

Authors: Yu Ting Hu Wu

Mónica Graciela Duarte Arrieche

Date: 29-Sep-2022

Table of Contents

- Why SkillScanner?
- Technology Stack
- Project Overview
- Exploratory Data Analysis
- Predictive Modeling
- 6 SkillScanner User Interface

Why SkillScanner?

```
LRL = input()
if URL[-1] == "/
    url_namertRi.aplit('in/')[-1].aplit('/')[0]
   url_namerURL.aplit('in/')[-1]
profile = api.get profile(url name)
skills profile = api.get profile skills(urn id-profile['entityUrn'].split('urn:li:fs profile:')[1])
skill_list = [dicc['nume'] for dicc in skills_profile]
dicc skills {key: 0 for key in list(jobs data.columns)}
 text = '.join(map(str,skill_list )
d = path.dirneme(_file_) if _file_ is locals() else os.getcsd()
cloud mask = np.array(Inage.coen(path.join(d, "oval.org")))
mask = np.array(Image.open("oval.png"))
wordcloud = WordCloud( background_color="white", max_words=1000, mask-mask
plt.imshow(wordcloud, interpolations"bilinear")
plt.newefig('wordcloud.png')
plt.shpe()
for i in list(jobs_data.columns):
       dicc skill[i] = 1
dicc_skill['R'] = int(dicc_skill['R'
dicc_skill['C']= np.where(nf.find_only_shole_word("c", text), int(1), int(0))
dicc_skill['ML']: np.where(nf.find_only_whole_word("nl", text), int(1), int(0))
for key, val in dicc_skill.items():
       print("+",key)
 if sum(list(dicc_skill.values())) < 4 :
    jobs data = jobs data.append(dicc_skill, ignore_index=True)
    production = jobs_data.tail(1)
    X_prod = production.drop(target, axis=1)
    y = production[target]
    y prod: final model.predict(X prod)
    results = pd.DataFrame(final model.predict probs(X prod), columns = ['Data Analyst', 'Data Engineer', 'Data Scientist'],)
```

PUILIGHT ON BIG DAIA

ARTWORK Tamar Cohen, Andrew J Buboltz 2011, silk screen on a page from a high school yearbook, 8.5" x 12"

Data Scientist: The Sexiest Job of the 21st Century

Meet the people who can coax treasure out of messy, unstructured data. by Thomas H. Davenport and D.J. Patil

70 Harvard Business Review October 2012

Technology Stack

- Programming Language
 - ✓ Python
- Libraries
 - ✓ Numpy
 - ✓ Pandas
 - ✓ Pickle
 - ✓ Regex
- Data collection
 - ✓ API REST Linkedin
 - ✓ Web Scrapping Glassdoor

- ✓ Pandas Profiling
- ✓ Plotly Express
- Predictive Modeling
 - ✓ Scikit-Learn

Project Overview

SkillScanner Project RoadMap

Identify skills in

Identify role skills, which will serve as input for supervised classification algorithms.

iiii plotly **EDA**

Get data from job offers data and make data-driven insights by means of EDA

ML Modeling

learn

Build Machine Learning models to make a prediction of how a profile fits in each of the job roles

SkillScanner

Develop a product that is able to:

- ✓ Scan skills from a Linkedin profile.
- ✓ Identify in-demand skills in Data.
- ✓ Predict its best job role fitting.

Exploratory Data Analysis

Classification models process

Feature Engineering

- ✓ Label Assignation
- **✓** Feature Encoding
- ✓ Feature Importance
- **✓** Feature Selection

Preprocessing

- ✓ Split data (80-20)
- ✓ Check data balance
- ✓ Feature Scaling

Hyperparameter tuning

- ✓ Grid Search
- ✓ Cross Validation
- ✓ Multiclass parameters

Training & Testing

- Model Training (80)
- Model Testing (20)
- ✓ Production simulation with unknown data

Evaluation

- Evaluation metrics selection
- Results comparison and evaluation
- Confusion Matrix

Accuracy	Precision	Recall	f1	Set	Model
0.644505	0.644505	0.644505	0.644505	test	Logistic Regression
0.650856	0.650856	0.650856	0.650856	train	Logistic Regression
0.634337	0.634337	0.634337	0.634337	test	Knn
0.677359	0.677359	0.677359	0.677359	train	Knn
0.647243	0.647243	0.647243	0.647243	test	PCA + Logística
0.650367	0.650367	0.650367	0.650367	train	PCA + Logística
0.678138	0.678138	0.678138	0.678138	test	Random Forest
0.718924	0.718924	0.718924	0.718924	train	Random Forest
0.688307	0.688307	0.688307	0.688307	test	Gradient Boost
0.753350	0.753350	0.753350	0.753350	train	Gradient Boost
0.678530	0.678530	0.678530	0.678530	test	XGB
0.722054	0.722054	0.722054	0.722054	train	XGB

SkillScanner User Interface

With SkillScanner, you can:

- ✓ Scan all skills from any Linkedin profile
- ✓ Identify in-demand skills
- ✓ Predict what job role fits you best!

... in less than 30 seconds!

