Exercises: Functions

Exercises

- 1. Find the values of the given functions at the stated arguments. For example, if the function is $s \colon \mathbb{N} \to \mathbb{N}$, where s(n) = n+1, then s(0) = 1 and s(5) = 6.
 - (a) $f: \mathbb{N} \to \mathbb{N}$, where f(n) = n + 3. Find the values of f(0), f(3) and f(7).
 - (b) $g: \mathbb{Z} \to \mathbb{N}$, where g(n) = |n|. (This means the absolute value of n.) Find the values of g(0), g(-1), g(2).
 - (c) $h: \mathbb{R} \to \{1\}$, where h(n) = 1. Find the values of $h(1), h(\pi), h(-e^{-\pi})$.
- 2. For each of the following functions, specify a suitable codomain X. There may be more than one suitable answer.
 - (a) $f: \mathbb{N} \to X$, where $f(x) = x^2$
 - (b) $g: \{1, 2\} \to X$, where g(x) = 2x
 - (c) $h: \mathbb{N} \to X$, where h(x) = -x
 - (d) $i: \mathbb{N} \times \mathbb{Z} \to X$, where $i(x, y) = x \times y$
- 3. In each of the following questions you will be given two functions and an input, then asked to compose the functions and describe what the output is.
 - (a) Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ be functions defined by $f(m) = m^2$ and $g(n) = n^3$, for $m, n \in \mathbb{Z}$.
 - i. For a given integer $m \in \mathbb{Z}$, describe $(g \circ f)(m)$.
 - ii. If m = 3, what is the value of $(g \circ f)(m)$?
 - iii. Is $(g \circ f)(m) = (f \circ g)(m)$ always true?
 - (b) Let $\alpha \colon \mathbb{R} \to \mathbb{R}$ and $\beta \colon \mathbb{R} \to \mathbb{R}$ be functions defined by $\alpha(m) = \frac{m}{2}$ and $\beta(n) = \operatorname{abs}(n)$, for $m \in \mathbb{R}$ and $n \in \mathbb{Z}$. (The symbols α and β are pronounced 'alpha' and 'beta'. The notation for the function β is for the absolute value, sometimes written |n| instead of $\operatorname{abs}(n)$.)
 - i. For a given integer $m \in \mathbb{Z}$, describe $(\beta \circ \alpha)(m)$. If m = 3, what is the value of $(\beta \circ \alpha)(m)$?

- ii. If $m = -\pi$, what is the value of $(\beta \circ \alpha)(m)$?
- iii. If $m = -\pi$, what is the value of $(\alpha \circ \beta)(m)$?
- iv. Is $(\beta \circ \alpha)(m) = (\alpha \circ \beta)(m)$ always true?
- (c) Let $p: \{a, b, c\} \to \{1, 2, 3\}$ and $q: \{1, 2, 3\} \to \{x, y, z\}$ be functions defined by p(a) = 1, p(b) = 2, p(c) = 3 and q(1) = x, q(2) = y, q(3) = z.
 - i. For each $m \in \{a, b, c\}$, what is the value of $(q \circ p)(m)$?
 - ii. Is it possible to define the composite function $p \circ q$?
 - iii. Can you define a function $r: \{x, y, z\} \to \{a, b, c\}$ such that $(r \circ q)(1) = b, (r \circ q)(2) = b,$ and $(r \circ q)(3) = a$?
- 4. (Challenge) In the following questions we will investigate a link between sets of functions $f: X \to \{0,1\}$ and subsets of a set X. Let X be a set. Then the **power set of** X is defined as the set whose elements are the subsets $A \subseteq X$. I.e,

$$\mathbb{P}(X) = \{A \mid A \subseteq X\}.$$

For examples and further explanation, see the notes on power set.

- (a) For each of the following sets, count how many different subsets they have. I.e., for each set B below, count the number of elements in the set $\mathbb{P}(B)$.
 - i. $X = \emptyset$,
 - ii. $Y = \{0\},\$
 - iii. $Z = \{0, 1\},\$
 - iv. $W = \{0, 1, 2\}.$
- (b) For each of the following sets, count how many different functions there are into the set $\{0,1\}$. I.e., for each set B below, count the number of elements in the set $Fun(B,\{0,1\})$.
 - i. $X = \emptyset$,
 - ii. $Y = \{0\},\$
 - iii. $Z = \{0, 1\},\$
 - iv. $W = \{0, 1, 2\}.$
- (c) Do you notice anything about the numbers in the parts above? I.e., is there any link between the number of subset of a set B and the number of functions $B \to \{0, 1\}$?
- (d) Given a subset $A \subset B$, can you use this to define a function $f_A : B \to \{0,1\}$? I.e., can you define a function $\varphi : \mathbb{P}(B) \to \text{Fun}(B,\{0,1\})$?
- (e) Given a function $f: B \to \{0, 1\}$, can you use this to define a subset $A_f \subseteq B$? I.e., can you define a function $\psi \colon \operatorname{Fun}(B, \{0, 1\} \to \mathbb{P}(B))$?

Solutions

- 1. (a) f(0) = 3, f(3) = 6, f(7) = 10
 - (b) q(0) = 0, q(-1) = 1, q(2) = 2

(c)
$$h(1) = 1, h(\pi) = 1, h(-e^{-\pi}) = 1$$

- 2. (a) One possible codomain is $X = \mathbb{N}$.
 - (b) One possible codomain is $X = \{2, 4\}$. Another is $X = \mathbb{N}$.
 - (c) One possible codomain is $X = \mathbb{Z}$.
 - (d) One possible codomain is \mathbb{Z} .

3. (a) i.
$$(g \circ f)(m) = g(f(m)) = g(m^2) = (m^2)^3 = m^6$$

- ii. $(g \circ f)(m) = (g \circ f)(3) = 3^6 = 729$
- iii. The other composite is given by

$$(f \circ g)(m) = f(m^3)$$

$$= (m^3)^2$$

$$= m^6$$

$$= (g \circ f)(m).$$

So no matter the value of $m \in \mathbb{Z}$, we always have $(g \circ f)(m) = (f \circ g)(m)$. We can then say that $g \circ f = f \circ g$.

- (b) i. $(\beta \circ \alpha)(m) = \beta(\alpha(m)) = \beta(\frac{m}{2}) = abs(\frac{m}{2})$. There's nothing much more we can do to simplify that.
 - ii. If $m=-\pi$, then $\alpha(m)=\alpha(-\pi)=\frac{-\pi}{2}$. Since $-\pi\approx-3.14159$, then $\frac{-\pi}{2}\approx-1.57$. (In general, don't truncate numbers like π until you have to so just keep using the symbol π until you actually need a numerical value out of it.) So $\beta(\alpha(-\pi))\approx \mathrm{abs}(-1.57)\approx 1.57$.
 - iii. If $m = -\pi$, then $\beta(m) = abs(-\pi) = \pi$. So $\alpha(\beta(-\pi)) \approx (1.57)$.
 - iv. We can just think about this first without putting in any values. One of the functions, α , halves the value we put into it. The other function, β , takes the absolute value of the number. It doesn't matter what order we do this in, so we always have $\beta \circ \alpha = \alpha \circ \beta$.
- (c) i. $(q \circ p)(a) = x$, $(q \circ p)(b) = y$, $(q \circ p)(c) = z$
 - ii. Since the sets $\{a, b, c\}$ and $\{x, y, z\}$ are not equal, we cannot define the other composite $p \circ q$ since the domains and codomains don't match up in the correct way.
 - iii. Define $r \colon \{x,y,z\} \to \{a,b,c\}$ by r(x) = b, r(y) = b, and r(z) = a.
- 4. (Challenge) This was originally a guided classroom exercise, so is far harder than I'd expect you to tackle by yourself. However, you might find it interesting to try and work through it.

(a) i.
$$\mathbb{P}(X) = \{\emptyset\}$$
, so $|\mathbb{P}(X)| = 1$;

ii.
$$\mathbb{P}(Y) = \{\emptyset, \{0\}\}, \text{ so } |\mathbb{P}(Y)| = 2;$$

iii.
$$\mathbb{P}(Z) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}, \text{ so } |\mathbb{P}(Z)| = 4;$$

- iv. $\mathbb{P}(W) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}, \text{ so } |\mathbb{P}(W)| = 8.$
- (b) i. $X = \emptyset$: there is one function $\emptyset \to \{0,1\}$ this can be tricky to see since the domain is empty;
 - ii. $Y = \{0\}$: there are two possible functions here send 0 to 0, or send 0 to 1;
 - iii. $Z = \{0, 1\}$: there are four possible functions here send both elements to 0, send both elements to 1, send both elements to themselves, or swap the values;
 - iv. $W = \{0, 1, 2\}$: this time there are eight possible functions, which you may want to try and write down.
- (c) Given a set B, the number of subsets of B is the same as the number of functions $B \to \{0, 1\}$. I.e., for any set B we seem to be seeing that $|\mathbb{P}(B)| = |\operatorname{Fun}(B, \{0, 1\})|$.
- (d) Let A be a subset of B. We need to define a function $\varphi(A) \colon B \to \{0,1\}$. One way of doing this is to define $\varphi(A)(b) = 0$ if $b \notin A$ and $\varphi(A)(b) = 1$ if $b \in A$. So what we are doing is sending an element $b \in B$ to 1 (True) if the element is also in the subset A, otherwise we send it to 0 (False).
- (e) Can you define a function $\psi \colon \operatorname{Fun}(B, \{0,1\} \to \mathbb{P}(B))$? Let $f \colon B \to \{0,1\}$ be a function. We need to define a subset $\psi(f) = A_f \subseteq B$. We can define this by

$$A_f = \{ b \in B \mid f(b) = 1 \}.$$

This is similar to how we defined the function in the previous part.