# Bayes Nets

Chapter 14

### Probabilistic Models

- \* Describe how the world works
- \* Models are always simplifications! But even if not exact can be useful...
- \* What do agents do with Prob. Models?
  - reason about unknown variables given evidence (sensors, experience)

### Probabilistic Models

\* Probabilistic Model is a joint distribution over a set of variables

$$P(X_1, X_2, \ldots X_n)$$

\* Posterior probabilities are what we use to reason about the world...ask queries

$$P(X_q|x_{e_1},\ldots x_{e_k})$$

# \* Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- \* Notation for independent:
- \* This is a simplifying modeling assumption.  $X \perp \!\!\! \perp Y$
- \* EX: {Weather, Traffic, Cavity, Toothache}

# Example Independence

\* N fair, independent coin flips

$$P(X_1), P(X_2), ..., P(X_n)$$

- \* Always 50/50 no matter what the previous result was....
- \*  $P(X_1, X_2...X_n) = P(X_1)P(X_2)....P(X_n)$

# Conditional

- \* P(Toothacher Cavity) Catch) ence
- If I have a cavity, prob that probe catches doesn't depend on whether I have a toothache
  - \* P(catch | ache, cav) = P(catch | cav)
- \* The same independence holds if I don't have a cavity
  - \* P(catch | ache, ¬cav) = P(catch | ¬cav)
- \* Catch Conditionally Indep of Ache given Cavity
  - \* P(Catch | Ache, Cav) = P(Catch | Cav)
- \* Effects are Independent given their Common Cause

### Overview

#### \* Bayes Nets (Graphical Models)

- \* Syntax, Semantics
- \* How to compactly represent Joint Distributions
- \* How to efficiently do inference

#### \* Dynamic Bayes Nets

- \* How to adapt BN to reason over time
- \* Markov Models, Hidden MM, Particle Filters

#### \* Project 3 will use these concepts!

# Bayes Rule

- \* Prod. Rule: $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$
- \* Bayes Rule:  $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$
- \* Good for talking Causal Probability

$$P(Cause | Effect) = \frac{P(Effect|Cause)P(Case)}{P(Effect)}$$

\* Example Meningitis, Stiff Neck

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

### Conditional Independence

 Conditional Independence is our most basic and robust knowledge about uncertain environments

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$X \perp \!\!\! \perp Y | Z$$

- \* What about this domain:
  - \* Traffic
  - \* Need an Umbrella
  - \* Raining

## Bayes Nets

- \* Two problems with full joint distribution tables for prob. models
  - \* gets WAY too big
  - awkward to specify joint prob for more than a few vars
- \* Bayes Nets are a technique for describing complex joint distributions with simple local distributions (Conditional Probabilities)

### The Chain Rule

Remember....the definition of conditional probability, also called the Product Rule:  $P(a \land b) = P(a \mid b) P(a)$ 

$$P(x_{1},...,x_{n}) = P(x_{n} | x_{n-1},...,x_{1}) P(x_{n-1},...,x_{1})$$

$$P(x_{1},...,x_{n}) = P(x_{n} | x_{n-1},...,x_{1}) P(x_{n-1} | x_{n-2},...,x_{1})$$

$$P(x_{1},...,x_{n}) = P(x_{n} | x_{n-1},...,x_{1}) P(x_{n-1} | x_{n-2},...,x_{1}) ... P(x_{2} | x_{1}) P(x_{1})$$

$$P(x_{1},...,x_{n}) = \prod_{i=1}^{n} P(x_{i} | x_{i-1},...,x_{1})$$

Chain rule is the product rule applied multiple times, turning a joint probability into conditional probabilities

### Traffic, Rain, Umbrella

\* Trivial decomposition P(Traffic, Rain, Umbrella) =

P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

\* Conditional Independence assumptions

P(Traffic, Rain, Umbrella) =

P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

\* Bayes Nets let us compactly express conditional independence

(chain rule of probability)

$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$

$$P(C \mid A)$$

$$\frac{I_{\ell}(P)}{C\perp B\mid A}$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$

$$P(C \mid A)$$

$$\frac{I_{\ell}(P)}{C \perp B \mid A}$$



$$P(A, B, C, D) = P(D \mid C, B, A)P(C \mid B, A)P(B \mid A)P(A)$$

$$P(D \mid C) \qquad P(C \mid A)$$

$$egin{aligned} I_\ell(P) \ C \perp B \mid A \ D \perp \{A,B\} \mid C \end{aligned}$$



$$P(A, B, C, D) = P(D|C, B, A)P(C|B, A)P(B|A)P(A)$$

$$P(D|C) P(C|A)$$

$$egin{aligned} I_\ell(P) \ C \perp B \mid A \ D \perp \{A,B\} \mid C \end{aligned}$$



#### Chain Rule of Bayesian Networks

$$P(A, B, C, D) = P(D | C)P(C | A)P(B | A)P(A)$$

$$egin{aligned} I_\ell(P) \ C \perp B \mid A \ D \perp \{A,B\} \mid C \end{aligned}$$



#### Chain Rule of Bayesian Networks

$$P(A, B, C, D) = P(D | C)P(C | A)P(B | A)P(A)$$

In general: 
$$P(X) = \prod_{i=1}^{N} P(x_i \mid pa(x_i))$$
 Chain rule of Bayes nets

$$egin{aligned} I_\ell(P) \ C \perp B \mid A \ D \perp \{A,B\} \mid C \end{aligned}$$



#### Chain Rule of Bayesian Networks

$$P(A, B, C, D) = P(D | C)P(C | A)P(B | A)P(A)$$

In general: 
$$P(X) = \prod_{i=1}^{N} P(x_i \mid pa(x_i))$$
 Chain rule of Bayes nets

$$egin{aligned} I_\ell(P) \ C \perp B \mid A \ D \perp \{A,B\} \mid C \end{aligned}$$

3 C B 2

Topological Order:

A, B, C, D

Parents come before Children!

#### Variable Elimination Example

# Bayes Net Notation

- Nodes: variables (with domains)
- \* Arcs: interactions
  - \* Directional
  - "Direct Influence"between vars
  - \* Formally: conditional indep.





# Example: Coin Flips

\* N independent flips



\* No interactions between variables

# Example: Traffic

- \* Variables:
  - \* R: It rains
  - \* T: There's traffic
- \* Model 1: independence
- \* Model 2: rain causes traffic
- \* Which is better for an agent to use?



# Example: Traffic 2

- \* Let's build a causal graphical model
- \* Variables:
  - \* T: Traffic
  - \* R: It rains
  - \* L: Low air pressure
  - \* D: Roof drips
  - \* B: Ballgame
  - \* C: Cavity

# Example: Burglar Alarm

- \* Variables:
  - \* B: Burglary
  - \* A: Alarm goes off
  - \* M: Mary calls
  - \* J: John calls
  - \* E: Earthquake

# Bayes' Net Semantics

- \* Formalizing the semantics of a BN
- \* A set of nodes, one per variable X
- \* A directed, acyclic graph
- \* A conditional distribution for each node



- \* Local conditional prob tables (CPT)
- \* P(X | parent nodes)
  Bayes' Net = Graph Topology + CPTs

\* Bayes' nets implicitly encode joint distributions



- \* As a product of local cond. distrib.
- \* Can multiply all relevant conditionals to get any full joint

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- \* Example:  $P(+cavity, +catch, \neg toothache)$
- \* This let's us construct any entry in the full joint distribution table!

Bayes Net: Structure + CPTs



P(Cavity)
P(Toothache | Cavity)
P(Catch | Cavity)

Bayes Net: Structure + CPTs



P(Cavity)
P(Toothache | Cavity)
P(Catch | Cavity)

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

P(catch, cavity, ¬toothache) = P(cavity)

Bayes Net: Structure + CPTs



P(Cavity)
P(Toothache | Cavity)
P(Catch | Cavity)

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

P(catch, cavity, ¬toothache) =
P(cavity) P(¬toothache | cavity)

Bayes Net: Structure + CPTs



P(Cavity)
P(Toothache | Cavity)
P(Catch | Cavity)

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

P(catch, cavity, ¬toothache) =
P(cavity) P(¬toothache | cavity) P(catch | cavity)

# Example: Coin Flips

#### \* N independent flips

\* 
$$P(h,h,t,h) = 5 * .5 * .5 * .5$$

# Example: Traffic



## Example CTPs: Alarm



| A  | 7  | P(J A) |
|----|----|--------|
| +a | +j | 0.9    |
| +a | ¬j | 0.1    |
| ¬а | +j | 0.05   |
| ¬а | ٦j | 0.95   |

| A  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | ¬m | 0.3    |
| ¬а | +m | 0.01   |
| ¬а | ¬m | 0.99   |

| E  | P(E)  |
|----|-------|
| +e | 0.002 |
| ¬e | 0.998 |

| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | ¬а | 0.05     |
| +b | ¬е | +a | 0.94     |
| +b | ¬е | ¬а | 0.06     |
| ¬b | +e | +a | 0.29     |
| ¬b | +e | ¬а | 0.71     |
| ¬b | ¬е | +a | 0.001    |
| ¬b | ¬е | ¬а | 0.999    |

# Building (Entire) Joint

\* We can use the Bayes' Net to build any entry from full distribution it encodes

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- \* Typically no reason to build everything, just calc what we need on the fly
- \* Every BN over a domain of variables Implicitly Defines a Joint Distribution

# \* Size of joint dist table of N boolean vars

- \* 2N
- \* Size of N-node net where each node has up to k parents
  - $* O(N*2^{k+1})$
- \* BN can be huge savings if k << N
- \* Easier to find local CPTs vs global inints

# Bayes' Nets So Far... \* What we know:

- \* Syntax and Semantics of BNs
- \* Next: properties of the joint distribution
  - \* Formalizing the notion of conditional independence and causality
  - \* Goal: answer queries about conditional independence and influence
  - \* Need to calc posterior probabilities quickly!