

Genome assembly

Meleshko Dmitry meleshko.dmitrii@gmail.com

De novo genome assembly

De novo whole genome assembly

Whole genome assembly

Shortest common supersequence

Given a set of strings $\{s_1, ..., s_n\}$, find a shortest string S containing each s_i as a substring

Shortest common supersequence

Given a set of strings $\{s_1, ..., s_n\}$, find a shortest string S containing each s_i as a substring

Is NP-complete

Has nothing to do with real genome assembly problem

Why to assemble?

NGS

- Billions of short reads
- Sequencing errors
- Contaminants

Hard to perform analysis

Assembly

- Corrects sequencing errors
- Much longer sequences
- ✓ Each genomic region is presented only once
 - May introduce errors

Assembly types

- De novo genome assembly
 - Long reads
 - Short reads
 - Hybrid
- Reference-assisted genome assembly
 - Closely related species
- Transcriptome assembly
 - De novo
 - Reference based

De novo genome assembly

De novo genome assembly

Assembling Sanger reads

Early days

- Sanger sequencing
 - Long reads
 - Low coverage

- Overlap-Layout-Consensus (OLC)
 - Find overlaps between all reads
 - Order reads
 - Merge into consensus sequence

Finding overlaps

- Align reads all-to-all
 - BLAST and similar algorithms
- Ignore "insufficient" overlaps

Finding overlaps

- Align reads all-to-all
 - BLAST and similar algorithms
- Ignore "insufficient" overlaps
 - At least 40bp
 - >94% similarity

Assembly example

Assembly example

Assembly example

Overlap graph

Overlap graph

Consensus

NGS and OLC

- Overlap-Layout-Consensus is not applicable
 - Hard to find overlaps between short reads
 - Impossible to scale to such amount of reads
- De Bruijn graph approach (Pevzner et al., 2001)
- String Graph approach

(Meyers, 2005)

NGS era

De Bruijn graph in a nutshell

He that mischief hatches, mischief catches

He that mischief
mischief hatches,
hatches, mischief
, mischief catches

De Bruijn graph in a nutshell

, mischief catchesmischief hatches,He that mischiefhatches, mischief

De Bruijn graph in a nutshell

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

ACGTCCGTAA

Repeats in de Bruijn graph

ACGTCCGTAA

Repeats in de Bruijn graph

ACGTCCGTAA

Repeats in de Bruijn graph

ACGTCCGTAA

Eulerian path with multiplicities

ACGTCCGTAA

CCGTTG TGCAGG GTTGCA

CCGTTG TGCAGG GTTGCA

CCGTTG TGCAGG GTTGCA

CCGTTG TGCAGG GTTGCA

CCGTTG TGCAGG GTTGCA

What about real data?

What about real data?

More examples

More examples

CCGTTG TGCAGG GTTGCA

k=3

More examples

Does k-mer size matter?

TTTCATTC AACGGGCA
AGCTTTTC CTGCAACG
GGGCAATA TGACTGCA
CATTCTGA

K = 3

AGCTTTTCATTCTGACTGCAACGGGCAATA

TTTCATTC AACGGGCA
AGCTTTTC CTGCAACG
GGGCAATA TGACTGCA
CATTCTGA

K = 4

AGCTTTTCATTCTGACTGCAACGGGCAATA

How to select the *k*-mer size?

How to select the k-mer size?

- Small k
 - Complex graph
 - Hard to resolve repeats
- Large k
 - Gaps in the assembly
- For normal data sets $k = ReadLength / 2 + \varepsilon$

Iterative SPAdes run

- Smaller k-mer sizes are needed for reconstructing low-coverage regions
- Larger k-mer sizes are needed for resolving short repeats

DNA is double-stranded

DNA is double-stranded

- Add k-mer and its reverse complement
- Use odd k to avoid self-complement vertices
 - \circ rc(AATTT) = AAATT
 - o rc(AATT) = AATT

Removing sequencing errors

CCGTTG
CGTTAC
GTTGCA
TGCAGG

CCGTTG CGTTAC GTTGCA TGCAGG

How to remove a tip?

How to remove a tip?

- Short length (usually less than 2 * k)
- Low coverage in respect to the main (correct path)
- Long length or high coverage more likely to indicate a coverage gap

CCGTTG
CGTTACAG
GTTGCA
TGCAGG

CCGTTG
CGTTACAG
GTTGCA
TGCAGG

And what about bulges?

And what about bulges?

- Erroneous path has lower coverage that correct one
- Rather small length
- In case of similar coverage or bigger more likely to be result of diploidy

Real life

Real life

Velvet assembler simplification

- Tip clipping
- Bulge removal
- Removing erroneous connections

Velvet tip clipping

- Remove only if shorter than 2 * k
- Coverage is lower than of any alternative paths
- Iteratively process over the graph until no tips are left

Velvet "tour bus" algorithm

- Distance between vertices A and B is
 - $D(A, B) = length(E_{AB}) / coverage(E_{AB})$
 - Allows to go through reliable paths faster
- Start BFS from arbitrary node
- As soon as we came to already visited vertex
 - Align to alternative paths
 - Project low-covered path onto the main one

Velvet "tour bus" algorithm

Velvet "tour bus" algorithm

Velvet erroneous connection remover

- Erroneous connections don't have any recognized topological structure
- Have low coverage
- Removed using simple coverage cutoff

Homework

Implement de Bruijn graph

- Construction from FASTA/FASTQ
- Condensation
- Output to FASTA/DOT/...
- Simplification

Real life

Part of *E.coli* genome, K = 99

Insert size distribution

Paired-end reads

Sequencing of Sheared Fragments

Conventional mate-pairs:

Conventional mate-pairs:

Illumina Nextera mate-pairs:

Sequencing technologies

	SANGER SEQUENCING	illumina.	Roche 454 SEQUENCING	ion torrent		PACBIO°	NANOPORE
Protocols		HiSeq, MiSeq			Subreads	CCS / HiFi	MinIon
Read length	500-900	25-300	400-1100	200-400	20K-100K	5K-20K	1K-3M
Error rate	0.001-0.1%	0.1-1%	1%	1-2%	2-10%	0.1-2%	5-15%
Error type	Indels & Mismatches	Mismatches only	Indels & Mismatches	Indels & Mismatches	Indels & Mismatches	Indels & Mismatches	Indels & Mismatches
Comments	Remains the golden standard	Error rate grows at the end of read	Problems with homopolymers	Problems with homopolymers	Errors distributed randomly	Error rate depends on sequencing settings	Typically several deletions in a row
Cost	\$\$\$\$\$	\$\$	\$\$	\$\$	\$\$\$	\$\$\$	\$

PacBio only assembly

Thm:

Perfect assembly possible iff

- a) errors random
- b) sampling is Poisson
- c) reads long enough 2 solve repeats.

Note: e-rate not needed

Gene Meyers' twitter

New long reads vs Sanger assembly

High error rate => overlap detection is harder

- miniasm
- MHAP
- ...

Thank you!

Questions?