4. 논리게이트

논리회로

부경대 컴퓨터 인공지능공학부 최필주

목차

- 논리 레벨
- 논리 게이트
 - NOT, buffer
 - AND
 - OR
 - NAND
 - NOR
 - XOR
 - XNOR
- 정논리와 부논리
- 게이트의 전기적 특성

'논리 레벨

● TTL과 CMOS 논리 레벨 정의 영역

- TTL(Transistor-transistor level): BJT+저항으로 구성되는 논리 게이트
- CMOS(Complementary Metal-Oxide-Semicondoctor): PMOS와 NMOS로 구성되는 논리 게이트

논리 게이트

NOT 게이트와 buffer 게이트

- NOT 게이트
 - 입력(1)을 논리 부정하여 출력(1)
 - 논리식: $F = \bar{A} = A'$

진리표	동작 파형	논리 기호	트랜지스터 회로
A F 0 1 1 0	입력 A 1 0 1 0 출력 F 0 1 0 1	$A \longrightarrow F$	$+V_{CC}$ R_B R_C F

NOT 게이트와 buffer 게이트

- Buffer 게이트
 - 입력(1)을 그대로 출력(1)
 - ► 논리식: F = A

진리표	동작 파형	논리 기호
A F 0 0 1 1	$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ F & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$	$A \longrightarrow F$

NOT 게이트와 buffer 게이트

- 3상태(tri-state) buffer
 - 3가지 출력(High, Low, high impedance)를 갖는 buffer

	제어입력이 low일 때	제어입력이 high일 때
진리표	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	A E F 0 0 Hi-Z 1 0 Hi-Z 0 1 0 1 1 1
논리 기호	\overline{E} $A \longrightarrow F$	$A \longrightarrow F$

AND 게이트

- AND 게이트의 기본 개념(2입력)
 - 입력이 모두 1(on)인 경우에만 출력은 1(on)
 - 논리식: $F = AB = A \cdot B$

진리표	동작 파형	논리 기호	트랜지스터 회로
A B F 0 0 0 0 1 0 1 0 0 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A \longrightarrow F$	$A \circ \begin{array}{c} +V_{CC} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

AND 게이트

- AND 게이트의 기본 개념(3입력)
 - 논리식: $F = ABC = A \cdot B \cdot C$

AND 게이트

● AND 게이트 활용 예 - 자동차 좌석벨트 경보 시스템

- 경보가 울리는 조건
 - 점화스위치(A) on
 - 좌석벨트(*B*)가 풀려있음(High)
 - 점화스위치가 켜지고 30초 동안
- 타이머: 점화스위치가 on되면 30초 동안 on 유지

OR 게이트

- OR 게이트의 기본 개념(2입력)
 - 입력이 하나라도 1(on)이면 출력은 1(on)
 - 논리식: F = A + B

진리표	동작 파형	논리 기호	트랜지스터 회로
$egin{array}{c cccc} A & B & F & \\ \hline 0 & 0 & 0 & \\ \hline 0 & 1 & 1 & \\ \hline 1 & 0 & 1 & \\ \hline 1 & 1 & 1 & \\ \hline \end{array}$	$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ B & 0 & 1 & 0 & 1 & 0 \\ F & 0 & 1 & 1 & 1 & 0 \\ \end{bmatrix}$	$A \longrightarrow F$	$A \circ \begin{array}{c} +V_{CC} \\ \hline \\ R_E \end{array}$

OR 게이트

- OR 게이트의 기본 개념(3입력)
 - 논리식: F = A + B + C

OR 게이트

OR 게이트 활용 예 - 침입 탐지 시스템

- 경보 발생 조건
 - 출입문 또는 창문이 열렸을 때(자기 센서가 열림 감지하여 열리면 high 출력)

NAND 게이트

- NAND 게이트의 기본 개념(2입력)
 - NOT AND라는 의미
 - 입력이 모두 1인 경우에만 출력이 0
 - 논리식: $F = \overline{AB} = \overline{A \cdot B}$

진리표	동작 파형	논리 기호	트랜지스터 회로
$egin{array}{c cccc} A & B & F & & & & & & & & & & & & & & & &$	A 0 0 1 1 0 B 0 1 0 1 0 F 1 1 1 0 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$A \circ \stackrel{R_B}{\longrightarrow} B \circ \stackrel{R_B}{\longrightarrow} $

NAND 게이트

- NAND 게이트의 기본 개념(3입력)
 - 논리식: $F = \overline{ABC} = \overline{A \cdot B \cdot C}$

진리표	동작 파형	논리 기호
A B C 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1	A 0 0 0 0 1 1 1 0 B 0 0 1 1 0 1 0 T C 0 1 0 1 0 1 0 1 0 T C T T T T T T T T T T T T T T T T T	$A \longrightarrow F$

NOR 게이트

- NOR 게이트의 기본 개념(2입력)
 - NOT OR라는 의미
 - 입력이 하나라도 1이면 출력은 0
 - 논리식: $F = \overline{A + B}$

진리표	동작 파형	논리 기호	트랜지스터 회로
A B F 0 0 1 0 1 0 1 0 0 1 1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$+V_{CC}$ R_B R_B R_B R_B R_B R_B

NOR 게이트

- NOR 게이트의 기본 개념(3입력)
 - 논리식: $F = \overline{A + B + C}$

진리표	동작 파형	논리 기호
A B C F 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0	A 0 0 0 0 1 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 0 F 1 0 0 0 0 0 0 0 1	$A \longrightarrow C \longrightarrow F$

BUF, AND, OR, NOT, NAND, NOR 게이트

● 논리 기호 및 트랜지스터 회로 비교

BUF, AND, OR, NOT, NAND, NOR 게이트

CMOS를 이용한 NOT

저항은 면적이 매우 큼 → 저항 대신 PMOS 사용

BUF, AND, OR, NOT, NAND, NOR 게이트

● CMOS를 이용한 AND와 NAND

- 구현의 어려움으로 인해 실제로는 AND = NAND + NOT으로 구현
- OR도 마찬가지

XOR (eXclusive-OR) 게이트

- XOR 게이트의 기본 개념(2입력)
 - 입력 중 1이 홀수 개면 출력은 1
 - 논리식: $F = A \oplus B = \bar{A}B + A\bar{B}$

진리표	동작 파형	논리 기호	AND-OR 게이트 표현
A B F 0 0 0 0 1 1 1 0 1 1 1 0	$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ B & 0 & 1 & 0 & 1 & 0 \\ F & 0 & 1 & 1 & 0 & 0 \\ \end{bmatrix}$	$A \longrightarrow B \longrightarrow F$	A B

XOR (eXclusive-OR) 게이트

- XOR 게이트의 기본 개념(3입력)
 - 논리식: $F = A \oplus B \oplus C$

진리표	동작 파형	논리 기호		
A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1	A 0 0 0 0 1 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 0 F 0 1 1 0 1 0 0 1 0	$A \longrightarrow F$		

XNOR (eXclusive-NOR) 게이트

- XNOR 게이트의 기본 개념(2입력)
 - 입력 중 1이 짝수 개면 출력은 1
 - XOR 게이트와 반대
 - 논리식: $F = \overline{AB} + AB = \overline{A \oplus B} = A \odot B$

진리표	동작 파형	논리 기호	AND-OR 게이트 표현
A B F 0 0 1 0 1 0 1 0 0 1 1 1	$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ B & 0 & 1 & 0 & 1 & 0 \\ F & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$A \rightarrow F$

XNOR (eXclusive-NOR) 게이트

- XNOR 게이트의 기본 개념(3입력)
 - 논리식: $F = \overline{A \oplus B \oplus C} = A \odot B \odot C$

진리표	동작 파형	논리 기호
A B C F 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0	A 0 0 0 0 1 1 1 0 B 0 0 1 1 0 0 1 1 0 C 0 1 0 1 0 1 0 1 0 1 0 1 F 1 0 0 1 0 1 0 1 0 1	$A \longrightarrow C \longrightarrow F$

정논리와 부논리

● 논리 개념

전압레벨	정논리	부논리
+5V	High=1	High=0
0V	Low=0	Low=1

정논리와 부논리

● 정논리 AND = 부논리 OR

전압레벨			정논리 AND					부논리 OR						
	A	В	F			A	В	F			A	В	F	
	L	L	L			0	0	0			1	1	1	
	L	Н	L			0	1	0			1	0	1	
	H	L	L			1	0	0			0	1	1	
	Н	Н	Н			1	1	1			0	0	0	

● 정논리 NAND = 부논리 NOR

전압레벨				정논리 NAND					부논리 NOR				
A	В	F			A	В	F			A	В	F	
L	L	H			0	0	1			1	1	0	
L	H	Н			0	1	1			1	0	0	
H	L	H			1	0	1			0	1	0	
H	H	L			1	1	0			0	0	1	
						!		1					<u>. </u>

정논리와 부논리

● 정논리와 부논리간의 게이트 대응

+ +	부논리	정논리	↔	부논리
	OR	XOR		XNOR
	AND	XNOR		XOR
	NOR	NOT		NOT
	NAND.			
		OR OR AND NOR	OR XOR OR XOR AND XNOR NOR NOT	OR XOR OR XOR AND XNOR NOR NOT

- 전파지연시간(gate propagation delay time)
 - 신호가 입력되어 출력될 때까지의 시간, 게이트의 동작 속도
 - NOT 게이트의 입력과 출력

^{*}t_{PHL}: propagation delay time from high to low

^{*}t_{PLH}: propagation delay time from low to high

- 전력소모
 - 게이트가 동작할 때 소모되는 전력량
 - 전력 소모의 계산: $P_{CC} = V_{CC} \times I_{CC}$
 - *V_{CC}*: 공급전압
 - *I_{CC}*: 공급전류

- 잡음여유도(noise margin)
 - 출력과 입력 사이의 식별 전압의 차이값
 - 입출력 전압 범위

 $*V_{NH}: V_{Noise\ High}$

 $*V_{NL}: V_{Noise\ Low}$

- 잡음여유도(noise margin) noise 발생 예
 - A의 출력에서 noise 발생

■ B에서의 noise 입력의 처리

● 팬-인(fan-in)과 팬-아웃(fan-out)

- fan-in: 1개 게이트에 입력으로 접속할 수 있는 단수
- fan-out: 1개 게이트에서 다른 게이트의 입력으로 연결 가능한 최대 출력단의 수
 - High 레벨일 때: $\frac{I_{OH}(\max)}{I_{IH}(\max)}$
 - Low 레벨일 때: $\frac{I_{OL}(\text{max})}{I_{IL}(\text{max})}$

● 팬-인(fan-in)과 팬-아웃(fan-out)

■ fan-in: 1개 게이트에 입력으로 접속할 수 있는 단수

■ fan-out: 1개 게이트에서 다른 게이트의 입력으로 연결 가능한

최대 출력단의 수

• High 레벨일 때: $\frac{I_{OH}(\max)}{I_{IH}(\max)}$

• Low 레벨일 때: $\frac{I_{OL}(\max)}{I_{IL}(\max)}$

출력이 H 레벨일 때	출력이 L 레벨일 때
$I_{OH}(\text{max})=0.4\text{mA}$	$I_{OL}(\text{max})=8\text{mA}$
$\begin{array}{c c} & H \\ & H \\ & H \\ & 20 \\ & & 1 \\ $	$\begin{array}{c c} & L \\ & L \\ $
$\frac{I_{OH} (\text{max})}{I_{IH} (\text{max})} = \frac{0.4mA}{0.02mA} = 20$	$\frac{I_{OL}(\text{max})}{I_{IL}(\text{max})} = \frac{8mA}{0.4mA} = 20$

- 싱크전류(sink current)와 소스전류(source current)
 - 싱크전류: 바꺝에서 출력 쪽으로 전류가 흐름
 - 소스전류: 출력에서 바꺝으로 전류가 흐름
 - 예 LED의 점등 제어

- 풀-업(Pull-up) 저항과 풀-다운(Pull-down) 저항
 - 입력 레벨의 불확실성(floating)을 제거하기 위해 사용하는 저항
 - 풀-업 저항: 전원 쪽으로 연결할 때 사용
 - 풀-다운 저항: 접지 쪽으로 연결할 때 사용
 - 사용되는 저항: 3~10KΩ
 - 저항의 연결

Summary

• 논리 게이트

			진	<u> </u> 리표			
게이트	입	A	0	0	1	1	논리 기호
	력	В	0	1	0	1	
Buffer		A		0		1	$A \longrightarrow BUF \longrightarrow F$ $A \longrightarrow NOT \longrightarrow F$
NOT		$ar{A}$		1		O	$A \longrightarrow BUF \longrightarrow F$ $A \longrightarrow NOT \longrightarrow F$
AND		AB	0	0	0	1	$A \longrightarrow AND \longrightarrow F$ $A \longrightarrow NAND \longrightarrow F$
NAND	출 력	\overline{AB}	1	1	1	0	B—AND F B —NAND F
OR	(F)	A + B	0	1	1	1	$A \longrightarrow OR \longrightarrow F$ $A \longrightarrow NOR \longrightarrow F$
NOR	\ /	$\overline{A+B}$	1	0	0	0	$B \longrightarrow OR \longrightarrow F \qquad A \longrightarrow NOR \longrightarrow F$
XOR		$A \oplus B$	0	1	1	0	$A \longrightarrow XOR \longrightarrow F$ $A \longrightarrow XNOR \longrightarrow F$
XNOR		$A \bigcirc B$	1	0	0	1	$B \longrightarrow AOR \longrightarrow F$ $B \longrightarrow ANOR \longrightarrow F$

Summary

● 게이트의 전기적 특성

특성	설명
전파지연시간	신호가 입력되어 출력될 때까지의 시간, 게이트의 동작 속도, cell delay
전력소모	게이트가 동작할 때 소모되는 전력량, $P_{CC}=V_{CC} imes I_{CC}$
잡음여유도	출력과 입력 사이의 식별 전압의 차이값
팬-인, 팬-아웃	- fan-in: 1개 게이트에 입력으로 접속할 수 있는 단수 - fan-out: 1개 게이트에서 다른 게이트의 입력으로 연결 가능한 최대 출력단의 수
싱크 전류, 소스 전류	- 싱크 전류: 바깥에서 출력 쪽으로 전류가 흐름 - 소스 전류: 출력에서 바깥으로 전류가 흐름
풀-업/다운 저항	High impedance의 경우 0 또는 1이 되도록 하기위해 입력단에 연결하는 저항 - 풀-업 저항 : 전원 쪽으로 연결할 때 사용 - 풀-다운 저항 : 접지 쪽으로 연결할 때 사용