EECS 489 Computer Networks

Fall 2019

Mosharaf Chowdhury

Material with thanks to Aditya Akella, Sugih Jamin, Philip Levis, Sylvia Ratnasamy, Peter Steenkiste, and many other colleagues.

Agenda

- Overview of the basics
 - How is the network shared?
 - How do we evaluate a network?
 - What is a network made of?

Switched networks

- End-systems and networks connected by switches instead of directly connecting them
 - Why?
- Allows us to scale
 - For example, directly connecting N nodes to each other would require N² links!

When do we need to share the network?

Two ways to share switched networks

- Circuit switching
 - > Resource reserved per connection
 - Admission control: per connection
- Packet switching via statistical multiplexing
 - Packets treated independently, on-demand
 - Admission control: per packet

Circuit switching

- src sends
 reservation request
 to dst
- 2. Switches create circuit *after* admission control
- 3. src sends data
- 4. src sends teardown request

Circuit switching

Reservation establishes a "circuit" within a switch

Many kinds of circuits

- Time division multiplexing
 - divide time in time slots
 - separate time slot per circuit

- Frequency division multiplexing
 - divide frequency spectrum in frequency bands
 - separate frequency band per circuit

September 9, 2019 EECS 489 – Lecture 2

9

September 9, 2019 10

September 9, 2019 EECS 489 – Lecture 2 11

September 9, 2019 12

13

Why the delays?

September 9, 2019 18

September 9, 2019 19

Circuit switching

Pros

- Predictable performance
- Simple/fast switching (once circuit established)

Cons

- Complexity of circuit setup/teardown
- Inefficient when traffic is bursty
- Circuit setup adds delay
- Switch fails → its circuit(s) fails

Packet switching

- Each packet contains destination (dst)
- Each packet treated independently

Packet switching

- Each packet contains destination (dst)
- Each packet treated independently
- With buffers to absolve transient overloads

Packet switching

Pros

- > Efficient use of network resources
- > Simpler to implement
- Robust: can "route around trouble"

Cons

- Unpredictable performance
- Requires buffer management and congestion control

Statistical multiplexing

- Allowing more demands than the network can handle
 - Hoping that not all demands are required at the same time
 - Results in unpredictability
 - Works well except for the extreme cases

5-MINUTE BREAK!

Announcements

- Discussion sections start this week
 - Check course webpage for times, dates, locations

If you're planning to drop, please do so soon!

HOW DO WE EVALUATE A NETWORK?

Performance metrics

- Delay
- Loss
- Throughput

Delay

 How long does it take to send a packet from its source to destination?

Delay

Consists of four components

- > Transmission delay
- Propagation delay
- Queuing delay
- Processing delay

due to link properties

due to traffic mix and switch internals

A network link

- Link bandwidth
 - Number of bits sent/received per unit time (bits/sec or bps)
- Propagation delay
 - Time for one bit to move through the link (seconds)
- Bandwidth-Delay Product (BDP)
 - Number of bits "in flight" at any time
- BDP = bandwidth × propagation delay

BDP Examples

Same city over a slow link:

- Bandwidth: ~100Mbps
- Propagation delay: ~0.1msec
- BDP: 10,000bits (1.25KBytes)

Cross-country over fast link:

- Bandwidth: ~10Gbps
- Propagation delay: ~10msec
- > BDP: 108bits (12.5MBytes)

1. Transmission delay

- How long does it take to push all the bits of a packet into a link?
- Packet size / Transmission rate of the link
 - \rightarrow E.g., 1000 bits / 100 Mbits per sec = 10^{-5} sec

2. Propagation delay

- How long does it take to move one bit from one end of a link to the other?
- Link length / Propagation speed of link
 - \rightarrow E.g., 30 kilometers / $3*10^8$ meters per sec = 10^{-4} sec

Packet delay Sending a 100-byte packet

Packet delay Sending a 100-byte packet

Sending a large file using 100-byte packets

Pipe view of a link

Transmission delay decreases as bandwidth increases

3. Queuing delay

 How long does a packet have to sit in a buffer before it is processed?

September 9, 2019

Persistent overload leads to packet drop/loss

Queueing delay

- How long does a packet have to sit in a buffer before it is processed?
- Depends on traffic pattern
 - Arrival rate at the queue
 - Nature of arriving traffic (bursty or not?)
 - Transmission rate of outgoing link

Queueing delay

- How long does a packet have to sit in a buffer before it is processed?
- Characterized with statistical measures
 - Average queuing delay
 - Variance of queuing delay
 - Probability delay exceeds a threshold value

Basic queueing theory terminology

- Arrival process: how packets arrive
 - Average rate A
- W: average time packets wait in the queue
 - W for "waiting time"
- L: average number of packets waiting in the queue
 - L for "length of queue"

Little's Law (1961)

L = A x W

Compute L: count packets in queue every second

- Why do you care?
 - Easy to compute L, harder to compute W

4. Processing Delay

- How long does the switch take to process a packet?
 - Negligible

End-to-end delay

Round Trip Time (RTT)

 Time for a packet to go from a source to a destination and to come back

- Why do we care?
 - Measuring delay is hard from one end

- RTT/2 equals average end-to-end delay
 - Why not exact?

Loss

 What fraction of the packets sent to a destination are dropped?

Throughput

 At what rate is the destination receiving data from the source

Throughput

Transmission rate R bits/sec

File of size F bits
Packets of size L bits

Transfer time (T) = F/R + propagation delay

Average throughput = F/T ≈ R

End-to-end throughput

Average throughput = $min\{R, R'\} = R$

Summary

- How is it shared?
 - On-demand or via reservation
- How do we evaluate a network?
 - Bandwidth, delay, loss, BDP, ...
- What is a network made of?
 - Whatever physical infrastructure exist
 - See backup slides

WHAT IS THE NETWORK MADE OF?

What is a network made of?

What is a network made of?

What is a network made of?

The last hop

How do we connect?

September 9, 2019 EECS 489 – Lecture 2 66

Digital Subscriber Line (DSL)

- Twisted pair copper
- 3 separate channels
 - downstream data channel
 - upstream data channel
 - > 2-way phone channel
- up to 25 Mbps downstream
- up to 2.5 Mbps upstream

How about an cable provider as an ISP?

Connecting via cable

Cable

- Coaxial copper & fiber
- Up to 42.8 Mbps downstream
- Up to 30.7 Mbps upstream
- Shared broadcast medium

Any other means?

Ethernet

Ethernet

- Twisted pair copper
- 100 Mbps, 1 Gbps, 10 Gbps (each direction)

Many other ways

- Cellular (smart phones)
- Satellite (remote areas)
- Fiber to the Home (home)
- Optical carrier (Internet backbone)

Where is WiFi?

