^	$/\$ or $\$ land	and, conjunction
V	\/ or \lor	or, disjunction
	or \lnot or \neg	not
7		in
d l	\in \notin	not in
/m aı\	,	a tuple containing some x, y
$\langle x, y \rangle$	<< x, y>>	less than
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	less than
_	\leq or =<	much less?
_	\11	
=	<=> or \equiv	is equivalent to
	>	greater
	$\gcd or >=$	greater or equal
<i>>></i>	\gg	much greater?
\preceq	\prec	precedes
$\stackrel{\sim}{}$	\preceq	precedes or equals
>	\succ	succeeds
_	\succeq	succeeds or equals
_	\subset	subset
\subseteq	\subseteq	subset or equal
_	\sqsubset	bag subset/is a refinement?
_ <u> </u>	\sqsubseteq	bag subset or equal/is a refinement or equal?
$ \begin{array}{c} \in \\ \langle x,y \rangle \\ < \\ \leq \\ \ll \\ \\ \geq \\ \\ \rangle \\ \geq \\ \\ \rangle \\ \\ \\ A \vdash B \\ \\ \\ \end{array} $	-	B can be derived from A?
	=	satisfies/models a temporal formula
\rightarrow	->	set of functions/step
\cap	\cap or \intersect	intersection
П	\sqcap	ha a union
0	(+) or \oplus	bag union
Θ	(-) or \ominus	bag difference
0	(.) or \odot	Contagion and dust
\otimes	(\X) \otimes	Cartesian product
	(/) or \oslash	th one original
 	\E	there exists
⊘ ∃ ∃! ∃	\exists!	there exists exactly one
I	\EE	temporal existential quantification, 'hiding'
$[A]_v$	[A]_v	action operator, 'square A sub v' weak fairness variables
$\begin{array}{c c} \operatorname{WF}_v \\ \operatorname{SF}_v \end{array}$	WF_v	
	SF_v	strong fairness variables
\supseteq	\supseteq	superset
_	\supset	superset or equals bag superset
_	\sqsupset	U -
=	\sqsupseteq	bag superset or equal
	-	
	=	substitution
U	<-	union
	\cup or \union	union
Ш	\sqcup	
₩	\uplus	multiple.
×	\X or \times	multiply
?	\wr	propositional compthing?
∝ ∀	\propto	propositional something? for all
٧	\A	IOF AII

¥	\AA	temporal universal quantification
$\langle A \rangle_v$	< <a>>_v	action operator, 'angle A sub v', TODO
	=>	implies
$\stackrel{\Delta}{=}$	==	is equivalent
⇒ ≜ ≠ □	\div	not equal?
		always in the future/henceforth
\Diamond	<>	sometime(s) in the future/eventually
\sim	>	leads to
$E \xrightarrow{+} M$	-+->	M remains true at least one step longer than E does
\mapsto	->	function/record constructor
÷	\div	integer division
•	\cdot	composition of actions
0	\o or \circ	concatenate sequences
•	\doteq	
*	\star	
\bigcirc	\bigcirc	
\sim	\sim	stuttering equivalent
\simeq	\sim	stuttering equivalent
* ○ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\asymp	
\approx	\approx	
\cong	\cong	
$\dot{=}$	\doteq	
x^y	x\^y	exponentiation
/	,	prime
\sim	\sim	stuttering equivalent
!	!	new record (in EXCEPT expression)
0	@	previous record field value (in EXCEPT expression)
:>	:>	TLC module explicit function operator
@@	@@	TLC module explicit function operator
α	\alpha	alpha
β	\beta	beta
γ	\gamma	gamma
Γ	\Gamma	Gamma
δ	\delta	delta
Δ	\Delta	Delta
ϵ	\epsilon	epsilon
ε	\varepsilon	variant epsilon
ζ	\zeta	zeta
η	\eta	eta
θ	\theta	theta
ϑ	\vartheta	variant theta
Θ	\Theta	Theta
ι	\iota	iota
κ	\kappa	kappa
λ	\lambda	lambda
Λ	\Lambda	Lambda
μ	\mu	mu
ν	\nu	nu
0	О	omicron
π	\pi	pi

Π	\Pi	Pi
ρ	$\$ ho	rho
ϱ	\varrho	variant rho
σ	\sigma	sigma
$rac{arsigma}{\Sigma}$	\varsigma	variant sigma
\sum	\Sigma	Sigma
au	\tau	tau
v	\upsilon	upsilon
Υ	\Upsilon	Upsilon
ϕ	\phi	phi
$\phi \ arphi$	\varphi	variant phi
Φ	\Phi	Phi
χ	\chi	chi
ψ^{χ}	\psi	psi
Ψ	\Psi	Psi
ω	\omega	omega
Ω	\Omega	Omega
∂	\partial	partial