Chap-6 P(K) = (h) pK (1-p)n-K t[s]=pp Var(s)= np(1-p) occurence of a cuccess # of trials T upto the first success P=(t)=(1-p+-1p t=1,2,... $E[T] = 1 \quad \text{vour}(T) = 1 - p$ $p \quad 0 = 1$ P(T-n=t | T>n) = (1-p)-1 p = P(T=t) P(Priority) » P Courditions for Bernouilli. -> fixed prob. -> independent every where -> all events are indepent Properties of Bernoulli -> Mermorejlers > Fresh Steert -> Independence

Scanned by CamScanner

Scanned by CamScanner

and	
	2 (2T) L V= 0,1
-	P(V C) = 6-20 (20)
	$P(K, C) = \frac{e^{-\lambda c}(\lambda C)^{k}}{k!}$ $V = 0, 1$
k	E[Nt]=At var(NT)=
	e [IVE]
	O-laux PDF.
	Erlange PDF.
	fy(4) = 2 xyk-1 e-ry f(t) = 1e-rt t>0
	$f_{y}(y)^{2}$ $(k-1)$
	(L-C)
	vec(1) - 22
	when k=1 12 =p.
	Poisson Bernoulli
	Time of Arrival Continuous Déscrete
	PMF of # of Arrivals Poisson Binomas
- W. T.	Interanival Time CDF Exponential Geometric
	Anoual Rate
	" Will will
1	10 courance Poisson? Bernouilli
_	n-Daurence Poiscon at Binomial n
	Puteraminal Time T. Exponential Geometricax
	4n 2kyk-1e-ay (t-1) pk (-P)
	(K-1) parcol
	Cilary.
	VI V

