1.

a)
$$\bar{X}\bar{Y} = 1$$

b) $X\bar{Y} = 1$

c) $\bar{X}Y = 1$

d) XY = 1

2.

3.

$$4. \quad \bar{A}(\bar{B}+\bar{C})=1$$

5.

- a) A + BC = 1
- b) Yes, we get a legal circuit.
- c) It calculates $\bar{A}(\bar{B} + \bar{C})$

6.

- a) A(B + C) = 1
- b) No, we don't get a legal circuit.

c)

A	В	С	Status
0	0	0	Z=1
0	0	1	Z=1
0	1	0	Z=1
0	1	1	OPEN
1	0	0	OPEN
1	0	1	Z=0
1	1	0	Z=0
1	1	1	Z=0

8.

a)
$$V = \overline{X\overline{Y} + \overline{Z}} \overline{\overline{Y + Z} + X}$$

b)

X 0	Y	Z	V
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

VV	Z		
XY	0	1	
00	0	1	
10	0	0	
11	0	1	
01	0	1	

 $V = \bar{X} Z + Y Z$

d)

- a) The wire X inputs to choose B_0 or C_0 for the multiplexer.
- b) C0: B0

