Série 8

Réponses à l'exercice 8.1 : RECONSTRUCTION PAR FILTRAGE IDÉAL

- 1) $X_{\text{\'e}ch}(\omega) = \frac{1}{T} \sum_{k \in \mathbb{Z}} X(\omega k \frac{2\pi}{T}).$
- 2) Le filtre est passe-bas : il ne change pas les basses fréquences et coupe les hautes fréquences.
- 3) $T = 1: Y(\omega) = \delta(\omega \frac{\pi}{2}) + \delta(\omega + \frac{\pi}{2}) = X(\omega)$ et $y(t) = x(t) = \frac{1}{\pi} \cos(\frac{\pi}{2}t)$. $T = 3: Y(\omega) = \frac{1}{3} [\delta(\omega + \frac{5\pi}{6}) + \delta(\omega + \frac{\pi}{2}) + \delta(\omega + \frac{\pi}{6}) + \delta(\omega - \frac{\pi}{6}) + \delta(\omega - \frac{\pi}{2}) + \delta(\omega - \frac{5\pi}{6})]$ et $y(t) = \frac{1}{3\pi} \left[\cos(\frac{\pi}{2}t) + \cos(\frac{\pi}{6}t) + \cos(\frac{5\pi}{6}t) \right]$.
- **4)** $y(t) = x(t) \Leftrightarrow T = 1$.
- 5) $y(t) = 0 \Leftrightarrow x(kT) = 0, \ \forall k \in \mathbb{Z}.$
- **6)** On peut par exemple prendre $x(t) = \sin(\frac{n\pi}{T}t)$ pour un $n \in \mathbb{Z} \setminus \{0\}$ fixé.

Réponses à l'exercice 8.2 : ÉCHANTILLONNAGE ET RECONSTRUCTION

- 1) Les signaux sont représentés sur la figure 1.
- 2) $x_e(t) = \sum_{k \in \mathbb{Z}} x[k] \delta(t kT)$ avec $x[k] = x(kT) = \cos(2k\pi T/3 + \pi/2)$. $y_e(t) = \sum_{k \in \mathbb{Z}} y[k] \delta(t - kT)$ avec $y[k] = y(kT) = \sin(k\pi T/3)$. Les suites x[k] et y[k] sont identiques.
- 3) $x(t) = -\sin(2\pi t/3) \Rightarrow X(\omega) = j\pi \left[-\delta(\omega + \omega_1) + \delta(\omega \omega_1) \right]$ avec $\omega_1 = 2\pi/3$. $Y(\omega) = j\pi \left[\delta(\omega + \omega_2) \delta(\omega \omega_2) \right]$ avec $\omega_2 = \pi/3$. x(t) et y(t) sont bien à bande limitée et leurs fréquences maximales sont ω_1 et ω_2 respectivement.
- 4) $X_e(\omega) = \frac{1}{T} \sum_{k \in \mathbb{Z}} X(\omega k\omega_0)$ avec $\omega_0 = 2\pi/T$. $Y_e(\omega) = \frac{1}{T} \sum_{k \in \mathbb{Z}} Y(\omega k\omega_0)$.

Les deux signaux sont représentés sur les figures 2 et 3. On observe que les transformées de Fourier des deux signaux sont identiques en raison du phénomène de repliement spectral pour $X_e(\omega)$.

5) La formule de Shannon n'est applicable qu'à y(t). Chez Fourier, la formule de reconstruction donne $Y(\omega) = Y_e(\omega) \times T \operatorname{rect}(\omega/\omega_0)$. On retrouve bien la transformée de Fourier de y(t) comme on peut le constater sur la figure 3).

FIGURE 1 – Exercice 8.2.1 : A gauche, les signaux x(t) et $x_e(t)$. A droite, y(t) et $y_e(t)$.

Réponses à l'exercice 8.3 : MULTIPLEXAGE EN FRÉQUENCE

1) $s(t) = x(t)\cos(\omega_1 t) + y(t)\cos(\omega_2 t)$.

FIGURE 2 – Exercice 8.2.4 : $\operatorname{Im}\{X(\omega)\}$ et $\operatorname{Im}\{Y(\omega)\}$. Les parties réelles des deux fonctions sont nulles.

FIGURE 3 – Exercice **8.2.4** : $\operatorname{Im}\{X_{\operatorname{e}}(\omega)\}$ et $\operatorname{Im}\{Y_{\operatorname{e}}(\omega)\}$. Les parties réelles des deux fonctions sont nulles. En pointillés, la fonction $T\operatorname{rect}(\omega/\omega_0)$ de la question **8.2.5**.

- 2) Le module de $S(\omega)$ est représenté sur la figure 4.
- 3) $\omega_2 \omega_1 \ge 2\pi$. 4π . Ce choix n'est pas réaliste.
- 4) $v(t) = x(t)\cos(\omega_0 t) + y(t)\sin(\omega_0 t)$.
- 5) $\omega_0 > \pi$. Cette condition peut toujours être satisfaite.
- **6)** 2π .

Réponses à l'exercice 8.4 : SYSTÈME DÉRIVATEUR

- 1) $h(t) = \delta'(t)$ et $H(\omega) = j\omega$. $|H(\omega)| = |\omega|$ et $\arg H(\omega) = \operatorname{sign}(\omega) \times \frac{\pi}{2}$. Le module et la phase de H sont représentés sur la figure 5.
- 2) Dans les deux cas, on trouve $y_1(t) = -9\sin(3t + \pi/3)$.
- 3) $x_2(t)$ est 1-périodique en tant que périodisation de la fonction tri(2t). La fonction est représentée sur l'intervalle [-2,2] sur la figure 6.
- 4) Les coefficients de Fourier de $x_2(t)$ (resp. $y_2(t)$) sont notés c_n (resp. d_n). $c_n = \frac{1}{2} \text{sinc}^2(n/2)$. $d_n = \pi \text{j} n \text{sinc}^2(n/2)$.
- 5) $y_2(t) = \sum_{k \in \mathbb{Z}} 2(\text{rect}(2(t-k)+1/2) \text{rect}(2(t+k)-1/2))$. On retrouve les même valeurs pour les d_n . La fonction $y_2(t)$ sur l'intervalle [-2,2] est représenté sur la figure 7.

FIGURE 4 – Exercice 8.3.2 : module de $S(\omega)$.

FIGURE 5 – Exercice 8.4.1 : module et phase de $H(\omega)$.

FIGURE 6 – Exercice 8.4.3 : la fonction $x_2(t)$.

FIGURE 7 – Exercice 8.4.5 : la fonction $y_2(t)$.