

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

ÁLGEBRA LINEAL (R211 - CE9)

2024

6.1 La transformación adjunta

Para un F-ev V de dimensión finita dim(V) = n hemos visto que $V \simeq V^* \simeq F^n$. Un isomorfismo canónico viene dado por el que asigna a una base de V su base dual. Cuando el ev está dotado de un pi $\langle \cdot, \cdot \rangle$, podremos probar un resultado que nos permitirá establecer otro isomorfismo.

El teorema de Representación de Riesz: Sea $(V, \langle \cdot, \cdot \rangle)$ un F-ev con $pi, y \ dim(V) = n$. Sea $\varphi \in V^*$. Entonces existe un único vector $u \in V$ tal que $\varphi(v) = \langle v, u \rangle$ para todo $v \in V$.

Demostración: Sea $B = \{v_1, \dots, v_n\}$ bon de V.

Para $v \in V$, $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n$. Luego,

$$\varphi(v) = \langle v, v_1 \rangle \varphi(v_1) + \dots + \langle v, v_n \rangle \varphi(v_n) = \langle v, \overline{\varphi(v_1)} v_1 \rangle + \dots + \langle v, \overline{\varphi(v_n)} v_n \rangle.$$

Definimos entonces $u := \overline{\varphi(v_1)}v_1 + \cdots + \overline{\varphi(v_n)}v_n$, así $\varphi(v) = \langle v, u \rangle$.

La unicidad sigue de considerar otro $u' \in V$ tal que $\varphi(v) = \langle v, u' \rangle$ para todo $v \in V$. Luego, para todo $v \in V$, $\langle v, u \rangle = \langle v, u' \rangle$, de donde $\langle v, u - u' \rangle = 0$. Tomando particularmente v = u - u' sigue que u - u' = 0 y por lo tanto u' = u.

Proposición 1 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, y dim(V) = n. $T \in L(V)$. Existe un $T^* \in L(V)$ tal que

$$\langle Tv, u \rangle = \langle v, T^*u \rangle, \tag{1}$$

y tal endomorfismo se denomina transformación adjunta de T.

Demostración: Sea $B = \{v_1, \dots, v_n\}$ una bon de V. Si $u \in V$, con $u = \langle u, v_1 \rangle v_1 + \dots + \langle u, v_n \rangle v_n$. Para definir T^*u observemos que debería satisfacer que

$$T^*(u) = \langle T^*(u), v_1 \rangle v_1 + \dots + \langle T^*(u), v_n \rangle v_n$$

$$= \overline{\langle v_1, T^*(u) \rangle} v_1 + \dots + \overline{\langle v_n, T^*(u) \rangle} v_n$$

$$= \overline{\langle T(v_1), u \rangle} v_1 + \dots + \overline{\langle T(v_n), u \rangle} v_n$$

$$= \langle u, T(v_1) \rangle v_1 + \dots + \langle u, T(v_n) \rangle v_n.$$

Luego definimos para $u \in V$, $T^*(u) = \langle u, T(v_1) \rangle v_1 + \cdots + \langle u, T(v_n) \rangle v_n$.

- Con esta definición, $T^*: V \to V$ es una t.l. (EJERCICIO)
- T^* verifica (1). En efecto, si $u, v \in V$ con $v = \sum_{i=1}^n \langle v, v_i \rangle v_i$,

$$T(v) = T\left(\sum_{i=1}^{n} \langle v, v_i \rangle v_i\right) = \sum_{i=1}^{n} \langle v, v_i \rangle T(v_i),$$

$$\langle T(v), u \rangle = \langle \sum_{i=1}^{n} \langle v, v_i \rangle T(v_i), u \rangle = \sum_{i=1}^{n} \langle v, v_i \rangle \langle T(v_i), u \rangle,$$

$$\langle v, T^*u \rangle = \langle v, \sum_{i=1}^{n} \langle u, T(v_i) \rangle v_i \rangle = \sum_{i=1}^{n} \overline{\langle u, T(v_i) \rangle} \langle v, v_i \rangle = \sum_{i=1}^{n} \langle T(v_i), u \rangle \langle v, v_i \rangle,$$

que es exactamente (1).

• Para verificar la unicidad supongamos que existe otra tal \hat{T} : para todos $u, v \in V$ tenemos que

$$\langle T(v), u \rangle = \langle v, T^*(u) \rangle = \langle v, \hat{T}(u) \rangle,$$

esto nos dice que para todos $u, v \in V$ debe ser

$$\langle v, T^*(u) - \hat{T}(u) \rangle = 0,$$

y si en particular tomamos $v = T^*(u) - \hat{T}(u)$ resulta que $T^*(u) - \hat{T}(u) = \overline{0}$ para todo $u \in V$, de donde $T^* = \hat{T}$.

A nivel de matrices tenemos la siguiente proposición:

Proposición 2 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, y dim(V) = n, B bon de V, $T \in L(V)$. Entonces

$$[T^*]_B = ([T]_B)^* = \overline{[T]_B^t}.$$

Demostración: Sea $B = \{v_1, \ldots, v_n\}$ una bon de V. Recordemos que si $S \in L(V)$, $[S]_B = ([S(v_j)]_B^t) = (\langle S(v_i), v_j \rangle)$, puesto que $S(v_j) = \sum_{i=1}^n \langle T(v_j), v_i \rangle v_i$. Entonces,

$$([T^*]_B)_{ij} = \langle T^*v_j, v_i \rangle = \overline{\langle v_i, T^*v_j \rangle} = \overline{\langle T(v_i), v_j \rangle} = \overline{([T]_B)_{ji}} = \overline{([T]_B^t)_{ij}} = (([T]_B)^*)_{ij}.$$

Ejemplo 1 $T: \mathbb{C}^2 \to \mathbb{C}^2$ definida por T(z, w) = (2z - w, z + iw). Calcular la expresión de T^* a partir del planteo de (1). Además, se tiene que

$$[T]_E = \begin{pmatrix} 2 & -1 \\ 1 & i \end{pmatrix}$$

y

$$[T^*]_E = \begin{pmatrix} 2 & 1 \\ -1 & -i \end{pmatrix}.$$