EE185523

Introduction to Formation Control

Yurid Eka Nugraha
TSP DTE FTEIC ITS

Formation control?

EE185523 2022E - 5

Formation control?

Formation control

- Involving moving the agents in such a way that they satisfy a particular shape or relative state and a certain aspect of assigning roles (targets in the shape or the relative state) to individual agents
- In fact, formation control problems can be defined by a shape or a relative state, as well as an *assignment* component
 - First component as dictating what the formation should "look" like,
 - The second component as codifying which agent should take on what role in the formation.

Shapes

Feasible formation:

$$D = \{d_{ij} \in \mathbb{R} \mid d_{ij} > 0\}$$

There exist points $\zeta_1, \zeta_2, \dots, \zeta_n \in \mathbb{R}^p$, p = 2 or 3

EE185523 2022E - 5

Formation types

What's allowed and what's not?

- > Scale invariant: agents are free to scale
- ➤ Rigid: agents are **not** free to scale
- > (Only) translational invariant: agents cannot rotate freely

Formation types

What's allowed and what's not?

$D = \{d_{ij} = d_{ji}\}$	eragent distance $\geq 0, i, j = 1,$	
<u>formation</u>	specification	interpretation
scale invariant	D	$ x_i - x_j = \alpha d_{ij}$ for some $\alpha > 0$
rigid	D	$ x_i - x_j = d_{ij}$
translational invariant	Ξ	$x_i = \xi_i + \tau$ for some $\tau \in \mathbf{R}^p$

Rigidity

- Only permissible motions, while maintaining proper edge distances, are rigid motions
- ➤ **Definition:** A framework is rigid if and only if all edge-consistent trajectories of the framework are rigid trajectories
- ➤ Rigid formation: formation whose shape can be maintained rigidly while only maintaining the desired interagent distances
- Formation graph $G(\Xi) = (\Xi, G)$
- > Framework \(\mathbb{E} : \) feasible points
- > Trajectory: set of continuous states

Flexible framework

Specification: relative states

- ➤ Translationally invariant formations can be directly specified by a set of desired relative states in the formation configuration space, as opposed to set of relative distances
- > e.g., for agents moving in 3 dimension:

$$z(t) = [(x_1(t) - x_2(t))^{\top}, (x_2(t) - x_3(t))^{\top}]^{\top}, z \in \mathbb{R}^6$$

 \succ Then, define **reference relative state** z_{ref} for desired formation

Specification: relative states

 \triangleright ... specifying the formation inertially can be accomplished by letting x_0 be the coordinates of **a fictitious point mass** w.r.t. the inertial frame, and then specifying the formation of the three-point masses by defining

$$z(t) = [(x_0(t) - x_1(t))^{\top}, (x_1(t) - x_2(t))^{\top}, (x_2(t) - x_3(t))^{\top}]^{\top}, \mathbb{R}^9$$

 \triangleright ... where x_0 is the origin of the inertial frame

Specification: relative states

> .. can be encoded using incidence matrix

$$z(t) = [(x_1(t) - x_2(t))^{\top}, (x_2(t) - x_3(t))^{\top}]^{\top}, z \in \mathbb{R}^6$$

with Incidence matrix $\mathbf{\textit{B}}(\mathbf{\textit{G}})$: $z(t) = B(G)^{\top}x(t)$

where
$$B(G)=egin{bmatrix} 1 & 0 \ -1 & 1 \ 0 & -1 \end{bmatrix}\otimes I$$

Shape-based control

- > Assumption: rotationally invariant formation
- > Consensus can be used

Shape-based control

- > Assumption: rotationally invariant formation
- > Consensus can be used
- ightharpoonup Notation: $x_i(t) \in \mathbb{R}^p$ denotes position of agent i
- ➤ Goals:
 - $ightharpoonup \|x_i(t) x_j(t)\|$ converges to $d_{ij} \ \forall \ i,j$ such that $\{i,j\} \in E_f$
 - If the interaction graph is dynamic, it will converge to a static graph in finite time (i.e., $E_f \in E(t) \ \forall t \geq T$ for some finite $T \geq 0$.)

Formation control: static case

Definition: au_i as displacement of x_i from the target location ζ_i

Thus, from consensus protocol:

$$\dot{\tau}_i(t) = \sum_{j \in \mathcal{N}_f(i)} (\tau_j(t) - \tau_i(t))$$

$$\dot{x}_i(t) = \sum_{j \in \mathcal{N}_f(i)} (x_j(t) - x_i(t)) - (\zeta_j(t) - \zeta_i(t))$$

Convergence has been proved in consensus protocol

Formation control: static case

Theorem 6.12. Consider the connected target formation graph G_f given by (V, E_f) and a set of target locations Ξ . If the static interaction graph G = (V, E) satisfies $E_f \subseteq E$, then the protocol (6.7) will asymptotically drive all agents to a constant displacement of the target positions, that is, for all i,

$$x_i(t) - \xi_i \rightarrow \tau$$

as $t \to \infty$.

Formation control: static case

Consensus vs formation control

We begin from single integrator agents $\dot{x}_i = u_i$

- \triangleright Let $z(t) = B(G)^{\top}x(t)$ and z_{ref} be the constant reference relative position
- ightharpoonup Then, $e(t)=z_{ref}-z(t)\Rightarrow\dot{e}(t)=-B(G)^Tu(t)$, where B is **incidence matrix**
- > Suppose u(t) = kB(G)e(t), k > 0 proportional control w/ gain B(G)
- **Resulting CL system:** $\dot{e}(t) = -kL_e(G)e(t)$, where $L_e(G) = B(G)^TB(G)$ is the edge-Laplacian of G

Edge-Laplacian

Graph Laplacian based on edges

$$L = \begin{bmatrix} B(G_1)^{\top} B(G_1) & 0 & \dots & 0 \\ 0 & B(G_2)^{\top} B(G_2) & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & B(G_n)^{\top} B(G_n) \end{bmatrix}$$

We begin from single integrator agents $\dot{x}_i = u_i$

- \triangleright Let $z(t) = B(G)^{\top}x(t)$ and z_{ref} be the constant reference relative position
- ightharpoonup Then, $e(t) = z_{ref} z(t) \Rightarrow \dot{e}(t) = -B(G)^T u(t)$
- > Suppose u(t) = kB(G)e(t), k > 0 proportional control w/ gain B(G)
- \triangleright Resulting CL system: $\dot{e}(t) = -kL_e(G)e(t)$, where $L_e(G) = B(G)^TB(G)$ is the edge-Laplacian of G
- \triangleright Since L_e positive definite for a graph with spanning tree/globally reachable
- **node,** then $\lim_{t\to\infty} e(t)=0$ Thus, we have $\dot{x}(t)=kL(\tilde{G})x(t)+kB(G)z_{ref}$, with \tilde{G} being undirected version of G

We continue to double integrator agents $\ddot{x_i} = u_i$

- \triangleright Let desired (reference) velocity and position be $\left[z_{ref}(t)^T \dot{z}_{ref}(t)^T\right]^T$
- ightharpoonup By setting $e(t) = z_{ref}(t) B(G)^T x(t)$ and assuming that $\ddot{z}_{ref}(t) = 0$, it follows that $\ddot{e}(t) = -B(G)^T \ddot{x}(t) = -B(G)^T u(t)$
- \triangleright PD controller (for k > 0): $u(t) = k[B(G) \ B(G)] \begin{bmatrix} e(t) \\ \dot{e}(t) \end{bmatrix}$
- ightharpoonup Guarantee that $\lim_{t\to\infty}\begin{bmatrix}e(t)\\\dot{e}(t)\end{bmatrix}=0$

We continue to double integrator agents $\ddot{x_i} = u_i$

> Dynamics on agents become

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} = \tilde{L}(\tilde{G}) \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} + \tilde{D}(\tilde{G}) \begin{bmatrix} z_{ref} \\ \dot{z}_{ref} \end{bmatrix}$$

$$\Rightarrow \text{ where } \widetilde{L}(\widetilde{G}) \ = \begin{bmatrix} 0 & I \\ -kL(\widetilde{G}) & -kL(\widetilde{G}) \end{bmatrix} \text{ and } \widetilde{D}(\widetilde{G}) \ = \begin{bmatrix} 0 & 0 \\ -kB(G) & -kB(G) \end{bmatrix},$$

> We then have

$$\ddot{x}(t) = -kL(\tilde{G})x(t) - kL(\tilde{G})\dot{x}(t) + kB(G)z_{ref}(t) + kB(G)\dot{z}_{ref}(t)$$

Dynamic formation selection

- > Centralized case vs decentralized case
- ➤ One can easily envision that the agents should be spread out when navigating and exploring free space, whereas a tighter formation is preferred when dealing with cluttered environments
- It could potentially be beneficial to let the agents switch between different formations in reaction to environmental changes.

Dynamic formation selection: Centralized

- ➤ "Formation error": w.r.t. each possible formation under consideration
- For example:

$$\mathcal{E}^{k}(x_{1},...,x_{n}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{ij}^{k} (\|x_{i} - x_{j}\|^{2} - (d_{ij}^{k})^{2})^{2}$$

Dynamic formation selection: Decentralized

- \triangleright Global information unavailable to all agents: introduce $\mathcal{E}_i^k(t)$ as a measure of kth formation error as perceived locally by agent i
- > For example,

$$\mathcal{E}_{i}^{k} = \sum_{j \in N_{i}} \omega_{ij}^{k} \left(\left\| x_{i} - x_{j}(t) \right\|^{2} - \left(d_{ij}^{k} \right)^{2} \right)^{2}$$

Dynamic formation selection: Decentralized

EE185523 2022E - 5

Assigning roles

- > Assignment vs assignment free
- > Hungarian method: algorithm used for computing best assignment