1) Указания на февраль, полученные от научного руководителя

Реализовать симплекс-метод для задачи линейного программирования P1+P2. Реализовать метод множителей Лагранжа для выпуклой задачи P3 из главы 3 про оптимизацию портфеля.

2) Мой План работы на февраль 2022

Реализовать симплекс-метод для задачи линейного программирования P1+P2. Реализовать метод множителей Лагранжа для выпуклой задачи P3 из главы 3 про оптимизацию портфеля.

3) Что конкретно сделано за февраль 2022 из намеченного

Написана программа на языке С (файл прилагается), которая численно решает задачу линейного программирования P1+P2 и получает те же значения, что и авторы статьи в Таблицах 5 и 6. Полученные результаты собраны в таблицу.

В процессе написания этой программы изучена библиотека glpk в С и технология написания bash-скриптов для сборки проекта, состоящего из python3-файлов и Сфайлов.

К выпуклой задаче Р3 применена теорема Каруша-Куна-Таккера и методом множителей Лагранжа получены такое же единственное решение, что и у авторов статьи в Таблице 3 (вычисления прилагаются).

Найдена опечатка на стр. 28 в статье: там k должно быть от 1 до q, а не от 1 до r. Все полученные результаты оформлены в файл Глава4ДляКурсовой5Курс.pdf (файл прилагается).

4) Что не сделано за февраль 2022 из намеченного

Все намеченное на февраль 2022 сделано.

5) Причины

Все сделано.

6) Что сделано из того, что не было запланировано

Написаны и отправлены тезисы на конференцию Ломоносов.

Успешно пройден 1 тур Универсиады Ломоносов.

7) План работы на март 2022

Вычисления с листочка для задачи Р3 привести в печатный вид.

Написать программу, которая проверят все остальные полученные точкикандидаты и убеждается, что они не подходят (что у них лямбды и/или mu получаются отрицательные).

Понять, как по полученному решению \mathbf{x} посчитать Var и Cvar. Для этого надо научиться считать интеграл из теоремы 1 (с сэмплированием \mathbf{y} или без, то есть честно посчитать этот интеграл для многомерного нормального распределения \mathbf{y}). Понять, как эти Var и CVaR посчитаны в статье для задачи P3 после нахождения оптимального портфеля \mathbf{x} .

Изучить, как применить метод линейного программирования и метод Урясьева для задачи хеджирования портфеля.