Nonlinear Optimization: Optimality conditions

INSEAD, Spring 2006

Jean-Philippe Vert

Ecole des Mines de Paris

Jean-Philippe.Vert@mines.org

Outline

- General definitions
- Unconstrained problems
- Convex optimization
- Equality constraints
- Equality and inequality constraints

General definitions

Local and global optima

(Strict) global minimum:

$$x^*$$
 s.t. $f(x^*) < (\leq) f(x), \quad \forall x \in \mathcal{X}$.

(Strict) local minimum:

$$x^*$$
 s.t. $f(x^*) < (\leq) f(x), \quad \forall x \in \mathcal{X} \cap \mathcal{N}(x^*),$

where \mathcal{N} is a *neighborhood* of x^* (e.g., open ball).

Derivatives

A function

$$f: \mathbb{R}^n \to \mathbb{R}$$

is called *(Frechet) differentiable* at $x \in \mathbb{R}^n$ if there exists a vector $\nabla f(x)$, called the *gradient* of f at x, such that:

$$f(x+u) = f(x) + u^{\top} \nabla f(x) + o(||u||)$$
.

In that case we have:

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)^{\top}.$$

Second derivative

If each component of ∇f is itself differentiable, then f is called *twice differentiable* and the *Hessian* of f at x is the symmetric $n \times n$ matrix $\nabla^2 f$ with entries:

$$\left[\nabla^2 f\right]_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(x) .$$

In that case we have the following second-order expansion of f around x:

$$f(x+u) = f(x) + u^{\top} \nabla f(x) + \frac{1}{2} u^{\top} \nabla^2 f(x) u + o(\|u\|^2).$$

Descent direction

For any differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ and $x \in \mathbb{R}^n$, the set of *descent directions* is the set of vectors:

$$\mathcal{D}_x = \left\{ d \in \mathbb{R}^n : d^{\top} \nabla f(x) < 0 \right\}.$$

If d is a descent direction of f at x, then there exists a scalar ϵ_0 such that

$$f(x + \epsilon d) < f(x), \quad \forall \epsilon \in (0, \epsilon).$$

Feasible direction

At a feasible point x, a *feasible* direction $d \in \mathbb{R}^n$ is a direction such that $x + \epsilon d$ is *feasible* for sufficiently small $\epsilon > 0$. The set of feasible directions is formally defined as:

$$\mathcal{F}_x = \{d \in \mathbb{R}^n : d \neq 0 \text{ and } \exists \epsilon_0 > 0, \forall \epsilon \in (0, \epsilon_0), x + \epsilon d \in \mathcal{X}\}\$$
.

Examples

- $m{\mathcal{I}} \quad \mathcal{X} = \mathbb{R}^n \implies \mathcal{F}_x = \mathbb{R}^n$.
- $\mathcal{X} = \{x : Ax + b = 0\} \implies \mathcal{F}_x = \{d : Ad = 0\}.$

Optimality conditions

minimize f(x) subject to $x \in \mathcal{X}$

- a point $x \in \mathcal{X}$ is called *feasible*
- How do we recognize a solution to a nonlinear optimization problem?
- An optimality condition is a condition x must fulfill to be the solution (usually necessary but not sufficient).

Why optimality conditions?

- When solved, the conditions provide a set of minima candidates (although not easy in practice)
- Useful to design (e.g., stopping criterion) and analyse (e.g., convergence) optimization algorithms
- Useful for further analysis (e.g., sensitivity analysis in microeconomics)

A general optimality condition

A general necessary condition for a feasible point x to be a *local minimum* is that no little move from x in the feasible set decreases the objective function, i.e., that no feasible direction be a descent direction:

$$\mathcal{D}_x \cap \mathcal{F}_x = \emptyset$$
.

We will now see how this principle translates in different contexts:

- unconstrained problems : $\mathcal{D} = \emptyset$,
- equality constraints: Lagrange theorem,
- equality/inequality constraints: KKT conditions.

Unconstrained optimization

First-order condition

Consider the unconstrained optimization problem:

minimize
$$f(x)$$

subject to $x \in \mathbb{R}^n$.

Théorème 1 If x^* is a local minimum of f, and if f is differentiable in x^* , then:

$$\nabla f\left(x^*\right) = 0 \ .$$

Proof

For a direction $d \in \mathbb{R}^n$, we have:

$$d^{\top} \nabla f(x^*) = \lim_{\epsilon \to 0} \frac{f(x^* + \epsilon d) - f(x^*)}{\epsilon} \ge 0.$$

Similarly, for the direction -d, we obtain $-d^{\top}\nabla f(x) \geq 0$, therefore:

$$\forall d \in \mathbb{R}^n, \quad d^{\top} \nabla f(x^*) = 0.$$

This shows that $\nabla f(x^*) = 0$. \square

Limits of first-order conditions

First-order conditions only detect stationary points

Positive (semi-)definite matrices

Let A be a symmetric $n \times n$ matrix.

- ullet The eigenvalues of A are real.
- A is called positive definite (denoted $A \succ 0$) if all eigenvalues are positive, or equivalently:

$$x^{\top}Ax > 0$$
, $\forall x \in \mathbb{R}^n, x \neq 0$.

• A is called positive semidefinite (denoted $A \succeq 0$) if all eigenvalues are non-negative, or equivalently:

$$x^{\top} A x \ge 0 , \quad \forall x \in \mathbb{R}^n .$$

Second order conditions

Théorème 2 If x^* is a local minimum of f, and if f is twice differentiable in x^* , then:

$$\nabla f(x^*) = 0$$
 and $\nabla^2 f(x^*) \succeq 0$.

Conversely, if x^* satisfies:

$$\nabla f(x^*) = 0$$
 and $\nabla^2 f(x^*) \succ 0$,

then x^* is a strict local minimum of f.

Remark

- There may be points that satistfy the necessary firstand second-order conditions, but which are not local minima.
- There may be points that are local minima, but which do not satisfy the first- and second-order sufficient conditions.

Proof

Remember the Taylor expansion around x:

$$f(x+u) = f(x) + u^{\top} \nabla f(x) + \frac{1}{2} u^{\top} \nabla^2 f(x) u + o(\|u\|^2).$$

At a local minimum x^* the first-order condition $\nabla f(x) = 0$ holds, and therefore for any direction $d \in \mathbb{R}^n$:

$$0 \le \frac{f(x^* + \epsilon d) - f(x^*)}{\epsilon^2} = \frac{1}{2} d^{\top} \nabla^2 f(x^*) d + \frac{o(\epsilon^2)}{\epsilon^2}.$$

Taking the limit for $\epsilon \to 0$ gives $d^{\top} \nabla^2 f(x^*) d$ for any $d \in \mathbb{R}^n$, and therefore $\nabla^2 f(x^*) \succeq 0$.

Proof (cont.)

Conversely suppose that x^* is such that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$. Let $\lambda > 0$ be the smallest eigenvalue of $\nabla^2 f(x^*)$, then we have:

$$d^{\top} \nabla^2 f(x^*) d \ge \lambda \|d\|^2$$
, $\forall d \in \mathbb{R}^d$.

The Taylor expansion therefore gives for all *d*:

$$f(x^* + d) - f(x^*) = \frac{1}{2} d^{\top} \nabla^2 f(x^*) d + o(\|d\|^2)$$

$$\geq \frac{\lambda}{2} \|d\|^2 + o(\|d\|^2)$$

$$= \left(\frac{\lambda}{2} + \frac{o(\|d\|^2)}{\|d\|^2}\right) \|d\|^2 \quad \Box$$

Summary

- $\nabla f(x) = 0$ defines a *stationary point* (including but not limited to local and global minima and maxima).
- If x^* is a stationary point and $\nabla^2 f(x^*) \succ 0$ (resp. $\prec 0$) and x^* is a *local minimum* (resp. maximum).
- If $\nabla^2 f(x^*)$ has strictly positive and negative eigenvalues then x^* is neither a local minimum nor a local maximum.

Example

$$f(x_1, x_2) = \frac{1}{3}x_1^3 + \frac{1}{2}x_1^2 + 2x_1x_2 + \frac{1}{2}x_2^2 - x_2 + 1.$$

f is infinitely differentiable. Its gradient and Hessian are:

$$\nabla f(x_1, x_2) = \begin{pmatrix} x_1^2 + x_1 + 2x_2 \\ 2x_1 + x_2 - 1 \end{pmatrix} ,$$

$$\nabla^2 f(x_1, x_2) = \begin{pmatrix} 2x_1 + 1 & 2 \\ 2 & 1 \end{pmatrix} .$$

Example (cont.)

There are two stationary points: $x_a = (1, -1)^{\top}$ and $x_b = (2, -3)^{\top}$. The corresponding Hessian are:

$$\nabla^2 f(x_a) = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \quad \text{and} \quad \nabla^2 f(x_b) = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

- $ightharpoonup \det \left(
 abla^2 f \left(x_a \right) \right) = -1$ so the Hessian has a negative and a positive eigenvalue: x_a is neither a local maximum nor a local minimum
- $\nabla^2 f(x_b) \succ 0$ so x_b is a local minimum.

Convex optimization

Convex set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \theta x_1 + (1 - \theta)x_2 \in C$$

Convex function

If C is a convex set, then $f: C \to \mathbb{R}$ is called *convex* if

$$\begin{cases} x_1, x_2 \in C \\ 0 \le \theta \le 1 \end{cases} \implies f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2) .$$

A function is called *concave* is -f is convex. It is *strictly convex* is the inequality is strict for $x_1 \neq x_2$ and $\theta \in (0,1)$.

Examples on \mathbb{R}

Convex:

- affine: f(x) = ax + b for any $a, b \in \mathbb{R}$.
- exponential: $f(x) = \exp(ax)$ for any $a \in \mathbb{R}$.
- powers: x^{α} for x > 0 and $\alpha \ge 1$ or $\alpha \le 0$.

Concave:

- affine: f(x) = ax + b for any $a, b \in \mathbb{R}$.
- logarithm: $f(x) = \log(x)$ for x > 0.
- powers: x^{α} for x > 0 and $0 \le \alpha \le 1$.

First-order convexity condition

Let f be defined over a convex open set C. If f is differentiable, then f is convex if and only if:

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x), \quad \forall x, y \in C.$$

Implication: $\nabla f(x^*) = 0 \implies x^*$ global minimum.

Second-order convexity condition

Let f be defined over a convex open set C. If f is twice differentiable, then f is convex if and only if:

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in C.$$

If $\nabla^2 f(x) \succ 0$ for all $x \in C$, then f is strictly convex.

Example

Quadratic function.

$$f(x) = (1/2)x^{\top}Px + q^{\top}x + b ,$$

$$\nabla f(x) = Px + q ,$$

$$\nabla^2 f(x) = P ,$$

is convex if and only if $P \succeq 0$.

Least-squares objective:

$$f(x) = ||Ax - b||_2^2,$$

$$\nabla f(x) = 2A^{\top}(Ax - b),$$

$$\nabla^2 f(x) = 2A^{\top}A,$$

is always convex.

Example

The *quadratic-over-linear* function:

$$f(x,y) = \frac{x^2}{y}$$
, $x \in \mathbb{R}, y > 0$,

is convex. Indeed it is twice differentiable on its domain and:

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{pmatrix} y^2 & -xy \\ -xy & x^2 \end{pmatrix} = \frac{2}{y^3} \begin{pmatrix} y \\ -x \end{pmatrix} \begin{pmatrix} y \\ -x \end{pmatrix}^{\top} \succeq 0.$$

More examples

■ The sum-log-exp function is convex:

$$f(x) = \log \sum_{i=1}^{n} e^{x_i} .$$

The geometric mean is concave:

$$f(x) = \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}.$$

Left as exercice (hint: compute Hessians and show that $v^{\top}\nabla f(x)v\geq 0$ for all $v\in\mathbb{R}^n$).

Minima of convex function

Théorème 3 Let C be a convex set and $f: C \to \mathbb{R}$ be a convex function.

- ullet Any local minimum of f is also a global minimum.
- If f is strictly convex, then there exists at most one global minimum of f.

Proof

If x_1 is a local minimum of f but not a global minimum, there exists x_2 s.t. $f(x_2) < f(x_1)$. By convexity it holds for any $\theta \in [0,1]$:

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2) < f(x_1)$$
,

which contradicts the fact that x_1 is a local minimum.

If f is strictly convex and x_1 and x_2 are two global minima, then their average $u=(x_1+x_2)/2$ satisfies $f(u)\leq (f(x_1)+f(x_2)/2)$, with strict inequality if $x_1\neq x_2$: this is not possible, therefore $x_1=x_2$. \square

Optimality conditions

Théorème 4 Let \mathcal{X} be an convex set, and $f: \mathcal{X} \to \mathbb{R}$ continuously differentiable (not necessarily convex).

• If x^* is a local minimum of f over \mathcal{X} , then

$$\nabla f(x^*)^{\top} (x - x^*) \ge 0$$
, $\forall x \in \mathcal{X}$.

• If f is convex, then this condition is also sufficient for x^* to be a local and therefore global minimum of f over \mathcal{X} .

Illustration

Left: at a local minimum, the gradient $\nabla f\left(x^*\right)$ makes an angle less than or equal to 90 degrees with all feasible variations $x-x^*$. Right: the optimality condition fails if $\mathcal X$ is not convex: x^* is a local minimum, but $\nabla f\left(x^*\right)^{\top}\left(x-x^*\right)<0$.

Proof

Let x^* be a local minimum, and suppose there exists $x \in \mathcal{X}$ with $\nabla f(x^*)^\top (x - x^*) < 0$. Then by Taylor expansion we get:

$$f(x^* + \epsilon(x - x^*)) = f(x^*) + \epsilon \nabla f(x^*)^{\top} (x - x^*) + o(\epsilon),$$

and therefore for ϵ small enough we have $f\left(x^* + \epsilon\left(x - x^*\right)\right) < f\left(x^*\right)$ which is a contradiction since $x^* + \epsilon\left(x - x^*\right)$ is a feasible point by convexity of \mathcal{X} .

If f is convex we have the general property:

$$f(x) \ge f(x^*) + \nabla f(x^*)^\top (x - x^*)$$

for every $x \in \mathcal{X}$, and therefore $f(x) \geq f(x^*)$ under the hypothesis of the theorem. \square

Example

Let $\mathcal{X} = \{x : x \ge 0\}$. The necessary condition for x^* to be a local minimum of f is:

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (x^*) (x_i - x_i^*) \ge 0 \quad \forall x_i \ge 0.$$

This implies:

$$\frac{\partial f}{\partial x_i}(x^*) \begin{cases} \geq 0 & \forall i, \\ = 0 & \text{if } x_i > 0. \end{cases}$$

Illustration

Optimization with equality constraints

Equality constraints

Here we consider optimization problems where the constraints are specified in terms of equality constraints:

minimize
$$f(x)$$

subject to $h_i(x) = 0$, $i = 1, ..., m$,

where f and $h_i: \mathbb{R}^n \to \mathbb{R}$ are continuously differentiable.

For notational convenience we introduce $h : \mathbb{R}^n \to \mathbb{R}^m$ where $h = (h_1, \dots, h_m)$ and write the constraint compactly:

$$h(x) = 0.$$

Regular points

A feasible vector x is called *regular* if the constraint gradients:

$$\nabla h_1(x), \ldots, \nabla h_m(x)$$

is linearly independent.

Lagrange Multiplier Theorem

Théorème 5 Let x^* be a local minimum of f subject to h(x) = 0, and a regular point. Then there exist unique scalars $\lambda_1^*, \ldots, \lambda_m^* \in \mathbb{R}$ called Lagrange multipliers such that:

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0.$$

If in addition f and h are twice continuously differentiable we have:

$$y^{\top} \left(\nabla^2 f \left(x^* \right) + \sum_{i=1}^m \lambda_i^* \nabla^2 h_{i(x^*)} \right) y \geq 0 \;, \quad \forall y \; \text{s.t.} \; y^{\top} \nabla h \left(x^* \right) = 0 \;.$$

Illustration: regular case

minimize
$$x_1 + x_2$$

subject to $x_1^2 + x_2^2 = 2$.

Illustration: irregular case

minimize
$$x_1 + x_2$$

subject to $(x_1 - 1)^2 + x_2^2 = 1$,
 $(x_1 - 2)^2 + x_2^2 = 4$.

Proof

• Introduce, for k = 1, 2, ..., the cost function:

$$F^{k}(x) = f(x) + \frac{k}{2} \|h(x)\|^{2} + \frac{\alpha}{2} \|x - x^{*}\|^{2},$$

where $\alpha > 0$ and x^* is a local minimum, and let

$$x^k = \underset{x \in S}{\operatorname{arg\,min}} F_k(x) ,$$

where S is a small ball around x^* s.t. $f(x^*) < f(x)$ for all feasible points of S.

Observe that:

$$F^{k}(x^{k}) = f(x^{k}) + \frac{k}{2} \|h(x^{k})\|^{2} + \frac{\alpha}{2} \|x^{k} - x^{*}\|^{2} \le F^{k}(x^{*}) = f(x^{*}).$$

Proof (cont.)

▶ Taking the limit when $k \to \infty$, this shows that any limit point \bar{x} of $\left(x^k\right)_{k=1,\dots}$ satisfies $h\left(\bar{x}\right)=0$, $f\left(\bar{x}\right)=f\left(x^*\right)$ and $\bar{x}=x^*$. Therefore x^* is the only limit point:

$$\lim_{k \to +\infty} x^k = x^*$$

.

- As a result, for k large enough, x^k is an interior point of S and is an unconstrained local minimum of $F^k(x)$.
- From the first-order optimality condition we therefore have, for sufficiently large k:

$$0 = \nabla F^{k}(x^{k}) = \nabla f(x^{k}) + k \nabla h(x^{k}) h(x^{k}) + \alpha(x^{k} - x^{*}) . \tag{1}$$

Since $\nabla h(x^*)$ has rank m, the same is true for $\nabla h(x^k)$ if k is sufficiently large, and therefore $\nabla h(x^k)^{\top} \nabla h(x^k)$ is invertible.

Proof (cont.)

We therefore obtain:

$$kh\left(x^{k}\right) = -\left(\nabla h\left(x^{k}\right)^{\top} \nabla h\left(x^{k}\right)\right)^{-1} \nabla h\left(x^{k}\right)^{\top} \left(\nabla f\left(x^{k}\right) + \alpha\left(x^{k} - x^{*}\right)\right).$$

P By taking the limit when $k \to +\infty$:

$$\lim_{k \to +\infty} kh\left(x^{k}\right) = -\left(\nabla h\left(x^{*}\right)^{\top} \nabla h\left(x^{*}\right)\right)^{-1} \nabla h\left(x^{*}\right)^{\top} \nabla f\left(x^{*}\right) \stackrel{\Delta}{=} \lambda^{*}.$$

Take now the limit in (1) to obtain:

$$\nabla f(x^*) + \nabla h(x^*) \lambda^* = 0.$$

■ The second-order condition is also obtained by taking a limit from the second-order optimality condition of x^k [Bersteskas p.288].

Lagrangian function

Define the Lagrangian function $L: \mathbb{R}^{m+n} \to \mathbb{R}$ by

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) .$$

Then, if x^* is a local minimum which is regular, the Lagrange multiplier conditions are written as a system of n+m equations with n+m unknowns:

$$\nabla_x L\left(x^*,\lambda^*\right) = 0 \;, \quad \nabla_\lambda L\left(x^*,\lambda^*\right) = 0 \;,$$

$$y^\top \nabla^2_{xx} L\left(x^*,\lambda^*\right) y \geq 0 \;, \quad \forall y \; \text{s.t.} \; \nabla\left(x^*\right)^\top y = 0 \;.$$

Example

minimize
$$\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$$
 subject to $x_1 + x_2 + x_3 = 3$.

Minimize a convex function over a convex set \implies a unique global minimum.

First-order necessary conditions:

$$x_1^* + \lambda^* = 0$$
, $x_2^* + \lambda^* = 0$, $x_3^* + \lambda^* = 0$, $x_1 + x_2 + x_3 = 3$.

Solution:

$$\lambda^* = -1$$
, $x_1^* = x_2^* = x_3^* = 1$.

Example: Portfolio Selection

Investment of 1 unit of wealth among n assets with random rates of $return e_i$ (i = 1, ..., n) with mean and covariences:

$$\bar{e}_i = E[e_i],$$

$$Q_{ij} = E[(e_i - \bar{e}_i)(e_j - \bar{e}_j)].$$

The return $r = \sum x_i e_i$ has mean $\sum x_i \bar{e}_i$ and variance $x^T Q x$. A possible investment strategy is:

minimize
$$x^{\top}Qx$$
 subject to $\sum_{i=1}^n x_i = 1$, $\sum_{i=1}^n \bar{e}_i x_i = m$.

How does the solution vary with m?

Example: Portfolio Selection (cont.)

Let λ_1 and λ_2 be the Lagrange multipliers. The optimality condition is:

$$2Qx^* + \lambda_1 u + \lambda_2 \bar{e} ,$$

where $u = (1, ..., 1)^{\top}$ and $\bar{e} = (\bar{e}_1, \bar{e}_2, ..., \bar{e}_n)^{\top}$ (assuming u and \bar{e} are linearly independent). This yields:

$$x^* = -\frac{1}{2}Q^{-1}u\lambda_1 - \frac{1}{2}Q^{-1}\bar{e}\lambda_2 .$$

But $u^{\top}x^*=1$ and $\bar{e}^{\top}x^*=m$, therefore:

$$1 = u^{\top} x^* = -\frac{1}{2} u^{\top} Q^{-1} u \lambda_1 - \frac{1}{2} u^{\top} Q^{-1} \bar{e} \lambda_2 ,$$

$$m = \bar{e}^{\top} x^* = -\frac{1}{2} \bar{e}^{\top} Q^{-1} u \lambda_1 - \frac{1}{2} \bar{e}^{\top} Q^{-1} \bar{e} \lambda_2 .$$

Example: Portfolio Selection (cont.)

Solving in λ_1 and λ_2 yields:

$$\lambda_1 = \xi_1 + \xi_2 m ,$$

$$\lambda_2 = \xi_3 + \xi_4 m ,$$

for some scalar ξ_i . Back to x^* we obtain:

$$x^* = mv + w$$

for some vectors v and w that depend on Q and \bar{e} . The corresponding variance of return is:

$$\sigma^2 = (mv + w)^{\top} Q (mv + w) = (\alpha m + \beta)^2 + \gamma ,$$

where α, β and γ are some scalars that depend on Q and \overline{e} .

Example: Portfolio Selection (cont.)

If one asset is *riskless*, then $\sigma^2=0$ must be a possible solution (setting m equal to the return of the riskless asset). This implies $\gamma=0$ and therefore:

$$\sigma = |\alpha m + \beta|$$

This defines the *efficient frontier*. Each point of the efficient frontier can be achieved by a mixture of two portfolios.

Optimization with inequality constraints

Inequality constraints

Here we consider optimization problems where the constraints are specified in terms of equality and inequality constraints:

minimize
$$f(x)$$

subject to $h_i(x)=0$, $i=1,\ldots,m$, $g_j(x)\leq 0$, $j=1,\ldots,r$,

where f and $h: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^r$ are continuously differentiable. For convenience we rewrite the problem as :

minimize
$$f(x)$$

subject to $h(x) = 0$, $g(x) \le 0$.

Active constraints

For any feasible point x, the set of *active inequality* constraints is denoted by:

$$A(x) = \{j \mid g_j(x) = 0\}$$
.

If $j \notin A(x)$, we say that the j-th constraint is *inactive*. If x^* is a local minimum to the inequality constrained problem (ICP), it is also a local minimum to the same ICP without the inactive constraints at x^* . If a contraint is active, it can be treated "as an equality constraint".

A feasible vector x is said to be *regular* if the equality constraint gradients $\nabla h_i(x)$, $i=1,\ldots,m$ and the active inequality constraint gradients $\nabla g_j(x)$, $j\in A(x)$ are linearly independent.

KKT optimality conditions

Théorème 6 [Karush(1939),Kuhn and Tucker (1951)] Let x^* be a local minimum of f subject to h(x) = 0, $g(x) \le 0$ and a regular point. Then there exist unique Lagrange multipliers $\lambda = (\lambda_1^*, \dots, \lambda_m^*)$ and $\mu^* = (\mu_1^*, \dots, \mu_r^*)$ such that the following KKT conditions are satisfied:

$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0$$
,
 $\mu_j^* \ge 0$, $j = 1, \dots, r$,
 $\mu_j^* = 0$, $\forall j \notin A(x^*)$

where the Lagrangian function is:

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{r} \mu_j g_j(x)$$
.

Proof (sketch)

The proof is similar to the proof of the Lagrange theorem of equality constrained problems, with the penalized function:

$$F^{k}(x) = f(x) + \frac{k}{2} \|h(x)\|^{2} + \frac{k}{2} \sum_{j=1}^{r} \left(g_{j}^{+}(x)\right)^{2} + \frac{\alpha}{2} \|x - x^{*}\|^{2},$$

where:

$$g_i^+(x) = \max(0, g_j(x)), \quad j = 1, \dots, r. \quad \Box$$

Example

minimize
$$\frac{1}{2} (x_1^2 + x_2^2 + x_3^2)$$
 subject to $x_1 + x_2 + x_3 \le -3$.

Minimization of a convex function over a convex set has a single local (global) optimum x^* . Every point is regular so x^* must satisfy the KKT conditions:

$$x_1^* + \mu^* = 0$$
, $x_2^* + \mu^* = 0$, $x_3^* + \mu^* = 0$.

Example (cont.)

There are two possibilities

The constraint is inactive:

$$x_1^* + x_2^* + x_3^* < -3$$

in which case $\mu^* = 0$. Then we obtain $x_1^* = x_2^* = x_3^* = 0$ which leads to a contradiction.

The constraint is inactive:

$$x_1^* + x_2^* + x_3^* = -3.$$

Then we obtain $x_1^* = x_2^* = x_3^* = -1$ and $\mu^* = 1$, which satisfies all KKT conditions. This is the unique candidate for a local minimum, it is therefore the unique global solution.

Summary

- The KKT conditions generalize the unconstrained and equality-constrained cases.
- These conditions are only necessary: they provide conditions a regular local optimum must fulfill.
- Irregular local optima are not covered by these conditions.
- The conditions can be used to find candidate regular local optima.
- Sometimes the conditions are sufficient: see next lessons about *duality*.
- Lagrange multipliers are useful for sensitivity analysis: see next lessons.