

PEMETAAN ERD KE MODEL RELASIONAL BAGIAN-1

PENGERTIAN

SEJARAH

KEUNTUNGAN

CONTOH MODEL RELASIONAL

RELATIONAL KEY

RELATIONAL INTEGRITY

MAPPING ERD KE MODEL RELASIONAL

Tim Ajar Basis Data JTI

PEMETAAN ERD KE MODEL RELASIONAL BAGIAN-1

PENGERTIAN

SEJARAH

KEUNTUNGAN

CONTOH MODEL RELASIONAL

RELATIONAL KEY

RELATIONAL INTEGRITY

MAPPING ERD KE MODEL RELASIONAL

POKOK BAHASAN

- Pengertian
- Sejarah
- Keuntungan
- Contoh Model Relasional
- Relational Key
- Relational Integrity
- Mapping ERD ke Model Relasional

PENDAHULUAN

- Komputer mempunyai fungsi utama untuk menyimpan dan mengelola informasi
- Perlu dilakukan tata cara mengatur informasi tersebut
- Cara yang sederhana dan memudahkan data untuk diakses dan dikelola
- Model relasional digagas untuk mengorganisasi ke data ke dalam banyak tabel dua dimensi yang saling berelasi

SEJARAH

Model relasional pertama kali dikenalkan oleh Codd, pada tahun 1971

Sejak itu model relasi memainkan peranan yang sangat penting dalam berbagai perancangan basis data. Ada tiga alasan mengapa model relasi mempunyai peranan penting dalam perancangan basis data yaitu :

Relasi merepresentasikan struktur data yang dapat dimengerti oleh user maupun designer Model relasional mendefinisikan salah satu kriteria perancangan basis data yang penting yaitu relasi bentuk normal

Struktur data yang direpresentasikan oleh relasi dapat segera dikonversikan & diimplementasikan ke RDBMS

Pada tahun 1985, Codd menerbitkan daftar 12 peraturan untuk mendefinisikan sistem basis data relasional, karena kekhawatiran bahwa banyak vendor memasarkan produk sebagai "relasional" walaupun produk tersebut tidak memenuhi standar relasional minimum

Codd's Relational Database

RULE		
1	Information	All information in a relational database must be logically represented as column values in rows within tables.
2	Guaranteed Access	Every value in a table is guaranteed to be accessible through a combination of table name, primary key value, and column name.
3	Systematic Treatment of Nulls	Nulls must be represented and treated in a systematic way, independent of data type.
4	Dynamic On-Line Catalog Based on the Relational Model	The metadata must be stored and managed as ordinary data, that is, in tables within the database. Such data must be available to authorized users using the standard database relational language.
5	Comprehensive Data Sublanguage	The relational database may support many languages. However it must support one well- defined declarative language with support for data definition, view definition, data manipulation (interactive and by program), integrity constraints, authorization, and transaction management (begin, commit, and rollback).
6	View Updating	Any view that is theoretically updatable must be updatable through the system.
7	High-Level Insert, Update and Delete	The database must support set-level inserts, updates, and deletes.
8	Physical Data Independence	Application programs and ad hoc facilities are logically unaffected when physical access methods or storage structures are changed.
9	Logical Data Independence	Application programs and ad hoc facilities are logically unaffected when changes are made to the table structures that preserve the original table values (changing order of column or inserting columns).
10	Integrity Independence	All relational integrity constraints must be definable in the relational language and stored in the system catalog, not at the application level.
11	Distribution Independence	The end users and application programs are unaware and unaffected by the data location (distributed vs. local databases).
12	Nonsubversion	If the system supports low-level access to the data, there must not be a way to bypass the integrity rules of the database.
	Rule Zero	All preceding rules are based on the notion that in order for a database to be considered relational, it must use its relational facilities exclusively to manage the database.

KEUNTUNGAN

1

 Memiliki bentuk sederhana

2

 Mempermudah operasi data (query, update/edit, delete).

TOOLS MODEL RELASIONAL

• DBMS

- DB2 (IBM)
- Rdb/VMS (Digital Equipment Corporation)
- Oracle (Oracle Corporation)
- Informix (Informix Corporation)
- Ingres (ASK Group Inc)
- Sybase (Sybase Inc)

• PC

- R:Base Family
- dBase Family
- Microsoft SQL
- Visual FoxPro

Istilah-istilah model relasional

 Representasi tabel yang terdiri dari sejumlah baris Relation/table/file dan kolom kolom pada tabel Attribute/column/field Baris pada tabel Tuple/row/record • Himpunan nilai dari satu atau lebih attribute Domain • Banyaknya *attribute*/kolom pada tabel Degree Banyaknya tuple/baris pada tabel **Cardinality** • Kumpulan relasi ternormalisasi dengan nama relasi Relational Basis Data yang jelas

Contoh Basis data model relasional

Tabel Customer

customer-id	customer-name	customer street	customer city
192-83-7465	Johnson	12 Alma St.	Palo Alto
019-28-3746	Smith	4 North St.	Rye
677-89-9011	Hayes	3 Main St.	Harrison
182-73-6091	Turner	123 Putnam Ave.	Stamford
321-12-3123	Jones	100 Main St.	Harrison
336-66-9999	Lindsay	175 Park Ave.	Pittsfield
019-28-3746	Smith	72 North St.	Rye

Tabel Account

account-number	balance
A-101	500
A-215	700
A-102	400
A-305	350
A-201	900
A-217	750
A-222	700

Tabel Depositor

customer-id	account-number
192-83-7465	A-101
192-83-7465	A-201
019-28-3746	A-215
677-89-9011	A-102
182-73-6091	A-305
321-12-3123	A-217
336-66-9999	A-222
019-28-3746	A-201

Contoh bagian model relasional

Relation	Attribute	Degree	Tuple	Cardinality
Tabel Customer	custommer-id customer-name customer-street customer-city	4	Baris 1 – Baris 7	7
Tabel Depositor	customer-id account-number	2	Baris 1 – Baris 8	8
Tabel Account	account-number balance	2	Baris 1 – Baris 7	7

Relasi basis data

- Skema Relasi
 Nama relasi didefinisikan oleh himpunan pasangan atribut dan nama domain
- Skema Basis Data relational
 Himpunan skema relasi dengan nama yang berbeda

Sifat-sifat relasi

- Nama relasi berbeda satu sama lain dalam skema relasional
- Setiap sel(baris,kolom) dari relasi berisi satu nilai atomik atau nilai tunggal
- Setiap atribut memiliki nama yang berbeda
- Nilai suatu atribut berasal dari domain yang sama
- Setiap tuple adalah berbeda, dan tidak ada duplikasi tuple

Fase-fase desain basis data sederhana Miniworld Phase 1: **REQUIREMENTS** Requirements, **COLLECTION &** Collection and ANALYSIS **Analysis Functional Requirements** Data Requirements Phase 2: Conceptual Database Design **FUNCTIONAL ANALYSIS CONCEPTUAL DESIGN** Phase 3: Conceptual Schema High-level Transaction (In a highlevel data model Choice of DBMS Specification DBMS-independent Phase 4: LOGICAL DESIGN (DATA MODEL MAPPING Data Model Mapping (Logical DBMS-specific design) Logical(Conceptualschema In the data model of a specific DBMS APPLICATION PROGRAM DESIGN Phase 5: PHYSICAL DESIGN Physical Design (DATA MODEL MAPPING Phase 6: TRANSACTION Internal Schema **IMPLEMENTATION** System Implementation and Tuning **Application Programs**

RELASIONAL

ReLational key

Superkey

• Sebuah atribut (atau kombinasi atribut) secara unik mengenali setiap entitas dalam sebuah tabel.

Candidate key

• Sebuah *superkey* minimal, yaitu superkey yang tidak merupakan bagian atribut dari suatu *superkey*.

Primary key

• Candidate key yang terpilih untuk mengenali secara unik seluruh nilai atribut pada sebuah baris. Tidak boleh kosong.

Secondary key

• Sebuah atribut (atau kombinasi atribut) secara paksa digunakan untuk tujuan pengambilan data.

Foreign key

• Sebuah atribut (atau kombinasi atribut) dalam sebuah tabel dimana nilainya cocok dengan *primary key* pada tabel lainnya.

ILUSTRASI

KD_SUPP	NAMA_SUPP	ALAMAT
S0001	PANASONIC	DEPOK
S0002	SANYO	BOGOR
S0003	AKARI	BEKASI

Contoh relational key

Relasi	Superkey	Candidate Key	Primary Key	Foreign Key	Alternatif key
Tabel customer	(customer-id) (customer-id,customer-name) (customer-id,customer- name,customer-city)	customer-id customer-name	customer-id	customer-city (dengan syarat terdapat tabel city yang memiliki fiel city-id	customer-name

Relational integrity

Null

- Representasi nilai atribut yang tidak diketahui atau tidak digunakan dalam tuple
- Berkaitan dengan ketidaklengkaan atau pengecualian data
- Representasi tidak adanya suatu nilai, dan tidak sama dengan nol atau spasi

Entity Entegrity

- Pada relasi dasar, tidak ada atribut ataupun primary key yang bernilai NULL
- Referential Entegrity
 - Jika terdapat foreign key dalam suatu relasi, maka foreign key tersebut dibandingkan dengan candidate key dan beberapa tuple pada relasi itu sendiri
- Enterprise Constraint
 - Aturan tambahan yang diberikan oleh user atau DBA

Contoh relational integrity

Null	Entity Integrity	Rererential Integrity	Enterprise Constraint
Field customer- description (diasumsikan terdapat kolom customer- description pada tabel customer)	Field customer0id pada tabel customer	Field customer-id pada tabel depositor	Jika jumlah account-number untuk setiap customer-id diberi batasan misalkan 5 account-number,maka lebih dari jumlah tersebut tidak diperbolehkan

Untuk setiap tipe entitas yang membuat relasi

- Setiap atribut atom dari tipe entitas menjadi atribut relasi
- Atribut komposit mencakup semua atribut atom
- Atribut turunan tidak disertakan dalam field
- Contoh relasi adalah himpunan bagian dari cross product dari domain atribut
- Atribut dari kunci entitas membentuk kunci utama relasi

TRANSFORMASI DASAR

Setiap himpunan entitas akan diimplementasikan sebagai sebuah tabel

<u>studno</u>	givenname	familyname

courseno	subject	equip

TRANSFORMASI DASAR

ATRIBUT MULTIVALUE

Atribut bernilai banyak membuat sebuah tabel baru dengan mengambil kunci utama sebuah entitas

Tabel Student

studno givenname		familyname
s1	fred	jones
s2	mary	brown

Tabel StudentContact

<u>studno</u>	contact	
s1	Mr. Jones	
s1	Mrs Jones	
s2	Bill Brown	
s2	Mrs Jones	
s2	Billy-Jo Woods	

DERAJAT RELASI 1-1

Relasi one to one menghubungkan 2 buah himpunan entitas, dipresentasikan dengan penambahan field relasi ke tabel yang mewakili salah satu dari kedua himpunan entitas

DERAJAT RELASI 1-N

Tim Ajar Basis Data.

Relasi one to many yang menghubungkan 2 buah himpunan entitas, juga akan dipresentasikan dalam bentuk pemberian atribut key dari himpunan entitas pertama (berderajat 1) ke tabel yang mewakili himpunan entitas kedua (berderajat N). Atribut key dari himpunan entitas pertama ini menjadi atribut tambahan bagi himpunan entitas kedua

	<u>studno</u>	givenname	familyname	name	roomno	slot
Jī	}					

DERAJAT RELASI N-N

Relasi manyto many yang menghubungkan 2 buah himpunan entitas, akan diwujdukan dalam betuk tabel khusus yang memiliki field (foreign key) yang berasal dari key-key himpunan entitas yang dihuungkan

Tabel Student

<u>studno</u>	givenname	familyname	

Tabel Course

courseno	subject	equip

Tabel Student

<u>studno</u>	courseno	labmark	exammark

ENTITAS LEMAH

Penggunaan Himpunan Entitas Lemah (Weak Entity Sets) dan Sub-Entitas dalam Diagram E-R diterapkan dalam bentuk tabel sebagaimana Himpunan Entitas Kuat (Strong Entity Sets)

Tabel Buildings

<u>name</u>	address

Tabel Rooms

name	number	capacity

RELASITUNGGAL (UNARY RELATION)

Penerapan Relasi Tunggal (Unary Relation) dari/ke himpunan entitas yang sama dalam Diagram E-R tergantung pada Derajat Relasinya. Unit Relasi Tunggal dengan Derajat Relasi satu-ke-banyak dapat diimplementasikan melalui penggunaan field key sebanyak dua kali lipat untuk fungsi yang berbeda.

Contoh Unary Relationship

MULTI-ENTITAS(N-ARY RELATION)

Relasi multi entitas menghubungkan lebih dari dua himpunan entitas, untuk itu akan diterapkan sebuah tabel khusus. Namun jika dapat dipastikan bahwa hubungan antar entitas adalah 1-N maka cukup ditambahkan field pada entitas yang bersangkutan.

Tabel Students

<u>studno</u>	givenn ame	family name

Tabel Course

courseno	subject	equip

Tabel Staff

roomno	<u>name</u>	

Tabel Tutors

roomno	<u>nameStaff</u>	<u>studno</u>	courseno	slot

RELASI GANDA (REDUDANT RELATION)

Relasi ganda diterapkan dengan cara yang sama dengan kardinalitasnya sesuai penjelasan sebelumnya

Table Staff

<u>name</u>	roomno

Tabel Student

<u>studno</u>	given	family	name	roomno

SPESIALISASI DAN GENERALISASI

Generalisasi menyusutkan jumlah entitas, sehingga hanya butuh satu entitas dengan panambahan field.

Spesialisasi akan menghasilkan sejumlah himpunan entitas baru

MAPPING KE SKEMA RELASI (1)

Untuk melakukan **mapping** (**pemetaan**) dari skema ER Diagram ke skema relasi terdapat langkah-langkah yang harus diperhatikan.

Langkah-langkah mapping:

- Untuk setiap entitas skema relasi R yang menyertakan seluruh Simple
 Atribute dan Simple Attribute dari Composite Attribute yang ada, pilih salah
 satu atribut kunci sebagai Primary Key.
- 2. Untuk setiap Entitas Lemah, buatlah skema relasi R dengan mengikutsertakan seluruh Simple Attribute. Tambahkan Primary Key dari entitas kuatnya (Owner Entity type) yang akan digunakan sebagai Primary Key bersama-sama Partial Key dari Entitas Lemah.

MAPPING KE SKEMA RELASI (2)

3. Untuk setiap relasi binary **1:1**, tambahkan **Primary Key** dari sisi yang lebih "**ringan**" ke sisi (entitas) yang lebih "**berat**". Suatu sisi dianggap lebih "**berat**" timbangannya apabila mempunyai **partisipasi total**. Tambahkan juga **Simple Attribute** yang terdapat **pada relasi** tersebut ke sisi yang lebih "**berat**".

Apabila kedua partisipasi adalah sama total, maka kedua entitas tersebut boleh digabung menjadi satu skema relasi.

4. Untuk setiap relasi binary 1:N yang tidak melibatkan entitas lemah, tentukan mana sisi yang lebih "berat". Sisi dianggap lebih "berat" timbangannya adalah sisi-N (Many). Tambahkan Primary Key dari sisi yang "ringan" ke skema relasi sisi yang lebih "berat". Tambahkan juga seluruh simple attribute yang terdapat pada relasi biner tersebut.

MAPPING KE SKEMA RELASI (3)

- 5. Untuk setiap relasi binary M:N, buatlah skema relasi baru R dengan atribut seluruh simple attribute yang terdapat pada relasi biner tersebut. Tambahkan primary key yang terdapat pada kedua sisi ke skema relasi R. Kedua Foreign Key yang didapat dari kedua sisi tersebut digabung menjadi satu membentuk Primary Key dari skema relasi R.
- 6. Untuk setiap **Multivalued Attribute**, buatlah skema relasi R yang menyertakan atribut dari multivalue tersebut. Tambahkan **Primary Key** dari relasi yang memiliki multivalued tersebut. Kedua atribut tersebut membentuk **Primary Key** dari skema relasi R.
- 7. Untuk setiap relasi n-ary dengan n>2, buatlah skema relasi R yang menyertakan seluruh **Primary Key** dari entitas yang ikut serta. Sejumlah n **Foreign Key** tersebut akan membentuk **Primary Key** untuk skema relasi R. Tambahkan seluruh Simple Attribute yang terdapat pada relasi n-ary tersebut.

Mapping ke Skema Relasi (4)

Diagram Skema Konsepsual / ER Diagram untuk Database COMPANY

MAPPING KE SKEMA RELASI (5)

EMPLOYEE

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN

DEPARTMENT

DNAME	<u>DNUMBER</u>	MGRSSN	MGRSTARTDATE

DEPT_LOCATIONS

DNUMBER	DLOCATION

PROJECT

PNAME <u>PNUMBER</u>	LOCATION	DNUM
----------------------	----------	------

WORKS ON

ESSN	PNO	HOURS

DEPENDENT

SSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
	_			

Tim Ajar Basis Data JTT

Mapping Skema ER Diagram dengan Referential Integrity Constraint

Contoh Implementasi Data Table

DEPARTMENT

dname	dnumber	mgrssn	mgrstartdate
Headquarters	1	333445555	22-May-78
administration	4	987654321	01-Jan-85
Research	5	888665555	19-Jun-71

DEPARTMENT LOCATION

dnumber	dlocations
1	Houston
4	Stafford
5	Bellaire
5	Houston
5	Sugarland

WORKS ON

essn	pno	hours
123456789	1	32.5
123456789	2	7.5
333445555	10	10
333445555	2	10
333445555	20	10
333445555	3	10
453453453	1	20
453453453	2	20
666884444	3	40
888665555	20	0
987654321	20	15
987654321	30	20
999887777	10	10
999887777	30	30

Contoh Implementasi Data Table

DEPENDENT

essn	dependent_name	sex	bdate	relationship
123456789	Alice	F	31-Dec-78	DAUGHTER
123456789	Elizabeth	F	05-May-57	SPOUSE
123456789	Michael	M	01-Jan-78	SON
333445555	Alice	F	05-Apr-76	DAUGHTER
333445555	Joy	F	03-May-48	SPOUSE
333445555	Theodore	M	25-Oct-73	SON
987654321	abner	M	29-Feb-32	SPOUSE

EMPLOYEE

fname	minit	Iname	ssn	bdate	address	sex	salary	superssn	dno
Ahmad	٧	Jabbar	987987987	29-Mar-59	980 Dallas, Houston, TX	М	25000	987654321	4
Alicia	J	Zelaya	999887777	19-Jul-58	3321 Castle, Spring, TX	F	25000	987654321	4
Franklin	Т	Wong	333445555	08-Dec-45	638 Voss, Houston, TX	М	40000	888665555	5
James	Е	Borg	888665555	10-Nov-27	450 Stone, Houston, TX	М	55000		1
Jennifer	S	Wallace	987654321	20-Jun-31	291 Berry, Bellaire, TX	F	43000	888665555	4
John	В	Smith	123456789	01-Sep-55	731 Fondren, Houston, T	М	30000	333445555	5
Joyce	А	English	453453453	31-Jul-62	5631 Rice, Houston, TX	F	pna	ıme	pnu
Ramesh	K	Narayan	666884444	15-Sep-52	975 Fire Oak, Humble, T	F	Product	X	1

PROJECT

pname	pnumber	plocation	dnum
ProductX	1	Bellaire	5
Computerization	10	Stafford	4
ProductY	2	Sugarland	5
Reorganization	20	Houston	1
ProductZ	3	Houston	5
Newbenefits	30	Stafford	4

THANKYOU

+62 (0341) 404424 – 404425

HTTPS://JTI.POLINEMA.AC.ID/

Terima Kasih

LATIHAN 1

• Buatlah model relasional dari ERD berikut ini:

JAWABAN LATIHAN 1

- STUDENT(<u>studno</u>, givenname, familyname, hons, tutor, tutorroom, slot, year)
- ENROL(<u>studno</u>, <u>courseno</u>, labmark, exammark)
- COURSE(courseno, subject, equip)
- STAFF(<u>lecturer</u>,roomno,appraiser, approom)
- TEACH(courseno, lecturer, lecroom)
- YEAR(year, yeartutor, yeartutorroom)
- SCHOOL(hons, faculty)

LATIHAN 2

JAWABAN LATIHAN 2

Employee(<u>Employee ID</u>, DOB, FN, LN, Salary ID)
EmployeeContact(<u>Employee ID, Contact No</u>)
Company(<u>Company Name</u>, Location, Employee ID, Date of Join)
Project(<u>Project ID</u>, Project Name, Employee ID, Start Date)

Salary(Salary ID , Mode of Payment, Date of Salary), Employee ID)

REFERENSI

- Dwi Puspitasari, S.Kom, "Buku Ajar Dasar Basis Data", Program Studi Manajemen Informatika Politeknik Negeri Malang, 2012.
- indrajani. Pengantar Sistem Basis Data Case Study All in One. Elex Media Komputindo. 2014
- Fathansyah, "Basisdata Revisi Kedua", Bandung: Informatika, 2015.
- http://www.dcs.warwick.ac.uk/~hugh/TTM/The-Relational-Model.pdf
- http://infolab.stanford.edu/~ullman/focs/ch08.pdf
- http://www.inf.unibz.it/~nutt/IDBs1011/IDBSlides/5-db-erToRel.pdflnf
- http://teknikinformatika.fasilkom.mercubuana.ac.id/wp-content/uploads/2015/03/3.-Modul-3-Model-Data-Relasional.pdf

THANKYOU!

+62 (0341) 404424 – 404425

HTTPS://JTI.POLINEMA.AC.ID/