1.

1. 设 $X(t)=5\sin(\pi t+\Theta)$ ,  $t\geq 0$ , 其中 $\Theta$ 是随机变量,且满足 $P(\Theta=0)=0.2$ ,  $P(\Theta=\pi/2)=0.8$ . 则  $R_X(0,1)=$ 单选题(10分)

O A.-4.

B. -20.

C. 16.

D. O.

2.

3.

3. 设一时齐Markov链的一步转移概率矩阵为  $P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ,则该Markov链单选题(10 分)

- A. 具有遍历性、存在平稳分布.
- B. 不具有遍历性, 也不存在平稳分布.
- C. 不具有遍历性, 但存在平稳分布。
  - D. 具有遍历性, 不存在平稳分布.

4.



5.

6.

6. 设随机过程X(t)=Acos(ωt+Φ), -∞<t<+∞. 其中ω为正常数、A和Φ是相互独立服从相同分布的随机变量、且A服从区间[0, 1]上的均匀分布。则X(t)的数学期单选题(10 分)</li>
○ A. [sin(ωt+1)-sin(ωt)]/2.
○ B. [cos(ωt+1)-cos(ωt)]/2.
○ D. [sin(ωt+1)+sin(ωt)]/2.

7.

7. 设(X<sub>n</sub>; n ≥0) 是时齐的Markov链,状态空间I={0,1,2,3,4},一步转移概率为: p<sub>00</sub>=p<sub>21</sub>=1, p<sub>12</sub>=p<sub>13</sub>=p<sub>32</sub>=p<sub>33</sub>=1/2, p<sub>40</sub>=p<sub>42</sub>=p<sub>44</sub>=1/3. 初始分布 为P(X<sub>0</sub>=0)=P(X<sub>0</sub>=3)=P(X<sub>0</sub>=4)=1/3.则 "关于正常返态的平均同转时的叙述是错误的"是 单选题(10 分)
A. μ<sub>2</sub>=3.
D. μ<sub>0</sub>=1.

8. 已知X(t)=At+|B|,  $-\infty < t < +\infty$ .若A和B是相互独立,且A服从0-1分布,P(A=1)=0.5,B服从N(0,1). 则该过程的均值函数 $\mu_X(t)$ 和自相关函数 $R_X(t,s)$ 分别为单选题(10 分)

A 
$$\mu_X(t) = 0.5t + \frac{2}{\sqrt{2\pi}}$$
,  $R_X(t,s) = ts + \frac{2}{\sqrt{2\pi}}(t+s) + 1$ 

B. 
$$\mu_X(t) = 0.5t + \frac{1}{\sqrt{2\pi}}$$
,  $R_X(t,s) = 0.5ts + \frac{2}{\sqrt{2\pi}}(t+s) + 1$ .

C. 
$$\mu_X(t) = 0.5t + \frac{2}{\sqrt{2\pi}}$$
,  $R_X(t,s) = 0.5ts + \frac{1}{\sqrt{2\pi}}(t+s) + 1$ .

D. 
$$\mu_X(t) = 0.5t + \frac{1}{\sqrt{2\pi}}$$
,  $R_X(t,s) = 0.5ts + \frac{1}{\sqrt{2\pi}}(t+s) + 1$ 

9.

- 9。 假设 $\{X(t); t \ge 0\}$ 和 $\{Y(t), t \ge 0\}$ 二阶矩都存在且相互独立、令 $Z(t)=X(t)Y(t), t \ge 0$ .则下列等式中恒成立的是多选题(10 分)
- $\triangle$  A.  $\mu_Z(t) = \mu_X(t) \mu_Y(t)$ .
- B.  $R_Z(t, t+\tau) = R_X(t, t+\tau) R_Y(t, t+\tau)$
- $\square$  C.  $D_Z(t) = D_X(t) D_Y(t)$ .

10.

- 10. 下列关于随机过程的叙述正确的有 多选题(10分)
- ☑ A. 对于随机过程 $\{X(t); -\infty < t < \infty\}$  中给定的t, X(t)是随机变量.
- ☑ B. 二阶矩过程的均值函数一定存在.
- $\square$  C. 若对任意 $t \in (-\infty,\infty)$ , X(t)服从正态分布,则 $\{X(t); -\infty < t < \infty\}$ 是正态过程.
- ☑ D. 二阶矩过程的自相关函数一定不小于自协方差函数.