# Linear regression with multiple variables

Andrew Ng

# Linear regression with multiple variables Multiple features

## Multiple features (variables)

| Size (feet <sup>2</sup> ) | Price (\$1000) |  |  |
|---------------------------|----------------|--|--|
| x                         | y              |  |  |
| 2104                      | 460            |  |  |
| 1416                      | 232            |  |  |
| 1534                      | 315            |  |  |
| 852                       | 178            |  |  |
| •••                       | •••            |  |  |

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

# Multiple features (variables)

| Size (feet <sup>2</sup> ) | Number of bedrooms | Number of floors      | Age of home (years) | Price (\$1000) |
|---------------------------|--------------------|-----------------------|---------------------|----------------|
| $X_1$                     | $X_2$              | <b>X</b> <sub>3</sub> | $X_4$               | У              |
| 2104                      | 5                  | 1                     | 45                  | 460            |
| 1416                      | 3                  | 2                     | 40                  | 232            |
| 1534                      | 3                  | 2                     | 30                  | 315            |
| 852                       | 2                  | 1                     | 36                  | 178            |
| •••                       | •••                | •••                   | •••                 | •••            |

#### **Notation:**

 $x_i^{(i)}$  = value of feature j in  $i^{th}$  training example.

ation: 
$$n = \text{number of features} \qquad x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}$$
 
$$x^{(i)} = \text{input (features) of } i^{th} \text{ training example.}$$

#### Hypothesis:

Previously: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define  $x_0 = 1$ .

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \Re^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \Re^{n+1}$$

$$h_{\theta}(x) = \theta^T x$$

# Linear regression with multiple variables Gradient descent for multiple variables

Hypothesis:  $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$ 

Parameters:  $\theta_0, \theta_1, \dots, \theta_n$ 

#### **Cost function:**

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

#### **Gradient descent:**

Repeat  $\{$   $\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n)$   $\}$  (simultaneously update for every  $j=0,\dots,n$ )

#### Gradient descent

```
Previously (n=1):  
Repeat \left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right.  
\left. \frac{\partial}{\partial \theta_0} J(\theta) \right.  
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}  
(simultaneously update \theta_0, \theta_1) \left. \right\}
```

```
New algorithm (n \ge 1):
Repeat {
    \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}
                              (simultaneously update \theta_i for
  \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}
  \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}
  \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}
```

# Linear regression with multiple variables Gradient descent in practice I:

Gradient descent in practice I: Feature scaling

### Feature scaling

Idea: Make sure features are on a similar scale.

E.g. 
$$x_1$$
 = size (0-2000 feet²)   
  $x_2$  = number of bedrooms (1-5)

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$



### Feature scaling

Get every feature into approximately a  $-1 \le x_i \le 1$  range.

#### Mean normalization

Replace  $x_i$  with  $x_i - \mu_i$  to make features have approximately zero mean (Do not apply to  $x_0 = 1$ ).

E.g.

$$x_1 = \frac{size - 1000}{2000}$$
$$x_2 = \frac{\#bedrooms - 2}{5}$$

$$x_i \leftarrow \frac{x_i - \mu_i}{S_i}$$

 $S_i$ : range or standard deviation

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

# Linear regression with multiple variables Gradient descent in practice II: Learning rate

#### Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate  $\alpha$ .

#### Making sure gradient descent is working correctly



Example automatic convergence test:

Declare convergence if  $J(\theta)$  decreases by less than  $10^{-3}$  in one iteration.

#### Making sure gradient descent is working correctly



- For sufficiently small lpha, J( heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

#### **Summary:**

- If  $\alpha$  is too small: slow convergence.
- If  $\alpha$  is too large:  $J(\theta)$  may not decrease on every iteration; may not converge.

To choose  $\alpha$ , try 0.001, 0.003, 0.1, 0.3, 1, ...

# Linear regression with multiple variables

Features and polynomial regression

## Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$
 $x_1$ 

$$x = frontage \times depth$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$



### Polynomial regression



#### Choice of features



$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$



# Linear regression with multiple variables Normal equation

**Gradient Descent** 



Normal equation: Method to solve for  $\theta$  analytically

Intuition: If 1D  $(\theta \in \mathbb{R})$ 

$$J(\theta) = a\theta^2 + b\theta + c$$
$$\frac{d}{d\theta}J(\theta) = 0$$

Solve for  $\theta$ 



$$\theta \in \mathbb{R}^{n+1}$$
  $J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$   $\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$  (for every  $j$ )

Solve for  $\theta_0, \theta_1, \dots, \theta_n$ 

#### Examples: m = 4.

|       | Size (feet²) | Number of bedrooms | Number of floors | Age of home (years) | Price (\$1000) |
|-------|--------------|--------------------|------------------|---------------------|----------------|
| $x_0$ | $x_1$        | $x_2$              | $x_3$            | $x_4$               | y              |
| 1     | 2104         | 5                  | 1                | 45                  | 460            |
| 1     | 1416         | 3                  | 2                | 40                  | 232            |
| 1     | 1534         | 3                  | 2                | 30                  | 315            |
| 1     | 852          | 2                  | 1                | 36                  | 178            |

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

m examples  $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$ ; n features.

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} - & (x^{(1)})^T & - \\ - & (x^{(2)})^T & - \\ \vdots \\ - & (x^{(m)})^T & - \end{bmatrix}$$

E.g. If 
$$x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$
  $X = \begin{bmatrix} 1 & x_1^{(1)} \\ 1 & x_1^{(2)} \\ \vdots \\ 1 & x_1^{(m)} \\ m \times 2 \end{bmatrix}$   $Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$ 

$$\theta = (X^T X)^{-1} X^T y$$

$$(X^TX)^{-1}$$
 is inverse of matrix  $X^TX$ .

#### Python:

numpy.transpose

numpy.transpose(a, axes=None)

numpy.matmul

numpy.matmul(a, b, out=None)

Matrix product of two arrays.

numpy.linalg.pinv

numpy.linalg.pinv(a, rcond=1e-15)

Compute the (Moore-Penrose) pseudo-inverse of a matrix.

No need for feature scaling

#### m training examples, n features.

#### **Gradient Descent**

- Need to choose  $\alpha$ .
- Needs many iterations.
- Works well even when n is large.

#### Normal Equation

- No need to choose  $\alpha$ .
- Don't need to iterate.
- Need to compute  $(X^TX)^{-1}$   $O(n^3)$
- Slow if n is very large.
- Up to 10.000

# Linear regression with multiple variables Normal equation and non-invertibility

## Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if  $X^TX$  is non-invertible? (singular/degenerate)
- Python's pinv (pseudoinverse) will work even if  $X^TX$  is non-invertible

numpy.linalg.pinv

numpy.linalg.pinv(a, rcond=1e-15)

Compute the (Moore-Penrose) pseudo-inverse of a matrix.

### What if $X^TX$ is non-invertible?

Redundant features (linearly dependent).

```
E.g. x_1 = \text{size in feet}^2
x_2 = \text{size in m}^2
```

- Too many features (e.g.  $m \le n$ ).
  - Delete some features, or use regularization.