Урок 8. Повні метричні простори

Задачі 8.1-8.6 описують пряму конструкцію Кантора—Хаусдорфа поповнення метричного простору.

Задача 8.1. Нехай $\left\{x_n\right\}_{n=1}^{\infty}, \left\{y_n\right\}_{n=1}^{\infty}$ — фундаментальні послідовності в X . Доведіть, що числова послідовність $\left\{\rho(x_n,y_n)\right\}_{n=1}^{\infty}$ є збіжною.

Pозв'язок. Оскільки $\left\{ x_{n}\right\} _{n=1}^{\infty}$ — фундаментальна послідовність, то

$$\forall \varepsilon > 0 \,\exists N_1(\varepsilon) : \forall n, m \geq N_1(\varepsilon) \, \rho(x_n, x_m) < \frac{\varepsilon}{2}$$

Оскільки $\left\{y_n\right\}_{n=1}^{\infty}$ — фундаментальна послідовність, то

$$\forall \varepsilon > 0 \,\exists N_2(\varepsilon) : \forall n, m \geq N_2(\varepsilon) \, \rho(y_n, y_m) < \frac{\varepsilon}{2}.$$

Покладемо $N=\max\{N_1,N_2\}$. Тоді $\forall \epsilon>0$ і $\forall n,m\geq N$ внаслідок виконується нерівність

$$\left|\rho(x_n, y_n) - \rho(x_m, y_m)\right| \le \rho(x_n, x_m) + \rho(y_n, y_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Отже, послідовність $\alpha_n = \rho(x_n, y_n)$ є фундаментальною. Оскільки R^1 є повним, то

$$\exists \alpha \in R^1 : \alpha = \lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \rho(x_n, y_n).$$

Задача 8.2. Назвемо фундаментальні послідовності $\{x_n\}_{n=1}^{\infty}$ і $\{y_n\}_{n=1}^{\infty}$ еквівалентними, якщо послідовність $\{\rho(x_n,y_n)\}_{n=1}^{\infty}$ збігається до нуля. Доведіть, що це відношення є відношенням еквівалентності.

 $Pоз 6'яз о \kappa$. Перевіримо, що це відношення ϵ рефлексивним, симетричним і тразитивним.

a)
$$\left\{x_{n}\right\}_{n=1}^{\infty} \sim \left\{x_{n}\right\}_{n=1}^{\infty}$$
.

$$\lim_{n \to \infty} \rho\left(x_{n}, x_{n}\right) = 0 \Leftrightarrow \left\{x_{n}\right\}_{n=1}^{\infty} \sim \left\{x_{n}\right\}_{n=1}^{\infty}$$
.
6) $\left\{x_{n}\right\}_{n=1}^{\infty} \sim \left\{y_{n}\right\}_{n=1}^{\infty} \Rightarrow \left\{y_{n}\right\}_{n=1}^{\infty} \sim \left\{x_{n}\right\}_{n=1}^{\infty}$.
 $\left\{x_{n}\right\}_{n=1}^{\infty} \sim \left\{y_{n}\right\}_{n=1}^{\infty} \Rightarrow \lim_{n \to \infty} \rho\left(x_{n}, y_{n}\right) = \lim_{n \to \infty} \rho\left(y_{n}, x_{n}\right) = 0 \Rightarrow \left\{y_{n}\right\}_{n=1}^{\infty} \sim \left\{x_{n}\right\}_{n=1}^{\infty}$
B) $\left\{x_{n}\right\}_{n=1}^{\infty} \sim \left\{y_{n}\right\}_{n=1}^{\infty}, \left\{y_{n}\right\}_{n=1}^{\infty} \sim \left\{z_{n}\right\}_{n=1}^{\infty} \Rightarrow \left\{x_{n}\right\}_{n=1}^{\infty} \sim \left\{z_{n}\right\}_{n=1}^{\infty}$
 $\left\{x_{n}\right\}_{n=1}^{\infty} \sim \left\{y_{n}\right\}_{n=1}^{\infty} \Leftrightarrow \lim_{n \to \infty} \rho\left(x_{n}, y_{n}\right) = 0$,
 $\left\{y_{n}\right\}_{n=1}^{\infty} \sim \left\{z_{n}\right\}_{n=1}^{\infty} \Leftrightarrow \lim_{n \to \infty} \rho\left(y_{n}, z_{n}\right) = 0$,
 $0 \le \lim_{n \to \infty} \rho\left(x_{n}, z_{n}\right) \le \lim_{n \to \infty} \rho\left(x_{n}, y_{n}\right) + \lim_{n \to \infty} \rho\left(y_{n}, z_{n}\right) = 0 \Rightarrow$

$$\Rightarrow \lim_{n\to\infty} \rho(x_n, z_n) = 0$$

Задача 8.3. Нехай \tilde{X} — множина класів еквівалентних фундаментальних в X послідовностей. Якщо $\xi \in \tilde{X}$, $\eta \in \tilde{X}$, $\{x_n\}_{n=1}^{\infty} \in \xi$, $\{y_n\}_{n=1}^{\infty} \in \eta$, то покладемо $\tilde{\rho}(\xi,\eta) = \lim_{n \to \infty} \rho(x_n,y_n)$. Доведіть $\tilde{\rho}(\xi,\eta)$ не залежить від вибору представників класів та є метрикою на \tilde{X} .

Розв'язок. Для довільної точки $x \in X$ позначимо через ξ клас всіх фундаментальних послідовностей, що збігаються до x. Цей клас є непорожнім, оскільки йому належить стаціонарна послідовність (x, x, ...). До того ж, взявши як представників класів ξ і η стаціонарні послідовності, легко переконатися, що

$$x = \lim_{n \to \infty} x_n, \ y = \lim_{n \to \infty} y_n \Rightarrow \rho(x, y) = \lim_{n \to \infty} \rho(x_n, y_n) = \tilde{\rho}(\xi, \eta).$$

Таким чином, ототожнюючи елемент $x \in X$ із класом $\xi \in \tilde{X}$, ми ізометрично зануримо X в метричний простір \tilde{X} , і в подальшому X можна вважати підпростором \tilde{X} .

Покажемо, що $\tilde{\rho}(\xi,\eta) = \lim_{n \to \infty} \rho(x_n,y_n)$ не залежить від вибору представників $\{x_n\}_{n=1}^{\infty}$ і $\{y_n\}_{n=1}^{\infty}$ із класів ξ і η . $\forall \{x_n\}_{n=1}^{\infty}, \{x_n'\}_{n=1}^{\infty} \in \xi, \{y_n\}_{n=1}^{\infty}, \{y_n'\}_{n=1}^{\infty} \in \eta \ \forall \varepsilon > 0 \ \exists N(\varepsilon) > 0 \colon \forall n \ge N$ $\left|\rho(x_n,y_n) - \rho(x_n',y_n')\right| \le \rho(x_n,x_n') + \rho(y_n,y_n') < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Отже,

$$\lim_{n\to\infty} \rho(x_n, y_n) = \lim_{n\to\infty} \rho(x'_n, y'_n) = \tilde{\rho}(\xi, \eta).$$

Доведемо, що класи еквівалентних послідовностей з указаною відстанню утворюють метричний простір $(\tilde{X}, \tilde{\rho})$, тобто виконуються аксіоми метрики.

a)
$$\tilde{\rho}(\xi,\eta) \ge 0$$
?
 $\rho(x_n,y_n) \ge 0 \Rightarrow \tilde{\rho}(\xi,\eta) = \lim_{n\to\infty} \rho(x_n,y_n) \ge 0$.
6) $\tilde{\rho}(\xi,\eta) = 0 \Leftrightarrow \xi = \eta$.?
 $\tilde{\rho}(\xi,\eta) = 0 \Leftrightarrow \forall \{x_n\} \in \xi, \{y_n\} \in \eta$
 $\lim_{n\to\infty} \rho(x_n,y_n) = \tilde{\rho}(\xi,\eta) = 0 \Leftrightarrow \{x_n\}_{n=1}^{\infty} \sim \{y_n\}_{n=1}^{\infty} \Leftrightarrow \xi = \eta$..
B) $\tilde{\rho}(\xi,\eta) \le \tilde{\rho}(\xi,\zeta) + \tilde{\rho}(\zeta,\eta)$?
 $\forall \{x_n\}_{n=1}^{\infty} \in \xi, \{y_n\} \in \eta, \{z_n\} \in \zeta$
 $\tilde{\rho}(\xi,\eta) = \lim_{n\to\infty} \rho(x_n,y_n) \le \lim_{n\to\infty} \rho(x_n,z_n) + \lim_{n\to\infty} \rho(z_n,y_n) = \tilde{\rho}(\xi,\zeta) + \tilde{\rho}(\zeta,\eta)$.

Задача 8.4. Доведіть, що $\left(ilde{X}, ilde{
ho}
ight)$ — повний метричний простір.

 $\mathit{Poзв'}\mathit{язок}.$ Hexaй $\left\{x_n\right\}$ — представник класу ξ . Тоді

$$\lim_{n\to\infty}\tilde{\rho}(x_n,\xi)=0.$$

Дійсно, $\forall \varepsilon > 0 \,\exists N (\varepsilon) > 0 : \forall n, m \geq N$

$$\rho(x_n,x_m) < \varepsilon$$
.

3 цього випливає, що $\forall \varepsilon > 0 \ \exists N (\varepsilon) > 0 : \forall n, m \ge N$

$$\tilde{\rho}(x_n,\xi) = \lim_{m \to \infty} \rho(x_n,x_m) < \varepsilon$$

Отже,

$$\lim_{n\to\infty} x_n = \xi \,_{\rm B} \,\, \tilde{E} \,.$$

Таким чином, $\forall \xi \in \tilde{X} \; \exists x \in X$

$$\tilde{\rho}(x,\xi) < \varepsilon$$
.

Нехай $\xi_1, \xi_2, ..., \xi_n, ...$ фундаментальна послідовність класів. Візьмемо послідовність $\varepsilon_n \to \infty$. Відповідно до сказаного вище, $\forall n \; \exists x_n \in E$:

$$\tilde{\rho}(x_n,\xi) < \varepsilon_n$$
.

Утворимо із таких точок послідовність $\left\{x_n\right\}_{n=1}^{\infty}$. Доведемо, що ця послідовність є фундаментальною:

$$\tilde{\rho}(x_n, x_m) \leq \tilde{\rho}(x_n, \xi_n) + \tilde{\rho}(\xi_n, \xi_m) + \tilde{\rho}(\xi_m, x_m) < \varepsilon_n + \varepsilon_m + \rho(\xi_n, \xi_m).$$

$$\lim_{n \to \infty} \varepsilon_n = 0, \lim_{n \to \infty} \varepsilon_m = 0, \lim_{n \to \infty} \tilde{\rho}(\xi_n, \xi_m) = 0 \implies \lim_{n \to \infty} \tilde{\rho}(x_n, x_m) = 0.$$

З цього випливає, що

$$\exists \xi \in \tilde{X} : \lim_{n \to \infty} \tilde{\rho}(x_n, \xi) = 0.$$

Отже

$$\tilde{\rho}\big(\xi_n,\xi\big) \leq \tilde{\rho}\big(\xi_n,x_n\big) + \tilde{\rho}\big(x_n,\xi\big) < \varepsilon_n + \tilde{\rho}\big(x_n,\xi\big) \Longrightarrow \lim_{n \to \infty} \xi_n = \xi \in \tilde{X} \ . \qquad 3 \qquad \text{цього}$$
 випливає, що простір \tilde{X} — повний.

Задача 8.5. Кожному $x \in X$ поставимо у відповідність клас $\phi(x) \in \tilde{X}$, що містить стаціонарну послідовність (x,x,...). Доведіть, що відображення ϕ — це ізометрія X і \tilde{X} (тобто простір X можна ототожнити з $\phi(X)$ і, таким чином, вкласти X в повний метричний простір \tilde{X}).

Розв'язок. Доведемо єдиність поповнення. Припустимо, що (\tilde{X}_1, ρ_1) і (\tilde{X}_2, ρ_2) — два різних поповнення простору E . Побудуємо взаємно-однозначне відображення

$$\varphi: \tilde{E}_1 \to \tilde{E}_2$$

так, щоб виконувалися умови

1)
$$\varphi(x) = x \ \forall x \in X, X \subset \tilde{X}_1, E \subset \tilde{X}_2$$
;

2)
$$\xi \leftrightarrow \xi^*, \eta \leftrightarrow \eta^* \Rightarrow \tilde{\rho}_1(\xi, \eta) = \tilde{\rho}_2(\xi^*, \eta^*)$$
, де $\tilde{\rho}_1$ — відстань в (\tilde{X}_1, ρ_1) , в $\tilde{\rho}_2$ — відстань в (\tilde{X}_2, ρ_2) .

Нехай $\xi \in \tilde{X}_1$. Тоді за означенням поповнення $\exists \{x_n\}_{n=1}^\infty \in X : \lim_{n \to \infty} x_n = \xi$.

Крім того, $E\subset \tilde{X}_2\Rightarrow \left\{x_n\right\}_{n=1}^\infty\in \tilde{X}_2$. Отже, $\exists \xi^*\in \tilde{X}_2$ (оскільки \tilde{X}_2 — повний простір) такий , що $\xi^*=\lim_{n\to\infty}x_n$. Покладемо

$$\varphi(\xi) = \xi^*.$$

Покажемо, що ϕ задовольняє умови 1) и 2). Для цього розглянемо послідовності

$$\begin{split} \left\{ \boldsymbol{x}_{\boldsymbol{n}} \right\}_{\boldsymbol{n}=\boldsymbol{1}}^{\infty} & \to \boldsymbol{\xi} \text{ B } \tilde{X}_{\boldsymbol{1}}, \left\{ \boldsymbol{x}_{\boldsymbol{n}} \right\}_{\boldsymbol{n}=\boldsymbol{1}}^{\infty} & \to \boldsymbol{\xi}^{*} \text{ B } \tilde{X}_{\boldsymbol{2}}, \\ \left\{ \boldsymbol{y}_{\boldsymbol{n}} \right\}_{\boldsymbol{n}=\boldsymbol{1}}^{\infty} & \to \boldsymbol{\eta} \text{ B } \tilde{X}_{\boldsymbol{1}}, \left\{ \boldsymbol{y}_{\boldsymbol{n}} \right\}_{\boldsymbol{n}=\boldsymbol{1}}^{\infty} & \to \boldsymbol{\eta}^{*} \text{ B } \tilde{X}_{\boldsymbol{2}}. \end{split}$$

Внаслідок ізометричності поповнення,

$$\tilde{\rho}_{1}(\xi,\eta) = \lim_{n \to \infty} \rho_{1}(x_{n}, y_{n}) = \lim_{n \to \infty} \rho(x_{n}, y_{n}),$$

$$\tilde{\rho}_{2}(\xi,\eta) = \lim_{n \to \infty} \rho_{2}(x_{n}, y_{n}) = \lim_{n \to \infty} \rho(x_{n}, y_{n})$$

З цього випливає, що

$$\tilde{\rho}_1(\xi,\eta) = \tilde{\rho}_2(\xi,\eta).$$

Таким чином, простори $\left(ilde{X}_1, ilde{
ho}_1
ight)$ і $\left(ilde{X}_2, ilde{
ho}_2
ight)$ співпадають з точністю до ізометрії.

Задача 8.6. Доведіть, що множина $\phi(X)$ скрізь щільна в \tilde{X} і $\phi(X) = \tilde{X}$, якщо простір \tilde{X} — повний.

 Pose 'язок. Нехай $\left\{ x_{n}\right\}$ — представник класу ξ . Тоді, як показано в задачі 8.4,

$$\lim_{n\to\infty}\tilde{\rho}(x_n,\xi)=0.$$

Дійсно, $\forall \varepsilon > 0 \exists N(\varepsilon) > 0 : \forall n, m \ge N$

$$\rho(x_n, x_m) < \varepsilon$$

3 цього випливає, що $\forall \varepsilon > 0 \,\exists N(\varepsilon) > 0 : \forall n, m \geq N$

$$\tilde{\rho}(x_n,\xi) = \lim_{m\to\infty} \rho(x_n,x_m) < \varepsilon$$

Отже,

$$\lim_{n\to\infty} x_n = \xi \,_{\rm B} \,\, \tilde{E} \,.$$

Таким чином, $\forall \xi \in \tilde{X} \; \exists x \in X$

$$\tilde{\rho}(x,\xi) < \varepsilon$$
.

Як точку x можна взяти довільну точку x_n , $n \ge N(\varepsilon)$, тобто довільний окіл класу ξ містить деяку точку x із E. Це означає, що

$$\overline{X} = \tilde{X}$$

Озн. 8.1. Відображення $g:(X,\rho) \to (X,\rho)$ називається **стискаючим**, якщо існує таке число $0 < \alpha < 1$, що $\rho(g(x),g(y)) \le \alpha \rho(x,y)$ для довільних $x,y \in X$.

Задача 8.8. Будь-яке стискаюче відображення ϵ неперервним.

Pозв'язок. Нехай $x_n \to x$, а $g: X \to X$ є стискаючим відображенням. Тоді

$$0 \le \rho(g(x_n), g(x)) \le \alpha \rho(x_n, x) \to 0, n \to \infty$$

Отже,

$$g(x_n) \rightarrow g(x)$$
, коли $x_n \rightarrow x$.

Задача 8.9 (принцип стискаючих відображень). Будь-яке стискаюче відображення повного метричного простору (X, ρ) в себе має лише одну нерухому точку, тобто $\exists ! x \in X : g(x) = x$.

Pозв'язок. Нехай x_0 — деяка точка із X . Визначимо послідовність точок $\left\{x_n\right\}$ за таким правилом:

$$x_1 = g(x_0),...,x_n = g(x_{n-1}).$$

Покажемо, що ця послідовність є фундаментальною. Дійсно, якщо m > n, то

$$\rho(x_{n}, x_{m}) = \rho(g(x_{n-1}), g(x_{m-1})) \leq \alpha \rho(x_{n-1}, x_{m-1}) \leq \dots \leq$$

$$\leq \alpha^{n} \rho(x_{0}, x_{m-n}) \leq \alpha^{n} \{\rho(x_{0}, x_{1}) + \rho(x_{1}, x_{2}) + \dots + \rho(x_{m-n-1}, x_{m-n})\} \leq$$

$$\leq \alpha^{n} \rho(x_{0}, x_{1}) \{1 + \alpha + \alpha^{2} + \dots + \alpha^{m-n-1}\} \leq \alpha^{n} \rho(x_{0}, x_{1}) \frac{1}{1 - \alpha}.$$

Таким чином, оскільки $0 < \alpha < 1$,

$$\rho(x_n, x_m) \to 0, n \to \infty, m \to \infty, m > n$$
.

Внаслідок повноти простору (X, ρ) в ньому існує границя послідовності $\{x_n\}$. Позначимо її через $x = \lim_{n \to \infty} x_n$.

Із задачі 8.3 випливає, що

$$g(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} x_{n+1} = x.$$

Отже, нерухома точка існує.

Доведемо її єдиність. Якщо g(x) = x і g(y) = y, то $\rho(x, y) \le \alpha \rho(x, y)$, тобто $\rho(x, y) = 0$. за аксіомою тотожності це означає, що x = y.

Задача 8.10. Доведіть, що умову $\alpha \le 1$ не можна замінити на $\alpha < 1$.

Розв'язок. Якщо відображення $g:(X,\rho) \to (X,\rho)$ має властивість $\rho(g(x),g(y)) < \rho(x,y)$ $\forall x,y \in X, x \neq y$, то нерухомої точки може не бути. Дійсно, розглянемо простір $([1,\infty),|x-y|)$ і визначимо відображення $g(x) = x + \frac{1}{x}$. Тоді $\rho(g(x),g(y)) = \left|x + \frac{1}{x} - y - \frac{1}{y}\right| < |x-y|$. Оскільки для жодного $x \in [1,\infty)$ $g(x) = x + \frac{1}{x} \neq x$, нерухомої точки немає. ■

Задача 8.11. Доведіть, що простір l_p , що складається з послідовностей

$$x_n = (\xi_1, \xi_2, ..., \xi_n, ...)$$
, які задовольняють умову $\left(\sum_{k=1}^{\infty} \left| \xi_k \right|^p \right)^{\frac{1}{p}} < \infty$, ϵ повним.

Pозв'язок. Нехай $x_n = \left(\xi_1^{(n)}, \xi_2^{(n)}, ..., \xi_k^{(n)}, ...\right)$ — фундаментальна послідовність в l_p . Інакше кажучи,

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) > 0 : \forall n, m \geq N(\varepsilon) \, \rho(x_n, x_m) < \varepsilon$$

3 іншого боку,

$$\begin{split} & \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^p \leq \sum_{k=1}^\infty \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^p \\ \Rightarrow & \left| \xi_k^{(n)} - \xi_k^{(m)} \right| \leq \left(\sum_{k=1}^\infty \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^p \right)^{\frac{1}{p}} \Rightarrow \\ & \Rightarrow \lim_{n,m\to\infty} \left| \xi_k^{(n)} - \xi_k^{(m)} \right| \leq \lim_{n,m\to\infty} \left(\sum_{k=1}^\infty \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^p \right)^{\frac{1}{p}} = 0 \Rightarrow \\ & \Rightarrow \left\{ \xi_k^{(n)} \right\}_{n=1}^\infty - \text{фундаментальна в } \mathbb{R} \\ \Rightarrow \exists x_k = \left(\xi_1, \xi_2, ... \xi_k, ... \right), \text{ де } \xi_k = \lim_{n\to\infty} \xi_k^{(n)}. \end{split}$$
 Отже, мають місце такі твердження.

$$\forall M > 0 \ \forall \varepsilon > 0 \ \exists N(\varepsilon) > 0 : \forall n, m \ge N(\varepsilon) \ \sum_{k=1}^{M} \left| \xi_k^{(n)} - \xi_k^{(m)} \right| < \varepsilon^p \Rightarrow$$

$$\Rightarrow \forall \varepsilon > 0 \,\exists N(\varepsilon) > 0 \,\forall n, m \geq N(\varepsilon) \sum_{k=1}^{\infty} \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^p < \varepsilon^p \Rightarrow$$

$$\Rightarrow \forall \varepsilon > 0 \,\exists N(\varepsilon) > 0 \,\forall n \geq N(\varepsilon) \sum_{k=1}^{\infty} \left| \xi_k^{(n)} - \xi_k \right|^p < \varepsilon^p \Rightarrow$$

простір.

Задача 8.12. Доведіть, що простори всіх алгебраїчних поліномів з наступними метриками не ϵ повними.

1).
$$\rho(P,Q) = \max_{t \in [0,1]} |P(t) - Q(t)|;$$

2).
$$\rho(P,Q) = \int_{0}^{1} |P(t) - Q(t)| dt;$$

3). $\rho(P,Q) = \sum_{n} |c_{n}|$, $\text{de } P(t) - Q(t) = \sum_{n} c_{n}t^{n}.$

Побудуйте поповнення цих просторів.

Розв'язок. Розглянемо послідовність поліномів $P_n(t) = \sum_{k=0}^n \frac{t^k}{k!}$. Покажемо, що ця

послідовність є фундаментальному в розгляданому метричному просторі алгебраїчних поліномів в кожній із метрик, але збігається не до алгебраїчного полінома, а до неперервної функції e^t . Нагадаємо формулу Маклорена для функції e^t .

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + R_{n+1}(t),$$

де $R_{n+1}(t) = \frac{t^{n+1}}{(n+1)!}e^{\theta t}$, $0 < \theta < 1$ — залишковий член в формі Лагранжа.

1). Припустимо, що n > m.

$$\rho(P_m(t), P_n(t)) = \max_{t \in [0,1]} |P_m(t) - P_n(t)| = \max_{t \in [0,1]} \sum_{k=m+1}^{n} \frac{1}{k!} t^k$$

Отже.

$$\lim_{n \to \infty} \sum_{k=m+1}^{n} \frac{1}{k!} t^{k} = \lim_{m \to \infty} \sum_{k=m+1}^{\infty} \frac{1}{k!} t^{k} = \lim_{n \to \infty} R_{m+1}(t) < \lim_{m \to \infty} \frac{t^{m+1}}{(m+1)!} e^{\theta t} \le \lim_{m \to \infty} \frac{1}{(m+1)!} e = 0.$$

Тепер доведемо, що послідовність $\left\{P_n(t)\right\}_{n=1}^\infty$ не може збігатися до жодного алгебраїчного полінома. Нехай Q(t)— деякий алгебраїчний поліном. За нерівністю трикутника

$$\rho\left(\sum_{n=1}^{\infty} \frac{t^n}{n!}, Q(t)\right) \leq \rho\left(\sum_{n=1}^{\infty} \frac{t^n}{n!}, P_n(t)\right) + \rho\left(P_n(t), Q(t)\right)$$

Величина в правій частині не дорівнює нулю. З іншого боку,

$$\rho\left(\sum_{n=1}^{\infty} \frac{t^{n}}{n!}, P_{n}(t)\right) = \sum_{k=n+1}^{\infty} \frac{1}{k!} t^{k} = \lim_{n \to \infty} R_{n+1}(t) < \lim_{n \to \infty} \frac{t^{n+1}}{(n+1)!} e^{\theta t} \le \lim_{n \to \infty} \frac{e}{(n+1)!} = 0.$$

Отже, величина $\rho(P_n(t),Q(t))$ не може прямувати до нуля, а, значить, послідовність $\{P_n(t)\}_{n=1}^{\infty}$ не може прямувати до жодного алгебраїчного полінома.

2). Припустимо, що n > m

$$\rho(P_m(t), P_n(t)) = \int_0^1 |P_m(t) - P_n(t)| dt = \int_0^1 \left| \sum_{k=m+1}^n \frac{1}{k!} t^k \right| dt \le \int_0^1 \left| \sum_{k=m+1}^\infty \frac{1}{k!} t^k \right| dt.$$

Отже,

$$\lim_{n,m\to\infty} \rho(P_m(t), P_n(t)) = \lim_{n,m\to\infty} \int_0^1 |P_m(t) - P_n(t)| dt = \int_0^1 \sum_{k=m+1}^n \frac{1}{k!} t^k dt = \lim_{m\to\infty} \int_0^1 \sum_{k=m+1}^\infty \frac{1}{k!} t^k dt$$

=

$$= \lim_{m \to \infty} \int_{0}^{1} R_{m+1}(t)dt < \lim_{m \to \infty} \int_{0}^{1} \frac{t^{m+1}}{(m+1)!} e^{\theta t} dt \le \lim_{m \to \infty} \frac{e}{(m+1)!} = 0.$$

Тепер доведемо, що послідовність $\left\{P_n(t)\right\}_{n=1}^\infty$ не може збігатися до жодного алгебраїчного полінома. Нехай Q(t)— деякий алгебраїчний поліном. За нерівністю трикутника

$$\rho\left(\sum_{n=1}^{\infty} \frac{t^n}{n!}, Q(t)\right) \leq \rho\left(\sum_{n=1}^{\infty} \frac{t^n}{n!}, P_n(t)\right) + \rho\left(P_n(t), Q(t)\right)$$

Величина в правій частині не дорівнює нулю. З іншого боку,

$$\lim_{n \to \infty} \rho \left(\sum_{n=1}^{\infty} \frac{t^n}{n!}, P_n(t) \right) = \lim_{n \to \infty} \int_0^1 R_{n+1}(t) dt \le \lim_{n \to \infty} \int_0^1 \frac{t^{n+1}}{(n+1)!} e^{\theta t} dt \le \lim_{n \to \infty} \frac{1}{(n+1)!} e = 0.$$

Отже, величина $\rho(P_n(t),Q(t))$ не може прямувати до нуля, а, значить, послідовність $\left\{P_n(t)\right\}_{n=1}^\infty$ не може прямувати до жодного алгебраїчного полінома.

3). Припустимо, що n > m.

$$\rho(P_m(t),P_n(t)) = \sum_{k=m+1}^n \frac{1}{k!}.$$

Отже,

$$\lim_{m,n\to\infty} \sum_{k=m+1}^{n} \frac{1}{k!} = \lim_{m\to\infty} \sum_{k=m+1}^{\infty} \frac{1}{k!} = 0.$$

Тепер доведемо, що послідовність $\left\{P_n(t)\right\}_{n=1}^\infty$ не може збігатися до жодного алгебраїчного полінома. Нехай Q(t)— деякий алгебраїчний поліном. За нерівністю трикутника

$$\rho\left(\sum_{n=1}^{\infty} \frac{t^n}{n!}, Q(t)\right) \leq \rho\left(\sum_{n=1}^{\infty} \frac{t^n}{n!}, P_n(t)\right) + \rho\left(P_n(t), Q(t)\right)$$

Величина в правій частині не дорівнює нулю. З іншого боку,

$$\lim_{n\to\infty} \rho\left(\sum_{n=1}^{\infty} \frac{t^n}{n!}, P_n(t)\right) = \lim_{n\to\infty} \sum_{k=n+1}^{\infty} \frac{1}{k!} = 0.$$

Отже, величина $\rho(P_n(t),Q(t))$ не може прямувати до нуля, а, значить, послідовність $\{P_n(t)\}_{n=1}^\infty$ не може прямувати до жодного алгебраїчного полінома.

Поповнення всіх трьох просторів є простір C[0,1].

Задача 8.13. Доведіть наступні твердження.

- 1) Простір C_{L_2} усіх неперервних на $\left[a,b\right]$ функцій з метрикою $\rho_{L_2} \left(f,g\right) = \left(\int\limits_a^b \left(f\left(t\right) g\left(t\right)\right)^2 dt\right)^{\frac{1}{2}}$ не є повним.
- 2) Простір $C_0\left(-\infty,\infty\right)$, що складається із неперервних функцій, які визначені на R^1 і задовольняють умову $\lim_{|t|\to\infty} f\left(t\right) = 0$, з метрикою $\rho(f,g) = \sup_{t\in P^1} \left| f\left(t\right) g\left(t\right) \right|$ є повним.
- 3) Простір $C^{(n)}[a,b]$ n разів неперервно диференційовних на [a,b] функцій з метрикою $\rho(f,g) = \max_{0 \le k \le n} \sup_{t \in [a,b]} \left| f^{(k)}(t) g^{(k)}(t) \right|$ є повним.
- 4) Простір $C^{(n)}[a,b]$ n разів неперервно диференційовних на [a,b] функцій з метрикою $\rho(f,g) = \left(\int\limits_a^b \sum_{k=0}^n \left|f^{(k)}(t) g^{(k)}(t)\right|^p dt\right)^{\frac{1}{p}}, \ p \ge 1$ не є повним.

Розв'язок.

1). Розглянемо послідовність неперервних функцій

$$\phi_{n}(t) = \begin{cases}
-1, & \text{якщо } a \leq t \leq \frac{a+b}{2} - \frac{1}{n}, \\
nt, & \text{якщо } \frac{a+b}{2} - \frac{1}{n} \leq t \leq \frac{a+b}{2} + \frac{1}{n}, \\
1, & \text{якщо } \frac{a+b}{2} + \frac{1}{n} \leq t \leq 1.
\end{cases}$$

Ця послідовність ϵ фундаментальною в $C_{L_2}[a,b]$, оскільки

$$\int_{a}^{b} (\varphi_{n}(t) - \varphi_{m}(t))^{2} dt \leq \frac{b - a}{\min(n, m)}.$$

Покажемо, що ця послідовність не збігається до жодної функції з простору $C_{L_2}ig[a,big]$. Дійсно, нехай f — деяка функція із $C_{L_2}ig[a,big]$ і

$$\psi(t) = \begin{cases}
-1, & \text{якщо } t < 0, \\
1, & \text{якщо } t \ge 0.
\end{cases}$$

Внаслідок нерівності Мінковського

$$\left(\int_{a}^{b} (f(t) - \psi(t))^{2}\right)^{\frac{1}{2}} \leq \left(\int_{a}^{b} (f(t) - \varphi_{n}(t))^{2}\right)^{\frac{1}{2}} + \left(\int_{a}^{b} (\varphi_{n}(t) - \psi(t))^{2}\right)^{\frac{1}{2}}$$

Оскільки функція f ϵ неперервною, то інтеграл в лівій частині не дорівнює нулю. З іншого боку,

$$\lim_{n\to\infty}\int_a^b (\varphi_n(t)-\psi(t))^2 dt = 0.$$

Отже,
$$\left(\int\limits_a^b \left(f\left(t\right)-{\sf \phi}_n\left(t\right)\right)^2\right)$$
 не може прямувати до нуля при $n o \infty$.

2). Для доведення повноти простору $C_0\left(-\infty,\infty\right)$ розглянемо фундаментальну послідовність $\left\{f_n\right\}_{n=1}^\infty$ і покажемо, що вона прямує до неперервної функції, яка задовольняє умову $\lim_{|t|\to\infty} f\left(t\right)=0$. Для цього розглянемо сегмент $\left[-T,T\right]$. Оскільки в повному просторі $C\left[-T,T\right]$ з метрикою $\rho(f,g)=\sup_{t\in [-T,T]}\left|f\left(t\right)-g\left(t\right)\right|$ послідовність $\left\{f_n\right\}_{n=1}^\infty$ прямує до неперервної функції $f\left(t\right)$, залишається довести, що функція $f\left(t\right)$ задовольнятиме умові $\lim_{|t|\to\infty} f\left(t\right)=0$. Дійсно,

$$\lim_{|t|\to\infty}f\left(t\right)=\lim_{|t|\to\infty}\lim_{n\to\infty}f_n\left(t\right)=\lim_{n\to\infty}\lim_{|t|\to\infty}f_n\left(t\right)=0.$$

- 3). Розв'язання цієї задачі базується на тому факті, що простір $C^{(n)}[-T,T]$ є повним. Решта міркувань збігаються с попередніми.
 - 4). Задача розв'язується аналогічно задачі 8.12.1.