Випромінювання заряду

1

Розглянемо електричне поле, точкового заряду q. Якщо заряд перебуває в стані спокою, його електростатичне поле описується радіальними силовими лініями, що виходять із заряду.

Нехай у момент часу t=0 заряд під дією зовнішньої сили починає рухатися з прискоренням a, а через деякий час τ дія сили припиняється, після чого заряд рухається рівномірно зі швидкістю $v=a\tau$. Графік швидкості руху заряду наведено на рис.

Випромінювання заряду

0

Розглянемо електричне поле, точкового заряду q. Якщо заряд перебуває в стані спокою, його електростатичне поле описується радіальними силовими лініями, що виходять із заряду.

Нехай у момент часу t=0 заряд під дією зовнішньої сили починає рухатися з прискоренням a, а через деякий час τ дія сили припиняється, після чого заряд рухається рівномірно зі швидкістю $v=a\tau$. Графік швидкості руху заряду наведено на рис.

Математичні викладки

Напруженість електричного поля хвилі E_{\perp} спадає як 1/r, на відміну від електростатичного поля E_{\parallel} , яке спадає як $1/r^2$. Це пояснюється законом збереження енергії: енергія хвилі розподіляється по поверхні сфери ($\propto r^2$), а густина енергії $\propto E^2$. Таким чином, $E_{\perp} \propto 1/r$. Крім того, E_{\perp} у момент часу t залежить від прискорення заряду a в момент t-r/c, оскільки хвиля досягає точки через час r/c.