Question 1

- 1. FALSE. Consider independent uniformly random variables X,Y on $\{0,1\}$. Let $Z=X\oplus Y$.
- 2. TRUE.
- 3. TRUE. One can have (0, 100, 101, 110, 1110, 1111)
- 4. A weak converse states that there is no sequence of $(n, 2^{\lfloor nR \rfloor})$ codes with R < H(X) such that we have vanishing error probability as $n \to \infty$ after decoding. A strong converse states that for any such sequence of codes, the error necessarily equals 1 in the limit $n \to \infty$.

Question 2

- 1. The entropy is 3.1291 bits.
- 2. A Huffman code for this source would be

$$C(A) = 00$$

$$C(E) = 10100$$

$$C(I) = 010$$

$$C(O) = 100$$

$$C(U) = 110$$

$$C(G) = 1010100$$

$$C(K) = 1010101$$

$$C(P) = 10110$$

$$C(R) = 011$$

$$C(S) = 101011$$

$$C(T) = 10111$$

$$C(V) = 111$$

3. A Shannon code would be

X	P(x)	$\lceil -\log p(x) \rceil$	Codeword
A	0.23	3	000
О	0.13	3	001
R	0.12	4	0100
V	0.12	4	0101
U	0.12	4	0110
I	0.11	4	0111
Р	0.05	5	10000
T	0.05	5	10001
E	0.04	5	10010
\mathbf{S}	0.02	6	100110
G	0.005	8	10011100
K	0.005	8	10011101

Question 3

1. Huffman codes are prefix codes and hence

$$\mathbb{E}[l_k(X^k)] = \bar{l}_k(X^k) \le H(X^k) + 1 = kH(X) + 1. \tag{1}$$

2. Consider the random variable $\frac{1}{k}l_k(X^k)$. Since we know that

$$kH(X) \le \bar{l}_k(X^k) \le kH(X) + 1,\tag{2}$$

we have that the mean μ of $\frac{1}{k}l_k(X^k)$ is bounded as

$$H(X) \le \mu \le H(X) + \frac{1}{k}.\tag{3}$$

Then, by the weak law of large numbers we have

$$\lim_{m \to \infty} \Pr\left[\left| \frac{1}{mk} \sum_{i=1}^{m} l_k(X_i^k) - \mu \right| \ge \frac{1}{k} \right] = 0 \tag{4}$$

$$\lim_{m \to \infty} \Pr\left[\frac{1}{mk} \sum_{i=1}^{m} l_k(X_i^k) \ge H(X) + \frac{2}{k}\right] = 0$$
 (5)

3. The argument follows the proof of Theorem 2.18 in the notes.

Consider a prefix code for blocks of size $k = \lceil \frac{2}{\delta} \rceil + 1$. Now consider m such blocks for any $m \in \mathbb{N}$. Let n = mk. By the previous part, we have that

$$\lim_{m \to \infty} \Pr\left[\sum_{i=1}^{m} l_k(X_i^k) \ge mkH(X) + 2m\right] = 0.$$
 (6)

That is, the length of the encoded message L_n for m blocks of size $k = \lceil \frac{2}{\delta} \rceil + 1$ satisfies

$$\lim_{n \to \infty} \Pr\left[L_n \le nH(X) + \frac{2n}{k} \right] = 1 \tag{7}$$

$$\implies \lim_{n \to \infty} \Pr \left[L_n \le nH(X) + \frac{2n\delta}{2+\delta} \right] = 1.$$
 (8)

For a rate $R = H(X) + \delta$, we have

$$n\left(H(X) + \frac{2\delta}{2+\delta}\right) = n\left(R - \delta + \frac{2\delta}{2+\delta}\right) \tag{9}$$

$$= n \left(R - \frac{\delta^2}{2 + \delta} \right) \tag{10}$$

$$\leq \lfloor nR \rfloor.$$
 (11)

Hence a rate of $H(X) + \delta$ is achievable for any $\delta > 0$.

A possible encoding/decoding process is Huffman encoding described in Algorithm 2.1 of the notes for $x^k \in \mathcal{X}^k$ with probabilities $p_{x^k} = P_{X^k}(x^k)$.