

Duration:3 Hrs. Semester: IV (SVU 2020) Semester: January 2023 – May 2023 Examination: ESE Examination Maximum Marks: 100 Programme code: 014-Class: SY Name of the department: IT Programme: B-Tech #7 Name of the Constituent College: Name of the Course: Analysis of Algorithms K. J. Somaiya College of Engineering Course Code: 116U04C403 Instructions: 1)Draw neat diagrams 2) All questions are compulsory

3) Assures suitable detections.

3) Assume suitable data wherever necessary

Que.	Question	Marks 20
$\frac{N_0}{Q1}$	ith Diagram.	5
TO TO	Solve any Four Define and explain Big- O, Ω, Θ notations for time complexity with Diagram. Find the complexity of following recurrence relation using recursion tree technique and prove the result using substitution technique.	5
	Find the complexity of following recurrence technique. technique and prove the result using substitution technique.	
	southingue and prove the result was	5.
VIII	T(n) = 4T(n/4) + n Sort the following element (8, 5, 2, 3, 9, 4) using Insertion Sort Sort the following element (6, 4, 5, 2, 5, 4, 2, 4, 0) using Counting Sort	5
v)	Sort the following element (8, 5, 2, 3, 9, 4) using Insertion Sort Sort the following element (6, 4, 5, 2, 5, 4, 2, 4, 0) using Counting Sort Write the algorithm/pseudo code for Sum of Subset Problem using	5
vi)	Backtracking Approach. Write the algorithm/pseudo code for TSP Problem using Branch and Bound	5
¥1)	Approach.	· de

Que.	Question	Max. Marks					
No.		10					
Q2 A	Solve the following	5					
i)	State the difference between Quick sort and Randomized Quick sort						
ii)	Derive Quick sort recurrence relation time complexity using Substitution						
	method & Master method.	G 57					
1.1	OR .	10					
050	Explain what are Max Heap and Min Heap? Derive the time complexity of heap						
Charles I	sort algorithm in detail?	10					
	Solve any One	10					
Q2B	Consider the following table of Optimal Binary Search Technique (OBST)						
	1.5	V					
7	Frequency 4 2 1 3 5 2 1	1					
4	Using dynamic algorithm formulas find the optimal Cost and construct the final						
F. 5 13	ODCT	10					
	Solve the following graph to find shortest path using Floyd-Warshall algorithm	10					
CA	and state shortest path from source '4' to all destination with their cost.						

Que. No. Q3			uestio	n ,				7	0.513	Max. Jarks
	Solve any Two	73.1	all No		****	. di od	D. Co. and Co.	<u> </u>	- 1	20
	Consider the instance of knapsack problem where n=6, M=15, profits are {p1,p2,p3,p4,p5,p6}={1,2,4,4,7,2} and weights are {w1,w2,w3,w4,w5,w6}={10,5,4,2,7,4} Find Maximum Profit using Fractional Knapsack and 0/1 knapsack Approach Also explain which Approach is better Circuit of the same.							1	10	
	Given the jobs, their deadlines and associated profits are as follows:-						10			
	Jobs	J1	J2	J3	J4	J5	J6			
-	Deadlines	5	3	3	3 2	4	2			
	Profits	200	180	190	300	120	130			in it
	 Answer the following ques a) Write the optimal so b) Are all the jobs com c) What is the maximu d) Write the algorithm 	hedule the pleted in mearned for job s	the op I profit equenc	timal ? ing w	schedu ith dea	le? dline.	ien i			
iii)	Distinguish between Greed Points)	y and D	ynamic	Prog	rammiı	ng wit	h exar	mple (Min	6	10

Que. No.	Question	Max. Marks
Q4	Solve any Two	20
1	What do you understand by P, NP, NP-Hard, NP-Complete Problems/Algorithms?	2 10
W	Prove that 0/1 Knapsack problem is NP-Complete?	10
iii)	Prove that Travelling salesman problem is NP-Complete?	10

Que. No.	Question Max. Marks
Q5	(Write notes / Short question type) on any four 20
(i)	Write the algorithm/pseudo code for Selection Sort Algorithm.
cin/	Write the algorithm/pseudo code for Radix Sort Algorithm.
(0)	Write the algorithm/pseudo code for Kruskal's Algorithm for MST
(8)	Write the algorithm/pseudo code for TSP using dynamic approach.
v)	Write the algorithm/pseudo code for Hamiltonian Circuit Problem using
JEL JEL	Backtracking Approach.
vi)	Write the algorithm/pseudo code for 15 Puzzle Problem using Branch and
	Bound Approach.