МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра БЖД

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ по дисциплине «Безопасность жизнедеятельности»

Студентка гр. 1304	Чернякова В.А.
Преподаватель	Демидович О.В.

Санкт-Петербург

2024

Задание 1.

Условие.

Оцените условия труда работника по факторам среды. Вариант задания **2**-5-5-5 выберите из табл. 1 справочной информации. Примите, что условия труда по другим факторам среды соответствуют классу 2. Наметьте конкретные мероприятия (организационные, технические, финансово-экономические) с определением необходимых затрат в денежном выражении, экономической эффективности по созданию допустимых условий труда работника и по времени устранения неблагоприятных факторов среды и процесса труда.

Решение.

Данные из таблицы 1 справочной информации:

- Характер работы: Бухгалтер;
- Освещение: KEO = 0.65, E = 320 лк, K Π = 13%;
- Шум: L = 71 дБА;
- Электромагнитные поля: EI/EII = 36/10.2 B/м, BI/BII = 360/10 нТл, P = 3 Вт/м²;
- Микроклимат: t = 25°C, Влажность = 34%, v = 0.01м/с;
- По другим факторам условия труда соответствуют классу 2.

Для оценки условий труда использовались методика из Приказа Министерства труда и социальной защиты № 33н от 21.01.2014 и действующий норматив – СанПиН 1.2.3685-21.

Освещение.

Таблица 1. Отнесение условий труда по классу (подклассу) условий труда при воздействии световой среды.

Наименование показателя	Класс (подкласс) условий труда							
	допустимый	вредный						
	2	3.1	3.2					
Искусственное освещение								

Освещенность рабочей поверхности Е, лк	>= E _H *	>= 0,5 Ен	< 0,5 Ен
--	---------------------	-----------	----------

*Нормативное значение освещенности рабочей поверхности устанавливается в соответствии с СанПиН 2.2.1/2.1.1.1278-03 "Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий".

Таблица 2. Нормируемые показатели естественного, искусственного и совмещенного освещения основных помещений общественного здания, а также сопутствующих им производственных помещений

Рабочая поверх- ность и	Естественное освещение КЕО е , % н		Совмещенное освещение КЕО е , % н		Искусственное освещение					
	плоскость нормиро- вания				при бо- ко-	освеще	енность,	лк		
ности (I горизон тальная В - верт кальная и высот плоскости над	освещен- ности (Г -	при верхнем или	при боко-	при верхнем или ком-		при комби- нированном освещении		при	пока- затель дис-	коэффици- ент пульса-
	тальная, В - верти- кальная) и высота плоско-	комби- ниро- ванном освеще- нии	вом осве- ще- нии	биниро- ванном освеще- нии	вом осве- ще- нии	всего	от об- щего	об- щем осве- ще- нии	ком- форта, М, не более	ции осве- щенности, Кп, %, не более
Кабинеты, рабочие комнаты, офисы, представительства	Γ-0,8	3,0	1,0	1,8	0,6	400	200	300	40	15

• KEO = 0.65:0.65 < 1.8

• E = 320 лк: 320 > 300

• $K\Pi = 13\%: 13 < 15$

 $E = 1.07 \cdot E_{H}$

Таким образом, согласно таблице 1 в общем освещение можно отнести к классу 2 допустимый.

Вывод:

Необходимо провести мероприятия для достижения нормы в рамках показателя КЕО, так как в рамках других показателей значения допустимые.

- Провести очистку окон и светопропускающих поверхностей для увеличения естественного светового потока.
- Заменить оконные стеклопакеты на варианты с повышенной светопропускной способностью (более 80%).
- Увеличить площадь оконных проёмов за счёт перепланировки или использования стеклянных перегородок.

Затраты

- Очистка окон и рам 5 000 рублей.
- Замена стеклопакетов 25 000 рублей.
- Увеличение площади оконных проёмов 20 000 рублей.
- Общая стоимость мероприятий 50 000 рублей.

Время устранения неблагоприятных факторов

Реализация мер займёт около 3—4 недель, включая подготовку, закупку материалов и выполнение строительных работ.

Шум.

Таблица 3. Отнесение условий труда по классу (подклассу) условий труда при воздействии виброакустических факторов.

Наименование показа- теля, единица измере- ния	Класс (подкласс) условий труда									
	допустимый	устимый вредный								
	2	3.1	3.2	3.3	3.4	4				
Шум, эквивалентный уровень звука, дБА	<= 80	> 80 - 85	> 85 - 95	> 95 - 105	> 105 - 115	> 115				

L = 71 дБА: 71 < 80

Таким образом, согласно таблице 3 условия труда при воздействии виброакустических факторов можно отнести к классу 2 допустимый. Нужды в изменениях нет.

Электромагнитные поля.

Рассмотрим следующий пункт из Приказа Министерства труда и социальной защиты № 33н от 21.01.2014.

Отнесение условий труда к классу (подклассу) условий труда при воздействии неионизирующих излучений

60. Отнесение условий труда к классу (подклассу) условий труда при воздействии неионизирующих излучений <4> осуществляется в соответствии с приложением N 17 к настоящей Методике.

<4> При наличии неионизирующих излучений от технологического оборудования, за исключением рабочих мест, на которых работники исключительно заняты на персональных электронно-вычислительных машинах (персональных компьютерах) и (или) эксплуатируют аппараты копировально-множительной техники настольного единичные стационарные копировально-множительные аппараты, используемые периодически для нужд самой организации, иную офисную организационную технику, а также бытовую технику, не используемую в технологическом процессе производства.

Так как оборудование, с которым работает бухгалтер, соответствует пункту <4>, то отнесение условий труда к классу (подклассу) условий труда при воздействии неионизирующих излучений не производится.

Микроклимат.

Таблица 4. Отнесение условий труда по классу (подклассу) условий труда при воздействии параметров микроклимата.

	Ка-			Класс	(подкласс)	условий т	руда				
Пока- затель	те- го- рия	опти- мальный	допусти- мый	вредный опасный							
	pa- 6or* 1 2		3.1	3.2	3.3	3.4	4				
	Ia	22,0 - 24,0	24,1 - 25,0								
Темпе-	Іб	21,0 - 23,0	23,1 - 24,0								
ратура воз- духа,	IIa	19,0 - 21,0	21,1 - 23,0	Определяется величиной ТНС-индекса (в соответствии с приложением N 13 к настоящей методике.							
°C	IJб	17,0 - 19,0	19,1 - 22,0								
	III	16,0 - 18,0	18,1 - 21,0								
Ско-	Ia	<= 0,1	<= 0,1	Учитывается при определении ТНС-индекса. При скоро сти движения воздуха, большей или равной 0,6 м/с, усло							
движе-	I6	<= 0,1	<= 0,2			аются вред	дными услови	ями труда (под-			
кин	IIa	<= 0,2	<= 0,3			кла	cc <u>3.1)</u> .				

воз-	IJб	<= 0,2	<= 0,4	
духа, м/с	III	<= 0,3	<= 0,4	
Влаж- ность воз-	I - III 60 - 40		15 - < 40;	Учитывается при определении ТНС-индекса. При влажности воздуха < 15 - 10% условия труда признаются вредными условиями труда (подкласс 3.1);
духа,%			> 60 - 75	при влажности воздуха < 10% условия труда признаются вредным

*Категории работ разграничиваются на основе интенсивности энергозатрат организма в ккал/ч (Вт):

- а) к категории Іа относятся работы с интенсивностью энергозатрат до 120 ккал/ч (до 139 Вт), производимые в положении сидя;
- б) к категории Іб относятся работы с интенсивностью энергозатрат 121 150 ккал/ч (140 174 Вт), производимые не только в положении сидя, но и в положении стоя, и (или) связанные с ходьбой;
- в) к категории Па относятся работы с интенсивностью энергозатрат 151 200 ккал/ч (175 232 Вт), связанные с ходьбой и перемещением мелких (до 1 кг) изделий или предметов в положении стоя и (или) сидя;
- г) к категории Пб относятся работы с интенсивностью энергозатрат 201 250 ккал/ч (233 290 Вт), связанные с ходьбой и перемещением изделий или предметов до 10 кг в положении стоя и (или) сидя;
- д) к категории III относятся работы с интенсивностью энергозатрат более 250 ккал/ч (более 290 Вт), связанные с постоянными передвижениями, а также перемещением и переноской значительных (свыше 10 кг) тяжестей.

Работу бухгалтера можно отнести к категории Ia.

- t=25°С \Rightarrow Класс условий труда 2 (допустимый).
- Влажность 34% ⇒ Класс условий труда 2 (допустимый).
- $\nu = 0.01 \,\text{м/c} \Rightarrow \text{Класс условий труда 1 (оптимальный)}.$

Таким образом, согласно таблице 4 условия труда при воздействии параметров микроклимата можно отнести к классу 2 допустимый. Нужды в изменениях нет.

Задание 2.

Условие.

На химически опасном объекте, расположенном на некотором расстоянии от университета, произошла авария ёмкости с химически опасным веществом. Определите степень и разряд химической опасности объекта; радиус первичного очага поражения; глубину распространения облака с пороговой концентрацией; площади очага поражения и заражения по следу; ширину и высоту подъёма ядовитого облака; время, за которое опасные вещества достигнут объекта и совершат поражающее действие. Оцените возможное число жертв студентов и сотрудников университета. Исходя из характера отравляющего вещества, выберите средства индивидуальной защиты и наиболее целесообразные действия по защите людей. Исходные данные для заданий формируются в виде набора букв и чисел, соответствующих позиции и её значениям, приведённым в табл. 2 справочной информации. Вариант 4-5-1-3-2-3-2-1-1-1-1-3.

Решение.

Данные из таблицы 2 справочной информации:

- Наименование химически опасного вещества Фосген
- Macca, T 50
- Условие хранения Наземное (необвалованная ёмкость)
- Время суток Вечер
- Атмосферные условия Полуясно
- Скорость ветра, м/с 2
- Температура воздуха, °С 0
- Местность Открытая
- Условия защиты людей Открытая местность
- Обеспеченность людей противогазами, % 0
- Расстояние от места аварии до объекта, км 1
- Расстояние от места аварии до реки, $\kappa M 4$

Степень химической опасности.

 $M_3 = 0.8 - 50$ т – 3 степень – рассматриваемый случай.

$$M_2 = 50 - 250 \text{ т} - 2 \text{ степень};$$

$$M_1 > 250 \text{ т} - 1 \text{ степень}.$$

Разряд химической опасности объекта.

$$K = \frac{M \cdot A \cdot Y}{100 \cdot \Pi \angle K \cdot Z} = \frac{50 \cdot 100 \cdot 1}{100 \cdot 0.5 \cdot 1} = 100\%$$

где М – масса АХОВ, т;

A – количество AXOB, переходящих в атмосферу в обычных условиях (100% - газообразные AXOB, 50% - жидкие);

Y - коэффициент, учитывающий расположение склада относительно водоема (Y = 10 при L < 1.0 км; Y = 3 при L =от 1 до 3 км; Y = 1 при L > 3 км);

ПДК — предельно допустимая концентрация в рабочей зоне, мг/м3. У фосгена 0.5;

Z – коэффициент, учитывающий условия хранения AXOB (Z = 1 наземный склад; Z = 5 – подземный склад);

При K > 100 — особо опасное химическое предприятие 1 разряда (потери людей более 50 %);

K = 10 - 100 — высокоопасное химическое предприятие 2 разряда (потери людей 20–50 %). Рассматриваемый случай;

K < 10 — опасное химическое предприятие 3 разряда (потери людей 10— 20 %).

Радиус первичного очага поражения.

$$R_0 = 6 \cdot \sqrt{M} = 6 \cdot \sqrt{50} = 42,43$$
 м

Глубина распространения облака с пороговой концентрацией.

$$\Gamma_{\text{обл. от}} = \Gamma_{\text{T}} \cdot \mathbf{K}_{\text{B}} \cdot \mathbf{K}_{t}$$

 Γ_{T} – табличное значение глубины распространения облака;

 K_B – поправочный коэффициент;

 ${\rm K}_t$ — коэффициент, учитывающий изменение температуры воздуха (первичное облако).

Таблица 5. Степень вертикальной устойчивости атмосферы.

	Но	ЧЬ	Утро		Деі	НЬ	Вечер	
Ско- рость ветра, м/с	ясно, переменная облачность	сплош- ная об- лач- ность	ясно, переменная облачность	сплош- ная об- лач- ность	ясно, переменная облачность	сплош- ная об- лач- ность	ясно, переменная облачность	сплошная облачность
< 2	ИН	ИЗ	ИЗ (ИН)	ИЗ	К (ИЗ)	ИЗ	ИН	ИЗ
2 - 3,9	ИН	ИЗ	ИЗ (ИН)	ИЗ	ИЗ	ИЗ	ИЗ (ИН)	ИЗ
> 4	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ

Буквы в скобках при снежном покрове.

В решаемой задаче:

- Время суток Вечер
- Атмосферные условия Полуясно
- Скорость ветра, м/с 2

Таким образом, степень вертикальной устойчивости атмосферы — **ИЗ** (изотермия).

Таблица 6. Глубина распространения AXOB с пороговыми концентрациями на открытой местности ($\Gamma_{\rm T}$), км (скорость ветра 1 м/с) t=20°C (емкости не обвалованы).

Наименование АХОВ		Масса АХОВ в емкости, т										
	1	5	10	25	50	75	100	500	1000			
		Изотермия										
1.Хлор, фосган	2,1	5,3	8,0	14	22	28	34	80	80			
2.Синильная												
кислота	3,6	9,6	15	29	42	52,5	63	80	80			
3.Аммиак	0,4	0,9	1,3	2,1	3,2	3,8	4,6	12	26,5			

Таблица 7. Поправочный коэффициент K_B .

		Скорость ветра, м/с								
Состояние атмосферы	1	2	3	4	6	7				
Инверсия	1	0,60	0,45	0,38	-	-				
Изотермия	1	0,71	0,55	0,50	0,45	0,38				
Конвекция	1	0,70	0,62	0,55	-	-				

Таблица 8. Значение коэффициента K_t , учитывающего изменение температуры воздуха (первичное облако).

AXOB	Температура воздуха, °С								
Miob	-30	-20	-10	0	10	20	30		

Хлор, аммиак х	0,3	0,5	0,7	0,8	0,9	1,0	1,1
Хлор, аммиак хх	0,1	0,2	0,4	0,6	0,8	1,0	1,2
Фостен	0	0	0	0	0,3	1,0	1,4
Окислы азота	0	0	0	0	0	0	1,0
Синильная кислота	0	0	0	0	0	0	1,0
Окись углерода	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Сернистый ангидрид	0	0	0	0,6	0,8	1,0	1,2

Исходя из таблиц:

$$\Gamma_{\rm T}=22$$
;

$$K_{B} = 0.71;$$

$$K_t = 0$$
;

$$\Gamma_{\text{обл. от}} = 22 \cdot 0.71 \cdot 0 = 0$$
 км

Ширина и высота подъёма ядовитого облака.

- Ш = $0.03 \cdot \Gamma_{\text{об}}$ при инверсии,
- Ш = $0.15 \cdot \Gamma_{\text{об}}$ при изотермии (рассматриваемый случай),
- Ш = $0.8 \cdot \Gamma_{\text{об}}$ при конвекции.

$$\coprod = 0.15 \cdot 0 = 0$$
 km

- $H_{o6} = 0.01 \cdot \Gamma_{o6} при инверсии$
- $H_{of} = 0.03 \cdot \Gamma_{of} -$ при изотермии (рассматриваемый случай)
- $H_{o6} = 0.14 \cdot \Gamma_{o6} при конвекции$

$$H_{o6} = 0.03 \cdot 0 = 0 \text{ km}$$

Площади очага поражения и заражения по следу.

Площадь очага первичного поражения S_0 , м²:

$$S_0 \cong \pi R_0^2 \cong 3,14 \cdot 42,43^2 = 5652,96 \text{ м}^2$$

Площадь зоны химического заражения S_3 , км²:

$$S_3 = 0, 5\Gamma_{06} \cdot \mathbf{H} = 0, 5 \cdot 0 \cdot 0 = 0$$
km²

Время, за которое опасные вещества достигнут объекта и совершат поражающее действие.

Время, за которое вещества достигнут объекта $t_{\text{под}}$, мин:

$$t_{
m nog} = rac{L}{60 \cdot V_{
m m}}$$
 ,

L – удаление объекта от источника от AXOB, м. В задаче 1 км = 1000 м.

 $V_{\rm II}$ — средняя скорость переноса AXOB, м/с.

Таблица 9. Средняя скорость переноса АХОВ, м/с.

	Удаление объекта от очага АХОВ, км						
VB, M/c	До 10 км	> 10 km	До 10 км	> 10 км	До 10 км	> 10 км	
	Инверсия		Изометрия		Конвекция		
1	2,0	2,2	1,5	2,0	1,5	1,8	
2	4,0	4,5	3,0	4,0	3,0	3,5	
3	6,0	7,0	4,5	6,0	4,5	5,0	
4	-	-	6,0	8,0	-	-	
5	-	-	7,5	10	-	-	
8	-	-	12	16	-	-	

Расчёт:

$$t_{\text{под}} = \frac{1000}{60 \cdot 3} \approx 6 \text{ мин}$$

Продолжительность поражающего действия AXOB $t_{\text{пор}}$, мин:

$$\boldsymbol{t}_{\text{nop}} = \boldsymbol{t}_{\text{исп}} \cdot \boldsymbol{K}_{\text{и}}$$

 $t_{\text{исп}}$ – время испарения АХОВ;

К_и – поправочный коэффициент.

Таблица 10. Время испарения АХОВ ($t_{\text{исп}}$), при скорости ветра 1 м/с.

Вид АХОВ	Время испарения					
вид АлОв	Необвалованная емкость	Обвалованная емкость				
1.Хлор, фосген	1,3	22				
2.Сероуглерод	3,0	45				
3.Сернистый ангидрид, аммиак	1,2	20				

Таблица 11. Поправочный коэффициент (К_и).

V _B , _M /c	1	2	3	4	5	6	7	8
Ки	1	0,7	0,55	0,43	0,37	0,32	0,28	0,25

По таблицам:

$$t_{\text{исп}} = 1,3;$$

$$K_{\mu} = 0, 7;$$

$$t_{
m nop} = 1,3 \cdot 0,7 = 0,91 \,
m чаc = 54,6 \,
m мин$$

Возможное число жертв студентов и сотрудников университета.

Для определения химических потерь необходимо знать обеспеченность людей средствами индивидуальной защиты (противогазами) и условия их защиты (открытая местность, укрытия).

- Местность Открытая
- Условия защиты людей Открытая местность
- Обеспеченность людей противогазами, % 0

Таблица 12. Возможные потери людей в очаге поражения.

Varianus payvisti	Обеспеченность противогазами (n), %						
Условия защиты	0	20	40	50	70	90	100
Открытая местность	90-100	75	50	50	35	18	5-
Укрытия, здания	50	40	30	27	18	9	4

В данной задаче процент потерь составляет 90-100%

Таблица 13. Процент поражения при отсутствии средств защиты во время распространения первичного облака.

OXB	Количество пораженных, %
Окись углерода	10 - 20
Хлор, аммиак, сернистый газ	23 – 30
Синильная кислота, фосген	30 – 40
Оксиь этилена	50 – 60

Фактические потери людей при обеспеченности 0% людей противогазами:

$$X\Pi_{MMH} = 90 \cdot 0.3 = 40\%$$

$$X\Pi_{Makc} = 100 \cdot 0.4 = 27\%$$

Определение числа погибших людей при выбросе облака AXOB можно провести по формуле:

$$N_{\text{HOT}} = N_{\text{CM}}^{\text{yd}} \cdot M$$

 $N_{\text{см}}^{\text{уд}}$ - средняя удельная смертность при воздействии делимого АХОВ, чел/т (табл. 14);

М – масса выброса АХОВ, т.

Таблица 14. Средняя удельная смертность для некоторых АХОВ.

Наименование вещества	
Хлор, фосген, хлорпикрин	0,50
Сероводород	0,20
Аммиак	0,05

$$N_{\text{пот}} = 0.50 \cdot 50 = 25$$
 человек

Средства индивидуальной защиты и наиболее целесообразные действия по защите людей.

Фосген — это чрезвычайно токсичное химическое вещество, которое используется в промышленности, но может представлять серьёзную опасность для здоровья человека при аварийных ситуациях. Он является удушающим веществом, поражающим дыхательные пути, лёгкие и слизистые оболочки.

Средства индивидуальной защиты (СИЗ):

Для защиты от фосгена применяют фильтрующие противогазы марки «В» или «БКФ», а также изолирующие противогазы, такие как ИП-4, АДИГС, КИП-8, РВЛ-1 или АСВ-2. Фосген поражает органы дыхания, поэтому основное внимание уделяется защите дыхательных путей, а также глаз. Использование противогазов является эффективным средством предотвращения отравления этим веществом.

Наиболее целесообразные действия при защите людей:

- При обнаружении фосгена:
- о Определить источник утечки:

Быстро локализовать источник выделения фосгена и минимизировать его выброс в окружающую среду.

о Эвакуация людей:

Немедленно эвакуировать всех людей из опасной зоны с наветренной стороны (фосген тяжелее воздуха и скапливается в низинах).

В случае невозможности эвакуации организовать укрытие в герметичных помещениях.

• В закрытых помещениях:

Уплотнить двери, окна и вентиляционные отверстия (например, с помощью влажных тряпок).

Выключить системы вентиляции и кондиционирования, чтобы избежать втягивания фосгена.

• Первая помощь пострадавшим:

Удалить пострадавшего из зоны поражения.

Пострадавшего необходимо вынести на свежий воздух.

• Оказание первой помощи

Если есть признаки удушья, немедленно начать искусственную вентиляцию лёгких.

Обеспечить покой, тепло и подачу увлажнённого кислорода.

Промойте поражённые участки тела большим количеством воды.

• Специальные меры:

В случае крупной аварии известить экстренные службы, МЧС и специализированные химические отряды.

Использовать водяные завесы для осаждения паров фосгена в атмосферу.

• После воздействия:

Организовать медицинский осмотр всех, кто находился в зоне риска.

Провести полную дезактивацию территории с использованием нейтрализующих средств (например, растворов щелочей или аммиака).