ACADOS / ACADO 2.0 / ??? Reference

January 28, 2016

Chapter 1

Interfaces

1.1 OCP QP Interface

The interface describes an Optimal Control Problem (OPC) Quadratic Programming (QP) problem in the form

$$\min_{x,u} \quad \sum_{n=0}^{N-1} \frac{1}{2} \begin{bmatrix} u_n \\ x_n \\ 1 \end{bmatrix}^T \begin{bmatrix} R_n & S_n & r_n \\ S_n^T & Q_n & q_n \\ r_n^T & q_n^T \end{bmatrix} \begin{bmatrix} u_n \\ x_n \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} x_N \\ 1 \end{bmatrix}^T \begin{bmatrix} Q_N & q_N \\ q_N^T \end{bmatrix} \begin{bmatrix} x_N \\ 1 \end{bmatrix} \quad (1.1)$$

s.t.
$$x_{n+1} = A_n x_n + B_n u_n + b_n$$
 , $n = 0, ..., N-1$ (1.2)

$$\underline{u}_n \le u_n \le \overline{u}_n \quad , \quad n = 0, \dots, N - 1$$
 (1.3)

$$\underline{x}_n \le x_n \le \overline{x}_n \quad , \quad n = 0, \dots, N$$
 (1.4)

$$\underline{d}_n \le C_n x_n + D_n u_n \le \overline{d}_n \quad , \quad n = 0, \dots, N - 1$$
(1.5)

$$\underline{d}_N \le C_N x_N \le \overline{d}_N \tag{1.6}$$

The C code interface looks like

```
int ocp_qp_interface(
   int N, int *nx, int *nu, int *nb, int *ng,
   double **A, double **B, double **b,
   double **Q, double **S, double **R, double **q, double **r,
   int **idxb, double **bl, double **bu,
   double **C, double **D, double **ld, double **ud,
   double **x, double **u);
```

where

N [input] is the horizon length.

 \mathtt{nx} [input] is the vector of the state sizes n_u at the different stages, such that \mathtt{nx} [n] is the state size at stage n.

- nu [input] is the vector of the input sizes n_x at the different stages, such that nu[n] is the input size at stage n.
- nb [input] is the vector of the bound sizes n_b at the different stages, such that nb[n] is the bound size at stage n. The value of nb[n] is smaller or equal to nx[n]+nu[n].
- ng [input] is the vector of the general polytopic constraint sizes n_g at the different stages, such that ng[n] is the general polytopic constraint size at stage n.
- A [input] is the vector of size N of the pointers to the first element of the matrices A_n , such that A[n] is the pointer to the first element of the matrix A_n , and A[n][0] is the first element of the matrix A_n . The matrix referenced by the pointer A[n] is stored in column-major (or Fortranlike) order, in a vector of $nx[n+1] \times nx[n]$ double-precision floating-point numbers.
- **B** [input] is the vector of size N of the pointers to the first element of the matrices B_n , such that B[n] is the pointer to the first element of the matrix B_n , and B[n][0] is the first element of the matrix B_n . The matrix referenced by the pointer B[n] is stored in column-major (or Fortranlike) order, in a vector of $nx[n+1] \times nu[n]$ double-precision floating-point numbers.
- **b** [input] is the vector of size N of the pointers to the first element of the vectors b_n , such that b[n] is the pointer to the first element of the vector b_n , and b[n][0] is the first element of the vector b_n . The vector referenced by the pointer b[n] is stored in a vector of $nx[n+1] \times 1$ double-precision floating-point numbers.
- **Q** [input] is the vector of size N+1 of the pointers to the first element of the matrices Q_n , such that Q[n] is the pointer to the first element of the matrix Q_n , and Q[n][0] is the first element of the matrix Q_n . The matrix referenced by the pointer Q[n] is stored in column-major (or Fortranlike) order, in a vector of $nx[n] \times nx[n]$ double-precision floating-point numbers.
- **S** [input] is the vector of size N of the pointers to the first element of the matrices S_n , such that S[n] is the pointer to the first element of the matrix S_n , and S[n][0] is the first element of the matrix S_n . The matrix referenced by the pointer S[n] is stored in column-major (or Fortranlike) order, in a vector of $nu[n] \times nx[n]$ double-precision floating-point numbers.
- **R** [input] is the vector of size N of the pointers to the first element of the matrices R_n , such that R[n] is the pointer to the first element of the matrix R_n , and R[n][0] is the first element of the matrix R_n . The matrix

- referenced by the pointer R[n] is stored in column-major (or Fortran-like) order, in a vector of $nu[n] \times nu[n]$ double-precision floating-point numbers.
- \mathbf{q} [input] is the vector of size N+1 of the pointers to the first element of the vectors q_n , such that $\mathbf{q}[\mathbf{n}]$ is the pointer to the first element of the vector q_n , and $\mathbf{q}[\mathbf{n}][\mathbf{0}]$ is the first element of the vector q_n . The vector referenced by the pointer $\mathbf{q}[\mathbf{n}]$ is stored in a vector of $\mathbf{n}\mathbf{x}[\mathbf{n}] \times \mathbf{1}$ double-precision floating-point numbers.
- \mathbf{r} [input] is the vector of size N of the pointers to the first element of the vectors r_n , such that $\mathbf{r}[\mathbf{n}]$ is the pointer to the first element of the vector r_n , and $\mathbf{r}[\mathbf{n}]$ [0] is the first element of the vector r_n . The vector referenced by the pointer $\mathbf{r}[\mathbf{n}]$ is stored in a vector of $\mathbf{nu}[\mathbf{n}] \times \mathbf{1}$ double-precision floating-point numbers.
- idxb [input] is the vector of size N+1 of the pointers to the first element of the integer vectors $idxb_n$ describing the indexes of the corresponding upper and lower bounds in 1b and ub, such that idxb[n] is the pointer to the index of the first bound at stage n, and idxb[n][0] is index of the first bound at stage n. The indexes in idxb[n] correspond to the position of the constrained components in the variables vector $\begin{bmatrix} u_n \\ x_n \end{bmatrix}$: therefore a bound on the first input component has index 0, a bound on the last input component has index nu[n]-1, a bound on the first state component has index nu[n]+nx[n]-1. The vector referenced by the pointer idxb[n] is stored in a vector of $nb[n] \times 1$ integer numbers.
- lb [input] is the vector of size N+1 of the pointers to the first element of the vectors $\begin{bmatrix} \underline{u}_n \\ \underline{x}_n \end{bmatrix}$, such that lb[n] is the pointer to the first element of the vector $\begin{bmatrix} \underline{u}_n \\ \underline{x}_n \end{bmatrix}$, and lb[n][0] is the first element of the vector $\begin{bmatrix} \underline{u}_n \\ \underline{x}_n \end{bmatrix}$. The vector referenced by the pointer lb[n] is stored in a vector of nb[n]×1 double-precision floating-point numbers.
- $\begin{array}{lll} \textbf{ub} & [\text{input}] \text{ is the vector of size } N+1 \text{ of the pointers to the first element of the} \\ & \text{vectors } \begin{bmatrix} \overline{u}_n \\ \overline{x}_n \end{bmatrix}, \text{ such that } \textbf{ub} [\textbf{n}] \text{ is the pointer to the first element of the} \\ & \text{vector } \begin{bmatrix} \overline{u}_n \\ \overline{x}_n \end{bmatrix}, \text{ and } \textbf{ub} [\textbf{n}] [\textbf{0}] \text{ is the first element of the vector } \begin{bmatrix} \overline{u}_n \\ \overline{x}_n \end{bmatrix}. \text{ The} \\ & \text{vector referenced by the pointer } \textbf{ub} [\textbf{n}] \text{ is stored in a vector of } \textbf{nb} [\textbf{n}] \times 1 \\ & \text{double-precision floating-point numbers.} \end{array}$
- C [input] is the vector of size N+1 of the pointers to the first element of the matrices C_n , such that C[n] is the pointer to the first element of the matrix C_n , and C[n] [0] is the first element of the matrix C_n . The matrix

- referenced by the pointer C[n] is stored in column-major (or Fortran-like) order, in a vector of $ng[n] \times nx[n]$ double-precision floating-point numbers.
- **D** [input] is the vector of size N of the pointers to the first element of the matrices D_n , such that D[n] is the pointer to the first element of the matrix D_n , and D[n][0] is the first element of the matrix D_n . The matrix referenced by the pointer D[n] is stored in column-major (or Fortranlike) order, in a vector of $ng[n] \times nu[n]$ double-precision floating-point numbers.
- Id [input] is the vector of size N+1 of the pointers to the first element of the vectors \underline{d}_n , such that ld[n] is the pointer to the first element of the vector \underline{d}_n , and ld[n][0] is the first element of the vector \underline{d}_n . The vector referenced by the pointer ld[n] is stored in a vector of $ng[n] \times 1$ double-precision floating-point numbers.
- ud [input] is the vector of size N+1 of the pointers to the first element of the vectors \overline{d}_n , such that ud [n] is the pointer to the first element of the vector \overline{d}_n , and ud [n] [0] is the first element of the vector \overline{d}_n . The vector referenced by the pointer ud [n] is stored in a vector of ng [n] $\times 1$ double-precision floating-point numbers.
- \mathbf{x} [output] is the vector of size N+1 of the pointers to the first element of the vectors x_n , such that $\mathbf{x}[\mathbf{n}]$ is the pointer to the first element of the vector x_n , and $\mathbf{x}[\mathbf{n}][0]$ is the first element of the vector x_n . The vector referenced by the pointer $\mathbf{x}[\mathbf{n}]$ is stored in a vector of $\mathbf{n}\mathbf{x}[\mathbf{n}] \times 1$ double-precision floating-point numbers.
- ${\bf u}$ [output] is the vector of size N+1 of the pointers to the first element of the vectors u_n , such that ${\bf u}[{\bf n}]$ is the pointer to the first element of the vector u_n , and ${\bf u}[{\bf n}]$ [0] is the first element of the vector u_n . The vector referenced by the pointer ${\bf u}[{\bf n}]$ is stored in a vector of ${\bf n}[{\bf u}] \times 1$ double-precision floating-point numbers.

1.1.1 Examples

MPC problem

In the MPC problem, the initial state is fixed. This is modelled by choosinig nx[0]=0, i.e. not considering the initial state as an optimization variable. As a consequence, e.g. the matrix A[0] has size $nx[1]\times 0$, the matrix Q[0] has size 0×0 , and the vector q[0] has size 0×1 . The information about the known value of x_0 and the matrix A_0 are used to compute the value of the vector b[0], that is initialized to $b_0 + A_0 \cdot x_0$.