SILVA FENNICA

Monographs 4 · 2005

Dimitris Zianis, Petteri Muukkonen, Raisa Mäkipää and Maurizio Mencuccini

Biomass and Stem Volume Equations for Tree Species in Europe

Abstract

Zianis, D., Muukkonen, P., Mäkipää, R. & Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4. 63 p.

A review of stem volume and biomass equations for tree species growing in Europe is presented. The mathematical forms of the empirical models, the associated statistical parameters and information about the size of the trees and the country of origin were collated from scientific articles and from technical reports. The total number of the compiled equations for biomass estimation was 607 and for stem volume prediction it was 230. The analysis indicated that most of the biomass equations were developed for aboveground tree components. A relatively small number of equations were developed for southern Europe. Most of the biomass equations were based on a few sampled sites with a very limited number of sampled trees. The volume equations were, in general, based on more representative data covering larger geographical regions. The volume equations were available for major tree species in Europe. The collected information provides a basic tool for estimation of carbon stocks and nutrient balance of forest ecosystems across Europe as well as for validation of theoretical models of biomass allocation.

Keywords aboveground biomass, allometry, belowground biomass, biomass function, dbh, tree diameter, tree height

Authors' addresses *Mäkipää & Muukkonen*: Finnish Forest Research Institute, Unioninkatu 40A, FI-00170, Helsinki, Finland; *Zianis*: Department of Forestry, TEI Kavalas, Drama 66050, Greece; *Mencuccini*: Institute of Atmospheric and Environmental Sciences, School of GeoSciences, University of Edinburgh, Darwin Building, Mayfield Road, EH9 3JU Edinburgh, UK

E-mail raisa.makipaa@metla.fi (corresponding author)

Received 23 March 2004 **Revised** 6 September 2005 **Accepted** 7 September 2005 **Available at** http://www.metla.fi/silvafennica/full/smf/smf004.pdf

ISBN 951-40-1983-0 (paperback), ISBN 951-40-1984-9 (PDF) ISSN 1457-7356

Contents

1	INTRODUCTION	5
2	MATERIAL AND METHODS	6
3	RESULTS	7
	3.1 Biomass Equations	7
	3.2 Stem Volume Equations	
4	DISCUSSION	14
RI	EFERENCES	16
Aj	ppendix A. Biomass equations for different biomass components	
	by tree species	18
Αį	ppendix B. General descriptions of volume equations	44
Aj	ppendix C. Volume equations for different tree species	52

Acknowledgments

The authors wish to express their thanks to the participants of the European Cooperation in the field of Scientific and Technical Research (COST) E21 Action 'Contribution of forests and forestry to mitigate greenhouse effects' and other scientists for submitting equations for the presented database. The study was carried out with the financial support of the Finnish Ministry of Agriculture and Forestry, and the EU-funded research consortium 'Multi-source inventory methods for quantifying carbon stocks and stock changes in European forests' (CarboInvent EKV2-CT-2002-00157). In addition, Dr. Dimitris Zianis was partially supported by the I.K.Y (Scholarship State Foundation of Greece), and prof. M. Mencuccini by the EU-funded Carbo-Age project (EVK2-1999-CT-00045).

1 Introduction

The estimation of stem volume and tree biomass is needed for both sustainable planning of forest resources and for studies on the energy and nutrients flows in ecosystems. Planners at the strategic and operational levels have strongly emphasised the need for accurate estimates of stem volume. while Hall (1997) reviewed the potential role of biomass as an energy source in the 21st century. In addition, the United Nations Framework Convention on Climate Change and in particular the Kyoto Protocol recognise the importance of forest carbon sink and the need to monitor, preserve and enhance terrestrial carbon stocks, since changes in the forest carbon stock influence the atmospheric CO₂ concentration. Terrestrial biotic carbon stocks and stock changes are difficult to assess (IPCC 2003) and most current estimates are subject to considerable uncertainty (Löwe et al. 2000, Clark et al. 2001, Jenkins et al. 2003). The reliability of the current estimates of the forest carbon stock and the understanding of ecosystem carbon dynamics can be improved by applying existing knowledge on the allometry of trees that is available in the form of biomass and volume equations (Jenkins et al. 2003, Zianis and Mencuccini 2003, Lehtonen et al. 2004). The biomass equations can be applied directly to tree level inventory data (the measured dimensions of trees; diameter, height), or biomass expansion factors (BEFs) applicable to stand level inventory data can be developed and tested with the help of representative volume and biomass equations (Lehtonen et al. 2004).

Recently, remote sensing data have been used to assess standing volume and forest biomass (Montes et al. 2000, Drake et al. 2002). However, the estimation of biomass depends on ground truth data with measured dimensions of trees, and the empirical biomass equations are therefore needed to predict biomass as a function of recorded variables.

The wealth of allometric equations that relate stem volume as well as the biomass of several tree components to diameter at breast height and/or to tree height has never been summarised for European tree species, although this has been for American (Tritton and Hornbeck 1982, Ter-Mikaelian and Korzukhin 1997, Jenkins et al. 2004) and Australian trees (Eamus et al. 2000, Keith et al. 2000). Since the development of stem volume and biomass equations is laborious and time consuming process - especially the destructive harvesting of large trees – existing equations need to be compiled and evaluated to facilitate identification of the gaps in the coverage of the equations. The compiled equations can also be used to test and compare existing equations with new ones as well as to validate process-based models.

The aim of this study was to develop a database on tree-level stem volume and biomass equations for various tree species growing in Europe. Equations for both whole tree biomass and the biomass of different components were considered. The compiled database is a guide to the original publications of these equations. In ecological studies on forest carbon and nutrient cycling, forest and greenhouse gas inventories as well as in the validation of process-based models, this database facilitates effective exploitation of existing information on the allometry of trees.

2 Material and Methods

The development of the presented compilation of equations was based on published equations for different tree species growing on the European continent. We restricted the compilation to the relationships published on the European continent since similar kinds of information have already been presented for different biomes (Zianis and Mencuccini 2004), for North American tree species (Ter-Mikaelian and Korzukhin 1997, Jenkins et al. 2004), and for Australian ecosystems (see reports by Eamus et al. 2000, Keith et al. 2000, Snowdon et al. 2000). In order to compile the available information we conducted a literature survey on forestry and forest-related journals. However, part of the equations, particularly for stem volume relationships, have been published in the technical reports of research institutes or research programmes across Europe. In many cases, the original papers had not been written in the English language. To obtain these equations, researchers throughout Europe were asked to provide any allometric equation published in their country and readily available to them.

For all the empirical relationships included in the database, the explanatory variables were always the diameter at breast height (D), the tree height (H) or a combination of the two. For latest decades, standardized reference point for breast height and height measurements has been ground level and, in the European countries, the stem diameter at breast height have been measured at 1.3 above ground (Bruce and Schumacher 1950, Köhl et al. 1997). These two variables (D and H) are the most commonly used independent variables, but equations with several other independent variables (e.g. site fertility, elevation, soil type) have been also widely developed. Those equations were not, however, included in this database, since selection of variables is highly dependent on local conditions and intended local use of equations. Some empirical relationships reported in the original articles were excluded from this review and database since the equations with reported values of the parameters generated estimates that were not realistic (e.g. negative values, or shape of equation indicate impossible allometry of trees). In addition, equations with notably low r^2 -values were excluded. In the original publications, there might occur several other equations besides the one compiled in the present study. No selection criteria were applied with regard to the species, age, size, site conditions, or sampling method. The compiled biomass equations were presented according to different tree components (Table 1).

The measurement units for the regressed and the explanatory variables, the number of the sampled trees (n), the coefficient of determination (r^2) , and the range of diameter and height were also included in this review whenever this information was available in the original article. Additionally, the basal area of the stand and the stand density from which the sampled trees originated, the location (longitude and latitude) of the sampled trees as well as the standard error of the parameters of the regressions, the type and corresponding value of the statistical error, and the correction factor (Sprugel 1983) were also collected for the compiled equations. However, information on these parameters is not shown in the Appendix of the present study since it was reported only in a very limited number of original articles.

3 Results

3.1 Biomass Equations

We found biomass equations for various aboveground and belowground components (Table 1), but most of the biomass equations were for aboveground parts, particularly for branches and foliage (Table 2). Very few equations were available for the biomass of dead branches, coarse, small and fine roots, and only four to estimate the biomass of cones (Table 2). The total number of the compiled biomass equations for different tree components was 607 (Appendix A).

The compiled biomass equations refer to 39 different tree species growing in Europe (Table 3). The vast majority of the compiled empirical equations developed for different tree components was reported for northern and central European countries (Table 3). Totally 82 equations referred to data recorded in southern European countries, particularly Greece, Italy, Portugal and Spain.

Table 1. Abbreviations for tree biomass components.

AB	Total aboveground biomass
ABW	Total aboveground woody biomass
BR	Branch biomass
CO	Biomass of cones
CR	Crown biomass (BR+FL)
DB	Biomass of dead branches
FL	Total foliage biomass
FL(i)	Biomass of <i>i</i> -year-old needles
RC	Biomass of coarse roots ^a
RF	Biomass of fine roots ^a
RS	Biomass of small roots ^a
RT	Biomass of roots (RC+RF+RS)
SB	Biomass of stem bark
SR	Biomass of the stump-root system ^a
ST	Total stem biomass (SW+SB)
SU	Stump biomass ^a
SW	Stem wood biomass
TB	Total tree biomass (AB+RT)
TW	Total woody biomass

a Defined differently in each study

For the some biomass equations of *Abies bal-samea* (L.) Mill., *Fagus crenata* Bl., *Picea rubens* Sarg., *Pinus banksiana* Lamb., *Pinus contorta* Doug. ex Loud., and *Pinus taeda* L., the location of the sampled trees was not reported. Only one equation was available for each of the following components: branch biomass within the crown, the biomass of epicormic branches, stem biomass within the crown, woody biomass in the crown, foliage biomass in crown, foliage biomass of epicormic branches (reported by Zianis and Mencuccini 2003). Thus, they were not included in the database.

The vast majority of the reviewed biomass equations (127 in total) took the simple linear form

$$Log(M) = A + B \times Log(D)$$
 (1)

where Log(M) is either the natural or the 10-base logarithmic transformation of the biomass data for different tree components, Log(D) is the diameter at breast height (either in natural or 10-base logarithmic transformation) and A and B the estimated parameters. In 200 regressions tree height was entered as the second independent variable or was used in combination with D. In the 280 empirical regressions, D was the only independent variable and the mathematical relationship between tree biomass and D fell into several formulae (see Appendix A).

The compiled equations do not refer to the same spatial scale; some of them were built on data obtained from a single stand, whereas others (e.g. Marklund's (1987, 1988) equations for the main tree species of Sweden) are based on data from large geographical areas. There are no such equations for temperate or Mediterranean conditions. The amount of sampled trees varied from 3 to 1503; The most usual amount was between 6 and 40 (Fig. 1a). Only Marklund's (1987, 1988) equations are consistently based on a sample size of several hundred felled trees. In 175 equations

Table 2. Number of compiled biomass equations according to tree species and tree component. **For the abbrevia**tions see Table 1.

	AB	ABW	BR	СО	CR	DB	FL	FL(i)	RC	RF	RS	RT	SB	SR	ST	SU	SW	ТВ	TW	Total
Abies balsamea	_	_	_	_	_	_	_	_	_	_	_	4	_	_	_	_	_	_	_	4
Abies spp.	_	_	_	_	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2
Acer pseudoplatanus	_	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2
Alnus glutinosa	2	1	3	_	_	_	2	_	_	_	_	_	_	_	3	_	_	_	_	11
Alnus incana	2	_	2	_	_	_	2	_	_	_	_	_	_	_	2	_	_	_	_	8
Arbutus unedo	1	1	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3
Betula pendula	1	1	2	_	_	_	1	_	_	_	_	2	_	_	2	_	_	_	_	9
Betula pubescens	1	_	1	_	_	_	1	_	_	_	_	_	2	_	1	_	2	_	_	8
Betula pubescens																				
ssp. czerepanovii	_	_	1	_	_	1	1	_	_	_	_	_	_	_	1	_	_	_	_	4
Betula spp.	_	4	3	_	2	4	2	_	_	_	_	1	4	_	1	1	5	_	_	27
Eucalyptus spp.	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Fagus crenata	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1
Fagus moesiaca	1	_	1	_	_	_	1	_	_	_	_	_	_	_	1	1	_	_	_	5
Fagus sylvatica	8	4	7	_	4	_	6	_	1	1	1	4	2	_	8	_	2	_	_	48
Fraxinus excelsior	_	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2
Larix sibirica	1	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	2
Larix spp.	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Picea abies	16	1	27	_	17	13	28	_	2	_	2	7	14	1	16	1	12	3	3	159
Picea engelmannii	1	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	2
Picea rubens	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1
Picea sitchenis	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1
Picea spp.	1	_	_	_	3	_	_	_	_	_	_	_	_	_	1	_	_	_	_	5
Pinus banksiana	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1
Pinus contorta	1	_	_	_	1	_	_	_	_	_	_	3	_	_	1	_	_	_	_	6
Pinus nigra																				
var maritima	_	_	_	_	1	_	_	_	_	_	_	1	_	_	_	_	_	_	_	2
Pinus pinaster	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Pinus radiata	1	_	_	_	_	_	_	_	_	_	_	2	_	_	_	_	_	_	_	3
Pinus sylvestris	27	4	26	3	11	12	32	2	7	1	1	7	15	3	23	2	13	_	_	191
Pinus taeda	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1
Populus tremula	2	_	1	_	1	_	1	_	_	_	_	_	_	_	2	_	_	_	_	7
Populus trichocarpa	1	_	_	_	1	_	_	_	_	_	_	_	_	_	1	_	_	_	_	3
Pseudotsuga menziesii	3	1	1	_	2	_	1	_	_	_	_	6	_	_	1	_	_	_	_	15
Pseudotsuga spp.	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1
Quercus conferta	_	2	8	_	_	_	_	_	_	_	_	_	_	_	_	_	6	_	_	16
Quercus ilex	10	1	8	_	1	_	6	_	3	_	3	4	_	_	6	_	_	_	_	42
Quercus petraea	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1
Quercus pyrenaica	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1
Quercus spp.	1	4	_	_	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7
Tilia cordata	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Total	83	29	91	3	50	30	84	2	13	2	7	48	37	4	72	5	41	3	3	607

AB=Above ground, ABW=Above ground woody, BR=Branches, CO=Cones, CR=Crown (BR+FL), DB=Dead branches, FL=Foliage, FL(i)=i-year old needles, RC=Coarse roots, RF=Fine roots, RS=Small roots, RT=All roots, SB=Stem bark, SR=Stump-root system, ST=Stem (SW+SB), SU=Stump, SW=Stem wood, TB=Whole tree, TW=Total woody biomass

Table 3. Geographical distribution of the compiled biomass equations. The numbers indicate the total number of equations for all tree components and for each country. Studies for which the region was not specified are indicated by n/a.

·	AT	BE	CZ	DK	FI	FR	DE	GR	IS	IT	NL	NO	PL	PO	ES	SE	GB	Eur	n/a	Total
Abies balsamea	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	4
Abies spp.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	_	_	2
Acer pseudoplatanus	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	_	_	2
Alnus glutinosa	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	3	_	_	11
Alnus incana	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8	_	_	_	8
Arbutus unedo	_	_	_	_	_	_	_	_	_	3	_	_	_	_	_	_	_	_	_	3
Betula pendula	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	3	_	2	9
Betula pubescens	_	_	_	_	4	_	_	_	_	_	_	_	_	_	_	4	_	_	_	8
Betula pubescens																				
ssp. czerepanovii	_	_	_	_	4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4
Betula spp.	_	_	_	_	9	_	_	_	_	_	_	_	_	_	_	14	4	_	_	27
Eucalyptus spp.	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	1
Fagus crenata	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1
Fagus moesiaca	_	_	_	_	_	_	_	5	_	_	_	_	_	_	_	_	_	_	_	5
Fagus sylvatica	1	2	3	_	_	9	2	_	_	10	10	_	_	_	4	5	2	_	_	48
Fraxinus excelsior	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	_	_	2
Larix sibirica	_	_	_	_	_	_	_	_	2	_	_	_	_	_	_	_	_	_	_	2
Larix spp.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1
Picea abies	4	4	16	7	21	_	54	_	4	_	_	12	_	_	_	36	1	5	_	159
Picea engelmannii	_	_	_	_	_	_	_	_	2	_	_	_	_	_	_	_	_	_	_	2
Picea rubens	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1
Picea sitchenis	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1
Picea spp.	_	_	_	_	_	_	_	_	3	_	_	_	_	_	_	_	2	_	_	5
Pinus banksiana	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1
Pinus contorta	_	_	_	_	_	_	_	_	2	_	_	_	_	_	_	_	2	_	2	6
Pinus nigra																				
var <i>maritima</i>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	_	_	2
Pinus pinaster	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	1
Pinus radiata	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	2	3
Pinus sylvestris	_	6	49	_	44	_	_	_	_	_	_	27	17	_	_	27	13	3	3	191
Pinus taeda	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	1
Populus tremula	_	_	_	_	_	_	3	_	_	_	_	_	_	_	_	4	_	_	_	7
Populus trichocarpa	_	_	_	_	_	_	_	_	3	_	_	_	_	_	_	_	_	_	_	3
Pseudotsuga menziesii	_	_	_	_	_	_	_	_	_	1	7	_	_	_	_	_	2	_	5	15
Pseudotsuga spp.	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	1
Quercus conferta	_	_	_	_	_	_	_	16	_	_	_	_	_	_	_	_	_	_	_	16
Quercus ilex	_	_	_	_	_	_	_	_	_	5	_	_	_	_	37	_	_	_	_	42
Quercus petraea	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Quercus pyrenaica	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	1
Quercus spp.	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6	_	_	7
Tilia cordata	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1
Total	6	12	66	7	80	10	59	21	16	22	18	39	17	1	41	109	49	8	22	607

 $AT=Austria,\ BE=Belgium,\ CZ=Czech\ republic,\ DK=Denmark,\ FI=Finland,\ FR=France,\ DE=Germany,\ GR=Greece,\ IS=Iceland,\ IT=Italy,\ NL=Netherlands,\ NO=Norway,\ PL=Poland,\ PO=Portugal,\ ES=Spain,\ SE=Sweden,\ GB=United\ Kingdom,\ Eur=Europe$

Fig. 1. Frequencies of a) the biomass and b) the volume equations according to the number of sampled trees used for the development of the equation.

the number of sampled trees upon which the estimation of the empirical parametric values had been based was not reported.

The range of size of the sampled trees varied for each equation (Appendix A), implying that diameter and height range should be taken into account when applicability of the equations is evaluated. Our analysis also indicated that different equations generate different biomass predictions for trees of the same size (Fig. 2). The difference between predicted values of foliage biomasses was large, whereas the predicted total aboveground biomass values of *Picea abies* was

relatively consistent (Figs. 2a–b). The number of biomass equations available for roots was small and the differences between predicted root biomass values were high (Fig 2c).

The value of the coefficient of determination (r^2) was reported in most of the regressions and varied from 0.012 to 0.99. Especially, the biomass of dead branches of Norway spruce seemed to be difficult to estimate accurately. In general, equations with notably low r^2 -values are excluded, but those obtained for dead branched were kept to show overall difficulties in prediction of the biomass of this component. Only in about 1/10

Fig. 2. Predicted foliage biomass a) and total aboveground biomass of *Picea abies* b), and root biomass of *Pinus sylvestris* c) as a function of tree diameters (D). The biomass equations were retrieved from Appendix A. The range of diameter of the illustrated equations indicates the range of observations in the original data on which the equation is based on. When the range of original observation was not reported a minimum of 10 cm and a maximum of 40 cm for diameter was used in this figure.

of the papers concerning biomass equations are some kind of error estimates for the equations presented. The forms of the error estimates are diverse and vary from article to article.

3.2 Stem Volume Equations

The total number of the compiled stem volume equations was 230 (App. B and C), and they covered 55 tree species altogether (Table 4). Most of the European countries have already developed

stem volume equations mainly for the planning of the use of forest resources. However, there is no straightforward, commonly accepted definition for stem volume in Europe. In general, the volume of stemwood extending from root collar up to the top of the stems is accounted in the equations developed in the Nordic countries. For some of the reviewed regressions, the stem is the part of the main trunk up to a minimum diameter of 7 cm (it is usually called the merchantable volume) while some authors have not reported definition of the stem related to their equations.

Table 4. Geographical distribution of the compiled stem volume equations. The numbers indicate the total number of equations for each country.

Scientific name	AT	BE	CR	CZ	FI	DE	IS	IT	NL	NO	PL	R0	SE	GB	Total
Abies alba	-	_	_	_	_	_	_	_	_	1	_	_	_	_	1
Abies grandis	_	_	_	_	_	_	_	-	1	1	_	_	_	_	2
Abies sibirica	_	_	_	_	_	1	_	-	_	_	_	_	_	_	1
Abies spp.	2	_	_	_	-	_	_	_	-	_	_	1	_	_	3
Acacia spp.	_	_	_	_	-	_	_	_	-	_	_	1	_	_	1
Acer pseudoplatanus	_	1	_	_	-	_	_	-	1	_	_	1	_	1	4
Alnus alba	_	_	_	_	-	_	_	-	_	-	_	1	_	_	1
Alnus glutinosa	_	_	_	_	-	_	_	-	1	2	_	_	3	_	6
Alnus incana	_	_	_	_	_	_	_	-	_	1	_	_	_	_	1
Alnus nigra	_	_	_	_	_	_	_	-	_	_	_	1	_	_	1
Alnus spp.	1	_	_	_	_	_	_	-	_	_	_	_	_	_	1
Arbutus unedo	_	_	_	_	-	_	_	1	_	_	_	_	_	_	1
Betula pendula	_	_	_	_	-	_	_	-	1	_	_	_	_	_	1
Betula spp.	_	1	_	_	4	_	_	-	_	2	_	1	6	1	15
Carpinus spp.	_	_	_	_	-	_	_	-	3	_	_	_	_	_	3
Chamaecyparis lawsoniana	_	_	_	_	_	_	_	_	1	_	_	_	_	_	1
Corylus avellana	_	_	_	_	_	_	_	_	_	1	_	_	_	_	1
Fagus spp.	2	_	_	_	_	_	_	_	_	_	_	1	_	1	4
Fagus sylvatica	_	1	_	_	_	2	_	_	2	_	_	_	_	_	5
Fraxinus exselsior	_	1	_	_	_	_	_	_	1	_	_	_	5	_	7
Fraxinus spp.	_	_	_	_	_	_	_	_	_	1	_	1	_	1	3
Larix decidua	2	1	_	_	_	_	_	_	1	1	_	_	_	_	5
Larix hybrid	_	_	_	_	_	_	_	_	_	1	_	_	_	_	1
Larix kaempferi	_	_	_	_	_	_	_	_	1	1	_	_	_	_	2
Larix sibirica	_	_	_	_	_	_	3	_	_	1	_	_	_	_	4
Larix spp.	_	_	_	_	2	_	_	_	3	_	_	1	_	_	6
Picea abies	2	1	_	2	7	2	1	_	5	12	2	_	8	_	42
Picea engelmannii	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1
Picea sitchensis	_	_	_	_	_	_	_	_	1	3	_	_	_	_	4
Picea spp.	_	_	_	_	_	_	1	_	_	_	_	1	_	_	2
Pinus contorta	_	_	_	_	_	_	1	_	1	_	_	_	3	_	5
Pinus nigra var maritima	_	_	_	_	_	_	_	_	1	_	_	_	_	_	1
Pinus nigra var nigra	_	_	_	_	_	_	_	_	1	_	_	1	_	_	2
Pinus spp.	_	_	_	_	_	2	_	_	3	_	_	_	_	_	5
Pinus sylvestris	1	2	_	_	8	1	_	1	4	8	_	1	8	_	34
Populus spp.	1	_	_	_	_	_	_	_	3	_	_	2	_	1	7
Populus tremula	_	_	_	_	_	_	_	_	_	2	_	1	3	_	6
Populus trichocarpa	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1
Prunus avium	_	1	_	_	_	_	_	_	_	_	_	_	_	_	1
Pseudotsuga menziesii	_	1	_	_	_	_	_	_	1	1	_	1	_	_	4
Pseudotsuga spp.	_	_	_	_	_	_	_	_	3	_	_	_	_	_	3
Quercus grisea	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1
Quercus ilex	_	_	1	_	_	_	_	1	_	_	_	_	_	_	2
Quercus laevis	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1
Quercus pubescens	_	_	2	_	_	_	_	_	_	_	_	1	_	_	3
Quercus robur	_	_	_	_	_	_	_	_	1	_	_	_	_	_	1
Quercus rubra	_	1	_	_	_	_	_	_	1	_	_	_	_	_	2
Quercus spp.	2	1	_	_	_	_	_	_	3	_	_	1	_	1	8
Salix caprea	_	_	_	_	_	_	_	_	_	1	_	1	_	_	2
Salix spp.	_	_	_	_	_	_	_	_	_	_	_	2	_	_	2
Sorbus aucuparia	_	_	_	_	_	_	_	_	_	1	_	_	_	_	1
Thuja pilicata	_	_	_	_	_	_	_	_	1	1	_	_	_	_	2
Tilia cordata	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1
Tsuga heterophylla	_	_	_	_	_	_	_	_	1	1	_	_	_	_	2
Ulmus spp.	_	1	_	_	_	_	_	_	1	_	_	1	_	_	3
	13	13	3	2	21	8	8	3	47	43	2	25	36	6	230

 $AT=Austria,\ BE=Belgium,\ CR=Croatia,\ CZ=Czech\ republic,\ FI=Finland,\ DE=Germany,\ IS=Iceland,\ IT=Italy,\ NL=Netherlands,\ NO=Norway,\ PL=Poland,\ RO=Romania,\ SE=Sweden,\ GB=United\ Kingdom$

Fig. 3. Predicted stem volume of *Fagus sylvatica* as a function of tree diameter (*D*). The volume equations are presented in Appendices B and C.

Fig. 4. Predicted stem volume of *Pinus sylvestris* as a function of tree diameter (*D*). The volume equations are presented in Appendices B and C.

If the definition of the stem volume is reported in the original paper, it is indicated in the comment field of the appendix table (Appendix B).

The major part of the stem volume regressions was for coniferous tree species (Table 4). Forty-two equations were reported for Norway spruce (*Picea abies* (L.) Karst.) and 34 for Scots pine (*Pinus sylvestris* L.), from which more than half were built for Scandinavian countries. For the broadleaved tree species within the genera of *Betula*, *Fagus*, and *Quercus* the number of available equations were 16, 9, and 18, respectively.

Most of the stem volume equations were based on a sample size of several hundred or a few thousand felled trees (Fig. 1b). Only three equations were based on a sample size of more than 5000 trees. In 97 of the equations the number of sample trees was not reported.

In almost every of the compiled stem volume equations the independent variables were D and/or H or various mathematical combinations of these (Appendix C). However, in three equations the formula used to fit the tree-scale data was solely based on D and was a simple power function (simple allometric equation). More than two parameters were incorporated into the formulae of 212 stem volume regressions, and 18 equations included six parameters. The number of the sam-

pled trees (from which the empirical stem volume regressions were obtained) varied from five to more than 7446 (Appendix B). The range of diameters of the sampled trees varied between equations and for 125 of the compiled stem volume equations the range was not reported. In all the compiled equations the coefficient of determination was more than 0.58 irrespective of species, location, *D* range, site conditions, etc.

Predicted stem volume estimates varied according to the applied equation (Fig. 3 and Fig. 4). For example, the stem volume of a beech tree with a diameter of 40 cm varies between 1.1 and 2.2 m³ (Fig. 3). On the other hand, all stem volume equations of e.g. Scots pine produced relatively consistent stem volume estimates. The equation reported by Schelhaas et al. (2002) and one of the equations published by Laasasenaho (1982) seemed to deviate from the others (Fig. 4). However, Laasasenaho (1982) reported two other equations which had different form or more explanatory variables (height in addition to dbh), and they gave consistent predictions with the models of other authors.

4 Discussion

Reliable methods of estimating forest biomass and carbon stocks as well as volume of the growing stock at different spatial and temporal scales and for different biomes are needed. In national forest inventories, emphasis has been placed on the assessment of merchantable timber, and inventories provide highly accurate estimates of the growing stock (Laitat et al. 2000). The current need to assess changes in the forest carbon has arisen as a result of the Climate Convention and the Kyoto Protocol. In general, assessment of forest biomass and carbon stock is based on information on forest resources i.e. estimates of forested area and volume of the growing stock as reported by national forest inventories (Liski and Kauppi 2000). Reported volume estimates are multiplied with simple biomass expansion factors and/or conversion factors to obtain biomass estimates.

In national inventories, the volume of the growing stock is estimated with the help of volume equations. The results of this study show that representative volume equations are available for major tree species in Europe, since volume equations are developed for different vegetation zones and most of the equations are based on a relatively high number of sampled trees. However, the volume equations vary in terms of the dimensions accounted for (merchantable stem volume only or unmerchantable included), and the estimates obtained with different equations cannot be compared or aggregated, and they cannot be converted to biomass estimates by just using a single biomass expansion value. The differences were the most evident with tree species that had irregular branching patterns (e.g. beech), whereas volume equations of e.g. Scots pine were more consistent. The inconsistency of the different volume equations applied to national forest inventories was also reported by Köhl et al. (1997). As national estimates of the volume of the growing stock are converted to biomass estimates, the applicability of the biomass expansion factors to the applied volume equation needs to be evaluated to avoid highly biased biomass estimates.

Reliability of the national carbon inventories can be improved by applying biomass equations directly to tree-scale measurements of diameter (D) at sampled plots of forest inventories (Jalkanen et al. 2005). Consequently, the additional source of error introduced by conversion or expansion factors can be avoided. The compiled database on biomass equations provides a basis for the selection of the applicable biomass equation when representative national equations are not available. The database can be also used as a source of reference for the development of local equations. Since the number of sampled trees used for the development of the biomass equations seemed to be relatively small, it is necessary to use several equations rather than only one in order to obtain unbiased predictions.

The analysis of the collected information showed that both species coverage and the spatial distribution of the equations is limited. The vast majority of the models were developed for coniferous tree species growing in northern and central European forest ecosystems. Only a small number of biomass and stem volume regressions were collected for tree species in the eastern and southern parts of Europe (Tables 3 and 4). A rather limited number of equations for the estimation of root biomass has been compiled so far, indicating that a more extensive survey should take place and that more root biomass datasets should be collected across Europe. In a similar study conducted in Australia, Snowdon et al. (2000) stressed that more root biomass studies are needed and suggested that fractal geometry could be a promising tool to overcome the practical problems arising from the destructive sampling of belowground tree biomass. Ter-Mikaelian and Korzukhin (1997) reported no equations for estimating the root biomass of tree species growing in the USA.

Most of the collected equations lack information

on the error estimates of the empirical parameters. According to Keith et al. (2000), the main sources of error in implementing allometric regressions could occur at the treescale and when biomass estimates are extrapolated from plot to regional scale (see also Satoo and Madgwick 1982). It should be noticed that when a logarithmic or any other transformation is applied to the raw data, biomass and stem volume predictions are biased (Baskerville 1972, Sprugel 1983). Mathematical formulae for correcting bias provide accurate estimates even though assumptions about the distribution of statistical errors must be made. The inherent bias arising from data transformation could be eliminated if iterative procedures were to be applied to the data (for a more detailed discussion see Payandeh 1981).

Biased predictions may also be obtained when the sum of biomass estimates (developed for different tree components i.e., stem, crown and roots) does not match the predictions derived from the total biomass equation (what is called the additivity problem). Parresol (2001) provided statistical methods to account for this bias while Snowdon et al. (2000) reported that the additivity problem does not appear when allometric equations are developed from non-transformed data. Another statistical problem is caused by collinearity or multicollinearity, where the independent variables in a regression analysis are themselves correlated (Ott 1993). Thus, the value of the coefficient of determination in stem volume and biomass equations (with more than one independent variable) may not be a reliable criterion for the choice of the best-fitting equation, and biased predictions may be obtained when this problem is not taken into account. However, the collinearity problem is seldom mentioned in original papers, where more often than not, diameter and height are the independent variables in estimating either stem volume or tree biomass.

The equations presented in this review can be used for national biomass and carbon inventories, for ecological studies, for validating theoretical models and for planning the use of forest resources. Since the original biomass studies may have been conducted for very specific purposes, following different sampling procedures and perhaps atypical stand structures, the applicability of an equation to its intended purpose needs to be evaluated in terms of the geographical distribution of the sampled population, the number of sampled trees, the range of dimensions (*D*, *H*) of sampled trees, accounted dimensions and applied definitions.

Pooled equations based on raw data collected from wide geographical areas may also provide a promising alternative to estimate biomass changes at the landscape scale Wirth et al. 2004). The empirical models reviewed in this article may also be used in order to build generalised stem volume and biomass equations for different species and different tree components (see Pastor et al. 1983/1984 for American species and Zianis and Mencuccini 2003 for the genus *Fagus*), to develop BEF for tree species across Europe (Lehtonen et al. 2004) and to validate process-based models of forest productivity.

References

- Baskerville, G.L. 1972. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forestry 2: 49–53.
- Brown, S. 1997. Estimating biomass and biomass change of tropical forests, a premier. FAO Forestry Paper 134.
- Bruce, D. & Schumacher, F.X. 1950. Forest mensuration. McGraw-Hill Book Company, Inc. New York. 483 p.
- Clark, D.A., Brown, S., Kicklighter, D.W., Chambers, J.Q., R, T.J. & Ni, J. 2001. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11(2): 356–370.
- Drake, J.B., Dubayah, R.O., Knox, R.G., Clark, D.B. & Blair, J.B. 2002. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sensing of Environment 81: 378–392.
- Eamus, D., McGuinness, K. & Burrows, W. 2000. Review of allometric relationships for estimating woody biomass for Queensland, the Northern Territory and Western Australia. National Carbon Accounting System Technical Report 5A. Australian Greenhouse Office, Canberra. 56 p.
- Hall, D.O. 1997. Biomass energy in industrialised countries a view of the future. Forest Ecology and Management 91: 17–45.
- IPCC, 2003. Report on good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventories Programme http:// www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm., Japan.
- Jalkanen, A., Mäkipää, R., Ståhl, G., Lehtonen, A. & Petersson, H. 2005. Estimation of biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Annals of Forest Science 62 (In press)
- Jenkins, J.C., Chojnacky, D.C., Heath, L.S. & Birdsey, R.A. 2003. National-scale biomass estimators for United States tree species. Forest Science 49: 12–35.

- , Chojnacky, D.C., Heath, L.S. & Birdsey, R.A.
 2004. Comprehensive database of diameter-based biomass regressions for North American tree species. Gen. Tech. Rep. NE-319. US Forest Service.
 45 p.
- Keith, H., Barrett, D. & Keenan, R. 2000. Review of allometric relationships for estimating woody biomass for New South Wales, the Australian Capital Territory, Victoria, Tasmania, and South Australia. National Carbon Accounting System Technical Report 5B. Australian Greenhouse Office, Canberra. 114 p.
- Köhl, M., Päivinen, R., Traub, B. & Miina, S. 1997. Comparative study. In: Study on European forestry information and communication system. Reports on forest inventory and survey systems 2. European Commission. p. 1265–1322.
- Laitat, E., Karjalainen, T., Loustau, D. & Lindner, M. 2000. Towards an integrated scientific approach for carbon accounting in forestry. Biotechnology, Agronomy, Society and Environment 4: 241–251.
- Lehtonen, A., Mäkipää, R., Heikkinen, J., Sievänen, R. & Liski, J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211–224.
- Liski, J. & Kauppi, P. 2000. Carbon cycle and biomass. In: FAO (ed.). Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand (industrialized temperate/boreal countries). UN-ECE/FAO Contribution to the Global Forest Resources Assessment 2000, Main Report (in press). United Nations, New York and Geneva. p. 155–171.
- Löwe, H., Seufert, G. & Raes, F. 2000. Comparison of methods used within member states for estimating CO₂ emissions and sinks to UNFCCC and UE monitoring mechanism: forest and other wooded land. Biotechnology, Agronomy, Society and Environment 4: 315–319.

- Marklund, L.G. 1987. Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Institutionen för skogstaxering, Rapport 43. 127 p.
- 1988. Biomassafunktioner f
 ör tall, gran och bj
 örk
 i Sverige. Sveriges lantbruksuniversitet, Institutionen f
 ör skogstaxering, Rapport 45. 73 p.
- Montes, N., Gauquelin, T., Badri, W., Bertaudiere, V. & Zaoui, E.H. 2000. A non-destructive method for estimating above-ground forest biomass in threatened woodlands. Forest Ecology and Management 130: 37–46.
- Ott, R.L. 1993. An introduction to statistical methods and data analysis. Duxbury press, California. 132 p.
- Parresol, R.B. 2001. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research 31: 865–878.
- Pastor, J., Aber, J.D. & Melillo, J.M. 1983/1984. Biomass prediction using generalized allometric regerssions for some northeast tree species. Forest Ecology and Management 7: 265–274.
- Payandeh, B. 1981. Choosing regression models for biomass prediction equations. The Forestry Chronicle 57: 230–232.
- Santantonio, D., Hermann, R.K. & Overton, W.S. 1977. Root biomass studies in forest ecosystems. Pedobiologia 17: 1–31.
- Satoo, T. & Madgwick, H.A.I. 1982. Forest biomass. Kluwer Academic Publishers Group, London. 160 p.
- Snowdon, P., Eamus, D., Gibbons, P., Khanna, P.K., Keith, H., Raison, R.J. & Kirschbaum, M.U.F. 2000. Synthesis of allometrics, review of root biomass and design of future woody biomass sampling strategies. National Carbon Accounting System Technical Report 17. Australian Greenhouse Office, Canberra. 114 p.
- Sprugel, D.G. 1983. Correcting for bias in log-transformed allometric equations. Ecology 64: 209– 210.
- Ter-Mikaelian, M.T. & Korzukhin, M.D. 1997. Biomass equations for sixty-five North American tree species. Forest Ecology and Management 97: 1–24.

- Tritton, L.M. & Hornbeck, J.W. 1982. Biomass equations for major tree species of the Northeast U.S. Department of Agriculture, Northeastern Forest Experiment Station, General Technical Report NE-69. 46 p.
- Wirth, C., Schumacher, J. & Schulze, E.-D. 2004. Generic biomass functions for Norway spruce in Central Europe – a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24: 121–139.
- Zianis, D. & Mencuccini, M. 2003. Aboveground biomass relationship for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus spp. Annals of Forest Science 60: 439–448.
- 2004. On simplifying allometric analyses of forest biomass. Forest Ecology and Management 187: 311–332.

Total of 33 references

Appendix A. Biomass equations for different biomass components by tree species (see abbreviations for dependent variable from table 1). In addition to scientific names of the tree species, common names are shown as they are reported in the original publications. The format of the biomass equation is given in the column labelled Equation, and a, b, c, d, and e are parameter values. The "ln" is the natural logarithm and the "log" is the

												<u> </u>
		1	Unit of			Range	e of					
		Biom.		Н		D (cm)	<i>H</i> (m)	Ref.	Cont.	Comm.	n	r^2
Abies balsamea												
1 –	log(RT)	kg	cm	-		_	_	68	8		-	-
2 –	log(RT)	kg	cm	-		-	-	68	8		89	0.92
3 –	log(RT)	kg	cm	-		-	-	68	8		40	0.928
4 –	log(RT)	kg	cm	-		_	_	68	8		40	0.898
Abies spp. (Fir)												
5 UK	CR	t	cm	-		_	_	9	6	1	_	_
6 UK	CR	t	cm	-		_	_	9	6	2	_	-
Acer pseudoplatar		ore)										
7 UK	ln(ABW)	kg	cm	-		3.7–31	_	10	14		10	0.991
8 UK	ln(ABW)	kg	cm	-		3.5–28	-	10	14		15	0.995
Alnus glutinosa (C		ler, Bla	ick ald	er, Kli	bbal)							
9 Sweden	AB	kg	mm	-		1-17.3	2.5-17.6	39	4		_	0.987
10 Sweden	AB	kg	mm	-		12.2–28.3	13–25.4	38	4		_	0.98
11 UK	ABW	kg	cm	-		-	-	32	14		12	0.985
12 Sweden	BR	kg	mm	-		12.2-28.3	13-25.4	38	4		_	0.66
13 Sweden	BR	kg	mm	-		1-17.3	2.5-17.6	39	4		_	0.922
14 UK	BR	kg	cm	-		_	_	32	14		12	0.924
15 Sweden	FL	kg	mm	-		12.2-28.3	13-25.4	38	4		_	0.47
16 Sweden	FL	kg	mm	-		1-17.3	2.5 - 17.6	39	4		_	0.927
17 Sweden	ST	kg	mm	-		12.2-28.3	13-25.4	38	4		_	0.82
18 Sweden	ST	kg	mm	-		1-17.3	2.5 - 17.6	39	4		_	0.969
19 UK	ST	kg	cm	-		_	_	32	14		12	0.991
Alnus incana (Gre	y alder, Grå	al, Hai	rmaale	ppä)								
20 Sweden	AB	kg	mm	-		0.7 - 9.3	2-14.8	39	4		_	0.983
21 Sweden	AB	kg	mm	-		8.9-24.6	13-25.3	38	4		_	0.92
22 Sweden	BR	kg	mm	-		0.7 - 9.3	2-14.8	39	4		_	0.862
23 Sweden	BR	kg	mm	-		8.9-24.6	13-25.3	38	4		_	0.6
24 Sweden	FL	kg	mm	_		0.7 - 9.3	2-14.8	39	4		_	0.64
25 Sweden	FL	kg	mm	-		8.9-24.6	13-25.3	38	4		_	0.44
26 Sweden	ST	kg	mm	-		0.7 - 9.3	2-14.8	39	4		_	0.98
27 Sweden	ST	kg	mm	_		8.9-24.6	13-25.3	38	4		_	0.89
Arbutus unedo (St	rawberry-tre	ee)										
28 Italy	AB	kg	cm	_		6-15	_	7	8		26	0.955
29 Italy	ABW	kg	cm	_		6-15	_	7	8	3	26	0.955
30 Italy	CR	kg	cm	_		6-15	_	7	8		26	0.955
Betula pendula (S	ilver birch, l	Pendul	a birch	, Whi	te bircl	n, Rauduskoi	vu, Vårtbjörk)					
31 Sweden	AB	kg	mm	_		1.8 - 13.7	3.2-19.9	35	4		_	0.985
32 UK	ABW	kg	cm	_		_	_	32	14		13	0.99
33 Sweden	BR	kg	mm	_		1.8 - 13.7	3.2-19.9	35	4		_	0.747
34 UK	BR	kg	cm	_		_	_	32	14		13	0.99
35 Sweden	FL	kg	mm	_		1.8-13.7	3.2-19.9	35	4		_	0.884
36 –	log(RT)	kg	cm	_		_	_	68	8		3	0.983
37 –	log(RT)	kg	cm	m		_	_	68	8		3	0.997
38 Sweden	ST	kg	mm	_		1.8-13.7	3.2-19.9	35	4		_	0.979
39 UK	ST	kg		_		_	_	32	14		13	0.99
Betula pubescens					Hiesko		rk, Björk)				-	
40 Sweden	AB	kg	mm	-		0.8–8.5	2.3–12	35	4		_	0.977
41 Sweden	BR	kg	mm	_		0.8-8.5	2.3–12	35	4		_	0.875
42 Sweden	FL	kg	mm	_		0.8-8.5	2.3–12	35	4		_	0.918
43 Finland	SB	kg	cm	m		2–16	4.6–16.7	58	8		53	0.986
44 Finland	SB	kg	cm	m		1.3–13	3.3–13.2	58	8		56	0.984
45 Sweden	ST	kg	mm	_		0.8–8.5	2.3–12	35	4		_	0.966
15 5 Wedell	51	K5	111111			0.0 0.5	2.0 12	33	7			0.700

10-based logarithm. Number of sampled trees (n), coefficients of determination (r^2) , and range of diameter (D) and height (H) of sampled trees are reported when available in the original article. References (Ref.) to the original papers according to author as well as the contact (Cont.) person who submitted the equation to this database are given at the end of the table. In the comments column (Comm.) occur some comments about the particular equation.

	r						
				Parameters			
	Equation	a	b	С	d	e	
1	a·log(D)+b	2.4452	-1.7143	_	_	_	
2	a·log(D)+b	2.45	0.681	_	_	_	
3	a·log(D)+b	2.0027	0.0629	_	_	_	
4	a·log(D)+b	2.4613	-0.4023	-	-	_	
5	$a \cdot D^b$	5.2193·10-4	1.459	_	_	_	
6	$a+b\cdot D^c$	0.0060722	$9.58 \cdot 10^{-6}$	2.5578	_	-	
7	a+b·ln(D)	-2.7606	2.5189	_	_	_	
8	a+b·ln(D)	-2.7018	2.5751	_	_	_	
Ü	u.o.m(D)	2.7010	2.0701				
9	$a \cdot D^b$	0.00079	2.28546	-	-	_	
10	a·D ^b	0.003090	2.022126	_	-	_	
11	a·D ^b	0.0859	2.3537	-	-	-	
12	$a \cdot D^b$	0.000003	2.880598	_	-	_	
13	$a \cdot D^b$	0.0000006	3.28106	_	-	_	
14	$a \cdot D^b$	0.0146	2.5191	_	_	_	
15	$a \cdot D^b$	0.000003	2.547045	_	-	_	
16	$a \cdot D^b$	0.00239	1.32535	_	_	_	
17	$a \cdot D^b$	0.005609	1.888345	_	_	_	
18	$a \cdot D^b$	0.00119	2.17247	_	_	_	
19	$a \cdot D^b$	0.0841	2.4501	_	_	-	
20	$a \cdot D^b$	0.00030	2.42847	_		_	
21	a·D ^b	0.00030	2.337592	_		_	
22	a·D ^b	0.000499	2.65455	_	_	_	
23	a·D ^b	0.0001			_	_	
	a·D ^b		2.297058	-	_	_	
24		0.00001	2.44406	_	_	_	
25	a·D ^b	0.000076	2.02604	_	_	_	
26	$a \cdot D^b$	0.00029	2.40128	-	-	_	
27	$a \cdot D^b$	0.000368	2.335763	-	_	_	
28	$a+b\cdot D^2$	-2.7563	0.3045	_	_	_	
29	$a+b\cdot D^2$	-2.8816	0.2639	_	_	_	
30	$a+b\cdot D^2$	0.1253	0.040617	-	-	-	
31	$a \cdot D^b$	0.00087	2.28639	_	_	_	
32	$a \cdot D^b$	0.2511	2.29	_	_	_	
33	$a \cdot D^b$	0.00002	2.63001	_	_	_	
34	a·D ^b	0.0742	2.24	_	_	_	
35	a·D ^b	0.00371	1.11993	_	_	_	
36	a·log(D)+b	2.3547	-1.3	_	_	_	
37	$a \cdot \log(B) + b$ $a \cdot \log(H \cdot D^2) + b$	0.9308	-1.8	_	_	_	
38	a·log(11·D)+0 a·D ^b	0.00080	2.28244	_	_	_	
39	a·D ^b	0.193	2.25	_	_	_	
40	a·D ^b	0.00029	2.50038	-	-	_	
41	a·D ^b	0.00004	2.52978	-	_	_	
42	$a \cdot D^b$	0.00090	1.47663	_	-	_	
43	$a+b \cdot \ln(D^2 \cdot H)$	-2.1909	0.8808	_	-	_	
44	$a+b \cdot \ln(D^2 \cdot H)$	-2.0706	0.7942	_	-	_	
45	$a \cdot D^b$	0.00020	2.54302	_	-	_	

Appendix A			Unit of		Rang	e of					
Appendix A		Biom.		H	D (cm)	H(m)	Ref.	Cont.	Comm.	n	r^2
46 Finland	SW	kg	cm	m	2–16	4.6–16.7	58	8		53	0.994
47 Finland	SW	kg	cm	m	1.3–13	3.3–13.2	58	8		56	0.994
Betula pubescens							70	0		20	0.026
48 Finland	ln(BR)	g	mm	_	-	_	72 72	8 8		20	0.836
49 Finland 50 Finland	ln(DB)	g	mm	_	_	_	72	8		20 20	0.622 0.829
51 Finland	ln(FL) ln(ST)	g g	mm mm	_	_	_	72	8		20	0.829
Betula spp. (Birch,		-	111111	_	_	_	12	o		20	0.76
52 UK	ln(ABW)	kg	cm	_	2.9-30	_	10	14		27	0.985
53 UK	ln(ABW)	kg	cm	_	2.9–26	_	10	14		15	0.984
54 UK	ln(ABW)	kg	cm	_	3.3-16	_	10	14		16	0.984
55 UK	ln(ABW)	kg	cm	_	3.5-23	_	10	14		15	0.987
56 Finland	BR	kg	cm	m	9-28	13-22.4	57	8		20	0.901
57 Sweden	ln(BR)	g	cm	dm	0.9 - 9.8	1.8-9.2	19	8		66	0.88
58 Sweden	ln(BR)	kg	cm	_	0–35	0–	50	8	4	235	0.924
59 Finland	ln(CR)	kg	mm	_	_	_	29	8		-	0.839
60 Finland	ln(CR)	kg	mm	_	_	_	29	8		_	0.838
61 Finland	DB	kg	cm	m	9.0–28	13–22.4	57	8		20	0.267
62 Sweden	ln(DB)	kg	cm	-	0–35	0-	50	8		212	0.605
63 Sweden	ln(DB)	kg	cm	m	0–35	0-	50	8		212	0.621
64 Sweden	ln(DB)	g	cm	_	0.9–9.8	18–92	19 57	8 8		61 20	0.56
65 Finland 66 Sweden	FL	kg	cm	m dm	9–28 0.9–9.8	13–22.4 1.8–9.2	19	8		20 14	0.906 0.92
67 Finland	ln(FL) RT	g kg	cm cm	dm m	9-28	13–22.4	57	8	5	20	0.92
68 Finland	SB	kg	cm	m	9–28	13–22.4	57	8	3	20	0.966
69 Sweden	ln(SB)	kg	cm	_	0-35	0-	50	8		212	0.947
70 Sweden	ln(SB)	kg	cm	m	0-35	0–	50	8		212	0.958
71 Sweden	ln(SB)	g	cm	dm	0.9–9.8	1.8-9.2	19	8		66	0.91
72 Sweden	ln(ST)	kg	cm	m	0-35	0-	50	8		240	0.992
73 Finland	SÙ	kg	cm	m	9-28	13-22.4	57	8		20	0.96
74 Finland	SW	kg	cm	m	9-28	13-22.4	57	8		20	0.99
75 Sweden	ln(SW)	kg	cm	_	0–35	0-	50	8		240	0.982
76 Sweden	ln(SW)	kg	cm	_	0–35	0–	50	8		212	0.97
77 Sweden	ln(SW)	kg	cm	m	0–35	0–	50	8		212	0.99
78 Sweden	ln(SW)	g	cm	dm	0.9–9.8	1.8–9.2	19	8		66	0.99
Eucalyptus spp. (E		1			4 25		52	1.4		22	0.00
79 Italy	ln(AB)	kg	cm	_	4–25	_	53	14	6	22	0.99
Fagus crenata 80 –	log(RT)	kg	cm	m			68	8		7	0.969
Fagus moesiaca (E		ĸg	CIII	111	_	_	00	o		,	0.707
81 Greece	ln(AB)	kg	cm	_	5.4-41	9.2-28	76	14		16	0.99
82 Greece	ln(BR)	kg	cm	_	5.4-41	9.2–28	76	14		16	0.97
83 Greece	ln(FL)	kg	cm	_	5.4-41	9.2-28	76	14		16	0.9
84 Greece	ln(ST)	kg	cm	_	5.4-41	9.2-28	76	14		16	0.98
85 Greece	ln(SU)	kg	cm	_	5.4-41	9.2-28	76	14	7	16	0.78
Fagus sylvatica (B	eech, Europe	ean be	ech, H	lêtres, Rotbu	iche)						
86 Austria	ln(AB)	kg	cm	m	-	_	31	3		42	0.997
87 Belgium	log(AB)	g	cm	_	35–78.8	_	23	12		6	0.995
88 Czech republic	AB	kg	cm	_	5.7-62.1	9.2–33.9	15	2		20	0.974
89 Germany	AB	kg	cm	_	_	_	65	4		-	- 0.001
90 Netherlands	AB	kg	cm	m	_	_	5	8		38	0.991
91 Netherlands	AB	kg	cm	-	- 1 21 5	- 6 1 19 4	5 67	8		38	0.988
92 Spain 93 Sweden	AB	kg ka	cm	- m	4–34.5 12–64	6.1–18.4 11–29	61	14 8		7	0.98
94 Italy	log(AB) ABW	kg kg	cm	m m	12-04	11-29	11	8	8	_	0.993
95 Italy	ABW	kg	cm	m	_	_	11	8	9	_	0.993
96 Italy	ABW	kg	cm	m	_	_	11	8	10	_	0.991
97 Italy	ABW	kg	cm	m	_	_	11	8		_	0.995
98 Belgium	log(BR)	g	cm	_	35-78.8	_	23	12		6	0.981
99 Czech republic	BR	kg	cm	_	5.7-62.1	9.2-33.9	15	2		20	0.806
•		-									

				_			
	Equation	a	b	Parameters c	d	e	
	Equation	a	U				
46	$a+b\cdot \ln(D^2\cdot H)$	-1.6047	0.9450	_	-	_	
47	$a+b\cdot ln(D^2\cdot H)$	-1.5195	0.9204	_	_	-	
40	- 1 l- (D)	0.205	1.052				
48 49	a+b·ln(D)	-0.305 -3.368	1.953 2.041	_	_	_	
50	a+b·ln(D) a+b·ln(D)	-3.308 0.525	1.398	_	_	_	
51	a+b·ln(D)	-0.313	2.140	_	_		
51	aro m(D)	0.515	2.110				
52	a+b·ln(D)	-2.4166	2.4227	_	_	_	
53	a+b·ln(D)	-2.7584	2.6134	_	_	_	
54	a+b·ln(D)	-2.1625	2.3078	_	_	_	
55	a+b·ln(D)	-2.6423	2.4678	_	-	-	
56	a+b·log(D ² ·H)	-3.810	1.2911	_	_	_	
57	$a+b\cdot\ln(D)+c\cdot H+d\cdot\ln[(D^2)\cdot H]$	12.0993	8.5963	0.0406	-2.9662	-	
58	$a+b\cdot[D/(D+10)]$	-3.3633	10.2806	_	_	-	
59	$a+b\cdot ln(D)$	-10.7699	2.6016	_	_	_	
60	a+b·ln(D)	-10.2692	2.5124	_	_	_	
61	a+b·log(D ² ·H)	-6.510	1.5593	_	_	-	
62	a+b·[D/(D+5)]	-5.9507	7.9266	- 2001	-	_	
63	$a+b\cdot[D/(D+30)]+c\cdot H+d\cdot ln(H)$	-6.6237	11.2872	-0.3081	2.6821	-	
64	a+b·ln(D)	1.637 -3.454	1.9554	_	-	_	
65	$a+b \cdot \log(D^2 \cdot H)$		1.0961		_	_	
66 67	$a+b\cdot\ln(D)+c\cdot\ln[(D^2)\cdot H]$ $a+b\cdot\log(D^2\cdot H)$	10.2953 -3.887	7.9621 1.3668	-2.3022 -	_	_	
68	$a+b \cdot \log(D-H)$ $a+b \cdot \log(D^2 \cdot H)$	-2.311	0.9256	_	_	_	
69	a+b·[D/(D+14)]	-3.2518	10.3876	_	_	_	
70	$a+b\cdot[D/(D+14)]$ $a+b\cdot[D/(D+14)]+c\cdot\ln(H)$	-4.0778	8.3019	0.7433	_	_	
71	$a+b \cdot \ln(D)+c \cdot H+d \cdot \ln[(D^2) \cdot H]$	5.8227	3.3503	0.0259	-0.8584	_	
72	$a+b\cdot[D/(D+7)]+c\cdot H+d\cdot ln(H)$	-3.5686	8.2827	0.0393	0.5772	_	
73	$a+b \cdot \log(D^2 \cdot H)$	-3.540	1.1488	-	-	_	
74	$a+b \cdot log(D^2 \cdot H)$	-1.785	0.9910	_	_	_	
75	$a+b\cdot[D/(D+8)]$	-3.0932	11.0735	_	_	_	
76	a+b·[D/(D+11)]	-2.3327	10.8109	_	_	_	
77	$a+b\cdot[D/(D+11)]+c\cdot ln(H)$	-3.3045	8.1184	0.9783		-	
78	$a+b\cdot\ln(D)+c\cdot H+d\cdot\ln[(D^2)\cdot H]$	7.4223	3.9941	0.0338	-1.0984	_	
79	$a+b\cdot ln(D)$	-1.762	2.2644	_	-	_	
80	$a \cdot \log(H \cdot D^2) + b$	0.6816	-1.0003				
80	a·log(H·D-)+0	0.0610	-1.0003	_	_	_	
81	a+b·ln(D)	-1.3816	2.3485	_	_	_	
82	a+b·ln(D)	-5.2898	2.9353	_	_	_	
83	a+b·ln(D)	-4.1814	1.6645	_	_	_	
84	a+b·ln(D)	-1.6015	2.3427	_	_	_	
85	a+b·ln(D)	-1.7716	1.073	_		-	
86	$a+b\cdot\ln(D)+c\cdot\ln(H)$	-2.872	2.095	0.678	_	-	
87	a+b·log(D)	2.85102	2.0666	_	-	_	
88	a·Db	0.453	2.139	_	_	_	
89	a·Db	0.1143	2.503	-	_	-	
90	a·Db·Hc	0.0306	2.347	0.590	-	_	
91	a∙D ^b	0.0798	2.601	_	_	-	
92	a·D ^b	0.1315	2.4321	_	_	-	
93 94	a+log[H·(D²)]·b a·D ^b ·H ^c	-1.7194 0.04736	1.0414 1.80521	- 0.00603	_	_	
94 95	a·Db·Hc	0.16885	2.44639	0.99603 -0.1431	_	_	
93 96	a·Db·Hc	0.10883	2.44039	1.09409	_	_	
90	a·Db·Hc	0.03927	2.23434	0.87832	_	_	
98	a+b·log(D)	0.41439	3.18522	-	_	_	
99	$a \cdot D^b$	0.021	2.471	_	_	_	

Appendix A		Biom.	Unit of D	Н	Range D (cm)	e of H (m)	Ref.	Cont.	Comm.	n	r ²
100 Eman as	lm(DD)	1ra	0.000				42	14		22	0.02
100 France 101 Netherlands	ln(BR) BR	kg kg	cm	– m	_	_	42 5	8		23 38	0.93 0.92
102 Netherlands	BR	kg	cm	_	_	_	5	8		38	0.92
103 Spain	BR	kg	cm	_	4-34.5	6.1-18.4	67	14		7	0.89
104 Sweden	log(BR)	kg	cm	m	12–64	11–29	61	8		_	_
105 Netherlands	CR	kg	cm	m	_	_	5	8		38	0.929
106 Netherlands	CR	kg	cm	_	_	_	5	8		38	0.924
107 UK	CR	t	cm	_	_	_	9	6	1	_	-
108 UK	CR	t	cm	_	_	_	9	6	1	-	-
109 France	ln(FL)	kg	cm	_	_	_	42	14		23	0.95
110 Italy	FL	kg	cm	_	_	_	11	8	8	_	0.956
111 Italy	FL	kg	cm	m	_	_	11	8		-	0.961
112 Netherlands	FL FL	kg	cm	m –	_	_	5 5	8 8		38	0.923
113 Netherlands	FL FL	kg	cm cm	_	- 4–34.5	- 6.1–18.4	5 67	8 14		38 7	0.906 0.89
114 Spain 115 France	ln(RC)	kg kg	cm	_	4-34.3	0.1–16.4	42	14		16	0.89
116 France	ln(RF)	kg	cm	_	_	_	42	14		16	0.94
117 France	ln(RS)	kg	cm	_	_	_	42	14		16	0.95
118 France	RT	kg	cm	_	_	_	43	8		16	0.99
119 France	log(RT)	kg	cm	_	3-20	_	21	8		16	0.99
120 Germany	log(RT)	kg	cm	_	12–47	_	21	8		8	0.98
121 Sweden	log(RT)	kg	cm	m	12-64	11-29	61	8		_	_
122 France	ln(SB)	kg	cm	_	_	_	42	14		23	0.99
123 Sweden	log(SB)	kg	cm	m	12-64	11-29	61	8		_	-
124 Czech republic	ST	kg	cm	_	5.7-62.1	9.2-33.9	15	2		20	0.954
125 Italy	ST	kg	cm	m	_	_	11	8	8	_	0.988
126 Italy	ST	kg	cm	m	_	_	11	8	9	_	0.995
127 Italy	ST	kg	cm	m	_	_	11	8	10	_	0.99
128 Italy	ST	kg	cm	m	_	_	11	8		_	0.996
129 Netherlands	ST	kg	cm	m	_	_	5	8		38	0.996
130 Netherlands	ST ST	kg	cm	_	- 4 24 5	- 6.1–18.4	5 67	8 14		38 7	0.979 0.99
131 Spain 132 France	ln(SW)	kg kg	cm cm	_	4–34.5	0.1–18.4	42	14		23	0.99
133 Sweden	log(SW)	kg	cm	m	12–64	11–29	61	8		_	U.99 —
Fraxinus excelsior	-	_	CIII	111	12-04	11-27	01	G		_	_
134 UK	ln(ABW)	kg	cm	_	2.9-33	_	10	14	11	15	0.994
135 UK	ln(ABW)	kg	cm	_	3–18	_	10	14	11	15	0.985
Larix sibirica (Sibe		8									
136 Iceland	AB	kg	cm	m	3.3-31.6	3-20	71	8		44	0.992
137 Iceland	ST	kg	cm	m	3.3-31.6	3-20	71	8		44	0.984
Larix spp.											
138 UK	CR	t	cm	_	_	_	9	6	2	_	-
Picea abies (Norwa		uusi, (_				_			
139 Belgium	AB	g	cm	cm	2.6–10	1.3–4.5	41	5	12	23	0.982
140 Czech republic		kg	cm	m	1-11	2–9	18	7	13	55	-
141 Czech republic		kg	cm	_	11–47	14–33	16	2		17	0.967
142 Czech republic	AB AB	kg	cm	m	11–47	14–33 11–13	16 59	2 7	14	17 5	0.971
143 Denmark 144 Denmark	AB AB	kg	cm	m	10–17 12–20	11–13	59 59	7	15	10	_
145 Finland	AB	kg kg	cm cm	m _	12-20 -	11-14 -	8	8	13	-	_
146 Finland	AB	kg	cm	m	_	_	8	8		_	_
147 Germany	AB	kg	cm	_	_ 17–39	_	26	12		19	0.995
148 Germany	AB	kg	cm	_	10.–27.2	_	64	12		8	-
149 Germany	AB	kg	cm	_	17–38	_	64	12		9	_
150 Germany	AB	kg	cm	_	23–31	_	64	12		5	_
151 Iceland	AB	kg	cm	m	2.7–27.9	2.7-12	71	8		16	0.981
152 Norway	AB	g	cm	_	5-15	_	6	7		35	0.993
153 Norway	AB	g	cm	_	2-5	_	6	7		35	-
154 Sweden	log(AB)	kg	cm	m	15-38	18-28	61	8		_	_
155 Belgium	log(ABW)	g	cm	_	16.–32.3	-	24	12		6	0.982

				Parameters			
	Equation	a	b	C	d	e	
100	a+b·ln(D)	-6.2524	3.328	-	_	_	
101	a·Db·Hc	0.0114	3.682	-1.031	_	_	
102	a·Db	0.0020	3.265	_	_	_	
103	a·Db	0.0317	2.3931	_	_	_	
104	$a+log[H\cdot(D^2)]\cdot b$	-3.2114	1.2481	-	_	_	
105	a·Db·Hc	0.0183	3.614	-1.078	_	_	
106	a·D ^b	0.0031	3.161	_	_	_	
107	a·D ²	2.595·10 ⁻⁴	-	-	_	_	
108	a+b·D ^c	0.00686	1.92.10-5	2.4658	_	_	
109	a+b·ln(D)	-4.8599	2.1935	_	_	_	
110	a·Db	0.00295	2.43854	-	_	_	
111	a·Db·Hc	0.02408	3.04567	-1.51571	_	_	
112	a·Db·Hc	0.0167	2.951	-1.101	_	_	
113	a+b·D ^c	0.375	0.0024	2.517	_	_	
114	a·D ^b	0.0145	1.9531	_	_	_	
115	$a+b\cdot ln(D)$	-4.1302	2.6099	_	_	_	
116	a+b·ln(D)	-5.7948	2.1609	_	_	_	
117	a+b·ln(D)	-5.4415	2.082	_	_	_	
118	a+b·ln(D)	-3.8219	2.5382	_	_	_	
119	$a+b \cdot log(D)$	-1.66	2.54	-	_	-	
120	a+b·log(D)	-2	2.7	-	_	-	
121	$a+log[H\cdot(D^2)]\cdot b$	-2.8434	1.104	-	_	-	
122	a+b·ln(D)	-3.0741	2.0543	_	_	_	
123	$a+log[H\cdot(D^2)]\cdot b$	-2.4279	0.8636	_	_	_	
124	$a \cdot D^b$	0.494	2.07	_	_	_	
125	a·D ^b ·H ^c	0.00519	1.49634	2.10419	_	_	
126	a·D ^b ·H ^c	0.03638	2.15436	0.6587	_	_	
127	a·D ^b ·H ^c	0.00269	2.02481	1.65219	_	_	
128	$a \cdot D^b \cdot H^c$	0.00519	1.87511	1.27233	_	_	
129	$a \cdot D^b \cdot H^c$	0.0109	1.951	1.262	_	_	
130	$a \cdot D^b$	0.0762	2.523	_	_	_	
131	$a \cdot D^b$	0.0894	2.4679	_	_	_	
132	a+b·ln(D)	-2.0445	2.3912	_	_	_	
133	$a+log[H\cdot(D^2)]\cdot b$	-1.6219	0.9813	_	_	_	
134	a+b·ln(D)	-2.4598	2.4882	_	_	_	
135	a+b·ln(D)	-2.4718	2.5466	_	_	_	
136	$a \cdot D^b \cdot H^c$	0.1081	1.53	0.9482	_	_	
137	$a \cdot D^b \cdot H^c$	0.0444	1.4793	1.2397	_	_	
138	$a+b\cdot D^c$	0.00564	3.041.10-5	5 2.1058	_	_	
139	a+b·H+c·D ²	-520.7	-2.8	154.1	_	_	
140	$a \cdot (D+1)^{[b+c \cdot \log(D)]} \cdot H^d$	0.4274	0.8674	1.0099	-0.2028	_	
141	$a \cdot D^b$	0.57669	1.964	_	_	_	
142	$a \cdot [(D^2) \cdot H]^b$	0.11975	0.81336	_	_	_	
143	a·D ² H	0.02155	_	_	_	_	
144	a·D ² H	0.01815	_	_	_	_	
145	$a+b\cdot D+c\cdot D^2$	19.018	-4.806	0.565	_	_	
146	$a+b\cdot D^2+c\cdot (D^2\cdot H)$	0.257	0.187	0.010	_	_	
147	$a+b\cdot D+c\cdot D^2$	-43.13	2.25	0.452	_	_	
148	$a+b\cdot D+c\cdot D^2$	-60.55702	5.46558	0.27567	_	_	
149	$a+b\cdot D+c\cdot D^2$	-283.17413	26.32334	-0.12856	_	_	
150	$a+b\cdot D+c\cdot D^2$	-142.60881	13.63896	0.12593	_	_	
151	a·D ^b ·H ^c	0.2465	2.12	-0.167	_	_	
152	$a \cdot D^2 + b \cdot (D^2 - c)$	200.3691	99.3609	25	_	_	
153	$a \cdot D^2$	200.3691	-	_	_	_	
154	$a+\log[H\cdot(D^2)]\cdot b$	-1.2908	0.891		_	_	
155	a+b·log(D)	1.81298	2.51353	_	_	_	
	- 600						

A A		,	** * · · · · ·			C					
Appendix A		Biom.	Unit of D	H	Rang D (cm)	e of H (m)	Ref.	Cont.	Comm	. n	r^2
156 Austria	BR	kg	mm	_	3.2-20.7	_	60	12		12	0.731
154 Austria	BR	kg	mm	_	2.5-17.9	_	60	12		12	0.95
158 Czech republic	BR	kg	cm	m	1-11	2–9	18	7	13	55	_
159 Czech republic	BR	kg	cm	_	11–47	14–33	16	2		25	0.892
160 Czech republic	BR	kg	cm	m	11–47	14–33	16	2		25	0.89
161 Denmark	ln(BR)	kg	cm	m	14–26	14–18	34	7	16	20	0.83
162 Europe	ln(BR)	kg	cm	-	1.8–67.6	2.1–42.8	74	8		429	0.871
163 Finland	BR	kg	cm	_	_	_	8	8	17	_	_
164 Finland	BR	kg	cm	m	_	_	8 8	8	17 18	_	_
165 Finland 166 Finland	BR BR	kg	cm	-	_	_	8	8	18	_	_
167 Finland	BR	kg kg	cm cm	m _	_	_	8	8	19	_	_
168 Finland	BR	kg	cm	m	_	_	8	8	19		_
169 Germany	BR	kg	cm	_	17-39	_	27	12	17	19	_
170 Germany	BR	kg	m	m	0-50	5-30	54	8		32	0.961
171 Germany	BR	kg	m	m	0-10	5-10	54	8	20	10	0.94
172 Germany	BR	kg	m	m	20-30	18-21	54	8	20	7	0.79
173 Germany	BR	kg	m	m	30-50	24-30	54	8	20	15	0.903
174 Germany	BR	kg	cm	_	26-60	3036.27	69	10		7	0.959
175 Germany	BR	kg	cm	_	27-55.8	2229.80	69	10		7	0.972
176 Germany	BR	kg	cm	-	23-52	3238.9	33	10		5	0.921
177 Germany	BR	kg	cm	_	26–60	30–36.26	69	10	20	7	0.892
178 Germany	BR	kg	cm	-	26–55.7	22–29.79	69	10	20	7	0.976
179 Germany	BR	kg	cm	_	23–52	32–38.8	33	10		5	0.886
180 Iceland	BR	kg	cm	m	2.7–27.9	2.7–12	71	8	4	16	0.944
181 Norway	BR	g	cm	-	5–15	_	6	7		35	0.978
182 Norway	BR	g ka	cm	-	2–5 4.9–29.8	- 4.1–23.4	6 37	7 4		35 32	- 0.955
183 Sweden 184 Sweden	BR ln(BR)	kg	mm cm	_	4.9–29.8 1.1–9.9	18–83	19	8		43	0.933
185 Sweden	log(BR)	g kg	cm	m	15–38	18–28	61	8		-	-
186 Iceland	CR	kg	cm	m	2.7–27.9	2.7–12	71	8		16	0.959
187 Sweden	ln(CR)	kg	cm	_	0.3-63.4	1.3–35.6	49	8		1501	0.933
188 Finland	CR	kg	cm	_	_	_	8	8		_	_
189 Finland	CR	kg	cm	m	_	_	8	8		_	-
190 Finland	CR	kg	mm	_	_	_	29	8	21	_	0.881
191 Finland	CR	kg	mm	dm	-	_	29	8	22	_	0.903
192 Finland	CR	kg	cm	-	_	_	28	8		_	0.912
193 Finland	CR	kg	mm	-	_	_	29	8	22	_	0.892
194 Finland	CR	kg	mm	dm	-	-	29	8	21	_	0.893
195 Germany 196 Germany	CR CR	kg	cm	_	26–60 24–55.5	_	69 69	12 12		7 7	0.964 0.972
196 Germany	CR	kg ka	cm cm	_	10.–27.2	_	64	12		8	0.972
197 Germany	CR	kg kg	cm	_	17–38	_	64	12		9	_
199 Germany	CR	kg	cm	_	23–31	_	64	12		5	_
200 Germany	CR	kg	cm	_	24–52	3238.6	20	10		5	0.881
201 Sweden	ln(CR)	kg	cm	_	0-50	0–	50	8		544	0.945
202 Sweden	ln(CR)	kg	cm	m	0-50	0-	50	8		544	0.949
203 Belgium	log(DB)	g	cm	_	1632.3	_	24	12		6	0.97
204 Czech republic	DB	kg	cm	_	11-47	14-33	15	2		26	0.431
205 Czech republic	DB	kg	cm	m	11–47	14–33	15	2		26	0.41
206 Denmark	ln(DB)	kg	cm	m	14–26	14–18	34	7	16	20	0.58
207 Europe	ln(DB)	kg	cm	-	3.5–52.8	4.2–33.4	74	8		207	0.794
208 Finland	DB	kg	mm	_	-	-	28	8		-	0.266
209 Germany	DB	kg	cm	_	26–60	31–36	69	10		7	0.819
210 Norway	DB	g	cm	-	5–15	_	6	7		35	0.798
211 Norway	DB	g	cm	- dm	2–5	1002	6	7		35 42	- 0.27
212 Sweden 213 Sweden	ln(DB)	g kg	cm cm	dm –	1.1–9.9 0–50	1.8–8.3 0–	18 50	8		42 525	0.37 0.714
214 Sweden	ln(DB) ln(DB)	kg kg	cm	m	0-50	0-	50	8		525	0.714
214 Sweden 215 Sweden	ln(DB)	kg	cm	_	0.3-63.4	1.3–35.6	49	8		525	0.729
	(22)	~5	V-111		5.0 05.1	1.0 00.0		Ü		020	V./11

				D .		
	Equation	a	b	Parameters c	d	e
	1					-
156	o over(h D)	5.3727	0.00876			
157	$a \cdot \exp(b \cdot D)$ $a \cdot \exp(b \cdot D)$	1.325	0.00876	_	_	_
158	$a \cdot (D+1)^{[b+c \cdot \log(D)]} \cdot H^d$	0.1895	1.4075	0.8841	-0.9098	_
159	$a \cdot D^b$	0.0042229	2.7044	-	-	_
160	$a \cdot [(D^2) \cdot H]^b$	4.5394·10-4	1.1262	_	_	_
161	$a+b\cdot\ln(D^2\cdot H)$	-5.88	1.02	_	_	_
162	a+b·ln(D)	-3.96201	2.2552	_	_	_
163	$a+b\cdot D+c\cdot D^2$	2.479	-0.552	0.066	_	_
164	a+b·D²+c·D·H	-0.129	0.076	-0.041	_	_
165	a+b·D+c·D ²	3.640	-0.476	0.063	_	-
166	a+b·D+c·D ² +d·D·H	3.225	-0.295	0.091	-0.045	_
167	a+b·D+c·D ²	3.278	-0.728	0.101	_	_
168	a+b·D²+c·D·H	0.115	0.130	-0.074	_	_
169	a+b·D+c·D ²	17.6	-2.87	0.141	_	_
170	$a \cdot (H \cdot D^2)^b$	11.74	1.2	_	_	_
171 172	$a \cdot (H \cdot D^2)^b$	33.53	0.916	_	_	_
172	$a \cdot (H \cdot D^2)^b$ $a \cdot (H \cdot D^2)^b$	10.81 3.98	1.05 1.306	_	_	_
173	a·(H·D-)-	0.000135	3.453183	_	_	_
175	a·D ^b	1.96·10 ⁻⁵	4.0576	_	_	_
176	a·D ^b	0.000999	2.833374	_	_	_
177	$a \cdot D^b$	0.0021994	2.4392	_	_	_
178	a·D ^b	0.0004947	2.9487	_	_	_
179	$a \cdot D^b$	0.00684	2.0603	_	_	_
180	a·D ^b ·H ^c	0.0653	2.9955	-1.3501	_	_
181	$a \cdot D^2 + b \cdot (D^2 - c)$	37.7513	21.115	25	_	_
182	$a \cdot D^2$	37.7513	_	_	_	_
183	$a \cdot (1 - \exp(-b \cdot D))^c$	36.2826	0.0080	2.1576	_	_
184	$a+b\cdot ln(D)^2$	4.8678	0.8216	_	_	_
185	$a+log[H\cdot(D^2)]\cdot b$	-3.628	1.2374	_	_	_
186	$a \cdot D^b \cdot H^c$	0.2425	2.7517	-1.3456	_	-
187	$a+b\cdot[D/(D+13)]$	-1.3858	8.6040	-	_	_
188	a+b·D+c·D ²	3.416	-0.593	0.140	-	-
189	$a+b\cdot D+c\cdot D^2+d\cdot H+e\cdot (D\cdot H)$	6.721	0.358	0.119	-1.4773	0.030
190 191	$a+b\cdot D+c\cdot D^3$ $a+b\cdot D^2+c\cdot D^3+d\cdot (D^3/H)$	-3.71	0.10229	3.3·10 ⁻⁶	- 4 2424 10-	4
191	a+b·D ²	0.4866 3.2	3.5026·10 0.1049	-4 1.35·10 ⁻⁶	4.2424·10	. –
193	$a+b\cdot D^{-}$ $a+b\cdot D+c\cdot D^{3}$	-4.34	0.1049	3.34·10 ⁻⁶	_	_
194	$a+b\cdot D^2+c\cdot D^3+d\cdot (D^3/H)$	0.4112	2.6724.10		4.3562·10	4 _
195	a·D ^b	0.0013	3.1784	-	-	_
196	$a \cdot D^b$	0.0009	3.2112	_	_	_
197	a+b·D+c·D ²	-0.55542	-0.39541	0.09537	_	_
198	$a+b\cdot D+c\cdot D^2$	-70.51964	6.11247	-0.04391	_	_
199	$a+b\cdot D+c\cdot D^2$	-12.29435	1.19256	0.0462	_	_
200	$a \cdot D^b$	0.1068	1.8137	_	_	_
201	$a+b\cdot[D/(D+13)]$	-1.2804	8.5242	_	_	_
202	$a+b\cdot[D/(D+13)]+c\cdot H+d\cdot ln(H)$	-1.2063	10.9708	-0.0124	-0.4923	_
203	a+b·log(D)	1.82795	1.49367	_	_	_
204	a·D ^b	0.055571	1.5317	_	_	_
205	$a \cdot [(D^2) \cdot H]^b$	0.021705	0.60715	_	_	_
206	$a+b\cdot ln(D^2\cdot H)$	-7.75 2.2240 <i>6</i>	1.08	_	_	_
207	$a+b\cdot\ln(D)$ $a+b\cdot D+c\cdot D^3$	-3.22406	1.67320	2 0 10-8	_	_
208	a+b·D+c·D ⁵ a·D ^b	-0.62	0.0134	3.9·10 ⁻⁸	_	_
209 210	$a \cdot D^{0}$ $a \cdot D^{2} + b \cdot (D^{2} - c)$	4.25·10 ⁻⁷ 9.921	4.731 -3.6193	_ 25	_	_
211	a·D-+0·(Dc) a·D ²	9.921	-3.0193 -	23 -		_
212	a+b·ln(D ² ·H)	-1.4358	0.7494	_	_	_
213	a+b·[D/(D+18)]	-4.3308	9.9550	_	_	_
214	$a+b\cdot[D/(D+18)]$ $a+b\cdot[D/(D+18)]+c\cdot H+d\cdot ln(H)$	-4.6351	3.6518	0.0493	1.0129	_
215	a+b·[D/(D+18)]	-4.6654	9.9550	-	-	_
-	F - 1/3					

Appendix A		Biom.	Unit of D	Н	Range D (cm)	e of H (m)	Ref.	Cont.	Comm.	n	r^2
216 A	Ei	1			2.2.20.7		(0)	10		10	0.000
216 Austria	FL FL	kg	mm	_	3.2–20.7	_	60 60	12 12		12 12	0.898
217 Austria		kg	mm	-	2.5–17.9 1–11	- 2–9	18	7	13	55	0.89
218 Czech republic		kg	cm	m _	1–11	14–33	16	2	13	25	0.941
219 Czech republic 220 Czech republic		kg ka	cm cm	m	11–47	14–33	16	2		25	0.941
221 Denmark	ln(FL)	kg kg	cm	m	14–26	14–33	34	7	23	20	0.93
222 Europe	ln(FL)	kg	cm	_	1.8–67.6	2.1–42.8	74	8	23	551	0.74
223 Finland	FL	kg	cm	_	-	2.1-42.6	8	8	24	-	-
224 Finland	FL	kg	cm	m	_	_	8	8	24	_	_
225 Finland	ln(FL)	kg	mm	_	_	_	29	8	27	_	0.715
226 Finland	FL	kg	cm	m	_	_	46	8		_	-
227 Germany	log(FL)	kg	cm	_	18-62	_	70	12		28	0.911
228 Germany	FL	kg	cm	_	1027.2	_	64	12		8	-
229 Germany	FL	kg	cm	_	17–38	_	64	12		9	_
230 Germany	FL	kg	m	m	0-10	5-10	54	8		10	0.961
231 Germany	FL	kg	m	m	20-30	18-21	54	8		7	0.869
232 Germany	FL	kg	m	m	30-50	24-30	54	8		15	0.906
233 Germany	FL	kg	cm	_	14-27	20-24	45	8		8	0.95
234 Germany	FL	kg	cm	_	26-60	3036.25	69	10		7	0.857
235 Germany	FL	kg	cm	_	25-55.6	2229.78	69	10		7	0.964
236 Germany	FL	kg	cm	_	24-52	3238.7	33	10		5	0.854
237 Norway	FL	g	cm	_	5-15	_	6	7		35	0.978
238 Norway	FL	g	cm	_	2-5		6	7		35	_
239 Sweden	ln(FL)	kg	cm	_	0-50	0-	50	8		544	0.899
240 Sweden	ln(FL)	kg	cm	m	0-50	0-	50	8		544	0.901
241 Sweden	ln(FL)	kg	cm	_	0.3 - 63.4	1.3-35.6	49	8		544	0.899
242 Sweden	FL	kg	mm	_	4.9 - 29.8	4.1-23.4	37	4		32	0.962
243 Sweden	ln(FL)	g	cm	-	1.1–9.9	18-83	19	8		43	0.87
244 Germany	RC	kg	m	m	0-50	5–30	54	8		25	0.872
245 Sweden	ln(RC)	kg	cm	-	0–50	0–	50	8	25	281	0.941
246 Germany	RS	kg	m	m	0–50	5–30	54	8		25	0.872
247 Sweden	ln(RS)	kg	cm	-	0–50	0–	50	8	26	329	0.925
248 Europe	ln(RT)	kg	cm	_	_	_	74	8		_	0.956
249 Germany	RT	kg	cm	_	15–23	_	22	12		15	0.63
250 Germany	RT	kg	cm	_	16–32.5	_	44	12		15	0.711
251 Germany	log(RT)	kg	cm	-	5–25	-	21	8		15	0.79
252 Germany	RT	kg	cm		14–27	20–24	45	8		5	0.96
253 Sweden	log(RT)	kg	cm	m	15–38	18–28	61 9	8		_	-
254 UK	RT	kg	cm	-	- 11 47	- 14–33	16	6 2		- 18	- 0.027
255 Czech republic 256 Czech republic		kg	cm	-	11–47 11–47	14–33	16	2		18	0.927 0.935
257 Denmark	ln(SB)	kg kg	cm	m m	14–26	14–33	34	7	16	20	0.933
258 Germany	SB	kg	cm	_	10.–27.2	- -	64	12	10	8	-
259 Germany	SB	kg	cm	_	26–60	30.–36.28	69	10		7	0.965
260 Germany	SB	kg	cm	_	28–55.9	22.–29.81	69	10		7	0.862
261 Germany	SB	kg	cm	_	23–52	32.–38.10	33	10		5	0.904
262 Norway	SB	g	cm	_	5–15	-	6	7		35	0.981
263 Norway	SB	g	cm	_	2–5	_	6	7		35	-
264 Sweden	ln(SB)	kg	cm	_	0-50	0-	50	8		505	0.966
265 Sweden	ln(SB)	kg	cm	m	0-50	0-	50	8		505	0.968
266 Sweden	ln(SB)	kg	cm	_	0.3-63.4	1.3–35.6	49	8		505	0.966
267 Sweden	ln(SB)	g	cm	dm	1.1–9.9	1.8–8.3	19	8		43	0.97
268 Sweden	log(SB)	kg	cm	m	15–38	18–28	61	8		_	-
269 Sweden	ln(SR)	kg	cm	_	0-50	0-	50	8		316	0.97
270 Belgium	log(ST)	g	cm	_	1632.3	_	24	12		6	0.986
271 Czech republic		kg	cm	m	1-11	2-9	18	7	13	55	_
272 Europe	ln(ST)	kg	cm	_	3.5-52.8	4.2-33.4	74	8		235	0.986
273 Germany	ST	kg	cm	_	26-60	_	69	12		7	0.968
274 Germany	ST	kg	cm	_	24-55.5	_	69	12		7	0.962
275 Germany	ST	kg	cm	-	17–38	_	64	12		9	-

				D			
	Equation	a	b	Parameters c	d	e	
	1				-		
216	.1 D . D?	1.0745	0.020	0.00202			
216	$a+b\cdot D+c\cdot D^2$ $a+b\cdot D+c\cdot D^2$	-1.9745 0.7005	0.039 0.0011	0.00382	_	_	
217 218	$a+b\cdot D+c\cdot D^2$ $a\cdot (D+1)^{[b+c\cdot \log(D)]}\cdot H^d$	-0.7095 0.2120		0.00142	- -0.6697	_	
219	a·(D+1)to to tog(5) H ^a a·D ^b	0.2139 0.030997	0.6896 2.0019	1.2814	-0.0097	_	
220	$a \cdot D^{\circ}$ $a \cdot [(D^{2}) \cdot H]^{b}$	0.030997	0.81716	_	_	_	
221	$a \cdot [(D^2) \cdot H]^6$ $a + b \cdot \ln(D^2 \cdot H)$	-4.85	0.81710	_	_	_	
222	a+b·ln(D)	-3.19632	1.91620	_	_	_	
223	$a+b\cdot D+c\cdot D^2$	-0.647	0.106	0.040	_	_	
224	$a+b\cdot D+c\cdot D^2+d\cdot D\cdot H$	-0.607	0.100	0.039	0.001	_	
225	a+b·ln(D)	-9.03	2.2204	-	-	_	
226	a·Db·Hc	0.1022	2.5947	-0.8647	_	_	
227	a+b·log(D)	-3.084	2.814	-	_	_	
228	$a+b\cdot D+c\cdot D^2$	-12.29769	1.14647	0.00179	_	_	
229	$a+b\cdot D+c\cdot D^2$	-12.55702	1.14647	0.00179	_	_	
230	$a \cdot (H \cdot D^2)^b$	35.05	0.847	_	_	_	
231	$a \cdot (H \cdot D^2)^b$	21.37	0.979	_	_	_	
232	a·(H·D ²) ^b	9.26	1.179	_	_	_	
233	a+b·D	-18.63	1.85	_	_	_	
234	$a \cdot D^b$	0.0061379	2.3026	_	_	_	
235	$a \cdot D^b$	0.0026146	2.6763	_	_	_	
236	$a \cdot D^b$	0.00784	2.14426	_	_	_	
237	$a \cdot D^2 + b \cdot (D^2 - c)$	53.0637	10.4186	25	_	_	
238	$a \cdot D^2$	53.0637	_	_	_	_	
239	$a+b\cdot[D/(D+12)]$	-1.9602	7.8171	_	_	_	
240	$a+b\cdot[D/(D+12)]+c\cdot ln(H)$	-1.8551	9.7809	-0.4873	_	_	
241	$a+b\cdot[D/(D+12)]$	-2.0330	7.8171	_	_	_	
242	$a \cdot (1 - \exp(-b \cdot D))^c$	348.6448	0.0025	2.6100	_	-	
243	$a+b\cdot\ln(D)^2$	5.5129	0.7519	_	_	-	
244	$a \cdot (H \cdot D^2)^b$	7.33	1.383	_	_	_	
245	$a+b\cdot[D/(D+8)]$	-6.3851	13.3703	_	_	-	
246	$a \cdot (H \cdot D^2)^b$	1.13	0.926	_	_	-	
247	$a+b\cdot[D/(D+12)]$	-2.5706	7.6283	_	_	-	
248	a+b·ln(D)	-5.37891	2.92111	_	_	_	
249	$a \cdot D^b$	0.02	2.36	_	_	-	
250	a+b·D	-33.225	2.3915	_	_	-	
251	a+b·log(D)	-1.7	2.36	_	_	-	
252	a+b·D	-45.94	3.58	_	_	-	
253	$a+log[H\cdot(D^2)]\cdot b$	-2.0274	0.8946	_	_	-	
254	a·D ^b	1.204·10 ⁻⁵	2.4920	_	_	-	
255	a·D ^b	0.032777	1.8902	_	_	-	
256	$a \cdot [(D^2) \cdot H]^b$	0.0071913	0.7832	-	_	_	
257	$a+b\cdot ln(D^2\cdot H)$	-5.51	0.88	-	_	-	
258	a+b·D+c·D ²	-6.55127	0.75517	0.02156	_	-	
259	a·D ^b a·D ^b	0.23943	1.439 1.2919	_	_	_	
260	a·D ^b	0.2917		_	_	_	
261 262	$a \cdot D^c$ $a \cdot D^2 + b \cdot (D^2 - c)$	0.1557	1.5908	25	_	_	
263	a·D ² +b·(D ² -C)	23.8849 23.8849	-3.9241 -	25 _	_	_	
264	a+b·[D/(D+15)]		9.8364	_	_	_	
265	$a+b\cdot[D/(D+15)]$ $a+b\cdot[D/(D+15)]+c\cdot H+d\cdot ln(H)$	-3.3912 -3.4020		0.0147	0.2295	_	
266	a+b·[D/(D+15)]+c·H+d·III(H)	-3.4020 -3.4216	8.3089 9.8364	-	- -	_	
267	$a+b\cdot\ln(D+c\cdot H+d\cdot\ln(D^2)\cdot H)$	7.0429	4.946	0.0438	-1.5405	_	
268	$a+\log[H\cdot(D^2)]\cdot b$	-1.8073	0.7426	-	-1.5405	_	
269	$a+b \cdot [D/(D+14)]$	-2.4447	10.5381	_	_	_	
270	$a+b \cdot \log(D)$	1.85007	2.45530	_	_	_	
270	$a+b \cdot \log(D)$ $a \cdot (D+1)[b+c \cdot \log(D)] \cdot H^d$	0.0468	1.2244	0.5465	0.6481	_	
271	a+b·ln(D)	-2.50602	2.44277	0.3463 -	- 0.0481	_	
273	a+0·ln(D) a·D ^b	0.408	2.0136	_	_	_	
274	a·D ^b	0.208	2.1531	_	_	_	
275	$a+b\cdot D+c\cdot D^2$	-212.04143	20.20032	-0.08466	_	_	
2,3	a. 5 D 10 D	212.07173	20.20032	0.00-00			

Appendix A		Biom.	Unit of	H	Rang D (cm)	ge of H (m)	Ref.	Cont	Comm	. n	r^2
		Dioin.		11	D (CIII)	II (III)	KCI.	Cont.	Comm	. <i>n</i>	
276 Germany	ST	kg	cm	_	23-31		64	12		5	
277 Germany	ST	t	cm	_	17–39	21–31	26	7		19	0.989
278 Germany	ST	kg	cm	_	24–52	32.–38.5	20	10		5	0.984
279 Iceland	ST	kg	cm	m	2.7–27.9	2.7–12	71	8		16	0.989
280 Sweden	ln(ST)	kg	cm	_	0–50	0-	50	8		546	0.988
281 Sweden	ln(ST)	kg	cm	m	0-50	0-	50	8		546	0.994
282 Sweden	ln(ST)	kg	cm	m	0.3-63.4	1.3-35.6	49	8		1503	0.994
283 Sweden	ln(ST)	kg	cm	_	0.3-63.4	1.3-35.6	49	8		1503	0.986
284 Sweden	ln(ST)	kg	cm	m	0.3-63.4	1.3-35.6	49	8		505	0.992
285 Sweden	ln(ST)	kg	cm	_	0.3 - 63.4	1.3-35.6	49	8		505	0.982
286 Sweden	ln(SU)	kg	cm	_	0-50	0-	50	8		328	0.958
287 Czech republic	SW	kg	cm	_	11-47	14-33	16	2		18	0.969
288 Czech republic		kg	cm	_	11-47	14-33	16	2		18	0.976
289 Denmark	ln(SW)	kg	cm	m	14-26	14-18	34	7	16	20	0.96
290 Germany	SW	kg	cm	_	26-60	3036.29	69	10		7	0.956
291 Germany	SW	kg	cm	_	29-55.1	2229.82	69	10		7	0.963
292 Germany	SW	kg	cm	_	23-51	3238.11	33	10		5	0.984
293 Norway	SW	g	cm	_	5-15	_	6	7		35	0.985
294 Norway	SW	g	cm	_	2-5	_	6	7		35	_
295 Sweden	ln(SW)	kg	cm	_	0-50	0-	50	8		505	0.982
296 Sweden	ln(SW)	kg	cm	m	0-50	0-	50	8		505	0.992
297 Sweden	ln(SW)	g	cm	dm	1.1-9.9	1.8-8.3	19	8		43	0.99
298 Sweden	log(SW)	kg	cm	m	15-38	18-28	61	8		_	_
299 Germany	TB	kg	cm	_	26-60	3036.23	20	10		7	0.974
300 Germany	TB	kg	cm	_	24-55.5	2229.77	20	10		7	0.975
301 Germany	TB	kg	cm	_	24-52	3238.4	20	10		5	0.981
Picea engelmannii	(Engelmani	_	ce)								
302 Iceland	AB	kg	cm	m	1.4-12.7	1.7 - 12.7	71	8		14	0.927
303 Iceland	ST	kg	cm	m	1.4 - 12.7	1.7 - 12.7	71	8		14	0.967
Picea rubens											
304 –	log(RT)	kg	cm	_	_	_	68	8		15	0.972
Picea sitchenis (Sit											
305 UK	RT	kg	cm	_	_	_	9	6		_	_
Picea spp.											
306 Iceland	AB	kg	cm	m	4.9 - 28.6	4.8 - 15.4	71	8		56	0.965
307 Iceland	CR	kg	cm	m	4.9 - 28.6	4.8 - 15.4	71	8		56	0.905
308 UK	CR	kg	cm	_	_	_	9	6	1	_	_
309 UK	CR	kg	cm	_	_	_	9	6	2	_	_
310 Iceland	ST	kg	cm	m	4.9 - 28.6	4.8 - 15.4	71	8		56	0.981
Pinus banksiana											
311 –	log(RT)	kg	cm	_	_	_	68	8		40	0.917
Pinus contorta (Lo	dgepole pin	e)									
312 Iceland	AB	kg	cm	m	4.2 - 26.3	2.8 - 12.8	71	8		48	0.984
313 UK	CR	kg	cm	_	_	_	9	6	2	_	_
314 –	log(RT)	kg	cm	m	_	_	68	8		72	0.949
315 –	log(RT)	kg	cm	m	_	_	68	8		221	0.9
316 UK	RT	kg	cm	_	_	_	9	6		_	_
317 Iceland	ST	kg	cm	m	4.2 - 26.3	2.8-12.8	71	8		48	0.992
Pinus nigra var ma	<i>uritima</i> (Bla	ck pin	e, Cor	rsican pine)							
318 UK	CR	kg	cm	_	_	_	9	6	2	_	_
319 UK	RT	kg	cm	_	_	_	9	6		_	_
Pinus pinaster (Ma	aritime pine))									
320 Italy	ln(AB)	kg	cm	_	1.5–16	_	2	14	6	8	0.99
Pinus radiata (Rad	liata pine)										
321 Italy	ln(AB)	kg	cm	_	4-20	_	53	14	6	17	0.99
322 –	log(RT)	kg	cm	-	_	_	68	8		8	0.944
323 –	log(RT)	kg	cm	m	-	_	68	8		8	0.943
Pinus sylvestris (So		änty, '	Tall)								
324 Czech republic		kg	cm	m	2–6	2–5	17	7		29	-
325 Czech republic	: AB	kg	cm	m	2–16	4–11	17	7		50	-

		rameters	meters			
	Equation	a	b	C	d	e
	_					
276	a+b·D+c·D ²	-784.923	61.58581	-0.79535	_	-
277	a+b·D+c·D ²	0.051	0.0038	0.000344	_	_
278	a·D ^b	0.5938	1.9423		_	_
279	a·D ^b ·H ^c	0.0712	1.637	0.7436	_	_
280	$a+b\cdot[D/(D+14)]$	-2.0571	11.3341	_	_	_
281	$a+b\cdot[D/(D+14)]+c\cdot H+d\cdot ln(H)$	-2.1702	7.4690	0.0289	0.6858	_
282	$a+b\cdot[D/(D+14)]+c\cdot H+d\cdot ln(H)$	-2.2052	7.4361	0.0186	0.7595	_
283	$a+b\cdot[D/(D+14)]$	-2.0148	11.1926	_	_	_
284	$a+b\cdot[D/(D+14)]+c\cdot H+d\cdot ln(H)$	-2.3036	7.2309	0.0355	0.7030	_
285	$a+b\cdot[D/(D+14)]$	-2.2727	11.4873	_	_	_
286	$a+b\cdot[D/(D+17)]$	-3.3645	10.6686	_	_	_
287	a·D ^b	0.52917	1.9123	_	_	_
288	$a \cdot [(D^2) \cdot H]^b$	0.115	0.79159	-	-	-
289	$a+b\cdot \ln(D^2\cdot H)$	-3.24	0.88	-	-	-
290	$a \cdot D^b$	0.31974	2.0595	_	_	_
291	$a \cdot D^b$	0.15739	2.2118	_	_	_
292	$a \cdot D^b$	0.5937753	1.9423097	_	_	_
293	$a \cdot D^2 + b \cdot (D^2 - c)$	75.7482	75.3706	25	_	_
294	$a \cdot D^2$	75.7482	_	_	_	_
295	$a+b\cdot[D/(D+14)]$	-2.2471	11.4873	_	_	_
296	$a+b\cdot[D/(D+14)]+c\cdot H+d\cdot ln(H)$	-2.3032	7.2309	0.0355	0.7030	_
297	$a+b\cdot\ln(D)^2+c\cdot\ln[(D^2)\cdot H]$	3.6562	0.4115	0.401	_	_
298	$a + log[H \cdot (D^2)] \cdot b$	-1.2187	0.8494	_	_	_
299	a·D ^b	0.2543	2.1872	_	_	_
300	$a \cdot D^b$	0.1245	2.3585	_	_	_
301	$a \cdot D^b$	0.8007	1.9075	_	_	_
302	$a \cdot D^b \cdot H^c$	0.9211	1.438	0.102	_	_
303	$a \cdot D^b \cdot H^c$	0.2288	1.239	0.717	_	_
304	a·log(D)+b	2.1514	-1.2417	_	_	_
305	$a \cdot D^b$	$1.115 \cdot 10^{-5}$	2.68358	_	_	_
306	$a \cdot D^b \cdot H^c$	0.1334	1.8716	0.4386	_	_
307	$a \cdot D^b \cdot H^c$	0.087	2.287	-0.2897	_	_
308	$a \cdot D^b$	$5.2193 \cdot 10^{-4}$	1.459	_	_	_
309	a+b·D ^c	0.0060722	$9.58 \cdot 10^{-6}$	2.5578	_	_
310	$a \cdot D^b \cdot H^c$	0.0558	1.5953	0.9336	_	_
311	a·log(D)+b	2.16	-0.2089	_	_	_
312	$a \cdot D^b \cdot H^c$	0.1429	1.8887	0.4332	_	_
313	a+b·D ^c	0.00435	$1.321 \cdot 10^{-5}$	2.5138	_	_
314	$a \cdot log(H \cdot D^2) + b$	1.022	-1.818	_	_	_
315	$a \cdot \log(H \cdot D^2) + b$	0.806	-1.062	_	_	_
316	a·D ^b	$2.242 \cdot 10^{-5}$	2.42909375	_	_	_
317	a·D ^b ·H ^c	0.0669	1.5958	0.9096	_	_
318	$a \cdot D^b$	$1.3997 \cdot 10^{-4}$	1.72105599	_	_	_
319	$a \cdot D^b$	$1.537 \cdot 10^{-5}$	2.39136175	_	_	_
320	$a+b\cdot ln(D)$	-1.457	1.8647	_	_	_
321	a+b·ln(D)	-2.359	2.2936	_	-	_
322	a·log(D)+b	2.4453	-0.9366	_	_	_
323	a·log(H·D²)+b	1.0519	-2.9005	_	-	_
	-					
324	$a(D+1)^{[b+c \cdot log(D)]} \cdot H^d$	0.0398	2.2993	0.4445	0.1232	_
325	$a(D+1)^{[b+c \cdot \log(D)]} \cdot H^d$	0.0146	2.3868	-0.0618	0.8581	_

Appendix A		Biom.	Unit of D	Н	Ra D (cm)	nge of H (m)	Ref.	Cont.	Comm.	n	r ²
326 Czech republic	AB	kg	cm	_	2–6	2–5	17	8		_	0.91
327 Czech republic		kg	cm	_	2–6	2-5	17	8		_	0.91
328 Czech republic		kg	cm	_	2–6	2-5	17	8		_	0.94
329 Czech republic		kg	cm	m	2–6	2-5	17	8		_	0.47
330 Czech republic		kg	cm	m	2–6	2-5	17	8		_	0.45
331 Czech republic	AB	kg	cm	m	2–6	2-5	17	8		_	0.45
332 Czech republic	AB	kg	cm	_	2-16	4-11	17	8		_	0.89
333 Czech republic	AB	kg	cm	_	2-16	4-11	17	8		_	0.67
334 Czech republic	AB	kg	cm	_	2–16	4-11	17	8		-	0.98
335 Czech republic	AB	kg	cm	m	2–16	4–11	17	8		-	0.52
336 Czech republic		kg	cm	m	2–16	4–11	17	8		-	0.53
337 Czech republic		kg	cm	m	2–16	4–11	17	8		-	0.82
338 Finland	AB	kg	cm	_	_	_	8	8		-	_
339 Finland	AB	kg	cm	_	_	_	8	8		_	
340 Finland	ln(AB)	kg	cm	-	_	_	55	8	28	18	0.99
341 Finland	ln(AB)	kg	cm	_	- 	_	55	8	29	30	0.97
342 Norway	AB	g	cm	_	7–15	_	6	7		16	0.993
343 Norway	AB	g	cm	-	2–7	-	6	7	20	16	-
344 Norway	AB	g	cm	-	7–20	-	6	7	30	16	0.993
345 Norway	AB	g	cm	-	2–7	-	6	7	30	16	-
346 Poland	ln(AB)	kg	cm	-	_	_	62	8		65	0.764
347 Poland	ln(AB)	kg	cm	-	_	-	62	8		110	0.89
348 Poland	ln(AB)	kg	cm	-	_	_	62	8		30	0.938
349 Poland	ln(AB)	kg	cm	-	_	_	62	8		15	0.975
350 UK	log(AB)	g	cm		_	_	48 62	8		10	0.996
351 Poland	ln(ABW)	kg	cm	-	_	-	62	8		65	0.775
352 Poland 353 Poland	ln(ABW)	kg	cm	-	_	_	62	8 8		110 30	0.894 0.938
354 Poland	ln(ABW)	kg	cm	_	_	_	62	8		15	0.938
355 Belgium	ln(ABW) BR	kg kg	cm	_	_	_	75	13		-	-
356 Czech republic		kg	cm	m		2–5	17	7		29	_
357 Czech republic		kg	cm	m	2–0 2–16	2–3 4–11	17	7		50	_
358 Czech republic		kg	cm	_	2–6	2–5	17	8		_	0.81
359 Czech republic		kg	cm	_	2–6	2–5	17	8		_	0.83
360 Czech republic		kg	cm	_	2–6	2–5	17	8		_	0.81
361 Czech republic		kg	cm	_	2–16	4–11	17	8		_	0.77
362 Czech republic		kg	cm	_	2–16	4–11	17	8		_	0.71
363 Czech republic		kg	cm	_	2–16	4-11	17	8		_	0.89
364 Czech republic		kg	cm	m	2-16	4-11	17	8		_	0.74
365 Czech republic		kg	cm	m	2-16	4-11	17	8		_	0.67
366 Finland	BR	kg	cm	_	_	_	8	8	17	_	_
367 Finland	BR	kg	cm	m	_	_	8	8	17	_	_
368 Finland	BR	kg	cm	_	_	_	8	8	18	_	-
369 Finland	BR	kg	cm	m	_	_	8	8	18	_	-
370 Finland	BR	kg	cm	_	_	_	8	8	19	-	_
371 Finland	BR	kg	cm	m	_	_	8	8	19	_	-
372 Finland	ln(BR)	kg	cm	_	_	_	55	8	28	18	0.9
373 Finland	ln(BR)	kg	cm	_	_	_	55	8	29	30	0.93
374 Norway	BR	g	cm	_	7–15	_	6	7		16	0.974
375 Norway	BR	g	cm	_	2–7	_	6	7		16	-
376 Norway	BR	g	cm	-	15-20	_	6	7	30	16	0.971
377 Norway	BR	g	cm	_	2–15	-	6	7	30	16	-
378 Sweden	BR	kg	cm	m	2–40	2–	1	8		73	0.49
379 Sweden	ln(BR)	g	cm	dm	1.1-10	1.7-8.8	19	8		84	0.73
380 UK	log(BR)	g	cm	-	_	-	48	8		10	0.964
381 Norway	CO	g	cm	-	7–15	_	6	7		16	0.688
382 Norway	CO	g	cm	_	2–7	-	6	7		16	_
383 Norway	CO	g	cm	-	2–13	-	6	7	30	16	_
384 Finland	CR	kg	cm	-	_	-	8	8		-	_
385 Finland	CR	kg	cm	m	_	-	8	8		-	_

				Parameters		
	Equation	a	b	c	d	e
326	a+b·D	-3.1381	1.7295	_	_	_
327	$a \cdot \exp(D \cdot b)$	0.2304	0.6536	_	_	_
328	$a \cdot D^b$	0.1599	2.2060	_	_	_
329	a+b·H	-2.2818	1.3799	_	_	_
330	$a \cdot \exp(H \cdot b)$	0.332	0.51	_	_	_
331	a·H ^b	0.2146	1.8238	-	_	_
332	a+b·D	-25.2864	5.4433	_	_	_
333	a·exp(D·b)	1.8829	0.2445	_	_	_
334	a·D ^b	0.1182	2.3281	_	_	_
335	a+b·H	-53.8304	8.7802	_	_	_
336 337	$a \cdot \exp(H \cdot b)$ $a \cdot H^b$	0.591 0.0023	0.3794 4.1398	_	_	_
338	a+b·D+c·D ²	18.779	-4.1396 -4.328	0.506	_	_
339	a+b·D+c·D ²	7.041	-4.328 -1.279	0.201	_	_
340	a+b·ln(D)	-3.2807	2.6931	-	_	_
341	a+b·ln(D)	-2.3042	2.2608	_	_	_
342	$a \cdot D^2 + b \cdot (D^2 - c)$	209.69901	48.8075	49	_	_
343	$a \cdot D^2$	209.69901	-	_	_	_
344	$a \cdot D^2 + b \cdot (D^2 - c)$	200.87186	124.6808	49	_	_
345	$a \cdot D^2$	200.87186	_	_	_	_
346	$a+b\cdot ln(D)$	-1.954	1.988	_	_	_
347	a+b·ln(D)	-2.202	2.112	_	_	_
348	a+b·ln(D)	-2.103	1.994	_	_	_
349	a+b·ln(D)	-2.001	1.943	_	_	_
350	$a+b \cdot \log(\pi \cdot D)$	0.981	2.289	_	_	_
351	$a+b \cdot ln(D)$	-1.979	1.959	_	_	_
352	$a+b \cdot ln(D)$	-2.204	2.069	_	_	_
353	$a+b\cdot ln(D)$	-2.087	1.939	_	_	_
354	a+b·ln(D)	-2.017	1.915	_	_	_
355	a·Db	0.0022	2.9122	-	-	_
356	$a \cdot (D+1)^{[b+c \cdot \log(D)9} \cdot H^d$	0.1147	-0.585	3.1296	-0.4967	_
357	$a \cdot (D+1)^{[b+c \cdot \log(D)9} \cdot H^d$	0.0228	-0.2728	1.8144	0.6324	_
358 359	a+b·D	-0.9086	0.4691	-	_	_
360	a·exp(D·b) a·D ^b	0.0493 0.0356	0.6818 2.2530	_	_	_
361	a+b·D	-8.9086	1.5897	_	_	_
362	a·exp(D·b)	0.1862	0.2989	_	_	_
363	a·D ^b	0.0071	2.7743	_	_	_
364	$a \cdot \exp(H \cdot b)$	0.0055	0.7173	_	_	_
365	a·H ^b	0.0001	4.6817	_	_	_
366	$a+b\cdot D+c\cdot D^2$	2.842	-0.725	0.060	_	_
367	$a+b\cdot D+c\cdot D^2+d\cdot D\cdot H$	3.129	-0.536	0.077	-0.036642	_
368	$a+b\cdot D+c\cdot D^2$	2.171	1.599	0.060	_	_
369	$a+b\cdot D+c\cdot D^2+d\cdot H$	-0.398	-0.642	0.116	1.0275	_
370	$a+b\cdot D+c\cdot D^2$	4.988	-1.104	0.087	_	_
371	$a+b\cdot D+c\cdot D^2+d\cdot H+e\cdot (D\cdot H)$	-2.589	-0.588	0.145	1.1308	-0.143
372	$a+b \cdot ln(D)$	-3.1296	2.0089	_	_	_
373	a+b·ln(D)	-6.3284	3.0119	-	_	_
374	$a \cdot D^2 + b \cdot (D^2 - c)$	59.98243	-8.2237	49	_	_
375	$a \cdot D^2$	59.98243	_	_	_	_
376	$a \cdot D^2 + b \cdot (D^2 - c)$	32.9683	-8.27642	225	_	_
377	$a \cdot D^2$	32.9683	-	-	_	_
378	$\exp(a) \cdot (D+1)^b \cdot H^c$	-3.391	3.263	-1.202	1 120	_
379	$a+b \cdot \ln(D)+c \cdot \ln(D^2)+d \cdot \ln(H)$	7.0826 -0.662	1.2301	0.5838	-1.139 -	_
380 381	$a+b \cdot \log(\pi \cdot D)$ $a \cdot D^2 + b \cdot (D^2 - c)$		2.768	- 49	_	_
382	a·D²+b·(D²-c) a·D²	2.32445 2.32445	-1.628 -	49 -	_	_
383	a·D⁻ a·D²	0.27462	_	_	_	_
384	$a+b\cdot D+c\cdot D^2$	8.033	-1.156	0.105	_	_
385	$a+b\cdot D+c\cdot D^2+d\cdot H+e\cdot (D\cdot H)$	-1.057	-0.506	0.103	1.3419	_ -0.173
202	D. (D. 11)	1.007	0.500	5.176	1.0 117	0.1.0

Appendix A		Biom.	Unit of	H		Rang	e of H (m)	Ref.	Cont	Comm.	n	r^2
		Dioiii.	- Б	11		D (CIII)	II (III)	KCI.	Cont.	Comm.	n	
386 Finland	ln(CR)	kg	mm	_		_	_	29	8	22	_	0.905
387 Finland	ln(CR)	kg	mm	m		_	_	29	8	22	_	0.925
388 Finland	CR	kg	cm	-		_	-	28	8		-	0.91
389 Finland	ln(CR)	kg	mm	-		_	-	29	8	21	-	0.878
390 Finland	ln(CR)	kg	mm	m		0 45	_	29	8	21	-	0.908
391 Sweden	ln(CR)	kg	cm	-		0–45	0- 0-	50	8 8		482	0.901
392 Sweden 393 UK	ln(CR) log(CR)	kg	cm cm	m _		0–45	<u>-</u>	50 48	8		482 10	0.922 0.975
394 UK	CR	g kg	cm	_		_	_	9	6	2	-	-
395 Finland	log(DB)	kg	cm	m	2	2.4–9.7	3-7.8	56	8	_	_	0.742
396 Finland	log(DB)	kg	cm	m		7-21.6	7.9-14.8	56	8		_	0.655
397 Finland	log(DB)	kg	cm	m	:	5.6-23.6	8-18.2	56	8		_	0.89
398 Finland	DB	kg	mm	_	-	_	_	29	8		_	0.228
399 Norway	DB	g	cm	_		2–7	_	6	7	30	16	_
400 Norway	DB	g	cm	_		7–20	_	6	7	30	16	0.925
401 Norway	DB	g	cm	-		11–15	-	6	7	31	16	0.989
402 Norway	DB	g Isa	cm	_		2–11 0–45	_ 0_	6 50	7 8		16 467	- 0.741
403 Sweden 404 Sweden	ln(DB) ln(DB)	kg kg	cm cm	m		0–45 0–45	0-	50	8		467	0.741
405 Sweden	ln(DB)	g	cm	dm		1.1–10	1.7–8.8	19	8		80	0.58
406 UK	log(DB)	g	cm	_		_	-	48	8		10	0.512
407 Belgium	FL	kg	cm	_		_	_	75	13		_	_
408 Czech republic	FL	kg	cm	m	2	2–6	2-5	17	7	32	29	-
409 Czech republic	FL	kg	cm	m		2–16	4–11	17	7		50	-
410 Czech republic		kg	cm	-		2–6	2–5	17	8		_	0.67
411 Czech republic		kg	cm	-		2–6	2–5	17	8		-	0.68
412 Czech republic		kg	cm	-		2–6	2–5	17	8		_	0.72
413 Czech republic		kg	cm	-		2–16	4–11 4–11	17 17	8 8		_	0.84
414 Czech republic 415 Czech republic		kg kg	cm cm	_		2–16 2–16	4–11	17	8		_	0.8 0.89
416 Czech republic		kg	cm	m		2–16	4–11	17	8		_	0.43
417 Czech republic		kg	cm	m		2–16	4–11	17	8		_	0.75
418 Czech republic		kg	cm	m	2	2–16	4-11	17	8		_	0.72
419 Finland	FL	kg	cm	-		_	-	8	8	24	-	-
420 Finland	FL	kg	cm	-		_	-	8	8	24	-	-
421 Finland	ln(FL)	kg	cm	-		_	-	55	8	28	18	0.78
422 Finland	ln(FL)	kg	cm	-		_	-	55	8	29	30	0.9
423 Finland	ln(FL)	kg	mm	***		_	_	29	8		_	0.688
424 Finland 425 Norway	FL FL	kg	cm cm	m _		- 7–15	_	46 6	8 7		- 16	- 0.95
426 Norway	FL	g g	cm	_		7–13 2–7	_	6	7		16	0.93
427 Norway	FL	g	cm	_		7–20	_	6	7	30	16	0.946
428 Norway	FL	g	cm	_		2–7	_	6	7	30	16	-
429 Poland	ln(FL)	kg	cm	_		_	-	62	8		64	0.355
430 Poland	ln(FL)	kg	cm	-	-	_	-	62	8		108	0.546
431 Poland	ln(FL)	kg	cm	-	-	-	-	62	8		29	0.752
432 Poland	FL	kg	cm	cm		0.2–9.2	1.3 - 5.6	3	8		_	0.75
433 Poland	ln(FL)	kg	cm	-		0.45	_	62	8		15	0.71
434 Sweden	ln(FL)	kg	cm	_		0-45	0- 0-	50 50	8		482	0.841
435 Sweden 436 Sweden	ln(FL) FL	kg kg	cm cm	m m		0–45 2–40	2-	1	8		482 73	0.865 0.908
437 Sweden	ln(FL)	g	cm	dm		1.1–10	1.7–8.8	19	8		84	0.75
438 UK	log(FL)	g	cm	_		-	-	48	8		10	0.962
439 Belgium	FL(1)	kg	cm	_		_	_	75	13	33	_	-
440 Belgium	FL(2)	kg	cm	_		_	_	75	13	34	_	_
441 Belgium	RC	kg	cm	-		_	-	75	13		_	-
442 Europe	RC	kg	cm	-		4.1–45	-	77	1	35	_	0.97
443 Poland	ln(RC)	kg	cm	-		_	-	62	8		61	0.589
444 Poland	ln(RC)	kg	cm	-		_	_	62	8		106	0.803
445 Poland	ln(RC)	kg	cm	-		_	-	62	8		30	0.891

		Parameters						
	Equation	a	b	С	d	e		
386	a+b·ln(D)	-8.8027	2.2475	_	_	_		
387	$a+b\cdot D+c\cdot \ln(D)+d\cdot H$	-9.7486	0.0016023	2.5600	-0.0063173	_		
388	a+b·D ²	2.7	0.0799	-	-	_		
389	$a+b\cdot ln(D)$	-9.3954	2.3268	-	_	_		
390	$a+b\cdot\ln(D)+c\cdot\ln(H)+d\cdot D/H^2$	-5.2678	3.4914	-1.9498	-47.454	_		
391	a+b·[D/(D+10)]	-2.8604	9.1015	-	_	_		
392	$a+b\cdot[D/(D+10)]+c\cdot\ln(H)$	-2.5413	13.3955	-1.1955	-	-		
393	$a+b \cdot \log(\pi \cdot D)$	-0.383	2.723	- 2.512000	_ 7.1	_		
394	a+b·D ^c	0.00435122	1.321.10-5	2.513800	/4 –	_		
395 396	$a+b \cdot log(D^2 \cdot H)$ $a+b \cdot log(D^2 \cdot H)$	-2.130 2.702	0.6797	-	_	_		
390 397	$a+b \cdot \log(D^2 \cdot H)$ $a+b \cdot \log(D^2 \cdot H)$	-2.702 -2.735	0.8486 0.8977	_	_	_		
397	a+b·log(D-·H) a+b·D	-2.733 -0.84	0.0194	_	_	_		
399	a+0·D a·D ²	10.3135	0.0194	_	_	_		
400	$a \cdot D^2 + b \cdot (D^2 - c)$	10.3135	15.8006	49				
401	$a \cdot D^2 + b \cdot (D^2 - c)$	4.21541		121	_	_		
402	$a \cdot D^2$	4.21541	-	_	_	_		
403	a+b·[D/(D+10)]	-5.3338	9.5938	_	_	_		
404	$a+b\cdot[D/(D+10)]+c\cdot H+d\cdot ln(H)$	-5.8926	7.1270	-0.0465	1.1060	_		
405	a+b·ln(D)+c·H	1.1059	0.7017	0.0494	_	_		
406	$a+b \cdot \log(\pi \cdot D)$	0.959	1.569	_	_	_		
407	$a \cdot D^b$	0.00445	2.2371	_	_	_		
408	$a \cdot (D+1)^{[b+c \cdot \log(D)]} \cdot H^d$	0.0009	6.7765	-2.1552	-1.3905	_		
409	$a \cdot (D+1)^{[b+c \cdot \log(D)]} \cdot H^d$	0.0012	2.6479	-0.0549	0.6776	_		
410	a+b·D	-0.564	0.3324	_	_	_		
411	$a \cdot \exp(D \cdot b)$	0.0425	0.6652	_	_	_		
412	$a \cdot D^b$	0.0279	2.2877	_	_	_		
413	a+b·D	-2.9979	0.6293	_	_	_		
414	$a \cdot \exp(D \cdot b)$	0.1044	0.3192	-	-	-		
415	a·D ^b	0.009	2.4794	_	_	_		
416	a+b·H	-5.6616	0.9373	_	_	_		
417	a·exp(H·b)	0.0066	0.6513	-	_	_		
418	a·Hb	0.0002	4.3542	_	_	_		
419	a·D+b·D ²	0.023	0.015	0.010	_	_		
420 421	a+b·D+c·D ²	-0.105 -0.7714	0.365 0.9513	0.010	_	_		
421	a+b·ln(D) a+b·ln(D)	-0.7714 -5.613	2.5804	_	_	_		
423	a+b·ln(D)	-3.013 -7.47	1.6975	_	_	_		
424	a·Db·Hc	0.1179	2.1052	-0.7931				
425	$a \cdot D^2 + b \cdot (D^2 - c)$	37.78194	-16.7693	49	_	_		
426	$a \cdot D^2$	37.78194	-	_	_	_		
427	$a \cdot D^2 + b \cdot (D^2 - c)$	7.88144	19.3471	49	_	_		
428	$a \cdot D^2$	7.88144	_	_	_	_		
429	$a+b\cdot ln(D)$	-5.478	2.494	_	_	_		
430	a+b·ln(D)	-6.193	2.869	_	_	_		
431	$a+b\cdot ln(D)$	-6.621	3.155	_	_	_		
432	$a+b\cdot H^2+c\cdot H^3$	0.4365	0.0033	0.0001	_	_		
433	$a+b\cdot ln(D)$	-5.777	2.481	_	_	_		
434	$a+b\cdot[D/(D+7)]$	-3.7983	7.7681	_	_	_		
435	$a+b\cdot[D/(D+7)]+c\cdot H+d\cdot ln(H)$	-3.4781	12.1095	0.0413	-1.5650	_		
436	$\exp(a)\cdot(D+1)^b\cdot H^c\cdot \exp(d\cdot D)\cdot \exp(e\cdot H)$	-4.634	4.496	-2.439	-0.0977	0.0984		
437	$a+b\cdot\ln(D)+c\cdot\ln(D^2)+d\cdot\ln(H)$	7.5174	1.29	0.4486	-1.1229	_		
438	$a+b \cdot \log(\pi \cdot D)$	-0.502	2.527	-	_	_		
439	a·Db	0.00394	2.1534	_	_	_		
440	a·Db	0.00083	2.4074	_	_	_		
441	a·D ^b	0.33989	1.4728	_	_	_		
442	a·D ^b	0.02157	2.221205	_	_	_		
443 444	a+b·ln(D)	-3.636 -3.782	1.977 2.066	_	_	_		
444	a+b·ln(D) a+b·ln(D)	-3.782 -4.079	2.000	_	_	_		
443	ατυ·ιιι(D)	-1 .079	4.434	_	_	_		

Appendix A		Biom.	Unit of	Н	Rang D (cm)	ge of H (m)	Ref.	Cont.	Comm.	n	r^2
446 Poland	ln(RC)	kg	cm	_	_	_	62	8		15	0.909
447 Sweden	ln(RC)	kg	cm	_	0-45	0–	50	8	26	305	0.901
448 Europe	RF	kg	cm	_	4.1–45	_	77	1	35	_	0.75
449 Sweden	ln(RS)	kg	cm	_	0-45	0-	50	8	25	286	0.889
450 –	log(RT)	kg	cm	_	_	_	68	8		_	0.965
451 –	log(RT)	kg	cm	_	_	_	68	8		17	-
452 –	log(RT)	kg	cm	m	_	_	68	8		6	0.966
453 Europe	RT	kg	cm	_	4.1–45	-	77	1	35	-	0.964
454 Finland	log(RT)	kg	cm	-	7.0–21.6	7.9–14.8	56	8	5	_	0.935
455 Finland	log(RT)	kg	cm	_	4–24	_	21	8		20	0.99
456 UK	RT	t 1	cm	_	- 5 ()2 (- 0.0.10.2	9	6		_	- 0.069
457 Finland 458 Finland	log(SB)	kg	cm	m	5.6–23.6 2.4–9.7	8.0–18.2	56 56	8 8		-	0.968 0.964
459 Finland	log(SB)	kg ka	cm	m m	7.0–21.6	3.0–7.8 7.9–14.8	56	8		_	0.964
460 Finland	log(SB) ln(SB)	kg kg	cm	m	5.1–45	3.5–27.5	40	8		_	0.981
461 Finland	ln(SB)	kg	cm	_	J.1- 4 J	-	55	8	28	18	0.98
462 Finland	ln(SB)	kg	cm	_	_	_	55	8	29	30	0.95
463 Norway	SB	g	cm	_	7–15	_	6	7		16	0.999
464 Norway	SB	g	cm	_	2–7	_	6	7		16	_
465 Norway	SB	g	cm	_	7–20	_	6	7	30	16	0.993
466 Norway	SB	g	cm	_	2-7	_	6	7	30	16	_
467 Sweden	ln(SB)	kg	cm	_	0-45	0-	50	8		461	0.929
468 Sweden	ln(SB)	kg	cm	m	0-45	0–	50	8		461	0.935
469 Sweden	SB	kg	cm	m	2-40	2-	1	8		73	0.984
470 Sweden	ln(SB)	g	cm	dm	1.1-10	1.7-8.8	19	8		84	0.96
471 UK	log(SB)	g	cm	_	_	_	48	8		10	0.98
472 Sweden	SR	kg	cm	m	2–40	2–	1	8		73	0.943
473 Sweden	SR	kg	cm	m	2–40	2–	1	8		73	0.962
474 Sweden	ln(SR)	kg	cm	m	0–45	0–	50	8		296	0.958
475 Belgium	ST	kg	cm	-	-	_	75	13		-	-
476 Czech republic		kg	cm	m	2–6	2–5	17 17	7		29	_
477 Czech republic		kg	cm cm	m _	2–16 2–6	4–11 2–5	17	7 8		50 29	- 0.95
478 Czech republic 479 Czech republic		kg kg	cm	_	2-6	2-5	17	8		29	0.93
480 Czech republic		kg	cm	_	2-6	2-5	17	8		29	0.95
481 Czech republic		kg	cm	m	2-6	2–5	17	8		29	0.77
482 Czech republic		kg	cm	m	2-6	2–5	17	8		29	0.61
483 Czech republic		kg	cm	m	2–6	2–5	17	8		29	0.61
484 Czech republic		kg	cm	_	2-16	4-11	17	8		50	0.93
485 Czech republic		kg	cm	_	2-16	4-11	17	8		50	0.84
486 Czech republic	ST	kg	cm	_	2-16	4-11	17	8		50	0.98
487 Czech republic	ST	kg	cm	m	2-16	4-11	17	8		50	0.58
488 Czech republic	ST	kg	cm	m	2–16	4–11	17	8		50	0.86
489 Czech republic		kg	cm	m	2–16	4–11	17	8		50	0.85
490 Sweden	ln(ST)	kg	cm	-	0–45	0–	50	8		488	0.978
491 Sweden	ln(ST)	kg	cm	m	0–45	0-	50	8		488	0.99
492 Sweden	ST	kg	cm	m	2–40	2–	1	8		73	0.996
493 UK	log(ST)	g	cm	-	_	_	48	8		10	0.995
494 UK	log(ST)	g	cm	cm	_	_	63	8		_	_
495 UK	log(ST)	g	cm	-	_	_	63 63	8 8		_	-
496 UK 497 UK	log(ST)	g	cm	cm	_	_	63	8		_	_
498 Finland	log(SU)	g kg	cm cm	_	- 7–21.6	- 7.9–14.8	56	8		_	0.85
499 Sweden	ln(SU)	kg kg	cm	_	0-45	0- 1.9-14.8	50	8		306	0.83
500 Finland	log(SW)	kg	cm	m	5.6–23.6	8–18.2	56	8		-	0.943
501 Finland	log(SW)	kg	cm	m	2.4–9.7	3–7.8	56	8		_	0.992
502 Finland	log(SW)	kg	cm	m	7–21.6	7.9–14.8	56	8		_	0.991
503 Finland	ln(SW)	kg	cm	m	121-	-	40	8		_	0.992
504 Finland	SW	kg	cm	_	_	_	55	8	28	18	_
505 Finland	SW	kg	cm	_	_	_	55	8	29	30	_
		_									

			Parameters						
	Equation	a	b	C	d	e			
446	a+b·ln(D)	-3.514	1.909	-	_	_			
447	$a+b\cdot[D/(D+10)]$	-3.8375	8.8795	_	_	_			
448	$a \cdot D^b$	0.038386	1.240689	_	_	_			
449	$a+b\cdot[D/(D+9)]$	-6.3413	13.2902	_	_	_			
450	a·log(D)+b	2.2419	-1.3705	_	_	_			
451	a·log(D)+b	2.6	-1.61	_	_	_			
452 453	a·log(H·D²)+b a·D ^b	0.7665	-1.3736	_	_	_			
455 454		0.038872 -1.967	2.066783 2.458	_	_	_			
455	a+b·log(D) a+b·log(D)	-1.907 -1.89	2.436	_	_	_			
456	a+b ¹ log(D) a⋅D ^b	5.595·10 ⁻⁵	2.1001950		_	_			
457	$a+b \cdot \log(D^2 \cdot H)$	-2.024	0.7603	-	_	_			
458	$a+b \cdot \log(D \cdot H)$ $a+b \cdot \log(D^2 \cdot H)$	-1.827	0.7183	_	_	_			
459	$a+b \cdot \log(D^2 \cdot H)$	-1.771	0.7106	_	_	_			
460	$a+b \cdot \ln(D^2)+c \cdot \ln(H)$	-4.344	0.885	0.435	_	_			
461	a+b·ln(D)	-4.6637	2.4282	_	_	_			
462	a+b·ln(D)	-3.5682	1.9976	_	_	_			
463	$a \cdot D^2 + b \cdot (D^2 - c)$	22.63177	-6.7506	49	_	_			
464	$a \cdot D^2$	22.63177	_	_	_	_			
465	$a \cdot D^2 + b \cdot (D^2 - c)$	23.31516	-6.2686	49	_	_			
466	$a \cdot D^2$	23.31516	_	_	_	_			
467	$a+b\cdot[D/(D+16)]$	-2.9748	8.8489	_	_	_			
468	$a+b\cdot[D/(D+16)]+c\cdot\ln(H)$	-3.2765	7.2482	0.4487	_	_			
469	$\exp(a)\cdot(D+1)^b\cdot\exp(c\cdot D)\cdot\exp(d\cdot H)$	-4.494	2.026	-0.0187	0.0494	_			
470	$a+b\cdot ln(D)+c\cdot ln(D^2)+d\cdot H$	3.6931	0.9434	0.1778	0.0123	_			
471	$a+b \cdot \log(\pi \cdot D)$	0.007	2.146	_	_	-			
472	$\exp(a)\cdot D^b$	-6.158	3.071	_	_	-			
473	$\exp(a)\cdot D^b\cdot H^c$	-6.383	2.613	0.569	_	-			
474	a+b·[D/(D+12)]	-3.3913	11.1106	_	_	_			
475	a·Db	0.12269	2.3272	-	-	-			
476	$a \cdot (D+1)^{[b+c \cdot \log(D)]} \cdot H^d$	0.0038	4.4553	-1.5591	0.5661	_			
477	$a \cdot (D+1)^{[b+c \cdot \log(D)]} \cdot H^d$	0.006	3.1093	-0.5812	0.897	_			
478	a+b·D	-1.666	0.928	_	_	_			
479 480	a·exp(D·b) a·D ^b	0.1259 0.0867	0.6526	_	_	_			
481	a+b·H	-1.572	2.2099 0.8417	_	_	_			
482	a·exp(H·b)	0.1348	0.5912	_	_	_			
483	a·CAP(11·b) a·H ^b	0.0778	2.1498	_	_	_			
484	a+b·D	-13.3349	3.223	_	_	_			
485	a·exp(D·b)	1.0594	0.274	_	_	_			
486	a·D ^b	0.1163	2.1826	_	_	_			
487	a+b·H	-31.7127	5.3844	_	_	_			
488	$a \cdot \exp(H \cdot b)$	0.0814	0.584	_	_	_			
489	a·H ^b	0.0025	3.9472	_	_	_			
490	$a+b\cdot[D/(D+13)]$	-2.3388	11.3264	_	_	_			
491	$a+b\cdot[D/(D+13)]+c\cdot H+d\cdot ln(H)$	-2.6768	7.5939	0.0151	0.8799	_			
492	$\exp(a)\cdot(D+1)^b\cdot H^c\cdot \exp(d\cdot H)$	-3.760	1.882	0.758	0.0355	_			
493	$a+b \cdot \log(\pi \cdot D)$	0.981	2.194	_	_	_			
494	a+b·log(H)	-1.34	1.89	_	_	-			
495	$a+b \cdot log(D)$	1.38	2.41	_	_	-			
496	a+b·log(H)	-1.23	1.92	_	_	_			
497	a+b·log(D)	1.4	2.64	_	_	_			
498	a+b·log(D)	-1.740	0.9247	_	_	_			
499	a+b·[D/(D+15)]	-3.9657	11.0481	_	_	_			
500	$a+b \cdot \log(D^2 \cdot H)$	-1.730	0.9626	_	_	_			
501	$a+b \cdot \log(D^2 \cdot H)$	-1.411 1.662	0.8316	_	-	_			
502	$a+b \cdot \log(D^2 \cdot H)$	-1.663	0.9447	1 215	-	_			
503 504	$a+b\cdot\ln(D^2)+c\cdot\ln(H)$ $\exp[a+b\cdot\ln(D)]+\exp[c+d\cdot\ln(D)]$	-4.182 3.0212	0.879	1.215	- 5 2043	_			
505	$\exp[a+b\cdot\ln(D)]+\exp[c+d\cdot\ln(D)]$ $\exp[a+b\cdot\ln(D)]+\exp[c+d\cdot\ln(D)]$	-3.9212 -2.5809	2.668 2.1595	-13.575 -5.6832	5.2043 2.407	_ _			
505	cybiato.m(D)1texbicta.m(D)1	-2.5009	4.1393	-5.0652	2.407	_			

Appendix A		1	Unit of		Rang	e of					
		Biom.		Н	D (cm)	<i>H</i> (m)	Ref.	Cont.	Comm.	n	r ²
506 Norway	SW	g	cm	_	7–15	_	6	7		16	0.992
507 Norway	SW	g	cm	_	2–7	_	6	7		16	-
508 Norway	SW	g	cm	_	7–20	_	6	7	30	16	0.991
509 Norway	SW	g	cm	_	2–7	_	6	7	30	16	-
510 Sweden	ln(SW)	kg	cm	_	0-45	0-	50	8	20	461	0.966
511 Sweden	ln(SW)	kg	cm	m	0–45	0-	50	8		461	0.986
512 Sweden	ln(SW)	g	cm	dm	1.1–10	1.7–8.8	19	8		84	0.98
Pinus taeda	()	0									
513 –	log(RT)	kg	cm	_	_	_	68	8		7	0.863
Populus tremula (E	uropean asp	oen, A	sp)								
514 Germany	AB	kg	cm	_	13.2-33	15.9-24.7	66	11		16	0.941
515 Sweden	AB	kg	mm	_	1.9 - 9.2	3.6-15.8	36	4		_	0.958
516 Sweden	BR	kg	mm	_	1.9-9.2	3.6-15.8	36	4		_	0.959
517 Germany	CR	kg	cm	_	13.2–33	15.9–24.7	66	11		16	0.925
518 Sweden	FL	kg	mm	_	1.9–9.2	3.6–15.8	36	4		_	0.944
519 Germany	ST	kg	cm	_	13.2–33	15.9–24.7	66	11		16	0.909
520 Sweden	ST	kg	mm	_	1.9–9.2	3.6–15.8	36	4		_	0.95
Populus trichocarp	`										
521 Iceland	AB	kg	cm	m	4.6–34	4.6–20.7	71	8		22	0.98
522 Iceland	CR	kg	cm	m	4.6–34	4.6–20.7	71	8		22	0.884
523 Iceland	ST	kg	cm	m	4.6–34	4.6–20.7	71	8		22	0.98
Pseudotsuga menzi					0.7.07				2.6		0.04
524 Italy	ln(AB)	kg	cm	_	8.7–27	-	52	14	36	69	0.94
525 Netherlands	AB	kg	cm	-	3–38	6.7–25.9	4	14		23	0.995
526 Netherlands	AB	kg	cm	_	5-	_	30	9		-	-
527 Netherlands	ln(ABW)	kg	cm	-	5-	-	30	9		_	-
528 Netherlands	BR	kg	cm	m	3–38	6.7–25.9	4	14		23	0.944
529 Netherlands	CR	kg	cm	m	3–38	6.7–25.9	4	14	2	23	0.945
530 UK	CR	kg	cm	m	2 20	- 67.250	4	6 14	2	23	- 0.941
531 Netherlands 532 –	FL	kg	cm	m –	3–38	6.7–25.9	68	8		23 18	
533 –	log(RT)	kg	cm cm	_	_	_	68	8		33	0.908 0.902
534 –	log(RT) log(RT)	kg kg	cm	_	_	_	68	8		14	0.902
535 –	log(RT)	kg	cm	_	_	_	68	8		3	0.966
536 –	log(RT)	kg	cm	m	_	_	68	8		3	0.947
537 UK	RT	t	cm	_	_	_	9	6		_	-
538 Netherlands	ST	kg	cm	m	3-38	6.7-25.9	4	14		23	0.998
Pseudotsuga spp.	51	8	• • • • • • • • • • • • • • • • • • • •	***	2 20	0.7 20.5					0.,,0
539 Netherlands	log(RT)	kg	cm	_	5-27	_	21	8		21	0.96
Quercus conferta (s dris)							
540 Greece	ln(ABW)	kg	cm		2-19	2.2 - 14.7	51	14		27	0.98
541 Greece	ln(ABW)	kg	cm	cm	2-19	2.2 - 14.7	51	14		27	0.98
542 Greece	ln(BR)	kg	cm	_	2-19	2.2 - 14.7	51	14	37	27	0.82
543 Greece	BR	kg	cm	_	2-19	2.2-14.7	51	14	38	27	0.65
544 Greece	ln(BR)	kg	cm	_	2-19	2.2 - 14.7	51	14	39	27	0.73
545 Greece	ln(BR)	kg	cm	_	2-19	2.2 - 14.7	51	14	40	27	0.89
546 Greece	ln(BR)	kg	cm	cm	2-19	2.2 - 14.7	51	14	37	27	0.79
547 Greece	BR	kg	cm	cm	2-19	2.2-14.7	51	14	38	27	0.5
548 Greece	ln(BR)	kg	cm	cm	2-19	2.2 - 14.7	51	14	39	27	0.68
549 Greece	ln(BR)	kg	cm	cm	2–19	2.2-14.7	51	14	40	27	0.86
550 Greece	ln(SW)	kg	cm	_	2–19	2.2-14.7	51	14	41	27	0.96
551 Greece	ln(SW)	kg	cm	-	2–19	2.2-14.7	51	14	42	27	0.89
552 Greece	ln(SW)	kg	cm	-	2–19	2.2–14.7	51	14	43	27	0.97
553 Greece	ln(SW)	kg	cm	cm	2–19	2.2-14.7	51	14	41	27	0.98
554 Greece	ln(SW)	kg	cm	cm	2–19	2.2–14.7	51	14	42	27	0.89
555 Greece	ln(SW)	kg	cm	cm	2–19	2.2-14.7	51	14	43	27	0.98
Quercus ilex (Holm											
556 Italy	AB	kg	cm	-	20–90	_	73	14		_	-
557 Italy	AB	kg	cm	-	5–20	-	47	14		12	-
558 Italy	AB	kg	cm	m	4.5–26.1	6–16	7	8		94	0.952

				D			
	Equation	a	b	Parameters c	d	e	
	Equation	u			u		
	- 2 2						
506	$a \cdot D^2 + b \cdot (D^2 - c)$	89.24474	64.8925	49	_	_	
507	$a \cdot D^2$	89.24474	-	_	_	_	
508	$a \cdot D^2 + b \cdot (D^2 - c)$	175.40886	1.7509	49	_	_	
509	$a \cdot D^2$	175.40886	-	_	-	_	
510	a+b·[D/(D+14)]	-2.2184	11.4219	-	-	_	
511	$a+b\cdot[D/(D+14)]+c\cdot H+d\cdot ln(H)$	-2.6864	7.6066	0.0200	0.8658	-	
512	$a+b\cdot\ln(D)+c\cdot\ln(D^2)+d\cdot H$	4.3823	1.19	0.1969	0.0149	_	
513	a·log(D)+b	3.0742	-2.6683	_	_	_	
	_						
514	a·D ^b	0.0519	2.545	_	_	_	
515	a·D ^b	1.46.10-4	2.6035333	3 –	_	_	
516	a·D ^b	5.75·10 ⁻⁴	1.873298	_	_	_	
517	a·D ^b	0.0644	2.001	_	_	_	
518	a·D ^b	8.47.10-4	1.481578	_	_	_	
519	a·D ^b	0.0197	2.764	_	-	-	
520	$a \cdot D^b$	$6.5 \cdot 10^{-5}$	2.739823	_	_	_	
521	$a \cdot D^b \cdot H^c$	0.0717	1.8322	0.6397	_	_	
522	a·D ^b ·H ^c	0.0586	2.8285	-1.0282	_	_	
523	a·D ^b ·H ^c	0.0379	1.581	1.0795	_	_	
524	$a+b\cdot ln(D)$	-1.957	2.2996	_	_	_	
525	a+b·ln(D)	-1.62	2.410	_	-	_	
526	a·D ^b	0.111	2.397	_	_	_	
527	$a \cdot D^b$	0.111	2.397	-	_	_	
528	$a+b\cdot\ln(D)+c\cdot\ln(H)$	-2.675	4.420	-2.784	_	_	
529	$a+b\cdot\ln(D)+c\cdot\ln(H)$	-1.345	3.924	-2.514	_	_	
530	a·Db·H ^c	$3.461 \cdot 10^{-4}$	2.7169	-1.26060	_	_	
531	$a+b\cdot\ln(D)+c\cdot\ln(H)$	-1.346	3.351	-2.201	_	_	
532	a·log(D)+b	2.1641	-1.4467	_	_	_	
533	a·log(D)+b	2.5786	-1.8899	_	_	_	
534	a·log(D)+b	2.9108	-2.3807	_	_	_	
535	a·log(D)+b	2.5309	-1.6393	_	_	_	
536	$a \cdot \log(H \cdot D^2) + b$	1.0472	-2.6287	_	_	_	
537	a·D ^b	2.179·10 ⁻⁵	2.4209	-	_	_	
538	$a+b\cdot ln(D)+c\cdot ln(H)$	-2.535	2.009	0.709	_	_	
539	a+b·log(D)	-2	2.63	_	_	_	
540	a+b·ln(D)	-2.1686	2.4407	_	_	_	
541	$a+b \cdot \ln(D^2H)$	-2.5259	0.8605	_	_	_	
542	a+b·ln(D)	-3.3508	1.7235	_	_	_	
543	$[a+b(1/D)+c(1/D^2)]\cdot D^2$	0.0536	-0.3269	_	_	_	
544	a+b·ln(D)	-11.433	4.9391	_	_	_	
545	a+b·ln(D)	-4.1909	2.5403	_	-	-	
546	$a+b\cdot\ln(D^2H)$	-3.5363	0.5957	_	-	_	
547	$[a+b(1/D^2H)]\cdot D^2\cdot H$	0.0015	0.0402	_	-	_	
548	$a+b\cdot ln(D^2H)$	-12.7333	1.8202	_	-	_	
549	$a+b\cdot ln(D^2H)$	-4.4702	0.8791	_	_	_	
550	a+b·ln(D)	-2.5518	2.3887	_	_	_	
551	a+b·ln(D)	-3.8649	2.4261	_	-	_	
552	a+b·ln(D)	-2.32	2.4147	_	_	-	
553	$a+b \cdot \ln(D^2H)$	-2.9275	0.8468	_	_	-	
554 555	$a+b \cdot \ln(D^2H)$	-4.2122 2.6016	0.854	_	_	_	
555	$a+b\cdot ln(D^2H)$	-2.6916	0.8546	_	-	_	
556	$a \cdot D^b$	0.2306	2.2791	_	_	_	
557	$a \cdot D^b$	0.2179	2.0513	_	_	_	
558	a+b·D²·H	-0.6165	0.03582	_	_	_	

Appendix A		Biom.	Jnit of	Н	Rang D (cm)	ge of H (m)	Ref.	Cont	Comm.	n	r^2
		DIOIII.	υ	11	D (CIII)	II (III)	KCI.	Cont.	Comm.	п	
559 Spain	log(AB)	kg	cm	_	5.3-24.4	4.4-12.8	12	8		69	0.908
560 Spain	log(AB)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8		33	0.91
561 Spain	log(AB)	kg	cm	_	5.3-24.4	4.4 - 12.8	12	8		30	0.927
562 Spain	log(AB)	kg	cm	_	5.3-24.4	4.4 - 12.8	12	8		41	0.939
563 Spain	log(AB)	kg	cm	_	5.3-24.4	4.4 - 12.8	12	8		28	0.867
564 Spain	log(AB)	kg	cm	m	5.3-24.4	4.4 - 12.8	12	8		63	0.942
565 Spain	AB	kg	cm	_	_	_	25	14		15	-
566 Italy	ABW	kg	cm	m	4.5-26.1	6–16	7	8	3	94	0.952
567 Spain	log(BR)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8	44	69	0.803
568 Spain	log(BR)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8	44	33	0.784
569 Spain	log(BR)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8	44	30	0.697
570 Spain	log(BR)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8	44	41	0.84
571 Spain	log(BR)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8	44	28	0.775
572 Spain	log(BR)	kg	cm	m	5.3-24.4	4.4 - 12.8	12	8	44	63	0.807
573 Spain	log(BR)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8	45	56	0.781
574 Spain	log(BR)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8	46	69	0.443
575 Italy	CR	kg	cm	m	4.5–26.1	6–16	7	8		94	0.952
576 Spain	log(FL)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8		69	0.615
577 Spain	log(FL)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8		33	0.467
578 Spain	log(FL)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8		30	0.65
579 Spain	log(FL)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8		41	0.735
580 Spain	log(FL)	kg	cm	-	5.3-24.4	4.4 - 12.8	12	8		28	0.74
581 Spain	log(FL)	kg	cm	m	5.3-24.4	4.4 - 12.8	12	8		63	0.593
582 Spain	log(RC)	kg	cm	-	7.2–23.1	4.4 - 12.8	13	8	25	31	0.64
583 Spain	log(RC)	kg	cm	-	7.2–23.1	4.4–12.8	13	8	25	19	0.7
584 Spain	log(RC)	kg	cm	-	8.8–19.8	5.5–9.0	13	8	25	12	0.7
585 Spain	log(RS)	kg	cm	-	7.2–23.1	4.4–12.8	13	8	47	31	0.67
586 Spain	log(RS)	kg	cm	-	7.2–23.1	4.4–12.8	13	8	47	19	0.75
587 Spain	log(RS)	kg	cm	-	8.8–19.8	5.5–9.0	13	8	47	12	0.63
588 Spain	log(RT)	kg	cm	-	7–23	_	21	8		32	0.73
589 Spain	log(RT)	kg	cm	-	7.2–23.1	4.4–12.8	13	8		32	0.73
590 Spain	log(RT)	kg	cm	_	7.2–23.1	4.4–12.8	13	8		20	0.81
591 Spain	log(RT)	kg	cm	_	8.8–19.8	5.5–9.0	13	8		12	0.71
592 Spain	log(ST)	kg	cm	_	5.3–24.4	4.4–12.8	12	8	2	71	0.918
593 Spain	log(ST)	kg	cm	_	5.3–24.4	4.4–12.8	12	8	2	33	0.929
594 Spain	log(ST)	kg	cm	_	5.3–24.4	4.4–12.8	12	8	2	32	0.958
595 Spain	log(ST)	kg	cm	-	5.3–24.4	4.4–12.8	12	8	2	43	0.941
596 Spain	log(ST)	kg	cm	_	5.3–24.4	4.4–12.8	12	8	2	28	0.882
597 Spain	log(ST)	kg	cm	m	5.3–24.4	4.4–12.8	12	8	2	65	0.963
Quercus petraea	1 (DT)				7 17		21	0		71	0.04
598 France	log(RT)	kg	cm	-	7–17	_	21	8		71	0.94
Quercus pyrenaice					25 46	2 2 27	1.4	0		166	0.00
599 Portugal	ln(SW)	kg	cm	m	2.5–46	3.3–27	14	8		166	0.99
Quercus spp. (Oak		15~	0.000				21	2		22	
600 Austria	ln(AB)	kg	cm	_	- 4.5–52	_	31	3	11	33	- 0.99
601 UK	ln(ABW)		cm	_	4.5–52 4.3–35	_	10	14		20	0.99
602 UK 603 UK	ln(ABW) ln(ABW)	kg	cm	-		_	10	14	11	16	
	ln(ABW)	_	cm	-	3.8–11 5.7.33	_	10 10	14 14	11 11	15	0.974
604 UK	. ,	_	cm	-	5.7–33	_		6	11	18	0.995
605 UK 606 UK	CR CR	t	cm	- m	_	_	9 9	6	2	_	_
Tilia cordata (Lim		t	cm	m	_	_	9	U	2	-	_
607 UK	ln(ABW)	kg	cm	_	3.2-15	_	10	14	11	10	0.984
007 OIL	m(,, 1D 11)	r.g	CIII	_	J.4-1J		10	17	1.1	10	0.707

	log(D)	a	b Pa	arameters c	d	e
559 a+b·l	log(D)				u	·
		0.656				
		0.656				
	log(D)	-0.656	2.217	_	_	_
		-0.275	1.831	_	-	-
	log(D)	-0.854	2.413	_	-	-
	log(D)	-0.902	2.433	_	-	-
	log(D)	-0.313	1.900	_	-	-
	log(D)+c·H	-0.568	1.953	0.029	-	-
565 a⋅Db	_	0.2313	2.2662	_	-	-
566 a+b⋅I		-1.0906	0.031073	_	-	-
	log(D)	-0.704	1.833	_	_	_
	log(D)	-0.411	1.546	_	-	-
	log(D)	-0.825	1.953	_	-	-
	log(D)	-0.996	2.077	_	-	-
	log(D)	-0.370	1.544	_	-	-
	log(D)+c·H	-0.617	1.672	0.014	-	-
	log(D)	-0.825	1.789	_	-	-
574 a+b·l	log(D)	-1.429	2.089	_	_	_
575 a+b⋅I	D ² ⋅H	0.4741	0.0047473	_	_	_
576 a+b·l	log(D)	-1.624	1.891	_	_	_
	log(D)	-1.347	1.654	_	_	_
	log(D)	-2.128	2.309	_	_	_
579 a+b·l	log(D)	-2.142	2.269	_	_	_
580 a+b·l	log(D)	-1.366	1.774	_	_	_
581 a+b·l	$log(D)+c\cdot H$	-1.533	1.808	0.002	_	_
582 a+b·l	log(D)	-1.188	2.139	_	_	_
583 a+b·l	log(D)	-1.563	2.422	_	_	_
584 a+b·l	log(D)	-0.714	1.79	_	_	_
585 a+b·l	log(D)	-1.145	1.897	_	_	_
586 a+b·l	log(D)	-1.417	2.093	_	_	_
587 a+b·l	log(D)	-0.835	1.688	_	_	_
588 a+b·l	log(D)	-1.05	2.19	_	_	_
589 a+b·l	log(D)	-1.047	2.191	_	_	_
590 a+b·l	log(D)	-1.393	2.451	_	_	_
591 a+b·l	log(D)	-0.448	1.734	_	_	_
592 a+b·l	log(D)	-1.166	2.478	_	_	_
593 a+b·l	log(D)	-0.747	2.044	_	_	_
594 a+b·l	log(D)	-1.355	2.674	_	_	_
595 a+b·l	log(D)	-1.336	2.640	_	_	_
596 a+b·l	log(D)	-0.839	2.156	_	_	_
597 a+b·l	$log(D)+c\cdot H$	-1.088	2.157	0.039	_	_
598 a+b·l	log(D)	-1.56	2.44	_	_	_
599 a+b·l	$\ln(\text{H}\cdot\text{D}^2)$	-3.323	0.95	_	_	-
600 a+b·l	n(D)	-0.883	2.140	_	_	_
601 a+b·l		-2.4232	2.4682	_	_	_
602 a+b·l	* /	-2.3223	2.4029	_	_	_
603 a+b·l		-3.1404	2.8113	_	_	_
604 a+b·l		-3.1009	2.6996	_	_	_
$605 a \cdot D^2$	m(D)	2.1612·10 ⁻⁴	2.0770	_	_	_
606 a·D ^b ·	H¢	5.4224·10 ⁻⁴	2.35	-1.022	_	_
500 ap.		3.122110				
607 a+b·l	n(D)	-2.6788	2.4542	_	_	_

References - Appendix A

- Albrektson, A., Valinger, E. & Jonson, C. 1984. Några funktioner för bestämning av tallars biomassa i södra Norrland. Sveriges Skogsvårdsförbunds Tidskrift 82(6): 5–12.
- 2 Baldini, S., Berti, S., Cutini, A., Mannucci, M., Mercurio, R. & Spinelli, R. 1989. Prove sperimentali di primo diradamento in un soprassuolo di pino marittimo (Pinus pinaster Ait.) originato da incendio: aspetti silvicolturali, di utilizzazione e caratteristiche della biomassa. Ann. Ist. Sper. Selvicoltura 20: 385–436.
- 3 Barcikowski, A. & Loro, P.M. 1995. Needle biomass and dendrometrical features of Scots pine (Pinus sylvestris L.) natural regeneration seedlings of younger age classes, growing on a fresh coniferous forest site. Sylwan 139(2): 53–62.
- 4 Bartelink, H.H. 1996. Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology and Management 86: 193–203.
- 5 Bartelink, H.H. 1997. Allometric relationship for biomass and leaf area of beech (Fagus sylvatica L). Annals of Forest Science 54: 39–50.
- 6 Brække, F.H. 1986. Distribution and yield of biomass from young Pinus sylvestris and Picea abies stands on draines and fertilized peatland. Scandinavian Journal of Forest Research 1: 49–66.
- 7 Brandini, P. & Tabacchi, G. 1996. Biomass and volume equations for holm oak and straberry-tree in coppice stands of Southern Sardinia. ISAFA Communicazioni di Ricerca 96(1): 59–69.
- 8 Briggs, E.F. & Cunia, T. 1982. Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research 12(2): 255–263.
- 9 Broadmeadow, M. & Matthews, R. 2004. Survey methods for Kyoto Protocol monitoring and verification of UK forest carbon stocks. UK Emissions by Sources and Removals by Sinks due to Land Use, Land Use Change and Forestry Activities, Report. CEH, Edinburgh (June 2004).
- 10 Bunce, R.G.H. 1968. Biomass and production of trees in a mixed deciduoud woodland. I. Girth and height as parameters for the estimation of tree dry weight. Journal of Ecology 56: 759–775.
- 11 Calamini, G. & Gregori, E. 2001. Study in a beech stand of Central Italy: allometric relations for the above ground biomass estimation. L'Italia Forestale e Montana 56(1): 1–23.
- 12 Canadell, J., Riba, M. & Andrés, P. 1988. Biomass equations for Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry 61(2): 137–147.
- 13 Canadell, J. & Rodà, F. 1991. Root biomass of Quercus ilex in a montane mediterranean forest. Canadian Journal of Forest Research 21: 1771–1778.
- 14 Carvalho, J.P. & Parresol, B.R. 2003. Additivity in tree biomass components of Pyrenean oak (Quercus

- pyrenaica Willd.). Forest Ecology and Management 179: 269–276.
- 15 Cienciala, E., Cerný, M., Alptauer, J. & Exnerová, Z. 2005. Biomass functions applicable to European beech. Journal of Forest Science 51(4): 147–154.
- 16 Cerný, M. 1990. Biomass of Picea abies (L.) Karst. in midwestern Bohemia. Scandinavian Journal of Forest Research 5: 83–95.
- 17 Chroust, L. 1985. Above-ground biomass of young pine forests (Pinus sylvestris) and its determination. Communicationes Instituti Forestalis Cechosloveniae 14: 127–145.
- 18 Chroust, L. & Tesarova, J. 1985. Quatification of above-ground components of 20 years old Norway spruce (Picea abies (L.) Karsten). Communicationes Instituti Forestalis Cechosloveniae 14: 111–126.
- 19 Claesson, S., Sahlén, K. & Lundmark, T. 2001. Functions for biomass estimation of young Pinus sylvestris, Picea abies and Betula spp. from stands in northern Sweden with high stand densities. Scandinavian Journal of Forest Research 16: 138–146.
- 20 Dietrich, H.-P., Raspe, S., Schwarzmeier, M. & Ilg, S. 2002. Biomasse- und Nährelementinventuren zur Ermittlung von Ernteentzügen an drei bayerischen Fichtenstandorten. In: Dietrich, H.-P., Raspe, S. & Preuhsler, T. (eds.): Inventur von Biomasse- und Nährstoffvorräten in Waldbeständen. Forstliche Forschungsberichte, München, 186: 59–72.
- 21 Drexhage, M. & Colin, F. 2001. Estimating root system biomass from breast-height diameters. Forestry 74(5): 491–497.
- 22 Drexhage, M. & Gruber, F. 1999. Above- and belowstump relationships for Picea abies: Estimating root system biomass from breast-height diameters. Scandinavian Journal of Forest Research 14: 328–333.
- 23 Duvigneaud, P., Kestemont, P., Timperman, J. & Moniquet, J.-C. 1977. La hetraie ardennaise a Festuca Altissima a mirwart biomasse et productivite primaire. In: Duvigneaud, P. & Kestemont, P. (eds.). Productivite biologique en Belgique. Editions Duculot, Paris-Gembloux. p. 107–154.
- 24 Duvigneaud, P. & Timperman, P. 1977. Biomasse des epiphytes cryptogamiques dans une hêtraie ardennaise. In: Duvigneaud, P. & Kestemont, P. (eds.). Productivite biologique en Belgique. Editions Duculot, Paris-Gembloux.
- 25 Ferres, L., Roda, F., Verdu, A.M.C. & Terradas, J. 1980. Estructura y funcionalismo de un encinar montano en el Montseny. II. Biomasa aera. Mediterranea 4: 23–36.
- 26 Fiedler, F. 1986. Die Dendromasse eines hiebsreifen Fichtenbestandes. Beiträge für die Forstwirtschaft 20(4): 171–180.
- 27 Fiedler, F. 1987. Das Ökologische Meßfeld der Sektion Forstwirtschaft der TU Dresden. V. Die Verteilung der Dendromassekomponenten. Wissenschaftliche Zeitschrift der Technischen Universität Dresden 36(6): 229–234.

- 28 Hakkila, P. 1971. Coniferous branches as a raw material source. Communicationes Instituti Forestalis Fenniae 75(1): 1–60.
- 29 Hakkila, P. 1991. Hakkuupoistuman latvusmassa. Folia Forestalia 773: 1–24.
- 30 Hees, A.F.M.v. 2001. Biomass development in unmanaged forests. Nederlands Bosbouwtijdschrift 73(5): 2–5.
- 31 Hochbichler, E. 2002. Vorläufige Ergebnisse von Biomasseninventuren in Buchen- und Mittelwaldbeständen. In: Dietrich, H.-P., Raspe, S. & Preuhsler, T. (eds.): Inventur von Biomasse- und Nährstoffvorräten in Waldbeständen. Forstliche Forschungsberichte, München, 186: 37–46
- 32 Hughes, M.K. 1971. Tree biocontent, net production and litter fall in a deciduous woodland. Oikos 22: 62–73.
- 33 Ilg, S. 2002. Erhebung der oberirdischen Biomasseund Elementvorräte eines Fichtenbestandes (Picea abies (L.) Karst.) im Bereich der Waldklimastation Zusmarshausen. Fachhochschule Weihenstephan. Fachbereich Forstwirtschaft. 98 p.
- 34 Ingerslev, M. & Hallbäcken, L. 1999. Above ground biomass and nutrient distribution in a limed and fertilized Norway spruce (Picea abies) plantation. Part II. Accumulation of biomass and nutrients. Forest Ecology and Management 119: 21–38.
- 35 Johansson, T. 1999a. Biomass equations for determining functions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass and Bioenergy 16: 223–238.
- 36 Johansson, T. 1999b. Biomass equations for determining functions of European aspen growing on abandoned farmland and some practical implications. Biomass and Bioenergy 17: 471–480.
- 37 Johansson, T. 1999c. Biomass production of Norway spruce (Picea abies (L.) Karst.) growing on abandoned farmland. Silva Fennica 33(4): 261–280.
- 38 Johansson, T. 1999d. Dry matter amounts and increment in 21- to 91-year-old common alder and grey alder and some practical implications. Canadian Journal of Forest Research 29: 1679–1690.
- 39 Johansson, T. 2000. Biomass equations for determining functions of common and grey alder growing on abandoned farmland and some practical implications. Biomass and Bioenergy 18: 147–159.
- 40 Korhonen, K.T. & Maltamo, M. 1990. Männyn maanpäällisten osien kuivamassat Etelä-Suomessa. Metsäntutkimuslaitoksen tiedonantoja 371: 1–29.
- 41 Laitat, E., Lebègue, C., Perrin, D. & Pissart, G. 2003. Séquestration du carbone par les forêts selon l'affectation des terres. Ministre de l'Agriculture et de la Ruralité, Ministère de la Région Wallonne, Division de la Nature et des Forêts, FuSAGxp.
- 42 Le Goff, N. & Ottorini, J.M. 2000. Biomass distributions at tree and stand levels in the beech experimental forest of Hesse (NE France). Viterbo (November): 9–11.

- 43 Le Goff, N. & Ottorini, J.M. 2001. Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Annals of Forest Science 58: 1–13.
- 44 Lee, D.-H. 1998. Architektur des Wurzelsystems von Fichten (Picea abies [L.] Karst.) auf unterschiedlich versauerten Standorten. Göttingen, Forschungszentrum Waldökosysteme der Universität Göttingen. Reihe A 153: 1–142.
- 45 Lee, D.-H. 2001. Relationship between above- and below-ground biomass for Norway spruce (Picea abies): estimating root system biomass from breast height diameter. Jour. Korean For. Soc. 90(3): 338–345.
- 46 Lehtonen, A. 2005. Estimating foliage biomass for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) plots. Tree Physiology 25: 803–811.
- 47 Leonardi, S. & Rapp, M. 1982. Phytomasse et mineralomase d'un taillis de Chene Vert du Massif de l'Etna. Ecologia Mediterranea 8: 125–138.
- 48 Lim, M.T. & J.E., C. 1986. The internal transfer of nutrients in a Scots pine stand: biomass components, current growth and their nutrient content. Forestry 59(1): 1–27.
- 49 Marklund, L.G. 1987. Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Institutionen för skogstaxering, Rapport 43: 1–127.
- 50 Marklund, L.G. 1988. Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Institutionen för skogstaxering, Rapport 45: 1–73.
- 51 Matis, K. & Alifragis, D. 1983–1984. Aboveground biomass of oaks (Quercus conferta Kit.) in Taxiarchis Greece. Scientific Annals of the Depart. of Forestry and Natural Envir. KA 15.
- 52 Menguzzato, G. & Tabacchi, G. 1986. Prove di diradamento su Pseudotsuga menziesii in Calabria. Ambiente, tavole di cubatura e della biomassa epigea. Ann. Ist. Sper. Selvicoltura 17: 255–293.
- 53 Menguzzato, G. 1988. Modelli di previsione del peso fresco, della biomassa e del volume per pino insigne ed eucalitti nell'Azienda Massanova (Salerno). Ann. Ist. Sper. Selvicoltura 19: 323–354.
- 54 Mund, M., Kummetz, E., Hein, M., Bauer, G.A. & Schulze, E.-D. 2002. Growth and carbon stocks of a spruce forest chronosequence in central Europe. Forest Ecology and Management 171: 275–296.
- 55 Mäkelä, A. & Vanninen, P. 1998. Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine. Canadian Journal of Forest Research 28: 216–227.
- 56 Mälkönen, E. 1974. Annual primary production and nutrient cycle in some Scots pine stands. Communicationes Instituti Forestalis Fenniae 84(5): 1–87.
- 57 Mälkönen, E. 1977. Annual primary production and nutrient cycle in birch stand. Communicationes Instituti Forestalis Fenniae 91(5): 1–35.

58 Mälkönen, E. & Saarsalmi, A. 1982. Hieskoivikon biomassatuotos ja ravinteiden menetys kokopuun korjuussa. Folia Forestalia 534: 1–17.

- 59 Møller, I.S. 2000. Calculation of biomass and nutrient removal for different harvesting intensities. New Zealand Journal of Forestry Science 30(1): 29–45.
- 60 Neumann, M. & Jandl, R. 2002. Aboveground biomass of two young Norway spruce stands. Manuscript.
- 61 Nihlgård, B. 1972. Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. Oikos 23: 69–81.
- 62 Oleksyn, J., Reich, P.B., Chalupka, W. & Tjoelker, M.G. 1999. Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scandinavian Journal of Forest Research 14: 7–17.
- 63 Ovington, J.D. 1957. Dry matter production by Pinus sylvestris L. Annals of Botany 21(82): 287–314.
- 64 Poeppel, B. 1989. Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde, Technische Universität Dresden. 66 p.
- 65 Pretzsch, H. 2000. Die Regeln von Reineke, Yoda und das Gesetz der räumlichen Allometrie. Allgemeine Forst- und Jagd-Zeitung 171: 205–210.
- 66 Rock, J. 2005. Suitability of published equations for aspen in Central Europe – results from a case study. Submitted manuscript.
- 67 Santa Regina, I. & Tarazona, T. 2001. Organic matter and nitrogen dynamics in a mature forest of common beech in the Sierra de la Demanda, Spain. Ann. Sci. For. 58: 301–314.
- 68 Santantonio, D., Hermann, R.K. & Overton, W.S. 1977. Root biomass studies in forest ecosystems. Pedobiologia 17: 1–31.
- 69 Schwarzmeier, M. 2000. Erhebung der oberirdischen Biomassevorräte von Fichtenbeständen (Picea abies (L.) Karst.) im Bereich der Waldklimastationen Ebersberg und Flossenbürg. Diploma Thesis, Fachhochschule Weihenstephan, Fachbereich Forstwirtschaft, Germany 155 p.
- 70 Schöpfer, W. 1961. Beiträge zur Erfassung des Assimilationsapparates der Fichte. 127 p.
- 71 Snorrason, A. & Einarsson, S.F. 2004. Single-tree biomass and stem volume functions for eleven tree species used in Icelandic forestry. Submitted manuscript.
- 72 Starr, M., Hartman, M. & Kinnunen, T. 1998. Biomass functions for mountain birch in the Vuoskojärvi Integrated Monitoring area. Boreal Environment Research 3: 297–303.
- 73 Susmel, L., Viola, F. & Bassalo, G. 1976. Ecologie della Lecceta del Supramonte di Orgosolo. (Sardegna Centro-orientale). Analisi de Centro di Economia Montana delle Venezie 10: 1–216.
- 74 Wirth, C., Schumacher, J. & Schulze, E.-D. 2004. Generic biomass functions for Norway spruce in cen-

- tral Europe a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24: 121–139.
- 75 Xiao, C.W., Curiel Yuste, J., Janssens, I.A., Roskams, P., Nachtergale, L., Carrara, A., Sanchez, B.Y. & Ceulemans, R. 2003. Above-and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology 23: 505–516.
- 76 Zianis, D. & Mencuccini, M. 2003. Aboveground biomass relationship for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp. Annals of Forest Science 60: 439–448.
- 77 The equation is derived from 3 different sources: Makkonen, K. & Helmisaari, H.-S. 1998. Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. Forest Ecology and Management 102: 283–290. Oleksyn, J., Reich, P.B., Chalupka, W. & Tjoelker, M.G. 1999. Differential above- and below-ground biomass accumulation of European Pinus sylvestris
 - Scandinavian Journal of Forest Research 14: 7–17. Vanninen, P., Ylitalo, H., Sievänen, R. & Mäkelä, A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10: 231–238.

populations in a 12-year-old provenance experiment.

Contact persons – Appendix A

- 1 Boosten M., Martijn.boosten@wur.nl, Wageningen University, the Netherlands
- 2 Cienciala E., Emil.Cienciala@ifer.cz, Institute of Forest Ecosystem Research (IFER), Czech Republic
- 3 *Hochbichler E.*, ehochbic@edv1.boku.ac.at, Universität für Bodenkultur, Wien
- 4 *Johansson T.*, tord.johansson@bioenergi.slu.se, SLU, Sweden
- 5 *Laitat E.*, Department of Plant Biology, Gembloux Agricultural university
- 6 Matthews, R., robert.matthews@forestry.gsi.gov.uk, Forest Research, Alice Holt Research Station, UK
- 7 Møller I.S., ism@fsl.dk, Danish centre for Forest, Landscape and Planning
- 8 Muukkonen P., petteri.muukkonen@metla.fi, Finnish Forest Research Institute, Finland
- 9 Nabuurs G.-J., G.J.Nabuurs@Alterra.wag-ur.nl, Alterra, Wageningen, the Netherlands
- 10 Raspe S., ras@lwf.uni-muenchen.de, Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising, Germany

- 11 *Rock, J.*, rock@pik-potsdam.de, Global Change and Natural Systems Department, Potsdam Institute for Climate Change Impact Research
- 12 Wirth C., cwirth@bgc-jena.mpg.de, Max-Planck-Insitute for Biogeochemistry, Jena, Germany
- 13 Xiao C.W., Xiao@uia.ua.ac.be, University of Antwerpen, Belgium
- 14 Zianis D., TEI Kavalas, Greece

Comments - Appendix A

- 1 Trees 7 cm or less in diameter
- 2 Trees more than 7 cm in diameter
- 3 Merchantable parts, >3-4 cm
- 4 Living branches
- 5 Roots more than 1 cm in diameter
- 6 Regressions developed by D Zianis. Original data from tables
- 7 0.3 m from forest floor
- 8 Young trees
- 9 Middle age trees
- 10 Adult trees
- 11 Original regressions relate girth to biomass
- 12 D at tree base
- 13 Other types of functions with D and H and independent variables are given for the same material, includes determination coefficients
- 14 Newly cut trees
- 15 Cut trees dried in the stand during summer with a total loss of needles of about 75%
- 16 Includes fertilized plots
- 17 Wood of all living branches
- 18 Branch and top wood
- 19 Wood and bark of all living branches
- 20 Twigs
- 21 Living crown
- 22. Whole crown
- 23 Other than current year needles, includes fertilized plots
- 24 Includes needles, twigs, and branches less than 1 cm in diameter
- 25 Roots more than 5 cm in diameter
- 26 Roots less than 5 cm in diameter
- 28 Dominant trees over an age gradient
- 29 Trees of different sizes in one age group
- 30 Fertilised plot

- 31 Doubt about the parameters.
- 32 Doubt about the sign of the parameter c. The sign of the parameter c has been changed on this table.
- 33 One year old needles
- 34 Two years old needles
- 35 The equation is derived from 3 different sources: Makkonen, K. & Helmisaari, H.-S. 1998. Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. Forest Ecology and Management 102: 283–290. Oleksyn, J., Reich, P.B., Chalupka, W. & Tjoelker, M.G. 1999. Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scandinavian Journal of Forest Research 14: 7–17.

Vanninen, P., Ylitalo, H., Sievänen, R. & Mäkelä, A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10: 231–238.

The equation is based on 38 different values of total root biomass and diameter at breast height; some values were derived from individual trees; some values were averages from several trees.

- 36 Regressions developed by D Zianis. Original data from graphs
- 37 Branches less than or equal to 1 cm
- 38 Branches between 1 and 3 cm
- 39 Branches bigger than 3 cm
- 40 All branches
- 41 Stem wood beneath crown
- 42 Stem wood in crown
- 43 Total stem wood
- 44 Branches less than 5 cm in diameter
- 45 Branches 1 to 5 cm in diameter
- 46 Branches greater than 5 cm in diameter

Appendix B. General descriptions of volume equations. Both scientific and common names of the tree species are shown, since that helps in reading the original papers. Number of sampled trees (n), coefficients of determination (r^2) , and range of diameter (D) and height (H) of sampled trees are reported when available in original article. References (Ref.) to the original papers according to author as well as the contact (Cont.) person who submitted the equation to this database are given at the end of the table. In the comments column (Comm.) occur some comments about the particular equation. Format and parameter values of these equations are shown in Appendix C.

	Vol.	Unit of	H	Rang D (cm)	ge of H (m)	Ref.	Cont	Comm.	n	r^2
	VOI.	<i>D</i>	11	D (CIII)	II (III)	Kei.	Cont.	Comm.	n	
Abies alba (Silver fir)										
1 Norway	dm^3	cm	m	5–	_	37	9	1	_	_
Abies grandis (Grand fir)										
2 Netherlands	dm^3	cm	m	_	_	16	4		285	0.996
3 Norway	dm^3	cm	m	5-	_	37	9	1	-	-
Abies sibirica (Fir)										
4 Germany	m^3	cm	_	10-48	-	20	3		-	-
Abies spp. (Fir, Brad)										
5 Austria	dm^3	dm	dm	1-	_	29	5		_	-
6 Austria	dm^3	dm	dm	0.5 - 1.04	_	32	5		_	0.848
7 Romania	m^3	cm	m	_	_	18	3		_	_
Acacia spp. (Salcim)										
8 Romania	m^3	cm	m	_	_	18	3		_	_
Acer pseudoplatanus (Mapl	le, Erable	syco	more,	Paltin, Sycamore)						
9 Belgium	m^3	cm	m	_	_	14	6	2	419	_
10 Netherlands	dm^3	cm	m	_	_	16	4		143	0.99
11 Romania	m^3	cm	m	_	_	18	3		-	-
12 UK	m^3	cm	m	_	_	8	2		-	-
Alnus alba (Anin alb)										
13 Romania	m^3	cm	m	_	-	18	3		-	-
Alnus glutinosa (Black alde										
14 Netherlands	dm^3	cm	m	_	_	16	4		55	0.991
15 Norway	dm^3	cm	m	10-	-	7	9		-	-
16 Norway	dm ³	cm	m	0–12	-	7	9		_	_
17 Sweden	dm ³	cm	m	-	-	17	3	3	1643	_
18 Sweden	dm ³	cm	m	_	_	17	3	3	1643	_
19 Sweden	dm^3	cm	m	_	_	17	3	4	1643	_
Alnus incana (Grey alder)										
20 Norway	dm^3	cm	m	5-	_	3	9		_	_
Alnus nigra (Anin negru)										
21 Romania	m^3	cm	m	_	_	18	3		_	_
Alnus spp. (Alder)										
22 Austria	dm^3	dm	dm	0.5-1.04	_	32	5		_	0.583
Arbutus unedo (Strawberry										
23 Italy	dm ³	cm	-	6–15	_	6	3	5	26	0.965
Betula pendula (Birch, Berl										
24 Netherlands	dm ³	cm	m	_	_	16	4		27	0.999
Betula spp. (Birch, Björk, B				teacan)						
25 Belgium	m^3	cm	m	_		14	6	2	329	-
26 Finland	ln(dm ³	/	-	1.2–49.7	2.4–29.5	22	3		863	-
27 Finland	dm ³	cm	-	1.2–49.7	2.4–29.5	22	3		863	_
28 Finland	dm ³	cm	m	1.2–49.7	2.4–29.5	22	3		863	_
29 Finland	m_2^3	cm	m	_	_	19	3		863	-
30 Norway	$m_{\frac{3}{2}}$	cm	m	2–44	4–28	3	3		3312	0.984
31 Norway	$m_{\frac{3}{2}}$	cm	m	2–44	4–28	3	3		722	0.979
32 Romania	m^3	cm	m		-	18	3		-	-
33 Sweden	dm ³	cm	m	5–34.9	5.0–26.9	27	3		1746	-
34 Sweden	dm ³	cm	m	4.5-	6–	5	3	6	761	0.992
35 Sweden	dm ³	cm	m	4.5-	6–	5	3	7	761	0.988
36 Sweden	dm^3	cm	m	4.5-	6–	5	3	8	521	0.995

Appendix B	Unit o	of H	Ran D (cm)	ge of H (m)	Ref.	Cont.	Comm.	n	r^2
27.0	1 3		4.5			2	0	521	0.002
37 Sweden	dm ³ cm	m	4.5-	6-	5	3	9	521	0.993
38 Sweden	dm ³ cm	m	5–34.9	5–26.9	27	3		1363	-
39 UK	m ³ cm	m	_	_	8	2		_	-
Carpinus spp.	. 2				2.4		4.0		
40 Netherlands	dm ³ mm		_	-	31	3	10	_	_
41 Netherlands	dm ³ mm		_	_	31	3	11	-	-
42 Netherlands	dm ³ mm		_	_	31	3	12	-	-
Chamaecyparis lawsonian					16	4		101	0.007
43 Netherlands	dm ³ cm	m	_	_	16	4		101	0.987
Corylus avellana (Hazel)	1 3		~		2	0			
44 Norway	dm ³ cm	m	5–	_	3	9		_	_
Fagus spp. (Beech, Fag)	1 3 1				20	~			
45 Austria	dm ³ dm	dm	1-	_	29	5		_	-
46 Austria	dm^3 dm	dm	0.5 - 1.04	_	32	5		-	0.748
47 Romania	m ³ cm	m	_	-	18	3		_	_
48 UK	m ³ cm	m	_	_	8	2		-	-
Fagus sylvatica (Beech, Ro									
49 Belgium	m ³ cm	m	_	_	14	6		_	_
50 Germany	dm ³ cm	dm	10.7–61.8	10.2–34.6	28	1	13	20	0.994
51 Germany	dm ³ cm	dm	10.7–61.8	10.2–34.6	28	1	14	20	0.973
52 Netherlands	dm ³ cm	m	_	-	16	4		30	0.999
53 Netherlands	dm ³ cm	m	_	_	15	3		-	-
Fraxinus exselsior (Ash, F									
54 Belgium	m ³ cm	m	_	_	14	6	2	534	-
55 Netherlands	dm ³ cm	m	_	_	16	4		121	0.984
56 Sweden	dm ³ cm	m	_	_	17	3	15	5294	-
57 Sweden	dm ³ cm	m	_	_	17	3	16	5294	-
58 Sweden	dm ³ cm	m	_	_	17	3	15	5294	-
59 Sweden	dm ³ cm	m	_	_	17	3	17	5284	-
60 Sweden	dm ³ cm	m	_	_	17	3	18	5284	-
Fraxinus spp. (Ash)									
61 Norway	dm ³ cm	m	5-	_	3	9		_	-
62 Romania	m ³ cm	m	_	_	18	3		_	_
63 UK	m ³ cm	m	_		8	2		_	-
Larix decidua (Larch, Mélè	èzes)								
64 Austria	dm ³ dm	dm	1-	_	29	5		_	_
65 Austria	dm ³ dm	dm	0.5 - 1.04	_	32	5		_	0.775
66 Belgium	m ³ cm	m	_	_	14	6	2	503	_
67 Netherlands	dm ³ cm	m	_	_	16	4		123	0.996
68 Norway	dm ³ cm	m	5–	_	37	9	1	_	_
Larix hybrid (Hyprid larix)									
69 Norway	dm ³ cm	m	5–	_	37	9	1	_	_
Larix kaempferi (Japanese									
70 Netherlands	dm ³ cm	m	_	_	16	4		1023	0.996
71 Norway	dm ³ cm	m	5-	_	37	9	1	_	_
Larix sibirica (Siberian lari	ix)								
72 Iceland	m ³ cm	m	4-34	4–16	26	7		100	0.993
73 Iceland	m ³ cm	m	4–34	4–16	26	7	19	100	0.991
74 Iceland	m ³ cm	m	3.3-31.6	3-20	33	3		44	0.995
75 Norway	dm ³ cm	m	5-	_	37	9	1	_	_
<i>Larix</i> spp. (Lehtikuusi, Lor									
76 Finland	dm ³ cm	m	_	2-10	35	3		2813	_
77 Finland	dm ³ cm	m	_	2–10	35	3		2813	_
78 Netherlands	dm ³ mm		_	-	31	3	10	_	_
79 Netherlands	dm ³ mm		_	_	31	3	11	_	_
80 Netherlands	dm ³ mm		_	_	31	3	12	_	_
81 Romania	m ³ cm	m	_	_	18	3	12	_	_
Picea abies (Norway spruce				-	10	5		_	_
82 Austria	dm ³ dm		, Fijiispai) 1–	_	29	5		_	_
83 Austria	dm ³ dm		0.5–1.04	_	32	5		_	0.812
os riusuia	uni ulli	uIII	0.3-1.04	_	34	J		_	0.012

Annondiy R	I Init of		Danas	of					
Appendix B	Unit of Vol. D	Н	Range D (cm)	ог <i>Н</i> (m)	Ref.	Cont.	Comm.	n	r^2
84 Belgium	m ³ cm	m	_	_	14	6	2	991	_
85 Czech Republic	m ³ cm	m	_	_	12	3		26	0.97
86 Czech Republic	m^3 cm	m	-	-	12	3		26	0.98
87 Finland	ln(dm ³)cm	_		1.8–32.7	22	3		1864	_
88 Finland	ln(dm ³)cm	-		1.8–32.7	22	3		1864	_
89 Finland	dm^3 cm	m		1.8–32.7	22	3		1864	_
90 Finland	ln(dm ³)cm	m	-	2 10	19	3		2864	- 0.02
91 Finland	dm ³ cm	m	2–18	2–18	21	3		359	0.993
92 Finland	dm ³ cm	m	2–18	2–18	21	3		180	0.995
93 Finland	ln(dm ³)cm	m	7–45	5–29	23	3		744	0.076
94 Germany	m^3 m m^3 m	m	4.9–10.3	5–8.8	25	3		5	0.976
95 Germany	2	m		7.6–10.2	25 33	3		5 16	0.998
96 Iceland		m	2.7–27.9	2.7–12	33	3	10		0.994
97 Netherlands	dm ³ mm dm ³ mm	m	_	_	31	3	11	-	_
98 Netherlands 99 Netherlands	dm ³ mm	m m		_	31	3	12	_	_
100 Netherlands	dm ³ cm	m	_	_	16	4	12	- 745	0.995
101 Netherlands	dm ³ cm	m	_	_	15	3		-	0.993
102 Norway	dm ³ cm	m	_	_	13	3	20	2621	0.998
103 Norway	dm ³ cm	m	_	_	1	3	20	1348	0.998
104 Norway	dm ³ cm	m	_	_	1	3	21	1813	0.996
105 Norway	dm cm	m	-10	-39.49	34	3	21	3597	0.988
106 Norway	dm cm	m	10.1–12.9	-39.49	34	3		-	-
107 Norway	dm cm	m	13–59.4	-39.49	34	3		7446	0.988
107 Norway	dm cm	m	10–59.4	-39.49	34	3		6096	0.988
109 Norway	dm ³ cm	m	10-59.4	-39.49	34	3		1350	0.993
110 Norway	dm ³ cm	m	-15	-39.49	34	3		699	0.988
111 Norway	dm ³ cm	m	10–59.4	-39.49	34	3		2004	0.986
112 Norway	dm ³ cm	m	-15	-39.49	34	3		2898	0.988
113 Norway	dm ³ cm	m	10-59.4	-39.49	34	3		5442	0.99
114 Poland	m ³ cm	m	_	_	10	3		2000	_
115 Poland	m ³ cm	m	_	_	9	3	22	2000	_
116 Sweden	dm ³ cm	m	5-55.9	3-34.9	27	3		3925	_
117 Sweden	dm ³ cm	m	2-	2-	4	3		2384	_
118 Sweden	dm ³ cm	m	4.5-	4–	5	3	8	2609	0.998
119 Sweden	dm ³ cm	m	4.5-	4–	5	3	6	2171	0.998
120 Sweden	dm ³ cm	m	4.5-	4–	5	3	9	2609	0.997
121 Sweden	dm ³ cm	m	4.5-	4–	5	3	7	2171	0.998
122 Sweden	dm ³ cm	m	5.0-55.9	3-34.9	27	3		2424	_
123 Sweden	dm ³ cm	m	2-	2-	4	3		2173	_
Picea engelmannii (Eng									
124 Iceland	m ³ cm	m	1.4–12.7	1.7–12.7	33	3		15	0.968
Picea sitchensis (Sitka s									
125 Netherlands	dm ³ cm	m	-	-	16	4		85	0.997
126 Norway	dm ³ cm	m	-	_	1	3	20	2429	0.998
127 Norway	dm ³ cm	m	_	_	1	3	20	1447	0.997
128 Norway	dm ³ cm	m	_	_	1	3	21	1363	0.996
Picea spp. (Molid)	2								
129 Romania	m ³ cm	m	-	-	18	3		_	-
130 Iceland	m ³ cm	m	4.9–28.6	4.8–15.4	33	3		56	
Pinus contorta (Contorta						_		4.0	
131 Iceland	m ³ cm	m	4.2–26.3	2.8–12.8	33	3		48	-
132 Netherlands	dm ³ cm	m	_	-	16	4	_	127	0.994
133 Sweden	dm ³ cm	m	_	-	17	3	3	1301	_
134 Sweden	dm ³ cm	m	_	_	17	3	3	1301	_
135 Sweden	dm ³ cm	m	_	_	17	3	22	1301	_
Pinus nigra var maritim					1.6	4		700	0.007
136 Netherlands	dm ³ cm	m	_	-	16	4		798	0.997

Appendix B	Unit of			ge of		_	~		2
	Vol. D	Н	D (cm)	<i>H</i> (m)	Ref.	Cont.	Comm.	n	r ²
Pinus nigra var nigra (1	Black pine, Pin neg	ru)							
137 Netherlands	dm ³ cm	m	_	_	16	4		983	0.996
138 Romania	m ³ cm	m	_	_	18	3		_	_
Pinus spp.									
139 Germany	m^3	m	_	_	20	3		_	_
140 Germany	m ³ cm		5-75	_	20	3		_	_
141 Netherlands	dm ³ mm	m	_	_	31	3	10	_	_
142 Netherlands	dm ³ mm	m	_	_	31	3	11	_	_
143 Netherlands	dm ³ mm	m	_	_	31	3	12	_	_
Pinus sylvestris (Scots p	pine, Mänty, Tall, F	uru, (Grove den, Pin silve	estri)					
144 Austria	dm ³ dm	dm	0.5-	_	29	5		_	_
145 Belgium	m ³ cm	_	_	_	36	8		_	_
146 Belgium	m ³ cm	m	_	_	14	6		_	_
147 Finland	ln(dm ³)cm	_	0.9-50.6	1.5-28.3	22	3		2050	_
148 Finland	ln(dm ³)cm	_	0.9-50.6	1.5-28.3	22	3		2050	_
149 Finland	dm ³ cm	m	0.9-50.6	1.5 - 28.3	22	3		2050	_
150 Finland	ln(dm ³)cm	m	_	_	19	3		2326	_
151 Finland	dm ³ cm	m	2-18	2-18	21	3		249	0.994
152 Finland	dm ³ cm	m	2-18	2-18	21	3		486	0.989
153 Finland	dm ³ cm	m	_	_	35	3		1493	_
154 Finland	ln(dm ³)cm	m	7-50	5-28	23	3		1291	_
155 Germany	m ³ cm	m	3-14	5.8-10.7	24	3		_	_
156 Italy	dm ³ dm	dm	13-49	7-27.5	13	3		114	_
157 Netherlands	dm ³ mm	m	_	_	31	3	10	_	_
158 Netherlands	dm ³ mm	m	_	_	31	3	11	_	_
159 Netherlands	dm ³ mm	m	_	_	31	3	12	_	_
160 Netherlands	dm ³ cm	m	_	_	16	4		1207	0.994
161 Norway	dm ³ cm	m	_	_	1	3	20	4816	0.997
162 Norway	dm ³ cm	m	_	_	1	3	20	986	0.997
163 Norway	dm ³ cm	m	_	_	1	3	21	3010	0.994
164 Norway	dm ³ cm	m	10-	_	7	3		4356	0.996
165 Norway	dm ³ cm	m	-12	_	7	3		2622	0.999
166 Norway	dm ³ cm	m	-12	_	7	3		2622	0.999
167 Norway	dm ³ cm	m	-12	_	7	3		2622	0.999
168 Norway	dm ³ cm	m	-12	_	7	3		2622	0.999
169 Romania	m ³ cm	m	_	_	18	3		_	_
170 Sweden	dm ³ cm	m	5-49.9	3-32.9	27	3		4421	_
171 Sweden	dm ³ cm	m	2–	2-	4	3		3407	_
172 Sweden	dm ³ cm	m	4.5-	4–	5	3	8	3734	0.996
173 Sweden	dm ³ cm	m	4.5-	4–	5	3	6	2215	0.996
174 Sweden	dm ³ cm	m	4.5-	4–	5	3	9	3734	0.993
175 Sweden	dm ³ cm	m	4.5-	4–	5	3	7	2215	0.994
176 Sweden	dm ³ cm	m	5-49.9	3-32.9	27	3		2390	_
177 Sweden	dm ³ cm	m	2-	2-	4	3		2071	_
Populus spp. (Poplar, Pl									
178 Austria	dm ³ dm	dm	5-10.4	_	32	5		_	0.849
179 Netherlands	dm ³ mm	m	_	_	31	3	10	_	_
180 Netherlands	dm ³ mm	m	_	_	31	3	11	_	_
181 Netherlands	dm ³ mm	m	_	_	31	3	12	_	_
182 Romania	m^3 cm	m	_	_	18	3		_	_
183 Romania	m^3 cm	m	_	_	18	3		_	_
184 UK	m^3 cm	m	_	_	8	2		_	_
Populus tremula (Asper					~	-			
185 Norway	dm ³ cm	m	13-	_	11	9		_	_
186 Norway	dm ³ cm	m	0–13	_	11	9		_	_
187 Romania	m ³ cm	m	0-13	_	18	3		_	_
188 Sweden	dm ³ cm	m	_	_	17	3	3	707	_
189 Sweden	dm ³ cm	m	_	_	17	3	3	707	_
190 Sweden	dm ³ cm	m	_	_	17	3	22	707	_
170 Sweden	uni cin	111	_	_	1 /	3	22	/0/	_

Appendix B		nit of			ge of		_	_		2
	Vol.	D	H	D (cm)	H (m)	Ref.	Cont.	Comm.	n	r ²
Populus trichocarpa (Bla	2	od)								
191 Iceland			m	4.6–34	4.6 - 20.7	33	3		25	0.989
Prunus avium (Wild cher		Zoete	kers)							
192 Belgium			m	_	-	14	6	2	334	_
Pseudotsuga menziesii (I		uglas)								
193 Belgium		cm	m	_	_	14	6	2	632	_
194 Netherlands		cm	m	_	_	16	4		1136	0.993
195 Norway		cm	m	5-	_	37	9	1	-	_
196 Romania	m^3	cm	m	_	_	18	3		_	_
Pseudotsuga spp.	. 2									
197 Netherlands			m	_	_	31	3	10	-	-
198 Netherlands			m	_	_	31	3	11	-	-
199 Netherlands			m	_	_	31	3	12	-	-
Quercus grisea (Gray oal	2									
200 Romania		em	m	_	_	18	3		-	-
Quercus ilex (Holm oak)										
201 Italy			m	4.5–26.1	6–16	6	3	23	94	0.991
202 Croatia		em	m	5–15	_	30	3		-	-
Quercus laevis (Turkey o										
203 Romania			m	_	_	18	3		-	-
Quercus pubescens (Dov			s)							
204 Croatia	ln(m3) o		m	4.1–23	3.5–15.1	2	3		347	0.96
205 Croatia	ln(m3) o		m	4.1–23	3.5–15.1	2	3	23	347	0.932
206 Romania		em	m	_	_	18	3		-	-
Quercus robur (Peduncu										
207 Netherlands			m	_	_	16	4		108	0.995
Quercus rubra (Red oak,										
208 Belgium	_		m	_	_	14	6	2	891	_
209 Netherlands		cm	m	_	_	16	4		793	0.996
Quercus spp. (Oak, Chên						20	_			
210 Austria			lm	1-	-	29	5		-	-
211 Austria			lm	5–10.4	-	32	5		-	0.64
212 Belgium			m	_	-	14	6	2	290	_
213 Netherlands			m	_	-	31	3	10	-	_
214 Netherlands			m	_	-	31	3	11	-	_
215 Netherlands			m	_	_	31	3	12	-	_
216 Romania	_		m	_	-	18	3		-	_
217 UK			m	_	_	8	2		-	_
Salix caprea (Goat willow				_						
218 Norway	2		m	5–	-	3	9		-	_
219 Romania	m^3	cm	m	_	-	18	3		-	_
Salix spp. (Salcie)	2					4.0				
220 Romania	2		m	_	_	18	3		-	_
221 Romania		cm	m	_	_	18	3		-	-
Sorbus aucuparia (Rowa	n)			-		•	^			
222 Norway	dm ³	cm	m	5–	-	3	9		-	_
Thuja pilicata (Western r										
223 Netherlands			m	_	_	16	4	_	165	0.993
224 Norway	dm ³	em	m	5–	_	37	9	1	-	-
Tilia cordata (Tei)	2					4.0	2			
225 Romania		cm	m	_	_	18	3		-	_
Tsuga heterophylla (Hen	/ _									0.00-
226 Netherlands			m	_	-	16	4		121	0.995
227 Norway		cm	m	5–	-	37	9	1	_	_
Ulmus spp. (Elm, Orme,										
228 Belgium			m	_	-	14	6	2	276	_
229 Netherlands			m	_	-	16	4		108	0.996
230 Romania	m^3	cm	m	_	_	18	3		_	_

References - Appendix B

- Bauger, E. 1995. Funksjoner og tabeller for kubering av stående trær. Rapport fra Skogforsk(16):
 1–26
- 2 Benko, M., Novotny, V., Vrbek, B. & Szirovicza, L. 2000. Volume tables of downy oak (Quercus pubescens Willd.). Radovi Sumarski Institut Jastrebarsko 8: 1–68.
- 3 Braastad, H. 1966. Volumtabeller for bjørk. Meddelelser fra det Norske Skogforsøksvesen 21(1): 23–78.
- 4 Brandel, G. 1974. Volymfunktioner för tall och gran. Skoghögskolan, Institutionen för skogsproduktion, Rapporter och Uppsatser 33: 178–191.
- 5 Brandel, G. 1990. Volumfunktioner för enskilda träd. Sveriges lantbruksuniversitet, Institutionen för skogsproduktion, Rapport 26: 1–181.
- 6 Brandini, P. & Tabacchi, G. 1996. Biomass and volume equations for holm oak and straberry-tree in coppice stands of Southern Sardinia. ISAFA Communicazioni di Ricerca 96(1): 59–69.
- 7 Brantseg, A. 1967. Furu sønnafjells: kubering av stående skog, funksjoner og tabeller. Meddelelser fra det Norske Skogforsøksvesen 84: 689–739.
- 8 Broadmeadow, M. & Matthews, R. 2004. Survey methods for Kyoto Protocol monitoring and verification of UK forest carbon stocks. UK Emissions by Sources and Removals by Sinks due to Land Use, Land Use Change and Forestry Activities, Report (June 2004). CEH, Edinburgh.
- 9 Bruchwald, A. & Rymer-Dudzinska, T. 1987. Empirical equations for determining the volume of large timber of stem of growing spruce trees. Sylwan 131(5): 15–20.
- Bruchwald, A. 1987. Empirical formulas for determining the stem volume of standing spruce trees. Annals of Warsaw Agrivultural University – SGGW-AR Forestry and Wood Technology 36: 57–60.
- 11 Børset, O. 1954. Kubering av osp på rot. Meddelelser fra det norske Skogforsøksvesen 12: 391– 447.
- 12 Cerný, M. 1990. Biomass of Picea abies (L.) Karst. in midwestern Bohemia. Scandinavian Journal of Forest Research 5: 83–95.
- 13 Corona, P. & Ferrara, A. 1987. Dendrometrical investigations on Pinus silvestris in Trentino-Alto Adige. Monti e Boschi 38(6): 51–54.
- 14 Dagnelie, P., Palm, R., Rondeux, J. & Thill, A.

- 1999. Tables de cubage des arbres et des peuplements forestiers. Les Presses Agronomiques de Gembloux, Gembloux. 126 p.
- 15 De Vries, P.G. 1961. The principle of nomograms applied to the stem volume functions of the volume tables for forest trees grown in the Netherlands. Nederlands Bosbouw Tijdschrift 33(5): 114–121.
- 16 Dik, E.J. 1984. Estimating the wood volume of standing trees in forestry practice. Rijksinstituut voor onderzoek in de bos en landschapsbouw de Dorschkamp, Wageningen. Uitvoerige verslagen 19(1): 1–114.
- 17 Eriksson, H. 1973. Volymfunktioner för stående träd av ask, asp, klibbal och contorta-tall. Institutionen för Skogsproduktion, Royal College of Forestry, Stockholm. Research Notes 26: 1–26.
- 18 Giurgiu, V. 1974. O expresie matematica unica a relatiei diametru înaltime volum, pentru majoritatea speciilor forestiere din Romania. Silvicultura si Exploatarea Padurilor 89(4): 173–178.
- 19 Hakkila, P. 1979. Wood density survey and dry weight tables for pine, spruce and birch stems in Finland. Communicationes Instituti Forestalis Fenniae 96(3): 1–59.
- 20 Hempel, G. 1968. Allometrische studie an Pinus cembra spp. sibirica (Rupr.) Kryl. und Abies sibirica (Ledeb.). Archiv für Forstwesen 17(11): 1099–1115.
- 21 Kanninen, K., Uusvaara, O. & Valonen, P. 1979. Kokopuuraaka-aineen mittaus ja ominaisuudet. Folia Forestalia 403: 1–53.
- 22 Laasasenaho, J. 1982. Taper curve and volume functions for pine, spruce and birch. Communicationes Instituti Forestalis Fenniae 108: 1–74.
- 23 Laasasenaho, J. & Sevola, Y. 1971. Mänty- ja kuusirunkojen puutavarasuhteet ja kantoarvot. Communicationes Instituti Forestalis Fenniae 74(3): 1–87.
- 24 Lockow, K.-W. 1993. Modellbildung und quantifizierung der durchmesser- und volumenstruktur des ausscheidenden kieferjungbestandes – holzmeßkundliche entscheideungshilfen für die erstdurchforstung. Beiträge für Forstwirtschaft und Landschaftsökologie 27(2): 77–82.
- 25 Mund, M., Kummetz, E., Hein, M., Bauer, G.A. & Schulze, E.-D. 2002. Growth and carbon stocks of a spruce forest chronosequence in central Europe. Forest Ecology and Management 171: 275–296.
- 26 Norrby, M. 1990. Volym- och formtalsfunktioner for Larix sukaczewii och Larix sibirica på Island.

Institutionen för skogsskötsel. Series Volym- och formtalsfunktioner for Larix sukaczewii och Larix sibirica på Island. Sveriges Lantbruksuniversitet, Umeå.

- 27 Näslund, M. 1947. Funktioner och tabeller för kubering av stående träd. Meddelanden från Statens skogsforskningsinstitutet 36(3): 1–81.
- 28 Pellinen, P. 1986. Biomasseuntersuchungen im Kalkbuchenwald. University of Göttingen, Germany. 145 p.
- 29 Pollanschütz, J. 1974. Formzahlfunktionen der Hauptbaumarten Österreichs. Allgemeine Forstzeitung 85: 341–343.
- 30 Pranjic, A. & Lukic, N. 1986. Form factor and volume table for Holm oak (Quercus ilex L.). Glasnik za Sumske Pokuse, Posebno Izdanje 2: 169–177.
- 31 Schelhaas, M.J., Nabuurs, G.J., Jans, W.W.P., Moors, E.J., Sabaté, S. & Daamen, W.P. 2002. Converging estimates of the forest carbon sink. Alterra-rapport 631: 1–44.
- 32 Schieler, K. 1988. Diploma thesis, Institute for Forest growth and Yield Reserch, University for Agricultural Sciences, Vienna.
- 33 Snorrason, A. & Einarsson, S.F. 2004. Single-tree biomass and stem volume functions for eleven tree species used in Icelandic forestry. Submitted manuscript.

- 34 Vestjordet, E. 1967. Funksjoner og tabeller for kubering av stående gran. Meddelelser fra det Norske Skogforsøksvesen 84: 539–574.
- 35 Vuokila, Y. 1965. Functions for variable density yield tables of pine based on temporary sample plots. Communicationes Instituti Forestalis Fenniae 60(4): 1–86.
- 36 Xiao, C.W., Curiel Yuste, J., Janssens, I.A., Roskams, P., Nachtergale, L., Carrara, A., Sanchez, B.Y. & Ceulemans, R. 2003. Above-and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology 23: 505–516.
- 37 Øen, S., Bauger, E. & Øyen, B.-H. 2001. Functionar for volumberekning av framande treslag i Vest-Norge. Aktuelt fra Skogforsk 3/01: 18–19.

Contact persons - Appendix B

- 1 **Joosten R.**, Joosten@t-online.de, Univertsity Paderborn, Germany
- 2 Matthews, R., robert.matthews@forestry.gsi.gov. uk, Forest Research, Alice Holt Research Station, UK
- 3 *Muukkonen P.*, petteri.muukkonen@metla.fi, Finnish Forest Research Institute, Finland
- 4 *Nabuurs G.-J.*, G.J.Nabuurs@Alterra.wag-ur.nl, Alterra, Wageningen, the Netherlands
- 5 Prskawetz M., michael.prskawetz@bfw.gv.at, Federal Office and Research Centre for Forests, Vienna, Austria
- 6 Sheridan M., sheridan.m@fsagx.ac.be, Department of Plant Biology, Gembloux agricultural University, Belgium
- 7 Snorrason A., arnor@skogur.is, Skógrækt ríkisins, Iceland
- 8 *Xiao C.W.*, Xiao@uia.ua.ac.be, University of Antwerpen, Belgium
- 9 Zianis D., TEI Kavalas, Greece

Comments - Appendix B

- 1 Plantations
- 2 Stem volume to upper girth limit of 22 cm
- 3 Including bark
- 4 Excluding bark
- 5 Merchantable volume >34 cm
- 6 Including bark, Southern Sweden, adjusted r²
- 7 Excluding bark, Southern Sweden, adjusted r²
- 8 Including bark, Northern Sweden, adjusted r²
- 9 Excluding bark, Northern Sweden, adjusted r²
- 10 Dominant
- 11 Dominated
- 12 Seed trees
- 13 Merchantable wood >7 cm
- 14 Non merchantable wood <7 cm
- 15 Including bark, trees without forks
- 16 Including bark, forked trees
- 17 Excluding bark, trees without forks
- 18 Excluding bark, forked trees
- 19 Without bark
- 20 Tree height 4 m and more
- 21 Tree height over 10 m
- 22 Merchantable volume
- 23 Merchantable volume, >3-4 cm

Appendix C. Volume equations for different tree species. The format of the stem volume equation (where D is diameter and H is height) is given in the column labelled Equation, and a–g are parameter values. The "ln" is the natural logarithm and the "log" is the 10-based logarithm.

```
Abies alba (Silver fir)
                                                                          a·Hb·Dc·(H-1.3)d·(D+100)e
1 Norway
Abies grandis (Grand fir)
2 Netherlands
                                                                          D^a \cdot H^b \cdot \exp(c)
3 Norway
                                                                          a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+100)^e
Abies sibirica (Fir)
4 Germany
                                                                          a·Db
Abies spp. (Fir, Brad)
                                                                          (\pi/4)\cdot(a\cdot D^2\cdot H+b\cdot D^2\cdot H\cdot \ln(D)^2+c\cdot D^2+d\cdot D\cdot H+e\cdot H+f\cdot D+g
5 Austria
                                                                          \begin{array}{l} (\pi/4) \cdot (a \cdot D^2 \cdot H + b \cdot D^2 \cdot H \cdot ln(D)^2 + c \cdot D^2 + d \cdot D \cdot H \\ a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + c \cdot log(H)^2)} \end{array}
6 Austria
7 Romania
Acacia spp. (Salcim)
                                                                          a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)}
8 Romania
Acer pseudoplatanus (Maple, Erable sycomore, Paltin, Sycamore)
9 Belgium
                                                                          a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H
10 Netherlands
                                                                          D^a \cdot H^b \cdot \exp(c)
                                                                          a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)}
11 Romania
12 UK
                                                                          a+b·D<sup>2</sup>·H<sup>c</sup>
Alnus alba (Anin alb)
                                                                          a \cdot 10^{(b \cdot \log(D) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2)}
13 Romania
Alnus glutinosa (Black alder, Klibbal)
14 Netherlands
                                                                          D^a \cdot H^b \cdot \exp(c)
                                                                          a+b\cdot D^2+c\cdot D^2\cdot H
15 Norway
                                                                          a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot H^2\cdot D
16 Norway
17 Sweden
                                                                          a \cdot D^2 + b \cdot D^2 \cdot H + c \cdot D \cdot H^2 + d \cdot D \cdot H + e \cdot D^2 H^2
18 Sweden
                                                                          a \cdot D^2 + b \cdot D^2 \cdot H + c \cdot D \cdot H^2 + d \cdot D \cdot H + e \cdot D^2 H^2
19 Sweden
Alnus incana (Grey alder)
                                                                          a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot H^2\cdot D+e\cdot H^2
20 Norway
Alnus nigra (Anin negru)
                                                                          a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)}
21 Romania
Alnus spp. (Alder)
                                                                          (\pi/4)\cdot(a\cdot D^2\cdot H+b\cdot D^2+c\cdot D)
22 Austria
Arbutus unedo (Strawberry-tree)
                                                                          a+b\cdot D^2
23 Italy
Betula pendula (Birch, Berk)
24 Netherlands
                                                                          D^a \cdot H^b \cdot \exp(c)
Betula spp. (Birch, Björk, Bjørk, Bouleaux, Mesteacan)
25 Belgium
                                                                          a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H
26 Finland
                                                                          a+b \cdot ln(D)
27 Finland
                                                                          a+b\cdot\ln(c+d\cdot D)+e\cdot D
                                                                          a \cdot (D^b) \cdot (c^D) \cdot (H^d) \cdot (H-1.3)^e
28 Finland
29 Finland
                                                                          a+b\cdot\ln(D)+c\cdot\ln(H)+d\cdot\ln(H-1.3)+e\cdot D
                                                                          a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot D\cdot H^2+e\cdot H^2
30 Norway
                                                                          a + b \cdot D^2 + c \cdot D^2 \cdot H + d \cdot D \cdot H^2 + e \cdot H^2
31 Norway
                                                                          a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^{\wedge}2 + d \cdot log(H) + e \cdot log(H)^{\wedge}2)}
32 Romania
                                                                          a \cdot D^2 + b \cdot D^2 \cdot H + c \cdot D \cdot H^2 + d \cdot H^2
33 Sweden
34 Sweden
                                                                          10^{a} \cdot D^{b} \cdot (D+20)^{c} \cdot H^{d} \cdot (H-1.3)^{e}
35 Sweden
                                                                          10a.Db.(D+20)c.Hd.(H-1.3)e
36 Sweden
                                                                           10a.Db.(D+20)c.Hd.(H-1.3)e
```

	a	b	c	Parameters d	e	f	g
1	1.6662	3.2394	1.9334	-1.8997	-0.9739	_	_
2 3	1.77220 1.6662	0.96736 3.2394	-2.45224 1.9334	_ _1.8997	_ _0.9739	_	_
			1.9334	-1.8997	-0.9739	_	_
4	0.0001316	2.52	_	_	_	_	_
5	0.580223		-17.1507	0.089869	-0.080557	19.661	-2.4584
6 7	0.560673 $4.52 \cdot 10^{-5}$	0.15468 2.1554	-0.65583 -0.1067	0.033210 0.9380	- 0.0228	_	_
/	4.32.10	2.1334	-0.1007	0.9380	0.0228	_	_
8	0.00046903	1.807	0.0292	-0.4155	0.5455	_	_
9	0.010343	-0.00450536	$3.4070 \cdot 10^{-4}$	$-4.0472 \cdot 10^{-6}$	$7.7115 \cdot 10^{-4}$	$2.9836 \cdot 10^{-5}$	_
10	1.89756	0.97716	-2.94253	_	_	_	_
11	0.00035375	1.02	0.3997	0.666	0.021	_	_
12	-0.012668	0.0000737	0.75	_	_	_	_
13	0.00065013	1.6750	0.1001	-0.4990	0.5902	_	_
14	1.85749	0.88675	-2.5222	_	_	_	_
15	8.6524	0.076844	0.031573	_	_	_	_
16	0.6716	0.75708	0.029679	0.004341	_	_	_
17	0.1926	0.01631	0.003755	-0.02756	0.000499	_	_
18 19	0.05437 0.2264	1.94505 0.01347	0.92947 0.007665	- -0.06669	0.000428	_	_
20	-1.86827	0.21461	0.01283	0.0138	-0.06311	_	_
21	$8.666 \cdot 10^{-5}$	1.7148	0.1014	0.801	0.0530	_	_
22	0.387399	7.17123	0.04407	_	_	_	_
23	-0.5547	0.3757	_	-	_	_	_
24	1.89060	.26595	-1.07055	_	_	_	_
25	-0.011392	-0.00031447	0.000279211	$-5.7966 \cdot 10^{-6}$	$-5.9573 \cdot 10^{-4}$	$3.0409 \cdot 10^{-5}$	_
26	-2.09787	2.55058	_	_	_	_	_
27	-5.41948	3.57630	2	1.25	-0.0395855	_	_
28	0.011197	2.10253	0.986	3.98519	-2.65900	_	_
29	-4.4759	2.0851	4.0691	-2.7375	-0.013311	_	_
30 31	-1.86827 0.99983	0.21461 0.006325	0.01283 0.02849	0.01380 0.00885	0.06311 -0.00799	_	_
32	8.141·10 ⁻⁵	2.248	-0.2062	0.00883	-0.00799 0.4147	_	_
33	0.1305	0.01338	0.01757	-0.05606	- -	_	_
34	-0.89359	2.27954	-1.18672	7.07362	-5.45175	_	_
35	-0.93631	2.30212	-1.40378	8.01817	-6.18825	_	_
36	-0.44224	2.47580	-1.40854	5.16863	-3.77147	_	_

Appendix C. Volume equations (cont.)

	Equation
37 Sweden	$10^{a} \cdot D^{b} \cdot (D+20)^{c} \cdot H^{d} \cdot (H-1.3)^{e}$
38 Sweden	$a \cdot D^2 + b \cdot D^2 \cdot H + c \cdot D \cdot H^2 + d \cdot H^2$
39 UK	a+b·D ² ·H ^c
Carpinus spp.	72 (h. a) 77d
40 Netherlands	a·D(b+c)·Hd
41 Netherlands	a·D(b+c)·Hd
42 Netherlands	$a \cdot D^{(b+c)} \cdot H^d$
Chamaecyparis lawsoniana (Lawson cypress	
43 Netherlands	$D^a \cdot H^b \cdot \exp(c)$
Corylus avellana (Hazel)	$a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot D\cdot H^2+e\cdot H^2$
44 Norway	$a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot D\cdot H^2+e\cdot H^2$
Fagus spp. (Beech, Fag)	(=//) (= D ² H · D ² H -/D) ² · - D ² · D H · - H · f D · -)
45 Austria 46 Austria	$(\pi/4) \cdot (a \cdot D^2 \cdot H + b \cdot D^2 \cdot H \cdot \ln(D)^2 + c \cdot D^2 + d \cdot D \cdot H + e \cdot H + f \cdot D + g)$ $(\pi/4) \cdot (a \cdot D^2 \cdot H + b \cdot D^2 + c \cdot D)$
47 Romania	$a.10^{(b \cdot \log(D) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2)}$
48 UK	a+b·D ² ·H ^c
Fagus sylvatica (Beech, Rotbuche, Beuk)	a+0·D-·n-
49 Belgium	$a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H$
50 Germany	a+b·D·H ² +c·D ³
51 Germany	$a+b\cdot D\cdot H^2+c\cdot D^3$
52 Netherlands	Da·Hp·exp(c)
53 Netherlands	a·Db·Hc
Fraxinus exselsior (Ash, Frêne, Es)	a·D ·11
54 Belgium	$a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H$
55 Netherlands	$D^a \cdot H^b \cdot \exp(c)$
56 Sweden	$a \cdot D^2 \cdot H + b \cdot D^2 + c \cdot D \cdot H$
57 Sweden	a·D²·H+b·D²+c·D·H
58 Sweden	a·Db·Hc
59 Sweden	$a \cdot D^2 \cdot H + b \cdot D^2 + c \cdot D \cdot H$
60 Sweden	a·D ² ·H+b·D ² +c·D·H
Fraxinus spp. (Ash)	
61 Norway	$a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot D\cdot H^2+e\cdot H^2$
62 Romania	$a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)}$
63 UK	$a+b\cdot D^2\cdot H^c$
Larix decidua (Larch, Mélèzes)	
64 Austria	$(\pi/4)\cdot(a\cdot D^2\cdot H+b\cdot D^2\cdot H\cdot ln(D)^2+c\cdot D^2+d\cdot D\cdot H+e\cdot H+f\cdot D+g)$
65 Austria	$(\pi/4)\cdot(a\cdot D^2\cdot H+b\cdot D^2+c\cdot D)$
66 Belgium	$a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H$
67 Netherlands	$D^a \cdot H^b \cdot \exp(c)$
68 Norway	$a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+100)^e$
Larix hybrid (Hyprid larix)	
69 Norway	$a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+100)^e$
Larix kaempferi (Japanese larch)	
70 Netherlands	$D^a \cdot H^b \cdot \exp(c)$
71 Norway	$a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+100)^e$
Larix sibirica (Siberian larix)	b
72 Iceland	$\exp(a) \cdot D^b \cdot H^c$
73 Iceland	$\exp(a)\cdot D^b \cdot H^c$
74 Iceland	a·Db·Hc
75 Norway	$a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+100)^e$
Larix spp. (Lehtikuusi, Lork, Larice)	
76 Finland	$a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot H^2\cdot D$
77 Finland	$a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot H^2\cdot D$

	a	b	С	Parameters d	e	f	g
37	-0.35394	2.52141	-1.54257	4.88165	-3.47422	_	_
38	0.1432	0.008561	0.02180	-0.06630	_	_	_
39	-0.009184	0.0000673	0.75	_	-	_	_
40	0.00021491	2.258957614	0.001411006	0.60291075	_	_	_
41	0.00021491	2.258957614		0.60291075	_	_	_
42	0.00021491	2.258957614	-0.00956695	0.60291075	_	_	_
43	1.85298	.86717	-2.33706	_	_	_	_
44	-1.86827	0.21461	0.01283	0.0138	-0.06311	_	_
45	0.989253		-31.0674	-0.386321	0.219462	49.6136	-22.372
46	0.517300	-13.62144	9.9888	_	-	_	_
47	0.0000757	1.3791	0.2127	1.1992	-0.0584	_	_
48	-0.014306	0.0000748	0.75	_	_	_	_
49	-0.015572	0.00290013	$-7.0476 \cdot 10^{-6}$	$2.393 \cdot 10^{-06}$	-0.0013528	$3.9837 \cdot 10^{-5}$	_
50	$15.589 \cdot 10^{-3}$	$0.01696 \cdot 10^{-3}$	$0.01883 \cdot 10^{-3}$	_	_	_	_
51	16.641·10 ⁻³	$0.72179 \cdot 10^{-3}$	$0.00252 \cdot 10^{-3}$	_	_	_	_
52	1.55448	1.55880	-3.57875	_	_	_	_
53	0.049	1.78189	1.08345	_	_	_	_
54	-0.039836	0.006262765	-0.00015937	$-1.9902 \cdot 10^{-7}$	-0.0009834	$3.7872 \cdot 10^{-5}$	_
55	1.95277	0.77206	-2.48079	_	_	_	_
56	0.03246	0.03310	0.04127	_	_	_	_
57	0.03593	0.03310	0.04127	_	_	_	_
58	0.06328	1.92428	0.88690	_	_	_	_
59	0.03249	0.02941	0.03892	_	_	_	_
60	0.03453	0.02941	0.03892	_	_	_	_
61	-1.86827	0.21461	0.01283	0.0138	-0.06311	_	_
62	0.00030648	1.2676	0.3102	0.4929	0.0962	_	_
63	-0.012107	0.0000777	0.75	_	_	_	_
64	0.609443		-18.6631	-0.248736	0.126594	36.9783	-14.204
65	0.487270	-2.04291	5.9995	2 0170 10-6	- 0.0011620	4.0507.10-5	_
66	-0.03088	0.004676261		$-3.8178 \cdot 10^{-6}$	-0.0011638	$4.0597 \cdot 10^{-5}$	_
67	1.86670	1.08118	-3.0488	2 2170	0.9226	_	_
68	0.7761	3.6461	1.9166	-2.3179	-0.8236	_	_
69	0.7761	3.6461	1.9166	-2.3179	-0.8236	_	-
70	1.87077	1.00616	-2.8748	_	_	_	_
71	0.7606	3.5377	1.9741	-2.1902	-0.8459	_	_
72	-2.5079	1.7574	0.9808	_	_	_	_
73	-2.9946	1.8105	0.9908	_	_	_	_
74	0.0983	1.551	1.1483	_	_	_	_
75	0.7761	3.6461	1.9166	-2.3179	-0.8236	_	_
76	0.5	0.0753	0.03345	-0.00243	_	_	_
77	0.4	-0.01	0.03355	-0.00359	_	_	_
, ,	0.1	0.01	3.03333	3.00337			

Appendix C. Volume equations (cont.)

```
a-D(b+c)-Hd
78 Netherlands
79 Netherlands
                                                                     a \cdot D^{(b+c)} \cdot H^d
                                                                     a \cdot D^{(b+c)} \cdot H^d
80 Netherlands
                                                                     a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)}
81 Romania
Picea abies (Norway spruce, Kuusi, Gran, Epicéa, Fijnspar)
                                                                     (\pi/4)\cdot(a\cdot D^2\cdot H+b\cdot D^2\cdot H\cdot ln(D)^2+c\cdot D^2+d\cdot D\cdot H+e\cdot H+f\cdot D)
82 Austria
                                                                     (\pi/4)\cdot(a\cdot D^2\cdot H+b\cdot D^2\cdot H\cdot ln(D)^2+c\cdot D^2+d\cdot D)
83 Austria
                                                                     a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H
84 Belgium
                                                                     a.Db
85 Czech Republic
                                                                     a \cdot (H \cdot D^2)^b
86 Czech Republic
87 Finland
                                                                     a+b \cdot ln(D)
88 Finland
                                                                     a+b\cdot\ln(c+d\cdot D)+e\cdot D
89 Finland
                                                                     a \cdot (D^b) \cdot (c^D) \cdot (H^d) \cdot (H-1.3)^e
90 Finland
                                                                     a+b\cdot\ln(D)+c\cdot\ln(H)+d\cdot\ln(H-1.3)+e\cdot D
91 Finland
                                                                     a·Db·Hc
                                                                     a·Db·Hc
92 Finland
93 Finland
                                                                     a+b\cdot\ln(D)+c\cdot D^2
94 Germany
                                                                     a \cdot H \cdot D^2
95 Germany
                                                                     a·H·D<sup>2</sup>
                                                                     a·Db·Hc
96 Iceland
                                                                     a \cdot D^{(b+c)} \cdot H^d
97 Netherlands
                                                                     a \cdot D^{(b+c)} \cdot H^d
98 Netherlands
                                                                     a \cdot D^{(b+c)} \cdot H^d
99 Netherlands
100 Netherlands
                                                                     Da.Hb.ec
                                                                     a \cdot D^b \cdot H^c
101 Netherlands
102 Norway
                                                                     a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+40)^e
                                                                     a·H<sup>b</sup>·D<sup>c</sup>·(H-1.3)<sup>d</sup>·(D+40)<sup>e</sup>
103 Norway
                                                                     a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+40)^e
104 Norway
                                                                     a+b\cdot D^2\cdot H+c\cdot D\cdot H^2+d\cdot H^2+e\cdot D\cdot H
105 Norway
                                                                     a + b \cdot D \cdot H^2 + c \cdot H^2 + d \cdot D \cdot H + e \cdot H + f \cdot D
106 Norway
                                                                     a+b\cdot D^2\cdot H+c\cdot D\cdot H^2+d\cdot H^2+e\cdot D\cdot H
107 Norway
                                                                     a+b\cdot D^2\cdot H+c\cdot D\cdot H^2+d\cdot H^2+e\cdot D\cdot H
108 Norway
                                                                     a+b\cdot D^2\cdot H+c\cdot D\cdot H^2+d\cdot H^2+e\cdot D\cdot H
109 Norway
                                                                     a+b\cdot D^2\cdot H+c\cdot D\cdot H^2+d\cdot D^2
110 Norway
                                                                     a+b\cdot D^2\cdot H+c\cdot D\cdot H^2+d\cdot H^2+e\cdot D\cdot H
111 Norway
                                                                     a+b\cdot D^2\cdot H+c\cdot D\cdot H^2+d\cdot H^2+e\cdot D\cdot H
112 Norway
                                                                     a+b\cdot D^2\cdot H+c\cdot D\cdot H^2+d\cdot H^2+e\cdot D\cdot H
113 Norway
114 Poland
                                                                     (\pi/40000) \cdot H \cdot D \cdot (a+b \cdot D)
115 Poland
                                                                     (\pi/40000) \cdot H \cdot D \cdot (a \cdot D + b)
                                                                     a \cdot D^2 + b \cdot D^2 \cdot H + c \cdot D \cdot H^2 + d \cdot H^2
116 Sweden
117 Sweden
                                                                     10a.Db.(D+20)c.Hd.(H-1.3)e
                                                                      10a·Db·(D+20)c·Hd·(H-1.3)e
118 Sweden
                                                                      10a.Db.(D+20)c.Hd.(H-1.3)e
119 Sweden
120 Sweden
                                                                      10a.Db.(D+20)c.Hd.(H-1.3)e
                                                                      10a·Db·(D+20)c·Hd·(H-1.3)e
121 Sweden
                                                                     a \cdot D^2 + b \cdot D^2 \cdot H + c \cdot D \cdot H^2 + d \cdot H^2
122 Sweden
                                                                     10a.Db.(D+20)c.Hd.(H-1.3)e
123 Sweden
Picea engelmannii (Engelmanni spruce)
                                                                     a·Db·Hc
124 Iceland
Picea sitchensis (Sitka spruce)
                                                                     D^a \cdot H^b \cdot exp(c)
125 Netherlands
                                                                     a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+40)^e
126 Norway
127 Norway
                                                                     a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+40)^e
```

	a	b	c	Parameters d	e	f	g
	-						
70	0.00025217	2 120 41 020	0.002202710	0.7/202025			
78	0.00035217	2.12841828	0.003292718	0.76283925	_	_	_
79	0.00035217	2.12841828	-0.1054168	0.76283925	_	_	_
80	0.00035217	2.12841828	-0.0026067	0.76283925	_ 0.0120	_	_
81	$2.822 \cdot 10^{-5}$	2.2060	-0.1136	1.115	0.0129	_	_
82	0.46818	-0.013919	-28.213	0.37474	-0.28875	28.279	_
83	0.563443	-0.12731	-8.55022	7.6331	_	_	_
84	-0.010929	0.004380951	$-9.4713 \cdot 10^{-5}$	$-7.8024 \cdot 10^{-6}$	-0.0027922	$4.8346 \cdot 10^{-5}$	_
85	0.00059707	2.1286	_	_	_	_	_
86	0.00011261	0.87852	_	_	_	_	_
87	-2.41218	2.62463	_	_	_	_	_
88	-5.39934	3.46468	2	1.25	-0.0273199	_	_
89	0.022927	1.91505	0.99146	2.82541	-1.53547	_	_
90	-3.7544	1.8960	2.8979	-1.6020	-0.007827	_	_
91	0.7877	1.9302	0.79465	_	_	_	_
92	0.10838	1.8202	0.77154	_	_	_	_
93	-2.59385	2.71757	-0.000097	_	_	_	_
94	0.502	_	_	_	_	_	_
95	0.418	_	_	_	_	_	_
96	0.1299	1.6834	0.8598	-	_	_	_
97	0.00053238	2.164126647		0.54879808	_	_	_
98	0.00053238		-0.04670018	0.54879808	_	_	_
99	0.00053238	2.164126647		0.54879808	_	_	_
100	1.75055	1.10897	-2.75863	_	_	_	_
101	0.04143	1.6704	1.3337	1 7277	- 0.0756	_	_
102	0.6844	3.0296	2.0560	-1.7377	-0.9756	_	_
103	0.7464	2.496	2.0714	-1.4175	-0.9601	_	_
104 105	0.5824 0.52	1.1987	1.9339	-0.0594 -0.10983	-0.7442 0.15195	_	_
	-31.57	0.02403	0.01463			3.2	_
100	10.14	0.0016	0.0186	0.63 -0.36381	-2.34 0.28578		_
107	6.69	0.0124 0.01308	0.03117 0.02853	-0.30361	0.28969	_	_
109	0.46	0.01308	0.02833	-0.31930	0.20994	_	_
110	0.67	0.03023	0.01321	0.04175	0.20554	_	_
111	0.28	0.03023	0.03053	-0.50725	0.51643	_	_
112	0.3	0.02593	0.03033	-0.0977	0.14586	_	
113	4.33	0.01491	0.02606	-0.31854	0.31106	_	
114	0.666151	0.458507	-	-	-	_	_
115	0.53005	1.229283	_	_	_	_	_
116	0.1150	0.01746	0.02022	-0.05618	_	_	_
117	-0.9513	1.9781	-0.5254	2.7604	-1.4684	_	_
118	-0.79783	2.07157	-0.73882	3.16332	-1.82622	_	_
119	-1.02039	2.00128	-0.47473	2.87138	-1.61803	_	_
120	-0.82249	2.11094	-0.89626	3.51812	-2.05567	_	_
121	-1.06019	2.04239	-0.54292	2.80843	-1.52110	_	_
122	0.1104	0.01925	0.01815	-0.04936	_	_	_
123	-1.0342	1.9683	-0.3850	2.4018	-1.2075	_	_
104	0.4602	1.011	0.701				
124	0.4693	1.311	0.781	_	_	_	_
125	1.78383	1.13397	-2.90893	_	_	_	_
126	0.1614	3.7060	1.9747	-2.2905	-0.6665	_	_
127	0.1870	3.7077	1.9854	-2.2816	-0.7161	_	-

Appendix C. Volume equations (cont.)

```
a \cdot D^b \cdot (H-1.3)^c \cdot (D+40)^d
128 Norway
Picea spp. (Molid)
                                                                  a \cdot 10^{(b \cdot \log(D) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2)}
129 Romania
                                                                  a·Db·Hc
130 Iceland
Pinus contorta (Contorta tall)
                                                                  a.Db.Hc
131 Iceland
132 Netherlands
                                                                  D^a \cdot H^b \cdot \exp(c)
133 Sweden
                                                                  a \cdot D^2 + b \cdot D^2 H + c \cdot D^2 H^2 - d \cdot D \cdot H + e \cdot D \cdot H^2
                                                                  a·Db·Hc
134 Sweden
                                                                  a \cdot D^2 + b \cdot D^2 H + c \cdot D^2 H^2 - d \cdot D \cdot H + e \cdot D \cdot H^2
135 Sweden
Pinus nigra var maritima (Black pine)
136 Netherlands
                                                                  D^a \cdot H^b \cdot exp(c)
Pinus nigra var nigra (Black pine, Pin negru)
137 Netherlands
                                                                  D^a \cdot H^b \cdot exp(c)
                                                                  a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)}
138 Romania
Pinus spp.
                                                                  a{\cdot}H^b
139 Germany
140 Germany
                                                                  a·Db
                                                                  a·D(b+c)·Hd
141 Netherlands
                                                                  a \cdot D^{(b+c)} \cdot H^d
142 Netherlands
                                                                  a \cdot D^{(b+c)} \cdot H^d
143 Netherlands
Pinus sylvestris (Scots pine, Mänty, Tall, Furu, Grove den, Pin silvestri)
144 Austria
                                                                  (\pi/4)\cdot(a\cdot D^2\cdot H+b\cdot D^2\cdot H\cdot ln(D)^2+c\cdot D^2+d\cdot H)
                                                                  a·Db
145 Belgium
146 Belgium
                                                                  a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H
147 Finland
                                                                  a+b \cdot ln(D)
148 Finland
                                                                  a+b\cdot\ln(c+d\cdot D)+e\cdot D
149 Finland
                                                                  a \cdot (D^b) \cdot (c^D) \cdot (H^d) \cdot (H-1.3)^e
150 Finland
                                                                  a+b\cdot ln(D)+c\cdot ln(H)+d\cdot ln(H-1.3)+e\cdot D
151 Finland
                                                                  a.Db.Hc
                                                                  a.Db.Hc
152 Finland
153 Finland
                                                                  a \cdot H \cdot D^2 + b \cdot D \cdot H + c \cdot D^3 + d \cdot D \cdot H^2
154 Finland
                                                                  a+b\cdot\ln(D)+c\cdot D^2
                                                                  a·Db·Hc
155 Germany
                                                                  a·Db·Hc
156 Italy
                                                                  a \cdot D^{(b+c)} \cdot H^d
157 Netherlands
                                                                  a \cdot D^{(b+c)} \cdot H^d
158 Netherlands
159 Netherlands
                                                                  a \cdot D^{(b+c)} \cdot H^d
                                                                  D^a \cdot H^b \cdot \exp(c)
160 Netherlands
                                                                  a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+100)^e
161 Norway
                                                                  a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+100)^e
162 Norway
                                                                  a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+100)^e
163 Norway
                                                                  a+b\cdot D^2+c\cdot D^2\cdot H
164 Norway
                                                                  a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot D\cdot H^2
165 Norway
                                                                  a+b\cdot D^2+c\cdot D^2\cdot H
166 Norway
                                                                  a+b\cdot D^2+c\cdot D^2\cdot H
167 Norway
                                                                  a+b·D<sup>2</sup>·H
168 Norway
                                                                  a \cdot 10(b·log(D)+c·log(D)^2+d·log(H)+e·log(H)^2)
169 Romania
170 Sweden
                                                                  a \cdot D^2 + b \cdot D^2 \cdot H + c \cdot D \cdot H^2
171 Sweden
                                                                   10^{a} \cdot D^{b} \cdot (D+20)^{c} \cdot H^{d} \cdot (H-1.3)^{e}
                                                                   10a.Db.(D+20)c.Hd.(H-1.3)e
172 Sweden
173 Sweden
                                                                   10a.Db.(D+20)c.Hd.(H-1.3)e
174 Sweden
                                                                   10a.Db.(D+20)c.Hd.(H-1.3)e
```

	a	b	c	Parameters d	e	f	g
128	0.2101	1.8920	1.1095	-0.3895	_	_	_
120	0.2101	1.0720	1.10/3	0.3073			
129	0.00009464	1.9341	-0.0722	0.6365	0.172	_	_
130	0.0739	1.7508	1.0228	_	_	_	_
121	0.1401	1.6466	0.9225				
131 132	0.1491 1.89303	1.6466 0.98667	0.8325	_	_	_	_
132	0.1121	0.98667	-2.88614 -0.000061	0.09176	- 0.01249	_	_
134	0.04514	1.9005	1.06964	0.09170	0.01249	_	_
135	0.0883	0.03202	-0.000114	-0.07892	0.01049	_	_
136	1.89192	0.95374	-2.72505	_	_	_	_
137	1.95645	0.88671	-2.7675		- 0.1220	_	_
138	0.00010892	1.9701	0.0102	0.4858	0.1330	_	_
139	0.000074	3.1					
140	0.0001078	2.56	_	_	_	_	_
141	0.00042613		-0.001926657	0.80636901	_	_	_
142	0.00042613	2.066225947	-0.07956244	0.80636901	_	_	_
143	0.00042613	2.066225947	0.00369501	0.80636901	_	_	_
	0.40.70.40	0.04.4000.0	7.0 1001				
144	0.435949	-0.0149083	5.21091	0.028702	_	_	_
145 146	0.000244 -0.039836	2.32716 4.8710·10 ⁻³	- -6.1028·10 ⁻⁵	- 1.4889·10 ⁻⁵	- 7.3997·10 ⁻⁵	- 2.9221·10 ⁻⁵	_
147	-2.2945	2.57025	-0.1026.10	1.4009.10	7.3997.10	2.9221.10	_
148	-5.39417	3.48060	2	1.25	-0.039884	_	_
149	0.036089	2.01395	0.99676	2.07025	-1.07209	_	_
150	-3.2890	1.9995	2.1395	-1.1411	-0.002847	_	_
151	0.0942	1.9671	0.7005	_	_	_	_
152	0.095	1.9185	0.7381	_	_	_	_
153	0.05782	0.11632	-0.01092	-0.01317	_	_	_
154	-2.37912	2.62903	-0.000126	_	_	_	_
155	5.6537·10 ⁻⁵	1.960466	0.894433	_	_	_	_
156 157	1.480589 0.00207765	1.982459514	0.742674501 -8.6651E-05	- 0.48560878	_ _	_	_
158	0.00207765		-0.11110535	0.48560878	_	_	_
159	0.00207765	1.952764402		0.48560878	_	_	_
160	1.82075	1.07427	-2.8885	_	_	_	_
161	0.1424	2.0786	1.9028	-1.0259	-0.2640	_	_
162	0.1263	2.4621	1.9008	-1.3716	-0.2663	_	_
163	0.4434	4.9667	1.9912	-3.6612	-0.7502	_	_
164	8.6524	0.076844	0.031573	_	_	_	_
165	0.6716	0.075708	0.029679	- 0.004241	_	_	_
166	2.0044	0.029886	0.036972	0.004341	_	_	_
167 168	2.9121 2.9361	0.039994 0.038906	-0.001091	_	_	_	_
169	0.00014808	1.8341	_ -0.0448	0.3115	0.3525	_	_
170	0.1028	0.02705	0.005215	-	-	_	_
171	-1.1226	2.0180	-0.2135	1.8271	-0.8297	_	_
172	-1.20914	1.94740	-0.05947	1.40958	-0.45810	_	_
173	-1.38903	1.84493	0.06563	2.02122	-1.01095	_	_
174	-1.25246	1.98244	-0.13118	1.03781	-0.03482	_	-

Appendix C. Volume equations (cont.)

185.0	100 Ph /P 20\011d (II 12\0
175 Sweden	10a·Db·(D+20)c·Hd·(H-1.3)e
176 Sweden	$a \cdot D^2 + b \cdot D^2 \cdot H + c \cdot D \cdot H^2$
177 Sweden	$10^{a} \cdot D^{b} \cdot (D+20)^{c} \cdot H^{d} \cdot (H-1.3)^{e}$
Populus spp. (Poplar, Plop)	(=/4) (D2 H.1 D2. D)
178 Austria	$(\pi/4) \cdot (a \cdot D^2 \cdot H + b \cdot D^2 + c \cdot D)$
179 Netherlands	a·D(b+c)·Hd
180 Netherlands	a·D(b+c)·Hd
181 Netherlands	$\begin{array}{l} a \cdot D^{(b+c)} \cdot H^d \\ a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)} \end{array}$
182 Romania	a. $10^{(b \cdot \log(D) + c \cdot \log(D) + c \cdot \log(H) +$
183 Romania	
184 UK	a+b·D2·H ^c
Populus tremula (Aspen, Plop tremulator)	1 52 11
185 Norway	a+b·D ² ·H
186 Norway	$a+b\cdot D^2\cdot H$ $a\cdot 10^{(b\cdot \log(D)+c\cdot \log(D)^2+d\cdot \log(H)+e\cdot \log(H)^2)}$
187 Romania	
188 Sweden	$a \cdot D^2 + b \cdot D^2 \cdot H + c \cdot D^2 H^2 + d \cdot D \cdot H + e \cdot D \cdot H^2$
189 Sweden	a·Db·Hc
190 Sweden	$a \cdot D^2 \cdot H + b \cdot D^2 \cdot H + c \cdot D^2 H^2 + d \cdot D \cdot H + e \cdot D \cdot H^2$
Populus trichocarpa (Black cottonwood)	- h
191 Iceland	$a \cdot D^b \cdot H^c$
Prunus avium (Wild cherry, Merisier, Zoete l	
192 Belgium	$a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H$
Pseudotsuga menziesii (Douglas fir, Duglas)	2 2 2 2
193 Belgium	$a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H$
194 Netherlands	$D^a \cdot H^b \cdot \exp(c)$
195 Norway	$a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+40)^e$
196 Romania	$a \cdot 10^{(b \cdot \log(D) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2)}$
Pseudotsuga spp.	- (h : a) d
197 Netherlands	$a \cdot D^{(b+c)} \cdot H^d$
198 Netherlands	a·D(b+c)·Hd
199 Netherlands	$a \cdot D^{(b+c)} \cdot H^d$
Quercus grisea (Gray oak, Stejar brumariu)	4.0(h loo(D) + a loo(D)\\\ 2 + d loo(U) + a loo(U)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
200 Romania	$a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)}$
Quercus ilex (Holm oak)	2
201 Italy	a+b·D ² ·H
202 Croatia	$\mathbf{a} \cdot \mathbf{D^b} \cdot \mathbf{H^c}$
Quercus laevis (Turkey oak, Cer)	(h la - (D) + - la - (D) \(\frac{1}{2} \) + \(\frac{1}{2} \) \(\frac{1}{2} \)
203 Romania	$a \cdot 10^{(b \cdot \log(D) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2)}$
Quercus pubescens (Downy oak, Stejar pufos	
204 Croatia	a+b·ln(D)+c·H
205 Croatia	$a+b\cdot\ln(D)+c\cdot H$
206 Romania	$a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)}$
Quercus robur (Pedunculate oak)	
207 Netherlands	$D^a \cdot H^b \cdot exp(c)$
Quercus rubra (Red oak, Chêne rouge)	
208 Belgium	$a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H$
209 Netherlands	$D^a \cdot H^b \cdot exp(c)$
Quercus spp. (Oak, Chênes, Stejar)	2 2
210 Austria	$(\pi/4) \cdot (a \cdot D^2 \cdot H + b \cdot D^2 + c \cdot D \cdot H + d \cdot H + e \cdot D + f)$
211 Austria	$(\pi/4) \cdot (a \cdot D^2 \cdot H + b \cdot D^2 \cdot H \cdot \ln(D)^2 + c \cdot D^2)$
212 Belgium	$a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H$
213 Netherlands	$a \cdot D^{(b+c)} \cdot H^d$
214 Netherlands	$a \cdot D^{(b+c)} \cdot H^d$

	a	b	c	Parameters d	e	f	g
175	-1.52761	1.82928	0.07454	1.43792	-0.35559	_	_
176	0.1072	0.02427	0.007315	-	-	_	_
177	-1.2605	1.9322	-0.0897	2.1795	-1.1676	_	_
178	0.366419	1.13323	0.1306	_	_	_	_
179	0.0009507	1.895629295	0.001650837	0.8392146	_	_	_
180	0.0009507		-0.09208823	0.8392146	_	_	_
181 182	0.0009507 0.00018059	1.895629295	-0.00773694	0.8392146 -0.0161	- 0.4099	_	_
183	0.00018039	1.4466	0.0013 0.1089	-0.0101	0.4099	_	_
184	-0.0041480	0.0000435	0.1089	-0.1903	0.3061	_	_
104	-0.00+270	0.0000433	0.07				
185	9.69	0.0365	_	_	_	_	_
186	-0.21	0.0398	_	_	_	_	_
187	0.00007604	1.7812	0.0528	0.8533	0.0654	_	_
188	0.01548	0.03255	-0.000047	-0.01333	0.004859	_	_
189	0.03597	1.84297	1.15988	- 0.01704	-	_	_
190	0.03392	-0.01491	-0.000005	0.01704	0.002926	_	_
191	0.0732	1.6933	1.0562	-	_	_	_
192	-0.002311	-0.00117728	0.000149061	$-7.8058 \cdot 10^{-6}$	$3.3282 \cdot 10^{-4}$	$3.1526 \cdot 10^{-5}$	_
193	-0.019911	0.001871101	0.000127328	-5.7631·10 ⁻⁶	0.00071591	$3.9371 \cdot 10^{-5}$	_
194	1.90053	.80726	-2.43151	_	_	_	_
195	1.8211	4.153	2.1342	-2.6902	-1.4265	_	_
196	$4.477 \cdot 10^{-5}$	1.8688	0.0424	1.1411	-0.1047	_	_
197	0.00095916	2.092560524	0.000297255	0.48824344	_	_	_
198	0.00095916	2.092560524	-0.0449007	0.48824344	_	_	_
199	0.00095916	2.092560524	0	0.48824344	_	_	_
200	$7.188 \cdot 10^{-5}$	1.4486	0.0204	1.4084	0.0409	_	_
201	1.1909	0.038639	_	_	_	_	_
202	0.000096	1.821	0.759	_	_	_	_
203	0.0001992	2.014	-0.0602	-0.1108	0.4811	_	_
204	-9.646	2.076	0.761	_	_	_	_
205	-11.473	2.548	0.967	_	_	_	_
206	0.00035164	1.1119	0.3108	0.5356	0.2139	_	_
207	2.00333	0.85925	-2.86353	_	_	_	_
208	-0.02149	0.002986681	$-4.2506 \cdot 10^{-5}$	-2.1806·10 ⁻⁶	-0.000743	$3.7473 \cdot 10^{-5}$	_
209	1.83932	0.9724	-2.71877	_	-	-	_
210	0.115621	(5.00(1	1 20221	0.020406	015 750	160 477	
210	0.115631	65.9961	1.20321	-0.930406 -	-213./38	168.477	_
211 212	0.417118 -0.0022735	0.21941	13.32594 0.000124772	_ _1 8434.10-6	- -0.0016657	- 3.6985·10 ⁻⁵	_
213	0.00022733		0.000124772		-0.0010037	_	_
214	0.00095853	2.040672356		0.56366437	_	_	_

Appendix C. Volume equations (cont.)

	Equation
215 Netherlands	$a \cdot D^{(b+c)} \cdot H^d$
216 Romania	$a \cdot 10^{(b \cdot log(D) + c \cdot log(D)^2 + d \cdot log(H) + e \cdot log(H)^2)}$
217 UK	a+b·D ² ·H ^c
Salix caprea (Goat willow, Salcie capreasca)	
218 Norway	$a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot H^2\cdot D+e\cdot H^2$
219 Romania	$a \cdot 10^{(b \cdot \log(D) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2)}$
Salix spp. (Salcie)	
220 Romania	$a \cdot 10^{(b \cdot \log(D) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2)}$
221 Romania	$a \cdot 10^{(b \cdot \log(D) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2)}$
Sorbus aucuparia (Rowan)	
222 Norway	$a+b\cdot D^2+c\cdot D^2\cdot H+d\cdot H^2\cdot D+e\cdot H^2$
Thuja pilicata (Western redcedar)	
223 Netherlands	$D^a \cdot H^b \cdot \exp(c)$
224 Norway	$a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+40)^e$
Tilia cordata (Tei)	
225 Romania	$a \cdot 10^{(b \cdot \log(D) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2)}$
Tsuga heterophylla (Hemlock)	
226 Netherlands	$D^a \cdot H^b \cdot \exp(c)$
227 Norway	$a \cdot H^b \cdot D^c \cdot (H-1.3)^d \cdot (D+100)^e$
<i>Ulmus</i> spp. (Elm, Orme, Ulm)	
228 Belgium	$a+b\cdot D+c\cdot D^2+d\cdot D^3+e\cdot H+f\cdot D^2\cdot H$
229 Netherlands	$D^a \cdot H^b \cdot \exp(c)$
230 Romania	$a \cdot 10^{(b \cdot \log(\overline{D}) + c \cdot \log(D)^2 + d \cdot \log(H) + e \cdot \log(H)^2}$

	a	b	c	Parameters d	e	f	g
215 216 217	0.00095853 8.839·10 ⁻⁵ -0.011724	2.040672356 1.8905 0.0000765	-0.04354461 0.0469 0.75	0.56366437 0.8059	- -0.0045 -	- - -	- - -
218 219	-1.86827 0.00011585	0.21461 1.6688	0.01283 0.1090	0.0138 0.7781	-0.06311 0.0269	_ _	_ _
220 221	$4.281 \cdot 10^{-5} \\ 7.325 \cdot 10^{-5}$	2.0766 1.5598	-0.1296 0.0302	0.6843 0.8572	0.2745 0.1791	_ _	- -
222	-1.86827	0.21461	0.01283	0.0138	-0.06311	_	-
223 224	1.67887 1.3057	1.11243 3.9075	-2.64821 1.9832	_ _2.3337	_ -1.3024	_ _	
225	0.00004124	1.9302	0.0209	0.129	-0.1903	_	-
226 227	1.76755 0.4291	1.37219 2.6153	-3.54922 1.9145	_ -1.2696	- -0.6715	_ _	<u>-</u>
228 229 230	-0.034716 1.94295 3.992·10 ⁻⁵	0.004268168 1.29229 2.1569	-0.00013227 -4.20064 -0.0933	-1.7667·10 ⁻⁶ - 1.0728	0.00016516 - -0.0708	3.8311·10 ⁻⁵ -	- - -