- 1. What is an algorithm?
 - a) A set of instructions to perform a task
 - b) A type of programming language
 - c) A type of hardware component
 - d) A device used for data storage
- 2. Which notation is commonly used to represent the time complexity of an algorithm?
 - a) O(n)
 - b) $\Omega(n)$
 - c) $\Theta(n)$
 - d) All of the above
- 3. What is the purpose of analyzing algorithms?
 - a) To determine their correctness
 - b) To optimize their performance
 - c) To make them more readable
 - d) To make them easier to implement
- 4. Which of the following is an example of a dynamic programming problem?
 - a) Longest common subsequence
 - b) Binary search
 - c) Merge sort
 - d) Quick sort
- 5. Which of the following is an example of a graph algorithm?
 - a) Binary search
 - b) Merge sort
 - c) Depth-first search
 - d) Quick sort
- 6. What is the time complexity of binary search?
 - a) O(n)
 - b) $\Omega(n)$
 - c) $\Theta(n)$
 - d) O(log n)

- 7. What is the time complexity of merge sort?
 - a) O(n)
 - b) $\Omega(n)$
 - c) $\Theta(n)$
 - d) $O(n \log n)$
- 8. What is the time complexity of quicksort in the worst case?
 - a) O(n)
 - b) $\Omega(n)$
 - c) $\Theta(n)$
 - d) O(n^2)
- 9. Which of the following is an example of a divide-and-conquer algorithm?
 - a) Binary search
 - b) Depth-first search
 - c) Huffman coding
 - d) Minimum spanning tree
- 10. What is the divide-and-conquer strategy?
 - a) Breaking a problem down into smaller subproblems and solving each subproblem recursively
 - b) Iterating through a list of elements to find a specific value
 - c) Sorting a list of elements in ascending order
 - d) None of the above
- 11. Which of the following is an example of a greedy algorithm?
 - a) Longest common subsequence
 - b) Depth-first search
 - c) Huffman coding
 - d) Merge sort
- 12. What is the time complexity of Huffman coding?
 - a) O(n)
 - b) $\Omega(n)$
 - c) $\Theta(n)$
 - d) O(n log n)

13.	Which of the following is an
	example of a dynamic
	programming problem?
	a) Rinary sparch

- a) Binary search
- b) Matrix chain multiplication
- c) Quick sort
- d) Depth-first search
- 14. What is the time complexity of breadth-first search?
 - a) O(n)
 - b) $\Omega(n)$
 - c) $\Theta(n)$
 - d) O(n log n)
- 15. Which of the following is an example of a graph algorithm?
 - a) Binary search
 - b) Merge sort
 - c) Breadth-first search
 - d) Quick sort
- 16. Which notation is commonly used to represent the space complexity of an algorithm?
 - a) O(n)
 - b) $\Omega(n)$
 - c) $\Theta(n)$
 - d) O(1)
- 17. Which of the following is an example of a divide-and-conquer algorithm?
 - a) Huffman coding
 - b) Minimum spanning tree
 - c) Depth-first search
 - d) Breadth-first search
- 18. What is the time complexity of matrix chain multiplication?
 - a) O(n)
 - b) $\Omega(n)$
 - c) $\Theta(n)$
 - d) O(n^3)

- 19. Which of the following is an example of a greedy algorithm?
 - a) Longest common subsequence
 - b) Minimum spanning tree
 - c) Merge sort
 - d) Quick sort
- 20. What is the time complexity of binary search in the worst case?
 - a) O(n)
 - b) $\Omega(n)$
 - c) $\Theta(n)$
 - d) O(log n)

Roll No:			Marks	
1	2	3	4	5
				_
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
Name:				
Signature				

Answer Key

- 1. a) A set of instructions to perform a task
- 2. d) All of the above
- 3. b) To optimize their performance
- 4. a) Longest common subsequence
- 5. c) Depth-first search
- 6. d) O(log n)
- 7. d) O(n log n)
- 8. d) O(n^2)
- 9. a) Binary search
- 10. a) Breaking a problem down into smaller subproblems and solving each subproblem recursively
- 11. c) Huffman coding
- 12. d) O(n log n)
- 13. b) Matrix chain multiplication
- 14. a) O(n)
- 15. c) Breadth-first search
- 16. d) O(1)
- 17. b) Minimum spanning tree
- 18. d) O(n^3)
- 19. b) Minimum spanning tree
- 20. d) O(log n)

SET-B	
1.	is the process of
	finding the solution to a problem
	step by step.
2.	
	algorithm is denoted by
3.	is an example of a
	dynamic programming problem.
4.	
	problem is divided into smaller
	subproblems and solved
	recursively.
5.	The algorithm finds
	the shortest path between two
	nodes in a graph.
6.	~ ·
	used to traverse a graph in a
	depth-first manner.
7.	•
••	used to traverse a graph in a
	breadth-first manner.
8.	The time complexity of binary
•	search is
9.	The time complexity of merge
	sort is
10.	The time complexity of quicksort
	is
11.	In the algorithm, the
	input sequence is divided into
	two parts and the search is
	continued in the part where the
	key may be found.
12.	is a type of algorithm
	that always selects the best
	possible choice at each step.
13.	is a coding technique
	used to compress data without
	losing any information.
14.	is an algorithm that
_,	finds the minimum weight
	spanning tree of a graph.
15.	The time complexity of the
	Huffman coding algorithm is

16.	The	time	complexity	of	the
	minin	num	spanning		tree
	algori	thm is		_•	
17.	The	time	complexity	of	the
	longes	st co	mmon subs	sequ	ence
	proble	em is _			
18.	The	time	complexity	of	the
	matri	x ch	nain multi	plica	ation
	proble	em is _			
19.	The n	otation	n used to des	cribe	e the
	upper	bound	l on the runn	ing	time
	of an	algorit	hm is		
20.	The n	otation	n used to des	cribe	e the
	lower	bound	on the runn	ing	time
	of an	algorit	hm is	·	

Match the Column:

1.Binary Search	a. Greedy Algorithm
2.Depth-First Search	b. Divide-and-Conquer Algorithm
3.Breadth-First Search	c. Dynamic Programming Problem
4.Merge Sort	d. Algorithmic Notation
5.Quick Sort	e. Graph Algorithm
6.Huffman Coding	f. Compression Technique
7.Minimum Spanning Tree	g. Time Complexity
8.Upper Bound on Running Time	h. Lower Bound on Running Time
9.Longest Common Subsequence	i. Matrix Multiplication Problem
10.Big O Notation	j. Omega Notation

Answer Key

- 1. Iteration
- 2. Big O notation
- 3. Longest common subsequence
- 4. Divide-and-conquer
- 5. Dijkstra's algorithm
- 6. Depth-first search
- 7. Breadth-first search
- 8. O(log n)
- 9. $O(n \log n)$
- 10. O(n log n)
- 11. Binary search
- 12. Greedy algorithm
- 13. Huffman coding
- 14. Minimum spanning tree
- 15. O(n log n)
- 16. O(m log n)
- 17. O(mn)
- 18. O(n^3)
- 19. Big O notation
- 20. Omega notation

Match the Column:

- Binary Search a. Divide-and-Conquer
 Algorithm
- 2. Depth-First Search e. Graph Algorithm
- 3. Breadth-First Search e. Graph Algorithm
- $\begin{array}{ll} {\rm 4.} & {\rm Merge\ Sort\ -b.\ Divide-and-Conquer} \\ & {\rm Algorithm} \end{array}$
- 5. Quick Sort b. Divide-and-Conquer Algorithm
- 6. Huffman Coding a. Greedy Algorithm, f. Compression Technique
- 7. Minimum Spanning Tree a. Greedy Algorithm
- 8. Upper Bound on Running Time g. Time Complexity
- 9. Longest Common Subsequence c. Dynamic Programming Problem
- 10. Big O Notation d