Matemática Piscreta

Probar que a=2, entonces afb o afb+1 suponemos a/b y a/b+1

=> b=my oa y b+1=mz oa

sustituimes b=m1.a en b+1 = m2.0a:

 $mi \cdot a + 1 = m_2 \cdot a$

1 = m2.a - m, a

1 = (m2-m1) · a

Entonces, $\frac{1}{a} = a \longrightarrow a \leq 1$

 $\alpha = 2$ y $\alpha \le 1$ $(\rightarrow \leftarrow)$ contradicción

En conclusion, atb o at (b+1)

Ex: VZ es irracional todor les nímeros que no se predentes escribir como la dirisión de des enteros son irvacinales.

Prueba: supangamos, para fines de contradicción, 12 es racional.

fracción reducida $\sqrt{2} = \frac{a}{a}$, $b \neq 0$ y mcd (a,b) = 1

elevamos al cuadre do ambos lados

 $((2)^{\nu_2})^2 = (\alpha/_p)^2 \implies 2 = \frac{\alpha^2}{b^2} = 1$ $\alpha^2 = 2b^2$ ores par.

Lvego,
$$\alpha = 2k$$
. Entoncer,
$$\alpha^2 = 4k^2 = 2b^2$$

$$b^2 = 2k^2$$
 $b^2 = 2k^2$, b^2 es par $\rightarrow b$ es par

Inducción Matemática Es una técnica de demonstración para propiedades de los números enteros

Analogia: Paminos

A Pase base tengo que demostrar que puedo botor el primero.

MANTA ... MATTAN (3) tengo que demostrar que si ce ce el printre se va a boto. el que lesigne procedimiento de lógica.

Benclusión todos se casa

Formalmente, si p(n) es une proporicien abienta y n E II+, entonces el argumente

4. P(n.) es verdad (para algún no E II+)

2. $P(n) \rightarrow P(n+1)$ es verdad

Entences, p(n) es cierta para toda nEI+

La sume de las primeros n impares (positivos) consecutivos es un cuadrado perfecto, en particular nº.

matematizar:

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

2k+1, si Karranca en O 2k-1, si Karranea en 1

$$\sum_{i=1}^{1} (2i - 1) = 1 = 1^{2}$$

Paso inductive: Assumines (proveba directe)
$$\sum_{i=1}^{n} (2i-1) = n^2$$

$$\sum_{i=1}^{n+1} (2i-1) = 1 + 3 + 5 + 7 + ... + (2n-1) + 2(n+1) - 1$$

$$= \sum_{i=1}^{n^2} (2i-1) + 2n + 1$$

$$= n^2 + 2n + 1 \quad \text{factorizo}$$

$$= (n + 1)^2$$

Ej: La suma de los primires n consecutivos es $\frac{n(n+1)}{2}$

•

.