ST5215 Advanced Statistical Theory, Lecture 6

HUANG Dongming

National University of Singapore

27 Aug 2020

Review

Last time

- Exponential families
- Statistics

Today

- Sufficiency
- Factorization theorem

Recap: Exponential families

Definition

A parametric family $\{P_{\theta}: \theta \in \Theta\}$ dominated by a σ -finite measure ν on (Ω, \mathcal{E}) is called an *exponential family* iff

$$f_{\theta}(\omega) = \frac{\mathrm{d}P_{\theta}}{\mathrm{d}\nu}(\omega) = \exp\left\{ [\eta(\theta)]^{\top} T(\omega) - \xi(\theta) \right\} h(\omega), \qquad \omega \in \Omega, \quad (1)$$

where T is a random p-vector, η is a function from Θ to \mathbb{R}^p , h is a nonnegative Borel function on (Ω, \mathcal{E}) , and

$$\xi(\theta) = \log \left\{ \int_{\Omega} \exp\{ [\eta(\theta)]^{\top} T(\omega) \} h(\omega) \, d\nu(\omega) \right\}. \tag{2}$$

- ullet T and h are functions of ω only
- ullet ξ and η are functions of θ only

H.D. (NUS) ST5215, Lecture 6 27 Aug 2020 3/34

Recap: The canonical form

Reparametrize the family by $\eta = \eta(\theta)$, so that

$$f_{\eta}(\omega) = \exp\{\eta^{\top} T(\omega) - \zeta(\eta)\} h(\omega)$$
 (3)

where $\zeta(\eta) = \log \left\{ \int_{\Omega} \exp\{\eta^{\top} T(\omega)\} h(\omega) \ d\nu(\omega) \right\}.$

- This is the canonical form for the family (still not unique)
- \bullet η is called the *natural parameter*
- The natural parameter space: $\Xi = \{\eta(\theta) : \theta \in \Theta\} \subset \mathcal{R}^p$
- An exponential family in its canonical form is called a natural exponential family
- Full rank: if Ξ contains an open set

Differential identities of natural exponential families

Let \mathcal{P} be a natural exponential family with p.d.f.

$$f_{\eta}(x) = \exp\{\eta^{\top} T(x) - \zeta(\eta)\} h(x)$$
(4)

5/34

• Let Ξ_f be the set of values of η such that

$$\int |f(\omega)| \exp \left\{ \eta^{\tau} T(\omega) \right\} h(\omega) \ \mathrm{d}\nu(\omega) < \infty.$$

• Define g on Ξ_f by

$$g(\eta) = \int f(\omega) \exp \{\eta^{\tau} T(\omega)\} h(\omega) d\nu(\omega).$$

Then

- g is continuous and has continuous derivatives of all orders.
- These derivatives can be computed by differentiation under the integral sign.

This result is related to the dominated convergence theorem. See the reference on LumiNUS: "Files/Readings/Differential"

Statistics

A **statistic** T(X) is a measurable function of sample X.

- T(X) only depends on X
- T is a known function: T(X) is a known value whenever X is known.
- Trivial statistics: X itself, any constant
- Some examples are:
 - sample mean: $\bar{X} = \frac{1}{n} \sum_{i} X_{i}$
 - sample variance: $S^2 = \frac{1}{n-1} \sum_i (X_i \bar{x})^2$
 - order statistics, $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$
 - sample median: middle value of ordered statistics
 - ▶ sample minimum: $X_{(1)}$
 - ▶ sample maximum: $X_{(n)}$

Sufficient Statistics

Information reduction:

- $\sigma(T(X)) \subset \sigma(X)$ ("=" if and only if T is one-to-one)
- Usually $\sigma(T(X))$ simplifies $\sigma(X)$, i.e., a statistic provides a "reduction" of the σ -field

Does such a reduction from $\sigma(X)$ to $\sigma(T(X))$ results in any loss of information concerning the unknown P?

• If T(X) is fully as informative as X, then statistical analyses can be done using T(X).

Definition

Let X be a sample from an unknown population $P \in \mathcal{P}$, where \mathcal{P} is a family of populations. A statistic T(X) is said to be *sufficient* for $P \in \mathcal{P}$ iff the conditional distribution of X given T is known (does not depend on P).

Sufficient Statistics (Cont.)

- If $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$, then we also say T(X) is *sufficient* for θ iff the conditional distribution of X given T does not depend on θ
- ullet Sufficiency depends on the given family ${\cal P}$:

$$\mathcal{P}_0 \subset \mathcal{P} \subset \mathcal{P}_1, \tag{5}$$

and T is sufficient for $P \in \mathcal{P}$, then

- ▶ T is also sufficient for $P \in \mathcal{P}_0$
- ▶ T is not necessarily sufficient for $P \in \mathcal{P}_1$
 - * Let $\mathcal{P} = \{N(\mu, \sigma^2) : \mu \in \mathcal{R}, \sigma = 1\}$. Then the sample mean \bar{X} is sufficient for $P \in \mathcal{P}$.
 - ★ Let $\mathcal{P}_1 = \{N(\mu, \sigma^2) : \mu \in \mathcal{R}, \sigma > 0\}$. Then $\mathcal{P} \subset \mathcal{P}_1$ but \bar{X} is not sufficient for $P \in \mathcal{P}_1$

Generating fake data

- Suppose T is sufficient for $\{P_{\theta} : \theta \in \Theta\}$
- Let $Q_t(B) = P_{\theta}(X \in B \mid T = t)$
- Then $P_{\theta}(X \in B \mid T) = Q_T(B)$
- By tower property (a.k.a., tower law, law of total expectation, smoothing property)

$$P_{\theta}(X \in B) = E_{\theta}[P_{\theta}(X \in B \mid T)] = E_{\theta}Q_{T}(B)$$

Now we use a random number generator to construct "fake" data \tilde{X} s. t. $\tilde{X} \sim Q_t(\cdot)$ if the observed T equals to t, i.e.,

$$\tilde{X} \mid T = t \sim Q_t$$

By tower property,

$$P_{\theta}(\tilde{X} \in B) = E_{\theta}[P_{\theta}(\tilde{X} \in B \mid T)] = E_{\theta}Q_{T}(B) = P_{\theta}(X \in B)$$

This shows that $\tilde{X} \sim P_{\theta}$, so the distributions for \tilde{X} are the same as distributions for real X regardless of the value of θ

Example: Sum of Bernoulli trials

Let $X = (X_1, ..., X_n)$ and $X_1, ..., X_n$ be i.i.d. from the Bernoulli distribution with p.d.f. (w.r.t. the counting measure)

$$f_{\theta}(z) = \theta^{z} (1 - \theta)^{1 - z} I_{\{0,1\}}(z), \qquad z \in \mathcal{R}, \qquad \theta \in (0,1).$$
 (6)

- $\mathcal{P} = \{ \prod_{i=1}^n f_{\theta}(x_i) : \theta \in (0,1) \}$
- Take $T(X) = \sum_{i=1}^{n} X_i$: the number of 1's in X
- We will show T(X) is sufficient for θ
- Once we know T(X), other information in X is about the positions of these 1's
 - but such information is not useful for estimating θ the probability of getting a 1; redundant for θ

• Compute the marginal p.d.f. of T

$$P(T=t) = \binom{n}{t} \theta^{t} (1-\theta)^{n-t} I_{\{0,1,\dots,n\}}(t)$$
 (7)

and the conditional distribution of X given T

$$P(X = x \mid T = t) = \frac{P(X = x, T = t)}{P(T = t)},$$
 (8)

where $x = (x_1, ..., x_n) \in \{0, 1\}^n$ and $t \in \{0, 1, ..., n\}$.

- If $t \neq \sum_{i=1}^{n} x_i$, then P(X = x, T = t) = 0.
- If $t = \sum_{i=1}^{n} x_i$, then

$$P(X = x, T = t) = P(X = x)$$

$$= \prod_{i=1}^{n} P(X_i = x_i)$$

$$= \theta^t (1 - \theta)^{n-t} \prod_{i=1}^{n} I_{\{0,1\}}(x_i)$$

Then

$$P(X = x \mid T = t) = \frac{1}{\binom{n}{t}} \frac{\prod_{i=1}^{n} I_{\{0,1\}}(x_i)}{I_{\{0,1,\dots,n\}}(t)}$$
(9)

H.D. (NUS)

How to find a sufficient statistic?

- Finding a sufficient statistic by means of the definition is not convenient.
 - ▶ It involves guessing a statistic *T* that might be sufficient and computing the conditional distribution of *X* given *T*.
- For families of populations having p.d.f.'s, a simple way of finding sufficient statistics is to use the *factorization theorem*.

Factorization Theorem

Theorem

Suppose that X is a sample from $P \in \mathcal{P}$ and \mathcal{P} is a family of probability measures on $(\mathcal{R}^n, \mathcal{B}^n)$ dominated by a σ -finite measure ν . Then T(X) is sufficient for $P \in \mathcal{P}$ if and only if there are nonnegative Borel functions

- h(x) (which does not depend on P) on $(\mathbb{R}^n, \mathcal{B}^n)$, and
- $g_P(t)$ (which depends on P) on the range of T

such that

$$\frac{\mathrm{d}P}{\mathrm{d}\nu}(x) = g_P(T(x))h(x). \tag{10}$$

- Intuition: h is known and the unknown part g_P involve T only
- ullet Application: the ${\mathcal T}$ statstic in an exponential family

$$f_{\theta}(\omega) = \frac{\mathrm{d}P_{\theta}}{\mathrm{d}\nu}(\omega) = \exp\left\{ \left[\eta(\theta) \right]^{\top} T(\omega) - \xi(\theta) \right\} h(\omega), \omega \in \Omega, \quad (11)$$

is sufficient for θ

Example: Varying supports

Suppose X_1, \ldots, X_n are i.i.d. r.v.s. from the uniform distribution on $(\theta, \theta+1)$. The common marginal density is

$$f_{\theta}(x) = \left\{ egin{array}{ll} 1, & x \in (\theta, \theta+1) \\ 0, & ext{otherwise} \end{array} \right.$$

- Write the density using indicator functions: $f_{\theta} = 1_{(\theta, \theta+1)}$
- The joint density is

$$p_{\theta}(x) = \prod_{i=1}^{n} 1_{(\theta,\theta+1)}(x_i)$$

• Note that the density equals one if and only if $x_{(n)} = \max_i \{x_i\} < \theta + 1$ and $x_{(1)} = \min_i \{x_i\} > \theta$, so $p_{\theta}(x) = 1_{(\theta,\infty)} (x_{(1)}) 1_{(-\infty,\theta+1)} (x_{(n)})$

• By the factorization theorem, $T = (X_{(1)}, X_{(n)})$ is sufficient.

Example: Truncation families

- Suppose $\phi(x)$ be a positive Borel function on $(\mathcal{R}, \mathcal{B})$ such that $\int_a^b \phi(x) \, \mathrm{d}x < \infty$ for all pairs of a and b that a < b.
- Let θ be the vector (a,b), $\Theta = \{(a,b) \in \mathbb{R}^2 : a < b\}$, and

$$f_{\theta}(x) = c(\theta)\phi(x)I_{(a,b)}(x), \tag{12}$$

where $c(\theta) = \left[\int_a^b \phi(x) \, dx \right]^{-1}$.

- $\{f_{\theta}: \theta \in \Theta\}$ is called a truncation family.
- It is parametric and is dominated by Lebesgue measure

Suppose X_1, \ldots, X_n are i.i.d. sampled from f_θ

• The joint p.d.f. of $X = (X_1, \dots, X_n)$ is

$$\prod_{i=1}^{n} f_{\theta}(x_i) = [c(\theta)]^n \left[\prod_{i=1}^{n} I_{(a,b)}(x_i) \right] \left[\prod_{i=1}^{n} \phi(x_i) \right]$$
(13)

- $\bullet \prod_{i=1}^n I_{(a,b)}(x_i) = I_{(a,\infty)}(x_{(1)})I_{(-\infty,b)}(x_{(n)}).$
- So $T(X) = (X_{(1)}, X_{(n)})$ is sufficient for $\theta = (a, b)$.

Exercise

Suppose X_1, \ldots, X_n are i.i.d. r.v.s with common marginal Lebesgue density

$$f_{ heta}(x) = \left\{ egin{array}{ll} (heta+1)x^{ heta}, & x \in (0,1) \ 0, & ext{otherwise} \end{array}
ight.$$

for some unknown $\theta \in (-1, \infty)$.

Find a sufficient statistic for this model.

Solution:

• The joint density p_{θ} is

$$p_{\theta}(x) = \prod_{i=1}^{n} f_{\theta}(x_{i}) = \prod_{i=1}^{n} (\theta + 1) x_{i}^{\theta} = (\theta + 1)^{n} \left(\prod_{i=1}^{n} x_{i} \right)^{\theta}, \quad x \in (0, 1)^{n}$$

with $p_{\theta}(x) = 0$ if $x \notin (0,1)^n$.

• Taking $g_{\theta}(t) = (\theta + 1)^n t^{\theta}$ and $h = 1_{(0,1)^n}$, from the factorization theorem, $T = \prod_{i=1}^n X_i$ is sufficient.

Proof of Factorization Theorem

We require two lemmas.

Lemma (S, Exercise 1.35)

Let $\{c_i\}$ be a sequence of positive numbers satisfying $\sum_{i=1}^{\infty} c_i = 1$ and let $\{P_i\}$ be a sequence of probability measures on a common measurable space. Define $Q = \sum_{i=1}^{\infty} c_i P_i$.

- Q is a probability measure;
- **2** Let ν be a σ -finite measure. Then $P_i \ll \nu$ for all i if and only if $Q \ll \nu$. When $Q \ll \nu$,

$$\frac{\mathrm{d}Q}{\mathrm{d}\nu} = \sum_{i=1}^{\infty} c_i \frac{\mathrm{d}P_i}{\mathrm{d}\nu}.$$
 (14)

Lemma (2.1)

If a family $\mathcal P$ is dominated by a σ -finite measure, then $\mathcal P$ is dominated by a probability measure $Q = \sum_{i=1}^\infty c_i P_i$ where $P_i \in \mathcal P$ and $c_i \geq 0$.

Factorization Theorem

Theorem

Suppose that X is a sample from $P \in \mathcal{P}$ and \mathcal{P} is a family of probability measures on $(\mathcal{R}^n, \mathcal{B}^n)$ dominated by a σ -finite measure ν . Then T(X) is sufficient for $P \in \mathcal{P}$ if and only if there are nonnegative Borel functions

- h(x) (which does not depend on P) on $(\mathbb{R}^n, \mathcal{B}^n)$, and
- $g_P(t)$ (which depends on P) on the range of T

such that

$$\frac{\mathrm{d}P}{\mathrm{d}\nu}(x) = g_P(T(x))h(x). \tag{15}$$

Assume T is sufficient, and want to show $\frac{\mathrm{d}P}{\mathrm{d}\nu}(x) = g_P(T(x))h(x)$

- Note that $P(A) = \int P(A \mid T) dP$
- Let Q be the probability measure in Lemma 2.1
- Suppose we can show $P(A \mid T) = E_Q(I_A \mid T)$, Q-a.s. Let $\frac{\mathrm{d}P}{\mathrm{d}Q}(x)$ be the Radon-Nikodym derivative of P with respect to Q on the space $(\mathcal{R}^n, \sigma(T), Q)$, denoted by $g_P(T(x))$, we have

$$\begin{split} P(A) &= \int P(A \mid T) \, \mathrm{d}P \\ &= \int E_Q(I_A \mid T) g_P(T(x)) \, \mathrm{d}Q \\ &= \int E_Q(I_A g_P(T(x)) \mid T) \, \mathrm{d}Q \\ &= \int I_A g_P(T(x)) \, \mathrm{d}Q \\ &= \int_A g_P(T(x)) \frac{\mathrm{d}Q}{\mathrm{d}\nu}(x) \, \mathrm{d}\nu(x), \end{split}$$

for all $A \in \mathcal{B}^n$. Then equation (9) holds with $h(x) = \frac{dQ}{dx}(x)$.

H.D. (NUS) ST5215, Lecture 6 27 Aug 2020

19 / 34

Showing $P(A \mid T) = E_Q(I_A \mid T)$

For any $B \in \sigma(T)$, by Lemma S,

$$= \sum_{j=1}^{\infty} c_j \int_B P_j(A \mid T) \, \mathrm{d}P_j$$

$$(\because P(A \mid T) \text{ doesn't depend on } P \in \mathcal{P} \) = \sum_{j=1}^{\infty} c_j \int_B P(A \mid T) \, \mathrm{d}P_j$$

$$(\because \text{Fubini's theorem }) = \int_B \sum_{j=1}^{\infty} c_j P(A \mid T) \, \mathrm{d}P_j$$

$$(\because \sum_j c_j = 1 \) = \int_B P(A \mid T) \, \mathrm{d}Q,$$

 $Q(A\cap B)=\sum_{j}c_{j}P_{j}(A\cap B)$

20/34

Hence, $P(A \mid T) = E_Q(I_A \mid T)$ Q-a.s.

H.D. (NUS) ST5215, Lecture 6 27 Aug 2020

Factorization Theorem

Theorem

Suppose that X is a sample from $P \in \mathcal{P}$ and \mathcal{P} is a family of probability measures on $(\mathcal{R}^n, \mathcal{B}^n)$ dominated by a σ -finite measure ν . Then T(X) is sufficient for $P \in \mathcal{P}$ if and only if there are nonnegative Borel functions

- h(x) (which does not depend on P) on $(\mathbb{R}^n, \mathcal{B}^n)$, and
- $g_P(t)$ (which depends on P) on the range of T

such that

$$\frac{\mathrm{d}P}{\mathrm{d}\nu}(x) = g_P(T(x))h(x). \tag{16}$$

Suppose that Equation (9) holds.

- Let Q be the probability measure in Lemma 2.1
- Want to show for all $A \in \sigma(X)$ and $P \in \mathcal{P}$,

$$P(A \mid T) = E_Q(I_A \mid T) \quad P-\text{a.s.} , \qquad (17)$$

because $E_Q(I_A \mid T)$ does not vary with $P \in \mathcal{P}$.

- By Chain rule, $\frac{dP}{d\nu} = \frac{dP}{dQ} \frac{dQ}{d\nu} \nu$ -a.e.
- Hence

$$\frac{\mathrm{d}P}{dQ} = \frac{\mathrm{d}P}{d\nu} \bigg/ \frac{dQ}{d\nu} = \frac{\mathrm{d}P}{d\nu} \bigg/ \sum_{i=1}^{\infty} c_i \frac{dP_i}{d\nu} = g_P(T) \bigg/ \sum_{i=1}^{\infty} c_i g_{P_i}(T), \tag{18}$$

Q-a.s., where the second equality follows from Lemma S.

• So dP/dQ is a Borel function of T.

H.D. (NUS) ST5215, Lecture 6 27 Aug 2020 22 / 34

Showing $P(A \mid T) = E_Q(I_A \mid T)$

For any $B \in \sigma(T)$, we calculate $P(A \cap B)$ as follows

$$\int_{B} E_{Q}(I_{A} \mid T) \, \mathrm{d}P = \int_{B} E_{Q}(I_{A} \mid T) \frac{\mathrm{d}P}{dQ} dQ$$

$$(\because \, \mathrm{d}P/dQ \text{ is a Borel function of } T \,) = \int_{B} E_{Q} \left(I_{A} \frac{\mathrm{d}P}{dQ} \mid T\right) dQ$$

$$(\because \, \mathrm{Def. of conditional expectation} \,) = \int_{B} I_{A} \frac{\mathrm{d}P}{dQ} dQ$$

$$= \int_{B} I_{A} \, \mathrm{d}P$$

$$(\because \, \mathrm{Def. of conditional expectation} \,) = \int_{B} P(A \mid T) \, \mathrm{d}P$$

So $P(A \mid T) = E_Q(I_A \mid T)$, P-a.s.

H.D. (NUS) ST5215, Lecture 6 27 Aug 2020 23 / 34

Tutorial

① (Stein's identity). Suppose the distribution of X has density in an exponential family whose support is $(-\infty,\infty)$. If g is any differentiable function such that $E\left|g'(X)\right|<\infty$, then

$$E\left\{\left[\frac{h'(X)}{h(X)}+\sum_{i=1}^{p}\eta_{i}T'_{i}(X)\right]g(X)\right\}=-Eg'(X),$$

where η_i 's are the coordinates of $\eta(\theta)$ and T_i 's are the coordinates of T(X). When p=1 and h'(X)=0 (e.g., the normal family with fixed σ), the identity becomes $E\{(X-\mu)g(X)\}=\sigma^2Eg'(X)$,

- ② Show that if two r.v.s X and Y are independent, then their characteristic functions ϕ_X and ϕ_Y satisfy $\phi_X(t)\phi_Y(t) = \phi_{X+Y}(t)$ for all $t \in \mathcal{R}$.
- **③** Find an example of two r.v.s X and Y such that X and Y are not independent but their characteristic functions ϕ_X and ϕ_Y satisfy $\phi_X(t)\phi_Y(t)=\phi_{X+Y}(t)$ for all $t\in\mathcal{R}$
- **1** Let X be an integrable random variable on the probability space (Ω, \mathcal{F}, P) , \mathcal{A} and \mathcal{A}_0 be σ -fields satisfying $\mathcal{A}_0 \subset \mathcal{A} \subset \mathcal{F}$. Show that $E\left[E(X \mid \mathcal{A}) \mid \mathcal{A}_0\right] = E\left(X \mid \mathcal{A}_0\right) = E\left[E\left(X \mid \mathcal{A}_0\right) \mid \mathcal{A}\right]$ a.s.
- **3** Let X be an integrable random variable on the probability space (Ω, \mathcal{F}, P) , \mathcal{A} be a sub- σ -field of \mathcal{F} , and Y be another random variable satisfying $\sigma(Y) \subset \mathcal{A}$ and $E|XY| < \infty$. Show that $E(XY \mid \mathcal{A}) = YE(X \mid \mathcal{A})$ a.s.

(Stein's identity). Suppose the distribution of X has density in an exponential family whose support is $(-\infty,\infty)$. If g is any differentiable function such that $E\left|g'(X)\right|<\infty$, then

$$E\left\{\left[\frac{h'(X)}{h(X)}+\sum_{i=1}^p\eta_iT_i'(X)\right]g(X)\right\}=-Eg'(X),$$

where η_i 's are the coordinates of $\eta(\theta)$ and T_i 's are the coordinates of T(X). When p=1 and h'(X)=0 (e.g., the normal family with fixed σ), the identity becomes $E\left\{(X-\mu)g(X)\right\}=\sigma^2Eg'(X)$,

Remark. This exercise is taken from Lemma 5.15 of Chapter 1 in Theory of Point Estimation, 2nd Ed.

The idea behind the proof is simple: integration by parts. However, I think a rigorous proof needs extra conditions on the density f(x) and g(x) such as $\lim_{x\to\pm\infty} f(x)g(x)=0$.

We leave the proof of the general case for next tutorial and only focus on the normal family.

Ex 1: normal case

(Stein's lemma). Suppose the distribution of \boldsymbol{X} has density in a univariate normal density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-(x-\mu)^2/2\sigma^2)$$
,

and g is a differentiable function such that $E\left|g'(X)\right|<\infty$ and $\lim_{x\to\pm\infty}f(x)g(x)=0$, then $E\left\{(X-\mu)g(X)\right\}=\sigma^2Eg'(X)$, Proof:

- $f'(x) = -\frac{x-\mu}{\sigma^2} f(x)$
- ullet For any $a,b\in\mathcal{R}$, using integration by parts, we have

$$\int_{a}^{b} f'(x)g(x) dx = g(b)f(b) - g(a)f(a) - \int_{a}^{b} f(x)g'(x) dx \quad (19)$$

- Note that here we have use the smoothness of f and the assumption that $E\left|g'(X)\right|<\infty$, which implies g'(x) is integrable on any close interval
- Then we take $a \to -\infty$ and $b \to \infty$.

Show that if two r.v.s X and Y are independent, then their characteristic functions ϕ_X and ϕ_Y satisfy $\phi_X(t)\phi_Y(t)=\phi_{X+Y}(t)$ for all $t\in\mathcal{R}$. Proof: Use the independence between $e^{\sqrt{-1}t^\top X}$ and $e^{\sqrt{-1}t^\top X}$.

H.D. (NUS) ST5215, Lecture 6 27 Aug 2020 27 / 34

Find an example of two r.v.s X and Y such that X and Y are not independent but their characteristic functions ϕ_X and ϕ_Y satisfy $\phi_X(t)\phi_Y(t)=\phi_{X+Y}(t)$ for all $t\in\mathcal{R}$ Proof:

- Let X = Y be a random variable having the Cauchy distribution with $\phi_X(t) = \phi_Y(t) = e^{-|t|}$.
- X and Y are not independent.
- Using the result of Exercise 5 in Tutorial Aug 20, the characteristic function of X + Y = 2X is

$$\phi_{X+Y}(t) = E\left(e^{\sqrt{-1}t(2X)}\right) = \phi_X(2t) = e^{-|2t|}$$
$$= e^{-|t|}e^{-|t|} = \phi_X(t)\phi_Y(t)$$

28 / 34

Let X be an integrable random variable on the probability space (Ω, \mathcal{F}, P) , \mathcal{A} and \mathcal{A}_0 be σ -fields satisfying $\mathcal{A}_0 \subset \mathcal{A} \subset \mathcal{F}$. Show that $E\left[E(X\mid \mathcal{A})\mid \mathcal{A}_0\right] = E\left(X\mid \mathcal{A}_0\right) = E\left[E\left(X\mid \mathcal{A}_0\right)\mid \mathcal{A}\right]$ a.s. Proof:

- 1. Since $E(X \mid \mathcal{A}_0)$ is measurable from (Ω, \mathcal{A}_0) to $(\mathcal{R}, \mathcal{B})$ and $\mathcal{A}_0 \subset \mathcal{A}$, $E(X \mid \mathcal{A}_0)$ is measurable from (Ω, \mathcal{A}) to $(\mathcal{R}, \mathcal{B})$ and, thus, $E(X \mid \mathcal{A}_0) = E[E(X \mid \mathcal{A}_0) \mid \mathcal{A}]$ a.s.
- 2. For any $A \in \mathcal{A}_0 \subset \mathcal{A}$

$$\int_{A} E[E(X \mid A) \mid A_{0}] dP = \int_{A} E(X \mid A) dP = \int_{A} X dP,$$

where the first equality is because $E[E(X \mid A) \mid A_0]$ is measurable from (Ω, A_0) to $(\mathcal{R}, \mathcal{B})$. We conclude that $E[E(X \mid A) \mid A_0] = E(X \mid A_0)$ a.s.

Let X be an integrable random variable on the probability space (Ω, \mathcal{F}, P) , \mathcal{A} be a sub- σ -field of \mathcal{F} , and Y be another random variable satisfying $\sigma(Y) \subset \mathcal{A}$ and $E|XY| < \infty$. Show that $E(XY \mid \mathcal{A}) = YE(X \mid \mathcal{A})$ a.s.

Proof: Note that both sides are measurable w.r.t. (Ω, A) . So we only need to show that for any $A \in A$,

$$\int_A YE(X \mid A) dP = \int_A XY dP$$

We use the *canonical method:* first assume Y is an indicator function, then a simple function, then a nonnegative function, and finally a general function.

Ex 5: Indicator

Suppose $Y = aI_B$, where $a \in \mathcal{R}$ and $B \in \mathcal{A}$. Then $A \cap B \in \mathcal{A}$ and

$$\int_{A} XY \, dP = a \int_{A} XI_{B} \, dP$$

$$= a \int_{A \cap B} X \, dP$$

$$= a \int_{A \cap B} E(X \mid A) \, dP$$

$$= a \int_{A} I_{B} E(X \mid A) \, dP$$

$$= \int_{A} YE(X \mid A) \, dP$$

Ex 5: Simple function

Suppose $Y = \sum_{i=1}^{k} a_i I_{B_i}$, where $B_i \in \mathcal{A}$. Then

$$\int_{A} YX \, dP = \sum_{i=1}^{k} \int_{A} a_{i} I_{B_{i}} X \, dP$$

$$= \sum_{i=1}^{k} \int_{A} a_{i} I_{B_{i}} E(X \mid A) \, dP$$

$$= \int_{A} YE(X \mid A) \, dP$$

Ex 5: Nonnegative function

Suppose that $X \ge 0$ and $Y \ge 0$.

- Since Y is \mathcal{A} -measurable, there exists a sequence of increasing simple functions Y_n such that $\sigma(Y_n) \subset \mathcal{A}, Y_n \leq Y$ and $\lim_n Y_n = Y$
- $XY_n \uparrow XY$
- $Y_n E(X \mid A) \uparrow Y E(X \mid A)$

$$\int_{A} YX \, dP = \lim_{n} \int_{A} Y_{n} X \, dP$$

$$= \lim_{n} \int_{A} Y_{n} E(X \mid A) \, dP$$

$$= \int_{A} YE(X \mid A) \, dP,$$

where the 1st and 3rd equalities are due to the monotone convergence theorem.

Ex 5: General function

For general X and Y, consider X_+, X_-, Y_+ , and Y_- .

- Since $\sigma(Y) \subset \mathcal{A}$, so are $\sigma(Y_+)$ and $\sigma(Y_-)$
- Since $E|XY| < \infty$, both $E(X_+Y_+)$ and $E(X_+Y_-)$ are finite

$$\int_{A} X_{+} Y \, dP = \int_{A} X_{+} Y_{+} \, dP - \int_{A} X_{+} Y_{-} \, dP$$

$$= \int_{A} Y_{+} E \left(X_{+} \mid \mathcal{A} \right) \, dP - \int_{A} Y_{-} E \left(X_{+} \mid \mathcal{A} \right) \, dP$$

$$= \int_{A} Y E \left(X_{+} \mid \mathcal{A} \right) \, dP$$

• Similarly, $\int_A X_- Y dP = \int_A YE(X_- \mid A) dP$

$$\int_{A} XY \, dP = \int_{A} X_{+} Y \, dP - \int_{A} X_{-} Y \, dP$$

$$= \int_{A} YE (X_{+} \mid A) \, dP - \int_{A} YE (X_{-} \mid A) \, dP$$

$$= \int YE(X \mid A) \, dP$$

H.D. (NUS)