Adu Vengal Vilas Winstein

Advised by Sergei Chmutov

August 2019

Biquandles

A *biquandle* is a set X with two binary operations $\underline{\triangleright}, \overline{\triangleright}$ such that for every $x, y, z \in X$,

- (i) $x \triangleright x = x \overline{\triangleright} x$
- (ii) The maps $\alpha_y(x) = x \,\overline{\triangleright}\, y$, $\beta_y(x) = x \,\underline{\triangleright}\, y$, and $S(x,y) = (y \,\overline{\triangleright}\, x, x \,\underline{\triangleright}\, y)$ are invertible.
- (iii) The following exchange laws are satisfied:

$$(x \trianglerighteq y) \trianglerighteq (z \trianglerighteq y) = (x \trianglerighteq z) \trianglerighteq (y \trianglerighteq z)$$
$$(x \trianglerighteq y) \trianglerighteq (z \trianglerighteq y) = (x \trianglerighteq z) \trianglerighteq (y \trianglerighteq z)$$
$$(x \trianglerighteq y) \trianglerighteq (z \trianglerighteq y) = (x \trianglerighteq z) \trianglerighteq (y \trianglerighteq z).$$

Why Biquandles?

Suppose we color a link diagram with elements of a biquandle so that the following relations are satisfied at each crossing:

Then the biquandle axioms correspond to the invariance of such a coloring under the Reidemeister moves.

Why Biquandles?

Examples of Biquandles

- ▶ The trivial biquandle: $X = \{x\}$, with $x \overline{\triangleright} x = x \underline{\triangleright} x = x$.
- ▶ Constant action biquandles: X is any set, $\sigma: X \to X$ is any bijection. Let $x \trianglerighteq y = x \overline{\triangleright} y = \sigma(x)$ for all $x, y \in X$.
- ▶ Alexander biquandles: X is any $\mathbb{Z}\left[t^{\pm 1}, r^{\pm 1}\right]$ -module. Let $x \trianglerighteq y = tx + (r t)y$ and $x \trianglerighteq y = ry$.

Biquandle Counting Invariant

Let X be a biquandle. The number of X-colorings of a link diagram is an invariant, called the biquandle counting invariant.

If L is a link, the X-counting invariant of L is $\Phi_X^{\mathbb{Z}}(L)$.

Let X be a biquandle and R a commutative unital ring. We would like to choose elements $A_{x,y}, B_{x,y} \in R^{\times}$ (for each $x, y \in X$), $w \in R^{\times}$ and $\delta \in R$ such that the element of R determined by the skein relations

with δ the value of a circle and w the value of a positive kink is an invariant of X-colored links.

Such a collection of elements of R is called a *biquandle bracket* and must satisfy the following axioms.

- (i) For all $x \in X$, $\delta A_{x,x} + B_{x,x} = w$ and $\delta A_{x,x}^{-1} + B_{x,x}^{-1} = w^{-1}$.
- (ii) For all $x, y \in X$, $\delta = -A_{x,y}B_{x,y}^{-1} A_{x,y}^{-1}B_{x,y}$.
- (iii) For all $x, y, z \in X$, all of the following equations hold.

$$\begin{split} A_{x,y}A_{y,z}A_{x&\trianglerighteq y,z}&\trianglerighteq_y=A_{x,z}A_{y\,\trianglerighteq x,z}\,\trianglerighteq x}A_{x\,\trianglerighteq z,y\,\trianglerighteq z},\\ A_{x,y}B_{y,z}B_{x\,\trianglerighteq y,z}&\trianglerighteq_y=B_{x,z}B_{y\,\trianglerighteq x,z}\,\trianglerighteq x}A_{x\,\trianglerighteq z,y\,\trianglerighteq z},\\ B_{x,y}A_{y,z}B_{x\,\trianglerighteq y,z}&\trianglerighteq_y=B_{x,z}A_{y\,\trianglerighteq x,z}\,\trianglerighteq x}B_{x\,\trianglerighteq z,y\,\trianglerighteq z},\\ A_{x,y}A_{y,z}B_{x\,\trianglerighteq y,z}&\trianglerighteq_y=B_{x,z}A_{y\,\trianglerighteq x,z}\,\trianglerighteq x}B_{x\,\trianglerighteq z,y\,\trianglerighteq z},\\ A_{x,y}A_{y,z}B_{x\,\trianglerighteq x,z}&\trianglerighteq_y=A_{x,z}B_{y\,\trianglerighteq x,z}\,\trianglerighteq z}A_{x\,\trianglerighteq z,y\,\trianglerighteq z}+A_{x,z}A_{y\,\trianglerighteq x,z}\,\trianglerighteq x}B_{x\,\trianglerighteq z,y\,\trianglerighteq z}\\ &\quad +\delta A_{x,z}B_{y\,\trianglerighteq x,z}\,\trianglerighteq x}B_{x\,\trianglerighteq z,y\,\trianglerighteq z}+B_{x,z}B_{y\,\trianglerighteq x,z}\,\trianglerighteq x}B_{x\,\trianglerighteq z,y\,\trianglerighteq z},\\ B_{x,z}A_{y\,\trianglerighteq x,z}\,\trianglerighteq x}A_{x\,\trianglerighteq z,y\,\trianglerighteq z}=B_{x,y}A_{y,z}A_{x\,\trianglerighteq y,z}\,\trianglerighteq y}+A_{x,y}B_{y,z}A_{x\,\trianglerighteq y,z}\,\trianglerighteq y}\\ &\quad +\delta B_{x,y}B_{y,z}A_{x\,\trianglerighteq y,z}\,\trianglerighteq y}+B_{x,y}B_{y,z}A_{x\,\trianglerighteq y,z}\,\trianglerighteq y}. \end{split}$$

Note that w and δ are determined by A and B.

If $\beta = (A, B)$ is an X-bracket taking values in a ring R, the value on a link L of the link invariant defined by β is the multiset

$$\Phi_X^{\beta}(L) = \{\beta(f) : f \text{ is an } X\text{-coloring of } L\}.$$

Note that
$$\Phi_X^{\beta}$$
 enhances $\Phi_X^{\mathbb{Z}}$ since $\left|\Phi_X^{\beta}(L)\right| = \Phi_X^{\mathbb{Z}}(L)$.

Examples of Biquandle Brackets

- ▶ The Jones Polynomial: Let $X = \{x\}$ be the trivial biquandle, let $R = \mathbb{Z}\left[q^{\pm 1}\right]$, and let $A_{x,x} = q$ and $B_{x,x} = q^{-1}$.
- Let X be the constant action biquandle with set $X = \{1, 2\}$ and action $\sigma = (1\ 2)$. Then the following matrix defines a biquandle bracket taking values in \mathbb{Z}_5 :

$$[A \mid B] = \left[\begin{array}{cc|c} 1 & 3 & 4 & 2 \\ 4 & 1 & 1 & 4 \end{array} \right]$$

There are a lot of other biquandle brackets!

A Brief Digression...

If H is a group and S is a commutative ring, an H-graded S-module is a direct sum $M = \bigoplus_{h \in H} M_h$, where M_h is an S-module for each $h \in H$. For any $a \in M_h$, we say $\deg(a) = h$.

The graded dimension of M is $rdim(M) = \sum_{h \in H} h \operatorname{rank}(M_h)$.

A cochain complex of H-graded S-modules is a sequence $C = (C^i)_{i \in \mathbb{Z}}$ of H-graded S-modules along with differentials $d^i : C^i \to C^{i+1}$ such that $d^{i+1} \circ d^i = 0$ for all $i \in \mathbb{Z}$.

The Euler Characteristic of C is $\chi(C) = \sum_{i \in \mathbb{Z}} (-1)^i \operatorname{rdim} (C^i)$.

Note: if d is degree-preserving, then $\chi(\mathcal{H}) = \chi(\mathcal{C})$, where \mathcal{H} is the cohomology of \mathcal{C} .

Khovanov Homology (Khovanov, 2000)

(image from Bar-Natan, 2001)

Begin with $\beta = (A, B)$, an X-bracket taking values in R.

Let
$$q_{x,y} = -\frac{B_{x,y}}{A_{x,y}}$$
 for all $x, y \in X$.

Let x_0 be some distinguished element of X, and let $q=q_{x_0,x_0}$.

Let G be the group $\langle qq_{x,y}^{-1}: x,y \in X \rangle \leq R^{\times}$.

Let S be the R^{\times} -graded group algebra $\mathbb{Z}[G]$, with the R^{\times} -grading given by $\deg(g)=g$ for all $g\in G$.

Let M be the R^{\times} -graded S-module $S[t]/(t^2)$ with the additional grading given by $\deg(1)=q$ and $\deg(t)=q^{-1}$.

 ${\it M}$ is a Frobenius algebra with the following multiplication and comultiplication operations:

$$m: M \otimes M \to M$$

$$m: 1 \otimes 1 \mapsto 1, \qquad 1 \otimes t \mapsto t,$$

$$t \otimes 1 \mapsto t, \qquad t \otimes t \mapsto 0$$

$$\Delta:M\to M\otimes M$$

$$\Delta: 1 \mapsto 1 \otimes t + t \otimes 1, \qquad t \mapsto t \otimes t$$

Let L be a link and let f be an X-coloring of L...

$$\left\{ -B_{x,y}A_{y,z}A_{z,x} \right\} \qquad \left\{ \begin{matrix} M \otimes M \\ B_{x,y}B_{y,z}A_{z,x} \right\} \\ \\ \left\{ A_{x,y}A_{y,z}A_{z,x} \right\} \\ \\ \left\{ -A_{x,y}B_{y,z}A_{z,x} \right\} \\ \\ \left\{ -A_{x,y}B_{y,z}A_{z,x} \right\} \\ \\ \left\{ -A_{x,y}B_{y,z}B_{z,x} \right\} \\ \\ \left\{ A_{x,y}B_{y,z}B_{z,x} \right\} \\ \\ \left\{ A_{x,y}B_{y,z}B_{x,x} \right\} \\ \\ \left\{ A_{x,y}B_{x,x} \right\} \\ \\ \left\{ A_{x,y}B$$

Now we have $\tilde{C}_{\beta}(f)$, an R^{\times} -graded cochain complex.

Let $C_{\beta}(f)$ be the shifted cochain complex,

$$C_{\beta}(f) = \tilde{C}_{\beta}(f) [n_{-}] \{ (-1)^{n_{-}} w^{-n_{+}} w^{n_{-}} \},$$

where n_{\pm} is the number of positive/negative crossings in the link.

Finally, take the cohomology of $C_{\beta}(f)$ to obtain a complex $\mathcal{H}_{\beta}(f)$.

The multiset

$$Bh_{\beta}(L) = \{\mathcal{H}_{\beta}(f) : f \text{ is an } X\text{-coloring of } L\}$$

is an invariant of links.

What we had:

What we want:

What we got:

The Euler characteristic of $Bh_{\beta}(L)$ is actually $rdim(S) \cdot \Phi_{X}^{\beta}(L)$.

This factor of rdim(S) cannot always be removed to yield $\Phi_X^{\beta}(L)$.

In fact, $Bh_{\beta}(L)$ is isomorphic to a quotient of Kh(L) shifted by

$$\mathsf{rdim}(S) \cdot \prod_{\tau^+} \left(A_{x,y} A_{x_0,x_0}^{-1} \right) \cdot \prod_{\tau^-} \left(B_{x,y}^{-1} B_{x_0,x_0} \right).$$

This shift is the value of a biquandle 2-cocycle invariant which takes values in R^{\times}/G .

Further Questions

Does the $\bigstar_{\beta}(L)$ invariant exist?

How does the power of $Bh_{\beta}(L)$ compare to Kh(L) and $\Phi_{X}^{\beta}(L)$?

More specifically, how does the power of the biquandle 2-cocycle invariant discussed above compare to $\Phi_X^{\beta}(L)$?