6. Reasoning Under Uncertainty, Part III: Inference in Bayesian networks

Putting the Machinery to Practical Use

Álvaro Torralba

Fall 2022

Thanks to Thomas D. Nielsen and Jörg Hoffmann for slide sources

Our Agenda for This Topic

- → Our treatment of the topic "Probabilistic Reasoning" consists of Chapters 4-6.
 - Chapter 4: All the basic machinery at use in Bayesian networks.
 - → Sets up the framework and basic operations.
 - Chapter 5: Bayesian networks: What they are and how to build them.
 - ightarrow The most wide-spread and successful practical framework for probabilistic reasoning.
 - This Chapter: Bayesian networks: how to use them.
 - \rightarrow How to use Bayesian Networks to answer our questions.

Reminder: Our Machinery

1. Graph captures variable dependencies: (Variables X_1, \ldots, X_n)

- \rightarrow Given evidence e, want to know $\mathbf{P}(X \mid e)$. Remaining vars: \mathbf{Y} .
- 2. Normalization+Marginalization:

$$P(X \mid \mathbf{e}) = \alpha P(X, \mathbf{e}) = \alpha \sum_{\mathbf{y} \in \mathbf{Y}} P(X, \mathbf{e}, \mathbf{y})$$

- \rightarrow A sum over atomic events!
- **3. Chain rule:** X_1, \ldots, X_n consistently with dependency graph.

$$\mathbf{P}(X_1,\ldots,X_n) = \mathbf{P}(X_n \mid X_{n-1},\ldots,X_1) * \mathbf{P}(X_{n-1} \mid X_{n-2},\ldots,X_1) * \cdots * \mathbf{P}(X_1)$$

- **4. Exploit conditional independence:** Instead of $P(X_i | X_{i-1}, ..., X_1)$, we can use $P(X_i | Parents(X_i))$.
- \rightarrow Bayesian networks!

Reminder: Recovering the Full Joint Probability Distribution

"A Bayesian network is a methodology for representing the full joint probability distribution."

 \rightarrow How to recover the full joint probability distribution $\mathbf{P}(X_1,\ldots,X_n)$ from $BN=(\{X_1,\ldots,X_n\},E)$?

Chain rule: For any ordering X_1, \ldots, X_n , we have:

$$\mathbf{P}(X_1, \dots, X_n) = \mathbf{P}(X_n \mid X_{n-1}, \dots, X_1) \mathbf{P}(X_{n-1} \mid X_{n-2}, \dots, X_1) \dots \mathbf{P}(X_1)$$

Choose X_1, \ldots, X_n consistent with BN: $X_j \in Parents(X_i) \Longrightarrow j < i$.

Exploit conditional independence: With BN assumption (A), instead of $P(X_i \mid X_{i-1} \dots, X_1)$ we can use $P(X_i \mid Parents(X_i))$:

$$\mathbf{P}(X_1,\ldots,X_n) = \prod_{i=1}^n \mathbf{P}(X_i \mid Parents(X_i))$$

The distributions $P(X_i \mid Parents(X_i))$ are given by BN assumption (B).

 \rightarrow Same for atomic events $P(x_1,\ldots,x_n)$.

Reminder: Recovering a Probability for John, Mary, and the Alarm

$$P(j, m, a, \neg b, \neg e) =$$

$$=$$

Recovering a Probability for John, Mary, and the Alarm

$$P(j, m, a, \neg b, \neg e) =$$

$$=$$

Our Agenda for This Chapter

- Probabilistic Inference Tasks: What problems do we want to solve?
 - \rightarrow Before doing algorithms that answer, we need to understand what the questions are about!
- Exact Inference: Naive Enumeration: A basic method to solve the probabilistic inference tasks
 - \rightarrow A first basic method we can use (but does not scale very well)
- Exact Inference: Variable Elimination: A more clever way of using the structure of the Bayesian Network to our advantage!
 - \rightarrow How to obtain the exact answer to our questions!
- Naive Bayes Models: A very simple Bayesian model that can always be computed quickly
 - \rightarrow A very simple case!
- Approximate Inference via Sampling: What to do when computing the exact answer is too expensive?
 - →We can approximate the solution via sampling methods!

Inference for Mary and John

→ Observe evidence variables and draw conclusions on query variables.

What is P(Burglary | johncalls)?

What is $P(Burglary \mid johncalls, marycalls)$?

Probabilistic Inference Tasks in Bayesian Networks

Definition (Probabilistic Inference Task). Given random variables X_1, \ldots, X_n , a probabilistic inference task consists of a set $\mathbf{X} \subseteq \{X_1, \ldots, X_n\}$ of query variables, a set $\mathbf{E} \subseteq \{X_1, \ldots, X_n\}$ of evidence variables, and an event \mathbf{e} that assigns values to \mathbf{E} . We wish to compute the posterior probability distribution $\mathbf{P}(\mathbf{X} \mid \mathbf{e})$.

Notes:

- $\mathbf{Y} := \{X_1, \dots, X_n\} \setminus (\mathbf{X} \cup \mathbf{E})$ are the hidden variables.
- We assume that a BN for X_1, \ldots, X_n is given.
- In the remainder, for simplicity, $\mathbf{X} = \{X\}$ is a singleton.

Example: In $P(Burglary \mid johncalls, marycalls)$, X = Burglary, e = johncalls, marycalls, and $Y = \{Alarm, EarthQuake\}$.

Simplifying the Problem by Using Normalization

According to the definition of conditional probability:

$$P(X \mid \mathbf{E} = \mathbf{e}) = \frac{P(X, \mathbf{E} = \mathbf{e})}{P(\mathbf{E} = \mathbf{e})}$$

It is sufficient to compute for each $x \in D_X$ the value

$$P(X = x, \mathbf{E} = \mathbf{e}).$$

Together with

$$P(\mathbf{E} = \mathbf{e}) = \sum_{x \in D_X} P(X = x, \mathbf{E} = \mathbf{e})$$

this gives the desired posterior distribution.

 \rightarrow To predict the desired conditional probability $P(X \mid \mathbf{E} = \mathbf{e})$, it suffices for us to compute the probability of (non-atomic) events: $P(X \mid \mathbf{E} = \mathbf{e})$!

Notation: As $\alpha = \frac{1}{\sum_{x \in D_X} P(X = \mathbf{x}, \mathbf{E} = \mathbf{e})}$ is easily derived from $P(X \mid \mathbf{E} = \mathbf{e})$, we simply write $P(X \mid \mathbf{E} = \mathbf{e}) = \alpha P(X \mid \mathbf{E} = \mathbf{e})$ instead of $\frac{P(X, \mathbf{E} = \mathbf{e})}{P(\mathbf{E} = \mathbf{e})}$.

Marginalization: Inference as Summation

Want to compute: $P(X = x, \mathbf{E} = \mathbf{e})$

Problem: We do not know the value of hidden variables Y

We sum over all possible values of the hidden variables!

Let X be the variable of interest, $\mathbf E$ the evidence variables, and $\mathbf Y=Y_1,\dots,Y_l$ the remaining variables in the network not belonging to $X\cup \mathbf E$. Then

$$P(X = x, \mathbf{E} = \mathbf{e}) =$$

Simplified notation:

$$P(x, \mathbf{e}) =$$

Naive Enumeration Example

Find
$$P(B|a,f,g,h) = \frac{P(B,a,f,g,h)}{P(a,f,g,h)}$$

We can if we have access to P(A, B, C, D, E, F, G, H)

 \rightarrow Reminder: We can recover the full joint probability distribution from our BN!

Inserting evidence we get:

$$P(B \mid \boldsymbol{a}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) = \alpha \cdot \sum_{C, D, E} P(\boldsymbol{a}, B, C, D, E, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$$

and

$$\frac{1}{\alpha} = P(\mathbf{a}, \mathbf{f}, \mathbf{g}, \mathbf{h}) = \sum_{\mathbf{B}} P(\mathbf{B}, \mathbf{a}, \mathbf{f}, \mathbf{g}, \mathbf{h})$$

Inference by Enumeration: The Principle (A Reminder!)

Given evidence e, want to know $P(X \mid e)$. Hidden variables: Y.

- 1. Bayesian network BN captures variable dependencies.
- 2. Normalization+Marginalization.

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e})$$
; if $\mathbf{Y} \neq \emptyset$ then $\mathbf{P}(X \mid \mathbf{e}) = \alpha \sum_{\mathbf{y} \in \mathbf{Y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$

- \rightarrow Recover the summed-up probabilities $\mathbf{P}(X, \mathbf{e}, \mathbf{y})$ from BN!
- **3. Chain rule.** Order X_1, \ldots, X_n consistent with BN.

$$\mathbf{P}(X_1,\ldots,X_n) = \mathbf{P}(X_n \mid X_{n-1},\ldots,X_1)\mathbf{P}(X_{n-1} \mid X_{n-2},\ldots,X_1)\ldots\mathbf{P}(X_1)$$

- **4. Exploit conditional independence.** Instead of $P(X_i \mid X_{i-1}, ..., X_1)$, use $P(X_i \mid Parents(X_i))$.
- \rightarrow Given a Bayesian network BN, probabilistic inference tasks can be solved as sums of products of conditional probabilities from BN.
- \rightarrow Sum over all value combinations of hidden variables.

Inference by Enumeration: John and Mary

Inference by Enumeration: John and Mary, ctd.

The Evaluation of $P(b \mid j, m)$, as a "Search Tree"

 \rightarrow Inference by enumeration = a tree with "sum nodes" branching over values of hidden variables, and with non-branching "multiplication nodes".

Inference by Enumeration: Pseudo-Code

 \rightarrow With bn.VARS being a variable ordering consistent with bn:

```
function ENUMERATION-ASK(X, \mathbf{e}, bn) returns a distribution over X
   inputs: X, the query variable
             e, observed values for variables E
             bn, a Bayes net with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y} / * \mathbf{Y} = hidden \ variables */
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
       \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(bn.\text{VARS}, \mathbf{e}_{x_i})
            where \mathbf{e}_{x_i} is \mathbf{e} extended with X = x_i
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   Y \leftarrow \text{FIRST}(vars)
   if Y has value y in e
       then return P(y \mid parents(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), \mathbf{e})
       else return \sum_{y} P(y \mid parents(Y)) \times \text{Enumerate-All(Rest(}vars), \mathbf{e}_{y})
            where \mathbf{e}_{y} is \mathbf{e} extended with Y = y
```

Inference by Enumeration: Properties

Inference by Enumeration:

- Evaluates the tree in a depth-first manner.
- Space Complexity: Linear in the number of variables.
- Time Complexity:

Bad News: Not in general.

- Probabilistic inference is #P-hard.
- #P is harder than NP (i.e., $NP \subseteq \#P$).

But: Variable Elimination.

- Improves on inference by enumeration through (A) avoiding repeated computation, and (B) avoiding irrelevant computation.
- In some special cases, variable elimination runs in polynomial time.

Variable Elimination: Sketch of Ideas

- (A) Avoiding repeated computation: Evaluate expressions from right to left, storing all intermediate results. For query $P(B \mid j, m)$:
 - ① CPTs of BN yield factors (probability tables): $\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B) \sum_{v_E} \underbrace{P(v_E)}_{\mathbf{f}_2(E)} \underbrace{\sum_{v_A} \mathbf{P}(v_A \mid B, v_E)}_{\mathbf{f}_3(A, B, E)} \underbrace{P(j \mid v_A)}_{\mathbf{f}_4(A)} \underbrace{P(m \mid v_A)}_{\mathbf{f}_5(A)}$
 - 2 Then the computation is performed in terms of factor product and summing out variables from factors: $\mathbf{P}(B \mid j, m) = \alpha \mathbf{f}_1(B) \times \sum_{v_E} \mathbf{f}_2(E) \times \sum_{v_A} \mathbf{f}_3(A, B, E) \times \mathbf{f}_4(A) \times \mathbf{f}_5(A)$
- (B) Avoiding irrelevant computation: Repeatedly remove hidden variables that are leaf nodes. For query $P(JohnCalls \mid burglary)$:

$$\mathbf{P}(J \mid b) = \alpha P(b) \sum_{v_E} P(v_E) \sum_{v_A} P(v_A \mid b, v_E) \mathbf{P}(J \mid v_A) \sum_{v_M} P(v_M \mid v_A)$$

 \rightarrow The rightmost sum equals 1 and can be dropped.

Questionnaire

Question!

Say BN is the Bayesian network above. How can we compute $P(dog \mid loudnoise)$?

$$P(d \mid ln) =$$

(A):
$$\alpha \sum_{v_{LC}} P(v_{LC} \mid d) P(\ln \mid d)$$

(B):
$$\alpha \sum_{v_{LC}} P(v_{LC} \mid d) P(\ln \mid d) P(d)$$

(C):
$$\alpha P(\ln \mid d) P(d) \sum_{v_{LC}} P(v_{LC} \mid d)$$

(D):
$$\alpha P(\ln \mid d) P(d)$$

Example

$$P(A, D = f) =$$

Naive Enumeration:

$$\sum_{b \in \{t, f\}} \sum_{c \in \{t, f\}} P(B = b, A, C = c, D = f) = \sum_{b \in \{t, f\}} \sum_{c \in \{t, f\}} P(B = b) P(A \mid B = b) P(C = c \mid B = b) P(D = f \mid A, C = c)$$

Observation 1: $P(B = b)P(A \mid B = b)$ does not depend on C, so

$$= \sum_{b \in \{t, f\}} P(B = b) P(A \mid B = b) \sum_{c \in \{t, f\}} P(C = c \mid B = b) P(D = f \mid A, C = c)$$

Example continued

$\mid I$	3
t	f
.5	.5
	_

	P	1
B	t	f
t	.7	.3
f	.1	.9

	(7
B	t	f
t	.7	.3
f	.2	.8

			D		
-	A	C	t	f	
	t	t	.9	.1	
	t	f	.7	.3	
	f	t	.8	.2	
	f	f	.4	.6	

Observation 2: Let's precompute first factor F_1

$$\sum_{b} P(B = b)P(A \mid B = b) \sum_{c} P(C = c \mid B = b)P(D = f \mid A, C = c) = \sum_{b} P(B = b)P(A \mid B = b)F_{1}(B = b, A) = F_{2}(A)$$

Is F_1 a single numerical value?

Variable Elimination

The procedure operates on **factors**: functions of subsets of variables

Definition (Factor). A factor $F(V_1, ..., V_k)$ is a function mapping each combination of values of the variables $V_1, ..., V_k$ to a number.

 \rightarrow Factors are not necessarily CPTs as numbers do not need to sum up to 1.

Required operations on factors:

- Restriction (setting selected variables to specific values)
- Multiplication (join tables and multiply the probabilities)
- Marginalization (summing out selected variables)

Restriction (of variable D to value D = f):

		F(A, C, D)					
₄	C	+	$D_{\mathbf{f}}$		A	C	$F_2(A,C)$
<u>Λ</u>	<u>.</u>	0	<u> </u>		t	t	.1
t	t	.9	.1		+	f	3
t	f	.7	.3		, c	- :	.5
f	+	8	2		Т	τ	.2
'			.2		f	f	.6
†	Ť	.4	.ხ				

Variable Elimination

The procedure operates on **factors**: functions of subsets of variables

Definition (Factor). A factor $F(V_1, ..., V_k)$ is a function mapping each combination of values of the variables $V_1, ..., V_k$ to a number.

 \rightarrow Factors are not necessarily CPTs as numbers do not need to sum up to 1.

Required operations on factors:

- Restriction (setting selected variables to specific values)
- Multiplication (join tables and multiply the probabilities)
- Marginalization (summing out selected variables)

Multiplication + Marginalization (of variable C):

B	C	$F_1(B,C)$
t	t	.7
t	f	.3
f	t	.2
f	f	.8

			7			
A	C	$F_2(A,C)$		b	a	F(B,A)
t	t	.1		t	t	$.7 \cdot .1 + .3 \cdot .3 = .16$
t	f	.3		t	f	$.7 \cdot .2 + .3 \cdot .6 = .32$
f	t	.2		f	t	$.2 \cdot .1 + .8 \cdot .3 = .26$
f	f	.6		f	f	$.2 \cdot .2 + .8 \cdot .6 = .52$

Variable Elimination Algorithm

- Factors = CPT in BN
- 2 For all variables in the evidence, restrict all factors with the observed value
- **3** Fix any order of the remaining variables, X_1, \ldots, X_n .
- **6** for i := 1, ..., n do
 - $\mathcal{F} = \{F \mid F \in \mathsf{Factors}, F \mathsf{ depends on } X_i\}$
 - **b** $T = \pi_{F \in \mathcal{F}}$ (Compute product of factors)
 - $F_{new} = Marginalize(T, X_i)$
 - **6** Factors = Factors $\setminus \mathcal{F} \cup \{N\}$ (Replace all factors \mathcal{F} by new factor N)

Variable Elimination Algorithm: Alarm Example

Bad ordering for computing P(M, B = t): A, J, E

- Factors = CPT in BN
- For all variables in the evidence, restrict all factors with the observed value
- **3** Fix any order of the remaining variables, X_1, \ldots, X_n .
- **4** for i := 1, ..., n do
 - $\mathcal{F} = \{F \mid F \in \mathsf{Factors}, F \mathsf{ depends on } X_i\}$
 - **b** $T = \pi_{F \in \mathcal{F}}$ (Compute product of factors)
 - $F_{new} = Marginalize(T, X_i)$
 - **6** Factors = Factors $\setminus \mathcal{F} \cup \{N\}$ (Replace all factors \mathcal{F} by new factor N)

Alarm Example

Bad ordering for computing P(MC, B = t): A, J, E

$$\sum_{eq \in \{t,f\}} \sum_{jc \in \{t,f\}} P(B=t) P(EQ=eq) P(A=a \mid B=t, EQ=eq) P(JC=jc \mid A=a) P(MC \mid A=a) = \sum_{eq \in \{t,f\}} \sum_{jc \in \{t,f\}} P(B=t) P(EQ=eq) F_1(eq,jc,MC) = \sum_{eq \in \{t,f\}} P(B=t) P(EQ=eq) F_2(eq,MC) = P(B=t) F_3(MC)$$

Largest factor (F_1) is function of 3 variables!

Alarm Example continued

Question!

What's the maximum number of columns of the largest table generated by variable elimination under ordering: J,E,A?

(A): 1

(B): 2

(C): 3

(D): 4

Introduction Inference Naive Enumeration Variable Elimination Naive Bayes Approximate Inference Conclusion 000000 00 00000000 00 00000000 00

Alarm Example continued

Variable Elimination Runtime

An important easy case:

• A graph is called singly connected, or a polytree, if there is at most one undirected path between any two nodes in the graph.

 \rightarrow Is our BN for Mary & John a polytree?

For singly connected network: any elimination order that "peels" variables from outside will only create factors of only one variable.

The complexity of inference is therefore linear in the total size of the network (= combined size of all conditional probability tables).

Naive Bayes Model

Example: Spam filter

- A single query variable: Spam
- Many observable features (e.g. words appearing in the body of the message):
 abacus,...,informatics, pills,..., watch,..., zytogenic

Network Structure:

- Inference with large number of variables possible
- Essentially how Thunderbird spam filter works

Naïve Bayes models

We want the posterior probability of the hypothesis variable Hyp given the observations $\{Inf_1 = e_1, \dots, Inf_n = e_n\}$:

$$P(\mathsf{Hyp}|\mathsf{Inf}_1 = e_1, \dots, \mathsf{Inf}_n = e_n) = \frac{P(\mathsf{Inf}_1 = e_1, \dots, \mathsf{Inf}_n = e_n|\mathsf{Hyp})P(\mathsf{Hyp})}{P(\mathsf{Inf}_1 = e_1, \dots, \mathsf{Inf}_n = e_n)}$$

$$= \alpha \cdot P(\mathsf{Inf}_1 = e_1|\mathsf{Hyp}) \cdot \dots \cdot P(\mathsf{Inf}_n = e_n|\mathsf{Hyp})P(\mathsf{Hyp})$$

Note: The model assumes that the information variables are independent given the hypothesis variable.

Sampling Inference

Using a BN as a Sample Generator

Observation: can use Bayesian network as random generator that produces states $\mathbf{X} = \mathbf{x}$ according to distribution P defined by the network.

 \rightarrow We just sample a random value for each variable always picking a value for parents(X) before picking a value for X

Example:

- Generate random numbers r_A, r_B uniformly from [0,1].
- Set A = t if $r_A \leq .2$ and A = f else.
- Depending on the value of A and r_B set B to t or f.

Random generation of one state: linear in size of network.

Sampling Inference

Approximate Inference from Samples

To compute an approximation of $P(\mathbf{E} = \mathbf{e})$ (\mathbf{E} a subset of the variables in the Bayesian network):

- generate a (large) number of random states
- ullet count the frequency of states in which ${f E}={f e}.$

Accuracy

Hoeffding Bound

- p: true probability $P(\mathbf{E} = \mathbf{e})$
- ullet s: estimate for p from sample of size n
- ϵ : an error bound > 0.

Then

$$P(|s-p| > \epsilon) \le 2e^{-2n\epsilon^2}$$

Required Sample Size

To obtain an estimate that with probability at most δ has an error greater than ϵ , it is sufficient to take

$$n = -ln(\delta/2)/(2\epsilon^2)$$
 samples.

Example

To get an error ϵ of less than 0.1 in 95% of the cases $(\delta = 0.05)$, we need:

$$n > -ln(0.05/2)/(2 \cdot 0.1^2) \approx 184$$
 samples

How many samples do we need if the error should be less than 0.01? 18444 samples

Rejection Sampling

The simplest approach: Rejection Sampling

Approximation for $P(A = a \mid \mathbf{E} = \mathbf{e})$:

Sampling from the conditional distribution

Problem with rejection sampling: samples with $\mathbf{E} \neq \mathbf{e}$ are useless!

Ideally: would draw samples directly from the conditional distribution $P(\mathbf{A} \mid \mathbf{E} = \mathbf{e})$.

A Wrong Sampling Method

First idea (not to be followed)

- Fix evidence variables to their observed states.
- Sample from non-evidence variables.
- Ount frequency as before

Problem: This gives a sampling distribution

$$\prod_{X \in \mathbf{X} \setminus \mathbf{E}} P(X \mid \mathrm{pa}(X) \setminus \mathbf{E}, \mathrm{pa}(X) \cap \mathbf{E})$$

somewhere between $P(\mathbf{X})$ and $P(\mathbf{X} \mid \mathbf{e})$.

Likelihood Weighting

We would like to sample from

$$P(\mathbf{X}, \mathbf{e}) = \underbrace{\prod_{X \in \mathbf{X} \setminus \mathbf{E}} P(X \mid \mathrm{pa}(X) \setminus \mathbf{E}, \mathrm{pa}(X) \cap \mathbf{E})}_{\text{Part 1}} \cdot \underbrace{\prod_{E \in \mathbf{E}} P(E = e \mid \mathrm{pa}(E) \setminus \mathbf{E}, \mathrm{pa}(E) \cap \mathbf{E})}_{\text{Part 2}}$$

So instead weigh each generated sample with a weight corresponding to Part 2.

Estimate $P(X = x \mid \mathbf{e})$ as

$$\hat{P}(X = x \mid \mathbf{e}) = \frac{\sum_{sample:X=x} w(sample)}{\sum_{sample} w(sample)},$$

where

$$w(sample) = \prod_{E \in \mathbf{E}} P(E = e \mid pa(E) = \pi)$$
 (Part 2)

and π is the values of pa(E) under sample and e.

Likelihood Sampling: Example

Sample state where B=t

- ullet Initialize weight W=1
- Generate random number r_A uniformly from [0,1].
- Set A = t if $r_1 \leq .2$ and A = f else.
- Set B to f. Update weight depending on the value of A to: $P(B=f\mid A=a)$

So:

- \bullet 20% of the time we sample $\langle A=t, B=f \rangle$ with weight
- and 80% of the time we sample $\langle A=f,B=f\rangle$ with weight

Importance Sampling I

Introduction

000000

Importance sampling

Likelihood weighting is an instance of importance sampling, where

- samples are weighted and can come from (almost) any proposal distribution.
- S: the set of all variables defining possible worlds (includes the variables A and \mathbf{E}).
- Possible worlds then are tuples s of values

$$P(A = a \mid \mathbf{E} = \mathbf{e}) = \sum_{\mathbf{s} \in \Omega} P(A = a \mid \mathbf{S} = \mathbf{s}) P(\mathbf{S} = \mathbf{s} \mid \mathbf{E} = \mathbf{e})$$

Observe that:

- ullet $P(\mathbf{S} = \mathbf{s} \mid \mathbf{E} = \mathbf{e})$ are the "green numbers"
- $P(A = a \mid \mathbf{S} = \mathbf{s})$ is 0 or 1, depending on whether A = a in \mathbf{s} .

Álvaro Torralba

Machine Intelligen

Chapter 6: Bayesian Networks: Inference

Importance Sampling II

If s_1, \ldots, s_n are sampled according to $P(S = s \mid E = e)$, then

$$P(A = a \mid \mathbf{E} = \mathbf{e}) = \sum_{\mathbf{s} \in \Omega} P(A = a \mid \mathbf{S} = \mathbf{s}) P(\mathbf{S} = \mathbf{s} \mid \mathbf{E} = \mathbf{e}) \approx \frac{1}{n} \sum_{i=1}^{n} P(A = a \mid \mathbf{S} = \mathbf{s}_i)$$

Let Q be any probability distribution according to which we can sample possible worlds s_i (called a **proposal distribution**). Then:

$$\sum_{\mathbf{s} \in \Omega} P(A = a \mid \mathbf{S} = \mathbf{s}) P(\mathbf{S} = \mathbf{s} \mid \mathbf{E} = \mathbf{e}) = \sum_{\mathbf{s} \in \Omega} P(A = a \mid \mathbf{S} = \mathbf{s}) \frac{P(\mathbf{S} = \mathbf{s} \mid \mathbf{E} = \mathbf{e})}{Q(\mathbf{S} = \mathbf{s})} Q(\mathbf{S} = \mathbf{s})$$

If s_1, \ldots, s_n are sampled according to Q, then the right side is approximated by

$$\frac{1}{n} \sum_{i=1}^{n} P(A = a \mid \mathbf{S} = \mathbf{s}_i) \frac{P(\mathbf{S} = \mathbf{s}_i \mid \mathbf{E} = \mathbf{e})}{Q(\mathbf{S} = \mathbf{s}_i)}$$

which then is also an approximation of $P(A = a \mid \mathbf{E} = \mathbf{e})$.

Importance Sampling III

Importance Sampling

- Generate random samples s_i according to some proposal distribution Q.
- Estimate $P(A = a \mid \mathbf{E} = \mathbf{e})$ by $\frac{1}{n} \sum_{i=1}^{n} P(A = a \mid \mathbf{S} = \mathbf{s}_i) \frac{P(\mathbf{S} = \mathbf{s}_i \mid \mathbf{E} = \mathbf{e})}{Q(\mathbf{S} = \mathbf{s}_i)}$

Observations and Issues

- $P(A = a \mid \mathbf{S} = \mathbf{s}_i)$ is still only 0-1-valued
- $P(S = s_i \mid E = e)$ is usually easy to compute, because s_i contains a value for all variables.
- $P(S = s_i \mid E = e) = 0$ if s_i does not satisfy E = e, i.e. samples that do not comply with the evidence don't count.
- The best approximation is obtained when Q is close to (identical to) $P(\mathbf{S} \mid \mathbf{E} = \mathbf{e})$.

Summary

- Bayesian networks (BN) are a wide-spread tool to model uncertainty, and to reason about it. A BN represents conditional independence relations between random variables. It consists of a graph encoding the variable dependencies, and of conditional probability tables (CPTs).
- Probabilistic inference requires to compute the probability distribution of a set of query variables, given a set of evidence variables whose values we know. The remaining variables are hidden.
- Inference by enumeration takes a BN as input, then applies
 Normalization+Marginalization, the Chain rule, and exploits conditional independence.
 This can be viewed as a tree search that branches over all values of the hidden variables.
- Variable elimination avoids unnecessary computation. It runs in polynomial time for poly-tree BNs. In general, exact probabilistic inference is #P-hard. Approximate probabilistic inference methods exist.
- When exact inference is infeasible, approximate inference can be used to obtaain estimates faster.
- Approximate inference can be done via sampling from the distribution the BN represents.
 We can apply a weighting function to correct our estimations when we are interested in a diffrent distribution.

Topics We Didn't Cover Here

- More advance inference by sampling: A whole zoo of methods for doing this exists.
- Clustering: Pre-combining subsets of variables to reduce the runtime of inference.
- Compilation to SAT: More precisely, to "weighted model counting" in CNF formulas.
 Model counting extends DPLL with the ability to determine the number of satisfying
 interpretations. Weighted model counting allows to define a mass for each such
 interpretation (= the probability of an atomic event).
- Dynamic BN: BN with one slice of variables at each "time step", encoding probabilistic behavior over time.
- Relational BN: BN with predicates and object variables.
- First-order BN: Relational BN with quantification, i.e., probabilistic logic. E.g., the BLOG language developed by Stuart Russel and co-workers.

Reading

- Chapter 8: Reasoning with Uncertainty from the book "Artificial Intelligence: Foundations of Computational Agents" (2nd edition). In particular:
 - Section 8.4 "Probabilistic Inference"
 - Section 8.4.1 "Variable Elimination for Belief Networks"
 - Section 8.6 "Stochastic Simulation"
 - Section 8.6.5 "Importance Sampling"

For a further reading on the topic you can also read:

• Chapter 14: Probabilistic Reasoning from the book "Artificial Intelligence: A Modern Approach (4th edition)