		embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.
		True
		False
	2.	What is t-SNE?
1 Z. point 3.	۷.	A linear transformation that allows us to solve analogies on word vectors
		A non-linear dimensionality reduction technique
		A supervised learning algorithm for learning word embeddings
		An open-source sequence modeling library
	3	Suppose you download a pre-trained word embedding which has been trained on a huge
point 3.	J.	corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.
		x (input text) y (happy?)
		I'm feeling wonderful today! 1 I'm bummed my cat is ill. 0
		Really enjoying this!
		Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label $y=1.$
		True a
		True False
1 point	4.	Which of these equations do you think should hold for a good word embedding? (Check all that apply)
		$igcup_{boy} - e_{girl} pprox e_{brother} - e_{sister}$
		$igcelle{e} = e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$
		$oxed{egin{array}{c} e_{boy} - e_{brother} pprox e_{girl} - e_{sister} \end{array}}$
		$oxed{egin{array}{c} e_{boy} - e_{brother} pprox e_{sister} - e_{girl} \end{array}}$
1	5.	Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word
point		1234. Then to get the embedding of word 1234, why don't we call $E st o_{1234}$ in Python?
		It is computationally wasteful.
		The correct formula is $E^T st o_{1234}$.
		This doesn't handle unknown words (<unk>).</unk>
		None of the above: calling the Python spinnet as described above is fine
		None of the above: calling the Python snippet as described above is fine.
1	6.	When learning word embeddings, we create an artificial task of estimating
1 point	6.	
1 point	6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more
1 point	6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
1 point	6.7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
		When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
1		When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
1		When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
1		When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
1		When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
1		When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and t chosen from the training set? Pick the best answer. t is a sequence of several words immediately before t . t and t are chosen to be nearby words. t is the one word that comes immediately before t . t is the sequence of all the words in the sentence before t .
1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t .
1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{\theta_t^T c_c}}{\sum_{i=1}^{10000} e^{\theta_i^T c_c}}$ Which of these statements are correct? Check all that apply. θ_t and e_c are both 500 dimensional vectors.
1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{q_t^2 c_c}}{\sum_{i=1}^{10000} e^{q_{ij}^2 c_c}}$ Which of these statements are correct? Check all that apply. θ_t and e_c are both 500 dimensional vectors. θ_t and e_c are both 10000 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent. After training, we should expect θ_t to be very close to e_c when t and c are the
1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{c_1^2 \cdot c}}{\sum_{t=1}^{10000} e^{c_1^2 \cdot c}}$ Which of these statements are correct? Check all that apply. θ_t and e_c are both 500 dimensional vectors. θ_t and e_c are both 10000 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{q_t^2 c_c}}{\sum_{i=1}^{10000} e^{q_{ij}^2 c_c}}$ Which of these statements are correct? Check all that apply. θ_t and e_c are both 500 dimensional vectors. θ_t and e_c are both 10000 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent. After training, we should expect θ_t to be very close to e_c when t and c are the
1 point 1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid conteat)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{\sqrt{t}} c_c}{\sum_{i=1}^{10000} e^{\frac{2i}{i} c_c}}$ Which of these statements are correct? Check all that apply. θ_t and θ_c are both 500 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent. After training, we should expect θ_t to be very close to e_c when t and c are the same word.
1 point 1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{tT_{cc}}}{\sum_{t=1}^{2} e^{tT_{cc}}}$ Which of these statements are correct? Check all that apply. θ_t and e_c are both 10000 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent. After training, we should expect θ_t to be very close to e_c when t and c are the same word.
1 point 1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{t} c_c}{\sum_{j=0}^{t} c_j}$ Which of these statements are correct? Check all that apply. θ_t and e_c are both 500 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent. After training, we should expect θ_t to be very close to e_c when t and c are the same word. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective: $\min \sum_{i=1}^{t} \frac{10,0000}{t} \sum_{j=1}^{t} \frac{10,000}{t} f(X_{ij}) (\theta_i^T e_j + b_i + b_j^t - log X_{ij})^2$
1 point 1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target\ context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{iT_{cc}}}{\sum_{t=1}^{1000} e^{iT_{cc}}}$ Which of these statements are correct? Check all that apply. θ_t and e_c are both 500 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent. After training, we should expect θ_t to be very close to e_c when t and c are the same word. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective: $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij})(\theta_i^T e_j + b_i + b'_j - logX_{ij})^2$ Which of these statements are correct? Check all that apply.
1 point 1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid conteat)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c and t are chosen to be nearby words. c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{iT_{ex}}}{\sum_{i=1}^{N_{ex}} e^{iT_{ex}}}$ Which of these statements are correct? Check all that apply. θ_t and e_c are both 500 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent. After training, we should expect θ_t to be very close to e_c when t and c are the same word. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective: $\min \sum_{t=1}^{10,000} \sum_{t=1}^{10,000} f(X_{ij})(\theta_t^T e_j + b_t + b_j' - log X_{ij})^2$ Which of these statements are correct? Check all that apply. θ_t and e_j should be initialized to 0 at the beginning of training.
1 point 1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$). It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True
1 point 1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t-c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c is the one word that comes immediately before t . c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{it} c_c}{\sum_{i=1}^{N} c_i^{N_{i+c}}}$ Which of these statements are correct? Check all that apply. a_i and a_i are both 500 dimensional vectors. a_i a_i and a_i are both trained with an optimization algorithm such as Adam or gradient descent. After training, we should expect a_i to be very close to a_i when a_i and a_i are the same word. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective: a_i should be initialized to 0 at the beginning of training. a_i a_i a_i a_i should be initialized randomly at the beginning of training. a_i a_i a_i is the number of times word i appears in the context of word a_i . The weighting function a_i a_i must satisfy a_i a_i a_i is the number of times word is appears in the context of word a_i .
1 point 1 point 1	7.	When learning word embeddings, we create an artificial task of estimating $P(target:context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c is the one word that comes immediately before t . c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{t} \cdot r_c}{\sum_{i=1}^{k} \sum_{i=1}^{k} r_c^2 r_c^2}$ Which of these statements are correct? Check all that apply. θ_t and e_t are both 10000 dimensional vectors. θ_t and e_t are both 10000 dimensional vectors. θ_t and e_t are both trained with an optimization algorithm such as Adam or gradient descent. After training, we should expect θ_t to be very close to e_t when t and c are the same word. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective: $\min \sum_{i=1}^{10,001} \sum_{j=1}^{10,001} f(X_{ij}) (\theta_t^{it} \cdot e_j + b_i + b_i^t - log X_{ij})^2$ Which of these statements are correct? Check all that apply. θ_t and e_j should be initialized to 0 at the beginning of training. θ_t and e_j should be initialized and only at the beginning of training. θ_t and e_j should be initialized and appears in the context of word j . The weighting function $f(.)$ must satisfy $f(0) = 0$.
1 point 1 point	7.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. c is a sequence of several words immediately before t . c is the one word that comes immediately before t . c is the one word that comes immediately before t . c is the sequence of all the words in the sentence before t . Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The wordzivec model uses the following softmax function: $P(t \mid c) = \frac{e^{it/c}}{\sum_{j=1}^{k} e^{ij/c}}$ Which of these statements are correct? Check all that apply. θ_t and e_c are both 10000 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent. $After training, we should expect \theta_t to be very close to e_c when t and c are the same word. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The Glove model minimizes this objective: \min \sum_{j=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij})(\theta_i^T e_j + b_i + b_j' - logX_{ij})^2 Which of these statements are correct? Check all that apply, \theta_t and e_j should be initialized to 0 at the beginning of training. \theta_t and e_j should be initialized andomly at the beginning of training. \theta_t and e_j should be initialized and \theta_t and \theta_t and \theta_t should be initialized on a the beginning of training. The weighting function f(.) must satisfy f(0) = 0.$

Upgrade to submit