

Physiologically Based Multiscale Pharmacokinetic Model for Determining the Biodistribution of Targeted Nanoparticles

Emma Glass¹ and Ravi Radhakrishnan²

¹ The College of William and Mary; Williamsburg VA, NIH PSON Scholar at the University of Pennsylvania;

²University of Pennsylvania, Philadelphia PA

Purpose

Develop a <u>multiscale</u> pharmacokinetic model to determine <u>nanoparticle biodistribution</u> in 7 organ tissues **over time** to ultimately....

- 1. Aid experimentalists
- 2. Determine critical nanoparticle design aspects

Nanoparticle Targeting

System of Linear ODEs

General Model Validation

Sensitivity Analysis Validation with Experimental Data

Local Sensitivity Analysis was used to determine values of K_{i}^{up} , K_{NS} , K_{i}^{up} , that result in model output that most closely match experimental data.

Data
Cho et. al., 2010
100 nm PEG
coated gold

nanoparticles in murine model
• Four data points from 0 - 200 hours used to compare with

Conclusions

General Model Arterial Branching ARDS and COVID-19

A seven organ compartment model successfully created

 Model output is consistent with experimental data provided by Cho et. al., 2010 A single element branching model was successfully created

 Mass was conserved in the single element model A four-lobed lung model was successfully created

 Model output and sensitivity analysis parameters consistent with data in Brenner 2017

General Model Development

Cellular Scale Model

Incorporating Arterial Branching

Model Alteration

Kationale	Woder Alteration
Branching elements were incorporated into arteries and veins to create a <u>more physiologically relevant</u> model	Q _i determined for each branching generation Total surface area of branches at each generation determined Resulting in altered V _i ^{EC} and Q _i
Q _i C _i ^{out} Main Vein	
$Q_1C_1^{out}$ $i=1$	Model Output
$\begin{array}{c} Q_1 C_1 \\ Q_2 C_2^{out} \\ Q_3 C_2^{out} \\ Q_4 C_2^{out} \\ Q_4 C_2^{out} \\ Q_5 C_2^{out} \\ \end{array} \qquad \begin{array}{c} i=2 \\ i=3 \\ Q_4 C_2^{out} \\ \end{array}$	Normalized Concentration of the contration of th

Applications to ARDS and COVID-19

Rationale

Model Alteration

ARDS is major cause of respiratory failure in <u>COVID</u> . 19 patients. Experimentalists are exploring the use of targeted NP therapies to inflamed lung regions.	Development of four lobed lung model Validated with data and parameters from Brenner et. al., 2017
Left Disha Sunanian	Model Output
Right Superior Right Middle	- Model Output
Right Inferior	10 5 C _L
Heart	10-2 10-1 10 ⁰
Kidney	S 10-2 10-1 100 C 10-1
Spleen	C 2 2 C T 10 ⁻¹ 10 ⁰
Liver	N 10-2 10-1 100
Other	Time (seconds) Figure 5. ARDS Model Output
	Where LL = Left Lung, RS = Right Superior, RM= Right

Future Directions

Prediction of Experimental Data

Use dynamic model to predict experimental data with nanoparticles of different compositions, different experimental models, or different organ targets.

Branching in General Model

Incorporate multiple branching elements into each organ compartment to create a complete, more physiologically relevant model

Rapid Equilibrium Assumptions

Reduces the number of linear ODEs in the system by assuming some reaction is infinitely fast

Utilize HPC Run more variations of

the model in parallel BRIDGE

Acknowledgements

- This work was supported by the NSF-funded Science and Technology Center, Center for Engineering Mechanobiology (CEMB), award number CMMI-1548571, by the Penn Engineering Blair Scholar Fellowship Fund, the NIH Physical Sciences in Oncology/ Cancer Systems Biology Consortium, and the William and Mary Charles Center
- Special thanks to Avishi Malavia, Christina Eng, and Shurui Feng for continuing work on this model during the 2019- 2020 academic year, and Dr. Greg Conradi Smith at William and Mary for overseeing the development of my Honors Thesis.