KOMPLEKSNOST ALGORITMOV

- časovna kompleksnost
- prostorska kompleksnost

- Velikostni red (časovne enote)
- Dejanski pričakovani čas (sekunde)

KOMPLEKSNOST ALGORITMOV

- velikostni red kompleksnosti
 - asimptotična zgornja meja O
 - spodnja meja Ω
 - stroga meja θ

ZGORNJA MEJA ČASOVNE KOMPLEKSNOSTI

definicija

$$T(n) = O(g(n)) \leftrightarrow \exists c, n_0 > 0 : n > n_0 \to c \cdot g(n) \ge T(n) \ge 0$$

- pri dovolj velikem n je kompleksnost našega programa navzgor omejena s funkcijo g(n)
- poljubna konstanta c

POGOSTE KOMPLEKSNOSTI

 $\log n, n, n \log n, n^2, n^3, n^4, 2^n, n!, n^n$

RAČUNANJE Z O()

eliminacija konstante

$$c > 0 \rightarrow O(c \cdot f(n)) = O(f(n))$$

vsota

$$O(f(n)) + O(g(n)) = O(\max(f(n), g(n)))$$

· prevladujoča funkcija

$$\forall n > n_0 : f(n) > g(n) \to O(f(n)) + O(g(n)) = O(f(n))$$

produkt

$$O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$$

tranzitivnost

$$f(n) = O(g(n)), g(n) = O(h(n)) \to f(n) = O(h(n))$$

refleksivnost

$$f(n) = O(f(n))$$

Primeri

Določi asimptotično zgornjo mejo naslednjih funkcij:

$$17n^{3} + 93n^{2} + n = O(n^{3})$$

$$2n^{2} + n\log n = O(n^{2})$$

$$3n + n\log n = O(n\log n)$$

$$2^{n} + 739n^{9} = O(2^{n})$$

$$(n + \sqrt{n}) \cdot (n\log n + n + 3) = O(n^{2}\log n)$$

DOLOČANJE KOMPLEKSNOSTI V PROGRAMU - PRAVILA

Najprej določimo parametre kompleksnosti!

- 1. osnovne operacije: O(1)
- 2. pri zaporedju ukazov seštevamo zahtevnosti
- 3. pri pogojih štejemo kompleksnost <u>izračuna</u> pogoja in <u>maksimum vseh možnih izbir</u>
- 4. **pri zankah** seštejemo kompleksnost <u>izračuna</u> pogoja in enkratne <u>izvedbe zanke</u> ter pomnožimo s številom izvajanja zanke
- 5. pri rekurziji izrazimo zahtevnost kot rekurenčno enačbo

Primeri

Določi časovno zahtevnost:

```
n je velikost problema

s = 0;

for (int i = 1; i \le n; i++)

for (int j = 1; j \le n; j++)

s = s + t[i][j];

O(n^2)
```

Primeri

Določi časovno zahtevnost:

```
n, m in k določajo
                                velikost problema
void p(int n, int m, int k) {
  s = 0;
  for (int i = 1; i \le n; i++)
      for (int j = 1; j \le m; j += k)
          s = s + t[i][j];
                             O(n \cdot \frac{m}{k})
```

Določi časovno zahtevnost:

```
int i = n;
int r = 0;
while (i > 1) {
   r = r + 1;
   i = i / 2;
}
```

$O(\log n)$

Primeri

Določi časovno zahtevnost:

```
kot če bi bilo
                                vgnezdenih m zank
void p(int n, int m) {
  if (m > 0)
      for (int i = 1; i <= n; i++)
          p(n, m-1);
                                O(n^m)
```

Primeri

Določi časovno zahtevnost:

PRIMER: IZRAČUN FAKULTETE

Iterativno:

```
fakulteta = 1;
for(int i=1; i <= n; i++)
  fakulteta = fakulteta*i;</pre>
```

Rekurzivno:

```
private int fakulteta(int n) {
  if (n==0) return 1;
    else { return n * fakulteta(n-1); }
}
```

POTENCIRANJE ŠTEVILA

```
private int potenca(int x, int p) {
  if (p==0)
     return 1;
     else {
     return x * potenca(x, p-1);
     }
}
```

HANOJSKI STOLPI

```
// premik n ploščic iz palice A na palico B z uporabo
// pomožne palice C
 static public void hanoi(char A, char B, char C,int n) {
   if (n>0) {
     hanoi(A,C,B,n-1);
     System.out.println("premik_iz_" + A + "_na_" + B);
     hanoi(C,B,A,n-1);
   } // if
 } // hanoi
```

PRIMER FIBONACCI

Rekurzivno

```
public static int fib(int n) {
   if (n <= 2)
     return 1;
   else
     return fib(n-1)+fib(n-2);
}</pre>
```

<u>Iterativno</u>

```
public static int fib(int n) {
  int n1=1, n2=1; n3;
  for(int i=2; i < n; i++) {
    n3 = n1 + n2;
    n1 = n2;
    n2 = n3;
  }
  return n2;</pre>
```

PRIMER: PERMUTACIJE

```
static public void permutationsRec(int n0) {
  if (n0==0)
    writePermutation();
  else {
    for (int i=0, temp; i < n0; i++) {
      temp = a[i]; a[i] = a[n0-1]; a[n0-1] = temp;
      permutationsRec(n0-1);
      temp = a[i]; a[i] = a[n0-1]; a[n0-1] = temp;
} // permutationsRec
```

WHO CARES TIME COMPLEXITY?

- pri oceni velikostnega reda časovne zahtevnosti zanemarimo vse člene nižjega reda kot tudi vse konstante
- v realnosti ravno konstante lahko spremenijo sliko uporabnosti algoritma

$$T_1(n) = 1000n^2$$
 $T_2(n) = \frac{n^3}{10}$ $O(n^2)$ $<$ $O(n^3)$

ampak... za n < 10000 je drugi algoritem primernejši!

za n < 10000 je drugi algoritem primernejši!

• predpostavimo neko odvisnost med časovno zahtevnostjo in dejanskim časom izvajanja, npr:

$$T(n) = a * O(g(n)) + c$$

- oceno konstant izvajamo z meritvami
- za določitev konstant v enačbi je potrebno opraviti toliko meritev, kolikor je konstant
- meritve opravljamo pri velikih vrednostih vhodnih parametrov
- rešimo dobljeni sistem enačb
- dobljeno funkcijo lahko uporabimo za napovedovanje časa izvajanja programa

Za dani program so bili izmerjeni naslednji časi izvajanja za različne velikosti vhodnih podatkov:

velikost podatkov	5	6	7	8	9	10
čas	13.8	83.6	388.6	1796.2	8753.6	44421.4

Zanima nas, kako hitro raste funkcija:

- polinomsko: T(n) = c n^e
- eksponentno: $T(n) = c 2^{en}$

Za dani program so bili izmerjeni naslednji časi izvajanja za različne velikosti vhodnih podatkov:

velikost podatkov	5	6	7	8	9	10
čas	13.8	83.6	388.6	1796.2	8753.6	44421.4
c		1.7 E-06	1.5E-06	8.0E-08	1.3E-09	1.7E-11
e		9.88	9.97	11.46	13.45	15.42

• polinomsko: T(n) = c n^e

Konstante NISO konstantne...

Za dani program so bili izmerjeni naslednji časi izvajanja za različne velikosti vhodnih podatkov:

velikost podatkov	5	6	7	8	9	10
čas	13.8	83.6	388.6	1796.2	8753.6	44421.4
c		1.7 E-03	8.3E-03	8.6E-03	5.6E-03	3.9E-03
e		2.60	2.22	2.21	2.28	2.34

• eksponentno: $T(n) = c 2^{en}$

Konstante SO vsaj do neke mere konstantne...

Za dani program so bili izmerjeni naslednji časi izvajanja za različne velikosti vhodnih podatkov:

velikost podatkov	5	10	15	30
čas	500	501	502	509

Katera funkcija najbolj ustreza časovni zahtevnosti tega programa v odvisnosti od vhodnih podatkov?

- a) log(n)
- b) n
- c) n log(n)
- d) n^2

Preverimo funkcijo log(n):

$$T(n) = a * log(n) + c$$

velikost podatkov	5	10	15	30
čas	500	501	502	509

$$a * log(30) + c = 509$$

$$a * log(15) + c = 502$$

$$c = 474.7$$

Preverimo ustreznost rešitve:

Preverimo funkcijo n:

$$T(n) = a * n + c$$

velikost podatkov	5	10	15	30
čas	500	501	502	509

$$a * 30 + c = 509$$

$$a * 15 + c = 502$$

$$c = 494.9$$

Preverimo ustreznost rešitve:

$$0.47 * 10 + 494.9 = 499.6 != 501$$

Preverimo funkcijo n²:

$$T(n) = a * n^2 + c$$

velikost podatkov	5	10	15	30
čas	500	501	502	509

$$a * 30^2 + c = 509$$

$$a * 15^2 + c = 502$$

$$a = 0.01$$

$$c = 500$$

Preverimo ustreznost rešitve:

$$0.01 * 10^2 + 500 = 501$$

preverimo še za vse ostale velikosti podatkov!

Če ne najdemo funkcije, ki natančno aproksimira model:

- izračunamo koeficiente za vse smiselne modele
- izberemo model, ki daje najbližje rezultate

POMEMBNE NEENAKOSTI

•
$$a > b > 0, c > 0 \rightarrow n^a > cn^b$$

•
$$a > 0, b > 1, c > 0 \rightarrow n^a > c \log_b n$$

•
$$a > 1, b > 0, c > 0 \rightarrow a^n > cn^b$$

•
$$a > 1, c > 0 \rightarrow n! > ca^n$$

•
$$c > 0 \rightarrow n^n > cn!$$

RAST FUNKCIJ ZAHTEVNOSTI

f(n)	f(n+1) - f(n)	=	O(g(n))
$\log n$	$\log(n+1) - \log n$	=	$O(\frac{1}{n})$
n	1	=	O(1)
$n \log n$	$(n+1)\log(n+1) - n\log n$	=	$O(\log n)$
n^2	2n+1	=	O(n)
n^3	$3n^2 + 3n + 1$	=	$O(n^2)$
n^4	$4n^3 + 6n^2 + 4n + 1$	=	$O(n^3)$
2^n	2^n	=	$O(2^n)$
n!	$n \times n!$	=	O((n+1)!)

RAST FUNKCIJ ZAHTEVNOSTI

				povečanje velikosti rešljivega problema
C()	6/ 1) 6/)		0(())	v danem času
f(n)	f(n+1) - f(n)	=	O(g(n))	z 10× hitrejšim rač.
$\log n$	$\log(n+1) - \log n$	=	$O(\frac{1}{n})$	n^{10}
n	1	=	O(1)	10 n
$n \log n$	$(n+1)\log(n+1) - n\log n$	=	$O(\log n)$	< 10n
n^2	2n+1	=	O(n)	3.16 <i>n</i>
n^3	$3n^2 + 3n + 1$	=	$O(n^2)$	2.15n
n^4	$4n^3 + 6n^2 + 4n + 1$	=	$O(n^3)$	1.78 <i>n</i>
2^n			$O(2^n)$	$\leq n+4$
n!	$n \times n!$	=	O((n+1)!)	$\leq n+1$