Типичные особенности интегрируемых гамильтоновых систем

Научный руководитель – Кудрявцева Елена Александровна

Онуфриенко Мария Викторовна

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра дифференциальной геометрии и приложений, Москва, Россия

E-mail: mary.onufrienko@gmail.com

Фиксируем любое $s \in \mathbb{N}$ и рассмотрим действие группы $G = \mathbb{Z}_s$ на плоскости \mathbb{R}^2 вида $z \longrightarrow e^{2\pi i/s}z$, где $z = x + iy \in \mathbb{C} \approx \mathbb{R}^2$. Рассмотрим морсовские функции $g_0 = g_0^{\pm,\pm}(z) = \pm |z|^2 = \pm (x^2 + y^2)$ при любом $s \ge 1$, и $g_0 = g_0^{+,-}(z) = x^2 - y^2$ при s = 1, 2.

Рассмотрим два семейства \mathbb{Z}_s —инвариантных ростков $g_k = g_k(z, \lambda, a), k = 1, 2,$ в нуле:

$$g_1 = g_1(z, \lambda, a) = \begin{cases} \pm x^2 + y^3 + \lambda y, & s = 1, \\ \pm x^2 \pm y^4 + \lambda y^2, & s = 2, \\ Re(z^3) + \lambda |z|^2, & s = 3, \\ Re(z^s) \pm a|z|^4 + \lambda |z|^2, & s \ge 4, \ a^2 \ne 1 \text{ при } s = 4, \ a > 0 \text{ при } s \ge 5, \end{cases}$$

$$g_2 = g_2(z, \lambda, a) = \begin{cases} \pm x^2 \pm y^4 - \lambda_2 y^2 + \lambda_1 y, & s = 1, \\ \pm x^2 \pm y^6 + \lambda_2 y^4 + \lambda_1 y^2, & s = 2, \\ Re(z^4) \pm (1 + \lambda_2)|z|^4 \pm a|z|^6 + \lambda_1|z|^2, & s = 4, \ a > 0, \\ Re(z^5) \pm a|z|^6 + \lambda_2|z|^4 + \lambda_1|z|^2, & s = 5, \ a > 0, \\ Re(z^6) + a_1|z|^6 \pm a_2|z|^8 + \lambda_2|z|^4 + \lambda_1|z|^2, & s = 6, \ a_1^2 \neq 1, a_1 a_2 \neq 0. \end{cases}$$

Здесь $\lambda \in \mathbb{R}^k$ — малый параметр, $a \in \mathbb{R}^m$ — «модуль», $m \in \{0,1,2\}$ — «модальность».

Теорема 1. Рассмотрим классы правой G-эквивалентности G-инвариантных ростков функций $g_k(z,0,\hat{a})$ двух переменных в нуле, k=0,1,2. Эти особенности имеют G-коразмерность k, G-кратность Милнора k+m+1, G-версальную деформацию $g_k(z,\lambda,a)+\lambda_0$, и образуют полный список G-инвариантных особенностей G-коразмерности $k\leq 2$. Дополнение κ их объединению в множестве \mathfrak{n}_G^2 G-инвариантных ростков в нуле, имеющих критическую точку 0 κ 0 κ 1 κ 2 κ 3 κ 4.

Теорема 1 не следует из классификации [1] особенностей G-кратности Милнора ≤ 5 . Интегрируемая система на 2n-мерном симплектическом многообразии (M,Ω) задается гладким отображением $F=(f_1,\ldots,f_n):M\longrightarrow\mathbb{R}^n$, где $\{f_i,f_j\}=0$. Возникает лагранжево слоение с особенностями на M, слои которого — это связные компоненты множеств $F^{-1}(c)$. Пусть M компактно, поля X_{f_j} касаются ∂M , и F имеет «хорошее» поведение около ∂M . Отображение F порождает гамильтоново \mathbb{R}^n -действие на M.

Рассмотрим свободное действие группы \mathbb{Z}_s на полнотории $V:=D^2\times S^1\subset\mathbb{R}^2\times S^1$ вида $(z,\varphi_1)\longrightarrow (e^{2\pi\ell i/s}z,\varphi_1+\frac{2\pi}{s}),$ где $\varphi_1\in S^1=\mathbb{R}/(2\pi\mathbb{Z}),\ 0\leq \ell< s,\ (\ell,s)=1.$ Рассмотрим «цилиндр» $W:=D^{n-1}\times (S^1)^{n-2}$ с координатами $(\lambda,\varphi')=(\lambda_1,\ldots,\lambda_{n-1},\varphi_2,\ldots,\varphi_{n-1}).$

Оказывается, локальные особенности (т.е. \mathbb{R}^n —орбиты) коранга 1 типичных интегрируемых систем имеют окрестности, послойно диффеоморфные *стандартной модели* вида

$$F_{st}: (V/\mathbb{Z}_s) \times W \to \mathbb{R}^n, \ F_{st}(z, \varphi_1, \lambda, \varphi') = (g_k(z, \lambda', a(\lambda)), \lambda), \quad \Omega_{st} = \mathrm{d}x \wedge \mathrm{d}y + \sum_{j=1}^{n-1} \mathrm{d}\lambda_j \wedge \mathrm{d}\varphi_j,$$

где $0 \le k < n, \ \lambda' = (\lambda_1, \dots, \lambda_k), \ a(\lambda)$ и $a_1(\lambda)$ — гладкие функции при $(k, s) \in \{(1, 4), (2, 6)\}, \ a(\lambda) \equiv 1$ для остальных пар $(k, s); \ a(\lambda) = (a_1(\lambda), 1)$ при (k, s) = (2, 6).

Теорема 2 (Кудрявцева Е. А., Онуфриенко М. В.). Пусть $n = \frac{1}{2} \dim M \in \{2, 3\}$. Рассмотрим класс $\mathcal{I} = \mathcal{I}(M)$ интегрируемых систем на M, для которых функции f_2, \ldots, f_n порождают локально-свободное гамильтоново действие (n-1)—мерного тора на M. Если некоторая окрестность \mathbb{R}^n —орбиты послойно диффеоморфна стандартной модели, то эта орбита структурно устойчива относительно возмущений в классе \mathcal{I} . Если орбита структурно устойчива, то некоторая ее окрестность послойно гомеоморфна стандартной модели. Класс $\mathcal{I}_{st} \subset \mathcal{I}$ систем, все локальные особенности которых послойно диффеоморфны стандартным, открыт в \mathcal{I} (относительно C^{∞} —топологии), и $\mathcal{I} \setminus \mathcal{I}_{st}$ имеет коразмерность > 0.

Теорема 2 при n=2, k=1 описывает параболические траектории с резонансами [2], а при n=3, k=2 — их типичные бифуркации.

Источники и литература

- 1) Wassermann G. Classification of singularities with compact Abelian symmetry // Singularities Banach Center Publications. 1988. V. 20. P. 475–498.
- 2) Kалашников B.B. Типичные интегрируемые гамильтоновы системы на четырехмерном симплектическом многообразии // Изв. РАН, Сер. матем. 1998. Т. 62. No. 2. С. 49–74.