EE230: Lab 6 (Offline) Measuring Opamp Non Ideal Parameters

Rohan Rajesh Kalbag, 20D170033

March 5, 2022

1 Overview of the experiment

Aim of the experiment

To obtain the values of non ideal parameters of Operational Amplifier - Offset Voltage, Input Bias Current and Open Loop Gain.

1.2Procedure Followed

The operational amplifier was first connected like in Fig 1 and the output voltage was measured on the DMM, then the offset voltage was measured as $V_{OS} = \frac{V_o}{1 + \frac{R_2}{R_1}}$. The operational amplifier was then connected as in Fig 2 and Fig

3 and I_B^+ and I_B^- were estimated as $\frac{V_o}{R}$, R here is the 10M resistor. The operational amplifier was then connected as in Fig 4 as DUT and the potentiometer was adjusted to make $V_o \approx 0 = V_{oA}$ when switch was in position 1. Then the switch was moved to position 2 and V' was applied to the node, output voltage was measured as $V_o = V_{oB}$. Then the open loop gain was measured as $A_{OL} = \frac{-V'(R_2 + R_3)}{R_2(V_{oB} - V_{oA})}$. The value of A_{OL} was measured for V'= 1V,2V,3V.

The values obtained were compared with the values written the datasheet for the operational amplifier used.

2 Design

2.1 Circuit Diagrams

Fig 1: Circuit to find Offset Voltage (V_{OS})

Fig 2: Circuit to find I_B^-

Fig 3: Circuit to find I_B^+

Fig 4: Circuit to find Open Loop Gain (A_{OL})

3 Experimental Results

3.1 Readings obtained compared with datasheet

3.1.1 URL to Datasheets

(https://www.ti.com/lit/ds/symlink/ua741.pdf)

 $(https://www.ti.com/lit/ds/symlink/lm741.pdf?HQS=TI-null-null-alldatasheets-df-pf-SEP-wwe\&ts=1646517394482\&ref_url=https%253A%252F%252Fpdf1.alldatasheet.com% 252F)$

- /

3.1.2 Offset Voltage

Opamp	Experimental Offset Voltage	Datasheet Offset Voltage (TYP)
UA741CP	$0.45 \mathrm{mV}$	$1 \mathrm{mV}$
LM741CN	$0.74 \mathrm{mV}$	$2 \mathrm{mV}$

3.1.3 Input Bias Current

Opamp	I_B^-	I_B^+	Experimental $I_B = \frac{I_B^+ + I_B^-}{2}$	Datasheet I_B (TYP)
UA741CF	31.4nA	32nA	31.7nA	80nA
LM741CN	54nA	54nA	54nA	80nA

3.1.4 Open Loop Gain

DUT	V_{oA}	V_{oB}	V'	Experimental A_{OL}	Datasheet $A_{OL} = A_{VD}$ (TYP)
UA741CP	$7 \mathrm{mV}$	-10mV	1V	5.88×10^{5}	2×10^{5}
UA741CP	7mV	-30mV	2V	5.40×10^{5}	2×10^{5}
UA741CP	7mV	-45mV	3V	5.77×10^{5}	2×10^{5}

4 Conclusion

Thus the non ideal parameters of operational amplifiers calculated experimentally and theoretically mentioned as per the datasheet are of the same order and thus similar within experimental limits.