SONY CXK5816PN/M 10/10L/12/12L/15/15L

Package Outline

2K-word × 8 bit High Speed CMOS Static RAM

Description

The CXK5816PN/M is a 16,384 bits high speed CMOS static RAM organized as 2,048 words by 8 bits and operates from a single 5V supply. The CXK5816PN/M is suitable for use in high speed and low power applications in which battery back up for nonvolatility is required.

Features

- Low power standby: 5μW(Typ.)—L-version 100μW(Typ.)—Standard version
- Low power operation: 125mW(Typ.)
- Fast access time: 100ns/120ns/150ns (Max.)
- Single +5V supply
- Fully static memory No clock or timing strobe required
- · Equal access and cycle time
- · Common data input and output: 3-state output
- · Directly TTL compatible: All inputs and outputs
- . Low voltage data retention: 2.0V (Min.)
- Pin compatible with MB8416A, HM6116, μPD446

Structure

Silicon gate CMOS IC

Function

2048-word × 8 bit static RAM

Block Diagram

CXK5816PN 24 pin DIP 3 2.1 - 0.2 5' to 10 0 0 0 2.54 1.2 ± 0.1 5 DIP-24P-06 CXK5816M 24 pin MFP 2.3 - 8.15 D 0.15 0.1-885 39 9 0.02 1.27 Valaininininininininininini - (D ± 0.12 W MFP-24P-L03

Unit: mm

Note) All Typical values are measured under the conditions
Vcc=5.0V and Ta=25°C.

Pin Configuration (Top View)

	 _
A7 🔟	24 Vcc
A6 2	23 A8
A5 3	22 A9
A4 4	21 WE
A3 5	20 Œ
A 2 6	19 A10
A1 7	ıθ ĈĒ
AO B	17 1/08
1/01 9	16 1/07
1/02 10	15 1/06
1/03 [1]	14 1/05
GND 12	13 1/04

Symbol	Description
A0 to A10	Address Input
I/O1 to I/O8	Data Input Output
CE	Chip Enable Input
WE	Write Enable Input
ŌĒ	Output Enable Input
Vcc	Power Supply
GND	Ground

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C, GND = 0V)$

Item	Symbol		Rating	Unit								
Supply Voltage	Vcc		Vcc		-0.5 to $+7.0$	V						
Input Voltage	VIN		Vin		Vin		Vin		V _{IN}		-0.5 to Vcc+0.5	V
Input and Output Voltage	V _{1/0}		-0.5 to Vcc+0.5	V								
		CXK5816PN	1.0	w								
Allowable Power Dissipation	₽ø	CXK5816M	0.7									
Operating Temperature	То	pr	0 to +70	·c								
Storage Temperature	Tstg		Tstg		-55 to +150	°C .						
Soldering Temperature	Tsolder		Tsolder		260 · 10	°C • se						

Truth Table

ĈĒ	ŌĒ	WE	Mode	I/O1 to I/O8	Vcc Current
Н	x	х	Not Selected	High Z	I _{SB1} , I _{SB2}
L	Н	Н	Output Disable	High Z	Icci. Icc2
L	L	Н	Read	D out	Icci, Iccz
L	х	L	Write	D in	Icci, Icc2

Note) X: "H" or "L"

DC Recommended Operating Conditions

 $(Ta = 0 \text{ to } +70^{\circ}\text{C}, \text{ GND} = 0\text{V})$

Item	Symbol	Min.	Typ.	Max.	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Input High Voltage	V _{IH}	2.2		$V_{cc}+0.3$	v _
Input Low Voltage	VIL	-0.3		0.8	V

DC and Operating Characteristics

 $(V_{CC}=5V\pm10\%, GND=0V, Ta=0 \text{ to } +70^{\circ}C)$

			C	KK5816P	N/M	C	1		
Item	Symbol	Test condition	_1	0/12/15		-10L/12L/15L			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	1
Input Leakage Current	Lu	V _{IN} =GND to V _{CC}	-2		2	-2	_	2	μA
Output Leakage Current	ILO	$\overline{CE} = V_{tH} \text{ or } \overline{OE} = V_{tH}$ $V_{t/O} = GND \text{ to } V_{CC}$	-2		2	-2	_	2	μА
Operating Power Supply Current	I _{cc1}	CE = V _{IL} , I _{OUT} = 0mA	=	_	60	-	_	60	mA
Average Operating Current	I _{CC2}	Cycle = Min, Duty = 100% $I_{OUT} = 0 \text{ mA}$	_	28 *(31)	60 *(75)	_	28 *(31)	60 *(75)	mA
Standby Current	Isaı	$\overline{\text{CE}} \ge V_{\text{cc}} - 0.2 \text{V}$			1.0	T —		0.05	mA
	I _{SB2}	CE = V _{IH}			2			1	mA
Output High Voltage	V _{oh}	$I_{OH} = -1.0 \text{mA}$	2.4			2.4		-	v
Output Low Voltage	Vol	$I_{OL} = 4.0 \text{ mA}$			0.4	 	_	0.4	v

Note) * Shows CXK5816PN/M-10, 10L value.

Capacitance

 $(Ta=25^{\circ}C, f=1 MHz)$

Item	Test condition	Symbol	Min.	Max.	Unit
Input Capacitance	V _{IN} =0V	CIN		7	pF
Input/Output Capacitance	V _{I/O} =0V	C _{I/O}	_	10	pF

Note) This parameter is sampled and is not 100% tested.

AC Operating Characteristics

AC Test condition

 $(V_{CC} = 5V \pm 10\%, Ta = 0 \text{ to } +70^{\circ}C)$

ltem	Condition
Input Pulse High Level	$V_{1H} = 2.4 V$
Input Pulse Low Level	$V_{1L} = 0.6V$
Input Rise Time	$t_R = 5 ns$
Input Fall Time	t _F = 5ns
Input and Output Timing	1.5 V
Reference Level	
Output Load	$CL^* = 100pF, 1TTL$

* CL includes scope and jig capacitance.

Read Cycle

Item	Symbol	CXK5816PN/M -10/10L		CXK5816PN/M -12/12L		CXK5816PN/M -15/15L		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle Time	trc	100	_	120	_	150		ns
Address Access Time	taa		100		120		150	ns
Chip Enable Access Time (CE)	tco	_	100		120	_	150	ns
Output Enable to Output Valid	t _{OE}	_	50		55		60	ns
Output Hold from Address Change	t _{OH}	15		15	_	15	_	ns
Chip Enable to Output in Low Z (CE)	tız	15		15	_	15	-	ns
Output Enable to Output in Low Z (OE)	toLz	10		10	_	10		ns
Chip Disable to Output in High Z	*t _{HZ}	0	30	0	40	0	50	ns
Output Disable to Output in High Z (OE)	*tonz	0	30	0	40	0	50	ns

^{*} tuz and touz are specified by the time length when the output circuit becomes closed and not specified by the output voltage level.

Write Cycle

Item	Symbol	CXK5816PN/M -10/10L		CXK5816PN/M -12/12L		CXK5816PN/M -15/15L		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Write Cycle Time	twc	100		120		150		ns
Address Valid to End of Write	taw	80		100		120		ns
Chip Enable to End of Write	tcw	80		100		120		ns
Data to Write Time Overlap	tow	30		35		40		ns
Data Hold from Write Time	ton	0	_	0		0		ns
Write Pulse Width	twp	60	_	75		90		ns
Address Setup Time	tas	0	_	0		0		ns
Write Recovery Time	twn	5		5	-	5		ns
Output Active from End of Write	tow	15	T -	15		15	- _	ns
Write to Output in High Z	twnz	0	30	0	40	0	50	ns

Timing Waveform

(1) Read Cycle [WE=VIH]

(2) Write Cycle

• Write Cycle No. 1: [OE=VIL or VIH] (*1)

• Write Cycle No. 2: [OE=V_{IL} or V_{IH}, CE=V_{IL}] (*1)

* Note)

- 1. If OE is high, output remains in a high impedance state.
- 2. A write occurs during the low overlap of $\overline{\text{CE}}$ and $\overline{\text{WE}}$.
- 3. two is measured from the earlier of CE or WE going high to the end of write cycle.
- 4. If CE low transition occurs simultaneously with the WE low transition or after the WE transition, output remains in a high impedance state.
- During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

Data Retention Characteristics

(Ta = 0 to + 70 °C)

Item	Symbol	Test condition			K5816PN/M 0/12/15		CXK5816PN/M -10L/12L/15L		
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Data Retention Voltage	V _{DR}	<u>CE</u> ≥ V _{cc} -0.2V	2.0	_	5.5	2.0	_	5.5	V
	Iccpri	$V_{cc} = 3.0 \text{ V}, \overline{CE} \ge 2.8 \text{ V}$	_	_	600	_	-	30	μА
Data Retention Current	$\frac{V_{cc}=2.0 \text{ to } 5.5 \text{ V}}{\overline{\text{CE}} \ge V_{cc} - 0.2 \text{ V}}$	_		1000			50	μА	
Data Retention Set up Time	topes	Chip disable to data retention mode	0	_	_	0	_	_	ns
Recovery Time	t _R		t _{RC} *	_		tec*		<u> </u>	ns

* tRC: Read Cycle Time

Data Retention Waveform

