```
## Import basic python libraries
In [1]:
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import warnings
         warnings.filterwarnings('ignore')
         # Import dataset
In [2]:
         data=pd.read_csv(r'C:\Users\anith\OneDrive\Documents\anil.csv')
         data.head()
In [3]:
            Loan ID Gender
                            Married
                                    Dependents
                                                Education
                                                         Self_Employed
                                                                       ApplicantIncome CoapplicantIncome
Out[3]:
         0 LP001002
                                             0
                                                 Graduate
                                                                                 5849
                                                                                                   0.0
                       Male
                                No
                                                                   No
         1 LP001003
                       Male
                                Yes
                                             1
                                                 Graduate
                                                                   No
                                                                                 4583
                                                                                                 1508.0
         2 LP001005
                       Male
                                Yes
                                             0
                                                 Graduate
                                                                   Yes
                                                                                 3000
                                                                                                   0.0
                                                     Not
                                                                                                 2358.0
         3 LP001006
                       Male
                                Yes
                                             0
                                                                   No
                                                                                 2583
                                                 Graduate
         4 LP001008
                       Male
                                                 Graduate
                                                                                 6000
                                                                                                   0.0
                                No
                                             0
                                                                   No
         # Dealing the missing values
In [4]:
         data.isnull().sum()
                                0
         Loan_ID
Out[4]:
                               13
         Gender
         Married
                                 3
         Dependents
                               15
         Education
                                0
         Self_Employed
                               32
         ApplicantIncome
                                0
                                0
         CoapplicantIncome
         LoanAmount
                               22
         Loan_Amount_Term
                               14
         Credit_History
                               50
                                0
         Property_Area
                                 0
         Loan_Status
         dtype: int64
         # Remove the missingvalues
In [5]:
         data.dropna(inplace=True)
         data.isnull().sum()
         Loan_ID
                               0
Out[5]:
         Gender
                               0
         Married
                               0
         Dependents
                               0
         Education
                               0
         Self_Employed
                               0
         ApplicantIncome
                               0
         CoapplicantIncome
                               0
                               0
         LoanAmount
         Loan_Amount_Term
                               0
         Credit_History
                               0
         Property_Area
                               0
                               0
         Loan_Status
         dtype: int64
```

Out[6]:	(480), 13)							
In [7]:	data	a							
Out[7]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
	1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0
	4	LP001008	Male	No	0	Graduate	No	6000	0.0
	5	LP001011	Male	Yes	2	Graduate	Yes	5417	4196.0
	609	LP002978	Female	No	0	Graduate	No	2900	0.0
	610	LP002979	Male	Yes	3+	Graduate	No	4106	0.0
	611	LP002983	Male	Yes	1	Graduate	No	8072	240.0
	612	LP002984	Male	Yes	2	Graduate	No	7583	0.0
	613	LP002990	Female	No	0	Graduate	Yes	4583	0.0
	480 r	ows × 13 c	olumns						
In [8]:	<pre>#checking the skewness (acceptable range is -5 to +5) data.skew()</pre>								
Out[8]:	ApplicantIncome 6.917027 CoapplicantIncome 5.881622 LoanAmount 2.361437 Loan_Amount_Term -2.333710 Credit_History -2.013253 dtype: float64								
In [9]:	<pre>data=data.drop(['Loan_ID'], axis=1)</pre>								

In [10]: data

Out[10]:		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmou		
	1	Male	Yes	1	Graduate	No	4583	1508.0	128		
	2	Male	Yes	0	Graduate	Yes	3000	0.0	66		
	3	Male	Yes	0	Not Graduate	No	2583	2358.0	120		
	4	Male	No	0	Graduate	No	6000	0.0	141		
	5	Male	Yes	2	Graduate	Yes	5417	4196.0	267		
	609	Female	No	0	Graduate	No	2900	0.0	71		
	610	Male	Yes	3+	Graduate	No	4106	0.0	40		
	611	Male	Yes	1	Graduate	No	8072	240.0	253		
	612	Male	Yes	2	Graduate	No	7583	0.0	187		
	613	Female	No	0	Graduate	Yes	4583	0.0	133		
	480 rd	ows × 1	2 columns	5							
In [11]:	<pre>data['Dependents'].unique()</pre>										
Out[11]:	array(['1', '0', '2', '3+'], dtype=object)										
In [12]:	data	a['Depe	endents']=data['Dep	endents']	.replace('3+	',4)				
In [13]:	<pre>data['Dependents'].unique()</pre>										
Out[13]:	array(['1', '0', '2', 4], dtype=object)										
In [14]:	data	ı['Depe	endents']=data['Dep	endents']	.astype('int'	')				
In [15]:	data	a['Depe	endents'].unique()							
Out[15]:	arra	ıy([1,	0, 2, 4]])							
In [16]:				encoder co		<i>vectors</i> dinalEncoder					
	data		nder",'Ma	Encoder() arried','Ed	ucation',	'Self_Employe	ed','Property_	Area','Loan_Stat	us']] = e		
Out[16]:	G	ender	Married D	Dependents E	Education	Self_Employed A	ApplicantIncome (CoapplicantIncome L	.oanAmount		
	1	1.0	1.0	1	0.0	0.0	4583	1508.0	128.0		
	2	1.0	1.0	0	0.0	1.0	3000	0.0	66.0		
	3	1.0	1.0	0	1.0	0.0	2583	2358.0	120.0		
	4	1.0	0.0	0	0.0	0.0	6000	0.0	141.0		
	5	1.0	1.0	2	0.0	1.0	5417	4196.0	267.0		

#encoding the features are float we convert into integer

data[["Gender", 'Married', 'Education', 'Self_Employed', 'Property_Area', 'Loan_Status']]=dat

Loading [MathJax]/extensions/Safe.js

]:		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmou
	1	1	1	1	0	0	4583	1508.0	128
	2	1	1	0	0	1	3000	0.0	66
	3	1	1	0	1	0	2583	2358.0	120
	4	1	0	0	0	0	6000	0.0	141
	5	1	1	2	0	1	5417	4196.0	267
	609	0	0	0	0	0	2900	0.0	71
	610	1	1	4	0	0	4106	0.0	40
	611	1	1	1	0	0	8072	240.0	253
	612	1	1	2	0	0	7583	0.0	187
	613	0	0	0	0	1	4583	0.0	133

480 rows × 12 columns

```
In [19]: #seeing the outliers
  data.plot(kind='box', subplots=True, layout=(3,5), figsize=(20,20))
```

Out[19]:

Gender
Married
Dependents
Education
Self_Employed
ApplicantIncome
CoapplicantIncome
LoanAmount
Loan_Amount_Term
Credit_History
Property_Area
Loan_Status

dtype: object

Out[18]

AxesSubplot(0.125,0.657941;0.133621x0.222059)
AxesSubplot(0.285345,0.657941;0.133621x0.222059)
AxesSubplot(0.44569,0.657941;0.133621x0.222059)
AxesSubplot(0.606034,0.657941;0.133621x0.222059)
AxesSubplot(0.766379,0.657941;0.133621x0.222059)
AxesSubplot(0.125,0.391471;0.133621x0.222059)
AxesSubplot(0.285345,0.391471;0.133621x0.222059)
AxesSubplot(0.44569,0.391471;0.133621x0.222059)
AxesSubplot(0.606034,0.391471;0.133621x0.222059)
AxesSubplot(0.766379,0.391471;0.133621x0.222059)
AxesSubplot(0.125,0.125;0.133621x0.222059)
AxesSubplot(0.285345,0.125;0.133621x0.222059)
AxesSubplot(0.285345,0.125;0.133621x0.222059)

In [20]: #checking correlation of dataset
 plt.figure(figsize=(20,20))
 sns.heatmap(data.corr(),annot=True)

Out[20]: <AxesSubplot:>

In [21]: #removing multicollinearity by using vif acceptable range (-10 to 10)
 from statsmodels.stats.outliers_influence import variance_inflation_factor
 vif=pd.DataFrame()
 vif['features']=data.columns
 vif['vif factor']=[variance_inflation_factor(data.values,i) for i in range(data.shape[1])
 vif

Out[21]:		features	vif factor
	0	Gender	6.146708
	1	Married	3.716146
	2	Dependents	1.789241
	3	Education	1.283195
	4	Self_Employed	1.195656
	5	ApplicantIncome	2.752965
	6	CoapplicantIncome	1.554019
	7	LoanAmount	6.412868
	8	Loan_Amount_Term	10.747859
	9	Credit_History	8.934985
	10	Property_Area	2.610845
	11	Loan_Status	4.633473

```
In [22]: data=data.drop(['Loan_Amount_Term'], axis=1)
    data
```

Out[22]:		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmou
	1	1	1	1	0	0	4583	1508.0	128
	2	1	1	0	0	1	3000	0.0	66
	3	1	1	0	1	0	2583	2358.0	120
	4	1	0	0	0	0	6000	0.0	141
	5	1	1	2	0	1	5417	4196.0	267
	609	0	0	0	0	0	2900	0.0	71
	610	1	1	4	0	0	4106	0.0	40
	611	1	1	1	0	0	8072	240.0	253
	612	1	1	2	0	0	7583	0.0	187
	613	0	0	0	0	1	4583	0.0	133

480 rows × 11 columns

```
In [23]: x=data.drop(['Loan_Status'], axis=1)
y=data['Loan_Status']

In [24]: # feature scaling
from sklearn.preprocessing import StandardScaler
std_scaler=StandardScaler()
x_scaled=std_scaler.fit_transform(x)
```

In [25]: x_scaled

```
array([[ 0.46719815, 0.73716237, 0.11235219, ..., -0.20808917,
Out[25]:
                  0.41319694, -1.31886834],
                [ 0.46719815,  0.73716237, -0.70475462, ..., -0.97900085,
                  0.41319694, 1.25977445],
                 [ 0.46719815, 0.73716237, -0.70475462, ..., -0.30756164,
                  0.41319694, 1.25977445],
                [ 0.46719815, 0.73716237,
                                             0.11235219, ..., 1.34616826,
                  0.41319694, 1.25977445],
                [ \ 0.46719815, \ 0.73716237, \ 0.92945899, \ \dots, \ 0.52552034,
                  0.41319694, 1.25977445],
                [-2.14041943, -1.35655324, -0.70475462, ..., -0.14591887,
                 -2.42015348, -0.02954695]])
In [26]: # training the model
         from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x_scaled,y,test_size=0.3,random_state=45)
In [27]:
         x_train.shape
         (336, 10)
Out[271:
         y_train.shape
In [28]:
         (336,)
Out[28]:
In [29]: #import varies models and metrics
         from sklearn.linear_model import LogisticRegression
         from sklearn.svm import SVC
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn .model_selection import cross_val_score
         from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,f1_scol
In [30]:
         #testing of accuracy of models
         models=[LogisticRegression(), SVC(), RandomForestClassifier(), DecisionTreeClassifier()]
         for m in models:
             print(f'{m}:')
             m.fit(x_train,y_train)
             print('Training score:', m.score(x_train, y_train))
             print('Testing score:',m.score(x_test,y_test))
             predm=m.predict(x_test)
             f1score=f1_score(y_test, predm)
             print('f1score:',f1score)
             acrscore=accuracy_score(y_test,predm)
             print('Accuracy score:',acrscore)
             crsv=cross_val_score(m, x_scaled, y, cv=5)
             print('Cross validation mean score:',crsv.mean())
             print("")
             print('**'*5)
             print('\n')
```

```
LogisticRegression():
Training score: 0.8154761904761905
f1score: 0.8648648648648
Cross validation mean score: 0.8020833333333334
*****
SVC():
Training score: 0.8392857142857143
Testing score: 0.784722222222222
f1score: 0.8597285067873304
Accuracy score: 0.784722222222222
Cross validation mean score: 0.8104166666666666
*****
RandomForestClassifier():
Training score: 1.0
f1score: 0.8440366972477066
Accuracy score: 0.7638888888888888
Cross validation mean score: 0.79375
*****
DecisionTreeClassifier():
Training score: 1.0
Testing score: 0.75
f1score: 0.826923076923077
Accuracy score: 0.75
Cross validation mean score: 0.714583333333333333
```

by using hyper parameter tuning increase the select model accuracy

```
In [31]: lr=LogisticRegression()
In [32]: param_grid=[{'penalty':['l1','l2','elasticnet','none'],'C':np.logspace(-4,4,20),'solver'
In [33]: from sklearn.model_selection import GridSearchCV
In [34]: cif=GridSearchCV(lr,param_grid=param_grid,cv=3,verbose=True,n_jobs=-1)
In [35]: import warnings
In [36]: best_cif=cif.fit(x,y)
    Fitting 3 folds for each of 1600 candidates, totalling 4800 fits
In [37]: best_cif.best_estimator_
```

```
LogisticRegression(C=0.08858667904100823, penalty='l1', solver='liblinear')
In [38]: print('Accuracy score:', best_cif.score(x,y))
        Accuracy score: 0.80625
In [39]: #dumping the model
        import joblib
        import pickle
In [40]:
        joblib.dump(best_cif, 'model.pkl')
        model=joblib.load('model.pkl')
        model.predict(x_test)
        array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
Out[40]:
               1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1,
               1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
```

LogisticRegression

Out[37]: ▼