MATH 217 W24 - LINEAR ALGEBRA, Section 001 (Dr. Paul Kessenich) Homework Set Part B due Sunday, February 18 at 11:59pm Zhengyu James Pan (jzpan@umich.edu)

- 1. Let V and W be vector spaces, and let $T:V\to W$ be a linear transformation. Let $X=(\vec{x}_1,\ldots,\vec{x}_k)$ be a list of vectors in V, and consider the list $Y=(T(\vec{x}_1),\ldots,T(\vec{x}_k))$ of vectors in W. Determine whether the following statements are true or false. If true, provide a proof. If false, provide a counter-example.
 - (a) If X is linearly independent, then Y is also linearly independent.

Solution: False, consider $T_0: \mathbb{R}^2 \to \mathbb{R}^2$, $\vec{v} \mapsto \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $X = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$. Then $Y = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$, which is not linearly independent since $\vec{y}_1 + \vec{y}_2 = 0$.

(b) If Y is linearly independent, then X is also linearly independent.

Solution: True. We show the contrapositive. Let X be a linearly dependent set of vectors in V. Then there exist nonzero scalars c_1, c_2, \ldots, c_k such that $c_1\vec{x}_1 + \cdots + c_n\vec{x}_n = 0$. Then we know:

$$T(c_1\vec{x}_1 + \dots + c_n\vec{x}_n) = T(0)$$

$$T(c_1\vec{x}_1) + \dots + T(c_n\vec{x}_n) = 0_V$$
 (linearity)
$$c_1T(\vec{x}_1) + \dots + c_nT(\vec{x}_n) = 0_V$$
 (linearity)