- 1. V o F. Justifique.
 - (a) Sea $\mathcal{P} \in \text{Pro}^{\Sigma}$. Entonces Im $\Psi_{\mathcal{P}}^{1,0,\#} = \text{Im} \left(E_{\#1}^{1,0} \circ (p_1^{2,0}, p_2^{2,0}, C_{\mathcal{P}}^{2,0}) \right)$.
 - (b) $\operatorname{Ins}^{\Sigma} \subseteq \operatorname{Pro}^{\Sigma}$.
 - (c) Si $e \in D_{E_{\#}^{n,m}}$ entonces Ti(e) = 4-UPLA.
 - (d) Sea $f: D \subseteq \omega \to \omega$ una función Σ -computable tal que $10, 20 \in D$. Sea $g: D \subseteq \omega \to \omega$ definida por g(10) = 20, g(20) = 10 y g(x) = f(x) para $x \in D - \{10, 20\}$. Entonces g es Σ -computable.
 - (e) Si f es una función Σ -recursiva entonces D_f es Σ -recursivo.
 - (f) Sea $\mathcal{P} \in \operatorname{Pro}^{\Sigma} y$ sea $(i, \vec{s}, \vec{\sigma})$ una descripción instantánea. Si $Bas(I_i^{\mathcal{P}}) = N\bar{k} \leftarrow N1$, entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i + 1, (s_1, ..., s_{k-1}, N1, s_{k+1}, ...), \vec{\sigma}).$$

2. Dar un programa $Q \in \text{Pro}^{\Sigma_p}$ tal que $\text{Dom}(\Psi_Q^{1,0,*}) = \omega$ e $\text{Im}(\Psi_Q^{1,0,*})$ sea el conjunto

$$\{\mathcal{P} \in \operatorname{Pro}^{\Sigma_p} \mid \text{hay } a, b, c \in \mathbb{N} \text{ tales que } \Psi^{1,0,\#}_{\mathcal{P}}(a^3 + b^3) = c^3\}.$$

3. Sean $S_1, S_2 \subseteq \Sigma^*$ conjuntos no vacios Σ -enumerables. Pruebe que $S_1 \cup S_2$ es Σ -enumerable.

Para cada macro usado en (2) y/o (3) dar el predicado o la funcion asociada dependiendo si es un macro de tipo IF o de asignacion.