Sample statistics:

n = sample size

 x_i = the *i*th value in a sample

 $\bar{x} = \text{sample mean}$

s =sample standard deviation

Q1 = first quartile m = median Q3 = third quartile IQR = inter-quartile range

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}}$$

Population parameters:

 μ = population mean

 σ = population standard deviation

Probability:

 Ω = set of all possible equally likely outcomes

A = event A, a set of outcomes

B = event B, another set of outcomes

|A| = size of set, number of outcomes in A

P(A) = probability of A

 $P(A \cap B)$ = probability of both A and B

 $P(A \cup B)$ = probability of either A or B (or both)

P(A|B) = probability of A given B

$$P(A) = \frac{|A|}{|\Omega|}$$

$$P(A \cap B) = P(A) \cdot P(B|A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0 \le P(A) \le 1$$

A, B are disjoint (mutually exclusive) \iff $P(A \cap B) = 0$

A, B are non-disjoint $\iff P(A \cap B) > 0$

A, B are exhaustive $\iff P(A \cup B) = 1$

A, B are complements \iff A, B are disjoint and exhaustive \iff B = A^c

 $A, B \text{ are independent} \iff P(A \cap B) = P(A) \times P(B) \iff P(A) = P(A|B) \iff P(B) = P(B|A)$

Random variables and distributions:

X = random variable

 x_i = the *i*th possible value of X. (Notice different meaning here vs. sample statistics.)

k = number of possible values of X.

 $E(X) = \mu =$ expected value of X

 σ = standard deviation of X

$$\begin{split} \mu &= \sum_{i=1}^k x_i \cdot P(X=x_i) \\ \sigma &= \sqrt{\sum_{i=1}^k (x_i - \mu)^2 \cdot P(X=x_i)} \end{split}$$

BHCC Mat-181

PROBABILITY

Q1: An urn contains 100 marbles with the following frequencies.

	red	green	blue	total
striped	11	12	2	25
checkered	13	14	3	30
dotted	7	9	29	45
total	31	35	34	100

a:	What is the	probability	that a	randomly	v selected	marble	is red?
u.	Willat is the	probability	unat a	Tanaonn	y sciected	maiore	is icu.

b: What is the probability that a randomly selected marble is green **and** dotted?

c: What is the probability that a randomly selected marble is blue **or** striped?

d: Given that a randomly selected marble is checkered, what is the probability it is green?

e: Given that a randomly selected marble is green, what is the probability it is checkered?

BHCC Mat-181 Probability

Q2: American roulette involves spinning a wheel with 38 pockets. Jason is repeatedly betting on a number, such that he has a 1 in 38 chance to win each round. Each round he either loses \$1 or gains \$35. Jason figures if he plays 34 rounds, he only needs to win one round to end with more money (this is true).

a: What is the chance that Jason loses 34 rounds in a row?

b: What is the chance that Jason wins at least 1 round out of 34 rounds?

c: Is Jason more likely to be ahead or behind after 34 rounds?

BHCC Mat-181 Probability

Q3:

Mak	te Venn diagrams for the following events.
a:	Two disjoint events.
b:	Two exhaustive events that are non-disjoint.
c:	Two events that are complements.
d:	Two independent events.
e:	Two dependent events that are non-disjoint.
f:	A, B such that A implies B but B does not imply A .
g:	A, B such that A implies B and B implies A .

Q4: Complete the following relative-frequency contingency table.

			Y	
		true	false	total
X	true	0.05		
Λ	false			0.4
	total	0.2		1

Q5: Complete the following relative-frequency contingency table such that X and Y are mutually exclusive and exhaustive.

			Y	
		true	false	total
X	true			
Λ	false	0.3		
	total			1

Q6: Complete the following relative-frequency contingency table such that X and Y are independent.

			Y	
		true	false	total
X	true	0.28		
	false			
	total	0.7		1

Q7: Complete the following relative-frequency contingency table such that P(Y) = 0.2 and P(X|Y) = 0.8 and P(X|Y) = 0.5.

		Y	7	
		true	false	total
X	true			
Λ	false			
	total			1

BHCC Mat-181 Probability

Q8: Liam's friend, Owen, tells Liam that he has a biased coin that will land heads with probability 0.70. Liam is not sure he trusts Owen, because Owen sometimes lies and Liam can't imagine how a biased coin would work. Thus, Liam feels the likelihood that Owen is telling the truth is 0.10. Liam asks to see a flip of the coin, and feels the following contingency table explains his expectations.

	Coin is biased (B)			
		true	false	total
Heads (H)	true	0.07	0.45	0.52
	false	0.03	0.45	0.48
	total	0.1	0.9	1

a: If the coin is biased, what is the likelihood it lands heads?

$$P(H|B) =$$

b: If the coin is not biased, what is the likelihood it lands heads?

$$P(H|B^c) =$$

c: If the coin lands heads, how likely is the coin biased (based on Liam's prior beliefs)?

$$P(B|H) =$$

d: After one flip lands heads, Liam adjusts his expectations for the next flip.

	Coin is biased (B)			
		true	false	total
Uanda (U)	true	0.091	0.435	0.526
Heads (H)	false	0.039	0.435	0.474
	total	0.13	0.87	1

Now, if this next flip is also heads, what is the likelihood the coin is biased?

$$P(B|H) =$$