Lecture 05

논리식의 간소화

- 카르노 맵 : 복잡한 논리회로를 간소화된 등가 회로로 만드는 체계적인 축소를 수행하는 도구로, 불 출력 레벨을 2차 원으로 나타낸 표임
- 2변수 카르노 맵은 아래와 같이 3가지 형태로 나타낼 수 있음

\triangleright B		
A	0	1
0	0	1
1	2	3

2024. 03. 04.

2

- 카르노 맵을 사용하는 방법
 - 출력이 1이 되는 최소항을 카르노 맵에 1을 넣음
 - 나머지 빈 곳은 0으로 채우거나 비워도 됨
 - 무관항: 입력이 결과에 영향을 미치지 않는 최소항임
 - 카르노 맵에 ×나 d로 표시함

$$F = \sum m(0,3)$$

$$F = \sum m(0,3) + \sum d(1)$$

- 카르노 맵을 묶을 때의 규칙
 - ① 출력이 같은 항을 1, 2, 4, 8, 16개로 그룹을 지어 묶음
 - ② 바로 이웃한 항들끼리 묶음
 - ③ 반드시 직사각형이나 정사각형의 형태로 묶어야 함
 - ④ 최대한 크게 묶음
 - ⑤ 중복하여 묶어서 간소화된다면 중복하여 묶음
 - ⑥ 무관항의 경우 간소화될 수 있으면 몪어 주고, 그렇지 않으면 묶지 않음

$$F = \bar{A}\bar{B} + AB$$

$$F = \bar{A}\bar{B} + \bar{A}B$$
$$= \bar{A}(\bar{B} + B)$$
$$= \bar{A}$$

- 카르노 맵을 묶음
 - 예,

입	출력	
A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

A	0	1	_	
0	1	1	···▶ Ā	$E=ar{A}+ar{D}$
1	1			$F = \bar{A} + \bar{B}$

입	출력	
A	В	F
0	0	1
0	1	0
1	0	×
1	1	1

- 한 변에 한 개의 변수를 사용하고, 한 변에 두 개의 변수를 같이 사용하면 3변수 카르노 맵을 표현이 가능함
- 이웃하는 항들의 차이가 <mark>한 비트만</mark> 되어야 함

A	Б̄С	БС	ВС	ВĒ	
$ar{A}$	ĀĒĒ	$ar{A}ar{B}$ C	ĀВС	ĀBĒ	
\boldsymbol{A}	$A\bar{B}\bar{C}$	$A\bar{B}C$	ABC	ΑΒĒ	

C AB	$ar{A}ar{B}$	$\bar{A}B$	AB	$Aar{B}$
\bar{C}	ĀĒĒ	ĀBĒ	АВĒ	$Aar{B}ar{C}$
С	$ar{A}ar{B}$ C	ĀВС	ABC	AĒC

C AB	00	01	11	10
0	0	2	6	4
1	1	3	7	5

C AB	Ē	С	AB	0	1
$ar{A}ar{B}$	ĀĒĈ	ĀĒC	00	0	1
$ar{A}B$	$ar{A}Bar{C}$	ĀBC	01	2	3
AB	ΑΒĒ	ABC	11	6	7
$Aar{B}$	ΑĒĈ	ΑĒC	10	4	5

■ 카르노 맵의 간소화

■ 카르노 맵의 간소화

- 세로와 가로에 각각 2개 변수
- 이웃하는 항들의 차이가 <mark>한 비트만</mark> 되어야 함

AB	$ar{C}\overline{D}$	ĒD	CD	$C\overline{D}$
$ar{A}ar{B}$	$ar{A}ar{B}ar{C}ar{D}$	ĀĒŪ	ĀĒCD	$ar{A}ar{B}Car{D}$
$\bar{A}B$	$\bar{A}B\bar{C}\bar{D}$	ĀBĒD	ĀBCD	$ar{A}BCar{D}$
AB	$ABar{C}ar{D}$	ABCD	ABCD	$ABC\overline{D}$
$Aar{B}$	$Aar{B}ar{C}ar{D}$	$Aar{B}ar{C}D$	$Aar{B}CD$	$Aar{B}Car{D}$

AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

■ 카르노 맵의 간소화

 $F = \bar{B} + \bar{D}$

선택적 카르노 맵

논리식의 카르노 맵 작성

- 주어진 논리식으로부터 카로노 맵 작성이 가능함
 - 최소항으로 바꾸는 방법

$$F = ABC + \bar{A}B + \bar{A}\bar{B}$$

$$= ABC + \bar{A}B(\bar{C} + C) + \bar{A}\bar{B}(\bar{C} + C)$$

$$= ABC + \bar{A}B\bar{C} + \bar{A}BC + \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C$$

 $=\sum m(0,1,2,3,7)$

논리식의 카르노 맵 작성

- 주어진 논리식으로부터 카로노 맵 작성이 가능함
 - 논리식으로부터 바로 작성하는 방법

■ 4변수 카느로 맵의 2개로 나눔

N. D.E.	A = 0				
BC DE	$ar{D}ar{E}$	$\overline{D}E$	DE	$D\overline{E}$	
$ar{B}ar{C}$	ĀĒCĒĒ	ĀĒŪĒ	ĀĒĒDE	ĀĒĒDĒ	
$\bar{B}C$	ĀĒCŪĒ	ĀĒCĒE	ĀĒCDE	ĀĒCDĒ	
BC	ĀBCĪĒ	ĀBCĒE	ĀBCDE	ĀBCDĒ	
$Bar{C}$	ĀBĒŪĒ	ĀBĒŪE	ĀBĒDE	ĀBĒDĒ	

> DF	A = 0				
BC DE	00	01	11	10	
00	0	1	3	2	
01	4	5	7	6	
11	12	13	15	14	
10	8	9	11	10	

N DE	A=1					
BC DE	$\overline{D}\overline{E}$	$\overline{D}E$	DE	$D\overline{E}$		
$ar{B}ar{C}$	$Aar{B}ar{C}ar{D}ar{E}$	$Aar{B}ar{C}ar{D}E$	AĒĒDE	AĒCDĒ		
$\bar{B}C$	$Aar{B}Car{D}ar{E}$	$Aar{B}Car{D}E$	ABCDE	AĒCDĒ		
BC	$ABC\overline{D}\overline{E}$	$ABC\overline{D}E$	ABCDE	$ABCDar{E}$		
$Bar{C}$	$ABar{C}ar{D}ar{E}$	ABŪŪE	ABĒDE	ABĒDĒ		

S DE		<i>A</i> =	: 1	
BC DE	00	01	11	10
00	16	17	19	18
01	20	21	23	22
11	28	29	31	30
10	24	25	27	26

■ 4변수 카느로 맵의 2개로 나눔

 $F = \bar{A}\bar{B}C + \bar{A}BE + BDE + ABC\bar{D}\bar{E} + A\bar{B}\bar{C}\bar{E}$

■ 4변수 카르노 맵의 4개로 나눔

	AB = 00					
CD EF	00	01	11	10		
00	0	1	3	2		
01	4	5	7	6		
11	12	13	15	14		
10	8	9	11	10		

S EE	AB = 10					
CD EF	00	01	11	10		
00	48	49	51	50		
01	52	53	55	54		
11	60	61	63	62		
10	56	57	59	58		

	AB = 01					
CD EF	00	01	11	10		
00	16	17	19	18		
01	20	21	23	22		
11	28	29	31	30		
10	24	25	27	26		

S PP	AB = 11					
CD EF	00	01	11	10		
00	32	33	35	34		
01	36	37	39	38		
11	44	45	47	46		
10	40	41	43	42		

- 카르노 맵 : 입력 변수 <mark>4개 이하</mark>이면 사용하기 편함
- 퀸-맥클러스키(QM) 알고리즘 : 입력 변수 <mark>5개 이상</mark>이면 사용하기 더 유용함
 - 크게 2가지 단계로 나눌 수 있음
 - ① $ABC + AB\bar{C} = AB(C + \bar{C}) = AB$ 법칙을 적용하여 변수를 하나씩 제거해 나가는 단계
 - ② 차트를 이용해 최종 논리식을 구하는 단계 구체적인 과정은 다음과 같음
- 1 진리표에서 최소항을 모두 찾음
- 2 최소항들을 인텍스를 매겨 그룹화함
- 3 그룹 내의 항들로부터 간소화함
- 4 간소화되지 않을 때까지 3의 과정을 반복함

- 5 주항(PI: prime implicants)를 찾음
- 6 필수 주항(EPI: essential PI)를 찾음
- 7 EPI에 포함되는 PI들을 제거함
- 8 EPI에 포함되지 않은 항들에 대해 SOP 식을 찾음

■ 예: QM 알고리즘을 이용해 다음과 같은 논리식을 간소화함

$$F(A, B, C, D) = \sum m(0,1,2,3,5,7,8,10,12,13,15)$$

ABCD	10진수	인덱스
0000	0	0
0001	1	1
0010	2	1
0011	3	2
0101	5	2
0111	7	3
1000	8	1
1010	10	2
1100	12	2
1101	13	3
1111	15	4

인덱스	10진수	ABCD
0	0	0000
	1	0001
1	2	0010
	8	1000
	3	0011
2	5	0101
	10	1010
	12	1100
3	7	0111
	13	1101
4	15	1111

인덱스	10진수	ABCD
	(0,1)	000-
0	(0,2)	00-0
	(0,8)	-000
	(1,3)	00-1
	(1,5)	0-01
1	(2,3)	001-
1	(2,10)	-010
	(8,10)	10-0
	(8,12)	1-00
	(3,7)	0-11
2	(5,7)	01-1
2	(5,13)	-101
	(12,13)	110-
3	(7,15)	-111
J	(13,15)	11-1

인덱스	10진수	ABCD
0	(0,1,2,3)	00
	(0,2,8,10)	-0-0
1	(1,3,5,7)	01
2	(5,7,13,15)	-1-1

■ 예: QM 알고리즘을 이용해 다음과 같은 논리식을 간소화함

$$F(A, B, C, D) = \sum m(0,1,2,3,5,7,8,10,12,13,15)$$

- 간소화되지 않을 때까지 찾은 PI들은 다음과 같음 $A\bar{C}\bar{D},AB\bar{C},\bar{A}\bar{B},\bar{B}\bar{D},\bar{A}D,BD$
- EPI를 찾기 위해서 다음과 같은 차트를 만들게 함

F	Pl	0	1	2	3	5	7	8	10	12	13	15
$ar{A}ar{B}$	00	×	×	×	×							
$\bar{B}\bar{D}$	-0-0	×		×				×	-(x)			
ĀD	01		×		×	×	×					
BD	-1-1					×	×				×	-(x)
$A\bar{C}\bar{D}$	1-00							×		×		
$AB\bar{C}$	110-									×	×	

■ 예: QM 알고리즘을 이용해 다음과 같은 논리식을 간소화함

$$F(A, B, C, D) = \sum m(0,1,2,3,5,7,8,10,12,13,15)$$

- 간소화되지 않을 때까지 찾은 PI들은 다음과 같음 $A\bar{C}\bar{D},AB\bar{C},\bar{A}\bar{B},\bar{B}\bar{D},\bar{A}D,BD$
- 찾은 EPI : $\bar{B}\bar{D}$, BD
- EPI에 포함되지 않은 항들은 아래 표에 나와 있음

PI		1	3	12
$ar{A}ar{B}$	00	×	×	
ĀD	01	×	×	
$A\bar{C}\bar{D}$	1-00			×
ABŪ	110-			×

$$F = \overline{B}\overline{D} + BD + \overline{A}\overline{B} + A\overline{C}\overline{D}$$

$$F = \overline{B}\overline{D} + BD + \overline{A}D + A\overline{C}\overline{D}$$

$$F = \overline{B}\overline{D} + BD + \overline{A}\overline{B} + AB\overline{C}$$

$$F = \overline{B}\overline{D} + BD + \overline{A}D + AB\overline{C}$$

여러 개의 출력 함수

실제 디지털 시스템들을 별도로 설계하는 대신에 서로 공유 가능한 게이트를 공유하여 통합한 시스템을 구성함

$$F(A, B, C) = \sum m(0,2,6,7)$$

$$G(A, B, C) = \sum m(1,3,6,7)$$

여러 개의 출력 함수

실제 디지털 시스템들을 별도로 설계하는 대신에 서로 공유 가능한 게이트를 공유하여 통합한 시스템을 구성함

$$F(A, B, C) = \sum m(0,2,6,7)$$

$$G(A, B, C) = \sum m(1,3,6,7)$$

■ NAND와 NOR 게이트만으로 모든 회로를 만들 수 있음 →NAND와 NOR 게이트는 만능 게이트라고 불림

NOT
$$\bar{A} = \overline{A} + \bar{A} = \overline{A} \cdot \bar{A}$$

AND $AB = \overline{AB} = \overline{A} + \overline{B}$

OR $A + B = \overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$

NAND $\overline{AB} = \overline{AB} = \overline{A} + \overline{B}$

NOR $\overline{A + B} = \overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$
 $AB + AB = \overline{AB} + \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + AB = \overline{AB} + \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + AB = \overline{AB} + \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{AB} \cdot \overline{AB}$
 $AB + \overline{AB} = \overline{AB} = \overline{AB} \cdot \overline{AB} = \overline{$

기본 게이트	NAND 게이트 표현	NOR 게이트 표현
NOT	$A - \bar{A}$	$A \longrightarrow \bar{A}$
AND	$A - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc AB$	$A \longrightarrow AB$ $B \longrightarrow AB$

기본 게이트	NAND 게이트 표현	NOR 게이트 표현
OR	$A \longrightarrow A + B$	$A \longrightarrow A + B$
XOR	$A \oplus B$	$A \longrightarrow A \oplus B$

기본 게이트	NAND 게이트 표현	NOR 게이트 표현
NAND	$A - \overline{AB}$	$A \overline{AB}$ $B \overline{AB}$
NOR	$A \longrightarrow \overline{A + B}$	$A \longrightarrow B$

■ NAND 게이트만으로 나타내는 경우

■ NAND 게이트만으로 나타내는 경우

$$F = A\bar{B}\bar{C} + \bar{A}\bar{C}\bar{D} + BD$$

■ NOR 게이트만으로 나타내는 경우

■ NOR 게이트만으로 나타내는 경우

$$F = (A + C + D)(\overline{A} + B + C)(\overline{B} + \overline{D})$$

XOR와 XNOR 게이트

■ XOR의 카르노 맵 표현

3변수 XOR

4변수 XOR

$$F = A \oplus B \oplus C \oplus D$$

XOR와 XNOR 게이트

■ XNOR의 카르노 맵 표현

3변수 XNOR

$$F = \overline{A \oplus B \oplus C}$$
$$= A \odot B \odot C$$

4변수 XNOR

$$F = \overline{A \oplus B \oplus C \oplus D}$$
$$= A \odot B \odot C \odot D$$

XOR와 XNOR 게이트

■ XOR 게이트 표현

