Advanced Econometrics (PhD in Economics) and Advanced Topics in Econometrics (PhD in Mathematics Applied to Economics and Management) 2025/2026

Exercise Sheet 4 - Limited Dependent Variable Models (version 11/10/2025)

1. Let t_i^* denote the duration of some event, such as unemployment, measured in continuous time. Consider the following model for t_i^* :

$$t_i^* = \exp\left(\mathbf{X}_i'\boldsymbol{\beta}_0 + u_i\right), \ u_i | X_i \sim N(0, \sigma^2),$$

$$t_i = \min\left\{t_i^*, c\right\}$$

$$= \begin{cases} t_i^*, & \text{if } t_i^* < c \\ c, & \text{if } t_i^* \ge c \end{cases},$$

where c > 0 is a known censoring constant. Note also that

$$\mathbb{E}[\log t_i \mid X_i] = \mathbf{X}_i' \boldsymbol{\beta}_0 - \sigma \phi(a_i) + \left[m - \mathbf{X}_i' \boldsymbol{\beta}_0 \right] \left[1 - \Phi(a_i) \right],$$

where $m = \log c$, $a_i = (m - \mathbf{X}_i' \boldsymbol{\beta}_0)$, and $\Phi(a)$ and $\phi(a)$ are, respectively, the cumulative distribution function and density function of the standard normal distribution.

- (a) Consider the following method for estimating β_0 . Using all observations, we run the OLS regression of $\log(t_i)$ on \mathbf{X}_i . Explain why this does not generally produce a consistent estimator of β_0 .
- (b) Find $P(t_i = c|X_i)$, that is, the probability that the duration is censored. What happens as $c \to \infty$?
- (c) What is the density of $\log(t_i)$ (given \mathbf{X}_i) when $t_i < c$? Now write down the full density of $\log(t_i)$ (given \mathbf{X}_i).
- (d) Write down the log-likelihood function for observation i.
- (e) Obtain the log-likelihood function if the censoring time is potentially different for each person, so that $t_i = \min\{t_i^*, c_i\}$, where c_i is observed for all i. Assume that u_i is independent of (\mathbf{X}_i, c_i) .
- 2. Suppose that, for a random draw (Y_i, X_i) from the population, Y_i is a doubly censored variable:

$$Y_{i} = \min \left\{ \max \left\{ a_{1}, Y_{i}^{*} \right\}, a_{2} \right\}$$

$$= \begin{cases} a_{1} & Y_{i}^{*} < a_{1} \\ Y_{i}^{*} & a_{1} \leq Y_{i}^{*} \leq a_{2} \\ a_{2} & Y_{i}^{*} > a_{2} \end{cases}$$

where $a_1 < a_2$ and $Y_i^* | X_i \sim N(\mathbf{X}_i' \boldsymbol{\beta}_0, \sigma^2)$. Note that

$$\mathbb{E}[Y_i \mid \mathbf{X}_i, \, a_1 < Y_i < a_2] = \mathbf{X}_i' \boldsymbol{\beta}_0 + \sigma \, \frac{\phi(d_{1i}) - \phi(d_{2i})}{\Phi(d_{2i}) - \Phi(d_{1i})},$$

where

$$d_{1i} = \frac{a_1 - \mathbf{X}_i' \boldsymbol{\beta}_0}{\sigma}, d_{2i} = \frac{a_2 - \mathbf{X}_i' \boldsymbol{\beta}_0}{\sigma}$$

and $\Phi(a)$ and $\phi(a)$ are, respectively, the cumulative distribution function and density function of the standard normal distribution.

- (a) Consider the following method for estimating β_0 . Using only the uncensored observations, that is, observations for which $a_1 < Y_i < a_2$, run the OLS regression of Y_i on \mathbf{X}_i . Explain why this does not generally produce a consistent estimator of β_0 .
- (b) Find $P(Y_i = a_1 | \mathbf{X}_i)$ and $P(Y_i = a_2 | \mathbf{X}_i)$ in terms of the standard normal cumulative distribution function, \mathbf{X}_i , $\boldsymbol{\beta}_0$, and σ .
- (c) For $y_i \in (a_1, a_2)$, find $P(Y_i \leq y_i | \mathbf{X}_i)$ and use this to find the density function of Y_i given \mathbf{X}_i .
- (d) Write down the log-likelihood function for observation i; it should consist of three parts.
- (e) For data censoring, how would the analysis change if a_1 and a_2 were replaced with a_{i1} and a_{i2} , respectively, where u_i is independent of $(\mathbf{X}_i, a_{i1}, a_{i2})$?