

Multilayer Campus Architectures and Design

Agenda

- Multilayer Campus Design Principles
- Security Considerations
- Summary

Hierarchical Network Design

Without a Rock Solid Foundation the Rest Doesn't Matter

Access

Distribution

Core

Distribution

- Offers hierarchy—each layer has specific role
- Modular topology—building blocks
- Easy to grow, understand, and troubleshoot
- Creates small fault domains— clear demarcations and isolation
- Promotes load balancing and redundancy
- Promotes deterministic traffic patterns
- Incorporates balance of both Layer 2 and Layer 3 technology, leveraging the strength of both
- Utilizes Layer 3 routing for load balancing, fast convergence, scalability, and control

High-Availability Campus Design Structure, Modularity, and Hierarchy

Access

Distribution

Core

Distribution

Hierarchical Campus Network

Structure, Modularity and Hierarchy

Access Layer

Feature Rich Environment

- It's not just about connectivity
- Layer 2/Layer 3 feature rich environment; convergence, HA, security, QoS, IP multicast, etc.
- Intelligent network services: QoS, trust boundary, broadcast suppression, IGMP snooping
- Intelligent network services: PVST+, Rapid PVST+, EIGRP, OSPF, DTP, PAgP/LACP, UDLD, FlexLink, etc.
- Cisco Catalyst[®] integrated security features IBNS (802.1x), (CISF): port security, DHCP snooping, DAI, IPSG, etc.
- Automatic phone discovery, conditional trust boundary, power over Ethernet, auxiliary VLAN etc.
- Spanning tree toolkit: PortFast, UplinkFast, BackboneFast, LoopGuard, BPDU Guard, BPDU Filter, RootGuard, etc.

Core

Distribution

Distribution Layer

Policy, Convergence, QoS, and High Availability

- Availability, load balancing,
 QoS and provisioning are the important considerations at this layer
- Aggregates wiring closets (access layer) and uplinks to core
- Protects core from high density peering and problems in access layer
- Route summarization, fast convergence, redundant path load sharing

Distribution

Core Layer

Scalability, High Availability, and Fast Convergence

- Backbone for the network connects network building blocks
- Performance and stability vs. complexity— less is more in the core
- Aggregation point for distribution layer
- Separate core layer helps in scalability during future growth
- Keep the design technologyindependent

Distribution

Agenda

- Multilayer Campus Design Principles
- Security Considerations
- Summary

Best Practices—Campus Security

Couple of items that we will highlight!

- Catalyst integrated security feature set!
- Dynamic port security, DHCP snooping, Dynamic ARP inspection, IP source guard
- Other best practices we won't cover...yet
 - Use SSH to access devices instead of Telnet
 - Enable AAA and roles-based access control (RADIUS/TACACS+) for the CLI on all devices
 - Enable SYSLOG to a server. Collect and archive logs
 - When using SNMP use SNMPv3
 - Disable unused services:
 - No service tcp-small-servers
 No service udp-small-servers
 - Use FTP or SFTP (SSH FTP) to move images and configurations around—avoid TFTP when possible
 - Install VTY access-lists to limit which addresses can access management and CLI services
 - Enable control plane protocol authentication where it is available (EIGRP, OSPF, BGP, HSRP, VTP, etc.)
 - Apply basic protections offered by implementing RFC2827 filtering on external edge inbound interfaces

Catalyst Integrated Security Features

Summary Cisco IOS

Dynamic ARP Inspection

DHCP Snooping

Port Security

- Port security prevents MAC flooding attacks
- DHCP snooping prevents client attack on the switch and server
- Dynamic ARP Inspection adds security to ARP using DHCP snooping table
- IP source guard adds security to IP source address using DHCP snooping table

```
ip dhcp snooping
ip dhcp snooping vlan 2-10
ip arp inspection vlan 2-10
interface fa3/1
switchport port-security
switchport port-security max 3
switchport port-security violation
restrict
switchport port-security aging time 2
switchport port-security aging type
inactivity
ip arp inspection limit rate 100
ip dhcp snooping limit rate 100
ip verify source vlandhcp-snooping
Interface gigabit1/1
ip dhcp snooping trust
ip arp inspection trust
```

Securing Layer 2 from Surveillance Attacks

Cutting Off MAC-Based Attacks

Script Kiddie Hacking Tools Enable Attackers Flood Switch CAM Tables with Bogus Macs; Turning the VLAN into a Hub and Eliminating Privacy

Switch CAM Table Limit Is Finite Number of Mac Addresses

Solution:

Port Security Limits MAC Flooding Attack and Locks Down Port and Sends an SNMP Trap

```
switchport port-security
switchport port-security maximum 10
switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity
```

DHCP Snooping

Protection Against Rogue/Malicious DHCP Server

- DHCP requests (discover) and responses (offer) tracked
- Rate-limit requests on trusted interfaces; limits DoS attacks on DHCP server
- Deny responses (offers) on non trusted interfaces; stop malicious or errant DHCP server

Securing Layer 2 from Surveillance Attacks

Protection Against ARP Poisoning

- Dynamic ARP inspection protects against ARP poisoning (ettercap, dsnif, arpspoof)
- Uses the DHCP snooping binding table
- Tracks MAC to IP from **DHCP** transactions
- Rate-limits ARP requests from client ports; stop port scanning
- Drop **bogus** gratuitous ARPs; stop ARP poisoning/MIM attacks

BRKCRS-2031

IP Source Guard

Protection Against Spoofed IP Addresses

- IP source guard protects against spoofed IP addresses
- Uses the DHCP snooping binding table
- Tracks IP address to port associations
- Dynamically programs port ACL to drop traffic not originating from IP address assigned via DHCP

Agenda

Multilayer CampusDesign Principles

Security Considerations

Summary

Summary

- Hierarchy—each layer has specific role
- Modular topology—building blocks
- Easy to grow, understand, and troubleshoot
- Creates small fault domains— clear demarcations and isolation
- Promotes load balancing and redundancy
- Promotes deterministic traffic patterns
- Incorporates balance of both Layer 2 and Layer 3 technology, leveraging the strength of both
- Utilizes Layer 3 routing for load balancing, fast convergence, scalability, and control

Access

Distribution

Core

Distribution

Summary

Performance and Stability:

- Improved Performance: Support for deterministic traffic engineering designs
- Minimize Downtime: by providing redundancy and alternative-path routing
- Faster Convergence: Use Equal Cost Links & paths to enable traffic load-share and convergence
- Minimize Network Events: Enable Deterministic Convergence through design

Adapting to New Models - Change Management

- Ease Change: Building-block approach and well-defined boundaries
- Maximize Services Capability: QoS, Security, Policy, are implemented at appropriate layers & roles
- Enable Mission-specific Design: Modular structure: use platform, protocols and new solutions in well-defined modules as needed

BUILT FOR THE HUMAN NETWORK CISCO

