

COMP1071 - Digital Electronics

Transistors and Logic Gates

Ioannis Ivrissimtzis

email: ioannis.ivrissimtzis@durham.ac.uk

Room: MCS 2023

Slide acknowledgements: Eleni Akrida and Farshad Arvin

Overview of today's lecture

- Transistors
- Logic gates and truth tables
- Logic Levels
- Moore's Law

Transistors

Babbage's Analytical Engine – gears

Early electrical computers – relays or vacuum tubes

Modern computers – **transistors!**

Electrically controlled switches that turn ON or OFF when voltage or current is applied to a control terminal.

Most common transistor is the MOSFET:

Metal-Oxide-Semiconductor Field Effect Transistor.

- 57 billion MOSFETs onto a single chip of silicon!
- Building blocks of almost all digital systems.

From Transistors to Digital circuits

- Digital Circuits are constructed from small electronic circuits called logic gates
 - Each logic gate is designed to perform a function of Boolean logic
 - A logic gate is created from one or more transistors
 - The output of a logic gate can feed into more logic gates...

Transistors

2 ports (<u>d</u> and <u>s</u>) are connected depending on voltage of 3rd (<u>g</u>)

pMOS $g \rightarrow \downarrow \uparrow$

Adding in binary

Based on 8 simple rules:

How is this achieved?

- Using gates implementing Boolean algebra.
- Boolean algebra:

 an algebra of two values: 1,0
 or True/False or high/low voltage.
- Basic operations: AND, OR, NOT

```
0 \text{ AND } 0 = 0
```

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

Truth tables: AND

AND gate:

Algebraic expression: $Y = A \cdot B$

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

Linear truth table

Rectangular/Coordinate table

Truth tables: OR

• OR gate:

Algebraic expression: Y = A + B

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Linear truth table

Rectangular/Coordinate table

Truth tables: Exclusive OR (XOR)

XOR gate:

Algebraic expression: $Y = A \oplus B$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Linear truth table

Rectangular/Coordinate table

Truth tables: NOT

• NOT gate: $A \longrightarrow Y$ Algebraic expression: $Y = \overline{A}$

A	Y
0	1
1	0

Linear truth table

Truth tables: NOR

NOR gate (inverse of OR)

Algebraic expression: $Y = \overline{A + B}$

A	В	Υ
0	0	1
0	1	0
1	0	0
_ 1	1	0

Linear truth table

A NOT gate:

- If A is high then the p-MOS P1 is off and the n-MOS N1 is on, so Y is connected to GND, i.e. low.
- If A is low then the p-MOS P1 is on and the n-MOS N1 is off, so Y is connected to V_{DD}, i.e. high.

A	P1	N1	Υ
0	on	off	1
1	off	on	0

• A NAND gate:

A	В	P1	P2	N1	N2	Υ
0	0					
0	1					
1	0					
_ 1	1					

Note: 3-wire junctions are connected, but 4-wire junctions are only connected if there is a dot.

A	В	P1	P2	N1	N2	Υ
0	0	on	on	off	off	1
0	1					
1	0					
_1	1					

A	В	P1	P2	N1	N2	Υ
0	0	on	on	off	off	1
0	1	on	off	off	on	1
1	0					
_ 1	1					

Α	В	P1	P2	N1	N2	Υ
0	0	on	on	off	off	1
0	1	on	off	off	on	1
1	0	off	on	on	off	1
_ 1	1					

Α	В	P1	P2	N1	N2	Υ
0	0	on	on	off	off	1
0	1	on	off	off	on	1
1	0	off	on	on	off	1
1	1	off	off	on	on	0

• An **AND** gate:

Essentially made by combining a NAND and a NOT gate.

Beneath the digital abstraction

A chip does not really deal in 0s and 1s.

The **voltages** are real numbers between 0V and 5V (typically).

We can take 0V to indicate output 0 and 5V to indicate output 1, but we need to tolerate **noise**.

If the output is 4.9V that is probably meant to be a 1. But what about 4.1V or 3V or 2.5V?

Supply voltage

The low voltage in the system (connected to ground or GND) is 0V.

Historically the circuit was powered by connecting to a 5V supply, and the **high** voltage is therefore 5V, called $V_{\rm DD}$ if unspecified.

More modern chips, using much smaller transistors, have moved to V_{DD} = 3.3V, 2.5V, 1.8V, 1.5V and 1.2V, both to save power and avoid overloading transistors.

The mapping of the continuous voltage measured at any point in the circuit to the discrete 0 and 1 of the digital abstraction is governed by defining logic levels.

Logic levels

Permitted range for high output: V_{OH} to V_{DD}

Permitted range for low output: GND to V_{OL}

Acceptable range for high input: V_{IH} to V_{DD}

Acceptable range for low input: GND to V_{II}

Noise margins:

$$NM_H = V_{OH} - V_{IH}$$

$$NM_L = V_{IL} - V_{OL}$$

The Static Discipline

- A guarantee that "if inputs meet valid input thresholds, then the system guarantees
 outputs will meet valid output thresholds" and will not fall into the forbidden zone
- Gates are grouped into logic families: the gates of the same family obey the static discipline when used with other gates in the family.
- This means that (given noise limits) you can successfully apply the digital abstraction
 and combine elements without further concern about logic levels or analogue values.

Logic Family	V_{DD}	V_{IL}	V_{IH}	V_{OL}	V_{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7

Gordon Moore co-founded Intel in 1968.

In 1965 he observed that the number of transistors on a computer chip doubles every year.

Moore's law: normally quoted as "transistor density doubles in 2 years", or "computer processing power doubles every 18 months".

transistors available for use by a 'domestic' computer.

A lot of the growth recently has been in more powerful graphics cards available.

"If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get one million miles to the gallon, and explode once a year . . ."

Robert Cringely

Summary

- Transistors, pMOS & nMOS
- Logic gates and truth tables
- Logic Levels
- Moore's Law

