The Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing

(AUSTRALIAN ADNI)

July 2012 UPDATE – Imaging Christopher Rowe MD – *Neuroimaging stream leader*

100 Vietnam veterans AIBL-DOD MRI, CSF, F-18 PET

¹¹C-PIB – Image Quantification

Regions

= cortical activity / cerebellargrey matter activity from 40to 70 minutes post injection

Negative is <1.5

Follow-up PiB co-registered to baseline and saved prior ROI set used.

Single operator for all PiB scans.

Image Analysis

2. Automatic: co-registration + MRI segmentation (GM, WM, CSF) + AAL template + PVC

NeuroQuant

Imaging Cohort Demographics

	HC	MCI	AD
	(n=195)	(n=92)	(n=79)
Age	72	74	73
Gender (M:F)	47%	50%	50%
MMSE	29	27	21
CDR	0.0	0.5 ± 0.2	1.0 ± 0.5
CDR SOB	0.06 ± 0.2	1.25 ± 0.9	4.36 ± 1.7
% ApoE ε4	41%	61%	65%
Years of Education	13.4	12.5	12.4

Baseline Imaging Findings

% of Healthy who are PiB+ve

% PiB+ HC vs Age (by decade)

(PiB+ when SUVR >1.5)

PiB neocortical SUVR in AIBL+

Aβ burden vs Age

Older AD do not have less PiB binding

Neocortical SUVR₄₀₋₇₀

Age (years)

Aβ vs Memory

Episodic Memory

Follow-up Data

LONGITUDINAL DATA Progression over 3 years

HC-

		•	
•	PiB rise (SUVR/yr)	0.01	0.05 (2.5%)

Memory Decline (SD/yr) -0.02 -0.17

		MCI-	MCI+
•	PiB rise (SUVR/yr)	0.01	0.05
•	Memory Decline (SD/yr)	-0.04	-0.21

HC+

Longitudinal PiB PET 6-year follow-up

Aβ deposition over time

3-5 year follow-up (n=158)

Average rate of atrophy over one year in HC PiB- vs PiB+.

Relation between baseline Aβ burden and memory decline in healthy controls

(36 months follow-up)

Relation between rate of Aβ deposition and rate of memory decline

3-5 year follow-up

PiB SUVR cut-point 1.5

3 year clinical progression

HC (*n*=194) MCI (*n*=92)

Hazard Ratio 3.6 (OR 4)

(p=0.016)

Hazard Ratio 11 (OR 25)

*(p< 0.0001)

Corrected for age, gender, education

Prediction of Progression: HC to MCI/AD (at 36 months follow-up) n=194

	ACCURACY	PPV	NPV	Odds Ratio	CI
Hippocampal atrophy	0.54	0.16	0.92	2	0.8-6
PiB+ve (SUVR >1.5)	0.57	0.2	0.94	4	4-10
PiB + Hipp Vol (n=118, ++ vs)	0.63	0.32	0.94	7	2-26
Composite Memory (< -1.0 SD)	0.64	0.3	0.97	14	4-43
Memory + Hipp Vol (n=123, ++ vs) 0.65	0.32	0.98	23	4-129
PiB + Memory (n=126, ++ vs)	0.73	0.48	0.97	31	7-125

Prediction of Progression: MCI to AD (at 36 months follow-up) n=92

	ACCURACY	PPV	NPV	Odds CI Ratio
Hippocampal atrophy	0.68	0.61	0.75	5 2-14
Composite Memory (<-2.0 SD)	0.70	0.59	0.81	6 2-18
ApoE ε4+	0.76	0.71	0.80	10
PiB+ve (SUVR >1.5)	0.80	0.66	0.93	25 5-114
PiB+ve MRI-ve (n=6/13+- vs 0/11-	-) 0.75	0.46	1.00	>100 n/a
PiB-ve MRI+ve (n=1/12-+ vs 0/11-	-) 0.54	0.08	1.00	<1
PiB + Hipp Vol (n=29/37++ vs 0/11) 0.89	0.78	1.00	>100 n/a

Summary

- Aβ deposition is slow and of similar rate in PiB+ HC and MCI (3% SUVR per year).
- A plateau occurs with advancing dementia.
- Aβ is common in older HC

```
11% if 60-69
```

32% if 70-79

51% if 80+ years

and strongly related to genetics i.e. ApoE-ε4 status (risk 2-3X)

Over 3 Years

- Aβ in HC is associated with faster cognitive decline and grey matter atrophy.
- 20% of PiB+ HC develop MCI/AD (c.f. 6% of PiB-)
- 74% PiB+ MCI develop AD c.f. 16% of PiB-Odds Ratio = 25 (but 20% PiB- develop other dementias)
- Combination of biomarkers provides better prediction (e.g. if PiB+ and hippocampal atrophy = 86% accuracy, PPV 78%).

Baseline and 18 mth MRI, PiB scans and corresponding clinical data are available from www.loni.ucla.edu/ADNI/Data/

(look for the AIBL button in the ADNI data site)

36 month data coming soon!