

第三讲 数论连环拳

【例 1】	不定方程 $3x^2 + 7x$	xy - 2x - 5y - 17 = 0	的全部正整数解(z	(x,y)的组数为()
	A. 1	B. 2	C. 3	D. 4	
	设 <i>n</i> 为正整数, 若那么所有好数的和A. 33	7为()	中质数的个数等于 C. 2013	合数的个数,则称, D. 2014	1为好数,
			三个相邻数中,中间 3 2014 个数的和等 [。] C. 0		 有数的和,
【例 4】按右边算式,则最后一排的数字为					
		G52E	ì		
	×)	3F	`		
		0608	3		
		1002		Hi	
	a 7	0000			
		55111			
【例 5】	在0,1,2,	.50 这 51 个数中,	能同时被 2,3 整	除的数有个	••
	时后,部分同学被 工作,3 小时候,	皮分派去做其他工作 又有相同数量的同	ī浇水,每位同学每 作,2 小时后,相同 学被分派去做其他 内浇完的小树苗为_	同数量的同学被分测 工作,浇完这些小村	《去做其他
		周五、周六出现 日,则该月份一定 ²	的天数比周日多,原 不是()	周一、周二、周三、	周四出现

A. 三月 B. 四月 C. 六月 D. 十一月

【例 8】若正整数n有 6个正约数 (包括 1 和本身),称其为好数,则不超过 50 的好数共有个.

【例 9】设
$$x_1$$
 , x_2 , x_{2014} 都是 +1 或 -1 , 证明 :
$$x_1 + 2x_2 + 3x_3 + \dots + 2014 x_{2014} \neq 0$$

- 【例 10】用[a]表示不大于a的最大整数,已知x,y满足 $\begin{cases} [x]-y=3\\ 2[x-2]+y=5 \end{cases}$,求[x+y]的值.
- 【例 11】定义运算: x*y=ax+y+bxy, 且 2*3=13, 3*4=22, 若非负整数 m,n 满足 m*n=17, 求 m 和 n 的值.
- 【例 12】设实数 x_1 , x_2 , x_n ($n \ge 4$) 的绝对值均为 1,且 $x_1x_2x_3x_4+x_2x_3x_4x_5+\cdots x_nx_1x_2x_3=1$,求证: 4|n-1 .