

## Politechnika Wrocławska



# Zegar czasu rzeczywistego ze stoperem



#### Założenia

Celem projektu było stworzenie zegara z funkcją stopera, który aktualny (możliwy do ustawienia) czas będzie wyświetlał na wyświetlaczu 4x7 lub 2x16.

Osobnym elementem, można powiedzieć dodatkiem, jest stoper aktywowany i sterowany za pomocą przycisków na płytce udostępnianej na zajęcia.



# Maszyna stanów





### Maszyna stanów - wersja końcowa





#### Test bench...





## Mapowanie wejść/wyjść - Plan Ahead



| Name                                  | Direction | Neg Diff Pair | Site | Fixed    | Bank | I/O Std     | Vcco  | Vref |
|---------------------------------------|-----------|---------------|------|----------|------|-------------|-------|------|
|                                       | Output    |               | F9   | <b>V</b> |      | 0 LVCMOS33* | 3.300 |      |
| ······ <b>⊘</b> min_stoper[6]         | Output    |               | E9   | <b>✓</b> |      | 0 LVCMOS33* | 3.300 |      |
| ······ <b>⊘</b> min_stoper[5]         | Output    |               | D11  | <b>✓</b> |      | 0 LVCMOS33* | 3.300 |      |
| ····· <b>⊘</b> min_stoper[4]          | Output    |               | C11  | <b>✓</b> |      | 0 LVCMOS33* | 3.300 |      |
| ······ <b>⊘</b> min_stoper[3]         | Output    |               | F11  | <b>V</b> |      | 0 LVCMOS33* | 3.300 |      |
| ······ <b>∕</b> min_stoper[2]         | Output    |               | E11  | <b>J</b> |      | 0 LVCMOS33* | 3.300 |      |
| ······ ✓ min_stoper[1]                | Output    |               | E12  | <b>V</b> |      | 0 LVCMOS33* | 3.300 |      |
| ····································· | Output    |               | F12  | <b>J</b> |      | 0 LVCMOS33* | 3.300 |      |
| ⊡· 🐼 Scalar ports (9)                 |           |               |      |          |      |             |       |      |
| <b>☑</b> - cc                         | Input     |               | K17  | <b>J</b> |      | 1 LVCMOS33* | 3.300 |      |
| <mark>W</mark> ∙ dk                   | Input     |               | C9   | <b>V</b> |      | 0 LVCMOS33* | 3.300 |      |
|                                       | Input     |               | L14  | <b>✓</b> |      | 1 LVCMOS33* | 3.300 |      |
| dot                                   | Output    |               | B16  | <b>▽</b> |      | 0 LVCMOS33* | 3.300 |      |
| ···☑ hold                             | Input     |               | V4   | <b>J</b> |      | 2 LVCMOS33* | 3.300 |      |
|                                       | Input     |               | D18  | <b>√</b> |      | 1 LVCMOS33* | 3.300 |      |
| <b>⊍</b> - p2                         | Input     |               | H13  | <b>✓</b> |      | 1 LVCMOS33* | 3.300 |      |
| ··· <b>☑</b> · reset                  | Input     |               | H18  | <b>√</b> |      | 1 LVCMOS33* | 3.300 |      |
| ····· 🕪 start_stop                    | Input     |               | V16  | <b>✓</b> |      | 2 LVCMOS33* | 3.300 |      |



## Użyte zasoby

| Device Utilization Summary                     |      |           |             |         |  |  |  |  |  |
|------------------------------------------------|------|-----------|-------------|---------|--|--|--|--|--|
| Logic Utilization                              | Used | Available | Utilization | Note(s) |  |  |  |  |  |
| Number of Slice Flip Flops                     | 129  | 9,312     | 1%          |         |  |  |  |  |  |
| Number of 4 input LUTs                         | 246  | 9,312     | 2%          |         |  |  |  |  |  |
| Number of occupied Slices                      | 168  | 4,656     | 3%          |         |  |  |  |  |  |
| Number of Slices containing only related logic | 168  | 168       | 100%        |         |  |  |  |  |  |
| Number of Slices containing unrelated logic    | 0    | 168       | 0%          |         |  |  |  |  |  |
| Total Number of 4 input LUTs                   | 313  | 9,312     | 3%          |         |  |  |  |  |  |
| Number used as logic                           | 246  |           |             |         |  |  |  |  |  |
| Number used as a route-thru                    | 67   |           |             |         |  |  |  |  |  |
| Number of bonded <u>IOBs</u>                   | 28   | 232       | 12%         |         |  |  |  |  |  |
| IOB Flip Flops                                 | 4    |           |             |         |  |  |  |  |  |
| IOB Latches                                    | 8    |           |             |         |  |  |  |  |  |
| Number of BUFGMUXs                             | 1    | 24        | 4%          |         |  |  |  |  |  |
| Average Fanout of Non-Clock Nets               | 3.48 |           |             |         |  |  |  |  |  |

Przy takim zużyciu zasobów sprzętowych, na otrzymanej płytce powinno być możliwe działanie co najmniej kilku takich projektów. Limituje nas ilość dostępnych IOB. Więc jeśli ktoś chciałby mieć 8 zegarów na ścianie to polecam, kosztujący ~800zł, zestaw Spartan 3E Starter Kit;)



## Zużycie mocy



Niestety nie udało się wygenerować pełnego raportu dotyczącego zużycia mocy ponieważ układ wykorzystany na płytce okazał się być niewspierany



#### **Podsumowanie**

Sam projekt choć wydawał się z początku dość prostym do zrealizowania wygenerował pewne trudności w trakcie jego tworzenia. Po pierwsze symulacja nie zawsze pokrywa się z tym co będzie działo się w rzeczywistym układzie a symulator firmy Xilinx, zintegrowany w środowisku ISE WebPack nie analizuje niektórych rzeczy, które są analizowane podczas syntezy (np. czy wartości zmieniane w dwóch procesach). Innym problemem było dobranie odpowiednich preskalerów umożliwiających obsługę przycisków. Nie mniej projekt udało się zrealizować co uważam za sukces.