Vega Behavior

Pedro Giraldi

Vega

Call, Put

$$\nu = \frac{dC}{d\sigma} = \frac{dP}{d\sigma} = \frac{d\Delta}{dS_0} = S_0 n(d_1) \sqrt{T}$$

Volatility is more impactful on at the money option prices

Gamma and Vega Relationship

Given
$$\nu=S_0n(d_1)\sqrt{T}$$
 and $\Gamma=\frac{n(d_1)}{S_0\sigma\sqrt{T}}$ then
$$\nu=\frac{\Gamma}{{S_0}^2\sigma T}$$

Which shows that gamma and vega are inversely related in respect to time. What about volatility?

Gamma and Vega diverge in relation to time

Vega decays as time passes

call vega for r = 10.0%, vol = 30.0%

vanna =
$$\frac{d \ vega}{dS_0} = \frac{d \ delta}{d\sigma} = \frac{d^2C}{dS_0 d\sigma} = \frac{d^2P}{dS_0 d\sigma}$$

$$vanna = -n(d1) * \frac{d2}{\sigma}$$

0.8

- 0.6

call vomma for r = 10.0%, vol = 30.0%

$$vomma = \frac{d\ vega}{d\sigma} = \frac{d^2C}{d\sigma^2} = \frac{d^2P}{d\sigma^2}$$

$$vomma = vega * d1 * d2 * \frac{1}{\sigma}$$