Guide d'utilisation de l'application activ Analyzer

2022-01-31

Sommaire

1	Informations				
	l.1 Évaluateur	5			
	1.2 Patient	5			
	1.3 Appareil	5			
2	Importation des données, détection du temps de non-port, et visualisation des données	7			
3	3 Configuration pour le calcul des indicateurs				
4	Résultats et export	13			
Re	érences	15			

4 Sommaire

Informations

1.1 Évaluateur

Il est possible de renseigner le nom et le prénom de l'évaluateur. Ces informations doivent être fournies afin d'avoir un document complet après avoir généré le rapport à la fin de l'application.

1.2 Patient

Il est possible de renseigner le nom et le prénom du patient, ainsi que son sexe, son âge, et sa masse. L'utilisateur doit fournir les informations de sexe, d'âge, et de masse afin d'obtenir les résultats car ces paramètres sont utilisés pour calculer le métabolisme de base (MB), ainsi que le niveau d'activité physique (NAP). Les informations concernant le patient doivent être fournies afin d'avoir un document complet après avoir généré le rapport à la fin de l'application.

1.3 Appareil

Il est possible d'indiquer où l'appareil était placé sur le corps lors de la période de mesure. Plusieurs options sont disponibles pour le placement de l'appareil, mais pour le moment, l'application est conçue pour fonctionner avec des données enregistrées à la hanche seulement. Les informations relatives à l'appareil doivent être fournies afin d'avoir un document complet après avoir généré le rapport à la fin de l'application. D'autres informations importantes concernant l'appareil (i.e., le model d'ActiGraph utilisé, la fréquence d'échantillonnage, le filtre des données appliqué lorsque le fichier .agd a été généré à partir des données .gt3x avec le logiciel Actilife®) sont capturées silencieusement lors de l'importation des données dans l'application.

Importation des données, détection du temps de non-port, et visualisation des données

L'utilisateur doit importer un fichier .agd généré avec le logiciel Actilife® et contenant au moins les données relatives aux trois axes, aux pas, et à la fonction inclinomètre de l'appareil (temps passé dans les postures debout, assis, et allongé). La période de temps qui a été utilisée pour accumuler les données brutes (e.g., 10 s, 60 s) n'a pas d'importance. Une fois le fichier .agd importé, en arrière-plan, l'application lit le fichier et accumule les données pour obtenir un jeu de données avec des périodes de temps de 1 min grâce à des fonctions R fournies dans le package R actigraph.sleepr (Petkova, 2021). Ensuite, l'application calcule le vecteur magnitude (VM = $\sqrt{x^2+y^2+z^2}$). Après cette étape, il est possible de configurer l'analyse à réaliser pour détecter le temps de non-port. Cela consiste à choisir la variable (i.e., les counts liés au vecteur magnitude ou ceux liés à l'axe vertical) et l'intervalle de temps avec zéro count à considérer pour détecter le temps de non-port de l'appareil, ainsi que l'intervalle de temps avec des données de counts supérieures à 0 autorisé à l'intérieur d'une période de non-port, cela en lien avec la période de temps contenant zéro count à avoir autour de la période d'activité détectée pour confirmer le nonport de l'appareil. Les valeurs par défaut fournies dans l'application pour configurer la détection du temps de non-port reposent sur l'article de Choi et al. (2012). Finalement, lorsque tous les paramètres sont configurés comme requis, l'utilisateur doit cliquer sur le bouton "Validate configuration". Si tous les paramètres renseignés sont valides, l'application détecte le temps de non-port de l'appareil grâce à une fonction issue du package R PhysicalActivity (Choi et al., 2021). L'application fournit alors un graphique permettant à l'utilisateur de visualiser les différentes données se trouvant dans le fichier de données. Il est nécessaire de compléter cette étape avant d'aller plus loin dans l'application.

Configuration pour le calcul des indicateurs

L'utilisateur doit sélectionner une équation pour calculer les METs, et sélectionner l'axe et les valeurs seuils de counts à utiliser pour calculer le temps passé dans des comportements sédentaires (SED), d'activité physique d'intensité légère (SED), d'activité physique d'intensité modérée (MPA), d'activité physique d'intensité vigoureuse (VPA) et d'activité physique d'intensité modérée à vigoureuse (MVPA).

Les équations fournies dans l'application pour calculer les METs peuvent être retrouvées dans les articles scientifiques suivants :

- L'équation Sasaki et al. (2011) [Adults] (Sasaki et al., 2011).
- L'équation Santos-Lozano et al. (2013) [Adults] (Santos-Lozano et al., 2013).
- L'équation Freedson et al. (1998) [Adults] (Freedson et al., 1998).
- L'équation Santos-Lozano et al. (2013) [Older adults] (Santos-Lozano et al., 2013).

Les valeurs seuils de counts/min peuvent être aussi retrouvées dans des articles scientifiques :

- Les valeurs seuils d'Aguilar-Farias et al. (2014) pour SED chez les personnes âgées : <200 counts/min [Vecteur magnitude];
- Les valeurs seuils de Sasaki et al. (2011) pour MPA et VPA chez les adultes : ≥ 2 690 counts/min (MPA) et ≥ 6 167 counts/min (VPA) [Vecteur magnitude];
- Les valeurs seuils de Santos-Lozano et al. (2013) pour MPA et VPA chez les adultes : ≥ 3 208 counts/min (MPA) et ≥ 8 565 counts/min (VPA) [Vecteur magnitude];
- Les valeurs seuils de Freedson et al. (1998) pour MPA et VPA chez les adultes : ≥ 1 952 counts/min (MPA) et ≥ 5 725 counts/min (VPA) [Axe vertical];
- Les valeurs seuils de Santos-Lozano et al. (2013) pour MPA et VPA chez les personnes âgées : ≥ 2 751 counts/min (MPA) et ≥ 9 359 counts/min (VPA) [Vecteur magnitude].

Ces valeurs seuils (excepté celles de Freedson et al.) ont été recommandées par Migueles et al. (2017). Cependant, dans le cas où aucune de ces valeurs ne serait satisfaisante pour l'utilisateur, l'application permet de personnaliser les valeurs seuils.

Finalement, cette section permet à l'utilisateur de déterminer le temps de port minimum requis pour considérer un jour comme valide, ainsi que la période au cours de laquelle le temps de port doit être obtenu au cours de la journée. La valeur par défaut est de 10 heures (i.e., 600

minutes) sur la journée entière, comme recommandé (Migueles et al., 2017). Pour obtenir automatiquement une configuration recommandée établie chez des patients BPCO dans le cas où l'appareil aurait été porté la nuit (Demeyer et al., 2014), l'utilisateur peut cliquer sur le bouton "Set PROactive configuration for 24-h recording". À noter que la validation de l'ensemble de la mesure est laissée à l'appréciation de l'utilisateur. Dans la littérature scientifique, il est couramment accepté qu'il faut obtenir au moins 4 jours valides pour considérer la mesure comme pouvant refléter de manière fiable ce qui a été fait par le patient au cours de la période de mesure. Quel que soit le nombre de jours valides obtenus, il convient de garder à l'esprit qu'une semaine de mesure peut ne pas refléter correctement le comportement habituel du patient sur une période plus longue (e.g., une année).

Une fois que tous les paramètres ont été correctement configurés, l'utilisateur doit cliquer sur le boutton "Run analysis". Cette action déclenche plusieurs calculs. Premièrement, l'application calcule le métabolisme de base (MB), cela à partir du sexe, de l'âge, et de la masse, et à partir d'une des équations proposées dans l'article de Henry et al. (2005). Ces équations sont montrées dans le Tableau 3.1.

Catégories d'âge (ans)	Sexe	Équation	
<3	Masculin	61.0 * masse - 33.7	
[3-10[Masculin	23.3 * masse + 514	
[10-18[Masculin	18.4 * masse + 581	
[18-30[Masculin	16.0 * masse + 545	
[30-60[Masculin	14.2 * masse + 593	
[60-70[Masculin	13.0 * masse + 567	
>=70	Masculin	3.7 * masse + 481	
<3	Féminin	58.9 * masse - 23.1	
[3-10[Féminin	20.1 * masse + 507	
[10-18[Féminin	11.1 * masse + 761	
[18-30[Féminin	13.1 * masse + 558	
[30-60[Féminin	9.74 * masse + 694	
[60-70[Féminin	10.2 * masse + 572	
>=70	Féminin	10.0 * masse + 577	

Tableau 3.1 : Équations pour estimer le métabolisme de base

Si le patient considère que son sexe est indéfini ("undefined" dans l'application), alors l'équation pour le sexe féminin est utilisée. Ces équations fournissent le MB en kcal/jour, mais l'application calcule aussi silencieusement le MB en kcal/min pour l'utiliser dans des calculs spécifiques. Ensuite, les variables suivantes sont calculés pour chaque période de 60 s du jeu de données :

- Les catégories SED, LPA, MPA, VPA en s'appuyant sur l'axe et les valeurs seuils configurés par l'utilisateur ;
- Les METs, en utilisant l'équation de MET choisie par l'utilisateur;
- Les kilocalories. Pour les périodes non-SED, les valeurs de MET calculées sont multipliées par le MB exprimé en kcal/min lorsque les équations de Santos-Lozano et al. (2013) sont utilisées, étant donné que dans cette étude, les METs étaient des multiples du métabolisme

de repos mesuré (et non pas standard). Lorsque les équations de Sasaki et al. (2011) et de Freedson et al. (1998) sont utilisées, les valeurs de MET sont multipliées par le poids et 1/60, étant donné que dans ces études, les METs étaient des multiples du métabolisme de repos standard (i.e., 3.5 mLO₂/min/kg), et qu'un MET standard est approximativement équivalent à 1 kcal/kg/h (Butte et al., 2012). Pour les périodes SED, le MB en kcal/min est directement utilisé :

• Les MET-heures liés à MPVA, en multipliant la valeur de MET par le temps (1/60e d'heure), cela seulement lorsque la valeur de MET est ≥ 3.

Une fois ces nouvelles variables ajoutées au jeu de données initial, l'application résume les résultats pour chaque jour de mesure à partir des données correspondant à du temps de port, cela pour les indicateurs suivants :

- wear_time : temps de port total calculé à partir de la période de la journée définie dans la fonction
- total_counts_axis1: nombre total de counts pour l'axe vertical.
- total_counts_vm: nombre total de counts pour le vecteur magnitude.
- axis1_per_min: moyenne des counts par minute pour l'axe vertical.
- vm_per_min: moyenne des counts par minute pour le vecteur magnitude.
- total_steps : nombre total de pas.
- total_kcal : nombre total de kilocalories.
- minutes_SED: nombre total de minutes passées dans un comportement SED.
- minutes_LPA: nombre total de minutes passées dans un comportement LPA
- minutes_MPA: nombre total de minutes passées dans un comportement MPA
- minutes_VPA: nombre total de minutes passées dans un comportement VPA
- minutes_MVPA: nombre total de minutes passées dans un comportement MVPA
- percent_SED : proportion du temps de port passée dans un comportement SED.
- percent_LPA : proportion du temps de port passée dans un comportement LPA
- percent_MPA : proportion du temps de port passée dans un comportement MPA
- percent_VPA : proportion du temps de port passée dans un comportement VPA
- percent_MVPA : proportion du temps de port passé dans un comportement MVPA.
- max_steps_60min : meilleure accumulation de pas par minute moyennée sur une fenêtre de 60 minutes consécutives.
- max_steps_30min : meilleure accumulation de pas par minute moyennée sur une fenêtre de 30 minutes consécutives.
- max_steps_20min : meilleure accumulation de pas par minute moyennée sur une fenêtre de 20 minutes consécutives.
- max_steps_5min : meilleure accumulation de pas par minute moyennée sur une fenêtre de 5 minutes consécutives.
- max_steps_1min: meilleure accumulation de pas par minute sur une fenêtre de 1 minute.
- peak_steps_60min : accumulation de pas par minute moyennée sur les 60 meilleures minutes, consécutives ou non.
- peak_steps_30min : accumulation de pas par minute moyennée sur les 30 meilleures minutes, consécutives ou non.
- peak_steps_20min : accumulation de pas par minute moyennée sur les 20 meilleures minutes, consécutives ou non.
- peak_steps_5min : accumulation de pas par minute moyennée sur les 5 meilleures minutes, consécutives ou non.
- peak_steps_1min : accumulation de pas par minute sur la meilleure minute (même résultat que pour max_steps_1min).
- mets_hours_mvpa: nombre total de MET-heures dépensés dans un comportement MVPA.
- ratio_mvpa_sed : rapport entre le temps MVPA et le temps SED (minutes_MVPA / minutes_SED).

Ensuite, l'application calcule le NAP pour chaque jour de mesure. Pour faire cela, la dépense énergétique totale (DET) est divisée par le MB. La DET est obtenue en faisant la somme des kilocalories mesurées durant le temps de port et des kilocalories liées au MB dépensées durant les périodes de non-port (il est supposé que les périodes lors desquelles l'appareil n'était pas porté correspondaient à des périodes de sommeil, durant lesquelles la dépense énergétique est proche du MB), et en multipliant cette somme par 10/9 afin de prendre en compte l'effet thermique des aliments. Bien sûr, de tels calculs peuvent conduire à sous-estimer la DET et le NAP si l'appareil était enlevé pendant des périodes prolongées d'activité physique. De plus, même si l'appareil était correctement porté, l'estimation du NAP reste très approximative étant donné qu'à la fois le MB et les kilocalories liées au temps de port étaient estimées à partir de méthodes qui peuvent ne pas être exactes au niveau individuel.

Finalement, l'application calcule les moyennes journalières des indicateurs en utilisant les jours considérés comme valides.

Résultats et export

Dans l'application, les résultats par jour et ceux moyennés en utilisant les jours valides sont montrés dans des tableaux. L'utilisateur peut cliquer sur des boutons spécifiques pour exporter vers des fichiers .csv soit le jeu de données marqué, soit les résultats par jour, soit les résultats moyennés en utilisant les jours valides. Les deux derniers boutons permettent à l'utilisateur de générer un rapport (soit en anglais, soit en français) où tous les paramètres d'utilisation de l'application sont répertoriés, de même que les résultats. Quelques commentaires sont proposés à la fin du rapport pour aider à positionner le patient par rapport à des normes ou des recommandations. Dans le rapport, quelques résultats journaliers sont montrés graphiquement. C'est le cas pour le NAP, le nombre total de pas, le temps passé dans MVPA et SED, et le rapport MVPA/SED. La plupart des indicateurs sont aussi montrés pour chaque jour de mesure. L'application fournit aussi les scores PROactive liés à la quantité d'activité physique et reposant sur les médianes des scores journaliers de pas et de vecteur magnitude par minute (Gimeno-Santos et al., 2015). Ces scores peuvent être utiles lorsque la mesure de l'activité physique a été réalisée chez un patient avec une broncho-pneumopathie chronique obstructive avec l'objectif d'utiliser l'outil PROactive tel que décrit dans la littérature (Gimeno-Santos et al., 2015).

De manière importante, la comparaison des résultats journaliers avec des valeurs normales ou les recommandations devrait être faite avec prudence. Concernant le nombre total de pas, les données illustrées sur la figure ont été obtenues avec des podomètres classiques. Il convient d'être conscient du fait que si l'accéléromètre ActiGraph qui a été utilisé était un appareil de la génération GT3X, le résultat final obtenu est susceptible de sous-estimer ou de surestimer le nombre de pas en comparaison avec un podomètre classique selon que le filtre normal ou le filtre acceptant les accélérations de basse fréquence était activé, respectivement, lors de la création du fichier .agd avec le logiciel Actilife® (Barreira et al., 2013).

Les résultats journaliers pour les temps MVPA et SED sont montrés en relation avec le risque de mortalité qui a été estimé à partir de données d'accéléromètres (modèles ActiGraph 7164, GT1M and GT3X+ [filtre normal], et l'Actical) chez des adultes de plus de 40 ans par Ekelund et al. (2019). De manière similaire, le rapport MVPA/SED journalier est montré en relation avec le risque de mortalité qui a été estimé à partir de données d'accéléromètres (modèle ActiGraph 7164 [filtre normal]) chez des adultes de 50 à 79 ans par Chastin et al. (2021). Les informations statistiques (i.e., les risques de mortalité et les limites d'intervalle de confiance à 95 %) montrées sur les figures ont été obtenues de la manière suivante : tout d'abord, la plateforme web Web-PlotDigitizer a été utilisée pour obtenir les coordonnées de plusieurs points qui constituaient les courbes montrant les risques de mortalité et les intervalles de confiance correspondants dans les articles. Puis, une procédure de régression loess a été utilisée sur les coordonnées avec le logiciel R. Les données modélisées ont enfin été utilisées pour construire les figures. À noter que les risques de mortalité et les limites de confiance en correspondance avec les extrémités inférieure et/ou supérieure des axes des abscisses des figures ont été extrapolés au-delà des données d'ori-

gine. Il est important de noter que les positions des résultats des patients sur les courbes des risques de mortalité ne devraient pas être considérées comme des estimations claires et précises du risque de santé pour le patient, au moins pour les deux raisons suivantes : (i) ces courbes ont été établies à l'échelle d'une population et sont susceptibles de ne pas intégrer la multiplicité des facteurs pouvant affecter le risque de santé au niveau individuel; (ii) les formes de ces courbes sont liées à des appareils spécifiques, à des choix particuliers concernant les valeurs seuils de counts/min pour déterminer le temps passé dans les catégories d'intensité SED et MVPA, et à des choix particuliers concernant l'analyse du temps de non-port de l'appareil. Ainsi, si l'analyse avec l'application activAnalyzer a été réalisée suite à l'utilisation d'un modèle ActiGraph qui était différent de ceux utilisés dans les études citées ci-dessus, et/ou que le filtre Lower Frequency Extension a été utilisé lors de la création du fichier .agd, et/ou que les choix d'analyse des données étaient différents de ceux faits dans les études citées ci-dessus (des choix différents pourraient être plus appropriés pour étudier le comportement physique d'un patient spécifique), alors les résultats du patient peuvent être difficiles à interpréter. Plutôt que de comparer les résultats des patients avec des risques de mortalité spécifiques à un moment précis, une manière plus appropriée d'utiliser ces figures pourrait être d'en faire un outil pédagogique pour montrer l'effet dose-réponse globalement non linéaire de l'activité physique et du comportement sédentaire sur la santé, et pour mettre en lumière l'évolution des scores du patient au cours du temps. Pour information, les choix faits dans les études de Ekelund et al. (2019) et Chastin et al. (2021) sont montrés dans le Tableau 4.1 ci-dessous.

Tableau 4.1 : Choix d'analyse réalisés dans les études de Ekelund et al. (2019) and Chastin et al. (2021)

Study	Axe pour la classification de l'intensit d'AP	Seuil pour SED	Seuil pour MVPA	Algorithme pour le non-port
Ekelund et al. (2019)	Axe vertical	<= 100 counts/min	>= 1952 counts/min	Axe: vertical; Période: 90 min; Autorisation: 2 min; Période de part et d'autre de celle autorisée: 30 min
Chastin et al. (2021)	Axe vertical	< 100 counts/min	> 2020 counts/min	Axe: vertical; Période: 60 min; Période autorisée: 2 min avec counts/min <50

Références

- Aguilar-Farías, N., Brown, W. J., & Peeters, G. M. E. E. (Geeske). (2014). ActiGraph GT3X+Cut-Points for Identifying Sedentary Behaviour in Older Adults in Free-Living Environments. Journal of Science and Medicine in Sport, 17(3), 293-299. https://doi.org/10.1016/j.jsams. 2013.07.002
- Barreira, T. V., Brouillette, R. M., Foil, H. C., Keller, J. N., & Tudor-Locke, C. (2013). Comparison of Older Adults' Steps per Day Using an NL-1000 Pedometer and Two GT3X+Accelerometer Filters. *Journal of Aging and Physical Activity*, 21(4), 402-416. https://doi.org/10.1123/japa.21.4.402
- Butte, N. F., Ekelund, U., & Westerterp, K. R. (2012). Assessing Physical Activity Using Wearable Monitors: Measures of Physical Activity. *Medicine & Science in Sports & Exercise*, 44, S5-S12. https://doi.org/10.1249/MSS.0b013e3182399c0e
- Chastin, S. F. M., McGregor, D. E., Biddle, S. J. H., Cardon, G., Chaput, J.-P., Dall, P. M., Dempsey, P. C., DiPietro, L., Ekelund, U., Katzmarzyk, P. T., Leitzmann, M., Stamatakis, E., & Van der Ploeg, H. P. (2021). Striking the Right Balance: Evidence to Inform Combined Physical Activity and Sedentary Behavior Recommendations. *Journal of Physical Activity* and Health, 18(6), 631-637. https://doi.org/10.1123/jpah.2020-0635
- Choi, L., Beck, C., Liu, Z., Moore, R., Matthews, C. E., & Buchowski, M. S. (2021). *Physical Activity: Process Accelerometer Data for Physical Activity Measurement* (Version 0.2-4) [Computer software]. https://CRAN.R-project.org/package=PhysicalActivity
- Choi, L., Ward, S. C., Schnelle, J. F., & Buchowski, M. S. (2012). Assessment of Wear/Nonwear Time Classification Algorithms for Triaxial Accelerometer. *Medicine & Science in Sports & Exercise*, 44(10), 2009-2016. https://doi.org/10.1249/MSS.0b013e318258cb36
- Demeyer, H., Burtin, C., Van Remoortel, H., Hornikx, M., Langer, D., Decramer, M., Gosselink, R., Janssens, W., & Troosters, T. (2014). Standardizing the Analysis of Physical Activity in Patients with COPD Following a Pulmonary Rehabilitation Program. *Chest*, 146(2), 318-327. https://doi.org/10.1378/chest.13-1968
- Ekelund, U., Tarp, J., Steene-Johannessen, J., Hansen, B. H., Jefferis, B., Fagerland, M. W., Whincup, P., Diaz, K. M., Hooker, S. P., Chernofsky, A., Larson, M. G., Spartano, N., Vasan, R. S., Dohrn, I.-M., Hagströmer, M., Edwardson, C., Yates, T., Shiroma, E., Anderssen, S. A., & Lee, I.-M. (2019). Dose-Response Associations between Accelerometry Measured Physical Activity and Sedentary Time and All Cause Mortality: Systematic Review and Harmonised Meta-Analysis. *BMJ*, 14570. https://doi.org/10.1136/bmj.14570
- Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the Computer Science and Applications, Inc. Accelerometer: *Medicine & Science in Sports & Exercise*, 30(5), 777-781. https://doi.org/10.1097/00005768-199805000-00021
- Gimeno-Santos, E., Raste, Y., Demeyer, H., Louvaris, Z., de Jong, C., Rabinovich, R. A., Hop-kinson, N. S., Polkey, M. I., Vogiatzis, I., Tabberer, M., Dobbels, F., Ivanoff, N., de Boer, W. I., van der Molen, T., Kulich, K., Serra, I., Basagaña, X., Troosters, T., Puhan, M. A.,

- ... Garcia-Aymerich, J. (2015). The PROactive Instruments to Measure Physical Activity in Patients with Chronic Obstructive Pulmonary Disease. European Respiratory Journal, 46(4), 988-1000. https://doi.org/10.1183/09031936.00183014
- Henry, C. (2005). Basal Metabolic Rate Studies in Humans: Measurement and Development of New Equations. *Public Health Nutrition*, 8, 1133-1152. https://doi.org/10.1079/PHN2005801
- Migueles, J. H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nyström, C., Mora-Gonzalez, J., Löf, M., Labayen, I., Ruiz, J. R., & Ortega, F. B. (2017). Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Medicine, 47(9), 1821-1845. https://doi.org/10.1007/s40279-017-0716-0
- Petkova, D. (2021). Actigraph.Sleepr: Detect Periods of Sleep and Non-Wear from 'ActiGraph' Data. (Version 0.2.0) [Computer software]. http://github.com/dipetkov/actigraph.sleepr
- Santos-Lozano, A., Santín-Medeiros, F., Cardon, G., Torres-Luque, G., Bailón, R., Bergmeir, C., Ruiz, J., Lucia, A., & Garatachea, N. (2013). Actigraph GT3X: Validation and Determination of Physical Activity Intensity Cut Points. *International Journal of Sports Medicine*, 34(11), 975-982. https://doi.org/10.1055/s-0033-1337945
- Sasaki, J. E., John, D., & Freedson, P. S. (2011). Validation and Comparison of ActiGraph Activity Monitors. *Journal of Science and Medicine in Sport*, 14(5), 411-416. https://doi.org/10.1016/j.jsams.2011.04.003