Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	crip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	nt sur	la con	vocatio	on.)											1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE: Première
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
\square Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

Exercice 1 (5 points)

Cet exercice est un QCM en 5 questions. Pour chacune des questions, **une seule** des quatre réponses proposées est correcte. Les questions sont **indépendantes.**

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie. Aucune justification n'est demandée, cependant des traces de recherche au brouillon peuvent aider à trouver la bonne réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n'apporte ni ne retire de point.

Question 1

Dans le repère orthogonal suivant on a tracé quatre courbes, chacune associée à une fonction de variable réelle x et d'expression $e^{\lambda x}$ où λ est un paramètre réel.

Quelle courbe possède le plus petit paramètre λ ?

a) \mathcal{C}_f	b) \mathcal{C}_g	c) \mathcal{C}_h	d) \mathcal{C}_i
--------------------	--------------------	--------------------	--------------------

Question 2

On choisit au hasard un couple ayant deux enfants et on note X la variable aléatoire égale au nombre de filles du couple. On admet que la probabilité qu'un enfant soit une fille est égale à 0,5 et qu'il y a indépendance du sexe de l'enfant entre deux naissances. Déterminer $P(X \ge 1$.

a) 0,25 b) 0,5	c) $\frac{1}{3}$	d) 0,75
----------------	------------------	---------

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																			
Prénom(s) :																			
N° candidat :												N° c	d'ins	crip	tior	ı :			
	(Les nu	uméros	figurer	nt sur l	la con	vocatio	n.)	_	_	 ,									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/[1.1

Question 3

On a représenté ci-dessous la courbe $\mathcal C$ de la fonction sinus dans un repère orthogonal.

 A_0 , A_1 , A_2 , A_3 et A_4 sont des points de $\mathcal C$ et ils ont tous la même ordonnée.

Parmi les segments suivants, lequel a pour longueur la période de la fonction sinus ?

		·	
a) [A ₀ ; A ₁]	b) [A ₀ ; A ₂]	c) [A ₀ ; A ₃]	d) [A ₀ ; A ₄]
$a_{j}[A_{0},A_{1}]$	$\mathbf{D}_{\mathbf{J}}\left[\mathbf{A}_{0},\mathbf{A}_{2}\right]$	$C_{J}[A_{0},A_{3}]$	$\mathbf{u}_{j}\left[\mathbf{A}_{0},\mathbf{A}_{4}\right]$

Question 4

Soit la fonction f définie sur \mathbb{R} par $f(x) = 0.5x^2 - 2x + 1$.

On considère l'équation f(x)=0, d'inconnue $x\in\mathbb{R}$. L'ensemble des solutions de cette équation est :

a)	b)	c)	d)
Ø	$\{2-\sqrt{2}\;;\;2+\sqrt{2}\}$	$\{2-\sqrt{6}; 2+\sqrt{6}\}$	$\{4-2\sqrt{2}; 4+2\sqrt{2}\}$

Question 5

ABC est un triangle tel que : AB=5, BC=2, $\widehat{ABC}=60^{o}$. La longueur AC est égale à

. /) / <u>00</u>	1) /20
a) √19	b) √21	c) √28	d) √29

Exercice 2 (5 points)

On modélise la diffusion dans le sang d'un médicament de 1 gramme par intraveineuse (fonction f_1 , courbe représentative C_1) ou par voie orale (fonction f_2 , courbe représentative C_2) pendant une durée de 10 heures.

Plus précisément :

- $f_1(t)$ modélise la proportion du médicament dans le sang à l'instant t, où t est le temps en heure après injection par intraveineuse ;
- $f_2(t)$ modélise la proportion du médicament dans le sang à l'instant t, où t est le temps en heure après administration par voie orale.

Pour tout réel t de l'intervalle [0;10], on admet que $f_1(t)=\mathrm{e}^{-0.57t}$ et $f_2(t)=1.75$ t e^{-t} . Les courbes \mathcal{C}_1 et \mathcal{C}_2 de f_1 et f_2 sont représentées ci-dessous.

- 1. Injection par voie intraveineuse
 - **a.** Déterminer le sens de variation de la fonction f_1 .
 - **b.** Résoudre graphiquement $f_1(t) < 0.1$. Interpréter la réponse dans le contexte.
- **2.** Administration par voie orale

On note f_2' la fonction dérivée de la fonction f.

- **a.** Montrer que, pour tout t de [0;1], $f_2^\prime(t)=1,75(1-t)\mathrm{e}^{-t}$
- **b.** Construire le tableau de variations de la fonction f_2 .
- c. À quel instant t la proportion de médicament dans le sang est-elle la plus élevée ?

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	scrip	tior	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocati	on.)]	-								1.1

Exercice 3 (5 points)

Dans un pays, le nombre de créations d'entreprise augmente 1,5% par mois.

En janvier 2018 on compte 50 000 créations d'entreprise.

On modélise le nombre de créations d'entreprise au n-ième mois par une suite (u_n) telle que $u_{n+1}=u_n\times 1{,}015$ et $u_0=50$, u_n est exprimé en milliers d'euros.

1.

- **a.** Calculer u_1 .
- **b.** Interpréter ce résultat dans le contexte de l'exercice.

2.

- **a.** Quelle est la nature de la suite (u_n) ?
- **b.** Exprimer u_n en fonction de n.
- **c.** Un journaliste annonce qu'au total dans l'année 2018, près de 652 000 entreprises se sont créées. Donner un calcul permettant de justifier les propos du journaliste.

Exercice 4 (5 points)

 $(0; \vec{i}; \vec{j})$ est un repère orthonormé du plan.

On considère les points A, B et C de coordonnées respectives (-2;0), (6;0) et (0;6). Les points A', B' et C' milieux respectifs des segments [BC], [AC] et [AB].

Le cercle Γ passant par les points A', B' et C' a pour centre le point I de coordonnées (1;2).

- 1.
- a. Calculer le rayon de ce cercle.
- **b.** En déduire qu'une équation du cercle Γ est $(x-1)^2+(y-2)^2=5$.
- 2. Propriété des hauteurs du triangle ABC
 - **a.** On admet que O est le pied de la hauteur issue de C. Montrer que le point O est sur le cercle Γ .
 - **b.** Soit H_A le pied de la hauteur issue de A. Montrer que H_A a pour coordonnées (2;4).
 - **c.** Justifier que la point H_A est sur le cercle Γ .