

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2020

MATHEMATICS P1 EXEMPLAR

MARKS: 150

TIME: 3 hours

This question paper consists of 8 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of TEN questions. Answer ALL the questions.
- 2. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answer.
- 3. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 4. Answers only will not necessarily be awarded full marks.
- 5. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. Write neatly and legibly.

1.1 Solve for x:

1.1.1
$$(3x+2)(x-5) = 0$$
 (2)

1.1.2
$$3x^2 - 5x - 1 = 0$$
 (correct to 2 decimal places) (3)

1.1.3
$$x = 4 - \sqrt{x - 2}$$
 (5)

$$1.1.4 \quad 2x^2 + 5x \le 3 \tag{4}$$

1.2 Simplify the following, without using a calculator:

1.2.1
$$\left(\frac{8}{27}\right)^{\frac{2}{3}}$$
 (2)

1.2.2
$$(\sqrt{12}+2)(\sqrt{3}-1)$$
 (3)

1.3 Solve for x and y simultaneously:

$$5y - x = 2$$
 and $x^2 - 3xy + 4y = 4$ (6)

1.4 The diagram below shows an oval piece of land that Eli acquired for his poultry project. He decides to use the biggest possible rectangular piece of land out of the entire piece. The rectangular piece will have a length of 2x metres and a breadth of y metres, as shown:

1.4.1 Show that the area A, of the rectangle can be written as: $A = 280x - 4x^2$, given that the perimeter of the rectangle is 280 m. (3)

1.4.2 Determine the maximum possible area that the rectangle can occupy. (3)
[31]

2.1 Simplify:

$$\frac{3 \cdot 2^{x+1} - 2 \cdot 4^x}{3 \cdot 2^x - 2^{2x}} \tag{4}$$

2.2 Solve for x:

$$2.2.1 \quad 5x^{\frac{2}{5}} = 20 \tag{3}$$

$$2.2.2 12^{x}.3^{x+1} = 648 (4)$$

2.3 Given: $f(x) = \frac{3x-2}{x^2+10x+25}$,

Determine the values of x for which f(x) is defined. (4)

[15]

QUESTION 3

3.1 Given the linear pattern: 9; 5; 1; ...; -143.

3.1.1 Determine the formula for the
$$n^{th}$$
 term of the pattern. (2)

3.1.2 Calculate the value of
$$T_7$$
. (2)

3.2 Given that, in a linear number pattern, the 16^{th} term is 38 and the 41^{st} term is 113. Which term is -1? (4)

QUESTION 4

Given the quadratic pattern: -12; -8; 0; 12; ...

4.1 Determine the next two terms of the pattern. (2)

4.2 Determine
$$T_n$$
, the general term of the pattern, in the form $T_n = an^2 + bn + c$. (4)

4.3 Between which **two** consecutive terms does the **first** difference of 192 lie? (3)

4.4 A new pattern, P_n , is formed. It is given that $P_n = T_n - 168$, determine the number of negative terms in the new pattern. (5)

4.5 Show that T_n is always an even number. (2) [16]

(EC/NOVEMBER 2020) MATHEMATICS P1 5

QUESTION 5

Given: $f(x) = -x^2 + 6x + 7$

- 5.1 Determine the coordinates of the turning point of f. (3)
- 5.2 Determine the x-intercepts of f. (2)
- 5.3 Draw a neat sketch of f, clearly indicating all intercepts with the axes and the turning point. (4)
- 5.4 Write down the equation of the axis of symmetry of f. (1)
- 5.5 Determine the average gradient of f between x = -3 and x = 1. (4)
- 5.6 The graph of f is shifted 4 units to the left and reflected in the x-axis to form h.

 Write down the equation of h in the form $h(x) = a(x+p)^2 + q$.

 (2)

 [16]

QUESTION 6

The diagram below shows the graphs of $f(x) = \frac{a}{x+p} + q$ and g(x) = bx + c. The asymptotes of f are at x = -3 and at y = 1. f and g intersect at A, the x-intercept of f, and B, while C(-2;6) is a point that lies on f. g passes through the point D(-3;1), the point of intersection of the asymptotes of f.

(3) [**9**]

q > 1

8.1		n, compounded monthly.	(3)
8.2	The p	alue of a house increased to R764 050,60 over a period of 5 years due to inflation rice of the house increased at a rate of 5% p.a. compounded annually. late the original price of the house.	(3)
		relihle invested R28 000 into a savings account that pays interest at 7,5% p.a. bunded monthly for the first 4 years and 11% p.a. compounded quarterly fter. At the end of the 4 th year, he withdrew R7 300.	
	8.3.1	Calculate his balance at the end of the 7 th year of his investment.	(5)
	8.3.2	Assuming that at the end of 7 years, his balance is R42 181, 59, Kamvelihle wants his investment to grow to R80 000 in another 5 years' time. How much must he deposit into the account immediately to achieve this goal if the bank offers 8% p.a. interest compounded monthly? Write your answer correct to the nearest rand.	(5)
		•	. ,

(5) [16]

9.1 Two events A and B are such that:

- P(not A) = 0.45
- P(B) = 0.3
- P(A or B) = 0.685

Are events A and B independent? Justify your answer.

(5)

- 9.2 A survey was done among a group of 75 learners to determine which sports they watch on television. They chose from athletics (A), netball (N) and rugby (R). Some of the information that was collected is as follows:
 - 12 learners watch netball, rugby and athletics
 - 25 learners watch rugby and athletics
 - 22 learners watch netball and athletics
 - 38 learners watch rugby
 - 5 learners watch only netball and rugby
 - 9 learners watch netball only
 - 4 learners watch athletics only

The Venn diagram below shows the information:

9.2.1 Determine the values of a, b, c and d.

(4)

9.2.2 Calculate the probability that a learner selected at random watches athletics or both netball and rugby.

(3)

[12]

QUESTION 10

A bag contains a certain number tennis balls that are the same in all respects except colour. There are 5 green balls and the rest are blue.

Ncomi picks a ball, observes the colour and does **not** put it back in the bag.

He picks a second ball and observes the colour. The probability that both balls that Ncomi

picks are green, is $\frac{5}{18}$. Determine the total number of balls in the bag.

[6]

TOTAL: 150

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 11

NOVEMBER 2020

MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN EXEMPLAR/EKSEMPLAAR

MARKS/PUNTE: 150

This marking guideline consists of 15 pages./ *Hierdie nasienriglyn bestaan uit 15 bladsye*.

NOTE/LET WEL:

- If a candidate answers a question TWICE, mark the FIRST attempt ONLY.

 Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk SLEGS die EERSTE poging.
- Consistent accuracy applies in ALL aspects of the marking guideline. *Volgehoue akkuraatheid geld deurgaans in ALLE aspekte van die nasienriglyn.*
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.

 Indien'n kandidaat'n poging vir 'n yraag deurgetrek het en nie die yraag weer.

Indien 'n kandidaat 'n poging vir 'n vraag deurgetrek het en nie die vraag weer beantwoord het nie, merk die poging wat deurgetrek is.

• The mark for substitution is awarded for substitution into the correct formula. *Die punt vir substitusie word toegeken vir substitusie in die korrekte formule.*

QUESTION 1/VRAAG 1

	1		1
1.1.1	(3x+2)(x-5) = 0	✓ ✓ answers / antwoorde	
	$\therefore x = -\frac{2}{3} \text{ or } / \text{ of } x = 5$	unswers / untwoorde	(2)
1.1.2	$3x^2 - 5x - 1 = 0$		
	$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$=\frac{-(-5)\pm\sqrt{(-5)^2-4(3)(-1)}}{2(3)}$	✓ substitution / vervanging	
	$=\frac{5\pm\sqrt{37}}{6}$	✓ ✓ answers / antwoorde	(3)
	=-0.18 or $/ of$ 1,85		(3)
1.1.3	$x = 4 - \sqrt{x - 2}$		
	$\sqrt{x-2} = 4 - x$	✓ squaring both sides/	
	$(x-2) = (4-x)^2$	kwadreer beide kante	
	$x - 2 = 16 - 8x + x^2$	✓ standard form / standaardvorm	
	$x^2 - 9x + 18 = 0$	✓ factors / faktore	
	(x-6)(x-3)=0	✓ both x-values / beide x-waardes	
	$\therefore x = 3 \text{or } / of x \neq 6$	✓ selection / keuse	(5)
			(0)
1.1.4	$2x^2 + 5x \le 3$	✓ standard form / standaardvorm	
	$2x^2 + 5x - 3 \le 0$	✓ factors / faktore	
	$(2x-1)(x+3) \le 0$		
	$\therefore -3 \le x \le \frac{1}{2}$	$\checkmark \checkmark -3 \le x \le \frac{1}{2}$	
	2	2	(4)

1.2.1	$\left(\frac{8}{27}\right)^{\frac{2}{3}} = \left(\sqrt[3]{\frac{8}{27}}\right)^2$	$\checkmark \left(\sqrt[3]{\frac{8}{27}}\right)^2$
	$= \left(\frac{2}{3}\right)^2$ $= \frac{4}{9}$	✓ answer / antwoord OR/OF (2)
	OR/OF $\left[\left(\frac{2}{3}\right)^3\right]^{\frac{2}{3}}$	$\checkmark \left[\left(\frac{2}{3} \right)^3 \right]^{\frac{2}{3}}$
	$= \left(\frac{2}{3}\right)^2$ $= \frac{4}{9}$	✓ answer / antwoord (2)
1.2.2	$(\sqrt{12} + 2)(\sqrt{3} - 1) = (2\sqrt{3} + 2)(\sqrt{3} - 1)$ $= 2.3 - 2\sqrt{3} + 2\sqrt{3} - 2$ $= 6 - 2$	$✓ 2\sqrt{3}$ $✓ 4.3 - 2\sqrt{3} + 2\sqrt{3} - 2$ $✓ \text{answer } / \text{antwoord}$
		OR/OF $ \sqrt{36} $ $ \sqrt{6-2\sqrt{3}+2\sqrt{3}-2} $ $ \sqrt{\text{answer }/ antwoord} $ (3)
	$= 6 - 2\sqrt{3} + 2\sqrt{3} - 2$ $= 4$	(3)

1.4.2	$A = 280x - 4x^2$	
	$=-4(x^2-70x)$	
	$= -4(x^2 - 70x + 1225 - 1225)$	✓ completing the square /
	$= -4[(x-35)^2 - 1225]$	vierkantsvoltooiing
	$= -4(x-35)^2 + 4900$	√+4900
	\therefore The maximum area is $4900 m^2$	✓ correct conclusion /
	Die maksimum oppervlakte is 4900 m²	korrekte gevolgtrekking (3)
	ODIOE	
	OR/OF	OR/OF
	$x = -\frac{b}{2a}$	✓ method/ <i>metode</i>
	$=\frac{-280}{}$	(25
	2(-4)	\checkmark 35 m
	=35 m	✓ answer / antwoord
	$\therefore A = 280(35) - 4(35)$	(3)
	$=4900 m^2$	[31]

QUESTION 2/VRAAG 2

2.1	$\frac{3 \cdot 2^{x+1} - 2 \cdot 4^{x}}{3 \cdot 2^{x} - 2^{2x}} = \frac{3 \cdot 2^{x} \cdot 2 - 2 \cdot 2^{2x}}{3 \cdot 2^{x} - 2^{2x}}$ $= \frac{2 \cdot 2^{x} (3 - 2^{x})}{2^{x} (3 - 2^{x})}$	 ✓ 3.2^x.2-2.2^{2x} ✓ factorisation of numerator / faktorisering van teller ✓ factorisation of denominator /
	= 2	faktorisering van noemer
		✓ answer / antwoord
		(4)
2.2.1	$5x^{\frac{2}{5}} = 20$	
	$x^{\frac{2}{5}}=4$	$\checkmark x^{\frac{2}{5}} = 4$
	$\left(x^{\frac{2}{5}}\right)^{\frac{5}{2}}=4$	$\checkmark x^{\frac{2}{5}} = 4$ $\checkmark \left(x^{\frac{2}{5}}\right)^{\frac{5}{2}} = 4^{\frac{5}{2}}$
	$\therefore x = \left(2^2\right)^{\frac{5}{2}}$	
	= 2 ⁵	
	= 32	✓ answer / antwoord
		(3)

2.2.2	$12^x . 3^{x+1} = 648$	
	$12^x.3^x.3 = 648$	$\checkmark 12^x.3^x = 216$
	$12^x.3^x = 216$	
	$(12.3)^x = 216$	
	$36^x = 216$	$\checkmark 6^{2x} = 6^3$
	$6^{2x} = 6^3$	✓ equating exponents /
	2x = 3	gelykstel van eksponente
	$x=\frac{3}{2}$	✓ answer / antwoord
	2	(4)
2.3	$f(x) = \frac{3x - 2}{x^2 + 10x + 25}$	
	f is undefined when: f is ongedefinite and wanneer	$\sqrt{x^2+10x+25} = 0$ for undefined / vir ongedefinieerd
	$x^2 + 10x + 25 = 0$	vir ongedejimeerd
	$(x+5)^2=0$	
	x = -5	$\checkmark x = -5$
	$\therefore f$ is defined $for: x \in \square$, but $x \neq -5$	$\checkmark x \in \mathbb{R} \checkmark x \neq -5$
	f is gedefinieerd vir: $x \in \square$, maar $x \neq -5$	(4)
		[15]

QUESTION 3/VRAAG 3

3.1.1	9;5;1;;-143 $T_n = 13 - 4n$	✓ 13 ✓ -4 <i>n</i>
	"	(2)
3.1.2	$T_n = 13 - 4n$	
	$T_n = 13 - 4n$ $T_7 = 13 - 4(7)$ $= -15$	✓ substitution / vervanging
	= -15	✓ -15
		(2)
3.1.3	$T_n = 13 - 4n$	
	-143 = 13 - 4n	✓ substitution / vervanging
	-156 = -4n	
	∴ <i>n</i> = 39	✓ answer / antwoord
		(2)

(1)	$\sqrt{16a+b} = 38 \text{ and/} en 41a+b=113$
(2)	
	✓ method / <i>metode</i>
	$\checkmark T_n = 3n - 10$
0	
2-10	$\checkmark n = 3$
10	
	(4) [10]

QUESTION 4/VRAAG 4

4.3	For first differences: / Vir eerste verskille	
	4;8;12;	$\checkmark T_n = 4n$
	$T_n = 4n$ $192 = 4n$ $\therefore n = 48$	✓ n = 48 $✓ answer / antwoord$ (3)
	\therefore 192 lies between T_{48} and T_{49}	
	192 lê tussen T_{48} en T_{49} OR/ <i>OF</i>	OR/OF
	$T_{n+1} - T_n = 192$	\checkmark 2(n+1) ² - 2(n+1) - 12 - (2n ² - 2n - 12) = 192
	$2(n+1)^{2} - 2(n+1) - 12 - (2n^{2} - 2n - 12) = 192$ $2(n^{2} + 2n + 1) - 2n - 2 - 12 - 2n^{2} + 2n + 12 = 192$ $2n^{2} + 4n + 2 - 2n - 2 - 12 - 2n^{2} + 2n + 12 = 192$	$\checkmark 4n = 192$
	$\therefore 4n = 192$ $n = 48$ $\therefore 192 \text{ lies between } T_{48} \text{ and } T_{49}$ $192 \text{ lê tussen } T_{48} \text{ en } T_{49}$	✓ answer / antwoord (3)
4.4	$P_n < 0 \Rightarrow T_n - 168 < 0$ $T_n < 168$ $2n^2 - 2n - 12 < 168$ $2n^2 - 2n - 180 < 0$ $n^2 - n - 90 < 0$ $(n - 10)(n + 9) < 0$ $-9 < n < 10$ but / maar: n > 0 ∴ Number of terms = 9 Aantal terme = 9	$✓ 2n^2 - 2n - 12 < 168$ ✓ standard form / standaardvorm ✓ factorisation / faktorisering ✓ $-9 < n < 10$ ✓ answer / antwoord (5)
4.5	$T_n = 2n^2 - 2n - 12$ = $2(n^2 - n - 6)$: $2 \times \text{any } n > 0$ is always even, so T_n will always be even $2 \times \text{enige } n > 0$ is altyd ewe, so T_n sal altyd ewe wees.	✓ $T_n = 2(n^2 - n - 6)$ ✓ explanation / verduideliking (2) [16]

QUESTION 5/VRAAG 5

5.1	At TP/By Draaipunt: $x = -\frac{b}{2a}$	✓ method / metode	
	$=-\frac{6}{2(-1)}$ $=3$	✓ <i>x</i> -coordinate / <i>x-koördinaat</i>	
	$y = -(3)^2 + 6(3) + 7$ $= 16$	✓ y-coordinate / y-koördinaat (3))
	OR/OF		
	$f(x) = -x^2 + 6x + 7$		
	$= -(x^2 - 6x - 7)$ $= -[(x^2 - 6x + 9) - 9 - 7]$	✓ completing the square / vierkantsvoltooiing	
	$= -[(x-3)^2 - 16]$ $= -(x-3)^2 + 16$ $\therefore \text{ Turning point } / \text{ Draaipunt } : (3;16)$	✓ x-coordinate / x-koördinaat ✓ y-coordinate / y-koördinaat (3))
5.2	$-x^2 + 6x + 7 = 0$	$\checkmark f(x) = 0$	
	$x^2 - 6x - 7 = 0$		
	(x-7)(x+1) = 0		
	$\therefore x = 7 \text{ or } / \text{ of } x = -1$	✓ answers / antwoorde	
		(2))
5.3	7 (3;16)	✓ y-intercept / y-afsnit ✓ x-intercepts / x-afsnitte ✓ turning point / draaipunt ✓ shape / vorm	
	-1 7 x	(4))
5.4	x=3	✓ answer / antwoord	
		(1))

5.5	$f(x) = -x^2 + 6x + 7$	
	$f(-3) = -(-3)^2 + 6(-3) + 7$	$\checkmark f(-3) = -20$
	=-20	
	$f(1) = -(1)^2 + 6(1) + 7$	$\checkmark f(1) = 12$
	=12	
	Average/Gemiddelde $m = \frac{12 - (-20)}{1 - (-3)}$	✓ substituting into gradient formula / vervanging in gradiënt-formule
	$=\frac{32}{4}$	
	4 = 8	✓ answer / antwoord (4)
5.6	$f(x) = -x^2 + 6x + 7$	
	$=-(x-3)^2+16$	
		$\checkmark a = 1$ and/ $en q = -16$
	$\therefore h(x) = ((x-3)+4)^2 - 16$	$\sqrt{p}=1$
	$=(x+1)^2-16$	
		(2)
		[16]

QUESTION 6/VRAAG 6

T		
6.3	$f(x) = \frac{5}{x+3} + 1$	
	$0 = \frac{5}{r+3} + 1$	$\checkmark y = 0$
	$-1 = \frac{5}{x+3}$	
	$ \begin{array}{c} x+3 \\ -x-3=5 \end{array} $	$\checkmark x = -8$
	x = -8	
6.4	$\therefore A(-8;0)$ $A(-8;0) \text{ and/} en D(-3;1)$	(2)
	$m_{AD} = \frac{y_2 - y_1}{x_2 - x_1}$	
	$=\frac{1-0}{-3-(-8)}$	✓ substitution / vervanging
	$\therefore b = \frac{1}{5}$	$\checkmark m_{AD}$
	g(x) = bx + c	
	$=\frac{1}{5}x+c$	✓ substitution / vervanging
	$0 = \frac{1}{5}(-8) + c$ or $/of$ $1 = \frac{1}{5}(-3) + c$	
	$\therefore c = \frac{8}{5}$	✓ equation / vergelyking
	$g(x) = \frac{1}{5}x + \frac{8}{5}$	(4)
6.5	$x \in (-\infty; \infty)$ but / maar $x \neq -3$	$\checkmark x \in (-\infty; \infty) \checkmark x \neq -3$
0.2	OR / <i>OF</i>	(2)
	$x \in \mathbb{R}, \ x \neq -3$	$\checkmark x \in \mathbb{R} \checkmark x \neq -3 \tag{2}$
6.6	f(x) = g(x) 5 1 8	5 1 1 8
	$\frac{5}{x+3} + 1 = \frac{1}{5}x + \frac{8}{5}$	$\sqrt{\frac{5}{x+3}} + 1 = \frac{1}{5}x + \frac{8}{5}$
	$25+5(x+3) = x(x+3)+8(x+3)$ $25+5x+15 = x^2+3x+8x+24$	
	$23+3x+13 = x + 3x + 8x + 24$ $x^2 + 6x - 16 = 0$	✓ standard form / standaardvorm
	(x+8)(x-2)=0	✓ x-values / x-waardes
	x = -8 or x = 2	
	$y = \frac{5}{2+3} + 1$	✓ coordinates / koördinate
	= 2	
	∴ B(2;2)	(4)

6.7	$-8 \le x < -3 \text{ or } x \ge 0$	$\checkmark \checkmark -8 \le x < -3 \checkmark x \ge 0$
	OR / OF	OR / <i>OF</i>
	$x \in [[-8;-3) \cup [0;\infty)]$	$x \in \left[[-8; -3) \checkmark \checkmark \cup [0; \infty) \right] \checkmark (3)$
		[19]

QUESTION 7/VRAAG 7

7.1.1	y = -4	✓ answer / antwoord
		(1)
7.1.2	$y \in (-4; \infty)$	\checkmark answer / antwoord (1)
	OR / <i>OF</i>	OR/OF
	y > -4	\checkmark answer / antwoord (1)
7.1.3	$g(x) = \left(\frac{1}{2}\right)^x - 4$	
	$y = \left(\frac{1}{2}\right)^0 - 4$	✓ y-value / y-waarde
	= -3	✓ substitution / vervanging
	$0 = \left(\frac{1}{2}\right)^x - 4$	
	$4 = \left(2^{-1}\right)^x$	✓ answer / antwoord
	$2^2 = 2^{-x}$	(3)
	$\therefore 2 = -x$	
	x = -2	
	Intercepts / Afsnitte: $(0; -3)$ and / en $(-2; 0)$	
7.1.4	x > -2	✓ answer / antwoord
		(1)
7.2	q y x	✓ asymptote above x-axis asimptoot bo x-as ✓ y-intercept positive y-afsnit positief ✓ shape / vorm
		(3) [9]

QUESTION 8/VRAAG 8

8.1	/ \ m	
0.1	$i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m - 1$	✓ formula / formule
	$= \left(1 + \frac{0.095}{12}\right)^{12} - 1$	✓ substitution / vervanging
	=0,099247	
	$\therefore r = 9.92\%$	✓ answer / antwoord (3)
8.2	$A = P(1+i)^n$	
	$R764\ 050,60 = P(1+0,08)^5$	✓ A=R764050,60
		✓ substitution / <i>vervanging</i>
	$P = \frac{764050.60}{(1+0.08)^5}$	successful of the surgering
	= R520000	✓ answer / antwoord (3)
8.3.1	[(0.075)48](0.11)12	(3)
0.3.1	$A = \left[28000 \left(1 + \frac{0,075}{12} \right)^{48} - R7300 \right] \left(1 + \frac{0,11}{4} \right)^{12}$	$\checkmark 28000 \left(1 + \frac{0,075}{12}\right)^{48}$
	$= \left(R37760,78 - R7300\right)\left(1 + \frac{0.11}{4}\right)^{12}$	✓ -R7 300
	(4)	
	$= R30460,78\left(1+\frac{0,11}{4}\right)^{12}$	$\checkmark \times \left(1 + \frac{0,11}{4}\right)^{12}$
	= R42181,59	✓ simplification / vereenvoudiging
	101,05	✓ answer / antwoord
8.3.2	1 D(1) II	(5)
8.3.2	$A = P(1+i)^n$	
	$A = R42181,59 \left(1 + \frac{0.08}{1.00}\right)^{60}$	✓ substitution into correct formula
	= R62844,06	vervanging in korrekte formule
	R80000 – R62844,06	✓ R62 844,06
	= R17155,94	102 0 1 1,00
	$\therefore A = P(1+i)^n$	✓ R17 155,964
		, ,
	$R17155,94 = P\left(1 + \frac{0.08}{12}\right)^{60}$	/ mothed / wateda
		✓ method / <i>metode</i>
	$P = \frac{17155,94}{\left(1 + \frac{0,08}{12}\right)^{60}}$	
	= R11515, 25	
	∴ He needs to deposit R11 515 /	
	Hy moet R11 515 deponeer	✓ answer / antwoord (5)
	-	[16]

QUESTION 9/VRAAG 9

9.1	If A and B are independent, then:		
	As A en B onafhanklik is, dan:		
	$P(A \text{ and/}en B) = P(A) \times P(B)$		
	P(A) = 1 - P(not/nie A)		
	= 1 - 0.45	✓ 0,55	
	= 0,55	0,55	
	$=\frac{11}{1}$		
	$={20}$		
	P(A or/ of B) = P(A) + P(B) - P(A and/ en B)		
	0.685 = 0.55 + 0.3 - P(A and/ en B)	✓ substitution / vervanging	
	$\therefore P(A \text{ and/} en B) = 0.165$	· substitution / ver vanging	
	_ 33	✓ answer / antwoord	
	$=\frac{33}{200}$	v answer / antwoora	
	$P(A) \times P(B) = 0.55 \times 0.3$	(D(A) D(D)	
	= 0.165	$\checkmark P(A) \times P(B)$	
	$=\frac{33}{200}$		
	∴ A and B are independent events. /		
	A en B is onafhanklike gebeurtenisse.	✓ conclusion / gevolgtrekking (5)	
9.2.1		(3)	
7.2.1	S		
	N		
	$\left \left \right \right \left \left \right \left \left \right \left \right \left \left \right \left \right \left \right \left \right \left \right \left \left \right \left \right \left \right \left \left \right \left \right \left \left \right \left \right \left \right \left \left \left \right \left \left \left \right \left \left \left \right \left \left $		
	c(8)	$\checkmark a = 10$	
	a (10) 12 b (13)	$\checkmark b=13$	
	(a (10) b (13)	$\checkmark c = 8$	
	4	✓ <i>d</i> =14	
	d (14)		
	L A		
	a = 10 ; $b = 13$; $c = 8$; $d = 14$	(4)	
9.2.2	$P(A \text{ or/}of(N \text{ and/}en R)) = \frac{39}{75} + \frac{5}{75}$	$\sqrt{\frac{39}{75}} \sqrt{+\frac{5}{75}}$	
	, , , ,		
	$=\frac{44}{75}$	✓ answer / antwoord	
	≈ 0,59	(3) [12]	

QUESTION 10/VRAAG 10

10 Let the total number of balls be t.

Laat die totale aantal balle t wees.

Green/Groen: 5

 $P(GG) = P(G) \times P(G)$

$$\frac{5}{t} \times \frac{4}{t-1} = \frac{5}{18}$$

$$\frac{20}{t(t-1)} = \frac{5}{18}$$

$$5t^2 - 5t = 360$$

$$5t^2 - 5t - 360 = 0$$

$$t^2 - t - 72 = 0$$

$$(t-9)(t+8) = 0$$

$$\therefore t = 9 \ or \ t \neq -8$$

:. There are 9 balls.

Daar is 9 balle.

 $\checkmark \frac{5}{t} \checkmark \text{and/en } \frac{4}{t-1}$

✓ equation / vergelyking

✓ standard form / *standaardvorm*

✓ factorisation / faktorisering

 $\checkmark t = 9$

TOTAL / TOTAAL: 150

(6)