## Videojuego para el Aprendizaje de las Estructuras de Datos

Juan Sebastián Cabezas Mateus Raúl Mauricio Peña Losada Juan Diego Ramírez Lemos Santiago Rodríguez Vallejo







### Problema a resolver

 Aprender y aplicar los conceptos que esta área comprende debería ir mucho más allá de solo presentarlo a los estudiantes como herramientas teóricas que probablemente no sabrán en qué situaciones y de qué formas pueden llegar a aplicarlas.

#### Solución:

La creación de un videojuego que utilice conceptos y mecánicas similares a las utilizadas en el curso puede ayudar en el aprendizaje de las estructuras de datos familiarizando a los jugadores con el pensamiento lógico para dichas estructuras.





### **Requerimientos funcionales**

Requerimientos ya definidos:

• Iniciar juego/Registro.

• Puntajes/Récords.

Pausa/Menú.

Confirmar Entrada.









### **Requerimientos funcionales**

#### **Nuevo Nivel:**





## $\forall$

# Uso de estructuras de datos en la solución del problema a resolver

Se implementan los árboles en este nuevo nivel:

 Cola de Nodos:
Los nodos que se insertan al cañón serán guardados en una cola, usando el principio FIFO.







# Uso de estructuras de datos en la solución del problema a resolver

### Árbol:

El árbol a llenar cumple con ser AVL y por ende BST, cumple con métodos para verificar la entrada del usuario.







# Uso de estructuras de datos en la solución del problema a resolver

#### Botones:

Drop suelta el nodo que tiene cargado el cañón, mientras que Break puede eliminar un nodo del árbol. Check verifica la entrada del usuario.







### Pruebas y análisis comparativo del uso de las estructuras de datos

| Insert          |              |             |  |
|-----------------|--------------|-------------|--|
| Número de datos | Runtime (ms) | Memory (MB) |  |
| 1000            | 208          | 5           |  |
| 10000           | 3880         | 71          |  |
| 50000           | 94068        | 111         |  |
| 100000          | 413149       | 118         |  |
| 150000          | 926950       | 130         |  |
| 200000          | 1406521      | 142         |  |
| 1000000         | inf          | 11000       |  |

| Delete          |              |             |  |
|-----------------|--------------|-------------|--|
| Número de datos | Runtime (ms) | Memory (MB) |  |
| 1000            | 191          | 12          |  |
| 10000           | 7885         | 14          |  |
| 50000           | 154217       | 113         |  |
| 100000          | 607823       | 122         |  |

| Find (entre 20k datos) |              |             |  |  |
|------------------------|--------------|-------------|--|--|
| Número de búsquedas    | Runtime (ms) | Memory (MB) |  |  |
| 1                      | 1            | 16          |  |  |
| 10                     | 2            | 16          |  |  |
| 100                    | 16           | 16          |  |  |
| 1000                   | 167          | 23          |  |  |
| 5000                   | 830          | 52          |  |  |
| 10000                  | 1944         | 88          |  |  |
| 15000                  | 3142         | 124         |  |  |
| 20000                  | 3538         | 36          |  |  |
|                        |              |             |  |  |





### Pruebas y análisis comparativo del uso de las estructuras de datos





