Gradient Descent: The Foundation of Machine Learning Optimization

From Taylor Series to Modern Deep Learning

Nipun Batra and the teaching staff

IIT Gandhinagar

August 28, 2025

Table of Contents

Mathematical Foundations

• Core ML Problem: Find best parameters θ^* for our model

- Core ML Problem: Find best parameters θ^* for our model
- Examples everywhere:

- Core ML Problem: Find best parameters θ^* for our model
- Examples everywhere:
 - Linear regression: Minimize $(y X\theta)^2$

- Core ML Problem: Find best parameters θ^* for our model
- Examples everywhere:
 - Linear regression: Minimize $(y X\theta)^2$
 - Neural networks: Minimize classification/regression loss

- Core ML Problem: Find best parameters θ^* for our model
- Examples everywhere:
 - Linear regression: Minimize $(y X\theta)^2$
 - Neural networks: Minimize classification/regression loss
 - Logistic regression: Minimize cross-entropy loss

- Core ML Problem: Find best parameters θ^* for our model
- Examples everywhere:
 - Linear regression: Minimize $(y X\theta)^2$
 - Neural networks: Minimize classification/regression loss
 - Logistic regression: Minimize cross-entropy loss
- Challenge: Most ML problems have no closed-form solution

- Core ML Problem: Find best parameters θ^* for our model
- Examples everywhere:
 - Linear regression: Minimize $(y X\theta)^2$
 - Neural networks: Minimize classification/regression loss
 - Logistic regression: Minimize cross-entropy loss
- Challenge: Most ML problems have no closed-form solution
- Solution: Iterative optimization algorithms

- Core ML Problem: Find best parameters θ^* for our model
- Examples everywhere:
 - Linear regression: Minimize $(y X\theta)^2$
 - Neural networks: Minimize classification/regression loss
 - Logistic regression: Minimize cross-entropy loss
- Challenge: Most ML problems have no closed-form solution
- Solution: Iterative optimization algorithms

- Core ML Problem: Find best parameters $heta^*$ for our model
- Examples everywhere:
 - Linear regression: Minimize $(y X\theta)^2$
 - Neural networks: Minimize classification/regression loss
 - Logistic regression: Minimize cross-entropy loss
- Challenge: Most ML problems have no closed-form solution
- Solution: Iterative optimization algorithms

Key Points: G

radient descent is the workhorse of modern machine learning!

Imagine you're hiking in dense fog and want to reach the valley:

You can only feel the slope beneath your feet

- · You can only feel the slope beneath your feet
- Strategy: Always step in the steepest downhill direction

- · You can only feel the slope beneath your feet
- · Strategy: Always step in the steepest downhill direction
- Gradient = Direction of steepest uphill (ascent)

- · You can only feel the slope beneath your feet
- · Strategy: Always step in the steepest downhill direction
- Gradient = Direction of steepest uphill (ascent)
- Negative gradient = Direction of steepest downhill (descent)

- · You can only feel the slope beneath your feet
- · Strategy: Always step in the steepest downhill direction
- Gradient = Direction of steepest uphill (ascent)
- Negative gradient = Direction of steepest downhill (descent)

- · You can only feel the slope beneath your feet
- Strategy: Always step in the steepest downhill direction
- Gradient = Direction of steepest uphill (ascent)
- Negative gradient = Direction of steepest downhill (descent)

- · You can only feel the slope beneath your feet
- Strategy: Always step in the steepest downhill direction
- Gradient = Direction of steepest uphill (ascent)
- Negative gradient = Direction of steepest downhill (descent)

Geometric Intuition with Level Sets

Key Points: K

ey insight: Gradient \bot level sets, points toward steepest ascent

Taylor Series: The Mathematical Foundation

Definition: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally and optimize that!

Definition: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally and optimize that!

Taylor series expansion around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(1)

Definition: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally and optimize that!

Taylor series expansion around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(1)

• **Zero-order:** $f(\mathbf{x}) \approx f(\mathbf{x}_0)$ (just the function value)

Definition: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally and optimize that!

Taylor series expansion around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(1)

- **Zero-order:** $f(\mathbf{x}) \approx f(\mathbf{x}_0)$ (just the function value)
- First-order: $f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} \mathbf{x}_0)$ (linear approximation)

Definition: The Core Idea

If we can't solve $\min f(\mathbf{x})$ exactly, let's approximate $f(\mathbf{x})$ locally and optimize that!

Taylor series expansion around point x_0 :

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(1)

- **Zero-order:** $f(\mathbf{x}) \approx f(\mathbf{x}_0)$ (just the function value)
- First-order: $f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} \mathbf{x}_0)$ (linear approximation)
- **Second-order:** Includes curvature via Hessian $\nabla^2 f(\mathbf{x}_0)$

Univariate Taylor: Visual Understanding

Adding Quadratic Term

Important: Key Insight

Higher-order terms give better approximations, but first-order is often sufficient for optimization!

•
$$f(0) = \cos(0) = 1$$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f'(0) = -\cos(0) = -1$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f''(0) = -\cos(0) = -1$
- $f''(0) = \sin(0) = 0$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f''(0) = -\cos(0) = -1$
- $f''(0) = \sin(0) = 0$
- $f^{(4)}(0) = \cos(0) = 1$

- $f(0) = \cos(0) = 1$
- $f(0) = -\sin(0) = 0$
- $f''(0) = -\cos(0) = -1$
- $f''(0) = \sin(0) = 0$
- $f^{(4)}(0) = \cos(0) = 1$

Let's approximate $f(x) = \cos(x)$ around $x_0 = 0$:

•
$$f(0) = \cos(0) = 1$$

•
$$f(0) = -\sin(0) = 0$$

•
$$f''(0) = -\cos(0) = -1$$

•
$$f''(0) = \sin(0) = 0$$

•
$$f^{(4)}(0) = \cos(0) = 1$$

Taylor approximations:

Oth order:
$$f(x) \approx 1$$
 (2)

2nd order:
$$f(x) \approx 1 - \frac{x^2}{2}$$
 (3)

4th order:
$$f(x) \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}$$
 (4)

Multivariate Taylor Series

Extension to multiple variables:

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(5)

Multivariate Taylor Series

Extension to multiple variables:

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \dots$$
(5)

Linear term: $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} = |\nabla f| |\Delta \mathbf{x}| \cos \theta$

Visual: Multivariate Case with Level Sets

Key: Gradient \bot level sets, tangent plane \bot gradient

From Taylor Series to Gradient Descent

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using first-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (6)

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using first-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (6)

To minimize, we need: $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using first-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (6)

To minimize, we need: $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$

Example: Vector Geometry Insight

For vectors **a** and **b**: $\mathbf{a}^T \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Minimum when: $cos(\theta) = -1$ (opposite directions!)

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ **Using first-order Taylor approximation:**

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (6)

To minimize, we need: $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$

Example: Vector Geometry Insight

For vectors \mathbf{a} and \mathbf{b} : $\mathbf{a}^T \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Minimum when: $cos(\theta) = -1$ (opposite directions!)

Optimal choice: $\Delta \mathbf{x} = -\alpha \nabla f(\mathbf{x}_0)$ where $\alpha > 0$

Goal: Find Δx such that $f(x_0 + \Delta x) < f(x_0)$ Using first-order Taylor approximation:

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}$$
 (6)

To minimize, we need: $\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x} < 0$

Example: Vector Geometry Insight

For vectors \mathbf{a} and \mathbf{b} : $\mathbf{a}^T \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Minimum when: $cos(\theta) = -1$ (opposite directions!)

Optimal choice: $\Delta \mathbf{x} = -\alpha \nabla f(\mathbf{x}_0)$ where $\alpha > 0$

Definition: Gradient Descent Update Rule

$$\mathbf{x}_{\mathsf{new}} = \mathbf{x}_{\mathsf{old}} - \alpha \nabla f(\mathbf{x}_{\mathsf{old}})$$

Pop Quiz #1: Taylor Series Understanding

Answer this!

Given $f(x) = x^2 + 2$ and expansion point $x_0 = 2$: **Questions:**

- 1. What is $f(x_0)$?
- 2. What is $f(x_0)$?
- 3. Write the first-order Taylor approximation
- 4. If we take a step $\Delta x = -0.1 \cdot f(x_0)$, what is our new x?

Pop Quiz #1: Solutions

Example: Solutions

Given
$$f(x) = x^2 + 2$$
 and $x_0 = 2$:

- 1. f(2) = 4 + 2 = 6
- 2. f(x) = 2x, so f(2) = 4
- 3. $f(x) \approx 6 + 4(x-2) = 4x 2$
- 4. $\Delta x = -0.1 \times 4 = -0.4$, so $x_{new} = 2 0.4 = 1.6$

Definition: Gradient Descent

An iterative first-order optimization algorithm for finding local minima of differentiable functions

Definition: Gradient Descent

An iterative first-order optimization algorithm for finding local minima of differentiable functions

Algorithm:

1. **Initialize:** θ_0 (random or educated guess)

Definition: Gradient Descent

An iterative first-order optimization algorithm for finding local minima of differentiable functions

- 1. **Initialize:** θ_0 (random or educated guess)
- 2. For $t = 0, 1, 2, \ldots$ until convergence:

Definition: Gradient Descent

An iterative first-order optimization algorithm for finding local minima of differentiable functions

- 1. **Initialize:** θ_0 (random or educated guess)
- 2. For $t = 0, 1, 2, \ldots$ until convergence:
 - $oldsymbol{\mathbf{c}}$ Compute gradient: $\mathbf{g}_t =
 abla \mathit{f}(oldsymbol{ heta}_t)$

Definition: Gradient Descent

An iterative first-order optimization algorithm for finding local minima of differentiable functions

- 1. **Initialize:** θ_0 (random or educated guess)
- 2. For $t = 0, 1, 2, \ldots$ until convergence:
 - Compute gradient: $\mathbf{g}_t = \nabla f(\boldsymbol{\theta}_t)$
 - $_{\circ}$ Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t lpha \mathbf{g}_t$

Definition: Gradient Descent

An iterative first-order optimization algorithm for finding local minima of differentiable functions

- 1. **Initialize:** θ_0 (random or educated guess)
- 2. For $t = 0, 1, 2, \ldots$ until convergence:
 - Compute gradient: $\mathbf{g}_t = \nabla f(\boldsymbol{\theta}_t)$
 - Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t lpha \mathbf{g}_t$
 - · Check convergence: $|\mathbf{g}_t| < \epsilon$ or $|\mathit{f}(\boldsymbol{\theta}_{t+1}) \mathit{f}(\boldsymbol{\theta}_t)| < \epsilon$

Definition: Gradient Descent

An iterative first-order optimization algorithm for finding local minima of differentiable functions

- 1. **Initialize:** θ_0 (random or educated guess)
- 2. For $t = 0, 1, 2, \ldots$ until convergence:
 - Compute gradient: $\mathbf{g}_t = \nabla f(\boldsymbol{\theta}_t)$
 - Update parameters: $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t lpha \mathbf{g}_t$
 - · Check convergence: $|\mathbf{g}_t| < \epsilon$ or $|\mathit{f}(\boldsymbol{\theta}_{t+1}) \mathit{f}(\boldsymbol{\theta}_t)| < \epsilon$

Definition: Gradient Descent

An iterative first-order optimization algorithm for finding local minima of differentiable functions

Algorithm:

- 1. **Initialize:** θ_0 (random or educated guess)
- 2. For $t = 0, 1, 2, \ldots$ until convergence:
 - Compute gradient: $\mathbf{g}_t =
 abla \mathit{f}(oldsymbol{ heta}_t)$
 - $m{\theta}$ Update parameters: $m{ heta}_{t+1} = m{ heta}_t lpha \mathbf{g}_t$
 - \circ Check convergence: $|\mathbf{g}_t| < \epsilon$ or $|f(\boldsymbol{\theta}_{t+1}) f(\boldsymbol{\theta}_t)| < \epsilon$

Key Points:

Key Properties:

• First-order method (uses gradients, not Hessians)

The Learning Rate: Your Step Size

The learning rate α controls how big steps we take

Learning Rate: Too Small ($\alpha = 0.01$)

Convergence is slow but stable

Important: Problem

Takes many iterations to reach the minimum. Computationally expensive!

Learning Rate: Just Right ($\alpha = 0.1$)

Good balance: Fast and stable convergence

Key Points: T

his is often the sweet spot for many problems!

Learning Rate: Too Large ($\alpha = 0.8$)

Fast but may overshoot

Important: Warning

Quick convergence but risk of instability. Watch out for oscillations!

Learning Rate: Disaster ($\alpha = 1.01$)

Divergence! Function values explode

Important: Disaster Zone

The algorithm diverges. Always monitor your loss curves!

Gradient Descent for Linear Regression

Linear Regression: Our First Real Application

Problem: Learn $y = \theta_0 + \theta_1 x$ from data

Х	у
1	1
2	2
3	3

Linear Regression: Our First Real Application

Problem: Learn $y = \theta_0 + \theta_1 x$ from data

х	у
1	1
2	2
3	3

Cost Function (Mean Squared Error):

$$MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

Linear Regression: Our First Real Application

Problem: Learn $y = \theta_0 + \theta_1 x$ from data

X	у
1	1
2	2
3	3

Cost Function (Mean Squared Error):

$$MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

Goal: $(\theta_0^*, \theta_1^*) = \arg\min_{\theta_0, \theta_1} \mathrm{MSE}(\theta_0, \theta_1)$

Computing Gradients for Linear Regression

We need:
$$\nabla MSE = \begin{bmatrix} \frac{\partial MSE}{\partial \theta_0} \\ \frac{\partial MSE}{\partial \theta_1} \end{bmatrix}$$

Computing Gradients for Linear Regression

We need:
$$\nabla MSE = \begin{bmatrix} \frac{\partial MSE}{\partial \theta_0} \\ \frac{\partial MSE}{\partial \theta_1} \end{bmatrix}$$

Let's compute each partial derivative:

$$\frac{\partial \text{MSE}}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)(-1) \tag{7}$$

$$= -\frac{2}{n} \sum_{i=1}^{n} \epsilon_i \tag{8}$$

Computing Gradients for Linear Regression

We need:
$$\nabla MSE = \begin{bmatrix} \frac{\partial MSE}{\partial \theta_0} \\ \frac{\partial MSE}{\partial \theta_1} \end{bmatrix}$$

Let's compute each partial derivative:

$$\frac{\partial \text{MSE}}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)(-1)$$

$$= -\frac{2}{n} \sum_{i=1}^{n} \epsilon_i$$
(8)

$$\frac{\partial \text{MSE}}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)(-x_i)$$

$$= -\frac{2}{n} \sum_{i=1}^n \epsilon_i x_i$$
(10)

where
$$\epsilon_i = y_i - \hat{y}_i$$
 is the residual.

Initial values: $\theta_0=4, \theta_1=0$, Learning rate: $\alpha=0.1$

Initial values: $\theta_0=4, \theta_1=0$, Learning rate: $\alpha=0.1$ Iteration 1:

• Predictions: $\hat{y}_1 = 4, \hat{y}_2 = 4, \hat{y}_3 = 4$

Initial values: $\theta_0=4, \theta_1=0$, Learning rate: $\alpha=0.1$ Iteration 1:

- Predictions: $\hat{y}_1 = 4, \hat{y}_2 = 4, \hat{y}_3 = 4$
- Errors: $\epsilon_1 = 1 4 = -3, \epsilon_2 = 2 4 = -2, \epsilon_3 = 3 4 = -1$

Initial values: $\theta_0=4, \theta_1=0$, Learning rate: $\alpha=0.1$ Iteration 1:

- Predictions: $\hat{y}_1 = 4, \hat{y}_2 = 4, \hat{y}_3 = 4$
- Errors: $\epsilon_1 = 1 4 = -3, \epsilon_2 = 2 4 = -2, \epsilon_3 = 3 4 = -1$
- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$

Initial values: $\theta_0 = 4, \theta_1 = 0$, Learning rate: $\alpha = 0.1$ Iteration 1:

- Predictions: $\hat{y}_1 = 4, \hat{y}_2 = 4, \hat{y}_3 = 4$
- Errors: $\epsilon_1 = 1 4 = -3, \epsilon_2 = 2 4 = -2, \epsilon_3 = 3 4 = -1$
- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = 6.67$

Initial values: $\theta_0 = 4, \theta_1 = 0$, Learning rate: $\alpha = 0.1$ Iteration 1:

- Predictions: $\hat{y}_1 = 4, \hat{y}_2 = 4, \hat{y}_3 = 4$
- Errors: $\epsilon_1 = 1 4 = -3, \epsilon_2 = 2 4 = -2, \epsilon_3 = 3 4 = -1$
- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = 6.67$
- $\theta_0 = 4 0.1 \times 4 = 3.6$

Initial values: $\theta_0=4, \theta_1=0$, Learning rate: $\alpha=0.1$ Iteration 1:

- Predictions: $\hat{y}_1 = 4, \hat{y}_2 = 4, \hat{y}_3 = 4$
- Errors: $\epsilon_1 = 1 4 = -3, \epsilon_2 = 2 4 = -2, \epsilon_3 = 3 4 = -1$
- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = 6.67$
- $\theta_0 = 4 0.1 \times 4 = 3.6$
- $\theta_1 = 0 0.1 \times 6.67 = -0.67$

Initial values: $\theta_0=4, \theta_1=0$, Learning rate: $\alpha=0.1$ Iteration 1:

- Predictions: $\hat{y}_1 = 4, \hat{y}_2 = 4, \hat{y}_3 = 4$
- Errors: $\epsilon_1 = 1 4 = -3, \epsilon_2 = 2 4 = -2, \epsilon_3 = 3 4 = -1$
- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = 6.67$
- $\theta_0 = 4 0.1 \times 4 = 3.6$
- $\theta_1 = 0 0.1 \times 6.67 = -0.67$

Initial values: $\theta_0=4, \theta_1=0$, Learning rate: $\alpha=0.1$ Iteration 1:

- Predictions: $\hat{y}_1 = 4, \hat{y}_2 = 4, \hat{y}_3 = 4$
- Errors: $\epsilon_1 = 1 4 = -3, \epsilon_2 = 2 4 = -2, \epsilon_3 = 3 4 = -1$
- $\frac{\partial MSE}{\partial \theta_0} = -\frac{2}{3}(-3 2 1) = 4$
- $\frac{\partial MSE}{\partial \theta_1} = -\frac{2}{3}(-3 \cdot 1 2 \cdot 2 1 \cdot 3) = 6.67$
- $\theta_0 = 4 0.1 \times 4 = 3.6$
- $\theta_1 = 0 0.1 \times 6.67 = -0.67$

New parameters: $(\theta_0, \theta_1) = (3.6, -0.67)$

Let's watch gradient descent navigate the loss landscape:

Let's watch gradient descent navigate the loss landscape:

Let's watch gradient descent navigate the loss landscape:

Let's watch gradient descent navigate the loss landscape:

Let's watch gradient descent navigate the loss landscape:

Visual: GD Path on Loss Surface (TikZ Version)

Notice: Algorithm takes larger steps when gradient is large!

Variants of Gradient Descent

The Gradient Descent Family

Three main variants based on how much data we use per update:

Definition: Batch Gradient Descent (GD)

Use all training data to compute each gradient

Definition: Stochastic Gradient Descent (SGD)

Use one sample to compute each gradient

Definition: Mini-batch Gradient Descent (MBGD)

Use a small batch of samples to compute each gradient

The Gradient Descent Family

Three main variants based on how much data we use per update:

Definition: Batch Gradient Descent (GD)

Use all training data to compute each gradient

Definition: Stochastic Gradient Descent (SGD)

Use one sample to compute each gradient

Definition: Mini-batch Gradient Descent (MBGD)

Use a small batch of samples to compute each gradient

Trade-offs: Computational cost vs. convergence stability vs. memory usage

Batch vs Stochastic vs Mini-batch

Method	Data per update	Updates per epoch	Converg
Batch GD	n (all)	1	Smoo
SGD	1	n	Nois
Mini-batch GD	b (batch size)	n/b	Balan

Batch vs Stochastic vs Mini-batch

Method	Data per update	Updates per epoch	Converg
Batch GD	n (all)	1	Smoo
SGD	1	n	Nois
Mini-batch GD	b (batch size)	n/b	Balan

Key Points:

Modern ML: Mini-batch GD with batch sizes 32-256 is most common

- · Good balance of stability and efficiency
- Enables parallel computation (GPUs love batches!)
- Better gradient estimates than pure SGD

SGD uses one sample at a time for updates

SGD uses one sample at a time for updates

• Pro: Fast updates, can escape local minima due to noise

SGD uses one sample at a time for updates

- Pro: Fast updates, can escape local minima due to noise
- Con: Noisy convergence, may never reach exact minimum

SGD uses one sample at a time for updates

- Pro: Fast updates, can escape local minima due to noise
- Con: Noisy convergence, may never reach exact minimum
- Key insight: The noise can be beneficial for non-convex problems!

Definition: Iteration

One parameter update step (one gradient computation and update)

Definition: Epoch

One complete pass through the entire training dataset

Definition: Iteration

One parameter update step (one gradient computation and update)

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

• Batch GD: 1 iteration = 1 epoch

Definition: Iteration

One parameter update step (one gradient computation and update)

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

- Batch GD: 1 iteration = 1 epoch
- **SGD**: 1000 iterations = 1 epoch

Definition: Iteration

One parameter update step (one gradient computation and update)

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

- Batch GD: 1 iteration = 1 epoch
- **SGD:** 1000 iterations = 1 epoch
- Mini-batch (batch size 100): 10 iterations = 1 epoch

Definition: Iteration

One parameter update step (one gradient computation and update)

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

- Batch GD: 1 iteration = 1 epoch
- **SGD:** 1000 iterations = 1 epoch
- Mini-batch (batch size 100): 10 iterations = 1 epoch

Definition: Iteration

One parameter update step (one gradient computation and update)

Definition: Epoch

One complete pass through the entire training dataset

For dataset with 1000 samples:

- Batch GD: 1 iteration = 1 epoch
- **SGD:** 1000 iterations = 1 epoch
- Mini-batch (batch size 100): 10 iterations = 1 epoch

Important: Important

Mathematical Properties

True gradient:
$$\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$$

True gradient: $\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$ **SGD gradient estimate:** $\nabla \tilde{L}(\theta) = \nabla \ell(f(\mathbf{x}; \theta), y)$, where (\mathbf{x}, y) is sampled uniformly from $\{(\mathbf{x}_i, y_i)\}_{i=1}^{n}$.

True gradient: $\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$ SGD gradient estimate: $\nabla \tilde{L}(\theta) = \nabla \ell(f(\mathbf{x}; \theta), y)$, where (\mathbf{x}, y) is sampled uniformly from $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$.

Theorem: Unbiased Estimator Property

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \nabla L(\boldsymbol{\theta})$$

True gradient: $\nabla L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(f(\mathbf{x}_i; \theta), y_i)$ SGD gradient estimate: $\nabla \tilde{L}(\theta) = \nabla \ell(f(\mathbf{x}; \theta), y)$, where (\mathbf{x}, y) is sampled uniformly from $\{(\mathbf{x}_i, y_i)\}_{i=1}^{n}$.

Theorem: Unbiased Estimator Property

$$\mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] = \nabla L(\boldsymbol{\theta})$$

Proof:

$$\begin{split} \mathbb{E}[\nabla \tilde{L}(\boldsymbol{\theta})] &= \mathbb{E}\left[\nabla \ell(f(\mathbf{x}; \boldsymbol{\theta}), y)\right] \\ &= \sum_{i=1}^{n} \frac{1}{n} \nabla \ell(f(\mathbf{x}_{i}; \boldsymbol{\theta}), y_{i}) = \nabla L(\boldsymbol{\theta}). \end{split}$$

Key Points:

Unbiased means: On average, SGD points in the right direction!

Key Points:

Unbiased means: On average, SGD points in the right direction!

Implications:

 Individual SGD steps might be "wrong", but they average to the correct direction

Key Points:

Unbiased means: On average, SGD points in the right direction!

Implications:

- Individual SGD steps might be "wrong", but they average to the correct direction
- This theoretical guarantee justifies why SGD works in practice

Key Points:

Unbiased means: On average, SGD points in the right direction!

Implications:

- Individual SGD steps might be "wrong", but they average to the correct direction
- This theoretical guarantee justifies why SGD works in practice
- The noise in SGD can actually help escape local minima

Key Points:

Unbiased means: On average, SGD points in the right direction!

Implications:

- Individual SGD steps might be "wrong", but they average to the correct direction
- This theoretical guarantee justifies why SGD works in practice
- The noise in SGD can actually help escape local minima

Why Unbiasedness Matters

Key Points:

Unbiased means: On average, SGD points in the right direction!

Implications:

- Individual SGD steps might be "wrong", but they average to the correct direction
- This theoretical guarantee justifies why SGD works in practice
- · The noise in SGD can actually help escape local minima

Example: Intuitive Analogy

Imagine asking random people for directions to a destination:

• Individual answers might be slightly off

Computational Complexity

For linear regression, we have two options:

Important: Normal Equation

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Time complexity: $\mathcal{O}(d^2n + d^3)$

Key Points: Gradient Descent

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta}_t - \mathbf{y})$$

Time complexity: $\mathcal{O}(T \cdot dn)$ for T iterations

For linear regression, we have two options:

Important: Normal Equation

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Time complexity: $\mathcal{O}(d^2n + d^3)$

Key Points: Gradient Descent

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta}_t - \mathbf{y})$$

Time complexity: $\mathcal{O}(T \cdot dn)$ for T iterations

When to use which?

• Few features (d small): Normal equation

For linear regression, we have two options:

Important: Normal Equation

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Time complexity: $\mathcal{O}(d^2n + d^3)$

Key Points: Gradient Descent

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta}_t - \mathbf{y})$$

Time complexity: $\mathcal{O}(T \cdot dn)$ for T iterations

When to use which?

- Few features (d small): Normal equation
- Many features (d large): Gradient descent

For linear regression, we have two options:

Important: Normal Equation

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Time complexity: $\mathcal{O}(d^2n + d^3)$

Key Points: Gradient Descent

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta}_t - \mathbf{y})$$

Time complexity: $\mathcal{O}(T \cdot dn)$ for T iterations

When to use which?

- Few features (d small): Normal equation
- Many features (d large): Gradient descent
- Non-linear models: Only gradient descent works

Gradient Descent per iteration:

• Compute $X\theta$: $\mathcal{O}(nd)$

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X} \boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(\mathbf{n})$

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X}\boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(n)$
- Compute \mathbf{X}^T (residual): $\mathcal{O}(\textit{nd})$

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X} \boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(\mathbf{n})$
- Compute \mathbf{X}^T (residual): $\mathcal{O}(nd)$
- Update θ : $\mathcal{O}(d)$

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X}\boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(\mathbf{n})$
- Compute \mathbf{X}^T (residual): $\mathcal{O}(nd)$
- Update θ : $\mathcal{O}(d)$
- Total per iteration: $\mathcal{O}(\textit{nd})$

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X}\boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(\mathbf{n})$
- Compute \mathbf{X}^T (residual): $\mathcal{O}(nd)$
- Update θ : $\mathcal{O}(d)$
- Total per iteration: $\mathcal{O}(\textit{nd})$

Gradient Descent per iteration:

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X} \boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(\mathbf{n})$
- Compute \mathbf{X}^T (residual): $\mathcal{O}(nd)$
- Update θ : $\mathcal{O}(d)$
- Total per iteration: O(nd)

Normal Equation (one-time):

• Compute $\mathbf{X}^T\mathbf{X}$: $\mathcal{O}(d^2n)$

Gradient Descent per iteration:

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X} \boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(\mathbf{n})$
- Compute \mathbf{X}^T (residual): $\mathcal{O}(nd)$
- Update θ : $\mathcal{O}(d)$
- Total per iteration: O(nd)

- Compute $\mathbf{X}^T\mathbf{X}$: $\mathcal{O}(d^2n)$
- Invert $\mathbf{X}^T\mathbf{X}$: $\mathcal{O}(d^3)$

Gradient Descent per iteration:

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X}\boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(n)$
- Compute \mathbf{X}^T (residual): $\mathcal{O}(nd)$
- Update θ : $\mathcal{O}(d)$
- Total per iteration: O(nd)

- Compute $\mathbf{X}^T\mathbf{X}$: $\mathcal{O}(d^2n)$
- Invert $\mathbf{X}^T\mathbf{X}$: $\mathcal{O}(d^3)$
- Compute $\mathbf{X}^T \mathbf{y}$: $\mathcal{O}(dn)$

Gradient Descent per iteration:

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X}\boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(\mathbf{n})$
- Compute \mathbf{X}^T (residual): $\mathcal{O}(nd)$
- Update θ : $\mathcal{O}(d)$
- Total per iteration: O(nd)

- Compute $\mathbf{X}^T\mathbf{X}$: $\mathcal{O}(d^2n)$
- Invert $\mathbf{X}^T\mathbf{X}$: $\mathcal{O}(d^3)$
- Compute $\mathbf{X}^T \mathbf{y}$: $\mathcal{O}(dn)$
- Final multiplication: $\mathcal{O}(d^2)$

Gradient Descent per iteration:

- Compute $X\theta$: $\mathcal{O}(nd)$
- Compute residual $\mathbf{X}\boldsymbol{\theta} \mathbf{y}$: $\mathcal{O}(n)$
- Compute \mathbf{X}^T (residual): $\mathcal{O}(nd)$
- Update θ : $\mathcal{O}(d)$
- Total per iteration: O(nd)

- Compute $\mathbf{X}^T\mathbf{X}$: $\mathcal{O}(d^2n)$
- Invert $\mathbf{X}^T\mathbf{X}$: $\mathcal{O}(d^3)$
- Compute $\mathbf{X}^T \mathbf{y}$: $\mathcal{O}(dn)$
- Final multiplication: $\mathcal{O}(d^2)$
- Total: $\mathcal{O}(d^2n + d^3)$

Pop Quiz #2: Complexity Comparison

Answer this!

You have a dataset with $n=10^6$ samples and $d=10^3$ features.

Questions:

- 1. What's the complexity of normal equation?
- 2. What's the complexity of 100 GD iterations?
- 3. Which method would you choose and why?
- 4. What if $d = 10^6$ instead?

Pop Quiz #2: Solutions

Example: Solutions

For $n = 10^6$, $d = 10^3$:

1. Normal equation:

$$O(d^2n + d^3) = O(10^{12} + 10^9) = O(10^{12})$$

- 2. 100 GD iterations: $O(100 \cdot dn) = O(10^{11})$
- 3. Choose GD ($10 \times$ faster)
- 4. If $d=10^6$: Normal equation becomes ${\it O}(10^{18})$, GD becomes ${\it O}(10^{14})$ definitely choose GD!

Advanced Topics and Extensions

Modern deep learning uses advanced optimizers:

• Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta)\mathbf{g}_t$

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- AdaGrad: Adaptive learning rates per parameter

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- AdaGrad: Adaptive learning rates per parameter
- Adam: Combines momentum + adaptive learning rates

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- · AdaGrad: Adaptive learning rates per parameter
- Adam: Combines momentum + adaptive learning rates
- RMSprop: Exponential moving average of squared gradients

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- · AdaGrad: Adaptive learning rates per parameter
- Adam: Combines momentum + adaptive learning rates
- RMSprop: Exponential moving average of squared gradients

Modern deep learning uses advanced optimizers:

- Momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 \beta)\mathbf{g}_t$
- AdaGrad: Adaptive learning rates per parameter
- Adam: Combines momentum + adaptive learning rates
- RMSprop: Exponential moving average of squared gradients

Example: Why These Improvements?

- Handle different parameter scales automatically
- Accelerate convergence in relevant directions
- Reduce oscillations in narrow valleys
- Better performance on non-convex landscapes

Key Points: E

very modern deep learning framework uses gradient descent variants!

Key Points: E

very modern deep learning framework uses gradient descent variants!

Key extensions:

Backpropagation: Efficient gradient computation for neural networks

Key Points: E

very modern deep learning framework uses gradient descent variants!

Key extensions:

- Backpropagation: Efficient gradient computation for neural networks
- Automatic differentiation: PyTorch, TensorFlow handle gradients automatically

Key Points: E

very modern deep learning framework uses gradient descent variants!

Key extensions:

- Backpropagation: Efficient gradient computation for neural networks
- Automatic differentiation: PyTorch, TensorFlow handle gradients automatically
- GPU acceleration: Parallel computation of mini-batch gradients

Key Points: E

very modern deep learning framework uses gradient descent variants!

Key extensions:

- Backpropagation: Efficient gradient computation for neural networks
- Automatic differentiation: PyTorch, TensorFlow handle gradients automatically
- GPU acceleration: Parallel computation of mini-batch gradients
- Mixed precision: Use both 16-bit and 32-bit arithmetic

Practical Considerations

Key Points: L

earning rate selection is more art than science!

Key Points: L

earning rate selection is more art than science!

Common strategies:

• Grid search: Try $\{0.001, 0.01, 0.1, 1.0\}$

Key Points: L

earning rate selection is more art than science!

Common strategies:

- **Grid search:** Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time

Key Points: L

earning rate selection is more art than science!

Common strategies:

- **Grid search:** Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let the algorithm adjust automatically

Choosing Learning Rates: Practical Tips

Key Points: L

earning rate selection is more art than science!

Common strategies:

- **Grid search:** Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let the algorithm adjust automatically
- Learning rate finder: Gradually increase α and watch loss

Choosing Learning Rates: Practical Tips

Key Points: L

earning rate selection is more art than science!

Common strategies:

- **Grid search:** Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- Adaptive methods: Let the algorithm adjust automatically
- Learning rate finder: Gradually increase α and watch loss

Choosing Learning Rates: Practical Tips

Key Points: L

earning rate selection is more art than science!

Common strategies:

- **Grid search:** Try $\{0.001, 0.01, 0.1, 1.0\}$
- Learning rate schedules: Start high, decay over time
- · Adaptive methods: Let the algorithm adjust automatically
- Learning rate finder: Gradually increase α and watch loss

Important: Warning Signs

- Loss exploding \rightarrow Learning rate too high
- Very slow convergence → Learning rate too low
- Oscillating loss \rightarrow Try smaller learning rate or

Common stopping criteria:

• Gradient magnitude: $||\nabla f(\theta)|| < \epsilon$

- Gradient magnitude: $||\nabla f(\theta)|| < \epsilon$
- Function value change: $|\mathit{f}(\theta_{t+1}) \mathit{f}(\theta_t)| < \epsilon$

- Gradient magnitude: $||\nabla \mathbf{f}(\boldsymbol{\theta})|| < \epsilon$
- Function value change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Parameter change: $||\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t|| < \epsilon$

- Gradient magnitude: $||\nabla f(\theta)|| < \epsilon$
- Function value change: $|\mathit{f}(\theta_{t+1}) \mathit{f}(\theta_t)| < \epsilon$
- Parameter change: $||\theta_{t+1} \theta_t|| < \epsilon$
- Maximum iterations: Simple upper bound

- Gradient magnitude: $||\nabla f(\theta)|| < \epsilon$
- Function value change: $|\mathit{f}(\theta_{t+1}) \mathit{f}(\theta_t)| < \epsilon$
- Parameter change: $||\theta_{t+1} \theta_t|| < \epsilon$
- Maximum iterations: Simple upper bound

Common stopping criteria:

- Gradient magnitude: $||\nabla f(\theta)|| < \epsilon$
- Function value change: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- Parameter change: $||\boldsymbol{\theta}_{t+1} \boldsymbol{\theta}_t|| < \epsilon$
- Maximum iterations: Simple upper bound

Example: Practical Advice

- Always set a maximum iteration limit
- Monitor multiple criteria simultaneously
- Use validation set performance in practice
- Early stopping prevents overfitting

Common Pitfalls and How to Avoid Them

Important: Pitfall 1: Poor Initialization

Problem: Starting at bad points (e.g., all zeros)

Solution: Use Xavier/He initialization for neural networks

Common Pitfalls and How to Avoid Them

Important: Pitfall 1: Poor Initialization

Problem: Starting at bad points (e.g., all zeros)

Solution: Use Xavier/He initialization for neural networks

Important: Pitfall 2: Learning Rate Too High/Low

Problem: Divergence or slow convergence

Solution: Learning rate schedules, grid search, or adaptive

optimizers

Common Pitfalls and How to Avoid Them

Important: Pitfall 1: Poor Initialization

Problem: Starting at bad points (e.g., all zeros)

Solution: Use Xavier/He initialization for neural networks

Important: Pitfall 2: Learning Rate Too High/Low

Problem: Divergence or slow convergence

Solution: Learning rate schedules, grid search, or adaptive

optimizers

Important: Pitfall 3: Poor Feature Scaling

Problem: Different parameter scales cause poor conver-

gence

Solution: Standardize features: $(x - \mu)/\sigma$

Summary and Key Takeaways

Key Points: G

radient descent is the foundation of modern machine learning optimization!

Key Points: G

radient descent is the foundation of modern machine learning optimization!

Core concepts:

Mathematical foundation: Taylor series approximation

Key Points: G

radient descent is the foundation of modern machine learning optimization!

- Mathematical foundation: Taylor series approximation
- Geometric intuition: Follow steepest descent direction

Key Points: G

radient descent is the foundation of modern machine learning optimization!

- Mathematical foundation: Taylor series approximation
- Geometric intuition: Follow steepest descent direction
- Algorithm variants: Batch, SGD, mini-batch

Key Points: G

radient descent is the foundation of modern machine learning optimization!

- Mathematical foundation: Taylor series approximation
- Geometric intuition: Follow steepest descent direction
- Algorithm variants: Batch, SGD, mini-batch
- · Theoretical properties: SGD is unbiased estimator

Key Points: G

radient descent is the foundation of modern machine learning optimization!

- Mathematical foundation: Taylor series approximation
- Geometric intuition: Follow steepest descent direction
- Algorithm variants: Batch, SGD, mini-batch
- Theoretical properties: SGD is unbiased estimator
- Practical considerations: Learning rates, convergence criteria

Practice opportunities:

• Implement gradient descent from scratch

- Implement gradient descent from scratch
- Experiment with different learning rates

- Implement gradient descent from scratch
- Experiment with different learning rates
- Try different optimization functions

- Implement gradient descent from scratch
- Experiment with different learning rates
- Try different optimization functions
- Compare batch vs SGD vs mini-batch

- Implement gradient descent from scratch
- Experiment with different learning rates
- Try different optimization functions
- Compare batch vs SGD vs mini-batch
- Visualize convergence paths

- Implement gradient descent from scratch
- Experiment with different learning rates
- Try different optimization functions
- Compare batch vs SGD vs mini-batch
- Visualize convergence paths

Practice opportunities:

- Implement gradient descent from scratch
- Experiment with different learning rates
- · Try different optimization functions
- · Compare batch vs SGD vs mini-batch
- Visualize convergence paths

Key Points: M

aster gradient descent first - it's the building block for everything else!

Pop Quiz #3: Comprehensive Review

Answer this!

True or False?

- SGD always converges faster than batch gradient descent
- 2. The learning rate should decrease as training progresses
- 3. SGD gradient estimates are unbiased
- 4. Normal equation is always better than gradient descent
- 5. Gradient descent can only find global minima

Pop Quiz #3: Solutions

Example: Solutions

- False SGD converges faster per epoch but may need more epochs
- 2. **True** Learning rate schedules often improve convergence
- 3. True This is the key theoretical property of SGD
- 4. **False** Normal equation only works for linear problems and small *d*
- False GD finds local minima; global minima only guaranteed for convex functions

What's next in optimization?

• Second-order methods: Newton's method, L-BFGS

- Second-order methods: Newton's method, L-BFGS
- Constrained optimization: Lagrange multipliers, KKT conditions

- Second-order methods: Newton's method, L-BFGS
- Constrained optimization: Lagrange multipliers, KKT conditions
- Global optimization: Simulated annealing, genetic algorithms

- Second-order methods: Newton's method, L-BFGS
- Constrained optimization: Lagrange multipliers, KKT conditions
- Global optimization: Simulated annealing, genetic algorithms
- Distributed optimization: Federated learning, parameter servers

- Second-order methods: Newton's method, L-BFGS
- Constrained optimization: Lagrange multipliers, KKT conditions
- Global optimization: Simulated annealing, genetic algorithms
- Distributed optimization: Federated learning, parameter servers
- Meta-learning: Learning to optimize

Additional Resources: SGD Deep Dive

For detailed mathematical analysis and proofs:

Important: Reference Material

See SGD.pdf in the assets folder for:

- · Formal convergence proofs
- Variance analysis of SGD
- Advanced theoretical properties
- Comparison with other optimization methods

	٠		٠		<u> </u>										y	,	
*	٠	•		· —	え	<u>, </u>	•	٠	•	•	•	•	_		y	(·	•
٠	٠	٠													7		
٠	٠	٠		٠			٠							٠			
						• .								٠			
٠				٠	. (٠	٠						٠			
٠	٠	٠	٠	٠			٠							٠			
۰	٠			٠		• •	٠							٠			
٠					· · 7	· · ·	T								¥	7	
			٠	٠											V		

													$\hat{y} = f(x, \theta)$															
		•		•	え	7 ·1	· -			•			•			y	· ·				(ĵ,						
											٠																	
	•	٠	•	•	٠	•	٠	•		٠	•	•	٠	•	٠	٠	•	•	٠						٠	٠	•	
						• .				٠						٠												
						• .					٠																	
						• •			٠	٠	٠	٠	٠			٠			٠	٠		•			٠	٠		
				٠		•			٠		٠				٠				٠									
		٠		٠		•	٠				٠							٠										
		· -			· . 7	٠. ۲.	7						· • ·			y					. / . (†	4		٠			*

LOSS SURFACE OVER 6N° EXAMPLES

LOSS SURFACE OVER 6N° EXAMPLES

LOSS SURFACE OVER 6N° EXAMPLES

Thank You!

Questions?

Next: Advanced Optimization Techniques

Practice: Implement gradient descent for your favorite ML

model!