PU M Sc Bio Chemistry and Molecular Biology

100	f 100 PU_2015_368 chromosomes responsible for characteristics other than sex are known by which of the following as?
0	ribosomes
0	lysosomes
0	spermatocytes
0	autosomes
121 Euk	F 100 PU_2015_368 aryotic cells with DNA damage often cease progression through the cell cycle until the damage is aired. This type of control over the cell cycle is referred to as:-
0	checkpoint control
0	proteosome control
0	anticyclin control
0	damage control
127	F 100 PU_2015_368 copolysaccharides are also known as:-
0	Glycoproteins
0	Mucoproteins
0	Homopolysaccharides
0	Glycosaminoglycans
201	f 100 PU_2015_368 ential fatty acids are the precursors for:-
0	Phosphadidate
0	Platelet activating factor
0	Cardiolipin
	Arachidonate
179 Whe	f 100 PU_2015_368 enever the pathogenic microflora establishes in the body, the normal microflora in our body:-
0	remains unaffected
0	no correlation between the microflora

0	Decreases
0	Increases
122	F 100 PU_2015_368 Inscription initiation can be determined by:- Foot printing Nick Translation Primer Extension
O	Northern Blotting
204	F 100 PU_2015_368 Ille is attached to placenta by a slender stalk called:- Petiole Pedicel Placenta Funicle
103	F 100 PU_2015_368 which of the following acids is glucose broken down in the first stage of carbohydrate metabolism? citric acid pyruvic acid hydrochloric acid lactic acid
147	PU_2015_368 or formation of the initiation complex in eukaryotes:- Poly-A tail is split off Methionyl tRNA occupies the A site on the ribosome 7-Methylguanosine triphosphate cap is split off None of the above
178	of 100 PU_2015_368 lins and cyclin dependent kinases are involved in the regulation of:- membrane circulation via exocytosis and endocytosis circadian rhythms

0	cell-cycle
O	synthesis of cAMP
213 Molt	of 100 PU_2015_368 ting is caused by the hormone:-
0	Alloecydysone
0	Morpisone
0	Phenoxyecdysone
0	Hydroxyecdysone
106 One	of 100 PU_2015_368 -celled algae enclosed in minute two-part silic shells are called:-
0	diatoms
0	dinoflagellates
0	annelids
0	coelenterates
211	of 100 PU_2015_368 pecific inhibitor of Succinate dehydrogenase is:-
0	Cyanide
0	Citrate
0	Arsenate
0	Malonate
185	of 100 PU_2015_368 mples for triple antigen vaccines included in the immunization schedule of newborns are:-
0	MMR and BCG
0	BCG and OPV
0	MMR and OPV
0	MMR and DPT
137	of 100 PU_2015_368 n the pentapeptide, phe-ala-leu-lys-arg, phenylalanine residue is split off by:-
0	Trypsin
0	Carboxypeptidase

0	Aminopeptidase
0	Chymotrypsin
105	PU_2015_368 ee first stage of photosynthesis, light energy is used to:- move water molecules
0	produce carbohydrates
0	split water
	denature chlorophyll
163	of 100 PU_2015_368 tt, fright and flight reactions during emergency are brought about by:-
0	Pituitary
0	parasympathetic nervous system
0	sympathetic nervous system
	central nervous system
202	of 100 PU_2015_368 lin promotes:-
0	Ketogenesis
0	Lipolysis
0	Gluconeogenesis
0	Fatty acid biosynthesis
145 Hem	of 100 PU_2015_368 n synthetase is congenitally deficient in:-
0	Hereditary coproporphyria
0	Protoporphyria
0	Variegate porphyria
О	Congenital erythropoietic porphyria
186 Beca	of 100 PU_2015_368 ause penicillin prevents peptidoglycan synthesis, it is more effective on:-
0	Gram negative bacteria
U	Gram positive bacteria

Microsporum 21 of 100 101 PU_2015_368 Each of the following is a cell organelle except one. Which one of these is NOT a cell organelle? mitochondrion lysosome cytoplasm endoplasmic reticulum 22 of 100 123 PU_2015_368 The class of antibiotics known as the quinolones is bactericidal. Its mode of action on growing bacteria is thought to be:- Inhibition of DNA gyrase Inactivation of penicillin-binding protein II Prevention of the cross-linking of glycine Inhibition of β-lactamase 23 of 100 144 PU_2015_368	
101 PU_2015_368 Each of the following is a cell organelle except one. Which one of these is NOT a cell organelle? mitochondrion lysosome cytoplasm endoplasmic reticulum 22 of 100 123 PU_2015_368 The class of antibiotics known as the quinolones is bactericidal. Its mode of action on growing bacteria is thought to be:- Inhibition of DNA gyrase Inactivation of penicillin-binding protein II Prevention of the cross-linking of glycine Inhibition of β-lactamase	
Ilysosome Cytoplasm endoplasmic reticulum 22 of 100 123 PU_2015_368 The class of antibiotics known as the quinolones is bactericidal. Its mode of action on growing bacteria is thought to be:- Inhibition of DNA gyrase Inactivation of penicillin-binding protein II Prevention of the cross-linking of glycine Inhibition of β-lactamase 23 of 100	
cytoplasm endoplasmic reticulum 22 of 100 123 PU_2015_368 The class of antibiotics known as the quinolones is bactericidal. Its mode of action on growing bacteria is thought to be:- Inhibition of DNA gyrase Inactivation of penicillin-binding protein II Prevention of the cross-linking of glycine Inhibition of β-lactamase 23 of 100	
endoplasmic reticulum 22 of 100 123 PU_2015_368 The class of antibiotics known as the quinolones is bactericidal. Its mode of action on growing bacteria is thought to be:- Inhibition of DNA gyrase Inactivation of penicillin-binding protein II Prevention of the cross-linking of glycine Inhibition of β-lactamase 23 of 100	
 22 of 100 123 PU_2015_368 The class of antibiotics known as the quinolones is bactericidal. Its mode of action on growing bacteria is thought to be:- Inhibition of DNA gyrase Inactivation of penicillin-binding protein II Prevention of the cross-linking of glycine Inhibition of β-lactamase 23 of 100	
123 PU_2015_368 The class of antibiotics known as the quinolones is bactericidal. Its mode of action on growing bacteria is thought to be:- Inhibition of DNA gyrase Inactivation of penicillin-binding protein II Prevention of the cross-linking of glycine Inhibition of β-lactamase	
Inactivation of DNA gyrase Inactivation of penicillin-binding protein II Prevention of the cross-linking of glycine Inhibition of β-lactamase 23 of 100	
Prevention of penicilin-binding protein if Prevention of the cross-linking of glycine Inhibition of β-lactamase 23 of 100	
Inhibition of β-lactamase 23 of 100	
23 of 100	
C1 component of the classical complement pathway is made up of:-	
Complements 1q and 1s	
Complements 1r and 1s	
Complements 1q, 1r and 1s	
Complements 1q and 1r	
24 of 100 210 PU_2015_368 Thromboxanes are involved in:-	
Platelet formation	
Uterine contraction	
Mucin secretion	
Platelet aggregation	
25 of 100 124 PU_2015_368 The first DNA molecule to be completely sequenced was:- SV40 virus	

0	bacteriophage Φ X174 human mitochondrial genome
0	E. coli
214	of 100 PU_2015_368 mitochondrial Superoxide dismutase contains:-
0	Mg+ ²
~	Co+ ²
~	Zn+ ²
О	Mn+ ²
129 Whi	of 100 PU_2015_368 ch of these connective tissue types has proteoglycans in its matrix?
0	Bone
0	Ligaments
0	Tendons
0	Cartilage
28 of 100 109 PU_2015_368 Which of the following is not an arachnid?	
0	black widow spider
0	tick
0	lobster
0	scorpion
146	of 100 PU_2015_368 ancer elements:-
0	Are present between promoters and the structural genes
0	Are trans-acting factors
0	Encode specific enhancer proteins
0	Increase the expression of some structural genes
168 Whe	of 100 PU_2015_368 en both ovaries are removed from rat then which hormone is decreased in blood?
0	estrogen

0	gonadotropin releasing factor
0	prolactin
0	Oxytocin
203	of 100 PU_2015_368 atty acid with 14 carbon atoms will undergo how many cycles of β oxidation:- 4 7 5
126	of 100 PU_2015_368 omopolysaccharide made up of fructose is:-
0	Dextrin
0	Glycogen
0	Inulin
0	Cellulose
120 Cor bes lifeti	of 100 PU_2015_368 Insider the average <i>in vivo</i> turnover rates for proteins, DNA, and mRNA. Which of the following orde to describes the turnover rate from fastest (shortest average lifetime) to slowest (longest average lime)?
0	mRNA > DNA > proteins
0	mRNA > proteins > DNA
0	Proteins > mRNA > DNA
0	Proteins > DNA > mRNA
34 of 100 176 PU_2015_368 Primary interactions between antigens and antibodies involve all of the following Except:-	
0	electrostatic forces
0	covalent bonds
0	van der Waals forces
0	hydrophobic forces
	of 100 PU_2015_368

When a surgeon conducts a bypass surgery by transplanting a piece of vein from the patient's leg to the same patient's heart, this is:-		
A xenograft		
C An autograft		
C An allograft		
C An isograft		
36 of 100 161 PU_2015_368 Cortisol is the most potent of the neutrally occurring glycocorticoids. They are produced by the cells of:-		
A) Zona glomerulosa B) zona fasiculata C) zona reticularis		
C A only		
С A&B		
A, B & C		
C B&C		
37 of 100 128 PU_2015_368 Normal blood calcium levels range between:- 10.5-12 mg/dL 6-8 mg/dL 8-10.5 mg/dL 1-2 mg/dL		
38 of 100 162 PU_2015_368 Cholera toxin has AB subunits, A ₁ subunit enters cytosol to become active, and activates a protein which stimulates adenylate cyclase to produce cAMP, high cAMP levels activate leading to efflux of ions and water from entrocytes causing diarrhea.		
Sodium – glucose cotransporter		
CFTR – cystic fibrosis transmembrane receptor		
PPAR – peroxisome Proliferator Activated Receptor		
adhesion GPCR		
39 of 100 164 PU_2015_368 It is the part of forebrain and regulates the pituitary glands and maintains body temperature:-		
Hypothalamus		
thalamus		

0	Cerebrum
\cup	medulla oblongata
205	of 100 PU_2015_368 nooxygenases are found in:-
0	Microsomes
0	Mitochondria
0	Crystae
0	Nucleus
143	of 100 PU_2015_368 ntibodies, the variable region of light chains has:-
~	Two hypervariable regions
0	Three hypervariable regions
0	One hypervariable region
0	Four hypervariable regions
102 Whe	of 100 PU_2015_368 en a color blind man marries a woman pure for normal color vision, it is probable that one of the owing situations may result. Is it probable that:-
0	half the grandsons will be color blind
0	all the grandchildren will be color blind
0	all the children will be color blind
0	only the sons will be colorblind
212 Gre	of 100 PU_2015_368 en fluorescent protein (GFP) is derived from:-
0	Aquaria Victoria
0	Enterococcus hirae
0	Streptococcus pneumonia
О	Listeria monocytogenes
138	of 100 PU_2015_368 pressor mutations occur in:-
O	Structural genes

0	Silencer elements
0	Promoter genes
0	Anticodons
209	PU_2015_368 CA-1 is associated with which cancer? Thyroid Leukemia Nerve Breast
139 The	of 100 PU_2015_368 half-life of a protein depends upon its:-
0	C-terminus amino acid
0	N-terminus amino acid
0	Prosthetic group
0	Signal sequence
107	of 100 PU_2015_368 noregulation is concerned with:-
0	ionic regulation
0	carbon dioxide regulation
0	excretion
0	control of the body's water content
148 In st	of 100 PU_2015_368 icky ends produced by restriction endonucleases:-
0	The ends of a double-stranded fragment are overlapping
0	The ends of a double-stranded fragment are non-overlapping
0	The DNA strands stick to the restriction endonuclease
0	The two strands of DNA are joined to each other
136	PU_2015_368 voltage gated potassium channel opens due to:-

0 0	Change in electromagnetic field Increase in potassium	
0	Change in protein concentration	
188 Whi	of 100 PU_2015_368 ch of the following pair of diseases is caused by virus?	
0	Cholera, Tuberculosis	
0	Elephantiasis, Syphilis	
0	Trypanosomiasis, giardiasis	
0	Rabies, mumps	
125 The	PU_2015_368 SI unit of molar extinction coefficient is:-	
0	m²/mol	
0	M cm	
0	M cm ⁻¹	
0	M ⁻¹ cm ⁻¹	
208	of 100 PU_2015_368 nt affecting translation:-	
0	Quinolone	
0	Chloramphenicol	
0	Streptovaricin B	
0	Streptovaricin A	
53 of 100 206 PU_2015_368 Dr. John Snow, a physician saw the devastating effects and rapid spread of the disease called as		
0	Malaria	
0	Jaundice	
0	Cholera	
0	Flu	
54	of 100	

167 PU_2015_368

You want to purify a protein by ion – exchange chromatography. But, you did not know the nature of charge on the protein at a certain p^H. Determine the nature of charge of a given protein sequence at p^H 3.0 so that you know whether to purify by cation or anion exchange chromatography.

-NH ₃ + - Pro - Tyr -Ser - Gly - Val - Ile - Phe - Tyr - Leu - Glu - Asp - COOH		
0	no charge	
	negative (-) charge	
0	Positive (+) charge	
0	cannot be determined	
108	of 100 PU_2015_368 ich of the following is not found in blood?	
0	fibrinogen	
0	glucose	
0	glycogen	
0	urea	
177 Gla	of 100 PU_2015_368 ucoma is an eye-disease arising from:-	
0	elongation of eye ball	
0	stiffness in iris	
0	increased pressure of fluid in eye ball	
0	shortening of eye ball	
169	of 100 PU_2015_368 H is secreted by:-	
0	middle lobe of pituitary	
0	Anterior lobe of pituitary	
0	endostyle	
0	posterior lobe of pituitary	
58 of 100 189 PU_2015_368 A light microscope has an objective lens with a magnification of 100x and an ocular I magnification of 10x. What is the total magnification of the image?		
0	10x	
0	100x	
0	1000x	
0	400x	

207 Jaw	of 100 PU_2015_368 less fishes belong to the class:-
0	Agnathans
0	Pandakans
0	Branchiostoma
0	Osteichthyes
104	PU_2015_368 Individual with three X chromosomes is likely to be:- a Turner's individual
0	an abnormal female
	a clinically normal female
0	a Kleinfelter's individual
244	of 100 PU_2015_368 ones are:-
0	Insoluble in water and very dilute acids
0	Identical to protamine
0	Proteins with high molecular weight
0	Proteins rich in lysine and arginine
248	PU_2015_368 at is the general formula for carbohydrates? (COOH) (C2HO)n
0	(CHCHCH)
0	(CH2O)n
246	of 100 PU_2015_368 ormone used for detection of pregnancy is:-
0	Progesterone
0	Estrogen
0	Oxytocin
0	Chorionic gonadotropin

224 Cho	of 100 PU_2015_368 lesterol is a precursor for:-
0	Bile acid
0	ATP synthesis
0	Bilirubin
0	Phospholipid
241	PU_2015_368 ecular weight of human albumin is about:- 54,000 90,000 69,000 156,000
221 In D	of 100 PU_2015_368 rosophila, sex is determined by:-
0	The ratio of X chromosomes to autosomes
0	The ratio of Y chromosomes to autosomes
0	Environment
0	Y chromosome
240	PU_2015_368 power house of the cell is:- Mitochondria Nucleus Lysosomes Cell membrane
243	of 100 PU_2015_368 naerobic glycolysis, energy yield from each molecule of glucose is:-
0	38 ATP equivalents
0	30 ATP equivalents
0	8 ATP equivalents
0	2 ATP equivalents

	of 100
	PU_2015_368 major function of PTH appears to be the maintenance of a normal level of extracellular fluid:-
0	Albumin
0	Globulin
0	Calcium
0	Ferritin
222	of 100 PU_2015_368 aric acid has:-
0	16 carbon atoms
0	One unsaturated bond
0	Two unsaturated bond
0	18 carbon atoms
242	of 100 PU_2015_368 min B12 is:-
0	Stored in liver
0	Stored in RE cells
0	Stored in bone marrow
0	Not stored in the body
226	PU_2015_368 ormal resting state, most of the blood glucose burnt as fuel in humans is consumed by:-
0	Brain
Ö	Liver
0	Kidneys
229 Imm	of 100 PU_2015_368 nunoglobulins are classified on the basis of their:-
0	Type of light chains
0	Molecular weight
0	Type of heavy chains
0	Types of light and heavy chains

	of 100 PU_2015_368
Plan	nts store energy as:-
0	Lipids
	Lactose
0	Protein
0	Starch
249 The C	PU_2015_368 following air pollutant is responsible for acid rain:- CO SO ₂ H ₂ S CO ₂
76 (225	of 100 PU_2015_368 ch of the following hormones is not involved in carbohydrate metabolism?
_	Vasopressin
_	ACTH
	Insulin
0	Glucagon
223 Ergo	PU_2015_368 esterol is a precursor of:- Lanosterol Coenzyme A Acyl protein Vitamin D
228	of 100 PU_2015_368 soelectric pH, an amino acid exists as:-
0	Cation
0	Anion
0	Zwitterion
0	Polar amino acid

245 The	of 100 PU_2015_368 most rapid method to re synthesise ATP during exercise is through:-
0	Tricarboxylic acid cycle (Krebs' cycle)
0	Gluconeogenesis
0	Phosphocreatine breakdown
0	Glycolysis
227	of 100 PU_2015_368 ino acid with a nonpolar side chain is:- Serine Threonine Valine Asparagine
278 The read	of 100 PU_2015_368 carbon chain of fatty acids is shortened by 2 carbon atoms at a time. This involves successive ctions catalyzed by 4-enzymes. These acts on the following order:-
0	Enoyl-CoA hydrase, β-OH acyl CoA dehydrogenase, acyl CoA dehydrogenase, thiolase,
0	Acyl CoA dehydrogenase, enoyl- CoA hydrase, β-OH acyl CoA dehydrogenase, thiolase
0	Acetyl CoA dehydrogenase, β-OH acyl CoA dehydrogenase, enoyl hydrase, thiolase
0	Acyl CoA dehydrogenase, thiolase, enoyl-CoA hydrase, β-OH acyl CoA dehydrogenase
293 The	of 100 PU_2015_368 glyoxylate cycle is found in plants and bacteria but not in animals. The lack of this cycle in animals ults in the inability to:- Synthesize glutamate from malate
0	Synthesize oxaloacetate from isocitrate
0	
0	Perform gluconeogenesis from fatty acids
265	Perform gluconeogenesis from amino acids of 100 PU_2015_368 cymes that are secreted in their inactive forms are called as:- zymogen clastogen
U	methanogen

О	mutagen
291 The	of 100 PU_2015_368 glycosaminoglycan which does not contain uronic acid is:-
0	Keratan sulphate
0	Chondroitin sulphate
0	Heparan sulphate
0	Dermatan sulphate
294 This	of 100 PU_2015_368 s amino acid has a profound effect in the secondary structure of proteins, because when present in the no acid sequence, it disrupts the α -helix structure:-
_	Serine
0	Glycine
0	Proline
О	Alanine
266	of 100 PU_2015_368 cyme that cuts within a DNA molecule is called:-
0	DNA ligase
0	DNA methylase
0	endonuclease
0	exonuclease
279	of 100 PU_2015_368 and-gated ion channel receptor is best illustrated with:-
0	Insulin receptor
0	Erythropoietin type receptor
0	Muscarinic acetylcholine receptor
	Nicotinic acetylcholine receptor
264 Try	of 100 PU_2015_368 psinogen is converted to trypsin by:-
0	proteolytic cleavage
0	reduction of a disulfide bond

O	binding an essential metal ion
0	phosphorylation of amino acid side chain
267	PU_2015_368 example of a thermostable enzyme is:- ribonuclease chymotrypsin pepsin Tag polymerase
290	of 100 PU_2015_368 -glucose + 1120 → + 52.50 ← + 190 β- D- glucose.
Cha C C C	Inges for glucose above represent:- Mutarotation Epimerisation Optical isomerism D and L isomerism
263	PU_2015_368 ch of the following is not a covalent modification? dephosphorylation activation by divalent cation phosphporylation proteolytic cleavage
292	PU_2015_368 n α-helix and β-pleated sheet conformation of proteins were proposed by:- Pauling and Corey Y.S. Rao Waugh and King Watson and Crick
282 An i	of 100 PU_2015_368 ncrease in the osmolality of extracellular compartment will:-
0	Stimulate the volume and osmoreceptor and inhibit ADH secretion

0	Inhibit ADH secretion
0	Cause no change in ADH secretion
0	Stimulate ADH secretion
281 Duri in sl	PU_2015_368 ing strenuous exercise, the NADH formed in the glyceraldehyde 3-phosphate dehydrogenase reaction keletal muscle must be reoxidized to NAD+ if glycolysis is going to continue. The most important ction involved in the reoxidation of NADH in anaerobic conditions is:- Dihydroxyacetone phosphate to glycerol 3-phosphate Glucose 6 (P) to Phosphogluconate Isocitrate to α-ketoglutarate Pyruvate to lactate
277	of 100 PU_2015_368 ding of catecholamines to α_2 – adrenergic receptors results in:-
0	Increases the intracellular concentration of cGMP
0	Decreases the intracellular concentration of cGMP
0	Decreases the intracellular concentration of cAMP
0	Increases the intracellular concentration of cAMP
280 The	of 100 PU_2015_368 sequence of the redox carrier in respiratory chain is:-
0	NAD—FMN—Q—cyt c1—cyt c—cyt b—cyt aa $_3 \rightarrow O_2$
0	FMN—Q—NAD—cyt b—cyt aa ₃ —cyt c ₁ — cyt c \rightarrow O ₂
0	NAD—FMN—Q—cyt b—cyt c1—cyt c—cyt aa $_3 \rightarrow O_2$
0	NAD—FMN—Q—cyt b—cyt aa $_3$ —cyt c—cyt c $_1 \rightarrow$ O $_2$
283	of 100 PU_2015_368 ch of the following nucleus of hypothalamus is mainly responsible for circadian rhythm?
0	ARC
0	SON
0	SCN
0	PVN
	of 100 PU_2015_368

form	agen presents in its structure modified amino acids as hydroxyproline and hydroxylysine. The nation of these amino acids from their precursors, is post-trancriptional, and occurs in enzymatic ctions that require as cofactor the following compound:-
0	Ascorbic acid
0	Citric Acid
0	Folic Acid
0	Lipoic acid
268	PU_2015_368 largest class of enzymes based on the classification by Enzyme Commission is:- Lyase Oxidoreductase Isomerase Ligase
276 Severelie preventer	PU_2015_368 eral thousands of tons of aspirin (acetylsalicilate) are consumed each year all over the world for the of of headaches, inflammed joint and pain, and in general fever. Also, at low doses it is used in the vention of heart attacks. The relief caused by aspirin in these conditions is based mainly in aspirin cots on eicosanoid metabolism. Aspirin binds covalently (and so act as an irreversible inhibitor) to this tyme of eicosanoid metabolism:-
0	Phospholipase A ₂
0	Thromboxane Synthase
0	PGH ₂ Synthase
О	Lipoxygenase

368 PU M Sc Biochemistry and Molecular Biology

217 Whi	PU_2016_368_E ch of the following methods for introducing DNA into cells is used only for plants? A gene gun Electroporation
0	Microinjection
0	Transformation of competent cells.
101	
	Abscisic acid
0	Cytokinin
0	Auxin
0	Gibberllic acid
164	PU_2016_368_E sum's disease arises due to the accumulation of larger quantities of:- phytanic acid oxalic acid glutamic acid maleic acid
193	PU_2016_368_E cycle is:- Synthesis and reuse of glucose
	reuse of glucose
	uptake of glucose
	Synthesis of glucose
129 The	F100 PU_2016_368_E blood pressure is high in:- capillaries veins
0	arteries

0	veins of portal system
152 Whi	F 100 PU_2016_368_E ch among the following lipoprotein has the highest protein content?
0	LDL.
0	VLDL.
0	HDL.
0	chylomicrons
133	F 100 PU_2016_368_E od of which of the following animal does not carry O ₂
0	Earthworm
0	Frog
0	Lung fish
0	Insects
157 Whi	PU_2016_368_E ch of the following phosphoglyceride possesses antigenic properties? plasmalogen
0	cardiolipin
0	lecithin
0	phosphatidic acid
124 Gree	F 100 PU_2016_368_E en vegetables are good sources of:-
0	vitamins and minerals
0	Proteins
0	Carbohydrates
0	Fats
104 The	of 100 PU_2016_368_E beadlike unit of chromatin structure is the:-
0	Nucleosome
0	Solenoid
0	Kinetochore

0	Chromatid
169 Tra	of 100 PU_2016_368_E nscobalamin II delivers vitamin B12 to:-
0	liver, bone marrow and the gastrointestinal tract
0	gastrointestinal tract
0	liver
0	rapidly proliferating cells in the bone marrow
205	of 100 5 PU_2016_368_E ses are rich in:-
0	Tryptophan
0	Methionine
0	Phenylalanine
0	Lysine
100	of 100 PU_2016_368_E ich of the following gene involved in apoptosis?
0	арс
0	Caspase
0	Cyl2
0	bxl
165 Hor	of 100 5 PU_2016_368_E monal contraceptives:-
0	fertilization
0	mensutration
0	inhibit ovulation
0	inhibit ovulation and fertilization
113 Wh plar	of 100 BPU_2016_368_E ich one of the following essential micronutrients is associated with urease enzyme found in higher nts?
0	Molybdenum
\circ	Zinc

0	Copper Nickel
177	of 100 PU_2016_368_E cogen synthetase activity is depressed by:-
0	Glucose
0	Cyclic AMP
0	Insulin
0	Fructokinase
144	PU_2016_368_E which of the following, the units of rate constant and rate of reaction are same? 1st order reaction.
0	2 nd order reaction.
0	zero order reaction.
0	3 rd order reaction.
168	of 100 PU_2016_368_E is transported by:-
0	cobalophilins
0	hepcidin
0	Ferritin
0	transferrin
105	of 100 PU_2016_368_E ch of the following metabolic process occurs in the mitochondria?
0	Cholesterol synthesis
0	Fatty acid synthesis
0	Glycolysis
0	Fatty acid -β oxidation
176	of 100 PU_2016_368_E cose absorption may be decreased in:-
0	Nephritis
0	Oedema

0	Rickets
0	Osteomalitis
192 Two	PU_2016_368_E sugars differing only in configuration around a single carbon atom is called:- Epimers Anomers Optical isomers Stereoisomers
213 Orga	of 100 PU_2016_368_E anotrophic organisms feed on:-
0	Inorganic things
_	Other living things or their organic produce
0	Nonliving things
	Energy from sun light
201	of 100 PU_2016_368_E ch one is the largest organelle of the cytoplasm?
0	Mitochondria
0	Entoplasmic reticulum
0	Golgi apparatus
0	Lysosomes
149 nif g	of 100 PU_2016_368_E enes which encode the nitrogenase complex and other enzymes involve:-
0	nitrogen fixation.
0	denitrificatrion.
0	ammonification.
	nitrification.
140	PU_2016_368_E term translation refers to protein synthesis and a polysome is
Ö	the lumen of endoplasmic reticulum
	a complex of mRNA with several ribosomes

0	golgi apparatus
0	a group of lysosomes
189	of 100 PU_2016_368_E abda EMBL4 :-
	Lambda replacement vector which can carry up to 20 Kb of DNA insert size
0	Lambda insertion vector which can carry up to 6 Kb of DNA insert size
0	Lambda replacement vector which can carry up to 6 Kb of DNA insert size.
0	Lambda insertion vector which can carry up to 20 Kb of DNA insert size
181	PU_2016_368_E coordinate geometry, the equation of the x-axis is:- $y = x$ $y = 0$ $x = 0$ $y = 1$
200	PU_2016_368_E is deficient in? Vitamin B2 Vitamin C Vitamin K Vitamin A
161	of 100 PU_2016_368_E ch of the following vitamin deficiency leads to burning feet syndrome?
0	pantothenic acid
0	folic acid
0	Vitamin B12
	Niacin
160 Whi	of 100 PU_2016_368_E ch of the following vitamin's structure resembles monosaccharide in structure?
0	Vitamin C
0	Vitamin D

0	Vitamin A
\circ	Vitamin K
116	of 100 PU_2016_368_E of the following matches of oncogenes with the proteins that each specifies, which one is incorrect?
	erbA- thyroid hormone receptor
0	ras - guanine-nucleotide binding protein with GTPase activity
0	erbB - epidermal growth factor receptor
0	fos - platelet-derived growth factor
120	PU_2016_368_E hich form of DNA, the number of base pairs per helical turn is 10.5? Z. X. A. B.
112	PU_2016_368_E ch of the following is a mismatch between the plant drug and its source? Quinine - Cinchona ledgeriana Codeine - Papaver somniferum Digitalin - Artemisia annua Vinblastine - Catharanthus roseus
145	of 100 PU_2016_368_E y does hydroxylation increase the stability of the collagen triple helix?
0	it promotes hydrogen bonding with water.
0	it increases hydrogen bonding between polypeptide chains.
0	it decreases the melting temperature of nascent collagen
0	it expands the helix and allows the glycine residues to better fit in the interior.
172 HDI	of 100 PU_2016_368_E _ is synthesized and secreted from :-
0	Muscle
0	Kidney

0	Pancreas
0	Liver
184	of 100 PU_2016_368_E ing starvation, ketone bodies are used as a fuel by:- Brain Liver Erythrocytes All of these
212	of 100 PU_2016_368_E Prophase-I progresses, the homologous chromosomes form a four-chromatid structure called:- Bivalent Centrioles Sister chromatids Crossover
128	of 100 PU_2016_368_E man eye lens is:- Biconvex and can be moved forward spherical and can be moved forward spherical and cannot be moved forward Biconvex and cannot be moved forward
137	of 100 PU_2016_368_E od groups are named based on antigens present in:- Blood plasma Platelet W.B.C R.B.C
185	of 100 PU_2016_368_E Partate amino transferase uses the following for transamination:- Glutamic acid and pyruvic acid Aspartic acid and pyruvic acid

0	Glutamic acid and oxaloacetic acid
0	aspartic acid and keto adipic acid
108	of 100 PU_2016_368_E enzyme showing absolute specificity is:-
0	Chymotrypsin
0	Hexokinase
0	Alkaline Phosphatase
0	Urease
196	of 100 PU_2016_368_E main site of urea synthesis in mammals is:- Intestine
0	Liver
0	Skin
0	Kidney
132	of 100 PU_2016_368_E infective stage of the malarial parasite Plasmodium sp. in man is:-
0	Sporozoite
_	Merozoite
0	Schizont
0	Cryptozoite
141 Bilir	of 100 PU_2016_368_E ubin level increases in the blood when
0	liver cells are severely damaged
0	secretion of insulin is more
0	HIV intrudes the body.
0	secretion of glucagon is less
180	of 100 PU_2016_368_E ch of the following is NOT a prime number?
0	21
0	41

0	31 11
208	of 100 PU_2016_368_E ecular formula of cholesterol is:-
0	C ₂₉ H ₄₇ OH
0	C ₂₇ H ₄₅ OH
0	C ₂₃ H ₄₁ OH
0	C ₂₉ H ₄₈ OH
204 Der	of 100 PU_2016_368_E naturation of proteins results in:- Breakdown of peptide bonds
0	Irreversible changes in the molecule
0	Disruption of primary structure
0	Destruction of hydrogen bonds
109 Dur	of 100 PU_2016_368_E ing photosynthetic carbon reduction cycle in green leaves, net production of one molecule of ceraldehyde 3-phosphate requires one of the following combinations of energy equivalents:-
0	6 NADPH and 9 ATP
0	9 NADPH and 6 ATP.
0	2 NADPH and 3 ATP
0	3 NADPH and 9 ATP
125	of 100 5 PU_2016_368_E us mediated transfer of genetic material between one bacterial cell and another is termed as:- Transduction
O	Nuclear Exchange
0	Trasformation
0	
	Conjugation
148	of 100 BPU_2016_368_E ch cycle of β-oxidation produces:-
0	1 FADH ₂ , 1 NAD+, and 1 acetyl-CoA.

0	1 FADH ₂ , 1 NADH and 1 acetyl-CoA.
0	1 FAD, 1 NAD+ and 2 CO ₂ molecules.
0	1 FADH ₂ , 1 NADH and 2 CO ₂ molecules.
197	of 100 PU_2016_368_E ich of the following techniques is used to separate proteins based upon differences in their mass? Western blotting Dialysis SDS-gel Electrophoresis
	Isoelectric focusing of 100
117 Whi	PU_2016_368_E ich of the following pairs of subcellular compartments is likely to have same pH and electrolyte apposition?
0	Mitochondrial matrix and inter membrane space
0	cytosol and lysosomes
0	cytosol and endosome
0	cytosol and mitochondrial inter membrane space
153	of 100 PU_2016_368_E teins tagged with mannose 6-phosphate are transported to:- Mitochondrion Lysosomey Nucleus Golgi apparatus
188	of 100 PU_2016_368_E pUC vectors incorporate a:-
	Gam gene
	MCS in the lac Z sequence
0	A cos site
0	The purine initiation nucleotide
156	of 100 PU_2016_368_E ich of the following is an essential fatty acid?

0000	lignoceric acid oleic acid palmitic acid linoleic acid
216	PU_2016_368_E erobic energy-yielding pathways are called as:- Reduction Glycolysis Fermentaion Oxidation
173	PU_2016_368_E abolic disease caused by a defect in one amino acid is known as:- Liver fibrosis Galactosemia Cystic fibrosis Cystinuria
121	PU_2016_368_E nor-suppressor genes:- Are involved in the cellular response to EGF Includes the widely studied myc gene Stimulates the binding of GTP Encode proteins that prevent binding of cyclins
209 Duri	PU_2016_368_E Ing each cycle of β-oxidation:- Two carbon atoms are removed from the carboxyl end of the fatty acid One carbon atom is removed from the methyl end of the fatty acid Two carbon atoms are removed from the methyl end of the fatty acid One carbon atom is removed from the carboxyl end of the fatty acid of 100 PU_2016_368_E

136 PU_2016_368_E A gene is a section of DNA that codes for a protein and these unique sequences of bases are called:-

0000	Codons Transposons Introns Exons
252	PU_2016_368_M emolytic jaundice, bilirubin in urine is:- Increased very much Usually present Usually absent Very low
257 It is	PU_2016_368_M believed that life evolved with RNA as the genetic material, but RNA has been replaced by DNA in all ent cellular life. Which feature of DNA accounts for this? Only DNA can form the genetic material of viruses. DNA can direct its own replication while RNA cannot. DNA is a nucleic acid while RNA is not. DNA is more stable than RNA.
244	PU_2016_368_M ch is an important function of cholesterol in cell membranes? It increases the fluidity of the membrane at 37°C It stabilizes the structure of mammalian membranes. It allows polar substances to pass through the membrane. It acts as fluidity barrier in bacterial membranes.
248 The O O	PU_2016_368_M reaction catalysed by phosphofructokinase:- Is inhibited by fructose 2, 6-bisphosphate Is activated by high concentrations of ATP and citrate Uses fruitose-1-phosphate as substrate Is the rate-limiting reaction of the glycolytic pathway

228 PU_2016_368_M

Aequorin is a calcium binding protein (CaBP) isolated from the coelenterate <i>Aequorea victoria</i> associated itself with which of the following structural feature:-		
0	EF hand.	
0	TIM barrel.	
0	rossman fold.	
0	leucine zipper.	
256	of 100 PU_2016_368_M ich mineral element controls the activity of Nitrate reductase?	
0	Fe	
_	Мо	
0	Zn	
0	Ca	
221	of 100 PU_2016_368_M ing interphase can be seen with a light microscope.	
0	Nucleosomes	
0	Chromatin	
0	Heterochromatin	
0	Introns	
236	of 100 PU_2016_368_M ich of the following mineral nutrient is directly involved in light absorption during photosynthesis:-	
0	Mg^{2+}	
_	Mn ²⁺	
0	Cu ²⁺	
$\overline{}$	Zn ²⁺	
233 The	of 100 PU_2016_368_M Bead like structures found in the ultrastructure of eukaryotic chromatin is referred to as	
0	liposomes	
0	nucleosomes	
0	polysomes	
0	kinetochores	

70 of 100

	B PU_2016_368_M e caloric value of lipids is:-	
0	9.0 Kcal/g	
0	6.0 Kcal/g	
0	15.0 Kcal/g	
0	12.0 Kcal/g	
229 Wh	of 100 PU_2016_368_M ich of the following statements about retinal, the chromophore of rhodopsin, is incorrect?	
0	in the dark, it is covalently bound to opsin through a Schiff base linkage.	
0	in the dark, it is present as the 11-cis-retinal isomer.	
0	it becomes the all-cis isomer after absorbing light.	
0	the unprotonated Schiff base absorbs maximally at 440 nm and higher.	
241 Phe	of 100 PU_2016_368_M enylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are involved in biosynthesis of enolic compounds in plants. Following are some statements regarding the actions of PAL and CHS:-	
 i) substrates for PAL and CHS are phenylalanine and chalcone, respectively ii) PAL converts phenylalanine to trans-cinnamic acid iii) PAL converts phenylalanine to p-coumaric acid iv) p-coumaroyl-CoA is converted to chalcones by CHS 		
Wh	ich one of the following combination of the above statements is true?	
0	i) and iii)	
0	ii) and iv)	
0	i) and ii)	
0	ii) and iii)	
237	of 100 7 PU_2016_368_M e most variable stage of cell cycle is:-	
0	S	
0	G0	
0	G2	
0	G1	
240	of 100 0 PU_2016_368_M ich one of the following statement describes the process of phloem loading?	
-	Triose phosphate is transported from the chloroplast to cytosol	

О	Sugars are transported into the sieve elements and companion cells
0	Solutes are transported from roots to the shoots
C elen	Sugars are transported from producing cells in the mesophyll to cells in the vicinity of the sieve nents
245	of 100 PU_2016_368_M oride inhibits and arrests glycolysis. Aconitase Enolase
0	Glyceraldehyde-3-phosphate dehydrogenase
0	Succinate dehydrogenase
224 The	of 100 PU_2016_368_M CO ₂ acceptor in c4 plant is:
0	ribulose-bis-phosphate
0	3-phosphoglyceric acid
0	Outer membrane of chloroplast
0	Phosphorenol pyruvate
225	of 100 PU_2016_368_M Z- DNA helix:-
0	Is the most conformation of DNA
0	Has fewer base pair turn than B-DNA
0	Tends to found at 3'ends of genes
0	Is favored by alternate GC base pairs
249 For	of 100 PU_2016_368_M glycogenesis, Glucose should be converted to:-
0	Sorbitol
0	Glucuronic acid
0	UDP glucose
0	Pyruvic acid
220	of 100 PU_2016_368_M ansition mutation:-

0	Results from insertion of one or two bases or base analogs into the DNA chain
0	Results from the substitution of one purine for another or of one pyrimidine for another
0	Occurs when a purine is substituted for a pyrimidine or vice versa
	Decreases in frequency in the presence of base analogous into the DNA chain
232 Cyc	of 100 PU_2016_368_M lins and cyclin dependent kinases are proteins involved in regulation of:-
0	cell-cycle
0	synthesis of cAMP
0	circadian rhythms
0	membrane circulation via exocytosis and endocytosis
265 Bror	of 100 PU_2016_368_D nze diabetes is associated with following mineral deposition?
0	iron
0	selenium
0	copper
0	magnesium
289	PU_2016_368_D ucleoside consists of:-
0	Purine or pyrimidine base + sugar
0	Purine or pyrimidine base + phosphorous
0	Purine + pyrimidine base + sugar + phosphorous
0	Nitrogenous base
288 A cu	of 100 PU_2016_368_D up of strong coffee would be expected to:-
0	Decrease the effect of glucagon
0	Enhance the effect of epinephrine
0	Provide the vitamin nicotinic acid
0	Interfere with the synthesis of prostaglandins
272	of 100 PU_2016_368_D nps is a disease caused by virus that affects:-

0	Parotid glands
0	submaxillary lansd
0	Sublingual glands
0	submandibular glands
293	of 100 8 PU_2016_368_D 9 smallest RNA among the following is:- rRNA tRNA hnRNA
0	mRNA
296	of 100 5 PU_2016_368_D eoxynucleoside triphosphates ddNTPs) are used in sequencing DNA because:-
	ddNTPs are incorporated very efficiently into DNA by DNA polymerase.
0	ddNTPs cannot be incorporated into DNA by DNA polymerase.
0	ddNTPs are fluorescent.
0	ddNTPs prevent further DNA synthesis once they are incorporated into the DNA sequence.
280 A c	of 100 PU_2016_368_D ell undergoing meiosis produces four daughter cells, two of which are anuploids, while other two are loids. This can occur due to:-
0	non-disjunction during both first and second meiotic divisions
0	non-disjunction during first meiotic division only
0	non-disjunction during either first or second meiotic divisions
0	non-disjunction during second meiotic division only
88 of 100 264 PU_2016_368_D Which of the following is natural un-coupler?	
0	dopamine
0	insulin
0	thyroxine
0	short chain fatty acid
	of 100 PU_2016_368_D

	ich of the following microscopy techniques relies on the specimen interfering with the wavelength of to produce a high contrast image without the need for dyes?
0	Fluorescence microscopy
0	Phase contrast microscopy
0	Conventional bright field light microscopy
0	Electron microscopy
286	PU_2016_368_D cogen synthetase activity is depressed by Insulin Fructokinase Glucose Cyclic AMP
269	PU_2016_368_D radius of the following helix types in proteins follows the order:- 3_{10} helix > pi helix > alpha helix. alpha helix > 3_{10} helix > pi helix. pi helix > alpha helix > 3_{10} helix. 3_{10} helix > alpha helix > pi helix.
277	PU_2016_368_D at signals for flowering is received by:- Apical bud Flower bud Leaves Flower bract
292	of 100 PU_2016_368_D ation of protein synthesis begins with binding of:- Charging of tRNA with specific amino acid
0	60S ribosomal unit
	40S ribosomal unit on mRNA
0	Attachment of aminoacyl tRNA on mRNA

	PU_2016_368_D ch of the following is a typical feature of viruses?
0	The ability to replicate independently.
0	The ability to synthesize ATP.
0	3000-4000 genes.
0	A genome that may be single or double-stranded DNA or RNA.
260 Hold	of 100 PU_2016_368_D candric inheritance is shown by:-
0	Allosomes
0	Autosomes
0	X-chromosomes
0	Y-chromosomes
261	of 100 PU_2016_368_D k _m of enzyme is-
0	Substrate concentration that gives half-maximum velocity
0	One half of the V max
0	A dissociation constant
О	Substrate concentration that gives max velocity
273	of 100 PU_2016_368_D bara McClintock received Nobel prize in 1983 for discovering
0	mobile genetic elements or jumping genes
	Reverse transcriptases
0	Monoclonal antibodies
0	PCR technique
268	of 100 PU_2016_368_D alpha helix can be called a 3.6 ₁₃ helix. The numbers refer to: -
0	the number of turns and diameter of the helix
0	the number of residues and the pitch of the helix.
0	the number of residues and number of atoms in the helix.
0	the number of residues in a turn of the helix and the number of atoms in the hydrogen bond ring

284	PU_2016_368_D
Exc	essive intake of ethanol increases the ratio of:-
0	FADH ₂ : FAD
_	FAD: FADH ₂
0	NADH : NAD ⁺
0	NAD ⁺ : NADH
281	of 100 PU_2016_368_D ch of the following is NOT an adaptive modification in a xerophytic plant?
0	Strongly developed sclerenchyma
0	Sparse stomata
0	Presence of lacunar tissues
O	Sunken stomata

Sr No.	MSc Biochemistry and Molecular Biology
	Find the missing term in the following series:
_	3,10,29,66,127?
Alt1	
Alt2	
Alt3	
Alt4	
Alt4	210
2	Choose word from the given options which bears the same relationship to the third word, as the first two bears:
	Flower: Butterfly:: Dirt:?
	Tiower . Butterny Birt .:
Δl+1	Rats
Alt2	
	Bugs
	Sweeper
All4	Змеереі
2	Tiff is to Battle as Frugal is to?
	Sprint
	Vague
	Miserly
	Vital
AIL4	Vital
	Salact the lettered neighbor the same relationship as the existing neighbors of words.
4	Select the lettered pair that has the same relationship as the original pair of words:
	Expend:
A 11 d	Replenish
	Exhort: Encourage
	Formant: Rebellion
	Defect: Rejoin
Alt4	Encroachment: Occupy
5	Choose the set that has the same relationship as in the original:
	Bone : Skeleton : Nerve
	House: Door: Window
	Spoke: Wheel: Handle
	Retina: Eye: Pupil
Alt4	Snow: Cloud: Ice
	Constitute of the still and the state of the
	Spot the defective segment from the following:
	Only with your help
	I passed the test
	though you helped me
Alt4	at the last minute
_	The recognition of the rest of
	The government proposes to hanging.
	cancel
	nullify invalidate
. AI+2	UNIVALIGATO

Alt4	abolish
	The burglar was hit
	on head
Alt2	on his head
Alt3	on the head
Alt4	in the head
9	Choose the option closest in meaning to the given word:
	COGENT
Alt1	consistent
Alt2	acceptable
Alt3	convincing
Alt4	weak
10	Choose the antonymous option you consider the best:
	PROVIDENT
Alt1	careful
	worldly
	prodigal
	frugal
7110-1	11 0501
11	Ravi's brother is 3 years senior to him. His father was 28 years of age when his sister was born while his mother
	was 26 years of age when he was born. If his sister was 4 years of age when his brother was born, what was the
	age of Ravi's father and mother respectively when his brother was born?
	age of havi's father and mother respectively when his brother was born!
Λ I+1	32 years, 23 years
	32 years, 29 years
	35 years, 29 years
Alt4	35 years, 33 years
- 10	
12	
	In each of the following questions some statements are followed by two conclusions (i) and (ii). Read the
	statements carefully and then decide which of the conclsions follow beyond a reasonable doubt. Mark your
	answer as
	Statement: All my films are copies. I am happy to inform of the source when I copy – a producer
	Conclusions:
	(i) The producer does not make even a single film based on his own idea
	(ii) The producer copies domestic and foreign films
Alt1	If only conclusion (i) follows
Alt2	If only conclusion (ii) follows
Alt3	If neither conclusion (i) nor (ii) follows
Alt4	

13 3. What value should come in place of question mark (?) in the following number series? 14, 28, 46, ?, 94, 124 Alt1 64 Alt2 68 Alt3 72 Alt4 76 14 In a certain code ADVENTURES is written as TDRESAUVEN. How is SURPRISINGwritten in that code? Alt1 IUIPGSRSNR Alt2 IUINGSSRRP Alt3 IUIPGSSRNR Alt4 IRIPGSSNRR Alt4 IRIPGSSNRR 15 Wax is related to Grease in the same way as Milk is related to Alt1 Drink	
Alt1 64 Alt2 68 Alt3 72 Alt4 76 14 In a certain code ADVENTURES is written as TDRESAUVEN. How is SURPRISINGwritten in that code? Alt1 IUIPGSRSNR Alt2 IUINGSSRRP Alt3 IUIPGSSRNR Alt4 IRIPGSSNRR Alt4 IRIPGSSNRR 15 Wax is related to Grease in the same way as Milk is related to	
Alt2 68 Alt3 72 Alt4 76 14 In a certain code ADVENTURES is written as TDRESAUVEN. How is SURPRISINGwritten in that code? Alt1 IUIPGSRSNR Alt2 IUINGSSRRP Alt3 IUIPGSSRNR Alt4 IRIPGSSNRR Alt4 IRIPGSSNRR	
Alt4 76 14 In a certain code ADVENTURES is written as TDRESAUVEN. How is SURPRISINGwritten in that code? Alt1 IUIPGSRSNR Alt2 IUINGSSRRP Alt3 IUIPGSSRNR Alt4 IRIPGSSNRR 15 Wax is related to Grease in the same way as Milk is related to	
Alt4 76 14 In a certain code ADVENTURES is written as TDRESAUVEN. How is SURPRISINGwritten in that code? Alt1 IUIPGSRSNR Alt2 IUINGSSRRP Alt3 IUIPGSSRNR Alt4 IRIPGSSNRR 15 Wax is related to Grease in the same way as Milk is related to	
14 In a certain code ADVENTURES is written as TDRESAUVEN. How is SURPRISINGwritten in that code? Alt1 IUIPGSRSNR	
Alt1 IUIPGSRSNR Alt2 IUINGSSRRP Alt3 IUIPGSSRNR Alt4 IRIPGSSNRR 15 Wax is related to Grease in the same way as Milk is related to	
Alt1 IUIPGSRSNR Alt2 IUINGSSRRP Alt3 IUIPGSSRNR Alt4 IRIPGSSNRR 15 Wax is related to Grease in the same way as Milk is related to	
Alt2 IUINGSSRRP Alt3 IUIPGSSRNR Alt4 IRIPGSSNRR 15 Wax is related to Grease in the same way as Milk is related to	
Alt3 IUIPGSSRNR Alt4 IRIPGSSNRR 15 Wax is related to Grease in the same way as Milk is related to	
Alt4 IRIPGSSNRR 15 Wax is related to Grease in the same way as Milk is related to	
15 Wax is related to Grease in the same way as Milk is related to	
Alt1 Drink	
Alt2 Ghee	ļ
Alt3 Curd	
Alt4 Protein	
16 The following information is given: Six persons A, B, C, D, E and F are sitting in two rows, three in each.	
E is not at the end of any row.	
D is second to the left of F.	
C, the neighbour of E, is sitting diagonally opposite to D.	
B is the neighbour of F.	ļ
After interchanging seat with E, who will be the neighbours of D in the new position?	ļ
Alt1 C and A	-
Alt2 F and B	-
Alt3 Only B	-
Alt4 Only A	
17 If 30 students occupy 2/3 of the seats in a classroom, how many students would occupy 4/5 of the seats in	ı the
classroom?	ļ
Alt1 36	
Alt2 32	
Alt3 40	
Alt4 48	
18 Mean of the first 10 odd numbers is	
Alt1 10	
Alt2 13	
Alt3 15	
Alt4 9	
<u> </u>	
19 Two numbers are in the ratio 2:3, If 4 be subtracted from each, they are in the ratio 3:5, Find the numbers	

Alt1	16,24
Alt2	20,30
Alt3	0.341666667
Alt4	None
20	It takes 30 seconds to cut the woodlock into 3 pieces. How much time does it takes to cut the same block into 4
	pieces?
Alt1	40secs
	45secs
	50secs
-	60secs
7.10.	
21	In enzyme kinetics Vmax reflects:-
	Enzyme substrate complex
	Substrate concentration
-	Half the substrate concentration
-	The amount of an active enzyme
AIL4	The amount of an active enzyme
22	The expression 22 + h2 is equivalent to:
	The expression a2 + b2 is equivalent to:-
	(a - b)(a - b) + 2ab
	(a + b)(a + b)
	(a + b)(a - b) - 2ab
Alt4	(a + b)(a - b)
22	hadishis to the desired survey and the 2
	Which is true about gap junction?
	Allows the movement of large molecules across the cell
	Made up of two subunit of connexones
	Made up of connexin protein
Alt4	They are occurring inside the cell
	Production of excessive amount of corticotropin (ACTH) occurs in:-
	Alport's syndrome
	Grieg's syndrome
	Grave's syndrome
Alt4	Cushing's syndrome
l	
	Which one of the following interaction plays a major role in stabilizing the B-form DNA?
	Van der Waals's interaction
	Hydrogen bond
Alt3	Hydrophobic interaction
Alt4	Ionic interaction
26	Megaloblastic anemia is caused by the deficiency of:-
Alt1	Riboflavin
Alt2	Deoxy adenosyl cobalamin
Alt3	Oxycholesterol
	Carboxy hemoglobin

	T
	The phenomenon of interchange of functions between related genes are called:-
	Genetic redundancy
	Complementation
	Non-redundancy
Alt4	Genetic interaction
28	he most commonly used molecular tool for phylogenetic analysis involves sequencing of:-
	Nuclear DNA
Alt2	Ribosomal RNA
Alt3	Mitochondrial RNA
Alt4	Mitochondrial DNA
	Mullerian Inhibiting Substance (MIS):-
	inhibit Mullerian duct differentiation
	Wollfian duct degeneration
	inhibit mullerian duct and promote wollfian duct growth
Alt4	promote Wollfian duct growth
	A ribozyme is:-
	a particle composed of RNA and protein that is involved in the synthesis of proteins.
	a class of RNA molecule that can catalyse chemical reactions.
	a protein enzyme that catalyses the synthesis of RNA.
Alt4	a monomeric subunit of RNA.
31	The distinct foci within the cytoplasm of the eukaryotic cells involved in mRNA turnover is called as:-
Alt1	Autophagic bodies
Alt2	Lysosome
Alt3	Multivesicular bodies
Alt4	Processing bodies
32	The pollutants released by the jet planes are:-
Alt1	Aerosols
Alt2	Fogs
Alt3	Smog
Alt4	Colloids
33	Oncogenes are the cancer causing genes in the cell but they do not express usually. This is because of the presence of:-
Δ +1	Tumor suppressor gene
	Protooncogene
	Tumor promoter gene
	Jumping gene
AIL4	outribing Berie
34	Acrosome of sperm cell is a modified:-
	age and the contract of the co

	Peroxisome
	Endosome
Alt4	Golgi
ı———	
	Synthesis of Glucose from amino acids is termed as:-
	Glycolysis
Alt2	Gluconeogenesis
Alt3	Lipogenesis
Alt4	Glycogenesis
36	Which one of the following statements concerning glucose metabolism is correct?
Alt1	Glucose enters most cells by a mechanism where Na+ and glucose are cotransported
Alt2	The conversion of Glucose to lactate occurs only in the R.B.C
Alt3	Pyruvate kinase catalyses an irreversible reaction
Alt4	Elevated level of insulin reduces level of fructose 2, 6-bisphosphate in hepatocyte
37	Choose the amino acid having maximum number of codons:-
Alt1	Alanine
Alt2	Leucine
Alt3	Tryptophan
Alt4	Valine
38	The genomic DNA sequences similar to normal genes but non-functional are called:-
Alt1	Introns
Alt2	Untranslated region
Alt3	Pseudogenes
Alt4	Transposons
39	The unfolding of regular secondary structure causes:-
Alt1	no change in the entropy of the protein.
Alt2	large increase in the entropy of the protein
Alt3	large decrease in the entropy of the protein
Alt4	little increase in the entropy of protein
40	Golden rice is very rich in:-
Alt1	Vitamin B12 & iron
Alt2	Vitamin B1 & copper
Alt3	Carotinoids & iron
Alt4	Vitamin B complex & vitamin C
41	Lipopolysaccharide in gram negative bacteria is found in:-
	Periplasmic space
	Cell wall
-	Plasma membrane
-	Outer membrane

42	Blood group type A antigen is a complex oligosaccharide which differs from H antigen present in type O
	individual by the presence of terminal:-
Alt1	glucose
Alt2	galactose
Alt3	N-acetylgalactosamine
Alt4	fucose
43	As one proceeds with the purification of an enzyme, with every subsequent step, the enzyme activity:-
Alt1	Decreases
Alt2	Changes randomly
Alt3	Increases
Alt4	Remains the same
44	The study of cancer is referred to as:-
Alt1	Herpetology
Alt2	Ornithology
Alt3	Dermatology
Alt4	Oncology
45	Mono-oxygenase important for the detoxification of many drugs is:-
Alt1	Lipoxygenase
Alt2	Cyclooxygenase
Alt3	Heme oxygenase
Alt4	Cytochromes P450
r	
	On the molar scale which of the following interactions in a non-polar environment provides highest contribution
	to the biomolecules
	hydrophobic interaction
	salt bridge.
	hydrogen bonding
Alt4	vander waals interaction
-	
	Mycobacterium is an intra-cellular parasite. It prefers to infect:-
	neutrophils
	B-cells
	macrophages
Alt4	T-cells
	The amount of disorder in a system can be expressed as:-
	Thermodynamics
	Entropy
	Enthalpy
Alt4	Energy
49	Glycogenin is:-

Alt1 Uncoupler of oxidative phosphorylation

Alt2	Polymer of glycogen molecules
Alt3	Intermediate in glycogen breakdown
Alt4	Protein primer for glycogen synthesis
50	Which of the following aminoacid does not have optical isomers?
Alt1	glycine
Alt2	valine
-	Leucine
Alt4	threonine
	Cataract is a disease caused by
	Conjunctiva become thickened
	A clouding or loss of transparency of the eye lens due to tissue breakdown and protein clumping
	Nerves supplying the eyes getting weak
Alt4	Damage to Retinal pigments in the eye
	Marasmus is characterized by:-
-	moderate calorie deficit,
	severe protein deficit
	severe protein and calorie deficit
Alt4	infection
	A pair of genes controlling a pair of contrasting characters is called:-
	Recessive
	Heterozygous
	Homozygous Allele
Alt4	Allele
5.4	The allowed region in the Ramachandran Plot for three residues alanine, glycine and proline) decreases in the
34	order:-
Δl+1	Ala > Pro > Gly.
	Gly > Ala > Pro.
	Gly > Pro = Ala
	Pro > Gly > Ala.
74104	1107 diy 7 Mid.
55	Number of base pairs per complete turn in Z-DNA?
Alt1	
Alt2	
Alt3	
Alt4	
56	HMP shunt is unique in generating two important products:-
	pentoses& NADH
-	hexoses& NADH
	Pentoses& NADPH
	Hexoses & NADPH
L	

57	The microorganism that is mainly used is an indicator of fecal pollution in water is:
Alt1	Closteridium tetani
Alt2	Cyanobacteria
Alt3	Closteridium botulinum
Alt4	Escherichia coli
58	AIDS is not transmitted by:-
Alt1	mosquito bite
Alt2	sharing unsterilized needles
	unprotected sex
Alt4	transfusion of infected blood
59	An antihemorrhagic agent is a substance that promotes hemostasis or stops bleeding. Which of the following
	vitamin can be considered as an agent:-
Alt1	vitamin C.
Alt2	vitamin K.
	vitamin D.
	vitamin A.
60	The plant hormone auxin causes:-
	Splitting of internode
	Cell expansion
	Shoot growth and shoot initiation
	Internodal elongation
61	Ethanol decreases gluconeogenesis by:-
	Inhibiting glucose-6-phosphatase
	Converting NAD+ into NADH and decreasing the availability of pyruvate
	Converting NAD+ into NADH and decreasing the availability of lactate
	Inhibiting PEP carboxykinase
-	
62	Cyclic AMP is formed from ATP by the enzyme adenylate cyclase which is activated by the hormone:-
Alt1	Epinephrine
	Progesterone
	Testosterone
	Insulin
63	Most common type of phospholipids in the cell membrane of nerve cells is:-
	phosphatidylinositol
	phosphatidylcholine
	phosphatidylserine
	sphingomyelin
7 11 6 7	TT U 1-
64	Sucrose consists of:-
	Glucose + fructose
	Glucose + galactose
,	

Alt3	Glucose + mannose		
Alt4	Glucose + glucose		
65	Fatty acid biosynthesis requires for the transport of acetyl co A from the mitochondria.		
Alt1	Alpha keto glutarate		
Alt2	Arginine		
Alt3	Citrate		
Alt4	Alt4 Ornithine		
	The chemical, typically released by the body in an allergic response is:-		
	histamine		
	perforins		
	allergens		
Alt4	antihistamines		
	Mosquitoes act as vector for the disorder:-		
	Leishmaniasis		
	African trypanosomiasis		
Alt3	Bancroftian filariasis		
Alt4	Onchocerciasis		
	The technique for purification of proteins that can be made specific for a given protein is:-		
	Gel filtration chromatography		
	Electrophoresis		
	Affinity chromatography		
Alt4	Ion exchange chromatography		
	Carcinomas are tumors arising from:-		
	Epithelial tissue		
	Muscle		
	Connective tissue		
Alt4	Bone		
70	Bacteria protect themselves from viruses that infect them by fragmenting viral DNA with the help of:-		
	Restriction Endonucleases		
	Exonucleases		
	DNAses		
Alt4	RNAses		
	Liquid food drinking is:-		
	pinocytosis		
	diffusion		
	imbibition		
Alt4	phagocytosis		

	All of the following statements about the enzymic complex that carries out the synthesis of ATP during oxida phosphorylation are correct except:-
Λ l+1	It is inhibited by oligomycin
	It is located on the matrix side of the inner mitochondrial membrane
	It can exhibit ATPase activity
	It can bind molecular O2
AIL4	it can bind molecular Oz
73	Mammalian promoter sequence is located:-
	At about 20 bp upstream of translational start site
	Within coding sequence
	At about 20 bp upstream of transcriptional start site
	Downstream of coding sequence
	,
74	Nitrification is conversion of :-
Alt1	NO3- into N2
Alt2	N2 to NH3
Alt3	Organic nitrogen into NH4+
Alt4	NH4+ into NO3-
75	Phosphatidyl serine an important component of biological membrane is located in:-
Alt1	both leaflets
Alt2	the outer leaflet but flipflops into inner leaflet under specific conditions
Alt3	the inner leaflet but flipflops to outer leaflet under specific conditions
Alt4	the middle of the bilayer
	Which one of the following would be expected in pyruvate kinase deficiency?
Alt1	Increased levels of lactate in the R.B.C
	Hemolytic anemia
Alt3	Increased phosphorylation of Glucose to Glucose-6-phosphate
Alt4	Decreased ratio of ADP to ATP in R.B.C
	In fluid mosaic model :-
	proteins are embedded at places in phospholipid bilayer
	phospholipid monolayer is present on the top of a protein layer
	phospholipid monolayer is sandwiched between two protein layers
Alt4	phospholipid bilayer if present on the top of a protein layer
	1000 - 164h - 6-11
	One of the following statements is correct:-
Alt1	Insulin converts glycogen synthase b to a
Alt1 Alt2	Insulin converts glycogen synthase b to a Glycogen synthase 'a' is the phosphorylated
Alt1 Alt2 Alt3	Insulin converts glycogen synthase b to a Glycogen synthase 'a' is the phosphorylated UDP glucose molecules interact and grow into a Glycogen tree
Alt1 Alt2 Alt3	Insulin converts glycogen synthase b to a Glycogen synthase 'a' is the phosphorylated
Alt1 Alt2 Alt3 Alt4	Insulin converts glycogen synthase b to a Glycogen synthase 'a' is the phosphorylated UDP glucose molecules interact and grow into a Glycogen tree CAMP converts glycogen synthase b to 'a'
Alt1 Alt2 Alt3 Alt4	Insulin converts glycogen synthase b to a Glycogen synthase 'a' is the phosphorylated UDP glucose molecules interact and grow into a Glycogen tree CAMP converts glycogen synthase b to 'a' The size of red blood cells (RBC) in venous blood is greater than that of arterial blood. This increased size of red
Alt1 Alt2 Alt3 Alt4	Insulin converts glycogen synthase b to a Glycogen synthase 'a' is the phosphorylated UDP glucose molecules interact and grow into a Glycogen tree

	the increased permeability of red blood cell (RBC) membrane the decreased osmotic pressure in plasma
7	and deed contains processes in processes
80	Which eukaryotic cellular organelles are believed to have from symbiotic bacteria?
	endoplasmic reticulum and the Golgi apparatus.
Alt2	peroxisomes
Alt3	mitochondria and chloroplasts
Alt4	ysosome
81	What is the advantage of having two lipid bilayers around mitochondria?
Alt1	They prevent the entry of chemicals into mitochondria.
Alt2	They act as a store of phospholipids.
Alt3	They maintain a proton gradient
Alt4	They protect the cell from free radicals
82	The KDEL sequence, found on luminal proteins of the ER, is responsible for:-
Alt1	quality control in the ER.
Alt2	insertion of proteins into the membrane of the ER.
Alt3	retrieval of ER luminal proteins from the Golgi
Alt4	translocation of proteins into the ER lumen.
	The immunoglobulins are classified on the basis of:-
	Carbohydrate content
	Light chains
	Electrophoretic mobility
Alt4	Heavy chains
[
	In the immune system the mononuclear phagocyte system comprises of :-
	Endothelial cells and Erythrocytes
_	Mast cells and Eosinophils
_	Neutrophils and Basophils
Alt4	Blood monocytes, Liver Kupffer cells, Kidney mesangial cells etc
0.5	
	Reduced glutathione functions in R.B.Cs to:-
	Reduce methemoglobin to hemoglobin
	Produce NADH
	Reduce oxidizing agents such as H2O2
AIT4	Produce NADPH
86	Viruses that possess reverse transcriptase enzyme and capable of synthesizing DNA from RNA are termed a
Alt1	Riboviruses
	Rota viruses
	Retro viruses
	Rhabdoviruses

.,1	
	Heliobacter pylori
	Listeria monocytogenes
	Borellia burgdorferi
Alt4	Streptococcuc pyegenes
00	Which pathway is correct for catabolism of purines to form uric acid?
	guanylate→adenylate→xanthine→hypoxanthine→uric acid.
	adenylate→inosinate→xanthine→ hypoxanthine→Uric acid.
	adenylate inosinate hypoxanthine xanthine uric acid.
AIL4	guanylate→inosinate→xanthine→hypoxanthine→uric acid.
89	In the dark, rods show a large inward 'dark' current which is suppressed by a flash of light. Which one of the
	following statements, explaining the effect of light, is true?
	sodium channel in the inner segment of rods are closed
	transducing dissociate from beta arrestin
	sodium channel in the outer segment of rods are closed
	cytoplasmic cGMP concentration increases
7110-1	eytopiashiie edivir concentration increases
90	Which of the following best explains why the plasma membranes of all cells exhibit a negative resting potential
Alt1	The membrane is mostly permeable to K+, and the Na+ gradient favors its diffusion out of the cell.
	The membrane is mostly permeable to K+, and the K+ gradient favors its diffusion into the cell.
	The membrane is mostly permeable to K+, and the K+ gradient favors its diffusion out of the cell.
	The membrane is mostly permeable to Cl-, and the Cl- gradient favors its diffusion out of the cell.
91	Which of the following replacement causes sickle cell anemia?
	Gln α6→Val
Alt2	Glu α6→Val
Alt3	Glu β6→Val
	Gln β6→Val
92	How many times longer is the DNA in a human chromosome than the length of the chromosome?
Alt1	
	100X
	10000X
	1000X
<u> </u>	
93	In contrast to eukaryotic mRNA, prokaryotic mRNA:-
	Has a poly A tail
Alt2	Can only be monocistronic
	Is synthesized with introns
	Can be polycistronic
94	In innate immunity, immune cells recognize invading pathogens based on their specific pathogen associated
	molecular patterns (PAMPs) through:-
	Glycoproteins
AITTI	

Alt3	Clathrin like molecules.	
Alt4	Pattern recognition receptors (PRR)	
95	Degeneracy of genetic code implies that:-	
Alt1	No anticodon on tRNA molecule	
Alt2	Specific codon decodes many amino acids	
Alt3	Codons do not code for specific amino acid	
Alt4	Alt4 Multiple codons must decode the same amino acids	
96	Isoelectric point of lysozyme is 9.2. When the enzyme solution at this pH in water was titrated with HCl to give a	
	pH of 5, it was observed that six ionized glutamic acid side chains got 9 protonateThe net charge on the enzyme	
	at pH 6 would therefore be:-	
Alt1	-5	
Alt2	6	
Alt3	5	
Alt4	-6	
97	Which of the following inhibitor uncouples electron transport and oxidative phosphorylation?	
Alt1	Oligomycin	
Alt2	Azide	
Alt3	Dinitrophenol	
Alt4	Rotenone	
98	In contrast to chemical induced mutations, mutations induced by transposons are more likely to	
Alt1	be dominant	
Alt2	be stable	
Alt3	revert to wild type	
Alt4	be lethal	
99	What is the natural function of restriction enzymes?	
	Protecting bacteria by cleaving their own DNA	
Alt2	Protecting bacteria by cleaving the DNA of infecting viruses.	
Alt3	Protecting bacteria by methylating their own DNA.	
Alt4	Protecting bacteria by methylating the DNA of infecting viruses.	
	"Bouquet stage" in meiosis is seen at:-	
Alt1	Pachytene	
Alt2	Zygotene	
	Leptotene	
Alt4	Diplotene	

Examination: M.Sc. Biochemistry and Molecular Biology
Section 1 - Section 1
Question No.1 4.00
Study the following information carefully and answer the question below it:
Aasha, Bhuvnesh, Charan, Danesh, Ekta, Farhan, Ganesh and Himesh are sitting around a circle, facing the centre. Aasha sits fourth to the right of Himesh while second to the left of Farhan. Charan is not the neighbour of Farhan and Bhuvnesh. Danesh sits third to the right of Charan. Himesh never sits next to Ganesh.
Which is the position of Farhan with respect to Ekta? Third to the left
○ Fourth to the right
© Second to the right
○ Sixth to the left
Question No.2 4.00
Electrical impulses are generated in which part of the heart O Purkinje fibres O Sinoatrial node O Atrioventricular node C Left ventricle
Question No.3
Fill in the blank with the correct form of the verb. The International Women's Day with great enthusiasm by our university last month. c celebrated was celebrated has celebrated
Question No.4 4.00
Bookmark ☐ If 9 men working 6 hours a day can do a work in 88 days. Then 6 men working 8 hours a day can do it in how many days? ○ 89 ○ 99 ○ 97 ○ 95
Question No.5
Bookmark ☐ If the molar amount of G in a DNA is 20%, what is the molar amount of T in the sample? ○ 20% ○ 30% ○ 60% ○ 40%

Question No.6	4.00
Corpus luteum secretes which hormone	Bookmark □
© Oestrogen	
© Progesterone	
© Follicle stimulating hormone	
C Luteinizing hormone	
Question No.7	4.00
Which is the largest protein in human hady	Bookmark
Which is the largest protein in human body Sodium potassium transport kinase	
C Titin	
© myosin	
C Insulin	
O IISUIII	
Question No.8	4.00
These ways five receive extinctions in the history of courts by which extinction near winned	Bookmark □
There were five massive extinctions in the history of earth. In which extinction non-avian di- went extinct	nosaurs
O Triassic	
O Ordovician	
© Cretaceous	
© Permian	
Question No.9	4.00
Question No.5	Bookmark
A good producer of citric acid is:	
○ Aspergillus	
O Clostridium	
© Pseudomonas	
© Saccharomyces	
Question No.10	4.00
Question No.10	4.00 Bookmark □
Based on the information given answer the following question.	
1. In a family of six persons, there are people from three generations. Each has separate	professions
and they like different colours. There are two couples.Shyam is an Engineer and his wife is not a doctor and she does not like Red colour.	
3. Chartered Accountant likes green colour and his wife is a teacher. 3. Chartered Accountant likes green colour and his wife is a teacher.	
4. Manisha is the mother-in-law of Sunita and she likes orange colour.	
5. Vimal is the grand father of Tarun and tarun is the Principal and likes black colour.6. Nyna is the grand daughter of Manisha and she likes blue colour. Nyna's Mother likes w	hite colour.
Which Colour is liked by the Sunita?	
C Cannot be determined	
O Black	
○ Green	
© White	

Question No.11	4.00
Clover leaf structure precisely describes which biomolecule in the following	Bookmark □
○ Si-RNA	
C t-RNA	
© Ribosomes	
C Ti- plasmid	
Question No.12	4.00 Bookmark
Which is called the ripening hormone	BOOKINAIK [_
C cytokinins	
○ Gibberellins	
© Ethylene	
O Auxins	
Question No.13	4.00
Which theory aptly describes the existence of chloroplast and mitochondria.	Bookmark □
© Endosymbiosis theory	
 Knudsons hypothesis. 	
© Evolution theory	
Cell theory	
Question No.14	4.00
	4.00 Bookmark □
Bacterial cell wall components are recognized by © TLR4	
Bacterial cell wall components are recognized by C TLR4 C CLR's	
Bacterial cell wall components are recognized by C TLR4 C CLR's C TLR3	
Bacterial cell wall components are recognized by C TLR4 C CLR's	
Bacterial cell wall components are recognized by CLR's TLR3 NLR's	Bookmark 4.00
Bacterial cell wall components are recognized by C TLR4 C CLR's TLR3 NLR's Question No.15	Bookmark
Bacterial cell wall components are recognized by C TLR4 C CLR's NLR's NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition?	Bookmark □ 4.00
Bacterial cell wall components are recognized by CTLR4 CCLR's TLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? B	Bookmark □ 4.00
Bacterial cell wall components are recognized by CTLR4 CCLR's TLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? B B B'	Bookmark 4.00
Bacterial cell wall components are recognized by C TLR4 C CLR's TLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? B B' B' alpha	Bookmark 4.00
Bacterial cell wall components are recognized by CTLR4 CCLR's TLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? B B B'	Bookmark 4.00
Bacterial cell wall components are recognized by C TLR4 C CLR's TLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? B B B' alpha sigma	4.00 Bookmark 4.00 4.00
Bacterial cell wall components are recognized by CLR's TLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? B B' alpha sigma Question No.16	4.00 Bookmark ✓
Bacterial cell wall components are recognized by CTLR4 CCLR's TLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? B BC alpha sigma Question No.16 Choose the synonym of the italicized word. Some people are extremely fastidious in their choice of dress.	4.00 Bookmark 4.00 A.00 Bookmark 4.00
Bacterial cell wall components are recognized by C TLR4 C CLR's TLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? C B B B' C alpha C sigma Question No.16 Choose the synonym of the italicized word. Some people are extremely fastidious in their choice of dress. C discriminating	4.00 Bookmark 4.00 A.00 Bookmark 4.00
Bacterial cell wall components are recognized by CTLR4 CCLR's CTLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? CB BCB' alpha sigma Question No.16 Choose the synonym of the italicized word. Some people are extremely fastidious in their choice of dress. C discriminating C pompous	4.00 Bookmark 4.00 4.00
Bacterial cell wall components are recognized by C TLR4 C CLR's TLR3 NLR's Question No.15 Which of the following subunits of the bacterial RNA polymerase is responsible for promoter recognition? C B B B' C alpha C sigma Question No.16 Choose the synonym of the italicized word. Some people are extremely fastidious in their choice of dress. C discriminating	4.00 Bookmark 4.00 4.00

Question No.17	4.00
Proteins tagged with mannose-6-phosphate are transported to:	Bookmark
C Lysosomes	
○ Golgi apparatus	
© Plasma membrane	
○ Mitochondria	
Question No.18	4.00
Question 140.10	Bookmark □
Number of steps present in PCR are	
O 3	
O 4	
0 2	
₾ 6	
Question No.19	4.00
Which of the metabolite is common to respiration mediated breakdown of fats, carbohydra	Bookmark ☐
proteins?	ALCO UND
© Pyruvic acid	
C α–Keto-glutarate	
Oxaloacetic acid	
○ Acetyl-CoA	
Question No.20	4.00
Choose the most appropriate preposition to fill the blank:	Bookmark □
The mathematics exam will be held between 24pm.	
○ from	
o at	
○ and	
C to	
Question No.21	4.00
	Bookmark □
Which of the following cofactors is involved in amino group transfer? © Biotin	
© CoA	
© NAD	
© Pyridoxal Phosphate	
S 1 yildoxall hospitate	
Question No.22	4.00
The method of mining silver varies from place to place,?	Bookmark 🗖
o is it?	
O doesn't it?	
C does it?	
isn't it?	
	J

Question No.23	4.00
Study the following information carefully and answer the question below it	Bookmark □
In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan is the s Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesh has tw children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not married. R the daughter-in-law of Anand.	/O
Who is married to Radha? Nagesh Charan Vinod Anand	
Question No.24	4.00
Which peptide in the following peptides will be hydrolyzed by trypsin? © Gly-Met-Arg	Bookmark □
C Phe-Met-Pro	
© Pro-Arg-Met	
○ Ala-Phe-Gly	
Question No.25	4.00
Which of the following subunits of the bacterial RNA polymerase is responsible for promoter	Bookmark ✓
recognition?	
O alpha	
C B'	
o Sigma	
Question No.26	4.00
EDTA is chelating agent which chelates	Bookmark
© Divalent anions	
○ Monovalent anions	
© Monovalent cations	
O Divalent cations	
Question No.27	4.00
Leventhal's paradox represents concept of	Bookmark
© Enzyme kinetics	
© Pharmacodynamics	
C Drug kinetics	
© Protein folding	

Question No.28	4.00
Cadherin's are adhesion molecules involved in tight junctions of the cells. They form the ti through strand switching method. List the necessary criteria needed tight junction formatic cadherins	
Availability of Ca ²⁺ ions in micro molar concentration with conserved Ala2 residue	Э.
Availability of Mg ²⁺ ions ions in micro molar concentration with conserved Trp2 re	sidue
Availability of Ca ²⁺ ions in micro molar concentration with conserved Trp2 residue	e
Availability of Mg ²⁺ ions ions in micro molar concentration with conserved Ala2 re	sidue
Question No.29	4.00 Bookmark
1, 4, 27, 16, ?, 36, 343	
0.72	
C 25 C 132	
© 132	
0 123	
Question No.30	4.00 Bookmark
Which form is amino nitrogen excreted from the body of birds and reptiles?	DOOKIIIAIK [
O Ammonia	
○ Urea	
C All of them	
O Uric acid	
Question No.31	4.00
	4.00 Bookmark □
Question No.31 Which metal is used in galvanization process © Zinc	
Which metal is used in galvanization process	
Which metal is used in galvanization process © Zinc	
Which metal is used in galvanization process C Zinc Aluminium	
Which metal is used in galvanization process Zinc Aluminium Vanadium Ni-Chrome	Bookmark
Which metal is used in galvanization process Zinc Aluminium Vanadium	
Which metal is used in galvanization process	Bookmark 4.00 Bookmark be abnormal.
Which metal is used in galvanization process	Bookmark 4.00 Bookmark be abnormal.
Which metal is used in galvanization process	Bookmark 4.00 Bookmark be abnormal.
Which metal is used in galvanization process	Bookmark 4.00 Bookmark be abnormal.
Which metal is used in galvanization process	Bookmark 4.00 Bookmark be abnormal.
Which metal is used in galvanization process	Bookmark 4.00 Bookmark be abnormal.
Which metal is used in galvanization process Zinc Aluminium Vanadium Ni-Chrome Question No.32 A researcher came upon a young herbaceous plant which was very brittle. He found it to be Mostly, all young herbaceous plants have a flexible stem. He speculated some hypothesis brittle stem. Help the researcher to find the correct hypothesis. Lignification of Aerenchyma Gain of function mutation in Chlorenchymal cells Deletion mutation of Collenchyma	Bookmark 4.00 Bookmark be abnormal.
Which metal is used in galvanization process Cinc Aluminium Vanadium Ni-Chrome Question No.32 A researcher came upon a young herbaceous plant which was very brittle. He found it to the Mostly, all young herbaceous plants have a flexible stem. He speculated some hypothesis brittle stem. Help the researcher to find the correct hypothesis. Lignification of Aerenchyma Gain of function mutation in Chlorenchymal cells Deletion mutation of Collenchyma Striation of Parenchymal cells Question No.33	4.00 Bookmark be abnormal. so for the
Which metal is used in galvanization process C Zinc Aluminium Vanadium Ni-Chrome Question No.32 A researcher came upon a young herbaceous plant which was very brittle. He found it to the Mostly, all young herbaceous plants have a flexible stem. He speculated some hypothesis brittle stem. Help the researcher to find the correct hypothesis. Lignification of Aerenchyma Gain of function mutation in Chlorenchymal cells Deletion mutation of Collenchyma Striation of Parenchymal cells	Bookmark 4.00 Bookmark be abnormal. s for the
Which metal is used in galvanization process Cinc Aluminium Vanadium Ni-Chrome Question No.32 A researcher came upon a young herbaceous plant which was very brittle. He found it to the Mostly, all young herbaceous plants have a flexible stem. He speculated some hypothesis brittle stem. Help the researcher to find the correct hypothesis. Lignification of Aerenchyma Gain of function mutation in Chlorenchymal cells Deletion mutation of Collenchyma Striation of Parenchymal cells Question No.33 Repressor molecules bind to the:	Bookmark 4.00 Bookmark be abnormal. s for the
Which metal is used in galvanization process	4.00 Bookmark De abnormal. So for the
Which metal is used in galvanization process	4.00 Bookmark De abnormal. So for the

Question No.34 4.00 Bookmark □ In an in vitro protein translation-translocation system, the following components are present besides all protein synthesis machinery: SRP and SRP-receptor but no microsomes. What will be your observation? No polypeptide will be formed C Complete polypeptide without signal peptide will be formed C Polypeptide with elongation blocked at 70-100 amino acids will be formed C Complete polypeptide with signal peptide will be formed **Question No.35** 4.00 Bookmark □ A 40 year old alcoholic comes in with severe pain in his big toe. You decide to administer Allopurinol to inhibit which of the following enzyme: Adenosine deaminase Thymidine kinase Adenine phosphoribosyl transferase Xanthine oxidase **Question No.36** 4.00 Bookmark □ B D (1) (2)(3)04 \circ 3 020.1 **Question No.37** 4.00 The enzyme responsible for continuing DNA replication in prokaryotes, once it is initiated is: O DNA polymerase I polymerase delta O DNA polymerase II O polymerase beta **Question No.38** 4.00 Which one among the following amino acids acts as neurotransmitter? Glutamic acid Alanine Aspartic acid

Tyrosine

Question No.39	4.00
In a certain enzyme catalyzed reaction performed with X amount of enzyme, the Km was deto be 2 nM. The reaction was repeated under the same conditions with 2X amount of enzymenthat the substrate condition is still not limiting. What would you expect the Km to be? Cannot be calculated 1 nM 2 nM 4 nM	
Overther No. 40	4.00
Question No.40	4.00
Statements: Buses are cars. Cycles are cars Conclusion: I. Cars are buses II. Buses are Cycles If only conclusion I follows If either I or II follows If neither I nor II follows If only conclusion II follows	Bookmark
,	
Study the following information carefully and answer the question below it (i) There is a groupersons- A, B, C, D and E (ii) One of them is manual scavenger, one is sweeper, one is wat one is human scarecrow and one is grave-digger (iii) Three of them – A, C and grave-digger tea to coffee and two of them – B and the watchman prefer coffee to tea (iv) The human scaland D and A are friends to one another but two of these prefer coffee to tea. (v) The manual scavenger is C's brother Which of the following groups includes a person who likes tea but it grave-digger? BD BCE None of the above	tchman, er prefer recrow is not a
Question No.42	4.00
The enzyme used in disruption of bacterial cell wall is: C Lactase C Hemicellulase C Lysozyme C Lipase	Bookmark
Question No.43	4.00
The human liver cannot produce C Ketone bodies from fatty acids G glucose from fatty acids Glucose from amino acids Fatty acids from glucose	Bookmark ☐
-	

Question No.44	4.00
	Bookmark □
In the complement system, which pathway uses Factor B and D for activation of C3 conv	ertase
○ Classical	
C Lectin	
○ Alternate	
○ A & B	
Question No.45	4.00
Question No.43	Bookmark □
Which of the following proteins is called docking proteins?	-
○ Antibodies	
○ SRP-receptors	
C Insulin receptors	
C Carrier proteins	
O vostino No 40	4.00
Question No.46	4.00 Bookmark
Two important functions of peroxisomes in plants are	Dookinank (v
○ 1. Secondary metabolite production.	
Maintain turgor pressure.	
 1. Protein synthesis in chloroplast. 	
2. Colouring of flowers	
1. Conversion of stored fatty acids to carbohydrates in seeds.2. Photorespiration in leaves	
C 1. Acts as ion channels	
2. Helps in stomatal movement	
Question No.47	4.00
Question No.47	4.00 Bookmark □
Tiny air sacs of the lungs which allow for rapid gaseous exchange are	
Tiny air sacs of the lungs which allow for rapid gaseous exchange are © Parietal cells © Microglia	
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis	
Tiny air sacs of the lungs which allow for rapid gaseous exchange are © Parietal cells © Microglia	
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus	Bookmark <u></u> □
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis	Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious.	Bookmark <u></u> □
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions:	Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious	Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble	Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble If only assumption II is implicit	Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble	Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble If only assumption II is implicit If only assumption I is implicit	Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble If only assumption II is implicit If only assumption I is implicit If both I and II are implicit If neither I nor II is implicit	Bookmark
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble If only assumption II is implicit If only assumption I is implicit If both I and II are implicit	Bookmark 4.00 Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble for only assumption II is implicit for only assumption I is implicit for the implicit	Bookmark
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble If only assumption I is implicit If only assumption I is implicit If both I and II are implicit If neither I nor II is implicit If neither I nor II is implicit Question No.49 N-Ethylmaleimide will react with which of the following functional group of the protein:	Bookmark 4.00 Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble If only assumption II is implicit If only assumption I is implicit If both I and II are implicit If neither I nor II is implicit If neither I nor II is implicit Cuestion No.49 N-Ethylmaleimide will react with which of the following functional group of the protein: Carboxyl group	Bookmark 4.00 Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble If only assumption I is implicit If only assumption I is implicit If neither I nor II is implicit If neither I nor II is implicit Carboxyl group Sulfhydryl group Sulfhydryl group	Bookmark 4.00 Bookmark 4.00
Tiny air sacs of the lungs which allow for rapid gaseous exchange are Parietal cells Microglia Epiglottis Alveolus Question No.48 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble If only assumption II is implicit If only assumption I is implicit If both I and II are implicit If neither I nor II is implicit If neither I nor II is implicit Cuestion No.49 N-Ethylmaleimide will react with which of the following functional group of the protein: Carboxyl group	Bookmark 4.00 Bookmark 4.00

Question No.50	4.00
The most abundant protain in the bissphere is	Bookmark □
The most abundant protein in the biosphere is Rubisco	
ℂ Collagen	
ℂ lgG	
○ Albumin	
Question No.51	4.00
	Bookmark □
You wouldn't tell them what happened, © wouldn't you?	
© would you?	
isn't it?	
© won't you?	
Question No.52	4.00
Question No.52	4.00 Bookmark
Cystic fibrosis transmembrane conductance regulator (CFTR), mutation in this gene is re	
cystic fibrosis. Identify the normal function of this gene	
 Functions as a cAMP- and ATP-regulated Na+ channel Functions as a cAMP- and ATP-regulated CI- channel 	
Functions as a JAK STAT kinase regulated CI- channel	
© Functions as a endocrine regulated CI- channel	
3	
Question No.53	4.00
Question No.53 Substrate level phosphorylation is catalyzed by	4.00 Bookmark
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase	
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase	
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase	
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54	Bookmark □
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines Flagellin	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines Flagellin Diphtheria Toxin CRM197	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines Flagellin Diphtheria Toxin CRM197 Collagenase.	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines Flagellin Diphtheria Toxin CRM197 Collagenase.	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines Flagellin Diphtheria Toxin CRM197 Collagenase.	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines Flagellin Diphtheria Toxin CRM197 Collagenase.	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines Flagellin Diphtheria Toxin CRM197 Collagenase.	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines Flagellin Diphtheria Toxin CRM197 Collagenase.	Bookmark 4.00
Substrate level phosphorylation is catalyzed by Succinate dehydrogenase Hexokinase Phosphoglycerate kinase Phosphofructokinase Question No.54 Which protein is majorly used as carrier protein in conjugate vaccines Flagellin Diphtheria Toxin CRM197 Collagenase.	Bookmark 4.00

Question No.55	4.00
Antibiotics such as Ciprofloxacin and Fluoroquinolones work by inhibiting a specific enzy enzyme is normally necessary to relieve torsional strain that is caused by the unwinding o What is the name of this enzyme?	
© Primase	
© Single-stranded binding protein	
C Topoisomerase (DNA Gyrase)	
© DNA ligase	
Question No.56	4.00
Which is the major building block of agrochemical and pharmaceautical products	Bookmark
© Furan	
© Pyrrole	
C Thiophenes	
© Pyridines	
Question No.57	4.00
	Bookmark
For passive vaccination, which antibody type will be most appropriate:	
Single chain antibodyMonoclonal antibody	
Both Polyclonal and monoclonal	
© Polyclonal antibody	
Question No.58	4.00
UDP-Gal/UMP or GDP-Mannose/GDP antiport is present in the membrane of:	Bookmark 🖂
C Lysosome	
O Mitochondria	
○ Golgi Apparatus	
O ER	
	1.00
Question No.59	4.00 Bookmark □
Sunil likes chocolates very much,?	
○ does he	
isn't it?	
o is it?	
O doesn't he?	
Question No.60	4.00
	Bookmark 🔽
Which is known as artificial cell/membrane?	
© Virosome	
○ Glyoxisome○ Nanosome	
© Liposome	
√ Liposome	

Question No.61 In the following question, the first two words (given in italics) have a definite relationship.	4.00 Bookmark □
one word out of the given four alternatives which will fill the blank space and showthe sai relationship with the third word as between the first two.	
Latex is to Rubber as Flax is to?	
○ Silk ○ Linen	
O Jute	
Question No.62	4.00 Bookmark □
Semi conservative replication was proposed by Meselson & Stahl	
O Jacques Monod & Joshua Lederberg	
Watson & CrickKhorana & Nirenberg	Α,
Question No.63	4.00 Bookmark
In which phase of the cell cycle, the cell irreversibly commits itself to the cycle M checkpoint	
o G2	
o G1 o S	
Question No.64	4.00 Bookmark
An eukaryotic organism lacks the importin gene, which is responsible for protein import thr nuclear membrane. There is microbial infection in the organism, triggering one of the majo inducible gene cascade. What will be the outcome	rough the
 The downstream signalling pathway will not be activated. The downstream signalling will be activated but the protein is not imported in to nuclear. 	Near
membrane.	Jicai
The downstream signalling will not be activated but the protein is imported into the membrane	
C The downstream signalling will be activated and protein is imported through passiv	e transport
Question No.65	4.00 Bookmark ⊽
Trypsin specifically recognizes	BOOKMark 🗸
C terminal end of Arginine and lysine	
 N terminal end of Arginine and lysine N terminal end of Arginine and leucine 	
C C terminal end of Arginine and leucine	
Question No.66	4.00
Which of the following drugs causes the dissolution of the Golgi apparatus with ER.	Bookmark □
© puromycin	
© Brefeldin A	
C chloroquine C flycomycin	

Question No.67	4.00
NATIONAL DESCRIPTION OF THE PROPERTY OF THE PR	Bookmark □
Which subunit of prokaryotic DNA Pol III is responsible for proof reading mechanism © Beta	
© Epsilon	
O Alpha	
© Delta	
Question No.68	4.00
	Bookmark □
Which of the following organelles has membrane which is unusually permeable to inorganic	cions and
low molecular wt. substrate? © ER	
C Lysosomes C Peroxisomes	
○ Golgi apparatus	
Question No.69	4.00
	Bookmark □
Pulmonary vein is major blood vessel which carries	
o deoxygenated blood from the lungs to the heart	
oxygenated blood from the lungs to the heart	
oxygenated blood from the heart to the lungs	
O deoxygenated blood from the heart to the lungs	
Question No.70	4.00
	Bookmark □
Which of the following does not have introns?	
○ Non-processed pseudo genes	
C Primary RNA transcript	
C Processed mRNA	
O DNA	
Question No.71	4.00
Question No.71	Bookmark
Which is the rate limiting enzyme in glycolysis	
○ Aldolase	
© Pyruvate kinase	
© Phosphofructokinase	
○ Hexokinase	
Question No.72	4.00
quodion non 2	Bookmark
The site for synthesis for plasmalogens is	<u> </u>
O ER	
○ Golgi apparatus	
© Peroxisome	
○ Mitochondria	

Overtion No 72	4.00
Question No.73	4.00
Which metal is coated to the specimen before using in SEM.	Bookmark □
© Zirconium	
O Gallium	
© Gadolinium	
○ Gold	
Question No.74	4.00
	Bookmark □
Serine proteases have 3 prominent amino acids in its active site, they are	
○ Valine, serine, Histidine	
 Serine. Histidine, Aspartic acid 	
○ Serine, cysteine, aspartic acid.	
○ Serine, leucine, lysine	
Question No.75	4.00
	Bookmark
Choose the best antonym of the italicized word.	
The principal deprecated the attitude of some student-leaders.	
○ tolerated	
O derided	
© ignored	
© Igriorou	
© appreciated	
Overstein No 70	4.00
Question No.76	4.00 Bookmark □
SDS-PAGE seperates proteins on the basis of	DOOKIIIAIK L
© Secondary Structure	
Charge	
C Zwitter ions	
○ Molecular weight	
Question No.77	4.00
	Bookmark □
Which among the immune cell majorly acts as antigen presenting cell	
○ IL-6	
C TNF-α cells	
○ Macrophages	
○ Spleenocytes	

Question No.78	4.00
	Bookmark □
Which number replaces the question mark?	
22	
17 5	
0 3	
0 2	
O 1 O 4	
Question No.79	4.00 Bookmark
Which is the infamous X-linked inheritence disease wich runs in the British Royal Family.	BOOKINGI K
HaemophiliaHuntington's chorea	
© Down syndrome	
○ Multiple Sclerosis	
Question No.80	4.00
Question No.00	Bookmark
Perfectly folded protein has C Less entropy and less enthalpy	
C Less entropy and high enthalpy	
C High entropy and less enthalpy	
C High entropy and high enthalpy	
Question No.81	4.00
The cell-mediated immunity inside the human body is carried out by:	Bookmark
Thrombocytes	
© Erythrocytes	
O B-Lymphocytes	
C T-Lymphocytes	
Question No.82	4.00
	Bookmark □
Choose the correct meaning of the italicized idiom. The police <i>cordoned off</i> the area after the explosion.	
of filled the whole area	
C checked everyone in the area	
O did not allow anyone to leave the area	
○ isolated the area	
Question No.83	4.00
Which of the fellowing emission and its confict to the standard of the standar	Bookmark
Which of the following amino acids is synthesized directly from TCA cycle intermediate? © serine	
© aspartic acid	
○ alanine	
O cysteine	

Question No.84	4.00 Bookmark
Lactose consists of Glucose + Glucose Mannose + Glucose Galactose + Glucose Glucose + Fructose	
Which amino acid from the following amino acid residues would you expect to find on the instypical globular protein molecule in solution at pH 7? Val Glu His Asp	4.00 Bookmark ☐ ide of a
Question No.86 Which the recognition site for ribosomes in prokaryotic mRNA Shine dalgarno sequence Poly A site TATA box CpG site	4.00 Bookmark □
Question No.87 DNA damage in the cell can be analyzed using Comet assay Bradford assay Nanodrop RAPD	4.00 Bookmark
Question No.88 Muscle cells differ from nerve cells because they use different genetic codes express different genes contain different genes have unique ribosomes	4.00 Bookmark □
 Question No.89 Which of the following graphical plots would provide you the number of ligand binding sites in hemoglobins? Scatchard plot Hill's plot Sigma plot Lineweaver-Burk plot 	4.00 Bookmark ☐

Question No.90	4.00 Bookmark
Rifampicin is a RNA polymerase inihibtor which inibits the	DOORITICITY [
<i>ℂ rpoB</i> subunit	
○ <i>rpoZ</i> subunit	
○ <i>rpoE</i> subunit	
○ <i>rpoD</i> subunit	
Question No.91	4.00 Bookmark
Which form of DNA is observed during transcription or rDNA	BOOKMARK []
O B - DNA	
C Z-DNA	
O A - DNA	
Question No.92	4.00
	Bookmark
If black is called white, white is called red, red is called pink, pink is called green, green is ca what would be the colour of human blood?	alled blue,
© Blue	
O Pink	
© White	
© Green	
Question No.93	4.00
Which cell is exclusively responsible for the formation of myelin sheath in Peripheral Nervous	Bookmark
(PNS)	·
O Microglia	
O Astrocytes	
Schwann cellsOligodendrocytes	
Oligoderidiocytes	
Question No.94	4.00 Bookmark
The precursor of all N-linked oligosaccharide contains:	Dookinark E
 Three glucose, eight mannose and three N-acetylglucosamine 	
 Two glucose, nine mannose and three N-acetylglucosamine 	
Three glucose, nine mannose and two N-acetylglucosamine	
Two glucose, eight mannose and four N-acetylglucosamine	
Question No.95	4.00
Which of the following cofactors is involved in carboxyl transfer?	Bookmark 🗷
© Biotin	
© Pyridoxal phosphate	
© TPP	
© FAD	

Organian No OC	4.00
Question No.96	4.00 Bookmark
A toxin which has been treated with formalin is called:	
© Exotoxin	
○ Toxoid	
○ Antitoxin	
© Enterotoxin	
Question No.97	4.00
	Bookmark ✓
Streptomycin inhibits the protein biosynthesis in	
○ fungal cells○ Eukaryotic cells	
© prokaryotic cells	
© plant cells	
S Plant Collo	
Question No.98	4.00
Tunicamycin inhibits the biosynthesis of:	Bookmark □
© Mucopolysaccharide	
© Glycolipids	
© Polysaccharides	
© Glycoproteins	
Question No.99	4.00
Which amino acids are popularly termed as helix breakers	Bookmark □
Tyrosine and Tryptophan	
C Lysine and methionine	
© Valine and leucine	
© Proline and Glycine	
Question No.100	4.00
	Bookmark □
When isotopic glycine ¹⁵ NH ₂ -CH ₂ -COOH was administered in rats which nitrogen atom in	n purine will
be labeled with ¹⁵ N?	
O N-9	
O N-7	
O N-3	
O N-1	