PARTIAL FRACTIONS

Given a rational function, i.e., one of the form: $\frac{N(x)}{D(x)}$ where N(x) and D(x) are polynomials, first perform a long division (if necessary), so that we may assume that the degree of N(x) is *less than* the degree of D(x). Then write $\frac{N(x)}{D(x)}$ as a sum of terms as follows:

1. Factor D(x) into real linear factors [of the form (ax + b)] and irreducible real quadratic factors [of the form $(ax^2 + bx + c)$ where $b^2 - 4ac < 0$].

Note: In the terms which are developed below, A, B, C, and the A_j, B_j , and C_j are constants which are to be determined.

2. For a factor (ax + b) in D(x), include a term: $\frac{A}{ax + b}$.

For a repeated factor $(ax + b)^k$ in D(x), include a sum of terms:

$$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}.$$

3. For an irreducible real quadratic factor $(ax^2 + bx + c)$ in D(x), include a term: $\frac{Bx + C}{ax^2 + bx + c}$.

For a repeated irreducible real quadratic factor $(ax^2 + bx + c)^k$ in D(x), include a sum of terms:

$$\frac{B_1 x + C_1}{a x^2 + b x + c} + \frac{B_2 x + C_2}{(a x^2 + b x + c)^2} + \dots + \frac{B_k x + C_k}{(a x^2 + b x + c)^k}.$$

- 4. Add all the terms obtained above and solve for all the undetermined constants.
- 5. Method (1): If D(x) is a product of *distinct* linear factors, then use the cover-up rule (see page 3).

Method (2): Multiply both sides by D(x), and then substitute various values for x (for example, to make the linear factors zero).

Method (3): Multiply both sides by D(x), expand, and equate the coefficients on the two sides for each of the powers of x and solve for the constants.

PARTIAL FRACTIONS – Examples:

1.
$$\frac{5x^2 - 4x + 3}{(x - 1)(x^2 + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}.$$

Multiply by
$$(x-1)(x^2+1)$$
: $5x^2-4x+3=A(x^2+1)+(Bx+C)(x-1)$.

Let x = 1 (to make x - 1 = 0): 4 = 2A. Thus, A = 2.

$$(Bx+C)(x-1) = 5x^2 - 4x + 3 - 2(x^2+1) = 3x^2 - 4x + 1 = (x-1)(3x-1)$$
.

$$Bx + C = 3x - 1$$
. Thus, $B = 3$, $C = -1$.

Therefore,
$$\frac{5x^2 - 4x + 3}{(x - 1)(x^2 + 1)} = \frac{2}{x - 1} + \frac{3x - 1}{x^2 + 1}.$$

2.
$$\frac{5x^2 - x - 2}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}.$$

Multiply by
$$x^2(x+1)$$
: $5x^2 - x - 2 = Ax(x+1) + B(x+1) + Cx^2$.

Let
$$x = 0$$
: $-2 = B$; let $x = -1$: $4 = C$;

let x = 1 (this is arbitrary - any other choice would be just as good):

$$2 = 2A + 2B + C$$
. Thus, $A = 1 - B - C/2 = 1$.

Therefore,
$$\frac{5x^2 - x - 2}{x^2(x+1)} = \frac{1}{x} - \frac{2}{x^2} + \frac{4}{x+1}$$
.

3.
$$\frac{2x^3 + 3x^2 - 3x + 8}{(x-1)^3(x^2 + 4)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3} + \frac{Dx + E}{x^2 + 4}.$$

(After much algebra: A = 1, B = 1, C = 2, D = -1, E = 0).

4.
$$\frac{1}{x(x^2+3)^2} = \frac{A}{x} + \frac{Bx+C}{x^2+3} + \frac{Dx+E}{(x^2+3)^2}.$$

(After more algebra:
$$A = \frac{1}{9}$$
, $B = -\frac{1}{9}$, $C = 0$, $D = -\frac{1}{3}$, $E = 0$).

COVER-UP RULE

This applies to a ratio of polynomials, $\frac{N(x)}{D(x)}$, where D(x) is a product of *distinct* linear factors, and the degree of N(x) is less than that of D(x):

$$\frac{N(x)}{D(x)} = \frac{N(x)}{(a_1 x + b_1)(a_2 x + b_2) \cdots (a_n x + b_n)} = \frac{A_1}{a_1 x + b_1} + \frac{A_2}{a_2 x + b_2} + \cdots + \frac{A_n}{a_n x + b_n}.$$

Multiply by
$$(a_1 x + b_1)$$
: $\frac{N(x)}{(a_2 x + b_2) \cdots (a_n x + b_n)} = A_1 + \frac{A_2(a_1 x + b_1)}{a_2 x + b_2} + \cdots + \frac{A_n(a_1 x + b_1)}{a_n x + b_n}$.

Now, let $x = -\frac{b_1}{a_1}$, in order to make $(a_1 x + b_1) = 0$.

Then,
$$A_1 = \frac{N(x)}{(a_2 x + b_2) \cdots (a_n x + b_n)} \Big|_{\left(x = -\frac{b_1}{a_1}\right)}$$
.

We see that $A_1 = \frac{N(x)}{D(x)}$ evaluated at $x = -\frac{b_1}{a_1}$, with the factor $(a_1 x + b_1)$ "covered up". Similarly for A_2, \dots, A_n .

Examples: (In # 1 - 3, the calculation is shown only for A_1 ; the others are done in a similar manner).

1.
$$\frac{4x-5}{(x-1)(x-2)} = \frac{1}{x-1} + \frac{3}{x-2}.$$

$$A_1 = \frac{4x-5}{(x-2)}\Big|_{(x=1)} = 1$$
, i.e., the factor $(x-1)$ has been "covered up".

2.
$$\frac{x+4}{x^3-x} = \frac{x+4}{x(x-1)(x+1)} = \frac{-4}{x} + \frac{\frac{5}{2}}{x-1} + \frac{\frac{3}{2}}{x+1}. \quad A_1 = \frac{x+4}{(x-1)(x+1)} \Big|_{(x=0)} = -4.$$

3.
$$\frac{x+1}{6x^2-5x+1} = \frac{x+1}{(2x-1)(3x-1)} = \frac{3}{2x-1} + \frac{-4}{3x-1}. \quad A_1 = \frac{x+1}{3x-1} \mid_{(x=\frac{1}{2})} = 3.$$

4.
$$\frac{1}{x(px+q)} = \frac{\left(\frac{1}{q}\right)}{x} - \frac{\left(\frac{p}{q}\right)}{px+q}, \text{ provided } p \text{ and } q \text{ are constants and } p, q \neq 0.$$