

OUTLINE

- Problem Statement
- Motivation
- Related Work
- Method
- Results
- Conclusion
- References

Problem Statement

Facial Age Estimation:

• Label a face image automatically with the exact age (year) or the age group (year range) of the individual face

Motivation

- 1, Age estimation is the base for human to communicate and understand each other.
- > age determines the level of communication.
- people age determines their preference and habits
- identify biological changes such as skin wrinkles, gray hairs, etc. as age advances.
- 2, Age estimation helps for surveillance
- reduces costs and saves time during investigation
- enable to recognize lost person

Related Work

Reference	Feature extraction	classifier	database	Training/Testing	Performance/MAE
[6]Ni, Bingbing, et al	PCA	multi-instance regression	FG-NET/ MORPH	600 training 402 testing images	9.49/7.42
[2] Li et al. 2015	Boosting Algorithms	Two-layer	FG-NET/ MORPH 55,000 IMAGES	first and second boosting	3.76
[3] Geng et al	PCA	AGES	FG-NET/MOR PH	515 Training/82 testing	6.77
[4]Choi et al.	Global and local feature extraction	hierarchical	FG-NET,BER C AND PAL	LOPO	4.66

Method--Age estimation system

Method--local binary pattern

- Assign a code to each pixel comparing it to its neighbors
- Description of pixels neighbourhood
- Binary short code to describe neighbourhood
- Operates by taking difference of central pixel with neighbouring pixels

$$LBP_{P,R} = \sum_{p=0}^{P-1} s(g_p - g_c) 2^p$$
, where $s(x) = \begin{cases} 1, x \ge 0 \\ 0, x < 0 \end{cases}$

Method--local binary pattern

- As a person is getting older, facial blemishes such as freckles, age spots and fine wrinkles increase on the face skin.
- These micro-structures can be detected efficiently using LBP method.

Method--Data

- FG-NET Aging Database
- – 1002 face images
- 82 subjects
- - Age: 0-69

Method--preprocessing

Step 1: Face detection

• Step 2: Eye/nose detection (pictorial structure model)

Method--preprocessing

- Step 3: Calibration
- Rotation: eyes position (x1,y1),(x2,y2)
- Resizing 140x180

$$\theta = tan^{-1}(\frac{y_1 - y_2}{x_1 - x_2})$$

Method--local region selection

$$\begin{bmatrix} \chi_{rot} \\ y_{rot} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \times \left(\begin{bmatrix} \chi \\ y \end{bmatrix} - \begin{bmatrix} \chi_{cent} \\ y_{cen} \end{bmatrix} \right) + \begin{bmatrix} \chi_{rot.cent} \\ y_{rot.cent} \end{bmatrix}$$

- Region 1: [(xc1 2): (xc1 + 1), (ycn : yc1)]
- Region 2: [(xc2 -1):(xc2 +2),(ycn :yc2)]
- Region 3:[xcn :(ycn :yc1)]

Method--age regression

- Proportional relationship between age and LBP mean histogram
- Lasso regression
- 10 folds cross validation

Results

Feature extraction	Regression model	Validation	MAE
PCA	Multi-instance regression	600/402	9.49
LBP(P=8, r=1)	LASSO Regression	10 fold cross validation	9.23
LBP(P=12, r=3)	LASSO Regression	10 fold cross validation	9.38

Conclusion

- Proposed system using LBP can predict age
- Advantage:
 - easy to implement, computation efficiency,robust to variant images
- Disadvantage: limited pixel information used
- Further improvement can be done by integrating with gabor features

References

- [1] Viola, P. and Jone, M. "Rapid Object Detection using a Boosted Cascade of Simple Features", Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference.
- [2] Hastie, T., Tibshirani, R., and Friedman, J., "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", New York: Springer, 2001
- [3] Li, Y., Peng, Z., Liang, D., Chang, H. and Cai, Z. (2015). Facial age estimation by using stacked feature composition and selection. *The Visual Computer*, 32(12), pp.1525-1536.
- [4], Geng, X., Zhou, Z. and Smith-Miles, K. (2007). Automatic Age Estimation Based on Facial Aging Patterns. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(12), pp.2234-2240.
- [5], Choi, Sung Eun, et al. "Age Estimation Using a Hierarchical Classifier Based on Global and Local Facial Features." Pattern Recognition, vol. 44, no. 6, 2011, pp. 1262–1281., doi:10.1016/j.patcog.2010.12.005.
- [6] X.Tan and B.Triggs. Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions,
 In: Proceedings of the 2007 IEEE International Workshop on Analysis and Modeling of Faces and Gestures (AMFG'07),
 LNCS 4778, pp.168-182, 2007.

Acknowledgement

- Dr. Furst
- Dr. Xiaoyang Tan
- Jonathan DeRuiter
- Arthur Christoph