

DEPARTMENT - MATHEMATICS

Course Pack FOR MATHEMATICAL MODELS USING PYTHON PROGRAMMING-MAT451

MAT451 - MATHEMATICAL MODELS USING PYTHON PROGRAMMING

Total Teaching Hours For Semester : 30 Total Teaching Hours For Semester : 2

Max Marks : 50 Credits : 2

Course Objectives/Course Description:

The course *Mathematical Models using Python Programming* is aimed at enabling the students study the Mathematical Models with the help of Python programming language. It is designed with a learner-centric approach wherein the students will acquire mastery in the subject by using Python Programing language as tool.

Learning Outcome

On successful completion of the course, the students should be able to

Acquire proficiency in using Python

Demonstrate the use of Python to understand and interpret the concepts in Mathematics.

Unit-1 Teaching Hours:30

Proposed Topics

Complex Arithmetic, functions in Python

Inverse, Determinant and Eigenvalues in Python

Transpose and Upper/Lower Triangular parts in Python

Solving Linear Systems in Python

Plotting of Scalar and Vector fields

Mathematical Model: Interest Rates

Mathematical Model: Growth of a population – Exponential Model

Mathematical Model: Logistic Growth Mathematical Model: A Simple Pendulum

Mathematical Model: Spreading of a Disease

Text Books And Reference Books:

H P Langtangen, A Primer on Scientific Programming with Python, 2nd ed., Springer, 2016.

Essential Reading / Recommended Reading:

B E Shapiro, *Scientific Computation: Python Hacking for Math Junkies*, Sherwood Forest Books, 2015.

C Hill, Learning Scientific Programming with Python, Cambridge University Press, 2016.

Amit Saha, Doing Math with Python: Use Programming to Explore Algebra, Statistics, Calculus, and More!, no starch press:San Fransisco, 2015.

The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.

Componen t	Parameter	M o d e o Assessmen	f Maximu m Points
CIA I	Mastery of the concepts	L a Assignments	20
CIA II	Conceptual clarity and analytical skills in solving problems in sequence and series.	Lab Exam - I	10
Lab Record		e - R e c o r work	07
Attendance	Regularity and Punctuality	L a attendance	03 95-100% : 3 90-94% : 2 85-89% : 1
CIA III	Proficiency in executing the commands appropriately, understand sequence, series and functions of a complex variable.	Lab Exam - II	10
Total			50