Scene Recognition

By Athithyaa and Sunil

Problem Definition

1. Special case of image classification

2. 15 Scene categories

- 3. Multiple approaches
 - a. Bag of Visual Words
 - b. Convolutional Neural Networks

Bag of Visual Words

- Feature extraction
- Learning visual words / codebook representation
- Quantization of features
- Visual word frequency -Histogram
- Learning the model SVM

Bag of Visual Words using GMM

- 1. Use the same pipeline
- 2. Employ SIFT/SURF feature extraction
- 3. Apply k-means to get visual vocabulary cluster
- 4. For each cluster apply a m component GMM
- 5. Calculate histogram based on GMM score for each training image

Convolutional Neural Networks

- 1. Quite different from traditional neural networks
- Employ convolutional neural network architectures using Theano, Lasagne and Tensor Flow
- 3. Challenges: Computationally intensive
- Alternative solution: Use pre trained model like AlexNet, GoogLeNet Inception model etc.

Results

Method	Accuracy
F ₀ :Bag of Visual words using SIFT	~39%
F ₀ + Normalization of histogram	~41.2%
Bag of visual words using SURF (descriptors of 64 dimension with orientation)	~44%
Bag of Visual words using Gaussian Mixture model with a custom scoring scheme	~53.00%
F ₁ : Bag of visual words using SURF (descriptors of 128 dim without orientation) + Normalization	~56.3%
Bag of Visual words using Gaussian Mixture model	~56.48%
F ₁ + 1000 clusters	~58%
F ₁ + 2000 clusters	~62.8%
F ₁ + 3000 clusters	~63.08%
ConvNets with inception tensorflow	~89.4%

Demo

Thank You

Questions?