Trabajo Práctico 2

Señales Aleatorias - 2019

Grupo 2:

Máspero, Martina Mestanza, Joaquín Müller, Malena Nowik, Ariel Regueira, Marcelo

29 de junio de 2019

EJERCICIO 1

En esta parte del trabajo se estiman algunos parámetros de la secuencia aleatoria X(n) del archivo que se nos ha sido enviado.

0.1. ESTIMACIÓN DE LOS PRIMEROS 128 VALORES DE LA FUNCIÓN DE AUTOCORRELACIÓN UTILIZANDO LOS ESTIMADORES NO POLARIZADO Y POLARIZADO

Los primeros 128 valores del estimador no polarizado de la función de autocorrelación están dados por:

$$R_{xx_{np}}(k) = \frac{1}{N-k} \sum_{i=1}^{N-k-1} X(i)X(i+k)$$

con k tomando valores enteros entre 0 y 127. Los correspondientes al estimador polarizado son:

$$R_{XX_p}(k) = \frac{1}{N} \sum_{i=1}^{N-k-1} X(i)X(i+k)$$

para los mismos valores de k previamente mencionados.

Al normalizar cada uno de los valores estimados de esta manera, se obtienen los $r_{xx_{NP}}(k)$ y los r_{xx_P} , que se pueden ver graficados en 0.1 y en 0.2, respectivamente.

Figura 0.1: $r_{xx}(k)$ a partir del estimador no polarizado.

Figura 0.2: $r_{xx}(k)$ a partir del estimador polarizado.

0.2. ESTIMACIÓN DE LOS PRIMEROS 127 COEFICIENTES DE CORRELACIÓN PARCIAL

Figura 0.3: Coeficientes de correlación parcial a partir del estimador no polarizado.

Figura 0.4: Coeficientes de correlación parcial a partir del estimador polarizado.

0.3. DETERMINACIÓN DEL MODELO Y ORDEN QUE AJUSTA A LA SECUENCIA ALEATORIA X(n)

Luego de probar con distintos modelos, se determinó que el que mejor ajusta a la secuencia aleatoria X(n) podría ser el AR de orden 2. Teniendo en cuenta que la entrada es una secuencia de ruido blanco y Gaussiano con varianza unitaria, se hallan los parámetros de este modelo.

Se calcula analíticamente $R_{xx}(k)$ y $r_{xx}(k)$, con k entero entre 0 y 127, para el caso del modelo AR orden 2, con las ecuaciones del libro de Shanmugan.

Figura 0.5: $r_{xx}(k)$ a partir del estimador no polarizado, obtenido en forma teórica, en base al modelo AR orden 2.

0.4. ESTIMACIÓN DE LA DENSIDAD ESPECTRAL DE POTENCIA DE X(N)

En primer lugar, se estima la densidad espectral de potencia a partir de la transformada de Fourier discreta de la autocorrelación no polarizada. Los resultados pueden observarse en la figura 0.6.

Figura 0.6: Estimación de la densidad espectral de potencia de X(n) a partir de la transformada de Fourier discreta de la estimación de la autocorrelación no polarizada.

Por otro lado, se estima la densidad espectral de potencia a partir de la promediación de periodogramas. Pueden verse los resultados en la figura 0.7.

Figura 0.7: Estimación de la densidad espectral de potencia de X(n) a partir de la promediación de periodogramas.

EJERCICIO 2