Nr ćw. 4-a	Pracownia z Elektroniki – Fizyka Medyczna GR.I,		Ocena Wstęp:
	Rok II		
Temat ćw.:	BADANIE WZMACNIACZA OPERACYJNEGO		Ocena:
v.4			
Data:03.06.2021r.	Imię: Aleksandra	Nazwisko: Mrowiec	Ocena Końcowa:
Data:			

I. CEL ĆWICZENIA

Celem ćwiczenia jest poznanie charakterystyk oraz pewnych szczegółów wzmacniacza napięcia stałego w wykonaniu scalonym typu a 741 i pochodnych a także przebadanie właściwości operacyjnych tego wzmacniacza po zamknięciu odpowiednich pętli sprzężenia zwrotnego.

II. Wstęp Teoretyczny

1. Wzmacniacze napięcia stałego – ich budowa i cechy charakterystyczne.

Wzmacniaczem operacyjnym nazywamy wzmacniacz prądu stałego o dużym wzmocnieniu pracujący z zewnętrznym układem silnego ujemnego sprzężenia zwrotnego, które zapewnia lepszą stałość pracy, zwiększa zakres dynamiki, poprawia liniowość i poszerza pasmo przenoszenia wzmacniacza. Wzmacniacze operacyjne w zależności od charakterystyki częstotliwościowej lub przejściowej mogą dokonywać operacji dodawania, odejmowania, całkowania, różniczkowania, logarytmowania i wielu innych i dlatego są stosowane w maszynach liczących, w przetwornikach analogowo- cyfrowych (A / D) i cyfrowo-analogowych (D / A) oraz w układach pomiarowych.

Idealny wzmacniacz operacyjny powinien charakteryzować się następującymi właściwościami:

- nieskończenie dużym wzmocnieniem przy otwartej pętli sprzężenia zwrotnego $(K \to \infty)$,
- nieskończenie szerokim pasmem przenoszenia częstotliwości,

 nieskończenie dużą impedancją wejściową, zarówno między wejściami, jak i między każdym z

wejść a ziemią,

- impedancją wyjściową równą zeru,
- napięciem wyjściowym równym zeru przy równości napięć wejściowych (Uwy = 0 przy
 Uwe1 = Uwe2),
- nieskończenie dużym dopuszczalnym prądem wyjściowym,
- zerowym prądem wejściowym,
- wzmocnieniem idealnie różnicowym, tzn. nieskończenie dużym współczynnikiem tłumienia

sygnału nieróżnicowego (definicję tego współczynnika podano w dalszej części opracowania),

- zachowaniem powyższych właściwości przy zmianach temperatury.

Jak widać na rysunku 7.13 w odpowiedzi na ciąg impulsów podanych na wejście układu, na jego wyjściu pojawia się fala prostokątna. W przypadku podanym na opisywanym rysunku dla fali

(Rysunki z linku nr3.)

2. Scalony wzmacniacz operacyjny typu a 741, budowa, działanie, parametry.

Wzmacniacze operacyjne są dostępne w obudowach układów scalonych. Mogą zawierać pojedynczy, podwójny lub poczwórny wzmacniacz operacyjny w jednej kostce. Najszerzej znanym spośród wszystkich wzmacniaczy operacyjnych ogólnego przeznaczenia jest leciwy już μ *A-741*.

Wzmacniacz operacyjny µA 741 składa się z trzech podstawowych układów:

- wejściowego wzmacniacza różnicowego
- stopnia niesymetrycznego (separujący, wzmacniający i przesuwający poziom napięcia stałego)
- stopień wyjściowy
- dwa układy pomocnicze
- układ polaryzacji
- układ zabezpieczający

Parametry wzmacniacza µA 741:

- wzmocnienie przy otwartej pętli sprzężenia Ku= 100 000[V/V],
- rezystancja wejściowa Ri= 2000 k Ω ,
- wejściowy prad polaryzujący Ii= 0,5 μA,
- maksymalne różnicowe napięcie wejściowe = $\pm 30 \text{ V}$,
- napięcie zasilania \pm 15 V,
- pobór mocy 45 mW.

Nazwa parametru (jednostka)		Wzmacniacz idealny	μΑ741	Inne WO
Wzmocnienie różnicowe napięciowe $K_{\omega_{\phi}}$	V/V	→ ∞	10 ⁵	104107
Rezystancja wejściowa różnicowa R_{WE}	МΩ	$\rightarrow \infty$	1	0,05104
Rezystancja wyjściowa R _{WY}	Ω	→ 0	75	50200
Częstotliwość graniczna f_r	MHz	$\rightarrow \infty$	1	1100

- 3. Odpowiedź na wymuszenie typu fali prostokątnej wzmacniacza operacyjnego jako członu
- a) Proporcjonalnego

b) różniczkującego

c) całkującego

d) inercyjnego I rzędu

e) inwertora

Literatura

- 1. J. Kalisz, "Podstawy elektroniki cyfrowej" WKŁ 2002r 2. W.Głocki "Układy cyfrowe"
- 3. http://elektron.pol.lublin.pl/keo/dydaktyk/Ins/Cw07pdf.pdf 4. http://home.agh.edu.pl/~aprzem/pliki/wo1.pdf

III. Przebieg ćwiczenia

***1. BADANIE CHARAKTERYSTYKI DYNAMICZNEJ PRZY WZMOCNIENIU 20dB

Ku = 20dB

Schemat podłączenia.

Wykres zależności napięcia wejściowego od wzmocnienia przy układzie z wzmacniaczem w ustawieniu odwracającym.

Nr pomiaru	Napięcie wejściowe [V]	Zmierzone napięcie wyjściowe [V]
1	-1	
2	-0.9	
3	-0.8	
4	- 0.7	
5	- 0.6	
6	-0.5	
7	-0.4	

0	0.2	
8	-0.3	
9	-0.2	
10	-0.1	
11	0	
12	0.1	
13	0.2	
14	0.3	
15	0.4	
16	0.5	
17	0.6	
18	0.7	
19	0.8	
20	0.9	
21	1	

***2. BADANIE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ

Ku = 20dB

Uwe= 100mV

f=0

Nr pomiaru	f [Hz]	f.ust[Hz]	Sygnał na wejściu [mV]	Napięcie wyjściowe [V]
1	20			
2	40			
3	60			

4 80 5 100 6 200 7 300 8 400 9 500 10 600 11 700 12 800 13 900 14 1000 15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000 30 80000		
6 200 7 300 8 400 9 500 10 600 11 700 12 800 13 900 14 1000 15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000		80
7 300 8 400 9 500 10 600 11 700 12 800 13 900 14 1000 15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	5	100
8 400 9 500 10 600 11 700 12 800 13 900 14 1000 15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	6	200
9 500 10 600 11 700 12 800 13 900 14 1000 15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	7	300
10 600 11 700 12 800 13 900 14 1000 15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	8	400
11 700 12 800 13 900 14 1000 15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	9	500
12 800 13 900 14 1000 15 2000 16 3000 17 4000 18 5000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	10	600
13 900 14 1000 15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	11	700
14 1000 15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	12	800
15 2000 16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	13	900
16 3000 17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	14	1000
17 4000 18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	15	2000
18 5000 19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	16	3000
19 6000 20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	17	4000
20 7000 21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	18	5000
21 8000 22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	19	6000
22 9000 23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	20	7000
23 10000 24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	21	8000
24 20000 25 30000 26 40000 27 50000 28 60000 29 70000	22	9000
25 30000 26 40000 27 50000 28 60000 29 70000	23	10000
26 40000 27 50000 28 60000 29 70000	24	20000
27 50000 28 60000 29 70000	25	30000
28 60000 29 70000	26	40000
29 70000	27	50000
	28	60000
30 80000	29	70000
20 0000	30	80000
31 90000	31	90000
32 100000	32	100000

3.BADANIE WZMACNIACZA W UKŁADZIE OPERACYJNYM

a) proporcjonalny – dla wszystkich trzech wariantów (R, 10R, 100R)

d) różniczkujący – dla wszystkich trzech wariantów (R, 10R, 100R)

c)inercyjny I rzędu dla 10R

4. BADANIE WZMACNIACZA OD STRONY WEJŚCIA NIEINWERSYJNEGO

Fali prostokątnej o częstotliwości około 1 kHz i amplitudzie nie większe niż 0,1V

IV. BADANIE WZMACNIACZA W UKŁADZIE OPERACYJNYM- Laboratorium

Otrzymane obrazy na oscyloskopie

- A) Układ proporcjonalny odwracający fazę.
- i) $R_2=R$

Z rysunku można odczytać wzmocnienie:

$$K_u = \frac{U_{wy}}{U_{we}}.$$

Jak widać: Uwe=0,1[V]

 U_{wy} =-0,1[V] Czyli:

$$K_u = -1$$

Minus oznacza że napięcie wyjściowe jest przesunięte w fazie o 180° w stosunku do napięcia wejściowego. ii) R₂=10R.

W tym przypadku U_{we} =0,1[V] U_{wy} =-1[V] Czyli:

 $K_u=-10$

iii) R₂=100R.

W tym przypadku $U_{\rm we}=0,1[V]$ $U_{\rm wy}=-10[V]$ Czyli:

 $K_u=-100$

B) Wzmacniacz różniczkujący.

W tym przypadku:

 $\frac{\underline{U_{max}}=0,4[V]}{\underline{U_{min}}=0[V]}$

iii) R₂=100R

W tym przypadku:

 $\frac{U_{max}=4[V]}{U_{min}=0[V]}$

 $\tau=1,7[ms]$

$ii)R_2=10R$

 $\tau = 1,7[ms]$

iii) R₂=100R

 $\tau = 1,7[ms]$

Dla tego układu można odczytać maksymalną amplitudę napięcia wyjściowego: $\underline{U_{max}} = 14[V]$

E)Układ proporcjonalny nie odwracający fazy.

i) $R_2=R$.

Dla tego układu również można z rysunku wyznaczyć wzmocnienie.

U_{we}=0,1[V] U_{wy}=0,2[V]

Czyli:

 $K_u = 2$

ii)R₂=10R.

 $\label{eq:we} W tym przypadku \\ U_{we} = 0,1[V] \\ U_{wy} = 1,1[V] \\ Czyli:$

 $K_u = 11$

iii) R₂=100R.

 $W tym przypadku \\ U_{we}=0,1[V] \\ U_{wy}=10,1[V] \\ Czyli:$

 $K_u = 101$

IV. Obliczenie wzmocnienia i napięcia wyjściowego.A) Układ proporcjonalny odwracający fazę.

i) $R_2=R$.

Wzmocnienie obliczany ze wzoru:

$$K_U = -\frac{R_2}{R_1}.$$

gdzie:

 $R_1=R_2=R_2=2,2[k\Omega]$

Po podstawieniu otrzymujemy:

$$K_U = -1$$

Czyli:

$$U_{we} = -U_{wy}$$

ii) R₂=10R.

 $R_1=R_2=2,2,$

 $R_2=10R=22[k\Omega].$

Po podstawieniu otrzymujemy:

$$K_U = -10$$

Czyli:

$$U_{wy} = -10U_{we}$$

iii) R₂=100R.

 $R_1=R.=2,2,$

 $R_2=10R=22[k\Omega].$

Po podstawieniu otrzymujemy:

$$K_U = -100_{\,\underline{\bullet}}$$

Czyli:

$$U_{\scriptscriptstyle wy} = -100 U_{\scriptscriptstyle we}$$

B) Wzmacniacz różniczkujący.

 $i) R_2=R$

Transmitancję operatorową wyznaczamy ze wzoru:

$$k_u(s) = -sCR_2$$

Gdzie:

 $s=i\omega$,

 $\omega = 2\pi f$,

f=100[Hz],

C=8,2[nF],

 $R=2,2[k\Omega].$

Po podstawieniu otrzymujemy:

$$k_u(s) = -0,01133i$$

Jest to więc wielkość zespolona.

$$[k_u(s)] = \frac{\sqrt[3]{A^2}}{\sqrt[3]{g} \cdot m^2} \cdot \frac{\sqrt[3]{g} \cdot m^2}{s^3 \cdot A^2} \cdot \frac{1}{\sqrt[3]{g}}$$

Jest to więc wielkość bezjednostkowa.

Dla obliczenia napięcia wyjściowego można zastosować przybliżenie wzoru:

$$U_{wy} = -R_2 C_1 \frac{dU_{we}}{dt} = -R_2 C_1 \frac{\Delta U_{we}}{\Delta t}$$

Maksymalne napięcie wyjściowe następuje przy zmianie napięcia wejściowego. Czas zmiany tego napięcia można przyjść jako:

$$\Delta t = 100 \,\mu s = 10^{-4} \, s$$

Natomiast:

$$\Delta U_{we} = 0,2[V]$$

Po podstawieniu otrzymujemy:

$$U_{wy} = -0.036[V]_{\bullet}$$

ii) $R_2 = 10R$.

W tym przypadku po podstawieniu wartości do wzorów, otrzymujemy:

$$\frac{k_u(s) = -0.1133i}{U_{wy} = -0.36[V]}$$

iii) R₂=100R.

W tym przypadku po podstawieniu wartości do wzorów, otrzymujemy:

$$\frac{k_u(s) = -1,133i}{U_{wy} = -3,6[V]}$$

We wszystkich przypadkach napięcie minimalne wynosi 0. ponieważ pochodna funkcji stałej jest równa 0.

C) Wzmacniacz inercyjny I rzędu.

Stałą czasową można wyznaczyć ze wzoru:

$$\tau = R_2 C_{\bullet}$$

Po podstawieniu wartości (podanych w poprzednim punkcie) otrzymujemy:

$$\tau = 0.0018[s] = 1.8[ms]$$
.

D)Wzmacniacz całkujący.

Transmitancję operatorową wyznaczamy ze wzoru:

$$k_u(s) = -\frac{1}{CR} \cdot \frac{1}{s}$$

Gdzie:

 $s=i\omega$.

 $\omega = 2\pi f$,

f=100[Hz],

C=8,2[nF],

 $R=2,2[k\Omega].$

Po podstawieniu otrzymujemy:

$$\frac{k_u(s) = -88, 2i}{}$$

Jest to więc również wielkość zespolona.

Minimalne napięcie wyjściowe można wyznaczyć ze wzoru:

$$U_{wy} = -\frac{1}{R_1 C_1} \int_{0}^{\frac{1}{2}f} U_{we}(t) dt = \left| U_{we} = const \right| = -\frac{1}{R_1 C_1} U_{we} t \left| \int_{0}^{\frac{1}{2}f} dt dt \right| = -\frac{1}{R_1 C_1} U_{we} \frac{1}{2f} = -\frac{1}{R_1 C_1} U_{we} \frac{1}{2f$$

Gdzie:

 $U_{we}=0,1[V],$

f=100[Hz],

C=8,2[nF],

 $R_1=2,2[k\Omega].$

Po podstawieniu otrzymujemy:

$$U_{wy} = -28[V]$$

E) Układ proporcjonalny nie odwracający fazy.

i) R₂=R.

Wzmocnienie obliczany ze wzoru:

$$K_U = 1 + \frac{R_2}{R_1} .$$

gdzie:

 $R_1=R_2=R.=2,2[k\Omega]$

Po podstawieniu otrzymujemy:

$$K_U = 2$$
.

Czyli:

$$U_{wy} = 2U_{we}$$

ii) $R_2=10R$.

 $R_1=R.=2,2,$

 $R_2=10R=22[k\Omega].$

Po podstawieniu otrzymujemy:

$$K_U = 11$$

Czyli:

$$U_{wy} = 11U_{we}$$

iii) R₂=100R.

 $R_1=R.=2,2,$

 $R_2=10R=22[k\Omega].$

Po podstawieniu otrzymujemy:

$$K_U = 101$$

Czyli:

$$U_{wy} = 101U_{we}$$

V. Wnioski

Cel ćwiczenia polegał na zbadaniu działania wzmacniacza operacyjnego. Obserwowaliśmy tu przebiegi napięć w różnych układach za pomocą oscyloskopu. Uzyskane wyniki możemy zobaczyć na zdjęciach wyżej.