Interaction Selection and Prediction Performance in High-Dimensional Data: A Comparative Study of Statistical and Tree-Based Methods Supplementary Materials

CHINEDU JUDE NZEKWE *1, SEONGTAE KIM¹, AND SAYED MOSTAFA¹

This supplementary material contains (1) the description of the Random Intersection Trees Algorithm and (2) additional simulation results for the imbalanced classification response case.

1 The Random Intersection Trees Algorithm

```
Algorithm 1 Random Intersection Trees (Shah and Meinshausen, 2014)
```

```
Input: \{(\mathcal{I}_i, \mathcal{Z}_i); \mathcal{I}_i \subseteq \{1, \dots, p\}, \overline{\mathcal{Z}_i \in \{0, 1\}}\}_{i=1}^n, \mathcal{C} \in \{0, 1\}
Tuning Parameters: (D, M, n_{child})
```

1: **for** $tree m \leftarrow 1$ to M **do**

Let m be a tree of depth D, with each node j in levels $0, \ldots, D-1$ having n_{child} children, and denote the parent of node j as pa(j). Let J be the total number of nodes in the tree, and index the nodes such that for every parent-child pair, larger indices are assigned to the child than the parent. For each node, $j=1,\ldots,J$, let i_j be a uniform sample from the set of class \mathcal{C} observations $\{i: \mathcal{Z}_i = \mathcal{C}\}$

```
2: Set S_1 = \mathcal{I}_{i_1}

3: 

4: for j = 2 to J do

5: S_j \leftarrow \mathcal{I}_{i_j} \cap S_{pa(j)}

6: end for

7: return S_m = S_j : depth(j) = D

8: end for

Output: S = \bigcup_{m=1}^M S_m
```

2 Simulation Results for the Imbalanced Response Classification Case

Figure 1 displays the results for the imbalanced response case for the classification linear hierarchical model. While iRF shows better prediction on the training sets, it performs poorly on the testing sets.

¹Department of Mathematics and Statistics, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA

^{*}Author. Email: cjnzekwe@aggies.ncat.edu

Figure 1: Classification performance metrics for seven algorithms under an imbalanced linear hierarchical model.

Table 1: Interaction selection accuracy of six classification methods under the linear hierarchical model with an imbalanced response.

	LASSO	SCAD	MCP	RAMP	RF	iRF
p	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
25	0.565 (0.348)	0.645 (0.242)	0.485 (0.233)	0.520 (0.301)	$0.773 \ (0.263)$	0.555 (0.227)
100	0.385 (0.334)	$0.450 \ (0.273)$	0.333(0.216)	0.465 (0.284)	0.747 (0.269)	NA (NA)
500	$0.203\ (0.251)$	$0.243 \ (0.232)$	$0.170 \ (0.174)$	$0.465 \ (0.284)$	$0.600 \ (0.292)$	NA (NA)

RAMP used here denotes RAMP-weak rule. RF shows better coverage or capturing of interaction terms but starts declining as p increases. RAMP shows stability in its selection of interaction terms for a classification linear hierarchical model with an imbalanced response case.

Table 1 compares the interaction selection coverage for six classification methods with imbalanced response cases. when p=25 and p=100, RF has a mean accuracy coverage of 0.773, 0.747 respectively. For p=500 RF mean accuracy 0.600 for a linear hierarchical model as shown in Table 1.

Figure 2: Classification performance metrics for seven algorithms under an imbalanced linear non-hierarchical model.

Table 2: Interaction selection accuracy of six classification methods under the linear non-hierarchical model with an imbalanced response.

	LASSO	SCAD	MCP	RAMP	RF	iRF
p	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
25	0.360 (0.420)	0.510 (0.389)	0.380 (0.390)	0.365 (0.244)	0.660 (0.476)	0.555 (0.347)
100	$0.240 \ (0.365)$	0.290(0.342)	$0.230 \ (0.321)$	$0.340 \ (0.234)$	$0.660 \ (0.476)$	0.777(0.427)
500	$0.100 \ (0.213)$	0.090(0.193)	0.080(0.197)	0.332(0.147)	0.350 (0.479)	NA (NA)

RAMP used here denotes RAMP-weak rule. The tree-based method (RF and iRF) shows better coverage or capture of interaction terms but declines as p increases. RAMP shows stability in its selection of interaction terms for a classification linear non-hierarchical model with an imbalance response case.

For a linear non-hierarchical model, RF and iRF show the highest mean accuracy coverage of (0.660) and (0.777), for p=25 and p=100, respectively. However, when p=500, RF has the best coverage of 0.350, while the RAMP algorithm shows stability in its capturing of interaction regardless of the size of p. The penalty-driven algorithms LASSO, SCAD, and MCP show a significant decrease in mean accuracy, with MCP having the highest mean accuracy see

Table 2. It is important to note that while iRF shows high mean accuracy at lower p values, its performance drops as p increases, particularly in the nonlinear non-hierarchical model. The RF method performs relatively better at higher p values across different models.

Figure 3: Classification performance metrics for seven algorithms under an imbalanced nonlinear non-hierarchical model.

Table 3: Interaction selection accuracy of six classification methods under the nonlinear model with an imbalanced response.

	LASSO	SCAD	MCP	RAMP	RF	iRF
p	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
25	0.046 (0.142)	$0.060 \ (0.152)$	0.036 (0.115)	0.040 (0.108)	$0.333 \ (0.236)$	$0.598 \ (0.275)$
100	$0.003 \ (0.033)$	0.006 (0.046)	0.003(0.033)	0.000(0.000)	0.300(0.186)	0.072 (0.165)
500	$0.000 \ (0.000)$	0.000 (0.000)	0.000 (0.000)	$0.000 \ (0.000)$	$0.188 \ (0.191)$	NA (NA)
O1		· · · · · · · · · · · · · · · · · · ·	1 1.1 1	1 1 1 1	1. 1.	1 11

Classification performance metrics for seven algorithms under a balanced nonlinear non-hierarchical model.

Figure 4: Classification performance metrics for seven algorithms under an imbalanced nonlinear hierarchical model.

Table 4: Interaction selection accuracy of six classification methods under the nonlinear hierarchical model with an imbalanced response.

	LASSO	SCAD	MCP	RAMP	RF	iRF
p	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
25	0.473 (0.376)	$0.483 \ (0.358)$	0.340 (0.267)	0.453 (0.330)	0.390 (0.222)	0.638 (0.252)
100	$0.220 \ (0.311)$	$0.290 \ (0.298)$	$0.196 \ (0.255)$	$0.320 \ (0.275)$	$0.420 \ (0.245)$	0.377(0.440)
500	$0.056 \ (0.150)$	$0.100 \ (0.214)$	$0.050 \ (0.137)$	$0.398 \; (0.211)$	$0.257 \ (0.217)$	NA (NA)

RAMP used here denotes RAMP-weak rule. iRF shows better coverage or capturing of interaction terms when compared to RAMP for a classification nonlinear hierarchical model imbalanced response case.

References

Shah RD, Meinshausen N (2014). Random intersection trees. The Journal of Machine Learning Research, 15(1): 629–654.