Лекция: **В**-сплайни

Гено Николов, ФМИ, СУ "Св. Климент Охридски"

Съдържание на лекцията

- Дефиниция на В-сплайните. Основни свойства
- Редици от *В*-сплайни
- Базис от *В*-сплайни
- Основна рекурентна връзка

В-сплайни

В предната лекция показахме, че всеки сплайн от степен r-1 с възли $x_1 < \cdots < x_n$ може да бъде представен като линейна комбинация на n+r функции:

1,
$$x, \ldots, x^{r-1}, (x-x_1)_+^{r-1}, \ldots, (x-x_n)_+^{r-1}$$
.

Такова представяне на сплайна не е удобно при работа с компютър. Ако *п* е много голямо, стойността на сплайна $\mathcal{S}(\mathcal{X})$ в точката $\mathcal{X} \in (\mathcal{X}_i, \mathcal{X}_{i+1})$ се записва като сума на голям брой изрази (по-точно, i+r израза), а по същество s(x) е полином от степен r-1 в (x_i, x_{i+1}) и би трябвало да се запише като линейна комбинация на Глинейно независими функции. При смятане с голям брой изрази се получават грешки от закръгляване на числата в компютъра, които могат да се натрупват и доведат до съществена неточност в крайния резултат. В тази лекция ще въведем друг базис в пространствата от сплайни, който няма този недостатък.

В-сплайни: определение и свойства

Определение

Разделената разлика на отсечената степенна функция $(x-t)_+^{r-1}$ по отношение на x в точките $x_0 < \cdots < x_r$ се нарича B-сплайн от степен r-1 с възли x_0, \ldots, x_r .

Означаваме тази функция с $B(x_0, \ldots, x_r; t)$,

$$B(x_0,\ldots,x_r;t)=(\cdot-t)_+^{r-1}[x_0,\ldots,x_r].$$

Да се убедим, че $B(x_0, \ldots, x_r; t)$ е сплайн от степен r-1 с възли x_0, \ldots, x_r . За разделената разлика $f[x_0, \ldots, x_r]$ имаме

$$f[x_0,\ldots,x_r]=c_0f(x_0)+c_1f(x_1)+\cdots+c_rf(x_r),$$

където $c_k = \frac{1}{\omega'(x_k)}$ и $\omega(x) := (x - x_0) \dots (x - x_r)$. От тук

$$B(x_0,\ldots,x_r;t) = \sum_{k=0}^{r} c_k (x_k - t)_+^{r-1}.$$
 (1)

В-сплайни: Теорема

Следователно, $B(x_0, \ldots, x_r; t)$ е наистина сплайн—функция от степен r-1 с възли x_0, \ldots, x_r . Следващата теорема разкрива две важни свойства на B-сплайните.

Теорема 1.

За всяко $r \in \mathbb{N}$, $r \ge 1$ имаме:

- а) $B(x_0,...,x_r;t)=0$ при $t\not\in [x_0,x_r);$
- б) $B(x_0, ..., x_r; t) > 0$ при $t \in (x_0, x_r)$.

Доказателство. а) Ако $t \leq x_0$, тогава $x_k - t \geq 0$ за $k = 0, 1, \ldots, r$, и $(x_k - t)_+^{r-1} = (x_k - t)_-^{r-1}$, следователно $B(x_0, \ldots, x_r; t) = (\cdot - t)_-^{r-1} [x_0, \ldots, x_r] = 0$, тъй като разделената разлика от r-ти ред от полинома от степен r-1 $(x-t)_-^{r-1}$ е равна на нула.

Доказателство на Теорема 1

Ако пък $t>x_r$, тогава $x_k-t<0$ за $k=0,\ldots,r$ и следователно $(x_k-t)_+^{r-1}=0$ за $k=0,\ldots,r$. Оттук и от представянето (1) получаваме $B(x_0,\ldots,x_r;t)=0$ при $t>x_r$.

б) Нека сега t е фиксирана точка в (x_0, x_r) . Да означим с $P_r(x) = bx^r + \cdots$ полинома от степен r, който интерполира функцията $\tau(x) := (x - t)_+^{r-1}$ в точките x_0, \ldots, x_r , тогава съгласно дефиницията на B-сплайн, $b = B(x_0, \ldots, x_r; t)$.

 $P_r(x)$ не може да съвпада тъждествено с $(x-t)^{r-1}$ или с нулата в някакъв подинтервал на $(-\infty,\infty)$, защото тогава полиномът $P_r(x)$ би съвпадал тъждествено с полинома $(x-t)^{r-1}$ или с нулата, а това не е вярно, тъй като поради предположението $t \in (x_0, x_r)$, имаме точки, в които полиномът P_r интерполира $(x-t)^{r-1}$, и точки, в които P_r интерполира константата 0.

Доказателство на Теорема 1 (продължение)

Да разгледаме разликата $P_r(x) - \tau(x)$. Тя има поне r+1 нули: x_0, x_1, \ldots, x_r , и тези нули са изолирани. По теоремата на Рол, между всеки две нули на $P_r(x) - \tau(x)$ ще има поне една нула на $P'_r(x) - \tau'(x)$ или по-точно, между всеки две нули на $P_r(x) - \tau(x)$ ще има точка, в която производната $P'_r(x) - \tau'(x)$ си сменя знака. И така, $P'_r(x) - \tau'(x)$ ще има поне r различни нули (смени на знака). Продължавайки по същия начин заключаваме, че $P''_r(x) - \tau''(x)$ ще има поне r-1 нули и т.н., $P_r^{(r-2)}(x) - \tau^{(r-2)}(x)$ ще има поне r-1 нули и т.н., $P_r^{(r-2)}(x) - \tau^{(r-2)}(x)$ ще има поне r-1 нули и т.н., $P_r^{(r-2)}(x) - \tau^{(r-2)}(x)$ ще има поне r-1 нули и т.н., $P_r^{(r-2)}(x) - \tau^{(r-2)}(x)$ ще има поне r-1 нули и т.н., $P_r^{(r-2)}(x) - \tau^{(r-2)}(x)$ ще има поне r-1 нули и т.н., $P_r^{(r-2)}(x) - \tau^{(r-2)}(x)$ ще има поне r-1 нули и т.н., $P_r^{(r-2)}(x) - \tau^{(r-2)}(x)$ ще има поне r-1

$$P_r^{(r-2)}(x) = \frac{r!}{2} bx^2 + \cdots,$$

т.е. графиката на $P_r^{(r-2)}(x)$ е парабола, а тази на $\tau^{(r-2)}(x) = (r-1)!(x-t)_+$ е начупена линия от два сегмента (виж Фигура 1).

Доказателство на Теорема 1 (чертеж)

Фигура: Графики на $P_r^{(r-2)}(x)$ и $\tau^{(r-2)}(x)$.

Доказателство на Теорема 1 (продължение)

Очевидно параболата $P_r^{(r-2)}(x)$ не би могла да пресича $\tau^{(r-2)}(x)$ в повече от две точки, ако тя е обърната с върха си нагоре, т.е. ако водещият ѝ коефициент $r!\ b/2$ е отрицателен. Ако този коефициент е нула, то графиката на $P_r^{(r-2)}(x)$ е линейна функция и също не би могла да пресича графиката на $\tau^{(r-2)}(x)$ в повече от две точки. Следователно $r!\ b/2>0$ и оттук $b=B(x_0,\ldots,x_r;t)>0$.

Редици от В-сплайни.

Нека

$$\cdots < X_{i-1} < X_i < X_{i+1} < \cdots$$

е дадена крайна или безкрайна редица от различни точки. С тях ще свързваме редица от B-сплайни $\{B_{i,r-1}(t)\}$, където

$$B_{i,r-1}(t) := B(x_i, \ldots, x_{i+r}; t)$$
.

Лема 1.

При всеки избор на индекси m < N, функциите $\{B_{i,r-1}(t)\}_{i=m}^N$ са линейно независими в $(-\infty,\infty)$.

Доказателство на Лема 1

Да допуснем противното, тогава съществува линейна комбинация

$$f(t) = \sum_{i=m}^{m+N} \alpha_i B_{i,r-1}(t) \equiv 0, \qquad t \in (-\infty, \infty),$$

в която поне един от коефициентите $\{\alpha_i\}_{i=m}^n$ е различен от нула. Да изберем t от интервала (x_m, x_{m+1}) . При такова t ще имаме

$$f(t) = \alpha_m B_{m,r-1}(t),$$

защото, съгласно Теорема 1, $B_{i,r-1}(t)=0$ за i>m. Пак от Теорема 1 имаме $B_{m,r-1}(t)>0$, и от условието f(t)=0 следва, че $\alpha_m=0$. По същия начин сега показваме, че $\alpha_{m+1}=0$ и т.н., докато стигнем до заключението, че всички коефициенти $\{\alpha_i\}_{i=m}^{m+N}$ са равни на нула, което противоречи на направеното предположение. Лема 1 е доказана.

Лема 2.

При всеки избор на точките $\xi_1 < \cdots < \xi_r$ функциите $(\xi_1 - X)^{r-1}, \ldots, (\xi_r - X)^{r-1}$ са линейно независими в $(-\infty, \infty)$ (и следователно образуват базис за π_{r-1}).

Доказателство. Да допуснем противното, т.е. съществува линейна комбинация

$$f(x) = \sum_{i=1}^{r} a_i (\xi_i - x)^{r-1},$$

която се анулира за всяко $X \in (-\infty, \infty)$, и поне един коефициент a_i е различен от нула. Тъй като f(x) е алгебричен полином на X, който се анулира тъждествено, то и неговите производни ще се анулират тъждествено, т.е.

$$f(x)=f'(x)=\cdots=f^{(r-1)}(x)=0$$
 за всяко $x\in (-\infty,\infty)$.

Доказателство на Лема 2 (продължение)

Да фиксираме някакво x в $(-\infty, \xi_1)$ и да означим $y_i = \xi_i - x$, $i = 1, \ldots, r$. Тогава $y_1 < y_2 < \cdots < y_r$ и $f^{(j)}(y_i) = 0$ за $j = 0, 1, \ldots, r - 1$. Тези равенства са еквивалентни със системата линейни уравнения

чиято детерминанта е Вандермондова, и следователно различна от нула. Тогава системата има само нулевото решение $a_1 = \cdots = a_r = 0$, което е противоречие. Лемата е доказана.

В-сплайни: свойството "минимален носител"

Съгласно Теорема 1, всеки B-сплайн $B_{i,r-1}(t)$ е различен от нула само в крайния интервал (x_i, x_{i+r}) . Този интервал се нарича носител на $B_{i,r-1}(t)$. И така, B-сплайните са сплайн-функции с краен носител. Следващата лема показва, че няма сплайни от степен r-1, които да са с по-малък носител от B-сплайните.

Лема 3.

Нека $x_1 < \cdots < x_r$ и $f \in S_{r-1}(x_1, \ldots, x_r)$. Ако f(t) = 0 за всяко $t \notin [x_1, x_r]$, тогава $f(t) \equiv 0$ в $(-\infty, \infty)$.

Доказателство на Лема 3

Сплайнът f може да бъде представен във вида

$$f(t) = p(t) + \sum_{k=1}^{r} c_k (t - x_k)_+^{r-1},$$

където p е полином от π_{r-1} . Нека $t \in (-\infty, x_1)$. Тогава f(t) = p(t) = 0, следователно $p \equiv 0$. И така,

$$f(t) = \sum_{k=1}^{r} c_k (t - x_k)_+^{r-1}, \qquad t \in \mathbb{R}.$$
 (2)

Да изберем сега произволни точки $\xi_1 < \dots < \xi_r$ от интервала (x_r, ∞) и да означим

$$p_i(x) := (\xi_i - x)^{r-1}, \quad j = 1, \dots, r.$$

Съгласно Лема 2, $\{p_i\}_{i=1}^r$ образуват базис за π_{r-1} .

Доказателство на Лема 3 (продължение)

Да разгледаме линейния функционал

$$L(p) := \sum_{k=1}^{r} c_k p(x_k).$$

От условието $f(\xi_j)=0$ следва $L(p_j)=0$ за $j=1,\ldots,r$, и понеже $\{p_j\}_1^r$ образуват базис за π_{r-1} , следва, че

$$L(q)=0$$
 за всяко $q\in\pi_{r-1}.$

За произволен индекс $j \in \{1, \dots, r\}$, нека q_j е полиномът от π_{r-1} зададен с интерполационните условия

$$q_i(x_k) = \delta_{ki}, \quad k = 1, \ldots, r.$$

Тъй като линейният функционал L се анулира върху π_{r-1} ,

$$0 = L(q_j) = \sum_{k=1}^r c_k q_j(x_k) = c_j.$$

Доказателство на Лема 3 (продължение)

Получихме, че всички коефициенти c_j в представянето (2) са равни на нула, и следователно $f(t)\equiv 0$. Лема 3 е доказана. \square

Нека да подчертаем още веднъж: B-сплайните от степен r-1 имат минимален носител измежду сплайните от степен r-1.

Основният резултат в тази лекция ни казва как да построяваме базис от В-сплайни за пространства от сплайн-функции. Подчертаваме, че тези функции се разглеждат в някакъв краен интервал [a,b]. Нека n>r и

$$a < x_{r+1} < x_{r+2} < \cdots < x_n < b$$
.

Разглеждаме линейното пространство

$$S := S_{r-1}(x_{r+1}, \dots, x_n)$$
 (3)

от сплайн-функции от степен r-1 с n-r възли x_{r+1},\ldots,n (напомняме, тези функции ни интересуват само в интервала [a,b]). Размерността на S е равна на n.

Теорема 2.

Нека точките $x_1 < \cdots < x_r < a$ и $b < x_{n+1} < \cdots < x_{n+r}$ са избрани по произволен начин, и нека $B_i(t) := B(x_i, \dots, x_{i+r}; t), \quad i = 1, \dots, n.$ Тогава **B**-сплайните $\{B_i(t)\}_{i=1}^n$ образуват базис за пространството ${\mathcal S}$ върху интервала [*a*, *b*].

Доказателство. Тъй като $B_i \in S$ за $i=1,\ldots,n$ и размерността на S е равна на n, достатъчно е да докажем, че B_1, \ldots, B_n са линейно независими функции в [a, b]. Да допуснем противното: съществува линейна комбинация

$$f(t) = \sum_{i=1}^{n} \alpha_i B_i(t),$$

която се анулира тъждествено в [a, b], но поне един от коефициентите $\{\alpha_i\}$ е различен от нула.

Доказателство на Теорема 2

От представянето на f и Теорема 1 се вижда, че

$$f(t) \equiv 0$$
 в $(-\infty, x_1)$,

$$f(t) \equiv 0$$
 в (x_{r+n}, ∞) .

Съгласно допускането ни, $f(t) \equiv 0$ в [a,b]. Но тъй като f съвпада с алгебрични полиноми в интервалите (x_r,x_{r+1}) и $[x_n,x_{n+1}]$, следва че $f\equiv 0$ в $[x_r,x_{n+1}]$, и графиката на f има вида, показан на Фигура 2.

Доказателство на Теорема 2 (Чертеж)

Фигура: Графика на сплайн-функцията f.

Доказателство на Теорема 2 (продължение)

Да разгледаме функциите

$$f_1(t) = egin{cases} 0 & ext{при } t > x_r \,, \ f(t) & ext{при } t \leq x_r \,, \end{cases}$$
 $f_2(t) = egin{cases} 0 & ext{при } t < x_{n+1} \,, \ f(t) & ext{при } t \geq x_{n+1} \,. \end{cases}$

Очевидно $f(t) = f_1(t) + f_2(t)$. Тъй като $f_1 \in S_{r-1}(x_1, \dots, x_r)$ и $f_1(t) \equiv 0$ за $t \notin [x_1, x_r]$, от Лема 3 следва, че $f_1(t) \equiv 0$ в $(-\infty, \infty)$. Аналогично, тъй като $f_2 \in S_{r-1}(x_{n+1}, \dots, x_{n+r})$ и $f_2(t) \equiv 0$ за $t \notin [x_{n+1}, x_{n+r}]$, от Лема 3 заключаваме, че $f_2 \equiv 0$. Но тогава $f(t) = f_1(t) + f_2(t) \equiv 0$ в $(-\infty, \infty)$. Съгласно Лема 1, функциите B_1, \dots, B_n са линейно независими в $(-\infty, \infty)$, и следователно $\alpha_1 = \dots = \alpha_n = 0$. Получихме противоречие, което показва, че $\{B_i(t)\}_{i=1}^n$ са линейно независими в [a, b]. С това Теорема 2 е доказана.

Базис от *В*-сплайни

И така, всяка сплайн-функция f от $S_{r-1}(x_{r+1},\ldots,x_n)$ се представя по единствен начин във вида

$$f(t) = \sum_{i=1}^{n} \alpha_i B_i(t).$$

Предвид крайния носител на $B_i(t)$, това е много удобно представяне на f за работа с компютър, тъй като при фиксирано t, сплайнът f(t) е всъщност линейна комбинация само на r последователни B-сплайни, които съдържат точката t в своя носител. Друго предимство на това представяне е, че съществува проста схема за пресмятане стойността на B_i в дадена точка.

Основна рекурентна връзка

Пресмятането на стойността на B-сплайните в дадена точка се основава на следната рекурентна връзка:.

Теорема 3 (Основна рекурентна връзка).

3а всяко $r\geq 2$ и $t\in (-\infty,\infty)$ е изпълнено равенството

$$B_{i,r-1}(t) = \frac{t-x_i}{x_{i+r}-x_i}B_{i,r-2}(t) + \frac{x_{i+r}-t}{x_{i+r}-x_i}B_{i+1,r-2}(t).$$

Доказателство. Използва се лемата на Стефенсен–Поповичу за разделена разлика от произведение от функции:

$$(f g)[x_0,\ldots,x_n] = \sum_{k=0}^n f[x_0,\ldots,x_k] g[x_k,\ldots,x_n].$$

Доказателство на Теорема 3

Да изберем в тази формула f(x) = x - t и $g(x) = (x - t)_+^{r-2}$. Очевидно

$$f(x)g(x) = (x-t)_+^{r-1}$$
 sa $x \in (-\infty, \infty)$

и следователно

$$B_{i,r-1}(t) = (f g)[x_i, \dots, x_{i+r}]$$

$$= f(x_i)g[x_i, \dots, x_{i+r}] + f[x_i, x_{i+1}]g[x_{i+1}, \dots, x_{i+r}],$$

тъй като $f[x_i,\ldots,x_{i+k}]=0$ за $k\geq 2$. По-нататък, отчитаме, че $f(x_i)=x_i-t,$ $f[x_i,x_{i+1}]=1,$ $g[x_i,\ldots,x_{i+r-1}]=B_{i,r-2}(t),$ $g[x_{i+1},\ldots,x_{i+r}]=B_{i+1,r-2}(t)$ и прилагаме рекурентната връзка за разделените разлики, за да получим:

Доказателство на Теорема 3 (продължение)

което е исканото равенство.

$$B_{i,r-1}(t) = f(x_i) \frac{g[x_{i+1}, \dots, x_{i+r}] - g[x_i, \dots, x_{i+r-1}]}{x_{i+r} - x_i} + g[x_{i+1}, \dots, x_{i+r}]$$

$$= \left(1 + \frac{f(x_i)}{x_{i+r} - x_i}\right) g[x_{i+1}, \dots, x_{i+r}] - \frac{f(x_i)}{x_{i+r} - x_i} g[x_i, \dots, x_{i+r-1}]$$

$$= \frac{x_{i+r} - t}{x_{i+r} - x_i} B_{i+1,r-2}(t) + \frac{t - x_i}{x_{i+r} - x_i} B_{i,r-2}(t),$$

Коментар

Забележка

Отбелязваме, че коефициентите пред $B_{i,r-2}(t)$ и $B_{i+1,r-2}(t)$ в рекурентната връзка от Теорема 3 са положителни при $t\in (x_i,x_{i+1})$ и сумата им е равна на 1, т.е. $B_{i,r-1}(t)$ е изпъкнала комбинация на $B_{i,r-2}(t)$ и $B_{i+1,r-2}(t)$. Този факт може да се използва също и за доказателство чрез индукция на Теорема 1.

Рекурентната връзка води до следната схема за пресмятане на стойностите на **В**-сплайните.

Схема за пресмятане на В-сплайните

$$B_{00}(t)$$
 $B_{01}(t)$
 $B_{10}(t)$
 $B_{10}(t)$
 $B_{10}(t)$
 $B_{11}(t)$
 $B_{11}(t)$
 $B_{12}(t)$
 $B_{13}(t)$
 $B_{30}(t)$
 $B_{31}(t)$
 $B_{40}(t)$

$$B_{i,0}(t) = egin{cases} rac{1}{x_{i+1}-x_i} & ext{ sa} & t \in [x_i,x_{i+1}) \ 0 & ext{ sa} & t
otin [x_i,x_{i+1}] \end{cases}.$$

Следващите колони се попълват една след друга като се използват данните от предходната колона и рекурентната връзка.

Край на лекцията!