Nom:
Prénom:
Groupe:

Controle intermédiaire 2 ANA4

					4
Р	а	rt	1	e	1

Dans chacun des cas suivants, dire lequel des deux Fubini est le plu	is approprié au
calcul	
de l'intégrale [[flu] dudud assur Continue su l'	

de l'intégrale $\iiint_{\Omega_i} f(x,y,z) dx dy dz$ où: f est une fonction continue sur \mathbb{R}^3 .

et
$$i \in \{1, 2, 3, 4\}$$
.

1) $\Omega_1 = \langle$	(x,y,z)	$\in \mathbb{R}^3$ /	$x^2 + y^2$	≤ 1	et 0	$\leq z$	$\leq 1 + j$	1).
-------------------------	---------	----------------------	-------------	-----	------	----------	--------------	-----

2) $\Omega_2 = \{(x, y, z) \in \mathbb{R}^3 / 0 \le y \le 1 \text{ et } x^2 + z^2 \le 1\}.$

3) $\Omega_3 = -$	(x,y,z)	$\in \mathbb{R}^3 / 0$	$\leq x \leq 1$,	$-1 \le y \le 1$	et $2 + y^2 \le$	$z \le 4 - y^2 $
-------------------	---------	------------------------	-------------------	------------------	------------------	------------------

4) \$24 est le domaine limite par le cone d'équation $z = \sqrt{x^2 + y^2}$,
le cylindre d'équation $x^2 + y^2 = 1$ et le paraboloide d'équation $z = 1 + x^2 + y^2$.
Pour Ω_4 , représenter d'abord le domaine, ensuite répondez à la question en la justifiant

1	

***************************************		*******************	
	•••••••••••		
• • • • • • • • • • • • • • • • • • • •	*********************		
••••••	**********************		

Partie 2

Répondez par vrai ou faux en justifiant votre réponse.

$\bigstar \forall f,g \in R_{loc}[a,b[:]$
1) Si $\int_{a}^{b} f(t)dt$ converge et $\int_{a}^{b} g(t)dt$ diverge alors $\int_{a}^{b} (f(t) + g(t))dt$ diverge.
2) Si $\forall t \ f(t) \leq g(t) \leq 0 \ \text{et} \int_a^b f(t)dt$ converge alors $\int_a^b g(t)dt$ converge.
3) $\forall \lambda \in \mathbb{R}, \int_{a}^{b} f(t)dt$ est de même nature que $\int_{a}^{b} \lambda f(t)dt$.
$\bigstar \forall f \in R_{loc}[a,b] - \{c\} :$
4) Si $\int_{a}^{c} f(t)dt$ converge et $\int_{c}^{b} f(t)dt$ converge alors $\int_{a}^{b} f(t)dt$ converge.
5) Si $\int_{a}^{c} f(t)dt$ diverge et $\int_{a}^{b} f(t)dt$ diverge alors $\int_{a}^{b} f(t)dt$ diverge.
$\bigstar \ \forall f \in R_{loc}[a, +\infty[f \geq 0]]$
6) Si $\lim_{t \to \infty} f(t) = +\infty$ alors $\int_{0}^{+\infty} f(t)dt$ diverge.
$t \rightarrow +\infty$ a

7) Si $\lim_{t \to +\infty} f(t) = 0$ alors $\int_{a}^{+\infty} f(t)dt$ converge.

.....

 $\forall f \in R_{loc}$] $-\infty$, $+\infty$ [\vdots

8)
$$\int_{-\infty}^{+\infty} f(t)dt = \lim_{x \to +\infty} \int_{-x}^{x} f(t)dt.$$

.....

Exercice 2 6points

1) Calculer $I = \iiint (x+1)(3z+1)dxdydz$.

où
$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 / (x+1)^2 + (\frac{y}{2})^2 + (3z+1)^2 \le 1 \right\}$$
.

2) Pouvait on trouver la valeur de I sans faire aucun calcul?

Exercice 3 4 points

Etudier la nature des intégrales généralisées (convergence et convergence absolue)

$$1) \int_{0}^{+\infty} \frac{e^{-t}}{|Log(t)|^{\frac{1}{2}}} dt$$

$$2)\int_{0}^{+\infty} (e^{\frac{\sin t}{t}} - 1)dt.$$