Corrigé première session 2019

Exercice 1. Calculer

$$1. \sum_{j=1}^{3} \left(\sum_{k=j}^{3} \frac{k}{j} \right),$$

$$2. \sum_{j=1}^{3} \left(\sum_{k=0}^{j} {j \choose k} 2^{k} \right),$$

3.
$$\sum_{j=1}^{n} \left(\sum_{k=0}^{j} {j \choose k} 2^{k} \right)$$
 en fonction de $n \in \mathbb{N}$.

Solution de l'exercice 1. 1. (1 point, 0,5 si bonne stratégie mais erreur de calcul)

$$\sum_{j=1}^{3} \left(\sum_{k=j}^{3} \frac{k}{j} \right) = \left(\sum_{k=1}^{3} \frac{k}{1} \right) + \left(\sum_{k=2}^{3} \frac{k}{2} \right) + \left(\sum_{k=3}^{3} \frac{k}{3} \right)$$
$$= \left(\frac{1}{1} + \frac{2}{1} + \frac{3}{1} \right) + \left(\frac{2}{2} + \frac{3}{2} \right) + \left(\frac{3}{3} \right)$$
$$= 1 + 2 + 3 + 1 + 1, 5 + 1 = 9, 5.$$

2. (1 point, 0,5 si bonne stratégie mais erreur de calcul)

$$\sum_{j=1}^{3} \left(\sum_{k=0}^{j} {j \choose k} 2^k \right) = \left(\sum_{k=0}^{1} {1 \choose k} 2^k \right) + \left(\sum_{k=0}^{2} {2 \choose k} 2^k \right) + \left(\sum_{k=0}^{3} {3 \choose k} 2^k \right)$$

$$= \left(1 \times 2^0 + 1 \times 2^1 \right) + \left(1 \times 2^0 + 2 \times 2^1 + 1 \times 2^2 \right)$$

$$+ \left(1 \times 2^0 + 3 \times 2^1 + 3 \times 2^2 + 1 \times 2^3 \right)$$

$$= \left(1 + 2 \right) + \left(1 + 4 + 4 \right) + \left(1 + 6 + 12 + 8 \right)$$

$$= 3 + 9 + 27 = 39.$$

3. (2 points : 1 pour l'identité du binôme et 1 pour la somme géométrique)

$$\sum_{j=1}^{n} \left(\sum_{k=0}^{j} {j \choose k} 2^k \right) = \sum_{j=1}^{n} \left(\sum_{k=0}^{j} {j \choose k} 2^k 1^{j-k} \right)$$
$$= \sum_{j=1}^{n} (2+1)^j = \sum_{j=1}^{n} 3^j$$
$$= \frac{3^{n+1} - 3}{3 - 1} = \frac{3^{n+1} - 3}{2}.$$

Exercice 2. Écrire une assertion mathématique traduisant l'affirmation : "Tout nombre réel peut être approché à 10^{-5} près par un nombre rationnel."

Solution de l'exercice 2. (1 point, pas de pénalité si l'inégalité est stricte ou large, 0,5 si les quantificateurs sont corrects)

$$\forall x \in \mathbf{R}, \exists y \in \mathbf{Q}, |x - y| \le 10^{-5}.$$

Exercice 3. Pour chaque assertion ci-dessous, traduire l'assertion par une phrase française. Écrire la négation sous forme d'assertion. Dire si l'assertion initiale est vraie ou fausse, et le démontrer.

- 1. $\forall x \in \mathbf{R}, \exists y \in \mathbf{Z}, |x y| < \frac{1}{2},$
- 2. $\forall x \in [0,1], (|x| \le \frac{1}{2}) \lor (|x-1| \le \frac{1}{2}),$
- 3. $\forall z \in \mathbf{C}, \exists a, b \in \mathbf{Z}, |z a \mathrm{i}b| < 2.$

Solution de l'exercice 3. 1. (3 points : 0,5 pour la traduction, 1 pour la négation, à savoir 0,5 pour les quantificateurs et 0,5 pour nier l'inégalité, 1,5 pour la preuve)

Pour tout réel x, il existe un entier relatif y tel que |x-y| est strictement inférieur à $\frac{1}{2}$.

La négation est

$$\exists x \in \mathbf{R}, \forall y \in \mathbf{Z}, |x - y| \ge \frac{1}{2}.$$

L'assertion initiale est fausse. Démontrons sa négation.

Prenons $x = \frac{1}{2}$. Soit $y \in \mathbf{Z}$ quelconque. Alors si $y \ge 1$ on a $|\frac{1}{2} - y| = y - \frac{1}{2} \ge 1 - \frac{1}{2} = \frac{1}{2}$. Et si on a $y \le 0$ on a $|\frac{1}{2} - y| = \frac{1}{2} - y \ge \frac{1}{2}$. Dans tous les cas, on a bien $|\frac{1}{2} - y| \ge \frac{1}{2}$, et donc on a démontré la négation.

2. (3 points : 0,5 pour la traduction, 1 pour la négation, 1,5 pour la preuve) Pour tout réel x, on a $|x| \le \frac{1}{2}$ ou $|x-1| \le \frac{1}{2}$.

La négation est

$$\exists x \in [0, 1], (|x| > \frac{1}{2}) \land (|x - 1| > \frac{1}{2}).$$

L'assertion initiale est vraie. Démontrons-la.

Soit $x \in [0, 1]$ quelconque. Séparons deux cas.

Cas 1 : si $x \in [0, \frac{1}{2}]$, alors on a $|x| = x \le \frac{1}{2}$, et donc $(|x| \le \frac{1}{2}) \lor (|x - 1| \le \frac{1}{2})$.

Cas 2 : si $x \in]\frac{1}{2}, 1]$, alors on a $|x-1| = 1 - x < 1 - \frac{1}{2} = \frac{1}{2}$, et donc $(|x| \le \frac{1}{2}) \vee (|x-1| \le \frac{1}{2})$.

Dans les deux cas, on a bien démontré $(|x| \le \frac{1}{2}) \lor (|x-1| \le \frac{1}{2})$.

3. (3 points : 0,5 pour la traduction, 1 pour la négation, 1,5 pour la preuve) Pour tout complexe z, il existe deux entiers relatifs a et b tels que $|z-a-\mathrm{i}b|<2$. La négation est

$$\exists z \in \mathbf{C}, \forall a, b \in \mathbf{Z}, |z - a - \mathrm{i}b| \ge 2.$$

L'assertion initiale est vraie. Démontrons-la.

Soit $z \in \mathbf{C}$ quelconque. Alors la forme algébrique de z s'écrit $z = x + \mathrm{i} y$ avec $x, y \in \mathbf{R}$. Posons a la partie entière de x et b la partie entière de y. Alors on a |x-a| < 1 et |y-b| < 1. On a alors $|z-a-\mathrm{i} b| = |(x-a)+\mathrm{i}(y-b)| \le |x-a|+|\mathrm{i}(y-b)| = |x-a|+|y-b| < 1+1=2$, grâce à l'inégalité triangulaire.

Exercice 4. Résoudre les équations suivantes, en mettant la ou les solutions sous forme algébrique.

- 1. $z^2 2iz 2 = 0$,
- 2. $z^2 (3+i)z + 3i = 0$,
- 3. $z^4 + 4 = 0$.

Solution de l'exercice 4. 1. (1 point)

Posons $\Delta = (-2\mathrm{i})^2 - 4 \times 1 \times (-2) = -4 - (-8) = 4$. Posons alors $\delta = 2$, de sorte que $\delta^2 = \Delta$. Les solutions de l'équation sont alors $\frac{2i+2}{2} = 1 + i$ et $\frac{2i-2}{2} = -1 + i$.

2. (2 points : 0,5 pour Δ , 1 pour δ et 0,5 pour la fin)

Posons
$$\Delta = (3+i)^2 - 4(3i) = 8 + 6i - 12i = 8 - 6i$$
.

On cherche alors δ tel que $\delta^2=\Delta$. Si on cherche δ sous la forme $x+\mathrm{i} y$, alors on a $x^2-y^2=8$, 2xy=-6, et $x^2+y^2=\sqrt{8^2+6^2}=10$, d'où $2x^2=18$, et donc $x=\pm 3$. On obtient alors $y=\pm 1$, et comme x et y sont de signes opposés, on peut prendre $\delta=3-\mathrm{i}$. Les solutions de l'équation sont donc $\frac{3+\mathrm{i}+3-\mathrm{i}}{2}=3$ et $\frac{3+\mathrm{i}-3+\mathrm{i}}{2}=\mathrm{i}$.

3. (2 points : 1 pour la forme trigo, et 1 pour la forme algébrique, ou pour la 2e solution 1 point pour ±2i et 1 point pour la fin)

L'équation se réécrit $z^4=-4=4\mathrm{e}^{\mathrm{i}\pi},$ dont les solutions sont les nombres $\sqrt[4]{4}\mathrm{e}^{\frac{\mathrm{i}\pi}{4}+\frac{\mathrm{ki}2\pi}{4}}$ pour k=0,1,2, et 3. En simplifiant, cela donne $\sqrt{2}\mathrm{e}^{\frac{\mathrm{i}\pi}{4}},\sqrt{2}\mathrm{e}^{\frac{\mathrm{i}3\pi}{4}},\sqrt{2}\mathrm{e}^{\frac{\mathrm{i}5\pi}{4}},$ et $\sqrt{2}\mathrm{e}^{\frac{\mathrm{i}7\pi}{4}},$ ce qui sécrit sous forme algébrique $\sqrt{2}(\frac{\sqrt{2}}{2}+\mathrm{i}\frac{\sqrt{2}}{2})=1+\mathrm{i},\sqrt{2}(-\frac{\sqrt{2}}{2}+\mathrm{i}\frac{\sqrt{2}}{2})=-1+\mathrm{i},$ $\sqrt{2}(-\frac{\sqrt{2}}{2}-\mathrm{i}\frac{\sqrt{2}}{2})=-1-\mathrm{i},$ et $\sqrt{2}(\frac{\sqrt{2}}{2}-\mathrm{i}\frac{\sqrt{2}}{2})=1-\mathrm{i}.$

Une autre solution est de d'abord résoudre $y^2 = -4$, qui a pour solutions 2i et -2i, puis de résoudre $z^2 = 2i$ et $z^2 = -2i$ séparément. On trouve 1 + i et -1 - i pour la première, et -1 + i et 1 - i pour la seconde.

Exercice 5. Linéariser l'expression $\cos(x)^4$ (c'est-à-dire l'écrire comme une combinaison linéaire d'un nombre fini d'expressions de la forme $\cos(kx)$ et $\sin(kx)$, avec $k \in \mathbb{N}$).

Solution de l'exercice 5. (3 points : 1 point pour l'équation d'Euler, 1 point pour la formule du binôme, 1 point pour la formule finale)

$$\cos(x)^{4} = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{4}$$

$$= \frac{1}{16}((e^{ix})^{4} + 4(e^{ix})^{3}(e^{-ix}) + 6(e^{ix})^{2}(e^{-ix})^{2} + 4(e^{ix})(e^{-ix})^{3} + (e^{-ix})^{4})$$

$$= \frac{1}{16}(e^{i4x} + 4e^{i2x} + 6 + 4e^{-i2x} + e^{-i4x})$$

$$= \frac{1}{16}(e^{i4x} + e^{-i4x} + 4e^{i2x} + 4e^{-i2x} + 6)$$

$$= \frac{1}{16}(2\cos(4x) + 8\cos(2x) + 6)$$

$$= \frac{\cos(4x)}{8} + \frac{\cos(2x)}{2} + \frac{3}{8}.$$

Exercice 6. On considère l'application $f: \mathbf{R}_+ \to \mathbf{R}_+$ définie par $f(x) = \sqrt[4]{x} = \sqrt{\sqrt{x}}$.

- 1. Soit $x, y \in \mathbf{R}_+$. Simplifier la fraction $\frac{x^4 y^4}{x y}$ en utilisant une identité remarquable.
- 2. Trouver un réel M strictement positif tel que, pour tous $x, y \in [1, 2]$, on a $\left|\frac{x^4 y^4}{x y}\right| \ge M$.

- 3. En déduire une constante $C \in \mathbf{R}_+$ telle que, pour tous $x, y \in [1, 16]$, on a $|f(x) f(y)| \le C|x y|$.
- 4. Montrer que la restriction de f à l'intervalle [1, 16] est continue.

Solution de l'exercice 6. 1. (1 point)

On a
$$x^4 - y^4 = (x - y)(x^3 + x^2y + xy^2 + y^3)$$
, d'où $\frac{x^4 - y^4}{x - y} = x^3 + x^2y + xy^2 + y^3$.

2. (1 point)

Pour $x, y \in [1, 2]$, on a $x, y \ge 1$, donc $x^3 \ge 1, x^2y \ge 1, xy^2 \ge 1$, et $y^3 \ge 1$. Par conséquent on a $\left| \frac{x^4 - y^4}{x - y} \right| = |x^3 + x^2y + xy^2 + y^3| \ge 4$.

3. (1 point)

Soit $x, y \in [1, 16]$. Alors on a $f(x), f(y) \in [1, 2]$. D'après la question précédente on a $\left|\frac{f(x)^4 - f(y)^4}{f(x) - f(y)}\right| \ge 4$, et donc $|f(x) - f(y)| \le \frac{1}{4}|f(x)^4 - f(y)^4| = \frac{1}{4}|x - y|$. On peut donc prendre $C = \frac{1}{4}$.

4. (2 points : 1 pour l'assertion, 1 pour la démonstration. On s'adapte à la constante de 3, mais si ce n'est pas $\frac{1}{4}$ qui est pris)

La continuité de la restriction de f à l'intervalle [1, 16] se traduit par l'assertion

$$\forall x \in [1, 16], \forall \varepsilon \in \mathbf{R}_{+}^{*}, \exists \eta \in \mathbf{R}_{+}^{*}, \forall y \in [1, 16], (|x - y| < \eta) \implies (|f(x) - f(y)| < \varepsilon).$$

Prouvons-la. Soit $x \in [1, 16]$ et soit $\varepsilon \in \mathbb{R}_+^*$. Posons $\eta = 4\varepsilon$. Soit $y \in [1, 16]$ tel que $|x - y| < \eta$. Alors d'après la question précédente, on a $|f(x) - f(y)| \le \frac{1}{4}|x - y| < \frac{1}{4}\eta = \frac{1}{4}4\varepsilon = \varepsilon$, ce qui conclut.

Exercice 7. On travaille dans un espace affine euclidien de dimension 3, muni d'un repère affine orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. On considère les points A, B, C de coordonnées respectives (2, 4, -3), (4, 3, -4), (2, 3, -2),

- 1. Les points A, B, C sont-ils alignés?
- 2. Soit \mathscr{P} le plan contenant les points A, B, C. Donner une équation cartésienne (aussi appelée équation implicite) de \mathscr{P} .
- 3. Soit D le point de coordonnées (-1, -1, -1). Le point D appartient-il au plan \mathscr{P} ?
- 4. Soit M de coordonnées (x, y, z) un point quelconque de l'espace affine. Déterminer la distance de M à \mathscr{P} , notée $d(M, \mathscr{P})$, et la distance de M à D, notée |MD|.

Solution de l'exercice 7. 1. (1 point)

Le vecteur \overrightarrow{AB} a pour coordonnées (2,-1,-1) et le vecteur \overrightarrow{AC} a pour coordonnées (0,-1,1). Ces deux vecteurs ne sont pas colinéaires (ce qu'on peut vérifier en voyant que le déterminant $2 \times (-1) - (-1) \times 0 = -2$ est non nul). Par conséquent les points A,B,C ne sont pas alignés.

2. (2 points : 1 pour la formule, qui peut être donnée par cœur, et 1 pour le calcul) Le plan $\mathscr P$ est donné par

3. (1 point)

Comme les coordonnées de D vérifient $-1-1-1-6=-6\neq 0$, le point D n'appartient pas au plan \mathscr{P} .

4. (4 points : 1 pour le vecteur normal, 1 pour la formule de la distance, 1 pour le calcul, et 1 pour la distance MD)

D'après l'équation cartésienne de \mathscr{P} , le vecteur $\vec{n} = (1, 1, 1)$ est un vecteur normal au plan \mathscr{P} . Le point A appartient à \mathscr{P} . Par conséquent la distance d'un point M de coordonnées (x, y, z) à \mathscr{P} est alors donnée par

$$d(M, \mathscr{P}) = \frac{|\overrightarrow{AM} \cdot \overrightarrow{n}|}{||\overrightarrow{n}||}$$

$$= \frac{|(x-2, y-4, z+3) \cdot (1, 1, 1)|}{||\overrightarrow{(1}, 1, 1)||}$$

$$= \frac{|x-2+y-4+z+3|}{\sqrt{1^2+1^2+1^2}}$$

$$= \frac{|x+y+z-3|}{\sqrt{3}}.$$

D'autre part la distance de M à D est donnée par

$$|MD| = \sqrt{(x+1)^2 + (y+1)^2 + (z+1)^2} = \sqrt{x^2 + y^2 + y^2 + 2x + 2y + 2z + 3}$$

Exercice 8. Trouver une formule sans symbole \sum pour la somme $\sum_{k=0}^{n} \cos(k)$ en fonction de $n \in \mathbb{N}$, puis montrer qu'il existe un réel M > 0 tel que, pour tout $n \in \mathbb{N}$, on

$$\left| \sum_{k=1}^{n} \cos(k) \right| < M.$$

Solution de l'exercice 8. (3 points : 0.5 pour la partie réelle, 0.5 pour la somme géométrique, 1 pour l'inégalité triangulaire, 1 pour la conclusion que le dernier terme est indépendant de n)

On a

$$\sum_{k=0}^{n} \cos(k) = \sum_{k=0}^{n} \Re(e^{ik}) = \Re\left(\sum_{k=0}^{n} e^{ik}\right) = \Re\left(\frac{e^{i(n+1)} - 1}{e^{i} - 1}\right).$$

On peut simplifier cette formule, mais ce n'est pas nécessaire pour la suite : soit $n \in \mathbb{N}$ quelconque, on a alors

$$\left| \sum_{k=0}^{n} \cos(k) \right| = \left| \Re\left(\frac{e^{i(n+1)} - 1}{e^{i} - 1} \right) \right| \le \left| \frac{e^{i(n+1)} - 1}{e^{i} - 1} \right| = \frac{\left| e^{i(n+1)} - 1 \right|}{\left| e^{i} - 1 \right|} \le \frac{2}{\left| e^{i} - 1 \right|}.$$

On peut donc prendre $M = \frac{2}{|e^{i} - 1|}$.