Econometrics for Financial Time Series

Chapter 8: Cointegration

In Choi

Sogang University

Spurious regression

- We often find in applied econometric work equations of high R^2 , but with low value of the D-W statistic (positive autocorrelation).
- This phenomina are contradictory, because low DW implies that there is a specification error and that the model fitted is inadequate. According to a standard theory in econometrics, we expect that low DW accompanies low \mathbb{R}^2 .
- Granger and Newbold first reported this dubious regression results (high R^2 , low DW) by simulations and showed that these spurious regression results can occur when we regress one random walk process on another independent random walk process.

Spurious regression

Specifically, Granger and Newbold studied the regression model

$$y_t = \alpha + \beta x_t + u_t \tag{1}$$

where

$$y_t = y_{t-1} + v_t, x_t = x_{t-1} + w_t$$

and

$$v_t \sim iidN(0, \sigma_v^2), w_t \sim iidN(0, \sigma_w^2).$$

• Since v_t is independent of w_t , x_t and y_t have no statistical relation, and hence we expect that $H_0: \beta = 0$ will be rejected by the usual t-test. However, Granger and Newbold found that the null hypothesis is rejected at the 5% level about 3/4 of 100 simulations. Further, R^2 is moderately high and DW is low in their experimental results. Because the regression results in this case cannot be relied upon, we call these regressions "spurious".

Spurious regression

 Phillips (1986; JOE) developed asymptotic results for spurious regressions by using the invariance principle. Phillips analyzed model (1) and reported that

$$\hat{eta} \stackrel{d}{ o}$$
 a random variable (hence $\hat{eta} \stackrel{P}{ o} eta)$
$$T^{-1/2} \hat{\alpha} = O_p(1) \; (\hat{\alpha} \stackrel{P}{ o} 0)$$

$$T^{-1/2} t_{eta} = O_p(1) \; (|t_{eta}| \stackrel{P}{ o} \infty)$$

$$T^{-1/2} t_{lpha} = O_p(1) \; (|t_{lpha}| \stackrel{P}{ o} \infty)$$

$$R^2 = O_p(1)$$

$$DW \stackrel{P}{ o} 0.$$

• These asymptotic results explain why we tend to reject the nulls $\alpha=0$ and $\beta=0$, and find low DW and moderately high R^2 in the regressions involving two random walks. Further, these results show that the OLS estimates for α and β are not consistent.

4 / 10

• A series with no deterministic component which has a stationary, invertible, ARMA representation after differencing d times, is said to be integrated of order d, denoted $x_t \sim I(d)$.

Example If

$$y_t = y_{t-1} + u_t, u_t \sim WN(0, \sigma^2),$$

$$y_t \sim I(1)$$
.

- Properties of I(1) series
- **①** Growing variance. (If $y_t \sim I(1)$, then $var(y_t) \rightarrow \infty$ as $t \rightarrow \infty$.)
- ② An innovation has a permanent effect on the value of y_t . $(y_t = \sum_{i=1}^t u_i.)$
- **③** $f_{yy}(0) = \infty$. There exiats a strong long-term component. $(f_{yy}(\cdot))$:spectral density function of $\{y_t\}$.
- **1** The expected time between crossings of x = 0 is infinite.
- **1** Theoretical autocorrelations converge to 1 at all lags as $t \to \infty$.

- If $x_t \sim I(d)$ and $y_t \sim I(d)$, it is generally true that $z_t = x_t ay_t \sim I(d)$. When $z_t \sim I(b)$, b < d, we say that x_t and y_t are cointegrated.
- More formally, the components of the vector x_t are said to be cointegrated of order (d, b), denoted by $x_t \sim CI(d, b)$, if
- **1** all components of x_t are I(d).
- ② there exists a vector $\alpha(\neq 0)$ so that $z_t = \alpha' x_t \sim I(d-b)$, b > 0. The vector α is called the cointegrating vector.
- The vector α represents the long-run equilibrium relationship among variables.

 A vector time series has an error correction representation if it can be expressed as

$$A(B)(1-B)x_t = -\gamma z_{t-1} + u_t$$

where u_t is a stationary multivariate disturbance, with A(0) = I, A(1) has all elements finite, $z_t = \alpha' x_t$ and $\gamma > 0$.

 In this representation, the change in one period is explained by the disequilibrium errors in previous periods.

$$[(1-B)x_t = -\gamma A^{-1}(B)z_{t-1} + A^{-1}(B)u_t].$$

• For example, if A(B) = I, $x_t = x_{t-1} - \gamma z_{t-1} + u_t$. Thus, when the equilibrium error of the previous period t-1 is positive, x_t will decrease, and vice versa.

Asymptotics for cointegrating regressions

• Let $\{y_t\}$ be generated by

$$y_t = \alpha' x_t + u_t \tag{2}$$

where α is an $m \times 1$ coefficient matrix and the m-vector process $\{x_t\}_0^\infty$ satisfies

$$x_t = x_{t-1} + v_t.$$

 x_0 can be any random variable.

Example

 y_t : consumption, x_t : income

Example

 y_t : money, x_t : income, interest rate

Asymptotics for cointegrating regressions

The OLS estimator of α for model (2) is

$$\hat{\alpha} = \left(\sum_{t=1}^n x_t x_t'\right)^{-1} \left(\sum_{t=1}^n x_t y_t\right).$$

Main properties of $\hat{\alpha}$ is:

- **1** $\hat{\alpha}$ converges to α in probability.