DEC 2 9 2008

LISTING OF CLAIMS

1. (Currently Amended) A process for the preparation of poly(silyl ester)s comprising a structural unit of the formula (I)

(I)

wherein each R_4 and R_5 may be hydroxyl or may be independently selected from hydrogen, alkyl, cycloalkyl, aryl, alkoxyl, aryloxyl, -L'-Si R_1R_2 -, -L'-Si $R_4R_5R_{10}$ -L'-(Si R_4R_5 L') n-Si R_1R_2 -, alkenyl, alkynyl, aralkyl or aralkyloxyl radicals optionally substituted by one or more substitutents independently selected from the group eemprising consisting of alkyl, alkoxyl, aralkyl, aralkyloxyl, hydroxyl, aryl, aryl, xyl, halogen, amino er and amino alkyl radicals, or each R_4 and/or R_5 may independently be an -O-Z(O)-L- group, where R_{10} is defined as is R_7 below,

wherein each R_1 and R_2 may independently represent hydrogen, hydroxyl, alkyl, cycloalkyl, alkenyl, alkoxyl, - L'-SiR₄R₅R₁₀, aryl, aryloxyl, aralkyl or aralkyloxyl radical optionally substituted by one or more substituents independently selected from the group comprising consisting of alkyl, alkoxyl, aralkyl, aralkylo cyl, aryl, aryloxyl, halogen, hydroxyl, amino of and amino alkyl radicals, or each R_1 and/o R_2 may independently be an -O-Z(O)-L- group,

wherein L represents a hydrocarbyl or substituted hydrocarbyl group, wherein sa d substituted hydrocarbyl is substituted by one or more substituents independently selected from the group comprising consisting of alkyl, cycloalkyl, carboxyl, substituted carboxyl, alkoxyl, aralkyl, aralkyloxyl, aryl, aryloxyl, hydroxyl, halogen, amino or and am no alkyl radicals, or a polymer with pendant acid groups,

L' represents O, S, $\Theta = NR_6$, O = L (NR₆-L)_p (where P = 1 to 10), where P =

each n independently represents a number of -Si(R₄)(R₅) - L' - groups from 0 to 1000,

and y represents a number of silyl ester repeat units from 2 to 100000,

which process comprises the step of reacting;

a polyacid of formula (II)

wherein Z(O)OH represents the acid moiety attached to L, m is an integer from 2 to 100000, and L is as defined above, with a polyacyloxysilyl derivative of formula (III)

$$\begin{array}{c|c}
R_7 & R_7 \\
\hline
Z & O & Si & P_1 \\
\hline
R_5 & R_2
\end{array}$$
(III)

wherein R_1 , R_2 , R_4 , R_5 , L' and n are as defined above, except R_1 , R_2 , R_4 and R_5 in (III) are -O-Z(O)- R_8 , where R_8 is defined as is in R_7 below, when the equivalent group in I) is -O-Z(O)-L-, and R_7 is a hydrogen atom, an aralkyl, aryl, alkenyl, alkynyl, or alkyl group optionally substituted with on one or more substituents selected from the equivalent substituents as defined for R_1 , R_2 , R_4 and R_5 above,

and R₃ is the group -O-Z-(O)-R₉, where R₉ is defined as is R₇ above,

whilst removing the formed acid group(s) of formula (TV) and (V) and (VI),

R₇ Z(O)OH (IV)

 R_9 Z(O)OH (V),

 $R_8 Z(O)OH) (VI),$

from the system, wherein Z in formula (I), (II), (IV), (V), and (VI) is independently C, POH, P or S=O.

- 2. (Original) A process according to claim 1, wherein y is 2 to 1000.
- 3. (Previously Presented) A process according to claim 1, wherein R₂ and R₅ each independently represent alkyl, an alkoxyl, an aryl, an hydroxyl group or -L' -(SiR R₅ L')

 _n-SiR₁R₂- group, wherein L', R₁, R₂, R₄ and R₅ are as defined in claim 1.
- 4. (Original) A process according to claim 3, wherein n = 0-100.
- 5. (Original) A process according to claim 3, wherein n = 0-10.
- 6. (Original) A process according to claim 3, wherein n is 0 or 1.
- 7. (Currently Amended) A process according to claim 1, wherein R₄ and R₅ in form da (III) are each independently selected from the group comprising consisting of an alkyl group, an hydroxyl group, an alkoxyl group of and an L'-(SiR₄R₅ L') n-SiR₁R₂- group, wherein L', R₁, R₂, R₄ and R₅ are as defined in claim 1.
- 8. (Original) A process according to claim 7 wherein R₁, R₂, R₄ and R₅ each indeper dently represent an alkyl group, branched or linear.

- 9. (Previously Presented) A process according to claim 1, wherein L' represents O.
- 10. (Previously Presented) A process according to claim 1, wherein Z represents C, P DH, P or S=O.
- 11. (Currently Amended) A process according to claim 1, wherein R₁, R₂, R₄, R₅ and R₈ are each independently selected from the group comprising consisting of methyl, eth; l, propyl, isopropyl, isobutyl, n-butyl, sec-butyl, t-butyl, phenyl, and vinyl.
- 12. (Original) A process according to claim 11, wherein R₁, R₂, R₄ and R₅ are selecte i from the group consisting of methyl, ethyl, isopropyl, phenyl, and vinyl.
- 13. (Original) A process according to claim 11, wherein R₁, R₂, R₄, R₅ and R₈ are me hyl.
- 14. (Previously Presented) A process according to claim 1, wherein R₆ is methyl.
- 15. (Previously Presented) A process according to claim 1, wherein the groups R_1 and R_2 are the same.
- 16. (Previously Presented) A process according to claim 1, wherein the groups R₇ and R₉ are the same.
- 17. (Original) A process according to claim 16, wherein R₇ and R₉ are alkyl.
- 18. (Original) A process according to claim 16, wherein R_7 and R_9 are methyl.
- 19. (Original) A process according to claim 1, wherein the polyacid of formula (II) is a polycarboxylic acid.
- 20. (Original) A process according to claim 19, wherein the polycarboxylic acid is a dicarboxylic acid.

- 21. (Previously Presented) A process according to claim 1, wherein L represents an a kyl, aryl., alkenyl, alkynyl, or aralkyl radical, or a polymer comprising 1 to 10000 car ion atoms.
- 22. (Previously Presented) A process according to claim 1, wherein L represents -(CI (2)n-, and n is an integer between 1 and 10.
- 23. (Original) A process according to claim 20, wherein the dicarboxylic acid is selected from adipic acid, oxalic acid, succinic acid, glutaric acid, phthalic or isophthalic or terephthalic acids, di-lactic acid, and rosinous dicarboxylic acids.
- 24. (Original) A process according to claim 1, wherein the polyacyloxysilyl derivatives of formula (III) are selected from tetraisoproply-1,3-diacetbxydisiloxane, tetramethyl 1,3diacetoxydisiloxane, dimethyldiacetoxysilane, diethyldiacetoxysilane, diphenyldiacetoxysilane, vinylmethyldiacetoxysilane, methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, phenyltriacetoxysilane, tetraacetoxys lane, (butanoic acid, 1,3,5-triethyl-1,3,5-tripropyl-1,5-trisilox anediyl ester), (1,5-trisilo: anediol, 1,3,5-triethyl-1,3,5-tripropyl-, dipropanoate), (2-silanaphthalen-2-ol, 1,2,3,4-tetri hydro-2- (7-hydroxy-1,1,3,3,5,5,7,7-octamethyltetrasiloxanoxy)-, diacetate), (2-silanapl thalen-2-ol, 1,2,3,4-tetrahydro-2-(5-hydroxy-1,1,3,3,5,5-hexamethyltrisiloxanoxy) -, dia :etate), (2-silanaphthalen-2-ol, 1,2,3,4-tetrahydro-2-(3-hydroxy+1,1,3,3tetramethyldisiloxanoxy)-, diacetate), (1,9-pentasiloxanediol, 1,3,5,7,9-pentametl yl-1,3,5,7,9-pentavinyl-, diacetate), (1,7-tetrasiloxanediol, 1,3,5,7-tetraethenyl-1,3,5 7tetramethyl-, diacetate), (1,7-tetrasiloxanediol, 1,1,3,3,5,5,7,7-octaethyl-, diacetat:), (1,5trisiloxanediol, 1,3,5-triethenyl-1,3,5-trimethyl-, diacetate), (heptasiloxane, 1,1,1,13tetraacetoxy-3,3,5,5,7,7,9,9,11,11,13,13-dodecamethyl) (1,5-trisiloxanediol, 1,3, itriethyl-1,3,5-trimethyl-, diacetate), (1,5-trisiloxanediol, 1,1,3,3,5,5,-hexaethyl-, dibutyrate), (1,5-trisiloxanediol, 1,1,3,3,5,5-hexaethyl-, dipropionate), (1,5trisiloxanediol, 1,3,5-triethyl-1,3,5-tripropyl-, diacetate), (1,5-trisiloxanediol, 1,1,3,3,5,5hexaethyl-, diacetate), (1, 1,1,7-tetrasiloxanetetrol, 3,3,5,5,7,7-hexamethyl-, triac tate),

(1,5-trisiloxanediol, 1,1,3,5,5-pentamethyl-3-vinyl-, diacetate), (1-tetrasiloxanol, '-acetyl-1,1,3,3,5,5,7,7-octamethyl-, acetate), (1-pentasiloxanol, 9-acetyl-1,1,3,3,5,5,7,7,9,9-decamethyl-, acetate; pentasiloxanol, 9-acetyl-1,1,3,3,5,5,7,7,5,9-decamethyl-, diacetate), (1,9-pentasiloxanediol, decamethyl-, diacetate), (1,5-trisiloxanediol, hexamethyl-, diacetate), (1,17-nonasiloxanediol, octadecamethyl-diacetate), (1,15-octasiloxanediol, hexadecamethyl-, diacetate), (1,7,13-heptasiloxanetriol, tridecamethyl-, triacetate), (1,1,7-tetrasiloxanetriol, 1,3,3,5,5,7,7-heptamethyl-, triacetate), (1,13-heptasiloxanediol, tetradecamethyl-, diacetate), (1,7-tetrasiloxanediol, 1,1,3,3,5,5,7,7-octamethyl-, diacetate), ditert-butyldiacetotoxys lane, and ditert-butoxydiacetoxysilane.

- 25. (Previously Presented) A process according to claim 1, wherein the reaction is carried out in a suitable solvent.
- 26. (Original) A process as claimed in claim 25, wherein the solvent is selected from pentane, cyclopentane, hexane, cyclohexane, heptane, toluene, xylene, benzene, mesitylene, ethylbenzene, octane, decahydronaphthalene, diethyl ether, diisopropyl e her, diisolbutyl ether, N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, and mixtures thereof.
- 27. (Previously Presented) A process according to claim 25, wherein the solvent form s a heterogeneous low boiling azeotrope with the distilled acid product.
- 28. (Previously Presented) A process according to claim 1, wherein the molar ratio of the reactive groups present in the polyacyloxysilyl derivative acid is between 1:100 and 100:1.
- 29. (Previously Presented) A process according to claim 1, wherein the solvent, wher: present, is at least 10 wt% of the total reaction mix at the start of the reaction.

- 30. (Previously Presented) A process according to claim 1, wherein the molecular we ght is in the range 1000 to 1000000 kD.
- 31. (Original) A process according to claim 30, wherein the molecular weight is in the range 1000 to 100000 kD.
- 32. (Original) A process according to claim 30, wherein the molecular weight is in the range 1000 to 10000 kD.
- 33. (Previously Presented) A process according to claim 1, wherein m is 2.
- 34. (Currently Amended) A process according to claim 1, wherein each R₄ and R₅ a

wherein each R₁ and R₂ may independently represent hydrogen, hydroxyl, alkyl, alkenyl, alkynyl, alkoxyl, aryloxyl, aralyl or aralkyloxyl radical optionally substitute I by one or more substituents independently selected from the group comprising consisting of alkyl, alkoxyl, aralkyl, aralkyloxyl, aryl, aryloxyl, halogen, hydroxyl, amino of and amino alkyl radicals, or R₁ or R₂ may independently be an -O-C(O)-L- group,

wherein L represents a hydrocarbyl or substituted hydrocarbyl group, wherein sa d substituted hydrocarbyl is substituted by one or more substituents independently elected from the group comprising consisting of alkyl, alkoxyl. aralkyl, aralkyloxyl, aryl aryloxyl, hydroxyl, halogen, amino or and amino alkyl radicals, or a polymer wit i pendant acid groups; and

- L' represents O, S, or NR₆, where R_6 is defined as is R_7 , or L.
- 35. (Previously Presented) A process according to claim 1 which includes the additional step of incorporating the polymer in a film or coating composition.
- 36. (Canceled)
- 37. (Previously Presented) A film or coating comprising a polymer as prepared or ob ainable by a process as defined in claim 1.
- 38. (Previously Presented) A poly(silyl ester) prepared or obtainable by a process as defined in claim 1.
- 39. (Previously Presented) A coating or film composition comprising a poly(silyl est r) as prepared or obtainable by a process in accordance with claim 1.
- 40. (Previously Presented) A poly (silyl ester) comprising the repeating group (I) as c efined in claim 1, and wherein L is a polylactic acid or substituted polylactic acid residu : or a rosin or substituted rosin residue of a polycarboxylic acid.
- 41. (Original) A coating or film composition comprising a poly(silyl ester) according to claim 40.
- 42. (Previously Presented) A coating or film composition according to claim 39 when sin the composition is an antifouling coating or film composition.
- 43. (Previously Presented) A coating or film composition according to claim 39 wherein the composition is suitable for use in medical and/or veterinary applications to provide controlled release of a bioactive substance.

- 44. (Previously Presented) A film or coating comprising a poly(silyl ester) as prepare i or obtainable by a process in accordance with claim 34.
- 45. (Previously Presented) An implantable medical and/or veterinary device having a coating comprising a coating or film composition according to claim 39.
- 46. (Previously Presented) A process according to claim 1, wherein in the definitions of R₁, R₂, R₄ or R₅, the amino radical is a tertiary amino radical.
- 47. (Previously Presented) A process according to claim 10, wherein Z represents C.
- 48. (Currently Amended) A process according to claim 22, wherein L represents -(Cl l₂)_n-, and n is an integer between between 2 and 8.
- 49. (Currently Amended) A process according to claim 22, wherein L represents -(Cl l₂)_n-, and n is an integer between between 4 and 6.
- 50. (Previously Presented) A process according to claim 22, wherein L represents -(C H₂)_n-, and n is 4.
- 51. (Previously Presented) A coating or film composition according to claim 41 when an the composition is suitable for use in medical and/or veterinary applications to provide controlled release of a bioactive substance.
- 52. (Previously Presented) An implantable medical and/or veterinary device having a coating comprising a coating or film composition according to claim 41.