

Document Title	Specification	of	Extended
	Fixed Point Ro	utine	S
Document Owner	AUTOSAR		
Document Responsibility	AUTOSAR		
Document Identification No	400		
Document Classification	Standard		
Document Status	Final		
Part of AUTOSAR Release	4.2.2		

Document Change History			
Release	Changed by	Change Description	
4.2.2	AUTOSAR Release Management	Updated the requirement ID for SWS_Efx_00033 as per the convention Updated requirement ID SWS_Efx_00436 (UML) for OutTypeMn as per the standard convention Updated SWS_Efx_00001 for naming convention under Section 5.1, File Structure Updated SWS_Efx_00365 to correct the data type of input parameters	

	Document Change History		
Release	Changed by	Change Description	
4.2.1	AUTOSAR	Added:	
	Release	New Variants for SWS_Efx_00412 (0xE2 -	
	Management	0xE9)	
		Note has been added for SWS_Efx_00053,	
		SWS_Efx_00072 & Section 8.5.3.1.	
		 A statement has been added to clarify the formula used for Hypotenuse function just below 	
		the section 8.5.9	
		A statement has been added to provide more	
		clarity on the formula mentioned in	
		SWS_Efx_00451	
		Modified:	
		Updated usage of const in a consistent manner	
		in EFX document. (SWS_Efx_00050,	
		SWS_Efx_00067, SWS_Efx_00085,	
		SWS_Efx_00519, SWS_Efx_00107,	
		SWS_Efx_00122, SWS_Efx_00146,	
		SWS_Efx_00172, SWS_Efx_00205, SWS_Efx_00379 & SWS_Efx_00404)	
		Formula for TeQ_ <size> has been corrected in</size>	
		section 8.5.3.1 and font has been updated for	
		SWS_Efx_00071	
		Condition check included for SWS_Efx_00053,	
		SWS_Efx_00072 & Section 8.5.3.1 and	
		corrected for SWS_Efx_00054,	
		SWS_Efx_00073 & SWS_Efx_00504. Formula updated for SWS_Efx_00073.	
		 Updated rounding for SWS_Efx_00071, 	
		SWS_Efx_00091, SWS_Efx_00502,	
		SWS_Efx_00151 & SWS_Efx_00156.	
		 Service ID[hex] for SWS_Efx_00405, 	
		SWS_Efx_00410 & SWS_Efx_00412	
		 Input & Output range has been modified for 	
		SWS_Efx_00187	
		 Statement on rounding was updated for SWS_Efx_00441 	
		Comment for structure element "n" has been	
		updated for SWS_Efx_00204 &	
		SWS_Efx_00836. Data type of "n" has been	
		modified for SWS_Efx_00204.	
4.1.3	AUTOSAR	Modified: Rounding mechanism was updated for	
	Release	HpFilter, Average, Array_Average &	
	Management	MovingAverage functions.	
		Added: A note below SWS_Efx_00307 for Ffx_RampCatSwitchPas function	
		Efx_RampGetSwitchPos function.	

	Document Change History		
Release	Changed by	Change Description	
4.1.2	AUTOSAR Release Management	 Deprecated: Efx_DeadTime function Removed: Requirements for Efx_SlewRate, Efx_RampCalc and Efx_RampCalcJump functions 	
		 Added: SWS_Efx_00837 for Efx_RampCalc function Modified: Descriptions of Efx_RampCalc and Efx_RampSetParam Requirements for Efx_RampCalc and Efx_RampCalcJump functions. Syntax for variants of Efx_SlewRate, Efx_Div and Efx_MovingAverage functions. Resolution of the in-parameter for Efx_Arcsin and Efx_Arccos functions. 	
		 Name "underflow" to "negative overflow" throughout the document Editorial changes 	
4.1.1	AUTOSAR Administration	 Added 8-bit and 16-bit variants for Hysteresis functions Formulae modified for Hypotenuse functions Second computation First-order low-pass filter functions are deprecated Inequalities are corrected for Efx_HystLeftRight, Efx_HystDeltaRight, Efx_HystCenterHalfDelta functions Description and requirements are modified for Efx_Div, Efx_Debounce, Efx_HystLeftDelta, Efx_SortAscend, Efx_SortDescend, Efx_EdgeBipol, Efx_Hysteresis, Efx_MovingAverage functions Description of the in-parameter corrected for Efx_DebounceSetParam, Efx_Debounce functions Physical range of 'fac' parameter is modified in LpFilter First computation Renamed RS_FlipFlop function for removing the post-fixes Added SWS_Efx_00823 for Integral promotion Modified syntax for Efx_Gt, Efx_Debounce functions Corrected for 'DependencyOnArtifact' 	

	Document Change History		
Release	Changed by	Change Description	
4.0.3	AUTOSAR Administration	 Initialization functionality introduced for 'Counter Routines' Interface for Efx_CtrlSetLimit corrected Efx_MovingAverage routine interface corrected Efx_RampCalcSwitch routine definition and requirements updated for correct behavior Interface for Efx_Debounce_u8_u8 routine updated Updated parameter sequences for DT1 and PI controller routines. Name revised for Efx_PCalc routine Description correct for Efx_DebounceParam_Type and Efx_DebounceParam_Type and Efx_DebounceState_Type Interface table corrected for Efx_MedianSort routine Interface table corrected for Efx_MedianSort routine Error classification support and definition removed as DET call not supported by library Configuration parameter description / support removed for XXX_GetVersionInfo routine. XXX GetVersionInfo routine name corrected. 	
3.1.5	AUTOSAR Administration	 Introduction of additional LIMITED Functions for controllers Ramp functions optimised for effective usage Separation of DT1 Type 1 and Type 2 Controller functions Introduction of additional approximative function for calculation of TeQ 	
3.1.4	AUTOSAR Administration	Initial Release	

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of Intellectual Property Rights. The commercial exploitation of the material contained in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the specification may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only. They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models, "use cases", and/or references to exemplary technical solutions, devices, processes or software).

Any such exemplary items are contained in the specifications for illustration purposes only, and they themselves are not part of the AUTOSAR Standard. Neither their presence in such specifications, nor any later documentation of AUTOSAR conformance of products actually implementing such exemplary items, imply that intellectual property rights covering such exemplary items are licensed under the same rules as applicable to the AUTOSAR Standard.

Table of Contents

1	Intro	oduction and functional overview	7
2	Acro	onyms and abbreviations	9
3	Rela	ated documentation	. 10
	3.1 3.2	Input documentsRelated standards and norms	
4	Con	straints and assumptions	. 11
	4.1 4.2	Limitations Applicability to car domains	
5	Dep	endencies to other modules	. 12
	5.1	File structure	. 12
6	Rec	uirements traceability	. 14
7	Fun	ctional specification	. 27
	7.1 7.2 7.3 7.4 7.5 7.6	Error classification Error Detection Error notification Initialization and shutdown Using Library API library implementation	. 27 . 27 . 27 . 27
8	API	specification	. 29
		Imported types	. 29 . 29 . 30 . 91 100 124 125 125 125
9	Seq	uence diagrams	127
1(o C	onfiguration specification	128
	10.1 10.2	Published Information Configuration option	
1 '		ot applicable requirements	
	-		

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture and below figure shows position of AUTOSAR library in layered architecture.

Figure: Layered architecture

This specification specifies the functionality, API and the configuration of the AUTOSAR library dedicated to extended mathematical functions for fixed-point values.

This extended mathematical library (Efx) contains the following routines:

- Moving average
- First order high pass filter
- First order low-pass filter
- Controller routines
- Square root
- Exponential
- Average
- Array Average
- Moving Average
- Hypotenuse
- Trigonometric functions
- Rate limiter functions
- Ramp routines
- Hysteresis function
- Dead Time
- Debounce
- Ascending Sort Routine
- Descending Sort Routine
- Median Sort
- Edge detection routines
- Interval routines
- Counter routines

- Flip-Flop routine
- Limiter routines
- 64 bit functions

All routines are re-entrant and can be used by multiple runnables at the same time.

2 Acronyms and abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not contained in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation / Acronym:	Description:
Arcsin	Inverse Sine
Arccos	Inverse Cosine
BSW	Basic Software
Cos	Cosine
DET	Development Error Tracer
EFX	Extended Mathematical library – Fixed point
Hypot	Hypotenuse
HpFilter	High pass filter
LpFilterFac1	Low pass filter with a factor of 1 (included in [0, 1])
LpFilter	Low pass filter
Mn	Mnemonic
Lib	Library
Sqrt	Square root
Sin	Sine
SWS	Software Specification
SRS	Software Requirement Specification
u8	Mnemonic for the uint8, specified in AUTOSAR_SWS_PlatformTypes
u16	Mnemonic for the uint16, specified in AUTOSAR_SWS_PlatformTypes
u32	Mnemonic for the uint32, specified in AUTOSAR_SWS_PlatformTypes
s8	Mnemonic for the sint8, specified in AUTOSAR_SWS_PlatformTypes
s16	Mnemonic for the sint16, specified in AUTOSAR_SWS_PlatformTypes
s32	Mnemonic for the sint32, specified in AUTOSAR_SWS_PlatformTypes
s64	Mnemonic for the sint64, specified in AUTOSAR_SWS_PlatformTypes
u64	Mnemonic for the uint64, specified in AUTOSAR_SWS_PlatformTypes

3 Related documentation

3.1 Input documents

- [1] List of Basic Software Modules, AUTOSAR_TR_BSWModuleList.pdf
- [2] Layered Software Architecture, AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
- [3] General Requirements on Basic Software Modules, AUTOSAR_SRS_BSWGeneral.pdf
- [4] Specification of ECU Configuration, AUTOSAR_TPS_ECUConfiguration.pdf
- [5] Basic Software Module Description Template, AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf
- [6] Specification of Platform Types, AUTOSAR_SWS_PlatformTypes.pdf
- [7] Specification of Standard Types, AUTOSAR_SWS_StandardTypes.pdf
- [8] Requirement on Libraries, AUTOSAR_SRS_Libraries.pdf
- [9] Specification of Memory Mapping, AUTOSAR_SWS_MemoryMapping.pdf

3.2 Related standards and norms

- [10] ISO/IEC 9899:1990 Programming Language C
- [11] MISRA-C 2004: Guidelines for the use of the C language in critical systems, October 2004

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

5 Dependencies to other modules

5.1 File structure

[SWS_Efx_00001] [The Efx module shall provide the following files:

- C files, Efx_<name>.c used to implement the library. All C files shall be prefixed with 'Efx_'.
- Header file Efx.h provides all public function prototypes and types defined by the Efx library specification | (SRS_LIBS_00005)

Figure: File structure

Implementation & grouping of routines with respect to C files is recommended as per below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function, eg.: Efx_Pt1_s32.c etc.

Option 2 : <Name> can have common name of group of functions:

- 2.1 Group by object family:
- eq.:Efx Pt1.c, Efx Dt1.c, Efx Pid.c
- 2.2 Group by routine family:
- eg.: Efx Filter.c, Efx Controller.c, Efx Average.c etc.
- 2.3 Group by method family:
- eg.: Efx_Sin.c, Efx_Exp.c, Efx_Arcsin.c, etc.
- 2.4 Group by architecture:
- eg.: Efx_Slewrate16.c, Efx_Slewrate32.c
- 2.5 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Efx functions, eg.: Efx.c.

Using above options gives certain flexibility of choosing suitable granularity with reduced number of C files. Linking only on-demand is also possible in case of some options.

6 Requirements traceability

Requirement	Description	Satisfied by
-	<u> </u> -	SWS_Efx_00005
-	-	SWS_Efx_00006
-	-	SWS_Efx_00007
-	-	SWS_Efx_00008
-	-	SWS_Efx_00009
-	-	SWS_Efx_00010
-	-	SWS_Efx_00011
-	-	SWS_Efx_00012
-	-	SWS_Efx_00013
-	-	SWS_Efx_00014
-	-	SWS_Efx_00015
-	-	SWS_Efx_00016
-	-	SWS_Efx_00017
-	-	SWS_Efx_00018
-	-	SWS_Efx_00020
-	-	SWS_Efx_00021
-	-	SWS_Efx_00022
-	-	SWS_Efx_00023
-	-	SWS_Efx_00024
-	-	SWS_Efx_00025
-	-	SWS_Efx_00026
-	-	SWS_Efx_00027
-	-	SWS_Efx_00028
-	-	SWS_Efx_00029
-	-	SWS_Efx_00030
-	-	SWS_Efx_00031
-	-	SWS_Efx_00032
-	-	SWS_Efx_00033
-	-	SWS_Efx_00035
-	-	SWS_Efx_00036
-	-	SWS_Efx_00037
-	-	SWS_Efx_00038
-	-	SWS_Efx_00040
-	-	SWS_Efx_00041
-	-	SWS_Efx_00042
-	-	SWS_Efx_00043

-	-	SWS_Efx_00044
-	-	SWS_Efx_00045
-	-	SWS_Efx_00046
-	-	SWS_Efx_00047
-	-	SWS_Efx_00048
-	-	SWS_Efx_00049
-	-	SWS_Efx_00050
-	-	SWS_Efx_00051
-	-	SWS_Efx_00052
-	-	SWS_Efx_00053
-	-	SWS_Efx_00054
-	-	SWS_Efx_00055
-	-	SWS_Efx_00056
-	-	SWS_Efx_00057
-	-	SWS_Efx_00058
-	-	SWS_Efx_00059
-	-	SWS_Efx_00060
-	-	SWS_Efx_00061
-	-	SWS_Efx_00062
-	-	SWS_Efx_00063
-	-	SWS_Efx_00064
-	-	SWS_Efx_00065
-	-	SWS_Efx_00066
-	-	SWS_Efx_00067
-	-	SWS_Efx_00070
-	-	SWS_Efx_00071
-	-	SWS_Efx_00072
-	-	SWS_Efx_00073
-	-	SWS_Efx_00074
-	-	SWS_Efx_00075
-	-	SWS_Efx_00076
-	-	SWS_Efx_00077
-	-	SWS_Efx_00078
-	-	SWS_Efx_00079
-	-	SWS_Efx_00080
-	-	SWS_Efx_00081
-	-	SWS_Efx_00082
-	-	SWS_Efx_00083
-	-	SWS_Efx_00084

-	-	SWS_Efx_00085
-	-	SWS_Efx_00090
-	-	SWS_Efx_00091
-	-	SWS_Efx_00092
-	-	SWS_Efx_00093
-	-	SWS_Efx_00094
-	-	SWS_Efx_00095
-	-	SWS_Efx_00096
-	-	SWS_Efx_00097
-	-	SWS_Efx_00098
-	-	SWS_Efx_00100
-	-	SWS_Efx_00101
-	-	SWS_Efx_00102
-	-	SWS_Efx_00103
-	-	SWS_Efx_00104
-	-	SWS_Efx_00105
-	-	SWS_Efx_00106
-	-	SWS_Efx_00107
-	-	SWS_Efx_00110
-	-	SWS_Efx_00111
-	-	SWS_Efx_00112
-	-	SWS_Efx_00113
-	-	SWS_Efx_00114
-	-	SWS_Efx_00115
-	-	SWS_Efx_00116
-	-	SWS_Efx_00117
-	-	SWS_Efx_00118
-	-	SWS_Efx_00119
-	-	SWS_Efx_00120
-	-	SWS_Efx_00121
-	-	SWS_Efx_00122
-	-	SWS_Efx_00125
-	-	SWS_Efx_00126
-	-	SWS_Efx_00127
-	-	SWS_Efx_00128
-	-	SWS_Efx_00129
-	-	SWS_Efx_00130
-	-	SWS_Efx_00131
-	-	SWS_Efx_00132

- SWS_ER_00133 - SWS_ER_00134 - SWS_ER_00135 - SWS_ER_00136 - SWS_ER_00137 - SWS_ER_00137 - SWS_ER_00138 - SWS_ER_00139 - SWS_ER_00139 - SWS_ER_00149 - SWS_ER_00141 - SWS_ER_00141 - SWS_ER_00141 - SWS_ER_00142 - SWS_ER_00144 - SWS_ER_00145 - SWS_ER_00145 - SWS_ER_00145 - SWS_ER_00145 - SWS_ER_00150 - SWS_ER_00150 - SWS_ER_00151 - SWS_ER_00151 - SWS_ER_00155 - SWS_ER_00156 - SWS_ER_00157 - SWS_ER_00159 - SWS_ER_00159 - SWS_ER_00161 - SWS_ER_00162 - SWS_ER_00163 - SWS_ER_00163 - SWS_ER_00165 - SWS_ER_00166 - SWS_ER_00165 - SWS_ER_00166 - SWS_ER_00167 - SWS_ER_00166 - SWS_ER_00167 - SWS_ER_00166 - SWS_ER_00167 - SWS_ER_00166 - SWS_ER_00167 - SWS_ER_00167 - SWS_ER_00167 - SWS_ER_00169 - SWS_ER_00171 - SWS_ER_00171 - SWS_ER_00171 - SWS_ER_00175 - SWS_ER_00171 - SWS_ER_00175			
SWS_Efx_00135	-	-	SWS_Efx_00133
	-	-	SWS_Efx_00134
	-	-	SWS_Efx_00135
	-		SWS_Efx_00136
	-	-	SWS_Efx_00137
	-	-	SWS_Efx_00138
	-	-	SWS_Efx_00139
	-		SWS_Efx_00140
	-	-	SWS_Efx_00141
	-	-	SWS_Efx_00142
	-	-	SWS_Efx_00143
	-	-	SWS_Efx_00144
	-	-	SWS_Efx_00145
	-	-	SWS_Efx_00146
	-	-	SWS_Efx_00150
	-	-	SWS_Efx_00151
- SWS_Efx_00154 - SWS_Efx_00155 - SWS_Efx_00156 - SWS_Efx_00156 - SWS_Efx_00157 - SWS_Efx_00158 - SWS_Efx_00159 - SWS_Efx_00160 - SWS_Efx_00160 - SWS_Efx_00161 - SWS_Efx_00162 - SWS_Efx_00163 - SWS_Efx_00164 - SWS_Efx_00165 - SWS_Efx_00166 - SWS_Efx_00166 - SWS_Efx_00166 - SWS_Efx_00167 - SWS_Efx_00168 - SWS_Efx_00169 - SWS_Efx_00170 - SWS_Efx_00171 - SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00152
- SWS_Efx_00155 SWS_Efx_00156 SWS_Efx_00157 SWS_Efx_00157 SWS_Efx_00158 SWS_Efx_00159 SWS_Efx_00160 SWS_Efx_00161 SWS_Efx_00162 SWS_Efx_00163 SWS_Efx_00164 SWS_Efx_00165 SWS_Efx_00166 SWS_Efx_00167 SWS_Efx_00169 SWS_Efx_00170 SWS_Efx_00171 SWS_Efx_00175	-	-	SWS_Efx_00153
- SWS_Efx_00156 - SWS_Efx_00157 - SWS_Efx_00158 - SWS_Efx_00159 - SWS_Efx_00160 - SWS_Efx_00161 - SWS_Efx_00162 - SWS_Efx_00163 - SWS_Efx_00164 - SWS_Efx_00165 - SWS_Efx_00166 - SWS_Efx_00166 - SWS_Efx_00166 - SWS_Efx_00167 - SWS_Efx_00169 - SWS_Efx_00170 - SWS_Efx_00171 - SWS_Efx_00175	-	-	SWS_Efx_00154
	-	-	SWS_Efx_00155
	-	-	SWS_Efx_00156
	-	-	SWS_Efx_00157
SWS_Efx_00160 SWS_Efx_00161 SWS_Efx_00162 SWS_Efx_00163 SWS_Efx_00164 SWS_Efx_00165 SWS_Efx_00166 SWS_Efx_00167 SWS_Efx_00168 SWS_Efx_00169 SWS_Efx_00170 SWS_Efx_00171 SWS_Efx_00172 SWS_Efx_00175	-	-	SWS_Efx_00158
SWS_Efx_00161 SWS_Efx_00162 SWS_Efx_00163 SWS_Efx_00164 SWS_Efx_00165 SWS_Efx_00166 SWS_Efx_00167 SWS_Efx_00168 SWS_Efx_00169 SWS_Efx_00170 SWS_Efx_00171 SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00159
SWS_Efx_00162 SWS_Efx_00163 SWS_Efx_00164 SWS_Efx_00165 SWS_Efx_00166 SWS_Efx_00167 SWS_Efx_00168 SWS_Efx_00169 SWS_Efx_00170 SWS_Efx_00171 SWS_Efx_00172 SWS_Efx_00175	-	-	SWS_Efx_00160
SWS_Efx_00163 SWS_Efx_00164 SWS_Efx_00165 SWS_Efx_00166 SWS_Efx_00167 SWS_Efx_00168 SWS_Efx_00169 SWS_Efx_00170 SWS_Efx_00171 SWS_Efx_00172 SWS_Efx_00175	-	-	SWS_Efx_00161
- SWS_Efx_00164 - SWS_Efx_00165 - SWS_Efx_00166 - SWS_Efx_00167 - SWS_Efx_00168 - SWS_Efx_00169 - SWS_Efx_00170 - SWS_Efx_00171 - SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00162
- SWS_Efx_00165 - SWS_Efx_00166 - SWS_Efx_00167 - SWS_Efx_00168 - SWS_Efx_00169 - SWS_Efx_00170 - SWS_Efx_00171 - SWS_Efx_00171 - SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00163
- SWS_Efx_00166 - SWS_Efx_00167 - SWS_Efx_00168 - SWS_Efx_00169 - SWS_Efx_00170 - SWS_Efx_00170 - SWS_Efx_00171 - SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00164
- SWS_Efx_00167 - SWS_Efx_00168 - SWS_Efx_00169 - SWS_Efx_00170 - SWS_Efx_00171 - SWS_Efx_00171 - SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00165
- SWS_Efx_00168 - SWS_Efx_00169 - SWS_Efx_00170 - SWS_Efx_00171 - SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00166
- SWS_Efx_00169 - SWS_Efx_00170 - SWS_Efx_00171 - SWS_Efx_00171 - SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00167
- SWS_Efx_00170 - SWS_Efx_00171 - SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00168
- SWS_Efx_00171 - SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00169
- SWS_Efx_00172 - SWS_Efx_00175	-	-	SWS_Efx_00170
- SWS_Efx_00175	-	-	SWS_Efx_00171
	-	-	SWS_Efx_00172
- SWS_Efx_00176	-	-	SWS_Efx_00175
	-	-	SWS_Efx_00176

-	-	SWS_Efx_00177
-	-	SWS_Efx_00178
-	-	SWS_Efx_00179
-	-	SWS_Efx_00180
-	-	SWS_Efx_00181
-	-	SWS_Efx_00182
-	-	SWS_Efx_00183
-	-	SWS_Efx_00185
-	-	SWS_Efx_00186
-	-	SWS_Efx_00187
-	-	SWS_Efx_00190
-	-	SWS_Efx_00191
-	-	SWS_Efx_00192
-	-	SWS_Efx_00193
-	-	SWS_Efx_00194
-	-	SWS_Efx_00195
-	-	SWS_Efx_00196
-	-	SWS_Efx_00197
-	-	SWS_Efx_00198
-	-	SWS_Efx_00199
-	-	SWS_Efx_00200
-	-	SWS_Efx_00201
-	-	SWS_Efx_00202
-	-	SWS_Efx_00203
-	-	SWS_Efx_00204
-	-	SWS_Efx_00205
-	-	SWS_Efx_00210
-	-	SWS_Efx_00211
-	-	SWS_Efx_00212
-	-	SWS_Efx_00213
-	-	SWS_Efx_00214
-	-	SWS_Efx_00215
-	-	SWS_Efx_00216
-	-	SWS_Efx_00217
-	-	SWS_Efx_00218
-	-	SWS_Efx_00220
-	-	SWS_Efx_00222
-	-	SWS_Efx_00223
-	-	SWS_Efx_00225
————	-	

-	-	SWS_Efx_00226
-	-	SWS_Efx_00228
-	-	SWS_Efx_00229
-	-	SWS_Efx_00231
-	-	SWS_Efx_00232
-	-	SWS_Efx_00234
-	-	SWS_Efx_00235
-	-	SWS_Efx_00237
-	-	SWS_Efx_00240
-	-	SWS_Efx_00242
-	-	SWS_Efx_00243
-	-	SWS_Efx_00245
-	-	SWS_Efx_00246
-	-	SWS_Efx_00248
-	-	SWS_Efx_00250
-	-	SWS_Efx_00252
-	-	SWS_Efx_00253
-	-	SWS_Efx_00255
-	-	SWS_Efx_00256
-	-	SWS_Efx_00258
-	-	SWS_Efx_00261
-	-	SWS_Efx_00262
-	-	SWS_Efx_00264
-	-	SWS_Efx_00265
-	-	SWS_Efx_00266
-	-	SWS_Efx_00267
-	-	SWS_Efx_00268
-	-	SWS_Efx_00269
-	-	SWS_Efx_00270
-	-	SWS_Efx_00271
-	-	SWS_Efx_00275
-	-	SWS_Efx_00276
-	-	SWS_Efx_00277
-	-	SWS_Efx_00278
-	-	SWS_Efx_00279
-	-	SWS_Efx_00280
-	-	SWS_Efx_00281
-	-	SWS_Efx_00284
-	-	SWS_Efx_00285
————	-	-

-	-	SWS_Efx_00286
-	-	SWS_Efx_00287
-	•	SWS_Efx_00288
-		SWS_Efx_00289
-	-	SWS_Efx_00290
-	•	SWS_Efx_00291
-	•	SWS_Efx_00292
-	-	SWS_Efx_00293
-	•	SWS_Efx_00295
-	-	SWS_Efx_00296
-	-	SWS_Efx_00297
-	-	SWS_Efx_00298
-	-	SWS_Efx_00299
-	-	SWS_Efx_00300
-	-	SWS_Efx_00301
-	-	SWS_Efx_00302
-	-	SWS_Efx_00303
-	-	SWS_Efx_00304
-	-	SWS_Efx_00307
-	-	SWS_Efx_00308
-	-	SWS_Efx_00309
-	-	SWS_Efx_00310
-	-	SWS_Efx_00311
-	-	SWS_Efx_00312
-	-	SWS_Efx_00313
-	-	SWS_Efx_00314
-	-	SWS_Efx_00315
-	-	SWS_Efx_00316
-	-	SWS_Efx_00317
-	-	SWS_Efx_00320
-	-	SWS_Efx_00321
-	-	SWS_Efx_00322
-	-	SWS_Efx_00323
-	-	SWS_Efx_00324
-	-	SWS_Efx_00325
-	-	SWS_Efx_00326
-	-	SWS_Efx_00327
-	-	SWS_Efx_00328
-	-	SWS_Efx_00329

- SWS_ER_00330 - SWS_ER_00331 - SWS_ER_00331 - SWS_ER_00332 - SWS_ER_00333 - SWS_ER_00333 - SWS_ER_00334 - SWS_ER_00335 - SWS_ER_00335 - SWS_ER_00336 - SWS_ER_00337 - SWS_ER_00337 - SWS_ER_00339 - SWS_ER_00339 - SWS_ER_00340 - SWS_ER_00340 - SWS_ER_00345 - SWS_ER_00347 - SWS_ER_00347 - SWS_ER_00347 - SWS_ER_00347 - SWS_ER_00348 - SWS_ER_00350 - SWS_ER_00350 - SWS_ER_00350 - SWS_ER_00350 - SWS_ER_00350 - SWS_ER_00352 - SWS_ER_00355 - SWS_ER_00355 - SWS_ER_00356 - SWS_ER_00360 - SWS_ER_00360 - SWS_ER_00361 - SWS_ER_00361 - SWS_ER_00361 - SWS_ER_00361 - SWS_ER_00366 - SWS_ER_00363 - SWS_ER_00366 - SWS_ER_00376 - SWS_ER_00376 - SWS_ER_00377 - SWS_ER_00377 - SWS_ER_00377 - SWS_ER_00377			
	-	-	SWS_Efx_00330
	-	-	SWS_Efx_00331
	-	-	SWS_Efx_00332
	-	-	SWS_Efx_00333
- SWS_Efx_00336 - SWS_Efx_00337 - SWS_Efx_00337 - SWS_Efx_00338 - SWS_Efx_00339 - SWS_Efx_00340 - SWS_Efx_00345 - SWS_Efx_00345 - SWS_Efx_00347 - SWS_Efx_00347 - SWS_Efx_00348 - SWS_Efx_00348 - SWS_Efx_00350 - SWS_Efx_00351 - SWS_Efx_00351 - SWS_Efx_00352 - SWS_Efx_00353 - SWS_Efx_00353 - SWS_Efx_00355 - SWS_Efx_00356 - SWS_Efx_00360 - SWS_Efx_00360 - SWS_Efx_00361 - SWS_Efx_00363 - SWS_Efx_00363 - SWS_Efx_00365 - SWS_Efx_00366 - SWS_Efx_00370 - SWS_Efx_00372 - SWS_Efx_00375 - SWS_Efx_00375 - SWS_Efx_00376 - SWS_Efx_00377	-	-	SWS_Efx_00334
	-	-	SWS_Efx_00335
	-	-	SWS_Efx_00336
	-	-	SWS_Efx_00337
	-	-	SWS_Efx_00338
SWS_Efx_00345 SWS_Efx_00347 SWS_Efx_00348 SWS_Efx_00349 SWS_Efx_00350 SWS_Efx_00351 SWS_Efx_00351 SWS_Efx_00352 SWS_Efx_00353 SWS_Efx_00353 SWS_Efx_00355 SWS_Efx_00356 SWS_Efx_00356 SWS_Efx_00357 SWS_Efx_00357 SWS_Efx_00360 SWS_Efx_00360 SWS_Efx_00361 SWS_Efx_00362 SWS_Efx_00363 SWS_Efx_00366 SWS_Efx_00370 SWS_Efx_00370 SWS_Efx_00375 SWS_Efx_00376 SWS_Efx_00376 SWS_Efx_00376 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00339
SWS_Efx_00347 SWS_Efx_00348 SWS_Efx_00349 SWS_Efx_00350 SWS_Efx_00351 SWS_Efx_00351 SWS_Efx_00352 SWS_Efx_00353 SWS_Efx_00354 SWS_Efx_00355 SWS_Efx_00356 SWS_Efx_00356 SWS_Efx_00357 SWS_Efx_00358 SWS_Efx_00360 SWS_Efx_00360 SWS_Efx_00361 SWS_Efx_00362 SWS_Efx_00363 SWS_Efx_00366 SWS_Efx_00370 SWS_Efx_00370 SWS_Efx_00373 SWS_Efx_00376 SWS_Efx_00376 SWS_Efx_00376	-	-	SWS_Efx_00340
	-	-	SWS_Efx_00345
	-	-	SWS_Efx_00347
SWS_Efx_00350 SWS_Efx_00351 SWS_Efx_00352 SWS_Efx_00353 SWS_Efx_00353 SWS_Efx_00355 SWS_Efx_00356 SWS_Efx_00357 SWS_Efx_00357 SWS_Efx_00358 SWS_Efx_00359 SWS_Efx_00360 SWS_Efx_00361 SWS_Efx_00362 SWS_Efx_00363 SWS_Efx_00364 SWS_Efx_00365 SWS_Efx_00370 SWS_Efx_00370 SWS_Efx_00373 SWS_Efx_00376 SWS_Efx_00376 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00348
	-	-	SWS_Efx_00349
	-	-	SWS_Efx_00350
	-	-	SWS_Efx_00351
SWS_Efx_00354 SWS_Efx_00355 SWS_Efx_00356 SWS_Efx_00357 SWS_Efx_00357 SWS_Efx_00358 SWS_Efx_00359 SWS_Efx_00360 SWS_Efx_00361 SWS_Efx_00363 SWS_Efx_00363 SWS_Efx_00365 SWS_Efx_00366 SWS_Efx_00370 SWS_Efx_00372 SWS_Efx_00375 SWS_Efx_00376 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00352
SWS_Efx_00355 SWS_Efx_00356 SWS_Efx_00357 SWS_Efx_00357 SWS_Efx_00358 SWS_Efx_00359 SWS_Efx_00360 SWS_Efx_00361 SWS_Efx_00362 SWS_Efx_00363 SWS_Efx_00364 SWS_Efx_00365 SWS_Efx_00370 SWS_Efx_00370 SWS_Efx_00373 SWS_Efx_00375 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00353
	-	-	SWS_Efx_00354
SWS_Efx_00357 SWS_Efx_00358 SWS_Efx_00359 SWS_Efx_00360 SWS_Efx_00361 SWS_Efx_00362 SWS_Efx_00363 SWS_Efx_00364 SWS_Efx_00365 SWS_Efx_00366 SWS_Efx_00370 SWS_Efx_00372 SWS_Efx_00375 SWS_Efx_00376 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00355
	-	-	SWS_Efx_00356
SWS_Efx_00359 SWS_Efx_00360 SWS_Efx_00361 SWS_Efx_00362 SWS_Efx_00363 SWS_Efx_00364 SWS_Efx_00365 SWS_Efx_00366 SWS_Efx_00370 SWS_Efx_00372 SWS_Efx_00373 SWS_Efx_00375 SWS_Efx_00376 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00357
SWS_Efx_00360 SWS_Efx_00361 SWS_Efx_00362 SWS_Efx_00363 SWS_Efx_00364 SWS_Efx_00365 SWS_Efx_00366 SWS_Efx_00370 SWS_Efx_00372 SWS_Efx_00373 SWS_Efx_00375 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00358
SWS_Efx_00361 SWS_Efx_00362 SWS_Efx_00363 SWS_Efx_00364 SWS_Efx_00365 SWS_Efx_00366 SWS_Efx_00370 SWS_Efx_00372 SWS_Efx_00373 SWS_Efx_00375 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00359
SWS_Efx_00362 SWS_Efx_00363 SWS_Efx_00364 SWS_Efx_00365 SWS_Efx_00366 SWS_Efx_00370 SWS_Efx_00372 SWS_Efx_00373 SWS_Efx_00375 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00360
SWS_Efx_00363 SWS_Efx_00364 SWS_Efx_00365 SWS_Efx_00366 SWS_Efx_00370 SWS_Efx_00372 SWS_Efx_00373 SWS_Efx_00375 SWS_Efx_00376 SWS_Efx_00377	-	-	SWS_Efx_00361
- SWS_Efx_00364 - SWS_Efx_00365 - SWS_Efx_00366 - SWS_Efx_00370 - SWS_Efx_00372 - SWS_Efx_00373 - SWS_Efx_00375 - SWS_Efx_00375 - SWS_Efx_00376 - SWS_Efx_00377	-	-	SWS_Efx_00362
- SWS_Efx_00365 - SWS_Efx_00366 - SWS_Efx_00370 - SWS_Efx_00372 - SWS_Efx_00373 - SWS_Efx_00375 - SWS_Efx_00375 - SWS_Efx_00376 - SWS_Efx_00377	-	-	SWS_Efx_00363
- SWS_Efx_00366 - SWS_Efx_00370 - SWS_Efx_00372 - SWS_Efx_00373 - SWS_Efx_00375 - SWS_Efx_00376 - SWS_Efx_00377	-	-	SWS_Efx_00364
- SWS_Efx_00370 - SWS_Efx_00372 - SWS_Efx_00373 - SWS_Efx_00375 - SWS_Efx_00376 - SWS_Efx_00377	-	-	SWS_Efx_00365
- SWS_Efx_00372 - SWS_Efx_00373 - SWS_Efx_00375 - SWS_Efx_00376 - SWS_Efx_00377	-	-	SWS_Efx_00366
- SWS_Efx_00373 - SWS_Efx_00375 - SWS_Efx_00376 - SWS_Efx_00377	-	-	SWS_Efx_00370
- SWS_Efx_00375 - SWS_Efx_00376 - SWS_Efx_00377	-	-	SWS_Efx_00372
- SWS_Efx_00376 - SWS_Efx_00377	-	-	SWS_Efx_00373
- SWS_Efx_00377	-	-	SWS_Efx_00375
	-	-	SWS_Efx_00376
- SWS_Efx_00378	-	-	SWS_Efx_00377
	-	-	SWS_Efx_00378

-	-	SWS_Efx_00379
-	-	SWS_Efx_00380
-	-	SWS_Efx_00381
-		SWS_Efx_00382
-	-	SWS_Efx_00383
-	-	SWS_Efx_00384
-	-	SWS_Efx_00385
-	-	SWS_Efx_00386
-	-	SWS_Efx_00387
-	-	SWS_Efx_00388
-	-	SWS_Efx_00390
-	-	SWS_Efx_00391
-	-	SWS_Efx_00392
-	-	SWS_Efx_00393
-	-	SWS_Efx_00394
-	-	SWS_Efx_00395
-	-	SWS_Efx_00396
-	-	SWS_Efx_00397
-	-	SWS_Efx_00398
-	-	SWS_Efx_00399
-	-	SWS_Efx_00400
-	-	SWS_Efx_00401
-	-	SWS_Efx_00402
-	-	SWS_Efx_00403
-	-	SWS_Efx_00404
-	-	SWS_Efx_00405
-	-	SWS_Efx_00406
-	-	SWS_Efx_00407
-	-	SWS_Efx_00408
-	-	SWS_Efx_00409
-	-	SWS_Efx_00410
-	-	SWS_Efx_00411
-	-	SWS_Efx_00412
-	-	SWS_Efx_00415
-	-	SWS_Efx_00416
-	-	SWS_Efx_00417
-	-	SWS_Efx_00418
-	-	SWS_Efx_00419
-	-	SWS_Efx_00420

-	-	SWS_Efx_00422
-	-	SWS_Efx_00423
-	-	SWS_Efx_00424
-		SWS_Efx_00425
-	-	SWS_Efx_00426
-	-	SWS_Efx_00427
-	-	SWS_Efx_00428
-	-	SWS_Efx_00429
-	-	SWS_Efx_00430
-	-	SWS_Efx_00431
-	-	SWS_Efx_00433
-	-	SWS_Efx_00434
-	-	SWS_Efx_00436
-	-	SWS_Efx_00437
-	-	SWS_Efx_00438
-	-	SWS_Efx_00440
-	-	SWS_Efx_00441
-	-	SWS_Efx_00442
-	-	SWS_Efx_00443
-	-	SWS_Efx_00450
-	-	SWS_Efx_00451
-	-	SWS_Efx_00452
-	-	SWS_Efx_00455
-	-	SWS_Efx_00456
-	-	SWS_Efx_00457
-	-	SWS_Efx_00458
-	-	SWS_Efx_00459
-	-	SWS_Efx_00460
-	-	SWS_Efx_00461
-	-	SWS_Efx_00465
-	-	SWS_Efx_00466
-	-	SWS_Efx_00467
-	-	SWS_Efx_00468
-	-	SWS_Efx_00469
-	-	SWS_Efx_00470
-	-	SWS_Efx_00475
-	-	SWS_Efx_00476
-	-	SWS_Efx_00477
-	-	SWS_Efx_00478

-	-	SWS_Efx_00479
-	-	SWS_Efx_00480
-	-	SWS_Efx_00485
-	-	SWS_Efx_00486
-	-	SWS_Efx_00487
-	-	SWS_Efx_00488
-	-	SWS_Efx_00489
-	-	SWS_Efx_00490
-	-	SWS_Efx_00495
-	-	SWS_Efx_00496
-	-	SWS_Efx_00497
-	-	SWS_Efx_00498
-	-	SWS_Efx_00499
-	-	SWS_Efx_00500
-	-	SWS_Efx_00501
-	-	SWS_Efx_00502
-	-	SWS_Efx_00503
-	-	SWS_Efx_00504
-	-	SWS_Efx_00505
-	-	SWS_Efx_00506
-	-	SWS_Efx_00507
-	-	SWS_Efx_00510
-	-	SWS_Efx_00511
-	-	SWS_Efx_00512
-	-	SWS_Efx_00513
-	-	SWS_Efx_00515
-	-	SWS_Efx_00516
-	-	SWS_Efx_00517
-	-	SWS_Efx_00518
-	-	SWS_Efx_00519
-	-	SWS_Efx_00520
-	-	SWS_Efx_00521
-	-	SWS_Efx_00522
-	-	SWS_Efx_00523
-	-	SWS_Efx_00524
-	-	SWS_Efx_00525
-	-	SWS_Efx_00526
-	-	SWS_Efx_00527
-	-	SWS_Efx_00528
L		

-	-	SWS_Efx_00821
-	-	SWS_Efx_00822
-	-	SWS_Efx_00823
-	-	SWS_Efx_00824
-	-	SWS_Efx_00825
-	-	SWS_Efx_00826
-	-	SWS_Efx_00827
-	-	SWS_Efx_00828
-	-	SWS_Efx_00829
-	-	SWS_Efx_00830
-	-	SWS_Efx_00831
-	-	SWS_Efx_00832
	-	SWS_Efx_00833
-	-	SWS_Efx_00834
-	-	SWS_Efx_00835
-	-	SWS_Efx_00836
-	-	SWS_Efx_00837
SRS_BSW_00003	All software modules shall provide version and identification information	SWS_Efx_00815
SRS_BSW_00007	All Basic SW Modules written in C language shall conform to the MISRA C 2004 Standard.	SWS_Efx_00809
SRS_BSW_00304	All AUTOSAR Basic Software Modules shall use the following data types instead of native C data types	SWS_Efx_00812
SRS_BSW_00306	AUTOSAR Basic Software Modules shall be compiler and platform independent	SWS_Efx_00813
SRS_BSW_00318	Each AUTOSAR Basic Software Module file shall provide version numbers in the header file	SWS_Efx_00815
SRS_BSW_00321	The version numbers of AUTOSAR Basic Software Modules shall be enumerated according specific rules	SWS_Efx_00815
SRS_BSW_00348	All AUTOSAR standard types and constants shall be placed and organized in a standard type header file	SWS_Efx_00811
SRS_BSW_00374	All Basic Software Modules shall provide a readable module vendor identification	SWS_Efx_00814
SRS_BSW_00378	AUTOSAR shall provide a boolean type	SWS_Efx_00812
SRS_BSW_00379	All software modules shall provide a module identifier in the header file and in the module XML description file.	SWS_Efx_00814
SRS_BSW_00402	Each module shall provide version information	SWS_Efx_00814
SRS_BSW_00407	Each BSW module shall provide a function to read out the version information of a dedicated module implementation	SWS_Efx_00815, SWS_Efx_00816
SRS_BSW_00411	All AUTOSAR Basic Software Modules shall apply a naming rule for enabling/disabling the existence of the API	SWS_Efx_00816
SRS_BSW_00436	-	SWS_Efx_00810

Specification of Extended Fixed Point Routines AUTOSAR Release 4.2.2

SRS_LIBS_00001	The functional behavior of each library functions shall not be configurable	SWS_Efx_00818
SRS_LIBS_00002	A library shall be operational before all BSW modules and application SW-Cs	SWS_Efx_00800
SRS_LIBS_00003	A library shall be operational until the shutdown	SWS_Efx_00801
SRS_LIBS_00005	Each library shall provide one header file with its public interface	SWS_Efx_00001
SRS_LIBS_00013	The error cases, resulting in the check at runtime of the value of input parameters, shall be listed in SWS	SWS_Efx_00817, SWS_Efx_00819
SRS_LIBS_00015	It shall be possible to configure the microcontroller so that the library code is shared between all callers	SWS_Efx_00806
SRS_LIBS_00017	Usage of macros should be avoided	SWS_Efx_00807
SRS_LIBS_00018	A library function may only call library functions	SWS_Efx_00808

7 Functional specification

7.1 Error classification

[SWS_Efx_00821] [No error classification definition as DET call not supported by library

] ()

7.2 Error Detection

[SWS_Efx_00819] [Error detection: Function should check at runtime (both in production and development code) the value of input parameters, especially cases where erroneous value can bring to fatal error or unpredictable result, if they have the values allowed by the function specification. All the error cases shall be listed in SWS and the function should return a specified value (in SWS) that is not configurable. This value is dependant of the function and the error case so it is determined case by case.

If values passed to the routines are not valid and out of the function specification, then such error are not detected.

E.g. If passed value > 32 for a bit-position or a negative number of samples of an axis distribution is passed to a routine. J (SRS_LIBS_00013)

7.3 Error notification

[SWS_Efx_00817] [The functions shall not call the DET for error notification.] (SRS LIBS 00013)

7.4 Initialization and shutdown

[SWS_Efx_00800] [Efx library shall not require initialization phase. A Library function may be called at the very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library shall be ready. | (SRS_LIBS_00002)

[SWS_Efx_00801] [Efx library shall not require a shutdown operation phase.] (SRS_LIBS_00003)

7.5 Using Library API

Efx API can be directly called from BSW modules or SWC. No port definition is required. It is a pure function call.

The statement 'Efx.h' shall be placed by the developer or an application code generator but not by the RTE generator

Using a library should be documented. if a BSW module or a SWC uses a Library, the developer should add an Implementation-DependencyOnArtifact in the BSW/SWC template.

minVersion and maxVersion parameters correspond to the supplier version. In case of AUTOSAR library, these parameters may be left empty because a SWC or BSW module may rely on a library behaviour, not on a supplier implementation. However, the SWC or BSW modules shall be compatible with the AUTOSAR platform where they are integrated.

7.6 library implementation

[SWS_Efx_00806] [The Efx library shall be implemented in a way that the code can be shared among callers in different memory partitions.] (SRS_LIBS_00015)

[SWS_Efx_00807] [Usage of macros should be avoided. The function should be declared as function or inline function. Macro #define should not be used.] (SRS_LIBS_00017)

[SWS_Efx_00808] [A library function shall not call any BSW modules functions, e.g. the DET. A library function can call other library functions. Because a library function shall be re-entrant. But other BSW modules functions may not be re-entrant.] (SRS_LIBS_00018)

[SWS_Efx_00809] [The library, written in C programming language, should conform to the HIS subset of the MISRA C Standard.

Only in technically reasonable, exceptional cases MISRA violations are permissible. Such violations against MISRA rules shall be clearly identified and documented within comments in the C source code (including rationale why MISRA rule is violated). The comment shall be placed right above the line of code which causes the violation and have the following syntax:

/* MISRA RULE XX VIOLATION: This the reason why the MISRA rule could not be followed in this special case*/] (SRS BSW 00007)

[SWS_Efx_00810] [Each AUTOSAR library Module implementation library>*.c and library>*.h shall map their code to memory sections using the AUTOSAR memory mapping mechanism. | (SRS_BSW_00436)

[SWS_Efx_00811] [Each AUTOSAR library Module implementation library>*.c, that uses AUTOSAR integer data types and/or the standard return, shall include the header file Std_Types.h.] (SRS_BSW_00348)

[SWS_Efx_00812] [All AUTOSAR library Modules should use the AUTOSAR data types (integers, boolean) instead of native C data types, unless this library is clearly identified to be compliant only with a platform.] (SRS_BSW_00304, SRS_BSW_00378)

[SWS_Efx_00813] [All AUTOSAR library Modules should avoid direct use of compiler and platform specific keyword, unless this library is clearly identified to be compliant only with a platform. eg. #pragma, typeof etc. | (SRS_BSW_00306)

[SWS_Efx_00823] Integral promotion has to be adhered to when implementing Efx services. Thus, to obtain maximal precision, intermediate results shall not be limited.

8 API specification

8.1 Imported types

In this chapter, all types included from the following files are listed:

	71
Header file	Imported Type
Std_Types.h	boolean, sint8, uint8, sint16, uint16, sint32, uint32

It is observed that since the sizes of the integer types provided by the C language are implementation-defined, the range of values that may be represented within each of the integer types will vary between implementations.

Thus, in order to improve the portability of the software, these types are defined in PlatformTypes.h [6]. The following mnemonic are used in the library routine names.

Size	Platform Type	Mnemonic	Range
unsigned 8-Bit	boolean	NA	[TRUE, FALSE]
signed 8-Bit	sint8	s8	[-128, 127]
signed 16-Bit	sint16	s16	[-32768, 32767]
signed 32-Bit	sint32	s32	[-2147483648, 2147483647]
signed 64-Bit	sint64	s64	[-9223372036854775808,
			9223372036854775807]
unsigned 8-Bit	uint8	u8	[0, 255]
unsigned 16-Bit	uint16	u16	[0, 65535]
unsigned 32-Bit	uint32	u32	[0, 4294967295]
unsigned 64-Bit	uint64	u64	[0, 18446744073709551615]

Table 1: Base Types

As a convention in the rest of the document:

- mnemonics will be used in the name of the routines (using <InTypeMn1> that means Type Mnemonic for Input 1)
- the real type will be used in the description of the prototypes of the routines (using <InTypeMn1> or <OutType>).

8.2 Type definitions

None

8.3 Comment about rounding

Two types of rounding can be applied:

Results are 'rounded off', it means:

0 <= X < 0.5 rounded to 0
 0.5 <= X < 1 rounded to 1
 -0.5 < X <= 0 rounded to 0
 -1 < X <= -0.5 rounded to -1

Results are rounded towards zero.

- 0 <= X < 1 rounded to 0
- -1 < X <= 0 rounded to 0

8.4 Comment about routines optimized for target

The routines described in this library may be realized as regular routines or inline functions. For ROM optimization purposes, it is recommended that the c routines be realized as individual source files so they may be linked in on an as-needed basis.

For example, depending on the target, two types of optimization can be done:

- Some routines can be replaced by another routine using integer promotion
- Some routines can be replaced by the combination of a limiting routine and a routine with a different signature.

8.5 Mathematical functions definitions

This table describes the meaning of used symbols in below sections.

Symbols	Description	
Yn	Actual output to calculate	
Yn-1	Output value, one time step before	
Xn	Actual input, given from the input	
Xn-1	Input, one time step before	
a, b0, b1	Filter dependent constants	

8.5.1 First-order low-pass filter

We consider a recursive first-order low-pass filter with a transfer function:

$$H(z) = \frac{b_1}{1 + a * z^{-1}}$$

The new return value (Yn) at any point of time can be calculated given the previous value (Yn-1), the current value (Xn) and a known constant (K). The formula to calculate the same is as follows:

$$Yn = Yn-1 + (Xn - Yn-1) * K$$

Where $b_1=K$ and $a = K - 1$

The filter is a convergent low-pass filter only if the average value K is included in [0,1]

8.5.1.1 First computation

[SWS_Efx_00005] [

Service name:	Efx_LpFilte	rFac1_ <intypemn><intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn></intypemn>		
Syntax:	<outtype></outtype>			
	Efx_LpFil	lterFac1_ <intypemn><intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></intypemn>		
	<inty< th=""><th>ype> Yn-1,</th></inty<>	ype> Yn-1,		
	<inty< th=""><th>ype> Xn,</th></inty<>	ype> Xn,		
	<inty< th=""><th colspan="3"><intype> fac</intype></th></inty<>	<intype> fac</intype>		
)			
Service ID[hex]:	0x01 to 0x08			
Sync/Async:	Synchronous			
Reentrancy:	Reentrant			
Parameters (in):	Yn-1	Old output value		
r ai ailletel S (III).	Xn	Current measured value		

		Factor value that represents the physical range [-1, 1) if signed and [0, 1) if unsigned. Only physical value [0, 1] shall be used if the filter shall converge.
Parameters (inout):	None	
Parameters (out):	None	
Return value:	<outtype></outtype>	Result (Yn) of the calculation
Description:	This service	e computes the output of a first order low-pass filter

[SWS_Efx_00006][

Yn = Yn-1 + (((Xn - Yn-1) * fac) >> n)

Where 'n' is a shift that depends on the types used by the functions for the factor I()

[SWS_Efx_00007][

In order to converge all the time, the result is corrected for value saturation using the following logic:

If (Yn == Yn-1)
If (((Xn - Yn-1) * fac) > 0)
Yn ++
Else If (((Xn - Yn-1) * fac) < 0)
Yn -End If
Endif
I()

[SWS_Efx_00008] [

Here is the list of implemented functions.

Service ID[hex]	Syntax	Associated shift
0x01	sint16 Efx_LpFilterFac1_s16s16s16_s16 (sint16, sint16, sint16)	15
0x02	sint16 Efx_LpFilterFac1_s16s16u16_s16 (sint16, sint16, uint16)	16
0x03	sint32 Efx_LpFilterFac1_s32s32u16_s32 (sint32, sint32, uint16)	16
0x04	uint16 Efx_LpFilterFac1_u16u16s16_u16 (uint16, uint16, sint16)	15
0x05	uint16 Efx_LpFilterFac1_u16u16u16_u16 (uint16, uint16, uint16)	16
0x06	uint8 Efx_LpFilterFac1_u8u8u8_u8 (uint8, uint8, uint8)	8
0x07	uint32 Efx_LpFilterFac1_u32u32u32_u32 (uint32, uint32, uint32)	32
0x08	uint32 Efx_LpFilterFac1_u32u32u16_u32 (uint32, uint32, uint16)	16

]()

8.5.1.2 Second computation

[SWS_Efx_00009] [

Service name:	Efx_LpFilterFac1_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax:	<pre><outtype></outtype></pre>		
	<pre>Efx_LpFilterFac1_<intypemn><intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></intypemn></pre>		
	<intype> Yn-1,</intype>		
	<intype> Xn,</intype>		

	<intype> fac</intype>				
))			
Service ID[hex]:	0x0A to 0x0B				
Sync/Async:	Synchronous				
Reentrancy:	Reentrant				
	Yn-1	Old output value			
Parameters (in):	Xn	Current measured value			
	ac Factor value that represents the physical range [0, 1]				
Parameters	None				
(inout):					
Parameters (out):	None				
Return value:	<outtype> Result (Yn)of the calculation</outtype>				
Description:	This service computes the output of a first order low-pass filter				

[SWS_Efx_00010][

Yn = Yn-1 + ((Xn - Yn-1.HIGH) * fac)
if ((Xn - Yn-1.HIGH) == 0)
Yn.HIGH = Yn-1.HIGH
Yn.LOW = 8000H
Endif
Yn-1 and Yn are coded with 32 bits.
Yn-1.HIGH represents the 16 high orders bits
Yn.LOW represents the 16 low orders bits
I()

[SWS_Efx_00011] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x0A	sint32 Efx_LpFilterFac1_s32s16u16_s32 (sint32, sint16, uint16)
0x0B	uint32 Efx_LpFilterFac1_u32u16u16_u32 (uint32, uint16, uint16)

]()

Note: The Second Computation routines (corresponding to SWS_Efx_00009, SWS_Efx_00010 and SWS_Efx_00011) are deprecated and will not be supported in future releases.

8.5.1.3 Third computation

[SWS Efx 00012] [

Service name:	Efx_LpFilter_ <intypemn>_<outtypemn></outtypemn></intypemn>
Syntax:	<pre><outtype> Efx_LpFilter_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>
Service ID[hex]:	0x0D and 0x0E

Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	input	Input signal
	old_output	Previous value of the output value (filtered signal)
Paramatara (in)	tau_const	Parameter Tau of the filter : the time constant (second)
Parameters (in):	recurrence	Delta time between two executions of the function
	reset	Flag to reset the filtered signal
	init_val	Initial value of the filter
Parameters	started	Pointer to the flag to detect the first call of the function
(inout):		
Parameters (out):	None	
Return value:	<outtype> Return value of the filter</outtype>	
Description:	This service computes the first one order discrete filter	

[SWS_Efx_00013][

If (tau_const==0), then output = input |()

[SWS_Efx_00014][

If (*started==0), then output = init_val

This flag is used to indicate the filter state. *Started = 0, indicates that current function call is the first call of the function to trigger initialisation. |()

[SWS_Efx_00015][

This service computes the first one order discrete filter:

$$output = old_output + (input - old_output)* \left(1 - \exp\left(\frac{-recurrence}{tau_const}\right)\right)$$

$$output = old_output * \exp\left(\frac{-recurrence}{tau_const}\right) + input * \left(1 - \exp\left(\frac{-recurrence}{tau_const}\right)\right)$$

Formula 1

|()

Remark: the exponential functions can be computed with interpolations

[SWS_Efx_00016][

if ((reset == 1) or (*started == 0)), then output = init_val |()

[SWS_Efx_00017][

if (*started == 0), then *started=1
|()

[SWS_Efx_00018] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x0D	uint32 Efx_LpFilter_u32_u32 (uint32, uint32, uint32, uint16, uint8, uint32, uint8*)
0x0E	sint32 Efx_LpFilter_s32_s32 (sint32, sint32, uint32, uint16, uint8, sint32, uint8 *)

[SWS_Efx_00020] [input, old_output, and init_val must have the same resolution and the same physical unit.] ()

[SWS_Efx_00021] [tau_const and recurrence must have the same resolution and the same physical unit | ()

It is not recommended to call Efx_LpFilter_<InTypeMn>_<OutTypeMn> under any condition. It must be called at each recurrence, even if it is not used, If the conditions are not fulfilled then output shall be frozen to the previous value all the time.

The parameter started has to be declared as private variable by the caller and shall be initialized to 0 (default init), because the function uses the previous values of this output (so the stack mustn't be used).

8.5.2 First-order High-pass filter

We consider a recursive first-order high-pass filter with a transfer function:

$$H(z) = \frac{b_0 * z + b_1}{z + a}$$

The new return value (Yn) at any point of time can be calculated given the previous value (Yn-1), the current input (Xn), the previous input (Xn-1) and a known constant (K). The formula to calculate the same is as follows:

$$Yn = Yn-1 - K * Yn-1 + (Xn - Xn-1)$$

Where $b_0 = 1$, $b_1 = -1$ and a = K -1

The filter is a convergent high-pass filter only if the factor value m is included in [0,1]

[SWS_Efx_00022] [

Service name:	Efx_HpFilter_u8_s16		
Syntax:	sint16 Efx_HpFilter_u8_s16(sint16 Yn-1,		
	uint8 Xn, uint8 Xn-1, uint16 K		
Service ID[hex]:	0x10		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):		Previous sint16 output Physical range: [-256 , 255.9921875] Resolution: 1/2 ⁷	
	Xn	Present uint8 input	

Return value:	sint16	Yn : Result of the calculation Physical range: [-256 , 255.9921875] Resolution: 1/2 ⁷
Parameters (inout): Parameters (out):	None None	
		Constant uint16 multiplying factor Physical range: [0,0.99998] Resolution: 1/2 ¹⁶
		Previous uint8 input Physical range: [0,255] Resolution: 1
		Physical range: [0,255] Resolution: 1

[SWS_Efx_00023][:

Yn = Yn-1 - (K * Yn-1 / 2^{16}) + (Xn - Xn-1)* 2^{7} The result is rounded towards zero. I()

[SWS_Efx_00024][

Return value shall be saturated to boundary values in the event of negative or positive overflow.

]()

[SWS_Efx_00025][

A saturation correction for converging output to zero is applied to the result : If ((Yn equals Yn-1) and (Yn-1 > 0)) decrement Yn by one If ((Yn equals Yn-1) and (Yn-1 < 0)) increment Yn by one J()

[SWS_Efx_00026] [

Service name:	Efx_HpFilter_s8_s16		
Syntax:	sint16 Efx_HpFilter_s8_s16(sint16 Yn-1,		
	sint8 Xn, sint8 Xn-1, uint16 K		
Service ID[hex]:	0x11		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):		Previous sint16 output Physical range: [-256 , 255.9921875] Resolution: 1/2 ⁷	
	Xn	Present sint8 input	

Return value:		Yn : Result of the calculation Physical range: [-256 , 255.9921875] Resolution: 1/2 ⁷
Parameters (out):	None	
Parameters (inout):	None	
		Constant uint16 multiplying factor Physical range: [0,0.99998] Resolution: 1/2 ¹⁶
		Previous sint8 input Physical range: [-128 , 127] Resolution: 1
		Physical range: [-128 , 127] Resolution: 1

[SWS_Efx_00027][

Yn = Yn-1 - (K* Yn-1 /2¹⁶) + (Xn - Xn-1)*2⁷ The result is rounded towards zero. |()

[SWS_Efx_00028][

Return value shall be saturated to boundary values in the event of negative or positive overflow.

]()

[SWS_Efx_00029][

A saturation correction for converging output to zero is applied to the result : If ((Yn equals Yn-1) and (Yn-1 > 0)) decrement Yn by one If ((Yn equals Yn-1) and (Yn-1 < 0)) increment Yn by one J()

[SWS_Efx_00030] [

Service name:	Efx_HpFilter_u16_s32
Syntax:	<pre>sint32 Efx_HpFilter_u16_s32(sint32 Yn-1, uint16 Xn, uint16 Xn-1, uint16 K</pre>
Service ID[hex]:	0x12
Sync/Async:	Synchronous
Reentrancy:	Reentrant
Parameters (in):	Yn-1 Previous sint32 output Physical range: [-65536 , 65535.99996] Resolution: 1/2 ¹⁵
	Xn Present uint16 input Physical range: [0,65535]

		Resolution: 1	
Xn-1		Previous uint16 input	
		Physical range: [0,65535]	
		Resolution: 1	
		Constant uint16 multiplying factor	
		Physical range: [0,0.99998] Resolution: 1/2 ¹⁶	
		Resolution: 1/2 ¹⁶	
Parameters	None		
(inout):			
Parameters (out):	None		
		Yn : Result of the calculation	
Return value:		Physical range: [-65536 , 65535.99996] Resolution: 1/2 ¹⁵	
		Resolution: 1/2 ¹⁵	
Description:	This service	e computes the output of a first order high-Pass filter	

[SWS_Efx_00031][

Yn = Yn-1 - (K* Yn-1 $/2^{16}$) + (Xn - Xn-1)*2¹⁵ The result is rounded towards zero.

[SWS_Efx_00032][

Return value shall be saturated to boundary values in the event of negative or positive overflow.

]()

[SWS_Efx_00033][

A saturation correction for converging output to zero is applied to the result : If ((Yn equals Yn-1) and (Yn-1 > 0)) decrement Yn by one If ((Yn equals Yn-1) and (Yn-1 < 0)) increment Yn by one I()

[SWS_Efx_00035] [

Service name:	Efx_HpFilte	r_s16_s32	
Syntax:	<pre>sint32 Efx_HpFilter_s16_s32(sint32 Yn-1, sint16 Xn, sint16 Xn-1, uint16 K</pre>		
Service ID[hex]:	0x13		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	Yn-1 Previous sint32 output Physical range: [-65536 , 65535.99996] Resolution: 1/2 ¹⁵		
Parameters (in):		Present sint16 input Physical range: [-32768,32767] Resolution: 1	
	Xn-1	Previous sint16 input	

		Physical range: [-32768,32767] Resolution: 1	
	K	Constant uint16 multiplying factor Physical range: [0,0.99998] Resolution: 1/2 ¹⁶	
Parameters (inout):	None		
Parameters (out):	None		
Return value:		Yn : Result of the calculation Physical range: [-65536 , 65535.99996] Resolution: 1/2 ³¹	
Description:	This service computes the output of a first order high-Pass filter		

[SWS_Efx_00036][

Yn = Yn-1- (K* Yn-1/2¹⁶) + (Xn- Xn-1)*2¹⁵ The result is rounded towards zero. I()

[SWS_Efx_00037][

Return value shall be saturated to boundary values in the event of negative or positive overflow.

I()

[SWS_Efx_00038][

A saturation correction for converging output to zero is applied to the result : If ((Yn equals Yn-1) and (Yn-1> 0)) decrement Ynby one If ((Yn equals Yn-1) and (Yn-1< 0)) increment Yn by one J()

8.5.3 Controller routines

Controller routines includes P, PT1, DT1, PD, I, PI, PID governors used in control system applications. For these controllers, the required parameters are derived using Laplace-Z transformation. The following parameters are required to calculate the new controller output yn and can be represented in the following equation.

In the equation, the following symbols are used

Symbols	Description		
Yn	Actual output to calculate		
Yn-1	Output value, one time step before		
Xn	Actual input, given from the input		
Xn-1	Input, one time step before		
Xn-2	Input, two time steps before		
X1	Input, n-1 time steps before		
X0	Input, n time steps before		
a1, b0, b1, b2, bn-	1, Controller dependent proportional parameters are used to describe the weight of		

bn t	the states.
------	-------------

8.5.3.1 Structure definitions for controller routines

System parameters are separated from time or time equivalent parameters. The dependent system parameters are grouped in controller structures Efx Param<controller> Type, whereas the time (equivalent) parameters are directly. assigned **Systems** states grouped are in а structure Efx_State<controller>_Type except the actual input value Xn which is assigned directly.

The System parameters, used in the equations are given by:

K : Amplification factor, the description of the semantic is given in

T1 : Decay time constant

Tv: Lead time
Tn: Follow-up time

The time and time equivalent parameters in the equation / implementation are given by:

dT : Time step = sampling interval

Analogous to the abbreviations above, the following abbreviations are used in the implementation:

K <size>, K C : Amplification factor

T1rec $\langle size \rangle$: Reciprocal delay time constant = 1/T1.

The result shall be Rounded towards Zero.

Tv _<size>, Tv_C : Lead time

Tnrec _<size>, Tnrec_C : Reciprocal follow-up time = 1/Tn.

The result shall be Rounded towards Zero.

 dT_{size} : Time step = sampling interval [10^{-6} seconds per

increment of 1 data representation unit]

 TeQ_{size} : Time equivalent, TeQ = exp(-dT/T1).

Herein "<size>" denotes the size of the variable, e.g _s32 stand for a sint32 bit variable.

Note:

- 1. Tv & Tn cannot be negative
- 2. Dt should always be greater than zero.

Following C-structures are specially defined for the controller routines.

[SWS_Efx_00040] [

Name:	Efx_StateP'	Efx_StatePT1_Type			
Type:	Structure	Structure			
Element:	sint32	sint32 X1 Input value, one time step before			
	sint32	Sint32 Y1 Output value, one time step before			
Description:	System State	System State Structure for PT1 controller routine			

[SWS_Efx_00824][

Name:	Efx_StateD'	Efx_StateDT1Typ1_Type				
Туре:	Structure	Structure				
Element:	sint32	sint32 X1 Input value, one time step before				
	sint32	sint32 X2 Input value, two time steps before				
	sint32	Sint32 Y1 Output value, one time step before				
Description:	System State	System State Structure for DT1-Type1 controller routine				

] ()

[SWS_Efx_00825][

Name:	Efx_StateD'	Efx_StateDT1Typ2_Type				
Type:	Structure	Structure				
Element:	sint32	sint32 X1 Input value, one time step before				
	sint32	Sint32 Y1 Output value, one time step before				
Description:	System State	System State Structure for DT1-Type2 controller routine				

] ()

[SWS_Efx_00826][

Name:	Efx_StatePD_Type			
Type:	Structure			
Element:	sint32 X1 Input value, one time step before			
	sint32	Y1	Output value, one time step before	
Description:	System State Structure for PD controller routine			

] ()

[SWS_Efx_00827][

Name:	Efx_ParamPD_Typ	Efx_ParamPD_Type			
Type:	Structure	Structure			
Element:	sint32 K_C Amplification factor				
	sint32 Tv_C Lead time				
Description:	System and Time equivalent parameter Structure for PD controller routine				

()

[SWS_Efx_00828][

Name:	Efx_StateI_Type			
Туре:	Structure			
Element:	sint32 X1 Input value, one time step before			
	sint32	Y1	Output value, one time step before	
Description:	System State Structure for I controller routine			

] ()

[SWS_Efx_00829][

Name:	Efx_StatePI_Type			
Туре:	Structure			
Element:	sint32 X1 Input value, one time step before			
	sint32	Y1	Output value, one time step before	
Description:	System State Structure for PI additive (Type1 and Type 2) controller routine			

1 ()

[SWS_Efx_00830][

Name:	Efx_ParamPI_Typ	Efx_ParamPI_Type		
Туре:	Structure	Structure		
Element:	sint32	K_C	Amplification factor	
	sint32	Tnrec_C	Reciprocal follow up time (1/Tn)	
Description:	System and Time e	System and Time equivalent parameter Structure for PI additive (<i>Type1 and Type</i>		

	2) controller routine
] ()	

[SWS_Efx_00831][

Name:	Efx_StatePID_Type		
Туре:	Structure		
Element:	sint32 X1 Input value, one time step before		Input value, one time step before
	sint32	X2	Input value, two time step before
	sint32	Y1	Output value, one time step before
Description:	System State Structure for PID additive (Type1 and Type2) controller routine		

] ()

[SWS_Efx_00832][

Name:	Efx_ParamPID_Type		
Туре:	Structure		
Element:	sint32	K_C	Amplification factor
	sint32	Tv_C	Lead time
	sint32	Tnrec_C	Reciprocal follow up time (1/Tn)
Description:	System and Time equivalent parameter Structure for PID additive (<i>Type1 and Type 2</i>) controller routine		

] ()

[SWS_Efx_00833][

Name:	Efx_Limits_Typ	Efx_Limits_Type		
Type:	Structure	Structure		
Element:	sint32	Min_C	Minimum limit value	
	sint32	Max_C	Maximum limit value	
Description:	Controller limit value structure			

] ()

8.5.3.2 Proportional Controller

Proportional component calculates Y(x) = Kp * X.

8.5.3.2.1 'P' Controller

[SWS_Efx_00041] [

Service name:	Efx_PCa	alc_s32		
Syntax:	void Efx PCalc s32(
		nt32 X_s32,		
		nt32* P_ps32,		
	si	nt32 K_s32		
)			
Service ID[hex]:	0x20	0x20		
Sync/Async:	Synchro	Synchronous		
Reentrancy:	Reentra	Reentrant		
	X_s32 i	input value		
Parameters (in):	K_s32	Amplification factor (Quantized with 1/2 ¹⁶ per increment of 1 data		
		representation unit)		
Parameters	P_ps32	P_ps32 Pointer to the calculated state		
(inout):	-			
Parameters (out):	None			

Return value:	void	No return value
Description:		utine computes differential equation ntial equation: X

[SWS_Efx_00042][

Calculated value *P_ps32 = (K_s32 * X_s32) >> 16 I()

[SWS_Efx_00043][

Amplification factor is quantized with 1/2¹⁶ per increment of 1 data representation unit I()

Note: "This routine (Efx_PCalc_s32) is depreciated and will not be supported in

future release.

Replacement routine: Efx_PCalc"

[SWS_Efx_00525][

Service name:	Efx_PCalc	
Syntax:	<pre>void Efx_PCalc(sint32 X_s32, sint32* P_ps32, sint32 K_s32)</pre>	
Service ID[hex]:	0x14	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	X_s32 input value K_s32 Amplification factor (Quantized with 1/2 ¹⁶ per increment of 1 data representation unit)	
Parameters (inout):	P_ps32 Pointer to the calculated state	
Parameters (out):	None	
Return value:	None	
Description:	This routine computes differential equation Differential equation: $Y = K * X$	

]()

[SWS Efx 00526][

Calculated value $^*P_ps32 = (K_s32 * X_s32) >> 16$ I()

[SWS_Efx_00527][

Amplification factor is quantized with 1/2¹⁶ per increment of 1 data representation unit ()

8.5.3.2.2 Set 'P' State

This routine can be realised using inline function.

[SWS_Efx_00044] [

Service name:	Efx_PSetState		
Syntax:	<pre>void Efx_PSetState(sint32* P_s32, sint16 Y_s16)</pre>		
Service ID[hex]:	0x21		
Sync/Async:	Synchronous	Synchronous	
Reentrancy:	Reentrant		
Parameters (in):	Y_s16	Input value	
Parameters (inout):	P_s32	Pointer to the calculated state	
Parameters (out):	None		
Return value:	void	No return value	
Description:	The routine se	ts the internal state variables of a P element.	

]()

[SWS_Efx_00045][

Output value *P_s32 = Y_s16 << 16 ()

[SWS_Efx_00046][

The internal state of the P element is stored as (Y_s16 << 16)]()

8.5.3.2.3 Get 'P' output

This routine can be realised using inline function.

[SWS_Efx_00047] [

Service name:	Efx_POut_ <outtypemn></outtypemn>		
Syntax:	<outtype> Efx_POut_<outtypemn>(</outtypemn></outtype>		
Service ID[hex]:	0x22 to 0x23		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	P_ps32 Pointer to the calculated state		
Parameters (inout):	None		
Parameters (out):	None		
Return value:	<outtype> Return 'P' controller output value</outtype>		
Description:	This routine returns 'P' controllers output value.		

[SWS Efx 00048][

Output value = *P_ps32 >> 16

)

(

|()

[SWS_Efx_00049][

Return value shall be saturated to boundary values of the return data type in case of negative or positive overflow.

]()

[SWS_Efx_00050] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x22	sint16 Efx_POut_s16(const sint32 *)
0x23	sint8 Efx_POut_s8(const sint32 *)

]()

8.5.3.3 Proportional controller with first order time constant

This routine calculates proportional element with first order time constant

8.5.3.3.1 'PT1' Controller

[SWS_Efx_00051] [

Service name:	Efx_PT1Calc		
Syntax:	<pre>void Efx_PT1Calc(sint32 X_s32, Efx_StatePT1_Type* State_cpst, sint32 K_s32, sint32 TeQ_s32)</pre>		
Service ID[hex]:	0x2A		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	X_s32	Input value for the PT1 element	
Parameters (in):	K_s32	Amplification factor	
	TeQ_s32	Time equivalent	
Parameters (inout):	State_cpst	Pointer to PT1 state structure	
Parameters (out):	None		
Return value:	void No return value		
Description:	This routine computes PT1 controller output value using below difference equation Yn = exp(-dT/T1) * Yn-1+ K(1 - exp(-dT/T1)) * Xn-1		

]()

[SWS_Efx_00052][

This equation derives implementation:

Output_value = (TeQ_s32 * State_cpst->Y1) + K_s32 * (1 - TeQ_s32) * State_cpst->X1

where $TeQ_s32 = exp(-dT/T1)$ |()

[SWS_Efx_00053][

Efx_CalcTeQ_s32 shall be used for calculation of time equivalent parameter TeQ_s32 only if T1 > 0.]()

Note: If T1 = 0, a PT1 controller behaves like a P controller. In this case, usage of Efx_CalcTeq_s32 should be avoided and Teq value should be passed as 0.

[SWS_Efx_00054][

If (Teq = 0) then PT1 controller follows Input value, State_cpst->Y1 = k_s32 * State_cpst->X1]()

[SWS_Efx_00055][

I()

calculated Output_value and current input value shall be stored to State_cpst->Y1 and State_cpst->X1 respectively.

State_cpst->Y1 = Output_value

State_cpst->X1 = X_s32

8.5.3.3.2 'PT1' Set State Value

This routine can be realised using inline function.

[SWS Efx 00056] [

Service name:	Efx_PT1SetState		
Syntax:	<pre>void Efx_PT1SetState(Efx_StatePT1_Type* State_cpst, sint32 X1_s32, sint16 Y1_s16)</pre>		
Service ID[hex]:	0x2B		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant	Reentrant	
Parameters (in):	X1_s32	Initial value for input state	
Parameters (m).	Y1_s16 Initial value for output state		
Parameters (inout):	None		
Parameters (out):	State_cpst Pointer to PT1 state structure		
Return value:	void No return value		
Description:	The routine initialises internal state variables of a PT1 element.		

]()

[SWS_Efx_00057][

Initialisation of output state variable Y1. State_cpst->Y1 = Y1_s16 << 16

(()

[SWS_Efx_00058][

The internal state of the PT1 element is stored as (Y1_s16 << 16) I()

[SWS_Efx_00059][

Initialisation of input state variable X1. State_cpst->X1 = X1_s32 I()

8.5.3.3.3 Calculate time equivalent Value

This routine can be realised using inline function.

[SWS_Efx_00060] [

Service name:	Efx_CalcTeC	Q_s32	
Syntax:	<pre>sint32 Efx_CalcTeQ_s32(sint32 T1rec s32,</pre>		
	sint32 dT_s32)		
Service ID[hex]:	0x2C		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Doromotoro (in):	T1rec_s32 Reciprocal delay time		
Parameters (in):	dT_s32 S	cample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	None		
Parameters (out):	None		
Return value:	sint32 T	ime Equivalent TeQ	
Description:	This routine calculates time equivalent factor		

]()

[SWS_Efx_00061][

TeQ = exp(-T1rec_s32 * dT_s32)

[SWS_Efx_00062][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit J()

8.5.3.3.4 Calculate an approximate time equivalent Value

This routine calculates approximate time equivalent and can be realised using inline function.

[SWS_Efx_00450] [

Service name:	fx_CalcTeQApp_	s32	
Syntax:	<pre>sint32 Efx_CalcTeQApp_s32(sint32 T1rec_s32, sint32 dT_s32)</pre>		
Service ID[hex]:)x29		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Paramatara (in)	Γ1rec_s32 Recipro		
Parameters (in):	dT_s32 Sample	Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
	None		
(inout):			
Parameters (out):	None		
Return value:	sint32 Time E	quivalent TeQ (Approximate)	
Description:	This routine calcula	ates time equivalent factor	

[SWS_Efx_00451][

 $TeQApp = 1 - (T1rec_s32 * dT_s32)$

TeQApp is factorised by 2^16

This approximation is valid only when the product of the physical values of T1rec_s32 and dt_s32 is less than 1. i.e, (T1rec_s32 * dT_s32) < 1 |()

[SWS_Efx_00452][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit I()

8.5.3.3.5 Get 'PT1' output

This routine can be realised using inline function.

[SWS_Efx_00063] [

Service name:	Efx_PT1Out_ <outtypemn></outtypemn>		
Syntax:	<outtype> Efx PT1Out <outtypemn>(</outtypemn></outtype>		
	const Efx_StatePT1_Type* State_cpst		
Service ID[hex]:	0x2D to 0x2E		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	State_cpst Pointer to constant state structure		
Parameters	None		
(inout):			
Parameters (out):	None		
Return value:	<outtype> Return 'PT1' controller output value</outtype>		
Description:	This routine returns 'PT1' controllers output value.		

]()

[SWS_Efx_00064][

Output value = State_cpst->Y1_s32 >> 16

|()

[SWS_Efx_00065][

Output value shall be normalized by 16 bit right shift of internal state variable. I()

[SWS_Efx_00066][

Return value shall be limited by boundary values of the return data type. I()

[SWS_Efx_00067] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x2D	sint16 Efx_PT1Out_s16(const Efx_StatePT1_Type *)
0x2E	sint8 Efx_PT1Out_s8(const Efx_StatePT1_Type *)

]()

8.5.3.4 Differential component with time delay: DT1

This routine calculates differential element with first order time constant. Routine Efx_CalcTeQ_s32, given in 8.5.3.3.3, shall be used for Efx_DT1_s32 function to calculate the time equivalent TeQ.

8.5.3.4.1 'DT1' Controller - Type1

[SWS_Efx_00070] [

Service name:	Efx_DT1Ty	/p1Calc	
Syntax:	<pre>void Efx_DT1Typ1Calc(sint32 X_s32, Efx_StateDT1Typ1_Type* State_cpst, sint32 K_s32, sint32 TeQ_s32, sint32 dT_s32)</pre>		
Service ID[hex]:	0x30		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant	Reentrant	
	X_s32	Input value for the DT1 controller	
Parameters (in):	K_s32	Amplification factor	
Parameters (m).		Time equivalent	
	dT_s32	Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst Pointer to state structure		
Parameters (out):	None		
Return value:	void	No return value	
Description:	This routine computes DT1 controller output value using differential equation, Yn= exp(-dT/T1) * Yn-1+ K * (1- exp(-dT/T1)) * ((Xn-1 - Xn-2) / dT)		

[SWS_Efx_00071][

This equation derives implementation:

Output_value = (TeQ * State_cpst->Y1) + K_s32 * (1 - TeQ) * ((State_cpst->X1 -

State_cpst->X2) / dT)

where TeQ = exp(-dT/T1)

The result shall be Rounded towards Zero.

(()

[SWS Efx 00072][

Efx_CalcTeQ_s32 shall be used for calculation of time equivalent parameter TeQ_s32 only if T1 > 0.

(()

Note: If T1 = 0, a DT1 controller behaves like a D controller. In this case, usage of Efx_CalcTeq_s32 should be avoided and Teq value should be passed as 0.

[SWS_Efx_00073][

If (Teq = 0), then DT1 controller follows Input value,
Output_value = k_s32 * (State_cpst->X1 - State_cpst->X2) / dT.
|()

[SWS_Efx_00074][

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value |()

[SWS Efx 00075][

Old input value State->cpst->X1 shall be stored to State_cpst->X2. State_cpst->X2 = State_cpst->X1

Current input value X_s32 shall be stored to State_cpst->X1.

State cpst- \times X1 = X s32

|()|

[SWS_Efx_00076][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit I()

8.5.3.4.2 'DT1' Controller - Type2

[SWS Efx 00501] [

Service name:	Efx_DT1Typ2Calc
Syntax:	void Efx_DT1Typ2Calc(
	<pre>sint32 X_s32, Efx StateDT1Typ2 Type* State cpst,</pre>
	sint32 K_s32,

	sint32 TeQ_s32,	
	sint	32 dT_s32
)	
Service ID[hex]:	0x2F	
Sync/Async:	Synchrono	us
Reentrancy:	Reentrant	
	X_s32	Input value for the DT1 controller
Parameters (in):	K_s32	Amplification factor
rarameters (m).		Time equivalent
	dT_s32	Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]
Parameters	State_cpst Pointer to state structure	
(inout):		
Parameters (out):	None	
Return value:	void No return value	
Description:	This routine computes DT1 controller output value using differential equation,	
	Yn= exp(-dT/T1) * Yn-1+ K * (1- exp(-dT/T1)) * ((Xn - Xn-1) / dT)	

[SWS_Efx_00502][

This equation derives implementation:

Output_value = $(TeQ * State_cpst->Y1) + K_s32 * (1 - TeQ) * ((X_s32 - State_cpst->X1) / dT)$

where TeQ = exp(-dT/T1)

The result shall be Rounded towards Zero.

I()

[SWS_Efx_00503][

Efx_CalcTeQ_s32 shall be used for calculation of time equivalent parameter TeQ_s32.

]()

[SWS_Efx_00504][

If (Teq = 0), then DT1 controller follows Input value, Output_value = k_s32 * (X_s32 - State_cpst->X1) / dT]()

[SWS_Efx_00505][

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value |()

[SWS Efx 00506][

Current input value X_s32 shall be stored to State_cpst->X1. State_cpst->X1 = X_s32 |()

[SWS_Efx_00507][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit I()

8.5.3.4.3 Set 'DT1' State Value - Type1

This routine can be realised using inline function.

[SWS_Efx_00077] [

Service name:	Efx_DT1Typ1SetState	
Syntax:	<pre>void Efx_DT1Typ1SetState(Efx_StateDT1Typ1_Type* State_cpst, sint32 X1_s32, sint32 X2_s32, sint16 Y1_s16)</pre>	
Service ID[hex]:	0x31	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	X1_s32	Initial value for the input state X1
Parameters (in):	X2_s32	Initial value for the input state X2
	Y1_s16 Initial value for the output state	
Parameters	None	
(inout):		
Parameters (out):	State_cpst	Pointer to internal state structure
Return value:	void	No return value
Description:	The routine initialises in	nternal state variables of a DT1 element.

]()

[SWS_Efx_00078][

Initialisation of output state variable Y1. State_cpst->Y1 = Y1_s16 << 16 I()

[SWS_Efx_00079][

The internal state of the DT1 element is stored as (Y1_s16 << 16) I()

[SWS_Efx_00080][

Initialisation of input state variables X1 and X2. State_cpst->X1 = X1_s32 State_cpst->X2 = X2_s32 J()

8.5.3.4.4 Set 'DT1' State Value - Type2

This routine can be realised using inline function.

[SWS_Efx_00510] [

Service name:	Efx_DT1Typ2SetState
Syntax:	<pre>void Efx_DT1Typ2SetState(Efx_StateDT1Typ2_Type* State_cpst, sint32 X1_s32,</pre>

	sint16 Y1_s16	
)	
Service ID[hex]:	0x32	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in)	X1_s32	Initial value for the input state
Parameters (in):	Y1_s16	Initial value for the output state
Parameters	None	
(inout):		
Parameters (out):	State_cpst	Pointer to internal state structure
Return value:	void	No return value
Description:	The routine initialises in	nternal state variables of a DT1 element.

[SWS_Efx_00511][

Initialisation of output state variable Y1. State_cpst->Y1 = Y1_s16 << 16]()

[SWS_Efx_00512][

The internal state of the DT1 element is stored as (Y1_s16 << 16) I()

[SWS_Efx_00513][

Initialisation of input state variable X1. State_cpst->X1 = X1_s32]()

8.5.3.4.5 Get 'DT1' output - Type1

This routine can be realised using inline function.

[SWS_Efx_00081] [

Service name:	Efx_DT1Typ1Out_ <outtypemn></outtypemn>		
Syntax:	<outtype> Efx_DT1Typ1Out_<outtypemn>(</outtypemn></outtype>		
	const Efx_StateDT1Typ1_Type* State_cpst		
)		
Service ID[hex]:	0x33 to 0x34		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	State_cpst Pointer to state structure		
Parameters	None		
(inout):			
Parameters (out):	None		
Return value:	<outtype> Return 'DT1' controller output value</outtype>		
Description:	This routine returns 'DT1' controller's output value.		

]()

[SWS_Efx_00082][

Output value = State_cpst->Y1 >> 16]()

[SWS_Efx_00083][

Output value shall be normalized by 16 bit right shift of internal state variable. I()

[SWS_Efx_00084][

Return value shall be limited by boundary values of the return data type. I()

[SWS_Efx_00085] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x33	sint16 Efx_DT1Typ1Out_s16(const Efx_StateDT1Typ1_Type *)
0x34	sint8 Efx_DT1Typ1Out_s8(const Efx_StateDT1Typ1_Type *)

]()

8.5.3.4.6 Get 'DT1' output - Type2

This routine can be realised using inline function.

[SWS_Efx_00515] [

Service name:	Efx_DT1Typ2Out_ <outtypemn></outtypemn>		
Syntax:	<pre><outtype> Efx_DT1Typ2Out_<outtypemn>(</outtypemn></outtype></pre>		
Service ID[hex]:	0x35 to 0x36		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	State_cpst Pointer to state structure		
Parameters (inout):	None		
Parameters (out):	None		
Return value:	<outtype> Return 'DT1' controller output value</outtype>		
Description:	This routine returns 'DT1' controller's output value.		

(

[SWS_Efx_00516][

Output value = State_cpst->Y1 >> 16 I()

[SWS_Efx_00517][

Output value shall be normalized by 16 bit right shift of internal state variable. I()

)

[SWS_Efx_00518][

Return value shall be limited by boundary values of the return data type. J()

[SWS_Efx_00519] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x35	sint16 Efx_DT1Typ2Out_s16(const Efx_StateDT1Typ2_Type *)
0x36	sint8 Efx_DT1Typ2Out_s8(const Efx_StateDT1Typ2_Type *)

]()

8.5.3.5 Proportional and Differential controller

This routine is a combination of proportional and differential controller.

8.5.3.5.1 PD Controller

[SWS_Efx_00090] [

Service name:	Efx_PDCalc			
Syntax:	<pre>void Efx_PDCalc(sint32 X_s32, Efx_StatePD_Type* State_cpst, const Efx_ParamPD_Type* Param_cpst, sint32 dT_s32)</pre>			
Service ID[hex]:	0x3A	0x3A		
Sync/Async:	Synchronous			
Reentrancy:	Reentrant			
Parameters (in):	X_s32 Param_cpst dT_s32	Input value for the PD controller Pointer to parameter structure Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]		
Parameters (inout):	State_cpst	Pointer to internal state structure		
Parameters (out):	None			
Return value:	void	No return value		
Description:	This routine computes proportional plus derivative controller output value using differential equation: Yn= K(1+Tv/dT) * Xn - K(Tv/dT) * Xn-1			

]()

[SWS_Efx_00091][

This equation derives implementation:

Output_value = (Param_cpst->K_C * (1+ Param_cpst->Tv_C/dT_s32) * X_s32) - (Param_cpst->K_C * (Param_cpst->Tv_C/dT_s32) * State_cpst->X1)

The result shall be Rounded towards Zero.

]()

[SWS_Efx_00092][

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value J()

[SWS_Efx_00093][

Current input value X_s32 shall be stored to State_cpst->X1. State_cpst->X1 = X_s32 |()

[SWS_Efx_00094][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit I()

8.5.3.5.2 PD Set State Value

This routine can be realised using inline function.

[SWS_Efx_00095] [

Service name:	Efx_PDSetState	Efx_PDSetState		
Syntax:	<pre>void Efx_PDSetState(Efx_StatePD_Type* State_cpst, sint32 X1_s32, sint16 Y1_s16)</pre>			
Service ID[hex]:	0x3B			
Sync/Async:	Synchronous	Synchronous		
Reentrancy:	Reentrant	Reentrant		
Parameters (in):	X1_s32	Initial value for input state		
Parameters (III).	Y1_s16 Initial value for output state			
Parameters (inout):	None			
Parameters (out):	State_cpst	Pointer to internal state structure		
Return value:	void No return value			
Description:	The routine initialises	internal state variables of a PD element.		

(

[SWS_Efx_00096][

Initialisation of output state variable Y1. State_cpst->Y1 = Y1_s16 << 16 |()

[SWS Efx 00097][

The internal state of the PD element is stored as (Y1_s16 << 16) I()

[SWS_Efx_00098][

Initialisation of input state variable X1. State_cpst->X1 = X1_s32

)

|()

8.5.3.5.3 Set 'PD' Parameters

This routine can be realised using inline function.

[SWS_Efx_00100] [

Service name:	Efx_PDSetParam		
Syntax:	<pre>void Efx_PDSetParam(Efx_ParamPD_Type* Param_cpst, sint32 K_s32, sint32 Tv_s32)</pre>		
Service ID[hex]:	0x3C		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	K_s32	Amplification factor	
rarameters (m).	Tv_s32	Lead time	
Parameters (inout):	None		
Parameters (out):	Param_cpst	Pointer to internal parameter structure	
Return value:	void	No return value	
Description:	The routine sets the	parameter structure of a PD element.	

(

[SWS_Efx_00101][

Initialisation of amplification factor. Param_cpst->K_C = K_s32

(()

[SWS_Efx_00102][

Initialisation of lead time state variable Param_cpst->Tv_C = Tv_s32 J()

8.5.3.5.4 Get 'PD' output

This routine can be realised using inline function.

[SWS_Efx_00103] [

Service name:	Efx_PDOut_ <outtypemn></outtypemn>		
Syntax:	<outtype> Efx_PDOut_<outtypemn>(</outtypemn></outtype>		
Service ID[hex]:	0x3D to 0x3E		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	State_cpcst Pointer to constant state structure		

)

Parameters	None	
(inout):		
Parameters (out):	None	
Return value:	<outtype></outtype>	Return 'PD' controller output value
Description:	This routine returns 'P	D' controllers output value.

[SWS_Efx_00104][

Output value = State_cpst->Y1 >> 16 I()

[SWS_Efx_00105][

Output value shall be normalized by 16 bit right shift of internal state variable. I()

[SWS_Efx_00106][

Return value shall be limited by boundary values of the return data type.]()

[SWS_Efx_00107] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x3D	sint16 Efx_PDOut_s16(const Efx_StatePD_Type *)
0x3E	sint8 Efx_PDOut_s8(const Efx_StatePD_Type *)

()

8.5.3.6 Integral component

This routine calculates Integration element.

8.5.3.6.1 'I' Controller

[SWS_Efx_00110] [

Service name:	Efx_ICalc			
Syntax:	<pre>void Efx_ICalc(sint32 X_s32, Efx_StateI_Type* State_cpst, sint32 K_s32, sint32 dT_s32</pre>			
Service ID[hex]:	0x40	0x40		
Sync/Async:	Synchrono	Synchronous		
Reentrancy:	Reentrant	Reentrant		
	X_s32 Input value for the 'I' controller			
Parameters (in):	K_s32 Amplification factor			
	dT_s32	Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]		
Parameters (inout):	State_cpst	Pointer to state variable.		

Parameters (out):	None		
Return value:	void	No return value	
•	This routine computes 'I' controller output value using differential equation,		
	Yn = Yn-1	+ K * dT * Xn-1	

[SWS_Efx_00111][

This equation derives implementation :
Output_value = State_cpst->Y1 + K_s32 * dT_s32 * State_cpst->X1 J()

[SWS_Efx_00112][

Calculated Output_value and current input value shall be stored to State_cpst->Y1 and State_cpst->X1 respectively.

State_cpst->Y1 = Output_value State_cpst->X1 = X_s32

I()

[SWS_Efx_00113][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit I()

8.5.3.6.2 'I' Controller with limitation

[SWS_Efx_00455] [

Service name:	Efx_ILimCa	alc		
Syntax:	<pre>void Efx_ILimCalc(sint32 X_s32, Efx_StateI_Type* State_cpst, sint32 K_s32, const Efx_Limits_Type* Limit_cpst, sint32 dT_s32)</pre>			
Service ID[hex]:	0x3F			
Sync/Async:	Synchronous			
Reentrancy:	Reentrant	Reentrant		
	X_s32	Input value for the 'I' controller		
Paramatara (in)	K_s32	Amplification factor		
Parameters (in):		Pointer to limit structure		
	dT_s32	Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]		
Parameters (inout):	State_cpst Pointer to state variable			
Parameters (out):	None			
Return value:	void	No return value		
Description:	This routine computes DT1 controller output value using differential equation, Yn = Yn-1 + K * dT * Xn-1			

]()

[SWS_Efx_00456][


```
This equation derives implementation :
Output_value = State_cpst->Y1 + K_s32 * dT_s32 * State_cpst->X1 |()
```

[SWS_Efx_00457][

Limit output value with minimum and maximum controller limits. If (Output value < Limit_cpst->Min_C) Then, Output_value = Limit_cpst->Min_C If (Output value > Limit_cpst->Max_C) Then, Output_value = Limit_cpst->Max_C | ()

[SWS_Efx_00458][

Calculated Output_value and current input value shall be stored to State_cpst->Y1 and State_cpst->X1 respectively.

State_cpst->Y1 = Output_value State_cpst->X1 = X_s32 J()

[SWS_Efx_00459][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit I()

8.5.3.6.3 Set limits for controllers

[SWS_Efx_00460] [

Service name:	Efx_CtrlSetLimit			
Syntax:	<pre>void Efx_CtrlSetLimi sint32 Min_s32, sint32 Max_s32, Efx_Limits_Type*)</pre>			
Service ID[hex]:	0x42			
Sync/Async:	Synchronous	Synchronous		
Reentrancy:	Reentrant	Reentrant		
Parameters (in):	Min_s32	Minimum limit		
raiailleters (III).	Max_s32	Maximum limit		
Parameters (inout):	Limit_cpst	Pointer to limit structure		
Parameters (out):	None			
Return value:	void	No return value		
Description:	Update limit structure			

]()

[SWS_Efx_00461][

Update limit structure
Limit_cpst->Min_C = Min_s32
Limit_cpst->Max_C = Max_s32
I()

Note: "This routine (Efx_CtrlSetLimit) is depreciated and will not be supported in

future release.

Replacement routine: Efx_CtrlSetLimits "

[SWS_Efx_00523] [

Service name:	Efx_CtrlSetLimits			
Syntax:	<pre>void Efx_CtrlSetLimit Efx_Limits_Type* sint32 Min_s32, sint32 Max_s32)</pre>			
Service ID[hex]:	0x97			
Sync/Async:	Synchronous			
Reentrancy:	Reentrant	Reentrant		
Paramatara (in)	Min_s32	Minimum limit		
Parameters (in):	Max_s32	Maximum limit		
Parameters (inout):	Limit_cpst	Pointer to limit structure		
Parameters (out):	None	None		
Return value:	None			
Description:	Update limit structure			

]()

[SWS_Efx_00524][

Update limit structure Limit_cpst->Min_C = Min_s32 Limit_cpst->Max_C = Max_s32 I()

8.5.3.6.4 Set 'I' State Value

This routine can be realised using inline function.

[SWS_Efx_00114] [

Service name:	Efx ISetState		
Syntax:	<pre>void Efx_ISetState(Efx_StateI_Type* State_cpst, sint32 X1_s32, sint16 Y1_s16)</pre>		
Service ID[hex]:	0x41		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Devementary (in)	X1_s32	Initial value for input state	
Parameters (in):	Y1_s16	Initial value for output state	
Parameters (inout):	None		

Parameters (out):	State_cpst	Pointer to internal state structure
Return value:	void	No return value
Description:	The routine initialises	s internal state variables of an I element.

[SWS_Efx_00115][

Initialisation of output state variable Y1. State_cpst->Y1 = Y1_s16 << 16 J()

[SWS_Efx_00116] [

The internal state of the DT1 element is stored as (Y1_s16 << 16)

]()

[SWS_Efx_00117] [

Initialisation of input state variable X1. State_cpst->X1 = X1_s32

] ()

8.5.3.6.5 Get 'I' output

This routine can be realised using inline function.

[SWS_Efx_00118] [

Service name:	Efx_IOut_ <outtypemn></outtypemn>		
Syntax:	<pre><outtype> Efx_IOut_<outtypemn>(</outtypemn></outtype></pre>		
	const Efx_StateI_Type* State_cpst)		
Service ID[hex]:	0x43 to 0x44		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	State_cpst Pointer to constant state structure		
Parameters	None		
(inout):			
Parameters (out):	None		
Return value:	<outtype> Return 'I' controller output value</outtype>		
Description:	This routine returns 'I' controller's output value.		

]()

[SWS_Efx_00119][

Output value = State_cpst->Y1 >> 16 |()

[SWS_Efx_00120] [

Output value shall be normalized by 16 bit right shift of internal state variable.

]()

[SWS_Efx_00121] [

Return value shall be limited by boundary values of the return data type.

]()

[SWS_Efx_00122] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x43	sint16 Efx_IOut_s16(const Efx_StateI_Type*)
0x44	sint8 Efx_IOut_s8(const Efx_StateI_Type *)

]()

8.5.3.7 Proportional and Integral controller

This routine is a combination of proportional and integral controller. Routine Efx_CtrlSetLimits shall be used to set limits for this controller in case of limited functionality.

8.5.3.7.1 'PI' Controller – Type1 (Implicit type)

[SWS_Efx_00125] [

Service name:	Efx_PITyp1Cal	С	
Syntax:	<pre>void Efx_PITyp1Calc(sint32 X_s32, Efx_StatePI_Type* State_cpst, const Efx_ParamPI_Type* Param_cpst, sint32 dT_s32)</pre>		
Service ID[hex]:	0x45		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	X_s32	Input value for the 'PI' controller	
Parameters (in):		Pointer to parameter structure	
2 41 411101010 (111)	dT_s32	Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst	Pointer to the internal state structure.	
Parameters (out):	None		
Return value:	void	No return value	
Description:	This routine computes Proportional plus integral controller (implicit type) output value using differential equation: Yn= Yn-1+ K * Xn - K * (1 - dT/Tn) * Xn-1		

]()

[SWS_Efx_00126][

This equation derives implementation:

Output_value = State_cpst->Y1 + (Param_cpst->K_C * X_s32) - (Param_cpst->K_C * (1 - Param_cpst->Tnrec_C * dT_s32) * State_cpst->X1)

[SWS_Efx_00127][

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value]()

[SWS_Efx_00128][

Current input value X_s32 shall be stored to State_cpst->X1. State_cpst->X1 = X_s32 |()

[SWS_Efx_00129][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit I()

8.5.3.7.2 'PI' Controller – Type1 with limitation (Implicit type)

[SWS_Efx_00465] [

Service name:	Efx_PITyp1Lin	nCalc	
Syntax:	<pre>void Efx_PITyp1LimCalc(sint32 X_s32, Efx_StatePI_Type* State_cpst, const Efx_ParamPI_Type* Param_cpst, const Efx_Limits_Type* Limit_cpst, sint32 dT_s32)</pre>		
Service ID[hex]:	0x35		
Sync/Async:	Synchronous	Synchronous	
Reentrancy:	Reentrant		
Parameters (in):	X_s32 Param_cpst Limit_cpst dT_s32	Input value for the 'PI' controller Pointer to parameter structure Pointer to limit structure Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst	Pointer to the internal state structure	
Parameters (out):	None		
Return value:	void	No return value	
Description:	This routine computes Proportional plus integral controller (implicit type) output value using differential equation: Yn = Yn-1+ K * Xn - K * (1 - dT/Tn) * Xn-1		

]()

[SWS_Efx_00466][

This equation derives implementation:

Output_value = State_cpst->Y1 + (Param_cpst->K_C * X_s32) - (Param_cpst->K_C * (1 - Param_cpst->Tnrec_C * dT_s32) * State_cpst->X1)

|()

[SWS_Efx_00467][

Limit output value with minimum and maximum controller limits. If (Output value < Limit_cpst->Min_C) Then,
Output_value = Limit_cpst->Min_C
If (Output value > Limit_cpst->Max_C) Then,
Output_value = Limit_cpst->Max_C
I()

[SWS_Efx_00468][

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value |()

[SWS_Efx_00469][

Current input value X_s32 shall be stored to State_cpst->X1. State_cpst->X1 = X_s32]()

[SWS_Efx_00470][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit I()

8.5.3.7.3 'PI' Controller – Type2 (Explicit type)

[SWS_Efx_00130] [

Service name:	Efx_PITyp2Cal	C	
Syntax:	<pre>void Efx_PITyp2Calc(sint32 X_s32, Efx_StatePI_Type* State_cpst, const Efx_ParamPI_Type* Param_cpst, sint32 dT_s32)</pre>		
Service ID[hex]:	0x46		
Sync/Async:	Synchronous	Synchronous	
Reentrancy:	Reentrant		
Parameters (in):		Input value for the 'PI' controller Pointer to parameter structure	
r arameters (m).	dT_s32	Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst	Pointer to the internal state structure.	
Parameters (out):	None		
Return value:	void	No return value	
Description:	This routine computes Proportional plus integral controller (explicit type) output value using differential equation: Yn= Yn-1 + K * (1 + dT/Tn) * Xn - K * Xn-1		

]()

[SWS_Efx_00131][

This equation derives implementation:

Output_value = State_cpst->Y1 + (Param_cpst->K_C * (1 + Param_cpst->Tnrec_C * dT_s32) * X_s32) - (Param_cpst->K_C * State_cpst->X1)

[SWS_Efx_00132] [

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value

]()

[SWS_Efx_00133] [

Current input value X_s32 shall be stored to State_cpst->X1. State_cpst->X1 = X_s32

]()

[SWS_Efx_00134] [

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit

8.5.3.7.4 'PI' Controller – Type2 with limitation (Explicit type)

[SWS_Efx_00475] [

Service name:	Efx_PITyp2Lim	nCalc	
Syntax:	void Efx_PITyp2LimCalc(sint32 X_s32, Efx_StatePI_Type* State_cpst, const Efx_ParamPI_Type* Param_cpst, const Efx_Limits_Type* Limit_cpst, sint32 dT_s32)		
Service ID[hex]:	0x36		
Sync/Async:	Synchronous	Synchronous	
Reentrancy:	Reentrant		
Parameters (in):	X_s32 Param_cpst Limit_cpst dT_s32	Input value for the 'PI' controller Pointer to parameter structure Pointer to limit structure Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst	Pointer to the internal state structure	
Parameters (out):	None		
Return value:	void	No return value	
Description:	This routine computes Proportional plus integral controller (explicit type) output value using differential equation: Yn = Yn-1 + K * (1 + dT/Tn) * Xn - K * Xn-1		

]()

[SWS_Efx_00476][

This equation derives implementation:

Output_value = State_cpst->Y1 + (Param_cpst->K_C * (1 + Param_cpst->Tnrec_C * dT_s32) * X_s32) - (Param_cpst->K_C * State_cpst->X1) |()

[SWS_Efx_00477][

Limit output value with minimum and maximum controller limits. If (Output value < Limit_cpst->Min_C) Then,
Output_value = Limit_cpst->Min_C
If (Output value > Limit_cpst->Max_C) Then,
Output_value = Limit_cpst->Max_C
]()

[SWS_Efx_00478][

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value]()

[SWS_Efx_00479][

Current input value X_s32 shall be stored to State_cpst->X1. State_cpst->X1 = X_s32 |()

[SWS_Efx_00480][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit J()

8.5.3.7.5 Set 'PI' State Value

This routine can be realised using inline function.

[SWS_Efx_00135] [

Service name:	Efx_PISetState			
Syntax:	<pre>void Efx_PISetState(Efx_StatePI_Type* State_cpst, sint32 X1_s32, sint16 Y1_s16)</pre>			
Service ID[hex]:	0x47			
Sync/Async:	Synchronous	Synchronous		
Reentrancy:	Reentrant			
Paramatara (in)	X1_s32	Initial value for input state		
Parameters (in):	Y1_s16	Initial value for output state		
Parameters (inout):	None			
Parameters (out):	State_cpst	Pointer to internal state structure		
Return value:	void	No return value		
Description:	The routine initialises	internal state variables of a PI element.		

[SWS_Efx_00136][

Initialisation of output state variable Y1. State_cpst->Y1 = Y1_s16 << 16]()

[SWS_Efx_00137][

The internal state of the PD element is stored as (Y1_s16 << 16)]()

[SWS_Efx_00138][

Initialisation of input state variable X1. State_cpst->X1 = X1_s32 J()

8.5.3.7.6 Set 'PI' Parameters

This routine can be realised using inline function.

[SWS_Efx_00139] [

Service name:	Efx_PISetParam			
Syntax:	<pre>void Efx_PISetParam(Efx_ParamPI_Type* Param_cpst, sint32 K_s32, sint32 Threc)</pre>			
Service ID[hex]:	0x48			
Sync/Async:	Synchronous	Synchronous		
Reentrancy:	Reentrant			
Parameters (in):	K_s32	Amplification factor		
raiailleleis (III).	Tnrec	Reciprocal follow-up time		
Parameters (inout):	None			
Parameters (out):	Param_cpst	Pointer to internal parameter structure		
Return value:	void	No return value		
Description:	The routine sets the	The routine sets the parameter structure of a PI element.		
]		()	

[SWS_Efx_00140][

Initialisation of amplification factor. Param_cpst->K_C = K_s32 I()

[SWS_Efx_00141][

Initialisation of reciprocal follow up time state variable Param_cpst->Tnrec_C = Tnrec_s32]()

8.5.3.7.7 Get 'PI' output

This routine can be realised using inline function.

[SWS_Efx_00142] [

Service name:	Efx_PIOut_ <outtypemn></outtypemn>		
Syntax:	<outtype> Efx PIOut <outtypemn>(</outtypemn></outtype>		
	const Efx StatePI Type* State cpst		
)		
Service ID[hex]:	0x49 to 0x4A		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	State_cpst Pointer to constant state structure		
Parameters	None		
(inout):			
Parameters (out):	None		
Return value:	<outtype> Return 'PI' controller output value</outtype>		
Description:	This routine returns 'PI' controllers output value.		

[SWS_Efx_00143][

Output value = State_cpst->Y1 >> 16 I()

[SWS_Efx_00144][

Output value shall be normalized by 16 bit right shift of internal state variable. I()

[SWS_Efx_00145][

Return value shall be limited by boundary values of the return data type. I()

[SWS_Efx_00146] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x49	sint16 Efx_PIOut_s16(const Efx_StatePI_Type *)
0x4A	sint8 Efx_PIOut_s8(const Efx_StatePI_Type *)

]()

8.5.3.8 Proportional, Integral and Differential controller

This routine is a combination of Proportional, integral and differential controller. Routine Efx_CtrlSetLimits shall be used to set limits for this controller in case of limited functionality.

8.5.3.8.1 'PID' Controller – Type1 (Implicit type)

[SWS_Efx_00150] [

Service name:	Efx_PIDTyp1Calc		
Syntax:	<pre>void Efx_PIDTyp1Calc(sint32 X_s32, Efx_StatePID_Type* State_cpst, const Efx_ParamPID_Type* Param_cpst, sint32 dT_s32)</pre>		
Service ID[hex]:	0x4B		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	X_s32	Input value for the 'PID' controller	
		Parameter structure	
	dT_s32	Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst	Pointer to the internal state structure.	
Parameters (out):	None		
Return value:	void	No return value	
Description:	This routine computes Proportional plus integral plus derivative controller (implicit type) output value using differential equation: Yn=Yn-1+ K * (1 + Tv/dT) * Xn- K *(1 - dT/Tn + 2Tv/dT) * Xn-1 + K * (Tv/dT) * Xn-2		

]()

[SWS Efx 00151] [

```
This equation derives implementation:
```

calc1 = Param_cpst->K_C * (1 + t_val) * X_s32

calc2 = Param_cpst->K_C * (1 - dT_s32 * Param_cpst->Tnrec_C + 2 * t_val) *

State cpst->X1

calc3 = Param_cpst->K_C * t_val * State_cpst->X2

Output_value = State_cpst->Y1 + calc1 - calc2 + calc3

Where t_val = Param_cpst->Tv_C / dT_s32

The result shall be Rounded towards Zero.

]()

[SWS_Efx_00152][

Calculated Output_value shall be stored to State_cpst->Y1.

State_cpst->Y1 = Output_value

|()

[SWS_Efx_00153][

Old input value State_cpst->X1 shall be stored to State_cpst->X2 State_cpst->X2 = State_cpst->X1

Current input value X_s32 shall be stored to State_cpst->X1.

State_cpst-> $X1 = X_s32$

(()

[SWS_Efx_00154][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit I()

8.5.3.8.2 'PID' Controller – Type1 with limitation (Implicit type)

[SWS_Efx_00485] [

Service name:	Efx_PIDTyp1LimCalc		
Syntax:	<pre>void Efx_PIDTyp1LimCalc(sint32 X_s32, Efx_StatePID_Type* State_cpst, const Efx_ParamPID_Type* Param_cpst, const Efx_Limits_Type* Limit_cpst, sint32 dT_s32)</pre>		
Service ID[hex]:	0x37		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	X_s32 Param_cpst Limit_cpst dT_s32	Input value for the 'PID' controller Pointer to parameter structure Pointer to limit structure Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst	Pointer to the internal state structure.	
Parameters (out):	None		
Return value:	void	No return value	
Description:	This routine computes Proportional plus integral plus derivative controller (implicit type) output value using differential equation: Yn=Yn-1+ K * (1 + Tv/dT) * Xn- K *(1 - dT/Tn + 2Tv/dT) * Xn-1 + K * (Tv/dT) * Xn-2		

]()

[SWS_Efx_00486][

```
This equation derives implementation:
calc1 = Param_cpst->K_C * (1 + t_val) * X_s32
calc2 = Param_cpst->K_C * (1 - dT_s32 * Param_cpst->Tnrec_C + 2 * t_val) *
State_cpst->X1
calc3 = Param_cpst->K_C * t_val * State_cpst->X2
Output_value = State_cpst->Y1 + calc1 - calc2 + calc3
Where t_val = Param_cpst->Tv_C / dT_s32
|()
```

[SWS_Efx_00487][

Limit output value with minimum and maximum controller limits. If (Output value < Limit_cpst->Min_C) Then,
Output_value = Limit_cpst->Min_C
If (Output value > Limit_cpst->Max_C) Then,
Output_value = Limit_cpst->Max_C
J()

[SWS Efx 00488][

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value I()

[SWS Efx 00489][

Old input value State_cpst->X1 shall be stored to State_cpst->X2 State_cpst->X2 = State_cpst->X1

Current input value X_s32 shall be stored to State_cpst->X1. $State_cpst->X1 = X_s32$ |()|

[SWS_Efx_00490][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit]()

8.5.3.8.3 'PID' Controller – Type2

[SWS_Efx_00155] [

Service name:	Efx_PIDTyp2Calc		
Syntax:	<pre>void Efx_PIDTyp2Calc(sint32 X_s32, Efx_StatePID_Type* State_cpst, const Efx_ParamPID_Type* Param_cpst, sint32 dT_s32)</pre>		
Service ID[hex]:	0x4C		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	Param_cpst dT_s32	Input value for the 'PID' controller Parameter structure Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst	Pointer to the internal state structure.	
Parameters (out):	None		
Return value:	void	No return value	
Description:	This routine computes Proportional plus integral plus derivative controller (explicit type) output value using differential equation: Yn = Yn-1 + K * (1 + dT/Tn+ Tv/dT) * Xn- K *(1 + 2Tv/dT) * Xn-1+ K * (Tv/dT) * Xn-2		

]()

[SWS Efx 00156][

This equation derives implementation:

calc1 = Param_cpst->K_C * (1 + dT_s32 * Param_cpst->Tnrec_C + t_val) * X_s32 calc2 = Param_cpst->K_C * (1 + 2 * t_val) * State_cpst->X1

calc3 = Param_cpst->K_C * t_val * State_cpst->X2

Output_value = State_cpst->Y1 + calc1 - calc2 + calc3 Where t_val = Param_cpst->Tv_C / dT_s32 The result shall be Rounded towards Zero. I()

[SWS_Efx_00157][

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value I()

[SWS_Efx_00158][

Old input value State_cpst->X1 shall be stored to State_cpst->X2 State_cpst->X2 = State_cpst->X1

Current input value X_s32 shall be stored to State_cpst->X1. State_cpst->X1 = X_s32]()

[SWS_Efx_00159][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit]()

8.5.3.8.4 'PID' Controller - Type2 with limitation

[SWS_Efx_00495] [

Service name:	Efx_PIDTyp2LimCalc		
Syntax:	<pre>void Efx_PIDTyp2LimCalc(sint32 X_s32, Efx_StatePID_Type* State_cpst, const Efx_ParamPID_Type* Param_cpst, const Efx_Limits_Type* Limit_cpst, sint32 dT_s32)</pre>		
Service ID[hex]:	0x4F		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	Param_cpst	Input value for the 'PID' controller Pointer to parameter structure	
	Limit_cpst dT_s32	Pointer to limit structure Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst	Pointer to the internal state structure	
Parameters (out):	None		
Return value:	void	No return value	
Description:	This routine computes Proportional plus integral plus derivative controller (explicit type) output value using differential equation: $Yn = Yn-1 + K*(1 + dT/Tn+ Tv/dT)*Xn-K*(1 + 2Tv/dT)*Xn-1+ K*(Tv/dT)*Xn-2$		

[SWS_Efx_00496][

```
This equation derives implementation:
```

```
calc1 = Param_cpst->K_C * (1 + dT_s32 * Param_cpst->Tnrec_C + t_val) * X_s32 calc2 = Param_cpst->K_C * (1 + 2 * t_val) * State_cpst->X1 calc3 = Param_cpst->K_C * t_val * State_cpst->X2 Output_value = State_cpst->Y1 + calc1 - calc2 + calc3 Where t_val = Param_cpst->Tv_C / dT_s32
```

I()

I()

[SWS_Efx_00497][

Limit output value with minimum and maximum controller limits. If (Output value < Limit_cpst->Min_C) Then, Output_value = Limit_cpst->Min_C If (Output value > Limit_cpst->Max_C) Then, Output_value = Limit_cpst->Max_C

[SWS_Efx_00498][

Calculated Output_value shall be stored to State_cpst->Y1. State_cpst->Y1 = Output_value |()

[SWS_Efx_00499][

Old input value State_cpst->X1 shall be stored to State_cpst->X2 State_cpst->X2 = State_cpst->X1

Current input value X_s32 shall be stored to State_cpst->X1. State_cpst->X1 = X_s32]()

[SWS_Efx_00500][

Resolution of dT_s32 is 10^{-6} seconds per increment of 1 data representation unit J()

8.5.3.8.5 Set 'PID' State Value

This routine can be realised using inline function.

[SWS_Efx_00160] [

Service name:	Efx_PIDSetState
Syntax:	<pre>void Efx_PIDSetState(Efx_StatePID_Type* State_cpst, sint32 X1_s32, sint32 X2_s32, sint16 Y1_s16)</pre>
Service ID[hex]:	0x4D

Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	X1_s32	Initial value for input state
Parameters (in):	X2_s32	Initial value for input state
	Y1_s16	Initial value for output state
Parameters	None	
(inout):		
Parameters (out):	State_cpst	Pointer to internal state structure
Return value:	void	No return value
Description:	The routine initialises	internal state variables of a PID element.

[SWS_Efx_00161][

Initialisation of output state variable Y1. State_cpst->Y1 = Y1_s16 << 16 J()

[SWS_Efx_00162][

The internal state of the PD element is stored as (Y1_s16 << 16)]()

[SWS_Efx_00163][

Initialisation of input state variable X1. State_cpst->X1 = X1_s32 Initialisation of input state variable X2. State_cpst->X2 = X2_s32 J()

8.5.3.8.6 Set 'PID' Parameters

This routine can be realised using inline function.

[SWS_Efx_00164] [

Service name:	Efx_PIDSetParam		
Syntax:	void Efx_PIDSetParam(
	Efx_ParamP	ID_Type* Param_cpst,	
	sint32 K_s3	32,	
	sint32 Tv_s		
	sint32 Tnre	ec_s32	
)		
Service ID[hex]:	0x4E		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	K_s32	Amplification factor	
Parameters (in):	Tv_s32	Lead Time	
	Tnrec_s32	Reciprocal follow-up timer	
Parameters	None		
(inout):			
Parameters (out):	Param_cpst Pointer to internal parameter structure		
Return value:	void	No return value	

Description:	The routine sets the parameter structure of a PID element.

[SWS Efx 00165][

Initialisation of amplification factor. Param_cpst->K_C = K_s32

I()

[SWS_Efx_00166] [

Initialisation of lead time state variable Param_cpst->Tv_C = Tv_s32

]()

[SWS_Efx_00167] [

Initialisation of reciprocal follow up time state variable Param_cpst->Tnrec_C = Tnrec_s32

]()

8.5.3.8.7 Get 'PID' output

This routine can be realised using inline function.

[SWS_Efx_00168] [

Service name:	Efx_PIDOut_ <outtypemn></outtypemn>		
Syntax:		DOut_ <outtypemn>(</outtypemn>	
	const Efx_St	atePID_Type* State_cpst	
Service ID[hex]:	0x50 to 0x51		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	State_cpst	Pointer to constant state structure	
Parameters	None		
(inout):			
Parameters (out):	None		
Return value:	<outtype></outtype>	Return 'PID' controller output value	
Description:	This routine returns 'PID' controllers output value.		

]()

[SWS_Efx_00169][

Output value = State_cpst->Y1 >> 16

|()

[SWS_Efx_00170] [

Output value shall be normalized by 16 bit right shift of internal state variable.

]()

[SWS_Efx_00171] [

Return value shall be limited by boundary values of the return data type.

]()

[SWS_Efx_00172] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x50	sint16 Efx_PIDOut_s16(const Efx_StatePID_Type *)
0x51	sint8 Efx_PIDOut_s8(const Efx_StatePID_Type *)

]()

8.5.4 Square root

[SWS_Efx_00175] [

o .	E(0 , 00 00	
Service name:	Efx_Sqrt_u32_u32	
Syntax:	uint32 Efx_Sq	
	uint32 x_v	<i>v</i> alue
)	
Service ID[hex]:	0x52	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	x_value	Argument Physical range: [0, 1] Resolution: 1/2 ³²
Parameters (inout):	None	
Parameters (out):	None	
Return value:	uint32	Return value of the function Physical range: [0, 1] Resolution: 1/2 ³²
Description:	This service comp	utes the square root of a value

]()

[SWS_Efx_00176][

Result = square_root (x_value)

[SWS_Efx_00177][

The result is rounded off.

|()

[SWS_Efx_00178] [

Service name:	Efx_Sqrt_u16_u16
Syntax:	uint16 Efx_Sqrt_u16_u16(

		1
	uint16 x_value	
)	
Service ID[hex]:	0x53	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	x_value	Argument Physical range: [0, 1] Resolution: 1/2 ¹⁶
Parameters (inout):	None	
Parameters (out):	None	
Return value:	uint16	Return value of the function Physical range: [0, 1] Resolution: 1/2 ¹⁶
Description:	This service computes the square root of a value	

[SWS_Efx_00179][

Result = square_root (x_value)
J()

[SWS_Efx_00180][

The result is rounded off.]()

[SWS_Efx_00181] [

Service name:	Efx_Sqrt_u8_u8		
Syntax:	uint8 Efx_Sqrt uint8 x_va)		
Service ID[hex]:	0x54		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):		Argument Physical range: [0, 1] Resolution: 1/2 ⁸	
Parameters (inout):	None		
Parameters (out):	None		
Return value:		Return value of the function Physical range: [0, 1] Resolution: 1/2 ⁸	
Description:	This service compu	This service computes the square root of a value	

]()

[SWS_Efx_00182][

Result = square_root (x_value)

[SWS_Efx_00183][

The result is rounded off. J()

8.5.5 Exponential

[SWS_Efx_00185] [

Service name:	Efx_Exp_s32_s32		
Syntax:	sint32 Efx_Exp_s32_s32(sint32 Value1)		
Service ID[hex]:	0x55		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant	Reentrant	
Parameters (in):	Value1	Input value	
Parameters (inout):	None		
Parameters (out):	None		
Return value:	sint32	Return value of the function	
Description:	The routine returns exponential value of an input value.		

]()

[SWS_Efx_00186][

Output = e^{-x} where x = Value1 ()

[SWS Efx 00187][

Output is quantized by 2^16
Output Range = ([0.00004539....22026.4657948] * 2^16) = [2....1443526462]
Input Range = ([-10....10] * 2^16) = [0xFFF60000....0x000A0000]
J()

8.5.6 Average

[SWS_Efx_00190] [

Service name:	Efx_Average_s32_s32		
Syntax:	<pre>sint32 Efx_Average_s32_s32(sint32 value1, sint32 value2)</pre>		
Service ID[hex]:	0x5A	0x5A	
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	value1	Input value1	
Parameters (m).	value2	Input value2	

Parameters (inout):	None	
Parameters (out):	None	
Return value:	sint32	Return value of the function
Description:	The routine returns average value.	

[SWS_Efx_00191][

Output = (Value1 + Value2) / 2 (()

[SWS_Efx_00192] [

The result is rounded towards zero.

]()

8.5.7 Array Average

[SWS_Efx_00193] [

Service name:	Efx_Array_Average_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre><outtype> Efx_Array_Average_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>	
Service ID[hex]:	0x60 and 0x61	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	Array	Pointer to an array
rarameters (m).	Count Number of array elements	
Parameters (inout):	None	
· /	None	
Return value:	<outtype> Return value of the function</outtype>	
Description:	The routine returns average value of an array.	

[SWS_Efx_00194][

Output = (Array[0] + Array[1] + ... + Array[N-1]) / Count |()

[SWS_Efx_00195] [

The result is rounded towards zero.

]()

[SWS_Efx_00196] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x60	sint32 Efx_Array_Average_s32_s32(sint32*, uint16)

8.5.8 Moving Average

[SWS_Efx_00197] [

Service name:	Efx_MovingAverage_ <intypemn>_<outtypemn></outtypemn></intypemn>		
Syntax:	<pre><outtype> Efx_MovingAverage_<intypemn>_<outtypemn>(Efx_MovingAvrg<intypemn>_Type* state, <intype> value)</intype></intypemn></outtypemn></intypemn></outtype></pre>		
Service ID[hex]:	0x6A to 0x6B		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	value	Input value	
Parameters (inout):	state Pointer to sliding average structure		
Parameters (out):	None		
Return value:	<outtype> Return value of the function</outtype>		
Description:	The routine returns sliding average value of n - 1 last subsequent values of an array plus one new value.		

]()

[SWS_Efx_00198][

state ->p_beg pointer holds start address of an array state ->p_end pointer holds end address of an array state ->p_act pointer holds address of an oldest entry of an array |()

[SWS_Efx_00199] [

state ->sum shall store total sum including 'value' & excluding oldest entry state ->sum = state ->sum - *(state ->p_act) + value | ()

[SWS_Efx_00200] [

In every routine call state ->p_act shall be incremented with wrap around. This increment ensures that oldest entry gets replaced with new entry.

]()

[SWS Efx 00201] [

Output_value = state->sum / state->n

()

[SWS_Efx_00202] [

If state ->n = 0 the result shall be zero by definition.

[SWS_Efx_00203] [

The result is rounded towards zero.

]()

Structure definition for function argument

[SWS_Efx_00204] [

Name:	Efx_MovingA	Efx_MovingAvrgS16_Type		
Туре:	Structure	Structure		
Element:	sint32	sint32 sum Sum of array elements		
	sint16	n	Size of an array (only positive values)	
	sint16	*p_beg	Pointer to the first array element	
	sint16	*p_end	Pointer to the last array element	
	sint16	*p_act	Pointer to the oldest entry array element	
Description:	Structure defin	Structure definition for sliding average routine for sint16 input value		

]()

[SWS_Efx_00836][

Name:	Efx_MovingA	Efx_MovingAvrgS32_Type		
Туре:	Structure	Structure		
Element:	sint64	sum	Sum of array elements	
	sint32	n	Size of an array (only positive values)	
	sint32	*p_beg	Pointer to the first array element	
	sint32	*p_end	Pointer to the last array element	
	sint32	*p_act	Pointer to the oldest entry array element	
Description:	Structure defin	Structure definition for sliding average routine for sint32 input value		

1 ()

[SWS_Efx_00205] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x6A	sint16 Efx_MovingAverage_s16_s16(Efx_MovingAvrgS16_Type*, sint16)
0x6B	sint32 Efx_MovingAverage_s32_s32(Efx_MovingAvrgS32_Type*, sint32)

]()

8.5.9 Hypotenuse

The formula used for calculation in the below hypotenuse requirements is, sqrt(x_value * x_value/2 + y_value * y_value/2).

This is to achieve the specified resolution in the result.

<u>Warning:</u> Hypotenuse functions shall not be used directly for distance computation because the result has not the same resolution than the inputs.

[SWS_Efx_00210] [

Service name:	Efx_Hypot_u32u32_	_u32
Syntax:	uint32 Efx_Hypot_u32u32_u32(
	uint32 x_va	
	uint32 y_va	alue
)	
Service ID[hex]:	0x70	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Paramotore (in)	x_value	First argument Physical range: [0, 1] Resolution: 1/2 ³²
Parameters (in):	y_value	Second argument Physical range: [0, 1] Resolution: 1/2 ³²
Parameters (inout):	None	
Parameters (out):	None	
Return value:	uint32	Return value of the function Physical range: [0, sqrt(2)] Resolution: sqrt(2)/2 ³²
Description:	This service comput	tes the length of a vector

[SWS_Efx_00211] [

Result = sqrt(x_value * x_value/2 + y_value * y_value/2)

]()

[SWS_Efx_00212] [

The result is rounded off.

]()

[SWS_Efx_00213] [

Service name:	Efx_Hypot_u16u16_u16		
Syntax:	uint16 Efx_Hypot_u16u16_u16(uint16 x_value, uint16 y_value)		
Service ID[hex]:	0x71		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	x_value y_value	First argument Physical range: [0, 1] Resolution: 1/2 ¹⁶ Second argument Physical range: [0, 1] Resolution: 1/2 ¹⁶	
Parameters (inout):	None		
Parameters (out):	None		
Return value:	uint16 Return value of the function Physical range: [0, sqrt(2)]		

	Resolution: sqrt(2)/2 ¹⁶
Description:	This service computes the length of a vector

[SWS_Efx_00214] [

Result = sqrt(x_value * x_value/2 + y_value * y_value/2)

[SWS_Efx_00215] [

The result is rounded off.

]()

[SWS_Efx_00216] [

Service name:	Efx_Hypot_u8u8_	u8
Syntax:	<pre>uint8 Efx_Hypot_u8u8_u8(uint8 x_value, uint8 y_value)</pre>	
Service ID[hex]:	0x72	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	x_value y_value	First argument Physical range: [0, 1] Resolution: 1/2 ⁸ Second argument Physical range: [0, 1] Resolution: 1/2 ⁸
Parameters (inout):	None	
Parameters (out):	None	
Return value:	uint8	Return value of the function Physical range: [0, sqrt(2)] Resolution: sqrt(2)/2 ⁸
Description:	This service computes the length of a vector	

]()

[SWS_Efx_00217] [

Result = sqrt(x_value * x_value/2 + y_value * y_value/2)

[SWS_Efx_00218] [

The result is rounded off.

]()

8.5.10 Trigonometric functions

8.5.10.1 Sine function

[SWS_Efx_00220] [

Service name:	Efx_Sin_s32_s32	
Syntax:	sint32 Efx_Sin_s32_s32(sint32 x_value	
Service ID[hex]:	0x75	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	x_value	Argument Physical range: [-PI, PI] Resolution: 2*PI/2 ³²
Parameters (inout):	None	
Parameters (out):	None	
Return value:		Return value of the function Physical range: [-1, 1] Resolution: 1/((2 ³¹)-1)
Description:	This service comp	utes the sine of an angle.

]()

[SWS_Efx_00222] [

The result is rounded off.

]()

[SWS_Efx_00223] [

Service name:	Efx_Sin_s16_s16	
Syntax:	sint16 Efx_Sir	
	sint16 x_v	value
)	
Service ID[hex]:	0x76	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):		Argument Physical range: [-PI, PI] Resolution: 2*PI/2 ¹⁶
Parameters (inout):	None	
Parameters (out):	None	
Return value:		Return value of the function Physical range: [-1, 1] Resolution: 1/((2 ¹⁵)-1)
Description:	This service comp	utes the sine of an angle.

[SWS_Efx_00225] [

The result is rounded off.

]()

[SWS_Efx_00226] [

Corrido nomo:	Efy Cin at at	
Service name:	Efx_Sin_s8_s8	
Syntax:	sint8 Efx_Sin_	
	sint8 x va	alue
)	
Service ID[hex]:	0x77	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	x_value	Argument
Parameters (in):		Physical range: [-PI, PI]
		Resolution: 2*PI/2^8
Parameters	None	
(inout):		
Parameters (out):	None	
	sint8	Return value of the function
Return value:		Physical range: [-1, 1]
		Resolution: 1/((2^7)-1)
Description:	This service comp	utes the sine of an angle.

]()

[SWS_Efx_00228] [
The result is rounded off.

1()

Cosine function 8.5.10.2

[SWS_Efx_00229] [

Service name:	Efx_Cos_s32_s32	
Syntax:	sint32 Efx_Cos_s32_s32(sint32 x value	
)	
Service ID[hex]:	0x7A	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):		Argument Physical range: [-PI, PI] Resolution: 2*PI/2 ³²
Parameters (inout):	None	
Parameters (out):	None	
Return value:		Return value of the function Physical range: [-1, 1] Resolution: 1/((2 ³¹)-1)

Description:	This service computes the cosine of an angle.

[SWS_Efx_00231][

The result is rounded off.]()

[SWS_Efx_00232] [

Service name:	Efx_Cos_s16_s16	
Syntax:	sint16 Efx_Cos	
	sint16 x_v)	value
Service ID[hex]:	0x7B	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	x_value	Argument Physical range: [-PI, PI] Resolution: 2*PI/2 ¹⁶
Parameters (inout):	None	
Parameters (out):	None	
Return value:	sint16	Return value of the function Physical range: [-1, 1] Resolution: 1/((2 ¹⁵)-1)
Description:	This service comp	utes the cosine of an angle.

]()

[SWS_Efx_00234][
The result is rounded off.

]()

[SWS_Efx_00235] [

Service name:	Efx_Cos_s8_s8	
Syntax:	sint8 Efx Cos s8 s8(
	sint8 x_vai	Lue
)	
Service ID[hex]:	0x7C	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):		Argument Physical range: [-PI, PI] Resolution: 2*PI/2 ⁸
Parameters (inout):	None	
Parameters (out):	None	
Return value:	l F	Return value of the function Physical range: [-1, 1] Resolution: 1/((2 ⁷)-1)
Description:	This service compu	tes the cosine of an angle.

]()

[SWS_Efx_00237][

The result is rounded off. J()

8.5.10.3 Inverse Sine function

[SWS_Efx_00240] [

0	IE(A	00
Service name:	Efx_Arcsin_s32_s32	
Syntax:	sint32 Efx_Arc	
	sint32 x	value
)	
Service ID[hex]:	0x80	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	x_value	Argument Physical range: [-1, 1] Resolution: 1/((2 ³¹)-1)
Parameters (inout):	None	
Parameters (out):	None	
Return value:	sint32	Return value of the function Physical range: [-Pl/2 , Pl/2] Resolution: Pl/((2 ³²)-1)
Description:	This service comp	utes the inverse sine of a value.

]()

[SWS_Efx_00242][

The result is rounded off.

]()

[SWS_Efx_00243] [

Service name:	Efx_Arcsin_s16_s	16
Syntax:	sint16 Efx Arcsin s16 s16(
	sint16 x_v	value
)	
Service ID[hex]:	0x81	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):		Argument Physical range: [-1, 1] Resolution: 1/((2 ¹⁵)-1)
Parameters (inout):	None	
Parameters (out):	None	
Return value:		Return value of the function Physical range: [-PI/2 , PI/2] Resolution: PI/((2 ¹⁶)-1)
Description:	This service comp	utes the inverse sine of a value.

[SWS_Efx_00245][

The result is rounded off. J()

[SWS_Efx_00246] [

Service name:	Efx_Arcsin_s8_s8	Efx_Arcsin_s8_s8	
Syntax:	sint8 Efx_Arcsin_s8_s8(sint8 x value		
)		
Service ID[hex]:	0x82		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	x_value Argument Physical range: [-1, 1] Resolution: 1/((2 ⁷)-1)		
Parameters (inout):	None		
Parameters (out):	None		
Return value:	sint8 Return value of the funct Physical range: [-PI/2, P Resolution: PI/((2 ⁸)-1)		
Description:	This service computes the inverse sine of a	value.	

]()

[SWS_Efx_00248][

The result is rounded off.

]()

8.5.10.4 Inverse cosine function

[SWS_Efx_00250] [

Service name:	Efx_Arccos_s32_u32	
Syntax:	uint32 Efx Arccos s32 u32(
	sint32 x_v	alue
)	
Service ID[hex]:	0x85	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):		Argument Physical range: [-1, 1] Resolution: 1/((2 ³¹)-1)
Parameters (inout):	None	
Parameters (out):	None	
Return value:		Return value of the function Physical range: [0 , PI] Resolution: PI/((2 ³²)-1)
Description:	This service compu	ites the inverse cosine of a value.

[SWS_Efx_00252][

The result is rounded off. J()

[SWS_Efx_00253] [

Service name:	Efx_Arccos_s16_u16	
Syntax:	uint16 Efx Arccos s16 u16(
	sint16 x_va	alue
)	
Service ID[hex]:	0x86	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	P	Argument Physical range: [-1, 1] Resolution: 1/((2 ¹⁵)-1)
Parameters (inout):	None	
Parameters (out):	None	
Return value:		Return value of the function Physical range: [0 , PI] Resolution: PI/((2 ¹⁶)-1)
Description:	This service comput	tes the inverse cosine of a value.

]()

[SWS_Efx_00255][

The result is rounded off. J()

[SWS_Efx_00256] [

Service name:	Efx_Arccos_s8_u8	
Syntax:	uint8 Efx_Arcc	os_s8_u8(
	sint8 x_va	lue
)	
Service ID[hex]:	0x87	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):		Argument Physical range: [-1, 1] Resolution: 1/((2 ⁷)-1)
Parameters (inout):	None	
Parameters (out):	None	
Return value:		Return value of the function Physical range: [0 , PI] Resolution: PI/((2 ⁸)-1)
Description:	This service compu	ites the inverse cosine of a value.

]()

[SWS_Efx_00258][

The result is rounded off. I()

8.5.11 Rate limiter

[SWS_Efx_00261] [

Service name:	Efx_SlewRa	te_ <intypemn></intypemn>	
Syntax:	<pre>void Efx_SlewRate_<intypemn>(</intypemn></pre>		
Service ID[hex]:	0x8B to 0x8I	0x8B to 0x8E	
Sync/Async:	Synchronous		
Reentrancy:	Reentrant	Reentrant	
	limit_pos	positive slope	
Parameters (in):	input	Input signal	
	limit_neg negative slope		
Parameters	output	Output signal	
(inout):	init Pointer on a flag used to detect the first call of the API		
Parameters (out):	None		
Return value:	void No return value		
Description:	The routine limits the increase and the decrease of the Input entry by using tunable slopes.		

]()

[SWS_Efx_00262][

If *init==0, *output=input
|()

[SWS Efx 00264][

Input, limit_pos, limit_neg and output must have the same resolution and the same physical unit.

1()

[SWS Efx 00265][

If the result of the Efx_SlewRate is only computed when some conditions are fulfilled, do not call the slew rate under the condition, but systematically! The slew rate must be called at each recurrence, even if it is not used, because otherwise, the output will be frozen to the previous value all the time, if conditions are not fulfilled. I()

[SWS_Efx_00266][

The parameters given for output and init, for which we receive the addresses, must be declared by the caller as private variables and will be initialized at 0, because the function uses the previous values of these outputs (so the stack must not be used).

|()

[SWS_Efx_00267][

Physical values of limit_pos and limit_neg are positive. Internally limit_pos is added to output value and limit_neg is substracted from output value to get upper and lower limit band within which output value is limited.

[()

[SWS_Efx_00268][

At first step, when *init==0, output takes the value of input and *init will be put at 1. I()

[SWS Efx 00269][

limit_pos is added to the output and it becomes the maximum value of the new output

limit_neg is deducted from the output and it becomes the minimum value of the new output.

If input is outside this range, output is limited to these values, in the other case, output takes the value of input

(()

[SWS_Efx_00270][

Values of limit_pos and limit_neg shall be adapted to the frequency of the call of the service.

(()

[SWS_Efx_00271] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x8B	void Efx_SlewRate_u16 (uint16, uint16, uint16, uint16 *, uint8 *)
0x8C	void Efx_SlewRate_s16 (uint16, sint16, uint16, sint16 *, uint8 *)
0x8D	void Efx_SlewRate_u32 (uint32, uint32, uint32, uint32 *, uint8 *)
0x8E	void Efx_SlewRate_s32 (uint32, sint32, uint32, sint32 *, uint8 *)

]()

8.5.12 Ramp routines

In case of a change of the input value, the ramp output value follows the input value with a specified limited slope.

Efx_ParamRamp_Type and Efx_StateRamp_Type are the data types for storing ramp parameters. Usage of Switch-Routine and Jump-Routine is optional based on the functionality requirement. Usage of Switch-Routine, Jump-Routine, Calc-Routine and Out-Method have the following precondition concerning the sequence of the calls.

- Efx RampCalcSwitch
- Efx RampCalcJump
- Efx_RampCalc
- Efx RampOut S32

Structure definition for function argument

[SWS_Efx_00275] [

Name:	Efx_ParamRamp_Type			
Type:	Structure			
Element:	uint32 SlopePos_u32 Positive slope for ramp in absolute value			
	uint32	SlopeNeg_u32	Negative slope for ramp in absolute	
			value	
Description:	Structure definition for Ramp routine			

[SWS_Efx_00834][

Name:	Efx_StateRa	Efx_StateRamp_Type			
Туре:	Structure	Structure			
Element:	sint32	sint32 State_s32 State of the ramp			
	sint8	Dir_s8	Ramp direction		
	sint8	Switch_s8	Position of switch		
Description:	Structure defir	Structure definition for Ramp routine			

] ()

8.5.12.1 Ramp routine

[SWS_Efx_00276] [

Service name:	Efx_RampCalc		
Syntax:	<pre>void Efx_RampCalc(sint32 X_s32, Efx_StateRamp_Type* State_cpst, const Efx_ParamRamp_Type* Param_cpcst, sint32 dT_s32)</pre>		
Service ID[hex]:	0x90		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	X_s32 Param_cpcst dT_s32	Target value for the ramp to reach Pointer to parameter structure Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters (inout):	State_cpst	Pointer to state structure	
Parameters (out):	None		
Return value:	None		
Description:	The ramp output value increases or decreases a value with slope * dT_s32 depending if (State_cpst->State_s32 < X_s32) or (State_cpst->State_s32 > X_s32).		

]()

[SWS_Efx_00837][

If the ramp state State_cpst->State_s32 has reached or crossed the target value X_s32 while the direction of the ramp had been RISING/FALLING, then set State_cpst->State_s32 = X_s32]()

[SWS_Efx_00278][

If ramp direction is rising then ramp increases a value with slope * dT_s32 if (State_cpst->Dir_s8 == RISING) State_cpst->State_s32 = State_cpst->State_s32 + (Param_cpcst->SlopePos_u32 * dT_s32)]()

[SWS_Efx_00279][

If ramp direction is falling then ramp decreases a value with slope * dT_s32 if (State_cpst->Dir_s8 == FALLING) State_cpst->State_s32 = State_cpst->State_s32 - (Param_cpcst->SlopeNeg_u32 * dT_s32) | ()

[SWS_Efx_00280][

Direction of the ramp is stored so that a change of the target can be recognized and the output will follow immediately to the new target value.

State_cpst->Dir_s8 states are: RISING, FALLING, END.

[()

[SWS_Efx_00281][

Comparison of State and Target decides ramp direction

If(State_cpst->State_s32 > X_s32) then State_cpst->Dir_s8 = FALLING

If(State_cpst->State_s32 < X_s32) then State_cpst->Dir_s8 = RISING

If(State_cpst->State_s32 == X_s32) then State_cpst->Dir_s8 = END

I()

[SWS Efx 00284][

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit J()

8.5.12.2 Ramp Initialisation

[SWS Efx 00285] [

Service name:	Efx_RampInitState		
Syntax:	<pre>void Efx_RampInitState(Efx_StateRamp_Type* State_cpst, sint32 Val_s32)</pre>		
Service ID[hex]:	0x91		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	Val_s32	Val_s32 Initial value for state variable	
Parameters (inout):	State_cpst	Pointer to the state structure	
Parameters (out):	None		
Return value:	None		
Description:	Initializes the state, direct	ion and switch parameters for the ramp.	

[SWS_Efx_00286][

Ramp direction is initialised with END value. User has no possibility to change or modify ramp direction.

State_cpst->Dir_s8 = END

E.g. of ramp direction states: RISING = 1, FALLING = -1, END = 0 I()

[SWS_Efx_00442][

Initialisation of state variable State_cpst->State_s32 = Val_s32 J()

[SWS_Efx_00443][

Initialisation of switch variable. User has no possibility to change or modify switch initialization value.

State_cpst->Switch_s8 = OFF

E.g. of switch states: TARGET_A = 1, TARGET_B = -1, OFF = 0 |()

8.5.12.3 Ramp Set Slope

[SWS_Efx_00287] [

Service name:	Efx_RampSetParam		
Syntax:	<pre>void Efx_RampSetParam(Efx_ParamRamp_Type* Param_cpst, uint32 SlopePosVal_u32, uint32 SlopeNegVal_u32</pre>		
Service ID[hex]:	0x92		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Paramatara (in)	SlopePosVal_u32	Positive slope value	
Parameters (in):	SlopeNegVal_u32	Negative slope value	
Parameters (inout):	None		
Parameters (out):	Param_cpst Pointer to parameter structure		
Return value:	None		
Description:	Sets the slope parameter for the ramp provided by the structure Efx_ParamRamp_Type.		

]()

[SWS_Efx_00288][

Sets positive and negative ramp slopes.

Param_cpst->SlopePos_u32 = SlopePosVal_u32

Param_cpst ->SlopeNeg_u32 = SlopeNegVal_u32

J()

8.5.12.4 Ramp out routines

[SWS_Efx_00289] [

Service name:	Efx_RampOut_s32
Syntax:	<pre>sint32 Efx_RampOut_s32(const Efx_StateRamp_Type* State_cpcst)</pre>
Service ID[hex]:	0x93
Sync/Async:	Synchronous
Reentrancy:	Reentrant
Parameters (in):	State_cpcst Pointer to the state value
Parameters (inout):	None
Parameters (out):	None
Return value:	sint32 Internal state of the ramp element
Description:	Returns the internal state of the ramp element.

]()

[SWS_Efx_00290][

Return Value = State_cpcst->State_s32]()

8.5.12.5 Ramp Jump routine

[SWS_Efx_00291] [

Service name:	Efx_RampCalcJump		
Syntax:	<pre>void Efx_RampCalcJump(sint32 X_s32, Efx_StateRamp_Type* State_cpst)</pre>		
Service ID[hex]:	0x94		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	X_s32	X_s32 Target value for ramp to jump	
Parameters (inout):	State_cpst Pointer to the state value		
Parameters (out):	None		
Return value:	None		
Description:	This routine works in addition to main ramp function Efx_RampCalc to provide a faster adaption to target value.		

]()

[SWS_Efx_00292][

If target value changes to a value contrary to current ramp direction and ramp has not reached its old target value then ramp state jumps to new target value immediately.

State_cpst->State_s32 = X_s32 State_cpst->Dir_s8 = END J()

[SWS Efx 00293] [

If target value is changed to new value and ramp has reached its old target value then normal ramp behavior is maintained.

State cpst->Dir s8 = END

]()

[SWS_Efx_00303] [

Direction of the ramp is stored so that a change of the target can be recognized and the output will follow immediately to the new target value.

State_cpst->Dir_s8 states are: RISING, FALLING, END.

]()

[SWS_Efx_00304] [

Comparison of State and Target decides ramp direction

If(State_cpst->State_s32 > X_s32) then State_cpst->Dir_s8 = FALLING

If(State_cpst->State_s32 < X_s32) then State_cpst->Dir_s8 = RISING

If(State_cpst->State_s32 == X_s32) then State_cpst->Dir_s8 = END

| ()

[SWS Efx 00277] [

This routine decided if jump has to be done or not in case of change in target. Efx_RampCalc function shall be called after this function that a jump or the standard ramp behaviour is executed.

]()

8.5.12.6 Ramp switch routine

[SWS Efx 00295] [

Service name:	Efx_RampCa	lcSwitch_s32	
Syntax:	<pre>sint32 Efx_RampCalcSwitch_s32(sint32 Xa_s32, sint32 Xb_s32, Efx_StateRamp_Type* State_cpst, const Efx_ParamRamp_Type* Param_cpcst, sint32 dT_s32)</pre>		
Service ID[hex]:	0x95		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	Xa_s32	Target value for the ramp to reach if switch is in position 'A'	
	Xb_s32	Target value for the ramp to reach if switch is in position 'B'	
Parameters (in):		Pointer to the parameter structure which contains the positive and negative slope of the ramp	
	dT_s32	Sample Time [10 ⁻⁶ seconds per increment of 1 data representation unit]	
Parameters	State_cpst	Pointer to actual value of the ramp	

(inout):		
Parameters (out):	None	
Return value:	sint32	Returns the actual state of the ramp
Description:	This routine s	witches ramp between two target values based on the Switch value.

[SWS_Efx_00296][

Switch decides target to select.

If (State_cpst->Switch_s8 == TARGET_A), target = Xa_s32

If (State_cpst->Switch_s8 == TARGET_B), target = Xb_s32

I()

[SWS Efx 00297] [

State_cpst->Dir_s8 hold direction information Ramp direction status: RISING, FALLING, END | ()

[SWS_Efx_00298] [

If ramp is active then ramp will change to reach selected target with defined slope

```
if (State_cpst->Dir_s8 == RISING)
then State_cpst->State_s32 = State_cpst->State_s32 + (Param_cpcst->SlopePos_u32 * dT_s32)
else if (State_cpst->Dir_s8 == FALLING)
then State_cpst->State_s32 = State_cpst->State_s32 - (Param_cpcst->SlopeNeg_u32 * dT_s32)
else if (State_cpst->Dir_s8 == END)
State_cpst->State_s32 = target value which is decided by State_cpst->Switch_s8.
```

[SWS Efx 00299] [

Once ramp value reaches the selected target value, the ramp direction status is switched to END.

State_cpst->Dir_s8 == END | ()

[SWS_Efx_00300] [

If the ramp has reached its destination and no change of switch occurs, the output value follows the actual target value.

```
If(State_cpst->State_s32 == target value)
Return_value = Xa_s32 (if State_cpst->Switch_s8 is TARGET_A)
Return_value = Xb_s32 (if State_cpst->Switch_s8 is TARGET_B)
] ( )
```

[SWS_Efx_00301] [

Calculated ramp value shall be stored to State_cpst->State_s32 variable

```
] ()
97 of 129
```


[SWS Efx 00302] [

Resolution of dT_s32 is 10⁻⁶ seconds per increment of 1 data representation unit

Note: "This routine (Efx_RampCalcSwitch_s32) is depreciated and will not be supported in future release.

Replacement routine: Efx_RampCalcSwitch "

[SWS_Efx_00520][

Service name:	Efx_RampCal	cSwitch
Syntax:	<pre>sint32 Efx_RampCalcSwitch(sint32 Xa_s32, sint32 Xb_s32, boolean Switch, Efx_StateRamp_Type* State_cpst)</pre>	
Service ID[hex]:	0x96	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	Xa_s32 Xb_s32 Switch	Target value for the ramp to reach if switch is in position 'A' Target value for the ramp to reach if switch is in position 'B' Switch to decide target value
Parameters (inout):	State_cpst	Pointer to StateRamp structure
Parameters (out):	None	
Return value:	sint32	Returns the selected target value
Description:	This routine switches between two target values for a ramp service based on a Switch parameter.	

(()

[SWS_Efx_00521][

Parameter Switch decides which target value is selected.

If Switch = TRUE, then Xa_s32 is selected. State_cpst->Switch_s8 is set to TARGET_A Return value = Xa_s32

If Switch = FALSE, then Xb_s32 is selected. State_cpst->Switch_s8 is set to TARGET_B Return value = Xb_s32 J()

[SWS_Efx_00522][

State_cpst->Dir_s8 hold direction information

State_cpst->Dir_s8 shall be set to END to reset direction information in case of target switch.

]()

[SWS_Efx_00528][

Efx_RampCalcSwitch routine has to be called before Efx_RampCalc J()

8.5.12.7 Get Ramp Switch position

[SWS_Efx_00307] [

Service name:	Efx_RampGetSwitchPos			
Syntax:	<pre>boolean Efx_RampGetSwitchPos(Efx_StateRamp_Type* State_cpst)</pre>			
Service ID[hex]:	0x98			
Sync/Async:	Synchronous			
Reentrancy:	Reentrant			
Parameters (in):	State_cpst	State_cpst Pointer to the state structure		
Parameters (inout):	None			
Parameters (out):	None			
Return value:	boolean return value TRUE or FALSE			
Description:	Gets the current switch	position of ramp switch function.		

]()

[SWS Efx 00308][

Return value = TRUE if Switch position State_cpst->Switch_s8 = TARGET_A
Return value = FALSE if Switch position State_cpst->Switch_s8 = TARGET_B
]()

Note: The function "Efx_RampGetSwitchPos" should be called only after calling the function "Efx_RampCalcSwitch" or "Efx_RampCalc".

8.5.12.8 Check Ramp Activity

[SWS_Efx_00309] [

Service name:	Efx_RampCheckActivity			
Syntax:	boolean Efx RampCheckActivity(
	Efx_StateRamp_T	ype* State_cpst		
)			
Service ID[hex]:	0x99			
Sync/Async:	Synchronous			
Reentrancy:	Reentrant	Reentrant		
Parameters (in):	State_cpst	Pointer to the state structure		
Parameters	None			
(inout):				
Parameters (out):	None			
Return value:	boolean	return value TRUE or FALSE		
Description:	This routine checks the status of the ramp and returns TRUE if the ramp is active, otherwise it returns FALSE.			

[SWS_Efx_00310][

return value = TRUE, if Ramp is active (State_cpst->Dir_s8 != END) return value = FALSE, if Ramp is inactive (State_cpst->Dir_s8 == END) |()

8.5.13 Hysteresis routines

8.5.13.1 Hysteresis

[SWS_Efx_00311] [

Service name:	Efx_Hysteresis_ <intypemn< th=""><th>>_<outtypemn></outtypemn></th></intypemn<>	>_ <outtypemn></outtypemn>	
Syntax:	<pre><outtype> Efx_Hysteresis_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>		
	<intype> input,</intype>		
	<intype> thresho</intype>		
	<intype> thresho</intype>		
	<intype> Out_Val</intype>		
	<pre><intype> Out_Low'</intype></pre>		
	<pre><intype> Out_High</intype></pre>	hThresholdVal	
0 / /0"/)		
Service ID[hex]:	0x9A to 0x9F		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	input	Input signal	
	thresholdLow	First threshold used to compute the output	
Doromotoro (in):	thresholdHigh	Second threshold used to compute the output	
Parameters (in):	Out_Val	Output value between the threshold	
	Out_LowThresholdVal	Output value for Low Threshold trigger	
	Out_HighThresholdVal	Output value for High Threshold trigger	
Parameters	None		
(inout):			
Parameters (out):	None		
Return value:	<outtype> Return value of the function</outtype>		
Description:	The routine estimates the o	utput of the hysteresis.	

]()

[SWS_Efx_00312][

If Input < thresholdLow, Then return_value = Out_LowThresholdVal |()

[SWS_Efx_00313][

If Input > thresholdHigh, Then return_value = Out_HighThresholdVal J()

[SWS_Efx_00314][

If thresholdLow ≤ Input ≤ thresholdHigh, then return_value = Out_Val J()

[SWS_Efx_00315][

Input, thresholdLow and thresholdHigh must have the same resolution and the same physical unit.

|()

[SWS_Efx_00316][

Return_value, Out_Val, Out_LowThresholdVal and Out_HighThresholdVal must have the same resolution and the same physical unit. I()

[SWS_Efx_00317] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0x9A	uint8 Efx_Hysteresis_u8_u8 (uint8, uint8, uint8, uint8, uint8, uint8)
0x9B	uint16 Efx_Hysteresis_u16_u16(uint16, uint16, uint16, uint16, uint16, uint16)
0x9C	uint32 Efx_Hysteresis_u32_u32 (uint32, uint32,uint32,uint32,uint32,uint32)
0x9D	sint8 Efx_Hysteresis_s8_s8 (sint8,sint8,sint8,sint8,sint8,sint8)
0x9E	sint16 Efx_Hysteresis_s16_s16 (sint16,sint16,sint16,sint16,sint16,sint16)
0x9F	sint32 Efx_Hysteresis_s32_s32 (sint32,sint32,sint32,sint32,sint32,sint32)

1()

8.5.13.2 Hysteresis center half delta

[SWS_Efx_00320] [

Service name:	Efx_Hyst(Efx_HystCenterHalfDelta_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<in' <in' <in'< th=""><th>Efx_HystCenterHalfDelta_<intypemn>_<outtypemn>(Type> X, Type> center, Type> halfDelta, lean* State</outtypemn></intypemn></th></in'<></in' </in' 	Efx_HystCenterHalfDelta_ <intypemn>_<outtypemn>(Type> X, Type> center, Type> halfDelta, lean* State</outtypemn></intypemn>	
Service ID[hex]:	see SWS	see SWS_Efx_00324	
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	X Input value		
Parameters (in):	center	Center of hysteresis range	
	halfDelta	Half width of hysteresis range	
Parameters (inout):	State	Pointer to state value	
Parameters (out):	None		
Return value:	boolean	Returns TRUE or FALSE depending of input value and state value	
Description:	Hysteresis	Hysteresis with center and left and right side halfDelta switching point.	

]()

[SWS_Efx_00321][

Return value = TRUE, if X > center + halfDeltaReturn value = FALSE, if X < center - halfDeltaReturn value is former state value if (center - halfDelta) $\leq X \leq (\text{center} + \text{halfDelta})$

|()

[SWS_Efx_00322][

Parameters X, center and halfDelta should have the same data type.

|()

[SWS_Efx_00323][

State variable shall store the old boolean result.

|()

[SWS_Efx_00324] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xA0	boolean Efx_HystCenterHalfDelta_s32_u8(sint32, sint32, sint32, boolean *)
0xA1	boolean Efx_HystCenterHalfDelta_u32_u8 (uint32, uint32, uint32, boolean *)
0x100	boolean Efx_HystCenterHalfDelta_s8_u8 (sint8, sint8, sint8, boolean *)
0x101	boolean Efx_HystCenterHalfDelta_u8_u8 (uint8, uint8, uint8, boolean *)
0x102	boolean Efx_HystCenterHalfDelta_s16_u8(sint16, sint16, sint16, boolean *)
0x103	boolean Efx_HystCenterHalfDelta_u16_u8(uint16, uint16, uint16, boolean *)

]()

8.5.13.3 Hysteresis left right

[SWS_Efx_00325] [

Service name:	Efx_Hys	tLeftRight_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre>boolean Efx_HystLeftRight_<intypemn>_<outtypemn>(</outtypemn></intypemn></pre>		
Service ID[hex]:	see SW	see SWS_Efx_00330	
Sync/Async:	Synchro	Synchronous	
Reentrancy:	Reentra	Reentrant	
	Χ	Input value	
Parameters (in):	Lsp	Left switching point	
	Rsp	Right switching point	
Parameters (inout):	State	Pointer to state value	
Parameters (out):	None		
Return value:	boolean	boolean Returns TRUE or FALSE depending of input value and state value	
Description:	Hysteres	sis with left and right switching point.	

] (

[SWS_Efx_00326][

Return value = TRUE, if X > Rsp (right switching point) Return value = FALSE, if X < Lsp (left switching point) Return value is former state value if $Lsp \le X \le Rsp$

(()

[SWS_Efx_00327] [

Parameters X, Lsp and Rsp should have the same data type.

]()

[SWS_Efx_00328] [

State variable shall store the old boolean result.

]()

[SWS_Efx_00329] [

Rsp shall be always greater than Lsp

]()

[SWS_Efx_00330] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xA3	boolean Efx_HystLeftRight_s32_u8 (sint32, sint32, sint32, boolean *)
0xA4	boolean Efx_HystLeftRight_u32_u8 (uint32, uint32, uint32, boolean *)
0x104	boolean Efx_HystLeftRight_s8_u8 (sint8, sint8, sint8, boolean *)
0x105	boolean Efx_HystLeftRight_u8_u8 (uint8, uint8, uint8, boolean *)
0x106	boolean Efx_HystLeftRight_s16_u8(sint16, sint16, sint16, boolean *)
0x107	boolean Efx_HystLeftRight_u16_u8(uint16, uint16, uint16, boolean *)

]()

8.5.13.4 Hysteresis delta right

[SWS_Efx_00331] [

Service name:	Efx_Hyst	DeltaRight_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	boolear <ir <ir <ir< th=""><th>n Efx_HystDeltaRight_<intypemn>_<outtypemn>(nType> X, nType> Delta, nType> Rsp, plean* State</outtypemn></intypemn></th></ir<></ir </ir 	n Efx_HystDeltaRight_ <intypemn>_<outtypemn>(nType> X, nType> Delta, nType> Rsp, plean* State</outtypemn></intypemn>	
Service ID[hex]:	see SWS	S_Efx_00335	
Sync/Async:	Synchror	Synchronous	
Reentrancy:	Reentrar	Reentrant	
	Χ	Input value	
Parameters (in):	Delta	Left switching point = rsp - delta	
	Rsp	Right switching point	
Parameters (inout):	State	Pointer to state value	
Parameters (out):	None		
Return value:	boolean	Returns TRUE or FALSE depending of input value and state value	
Description:	Hysteres	is with right switching point and delta to left switching point	

]()

[SWS_Efx_00332][

Return value = TRUE if X > Rsp (right switching point) Return value = FALSE if X < (Rsp - Delta)

Return value is former state value if (Rsp - Delta) $\leq X \leq$ Rsp \rfloor ()

[SWS_Efx_00333] [

Parameters X, Rsp and Delta should have the same data type.

]()

[SWS_Efx_00334] [

State variable shall store the old boolean result.

]()

[SWS_Efx_00335] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xA5	boolean Efx_HystDeltaRight_s32_u8 (sint32, sint32, sint32, boolean *)
0xA6	boolean Efx_HystDeltaRight_u32_u8 (uint32, uint32, uint32, boolean *)
0x108	boolean Efx_HystDeltaRight_s8_u8 (sint8, sint8, sint8, boolean *)
0x109	boolean Efx_HystDeltaRight_u8_u8 (uint8, uint8, uint8, boolean *)
0x10A	boolean Efx_HystDeltaRight_s16_u8(sint16, sint16, sint16, boolean *)
0x10B	boolean Efx_HystDeltaRight_u16_u8(uint16, uint16, uint16, boolean *)

1()

8.5.13.5 Hysteresis left delta

[SWS_Efx_00336] [

Service name:	Efx_Hyst	LeftDelta_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre>boolean Efx_HystLeftDelta_<intypemn>_<outtypemn>(</outtypemn></intypemn></pre>		
Service ID[hex]:	see SWS	see SWS_Efx_00340	
Sync/Async:	Synchror	Synchronous	
Reentrancy:	Reentran	Reentrant	
	Χ	Input value	
Parameters (in):	Lsp	Left switching point	
	Delta	Right switching point = lsp + delta	
Parameters (inout):	State	Pointer to state value	
Parameters (out):	None		
Return value:	boolean	boolean Returns TRUE or FALSE depending of input value and state value	
Description:	Hysteres	is with left switching point and delta to right switching point.	

]()

[SWS_Efx_00337][

Return value is TRUE if X > (Lsp + Delta)Return value is FALSE if X < LspReturn value is former state value if $Lsp \le X \le (Lsp + Delta)$ J()

[SWS_Efx_00338] [

Parameters X, Lsp and Delta should have the same data type.

]()

[SWS_Efx_00339] [

State variable shall store the old boolean result.

]()

[SWS_Efx_00340] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xA7	boolean Efx_HystLeftDelta_s32_u8 (sint32, sint32, sint32, boolean *)
0xA8	boolean Efx_HystLeftDelta_u32_u8 (uint32, uint32, uint32, boolean *)
0x10C	boolean Efx_HystLeftDelta_s8_u8 (sint8, sint8, sint8, boolean *)
0x10D	boolean Efx_HystLeftDelta_u8_u8 (uint8, uint8, uint8, boolean *)
0x10E	boolean Efx_HystLeftDelta_s16_u8(sint16, sint16, sint16, boolean *)
0x10F	boolean Efx_HystLeftDelta_u16_u8(uint16, uint16, uint16, boolean *)

I()

8.5.14 Efx_DeadTime

[SWS_Efx_00345] [

Service name:	Efx_DeadTime	e_s16_s16	
Syntax:	<pre>sint16 Efx_DeadTime_s16_s16(sint16 X, sint32 DelayTime, sint32 StepTime, Efx_DeadTimeParam_Type* Param)</pre>		
Service ID[hex]:	0xAA		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	Χ	Input value	
Parameters (in):	DelayTime	Time to be delayed	
	StepTime	Sample time	
Parameters (inout):	Param	Pointer to parameter structure of type Efx_DeadTimeParam_Type	
Parameters (out):	None		
Return value:	sint16	Returns the actual state of the dead time element as sint16 value	
Description:	This routine returns input value with specified delay time. Data buffer stores input samples using ring buffer algorithm.		

[SWS_Efx_00347][

Buffer size shall be configured as per the delay time range requirement. Hence in case of high delays, data buffer size has to be increased to reproduce original input signal at output without loss of samples. I()

[SWS Efx 00348][

Data buffer shall be allocated to use this function and *Param structure elements shall be used to store pointers to this allocated buffer. I()

[SWS_Efx_00349][

StepTime is the minimum sampling time which decides signal quality of delayed signal. Param->dsintStatic stores old pending time.

TotalTime = Param->dsintStatic + DelayTime
while(TotalTime > StepTime) then,
activate ring buffer with storing input value X.

TotalTime = TotalTime - StepTime
]()

[SWS_Efx_00350][

Actual data pointer shall be checked for buffer size and shall be wrapped. If(Param->lszStatic ≤ Param->dtbufBegStatic) then,
Param->lszStatic = Param-> dtbufEndStatic
]()

[SWS_Efx_00351][

Store current pointer position to Param->lszStatic. Store the remaining TotalTime to Param-> dsintStatic I()

[SWS_Efx_00352][

Param->*dtbufBegStatic and Param->*dtbufEndStatic shall be initialised with start address and end address of data buffer respectively. |()

[SWS_Efx_00353][

This routine returns present Param->*IszStatic value I()

Structure definition for function argument

[SWS_Efx_00354][

Name:	Efx_DeadTimeParam_Type		
Type:	Structure		
Element:	sint32	dsintStatic	Time since the last pack was written
	sint16	*lszStatic	Pointer to actual buffer position

Description:	Structure definition for		
	sint16	*dtbufEndStatic	Pointer to end of buffer
	sint16	*dtbufBegStatic	Pointer to begin of buffer

"Note: This routine (Efx_DeadTime_s16_s16) is depreciated and will not be supported in future release."

8.5.15 Debounce routines

8.5.15.1 Efx_Debounce

[SWS_Efx_00355] [

Service name:	Efx_Deb	ounce_u8_u8		
Syntax:	<pre>uint8 Efx_Debounce_u8_u8(boolean X, Efx_DebounceState_Type * State, Efx_DebounceParam_Type * Param, sint32 dT)</pre>			
Service ID[hex]:	0xB0			
Sync/Async:	Synchronous			
Reentrancy:	Reentrar	Reentrant		
	Χ	Input value		
Parameters (in):	Param	Pointer to state structure of type Efx_DebounceParam_Type		
	dT	Sample Time		
Parameters (inout):	State	Pointer to state structure of type Efx_DebounceState_Type		
Parameters (out):	None			
Return value:	uint8	Returns the debounced input value		
Description:	1	This routine debounces a digital input signal and returns the state of the signal as a boolean value.		

]()

[SWS_Efx_00356][

If(X != State->XOld) then check start debouncing. J()

[SWS_Efx_00357] [

If transition occurs from FALSE to TRUE (i.e State->XOId = FALSE and X = TRUE), then use Param->TimeLowHigh as debouncing time; otherwise use Param->TimeHighLow.

]()

[SWS_Efx_00358] [

State->Timer is incremented with sample time for debouncing input signal.

Once reached to the set period, old state is updated with X.

State->Timer += dT;

If (State->Timer ≥ (TimePeriod * 10000))

State->XOId = X, and stop the timer, State->Timer = 0

where TimePeriod = Param->TimeLowHigh or Param->TimeHighLow

]()

[SWS_Efx_00359] [

Old value shall be returned as a output value. Current input is stored to old state.

Return value = State->XOld

State->XOId=X

|()

[SWS_Efx_00360] [

Resolution of dT is 10⁻⁶ seconds per increment of 1 data representation unit

]()

Structure definition for function argument

[SWS_Efx_00361][

Name:	Efx_Debound	Efx_DebounceParam_Type		
Type:	Structure	Structure		
Element:	sint16	TimeHighLow	Time for a High to Low transition, given in 10ms steps	
	sint16	TimeLowHigh	Time for a Low to High transition, given in 10ms steps	
Description:	Structure definition for Debounce routine			

|()|

[SWS_Efx_00835][

Name:	Efx_DebounceState_Type		
Type:	Structure		
Element:	boolean	XOld	Old input value from last call
	sint32	Timer	Timer for internal state
Description:	Structure definition for Debounce routine		

I()

8.5.15.2 Efx_DebounceInit

[SWS Efx 00362] [

Service name:	Efx_DebounceInit		
Syntax:	void Efx_DebounceInit(
	<pre>Efx_DebounceState_Type* State, boolean X</pre>		
)		
Service ID[hex]:	0xB1		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	X Initial value for the input state		

Parameters (inout):	None		
Parameters (out):	State	Pointer to state structure of type Efx_DebounceState_Type	
Return value:	void	No return value	
Description:	This ro	This routine call shall stop the debouncing timer.	

[SWS_Efx_00363][

State->Timer = 0 ()

[SWS_Efx_00364] [

Sets the input state to the given init value. State->XOId = X;

]()

8.5.15.3 Efx_DebounceSetparam

[SWS_Efx_00365] [

Service name:	Efx_DebounceSetParam		
Syntax:	<pre>void Efx_DebounceSetParam(Efx_DebounceParam_Type * Param, sint16 THighLow, sint16 TLowHigh)</pre>		
Service ID[hex]:	0xB2		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Paramatara (in)	THighLow	Value for TimeHighLow of Efx_DebounceParam_Type	
Parameters (in):	TLowHigh	Value for TimeLowHigh of Efx_DebounceParam_Type	
Parameters (inout):	None		
Parameters (out):	Param Pointer to state structure of type Efx_DebounceParam_Type		
Return value:	void No return value		
Description:	This routine sets timing parameters, time for high to low transition and time for low to high for debouncing.		

]()

[SWS_Efx_00366][

Param-> TimeHighLow = THighLow Param-> TimeLowHigh = TLowHigh J()

8.5.16 Ascending Sort Routine

[SWS_Efx_00370] [

Service name:	Efx_SortAscend_ <intypemn></intypemn>

Syntax:	<pre>void Efx_SortAscend_<intypemn>(<outtype> * Array, uint16 Num)</outtype></intypemn></pre>	
Service ID[hex]:	0xB4 to 0xB9	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	Num	Size of an data array
Parameters (inout):	Array	Pointer to an data array
Parameters (out):	None	
Return value:	void	No return value
Description:	The sorting algorithm m ascending order.	odifies the given input array and rearranges data in

Example for unsigned array:

Input array: uint16 Array [5] = [42, 10, 88, 8, 15] Result: Array will be sorted to [8, 10, 15, 42, 88]

Example for signed array:

Input array : sint16 Array [5] = [-42, -10, 88, 8, 15] Result : Array will be sorted to [-42, -10, 8, 15, 88]

[SWS_Efx_00372] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xB4	void Efx_SortAscend_s8 (sint8*, uint16)
0xB5	void Efx_SortAscend_u8 (uint8*, uint16)
0xB6	void Efx_SortAscend_u16 (uint16*, uint16)
0xB7	void Efx_SortAscend_s16 (sint16*, uint16)
0xB8	void Efx_SortAscend_u32 (uint32*, uint16)
0xB9	void Efx_SortAscend_s32 (sint32*, uint16)

]()

8.5.17 Descending Sort Routine

[SWS_Efx_00373] [

Service name:	Efx_SortDescend_ <intypemn></intypemn>		
Syntax:	<pre>void Efx_SortDescend_<intypemn>(</intypemn></pre>		
	uint16 Num)		
Service ID[hex]:	0xBA to 0xBF		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	Num	Size of an data array	
Parameters	Array	Pointer to an data array	
(inout):		•	
Parameters (out):	None		

Return value:	roid No return value
•	The sorting algorithm modifies the given input array and rearranges data in lescending order.

Example for unsigned array:

Input array: uint16 Array [5] = [42, 10, 88, 8, 15] Result: Array will be sorted to [88, 42, 15, 10, 8]

Example for signed array:

Input array: sint16 Array [5] = [-42, -10, 88, 8, 15] Result: Array will be sorted to [88, 15, 8, -10, -42]

[SWS_Efx_00375] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xBF	void Efx_SortDescend_s8 (sint8*, uint16)
0xBA	void Efx_SortDescend_u8 (uint8*, uint16)
0xBB	void Efx_SortDescend_u16 (uint16*, uint16)
0xBC	void Efx_SortDescend_s16 (sint16*, uint16)
0xBD	void Efx_SortDescend_u32 (uint32*, uint16)
0xBE	void Efx_SortDescend_s32 (sint32*, uint16)

]()

8.5.18 Median sort routine

[SWS_Efx_00376] [

Service name:	Efx_MedianSort_ <intypemn>_<outtypemn></outtypemn></intypemn>		
Syntax:	<pre><outtype> Efx_MedianSort_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>		
Service ID[hex]:	0xC0 to 0xC4, 0xC8		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	Array	Pointer to an array	
rarameters (m).	N	Size of an array	
Parameters (inout):	None		
Parameters (out):	None		
Return value:	<outtype> Return value of the function</outtype>		
Description:	Sort an array and return its median value		

]()

[SWS Efx 00377][

This routine sorts values of an array in ascending order. Input array passed by the pointer shall have sorted values after this routine call.

|()

For example:

Input array [5] = [42, 10, 88, 8, 15]Sorted array[5] = [8, 10, 15, 42, 88]

[SWS_Efx_00378][

Returns the median value of sorted array in case of N is even. Result = $(Sorted_array[N/2] + Sorted_array[(N/2) - 1]) / 2$ |()

For example:

Sorted_array[4] = [8, 10, 15, 42]Result = (15 + 10) / 2 = 12

[SWS_Efx_00440][

Returns the median value of sorted array in case of N is odd. Return_Value = Sorted_array [N/2] = 15]()

For example:

Sorted_array[5] = [8, 10, 15, 42, 88]

Result = 15

[SWS_Efx_00441][

In above calculation, N/2 shall be rounded towards zero. I()

[SWS_Efx_00379] [

Here is the list of implemented functions.

Service ID[hex]	Syntax		
0xC0	uint8 Efx_MedianSort_u8_u8(uint8*, uint8)		
0xC1	uint16 Efx_MedianSort_u16_u16(uint16*, uint8)		
0xC2	sint16 Efx_MedianSort_s16_s16(sint16*, uint8)		
0xC3	sint8 Efx_MedianSort_s8_s8(sint8*, uint8)		
0xC4	uint32 Efx_MedianSort_u32_u32(uint32*, uint8)		
0xC8	sint32 Efx_MedianSort_s32_s32(sint32*, uint8)		

]()

8.5.19 Edge detection routines

8.5.19.1 Edge bipol detection

[SWS_Efx_00380] [

Service name:	Efx_EdgeBipol_u8_u8	
Syntax:	boolean Efx_EdgeBipol_u8_u8(
	boolean Inp_Val,	
	boolean* Old_Val	

)			
Service ID[hex]:	0xC5	0xC5		
Sync/Async:	Synchronou	S		
Reentrancy:	Reentrant			
Parameters (in):	Inp_Val	Actual value of the signal		
Parameters	Old_Val	Pointer to the value of the signal from the last call		
(inout):				
Parameters (out):	None			
Return value:	boolean	Returns TRUE when the signal has changed since the last call		
	This routine detects whether a signal has changed since the last call and returns TRUE. If signal has not changed then returns FALSE.			

[SWS_Efx_00381][

if (Inp_Val != *Old_Val) return value = TRUE else return value = FALSE. I()

8.5.19.2 Edge falling detection

[SWS_Efx_00382] [

Service name:	Efx_EdgeFalling_u8_u8	
Syntax:	boolean Efx_EdgeFalling_u8_u8(boolean Inp_Val, boolean* Old_Val)	
Service ID[hex]:	0xC6	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	Inp_Val	Actual value of the signal
Parameters (inout):	Old_Val Pointer to the value of the signal from the last call	
Parameters (out):	None	
Return value:	boolean Returns TRUE when the signal has falling edge	
	Returns TRUE when the signal has a falling edge, i.e. the signal was TRUE at the last call and FALSE at the actual call of this routine	

]()

[SWS_Efx_00383][

Return value = TRUE, If (*Old_Val == TRUE && Inp_Val == FALSE)
Return value = FALSE, otherwise.

|()

8.5.19.3 Edge rising detection

[SWS_Efx_00384] [

Service name:	Efx_EdgeRising_u8_u8		
Syntax:	boolean Efx_EdgeRising_u8_u8(boolean Inp_Val, boolean* Old_Val		
Service ID[hex]:	0xC7		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	Inp_Val	Inp_Val Actual value of the signal	
Parameters (inout):	Old_Val	Pointer to the value of the signal from the last call	
Parameters (out):	None		
Return value:	boolean Returns TRUE when the signal has rising edge		
Description:	Returns TRUE when the signal has a rising edge, i.e. the signal was FALSE at the last call and TRUE at the actual call of this routine		

[SWS_Efx_00385][

Return value = TRUE, If (*Old_Val == FALSE && Inp_Val == TRUE)
Return value = FALSE, otherwise.

|()

8.5.20 Interval routines

8.5.20.1 Interval Closed

[SWS_Efx_00386] [

Service name:	Efx_IntervalC	losed_ <intypemn>_<outtypemn></outtypemn></intypemn>
Syntax:	<pre>boolean Efx_IntervalClosed_<intypemn>_<outtypemn>(</outtypemn></intypemn></pre>	
Service ID[hex]:	0xCA to 0xCB	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	MinVal	Minimum limit value
Parameters (in):	arameters (in): InpVal Actual value of the signal	
	MaxVal	Maximum limit value
Parameters (inout):	None	
Parameters (out):	None	
Return value:	boolean Returns TRUE when MinVal ≤ InpVal ≤ MaxVal	
Description:	This routine compares a value 'InpVal' with lower and upper limit 'MinVal' and 'MaxVal' respectively.	

]()

[SWS_Efx_00387][

Return value = TRUE, if (MinVal ≤ InpVal ≤ MaxVal)

Return value = FALSE, otherwise.

]()

[SWS_Efx_00388] [

Here is the list of implemented functions.

Service ID[hex]	Syntax		
0xCA	boolean Efx_IntervalClosed_s32_u8(sint32, sint32, sint32)		
0xCB	boolean Efx_IntervalClosed_u32_u8(uint32, uint32, uint32)		

]()

8.5.20.2 Interval Open

[SWS_Efx_00390] [

Service name:	Efx_IntervalOpen_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre>boolean Efx_IntervalOpen_<intypemn>_<outtypemn>(</outtypemn></intypemn></pre>	
Service ID[hex]:	0xCC to 0xCD	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	MinVal Minimum limit value InpVal Actual value of the signal	
Parameters (in):		
	MaxVal	Maximum limit value
Parameters (inout):	None	
Parameters (out):	None	
Return value:	boolean Returns TRUE when MinVal < InpVal < MaxVal	
Description:	This routine compares a value 'InpVal' with lower and upper limit 'MinVal' and 'MaxVal' respectively.	

]()

[SWS_Efx_00391][

Return value = TRUE, if (MinVal < InpVal < MaxVal)

Return value = FALSE, otherwise.

1()

[SWS_Efx_00392] [

Here is the list of implemented functions.

Service ID[hex]	Syntax	
0xCC	boolean Efx_IntervalOpen_s32_u8(sint32, sint32, sint32)	
0xCD	boolean Efx_IntervalOpen_u32_u8(uint32, uint32, uint32)	

]()

8.5.20.3 Interval Left Open

[SWS_Efx_00393] [

Service name:	Efx_IntervalLeftOpen_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre>boolean Efx_IntervalLeftOpen_<intypemn>_<outtypemn>(</outtypemn></intypemn></pre>	
Service ID[hex]:	0xCE to 0xCF	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	MinVal Minimum limit value	
Parameters (in):	InpVal Actual value of the signal	
	MaxVal Maximum limit value	
Parameters	None	
(inout):		
Parameters (out):	None	
Return value:	boolean Returns TRUE when MinVal < InpVal ≤ MaxVal	
Description:	This routine compares a value 'InpVal' with lower and upper limit 'MinVal' and 'MaxVal' respectively.	

]()

[SWS_Efx_00394][

Return value = TRUE, if (MinVal < InpVal ≤ MaxVal)
Return value = FALSE, otherwise.

J()

[SWS_Efx_00395] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xCE	boolean Efx_IntervalLeftOpen_s32_u8(sint32, sint32, sint32)
0xCF	boolean Efx_IntervalLeftOpen_u32_u8(uint32, uint32, uint32)

]()

8.5.20.4 Interval Right Open

[SWS_Efx_00396] [

Service name:	Efx_IntervalRightOpen_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre>boolean Efx_IntervalRightOpen_<intypemn>_<outtypemn>(</outtypemn></intypemn></pre>	
	<pre>sint32 InpVal, sint32 MaxVal)</pre>	
Service ID[hex]:	0xD0 to 0xD1	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	MinVal Minimum limit value	

	InpVal	npVal Actual value of the signal	
	MaxVal	MaxVal Maximum limit value	
Parameters	None		
(inout):			
Parameters (out):	None		
Return value:	boolean Returns TRUE when MinVal ≤ InpVal < MaxVal		
Description:	This routine compares a value 'InpVal' with lower and upper limit 'MinVal' and		
	'MaxVal' respectively.		

[SWS_Efx_00397][

Return value = TRUE, if (MinVal ≤ InpVal < MaxVal)

Return value = FALSE, otherwise.

]()

[SWS_Efx_00398] [

Here is the list of implemented functions.

Service ID[hex]	Syntax		
0xD0	boolean Efx_IntervalRightOpen_s32_u8(sint32, sint32, sint32)		
0xD1	boolean Efx_IntervalRightOpen_u32_u8(uint32, uint32, uint32)		

]()

8.5.21 Counter routines

[SWS Efx 00399] [

	10_E1X_00000]			
Service name:	Efx_CounterSet_ <intypemn></intypemn>			
Syntax:	<pre>void Efx_CounterSet_<intypemn>(</intypemn></pre>			
Service ID[hex]:	0xD2 to 0xD4	0xD2 to 0xD4		
Sync/Async:	Synchronous	Synchronous		
Reentrancy:	Reentrant			
Parameters (in):	Val	Val Initial value		
Parameters (inout):	CounterVal Pointer to input value			
Parameters (out):	None			
Return value:	None			
Description:	The CounterSet routines initialise counter value with initial value * CounterVal = Val;			

]()

[SWS_Efx_00404] [

Here is the list of implemented functions.

	Service ID[hex]	Syntax	
	0xD2	void Efx_CounterSet_u16 (uint16*, uint16)	
0xD3 void Efx_CounterSet_u32 (uint32*, uint32)		void Efx_CounterSet_u32 (uint32*, uint32)	
0xD4 void Efx_CounterSet_u8 (uint8*, uint8)		void Efx_CounterSet_u8 (uint8*, uint8)	

]()

[SWS_Efx_00400] [

Service name:	Efx_Counter_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre><outtype> Efx_Counter_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>	
Service ID[hex]:	0xD5 to 0xD7	
Sync/Async:	Synchronous	
Reentrancy: Reentrant		
Parameters (in):	None	
Parameters (inout):	CounterVal Pointer to input value	
Parameters (out):	None	
Return value:	<outtype> Returns value is the new value of the parameter CounterVal.</outtype>	
Description:	The counter routines increments the value of the parameter CounterVal by 1.	

]()

[SWS_Efx_00401][

The return value is the new value of the parameter CounterVal.

* CounterVal ++;

Return value = *CounterVal;

]()

[SWS_Efx_00402][

In case of saturation, counter value shall not be reset to 0 and shall not be incremented.

Return value = Saturated value of the counter data type

[SWS_Efx_00403] [

Here is the list of implemented functions.

Service ID[hex]	Syntax	
0xD5	uint8 Efx_Counter_u8_u8 (uint8 *)	
0xD6	uint16 Efx_Counter_u16_u16 (uint16 *)	
0xD7	uint32 Efx_Counter_u32_u32 (uint32 *)	

]()

8.5.22 Flip-Flop routine

[SWS_Efx_00405] [

Service name:	Efx_RSFlipFlop	
Syntax:	<pre>boolean Efx_RSFlipFlop(boolean R_Val, boolean S_Val, boolean* State_Val)</pre>	
Service ID[hex]: 0xEF		
Sync/Async:	nc/Async: Synchronous	
Reentrancy:	Reentrant	

Paramatara (in)	R_Val	Reset switch - changes the flip flop state to FALSE	
Parameters (in):	S_Val	Set switch - changes the flip flop state to TRUE	
Parameters State_Val Pointer to flip-flop state variable		Pointer to flip-flop state variable	
(inout):			
Parameters (out): None			
Return value:	boolean	Returns the new state of the flip flop	
Description:	Description: RS flip flop can be set and reset via input switches R_Val and S_Val.		

[SWS_Efx_00406][

The reset switch is higher prior than the set switch, e.g. R_Val = TRUE, S_Val = TRUE
Then state and return value = FALSE
I()

[SWS_Efx_00407][

Reset condition:
R_Val = TRUE,
S_Val = FALSE
Then state and return value = FALSE
J()

[SWS_Efx_00408][

Set condition:

R_Val = FALSE,

S_Val = TRUE

Then state and return value = TRUE

I()

[SWS_Efx_00409][

Invalid condition:

R_Val = FALSE,

S_Val = FALSE

Then state and return value are unchanged

I()

8.5.23 Limiter routines

[SWS_Efx_00410] [

Service name:	Efx_TypeLimiter_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre><outtype> Efx_TypeLimiter_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>	
Service ID[hex]:	0xD8 to 0xE9	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	Input_Val Input value to be limited	
Parameters	None	

(inout):		
Parameters (out):	None	
Return value:	<outtype></outtype>	Returns the limited value for input
Description:	limiter routine	

[SWS_Efx_00411][

Input value shall be saturated according to the data type of the return parameter. e.g. If return type is sint16 and input data range is uint32, then output value will be limited to sint16 data range.

]()

[SWS_Efx_00412] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xD8	uint8 Efx_TypeLimiter_s32_u8 (sint32)
0xD9	uint16 Efx_TypeLimiter_s32_u16 (sint32)
0xDA	uint32 Efx_TypeLimiter_s32_u32 (sint32)
0xDB	sint8 Efx_TypeLimiter_s32_s8 (sint32)
0xDC	sint16 Efx_TypeLimiter_s32_s16 (sint32)
0xDD	uint8 Efx_TypeLimiter_u32_u8 (uint32)
0xDE	uint16 Efx_TypeLimiter_u32_u16 (uint32)
0xDF	sint32 Efx_TypeLimiter_u32_s32 (uint32)
0xE0	sint8 Efx_TypeLimiter_u32_s8 (uint32)
0xE1	sint16 Efx_TypeLimiter_u32_s16 (uint32)
0xE2	uint8 Efx_TypeLimiter_s16_u8 (sint16)
0xE3	uint16 Efx_TypeLimiter_s16_u16 (sint16)
0xE4	sint8 Efx_TypeLimiter_s16_s8 (sint16)
0xE5	uint8 Efx_TypeLimiter_u16_u8 (uint16)
0xE6	sint8 Efx_TypeLimiter_u16_s8 (uint16)
0xE7 sint16 Efx_TypeLimiter_u16_s16 (uint16)	
0xE8 uint8 Efx_TypeLimiter_s8_u8 (sint8)	
0xE9 sint8 Efx_TypeLimiter_u8_s8 (uint8)	

]()

8.5.24 64 bits functions

8.5.24.1 General requirements

The usage of 64bits data must remain an exception in the code if the requirement cannot be reached by another mean.

[SWS_Efx_00415] [

C operators shall not be used for 64bit data (cast, arithmetic operators and comparison operators)] ()

[SWS_Efx_00416] [

64bit constants shall not be used. | ()

[SWS_Efx_00417] [

Direct affectation to and from a 64 bit type shall only be used through predefined functions of 64 bits library.] ()

[SWS_Efx_00418] [

Only the sint64 type is allowed (uint64 shall not be used).] ()

[SWS_Efx_00419] [

64bit functions do not perform saturation, even for the conversion to smaller types.]

8.5.24.2 Casts

[SWS Efx 00420] [

Service name:	Efx_Cast_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre><outtype> Efx_Cast_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>	
Service ID[hex]:	0xEA to 0xEC	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	x_value Argument of the function	
Parameters (inout):	None	
Parameters (out):	None	
Return value:	<outtype> Return value of the function</outtype>	
Description:	Convert value of entry type in the value in the output type	

]()

[SWS_Efx_00422] [

Here is the list of implemented functions.

Service ID[hex]	Syntax	
0xEA	sint64 Efx_Cast_u32_s64(uint32)	
0xEB	uint32 Efx_Cast_s64_u32(sint64)	
0xEC	sint32 Efx_Cast_s64_s32(sint64)	

]()

8.5.24.3 Additions

[SWS_Efx_00423] [

Service name:	Efx_Add_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>	
Syntax:	<pre><outtype> Efx_Add_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>	
	<pre><intype> x_value, <intype> y value</intype></intype></pre>	

)		
Service ID[hex]:	0xF0 to 0xF2		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Paramatara (in)	x_value	First argument	
Parameters (in):	y_value	Second argument	
Parameters	None		
(inout):			
Parameters (out):	None		
Return value:	<outtype></outtype>	Result of the calculation	
Description:	This service makes an addition between the two arguments		
	The addition is not protected against the overflow.		

[SWS_Efx_00424][

Return value = x_value + y_value | ()

[SWS_Efx_00425] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xF0	sint64 Efx_Add_s64s32_s64(sint64, sint32)
0xF1	sint64 Efx_Add_s64u32_s64(sint64, uint32)
0xF2	sint64 Efx_Add_s64s64_s64(sint64, sint64)

]()

8.5.24.4 Multiplications

[SWS_Efx_00426] [

Service name:	Efx_Mul_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>	
Syntax:	<pre><outtype> Efx_Mul_<intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></outtype></pre>	
Service ID[hex]:	0xF3 to 0xF5	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	x_value	First argument
Parameters (iii):	y_value	Second argument
Parameters	None	
(inout):		
Parameters (out):	None	
Return value:	<outtype></outtype>	Result of the calculation
Description:	This service makes a multiplication between the two arguments	
	The multiplication is not protected against the overflow.	

]()

[SWS_Efx_00427][

Return value = x_value * y_value]()

[SWS_Efx_00428] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xF3	sint64 Efx_Mul_s64u32_s64(sint64, uint32)
0xF4	sint64 Efx_Mul_s64s32_s64(sint64, sint32)
0xF5	sint64 Efx_Mul_s64s64_s64(sint64, sint64)

]()

8.5.24.5 **Division**

[SWS_Efx_00429] [

Service name:	Efx_Div_ <intypemn><intypemn< th=""><th>>_<outtypemn></outtypemn></th></intypemn<></intypemn>	>_ <outtypemn></outtypemn>
Syntax:	<pre><outtype> Efx_Div_<intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></outtype></pre>	
Service ID[hex]:	0xF6 to 0xFB	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	x_value	First argument
	y_value	Second argument
Parameters (inout):	None	
Parameters (out):	None	
Return value:	<outtype></outtype>	Result of the calculation
Description:	These services make a division between the two arguments	

]()

[SWS_Efx_00430][

Return value = x_value / y_value |()

[SWS_Efx_00431][

The result after division by zero is defined by:

If $x_value \ge 0$ then the function returns the maximum value of the output type If $x_value < 0$ then the function returns the minimum value of the output type y(t)

[SWS_Efx_00433][

The result is rounded towards 0. I()

[SWS_Efx_00434] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xF6	sint64 Efx_Div_s64u32_s64(sint64, uint32)
0xF7	sint64 Efx_Div_s64s32_s64(sint64, sint32)
0xF8	sint32 Efx_Div_s64s32_s32 (sint64, sint32)
0xF9	uint32 Efx_Div_s64s32_u32 (sint64, sint32)
0xFA	sint32 Efx_Div_s64u32_s32 (sint64, uint32)
0xFB	uint32 Efx_Div_s64u32_u32 (sint64, uint32)

8.5.24.6 Comparison

[SWS_Efx_00436] [

Service name:	Efx_Gt_ <intypemn><inty< th=""><th>peMn>_<outtypemn></outtypemn></th></inty<></intypemn>	peMn>_ <outtypemn></outtypemn>
Syntax:	<pre>boolean Efx_Gt_<intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></pre>	
Service ID[hex]:	0xFC to 0xFD	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Paramatara (in)	x_value	First argument
Parameters (in):	y_value	Second argument
Parameters	None	
(inout):		
Parameters (out):	None	
Return value:	boolean	Result of the calculation
Description:	This service makes a comparison between the two arguments	

]()

[SWS_Efx_00437][

Return Value = TRUE, if (x_value > y_value), else FALSE.]()

[SWS_Efx_00438] [

Here is the list of implemented functions.

Service ID[hex]	Syntax
0xFC	boolean Efx_Gt_s64u32_u8(sint64, uint32)
0xFD	boolean Efx_Gt_s64s32_u8(sint64, sint32)

]()

8.6 Examples of use of functions

None

8.7 Version API

8.7.1 Efx_GetVersionInfo

[SWS_Efx_00815] [

Service name:	Efx_GetVersionInfo	
Syntax:	void Efx_GetVersionInfo(Std VersionInfoType* versioninfo	
)	
Service ID[hex]:	0xff	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
Parameters (in):	None	
Parameters	None	
(inout):		
Parameters (out):	versioninfo Pointer to where to store the version information of this module. Format according [BSW00321]	
Return value:	None	
Description:	Returns the version information of this library.	

The version information of a BSW module generally contains:

Module Id

Vendor Id

Vendor specific version numbers (SRS_BSW_00407).

(SRS_BSW_00407, SRS_BSW_00031, SRS_BSW_00318, SRS_BSW_00321)

[SWS_Efx_00816] [

If source code for caller and callee of Efx_GetVersionInfo is available, the Efx library should realize Efx_GetVersionInfo as a macro defined in the module's header file.] (SRS_BSW_00407, SRS_BSW_00411)

8.8 Call-back notifications

None

8.9 Scheduled functions

The EfX library does not have scheduled functions.

8.10 Expected Interfaces

None

8.10.1 Mandatory Interfaces

None

8.10.2 Optional Interfaces

None

8.10.3 Configurable interfaces

None

9 Sequence diagrams

Not applicable.

10 Configuration specification

10.1 Published Information

[SWS_Efx_00814] [The standardized common published parameters as required by SRS_BSW_00402 in the General Requirements on Basic Software Modules [3] shall be published within the header file of this module and need to be provided in the BSW Module Description. The according module abbreviation can be found in the List of Basic Software Modules [1].] (SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379)

Additional module-specific published parameters are listed below if applicable.

10.2 Configuration option

[SWS_Efx_00818] [The Efx library shall not have any configuration options that may affect the functional behavior of the routines. I.e. for a given set of input parameters, the outputs shall be always the same. For example, the returned value in case of error shall not be configurable.] (SRS_LIBS_00001)

However, a library vendor is allowed to add specific configuration options concerning library implementation, e.g. for resources consumption optimization.

11 Not applicable requirements

[SWS_Efx_00822][

These requirements are not applicable to this specification.

I()