Definition: 给定 n 个变量 $a_i \in \{0,1\}$,同时给出若干条件: $(not)a_i$ opt $(not)a_j$,其中 opt $\in \{AND, OR, XOR\}$;求解 2-SAT 问题就是求出一组合法的 $\{a_i\}$.

Idea: 对于第 i 个变量,用两个点 2i 和 2i+1 分别表示 $a_i=0$ 和 $a_i=1$;求解一组合法的 $\{a_i\}$ 就是对每个 a_i ,要么选择 2i,表示 $a_i=0$,要么选择 2i+1,表示 $a_i=1$;用有向边 $x\to y$ 表示选择了 x 就必须选择 y.

考虑把给定条件转化为连边:

条件	连边
$a_i = 0$	2i+1 o 2i
$a_i=1$	2i o 2i + 1
$a_i ext{ XOR } a_j = 1 \ a_i eq a_j$	$egin{array}{l} 2i+1 ightarrow2j\ 2j+1 ightarrow2j+1\ 2j ightarrow2i+1 \end{array}$
$a_i ext{ XOR } a_j = 0 \ a_i = a_j$	$egin{array}{l} 2i+1 ightarrow 2j+1 \ 2j+1 ightarrow 2i+1 \ 2i ightarrow 2j \ 2j ightarrow 2i \end{array}$
$egin{aligned} a_i & ext{OR } a_j = 1 \ a_i = 1 & ext{or } a_j = 1 \ a_i, a_j & ext{至少一个是 } 1 \end{aligned}$	$egin{array}{l} 2i ightarrow 2j+1 \ 2j ightarrow 2i+1 \end{array}$
$egin{aligned} a_i & ext{OR } a_j = 0 \ a_i & = a_j = 0 \end{aligned}$	$egin{array}{l} 2i+1 ightarrow 2i\ 2j+1 ightarrow 2j \end{array}$
$egin{aligned} a_i ext{ AND } a_j &= 0 \ a_i &= 0 ext{ or } a_j &= 0 \ a_i, a_j ext{ 至少一个是 } 0 \end{aligned}$	$egin{array}{l} 2i+1 ightarrow2j\ 2j+1 ightarrow2i \end{array}$
$egin{aligned} a_i ext{ AND } a_j &= 1 \ a_i &= a_j &= 1 \end{aligned}$	$egin{array}{l} 2i ightarrow 2i+1 \ 2j ightarrow 2j+1 \end{array}$
$a_i=1 \ { m or} \ a_j=0$	$egin{array}{l} 2i ightarrow 2j \ 2j+1 ightarrow 2i+1 \end{array}$
$a_i=0 ext{ or } a_j=1$	$2i+1 ightarrow 2j+1 \ 2j ightarrow 2i$

这样我们得到了一个有向图。这个有向图中,属于同一个强连通分量的点要么同时被选,要么同时不被选。因此,如果存在某个 i, 2i 和 2i+1 都在同一个强连通分量中,那么问题无解。使用 \mathbf{Tarjan} 算法求强连通分量。

否则,我们得到一个 \mathbf{DAG} ,并且根据 \mathbf{Tarjan} 算法的特性,我们新图的标号正好是**反向的拓扑序**。此时,若 x,y 处于同一个连通分量中,且 x 的拓扑序小于 y 的拓扑序,那么选择了 x,就一定要选择 y. 考虑情况:i 对应的两个点 2i,2i+1 在同一个连通分量中,为了不发生矛盾,我们只能选择拓扑序更大者,即 \mathbf{Tarjan} 标号更小者。可以证明,对每个 i 这么选之后,一定得到一个可行解。

Complexity: O(V+E)

ATT: 开 2 倍空间。

Code:

```
int main(){
1
2
       // ... input & build edges
        for(int i = 2; i <= (n<<1|1); i++)
3
4
           if(!dfn[i]) tarjan(i);
5
      for(int i = 1; i <= n; i++){
           if(belong[i<<1] == belong[i<<1|1]){
6
7
               puts("IMPOSSIBLE");
8
               return 0;
9
      }
10
       puts("POSSIBLE");
11
        for(int i = 1; i <= n; i++)
12
          printf("%d ", belong[i<<1] < belong[i<<1|1] ? 0 : 1); // the ith variable is 0/1</pre>
13
14
       // ...
15 }
```