I] Utiliser des angles alternes-internes

Définition

d et d' sont deux droites coupées par une droite s en deux points distincts A et B.

Deux angles sont alternes-internes si :

- ils ont pour sommets A et B;
- ils sont situés de part et d'autre de la droite s ;
- ils sont entre les droites d et d'.

Remarque

Ces trois droites définissent également une deuxième paire d'angles alternes-internes.

Alternes : de part et d'autre de la droite s. Internes : entre les deux droites d et d'.

Propriété

d et d' sont deux droites coupées par une droite s en deux points distincts. Si d et d' sont parallèles, alors les angles alternes-internes qu'elles forment avec la droite s sont de même mesure.

Exemple

Dans la figure ci-contre, les droites d et d' sont coupées par la droite s, formant ainsi deux angles alternes-internes colorés.

Comme on sait que d et d' sont parallèles, on peut en conclure que ces deux angles ont même mesure, soit 31°.

Propriété (réciproque)

d et d' sont deux droites coupées par une droite s en deux points distincts. Si d et d' forment avec la droite s deux angles alternes-internes de même mesure, alors d et d' sont parallèles.

Exemple

Dans la figure ci-contre, les droites d et d' sont coupées par la droite s, formant ainsi deux angles alternesinternes colorés.

Comme on sait que ces deux angles ont la même mesure, on peut conclure que les droites d et d' sont parallèles.

II] Utiliser des angles correspondants

Définition

d et d' sont deux droites coupées par une droite s en deux points distincts A et B.

Deux angles sont alternes-internes si :

- ils ont pour sommets A et B;
- ils sont situés de part et d'autre de la droite s ;
- ils sont entre les droites d et d'.

Remarque

Ces trois droites définissent également trois autres paires d'angles correspondants.

Propriété

d et d' sont deux droites coupées par une droite s en deux points distincts. Si d et d' sont parallèles, alors les angles correspondants qu'elles forment avec la droite s sont de même mesure.

Exemple

Dans la figure ci-contre, les droites d et d' sont coupées par la droite s, formant ainsi deux angles correspondants qui sont représentés colorés.

Comme on sait que d et d' sont parallèles, on peut en conclure que ces deux angles ont même mesure, soit 48°.

Propriété (réciproque)

d et d' sont deux droites coupées par une droite s en deux points distincts. Si d et d' forment avec la droite s deux angles correspondants de même mesure, alors d et d' sont parallèles.

Exemple

Dans la figure ci-contre, les droites d et d' sont coupées par la droite s, formant ainsi deux angles correspondants représentés colorés.

d 32° d' 32°

Comme on sait que ces deux angles ont même mesure, on peut en conclure que les droites d et d' sont parallèles.

Remarque

Dans le cas où des angles correspondants ont pour mesure 90°, on retrouve les propriétés suivantes.

• Si deux droites sont parallèles et si une troisième droite est perpendiculaire à l'une, alors elle est perpendiculaire à l'autre.

• Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

 $d \perp s$ et $d' \perp s$ donc $d \parallel d'$.

III] Utiliser des angles opposés par le sommet

Définition

d et d' sont deux droites sécantes.

Deux angles sont opposés par le sommet lorsque :

- ils ont le même sommet ;
- leurs côtés sont dans le prolongement l'un de l'autre.

Remarque

Ces deux droites définissent également une deuxième paire d'angles opposés par le sommet.

Propriété

Deux angles opposés par le sommet ont même mesure.

Exemple

Dans la figure ci-contre, on sait que les angles \widehat{BAC} et \widehat{DAE} sont opposés par le sommet. Ils ont donc même mesure.

$$\widehat{BAC}$$
=37 ° donc \widehat{DAE} =37.

IV] Déterminer la mesure d'un angle dans un triangle

Propriété

La somme des mesures des trois angles d'un triangle est égale à 180°.

Exemple

Dans le triangle ci-contre, on a :

 $\widehat{BAC} + \widehat{ABC} + \widehat{ACB} = 180^{\circ}$

Remarque

Quand on connaît les mesures de deux angles d'un triangle, cette propriété permet de calculer la mesure du troisième angle.