Ultraslow Convergence to Ergodicity in Transient Subdiffusion

Tomoshige Miyaguchi^{1,*} and Takuma Akimoto²

¹Department of Applied Physics, Osaka City University, Osaka 558-8585, Japan, ²Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan (Dated: January 11, 2013)

We investigate continuous time random walks with truncated α -stable trapping times. We prove distributional ergodicity for a class of observables; namely, the time-averaged observables follow the probability density function called the Mittag-Leffler distribution. This distributional ergodic behavior persists for a long time, and thus the convergence to the ordinary ergodicity is considerably slower than in the case in which the trapping-time distribution is given by common distributions. We also find a crossover from the distributional ergodic behavior to the ordinary ergodic behavior.

PACS numbers: 05.40.Fb, 02.50.Ey, 87.15.Vv

Mittag-Leffler (ML) distribution. This property is called 13 infinite ergodicity in dynamical system theory, because 16 erty has been found for some observables in stochastic 17 models such as continuous time random walks (CTRWs) 18 [2]. For example, the time-averaged mean square dis-19 placement (TAMSD) [Eq. (10)] for CTRWs is a random variable even in the long measurement time limit and its PDF follows the ML distribution. It has been pointed out 22 that this distributional ergodic behavior is reminiscent of the observations in biological experiments that showed that TAMSDs of macromolecules are widely distributed 25 depending on trajectories [3]. In addition to these bio-26 logical systems, CTRW-type systems are used to explain 27 a broad range of phenomena such as charge carrier trans-28 port in amorphous materials [4], tracer particle diffusion in an array of convection rolls [5], and human mobility [6].

One of the important problems on stochastic models 32 such as CTRWs is to clarify the condition of the distributional ergodicity. It has already been known that a few observables including the TAMSD show the distributional ergodicity in CTRWs. But any general criterion for an observable to satisfy the distributional ergodicity is 37 still unknown. Another important problem to elucidate is 38 finite size effects [7]. For CTRW-type systems, a power 39 law trapping-time distribution is usually assumed, and 40 thus rare events—long-time trappings—characterize the 41 long-time behavior. These rare events, however, are often 42 limited by finite size effects. For example, if the random 43 trappings are caused by an energetic effect in complex 44 energy landscapes, the most stable state has the longest 45 trapping time, thereby causing a cutoff in the trapping-

The ergodic theorem ensures that time averages of ob- 46 time distribution. In fact, for the case of macromolecules 8 servables converge to their ensemble averages as the av- 47 in cells, the origin of trappings is considered to be ener-9 eraging time tends to infinity. On the other hand, a dis- 48 getic disorder: strong bindings to the target site, weak tributional ergodic theorem states that the probability 49 bindings to non-specific sites, and intermediate bindings density functions (PDFs) of time averages converge to the 50 to sites that are similar to the target site [8]. Because 51 the binding to the target site should be most stable with 52 the longest trapping time, there must be a cutoff [8]. 14 it is associated with infinite invariant measures [1]. Fur- 53 Similarly, if the trappings are due to an entropic effect 15 thermore, in recent years, the distributional ergodic prop- 54 such as diffusion in inner degrees of freedom (diffusion 55 on comb-like structures is a simple example [9]; see also ₅₆ [10]), the finiteness of the phase space of inner degrees 57 of freedom results in a cutoff. The CTRWs with such 58 a trapping-time cutoff show distributional ergodic fea-59 tures for short-time measurements, and become ergodic 60 in the ordinary sense for long-time measurements. But 61 this transition from distributional ergodic regime to or-62 dinary ergodic regime has not been elucidated.

> In this study, we employ a truncated one-sided stable 64 distribution [11] as the trapping-time distribution, and 65 show that the distributional ergodic behavior persists for 66 a remarkably long time compared to the case of common 67 distributions with the same mean trapping time. We also 68 show that the time-averaged quantities for a large class of 69 observables exhibit the distributional ergodicity. As an 70 example, numerical simulations for a diffusion coefficient 71 are presented. We use the exponentially truncated stable 72 distribution (ETSD) proposed in [12] and the numerical 73 method presented in [13]. This ETSD is useful for rig-74 orous analysis of transient behavior, because it is an in-75 finitely divisible distribution [14] and thus its convoluted 76 distribution or characteristic function can be explicitly 77 derived [Eqs. (5) and (6)].

> Truncated one-sided stable distribution.—In this study, 79 we investigate CTRWs on d-dimensional hypercubic lat-80 tices. The lattice constant is set to unity, and for simplic-81 ity, the jumps are allowed only to the nearest-neighbor sites without preferences. Let $r(t') \in \mathbb{Z}^d$ be the position 83 of the particle at time t'. Moreover, we assume that the successive trapping times τ_k (k = 1, 2, ...) between jumps 85 are mutually independent and the trapping-time distri-₈₆ bution is the ETSD $P_{\text{TL}}(\tau,\lambda)$ defined by the canonical

^{*} tomo@a-phys.eng.osaka-cu.ac.jp

87 form of the infinitely divisible distribution [14]:

$$e^{\psi(\zeta,\lambda)} = \int_{-\infty}^{\infty} P_{\mathrm{TL}}(\tau,\lambda) e^{i\zeta\tau} d\tau, \tag{1}$$

$$\psi(\zeta,\lambda) = \int_{-\infty}^{\infty} \left(e^{i\zeta\tau} - 1 \right) f(\tau,\lambda) d\tau, \tag{2}$$

88 The function $f(\tau, \lambda)$ is defined by [12]

$$f(\tau, \lambda) = \begin{cases} 0, & (\tau < 0) \\ -c \frac{\tau^{-1-\alpha} e^{-\lambda \tau}}{\Gamma(-\alpha)}, & (\tau > 0), \end{cases}$$
 (3)

where $\Gamma(x)$ is the gamma function, c>0 is a scale factor, and $\alpha \in (0,1)$ is a constant. The parameter $\lambda \geq 0$ char-₉₁ acterizes the exponential cutoff [Eq. (6)]. When $\lambda = 0$, ₉₂ $P_{\rm TL}(\tau,\lambda)$ is the one-sided α -stable distribution with a 93 power law tail $P_{\mathrm{TL}}(au,0) \sim 1/ au^{1+lpha}$ as $au o \infty$ [14]. The function $\psi(\zeta,\lambda)$ can be expressed as follows:

$$\psi(\zeta,\lambda) = -c \left[(\lambda - i\zeta)^{\alpha} - \lambda^{\alpha} \right]. \tag{4}$$

95 Hence, we obtain $n\psi(\zeta,\lambda) = \psi(n^{1/\alpha}\zeta,n^{1/\alpha}\lambda)$, where $n \geq$ 96 0 is an integer. Therefore, if τ_k (k=1,2,...) are mutually ⁹⁷ independent random variables each following $P_{\text{TL}}(\tau_k, \lambda)$, 98 then the *n*-times convoluted PDF $P_{\mathrm{TL}}^n(\tau,\lambda)$, i.e., the PDF 99 of the summation $T_n = \sum_{k=1}^n \tau_k$, is given by

$$P_{\rm TL}^n(\tau,\lambda) = n^{-1/\alpha} P_{\rm TL}(n^{-1/\alpha}\tau, n^{1/\alpha}\lambda).$$
 (5)

100 This is an important outcome of the infinite divisibility 101 and makes it possible to analyze transient behavior of 102 CTRWs. Moreover, from Eq. (4) and the inverse transform of Eq. (1), we obtain an explicit form of $P_{\rm TL}(\tau,\lambda)$ through the similar calculation shown in [14]:

$$P_{\rm TL}(\tau,\lambda) = -\frac{e^{c\lambda^{\alpha} - \lambda\tau}}{\pi\tau} \sum_{k=1}^{\infty} \frac{\Gamma(k\alpha + 1)}{k!} \left(-c\tau^{-\alpha}\right)^k \sin(\pi k\alpha). \tag{6}$$

CTRWs with truncated α -stable trapping times.—Now, we consider the time average of an observable h(t'): $\overline{h}_t \equiv$ $\int_0^t dt' h(t')/t$, where t is the total measurement time. We 108 assume that h(t') can be expressed as

$$h(t') = \sum_{k=1}^{\infty} H_k \delta(t' - T_k), \tag{7}$$

where $T_k > 0$ (k = 1, 2, ...) is the time when the k-th 110 jump occurs, and H_k (k = 1, 2, ...) are random variables 111 satisfying $\langle H_k \rangle = \langle H \rangle$ and the ergodicity with respect to the operational time k,

$$\frac{1}{n} \sum_{k=1}^{n} H_k \simeq \langle H \rangle, \quad \text{as} \quad n \to \infty.$$
 (8)

To satisfy Eq. (8), the correlation function $\langle H_k H_{k+n} \rangle$ – $\langle H_k \rangle \langle H_{k+n} \rangle$ should decay more rapidly than $n^{-\gamma}$ with some constant $\gamma > 0$ [9, 15]. It follows from Eqs. (7) and 116 (8) that

$$\overline{h}_t = \frac{1}{t} \sum_{k=1}^{N_t} H_k \simeq \frac{N_t}{t} \langle H \rangle, \qquad (9)$$

FIG. 1. (Color online) TAMSD $(\delta x)^2(\Delta, t)$ vs time interval Δ (log-log plot) for the one-dimensional system (d = 1). Total measurement time t is set as $t = 10^5$ and other parameters as $\lambda = 10^{-5}, \ \alpha = 0.75, \ {\rm and} \ c = 1.$ The TAMSDs are calculated for 17 different realizations of trajectories; a different symbol corresponds to a different realization. The solid line is their ensemble average.

for long t, where N_t is the number of jumps until time t. 118 From this equation, we find that \overline{h}_t behaves similarly to N_t . It is important that many time-averaged observables 120 for CTRWs can be defined by Eqs. (7) and (8). For 121 example, the TAMSD,

$$\overline{(\delta r)^2}(\Delta, t) \equiv \frac{1}{t - \Delta} \int_0^{t - \Delta} |r(t' + \Delta) - r(t')|^2 dt', (10)$$

122 can be approximately obtained by the time average of 123 h(t') with H_k defined as $H_k \equiv \Delta + 2\sum_{l=1}^{k-1} (d\mathbf{r}_k \cdot d\mathbf{r}_l)\theta(\Delta - 124 \ (T_k - T_l))$, where d-dimensional vector $d\mathbf{r}_k$ is the displace- $P_{\text{TL}}(\tau,\lambda) = -\frac{e^{c\lambda^{\alpha} - \lambda \tau}}{\pi \tau} \sum_{k=0}^{\infty} \frac{\Gamma(k\alpha + 1)}{k!} \left(-c\tau^{-\alpha}\right)^k \sin(\pi k\alpha). \text{ is ment at the time } T_k, \text{ and } \theta(t) \text{ is defined by } \theta(t) = t \text{ for } t > 0 \text{ otherwise } \theta(t) = 0. \text{ It is easy to see that } \langle H_k \rangle = \Delta$ (6) 126 $t \ge 0$, otherwise $\theta(t) = 0$. It is easy to see that $\langle H_k \rangle = \Delta$ 127 and $\langle H_k H_{k+n} \rangle - \langle H_k \rangle \langle H_{k+n} \rangle = 0$ for $n \geq 1$. Using ₁₂₈ Eq. (9), we have

$$\overline{(\delta r)^2}(\Delta, t) \simeq \Delta N_t / t.$$
 (11)

From Eq. (11), we obtain a relation between N_t and the 130 diffusion coefficient of TAMSD as

$$D_t \simeq N_t/t.$$
 (12)

 $_{131}$ In Fig.1, TAMSDs calculated from 17 different trajecto-132 ries are displayed as functions of time interval Δ . This 133 figure shows that the TAMSD grows linearly with Δ , and the diffusion coefficient D_t is distributed depending 136 on the trajectories.

PDF of time-averaged observables.—In this section, we derive the PDF of time-averaged observables \overline{h}_t . Because 139 \overline{h}_t and N_t have the same PDF [Eq. (12)], we can study 140 N_t instead of \overline{h}_t . We have the following relations:

$$G(n;t) \equiv \operatorname{Prob}(N_t < n) = \operatorname{Prob}(T_n > t)$$
$$= \operatorname{Prob}\left(\sum_{k=1}^{n} \tau_k > t\right), \tag{13}$$

where Prob(·) is the probability and τ_k is the trapping 142 time between (k-1)-th and k-th jumps (k=1,2,...). 143 From Eq. (13), we obtain

$$G(n;t) = \int_{n^{-1/\alpha_t}}^{\infty} d\tau \ P_{\text{TL}}(\tau, n^{1/\alpha_t}\lambda), \tag{14}$$

where we have used Eq. (5) and the fact that τ_k (k = 145 1, 2, ...) are mutually independent. Furthermore, we the change the variables from n to z as $n = t^{\alpha}z$ with t being 147 set. Then, by using Eqs. (6), (13) and (14), we have

$$\operatorname{Prob}\left(\frac{N_t}{t^{\alpha}} < z\right) = -\frac{e^{c(t\lambda)^{\alpha}z}}{\alpha\pi} \sum_{k=1}^{\infty} \frac{\Gamma(k\alpha + 1)}{k!k}$$
$$\times (-cz)^k \sin(\pi k\alpha) a_k(t), \qquad (15)$$

where $a_k(t)$ (k=1,2,...) is defined by $a_k(t)\equiv \int_0^1 d\tau e^{-t\lambda\tau^{-1/(\alpha k)}}$. Differentiating Eq. (15) with respect to z, we have the PDF of $z=N_t/t^\alpha$:

$$f_{\lambda}(z;t) = -\frac{e^{c(t\lambda)^{\alpha}z}}{\alpha\pi} \sum_{k=1}^{\infty} \frac{\Gamma(k\alpha+1)}{k!} (-c)^{k} \times \left[\frac{c(t\lambda)^{\alpha}z}{k} + 1\right] z^{k-1} \sin(\pi k\alpha) a_{k}(t).$$
 (16)

 $_{^{151}}$ Because of Eq. (9), Eq. (16) is the PDF of the time- $_{^{152}}$ averaged observables $\overline{h}_t t^{1-\alpha}/\left\langle H\right\rangle$ including the diffusion constant $D_t t^{1-\alpha}$ [Eq. (12)] as a special case. When $\lambda = 0$, the PDF $f_0(z)$, which is the ML distribution [1], is time- 180 where we used an approximation by assuming $s, \lambda \ll 1$. ₁₅₆ random variables even in the limit $t \to \infty$; this property ₁₈₂ of N_t . For example, the first moment $\langle N_t \rangle$ is given by 157 is called the distributional ergodicity. On the other hand, when $\lambda > 0$, the PDF tends to a delta function. Thus, the 159 time-averages converge to constant values as is expected 160 from the ordinary ergodicity. The PDF of D_t is shown in Fig. 2 for three different measurement times t. It is $_{162}$ clear that the PDF becomes narrower for a longer t. The analytical result given by Eq. (16) is also illustrated by 164 the lines.

Relative standard deviation.—Next, in order to quan-166 tify a deviation from the ordinary ergodicity, we study a 167 relative standard deviation (RSD) of time-averaged ob-168 servables $R(t) = \sqrt{\langle (\overline{h}_t)^2 \rangle_c / \langle \overline{h}_t \rangle}$, where $\langle \cdot \rangle$ is the ensemble average over trajectories and $\langle \cdot \rangle_c$ is the corresponding 170 cumulant. If $R(t) \approx 0$, the system can be considered to be ergodic in the ordinary sense, whereas if R(t) > 0, the 172 system is not ergodic. To derive an analytical expression 173 for R(t), we take the Laplace transform of Eq (14) with 174 respect to t:

$$\tilde{G}(n;s) = \frac{1 - e^{-nc[(\lambda + s)^{\alpha} - \lambda^{\alpha}]}}{s},$$
(17)

where we have defined $\tilde{G}(n;s)$ as $\tilde{G}(n;s) \equiv \frac{^{\iota_c} - \overline{2\Gamma^2(\alpha+1)}/\Gamma(2\alpha+1) - 1}{2\Gamma^2(\alpha+1)}$ and used Eq. (4). Next, we de- 195 As shown in Fig. 3, the RSD remains almost constant

FIG. 2. (Color online) The PDF of the diffusion coefficient D_t for d=1. Each PDF is normalized so that its mean value equals unity. D_t is calculated from TAMSD $(\delta x)^2(\Delta, t)$ by least square fitting over the interval $0 < \Delta < 10$. The results for three different values of measurement times are presented: $t=10^4$ (circles), 10^5 (squares), and 3×10^5 (triangles). The other parameters are set as $\lambda = 10^{-5}$, $\alpha = 0.75$, and c = 1. The lines correspond to the theoretical predictions given by Eq. (16). Note that no adjustable parameters were used to obtain these figures.

Then, by taking a (discrete) Laplace transform with respect to $n, \sum_{n=0}^{\infty} e^{-n\nu} g(n;s) \equiv \tilde{g}(\nu;s)$, we have

$$\tilde{g}(\nu;s) \simeq \frac{1}{s} \sum_{k=0}^{\infty} \left(-\frac{\nu}{c}\right)^k \left[(\lambda+s)^{\alpha} - \lambda^{\alpha}\right]^{-k}, \quad (18)$$

155 independent. Namely, the time-averaged observables are 181 From Eq. (18), we can derive arbitrary order of moments

$$\langle N_t \rangle \simeq \begin{cases} \frac{t^{\alpha}}{c\Gamma(\alpha+1)}, & t \ll 1/\lambda \\ \frac{t}{c\lambda^{\alpha-1}\alpha} + \frac{1-\alpha}{2c\lambda^{\alpha}\alpha}, & t \gg 1/\lambda. \end{cases}$$
 (19)

183 The ensemble-averaged mean square displacement 184 (EAMSD) for CTRWs is known to be proportional to 185 $\langle N_t \rangle$ [9]: $\langle (\delta r)^2 \rangle (t) \sim \langle N_t \rangle$. Thus, the EAMSD of the 186 present model shows transient subdiffusion, i.e., subdif-187 fusion for short time scales and normal diffusion for long 188 timescales [8]. Similarly, the second moment can be de-189 rived and we have the RSD for N_t as follows:

$$\frac{\sqrt{\langle N_t^2 \rangle_c}}{\langle N_t \rangle} \simeq \begin{cases} \sqrt{\frac{2\Gamma^2(\alpha+1)}{\Gamma(2\alpha+1)} - 1}, & t \ll 1/\lambda \\ (1-\alpha)^{1/2} \lambda^{-1/2} t^{-1/2}, & t \gg 1/\lambda. \end{cases} (20)$$

190 Note that the RSDs for \overline{h}_t and D_t also follow the same 191 relations, because they differ only in the scale factor 192 [Eqs. (9) and (12)]. From these results, the crossover 193 time t_c between the distributional and ordinary ergodic 194 regimes is given by

$$t_c = \frac{(1 - \alpha)}{2\Gamma^2(\alpha + 1)/\Gamma(2\alpha + 1) - 1} \lambda^{-1}.$$
 (21)

fine a function g(n;s) by $g(n;s):=\tilde{G}(n+1;s)-\tilde{G}(n;s)$. 196 before the crossover time t_c , and starts to decay rapidly

FIG. 3. (Color online) RSD $\sqrt{\langle D_t^2 \rangle_c}/\langle D_t \rangle$ vs total measure- $\alpha = 0.75$ and c = 1, respectively. The lines correspond to the theoretical prediction given by Eq. (20); the solid line is the result for short time scales $t \ll t_c$, whereas the dashed lines are for long time scales $t \gg t_c$. The intersections of the solid and dashed lines correspond to the crossover times t_c given by Eq. (21). The pluses are the RSD for the case of the exponential distribution $P(\tau) = \exp(\tau/\left<\tau\right>)/\left<\tau\right>$ with the same 222 for the exponential distribution: $R(t) = (c\alpha \lambda^{\alpha-1}/t)^{1/2}$.

198 tial trapping-time distribution which has the same mean 229 Then, the system parameters α and λ can be experimen-199 trapping time $\langle \tau \rangle$ as the ETSD with $\lambda = 10^{-6}$ is also 230 tally determined by the short- and long-time behavior 200 shown by pluses. It is clear that the RSD for exponential 231 of the RSD R(t) [Eq. (20)], respectively.

201 distribution (pluses) decays much more rapidly than that 202 for the ETSD (triangles).

Summary.—In this study, we have investigated the CTRWs with truncated α -stable trapping times. The three main results are as follows: (i) We proved the distributional ergodicity for short measurement times; namely, the time averages of observables behave as random vari-208 ables following the ML distribution. Moreover, we de-209 rived the PDF at arbitrary measurement times. It is very 210 interesting to compare this analytical formula [Eq. (16)] with the results for lipid granules reported recently [16]. 212 We should also note that the limit distributions, the ML ment time t for d=1. D_t is calculated from the TAMSD 213 distribution for the case of observables studied in this $(\delta x)^2(\Delta, t)$ by least square fitting over the interval $0 < \Delta < 1$. 214 paper, depends on the definition of observables [17]. (ii) Three different values of λ are used: $\lambda = 10^{-4}$ (circles), 215 We found that the distributional ergodic behavior per- 10^{-5} (squares), and 10^{-6} (triangles), and α and c are set as $_{216}$ sists for a long time. In other words, the convergence 217 to the ordinary ergodicity is remarkably slow in contrast 218 to the case in which the trapping-time distribution is 219 given by common distributions such as the exponential 220 distribution. This indicates that, in real experiments, the time-averaged quantities could behave as random variables even for considerably long measurement times. mean trapping time as the ETSD with $\lambda = 10^{-6}$ (triangles): 223 (iii) We found a crossover from the distributional ergod- $\langle \tau \rangle = c \lambda^{\alpha-1} \alpha$. The dot-dashed line is a theoretical prediction 224 icity in the short-time regime to the ordinary ergoodicity 225 in the long-time regime. Finally, it is worth mentioning 226 that these three main results are valid for a large class 227 of observables. This implies that it is possible to choose 197 after the crossover. In Fig. 3, the RSD for the exponen- 228 an observable which is easy to measure experimentally.

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

258

269

271

275

An Introduction to InfiniteAaronson. Er- 255 Theory (American Mathematical aodicSociety, 256 Province, 1997); T. Akimoto and T. Miyaguchi, 257 Phys. Rev. E 82, 030102 (2010).

Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev. 259 Lett. 101, 058101 (2008); A. Lubelski, I. M. Sokolov, 260 [11] and J. Klafter, *ibid.* **100**, 250602 (2008); T. Miyaguchi ²⁶¹ and T. Akimoto, Phys. Rev. E 83, 031926 (2011).

^[3] I. Golding and E. C. Cox, Phys. Rev. Lett. 96, 263 098102 (2006); I. Bronstein, Y. Israel, E. Kepten, 264 S. Mai, Y. Shav-Tal, E. Barkai, and Y. Garini, 265 ibid. 103, 018102 (2009); Y. M. Wang, R. H. Austin, 266 and E. C. Cox, ibid. 97, 048302 (2006); A. Granéli, 267 C. C. Yevkal, R. B. Robertson, and E. C. Greene, 268 Proc. Natl. Acad. Sci. U.S.A 103, 1221 (2006).

^{|4|} Η. Scher and Ε. W Montroll, 270 Phys. Rev. B 12, 2455 (1975).

W. Young, A. Pumir, and Υ. Pomeau, Phys. Fluids A 1, 462 (1989).

C. Song, T. Koren, P. Wang, and A. Barabasi, 274 [17] Nat Phys 6, 818 (2010).

S. Burov, J. Jeon, R. Metzler, and E. Barkai, 276 253 Physical Chemistry Chemical Physics 13, 1800 (2011). 254

M. J. Saxton, Biophys. J. 92, 1178 (2007).

^[9] J. Bouchaud and Α. Georges, Phys. Rep. 195, 127 (1990).

^[10] I. Goychuk and P. Hänggi, Proc. Natl. Acad. Sci. USA **99**, 3552 (2002).

N. E. Mantegna and Stanley, Phys. Rev. Lett. 73, 2946 (1994).

^[12] I. Koponen, Phys. Rev. E 52, 1197 (1995); H. Nakao. Phys. Lett. A 266, 282 (2000).

Gajda M. Magdziarz, Phys. Rev. E 82, 011117 (2010).

W. Feller, An Introduction to Probability Theory and its Applications, 2nd ed., Vol. II (Wiley, New York, 1971) Chap. 17.

Burov, R. Metzler, and E. Proc. Natl. Acad. Sci. U.S.A 107, 13228 (2010).

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-[16] Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, Phys. Rev. Lett. 106, 048103 (2011).

Α. Rebenshtok and E. Barkai, Phys. Rev. Lett. 99, 210601 (2007); J. Stat. Phys. 133, 565 (2008); T. Akimoto, ibid. **132**, 171 (2008).