29, further comprising providing access
2		to a second data that does not require a parameter value in response to either the
3		predetermined parameter associated with the user being less than or equal to the
4		predetermined parameter associated with the data or the user not having permission to
5		access the data corresponding to the request signal.
1	36.	(Currently amended) A network-based billing method on for use in a detector device
2		for providing access to resources on a network, the detector device coupled to the
3		network such that the detector device does not introduce a point of failure if the
4		detector device becomes inoperable, the method comprising:
5		monitoring, independent from the resources, a data signal from a device on a network,
6		the data signal including a request for a resource;
7	•	identifying a value for accessing the resource;
8		associating a user identification with the data signal;
9		determining whether a user identified by the user identification is permitted access to
10		the resource;
11		identifying a credit balance for the user identification;
12		comparing the credit balance with the value to determine whether access to the
13		resource is permissible;
14		in response to the comparison, determining a response to the request for the resource;
15		and

response to at least one of the bandwidth value or quality of service value being

3

16	in response to an operational failure within the detector device, allowing the data
17	signals to pass uninterrupted between the resources on the network, the
18	operational failure comprising a non-functioning operation.

- 1 37. (Previously presented) The network-based billing method of claim 36, further
 2 comprising allowing access to the resource in response to the credit balance being
 3 less than or equal to the cost preventing access to the resource.
- 1 38. (Previously presented) The network-based billing method of claim 36, further
 2 comprising allowing access to the resource in response to the credit balance being
 3 greater than or equal to the cost preventing access to the resource.
- 1 39. (Previously presented) The method of claim 36, further comprising re-directing the
 2 data signal to a second resource in response to the credit balance being less than the
 3 cost, the second resource configured to allow for increasing the credit balance.
- 1 40. (Previously presented) The method of claim 36, further comprising providing access
 2 to a second resource having no cost in response to the credit balance being less than
 3 the cost.
- 1 41. (Previously presented) The method of claim 36, wherein the cost comprises one from
 2 a group comprising a monetary value, a quality of service value, a bandwidth value, a
 3 time value, and a content rating value.
- 1 42. (Previously presented) The method of claim 36, further comprising passing the data 2 signal to a second device having the resource.

ı	43.	(Currently amended) A detector device to control access to information on a network
2		including a plurality of interconnected devices, the device comprising:
3		a processing unit within a detector device coupled to the network between a first
4		device and a second device, the detector device independent of the first device
5		and the second device, the processing unit configured to execute instructions,
6		the instructions including,
7		monitoring a plurality of request signals for data between the first device and
8		the second device in the network, at least one request signal including
9		a user identification parameter;
10		determining whether a user identified by the user identification parameter in a
11		request signal of the plurality of request signals and associated with
12		the first device is permitted access to the data associated with the
13		second device;
14		comparing a predetermined parameter associated with the user with a pre-
15		determined parameter associated with the data to determine permission
16		to access the data;
17		providing a response to the request signal of the plurality of request signals in
18		response to the comparison; and
19		allowing the plurality of request signals to pass uninterrupted between the first
20		device and the second device in response to an operational failure
21		within the detector device, the operational failure comprising a non-
22		functioning operation.

- 1 44. (Previously presented) The device of claim 43, wherein processor is further
 2 configured to execute instructions comprising providing the response by allowing
 3 access to the data when the predetermined parameter associated with the user is
 4 greater than or equal to a predetermined parameter associated with the data.
- 1 45. (Previously presented) The device of claim 43, wherein processor is further
 2 configured to execute instructions comprising the response by allowing access to the
 3 data when the predetermined parameter associated with the user is less than or equal
 4 to a predetermined parameter associated with the data.
- 1 46. (Previously presented) The device of claim 43, wherein processor is further
 2 configured to execute instructions comprising providing the response by re-directing
 3 the data signal to a third device in response to the predetermined parameter associated
 4 with the user being less than the predetermined value associated with the data, the
 5 third device allowing for a re-setting of the predetermined parameter to a new
 6 parameter comprising a value greater than or equal to the predetermined parameter
 7 associated with the data.
- 1 47. (Previously presented) The device of claim 43, wherein the predetermined parameter 2 is one from a group comprising a positive monetary value, a positive time value, a 3 bandwidth value, a quality of service value, and a content rating.
- 1 48. (Previously presented) The device of claim 47, further comprising allowing access to 2 one from a group comprised of voice data, video data, and a real-time application in

- 3 response to at least one of the bandwidth value or quality of service value being
- greater than or equal to a threshold parameter.