Sistema de ecuaciones lineales

CM4F1

Ángel Enrique Ramírez Gutiérrez

aramirezg@uni.edu.pe

Escuela Profesional de Matemática Universidad Nacional de Ingeniería

5 de octubre de 2022

Contenido

1. Motivación

2. Métodos directos

- 2.1. Eliminación de Gauss
- 2.2. Método de Gauss-Jordan
- 2.3. Pivoteo parcial
- 2.4. Pivoteo total

Sistema de ecuaciones lineales

Tiene la forma:

$$E_1: \quad a_{11}x_1 + a_{12}x_2 + \ldots + a_{1,n-1}x_{n-1} + a_{1n}x_n = b_1$$

$$E_2: \quad a_{21}x_1 + a_{22}x_2 + \ldots + a_{2,n-1}x_{n-1} + a_{2n}x_n = b_1$$

$$\vdots$$

$$E_m: \quad a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{m,n-1}x_{n-1} + a_{mn}x_n = b_m$$

donde $a_{ij}, b_i \in \mathbb{R}$ para todo $i = 1, \dots, m$ y $j = 1, \dots, n$.

Sistemas de ecuaciones lineales

(2)

El sistema lineal puede ser escrito en forma matricial como sigue:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1,n} \\ a_{21} & a_{22} & & a_{2,n-1} & a_{2,n} \\ & & \ddots & & & \\ a_{m-1,1} & a_{m-1,2} & & a_{m-1,n-1} & a_{m-1,n} \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n-1} & a_{m,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_{m-1} \\ b_m \end{pmatrix}$$

Definiendo $A=(a_{ij})\in\mathbb{R}^{m\times n}$ y $b=(b_i)\in\mathbb{R}^m$ resulta:

$$Ax = b (1)$$

Definición

Dado el sistema lineal (1), definimos la matriz aumentada M asociada al sistema lineal de la forma siguiente:

Teorema del rango

O también conocido como **Teorema de Frobenius**. Este Teorema garantiza la existencia y unicidad de solución de un sistema de ecuaciones lineales.

- 1. Si rango(A) = rango(M) entonces el sistema tiene solución. Se subdividen en dos casos:
 - 1.1 Si rango(A) = rango(M) < n entonces el sistema tiene infinitas soluciones.
 - 1.2 Si rango(A) = rango(M) = n entonces el sistema tiene única solución.
- 2. Si $rango(A) \neq rango(M)$ entonces el sistema no tiene solución.

En esta primera parte nos centraremos en sistemas que tienen única solución, es decir: rango(A) = rango(M) = n.

Contenido

1. Motivación

2. Métodos directos

- 2.1. Eliminación de Gauss
- 2.2. Método de Gauss-Jordan
- 2.3. Pivoteo parcial
- 2.4. Pivoteo total

Métodos directos

Estamos interesados en resolver el sistema Ax = b, donde $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$ y $x \in \mathbb{R}^n$. Además el sistema tiene solución única, es decir: $det(A) \neq 0$.

Para determinar la solución exacta del sistema haremos uso de las operaciones elementales fila:

Definición

Dada una matriz $A \in \mathbb{R}^{n \times n}$, definimos como operaciones elementales fila para la matriz A a cualquiera de las siguientes operaciones:

- 1. Intercambiar la fila i con la fila j, denotado por F_{ij} .
- 2. Asignar a la fila i la misma fila i pero multiplicada por un número no nulo λ . Esto es denotado por $F_i(\lambda)$.
- 3. Asignar a la fila i la misma fila i y sumándole λ veces la fila j donde $\lambda \neq 0$. Esto es denotado por $F_{ij}(\lambda)$.

 $F_{ij}(\lambda)$ F_{ij} $F_{i}(\lambda)$ Matriz elemental: La matriz identidad se aprica una única operación elemental Si F denota cualquier operación elemental: FI = M Considere ma montrio FA = MA Lo podemos entender como operación elemental o su respectiva matriz el emental TAX=6 IX-6 DX=bv (Motris) X = 6 Ax=b Matriz triangular superior: $\begin{pmatrix}
\mathcal{U}_{11} & \mathcal{U}_{12} & --- & \mathcal{U}_{11} \\
\mathcal{O} & \mathcal{U}_{22} & --- & \mathcal{U}_{21} \\
\mathcal{O} & \mathcal{O} & --- & \mathcal{U}_{nn}
\end{pmatrix}
\begin{pmatrix}
\chi_{1} \\
\chi_{2} \\
\vdots \\
\chi_{n}
\end{pmatrix} = \begin{pmatrix}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{pmatrix}$ $u_n x_n = b_n \rightarrow x_n = \frac{b_n}{2L_n}$ Un-1, n-1 Xn-1 + Un-1, n Xn = b n-1 $\Rightarrow \chi_{n-1} = \frac{b_{n-1} - v_{n-1,n} \chi_n}{v_{n-1,n-1}}$ $u_{i,i} \times_i + u_{i,i+1} \times_{i+1} + \dots + u_{i,n} \times_n = b_i$

En le fila i: multidiv = n-i+1smoutrestor = n-i+1+1total de = $\sum_{i=1}^{\infty} (n-i+i) + \sum_{i=1}^{\infty} (n-i)$

Métodos directos (cont.)

Observe que un sistema lineal es fácil de resolver cuando es de la forma:

$$Ux = b (3)$$

donde U es una matriz triangular superior cuyos elementos $u_{ii} \neq 0$ (i = 1, ..., n). Para calcular la solución x se usa el Algoritmo 1 descrito a continuación.

Algoritmo 1: Sustitución Regresiva

Entrada: Ingresar una matriz triangular superior $U \in \mathbb{R}^{n \times n}$.

1 inicio

para $i \leftarrow n$ a 1 hacer

$$\leftarrow \frac{b_i - \sum_{j=i+1}^n u_{ij} x_j}{u_{ii}}$$

fin para

devolver Solución del sistema lineal $x = (x_1, \ldots, x_n)$.

5 6 fin

3

Eliminación de Gauss

Dado el sistema lineal Ax = b, el método consiste en aplicar operaciones elementales fila a la matriz aumentada M asociada al sistema lineal de forma tal que la matriz A sea transformada a una matriz triangular superior.

Ejemplo

Resuelva el sistema lineal siguiente mediante eliminación gaussiana.

Resolución:

Algoritmo de Eliminación Gaussiana I

Entrada: Número de ecuaciones.

Matriz aumentada $M = (m_{ij})$ donde $i = 1, \ldots, n$ y $j = 1, \ldots, n+1$

Solución x_i (i = 1, ..., n) o mensaje que el sistema no tiene solución. Salida:

Paso 1: Para $\underline{i} = 1, \dots, n-1$ hacer los Pasos del 2 al 4.

Paso 2: Sea p el menor entero tal que $i \leq p \leq n$ y $m_{pi} \neq 0$.

Si no puede encontrarse p entonces **PARAR**.

No existe solución.

Paso 3: Si $p \neq i$ entonces calcule $F_{ip}M$.

Paso 4: Para j = i + 1, ..., n hacer los Pasos 5 y 6.

Paso 5: Calcule $\underline{f_{ji}} = \frac{m_{ji}}{m_{ii}}$.

Paso 6: Calcule $F_{ii}(f_{ii})M$

Paso 7: Si $m_{nn}=0$ entonces **PARAR**.

Algoritmo de Eliminación Gaussiana II

Correction
$$x_i = \frac{m_{i,n+1} - \sum_{j=i+1}^n m_{ij} x_j}{a_{ii}}$$
 Paso 10: Solución encontrada.

 $x = (x_1, x_2, \dots, x_n).$

PARAR

Algoritmo de Eliminación Gaussiana III

Análisis del algoritmo:

Siguiendo [1], las operaciones aritméticas aparecen en los pasos 5 y 6.

En el Paso 5 se realizan n-i divisiones.

En el Paso 6, para realizar la operación elemental $F_{ji}(f_{ji})$ se requiere que f_{ji} multiplique a cada elemento de E_i , lo que requiere de (n-i)(n-i+1) multiplicaciones. Posteriormente, restamos el valor resultante del correspondiente término de la fila E_j . Esto requiere de (n-i)(n-i+1) sustracciones. Para obtener el total, se suma los valores correspondientes para cada $i=1,2,\ldots,n-1$. Es decir:

1. Total de multiplicaciones/divisiones:

$$(n-i) + (n-i)(n-i+1) = (n-i)(n-i+2)$$

2. Total de sumas/restas:

$$(n-i)(n-i+1)$$

Algoritmo de Eliminación Gaussiana IV

El total de operaciones para los pasos 5 y 6 se obtiene al sumar para todo i, resultando para el total de multiplicaciones/divisiones:

$$\sum_{i=1}^{n-1} (n-i)(n-i+2) = \frac{2n^3 + 3n^2 - 5n}{6}$$

y el total de sumas/restas es:

$$\sum_{i=1}^{n-1} (n-i)(n-i+1) = \frac{n^3 - n}{3}.$$

Nos falta agregar las multiplicaciones/divisiones y sumas/restas que ocurren en los pasos 8 y 9(que corresponde a la sustitución regresiva). En el Paso 8 se realiza una división. En el Paso 9 se realiza (n-i) multiplicaciones y (n-i-1) sumas para término de la sumatoria, además de una sustracción y una división. Por tanto, el número total de operaciones que se realizan en los pasos 8 y 9 son:

Algoritmo de Eliminación Gaussiana V

1. Multiplicaciones/divisiones:

$$1 + \sum_{i=1}^{n-1} ((n-i) + 1) = \frac{n^2 + n}{2}.$$

2. Sumas/restas:

$$\sum_{i=1}^{n-1} ((n-i-1)+1) = \frac{n^2-n}{2}.$$

Ahora sumamos el número de multiplicaciones/divisiones y sumas/restas obtenidos para los pasos 5, 6, 8 y 9, resultando para las multiplicaciones/divisiones:

$$\frac{2n^3 + 3n^2 - 5n}{6} + \frac{n^2 + n}{2} = \underbrace{n^3}_{3} + n^2 - \frac{n}{3},$$

Algoritmo de Eliminación Gaussiana VI

y para las sumas/restas se obtiene:

$$\frac{n^3 - n}{3} + \frac{n^2 - n}{2} = \underbrace{\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}}.$$

observando así que para n grande se tiene que el número total de multiplicaciones/divisiones y sumas/restas es aproximadamente $\frac{n^3}{3}$.

Algoritmo de Eliminación Gaussiana VII

Así, la cantidad de cálculo y tiempo requerido crece según el valor de n proporcional a \underline{n}^3 según se muestra en la siguiente Tabla.

n	multiplicaciones/divisiones	sumas/restas
3	17	11
10	430	375
50	44 150	42 875
100	343 300	338 250

Ejemplo

¿Es posible usar el método de eliminación Gaussiana para el siguiente sistema lineal?

$$\begin{pmatrix} 2 & 2 & -1 & 3 & -1 \\ 2 & 2 & 3 & -4 & 1 \\ 1 & -1 & 1 & -2 & 1 \\ -1 & 8 & -2 & 3 & -1 \\ 3 & -2 & 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -9 \\ 11 \\ 5 \\ 0 \\ 7 \end{pmatrix}$$

Resolución

(A1)
$$\begin{vmatrix}
2 & 2 & -1 & 3 & -1 & -9 \\
0 & 0 & 4 & -7 & 2 & 20 \\
0 & 2 & \frac{3}{2} & -\frac{7}{2} & \frac{3}{2} & \frac{19}{2} \\
0 & 9 & -\frac{5}{2} & \frac{9}{2} & -\frac{3}{2} & \frac{9}{2} \\
0 & -5 & \frac{5}{2} & -\frac{15}{2} & \frac{7}{2} & \frac{41}{2}
\end{vmatrix}$$
(A2)
$$\begin{vmatrix}
4 & 2 & 1 & 3 & -1 & -9 \\
0 & -2 & \frac{3}{2} & -\frac{7}{2} & \frac{3}{2} & \frac{19}{2} \\
0 & 0 & 4 & -7 & 2 & 20 \\
0 & 0 & \frac{17}{4} & -\frac{45}{4} & \frac{21}{4} & \frac{153}{4} \\
0 & 0 & -\frac{5}{4} & \frac{5}{4} & -\frac{1}{4} & -\frac{13}{4}
\end{vmatrix}$$

Ejemplo

Considere el sistema lineal siguiente:

cuya solución exacta es x=2.00020002... e y=0.99979997... Halle la solución del sistema en un computador donde la aritmética en punto flotante usa 3 dígitos en la mantisa y redondeo.

Resolución:

La matriz aumentada del sistema viene dado por:

$$M = \begin{pmatrix} 0.100 \times 10^{-3} & 0.100 \times 10^{1} & 0.100 \times 10^{1} \\ 0.100 \times 10^{1} & 0.100 \times 10^{1} & 0.300 \times 10^{1} \end{pmatrix}$$

Realizamos la operación elemental:

$$F_2 \leftarrow F_2 - \left(\frac{1}{0.1 \times 10^{-3}}\right) F_1$$

es decir:

A. Ramírez (UNI)

$$m_{21} = 0.1 \times 10^{1} + \left(-\frac{0.1 \times 10^{-3}}{0.1 \times 10^{-3}}\right)$$
 $= 0.1 \times 10^{1} - 1 = 0$
 $m_{22} = 0.1 \times 10^{1} + \left(-\frac{0.1 \times 10^{1}}{0.1 \times 10^{-3}}\right)$ $= 0.1 \times 10^{1} - 10^{4}$
 $= 0.1 \times 10^{1} - 0.1 \times 10^{5}$ (expresando en punto flotante)
 $= 0.00001 \times 10^{5} - 0.1 \times 10^{5}$ (igualando exponentes)
 $= (0.00001 - 0.1) \times 10^{5}$ (restando mantisas)
 $= -0.00999 \times 10^{5} = -0.9999 \times 10^{4}$ (expresando en punto flotante)
 $= -1.000 \times 10^{4}$ (redondeo al tercer dígito)
 $= 0.3 \times 10^{1} - 0.1 \times 10^{5}$ (expresando en punto flotante)
 $= 0.3 \times 10^{1} - 0.1 \times 10^{5}$ (expresando en punto flotante)
 $= 0.00003 \times 10^{5} - 0.1 \times 10^{5}$ (igualando exponentes)
 $= (0.00003 - 0.1) \times 10^{5}$ (restando mantisas)

Sistema de ecuaciones lineales

5 de octubre de 2022

Por lo que la matriz aumentada ${\cal M}$ queda de la forma siguiente:

$$M = \begin{pmatrix} 10^{-4} & 1 & 1 \\ 0 & -10^4 & -10^4 \end{pmatrix}$$

Por tanto, el sistema resultante es:

$$\left(\begin{array}{cc} 10^{-4} & 1\\ 0 & -10^4 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 1\\ -10^4 \end{array}\right)$$

aplicamos ahora el Algoritmo 1 al sistema anterior, resulta:

$$i = 2: \quad x_2 = \frac{b_2}{u_{22}}$$
 $= \frac{-10^4}{-10^4} = 1$

$$i = 1:$$
 $x_1 = \frac{b_1 - \sum_{j=2}^{2} u_{2j} x_j}{u_{11}} = \frac{1-1}{10^{-4}} = 0$

obteniendo la solución x = (0, 1).

Método de Gauss-Jordan

Este método se describe como sigue: Use la i-ésima ecuación para eliminar no eliminar únicamente x_i de las ecuaciones $E_{i+1}, E_{i+2}, \ldots, E_n$ como fue realizado en la eliminación gaussiana, sino también de las ecuaciones $E_1, E_2, \ldots, E_{i-1}$. De esta forma resulta una matriz de la forma siguiente:

$$\begin{pmatrix} m_{11}^{(1)} & 0 & \dots & 0 & m_{1,n+1} \\ 0 & m_{22}^{(2)} & \ddots & \vdots & m_{2,n+1}^{(2)} \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & m_{nn}^{(n)} & m_{n,n+1}^{(n)} \end{pmatrix}$$

así la solución del sistema se obtiene como:

$$x_i = \frac{m_{i,n+1}^{(i)}}{a_{ii}^{(i)}}.$$

Pivoteo parcial

Los inconvenientes observados en el Ejemplo 2 y Ejemplo 3 pueden ser superados si consideramos la siguiente variación al método de eliminación gaussiana.

Dada la matriz aumentada M del sistema lineal Ax=b, definimos la matriz $M^{(1)}=M$ y los elementos de $M^{(1)}$ son denotados por $m^{(1)}_{ij}$. Ahora se localiza la fila i_1 tal que en $m^{(1)}_{i_11}$ se obtiene $\max_{1 \le i \le n} |m_{i1}|$. Realizamos operaciones elementales para obtener una matriz de la forma:

$$\left(\begin{array}{c|cccc}
m_{i_11}^{(1)} & m_{i_12}^{(1)} & \dots & m_{i_1n}^{(1)} \\
\hline
0_{n-1,1} & & M^{(2)}
\end{array}\right)$$

donde $0_{n-1,1} \in \mathbb{R}^{(n-1)\times 1}$ y $M^{(2)} \in \mathbb{R}^{(n-1)\times (n-1)}$.

Pivoteo parcial (cont.)

Repetimos el proceso, es decir, se localiza la fila i_2 tal que en $m_{i_21}^{(2)}$ se obtiene $\max_{1 \le i \le n-1} |m_{i_1}^{(2)}|$. Realizamos operaciones elementales para obtener una matriz de la forma:

$$\begin{pmatrix}
m_{i_11}^{(1)} & m_{i_12}^{(1)} & \dots & m_{i_1n}^{(1)} \\
0 & m_{i_22}^{(2)} & \dots & m_{i_2n}^{(2)} \\
\hline
0_{n-2,1} & 0_{n-2,1} & M^{(3)}
\end{pmatrix}$$

donde $0_{n-2,1} \in \mathbb{R}^{(n-2)\times 1}$ y $M^{(3)} \in \mathbb{R}^{(n-2)\times (n-2)}$.

Se repite este proceso hasta que se obtiene una matriz triangular superior y se procede a resolver usando sustitución regresiva.

Ejemplo 1

Se explica este método usando el Ejemplo 2 cuya matriz aumentada es:

$$M = (A \mid b) = \begin{pmatrix} 2 & 2 & -1 & 3 & -1 & -9 \\ 2 & 2 & 3 & -4 & 1 & 11 \\ 1 & -1 & 1 & -2 & 1 & 5 \\ -1 & 8 & -2 & 3 & -1 & 0 \\ 3 & -2 & 1 & -3 & 2 & 7 \end{pmatrix}$$

El máximo en valor absoluto de la primera columna de M es $m_{51}=3$. Por tanto, realizamos la operación elemental F_{15} :

$$M = \begin{pmatrix} 3 & -2 & 1 & -3 & 2 & 7 \\ 2 & 2 & 3 & -4 & 1 & 11 \\ 1 & -1 & 1 & -2 & 1 & 5 \\ -1 & 8 & -2 & 3 & -1 & 0 \\ 2 & 2 & -1 & 3 & -1 & -9 \end{pmatrix}$$

Con las operaciones elementales: $F_{21}(-2/3), F_{31}(-1/3), F_{41}(1/3), F_{51}(-2/3)$ resulta:

$$M = \begin{pmatrix} 3 & -2 & 1 & -3 & 2 & 7 \\ 0 & 10 & 7 & -2 & -\frac{1}{3} & \frac{19}{3} \\ 0 & -\frac{1}{3} & \frac{2}{3} & -1 & \frac{1}{3} & \frac{8}{3} \\ 0 & 22 & -\frac{5}{3} & 2 & -\frac{1}{3} & \frac{7}{3} \\ 0 & \frac{10}{3} & -\frac{5}{3} & 5 & -\frac{7}{3} & -\frac{41}{3} \end{pmatrix}$$

El máximo en valor absoluto de la primera columna de $M^{(2)}$ es $m_{42}=\frac{22}{3}$. Con las operaciones elementales: $F_{24},F_{32}(1/22),F_{42}(-10/22),F_{52}(-10/22)$ resulta:

$$M = \begin{pmatrix} 3 & -2 & 1 & -3 & 2 & 7 \\ 0 & \frac{22}{3} & -\frac{5}{3} & 2 & -\frac{1}{3} & \frac{7}{3} \\ 0 & 0 & \frac{13}{22} & -\frac{10}{11} & \frac{7}{22} & \frac{61}{22} \\ 0 & 0 & \frac{34}{11} & -\frac{32}{11} & -\frac{2}{11} & \frac{58}{11} \\ 0 & 0 & -\frac{10}{11} & \frac{45}{11} & -\frac{24}{11} & -\frac{162}{11} \end{pmatrix}$$

El máximo en valor absoluto de la primera columna de $M^{(3)}$ es $m_{43}=\frac{34}{11}$. Con las operaciones elementales: F_{34} , $F_{43}(-13/68)$, $F_{53}(10/34)$ resulta:

$$M = \begin{pmatrix} 3 & -2 & 1 & -3 & 2 & 7 \\ 0 & \frac{22}{3} & -\frac{5}{3} & 2 & -\frac{1}{3} & \frac{7}{3} \\ 0 & 0 & \frac{34}{11} & -\frac{32}{11} & -\frac{2}{11} & \frac{58}{11} \\ 0 & 0 & 0 & -\frac{6}{17} & \frac{6}{17} & \frac{30}{17} \\ 0 & 0 & 0 & \frac{55}{17} & -\frac{38}{17} & -\frac{224}{17} \end{pmatrix}$$

El máximo en valor absoluto de la primera columna de $M^{(4)}$ es $m_{54}=\frac{55}{17}$. Con las operaciones elementales $F_{45}, F_{54}(6/55)$ resulta:

$$M = \begin{pmatrix} 3 & -2 & 1 & -3 & 2 & 7 \\ 0 & \frac{22}{3} & -\frac{5}{3} & 2 & -\frac{1}{3} & \frac{7}{3} \\ 0 & 0 & \frac{34}{11} & -\frac{32}{11} & -\frac{2}{11} & \frac{58}{11} \\ 0 & 0 & 0 & \frac{55}{17} & -\frac{38}{17} & -\frac{224}{17} \\ 0 & 0 & 0 & 0 & \frac{6}{55} & \frac{18}{55} \end{pmatrix}$$

aplicamos ahora el Algoritmo 1 al sistema anterior, resulta:

$$i = 5: \quad x_5 = \frac{b_5}{u_{55}} = 3$$

$$i = 4: \quad x_4 = \frac{b_4 - \sum_{j=5}^5 u_{4j} x_j}{u_{44}} = -2$$

$$i = 3: \quad x_3 = \frac{b_3 - \sum_{j=4}^5 u_{3j} x_j}{u_{33}} = 0$$

obteniendo la solución x = (-1, 1, 0, -2, 3).

$$i = 2: \quad x_2 = \frac{b_2 - \sum_{j=3}^{5} u_{2j} x_j}{u_{22}} = 1$$

$$i = 1: \quad x_1 = \frac{b_1 - \sum_{j=2}^{5} u_{1j} x_j}{u_{11}} = -1$$

A. Ramírez (UNI) Sistema de ecuaciones lineales 5 de octubre de 2022

Algoritmo 2: Proceso de pivoteo parcial

```
Entrada: Ingresar una matriz A \in \mathbb{R}^{n \times n}.
```

```
1 inicio
```

para $j \leftarrow 1$ a n hacer $maxc \leftarrow |A_{ij}|;$

8

6

para $i \leftarrow j+1$ a n hacer

si $|A_{ij}| > maxc$ entonces

 $maxc \leftarrow |A_{ij}|;$ fin para

Intercambiar las filas i v p:

para $i \leftarrow j + 1$ a n hacer Haciendo ceros los elementos de cada fila i en la columna j para $k \leftarrow 1$ a n hacer

 $A_{ik} \leftarrow A_{ik} - A_{ij} \left(\frac{A_{jk}}{A_{ij}} \right)$

fin para

fin para

devolver Matriz triangular superior U v vector b7 fin

fin para

Pivoteo total

Definición

Dada una matriz $A \in \mathbb{R}^{n \times n}$, definimos como operaciones elementales columna para la matriz A a cualquiera de las siguientes operaciones:

- 1. Intercambiar la columna i con la columna j, denotado por C_{ij} .
- 2. Asignar a la columna i la misma columna i pero multiplicada por un número no nulo λ . Esto es denotado por $C_i(\lambda)$.
- 3. Asignar a la columna i la misma columna i y sumándole λ veces la columna j donde $\lambda \neq 0$. Esto es denotado por $C_{ij}(\lambda)$.

Ejemplo

Resolución

A. Ramírez (UNI) 5 de octubre de 2022 Sistema de ecuaciones lineales

Pivoteo total (cont.)

Dada la matriz aumentada M del sistema lineal Ax=b, definimos la matriz $M^{(1)}=M$ y los elementos de $M^{(1)}$ son denotados por $m^{(1)}_{ij}$. Ahora se localiza la fila i_1 y columna j_1 tal que en $m^{(1)}_{i_1j_1}$ se obtiene $\max_{1\leq i,j\leq n}|m_{ij}|$. Realizamos operaciones elementales filas y columnas para obtener una matriz de la forma:

$$\left(\begin{array}{c|cccc}
m_{i_1j_1}^{(1)} & * & \dots & * \\
\hline
0_{n-1,1} & & M^{(2)}
\end{array}\right)$$

donde $0_{n-1,1} \in \mathbb{R}^{(n-1) \times 1}$ y $M^{(2)} \in \mathbb{R}^{(n-1) \times (n-1)}$.

Pivoteo total (cont.)

Repetimos el proceso, es decir, se localiza la fila i_2 y columna j_2 tal que en $m_{i_2j_2}^{(2)}$ se obtiene $\max_{1 \le i,j \le n-1} |m_{ij}^{(2)}|$. Realizamos operaciones elementales para obtener una matriz de la forma:

$$\begin{pmatrix}
m_{i_1j_1}^{(1)} & * & \dots & * \\
0 & m_{i_2j_2}^{(2)} & \dots & * \\
\hline
0_{n-2,1} & 0_{n-2,1} & M^{(3)}
\end{pmatrix}$$

donde $0_{n-2,1} \in \mathbb{R}^{(n-2) \times 1}$ y $M^{(3)} \in \mathbb{R}^{(n-2) \times (n-2)}$.

Se repite este proceso hasta que se obtiene una matriz triangular superior y se procede a resolver usando sustitución regresiva.

Ejemplo 2

Consideremos el sistema del Ejemplo 2 cuya matriz aumentada es dada por:

$$M = (A \mid b) = \begin{pmatrix} 2 & 2 & -1 & 3 & -1 & -9 \\ 2 & 3 & -4 & 1 & 11 \\ 1 & -1 & 1 & -2 & 1 & 5 \\ -1 & 8 & -2 & 3 & -1 & 0 \\ 3 & -2 & 1 & -3 & 2 & 7 \end{pmatrix}$$

Resolución:

Primero, denotemos por Ind el vector de índices de las variables $x_i \, (i=1,2,3,4,5)$, es decir:

Tener en cuenta, cuando realizamos una operación elemental columna, entonces cambia el orden de los elementos del vector Ind.

El máximo elemento de A_1 en valor absoluto es dado por $m_{42}=8$. Por tanto, realizamos las operaciones elementales:

$$F_1 \leftrightarrow F_4, C_1 \leftrightarrow C_2,$$

luego:

$$Ind = (\ \ 2 \ \ \, 1 \quad 3 \quad 4 \quad 5 \),$$

$$M = \begin{pmatrix} 8 & -1 & -2 & 3 & -1 & 0 \\ 2 & 3 & -4 & 1 & 11 \\ -1 & 1 & 1 & -2 & 1 & 5 \\ 2 & -1 & 3 & -1 & -9 \\ -2 & 3 & 1 & -3 & 2 & 7 \end{pmatrix}$$

Ahora hacemos cero los elementos m_{i1} (i=2,3,4,5) mediante las operaciones elementales:

$$F_{2} \leftarrow F_{2} + \left(-\frac{2}{8}\right) F_{1},$$

$$F_{3} \leftarrow F_{3} + \left(\frac{1}{8}\right) F_{1},$$

$$F_{4} \leftarrow F_{4} + \left(-\frac{2}{8}\right) F_{1},$$

$$F_{5} \leftarrow F_{5} + \left(\frac{2}{8}\right) F_{1},$$

resultando:

$$M = \begin{pmatrix} 8 & -1 & -2 & 3 & -1 & 0 \\ 0 & \frac{9}{4} & \frac{7}{2} & -\frac{19}{4} & \frac{5}{4} & 11 \\ 0 & \frac{7}{8} & \frac{3}{4} & -\frac{13}{8} & \frac{7}{8} & 5 \\ 0 & \frac{9}{4} & -\frac{1}{2} & \frac{9}{4} & -\frac{3}{4} & -9 \\ 0 & \frac{11}{4} & \frac{1}{2} & -\frac{9}{4} & \frac{7}{4} & 7 \end{pmatrix}$$

El máximo elemento de A_2 en valor absoluto es dado por $m_{24}=-rac{19}{^4}.$ Por tanto, realizamos las operaciones elementales: $C_2 \leftrightarrow C_4$, luego:

$$Ind = \begin{pmatrix} 2 & 4 & 3 & 1 & 5 \end{pmatrix},$$

$$\begin{pmatrix} 8 & 3 & -2 & -1 & -1 & 0 \\ 0 & \boxed{-\frac{19}{4}} & \frac{7}{2} & \frac{9}{4} & \frac{5}{4} & 11 \\ 0 & \boxed{-\frac{13}{8}} & \frac{3}{4} & \frac{7}{8} & \frac{7}{8} & 5 \\ 0 & \frac{9}{4} & \boxed{-\frac{1}{2}} & \frac{9}{4} & \boxed{-\frac{3}{4}} & -9 \\ 0 & \boxed{-\frac{9}{4}} & \frac{1}{2} & \frac{11}{4} & \frac{7}{4} & 7 \end{pmatrix}$$

Ahora hacemos cero los elementos m_{i2} (i=3,4,5) mediante las operaciones elementales:

$$F_3 \leftarrow F_3 + \left(-\frac{13}{38}\right) F_2,$$

$$F_4 \leftarrow F_4 + \left(\frac{9}{19}\right) F_2,$$

$$F_5 \leftarrow F_5 + \left(-\frac{9}{19}\right) F_2,$$

resultando:

$$M = \begin{pmatrix} 8 & 3 & -2 & -1 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{7}{2} & \frac{9}{4} & \frac{5}{4} & 11 \\ 0 & 0 & -\frac{17}{38} & \frac{2}{19} & \frac{17}{38} & \frac{47}{38} \\ 0 & 0 & \frac{22}{19} & \frac{63}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & -\frac{22}{19} & \frac{32}{19} & \frac{22}{19} & \frac{34}{19} \end{pmatrix}$$

El máximo elemento de A_3 en valor absoluto es dado por $m_{44}=\frac{63}{19}.$

Por tanto, realizamos las operaciones elementales: $F_3 \leftrightarrow F_4$, $C_3 \leftrightarrow C_4$, luego:

$$Ind = (2 \ 4 \ 1 \ 3 \ 5),$$

$$M = \begin{pmatrix} 8 & 3 & -1 & -2 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{9}{4} & \frac{7}{2} & \frac{5}{4} & 11 \\ 0 & 0 & \frac{63}{19} & \frac{22}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & \frac{2}{19} & -\frac{17}{38} & \frac{17}{38} & \frac{47}{38} \\ 0 & 0 & \frac{32}{19} & -\frac{22}{19} & \frac{22}{19} & \frac{34}{19} \end{pmatrix}$$

Ahora hacemos cero los elementos $m_{i3} \, (i=4,5)$ mediante las operaciones elementales:

$$F_4 \leftarrow F_4 + \left(-\frac{2}{63}\right) F_3,$$

$$F_5 \leftarrow F_5 + \left(-\frac{32}{63}\right) F_3,$$

resultando:

$$M = \begin{pmatrix} 8 & 3 & -1 & -2 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{9}{4} & \frac{7}{2} & \frac{5}{4} & 11 \\ 0 & 0 & \frac{63}{19} & \frac{22}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & 0 & -\frac{61}{126} & \frac{19}{42} & \frac{19}{14} \\ 0 & 0 & 0 & -\frac{110}{63} & \frac{26}{21} & \frac{26}{7} \end{pmatrix}$$

El máximo elemento de A_4 en valor absoluto es dado por $m_{54}=-\frac{110}{63}.$

Por tanto, realizamos las operaciones elementales:

$$F_4 \leftrightarrow F_5$$
,

luego:

$$M = \begin{pmatrix} 8 & 3 & -1 & -2 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{9}{4} & \frac{7}{2} & \frac{5}{4} & 11 \\ 0 & 0 & \frac{63}{19} & \frac{22}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & 0 & -\frac{110}{63} & \frac{26}{21} & \frac{26}{7} \\ 0 & 0 & 0 & -\frac{61}{126} & \frac{19}{42} & \frac{19}{14} \end{pmatrix}$$

Ahora hacemos cero los elementos m_{i4} (i=5) mediante las operaciones elementales:

$$F_5 \leftarrow F_5 + \left(-\frac{61}{220}\right) F_4,$$

resultando el vector de índices de las variables:

$$Ind = (2 \ 4 \ 1 \ 3 \ 5),$$

y la matriz aumentada queda:

$$M = \begin{pmatrix} 8 & 3 & -1 & -2 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{9}{4} & \frac{7}{2} & \frac{5}{4} & 11 \\ 0 & 0 & \frac{63}{19} & \frac{22}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & 0 & -\frac{110}{63} & \frac{26}{21} & \frac{26}{7} \\ 0 & 0 & 0 & 0 & \frac{6}{55} & \frac{18}{55} \end{pmatrix}$$

aplicamos ahora el Algoritmo 1 al sistema anterior, resulta:

$$i = 5: \quad x_{Ind(5)} = \frac{b_5}{u_{55}}$$

$$= 3 \quad \Rightarrow \quad x_5 = 3$$

$$i = 4: \quad x_{Ind(4)} = \frac{b_4 - \sum_{j=5}^5 u_{4j} x_{Ind(j)}}{u_{44}} = 0 \quad \Rightarrow \quad x_3 = 0$$

$$i = 3: \quad x_{Ind(3)} = \frac{b_3 - \sum_{j=4}^5 u_{3j} x_{Ind(j)}}{u_{33}} = -1 \quad \Rightarrow \quad x_1 = -1$$

$$i = 2: \quad x_{Ind(2)} = \frac{b_2 - \sum_{j=3}^{5} u_{2j} x_{Ind(j)}}{u_{22}} = -2 \quad \Rightarrow \quad x_4 = -2$$

$$i = 1: \quad x_{Ind(1)} = \frac{b_1 - \sum_{j=2}^{5} u_{1j} x_{Ind(j)}}{u_{11}} = 1 \quad \Rightarrow \quad x_2 = 1$$

obteniendo la solución x = (-1, 1, 0, -2, 3).

Bibliografía

R. L. Burden, J. D. Faires, R. Iriarte Balderrama, et al., Análisis numérico. 1996.

Otras referencias

- Numerical Analysis: Mathematics of Scientific Computing, Third Edition David Kincaid: University of Texas at Austin, Austin, TX, Ward Cheney.
- Numerical Methods Using Matlab, 4th Edition John H. Mathews, California State University, Fullerton, Kurtis K. Fink, Northwest Missouri State University
- Numerical Lineal Algebra. Lloyd N. Trefethen and David Bau, III xii+361 pages. SIAM, 1997
- Elementary Numerical Analysis, 3rd Edition Kendall Atkinson, Weimin Han

Factorización LU $A \times = b$ det(A) = 0 Supongamon que existen L, U tq: A = L U Reemplazando en el sistema: AX=b (LO)X = bL(Ux) = 6 Debemos resolver: Ly = 6 [Progres iva] Luego se resuelve: UX = y [Rofitución] @ ¿ Coóndo exsten L, U ta A=LU? 2 à Cômo calculer L, U? Para la progenta 1: $A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$ Observe: det(A) = -2 +0 3À es invertible CEL, U + A= LU? $\begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} \lambda_{11} & 0 \\ \lambda_{21} & \lambda_{22} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{pmatrix}$ 0= 111 U11 $1 = l_{11} U_{12} \qquad (\rightarrow \leftarrow)$ $2 = l_{21} U_{11} \qquad \stackrel{\circ}{\Rightarrow} \neq L, 0$ $3 = l_{21} U_{12} + l_{22} U_{22} \qquad A = L$ 00 ≠ L,U tq ALLU

2 2 como calcular LU?

 $a_{ij} = \lambda_{ij} u_{ij}$

a12 = 111 U12

an = lu un

Elegimo 111 #0 = Se calella Uj (i=1,-, n)

azz = 121 U11 azz = 121 U12 + 122 U22

agn = lu un + lu un

Elegmo lez to Se calcula: uej' j' = 2, ..., n

Se repite el proceso pera cada fila eligiendo lii to (i=1, --,n)

Este método es llamado Método de Doolstle.