

Республиканская олимпиада по химии Областной этап (2021-2022). Официальный комплект решений 10 класса

Инструкции и рекомендации для проверки работ:

Как вы можете заметить, перед каждой задачей есть таблица разбалловки, в которой указано общее количество баллов за задачу (столбец «Всего») и вес задачи (столбец «Все (%)»). Финальный балл за задачу расчитывается следующим образом:

балл за задачу =
$$\frac{\text{кол-во правильных очков ученика} \times \text{вес задачи}}{\text{общее кол-во баллов за задачу (Всего)}}$$

Обратите внимание, что общее количество баллов за каждую задачу не суммируется к 70 или 100 баллам. А вот «Вес» задач суммируется именно к 70. Система «внутренних баллов» и «весов» упрощает процесс проверки (т.к. предотвращает необходимость выдачи дробных баллов) и позволяет лучше корректировать сложность задач в контексте всей олимпиады.

Для вашего удобства мы создали шаблон таблицы оценивания в формате «Excel» с готовыми формулами – достаточно вбить внутренние баллы и файл сам посчитает итоговый результат каждого ученика. Будем сильно признательны, если вы отправите заполненный файл на почту results@qazcho.kz. Полученные результаты будут использованы исключительно для обезличенных статистических исследований.

Шаблон оценивания можно скачать по этому адресу: https://qazcho.kz/problems/

Решения этой олимпиады опубликованы на сайте www.qazcho.kz

Рекомендации по подготовке к олимпиадам по химии есть на сайте www.kazolymp.kz.

1																	18
1 H 1.008	2											13	14	15	16	17	2 He _{4.003}
3	4											5	6	7	8	9	10
Li 6.94	Be 9.01											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12											13	14	15	16	17	18
Na 22.99	Mg 24.31	3	4	5	6	7	8	9	10	11	12	Al 26.98	Si 28.09	P 30.97	S 32.06	CI 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.95	Tc	Ru 101.1	Rh 102.9	Pd 106.4	Ag	Cd	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	 126.9	Xe 131.3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57-71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	-	-	-
87	88	89-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89- 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
								I						ı			
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			-	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

Задача №1. Неизвестный фторид (Загрибельный Б.)

1.1	1.2	1.3	Всего	Bec (%)
7	1	2	10	12

Плотность паров (кг/л) некого фторида в широком интервале температур выражается формулой:

$$\rho = 4.29 * 10^{-2} \times \frac{p}{T} + 1.23 * 10^{4} \times \frac{p}{T^{3}}$$

где p – давление (к Πa), а T – абсолютная температура (K).

Известно, что один моль паров фторида при 75°C и 5атм занимает объем 1662мл.

1. Установите брутто-формулу этого фторида, если известно, что молекула фторида имеет октаэдрическую форму.

В общем виде формула фторида некоторого элемента должна выглядеть как $Э_x F_y$. Поскольку в условии задачи сказано, что форма молекулы фторида — октаэдр, то справедливо предположить, что формула фторида имеет более конкретный вид: $ЭF_6$.

2 б за вывод формулы фторида в контексте условия задачи

Молярная масса вещества вычисляется по формуле (1):

$$M=\frac{m}{\nu}$$

Плотность имеет следующую связь с массой (2):

$$\rho = \frac{m}{V}$$

Комбинируя (1) и (2) получаем:

$$M = \frac{\rho \times V}{v}$$

Используя зависимость плотности паров фторида от давления и температуры, а также информацию о том, что один моль паров фторида занимает объем 1.662 л (1662 мл), выведем формулу расчёта молярной массы и вычислим её:

$$M = \frac{\rho \times V}{\nu}$$

$$= \frac{\left(4.29 * 10^{-2} \times \frac{101.3 \times 5}{(273.15 + 75)} + 1.23 * 10^{4} \times \frac{101.3 \times 5}{(273.15 + 75)^{3}}\right) \kappa \Gamma / \pi \times 1.662 \ \pi}{1 \text{ моль}}$$

$$= 0.349 \frac{\kappa \Gamma}{\text{моль}} = 349 \ \Gamma / \text{моль}$$

3 б за расчет молярной массы фторида

Атомная масса элемента, образующего фторид, рассчитывается исходя из его формулы $\Im F_6$

$$Ar = Mr - 6 \times Ar(F) = 349 - 6 \times 19 = 235$$
 a. e. m.

1 б за расчет атомной массы элемента

В Таблице Менделеева нет элемента с атомным весом 235, однако, самый ближайший к этому значению элемент – это уран, U. Известно, что у урана три природных изотопа, один из которых имеет атомный вес $235 - {}^{235}$ U. Таким образом, справедливым кажется предположение, что искомый фторид – 235 UF₆.

0.5 б за предположение об изотопе, 0.25 б за правильный выбор изотопа, 0.25 б за формулу фторида, итого, в сумме 1 б (итого 7 баллов)

2. Предположите с помощью какой химической реакции можно получить этот фторид.

Интуиция подсказывает вариант реакции элементарного урана с молекулярным фтором:

$$U + 3F_2 \rightarrow UF_6$$

(1 балл за корректную химическую реакцию с расставленными коэффициентами. 0.25 б за реакцию без коэффициентов). Примечание: принимаются и другие химические реакции, которые соответствуют стандартным свойствам химических соединений.

Справка: в промышленности этот фторид получается с помощью примечательной реакции с участием интергалогенидов:

$$U+2ClF_3\to UF_6+Cl_2$$

3. Изобразите структурную формулу фторида и предположите, где он может использоваться.

Структурная формула фторида:

0.25 б, если структурная формула фторида нарисована без установления верной брутто-формулы, 1 б, если структурная формула фторида нарисована верно с учетом указания изотопа урана — 16 максимум

Фторид урана-235 используется в ядерной промышленности. На основе различных свойств газообразных фторидов урана-235 и урана-238 основано отделение более значимого изотопа (235) на центрифугах.

 $0.5\ б$ за упоминание ядерной (атомной) промышленности или ядерных (атомных) технологий, ещё $0.5\ б$ за упоминание разделения изотопов на центрифугах при помощи фторидов — $16\$ максимум (итого $2\$ балла).

Задача №2. Кристаллические структуры (Курамшин Б.)

2.1	2.2	2.3	2.4	2.5	2.6	2.7	Всего	Bec (%)
4	3	6	4	6	3	4	30	15

Один из распространенных структурных типов бинарных веществ атомного состава 1:1 – структурный тип NaCl. На рисунке ниже представлена элементарная ячейка данного структурного типа. Элементарная ячейка — фрагмент пространства, параллельным переносом которого по трем направлениям получается кристаллическая решетка вещества. Помните, что традиционно атомы изображают на некотором расстоянии друг от друга, хотя в действительности кристалл упаковывается так, что каждый атом касается нескольких соседних (число шаров, которых касается данный шар, называется его координационным числом).

1. Ячейку обычно описывают параметром ячейки (в данном случае — ребро куба, a), и числом формульных единиц вещества в одной ячейке (Z).

Определите, сколько формульных единиц NaCl содержится в одной элементарной ячейке, и покажите, как связан параметр ячейки a с радиусами катиона (r_+) и аниона (r_-) .

Атомов натрия -8 в вершинах (по 1/8, поскольку каждый атом делится восемью элементарными ячейками), 6 в гранях (по $\frac{1}{2}$, поскольку каждый атом делится гранью пополам), итого 4 атома.

Атомов хлора — 12 в ребрах (по $\frac{1}{4}$, поскольку атом на ребре делится между 4 элементарными ячейками), 1 в центре, итого 4 атома (как и должно быть в соответствии с формулой NaCl).

Значит, в ячейке всего 4 формульных единицы NaCl, Z = 4.

верное *Z* – **2 балла**

(неверное Z, но верный подсчет атомов Na или Cl-1 балл)

На ребре кубика укладывается полный диаметр атома хлора и, с концов ребра, два радиуса атома натрия. Значит, $a = 2r_- + 2r_+$.

верное выражение или эквивалентное ему

– 2 балла

2. Рассчитайте параметр ячейки NaCl, если плотность кристаллического NaCl равна $2.165 \, \text{г/cm}^3$.

Если параметр ячейки равен a, то объём 1 кубика равен a^3 . Поскольку в каждом кубике всего Z формульных единиц NaCl, то объём a^3N_A соответствует Z моль NaCl, то есть ZM грамм NaCl. То есть:

$$\rho = \frac{ZM}{N_A a^3} \Rightarrow a = \sqrt[3]{\frac{ZM}{N_A \rho}} = \sqrt[3]{\frac{4 \cdot (35.45 + 22.99)}{6.02 \cdot 10^{23} \cdot 2.165}} = 5.64 \cdot 10^{-8} \text{cm} = 5.64 \text{Å}$$

3 балла

3. Радиус бромид-иона равен 1.82 Å. Рассчитайте радиус хлорид-иона и иона натрия, если плотность бромида натрия равна 3.226 г/см³.

Из плотности NaBr можно аналогично рассчитать параметр ячейки:

$$a = \sqrt[3]{\frac{ZM}{N_A \rho}} = \sqrt[3]{\frac{4 \cdot (79.9 + 22.99)}{6.02 \cdot 10^{23} \cdot 3.226}} = 5.96 \cdot 10^{-8} \text{cm} = 5.96 \text{Å}$$

балла

$$5.96 = 2r(\mathrm{Na^+}) + 2 \cdot 1.82$$
, значит $r(\mathrm{Na^+}) = 1.16 \ \mathrm{\AA}$. 2 балла

Из параметра ячейки NaCl: $5.64 = 2 \cdot 1.16 + 2r(\mathrm{Cl^-})$, значит $r(\mathrm{Cl^-}) = 1.66 \ \mathrm{Å}$. 2 балла

Много совершенно непохожих друг на друга веществ часто имеют один тип кристаллической решетки. Так, например, вещества $\bf A$ и $\bf B$, не имеющие друг с другом общих элементов, кристаллизуются в структурном типе NaCl, но имеют другой параметр ячейки. В таблице ниже представлены параметры ячейки и плотность веществ $\bf A$ и $\bf B$.

	A	Б
a, Å	4.960	4.244
ρ, г/cm ³	13.61	5.38

4. Рассчитайте молярные массы веществ А и Б.

Используем ту же формулу, но теперь – для вычисления молярной массы.

$$\rho = \frac{ZM}{N_A a^3} \Rightarrow M_A = \frac{1}{Z} \rho_A N_A a_A^3 = \frac{1}{4} \cdot 13.61 \cdot 6.02 \cdot 10^{23} \cdot \left(4.96 \cdot 10^{-8}\right)^3 = \textbf{249.9 г/моль}$$

$$M_{\mathbf{b}} = \frac{1}{Z} \rho_{\mathbf{b}} N_A a_{\mathbf{b}}^3 = \frac{1}{4} \cdot 5.38 \cdot 6.02 \cdot 10^{23} \cdot \left(4.244 \cdot 10^{-8}\right)^3 = \textbf{61.9 г/моль}$$

по 2 балла

 ${f A}$ можно получить нагреванием металла в атмосфере метана. ${f G}$ — взаимодействием другого металла с одним из основных компонентов воздуха.

5. Определите формулы веществ **A** и **Б** и запишите уравнения реакций их получения.

Нагреванием в метане теоретически можно получить карбид либо гидрид. Для гидрида молярная масса слишком велика. Если это карбид с формулой ЭС, то на элемент приходится 249.9 - 12 = 237.9 г/моль – это уран, $\mathbf{A} = \mathbf{UC}$.

Основные компоненты воздуха — азот и кислород. Значит, Б — либо МО, либо МN. Если это МО, то на металл приходится 61.9 - 16 = 45.9 г/моль — не соответствует ни одному элементу. Если это МN, то на М приходится 61.9 - 14 = 47.9 г/моль — это титан, **Б** = **TiN**.

Уравнения реакций:

$$U + CH_4 \rightarrow UC + 2H_2$$

$$2Ti + N_2 \rightarrow 2TiN$$
.

Формулы – по 2 балла

Уравнения реакций – по 1 баллу

Вещество \mathbf{A} также можно получить взаимодействием с углем бинарного вещества \mathbf{B} , кристаллизующегося в структурном типе флюорита (фторида кальция). Побочным продуктом при этом является только газ легче воздуха.

6. Определите вещество В и запишите уравнение описанной реакции.

В структурном типе флюорита кристаллизуются вещества с соотношением атомов 1:2. То обстоятельство, что с углем это вещество дает газ легче воздуха говорит в пользу оксида, $\mathbf{B} = \mathbf{UO_2}$.

$$UO_2 + 3C \rightarrow UC + 2CO$$
.

Формула вещества – 2 балла

уравнение реакции – 1 балл

Вещество \mathbf{F} имеет красивый золотой блеск и высокую прочность, что позволяет использовать его в тонких ювелирных покрытиях и для покрытия режущих поверхностей. Один из способов — окисление поверхности металла, входящего в состав \mathbf{F} .

7. Какова толщина покрытия из вещества $\bf b$ на поверхности этого металла, если толщина слоя металла, подвергшегося окислению, равна 3 мкм? Плотность металла равна $4.506~\rm r/cm^3$. Считайте, что площадь поверхности при окислении не изменяется.

Слой площадью 1 м² из титана имеет объём $Sh=1\cdot3\cdot10^{-6}=3\cdot10^{-6}$ м³, то есть массу $V\rho=3\cdot10^{-6}\cdot10^{6}\cdot4.506=13.518$ г, то есть количество n=m/M=13.518/47.87=0.2824 моль титана.

Такое количество титана превратится в 0,2824 моль TiN, то есть $m(TiN) = nM = 17.47 \, \Gamma$,

$$V = m/\rho = 17.47/5.38 = 3.247 \text{ cm}^3 = Sh$$

$$h = 3.247 \cdot 10^{-6} \text{ m}^3 / 1\text{m}^2 = 3.247 \cdot 10^{-6} \text{ m} \approx 3.25 \text{ mkm}.$$

Верный расчет – 4 балла

Задача №3. Термодинамика (Черданцев В.)

3.1	3.2	3.3	3.4	3.5	3.6	3.7	Всего	Bec (%)
4	1	4	5	2	3	4	23	15

Реакция получения циклогексана путем гидрирования бензола на никелевом катализаторе является одним из важнейших процессов химической промышленности, а на ее долю приходится 11.4% мирового использования бензола. Реакция проходит в газовой фазе, поэтому одним из первых этапов данного гидрирования является перевод бензола из жидкой в газовую фазу.

Справочные данные:

	C ₆ H _{6(r)}	$C_6H_{12(\Gamma)}$	H _{2(r)}
Δ _f H°, <mark>кДж</mark> моль	82.98	-123.22	0
S°, <u>Дж</u> моль ∙ К	269.4	298.4	130.7

Изменение энтальпии сгорания: $\Delta_c H^{\circ} \left(C_6 H_{6_{(\Gamma)}} \right) = -3301.9 \frac{\kappa Дж}{моль}, \Delta_c H^{\circ} \left(C_6 H_{6_{(ж)}} \right) = -3268 \frac{\kappa Дж}{моль}$

Необходимые формулы: $\Delta G = \Delta H - T\Delta S = -RT \ln K$

$$\Delta U = w + q$$

1. Рассчитайте изменение энтальпии и внутренней энергии, работу и теплоту (кДж/моль) процесса испарения бензола при температуре 25°С и постоянном давлении 1 атм.

$$(1) \ C_6H_{6(r)} + 7.5O_2 = 6CO_2 + 3H_2O \ \Delta H_1^o = -3301.9 \frac{\kappa Дж}{\text{моль}}$$

$$(2) \ C_6H_{6(ж)} + 7.5O_2 = 6CO_2 + 3H_2O \ \Delta H_2^o = -3268 \frac{\kappa Дж}{\text{моль}}$$

$$(3) \ C_6H_{6(ж)} = C_6H_{6(r)} \ \Delta H_3^o = ?$$

$$(3) = (2) - (1) \Rightarrow \Delta H_3^o = \Delta H_2^o - \Delta H_1^o = 33.9 \frac{\kappa Дж}{\text{моль}} (1 \ балл)$$

Поскольку испарение проходит при постоянном давлении, $\Delta p = 0$

$$\Delta H = \Delta U + \Delta(pV) = \Delta U = 33.9 \frac{\kappa / J \times \kappa}{1000} (1 6 \Delta J J)$$

Чтобы рассчитать работу процесса испарения, необходимо знать изменение объема бензола. Поскольку объем жидкой фазы гораздо меньше объема газообразной фазы, им можно пренебречь (все расчеты на 1 моль бензола):

$$\Delta V pprox V_{\scriptscriptstyle \Gamma} = rac{RT}{p}$$
 $w = -p\Delta V = -RT = -2.48 \, rac{\kappa Дж}{моль} \, (1 \, {
m балл})$ $q = \Delta U - w = 36.38 \, rac{\kappa Дж}{моль} \, (1 \, {
m балл})$

2. Не проводя расчетов, определите знак (положительный/отрицательный) $\Delta_r S^\circ$ реакции гидрирования бензола. Объясните свой выбор.

Изменение энтропии данной реакции будет отрицательным, поскольку количество газообразных молекул в реагентах больше, чем в продуктах (система становится "более упорядоченной")

1 балл за правильный ответ с пояснением (0 баллов без пояснения)

3. Вычислите изменение энтальпии, энтропии, энергии Гиббса, а также значение константы равновесия реакции гидрирования бензола при 265°C.

$$\begin{split} C_6 H_{6(r)} + 3 H_2 &= C_6 H_{12(r)} \\ \Delta_r H^\circ &= \Delta_f H^\circ (C_6 H_{12(r)}) - \Delta_f H^\circ \left(C_6 H_{6(r)} \right) - 3 \cdot \Delta_f H^\circ (H_2) = -206.2 \text{ кДж/моль (1 балл)} \\ \Delta_r S^\circ &= S^\circ (C_6 H_{12(r)}) - S^\circ \left(C_6 H_{6(r)} \right) - 3 \cdot S^\circ (H_2) = -363.1 \frac{\mathcal{A}^{\mathsf{K}}}{\mathsf{моль K}} \text{ (1 балл)} \\ \Delta_r G &= \Delta_r H - T \cdot \Delta_r S = -206.2 - (265 + 273) \cdot \left(-\frac{363.1}{1000} \right) = -10.85 \frac{\mathsf{K} \mathcal{A}^{\mathsf{K}}}{\mathsf{моль}} \text{ (1 балл)} \\ K &= e^{-\frac{\Delta_r G}{RT}} = 11.31 \text{ (1 балл)} \end{split}$$

4. При какой температуре выход реакции составит 70%? Примите, что реагенты поступают в реактор в соотношении $n(C_6H_6)$: $n(H_2)=1$: 10, а общее давление в реакторе равно 5 бар на протяжении всей реакции. При расчетах учитывайте, что $\Delta_r H^\circ$ и $\Delta_r S^\circ$ не зависят от температуры.

$$C_6H_{6(\Gamma)} + 3H_2 = C_6H_{12(\Gamma)}$$

	C ₆ H _{6(r)}	H ₂	$C_6H_{12(\Gamma)}$
До реакции	1	10	0
После установления равновесия	1 – x	10 – 3x	х

$$n_0 = (1 - x) + (10 - 3x) + x = 11 - 3x$$

Поскольку выход реакции составляет 70%, то x = 0.7, тогда мольные доли газов равны:

$$\begin{split} x(C_6H_6) &= \frac{n(C_6H_6)}{n_0} = \frac{1-x}{11-3x} = 0.0337 \\ x(H_2) &= \frac{n(H_2)}{n_0} = \frac{10-3x}{11-3x} = 0.888 \\ x(C_6H_{12}) &= \frac{n(C_6H_{12})}{n_0} = \frac{x}{11-3x} = 0.0787 \\ K &= \frac{p(C_6H_{12})}{p(C_6H_6) \cdot p^3(H_2)} = \frac{x(C_6H_{12}) \cdot p_0}{x(C_6H_{12}) \cdot p_0 \cdot (x(H_2) \cdot p_0)^3} = \frac{x(C_6H_{12})}{x(C_6H_{12}) \cdot x^3(H_2) \cdot p_0^3} = \\ &= \frac{0.0787}{0.0337 \cdot 0.888^3 \cdot 5^3} = 0.0267 \text{ (3 балла)} \\ \Delta H - T\Delta S &= -RTlnK \ \Rightarrow \ T = \frac{\Delta H}{\Delta S - RlnK} = \frac{-206200}{-363.1 - 8.314 \cdot \ln 0.0267} = 619.3 \text{ K} \\ T &= 619.3 \text{ K} = 346.2 ^{\circ}\text{C} \text{ (2 балла)} \end{split}$$

- 5. Как изменится (увеличиться/уменьшится/останется прежним) выход реакции гидрирования бензола, если ее проводить при:
 - а) давлении 1 бар, а не 5 бар?
 - b) температуре 340°C, а не 265°C?

Объясните свой ответ.

a)
$$K = \frac{x(C_6H_{12})}{x(C_6H_{12})\cdot x^3(H_2)\cdot p_0^3}$$

При уменьшении давления с 5 до 1 бара константа равновесия увеличивается, а значит выход реакции увеличится (принцип Ле Шателье)

1 балл за правильный ответ с пояснением (0 баллов без пояснения)

b) Реакция является экзотермической, следовательно при увеличении температуры равновесие будет смещено в сторону образования реагентов, и выход реакции уменьшится (принцип Ле Шателье).

1 балл за правильный ответ с пояснением (0 баллов без пояснения)

Водород в промышленности (например, для реакций гидрирования) иногда получают методом разложения метана до простых веществ. Константа равновесия данного процесса равна $1.3 \cdot 10^{-9}$ при 298К и 2.075 при 1000К.

6. Рассчитайте значение энтальпии образования газообразного метана, приняв, что $\Delta_r H^\circ$ и $\Delta_r S^\circ$ не зависят от температуры.

$$CH_{4_{(\Gamma)}} = C_{TB} + 2H_{2_{(\Gamma)}}$$

Поскольку энтальпия образования простых веществ равно 0, то изменение энтальпии данной реакции будет равно:

$$\Delta_{\rm r} H^{\circ} = -\Delta_{\rm f} H^{\circ} \left(C H_{4_{(\Gamma)}} \right)$$

Таким образом, чтобы найти значение энтальпии образования газообразного метана, необходимо вычислить значение изменения энтальпии вышеуказанной реакции. Это можно сделать двумя способами. (1 балл за данную логику)

Первый способ:

Воспользуемся уравнением изобары Вант-Гоффа

$$\ln \frac{K_1}{K_2} = \frac{\Delta_r H}{R} \cdot \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \Rightarrow \Delta_r H^\circ = \frac{R \cdot \ln \frac{K_1}{K_2}}{\frac{1}{T_2} - \frac{1}{T_1}} = 74.8 \frac{\kappa Дж}{моль}$$

Второй способ:

Воспользуемся равенством $\Delta G = \Delta H - T\Delta S = -RT \ln K$ и запишем его для двух температур

$$\begin{cases} \Delta H - 298\Delta S = -8.314 \cdot 298 \cdot \ln 1.3 \cdot 10^{-9} \\ \Delta H - 1000\Delta S = -8.314 \cdot 1000 \cdot \ln 2.075 \end{cases}$$

Решив данную систему уравнений, получим $\Delta_r H^\circ = 74.8 \ кДж/моль$

Таким образом,
$$\Delta_{\rm f} {\rm H}^{\circ} \left({\rm CH_4}_{(\Gamma)} \right) = - \Delta_{\rm r} {\rm H}^{\circ} = -74.8 \; кДж/моль \, {\color{red} (2 \; балла)}$$

7. Вычислите выход реакции получения водорода из метана при температуре 1000К и давлении 0.01 бар.

$$CH_{4_{(\Gamma)}} = C_{TB} + 2H_{2_{(\Gamma)}}$$

Активность твёрдых соединений равна 1, поэтому для расчета константы нам понадобятся только парциальные давления метана и водорода:

	CH _{4(r)}	H ₂
До реакции	1	0
После установления равновесия	1 – x	2x

$$n_0 = 1 - x + 2x = 1 + x$$

$$x(CH_4) = \frac{1 - x}{1 + x}$$

$$x(H_2) = \frac{2x}{1 + x}$$

$$K = \frac{p^2(H_2)}{p(CH_4)} = \frac{p_0^2 \cdot x^2(H_2)}{p_0 \cdot x(CH_4)} = \frac{\left(\frac{2x}{1+x}\right)^2 \cdot p_0}{\frac{1-x}{1+x}} = \frac{4x^2}{1-x^2} \cdot 0.01 = 2.075$$
 (2.5 балла за уравнение)

Решая данное уравнение, получаем х = 0.99

Таким образом, выход реакции составляет 99% (1.5 балла)

Задача №4. Конформации органических молекул (Моргунов А.)

4.1	4.2	4.3	4.4	4.5	Всего	Bec (%)
2	4	2	2	4	14	13

Одним из важнейших фундаментальных понятий органической химии является связь структур и свойств молекул. Однако, важно помнить, что в органической химии важны не только качественные характеристики связей (например, то, что в молекуле этана каждый атом углерода связан с другим атомом углерода и тремя атомами водорода), но и количественные. Сегодня мы рассмотрим конформации ацикличных углеводородов.

Конформация молекулы — пространственное расположение атомов, обусловленное поворотом вокруг одной или нескольких одинарных молекул. Например, в молекуле этана возможно *непрерывное* вращение вокруг связи углерод-углерод.

1. Сколько конформеров может быть у этана?

Поскольку вращение вокруг связи углерод-углерод непрерывное, мы имеем дело с непрерывным распределением двухгранных углов. Иными словами, этан имеет **бесконечное** число конформеров (2 балла).

Два особенных конформера этана: заторможенный (на англ. *staggered*) и заслоненный (на англ. *eclipsed*).

Рис 1. Проекция Ньюмана для связи С-С в этане

Экспериментально установлено, что заторможенная конформация стабильнее на 12 кДж моль^{-1} .

2. Определите какая доля (в %, с 4 значащими цифрами) этана будет находиться в заторможенной конформации при $25^{\circ}C$.

Заметим, что процесс перехода от заслоненной (СЛ) к заторможенной (ТР) конформации можно смоделировать обычной обратимой реакцией. Тогда:

СЛ ⇌ ТР

$$K_{\text{равн}} = \frac{[\text{TP}]}{[\text{C}\Pi]} = \frac{\chi(\text{TP})}{\chi(\text{C}\Pi)}$$

 Γ де χ — мольная доля.

При этом, $K_{\mathrm{pabh}} = exp\left(-\frac{\Delta_r G}{RT}\right)$

Тогда:

$$\frac{\chi(\text{TP})}{\chi(\text{CЛ})} = exp\left(\frac{-12000\text{Дж/моль}}{8.314\text{ДжК/моль} \cdot 298.15\text{K}}\right) = 0.007899$$

Учитывая то, что

$$\chi(TP) + \chi(CJ) = 1$$

$$\chi(TP) = 0.9922$$

$$\chi(CJ) = 0.0078$$

Или 99.22% этана будет находиться в заторможенной конформации.

1 балл за использование идеи о равновесии / расчет через константу равновесия

1 балл за использование формулы $\Delta_r G = -RT \ln K$

2 балла за финальный ответ с 4 значащими цифрами. 0.5 балла если ответ 99%, 99.2% или 100%.

Всего 4 балла.

Для этой задачи будем считать, что заслоненный конформер дестабилизован по отношению к заторможенному конформеру за счет некого напряжения между двумя соседними атомами водорода. Таким образом, мы можем посчитать, что энергия дестабилизации двух атомов водорода (*примем*, что эта энергия не зависит от соединения) в заслоненной конформации равна 4 кДж/моль.

3. Нарисуйте заслоненный и заторможенный конформер пропана.

Известно, что заторможенный конформер пропана на 14 кДж/моль стабильнее заслоненного конформера.

4. Посчитайте энергию дестабилизации атома водорода и метильной группы в заслоненной конформации пропана.

В заслоненной конформации у нас три дестабилизирующих взаимодействия: Н-Н, Н-Н и Н-СН3. Учитывая то, что энергия дестабилизации Н-Н равна 4 кДж/моль, энергия дестабилизации Н-СН3 равна: 14-4-4=6 кДж/моль

1 балл за правильное рассуждение, 1 балл за верный ответ.

Изучение конформеров молекулы важно при предсказании продуктов той или иной реакции. Например, реакции Е2 протекают по анти-перипланарному механизму, иными словами, атом водорода и уходящая группа находятся в «анти» положении (угол между ними равен 180°).

5. Нарисуйте структуры А и В.

Суть задачи — перерисовать реагенты в проекции Ньюмана по связи C(Br)-C(H) в анти-конформации.

$$H_{3}$$
С C_{2} H_{5} H_{3} С C_{2} H_{5} E_{2}

За каждый продукт по 2 балла, всего 4 балла. 0 баллов если указаны транс-изомеры продуктов.

Примечание: анализ конформаций реагентов позволяет нам предсказать получение не интуитивного продукта, а именно цис-изомера, тогда как наша химическая интуиция может подсказывать образование транс-изомера, как термодинамически более стабильного (за счет меньшего стерического напряжения).

Историческая справка: Причина большей стабильности заторможенного конформера долгое время была поводом для дискуссий. Первое (и наиболее известное) объяснение – т.н. стерическое напряжение (с англ. steric hindrance) между двумя атомами водорода в заслоненной конформации. Предполагается, что природа стерического напряжения заключается в Кулоновском отталкивании электронных облаков двух атомов. Второе объяснение появилось с развитием квантовой химии: предполагалось, что гиперконьюгация в заторможенном конформере (между двумя коллинеарными связями С-Н) способствует его большей стабильности. Совместная работа китайских и американских ученых, опубликованная в 2004 году (DOI: 10.1002/ange.200352931), показала, что вклад гиперконьюгации равен примерно 4 кДж/моль, т.е. гиперконьюгация объясняет треть большей стабильности заторможенного конформера, а остальные 67% объясняются стерическим напряжением.

Задача №5. Синтез йомогина (Моргунов А.)

Всего	Bec (%)
9	15

В активированных макрофагах (белых кровяных клетках, участниках иммунной системы) активен фермент синтазы монооксида азота (i-NOS), который, в некоторых случаях производит чрезмерно большое количество монооксида азота, что может

приводить к нарушению гомеостаза и, в случае септического шока, к летальному исходу. Производное сесквитерпена, лактон йомогин (yomogin) способен ингибировать i-NOS и тем самым является кандидатом для борьбы с эндотоксемией и воспалениями, связанными с чрезмерным выделением NO. Йомогин — это алкалоид, получаемый из медицинского растения *Artemisia princeps*. Лабораторный синтез йомогина начинается с образования енамина **A**. Образование енаминов — обратимый процесс, в ходе которого образуется енамин с наименее замещенной двойной связью.

$$R_2$$
 R_3
 R_1
 R_2
 R_3
 R_1

Общая схема образования енаминов.

Синтез йомогина представлен ниже:

$$F \xrightarrow{1. \text{ MeSO}_2\text{Cl}, \text{ Py}} O \xrightarrow{\text{NH}} A \xrightarrow{1. \text{ Co}_{Br} OEt} B \xrightarrow{\text{K+ $^s\text{Bu}_3\text{BH}}} C \xrightarrow{\text{$$

Известно, что K-селектрид — источник гидрид-аниона (такой как $LiAlH_4$), который в силу крупных втор-бутильных групп в данном синтезе восстанавливает несопряженные карбонильные группы в степени окисления +2. С — продукт восстановления +20, который даже в отсутствии кислоты способен превращаться в +20. LDA — сильное ненуклеофильное основание. Ру — пиридин. DDQ — дихлородицианохинон — это мягкий окислитель. Известно, что в структуре йомогина есть фрагмент, напоминающий хиноновую структуру. TsOH — толуолсульфоновая кислота.

1. Расшифруйте синтез йомогина и нарисуйте структуры А-G и йомогина.

Исходя из структуры промежуточного соединения, мы понимаем, что енамин образуется с участием несопряженного кетона. Более того, скорее всего, сложноэфирная группа в промежуточном соединении появляется на стадии $A \to B$. Из этого можно однозначно определить структуру $\bf A$. Образование $\bf B$ — обычное нуклеофильное замещение, сопровождаемое гидролизом иминового катиона. Карбонильные группы в степени окисления +2 — это кетоны. При образовании $\bf F$, слабая уходящая группа ОН превращается в более хорошую OMs. Вторая стадия при образовании $\bf F$ — обычная реакция E1cB. Образование $\bf G$ — гидролиз ацетальной защитной группы. В итоге:

За структуры **A**, **B**, **C**, **D**, **E**, **F**, **G** по 1 баллу. За структуру йомогина 2 балла. Всего 9 баллов.

Если вместо **A** нарисована структура A' - 0.5 баллов.

Если вместо **E** и **F** нарисованы **E'** и **F'** – полный 1 балл за каждую структуру. На самом деле, соединения **E** и **F** представляют из себя смеси 1:1 структур **E** и **E'** и **F** и **F'**. Двойная связь мигрирует в соседнее кольцо для дополнительной стабилизации за счет гиперконьюгации между заполненной сигма-орбиталью С-Н и разрыхляющими сигма орбиталями С-О. Таким образом, ученики, нарисовавшие структуры **E'** и **F'** заслуживают устную похвалу.