

31761 – Renewables in Electricity Markets

Lecture 10: Sequential Games and Bilevel Models*

*A significant portion of the content is inspired by Jalal's slides in Course #31792

Liyang Han Email: liyha@dtu.dk

April, 2022

Technical University of Denmark

Department of Wind and Energy Systems

Announcement

Note about Assignment 2 Step 3:

You DO need to provide the code for this step, and the payoff matrix should be directly generated in the results of your program. Please be reminded that programming account for 25% of your whole grade, and the readability of your code is an important part of it.

For this step specifically, given the assignment of the generator bundles as an input, the model should automatically run all scenarios needed for the payoff matrix and generates the payoff matrix as an output. Using your code, we should be able to manually change your assignment of bundles and rerun your code to generate updated payoff matrices

Clarification

Player B

Recal exercise from Lecture 8: Practice iterated elimination of dominated strategies to find the Nash equilibrium!

Payoff Matrix	Left	Center	Right
Top	4 13	11 0	12 4
Middle	5 -1	9 -3	-1 17
Bottom	6 8	0 6	1 4

Any equilibrium in a reduced game after iterated elimination of dominated strategies is a Nash equilibrium in the original game*.

Clarification

Player B

Recal exercise from Lecture 8: Practice iterated elimination of dominated strategies to find the Nash equilibrium!

Player A

Payoff Right Left Center **Matrix** Top Middle Bottom 6

Any equilibrium in a reduced game after iterated elimination of dominated strategies is a Nash equilibrium in the original game*.

Learning Objectives

Today's lecture will (re-)introduce **sequential** (**Stackelberg**) **games**, and their relevance in the energy market.

After this lecture, you should be able to

- 1. Provide the definition of a **Stackelberg equilibrium** in a sequential game, and identify it in a payoff matrix;
- 2. Formulate a sequential game of an energy market application using a **bilevel model**, identify the **leader** and the **follower**, and match the leader with the **upper level problem**, and the follower with the **lower level problem**;
- 3. Derive the Karush-Kuhn-Tucker conditions (KKTs) of the lower lever problem of the bilevel model, given which, update the upper level problem as a Mathematical Program with Complementarity Constraint (MPCC).

April 2022 DTU Wind and Energy Systems Liyang Han

Recap

a) "Stag Hunt" game:

b) "Matching pennies" game:

Discussion (3 min)

- 1. What are the stories behind these two simultaneous games? How do they translate to their payoff matrices?
- 2. What are the NE's in these two games in pure strategies if any?
- 3. In both games, if one of the players gets to move first knowing that the other player will give their best response, will it change the equilibrium / create new equilibria?

Recap

a) "Stag Hunt" game:

b) "Matching pennies" game:

Discussion (3 min)

- 1. What are the stories behind these two simultaneous games? How do they translate to their payoff matrices?
- 2. What are the NE's in these two games in pure strategies if any?
- 3. In both games, if one of the players gets to move first knowing that the other player will give their best response, will it change the equilibrium / create new equilibria?

Recap

a) "Stag Hunt" game:

b) "Matching pennies" game:

Discussion (3 min)

- What are the stories behind these two simultaneous games? How do they translate to their payoff matrices?
- What are the NE's in these two games in pure strategies if any?
- 3. In both games, if one of the players gets to move first knowing that the other player will give their best response, will it change the equilibrium / create new equilibria?

Sequential Game:

a game where one player chooses their action before the others choose theirs.

Sequential Game:

a game where one player chooses their action before the others choose theirs.

Stackelberg Equilibrium:

the strategy profile that serves best each player, given the best action of the leading player.

10

Sequential Game:

a game where one player chooses their action before the others choose theirs.

Stackelberg Equilibrium:

the strategy profile that serves best each player, given the best action of the leading player.

Can the leader exercise a mixed strategy to achieve better outcomes?

11

Who benefits from this sequential set-up, the leader or the follower?

12

Who benefits from this sequential set-up, the leader or the follower?

13

- a) Both.
 -) Follower.

Who benefits from this sequential set-up, the leader or the follower?

- a) Both.
- b) Follower.

Are there situations where the leader benefits more and the follower benefits less compared to the NE?

14

→ Assignment 2 Step 5

Two-stage sequential game

April 2022 DTU Wind and Energy Systems Liyang Han

^{*}They are also called **Dynamic Games** and **Stackelberg games**

Two-stage sequential game

16

Two-stage sequential game

April 2022 DTU Wind and Energy Systems Liyang Han

Two-stage sequential game

April 2022 DTU Wind and Energy Systems Liyang Han

Two-stage sequential game

April 2022 DTU Wind and Energy Systems Liyang Han

Two-stage sequential game

April 2022 DTU Wind and Energy Systems Liyang Han

Two-stage sequential game

April 2022 DTU Wind and Energy Systems Liyang Han

Two-stage sequential game

April 2022 DTU Wind and Energy Systems Liyang Han

Two-stage sequential game

We can **constrain** the leader's optimization problem by the follower's optimization problem!

Two-stage sequential game

Missing anything?

We can **constrain** the leader's optimization problem by the follower's optimization problem!

Two-stage sequential game

We can **constrain** the leader's optimization problem by the follower's optimization problem!

Two-stage sequential game

26

We can **constrain** the leader's optimization problem by the follower's optimization problem!

Two-stage sequential game

We can **constrain** the leader's optimization problem by the follower's optimization problem!

Two-stage sequential game

How do we solve this problem?

We can **constrain** the leader's optimization problem by the follower's optimization problem!

Two-stage sequential game

Minimize f(x) subject to:

 $h(x) = 0 : \lambda$

$$g(x) \le 0$$
 : μ

Two-stage sequential game

Minimize f(x)

subject to:

$$h(x) = 0 : \lambda$$

$$g(x) \le 0$$
 : μ

Two-stage sequential game

Lagrangian function

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x)$$

Two-stage sequential game

Lagrangian function

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x)$$

Two-stage sequential game

Lagrangian function of lower-level problem:

$$\mathcal{L}(y, \mu_1, \mu_2, \mu_3, \mu_4)$$

$$= -2y + \mu_1(y - 2) + \mu_2(x + y - 5) + \mu_3(-x + y - 3) + \mu_4(-3x + 2y - 7)$$

KKT conditions

$$egin{aligned} rac{\partial \mathcal{L}(x,\lambda,\mu)}{\partial x} &= 0 \\ h(x) &= 0 \\ 0 &\leq -g(x) \perp \mu \geq 0 \\ \lambda &\in \mathrm{free} \end{aligned}$$

Two-stage sequential game

Lagrangian function of lower-level problem:

$$\mathcal{L}(y, \mu_1, \mu_2, \mu_3, \mu_4)$$

$$= -2y + \mu_1(y - 2) + \mu_2(x + y - 5) + \mu_3(-x + y - 3) + \mu_4(-3x + 2y - 7)$$

KKT conditions

$$egin{aligned} rac{\partial \mathcal{L}(x,\lambda,\mu)}{\partial x} &= 0 \\ h(x) &= 0 \\ 0 &\leq -g(x) \perp \mu \geq 0 \\ \lambda &\in \mathrm{free} \end{aligned}$$

Two-stage sequential game

Lagrangian function of lower-level problem:

$$\mathcal{L}(y, \mu_1, \mu_2, \mu_3, \mu_4)$$

$$= -2y + \mu_1(y - 2) + \mu_2(x + y - 5) + \mu_3(-x + y - 3) + \mu_4(-3x + 2y - 7)$$

KKT conditions of the lower-level problem:

$$\frac{\partial \mathcal{L}}{\partial y} = -2 + \mu_1 + \mu_2 + \mu_3 + 2\mu_4 = 0$$

$$0 \le 2 - y \perp \mu_1 \ge 0$$

$$0 \le 5 - x - y \perp \mu_2 \ge 0$$

$$0 \le x - y + 3 \perp \mu_3 \ge 0$$

$$0 \le 3x - 2y + 7 \perp \mu_4 \ge 0$$

KKT conditions

$$\frac{\partial \mathcal{L}(x,\lambda,\mu)}{\partial x} = 0$$

$$h(x) = 0$$

$$0 \le -g(x) \perp \mu \ge 0$$

$$\lambda \in \text{free}$$

Two-stage sequential game

Upper-Level Problem (Leader)

Lower-Level Problem (Follower)

Replace the lower problem with the Optimality (KKT) conditions!

(Lecture 2)

 $\min_{\substack{x,y\\ s.t.}} y$ s.t. $-2 \le x \le 2$

$$\min_{y} -2y$$

s.t.
$$y - 2 \le 0$$
: μ_1
 $x + y - 5 \le 0$: μ_2

$$-x + y - 3 \le 0: \qquad \mu_3$$

$$-3x + 2y - 7 \le 0$$
: μ_4

Lagrangian function of lower-level problem:

$$\mathcal{L}(y, \mu_1, \mu_2, \mu_3, \mu_4)$$

$$= -2y + \mu_1(y - 2) + \mu_2(x + y - 5) + \mu_3(-x + y - 3) + \mu_4(-3x + 2y - 7)$$

KKT conditions of the lower-level problem:

$$\frac{\partial \mathcal{L}}{\partial y} = -2 + \mu_1 + \mu_2 + \mu_3 + 2\mu_4 = 0$$

$$0 \le 2 - y \perp \mu_1 \ge 0$$

$$0 \le 5 - x - y \perp \mu_2 \ge 0$$

$$0 \le x - y + 3 \perp \mu_3 \ge 0$$

$$0 \le 3x - 2y + 7 \perp \mu_4 \ge 0$$

Two-stage sequential game

Lagrangian function of lower-level problem:

$$\mathcal{L}(y, \mu_1, \mu_2, \mu_3, \mu_4)$$

$$= -2y + \mu_1(y - 2) + \mu_2(x + y - 5) + \mu_3(-x + y - 3) + \mu_4(-3x + 2y - 7)$$

KKT conditions of the lower-level problem:

$$\frac{\partial \mathcal{L}}{\partial y} = -2 + \mu_1 + \mu_2 + \mu_3 + 2\mu_4 = 0$$

$$0 \le 2 - y \perp \mu_1 \ge 0$$

$$0 \le 5 - x - y \perp \mu_2 \ge 0$$

$$0 \le x - y + 3 \perp \mu_3 \ge 0$$

$$0 \le 3x - 2y + 7 \perp \mu_4 \ge 0$$

Two-stage sequential game

Two-stage sequential game

$$\min_{\substack{x,y,\mu_1,\mu_2,\mu_3,\mu_4}} y \qquad \text{Leader} \\ (\text{variables: } x,y, \\ \mu_1,\mu_2,\mu_3,\mu_4) \qquad \text{s.t.} \qquad -2 \leq x \leq 2 \\ -2 + \mu_1 + \mu_2 + \mu_3 + 2\mu_4 = 0 \\ 0 \leq 2 - y \perp \mu_1 \geq 0 \\ 0 \leq 5 - x - y \perp \mu_2 \geq 0 \\ 0 \leq x - y + 3 \perp \mu_3 \geq 0 \\ 0 \leq 3x - 2y + 7 \perp \mu_4 \geq 0$$

Updated leader's problem with complementarity constraints

Mathematical Program with Complementarity Constraint (MPCC)

Two-stage sequential game

$$\min_{\substack{x,y,\mu_1,\mu_2,\mu_3,\mu_4}} y \qquad \text{Leader} \\ (\text{variables: } x,y, \\ \mu_1,\mu_2,\mu_3,\mu_4)$$
 s.t. $-2 \le x \le 2$
$$-2 + \mu_1 + \mu_2 + \mu_3 + 2\mu_4 = 0$$

$$0 \le 2 - y \perp \mu_1 \ge 0$$

$$0 \le 5 - x - y \perp \mu_2 \ge 0$$

$$0 \le x - y + 3 \perp \mu_3 \ge 0$$

$$0 \le 3x - 2y + 7 \perp \mu_4 \ge 0$$

Updated leader's problem with complementarity constraints

Mathematical Program with Complementarity Constraint (MPCC)

Difficult to solve due to the term that contains the product of the primal and the dual variables.

("Big M" approach: Course #31792 https://www.youtube.com/watch?v=STQRFr4praA)

Two-stage sequential game

$\min_{x,y,\mu_{1},\mu_{2},\mu_{3},\mu_{4}} y \qquad \text{Leader}$ $(\text{variables: } x,y, \mu_{1},\mu_{2},\mu_{3},\mu_{4})$ s.t. $-2 \le x \le 2$ $-2 + \mu_{1} + \mu_{2} + \mu_{3} + 2\mu_{4} = 0$ $0 \le 2 - y \perp \mu_{1} \ge 0$ $0 \le 5 - x - y \perp \mu_{2} \ge 0$ $0 \le x - y + 3 \perp \mu_{3} \ge 0$ $0 \le 3x - 2y + 7 \perp \mu_{4} \ge 0$

Updated leader's problem with complementarity constraints

Mathematical Program with Complementarity Constraint (MPCC)

Original problem

Updated leader's problem with complementarity constraints

Mathematical Program with Complementarity Constraint (MPCC)


```
Upper-Level Problem
(Leader)

minimize Upper-Level Objective Function (leader's primal variables)
subject to Uppler-Level Constraints

minimize Lower-Level Objective Function (follower's primal variables)
subject to Lower-Level Constraints
```

April 2022 DTU Wind and Energy Systems Liyang Han

Upper-Level Problem
(Leader)

minimize Upper-Level Objective Function (leader's primal variables)
subject to Uppler-Level Constraints

minimize Upper-Level Objective Function (follower's primal variables)
subject to Lower-Level Objective Function (follower's primal variables)
subject to Lower-Level Constraints

Mathematical Program with Complementarity Constraints (MPCC)

minimize Upper-Level Objective Function (leader's primal variables, follower's primal and dual variables)
subject to Uppler-Level Constraints
Optimality (KKT) Conditions of the Lower-Level Problem(s)

April 2022 DTU Wind and Energy Systems Liyang Han

Question:

Why is the updated leader's problem missing the follower's dual variables?

April 2022 DTU Wind and Energy Systems Liyang Han

Question:

Why is the updated leader's problem missing the follower's dual variables?

KKT's:

$$-2 + \mu = 0$$
$$0 \le 5 - x - y \perp \mu \ge 0$$

Liyang Han

April 2022

Strategic Offering Problem

Recall from Lecture 9:

(price & quantity)

What happens to the profit of Gen 2?

48

DTU Wind and Energy Systems Liyang Han

Recall from Lecture 9:

What happens to the profit of Gen 2?

49

Generator offers (price & quantity)

April 2022 DTU Wind and Energy Systems Liyang Han

Recall from Lecture 9:

What happens to the profit of Gen 2?

50

April 2022 DTU Wind and Energy Systems Liyang Han

April 2022 DTU Wind and Energy Systems Liyang Han

Can we use a bilevel model to find the best offering strategy of a generator?

April 2022 DTU Wind and Energy Systems Liyang Han

Can we use a bilevel model to find the best offering strategy of a generator?

Leader? Follower?

April 2022 DTU Wind and Energy Systems Liyang Han

Can we use a bilevel model to find the best offering strategy of a generator?

Leader: strategic generator *i* **Follower:** market clearing

April 2022 DTU Wind and Energy Systems Liyang Han

Can we use a bilevel model to find the best offering strategy of a generator?

Leader: strategic generator *i*

Follower: market clearing

Optimization problem:

$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

55

$$0 \le p_d \le \overline{p}_d, \forall d \in D: \underline{\mu}_d, \overline{\mu}_d$$

$$0 \le p_g \le \overline{p}_g, \forall g \in G: \underline{\mu}_g, \overline{\mu}_g$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 : \lambda$$

Can we use a bilevel model to find the best offering strategy of a generator?

Leader: strategic generator *i*

Follower: market clearing

bid price of demand d

offer price of generator g

56

Optimization problem:

$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

$$0 \le p_d \le \overline{p}_d, \forall d \in D: \ \underline{\mu}_d, \overline{\mu}_d$$

$$0 \leq p_g \leq \overline{p}_g, \forall g \in G: \ \underline{\mu}_g, \overline{\mu}_g$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 : \lambda$$

Can we use a bilevel model to find the best offering strategy of a generator?

Leader: strategic generator *i* Follower: market clearing

Optimization problem:
$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

$$0 \le p_d \le \overline{p_d} \ \forall d \in D: \ \underline{\mu}_d, \overline{\mu}_d$$

$$\text{subject to:} \quad \underset{0 \leq p_d}{\text{maximum load of demand d}} \\ 0 \leq p_d \leq \overline{p_d} \quad \forall d \in D: \quad \underline{\mu}_d, \overline{\mu}_d \\ 0 \leq p_g \leq \overline{p_g} \quad \forall g \in G: \quad \underline{\mu}_g, \overline{\mu}_g \\ \sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 \quad : \quad \lambda \\$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 : \lambda$$

Can we use a bilevel model to find the best offering strategy of a generator?

Leader: strategic generator *i*

Maximize profit: $\max_{i} p_i(\lambda - C'_i)$

Follower: market clearing

$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

Subject to:
$$0 \leq p_d \leq \overline{p}_d, \forall d \in D: \underline{\mu}_d, \overline{\mu}_d \\ 0 \leq p_g \leq \overline{p}_g, \forall g \in G: \underline{\mu}_g, \overline{\mu}_g \\ \sum_{d \in D} p_d - \sum_{g \in G} p_g = 0: \lambda$$

Can we use a bilevel model to find the best offering strategy of a generator?

Leader: strategic generator *i*

Follower: market clearing

$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

$$\begin{aligned} &0 \leq p_d \leq \overline{p}_d, \forall d \in D: \ \underline{\mu}_d, \overline{\mu}_d \\ &0 \leq p_g \leq \overline{p}_g, \forall g \in G: \ \underline{\mu}_g, \overline{\mu}_g \\ &\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 \ : \ \lambda \end{aligned}$$

Can we use a bilevel model to find the best offering strategy of a generator?

Leader: strategic generator iMaximize profit: $\max_{?} p_i(\lambda - C_i')$ How do you reflect this

in the leader's problem?

Follower: market clearing

$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

$$\begin{aligned} &0 \leq p_d \leq \overline{p}_d, \forall d \in D: \ \underline{\mu}_d, \overline{\mu}_d \\ &0 \leq p_g \leq \overline{p}_g, \forall g \in G: \ \underline{\mu}_g, \overline{\mu}_g \\ &\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 \ : \ \lambda \end{aligned}$$

Can we use a bilevel model to find the best offering strategy of a generator?

Follower: market clearing

$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

$$0 \le p_d \le \overline{p}_d, \forall d \in D: \underline{\mu}_d, \overline{\mu}_d$$

$$0 \le p_g \le \overline{p}_g, \forall g \in G: \underline{\mu}_g, \overline{\mu}_g$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0: \lambda$$

Can we use a bilevel model to find the best offering strategy of a generator?

Leader: strategic generator *i*

Follower: market clearing

$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

subject to:

$$0 \le p_d \le \overline{p}_d, \forall d \in D: \underline{\mu}_d, \overline{\mu}_d$$

$$0 \le p_g \le \overline{p}_g, \forall g \in G: \underline{\mu}_g, \overline{\mu}_g$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0: \lambda$$

Can we use a bilevel model to find the best offering strategy of a generator?

Leader: strategic generator *i*

Maximize profit:

$$\max_{C_i, \overline{p}_i} p_i(\lambda - C_i')$$

subject to: $0 \le \overline{p}_i \le \overline{p}_i'$

*True capacity (parameter)

Follower: market clearing

$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

subject to:

$$0 \le p_d \le \overline{p}_d, \forall d \in D: \ \underline{\mu}_d, \overline{\mu}_d$$

$$0 \le p_g \le \overline{p}_g, \forall g \in G: \ \underline{\mu}_g, \overline{\mu}_g$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 : \lambda$$

April 2022

Can we use a bilevel model to find the best offering strategy of a generator?

Can we use a bilevel model to find the best offering strategy of a generator?

$$\max_{C_i, \overline{p}_i} p_i(\lambda - C_i')$$

subject to:

$$0 \le \overline{p}_i \le \overline{p}_i'$$

 C_i, \overline{p}_i

Follower: market clearing

$$\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$$

subject to:

$$0 \le p_d \le \overline{p}_d, \forall d \in D: \ \underline{\mu}_d, \overline{\mu}_d$$

$$0 \le p_g \le \overline{p}_g, \forall g \in G: \ \underline{\mu}_g, \overline{\mu}_g$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 : \lambda$$

Leader

 $\max_{C_i,\overline{p}_i} p_i(\lambda - C_i') \qquad C_i, \overline{p}_i$

subject to:

$$0 \le \overline{p}_i \le \overline{p}_i'$$

Follower

 $\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$

subject to:

 $0 \le p_d \le \overline{p}_d, \forall d \in D: \ \underline{\mu}_d, \overline{\mu}_d$

 $0 \le p_g \le \overline{p}_g, \forall g \in G: \ \underline{\mu}_g, \overline{\mu}_g$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 : \mathcal{D}$$

Leader

 $\max_{C_i, \overline{p}_i} p_i(\lambda - C_i')$

 C_i, \overline{p}_i

subject to:

$$0 \le \overline{p}_i \le \overline{p}_i'$$

Follower

 $\max_{p_d, p_g} SW = \sum_{d \in D} U_d p_d - \sum_{g \in G} C_g p_g$

subject to:

 $0 \le p_d \le \overline{p}_d, \forall d \in D: \ \mu_d, \overline{\mu}_d$ $0 \le p_g \le \overline{p}_g, \forall g \in G: \ \underline{\mu}_g, \overline{\mu}_g$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 : \lambda$$

Objective: $\min_{C_i, \overline{p}_i, p_d, p_q} -p_i(\lambda - C_i')$

Subject to: $0 \le \overline{p}_i \le \overline{p}_i'$

$$\begin{aligned} & \min_{p_d, p_g} \ \sum_{g \in G} C_g \, p_g - \sum_{d \in D} U_d p_d \\ & \text{s.t.} \quad -p_d \leq 0, \forall d \in D \quad : \quad \underline{\mu}_d \\ & p_d - \overline{p}_d \leq 0, \forall d \in D : \quad \overline{\overline{\mu}}_d \\ & -p_g \leq 0, \forall g \in G \quad : \quad \underline{\mu}_g \\ & p_g - \overline{p}_g \leq 0, \forall g \in G : \quad \overline{\overline{\mu}}_g \end{aligned}$$

Upper-Level: Leader

Lower-Level: **Follower**

April 2022

Objective: $\min_{C_i, \overline{p}_i, p_d, p_g} -p_i(\lambda - C'_i)$

Subject to: $0 \le \overline{p}_i \le \overline{p}'_i$

$$\min_{p_d, p_g} \sum_{g \in G} C_g p_g - \sum_{d \in D} U_d p_d$$
s.t.
$$-p_d \leq 0, \forall d \in D : \underline{\mu}_d$$

$$p_d - \overline{p}_d \leq 0, \forall d \in D : \overline{\overline{\mu}}_d$$

$$-p_g \leq 0, \forall g \in G : \underline{\mu}_g$$

$$p_g - \overline{p}_g \leq 0, \forall g \in G : \overline{\overline{\mu}}_g$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 : \lambda$$

Upper-Level: Leader

Lower-Level: **Follower**

Lagrangian function of lower-level problem:

KKT conditions of the lower-level problem:

April 2022

Objective: $\min_{C_i, \overline{p}_i, p_d, p_a} -p_i(\lambda - C'_i)$

Subject to: $0 \le \overline{p}_i \le \overline{p}'_i$

 $\begin{aligned} & \min_{p_d, p_g} \ \sum_{g \in G} C_g \, p_g - \sum_{d \in D} U_d p_d \\ & \text{s.t.} \quad -p_d \leq 0, \forall d \in D \quad : \quad \underline{\mu}_d \\ & p_d - \overline{p}_d \leq 0, \forall d \in D : \quad \overline{\overline{\mu}}_d \\ & -p_g \leq 0, \forall g \in G \quad : \quad \underline{\mu}_g \\ & p_g - \overline{p}_g \leq 0, \forall g \in G : \quad \overline{\overline{\mu}}_g \\ & \sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 \quad : \quad \lambda \end{aligned}$

Upper-Level: Leader

Lower-Level: Follower

Lagrangian function of lower-level problem:

$$\mathcal{L}\left(p_{d}, p_{g}, \underline{\mu}_{d}, \overline{\mu}_{d}, \underline{\mu}_{g}, \overline{\mu}_{g}, \lambda\right)$$

$$= \sum_{g \in G} C_{g} p_{g} - \sum_{d \in D} U_{d} p_{d} - p_{d} \underline{\mu}_{d} + \overline{\mu}_{d} \left(p_{d} - \overline{p}_{d}\right)$$

$$- p_{g} \underline{\mu}_{g} + \overline{\mu}_{g} \left(p_{g} - \overline{p}_{g}\right) + \lambda \left(\sum_{d \in D} p_{d} - \sum_{g \in G} p_{g}\right)$$

KKT conditions of the lower-level problem:

Objective: $\min_{C_i, \overline{p}_i, p_d, p_q} -p_i(\lambda - C'_i)$

Subject to: $0 \le \overline{p}_i \le \overline{p}'_i$

 $\begin{aligned} & \min_{p_d, p_g} \ \sum_{g \in G} C_g \, p_g - \sum_{d \in D} U_d p_d \\ & \text{s.t.} \quad -p_d \leq 0, \forall d \in D \quad : \quad \underline{\mu}_d \\ & p_d - \overline{p}_d \leq 0, \forall d \in D : \quad \overline{\overline{\mu}}_d \\ & -p_g \leq 0, \forall g \in G \quad : \quad \underline{\mu}_g \\ & p_g - \overline{p}_g \leq 0, \forall g \in G : \quad \overline{\overline{\mu}}_g \\ & \sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 \quad : \quad \lambda \end{aligned}$

Upper-Level: Leader

Lower-Level: Follower

Lagrangian function of lower-level problem:

$$\begin{split} &\mathcal{L}\left(p_{d}, p_{g}, \underline{\mu}_{d}, \overline{\mu}_{d}, \underline{\mu}_{g}, \overline{\mu}_{g}, \lambda\right) \\ &= \sum_{g \in G} C_{g} \, p_{g} - \sum_{d \in D} U_{d} p_{d} - p_{d} \underline{\mu}_{d} + \overline{\mu}_{d} \left(p_{d} - \overline{p}_{d}\right) \\ &- p_{g} \underline{\mu}_{g} + \overline{\mu}_{g} \left(p_{g} - \overline{p}_{g}\right) + \lambda \left(\sum_{d \in D} p_{d} - \sum_{g \in G} p_{g}\right) \end{split}$$

KKT conditions of the lower-level problem:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial p_d} &= -U_d - \underline{\mu}_d + \overline{\mu}_d + \lambda = 0 \\ \frac{\partial \mathcal{L}}{\partial p_g} &= C_g - \underline{\mu}_g + \overline{\mu}_g - \lambda = 0 \\ \sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 \\ 0 &\leq p_d \perp \underline{\mu}_d \geq 0 \\ 0 &\leq \overline{p}_d - p_d \perp \overline{\mu}_d \geq 0 \\ 0 &\leq p_g \perp \underline{\mu}_g \geq 0 \\ 0 &\leq \overline{p}_g - p_g \perp \overline{\mu}_g \geq 0 \end{split}$$

April 2022

Objective: $\min_{C_i, \overline{p}_i, p_d, p_q} -p_i(\lambda - C'_i)$

Subject to: $0 \le \overline{p}_i \le \overline{p}'_i$

 $\begin{aligned} & \min_{p_d, p_g} \ \sum_{g \in G} C_g \, p_g - \sum_{d \in D} U_d p_d \\ & \text{s.t.} \quad -p_d \leq 0, \forall d \in D \quad : \quad \underline{\mu}_d \\ & p_d - \overline{p}_d \leq 0, \forall d \in D : \quad \overline{\overline{\mu}}_d \\ & -p_g \leq 0, \forall g \in G \quad : \quad \underline{\mu}_g \\ & p_g - \overline{p}_g \leq 0, \forall g \in G : \quad \overline{\overline{\mu}}_g \\ & \sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 \quad : \quad \lambda \end{aligned}$

Upper-Level: Leader

Lower-Level: Follower

Lagrangian function of lower-level problem:

$$\mathcal{L}\left(p_{d}, p_{g}, \underline{\mu}_{d}, \overline{\mu}_{d}, \underline{\mu}_{g}, \overline{\mu}_{g}, \lambda\right)$$

$$= \sum_{g \in G} C_{g} p_{g} - \sum_{d \in D} U_{d} p_{d} - p_{d} \underline{\mu}_{d} + \overline{\mu}_{d} \left(p_{d} - \overline{p}_{d}\right)$$

$$- p_{g} \underline{\mu}_{g} + \overline{\mu}_{g} \left(p_{g} - \overline{p}_{g}\right) + \lambda \left(\sum_{d \in D} p_{d} - \sum_{g \in G} p_{g}\right)$$

KKT conditions of the lower-level problem:

$$\frac{\partial \mathcal{L}}{\partial p_d} = -U_d - \underline{\mu}_d + \overline{\mu}_d + \lambda = 0 \quad \times |D|$$

$$\frac{\partial \mathcal{L}}{\partial p_g} = C_g - \underline{\mu}_g + \overline{\mu}_g - \lambda = 0 \quad \times |G|$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 \quad \times 1$$

$$0 \le p_d \perp \underline{\mu}_d \ge 0 \quad \times |D|$$

$$0 \le \overline{p}_d - p_d \perp \overline{\mu}_d \ge 0 \quad \times |D|$$

$$0 \le p_g \perp \underline{\mu}_g \ge 0 \quad \times |G|$$

$$0 \le \overline{p}_g - p_g \perp \overline{\mu}_g \ge 0 \quad \times |G|$$

Lagrangian function of lower-level problem:

$$\mathcal{L}\left(p_{d}, p_{g}, \underline{\mu}_{d}, \overline{\mu}_{d}, \underline{\mu}_{g}, \overline{\mu}_{g}, \lambda\right)$$

$$= \sum_{g \in G} C_{g} p_{g} - \sum_{d \in D} U_{d} p_{d} - p_{d} \underline{\mu}_{d} + \overline{\mu}_{d} \left(p_{d} - \overline{p}_{d}\right)$$

$$- p_{g} \underline{\mu}_{g} + \overline{\mu}_{g} \left(p_{g} - \overline{p}_{g}\right) + \lambda \left(\sum_{d \in D} p_{d} - \sum_{g \in G} p_{g}\right)$$

KKT conditions of the lower-level problem:

$$\frac{\partial \mathcal{L}}{\partial p_d} = -U_d - \underline{\mu}_d + \overline{\mu}_d + \lambda = 0 \quad \times |D|$$

$$\frac{\partial \mathcal{L}}{\partial p_g} = C_g - \underline{\mu}_g + \overline{\mu}_g - \lambda = 0 \quad \times |G|$$

$$\sum_{d \in D} p_d - \sum_{g \in G} p_g = 0 \quad \times 1$$

$$0 \le p_d \perp \underline{\mu}_d \ge 0 \quad \times |D|$$

$$0 \le \overline{p}_d - p_d \perp \overline{\mu}_d \ge 0 \quad \times |D|$$

$$0 \le p_g \perp \underline{\mu}_g \ge 0 \quad \times |G|$$

$$0 \le \overline{p}_g - p_g \perp \overline{\mu}_g \ge 0 \quad \times |G|$$

Learning Objectives

Today's lecture will (re-)introduce **sequential** (**Stackelberg**) **games**, and their relevance in the energy market.

After this lecture, you should be able to

- 1. Provide the definition of a **Stackelberg equilibrium** in a sequential game, and identify it in a payoff matrix;
- 2. Formulate a sequential game of an energy market application using a **bilevel model**, identify the **leader** and the **follower**, and match the leader with the upper level problem, and the follower with the lower level problem;
- 3. Derive the Karush-Kuhn-Tucker conditions (KKTs) of the lower lever problem of the bilevel model, given which, update the upper level problem as a Mathematical Program with Complementarity Constraint (MPCC).

Now you can do Assignment 2 Step 3 (c), Step 4, and Step 5... Well, basically the whole assignment... Hooray!!

April 2022 DTU Wind and Energy Systems Liyang Han

Thanks for your attention!

Liyang Han Email: liyha@dtu.dk

April, 2022

Technical University of Denmark

Department of Wind and Energy Systems

April 2022 DTU Wind and Energy Systems Liyang Han