Instituto Superior Técnico - 1º Semestre 2006/2007

Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

9^a Ficha de exercícios para as aulas práticas: 27 - 30 Novembro de 2006

1) Determine uma primitiva da função definida (em algum intervalo apropriado) pela expressão:

a)
$$|x|$$
 b) $\frac{1}{2-x}$ c) $\frac{x}{1+x^4}$ d) $\frac{1}{x^3} + \frac{4}{x\sqrt{x}}$ e) $\left(\frac{1}{x^3} + \frac{4}{x\sqrt{x}}\right)^2$ f) $(x^2+1)^3$

g)
$$\frac{1+x}{\sqrt{1-x^2}}$$
 h) $\frac{1}{(x-1)^2}$ i) $\frac{x^3}{x^8+1}$ j) $\frac{1}{2x-5}$ k) $x\sqrt{x^2+1}$

l)
$$\frac{x^2}{1+x^3}$$
 m) $\frac{x^2}{1+x^2}$ n) $\frac{x}{1+x^2}$ o) $\frac{1}{\sqrt[5]{1-2x}}$

2) Determine uma primitiva da função:

a)
$$\frac{1}{\sqrt{3-4x^2}}$$
 b) $\frac{x+1}{x^2+2x}$ c) $\frac{1}{x-5}$ d) $\sqrt{\frac{1+x}{1-x^2}}$ e) $\frac{3}{(x+2)^2}$ f) $\frac{x^2}{1+x^6}$

g)
$$\frac{x}{\sqrt{2-3x^4}}$$
 h) $\frac{x+1}{2+4x^2}$ i) $\frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}}$ j) $\frac{3}{\sqrt{x}} + \frac{x\sqrt{x}}{4}$ k) x^{-4} l) $\sqrt{2x} + \sqrt{\frac{x}{2}}$

m)
$$\frac{x}{x^2 + x + 1}$$
 n) $\frac{1}{x^2 + x + 4}$ o) $\frac{1}{x^2 + x + 1}$

3) Determine uma primitiva da função:

a)
$$3 \operatorname{sen} x + 2x^2$$
 b) $\operatorname{sh} (2x+1) \sqrt{\operatorname{ch} (2x+1)}$ c) $\operatorname{sh} (\cos x) \operatorname{sen} x$ d) $x \operatorname{sh} x^2$ e) $\operatorname{sen} x \operatorname{sen} 2x$

f)
$$\frac{\cos x}{\sin^2 x}$$
 g) $\cos x \cos 2x$ h) $\tan x \sec^2 x$ i) $\cos^3 x \sin x$ j) $\sin^3 x \cos^4 x$ k) $\cos^3 x \sin^2 x$

l)
$$\operatorname{sen}^3 x \cos^3 x$$
 m) $\operatorname{sen}^3 x$ n) $\operatorname{tg} 2x$ o) $\operatorname{sen}^2 x$ p) $\cos^2 x$ q) $\cot g^2 x$ r) $\operatorname{tg}^2 x$ s) $\operatorname{tg} x$

t)
$$\cos^3 x$$
 u) $\cot x$ v) $\cos \frac{x}{\sqrt{2}}$ w) $\sin 2x$ x) $\frac{1}{\sqrt{x}}\cos \sqrt{x}$ y) $\frac{x}{\cos^2 x^2}$ z) $\frac{1}{4}\cot 2x$

4) Determine uma primitiva da função:

a)
$$\frac{x + \arcsin^2 3x}{\sqrt{1 - 9x^2}}$$

$$b) \frac{1}{\cos^2 3x}$$

a)
$$\frac{x + \operatorname{arcsen}^2 3x}{\sqrt{1 - 9x^2}}$$
 b) $\frac{1}{\cos^2 3x}$ c) $\frac{\operatorname{sen} \sqrt{x}}{\sqrt{x} (1 + \cos \sqrt{x})}$ d) $\frac{\sec^2 x}{\sqrt{1 - \operatorname{tg}^2 x}}$ e) $\frac{\operatorname{tg} \sqrt{x}}{\sqrt{x}}$

$$d) \frac{\sec^2 x}{\sqrt{1 - \lg^2 x}}$$

e)
$$\frac{\operatorname{tg}\sqrt{x}}{\sqrt{x}}$$

f)
$$(\operatorname{tg} 2x + \sec 2x)^2$$

g)
$$\sin 2x \cos 2x$$

h)
$$\frac{\sin x}{\cos x + 2}$$

i)
$$tg^3 x + tg^4 x$$

f)
$$(tg 2x + sec 2x)^2$$
 g) $sen 2x cos 2x$ h) $\frac{sen x}{cos x + 2}$ i) $tg^3 x + tg^4 x$ j) $\frac{1}{cos^2 x \sqrt{tg x - 1}}$

$$k) (1 + tg^2 x) tg x$$

k)
$$(1 + tg^2 x) tg x$$
 l) $\frac{1}{(1 + x^2)(1 + arctg^2 x)}$ m) $\frac{3 \operatorname{sen} x}{(1 + \cos x)^2}$ n) $\frac{\operatorname{sen} x + \cos x}{\cos x}$

$$m) \frac{3 \sin x}{(1 + \cos x)^2}$$

n)
$$\frac{\sin x + \cos x}{\cos x}$$

o)
$$\frac{\sin 2x}{1 + \cos^2 x}$$

p)
$$\frac{\sin x}{1 + \cos^2 x}$$

q)
$$\frac{\sin 2x}{1 + \cos 2x}$$

o)
$$\frac{\sin 2x}{1 + \cos^2 x}$$
 p) $\frac{\sin x}{1 + \cos^2 x}$ q) $\frac{\sin 2x}{1 + \cos 2x}$ r) $x^2 \cos (x^3 + 1)$ s) $\frac{\arcsin x}{\sqrt{1 - x^2}}$

s)
$$\frac{\arcsin x}{\sqrt{1-x^2}}$$

t)
$$\frac{\sec 6x}{\sqrt[3]{\sec^2 3x + 1}}$$
 u) $\sec x\sqrt{1 - \cos x}$ v) $\sec (\cos x) \sec x$ w) $x \sec^2 (3 - 2x^2)$

u) sen
$$x\sqrt{1-\cos x}$$

v)
$$sen(cos x) sen x$$

w)
$$x \sec^2 (3 - 2x^2)$$

x)
$$\frac{\sqrt{\arctan x}}{1+x^2}$$
 y) $\frac{\arctan x}{1+x^2}$ z) $\frac{\sec^2 x}{3+\tan^2 x}$

y)
$$\frac{\arctan^4 x}{1+x^2}$$

$$z) \frac{\sec^2 x}{3 + \tan^2 x}$$

5) Determine uma primitiva da função:

a)
$$2^{x-1}$$
 b)

c)
$$e^{-5x}$$

d)
$$xe^{-x^2}$$

e)
$$e^{x+e^x}$$

f)
$$\frac{e^x}{2+e^x}$$

g)
$$\frac{e^{x}}{1 + e^{2x}}$$

a)
$$2^{x-1}$$
 b) e^{x+3} c) e^{-5x} d) xe^{-x^2} e) e^{x+e^x} f) $\frac{e^x}{2+e^x}$ g) $\frac{e^x}{1+e^{2x}}$ h) $\frac{e^{4x}}{(3+e^{4x})^2}$

$$i) \frac{3e^x}{\sqrt[7]{1-4e^x}}$$

j)
$$\frac{1}{1 + e^x}$$

k)
$$\frac{e^x}{\sqrt{1 - e^{2x}}}$$

$$1) \frac{e^x}{e^{2x} + 4}$$

i)
$$\frac{3e^x}{\sqrt[7]{1-4e^x}}$$
 j) $\frac{1}{1+e^x}$ k) $\frac{e^x}{\sqrt{1-e^{2x}}}$ l) $\frac{e^x}{e^{2x}+4}$ m) $\frac{\log x}{x} + \frac{1}{x\log x} + \frac{1}{x\log x\log(\log x)}$

n)
$$\frac{3}{(2x+3)\sqrt{1-\log^2(2x+3)}}$$
 o) $\frac{1}{x+x\log^2 x}$ p) $\frac{\sqrt{1+\log x^3}}{x}$ q) $\frac{\log x}{x(1-\log^2 x)}$

o)
$$\frac{1}{x + x \log^2 x}$$

$$p) \frac{\sqrt{1 + \log x^3}}{x}$$

$$q) \frac{\log x}{x \left(1 - \log^2 x\right)}$$

r)
$$\frac{1}{x(2-3\log x)^{2/3}}$$

s)
$$\frac{\log x}{x\sqrt{1+\log^2 x}}$$

r)
$$\frac{1}{x(2-3\log x)^{2/3}}$$
 s) $\frac{\log x}{x\sqrt{1+\log^2 x}}$ t) $\frac{\arctan(\log x^2)}{x(1+\log^2 x^2)}$ u) $\frac{x+e^{\arctan\frac{1}{x}}}{x^2+1}$ v) $\sin(\log x)\frac{1}{x}$

$$u) \frac{x + e^{\arctan \frac{1}{x}}}{x^2 + 1}$$

v) sen
$$(\log x) \frac{1}{x}$$

w)
$$\sec x$$

y)
$$\frac{e^x}{1 + e^{2x-1}}$$

w)
$$\sec x$$
 x) $\csc x$ y) $\frac{e^x}{1 + e^{2x-1}}$ z) $\frac{e^{\arctan x} (2 + e^{\arctan x})}{1 + x^2}$

- **6)** Determine a função f que verifica as seguintes condições.
- a) $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f'(x) = \cos^2 x \sin^2 x$ e f(0) = 1.

b)
$$f:]-\infty; -1[\cup]1; +\infty[\longrightarrow \mathbb{R}, \quad f'(x) = \frac{x^3}{\sqrt{(x^4-1)^3}}, \quad f(2) = 0 \quad e \quad f(-2) = 1.$$

c)
$$f : \mathbb{R} \longrightarrow \mathbb{R}$$
, $f'(x) = \frac{(1 + 2 \arctan x)^3}{1 + x^2}$, $f(0) = 0$.

d)
$$f: \mathbb{R}\setminus\{1\} \longrightarrow \mathbb{R}, \ f''(x) = 3x + \frac{1}{(1-x)^2}, \ f(0) = 0, \ f'(e+1) = 1, \ f(e+1) = 0 \ e \ f'(0) = 0.$$

e)
$$f : \mathbb{R} \longrightarrow \mathbb{R}$$
, $f'(x) = \frac{x+1}{4x^2+9}$, $f(0) = 1$.

7) Determine uma primitiva da função racional:

a)
$$\frac{1}{x^2 - 1}$$
 b) $\frac{x^4}{1 - x}$ c) $\frac{x^3 + x + 1}{x(x^2 + 1)}$ d) $\frac{x^4}{x^4 - 1}$ e) $\frac{1}{(x+1)(x^2 + 1)}$ f) $\frac{x+1}{x^3(x-2)^2}$

g)
$$\frac{x+1}{x^5+4x^3}$$
 h) $\frac{x^5}{x^2-1}$ i) $\frac{x+3}{x^2-x-2}$ j) $\frac{x}{x^2+2x+3}$ k) $\frac{1}{x^4-x^3-x+1}$

1)
$$\frac{3x+1}{x^3-x}$$
 m) $\frac{x^2}{(x^2+1)^2}$ n) $\frac{x}{(x+1)(x+2)^2}$

8) Utilizando o método de primitivação por partes, calcule uma primitiva da função:

a)
$$\frac{\log(\log x)}{x}$$
 b) $x \operatorname{sen} x$ c) $x^2 \operatorname{sen} x$ d) $x \operatorname{cos} x$ e) $\frac{x \operatorname{sen} x}{\cos^2 x}$ f) $\log^3 x$ g) $x^2 e^x$ h) $x^3 e^{-x^2}$

i)
$$\frac{x^7}{(1-x^4)^2}$$
 j) $\cos(\log x)$ k) $\cosh x \cos x$ l) $\log(2x+3)$ m) $x \log x$ n) $x^2 \sinh x$

o)
$$x \operatorname{arctg} x$$
 p) $\sqrt{x} \operatorname{arctg} \sqrt{x}$ q) $x \operatorname{arctg}^2 x$ r) $x(1+x^2) \operatorname{arctg} x$ s) $\frac{x^5}{\sqrt{1+x^3}}$

- 9) Utilizando o método de primitivação por partes, calcule uma primitiva da função:
- a) $\frac{\log(\operatorname{arcsen} x)}{\sqrt{1-x^2}}$ b) $\operatorname{arcsen} \frac{1}{x}$ c) $x \operatorname{arcsen} \frac{1}{x}$ d) $e^x(e^x+x)$ e) $\operatorname{sen}(\log x+1)$ f) $\frac{1}{(x^2+1)^2}$
- g) $\cos x \log(1+\sin^2 x)$ h) $\cos x \log(1+\sin x)$ i) $\sec^2 x \log(\operatorname{tg} x)$ j) $\frac{\operatorname{arctg} x}{x^2}$ k) $3x\sqrt{1-x^2} \operatorname{arcsen} x$
- l) $\cos 2x \log(\operatorname{tg} x)$ m) $\frac{1}{x^3} \cos \frac{1}{x}$ n) $x^2 \log^2 x$ o) $\frac{\log x}{\sqrt{x}}$ p) $\log(\frac{1}{x} + 1)$ q) $\frac{\log x}{(1+x)^2}$
- 10) Utilizando uma substituição conveniente, determine uma primitiva da função:

a)
$$\frac{1}{x\sqrt{1+x^2}}$$
 b) $\frac{1}{\sqrt{e^x-1}}$ c) $\frac{\sqrt{x^2+2}}{x}$ d) $\frac{x^2+3}{\sqrt{9-x^2}}$ e) $\frac{\sqrt{4-x^2}}{x^2}$ f) $\frac{1}{x\sqrt{x^2-3}}$

g)
$$\frac{1}{x^2\sqrt{4-x^2}}$$
 h) $\frac{2}{\sqrt{x^2-9}}$ i) $\frac{x}{\sqrt{2-3x}}$ j) $\sqrt{1+\sqrt{x}}$ k) $(1+x^2)^{-\frac{3}{2}}$ l) $x\sqrt{2+x}$

m)
$$\frac{x^2}{\sqrt{9+x^2}}$$
 n) $\frac{\sqrt[4]{1-x}-1}{(1-x)(1+\sqrt{1-x})}$ o) $\frac{1}{1-\sin x-\cos x}$ p) $\frac{\sin x}{\sin x+\cos x}$

11) Utilizando uma substituição conveniente, determine uma primitiva da função:

a)
$$\frac{1}{\cos^4 x}$$
 b) $\sqrt{4 - 4x - x^2}$ c) $\frac{1 - \lg x}{1 + \lg x}$ d) $\frac{\sqrt{x} - 1}{\sqrt[3]{x} + 1}$ e) $\frac{1}{\sinh x}$ f) $\frac{\sin 2x}{\cos^2 x - \sin x - 3}$

g)
$$\frac{e^{3x}}{(1+e^{2x})(e^x-2)^2}$$
 h) $\frac{e^{3x}+3e^{2x}+6}{e^{3x}+3e^x}$ i) $\frac{\sqrt{x}}{\sqrt[4]{x^3}+1}$ j) $\frac{2\log x-1}{x\log x(\log x-1)^2}$ k) $\frac{1}{\sqrt{x(1-x)}}$

l)
$$\frac{\sqrt{x-1}}{x}$$
 m) $\frac{\sqrt{1-x^2}}{x^4}$ n) $\frac{\log x}{\sqrt{1+x}}$ o) $\frac{\log x}{x\sqrt{1+\log x}}$ p) $\frac{x \log x}{\sqrt{1-x^2}}$ (1° por partes)

- 12) Um ponto percorre o eixo dos xx com aceleração $12-8t \ (m/s^2)$ em cada instante t. Sabendo que ocupava a posição x=0 no instante t=0 e tinha velocidade 0 nesse instante, calcule:
 - a) A sua velocidade no instante t=2 segundos.
 - b) A sua posição no instante t=3 segundos.
- c) A sua velocidade positiva máxima durante todo o movimento e o instante em que essa velocidade foi atingida.
 - d) Excluindo o instante inicial t = 0, o ponto esteve parado em mais algum instante?