Lecture 13: Complex (Factorial) Designs

Monday, October 16, 2023

Your Teaching Fellows:

003/004: Zahra Abolghasem Bronwen Grocott

Vasileia Karasavva Ni An

Thalia Lang 010:

Ruoning Li

Malina Lemmons

Irene Wen

Lectures: MWF 12:00 PM - 1:00 PM (003); 1:00 PM - 2:00 PM (004); 2:00 PM - 3:00 PM (010)

Office hours: Tuesdays 2:00 PM – 4:00 PM

		Presence of Food		
		No Treat	Treat	Marginal mean of command
Command	No "Sit"	0.10	0.14	0.12
	"Sit"	0.30	0.90	0.60
	Marginal mean of presence of food			

+0.20
A few more dogs sit when commanded to sit

+0.76
Way more
dogs sit
when
commanded
to sit

+0.48
OVERALL:
More dogs sit
when
commanded
to sit

- Results of doggy study is example of interaction
 - The effect of command on proportion of dogs sitting is different depending on whether food is present or not
 - When effect of the first IV on the DV changes depending on the level of the second
 IV
 - Second IV = "Moderator" or "moderator variable"

Benefits:

- Allow us to find interactions
- More closely mimics real world situations as simple relationships are too unrealistic

Understanding interactions

- In this study, results support conclusion that...
 - Dogs respond best when you command them AND provide them with an incentive!

Why?

- To understand psychological phenomena more comprehensively, we need to understand interactions
- Learning to visualise data can be tough at first; but makes interpreting data much easier once you get the hang of it
- Easier to read journal articles

Key questions

- Are the lines parallel?
- Are the midpoints of the lines different?
- Are the average values of the DV at each level of the IV different?

- Strongly recommend that you look at Figure 11.4 in your text
 - 8 examples of different possible outcomes of 2 x 2 factorial designs
 - Try them, and see how many you get right
 - Come Monday with questions!

The effect of presence of food is...

Simple main effects

Simple main effects

- No main effects are qualified by an interaction between the two independent variables
- Simple main effects = effect of one IV on the DV within a single level of the second IV
 - More dogs will sit when you tell them to "sit" rather than not telling them to "sit" IF you hold food in your hand
 - If you do not hold food in your hand, telling dogs to "sit" versus not telling them to
 "sit" does not affect the proportion of dogs that sit
- Decide on ONE WAY to split the data

Learning objectives

- By the end of this class, you should be able to:
 - Explain IV x PV designs
 - Differentiate between crossed factorial designs and nested factorial designs

IV x PV

• Give me examples of participant variables:

$IV \times PV$

- Bartholomew and Anderson (2002):
 - Playing violent video games results in more aggression than playing non-violent video games
- Game violence:
 - Half played violent game, half played non-violent game
- Gender:
 - Half identified as men, half identified as women

Factorial designs – Aggression

Factorial designs – Aggression

		Gender	
		Women	Men
Game	DBD		
violence	PGA Tour		

Known as a way factorial design Specifically, a 2x factorial design

Factorial designs – Aggression

		Gender		
		Women	Men	Sample sizes
Game violence	DBD	n = 10	n = 12	n = 22
	PGA Tour	n = 11	n = 10	n = 21
	Sample sizes	n = 21	n = 22	

Factorial designs – Aggression

		Gender		
		Women	Men	Marginal mean of violence
Game violence	DBD	5.05	7.01	6.03
	PGA Tour	4.61	4.60	4.60
	Marginal mean of gender	4.83	5.80	

Main Effect of Gender

Main Effect of Game Violence

Factorial designs – Aggression

		Gender		
		Women	Men	Marginal mean of violence
Game violence	DBD	5.05	7.01	6.03
	PGA Tour	4.61	4.60	4.60
	Marginal mean of gender	4.83	5.80	

+0.44

A bit stronger white noise

+2.41

Way

stronger

white noise

+1.43
OVERALL: Stronger
white noise after
violent game