QI)		
Let, Bin si	Ze = 10	takem 100 because 99 is largest number in the given list.
Bins 0-10	Numbers No Numbers	frequency
10-20	10, 13, 18	3
20-30	22,27	2
30-40	32, 38	2
40-50	40,45	2
50-60	51, 56,57	3
60 - 70	No Number	0
70-80	NO Number	0
80-90	88	
90-100	90, 92, 94, 99	4

Que 2) In a quant test of the CAT Exam, the population standard deviation is known to be 100. A sample of 25 tests taken has a mean of 520. Construct an 80% CI about the mean.

O2) Given:

population standard deviation =
$$\sqrt{100}$$

Sample size = $n = 25$

Sample mean = $\sqrt{x} = 520$

Confidence Interval = $80\% = 0.8$

(c.I)

Solution:

"the population standard deviation is given, we'll use the Z-table

also;

Mean = point + Margin of these;

point estimate = $\sqrt{x} = 520$

Margin of errors = $\sqrt{x} = \sqrt{x}$
 $\sqrt{x} = 1 - c \cdot I$
 $= 1 - 0.8$
 $d = 0.2$
 $\frac{d}{2} = 0.2 = 0.1$
 $\frac{d}{2} = \frac{0.2}{2} = 0.1$
 $\frac{d}{2} = \frac{0.2}{2} = 0.1$

Mean = $\sqrt{x} + \frac{\sqrt{x}}{\sqrt{x}} = 520 + 1.28 * \frac{100}{\sqrt{25}}$

Mean = $\sqrt{x} + \sqrt{x} = 520 - 1.28 * \frac{100}{\sqrt{25}}$
 $\sqrt{x} = \sqrt{x} = \sqrt{x} = 520 - 1.28 * \frac{100}{\sqrt{25}}$
 $\sqrt{x} = \sqrt{x} = \sqrt{x}$

Que 3) A car believes that the percentage of citizens in city ABC that owns a vehicle is 60% or less. A sales manager disagrees with this. He conducted a hypothesis testing surveying 250 residents & found that 170 residents responded yes to owning a vehicle.

- a. State the null & alternate hypothesis.
- b. At a 10% significance level, is there enough evidence to support the idea that vehicle owner in ABC city is 60% or less.

03) Null Hypothesis & percentage of citizens that owns a vehicle is 60%, or less As percentage is given, we will use propostion method to solve the problem. $Z = \frac{\hat{\beta} - \hat{\beta}_0}{\sqrt{\frac{\hat{\beta}_0 \hat{\gamma}_0}{n}}}$ $p = \frac{x}{n} = \frac{170}{250} = 0.68$ po = 60% = 0-6 given % = 1-po = 1-0.6= 0.4 Z = 2.582 = calculated Value Z = 2.582 = calculated Value Z = 2.582 = calculated Value Z = 4000 = calculated Value z-table. z-table. z-significance level = 10% = 0.1 z-table z-table " Z (calculated) > Z (from lable)

we will reject the Null Hypothesis.

There is not emough evidence to support the idea that vehicle owners in city ABC is 60%, or less.

Total number of terms given =
$$n = 20$$
. 99 percentile value = $\left[\frac{99}{100} * (n+1)\right]^{th}$ Observation
$$= \left[\frac{99}{100} * (20+1)\right]^{th}$$
 Observation
$$= 20.79^{th}$$
 Observation
as there are 20 Observations
so the 99 percentile value will be the last observation which is 12

Que 5) In left & right-skewed data, what is the relationship between mean, median & mode? Draw the graph to represent the same.

