# Appunti del corso di Algebra II

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca

A.A. 2019/2020

Versione del 7 Ottobre 2020

## Indice

| T                      | Complementi di teoria degli anelli                                                            | 3  |
|------------------------|-----------------------------------------------------------------------------------------------|----|
|                        | 1.1 Anelli di polinomi in una variabile                                                       | 3  |
|                        |                                                                                               |    |
| $\mathbf{C}\mathbf{h}$ | angelog (versione del 7 Ottobre 2020):                                                        |    |
|                        | • Reworking completo di varie cose                                                            |    |
| То                     | do (in ordine di importanza):                                                                 |    |
|                        | $\bullet$ Teoria dei moduli (lezioni dal 06/11/2019 fino alla fine del corso)                 |    |
|                        | $\bullet$ Estensione di campi (lezioni del 25-30/10/19)                                       |    |
|                        | $\bullet$ Campi di spezzamento e campi finiti (lezioni del 05-06/11/2019)                     |    |
|                        | $\bullet$ Domini a valutazione discreta (lezioni del 22-23/10/19)                             |    |
|                        | $\bullet$ Capitolo 1.7: sistemare spacing, anello locale che non è dominio, proposizione 1.7. | 10 |
|                        | $\bullet$ Capitolo 1.5: riduzione mod p<br>, Eisenstein, ciclotomici $x^{p-1}+\ldots+x+1$     |    |
|                        | • Capitolo 1.4: polinomi di Laurent e serie formali (fix i due rif in anelli locali)          |    |
|                        | • Introduzione?                                                                               |    |

### 1 Complementi di teoria degli anelli

#### 1.1 Anelli di polinomi in una variabile

Sia R un anello  $^1$  e sia  $R[x] = \left\{ \sum_{i=0}^n a_i x^i : a_i \in R, n \in \mathbb{N}_0 \right\}$ . Presi due elementi  $f(x) = \sum_{i=0}^m a_i x^i$  e  $g(x) = \sum_{i=0}^n b_j x^j$  di R[x], definiamo le operazioni binarie di somma

$$f(x) + g(x) = \sum_{i=0}^{s} (a_i + b_i)x^i$$

dove abbiamo posto  $s = \max\{m, n\}$  e  $a_i = b_j = 0_R$  per i > m e j > n, e prodotto

$$f(x) \cdot g(x) = \sum_{k=0}^{m+n} c_k x^k$$

dove abbiamo posto  $c_k = \sum_{i=0}^k a_i b_{k-i}$ .

#### Esempio 1.1.1

Se prendiamo  $R = \mathbb{Z}$ ,  $f(x) = x^2 + 2x + 3$  e g(x) = 4x + 5, si ha che

$$f(x) + g(x) = (1+0)x^2 + (2+4)x + (3+5) = x^2 + 6x + 8$$

$$f(x) \cdot g(x) = (3 \cdot 0 + 2 \cdot 0 + 1 \cdot 4 + 0 \cdot 5)x^3 + (3 \cdot 0 + 2 \cdot 4 + 1 \cdot 5)x^2 + (3 \cdot 4 + 2 \cdot 5)x + 3 \cdot 5$$
$$= 4x^3 + 13x^2 + 22x + 15.$$

Come visto nel corso di Algebra I, si verifica facilmente che R[x] dotato di tali operazioni di somma e prodotto è un anello commutativo<sup>3</sup> con elemento neutro il polinomio identicamente nullo  $0_{R[x]} = 0_R$  e unità il polinomio costante  $1_{R[x]} = 1_R$ .

Di qui in seguito, denoteremo il prodotto di polinomi semplicemente come f(x)g(x) o  $f \cdot g$ .

#### Definizione 1.1.2: Anellod di polinomi in una variabile

Tale insieme R[x] è detto anello dei polinomi a coefficienti in R nella variabile x.

Possiamo quindi definire su  $\mathbb{R}[x]$  il concetto di "grado" di un polinomio.

<sup>&</sup>lt;sup>1</sup>Useremo la convenzione secondo cui gli anelli sono commutativi unitari e  $\mathbb{N} = \{1, 2, ...\}, \mathbb{N}_0 = \mathbb{N} \cup \{0\}.$ 

<sup>&</sup>lt;sup>2</sup>È solo un modo formale per definire il classico prodotto tra polinomi, come chiarificato dall'esempio.

<sup>&</sup>lt;sup>3</sup>Infatti  $a_ib_{k-i}=b_{k-i}a_i$  essendo R un anello commutativo per ipotesi, da cui  $f(x)\cdot g(x)=g(x)\cdot f(x)$ .

#### Definizione 1.1.3: Funzione grado; grado di un polinomio

Sia R un anello e sia  $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ . La funzione  $\deg^* : R[x] \to \mathbb{N}_0 \cup \{\infty\}$  definita come

deg\*
$$(f) = \begin{cases} \max\{k \in \mathbb{N}_0 : a_k \neq 0_R\} & \text{se } f(x) \not\equiv 0_R \\ \infty & \text{se } f(x) \equiv 0_R \end{cases}$$
 è detta grado.

Tale definizione coincide con quella classica di grado di un polinomio tranne nel caso in cui f(x) sia identicamente nullo. Infatti, per questa definizione  $f(x) \equiv 0_R$  è l'unico polinomio di grado infinito, mentre secondo quella classica anch'esso ha grado 0 in quanto costante.

**Esempio.** Se consideriamo i polinomi  $f(x) = x^2 + 1$ ,  $g(x) \equiv 1$  e  $h(x) \equiv 0$  in  $\mathbb{Z}[x]$ , si ha che  $\deg^*(f) = 2$  e  $\deg^*(g) = 0$ , ma  $\deg^*(h) = \infty$ .  $\square$ 

Possiamo ora dimostrare un risultato che mette in relazione l'anello dei polinomi con quello dei suoi coefficienti, nel caso in cui quest'ultimo sia un dominio di integrità. <sup>5</sup>

#### Proposizione 1.1.4

Sia R un dominio di integrità. Allora, per ogni  $f(x), g(x) \in R[x]$  vale

$$\deg^{\star}(f \cdot g) = \deg^{\star}(f) + \deg^{\star}(g). \ (\star)$$

In particolare, R[x] è un dominio di integrità se e solo se R è un dominio di integrità.

Dimostrazione. Osserviamo innanzitutto che se almeno uno tra f(x) e g(x) è identicamente nullo, allora  $(\star)$  è vera perché  $f(x)g(x) \equiv 0_R$  e quindi

$$\deg^{\star}(f \cdot q) = \infty = \deg^{\star}(f) + \deg^{\star}(q).$$

D'altra parte, siano  $f(x) = \sum_{i=0}^{m} a_i x^i$  e  $g(x) = \sum_{j=0}^{n} b_j x^j$  non nulli con  $a_m \neq 0_R$  e  $b_n \neq 0_R$ .

Poiché R è un dominio di integrità,  $a_m b_n \neq 0_R$ , cioè  $a_m b_n x^{m+n}$  è il monomio di grado massimo nel prodotto f(x)g(x). Per definizione di grado, concludiamo quindi che

$$\deg^{\star}(f \cdot q) = m + n = \deg^{\star}(f) + \deg^{\star}(q).$$

Sia ora R un dominio di integrità, e mostriamo che lo è anche R[x]. Osserviamo innanzitutto che R[x] è un anello commutativo unitario, in quanto eredita tali proprietà da R. Inoltre, presi f(x),  $g(x) \in R[x]$  tali che  $f(x)g(x) \equiv 0_R$ , per quanto appena mostrato vale

$$\deg^{\star}(f) + \deg^{\star}(g) = \deg^{\star}(f \cdot g) = \deg^{\star}(0_R) = \infty.$$

<sup>&</sup>lt;sup>4</sup>Sarebbe più corretto scrivere deg\*(f(x)), ma si preferisce evitare l'uso di troppe parentesi. Ricordiamo che con  $f(x) \equiv k$  si intende il polinomio costante uguale a k. Tale notazione serve per non confondere un polinomio costante  $p(x) \equiv 0$  con l'equazione algebrica p(x) = 0.

 $<sup>^5</sup>$ Ricordiamo che un dominio di integrità è un anello commutativo unitario  $R \neq \{0_R\}$  senza divisori dello zero, cioè in cui  $ab=0_R$  se e solo se  $a=0_R$  o  $b=0_R$ . Esempi di domini di integrità sono  $\mathbb{Z}$ , le classi di resto  $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$  con p primo, gli interi gaussiani  $\mathbb{Z}[i]=\{a+bi:a,b\in\mathbb{Z}\}$  e  $\mathbb{Z}[\sqrt{2}]=\{a+b\sqrt{2}:a,b\in\mathbb{Z}\}.$ 

Dunque, almeno uno fra f(x) e g(x) ha grado infinito ed è quindi il polinomio nullo, cioè R[x] non ha divisori dello zero ed è effettivamente un dominio di integrità. Viceversa, sia R[x] un dominio di integrità. Allora,  $R \subseteq R[x]$  è commutativo e unitario in quanto sottoanello, e presi  $a,b \in R$ , possiamo vedere a e b come polinomi costanti in R[x]. Essendo R[x] un dominio di integrità,  $ab = 0_R$  se e solo se  $a = 0_R$  o  $b = 0_R$ , da cui anche R non ha divisori dello zero ed è quindi un dominio di integrità.

Osserviamo che  $(\star)$  non vale quando l'anello R non è un dominio di integrità.

**Esempio.** Siano 
$$f(x) = 2x + 1$$
 e  $g(x) = 3x + 2$  in  $\mathbb{Z}/6\mathbb{Z}[x]$ . Allora,  $\deg^*(f) = \deg^*(g) = 1$ , ma  $f(x)g(x) = 6x^2 + 7x + 2 \equiv_6 x + 2$ , da cui  $\deg^*(f \cdot g) = 1 \neq 2 = \deg^*(f) + \deg^*(g)$ .  $\square$ 

Più in generale, se R non è un dominio di integrità, per definizione esistono  $a, b \in R$  non nulli tali che  $ab = 0_R$ . Allora, detti f(x) = ax e g(x) = bx, si ha  $f(x)g(x) = abx^2 = 0_Rx^2 = 0_R$ , da cui, essendo  $\deg^*(f) = \deg^*(g) = 1$ , l'uguaglianza  $(\star)$  non vale perché

$$\deg^{\star}(f \cdot g) = \deg^{\star}(0_R) = \infty \neq 2 = \deg^{\star}(f) + \deg^{\star}(g).$$

Dunque, per la proposizione 1.1.4 segue che  $(\star)$  vale se e solo se R è un dominio di integrità.

Prima di procedere nello studio degli anelli di polinomi, richiamiamo il concetto di elemento invertibile di un anello. Preso un anello R, sia  $R^{\times}$  l'insieme degli elementi di R che hanno inverso moltiplicativo, cioè l'insieme degli  $a \in R$  per cui esiste  $b \in R$  tale che  $ab = 1_R$ . Se esiste, denotiamo l'inverso moltiplicativo di a con  $a^{-1}$ . Allora, vale la proposizione seguente.

#### Proposizione 1.1.5

Sia R un anello. Allora,  $R^{\times}$  è un gruppo rispetto al prodotto.

Dimostrazione. Osserviamo innanzitutto che il prodotto è associativo essendo R un anello, e in particolare  $1_R$  è l'unità anche di  $R^{\times}$ . Inoltre, presi  $a,b \in R^{\times}$ , per definizione esistono  $c,d \in R$  tali che  $ac = 1_R$  e  $bd = 1_R$ , dunque

$$(ab)(dc) = a(bd)c = a1_Rc = ac = 1_R,$$

cioè  $ab \in R^{\times}$  è invertibile con inverso dc, da cui  $R^{\times}$  è chiuso rispetto al prodotto. Infine, se  $ab = 1_R$  è evidente che anche  $a^{-1} = b \in R^{\times}$ , dunque  $(R^{\times}, \cdot)$  è effettivamente un gruppo.

Grazie a tale proposizione, la definizione seguente risulta quindi ben posta.

#### Definizione 1.1.6

Sia R un anello. L'insieme  $R^{\times}$  degli elementi di R che ammettono inverso moltiplicativo è un gruppo detto gruppo moltiplicativo di R.

Se da una parte la proposizione 1.1.4 mostra che R[x] può avere la struttura di un dominio di integrità, l'anello dei polinomi R[x] non è mai un campo, nemmeno se lo è R stesso.<sup>7</sup>

<sup>&</sup>lt;sup>6</sup> Tale gruppo viene spesso indicato anche con  $\mathcal{U}(R)$  o  $R^*$  ed è anche detto "gruppo delle unità di R".

<sup>&</sup>lt;sup>7</sup>Vedremo nel Capitolo 1.4 una generalizzazione degli anelli di polinomi con la struttura di un campo.

Infatti,  $x \in R[x]$  non è un elemento invertibile perché il suo inverso 1/x non è un polinomio.<sup>8</sup> Risulta quindi naturale chiedersi quali elementi di R[x] siano effettivamente invertibili.

<sup>8</sup> Più rigorosamente, se f(x) = x fosse invertibile, esisterebbe  $g(x) \in R[x]$  tale che  $f(x)g(x) = 1_R$ , da cui  $\deg^*(f \cdot g) = \deg^*(1_R) = 0 = \deg^*(f) + \deg^*(g)$ , cioè  $\deg^*(g) = -\deg^*(f) = -1 < 0$ , assurdo.

#### Proposizione 1.1.7

Sia R un dominio di integrità. Allora,  $R[x]^{\times} = R^{\times}$ .

Dimostrazione. Poiché ogni elemento di  $R^{\times}$  può essere visto come polinomio costante di R[x], è evidente che  $R^{\times} \subseteq R[x]^{\times}$ . D'altra parte, siano f(x),  $g(x) \in R[x]^{\times}$  tali che  $f(x)g(x) = 1_R$ . Allora, per la *Proposizione 1.1.1* si ha che

$$\deg^{\star}(f \cdot g) = \deg^{\star}(1_R) = 0 = \deg^{\star}(f) + \deg^{\star}(g),$$

quindi  $\deg^*(f) = \deg^*(g) = 0$  essendo il grado non negativo. Questo prova che ogni elemento di  $R[x]^{\times}$  è in realtà una costante invertibile, cioè  $R[x]^{\times} \subseteq R^{\times}$ , dunque  $R[x]^{\times} = R^{\times}$ .

Sia R un anello, e supponiamo di voler aggiungere a R un certo elemento  $x \notin R$  senza alcuna relazione con gli altri elementi di R, in modo che la struttura algebrica risultante sia ancora un anello e sia la più piccola possibile. Come possiamo fare? Poiché ogni anello è chiuso

rispetto a somma e prodotto, tale struttura conterrà anche tutte le potenze non negative  $\{x^0, x^1, x^2, ...\}$  di x e tutte le combinazioni lineari tra potenze di x ed elementi di R, cioè tutti gli elementi della forma  $a_n x^n + ... + a_1 x + a_0$  con  $a_0, ..., a_n \in R$ . Dunque, l'anello dei polinomi R[x] sembra essere la struttura che soddisfa le nostre richieste, cioè il più piccolo anello contenente sia R che x. Resta solo da formalizzare meglio il concetto di "più piccolo anello", cioè chiarire cosa significa che un anello ne contiene un altro. A questo scopo,

potremmo considerare sull'insieme degli anelli la relazione d'ordine data dall'inclusione, cioè dire che un anello R è più piccolo di un altro anello S se e solo se  $R \subseteq S$ . Tuttavia, questo non terrebbe conto dell'importanza algebrica degli isomorfismi: infatti, la struttura che stiamo cercando di costruire è definita a meno di isomorfismi, e anelli isomorfi potrebbero essere non confrontabili secondo l'inclusione. Per risolvere tale problema, ha quindi più senso definire che R è più piccolo di S se e solo se S contiene una copia isomorfa dell'anello R, cioè se e solo se esiste un sottanello di S isomorfo a R.

#### Definizione 1.1.8

Siano R e S due anelli. Diciamo che R è <u>più piccolo</u> di S (o anche che S contiene R) se e solo se esiste un omomorfismo di anelli iniettivo  $\varphi \colon R \to S$ .

Si osservi che tale definizione è equivalente a quanto detto sopra: se esiste un monomorfismo (cioè un omomorfismo iniettivo)  $\varphi \colon R \to S$ , la restrizione  $\varphi \colon R \to \varphi(R)$  è un isomorfismo, dunque l'immagine  $\varphi(R) \subseteq S$  è un sottoanello di S isomorfo a R.

**Esempio.** Chiaramente  $\mathbb{R}$  non è un sottoanello di  $\mathbb{R}^2$ , in quanto  $\mathbb{R} \not\subseteq \mathbb{R}^2$ . D'altra parte, la mappa  $\varphi \colon \mathbb{R} \to \mathbb{R}^2$ ,  $x \mapsto (x, x)$  è un omomorfismo iniettivo, quindi  $\mathbb{R}^2$  contiene una copia isomorfa di  $\mathbb{R}$ , che geometricamente corrisponde alla bisettrice y = x.  $\square$ 

$$\varphi \colon \mathbb{C} \to \mathrm{Mat}_{2 \times 2}(\mathbb{R}), \ a + bi \mapsto \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

<sup>&</sup>lt;sup>9</sup>Ad esempio, si verifica facilmente che la mappa

è un isomorfismo di anelli, ma  $\mathbb{C} \not\subseteq \mathrm{Mat}_{2 \times 2}(\mathbb{R})$  e  $\mathrm{Mat}_{2 \times 2}(\mathbb{R}) \not\subseteq \mathbb{C}$ , cioè tali anelli non sono confrontabili secondo l'inclusione.

Tornando al problema iniziale, sia X la struttura algebrica che stiamo cercando di costruire. Allora, possiamo riformulare le condizioni su X come segue:

- X contiene  $R \Rightarrow$  esiste un monomorfismo  $\iota \colon R \to X$ ;
- X è il più piccolo anello contenente sia R che  $x \notin R \Rightarrow$  per ogni altro anello S con tali proprietà (cioè tale che esista un monomorfismo  $\varphi \colon R \to S$  e contenente un  $s \notin R$ ), abbiamo che X è più piccolo di S, ossia esiste un monomorfismo  $\phi \colon X \to S$ .

In particolare, richiediamo che tale mappa  $\phi$  soddisfi  $\phi(x) = s$  e  $\phi(\iota(R)) = \varphi(R)$ , cioè che mandi l'elemento aggiunto x nell'elemento aggiunto s e la copia isomorfa  $\iota(R)$  di R in X nella copia isomorfa  $\varphi(R)$  di R in S.



Osserviamo ora che l'anello dei polinomi R[x] soddisfa effettivamente tali proprietà. Infatti, detta  $\iota \colon R \to R[x]$  la mappa di inclusione che manda ogni elemento  $r \in R$  nel corrispondente polinomio costante  $r \in R[x]$ , è evidente che  $\iota$  sia un monomorfismo, e preso un qualunque monomorfismo  $\varphi \colon R \to S$ , basta definire  $\phi \colon R[x] \to S$  ponendo  $\phi(x) = s$  e  $\phi(\iota(r)) = \varphi(r)$  per ogni  $r \in R$ . Tale mappa si estende per linearità su tutto R[x] ponendo

$$\phi\left(\sum_{i=0}^{n} r_i x^i\right) = \sum_{i=0}^{n} \varphi(r_i) s^i$$

ed è facile verificare che  $\phi$  sia un monomorfismo. <sup>10</sup> Più in generale, vale il teorema seguente.

#### Teorema 1.1.9: Proprietà universale

Siano R e S due anelli e sia  $\varphi \colon R \to S$  un omomorfismo. Allora, per ogni  $s \in S$  esiste un unico omomorfismo di anelli  $\phi \colon R[x] \to S$  tale che  $\phi(x) = s$  e  $\phi_{|_R} = \varphi$ .

Dimostrazione. Siano  $f(x) = \sum_{i=0}^{m} a_i x^i$  e  $g(x) = \sum_{j=0}^{n} b_j x^j$  in R[x] e sia  $\phi(f) = \sum_{i=0}^{m} \varphi(a_i) s^i$ .

Osserviamo innanzitutto che  $\phi(f)$  è ben definita. Infatti,  $\varphi(a_i) \in S$  e  $\phi(f) \in S$  perché somma di prodotti di elementi dell'anello S, che è chiuso rispetto a somma e prodotto. Inoltre,  $\phi(x) = \varphi(1_R)s^1 = s$  e  $\phi(r) = \varphi(r)s^0 = \varphi(r)$  per ogni  $r \in R$ , quindi  $\phi$  soddisfa le condizioni richieste. Mostriamo ora che  $\phi$  preserva le operazioni. Infatti,

$$\phi(f+g) = \sum_{i=0}^{\max\{m,n\}} \varphi(a_i + b_i) s^i = \sum_{i=0}^m \varphi(a_i) s^i + \sum_{j=0}^n \varphi(b_j) s^j = \phi(f) + \phi(g)$$

per la distributività del prodotto rispetto alla somma e perché  $\varphi(a_i + b_i) = \varphi(a_i) + \varphi(b_i)$ ,

<sup>&</sup>lt;sup>10</sup>Approfondiremo meglio questa questione nel *Capitolo 2.1* quando tratteremo le estensioni di campi.

$$\phi(f \cdot g) = \sum_{k=0}^{m+n} \left( \sum_{i=0}^{k} \varphi(a_i b_{k-i}) \right) s^k = \left( \sum_{i=0}^{m} \varphi(a_i) s^i \right) \left( \sum_{j=0}^{n} \varphi(b_j) s^j \right) = \phi(f) \cdot \phi(g)$$

per come è definito il prodotto tra polinomi e perché  $\varphi(a_ib_{k-i}) = \varphi(a_i)\varphi(b_{k-i})$  essendo  $\varphi$  un omomorfismo. Poiché  $\phi(0_{R[x]}) = \varphi(0_R) = 0_S$  e  $\phi(1_{R[x]}) = \varphi(1_R) = 1_S$ , concludiamo che tale mappa  $\phi$  è effettivamente un omomorfismo di anelli.

Mostriamo ora che  $\phi$  è unico. Sia  $\psi \colon R[x] \to S$  un altro omomorfismo di anelli tale che  $\psi(x) = s$  e  $\psi_{|R} = \varphi$ . Poiché  $\psi$  preserva le operazioni, per ogni  $f(x) = \sum_{i=0}^{m} a_i x^i \in R[x]$  vale

$$\psi(f) = \psi\left(\sum_{i=0}^{m} a_i x^i\right) = \sum_{i=0}^{m} \psi(a_i)\psi(x^i) = \sum_{i=0}^{m} \varphi(a_i)\psi(x)^i = \sum_{i=0}^{m} \varphi(a_i)s^i = \phi(f)$$

essendo  $\psi(a_i) = \varphi(a_i)$  perché  $a_i \in R$  e  $\psi(x^i) = \psi(x)^i = s^i$ . Dunque,  $\psi$  coincide con  $\phi$  per ogni polinomio  $f(x) \in R[x]$ , da cui  $\phi$  è unico.

Nel caso particolare in cui  $\varphi = \mathrm{id}_R$  e quindi  $R \subseteq S$ , la mappa  $\phi$  di cui sopra viene spesso denotata con  $\phi_s$ . In questo caso,  $\phi_s(f)$  non è altro che il polinomio f(x) calcolato in x = s, cioè  $\phi_s(f) = f(s)$ , il che spiega l'origine del nome "valutazione in s" per tale mappa.

#### Definizione 1.1.10

Tale omomorfismo di anelli  $\phi_s$  è detto <u>valutazione in s</u>.

**Esempio.** Se  $R = \mathbb{Z}$ ,  $S = \mathbb{Z}[\sqrt{2}]$  e  $f(x) = x^2 + 2x + 3 \in \mathbb{Z}[x]$ , detta  $\phi_{\sqrt{2}} \colon \mathbb{Z}[x] \to \mathbb{Z}[\sqrt{2}]$  la valutazione in  $\sqrt{2}$ , abbiamo che  $\phi_{\sqrt{2}}(f) = (\sqrt{2})^2 + 2\sqrt{2} + 3 = 5 + 2\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ .  $\square$ 

Vogliamo ora dimostrare che la *Proprietà universale* è una caratteristica propria degli anelli di polinomi, cioè che se T è un anello contenente sia R che un elemento  $t \notin R$  e dotato della *Proprietà universale*, allora  $T \cong R[x]$ . Nella dimostrazione ci limiteremo al caso in cui  $R \subseteq T$  e  $\varphi = \mathrm{id}_R$  (e quindi  $R \subseteq S$ ), ma il caso generale è del tutto analogo.

#### Teorema 1.1.11

Sia R un anello e sia  $T\supseteq R$  un anello contenente un elemento  $t\notin R$  e tale che per ogni anello  $S\supseteq R$  e per ogni  $s\in S$  esista un unico omomorfismo di anelli  $\psi\colon T\to S$  con  $\psi(t)=s$  e  $\psi_{|_R}=\mathrm{id}_R$ . Allora,  $T\cong R[x]$ .

Dimostrazione. Poiché per ipotesi tale proprietà vale per ogni anello  $S \supseteq R$ , in particolare scegliamo S = R[s] e siano  $\phi_t \colon R[s] \to T$  la valutazione in  $t^{-11}$  e  $\alpha = \phi_t \circ \psi \colon T \to T$ .

$$T \xrightarrow{\psi} R[s]$$

$$\downarrow^{\phi_t}$$

$$T$$

<sup>&</sup>lt;sup>11</sup>Ricordiamo che per il *Teorema 1.1.4* tale omomorfismo è l'unico che soddisfa  $\phi_t(s) = t$  e  $\phi_t|_R = \mathrm{id}_R$ .

Osserviamo innanzitutto che  $\alpha$  è ben definito ed è un omomorfismo in quanto composizione di omomorfismi. Inoltre,  $\alpha(t) = \phi_t(\psi(t)) = \phi_t(s) = t$  e  $\alpha(r) = \phi_t(\psi(r)) = \phi_t(r) = r$  per ogni  $r \in R$ , cioè  $\alpha_{|_R} = \mathrm{id}_R$ . D'altra parte, poiché  $T \supseteq R$ , possiamo scegliere S = T e s = t nell'enunciato del teorema, così sappiamo che esiste un unico omomorfismo  $\psi' \colon T \to T$  tale che  $\psi'(t) = t$  e  $\psi'_{|_R} = \mathrm{id}_R$ . Poiché anche l'identità  $\mathrm{id}_T \colon T \to T$  soddisfa tali proprietà, per l'unicità di  $\psi'$  deve essere  $\alpha = \mathrm{id}_T$ . Sia ora  $\beta = \psi \circ \phi_t \colon R[s] \to R[s]$ .



Come sopra, osserviamo che  $\beta$  è ben definito ed è un omomorfismo in quanto composizione di omomorfismi. Inoltre,  $\beta(s) = \psi(\phi_t(s)) = \psi(t) = s$  e  $\beta(r) = \psi(\phi_t(r)) = \psi(r) = r$  per ogni  $r \in R$ , cioè  $\beta_{|R} = \mathrm{id}_R$ . Poiché anche l'identità  $\mathrm{id}_{R[s]} \colon R[s] \to R[s]$  soddisfa  $\mathrm{id}_{R[s]}(s) = s$  e  $\mathrm{id}_{R[s]}|_R = \mathrm{id}_R$ , e per il Teorema 1.1.4 esiste un unico omomorfismo con queste proprietà, deve essere  $\beta = \mathrm{id}_{R[s]}$ . Dunque, essendo  $\phi_t \circ \psi = \mathrm{id}_T$  e  $\psi \circ \phi_t = \mathrm{id}_{R[s]}$  isomorfismi, lo sono anche  $\psi$  e  $\phi_t$ , 12 da cui concludiamo che  $T \cong R[s] \cong R[x]$ .  $\blacksquare$ 

<sup>&</sup>lt;sup>12</sup>In generale, se  $f: X \to Y$  e  $g: Y \to X$  sono omomorfismi tali che  $g \circ f = \mathrm{id}_X$  e  $f \circ g = \mathrm{id}_Y$ , allora  $f \in g$  sono isomorfismi. Infatti, f è iniettivo perché  $f(x) = f(x') \Rightarrow x = g(f(x)) = g(f(x')) = x'$ , ed è suriettivo perché preso  $g \in Y$ , si ha che  $g(g) \in X$  e g(g(g)) = g. In modo del tutto analogo si dimostra che anche g è un isomorfismo, e in particolare risulta quindi che  $g = f^{-1}$ .

 $<sup>^{13}</sup>$ Infatti s è solo un nome qualunque per la variabile dei polinomi a coefficienti in R.