Image to Image Retrieval

Image to Image retrieval

A NN model for image-to-image retrieval, which involves finding similar images in a gallery when given a specific image as a query.

Best fit model is implemented using Resnet50. Below are the details of systematic approach taken to come up on end result.

Baseline Model Implementation

- Simple CNN:
 - Architecture: Start with a basic Convolutional Neural Network (CNN).
 - Training: Train the CNN on the dataset to classify images based on their actions.
 - Evaluation:
 - Accuracy: 61%
 - Mean Average Precision (mAP@10): 47%
 - Mean Rank: 341

Improving the Model with Transfer Learning

- ResNet50 [Best mAP]:
 - Architecture: Use ResNet50, a more advanced and pre-trained CNN architecture.
 - Custom Classifier: Add a custom classifier on top of ResNet50 to finetune the model for the specific action classification task.
 - **Training**: Fine-tune the model on the dataset.
 - Evaluation:
 - Accuracy: 73%
 - mAP@1: 1.0

■ mAP@10: 0.650003847526665

■ mAP@50: 0.4817864112498961

• Mean Rank: 261.11333333333333

• Some sample image similarities

Positive Pair

Similarity for given two images is:0.7357389330863953

• Negative Pair

Implementing a Siamese Network for Similarity Learning [Partially done due to high resource usage for more pairs creation]

• Siamese Network:

- Architecture: Design a Siamese Network with two identical subnetworks that share weights.
- Loss Function: Use a contrastive loss function to train the model to distinguish between similar and dissimilar image pairs.
- Distance Metric: Employ Euclidean distance to measure the similarity between image embeddings.

• Training:

- Create positive pairs (similar images) and negative pairs (dissimilar images) from the dataset.
- Experiment with different ratios of positive to negative pairs to find the optimal balance for training.

Steps to run

- The final submitted code is for ResNet Approach. The file name is "resnet.ipynb".
- To run the model online we can take help of a tool like Google Colab or Kaggle's notebook.
 - To do so, upload the file
 - Upload the dataset (Can also mount google drive)
 - Click Run All