Методы и средства параллельного программирования

3 курс кафедры СКИ сентябрь – декабрь 2016 г.

Лектор доцент Н.Н.Попова

Лекция 9. Часть 2. 14 ноября 2016 г.

Тема

 Параллельные алгоритмы матричного умножения.

Матричное умножение

Рассматриваем задачу: параллельная реализация C = AxB Существует множество вариантов решения этой задачи на многопроцессорных системах.

Алгоритм решения существенным образом зависит от того, производится или нет распределение матриц по процессорам, и какая топология процессоров при этом используется.

Распределение матриц по процессам

Каждая из трех матриц (А,В и С) может быть распределена одним из способов:

- копии матриц находятся в каждом процессе;
- распределена по столбцам на одномерную сетку;
- распределена по строкам на одномерную сетку;
- распределена на двумерную или трехмерную процессную сетку.

Могут использоваться и различные комбинации. Все зависим от решаемой задачи.

Распределение матриц по процессам

- Возможное распределение матриц:
- матрица A и C 1D распределение (ленточное, по строкам)
- Матрица B 1D (ленточное, по столбцам)

Блочные алгоримы матричного умножения

- Алгоритм Фокса
- Алгоритм Кеннона
- Алгоритм SUMMA

Блочный алгоритм

```
Делим матрицы на подматрицы.
Пусть p = s^2 и матрицы разделены на s^2 подматриц.
Каждый блок содержит n/s x n/s элементов.
Обозначим Ар, q - блок матрицы А
for (p = 0; p < s; p++)
 for (q = 0; q < s; q++) {
   Cp,q=0;
                              /* обнуление блоков */
   for (r = 0; r < m; r++) /*блочное умножение &*/
     Cp,q = Cp,q + Ap,r * Br,q; /*и сложение блоков*/
Строка
  Cp,q = Cp,q + Ap,r * Br,q;
означает умножение блоков Ap,r и Br,q, используя матричное умножение
```

Идея алгоритма Кеннона

 Алгоритм Кеннона определяет порядок суммирования членов во внутреннем цикле:

C(i,j) =
$$\sum_{k=0}^{s-1} A(i, (i + j + k) \mod s) * B((i + j + k) \mod s, j)$$

таким образом, чтобы в каждом процессе на каждом шаге алгоритма находился один из блоков матриц А и В. Предусматривается первоначальное распределение блоков матриц таким образом, чтобы минимизировать обмены блоками в процессе выполнения алгоритма.

Алгоритм Кеннона: распределение блоков матриц

sqrt(P)

sqrt(P)

A0,0	A0,1	A0,2	A0,3
A1,0	A1,1	A1,2	A1,3
A2,0	A2,1	A2,2	A2,3
A3,0	A3,1	A3,2	A3,3
,			

во,о	B0,1 ↑	B0,2	B0,3
B1,0	B1,1	B1,2	B1,3
B2,0	B2,1	B2,2	B2,3
B3,0	B3,1	B3,2	B3,3

A0,0	A0,1	A0,2	A0,3
B0,0	B1,1	B2,2	В3,3
A1,1	A1,2	A1,3	A1,0
B1,0	B2,1	B3,2	В0,3
A2,2	A2,3	A2,0	A2,1
B2,0	B3,1	B0,2	B1,3
A3,3	A3,0	A3,1	A3,2
B3,0	B0,1	B1,2	B2,3
			1

Первоначальное перераспределение

Алгоритм Кеннона: обмены блоками матриц

A0,1	A0,2	A0,3	A0,0
B1,0	B2,1	B3,2	B0,3
A1,2	A1,3	A1,0	A1,1
B2,0	B3,1	во,2	B1,3
A2,3	A2,0	A2,1	A2,2
B3,0	B0,1	B1,2	B2,3
A3,0	A3,1	A3,2	A3,3
B0,0	B1,1	B2,2	B3,3

Первый
СДВИГ

	A0,2	A0,3	A0,0	A0,1
	B2,0 ★	B3,1	В0,2	B1,3
•	A1,3	A1,0	A1,1	A1,2
_	B3,0	B0,1	B1,2	B2,3
	A2,0	A2,1	A2,2	A2,3
	B0,0	B1,1	B2,2	B3,3
	A3,1	A3,2	A3,3	A3,0
	B1,0	B2,1	B3,2	B0,3

Второй сдвиг

A0,3	A0,0	A0,1	A0,2
B3,0 ♣	B0,1	B1,2	B2,3
A1,0	A1,1	A1,2	A1,3
B0,0	B1,1	B2,2	В3,3
A2,1	A2,2	A2,3	A2,0
B1,0	B2,1	B3,2	B0,3
A3,2	A3,3	A3,0	A3,1
B2,0	B3,1	B0,2	B1,3

Третий сдвиг

Схема алгоритма Кеннона

```
for all (i=0 to s-1) // начальное распределение блоков матрицы A Циклический сдвиг влево строки i матрицы A на j так, чтобы на место A(i,j) была записана подматрица A(i,(i+j) mod s) end for for all (i=0 to s-1) // начальное распределение блоков матрицы B Циклический сдвиг вверх столбца j матрицы B на j так, чтобы на место B(i,j) была записана подматрица B((i+j) mod s,j) end for for k=0 to s-1 (i=0 to s-1, j=0 to s-1) C(i,j) = C(i,j) + A(i,j)*B(i,j)
```

Схема алгоритма Кеннона

```
Циклический сдвиг влево каждой строки матрицы A на 1 так, чтобы на место A(i,j) была записана подматрица A(i,(j+1) mod s) Циклический сдвиг вверх каждого столбца матрицы B на 1 так, чтобы на место B(i,j) была записана подматрица B((i+1) mod s,j)
```

end for

end for

```
dims[0] = dims[1] = sqrt(P);
periods[0] = periods[1] = 1;
MPI_Cart_Create(comm,2,dims,periods,1,&comm_2d);
MPI_Comm_rank(comm_2d, &my2drank);
MPI_Cart_coords(comm_2d, my2drank, 2, mycoords);
MPI_Cart_shift(comm_2d, 0, -1, &rightrank, &leftrank);
MPI_Cart_shift(comm_2d, 1, -1, &downrank, &uprank);
nlocal = n/dims[0];
```

- /* Initial Matrix Alignment */
- MPI_Cart_shift(comm_2d, 0, -mycoords[0], &shiftsource, &shiftdest);
- MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE, shiftdest, 1, shiftsource, 1, comm_2d, &status);
- MPI_Cart_shift(comm_2d, 1, -mycoords[1], &shiftsource, &shiftdest);
- MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE, shiftdest, 1, shiftsource, 1, comm_2d, &status);

```
/* Main Computation Loop */
for(i=0; i<dims[0]; i++){
 MatrixMultiply(nlocal,a,b,c); /* c=c+a*b*/
 /* Shift matrix a left by one */
 MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE,
   leftrank, 1, rightrank, 1, comm_2d, &status);
 /* Shift matrix b up by one */
 MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE,
   uprank, 1, downrank, 1, comm_2d, &status);
```

- /* Restore original distribution of a and b */
- MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE, shiftdest, 1, shiftsource, 1, comm_2d, &status);
- MPI_Cart_shift(comm_2d, 1, +mycoords[1], &shiftsource, &shiftdest);
- MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE, shiftdest, 1, shiftsource, 1, comm_2d, &status);

Алгоритм Фокса

$$C_{ij} = A_{i0}B_{0j} + A_{i1}B_{1j} + A_{i2}B_{2j} \dots A_{i,n-1}B_{n-1,j}$$

- Шаг 0
 - Процесс(i, j) : Сіј = Аіі х Віј
- Шаг 1
 - Процесс(i, j): Сіј = Сіј + Аі,і+1 х Ві+1, ј
- Шаг k
 - Процесс(i, j) : Сіј = Сіј + Аі, і+k х Ві+k, ј

Алгоритм Фокса

Stage 0
$$c_{00} + c_{00}b_{00} c_{01} + c_{00}b_{01} c_{02} + c_{00}b_{02}$$

$$c_{10} + c_{11}b_{10} c_{11} + c_{11}b_{11} c_{12} + c_{11}b_{12}$$

$$c_{20} + c_{20}b_{20} c_{21} + c_{22}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{20} c_{21} + c_{22}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{20} c_{21} + c_{22}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{10} c_{21} + c_{21}b_{21} c_{12} + c_{21}b_{12}$$

$$c_{20} + c_{20}b_{20} c_{21} + c_{21}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{20} c_{21} + c_{22}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{20} c_{21} + c_{22}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{22} c_{21} + c_{22}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{22} c_{21} + c_{22}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{21} c_{21} + c_{22}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{21} c_{21} + c_{22}b_{21} c_{22} + c_{22}b_{22}$$

$$c_{20} + c_{21}b_{10} c_{21} + c_{21}b_{11} c_{22} + c_{21}b_{12}$$

Алгоритм Фокса

Шаг 1. Широковещательная рассылка диагонального элемента каждой строки матрицы A по всем процессорам своей строки.

Каждый процессор (і, ј) выполняет

$$C(i,j) = A(i,i)*B(i,j)$$

Столбец матрицы В циклически сдвигается вверх по своему столбцу, замещая элемент В(i,j).

Шаг 2. Широковещательная рассылка элемента матрицы A, находящегося справа от диагонального, по всем процессорам своей строки.

Каждый процессор (і, ј) выполняет

$$C(i,j) = C(i,i)+A(i+1,i)*B(i+1,j)$$

Столбец матрицы **В циклически сдвигается вверх** по своему столбцу

Шаг k. Широковещательная рассылка очередного (i+k) mod s элемента строки матрицы A по всем процессорам своей строки. Каждый процессор (i,j) выполняет:

$$C(i,j) = C(i,j) + A(i,(i+k) \mod s)*B((i+k) \mod s,j)$$

Столбец матрицы В циклически сдвигается вверх по своему столбцу, замещая собой текущий элемент В(i,j)

Производительность двухточечных операций MPI

 Простая модель для оценки времени выполнения двухточечных операций:

Время передачи = latency + размер сообщения / bandwidth

 α

β

- Latency время запуска обмена = время пересылки нулевого сообщения, не зависит от размера сообщения
- Bandwith пропускная способность,число байт в секунду
- Цена обмена = latency * bandwith число байт, которые могли бы быть переданы за время запуска обмена.
- Если размер сообщения >> цены обмена производительность канала обмена близка к пропускной способности канала
- Если размер сообщения == цене обмена производительность равно половине пропускной способности

Latency & Bandwith

- Модель:
 - в случае коротких сообщений во времени передачи доминирует latency
 - в случае длинных сообщений bandwith
- Critical message size = latency * bandwith

Эффективность алгоритма Кеннона

```
forall i=0 to s-1 ... s = sqrt(p) циклический сдвиг строки і матрицы A на і ... t \leq s*(\alpha + \beta*n²/p) forall i=0 to s-1 циклический сдвиг столбца і матрицы B на і ... t \leq s*(\alpha + \beta*n²/p) for k=0 to s-1 forall i=0 to s-1 and j=0 to s-1 C(i,j) = C(i,j) + A(i,j)*B(i,j) \dots t = 2*(n/s)^3 = 2*n³/p³/2 left-circular-shift each row of A by 1 ... t = \alpha + \beta*n²/p up-circular-shift each column of B by 1 ... t = \alpha + \beta*n²/p
```

Общее время Total Time = 2*n3/p + 4* s*α + 4*β*n2/s
Эффективность Parallel Efficiency = 2*n3 / (p * Total Time)
= 1/(1 + a * 2*(s/n)3 + b * 2*(s/n))

Стремится к 1 при n/s = n/sqrt(p) = sqrt(data per processor) растет Лучше, чем 1D распределение, при котром Efficiency = 1/(1 + O(p/n))

Недостатки алгоритмов Кеннона и Фокса

- Трудно обобщаются для случаев:
 - р не полный квадрат
 - А и В не квадратные
 - Размерности A, B не делятся нацело на s=sqrt(p)
- Требуется дополнительная память для хранения копий блоков

Алгоритм SUMMA

- SUMMA = Scalable Universal Matrix Multiply *
- Менее эффективный, чем алгоритм Кеннона, но проще и легче обобщается
 - на случай разных способов распределения данных
 - ■Пересылок в log р раз больше, чем в методе Кеннона
 - требует меньше дополнительной памяти, но в то же время, и больше пересылок
- ■Используется на практике в PBLAS = Parallel BLAS
 - * R. A. Van De Geijn and J. Watts. SUMMA: scalable universal matrix multiplication algorithm. Concurrency: Pract. Ex., 9(4):255–274, 1997

- Процессорная решетка не обязательно должна быть квадратной: P = pr * pc
- b << N/ max(px,py)
- k блок с b ≥ 1 строками или столбцами
 C(i,j) = C(i,j) + Σ_k A(i,k)*B(k,j)

Эффективность SUMMA

 $^{\circ}$ Для упрощения преположим, что s = sqrt(p)

```
for k=0 to n/b-1
   for all i = 1 to s ... s = sqrt(p)
       owner of A(i,k) broadcasts it to whole processor row
         ... time = log s *( \alpha + \beta * b*n/s), используя дерево
   for all j = 1 to s
       owner of B(k,j) broadcasts it to whole processor column
        ... time = log s *( \alpha + \beta * b*n/s), используя дерево
   Receive A(i,k) into Acol
   Receive B(k,j) into Brow
   C_myproc = C_myproc + Acol * Brow
        ... time = 2*(n/s)^2*b
     Общее время
```

Системы и средства параллельного программирования. Лекция 9_2

Total time = $2*n^3/p + \alpha*log p*n/b + \beta*log p*n^2/s$

Эффективность SUMMA

- Total time = 2*n³/p + a * log p * n/b + b * log p * n² /s
- Parallel Efficiency =
 1/(1 + a * log p * p / (2*b*n²) + b * log p * s/(2*n))
- ≈такое же слагаемое с b как и в Кенноне, за исключением множителя log p
- (а) член может быть больше, в зависимости от весли b=1, получим а * log p * n
 С ростом b grows to n/s, term shrinks to a * log p * s (log p times Cannon)
- Дополнительная память 2*b*n/s
- Можно изменять b, чтобы регулировать соотношение время выполнения используемая память

2D параллельные алгоритмы матричного умножения

2D

Cannon

- Эффективность = $1/(1+O(\alpha*(sqrt(p)/n)^3+\beta*sqrt(p)/n)) -$ оптимальная
- Трудно обощать на случай произвольного р, n, блочноциклического распределения данных

SUMMA

- Эффективность = $1/(1 + O(\alpha * log p * p / (b*n²) + \beta*log p * sqrt(p) /n))$
- Легко обобщается
- b маленькое => меньше памяти, меньше эффективность
- b большое => больше памяти, выше эффективность
- Используется на практике (PBLAS)