### KDGAN: Knowledge Distillation with Generative Adversarial Networks

#### Xiaojie Wang

University of Melbourne xiaojiew94@gmail.com

#### Yu Sun

Twitter Inc. ysun@twitter.com

#### Rui Zhang\*

University of Melbourne rui.zhang@unimelb.edu.au

#### Jianzhong Qi

University of Melbourne jianzhong.qi@unimelb.edu.au

### 김성철

## **Contents**

- 1. Introduction
- 2. Methods
- 3. Results
- 4. Conclusion

## Introduction

### Terminologies

- Privileged provision: input features or computational resources → Resources are only accessible for training!
- *Privileged information*: input features
- Example about the privileged provision between training and inference
  - Image tag recommendation / face recognition



(a) Training: After a user uploads an image, additional text such as comments and titles besides the labeled tags is accumulated.



(b) Inference: We recommend bay and sky right after an image is uploaded.

Figure 1: Image tag recommendation where the additional text is only available for training.

## Introduction

- Knowledge Distillation (KD)
  - Classifier (student) / Teacher

- Generative Adversarial Networks (GAN)
  - Classifier (Generator) / Discriminator





## Introduction

- Knowledge Distillation with Generative Adversarial Networks (KDGAN)
  - KD to train a lightweight classifier.
  - GAN to teach the classifier the true data distribution.



Figure 2: Comparison among KD, NaGAN, and KDGAN. The classifier (C) and the teacher (T) learn discrete categorical distributions  $p_c(\boldsymbol{y}|\boldsymbol{x})$  and  $p_t^\varrho(\boldsymbol{y}|\boldsymbol{x})$ ;  $\boldsymbol{y}$  is a true label generated from the true data distribution  $p_u(\boldsymbol{y}|\boldsymbol{x})$ ;  $\boldsymbol{y}^c$  and  $\boldsymbol{y}^t$  are continuous samples generated from concrete distributions  $q_c(\boldsymbol{y}|\boldsymbol{x})$  and  $q_t^\varrho(\boldsymbol{y}|\boldsymbol{x})$ ;  $\boldsymbol{s}^c$  and  $\boldsymbol{s}^t$  are soft labels produced by C and T;  $\mathcal{L}_{DS}^c$  and  $\mathcal{L}_{DS}^t$  are distillation losses for C and T;  $\mathcal{L}_{AD}^p$  and  $\mathcal{L}_{AD}^n$  are adversarial losses for positive and negative feature-label pairs.

### Naïve GAN (NaGAN)

$$\min_{c} \max_{d} V(c, d) = \mathbb{E}_{\boldsymbol{y} \sim p_u} [\log p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y})] + \mathbb{E}_{\boldsymbol{y} \sim p_c} [\log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))].$$
(1)

Let h(x, y) and g(x, y) be the scoring functions for C and D. We define  $p_c(y|x)$  and  $p_d^{\varrho}(x, y)$  as

$$p_c(\boldsymbol{y}|\boldsymbol{x}) = \operatorname{softmax}(h(\boldsymbol{x}, \boldsymbol{y})) \quad \text{and} \quad p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}) = \operatorname{sigmoid}(g(\boldsymbol{x}, \boldsymbol{y})).$$
 (2)

### The advantages and disadvantages of KD and NaGAN

- KD: requires a small number of training instances and epochs, but ~.
- NaGAN: ensures the equilibrium where  $p_c(y|x) = p_u(y|x)$ , but ~.

#### KDGAN

- a classifier C, a teacher T, a discriminator D with privileged provision  $\varrho$
- D: maximize the probability of correctly distinguishing the true and pseudo labels.
- C, T: minimize the probability that D rejects their generated pseudo labels.
- C: learn from T by mimicking the learned distribution of T.
- T also learn from C, because a teacher's ability can also be enhanced by interacting with students. → reduce the probability of generating different pseudo labels.



#### KDGAN

#### **Algorithm 1:** Minibatch stochastic gradient descent training of KDGAN.

```
1 Pretrain a classifier C, a teacher T, and a discriminator D with the training data \{(x_1, y_1), ..., (x_n, y_n)\}.
 2 for the number of training epochs do
            for the number of training steps for the discriminator do
                   Sample labels \{y_1,...,y_k\}, \{y_1^c,...,y_k^c\}, and \{y_1^t,...,y_k^t\} from p_u(y|x), q_c(y|x), and q_t^\varrho(y|x).
                   Update D by ascending along its gradients
                   \frac{1}{k} \sum_{i=1}^{k} \left( \nabla_d \log p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}_i) + \alpha \nabla_d \log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{z}_i^c)) + (1 - \alpha) \nabla_d \log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{z}_i^t)) \right).
 6
            for the number of training steps for the teacher do
 7
                   Sample labels \{y_1^t, ..., y_k^t\} from q_t^{\varrho}(y|x) and update the teacher by descending along its gradients
 8
                   \frac{1}{k} \sum_{i=1}^{k} (1 - \alpha) \nabla_t \log q_t^{\varrho}(\boldsymbol{y}_i^t | \boldsymbol{x}) \log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{z}_i^t)) + \gamma \nabla_t \mathcal{L}_{DS}^t(p_t^{\varrho}(\boldsymbol{y} | \boldsymbol{x}), p_c(\boldsymbol{y} | \boldsymbol{x})).
 9
            for the number of training steps for the classifier do
10
                    Sample labels \{y_1^c, ..., y_k^c\} from q_c(y|x) and update C by descending along its gradients
11
                    \frac{1}{k} \sum_{i=1}^{k} \alpha \nabla_c \log q_c(\boldsymbol{y}_i^c | \boldsymbol{x}) \log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{z}_i^c)) + \beta \nabla_c \mathcal{L}_{DS}^c(p_c(\boldsymbol{y} | \boldsymbol{x}), p_t^{\varrho}(\boldsymbol{y} | \boldsymbol{x})).
12
```

#### KDGAN

• The value function U(c, t, d) ( $\alpha \in (0, 1), \beta \in (0, +\infty), \gamma \in (0, +\infty)$ )

$$\min_{c,t} \max_{d} U(c,t,d) = \mathbb{E}_{\boldsymbol{y} \sim p_u} [\log p_d^{\varrho}(\boldsymbol{x},\boldsymbol{y})] + \alpha \mathbb{E}_{\boldsymbol{y} \sim p_c} [\log (1 - p_d^{\varrho}(\boldsymbol{x},\boldsymbol{y}))] + (1 - \alpha) \mathbb{E}_{\boldsymbol{y} \sim p_t^{\varrho}} [\log (1 - p_d^{\varrho}(\boldsymbol{x},\boldsymbol{y}))] + \beta \mathcal{L}_{\mathrm{DS}}^c(p_c(\boldsymbol{y}|\boldsymbol{x}), p_t^{\varrho}(\boldsymbol{y}|\boldsymbol{x})) + \gamma \mathcal{L}_{\mathrm{DS}}^t(p_t^{\varrho}(\boldsymbol{y}|\boldsymbol{x}), p_c(\boldsymbol{y}|\boldsymbol{x})),$$
Adversarial losses Distillation losses

- Distillation losses: L2 loss, Kullback-Leibler divergence, ···
- $\mathcal{L}_{DS}^{c}$ ,  $\mathcal{L}_{DS}^{t}$  are used to train the classifier and the teacher, respectively.

#### KDGAN

The classifier perfectly learns the true data distribution.

$$\Rightarrow p_{\alpha}^{\varrho}(\mathbf{y}|\mathbf{x}) = \alpha p_{c}(\mathbf{y}|\mathbf{x}) + (1 - \alpha)p_{t}^{\varrho}(\mathbf{y}|\mathbf{x})$$

$$\alpha \mathbb{E}_{\boldsymbol{y} \sim p_c} [\log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))] + (1 - \alpha) \mathbb{E}_{\boldsymbol{y} \sim p_t^{\varrho}} [\log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))]$$

$$= \alpha \sum_{\boldsymbol{y}} p_c(\boldsymbol{y} | \boldsymbol{x}) \log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y})) + (1 - \alpha) \sum_{\boldsymbol{y}} p_t^{\varrho}(\boldsymbol{y} | \boldsymbol{x}) \log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))$$

$$= \sum_{\boldsymbol{y}} \left( \alpha p_c(\boldsymbol{y} | \boldsymbol{x}) + (1 - \alpha) p_t^{\varrho}(\boldsymbol{y} | \boldsymbol{x}) \right) \log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))$$

$$= \mathbb{E}_{\boldsymbol{y} \sim p_d^{\varrho}} [\log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))]. \tag{4}$$

$$= \sum_{\boldsymbol{y}} p_u(\boldsymbol{y}|\boldsymbol{x}) \log p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}) + \sum_{\boldsymbol{y}} p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x}) \log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))$$
$$= F(p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y})).$$

The function  $F(p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))$  achieves the maximum if and only if the distribution of the discriminator is equivalent to  $p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}) = \frac{p_u(\boldsymbol{y}|\boldsymbol{x})}{p_u(\boldsymbol{y}|\boldsymbol{x}) + p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})}$ , completing the proof.

#### KDGAN

• 
$$\mathcal{L}_{MD} = \beta \mathcal{L}_{DS}^{c} \left( p_{c}(\mathbf{y}|\mathbf{x}), p_{t}^{\varrho}(\mathbf{y}|\mathbf{x}) \right) + \gamma \mathcal{L}_{DS}^{t} \left( p_{t}^{\varrho}(\mathbf{y}|\mathbf{x}), p_{c}(\mathbf{y}|\mathbf{x}) \right)$$

•  $\mathcal{L}_{IS}$ : the Jensen-Shannon divergence

\* 
$$JSD(p,q) = \frac{1}{2}D_{KL}(p||\frac{p+q}{2}) + \frac{1}{2}D_{KL}(q||\frac{p+q}{2})$$

$$\min_{\alpha} \max_{d} \mathbb{E}_{\boldsymbol{y} \sim p_u} [\log p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y})] + \mathbb{E}_{\boldsymbol{y} \sim p_{\alpha}^{\varrho}} [\log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))] + \mathcal{L}_{\text{MD}}$$
(5)

$$= \min_{\alpha} 2\mathcal{L}_{\mathrm{JS}}(p_u(\boldsymbol{y}|\boldsymbol{x})||p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})) + \beta\mathcal{L}_{\mathrm{DS}}^{c}(p_c(\boldsymbol{y}|\boldsymbol{x}), p_t^{\varrho}(\boldsymbol{y}|\boldsymbol{x})) + \gamma\mathcal{L}_{\mathrm{DS}}^{t}(p_t^{\varrho}(\boldsymbol{y}|\boldsymbol{x}), p_c(\boldsymbol{y}|\boldsymbol{x})) - \log(4).$$

#### KDGAN

$$\begin{split} & \min_{\boldsymbol{s},t} U(\boldsymbol{c},t,d) \\ & = \sum_{\boldsymbol{y}} p_u(\boldsymbol{y}|\boldsymbol{x}) \log \frac{p_u(\boldsymbol{y}|\boldsymbol{x})}{p_u(\boldsymbol{y}|\boldsymbol{x}) + p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})} + \sum_{\boldsymbol{y}} p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x}) \log (1 - \frac{p_u(\boldsymbol{y}|\boldsymbol{x})}{p_u(\boldsymbol{y}|\boldsymbol{x}) + p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})}) + \mathcal{L}_{\text{MD}} \\ & = \sum_{\boldsymbol{y}} p_u(\boldsymbol{y}|\boldsymbol{x}) \log \frac{p_u(\boldsymbol{y}|\boldsymbol{x})}{p_u(\boldsymbol{y}|\boldsymbol{x}) + p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})} + \sum_{\boldsymbol{y}} p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x}) \log \frac{p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})}{p_u(\boldsymbol{y}|\boldsymbol{x}) + p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})} + \mathcal{L}_{\text{MD}} \\ & = -\log(4) + \mathcal{L}_{\text{KL}}(p_u(\boldsymbol{y}|\boldsymbol{x})||\frac{p_u(\boldsymbol{y}|\boldsymbol{x}) + p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})}{2}) + \mathcal{L}_{\text{KL}}(p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})||\frac{p_u(\boldsymbol{y}|\boldsymbol{x}) + p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})}{2}) + \mathcal{L}_{\text{MD}} \\ & = -\log(4) + 2\mathcal{L}_{\text{JS}}(p_u(\boldsymbol{y}|\boldsymbol{x})||p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})) + \beta\mathcal{L}_{\text{DS}}^{c}(p_c(\boldsymbol{y}|\boldsymbol{x}), p_t^{\varrho}(\boldsymbol{y}|\boldsymbol{x})) + \gamma\mathcal{L}_{\text{DS}}^{t}(p_t^{\varrho}(\boldsymbol{y}|\boldsymbol{x}), p_c(\boldsymbol{y}|\boldsymbol{x})). \end{split}$$

#### KDGAN

- $\mathcal{L}_{JS}$  reaches the minimum if and only if  $p_{\alpha}^{\varrho}(y|x) = p_{u}(y|x)$
- $\mathcal{L}_{DS}^c$  (or  $\mathcal{L}_{DS}^t$ ) reaches the minimum if and only if  $p_c(y|x) = p_t^{\varrho}(y|x)$

#### →KDGAN equilibrium

 $p_c(y|x) = p_t^{\varrho}(y|x) = p_u(y|x)$  (C learns the true data distribution.)

$$\min_{\alpha} \max_{d} \mathbb{E}_{\boldsymbol{y} \sim p_u} [\log p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y})] + \mathbb{E}_{\boldsymbol{y} \sim p_{\alpha}^{\varrho}} [\log (1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))] + \mathcal{L}_{MD}$$

$$= \min_{\alpha} 2\mathcal{L}_{JS}(p_u(\boldsymbol{y}|\boldsymbol{x})||p_{\alpha}^{\varrho}(\boldsymbol{y}|\boldsymbol{x})) + \beta \mathcal{L}_{DS}^{c}(p_c(\boldsymbol{y}|\boldsymbol{x}), p_t^{\varrho}(\boldsymbol{y}|\boldsymbol{x})) + \gamma \mathcal{L}_{DS}^{t}(p_t^{\varrho}(\boldsymbol{y}|\boldsymbol{x}), p_c(\boldsymbol{y}|\boldsymbol{x})) - \log(4).$$
(5)

### KDGAN Training

- The training speed is closely related to the variance of gradients.
- The KDGAN framework by design
  - → can reduce the variance of gradients!!
  - → use a continuous space by relaxing the discrete samples!!

### KDGAN Training

First, we show how KDGAN reduces the variance of gradients. As discussed above, C only receives gradients  $\nabla_c V$  from D in NaGAN while it receives gradients  $\nabla_c U$  from both D and T in KDGAN:

$$\nabla_c V = \nabla_c \mathcal{L}_{AD}^n, \quad \nabla_c U = \lambda \nabla_c \mathcal{L}_{AD}^n + (1 - \lambda) \nabla_c \mathcal{L}_{DS}^c,$$
 (6)

where  $\lambda \in (0,1)$ ,  $\nabla_c \mathcal{L}_{AD}^n$  and  $\nabla_c \mathcal{L}_{DS}^c$  are gradients from D and T, respectively. Consistent with the findings in existing work [23, 39], we also observe that  $\nabla_c \mathcal{L}_{DS}^c$  usually has a lower variance than  $\nabla_c \mathcal{L}_{AD}^n$  (see Figure 7 in Appendix D for empirical evidence that the variance of  $\nabla_c \mathcal{L}_{DS}^c$  is smaller than that of  $\nabla_c \mathcal{L}_{AD}^n$  during the training process). Hence, it can be easily shown that the gradients w.r.t. C in KDGAN have a lower variance than that in NaGAN (refer to Lemma 4.3):

$$\operatorname{Var}(\nabla_c \mathcal{L}_{\mathrm{DS}}^c) \le \operatorname{Var}(\nabla_c \mathcal{L}_{\mathrm{AD}}^n) \Rightarrow \operatorname{Var}(\nabla_c U) \le \operatorname{Var}(\nabla_c V).$$
 (7)

*Proof.* Given  $Var(X) \leq Var(Y)$ , the covariance Cov(X,Y) is less than or equal to Var(Y) because

$$\operatorname{Cov}(X,Y) \leq |\operatorname{Cov}(X,Y)| \leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)} \leq \sqrt{\operatorname{Var}(Y)\operatorname{Var}(Y)} \leq \operatorname{Var}(Y).$$

According to the properties of the variance, for all  $\lambda \in (0, 1)$ , we have

$$Var(Z) = \lambda^{2} Var(X) + 2\lambda(1 - \lambda) Cov(X, Y) + (1 - \lambda)^{2} Var(Y)$$

$$\leq \lambda^{2} Var(Y) + 2\lambda(1 - \lambda) Cov(X, Y) + (1 - \lambda)^{2} Var(Y)$$

$$\leq \lambda^{2} Var(Y) + 2\lambda(1 - \lambda) Var(Y) + (1 - \lambda)^{2} Var(Y)$$

$$= Var(Y),$$

### KDGAN Training

Next, we further reduce the variance of gradients with a reparameterization trick, in particular, the Gumbel-Max trick [20, 30]. The essence of the Gumbel-Max trick is to reparameterize generating discrete samples into a differentiable function of its parameters and an additional random variable of a Gumbel distribution. To perform the Gumbel-Max trick on generating discrete samples from the categorical distribution  $p_c(y|x)$ , a concrete distribution [25, 31] can be used. We use a concrete distribution  $q_c(y|x)$  to generate continuous samples and use the continuous samples to compute the gradients  $\nabla_c \mathcal{L}_{AD}^n$  of the adversarial loss w.r.t. the classifier as

$$\nabla_c \mathcal{L}_{AD}^n = \nabla_c \mathbb{E}_{\boldsymbol{y} \sim p_c} [\log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{y}))] = \mathbb{E}_{\boldsymbol{y} \sim q_c} [\nabla_c \log q_c(\boldsymbol{y} | \boldsymbol{x}) \log(1 - p_d^{\varrho}(\boldsymbol{x}, \boldsymbol{z}))]. \tag{8}$$

Here,  $z = \text{onehot}(\operatorname{argmax} y)$  is a discrete pseudo label where  $y \sim q_c(y|x)$ . We define  $q_c(y|x)$  as

$$q_c(\boldsymbol{y}|\boldsymbol{x}) = \operatorname{softmax}\left(\frac{\log p_c(\boldsymbol{y}|\boldsymbol{x}) + \boldsymbol{g}}{\tau}\right), \quad \boldsymbol{g} \sim \operatorname{Gumbel}(0, 1).$$
 (9)

Here,  $\tau \in (0, +\infty)$  is a temperature parameter and Gumbel(0, 1) is the Gumbel distribution<sup>2</sup> [31]. We leverage the temperature parameter  $\tau$  to control the variance of gradients over the training. With a high temperature, the samples from the concrete distribution are smooth, which give low-variance gradient estimates. Note that a disadvantage of the concrete distribution is that with a high temperature, it becomes a less accurate approximation to the original categorical distribution, which causes biased gradient estimates. We will discuss how to tune the temperature parameter in Section 4.

### KDGAN Training

Gumbel-Max trick

#### Gumbel-max trick(stochastic을 따로 뺌)

categorical한 variable을 reparametrization함. 요걸 쓰면 categorical에서 sample한 것과 비슷한 효과를 낸다고한다.

 $x \sim \mathcal{C}at(\pi_{\phi})$ 를 discrete categorical variable이라 해보자.

 $\epsilon_k \sim \mathcal{G}umbel(0,1)$ 를 가지고 Reparametrization하면

$$x = \arg\max_{k} (\epsilon_k + \log \pi_k) \widehat{=} g(\phi, \epsilon)$$

로 쓸 수 있다. 요것이 Gumbel-max trick

• 하지만 아직도  $\phi$ 에 대해 discrete하며 미분이 불가능하다.

#### Gumbel-softmax(continuous)

Gumbel-max의 argmax를 softmax로 바꾼 녀석. 이제 미분이 가능해진다.

$$(x_k)_{1 \leq k \leq K} = \mathbf{softmax}((\epsilon_k + \log \pi_k)_k) \Leftrightarrow x_k = \frac{\exp((\log \pi_k + \epsilon_k)/ au)}{\sum_j \exp((\log \pi_j + \epsilon_j)/ au)}$$

#### 특성들

- 여기서 au는 temporature parameter인데
  - 0에 가까워지면 one-hot
  - 무한대로가면 uniform distribution을 갖는다.
- $\bullet \ \ p(x_k = \max_i \, x_i) = \pi_k$

## Results

### Experiments

- $\alpha$  in [0.0, 1.0]
- $\beta$  in [0.001, 1000]
- γ in [0.0001, 100]
- The temperature parameter  $\tau$ 
  - $\rightarrow$  start with a large value (1.0) and exponentially decay it to a small value (0.1)

## Results

### Deep Model Compression

Table 1: Average accuracy over 10 runs in model compression (n is the number of training instances).

| Method |                  | MNIST            | 22               | CIFAR-10         |                  |                  |  |  |
|--------|------------------|------------------|------------------|------------------|------------------|------------------|--|--|
|        | n = 100          | n = 1,000        | n = 10,000       | n = 500          | n = 5,000        | n = 50,000       |  |  |
| CODIS  | $74.02 \pm 0.13$ | $95.77 \pm 0.10$ | $98.89 \pm 0.08$ | $54.17 \pm 0.20$ | $77.82 \pm 0.14$ | $85.12 \pm 0.11$ |  |  |
| DISTN  | $68.34 \pm 0.06$ | $93.97 \pm 0.08$ | $98.79 \pm 0.07$ | $50.92 \pm 0.18$ | $76.59 \pm 0.15$ | $83.32 \pm 0.08$ |  |  |
| NOISY  | $66.53 \pm 0.18$ | $93.45 \pm 0.11$ | $98.58 \pm 0.11$ | $50.18 \pm 0.28$ | $75.42 \pm 0.19$ | $82.99 \pm 0.12$ |  |  |
| MIMIC  | $67.35 \pm 0.15$ | $93.78 \pm 0.13$ | $98.65 \pm 0.05$ | $51.74 \pm 0.23$ | $75.66 \pm 0.17$ | $84.33 \pm 0.10$ |  |  |
| NaGAN  | $64.90 \pm 0.31$ | $93.60 \pm 0.22$ | $98.95 \pm 0.19$ | $46.29 \pm 0.32$ | $76.11 \pm 0.24$ | $85.34 \pm 0.27$ |  |  |
| KDGAN  | $77.95 \pm 0.05$ | $96.42 \pm 0.05$ | $99.25 \pm 0.02$ | $57.56 \pm 0.13$ | $79.36 \pm 0.04$ | $86.50 \pm 0.04$ |  |  |





- (a) Deep model compression over MNIST.
- (b) Image tag recommendation on YFCC100M.

Figure 3: Training curves of the classifier in the proposed NaGAN and KDGAN.



Figure 4: Effects of hyperparameters in KDGAN on MNIST for deep model compression.

## Results

### Image Tag Recommendation

Table 2: Performance of various methods on the YFCC100M dataset in tag recommendation.

| Method       | Most Popular Tags |       |       |       | Randomly Sampled Tags |       |       |       |       |       |       |       |
|--------------|-------------------|-------|-------|-------|-----------------------|-------|-------|-------|-------|-------|-------|-------|
|              | P@3               | P@5   | F@3   | F@5   | MAP                   | MRR   | P@3   | P@5   | F@3   | F@5   | MAP   | MRR   |
| KNN          | .2320             | .1680 | .2339 | .1633 | .5755                 | .5852 | .1623 | .1198 | .1575 | .1088 | .3970 | .4092 |
| TPROP        | .2420             | .1636 | .2811 | .1949 | .6177                 | .6270 | .1883 | .1372 | .1810 | .1252 | .4512 | .4636 |
| <b>TFEAT</b> | .2560             | .1752 | .2871 | .1999 | .6417                 | .6503 | .2002 | .1420 | .2195 | .1495 | .5149 | .5309 |
| REXMP        | .2720             | .1800 | .3324 | .2295 | .7015                 | .7122 | .2228 | .1378 | .2427 | .1669 | .5205 | .5331 |
| NaGAN        | .2892             | .1880 | .3516 | .2352 | .7432                 |       | .2415 | .1495 | .2693 | .1867 | .5791 | .5911 |
| KDGAN        | .3047             | .1968 | .3678 | .2526 | .7787                 | .7905 | .2572 | .1666 | .2946 | .2009 | .6302 | .6452 |



Figure 5: Effects of hyperparameters in KDGAN on YFCC100M for image tag recommendation.

# 감 사 합 니 다