1001160236|nealbre1 <u>CSC411 Homework 4</u>

Question 1: AlexNet Analysis

1a: Counting Parameters

Formulas for Analysis

Convolutional (Conv) Layers

(# Conv Units) = Product(Output Tensor Dims) × (# Copies)
 (# Conv Weights) = Product(Kernel Dims) × (# Kernels)
 (# Conv Connections) = Product(Kernel Dims) × (#Units)

Dense Layers

(#Dense Units) = (# Output Dimensions)

 $(\#Dense\ Weights) = (\#Dense\ Connections) = (\#Input\ Units) \times (\#Output\ Units)$

Layer	Units	Weights	Connections
Conv 1	$(55 \times 55 \times 48) \times 2 = 290,400$	$(11 \times 11 \times 3) \times 96 = 34,848$	$(11 \times 11 \times 3) \times 145,200 = 105,415,200$
Conv 2	$(27 \times 27 \times 128) \times 2 = 186,624$	$(5 \times 5 \times 48) \times 256 = 307,200$	$(5 \times 5 \times 48) \times 186,624 = 223,948,800$
Conv 3	$(13 \times 13 \times 192) \times 2 = 64,896$	$(3 \times 3 \times 256) \times 384 = 884,736$	$(3 \times 3 \times 256) \times 64,896 = 149,520,384$
Conv 4	$(13 \times 13 \times 192) \times 2 = 64,896$	$(3 \times 3 \times 192) \times 384 = 663,552$	$(3 \times 3 \times 192) \times 64,896 = 112,140,288$
Conv 5	$(13 \times 13 \times 128) \times 2 = 43,264$	$(3 \times 3 \times 192) \times 256 = 442,368$	$(3 \times 3 \times 192) \times 43,264 = 74,760,192$
Full 1 (Dense)	4,096	$43,264 \times 4,096 = 177,209,344*$	
Full 2 (Dense)	4,096	$4,096 \times 4,096 = 16,777,216$	
Output (Dense)	1,000	$4,096 \times 1,000 = 4,096,000$	

^{*}I'm ignoring max pooling that should take place between Conv 5 and Full 1: https://piazza.com/class/jlp72odwmqo2v2?cid=606

1b: Case Study

- i. Cell Phone: Parameter / Weight Reduction
 - a. Decrease number of dense units. For example, reducing the number of dense units to 2048 in Full 1 would cut the number of parameters by $2048 \times 43,264 \approx 88M$. This would reduce the representational capacity of the dense layers but drastically decrease the amount of weights.
- ii. Rapid Predictions: Connection Reduction
 - a. Decrease dimensionality of convolution layer outputs. Can make smaller output tensors by:
 - i. Reducing number of kernels (means less output channels)
 - ii. Increasing stride of kernels (means smaller output images, and less dot-products per image)
 - iii. Increasing max-pooling patch size (means less output pixels)
 - b. Decrease number of dense units (parameter reduction mentioned above also carries over to number of computations / connections)

Question 2: Naïve Bayes Analysis

Denote for brevity: $p(y = k) = p(y^k)$

Formula for Reference

$$p(y^k) = \alpha_k$$

$$p(x|y^k, \mu, \sigma) = \left(\prod_{i=1}^D 2\pi\sigma_i^2\right)^{-\frac{1}{2}} \left(\exp\left(\sum_{i=1}^D \frac{1}{2\sigma_i^2}(x_i - \mu_{ki})^2\right)\right)$$

Part A

Applying Bayes Theorem:

$$p(y^k|x,\mu,\sigma) = \frac{p(x|y^k,\mu,\sigma)p(y^k|\mu,\sigma)}{p(x|\mu,\sigma)}$$

Total probability can be applied to yield $p(x|\mu, \sigma)$

$$p(x|\mu,\sigma) = \sum_{j=1}^k p(y^j)p(x|y^j,\mu,\sigma) = \sum_{j=1}^k \alpha_j p(x|y^j,\mu,\sigma)$$

 y_k is a prior, can simplify conditionals involving it

$$p(y^k|\mu,\sigma)=p(y^k)=\alpha_k$$

Rephrasing equation

$$p(y^k|x,\mu,\sigma) = \frac{\alpha_k p(x|y^k,\mu,\sigma)}{\sum_{i=1}^k \alpha_i p(x|y^i,\mu,\sigma)}$$

Part B

Note: M refers to number of dimensions as D now refers to data

$$\ell(\theta; D) = -(N \log \alpha_k) + \left(N \sum_{j=1}^{M} \log \sigma_j\right) - \left(\sum_{j=1}^{M} \frac{1}{2} \sigma_j^{-2} \sum_{i=1}^{N} (x_j^{(i)} - \mu_{kj})^2\right) + \left(\frac{NM}{2} \log 2\pi\right)$$

Part C

Derivative WRT σ_i (second and third terms are only ones that depend on σ_i)

$$\ell_{\sigma_j}(\theta; D) = N\sigma_j^{-1} - \sigma_j^{-3} \sum_{i=1}^{N} (x_j^{(i)} - \mu_{kj})^2$$

MLE for σ_i^2 : biased variance of attribute *j* over ALL samples. Proof:

$$0 = N\sigma_j^{-1} - \sigma_j^{-3} \sum_{i=1}^{N} (x_j^{(i)} - \mu_{kj})^2$$

$$\Rightarrow N\sigma_j^{-1} = \sigma_j^{-3} \sum_{i=1}^{N} (x_j^{(i)} - \mu_{kj})^2$$

$$\Rightarrow N = \sigma_j^{-2} \sum_{i=1}^{N} (x_j^{(i)} - \mu_{kj})^2$$

$$\Rightarrow \sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_j^{(i)} - \mu_{kj})^2$$

Derivative WRT μ_{kj} (only term that needs to be considered is the third one)

$$\ell_{\mu_{kj}}(\theta; D) = \frac{d}{d\mu_{kj}} \left(\sum_{j=1}^{M} \frac{1}{2} \sigma_j^{-2} \sum_{i=1}^{N} (x_j^{(i)} - \mu_{kj})^2 \right)$$

j (feature) is fixed if we are computing in terms of μ_{kj} – can drop the outer sum for simplicity

$$\Rightarrow \ell_{\mu_{kj}}(\theta; D) = \frac{d}{d\mu_{kj}} \left(\frac{1}{2} \sigma_j^{-2} \sum_{i=1}^{N} (x_j^{(i)} - \mu_{kj})^2 \right)$$

Use chain rule to compute derivative, and binary equality function to "turn off" terms whose class isn't k (their means are different):

$$\Rightarrow \ell_{\mu_{kj}}(\theta; D) = \frac{1}{2}\sigma_j^{-2} \sum_{i=1}^N 1\{y^{(i)} = k\} \left(-2(x_j^{(i)} - \mu_{kj})\right)$$
$$\Rightarrow \ell_{\mu_{kj}}(\theta; D) = \sigma_j^{-2} \sum_{i=1}^N 1\{y^{(i)} = k\} \left(\mu_{kj} - x_j^{(i)}\right)$$

MLE for μ_{kj} (mean for j-th attribute for class k) – average of attribute j, for all samples from class k. Proof:

$$0 = \sigma_j^{-2} \sum_{i=1}^N 1\{y^{(i)} = k\} (x_j^{(i)} - \mu_{kj})$$

$$\Rightarrow 0 = \sum_{i=1}^N 1\{y^{(i)} = k\} (x_j^{(i)}) - \sum_{i=1}^N 1\{y^{(i)} = k\} (\mu_{kj})$$

$$1001160236|\text{nealbre1}$$

$$\Rightarrow \sum_{i=1}^{N} 1\{y^{(i)} = k\} (\mu_{kj}) = \sum_{i=1}^{N} 1\{y^{(i)} = k\} (x_j^{(i)})$$

$$\Rightarrow \mu_{kj} \sum_{i=1}^{N} 1\{y^{(i)} = k\} = \sum_{i=1}^{N} 1\{y^{(i)} = k\} (x_j^{(i)})$$

$$\Rightarrow \mu_{kj} = \frac{\sum_{i=1}^{N} 1\{y^{(i)} = k\} (x_j^{(i)})}{\sum_{i=1}^{N} 1\{y^{(i)} = k\}}$$

Part D

I was unable to complete this question.