Experimentalphysik (H.-C. Schulz-Coulon)

Robin Heinemann

November 4, 2016

Contents

Begrüßung ist langweilig Begrüßung2 ist auch langweilig										
								Begrüßung2 ist auch langweilig		
B Moodle										
Kla	usur		2							
5 Bücher										
Ein	leitung		3							
6.1	Eigens	schaften der Physik	3							
	6.1.1		3							
6.2	Maßei		3							
0	6.2.1		3							
	6.2.2	Weitere Größen	4							
Me	chanik		4							
7.1	Kinem	natik des Massenpunktes	4							
	7.1.1		4							
	7.1.2		5							
7.2	Newto		10							
	7.2.1		10							
7.3	TODO		13							
	7.3.1		13							
	7.3.2		13							
	7.3.3		13							
	7.3.4	_	14							
	Beg Mo Kla Büc Ein 6.1 6.2 Mec 7.1	Begrüßun Moodle Klausur Bücher Einleitung 6.1 Eigens 6.1.1 6.2 Maßei 6.2.2 Mechanik 7.1 Kinem 7.1.1 7.1.2 7.2 Newto 7.2.1 7.3 TODO 7.3.1 7.3.2 7.3.3	Begrüßung2 ist auch langweilig Moodle Klausur Bücher Einleitung 6.1 Eigenschaften der Physik 6.1.1 Beispiel 6.2 Maßeinheiten 6.2.1 Basisgrößen 6.2.2 Weitere Größen Mechanik 7.1 Kinematik des Massenpunktes 7.1.1 Eindimensionale Bewegung 7.1.2 Bewegung im Raum 7.2 Newtonsche Dynamik 7.2.1 Kraft und Impuls 7.3 TODO Montag 7.3.1 Normalkraft 7.3.2 Schiefe Ebene 7.3.3 Reibungskräfte							

- 1 Begrüßung ist langweilig
- 2 Begrüßung2 ist auch langweilig
- 3 Moodle

Passwort: F=ma

4 Klausur

11.02.2017 (9 Uhr) 60% Übungspunkte

5 Bücher

online...

Buch Bemerkung

Heintze; Lehrbuch zur Experimentalphysik I
Haliday, Resnick, Walker; Physik
Tipler, Allen; Physik
Demtröder; Experimentalphysik I
Bergman

2

6 Einleitung

6.1 Eigenschaften der Physik

Physik ist nicht axiomatisch!

- Nicht alle Gesetze der Natur sind bekannt.
- Die bekannten Naturgesezte sind nicht unumstößlich
- unfertig
- empirisch
- quantitativ
- experimentell
- überprüfbar
- braucht Mathematik
- Gefühl für Größenordnungen und rationale Zusammenhänge

6.1.1 Beispiel

Fermi-Probleme:

- Anzahl der Klabirstimmer in Chicago?
- Anzahl der Autos in einem 10km Stau?
- Anzahl von Fischen im Ozean

6.2 Maßeinheiten

Internationales Einheitensystem (SI)

6.2.1 Basisgrößen

Größe	Einheit	Symbol
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	S

- 1. Meter Strecke, die das Lich im Cakuum während der Dauer von $\frac{1}{299792458} {\rm s}$ durchläuft.
- 2. Sekunde Das 9 192 631 770-fache der Periodendauder der am Übergang zwischen den beiden Hyperfeinstukturniveaus des Grundzustandes von Atomen des Nukulids Cs_{133} entsprechenden Strahlung.
- 3. Kilogramm Das Kilogramm ist die Einheit der Masse, es ist gleich der Masse des internationalen Kilogrammprototyps (ist scheiße).
 - (a) Avogadroprojekt

$$N_A = \frac{MVn}{m}$$

 N_A : Avogardokonstante $(N_A = 6.022\,141\,5\times10^{23})$

6.2.2 Weitere Größen

Größe	$\operatorname{Einheit}$	$_{\text{Symbol}}$
Strom	Ampere	A
Temperatur	Kelvin	K
Lichtstärke	Candla	cd

7 Mechanik

Kinematik: Beschreibung der Bewegung Dynamik: Ursache der Berwegung

7.1 Kinematik des Massenpunktes

7.1.1 Eindimensionale Bewegung

1. **TODO** Skizze 1 $x_1, t_1 \longrightarrow x_2, t_2$ Geschwindigkeit

$$v = \frac{\text{Weg}}{\text{Zeit}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 $[v] = \text{m s}^{-1}$ abgeleitete Größe

2. Momentangeschwindigkeit

$$v := \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}$$

3. Beschleunigung

$$a := \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \ddot{x} \quad [a] = \mathrm{m}\,\mathrm{s}^{-2}$$

4. Freier Fall a = const. (Behauptung)

$$a = \ddot{x} = \text{const} = \dot{v}$$

 \rightarrow Integration:

$$v(t) = \int_0^t a dt + v_0 = at + v_0$$
$$x(t) = x_0 + \int_0^t v(t) dt = x_0 + \int_0^t (at + v_0) dt = \frac{1}{2}at^2 + v_0t + x_0$$

Bei unserem Fallturm

$$x(t) = \frac{1}{2}at^2 \to a = \frac{2x}{t^2}$$

$$\frac{x[\mathrm{m}] \quad t[\mathrm{ms}] \quad \frac{2x}{t^2}[\mathrm{m\,s^{-2}}]}{0.45 \quad 304.1 \quad 9.7321696}$$

$$0.9 \quad 429.4 \quad 9.7622163$$

$$1.35 \quad 525.5 \quad 9.7772861$$

$$1.80 \quad 606.8 \quad 9.7771293$$

$$x(t) = \frac{1}{2}gt^2, \quad g = 9.81\,\mathrm{m\,s^{-2}}$$

Die Erdbeschleunigung g ist für alle Körper gleich (Naturgesetz).

7.1.2 Bewegung im Raum

1. **TODO** Skizze 2 Ortsvektor:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} x(t) & y(t) & z(t) \end{pmatrix}^{\mathsf{T}}$$

Durschnittsgeschwindigkeit

$$\frac{\Delta \vec{r}_{12}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{\Delta t} = \vec{v}_D$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t) = (\dot{x}(t) \quad \dot{y}(t) \quad \dot{z}(t))^{\mathsf{T}} = (v_x \quad v_y \quad v_z)^{\mathsf{T}}$$

$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t) = (\ddot{x} \quad \ddot{y} \quad \ddot{z})^{\mathsf{T}} = (a_x \quad a_y \quad a_z)^{\mathsf{T}}$$

\rightarrow Superpositionsprinzip:

Kinematik kann für jede einzelne (Orts)komponente einzeln betrachtet werden.

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0) + \frac{1}{2}\vec{a}(t^2 - t_0^2) = \begin{pmatrix} x_0 + v_{x,0}(t - t_0) + \frac{1}{2}a_{x,0}(t^2 - t_0^2) \\ y_0 + v_{y,0}(t - t_0) + \frac{1}{2}a_{y,0}(t^2 - t_0^2) \\ z_0 + v_{z,0}(t - t_0) + \frac{1}{2}a_{z,0}(t^2 - t_0^2) \end{pmatrix}$$

- 2. Horizontaler Wurf
- 3. TODO Skizze 3

$$t_0 = 0$$

$$\vec{a_0} = \begin{pmatrix} 0 & 0 & -g \end{pmatrix}^\mathsf{T}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} & 0 & 0 \end{pmatrix}^\mathsf{T}$$

$$\vec{x_0} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^\mathsf{T}$$

$$\vec{r}(t) = \begin{pmatrix} v_{x,0}t & 0 & \frac{1}{2}gt^2 \end{pmatrix}^\mathsf{T}$$

4. Schiefer Wurf

$$\vec{a_0} = \begin{pmatrix} 0 \\ 0 \\ -g \end{pmatrix}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} \\ 0 \\ v_{z,0} \end{pmatrix}$$

$$\vec{r_0} = \begin{pmatrix} 0 \\ 0 \\ z_0 \end{pmatrix}$$

$$r(t) = \begin{pmatrix} v_{x,0}t \\ 0 \\ -\frac{1}{2}gt^2 + v_{z,0}t + z_0 \end{pmatrix}$$

$$z(x) = -\frac{1}{2}\frac{g}{v_{x,0}^2}x^2 + \frac{v_{z,0}}{v_{x,0}}x + z_0$$

5. Nachtrag

$$a = \dot{v}$$

$$\int_0^t \dot{v} dt' = \int_0^t a dt'$$

$$v \mid_0^t = at' \mid_0^t$$

$$v(t) - \underbrace{v(0)}_{v_0} = at$$

$$v(t) = at + v_0$$

analog:

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

(a) **TODO** Skizze Wurfparabel

$$\tan \varphi = \frac{v_{z,0}}{v_{x,0}}$$

$$v_0^2 = v_{x,0}^2 + v_{z,0}^2$$

Scheitel:

$$Z'(x_s) = 0$$

$$x_s = \frac{v_0^2}{2q} \sin 2\varphi$$

Wurfweite:

$$Z(x_w) = 0$$

$$x_w = \frac{v_0^2}{2g} \sin 2\varphi (1 + \sqrt{1 + \frac{2gz_0}{v_0^2 \sin^2 \varphi}})$$

Optimaler Winkel: φ_{opt}, x_w max.

$$z_0 = 0 \Rightarrow \sin 2\varphi = 1 \rightarrow \varphi = 45^{\circ}$$

$$z_0 \neq 0 \Rightarrow \sin \varphi_{opt} = (2 + \frac{2gz_0}{v_0^2})^{-\frac{1}{2}}$$

6. Gleichförmige Kreisbewegung

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} R\cos\varphi \\ R\sin\varphi \end{pmatrix}$$

$$mit \varphi = \varphi(t)$$

$$\vec{v}(t) = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -R\dot{\varphi}\sin\varphi \\ R\dot{\varphi}\cos\varphi \end{pmatrix}$$

Gleichförmige Kreisbewegung: $\dot{\varphi} = \text{const Definition Winkelgeschwindigkeit:}$

$$\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \dot{\varphi} \quad [w] = \mathrm{rad}\,\mathrm{s}^{-1} = 1/\mathrm{s}$$

Für $\omega = \text{const.}$:

$$\vec{r} = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} = R\omega \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} \perp \vec{r} \Leftrightarrow \vec{v} \cdot \vec{r} = 0$$

- (a) **TODO** Skizze Kreisbewegung
- (b) Mitbewegtes Koordinatensystem

$$\vec{r}(t) = R\vec{e_R}$$
 $\vec{e_R} = \begin{pmatrix} \cos \varphi(t) \\ \sin \varphi(t) \end{pmatrix}$

$$\vec{v}(t) = R\omega \vec{e_t}$$
 $\vec{e_t} = \begin{pmatrix} -\sin \varphi(t) \\ \cos \varphi(t) \end{pmatrix}$

$$\vec{t} \neq \text{ const das heißt } \vec{a}(t) \neq 0$$

Kreisbeschleunigung

$$\vec{a}(t) = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \end{pmatrix} = \begin{pmatrix} -R\omega^2 \cos \varphi \\ -R\omega^2 \sin \varphi \end{pmatrix} = -R\omega^2 \vec{e_R} \Rightarrow \vec{a} \parallel \vec{r}$$
$$|\vec{a}(t)| = R\omega^2 = \frac{v^2}{R} \neq 0$$

Zentripetalbeschleunigung Zeigt in Richtung des Ursprungs.

$$\vec{a}_{zp} = -R\omega^2 e_R^{\vec{}}$$

(c) Allgemein

 $\vec{\omega}$

Räumliche Lage der Bewegungsebene

$$\vec{v} = \vec{w} \times \vec{r} \quad v = \omega r$$

$$\vec{a} = \vec{w} \times \vec{v}$$

- i. **TODO** Skizze omega
- 7. Allgemeine Krummlinige Bewegung

$$\vec{v} = v\vec{e_t}$$

$$\vec{a} = \dot{\vec{v}} = \frac{\mathrm{d}(v\vec{e_t})}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}t}\vec{e_t} + v\frac{\mathrm{d}ve_t}{\mathrm{d}t}$$

$$\vec{e_t} = \cos\rho\vec{e_x} + \sin\rho\vec{e_y}$$

$$\vec{e_n} = -\sin\rho\vec{e_x} + \cos\rho\vec{e_y}$$

$$\frac{\mathrm{d}\vec{e_t}}{\mathrm{d}t} = \dot{\rho} - \sin\rho\vec{e_x} + \cos\rho\vec{e_y} = \dot{\rho}\vec{e_n}$$

$$\vec{a} = \dot{v}\vec{e_t} + \frac{v^2}{\rho}\vec{e_n}$$

- (a) TODO Skizze
- 8. Relativbewegung
 - \bullet S-Laborsystem
 - S'-Bewegtes System
 - $\vec{u} = (u, 0, 0) = \text{const Geschwindigkeit von S'}$ im System S
 - Punkt P = (x, y, z) in S
 - Punkt P' = (x', y', z') in S'
 - Zeitpunkt t = 0: S = S', P = P'
 - (a) **TODO** Skizze Bewegtes Bezugssystem
 - (b) Galilei-Transformation
 - i. Eindimensional

$$x' = x - ut$$

$$y' = y$$

$$z' = z$$

$$v' = v - u$$

$$t' = t$$

ii. Dreidimensional

$$\vec{r}' = \vec{r} - \vec{u}t$$
$$\vec{v}' = \vec{v} - \vec{u}$$
$$\vec{a}' = \vec{a}$$

7.2 Newtonsche Dynamik

Warum bewegen sich Körper?

Newton 1686: Ursache von Bewegungsänderungen sind Kräfte. Newtonsche Gesetze (Axiome)

- 1. Jeder Körper verharrt im Zustand der Ruhe oder der gleichförmigen Bewegung, sofern er nicht durch Kräfte gezwungen wird diesen Bewegungszustand zu verlassen
- 2. Die Änderung einer Bewegung wird durch Einwirken einer Kraft verursacht. Sie geschieht in Richtung der Kraft und ist proportional zu Größe der Kraft
- 3. Übt ein Körper 1 auf einen Körper 2 die Kraft F_{12} , so reagiert Körper 2 auf den Körper 1 mit der Gegenkraft F_{21} und es gilt $F_{21} = -F_{12}$ (actio = reactio)

7.2.1 Kraft und Impuls

$$\vec{F} = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix}$$

Superpositions von Kräften (Zusatz zu den Newtonschen Gesetzen (Korollar)):

$$\vec{F}_{\text{ges}} = \sum_{i=1}^{n} \vec{F}_{i}$$

- 1. **TODO** Skizze Addition von Kräften
- 2. Grundkräfte der Natur
 - Elektromagnetische Kraft
 - Starke Draft
 - Schwache Kraft
 - Gravitation
- 3. Impuls

$$\vec{P} = m\vec{v} \quad [\vec{P}] = \text{kg m s}^{-1}$$

4. Kraft

$$\vec{F} = \frac{\mathrm{d}\vec{P}}{\mathrm{d}t} = \dot{\vec{P}} = \frac{\mathrm{d}}{\mathrm{d}t}(m\vec{v})$$

m = const.:

$$\vec{F} = m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = m\dot{\vec{v}} = m\ddot{\vec{x}} = m\vec{a}$$

5. Grundgesetz der Dynamik

$$\vec{F} = \dot{\vec{P}}$$
beziehungsweise $\vec{F} = m\vec{a}$

(a) Trägheitsprinzip (Impulserhaltung)

$$\vec{P} = m\vec{v} = \text{const}, \ \vec{P} = 0 \ \text{für } \vec{F} = 0$$

6. Experiment

$$\vec{F}_G = \underbrace{m\vec{g}}_{Kraft} = \underbrace{(m+M)}_{Trgheit} \vec{a} = m_{\rm ges} \vec{a}$$

$$\vec{a} = \frac{m}{m+M} \vec{g} \stackrel{d=1}{\Longleftrightarrow} a = \frac{m}{m+M} g = \frac{m}{m_{textaes}} g$$

- (a) Erwartung: $a \sim \frac{m}{m_{\rm ges}}, \, a = \frac{2\Delta s}{\Delta s},$ weil $\Delta s = \frac{1}{2} a \Delta t^2$
- (b) Messung:

m[g]	M[g]	$m_{\rm ges}[{\rm g}]$	$\frac{m_{\rm ges}}{m}$	$\Delta s [\mathrm{mm}]$	$\Delta t[\mathrm{s}]$	$a[\mathrm{meter/s}]$
10	470	480	48	800	2.75	0.21157025
40	440	480	12	800	1.40	0.81632653
10	1910	1920	192	800	5.55	0.051943836
40	1880	1920	48	800	2.79	0.20554721

- (c) TODO Skizze
- 7. Trägheitsprinzip "revisited" **Definition**: Ein Bezugssystem in dem das Trägheitsprinzip gilt nennt man ein Inatialsystem.

In einem beschleunigten Bezugsystem gilt das Trägheitsprinzip
 <u>nicht</u>. Beschleunigte Systeme \neq Inatialsysteme. Das Trägheitsprinzip ist Galilei-invariant.

(a) **TODO** Skizze whatever

- (b) Trägheitsprinzip: [moderne Formulierung]: Es gibt Inatialsysteme, das heißt Koordinatensysteme in denen ein Kräftefreier Körper im Zustand der Ruhe oder der gradlinig gleichförmigen Bewegung verbleibt.
- 8. Actio gleich Reactio

$$\underbrace{\vec{F_{12}}}_{\text{Kraft}} = \underbrace{-\vec{F_{21}}}_{\text{Gegenkraft}}$$

- (a) **TODO** Skizze von Körpern
- (b) **TODO** (Skizze) Experiment
 - i. Erwartung:

$$v_1 = v_2 \rightarrow a_1 = a_2 \rightarrow F_1 = F_2 \checkmark$$

Nichttrivialer Fall:

Kraftstoß:

Magnetische Kraft: $F_{\rm mag} \sim \frac{1}{r^2}$

$$v_{1,2} = \int_0^{t_{1,2}} a(t) dt = a_{\text{eff}} T$$

 $\to F_1(t) = F_2(t) \to v_1 = v_2$

(c) Experiment 2

$$m_{1} = 241.8 \,\mathrm{g} \wedge 2 = 341.8 \,\mathrm{g} \Rightarrow \frac{m_{2}}{m_{1}} \approx 1.5$$

$$v = \frac{\Delta s}{\Delta t} \to \frac{v_{1}}{v_{2}} = \frac{t_{2}}{t_{1}} = \frac{71}{48} \approx 1.5$$

$$a \sim v, F = ma \to \frac{v_{1}}{v_{2}} = \frac{a_{1}}{a_{2}} = \frac{m_{2}}{m_{1}} \cdot \frac{F_{1}}{F_{2}}$$

$$1 = \frac{F_{1}}{F_{2}} \Rightarrow F_{1} = F_{2}$$

- (d) Beispiele
 - Kraft und Gegenkraft (TODO Skizze)
 - Flaschenzug, Seilkräfte (TODO Skizze)

7.3 TODO Montag

7.3.1 Normalkraft

1. (Skizze) Normalkraft $\vec{F}_N=$ Kraft senktrecht zur Kontaktfläche. Wird kompensiert duchr $\vec{F}_N'=$ Kraft mit der die Unterlage auf Körper wirkt (Źwangskräfte)

7.3.2 Schiefe Ebene

• Gewichtskraft: $\vec{F}_G = m\vec{g}$

• Normalkraft: $\vec{F}_N = mg \cos \alpha \vec{e}_y$

• Hangabtriebskraft: $\vec{F}_H = mg \sin \alpha \vec{e}_x$

Bewegungsgleichung

$$F_H = m\ddot{x} \to x_x = g \sin \alpha = \text{const.}$$

7.3.3 Reibungskräfte

• im täglichen Leben über all präsent

• spielt eine wichtige Rolle Technik

 \rightarrow Tribologie = Reibungslehre

• Reibung hängt stark von der Oberfläche ab

1. Experiment: Bewegung einer Masse

• Gewicht ruhte: $\vec{F}_Z = -\vec{F}_R \rightarrow a = 0, v = 0$

- Gewicht setzt sich in Bewegung: $|\vec{F}_Z| > |\vec{F}_R| \to a > 0, v$ steigt an

• Gewicht gleitet: $\vec{F}_Z = -\vec{R}_R \rightarrow a = 0, v = \text{const.} \neq 0$ mit $\vec{v} = \text{const}$

Reibugskraft nimmt ab, sobald das Gewicht bewegt wir.

- Haftreibung ${\cal F}_H$ Schwellenwert für Zugkraft um Körper zu bewegen

• Gleitreibung F_G Reibungskreaft bei bewegtem Körper

- 2. Experiment: Tribologische Messung Messung der Zugkraft bei der sich der Holzblock nach kleiner Störung in Richtung Rolle bewegt: $F_R = F_Z$
 - (a) Beobachtung
 - F_R hängt nicht von der Oberfläche ab.
 - F_R hängt von dem Gewicht des Blocks ab
 - F_R ist Materialbhängig

7.3.4 Tribologische Reibungslehre

7.3.5 Mikroskopisches Modell

Verantwortlich sind elektrische Kröfte zwischen Atomen und Molekülen der beieinanderliegenden Oberflächen: Van-der-Waals-Kräfte

• Stärke ergibt sich aus effektivem Kontakt.

Relative mikroskopische Reibungsfläche: $\sum \frac{a_i}{A} \sim \frac{F_N}{A} \leftarrow \text{Druck}$

• a_1 = effektive Kontaktfläche eines Einzelatoms

Also:

$$F_R \sim \sum \frac{a_i}{A} \sim F_N$$

- Haftreibung: Verzahnung der Oberflächen mit minimalen Abstand
- Gleitreibung: Minimaler Abstand wird aufgrund der Bewegung nicht erreicht

7.3.6 Schiefe Ebene: Messung der Reibungskraft (Skizze)

Kräftegleichgewicht: $F_H = F_R$

$$F_H = mg\sin\alpha, F_N = mg\cos\alpha$$

Grenzwinkel: $F_R = mg \sin \alpha = \mu_R mg \cos \alpha \Rightarrow \mu_R = \tan \alpha$

$$\alpha = 15^{\circ} \to \tan \alpha = 0.27, \mu_G = 0.27$$

7.3.7 Zentripetalkraft

$$\vec{a}_{Zp} = \vec{\omega} \times (\vec{\omega} \times \vec{r})$$
 $\vec{F}_{Zp} = m\vec{\omega} \times (\vec{\omega} \times \vec{r})$

$$a_{Zp} = \omega^2 r = \frac{v^2}{r}$$
 $F_{Zp} = m\omega^2 r = m\frac{v^2}{r}$

1. Beispiel 1 Rotierendes Pendel

$$\begin{split} \vec{F}_{Zp} &:= \vec{F}_G + \vec{F}_Z \\ F_G &= mg = F_Z \cos \theta \\ F_{Zp} &= F_Z \sin \theta \\ F_{Zp} &= mg \frac{\sin \theta}{\cos \theta} = mg \tan \theta, \quad a_{Zp} = g \tan \theta \\ a_{Zp} &= \omega^2 r \Rightarrow : \omega \sqrt{\frac{g}{\tan \theta}} \end{split}$$

- θ steigt mit ω an
- $\theta(\omega)$ ist unabhängig von Masse

2. Beispiel 2 Geostationärer Satellit Zetripetal = Gravitationskraft

$$m\omega^2 R = G \frac{mM_E}{R^2}$$
 Geostationär: $\omega = \frac{2\pi}{24\,\mathrm{h}} = \frac{2\pi}{24\cdot3600\,\mathrm{s}} = 7.27\times10^{-5}\,\mathrm{s}^{-1}$
$$R^3 = \frac{GM_E}{\omega^2} \to R = 42\,312\,\mathrm{km}$$

Abstand von der Erd-Oberfläche:

$$\tilde{R} = R - R_E = 35\,930\,\mathrm{km}$$

- $G = 6.67 \times 10^{-11} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{s}^2$
- $M_E = 6 \times 10^{24} \,\mathrm{kg}$
- $R_E = 6373 \,\mathrm{km}$