旋转群

2011级ACM班 张方魁陈志鹏

May 5, 2012

Abstract

本文介绍了旋转群。

讨论这个话题之前,让我们先来看看有哪些正多面体。

命题1:正多面体只能有5种,即用正三角形做面的正四面体、正八面体,正二十面体,以及用正方形做面的正六面体,用正五边形做面的正十二面体。

证明:设顶点数为V,面数为F,棱数为E

设正多面体的每个面是正n边形,每个顶点有m条棱。棱数E应是面数F与n的积的一半(每两面共用一条棱),即

$$nF = 2E \tag{1}$$

同时,E应是顶点数V与m的积的一半,即

$$mV = 2E (2)$$

由(1)、(2),得

$$F = \frac{2E}{n}, V = \frac{2E}{m},$$

代入欧拉公式V + F - E = 2,有

$$\frac{2E}{m} + \frac{2E}{n} - E = 2$$

整理后,得

$$\frac{1}{m} + \frac{1}{n} = \frac{1}{2} + \frac{1}{E}$$

. 由于E是正整数,所以 $\frac{1}{E} > 0$ 。因此

$$\frac{1}{m} + \frac{1}{n} > \frac{1}{2} \tag{3}$$

说明m,n不能同时大于3, 否则 $\frac{1}{m} + \frac{1}{n} \leqslant \frac{1}{2}$, 即(3)不成立。

另一方面,由于m和n的意义(正多面体一个顶点处的棱数与多边形的边数)知, $m \ge 3$ 且 $n \ge 3$ 。因此m和n至少有一个等于3

当m = 3时,因为 $\frac{1}{n} > \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$,n又是正整数,所以n只能是3,4,5 同理n = 3,m也只能是3,4,5 所以有以下几种情况:

$\overline{\mathbf{n}}$	m	类型
3	3	正四面体
4	3	正六面体
3	4	正八面体
5	3	正十二面体
3	5	正二十面体

由于上述5种多面体确实可以用几何方法作出,而不可能有其他种类的正多面体。 所以正多面体只有5种。

图 2 正八面体

图 3 正二十面体

图 4 正六面体

正六面体对正八面体的对偶图 图 6

正十二面体对正二十面体的对偶图

命题2: 正四面体群 G_4 是四次交错群 A_4 。 证明: 正四面体ABCD如图1,原点O是它的外接球的球心, 群 G_4 的所有旋转变 换可以分为两类:、

(1)分别以 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OD} 为旋转轴,旋转120度角的旋转变换 σ_A , σ_B , σ_C , σ_D , 于是可得如下9个旋转变换:

$$\sigma_A = (B, C, D), \sigma_B = (A, D, C), \sigma_C = (A, B, D), \sigma_D = (A, C, B)$$

$$\begin{split} \sigma_A^2 &= (B, D, C), \sigma_B^2 = (A, C, D), \sigma_C^2 = (A, D, B), \sigma_D^2 = (A, B, C) \\ \sigma_A^3 &= \sigma_B^3 = \sigma_C^3 = \sigma_D^3 = (1) \end{split}$$

(2) 分别以棱的中点连线(有3对棱) $\overrightarrow{P'OP}$, $\overrightarrow{Q'OQ}$, $\overrightarrow{R'OR}$ 为旋转轴,旋转180度角的旋转变换 σ_P , σ_Q , σ_R :

$$\sigma_P = (A, B)(C, D), \sigma_Q = (A, C)(B, D), \sigma_R = (A, D)(B, C)$$

故正四两体群 G_4 有12个旋转变换, 恰是A,B,C,D四元素构成的四次交错群 A_4 。

命题3: 正八面体群 G_8 (或正六面体群 G_6)同构于四次置换群 S_4 。

证明:正八面体ABCDEF如图2,原点O是它外接球的球心。群 G_8 的所有旋转变换可分成三类:

(1) 分别以顶点连线 \overrightarrow{AOF} , \overrightarrow{BOD} , \overrightarrow{COE} 为旋转轴,旋转90度角的旋转变换 σ_A , σ_B , σ_C , 于是得如下10个旋转变换:

$$\sigma_A, \sigma_B, \sigma_C,$$

$$\sigma_A^2, \sigma_B^2, \sigma_C^2,$$

$$\sigma_A^3, \sigma_B^3, \sigma_C^3,$$

$$\sigma_A^4 = \sigma_B^4 = \sigma_C^4 = (1)$$

其中

$$\sigma_A = \left(\begin{array}{cccc} A & B & C & D & E & F \\ A & C & D & E & B & F \end{array} \right)$$

等等。

(2) 分别以面的中心连线(有4个对面) $\overrightarrow{P'OP}$, $\overrightarrow{Q'OQ}$, $\overrightarrow{R'OR}$, $\overrightarrow{S'OS}$ 为旋转轴,旋转120度角的旋转变换 σ_P , σ_O , σ_R , σ_S ,于是得到如下8个旋转变换:

$$\sigma_P, \sigma_Q, \sigma_R, \sigma_S$$
 $\sigma_P^2, \sigma_O^2, \sigma_R^2, \sigma_S^2,$

其中,

$$\sigma_P = \left(\begin{array}{cccc} A & B & C & D & E & F \\ B & C & A & E & F & D \end{array} \right)$$

等等。

(3) 分别以棱的中点连线(有6对棱) $\overrightarrow{X'OX},\overrightarrow{Y'OY},\overrightarrow{Z'OZ},\overrightarrow{U'OU},\overrightarrow{V'OV},\overrightarrow{W'OW}$ 为旋转轴,旋转180度角的旋转变换 $\sigma_X,\sigma_Y,\sigma_Z,\sigma_U,\sigma_V,\sigma_W$:

$$\sigma_X = \left(\begin{array}{cccc} A & B & C & D & E & F \\ E & F & B & A & D & C \end{array} \right)$$

等等。故正八面体群 G_8 由24个旋转变换构成,下面证明 G_8 同构于 G_4 。

References

- [1] 陈馨璇,三维欧氏空间中有限旋转群的分类与构造,武汉师范学院学报,(1984)。
- [2] 武同锁,AbstractAlgebraNotes。