

树的 相关 概念

链: 特指直线型路径



### 树链剖分

### 将树分成若干条链

### 重链剖分

heavy-light decomposition

#### 重儿子

#### 子树节点最多的儿子叫做"重儿子"

如果两个儿子对应子树大小相同约定选取编号较小的儿子为"重儿子"



其他儿子 是轻儿子

#### 重儿子

#### 子树节点最多的儿子叫做"重儿子"

如果两个儿子对应子树大小相同约定选取编号较小的儿子为"重儿子"



其他儿子 是轻儿子

#### son[u]表示u的重儿子节点编号

|         | u=1 |  | u=2 | u=3 |  | u=4 |  | u=5 |   | u=6 |  |   |
|---------|-----|--|-----|-----|--|-----|--|-----|---|-----|--|---|
| son[u]= |     |  | 0   |     |  |     |  |     | ( | 9   |  | 0 |

每个节点和它"重儿子"之间的连边称作"重边"



每个节点和它"轻儿子"之间的连边称作"轻边"



#### 重链

将相邻的"重边"连接起来,就形成了"重链"



注意:还有种特殊的"重链"只包含1个节点

#### 重链

将相邻的"重边"连接起来,就形成了"重链"



top[u]表示u所在重链的链头(最高点)



### 重链剖分的实现

1 dfs\_son()

son[u]表示u的重儿子节点编号

从下往上计算

依赖sz[]

2 dfs\_top()

top[u]表示u所在重链的链头(最高点)

从上往下计算

需要跑 两次DFS

```
第1次DFS
从下往上
```

算son[]

```
11 void dfs son(int u,int fa){
12
        sz[u]=1;
13
        son[u]=0;
14
        for(int i=hd[u];i;i=e[i].nxt){
15
            int v=e[i].to;
            if(v==fa) continue;
16
            dfs son(v,u);
17
18
            if(sz[son[u]]<sz[v]||</pre>
19
                sz[son[u]]==sz[v]&&v<son[u])
20
21
22
23<sup>1</sup>}
```

第2次DFS 从上往下 算top[]

```
24 void dfs top(int u,int fa){
        if(son[fa]==u)
25
26
       else top[u]=u;
27∮
       for(int i=hd[u];i;i=e[i].nxt){
28
            int v=e[i].to;
            if(v==fa) continue;
29
30
31
32<sup>1</sup>}
```

# 重链剖分

性质讨论

重链数

### 重链数量==叶节点数量

证明

- 1 每个叶节点一定是某条重链的链尾
- 2 每条重链的结尾一定是某个叶节点



### 重链数量==叶节点数量

对于n个节点的树,选什么形态时 重链数量最少?

叶节点数量最少?

单链条



### 重链数量==叶节点数量

对于n个节点的树,选什么形态时 重链数量最多?

叶节点数量最多?

菊花图



### 重链数量==叶节点数量

对于n个节点的二叉树,选什么形态时 重链数量最多?

叶节点数量最多?

完全二叉树



0(n)等级

#### 重心

取重心为根时 最大子树最小

树的重心一定在根出发的重链上



#### 重心

取重心为根时 最大子树最小

#### 证明

反证法

局部调整

# 树的重心一定在根出发的重链上

假设重心G不在根出发的重链P上

将G改成G的邻居G',使其更靠近重链P

取G'为根时,最大子树变小了



# 快快编程2562

### SFS序列化

size first search

### 重儿子先行DFS



SFS序列

136498257

每条重链在SFS序列中都连续

区间

区间

每个子树在SFS序列中都连续

从下往上

算son[]

```
12 void dfs son(int u,int fa){
13
        sz[u]=1;
        son[u]=0;
14
15 |
        for(int i=hd[u];i;i=e[i].nxt){
            int v=e[i].to;
16
            if(v==fa) continue;
17
            dfs son(v,u);
18
            sz[u]+=sz[v];
19
            if(
20
21
                son[u]=v;
22
23
24<sup>1</sup>}
```

```
第2次DFS
25 void dfs top(int u,int fa){
                                             从上往下
        ++timer;
26
                                             算top[]
        dfn[u]=
27
        id[timer]=u;
28
29
        if(son[fa]==u) top[u]=top[fa];
        else top[u]=u;
30
        if(
31
                      return;
32
        for(int i=hd[u];i;i=e[i].nxt){
33 ₽
             int v=e[i].to;
34
             if(
35
                                     continue;
            dfs top(v,u);
36
37
38<sup>1</sup>}
```

# 重链剖分

性质讨论

### 任意点v到根路径上

轻边

重边

连续重边合并成重链

重链不可以连续出现重链之间一定是轻边

以上两种情况混合出现

### 任意点v到根路径上 轻边数不超过log(n)

证明

爬树: 不断将v改到p[v]

若v是轻儿子 (v到p[v]是轻边)

p[v]子树大小 > v子树大小\*2

从v到根,每过1条轻边,子树大小至少翻倍



# 任意点v到根路径上 重链数不超过log(n)

证明

从v到根,任意2条重链间一定有轻边

任意点v到根路径上 轻边数不超过log(n)



# 任意u到v的路径上 重链数不超过2\*log(n)

应用

将树上路径拆分成0(logn)条重链

每条重链在SFS序列中都是区间

1条路径问询可以拆分成 O(logn)个区间问询

# 快快编程2563



手算后 识别出 算法

爬树:从u和v两点逐步会合

交替往上跳

| 若u和v在同一条重链,答案为1 | 如何判断? | top[u]==top[v]     |  |  |
|-----------------|-------|--------------------|--|--|
|                 |       |                    |  |  |
| 若u和v不在同一条重链     | 如何爬?  | 比较top[u]和top[v]的深度 |  |  |

选链头较深节点 往上跳到 链头的父节点



| 若d[top[u]] < d[top[v]] | v 跳到 p[top[v]] |
|------------------------|----------------|

若u和v不在同一条重链 如何爬? 比较top[u]和top[v]的深度

选链头较深节点 往上跳到 链头的父节点



| 若d[top[u]] >= d[top[v]] | u 跳到 p[top[u]] |
|-------------------------|----------------|

若u和v不在同一条重链 如何爬? 比较top[u]和top[v]的深度

选链头较深节点 往上跳到 链头的父节点



| 若d[top[u]] < d[top[v]] | v 跳到 p[top[v]] |
|------------------------|----------------|

若u和v不在同一条重链 如何爬? 比较top[u]和top[v]的深度



若u和v在同一条重链,停止爬树

top[u]==top[v]

#### 从u到v的路径共经过几条不同的重链

```
35 int query(int u,int v){
36
        int cnt=1;
        while(
37∮
             if(d[top[u]]<d[top[v]])</pre>
                                             [[]]嵌套
38
39
                                             [[]]嵌套
40
             else
41
                                             [[]]嵌套
42
             ++cnt;
43
44
        return cnt;
45
```

关键句都包含top[]不要遗漏

# 重链剖分

O(logn)求解LCA

#### 求u和v最近公共祖先

```
34 int lca(int u,int v){
        while(top[u]!=top[v]){
35
36
                  u=p[top[u]];
37
38
             else
39
                  v=p[top[v]];
40
41
        return
                            ?u:v;
42<sup>1</sup>}
```

tttttillite.net

# 快快编程作业

2561,2562,2563

整理详细证明发班级群

拓展题

1826, 1887, 974