First try: 1/2

First try: 1/2

Second try: 1/2*1/2 = 1/4

First try: 1/2

Second try: 1/2*1/2 = 1/4

Third try: 1/4*1/2 = 1/8

First try: 1/2

Second try: 1/2*1/2 = 1/4

Third try: 1/4*1/2 = 1/8

. . .

First try: 1/2

Second try: 1/2*1/2 = 1/4

Third try: 1/4*1/2 = 1/8

. . .

 n^{th} try: $1/2^n$

First try: 1/2

Second try: 1/2*1/2 = 1/4

Third try: 1/4*1/2 = 1/8

. . .

 n^{th} try: $1/2^n$

$$1/2 + 1/4 + 1/8 + 1/16 + ...$$

First try: 1/2

Second try: 1/2*1/2 = 1/4

Third try: 1/4*1/2 = 1/8

. . .

 n^{th} try: $1/2^n$

$$s = 1/2 + 1/4 + 1/8 + 1/16 + ...$$

First try: 1/2

Second try: 1/2*1/2 = 1/4

Third try: 1/4*1/2 = 1/8

. . .

 n^{th} try: $1/2^n$

$$s = 1/2 + 1/4 + 1/8 + 1/16 + ...$$

$$s= 1/2 + 1/2(1/2 + 1/4 + ...$$

First try: 1/2

Second try: 1/2*1/2 = 1/4

Third try: 1/4*1/2 = 1/8

. . .

 n^{th} try: $1/2^n$

$$s= 1/2 + 1/4 + 1/8 + 1/16 + ...$$

 $s= 1/2 + 1/2(s)$

First try: 1/2

Second try: 1/2*1/2 = 1/4

Third try: 1/4*1/2 = 1/8

. . .

 n^{th} try: $1/2^n$

```
s= 1/2 + 1/4 + 1/8 + 1/16 + ...

s= 1/2 + 1/2(s)

s/2 = 1/2

s=1
```

Suppose the probability that it lights on a single try is *p*

Suppose the probability that it lights on a single try is p

First try: p

Suppose the probability that it lights on a single try is p

First try: p

Second try: (1-p)p

Suppose the probability that it lights on a single try is p

First try: p

Second try: (1-p)p

Third try: $(1-p)^2p$

Suppose the probability that it lights on a single try is *p*

First try: *p*

Second try: (1-p)p

Third try: $(1-p)^2p$

Fourth try: $(1-p)^3p$

Suppose the probability that it lights on a single try is *p*

First try: p

Second try: (1-p)p

Third try: $(1-p)^2p$

Fourth try: $(1-p)^3p$

. . .

Suppose the probability that it lights on a single try is *p*

```
First try: p
```

Second try: (1-p)p

Third try: $(1-p)^2p$

Fourth try: $(1-p)^3p$

. . .

 n^{th} try: $(1-p)^{n-1}p$

Suppose the probability that it lights on a single try is *p*

```
First try: p
```

Second try: (1-p)p

Third try: $(1-p)^2p$

Fourth try: $(1-p)^3p$

. . .

 n^{th} try: $(1-p)^{n-1}p$

Probability that it lights at some point = $s = p(1 + (1-p) + (1-p)^2 +...)$

Suppose the probability that it lights on a single try is p

```
First try: p
```

Second try: (1-p)p

Third try: $(1-p)^2p$

Fourth try: $(1-p)^3p$

...

 n^{th} try: $(1-p)^{n-1}p$

Probability that it lights at some point =

$$s = p(1 + (1-p) + (1-p)^{2} + ...)$$

$$s = p + (1-p)*p*(1 + (1-p) + (1-p)^{2} + ...$$

Suppose the probability that it lights on a single try is *p*

First try: p

Second try: (1-p)p

Third try: $(1-p)^2p$

Fourth try: $(1-p)^3p$

. . .

 n^{th} try: $(1-p)^{n-1}p$

Probability that it lights at some point =

$$s = p(1 + (1-p) + (1-p)^2 +...)$$

$$s = p + (1-p)*p*(1 + (1-p) + (1-p)^2 + ...$$

$$s = p + (1-p)*s$$

Suppose the probability that it lights on a single try is p

```
First try: p
```

Second try: (1-p)p

Third try: $(1-p)^2p$

Fourth try: $(1-p)^3p$

...

$$n^{th}$$
 try: $(1-p)^{n-1}p$

Probability that it lights at some point =

$$s = p(1 + (1-p) + (1-p)^2 + ...)$$

 $s = p + (1-p)*p*(1 + (1-p) + (1-p)^2 + ...$
 $s = p + (1-p)*s$
 $p*s = p$

Suppose the probability that it lights on a single try is *p*

```
First try: p
Second try: (1-p)p
Third try: (1-p)^2p
Fourth try: (1-p)^3p
...
n^{th} try: (1-p)^{n-1}p
```

Probability that it lights at some point = $s = p(1 + (1-p) + (1-p)^2 + ...)$ $s = p + (1-p)*p*(1 + (1-p) + (1-p)^2 + ...$ s = p + (1-p)*s p*s = ps = 1

How do we implement this in Matlab?

How do we implement this in Matlab?

Code that returns a geometrically distributed random number of mean 1/p

```
function res = getRand (p)
    s = 1;
    t = rand(1);
    res = 1;
    while !(1-s <= t && t < 1-s*(1-p))
        s = s*(1-p);
        res = res+1;
    end
end</pre>
```

How do we implement this in Matlab?

But we use a continuous counterpart of the geometric distribution: if X is a random variable taken from a uniform distribution from 0 to 1, then relate X to n like this -

$$X = 1 - (1 - p)^n$$

where *n* is now a real number instead of an integer. Rearrange the equation above to get this:

$$n = \log(1-X)/\log(1-p)$$

The corresponding Matlab expression for generating n is:

$$n = \log(rand(1))/\log(1-(1/Mean));$$

since rand(1) and 1-rand(1) give the same probabilities and 1/p is the Mean of the distribution above.