Norms and inner product Pre-projection theorem ROB 501 Necmiye Ozay

• Last time: Least squares (high level)

$$\hat{\alpha} = \underset{\alpha \in \mathbb{R}^2}{\operatorname{argmin}} ||Y - A\alpha||^2 \qquad \qquad \hat{\alpha} = (A^T A)^{-1} A^T Y$$

We will build the proof but we need a few new concepts

$$\begin{array}{cccc}
\hline
& (f', f) & ||\cdot||_{p} & (last time) \\
& ||\cdot||_{p} & \cdots
\end{array}$$

More examples of norms

a, b $\in \mathbb{R}$, a < b, $O = [a, b] \subset \mathbb{R}$ $X = \{ f : [a, b] \rightarrow \mathbb{R} \mid f \text{ is continuous} \}, T = \mathbb{R}$ $||f||_2 := |\int |f(z)|^2 dz| \leftarrow \text{integral is well-define}$ for continuous functions $||f||_{p} := \left(\int_{z}^{z} |f(z)|^{p} dz\right)^{1/p} ||f(z)|^{p} dz$ $\|f\|_{\infty} := \sup |f(t)| = \max |f(t)|$ $\int_{a}^{b} a \leq t \leq b$

for continuous functions whose domain is a closed interval

11.11: X -> R is a norm if

a) $\forall x \in X$, ||x|| > 0 and $||x|| = 0 \iff x = 0$ (positive definiteness)

b) [Triangle Inequality] $\forall x,y \in X$ $||x+y|| \le ||x|| + ||y||$ c) [positive homogeneity] $\forall x \in \mathcal{F}$, $\forall x \in X$, $||x \cdot x|| = |x| \cdot ||x||$ where |x| = S absolute value if $x \in R$ magnitude if $x \in C$

$$(\chi, R, \|\cdot\|_2)$$

(X,R,11.11p) Energy (X,R,11.11p) Energy (X,R,11.11p)

More examples of norms

3) Let
$$X = \mathbb{R}^{n \times m}$$
 $\mathcal{F} = \mathbb{R}$. Let $A \in X$.
 $||A|| = \sqrt{tr(A^TA)}$ is a norm.

Goal for rest of today and Monday

$$y^* = \underset{y \in M}{\operatorname{argmin}} \|x - y\|_2$$

Recall:
$$x,y \in \mathbb{R}^2$$
 $x^Ty = [x, x_2] \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \sum_{i=1}^2 x_i y_i$
 $x \perp y \iff x^Ty = 0$

Lyinner product

Think about least squares: " $A\alpha = Y$ " want to min $\|Y - A\alpha\|_2$ $A \in \mathbb{R}^{N \times n}$ fit $A \in \mathbb{R}^{N}$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$ $A = [A_1 \mid A_2 \mid \dots \mid A_n]$

Inner products

-> See notes at the end of the slide deck for the complex case (F=C).

Slide deck for the confined
$$E \times amples$$
:

a) (R^n, R) , $(x, y) = x^T y = \sum_{i=1}^n x_i y_i$

b) $(R^{n \times m}, R)$, $(A, B) = tr(A^T B)$

c) (X, R) , $X = \begin{cases} f: [a,b] \rightarrow R | f \text{ continuous} \end{cases}$
 $(f, g) = \begin{cases} f(z)g(z) dz \end{cases}$

Def: Given (X, F) a vector space and <.,.> an inner product on it (X, F, (·,·)) is an inner product space. We will mostly focus on the case $(X, \mathbb{R}, \langle \cdot, \cdot \rangle)$.

Cauchy-Schwartz inequality:

Let (X, iR, <.,.>) be an inner product space. Then,

 $\forall x,y \in X$, $|\langle x,y \rangle| \leqslant \langle x,x \rangle^{1/2} \cdot \langle y,y \rangle^{1/2}$ 14x,y>1 < 11x11-11y11

Fact: All inner products induce a norm (but converse is not true).

 $||x|| := \langle x, x \rangle^{1/2}$ is always a norm on (X/R).

<u>Proof:</u> We want to show $(x,x)^{1/2}$ satisfies (a) positive definiteness (b) triangular inequality (c) positive homogenesty.

(a) is satisfied by prop. (c) of inner products

(b) We need to show $||x+y|| \le ||x|| + ||y||$ for $||x|| = \langle x, x \rangle^{1/2}$

 $(||x+y||)^2 \le (||x||+||y||)^2 = ||x||^2 + ||y||^2 + 2||x||||y||$ $(||x+y||)^2 \le (||x||+||y||)^2 = ||x||^2 + ||y||^2 + 2||x||||y||$ $(||x+y||)^2 \le (||x||+||y||)^2 = ||x||^2 + ||y||^2 + 2||x||||y||$ $(||x+y||)^2 \le (||x||+||y||)^2 = ||x||^2 + ||y||^2 + 2||x||||y||$ $(||x+y||)^2 \le (||x||+||y||)^2 = ||x||^2 + ||y||^2 + 2||x||||y||$ $(||x+y||)^2 \le (||x||+||y||)^2 = ||x||^2 + ||y||^2 + 2||x||||y||$

 $= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$ $= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$ $= \langle y, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$ $= \langle y, x \rangle + \langle y, y \rangle + \langle y, y \rangle$ $= \langle y, x \rangle + \langle y, y \rangle + \langle y, y \rangle$ $= \langle y, x \rangle + \langle y, y \rangle$ $= \langle y, x \rangle + \langle y, y \rangle$ $= \langle y, x \rangle + \langle y, y \rangle$ $= \langle y, y$

 $= ||x||^2 + 2 \langle x, y \rangle + ||y||^2 \leq ||x||^2 +$

 $-2 < x, y > \leq 2 | < x, y > | \leq 2 < x, x > | ^{12} < y, y > | ^{12}$

Cauchy-Schwartz 2 11x11 lly11

 $||x+y||^2 = \langle x+y, x+y \rangle \leq ||x||^2 + 2||x|||y|| + ||y||^2$ $\left(\|x\| + \|d\|\right)_{T}$

=> 11x+y11 < 11x11+11y1 (triangular inequality)

(c) Follows from prop. (b) of inner products $= \frac{1}{||x||} ||x|| = \langle x \times |x \times |x|| = \langle x \times |x|$ $= \left(\frac{2}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \right)^{1/2} = |\alpha| \times \frac{1}{\sqrt{2}}$ $= |\alpha| \times \frac{1}{\sqrt{2}}$ $= |\alpha| \times \frac{1}{\sqrt{2}}$

Relation of inner products and norms

Inner products

Def. Let
$$(X, \mathbb{R})$$
 be vector space. A confunction $\langle \cdot, \cdot \rangle : X \times X \longrightarrow \mathbb{R}$ is an inner product if:

a) $\forall x, y \in X$, $\langle x, y \rangle = \langle y, x \rangle$ (symmetry)

b) $\forall x, x \in \mathbb{R}$, $\forall x, x \in \mathbb{R}$,

Claim: For any inner product <.,.>, the function $(\langle x,x\rangle)^{1/2}$ is a norm (we call it the norm induced by the inner product), i.e., $||x|| = (\langle x,x\rangle)^{1/2}$

Proof:

- "a) positive definiteness" of the norm follows from property "c)" of the inner product
- We showed ||.|| defined this way satisfies the triangle inequality last time
- "c) positive homogeneity" of the norm follows from: $||\alpha x|| = (\langle \alpha x, \alpha x \rangle)^{1/2} = (\alpha \langle x, \alpha x \rangle)^{1/2} = (\alpha^2 \langle x, x \rangle)^{1/2} = |\alpha|(\langle x, x \rangle)^{1/2}$

 $\frac{\text{Def}:}{\text{One orthogonal}} \text{ (x Ly) if } \langle x,y \rangle = 0.$

(b) A set of vectors S is orthagonal if $\forall x,y \in S$, $x \neq y$, $x \perp y$

(c) A vector $x \in X$ is orthogonal to a set S if $\forall y \in S$, we have $x \perp y$

 \forall (d) A set of vectors S is orthonormal if \forall x \in S, ||x|| = 1 and set S is orthogonal.

Remark II. II is always the norm coming from $(x, F, \langle \cdot, \cdot \rangle)$ is mentioned.

Pythagorean Theorem

If
$$x \perp y$$
, then $||x+y||^2 = ||x||^2 + ||y||^2$.
Proof: for $f = R$:
$$||x+y||^2 = \langle x+y, x+y \rangle$$

$$= \langle x, x+y \rangle + \langle y, x+y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, y \rangle$$

$$= ||x||^2 + ||y||^2$$

Pre-projection Theorem

M. M.

 $(X,R,<\cdot,\cdot)$ be an inner product space. Let $M\subset X$ be a subspace, and $x\in X$.

Then,

- (a) If mo EM s.t. 11x-moll \(\subseteq \text{Ilx-mll \text{ \text{MEM}}} \)
 then mo is unique.
 - (b) A necessary and sufficient condition for m. EM to be a minimizer of min d(x, M) is that the error vector mem

(x-m_o) is arthagonal to M, i.e. (x-m_o)_IM Proof. (=>) Claim b) Let mo EM. If $||x-m_0|| = d(x, M)$, then $(x-m_0) \perp M$. p = > 9Contrapositive. 79=>7P $x-m_0 \not\perp M = ||x-m_0|| > d(x, M)$ $\langle \times - m_0, \overline{m} \rangle \neq 0$ => (m is non-zero; ie, II milto) We can write: $\langle x-m_0, \frac{\overline{m}}{\|\overline{m}\|} \rangle = \frac{1}{\|\overline{m}\|} \langle x-m_0, \overline{m} \rangle \neq 0$ Thus, without loss of generality, we can assume ||m|| = 1Define: $B = \langle x-m_0, \overline{m} \rangle \neq 0$

 $m_1 = m_0 + \beta \overline{m} \in M$ "To show $\|x - m_1\| < \|x - m_0\|$ "

 $\|x\|_2 = \langle x, x \rangle^{\frac{1}{2}}$

inner product => norms => distances

Review Complex Numbers: Let $z = z_R + jz_I \in \mathbb{C}$, where $z_R, z_I \in \mathbb{R}$. We note that:

please

- $\bar{z} := z_R jz_I$ is the complex conjugate of z
- $z \in \mathbb{R} \Leftrightarrow z = \bar{z}$
- $z \cdot \bar{z} = |z|^2$, and thus, $|z| = \sqrt{z \cdot \bar{z}}$

Definition: Let (X, \mathbb{C}) be a vector space. A function

$$<\cdot,\cdot>:X\times X\to\mathbb{C}$$

is an inner product if

(a)
$$\forall x, y \in X, \langle x, y \rangle = \overline{\langle y, x \rangle}$$

(b) $\forall x_1, x_2, y \in X$ and $\forall \alpha_1, \alpha_2 \in \mathbb{C}$, (i.e., linear in the left argument)

$$<\alpha_1 x_1 + \alpha_2 x_2, y> = \alpha_1 < x_1, y> +\alpha_2 < x_2, y>$$

(c)
$$\forall x \in X, \langle x, x \rangle \ge 0$$
 and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.

Remarks:

• In the case of a real vector space (X, \mathbb{R}) , replace (a) with

(a'): $\langle x, y \rangle = \langle y, x \rangle$. It is easy to show that we then have linearity in both the left and right sides.

- Going back to the complex case, (X,\mathbb{C}) , (a) and (b) together imply that
- $\forall x, y_1, y_2 \in X$ and $\forall \alpha_1, \alpha_2 \in \mathbb{C}$,

$$\langle x, \alpha_1 y_1 + \alpha_2 y_2 \rangle = \overline{\langle \alpha_1 y_1 + \alpha_2 y_2, x \rangle}$$

$$= \overline{\langle \alpha_1 y_1, x \rangle} + \overline{\langle \alpha_2 y_2, x \rangle}$$

$$= \overline{\alpha_1} \langle y_1, x \rangle + \overline{\alpha_2} \langle y_2, x \rangle$$

$$= \overline{\alpha_1} \overline{\langle y_1, x \rangle} + \overline{\alpha_2} \overline{\langle x, y_2 \rangle}$$

$$= \overline{\alpha_1} \langle x, y_1 \rangle + \overline{\alpha_2} \langle x, y_2 \rangle$$

Corollary: Let $(X, \mathcal{F}, \langle \cdot, \cdot \rangle)$ be an inner product space. Then

$$||x|| := \langle x, x \rangle^{1/2}$$

is a norm on X.

Proof: The main thing to establish is the triangle inequality:

$$||x + y|| \le ||x|| + ||y||$$
.

This is equivalent to showing:

$$||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2.$$

Brute force computation:

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x + y \rangle + \langle y, x + y \rangle$$

$$= \overline{\langle x + y, x \rangle} + \overline{\langle x + y, y \rangle}$$

$$= \overline{\langle x, x \rangle} + \langle y, x \rangle + \overline{\langle x, y \rangle} + \langle y, y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \overline{\langle x, y \rangle} + \langle y, y \rangle$$

$$= ||x||^{2} + ||y||^{2} + 2\operatorname{Re}\{\langle x, y \rangle\}$$

where Re{< x, y >} denotes the real part of the complex number < x, y >. However, for any complex number α , Re{ α } $\le |\alpha|$, and thus we have

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}\{\langle x, y \rangle\}$$

$$\leq ||x||^2 + ||y||^2 + 2|\langle x, y \rangle|$$

$$\leq ||x||^2 + ||y||^2 + 2||x|| ||y||,$$

where the last inequality is from the Cauchy-Schwarz Inequality.

Theorem: [Cauchy-Schwarz Inequality] Suppose that $\mathcal{F} = \mathbb{R}$ or \mathbb{C} . Let Then $(X, \mathcal{F}, <\cdot, \cdot>)$ be an inner product space (i.e. (X, \mathcal{F}) is a vector space and $<\cdot, \cdot>$ is an inner product on X). Then, for all $x, y \in X$, $|< x, y>| \le < x, x>^{1/2} \cdot < y, y>^{1/2}$.

$$|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \cdot \langle y, y \rangle^{1/2}$$

Proof: If y = 0, the result is obviously true. Hence, assume $y \neq 0$. For all scalars λ we have that

$$0 \le < x - \lambda y, x - \lambda y > = < x, x > -\lambda < y, x > -\overline{\lambda} < x, y > + |\lambda|^2 < y, y >,$$

because the inner product of a vector with itself is a non-negative real number. For the particular choice $\lambda = \frac{\langle x,y \rangle}{\langle y,y \rangle}$, direct calculation shows

$$0 \le < x, x > -\frac{|< x, y > |^2}{< y, y >},$$

which gives

$$| < x, y > | \le \sqrt{< x, x > < y, y >} = < x, x >^{1/2} \cdot < y, y >^{1/2}$$
.

OFFICE HOURS
$$x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}^{2}$$

$$y_{1} = P x_{1}$$

$$y_{2} = P x_{2}$$

$$[y_{1}, y_{2}] = P[x_{1}, x_{2}]$$

$$A = P \cdot B$$

 $X - M_o$