STAT462 Winter 2022 Midterm Exam-Practice Problems (Chapter 5)

- Please do not expect exact same questions on the actual exam.
- This is longer than the actual exam to give you more practice.
- The actual exam is much shorter than this.
- The answers are at the end of this document.
- Please see similar problems on the lecture note if you cannot think of how to solve these problems.
- If your final answer is a probability function, then provide a complete function.
- Be able to do similar questions.
- 1. Consider the following function of random variables Y_1 and Y_2 where k is a constant:

$$p_{Y_1,Y_2}(y_1,y_2) = \begin{cases} k(2y_2 - y_1) & ; y_1 = 0,1, \\ 0 ; Otherwise \end{cases}$$
; $y_2 = 1,2$

- a. Find the value of k so that the above function is a valid joint pmf.
- b. Are the random variables Y_1 and Y_2 independent according to probability? Explain.
- c. Find and report the conditional pmf of $Y_1 \mid Y_2 = y_2$.
- d. Find $E(Y_1^2 | Y_2 = y_2)$
- 2. Consider the following table:

	y_1	
y_2	0	1
0	.38	.17
1	.14	.02
2	.24	.05

- a. Are the random variables Y_1 and Y_2 independent according to probability? Explain.
- b. Compute the probability that Y_1 is more than zero.
- c. Find and report the marginal pmf of Y_2 .
- d. Find and report the conditional pmf of $Y_1 \mid Y_2 = 0$.
- e. Compute $E[Y_2 Y_1]$
- f. Compute $E[Y_1Y_2]$
- g. Find $E(Y_2 | Y_1 = 1)$

3.

Let Y_1 and Y_2 have the joint probability density function given by

$$f(y_1, y_2) = \begin{cases} ky_1 y_2, & 0 \le y_1 \le 1, 0 \le y_2 \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- a. Find the value of k that makes this a probability density function.
- b. Compute the probability that Y_1 is smaller than 0.8
- c. Compute the probability that Y_2 is higher than 0.8
- d. Find and report the marginal pdf of Y_1 .
- e. Find and report the marginal pdf of Y_2 .
- f. Are the random variables Y_1 and Y_2 independent according to probability? Explain.
- g. Compute $E[(Y_1-1)Y_2^2]$

4. Consider the following function of random variables Y_1 and Y_2 where k is a constant:

$$f(y_1, y_2) = \begin{cases} k(2 - y_2) ; 0 \le y_1 \le y_2 \le 2\\ 0 ; Otherwise \end{cases}$$

- a. Find the value of k that makes this a probability density function.
- b. Compute the probability that Y_1 is smaller than 1
- c. Compute the probability that Y_2 is higher than 1.5
- d. Are the random variables Y_1 and Y_2 independent according to probability? Explain.
- e. Find and report the conditional pdf of $Y_2 \mid Y_1 = y_1$.
- f. Compute $P(Y_1 < 0.7 \mid Y_2 = 1.2)$
- g. Compute $P(0.8 < Y_2 < 1 \mid Y_1 = 0.5)$
- h. Compute $E\left[\frac{Y_1+Y_2}{Y_2}\right]$

5. Consider the following function:

$$f(y_1, y_2) = \begin{cases} 3y_1, & 0 \le y_2 \le y_1 \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- a. Compute the probability that Y_1 is smaller than 0.4
- b. Compute the probability that Y_2 is higher than 0.4
- c. Compute $P(0.6 < Y_1 < 0.8 \mid Y_2 = 0.4)$
- d. Compute $P(Y_2 > 0.2 \mid Y_1 = 0.5)$
- e. Find $E(Y_2^2 | Y_1 = y_1)$

6. Let
$$E(Y_1) = 6$$
, $Var(Y_1) = 3$, $E(Y_1 \mid Y_2) = \frac{Y_2^2}{5}$, $E(Y_2 \mid Y_1) = \frac{Y_1}{2}$

- a. Compute $E(Y_2)$
- b. Then compute $Var(Y_2)$

7.

Let the discrete random variables Y_1 and Y_2 have the joint probability function

$$p(y_1, y_2) = 1/3,$$
 for $(y_1, y_2) = (-1, 0), (0, 1), (1, 0).$

Find $Cov(Y_1, Y_2)$. Notice that Y_1 and Y_2 are dependent. (Why?) This is another example of uncorrelated random variables that are not independent.

8. Let
$$E(Y_1) = 2$$
, $E(Y_2) = -1$, $Var(Y_1) = 4$, $Var(Y_2) = 6$, $E(Y_1Y_2) = -1$.

- a. Compute $E(3Y_1 4Y_2)$
- b. Compute $Var(3Y_1 4Y_2)$
- c. Compute $E(2Y_1 Y_2^2)$

9. Let
$$E(Y_1) = -1$$
, $E(Y_2) = 4$ $Var(Y_1) = 6$, $Var(Y_2) = 8$, $E(Y_1Y_2) = -4$.

- a. Compute $E(9Y_1 + 2Y_2)$
- b. Compute $Var(9Y_1 + 2Y_2)$

Answers:

1.

c.
$$\left\{ \begin{array}{l} \frac{2y_2-y_1}{4y_2-1} \;\; ; \;\; y_1 \; = \; 0,1 \; , y_2 \; = \; 1,2 \\ 0 \;\; ; \;\; Otherwise \end{array} \right.$$

d.
$$\frac{2y_2-1}{4y_2-1}$$

2.

c.
$$\begin{cases} 0.55 \; ; \; y_2 = 0 \\ 0.16 \; ; \; y_2 = 1 \\ 0.29 \; ; \; y_2 = 2 \\ \text{Zero} \; ; \; \text{otherwise} \end{cases}$$

d.
$$\begin{cases} 38/55; \ y_1 = 0 \\ 17/55; \ y_1 = 1 \\ 0; \ Otherwise \end{cases}$$

3.

d.
$$\begin{cases} 2y_1 ; & 0 \le y_1 \le 1 \\ 0 ; & Otherwise \end{cases}$$

e.
$$\begin{cases} 2y_2 ; 0 \le y_2 \le 1 \\ 0 ; Otherwise \end{cases}$$

- a. 3/4
- b. 7/8 0.875
- c. 0.15625
- d. No

e.
$$\begin{cases} \frac{2-y_2}{2-2y_1+\frac{y_1^2}{2}} &; \ 0 \leq y_1 \leq y_2 \leq 1 \\ 0 &; \ \textit{Otherwise} \end{cases}$$

- f. 7/12 = 0.583333
- g. 0.1955556
- h. 1.5

5.

- a. 0.064
- b. 0.432
- c. 1/3 = 0.3333
- d. 0.6
- e. $\frac{y_1^2}{3}$

6.

- a. 3
- b. 21

7. Zero

- 8.
- a. 10
- b. 108
- c. -3

9.

- a. -1
- b. 518