Лабораторная работа 2.1.2 Определение C_p/C_v методом адиабатического расширения

Злобина Вера Б02-002 20 мая 2021 г. **Цель работы:** определение отношения C_p/C_v углекислого газа по измерения давления в стеклянном сосуде. Измерения производятся сначала после адиабатического расширения газа а затем после нагревания сосуда и газа до комнатной температуры.

В работе используются: стеклянный сосуд: U-образный жидкостный манометр; резиновая груша; газгольдер с углекислым газом.

Экспериментальная установка. Используемая для опытов экспериментальня установка состоит из стеклянного сосуда A (объёмом около 20 л), снабженного краном K, и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на Puc. 1.

Избыточное давление создаётся с помощью резиновой груши, сосединённой с сосудом трубкой с краном K_1 .

В начале опыта в стеклянном сосуде А находится исследуемый газ при комнатной температуре T_1 и давлении P_1 , несколько превышающем атмосферное давление P_0 . После открытия крана K, соединяющего сосуд A с атмосферой, давление и температура газа будут понижаться. Это уменьшение температуры приближённо можно считать адиабатическим.

Рис. 1: Установка для определения C_p/C_v методом адиабатического расширения газа

Для адиабатического процесса можно записать следующее уравнение:

$$\left(\frac{P_1}{P_2}\right)^{\gamma - 1} = \left(\frac{T_1}{T_2}\right)^{\gamma},\tag{1}$$

где индексом "1"обозначено состояние после повышения давления в сосуде и выравнивания температуры с комнатной, а интексом "2"— сразу после открытия крана и выравнивания давления с атмосферным.

После того, как кран K вновь отсоединит сосуд от атмосферы , происходит медленное изохорическое нагревание газа со скоростью, определяемой теплопроводностью стеклянных стенок сосуда. Вместе с ростом температуры растёт и давление газа. З время порядка Δt_T (время установления температуры) система достигает равновесия, и установившаяся температура газа T_3 становится равной комнатной температуре T_1 .

Тогда используя закон Гей-Люссака для изохорического процесса и уравнение (1) найдём γ :

$$\gamma = \frac{\ln(P_1/P_0)}{\ln(P_1/P_3)}. (2)$$

С учётом того, что $P_i = P_0 + \rho g h_i$ и пренебрегая членами второго порядка малости получим из (2):

$$\gamma \approx \frac{h_1}{h_1 - h_2}.\tag{3}$$

Ход работы

1. Перед началом работы убедимся в том, что краны и места сочленений трубок достаточно герметичны. Для этого нужно наполнить баллон углекислым газом до давления, превышающего атмосферное и перекроем кран K_1 . По U-образному манометру снимем зависимость давления h в баллоне от времени t и построим график зависимости h=f(t). Из графика определим время установления термодинамического равновесия Δt_T . Стабильное избыточное давление воздуха h_1 в баллоне должно быть тщательно измерено. Как видно из полученного графика время установления равновесия составляет около 60 с.

Рис. 2: График зависимости h(t)

2. Откроем кран K на короткое время и закроем его снова. Подождём, пока уровень жидкости в манометре перестанет изменяться. Это произойдёт, когда температура газа в сосуде сравняется с комнатной, примерно через время Δt_T . Запишем разность уровней жидкости в манометре h_2 . Проведём серию из 5–8 измерений сначала для времени открытия крана $\Delta t = 0.5$ с, а затем для $\Delta t \approx 1.0$ си $\Delta t \approx 1.5$ с. По полученным данным вычислим используя формулу (3) вычислим γ и построим график зависимости $\gamma(\Delta t)$ (График 1).

Таблица 1: Экспериментальные данные для $\Delta t = 0.5$

$N_{\overline{0}}$	h_1 , cm	h_2 , cm	γ
1	9.6	1.5	1.185
2	9.1	1.4	1.181
3	9.2	1.5	1.194
4	9.3	1.5	1.182
5	9.1	1.4	1.181
6	9.2	1.5	1.195
7	9.2	1.4	1.179
		$\gamma_{\rm cp} = 1.187$	$\sigma_{\mathrm{c},\gamma} = 0.002$

Как видно из предварительных вычислений случайная погрешность γ очень мала в сравнении с инструментальной (которая оценочно будет на порядок больше).

Таблица 2: Экспериментальные данные для $\Delta t = 1.0$

Nº	h_1 , cm	h_2 , cm	γ
1	9.1	1.2	1.152
2	8.7	1.2	1.160
3	9.0	1.2	1.154
4	9.0	1.2	1.154
5	9.0	1.2	1.154
		$\gamma_{\rm cp} = 1.155$	$\sigma_{\mathrm{c},\gamma} = 0.003$

Теперь оценим вклад приборной погрешности при вычислении величины γ . Измерения h_1 и h_2 проводились с точностью 1мм. Пользуясь формулой (3) можно получить, что относительная погрешность искомой

Таблица 3: Экспериментальные данные для $\Delta t = 2.0$

Nº	h_1 , cm	h_2 , cm	γ
1	9.1	1.0	1.123
2	8.8	0.9	1.114
3	8.9	1.0	1.127
4	8.8	1.0	1.128
5	8.8	1.0	1.128
6	9.1	1.0	1.123
		$\gamma_{\rm cp} = 1.124$	$\sigma_{\mathrm{c},\gamma} = 0.007$

величины

$$\frac{\sigma_{\gamma}}{\gamma} = \sqrt{\left(\frac{\partial \gamma(h_1, h_1 - h_2)}{\partial h_1}\sigma_{h_1}\right)^2 + \left(\frac{\partial \gamma(h_1, h_1 - h_2)}{\partial h_1 - h_2}\sigma_{h_1 - h_2}\right)^2} \approx 0.03$$

что даёт нам право пренебречь статистической погрешностью γ .

Точность измерения времени, в течение которого газ выпускался из сосуда, оценивается точностью моей реакции, опыт показал, что эта величина составляет около 0.1 или даже меньше (поскольку интервал в 0.5 с примерно с такой точностью совпадает с временем прокручивания крана на полоборота), поэтому можно считать, что время измерено с точностью $\approx 7\%$

Тогда итоговая погрешность измерения показателя адиабаты составляет около $\sqrt{0.03^2+0.07^2}=8\%$

3. Окончательный результат следует получить экстраполяцией зависимости γ от t примерно к значению $\Delta t=0,1-0,2$ с, когда давление уже почти сравнялось с атмосферным, но теплопроводность ещё не так сильно повлияла на уменьшение γ . Из полученного графика (на графике данная точка отмечена зелёным квадратом) можно сделать вывод, что $\gamma_{CO_2}=1.20\pm0.10$. В то время как табличное значение $\gamma_{CO_2}=1.30$, т. е. совпадает с полученным значением в пределах погрешности.

Рис. 3: График зависимости $\gamma(\Delta t)$

Вывод

В ходе эксперимента было получено значение показателя адиабаты, которое в пределах погрешности совпадает с табличным. Что говорит о том, что экстраполяция данных на значения, когда теплообмен ещё не успел внести большой вклад, позволяет получить правильный решультат. На больших временах был замечен этот вклад, что отображалось сильным занижением величины γ вплоть до порядка 1.1.