

CS 6341 Robotics

Professor Yu Xiang

The University of Texas at Dallas

Motion Control

- Goal: follow a given robot trajectory
 - Trajectory of desired end-effector configuration $X_d(t)$
 - Trajectory of desired joint positions $\, heta_d(t) \,$

Can include

$$\dot{\theta}_d(t)$$

$$\ddot{ heta}_d(t)$$

Motion Control

Last lecture

task specifications

Controller

Joint velocities

Stepper Motors

- Limited to applications with low or predictable forcetorque requirements
- Do not make use of a dynamic model of the robot

Today

task specifications

Controller

Forces and torques

Controller generates joint torques and forces to track a desired trajectory

Motion Control of a single joint with Torque or Force Inputs

Dynamics of a singe-joint robot

Rotational dynamics of a Single Rigid Body

Angular velocity $\omega_b = (\omega_x, \omega_y, \omega_z)$

If the principal axes are aligned with the axes of {b}, $\ensuremath{\mathcal{I}}_b$ is a diagonal matrix

$$m_b = \begin{bmatrix} \mathcal{I}_{xx}\dot{\omega}_x + (\mathcal{I}_{zz} - \mathcal{I}_{yy})\omega_y\omega_z \\ \mathcal{I}_{yy}\dot{\omega}_y + (\mathcal{I}_{xx} - \mathcal{I}_{zz})\omega_x\omega_z \\ \mathcal{I}_{zz}\dot{\omega}_z + (\mathcal{I}_{yy} - \mathcal{I}_{xx})\omega_x\omega_y \end{bmatrix}$$

$$\omega_b = [0, 0, \dot{\theta}]^T$$

$$m_{bz} = I_{zz}\ddot{\theta}$$

Motion Control with Torque or Force Inputs

Move the body frame to the joint

Steiner's theorem

$$\mathcal{I}_q = \mathcal{I}_b + \mathfrak{m}(q^{\mathrm{T}}qI - qq^{\mathrm{T}})$$

$$m_{bz} = I_{zz}\hat{\theta}$$

- Torque applied by the joint $\, \mathcal{T} \,$
- Gravity torque $m_a = r_a \times f_a \\ \tau_g = -mgr\cos\theta$
- Friction torque (damping) $au_f = -b\dot{ heta}$

$$\tau - mgr\cos\theta - b\dot{\theta} = I_{zz}\dot{\theta}$$

Motion Control with Torque or Force Inputs

Motion Control of a single joint

Dynamics
$$\tau = M\ddot{\theta} + \mathfrak{m}gr\cos\theta + b\dot{\theta}$$

$$\tau = M\ddot{\theta} + h(\theta, \dot{\theta})$$

Motion Control of a Single Joint

- Feedback control: PID control
 - Proportional-Integral-Derivative control

$$\tau = K_p \theta_e + K_i \int \theta_e(t) dt + K_d \dot{\theta}_e \qquad \theta_e = \theta_d - \theta$$

PD Control

- Dynamics $au = M\ddot{\theta} + \mathfrak{m}gr\cos{\theta} + b\dot{\theta}$
- PD control law $~K_p(\theta_d-\theta)+K_d(\dot{\theta}_d-\dot{\theta})$ Assume ~g=0

$$M\ddot{\theta}+b\dot{\theta}=K_p(\theta_d-\theta)+K_d(\dot{\theta}_d-\dot{\theta})$$
 Control the torque

Control objective: constant θ_d $\dot{\theta}_d=\ddot{\theta}_d=0$ Setpoint control

$$\theta_e = \theta_d - \theta$$
 $\dot{\theta}_e = -\dot{\theta}$ $\ddot{\theta}_e = -\ddot{\theta}$

Error dynamics $M\ddot{\theta}_e + (b+K_d)\dot{\theta}_e + K_p\theta_e = 0$

PD Control

Standard second-order form

$$M\ddot{\theta}_e + (b + K_d)\dot{\theta}_e + K_p\theta_e = 0$$

$$\ddot{\theta}_e + \frac{b + K_d}{M}\dot{\theta}_e + \frac{K_p}{M}\theta_e = 0 \quad \rightarrow \quad \ddot{\theta}_e + 2\zeta\omega_n\dot{\theta}_e + \omega_n^2\theta_e = 0$$

$$\zeta = \frac{b + K_d}{2\sqrt{K_pM}} \quad \omega_n = \sqrt{\frac{K_p}{M}}$$

$$\zeta = \frac{b + K_d}{2\sqrt{K_p M}} \qquad \omega_n = \sqrt{\frac{K_p}{M}}$$

Critically damped: $\zeta = 1$

PD Control

• When g > 0, the error dynamics

$$M\ddot{\theta}_e + (b + K_d)\dot{\theta}_e + K_p\theta_e = \mathfrak{m}gr\cos\theta$$

When the joint comes to rest at a configuration heta ,

$$\dot{\theta} = \ddot{\theta} = 0$$

$$K_p \theta_e = \mathfrak{m} g r \cos \theta$$

the final error θ_e is nonzero when $\theta_d \neq \pm \pi/2$

Non-zero steady-state error

PID Control

Setpoint error dynamics

$$M\ddot{ heta}_e + (b+K_d)\dot{ heta}_e + K_p heta_e + K_i\int heta_e(\mathbf{t})d\mathbf{t} = au_{\mathrm{dist}}$$
 Disturbance torque $\mathfrak{m} gr\cos heta$

Taking derivatives

$$M\theta_e^{(3)} + (b + K_d)\ddot{\theta}_e + K_p\dot{\theta}_e + K_i\theta_e = \dot{\tau}_{\text{dist}}$$

Third-Order Error Dynamics
$$s^3 + \frac{b+K_d}{M}s^2 + \frac{K_p}{M}s + \frac{K_i}{M} = 0$$
 If $au_{
m dist}$ Constant

If all roots have a negative real part, then the error dynamics is stable, and θ_e converges to zero

PID Control

10/29/2025 Yu Xiang 12

PID Control

```
time = 0
                              // dt = servo cycle time
                              // error integral
eint = 0
                              // initial joint angle q
qprev = senseAngle
loop
  [qd,qdotd] = trajectory(time) // from trajectory generator
  q = senseAngle
                 // sense actual joint angle
  qdot = (q - qprev)/dt // simple velocity calculation
  qprev = q
  e = qd - q
  edot = qdotd - qdot
  eint = eint + e*dt
  tau = Kp*e + Kd*edot + Ki*eint
  commandTorque(tau)
  time = time + dt
end loop
```

Feedforward Control

- Uses the dynamics of the robot
- The controller's model of the dynamics

$$\tau = \tilde{M}(\theta)\ddot{\theta} + \tilde{h}(\theta,\dot{\theta})$$

$$\tilde{M}(\theta) = M(\theta) \text{ and } \tilde{h}(\theta, \dot{\theta}) = h(\theta, \dot{\theta})$$
 if the model is perfect

• Given θ_d , $\dot{\theta}_d$, and $\ddot{\theta}_d$

Feedforward torque
$$au(t) = \tilde{M}(\theta_d(t)) \ddot{\theta}_d(t) + \tilde{h}(\theta_d(t), \dot{\theta}_d(t))$$

The dynamics model of the controller cannot be perfect in practice

Accumulate error in position

Feedforward Plus Feedback Linearization

Goal: achieve the following error dynamics

$$\ddot{ heta}_e + K_d \dot{ heta}_e + K_p heta_e + K_i \int heta_e({
m t}) d{
m t} = c$$
 A PID controller can achieve exponential decay of the trajectory error

- We first choose $\ddot{\theta} = \ddot{\theta}_d \ddot{\theta}_e$ $\ddot{\theta} = \ddot{\theta}_d + K_d\dot{\theta}_e + K_p\theta_e + K_i\int\theta_e(\mathrm{t})d\mathrm{t}$
- Feedforward plus feedback linearizing controller (inverse dynamics controller, computed torque controller)

$$\tau = \tilde{M}(\theta) \left(\ddot{\theta}_d + K_p \theta_e + K_i \int \theta_e(t) dt + K_d \dot{\theta}_e \right) + \tilde{h}(\theta, \dot{\theta})$$

Feedforward Plus Feedback Linearization

$$\tau = \tilde{M}(\theta) \left(\ddot{\theta}_d + K_p \theta_e + K_i \int \theta_e(t) dt + K_d \dot{\theta}_e \right) + \tilde{h}(\theta, \dot{\theta})$$

Feedforward Plus Feedback Linearization

Motion Control of a Multi-joint Robot

• Dynamics $\tau = M(\theta) \ddot{\theta} + h(\theta, \dot{\theta})$ $n \times n$

- Decentralized control
 - Each joint is controlled independently
 - When dynamics are decoupled (approximately)
- Centralized control
 - Full state information for each of the n joints is available to calculate the controls for each joint

Centralized Multi-joint Control

Computed torque controller

$$\tau = \tilde{M}(\theta) \left(\ddot{\theta}_d + K_p \theta_e + K_i \int \theta_e(t) dt + K_d \dot{\theta}_e \right) + \tilde{h}(\theta, \dot{\theta})$$

 K_p, K_i, K_d positive-definite matrices

We choose the gain matrices as

 $k_p I$, $k_i I$, and $k_d I$

PID control and gravity compensation

When the model is not good

$$\tau = K_p \theta_e + K_i \int \theta_e(t) dt + K_d \dot{\theta}_e + \tilde{g}(\theta)$$

Summary

- Motion control with torque or force Inputs
 - PID control
 - Computed torque control

Further Reading

• Chapter 11 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017.