

planetmath.org

Math for the people, by the people.

Julia set

Canonical name JuliaSet

Date of creation 2013-03-22 17:15:26 Last modified on 2013-03-22 17:15:26

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 7

Author rspuzio (6075) Entry type Definition Classification msc 28A80 Let U be an open subset of the complex plane and let $f\colon U\to U$ be analytic. Denote the n-th iterate of f by f^n , i.e. $f^1=f$ and $f^{n+1}=f\circ f^n$. Then the *Julia set* of f is the subset J of U characterized by the following property: if $z\in J$ then the restriction of $\{f^n\mid n\in\mathbb{N}\}$ to any neighborhood of z is not a normal family.

It can also be shown that the Julia set of f is the closure of the set of repelling periodic points of f. (Repelling periodic point means that, for some n, we have $f^n(z) = z$ and |f'(z)| > 1.)

A simple example is afforded by the map $f(z) = z^2$; in this case, the Julia set is the unit circle. In general, however, things are much more complicated and the Julia set is a fractal.

From the definition, it follows that the Julia set is closed under f and its inverse — f(J) = J and $f^{-1}(J) = J$. Topologically, Julia sets are perfect and have empty interior.