Session 8 - Recap

Empresa

País B

País B

1. Passenger transport

- Flights
- Seats
- · Passengers (pax)
- LF: Load Factor (esp: Factor de ocupación/llenado)
- SL: Stage length (great circle distance)

AIR TRANSPORT INDICATORS

- ASK: Available Seat Km (esp: AKO, USA: ASM) → seats* dist
- · Block time, flight time, taxi time
 - Block time = taxi out + flight time + taxi in

FREEDOMS OF THE AIR

FACTORS PROMOTING AIR TRANSPORT GROWTH

País A

Empresa. EETAC. UPC

AIR TRANSPORT vs. GDP per CAPITA

País A

País A

País B

País C

País B

País B

País B

País B

País A

País A

In 2017, 30% of emerging country populations took a flight

AIR TRANSPORT vs. GDP

Figure 2 - Relationship of Real GDP and Air Travel 4% 2% 0% 2007 2013 2014 vailable Seat Kilometres - Gross domestic product, cor Source: IMF and SRS Analyser, 2016

Question! Why are Fuel and Forex important for air traffic growth? NATIONAL/REGIONAL GDP & GDP PER CAPITA

AIRBUS

Empresa. EETAC. UPC

Expense vs. cost

Cash out (salida de caja)

Depreciation Useful life Cost

Airport business model Business model Net financial expens

Depreciation

Warning between Investment Cashflow &

Los ingresos se ajustan a la siguiente estructura:

Ingresos aeronáuticos

Empresa. EETAC. UPC

Ingresos no aeronáuticos

NPV, IRR

NPV (Net present value) → Esp. VAN (Valor actual neto)

$$NPV = -C_0 + \frac{C_1}{1+r} + \frac{C_2}{(1+r)^2} + \dots + \frac{C_T}{(1+r)^T}$$

- $-C_0 = Initial\ Investment$
- r = Discount Rate

IRR (Internal rate of return) \rightarrow esp. (TIR) r that makes NPV equal to 0

Airline profit equation

Thinking in unit terms

- . Why thinking in unit terms?
- Unit revenues

Average Fare (Ingreso medio) → ing/pax Revenue/seat

Unit costs

CASK Cost/seat

RYANAIR Thinking in unit terms **Total Revenues** Total Costs* = Profit* €/seat 14,8 €/seat Ancillary revenue

Thinking in unit terms

What Price shall we charge? Differential pricing

Yield vs. load strategy

The goal: maximize revenue

seats sold per class Strategy A Strategy R Strategy C

	ruic (c)	Strutteby A	Strategy D	StrateBy C
	200	22	10	19
	170	25	12	21
	140	27	14	23
	110	40	45	42
	85	20	60	36
	60	15	40	25
	40	10	30	18
ers		159	211	184

▶ Load management?

Revenue management

https://centreforaviation.com/analysis/airline-leader/cask-analysis-allows-global-airline-unit-cost-benchmarking-and-

Cost evolution

Ryanair CASK breakdown (Fiscal year 1998 - 2018)

Cost efficiency

Gauge (esp: calibre): #seats per aircraft A320 IB 162 seats A320 VY 180 or 186 seats

Aircraft utilization: Block hours per day

Employee productivity: Flight hours per year

Why are these two parameters important? \rightarrow always think in unit terms

Stage lenght adjustment

19.0 -18.0 -17.0 -16.0 -15.0 -14.0 -■ Legacies ▲ LCCs 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

Average sector length km

Impact of fuel in profitability

Ryanair cost breakdown & EBIT (Fiscal year 2009 - 2018)

