AP : Logique Combinatoire							
Nom:	Prénom :	Classe					

Je complète le tableau de synthèse suivant

Je place les symboles suivants dans la case correspondante.

Fonctions	Symboles	Tables de vérité	Équations et propriétés	Représentation électriques
OUI		a S 0 0 1 1	S = a	a S si on appuie sur le bouton poussoir la lampe S s'allume
NON (NOT)		aS	$S = \overline{a}$	
ET (AND)		a b S 1 0 0 1 1 0 1 0 0	$S=a.b$ $a.a=a$ $a.\bar{a}=0$ $1.a=a$ $0.a=0$	
OU Inclusif (OR)		a b S 1 0 1 1 0 1 0 0	$S=a+b$ $a+a=a$ $a+\bar{a}=1$ $1+a=1$ $0+a=a$	
OU Exclusif (XOR)		a b S 1 0 1 1 0 1 0 0	$S=a \oplus b$ $S=a.\bar{b}+\bar{a}.b$ $S=(a+b).(\bar{a}+\bar{b})$ $1 \oplus a=\bar{a}$ $0+a=a$	a et b bouton poussoir double

AP: Logique Combinatoire

	а	b	S	$S = \overline{a \cdot b}$	
	1	0		$S = \bar{a} + \bar{b}$	
NON-ET	1	1		$\overline{a.a} = \overline{a}$	
(NAND)		_		$\overline{a} \cdot a = 1$	
	0	1		$\overline{1.a} = \overline{a}$	
	0	0		$\overline{0.a}=1$	
	а	ь	S	$S = \overline{a + b}$	
	1	0		$S = \bar{a} \cdot \bar{b}$	
NON-OU				$\overline{a+a} = \overline{a}$	
(NOR)	1	1		$\overline{a}+a=10$	
	0	1		$\overline{1+a}=0$	
	0	0		$\overline{0+a}=\overline{a}$	

Rappels

- 1. Commutativité ______a.b = b.a
- 2. Associativité du ET _____a.(b.c) = (a.b).c = b.(a.c) = a.b.c Associativité du OU a+(b+c) = (a+b)+c = b+(b+a) = a+b+c
- 3. Distributivité du ET ______a.(b+c) = (a.b) + (a.c) Distributivité du OU _____ a+(b.c) = (a+b).(a+c)
- 4. Théorème de Morgan $\bar{a}=a$; $\bar{a}.\bar{b}=\bar{a}+\bar{b}$
- 5. Idempotence _____a+a = a ; a.a = a
- 6. Complémentarité _____ $a+\bar{a}=1; a.\bar{a}=0$
- 7. Identités remarquables 1.a=a;0.a=0;1+a=1;0+a=a

Je complète les tables de vérité suivantes et je représente la fonction logique

	٦	Γable	e de	vérité	Logigramme
$f = a . \overline{b}$				1	
	a	b	f		
				J	

AP: Logique Combinatoire

		Tab	le d	le v	érité
$f = a \cdot \overline{c} + a$					
	a	b	С		f
f =					
	a	b	C	f	
	1	0	0	1	
	1	0	1	1	
	1	1	0	0	
	1	1	1	0	
	0	0	0	1	
	0	0	1	0	
	0	1	0	1	
	0	1	1	0	

Exercice 1

On se propose de réaliser une porte logique S₅ programmable à l'aide d'opérateurs logiques élémentaires. Comme le montre le schéma ci-contre, cette porte

3/4 - Frédéric LLANTE

AP: Logique Combinatoire

possède deux entrées de données a et b, une entrée de commande x et une sortie S.

Je démontre à partir du schéma structurel de cette porte ci-dessous :

- 1. que lorsque x=0, la porte se comporte comme un OU logique (S=a+b);
- 2. que lorsque x=1, la porte se comporte comme un ET logique (S=a.b).

Exercice 2

Sur un pétrolier, la cale comprend 3 soutes à pétrole (A, B et C). Elles sont remplies de façon indépendante les unes des autres. Quand le remplissage est terminé, un voyant V doit s'allumer si l'assiette du bateau est correcte, c'est à dire si le pétrole est correctement réparti dans les soutes. Des capteurs testent le remplissage complet de chaque soute.

L'assiette est correcte si les 3 soutes sont vides ou si elles sont toutes les 3 remplies ou si seule B est remplie ou si seules A et C sont remplies.

- 1. J'écris la table de vérité.
- 2. Je détermine l'équation de V en fonction de A, B et C.
- 3. Je simplifie l'équation.
- 4. Je schématise l'équation.