Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

 (Currently Amended) A magnetic alignment apparatus for aligning a shaft of a scraped-surface heat exchanger, comprising:

a stator having a plurality of electromagnetic elements;

a rotor attached to athe shaft, the rotor rotating within the stator, and defining an inner cavity through which food product flows, and comprising,

an end member,

a first annular member proximate the end member, and

a second annular member proximate the first annular member,

wherein the inner cavity extends through the first and second annular members;

a sensor for detecting a position of the rotor; and

a control circuit in communication with the sensor and the electromagnetic elements, wherein the control circuit monitors the position of the rotor with data from the sensor and changes a state of one or more electromagnetic elements to adjust the rotor position.

- (Original) The apparatus of claim 1, wherein the stator includes eight electromagnetic elements.
- (Currently Amended) The apparatus of claim 1, wherein the stator includes a pair of electromagnetic elements.
- (Original) The apparatus of claim 3, wherein the pair includes two adjacent electromagnetic elements.

- (Original) The apparatus of claim 1, wherein the pair includes two nonadjacent electromagnetic elements.
- (Original) The apparatus of claim 1, wherein the state of the one or more electromagnetic elements is changed periodically.
- (Original) The apparatus of claim 1, wherein the state of the one or more electromagnetic elements is changed non-periodically.
- (Original) The apparatus of claim 1, wherein the plurality of electromagnetic elements comprises a plurality of solenoids.
- (Original) The apparatus of claim 1, wherein the stator has a generally cylindrical shape.
 - 10. (Original) The apparatus of claim 1, wherein the stator has a conical shape.
- (Original) The apparatus of claim 1, wherein an outer surface of the rotor can be magnetized with different polarities.
- (Original) The apparatus of claim 1, wherein the rotor comprises a magnetizable stainless steel rotor.
- (Original) The apparatus of claim 1, wherein the rotor can be permanently magnetized.
- (Original) The system of claim 1, wherein the rotor can be temporarily magnetized.

(Cancelled)

- 16. (Currently Amended) The apparatus of claim I[[5]], wherein a food product exits the rotor through an aperture defined between the end member and the first annular member.
- 17. (Currently Amended) The apparatus of claim I[[5]], wherein the food product exits the rotor through an aperture defined between the first and second annular members.
- (Currently Amended) The apparatus of claim 1[[5]], further comprising a third annular member proximate the second annular member.
- (Original) The apparatus of claim 18, wherein the food product exits the rotor through an aperture defined between the second and third annular members.
- (Currently Amended) The apparatus of claim 1[[5]], the end member comprising a conical end member.
 - 21. (Original) The apparatus of claim 1, wherein the rotor is generally cylindrical.
 - 22. (Original) The apparatus of claim 1, wherein the rotor has a conical shape.
 - 23-33. (Cancelled)
 - 34. (Original) The apparatus of claim 1, wherein the rotor is radially adjusted.
 - (Original) The apparatus of claim 1, wherein the rotor is axially adjusted.
- 36. (Original) The apparatus of claim 1, wherein the rotor is temporarily magnetized, and electromagnetic members and the rotor are attracted to each other to adjust the rotor position.

- 37. (Original) The apparatus of claim 1, wherein the rotor is permanently magnetized, and electromagnetic members and the rotor are attracted to each other or repelled by each other to adjust the rotor position.
- 38. (Original) The apparatus of claim 1, wherein the rotor position is maintained within a range of about + 1 micrometer.
- 39. (Original) The apparatus of claim 1, wherein the shaft is connected between non-drive and drive ends of the heat exchanger, and wherein the position of the non-drive end is adjusted.
- 40. (Original) The apparatus of claim 1, wherein the shaft is connected between non-drive and drive ends of the heat exchanger, and wherein the position of the drive end is adjusted.
- (Original) The apparatus of claim 1, further comprising an axial support member, the axial support member being attached to an end of the rotor.
- 42. (Original) The apparatus of claim 41, wherein the axial support member is attached to a non-drive end of the heat exchanger.
- (Original) The apparatus of claim 41, wherein the axial support member includes a fixed outer support,
 - a rotatable inner member that is attached to the end of the rotor, and a rotatable eage between the fixed outer support and the rotatable inner member.
- (Original) The apparatus of claim 43, wherein the rotatable cage defines a plurality of housings, wherein each housing holds a bearing.

5

U.S. Patent Application Serial No. 10/717,115

Amendment dated December 23, 2008

Reply to Office Action of September 24, 2008

 (Original) The apparatus of claim 41, wherein the rotor can be magnetically radially aligned.

- 46. (Original) The apparatus of claim 1, wherein the heat exchanger includes a non-drive end and a drive end, the shaft being connected between the non-drive and drive ends, further comprising a motor to drive the shaft.
 - 47. (Original) The apparatus of claim 46, the motor comprising a brushless motor.
- 48. (Currently Amended) The apparatus of claim 1, wherein the plurality of electromagnetic elements comprises a plurality of solenoids and wherein the one or more of the plurality of solenoids are activated to adjust the position of the rotor.
- 49. (Currently Amended) The apparatus of claim 1, wherein the plurality of electromagnetic elements comprises a plurality of solenoids and wherein the one or more of the plurality of solenoids are de-activated to adjust the position of the rotor.
- (Currently Amended) A magnetic alignment apparatus for a scraped-surface heat exchanger, comprising:

a stator having a plurality of solenoids; and

a rotor that rotates between the solenoids, the rotor defining an inner cavity through which a food product flows and having an outer surface that can be magnetized, wherein a state of one or more solenoids is changed to dynamically align the rotor using a magnetic field through the stator and the rotor; and

a corrugated member surrounding the rotor, wherein the food product passes between an inner surface of the corrugated member and an outer surface of the rotor.

(Cancelled)

U.S. Patent Application Serial No. 10/717,115
Amendment dated December 23, 2008

Reply to Office Action of September 24, 2008

 (Original) The apparatus of claim 50, further comprising a support bearing, wherein a stationary rotor rests on the support bearing.

(Original) The apparatus of claim 52, further comprising a sensor that detects a
position of the rotor through the support bearing.

54. (Cancelled)

 (Original) The apparatus of claim 50, wherein the outer surface of the rotor is temporarily magnetized.

56. (Original) The apparatus of claim 50, wherein the rotor has a conical shape.

 (Original) The apparatus of claim 50, wherein a non-drive end of the heat exchanger is adjusted.

 (Original) The apparatus of claim 50, wherein a drive end of the heat exchanger is adjusted.

 (Currently Amended) A method of magnetically aligning a shaft of a scrapedsurface heat exchanger, comprising:

detecting a position of a rotor, the rotor being attached to athe shaft, the rotor rotating within a stator:

comparing a detected position of the rotor to a predetermined range of positions; if the detected position falls outside the predetermined range,

adjusting the position of the rotor by changing a state of one or more solenoids in the stator so that a magnetic field through the solenoids and the rotor changes the position of the rotor; and

7

expelling the food product through an aperture defined between a top surface of the rotor and an interior surface of a corrugated enclosure surrounding a portion of the rotor.

- (Original) The method of claim 59, wherein the rotor is temporarily magnetized, and adjusting the position of the rotor further comprises attracting the rotor towards the solenoids.
- 61. (Original) The method of claim 59, wherein the rotor is permanently magnetized, and adjusting the position of the rotor further comprises repelling the rotor away from the solenoids.
- 62. (Original) The method of claim 59, wherein the rotor is permanently magnetized, and adjusting the position of the rotor further comprises attracting the rotor towards the solenoids.
- 63. (Original) The method of claim 59, further comprising providing one or more support bearings, wherein the rotor rests on the one or more support bearings when the rotor is at rest.
- (Original) The method of claim 59, wherein adjusting the position further comprises adjusting a radial position.
- (Original) The method of claim 59, wherein adjusting the position further comprises adjusting an axial position.
- (Currently Amended) The method of claim 59, wherein the rotor comprises a in a non-drive end of the heat exchanger.

8

- (Original) The method of claim 59, wherein the rotor comprises a rotor in a drive end of the heat exchanger.
- 68. (Original) The method of claim 59, wherein adjusting the position of the rotor by changing the state of the one or more solenoids further comprises activating the one or more solenoids.
- 69. (Original) The method of claim 59, wherein adjusting the position of the rotor by changing the state of one or more solenoids further comprises de-activating the one or more solenoids.
- (Currently Amended) A method of aligning a shaft of a scraped-surface heat exchanger while processing a food product, comprising:

providing a food product within athe rotor,

rotating the rotor within a stator using a motor, the rotor being attached to athe shaft; detecting a position of the rotor;

comparing the detected position to a predetermined range of positions; and if the detected position does fall outside the predetermined range,

adjusting the position of the rotor by activating or deactivating one or more solenoids in the stator so that a magnetic field completed through the activated solenoid and the rotor changes the position of the rotor,

wherein the rotor comprises a generally conical end member, a first annular member proximate the generally conical end member, a second annular member proximate the first annular member, and a third annular member proximate the second annular member, wherein an inner cavity extending through the first, second and third annular members.

71. (Original) The method of claim 70, wherein the rotor is temporarily magnetized, and adjusting the position of the rotor further comprises attracting the rotor towards the solenoids.

(Cancelled)

- 73. (Original) The method of claim 70, further comprising expelling a majority of the food product through an aperture defined between the generally conical end member and the first inner member.
- 74. (Original) The method of claim 70, further comprising expelling a portion of the food product through an aperture defined between the first inner member and the second inner member.
- 75. (Original) The method of claim 70, further comprising expelling a portion of the food product through an aperture defined between the second inner member and the third inner member.
 - (Cancelled).
- 77. (Original) The method of claim 70, further comprising removing power from the rotor so that the rotor does not rotate; and

providing a support upon which the rotor rests.

- 78. (Original) The method claim 70, wherein adjusting the position further comprises adjusting a radial position.
- (Original) The method of claim 70, wherein adjusting the position further comprises adjusting an axial position.
- (Original) The method of claim 70, wherein the rotor comprises a non-drive end rotor.

- 81. (Original) The method of claim 70, wherein the rotor comprises a drive end rotor.
- 82. (New) A magnetic alignment apparatus for aligning a shaft of a scraped-surface heat exchanger, comprising:
 - a stator having a plurality of electromagnetic elements;
 - a support bearing;
- a rotor attached to a shaft, the rotor rotating within the stator, defining an inner cavity through which food product flows, and comprising,
 - a first annular member proximate the end cap, and
 - a second annular member proximate the first annular member,
 - wherein the first annular member or the second annular member rests on the support bearing;
 - a sensor for detecting a position of the rotor; and
 - a control circuit in communication with the sensor and the electromagnetic elements,
 - wherein the rotor rests on the support bearing when the rotor is at rest, and
- wherein the control circuit monitors the position of the rotor with data from the sensor and changes a state of one or more electromagnetic elements to adjust the rotor position.
- 83. (New) The apparatus of claim 82, further comprising a second support bearing, wherein the rotor rests on the first and second support bearings.
- (New) The apparatus of claim 82, wherein the sensor is inserted into the support bearing.
- 85. (New) A magnetic alignment apparatus for aligning a shaft of a scraped-surface heat exchanger, comprising:
 - a stator having a plurality of electromagnetic elements;

a rotor attached to a shaft, the rotor rotating within the stator and defining an inner cavity through which food product flows;

a sensor for detecting a position of the rotor;

a control circuit in communication with the sensor and the electromagnetic elements; and a generally cylindrical member surrounding a portion of the rotor, the cylindrical member is corrugated and defines a plurality of channels.

wherein the control circuit monitors the position of the rotor with data from the sensor and changes a state of one or more electromagnetic elements to adjust the rotor position, and

wherein the food product passes between an inner surface of the cylindrical member and an exterior surface of the portion of the rotor and flows within the channels.

- (New) The apparatus of claim 85, wherein the channels extend upward between the plurality of electromagnetic elements.
- 87. (New) A magnetic alignment apparatus for aligning a shaft of a scraped-surface heat exchanger, comprising:
 - a stator having a plurality of electromagnetic elements;
- a rotor attached to a shaft, the rotor rotating within the stator, defining an inner cavity through which food product flows, and comprising,
 - a first annular member,
 - a second annular member proximate the first annular member, and
 - a third annular member proximate the second annular member;
 - a sensor for detecting a position of the rotor;
 - a control circuit in communication with the sensor and the electromagnetic elements; and
- a generally cylindrical member surrounding a portion of the rotor, the cylindrical member is placed around the second annular member,

wherein the food product passes between an inner surface of the cylindrical member and an exterior surface of the portion of the rotor, and

wherein the control circuit monitors the position of the rotor with data from the sensor and changes a state of one or more electromagnetic elements to adjust the rotor position.

- 88. (New) The apparatus of claim 87, wherein the cylindrical member is placed between the stator and the rotor.
- (New) A magnetic alignment apparatus for a scraped-surface heat exchanger, comprising:

a stator having a plurality of solenoids; and

a rotor that rotates between the solenoids, the rotor defining an inner cavity through which a food product flows and having an outer surface that can be magnetized, wherein a state of one or more solenoids is changed to dynamically align the rotor using a magnetic field through the stator.

wherein the rotor comprises, a generally conical end member, a first annular member proximate the generally conical end member, a second annular member proximate the first annular member, and a third annular member proximate the second annular member, and wherein the inner cavity extends through the first, second and third annular members.