An Autonomous Institute under MAKAUT

B.TECH/CSE/EVEN/4TH SEM/R_21/ CS402/2022-2023 YEAR: 2023

Design & Analysis of Algorithms CS402

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

GROUP - A (Multiple Choice Type Questions)

SL	1. Answer any <i>ten</i> from the following, Ques		h question: Marks	10×1=10 Co	Blooms Taxonomy Level
(i)	Which of the following are algorithm? a. Algorithm should be cleated by the Algorithm should be unated. Algorithms must terminate steps. d. All of the above	ur umbiguous	1	1	1
(ii)	An algorithm should have _inputs. a. 0 c. 0 or more	b. 1 d. 1 or more	1	1	1
(iii)	The measure of the longest taken to complete an algori a. Little-O c. Big-Omega	1	1	1	1
(iv)	Potential function method is the technique that performs an amortized analysis based on a. Financial model b. Computational model c. Algorithm analysis d. Energy model		1	1	2
(v)	is not a balanced search a. AVL tree c. Red-black tree	h tree. b. Binary tree d. B-tree	1	1	2
(vi)	Which of the given options	provides the increasing	1	2	4
				Page 1	of 4

Page I o

An Autonomous Institute under MAKAUT

	order of asymptotic co and f4? f1(n) = 2n f2(n) = n(3/2) f3(n) = n*log(n) f4(n) = nlog(n)	omplexity of functions f1, f2, f3,	
	a) f3, f2, f4, f1 c) f2, f3, f1, f4	b) f3, f2, f1, f4 d) f2, f3, f4, f1	
(vii)	Which algorithm find source shortest path p a. Prim's c. Kruskal's	s the solution for the single- roblem fora tree? b. Dijkstra's d. Huffman code	1
(viii)		f the algorithm is the the element and the array given. b. Greedy d. Insertion sort	1
(ix)	An algorithm that def is called algorithma. NP-hard c. non-deterministic	ines every operation exclusively n. b. Deterministic d. NP-complete	1
(x)	Which of the following worst-case time compa. Merge Sort c. Quick Sort	ng sorting algorithms has a plexity of O(n^2)? b. Heap Sort d. Bubble Sort	1
(xi)		m rithm gorithm	1
(xii)	Which of the following for implementing a ha	ng data structures is best suited	1

An Autonomous Institute under MAKAUT

a. Array Queue

b. Linked list

c. Stack

d.

using

GROUP - B (Short Answer Type Questions) (Answer any three of the following) $3 \times 5 = 15$

(Answer any three of the following) $3 \times 5 = 15$					
S	SL	Question	Marks	Co	Blooms Taxonomy Level
2.		Write a recursive algorithm to find the solution of the following series: $F(x) = 1+2+3+4+5++n$.	5	1	1
3.		Write a recursive algorithm for calculating the factorial of a number.	5	1	1
4.		Find optimal solution to the knapsack problem instance n=6, m=15, $(p1p6) = (10,5,15,7,6,18)$, $(w1w6) = (2,3,5,7,1,4)$	5	2	2
5.		Differentiate between DFS and BFS with example.	5	3	1
6.		Show the solution space of 4 queen problem and Find the all possible set.	5	4	1
		GROUP – C (Long Answer Type Questions)			
		(Answer any three of the following) $3 \times 15 = 45$			
	SL	Question	Marks	Co	Blooms Taxonomy Level
7.	(i)	State Master Theorem. Solve the recurrence relation using Master Theorem: $T = 2(T/2) + n^2 + 2n + 55$	2+5	1	1
	(ii)	Find all m-colors of a graph with undirected	8	3	1

2

5+2 4

connections $v1 \rightarrow v2$, $v1 \rightarrow v3$, $v1 \rightarrow v4$, $v2 \rightarrow v3$,

Write down the algorithm for Floyd Warshall

algorithm. Discuss the time complexity.

 $v2 \rightarrow v5$, $v3 \rightarrow v4$, $v4 \rightarrow v5$

v2**→**v4,

8.

(i)

backtracking technique.

An Autonomous Institute under MAKAUT

(ii) Consider an example and solve it through the 8 4 2 above algorithm.

9. (i) Five Jobs with following deadlines and profits.
JobID Deadline Profit

100

19

27

fits.	5	4	1

d 1 25 e 3 15

(ii) What is spanning tree? Which spanning tree?

2

1

2

a b

c

- What is spanning tree? Which spanning tree

 algorithm is more efficient and why? Give proper
 justification with example.
- Solve Maxflow Mincut theorem with the 15 5 3 following examples:

Write a short note on: Dynamic Programming, 5x3 5 2
Relation between P, NP, and NP Hard Class,
Backtracking.