

planetmath.org

Math for the people, by the people.

Zariski lemma

Canonical name ZariskiLemma

Date of creation 2013-03-22 17:18:11 Last modified on 2013-03-22 17:18:11 Owner polarbear (3475) Last modified by polarbear (3475)

Numerical id 7

Author polarbear (3475)

Entry type Derivation Classification msc 12F05 Classification msc 11J85 **Proposition 1.** Let $R \subseteq S \subseteq T$ be commutative rings. If R is noetherian, and T finitely generated as an R-algebra and as an S-module, then S is finitely generated as an R-algebra.

Lemma 1 (Zariski's lemma). Let (L:K) be a field extension and $a_1, \ldots, a_n \in L$ be such that $K(a_1, \ldots, a_n) = K[a_1, \ldots, a_n]$. Then the elements a_1, \ldots, a_n are algebraic over K.

Proof. The case n=1 is clear. Now suppose n>1 and not all $a_i, 1 \le i \le n$ are algebraic over K.

Wlog we may assume a_1, \ldots, a_n are algebraically independent and each element a_{r+1}, \ldots, a_n is algebraic over $D := K(a_1, \ldots, a_r)$. Hence $K[a_1, \ldots, a_n]$ is a finite algebraic extension of D and therefore is a finitely generated D-module.

The above proposition applied to $K \subseteq D \subseteq K[a_1, \ldots, a_n]$ shows that D is finitely generated as a K-algebra, i.e $D = K[d_1, \ldots, d_n]$.

Let $d_i = \frac{p_i(a_1,...,a_n)}{q_i(a_1,...,a_n)}$, where $p_i, q_i \in K[x_1,...,x_n]$.

Now a_1, \ldots, a_n are algebraically independent so that $K[a_1, \ldots, a_n] \cong K[x_1, \ldots, x_n]$, which is a http://planetmath.org/UFDUFD.

Let h be a prime divisor of $q_1 \cdots q_r + 1$. Since q is relatively prime to each of q_i , the element $q(a_1, \ldots, a_n)^{-1} \in D$ cannot be in $K[d_1, \ldots, d_n]$. We obtain a contradiction.