

INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

INTRODUCCIÓN A LOS MICROCONTROLADORES

PRACTICA #7 - Servomotor

Integrantes:

- ✓ Lomeli García Martín
- ✓ Pacchiano Alemán Alain
- ✓ Trejo Martínez Francisco

PROFESOR: Pérez Pérez José Juan

GRUPO: 3CM3 08/11/2016

MARCO TEÓRICO

Servomotor

Un servomotor es un tipo de servomecanismo, y un servomecanismo es un dispositivo que tiene un sistema de corrección con retroalimentación para el control de un parámetro específico.

Los servomotores son dispositivos electromecánicos que consisten en un motor eléctrico, un juego de engranes y una tarjeta de control, todo confinado dentro de una carcasa de plástico. La característica principal de estos motores es que la gran mayoría no están hechos para dar rotaciones continuas -algunos sí lo hacen pero se hablarán de ellos más adelante- ya que principalmente son dispositivos de posicionamiento en un intervalo de operación. En esta ocasión se tratará exclusivamente de servomotores para modelismo, excluyendo los servomotores industriales.

Los servomotores funcionan por medio de modulación de ancho de pulso -pulse-width modulation (PWM)- Para los servos para modelismo, la frecuencia usada para mandar la secuencia de pulsos al servomotor es de 50 Hz -esto significa que cada ciclo dura 20 ms- Las duraciones de cada pulso se interpretan como comandos de posicionamiento del motor, mientras que los espacios entre cada pulso son despreciados. En la mayoría de los servomotores los anchos de pulso son de 1 ms a 2 ms, que cuando son aplicados al servomotor generan un desplazamiento de -90° a +90° por lo que, de una manera más sencilla, el ángulo de giro está determinado por el ancho de pulso; si el ancho de pulso fuera de 1.5 ms, el motor se posicionará en la parte central del rango – a 0°-

Código fuente del programa

Esta práctica consistió en la aplicación y uso de un servomotor, en el cual mediante interrupciones podíamos enfocar un ángulo en específico pero a la vez el servo giraría solo de cero a ciento ochenta grados.

La interrupciones nos en el mostrarían el servo y en un display de 7 segmentos, los tres tipos de movimientos disponibles, de 0°,90° y 180°.

A continuación se muestra el código implementado para este programa.

.include"m8535def.INC"	OUT SPH,D
.def led0=R16 .def led1=R15 .def led2=R14 .def led3=R13 .def led4=R12 .def led5=R11 .def D=R18 .def D2=R19	LDI D,\$0A OUT MCUCR,D LDI D,\$E0 OUT GICR,D SEI LDI D,3 OUT TCCR0,D
.def COL=R20 .def OPERACION=R21	LDI D,3 OUT TCCR1B,D LDI D,\$C2
rjmp main rjmp G_0 rjmp G_45 .ORG \$008 rjmp segundos rjmp barre .ORG \$012 rjmp G_90	OUT TCNT1H,D LDI D,\$F7 OUT TCNT1L,D LDI D,5 OUT TIMSK,D CLR ZH LDI ZL, 17 LDI COL, \$40
main: CLR OPERACION SER D OUT DDRC,D OUT DDRA,D OUT PORTD,D OUT PORTB,D LDI D,1 OUT DDRB,D	barre: LDI D2, 162 OUT TCNT0, D2 OUT PORTC, ZH LSR COL BRCS DOS DEC ZL RETI
LDI D,LOW(RAMEND) OUT SPL,D LDI D,HIGH(RAMEND)	F_0: ;servomotor LDI D,5

OUT PORTB,D	LDI R22, 241
LDI R23, 2	L31:
LDI R22, 70 L01:	DEC R22
DEC R22	BRNE L31
BRNE L01	DEC R23
DEC R23	BRNE L31
BRNE L01	LDI D,4
LDI D,4	OUT PORTB,D
OUT PORTB,D	LDI D,\$00 ;
LDI D,\$00 ;	MOV led0,D ;
MOV led0,D ;	MOV led1,D ;
MOV led5,D;	MOV led5,D
LDI D,\$3F ;- O	MOV led4,D;
MOV led1,D	LDI D,\$3F; 0
rjmp CMP_OP1	MOV led2,D
□ 1.	LDI D,\$6F ; 9 MOV led3,D
F_1: LDI D,5	rimp REGRESA
OUT PORTB,D	IJIIIP NEONEOA
LDI R23, 1	DOS:
INC R23	LDI COL, \$40
LDI R22, 241	LDI ZL, 17
L21: DEC R22	RCALL ACTUALIZA
BRNE L21	RETI
DEC R23	
BRNE L21	G_0:
INC R23	LDI OPERACION,0
LDI D,4	RETI
OUT PORTB,D LDI D,\$00 ;	G 45:
MOV led0,D ;	G_43. LDI OPERACION,1
MOV led1,D;	RETI
MOV led5,D	NZ.
MOV led4,D ;	G_90:
LDI D,\$6D; 5	LDI OPERACION,2
MOV led2,D	RETI
LDI D,\$66 ; 4	
MOV led3,D	segundos:
rjmp CMP_OP2	INC OPERACION
F 0	CPI OPERACION,3
F_2:	BREQ REINICIA_CUENTA
LDI D,5	LDI D,\$C2 OUT TCNT1H,D
OUT PORTB,D LDI R23, 1	LDI D,\$F7
INC R23	OUT TCNT1L,D
INC R23	CONT:

RETI

REINICIA CUENTA:

CLR OPERACION

LDI D,1

OUT TIMSK ,D

rjmp CONT

CPI OPERACION,0

BREQ F_0 CMP OP1:

CPI OPERACION,1

BREQ F_1 CMP OP2:

CPI OPERACION,2

BREQ F_2 REGRESA:

RETI

ACTUALIZA:

CONCLUSIONES

Lomelí García Martín: En la práctica 6 aprendimos a utilizar servomotores, y lo interesante fue utilizarlos a la par de interrupciones y un display.

Pacchiano Alemán Alain: La práctica solo consistió en la implementación de un servo motor que girará a tres distintos grados.

Trejo Martínez Francisco: En esta ocasión aprendimos a implementar el uso de servomotores, la forma de hacerlos girar y con el uso de interrupciones mostrar los distintos grados en los cuales esta girando.