Sommersemester 2015 Übungsblatt 12 6. Juli 2015

Theoretische Informatik

Abgabetermin: 13. Juli 2015, 13 Uhr in die THEO Briefkästen

Hausaufgabe 1 (4 Punkte)

Der Binomialkoeffizient $binom(n,m) = \binom{n}{m}$ ist eine Funktion von \mathbb{N}_0^2 in \mathbb{N}_0 mit den Eigenschaften $\binom{n}{0} = 1$, $\binom{0}{m} = 0$ für $n,m \in \mathbb{N}_0$ mit m > 0. Der Binomialkoeffizient erfüllt für alle $n,m \in \mathbb{N}_0$ die Rekursionsgleichung

$$\binom{n+1}{m+1} = \binom{n}{m+1} + \binom{n}{m}.$$

Für jede natürliche Zahl m_0 betrachten wir die Funktion $b_{m_0}: \mathbb{N}_0 \to \mathbb{N}_0$ mit $b_{m_0}(n) = binom(n, m_0)$. Zeigen Sie durch Induktion über m_0 , dass alle Funktionen $b_{m_0}(n)$ mit $m_0 \in \mathbb{N}_0$ primitiv-rekursiv (als Funktion in n) sind.

Hausaufgabe 2 (4 Punkte)

Sei $\Sigma = \{0,1\}$. $M_w[x] \downarrow$ bedeutet, dass die durch $w \in \{0,1\}^*$ kodierte Turingmaschine M_w bei Eingabe x hält, d.h. terminiert.

- 1. Wir betrachten das spezielle Halteproblem $K = \{w \in \Sigma^*; M_w[w] \downarrow \}$ und das Halteproblem auf leerem Band $H_0 = \{w \in \Sigma^*; M_w[\epsilon] \downarrow \}$.
 - Zeigen Sie durch hinreichend genaue Spezifikation und Begründung einer Reduktionsabbildung (wie in den entsprechenden Beweisen der Vorlesung), dass H_0 reduzierbar ist auf K, d.h. $H_0 \leq K$.
- 2. Zeigen Sie, dass die Menge $R = \{w \in \Sigma^* ; \varphi_w(0) = \bot\}$ unentscheidbar ist. Dabei sei φ_w diejenige (partielle) Funktion $\varphi_w : \mathbb{N}_0 \to \mathbb{N}_0$, die von der Turingmaschine M_w berechnet wird.

Hausaufgabe 3 (4 Punkte)

Sei Σ ein Alphabet und seien $A, B \subseteq \Sigma^*$ rekursiv auflistbare Sprachen. Zeigen Sie:

- 1. $L_1 := ABA$ ist rekursiv auflistbar.
- 2. $L_2 := A \cap B$ ist rekursiv auflistbar.

<u>Hinweis:</u> Die Cantorsche Paarfunktion bzw. die dazugehörigen Projektionen c_1 und c_2 könnten hilfreich sein.

Hausaufgabe 4 (4 Punkte)

Sei $\Sigma = \{0, 1\}$. Geben Sie jeweils ein Beispiel für die folgenden Objekte an. Falls kein solches Objekt existiert, begründen Sie dies.

- 1. Eine Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0$, die primitiv-rekursiv ist, aber deren Definitionsbereich (also $\{n \in \mathbb{N}_0 : f(n) \neq \bot\}$) endlich ist.
- 2. Eine Funktion $f: \Sigma^* \to \Sigma^*$, die total ist und für die $\{w \in \Sigma^* ; \varphi_w = f\}$ entscheidbar ist.
- 3. Ein unentscheidbarer Wertebereich einer berechenbaren Funktion.

Hausaufgabe 5 (4 Punkte)

Wahr oder falsch? Begründen Sie im Folgenden Ihre Antworten möglichst knapp!

- 1. Wenn f berechenbar ist, dann ist $A_f := \{ w \in \Sigma^* ; f(w) \neq \bot \}$ semi-entscheidbar.
- 2. Für das spezielle Halteproblem $K = \{w \in \{0,1\}^*; M_w[w] \downarrow\}$ und eine beliebige Sprache A gilt: Wenn $K \cap A$ entscheidbar ist, dann ist A endlich.
- 3. Für jede Turingmaschine M ist die Funktion

$$f_M(x) = \begin{cases} 1 & \text{falls } M \text{ auf allen Eingaben hält} \\ 0 & \text{sonst} \end{cases}$$

berechenbar.

4. Wenn f und g primitiv-rekursiv sind, und f(x) = g(h(x)) für alle x gilt, dann ist auch h primitiv-rekursiv.

${\bf Zusatzaufgabe~10}~({\rm wird~nicht~korrigiert})$

Geben Sie für jede der folgenden Mengen an, ob sie entscheidbar ist oder nicht. Beweisen Sie ihre Behauptungen.

2

- 1. $L_1 = \{ w \in \Sigma^* ; \varphi_w(0) = 0 \}$.
- 2. $L_2 = \{ w \in \Sigma^* ; \varphi_w(w) = w \}$.
- 3. $L_3 = \{ w \in \Sigma^* ; \varphi_0(0) = w \}$.

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Warum kann man den Satz von Rice auf die folgende Menge nicht anwenden?

$$L = \{ w \in \Sigma^* \, ; \, \forall n \in \mathbb{N}_0 : \, \varphi_w(n) = \bot \text{ und } w \text{ ist ein Palindrom} \} .$$

Vorbereitung 2

- 1. Wir betrachten das Postsche Korrespondenzproblem P = ((1, c1), (abc, ab)). Bestimmen Sie alle Lösungen von P!
- Sei P = (p₁, p₂) ein Postsches Korrespondenzproblem über einem beliebigen Alphabet Σ mit p_i = (x_i, y_i) und | |x_i| |y_i| | = 1 für i = 1, 2.
 Zeigen Sie, dass P entscheidbar ist!

Vorbereitung 3

Zeigen Sie, dass die polynomielle Reduzierbarkeit \leq_p eine transitive Relation ist. Polynomielle Reduzierbarkeit bedeutet, dass die Reduktionsfunktion in polynomieller Zeit berechenbar ist.

Vorbereitung 4

Beantworten Sie kurz die folgenden Fragen:

- 1. Ist $TIME_M$ für jede deterministische Turingmaschine M berechenbar?
- 2. PSPACE ist die Klasse all jener Probleme, die eine DTM mit "polynomiell viel Band in Abhängigkeit der Länge der Eingabe" lösen kann. Gilt $\mathcal{P} \subseteq PSPACE$?

Vorbereitung 5

Beweisen Sie:

- 1. \mathcal{P} ist abgeschlossen unter Komplement.
- 2. Das Problem, zu entscheiden, ob ein gegebener Graph ein Dreieck enthält, ist in \mathcal{P} .

Tutoraufgabe 1

Sei $\Sigma = \{a, b\}$. Bestimmen Sie alle Lösungen des Postschen Korrespondenzproblems

$$P_1 = \{(a, aaa), (abaaa, ab), (ab, b)\}$$

Tutoraufgabe 2

- 1. Ist $NTIME_M$ für jede deterministische Turingmaschine M berechenbar? Begründung!
- 2. Sei $f: \mathbb{N}_0 \to \mathbb{N}_0$. Falls NTIME(f(n)) eine nichtentscheidbare Sprache enthält, dann ist f nicht berechenbar. Beweis!
- 3. Wir betrachten die Komplexitätsklasse \mathcal{P} . Dann gibt es für jede DTM M mit $L(M) \in \mathcal{P}$ ein Polynom p, so dass $\mathrm{TIME}_M(w) \leq p(|w|)$ für alle $w \in \Sigma^*$ gilt. Richtig oder Falsch? Begründung!
- 4. Ist jede in polynomieller Zeit berechenbare Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0$ auch polynomiell beschränkt (\exists Polynom p. $\forall n$. $f(n) \leq p(n)$)? Begründung!

Tutoraufgabe 3

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. Eine Sprache ist genau dann vom Typ 0, wenn sie rekursiv auflistbar ist.
- 2. Das folgende Problem ist entscheidbar:

Gegeben: Eine deterministische Turingmaschine M.

Problem: Schreibt M mit leerer Eingabe jemals ein nicht- \square Symbol auf das Band?

3. Wenn eine Turingmaschine M bei einer Eingabe w das Band nie verändert, dann sagen wir, dass M ohne Speicherung arbeitet und schreiben dafür OS(M, w). Wir definieren $OS = \{(v, w); OS(M_v, w)\}.$

Dann ist OS entscheidbar.

4. Die folgende Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0$ ist berechenbar:

$$f(x) = \begin{cases} 1: P = NP \\ 0: \text{sonst} \end{cases}$$

4

Informieren Sie sich über die Probleme P und NP.