Graphs with large minimum vertex energy

Recall
$$\phi_i(|A|) \ge \sqrt{\frac{(\phi_i(A^2))^3}{\phi_i(A^4)}}$$
.

If G is a d-regular graph without 4-cycles we have $\phi_i(A^2) = d$ and $\phi_i(A^4)$ is the number of 4-walks on vertex v_i . Since no 4-cycles exist these walks are all of the form v_i, v_j, v_i, v_k, v_i or of the form v_i, v_j, v_k, v_j, v_i , the number of such paths is at most $d^2 + d^2$. We conclude $\phi_i(|A|) \ge \sqrt{\frac{d}{2}}$

For an example of such d regular graphs with d=2k consider the circulant graph of size 4^k+1 and distances $1,4^1,\ldots,4^{k-1}$

Total energy: 27.1

