Introducción al Régimen Transitorio Teoría de Circuitos

Oscar Perpiñán Lamigueiro

Mayo 2020

- Conceptos Fundamentales
- Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

- Conceptos Fundamentales
 - ¿Qué es el régimen transitorio?
 - Condiciones iniciales
- Circuitos de Primer Order
- Circuitos de Segundo Orden

Permanente y Estacionario

Régimen permanente o estacionario

Las tensiones y corrientes de un circuito son constantes (continua) o periódicas (alterna) (circuito estabilizado)

Régimen transitorio

- Para alcanzar el régimen permanente (o para alternar entre dos regímenes permanentes) el circuito atraviesa el régimen transitorio.
- Posibles cambios: activación o apagado de fuentes, cambio en las cargas, cambio en el circuito (línea).
- En general, el estado transitorio es indeseado en sistemas eléctricos, pero provocado en sistemas electrónicos.

Acumulación de Energía

Régimen Permanente

Energía acumulada en bobinas y condensadores

Régimen Estacionario

- Redistribución y disipación de energía acumulada.
- La redistribución de energía no se puede realizar de forma inmediata
- Duración corta (μs) pero superior a 0, dependiendo de relación entre acumulación y disipación (resistencia).

- Conceptos Fundamentales
 - ¿Qué es el régimen transitorio?
 - Condiciones iniciales
- 2 Circuitos de Primer Order
- Circuitos de Segundo Orden

Respuesta completa de una red lineal

- La respuesta completa de una red lineal a un cambio tiene dos componentes:
 - ► Respuesta **natural** o propia (sin fuentes, determinada únicamente por la configuración del circuito)
 - ► Respuesta **forzada** o particular (determinada por las fuentes existentes, $t = \infty$).

$$f(t) = f_n(t) + f_{\infty}(t)$$

 Las constantes de integración de la respuesta natural se determinan con las condiciones iniciales del circuito.

Condiciones iniciales

- Condiciones Iniciales: estado del circuito en el instante temporal en el que se produce el cambio (p.ej. apertura de interruptor).
- Este instante temporal se representa habitualmente con t = 0.

$$t = 0^+ \text{ y } t = 0^-$$

- El estado previo a la conmutación es $t=0^-$
 - La topología del circuito es la anterior al cambio.
- El estado posterior a la conmutación es $t = 0^+$.
 - La topología del circuito es la posterior al cambio.

Resistencia

$$u(t) = Ri(t)$$

No acumula energía: sigue los cambios de forma instantánea.

Inductancia

$$u(t) = L \frac{di_L(t)}{dt} \leftrightarrow i_L(t) = \frac{1}{L} \int_{-\infty}^t u(t) dt$$

La corriente en una bobina no puede variar de forma abrupta (implica tensión infinita).

$$i_L(0^-) = i_L(0^+)$$

Capacidad

$$i(t) = C \frac{du_C(t)}{dt} \leftrightarrow u(t) = \frac{1}{C} \int_{-\infty}^t i(t) dt$$

La tensión en un condensador no puede variar de forma abrupta (implica corriente infinita).

$$u_C(0^-) = u_C(0^+)$$

Circuitos Equivalentes en $t = 0^+$

- Sustituir fuentes de tensión $u_g(t)$ por $u_g(0^+)$.
- Sustituir fuentes de corriente $i_g(t)$ por $i_g(0^+)$.
- Sustituir bobinas por fuentes de corriente $i_L(0^+)$.
- Sustituir condensadores por fuentes de tensión $u_C(0^+)$.
- Calcular tensiones y corrientes en circuito.

ELEMENTO	Circuito equivalente inicial $(t=0^+)$		Circuito equivalente
	CARGADO	DESCARGADO	final (solo con c.c.) $t=\infty$
°√√√°	0 −\ \	0- \ \ -0	0 −\ \
$ \begin{array}{c} L \\ \bullet \\ \downarrow \\ i_L \end{array} $	$i_L(0^+)=i_L(0^-)$	$ \overset{i_L(0^+)=0}{\circ -\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!$	Cortocircuito
○— C + u _C –	$u_C(0^+)=u_C(0^-)$	$u_{C}(0^{+})=0$ 0 0	Circuito abierto O—O O—O

Ejemplo

(Sep 2010) El interruptor lleva en la posición (1) desde un tiempo infinito y pasa a la posición (2) en t=0

- Conceptos Fundamentales
- 2 Circuitos de Primer Orden
- Circuitos de Segundo Orden

Definición

- Circuitos que tienen un **único elemento de acumulación** (o *varios elementos que pueden ser simplificados a un elemento equivalente*) y parte resistiva.
- Ecuación diferencial de primer orden: la respuesta natural es siempre una exponencial decreciente.
- Circuitos típicos:
 - ▶ RL serie
 - RC paralelo

Respuesta natural y forzada

- El método de resolución analiza el circuito en dos etapas:
 - ► Sin fuentes: **respuesta natural** (la energía acumulada en *t* < 0 se disipa en la resistencia).
 - Con fuentes: respuesta forzada (determinada por la forma de onda de las fuentes).

- Conceptos Fundamentales
- Circuitos de Primer Orden
 - Circuito RL serie
 - Circuito RC paralelo
 - Análisis Sistemático
- 3 Circuitos de Segundo Orden

Circuito básico

- En t < 0 la fuente alimenta el circuito RL (la bobina almacena energía).
- En t = 0 la fuente se desconecta.
- En t > 0 la bobina se descarga en la resistencia.

Respuesta natural

Ecuaciones

$$u_R(t) + u_L(t) = 0$$
$$Ri + L\frac{di}{dt} = 0$$

Solución Genérica

$$i(t) = Ae^{st}$$

Ecuación Característica

$$s + \frac{R}{L} = 0 \Rightarrow s = -\frac{R}{L}$$

Condiciones Iniciales

Analizando circuito para $t < 0 \dots$

... obtenemos $i(0^-) = I_0$

Condiciones Iniciales

Por otra parte, para t > 0:

$$i(t) = Ae^{-R/Lt}$$
$$i(0^+) = Ae^0 = A$$

Y dada la condición de continuidad, $i(0^+) = i(0^-)$:

$$A = I_0$$

Por tanto, la respuesta natural es:

$$i(t) = I_0 e^{-R/Lt}$$

Constante de tiempo

- $\tau = \frac{L}{R}$ es la constante de tiempo (unidades [s]).
- Ratio entre almacenamiento (*L*) y disipación (*R*).

$$i(t) = I_0 e^{-t/\tau}$$

Constante de tiempo

- Valores altos de τ implican decrecimiento lento.
- La respuesta natural «desaparece» tras $\simeq 5\tau$.

Respuesta forzada

Cambiemos el funcionamiento del interruptor: en t > 0 la fuente alimenta el circuito RL.

Respuesta forzada

Las ecuaciones son ahora:

$$u_R(t) + u_L(t) = u(t) \rightarrow Ri + L\frac{di}{dt} = U_0$$

Para la solución particular, i_{∞} , se propone una función análoga a la excitación (analizando circuito para t > 0)

$$i(t) = i_n(t) + i_{\infty}(t)$$
$$i_n(t) = Ae^{st}$$
$$i_{\infty}(t) = U_0/R$$

Condiciones iniciales

Particularizamos las ecuaciones en $t = 0^+$:

$$i(0^{+}) = i_{n}(0^{+}) + i_{\infty}(0^{+})$$

$$i(0^{+}) = A + i_{\infty}(0^{+})$$

$$A = i(0^{+}) - i_{\infty}(0^{+})$$

Respuesta completa (ejemplo)

$$i(t) = i_n(t) + i_{\infty}(t)$$

$$i_n(t) = Ae^{st}$$

$$i_{\infty}(t) = U_0/R$$

$$A = i(0^+) - i_{\infty}(0^+)$$

Suponiendo que la bobina está inicialmente descargada, $i(0^-)=0$, y teniendo en cuenta la condición de continuidad, $i(0^+)=i(0^-)=0$, obtenemos $A=0-U_0/R$.

La solución completa es:

$$i(t) = \frac{U_0}{R} (1 - e^{-\frac{t}{\tau}})$$

Respuesta completa

$$i(t) = \frac{U_0}{R} (1 - e^{-\frac{t}{\tau}})$$

Respuesta completa

- $i(0^+)$: corriente en la bobina, condiciones iniciales $(i(0^-)=i(0^+))$.
- $i_{\infty}(t)$: corriente en la bobina en régimen permanente para t>0.
- $i_{\infty}(0^+)$: corriente en la bobina en régimen permanente particularizada en t=0.

$$i(t) = (i(0^+) - i_{\infty}(0^+)) e^{-t/\tau} + i_{\infty}(t)$$

- Conceptos Fundamentales
- Circuitos de Primer Orden
 - Circuito RL serie
 - Circuito RC paralelo
 - Análisis Sistemático
- 3 Circuitos de Segundo Orden

Circuito básico

- En t < 0 la fuente alimenta el circuito RC (el condensador se carga).
- En t = 0 se desconecta la fuente (el condensador comienza a descargarse en la resistencia).

Respuesta natural

Ecuaciones

$$i_R(t) + i_C(t) = 0$$
$$Gu + C\frac{du}{dt} = 0$$

Respuesta natural

Solución Genérica

$$u(t) = Ae^{st}$$

Ecuación Característica

$$s + \frac{G}{C} = 0 \Rightarrow s = -\frac{G}{C}$$

Condiciones Iniciales

$$u(t) = U_0 e^{-G/Ct}$$

Constante de tiempo

- $\tau = \frac{C}{G}$ es la constante de tiempo (unidades [s]).
- Ratio entre almacenamiento (*C*) y disipación (*G*).

$$u(t) = U_0 e^{-t/\tau}$$

Balance Energético

La energía acumulada en el condensador en t<0 se disipa en la resistencia (conductancia) en t>0

$$W_G = \int_0^\infty Gu^2(t)dt = \frac{1}{2}CU_0^2 = W_C$$

Respuesta completa

- $u(0^+)$: tensión en el condensador, condiciones iniciales $(u(0^-) = u(0^+))$.
- $u_{\infty}(t)$: tensión en el condensador en régimen permanente para t > 0.
- $u_{\infty}(0^+)$: tensión en el condensador en régimen permanente particularizada en t=0.

$$u(t) = (u(0^+) - u_{\infty}(0^+)) e^{-t/\tau} + u_{\infty}(t)$$

Ejemplo

Suponiendo que el condensador está inicialmente descargado, $u(0^-)=0 \Rightarrow u(0^+)=0$

$$A = 0 - I_0/G$$

$$u(t) = \frac{I_0}{G} (1 - e^{-\frac{t}{\tau}})$$

- Conceptos Fundamentales
- Circuitos de Primer Orden
 - Circuito RL serie
 - Circuito RC paralelo
 - Análisis Sistemático
- 3 Circuitos de Segundo Orden

Equivalente de Thévenin (Norton)

Procedimiento General

- Dibujar el circuito para t < 0.
 - ▶ Determinar variables en régimen permanente, $u_c(t)$, $i_L(t)$.
 - ▶ Particularizar para t = 0, obteniendo $u_c(0^-)$ o $i_L(0^-)$.
 - Continuidad: $u_c(0^+) = u_c(0^-), i_L(0^+) = i_L(0^-).$
- Dibujar el circuito para t > 0.
 - Calcular el equivalente de Thevenin (Norton) visto por el elemento de acumulación.
 - La constante de tiempo de la respuesta natural es $\tau = \frac{L}{R_{th}}$ o $\tau = \frac{C}{G_{th}}$.
 - ► Calcular las variables $i_L(t)$ o $u_c(t)$ en régimen permanente, obteniendo $i_{\infty}(t)$ o $u_{\infty}(t)$.
 - Obtener respuesta completa:

$$i_L(t) = (i_L(0^+) - i_\infty(0^+)) e^{-t/\tau} + i_\infty(t)$$

$$u_C(t) = (u_C(0^+) - u_\infty(0^+)) e^{-t/\tau} + u_\infty(t)$$

- Conceptos Fundamentales
- 2 Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

Introducción

- Circuitos que tienen dos elementos de acumulación que intercambian energía, y parte resistiva que disipa energía.
- Ecuación diferencial de segundo orden: la respuesta natural incluye exponenciales decrecientes y quizás señal sinusoidal.
- Circuitos típicos:
 - RLC serie
 - RLC paralelo

Respuesta natural y forzada

- El método de resolución analiza el circuito en dos etapas:
 - Sin fuentes: **respuesta natural** (la energía acumulada en t < 0 se redistribuye).
 - Con fuentes: respuesta forzada (determinada por la forma de onda de las fuentes).

- Conceptos Fundamentales
- Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden
 - Circuito RLC serie
 - Circuito RLC paralelo
 - Respuesta Completa

Circuito básico

$$Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C} \int_{-\infty}^{t} i(t')dt' = 0$$

Ecuación diferencial (respuesta natural)

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i = 0$$
$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0$$

Solución

Ecuación característica

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

Solución

$$s_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

Solución con parámetros

Ecuación característica

$$s^2 + 2\alpha s + \omega_0^2 = 0$$

$$\alpha = \frac{R}{2L}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\xi = \frac{\alpha}{\omega_0}$$

Solución

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$i_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Posibles soluciones

$$\alpha > \omega, \xi > 1$$

- $s_{1,2}$: dos soluciones reales (negativas) distintas
- Circuito sobreamortiguado.

$$\alpha = \omega$$
, $\xi = 1$

- $s_{1,2}$: solución real doble.
- Circuito con amortiguamiento crítico.

$$\alpha < \omega$$
, $\xi < 1$

- $s_{1,2}$: dos soluciones complejas conjugadas
- Circuito subamortiguado.

Tipos de Respuesta

- Tipo de respuesta determinado por relación entre R y L, C (disipación y almacenamiento).
- Resistencia crítica ($\alpha = \omega_0, \xi = 1$):

$$R_{cr}=2\sqrt{\frac{L}{C}}$$

Tipos

- $R > R_{cr}$, $\alpha > \omega$, $\xi > 1$: sobreamortiguado
- $R = R_{cr}$, $\alpha = \omega$, $\xi = 1$: amortiguamiento crítico
- $R < R_{cr}$, $\alpha < \omega$, $\xi < 1$: subamortiguado

Circuito Sobreamortiguado ($\alpha > \omega_0$)

$$i_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Amortiguamiento Crítico ($\alpha = \omega_0$)

$$i_n(t) = (A_1 + A_2 t)e^{st}$$

Circuito Subamortiguado ($\alpha < \omega$)

$$i_n(t) = (B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t))e^{-\alpha t}$$

52 / 69

Comparación

Valores Importantes

Valores Importantes

- Tiempo de Subida: tiempo para subir de 10% al 90% del valor en régimen permanente.
- Tiempo de Establecimiento: tiempo para que la diferencia entre la respuesta y el régimen permanente permanezca dentro de una banda del 1%.
- Valor máximo y Tiempo del Valor Máximo.
- Sobretensión o Sobrecorriente: porcentaje del valor máximo respecto del régimen permanente.

- Conceptos Fundamentales
- Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden
 - Circuito RLC serie
 - Circuito RLC paralelo
 - Respuesta Completa

Circuito básico

$$Gu(t) + C\frac{du(t)}{dt} + \frac{1}{L} \int_{-\infty}^{t} u(t')dt' = i_s(t)$$

Ecuación diferencial (respuesta natural)

$$\frac{d^2u}{du^2} + \frac{G}{du} + \frac{1}{du}u = 0$$

Solución

Ecuación característica

$$s^2 + \frac{G}{C}s + \frac{1}{LC} = 0$$

Solución

$$s_{1,2} = -\frac{G}{2C} \pm \sqrt{\left(\frac{G}{2C}\right)^2 - \frac{1}{LC}}$$

Solución con parámetros

Ecuación característica

$$s^2 + 2\alpha s + \omega_0^2 = 0$$

$$\alpha = \frac{G}{2C}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\xi = \frac{\alpha}{\omega_0}$$

Solución

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$u_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Tipos de Respuesta

- Tipo de respuesta determinado por relación entre G y L, C (disipación y almacenamiento).
- Conductancia crítica ($\alpha = \omega_0, \xi = 1$):

$$G_{cr} = 2\sqrt{\frac{C}{L}}$$

Tipos

- $G > G_{cr}$, $\alpha > \omega$, $\xi > 1$: **sobreamortiguado**
- $G = G_{cr}$, $\alpha = \omega$, $\xi = 1$: amortiguamiento crítico
- $G < G_{cr}$, $\alpha < \omega$, $\xi < 1$: subamortiguado

Tipos de Respuesta

• Circuito Sobreamortiguado ($\alpha > \omega_0$)

$$u_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

• Amortiguamiento Crítico ($\alpha = \omega_0$)

$$u_n(t) = (A_1 + A_2 t)e^{st}$$

• Circuito Subamortiguado ($\alpha < \omega$)

$$u_n(t) = (B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t))e^{-\alpha t}$$

- Conceptos Fundamentales
- Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden
 - Circuito RLC serie
 - Circuito RLC paralelo
 - Respuesta Completa

Condiciones Iniciales

Dos constantes a determinar

Son necesarias dos tipos de condiciones iniciales:

$$u_{C}(0^{+}) = u_{C}(0^{-})$$

$$\frac{d}{dt}u_{c}\Big|_{t=0^{+}} = \frac{1}{C}i_{C}(0^{+})$$

$$i_{L}(0^{+}) = i_{L}(0^{-})$$

$$\frac{d}{dt}i_{L}\Big|_{t=0^{+}} = \frac{1}{L}u_{L}(0^{+})$$

Derivadas en el origen

Para obtener valores de las derivadas en el origen hay que resolver el circuito en $t=0^+$ empleando las condiciones de continuidad.

Circuitos Equivalentes

ELEMENTO	Circuito equivalente inicial $(t=0^+)$		Circuito equivalente
	CARGADO	DESCARGADO	final (solo con c.c.) $t = \infty$
0 −\ \\ /- 0	0 −\ \	R ○\\\\○	R ○- \ \\\-0
0—0000 ← i _L	$i_L(0^+)=i_L(0^-)$	$ \overset{i_L(0^+)=0}{\circ -\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!$	Cortocircuito
○ C + u _C	$u_C(0^+)=u_C(0^-)$	$\begin{matrix} u_C(0^+)=0 \\ \circ -\!\!\!-\!\!\!-\!\!\!-\!\!\!\circ \end{matrix}$	Circuito abierto

- Sustituir fuentes de tensión $u_g(t)$ por $u_g(0^+)$.
- Sustituir fuentes de corriente $i_g(t)$ por $i_g(0^+)$.
- Sustituir bobinas por fuentes de corriente $i_L(0^+)$.
- Sustituir condensadores por fuentes de tensión $u_C(0^+)$.
- Calcular tensiones y corrientes en circuito.

Derivadas en $t = 0^+$: ejemplo RLC serie

$$\frac{d}{dt}i_L\Big|_{t=0^+} = \frac{1}{L}u_L(0^+) = -\frac{1}{L}\left(Ri_L(0^+) + u_c(0^+)\right)$$

$$u_L(0^+) = -u_R(0^+) - u_c(0^+)$$

$$u_R(0^+) = Ri_L(0^+)$$

Derivadas en $t = 0^+$: ejemplo RLC paralelo

$$\begin{split} \frac{d}{dt}u_{c}\Big|_{t=0^{+}} &= \frac{1}{C}i_{C}(0^{+}) = -\frac{1}{C}\left(\frac{1}{R}u_{C}(0^{+}) + i_{L}(0^{+})\right) \\ i_{C}(0^{+}) &= -i_{R}(0^{+}) - i_{L}(0^{+}) \\ i_{R}(0^{+}) &= \frac{1}{R}u_{C}(0^{+}) \end{split}$$

Respuesta Completa

Las condiciones iniciales deben evaluarse teniendo en cuenta la respuesta forzada (si existe).

$$f(0^{+}) = f_n(0^{+}) + f_{\infty}(0^{+})$$

$$\frac{d}{dt}f\Big|_{t=0^{+}} = \frac{d}{dt}f_n\Big|_{t=0^{+}} + \frac{d}{dt}f_{\infty}\Big|_{t=0^{+}}$$

Ejemplo

Circuito RLC paralelo sobreamortiguado con generador de corriente DC funcionando en t > 0.

Respuesta Completa

$$u_c(t) = U_{\infty} + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Condiciones Iniciales

$$u_c(0^+) = U_{\infty} + A_1 + A_2$$

$$\frac{d}{dt}u_C\Big|_{t=0^+} = 0 + A_1s_1 + A_2s_2$$