《大学物理 AI》作业 No.11 电磁感应

班组	&学号		名	成绩	
****	******	**本章教学要	 ·求*****	******	****
、掌握与理解》	去拉第电磁感应定律,特别	间是公式中负号	的意义,会	用它正确判定感应电:	动势的方向;
、熟练应用法	立第电磁感应定律计算回路	各的感应电动势	· ;		
、理解动生电动	力势和感生电动势的概念,	掌动生电动势	和感生电动	势的计算方法。	
 、选择题					
下列说法正确	的是[]				
(A) 磁场为零的	的地方,不会有感生电场;	(B) 感	应电流产生的	的磁场总是与原磁场反	向;
(C) 只要闭合导	异体回路的磁通量不为零,	就会产生感应	电流;		
(D) 沿着感生电	1场的电场线,电势总是降位	氐; (E) 以_	上说法均不正	E确。	
下面几种情况	下,闭合回路里不可能产生	E感应电流的是	[]		
(A) 闭合回	路所处的磁场发生变化	(B) 闭合回路	在匀强磁场中平动	
(C) 在磁场	中闭合回路所包围的面积	发生变化 (Γ)) 闭合回路	在匀强磁场中转动	
将形状完全相同	司的铜环和木环静止放置,	并使通过两环	面的磁通量	随时间的变化率相等,	则不计
自感时[]				
(A) 铜环中	有感应电动势,木环中方	F.感应电动势			
(B) 铜环中	感应电动势大,木环中感应	电动势小			
(C) 铜环中	感应电动势小,木环中感应	电动势大			
(D) 两环中	感应电动势相等				
亚祖工师区亚/		与担己的点次,	, 防东西+ P.S.		I
.,,,,	厅直导线载有大小相等方[5.13.45][,,_ ,, ,		
均匀增加,一9	臣形线圈位于导线平面内	(如图),则:			
(A) 线圈	图中无感应电流	(B) 线	圈中感应电流	E.为顺时针方向	
(C) 线圈	日中感应电流为逆时针方向	J (D) 线	圈中感应电流	流方向不确定	

5. 半径为a 的圆线圈置于磁感强度为 \vec{B} 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R;

当把线圈转动使其法向与 \vec{B} 的夹角 α = 60° 时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是|

- (A) 与线圈面积成正比,与时间无关 (B) 与线圈面积成正比,与时间成正比
- (C) 与线圈面积成反比,与时间成正比 (D) 与线圈面积成反比,与时间无关

二、填空题

1. 如图所示,直角三角形金属框架 abc 放在均匀磁场中,磁场 \vec{B} 平行于 ab 边,bc 的边长为 l 。当金属框架绕 ab 边以匀角速度 ω 转动时,abc 回路中的感应

电动势 ε = _____; a、c 两点的电势差 U_a $-U_c$ = ______。

2. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行。当线圈以相同的速度作如图所示的三种不同方向的平动时,线圈中的感应电流最大的是。

- 4. 在磁感强度为 \vec{B} 的均匀磁场中,以速率 ν 垂直切割磁感应线运动的一长度为 L 的金属杆,相当于一个电源,它的电动势 ϵ = ,产生此电动势的非静电力是 。
- 5. 如图所示,一半径为r 的很小的金属圆环,在初始时刻与一半径为a(a>>r) 的大金属圆环共面且同心。在大圆环中通以恒定的电流I,方向如图,如果小圆环以角速度 ω 绕过O点的竖直轴转动,并设小圆环的电阻为R,则任一时刻t通过小圆环的磁通量 $\Phi_m=$; 小圆环中的感应

6. 一无限长直导体薄板宽度为l,板面与 Z 轴垂直,板的长度方向沿 Y 轴,板的两侧与一个伏特计相接,如图。整个系统放在磁感应强度为 \vec{B} 的均匀磁场中, \vec{B} 的方向沿Z 轴正方向,如果伏特计与导体平板均以速度 \vec{v} 向 Y 轴正方向移动,则伏特计指示的电压值为

三、计算题

1. 如图所示,有一成 θ 角的金属架COD放在磁场中,磁感强度 \bar{B} 的方向垂直于金属架COD所在平面,大小为 $B=Kx\cos\omega t$ 。一导体杆MN垂直于OD边,并在金属架上以恒定速度 \bar{v} 向右滑动, \bar{v} 与MN垂直。设t=0时,x=0。求框架内的感应电动势。

2. 半径为R半圆形刚性导线ab,在均匀磁场中以恒定速度 \vec{v} 移动,已知均匀磁场垂直纸面向外,大小为B,

 \vec{v} 与 \vec{ab} 夹角为45°,求导线上感应电动势 ε 和 a、b两点电势 差 U_{ab} 各为多少?

3.均匀磁场 \vec{B} 被限制在半径 $R=10~{\rm cm}$ 的无限长圆柱空间内,方向垂直纸面向里,取一固定的等腰梯形回路 abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图。设磁场以 $dB/dt=1~{\rm T/s}$ 的匀速率增加,已知 $\theta=\pi/3$, $Oa=Ob=6~{\rm cm}$,求等腰梯形回路中感生电动势的大小和方向。

