Assignment 4

1

EE24BTECH11049 Patnam Shariq Faraz Muhammed

1 MA: MATHEMATICS

1.1 Carry one mark each

1) If (x_1^*, x_2^*) is an optional solution of the linear programming problem, minimize $x_1 + 2x_2$ subject to

$$4x_1 - x_2 \ge 8$$

$$2x_1 + x_2 \ge 10$$

$$-x_1 + x_2 \le 7$$

$$x_1, x_2 \ge 0$$

and $(\lambda_1^*, \lambda_2^*, \lambda_3^*)$ is an optional solution of its dual problem, then $\sum_{i=1}^2 x_i^* 0 + \sum_{j=1}^3 \lambda_j^*$ is equal to ______ (correct upto one decimal place)

2) let $a, b, c \in \mathbf{R}$ be such that the quadrature rule

$$\int_{-1}^{1} f(x) dx \approx af(-1) + bf(0) + cf'(1)$$

is exact for all polynomials of degree less than or equal to 2. Then b is equal to _____ (rounded off to two decimal places)

- 3) Let $f(x) = x^4$ and let p(x) be the interpolating polynomial of f at nodes 1,2 and 3. Then p(0) is equal to ______
- 4) For $n \ge 2$, define the sequece $\{x_n\}$ by

$$x_n = \frac{1}{2\pi} \int_0^{\frac{\pi}{2}} tan^{\frac{1}{n}} t \, dt.$$

Then the sequence $\{x_n\}$ converges to ______ (correct up to two decimal places)

5)

$$L^{2}\left[0,10\right] = \left\{ f: \left[0,10\right] \mapsto \mathbf{R}: f \text{ is lebesgue measurable and } \int_{0}^{10} f^{2} dx < \infty \right\}$$

equipped with the norm $||f|| = \left(\int_0^{10} f^2 dx\right)^{\frac{1}{2}}$ and let T be the linear functional on $L^2[0,10]$ given by

$$T(f) = \int_0^2 f(x) \ dx - \int_3^{10} f(x) \ dx.$$

Then ||T|| is equal to _____

	D_1	D_2	D_3	D_4	Availability
O_1	6	2	-1	0	10
O_2	4	2	2	3	$\lambda + 5$
O_3	3	1	2	1	3λ
Demand	10	μ – 5	$\mu + 5$	15	

- 6) if $\{x_{13}, x_{22}, x_{23} = 10, x_{31}, x_{32}, x_{34}\}$ is the set of basic variable of balanced transportation problem seeking to minimize cost of transportation from origins to destinations, where the cost matrix is, and $\lambda, \mu \in \mathbf{R}$ is equal to ______
- 7) Let \mathbb{Z}_{225} be the ring of integers modulo 225. If x is the number of prime ideals and y is the number of non trivial units \mathbb{Z}_{225} , then x + y is equal to ______
- 8) let u(x,t) be the solution of

$$\frac{\partial^{2} u}{\partial t^{2}} - \frac{\partial^{2} u}{\partial x^{2}} = 0, u(x, 0) = f(x), \frac{\partial u}{\partial t}(x, 0) = 0, x \in \mathbf{R}, t > 0,$$

Where f is twice continuously differentiable function. If f(-2) = 4, f(0) = 0 and u(2, 2) = 8, then each value of u(1, 3) is _____

1.2 Carry two marks each

9) Let $\{e_n\}_{n=1}^{\infty}$ be an orthomormal basis for a separable Hilbert space H with the inner product $\langle \cdot, \cdot \rangle$. Define

$$f_n = e_n - \frac{1}{n+1}e_{n+1} \text{ for } n \in \mathbf{N}$$

Then

- a) the closure of the span $\{f_n : n \in \mathbb{N}\}$ equals H
- b) f = 0 if $\langle f, f_n \rangle = \langle f, e_n \rangle$ for all $n \in \mathbb{N}$
- c) $\{f_n\}_{n=1}^{\infty}$ is an orthogonal subset of H
- d) there does not exist non zero $f \in H$ such that $\langle f, e_2 \rangle = \langle f, f_2 \rangle$
- 10) Suppose V is finite dimensional non-zero vector space over \mathbb{C} and $T: V \mapsto V$ is a linear transformation such that Range(T) = Nullspace(T). Then which of following statements is FALSE?
 - a) The dimensions of V is even
 - b) 0 is the only eigenvalue of T
 - c) Both 0 and 1 are the eigen values of T
 - d) $T^2 = 0$
- 11) Let $P \in M_{m \times n}(R)$. Consider the following statements: mathrm I: If XPY = 0 for all $X \in M_{1 \times m}(\mathbf{R})$, then P = 0. Then mathrm II: If m = n, P is symmetric and $P^2 = 0$, then P = 0i.
 - a) both I and II are true

c) I is false but II is true

b) I is true but II is false

d) both I and II are false

12) For $n \in \mathbb{N}$, let $T_n : (l^1, ||\cdot||_1) \mapsto (l^{\infty}, ||\cdot||_{\infty})$ and $T : (l^1, ||\cdot||_1) \mapsto (l^{\infty}, ||\cdot||_{\infty})$ be the bounded linear operators defined by

$$T_n(x_1, x_2,...) = (y_1, y_2,...), \text{ where } y_j = \begin{cases} x_j, & j \le n \\ x_n, & j > n \end{cases}$$

and

$$T(x_1, x_2, \dots) = (x_1, x_2, \dots)$$

Then

- a) $||T_n||$ does not converge to ||T|| as $n \to \infty$
- b) $||T_n T||$ converges to zero as $n \to \infty$
- c) for all $x \in l^1$, $||T_n(x) T(x)||$ converges to zero as $n \to \infty$
- d) for each non-zero $x \in l^1$, there exists a continuous linear functional g on l^∞ such that $g(T_n(x))$ does not converge to g(T(x)) as $n \to \infty$
- 13) Let $P(\mathbf{R})$ denote the power set of \mathbf{R} , equipped with the metric

$$d(U, V) = \sup_{x \in \mathbb{R}} |\chi_U(x) - \chi_V(x)|,$$

where χ_U and χ_V denote the characteristic function of subsets U and V, respectively of **R**. The set $\{\{m\}: m \in \mathbb{Z}\}$ in the metric space $(P(\mathbf{R}), d)$ is

- a) bounded but not totally bounded
- c) compact
- b) totally bounded but not compact
- d) not bounded