Notes concerning "On the Linear Theory of the Land and Sea Breeze" (Rotunno 1983)

Ewan Short

May 5, 2023

1 Paper Misprints

1. Equation (37) should be

$$-\beta \operatorname{Re} \left\{ \mathcal{F}^{-1} \left[\frac{1}{k} e^{-i\operatorname{sgn}(k)k\zeta} \int_{0}^{\zeta} \mathcal{F} \left(\frac{\partial \tilde{Q}}{\partial \xi} \right) \sin k\zeta' d\zeta' + \frac{1}{k} \sin k\zeta \int_{\zeta}^{\infty} \mathcal{F} \left(\frac{\partial \tilde{Q}}{\partial \xi} \right) e^{-i\operatorname{sgn}(k)k\zeta'} d\zeta' \right] \right\}.$$

- 2. \tilde{Q} should have time dependance $e^{-i\left(\tau-\frac{\pi}{2}\right)}=ie^{-i\tau}$ not simply $\sin\tau$.
- 3. The expression $\tilde{b} = bh^{-1}\omega^{-3}$ in equation (13) should actually be $\tilde{b} = bh^{-1}\omega^{-2}$ to make the units come out right assuming b has units m s⁻².
- 4. Note formula (13) is incorrect for \tilde{w} . Note that

$$\tilde{w} = -\frac{\partial \tilde{\psi}}{\partial \xi} = -\frac{\partial \psi}{\partial \xi} h^{-2} \omega^{-1} = -\frac{\partial \psi}{\partial x} \frac{\partial x}{\partial \xi} h^{-2} \omega^{-1} = w N (f^2 - \omega^2)^{-\frac{1}{2}} h^{-1} \omega^{-1}$$
(1)

and so

$$w = \tilde{w}h\omega(f^2 - \omega^2)^{\frac{1}{2}}N^{-1}$$
 (2)

2 Mid-Latitude Case

We begin with equation (14)

$$\frac{\partial^2 \tilde{\psi}}{\partial \xi^2} + \frac{\partial^2 \tilde{\psi}}{\partial \zeta^2} = -\beta \frac{\partial \tilde{Q}}{\partial \xi}.$$

Following Duffy (2001), consider the "free-space" Green's function defined by

$$\frac{\partial^2 g}{\partial \xi^2} + \frac{\partial^2 g}{\partial \zeta^2} = \delta(\xi - \xi')\delta(\zeta - \zeta')$$

where ξ, ζ can vary over all of \mathbb{R} . Integrating over a circle C centred at ξ', ζ' with radius a, where $r = \sqrt{(\xi - \xi')^2 + (\zeta - \zeta')^2}$ is the distance from (ξ', ζ')

$$\Rightarrow \iint_{C} \nabla \cdot \nabla g dV = 1$$

$$\Rightarrow \int_{\partial C} \frac{\partial g}{\partial r} = 1.$$

If there are no boundaries, then the response of g to singular forcing at (ξ', ζ') is unnaffected by rotation, and is therefore constant on ∂C . Thus

$$\Rightarrow 2\pi a \left. \frac{\partial g}{\partial r} \right|_a = 1.$$

Because a was arbitrary we have therefore have

$$\Rightarrow \frac{\partial g}{\partial r} = \frac{1}{2\pi r}$$

$$\Rightarrow g = \frac{\ln(r)}{2\pi} + c = \frac{1}{4\pi} \ln\left(\left(\xi - \xi'\right)^2 + \left(\zeta - \zeta'\right)^2\right) + c.$$

Can assume without loss of generality that c=0, because $c\neq 0$ simply adds a constant to $\tilde{\psi}$, and we only care about the ξ and ζ derivatives of $\tilde{\psi}$. Furthermore, because g represents a fundamental solution for $\tilde{\psi}$ we have $-\frac{\partial g}{\partial \xi} = \tilde{w} = 0$. Using the method of images, we can obtain a solution satisfying this condition from the free space solution by noting that when $\zeta = 0$,

$$\frac{1}{4\pi} \frac{1}{(\xi - \xi')^2 + (\zeta - \zeta')^2} 2(\xi - \xi') - \frac{1}{4\pi} \frac{1}{(\xi - \xi')^2 + (-\zeta - \zeta')^2} 2(\xi - \xi') = 0.$$

This suggests taking

$$g = \frac{1}{4\pi} \ln \left((\xi - \xi')^2 + (\zeta - \zeta')^2 \right) - \frac{1}{4\pi} \ln \left((\xi - \xi')^2 + (-\zeta - \zeta')^2 \right)$$
$$= \frac{1}{4\pi} \ln \left(\frac{(\xi - \xi')^2 + (\zeta - \zeta')^2}{(\xi - \xi')^2 + (\zeta + \zeta')^2} \right).$$

The properties of Green's function's then give the solution given by equation (20) of Rotunno (1983). Note that when calculating the convolution we integrate over the actual domain of $\tilde{\psi}$, i.e. $-\infty < \xi' < \infty$ and $\zeta' \geq 0$, not over free-space, i.e. \mathbb{R}^2 . This is because we are only putting real sources in the actual domain.

3 Tropical Case

3.1 Deriving Equation (37)

Equation (36) gives

$$\frac{\partial^2 \tilde{\psi}}{\partial \xi^2} - \frac{\partial^2 \tilde{\psi}}{\partial \zeta^2} = -\beta \frac{\partial \tilde{Q}}{\partial \xi}.$$

Take Fourier transform to get

$$-k^{2}\widehat{\tilde{\psi}} - \frac{\partial^{2}\widehat{\tilde{\psi}}}{\partial \zeta^{2}} = -\beta \frac{\partial \widehat{\tilde{Q}}}{\partial \xi}$$
$$= k^{2}\widehat{\tilde{\psi}} + \frac{\partial^{2}\widehat{\tilde{\psi}}}{\partial \zeta^{2}} = \beta \frac{\partial \widehat{\tilde{Q}}}{\partial \xi}.$$

Boundary condition becomes $(ik) \hat{\tilde{\psi}}(k,0) = 0$, and so $\hat{\tilde{\psi}}(k,0) = 0$ (using the Fourier transform rule for derivatives.) Solve for Green's Function

$$k^{2}G + G_{\zeta\zeta} = \delta\left(\zeta - \zeta'\right). \tag{3}$$

General solution setting RHS to zero is $G = B_1 e^{ik\zeta} + B_2 e^{-ik\zeta}$. For $\zeta < \zeta'$ the boundary condition gives

$$0 = B_1 + B_2 \Rightarrow B_2 = -B_1$$
$$\Rightarrow G = B_1 2i \sin(k\zeta) = A \sin(k\zeta).$$

Now consider $\zeta > \zeta'$. For k > 0 we have

$$Ge^{-i(\tau - \frac{\pi}{2})} = B_1 e^{ik\zeta - i\tau + i\frac{\pi}{2}} + B_2 e^{-ik\zeta - i\tau + i\frac{\pi}{2}}$$
$$= B_1 e^{i(k\zeta - \tau + \frac{\pi}{2})} + B_2 e^{-i(k\zeta + \tau - \frac{\pi}{2})}.$$

Recall for gravity waves, energy propagates with the group velocity in the *opposite* direction to the phase velocity. As $\zeta > \zeta'$ we require positive group velocity, and therefore negative phase velocity. Thus $B_1 = 0$ and $G = B_2 e^{-ik\zeta}$. Similarly for k < 0 we have $G = B_1 e^{ik\zeta}$. Thus $G = B e^{-i\operatorname{sgn}(k)k\zeta}$.

Now, continuity requires that

$$\lim_{\zeta \to \zeta'^{+}} G = \lim_{\zeta \to \zeta'^{-}} G$$

$$\lim_{\zeta \to \zeta'^{+}} G_{\zeta} - \lim_{\zeta \to \zeta'^{-}} G_{\zeta} = 1$$

where the second condition follows from integrating (3) from $\zeta' - \epsilon$ to $\zeta' + \epsilon$ and taking the limit as $\epsilon \to 0$, noting that G is continuous at ζ' so the k^2G integral goes to zero in the limit. Thus

$$Be^{-i\operatorname{sgn}(k)k\zeta'} = A\sin(k\zeta')$$
$$-i\operatorname{sgn}(k)kBe^{-i\operatorname{sgn}(k)k\zeta'} - Ak\cos(k\zeta') = 1$$
$$\Rightarrow i\operatorname{sgn}(k)kA\sin(k\zeta') + Ak\cos(k\zeta') = -1.$$

Now, k > 0

$$\Rightarrow ikA\sin(k\zeta') + Ak\cos(k\zeta') = Ake^{ik\zeta'} = -1$$
$$\Rightarrow A = -\frac{1}{k}e^{-ik\zeta'}.$$

Also, k < 0

$$\Rightarrow -ikA\sin(k\zeta') + Ak\cos(k\zeta') = Ake^{-ik\zeta'} = -1$$
$$\Rightarrow A = -\frac{1}{k}e^{ik\zeta'}.$$

Thus in both cases $A = -\frac{1}{k}e^{-\operatorname{sgn}(k)k\zeta'}$. Thus $B = -\sin(k\zeta')$, and so

$$G = \begin{cases} -\frac{1}{k}e^{-i\operatorname{sgn}(k)k\zeta'}\sin(k\zeta), & \zeta < \zeta', \\ -\frac{1}{k}\sin(k\zeta')e^{-i\operatorname{sgn}(k)k\zeta}, & \zeta > \zeta'. \end{cases}$$

3.2 Working Through Fourier Transform

We are attempting to derive the equation

$$\tilde{\psi}(\xi,\zeta,\tau) = -\beta \tilde{A} \int_0^\infty \frac{\cos k\xi e^{-\xi_0 k}}{1+k^2} \left(\sin(k\zeta+\tau) - e^{-\zeta}\sin\tau\right) dk. \tag{4}$$

Note

$$\tilde{Q} = \beta \tilde{A} \left(\frac{\pi}{2} + \tan^{-1} \frac{\xi}{\xi_0} \right) e^{-\zeta} i e^{-i\tau} \tag{5}$$

$$\Rightarrow \frac{\partial \tilde{Q}}{\partial \xi} = \frac{1}{\xi^2 + \xi_0^2} \beta \tilde{A} \xi_0 e^{-\zeta} i e^{-i\tau}$$
(6)

$$\Rightarrow \mathcal{F}\left(\frac{\partial \tilde{Q}}{\partial \xi}\right) = \mathcal{F}\left[\frac{1}{\xi^2 + \xi_0^2}\right] \tilde{A}\xi_0 e^{-\zeta} i e^{-i\tau} \tag{7}$$

$$\Rightarrow \mathcal{F}\left(\frac{\partial \tilde{Q}}{\partial \xi}\right) = \frac{\pi}{\xi_0} e^{-\xi_0|k|} \tilde{A}\xi_0 e^{-\zeta} e^{-i\tau} = \pi e^{-\xi_0|k|} \tilde{A} e^{-\zeta} i e^{-i\tau}$$
(8)

using the non-unitary, angular frequency form of the Fourier transform. This Fourier transform can be derived by considering the Fourier transform of $\frac{\pi}{\xi_0}e^{-\xi_0|\xi|}$, applying the inverse Fourier transform, and changing signs.

Now, starting from the corrected form of equation 37 we have,

$$-\beta \mathcal{F}^{-1} \left[\frac{1}{k} e^{-i\operatorname{sgn}(k)k\zeta} \int_0^{\zeta} \mathcal{F} \left(\frac{\partial \tilde{Q}}{\partial \xi} \right) \sin k\zeta' d\zeta' + \frac{1}{k} \sin k\zeta \int_{\zeta}^{\infty} \mathcal{F} \left(\frac{\partial \tilde{Q}}{\partial \xi} \right) e^{-i\operatorname{sgn}(k)k\zeta'} d\zeta' \right]$$
(9)

$$= -\frac{\beta}{2}\tilde{A}ie^{-i\tau} \int_{-\infty}^{0} e^{ik\xi} \left[\frac{1}{k} e^{ik\zeta} \int_{0}^{\zeta} e^{\xi_0 k} e^{-\zeta} \sin k\zeta' d\zeta' + \frac{1}{k} \sin k\zeta \int_{\zeta}^{\infty} e^{\xi_0 k} e^{-\zeta} e^{ik\zeta'} d\zeta' \right] dk \tag{10}$$

$$-\frac{\beta}{2}\tilde{A}ie^{-i\tau}\int_0^\infty e^{ik\xi} \left[\frac{1}{k} e^{-ik\zeta} \int_0^\zeta e^{-\xi_0 k} e^{-\zeta'} \sin k\zeta' d\zeta' + \frac{1}{k} \sin k\zeta \int_\zeta^\infty e^{-\xi_0 k} e^{-\zeta'} e^{-ik\zeta'} d\zeta' \right] dk \tag{11}$$

$$=-\frac{\beta}{2}\tilde{A}ie^{-i\tau}\int_{0}^{\infty}e^{-ik\xi}\left[\frac{1}{k}e^{-ik\zeta}\int_{0}^{\zeta}e^{-\xi_{0}k}e^{-\zeta'}\sin k\zeta'd\zeta'+\frac{1}{k}\sin k\zeta\int_{\zeta}^{\infty}e^{-\xi_{0}k}e^{-\zeta'}e^{-ik\zeta'}d\zeta'\right]dk \quad (12)$$

$$-\frac{\beta}{2}\tilde{A}ie^{-i\tau}\int_0^\infty e^{ik\xi} \left[\frac{1}{k}e^{-ik\zeta}\int_0^\zeta e^{-\xi_0 k}e^{-\zeta'}\sin k\zeta' d\zeta' + \frac{1}{k}\sin k\zeta\int_\zeta^\infty e^{-\xi_0 k}e^{-\zeta'}e^{-ik\zeta'} d\zeta' \right] dk \tag{13}$$

$$= -\beta i e^{-i\tau} \tilde{A} \int_0^\infty \cos(k\xi) e^{-\xi_0 k} \left[\frac{1}{k} e^{-ik\zeta} \int_0^\zeta e^{-\zeta'} \sin k\zeta' d\zeta' + \frac{1}{k} \sin k\zeta \int_\zeta^\infty e^{-\zeta'} e^{-ik\zeta'} d\zeta' \right] dk$$
 (14)

$$= -\beta \int_0^\infty \cos(k\xi) \left[e^{-ik\zeta} \int_0^\zeta \left(\frac{\partial \tilde{Q}}{\partial \xi} \right) \sin k\zeta' d\zeta' + \sin k\zeta \int_\zeta^\infty \left(\frac{\partial \tilde{Q}}{\partial \xi} \right) e^{-ik\zeta'} d\zeta' \right] \frac{dk}{k}. \tag{15}$$

Note (15) matches what's in Rotunno's notes. Before integrating ζ' , note that

$$\frac{\partial}{\partial \zeta'} \left(-\frac{e^{-\zeta'} \left(\sin(k\zeta') + k \cos(k\zeta') \right)}{k^2 + 1} \right) = \sin(k\zeta') e^{-\zeta'} \tag{16}$$

From (14) we have

$$\begin{split} &-\beta i e^{-i\tau} \tilde{A} \int_0^\infty \cos\left(k\xi\right) e^{-\xi_0 k} \left[\frac{1}{k} e^{-ik\zeta} \int_0^\zeta e^{-\zeta'} \sin k\zeta' d\zeta' + \frac{1}{k} \sin k\zeta \int_\zeta^\infty e^{-\zeta'} e^{-ik\zeta'} d\zeta' \right] dk \\ &= -\beta \tilde{A} \int_0^\infty \cos\left(k\xi\right) e^{-\xi_0 k} \left[\frac{1}{k} i e^{-i\tau} e^{-ik\zeta} \left(-\frac{e^{-\zeta} \left(\sin\left(k\zeta\right) + k \cos\left(k\zeta\right)\right)}{k^2 + 1} + \frac{k}{k^2 + 1}\right) \right. \\ &\left. + i e^{-i\tau} \frac{1}{k} \sin k\zeta \left(\frac{1 - ik}{k^2 + 1} e^{(-ik - 1)\zeta}\right)\right] dk \end{split}$$

and the real part of this is therefore

$$= -\beta \tilde{A} \int_0^\infty \cos(k\xi) e^{-\xi_0 k} \frac{1}{k^2 + 1} \left[\sin(\tau + k\zeta) - e^{-\zeta} \sin(\tau) \right].$$

However, note that getting the real part is actually subtle, as we must use $e^{ik\zeta} = \cos(k\zeta) + i\sin(k\zeta)$ from the first and third terms. This leaves us with our two terms.

My attempt at deriving equation (4) - equation (38) in Rotunno's paper - is very messy. It didn't quite work originally as I was using the incorrect version of (37). Now having the correct version, let's see if it works. We have from (9),

$$-\beta \mathcal{F}^{-1} \left[\frac{1}{k} e^{-i\operatorname{sgn}(k)k\zeta} \int_{0}^{\zeta} \left(\pi e^{-\xi_{0}|k|} \tilde{A} e^{-\zeta} i e^{-i\tau} \right) \sin k\zeta' d\zeta' \right]$$
(17)

$$+\frac{1}{k}\sin k\zeta \int_{\zeta}^{\infty} \left(\pi e^{-\xi_0|k|} \tilde{A} e^{-\zeta} i e^{-i\tau}\right) e^{-i\operatorname{sgn}(k)k\zeta'} d\zeta'$$
(18)

$$= -\beta \tilde{A}\pi i e^{-i\tau} \mathcal{F}^{-1} \left[\frac{1}{k} e^{-i\operatorname{sgn}(k)k\zeta} e^{-\xi_0|k|} \int_0^{\zeta} e^{-\zeta'} \sin k\zeta' d\zeta' \right]$$
(19)

$$+\frac{1}{k}\sin k\zeta e^{-\xi_0|k|} \int_{\zeta}^{\infty} e^{-\zeta'} e^{-i\operatorname{sgn}(k)k\zeta'} d\zeta'$$
(20)

$$= -\beta \tilde{A}\pi i e^{-i\tau} \mathcal{F}^{-1} \left\{ \frac{1}{k} e^{-i\operatorname{sgn}(k)k\zeta} e^{-\xi_0|k|} \left[\frac{-e^{-\zeta'}}{k^2 + 1} \left(k\cos k\zeta' + \sin k\zeta' \right) \right]_0^{\zeta} \right\}$$
 (21)

$$-\beta \tilde{A}\pi i e^{-i\tau} \mathcal{F}^{-1} \left\{ \frac{1}{k} \sin k\zeta e^{-\xi_0|k|} \left[\frac{1}{-i\operatorname{sgn}(k)k-1} e^{(-i\operatorname{sgn}(k)k-1)\zeta'} \right]_{\zeta}^{\infty} \right\}, \tag{22}$$

$$= -\beta \tilde{A}\pi i e^{-i\tau} \mathcal{F}^{-1} \left\{ \frac{1}{k} e^{-i\operatorname{sgn}(k)k\zeta} e^{-\xi_0|k|} \left(\frac{-e^{-\zeta}}{k^2 + 1} \left(k\cos k\zeta + \sin k\zeta \right) + \frac{k}{k^2 + 1} \right) \right\}$$
(23)

$$-\beta \tilde{A}\pi i e^{-i\tau} \mathcal{F}^{-1} \left\{ \frac{1}{k} \sin k\zeta e^{-\xi_0|k|} \left[\frac{1}{-i\operatorname{sgn}(k)k-1} e^{(-i\operatorname{sgn}(k)k-1)\zeta'} \right]_{\zeta}^{\infty} \right\}, \tag{24}$$

where the first integral (21) can be calculated by performing integration by parts. Consider the first

term of the sum, i.e. (23). We have

$$-\beta \tilde{A}\pi i e^{-i\tau} \mathcal{F}^{-1} \left\{ \frac{1}{k} e^{-i\operatorname{sgn}(k)k\zeta} e^{-\xi_0|k|} \left(\frac{-e^{-\zeta}}{k^2 + 1} \left(k\cos k\zeta + \sin k\zeta \right) + \frac{k}{k^2 + 1} \right) \right\}$$
 (25)

$$= -\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{k} e^{ik\xi} e^{-i\operatorname{sgn}(k)k\zeta} e^{-\xi_0|k|} \left(\frac{-e^{-\zeta}}{k^2 + 1} \left(k \cos k\zeta + \sin k\zeta \right) + \frac{k}{k^2 + 1} \right) dk \tag{26}$$

$$= -\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_{-\infty}^{0} \frac{1}{k} e^{ik\xi} e^{ik\zeta} e^{\xi_0 k} \left(\frac{-e^{-\zeta}}{k^2 + 1} \left(k \cos k\zeta + \sin k\zeta \right) + \frac{k}{k^2 + 1} \right) dk \tag{27}$$

$$-\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_0^\infty \frac{1}{k} e^{ik\xi} e^{-ik\zeta} e^{-\xi_0 k} \left(\frac{-e^{-\zeta}}{k^2 + 1} \left(k \cos k\zeta + \sin k\zeta \right) + \frac{k}{k^2 + 1} \right) dk \tag{28}$$

$$= -\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_0^\infty \frac{1}{-k} e^{-ik\zeta} e^{-ik\zeta} e^{-\xi_0 k} \left(\frac{-e^{-\zeta}}{k^2 + 1} \left(-k \cos k\zeta - \sin k\zeta \right) - \frac{k}{k^2 + 1} \right) dk \tag{29}$$

$$-\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_0^\infty \frac{1}{k} e^{ik\xi} e^{-ik\zeta} e^{-\xi_0 k} \left(\frac{-e^{-\zeta}}{k^2 + 1} \left(k \cos k\zeta + \sin k\zeta \right) + \frac{k}{k^2 + 1} \right) dk \tag{30}$$

$$= -\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_0^\infty \frac{1}{k} \left(e^{ik\xi} + e^{-ik\xi} \right) e^{-ik\zeta} e^{-\xi_0 k} \left(\frac{-e^{-\zeta}}{k^2 + 1} \left(k \cos k\zeta + \sin k\zeta \right) + \frac{k}{k^2 + 1} \right) dk \tag{31}$$

$$= -\beta \tilde{A} \left(i \cos \tau + \sin \tau \right) \int_0^\infty \frac{1}{k} \cos k \xi e^{-ik\zeta} e^{-\xi_0 k} \frac{1}{k^2 + 1} \left(-e^{-\zeta} \left(k \cos k \zeta + \sin k \zeta \right) + k \right) dk \tag{32}$$

$$= -\beta \tilde{A} \left(i \cos \tau + \sin \tau \right) \int_0^\infty \frac{1}{k} \cos k\xi \left(\cos k\zeta - i \sin k\zeta \right) \tag{33}$$

$$\times e^{-\xi_0 k} \frac{1}{k^2 + 1} \left(-e^{-\zeta} \left(k \cos k \zeta + \sin k \zeta \right) + k \right) dk \tag{34}$$

$$= -\beta \tilde{A} \int_0^\infty \frac{1}{k} \sin k\xi \left(i \cos \tau + \sin \tau \right) \left(\cos k\zeta - i \sin k\zeta \right) \tag{35}$$

$$\times e^{-\xi_0 k} \frac{1}{k^2 + 1} \left(-e^{-\zeta} \left(k \cos k\zeta + \sin k\zeta \right) + k \right) dk \tag{36}$$

$$= -\beta \tilde{A} \int_0^\infty \frac{1}{k} \sin k\xi \left(i \cos \tau \cos k\zeta + \cos \tau \sin k\zeta + \sin \tau \cos k\zeta - i \sin \tau \sin k\zeta \right) \tag{37}$$

$$\times e^{-\xi_0 k} \frac{1}{k^2 + 1} \left(-e^{-\zeta} \left(k \cos k\zeta + \sin k\zeta \right) + k \right) dk \tag{38}$$

The real part of this is then

$$-\beta \tilde{A} \int_0^\infty \frac{1}{k} \sin k\xi \left(\cos \tau \cos k\zeta + \sin \tau \sin k\zeta\right) e^{-\xi_0 k} \frac{1}{k^2 + 1} \left(-e^{-\zeta} \left(k \cos k\zeta + \sin k\zeta\right) + k\right) dk \quad (39)$$

$$= -\beta \tilde{A} \int_0^\infty \frac{1}{k} \sin k\xi \sin \left(\tau + k\zeta\right) e^{-\xi_0 k} \frac{1}{k^2 + 1} \left(-e^{-\zeta} \left(k \cos k\zeta + \sin k\zeta\right) + k\right) dk \tag{40}$$

$$= -\beta \tilde{A} \int_0^\infty \frac{1}{k} \sin k\xi \frac{1}{k^2 + 1} e^{-\xi_0 k}$$
 (41)

$$\times \left(-\sin\left(\tau + k\zeta\right)e^{-\zeta}k\cos k\zeta - \sin\left(\tau + k\zeta\right)e^{-\zeta}\sin k\zeta + k\sin\left(\tau + k\zeta\right)\right)dk. \tag{42}$$

Consider now the second term. We have

$$-\beta \tilde{A}\pi i e^{-i\tau} \mathcal{F}^{-1} \left\{ \frac{1}{k} \sin k\zeta e^{-\xi_0|k|} \left[\frac{1}{-i\operatorname{sgn}(k)k-1} e^{(-i\operatorname{sgn}(k)k-1)\zeta'} \right]_{\zeta}^{\infty} \right\}$$
(43)

$$= -\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_{-\infty}^{0} \frac{1}{k} e^{ik\xi} \left(\sin k\zeta e^{\xi_0 k} \left[\frac{1}{ik - 1} e^{(ik - 1)\zeta'} \right]_{\zeta}^{\infty} \right) dk \tag{44}$$

$$-\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_0^\infty \frac{1}{k} e^{ik\xi} \left(\sin k\zeta e^{-\xi_0 k} \left[\frac{1}{-ik-1} e^{(-ik-1)\zeta'} \right]_{\zeta}^\infty \right) dk \tag{45}$$

$$= -\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_{-\infty}^{0} \frac{1}{k} e^{ik\xi} \left(\sin k\zeta e^{\xi_0 k} \frac{1}{1 - ik} e^{(ik-1)\zeta} \right) dk \tag{46}$$

$$-\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_0^\infty \frac{1}{k} e^{ik\xi} \left(\sin k\zeta e^{-\xi_0 k} \frac{1}{1+ik} e^{(-ik-1)\zeta} \right) dk \tag{47}$$

$$= -\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_0^\infty \frac{1}{-k} e^{-ik\xi} \left(-\sin k\zeta e^{-\xi_0 k} \frac{1}{1+ik} e^{(-ik-1)\zeta} \right) dk \tag{48}$$

$$-\beta \tilde{A} i e^{-i\tau} \frac{1}{2} \int_0^\infty \frac{1}{k} e^{ik\xi} \left(\sin k\zeta e^{-\xi_0 k} \frac{1}{1+ik} e^{(-ik-1)\zeta} \right) dk \tag{49}$$

$$= -\beta \tilde{A} i e^{-i\tau} \int_0^\infty \frac{1}{k} \cos k\xi e^{-\xi_0 k} e^{-ik\zeta} \left(\sin k\zeta \frac{1 - ik}{1 + k^2} e^{-\zeta} \right) dk \tag{50}$$

$$= -\beta \tilde{A} i e^{-i\tau} \int_0^\infty \frac{1}{k} \cos k\xi e^{-\xi_0 k} \left(\cos k\zeta - i\sin k\zeta\right) \left(1 - ik\right) \left(\sin k\zeta \frac{1}{1 + k^2} e^{-\zeta}\right) dk \tag{51}$$

$$= -\beta \tilde{A} \int_0^\infty \frac{1}{k} \cos k\xi e^{-\xi_0 k} \left(\sin k\zeta \frac{1}{1+k^2} e^{-\zeta} \right)$$
 (52)

$$\times (i\cos\tau + \sin\tau)(\cos k\zeta - ik\cos k\zeta - i\sin k\zeta - k\sin k\zeta)dk. \tag{53}$$

The real part of this is then

$$-\beta \tilde{A} \int_0^\infty \frac{1}{k} \sin k\xi e^{-\xi_0 k} \left(\sin k\zeta \frac{1}{1+k^2} e^{-\zeta} \right)$$
 (54)

$$\times (k\cos\tau\cos k\zeta + \cos\tau\sin k\zeta + \sin\tau\cos k\zeta - k\sin\tau\sin k\zeta) dk \tag{55}$$

$$= -\beta \tilde{A} \int_0^\infty \frac{1}{k} \sin k\xi e^{-\xi_0 k} \left(\sin k\zeta \frac{1}{1+k^2} e^{-\zeta} \right)$$
 (56)

$$\times \left(k\cos\left(\tau + k\zeta\right) + \sin\left(\tau + k\zeta\right)\right)dk\tag{57}$$

$$= -\beta \tilde{A} \int_0^\infty \frac{1}{k} \sin k\xi e^{-\xi_0 k} \frac{1}{1+k^2}$$
 (58)

$$\times \left(\sin k\zeta e^{-\zeta}k\cos(\tau+k\zeta) + \sin k\zeta e^{-\zeta}\sin(\tau+k\zeta)\right)dk \tag{59}$$

Summing (42) and (59) gives

$$\tilde{\psi}(\xi,\zeta,\tau) = -\beta \tilde{A} \int_0^\infty \frac{\cos k\xi e^{-\xi_0 k}}{1+k^2} \left(\sin(k\zeta+\tau) - e^{-\zeta}\sin\tau\right) dk \tag{60}$$

as required!

4 Calculating Potential Temperature

From equation (4) Rotunno (1983) we have

$$\frac{\partial b}{\partial t} + N^2 w = Q.$$

The non-dimensional form of this is

$$\frac{\partial \tilde{b}}{\partial \tau} h \omega^3 + N^2 \tilde{w} h \omega = \tilde{Q} h \omega^3$$
$$= \frac{\partial \tilde{b}}{\partial \tau} + \left(\frac{N}{\omega}\right)^2 \tilde{w} = \tilde{Q}.$$

Note that $\left(\frac{N}{\omega}\right)^2$ is essentially the Berger number with H=L. Thus can solve for \tilde{b} using

$$\begin{split} &\frac{\tilde{b}_{k+1} - \tilde{b}_k}{\Delta \tau} = \tilde{Q}_k - \left(\frac{N}{\omega}\right)^2 \tilde{w}_k \\ &= \tilde{b}_{k+1} - \tilde{b}_k = \Delta \tau \left(\tilde{Q}_k - \left(\frac{N}{\omega}\right)^2 \tilde{w}_k\right). \end{split}$$

This produces a linear system of τ_N linearly independent equations in τ_N unknowns. However, in this form the system is singular - so substitute the equation for $\tilde{b_1}$ for $\tilde{b_1} + \tilde{b_{\frac{\tau_n}{2}}} = 0$ to impose symmetry on the bouyancy. Note can use $\tilde{b_1} + \tilde{b}_{\lfloor \frac{\tau_n}{2} \rfloor}!$ This works - we can solve for bouyancy even without initial conditions! From bouyancy can extract potential temperature!

Note that using this method appears to produce potential temperature perturbations that are two large, i.e. ± 40 K, or even larger! Compare this with the WRF simulation of Vincent & Lane (2016) producing perturbations of ± 4 K. Could it be that the WRF data are composites, and that the signal is being diluted? Note that increasing h decreases θ' . Error possibly due to definition of $\bar{\theta}$ in code?

5 Choosing \tilde{A}

Note that from equation (4) we have at the surface

$$\frac{\partial b}{\partial t} = \frac{g}{\theta_0} \frac{\partial \theta'}{\partial t} = Q,$$

as w=0 at the surface. Thus letting θ_M and θ_m denote the land surface temperature maxima and minima respectively, and noting that $\left(\frac{\pi}{2} + \tan^{-1} \frac{x}{x_0}\right)$ maps onto $(0, \pi)$, we have

$$\frac{g}{\theta_0} \frac{\theta_M - \theta_m}{12 \cdot 60 \cdot 60} = \left(\sin\frac{\pi}{2} - \sin\frac{3\pi}{2}\right) A\pi = 2A\pi,$$

with $A\pi$ the supremum of H at the surface, and it taking 12 hours to go from maximum to minimum temperature. Multiplying both sides by $h^{-1}\omega^{-3}$ gives

$$\tilde{A} = \frac{g}{2\pi\theta_0} \frac{\theta_M - \theta_m}{12 \cdot 60 \cdot 60} h^{-1} \omega^{-3}.$$

6 Notes for Boat Seminar

Equations of motion linearised about a hydrostatic, stationary background atmosphere.

$$Acceleration = \frac{Force}{Mass}$$
 (Following a blob of fluid)

References

Duffy, D. (2001), Green's Functions with Applications, Applied Mathematics, CRC Press.

Rotunno, R. (1983), 'On the linear theory of the land and sea breeze', *Journal of the Atmospheric Sciences* **40**(8), 1999–2009.

Vincent, C. L. & Lane, T. P. (2016), 'Evolution of the diurnal precipitation cycle with the passage of a Madden-Julian Oscillation event through the Maritime Continent', *Monthly Weather Review* **144**(5), 1983–2005.