ELTE IK Diszkrét modellek alkalmazásai 9. gyakorlat

Koch-Gömöri Richárd

2021. november 18.

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 18.

1/7

Titkosítás (encryption)

```
Alice "password" \Longrightarrow Bob
```

Caesar-titkosítás (Caesar-rejtjelezés) toljuk el a betűket 1-gyel p -> q, a -> b, ..., d -> e titkosítás (encryption) shift = 1: "password" -> "qbttxpse" visszafejtés (decryption) shift = 1: "qbttxpse" -> "password"

eredeti sztring: plain (a példában "password"), titkosított sztring: cipher (a példában "qbttxpse")

a $\it{shift}=1$ kulccsal titkosítottunk, és az eredeti sztring csak a $\it{shift}=1$ kulcs ismeretében fejthető vissza

a kulcs ugyanaz volt mindkét esetben \implies szimmetrikus kulcsú titkosítás (symmetric-key encryption), a kulcsot ilyenkor titkosítási kulcsnak (encryption key) nevezzük

Koch-Gömöri Richáro

Szimmetrikus titkosítás (symmetric encryption)

Alice "qbttxpse"
$$\Longrightarrow$$
 Bob Bob: "qbttxpse" ???

Alice shift=1, "qbttxpse" \Longrightarrow Bob No.

Alice ($shift=1$) "qbttxpse" \Longrightarrow Bob ($shift=1$) Mi van ha nem tudják előre megbeszélni mi a kulcs?

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 18.

3/7

Rivest-Shamir-Adleman (RSA) nyilvános kulcsú titkosítás

one-way function

$$y = f(x)$$

 $x \to y$ könnyű
 $??? \leftarrow y$ nehéz

m: a titkosítandó üzenetet reprezentáljuk pozitív egész számként e, n: alkalmasan választott pozitív egészek $c = m^e \mod n$ egy one-way function

pl. $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13$, ...

ha csak c, n, e-t ismerjük, akkor m-et nehéz megkeresni

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 18.

5/7

RSA titkosítás

alkalmasan választott e, n értékekkel: $c = m^e \mod n$ (c cipher, a titkosított üzenet)

a visszafejtéshez keressünk olyan d kitevőt, amivel c-ből könnyen megkapjuk m-et:

 $c^d \mod n = m$, ezt könnyű kiszámolni

a d értékét úgy kell megválasztani, hogy teljesüljön az alábbi, így a visszafejtés működése helyes: $c^d=(m^e)^d=m^{e\cdot d}=m$ (n)

a titkosításhoz e-t használtuk, a visszafejtéshez d-t (n, e) publikus kulcs (public key), d privát kulcs (private key)

```
eml. titkosítás: c = m^e \mod n, visszafejtés: c^d \mod n = m
```

Alice: publikus kulcs: (3233, 17), privát kulcs: 2753

Alice nyilvánosságra hozza a publikus kulcsát: (3233, 17)

Bob: titkosítsuk az m = 65 üzenetet

Bob: titkosítás: $c = 65^{17} \mod 3233 = 2790$

Bob "2790" \Longrightarrow Alice

Alice: visszafejtés: $2790^{2753} \mod 3233 = 65$