Basic Linear Regression

Richard A. Reitmeyer August 2016

Objectives

- Participants should be able to:
 - Create a basic linear regression in R
 - Compare models
 - Evolve simple models into more sophisticated ones by hand
 - Explain the basic linear algebra behind linear regression

Topics

- "Doing" data science
- Linear models
- Linear algebra
- Model matrix
- Titanic, in gory detail

Why is it called data "science"

- Our goal is data "science"
- Extract knowledge or inference from data
 - Easier than ever: Computers + Data
- Want to be able to predict things
 - Or classify things
 - Or infer cause (A/B testing)
- Goal: a model that lets us predict a response from features

"Doing" Data Science, simplified

- Start with a question
- Look at the data
- Build a simple model, with a simple modeling technique
- Extend the model

"Doing" Data Science, simplified

- Start with a question
- Look at the data

- These slides talk about one modeling technique and will only touch on other topics
- Build a simple model, with a simple modeling technique
- Extend the model

Linear (Least Squares) Regression

- THE classic technique of data analysis
 - Used by Gauss around 1800 to predict Ceres' orbit
 - May go back a bit further to Legendre
 - Proven "optimal" by Gauss in early 1820s
- Requirements
 - Errors are Independent and Identically Distributed (IID)
 - Errors have zero mean
 - Errors are "homoscedastic" independent of the value of prediction terms
 - Errors are normally distributed
- Assumption: prediction terms are known exactly

Sample Problems

- Titanic: predict who lived / died
 - Given training data of ~700 passengers, predict survival of another ~200
- Property Values
- School Performance

Theory

- All "science" starts with a question, and a theory about that question
- Your plausible theory could be implausible to me:
 - Men are stronger and better swimmers, so men have better odds than women
 - Edwardian era notions of stoic manliness and women's need of protection mean special treatment for women, so women have better odds
 - Women have more body fat, and so should survive better in cold water
- Data can eliminate testable theories that are "bad"

How confident?

- Before acting on a prediction, want to be know how confident we should be in it
 - How strongly should we act on the prediction?
- Use statistics to estimate likelihood
 - 95% likely: Academic, small sample benchmark
 - 99% likely, 99.9% likely: larger data sets, more need for certainty
- Won't cover model validation tonight, but it's an important topic

95% Confidence

WE FOUND NO

LINK BETWEEN

SALMON JELLY

BEANS AND ACNE

(P>0.05)

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05)

GREY JELLY

https://xkcd.com/882/

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05)

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05)

TAN JELLY

RED JELLY

WE FOUND NO

LINK BETWEEN

TURQUOISE JELLY

BEANS AND ACNE

(P>0.05)

WE FOUND NO

LINK BETWEEN

CYAN JELLY

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

(P>0.05).

PEACH JEILY

WE FOUND NO

LINK BETWEEN

MAGENTA JELLY

BEANS AND ACNE

(P>0.05)

WE FOUND NO

LINK BETWEEN

YELLOW JELLY

(P>0.05)

BEANS AND ACNE

WE FOUND NO

I INK BETWEEN

WE FOUND NO

LINK BETWEEN

95% Confidence

https://xkcd.com/882/

Linear Models

- A linear model is one where the response is related to the predictors in strictly additive way
 - Remember algebraic geometry: y = m*x + b?
- Linear model is y = b0 + b1*x1 + b2*x2 + ... + bn*xn + e
 - y is response, the thing to predict
 - x is a predictor term, a known feature or something derived from a feature (or features)
 - b is a coefficient
 - e is error --- must be gaussian, IID!

Simple or Complex

- Linear models can be almost as simple or complex as you like:
 - Dinner_bill = baseline_taxi_fare + avg_food_cost*diners + avg_beer_cost*drinkers
 - Mpg = baseline + $b1*(1/weight)+b2*(1/weight^2) + b3*(1/horsepower)$
 - Home_price = baseline + b1*sqft + b2*neighborhood + b3*sqft:neighborhood
- Counterexample:
 - $mpg = baseline + (1/hp)^b1$
- There are also extensions to linear models ("generalized") to handle some non-gaussian distributions, used for classification, but we'll ignore those in this talk.

Three Minutes of Linear Algebra

Way to write, work with, and solve large number of large linear equations

$$4*b1 + 3*b2 + 5*b3 + 1*b4$$

$$9*b1 + 1*b2 + 3*b3 + 6*b4$$

$$2*b1 + 2*b2 + 2*b3 + 2*b4$$

$$7*b1 + 7*b2 + 1*b3 + 1*b4$$
15
20

4	3	5	1
9	1	3	6
2	2	2	2
7	7	1	1

b1		15
b2	=	12
b3	_	20
b4		34

$$X b = y$$

Three Minutes of Linear Algebra

- Addition: S = A + B, element Sij is Aij + Bij
- Multiplication: P = A B, Pij is sum over all m of Aim * Bmj. Note A B != B A (not commutative)!
- There is a "transpose" operation, written A' or x', that swaps rows and columns:

4	3	5	1		4	9	2	7
9	1	3	6	=	3	1	2	7
2	2	2	2	_	5	3	2	1
7	7	1	1		1	6	2	1

Three Minutes of Linear Algebra

- Identity matrix: has 1s on the top-left/bottom right diagonal and zeros elsewhere
 - When anything is multiplied by identity, either side, get same matrix
- "Inverse" operation: defined as producing the matrix such that multiplying a matrix by its inverse (on either side) yields the identity matrix.
 - Similar to how the ordinary algebraic multiplicative inverse of n is 1/n, so 1/n*n = 1 and n*1/n = 1
 - Only square matrix can have inverse
 - Even square matrix can sometimes have no inverse ("ill-conditioned"), but "most" do have one

What is a Linear Fit?

Reminder: What is Minimized?

- residuals: actual predicted
- errors: predicted actual

Quality Metrics

- Many measures for "goodness" of a model
 - Might be a good topic for a lecture of its own
- Some important ones:

name	range	meaning
R^2	01	Explained variance, 0=bad, 1=perfect, so models with bigger R^2 better.
P	> 0	Probability model (or coefficient) is worthless, so models (coefficients) with smaller P better
confidence interval	N/A	Coefficient is likely to fall in this range
AIC/BIC	> 0	"Information loss" when comparing models, smaller better