ARHITECTURA SISTEMELOR DE CALCUL

UB, FMI, CTI, ANUL III, 2022-2023

Cablu USB 2

2 perechi de fire:

- o pereche pentru date (D+, D-): semnal diferential
- o pereche pentru alimentare cu energie: (V_{BUS}, GND)

Semnale USB

In semnalul diferential se codifica informatia

Codificarea/Decodarea datelor

USB-ul folosește codificarea NRZI la transmiterea pachetelor de date.

În codificarea NRZI,

un "1" este reprezentat absenta modificarii a nivelului semnalului diferential și

un "O" este reprezentat de o schimbare a nivelului.

Nivelul înalt reprezintă starea J pe liniile de date.

Un șir de **zerouri** face ca datele NRZI să comute de fiecare dată pe bit. Un șir de **unu** cauzează perioade lungi fără tranziții în sirul NRZI de date.

Pentru a asigura tranziții adecvate ale semnalului, dispozitivul de transmisie folosește umplutura de biți atunci când trimite a pachet pe USB

Un zero este introdus după fiecare șase biti consecutivi în sirul de date, înainte ca datele să fie codificate NRZI, pentru a forța o tranziție în fluxul de date NRZI.

Un alt exemplu de codificare USB

- Se foloseste codificarea NRZI
 - Non-Return to Zero-Inverted

MANIPULAREA PACHETELOR USB

- Toate transferurile de date sunt inițiate de gazdă (host)
 - Un dispozitiv USB nu va incepe niciodata sa trimita date fara sa fie mai intai invitat de HOST
- Huburile pot fi organizate in maxim 5 straturi in adâncime de (127 de dispozitive)
- Pachetele sunt direcționate, NU sunt difuzate
- Huburile utilizează proceduri de "stocare și redirecționare"
 - Pachete sunt reţinute de hub daca sunt direcţionate către un port inactiv
- Pachetele directionate aval folosesc un şir de rutare pentru a naviga către dispozitiv
- Pachetele directionate amonte conțin întotdeauna gazda ca destinație

Transferul pachetelor

Tipuri de pachete USB

Fiecare protocol de comunicare implică schimbul de pachete. Același lucru este cazul cu USB. Aceste pachete încapsulează informațiile într-un mod organizat standard.

Aceste pachete conțin în general informații legate de:

- Controlul schimbului de date
- Schimbul de date sub formă de sarcină utilă reală
- Detectarea și corectarea erorilor prin verificarea stării

Câmpurile pachetelor USB

În USB, LSB-ul pachetului este transmis mai întâi. Un pachet USB conține câmpuri diferite. Ele sunt:

- Sync: este un câmp obligatoriu care apare la începutul pachetului. Acest câmp sincronizează ceasul receptorului cu emițătorul. Pentru modul de viteză mică și maximă, acest câmp are o lungime de 8 octeți și pentru modul de viteză mare are o lungime de 32 de octeți.
- PID: PID înseamnă ID-ul pachetului. Indică tipul de pachet care este trimis. Acest câmp are o lungime de 8 biți. Cei patru biți superiori identifică tipul de pachet, iar cei patru biți inferiori sunt complimentul bit-wise al celor patru biți superiori. Cei patru biți inferiori ajută la detectarea erorilor.
- ADDR: acest câmp conține adresa de destinatie a dispozitivului USB. Este **de 7 biți,** ceea ce înseamnă că poate suporta $2^7 = 127$ dispozitive.
- ENDP: Acest câmp specifică numărul *endpoint*. Este de **4 biți**, ceea ce înseamnă că poate indica $2^4 = 16$ puncte finale posibile.
- **CRC:** CRC înseamnă Cyclic Redundancy Check. Acest câmp este utilizat pentru a verifica datele din pachet pentru orice eroare în procesul CRC Pentru pachetele token, se utilizează CRC pe **5 biți,** iar pentru pachetele de date se utilizează CRC pe **16 biți**
- **EOP:** EOP înseamnă End of Packet. Acest câmp semnalizează liniile de date pentru Single Ended Zero (SE0) timp de aproximativ 2 biți, urmat de starea J (stare inactivă) timp de 1 biți

Packet Type	PID Value	Packet Identifier
Token	0001	OUT Token
	1001	IN Token
	0101	SOF Token
	1101	SETUP Token
Data	0011	DATA0
	1011	DATA1
	0111	DATA2
	1111	MDATA
Handshake	0010	ACK
	1010	NAK
	1110	STALL
	0110	NYET
Special	1100	Preamble
	1100	ERR
	1000	Split
	0100	Ping

 Token packets: Aceste pachete sunt trimise numai de către gazdă.
Structura pachetului conține un octet PID,
biți de adresă și un CRC de 5 biți.

Tipuri de pachete de *token*:

- In Acest pachet notifică dispozitivul USB că gazda dorește să citească informații.
- Out Acest pachet notifică dispozitivul USB pe care gazda dorește să scrie.
- Setup Acest pachet este utilizat pentru a porni transferul de control
- *Ping* Înainte de a trimite perechea de pachete OUT / DATA, acest token solicită dispozitivului USB sa confirme dacă este gata să primească perechea de pachete OUT / DATA.
- *Split* Acest token este utilizat pentru a comunica cu un dispozitiv cu viteză mică / maximă pe o magistrala de mare viteză

2. Data packets: Există două tipuri de pachete de date, *Data0* și *Data1*. Structura pachetului conține: un octet PID, câmp de date și CRC pe 16 biți.

Câmpul de date poate transporta *0-1023 octeți* de date. Datele trebuie trimise întotdeauna în multipli de octeți.

- Pentru dispozitivele cu viteză redusă, câmpul maxim de date este de 8 biți.
- Pentru dispozitivele cu viteză maximă, câmpul maxim de date este de 1023 biți.
- Pentru dispozitivele de mare viteză, câmpul maxim de date este de 1024 biți

După USB2.0, s-au adăugat încă două tipuri *Data2* și *MData*.

Acestea sunt utilizate numai în transferul de mare viteză cu transfer lățimii de bandă izocronice atunci când este nevoie să se transfere mai mult de 1024 octeți la 8192 kB / s.

3. Handshake Packets: Aceste pachete sunt trimise în mare parte ca răspuns la pachetele de date. Ele constau pur și simplu dintr-un octet PID.

Există trei tipuri de pachete de strângere de mână:

- ACK Confirmare pentru pachetul primit
- NAK indicând faptul că pachetele nu pot fi primite sau trimise temporar. De asemenea, este folosit pentru a indica faptul că nu există date de transmis
- STALL indicând faptul că dispozitivul este în stare de eroare și are nevoie de intervenția gazdei

Cu USB 2.0, au fost adăugate încă două pachete:

- NYET indicând că tranzacția Split nu este încă finalizată.
- ERR indicând eșecul tranzacției

4. Start of Frame packets (SOF): Pachetul SOF constă dintr-un număr de cadru incremental de 11 biți.

Pe o magistrala USB cu viteză maximă, acest pachet este trimis de gazdă la fiecare 1 ms și pe magistrala USB de mare viteză la fiecare 125 de µs. Acest pachet este utilizat pentru sincronizarea transferului izocron.

Sync PID Frame number	End Point	CRC	EOP
-----------------------	-----------	-----	-----

Tipuri de transfer

Exista 4 tipuri de transfer

1. Transfer de intrerupere

- Foloseste sondajul
 - Intervalul de sondare poate varia de la 1 ms la 255 ms

2. Transfer izocron

- Folosit în aplicații în timp real care necesită o rată constantă de transfer de date
 - Exemplu: Citire audio de pe CD-ROM
- Aceste transferuri sunt planificate în mod regulat
- Nu folosesc detectarea și recuperarea erorilor

3. Transfer de control

- Folosit pentru a configura și initializa dispozitive USB
- Trei faze
 - Etapa de configurare
 - Transmite tipul de cerere adresată dispozitivului ţintă
 - Etapa datelor
 - Etapa opţională
 - Transfer de control care necesită utilizarera de date in aceasta etapa
 - Etapa de stare
 - Verifică starea operațiunii
- Se alocă o lățime de bandă garantată de 10%
- Se utilizează detectarea erorilor și recuperarea
 - Recuperarea se face prin reîncercări

4. Transfer in bloc

- Pentru dispozitive fără cerințe specifice privind rata de transfer de date
 - Exemplu: trimiterea datelor către o imprimantă
- Alocare a lățimii de bandă cu cea mai mică prioritate
 - Dacă celelalte trei tipuri de transferuri iau 100% din lățimea de bandă transferurile în bloc sunt amânate până când sarcina scade
- Se utilizează detectarea erorilor și recuperarea
 - Recuperarea se face prin reîncercări

Arhitectura USB

- USB host controller
 - Iniţiază tranzacţii prin USB
- Root hub
 - Oferă puncte de conectare
- Două tipuri de controlere gazdă (host)
 - Open host controller (OHC)
 - Definit de Intel
 - Universal host controller (UHC)
 - Specificat de National Semiconductor, Microsoft, Compaq
 - Diferența dintre cele două
 - Cum planifică cele patru tipuri de transferuri

Planificarea la UHC

- Programează mai întâi transferurile periodice
 - Transferuri periodice: izocrone și de întrerupere
 - Poate ocupa până la 90% din lăţimea de bandă
- Aceste transferuri sunt urmate de cele de control şi transferurile în bloc
 - Transferurile de control sunt garantate cu 10% din lățimea de bandă
- Transferurile în bloc sunt programate numai dacă există lățime de bandă disponibilă

Planificarea OHC

- Diferita de programarea UHC
- Rezervă mai întâi spațiu pentru transferuri non-periodice
 - Transferuri non-periodice: de control și in bloc
 - 10% lățime de bandă rezervată
- Următoarele sunt programate transferurile periodice
 - Garantează lățimea de bandă de 90%
- Lățimea de bandă rămasă este alocată transferurilor non-periodice

Tranzactii USB

- Transferurile se fac în una sau mai multe tranzacții
 - Fiecare tranzacție constă din mai multe pachete
- Tranzacțiile pot avea între 1 și 3 faze
 - Faza Token packet
 - Specifică tipul tranzacției și adresa dispozitivului țintă
 - Faza Data packet (optional)
 - Se transferă maximum 1023 octeți
 - Faza Handshake packet
 - Cu excepția transferurilor izocrone, celelate tipuri de transferuri folosesc detectarea erorilor pentru livrarea garantată
 - Oferă feedback cu privire la faptul ca datele au fost primite fără erori

USB IRP frame

USB 1.1 transactions

- USB 2.0
 - Foloseste o singura pereche de fire pentru transferal bidirectional al datelor
 - USB 1.1 foloseste frameuri de 1 ms
 - USB 2.0 foloseste frameuri de 125 μs
 - 1/8 din USB 1.1
 - asigura rate de transfer de 40X
 - Pana la 480 Mbps
 - Este competitiva cu
 - SCSI
 - IEEE 1394 (FireWire)

USB 3.0

Semnalele USB 3.0 sunt transferate pe două perechi de fire dedicate, diferențiale pentru transmisie și recepție.

Datorită naturii full-duplex a USB 3.0, magistrala funcționează diferit la nivel fizic fata de USB 2.0.

Super Speed USB 3.0 Cable

Multiple Protection Shield

Three-layer Shielding, Aluminum Foil + Myra + Aluminum And Magnesium Braided High-speed Transmission Experience.

