

# Efficient Overlay Architecture Based on DSP Blocks

**Abhishek K. Jain**, Suhaib A. Fahmy, Douglas L. Maskell School of Computer Engineering Nanyang Technological University (NTU), Singapore

International Symposium On Field-Programmable Custom Computing Machines (FCCM) 4th May 2015, Vancouver, Canada

#### **Coarse Grained Overlay Architectures**

- Accelerator Design at a higher level of abstraction
- Fast compilation and development cycles
- Improved design productivity
- Cost: area and performance overheads
- High performance hard macros in the underlying FPGA architecture
- Exploit programmability feature of DSP Blocks
  - fully pipelined processing elements
  - maximize frequency and throughput





#### **Proposed Overlay**

- 2D array of Tiles
  - Programmable functional unit and routing resources in each Tile
  - Functional units interconnected via island-style routing network
- Coarse grained programmable routing resources





#### **DSP Block based Functional Unit (FU)**

- Fully pipelined DSP48E1 as a programmable PE
- Add/sub, a multiplier and an ALU inside the PE
- Achievable frequency near theoretical limits
- 400 MHz on the Xilinx Zynq device (XC7Z020 CLG484-1)
- MUX based reordering logic
- SRL based variable-length shift registers





### Mapping to the Xilinx Zynq device

- Underutilization of DSP blocks (Only 30% were used)
- Modest drop in frequency on scaling
- A frequency of 300 MHz for an 8x8 overlay (CW=4)







(b) Resources usage for CW=4.





#### **Automated Mapping of Compute kernels**



- Step 1: C to data flow graph (DFG) transformation
- Step 2: DSP48E1 aware mapping
- Step 3: Placement and routing onto the overlay
- Step 4: Latency balancing and configuration generation



## **Experimental Evaluation**

| Benchmark | i/o      |    | Characte<br>merged<br>nodes | eristics<br>savings | $\frac{\text{Routs}}{\text{CW=2}}$ | CW=4         | Overla<br>Latency |    |      | HLS I<br>Latency |     | entation<br>GOPS |     |    |
|-----------|----------|----|-----------------------------|---------------------|------------------------------------|--------------|-------------------|----|------|------------------|-----|------------------|-----|----|
| chebyshev | 1/1      | 7  | 5                           | 28%                 | 3×3                                | 3×3          | 49                | 36 | 2.59 | 13               | 333 | 2.3              | 24  | 3  |
| sgfilter  | $^{2/1}$ | 18 | 10                          | 44%                 | $4 \times 4$                       | $4 \times 4$ | 54                | 31 | 6.66 | 11               | 278 | 5.0              | 40  | 8  |
| mibench   | 3/1      | 13 | 6                           | 53%                 | $3 \times 3$                       | $3 \times 3$ | 47                | 35 | 4.81 | 9                | 295 | 3.8              | 81  | 3  |
| qspline   | 7/1      | 26 | 22                          | 15%                 | $5 \times 5$                       | $5 \times 5$ | 76                | 64 | 9.62 | 21               | 244 | 6.3              | 126 | 14 |
| poly1     | 2/1      | 9  | 6                           | 33%                 | $3 \times 3$                       | $3 \times 3$ | 34                | 22 | 3.33 | 12               | 285 | 2.56             | 62  | 4  |
| poly2     | 2/1      | 9  | 6                           | 33%                 | $3 \times 3$                       | $3 \times 3$ | 29                | 7  | 3.33 | 11               | 295 | 2.65             | 45  | 4  |
| poly3     | 6/1      | 11 | 7                           | 36%                 | $3 \times 3$                       | $3 \times 3$ | 31                | 11 | 4.07 | 12               | 250 | 2.75             | 52  | 6  |
| poly4     | 5/1      | 6  | 3                           | 50%                 | $2 \times 2$                       | $2 \times 2$ | 24                | 12 | 2.22 | 7                | 312 | 1.87             | 36  | 3  |
| atax      | 12/3     | 60 | 36                          | 40%                 | _                                  | 6×6          | 72                | 58 | 18.0 | 13               | 263 | 15.8             | 78  | 18 |
| bicg      | 15/6     | 30 | 18                          | 40%                 |                                    | $6 \times 6$ | 46                | 32 | 9.0  | 7                | 270 | 8.1              | 91  | 18 |
| trmm      | 18/9     | 54 | 36                          | 33%                 |                                    | $7 \times 7$ | 58                | 30 | 16.2 | 8                | 222 | 11.9             | 105 | 36 |
| syrk      | 18/9     | 72 | 45                          | 37%                 |                                    | $7 \times 7$ | 41                | 19 | 21.6 | 10               | 250 | 18               | 237 | 24 |

|                                                                 | Benchmark set-I<br>8 compute kernels<br>(up-to 26 operations) | Benchmark set-II<br>4 compute kernels<br>(up-to 72 operations) |  |  |  |  |
|-----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
| Benchmark set Mapped on                                         | Overlay-I (5x5, CW=2)                                         | Overlay-II (7x7, CW=4),                                        |  |  |  |  |
| Operating frequency                                             | 370 MHz                                                       | 300 MHz                                                        |  |  |  |  |
| Overlay reconfiguration time                                    | 11.5 us                                                       | 28 us                                                          |  |  |  |  |
| 11-52% higher throughput compared to Vivado HLS implementations |                                                               |                                                                |  |  |  |  |



#### **Future Work**

- Area reduction of the overlay through careful optimizations of:
  - routing architecture
  - and synchronization logic.
- Alternative interconnect architectures for a low overlay routing network

