Phys 132 - HW-Unit I-Solutions

Session 1 Vacuum (P=0) Let's call tube area A. The force down on the bottom of the column of water is the weight mg = p /9
donsty Volume P=Patm=Patm $p = 1 \frac{9}{\text{cm}^3} - \frac{1 \log \left(\frac{100 \text{cm}}{100 \text{g}} \right)^3 = 10^3 \text{kg/m}^3}{1 \text{m}} = 10^3 \text{kg/m}^3$ V = h. A = 10m. A The force up is provided by atmospheric pressure: Fup = Patm. A. Since water is at rest, |Fup | = | Flown | => Patm. A=pghA So Patm=pgh= 103kg/m3.10 1/52.10m = 10° Pa (above 1 stm) (above 1 ston) 2) Pat 20m should be 2x Pat 10m, which we know from 1 is about 12tm = 105 Ps. So P_20m=pgh=103kg/3.101/5=.20m

[All of these P's are pressures above 12hm, or you may 5/mply add 1.0×105 Pa to each value]

In Salt water, P20m = pgh = 1.1×103kg/m3.10m/sz. 20m = 2.2×105Pe

Session 7 $P_{t}=100PSI$ $h=10^{3}ft/(12i\pi)/2.54cm/(1m)=30Sm$ $P_{t}=100PSI$ $P_{t}=100PS$

(I assumed 100 PSI included 1 stm of ofthes pressure ~ not obvious in problem) 1

3) Now, cylinders have different contents: $P_L = 1.1 \times 10^3 \text{ kg/m}^3$ $P_R = 1 \times 10^3 \text{ kg/m}^3$

PA=Pagh PB=Pagh, So PA=1.1×PB.

So, fluid will stow from left (self) to right (fresh). This will continue until PA=PB, or

pigh_= Prghr, or hr= Prh_= 1.1h_
25 suming densities don't change appreciably
from mixing a little bit of salt water over to
the right. (Our suswer is off about 10% because
of this - should be more like hr=1.09h_- but
I didn't want you to warry about this.)

Solutions I.3

Session 3

$$\overline{1}$$
 a) $\overline{1}$ crossing = $\sqrt{r} = \frac{10^{2} \text{m}}{300 \text{m/s}} = 3.3 \times 10^{3} \text{sec}$

No chance of observing individual hits at this rate!!

$$F_{top} = P_{t} \cdot A = \left(12^{t_{m}} + pgh_{tep}\right) A$$

$$= \left(10^{5} P_{e} + 10^{3} \log_{3} \cdot 10 \%^{2} \cdot 05 \text{m}\right) A$$

$$= \left(10^{5} P_{e} + 10^{3} \log_{3} \cdot 10 \%^{2} \cdot 05 \text{m}\right) A$$

$$= \left(10^{5} P_{e} + 10^{3} \log_{3} \cdot 10 \%^{2} \cdot 08 \text{m}\right) A$$

$$A = \pi(.02 \text{m})^{2}$$

$$C) \quad F_{net} = F_{bottom} - F_{top}$$

$$= (P_b - P_t) A = \left[(10^5 P_2 - 10^5 P_2) + (pgh_{bot} - pgh_{tm}) \right] A$$

$$= 0.628N$$

d) Friet =
$$pg(h_{bott} - h_{top})A = pg^{v}cye$$

hcyl Usually expressed as the weight of the water displaced. Eureka!

Solutions I.3

We assume zir travels from leading flow con edge to trailing edge of wing in some time, regardless of paton (2 good approximation). So, Vair = Path , and since path over top 15 10% longer, Que Vtop = 1.1 × Vbettom =1.1 × 200% = 220% sec (1) Assuming a negligible height différence between top & bottom, Pb+=pvb= P++=pv+2 $SP_{b}-P_{+}=\frac{1}{2}\rho(v_{+}^{2}-v_{b}^{2})$ $= \Delta P = \frac{1}{2} \left[\frac{k_s}{m_s} \left[220\% \right]^2 - \left(200\% \right)^2 \right] = 4200 Pe$ Fruit = Pb·A - PtA = DP·A = 4200Pa·(3mx10m) = 1.26x105N One 75 kg person weighs mg=75kg.10 7/52 = 750N, So this would support 168 Such people