Transformations in 2D Short version

We will discuss transformation in 3D, and with full details, later in the course (will need Matrix Multiplication and Homogenous coordinates)

About hw1 Aliasing and Anti-Aliasing

 This about an image where each pixels is fully black or fully white

What if we rotate the rectangle

• Some pixels are **partially** covered by the rectangle. Show they be rendered as black, white, or some shade of grey?

What if we rotate the rectangle

- IWe still need to assign a value to each pixel.
- If we draw each partially covered pixel as black, we will obtain a very pixelated shape. This is an example of aliasing.
- A possible solution is to render some pixels as gray. For example, based on the portion of its area which is covered. This technique is call antialiasing. Essentially, the color of a pixel might be determined using input from several neighboring pixels.
- We will study much much more about it. Do not worry about it in hw1.
- In hw1, each rendered pixel has the (rgb) value of one (single) input pixel. No averaging or mixing.

Something to be careful about with hw1

Translations (shift) by (α, β)

Translation (shift) by (4,4) $(x,y) \rightarrow (x+4,y+4)$

- Adding a constant α to the x-coordinate of every point
- Adding a constant β to the y-coordinate of every point
- $(x, y) \rightarrow (x + \alpha, y + \beta)$

Scaling

- We can use two constants (s_x, s_y) for the x-axis and the y-axis. Then we shift each point (x,y) into the point $(s_x \cdot x, s_y \cdot y)$
- $\bullet(x,y) \to (s_x \cdot x, \ s_y \cdot y)$
- Example $(x, y) \rightarrow (x/2, y/2)$

Scaling

• Example: $(x, y) \rightarrow (0.5x, 2y)$

The mathematician and coffee cup non-funny joke Part 1

Fence

Solution:

- 1. Walk around the fence,
- 2. fetch coffee kettle,
- 3. walk back pure coffee,
- 4. drink

Full Coffee Kettle

The mathematician and coffee cup non-funny joke

Part 2

Full Coffee Empty Coffee Kettle cup

Solution:

- 1. Bring the coffee Kettle to the other table, and walk to the left table
- 2. Apply the solution from the previous slide

Resize the clock, without changing its center

Problem: scale the clock, but without changing its center and without effecting the green rectangle

Shearing

• If we move each point (x,y) into the point $(x,y) \rightarrow (x+y,y)$

Shearing

 Vertical shearing shifts each column based on the x value.

$$(x, y) \rightarrow (x, x + y)$$

Rotation

• Rotate counterclockwise by an angle ϕ about the origin.

$$(x, y) \rightarrow (x \cos \phi - y \sin \phi, x \sin \phi + y \cos \phi)$$
New x
New y

Assume we rotate p by an angle θ CCW

Starting from a point p=(x,y), where will this point find itself after rotation by θ in the CounterClockwise direction?

Let p' = (x', y') denote the new location of this point. Lets compute this location:

$$x' = \cos(\phi + \theta) = \cos(\phi)\cos(\theta) - \sin(\phi)\sin(\theta) = \frac{\cos(\phi)\cos(\theta) - \sin(\phi)\sin(\theta)}{\sin(\phi)} = \frac{\cos(\phi) - \sin(\phi)\sin(\theta)}{\cos(\phi) - \sin(\phi)\sin(\theta)}$$

$$y' = \sin(\phi + \theta) = \frac{\sin(\phi)\cos(\theta) + \cos(\phi)\sin(\theta)}{\sin(\phi)\cos(\theta) + \cos(\phi)\sin(\theta)}$$

$$= x\sin(\theta) + y\cos(\theta)$$

Transformation Composition

- What operation rotates by θ around $P = (p_x, p_y)$?
 - \blacksquare Translate P to origin
 - Rotate around origin by θ
 - Translate back

Reflection on the x-axes: $(x, y) \rightarrow (x, -y)$

Arbitrary Reflection - promo We will get back to it later in the semester

Shift by (0,-b)Rotate by $-\alpha$ Reflect through xRotate by α Shift by (0,b)

Very scarrrry....
Unless we represent transformation by matrices
And then it is trivial.

19

 α =tan-1(a)