	Lecture 16 p.1
	Andranov-Hopf bifurcation Thm. (Section 8.8)
	$\dot{x} = -\omega y + p(x, y)$ $\dot{y} = \omega x + q(x, y)$
:	$y = \omega x + q (x, y)$
	re-write in complex coordinates
	Z=X+iy
	after normal Form transformation whitercation parameter
	Z = 2(M) Z + Z (CCW 1Z12+dCW 1Z14+)
	$\lambda(0) = i\omega$ for Hopf at $\mu=0$
	Z=rei6 = r(cosotisino) = rcosotirsino
	$z = \dot{r} e^{i\theta} + ir \dot{\theta} e^{i\theta} = \lambda(\mu) r e^{i\theta} + r e^{i\theta} (c(\mu) r^2 + d(\mu) r^4)$
	r=Re() & Jake Dety Res dety Res dety Res dety
	CO at Mio
	$\dot{r} = \operatorname{Re}\left(\lambda(\mu)r + c(\mu)r^3 + d(\mu)r^4 + \cdots\right)$
	Ð=Im(χ(μ) + c(μ)r²+d(μ)r¾+~) ωωμ=0
	/

İ	
	Hope Bihurcation Thm (8,21 in text)
	Let $f(x; \mu)$ be a C^3 vector field in \mathbb{R}^n , $n \ge 2$, such that
1	f(0,0)=0 spec (Dx F(0,0))= {(iω,-iω, λ3,,λω, Re(λ) +0, K≥3)
	The normal form on the center manifold of forms an unfolding of the form
	$\dot{z} = \lambda(\mu)z + z(c(\mu) z ^2) +$ Assume $\alpha(0) = \beta e(c(g)) \neq 0$
	and that a parameter u causes the eigenvalues to cross the imaginary axis; it.
	$\frac{d}{d\mu} \left[R_0(\lambda(\mu)) \right]_{\mu=0} \neq 0$
	Then there is a tropf bifurcation that gives birth to a limit cycle in the center manifold at uso.
<u> </u>	The limit cycle exists when dRe(L) < 6 & is stable in center manifold if Re(L) > 0 & unstable
-	if Re (1) < 0,

Claim: There is a submitted Hopf
bifurcation for standard parameters of the
Lorenz system 3, $\sigma = 10$, $b = 8/3$ at
r = \(\sigma(\tau + b + 3)\) \(\pi \cdot 24, \frac{74}{7} - \)
H T-b-1
$\hat{x} = \sigma(y-x)$
$\dot{y} = rx - \dot{y} - xz$ $\dot{y} = xy - bz$ yunstable limit cycle $\dot{z} = xy - bz$
y = rx - y - xz junstable limit cycle $z = xy - bz$
X /
How would you prove this claim?
note: eigenvalues more with "nonzero speed"
as r1
center manifold is 2-d at r=r_H&
stable manifold is 1-d.
Vector field is Coo
just need 4(0) m=r-ry

1 Move Fixed - pt. to the origin of new coordinates system, and choose coordinates 50 that at r=ry

(3) Restrict (u,v) egns to the center manifold at $v=r_H$ by setting w=h(u,v) there. $\dot{u}=-\omega v+F,(u,v,h(u,v))=-\omega v+\Phi p(u,v)$ $\dot{v}=\omega u+F_2(u,v,h(u,v))=\omega u+q(u,v)$

(4) We need the normal form coefficient &=Re(c)

Lecture 16 p.5
Use formula (8,59) in the textbook
X= To (Pxxx + Pxyy + 9xxy + 9xyy)
- I (9xy (9xx + 9yy) - Pxy (Pxx + Pyy)
+ Pxx 9xx - Pyy 9yy)
Here $Bxx = \frac{\partial^3 P}{\partial x^3}$, etc
Sign of x determines whether Hopf bifurcation is sub- or super- critical.
Claim (for Lorenz, for standard parameters o, b)
$d>0$ \Rightarrow limit cycle exist when $XRe(\lambda) < 0 \Rightarrow Re(\lambda) < 0$
Re(h)
exists in region where
the equilibrium as stable.
1 & limit
- Limit Lycle Unstable