#### Text Analysis and Retrieval

# 4. Machine Learning for NLP

Prof. Jan Šnajder

University of Zagreb Faculty of Electrical Engineering and Computing (FER)

Academic Year 2022/2023



Creative Commons Attribution-NonCommercial-NoDerivs 3.0

v3.0

1/35

## Outline

Framing NLP tasks as ML problems

Sequence labeling

3 Data annotation

## Outline

Framing NLP tasks as ML problems

Sequence labeling

3 Data annotation

# Why machine learning?

 For many NLP tasks, it is quite difficult to come up with an algorithm that solves the task efficiently

#### Example NLP tasks

- POS tagging rules that inspect the context of each word in a sentence and tag each word based on that?
- Sentiment analysis rules that check for presence of certain sentiment-indicating words in a review?
- Named entity recognition (NER) a manually defined finite state automaton (or an extension thereof) that recognizes sequence of words that constitute names of entities in the text?
- Semantic textual similarity measure the word overlap and manually determine the thresholds (rules) according to which two texts are considered similar?

## ML approach

 Manually label the data (supervised ML) or parts of it (semi-superivised) with labels that show how the solution looks like

## Example NLP tasks

- POS tagging manually label each word in text with its POS tag
- Sentiment analysis manually label each review with a rating (e.g., on a scale 1–5)
- NER manually label the spans and categories of named entity mentions in the text
- Semantic textual similarity manually label how similar two documents are (e.g., on a scale 1–5)
- Once data is labeled, we can train a machine learning model on it
- This model can then be applied to previously unseen data to solve the NLP task in a way a human would (or almost as good)

## ML approaches/tasks

- Supervised ML: labeled data is available for training
  - Classification: output is a discrete label (but there is no ordering between the labels)
  - Regression: output is a real-valued or integer number (obviously there is an ordering)
- Unsupervised ML: no labeled data is available for training
  - Clustering
  - Dimensionality reduction

## Classification problems

• Binary classification: just two output labels (yes/no, 0/1)

$$h: \mathcal{X} \to \{0,1\}$$

• Multiclass classification: each instance has one of K labels

$$h: \mathcal{X} \to \mathcal{Y}, \quad \mathcal{Y} = \{1, \dots, K\}, \quad K > 2$$

Multilabel classification: an instance can have many labels at once

$$h: \mathcal{X} \to \wp(\mathcal{Y})$$

 Sequence labeling: input is a sequence of instances and the output is a sequence of labels

$$h: \mathcal{X}^m \to \mathcal{Y}^m$$

• Structured prediction: mapping instances to structures ( $\mathcal{Y}$  is a set of structures, typically  $|\mathcal{Y}|$  is exponential in  $|\mathcal{X}|$ )

$$h: \mathcal{X} \to \mathcal{Y}$$

## NLP tasks as ML problems

#### Sentiment analysis

Given a document, determine the overall opinion of the author.

- problem: binary/multiclass classification OR regression
- input: document (e.g., user comment, post, tweet, etc.)
- output: sentiment label
- features: e.g., bag-of-words/n-grams, emoticon/exclamation mark counts, presence of expressive lengthening . . .

## Named Entity Recognition (NER)

Given a document, identify and classify all named entities in text.

- problem: sequence labeling
- input: sequence of words from the sentence
- output: sequence of labels marking the beginnings and endings of named entities (BIO) + their category
- features: same as for POS, chunks, gazetteers, ...

## Feature design vs. representation learning

- The key question: how to come up with good (useful) features?
- Two approaches:
  - Manual feature design features designed based on insight or linguistic/domain expertise
    - More often: throw in everything you can (the "kitchen sink" approach), and them maybe prune later
  - Representation learning features learned implicitly from data (deep learning models)

#### Lexical features

#### Lexical features

Features that encode the identity of words.

- lemmas or wordforms or stems
- or parts of words: e.g., suffixes, preffixes, character n-grams
- or combinations of words: e.g., bigrams, trigrams
- How to encode categorical features as numeric vectors?
  - one-hot encoding
  - real-valued vectors, so-called "word embeddings"
    - ⇒ we'll look into that in two weeks

## Encoding sequences of words?

- What if we want to encode a **text fragment/sentence/document**?
- Boils down to: how to represent the meaning of text?
- Which boils down to: how to represent the meaning of text if we know how to represent the meaning of its words?
- Which boils down to: semantic composition (SC)
  - ⇒ we'll look into that in the next two weeks

## Feature analysis

- When designing features manually, will often want to see which features work and which don't.
- Why?⇒ improved performance and model interpretability
- Options:
  - Ablation study turn off some features, retrain the model and see how the performance changes
  - **Feature selection** use a method to select the best features. This can also improve the performance (especially in a "kitchen sink" approach)
- NB: In deep learning (aka representation learning), there are typically no features to ablate/select, but one can ablate different model components (e.g., layers, dropout, regularization, etc.)

12/35

#### Classifier evaluation

- To measure how well a classifier will work on unseen data, we have to evaluate it on the test set
- Standard evaluation measures (same as in IR): Accuracy, P, R, F-score
- The classifier is often compared against a baseline (a simple method that can easily be implemented). Typical baselines:
  - Majority class classifier (MCC)
  - Random classifier
  - A very simple rule-based classifier
  - A very stripped-down version of the real classifier
- To prove that one classifier is better than the other or the baseline, we have to perform statistical significance tests (typically: McNemar's test or t-test)

## ML framework: scikit-learn and the SciPy ecosystem



14 / 35

## Learning outcomes 1

- List at least three advantages and disadvantages of machine-learning-based NLP systems
- Explain how to frame standard NLP tasks as ML problems and what features to use
- Sexplain what lexical features are and how to encode them using one-hot encoding
- 4 Describe the approaches to feature design and analysis

#### Outline

Framing NLP tasks as ML problems

Sequence labeling

3 Data annotation

Šnajder (UNIZG FER)

# Sequence labeling

- Standard classification algorithms assume that the data points are independent ("iid")
- Many NLP problems do not satisfy this assumption: text is a sequence of words, so each word depends on the words surrounding it

#### Sequence labeling problem

Assigning a label (a class) to each item in a sequence. Formally:

$$h: \mathcal{X}^m \to \mathcal{Y}^m$$

Generally, the label of each token is dependent on the labels of other items in the sequence. The "iid" does not hold.

 $\Rightarrow$  we need more sophisticated learning and inference techniques than for standard ML classification problems

## Sequence labeling problems in NLP

## Part-of-speech tagging

 $\label{eq:mark/NNP} $$\operatorname{saw/VBD}$ the/DT $\operatorname{saw/NN}$ near/IN the/DT tree/NN and/CC $$\operatorname{took/VBD}$ it/PRP to/TO the/DT tableNN.$ 

## Chunking (shallow parsing)

[NP Mark] [VP saw] [NP the saw] [PP near] [NP the tree] and [VP took] [NP it] [PP to] [NP the table].

#### Named entity recognition

Barcelona's/B-Org draw/O with/O Atletico/B-Org Madrid/I-Org at/O Camp/B-Loc Noul-Loc was/O not/O expected/O, says/O British/B-Org Broadcast/I-Org Channel's/I-Org football expert Andy/B-Per West/I-Per.

## Sequence labeling as classification?

 Predict the label for each token independently, but using information from the surrounding tokens as features ("sliding window")



- Use any of the standard classification algorithm (NB, LR, SVM)
- Will this work?

## Sequence labeling models

- Integrate uncertainty over multiple, interdependent classifications
- Collectively determine the most likely global assignment of labels
- Traditionally used models:
  - Hidden Markov Model (HMM)
  - Maximum Entropy Markov Model (MEMM)
  - Conditional Random Fields (CRF)
- More recent models:
  - Recurrent Neural Networks (RNNs)
    - ⇒ we'll cover these in three weeks

#### Hidden Markov Model

 Markov chain: the next state only depends on the current state and is independent of previous history

$$P(x_n|x_1^{n-1}) = P(x_n|x_{n-1})$$

 May be represented as a finite state machine with probabilistic state transitions



Šnajder (UNIZG FER) ML for NLP

# Hidden Markov Model (HMM)



$$P(t_1,\ldots,t_n|w_1,\ldots,w_n) = P(\mathbf{t}|\mathbf{w}) \propto \prod_{i=1}^n P(t_i|t_{i-1})P(w_i|t_i)$$

(In practice, special "start" and "end" symbols are introduced for  $t_0$  and  $t_{n+1}$ , respectively, and the sequence length becomes n+2)

 Šnajder (UNIZG FER)
 ML for NLP
 AY 2022/2023
 22 / 35

## HMM with features?

- HMM cannot encode features, only word identities
  - adding features is possible, but the problem is that features cannot overlap due to conditional independence assumption (features themselves have to be probabilistic variables)
- Not having features is a big drawback!
  - e.g, in POS tagging, capitalization, suffixes, etc. tell us a lot about word's POS
- Solution: move from a generative model (HMM) to a discriminative model) model that models  $P(\mathbf{t}|\mathbf{f}(\mathbf{w}))$ 
  - $\bullet$  features  $\mathbf{f}(\mathbf{w})$  can be arbitrary features and they may overlap
- ⇒ Maximum entropy Markov model (MEMM)

#### HMM vs. MEMM



# Conditional Random Field (CRF)

- MEMM suffers from the "label bias problem"
- CRF does a **global normalization** instead of local normalization:

$$\mathbf{t^*} = \operatorname*{max}_{\mathbf{t}} P(\mathbf{t} \mid \mathbf{w})$$

Model:

$$P(\mathbf{t} \mid \mathbf{w}) = \frac{1}{Z(\mathbf{w})} \exp \left\{ \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(t_{i-1}, t_{i}, \mathbf{w}, i) \right\}$$

- $oldsymbol{\lambda}$  is the a vector of feature weights
- $f_j$  is the feature function for feature j
- $Z(\mathbf{w})$  is the partition function  $Z(\mathbf{w}) = \sum_{\mathbf{t}} \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(t_{i-1}, t_{i}, \mathbf{w}, i)$

## Learning outcomes 2

- Explain what sequence labeling is and why we need it
- Explain the basic idea behind HMM and its main weakness
- 3 Explain the basic idea behind MEMM and how it differs from HMM
- 4 Explain the basic idea behind CRF and how it differs from MEMM

## Outline

Framing NLP tasks as ML problems

Sequence labeling

3 Data annotation

#### Dataset annotation

- We often need to manually label the data for model training and evaluation. In NLP, this is called data annotation
  - E.g., label the POS of a word, rate how similar two words are, construct a parse tree
- The crucial question: are the annotations correct?
- Often the task is subjective and there is no "ground truth"
- Instead of measuring correctness, we measure **annotation reliability**: do humans consistently make the same decisions?
  - Assumption: high reliability implies validity
- Reliability is measured via inter-annotator agreement (IAA)

#### Annotation tool



# Agreement

| Data instance       | A1  | A2  |
|---------------------|-----|-----|
| wire – job          | No  | No  |
| needle – locomotive | Yes | No  |
| cake – switch       | No  | No  |
| book – sky          | No  | No  |
| sky – cloud         | Yes | Yes |
| scissor – stone     | No  | Yes |
| fish – politician   | No  | No  |
| thought - water     | No  | No  |
| tree – war          | No  | No  |
| mayor – fountain    | No  | Yes |

- Agreement is 70%
- Q: Is this good enough?

# Cohen's kappa

| Data instance       | A1  | A2  |
|---------------------|-----|-----|
| wire – job          | No  | No  |
| needle – locomotive | Yes | No  |
| cake – switch       | No  | No  |
| book – sky          | No  | No  |
| sky – cloud         | Yes | Yes |
| scissor – stone     | No  | Yes |
| fish – politician   | No  | No  |
| thought – water     | No  | No  |
| tree – war          | No  | No  |
| shield – force      | No  | Yes |

$$A1 \setminus A2$$
 Yes No  
Yes  $\begin{pmatrix} 1 & 1 \\ 2 & 6 \end{pmatrix}$   
 $A_o = p_{11} + p_{22} = \frac{1}{10} + \frac{6}{10} = 0.7$   
 $A_e = p_{1} \cdot p_{\cdot 1} + p_{2} \cdot p_{\cdot 2}$ 

$$A_e = p_1 \cdot p \cdot 1 + p_2 \cdot p \cdot 2$$
$$= \frac{2}{10} \cdot \frac{3}{10} + \frac{8}{10} \cdot \frac{7}{10} = 0.62$$

$$\kappa = \frac{A_o - A_e}{1 - A_e}$$
$$= \frac{0.7 - 0.62}{1 - 0.62} = 0.21$$

#### IAA and ML

- IAA defines the upper bound (topline) of a ML method
  - the baseline defines the lower bound
- Model trained on low-quality annotations will not work well (the GIGO effect)
- If IAA is too low, you should revise/aggregate the annotations
- The revised dataset is called the gold set

# Typical annotation workflow

#### Data annotation

- Prepare the data set and split it into a calibration set and a production set (several portions, perhaps overlapping)
- 2 Define annotation guidelines

#### Calibration:

- S Annotators independently annotate the calibration set
- 4 Compute the IAA
- 5 Discuss the disagreements and revise guidelines if necessary
- 6 If IAA was unsatisfactory, repeat from step 3
- Production: Annotators independently annotate the production set (each annotator one portion)
- 8 If portions overlap, compute the IAA (this is the IAA to report)
- **9** Obtain the **gold standard** by aggregation/resolving/consensus

## Learning outcomes 3

- 1 Describe the typical annotation workflow
- 2 Compute and interpret the kappa coefficient for a given confusion matrix

## Study assignment

- 1 Watch TAR "Machine learning for NLP" video lectures:
  - https://youtu.be/IUDnaExgJMA
  - https://youtu.be/Z4JaXG89AdA
  - https://youtu.be/uuwIrRTX6zw
- Read the annotated printout of David Batista's blogs on HMM/MEMM/CRF; first 19 pages from:

https://www.fer.unizg.hr/\_download/repository/TAR-2020-reading-03.pdf

3 Self-check against learning outcomes!