Random Variable and its Notation

HCMC University of Technology

Dung Nguyen

Probability and Statistics

Random Variables and Random

Vectors

Discrete Random Variables

A discrete random variable is a random variable with a finite or countably infinite range. Its values are obtained by counting.

- Number of scratches on a surface.
- Number of defective parts among 100 tested.
- Number of transmitted bits received in error.
- Number of common stock shares traded per day.

A variable that associates a number X(u) with the outcome u of a random experiment is called a random variable.

$$X: \Omega \to \mathbb{R}$$
$$u \to X(u)$$

- Uppercase letters (X, Y, Z): Random variables.
- Lowercase letters (x, y, z): Measured values of random variables (after the experiment is conducted). Eg. x = 70 milliamperes.

Dung Nguyen

Probability and Statistics2/2

Continuous Random Variables

A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range. Its values are obtained by measuring.

- Electrical current and voltage.
- Physical measurements, e.g., length, weight, time, temperature, pressure.

ung Mguyen Probability and Statistics3/29

Probability and Statistics4/2

Discrete Distribution

The probability mass function of X is defined by $f_X(u) = P(X = u)$

For any event A: $P(X \in A) = \sum_{u \in A} f(u)$.

Dung Nguyen

Probability and Statistics5/29

Density function

Discrete random variables

Example 2 - Wafer Contamination

X: the number of wafers that need to be analyzed to detect a large particle of contamination. Assume that the probability that a wafer contains a large particle is 0.01, and that the wafers are independent.

- $\Omega = \{p, ap, aap, aaap, \ldots\}$.
- The range of X: $\{1, 2, 3, 4, \ldots\}$.

TIODADITICY DISCILLULCION				
P(X=1)=	0.01	0.01		
P(X = 2) =	(0.99)(0.01)	0.0099		
	$(0.99)^2(0.01)$	0.0098		
P(X = 4) =	$(0.99)^3(0.01)$	0.0097		
• • •	•••			
Total		1		

Example 1 - Digital Channel

- There is a chance that a bit transmitted through a digital transmission channel is received in error.
- ullet X: the number of bits received in error in 4 bits transmitted.

P(X=0)	=	0.6561
P(X=1)	=	0.2916
P(X = 2)	=	0.0486
P(X = 3)	=	0.0036
P(X=4)	=	0.0001
Total		1.0000

Dung Nguyen

Probability and Statistics6/29

Density functio

Discrete random variable

Proposition (Characteristic properties)

A discrete function f is a probability mass function iff

- $f(u) \ge 0$ for all u.

Uniform distribution: $\Omega = \{1, 2, 3, \dots, n\}$

$$f(k) = P(X = k) = \frac{1}{n}$$

each outcome has equal probability

- Is $f(k) = P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$ (k = 0, 1, 2...) a probability mass function?
- Suppose that a random variable *X* has a discrete distribution with the following p.d.f.

$$f(u) = \begin{cases} cu, & u = 1, \dots, 5 \\ 0, & \text{otherwise} \end{cases}$$

Determine the value of the constant c.

Dung Nguye:

Probability and Statistics9/29

Density function

Continuous random variable

Proposition (Characteristic properties)

If f is a (probability) density function then

- **1** $f(u) \ge 0$

Continuous Distribution

A random variable X is continuous if $\exists f \geq 0$ such that for any [a,b]

$$P(a < X < b) = \int_{a}^{b} f(u) du$$

Dung Nguye:

Probability and Statistics10/2

Density functio

Continuous random variable

Example 6 - Current

Let X denote the current measured in a thin copper wire in milliamperes (mA). Assume that the range of X is $4.9 \le x \le 5.1$ and f(x) = 5. What is the probability that a current is

- a between 4.95mA and 5.1mA?
- (b) less than 5mA?

Solution

$$P(4.95 < X < 5.1) = \int_{4.95}^{5.1} f(x) dx = \int_{4.95}^{5.1} 5 dx = 0.75$$
$$P(X < 5) = \int_{4.9}^{5} f(x) dx = \int_{4.9}^{5} 5 dx = 0.5$$

7 Uniform distribution on [a,b]

$$f(u) = \begin{cases} \frac{1}{b-a}, & u \in [a,b] \\ 0, & u \notin [a,b] \end{cases}$$

8 Suppose that the p.d.f. of X is as

$$f(u) = \begin{cases} cu, & 0 < u < 4 \\ 0, & \text{otherwise} \end{cases}$$

Find c. Then determine $P(1 \le X \le 2)$ and P(X > 2).

9 Suppose that X is a continuous random variable whose probability density function is given by

$$f(u) = \begin{cases} c(4u - 2u^2), & 0 < u < 2\\ 0 & \text{otherwise} \end{cases}$$

Find c and P(X > 1).

The amount of time in hours that a computer

Cumulative Distribution Function

Cumulative Distribution Function

$$F(u) = P(X \le u) = \begin{cases} Ae^{-x}, & u \ge 0\\ 0, & \text{otherwise} \end{cases}$$

Compute The (R) obability tendistresser from the will function,

- a betwee p_u 50 and 150 hours before breaking down?
- 6 for=f werf(b) dt 10 (continuous distribution)

Example 11 - Digital channel

Consider the probability distribution for the digital channel example.

X	P(X=x)
0	0.6561
1	0.2916
2	0.0486
3	0.0036
4	0.0001
	1.0000

Find the probability of three or fewer bits in error.

- The event $(X \le 3)$ is the total of the events: (X = 0), (X = 1), (X = 2), and (X = 3).
- From the table:

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.9999$$

Dung Nguyer

Probability and Statistics14/2

Cumulative Distribution Function

Example 12 - Defective parts

A day's production of 850 parts contains 50 defective parts. Two parts are selected at random without replacement. Let the random variable X equal the number of defective parts in the sample. Find the cumulative distribution function of X. The probability mass function is calculated as follows:

$$P(X = 0) = \frac{800}{850} \cdot \frac{799}{849} = 0.886$$

$$P(X = 1) = 2 \cdot \frac{800}{850} \cdot \frac{50}{849} = 0.111$$

$$P(X = 2) = \frac{50}{850} \cdot \frac{49}{849} = 0.003$$

$$P(X = 0) = 0.886, P(X = 1) = 0.111, P(X = 2) = 0.003.$$

$$F(0) = P(X \le 0) = 0.886$$

 $F(1) = P(X \le 1) = 0.997$

robability and Statistics16

Probability and Statis

Cumulative Distribution Function

Example 13 - Electric Current

Consider the current measured in a thin copper wire in milliamperes (mA). Recall that the range of X is $4.9 \le x \le 5.1$ and f(x) = 5.

The cdf

$$F(x) = \begin{cases} 0, & x < 4.9 & 0.6 \\ 5(x - 4.9), & 4.9 \le x \le 5.10.4 \\ 1, & 5.1 \le x & 0.2 \end{cases}$$

Dung Nguyen

Probability and Statistics17/2

Cumulative Distribution Function

Other properties

Proposition ($F \Longrightarrow Probability$)

- $P(X < u) = F(u^{-})$ and $P(X = u) = F(u) F(u^{-})$.
- ② Probability of random variable occurring within an interval

$$P(a < X \le b) = F(b) - F(a)$$

Proposition $(F \Longrightarrow f)$

● If X has a discrete distribution then

$$f(u) = F(u) - F(u^{-})$$

② If X has a continuous distribution, then F is continuous at every u and F'(u) = f(u), i.e.

$$f(u) = F'(u)$$

Properties

Proposition (Characteristic properties)

- F(u) is nondecreasing

Example (14)

Which of the six functions shown are valid CDFs?

Dung Nguyen

Probability and Statistics18/

Cumulative Distribution Function

Example

15 Let X have the CDF

- a Determine all values of u such that P(X = u) > 0.
- (b) Find $P(X \le 0)$
- \bigcirc Find P(X < 0).

BK

16 Let X have the CDF

Find the numerical values of the following quantities

- (a) $P(X \leq 1)$
- (b) $P(X \le 10)$
- © $P(X \ge 10)$
- $\bigcirc P(X=10)$
- (a) $P(|X-5| \le 0.1)$.

Dung Nguyen

Probability and Statistics21/2

Expectation

Example 18 - Introduction to expectati

$$\begin{array}{c|cc} u & -1 & 1 \\ \hline P(X=u) & \frac{2}{3} & \frac{1}{3} \end{array}$$

Then

$$E(X) = \frac{(-1) \cdot 2 + (1) \cdot 1}{3}$$

$$= (-1) \cdot \frac{2}{3} + (1) \cdot \frac{1}{3} \quad (= -\frac{1}{3})$$

$$= (-1)f(-1) + (1)f(1).$$

Expectation

Example 17 - Introduction to expectation

Random numbers

The average value

Dung Nguyer

Probability and Statistics22/2

Expectation

Expectation

Definition

The expected value (mean) of a random variable X is

$$E(X) = \sum_{u} uf(u) \quad (discrete)$$

$$E(X) = \int_{-\infty}^{\infty} uf(u)du \quad (continuous).$$

Other names: Expected value, Mean, Mean value, Average value.

Proposition (Properties)

Expectation is linear:

$$E(aX + b) = aE(X) + b$$

and

$$\mathsf{E}(X+Y)=\mathsf{E}(X)+\mathsf{E}(Y)$$

19 A roulette wheel has the numbers 1 through 36, as well as 0 and 00. If you bet \$1 that an odd number comes up, you win or lose \$1 according to whether that event occurs. If X denotes your net gain, find E(X).

A school class of 120 students is driven in 3 buses to a symphonic performance. There are 36

44 in the third bus. When the buses arrive, one of the 120 students is randomly chosen. Let X

Example

- A roulette wheel has the numbers 1 through 36, as
- Weld Esxloward the defisite tenction at an isdd number comes up, you win or lose \$1 according to whether that event $odcurs.^0 = f^1 \times 1$ denotes your net gain, find $E(X^2)$. 0, otherwise
- Let X denote a random variable that takes on any of the values -1, 0, and 1 with respective probabilities
 - P(X = -1) = 0.2, P(X = 0) = 0.5, P(X = 1) = 0.3Compute $E(X^2)$.
- Let X be the current measured in mA. The PDF is f(x) = 0.05 for $0 \le x \le 20$. What is the expected

The second moment of random variables

The expected value of a random variable X^2 is

$$\mathsf{E}(X^2) = \sum_{u} u^2 f(u) \quad (\text{discrete})$$

$$E(X^2) = \int_{-\infty}^{\infty} u^2 f(u) du \quad (continuous).$$

Expectation of function of a random variable

Proposition

In general, for any function g(u):

$$Eg(X) = \sum_{u} g(u)f(u)$$
 (discrete)

$$\mathsf{E}\,g(X) = \int_{-\infty}^{\infty} g(u)f(u)du \quad (continuous).$$

Example 25 - Digital Channel

There is a chance that a bit transmitted through a digital transmission channel is received in error. X is the number of bits received in error of the next 4 transmitted. The probabilities are

$$P(X = 0) = 0.6561$$
, $P(X = 2) = 0.0486$, $P(X = 4) = 0.0001$, $P(X = 1) = 0.2916$, $P(X = 3) = 0.0036$,

What is the expected value of the cube of the number of bits in error?

Solution

Put $g(u) = u^3$.

$$E(X^3) = E(g(X)) = \sum_{u=0}^{4} g(u)f(u) = \sum_{u=0}^{4} u^3 f(u)$$

$$= 0^3(0.6561) + 1^3(0.2916) + 2^3(0.0486) + 3^3(0.036) + 4^3(0.0001)$$

$$= 1.6588.$$

Example

- Suppose X is a random variable taking values in $\{-2,-1,0,1,2,3,4,5\}$, each with probability 1/8. Let $Y=X^2$. Find $\mathbf{E}[Y]$.
- Find $\mathsf{E}[\mathsf{e}^X]$ when the density function of X is

$$f(u) = \begin{cases} 1, & 0 \le u \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Linda is a sales associate at a large auto dealership. At her commission rate of 25% of gross profit on each vehicle she sells, Linda expects to earn \$350 for each car sold and \$400 for each truck or SUV sold. Linda motivates herself by using probability estimates of her sales. She estimates her car sales in one day as

Dung Nguyen Probability and Statistics31/2 Car sales 0 1 2 3

Example 26 - Expected cost

The time, in hours, it takes to locate and repair an electrical breakdown in a certain factory is a random variable X whose density function is given by

$$f(u) = \begin{cases} 1, & \text{if } 0 < u < 1 \\ 0, & \text{otherwise.} \end{cases}$$

If the cost involved in a breakdown of duration X is X^3 , what is the expected cost of such a breakdown?

Solution

Put $h(u) = u^3$. Then

$$\mathsf{E}(X^3) = \mathsf{E}(h(X)) = \int_0^1 u^3 f(u) du = \int_0^1 u^3 du = \frac{u^4}{4} \Big|_0^1 = \frac{1}{4}.$$

Dung Nguyer

Probability and Statistics30 / 29

Variance and Standard Deviation

Example 30 - Pass or First-Class

Dung Nguye

Probability and Statistics32/29

Example 31 - Stock Price Changes

Consider the prices A and B of two stocks at a time one month in the future. Assume that

- A has the uniform distribution on the interval [25,35]
- B has the uniform distribution on the interval [15,45].

Variance and Standard Deviation

Variance and Standard Deviation

 \bullet The variance of an r.v. X is

$$V(X) = E(X - \mu)^2$$
.

Variance measures dispersion around the mean.

• X is discrete

$$V(X) = \sum_{u} (u - \mu)^2 f(u).$$

• X is continuous

$$V(X) = \int_{-\infty}^{\infty} (u - \mu)^2 f(u) du.$$

• The standard deviation is

$$SD(X) = \sqrt{Var(X)}$$
.

Deviations

8 - 4 = 4

Observations: 1,2,5,8 $\implies M = \frac{1+2+5+8}{4} = 4$.

Sum of squares: $(1-4)^2 + (2-4)^2 + (5-4)^2 + (8-4)^2$. Average sum of squares: $\frac{(1-4)^2 + (2-4)^2 + (5-4)^2 + (8-4)^2}{4}$. Sample variance: $\frac{(1-4)^2 + (2-4)^2 + (5-4)^2 + (8-4)^2}{4-1}$.

Observations: $x_1, x_2, \dots, x_n \implies \overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$.

$s^{2} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n-1}.$

Variance and Standard Deviation

Properties

① Computational formula

$$V(X) = E(X^2) - (EX)^2$$

② Variance and standard deviation are not linear

$$V(aX + b) = a^2 V(X)$$
 and $SD(aX + b) = aSD(X)$

 \bigcirc If X and X are independent then

$$V(X + Y) = V(X) + V(Y)$$

Example 32 - Digital Channel

There is a chance that a bit transmitted through a digital transmission channel is received in error. $\it X$ is the number of bits received in error of the next 4 transmitted. The probabilities are

$$P(X = 0) = 0.6561$$
, $P(X = 2) = 0.0486$, $P(X = 4) = 0.0001$,

$$P(X = 1) = 0.2916, \quad P(X = 3) = 0.0036$$

Calculate the mean and variance.

X	f(x)	xf(x)	$(x-0.4)^2$	$(x-0.4)^2 f(x)$	$x^2 f(x)$
0	0.6561	0.0000	0.160	0.1050	0.0000
1	0.2916	0.2916	0.360	0.1050	0.2916
2	0.0486	0.0972	2.560	0.1244	0.1944
3	0.0036	0.0108	6.760	0.0243	0.0324
4	0.0001	0.0004	12.960	0.0013	0.0016
	Total	0.4000		0.3600	0.5200

Dung Nguye:

Probability and Statistics37/29

Variance and Standard Deviation

Example 34 - Comparison

Example 33 - Electric Current

For the copper wire current measurement, the PDF is f(u) = 0.05 for $0 \le u \le 20$. Find the mean and variance.

Solution

$$E(X) = \int_{-\infty}^{\infty} uf(u)du = \int_{0}^{20} u \times (0.05)du = \frac{0.05u^{2}}{2} \Big|_{0}^{20} = 10$$

$$V(X) = \int_{-\infty}^{\infty} (u - 10)^{2} f(u)du = \int_{0}^{20} (u - 10)^{2} (0.05)du$$

$$= \frac{0.05(u - 10)^{3}}{3} \Big|_{0}^{20} = \frac{100}{3}.$$

$$E(X^{2}) = \int_{-\infty}^{\infty} u^{2} f(u) du = \int_{0}^{20} u^{2} \times (0.05) du = \frac{0.05 u^{3}}{3} \Big|_{0}^{20} = \frac{400}{3}$$

$$V(X) = E(X^{2}) - E(X)^{2} = \frac{400}{3} - 10^{2} = \frac{100}{3}.$$

Dung Nguye

Probability and Statistics38/2

Variance and Standard Deviation

Example

- Suppose that X can take each of the five values -2,0,1,3,4 with equal probability. Determine the variance and standard deviation of X and Y=4X-7.
- Suppose X has the following pdf, where c is a constant to be determined

$$f(u) = \begin{cases} c(1-u^2), & -1 \le u \le 1\\ 0, & \text{otherwise} \end{cases}$$

Compute E(X), V(X).

• $V(X_1) = E(X_3) < E(X_2) = E(X_4)$.

Joint Probability Mass Function

In many random experiments, more than one quantity is measured, meaning that there is more than one random variable.

Example (Cell phone flash unit)

A flash unit is chosen randomly from a production line; its recharge time X (seconds) and flash intensity Y (watt-seconds) are measured.

To make probability statements about several random variables, we need their joint probability distribution.

Joint Distributions

Example 37 - Signal Strength

A mobile web site is accessed from a smart phone; X is the signal strength, in number of bars, and Y is response time, to the nearest second.

y = Response time	x =	Numbe	er of	Bars
(nearest second)	of Signal Strength			
	1	2	3	Total
1	0.01	0.02	0.25	0.28
2	0.02	0.03	0.20	0.25
3	0.02	0.10	0.05	0.17
4	0.15	0.10	0.05	0.30
Total	0.20	0.25	0.55	1.00

Determine

- (a) $P(X < 3, Y \le 2)$.
- (b) $P(X < 3 | Y \le 2)$.
- © $P(Y \le 2|X < 3)$.

The joint probability mass function of the discrete random variables X and Y denoted as $f_{XY}(u,v)$ satisfies

$$f_{XY}(u, v) = P(X = u, Y = v).$$

Proposition (Characteristic properties)

- $f_{xy}(u,v) > 0$ for all u,v.

Joint Distributions

Joint Probability Density Function

The joint probability density function for the continuous random variables X and Y, denotes as $f_{XY}(u,v)$, satisfies the following properties

$$P((X,Y) \in A) = \iint_A f_{XY}(u,v) du dv.$$

Proposition (Characteristic properties)

- $f_{xy}(u,v) > 0$.

Example 38 - Server Access Time

Let the random variable X denote the time until a computer server connects to your machine (in milliseconds), and let Y denote the time until the server authorizes you as a valid user (in milliseconds). X and Y measure the wait from a common starting point (u < v). The joint probability density function for X and Y is

$$f_{XY}(u, v) = k e^{-0.001u - 0.002v},$$

for $0 < u < v < \infty$.

- \bigcirc Identify k.
- (b) Calculate $P(X \le 1000, Y \le 2000)$.

Solution

 $k = 6 \times 10^{-6}$, $P(X \le 1000, Y \le 2000) = 0.915$

Dung Nguye

Probability and Statistics 45/2

Joint Distributions

Example 39 - Signal Strength

A mobile web site is accessed from a smart phone; X is the signal strength, in number of bars, and Y is response time, to the nearest second.

y = Response time	x = Number of Bars			
(nearest second)	of Signal Strength			
	1	2	3	Marginal $f_{Y}(y)$
1	0.01	0.02	0.25	0.28
2	0.02	0.03	0.20	0.25
3	0.02	0.10	0.05	0.17
4	0.15	0.10	0.05	0.30
Marginal $f_X(x)$	0.20	0.25	0.55	1.00

Marginal Probability Distributions (discrete)

Since X is a random variable, it also has its own probability distribution, ignoring the value of Y, called its marginal probability distribution.

The marginal probability distribution for X

$$f_X(u) = P(X = u)$$

$$= \sum_{v} P(X = u, Y = v)$$

$$= \sum_{v} f_{XY}(u, v)$$

$$f_X(u) = \sum_{v} f_{XY}(u, v).$$

The marginal probability distribution for Y

$$f_{Y}(v) = \sum_{u} f_{XY}(u, v).$$

Dung Nguyer

Probability and Statistics46/

Joint Distributions

Marginal Probability Distributions (continuous)

If the joint probability density function of random variables X and Y is $f_{XY}(u,v)$, then

The marginal probability density functions of X:

$$f_X(u) = \int_{-\infty}^{\infty} f_{XY}(u, v) dv,$$

The marginal probability density functions of Y:

$$f_{Y}(v) = \int_{-\infty}^{\infty} f_{XY}(u, v) du.$$

Example 40 - Signal Strength

A mobile web site is accessed from a smart phone; X is the signal strength, in number of bars, and Y is response time, to the nearest second.

y = Response time	x = Number of Bars			
(nearest second)	of Signal Strength			
	1	2	3	Marginal $f_{Y}(y)$
1	0.01	0.02	0.25	0.28
2	0.02	0.03	0.20	0.25
3	0.02	0.10	0.05	0.17
4	0.15	0.10	0.05	0.30
Marginal $f_X(x)$	0.20	0.25	0.55	1.00

Compute the mean and the variance of X and Y.

Dung Nguye

Probability and Statistics49/2