- AnkunftIst als DateTime
- AbfahrtIst als DateTime
- GleisIst als Byte
- Meldungstext als String

Telegramme

Hier wird zuerst der Grundlegende Telegrammaufbau, danach die benutzten Telegramme mit derer Abfolge aufgeführt.

Grundlegender Telegrammaufbau

Ein Telegramm ist grundsätzlich wie folgt aufgebaut und maximal 255 Bytes lang:

- 1. Startkennung (Bytes [-3..-1]) mit jeweils 255 als Wert
- 2. Längenangabe angehängten, genutzten Nutzbytes (Byte [0])
- 3. Als erstes Nutzbyte eine **Kennung**, welche beschreibt, um was es sich für ein Telegramm handelt (Byte [1])
- 4. Als weiter Nutzbytes der jeweilige **Datensatz** (Record), der der Kennung entspricht (Byte [2..X], maximal bis 251])

Dieser Telegrammaufbau ist bei allen Telegrammen gleich. Es variiert nur die Anzahl der genutzten Nutzbytes. Die Länge der Nutzbytes ist immer 251 Bytes.

Kommunikation Fahrplanserver <-> Fahrplanclients

Die Clients senden folgende Telegramme an den Fahrplanserver:

- Anmeldetelegramm mit der ClientID
- Clientstatustelegramm (einmalig nach Eintreffen des Zuglaufendetelegramms)

Der Server schickt folgende Telegramme an die Clients:

- Laborzeittelegramm (als Antwort auf die Anmeldung + Regelmäßig)
- Zuglauftelegramme (nach Anmeldung über alle Züge und dann nur bei jeder Änderung)
- Zuglaufendetelegramm (nachdem alle Zugläufe nach Anmeldung übertragen wurden)
- Betriebsstellenbezeichnungstelegramm (nach Anmeldung und dann nach Anforderung durch den Client)

Telegrammname	Kennung	Inhalt mit Typ und Nr. in Bytearray
Laborzeittelegramm	241	 Stunde [Byte] Minute [Byte] Sekunde [Byte] Laboruhr-Faktor [Byte] Züge Stopp/Weiter [Byte]
Clientstatustelegramm	243	17. Bezeichnung [Char] 8. Status [Byte]
Zuglauftelegramm	236	1. FplNr [Byte] (0=Spielwiese 0 <fplnr) 14.="" 15-20.="" 2.="" 21.="" 3-8.="" 9-13.="" [byte]="" [byte]<="" [integer]="" [string]="" gattung="" in="" länge="" string="" td="" tfz1="" zugnr="" zugnummer="" übergang=""></fplnr)>

		22-25. ZMA [Integer] (Zugmeldeabschnitt, in der der Zug gerade ist) 26. MldgIdx [Byte] (Index eines Meldetextes für den Zuglauf) 27. AnzBf [Byte] (Anzahl der nachfolgenden Betriebsstellen im Zuglauf)
		- Ab hier bis zu 10 Betriebsstellen mit je folgender Datenstruktur - X. Bf_ID [Byte] (Nummer des Bahnhofs) X+1-2. AnkSoll [Word] X+3-4. AbfSoll [Word] X+5. AnkVersp [Byte] (Verfrühung/Verspätung im Istzustand) X+6. AbfVersp [Byte] (Verfrühung/Verspätung im Istzustand) X+7. GleisSoll [Byte] X+8. GleisDispo [Byte] X+9. DispoTyp [Byte] (Index der anzuzeigenden DispoBilder) X+10. MldgIdx[Byte] (Index eines Betriebsstellenbezogenen Meldungstextes)
Zuglaufendetelegramm	236	1. Zahl 255 [Byte]
BS Bezeichnungstelegramm	238	1. Betriebsstellen ID [Byte] (Zuordnungsnummer des Betriebsstellennamens zu den Bf_ID in den Zugläufen) 2. Länge Abkürzung String [Byte] 37. Abkürzung [String] (Verkürzte Bezeichnung) 8X. Betriebsstellenlangname [String] (Langbezeichnung)

Bemerkungen zu den Telegrammen:

- Zum Verringern der Telegrammgröße wird statt des Betriebsstellenkürzels die Betriebsstellen Nummer übertragen. Zur Zuordnung der Betriebsstellennummer zu einem Bahnhofsnamen werden nach dem Laborzeittelegramm, als Anmeldebestätigung, nacheinander alle benötigten Nummer↔Name Zuordnungen als Betriebsstellenbezeichnungstelegramme verschickt. Danach werden alle Zuglauftelegramme mit dem Zuglaufendetelegramm am Ende verschickt.
- Nach dem Zuglaufendetelegramm kann einmalig das Clientstatustelegramm verschickt werden, mit einer vom Programmierer frei wählbaren maximal 6stelligen Bezeichnung des Clients. Im aktuellen Fall z.B. "FIS".
- Nach der Zugnummer können bis zu 10 Betriebsstellen kommen. Die Anzahl der Betriebsstellen steht immer im AnzBf Byte.
- Die Soll Ab-/An-Zeiten, sowie die Verspätungen in 10tel Minuten übertragen. Die Ist-Zeiten werden durch Addieren der Verspätungen zu den Zeiten errechnet. Errechnet werden die einzelnen Zeitkomponenten wie folgt: 10tel Minute: Zeit mod 10; Minute: (Zeit/10) mod 60; Stunde: Zeit/600.
- Die Versendeten Strings und Chars sind in ANSI Codierung.

Abgabe

Am Ende des Softwarepraktikums soll für das Labor folgendes abgegeben werden:

- Das lauffähige Webprogramm
- Der Quellcode
- Eine Entwicklerdokumentation mit dem Aufbau des Codes und mindestens folgender Beschreibungen:
 - an welchen Stellen im Code die Ausgaben und das Design der Oberfläche modifiziert werden kann
 - an welchen Stellen im Code die Telegramme verarbeitet werden
 - Aufbau und Einleseort der Configurationsdatei
 - Unter welchen Voraussetzungen das Webprogramm stabil läuft

Weitere Vorgaben werden von der Informatik bekanntgegeben.