Sociatorium Mirror

ĆWICZENIE 1 OSCYLOSKOP

Cel i zakres ćwiczenia

Celem ćwiczenia jest praktyczne zapoznanie się z obsługą i możliwościami pomiarowymi oscyloskopu, wykorzystaniem oscyloskopu do analizy sygnałów elektrycznych oraz praktycznych pomiarów w układach elektronicznych. W ramach ćwiczenia doskonalone będą również umiejętności doboru układów pomiarowych, zasad pomiarów i wyznaczania niepewności pomiarów.

Zadania do realizacji:

- 1. <u>Sterowania położeniem plamki oscyloskopu</u> przez zmianę napięcia stałego doprowadzanego do wejścia oscyloskopu <u>i pomiar czułości oscyloskopu</u>
- 2. <u>Wizualizacja</u> podstawowych sygnałów na ekranie oscyloskopu
- 3. Pomiary parametrów podstawowych sygnałów
- 4. Praktyczne pomiary z wykorzystaniem oscyloskopu <u>wyznaczanie podstawowych</u> <u>parametrów wzmacniacza akustycznego</u>
- 5. <u>Analiza widma sygnałów elektrycznych</u> praktyczne wykorzystanie rozkładu sygnału w szereg Fouriera i konsekwencje ograniczonego pasma pracy układów elektronicznych
- 6. Zadanie nieobowiązkowe Analiza oscyloskopowa różnych sygnałów użytkowych

II. Podstawowe zagadnienia do przygotowania

Oscyloskop – zasada działania, parametry i obsługa – w tym konfiguracja i dobór nastaw w zależności od mierzonych sygnałów

Podstawy szacowania niepewności pomiarów i czynniki wpływające na niepewność Widmo sygnałów elektrycznych

Rozkład sygnału w szereg Fouriera

Konsekwencje ograniczonego pasma częstotliwości układów elektronicznych Zapoznanie się z instrukcjami obsługi i parametrami przyrządów pomiarowych wykorzystywanych w ćwiczeniu (udostępnione na e-portalu)

III. Stanowisko laboratoryjne.

W ćwiczeniu wykorzystuje się następujące przyrządy pomiarowe:

- Oscyloskop Hantek DSO2D15
- Generator funkcyjny JC5603P
- Multimetry VC8145

Uwaga: Przed przystąpieniem do ćwiczenia należy zweryfikować rodzaj sprzętu dostępnego na stanowisku.

Generator funkcyjny - podstawowe elementy regulacyjne

Oscyloskop - podstawowe elementy regulacyjne

Zadanie 1 Sterowania położeniem plamki oscyloskopu przez zmianę napięcia stałego na wejściu i pomiar czułości oscyloskopu

Celem zadania jest potwierdzenie zasady działania oscyloskopu – przesuwanie plamki oscyloskopu przez zmianę napięcia podawanego na wejście – test dotyczy obu osi oscyloskopu – X i Y. Pomiary pozwolą także na określenie czułości oscyloskopu – czyli stosunku napięcia podanego na wejście do przesunięcia plamki wyrażonej w działkach skali na ekranie oscyloskopu

Realizacja zadania:

1.1 Zestawić układ pomiarowy zgodnie z rys. 1.

Do wejść "pomiar napięcia DC dołączyć multimetry – zakres – pomiar napięcia DC

- **1.2** Włączyć multimetry i zasilanie modułu regulacyjnego i potencjometrami X i Y ustawić napięcie 0,0V na wyjściu X i Y
- **1.3** Włączyć oscyloskop i ustawić go w tryb pracy X-Y-to znaczy, że sterowanie oscyloskopu w osi poziomej następuje przez zmianę napięcia w kanale 1, a w osi pionowej w kanale 2 oscyloskopu. W tym trybie nie działa układ generatora podstawy czasu. :
 - **1.**Nacisnąć HORIZ Menu w sekcji Horizontal paneluoscyloskopu na ekranie oscyloskopu wyświetli się menu.
 - 2. Nacisnąć przycisk F1 po prawej stronie ekranu oscyloskopu wyświetli się podmenu gałką MENU (na samej górze panelu) albo wielokrotnym naciskaniem F1 podświetlić opcję X-Y i wcisnąć F0 zamknięcie menu
 - 3.Włączyć sprzężenie wejścia oscyloskopu w tryb DC -> przycisk CH1 na ekranie oscyloskopu pojawi się menu -> F1 -> podświetlić opcję DC -> gałką MENU (na samej górze panelu) albo wielokrotnym naciskaniem F1 i wcisnąć F0 zamknięcie menu
 - 4. Powtórzyć dla CH2
 - 5. Sprowadzić plamkę oscyloskopu na środek ekranu wykorzystując elementy regulacji przesuwu pionowego gałka **POSITION** CH1 przesuw prawo –lewo, **POSITION** CH2 przesuw góra-dół
- **1.3** Ustawić czułość oscyloskopu w obu kanałach na np. 2V/działkę gałka **VOLT/DIV** odpowiednio CH1 i CH2
- **1.4** Zmieniając napięcie **X** i **Y** potencjometrami na module regulacyjnym przesuwać plamkę po ekranie oscyloskopu. Np. przesunąć plamkę o 1 działkę odczytać napięcie z multimetru, potem o 2 , 3, 5 działek opisać zależność położenia plamki od napięcia X i Y.

- 1.5 Wyznaczyć czułość układu odchylnia oscyloskopu jako stosunek napięcia doprowadzonego do oscyloskopu (mierzonego na multimetrach) do przesunięcia plamki wyrażonej w działkach [V/dz]. Sprawdzić liniowość regulacji np. czy dwukrotne zwiększenie napięcia powoduje dwukrotnie większe przesunięcie plamki. Porównać wyniki dla napięć dodatnich (+) i ujemnych (-).
- **1.5** Porównać czułości w kierunku X i Y, sprawdzić dla różnych nastaw czułości oscyloskopu (np. 1V/dz., 2V/dz., 5V/dz. aktualną nastawę oscyloskopu można odczytać na dole ekranu oscyloskopu
- **1.6** Porównać swoje pomiary z nastawami oscyloskopu i danymi technicznymi producenta, oszacować niepewność pomiaru (względną i bezwzględną) uwzględniając wszystkie składowe niepewności w tym niepewność pomiaru multimetrem oraz dokładność ustawienia położenia plamki na ekranie i rozdzielczość odczytu z ekrany oscyloskopu. Porównać wyznaczone niepewności dla różnych wartości odczytanych z oscyloskopu omówić uzyskane wyniki i wyciągnąć wnioski.
- **1.7** Przez jednoczesne kręcenie potencjometrem X i Y na module spróbować uzyskać wybraną figurę na ekranie oscyloskopu (np. okrąg, trójkąt czy kwadrat).

Zadanie 2 - Wizualizacja i pomiary parametrów podstawowych sygnałów na ekranie oscyloskopu.

Celem zadania jest nabycie umiejętności prawidłowej konfiguracji oscyloskopu dla uzyskania stabilnego i optymalnego obrazu sygnałów doprowadzanych do wejścia oscyloskopu oraz pomiar podstawowych parametrów tych sygnałów na podstawie odczytu z ekranu oscyloskopu.

- 2.1 Zapoznanie się z obsługą oscyloskopu
- 2.2 Zestawić układ pomiarowy jak na rys. 2.

- 2.3 Nacisnąć **HORIZ Menu** w sekcji Horizontal panelu oscyloskopu na ekranie oscyloskopu wyświetli się menu.
- 2.4 2. Nacisnąć przycisk F1 po prawej stronie ekranu oscyloskopu wyświetli się podmenu gałką MENU (na samej górze panelu) albo wielokrotnym naciskaniem F1 podświetlić opcję Y-T i wcisnąć F0 zamkniecie menu
- 2.5 Dla kanału 1 (CH1) przełączyć sprzężenie wejścia na AC: sekcja "Vertical" - CH1 MENU - > F1 naciskać wielokrotnie aż podświetli coupling AC, - > wyłączenie MENU - > F0

UWAGA: Cykliczne naciskanie przycisku **CH1 MENU** lub **CH2 MENU** w sekcji Vertical włącza dany kanał, włącza MENU kanału i wyłącza kanał – aktualny stan widać na panelu oscyloskopu – kanał CH1 i CH2 należy włączać w zależności od potrzeby i od doprowadzonego sygnału. Nieużywany kanał najlepiej wyłączyć – wówczas niepożądany sygnał (z nieużywanego kanału) nie przeszkadza w oglądaniu drugiego kanału.

- 2.6 Uruchomić generator funkcyjny Generator JC5603P i wybrać sygnał sinus o dowolnej częstotliwości z zakresu 1000Hz 100kHz
- 2.7 Przyciskami regulacji parametrów na panelu oscyloskopu Vertical, Horizontal i Trigger doprowadzić do uzyskania stabilnego obrazu na ekranie oscyloskopu (uwaga- wyłączyć kanał CH2)
- 2.8 Korzystając z sekcji TRIGGER zaobserwować zmiany w wyświetlaniu sygnału przy zmianie parametrów slope (w TRIG MENU) i trigger level gałka w sekcji Trigger po prawej stronie panelu oscyloskopu. Jeżeli wystąpią duże trudności w uzyskaniu stabilnego obrazu można wyjątkowo skorzystać z przycisku AUTO SET. Przycisk AUTO SET automatycznie włącza oba kanały CH1 i CH2 niepotrzebny można wyłączyć.

Zadanie 3. Pomiary parametrów podstawowych sygnałów:

Zadanie 3.1 Pomiar amplitudy i okresu/częstotliwości sygnałów

- 3.1.1 Ustawić na generatorze różne sygnały sinus, prostokąt, piła o różnych częstotliwościach i amplitudach zadanych przez Prowadzącego.
- 3.1.2 Dobierać tak nastawy oscyloskopu, żeby uzyskać optymalny obraz na ekranie.
- 3.1.3 Odczytać nastawy oscyloskopu czułość/działkę oraz podstawę czasu czas/działkę.
- 3.1.4 Na tej podstawie wyznaczyć parametry mierzonych sygnałów amplitudę, wartość międzyszczytową i okres oraz częstotliwość

Włączyć na ekranie oscyloskopu linie siatki – **Display** - >– **Grid** – wybrać najintensywniejsze linie siatki (Intensity 100%). Przesuwając wykres na ekranie – **Position** ustawić sygnał względem skali/siatki na ekranie, żeby jak najdokładniej określić okres sygnału, jego amplitudę i wartość międzyszczytową.

Wyznaczyć parametry sygnału na podstawie odczytu z ekranu oscyloskopu i porównać z nastawami generatora.

Oszacować niepewność pomiaru z użyciem oscyloskopu – uzasadnić.

Zadanie 3.2 Wpływ rodzaju sprzężenia wejścia oscyloskopu na poprawność wyświetlania sygnału.

Na generatorze ustawić sygnał o częstotliwości miedzy 10 Hz a 20 Hz kolejno: sinus, prostokąt i piłę.

- 3.2.1 Sygnał z generatora poprzez trójnik BNC podać jednocześnie na kanał CH1 i CH2 oscyloskopu.
- 3.2.2 Kanał CH1 ustawić sprzężenie wejścia na DC
- 3.2.3 Kanał CH2 ustawić sprzężenie wejścia na AC
- 3.2.4 Na generatorze ustawić sygnał o częstotliwości miedzy 10 Hz a 20 Hz i amplitudzie między 2V a 5V kolejno: sinus, prostokąt i piłę.
- 3.2.5 Ustawić parametry oscyloskopu dla uzyskania optymalnego zobrazowania sygnału potencjometrami POSITION przesunąć góra-dół przebiegi żeby nie nachodziły na siebie.
- 3.2.6 Zapisać- narysować kształty przebiegów dla każdego sygnału (sinus prostokąt trójkąt).
- 3.2.7 Kanał CH1 ustawić sprzężenie wejścia na AC.
- 3.2.8 Zapisać- narysować kształty przebiegów dla każdego sygnału (sinus prostokąt trójkąt) na obu kanałach wyciągnąć wnioski.
- 3.2.9 Dla sygnału prostokątnego zwiększać częstotliwość stopniowo do ok. 500Hz i obserwować zmiany kształtu sygnałów..

Uwaga: W sprawozdaniu na podstawie obserwacji i zapisanych obrazów sygnałów wyjaśnić zaobserwowane zjawiska. Sformułować wnioski (przypomnieć sobie jak wygląda układ wejścia oscyloskopu ze sprzężeniem AC i DC i jakie są tego konsekwencje dla sygnałów).

Zadanie 4 - Praktyczne pomiary z wykorzystaniem oscyloskopu – wyznaczanie podstawowych parametrów wzmacniacza małej częstotliwości

Celem zadania jest wykorzystanie oscyloskopu do praktycznych pomiarów układów elektronicznych na przykładzie wyznaczenia podstawowych parametrów wzmacniacza małej częstotliwości– wzmocnienia, dynamiki sygnału i pasma pracy.

Pomiary zostaną przeprowadzone w następującym układzie:

Przedmiotem pomiarów jest wzmacniacz małej częstotliwości na układzie scalonym LM386 zasilany napięciem 5V.

Zadanie 4.1 – wyznaczenie wzmocnienia wzmacniacza

- 1. Na generatorze ustawić sygnał sinusoidalny o częstotliwość ok. 1kHz i poziomie ok. 100mV.
- 2. W oscyloskopie włączyć tylko kanał CH1.
- 3. Regulując nastawy oscyloskopu uzyskać optymalny obraz sygnału wejściowego
- 4. Wyznaczyć napięcie międzyszczytowe przebiegu na podstawie nastaw oscyloskopu.
- 5. Włączyć kanał CH2 oscyloskopu.
- 6. Regulując nastawy uzyskać optymalny obraz sygnału wyjściowego wzmacniacza.
- 7. Uwaga w przypadku uzyskania na wyjściu wzmacniacza zniekształconego sinusa (np. z "obciętymi" szczytami) zmniejszyć napięcie sygnału wejściowego na generatorze.
- 8. Wyznaczyć wzmocnienie napięciowe wzmacniacza jako stosunek napięcia wyjściowego do wejściowego: ku=Uwyj/Uwej.
- 9. Zmieniając napięcie z generatora oszacować maksymalne napięcie wejściowe, dla którego wzmacniacz nie zniekształca w sposób widoczny sygnału wyjściowego ("spłaszczanie" i "obcinanie" szczytów sinusa).
- 10. Określić czy wzmacniacz w jednakowy sposób zniekształca dodatnie i ujemne połówki sinusa.

Zadanie 4.2. Pomiar pasma pracy wzmacniacza

Każdy układ elektroniczny ma ograniczony zakres częstotliwości, dla którego pracuje poprawnie. Dla wzmacniaczy określa się tzw. pasmo pracy – podobnie jak dla określenia pasma pracy oscyloskopu – tu również przyjmuje się tzw. 3dB pasmo pracy – to znaczy jako częstotliwości graniczne przyjmuje się takie częstotliwości, dla których wzmocnienie jest mniejsze o 3dB względem

wzmocnienia dla częstotliwości środkowych – przykład na rysunku poniżej (https://www.tophifi.pl/blog/post/czym-jest-pasmo-przenoszenia.html):

Celem tego podzadania jest pomiar charakterystyki amplitudowo-częstotliwościowej pasma pracy wzmacniacza.

Realizacja zadania 4.2:

- 4.2.1 Regulując poziomem sygnału przy ustawionej częstotliwości 1kHz z generatora ustawić napięcie wyjściowe wzmacniacza w zakresie pracy liniowej.
 Na przykład ustawić wartość około połowy maksymalnego napięcia, przy którym zaczynają się zniekształcenia sygnały wyjściowego. Ustawiony poziom napięcia wejściowego utrzymywać przez cały cykl pomiaru.
- 4.2.2 Zmieniając częstotliwości sygnału wejściowego w zakresie od kilku Hz do ok. 1MHz mierzyć poziom sygnału na wyjściu wzmacniacza. Kolejne częstotliwości najlepiej dobierać w rastrze np. 1,2,3,5,10 dla każdej dekady, zagęszczając pomiary w obszarze, gdzie wzmocnienie wzmacniacza zacznie spadać to znaczy napięcie sygnału wyjściowego zacznie maleć mimo podawania na wejście sygnału o stałym napięciu.
- 4.2.3 Określić stosunek napięć jaki odpowiada spadkowi wzmocnienia o 3dB i 20dB.
- 4.2.4 Wyznaczyć częstotliwość, przy której wzmocnienie spadnie o 3dB i o 20dB. Pomiary wykonać dla górnych i dolnych częstotliwości granicznych.

W sprawozdaniu podać 3dB pasmo pracy wzmacniacza i wykreślić charakterystykę wzmocnienia wzmacniacza w funkcji częstotliwości. Na osi częstotliwości zastosować skalę logarytmiczną. Omówić wyniki i oszacować niepewność pomiarów.

Zadanie 5 - Analiza widma sygnałów elektrycznych – praktyczne wykorzystanie rozkładu sygnału w szereg Fouriera i konsekwencje ograniczonego pasma pracy układów elektronicznych

Celem zadania jest praktyczne wykorzystanie rozkładu sygnału w szereg Fouriera i fizyczna interpretacja tego zagadnienia przy przejściu różnych sygnałów przez układ o ograniczonym paśmie pracy.

Każdy sygnał można rozłożyć w szereg Fouriera – czyli wyznaczyć dla niego składowe harmoniczne. Jak pamiętamy – żeby sygnał przetwarzany w układach elektronicznych nie był zniekształcony – pasmo pracy takiego układu musi zapewnić przeniesienie wszystkich składowych harmonicznych sygnału. W przypadku ograniczenia pasma – część składowych zostaje stłumiona – co w efekcie skutkuje zniekształceniem kształtu sygnału.

Realizacja zadania 5

- 5.1 Zachować układ pomiarowy oraz poziom napięcia wejściowego z Zadania 4 (badanie wzmacniacza).
- 5.2 Do wejścia wzmacniacza podać sygnał sinusoidalny o częstotliwości ok. 1kHz.
- 5.3 Zaobserwować i zapisać sygnał na wyjściu wzmacniacza jego kształt i amplitudę.
- 5.4Zwiększać częstotliwość sygnału aż do częstotliwości dla której uzyskano w Zadaniu 2b spadek wzmocnienia o 3dB.
- 5.5 Analogiczne pomiary przeprowadzić dla sygnału prostokątnego symetrycznego (wypełnienie 50%) oraz sygnału trójkątnego.

Uwaga: W sprawozdaniu dokonać analizy uzyskanych wyników i wyciągnąć wnioski. Jak powiązać efekty pomiaru z rozkładem sygnału w szereg Fouriera? Czy znając parametry wzmacniacza i właściwości rozkładu w szereg Fouriera mogą Państwo w przybliżeniu przewidzieć jak będzie wyglądał sygnał wyjściowy?

Zadanie 6 – <u>Zadanie nieobowiązkowe</u> – Analiza oscyloskopowa różnych sygnałów użytkowych

Celem zadania jest pokazanie praktycznego wykorzystania oscyloskopu do analizy różnych sygnałaów – np. pilotów zdalnego sterowania czy protokołów komunikacyjnych.

6.1. Analiza i dekodowanie protokołu komunikacyjnego UART oraz obserwacja

- 1. Oscyloskop ustawić na pracę kanału CH1
- 2. Do wejścia CH1 w oscyloskopie należy podłączyć kablem BNC wyjście makiety "UART" oraz ustawić sprzężenie kanału AC.
- 3. Pokrętłem podstawy czasu oraz czułości dopasować obraz tak, aby był widoczny na ekranie.
- 4. Obraz na oscyloskopie może być niestabilny, dlatego należy ustawić tryb wyzwalania "trigger" klawiszem "TRIG MENU" i wybrać UART dla kanału CH1
- 5. W razie potrzeby skorygować należy odczyt transmisji pokrętłami czułości i podstawy czasu
- 6. Następnie wcisnąć klawisz DECODE i wybrać protokół UART (prędkość: 9600, parity: none, data bits 8)
- 7. Na dole ekranu powinny pojawić się zdekodowane z przebiegu wartości bitów, kolejne wartości można uzyskać przez przytrzymanie przycisku na makiecie "UART"
- 8. Zaobserwować oraz zapisać przebiegi dla różnych wartości bitów
- 9. Wciskając na oscyloskopie klawisz "cursor" dla osi Y odczytać wartość napięcia dla stanu wysokiego i niskiego.

Generator makiety "UART" może generować wartości liczbowe od 0 do 255, oscyloskop dekoduje je jako wartości HEX. W sprawozdaniu należy spróbować przekształcić wartości odczytane na oscyloskopie na wartości decymalne. Czy odczytane wartości napięć dla stanu wysokiego "1" oraz niskiego "0" są zgodne ze standardem TTL?

6.2. Obserwacja przebiegów wyjściowych pilotów zdalnego sterowania

- 1. Oscyloskop ustawić na pracę kanału CH1
- 2. Do wejścia oscyloskopu doprowadzić sygnał z urządzenia wskazanego przez prowadzącego
- Pokrętłem podstawy czasu oraz czułości dopasować obraz tak, aby był widoczny na ekranie i stabilny – po uzyskaniu stabilnego obrzu można go zatrzymać na ekranie naciskając przycisk RUN/STOP
- 4. .Przeanalizować obraz zmienić kod wysyłany z pilota przez naciśnięcie innego przycisku lub zmienić ustawienia bitów kodujących pilota (w zależności od wykorzystywanego pilota)

6.3. Obserwacja przebiegów urządzeń własnych

Na ćwiczenie można przynieść własne układy-urządzenia, dla których można zaobserwować sygnały na oscyloskopie – warunek – urządzenia muszą mieć zasilanie bateryjne.

Protokół z pomiarów i sprawozdanie z ćwiczenia

W protokole należy zapisywać wszystkie niezbędne informacje z realizacji pomiarów – w tym nastawy mierników i wyniki pomiarów oraz inne informacje niezbędne do późniejszej opracowania i analizy wyników w sprawozdaniu z ćwiczenia.

W sprawozdaniu z ćwiczenia należy zawrzeć wyniki pomiarów, wyznaczone niepewności wraz z opisem sposobu szacowania niepewności oraz omówienie wyników i wyciągnięte wnioski.