第四周作业

董仕强

Sunday 16th March, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	说明 ····································	0
1	Problem Set For March 2025	1
	1.1 Exercise 1	1
	1.2 Exercise 2	2
2	Problem Set for 13 March 2025	2
	2.1 Exercise 1	2

1 Problem Set For March 2025

1.1 Exercise 1

Let $V = \mathbb{C}[x]$, and let $w = \frac{-1+\sqrt{3}\,\mathrm{i}}{2}$ denote a cubic root of unite.

- 1. Prove that each $V_k := \{ f \in \mathbb{C}[x] \mid f(x) = w^k \cdot f(wx) \}$ is a linear subspace of V.
- 2. Prove that $V = V_0 \oplus V_1 \oplus V_2$.
- 3. Prove that the mapping

$$L: V \to V, \qquad f(x) \mapsto w \cdot f(wx) - w^2 f(w^2 x)$$

is a linear transformation.

- 4. Compute im(L) and ker(L).
- 5. Say $(u, \lambda \in V \times \mathbb{C})$ is an eigenppair of L, provide $u \neq 0$ and $Lu = \lambda u$. Determine all eigenpairs of L.

解答

1. $V_k \neq 0$.

$$\forall f, g \in V_k, f(x) + g(x) = w^k \cdot f(wx) + w^k \cdot g(wx) = w^k \cdot (f(wx) + g(wx)) \in V_k$$
$$\forall f \in V_k, \lambda \in \mathbb{C}, \lambda f(x) = \lambda w^k \cdot f(wx) = w^k \cdot \lambda f(wx) \in V_k.$$

- 2. Suppose $f \in V_0 \cap V_1$, then $f(x) = w^0 \cdot f(wx) = w^1 \cdot f(wx)$, which implies f(x) = 0. $\forall f(x) = \sum_{i=0}^{n} a_i x^i$, let $f_m(x) = \sum_{k=0}^{s_m} a_{3k+m} x^{3k+m}, m = 0, 1, 2 \Rightarrow f_m \in V_m$.
- 3. L(af + bg) $= w \cdot (af + bg)(wx) - w^2 \cdot (af + bg)(w^2x)$ $= a(w \cdot f(wx) - w^2 \cdot f(w^2x)) + b(w \cdot f(wx) - w^2 \cdot f(w^2x))$ = aL(f) + bL(g).
- 4. $\operatorname{im}(L)$:

$$\forall f(x) = \sum_{i=0}^{n} a_i x^i, L(f) = w \cdot f(wx) - w^2 \cdot f(w^2 x)$$

$$= w \cdot \sum_{i=0}^{n} a_i (wx)^i - w^2 \cdot \sum_{i=0}^{n} a_i (w^2 x)^i$$

$$= \sum_{i=0}^{n} (w^{i+1} - w^{2i+2}) a_i x^i$$

$$= \sum_{k=0}^{s} (w - w^2) (a_{3k} x^{3k} - a_{3k+1} x^{3k+1})$$
so $, \text{ im}(L) = V_0 \oplus V_1$

$$\ker(L):$$

$$\forall f(x) = \sum_{i=0}^{n} a_i x^i, L(f) = 0$$

$$\Rightarrow \sum_{i=0}^{n} (w^{i+1} - w^{2i+2}) a_i x^i = 0$$

$$\Rightarrow a_{3k} = a_{3k+1} = 0$$
so, $\ker(L) = V_2$.

5.
$$L(f(x)) = wf(wx) - w^2f(w^2)x$$
, $L(f(wx)) = wf(w^2x) - w^2f(x)$, $L(f(w^2x)) = wf(x) - w^2f(wx)$

$$A = \begin{pmatrix} 0 & w & -w^2 \\ -w^2 & 0 & w \\ w & -w^2 & 0 \end{pmatrix}$$

1.2 Exercise 2

解答

- 1. $V = \mathbb{F}[x]$, $f: g(x) \mapsto x \cdot g(x)$
- 2. $V = \mathbb{F}[x]$, $f: q(x) \mapsto q'(x)$
- 3. ?
- 4. $V = \mathbb{F}[x]$, $f: h(x) \mapsto xh(x)$, $g: h(x) \mapsto \frac{h(x)-h(0)}{x}$.

2 Problem Set for 13 March 2025

2.1 Exercise 1

Let $f: U \to V$ be linear map and dim U = n, din V = m.

1. Let $E \subset V$ be an k-dimensional subspace. Prove that

$$f^{-1}(E) \ge n - m + k$$

.

2. When f is surjective, the equality holds.

解答

- 1. Let $g: f^{-1}(E) \to E$, then $\ker g = \ker f$, $\operatorname{im}(g) = \operatorname{im}(f) \cap E$. $\dim(f^{-1}(E)) = \dim(\operatorname{im}(g)) + \dim(\ker(g)).$ $\dim(E \cap \operatorname{im} f) \geq \dim(E) + \dim(\operatorname{im}(f)) \dim(V)$ $\dim(V) = \dim(\operatorname{im}(f)) + \dim(\ker(f)).$ Q.E.D
- 2. f is surjective, im(f) = V, E + im f = V

2.2 Exercise 2

解答 有限维数的线性映射和矩阵密切联系, 在抽象的线性映射和运算中, 几乎都能找到具体的矩阵和运算进行类比. 矩阵也可以看作一种线性映射