

# FIG. 1A

ggagcccgga gcccgccttc ggagctacgg cctaacggcg gcggcgactg cagtctggag 60  
ggtccacact tgtgattctc aatggagagt gaaaacgcag attcataatg aaaactagcc 120  
ccccgtcgcc actgattctc aaaagacgga ggctgcccct tcctgttcaa aatgccccaa 180  
gtgaaacatc agaggaggaa cctaagagat cccctgccc acaggagtct aatcaagcag 240  
aggcctccaa ggaagtggca gagtccaact ctgcgaagtt tccagctggg atcaagatta 300  
ttaaccaccc caccatgccc aacacgcaag tagtggccat ccccaacaat gctaataattc 360  
acagcatcat cacagcactg actgccaagg gaaaagagag tggcagtagt gggcccaaca 420  
aattcatcct catcagctgt gggggagccc caactcagcc tccaggactc cggcctcaaa 480  
cccaaaccag ctatgatgcc aaaaggacag aagtgaccct ggagaccttg ggaccaaacc 540  
ctgcagctag ggatgtgaat cttcctagac cacctggagc ccttgcgag cagaaacggg 600  
agacctgtgc agatggtgag gcagcaggct gcactatcaa caatagccta tccaacatcc 660  
agtggcttcg aaagatgagt tctgatggac tggctcccg cagcatcaag caagagatgg 720  
aggaaaagga gaattgtcac ctggagcagc gacaggttaa ggttgaggag cttcgagac 780  
catcagcgtc ctggcagaac tctgtgtctg agcggccacc ctactttac atggccatga 840  
tacaattcgc catcaacagc actgagagga agcgcatgac tttgaaagac atctatacgt 900  
ggattgagga ccactttccc tacttaagc acattgccaa gccaggctgg aagaactcca 960  
tccgccacaa cctttccctg cacgacatgt ttgtccggg gacgtctgcc aatggcaagg 1020  
tctccttctg gaccattcac cccagtgcca accgctactt gacattggac caggtgttta 1080  
agcagcagaa acgaccgaat ccagagctcc gccggaacat gaccatcaaa accgaactcc 1140  
ccctggcgc acggcggaaag atgaagccac tgctaccacg ggtcagctca tacctggtag 1200  
ctatccagtt cccggtaac cagtcactgg tggcagcc ctcggtaag gtgccattgc 1260  
ccctggcggc ttccctcatg agctcagagc ttgcccccca tagcaagcga gtccgcattt 1320  
cccccaaggt gctgctagct gaggagggaa tagctcctct ttcttgcga ggaccagggaa 1380  
aagaggagaa actcctgttt ggagaagggt ttttccttt gttccagtt cagactatca 1440

## FIG. 1B

aggaggaaga aatccagcct ggggaggaaa tgccacactt agcgagaccc atcaaagtgg 1500  
agagccctcc cttggaagag tggccctccc cggccccatc tttcaaagag gaatcatctc 1560  
actcctggga ggattcgtcc caatctcca ccccaagacc caagaagtcc tacagtggc 1620  
ttaggtcccc aacccggtgt gtctcgaaa tgcttgtat tcaacacagg gagaggaggg 1680  
agaggagccg gtctcgagg aaacagcatc tactgcctcc ctgtgtggat gagccggagc 1740  
tgctcttc agaggggccc agtacttccc gctgggccgc agagctcccg ttcccagcag 1800  
actcctctga ccctgcctcc cagctcagct actcccagg agtggagga ccttttaaga 1860  
cacccattaa ggaaacgctg cccatctcct ccaccccgag caaatctgtc ctccccagaa 1920  
cccctgaatc ctggaggctc acgccccag ccaaagtagg gggactggat ttcagcccag 1980  
tacaaacctc ccagggtgcc tctgaccct tgctgaccc cctggggctg atggatctca 2040  
gcaccactcc cttgcaaagt gctccccccc ttgaatcacc gcaaaggctc ctcagttcag 2100  
aacccctaga cctcatctcc gtccctttg gcaactcttc tccctcagat atagacgtcc 2160  
ccaagccagg ctccccggag ccacaggtt ctggccttgc agccaatcgt tctctgacag 2220  
aaggcctggt cctggacaca atgaatgaca gcctcagcaa gatcctgctg gacatcagct 2280  
ttcctggcct ggacgaggac ccactgggcc ctgacaacat caactggtcc cagtttattc 2340  
ctgagctaca gtagagccct gcccttgccc ctgtgctcaa gctgtccacc atccgggca 2400  
ctccaaggct cagtgcaccc caagcctctg agtgaggaca gcaggcaggg actgttctgc 2460  
tcctcatagc tccctgctgc ctgattatgc aaaagtagca gtcacaccct agccactgct 2520  
gggaccttgt gttcccaag agtatctgat tcctctgctg tccctgccag gagctgaagg 2580  
gtgggaacaa caaaggcaat ggtaaaaaga gattaggaac cccccagcct gttccattc 2640  
tctgcccagc agtctttac cttccctgat ctttgcaggg tggtccgtgt aaatagtata 2700  
aattctccaa attatcctct aattataaat gtaagct 2737

# FIG. 1C

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| MKTSPRRPLI LKRRRLPLPV QNAPSETSEE EPKRSPAQQE SNQAEASKEV AESNSCKFPA  | 60  |
| GIKIINHPTM PNTQVVAIPN NANIHSIITA LTAKGKESGS SGPNKFILIS CGGAPTQPPG  | 120 |
| LRPQTQTSYD AKRTEVTLET LGPKPAARDV NLPRPPGALC EQKRETCADG EAAGCTINNS  | 180 |
| LSNIQWLRKM SSDGLGSRSI KQEMEEKENC HLEQRQVKVE EPSRPSASWQ NSVSERPPYS  | 240 |
| YMAMIQFAIN STERKRMTLK DIYTWIEDHF PYFKHIAKPG WKNSIRHNLS LHDMFVRETS  | 300 |
| ANGKVSFWTI HPSANRYLTL DVQFKQQKRP NPELRRNMTI KTELPLGARR KMKPPLLPRVS | 360 |
| SYLVPIQFPV NQSLVLQPSV KVPLPLAASL MSSELARHSK RVRIAPKVLL AEEGIAPLSS  | 420 |
| AGPGKEEKLL FGEGFSPLLP VQTKEEEEIQ PGEEEMPHLAR PIKVESPPL EWPSPAPSFK  | 480 |
| EESSHSWEDS SQSPTPRPKK SYSGLRSPTR CVSEMLVIQH RERRERSRSR RKQHLLPPCV  | 540 |
| DEPELLFSEG PSTSRWAAEL PFPADSSDPA SQLSYSQEVG GPFKTPIKET LPISSTPSKS  | 600 |
| VLPRTPESWR LTPPAKVGGL DFSPVQTSQG ASDPLPDPLG LMDLSTTPLQ SAPPLESPQR  | 660 |
| LLSSEPLLDLI SVPFGNSSPS DIDVPKPGSP EPQVSGLAAN RSLTEGLVLD TMNDSLSKIL | 720 |
| LDISFPGLDE DPLGPDNINW SQFIPELQ                                     | 748 |

Fig. 2



Fig. 3



5/48

Fig. 4



Fig. 5



Fig. 6



Fig. 7



Fig. 8



Fig. 9



Fig. 10



Fig. 11



Fig. 12

A



B



Fig. 13



Fig. 14



Fig. 15

A 12 M AdFoxM1B    B 2 Month MI    C 12 Month MI    D 12 M AdEmpty



FIG. 16



Fig. 17



Fig. 18



Fig. 19



21/48

Fig. 20



Fig. 21



Fig. 22



24/48

Fig. 23



Fig. 24



Fig. 25



Fig. 26



Fig. 27



Fig. 28



Fig. 29



Fig. 30



32/48

Fig. 31



Fig. 32



FIG. 33



Fig. 34



36/48

Fig. 35



FIG. 36



FIG. 37



Fig. 38



40/48

Fig. 39

**A RNase Protection Assay**



**B Western Blot analysis**



Fig. 40



Fig. 41



Fig. 42



Fig. 43



45/48

Fig. 44



Fig. 45



47/48

Fig. 46

