Abstract Algebra

Week 3 Notes (b)

shaozewxy

September 2022

Quotient Groups: Definitions and Examples

The study of **quotient groups** are essentially the study of **fibres** of ϕ i.e. the set of elements mapping to the same element under ϕ .

Basic properties of homomorphisms and fibres

Definition of quotient group

Given $\phi: G \to H$ be a homomorphism with kernel K. The **quptient group** \mathbf{G}/\mathbf{K} is the group whose element elements are fibres of ϕ with operation defined as:

$$X = \overline{a}, Y = \overline{b}, XY = \overline{ab}$$

We can also define a quotient group without spelling out the ϕ explicitly.

Properties of fibres and kernels

Given $\phi:G\to H$ a homomorphism with kernel K. Suppose $X\in G/K$ is a fibre above a, i.e. $X=\phi^{-1}(a).$ Then

1.
$$\forall u \in X, X = \{uk | k \in K\}.$$

$$2. \ \forall u \in X, X = \{ku | k \in K\}.$$

This is saying that if K is a kernel, then uK = Ku. Proof for this is obvious. The groups defined above can be generalized to any subgroup in G:

Definition of coset

Given $N \leq G, g \in G$, let

$$gN = \{gn | n \in N\}, Ng = \{ng | n \in N\}$$

these are called **left coset and right coset** respectively. Any element of a coset is called a **representative** of that coset.

With the definition, we can see that **fibres of homomorphisms** are just **left** cosets of kernels.

This enables us to define quotient groups without spelling out the homomorphisms explicitly as long as we know that K is a kernel:

Operations of cosets

Given G a group and K a kernel of some homomorphism from G. Then the set of left cosets of K with operations defined by

$$uK \circ vK = (uv)K$$

forms a group G/K.

Proof:

Given $X,Y\in G/K$ with $X=\phi^{-1}(a),Y=\phi^{-1}(b),$ we denote that $Z=XY=\phi^{-1}(ab).$ We NTS that $\forall u\in X,v\in Y,uv\in Z:$

Since
$$u \in X, v \in Y$$
, we know that $\phi(u) = a, \phi(v) = b$. Then $\phi(uv) = \phi(u)\phi(v) = ab \to uv \in Z = \phi^{-1}(ab)$.

Also NTS show that $\forall z = uvk \in Z = (uv)K, \exists u' \in X, v' \in Y$ such that z = u'v':

Since $z \in Z$, we know that $\phi(z) = ab$. Then choose $u \in X = uK, z = u \circ (u^{-1}z)$, we have

$$\phi(u)\phi(u^{-1}z) = a \circ \phi(u^{-1}z) = ab \to \phi(u^{-1}z) = b \to u^{-1}z \in Y.$$

Therefore we have shown that Z = uvK = XY = (uK)(vK).

Here we note that the multiplication of cosets is **independent of the choice** of representations.

We can therefore denote a coset $X = uK = \overline{u}$, then multiplication can just be written as \overline{uv} .

Next we show that G/K is well defined $\iff K$ is a kernel. Such a subgroup K is also called a **normal subgroup**.

Cosets form a partition

Given $N \leq G$, the set of left cosets of N form a partition of G. Furthermore $\forall u, v \in G, uN = vN \iff v^{-1}n \in N$.

Proof:

First $\forall g \in G, g \in gN$ since $1 \in N$. Therefore

$$G = \bigcup_{g \in G} gN$$

Then NTS that $uN \neq vN \rightarrow uN \cap vN = \emptyset$:

Suppose $\exists x \in uN, vN$, we claim that uN = vN:

Denote x = un = vm for some $n, m \in N$, then we have $u = vmn^{-1}$ with $mn^{-1} \in N$.

Therefore $\forall ut \in uN, ut = vmn^{-1}t \in vN$, i.e. $uN \subseteq vN$.

We can similarly prove $vN \subseteq uN$.

Therefore uN = vN.

Conditions for coset multiplication

Given $N \leq G$.

1. The multiplication

$$uN \cdot vN = (uv)N$$

is well defined $\iff \forall g \in G, n \in N, gng^{-1} \in N.$

2. If the operation is well defined, then left cosets of N is a group. With identity 1N and $(gN)^{-1} = g^{-1}N$.

Proof:

Suppose $\forall g \in G, n \in N, gng^{-1} \in N, \text{WTS } uN \cdot vN = (uv)N \text{ is well defined:}$

Given $u' = un \in uN, v' = vm \in vN$, NTS $u'v' \in (uv)N$:

 $u'v'=unvm=uv\cdot v^{-1}nvm$. Since $\forall g\in G, n\in N, gng^{-1}\in N$, we know that $\exists n'\in N$ such that $n'=v^{-1}nv$.

Therefore $u'v' = uv \cdot n'm \in (uv)N$.

Then suppose $uN \cdot vN$ well defined, WTS $\forall g \in G, n \in N, gng^{-1} \in N$:

Here given $g \in G$, we have $gN \cdot (g^{-1}N) = (gg^{-1})N = 1N$.

This means that $\forall n \in \mathbb{N}$, since $gn \in g\mathbb{N}, g^{-1} \in g^{-1}\mathbb{N}$, we know that $gng^{-1} \in \mathbb{N}$, i.e. $\exists n' \in \mathbb{N}$ such that $1 \cdot n' = n' = gng^{-1}$.

This complete the proof for 1. The proof for 2 is easy.

Definition of conjugate and normal

The element gng^{-1} is called the **conjugate** of $n \in N$ by g.

The set $gNg^{-1} = \{gng^{-1} | n \in N\}$ is called the **conjugate** of N by g.

The element g is said to **normalize** N if $gNg^{-1} = N$.

 $N \leq G$ is calle **normal** if every element normalizes N, written $N \leq G$.

Note that the structure of G is preserved in G/N.

Conditions for normal subgroups

Given $N \leq G$. The following are equivalent:

- 1. $N \leq G$
- 2. $N_G(N) = G$
- 3. $\forall g \in G, gN = Ng$
- 4. The coset multiplication for N make the cosets into a group.
- 5. $\forall g \in G, gNg^{-1} \subseteq N$.

Proof of this is done throughout this chapter.

In determining the normality of N, using generators can avoid a lot of computations since proving normality for each of the generators suffices to show normality of the whole group.

Now we prove the relation between kernel and normal subgroups:

Kernel and normal subgroups

 $N \leq G$ is normal \iff it is a kernel of some homomorphism.

Proof:

Suppose N is a kernel of ϕ , WTS $N \leq G$:

$$\forall g \in G, \phi(gng^{-1}) = \phi(g)\phi(n)\phi(g^{-1}) = \phi(g)\phi(g^{-1}) = 1 \rightarrow gng^{-1} \in N \text{ the kernel of } \phi.$$

Therefore $N_G(N) = G \to N \subseteq G$.

Suppose $N \subseteq G$, WTS $\exists \phi$ such that N is the kernel of ϕ :

Just use

$$\forall g \in G, \phi(g) = gN$$

The homomorphism defined above is special:

Definition of natural projection

Given $N \subseteq G$, then homomorphism $\pi: G \to G/N$ defined by $\pi(g) = gN$ is called the **natural projection** of G onto G/N.

The normalizer of a subgroup $N \leq G$ is a measure of how close N is to being normal.