Prismes et anneaux perfectoïdes

David Kern

3 juillet 2019

Table des matières

1	La catégorie des prismes		
	1.1	Complétions dérivées	1
	1.2	Globalisation des éléments distingués	2
	1.3	Les prismes	3
	Anneaux perfectoïdes et prismes parfaits		
	2.1	Propriétés des prismes parfaits	3
		Anneaux perfectoïdes entiers	

1 La catégorie des prismes

1.1 Complétions dérivées

Définition 1. Soient A un anneau, et M un A-module. Pour toute famille $(g_{\upsilon})_{\upsilon \in \Upsilon}$ d'éléments de A, on voit alors M comme un $\mathbb{Z}[g_{\upsilon}]$ -module. Soit I un idéal de type fini de A et fixons une famille (f_1,\ldots,f_r) de générateurs de I.

Le complété dérivé de M selon I est

$$\widehat{M} := \mathbb{R} \varprojlim_{n} M \underset{\mathbb{Z}[f_{i}^{n}]}{\overset{\mathbb{L}}{\otimes}} \mathbb{Z}$$

$$\tag{1}$$

On dit que M est I-complet au sens dérivé si le morphisme canonique $M \to \widehat{M}$ est un isomorphisme.

Remarque 2. Si I est régulier (par exemple s'il est principal), ou si A est nœthérien, on peut aussi construire \widehat{M} à partir des quotients homotopiques $M \otimes_{\mathbb{Z}[f_i]}^{\mathbb{L}} \mathbb{Z}[f_i]/(f_i^n)$.

Construction 3. On peut donner un modèle explicite pour la condition de I-complétude dérivée à l'aide de complexes de Koszul. Plus précisément, le produit tensoriel dérivé $\otimes_{\mathbb{Z}[f_i]}^{\mathbb{L}} \mathbb{Z}$ peut être représenté par le complexe de cochaînes

$$\cdots \to \bigoplus_{i < j} M \to \bigoplus_{i = 1}^r M \xrightarrow{(f_i)_{1 \le i \le r}} M \to 0. \tag{2}$$

Alors M est I-complet au sens dérivé si et seulement si pour tout $f \in I$ le A-module dérivé $\mathbb{R} \lim(\cdots \xrightarrow{f} M \xrightarrow{f} M)$ est contractile.

Propostion 4. *Un* A-module dérivé M est I-complet au sens dérivé si et seulement si chacun de ses A-modules d'homotopie l'est.

Définition 5. On note M[I] l'ensemble des éléments de I torsion du A-module M. On note aussi $M[I^{\infty}] = \bigcup_k M[I^k]$.

On dit que M est de I^{∞} -torsion bornée s'il existe $k \in \mathbb{N}$ tel que $M[I^{\infty}] = M[I^k]$.

Lemme 6. Si M est de I^{∞} -torsion bornée, le I-complété dérivé de M est discret (et coïncide avec le complété I-adique classique).

Définition 7. Un A-module (potentiellement dérivé) M est I-complètement plat si $M \otimes_A^{\mathbb{L}} N$ est discret pour tout A-module de I-torsion N. On dit que M est I-complètement fidèlement plat si en outre le A/I-module plat $M \otimes_A^{\mathbb{L}} A/I$ est un A/I-module fidèlement plat.

Une A-algèbre R I-complète au sens dérivé est I-complètement étale (resp. I-complètement lisse) si R $\otimes^{\mathbb{L}}_{A}$ A/I est étale (resp. lisse). De façon équivalente, c'est l'I-complétée dérivée d'une A-algèbre étale (resp. lisse).

Propostion 8. Le I-complété dérivé d'un A-module plat est I-complètement plat.

1.2 Globalisation des éléments distingués

On notera Rad(A) le radical de Jacobson d'un anneau A, l'intersection de ses idéaux maximaux. Rappelons que dans un δ -anneau (A,δ) tel que $p\in Rad(A)$, un élément d de Rad(A) est distingué si et seulement si $(p)\subset (d,\varphi_{(\delta)}(d))$: en particulier la condition d'être distingué ne dépend pas de d lui-même mais uniquement de l'idéal qu'il engendre.

Lemme 9 ([BS19, Lemma 3.1],[Bha19, Corollary 1.9]). Soient (A, δ) un δ -anneau et I un idéal de A localement principal tel que $(p, I) \subset Rad(A)$. Alors on a $(p) \subset (I, \varphi_{(\delta)}(I))$ si et seulement si I est pro-Zariski-localement engendré par un élément distingué. Dans ce cas on a aussi $(p) \subset (I^p, \varphi_{(\delta)}(I))$.

Par « pro-Zariski localement » on entend qu'il existe un δ -morphisme fidèlement plat $A \to \widetilde{A}$ qui est une pro-immersion Zariski-ouverte (*i.e.* une ind-localisation, en fait un produit fini de localisation à des parties multiplicatives δ -stables) tel que $I\widetilde{A}$ soit engendré par un élément distingué.

Démonstration (construction de \widetilde{A}). Choisissons un recouvrement ouvert $(D(g_1), \ldots, D(g_r))$ de A tel que la restriction $I \cdot A[g_i^{-1}]$ de I à chacun des ouverts distingués $D(g_i)$ soit principale. Alors \widetilde{A} est le produit cartésien des localisations de $A[g_i^{-1}]$ le long des fermés V(p,I).

Définition 10. *Un idéal* I *respectant la condition* $(\mathfrak{p}) \subset (I, \phi_{(\delta)}(I))$ *est dit distingué.*

Remarque 11. La fait pour un idéal I d'être distingué correspond géométriquement à la condition que l'intersection des fermés V(I) et $\varphi_{(\delta)}^{-1}V(I)$ soit uniquement en caractéristique p.

1.3 Les prismes

On appelle δ -paire une paire $((A, \delta), I)$ d'un δ -anneau (A, δ) et un idéal I de A. Un morphisme de δ -paires $((A, \delta), I) \to ((B, \epsilon), J)$ est donné par un morphisme $A \to B$ des anneaux sous-jacents induisant des morphismes de δ -anneaux $(A, \delta) \to (B, \epsilon)$ et de paires $(A, I) \to (B, J)$.

Définition 12 (Prisme). La catégorie \mathfrak{P} vismes des **prismes** est la sous-catégorie pleine de la catégorie des δ -paires sur les $((A, \delta), I)$ vérifiant :

- 1. I définit un diviseur de Cartier sur Spec A,
- 2. A est (p, I)-complet au sens dérivé,
- 3. I est distingué.

Un prisme $((A, \delta), I)$ est dit **orientable** si I est principal. Une **orientation** est un choix de générateur pour I.

Propostion 13 ([BS19, Lemma 3.5],[Bha19, Lemma 3.7]). *Soit* $((A, \delta), I) \rightarrow ((B, \varepsilon), J)$ *un morphisme de prismes. Alors l'application canonique* $I \otimes_A B \rightarrow J$ *est un isomorphisme*; *en particulier* $I \cdot B = J$.

Réciproquement, étant donné un morphisme de δ -anneaux $(A, \delta) \to (B, \epsilon)$ avec $((A, \delta), I)$ un prisme et tel que B soit $(p, I \cdot B)$ -complet au sens dérivé, $((B, \epsilon), I \cdot B)$ est un prisme si et seulement si B est sans I-torsion, B[I] = 0.

- *Exemple* 14. [BS19, Example 3.3] Pour tout δ-anneau A p-complet et sans p-torsion, ((A, δ), (p)) est un prisme. Les tels prismes, avec I = (p), sont dits **cristallins**, et sont tous de cette forme.
 - L'anneau $A = \mathbb{Z}_p[[q-1]]$, complétion (p,q-1)-adique de $\mathbb{Z}[q]$, avec la δ-structure telle que $\delta(q) = 0$ (ou $\varphi_{(\delta)}(q) = q^p$), et l'élément distingué $d = [p]_q := \frac{q^p-1}{q-1} = \sum_{i=0}^{p-1} q^i$.

Lemme 15 ([BS19, Lemma 3.6],[Bha19, Lemma 3.5]). Soit $((A, \delta), I)$ un prisme. Alors l'idéal engendré par $\varphi_{(\delta)}(I)$ est principal, et tout générateur est distingué. En outre les fibrés en droites I^p et $\varphi_{(\delta)}^*(I) = I \otimes_{A,\varphi_{(\delta)}} A$ sont triviaux.

Corollaire 16. Si $\phi_{(\delta)}$ est inversible, c'est-à-dire (par définition) que (A, δ) est parfait, alors I est principal et nécessairement engendré par un élément distingué.

2 Anneaux perfectoïdes et prismes parfaits

2.1 Propriétés des prismes parfaits

Définition 17. Soit $((A, \delta), I)$ un prisme. On dit qu'il est **parfait** si (A, δ) est un δ -anneau parfait, et qu'il est **borné** si A/I est de $(p)^{\infty}$ -torsion bornée.

On note Prismes parf la sous-catégorie pleine des prismes parfaits.

Rappelons que le foncteur d'inclusion de la sous-catégorie pleine des δ -anneaux parfaits dans les δ -anneaux admet des adjoints à gauche et à droite, les foncteurs de **coperfection** $(A, \delta) \mapsto A_{perf} = \varinjlim_{\Phi(\delta)} A$ et de **perfection** $(A, \delta) \mapsto A^{perf} = \varprojlim_{\Phi(\delta)} A$.

Propostion 18 ([BS19, Lemma 3.8],[Bha19, Lemma IV 1.3]). Soit $((A, \delta), I)$ un prisme. Alors $I \cdot A_{perf}$ est principal et engendré par un élément distingué $d \in A$ qui est, ainsi que p, non diviseur de zéro, et A/(d) est de p-torsion bornée (en fait d'ordre 1, i.e. $A/(d)[p^{\infty}] = A/(d)[p]$). Ainsi le (p, I)-complété dérivé A_{∞} de A_{perf} coïncide avec le complété (p, I)-adique classique, et $(A_{\infty}, I \cdot A_{\infty})$ est initial parmi les prismes parfaits sous $((A, \delta), I)$: on a de fait un adjoint à gauche à l'inclusion des prismes parfaits dans les prismes.

Lemme 19 ([BS19, Lemma 3.7],[Bha19, Lemma IV 1.2]). *Tout prisme parfait* $((A, \delta), I)$ *est borné, et en particulier* (p, I)-complet au sens classique.

Lemme 20 ([BS19, Lemma 3.11]). *Soit* $((A, \delta), I)$ *un prisme borné. Alors :*

- 1. A est (p, I)-adiquement complet (au sens classique) et tout A-module dérivé (p, I)-complètement plat M est discret, (p, I)-adiquement complet, et est sans I^n -torsion pour tout $n \ge 0$ avec en outre M/I^nM de $(p)^\infty$ -torsion bornée.
- 2. Le foncteur $\delta A \mathfrak{Alg}^{(p,I)-(fid.)plates} \to \mathfrak{Prismes}^{((A,\delta),I)/,(fid.)plats}, (B,\epsilon) \mapsto ((B,\epsilon),IB)$ est une équivalence de catégories.
- 3. $((A, \delta), I)$ est localement orientable, c'est-à-dire qu'il existe un morphisme de prismes (p, I)-complètement fidèlement plat $((A, \delta), I) \rightarrow ((B, \epsilon), (d))$, qui peut même être choisi comme la (p, I)-complétion dérivée d'une ind-localisation de Zariski de A.

Propostion 21 ([BS19, Corollary 3.14]). Soit $((A, \delta), I)$ un prisme borné. Soit $\delta - \mathfrak{Paires}_{(A, \delta)}$ la catégorie des δ -paires $((B, \varepsilon), J)$ telles que (B, ε) est une δ - (A, δ) -algèbre (\mathfrak{p}, I) -complètement libre et $B \to B/J$ un morphisme d'A-algèbres, avec B/J une A/I-algèbre \mathfrak{p} -complètement lisse. Alors le foncteur d'inclusion $\mathfrak{Prismes}^{((A,\delta),I)/} \to \delta - \mathfrak{Paires}_{(A,\delta)}$ admet un adjoint à gauche.

Esquisse de construction, [BS19, Proposition 3.13]. On se réduit au cas où B est une δ - (A, δ) -algèbre (p, I)-complètement plate et $J = IB + J_0$ avec J_0 un idéal (p, I)-complètement régulier relativement à A, donc engendré par une suite (p, I)-complètement régulière relativement à A (f_1, \ldots, f_r) . En travaillant Zariski-localement, on peut aussi supposer que I est principal et engendré par l'élément distingué $d \in A$.

Alors le morphisme initial de $((B, \varepsilon), J)$ vers un prisme est l'application canonique vers $B\left\{\frac{f_1}{d}, \ldots, \frac{f_r}{d}\right\}$, qui est bien (p, I)-complètement plat sur A et donc discret et sans d-torsion.

Au vu de la construction de l'adjoint à gauche, on note $\widehat{B}\left\{\overline{\frac{1}{I}}\right\}$ l'image d'une $((B,\epsilon),J)\in \delta-\mathfrak{Paires}_{(A,\delta)}$.

2.2 Anneaux perfectoïdes entiers

Rappel 22 (Anneaux perfectoïdes entiers et application de Fontaine). Un anneau perfectoïde entier (p-typique) est par définition un anneau topologique A admettant une pseudo-uniformisante perfectoïde ϖ , non-diviseur de zéro, tel que

- A est (topologiquement) complet et sa topologie est (ϖ) -adique,
- ω^p divise p,
- le Frobenius $A/(\varpi) \to A/(\varpi^p)$ est un isomorphisme.

Par exemple un anneau de caractéristique p est p-perfectoïde si et seulement si il est parfait (en tant que \mathbb{F}_p -algèbre) ϖ -adiquement complet pour un non-diviseur de zéro ϖ .

Pour un anneau perfectoïde A, on note A^{\flat} son p-basculé, la p-perfection de A/(p), qui est un anneau perfectoïde avec p.u.p. $\varpi^{\flat}=(\varpi,\varpi^{1/p},\cdots)$ (où ϖ est une p.u.p. de A, admettant un système compatible de racines p-ièmes après multiplication par une unité). L'anneau $\mathbb{A}_{\inf}(A) := W_p(A^{\flat})$ paramétrise les débasculements de A^{\flat} , les déformations de A autour de la caractéristique p.

Rappelons que l'application de Fontaine est la counité $\theta_A \colon A_{inf}(A) \to A$ de l'adjonction $W_p(-) \dashv (-)^{\flat}$. Alors un anneau A qui est (ϖ) -adiquement complet pour un non-diviseur de zéro ϖ est perfectoïde si et seulement si θ_A est une surjection et son noyau un idéal principal. Dans ce cas, le générateur de ker θ_A est un élément primitif de degré 1 (*i.e.* distingué). Réciproquement, pour tout χ primitif de degré 1, $(A_{inf}(A)/(\chi))^{\flat} \xrightarrow{\simeq} A^{\flat}$.

Théorème 23. Le foncteur $\mathfrak{Prismes}^{parf} \to \mathfrak{Ann}$, $(A,I) \mapsto A/I$ est pleinement fidèle, et les anneaux dans son image essentielle sont les anneaux perfectoïdes entiers. Un quasi-inverse $\mathfrak{Perfd} \to \mathfrak{Prismes}^{parf}$ est donné par $A \mapsto (A_{inf}(A), \ker \theta_A)$.

Remarque 24. La propriété de pleine fidélité est en fait plus forte : d'après [BS19, Lemma 4.7], on a un isomorphisme $hom_{\mathfrak{Ann}}(A/I,B/J) \simeq hom_{\mathfrak{Prismes}}((A,I),(B,J))$ dès que (A,I) est un prisme parfait. Cependant il n'est pas vrai que le foncteur $\mathfrak{Prismes} \to \mathfrak{Ann},(A,I) \mapsto A/I$ est fidèle ; un morphisme d'anneaux $A/I \to B/J$ peut être induit par différents morphismes de prismes $(A,I) \to (B,J)$ même si (B,J) est un prisme parfait lorsque (A,I) ne l'est pas.

Références

[Bha19] Geometric aspects of p-adic Hodge theory

[BS19] Bhargav Bhatt et Peter Scholze, Prisms and prismatic cohomology

[Stacks] The Stacks project, Chapitre « More on algebra »