50008 - Probability and Statistics - Lecture $7\,$

Oliver Killane

07/03/22

Hypothesis Testing

Lecture Recording

Lecture recording is available here

Definition: Hypothesis Test

Given two samples, determine if the difference is significant enough to suggest the parameters are different.

- Null Hypothesis No statistical relation, there is no evidence for a claim. (H_0)
- Alternative Hypothesis There is a statistical relation. (H_1)

We can partition the parameter space Θ into two disjoint sets Θ_0 and Θ_1 for the null and alternative hypotheses, which can be expressed as:

$$H_0: \theta \in \Theta_0 \text{ and } H_1: \theta \in \Theta_1$$

(We are testing if based on a given sample, based onm the estimated parameter, if it is plausible the sample distribution is from another distribution)

- Simple Hypothesis Test that $\theta = \theta_0$
- Composite Hypothesis Test that $\theta > \theta_0$ or $\theta < \theta_0$

Typically a test is of the form:

$$H_0: \theta = \theta_0 \text{ versus } H_1: \theta \neq \theta_0$$

Some tests are one-sided, for example:

$$H_0: \theta > \theta_0 \text{ versus } H_1: \theta < \theta_0$$

To test the validity of H_0 :

- 1. Choose a **test statistic** $T(\underline{X})$ to use on the data.
- 2. Find a distribution P_T under H_0 from the **test statistic**.
- 3. Determine the rejection region (the region in which a result would invalidate H_0).
- 4. Calculate the observed **test statistics** $t(\underline{x})$.
- 5. If $t(\underline{x})$ is in the rejection region, reject H_0 and accept H_1 , else retain H_0 .

The significance level/Type 1 Error Rate $\alpha \in (0,1)$ of as hypothesis test determines the size of the rejection regions.

- $\alpha \to 0$ Less and less likely to reject H_0 , rejection region samller, confidence in our result is lower easier test.
- $\alpha \to 1$ More and more likely to reject H_0 , rejection region larger, confidence higher-stricter test.

The **p-value** of a test is the significance level threshold between rejection/acceptance of H_0 for a given test.

Definition: Test Errors

- Type 1 Reject H_0 when it is actually true. $\alpha = P(T \in R|H_0)$ (significance is the probability of incorrectly rejecting the null hypothesis)
- Type 2 Accepting H_0 when H_1 is true. $\beta = P(T \notin R|H_1)$ Probability a test statistic is not in the rejecting region, when H_1 is true.

Definition: Test Power

The probability of correctly rejecting the null hypothesis

$$Power = 1 - \beta = 1 - P(T \notin R|H_1) = P(T \in R|H_1)$$

For a given significance level:

$$\alpha = P(T \in R|H_0)$$

A good test statistic T and rejection region R will have a high power, the highest power test under H_1 is called the most powerful.

Example: Drug Effects

Given a control group (placebo) and a test group (given some pharmaceutical), we can test the hypotheis that the drug has an effect on survival rates.

 H_0 : The drug has no effect - survival rates are the same.

 H_1 : The drug has an effect - survival rates are different.

Testing For Population Mean

Lecture Recording

Lecture recording is available here

Sample mean belongs to a normal distribution (Central Limit Theorem):

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

We have our two hypotheses:

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu \neq \mu_0$

We can derive a new distribution in terms of the standard normal:

$$Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$

Hence for significance α (or confidence interval $1-\alpha$) we can get the rejection/acceptance regions.

 $\Phi(1-\alpha) = threshold \quad \text{results in acceptance region: } [-threshold, threshold]$

Hence we can calculate z for a given sample, and then determine if it is in the region, if it is then accept H_0 , else rejected H_0 and accept H_1 .

Example: Weight of Crisp Packets (Known Variance)

A crisp manufacturer sells packets listed as having weight 454g. From a sample size of 50, we get the mean weight of a bag as 451.22g.

Assume the variance of bag weights is 70. Is the observed sample consistent with the claim made by the company at the 5% significance.

$$H_0: \ \mu = 454g$$

$$H_1: \ \mu \neq 454g$$

We have the following information:

$$\overline{x} = 451.22q$$
 $\sigma^2 = 70$ $n = 50$ $\alpha = 0.05$

Hence we can state the hypothesized distribution of the sample mean:

$$\overline{X} \sim N\left(454g, \frac{70}{50}\right)$$

We can get this in terms of the standard normal distribution:

$$Z = \frac{\overline{X} - 454}{\sqrt{35}/5} \sim N(0, 1)$$

At the 5% significance, we have 2.5% are each tail. Hence we get our critical value as z(critical) = 0.975, where 1.96.

Hence the rejection region is:

$$\frac{\overline{X} - 454}{\sqrt{35}/5} < -1.96$$

$$\frac{\overline{X} - 454}{\sqrt{35}/5} > 1.96$$

Hence in order to accept H_0 , \overline{X} must be in the interval:

$$451.6809 < \overline{X} < 456.3191$$

As $\bar{x} = 451.22$ it is in the rejection region, hence at the 95% significance there is sufficient evidence to reject the company's claim.

Example: Weight of Crisp Packets (UnKnown Variance)

crisp manufacturer sells packets listed as having weight 454g. From a sample size of 50, we get the mean weight of a bag as 451.22g.

Assume the variance of bag weights is 70. Is the observed sample consistent with the claim made by the company at the 5% significance.

$$H_0: \mu = 454g$$

$$H_1: \mu \neq 454g$$

We have the following information:

$$\overline{x} = 451.22g$$
 $n = 50$ $\alpha = 0.05$

We first calculate the bias corrected sample variance:

$$s_{n-1} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

 $=\sqrt{70.502}$ (Need to calculate from each observation in the sample)

Hence we can now use the **student's t distribution** with degrees of freedom n-1=49.

$$\frac{\overline{x} - \mu_0}{s_{n-1}/\sqrt{n}} \sim t_{49}$$

For $\alpha = 5\%$ we take the tails as 0.025, so use $t_{49, 0.975} \approx 2.01$. Hence will reject the regions:

$$\frac{\overline{X} - 454}{\sqrt{70.502}/5\sqrt{2}} < -2.01$$

$$\frac{\overline{X} - 454}{\sqrt{70.502}/5\sqrt{2}} > 2.01$$

Hence to accept H_0 , \overline{X} must be:

$$451.6123 < \overline{x} < 456.3868$$

Hence at the 5% significance there is sufficient evidence to reject H_0 and accept H_1 .

Example: Optimising Code

The previous code had a mean run time of 6s. Following an optimisation a sample of runs is taken, with sample of size 16, mean 5.8s and bias corrected sample standard deviation of 1.2s. Is the new code faster?

Our test is as follows:

 $H_0: \mu \ge 6s$ (mean time is same or larger) versus $H_1: \mu < 6s$ (mean time is lower)

We have the following information:

$$\overline{x} = 5.8$$
 $s_{n-1} = 1.2s$ $n = 16$

Hence we have the distribution:

$$\frac{\overline{X} - \mu}{s_{n-1}/\sqrt{n}} \sim t_{15}$$

Hence we can use the significance (one ended/top tail) of 5% to find $t_{15,0.95} \approx 1.75$.

Hence will reject the regions:

$$\frac{\overline{X} - 6}{\frac{1.2}{4}} < -1.75$$

$$\frac{\overline{X} - 6}{\frac{1.2}{4}} > 1.75$$

Hence to accept H_0 , \overline{X} must be:

$$5.475 < \overline{X} < 6.525$$

Hence as $\overline{x} = 5.8$ this is within the acceptable region, so at the 95% significance we have insufficient evidence to reject H_0 .

Samples from Two Populations

Lecture Recording

Lecture recording is available here

When given two random samples:

$$\underline{X} = (X_1, \dots, X_n)$$
 from P_X and $\underline{Y} = (Y_1, \dots, Y_n)$ from P_Y

We may want to determine the similarity of the distributions of P_X and P_Y .

Typically this involves testing to see if the means of the populations are equal:

$$H_0: \mu_X = \mu_Y$$
 versus $H_1: \mu_X \neq \mu_Y$

Definition: Paired Data

A special case when \underline{X} and \underline{Y} are pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$ (each X_i and Y_i are possibly dependent on each-other).

For example, where for a person i, X_i is the heart rate before exercise, and Y_i the rate afterwards.

We can consider a sample of the differences, if this has mean 0:

$$Z_i = X_i - Y_i$$
 testing H_0 : $\mu_Z = 0$ versus H_1 : $\mu_Z \neq 0$

Known Variance, X and Y are Independent

Given that:

$$\underline{X} = (X_1, \dots, X_{n_1}) \quad X_i \sim N(\mu_X, \sigma_X^2) \quad \overline{X} \sim N\left(\mu_X, \frac{\sigma_X^2}{n_1}\right)$$

$$\underline{Y} = (Y_1, \dots, Y_{n_2}) \quad Y_i \sim N(\mu_Y, \sigma_Y^2) \quad \overline{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n_2}\right)$$

We can therefore get the distribution of the difference in sample means:

$$\overline{X} - \overline{Y} \sim N\left(\mu_X - \mu_Y, \frac{\sigma_X^2}{n_1} + \frac{\sigma_Y^2}{n_2}\right)$$

And hence:

$$\frac{(\overline{X} - \overline{Y}) - (\mu_x - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n_1} + \frac{\sigma_Y^2}{n_2}}} \sim N(0, 1)$$

As we assume for H_0 that $\mu_x = \mu_Y$ we have:

$$\frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_X^2}{n_1} + \frac{\sigma_Y^2}{n_2}}} \sim N(0, 1)$$

So we can calculate the **test statistic**:

$$z = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_X^2}{n_1} + \frac{\sigma_Y^2}{n_2}}}$$

And use this to determine if H_0 is rejected.

Unknown Variance, X and Y are Independent, Variances Equal

Lecture Recording

Lecture recording is available here

Definition: Bias-Corrected Pooled Sample Variance

If the variance of two samples is the same, given:

$$\underline{X} = (X_1, \dots, X_{n_1})$$
 and $\underline{Y} = (Y_1, \dots, Y_{n_2})$

We can get an unbiased estimator of the variance as:

$$S_{N_1+n_2-2}^2 \frac{(n_1-1)S_{n_1-1, X}^2 + (n_2-1)S_{n_2-1, Y}^2}{(n_1-1) + (n_2-1)}$$

Which is equivalent to:

$$S_{n_1+n_2-2}^2 = \frac{\sum_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2}{n_1 + n_2 - 2}$$

If σ_X^2 and σ_Y^2 are unknown, but it is know that $\sigma^2 = \sigma_X^2 = \sigma_Y^2$ we can use an estimator to get an estimate of the variance σ^2 using the samples from the two populations.

$$\frac{(\overline{X} - \overline{Y}) - (\mu_x - \mu_Y)}{\sigma \sqrt{1/n_1 + 1/n_2}} \sim N(0, 1)$$

Hence if the H_0 : $\mu_X = \mu_Y$ then:

$$\frac{\overline{X} - \overline{Y}}{\sigma \sqrt{1/n_1 + 1/n_2}} \sim N(0, 1)$$

To get an estimate for the variance we can use the Bias-Corrected Pooled Sample Variance

Example: Compiler Comparison

Given two compilers, attempt to determine if compiler 2 produces is faster code (to 5% significance).

$$\begin{array}{lll} \textbf{Compiler 1} & \textbf{Compiler 2} \\ n_1 = 15 & n_2 = 15 \\ \overline{x} = 114s & \overline{y} = 94s \\ s_{14}^2 = 310 & s_{14}^2 = 290 \\ \mu_1 & \mu_2 \\ \end{array}$$

$$H_0: \mu_1 \le \mu_2 \text{ versus } H_1: \mu_1 > \mu_2$$

We assume that the variances of the population variances are the same for both compilers.

We can get the Bias-Corrected Pooled Sample Variance:

$$S_{28} = \frac{14 \times 310 + 14 \times 290}{14 + 14} = 300$$

Hence our **test statistic** is:

$$\frac{\overline{x} - \overline{y}}{\sigma \sqrt{1/n_1 + 1/n_2}} = \frac{20}{\sqrt{300} \sqrt{\frac{2}{15}}} = \sqrt{10} \approx 3.162$$

We can now use the **student's t distribution** to get the rejection region (one-sided):

$$t_{28.0.95} = 1.701$$

Hence as 3.162 > 1.701 we have sufficient evidence at the 5% significance to reject H_0 and accept H_1 . The second compiler produces faster code.

Welch's t-test

If the variances are unknwon, and not equal, we can use Welch's t test.

The **test statistic** is:

$$\frac{(\overline{x} - \overline{y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{S_{n_1,X}^2}{n_1} + \frac{S_{n_1,Y}^2}{n_1}}}$$

We then use a t distribution t_{ν} with the ν degrees of freedom determined by rounding the following to the nearest whole number:

$$\nu = \frac{\left(\left(\frac{S_{n_1,\ X}^2}{n_1}\right) + \left(\frac{S_{n_1,\ X}^2}{n_1}\right)\right)^2}{\left(\frac{1}{n_1-1}\right)\left(\frac{S_{n_1,\ X}^2}{n_1}\right)^2 + \left(\frac{1}{n_2-1}\right)\left(\frac{S_{n_2,\ Y}^2}{n_2}\right)^2}$$

The we proceed as normal, checking the test statistic is within the rejection regions.