Funções Booleanas implementadas no nível de transistores → também são chamadas de portas complexas

Estas portas existem em Cl's e bibliotecas

Vantagens:

Redução de transistores Aumento de desempenho Redução de potência

Desvantagens:

Aumento de custo do projeto Aumento de tempo de projeto

Prof. Duarte Lopes de Oliveira Divisão de Engenharia Eletrônica do ITA

A S

Ilustrando portas complexas

Porta L como uma função complexa

Porta L:

L(A,B,C,D)=ABC+BCD

Usando portas básicas:

3 portas NAND

16 transistores

5 níveis de propagação

Prof. Duarte Lopes de Oliveira Divisão de Engenharia Eletrônica do ITA

Exemplo: Aplicação da porta L

Assumindo que as variáveis de entrada estão também complementadas, pedese: A implementação da função F(W,X,Y,Z)= m(0,1,6,9,10,11,14,15) com somente 3 portas L e uma porta OR (L=ABC+BCD)

C D	0 0	0 1	11	10
0 0	0	0	0	0
0 1	O	0	0	0
1 1	0	1	1	0
1 0	0	0	1	0

- I) $W'X'Y'Z' + W'X'Y'Z + WX'Y'Z \rightarrow W'X'Y' + X'Y'Z$
- II) $WXYZ + WXYZ' + W'XYZ \rightarrow WXY + XYZ$
- III) $WX'YZ + WX'YZ' + 0 \rightarrow WX'Y + 0$

Exemplo: Aplicação da porta L

F(W,X,Y,Z)= m(0,1,6,9,10,11,14,15) com somente 3 portas L e uma porta OR

- I) $W'X'Y'Z' + W'X'Y'Z + WX'Y'Z \rightarrow W'X'Y' + X'Y'Z$
- II) $WXYZ + WXYZ' + W'XYZ \rightarrow WXY + XYZ$
- III) $WX'YZ + WX'YZ' + 0 \rightarrow WX'Y + 0$

