UMI)- D(V). 471 Kidk

工科一近代物理期末考

2015/06/25

(第1題-第5題 由助教批考:第6題有具體陳述或寶貴意見者・酌情加分1-5分)

- 1. Planck 把光量子化稱為光子(photon)·頻率V的光子,光子可以擁有的能量必須是hv的整數倍nhv。
 - (a) 根據波茲曼分布推導頻率為 ν 的光子, 其平均能量 $\langle h \nu \rangle = \frac{h \nu}{e^{h \nu}/\kappa_B T_{-1}}$ 。
 - (b) 計算頻率在 ν 和 $\nu + d\nu$ 之間駐波的數目 $g(\nu)d\nu$,考慮:
 - i. 駐波 $k=n\pi/I$,k 波數、L 寬度。
 - ii. Dispersion 關係 $\omega = c \ |\vec{k}| \cdot \vec{k} = (k_x, k_y, k_z)$,球殼的面積為 $4\pi k^2 dk$ 。
 - iii. 考慮每一個 \vec{k} 對應兩個偏極光,簡併數為2。

873 474 dk

- (c) 以上兩部分合成黑體輻射的能量密度的頻率分布函數 $u(\nu,T)=g(\nu)\langle h\nu \rangle$ 。證明總輻射能量 $u(T)=\int u(\nu,T)d\nu=\sigma T^4$,寫出 σ 的式子(保留積分形式不用積出來)。 $\lambda_{h,\alpha,\gamma}$
- 2. Bohr 用角動量量子化的假設推導氫原子能譜 $E_n = -R/_{n^2}$, R 為 Rydberg 能量。
 - (a) 重覆 Bohr 的量子化 $L_n = n\hbar$,求常數R。
 - (b) 将一維的氫原子的薛丁格方程式 $-\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2} + \frac{-e^2}{x}\Psi(x) = E\Psi(x)$ 簡化為無因次的方程

$$-rac{1}{2}rac{d^2\Psi}{d\xi^2}-rac{1}{\xi}\Psi(\xi)=\epsilon\Psi(\xi)$$
,找出對應的長度單位和能量單位。

- 3. 簡述以下實驗的方法和意義:
 - (a) 1914 Lord Ernest Rutherford 的 alpha 粒子散射實驗。
 - (b) 1923 Arthur Holly Compton 的 x-ray 散射實驗。
 - (c) 1922 Stern-Gerlach 银原子在磁場下的路徑分裂實驗。
- 4. 電子(質量 $9 \times 10^{-31} \, kg$)於無限位能井中(寬度 $100 \, \text{Å}$),從能量最低的基態(n=1),躍升到第二激發態(n=3),放出光的波長為何? ($\hbar=1.054 \times 10^{-34} \, \text{J-s}$)
- 5. 簡諧震盪的 Hamiltonian 可以簡化為 $H=a^\dagger a+\frac{1}{2}$; 其中 a^\dagger 為 a 的 adjoint,且滿足 $[a,a^\dagger]=aa^\dagger-a^\dagger a=1 \ .$

若己經 |n> 為 H 的本徵向量 $H\left|n>=\left(n+rac{1}{2}
ight)\left|n>$ 。

- (a) 證明 a|n> 也是 H 的本徵向量,本徵值為 $n-\frac{1}{2}$ $:a|n>=c_1|n-1>$
- (b) 證明 $a^\dagger|n>$ 也是 H 的本徵向量,本徵值為 $n+\frac{3}{2}:a^\dagger|n>=c_2|n+1>$
- (c) 請求取上兩式中兩個比率常數 C1和C2。
- 6. 請簡單敘述你這一學期學習的心得,以及對課程內容安排、上課方式的建議

