

SEM

CS 8351

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

UNIT NO.4

4.1 ANALYSIS OF ASYNCHRONOUS SEQUENTIAL CIRCUITS

Version: 1.0

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Transition Table

Transition table is useful to analyze an asynchronous circuit from the circuit diagram

Procedure to obtain transition table:

- 1. Determine all feedback loops in the circuits
- 2. Mark the input (yi) and output (Yi) of each feedback loop.
- 3. Derive the Boolean functions of all Y's
- 4. Plot each Y function in a map and combine all maps into one table.
- 5. Circle those values of Y in each square that are equal to the value of y in the same row.

An Example of Transition Table

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

State Table

- When input x changes from 0 to 1 while y=00:
 - Y changes to 01 € unstable
 - y becomes 01 after a short delay € stable at the second row
 - The next state is Y=01
- Each row must have at least one stable state
- Analyze each state in this way can obtain its state Table.

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Present		Next State			
State		X=0		X=1	
0	0	0	0	0	1
0	1	1	1	0	1
1	0	0	0	1	0
1	1	1	1	1	0

y1y2x: total state

4 stable total states: 000,011,110,101

Flow Table

- Similar to a transition table except the states are represented by *letter symbols*
- Can also include the output values
- Suitable to obtain the logic diagram from it

Primitive flow table:

only one stable state in each row

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Flow Table to Circuits

Procedure to obtain circuits from flow table:

- Assign to each state a distinct binary value (convert to a transition table)
- Obtain circuits from the map

Two difficulties:

- The binary state assignment (to avoid race)
- The output assigned to the unstable states

(a) Transition table
$$Y = x_1x_2 + x_1y$$

x_1x_2				
00	01	11	10	
0	0	0	0	
0	0	1	0	
	0	0 0	0 0 0	

(b) Map for output $z = x_1x_2y$

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Race Conditions

Race condition:

- two or more binary state variables will change value when one input variable changes
- Cannot predict state sequence if unequal delay is encountered

Non-critical race:

The final stable state does not depend on the change order of state variables.

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

(a) Possible transitions:

(b) Possible transitions:

Critical race:

- The change order of state variables will result in different stable states.
- Should be avoided!!

(a) Possible transitions:

(b) Possible transitions:

Race-Free State Assignment

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Race can be avoided by proper state assignment

- Direct the circuit through intermediate unstable states with a unique state-variable change
- It is said to have a cycle

(a) State transition:00 → 01 → 11 → 10

(b) State transition: $00 \rightarrow 01 \rightarrow 11$

- Must ensure that a cycle will terminate with a stable state
- Otherwise, the circuit will keep going in unstable states

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Stability Check

Asynchronous sequential circuits may oscillate between unstable states due to the feedback

- Must check for stability to ensure proper operations
 Can be easily checked from the transition table
- Any column has no stable states unstable
- Ex: when x1x2=11, Y and y are never the same Y = x'1x2 + x2y'

Y

INFORMATION TECHNOLOGY

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

(b) Transition table

Latches in Asynchronous Circuits

- The traditional configuration of asynchronous circuits is using one or more feedback loops
 - No real delay elements
- It is more convenient to employ the SR latch as a memory element in asynchronous circuits

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

- Produce an orderly pattern in the logic diagram with the memory elements clearly visible
- SR latch is also an asynchronous circuit
 - Will be analyzed first using the method for asynchronous circuits.

SR Latch with NOR Gates

(a) Crossed-coupled circuit

	Q'	Q	R	S
	0	1	0	1
(After $SR = 10$	0	1	0	0
	1	0	1	0
(After $SR = 01$	1	0	0	0
	0	0	1	1

(b) Truth table

SR

(c) Circuit showing feedback

Y = SR' + R'yY = S + R'y when SR = 0

(d) Transition table

SR Latch with NAND Gates

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

S	R	Q	Q'	_
1	0	0	1	
1	1	0	1	(After SR = 10)
0	1	1	0	
1	1	1	0	(After SR = 01)
0	0	1	1	

(b) Truth table

(c) Circuit showing feedback

(d) Transition table

Analysis Procedure

Procedure to analyze an asynchronous sequential circuits with SR latches:

- 1. Label each latch output with Yi and its external feedback path (if any) with yi
 - 2. Derive the Boolean functions for each Si and Ri
- 3. Check whether SR=0 (NOR latch) or S'R'=0 (NAND latch) is satisfied
- 4. Evaluate Y=S+R'y (NOR latch) or Y=S'+Ry (NAND latch)
 - 5. Construct the transition table for Y=Y1Y2...Yk

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

6. Circle all stable states where Y=y

Analysis Example

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Implementation Procedure

Procedure to implement an asynchronous sequential circuits with SR latches:

- 1. Given a transition table that specifies the excitation function $Y = Y_1Y_2...Y_k$, derive a pair of maps for each S_i and R_i using the latch excitation table
- 2. Derive the Boolean functions for each S_i and R_i (do not to make Si and Ri equal to 1 in the same minterm square)
- Draw the logic diagram using k latches together with the gates required to generate the S and R (for NAND latch, use the complemented values in step 2)

Implementation Example

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Debounce Circuit

Mechanical switches are often used to generate binary signals to a digital circuit

- It may vibrate or bounce several times before going to a final rest
- Cause the signal to oscillate between 1 and 0

A debounce circuit can remove the series of pulses from a contact bounce and produce a single smooth transition

 Position A (SR=01) -> bouncing (SR=11) -> Position B (SR=10)

$$Q = 1$$
 (set) \square $Q = 1$ (no change) \square $Q = 0$ (reset)

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

