Computer Science 112 Data Structures

Lecture 08:

Stacks

Queues

Review: ArrayLists

- Partially full arrays
 - Make array "big enough"
 - keep a variable numInUse: number of elements actually in use
 - if numInUse == array.size, we are out of room
 - allocate a longer array and copy shorter => longer
- operations on ArrayLists
 - constructor, add, add at index, get, set, remove
 - see DriveAL.java on Sakai

Amortized big-O

- Increasing numInUse when space is available is very cheap
- Increasing capacity costs more as n gets larger
 - but we do it increasingly rarely
- Average total work to increase size step by step to n is O(n)

Review: Stacks

- Motivation: Last In First Out
- Metaphor: stack of trays in cafeteria
- Operations
- Example use: match parens
- Implementations:
 - ArrayList
 - Array
 - Linked List
- Big-Os

Stacks

• Last in first out:

New: Implementing Stacks

- Stacks can be implemented using
 - Arrays / ArrayLists
 - Linked lists
- Arrays:
 - Array holds data, also need int "top of stack"

Implementing Stacks

• Empty stack: top == -1

• Full stack: top == array size -1

\mathbf{Z}	3 Z	
a	2 <u>a</u>	
b	$\begin{vmatrix} 1 \\ b \end{vmatrix}$	
c	0 c	3

See ALStack.java

Stacks as linked lists

Front of list is top of stack

Stacks as linked lists

- Only operation that is not fast is size
- So we also have a field to keep track of size

See Stack.java

Queues

First in first out: Queue

Operations

- Queue<T>
 - public void enqueue(T data)
 - public T dequeue()
 - public boolean isEmpty()
 - public int size()
 - public void clear()

Implementing Queues

- Queues need to be accessed at both ends, so implementations are a bit messier
 - Arrays: need two ints to keep track of both front and back
 - linked lists: use circular lists or have two pointers

Queues as arrays

Keep track of both front & rear

13

Queues as arrays

- Problem: how to reuse space emptied by dequeue?
 - Could move data down: O(n)

- Treat array as circular

front =
$$(front + 1)$$
 % size

Queues as linked lists

- Problem: Need to access both ends
- Solution: Linked list with head/tail pointer or circular linked list
- Which end of the list should be the front of the queue?
 - enqueue is O(1) time whether at head or tail
 - dequeue is O(1) at head but O(n) at tail (Why?)
 - so more efficient when front is head

Sequential Search

Is target value in this linked list / array?

=> Is target the first element? No

Is target the second element? No

• • •

Is target the 35th element? Yes!

Cost

- Operation to count:
 - test if target equals element
- Best case?
- Worst case?
- Average case ... ????

Input Cases

- We group the inputs into cases.
- A case is either
 - A specific inputtarget is 5, array is {4, 6}
 - Or a group of inputs, all with the same cost target is not in the array

Average Cost

- when we say "average cost" we mean a probability-weighted average.
- If all input cases are equally likely, average cost is

$$\frac{\sum_{i} C(i)}{N}$$

- C(i) is the cost of input case i
- N is number of different input cases

Average Cost Equal Probabilities

Suppose 3 possible input cases, with equal probabilities:

Input Case i	Cost C(i)
Target in element 0	1
Target in element 1	2
Target in element 2	3

Average Cost = Total Cost / N
=
$$(1+2+3) / 3 = 2$$

Average Cost Different Probabilities

• If different input cases have different probabilities, average cost is

$$\sum_{i} (C(i) * P(i))$$

- C(i) is the cost of input case i
- P(i) is the probability of input case i

Average Cost Different Probabilities

Suppose 3 possible input cases:

i	Input Case i	Cost C(i)	Probability P(i)
1	target not in array	2	1/2
2	target in element 0	1	1/4
3	target in element 1	2	1/4

Average Cost =
$$C(1)P(1) + C(2)P(2) + C(3)P(3)$$

= $2 * 1/2 + 1 * 1/4 + 2 * 1/4 = 1.75$

Average Cost of Sequential Search

• Target is in the array, equal probability at each position, length n

Average cost =
$$(1 + 2 + ... + n) / n$$

= $(n*(n+1)/2) / n$
= $(n+1) / 2$