Flash存储器的纠错要求-IBM

原创 2016-08-03 阿呆 ssdfans

作者: 阿呆

NAND Flash纠错从理论到实践,看完你就是专家了!

想要和阿呆还有全世界的大牛讨论SSD及存储相关技术?加nanoarch为微信好友,拉你进ssdfans微 信群。

导语

Flash常说的RBER, UBER是什么? 极限情况下纠错码有多长?

为什么

Flash是一种有失真的存储介质,必须满足Spec规定的纠错能力才能达到Spec声称的写寿命。

纠错基础

BSC (Binary Storage Channel) 模型

如图,数据从发送到接收,有一定的概率出错(在通道里面或者存储介质上)。BSC模型中1和0有着同样的出错概率,作为一种近似模型。P(error)=0。01,P(success)=0.99.单个bit穿过通道的错误率叫做RBER: Raw Bit Error Rate。本例子RBER=0.01。扩展一下,传输n个bit,出错k个bit的概率如下:

$$\Pr(k) = \binom{n}{k} \times P_e \times (1 - P_e)^{n-k} = \frac{n!}{k!(n-k)!} P_e \times (1 - P_e)^{n-k}$$

以前面的例子,各种出错概率为:

Pr (exactly 0 errors) =
$$(3! / (0! \times 3!)) \times .01^{0} \times 0.99^{3} = 0.970299$$

Pr (exactly 1 error) = $(3! / (1! \times 2!)) \times .01^{1} \times 0.99^{2} = 0.029403$
Pr (exactly 2 errors) = $(3! / (2! \times 1!)) \times .01^{2} \times 0.99^{1} = 0.000297$
Pr (exactly 3 errors) = $(3! / (3! \times 0!)) \times .01^{3} \times 0.99^{6} = 0.000001$

出错率小于等于k个bit概率为其下的概率求和。K为1时:

Pr (1 or less errors) =
$$0.029403 + 0.970299 + = 0.999702$$

在下面的例子中,用了3倍的bit来表示原来1个bit的数据,RBER依然为0.01,在3个codeword里面的3个bit出错概率假设相等。可以看出最终的出错概率降低了33倍:从原来的0.01到了0.000298.

真实世界

- 1. Codeword没这么短;
- 2. 现在的纠错一般使用BCH。
- 3. BCH能够实现固定长度错误bit的纠错。
- 4. 给定RBER和存储介质,我们可以得到概率分布函数和累积函数(probability mass function (pmf) and cumulative distribution function (cdf).)。

PMF表示在长度为n的Codeword里面发生x个错误的概率,CDF指的是在长度为n的codeword里面发生小于等于x个错误的概率。

假如我们能纠错40个bit,那么纠错失败的概率为: Pr (> 40 errors) = 1 – Pr (≤ 40 errors) ≈ 0.0015。这个叫做FER(Frame Error Rate)。如果能够纠错41个bit,则FER=0.00084,纠错长度增加2.5%导致FER下降44%!

RBER与UBER

加入我们考虑了纠错之后再来计算出错率,发现error count在40bit以下的概率都为0,因为都被纠过来了,而大于41个bit的出错概率本来就很低,错误概率分布变成了如下右图的PMF。

右图放大之后:

所以接下来的任务就是计算纠错之后的Bit Error Rate: UBER, uncorrected bit error rate, 这个是工业界来衡量Flash纠错能力的指标。计算公式很简单,就是把前面每个bit的出错率加起来, 但是因为t bit纠错能力导致t个bit以下的错误率都为0,所以从t+1开始累加就可以了。

$$UBER = \frac{\sum_{k=0}^{l} k \times Pr(k)}{l} = \frac{\sum_{k=t+1}^{l} k \times Pr(k)}{l}$$

UBER的影响因子

纠错能力

RBER为2.00e-3,纠错能力从35增长到43bit,那么UBER下降了250倍。

Code Length	RBER	Strength (t)	Code Rate	UBER	
8192	2.00e-3	37	0.937	1.612e-08	
8192	2.00e-3	38	0.935	6.808e-09	
8192	2.00e-3	39	0.933	2.805e-09	
8192	2.00e-3	40	0.932	1.128e-09	↓ 250x
8192	2.00e-3	41	0.930	4.426e-10	
8192	2.00e-3	42	0.928	1.697e-10	,
8192	2.00e-3	43	0.927	6.362 1 ss	lfans

RBER

同样情况下,如果RBER降到1.25e-3,UBER可以下降4000倍!

Code Length	RBER	Strength (t)	Code Rate	UBER	
8192	1.25e-3	37	0.937	1.016e-13	
8192	1.25e-3	38	0.935	2.705e-14	
8192	1.25e-3	39	0.933	7.012e-15	
8192	1.25e-3	40	0.932	1.775e-15	↓ 4000x
8192	1.25e-3	41	0.930	4.383e-16	
8192	1.25e-3	42	0.928	1.057e-16	,
8192	1.25e-3	43	0.927	2.489e-1	scdfans

只看RBER的变化, UBER改善更显著:

Code Length	RBER	Strength (t)	Code Rate	UBER	
8192	2.75e-3	40	0.932	1.503e-06	
8192	2.50e-3	40	0.932	2.116e-07	
8192	2.25e-3	40	0.932	1.987e-08	
8192	2.00e-3	40	0.932	1.128e-09 ↓ 840,00	00,000x
8192	1.75e-3	40	0.932	3.373e-11	
8192	1.50e-3	40	0.932	4.350e-13	
8192	1.25e-3	40	0.932	1.775e-15 SSC	dfans

怎样选择纠错码长度

短纠错码占用资源少,但是纠错能力差。长纠错码纠错能力强,但是占用更多资源。关键是选择一个能够实现足够UBER的纠错长度。如果知道4K page的纠错码长度,怎么计算8K和16K的?

RBER	length = 8192 strength:UBER	length = 4096 strength:UBER	length = 16384 strength:UBER
1.25e-3	40 : 1.775e-15	29 : 3.503e-16	60 : 1.308e-15
1.50e-3	40 : 4.350e-13	28 : 1.499e-13	62 : 2.567e-13
1.75e-3	40 3.373e-11	27 : 1.964e-11	64 : 1.571e-11
2.00e-3	40 : 1.128e-09	26:1.052e-09	65 : 8.621e-10
2.25e-3	40 : 1.987e-08	26:9.624e-09	67 : 1.151e-08
2.50e-3	40 2.116e-07	25 : 1.645e-07	68 : 1.676e-07
2.75e-3	40 : 1.503e-06	25 : 7.519e-07	69 1.480e-06

问题是,Flash制造商并不提供RBER,因为RBER并非固定值,它跟晶圆质量、温度等很多因素相关。一般来讲,按照制造商提供的纠错码长度就可以了,但是企业级用户的要求更高,他们对性能和使用寿命非常关注。

深入知识

性能鉴定

下图为<u>IBM</u> Flash性能鉴定平台。

如下图,Flash的错误率会随着使用寿命增加而增加。为了挑战极限,必须准备好处理每100个bit就 有1个坏的情况。

RBER还跟Flash内部结构也有关系。两个相邻Block的RBER有可能完全不同,下图是单个block里面 不同page的RBER分布图。看得出来,upper page的RBER比lower page要高两个数量级。

如果RBER高达1%,那么要实现UBER < 1e-15,需要多大的纠错码?如下图,BCH纠错码长度很 长,码率很低。所以需要更好的纠错算法,譬如LDPC。

Code length		n RBER	Strength (t)	Code Rat	e UBER
	8192	0.01	157	0.732	8.210e-16
	16384	0.01	267	0.756	6.627e-16
	32768	0.01	469	0.771	9.614e-16
	65536	0.01	852	0.779	8.691e-16
	131072	0.01	1585	0.782	_3.955le-16
					·

引用

Understanding Error Correction Mandates for Flash Memory

Charles Camp, CTO / IBM Flash Systems Development, IBM

不想错过阿呆的后续精彩文章?长按或扫描下面二维码关注ssdfans就可以了!

