Projet 4 : Anticipez les besoins en consommation électrique de bâtiments

Lancelot Leclerco

15 décembre 2021

Sommaire

- 1. Introduction
- 2. Nettoyage du jeu de données
- 3. Étapes des modélisations
- 4. Modélisation des émissions de carbone
- 5. Modélisation de la consommation énergétique
- 6. Conclusion

Introduction

Introduction

Problématique

- Objectif de la ville de Seattle : atteindre la neutralité en émissions de carbone
- La ville s'intéresse aux émissions des batiments non destinés à l'habitation
- Pour cela des relevés de consommation ont été réalisés mais ils sont couteux à obtenir
- Est-il possible de prédire les émissions et de la consommation d'énergie pour des batiments pour lesquels les relevés n'ont pas été réalisé à partir des relevés déjà obtenus

Jeu de données

- Base de données issue de l'initiative de la ville de Seattle de proposer ses données en accès libre (Open Data)
- Données concernant les batiments de la ville, caractérise :
 - le type,
 - la surface,
 - le nombre d'étages,
 - la consomation énergétique,
 - les émissions de carbone.
 - -
- Données des années 2015 et 2016

Nettoyage du jeu de données

Nettoyage du jeu de données

Nettoyage du jeu de données : Correction et selection des données

- Nettoyage des valeurs négative pour la surface des batiments/parkings, la consommation et les émissions
- Correction du nombre de d'étages aberrant pour certains batiments
- Correction du nombre de batiment nul par 1

- Conservation des variables ayant plus de 50% de données
- Suppressions des variables étant des relevés afin de voir si notre modèle peut s'en passer

Nettoyage du jeu de données : Selections des variables

RFE et matrice de corrélation

Variables pertinentes pour les émissions

Variables pertinentes pour la consommation

- Selection des variables les plus pertinentes par elimination recursive des variables (RFE)
- Réduction efficace pour les émissions
- Pas de réel changement de RMSE pour la consommation

Nettoyage du jeu de données : Selections des variables BEF et matrice de corrélation

Variables pertinentes pour les émissions

- Observation des résultats de RFE par les matrices de corrélation
- Les variables les plus corrélées sont communes aux deux sélection
- Conservation de 6 variables jugées pertinentes

Variables pertinentes pour la consommation

Nettoyage du jeu de données : Selections des variables PCA

- Le graphique de la variance expliquée cumulée nous montre que 99% de la matrice est exliquée avec 5 variables
- Les quatres variables les plus corrélées se retrouvent sur l'axe F1
- L'EnergyStar score semble avoir une certaine importance car il explique une grande partie de l'axe F3

Étapes des modélisations

Étapes des modélisations

Étapes des modélisations

Afin de comparer les différents modèles

- split commun à chaque modèle (varie selon la variable modélisée)
- boucle pour chaque modèle
 - création d'un pipeline : scaling et fit du modèle
 - scaling par RobustScaler car plus résistant aux valeurs aberrantes selon la documentation
- la boucle retourne :
 - la RMSE en fonction du paramètre le plus évolutif
 - le(s) meilleur(s) paramètre(s)
 - le R², la RMSE, la MAE (mean absolute error) et le temps de calcul du modèle

Modélisation émissions

Modélisation émissions

Modèle Ridge

Variable non modifiée

\Leftarrow				
R²	RMSE	MAE	MAE%	FitTime(s)
0.24	423.80	150.95	5.72	0.01
parame	ètre Ri	dge()		
alpha	509	94.14		

				\Rightarrow
R²	RMSE	MAE	MAE%	FitTime(s)
0.16	487.86	135.35	2.12	0.02
			paramètre	Ridge()
			alpha	6428.07
		_		\Rightarrow

 Modèle de régression linéaire introduisant un coefficient cherchant à minimiser l'erreur quadratique

Variable au log

TotalGHGEmissions_pred

Modèle Lasso

Variable non modifiée

Visualisation des données de TotalGHGEmissions

R² RMSE MAE MAE% FitTime(s) 0.26 417.95 150.97 5.52 0.02

0.20	417.00	
paramètr	e Lass	io()
alpha	178	.86

R²	RMSE	MAE	MAE%	FitTime
0.12	490.73	136.13	2.25	0.

paramètre	Lasso()
alpha	0.34

- Similaire à la regression ridge
- Coefficient est réduit à zéro pour les variables peu corrélées
- Peut être utilisé pour la sélection de feature

Modèle ElasticNet

Variable non modifiée

alpha

R² RMSE MAE MAE% FitTime(s)
0.26 417.53 150.73 5.48 0.01

paramètre ElasticNet()

alpha 174.75
I1_ratio 1.00

ቒ

R ²	RMSE	MAE	MAE%	FitTime(s)	
0.16	487.75	134.58	2.13	0.02	

_	paramètre	ElasticNet()
Ī	alpha I1_ratio	1.29 0.10

 Combine les coefficients des regressions ridge et lasso

Modèle kNeighborsRegressor

Variable non modifiée

R² RMSE MAE MAE% FitTime(s) 0.26 418.44 119.52 1.99 0.02 paramètre KNeighborsRegressor() n_neighbors 3 3

R²	RMSE	MAE	MAE%	FitTime(s)
0.52	401.17	73.27	0.75	0.02
	paran	nètre	KNeighbors	Regressor()
	n_nei	ghbors		1

 Prédiction par interpolation avec les plus proches voisins dans le jeu de données

Modèle RandomForestRegressor

Variable non modifiée

RMSE du modèle RandomForestRegressor pour la variable TotalGHGEmissions avec le paramètre max_features=auto en fonction de l'hyperparamètre n. estimators

Visualisation des données de TotalGHGEmissions prédites par le modèle RandomForestRegressor()

R² RMSE MAE MAE% FitTime(s)

0.42	3/1.32	09.73	1.44	11.40
paramè	tre	RandomFor	estRegressor()	
n estim	ators	1000		_

auto

_

max features

R²	RMSE	MAE	MAE%	FitTime(s)
0.68	381.25	85.76	0.72	3.01
	paramètre	R	andomFores	tRegressor()

n_estimators 464 max_features sqrt

 \Longrightarrow

- Classification des valeurs à partir d'arbre de décision aléatoire
- Prédiction à partir de ces classifieurs

Variable au log

RMSE du modèle RandomForestRegressor pour la variable
TotalGHGEmissions_log avec le paramètre max_features=sqrt

Visualisation des données de TotalGHGEmissions_log prédites par le modèle RandomForestRegressor() ys les données test

Modèle AdaBoostRegressor

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle AdaBoostRegressor()

n estimators

R² RMSE MAE MAE% FitTime(s) 0.48 351.77 136.67 4.99 0.09 paramètre AdaBoostRegressor()

n_estimators loss	19 square	
←		

R²	RMSE	MAE	MAE%	FitTime(s)
0.36	404.36	118.82	1.27	0.09

paramètre	AdaBoostRegressor()
n_estimators loss	15 linear

- Même principe que les forêts aléatoires
- Utilisation d'apprenants faibles (modèles légèrement plus performant que la prediction aléatoire similaire à de petits arbre de décision)
- Les prédictions de ces apprenants sont combinées avec un coéfficient de poids
- À chaque itération le poids des mauvaises prédictions est augmenté ce qui pousse le modèle à se concentrer dessus

Variable au log

TotalGHGEmissions pred

Modèle GradientBoostingRegressor

Variable non modifiée

n estimators

R* RMSE MAE MAE% FitTime(s) 0.47 355.84 74.99 1.34 10.37 paramètre GradientBoostingRegressor() n_estimators 3162 squared_error

R²	RMSE	MAE	MAE%	FitTime(s)
0.63	340.24	71.60	0.80	55.91
	paramètre	Grad	dientBoosting	gRegressor()
	n_estimators loss	5623 hube		

- Similaire à AdaBoostRegressor
- Prend en compte une fonction objectif (loss fonction) plus complexe afin d'améliorer l'optimisation

Variable au log

n_estimator

Comparaison des résultats selon que la variable est au log ou non

- RandomForestRegressor, AdaBoostRegressor et GradientBoostingRegressor ont des erreur moins importantes et un R² plus grand quelque soit la variable modélisée
- KNeighborsRegressor est plus performant avec la variable au log
- Modèles linéaire : Ridge, Lasso et ElasticNet moins efficaces avec la variable au log
- Temps de modélisation de RandomForestRegressor et GradientBoostingRegressor plus importants que les autres
- Temps de modélisation de RandomForestRegressor avec la variable au log moindre qu'avec la variable non modifiée

Influence de l'EnergyStar score sur la prédiction des Émissions

- GradientBoostingRegressor avec la variable au log (RMSE la plus petite)
- L'EnergyStar score améliore la RMSE
- Amélioration des les autres mesures d'erreur et de corrélation

Modélisation consommation

Modélisation consommation

Modèle Ridge

Visualisation des données de SiteEnergyUse

Variable non modifiée

paramètre	Ridge()
alpha	3511.19

Variable au log

SiteEnergyUse_pred

RMSE

R²

Modèle Lasso

Variable non modifiée

0.34 17499302.40 5269886.33 1.88 0.0 paramètre Lasso() alpha 1000.00 \Rightarrow R² RMSE MAE MAE% FitTime(0.32 23496263.51 6175023.22 1.38

MAF

paramètre	Lasso()
alpha	0.12
	\Rightarrow

MAE%

Modèle ElasticNet

Variable non modifiée

alnha

paramètre	ElasticNet()
alpha	0.89
I1_ratio	0.10

Variable au log

Visualization des données de SiteEnergyUse prédites par le modèle ElasticNet() vs les données test 4004 300M 100M 100M

SiteEnergyUse_pred

15125790.61

0.75

0.55

Modèle kNeighborsRegressor

Variable non modifiée

R² RMSE MAF MAE% FitTime(0.15 19891776.59 4958197.14 1.14 0.0 KNeighborsRegressor() paramètre n neighbors \Rightarrow RMSE MAE% FitTime(R^2 MAF

paramètre	KNeighborsRegressor()
n_neighbors	1

2521110.46

Modèle RandomForestRegressor

Variable non modifiée

RMSE du modèle RandomForestRegressor pour la variable SiteEnergyl Ise avec le paramètre max features=log2 en fonction de l'hypernaramètre n' estimators - RMSE movenne --- ScoresSplit0 - ScoresSolit3 - ScoresSolit4

Visualisation des données de SiteEnergyUse prédites par le modèle RandomForestRegressor()

R² RMSE MAF MAE% FitTime(0.43 16255496.44 3079266.36 0.85

				em
·				\Rightarrow
\leftarrow				
max_features	log2			
n_estimators	10			
paramètre	Random	ForestRegresso	or()	

R²	RMSE	MAE	MAE%	FitTime(
0.80	16533804.87	2771107.51	0.51	2.7

paramètre	RandomForestRegressor()
n_estimators max_features	464 sqrt

Visualisation des données de SiteEnergyUse log prédites par le modèle RandomForestRegressor() vs les données test

Modèle AdaBoostRegressor

Variable non modifiée

n estimators

R² RMSE MAF MAF% FitTime(0.28 18239692.73 5482794.58 2.41 0.0 AdaBoostRegressor() paramètre n estimators 3 loss linear \Rightarrow R² RMSE MAE MAE% FitTime(0.57 17101356.19 4203072.55 0.83

parametre	Adaboostnegressor()		
n_estimators loss	21 exponential		

A-I-D---+D-----()

Visualisation des données de SiteEnergyUse log prédites par le modèle AdaBoostRegressor() vs les données test

Modèle GradientBoostingRegressor

Variable non modifiée

Visualisation des données de SiteEnergyUse prédites par le modèle GradientBoostingRegressor()

n estimators

R² RMSE MAF MAF% FitTime(7.9 0.43 16292946.43 2980171.79 0.90 paramètre GradientBoostingRegressor() n estimators 1000 loss huber \Rightarrow R² RMSE MAE% FitTime MAE 0.83 15038028.44 2135408.64 0.39 107

paramètre	GradientBoostingRegressor()	
n_estimators loss	10000 huber	

Visualisation des données de SiteEnergyUse_log prédites par le modèle GradientBoostingRegressor() vs les données test

Comparaison des résultats selon que la variable est au log ou non

- RMSE KNeighborsRegressor, RandomForestRegressor, AdaBoostRegressor et GradientBoostingRegressor inférieures avec la variable au log
- RMSE de RandomForestRegressor et GradientBoostingRegressor légèrement inférieures quelque soit la variable
- MAE de RandomForestRegressor et GradientBoostingRegressor plus significativement inférieures quelque soit la variable
- Temps de modélisation plus important pour GradientBoostingRegressor

Conclusion

Conclusion

Conclusion

- Découverte des différents modèles et de leur fonctionnement
- Obtention avec certains modèles d'une estimation avec moins de 1% d'écart à la moyenne absolue
- Si de nouveaux batiments ont été construits il peut être intéressant de rentrer leurs caractéristiques dans notre base de donnée et voir si on peut prédire leurs émissions et consommation quitte à faire des mesures pour estimer si ces prédictions sont bonnes