Ayrık-Zamanlı Fourier Dönüşümü

Dönüşüm çifti

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega,$$
$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}.$$

Örnek:

$$x[n] = a^n u[n], |a| < 1.$$

İşaretinin Fourier dönüşümünü bulalım.

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} a^n u[n] e^{-j\omega n}$$
$$= \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1 - ae^{-j\omega}}.$$

Örnek:

$$x[n] = a^{|n|}, |a| < 1.$$

şeklinde verilen işaretin Fourier dönüşümünü bulalım.

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} a^{|n|} e^{-j\omega n}$$
$$= \sum_{n=0}^{+\infty} a^n e^{-j\omega n} + \sum_{n=-\infty}^{-1} a^{-n} e^{-j\omega n}.$$

$$m = -n$$

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} (ae^{-j\omega})^n + \sum_{m=1}^{\infty} (ae^{j\omega})^m.$$

$$X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}} + \frac{ae^{j\omega}}{1 - ae^{j\omega}}$$
$$= \frac{1 - a^2}{1 - 2a\cos\omega + a^2}.$$

Dönüşümün Varlık koşulu:

$$\sum_{n=-\infty}^{+\infty} |x[n]| < \infty,$$

Örnek:

$$x[n] = \delta[n].$$

$$X(e^{j\omega}) = 1.$$

Örnek:

$$x[n] = \cos \omega_0 n = \frac{1}{2} e^{j\omega_0 n} + \frac{1}{2} e^{-j\omega_0 n},$$

$$\omega_0 = \frac{2\pi}{5}$$
.

$$X(e^{j\omega}) = \sum_{l=-\infty}^{+\infty} \pi \, \delta\left(\omega - \frac{2\pi}{5} - 2\pi l\right) + \sum_{l=-\infty}^{+\infty} \pi \, \delta\left(\omega + \frac{2\pi}{5} - 2\pi l\right).$$

$$X(e^{j\omega}) = \pi \delta\left(\omega - \frac{2\pi}{5}\right) + \pi \delta\left(\omega + \frac{2\pi}{5}\right), \qquad -\pi \leq \omega < \pi,$$

Örnek:

$$x[n] = \sum_{k=-\infty}^{+\infty} \delta[n-kN],$$

$$a_k = \frac{1}{N} \sum_{n=(N)} x[n] e^{-jk(2\pi/N)n}.$$

$$0 \le n \le N-1$$

$$a_k = \frac{1}{N}$$
.

$$X(e^{j\omega}) = \frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right),$$

Ayrık-Zamanlı Fourier Dönüşümünün Özellikleri

$$X(e^{j\omega}) = \mathfrak{F}\{x[n]\},$$

 $x[n] = \mathfrak{F}^{-1}\{X(e^{j\omega})\},$
 $x[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X(e^{j\omega}).$

Periyodiklik:

$$X(e^{j(\omega+2\pi)})=X(e^{j\omega}).$$

Kaynak: Oppenheim, Willsky "Signals and Systems"

Lineerlik:

$$x_1[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X_1(e^{j\omega})$$

$$x_2[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X_2(e^{j\omega}),$$

$$ax_1[n] + bx_2[n] \overset{\S}{\longleftrightarrow} aX_1(e^{j\omega}) + bX_2(e^{j\omega}).$$

Zamanda ve frekansta Öteleme:

$$x[n] \overset{\mathfrak{I}}{\longleftrightarrow} X(e^{j\omega}),$$

$$x[n-n_0] \stackrel{\mathfrak{F}}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})$$

$$e^{j\omega_0n}x[n] \overset{\mathfrak{F}}{\longleftrightarrow} X(e^{j(\omega-\omega_0)}).$$

Örnek:

AGS-YGS (Alçak geçiren- Yüksek geçiren süzgeç) farkı

 $H_{lp}(e^{\hbar\omega^{-\pi}l})$ $-2\pi \qquad -\pi \qquad \pi \qquad 2\pi \qquad \omega$ $-(\pi-\omega_c) \qquad (\pi-\omega_c)$ (b)

Süzgeçler arasında frekans ve zaman domeninde

$$H_{\mathrm{hp}}(e^{j\omega}) = H_{\mathrm{lp}}(e^{j(\omega-\pi)}).$$

$$h_{hp}[n] = e^{j\pi n} h_{lp}[n]$$

= $(-1)^n h_{lp}[n]$.

ilişkisi vardır.

Eşlenik Alma:

$$x[n] \overset{\mathfrak{F}}{\longleftrightarrow} X(e^{j\omega}),$$

$$x^*[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X^*(e^{-j\omega}).$$

Reel x[n] için

$$X(e^{j\omega}) = X^*(e^{-j\omega})$$
 [x[n]real].

Fark Alma:

$$x[n] - x[n-1] \stackrel{\mathfrak{F}}{\longleftrightarrow} (1-e^{-j\omega})X(e^{j\omega}).$$

Zamanda Katlama:

$$x[-n] \overset{\mathfrak{F}}{\longleftrightarrow} X(e^{-j\omega}).$$

Zamanda Ölçekleme:

$$x(at) \overset{\mathfrak{F}}{\longleftrightarrow} \frac{1}{|a|} X \left(\frac{j\omega}{a} \right).$$

Kaynak: Oppenheim, Willsky "Signals and Systems"

Parseval Bağıntısı:

$$\sum_{n=-\infty}^{+\infty}|x[n]|^2=\frac{1}{2\pi}\int_{2\pi}|X(e^{j\omega})|^2d\omega.$$

Konvolüsyon:

$$y[n] = x[n] * h[n],$$

$$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}),$$

Örnek:

$$h[n] = \delta[n - n_0].$$

$$H(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} \delta[n-n_0]e^{-j\omega n} = e^{-j\omega n_0}.$$

Herhangi bir giriş işareti için sistem çıkışı

$$Y(e^{j\omega}) = e^{-j\omega n_0}X(e^{j\omega}).$$

Örnek:

Aşağıda frekans cevabı verilen AGS nin impuls cevabını bulalım.

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$
$$= \frac{\sin \omega_c n}{\pi n},$$

Örnek:

$$h[n] = \alpha^n u[n],$$

$$x[n] = \beta^n u[n],$$

şeklinde impuls cevabı ve giriş işareti verilen sistemin çıkışını bulalım.

$$H(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}}$$

$$X(e^{j\omega})=\frac{1}{1-\beta e^{-j\omega}},$$

Kaynak: Oppenheim, Willsky "Signals and Systems"

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}) = \frac{1}{(1-\alpha e^{-j\omega})(1-\beta e^{-j\omega})}.$$

Rezidü yöntemi ile,

$$Y(e^{j\omega}) = \frac{A}{1 - \alpha e^{-j\omega}} + \frac{B}{1 - \beta e^{-j\omega}}.$$

$$A = \frac{\alpha}{\alpha - \beta}, \quad B = -\frac{\beta}{\alpha - \beta}.$$

$$y[n] = \frac{\alpha}{\alpha - \beta} \alpha^n u[n] - \frac{\beta}{\alpha - \beta} \beta^n u[n]$$

$$= \frac{1}{\alpha - \beta} [\alpha^{n+1} u[n] - \beta^{n+1} u[n]].$$

Çarpım Özelliği:

$$Y(e^{j\omega})=\frac{1}{2\pi}\int_{2\pi}X_1(e^{j\theta})X_2(e^{j(\omega-\theta)})d\theta.$$

Fourier Dönüşümünün Özellikleri

Property	Aperiodic Signal	Fourier Transform			
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Expansion	$x[n]$ $y[n]$ $ax[n] + by[n]$ $x[n - n_0]$ $e^{j\omega_0 n}x[n]$ $x^*[n]$ $x[-n]$ $x[-n]$ $x[k][n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$	$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π $aX(e^{j\omega}) + bY(e^{j\omega})$ $e^{-j\omega n_0}X(e^{j\omega})$ $X(e^{j(\omega-\omega_0)})$ $X^*(e^{-j\omega})$ $X(e^{-j\omega})$ $X(e^{-j\omega})$			
Convolution	x[n] * y[n]	$X(e^{jw})Y(e^{jw})$			
Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$			
Differencing in Time	x[n] - x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$			
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{(1-e^{-j\omega})X(e^{j\omega})}{1-e^{-j\omega}}X(e^{j\omega})$			
Differentiation in Frequency	nx[n]	$+\pi X(e^{\beta l}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$			
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im m\{X(e^{j\omega})\} = -\Im m\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \not \propto X(e^{j\omega}) = - \not \propto X(e^{-j\omega}) \end{cases}$			
Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even			
Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd			
Even-odd Decomposition	$x_c[n] = \mathcal{E}_{\nu}\{x[n]\} [x[n] \text{ real}]$	$\Re e\{X(e^{j\omega})\}$			
of Real Signals	$x_n[n] = Od\{x[n]\}$ [x[n] real]	$j \mathcal{G}m\{X(e^{j\omega})\}$			
Parseval's Relation for Aperiodic Signals					
$\sum_{n=-\infty}^{+\infty} x[n] ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$					

Fourier Dönüşüm Çiftleri

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
e ^{jus} ū ⁿ	$2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
cos ω ₀ π	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
sinω ₀ π	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1 - ae^{-j\omega}}$	_
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{\sin Wn}{\pi n} = \frac{w}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	_
δ[π]	ı	_
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	_

	Continuous time		Discrete time		
	Time domain	Frequency domain	Time domain	Frequency domain	
Fourier	$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$a_k = \frac{1}{T_0} \int_{T_0} x(t)e^{-jkw_0 t}$	$x[n] = \sum_{k=(N)} a_k e^{jk(2\pi/N)n}$	$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$	
Series	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time duality periodic in time	discrete frequency periodic in frequency	
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n}$	$X(e^{j\omega)} = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$	
	continuous time aperiodic in time	continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency	

Fark denklemlerinin Fourier Domeninde Modellenmesi

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k].$$

Fark denkleminde 2 tarafın da AZFD (Ayrık-Zamanlı Fourier dönüşümü) alınarak, sistemin frekans cevabı

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}.$$

$$\sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega}),$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}.$$

Örnek:

Fark denklemi

$$y[n] - ay[n-1] = x[n],$$

şeklinde verilen sistemin impuls cevabını bulalım.

$$H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}.$$

$$h[n] = a^n u[n].$$

Örnek:

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n].$$

Fark denklemi yukarıda verilen sistemin impuls cevabı

$$H(e^{j\omega}) = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-j2\omega}}.$$

$$H(e^{j\omega}) = \frac{2}{(1-\frac{1}{2}e^{-j\omega})(1-\frac{1}{4}e^{-j\omega})}.$$

$$H(e^{j\omega}) = \frac{4}{1 - \frac{1}{2}e^{-j\omega}} - \frac{2}{1 - \frac{1}{4}e^{-j\omega}}.$$

$$h[n] = 4\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{4}\right)^n u[n].$$

Örnek:

$$x[n] = \left(\frac{1}{4}\right)^n u[n].$$

girişi için önceki örnekte verilen sistemin çıkışını bulalım.

$$\begin{split} Y(e^{j\omega}) &= H(e^{j\omega})X(e^{j\omega}) = \left[\frac{2}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})}\right] \left[\frac{1}{1 - \frac{1}{4}e^{-j\omega}}\right] \\ &= \frac{2}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-c\omega})^2}. \end{split}$$

$$Y(e^{j\omega}) = \frac{B_{11}}{1 - \frac{1}{4}e^{-j\omega}} + \frac{B_{12}}{(1 - \frac{1}{4}e^{-j\omega})^2} + \frac{B_{21}}{1 - \frac{1}{2}e^{-j\omega}},$$

$$Y(e^{j\omega}) = -\frac{4}{1 - \frac{1}{4}e^{-j\omega}} - \frac{2}{(1 - \frac{1}{4}e^{-j\omega})^2} + \frac{8}{1 - \frac{1}{2}e^{-j\omega}}.$$

$$y[n] = \left\{ -4\left(\frac{1}{4}\right)^n - 2(n+1)\left(\frac{1}{4}\right)^n + 8\left(\frac{1}{2}\right)^n \right\} u[n].$$