第一周习题

5(1)

方法 1: venn 图可直观给出答案 方法 2:

$$A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B) = \phi \cup (A \cap B) = A \cap B$$

方法 3: 文字描述

对于 $x \in A \cap (\overline{A} \cup B)$,即 x 属于集合 A 的同时也属于集合非 A 与 B 的并集,由于集合 A 与非 A 无交集,则可知 x 属于集合 A 与 B 的交集,即 $A \cap (\overline{A} \cup B) \subseteq A \cap B$;而对于 $x \in A \cap B$ 由于 $B \subseteq \overline{A} \cup B$ 可知 $x \in A \cap B \in A \cap (\overline{A} \cup B)$ 得到 $A \cap B \subseteq A \cap (\overline{A} \cup B)$,得证

5(3)

方法 1: 文字描述

设 $x \in \overline{\cap A_i}$, 即 x 不属于 $A_1 \cap A_2 \cap \cdots \cap A_i$, 也就是 x 属于 $A_1, A_2 \cdots A_i$ 不同时成立,即 $x \notin A_1$ 或者 $x \notin A_2$ 或者 $x \notin A_i$,又并运算定义可知, $x \in \overline{\setminus A_i}$,故而 $\overline{\cap A_i} \subset \overline{\setminus A_i}$

设 $x \in \bigcup \overline{A_i}$ 即x不属于 A_1 或者 A_2 或者 A_i 。又有: $\bigcap A_i \subset A_i$ 从而 $\overline{A_i} \subset \overline{\bigcap A_i}$ 因此不论x 属于哪个 $\overline{A_i}$,都有 $x \in \overline{\bigcap A_i}$ 故而 $\bigcup \overline{A_i} \subset \overline{\bigcap A_i}$ 从而有 $\overline{\bigcap A_i} = \bigcup \overline{A_i}$ 在已证明完上式前提下,将 $A_i = \overline{B_i}$ 代入 $\overline{\bigcup A_i}$ 得: $\overline{\bigcup A_i} = \overline{\overline{\bigcup B_i}} = \overline{\bigcap B_i} = \overline{\bigcap B_i} = \overline{\bigcap A_i}$

方法 2: 数学归纳法

当 i=2 时结论成立,即 $\overline{A_1\cap A_2}=\overline{A_1}\cup\overline{A_2}$ $\overline{A_1\cup A_2}=\overline{A_1}\cap\overline{A_2}$

假设 i = n 时成立, $\overline{\bigcap_n A_i} = \bigcup_n \overline{A_i} \overline{\bigcup_n A_i} = \bigcap_n \overline{A_i}$

当 i=n+1 时, $\overline{\cap_{n+1}A_i}=\overline{\cap_nA_i\cap A_{n+1}}=\overline{\cap_nA_i}\cup\overline{A_{n+1}}=\cup_n\overline{A_i}\cup\overline{A_n}=\cup_n\overline{A_i}\cup\overline{A_n}=\cup_$

综上, 得证

6(3)

由容斥原理 $|A \cup B| = |A| + |B| - |A \cap B|$ 可知,当且仅当 $A \cap B$ 不为空时, $|A \cup B| \le |A| + |B|$ 当 $A \cap B$ 为空时,等号成立

7(3)

基础语句:

令 $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0.\}, B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$ 。则 A 中所有元素均为带有有限小数的无符号实数

归纳语句:

设 $a \in A, b \in B^+ \cup \{\lambda\}$,则 bab 为带有有限小数的无符号实数 终结语句:

当且仅当是以上有限次俩个操作得到的数为带有有限小数的无符号实数注:像 3. 这样的数是无法通过计算来得到的