Universidade Federal de Alagoas Instituto de Computação

Monitoria de Linguagens Formais, Autômatos e Computabilidade Professor Leandro Dias

João Victor Holanda, Luana Júlia Nunes Ferreira, Mateus Fernando Felismino da Silva Patriota

Sumário

1	Ling	guagens Regulares	
	1.1	Autômato Finito Determinístico	
	1.2	Autômato Finito Não Determinístico	
	1.3	Expressão Regular	
	1.4	Gramática Regular	
	1.5		
		1.5.1 Máquina de Mealy	
		1.5.2 Máquina de Moore	
	1.6	Conversão de AFND para AFD	
2	2.1 2.2	guagens Livres de Contexto Autômato com Pilha	
3	Linguagens Enumeradas e Recursivamente e Sensíveis ao Contexto		
	3.1	Máquina de Turing	
	3.2	Hipótese de Church	
4		nputabilidade Cálculo Lambda	

1 Linguagens Regulares

1.1 Autômato Finito Determinístico

Questão 1 Construa um AFD tal que $L(M) = \{w \mid w \in \{0,1\}^* \ e \ possua um número par de ocorrências de 0's e de 1's\}$

Questão 2 Construa um AFD que aceite cadeias sequenciais de "abc"em ocorrências pares.

Questão 3 Para o automato dado: Dê a definição formal; construa a tabela da função programa; mostre a computação da palavra 00100; que autômato é esse? Que linguagem ele reconhece?

Questão 4 Para o automato dado: Dê a definição formal; construa a tabela da função programa; mostre a computação da palavra 00100; que autômato é esse? Que linguagem ele reconhece?

Questão 5 Construa um autômato que aceite aa ou bb como subpalavra. Faça a função programa.

1.2 Autômato Finito Não Determinístico

Questão 6 Construa um autômato que $L(M) = \{w \mid w \text{ possui número par de 'a' e ímpar de 'b' ou par de 'b' e ímpar de 'a' }\}$

Questão 7 Construa um autômato que $L(M) = \{w \mid w \text{ o quinto símbolo da direita para a esquerda de } w \text{ \'e} \text{ 'a'}.$ Compute a palavra 'abaaab'. Ela \(\text{\'e} \) aceita pelo autômato? \(\}

Questão 8 Para o automato dado: Dê a definição formal; construa a tabela da função programa; mostre a computação da palavra 00100; que autômato é esse? Que linguagem ele reconhece?

Questão 9 Construa um AFND tal que $L(M) = \{w \mid w \in \{0,1\}^* \text{ e tenha dois 0's consecutivos ou dois 1's consecutivos}\}$

Questão 10 Considerando o alfabeto $\sum = \{a,b\}$, construa um autômato finíto não deterministico que admite cadeias em que o termo n-ésimo, a partir da direita, é b.

1.3 Expressão Regular

Questão 11 Considerando o alfabeto $\sum = \{a, b\}$, escreva uma expressão regular que represente a linguagem:

- (a) que começa com b e termina com uma quantidade indefinida de a, incluindo a palavra vazia;
- (b) que começa com a, termina com b e pode conter uma infinidade de letras, exceto a palavra vazia;
- (c) que tem sempre um número par de letras a;
- (d) que possui aa como subpalavra;
- (e) que possui bbb como sufixo;

Questão 12 Considerando o alfabeto $\sum = \{a, b\}$, descreva que tipo de linguagem cada expressão regular representa.

- (a) ab^*
- (b) $(a+b)^*$
- (c) $(a+b)^*aa(a+b)^*$

(d)
$$(a+\varepsilon)(b+ba)^*$$

(e)
$$(a+b)^*(aa+bb)$$

1.4 Gramática Regular

Questão 13 Dê a definição de Gramática Regular. Com isso, classifique e exemplifique os tipos de gramática regular.

Questão 14 A partir da expressão regular $w = a(ba)^*$, determine as regras de produção de sua respectiva gramática linear à direita. Em seguida, exemplifique para a palavra w = ababa.

Questão 15 A partir da expressão regular $w=01^*0^*$, determine as regras de produção de sua respectiva gramática regular. Em seguida, exemplifique para a palavra w=011100.

Questão 16 A partir da expressão regular $w = (x + y)^*$, determine as regras de produção de sua respectiva gramática regular. Em seguida, exemplifique para a palavra w = xyx.

Questão 17 Considerando o alfabeto $\sum = \{0,1\}$, construa a gramática regulare do sequinte autômato:

Questão 18 Considerando o alfabeto $\sum = \{0,1\}$, construa a gramática regulare do seguinte autômato:

Questão 19 Considerando o alfabeto $\sum = \{0,1\}$, construa a gramática regulare do sequinte autômato:

1.5 Autômato Finito com Saída

1.5.1 Máquina de Mealy

Questão 20 Dê a definição matemática de Máquina de Mealy.

Questão 21 Escreva a definição para a Máquina de Mealy a seguir e calcule a fita de saída para as fitas de entrada abaixo, caso a palavra seja aceita. Por fim, responda: que tipo de tarefa esse autômato desempenha? Dica: lógica booleana.

- (a) 01000
- (b) 0000
- (c) 1110011
- (d) 11

Questão 22 Transforme a Máquina de Mealy da questão anterior na sua Máquina de Moore equivalente.

1.5.2 Máquina de Moore

Questão 23 Dê a definição matemática de Máquina de Moore.

Questão 24 Escreva a definição para a Máquina de Moore a seguir e calcule a fita de saída para as fitas de entrada abaixo, caso a palavra seja aceita. Por fim, responda: que tipo de tarefa esse autômato desempenha?

- (a) aaab
- (b) abab
- (c) aa

Questão 25 Transforme a Máquina de Moore da questão anterior na sua Máquina de Mealy equivalente.

1.6 Conversão de AFND para AFD

Questão 26 O que este autômato faz? Compute w ='baaa' e converta para AFD.

Questão 27 O que este autômato faz? Compute w = 'baba' e converta para AFD.

2 Linguagens Livres de Contexto

2.1 Autômato com Pilha

Questão 28 Construa um autômato tal que $L(M) = \{wcw^r \mid w \in \{0,1\}^*\}$. Na prática, o que esse autômato reconhece?

Questão 29 Construa um autômato tal que $L(M) = \{a^n b^m b^c (c = n + m) \mid n >= 0, m >= 0 \in \{a, b\}^*\}$. Exemplo de palavra reconhecida $a^1 b^1 b^2 = abbb$.

2.2 Árvore de Derivação

Questão 30 Construa a árvore de derivalção da palavra $W = x+x^*[x-x]$ $G = \{\{E\}, \{+, -, *, [.], x\}, P, E\}$ e $P = \{E->E+E|E*E|[E], x\}$.

Questão 31 A palavra gerada pela árvore é ambigua? Por quê? Se sim, gera a palavra de outra forma diferente da anterir.

3 Linguagens Enumeradas e Recursivamente e Sensíveis ao Contexto

3.1 Máquina de Turing

Questão 32 Defina formalmente a Máquina de Turing; contrua um autômato de exemplo e, em seguida, compute uma palavra de sua escolha.

3.2 Hipótese de Church

Questão 33 Descreva e hipótese Church-Turing.

4 Computabilidade

4.1 Cálculo Lambda

Questão 34 Reduza as expressões a seguir:

(a)
$$(\lambda x.2*x + 1) 3$$

- (b) $(\lambda xy.x-y) (\lambda z.z/2)$
- (c) $(\lambda x.\lambda y. x y)$ 9 4