

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/22
Paper 2 Pure Mathe	ematics 2 (P2)		May/June 2017
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

				••••
	••••••	••••••		••••
				••••
				••••
				••••
				••••
	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • •
Use logarithms to solve t	the equation $3^{x+4} = 5$	$\frac{2x}{x}$, giving your answer corr	rect to 3 significant figu	re
Use logarithms to solve t	the equation $3^{x+4} = 5$	^{2x} , giving your answer corn	rect to 3 significant figu	ıre
Use logarithms to solve t	the equation $3^{x+4} = 5$	^{2x} , giving your answer cor	rect to 3 significant figu	re
Use logarithms to solve t	the equation $3^{x+4} = 5$	^{2x} , giving your answer cor	rect to 3 significant figu	ire:
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer con	rect to 3 significant figu	ire
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer cor	rect to 3 significant figu	
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer cor	rect to 3 significant figu	ire
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer con	rect to 3 significant figu	
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer cor	rect to 3 significant figu	
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer con	rect to 3 significant figu	
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer cor	rect to 3 significant figu	ire
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer con	rect to 3 significant figu	ire
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer com	rect to 3 significant figu	
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer com	rect to 3 significant figu	ire
Use logarithms to solve t	the equation $3^{x+4} = 5$	^{2x} , giving your answer con	rect to 3 significant figu	re
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer com	rect to 3 significant figu	
Use logarithms to solve t	he equation $3^{x+4} = 5$	^{2x} , giving your answer con	rect to 3 significant figu	ire

(i) By sketching a suitable pair of graphs, show that the equation

3

	$x^3 = 11 - 2x$	
has exactly one real roo	ot.	[2
I In a 4h a itamatina Camana		
Use the iterative formula		
	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$	t of each iteration to 6 significan
to find the root correct		t of each iteration to 6 significan
o find the root correct	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	[3
o find the root correct igures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	[3
o find the root correct gures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	[3
o find the root correct gures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	[:
o find the root correct igures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	[:
o find the root correct igures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	[:
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	[:
o find the root correct igures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	[:
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	[3
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the result	

Give your a	answer in the	form $ax + b$	cy + c = 0 w	$y = \frac{e^{4x}}{2x+3}$ at there a, b and	d c are intege	rs.	
		•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	,
						•••••	
	••••••••••	•••••	••••••	•••••	••••••••••	••••••	
		•••••	•••••		•••••	•••••	
		•••••			•••••	•••••	
		•••••	•••••	•••••	•••••	•••••	
							,
	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••••	•••••	
						•••••	
	•••••	•••••	•	••••••	••••••••••	•	
		•••••		•••••	•••••	•••••	
		•••••	•••••	•••••	•••••		
						•••••	
•••••	•••••	•••••	•••••	•••••	••••••	••••••	
							,
	•••••	•••••	•••••		••••••	•••••	
			•••••	•••••	•••••		
	••••••	•••••	•	•••••	•••••	•••••	
					•••••	•••••	

5

The variables x and y satisfy the equation $y = \frac{K}{a^{2x}}$, where K and a are constants. The graph of $\ln y$
against x is a straight line passing through the points $(0.6, 1.81)$ and $(1.4, 1.39)$, as shown in the diagram. Find the values of K and a correct to 2 significant figures. [6]

	(3 12 2 22 72
	$6x^3 + 13x^2 - 33x - 70$
	and hence factorise the expression completely.
•	
•	

	7	
(ii)	Deduce the roots of the equation	
	$6 + 13y - 33y^2 - 70y^3 = 0.$	[2]
		••••
		••••
		••••
		•••••
		••••
		••••
		••••
		••••
		••••
		••••
		•••••
		••••
		••••
		••••
		••••

© UCLES 2017

7	(a)	Find $\int (2\cos\theta - 3)(\cos\theta + 1) d\theta$.	[4]
			,

(b)	(i)	Find $\int \left(\frac{4}{2x+1} + \frac{1}{2x}\right) dx.$	[2]
	(ii)	Hence find $\int_{1}^{4} \left(\frac{4}{2x+1} + \frac{1}{2x}\right) dx$, giving your answer in the form $\ln k$.	[3]

8

The diagram shows the curve with parametric equations

$$x = 2 - \cos 2t$$
, $y = 2\sin^3 t + 3\cos^3 t + 1$

for $0 \le t \le \frac{1}{2}\pi$. The end-points of the curve are (1, 4) and (3, 3).

(i)	Show that $\frac{dy}{dx} = \frac{3}{2}\sin t - \frac{9}{4}\cos t$.	[5]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

							••••
•••••		•••••					••••
• • • • • • • • • • • • • • • • • • • •		•••••					• • • • •
		•••••					••••
		•••••					••••
							• • • •
		•••••					••••
							• • • •
		•••••					••••
		•••••					••••
		•••••					••••
							••••
Find the exa	act gradient o	of the normal	to the curve	at the point	For which $x =$: 2.	••••
Find the exa	act gradient o	of the normal			For which $x =$		
Find the exa	act gradient o	of the normal					
	act gradient o						

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.