

WHAT IS CLAIMED IS:

1 1. A method of correcting laser beam intensity, comprising
2 the steps of:

3 rotating an optical substrate around an optical axis
4 of a laser beam as a rotation axis while maintaining an
5 incident angle of the laser beam thereto, the optical
6 substrate being located in a manner that the incident angle
7 of the laser beam is set at a Brewster's angle; and
8 controlling transmission intensity of the laser beam.

1 2. A method of correcting laser beam intensity by using
2 laser beam intensity correcting mechanism including a
3 plurality of optical paths, a rotation cylinder being
4 rotated around an optical axis of the laser beam as a rotation
5 axis arranged in at least one of the plurality of optical
6 paths and an optical substrate fixed at a predetermined
7 slope angle with respect to the optical axis provided in
8 the rotation cylinder, comprising a step of:

9 rotating the rotation cylinder to rotate the optical
10 substrate around the optical axis as the rotation axis while
11 maintaining the slope angle.

2

1 3. The method of correcting laser beam intensity according
2 to claim 2, further comprising a step of:
3 adjusting the laser beam intensity in each optical
4 path to be equal to others.

1 4. A laser beam intensity correction mechanism including
2 an optical substrate rotating around an optical axis of
3 a laser beam as a rotation axis while maintaining an incident
4 angle, the optical substrate being located in a manner that
5 the incident angle of the laser beam is set at a Brewster's
6 angle, wherein transmission intensity of the laser beam
7 is varied by rotating the optical substrate.

1 5. A laser beam intensity correction mechanism according
2 to claim 4, wherein the optical substrate is made of a quartz
3 plate.

1 6. A laser beam intensity correction mechanism according
2 to claim 4, wherein an antireflection coating is formed
3 on at least one surface of the optical substrate.

1 7. A laser beam intensity correction mechanism comprising
2 a rotation cylinder being rotated around an optical axis
3 of a laser beam as a rotation axis and an optical substrate
4 fixed at a predetermined slope angle with respect to the
5 optical axis of the laser beam in the rotation cylinder,
6 wherein the optical substrate is rotated around the optical
7 axis as the rotation axis while maintaining the slope angle
8 by rotating the rotation cylinder.

1 8. A laser beam intensity correction mechanism according

2 to claim 7, wherein the slope angle of the optical substrate
3 is set in a manner that the incident angle of the laser
4 beam is set at the Brewster's angle.

1 ~~3.~~ A laser beam intensity correction mechanism comprising
2 a plurality of optical paths for a plurality of laser beams,
3 a rotation cylinder provided in at least one of the plurality
4 of optical paths, the rotation cylinder being rotated
5 around an optical axis of the laser beam as a rotation axis,
6 and an optical substrate fixed at a predetermined slope
7 angle with respect to the optical axis of the laser beam
8 provided in the rotation cylinder, wherein the optical
9 substrate is rotated around the optical axis as the rotation
10 axis while maintaining the slope angle by rotating the
11 rotation cylinder.

1 ~~4.~~ A laser beam intensity correction mechanism according
2 to claim ~~3~~, wherein the slope angle of the optical substrate
3 is set such that the incident angle of the laser beam is
4 set at the Brewster's angle.

1 ~~5.~~ A laser generating device comprising a laser beam
2 source, an optical part for splitting the laser beam emitted
3 from the laser beam source into a plurality of optical paths
4 and correcting means for correcting laser beam intensity,
5 the correcting means being provided in at least one of
6 the optical paths, wherein the correcting means includes

7 a rotation cylinder being rotated around an optical axis
8 of the laser beam as a rotation axis in the case and an
9 optical substrate slantly fixed such that the incident
10 angle of the laser beam is set at the Brewster's angle.

1 6 12. A laser generating device according to claim 11,
2 wherein the correcting means is provided in an optical path
3 except a reference optical path.