Дисциплина Многомерный анализ, интегралы и ряды

2016–2017 учебный год

Оценка

Фамилия

экзаменатора

_____ № группы _

Семестр 2

Kypc 1

Фамилия студента ___

Сумма баллов

проверяющего

Фамилия

1. ④ Вычислить интеграл $\int \frac{x^2 - 10x - 4}{x^3 + 2x^2 - 6x + 8} dx$.
2. ③ Вычислить интеграл $\int \frac{e^x \cos^2 \sqrt[3]{1 + e^x}}{\sqrt[3]{1 + e^x}} dx$.
3. ④ Найти первый и второй дифференциал в точке $M(1, 0)$ функции $w = \sqrt{x + \cos y}$. Разложить функцию w по формуле Тейлора в окрестности точки M до $o((x-1)^2 + y^2)$.
4. ④ Найти длину дуги кривой $x=t\cos\ln t,y=t\sin\ln t,z=\sqrt{2}\ln t,1\leqslant t\leqslant 2.$
5. (5) Исследовать на дифференцируемость в точке (0, 0) функцию
$w = \begin{cases} \frac{x^{9/5} + y^{9/5}}{\left(x^4 + y^4 - \frac{x^2 y^2}{4}\right)^{1/6}}, & x^2 + y^2 \neq 0; \\ 0, & x^2 + y^2 = 0. \end{cases}$
6. ④ Исследовать несобственный интеграл на сходимость $\int_{0}^{+\infty} \frac{\ln^{\alpha}(1+x)(x^{2}+\sqrt[3]{x})^{\alpha}}{\coth(x^{\alpha})\sqrt[3]{\arctan\frac{1}{1+x}}} dx.$
7. ③ Исследовать числовой ряд на сходимость $\sum_{n=1}^{\infty} \left(3n\left(\arctan\frac{1}{n} - \arcsin\frac{1}{n}\right) + n\sin\frac{1}{n}\operatorname{ch}\frac{1}{n}\right)^{n^3}$
8. $\textcircled{5}$ Исследовать функциональную последовательно $\{f_n(x)\}_{n=1}^{\infty}$ на сходимость и равномерную
сходимость на множествах $E_1=(0, 1)$ и $E_2=(1, +\infty)$, если $f_n(x)=n\left(\frac{x}{\sqrt[3]{n}}-\arctan\frac{x}{\sqrt[3]{n}}\right)$.
9. ④ Исследовать функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ на сходимость и равномерную сходимост
на множествах $E_1=(0,1)$ и $E_2=(1,+\infty),$ если $f_n(x)=\sin\frac{\pi x}{2}\cdot \cot\frac{n}{x}\cdot 10^{-n/x}.$
10. ③ Разложить в ряд Тейлора по степеням $(x-1)$ функцию $y = \ln[(3-x)(2+x)^{x-1}]$ найти радиус сходимости полученного ряда.
мфти — 7:
«Использование электронных средств любых типов и вспомогательных материалов запрещено»
С положением ознакомлен: (Фамилия студента)

Дисциплина Многомерный анализ, интегралы и ряды

2016–2017 учебный год

Семестр 2

Kypc 1

Фамилия студента		J\º I	ъушы
Сумма баллов		Оценка Фамилия	
Фамилия			
проверяющего		экзаменатора	
	грал $\int \frac{-2x^2 + x + 10}{x^3 - 5x + 12} dx.$		
2. ③ Вычислить интег	грал $\int \operatorname{sh}^2(\sqrt{e^x + e^{-x}}) \operatorname{sh}^2$	x dx.	
$oldsymbol{3.}$ $oldsymbol{4}$ Найти первый и Разложить функцию w по			жим $w = \ln(\sqrt{2} + x\sqrt{y}).$ $p((x-1)^2 + (y-1)^2).$
4. ④ Найти длину дуг	ги кривой $y = \ln\left(\operatorname{th}\frac{x}{2}\right), 1$	$\leq x \leq 2.$	
5. (5) Исследовать на д	дифференцируемость в то	очке (0, 0) функцию	
	$w = \begin{cases} \frac{y^{15/8} - xy^{7/8}}{\left(x^4 + y^4 - \frac{x^2y^2}{3}\right)} \\ 0, \end{cases}$	$x^{2} + y^{2} \neq 0;$ $x^{2} + y^{2} = 0.$	
6. ④ Исследовать несо	обственный интеграл на с	еходимость $\int_{0}^{+\infty} \frac{(x^3 - \cot x^3)}{\cot x^{\alpha}}$	$\frac{+\sqrt{x})^{\alpha}}{ \ln^{\alpha}(\cosh x) } dx.$
7. ③ Исследовать чис.	ловой ряд на сходимость	$\sum_{n=1}^{\infty} \left(\sqrt{1 + \frac{1}{n}} - \frac{n}{2} \ln \left(\frac{n}{n} \right) \right) $	$\left(1+\frac{1}{n}\right)\sin\frac{1}{n}\right)^{n^3}.$
8. ⑤ Исследовать функ	кциональную последовате	ельно $\{f_n(x)\}_{n=1}^{\infty}$ на сх	одимость и равномерную
сходимость на множествах	$E_1 = (0, 1)$ и $E_2 = (1, +\infty)$	∞), если $f_n(x) = n^3$ ($\frac{1}{nx^2} - \sin\frac{1}{nx^2}\right).$
	нкциональный ряд $\sum_{n=1}^{\infty} f_n$	_	
на множествах $E_1 = (0, 1)$	и $E_2=(1,+\infty)$, если $f_n($	$x) = \operatorname{th} x \cdot \operatorname{sh} \frac{2n}{x} \cdot 9^{-n/2}$	<i>x</i> .
10. (3) Разложить в ра еходимости полученного ра	яд Тейлора по степеням яда.	(x-1) функцию $y=$	$\frac{x}{\sqrt[5]{3-x}}$ и найти радиус
, ,	<i>(</i>)		МФТИ — 72

«Использование электронных средств любых типов и вспомогательных материалов запрещено»

С положением ознакомлен: ______ (Фамилия студента)

Дисциплина Многомерный анализ, интегралы и ряды

Семестр 2 2016–2017 учебный год

_____ № группы _

Kypc 1

Фамилия студента _

C	умма баллов		Оценка	
Φ	амилия		Фамилия	
П]	ооверяющего		экзаменатора	
1.	$\textcircled{4}$ Вычислить интеграл $\int \frac{1}{x^3+1}$	$\frac{x-3}{4x^2-3x+10}$	$\int dx$.	
2. ③ Вычислить интеграл $\int e^x \operatorname{ch}^2(\sqrt{1+e^x}) dx$.				
	4 Найти первый и второй дифофункцию w по формуле Тейлора			
4. ④ Найти площадь фигуры, ограниченной кривыми $y = x \operatorname{sh} x$ и $y = \sqrt{\operatorname{ch}^2 1 - x^2}$.				
5. (5) Исследовать на дифференцируемость в точке (0, 0) функцию				
			$ \frac{1}{6}, x^2 + y^2 \neq 0; $ $ x^2 + y^2 = 0. $	
	 Исследовать несобственный г 		У	w I
7.	③ Исследовать числовой ряд на	а сходимость	$\sum_{n=1}^{\infty} \left(4n \left($	$+ n \operatorname{sh} \frac{1}{n} \cos \frac{1}{n} \right)^{n^3}.$
8. (У Исследовать функциональную праводения в правительной правительно	о последовате	ельно $\{f_n(x)\}_{n=1}^\infty$ на с	ходимость и равномерную
сходим	мость на множествах $E_1 = (0, 1)$ 1	и $E_2 = (1, +\infty)$	∞), если $f_n(x) = n$	$\frac{x}{\sqrt[3]{n}} - \operatorname{th} \frac{x}{\sqrt[3]{n}} $.
	④ Исследовать функциональнь	n=1		
на мно	ожествах $E_1 = (0, 1)$ и $E_2 = (1, +$	$-\infty$), если f_n ($x) = \arctan x \cdot \operatorname{ch} \frac{n}{x} \cdot 3$	-n/x.
10. ③ Разложить в ряд Тейлора по степеням $(x-2)$ функцию $y = \ln \left[(4-x)(3+x)^{x-2} \right]$ и				
найти	радиус сходимости полученного			L J
				МФТИ — 73

«Использование электронных средств любых типов и вспомогательных материалов запрещено»

С положением ознакомлен: ______ (Фамилия студента)

Дисциплина Многомерный анализ, интегралы и ряды

Семестр 2

2016-2017 учебный год

Kypc 1

Фамилия студента	J1= 1 py1111bi
Сумма баллов	Оценка
Фамилия	Фамилия
проверяющего	экзаменатора
1. ④ Вычислить интеграл $\int \frac{x^2 - x}{2x^3 + 4x^2 + 4x^2}$	
2. ③ Вычислить интеграл $\int \sin^2 \left(\sqrt{e^x - e^x} \right)$	$-e^{-x}$) ch $x dx$.
3. ④ Найти первый и второй диффере Разложить функцию $w\!=\!f(x,y)$ по формуле Т	енциал в точке $M(1, e)$ функции $w = \ln(1 + e^x \ln y)$. Гейлора в окрестности точки M до $o((x-1)^2 + (y-e)^2)$.
4. ④ Найти площадь фигуры, ограниче	нной кривой $(x^2 + y^2)^2 = 2(xy)^{3/2}$.
5. (5) Исследовать на дифференцируемо	сть в точке (0, 0) функцию
$w = \begin{cases} \frac{x^{5/2} + 1}{\left(x^4 + y^4 - \frac{1}{2}\right)^{1/2}} \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$	$\frac{-y^{5/2}}{5x^2y^2} \frac{5x^2y^2}{4} \right)^{1/3}, x^2 + y^2 \neq 0;$ $0, x^2 + y^2 = 0.$
6. ④ Исследовать несобственный интегр	рал на сходимость $\int_{0}^{+\infty} \frac{\operatorname{th}(x^{\alpha}) \ln^{2\alpha}(1+\operatorname{sh}x)}{(\sqrt{x}+\sqrt[3]{x})^{\alpha}} dx.$
7. ③ Исследовать числовой ряд на сход	имость $\sum_{n=1}^{\infty} \left(\sqrt[3]{1 - \frac{1}{n}} - \frac{n}{3} \ln \left(1 - \frac{1}{n} \right) \arcsin \frac{1}{n} \right)^{n^3}.$
8. ⑤ Исследовать функциональную после	едовательно $\{f_n(x)\}_{n=1}^\infty$ на сходимость и равномерную
ходимость на множествах $E_1 = (0, 1)$ и $E_2 =$	$=(1, +\infty), \text{ если } f_n(x) = n^{3/2} \left(\sinh \frac{1}{x\sqrt{n}} - \frac{1}{x\sqrt{n}} \right).$
	$\sum_{n=1}^{\infty} f_n(x)$ на сходимость и равномерную сходимость
на множествах $E_1 = (0, 1)$ и $E_2 = (1, +\infty)$, ее	сли $f_n(x) = \cos 4\pi x \cdot \sinh \frac{n}{2x} \cdot 2^{-n/x}$.
	епеням $(x-2)$ функцию $y = \frac{x-1}{\sqrt[3]{4+x}}$ и найти радиус
	МФТИ — 74

«Использование электронных средств любых типов и вспомогательных материалов запрещено»

С положением ознакомлен: ______ (Фамилия студента)