STAT211 Mandatory Homework 6

Yapi Donatien Achou

March 9, 2019

Contents

1	Problem 6.2	2
	1.1 Part a: Polynomial roots of moving average model	2
	1.2 Part b: Polynomial roots of moving average model	2
2	Problem 6.3	2
3	Problem 6.4	4
4	Problem 6.5	5
	4.1 Part a	5
	4.2 Part b	5
	4.3 Part c	6
	4.4 Part d	7
	4.5 Part e	8
5	Problem 6.6	9
6	Problem6 7	11

1 Problem 6.2

1.1 Part a: Polynomial roots of moving average model

The model

$$X_t = Z_t + Z_{t-2} \tag{1}$$

can be rewritten as

$$X_t = Z_t + 0Z_{t-1} + 1Z_{t-2}, (2)$$

and the corresponding moving average polynomial is

$$\theta(z) = 1 + 0z + 1.z^2 = 1 + z^2,\tag{3}$$

whose roots are

$$z_1 = i, \quad z_2 = -i \tag{4}$$

1.2 Part b: Polynomial roots of moving average model

The corresponding moving average polynomial for the model

$$X_t = Z_t - 2\cos(w)Z_{t-1} + Z_{t-2} \tag{5}$$

is

$$\theta(z) = 1 - 2\cos(w)z + z^{2}$$

$$= (z - \cos(w))^{2} - \cos(w)^{2} + 1$$

$$= (z - \cos(w))^{2} - (\cos(w)^{2} - 1)$$

$$(z - \cos(w))^{2} - (-\sin(w)^{2})$$

$$(z - \cos(w))^{2} - (i^{2}\sin(w)^{2})$$

$$(z - \cos(w))^{2} - (i\sin(w))^{2}$$

$$(z - \cos(w) + i\sin(w))(z - \cos(w) - i\sin(w))$$
(6)

whose roots are

$$z_1 = \cos(w) - i\sin(w), \quad z_2 = \cos(w) + i\sin(w)$$
 (7)

2 Problem 6.3

Consider a causal AR(2) model with

$$\{Z_t\} \sim WN(0, \sigma^2) \tag{8}$$

The two step predictor \widehat{X}_{n+2} is defined by $\mathcal{P}_n(X_{n+2})$. From [1], page 65 property 1, we have

$$\mathcal{P}_n(X_{n+h}) = \sum_{i=1}^n a_i X_{n+1-i}$$
 (9)

where the a_i satisfy

$$\Gamma_n \mathbf{a}_n = \gamma_n(h), \quad \text{equation 2.5.7 from [1]},$$
 (10)

where

$$\mathbf{a}_n = (a_1, \cdots, a_n) \tag{11}$$

$$\Gamma_n = [\gamma(i-j)]_{i,j=0}^n \tag{12}$$

and

$$\gamma_n(h) = (\gamma(h), \gamma(h+1), \cdots, \gamma(h+n-1))$$
(13)

$$\gamma(h) = \operatorname{Cov}(X_{t+h}, X_t). \tag{14}$$

To compute $\mathcal{P}_n(X_{n+2})$, we set h=2 in equation (9) and compute the coefficient a_i by solving

$$\Gamma_n \mathbf{a}_n = \gamma_n(2) \tag{15}$$

or more generally

$$\underbrace{\begin{pmatrix}
\gamma(0) & \gamma(1) & \cdots & \gamma(n) \\
\gamma(1) & \gamma(0) & \cdots & \gamma(n-1) \\
\vdots & \vdots & \ddots & \vdots \\
\gamma(n) & \gamma(n-1) & \cdots & \gamma(0)
\end{pmatrix}}_{\Gamma_n}
\underbrace{\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix}}_{\mathbf{a}_n} = \underbrace{\begin{pmatrix}
\gamma(2) \\
\gamma(3) \\
\vdots \\
\gamma(n+1)
\end{pmatrix}}_{\gamma_n(2)}$$
(16)

To evaluate $\gamma(h)$, we note that the process is causal, which leads to

$$X_t = Z_t + \psi_1 Z_{t-1} + \psi_2 Z_{t-2} \tag{17}$$

and

$$\gamma(h) = \operatorname{Cov}(X_{t+h}, X_t)
= \operatorname{Cov}(Z_{t+h} + \psi_1 Z_{t+h-1} + \psi_2 Z_{t+h-2}, Z_t + \psi_1 Z_{t-1} + \psi_2 Z_{t-2})
= \operatorname{Cov}(Z_{t+h}, Z_t) + \psi_1 \operatorname{Cov}(Z_{t+h}, Z_{t-1}) + \psi_2 \operatorname{Cov}(Z_{t+h}, Z_{t-2})
+ \psi_1 \operatorname{Cov}(Z_{t+h-1}, Z_t) + \psi_1^2 \operatorname{Cov}(Z_{t+h-1}, Z_{t-1}) + \psi_1 \psi_2 \operatorname{Cov}(Z_{t+h-1}, Z_{t-2})
+ \psi_2 \operatorname{Cov}(Z_{t+h-2}, Z_t) + \psi_2 \psi_1 \operatorname{Cov}(Z_{t+h-2}, Z_{t-1}) + \psi_2^2 \operatorname{Cov}(Z_{t+h-1}, Z_{t-2})
= \sigma^2(\delta_{h,0} + \psi_1 \delta_{h,-1} + \psi_2 \delta_{h,-2} + \psi_1 \delta_{h,1} + \psi_1^2 \delta_{h,0} + \psi_1 \psi_2 \delta_{h,-1} + \psi_2 \delta_{h,2} + \psi_2 \psi_1 \delta_{h,1} + \psi_2^2 \delta_{h,-1})
(18)$$

From which we get

$$\gamma(0) = \sigma^2 (1 + \psi_1^2)
\gamma(1) = \sigma^2 (\psi_1 + \psi_1 \psi_2)
\gamma(2) = \sigma^2 \psi_2
\gamma(n) = 0, \text{ for } n \ge 3$$
(19)

Now the variance of $\mathcal{P}_n(X_{n+2})$ is given by

$$\operatorname{Var}(\mathcal{P}_n(X_{n+2})) = \operatorname{Var}\left(\sum_{i=1}^n a_i X_{n+1-i}\right)$$

$$= \sum_{i,j=1}^n a_i a_j \operatorname{Cov}(X_{n+1-i}, X_{n+1-j})$$
(20)

3 Problem 6.4

Let $\{X_t\}$ be a stationary and linear causal time series with white noise process $\{Z_t\} \sim WN(0,\sigma^2)$. Let \mathcal{P}_n be the projection onto $\{X_1,\cdots,X_n\}$. Let compute $\widehat{Z}_{n+1} = \mathcal{P}_n(Z_{n+1})$ and $\widehat{Z}_n = \mathcal{P}_n(Z_n)$ Since $\{X_t\}$ is linear we can write

$$X_{t} = \sum_{j=0}^{n} \psi_{j} Z_{t-j}.$$
 (21)

From Problem 6.3 equation (9) we have

$$\mathcal{P}_n(Z_{n+1}) = \sum_{i=1}^n a_i Z_{n+1-i}$$
 (22)

and

$$\mathcal{P}_n(Z_n) = \sum_{i=1}^n b_i Z_{n-i} \tag{23}$$

where the a_i and b_i are solution of

$$\Gamma_n \mathbf{a}_n = \gamma_n(1) \tag{24}$$

$$\Gamma_n \mathbf{b}_n = \gamma_n(0) \tag{25}$$

respectively. Or

$$\mathbf{a}_n = \Gamma_n^{-1} \gamma_n(1) \tag{26}$$

$$\mathbf{b}_n = \Gamma_n^{-1} \gamma_n(0) \tag{27}$$

$$\underbrace{\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}}_{\mathbf{a}_n} = \begin{pmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(n-1) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(n) & \gamma(n-1) & \cdots & \gamma(0) \end{pmatrix}^{-1} \underbrace{\begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(n+1) \end{pmatrix}}_{\gamma_n(1)}$$
(28)

$$\underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}}_{\mathbf{b}_n} = \begin{pmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(n-1) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(n) & \gamma(n-1) & \cdots & \gamma(0) \end{pmatrix}^{-1} \underbrace{\begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(n+1) \end{pmatrix}}_{\gamma_n(0)}$$
(29)

4 Problem 6.5

let $\{Z_n\} \sim WN(0,1)$ and

$$X_t = Z_t - Z_{t-1} (30)$$

4.1 Part a

The corresponding polynomial of model (35) is

$$\theta(z) = 1 - z,\tag{31}$$

whose root is

$$z = 1 \tag{32}$$

The root is on the unit circle. Since the root is not outside the unit circle, the process is not invertible.

4.2 Part b

Let try to create different representation of the model in equation (35). (35) we have

$$X_{t-1} = Z_{t-1} - Z_{t-2} \Rightarrow Z_{t-1} = X_{t-1} + Z_{t-2}$$
(33)

and inserting the last expression back into (35) we get

$$X_t + x_{t-1} = Z_t - Z_{t-2}. (34)$$

If we repeat the same process we get the following representation.

$$X_t + X_{t-1} + X_{t-2} = Z_t - Z_{t-3}. (35)$$

which is an ARMA(2,3), and the autoregressive polynomial

$$1 + z + z^{2} = \left(z + \frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \left(z + \frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$
 (36)

has root on the unit circle. So It seams like through this process, it is not possible to create a representation which is invertible. But We also know that for each covariance function of a MA(q) process, there exists one set of coefficients d_1, \dots, d_q such that the process is invertible. If we find this coefficients then we can have an invertible representation.

4.3 Part c

using DL to find \widehat{X}_{n+1} for n=1,2,3... The Durbin-Levinson recursion gives the coefficients of X_n, \dots, X_1 in the following representation [1],

$$\widehat{X}_{n+1} = \sum_{j=1}^{n} \phi_{nj} X_{n+1-j}.$$
(37)

We compute $\gamma(h)$ as follow:

$$\gamma(h) = \operatorname{Cov}(X_{t+h}, X_t)
= \operatorname{Cov}(Z_{t+h} - Z_{t+h-1}, Z_t - Z_{t-1})
= \operatorname{Cov}(Z_{t+h}, Z_t) - \operatorname{Cov}(Z_{t+h}, Z_{t-1}) - \operatorname{Cov}(Z_{t+h-1}, Z_t) + \operatorname{Cov}(Z_{t+h-1}, Z_{t-1})
= \sigma^2(\delta_{h,0} - \delta_{h,-1} - \delta_{h,1} + \delta_{h,0})
= (\delta_{h,0} - \delta_{h,-1} - \delta_{h,1} + \delta_{h,0})$$
(38)

and

$$\phi_{11} = \frac{\gamma(1)}{\gamma(0)} = -\frac{1}{2} \tag{39}$$

For n=1

$$\widehat{X}_2 = \phi_{11} X_1 = -\frac{1}{2} X_1 \tag{40}$$

For n = 2

$$\widehat{X}_3 = \sum_{j=1}^2 \phi_{2j} X_{3-j}$$

$$= \phi_{21} X_2 + \phi_{22} X_1$$
(41)

where

$$\phi_{22} = \frac{\gamma(2) - \phi_{11}\gamma(1)}{\nu_1}$$

$$= \frac{-\phi_{11}\gamma(1)}{\nu_1}$$
(42)

and

$$\nu_1 = \nu_0 (1 - \phi_{11}^2)$$

$$= \gamma(0) \left(1 - \left(\frac{\gamma(1)}{\gamma(0)} \right)^2 \right)$$

$$= 2 \left(1 - \frac{1}{4} \right)$$

$$= \frac{3}{2}$$
(43)

SO

$$\phi_{22} = \frac{-\phi_{11}\gamma(1)}{\nu_1}$$

$$= -\frac{1}{3}$$
(44)

$$\phi_{21} = \phi_{11} - \phi_{22}\phi_{11}$$

$$= -\frac{1}{2} - \frac{1}{3}\frac{1}{2}$$

$$= -\frac{2}{3}$$
(45)

$$\widehat{X}_3 = \phi_{21} X_2 + \phi_{22} X_1$$

$$= -\frac{2}{3} X_2 - \frac{1}{3} X_1$$
(46)

for n = 3

4.4 Part d

let prove that

$$\widehat{X}_{n+1} = -\sum_{j=1}^{n} \frac{n+1-j}{n+1} X_{n+1-j}.$$
(47)

We use induction. Thats is we show that its true for n = 1, then we show that it is true for n + 1. Let go: for n = 1

$$\hat{X}_{2} = -\frac{1}{2}X_{1}$$

$$= -\frac{1+1-1}{1+1}X_{1+1-1}$$

$$= -\sum_{j=1}^{n=1} \frac{n+1-j}{n+1}X_{n+1-j}$$
(48)

Now let j run from 1 to n+1. Then we have

$$\widehat{X}_{n+1} = -\sum_{j=1}^{n+1} \frac{n+1-j}{n+1} X_{n+1-j}$$

$$= -\sum_{j=1}^{n} \frac{n+1-j}{n+1} X_{n+1-j} - \sum_{j=n+1}^{n+1} \frac{n+1-j}{n+1} X_{n+1-j}$$

$$= -\sum_{j=1}^{n} \frac{n+1-j}{n+1} X_{n+1-j} - \underbrace{\frac{n+1-(n+1)}{n+1}}_{=0} X_{n+1-(n+1)}$$

$$= -\sum_{j=1}^{n} \frac{n+1-j}{n+1} X_{n+1-j}$$
(49)

4.5 Part e

Let prove that

$$||Z_n - (-\widehat{X}_{n+1})|| = O(1).$$
(50)

Now

$$\left\| Z_n - \sum_{j=1}^n \frac{n+1-j}{n+1} X_{n+1-j} \right\| = \left\| Z_n - \left(\frac{n}{n+1} X_n + \dots + \frac{2}{n+1} X_2 + \frac{1}{n+1} X_1 \right) \right\|$$
 (51)

Now as n goes to ∞ , $\left(\frac{n}{n+1}X_n + \dots + \frac{1}{n+1}X_1\right) = \left(\frac{1}{1+\frac{1}{n}}X_n + \dots + \frac{1}{n+1}X_1\right)$ goe to X_n so $\left|\left|Z_n - \sum_{j=1}^n \frac{n+1-j}{n+1}X_{n+1-j}\right|\right|$ goes to $||Z_n - X_n|| = ||Z_{n-1}||$ which goes to 0

so that Z_n can be written as a linear combination of X_s so we can conclude that $Z_t \in span X_s$

5 Problem 6.6

Let \mathcal{P}_k be the linear projection onto

$$\mathbf{S}_k = span\{X_1, \cdots, X_k\} \tag{52}$$

and

$$e_k = \frac{X_k - \hat{X}_k}{\nu_{k-1}}. (53)$$

 $\{e_1, \dots, e_n\}$ is orthonormal basis for \mathbf{S}_n if $\{e_1, \dots, e_n\}$ is a linearly independent subset of \mathbf{S}_n that span \mathbf{S}_n , and for any e_j, e_i in $\{e_1, \dots, e_n\}$ the inner product of e_j and e_i is zero and any e_i as norm 1.

Proof. • Linearly independence. Assume that

$$a_1e_1 + \dots + a_ne_n = 0 \tag{54}$$

where a_i are real numbers. The we have

$$a_1 e_1 + \dots + a_n e_n = 0$$

$$a_1 \frac{X_1 - \hat{X}_1}{\nu_0} + \dots + a_n \frac{X_n - \hat{X}_n}{\nu_{n-1}} = 0$$

$$\frac{a_1}{\nu_0} (X_1 - \hat{X}_1) + \dots + \frac{a_n}{\nu_{n-1}} (X_n - \hat{X}_n) = 0$$
(55)

From (53) we know that

$$X_k - \hat{X}_k = e_k \nu_{k-1}. (56)$$

Thus

$$X_1 - \hat{X}_1 \neq 0, \cdots, X_n - \hat{X}_n \neq 0$$
 (57)

Therefor the last expression in equation (55) is true if

$$\frac{a_1}{\nu_0} = \dots = \frac{a_n}{\nu_{n-1}} = 0 \tag{58}$$

equivalently

$$a_1 = \dots = a_n = 0 \tag{59}$$

This means that $\{e_1, \dots, e_n\}$ is a linearly independent

• $\{e_1, \dots, e_n\}$ span \mathbf{S}_n . We want to show that any vector in \mathbf{S}_n can be written as a linear combination of $\{e_1, \dots, e_n\}$. Let $Z \in \mathbf{S}_n$. Since $\mathbf{S}_n = span\{X_1, \dots, X_n\}$, we have

$$Z = b_1 X_1 + \dots + b_n X_n \tag{60}$$

where b_i are real numbers. Then we have

$$Z = b_1 X_1 + \dots + b_n X_n$$

$$Z = b_1 (\nu_0 e_1 + \hat{X}_1) + \dots + b_n (\nu_{n-1} e_n + \hat{X}_n)$$

$$Z = b_1 \nu_0 e_1 + \dots + b_n \nu_{n-1} e_n + \underbrace{b_1 \hat{X}_1 + \dots + b_n \hat{X}_n}_{Z'}$$

$$\underbrace{Z - Z'}_{Z''} = \underbrace{b_1 \nu_0}_{\alpha_1} e_1 + \dots + \underbrace{b_n \nu_{n-1}}_{\alpha_n} e_n$$

$$(61)$$

Since $Z'' \in \mathbf{S}_n$ We have

$$Z'' = \alpha_1 e_1 + \dots + \alpha_n e_n \tag{62}$$

• Horthogonality Let e_r, e_r be two arbitrarily vectors in $\{e_1, \dots, e_n\}$ such that $r \neq s$.

$$\langle e_r, e_s \rangle = \left\langle \frac{X_r - \hat{X}_r}{\nu_{r-1}}, \frac{X_s - \hat{X}_s}{\nu_{s-1}} \right\rangle$$

$$= \frac{1}{\nu_{r-1}\nu_{i-s}} \left\langle X_r - \hat{X}_r, X_s - \hat{X}_s \right\rangle$$
(63)

From the innovation algorithm [1], the coefficient of $X_n - \hat{X}_n, \dots, X_1 - \hat{X}_1$ are of the form

$$\theta_{n,n-k}, \quad k = 0, \cdots, n. \tag{64}$$

so that

$$\langle e_r, e_s \rangle = \left\langle \frac{X_r - \hat{X}_r}{\nu_{r-1}}, \frac{X_s - \hat{X}_s}{\nu_{s-1}} \right\rangle$$

$$= \frac{1}{\nu_{r-1}\nu_{i-s}} \left\langle X_r - \hat{X}_r, X_s - \hat{X}_s \right\rangle$$

$$= \frac{\theta_{r,r-k}\theta_{s,s-k}}{\nu_{r-1}\nu_{s-1}}$$
(65)

And from [1] equation 2.5.26, for $r \neq s$ we get

$$\theta_{r,r-k}\theta_{s,s-k} = 0, \Rightarrow \langle e_r, e_s \rangle = 0$$
 (66)

• Normality The

6 Problem6.7

Let $\{X_t\}$ be a stationary time series. Suppose that $\gamma(n) = O(1)$. Prove that this assumption is sufficient for Γ_n to be non singular.

Proof. We know that

$$\Gamma_n = \begin{pmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(n-1) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(n) & \gamma(n-1) & \cdots & \gamma(0) \end{pmatrix}$$

$$(67)$$

 $\gamma(n) = O(1)$ means that as as n goes to infinity, $\gamma(n)$ goes to zero. This means that the $n \times n$ matrix Γ_n is well defined. Since $\{X_t\}$ is a stationary time series, the best linear predictor in terms of $\{1, X_n, \dots, X_1\}$ is [1],

$$P_n X_{n+h} = a_0 + a_1 X_n + \dots + a_n X_1 \tag{68}$$

where the a_i are solution of [1],

$$\Gamma_n \mathbf{a}_n = \gamma_n(h) \tag{69}$$

Since $P_n X_{n+h}$ in (68) exists, then the a_i also are well defined, which means that the solution of (69) exists, thus Γ_n is invertible, and

$$\mathbf{a}_n = \Gamma_n^{-1} \gamma_n(h) \tag{70}$$

References

[1] Petter J. Brockwell. Richard A. Davis Introduction to Time Series and Forecasting. Springer. Second edition. 2001