Review Problem 13

❖ Write assembly to compute X1 = X0*5 without using a multiply or divide instruction.

Computer Performance

Primary goal: execution time (time from program start to program completion)

$$Performance = \frac{1}{ExecutionTime}$$

To compare machines, we say "X is n times faster than Y"

$$n = \frac{Performance_x}{Performance_y} \frac{ExecutionTime_y}{ExecutionTime_x}$$

Example: Machine Orange and Grape run a program Orange takes 5 seconds, Grape takes 10 seconds

Orange is $\frac{2\times}{}$ times faster than Grape

Execution Time

Elapsed Time

CPU time a useful number, but often not good for comparison purposes counts everything (disk and memory accesses, I/O, etc.)

doesn't count I/O or time spent running other programs can be broken up into system time, and user time

Example: Unix "time" command

linux15.ee.washington.edu> time javac CircuitViewer.java

Our focus: user CPU time

time spent executing the lines of code that are "in" our program

CPU execution time for a program

Application example:

A program takes 10 seconds on computer Orange, with a 400MHz clock.

to run the program in 6 second, how fast must the clock rate be? rate, but it will require 1.2 times as many clock cycles. If we want to be able Our design team is developing a machine Grape with a much higher clock

How do the # of instructions in a program relate to the execution time?

CPU clock cycles for a program

for a program Instructions

||

Cycles per Instruction Average Clock (CPI)

CPU execution time for a program

for a program Instructions

×

Clock rate

CPI Example

Suppose we have two implementations of the same instruction set (ISA).

For some program

Machine B has a clock cycle time of 20 ns. and a CPI of 1.2 Machine A has a clock cycle time of 10 ns. and a CPI of 2.0

What machine is faster for this program, and by how much?

Computing CPI

Different types of instructions can take very different amounts of cycles Memory accesses, integer math, floating point, control flow

$$CPI = \sum_{types} (Cycles_{type} * Frequency_{type})$$

	Branch	Store	Load	ALU	Instruction Type
	2	ယ	57		Type Cycles
	*	\	X	X	
∑ CPI:	20%	10%	20%	50%	Type Frequency
N		decimal school s		• ,	0
7,2	0.4	0.3	0.1	5.0	Cycles * Freq

Perford Execuse matina x CPI han x Bridge 2:2 CPI & Processor Tradeoffs

insuration type type cycles type Frequency
ALU 1 50%
Load 5 20%
Store 3 10%
Branch 2 20%

How much faster would the machine be if:

1. A data cache reduced the average load time to 2 cycles? $\frac{2.2}{(1 \times 0.5 + 2 \times 0.2 + 3 \times 0.1 + 2 \times 0.2)} = \frac{2.2}{.5 + .4 + .3 + .4} =$ 2.2 = 1.375×

2. Branch prediction shaved a cycle off the branch time?
$$\frac{2.2}{2.2} \left(1 \times 0.5 + 5 \times 6.2 + 3 \times 0.1 + 1 \times 0.2 \right) = 0.5 + 1.0 + 0.3 + 0.2 = 1.0 + 0.5 + 0.2 = 1.0 + 0.5 + 0.2 = 1.0 + 0.5 + 0.2 = 1.0 + 0.5 + 0.2 = 1.0 + 0.5 + 0.2 = 1.0 + 0.5 + 0.2 = 1.0 + 0.5 + 0.2 = 1.0 + 0.5 + 0.2 = 1.0 + 0.5 + 0.2 = 1.0 + 0.5 + 0.5 + 0.2 = 1.0 + 0.5 + 0.5 + 0.2 = 1.0 + 0.5 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5 + 0.5 = 1.0 + 0.5$$

3. Two ALU instructions could be executed at once? /(0.5x0.5 +5x0.2 +3x0.1+ 2x0.2) =-0.25+1.0+0.3+0.4 1.95

Warning 1: Amdahl's Law

The impact of a performance improvement is limited by what is NOT improved:

after improvement Execution time || Execution time of unaffected Execution time affected *

Amount of improvement

Example: Assume a program runs in 100 seconds on a machine, with multiply multiply to make the program run 4 times faster? responsible for 80 seconds of this time. How much do we have to speed up

100 = 20 + 80 × impose 25 = 20 + 80/inpose 5 = 80/inpose ipase= 50=16x

100 = 20 # inpace 5 times faster?

Warning 2: BIPs, GHz ≠ Performance

Higher MHz (clock rate) doesn't always mean better CPU Orange computer: (1000 MHz, CPI: 2.5)1 billion instruction program

Grape computer: 500MHZ, CPI: 1.1,71 billion instruction program

Higher MIPs (million instructions per second) doesn't always mean better CPU 1 GHz machine, with two different compilers

Compiler A on program X: 10 Billion ALU, 1 Billion Load

Compiler B on program X: 5 Billion ALU, 1Billion Load

A: 10x1 + 1xS = 15 Sec B: 5x1 + 1xS = 10 Sec B: 5x1 + 1xS = 10 Sec B: 5x1 + 1xS = 10 Sec B: $\frac{6B}{10}$ B: $\frac{6B}{10}$

\$IPS: A 7 33 B 600

Branch	Store	Load	ALU	Instruction Type
2	ယ	(J)		Type Cycles