Intermediate Microeconomics: Advanced

Notes

Marie Burer

16-1-24

Contents

1	Mathematics of Optimization		3
	1.1	Unconstrained Optimization	3
	1.2	Constrained Optimization	3
2	Cor	sumer Theory	4

1 Mathematics of Optimization

1.1 Unconstrained Optimization

- First order conditions: $\frac{\delta f}{\delta x} = 0, \frac{\delta f}{\delta y} = 0$
- Second order conditions: $\frac{\delta^2 f}{\delta x^2} < 0, \frac{\delta^2 f}{\delta y^2} < 0$
- Additionally, $(\frac{\delta^2 f}{\delta x^2} \times \frac{\delta^2 f}{\delta y^2}) (\frac{\delta^2 f}{\delta x \delta y})^2 > 0$

Example:
$$G(T, C) = 50 + 10T + 16C - T^2 - 2TC - 2C^2$$

$$\frac{\delta G}{\delta T} = 10 - 2T - 2C$$

$$\begin{bmatrix}
\frac{\delta G}{\delta C} = 16 - 2T - 4C \\
-2 & -2 & -10 \\
-2 & -4 & -16
\end{bmatrix} \Rightarrow \begin{bmatrix}
-2 & -2 & -10 \\
0 & -2 & -6
\end{bmatrix} \Rightarrow \begin{bmatrix}
-2 & 0 & -4 \\
0 & -2 & -6
\end{bmatrix}$$

$$\Rightarrow T = 2, C = 3$$

$$\frac{\delta^2 G}{\delta T^2} = -2 < 0$$

$$\frac{\delta^2 G}{\delta C^2} = -4 < 0$$

$$\left(\frac{\delta^2 G}{\delta T^2} \times \frac{\delta^2 G}{\delta C^2}\right) - \left(\frac{\delta^2 G}{\delta T \delta C}\right)^2 = (-2 \times -4) - (-2)^2 = 8 - 4 = 4 > 0$$

$$\Rightarrow G(2,3)$$
 is a maximum $\Rightarrow G(2,3) = 50 + 20 + 48 - 4 - 12 - 18 = 84$

1.2 Constrained Optimization

To find the critical points of f(x, y) subject to some constraints c - g(x, y) = 0we have

Lagrangian:
$$L = f(x, y) - \lambda(c - g(x, y))$$

We take the derivative wrt x, y, and λ to get

$$\begin{bmatrix} \frac{\delta f}{\delta x} &= \lambda \frac{\delta g}{\delta y} \\ \frac{\delta f}{\delta y} &= \lambda \frac{\delta g}{\delta y} \\ g(x) &= c \end{bmatrix}$$
 Example: $T = 19.25 - 6 \ln(R) - 4 \ln(W)$, constraint is $R + W = 5$
$$\begin{bmatrix} 19.25 - \frac{6}{R} &= \lambda \\ 19.25 - \frac{4}{W} &= \lambda \\ R + W &= 5 \end{bmatrix}$$

$$19.25 - \frac{6}{R} = 19.25 - \frac{4}{W} \Rightarrow 6W = 4R$$

$$W = 5 - R \Rightarrow 6(5 - R) = 4R \Rightarrow 30 - 6R = 4R \Rightarrow 10R = 30 \Rightarrow R = 3, W = 2$$

$$T(3, 2) = 19.25 - 6 \ln(3) - 4 \ln(2) \approx 9.89$$
 Example:
$$I = \frac{P^2}{250} + \frac{PA}{100} + \frac{A^2}{1000}$$
, constraint is $P + A = 110$
$$\begin{bmatrix} \frac{P}{125} + \frac{A}{100} &= \lambda \\ \frac{P}{125} + \frac{A}{100} &= \lambda \\ P + A &= 110 \end{bmatrix}$$

$$\frac{P}{125} + \frac{A}{100} = \frac{P}{100} + \frac{A}{500}$$

$$\frac{P}{125} - \frac{P}{100} = \frac{-4A}{500}$$

$$\frac{P}{125} - \frac{P}{100} = \frac{-4A}{500}$$

$$P = 4A \Rightarrow 5A = 110 \Rightarrow A = 22 \Rightarrow P = 88$$

$$I(88, 22) = 50.82$$

2 Consumer Theory

Defining preferences:

• Preferences reflect choices

- Defined over bundles of goods
- Based upon all properties of a bundle

• Notation

- Strictly Preferred ≻
- Weakly Preferred ≥
- Indifferent \sim
- Preferences are assumed to be well-bheaved
 - Complete: An individual knows hiw or her preferences over any two bundles
 - Reflexive: An individual must be indifferent between two identical bundles of goods
 - Transitivity: No cycles

Anchoring and Adjustment:

In multi-dimensional problems, people tend to anchor on one dimension and adjust for the other.

Utility Functions:

A utility function is a function from bundles of goods into real numbers.

- $x \succ y \Rightarrow u(x) > u(y)$
- More preferred bundles must be assigned larger numbers

• If preferences are well-behaved, we can write down a utility function that captures the preferences

Ordinal utility function: the only thing that matters is the order Cardinal utility function: the numbers have significance and meaning Assumptions about utility functions:

- Monotonicity: $x > x' \Rightarrow u(x,y) \ge u(x',y)$
- Convexity: Let α s.t. $0 < \alpha < 1$. If $u(x,y) = u(x',y'), u(\alpha x + (1-\alpha)x', \alpha y + (1-\alpha)y') \ge u(x,y)$