Lecture 22 M, Z est

Wednesday, November 29, 2017

Lyapunov CLT

Lyapunov condition => Lindeberg condition

True model

D* true parameter value

Define 10th as a solution to

Some maximization problem

 $\max M(\theta) \Rightarrow \theta^*$

M and Z estimators

M-estimation

 $M_{p}(\Theta)$

random functions

 $M_n(\theta) \rightarrow M(\theta)$

Estimator is defined as

a maximizer or

hear - maximizer (up to Op(1))

max Mn (+) => 0

Consistency: $\hat{\theta}_{h} \rightarrow \hat{\theta}^{*}$

LLN+

Normality: In (ou-ot) ~ (O, Z)

Z - estimation

Yn (-) random function

based on the sample and appoximating Y (a) Y

A* is a solution to

Y(0)=0

Proof: By the vuif. conv. cond.
$$M_{h}(\theta^{k}) \rightarrow M(\theta^{k})$$

approx. maximizer and $\Rightarrow M(\theta^{k}) \leq M_{h}(\hat{\theta}_{h}) + op(i)$
 $M(\theta^{k}) - M(\hat{\theta}_{h}) \leq M_{h}(\hat{\theta}_{h}) - M(\hat{\theta}_{h}) + op(i) \leq$
 $\leq \sup_{\theta} |M_{h}(\theta) - M(\theta)| + op(i) + op(i) \leq$
 $M(\hat{\theta}_{h}) \rightarrow M(\theta^{k})$
 $M(\hat{\theta}_{h}) \rightarrow M(\theta^{k}) + op(i) + op(i)$

 $\theta_{\rm u} \Rightarrow \theta$ veverse triangle Proof: Take Mn = - 114n1 I inequality $M = - \|Y\|$ Sup | Mn-M | = Sup | 11411-11411 / 2 < Sup | | Y- Yn | -> 0 unif Conv. Cond Sup $M(\theta) = sap(-||Y||) = -\inf(||Y||) < 0$ θ: 11 θ-0*11>>ξ $M(\theta^*)$ By the previous Th => Dn -> 0* Note: if M has a unique sup? Separation coud is and M is continuous I satisfied Functions Mn, Yn that satisfy ULLN are studied in Epirical processes Consistency w/o uniform convergence $\exists \theta \in \mathbb{R}$ In random functions 4 fixed function: We have pointwise convergence $Y_n(\theta) \rightarrow Y(\theta)$, $\forall \theta$ (a) Let Yn be a continuous function with origine zero On It is a non-decreasing function with On (6) being its asymptotic zero $\Psi(\hat{\theta}_n) = O_D(1)$

Let θ^* be such that $0 \in [\Psi(\theta^* \pm \epsilon)]$, $\Psi(-..+\epsilon)$]

interval $[\Psi(..-\epsilon), \Psi(-..+\epsilon)]$ Proof: