第二章 初等函数

§ 2.1 函数的概念及其表示

2.1.1 相关概念

1、函数

设 A,B 是两个非空数集,如对于 A 中任意一个数 x ,按照某种确定的对应关系 f ,在 B 中都有唯一确定的数 y 和它对应,则称 $f:A \to B$ 是从集合 A 到集合 B 的一个函数,记为 $y = f(x)(x \in A)$,其中 x 叫自变量,x 的取值范围 A 叫函数的定义域,与 x 值对应的 y 值叫函数值,函数值的集合 $\{f(x) | x \in A\}$ 叫做函数的值域。显然,值域为 B 的子集。

研究函数,少不了要用到区间的概念,对于两个实数a和b,且a < b,我们规定:

- (1) 满足不等式 $a \le x \le b$ 的实数x的集合叫做闭区间,用[a,b]表示;
- (2) 满足不等式a < x < b的实数x的集合叫做开区间,用(a,b)表示;
- (3) 满足不等式 $a \le x < b$ 或 $a < x \le b$ 的实数x的集合叫半开半闭区间,分别表示为[a,b), (a,b]。
- (4) 另外, 我们把满足 $x \ge a, x > a, x \le b, x < b$ 的实数 x 的集合分别记做 $[a, +\infty)$, $(a, +\infty)$, $(-\infty, b]$, $(-\infty, b)$

这里的实数a,b 叫做相应区间的端点," ∞ " 读作"无穷大"," $+\infty$ " 读作"正无穷大"," $-\infty$ " 读作"负无穷大"。

函数的三要素

从函数的定义可看出,确定一个函数需要三个要素,即定义域、对应关系和值域。由于值域 是由定义域和对应关系决定的,因此,如果两个函数的定义域和对应关系分别相同,则可以看成 是同一个函数

2、函数的表示法

在初中,我们已经接触过函数的三种表示法:解析法、列表法和图像法

解析法

就是用一个数学表达式**(解析式)**来表示两个变量之间的对应关系,比如 $f(x) = \frac{1}{x^2 - 3x + 2}$, $y = \sqrt{x}$ 等。

列表法

就是用表格来表示两个变量之间的对应关系。

图像法

就是用图像来表示两个变量之间的对应关系。

上述三种方法是函数最常用的表示方法,尤其是**解析法。**值得一提的是:并非每个函数都有解析式。

3、函数的图像

设函数 $y = f(x)(x \in A)$, 在平面直角坐标系中,所有点 (x, f(x)) 所构成的图形称为函数 f(x) 的图像。

4、函数的最大值和最小值

设函数 $y = f(x)(x \in A)$ 的值域为 B , 如存在 $M \in B$, 使得对任意的 $x \in A$, 都有 $f(x) \le M$, 则称 M 为 y = f(x) 在定义域 A 上的最大值。

类似地,如存在 $m \in B$,使得对任意的 $x \in A$,都有 $f(x) \ge m$,则称m为y = f(x)在定义域A上的最小值。

2.1.2 典型例题

例1、判断下列各组函数是否为同一个函数

(2)
$$y_1 = \frac{(x+3)(x-5)}{x+3}$$
, $y_2 = x-5$;

(2)
$$y_1 = \sqrt{x+1}\sqrt{x-1}$$
, $y_2 = \sqrt{(x+1)(x-1)}$;

(3)
$$f(x) = 1$$
, $g(x) = x^0$;

(4)
$$f(x) = \sqrt[3]{x^4 - x^3}$$
, $F(x) = x\sqrt[3]{x - 1}$;

(5)炮弹飞行高度h与炮弹飞行时间t的关系函数 $h=130t-5t^2$ 与二次函数 $y=130x-5x^2$

【解】(1)、(2)、(3)、(5)中的两个函数都属于定义域不同,因此不是同一个函数;

(4) 定义域相同,对应关系恒等变形后也完全相同,故他们是同一个函数。

例 2、函数 r = f(p) 的图像如图所示,图中曲线 l 与直线 m 无限接近

- (1) 函数r = f(p)的定义域、值域各是什么?
- (2) r 取何值时, 只有唯一的 p 值与之对应?

【解】(1) 定义域[-5,0] \cup [2,6), 值域为[$0,+\infty$)。

(2) 由图像知: $r \in [0,2) \cup (5,+\infty)$ 时, 只有唯一的 p 值与它对应。

例 3. 给定数集
$$A = R, B = (-\infty, 0]$$
, 方程 $u^2 + 2v = 0$, ①

- (1) 任给 $u \in A$, 对应关系f使方程①的解v = u对应, 判断v = f(u)是否为函数;
- (2) 任给 $v \in B$, 对应关系g使方程①的解u与v对应,判断u = g(v)是否为函数。

【解】(1) 易知
$$v = f(u) = -\frac{u^2}{2}$$
, 因此 $v \neq u$ 的函数

(2) 易知: $u = \pm \sqrt{-2v}$, 对给定的v, 有两个u与其对应, 因此u不是关于v的函数。

例 4. 函数 f(x)=[x] 的函数值表示不超过 x 的最大整数,例如,[-3.5]=-4,[2.1]=2, 当 $x \in (-2.5,3]$ 时,写出函数 f(x) 的解析式,并画出函数的图像。

【解】:
$$f(x) = \begin{cases} -3, & x \in (-2.5, -2) \\ -2, & x \in [-2, -1) \\ -1, & x \in [-1, 0) \end{cases}$$
 ,图像如图所示 1, $x \in [1, 2)$ 2, $x \in [2, 3)$ 3, $x = 3$

例 5.探究是否存在函数 f(x), g(x)满足条件:

- (1) 定义域相同,值域相同,但对应关系不同;
- (2) 值域相同,对应关系相同,但定义域不同。

【解】: (1) 存在, 比如 $f(x) = x(x \in [0,1])$, $g(x) = x^2(x \in [0,1])$

(2) 存在, 比如 $f(x) = x^2 (x \in [-1,0])$, $g(x) = x^2 (x \in [0,1])$

例 6、对于函数 y = f(x), 其图像可能为下面的(

【解】: 根据函数的定义,多对一可以,一对多不行。选 A。

例 7 (1) 设
$$f(x) = \begin{cases} x-2, (x \ge 10) \\ f[f(x+6)], (x < 10) \end{cases}$$
 则 $f(5)$ 的值为 ()

A. 10

c. 12

D. 13

A. 1

B. 1或 $\frac{3}{2}$ C. 1, $\frac{3}{2}$ 或 $\pm\sqrt{3}$ D. $\sqrt{3}$

【解】(1)
$$f(5) = f[f(11)] = f[9] = f[f(15)] = f[13] = 11$$
,选B。

(2) 该分段函数的三段各自的值域为 $(-\infty,1],[0,4),[4,+\infty)$, 而 $3 \in [0,4)$

$$f(x) = x^2 = 3, x = \pm \sqrt{3}, \overrightarrow{\text{mi}} - 1 < x < 2, \therefore x = \sqrt{3};$$

例8 (1) 设函数 $f(x+\frac{1}{r})=x^2+\frac{1}{r^2}-5$,则 f(x) 的表达式是 ()

(2)
$$\exists \exists f(\frac{1-x}{1+x}) = \frac{1-x^2}{1+x^2}, \ \exists f(x) \in \mathbb{R}$$

A. $\frac{x}{1+x^2}$ B. $-\frac{2x}{1+x^2}$ C. $\frac{2x}{1+x^2}$ D. $-\frac{x}{1+x^2}$

【解】 (1)
$$x^2 + \frac{1}{x^2} - 5 = (x + \frac{1}{x})^2 - 7$$
, 故 $f(x) = x^2 - 7$

(2)
$$\Rightarrow \frac{1-x}{1+x} = t$$
, $\square x = \frac{1-t}{1+t}$, $f(t) = \frac{1-(\frac{1-t}{1+t})^2}{1+(\frac{1-t}{1+t})^2} = \frac{2t}{1+t^2}$, $\not \succeq C$.

【应试策略】在 $f(\frac{1-x}{1+x^2}) = \frac{1-x^2}{1+x^2}$ 中令x = 0,得f(1) = 1,只有选项 C满足f(1) = 1,选 C。

例 9(1)已知 f(x) 是二次函数, 若 f(0) = 0, 且 f(x+1) = f(x) + x + 1, 试求 f(x) 的表达式.

【解】(1)由题意可设 $f(x) = ax^2 + bx(a \neq 0)$, 则 $a(x+1)^2 + b(x+1) = ax^2 + bx + x + 1$, 即 $ax^{2} + (2a+b)x + a + b = ax^{2} + (b+1)x + 1$

所以,
$$\begin{cases} 2a+b=b+1 \\ a+b=1 \end{cases}$$
,解得 $a=\frac{1}{2}$, $b=\frac{1}{2}$,因此 $f(x)=\frac{1}{2}x^2+\frac{1}{2}x$

(2)由已知得
$$\begin{cases} f(x) + 2f(\frac{1}{x}) = 2x + 1 \\ f(\frac{1}{x}) + 2f(x) = \frac{2}{x} + 1 \end{cases}, \quad \text{消去 } f(\frac{1}{x}), \quad \text{解得 } f(x) = \frac{-2x^2 + x + 4}{3x}$$

例 10、函数
$$y = \frac{(x+1)^0}{\sqrt{|x|-x}}$$
 的定义域是_____

【解】
$$\begin{cases} x \neq -1 \\ |x| - x > 0 \end{cases} \Rightarrow \begin{cases} x \neq -1 \\ x < 0 \end{cases} \Rightarrow x \in (-\infty, -1) \cup (-1, 0)$$

即函数 y 的定义域为 $(-\infty, -1) \cup (-1, 0)$

例 11 (1) 设函数 f(x) 的定义域为[0, 1],则函数 $f(\sqrt{x}-2)$ 的定义域为_____。

(2) 已知函数
$$y = f(x+1)$$
 定义域是[-2, 3],则 $y = f(2x-1)$ 的定义域是()

A.
$$[0, \frac{5}{2}]$$
 B. $[-1, 4]$ C. $[-5, 5]$ D. $[-3, 7]$

【解】(1) 由颞意知: $0 \le \sqrt{x} - 2 \le 1 \Rightarrow 2 \le \sqrt{x} \le 3 \Rightarrow 4 \le x \le 9$, 即 $f(\sqrt{x} - 2)$ 的定义域为[4,9]

(2) y = f(x+1) 定义域是 $[-2,3] \Rightarrow -2 \le x \le 3 \Rightarrow -1 \le x+1 \le 4 \Rightarrow f(x)$ 的定义域为 [-1, 4]

由 $-1 \le 2x - 1 \le 4 \Rightarrow 0 \le 2x \le 5 \Rightarrow 0 \le x \le \frac{5}{2}$,即y = f(2x - 1)的定义域为 $[0, \frac{5}{2}]$,选A。

例 12(1)已知 f(x))的定义域为 $\left[-\frac{1}{2},\frac{1}{2}\right]$,求函数 $y = f(x^2 - x - \frac{1}{2})$ 的定义域;

(2)已知函数 f(3-2x) 的定义域为[-1,2], 求 f(x) 的定义域.

【解】 (1) 由题意知:
$$-\frac{1}{2} \le x^2 - x - \frac{1}{2} \le \frac{1}{2}$$
, 即 $\begin{cases} x^2 - x \ge 0 \\ x^2 - x - 1 \le 0 \end{cases}$, 解得 $\frac{1 - \sqrt{5}}{2} \le x \le 0$ 或

$$1 \le x \le \frac{1 + \sqrt{5}}{2}$$

$$\therefore f(x)$$
的定义域为[$\frac{1-\sqrt{5}}{2}$,0] \cup [1, $\frac{1+\sqrt{5}}{2}$]

(2) $-1 \le x \le 2 \Rightarrow -1 \le 3 - 2x \le 5$, 故 f(x) 的定义域为[-1,5].

例 13.设
$$0 \le a < 1$$
,函数 $f(x) = (a-1)x^2 - 6ax + a + 1$ 恒为正,求 $f(x)$ 的定义域

【巧解】交换变元的主次地位,将a看成主元,则 $f(x) = (x^2 - 6x + 1)a - x^2 + 1 = g(a)$,它是关于a的一次函数,故可看成定义在[0,1)上的线段,

从而
$$f(x) > 0 \Rightarrow \begin{cases} g(0) > 0 \\ g(1) \ge 0 \end{cases} \Rightarrow \begin{cases} -x^2 + 1 > 0 \\ -6x + 2 \ge 0 \end{cases} \Rightarrow x \in (-1, \frac{1}{3}],$$

即 f(x) 的定义域为 $(-1,\frac{1}{3}]$ 。

例 14.已知函数 $f(x)=x^2-2x$, g(x)=ax+2(a>0),若对任意 $x_1 \in R$,都存在 $x_2 \in [-2,+\infty)$,使得 $f(x_1)>g(x_2)$,则实数 a 的取值范围是(

A,
$$\left(\frac{3}{2}, +\infty\right)$$
 B, $\left(0, +\infty\right)$ C, $\left(0, \frac{3}{2}\right)$ D, $\left(\frac{3}{2}, 3\right)$

【解析】由题意知 $f(x)_{\min} > g(x)$ 在 $[-2,+\infty)$ 上有解,即不等式 ax + 2 < -1 在 $[-2,+\infty)$ 上有解;

$$\boxplus ax + 2 < -1 \Rightarrow x < -\frac{3}{a} ,$$

因
$$x \in [-2,+\infty)$$
, 故 $-\frac{3}{a} > -2$, 也即 $a > \frac{3}{2}$, 选 A。

例 15(1)已知函数 f(x) 的定义域为 [a,b](a<0< b,|a|>b) ,求函数 g(x)=f(x)+f(-x) 的定义域;

(2)已知函数 f(x) 的定义域为[-1,2], 求 f(x+a)+f(x-a)(a>0))的定义域.

【解】 (1)
$$\begin{cases} a \le x \le b \\ a \le -x \le b \end{cases} \Rightarrow \begin{cases} a \le x \le b \\ -b \le x \le -a \end{cases} \Rightarrow -b \le x \le b$$

(2)
$$\begin{cases} -1 \le x + a \le 2 \\ -1 \le x - a \le 2 \end{cases} \Rightarrow \begin{cases} -1 - a \le x \le 2 - a \\ -1 + a \le x \le 2 + a \end{cases}$$

显然, 当 2-a < -1+a , 即 $a > \frac{3}{2}$ 时 , $[-1-a,2-a] \cap [-1+a,2+a] = \emptyset$,

f(x+a)+f(x-a)(a>0)不存在;

当
$$2-a \ge -1+a$$
,即 $0 < a \le \frac{3}{2}$ 时, $[-1-a,2-a] \cap [-1+a,2+a] = [-1+a,2-a]$,

此时 f(x+a)+f(x-a) 的定义域为[-1+a,2-a]。

例 16.已知函数 f(x) 的定义域为 (0,1] , 求函数 $g(x) = f(x+a) \cdot f(x-a) (a \le 0)$ 的定义域;

【解】由题意有
$$\begin{cases} 0 < x + a \le 1 \\ 0 < x - a \le 1 \end{cases}, \quad \mathbb{P} \begin{cases} -a < x \le 1 - a \\ a < x \le 1 + a \end{cases}, \quad \mathbb{R} \cup -a < x \le 1 + a$$

- (1) 当a = 0时,函数g(x)的定义域为(0,1]
- (2) 当 $-\frac{1}{2}$ <a<0时,函数g(x)的定义域为(-a,1+a]
- (3) 当 $a \le -\frac{1}{2}$ 时,满足 $-a < x \le 1 + a$ 的x不存在,故函数g(x)不存在。

(注意,此时不要说成函数 g(x) 的定义域为空集,因为从函数的定义来看,定义域和值域都不能为空集)

例 17 (1) 函数
$$y = \frac{x^2 - 2x + 1}{x^2 + 1}$$
 的值域为 ()

(2) 函数
$$y = \frac{3+x}{4-x}$$
 的值域为 ()

【解】 (1) 由
$$y = \frac{x^2 - 2x + 1}{x^2 + 1}$$
 得 $(x^2 + 1)y = x^2 - 2x + 1$,即 $(y - 1)x^2 + 2x + (y - 1)$

当
$$y=1$$
时, $x=0$

当 $y \neq 1$ 时,由 $\Delta = 4 - 4(y - 1)^2 \ge 0$ 解得 $0 \le y \le 2$ 。

故函数的值域为[0,2]。

【注意】本题中用到了最常用的判别式法。

(2)
$$y = \frac{3+x}{4-x} \Rightarrow 4y - xy = x+3 \Rightarrow x = \frac{4y-3}{y+1} \Rightarrow y \neq -1$$
, 故值域为 $\{y \mid y \neq -1\}$

【解法二】
$$y = \frac{3+x}{4-x} = \frac{7-(4-x)}{4-x} = \frac{7}{4-x} - 1$$
,

因
$$\frac{7}{4-x} \neq 0$$
,故 $y \neq -1$,所以,值域为 $\{y \mid y \neq -1\}$

例 18、
$$\sqrt{x^2+1}+\sqrt{x^2-4x+4}$$
 的最小值为 ()

【解】
$$\sqrt{x^2+1} + \sqrt{x^2-4x+4} = \sqrt{(x-0)^2 + (0-1)^2} + |x-2|$$

因此, $\sqrt{x^2+1}+\sqrt{x^2-4x+4}$ 可看成是 x 轴上的点 A(x,0) 到点 B(2,0) 和点 C(0,1) 的距离之和。数形结合,由三角形不等式知:

$$\sqrt{x^2+1} + \sqrt{x^2-4x+4} = |AC| + |AB| \ge |BC| = \sqrt{5}$$

当且仅当A,B重合时取得最小值。 所以, $\sqrt{x^2+1}+\sqrt{x^2-4x+4}$ 的最小值为 $\sqrt{5}$ 。

- 1、两点间的距离公式: 如 $A(x_1, y_1), B(x_2, y_2)$,则 $|AB| = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- **2、三角不等式**: |*AB*|+|*AC*|≥|*BC*|

例 19、
$$f(x) + f\left(\frac{x-1}{x}\right) = 1 + x$$
 , 则 $f(x)$ 的解析式为_____。

【解】显然, f(1)+f(0)=2,

令
$$x = \frac{t-1}{t}$$
,带入原式得 $f\left(\frac{t-1}{t}\right) + f\left(\frac{1}{1-t}\right) = 2 - \frac{1}{t}$ (1)

令
$$x = \frac{1}{1-t}$$
,带入原式得 $f\left(\frac{1}{1-t}\right) + f\left(t\right) = \frac{t-2}{t-1}$ (2)

$$\mathbb{Z}, \ f(t) + f\left(\frac{t-1}{t}\right) = 1 + t \tag{3}$$

由 (1) (2) (3) 解得
$$f(t) = \frac{t^3 - t^2 - 1}{2t^2 - 2t}$$
,

综上,得
$$f(x) = \begin{cases} \lambda, x = 0 \\ 2 - \lambda, x = 1 \end{cases}$$
 , 其中 λ 为任意实数。
$$\frac{x^3 - x^2 - 1}{2x^2 - 2x}, x \neq 0 且 x \neq 1$$