#### 1. Introduction

Forest fires are a major environmental issue, causing significant damage to ecosystems, property, and human life. Predicting the burnt area of a forest fire is important for resource planning and disaster management.

This project explores the use of **Support Vector Regression (SVR)** to predict the burnt area of forest fires using the publicly available **forestfires.csv** dataset.

#### 2. Dataset Description

The dataset forestfires.csv contains meteorological and environmental attributes that influence forest fires.

## **Key Features:**

- X, Y: Spatial coordinates within the forest map.
- month, day: Temporal attributes of the fire occurrence.
- FFMC, DMC, DC, ISI: Fire weather indices.
- **temp, RH, wind, rain:** Weather conditions (temperature, relative humidity, wind speed, rainfall).
- area: Target variable burnt area of the forest (in hectares).

The dataset is relatively small but contains useful predictors for understanding fire behavior.



## 3. Data Loading and Preprocessing

The dataset was loaded into a pandas DataFrame for analysis.

### Steps:

- 1. **Missing Values:** Checked for missing values none were found.
- 2. Categorical Encoding: Categorical variables (month, day) were one-hot encoded.
- 3. **Feature Scaling:** All numerical features were standardized using **StandardScaler** to ensure equal contribution during model training.

This preprocessing ensured the data was clean and ready for machine learning.



### 4. Data Splitting

- The dataset was divided into **Training (80%)** and **Testing (20%)** subsets.
- Splitting ensured that model evaluation was done on unseen data for fair performance assessment.

```
from sklearn.model_selection import train_test_split

X = df_encoded.drop('area', axis=1)
y = df_encoded['area']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

## 5. Model Building and Training

Initially, an attempt was made to use **Support Vector Classification (SVC)**. However, since the target variable area is **continuous**, classification was not suitable.

#### Therefore:

- A Support Vector Regressor (SVR) was selected.
- The SVR model was trained on the **training set** using default parameters.

```
from sklearn.svm import SVR

svm_model = SVR()
svm_model.fit(X_train, y_train)

TO SVR ()

SVR()
```

#### 6. Model Evaluation

The trained model was evaluated on the **test set** using two standard regression metrics:

- Mean Squared Error (MSE): 2.95
- R-squared (R<sup>2</sup>): -0.013

### Interpretation:

• The low R<sup>2</sup> score (negative) indicates that the model performs worse than a baseline mean predictor.

 Predictions were not reliable and failed to capture the variability of burnt area effectively.

```
from sklearn.metrics import mean_squared_error, r2_score

y_pred = svm_model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error (MSE): {mse}')
print(f'R-squared (R2): {r2}')

Mean Squared Error (MSE): 2.9544514724505935
R-squared (R2): -0.013633299733563309
```

#### 7. Visualization

To visualize performance, a **scatter plot** of actual vs. predicted burnt area was generated.

- The plot revealed that predicted values were **poorly aligned** with actual values.
- This confirmed the **weak predictive power** of the current SVR model.

```
import matplotlib.pyplot as plt

plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, alpha=0.5)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)
plt.xlabel("Actual Area")
plt.ylabel("Predicted Area")
plt.title("Actual vs. Predicted Area (SVR)")
plt.show()
```



#### 8. Conclusion

The SVR model was implemented successfully but yielded **poor predictive performance**:

- MSE ≈ 2.95
- $R^2 \approx -0.01$

This suggests that the current SVR configuration is **not effective** for predicting burnt area in the given dataset.

## 9. Recommendations & Next Steps

To improve performance, the following strategies are suggested:

## 1. Hyperparameter Tuning

- Experiment with SVR kernels (linear, poly, rbf)
- o Adjust parameters (C, epsilon, gamma)

# 2. Feature Engineering

- Apply log-transform to the skewed target variable (area)
- o Create interaction features (e.g., temp × wind, rain × humidity)

# 3. Alternative Algorithms

- o Tree-based models (Random Forest, Gradient Boosting)
- Ensemble methods
- o **Neural Networks** for capturing complex relationships

### 10. References

- Cortez, Paulo, and Aníbal Morais. "A Data Mining Approach to Predict Forest Fires using Meteorological Data." *Proceedings of the 13th Portuguese Conference on Artificial Intelligence* (2007).
- Scikit-learn Documentation: https://scikit-learn.org