Introduction to Graph Theory

- Graphs consist of Node and Edges
- Used to represent relationships and connections

What is Graph Decomposition?

- Breaking down a graph into smaller, manageable parts
- Helps in simplifying complex structures

Use Cases

Community Detection in Facebook

Example: Facebook groups or news feed optimization.

Infrastructure Planning

Example: Used in GPS apps like Google Maps, Waze.

Power Grid Optimization

 Example: Twitter uses variations of centrality algorithms to recommend followers.

Node Partitioning and Edge Partitioning

Computational Complexity

- Time and space efficiency
- Scalability with graph size

Scalability

- Ability to handle large graphs
- Important for real-time systems

What is the Shortest Path Problem?

Def:- How do I get from Point A to Point B using the least distance, time, or cost? **Ex..**

- GPS navigation
- Delivery route planning
- Internet data routing
- Game AI (like finding a path in a maze)

What is a Graph?

Def:- Graph is a collection of Node and Edges

Types of Graphs

- Directed and Undirected
- Weighted and Unweighted

Directed Graph

Undirected Graph

Weighted Graph

Weighted Graph

Unweighted Graph

Dijkstra's Algorithm

Terminologies

- Node
- Edge
- Weight path
- Unweighted path
- Path
- Source and Destination

Terminologies Explanation

Weighted Shortest Path: 1,2,3,4,7 Unweighted Shortest Path: 1,6,7

What is a Spanning Tree?

Def:-A spanning tree is a way of connecting all the nodes in a network using the edges without making any loops

Working of Kruskal's Algorithm

Applications of Kruskal's Algorithm

Telecommunications & Electrical Grids

• Used to design the most cost-effective network without cycles. For example, minimizing the cost of laying cables between cities

Computer Networks

 Designing network topologies to ensure minimum total wiring cost while maintaining full connectivity (e.g., LAN setups)

Civil Infrastructure Planning

 For planning roads, railways, or pipeline construction where the goal is to connect a set of points with the least total cost

Image Processing and Computer Vision

 Used for segmentation where an image is treated as a graph and Kruskal's algorithm helps to partition it into meaningful parts