

Network Infrastructures

A.A. 2023-2024 Prof. Francesca Cuomo

Outline

- Why FTTx
- How FTTx: PON
- Principles of Optical Fibre Systems
- PON characteristics (APON, BPON, EPON, GPON)
- Future: WDM PON
- Application
- Market (cost, unbundling)

Part of these slides are taken from:

Towards Fiber to the X (FTTX): Passive Optical Networks,

Francesco Matera Responsabile Area Tecnologie Reti di Nuova Generazione

mat@fub.it; +39 06 5480 2215

Main source: Project EU E-Photon/One+, Lessons from Prof. A. Pattavina, G. Maier, Politecnico di Milano

Access/backhoul

PSTN access-network Physical architecture

- Primary network
 - High sharing
 - Cost minimization
- Secondary network
 - Flexibility
 - Branching
- Cables
 - Primary
 - 2400-2000 pairs
 - In duct or pipe
 - Secondary
 - 100-10 pairs
 - Trenched or aerial
- Cascading more stages of cabinets is possible but rare

Telecom access networks

La rete accesso in rame oggi

- ~ 530.000 km cavo
- ~ 110.000.000 km coppia
- ~ 140.000 armadi
- ~ 5.500.000 distributori/terminazioni

Optical Fiber: Attenuation

- Single Mode Fiber (SMF) to achieve large distances
 - ITU G.652 SMF (STD)
 - "water peak" attenuation renders the 1360nm-1480nm spectrum unusable for data transmission
 - ITU G652c/d SMF (ZWP)
 - "zero-water peak"

Optical Fiber: Chromatic Dispersion

Lasers Diodes (LD)

- Fabry-Perot (FP)
 - Cheap
 - Noisy
 - Sensitive to chromatic dispersion
 - Used on 1310 nm
- Distributed Feedback (DFB)
 - More expensive
 - Narrow spectral width
 - Less sensitive to chromatic dispersion
 - Used on 1550 nm (or 1310 nm)

Passive Splitters

- The basic element consists of two fibers fused together
- Every time the signal is split two ways, the signal is reduced by 10log(0.5)=3dB
 - Loss ~3dB x log₂(#ONUs)

	Conventional	Low-loss
Splitter 1x2	3.7dB	3.4dB

Photodiodes (PD)

- PIN Photodiodes
 - Good optical sensitivity (~-22 dBm)
 - Silicon for shorter λ 's (eg 850nm)
 - InGaAs for longer λ 's (eg 1310/1550nm)
- Avalanche Photodiodes (APDs)
 - Higher sensitivity (~-30 dBm)
 - Primarily for extended distances in Gb/s rates
 - Much higher cost than PIN diodes

Transceiver Assumptions

	TX Power	RX Sensitivity
ONU (FP+PIN)	0 dBm	-22 dBm
OLT (DFB+APD)	1 dBm	-30 dBm

- □ Upstream (@1310nm) Power Budget = 30 dB
- Downstream (@1490nm) Power Budget = 22 dB

Fiber installation

La microtrincea come semplice ed economica soluzione per la diffusione della fibra ottica nella rete di accesso (from HighBand)

30-40 K €/km per microtrincea

Soffiaggio della fibra (ERICSSON)

a) Best current architecture

b) Fiber to the cabinet

d) Fiber to the building

e) Fiber to the home

Access capacities

GbE based: **FASTWEB**

Daisy chain architecture

First case in Europe:Fastweb 2000

FTTx = Fiber-to-the-x

- □ FTTH Home
- FTTC Curb
- FTTN Node or Neighborhood
- FTTP Premise
- FTTB Building or Business
- FTTU User
- FTTZ Zone
- FTTO Office
- ☐ FTTD Desk

Basic PON operations

■ The optical line terminal (OLT) broadcasts data downstream on 1,510 nm and the ONTs burst data back upstream on 1,310 nm in their assigned time slots.

Figure 1. A basic passive-optical-network operation enables service to as many as 32 optical-network terminals (ONTs). Each ONT, in turn, can be connected to multiple subscribers, making fiber more affordable for access networks.

Photonics Evolution

Time vs. Spectrum Sharing

- Downstream → point-to-multipoint network
 - The OLT manages the whole bandwidth
- □ Upstream → multipoint-to-point network
 - ONUs transmit only towards the OLT
 - ONUs cannot detect other ONUs transmissions
 - Data transmitted by ONUs may collide

Need of a channel separation mechanism to fairly share bandwidth resources

PON Overview

TDM-PONs

- Standardized
- Use few wavelengths (typically 2 or 3)
- Low cost and mature devices (splitters, lasers, etc.)
- Limited power budget
 - Maximum distances ≤ 20km, Split ratios ≤ 64
- Traffic distribution
 - Broadcast scheme in downstream
 - TDMA techniques in upstream
- Examples: APON/BPON, EPON & GPON

WDM-PONs

- Proposed in literature and/or demonstrated
- Introduce WDM techniques and devices (AWG)
- Long-reach and bandwidth
- Examples: CPON, LARNET, RITENET, Success-DWA...

Downstream Traffic Scheduling

- OLT schedules traffic inside timeslots
 -Time Division Multiplexing (TDM) scheme
- Time slots can vary from ~µs to ~ms

Upstream Traffic

- All ONUs share the same upstream channel
 - ONUs cannot exchange data directly
 - Collisions may occur at the splitter/combiner

Upstream Traffic Scheduling 2/4

- In general, PON standards propose Time Division Multiplexing Access (TDMA) schemes
 - Upstream time slicing and assignment

Upstream Frame Reception

- The OLT receives frames with different powers
 - Much difficult to recover synchronism (clock and data recovery)
 - Burst Mode Receiver (complex) @ OLT
 - Sets 0-1 threshold on a burst basis

Evolution of the standards

Fiber in the loop PON standardization: a brief history

- ATM PON (A-PON)
 - Traffic is carried using ATM raw-cell format and framing
 - 1982: idea of PON (British Telecom)
 - 1987 1999: PON testbeds by BT, Deutsche Telekom (Eastern Germany), NTT (Japan), BellSouth (Atlanta, USA)
 - 1995: 622 Mbit/s APON testbed (RACE BAF project)
 - 1996: beginning of Full Service Access Network (FSAN) works
 - 1997-'98: ACTS BONAPARTE and EXPERT/VIKING projects
- Broadband PON (B-PON)
 - APON system is standardized by ITU-T with a new name to indicate that the PON can offer full broadband service and not just ATM
 - Line rates: 155 Mbit/s symmetrical or 622/155 Mbit/s down/upstream;
 ONU/OLT max distance: 20 km; max. # ONUs: 64
 - 1998-'00: ITU-T G.983.1 (physical aspects) and G.983.2 (ONT management and control)
 - 2001-'02: other ITU-T G.983.x and Q.834.x, e.g.
 - G.983.4/.7: Dynamic Bandwidth Assignment (DBA), providing statistical multiplexing (⇒ more users per ONU) and Quality of Service (QoS) enforcement
 - G.983.3: adoption of WDM to increase capacity or to carry video signals

Fiber in the loop PON standardization: a brief history

- Ethernet PON (EPON)
 - Traffic is carried using Ethernet framing
 - Cheaper user equipment then BPON
 - Ethernet much more widespread than ATM
 - Higher subscriber rates (up to 1.25 GbE symmetrical), 16 ONU (power budget)
 - 2001: IEEE 802.3ah Study Group "Ethernet in the First Mile (EFM)"
 - First documents in Sept. 2003)
 - 2004: final approval of Standard IEEE 802.3ah
- Gigabit-capable PON (G-PON)
 - Traffic is carried by using different possible framings: ATM (G.983 base) or via G-PON Encapsulation Method (GEM), which can interface SDH (G.707 base) or Ethernet (IEEE802.3 base).
 - Various line rates, up to 2.4 Gbit/s symmetrical, ONU/OLT max distance: 20 km; max. # ONUs: 64-128
 - 2001: activity initiated by the FSAN group
 - 2003: ITU-T G.984.x

Ethernet Standards in EPONs

EPON started to be standardized by IEEE 802.3ah EFM since 2001, it
 was ratified in 2004

Ethernet PONs (EPONs)

- All packets carried in EPON are encapsulated in Ethernet frames
 - Support for variable size packets
- Similar wavelength plan to BPON
- Maximum bit rate is 1Gbps MAC-MAC (1.25 Gbps at the physical layer with 8b/10b line coding)
- Minimum number of splits is 16
- Maximum reach is
 - 10 km (FP-LD @ ONUs, limited by dispersion in downstrea for G.652)
 - 20 km (DFB-LD @ ONUs)
- Different configurations are allowed

EPON Configurations

EPON Downstream Traffic

- Similar to a shared medium network
- Packets are broadcasted by the OLT and selected by their destination ONU

EPON Upstream Traffic

The Multi-Point Control Protocol (MPCP)

- Original Ethernet MAC protocol cannot operate properly in the upstream channel (no collision detection) since each ONU cannot hear other ONUs
- MPCP (Multi-Point Control Protocol) is a new function of the MAC control sublayer. It is developed to support dynamic capacity allocation but the algorithms are an equipment vendors choice (Dynamic Bandwidth Allocation - DBA)
 - In-band signalling
 - Messages (64 bytes)
 - GATE
 - REGISTER
 - REGISTER_REQUEST
 - REGISTER ACK
 - REPORT

Octets within frame transmitted top-to-bottom

Autodiscovery mode

- 3 control messages:
 - Register, start message sent by OLT;
 - Register_Request, answer message from ONU not registered yet;
 - Register_Ack, message by OLT that allows ONU registration.

GPON Standardization

ITU-T	Outline	Adoption
G.984.1	G-PON service requirements (General characteristics)	Mar. 2003
G.984.2	G-PON Physical Layer spec. (Physical Media Dependent (PMD) layer specification)	Mar. 2003
G.984.3	G-PON TC layer spec. (Transmission convergence layer specification)	Feb. 2004

G.984.1 Service Requirements

Item	Target			
Bit rates	1.25Gbit/s symmetric or higher (2.4 Gbit/s). Asymmetric with 155/622Mb/s upstream			
Physical reach	Max. 20 km or max. 10 km			
Logical reach	Max. 60 km			
Branches	Max. 64 in physical layer			
Wavelength allocation	Downstream: 1480 - 1500nm Upstream: 1260 - 1360nm	Downstream video wavelength (1550 – 1560nm) may be overlaid		

GPON Encapsulation Mode (GEM)

- GEM provides a Generic Frame where to carry both TDM and packet traffic over fixed data-rate channels
 - Similar Generic Framing Procedure (GFP) used in SDH/SONET
- A Generic Frame consists of:
 - a core header
 - a payload header
 - an optional extension header
 - a payload
 - an optional frame check sequence (FCS).

Downstream Frame Structure 1/3

- It consists of
 - a Physical Control Block Downstream (PCBD)
 - the ATM partition (N×53 bytes)
 - the GEM partition

GPON Header

Technical Standards Comparison

Technology	Standard	Downstream/ Upstream Bandwidth	# ONT served	Lambda	Framing/ Protocol	Distance
APON/BPON (ATM PON/ Broadband PON)	ITU-T G.983.x	155, 622 or 1244 Mbit/s down 155 or 622 Mbit/s up	Limited by power budget and ONU addressing limits: 16 to 32 splitter	1490 nm Down 1310 nm Up (1550 nm Down for RF video)	АТМ	20 km
GPON (Gigabit PON)	ITU-T G.984	1.2 or 2.4 Gbit/s down 155, 622, 1.2 or 2.4 Gbit/s up	Up to 64(physical) Up to 128 (logical)	1490 nm Down 1310 nm Up (1550 nm Down for RF video)	GEM: G-PON Encapsulation Method (supports Ethernet), ATM	10/20 km (up to 60 km)
EPON (Ethernet PON)*	IEEE 802.3ah	Symmetric 1.25 Gbit/s	Up to 16	1550 nm Down 1310 nm Up	Ethernet	10/20 km
10GEPON (10 Gigabit Ethernet PON)	IEEE 802.3av (Working Task Force)	10 Gbit/s down 1 Gbit/s up (symmetric 10 Gbit/s in the future?)	32 (maybe more?)	1480-1500 nm Down ? 1260-1360 nm Up ? 1550-1560 Video overlay ?	Ethernet	20 km

Transmission Efficiency

Header's Comparison

AGC: Automatic Gain Control; CDR: Clock and Data Recovery Laser turn on time overlaps the laser turn off time of the previous burst

Simple WDM-PON

- Number of ONUs limited by wavelengths
- Point-to-point topology
- Long-reach (almost point-to-point reach)

Protection Mechanisms

B type 1+1 protection of OLT

- Cost-effective
- Redundant feeder
- Redundant OLT transceivers

C type 1+1 protection of PON

- Most secure and expensive
- Redundant feeder and drops
- Redundant transceivers

Carrier Ethernet for PON (EPON)

VLANTAG, VPLS, Q-in-Q, MAC in MAC, PBT

Elements of a PON

International development overview

China

- GPON and EPON are being tested in China: future PON growth mainly depends on Chinese market evolution
- Beijing, Wuhan, Shanghai e Guangzhou are the cities with the greatest FTTX deployment

Japan

- The number of xDSL users has decreased for the first time at the end of 2006, while FTTH users have grown by 10% in 2006 last trimester.
- At the end of 2006, out of 26 million Broadband lines, FTTH accounted for 30% of the total amount.

South Korea

- In July 2007, 500.000 FTTH users
- Almost 4 million FTTB "apartment LANs"

International development overview

- USA
 - Large average cable-length
 - Large investments form cable operators, that account for a relevant share of the broadband market
 - No unbundling required for new fiber infrastructures.
- Brazil, Colombia, Argentina, Chile
 - Less than 300.000 FTTH users
- Australia, New Zeeland, Kuwait, Russia, United Arab Emirates, Pakistan
 - Less than 2 million FTTH users

International development overview

- Mostly in Northern Europe, local administrations are building the infrastructure, with equal access conditions for service providers
- The leading incumbents are deploying extended FTTCab/VDSL infrastructure plans.
- Sweden: more than 500.000 FTTH users
- France, UK: more than 600.000 FTTH users
- Italy: more than 250.000 FTTH users
- Denmark: more than 400.000 FTTH users
- Holland: more than 500,000 FTTH users

FTTx costs

FUB study on NGN economics

- 1400 Mega Euro for digital Divide end (connection of central office to babckbone)
- FTTC/B/H for all? No 2 Mb/s for all but 20 Mb/s for almost all and >50 Mb/s for many
- 10 million of users based on FTTB: total cost 15000 Mega Euro!
- Unbundling problems:
 - For OLO no PON, yes Point-to-point
 - We say yes PON since:
 - » with logical unbundling now and WDM later!
 - » Too cost to include devices in central office and fibres in current ducts
 - » With PON we can shift OLO location from central office to

FUB Experiments on EPON

Logical network by means of VPLS&VLAN Tagging

Throughput in downstream

Conclusions

- FTTx necessary for NGN
- PON is the best current solution
- Problems for investments and network properties