Câu Hỏi Về Deadlock

- 1. What is a race condition? Give an example
- 2. What is deadlock? What is startvation? How do they differ from each other?
- 3. What are the four condtions required for deadlock to occur?
- 4. Describe four general strategies for dealing with deadlocks.
- 5. For single unit resources, we can model resource allocation and requests as a directed graph connecting processes and resources. Given such a graph, what is involved in deadlock detection.
- 6. Is the following system of four processes with 2 resources deadlocked?

Current allocation matrix

P1 1 3

P2 4 1

P3 1 2

P4 2 0

Current request matrix

P1 1 2

P2 4 3

P3 1 7

P4 5 1

Availability Vector

14

If the availability vector is as below, is the system above still deadlocked? 2.3

- 7. What must the banker's algorithm know a priori in order to prevent deadlock?
- 8. Describe the general strategy behind dealock prevention, and give an example of a practical deadlock prevention method.
- 9. Describe four ways to *prevent* deadlock by attacking the conditions required for deadlock.
- 10. Answer the following questions about the tables.
 - a. Compute what each process still might request and display in the columns labeled "still needs".
 - b. Is the system in a safe or unsafe state? Why?
 - c. Is the system deadlocked? Why or why not?
 - d. Which processes, if any, are or may become deadlocked?
 - e. Assume a request from p3 arrives for (0,1,0,0)
 - 1. Can the request be safely granted immediately?
 - 2. In what state (deadlocked, safe, unsafe) would immediately granting the request leave the system?
 - 3. Which processes, if any, are or may become deadlocked if the request is granted immediately?

available

r1 r2 r3 r4

2 1 0 0

current allocation maximum demand									still needs			
process r1		r2	r3	r4	r1	r2	r3	r4	r1	r2	r3	r4
p1	0	0	1	2	0	0	1	2				
p2	2	0	0	0	2	7	5	0				
p 3	0	0	3	4	6	6	5	6				
p4	2	3	5	4	4	3	5	6				
p5	0	3	3	2	0	6	5	2				
current allocation maximum demand still needs												

process r1 r4 r2 r3 r4 r1 r2 r3 r4 r2 r3 r1 2 0 0 2 0 0 0 0 **p**1 0 0 1 1 **p**2 2 0 0 0 2 7 0 0 7 5 0 4 6 6 5 6 6 6 2 **p**3 0 3 2 0 4 4 3 5 p4 3 5 6 2 0 0 2 2 6 3 3 2 0 5 2 0 3 2 p5 0 0

11. When Is A System In Safe State?