STAT 4160: Data Science Productivity Tools

Yi Wang

2025-08-13

Table of contents

Preface

This is the lecture note for the course STAT 4160.

Introduction

13-week plan (2 \times 75-min per week)

Week 1 – Setup, Colab, Git/GitHub

- Lec A: Local Python + VS Code; Colab basics (GPU, Drive mount, persistence limits), repo cloning in Colab, requirements.txt, seeds.
- Lec B: Git essentials, branching, PRs, code review etiquette, .gitignore, Git-LFS do's/don'ts (quota pitfalls).
- **Deliverable:** Team repo with a Colab notebook that runs and logs environment info; one PR merged.

Week 2 – Reproducible reporting (Quarto) + RStudio cameo

- Lec A: Quarto for Python: parameters, caching, citations; publish to GitHub Pages.
- Lec B (15–25 min cameo): RStudio + Quarto rendering (so they can read R-centric docs later), then back to Python.
- Deliverable: Parameterized EDA report (symbol, date range as params).

Week 3 – Unix for data work + automation

- Lec A: Shell basics (pipes, redirects), grep/sed/awk, find/xargs, regex.
- Lec B: Shell scripts, simple Makefile/justfile targets; rsync, quick SSH/tmux tour.
- Deliverable: make get-data and make report run end-to-end.

Week 4 – SQL I (schemas, joins)

- Lec A: SQLite in repo; schema design for OHLCV + metadata; SELECT/JOIN/GROUP BY.
- Lec B: Window functions; indices; pandas.read_sql pipelines.
- Deliverable: SQL notebook producing a tidy table ready for modeling.

Week 5 – pandas for time series

• Lec A: Cleaning, types, missing, merges; groupby, pivot; Parquet I/O.

- Lec B: Time-series ops: resampling, rolling windows, shifting/lagging, calendar effects.
- **Deliverable:** Cleaned Parquet dataset + feature snapshot.

Week 6 – APIs & Web scraping (ethics + caching)

- Lec A: HTTP basics, requests, pagination, auth, retries, backoff; don't hard-code keys (python-dotenv).
- Lec B: BeautifulSoup, CSS selectors, robots.txt, throttling; cache raw pulls; persist to SQL/Parquet.
- Deliverable: One external data source ingested with caching & schema checks.

Week 7 – Quality: tests, lint, minimal CI

- Lec A: pytest (2–3 meaningful tests), data validation (light Pandera or custom checks), logging, type hints.
- Lec B: **Pre-commit** (black, ruff, nbstripout), **GitHub Actions** to run tests + lint on PRs (fast jobs only).
- **Deliverable:** CI badge green; failing test demonstrates leakage prevention or schema guard.

Week 8 – Time-series baselines & backtesting

- Lec A: Problem framing; horizon, step size; MAE/sMAPE/MASE; rolling-origin evaluation.
- Lec B: Baselines: naive/seasonal-naive; quick ARIMA/Prophet or sklearn regressor with lags.
- **Deliverable:** Baseline model card + backtest plot in Quarto.

Week 9 – Finance-specific evaluation & leakage control

- Lec A: Feature timing & label definition (t+1 returns, multi-step horizons), survivorship bias, look-ahead traps, data snooping.
- Lec B: Walk-forward / expanding window, embargoed splits, drift detection; error analysis by regime (volatility bins, bull/bear).
- Deliverable: A robust evaluation plan + revised splits; leakage test added to pytest.

Week 10 - PyTorch fundamentals

- Lec A: Tensors, autograd, datasets/dataloaders for windows; training loop, early stopping; GPU in Colab; mixed precision.
- Lec B: A small LSTM/TCN baseline for forecasting; monitoring loss/metrics; save best weights.
- Deliverable: PyTorch baseline surpasses classical baseline on at least one metric.

Week 11 – Transformers for sequences (tiny GPT)

- Lec A: Attention from scratch; tiny char-level GPT (embeddings, positions, single head → multi-head), sanity-check overfitting on toy data.
- Lec B: Adapt to time series: window embedding, causal masking, regression head; ablation (context length, heads, dropout) within Colab budget.
- **Deliverable:** Transformer results + one ablation figure; notes on compute/time.

Week 12 – Productivity at scale (lightweight)

- Lec A: Packaging a small library (src/ layout, pyproject.toml), simple CLI (Typer) for batch inference; config via YAML.
- Lec B: Optional FastAPI endpoint demo (local only) + reproducibility audit (fresh-clone run).
- **Deliverable:** Tagged release v1.0-rc, CLI can score a held-out period and write a report.

Week 13 – Communication & showcase

- Lec A: Poster + abstract workshop; tell the error-analysis story; figure polish; README & model card.
- Lec B: In-class presentations + final feedback; plan for continuing to the Spring symposium (next-steps backlog).
- Deliverable: Poster draft, 250-word abstract, and a reproducible repo ready to extend.

Project spine

- Milestones: W1 repo & env → W3 automated data pipeline → W6 external data → W7 CI green → W8 baselines → W9 robust eval plan → W10 PyTorch baseline → W11 tiny Transformer → W12 release candidate → W13 poster & talk.
- Tracking (minimal): log experiments to a simple CSV (results/experiments.csv) and keep a Quarto "lab notebook." If you're open to one extra tool, free Weights & Biases makes ablations much easier—but the CSV+Quarto path is fine for two students.
- Data strategy: keep raw data out of Git (use make get-data); store processed Parquet under 100MB if you must commit; otherwise regenerate. Use Git-LFS only for small, immutable artifacts to avoid quota pain.
- Secrets: .env with python-dotenv + .env in .gitignore. For Colab, use environment variables or a JSON in Drive (not committed).

1 Session 1 — Dev environment & Colab workflow

1.1 Session 1 — Dev environment & Colab workflow

1.1.1 Learning goals

By the end of class, students can:

- 1. Mount Google Drive in Colab and work in a persistent course folder.
- 2. Clone a GitHub repo into Drive (or create a project folder if no repo yet).
- 3. Create and install from a soft-pinned requirements.txt.
- 4. Verify environment info (Python, OS, library versions) and GPU availability.
- 5. Use a **reproducibility seed** pattern (NumPy + PyTorch) and validate it.
- 6. Save a simple **system check report** to the repo.

1.2 Agenda (75 min)

- (5 min) Course framing: how we'll work this semester
- (12 min) Slides & demo: Colab + Drive persistence; project folders; soft vs hard pins
- (8 min) Slides & demo: reproducibility basics (seeds, RNG, deterministic ops)
- (35 min) In-class lab (Colab): mount Drive → clone/create project → requirements → environment check → reproducibility check → write report
- (10 min) Wrap-up, troubleshooting, and homework briefing

1.3 Main Points

Why Colab + Drive

- Colab gives you GPUs and a clean Python every session.
- The runtime is **ephemeral**. Anything under /content disappears.
- Mount **Drive** and work under /content/drive/MyDrive/... to persist code and outputs.

Project layout (today's minimal)

```
project/
  reports/
  notebooks/
  data/
  requirements.txt
  system_check.ipynb

(We'll add src/, tests, CI in later sessions.)
```

Pins: soft vs hard

- Soft pins (e.g., pandas>=2.2,<3.0) keep you compatible across machines.
- Hard pins (exact versions) are for releases. Today we'll use **soft pins**, then **freeze** to requirements-lock.txt in homework.

Reproducibility basics

- Fix seeds for random, NumPy, PyTorch (and CUDA if present).
- Disable nondeterministic cuDNN behavior for repeatability in simple models.
- Beware: some ops remain nondeterministic on GPU; we'll use simple ones.

Minimal Git today

- If you already have a repo: clone it into G-Drive.
- If not: create a folder; later you can upload the notebook via GitHub web UI.
- Full Git workflow (branch/PR/CI) starts next session.

1.4 In-class Lab (35 min)

Instructor tip: Put these as sequential Colab cells. Students should run them top-to-bottom. Replace placeholders like YOUR_USERNAME / YOUR_REPO before class if you already created a starter repo. If not, tell them to use the "no-repo" path in Step 3B.

1.4.1 1) Mount Google Drive and create a course folder

```
# Colab cell
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

COURSE_DIR = "/content/drive/MyDrive/dspt25"  # change if you prefer another path
PROJECT_NAME = "unified-stocks"  # course project folder/repo name
```

Save it as system_check.ipynb.

```
# Colab cell: make directories and cd into project folder
import os, pathlib
base = pathlib.Path(COURSE_DIR)
proj = base / PROJECT_NAME # / is overloaded to create the path
for p in [base, proj, proj/"reports", proj/"notebooks", proj/"data"]:
    p.mkdir(parents=True, exist_ok=True)

import os
os.chdir(proj)
print("Working in:", os.getcwd())
```

1.4.2 2) (Optional) If you already have a GitHub repo, clone it into Drive

Pick A or B (not both).

A. Clone an existing repo (recommended if you created a starter repo)

```
# Colab cell: clone via HTTPS (public or your private; for private, you can upload later ins:
REPO_URL = "https://github.com/YOUR_ORG_OR_USERNAME/YOUR_REPO.git" # <- change me
import subprocess, os
os.chdir(base) # clone next to your project folder</pre>
```

```
subprocess.run(["git", "clone", REPO_URL], check=True) # check if there is an error inseat of
# Optionally, use that cloned repo as the working directory:(uncomment the lines below if do
# REPO_NAME = REPO_URL.split("/")[-1].replace(".git","")
# os.chdir(base/REPO_NAME)
# print("Working in:", os.getcwd())
os.chdir(proj) # change back to proj dir
print("Working in:", os.getcwd())
```

B. No repo yet? Stay with the folder we created. You'll upload files via GitHub web UI after class.

1.4.3 3) Create a soft-pinned requirements.txt and install

```
# Colab cell: write a soft-pinned requirements.txt
req = """\
pandas>=2.2,<3.0
numpy>=2.0.0,<3.0
pyarrow>=15,<17
matplotlib>=3.8,<4.0
scikit-learn>=1.6,<2.0
yfinance>=0.2,<0.3
python-dotenv>=1.0,<2.0
"""
open("requirements.txt","w").write(req)
print(open("requirements.txt").read())</pre>
```

```
# Colab cell: install (quietly). Torch is usually preinstalled in Colab; we'll check separate
!pip install -q -r requirements.txt
```

```
# Colab cell: PyTorch check. If not available (rare in Colab), install CPU-only as a fallback
try:
    import torch
    print("PyTorch:", torch.__version__)
except Exception as e:
    print("PyTorch not found; installing CPU-only wheel as fallback...")
    !pip install -q torch
    import torch
    print("PyTorch:", torch.__version__)
```

1.4.4 4) Environment report (Python/OS/lib versions, GPU availability)

```
# Colab cell: environment info + GPU check
import sys, platform, json, time
import pandas as pd
import numpy as np
env = {
    "timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
    "python": sys.version,
    "os": platform.platform(),
    "pandas": pd.__version__,
    "numpy": np.__version__,
}
try:
    import torch
    env["torch"] = torch.__version__
    env["cuda_available"] = bool(torch.cuda.is_available())
    env["cuda_device"] = torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CP"
except Exception as e:
    env["torch"] = "not importable"
    env["cuda_available"] = False
    env["cuda_device"] = "CPU"
print(env)
os.makedirs("reports", exist_ok=True)
with open("reports/environment.json","w") as f:
    json.dump(env, f, indent=2)
```

1.4.5 5) Reproducibility seed utility + quick validation

```
# Colab cell: reproducibility helpers
import random
import numpy as np

def set_seed(seed: int = 42, deterministic_torch: bool = True):
    random.seed(seed)
    np.random.seed(seed)
    try:
```

```
import torch
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        if deterministic_torch:
            torch.backends.cudnn.deterministic = True
            torch.backends.cudnn.benchmark = False
                torch.use_deterministic_algorithms(True)
            except Exception:
                pass
    except Exception:
        pass
def sample_rng_fingerprint(n=5, seed=42):
    set_seed(seed)
    a = np.random.rand(n).round(6).tolist()
    try:
        import torch
        b = torch.rand(n).tolist()
        b = [round(x,6) \text{ for } x \text{ in } b]
    except Exception:
        b = ["torch-missing"]*n
    return {"numpy": a, "torch": b}
f1 = sample_rng_fingerprint(n=6, seed=123)
f2 = sample_rng_fingerprint(n=6, seed=123)
print("Fingerprint #1:", f1)
print("Fingerprint #2:", f2)
print("Match:", f1 == f2)
with open("reports/seed_fingerprint.json","w") as f:
    json.dump({"f1": f1, "f2": f2, "match": f1==f2}, f, indent=2)
```

1.4.6 6) Create (or verify) tickers_25.csv for the course

```
# Colab cell: create stock list if it doesn't exist yet
import pandas as pd, os
tickers = [
    "AAPL", "MSFT", "AMZN", "GOOGL", "META", "NVDA", "TSLA", "JPM", "JNJ", "V",
    "PG", "HD", "BAC", "XOM", "CVX", "PFE", "KO", "DIS", "NFLX", "INTC",
```

```
"CSCO","ORCL","T","VZ","WMT"

]
path = "tickers_25.csv"
if not os.path.exists(path):
    pd.DataFrame({"ticker": tickers}).to_csv(path, index=False)
pd.read_csv(path).head()
```

1.4.7 7) (Optional) Prove GPU works by allocating a small tensor

```
# Colab cell: tiny GPU smoke test (safe if CUDA available)
import torch, time

# change back to not use deterministic_algorithm to do the matrix computation
# torch.use_deterministic_algorithms(False)

device = "cuda" if torch.cuda.is_available() else "cpu"

x = torch.randn(1000, 1000, device=device)

y = x @ x.T

print("Device:", device, "| y shape:", y.shape, "| mean:", y.float().mean().item())
```

1.4.8 8) Save a short Markdown environment report

```
# Colab cell: write a small Markdown summary for humans
from textwrap import dedent
summary = dedent(f"""
# System Check

- Timestamp: {env['timestamp']}
- Python: `{env['python']}`
- OS: `{env['os']}`
- pandas: `{env['pandas']}` | numpy: `{env['numpy']}` | torch: `{env['torch']}`
- CUDA available: `{env['cuda_available']}` | Device: `{env['cuda_device']}`

## RNG Fingerprint
- Match on repeated seeds: `{f1 == f2}`
- numpy: `{f1['numpy']}`
- torch: `{f1['torch']}`
""").strip()
```

```
open("reports/system_check.md","w").write(summary)
print(summary)
```

1.4.9 Save the file as system_check.ipynb. To do it automatically, you can use the following code:

```
# Colab cell: save this notebook as system_check.ipynb
from google.colab import _message
notebook_name = "system_check.ipynb"
# Create the 'notebooks' subdirectory path
out_dir = proj / "notebooks"
out_path = out_dir / notebook_name
# Make sure the folder exists
out_dir.mkdir(parents=True, exist_ok=True)
# Get the CURRENT notebook JSON from Colab
resp = _message.blocking_request('get_ipynb', timeout_sec=10)
nb = resp.get('ipynb') if isinstance(resp, dict) else None
# Basic sanity check: ensure there are cells
if not nb or not isinstance(nb, dict) or not nb.get('cells'):
    raise RuntimeError ("Could not capture the current notebook contents (no cells returned).
                       "Try running this cell again after a quick edit, or use File → Save a
# Write to Drive
with open(out_path, 'w', encoding='utf-8') as f:
    json.dump(nb, f, ensure_ascii=False, indent=2)
print("Saved notebook to:", out_path)
```

What to submit after class (if you already have a GitHub repo): For today, students may upload system_check.ipynb, reports/environment.json, and reports/system_check.md via the GitHub web UI (Add file \rightarrow Upload files). We'll do proper pushes/PRs next session.

1.5 Troubleshooting notes (share in class)

- **Drive won't mount**: Refresh the Colab tab, run the mount cell again, re-authorize Google permissions.
- pip install hangs: Rerun; if it persists, restart runtime (Runtime → Restart session) and re-run from the top.
- **PyTorch mismatch**: If Colab has Torch preinstalled, don't upgrade it. If you installed a CPU wheel by mistake and want GPU later, it's usually easiest to **restart runtime**.
- Path confusion: Print os.getcwd() often; ensure you're inside your project folder under /content/drive/MyDrive/....

1.6 Homework (due before Session 2)

Goal: Produce a reproducible system snapshot and a seed-verified mini experiment, then upload to your repo (via GitHub web UI if you're not comfortable pushing yet).

1.6.1 Part A — Freeze your environment

1. From the same Colab runtime (after installing), create a lock file:

```
# Colab cell: freeze exact versions
!pip freeze > requirements-lock.txt
print("Wrote requirements-lock.txt with exact versions")
!head -n 20 requirements-lock.txt
```

- 2. Add a note to README.md explaining the difference between:
 - requirements.txt (soft pins for development) and
 - requirements-lock.txt (exact versions used today).

1.6.2 Part B — Reproducibility mini-experiment

Create notebooks/reproducibility_demo.ipynb with the following cells (students copy/paste):

1) Setup & data generation

```
import numpy as np, torch, random, json, os, time
def set_seed(seed=123):
   random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
        torch.use_deterministic_algorithms(True)
    except Exception:
        pass
def make_toy(n=512, d=10, noise=0.1, seed=123):
    set_seed(seed)
    X = torch.randn(n, d)
    true_w = torch.randn(d, 1)
    y = X @ true_w + noise * torch.randn(n, 1)
    return X, y, true_w
device = "cuda" if torch.cuda.is_available() else "cpu"
X, y, true_w = make_toy()
X, y = X.to(device), y.to(device)
```

2) Minimal training loop (linear model)

```
def train_once(lr=0.05, steps=300, seed=123):
    set_seed(seed)
    model = torch.nn.Linear(X.shape[1], 1, bias=False).to(device)
    opt = torch.optim.SGD(model.parameters(), lr=lr)
    loss_fn = torch.nn.MSELoss()
    losses=[]
    for t in range(steps):
        opt.zero_grad(set_to_none=True)
        yhat = model(X)
        loss = loss_fn(yhat, y)
        loss.backward()
        opt.step()
        losses.append(loss.item())
    return model.weight.detach().cpu().numpy(), losses[-1]
```

```
w1, final_loss1 = train_once(seed=2025)
w2, final_loss2 = train_once(seed=2025)

print("Final loss 1:", round(final_loss1, 6))
print("Final loss 2:", round(final_loss2, 6))
print("Weights equal:", np.allclose(w1, w2, atol=1e-7))
```

3) Save results JSON

```
os.makedirs("reports", exist_ok=True)
result = {
    "device": device,
    "final_loss1": float(final_loss1),
    "final_loss2": float(final_loss2),
    "weights_equal": bool(np.allclose(w1, w2, atol=1e-7)),
    "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}
with open("reports/reproducibility_results.json","w") as f:
    json.dump(result, f, indent=2)
result
```

Expected outcome: the two runs with the same seed should produce the **same final loss** and **identical weights** (within tolerance). If on GPU, deterministic settings should keep this stable for this simple model.

1.6.3 Part C — Add a .env.example

Create a placeholder for API keys we'll use later:

```
env_example = """\
# Example environment variables (do NOT commit a real .env with secrets)
ALPHA_VANTAGE_KEY=
FRED_API_KEY=
"""
open(".env.example", "w").write(env_example)
print(open(".env.example").read())
```

1.6.4 Part D — Upload to GitHub

Until we set up pushes/PRs next class, use the GitHub web UI:

- Upload: system_check.ipynb, reports/environment.json, reports/system_check.md, requirements.txt, requirements-lock.txt, notebooks/reproducibility_demo.ipynb, reports/reproducibility_results.json, .env.example.
- If you already cloned a repo in class and are comfortable pushing, you may push from your laptop instead. Do not paste tokens into notebooks.

1.6.5 Grading (pass/revise)

- requirements.txt present; requirements-lock.txt present and non-empty.
- $\bullet \ \ \text{system_check.ipynb runs and writes reports/system_check.md} + \text{environment.json}. \\$
- reproducibility_demo.ipynb demonstrates identical results across repeated runs with same seed and writes reports/reproducibility_results.json.
- .env.example present with placeholders.

1.7 What to emphasize

- "Colab is **ephemeral**; persist to **Drive**."
- "Soft pins now; freeze later."
- "Seeds are necessary but not sufficient—watch for nondeterministic ops."
- "Never store secrets (API keys) in the repo; use .env and keep a .env.example."

That's it for Session 1. In Session 2 we'll set up **Git basics and Git-LFS** and move from uploading via web UI to **branch/PR** workflows.

2 Session 2 — Git essentials & Git-LFS

Security note: Today we'll push from Colab using a short-lived GitHub personal access token (PAT) entered interactively. Never hard-code or commit tokens.

2.1 Session 2 — Git essentials & Git-LFS (75 min)

2.1.1 Learning goals

By the end of class, students can:

- 1. Explain Git's mental model: working directory \rightarrow staging \rightarrow commit; branches and remotes.
- 2. Create a feature branch, commit changes, and push to GitHub from Colab safely.
- 3. Use **.gitignore** to avoid committing generated artifacts and secrets.
- 4. Install and configure Git-LFS, track large/binary files, and verify tracking.
- 5. Open a pull request (PR) and follow review etiquette.

2.2 Agenda (75 minutes)

- (8 min) Recap & goals; overview of today's workflow
- (12 min) Slides: Git mental model; branches; remotes; commit hygiene
- (10 min) Slides: .gitignore must-haves; Git-LFS (when/why); LFS quotas & pitfalls
- (35 min) In-class lab: clone \rightarrow config \rightarrow branch \rightarrow .gitignore \rightarrow LFS \rightarrow sample Parquet \rightarrow push \rightarrow PR
- (10 min) Wrap-up; troubleshooting; homework briefing

2.3 Main points

2.3.1 Git mental model

- Working directory (your files) \rightarrow git add \rightarrow staging \rightarrow git commit \rightarrow local history
- Remote: GitHub hosts a copy. git push publishes commits; git pull brings others' changes.
- Branch: a movable pointer to a chain of commits. Default is main. Create feature branches for each change.

2.3.2 Branch & PR etiquette

- One feature/change per branch (small, reviewable diffs).
- Commit messages: *imperative mood*, short subject line (72 chars), details in body if needed:
 - feat: add git-lfs tracking for parquet
 - docs: add README section on setup
 - chore: ignore raw data directory
- PR description: what/why, testing notes, checklist. Tag your teammate for review.

2.3.3 .gitignore must-haves

- Secrets: .env, API keys (never commit).
- Large/derived artifacts: raw/interim data, logs, cache, compiled assets.
- Notebooks' checkpoints: .ipynb_checkpoints/.
- OS/editor cruft: .DS_Store, Thumbs.db, .vscode/.

2.3.4 Git-LFS

- Git-LFS = Large File Storage. Keeps **pointers** in Git; binaries in LFS storage.
- Track only what's necessary to version (e.g., *small* processed Parquet samples, posters/PDFs, small models).
- Do not LFS huge raw data you can re-download (make get-data).
- Quotas apply on Git hosting—be selective.

2.3.5 Safe pushes from Colab

- Use a fine-grained PAT limited to a single repo with Contents: Read/Write + Pull requests: Read/Write.
- Enter token via getpass (not stored). Push using a **temporary URL** (token not saved in git config).
- After push, clear cell output.

2.4 In-class lab (35 min)

Instructor tip: Students should have created a repo on GitHub before this lab (e.g., unified-stocks-teamX). If not, give them 3 minutes to do so and add their partner as a collaborator.

We'll:

- 1. Mount Drive & clone the repo.
- 2. Configure Git identity.
- 3. Create a feature branch.
- 4. Add .gitignore.
- 5. Install and configure **Git-LFS**.
- 6. Track Parquet & DB files; generate a sample Parquet.
- 7. Commit & push from Colab using a short-lived PAT.
- 8. Open a PR (via web UI, optional API snippet included).

2.4.1 0) Mount Google Drive and set variables

```
# Colab cell
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

# Adjust these two for YOUR repo
REPO_OWNER = "YOUR_GITHUB_USERNAME_OR_ORG"
REPO_NAME = "unified-stocks-teamX" # e.g., unified-stocks-team1

BASE_DIR = "/content/drive/MyDrive/dspt25"
CLONE_DIR = f"{BASE_DIR}/{REPO_NAME}"
REPO_URL = f"https://github.com/{REPO_OWNER}/{REPO_NAME}.git"
```

```
import os, pathlib
pathlib.Path(BASE_DIR).mkdir(parents=True, exist_ok=True)
```

2.4.2 1) Clone the repo (or pull latest if already cloned)

```
import os, subprocess, shutil, pathlib

if not pathlib.Path(CLONE_DIR).exists():
    !git clone {REPO_URL} {CLONE_DIR}

else:
    # If the folder exists, just ensure it's a git repo and pull latest
    os.chdir(CLONE_DIR)
    !git status
    !git pull --ff-only

os.chdir(CLONE_DIR)

print("Working dir:", os.getcwd())
```

2.4.3 2) Configure Git identity (local to this repo)

```
# Replace with your name and school email
!git config user.name "Your Name"
!git config user.email "you@example.edu"

!git config --get user.name
!git config --get user.email
```

2.4.4 3) Create and switch to a feature branch

```
BRANCH = "setup/git-lfs"
!git checkout -b {BRANCH}
!git branch --show-current
```

2.4.5 4) Add a robust .gitignore

```
gitignore = """\
# Byte-compiled / cache
__pycache__/
*.py[cod]
# Jupyter checkpoints
.ipynb_checkpoints/
# OS/editor files
.DS_Store
Thumbs.db
.vscode/
# Environments & secrets
.env
.env.*
.venv/
*.pem
*.key
# Data (raw & interim never committed)
data/raw/
data/interim/
# Logs & caches
logs/
.cache/
open(".gitignore", "w").write(gitignore)
print(open(".gitignore").read())
```

2.4.6 5) Install and initialize Git-LFS (Colab)

```
# Install git-lfs on the Colab VM (one-time per runtime)
!apt-get -y update >/dev/null
!apt-get -y install git-lfs >/dev/null
!git lfs install
!git lfs version
```

2.4.7 6) Track Parquet/DB/PDF/model binaries with LFS

```
# Add .gitattributes entries via git lfs track
!git lfs track "data/processed/*.parquet"
!git lfs track "data/*.db"
!git lfs track "models/*.pt"
!git lfs track "reports/*.pdf"

# Show what LFS is tracking and verify .gitattributes created
!git lfs track
print("\n.gitattributes:")
print(open(".gitattributes").read())
```

Why not LFS for raw? Raw data should be re-downloadable with make get-data later; don't burn LFS quota.

2.4.8 7) Create a small Parquet file to test LFS

2.4.9 8) Stage and commit changes

```
!git add .gitignore .gitattributes data/processed/sample_returns.parquet
!git status

!git commit -m "feat: add .gitignore and git-lfs tracking; add sample Parquet"
!git log --oneline -n 2
```

2.4.10 9) Push from Colab with a short-lived token (safe method)

Create a fine-grained PAT at GitHub \rightarrow Settings \rightarrow Developer settings \rightarrow Fine-grained tokens

- Resource owner: your username/org
- Repositories: select this repo only
- Permissions: Contents (Read/Write), Pull requests (Read/Write)
- Expiration: short (e.g., 7 days)

```
# Colab cell: push using a temporary URL with token (not saved to git config)
from getpass import getpass
token = getpass("Enter your GitHub token (input hidden; not stored): ")

push_url = f"https://{token}@github.com/{REPO_OWNER}/{REPO_NAME}.git"
!git push {push_url} {BRANCH}:{BRANCH}

# Optional: immediately clear the token variable
del token
```

If the command prints the URL, **clear this cell's output** after a successful push (Colab: " $" \rightarrow "$ Clear output").

2.4.11 10) Open a Pull Request

- Recommended (web UI): Navigate to your repo on GitHub → Compare & pull request → base: main, compare: setup/git-lfs. Fill title/description, tag your partner, and create the PR.
- Optional (API): open a PR programmatically from Colab:

```
# OPTIONAL: Create PR via GitHub API (requires token again)
from getpass import getpass
import requests, json
token = getpass("GitHub token (again, not stored): ")
headers = {"Authorization": f"Bearer {token}",
           "Accept": "application/vnd.github+json"}
payload = {
    "title": "Setup: .gitignore + Git-LFS + sample Parquet",
    "head": BRANCH,
    "base": "main",
    "body": "Adds .gitignore, configures Git-LFS for parquet/db/pdf/model files, and commits
r = requests.post(f"https://api.github.com/repos/{REPO_OWNER}/{REPO_NAME}/pulls",
                  headers=headers, data=json.dumps(payload))
print("PR status:", r.status_code)
try:
    pr_url = r.json()["html_url"]
    print("PR URL:", pr_url)
except Exception as e:
    print("Response:", r.text)
del token
```

2.4.12 11) Quick verification checklist

• git lfs ls-files shows data/processed/sample_returns.parquet:

```
!git lfs ls-files
```

- PR diff shows a small **pointer** for the Parquet, not raw binary content.
- .gitignore present; no secrets or raw data committed.

2.5 Wrap-up (talking points, 10 min)

- Keep PRs small and focused; write helpful titles and descriptions.
- Don't commit secrets or large data. Use .env + .env.example.
- Use LFS *selectively*—version only small, important binaries (e.g., sample processed sets, posters).

 Next time: Quarto polish (already started) and Unix automation to fetch raw data reproducibly.

2.6 Homework (due before Session 3)

Goal: Cement branch/PR hygiene, add review scaffolding, and add a small guard against large files accidentally committed outside LFS.

2.6.1 Part A — Add a PR template and CODEOWNERS

Create a PR template so every PR includes key info.

```
# Run in your repo root
import os, pathlib, textwrap
pathlib.Path(".github").mkdir(exist_ok=True)
tpl = textwrap.dedent("""\
    ## Summary
    What does this PR do and why?
    ## Changes
    ## How to test
    - From a fresh clone: steps to run
    ## Checklist
    - [ ] Runs from a fresh clone (README steps)
    - [ ] No secrets committed; `.env` only (and `.env.example` updated if needed)
    - [ ] Large artifacts tracked by LFS (`git lfs ls-files` shows expected files)
    - [ ] Clear, small diff; comments where useful
111111
open(".github/pull_request_template.md", "w").write(tpl)
print("Wrote .github/pull_request_template.md")
```

(Optional) Require both teammates to review by setting **CODEOWNERS** (edit handles):

```
owners = """\
# Replace with your GitHub handles
* @teammate1 @teammate2
"""
open(".github/CODEOWNERS","w").write(owners)
print("Wrote .github/CODEOWNERS (edit handles!)")
```

Commit and push on a new branch (example: chore/pr-template), open a PR, and merge after review.

2.6.2 Part B — Add a large-file guard (simple Python script)

Create a small tool that **fails** if files > 10 MB are found **and** aren't tracked by LFS. This will be used manually for now (automation later in CI).

```
# tools/guard_large_files.py
import os, subprocess, sys
LIMIT_MB = 10
ROOT = os.getcwd()
def lfs_tracked_paths():
    try:
        out = subprocess.check_output(["git", "lfs", "ls-files"], text=True)
        tracked = set()
        for line in out.strip().splitlines():
            # line format: "<oid> <path>"
            p = line.split(None, 1)[-1].strip()
            tracked.add(os.path.normpath(p))
        return tracked
    except Exception:
        return set()
def humanize(bytes_):
    return f"{bytes_/(1024*1024):.2f} MB"
lfs_set = lfs_tracked_paths()
bad = []
for dirpath, dirnames, filenames in os.walk(ROOT):
    # skip .git directory
    if ".git" in dirpath.split(os.sep):
```

```
continue
    for fn in filenames:
        path = os.path.normpath(os.path.join(dirpath, fn))
            size = os.path.getsize(path)
        except FileNotFoundError:
            continue
        if size >= LIMIT_MB * 1024 * 1024:
           rel = os.path.relpath(path, ROOT)
            if rel not in lfs set:
                bad.append((rel, size))
if bad:
   print("ERROR: Large non-LFS files found:")
    for rel, size in bad:
        print(f" - {rel} ({humanize(size)})")
    sys.exit(1)
else:
   print("OK: No large non-LFS files detected.")
```

Add a Makefile target to run it:

```
# Create/append Makefile target
from pathlib import Path
text = "\n\nguard:\n\tpython tools/guard_large_files.py\n"
p = Path("Makefile")
p.write_text(p.read_text() + text if p.exists() else text)
print("Added 'guard' target to Makefile")
```

Run locally/Colab:

```
!python tools/guard_large_files.py
```

Commit on a new branch (e.g., chore/large-file-guard), push, open PR, and merge after review.

2.6.3 Part C — Branch/PR practice (each student)

1. Each student creates their own branch (e.g., docs/readme-username) and:

- Adds a "Development workflow" section in README.md (1–2 paragraphs): how to clone, mount Drive in Colab, install requirements, and where outputs go.
- Adds themselves to README.md "Contributors" section with a GitHub handle link.
- 2. Push branch and open a PR.
- 3. Partner reviews the PR:
 - Leave at least **2 useful comments** (nits vs blockers).
 - Approve when ready; the author merges.

Expected files touched: README.md, .github/pull_request_template.md, optional .github/CODEOWNERS, tools/guard_large_files.py, Makefile.

2.6.4 Part D — Prove LFS is working

• On main, run:

!git lfs ls-files

- You should see data/processed/sample_returns.parquet (and any other tracked binaries).
- In the GitHub web UI, click the file to confirm it's an **LFS pointer**, not full binary contents.

2.6.5 Submission checklist (pass/revise)

- Two merged PRs (template + guard) with clear titles and descriptions.
- README updated with development workflow and contributors.
- git lfs ls-files shows expected files.
- tools/guard_large_files.py present and passes (OK) on main.

2.7 Instructor checklist (before class)

- Ensure students have or can create a GitHub repo and add collaborators.
- Validate the lab sequence once in a fresh Colab runtime.
- Have example screenshots of: PR diff, LFS pointer file, successful git lfs ls-files.

2.8 Emphasize while teaching

- Small PRs win. Short diffs \rightarrow fast, focused reviews.
- Don't commit secrets. .env only; keep .env.example up to date.
- Use LFS sparingly and purposefully—prefer regenerating big raw data.
- Colab pushes: use a short-lived token, and clear outputs after use.

Next session: Quarto reporting polish and pipeline hooks; soon after, Unix automation so make get-data can reproducibly fetch raw data for the unified-stocks project.

3 Session 3 — Quarto Reports (Python)

Below is a complete lecture package for Session 3 — Quarto Reports (Python) (75 minutes). It includes: timed agenda, key talking points, an in-class lab with copy-paste code cells (Colab-friendly), and homework with copy-paste code. This session produces a parameterized EDA report for multiple tickers and publishes it to GitHub Pages.

Assumptions: Students already have (from Sessions 1–2) a repolike unified-stocks-teamX in Drive (or they can create it now) and basic Git push workflow with a short-lived token. Today focuses on Quarto.

3.1 Session 3 — Quarto Reports (Python) — 75 minutes

3.1.1 Learning goals

By the end of class, students can:

- 1. Create a **parameterized** Quarto report (.qmd) that runs Python code.
- 2. Render a report from Colab using the Quarto CLI (with caching).
- 3. Pass parameters on the command line to re-render for different tickers/date ranges.
- 4. Configure a minimal Quarto website that builds to docs/ and publish it via GitHub Pages.

3.2 Agenda (75 min)

- (8 min) Why Quarto for DS: literate programming, parameters, caching, publishing
- (12 min) Anatomy of a .qmd: YAML front matter, params:, code chunks, execute: options, figures
- (35 min) In-class lab: install Quarto in Colab \rightarrow create _quarto.yml \rightarrow write reports/eda.qmd \rightarrow render for AAPL/MSFT \rightarrow output to docs/

- (10 min) GitHub Pages walkthrough + troubleshooting + homework briefing
- (10 min) Buffer for hiccups (first Quarto install/render often needs a minute)

3.3 Talking points (for your slides)

Why Quarto

- One source of truth for code + prose + figures \rightarrow reproducibility and explainability.
- Parameterization = fast re-runs with different inputs (ticker/horizon).
- Publishing to GitHub Pages gives a permanent, shareable artifact.

Key concepts

- Front matter:
 - format: controls HTML/PDF/RevealJS (we'll use HTML).
 - execute: controls caching, echo, warnings.
 - params: defines inputs; accessed as params dict in Python cells.
- **Performance**: enable execute.cache: true to avoid refetching/recomputing.
- Publishing: write to docs/ then enable GitHub Pages (Settings → Pages → "Deploy from a branch" → main / /docs).

Ethics/footnote

• Financial data EDA here is **educational** only; not trading advice.

3.4 In-class lab (35 min)

Instructor tip: Ask students to follow step-by-step. If they didn't complete Session 2's clone, they can create a fresh folder under Drive and initialize a new GitHub repo afterward.

3.4.1 0) Mount Drive and set repo paths

Run each block as a separate Colab cell.

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
REPO_OWNER = "YOUR_GITHUB_USERNAME_OR_ORG" # <- change</pre>
REPO_NAME = "unified-stocks-teamX"
                                       # <- change
BASE DIR = "/content/drive/MyDrive/dspt25"
REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"
REPO_URL = f"https://github.com/{REPO_OWNER}/{REPO_NAME}.git"
import pathlib, os, subprocess
pathlib.Path(BASE_DIR).mkdir(parents=True, exist_ok=True)
if not pathlib.Path(REPO_DIR).exists():
    !git clone {REPO_URL} {REPO_DIR}
else:
   %cd {REPO_DIR}
    !git pull --ff-only
%cd {REPO_DIR}
```

3.4.2 1) Install Quarto CLI on Colab and verify

```
# Install Quarto CLI (one-time per Colab runtime)
!wget -q https://quarto.org/download/latest/quarto-linux-amd64.deb -0 /tmp/quarto.deb
!dpkg -i /tmp/quarto.deb || apt-get -y -f install >/dev/null && dpkg -i /tmp/quarto.deb
!quarto --version
```

3.4.3 2) Minimal project config: _quarto.yml (website to docs/)

```
from textwrap import dedent

qproj = dedent("""\
project:
   type: website
   output-dir: docs

website:
```

```
title: "Unified Stocks - EDA"
  navbar:
    left:
      - href: index.qmd
       text: Home
      - href: reports/eda.qmd
       text: EDA (parametrized)
format:
  html:
   theme: cosmo
   toc: true
    code-fold: false
execute:
  echo: true
  warning: false
  cache: true
""")
open("_quarto.yml","w").write(qproj)
print(open("_quarto.yml").read())
```

Create a simple homepage:

```
index = """\
---
title: "Unified Stocks Project"
---
Welcome! Use the navigation to view the EDA report.

- **Stock set**: see `tickers_25.csv`
- **Note**: Educational use only - no trading advice.
"""
open("index.qmd","w").write(index)
print(open("index.qmd").read())
```

3.4.4 3) Create the parameterized EDA report: reports/eda.qmd

```
import os, pathlib
pathlib.Path("reports/figs").mkdir(parents=True, exist_ok=True)
eda_qmd = """\
title: "Stock EDA"
format:
 html:
   toc: true
   number-sections: false
execute:
 echo: true
 warning: false
 cache: true
params:
 symbol: "AAPL"
 start_date: "2018-01-01"
 end_date: ""
 rolling: 20
::: callout-note
This report is parameterized. To change inputs without editing code, pass
`-P symbol:MSFT -P start_date:2019-01-01 -P end_date:2025-08-01 -P rolling:30` to `quarto re
:::
## Setup
## Price over time
## Daily log returns - histogram
## Rolling mean & volatility (window = {params.rolling})
```

```
## Summary table

> **Note**: Educational use only. This is not trading advice.
> """
> open("reports/eda.qmd","w").write(eda\_qmd)
> print("Wrote reports/eda.qmd")
```

3.4.5 4) Render the report for one ticker (AAPL) and put outputs in docs/

```
# Single render with defaults (AAPL)
!quarto render reports/eda.qmd --output-dir docs/
```

Open the produced HTML (Colab file browser \rightarrow docs/reports/eda.html). If the HTML is under docs/reports/eda.html, that's expected (Quarto keeps layout mirroring source folders).

3.4.6 5) Render for multiple tickers by passing parameters

```
# Render for MSFT with custom dates and rolling window
!quarto render reports/eda.qmd -P symbol:MSFT -P start_date:2019-01-01 -P end_date:2025-08-0
# Render for NVDA with a different window
!quarto render reports/eda.qmd -P symbol:NVDA -P start_date:2018-01-01 -P end_date:2025-08-0
```

This will create docs/reports/eda.html for the last render (Quarto overwrites the same output path by default). If you want separate pages per ticker, render to different filenames:

```
# Example: write MSFT to docs/reports/eda-MSFT.html via project copy
import shutil, os
shutil.copy("reports/eda.qmd", "reports/eda-MSFT.qmd")
!quarto render reports/eda-MSFT.qmd -P symbol:MSFT -P start_date:2019-01-01 -P end_date:2025
```

3.4.7 6) Add nav links to specific ticker pages (optional)

```
# Append MSFT page to navbar
from ruamel.yaml import YAML
yaml = YAML()
cfg = yaml.load(open("_quarto.yml"))
cfg["website"]["navbar"]["left"].append({"href": "reports/eda-MSFT.qmd", "text": "MSFT EDA"}
with open("_quarto.yml","w") as f:
    yaml.dump(cfg, f)
!quarto render --output-dir docs/
```

3.4.8 7) Commit and push site to GitHub (so Pages can serve docs/)

```
!git add _quarto.yml index.qmd reports/eda*.qmd reports/figs docs
!git status
!git commit -m "feat: add parameterized Quarto EDA and publish to docs/"

# Push using a short-lived fine-grained token (as in Session 2)
from getpass import getpass
token = getpass("GitHub token (not stored): ")
push_url = f"https://{token}@github.com/{REPO_OWNER}/{REPO_NAME}.git"
!git push {push_url} HEAD:main
del token
```

3.4.9 8) Enable GitHub Pages (one-time, UI)

- On GitHub: Settings \rightarrow Pages
 - Source: **Deploy from a branch**
 - Branch: mainFolder: /docs
 - Folder: /docs

• Save. Wait ~1-3 minutes. Your site will be live at the URL GitHub shows (usually https://<owner>.github.io/<repo>/).

3.5 Wrap-up (10 min)

- Re-rendering with -P lets you build many variants quickly.
- Keep data fetches cached and/or saved to files to speed up renders.
- Your team can add more pages (e.g., *Methodology*, *Results*, *Model Card*) and link them via _quarto.yml.

3.6 Homework (due before Session 4)

Goal: Enhance the EDA report with two features and publish distinct pages for **three** tickers from tickers_25.csv.

3.6.1 Part A — Add drawdown & simple regime shading

- 1. Edit reports/eda.qmd. After computing df["log_return"], compute:
 - cum_return and drawdown
 - A simple volatility regime indicator (e.g., rolling std quantiles)

```
# Add to the "Tidy & features" section in eda.qmd
df["cum_return"] = df["log_return"].cumsum().fillna(0.0)
peak = df["cum_return"].cummax()
df["drawdown"] = df["cum_return"] - peak

# Regime via rolling volatility terciles
vol = df["log_return"].rolling(ROLL, min_periods=ROLL//2).std()
q1, q2 = vol.quantile([0.33, 0.66])
def regime(v):
    if np.isnan(v): return "mid"
        return "low" if v < q1 else ("high" if v > q2 else "mid")
df["regime"] = [regime(v) for v in vol]
df["regime"].value_counts().to_frame("days").T
```

2. Add a **drawdown plot** and shade high-volatility regimes:

```
# Drawdown plot
fig, ax = plt.subplots(figsize=(8,3))
ax.plot(df.index, df["drawdown"])
ax.set_title(f"{SYMBOL} - Drawdown (log-return cumulative)")
ax.set_xlabel("Date"); ax.set_ylabel("drawdown")
fig.tight_layout()
figpath = Path("reports/figs")/f"{SYMBOL}_drawdown.png"
fig.savefig(figpath, dpi=144)
figpath
```

```
# Price with regime shading (simple)
fig, ax = plt.subplots(figsize=(8,3))
ax.plot(df.index, df["close"])
ax.set_title(f"{SYMBOL} - Price with High-Volatility Shading")
ax.set_xlabel("Date"); ax.set_ylabel("Price")
# Shade where regime == 'high'
mask = (df["regime"] == "high")
# merge contiguous regions
in_region = False
start = None
for i, (ts, is_high) in enumerate(zip(df.index, mask)):
    if is_high and not in_region:
        in_region = True
        start = ts
    if in_region and (not is_high or i == len(df)-1):
        end = df.index[i-1] if not is_high else ts
        ax.axvspan(start, end, alpha=0.15) # shaded band
        in_region = False
fig.tight_layout()
figpath = Path("reports/figs")/f"{SYMBOL}_price_regimes.png"
fig.savefig(figpath, dpi=144)
figpath
```

3.6.2 Part B — Render three separate pages and link them in the navbar

1. Make copies of the report source so each produces its own page:

```
import shutil
shutil.copy("reports/eda.qmd", "reports/eda-AAPL.qmd")
```

```
shutil.copy("reports/eda.qmd", "reports/eda-MSFT.qmd")
shutil.copy("reports/eda.qmd", "reports/eda-NVDA.qmd")
```

2. Render each with different parameters:

```
!quarto render reports/eda-AAPL.qmd -P symbol:AAPL -P start_date:2018-01-01 -P end_date:2025
!quarto render reports/eda-MSFT.qmd -P symbol:MSFT -P start_date:2018-01-01 -P end_date:2025
!quarto render reports/eda-NVDA.qmd -P symbol:NVDA -P start_date:2018-01-01 -P end_date:2025
```

3. Add to the navbar in _quarto.yml and rebuild site:

4. Commit & push (use your short-lived token as before):

```
!git add reports/eda-*.qmd reports/figs _quarto.yml docs
!git commit -m "feat: EDA enhancements (drawdown/regimes) and pages for AAPL/MSFT/NVDA"
```

```
from getpass import getpass
token = getpass("GitHub token (not stored): ")
push_url = f"https://{token}@github.com/{REPO_OWNER}/{REPO_NAME}.git"
!git push {push_url} HEAD:main
del token
```

5. Verify **GitHub Pages** shows navbar links and pages load.

3.6.3 Part C — Makefile convenience targets

Append these to your project Makefile:

```
report:
\tquarto render reports/eda.qmd --output-dir docs/

reports-trio:
\tquarto render reports/eda-AAPL.qmd -P symbol:AAPL -P start_date:2018-01-01 -P end_date:2028-\tquarto render reports/eda-MSFT.qmd -P symbol:MSFT -P start_date:2018-01-01 -P end_date:2028-\tquarto render reports/eda-NVDA.qmd -P symbol:NVDA -P start_date:2018-01-01 -P end_date:2028-01-01 -P en
```

On Colab, running make requires make to be available (it is). Otherwise, keep using quarto render commands.

3.6.4 Grading (pass/revise)

- reports/eda.qmd renders with parameters and caching enabled.
- At least **three** ticker pages rendered and linked in navbar.
- Drawdown and simple regime shading working on the EDA page(s).
- Site published via GitHub Pages (docs/ present on main and live).

3.7 Instructor checklist (before class)

- Test the Quarto install/render flow once in a fresh Colab runtime.
- Have a screenshot of: _quarto.yml, rendered docs/ tree, GitHub Pages settings.
- Remind students: if yfinance rate-limits, re-run or wait; the synthetic fallback ensures the page renders.

3.8 Emphasize while teaching

- Parameters make reports reusable; don't copy-paste notebooks for each ticker.
- Cache for speed; docs/ for Pages.
- Keep figures saved under reports/figs/ and referenced in the report.
- Keep secrets out of the repo; EDA uses public data only.

Next time (Session 4): a quick **RStudio Quarto cameo** and more **report hygiene** (citations, figure captions, alt text), then into **Unix automation**.

4 Session 4 — RStudio Quarto cameo + Report Hygiene

Below is a complete lecture package for Session 4 — RStudio Quarto cameo + Report Hygiene (75 minutes). It includes: a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. The goal is to make your Quarto site clean, citable, accessible, and reproducible—and to show (briefly) that RStudio can render your Python-based Quarto project.

Assumptions:

- Students already have a repo (e.g., unified-stocks-teamX) with the Quarto site scaffolding from Sessions 2–3.
- Python-first course; the **RStudio cameo** demonstrates that Quarto is editor-agnostic (no R coding required).

4.1 Session 4 — RStudio cameo + Report Hygiene (75 min)

4.1.1 Learning goals

By the end of class, students can:

- 1. Render a **Python-only** Quarto report from **RStudio** (or RStudio Cloud) as a proof that Quarto is editor-agnostic.
- 2. Add hygiene features to the project: citations (references.bib), figure/table captions + cross-references, alt text, better site navigation, custom CSS, and freeze/caching for reproducibility.
- 3. Produce a **Data Dictionary** section that documents columns and dtypes, and reference it from the EDA page.
- 4. Render & publish the cleaned site to **GitHub Pages**.

4.2 Agenda (75 min)

- (10 min) Why report hygiene matters (credibility, accessibility, reusability)
- (15 min) RStudio cameo: Render the Python-based Quarto report in RStudio
- (30 min) In-class lab (Colab): add citations, cross-refs, alt text, freeze/caching, CSS, data dictionary, rebuild site
- (10 min) Wrap-up + troubleshooting + homework briefing
- (10 min) Buffer (for first-time installs or Git pushes)

4.3 Slides / talking points

4.3.1 Why hygiene?

- Credibility: citations + model/report lineage
- Accessibility: alt text, readable fonts, color-safe figures
- Reusability: parameters, freeze/caching, stable page links
- Assessability: clear captions, labeled figures & tables, cross-references

4.3.2 Quarto features we'll use

- Captions & labels: #| label: fig-price, #| fig-cap: "Price over time" \rightarrow reference in text with @fig-price
- Tables: #| label: tbl-summary, #| tbl-cap: "Summary statistics" \rightarrow reference with @tbl-summary
- Alt text: #| fig-alt: "One-sentence description of the figure"
- Citations: add bibliography: references.bib and cite with [@key]
- Freeze: project-level freeze: auto for deterministic rebuilds
- Cache: execute: cache: true to avoid redoing expensive steps
- CSS: small tweaks to readability (font size, code block width)

4.3.3 RStudio cameo (no R required)

- RStudio integrates Quarto; the Render button runs quarto render under the hood.
- Your .qmd can be Python-only; RStudio is just the IDE.

4.4 RStudio cameo (15 min, live demo steps)

Do this on the projector. Students observe; they can try later on their machines or RStudio Cloud.

- 1. Open RStudio (Desktop or Cloud).
- 2. File \rightarrow Open Project and select your repo folder (unified-stocks-teamX).
- 3. Confirm Quarto: **Help** → **About Quarto** (or run quarto --version in the RStudio terminal).
- 4. Open reports/eda.qmd. Click Render (or run quarto render reports/eda.qmd).
- 5. Show the generated HTML preview. Note: no R code, just Python chunks.
- 6. Mention that **RMarkdown** is the predecessor; **Quarto** unifies Python & R (and more). We use **Quarto**.

4.5 In-class lab (30 min, Colab-friendly)

We'll: ensure Quarto CLI is present, upgrade _quarto.yml (freeze, bibliography, CSS), add references.bib, rewrite EDA with captions/labels/alt text, generate a Data Dictionary, re-render, and push to GitHub.

4.5.1 0) Mount Drive, set repo path, and ensure Quarto CLI

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

REPO_OWNER = "YOUR_GITHUB_USERNAME_OR_ORG"  # <- change
REPO_NAME = "unified-stocks-teamX"  # <- change
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"
REPO_URL = f"https://github.com/{REPO_OWNER}/{REPO_NAME}.git"

import pathlib, os
pathlib.Path(BASE_DIR).mkdir(parents=True, exist_ok=True)

if not pathlib.Path(REPO_DIR).exists():
    !git clone {REPO_URL} {REPO_DIR}
%cd {REPO_DIR}</pre>
```

```
# Ensure Quarto CLI
!quarto --version || (wget -q https://quarto.org/download/latest/quarto-linux-amd64.deb -0 /
!quarto --version
```

4.5.2 1) Upgrade _quarto.yml: freeze, bibliography, CSS, nav polish

```
# Install ruamel.yaml for safe YAML edits
!pip -q install ruamel.yaml
from ruamel.yaml import YAML
from pathlib import Path
yaml = YAML()
cfg_path = Path("_quarto.yml")
if cfg_path.exists():
    cfg = yaml.load(cfg_path.read_text())
else:
    cfg = {"project": {"type": "website", "output-dir": "docs"},
           "website": {"title": "Unified Stocks", "navbar": {"left": [{"href":"index.qmd","to
           "format":{"html":{"theme":"cosmo","toc":True}}}
# Add/ensure features
cfg.setdefault("format", {}).setdefault("html", {})
cfg["format"]["html"]["toc"] = True
cfg["format"]["html"]["code-fold"] = False
cfg["format"]["html"]["toc-depth"] = 2
cfg["format"]["html"]["page-navigation"] = True
cfg["format"]["html"]["code-tools"] = True
cfg["format"]["html"]["fig-cap-location"] = "bottom"
cfg["format"]["html"]["tbl-cap-location"] = "top"
cfg["format"]["html"]["css"] = "docs/style.css"
cfg.setdefault("execute", {})
cfg["execute"]["echo"] = True
cfg["execute"]["warning"] = False
cfg["execute"]["cache"] = True
# Freeze: deterministic rebuilds until the source changes
cfg["project"]["freeze"] = "auto"
```

```
# Bibliography
cfg["bibliography"] = "references.bib"

# Ensure navbar has EDA link
nav = cfg.setdefault("website", {}).setdefault("navbar", {}).setdefault("left", [])
if not any(item.get("href") == "reports/eda.qmd" for item in nav if isinstance(item, dict)):
    nav.append({"href": "reports/eda.qmd", "text": "EDA"})

yaml.dump(cfg, open("_quarto.yml","w"))
print(open("_quarto.yml").read())
```

4.5.3 2) Add references.bib (sample entries; students will refine later)

```
refs = r"""@book{hyndman-fpp3,
  title = {Forecasting: Principles and Practice},
  author = {Hyndman, Rob J. and Athanasopoulos, George},
  edition = \{3\},
  year = \{2021\},\
  url = {https://otexts.com/fpp3/}
@misc{quarto-docs,
  title = {Quarto Documentation},
  author = {{Posit}},
  year = \{2025\},\
  url = {https://quarto.org/}
@misc{yfinance,
 title = {yfinance: Yahoo! Finance market data downloader},
  author = {Ran Aroussi},
  year = \{2024\},\
  url = {https://github.com/ranaroussi/yfinance}
}
open("references.bib", "w").write(refs)
print(open("references.bib").read())
```

4.5.4 3) Overwrite reports/eda.qmd with captions, labels, alt text, citations, and cross-refs

This replaces the earlier EDA with a hygienic version. Feel free to adjust wording later.

```
from textwrap import dedent
eda = dedent("""\
title: "Stock EDA"
format:
 html:
   toc: true
   number-sections: false
execute:
 echo: true
 warning: false
 cache: true
params:
  symbol: "AAPL"
 start_date: "2018-01-01"
 end date: ""
 rolling: 20
> *Educational use only - not trading advice.* Data pulled via **yfinance** [@yfinance].
This page is **parameterized**; see the **Parameters** section for usage.
## Setup
::: {.cell execution_count=1}
```` {.python .cell-code}
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import yfinance as yf
from pathlib import Path
SYMBOL = params.get("symbol", "AAPL")
START = params.get("start_date", "2018-01-01")
END = params.get("end_date", "")
```

```
ROLL = int(params.get("rolling", 20))
if not END:
 END = pd.Timestamp.today().strftime("%Y-%m-%d")
```

# 4.6 Download and tidy

```
#| echo: true
try:
 data = yf.download(SYMBOL, start=START, end=END, auto_adjust=True, progress=False)
except Exception as e:
 # Synthetic fallback
 idx = pd.bdate range(START, END)
 rng = np.random.default_rng(42)
 ret = rng.normal(0, 0.01, len(idx))
 price = 100 * np.exp(np.cumsum(ret))
 vol = rng.integers(1e5, 5e6, len(idx))
 data = pd.DataFrame({"Close": price, "Volume": vol}, index=idx)
df = (data.rename(columns=str.lower)[["close","volume"]]
 .dropna()
 .assign(log_return=lambda d: np.log(d["close"]).diff()))
df["roll_mean"] = df["log_return"].rolling(ROLL, min_periods=ROLL//2).mean()
df["roll_vol"] = df["log_return"].rolling(ROLL, min_periods=ROLL//2).std()
df = df.dropna()
```

:::

#### 4.7 Price over time

As shown in Figure ?@fig-price, prices vary over time with changing volatility.

#### 4.8 Return distribution

Figure ?@fig-hist shows the return distribution; many assets exhibit heavy tails [(hyndman-fpp3?), pp. 20–21].

# 4.9 Rolling statistics (window = {params.rolling})

# 4.10 Summary table

See Table ?@tbl-summary for overall statistics.

## 4.11 Data dictionary

## 4.12 Parameters

This page accepts parameters: symbol, start\_date, end\_date, and rolling. You can re-render with:

```
quarto render reports/eda.qmd \\
 -P symbol:MSFT -P start_date:2019-01-01 -P end_date:2025-08-01 -P rolling:30
```

#### 4.13 References

"") open("reports/eda.qmd","w").write(eda) print("Wrote reports/eda.qmd with hygiene features.")

```
4) Add a minimal CSS for readability
```python
from pathlib import Path
Path("docs").mkdir(exist_ok=True)
css = """\
/* Increase base font and widen code blocks slightly */
body { font-size: 1.02rem; }
pre code { white-space: pre-wrap; }
img { max-width: 100%; height: auto; }
"""
open("docs/style.css","w").write(css)
print("Wrote docs/style.css")
```

4.13.1 5) Render site to docs/ and preview

```
!quarto render --output-dir docs/
```

Open docs/reports/eda.html in the Colab file browser to preview. Confirm:

- Captions under figures, tables titled at top
- Cross-refs like "Figure 1"/"Table 1" clickable
- "References" section at bottom with your 2–3 entries

4.13.2 6) Commit and push (short-lived token method)

```
!git add _quarto.yml references.bib reports/eda.qmd docs/style.css docs/
!git commit -m "chore: report hygiene (captions, cross-refs, alt text, freeze, bibliography,

from getpass import getpass
token = getpass("GitHub token (not stored): ")
push_url = f"https://{token}@github.com/{REPO_OWNER}/{REPO_NAME}.git"
!git push {push_url} HEAD:main
del token
```

4.14 Wrap-up (10 min)

- Your report now has **citations**, **captions**, **cross-refs**, **alt text**, and **frozen** outputs for stable rebuilds.
- RStudio can render the exact same Python-based .qmd. Teams can mix editors without friction
- Next: Unix automation and Makefile targets to run reports end-to-end.

4.15 Homework (due before Session 5)

Goal: Extend hygiene and add one analytic section—ACF plot—with proper captions/labels/alt text/citations.

4.15.1 Part A — Add an ACF figure with cross-ref + alt text

Append this code chunk to reports/eda.qmd after the "Rolling statistics" section:

```
```python
from getpass import getpass
token = getpass("GitHub token (not stored): ")
push_url = f"https://{token}@github.com/{REPO_OWNER}/{REPO_NAME}.git"
!git push {push_url} HEAD:main
del token
Grading (pass/revise)
* EDA page includes **ACF figure** with caption, label, and alt text; cross-referenced in te
* **Monthly returns** table present with caption/label; referenced in text.
* **At least two** new, relevant citations included and rendered under References.
* `freeze` and `cache` enabled; site renders to `docs/` and loads on GitHub Pages.
Instructor checklist (before class)
* Confirm Quarto CLI install on your demo environment.
* Ensure you can open an existing Python-only `.qmd` in RStudio and click **Render** success:
* Have a GitHub Pages site ready to show before/after hygiene improvements.
Emphasize while teaching
* **Accessibility** is part of professionalism: always write **alt text**, don't rely on col-
* **Citations** are not optional for serious work; treat the report like a short paper.
* **Freeze + cache** save time and prevent accidental drift.
* RStudio is a **comfortable alternative editor** for Quarto even in a Python-only workflow.
Next up (Session 5): **Unix for data work**-shell power tools and Make automation to glue even
`<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6Ii4ifQ== -->`{=html}
```

```
'``{=html}

<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6Ii4iLCJib29rSXRlbVR5cGUiOiJjaGFwdGVyIiwiYm9va'

Session 5 - Unix/Shell Essentials for Data Work

'````{.quarto-title-block template='/Users/yiwang/Applications/quarto/share/projects/book/yi---

title: Session 5 - Unix/Shell Essentials for Data Work

---</pre>
```

Below is a complete lecture package for Session 5 — Unix/Shell Essentials for Data Work (75 minutes). It includes: timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code cells, and homework with copy-paste code. The lab works entirely in Google Colab using Bash commands and your course repo in Google Drive.

Scope today: Filesystem navigation, pipes/redirects, grep/sed/awk, sort|uniq|wc|cut|tr|head|tail|find|xargs, regex basics, and a small shell QA script for CSV health checks.

# 4.16 Session 5 — Unix for Data Work (75 min)

#### 4.16.1 Learning goals

By the end of class, students can:

- 1.
- 2. Navigate and manipulate files safely from the shell (relative vs absolute paths, quoting).
- 3.
- 4. Use **pipes** and **redirection** to build composable mini-pipelines.
- 5.
- 6. Filter and transform text/CSV data with grep, sed, awk, and friends.
- 7.
- 8. Find files with **find** and operate on them with **xargs** / **-exec** safely.
- 9.

10. Write a small, **defensive Bash script** (set -euo pipefail) that performs data QA checks and returns a **non-zero exit code on failure**.

11.

# 4.17 Agenda (75 min)

•

• (8 min) Why shell for data science; mental model of pipelines

•

• (12 min) Core commands & patterns: pipes/redirects, quoting, regex, grep/sed/awk

•

• (35 min) In-class lab (Colab): file system  $\to$  CSV pipelines  $\to$  find/x args  $\to$  QA shell script

•

• (10 min) Wrap-up, troubleshooting, and homework briefing

•

• (10 min) Buffer for slow installs / student issues

•

# 4.18 Slides / talking points (put these bullets on your slides)

#### Why shell?

•

• Fast iteration for data plumbing (ETL glue) and repeatable ops.

•

• Works on any POSIX host (your laptop, Colab VM, servers).

•

• Lets you **compose** small tools with pipes: producer | filter | summarize > report.txt.

•

#### Mental model

•

• Stream text through commands. Each command reads STDIN, writes STDOUT; | connects them.

•

• Redirection: > (truncate to file), >> (append), < (read from file), 2> (errors).

•

• Exit code: 0 success; non-zero = error. Use && (only if success) and || (if failure).

•

#### Quoting

•

• "double quotes" expand variables and backslashes;

•

• 'single quotes' are literal (best for regex/cut/sed patterns);

•

• Always quote paths that might contain spaces: "\$FILE".

•

#### Regex quick guide

•

•  $\hat{}$  start, \$ end, . any char, \* 0+, + 1+, ?  $\frac{0}{1}$ , [A-Z] class, (foo|bar) alt.

.

• Use  $\operatorname{\mathtt{grep}}$  -E (ERE) for + and |. Plain  $\operatorname{\mathtt{grep}}$  is basic (BRE).

•

#### CSV caution

•

• Unix tools are **line-oriented**. They're fine for simple CSVs (no embedded commas/quotes).

•

• For tricky CSVs, prefer Python/pandas. Today's examples are **simple CSVs**.

•

# 4.19 In-class lab (35 min)

Instructor tip: Have students run these as separate Colab cells. Cells labeled "Bash" use "bash. Cells labeled "Python" are only used to generate a small synthetic CSV we can play with offline (no API keys needed).

#### 4.19.1 0) Mount Drive, set repo paths, and cd into the repo

#### Python (Colab)

from google.colab import drive drive.mount('/content/drive', force\_remount=True) REPO\_OWNER

#### Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" pwd ls -la

#### 4.19.2 1) Create a small synthetic prices CSV to work with (safe & reproducible)

#### Python

# Generates data/raw/prices.csv with columns: ticker,date,adj\_close,volume,log\_return import

#### 4.19.3 2) Pipes & redirects warm-up

#### Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" # How many

# 4.19.4 3) grep filters (basic and extended) + regex

#### Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" # All rows

**Note:** We anchor ^ to the start of the line so grep doesn't match commas later in the row.

#### 4.19.5 4) sed transformations (search/replace; in-place edits)

#### Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" # Make a c

#### 4.19.6 5) awk for CSV summarization

#### Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" # Compute

#### **Explanation for students**

- •
- NR>1 skips header.
- •
- sum[\$1] and n[\$1] are associative arrays keyed by ticker.
- •
- We sort numerically on column 2 (mean) with -k2,2n or nr for descending.
- •

#### 4.19.7 6) sort | uniq deduping and comm to compare lists

#### Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" # Unique to

#### 4.19.8 7) find and xargs (safe, null-terminated)

#### Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" # Show all

Pattern: prefer -print0 | xargs -0 to safely handle spaces/newlines in filenames.

#### 4.19.9 8) Build a defensive CSV QA script and run it

#### Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" mkdir -p sc

#### Run the QA script

 $\verb|\display| % bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" scripts/qa_dspt25/unified-stocks-teamX" scripts/qa_dspt25/unified-stocks-teamX scripts/qa_dspt25/uni$ 

Intentionally break it (optional): open data/raw/prices.csv, blank out a value, and re-run to watch it fail with non-zero exit code.

# 4.20 Wrap-up (10 min)

•

• Shell is about **composable building blocks**. Learn 15 commands deeply; combine them fluently.

•

• Prefer null-safe find ... -print0 | xargs -0 patterns; always quote variables: "\$FILE".

•

• For complex CSV logic, fall back to Python; but shell shines for quick filters and QA.

•

• We'll hook these into **Make** next session so one command runs your whole pipeline.

.

# 4.21 Homework (due before Session 6)

Goal: Practice and codify shell workflows into your project:
(1) a data stats pipeline, (2) a per-ticker split utility, (3) a Makefile target, and (4) a short shell-only EDA text report.

#### 4.21.1 Part A — Data stats pipeline (one-liners saved to files)

Bash (Colab)

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" mkdir -p rej

# 4.21.2 Part B — Split per-ticker CSVs into data/interim/ticker=XYZ/directories

Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" mkdir -p da

#### 4.21.3 Part C — Add Makefile targets for QA and per-ticker split

Bash

#### Run the targets

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" make qa mak

#### 4.21.4 Part D — Shell-only mini EDA report

Create reports/mini\_eda.txt with three sections: counts, top moves, mean returns.

#### Bash

%%bash set -euo pipefail cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX" { echo "

# 4.21.5 Part E — Commit & push your changes (use your short-lived token as in Session 2)

Bash + Python (getpass)

 $\verb|\display| \verb|\display| \display| \display| \display| \verb|\display| \display| \display$ 

from getpass import getpass import os, subprocess token = getpass("GitHub token (not stored)

## 4.21.6 Grading (pass/revise)

•

• scripts/qa\_csv.sh exists, is executable, and fails on malformed CSV, passes on clean CSV.

•

• reports/data\_counts.txt, reports/top10\_abs\_moves.csv, reports/mean\_return\_by\_ticker.csv, and reports/mini\_eda.txt generated.

•

• make qa and make split-by-ticker run successfully.

•

• Per-ticker CSVs created under data/interim/ticker=XYZ/.

.

# 4.22 Instructor checklist (before class)

•

• Test the lab in a fresh Colab runtime; ensure Drive path matches.

•

• Prepare a one-slide "cheat sheet" of grep/sed/awk flags used today.

•

• (Optional) Verify gzip is available (it is on Colab).

•

# 4.23 Emphasize while teaching

•

- Quote variables and paths. Prefer -print0 | xargs -0 with find.

•

• Fail fast in scripts (set -euo pipefail) and return non-zero exit codes for CI.

•

• Shell is for **plumbing**—it complements, not replaces, Python.

•

Next session (6): "Make/just, rsync, ssh/tmux (survey)" and we'll wire make get-data and make report into a reproducible one-command pipeline.

# 5 Session 6 — Make/Automation + rsync + ssh/tmux (survey)

Below is a complete lecture package for Session 6 — Make/Automation + rsync + ssh/tmux (survey) (75 minutes). It includes: a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. By the end, students will have a one-command pipeline (make all) to fetch data, build features, render the Quarto EDA, and back up artifacts—plus practical notes on rsync, ssh, and tmux.

**Assumptions:** You're using the same Drive-mounted repo from prior sessions (e.g., unified-stocks-teamX). The course remains Python-first, Colab-first. No trading advice—this is educational.

# 5.1 Session 6 — Make/Automation + rsync + ssh/tmux (75 min)

#### 5.1.1 Learning goals

Students will be able to:

- 1. Explain how Make turns scripts into a reproducible pipeline via targets, dependencies, and incremental builds.
- 2. Create and use a Makefile with helpful defaults, variables, and a help target.
- 3. Use rsync to back up project artifacts and understand --delete and exclude patterns.
- 4. Understand the **ssh** key flow and a **tmux** workflow for long-running jobs (survey).

# 5.2 Agenda (75 min)

- (12 min) Slides: Why automation? How Make models dependencies & incremental builds; best practices
- (10 min) Slides: rsync fundamentals; ssh keys & config; tmux workflow (survey)
- (33 min) In-class lab (Colab): create scripts  $\rightarrow$  author Makefile  $\rightarrow$  run make all  $\rightarrow$  rsync backup
- (10 min) Wrap-up & troubleshooting
- (10 min) Buffer

# 5.3 Slides / talking points (drop these bullets into your deck)

#### 5.3.1 Why Make for DS pipelines?

- Encodes your workflow as **targets** that depend on **files** or other targets.
- Incremental: only rebuilds what changed.
- Plays nicely with CI (make all from a clean clone).
- Stable across OSes; no new runtime to learn.

#### Core syntax

target: dependencies
<TAB> recipe commands

- Use variables: PY := python, QUARTO := quarto.
- Use **PHONY** for meta-targets that don't produce files.
- Prefer **deterministic** outputs: fixed seeds, pinned versions, stable paths.

#### 5.3.2 rsync basics

- rsync -avh SRC/ DST/  $\rightarrow$  syncs directory trees, preserving metadata.
- --delete makes DST exactly match SRC (removes files not in SRC).
- --exclude to skip folders (--exclude 'raw/').
- Remote with SSH: rsync -avz -e ssh SRC/ user@host:/path/.

#### 5.3.3 ssh keys & tmux (survey)

- Keys: ssh-keygen -t ed25519 -C "you@school.edu"; add the public key to servers/GitHub; keep private key private.
- ~/.ssh/config holds named hosts; ssh myhpc uses that stanza.
- tmux: start tmux new -s train; detach (Ctrl-b d); list (tmux ls); reattach (tmux attach -t train). Keeps jobs alive on remote shells.

# 5.4 In-class lab (33 min)

We'll create three tiny scripts and a Makefile that ties them together:

- scripts/get\_prices.py → data/raw/prices.csv (Yahoo via yfinance, with synthetic fallback)
- $scripts/build_features.py \rightarrow data/processed/features.parquet$
- $scripts/backup.sh \rightarrow rsync your artifacts to backups/<timestamp>/$
- Makefile → make all runs end-to-end; make report renders Quarto; make backup syncs artifacts.

Instructor tip: Have everyone run each block as a separate Colab cell.

#### 5.4.1 0) Mount Drive and set repo path

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

REPO_OWNER = "YOUR_GITHUB_USERNAME_OR_ORG" # <- change
REPO_NAME = "unified-stocks-teamX" # <- change
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"

import pathlib, os, subprocess
pathlib.Path(BASE_DIR).mkdir(parents=True, exist_ok=True)
if not pathlib.Path(REPO_DIR).exists():
 raise SystemExit("Repo not found in Drive. Clone it first (see Session 2/3).")
os.chdir(REPO_DIR)
print("Working dir:", os.getcwd())</pre>
```

#### 5.4.2 1) Quick tool checks (Make, rsync, Quarto)

```
import subprocess, shutil
def check(cmd):
 try:
 out = subprocess.check_output(cmd, text=True)
 print(cmd[0], "OK")
 except Exception as e:
 print(cmd[0], "NOT FOUND")
check(["make", "--version"])
check(["rsync", "--version"])
check(["quarto", "--version"])
```

If Quarto is missing, re-run the installer from Session 3 before make report.

#### 5.4.3 2) Script: scripts/get\_prices.py

```
from pathlib import Path
Path("scripts").mkdir(exist_ok=True)
get_py = r"""#!/usr/bin/env python
import argparse, sys, time
from pathlib import Path
import pandas as pd, numpy as np
def fetch_yf(ticker, start, end):
 import yfinance as yf
 df = yf.download(ticker, start=start, end=end, auto_adjust=True, progress=False)
 if df is None or df.empty:
 raise RuntimeError("empty")
 df = df.rename(columns=str.lower)[["close","volume"]]
 df.index.name = "date"
 df = df.reset_index()
 df["ticker"] = ticker
 return df[["ticker","date","close","volume"]]
def main():
 ap = argparse.ArgumentParser()
 ap.add_argument("--tickers", default="tickers_25.csv")
```

```
ap.add_argument("--start", default="2020-01-01")
 ap.add_argument("--end", default="")
 ap.add_argument("--out", default="data/raw/prices.csv")
 args = ap.parse_args()
 out = Path(args.out)
 out.parent.mkdir(parents=True, exist_ok=True)
 tickers = pd.read_csv(args.tickers)["ticker"].dropna().unique().tolist()
 rows = []
 for t in tickers:
 try:
 df = fetch_yf(t, args.start, args.end or None)
 except Exception:
 # synthetic fallback
 idx = pd.bdate_range(args.start, args.end or pd.Timestamp.today().date())
 rng = np.random.default_rng(42 + hash(t)%1000)
 r = rng.normal(0, 0.01, len(idx))
 price = 100*np.exp(np.cumsum(r))
 vol = rng.integers(1e5, 5e6, len(idx))
 df = pd.DataFrame({"ticker": t, "date": idx, "close": price, "volume": vol})
 df["date"] = pd.to_datetime(df["date"]).dt.date
 df["adj_close"] = df["close"]
 df = df.drop(columns=["close"])
 df["log_return"] = np.log(df["adj_close"]).diff().fillna(0.0)
 rows.append(df)
 allp = pd.concat(rows, ignore_index=True)
 allp = allp[["ticker","date","adj_close","volume","log_return"]]
 allp.to_csv(out, index=False)
 print("Wrote", out, "rows:", len(allp))
if __name__ == "__main__":
 sys.exit(main())
open("scripts/get_prices.py","w").write(get_py)
import os, stat
os.chmod("scripts/get_prices.py", os.stat("scripts/get_prices.py").st_mode | stat.S_IEXEC)
print("Created scripts/get_prices.py")
```

#### 5.4.4 3) Script: scripts/build\_features.py

```
feat_py = r"""#!/usr/bin/env python
import argparse
from pathlib import Path
import pandas as pd, numpy as np
def main():
 ap = argparse.ArgumentParser()
 ap.add_argument("--input", default="data/raw/prices.csv")
 ap.add_argument("--out", default="data/processed/features.parquet")
 ap.add_argument("--roll", type=int, default=20)
 args = ap.parse_args()
 df = pd.read_csv(args.input, parse_dates=["date"])
 df = df.sort_values(["ticker","date"])
 # groupwise lags
 df["r_1d"] = df["log_return"]
 for k in (1,2,3):
 df[f"lag{k}"] = df.groupby("ticker")["r_1d"].shift(k)
 df["roll_mean"] = (df.groupby("ticker")["r_1d"]
 .rolling(args.roll, min_periods=args.roll//2).mean()
 .reset_index(level=0, drop=True))
 df["roll_std"] = (df.groupby("ticker")["r_1d"]
 .rolling(args.roll, min_periods=args.roll//2).std()
 .reset_index(level=0, drop=True))
 out = Path(args.out)
 out.parent.mkdir(parents=True, exist_ok=True)
 # Save compactly
 df.to_parquet(out, index=False)
 print("Wrote", out, "rows:", len(df))
if __name__ == "__main__":
 main()
open("scripts/build_features.py","w").write(feat_py)
import os, stat
os.chmod("scripts/build_features.py", os.stat("scripts/build_features.py").st_mode | stat.S_
print("Created scripts/build_features.py")
```

## 5.4.5 4) Script: scripts/backup.sh (rsync)

```
backup_sh = r"""#!/usr/bin/env bash
Sync selected artifacts to backups/<timestamp> using rsync.
Usage: scripts/backup.sh [DEST_ROOT]
set -euo pipefail
ROOT="${1:-backups}"
STAMP="$(date +%Y%m%d-%H%M%S)"
DEST="${ROOT}/run-${STAMP}"
mkdir -p "$DEST"
What to back up (adjust as needed)
INCLUDE=("data/processed" "reports" "docs")
for src in "${INCLUDE[@]}"; do
 if [[-d "$src"]]; then
 echo "Syncing $src -> $DEST/$src"
 rsync -avh --delete --exclude 'raw/' --exclude 'interim/' "$src"/ "$DEST/$src"/
 fi
done
echo "Backup complete at $DEST"
open("scripts/backup.sh","w").write(backup_sh)
import os, stat
os.chmod("scripts/backup.sh", os.stat("scripts/backup.sh").st_mode | stat.S_IEXEC)
print("Created scripts/backup.sh")
```

#### 5.4.6 5) Makefile (robust, with variables and help)

```
makefile = r"""# Makefile - unified-stocks
SHELL := /bin/bash
.SHELLFLAGS := -eu -o pipefail -c

PY := python
QUARTO := quarto

START ?= 2020-01-01
END ?= 2025-08-01
```

```
ROLL ?= 30
DATA_RAW := data/raw/prices.csv
FEATS := data/processed/features.parquet
REPORT := docs/reports/eda.html
Default target
.DEFAULT_GOAL := help
.PHONY: help all clean clobber qa report backup
help: ## Show help for each target
 @awk 'BEGIN {FS = ":.*##"; printf "Available targets:\n"} /^[a-zA-Z0-9_\-]+:.*##/ {print;
all: $(DATA_RAW) $(FEATS) report backup ## Run the full pipeline and back up artifacts
$(DATA_RAW): scripts/get_prices.py tickers_25.csv
 $(PY) scripts/get_prices.py --tickers tickers_25.csv --start $(START) --end $(END) --out
$(FEATS): scripts/build_features.py $(DATA_RAW) scripts/qa_csv.sh
 # Basic QA first
 scripts/qa_csv.sh $(DATA_RAW)
 $(PY) scripts/build_features.py --input $(DATA_RAW) --out $(FEATS) --roll $(ROLL)
report: $(REPORT) ## Render Quarto EDA to docs/
$(REPORT): reports/eda.qmd _quarto.yml docs/style.css
 $(QUARTO) render reports/eda.qmd -P symbol:AAPL -P start_date=$(START) -P end_date=$(END
 @test -f $(REPORT) || (echo "Report not generated." && exit 1)
backup: ## Rsync selected artifacts to backups/<timestamp>/
 ./scripts/backup.sh
clean: ## Remove intermediate artifacts (safe)
 rm -rf data/interim
 rm -rf data/processed/*.parquet || true
clobber: clean ## Remove generated reports and backups (dangerous)
 rm -rf docs/reports || true
 rm -rf backups || true
open("Makefile","w").write(makefile)
print(open("Makefile").read())
```

Note: The Makefile expects scripts/qa\_csv.sh from Session 5. If a student missed it, set scripts/qa\_csv.sh to a no-op or remove that dependency temporarily.

#### 5.4.7 6) Try the pipeline

```
import subprocess, os, textwrap, sys
print(subprocess.check_output(["make", "help"], text=True))

Fetch raw, build features, render report, back up artifacts
import subprocess
print(subprocess.check_output(["make", "all"], text=True))
```

#### Confirm:

- data/raw/prices.csv exists
- data/processed/features.parquet exists
- docs/reports/eda.html renders
- backups/run-<timestamp>/ contains synced folders

#### 5.4.8 7) (Optional) just command-runner

**Optional**: If just is available on your system, create a justfile that mirrors common Make targets. On Colab, installation may or may not be available; this is just for reference.

```
%%bash
set -e
if ! command -v just >/dev/null 2>&1; then
 echo "just not found; skipping optional step."
 exit 0
fi
cat > justfile << 'EOF'
justfile - optional convenience recipes
set shell := ["bash", "-eu", "-o", "pipefail", "-c"]

start := "2020-01-01"
end := "2025-08-01"
roll := "30"</pre>
```

```
help:
\t@cho "Recipes: get-data, features, report, all, backup"

get-data:
\tpython scripts/get_prices.py --tickers tickers_25.csv --start {{start}} --end {{end}} --our

features:
\tbash -lc 'scripts/qa_csv.sh data/raw/prices.csv'
\tpython scripts/build_features.py --input data/raw/prices.csv --out data/processed/features

report:
\tquarto render reports/eda.qmd -P symbol:AAPL -P start_date={{start}} -P end_date={{end}} -i

all: get-data features report

backup:
\t./scripts/backup.sh

EOF
echo "Wrote justfile (optional)."
```

#### 5.4.9 8) ssh & tmux quickstarts (survey, run locally, not in Colab)

ssh key generation (local terminal):

```
ssh-keygen -t ed25519 -C "you@school.edu"
Press enter to accept default path (~/.ssh/id_ed25519), set a passphrase (recommended)
cat ~/.ssh/id_ed25519.pub # copy this PUBLIC key where needed (GitHub/servers)
```

#### SSH config (~/.ssh/config, local):

```
Host github

HostName github.com

User git

IdentityFile ~/.ssh/id_ed25519

AddKeysToAgent yes

IdentitiesOnly yes

Host myhpc

HostName login.hpc.university.edu

User your_netid

IdentityFile ~/.ssh/id_ed25519
```

#### Test GitHub SSH (local):

```
ssh -T git@github.com
```

#### tmux essentials (remote or local):

```
tmux new -s train # start session "train"
... run your long job ...
detach: press Ctrl-b then d
tmux ls # list sessions
tmux attach -t train # reattach
tmux kill-session -t train # end session
```

# 5.5 Wrap-up (10 min)

- Make codifies your pipeline; the file graph serves as your dependency DAG.
- Incremental builds save time: edit one script  $\rightarrow$  only downstream targets rebuild.
- rsync is your friend for backups/snapshots; be deliberate with --delete.
- ssh/tmux: you don't need them in Colab, but you will on campus servers/HPC.

# 5.6 Homework (due before Session 7)

Goal: Extend your automation with a tiny baseline training & evaluation step and polish your Makefile.

#### 5.6.1 Part A — Add a minimal baseline trainer

Create scripts/train\_baseline.py that learns a linear regression on lagged returns (toy baseline) and writes metrics.

```
train_py = r"""#!/usr/bin/env python
import argparse, json
from pathlib import Path
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
def main():
 ap = argparse.ArgumentParser()
 ap.add_argument("--features", default="data/processed/features.parquet")
 ap.add_argument("--out-metrics", default="reports/baseline_metrics.json")
 args = ap.parse_args()
 df = pd.read_parquet(args.features)
 # Train/test split by date (last 20% for test)
 df = df.dropna(subset=["lag1","lag2","lag3","r_1d"])
 n = len(df)
 split = int(n*0.8)
 Xtr = df[["lag1","lag2","lag3"]].iloc[:split].values
 ytr = df["r_1d"].iloc[:split].values
 Xte = df[["lag1","lag2","lag3"]].iloc[split:].values
 yte = df["r_1d"].iloc[split:].values
 model = LinearRegression().fit(Xtr, ytr)
 pred = model.predict(Xte)
 mae = float(mean_absolute_error(yte, pred))
 Path("reports").mkdir(exist_ok=True)
 with open(args.out_metrics, "w") as f:
 json.dump({"model":"linear(lag1,lag2,lag3)","test_mae":mae,"n_test":len(yte)}, f, in
 print("Wrote", args.out_metrics, "MAE:", mae)
if __name__ == "__main__":
 main()
open("scripts/train_baseline.py","w").write(train_py)
import os, stat
os.chmod("scripts/train_baseline.py", os.stat("scripts/train_baseline.py").st_mode | stat.S_
print("Created scripts/train_baseline.py")
```

#### 5.6.2 Part B — Extend your Makefile with train and all

Append these to your Makefile:

Run:

```
%%bash
set -euo pipefail
cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX"
make train
cat reports/baseline_metrics.json
```

#### 5.6.3 Part C — Add a help description to every target and verify make help

Ensure each target in your Makefile has a ## comment. Run:

```
%%bash
set -euo pipefail
cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX"
make help
```

#### 5.6.4 Part D — (Optional) Track small models/metrics with Git-LFS

If you decide to save model artifacts (e.g., models/baseline.pkl), track them:

```
%%bash
set -euo pipefail
cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX"
git lfs track "models/*.pkl"
git add .gitattributes
git commit -m "chore: track small model files via LFS"
```

(You can extend train\_baseline.py to save models/baseline.pkl using joblib.)

#### 5.6.5 Part E — Commit & push

```
%%bash
set -euo pipefail
cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX"
git add scripts/*.py scripts/backup.sh Makefile reports/baseline_metrics.json
git status
git commit -m "feat: automated pipeline with Make (data->features->report->train) and rsync
from getpass import getpass
import subprocess
token = getpass("GitHub token (not stored): ")
REPO_OWNER = "YOUR_GITHUB_USERNAME_OR_ORG"
REPO_NAME = "unified-stocks-teamX"
push_url = f"https://{token}@github.com/{REPO_OWNER}/{REPO_NAME}.git"
subprocess.run(["git", "push", push_url, "HEAD:main"], check=True)
del token
```

#### 5.6.6 Grading (pass/revise)

- make all runs from a fresh clone (with minimal edits for tokens/Quarto install) and produces: data/raw/prices.csv, data/processed/features.parquet, docs/reports/eda.html, reports/baseline\_metrics.json, and a backups/run-\*/snapshot.
- Makefile has helpful help output and variables (START, END, ROLL).
- scripts/backup.sh uses rsync -avh --delete and excludes raw/ & interim/.
- (Optional) LFS tracking updated for models.

## 5.7 Instructor checklist (before class)

- Test the full lab in a fresh Colab runtime (data fetch, feature build, report render, backup).
- Have one slide that visually shows the **dependency graph**: prices.csv → features.parquet → report/train.
- Prepare a one-pager cheat sheet for rsync flags and tmux keystrokes.

## 5.8 Emphasize while teaching

- Make is a thin layer over shell commands—it doesn't replace Python; it orchestrates it.
- Keep targets idempotent: running twice shouldn't break; only rebuild on changes.
- Use rsync with care: --delete is powerful—double-check DEST paths.
- ssh/tmux: you'll want this the first time you run a long model on a remote machine.

## 6 Session 7 — SQL I: SQLite Schemas & Joins

Below is a complete lecture package for Session 7 — SQL I: SQLite Schemas & Joins (75 minutes). It includes: a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. By the end, students will have a SQLite database with a clean schema, constraints, indexes, and several SELECT/JOIN queries they can reuse from Python.

**Assumptions:** You're continuing in the same Drive-mounted repo (e.g., unified-stocks-teamX). You have data/raw/prices.csv from prior sessions. If not, the lab includes a fallback generator.

## 6.1 Session 7 — SQL I: SQLite Schemas & Joins (75 min)

#### 6.1.1 Learning goals

By the end of class, students can:

- 1. Create a **SQLite database** with proper **tables**, **primary keys**, **constraints**, and **indexes**.
- 2. Load CSV data into SQLite safely (parameterized inserts or pandas.to\_sql), avoiding duplicates.
- 3. Write SELECT queries with WHERE/ORDER/LIMIT and basic JOINs.
- 4. Use parameterized queries from Python to avoid SQL injection.
- 5. Build a small **SQL I/O helper** to streamline queries from Python.

## 6.2 Agenda (75 minutes)

- (10 min) Why relational databases for DS; SQLite types; PK/constraints; indexes
- (10 min) DDL overview (CREATE TABLE/INDEX); transactions; parameterized queries
- (35 min) In-class lab (Colab): create prices.db  $\rightarrow$  load prices + meta  $\rightarrow$  write joins
- (10 min) Wrap-up & homework briefing
- (10 min) Buffer

## 6.3 Slides / talking points (add to your deck)

#### Why SQLite for DS

- Single file  $DB \rightarrow easy$  to version, ship, query; no server admin.
- Stronger guarantees than loose CSVs: types, constraints, unique keys, foreign keys.
- Fast filters/joins with indexes; JIT queries from Python, R, or CLI.

#### SQLite types & constraints

- SQLite uses dynamic typing but honors affinities: INTEGER, REAL, TEXT, BLOB.
- Use **PRIMARY KEY** (uniqueness + index), **NOT NULL**, and **CHECK** (e.g., volume 0)
- Turn on foreign keys: PRAGMA foreign\_keys = ON;

#### Indexes & performance

- Index columns used in **joins** and **filters**.
- Composite PK (ticker, date) makes common lookups fast.

#### What NOT to commit

- Large .db files. Keep DB small or regenerate from CSV with a script.
- If you must version a small DB, ensure **Git-LFS** tracks data/\*.db (we set this in Session 2).

## 6.4 In-class lab (35 min)

**Instructor tip:** Have students run each block as its own Colab cell. Commands that start with! run in the Colab shell; the rest are Python.

#### 6.4.1 0) Mount Drive & enter repo

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

REPO_OWNER = "YOUR_GITHUB_USERNAME_OR_ORG" # <- change
REPO_NAME = "unified-stocks-teamX" # <- change
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"

import os, pathlib, pandas as pd, numpy as np
pathlib.Path(BASE_DIR).mkdir(parents=True, exist_ok=True)
assert pathlib.Path(REPO_DIR).exists(), "Repo not found in Drive. Clone it first."
os.chdir(REPO_DIR)
print("Working dir:", os.getcwd())</pre>
```

#### 6.4.2 1) Ensure prerequisites & create a small prices.csv if missing

```
Ensure pandas and sqlite3 are available (sqlite3 is in stdlib)
import pandas as pd, sqlite3, numpy as np, os
from pathlib import Path

Path("data/raw").mkdir(parents=True, exist_ok=True)
if not Path("data/raw/prices.csv").exists():
 print("No prices.csv found; generating a small synthetic one.")
 tickers = ["AAPL","MSFT","NVDA","AMZN","GOOGL"]
 dates = pd.bdate_range("2022-01-03", periods=120)
 rng = np.random.default_rng(7)
 frames=[]
 for t in tickers:
 r = rng.normal(0, 0.01, len(dates))
 price = 100*np.exp(np.cumsum(r))
 vol = rng.integers(1e5, 5e6, len(dates))
```

```
df = pd.DataFrame({"ticker": t, "date": dates, "adj_close": price, "volume": vol})
 df["log_return"] = np.log(df["adj_close"]).diff().fillna(0)
 frames.append(df)
 pd.concat(frames, ignore_index=True).to_csv("data/raw/prices.csv", index=False)

Show a peek
pd.read_csv("data/raw/prices.csv").head()
```

#### 6.4.3 2) Design schema & create the database data/prices.db

We'll use two tables:

- meta(ticker TEXT PRIMARY KEY, name TEXT, sector TEXT NOT NULL)
- prices(ticker TEXT NOT NULL, date TEXT NOT NULL, adj\_close REAL NOT NULL, volume INTEGER NOT NULL, log\_return REAL NOT NULL, PRIMARY KEY (ticker,date), FOREIGN KEY (ticker) REFERENCES meta(ticker))

```
import sqlite3, textwrap, os
from pathlib import Path
db_path = Path("data/prices.db")
if db_path.exists(): db_path.unlink() # start fresh for class; remove this in real life
con = sqlite3.connect(db_path)
cur = con.cursor()
Turn on foreign keys
cur.execute("PRAGMA foreign_keys = ON;")
(Optional) WAL can help concurrency; not critical here
cur.execute("PRAGMA journal_mode = WAL;")
ddl = textwrap.dedent("""
CREATE TABLE meta (
 ticker TEXT PRIMARY KEY,
 name TEXT,
 sector TEXT NOT NULL
);
CREATE TABLE prices (
 ticker
 TEXT NOT NULL,
 -- ISO 'YYYY-MM-DD'
 date
 TEXT NOT NULL,
 adj_close REAL NOT NULL CHECK (adj_close >= 0),
```

```
volume INTEGER NOT NULL CHECK (volume >= 0),
 log_return REAL NOT NULL,
 PRIMARY KEY (ticker, date),
 FOREIGN KEY (ticker) REFERENCES meta(ticker)
);

-- Index to speed up date-range scans across all tickers
CREATE INDEX IF NOT EXISTS idx_prices_date ON prices(date);
""")
cur.executescript(ddl)
con.commit()
print("Created:", db_path)
```

#### 6.4.4 3) Populate meta (try yfinance sector; fallback to synthetic)

```
import pandas as pd, numpy as np
import warnings
warnings.filterwarnings("ignore")
Read tickers (from existing CSV or fallback)
if Path("tickers_25.csv").exists():
 tickers = pd.read_csv("tickers_25.csv")["ticker"].dropna().unique().tolist()
else:
 tickers = pd.read_csv("data/raw/prices.csv")["ticker"].dropna().unique().tolist()
def fetch_sector_map(tickers):
 try:
 import yfinance as yf
 out=[]
 for t in tickers:
 info = yf.Ticker(t).info or {}
 name = info.get("shortName") or info.get("longName") or t
 sector= info.get("sector") or "Unknown"
 out.append({"ticker": t, "name": name, "sector": sector})
 return pd.DataFrame(out)
 except Exception:
 pass
 # Fallback: deterministic synthetic sectors
 sectors = ["Technology", "Financials", "Healthcare", "Energy", "Consumer"]
 rng = np.random.default_rng(42)
```

```
return pd.DataFrame({
 "ticker": tickers,
 "name": tickers,
 "sector": [sectors[i % len(sectors)] for i in range(len(tickers))]
})

meta_df = fetch_sector_map(tickers)
meta_df.head()

Insert meta with parameterized query
with con:
 con.executemany(
 "INSERT INTO meta(ticker, name, sector) VALUES(?, ?, ?)",
 meta_df[["ticker", "name", "sector"]].itertuples(index=False, name=None)
)
print(pd.read_sql_query("SELECT * FROM meta LIMIT 5;", con))
```

## 6.4.5 4) Load data/raw/prices.csv into a staging DataFrame and insert into prices

We'll use parameterized bulk insert (executemany) which is fast and safe.

```
print(pd.read_sql_query("SELECT COUNT(*) AS nrows FROM prices;", con))
print(pd.read_sql_query("SELECT ticker, COUNT(*) AS n FROM prices GROUP BY ticker ORDER BY n
```

#### 6.4.6 5) Sanity queries (filters, order, limit)

```
q1 = """
SELECT ticker, date, adj_close, volume
FROM prices
WHERE ticker = ? AND date BETWEEN ? AND ?
ORDER BY date ASC
LIMIT 5;
11 11 11
print(pd.read_sql_query(q1, con, params=["AAPL","2022-03-01","2022-06-30"]))
Top 10 absolute daily moves for a chosen ticker
q2 = """
SELECT p.ticker, p.date, p.log_return, ABS(p.log_return) AS abs_move
FROM prices AS p
WHERE p.ticker = ?
ORDER BY abs_move DESC
LIMIT 10;
print(pd.read_sql_query(q2, con, params=["NVDA"]))
```

#### 6.4.7 6) JOIN with meta (per-sector summaries)

#### 6.4.8 7) Create a view for convenience & test uniqueness constraint

```
View: latest available date per ticker
with con:
 con.execute("""
 CREATE VIEW IF NOT EXISTS latest_prices AS
 SELECT p.*
 FROM prices p
 JOIN (
 SELECT ticker, MAX(date) AS max_date
 FROM prices
 GROUP BY ticker
) t ON p.ticker = t.ticker AND p.date = t.max_date;
pd.read_sql_query("SELECT * FROM latest_prices ORDER BY ticker LIMIT 10;", con)
Demonstrate the UNIQUE/PK constraint: inserting a duplicate row should be ignored or fail
import sqlite3
row = pd.read_sql_query("SELECT * FROM prices LIMIT 1;", con).iloc[0].to_dict()
try:
 with con:
 con.execute(
 "INSERT INTO prices(ticker,date,adj_close,volume,log_return) VALUES(?,?,?,?,?)",
 (row["ticker"], row["date"], row["adj_close"], row["volume"], row["log_return"])
 print("Unexpected: duplicate insert succeeded (should not).")
```

```
except sqlite3.IntegrityError as e:
 print("IntegrityError as expected:", e)
```

#### 6.4.9 8) A tiny SQL I/O helper for your project

```
from pathlib import Path
Path("src").mkdir(exist_ok=True)
Path("src/projectname").mkdir(parents=True, exist_ok=True)
sqlio_py = """\
from __future__ import annotations
import sqlite3
import pandas as pd
from contextlib import contextmanager
from pathlib import Path
DB_PATH = Path("data/prices.db")
@contextmanager
def connect(db_path: str | Path = DB_PATH):
 con = sqlite3.connect(str(db_path))
 con.execute("PRAGMA foreign_keys = ON;")
 try:
 yield con
 finally:
 con.close()
def query_df(sql: str, params: tuple | list | None = None, db_path: str | Path = DB_PATH) ->
 with connect(db_path) as con:
 return pd.read_sql_query(sql, con, params=params)
def sector_summary(start: str, end: str, db_path: str | Path = DB_PATH) -> pd.DataFrame:
 sql = '''
 SELECT m.sector, p.log_return
 FROM prices p JOIN meta m ON p.ticker = m.ticker
 WHERE p.date BETWEEN ? AND ?;
 1.1.1
 df = query_df(sql, [start, end], db_path)
 if df.empty:
 return df
```

Quick test:

```
from src.projectname.sqlio import sector_summary
sector_summary("2022-01-01","2025-08-01").head()
```

Note on versioning: If data/prices.db stays small (a few MB), you may commit it via **Git-LFS** (we tracked data/\*.db in Session 2). Otherwise, **do not commit**—rebuild from CSV with a script (homework).

## 6.5 Wrap-up (10 min)

- You now have a **relational core** for the project.
- Use **PK** + **constraints** to prevent silent data corruption.
- Use **parameterized queries** from Python.
- Next session: **SQL II Window functions & pandas.read\_sql workflows** (rolling stats, LAG/LEAD).

## 6.6 Homework (due before Session 8)

Goal: Make database creation reproducible, add metadata, write joins you'll reuse later, and hook it into your Makefile.

#### 6.6.1 Part A — Script to (re)build the DB

Create scripts/build\_db.py that creates tables and loads CSVs deterministically.

```
scripts/build_db.py
#!/usr/bin/env python
import argparse, sys, textwrap, sqlite3
from pathlib import Path
import pandas as pd, numpy as np
DDL = textwrap.dedent("""
PRAGMA foreign_keys = ON;
CREATE TABLE IF NOT EXISTS meta (
 ticker TEXT PRIMARY KEY,
 name
 TEXT,
 sector TEXT NOT NULL
CREATE TABLE IF NOT EXISTS prices (
 ticker TEXT NOT NULL,
 date TEXT NOT NULL,
 adj_close REAL NOT NULL CHECK (adj_close >= 0),
 INTEGER NOT NULL CHECK (volume >= 0),
 volume
 log_return REAL NOT NULL,
 PRIMARY KEY (ticker, date),
 FOREIGN KEY (ticker) REFERENCES meta(ticker)
);
CREATE INDEX IF NOT EXISTS idx_prices_date ON prices(date);
""")
def load_meta(con, tickers_csv: Path):
 if tickers_csv.exists():
 tks = pd.read_csv(tickers_csv)["ticker"].dropna().unique().tolist()
 else:
 raise SystemExit(f"tickers CSV not found: {tickers_csv}")
 sectors = ["Technology", "Financials", "Healthcare", "Energy", "Consumer"]
 meta = pd.DataFrame({
 "ticker": tks,
 "name": tks,
 "sector": [sectors[i % len(sectors)] for i in range(len(tks))]
 })
 with con:
 con.executemany("INSERT OR REPLACE INTO meta(ticker, name, sector) VALUES(?,?,?)",
 meta.itertuples(index=False, name=None))
```

```
def load_prices(con, prices_csv: Path):
 df = pd.read_csv(prices_csv, parse_dates=["date"])
 df["date"] = df["date"].dt.strftime("%Y-%m-%d")
 df = df[["ticker", "date", "adj_close", "volume", "log_return"]].drop_duplicates(["ticker", "date", "d
 with con:
 con.executemany(
 "INSERT OR REPLACE INTO prices(ticker,date,adj_close,volume,log_return) VALUES(?
 df.itertuples(index=False, name=None)
)
def main():
 ap = argparse.ArgumentParser()
 ap.add_argument("--db", default="data/prices.db")
 ap.add_argument("--tickers", default="tickers_25.csv")
 ap.add_argument("--prices", default="data/raw/prices.csv")
 args = ap.parse_args()
 Path(args.db).parent.mkdir(parents=True, exist_ok=True)
 con = sqlite3.connect(args.db)
 con.executescript(DDL)
 load_meta(con, Path(args.tickers))
 load_prices(con, Path(args.prices))
 con.close()
 print("Built DB:", args.db)
if __name__ == "__main__":
 sys.exit(main())
```

Make it executable:

```
import os, stat, pathlib
p = pathlib.Path("scripts/build_db.py")
os.chmod(p, os.stat(p).st_mode | stat.S_IEXEC)
print("Ready:", p)
```

#### 6.6.2 Part B — Add Makefile target db and a small SQL report

Append to your Makefile:

```
DB := data/prices.db

.PHONY: db sql-report
db: ## Build/refresh SQLite database from CSVs
\tpython scripts/build_db.py --db $(DB) --tickers tickers_25.csv --prices data/raw/prices.cs
sql-report: db ## Generate a simple SQL-driven CSV summary
\tpython - << 'PY'
import pandas as pd, sqlite3, os
con = sqlite3.connect("data/prices.db")
df = pd.read_sql_query(\"\"\"\nSELECT m.sector, COUNT(*) AS n_obs, AVG(ABS(p.log_return)) AS
os.makedirs("reports", exist_ok=True)
df.to_csv("reports/sql_sector_summary.csv", index=False)
print(df.head())
con.close()
PY</pre>
```

#### Run:

```
%%bash
set -euo pipefail
cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX"
make db
make sql-report
```

#### 6.6.3 Part C — Write 3 JOIN queries (save as .sql under sql/)

Create a folder sql/ and add:

- 1. sector\_top\_moves.sql: top 10 absolute daily moves per sector (date, ticker, abs\_move).
- 2. ticker\_activity.sql: per-ticker counts, min/max date.
- 3. range\_summary.sql: for a given date range (use placeholders), mean/std of returns by ticker and sector.

#### Example (1):

```
-- sql/sector_top_moves.sql
SELECT m.sector, p.ticker, p.date, p.log_return, ABS(p.log_return) AS abs_move
FROM prices p JOIN meta m ON p.ticker = m.ticker
ORDER BY abs_move DESC
LIMIT 10;
```

Then a small Python launcher to run any .sql file with optional parameters:

```
scripts/run_sql.py
#!/usr/bin/env python
import argparse, sqlite3, pandas as pd
from pathlib import Path
def main():
 ap = argparse.ArgumentParser()
 ap.add_argument("--db", default="data/prices.db")
 ap.add_argument("--sqlfile", required=True)
 ap.add_argument("--params", nargs="*", default=[])
 ap.add_argument("--out", default="")
 args = ap.parse_args()
 sql = Path(args.sqlfile).read_text()
 con = sqlite3.connect(args.db)
 df = pd.read_sql_query(sql, con, params=args.params or None)
 con.close()
 if args.out:
 Path(args.out).parent.mkdir(parents=True, exist_ok=True)
 df.to_csv(args.out, index=False)
 print(df.head())
if __name__ == "__main__":
 main()
```

Run a demo:

```
%%bash
set -euo pipefail
cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX"
python scripts/run_sql.py --sqlfile sql/sector_top_moves.sql --out reports/sector_top_moves.
```

#### 6.6.4 Part D — (Stretch) Create a calendar table & missing-day check

Create calendar(date TEXT PRIMARY KEY) covering min—max date in prices, and write a query that counts missing business days per ticker (join calendar LEFT JOIN prices). Save result to reports/missing\_days.csv.

Hint: build the calendar in Python with pd.bdate\_range(); insert into calendar; then SELECT c.date, p.ticker FROM calendar c LEFT JOIN prices p ... WHERE p.date IS NULL.

#### 6.6.5 Part E — Commit & push (use the short-lived token flow from Session 2)

Recommended files to add:

- scripts/build\_db.py, scripts/run\_sql.py, sql/\*.sql, updated Makefile, reports/sql\_sector\_summary.csv
- Optionally **do not** commit data/prices.db if large; if small and you must commit, ensure LFS is tracking data/\*.db.

#### 6.6.6 Grading (pass/revise)

- data/prices.db builds from make db and contains meta + prices with PK (ticker,date) and FK to meta.
- reports/sql\_sector\_summary.csv generated by make sql-report.
- sql/sector\_top\_moves.sql, sql/ticker\_activity.sql, sql/range\_summary.sql present and runnable via scripts/run\_sql.py.
- If stretch completed: calendar table + reports/missing\_days.csv.

## 6.7 Instructor checklist (before class)

- Run the entire lab once in a fresh Colab runtime with a small synthetic prices.csv to ensure speed.
- Prepare a one-slide schema diagram (meta prices) and a slide showing an index scan vs table scan (EXPLAIN output optional).
- Remind students: don't commit big DBs; keep build\_db.py as the source of truth.

## 6.8 Emphasize while teaching

- Schema first: clean DDL prevents downstream headaches.
- Constraints are your guardrails; test them (we did with a duplicate insert).
- Parameterize queries; never string-concat user inputs into SQL.
- Keep SQLite for analysis; push heavy analytics to Python/Polars when needed.

Next time (Session 8): **SQL II** — **Window functions & pandas.read\_sql workflows** (LAG/LEAD, rolling stats, and SQL pandas round-trips).

# 7 Session 8 — SQL II: Window Functions & pandas.read\_sql Workflows

Below is a complete lecture package for Session 8 — SQL II: Window Functions & pandas.read\_sql Workflows (75 minutes). It includes: a timed agenda, slides/talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. Today you'll compute lags, leads, rolling stats, and top-k queries in SQLite using window functions, then pull results into pandas for downstream use.

#### **Assumptions:**

- You're in the same Drive-mounted repo (e.g., unified-stocks-teamX).
- You have data/prices.db from Session 7. If not, the lab includes a small fallback to build it from data/raw/prices.csv.
- Educational use only not trading advice.

## 7.1 Session 8 — SQL II: Window Functions & pandas.read\_sql (75 min)

#### 7.1.1 Learning goals

By the end of class, students can:

- 1. Explain and use **window functions**: LAG, LEAD, ROW\_NUMBER, and aggregates with OVER (PARTITION BY ... ORDER BY ... ROWS ...).
- 2. Compute rolling means/variance and multi-lag features per ticker without leakage.
- 3. Use WINDOW named frames to avoid repetition and errors.
- 4. Run parameterized SQL from Python with pandas.read\_sql\_query, and optionally register a custom SQL function (e.g., SQRT).
- 5. Evaluate query performance basics with EXPLAIN QUERY PLAN.

## 7.2 Agenda (75 min)

- (10 min) Window functions: mental model & syntax (PARTITION BY, ORDER BY, ROWS frames)
- (10 min) Patterns for time series: lags, leads, rolling stats, top-k per group
- (35 min) In-class lab (Colab): lags/leads  $\rightarrow$  rolling mean/variance  $\rightarrow$  z-scores  $\rightarrow$  top days per ticker  $\rightarrow$  pull into pandas and save features
- (10 min) Wrap-up, performance notes (EXPLAIN QUERY PLAN), homework briefing
- (10 min) Buffer

## 7.3 Slides / talking points

#### What's a window?

- A window lets an aggregate or analytic function see a row + its neighbors without collapsing rows.
- Template:

```
func(expr) OVER (
PARTITION BY key
ORDER BY time
ROWS BETWEEN N PRECEDING AND CURRENT ROW
)
```

• PARTITION BY = per-group window; ORDER BY = sequence; ROWS = how many rows to include.

#### Window vs GROUP BY

• GROUP BY returns one row per group; OVER (...) returns one row per input row with extra columns.

#### Time-series patterns

- Lags: LAG(x, k)  $\rightarrow$  previous k rows features at t that use only info t.
- Leads: LEAD(x, k)  $\rightarrow$  future k rows labels (don't leak into features).
- Rolling stats: AVG(x) OVER (... ROWS BETWEEN w-1 PRECEDING AND CURRENT ROW); rolling variance via AVG(x\*x) AVG(x)^2.
- Top-k per group: compute ROW\_NUMBER() OVER (PARTITION BY key ORDER BY score DESC) and filter WHERE rn<=k.

#### ROWS vs RANGE

- Use **ROWS** for fixed-length windows on ordered rows (what we need).
- **Time-based windows** (e.g., last 30 calendar days) require different techniques in SQLite (correlated subquery); we'll note but not use today.

## 7.4 In-class lab (35 min)

Run each block as its own Colab cell. Adjust REPO\_OWNER/REPO\_NAME first.

#### 7.4.1 0) Mount Drive, open DB, and ensure it exists

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
REPO_OWNER = "YOUR_GITHUB_USERNAME_OR_ORG"
 # <- change
REPO NAME = "unified-stocks-teamX"
 # <- change
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO DIR = f''\{BASE DIR\}/\{REPO NAME\}''
import os, pathlib, sqlite3, pandas as pd, numpy as np, math, textwrap
pathlib.Path(BASE_DIR).mkdir(parents=True, exist_ok=True)
assert pathlib.Path(REPO DIR).exists(), "Repo not found; clone it first."
os.chdir(REPO_DIR)
print("Working dir:", os.getcwd())
Ensure DB exists (fallback: build from CSV)
db_path = pathlib.Path("data/prices.db")
if not db_path.exists():
 print("prices.db not found; attempting minimal build from data/raw/prices.csv ...")
 pathlib.Path("data").mkdir(exist_ok=True)
 con = sqlite3.connect(db_path)
 con.execute("PRAGMA foreign_keys = ON;")
 con.executescript("""
 CREATE TABLE IF NOT EXISTS meta (
 ticker TEXT PRIMARY KEY,
 name TEXT,
```

```
sector TEXT NOT NULL
);
CREATE TABLE IF NOT EXISTS prices (
 ticker TEXT NOT NULL,
 date TEXT NOT NULL,
 adj_close REAL NOT NULL CHECK (adj_close >= 0),
 INTEGER NOT NULL CHECK (volume >= 0),
 log_return REAL NOT NULL,
 PRIMARY KEY (ticker, date),
 FOREIGN KEY (ticker) REFERENCES meta(ticker)
);
CREATE INDEX IF NOT EXISTS idx_prices_date ON prices(date);
Minimal meta from tickers_25 or from CSV
if pathlib.Path("tickers_25.csv").exists():
 tks = pd.read_csv("tickers_25.csv")["ticker"].dropna().unique().tolist()
else:
 raw = pd.read_csv("data/raw/prices.csv")
 tks = raw["ticker"].dropna().unique().tolist()
meta = pd.DataFrame({"ticker": tks, "name": tks, "sector": ["Unknown"]*len(tks)})
con.executemany("INSERT OR IGNORE INTO meta(ticker, name, sector) VALUES(?,?,?)",
 meta.itertuples(index=False, name=None))
Load prices.csv if present; otherwise synthesize small sample
if pathlib.Path("data/raw/prices.csv").exists():
 df = pd.read_csv("data/raw/prices.csv", parse_dates=["date"]).copy()
else:
 dates = pd.bdate_range("2022-01-03", periods=90)
 rng = np.random.default_rng(7)
 frames=[]
 for t in tks[:5]:
 r = rng.normal(0, 0.01, len(dates))
 price = 100*np.exp(np.cumsum(r))
 vol = rng.integers(1e5, 5e6, len(dates))
 frames.append(pd.DataFrame({"ticker": t, "date": dates,
 "adj_close": price, "volume": vol}))
 df = pd.concat(frames, ignore_index=True)
 df["log_return"] = np.log(df["adj_close"]).diff().fillna(0)
df["date"] = pd.to_datetime(df["date"]).dt.strftime("%Y-%m-%d")
df = df[["ticker", "date", "adj_close", "volume", "log_return"]].drop_duplicates(["ticker", "o
con.executemany("INSERT OR REPLACE INTO prices(ticker,date,adj_close,volume,log_return)
 df.itertuples(index=False, name=None))
con.commit()
```

```
con.close()

Connect and register SQRT (SQLite lacks STDDEV; we'll compute var and take sqrt)
con = sqlite3.connect(db_path)
con.create_function("SQRT", 1, lambda x: math.sqrt(x) if x is not None and x>=0 else None)
print("SQLite version:", sqlite3.sqlite_version)
```

#### 7.4.2 1) LAG & LEAD (no leakage in features)

#### Teaching notes:

- lag1/lag2 are safe features at time t (depend on t-1).
- r\_tplus1 is a label; never include in features.

#### 7.4.3 2) Named WINDOW + rolling mean/variance (20-row window)

```
sql = """
SELECT
 ticker, date, log_return AS r,
 AVG(log_return) OVER w AS roll_mean_20,
 AVG(log_return*log_return) OVER w
 - (AVG(log_return) OVER w)*(AVG(log_return) OVER w) AS roll_var_20
FROM prices
```

```
WINDOW w AS (
 PARTITION BY ticker
 ORDER BY date
 ROWS BETWEEN 19 PRECEDING AND CURRENT ROW
)
WHERE date BETWEEN ? AND ?
ORDER BY ticker, date
LIMIT 20;
"""
roll = pd.read_sql_query(sql, con, params=["2022-03-01","2022-06-30"])
roll.head(10)
```

Compute rolling **std** and **z-score** in pandas (since we registered **SQRT**, we could also do it in SQL; here we'll do it in pandas for clarity):

```
roll["roll_std_20"] = (roll["roll_var_20"].clip(lower=0)).pow(0.5)
roll["zscore_20"] = (roll["r"] - roll["roll_mean_20"]) / roll["roll_std_20"].replace(0, pd.N. roll.head(5)
```

#### 7.4.4 3) Top-k absolute moves per ticker with ROW\_NUMBER

```
sql = """
WITH ranked AS (
 SELECT
 ticker, date, log_return,
 ABS(log_return) AS abs_move,
 ROW_NUMBER() OVER (
 PARTITION BY ticker
 ORDER BY ABS(log_return) DESC
) AS rn
 FROM prices
 WHERE date BETWEEN ? AND ?
)
SELECT * FROM ranked WHERE rn <= 3
ORDER BY ticker, rn;
"""
topk = pd.read_sql_query(sql, con, params=["2022-01-01","2025-08-01"])
topk.head(15)</pre>
```

#### 7.4.5 4) Build a features DataFrame directly from SQL and save to Parquet

We'll assemble lags and rolling stats in one query using a named window w20:

```
sql = """
SELECT
 ticker, date,
 log_return AS r_1d,
 LAG(log_return,1) OVER (PARTITION BY ticker ORDER BY date) AS lag1,
 LAG(log_return,2) OVER (PARTITION BY ticker ORDER BY date) AS lag2,
 LAG(log_return,3) OVER (PARTITION BY ticker ORDER BY date) AS lag3,
 AVG(log_return) OVER w20 AS roll_mean_20,
 AVG(log_return*log_return) OVER w20
 - (AVG(log_return) OVER w20)*(AVG(log_return) OVER w20) AS roll_var_20
FROM prices
WINDOW w20 AS (
 PARTITION BY ticker
 ORDER BY date
 ROWS BETWEEN 19 PRECEDING AND CURRENT ROW
WHERE date BETWEEN ? AND ?
ORDER BY ticker, date;
features_sql = pd.read_sql_query(sql, con, params=["2019-01-01","2025-08-01"])
features_sql["roll_std_20"] = (features_sql["roll_var_20"].clip(lower=0)).pow(0.5)
features_sql["zscore_20"] = (features_sql["r_1d"] - features_sql["roll_mean_20"]) / features
Drop first 2-3 rows per ticker where lags are null
features_sql = (features_sql
 .sort_values(["ticker","date"])
 .groupby("ticker", group_keys=False)
 .apply(lambda g: g.iloc[3:]))
Save
pathlib.Path("data/processed").mkdir(parents=True, exist_ok=True)
features_sql.to_parquet("data/processed/features_sql.parquet", index=False)
features_sql.head()
```

#### 7.4.6 5) EXPLAIN QUERY PLAN sanity & index usage

Interpretation tip: You should see use of the idx\_prices\_date or PRIMARY KEY (depending on the optimizer). If you often filter by (ticker, date), consider a composite index: CREATE INDEX IF NOT EXISTS idx\_prices\_ticker\_date ON prices(ticker, date); (We'll include that in homework.)

#### 7.4.7 6) Save lab outputs

```
pathlib.Path("reports").mkdir(exist_ok=True)
features_sql.head(100).to_csv("reports/sql_window_demo.csv", index=False)
topk.to_csv("reports/top3_abs_moves_per_ticker.csv", index=False)
print("Wrote reports/sql_window_demo.csv and reports/top3_abs_moves_per_ticker.csv")
con.close()
```

## 7.5 Wrap-up (10 min)

- Window functions = **per-row context** (lags, rolling stats, top-k per group) with **no row collapse**.
- Prefer ROWS BETWEEN N PRECEDING AND CURRENT ROW to express true rolling windows.
- No leakage: only use LAG for features; LEAD is for labels.
- Use pandas.read\_sql\_query to push computation into SQL and bring back tidy frames.
- Indexes matter; check EXPLAIN QUERY PLAN, and add (ticker, date) index when filtering by both.

## 7.6 Homework (due before Session 9)

Goal: Productionize SQL-side feature engineering and performance basics. You will (A) create a reusable SQL file that defines features using windows, (B) write a small Python runner that writes data/processed/features\_sql.parquet, (C) add a composite index, and (D) produce two small reports.

#### 7.6.1 Part A — sql/features\_window.sql (reusable)

Create sql/features\_window.sql:

```
-- sql/features_window.sql
-- Rolling features and lags built with window functions.
WITH base AS (
 SELECT
 ticker, date, log_return AS r_1d
 FROM prices
 WHERE date BETWEEN ? AND ? -- placeholders: start, end
)
SELECT
 ticker, date, r_1d,
 LAG(r_1d,1) OVER (PARTITION BY ticker ORDER BY date) AS lag1,
 LAG(r_1d,2) OVER (PARTITION BY ticker ORDER BY date) AS lag2,
 LAG(r_1d,3) OVER (PARTITION BY ticker ORDER BY date) AS lag3,
 AVG(r_1d) OVER w20 AS roll_mean_20,
 AVG(r_1d*r_1d) OVER w20 - (AVG(r_1d) OVER w20)*(AVG(r_1d) OVER w20) AS roll_var_20
FROM base
WINDOW w20 AS (
 PARTITION BY ticker
 ORDER BY date
 ROWS BETWEEN 19 PRECEDING AND CURRENT ROW
ORDER BY ticker, date;
```

#### 7.6.2 Part B — Runner: scripts/build\_features\_sql.py

```
scripts/build_features_sql.py
#!/usr/bin/env python
import argparse, sqlite3, pandas as pd, numpy as np, math
```

```
from pathlib import Path
def main():
 ap = argparse.ArgumentParser()
 ap.add_argument("--db", default="data/prices.db")
 ap.add_argument("--sqlfile", default="sql/features_window.sql")
 ap.add_argument("--start", default="2019-01-01")
 ap.add_argument("--end", default="2025-08-01")
 ap.add_argument("--out", default="data/processed/features_sql.parquet")
 ap.add_argument("--drop-head", type=int, default=3, help="Drop first N rows per ticker (
 args = ap.parse_args()
 Path(args.out).parent.mkdir(parents=True, exist_ok=True)
 con = sqlite3.connect(args.db)
 con.create_function("SQRT", 1, lambda x: math.sqrt(x) if x is not None and x>=0 else None
 sql = Path(args.sqlfile).read_text()
 df = pd.read_sql_query(sql, con, params=[args.start, args.end])
 # Finish std & z-score in pandas
 df["roll_std_20"] = (df["roll_var_20"].clip(lower=0)).pow(0.5)
 df["zscore_20"] = (df["r_1d"] - df["roll_mean_20"]) / df["roll_std_20"].replace(0, pd.NA
 # Drop first N rows per ticker where lags are NaN
 df = (df.sort_values(["ticker","date"])
 .groupby("ticker", group_keys=False)
 .apply(lambda g: g.iloc[args.drop_head:]))
 df.to_parquet(args.out, index=False)
 print("Wrote", args.out, "rows:", len(df))
if __name__ == "__main__":
 main()
```

#### Make it executable:

```
import os, stat, pathlib
p = pathlib.Path("scripts/build_features_sql.py")
os.chmod(p, os.stat(p).st_mode | stat.S_IEXEC)
print("Ready:", p)
```

#### 7.6.3 Part C — Add a composite index and verify plan

1. Create sql/add\_index\_ticker\_date.sql:

```
-- sql/add_index_ticker_date.sql
CREATE INDEX IF NOT EXISTS idx_prices_ticker_date ON prices(ticker, date);
```

2. Runner to apply it (or just execute once in a notebook):

```
import sqlite3, pathlib
con = sqlite3.connect("data/prices.db")
con.executescript(pathlib.Path("sql/add_index_ticker_date.sql").read_text())
con.close()
print("Index created: idx_prices_ticker_date")
```

3. Capture the query plan to a text file:

```
import sqlite3, pandas as pd, pathlib
con = sqlite3.connect("data/prices.db")
plan = pd.read_sql_query("""
EXPLAIN QUERY PLAN
SELECT ticker, date, LAG(log_return,1) OVER (PARTITION BY ticker ORDER BY date)
FROM prices
WHERE ticker = ? AND date BETWEEN ? AND ?
ORDER BY date;
""", con, params=["AAPL","2022-01-01","2025-08-01"])
pathlib.Path("reports").mkdir(exist_ok=True)
plan.to_csv("reports/query_plan_lag1.csv", index=False)
con.close()
print("Wrote reports/query_plan_lag1.csv")
```

#### 7.6.4 Part D — Produce two small reports

1. Top-k per ticker (k=5) as CSV:

```
FROM prices
WHERE date BETWEEN ? AND ?
)

SELECT * FROM ranked WHERE rn <= 5 ORDER BY ticker, rn;
"""

df = pd.read_sql_query(sql, con, params=["2019-01-01","2025-08-01"])
pathlib.Path("reports").mkdir(exist_ok=True)

df.to_csv("reports/top5_abs_moves_per_ticker.csv", index=False)
con.close()
print("Wrote reports/top5_abs_moves_per_ticker.csv")
```

#### 2. Features via SQL saved to Parquet:

!python scripts/build\_features\_sql.py --start 2019-01-01 --end 2025-08-01 --out data/process

#### 7.6.5 Part E — Makefile targets (optional but recommended)

Append to your Makefile:

```
DB := data/prices.db
FEATS_SQL := data/processed/features_sql.parquet
.PHONY: features-sql add-index plan
features-sql: $(FEATS_SQL) ## Build features using SQL windows
$(FEATS_SQL): scripts/build_features_sql.py sql/features_window.sql $(DB)
\tpython scripts/build_features_sql.py --db $(DB) --sqlfile sql/features_window.sql --start
add-index: ## Create composite (ticker,date) index
\tsqlite3 $(DB) < sql/add_index_ticker_date.sql</pre>
plan: ## Save a sample EXPLAIN QUERY PLAN to reports/
\tpython - << 'PY'
import sqlite3, pandas as pd, os
con = sqlite3.connect("data/prices.db")
df = pd.read_sql_query(\"\"\nEXPLAIN QUERY PLAN\nSELECT ticker, date, LAG(log_return,1) OV
os.makedirs("reports", exist_ok=True)
df.to_csv("reports/query_plan_lag1.csv", index=False)
con.close()
print("Wrote reports/query_plan_lag1.csv")
PΥ
```

Run:

```
%%bash
set -euo pipefail
cd "/content/drive/MyDrive/dspt25/unified-stocks-teamX"
make add-index
make features-sql
make plan
```

#### 7.6.6 Submission checklist (pass/revise)

- sql/features\_window.sql present; uses WINDOW w20 and LAG for 1-3 lags.
- scripts/build\_features\_sql.py runs and writes data/processed/features\_sql.parquet.
- Composite index created (idx\_prices\_ticker\_date).
- reports/top5\_abs\_moves\_per\_ticker.csv and reports/query\_plan\_lag1.csv generated.
- (Optional) Makefile updated with features-sql, add-index, plan.

## 7.7 Instructor checklist (before class)

- Test the in-class lab once in a fresh Colab runtime; ensure SQLite version 3.25 (window functions).
- If a student's runtime is older (rare), advise upgrading Colab or running the Python fallback path.
- Keep one slide showing the difference between ROWS BETWEEN 19 PRECEDING AND CURRENT ROW and off-by-one mistakes.

## 7.8 Emphasize while teaching

- No leakage: features must come from LAG, not LEAD.
- Rolling stats with windows are declarative and fast; avoid reinventing in pandas unless needed.
- Use WINDOW names to reduce errors and duplication.
- Check query plans and add indexes purposefully.

Next up (Session 9): Finance-specific evaluation & leakage control — walk-forward splits, embargo, and regime-aware error analysis.

## 8 Session 9 — Cleaning, Joins, and Parquet

Below is a complete lecture package for Session 9 — Cleaning, Joins, and Parquet (75 minutes). It includes a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. You'll clean & merge multi-ticker data, standardize dtypes (including pandas nullable ints and categoricals), and write tidy Parquet—including a partitioned-by-ticker dataset.

Assumptions: Same Drive-mounted repo (e.g., unified-stocks-teamX) as prior sessions. Your raw prices live under data/raw/ (either a single prices.csv or multiple CSVs). The lab includes a safe fallback (small synthetic dataset) if raw files are missing.

## 8.1 Session 9 — Cleaning, Joins, Parquet (75 min)

#### 8.1.1 Learning goals

By the end of class, students can:

- 1. Use merge, assign, and pipe to write clean, testable data-wrangling code.
- 2. Choose **sensible dtypes** for analytics and storage: **category**, pandas **nullable integers** (Int64, Int32, ...), and string.
- 3. Write **Parquet** with compression and **read it back**; understand **partitioning by ticker** and how to filter efficiently.

### 8.2 Agenda (75 min)

- (10 min) Slides: tidy schema; joins (merge), assign, pipe patterns
- (10 min) Slides: dtypes—category, string, nullable ints (Int64), float32 vs float64
- (10 min) Slides: Parquet vs CSV; compression; partitioning; schema preservation
- (35 min) In-class lab: clean & join  $\rightarrow$  set dtypes  $\rightarrow$  write data/processed/prices.parquet and partitioned dataset by ticker
- (10 min) Wrap-up & homework briefing

## 8.3 Slides / talking points (paste these bullets into your deck)

#### 8.3.1 Tidy schema for price data

- One row = one ticker-day.
- Minimal columns (snake\_case): date (datetime64[ns]), ticker (category), open/high/low/close/adj\_close (float32/64), volume (Int64).
- Optional metadata (from a separate table): name (string), sector (category).

#### 8.3.2 Idiomatic pandas: merge, assign, pipe

- merge: combine frames by keys (e.g., prices left join tickers).
- assign: add/transform columns without breaking the chain: df = df.assign(adj\_close=lambda d: d['adj\_close'].fillna(d['close'])).
- pipe: compose small, testable transforms: df = (raw.pipe(standardize\_columns).pipe(clean\_prices meta=meta)).

#### 8.3.3 Dtypes that help

- Categorical (category): compact & fast for low-cardinality strings (ticker, sector).
- Nullable integers (Int64, Int32): keep missing values and integer semantics (volume).
- String (string[python]): consistent string semantics (avoid object).
- Floats: float32 can halve memory, but consider numeric precision.

#### 8.3.4 Parquet: why & how

- Columnar, compressed, preserves schema better than CSV.
- Filters & projection: read only needed columns/rows (esp. with partitioned datasets).
- Partitioning by ticker/ yields fast reads of a subset (e.g., a single ticker).
- Typical settings: engine=pyarrow, compression=zstd or snappy.

## 8.4 In-class lab (35 min)

Run each block as its own Colab cell. Replace REPO\_NAME to match your repo.

#### 8.4.1 0) Setup: mount Drive, cd into repo, ensure folders

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

Change this to your repo folder name
REPO_NAME = "unified-stocks-teamX"
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"

import os, pathlib, sys, glob, pandas as pd, numpy as np
pathlib.Path(BASE_DIR).mkdir(parents=True, exist_ok=True)
assert pathlib.Path(REPO_DIR).exists(), "Repo not found. Clone it first (Session 2/3)."
os.chdir(REPO_DIR)
for p in ["data/raw", "data/static", "data/processed"]:
 pathlib.Path(p).mkdir(parents=True, exist_ok=True)
print("Working dir:", os.getcwd())
```

#### 8.4.2 1) Locate raw price files (CSV) or create a fallback

```
from pathlib import Path import pandas as pd, numpy as np, datetime as dt
```

```
raw_candidates = []
if Path("data/raw/prices.csv").exists():
 raw_candidates = ["data/raw/prices.csv"]
else:
 raw_candidates = sorted(glob.glob("data/raw/prices*.csv")) or sorted(glob.glob("data/raw.
def _make_synthetic_prices():
 # Small 2-year synthetic daily prices for AAPL/MSFT/GOOGL
 tickers = ["AAPL","MSFT","GOOGL"]
 dates = pd.bdate_range("2022-01-03", periods=520, freq="B")
 rows = []
 rng = np.random.default_rng(0)
 for t in tickers:
 price = 100 + rng.normal(0, 1).cumsum()
 price = np.maximum(price, 1.0)
 vol = rng.integers(5e6, 2e7, size=len(dates))
 df = pd.DataFrame({
 "date": dates,
 "ticker": t,
 "open": price * (1 + rng.normal(0, 0.002, size=len(dates))),
 "high": price * (1 + rng.normal(0.003, 0.003, size=len(dates))).clip(min=1),
 "low": price * (1 - np.abs(rng.normal(0.003, 0.003, size=len(dates)))),
 "close": price,
 "adj_close": price * (1 + rng.normal(0, 0.0005, size=len(dates))),
 "volume": vol
 })
 rows.append(df)
 out = pd.concat(rows, ignore_index=True)
 Path("data/raw").mkdir(parents=True, exist_ok=True)
 out.to_csv("data/raw/prices.csv", index=False)
 return ["data/raw/prices.csv"]
if not raw candidates:
 print("No raw prices found; creating a small synthetic dataset...")
 raw_candidates = _make_synthetic_prices()
raw_candidates
```

#### 8.4.3 2) Optional metadata (tickers table), or create a minimal one

## 8.4.4 3) Helpers: standardize\_columns, clean\_prices, join\_meta (showing merge/assign/pipe)

```
import re
def standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
 """Lowercase snake_case; repair common price column name variants."""
 def snake(s):
 s = re.sub(r"[^\w\s]", "_", s)
 s = re.sub(r"\s+", "_", s.strip().lower())
 s = re.sub(r"_+", "_", s)
 return s
 out = df.copy()
 out.columns = [snake(c) for c in out.columns]
 # Normalize known variants
 ren = {
 "adjclose": "adj_close", "adj_close_": "adj_close",
 "close_adj": "adj_close", "adj_close_close": "adj_close"
 }
 out = out.rename(columns={k:v for k,v in ren.items() if k in out.columns})
 # If no adj_close but close exists, create it
 if "adj_close" not in out and "close" in out:
 out = out.assign(adj_close=out["close"])
```

```
return out
def clean_prices(df: pd.DataFrame) -> pd.DataFrame:
 """Coerce dtypes, drop dupes, basic sanity checks; add minor derived fields."""
 cols = ["date","ticker","open","high","low","close","adj_close","volume"]
 keep = [c for c in cols if c in df.columns]
 out = df.loc[:, keep].copy()
 # Parse date, coerce numerics
 out["date"] = pd.to_datetime(out["date"], errors="coerce")
 for c in ["open", "high", "low", "close", "adj_close"]:
 if c in out: out[c] = pd.to_numeric(out[c], errors="coerce")
 if "volume" in out: out["volume"] = pd.to_numeric(out["volume"], errors="coerce")
 # Drop bad rows
 out = out.dropna(subset=["date","ticker","adj_close"])
 # Deduplicate by (ticker, date)
 out = out.sort_values(["ticker","date"])
 out = out.drop_duplicates(subset=["ticker","date"], keep="last")
 # Enforce dtypes
 if "volume" in out:
 out["volume"] = out["volume"].round().astype("Int64") # nullable int
 out.loc[out["volume"] < 0, "volume"] = pd.NA</pre>
 # Use category for low-cardinality strings
 out["ticker"] = out["ticker"].astype("category")
 # Use consistent float dtype
 for c in ["open", "high", "low", "close", "adj_close"]:
 if c in out: out[c] = out[c].astype("float32") # ok for teaching; change to float64
 # Quick sanity checks
 assert out[["ticker","date"]].duplicated().sum() == 0, "Duplicates remain"
 assert pd.api.types.is_datetime64_any_dtype(out["date"]), "date not datetime"
 return out.reset_index(drop=True)
def join_meta(prices: pd.DataFrame, meta: pd.DataFrame) -> pd.DataFrame:
 """Left join metadata; keep minimal meta columns; set dtypes."""
 keep_meta = [c for c in ["ticker", "name", "sector"] if c in meta.columns]
 meta2 = meta.loc[:, keep_meta].copy()
 # Make strings consistent and compact
 if "name" in meta2: meta2["name"] = meta2["name"].astype("string")
 if "sector" in meta2: meta2["sector"] = meta2["sector"].astype("category")
```

```
out = prices.merge(meta2, on="ticker", how="left", validate="many_to_one")
return out
```

#### 8.4.5 4) Read, clean, and join all raw files using a pipeline

#### 8.4.6 5) Save clean data to Parquet (single file) and partitioned by ticker

```
pa_tbl = pa.Table.from_pandas(prices, preserve_index=False)
pq.write_to_dataset(pa_tbl, root_path=part_dir, partition_cols=["ticker"], compression=":
print("Wrote (fallback) partitioned dataset:", part_dir)
```

#### 8.4.7 6) Read back efficiently: projection + simple filters

```
6a) Read a few columns from single-file Parquet
cols = ["ticker","date","adj_close","volume"]
df_small = pd.read_parquet("data/processed/prices.parquet", columns=cols)
df_small.head()

6b) Read one ticker from the partitioned dataset using pyarrow.dataset
import pyarrow.dataset as ds
dataset = ds.dataset("data/processed/prices_by_ticker", format="parquet", partitioning="hive
Choose a ticker present in the data
one_ticker = str(prices["ticker"].cat.categories[0])
flt = (ds.field("ticker") == one_ticker)
tbl = dataset.to_table(filter=flt, columns=["date","adj_close","volume"])
df_one = tbl.to_pandas()
df_one.head()
```

#### 8.4.8 7) Persist a simple schema record for reproducibility

```
import json, pathlib
schema = {c: str(t) for c,t in prices.dtypes.items()}
pathlib.Path("data/processed").mkdir(parents=True, exist_ok=True)
with open("data/processed/prices_schema.json","w") as f:
 json.dump(schema, f, indent=2)
print("Wrote data/processed/prices_schema.json")
```

## 8.5 Wrap-up (10 min) — points to emphasize

- A tidy schema makes life easier downstream.
- Prefer category for ticker, nullable ints for volume.

- Use merge (left join) to attach metadata; use assign for clear column creation; compose steps with pipe.
- Parquet is compact and fast; partition by ticker for selective reads.

### 8.6 Homework (due before Session 10)

**Deliverable:** data/processed/returns.parquet (and optionally partitioned by ticker) containing:

```
• date, ticker
```

- $\log_{\text{return}}$  daily  $\log_{\text{return}} \log(\frac{\text{adj\_close}_t}{\text{adj\_close}_{t-1}})$
- r\_1d next-day log return (lead of log\_return)
- weekday (0=Mon..6=Sun), month (1..12) choose compact dtypes

#### 8.6.1 Step-by-step code (Colab-friendly)

Run in your repo root after finishing the in-class lab.

```
.shift(-1)
3) Calendar features
prices["weekday"] = prices["date"].dt.weekday.astype("int8") # 0..6
prices["month"] = prices["date"].dt.month.astype("int8") # 1..12
4) Select output columns & dtypes
out = prices[["date","ticker","log_return","r_1d","weekday","month"]].copy()
out["ticker"] = out["ticker"].astype("category")
5) Save to Parquet
out_path = "data/processed/returns.parquet"
out.to_parquet(out_path, engine="pyarrow", compression="zstd", index=False)
print("Wrote:", out_path)
6) (Optional) also write a partitioned dataset by ticker
part_dir = "data/processed/returns_by_ticker"
try:
 out.to_parquet(part_dir, engine="pyarrow", compression="zstd",
 index=False, partition_cols=["ticker"])
 print("Wrote partitioned dataset:", part_dir)
except TypeError:
 import pyarrow as pa, pyarrow.parquet as pq
 pq.write_to_dataset(pa.Table.from_pandas(out, preserve_index=False),
 root_path=part_dir, partition_cols=["ticker"], compression="zstd")
 print("Wrote (fallback) partitioned dataset:", part_dir)
```

#### 8.6.2 Quick self-check (run after saving)

```
import pandas as pd
r = pd.read_parquet("data/processed/returns.parquet")
assert {"date","ticker","log_return","r_1d","weekday","month"}.issubset(r.columns)
assert r["ticker"].dtype.name in ("category","CategoricalDtype"), "ticker should be categoricalDtype"), "ticker should be categoricalCtype"), "ticker should be categoricalCtype should be
```

#### 8.6.3 (Optional) Extra credit

• Add year (Int16) and is\_month\_end (BooleanDtype): r["year"] = r["date"].dt.year.astype("Int16 r["is\_month\_end"] = r["date"].dt.is\_month\_end.astype("boolean")

• Compare file sizes: CSV vs Parquet vs Parquet (zstd vs snappy).

#### 8.6.4 Submission checklist (pass/revise)

- data/processed/returns.parquet exists and contains the required columns.
- ticker is categorical; weekday/month are compact ints.
- r\_1d is a lead of log\_return (next-day), not the same-day return.
- You can read it back without errors.

### 8.7 Instructor notes / gotchas to watch for

- Nullable ints: astype("Int64") keeps NAs; plain int64 will fail if NAs exist.
- Categoricals & partitions: When reading partitioned Parquet, ticker may come back as object. Re-cast to category after read if needed.
- Compression choice: zstd gives good ratio/speed; snappy is more ubiquitous.
- **Precision**: float32 is fine for teaching; for production finance, consider float64 and explicit rounding.

#### 8.7.1 Optional (for your Makefile later)

Add quick targets:

```
.PHONY: prices-parquet returns-parquet

prices-parquet: ## Clean raw prices and save processed Parquet(s)

\text{tpython - <<'PY'}

import pandas as pd, glob, pathlib, numpy as np, re, json

from pathlib import Path

(Paste the functions from the lab: standardize_columns, clean_prices, join_meta)

Then read raw -> clean -> write parquet as in the lab

PY

returns-parquet: ## Build returns.parquet with r_1d + calendar features

\text{tpython - <<'PY'}

import pandas as pd, numpy as np

p="data/processed/prices.parquet"; r=pd.read parquet(p).sort_values(["ticker","date"])
```

```
r["log_return"]=r.groupby("ticker")["adj_close"].apply(lambda s: np.log(s/s.shift(1))).reset
r["r_1d"]=r.groupby("ticker")["log_return"].shift(-1)
r["weekday"]=r["date"].dt.weekday.astype("int8"); r["month"]=r["date"].dt.month.astype("int8
r[["date","ticker","log_return","r_1d","weekday","month"]].to_parquet("data/processed/returns.parquet")
PY
```

You now have a clean, tidy Parquet foundation the later sessions (evaluation & modeling) can rely on.

## 9 Rolling Windows, Resampling, and Leakage-Safe Features

Fantastic—thanks for pasting the full course plan. Below are three complete 75-minute lecture packages for Sessions 10, 11, and 12, each with: a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. They assume you completed Session 9 and have data/processed/prices.parquet and data/processed/returns.parquet. Every lab includes fallbacks so you can run them even if files are missing.

**Educational use only** — **not trading advice.** Python-only. Colab + Drive assumed. If you don't already have the repo and folders used below, the first cells create them.

## 10 Session 10 — Rolling Windows, Resampling, and Leakage-Safe Features (75 min)

#### 10.0.1 Learning goals

By the end of class students can:

- 1. Use groupby('ticker') with shift, rolling, expanding, and ewm to engineer features without leakage.
- 2. Resample safely (daily  $\rightarrow$  weekly/monthly) and understand how to aggregate OHLC + volume.
- 3. Produce a tidy features\_v1.parquet with sensible dtypes.

## 10.1 Agenda (75 min)

- (10 min) Slides: leakage-free features; lags vs rolling; resampling patterns
- (10 min) Slides: common pitfalls (min\_periods, alignment, mixed frequencies)
- (35 min) In-class lab: load returns → build features → (optional) weekly aggregates
   → write features\_v1.parquet
- (10 min) Wrap-up + homework brief
- **(10 min)** Buffer

## 10.2 Slide talking points

Feature timing = everything

• Predict  $r_{t+1}$  using info up to and including time t.

• Rule: compute any rolling stat at t from data  $\leq t$ , then shift by 1 if that stat includes the current target variable.

#### Core pandas patterns

- Lags: s.shift(k) (past), never negative shifts.
- Rolling: s.rolling(W, min\_periods=W).agg(...) and then no extra shift if the rolling window ends at t.
- Expanding: long-memory features (e.g., expanding mean).
- EWM: s.ewm(span=W, adjust=False).mean() for decayed memory.

#### Resampling safely

- Use groupby('ticker').resample('W-FRI', on='date') then aggregate:
  - OHLC: first/open, max/high, min/low, last/adj\_close
  - Volume: sum
  - Returns: compound via np.log(prod(1+r)) or sum of log returns.

#### **Dtypes**

• ticker = category; calendar ints int8; features float32 (fine for class).

## 10.3 In-class lab (Colab-friendly)

Run each block as its own cell. Adjust REPO\_NAME as needed.

#### 10.3.1 0) Setup

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

REPO_NAME = "unified-stocks-teamX" # <- change if needed

BASE_DIR = "/content/drive/MyDrive/dspt25"

REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"

import os, pathlib, numpy as np, pandas as pd
pathlib.Path(REPO_DIR).mkdir(parents=True, exist_ok=True)
os.chdir(REPO_DIR)</pre>
```

```
for p in ["data/raw","data/processed","reports","scripts","tests"]:
 pathlib.Path(p).mkdir(parents=True, exist_ok=True)
print("Working dir:", os.getcwd())
```

#### 10.3.2 1) Load inputs or build small fallbacks

```
from pathlib import Path
rng = np.random.default_rng(0)
Fallback synthetic if missing
def make_synth_prices():
 dates = pd.bdate_range("2022-01-03", periods=300)
 frames=[]
 for tkr in ["AAPL", "MSFT", "GOOGL", "AMZN", "NVDA"]:
 base = 100 + rng.normal(0,1, size=len(dates)).cumsum()
 d = pd.DataFrame({
 "date": dates, "ticker": tkr,
 "adj_close": np.maximum(base, 1.0).astype("float32"),
 "volume": rng.integers(1e6, 5e6, size=len(dates)).astype("int64")
 })
 frames.append(d)
 prices = pd.concat(frames, ignore_index=True)
 prices["ticker"] = prices["ticker"].astype("category")
 prices.to_parquet("data/processed/prices.parquet", index=False)
 return prices
ppath = Path("data/processed/prices.parquet")
rpath = Path("data/processed/returns.parquet")
if ppath.exists():
 prices = pd.read_parquet(ppath)
else:
 prices = make_synth_prices()
Build returns if missing (from Session 9 logic)
if rpath.exists():
 returns = pd.read_parquet(rpath)
else:
 df = prices.sort_values(["ticker","date"]).copy()
 df["log_return"] = (df.groupby("ticker")["adj_close"]
```

```
.apply(lambda s: np.log(s/s.shift(1))).reset_index(level=0, drop=True
df["r_1d"] = df.groupby("ticker")["log_return"].shift(-1)
df["weekday"] = df["date"].dt.weekday.astype("int8")
df["month"] = df["date"].dt.month.astype("int8")
returns = df[["date","ticker","log_return","r_1d","weekday","month"]].copy()
returns["ticker"] = returns["ticker"].astype("category")
returns.to_parquet("data/processed/returns.parquet", index=False)

prices.head(3), returns.head(3)
```

#### 10.3.3 2) Rolling, lag, expanding, ewm features (no leakage)

```
def build_features(ret: pd.DataFrame, windows=(5,10,20), add_rsi=True):
 g = ret.sort_values(["ticker","date"]).groupby("ticker", group_keys=False)
 out = ret.copy()
 # Lags of log_return (past info)
 for k in [1,2,3]:
 out[f"lag{k}"] = g["log_return"].shift(k)
 # Rolling mean/std and z-score of returns using past W days **including today**,
 # which is fine because target is r_{t+1}. No extra shift needed.
 for W in windows:
 rm = g["log_return"].rolling(W, min_periods=W).mean()
 rsd= g["log_return"].rolling(W, min_periods=W).std()
 out[f"roll_mean_{W}"] = rm.reset_index(level=0, drop=True)
 out[f"roll_std_{W}"] = rsd.reset_index(level=0, drop=True)
 out[f"zscore_{W}"] = (out["log_return"] - out[f"roll_mean_{W}"]) / (out[f"roll_stern"])
 # Expanding stats (from start to t): long-memory
 out["exp_mean"] = g["log_return"].expanding(min_periods=20).mean().reset_index(level=0, out["exp_mean"]).expanding(min_periods=20).mean().reset_index(level=0, out["exp_mean"]).expanding(min_periods=20).mean().exp
 out["exp_std"] = g["log_return"].expanding(min_periods=20).std().reset_index(level=0, di
 # Exponential weighted (decayed memory)
 for W in [10,20]:
 out[f"ewm_mean_{W}"] = g["log_return"].apply(lambda s: s.ewm(span=W, adjust=False).m
 out[f"ewm_std_{W}"] = g["log_return"].apply(lambda s: s.ewm(span=W, adjust=False).s
 # Optional RSI(14) using returns sign proxy (toy version)
 if add rsi:
```

```
def rsi14(s):
 delta = s.diff()
 up = delta.clip(lower=0).ewm(alpha=1/14, adjust=False).mean()
 dn = (-delta.clip(upper=0)).ewm(alpha=1/14, adjust=False).mean()
 rs = up / (dn + 1e-12)
 return 100 - (100 / (1 + rs))
 out["rsi_14"] = g["adj_close"].apply(rsi14) if "adj_close" in out else g["log_return
 # Cast dtypes
 for c in out.columns:
 if c not in ["date", "ticker", "weekday", "month"] and pd.api.types.is_float_dtype(out[
 out[c] = out[c].astype("float32")
 out["ticker"] = out["ticker"].astype("category")
 return out
Merge adj_close and volume into returns (if not already)
ret2 = returns.merge(prices[["ticker","date","adj_close","volume"]], on=["ticker","date"], here
features = build_features(ret2, windows=(5,10,20), add_rsi=True)
features.head(5)
```

#### 10.3.4 3) (Optional) Weekly resampling demo (OHLCV + returns)

```
Safe weekly resample per ticker, aggregating OHLCV and log returns
def weekly_ohlcv(df):
 df = df.sort_values(["ticker","date"]).copy()
 df["date"] = pd.to_datetime(df["date"])
 res=[]
 for tkr, g in df.groupby("ticker"):
 wk = (g.resample("W-FRI", on="date")
 .agg({"adj_close":"last","volume":"sum"}).dropna().reset_index())
 wk["ticker"] = tkr
 # Weekly log return = log(adj_close_t / adj_close_{t-1})
 wk = wk.sort_values("date")
 wk["wk_log_return"] = np.log(wk["adj_close"]/wk["adj_close"].shift(1))
 res.append(wk)
 return pd.concat(res, ignore_index=True)
weekly = weekly_ohlcv(prices[["ticker","date","adj_close","volume"]])
weekly.head(5)
```

#### 10.3.5 4) Save features\_v1.parquet (+ optional partition by ticker)

```
Select a compact set to start with
keep = ["date","ticker","log_return","r_1d","weekday","month",
 "lag1", "lag2", "lag3",
 "roll_mean_5","roll_std_5","zscore_5",
 "roll_mean_10", "roll_std_10", "zscore_10",
 "roll_mean_20", "roll_std_20", "zscore_20",
 "ewm_mean_10", "ewm_std_10", "ewm_mean_20", "ewm_std_20",
 "exp_mean", "exp_std", "rsi_14", "adj_close", "volume"]
keep = [c for c in keep if c in features.columns]
fv1 = features.loc[:, keep].dropna().sort_values(["ticker","date"]).reset_index(drop=True)
fv1["weekday"] = fv1["weekday"].astype("int8")
fv1["month"] = fv1["month"].astype("int8")
fv1["ticker"] = fv1["ticker"].astype("category")
fv1_path = "data/processed/features_v1.parquet"
fv1.to_parquet(fv1_path, compression="zstd", index=False)
print("Wrote:", fv1_path, "| rows:", len(fv1), "| cols:", len(fv1.columns))
Optional partition
part_dir = "data/processed/features_v1_by_ticker"
try:
 fv1.to_parquet(part_dir, compression="zstd", index=False, engine="pyarrow", partition_co
 print("Wrote partitioned:", part_dir)
except TypeError:
 print("Partition writing skipped (engine missing).")
```

## 10.4 Wrap-up (what to emphasize)

- For **next-day** targets  $r_{t+1}$ , rolling stats up to **t** are fine; never use future rows.
- Be explicit about min\_periods to avoid unstable early rows.
- Keep features small and typed; document your cookbook in the repo.

## 10.5 Homework (due before Session 11)

Goal: Add an automated leakage check and re-run feature build.

#### 10.5.1 A. Script: scripts/build\_features\_v1.py

```
#!/usr/bin/env python
import numpy as np, pandas as pd, pathlib
def build():
 p = pathlib.Path("data/processed/returns.parquet")
 if not p.exists(): raise SystemExit("Missing returns.parquet - finish Session 9.")
 prices = pd.read_parquet("data/processed/prices.parquet")
 ret = pd.read_parquet(p)
 ret2 = ret.merge(prices[["ticker","date","adj_close","volume"]], on=["ticker","date"], he
 # (Paste the build_features() from class)
 # ...
 fv1 = build_features(ret2)
 keep = ["date","ticker","log_return","r_1d","weekday","month",
 "lag1", "lag2", "lag3", "roll_mean_20", "roll_std_20", "zscore_20",
 "ewm_mean_20", "ewm_std_20", "exp_mean", "exp_std", "adj_close", "volume"]
 keep = [c for c in keep if c in fv1.columns]
 fv1 = fv1[keep].dropna().sort_values(["ticker","date"])
 fv1.to_parquet("data/processed/features_v1.parquet", compression="zstd", index=False)
 print("Wrote data/processed/features_v1.parquet", fv1.shape)
if __name__ == "__main__":
 build()
```

Make executable:

```
%%bash
chmod +x scripts/build_features_v1.py
python scripts/build_features_v1.py
```

#### 10.5.2 B. Test: tests/test\_no\_lookahead.py

```
import pandas as pd, numpy as np
def test_features_no_lookahead():
```

```
df = pd.read_parquet("data/processed/features_v1.parquet").sort_values(["ticker","date"]
For each ticker, recompute roll_mean_20 with an independent method and compare
for tkr, g in df.groupby("ticker"):
 s = g["log_return"]
 rm = s.rolling(20, min_periods=20).mean()
Our feature should equal this rolling mean (within tol)
 if "roll_mean_20" in g:
 assert np.allclose(g["roll_mean_20"].values, rm.values, equal_nan=True, atol=1e-"
r_1d must be the **lead** of log_return
 assert g["r_1d"].shift(1).iloc[21:].equals(g["log_return"].iloc[21:])
```

Run:

```
%%bash
pytest -q
```

# 11 Session 11 — APIs with requests: Secrets, Retries, and Caching

# 12 Session 11 — APIs with requests: Secrets, Retries, and Caching (75 min)

#### 12.0.1 Learning goals

Students will be able to:

- 1. Call a REST API with requests + robust retry/backoff.
- 2. Manage secrets with .env and never commit keys.
- 3. Cache responses (file or SQLite) and align external series by date.
- 4. Save enriched data to SQLite and Parquet.

## 12.1 Agenda (75 min)

- (10 min) Slides: anatomy of a GET; query params; JSON; status codes
- (10 min) Slides: secrets (python-dotenv), file layout (.env, .env.template), .gitignore
- (10 min) Slides: retries and caching patterns; idempotent design
- (35 min) In-class lab: fetch FRED VIX (VIXCLS) + optional FEDFUNDS  $\rightarrow$  cache  $\rightarrow$  store in SQLite  $\rightarrow$  join to daily features
- (10 min) Wrap-up + homework

## 12.2 Slide talking points

#### Requests pattern

- Session + HTTPAdapter + Retry  $\rightarrow$  robust.
- Validate: status code, content type; guard against partial data.

#### Secrets

- .env.template committed; .env untracked.
- Load with dotenv.load\_dotenv(). Access via os.getenv("FRED\_API\_KEY").

#### Caching

- File cache: key by URL+params hash.
- DB cache: cache (key TEXT PRIMARY KEY, value BLOB, fetched\_at).

#### Alignment

- After download, normalize to date and join on date.
- Store to SQLite table with a composite key (series\_id, date).

#### 12.3 In-class lab

#### 12.3.1 0) Setup, folders, and templates

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
REPO_NAME = "unified-stocks-teamX"
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"
import os, pathlib, json, hashlib, time, sqlite3, pandas as pd, numpy as np
from pathlib import Path
pathlib.Path(REPO_DIR).mkdir(parents=True, exist_ok=True)
os.chdir(REPO_DIR)
for p in [".cache/api","data","data/processed","data/raw"]:
 Path(p).mkdir(parents=True, exist_ok=True)
.env template for secrets
Path(".env.template").write_text("FRED_API_KEY=\n")
Ensure .gitignore has secrets & cache
gi = Path(".gitignore")
if gi.exists():
 gi_txt = gi.read_text()
else:
 gi_txt = ""
```

```
for line in [".env", ".cache/", "__pycache__/"]:
 if line not in gi_txt:
 gi_txt += ("\n" if not gi_txt.endswith("\n") else "") + line
gi.write_text(gi_txt)
print("Ready. Fill your FRED key in a local .env (do not commit).")
```

#### 12.3.2 1) Robust GET with retry + file cache

```
import os, requests
from urllib3.util.retry import Retry
from requests.adapters import HTTPAdapter
from dotenv import load_dotenv
load_dotenv() # reads .env if present
def session_with_retry(total=3, backoff=0.5):
 s = requests.Session()
 retry = Retry(total=total, backoff_factor=backoff, status_forcelist=[429,500,502,503,504]
 s.mount("https://", HTTPAdapter(max_retries=retry))
 s.headers.update({"User-Agent": "dspt-class/1.0 (+edu)"})
 return s
def cache_key(url, params):
 raw = url + "?" + "&".join(f"{k}={params[k]}" for k in sorted(params))
 return hashlib.sha1(raw.encode()).hexdigest()
def cached_get(url, params, ttl_hours=24):
 key = cache_key(url, params)
 path = Path(f".cache/api/{key}.json")
 if path.exists() and (time.time() - path.stat().st_mtime < ttl_hours*3600):</pre>
 return json.loads(path.read_text())
 s = session_with_retry()
 r = s.get(url, params=params, timeout=20)
 r.raise_for_status()
 data = r.json()
 path.write_text(json.dumps(data))
 return data
```

#### 12.3.3 2) Fetch VIX (VIXCLS) and FEDFUNDS from FRED; store to SQLite

```
API_KEY = os.getenv("FRED_API_KEY", "").strip()
if not API_KEY:
 print("WARNING: No FRED_API_KEY in .env; continuing with unauthenticated request may fail
FRED_SERIES_URL = "https://api.stlouisfed.org/fred/series/observations"
def fred_series(series_id, start="2010-01-01", end=None):
 p = {"series_id":series_id, "api_key":API_KEY, "file_type":"json",
 "observation_start":start}
 if end is not None: p["observation_end"]=end
 data = cached_get(FRED_SERIES_URL, p, ttl_hours=24)
 obs = data.get("observations", [])
 df = pd.DataFrame(obs)[["date","value"]]
 df["date"] = pd.to_datetime(df["date"])
 df["value"] = pd.to_numeric(df["value"], errors="coerce")
 df["series_id"] = series_id
 return df.dropna()
vix = fred_series("VIXCLS", start="2015-01-01")
 # CBOE VIX
fed = fred_series("FEDFUNDS", start="2015-01-01") # Effective Fed Funds
Write to SQLite
db = sqlite3.connect("data/prices.db")
db.execute("""CREATE TABLE IF NOT EXISTS macro_series(
 series_id TEXT NOT NULL, date TEXT NOT NULL, value REAL NOT NULL,
 PRIMARY KEY(series_id, date))""")
for df in [vix, fed]:
 df.to_sql("macro_series", db, if_exists="append", index=False)
db.commit(); db.close()
vix.head(), fed.head()
```

#### 12.3.4 3) Join macro series to daily returns/features by date

```
Load features (build if missing)
from pathlib import Path
fvpath = Path("data/processed/features_v1.parquet")
if not fvpath.exists():
```

### 12.4 Wrap-up

- You built a **retrying**, **cached** API client, stored macro data in **SQLite**, and aligned it by date.
- Secrets live in .env (never committed).
- Enriched features are saved for modeling later.

## 12.5 Homework (due before Session 12)

Goal: Add one more external series (your choice) via FRED and keep everything cached and reproducible.

#### 12.5.1 A. Script: scripts/get\_macro.py

```
#!/usr/bin/env python
import os, json, time, hashlib, pandas as pd, sqlite3
from pathlib import Path
import requests
from urllib3.util.retry import Retry
from requests.adapters import HTTPAdapter
from dotenv import load_dotenv
load_dotenv()
API_KEY = os.getenv("FRED_API_KEY","").strip()
BASE = "https://api.stlouisfed.org/fred/series/observations"
def sess():
 s = requests.Session()
 s.headers.update({"User-Agent":"dspt-class/1.0"})
 s.mount("https://", HTTPAdapter(max_retries=Retry(total=3, backoff_factor=0.5,
 status_forcelist=[429,500,502,503,504]
 return s
def ckey(url, params):
 raw = url + "?" + "&".join(f"{k}={params[k]}" for k in sorted(params))
 return hashlib.sha1(raw.encode()).hexdigest()
def cached_get(url, params, ttl=86400):
 key = ckey(url, params); p = Path(f".cache/api/{key}.json")
 if p.exists() and (time.time() - p.stat().st_mtime < ttl):</pre>
 return json.loads(p.read_text())
 r = sess().get(url, params=params, timeout=20); r.raise_for_status()
 data = r.json(); p.write_text(json.dumps(data)); return data
def fetch_series(series_id, start="2015-01-01"):
 if not API_KEY: raise SystemExit("Set FRED_API_KEY in .env")
 params = {"series_id":series_id, "api_key":API_KEY, "file_type":"json", "observation_state
 data = cached_get(BASE, params)
 df = pd.DataFrame(data["observations"])[["date", "value"]]
 df["date"] = pd.to_datetime(df["date"])
 df["value"] = pd.to_numeric(df["value"], errors="coerce")
 df["series_id"] = series_id
 return df.dropna()
def main(series_id):
 df = fetch_series(series_id)
```

Run example:

```
%%bash
chmod +x scripts/get_macro.py
python scripts/get_macro.py --series-id DGS10 # 10-Year Treasury Constant Maturity Rate
```

#### 12.5.2 B. Enrich features with your new series

```
import pandas as pd, sqlite3
fv = pd.read_parquet("data/processed/features_v1.parquet")
con = sqlite3.connect("data/prices.db")
macro = pd.read_sql_query("SELECT series_id, date, value FROM macro_series", con, parse_date;
con.close()
wide = macro.pivot_table(index="date", columns="series_id", values="value").reset_index()
out = fv.merge(wide, on="date", how="left")
out.to_parquet("data/processed/features_v1_ext.parquet", compression="zstd", index=False)
print("Wrote features_v1_ext.parquet with extra series:", out.shape)
```

#### 12.5.3 C. Short test: tests/test\_macro\_join.py

```
import pandas as pd
def test_enriched_has_macro():
 df = pd.read_parquet("data/processed/features_v1_ext.parquet")
```

```
assert "date" in df and "ticker" in df
assert df.filter(regex="^(VIXCLS|DGS10|FEDFUNDS)$").shape[1] >= 1
```

Run:

```
%%bash
pytest -q
```

# 13 Session 12 — HTML Scraping: Ethics & Resilience

## 14 Session 12 — HTML Scraping: Ethics & Resilience (75 min)

#### 14.0.1 Learning goals

Students will be able to:

- 1. Respect robots.txt and basic site etiquette (throttling, user-agent, caching).
- 2. Extract structured tables with **BeautifulSoup** and fall back to pandas.read\_html.
- 3. Normalize scraped data (clean headers, dtypes, categories).
- 4. Save provenance and update a **data dictionary** for the repo.

### 14.1 Agenda (75 min)

- (10 min) Slides: ethics, robots, terms; caching, rate limits
- (10 min) Slides: stable selectors (ids, table headers), text cleanup, date parsing
- (35 min) In-class lab: scrape a static sector table (Wikipedia S&P 500 components), map to your tickers, save data/static/sector\_map.csv; merge into prices.parquet if missing
- (10 min) Wrap-up + homework brief
- **(10 min)** Buffer

## 14.2 Slide talking points

Ethics + resilience

- Check robots.txt; identify disallow rules.
- Set a clear **User-Agent** and **sleep** between requests.
- Cache HTML locally; don't hammer sites.

• Expect structure to change; write **defensive** code.

#### Parsing patterns

- Prefer table selectors; use read\_html for well-formed tables.
- Clean headers  $\rightarrow$  snake\_case; drop footnotes; trim whitespace.
- Normalize keys (e.g., ticker symbols: map . if needed).

#### Provenance

• Save source\_url, fetched\_at, and a checksum alongside the CSV.

#### 14.3 In-class lab

We'll scrape **Wikipedia: List of S&P 500 companies** (static table). If blocked, we fall back to pandas.read\_html or a small local stub.

#### 14.3.1 0) Setup + robots check + HTML caching

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
REPO_NAME = "unified-stocks-teamX"
 = "/content/drive/MyDrive/dspt25"
BASE DIR
 = f"{BASE_DIR}/{REPO_NAME}"
REPO_DIR
import os, pathlib, requests, time, hashlib, pandas as pd, numpy as np
from bs4 import BeautifulSoup
from urllib.parse import urljoin
from datetime import datetime
os.chdir(REPO DIR)
for p in [".cache/html","data/static","reports"]:
 pathlib.Path(p).mkdir(parents=True, exist_ok=True)
UA = {"User-Agent": "dspt-class/1.0 (+edu)"}
WIKI_URL = "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
```

```
def allowed_by_robots(base, path="/wiki/"):
 r = requests.get(urljoin(base, "/robots.txt"), headers=UA, timeout=20)
 if r.status_code != 200: return True
 lines = r.text.splitlines()
 disallows = [ln.split(":")[1].strip() for ln in lines if ln.lower().startswith("disallow return all(not path.startswith(d) for d in disallows)

print("Robots allows /wiki/?", allowed_by_robots("https://en.wikipedia.org"))
```

#### 14.3.2 1) Download (with cache) and parse the first big table

```
def get_html_cached(url, ttl_hours=24):
 key = hashlib.sha1(url.encode()).hexdigest()
 path = pathlib.Path(f".cache/html/{key}.html")
 if path.exists() and (time.time() - path.stat().st_mtime < ttl_hours * 3600):</pre>
 return path.read_text()
 r = requests.get(url, headers=UA, timeout=30)
 r.raise_for_status()
 path.write_text(r.text)
 time.sleep(1.0) # be polite
 return r.text
html = get_html_cached(WIKI_URL)
soup = BeautifulSoup(html, "html.parser")
Try soup table first; fallback to pandas.read html
table = soup.find("table", {"id": "constituents"}) or soup.find("table", {"class": "wikitable",
if table is not None:
 rows = []
 headers = [th.get_text(strip=True) for th in table.find("tr").find_all("th")]
 for tr in table.find_all("tr")[1:]:
 tds = [td.get_text(strip=True) for td in tr.find_all(["td","th"])]
 if len(tds) == len(headers):
 rows.append(dict(zip(headers, tds)))
 sp = pd.DataFrame(rows)
else:
 sp = pd.read_html(html)[0]
sp.head(3), sp.columns.tolist()
```

#### 14.3.3 2) Clean + normalize + keep only ticker sector

```
import re
def snake(s):
 s = re.sub(r"[^\w\s]", "_", s)
 s = re.sub(r"\s+", "_", s.strip().lower())
 return re.sub(r"_+", "_", s)
sp.columns = [snake(c) for c in sp.columns]
cand_cols = [c for c in sp.columns if "symbol" in c or "security" in c or "sector" in c]
sp = sp.rename(columns={c:"symbol" for c in sp.columns if "symbol" in c or c=="ticker"})
sp = sp.rename(columns={c:"sector" for c in sp.columns if "sector" in c})
keep = [c for c in ["symbol", "sector"] if c in sp.columns]
sp = sp[keep].dropna().drop_duplicates()
sp = sp.rename(columns={"symbol":"ticker"})
sp["ticker"] = sp["ticker"].str.strip()
sp["sector"] = sp["sector"].astype("category")
Save with provenance
src = {"source_url": WIKI_URL, "fetched_at_utc": datetime.utcnow().isoformat()+"Z"}
sp.to_csv("data/static/sector_map.csv", index=False)
with open("data/static/sector_map.provenance.json","w") as f:
 import json; json.dump(src, f, indent=2)
print("Wrote data/static/sector_map.csv", sp.shape)
sp.head(5)
```

#### 14.3.4 3) Merge sector mapping into prices if missing sector

```
from pathlib import Path
pp = Path("data/processed/prices.parquet")
if not pp.exists():
 raise SystemExit("Need prices.parquet (Session 9).")

prices = pd.read_parquet(pp)
if "sector" not in prices.columns or prices["sector"].isna().all():
 prices2 = prices.merge(sp, on="ticker", how="left")
 prices2["sector"] = prices2["sector"].astype("category")
 prices2.to_parquet("data/processed/prices.parquet", compression="zstd", index=False)
 print("Updated prices.parquet with sector column.")
```

```
else:
 print("Sector already present; no merge needed.")
```

## 14.4 Wrap-up

- You scraped a static table **politely** (robots, throttle, cache) and extracted a tidy map.
- You persisted **provenance** and used it to enrich your dataset.
- Keep scrapers small, cached, and resilient.

## 14.5 Homework (due next week)

"| Source | Fetched at |",

Goal: Document your web data provenance and generate a minimal data dictionary for the project.

#### 14.5.1 A. Provenance section (script that composes a Markdown file)

```
scripts/write_provenance.py
#!/usr/bin/env python
import json, pandas as pd
from pathlib import Path
Path("reports").mkdir(exist_ok=True)

provenance = []
if Path("data/static/sector_map.provenance.json").exists():
 provenance.append(json.loads(Path("data/static/sector_map.provenance.json").read_text())
else:
 provenance.append({"source_url":"(none)","fetched_at_utc":"(n/a)"})

md = ["# Data provenance",
 "",
 "## Web sources",
 ""## Web sources",
 ""## Web sources",
```

```
"|---|"]
for p in provenance:
 md.append(f"| {p['source_url']} | {p['fetched_at_utc']} |")

Path("reports/provenance.md").write_text("\n".join(md))
print("Wrote reports/provenance.md")
```

Run:

```
%%bash
chmod +x scripts/write_provenance.py
python scripts/write_provenance.py
```

#### 14.5.2 B. Data dictionary generator

```
scripts/data_dictionary.py
#!/usr/bin/env python
import pandas as pd
from pathlib import Path
def describe_parquet(path):
 df = pd.read_parquet(path)
 dtypes = df.dtypes.astype(str).to_dict()
 return pd.DataFrame({"column": list(dtypes.keys()), "dtype": list(dtypes.values())})
def main():
 rows=[]
 for path in ["data/processed/prices.parquet",
 "data/processed/returns.parquet",
 "data/processed/features_v1.parquet",
 "data/processed/features_v1_ext.parquet"]:
 p = Path(path)
 if p.exists():
 df = describe_parquet(p)
 df.insert(0, "dataset", p.name)
 rows.append(df)
 out = pd.concat(rows, ignore_index=True) if rows else pd.DataFrame(columns=["dataset","c
 Path("reports").mkdir(exist_ok=True)
 out.to_csv("reports/data_dictionary.csv", index=False)
 print("Wrote reports/data_dictionary.csv")
```

```
if __name__ == "__main__":
 main()
```

Run:

```
%%bash
chmod +x scripts/data_dictionary.py
python scripts/data_dictionary.py
```

#### 14.5.3 C. (Optional) Add a short Quarto page that includes both files

Create reports/data\_overview.qmd and render in your next report.

#### 14.5.4 D. Quick tests

```
tests/test_dictionary_provenance.py
import os, pandas as pd

def test_provenance_and_dict():
 assert os.path.exists("reports/provenance.md")
 assert os.path.exists("reports/data_dictionary.csv")
 df = pd.read_csv("reports/data_dictionary.csv")
 assert {"dataset","column","dtype"}.issubset(df.columns)
```

Run:

```
%%bash
pytest -q
```

## 14.6 Instructor tips (for all three sessions)

- Keep a one-page "**no leakage**" checklist handy and point to it often.
- For Session 11, have a prepared .env with a working FRED key to avoid classroom delays.

• For Session 12, if Wikipedia blocks requests, switch to pandas.read\_html (shown) or use a small pre-saved HTML in data/static/ to demonstrate parsing.

These three sessions carry you from solid **feature engineering**  $\rightarrow$  **external data integration**  $\rightarrow$  **web scraping with ethics**, setting up a strong foundation for the testing/CI weeks that follow.

## **15 Session 13**

Below is a complete lecture package for Session 13 — pytest + Data Validation (75 minutes). It includes a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. You'll add high-value tests around your features and a Pandera (optional) schema, practice logging, and wire everything so tests run fast and deterministically.

Assumptions: You completed Session 9-12 and have data/processed/features\_v1.parquet (or features\_v1\_ext.parquet). If a file is missing, the lab provides a small synthetic fallback so tests still run. Goal today: Make it hard to ship bad data by adding precise, fast tests.

## 15.1 Session 13 — pytest + Data Validation (75 min)

#### 15.1.1 Learning goals

By the end of class, students can:

- 1. Write fast, high-signal tests for data pipelines (shapes, dtypes, nulls, no look-ahead).
- 2. Validate a DataFrame with **Pandera** (schema + value checks) or **custom checks** only.
- 3. Use **logging** effectively and capture logs in tests.
- 4. Run tests in Colab / locally and prepare for CI in Session 14.

## 15.2 Agenda (75 min)

- (10 min) Slides: What to test (and not), "data tests" vs unit tests, speed budget
- (10 min) Slides: Pandera schemas & custom checks; tolerance and stability
- (10 min) Slides: Logging basics (logging, levels, handlers); testing logs with caplog

- (35 min) In-class lab: add tests/test\_features.py (+ optional Pandera test), fixtures, config; run & fix
- (10 min) Wrap-up + homework briefing

# 15.3 Slides / talking points (drop into your deck)

## 15.3.1 What to test (fast, crisp)

- Contract tests for data:
  - Schema: required columns exist; dtypes sane (ticker categorical, calendar ints).
  - **Nulls**: no NAs in training-critical cols.
  - Semantics: r\_1d is lead of log\_return; rolling features computed from past only.
  - Keys: no duplicate (ticker, date); dates strictly increasing within ticker.
- Keep tests under ~5s total (CI budget). Avoid long recomputations; sample/take head.

#### 15.3.2 Pandera vs custom checks

- Pandera: declarative schema; optional dependency; good for column existence + ranges.
- Custom: essential for domain logic (look-ahead bans, exact rolling formulas).

#### 15.3.3 Logging basics

- Use logging.getLogger(\_\_name\_\_); set level via env (LOGLEVEL=INFO).
- Log counts, ranges, and any data drops inside build scripts.
- In tests: use caplog to assert a warning is emitted for suspicious conditions.

# 15.4 In-class lab (35 min)

Run each block as its own Colab cell. Adjust REPO\_NAME as needed.

#### 15.4.1 0) Setup: mount & folders

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

REPO_NAME = "unified-stocks-teamX" # <- change if needed
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"

import os, pathlib
pathlib.Path(REPO_DIR).mkdir(parents=True, exist_ok=True)
os.chdir(REPO_DIR)
for p in ["data/processed","tests","scripts","reports"]:
 pathlib.Path(p).mkdir(parents=True, exist_ok=True)
print("Working dir:", os.getcwd())</pre>
```

## 15.4.2 1) (Optional) Install test-time helpers (Pandera)

```
!pip -q install pytest pandera pyarrow
```

## 15.4.3 2) Put a tiny logging helper in your repo (used by build scripts & tests)

```
scripts/logsetup.py
from __future__ import annotations
import logging, os

def setup_logging(name: str = "dspt"):
 level = os.getenv("LOGLEVEL", "INFO").upper()
 logger = logging.getLogger(name)
 if not logger.handlers:
 handler = logging.StreamHandler()
 fmt = "%(asctime)s | %(levelname)s | %(name)s | %(message)s"
 handler.setFormatter(logging.Formatter(fmt))
 logger.addHandler(handler)
 logger.setLevel(level)
 return logger
```

#### 15.4.4 3) Create pytest config and a fixture (with safe fallback data)

```
pytest.ini
from pathlib import Path
Path("pytest.ini").write_text("""[pytest]
addopts = -q
testpaths = tests
filterwarnings =
 ignore::FutureWarning
""")
tests/conftest.py
from pathlib import Path
import pandas as pd, numpy as np, pytest
def _synth_features():
 # minimal synthetic features for 3 tickers, 60 days
 rng = np.random.default_rng(0)
 dates = pd.bdate_range("2023-01-02", periods=60)
 frames=[]
 for t in ["AAPL","MSFT","GOOGL"]:
 ret = rng.normal(0, 0.01, size=len(dates)).astype("float32")
 adj = 100 * np.exp(np.cumsum(ret))
 df = pd.DataFrame({
 "date": dates,
 "ticker": t,
 "adj_close": adj.astype("float32"),
 "log_return": np.r_[np.nan, np.diff(np.log(adj))].astype("float32")
 })
 # next-day label
 df["r_1d"] = df["log_return"].shift(-1)
 # rolling
 df["roll_mean_20"] = df["log_return"].rolling(20, min_periods=20).mean()
 df["roll_std_20"] = df["log_return"].rolling(20, min_periods=20).std()
 df["zscore_20"] = (df["log_return"]-df["roll_mean_20"])/(df["roll_std_20"]+1e-8)
 df["weekday"] = df["date"].dt.weekday.astype("int8")
 df["month"] = df["date"].dt.month.astype("int8")
 frames.append(df)
 out = pd.concat(frames, ignore_index=True).dropna().reset_index(drop=True)
 out["ticker"] = out["ticker"].astype("category")
 return out
```

```
Opytest.fixture(scope="session")
def features_df():
 p = Path("data/processed/features_v1.parquet")
 if p.exists():
 df = pd.read_parquet(p)
 # Ensure expected minimal cols exist (compute light ones if missing)
 if "weekday" not in df: df["weekday"] = pd.to_datetime(df["date"]).dt.weekday.astype
 if "month" not in df: df["month"] = pd.to_datetime(df["date"]).dt.month.astype("increturn df.sort_values(["ticker","date"]).reset_index(drop=True)
fallback
return _synth_features().sort_values(["ticker","date"]).reset_index(drop=True)
```

## 15.4.5 4) High-value tests: shapes, nulls, look-ahead ban (as requested)

```
tests/test_features.py
import numpy as np, pandas as pd
import pytest
REQUIRED_COLS = ["date", "ticker", "log_return", "r_1d", "weekday", "month"]
def test_required_columns_present(features_df):
 missing = [c for c in REQUIRED_COLS if c not in features_df.columns]
 assert not missing, f"Missing required columns: {missing}"
def test_key_no_duplicates(features_df):
 dup = features_df[["ticker","date"]].duplicated().sum()
 assert dup == 0, f"Found {dup} duplicate (ticker,date) rows"
def test_sorted_within_ticker(features_df):
 for tkr, g in features_df.groupby("ticker"):
 assert g["date"].is_monotonic_increasing, f"Dates not sorted for {tkr}"
def test_nulls_in_critical_columns(features_df):
 crit = ["log_return","r_1d"]
 na = features_df[crit].isna().sum().to_dict()
 assert all(v == 0 for v in na.values()), f"NAs in critical cols: {na}"
def test_calendar_dtypes(features_df):
 assert str(features_df["weekday"].dtype) in ("int8","Int8"), "weekday should be compact
 assert str(features_df["month"].dtype) in ("int8", "Int8"), "month should be compact in
```

```
def test_ticker_is_categorical(features_df):
 # allow object if reading from some parquet engines, but prefer category
 assert features_df["ticker"].dtype.name in ("category", "CategoricalDtype", "object")
def test_r1d_is_lead_of_log_return(features_df):
 for tkr, g in features_df.groupby("ticker"):
 # r_1d at t equals log_return at t+1
 assert g["r_1d"].iloc[:-1].equals(g["log_return"].iloc[1:]), f"Lead/lag mismatch for
@pytest.mark.parametrize("W", [20])
def test_rolling_mean_matches_definition(features_df, W):
 if f"roll_mean_{W}" not in features_df.columns:
 pytest.skip(f"roll_mean_{W} not present")
 for tkr, g in features_df.groupby("ticker"):
 s = g["log_return"]
 rm = s.rolling(W, min_periods=W).mean()
 # compare only where defined
 mask = ~rm.isna()
 diff = (g[f"roll_mean_{W}"][mask] - rm[mask]).abs().max()
 assert float(diff) <= 1e-7, f"roll_mean_{W} mismatch for {tkr} (max diff {diff})"</pre>
```

## 15.4.6 5) Optional Pandera schema test (declarative)

```
tests/test_schema_pandera.py
import pytest, pandas as pd, numpy as np
 import pandera as pa
 from pandera import Column, Check, DataFrameSchema
except Exception:
 pytest.skip("pandera not installed", allow_module_level=True)
schema = pa.DataFrameSchema({
 Column(pa.DateTime, nullable=False),
 "date":
 "ticker": Column(pa.String, nullable=False, coerce=True, checks=Check.str_length(1, 12)
 "log_return": Column(pa.Float, nullable=False, checks=Check.is_finite()),
 Column(pa.Float, nullable=False, checks=Check.is_finite()),
 "r 1d":
 "weekday":
 Column(pa.Int8, checks=Check.in_range(0, 6)),
 "month":
 Column(pa.Int8, checks=Check.in_range(1, 12)),
}, coerce=True, strict=False)
```

```
def test_schema_validate(features_df):
 # Cast ticker to string for schema validation; categorical is ok → string
 df = features_df.copy()
 df["ticker"] = df["ticker"].astype(str)
 schema.validate(df[["date","ticker","log_return","r_1d","weekday","month"]])
```

## 15.4.7 6) Logging test: assert a warning is emitted on duplicates (toy demo)

```
tests/test_logging.py
import logging, pandas as pd, numpy as np, pytest
from scripts.logsetup import setup_logging

def check_for_duplicates(df, logger=None):
 logger = logger or setup_logging("dspt")
 dups = df[["ticker","date"]].duplicated().sum()
 if dups > 0:
 logger.warning("Found %d duplicate (ticker,date) rows", dups)
 return dups

def test_duplicate_warning(caplog):
 caplog.set_level(logging.WARNING)
 df = pd.DataFrame({"ticker":["AAPL","AAPL"], "date":pd.to_datetime(["2024-01-02","2024-0 dups = check_for_duplicates(df)
 assert dups == 1
 assert any("duplicate" in rec.message for rec in caplog.records)
```

### 15.4.8 7) Run tests now

```
!pytest -q
```

If a test fails on your real data, fix your pipeline (e.g., regenerate features\_v1.parquet) and re-run. **Do not** relax the test without understanding the failure.

# 15.5 Wrap-up (10 min)

- You now have **tests that fail loudly** if labels leak, required columns/keys break, or schemas drift.
- Pandera provides a declarative baseline; custom tests encode your domain logic.
- Logging helps you debug data issues; you can assert on log messages in tests.

# 15.6 Homework (due before Session 14)

Goal: Create a Health Check notebook that prints key diagnostics and is easy to include in your Quarto report.

#### 15.6.1 Part A — Build a reusable health module

```
scripts/health.py
from __future__ import annotations
import pandas as pd, numpy as np, json
from pathlib import Path
def df_health(df: pd.DataFrame) -> dict:
 out = {}
 out["rows"] = int(len(df))
 out["cols"] = int(df.shape[1])
 out["date_min"] = str(pd.to_datetime(df["date"]).min().date())
 out["date_max"] = str(pd.to_datetime(df["date"]).max().date())
 out["tickers"] = int(df["ticker"].nunique())
 # Null counts (top 10)
 na = df.isna().sum().sort_values(ascending=False)
 out["nulls"] = na[na>0].head(10).to_dict()
 # Duplicates
 out["dup_key_rows"] = int(df[["ticker","date"]].duplicated().sum())
 # Example numeric ranges for core cols
 for c in [x for x in ["log return", "r 1d", "roll std 20"] if x in df.columns]:
 s = pd.to_numeric(df[c], errors="coerce")
 out[f"{c}_min"] = float(np.nanmin(s))
 out[f"{c}_max"] = float(np.nanmax(s))
 return out
```

```
def write_health_report(in_parquet="data/processed/features_v1.parquet",
 out_json="reports/health.json", out_md="reports/health.md"):
 p = Path(in_parquet)
 if not p.exists():
 raise SystemExit(f"Missing {in parquet}.")
 df = pd.read_parquet(p)
 h = df health(df)
 Path(out_json).write_text(json.dumps(h, indent=2))
 # Render a small Markdown summary
 lines = [
 "# Data Health Summary",
 f"- Rows: **{h['rows']}**; Cols: **{h['cols']}**; Tickers: **{h['tickers']}**",
 f"- Date range: **{h['date_min']} → {h['date_max']}**",
 f"- Duplicate (ticker,date) rows: **{h['dup_key_rows']}**",
 if h.get("nulls"):
 lines += ["", "## Top Null Counts", ""]
 lines += [f'' - **{k}**: {v}" for k,v in h["nulls"].items()]
 Path(out md).write text("\n".join(lines))
 print("Wrote", out_json, "and", out_md)
```

Run once to generate the files:

```
!python scripts/health.py
```

#### 15.6.2 Part B — Health Check notebook (reports/health.ipynb)

Create a new notebook reports/health.ipynb with two cells:

#### Cell 1 (setup):

```
%load_ext autoreload
%autoreload 2
from scripts.health import write_health_report
write_health_report() # writes reports/health.json and reports/health.md
```

#### Cell 2 (display in notebook):

```
from pathlib import Path
print(Path("reports/health.md").read_text())
```

Commit the notebook. It will be light and re-usable. You'll include its output in Quarto below.

## 15.6.3 Part C — Include health output in your Quarto report

In reports/eda.qmd, add a section:

```
Data Health (auto-generated)

::: {.cell execution_count=1}

```` {.python .cell-code}
from pathlib import Path
print(Path("reports/health.md").read_text())
```

```
Render EDA:
   ```bash
quarto render reports/eda.qmd
```

## 15.6.4 Part D — Add a Makefile target and a quick test

#### Makefile append:

```
.PHONY: health test
health: ## Generate health.json and health.md from the current features parquet
\tpython scripts/health.py

test: ## Run fast tests
\tpytest -q
```

:::

Test that health files exist:

```
tests/test_health_outputs.py
import os, json

def test_health_files_exist():
 assert os.path.exists("reports/health.json")
 assert os.path.exists("reports/health.md")
 # json is valid
 import json
 json.load(open("reports/health.json"))
```

Run:

```
%%bash
make health
pytest -q -k health
```

# 15.7 Instructor checklist (before class)

- Ensure features\_v1.parquet exists or the fixture's synthetic fallback works.
- Dry-run pytest -q in a fresh runtime; keep total time < 5s.
- Prepare 2–3 "expected failures" you can toggle (e.g., edit one feature column to NaN) to show tests catching bugs.

# 15.8 Emphasize while teaching

- Fast tests only for CI; keep heavy, long recomputations out.
- No look-ahead and unique (ticker, date) are non-negotiable contracts.
- Logging is a first-class tool—tests can assert on warnings you emit.

# 15.9 Grading (pass/revise)

- tests/test\_features.py present with shapes, nulls, look-ahead ban (and rolling check).
- Tests pass locally (pytest -q).

- reports/health.ipynb and reports/health.md/.json exist and integrate into eda.qmd.
- Makefile health and test targets work.

You now have a **safety net** around your data. In **Session 14**, we'll enforce style with **pre-commit** and bring your tests to **GitHub Actions CI**.

# 16 pre-commit & GitHub Actions CI

Below is a complete lecture package for Session 14 — pre-commit & GitHub Actions CI (75 minutes). It includes a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. By the end, your repo will (1) enforce style and lint automatically with pre-commit (Black, Ruff, nbstripout), and (2) run CI on every PR with a fast GitHub Actions workflow that lints and runs tests in under ~3–4 minutes.

Assumptions: You completed Session 13 and have a repo in Drive (e.g., unified-stocks-teamX) with a small test suite (pytest) and Parquet data present locally. Colab + Drive workflow assumed. Goals today: Make code quality and basic data tests automatic and repeatable in CI.

# 16.1 Session 14 — pre-commit & GitHub Actions CI (75 min)

### 16.1.1 Learning goals

Students will be able to:

- 1. Configure **pre-commit** to run **Black**, **Ruff** (lint + import sort), and **nbstripout** on every commit.
- 2. Keep commits clean and **notebook outputs stripped**.
- 3. Add a fast **GitHub Actions** CI workflow that runs pre-commit hooks and **pytest** on each PR.
- 4. Keep CI runtime **under** ~3–4 **minutes** with caching and a lean dependency set.

# 16.2 Agenda (75 min)

- (10 min) Slides: why pre-commit; the "quality gate"; anatomy of a fast CI
- (10 min) Slides: Black vs Ruff; when nbstripout matters; what belongs in CI
- (35 min) In-class lab: configure pre-commit (Black, Ruff, nbstripout)  $\rightarrow$  run locally  $\rightarrow$  add CI workflow  $\rightarrow$  local dry-run
- (10 min) Wrap-up + homework briefing
- **(10 min)** Buffer

## 16.3 Main points

#### Why pre-commit?

- Prevent "drive-by" problems before they enter history: unformatted code, stray notebook outputs, trailing whitespace.
- Hooks run locally on commit, then again in CI for defense-in-depth.

#### Black & Ruff

- Black: opinionated formatter  $\rightarrow$  consistent diffs; no bikeshedding.
- Ruff: very fast linter (flake8 family), plus **import sorting**; can also fix many issues (--fix).
- You can use **both** (common) or let Ruff handle formatting too; we'll use both for clarity.

#### nbstripout

- Remove cell outputs from notebooks to keep diffs small, avoid binary bloat, and reduce CI time.
- Two patterns: **pre-commit hook** (recommended) and/or **git filter** (nbstripout --install).

#### CI scope (fast!)

- Lint + tests only; **no heavy training** in CI.
- Cache dependencies; pin Python (3.11+).
- Keep tests deterministic and  $< \sim 5s$  (already done in Session 13).

# 16.4 In-class lab (35 min, Colab-friendly)

Run each block as its **own Colab cell**. Update REPO\_NAME to your repo. The cells create and modify files inside your repo.

## 16.4.1 0) Mount Drive & go to repo

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

REPO_NAME = "unified-stocks-teamX" # <- change if needed
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"

import os, pathlib
pathlib.Path(REPO_DIR).mkdir(parents=True, exist_ok=True)
os.chdir(REPO_DIR)
for p in [".github/workflows", "tests", "scripts", "reports"]:
 pathlib.Path(p).mkdir(parents=True, exist_ok=True)
print("Working dir:", os.getcwd())</pre>
```

## 16.4.2 1) Install tools locally (for this Colab runtime)

```
!pip -q install pre-commit black ruff nbstripout pytest
```

# 16.4.3 2) Add tool config to pyproject.toml (Black + Ruff)

If you don't have a pyproject.toml, this cell will create a minimal one; otherwise it appends/updates sections.

```
from pathlib import Path
import textwrap, re

pyproj = Path("pyproject.toml")
existing = pyproj.read_text() if pyproj.exists() else ""

def upsert(section_header, body):
 global existing
```

```
pattern = rf"(?ms)^{[\{re.escape(section_header)\}]}\s*.*?(?=^{[|\Z)"}
 if re.search(pattern, existing):
 existing = re.sub(pattern, f"[{section_header}]\n{body}\n", existing)
 else:
 existing += f"\n[{section_header}]\n{body}\n"
Black
upsert("tool.black", textwrap.dedent("""
line-length = 88
target-version = ["py311"]
""").strip())
Ruff (modern layout)
upsert("tool.ruff", textwrap.dedent("""
line-length = 88
target-version = "py311"
""").strip())
upsert("tool.ruff.lint", textwrap.dedent("""
select = ["E", "F", "I"] # flake8 errors, pyflakes, import sort
ignore = ["E501"] # let Black handle line length
""").strip())
upsert("tool.ruff.lint.isort", textwrap.dedent("""
known-first-party = ["projectname"]
""").strip())
pyproj.write_text(existing.strip()+"\n")
print(pyproj.read_text())
```

#### 16.4.4 3) Create .pre-commit-config.yaml with hooks (Black, Ruff, nbstripout)

Versions below are stable at time of writing—feel free to bump later.

```
language_version: python3.11
 - repo: https://github.com/astral-sh/ruff-pre-commit
 rev: v0.5.0
 hooks:
 - id: ruff
 args: [--fix, --exit-non-zero-on-fix]
 - id: ruff-format
 - repo: https://github.com/kynan/nbstripout
 rev: 0.7.1
 hooks:
 - id: nbstripout
 files: \\.ipynb$
 - repo: https://github.com/pre-commit/pre-commit-hooks
 rev: v4.6.0
 hooks:
 - id: end-of-file-fixer
 - id: trailing-whitespace
 - id: check-yaml
 - id: check-added-large-files
""")
print(cfg.read_text())
```

## 16.4.5 4) Install the local git hook & run on all files

```
!pre-commit install
!pre-commit run --all-files
```

The first run will **download** hook toolchains (Black, Ruff, etc.), format files, and strip notebook outputs. Commit changes after verifying.

## 16.4.6 5) (Optional) Also install git filter for nbstripout

This is an extra layer; pre-commit hook above already strips outputs. Use this to guarantee outputs are removed even when bypassing pre-commit.

```
!nbstripout --install --attributes .gitattributes
print(open(".gitattributes").read())
```

## 16.4.7 6) Add a tiny "bad style" file to see hooks in action

```
from pathlib import Path
p = Path("scripts/bad_style.py")
p.write_text("import os,sys\n\n\ndef add(a,b):\n return(a + b)\n")
print("Wrote:", p)

Run hooks just on this file
!pre-commit run --files scripts/bad_style.py
print(open("scripts/bad_style.py").read())
```

You should see Black and Ruff fix spacing/imports; trailing whitespace hooks may also fire.

### 16.4.8 7) Add a fast GitHub Actions CI workflow (.github/workflows/ci.yml)

This runs pre-commit and your tests on Ubuntu with Python 3.11, with pip caching.

```
from pathlib import Path
wf = Path(".github/workflows/ci.yml")
wf.write_text("""name: CI
on:
 push:
 branches: [main, master, develop]
 pull_request:
 branches: [main, master, develop]
concurrency:
 group: ${{ github.workflow }}-${{ github.ref }}
 cancel-in-progress: true
jobs:
 build:
 runs-on: ubuntu-latest
 timeout-minutes: 10
 steps:
 - uses: actions/checkout@v4
```

```
- uses: actions/setup-python@v5
 python-version: '3.11'
 cache: 'pip'
 cache-dependency-path: |
 requirements.txt
 pyproject.toml
 - name: Install dependencies
 run:
 python -m pip install --upgrade pip
 if [-f requirements.txt]; then pip install -r requirements.txt; fi
 pip install pre-commit pytest
 # Run pre-commit (Black, Ruff, nbstripout, etc.)
 - name: pre-commit
 uses: pre-commit/action@v3.0.1
 # Run tests (fast only)
 - name: pytest
 run: pytest -q --maxfail=1
print(wf.read_text())
```

## 16.4.9 8) Add a Makefile convenience (optional but nice)

```
from pathlib import Path
mk = Path("Makefile")
text = mk.read_text() if mk.exists() else ""
if "lint" not in text:
 text += """

.PHONY: lint test ci-local
lint: ## Run pre-commit hooks on all files
\tpre-commit run --all-files

test: ## Run fast tests
\tpytest -q --maxfail=1

ci-local: lint test ## Simulate CI locally
```

```
mk.write_text(text)
print(mk.read_text())
```

# 16.5 Wrap-up (10 min)

- You configured **pre-commit** with **Black**, **Ruff** (lint + import sort), and **nbstripout** to keep the repo clean.
- You added a fast **CI** that runs the same hooks plus **pytest** on every PR.
- CI time stays small due to **caching** and a **lean dependency set**; tests are fast by design (Session 13).

# 16.6 Homework (due before next session)

Goal: Prove the workflow works end-to-end with a green PR from a fresh clone.

## 16.6.1 Part A — Fresh-clone smoke test (local)

```
On your laptop or a new Colab session:
git clone https://github.com/YOUR_USER/unified-stocks-teamX.git
cd unified-stocks-teamX
python -m pip install -U pip
pip install pre-commit pytest
pre-commit install
pre-commit run --all-files
pytest -q --maxfail=1
```

#### 16.6.2 Part B — Open a PR that turns CI green

1. Create a branch and make a tiny, style-breaking change, then commit and let pre-commit fix it automatically.

```
git checkout -b chore/ci-badge-and-hooks
echo "# Tiny edit " >> README.md # trailing spaces (will be fixed)
git add -A
git commit -m "chore: add CI badge + enable pre-commit hooks"
git push -u origin chore/ci-badge-and-hooks
```

2. Add a CI badge to README.md:

```
![CI](https://github.com/YOUR_USER/unified-stocks-teamX/actions/workflows/ci.yml/badge.s
```

- 3. Open a **Pull Request** on GitHub. Verify that:
  - The **pre-commit** step passes.
  - pytest passes.
  - Total runtime is  $< \sim 3-4$  minutes.
- 4. Merge once green. (If red, fix locally; do not disable hooks.)

## 16.6.3 Part C — (Optional) Tune Ruff + Black to your taste

• In pyproject.toml, try:

```
[tool.black]
line-length = 100

[tool.ruff]
line-length = 100

[tool.ruff.lint]
select = ["E","F","I","B"] # enable flake8-bugbear
ignore = ["E501"]
```

• Run pre-commit run --all-files and ensure CI remains green.

#### 16.6.4 Part D — (Optional) Add notebook QA without executing them

• Add **nbqa** to run Ruff on notebooks (markdown & code cells):

```
append to .pre-commit-config.yaml
- repo: https://github.com/nbQA-dev/nbQA
rev: 1.8.5
hooks:
 - id: nbqa-ruff
```

```
args: [--fix]
additional_dependencies: [ruff==0.5.0]
```

• Re-install hooks and run pre-commit run --all-files.

# 16.7 Reference checklist (for grading)

- .pre-commit-config.yaml present with Black, Ruff, nbstripout.
- pyproject.toml includes [tool.black] and [tool.ruff] sections.
- .github/workflows/ci.yml runs pre-commit and pytest with Python 3.11 and pip caching.
- make lint, make test, make ci-local work (if you added them).
- A PR was opened and CI is green; README has the CI badge.

# 16.8 Instructor tips / gotchas

- If pre-commit says "no files to check" for nbstripout, ensure your **file matcher files**: \.ipynb\$ is correct and that notebooks are tracked.
- If Ruff conflicts with Black on formatting: keep **Black** as the authority, disable E501 in Ruff, and let Ruff handle **imports** (I) and errors (E, F).
- CI failures from missing deps: ensure your requirements.txt (or pyproject.toml with [project.dependencies]) includes pandas, pyarrow, and pytest if your tests read Parquet.
- Keep CI lean: no data downloads or training; use **fixtures** and tiny synthetic datasets (Session 13 pattern).

You now have an automated quality gate—style, lint, and tests run locally and in CI—so your future PRs start green and stay green.

# 17 Session 15 — Framing & Metrics (Rolling-Origin Evaluation)

Below is a complete lecture package for Session 15 — Framing & Metrics (Rolling-Origin Evaluation) (75 minutes). It includes a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. You'll formalize the forecasting problem (horizon/step), implement a rolling-origin splitter (a.k.a. walk-forward), and evaluate naive and seasonal-naive baselines with MAE, sMAPE, MASE, aggregated across tickers (macro vs micro/weighted).

Educational use only — not trading advice. Assumes your repo in Drive (e.g., unified-stocks-teamX) and data/processed/returns.parquet from Session 9. If missing, the lab creates a small fallback.

# 17.1 Session 15 — Framing & Metrics (75 min)

## 17.1.1 Learning goals

By the end of class, students can:

- 1. Specify forecast horizon H, step (stride), and choose between expanding vs sliding rolling-origin evaluation with an embargo gap.
- 2. Implement a date-based splitter that yields (train\_idx, val\_idx) for all tickers at once
- 3. Compute MAE, sMAPE, MASE (with a proper training-window scale), and aggregate per-ticker and across tickers (macro vs micro/weighted).
- 4. Produce a tidy CSV of baseline results to serve as your course's ground truth.

# 17.2 Agenda (75 min)

- (10 min) Slides: forecasting setup horizon H, step, rolling-origin (expanding vs sliding), embargo
- (10 min) Slides: metrics MAE, sMAPE, MASE; aggregation across tickers (macro vs micro/weighted)
- (35 min) In-class lab: implement a date-based splitter  $\rightarrow$  compute naive & seasonal-naive baselines  $\rightarrow$  MAE/sMAPE/MASE per split/ticker  $\rightarrow$  save reports
- (10 min) Wrap-up & homework brief
- (10 min) Buffer

# 17.3 Slides / talking points (add these bullets to your deck)

#### 17.3.1 Framing the forecast

- Target: next-day log return  $r_{t+1}$  (you built this as r\_1d).
- Horizon H: 1 business day.
- Step (stride): how far the origin moves forward each split (e.g., 63 trading days a quarter).
- Rolling-origin schemes
  - Expanding: train start fixed; train grows over time.
  - Sliding (rolling): fixed-length train window slides forward.
- Embargo: small gap (e.g., 5 days) between train end and validation start to avoid adjacency leakage.

#### 17.3.2 Metrics (scalar, easy to compare)

- MAE:  $\frac{1}{n} \sum |y \hat{y}|$  robust & interpretable.
- sMAPE:  $\frac{2}{n} \sum \frac{|y-\hat{y}|}{(|y|+|\hat{y}|+\epsilon)}$  scale-free, safe for near-zero returns with  $\epsilon$ .
- MASE: MASE =  $\frac{MAE_{model}}{MAE_{naive\ (train)}}$  <1 means better than naive.
  - For seasonality s, the **naive comparator** predicts  $y_{t+1} \approx y_{t+1-s}$  (we'll use s=5 for day-of-week seasonality on business days).
  - Scale is computed on the training window only, per ticker.

#### 17.3.3 Aggregation across tickers

- Per-ticker metrics first  $\rightarrow$  then aggregate.
- Macro average: mean of per-ticker metrics (each ticker equal weight).
- Micro/weighted: pool all rows (or weight tickers by sample count); for MAE, pooled MAE equals sample-count weighted average of per-ticker MAEs.

# 17.4 In-class lab (35 min, Colab-friendly)

Run each block as its own cell. Adjust REPO\_NAME if needed.

#### 17.4.1 0) Setup & fallback data

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
REPO_NAME = "unified-stocks-teamX" # <- change to your repo name
BASE_DIR = "/content/drive/MyDrive/dspt25"
 = f"{BASE_DIR}/{REPO_NAME}"
REPO_DIR
import os, pathlib, numpy as np, pandas as pd
from pathlib import Path
pathlib.Path(REPO_DIR).mkdir(parents=True, exist_ok=True)
os.chdir(REPO DIR)
for p in ["data/raw","data/processed","reports","scripts","tests"]:
 Path(p).mkdir(parents=True, exist_ok=True)
print("Working dir:", os.getcwd())
Load returns or create a tiny fallback
rpath = Path("data/processed/returns.parquet")
if rpath.exists():
 returns = pd.read_parquet(rpath)
else:
 # Fallback synthetic returns for 5 tickers, 320 business days
 rng = np.random.default_rng(0)
 dates = pd.bdate_range("2022-01-03", periods=320)
 frames=[]
```

```
for tkr in ["AAPL", "MSFT", "GOOGL", "AMZN", "NVDA"]:
 eps = rng.normal(0, 0.012, size=len(dates)).astype("float32")
 adj = 100*np.exp(np.cumsum(eps))
 df = pd.DataFrame({
 "date": dates,
 "ticker": tkr,
 "adj_close": adj.astype("float32"),
 "log_return": np.r_[np.nan, np.diff(np.log(adj))].astype("float32")
 })
 df["r_1d"] = df["log_return"].shift(-1)
 df["weekday"] = df["date"].dt.weekday.astype("int8")
 df["month"] = df["date"].dt.month.astype("int8")
 frames.append(df)
 returns = pd.concat(frames, ignore_index=True).dropna().reset_index(drop=True)
 returns["ticker"] = returns["ticker"].astype("category")
 returns.to_parquet(rpath, index=False)
Standardize
returns["date"] = pd.to_datetime(returns["date"])
returns = returns.sort_values(["ticker","date"]).reset_index(drop=True)
returns["ticker"] = returns["ticker"].astype("category")
returns.head()
```

## 17.4.2 1) Rolling-origin date splitter (expanding windows + embargo)

```
vs_idx = i + embargo + 1
 ve_idx = vs_idx + val_size - 1
 if ve_idx >= n: break
 splits.append((tr_start, tr_end, u[vs_idx], u[ve_idx]))
 i += step
 return splits
def splits_to_indices(df, split):
 """Map a date split to index arrays for the full multi-ticker frame."""
 a,b,c,d = split
 tr_idx = df.index[(df["date"]>=a) & (df["date"]<=b)].to_numpy()</pre>
 va_idx = df.index[(df["date"]>=c) & (df["date"]<=d)].to_numpy()</pre>
 # sanity: embargo => last train date < first val date
 assert b < c
 return tr_idx, va_idx
splits = make_rolling_origin_splits(returns["date"], train_min=252, val_size=63, step=63, em
len(splits), splits[:2]
```

#### 17.4.3 2) Metrics & baseline predictors (naive and seasonal-naive)

```
from typing import Dict, Tuple

def mae(y, yhat):
 y = np.asarray(y); yhat = np.asarray(yhat);
 return float(np.mean(np.abs(y - yhat)))

def smape(y, yhat, eps=1e-8):
 y = np.asarray(y); yhat = np.asarray(yhat)
 return float(np.mean(2.0*np.abs(y - yhat)/(np.abs(y)+np.abs(yhat)+eps)))

def mase(y_true, y_pred, y_train_true, y_train_naive):
 # Scale = MAE of comparator (naive) on TRAIN only; add tiny epsilon
 scale = mae(y_train_true, y_train_naive) + 1e-12
 return float(mae(y_true, y_pred) / scale)

def add_baseline_preds(df: pd.DataFrame, seasonality:int=5) -> pd.DataFrame:
 """
 For each ticker:
 - naive predicts r_{t+1} log_return_t (s=1)
```

```
- seasonal naive (s) predicts r_{t+1} log_return_{t+1-s} => shift(s-1)
Adds columns: yhat_naive, yhat_s{s}
"""
out = df.copy()
out["yhat_naive"] = out.groupby("ticker")["log_return"].transform(lambda s: s) # s=1
if seasonality <= 1:
 out["yhat_s"] = out["yhat_naive"]
else:
 out["yhat_s"] = out.groupby("ticker")["log_return"].transform(lambda s: s.shift(seasonality out)</pre>
```

#### 17.4.4 3) Evaluate baselines across first 2 splits (fast in class)

```
Precompute predictions over the entire frame once (safe: uses only past values via shift)
seasonality = 5 # business-day weekly
preds_all = add_baseline_preds(returns, seasonality=seasonality)
def per_ticker_metrics(df_val, df_train, method="naive") -> pd.DataFrame:
 Compute per-ticker MAE, sMAPE, MASE for the chosen method ('naive' or 's').
 MASE scale uses TRAIN window and the same comparator as method.
 rows=[]
 col = "yhat_naive" if method=="naive" else "yhat_s"
 for tkr, g in df_val.groupby("ticker"):
 gv = g.dropna(subset=["r_1d", col])
 if len(gv) == 0:
 continue
 # TRAIN scale (per ticker)
 gt = df_train[df_train["ticker"]==tkr].dropna(subset=["r_1d"])
 if method=="naive":
 gt_pred = gt["log_return"] # s=1
 else:
 gt_pred = gt["log_return"].shift(seasonality-1)
 gt_clean = gt.dropna(subset=["r_1d"]).copy()
 gt_pred = gt_pred.loc[gt_clean.index]
 gt_clean = gt_clean.dropna(subset=["r_1d"])
 # Align indices
 y_tr = gt_clean["r_1d"].to_numpy()
 yhat_tr_naive = gt_pred.to_numpy()
```

```
VAL metrics
 y = gv["r_1d"].to_numpy()
 yhat = gv[col].to_numpy()
 rows.append({
 "ticker": tkr,
 "n": int(len(y)),
 "mae": mae(y,yhat),
 "smape": smape(y,yhat),
 "mase": mase(y, yhat, y_tr, yhat_tr_naive),
 })
 return pd.DataFrame(rows)
def aggregate_across_tickers(per_ticker_df: pd.DataFrame) -> Dict[str,float]:
 if per_ticker_df.empty:
 return {"macro_mae":np.nan, "macro_smape":np.nan, "macro_mase":np.nan,
 "micro_mae":np.nan, "micro_smape":np.nan, "micro_mase":np.nan}
 # Macro = unweighted mean across tickers
 macro = per_ticker_df[["mae", "smape", "mase"]].mean().to_dict()
 # Micro/weighted by n (pooled)
 w = per_ticker_df["n"].to_numpy()
 micro = {
 "micro_mae": float(np.average(per_ticker_df["mae"], weights=w)),
 "micro_smape": float(np.average(per_ticker_df["smape"], weights=w)),
 "micro_mase": float(np.average(per_ticker_df["mase"], weights=w)),
 }
 return {f"macro_{k}": float(v) for k,v in macro.items()} | micro
Run on 2 splits in class; you can expand later
import pathlib, json
pathlib.Path("reports").mkdir(exist_ok=True)
rows=[]
for sid, split in enumerate(splits[:2], start=1):
 a,b,c,d = split
 tr idx, va idx = splits to indices(returns, split)
 tr = preds_all.loc[tr_idx].copy()
 va = preds_all.loc[va_idx].copy()
 # Per-ticker metrics for two baselines
 pt_naive = per_ticker_metrics(va, tr, method="naive")
 = per_ticker_metrics(va, tr, method="s")
 agg_naive = aggregate_across_tickers(pt_naive)
 = aggregate_across_tickers(pt_s)
 # Save per-split, per-ticker
```

```
pt_naive.to_csv(f"reports/baseline_naive_split{sid}.csv", index=False)
 pt_s.to_csv(f"reports/baseline_s{seasonality}_split{sid}.csv", index=False)
 rows.append({
 "split": sid,
 "train range": f"{a.date()}→{b.date()}",
 "val_range": f"{c.date()}→{d.date()}",
 "method": "naive", **agg_naive
 })
 rows.append({
 "split": sid,
 "train_range": f"{a.date()}→{b.date()}",
 "val_range": f"{c.date()}→{d.date()}",
 "method": f"s{seasonality}", **agg_s
 })
summary = pd.DataFrame(rows)
summary.to_csv("reports/baselines_rollingorigin_summary.csv", index=False)
summary
```

## 17.4.5 4) Quick sanity assertions (no overlap; embargo honored)

```
def check_no_overlap(df, split):
 a,b,c,d = split
 assert b < c, f"Embargo violation: train_end {b} >= val_start {c}"
 tr_idx, va_idx = splits_to_indices(df, split)
 assert set(tr_idx).isdisjoint(set(va_idx))
 return True

all(check_no_overlap(returns, s) for s in splits[:2]), len(summary)
```

# 17.5 Wrap-up (10 min)

- You now have a date-based rolling-origin splitter with an embargo, and baseline metrics that set a credible reference.
- MASE uses a training-window naive as scale (per ticker), so you can read "<1 is better than naive" at a glance.

• Aggregation: report both macro (per-ticker average) and micro/weighted (pooled).

# 17.6 Homework (due before Session 16)

Goal: Build a small CLI to reproduce these baselines over all splits, then generate per-ticker & aggregated tables.

### 17.6.1 Part A — Script: scripts/baselines\_eval.py

```
#!/usr/bin/env python
from __future__ import annotations
import argparse, numpy as np, pandas as pd
from pathlib import Path
def mae(y,yhat): return float(np.mean(np.abs(np.asarray(y)-np.asarray(yhat))))
def smape(y,yhat,eps=1e-8):
 y = np.asarray(y); yhat = np.asarray(yhat)
 return float(np.mean(2*np.abs(y-yhat)/(np.abs(y)+np.abs(yhat)+eps)))
def mase(y_true, y_pred, y_train_true, y_train_naive):
 return float(mae(y_true, y_pred) / (mae(y_train_true, y_train_naive)+1e-12))
def make_splits(dates, train_min, val_size, step, embargo):
 u = np.array(sorted(pd.to_datetime(dates.unique()))); n=len(u); out=[]; i=train_min-1
 while True:
 if i>=n: break
 a,b = u[0], u[i]; vs = i + embargo + 1; ve = vs + val_size - 1
 if ve>=n: break
 out.append((a,b,u[vs],u[ve])); i += step
 return out
def add_preds(df, s):
 out = df.copy()
 out["yhat_naive"] = out.groupby("ticker")["log_return"].transform(lambda x: x)
 out["yhat_s"] = out.groupby("ticker")["log_return"].transform(lambda x: x.shift(s-1)) if
 return out
def per_ticker(df_val, df_train, method, s):
```

```
col = "yhat_naive" if method=="naive" else "yhat_s"
 rows=[]
 for tkr, g in df_val.groupby("ticker"):
 gv = g.dropna(subset=["r_1d", col])
 if len(gv)==0: continue
 gt = df_train[df_train["ticker"]==tkr].dropna(subset=["r_1d"])
 gt_pred = gt["log_return"] if method=="naive" else gt["log_return"].shift(s-1)
 gt_pred = gt_pred.loc[gt.index]
 y_tr = gt["r_1d"].to_numpy(); yhat_tr = gt_pred.to_numpy()
 y = gv["r_1d"].to_numpy(); yhat = gv[col].to_numpy()
 rows.append({"ticker":tkr,"n":int(len(y)),
 "mae": mae(y,yhat),
 "smape": smape(y,yhat),
 "mase": mase(y,yhat,y_tr,yhat_tr)})
 return pd.DataFrame(rows)
def agg(pt):
 if pt.empty: return {"macro_mae":np.nan, "macro_smape":np.nan, "macro_mase":np.nan,
 "micro_mae":np.nan, "micro_smape":np.nan, "micro_mase":np.nan}
 macro = pt[["mae","smape","mase"]].mean().to_dict()
 w = pt["n"].to_numpy()
 micro = {
 "micro_mae": float(np.average(pt["mae"], weights=w)),
 "micro_smape": float(np.average(pt["smape"], weights=w)),
 "micro_mase": float(np.average(pt["mase"], weights=w)),
 return {f"macro_{k}": float(v) for k,v in macro.items()} | micro
def main():
 ap = argparse.ArgumentParser()
 ap.add_argument("--returns", default="data/processed/returns.parquet")
 ap.add_argument("--seasonality", type=int, default=5)
 ap.add_argument("--train-min", type=int, default=252)
 ap.add_argument("--val-size", type=int, default=63)
 ap.add_argument("--step", type=int, default=63)
 ap.add_argument("--embargo", type=int, default=5)
 ap.add_argument("--out-summary", default="reports/baselines_rollingorigin_summary.csv")
 ap.add_argument("--out-per-ticker", default="reports/baselines_per_ticker_split{sid}_{measurement}
 args = ap.parse_args()
 df = pd.read_parquet(args.returns).sort_values(["ticker","date"]).reset_index(drop=True)
 splits = make_splits(df["date"], args.train_min, args.val_size, args.step, args.embargo)
```

Make executable & run:

```
%%bash
chmod +x scripts/baselines_eval.py
python scripts/baselines_eval.py --seasonality 5
```

## 17.6.2 Part B — Plot a tiny, informative results figure

```
import pandas as pd, matplotlib.pyplot as plt, pathlib
pathlib.Path("docs/figs").mkdir(parents=True, exist_ok=True)

summary = pd.read_csv("reports/baselines_rollingorigin_summary.csv")
plt.figure(figsize=(6,3.5))
for method, g in summary.groupby("method"):
 plt.plot(g["split"], g["micro_mae"], marker="o", label=f"{method} micro MAE")
plt.xlabel("Split"); plt.ylabel("MAE"); plt.title("Baseline MAE across splits")
plt.legend(); plt.tight_layout()
plt.savefig("docs/figs/baselines_mae_splits.png", dpi=200)
"Saved docs/figs/baselines_mae_splits.png"
```

#### 17.6.3 Part C — Add a quick test to protect the splitter

```
tests/test_rolling_splitter.py
import pandas as pd, numpy as np
from datetime import timedelta
def make_splits(dates, train_min, val_size, step, embargo):
 u = np.array(sorted(pd.to_datetime(dates.unique()))); n=len(u); out=[]; i=train_min-1
 while True:
 if i>=n: break
 a,b = u[0], u[i]; vs=i+embargo+1; ve=vs+val_size-1
 if ve>=n: break
 out.append((a,b,u[vs],u[ve])); i+=step
 return out
def test_embargo_and_order():
 dates = pd.bdate_range("2024-01-01", periods=400)
 s = make_splits(pd.Series(dates), 252, 63, 63, 5)
 assert all(b < c for (a,b,c,d) in s), "Embargo/order violated"</pre>
 # Splits should move forward
 assert len(s) \geq 2 and s[1][1] \geq s[0][1]
```

Run:

```
%%bash
pytest -q -k rolling_splitter
```

## 17.6.4 Part D — (Optional) Makefile targets

```
.PHONY: baselines
baselines: ## Evaluate naive & seasonal-naive baselines across all splits
\tpython scripts/baselines_eval.py --seasonality 5
```

# 17.7 Instructor checklist (before class)

• Ensure returns.parquet exists or fallback works.

- Be ready to whiteboard why the seasonal naïve for daily data uses s=5.
- Emphasize MASE scale from TRAIN and macro vs micro aggregation.

## 17.8 Emphasize while teaching

- Define the problem first (H, step, splits); metrics only make sense after framing.
- MASE < 1 better than naïve; report both macro & micro.
- Embargo helps mitigate adjacency leakage; keep it small but nonzero.

# 17.9 Grading (pass/revise)

- Rolling-origin splitter implemented and used (train/val ranges printed).
- Reports written: baselines\_rollingorigin\_summary.csv and per-ticker CSVs per split & method.
- Metrics include MAE, sMAPE, MASE; aggregation includes macro and micro.
- A test asserts basic splitter properties (no overlap; forward progress).

You now have clear **framing and metrics** for your project. In Session 16, you'll fit **classical baselines** (e.g., lags-only linear, ARIMA/ETS quick sketches) and log them in the same results table schema.

# **18 Session 16**

Below is a complete lecture package for Session 16 — Classical Baselines (75 minutes). It includes a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. In class you'll train a lags-only linear regressor per ticker and compare it to the naive and seasonal-naive baselines from Session 15. You'll also see a short, optional ARIMA demo and log results in a consistent schema for future comparison.

Educational use only — not trading advice. Assumes your repo (e.g., unified-stocks-teamX) with data/processed/returns.parquet and data/processed/features\_v1.parquet from Sessions 9-10. Cells include safe fallbacks if some files are missing.

# 18.1 Session 16 — Classical baselines (75 min)

## 18.1.1 Learning goals

By the end of class, students can:

- 1. Fit a **per-ticker** lags-only linear regressor to predict **next-day log return**  $r_{t+1}$ .
- 2. Evaluate models with **MAE**, **sMAPE**, **MASE** using the **rolling-origin splits** (with embargo) from Session 15.
- 3. Log results in a **consistent table schema** for per-ticker and split-level summaries.
- 4. Understand **ARIMA** at a glance and its common pitfalls (optional demo).

# 18.2 Agenda (75 min)

- (10 min) Slides: where classical models fit; pitfalls with ARIMA; cross-sectional regressors
- (10 min) Slides: results table schema & comparison to baselines
- (35 min) In-class lab: train per-ticker Linear (lags-only)  $\rightarrow$  evaluate across 2 splits  $\rightarrow$  compare to naive/seasonal-naive  $\rightarrow$  log CSVs
- (10 min) Wrap-up + homework brief
- (10 min) Buffer

# 18.3 Slides / talking points

## 18.3.1 Why "classical" now?

- Creates a **credible**, **strong baseline** against naive that's still transparent.
- Supports fast iteration and helps you debug feature definitions before deep models.

#### 18.3.2 Lags-only linear regressor

- Features at time t: lag1, lag2, lag3 (i.e., past returns), optionally a few stable stats (roll\_std\_20, zscore\_20).
- Target: r\_1d (next-day log return).
- Fit **per ticker** to avoid cross-sectional leakage for now.

#### 18.3.3 ARIMA 60-second pitfall tour

- Stationarity: **fit on returns**, not prices (unless differencing).
- Evaluation: **re-fit only on train**; generate **one-step-ahead** forecasts on val, updating state **without peeking**.
- Over-differencing & mis-specified seasonal terms  $\rightarrow$  bad bias.
- Computational cost grows with grid search; keep demo tiny.

#### 18.3.4 Results table schema (consistent across sessions)

- Per-split summary: split, train\_range, val\_range, model, macro\_mae, macro\_smape, macro\_mase, micro\_mae, micro\_smape, micro\_mase
- Per-ticker metrics: split, ticker, n, model, mae, smape, mase

## 18.4 In-class lab (35 min, Colab-friendly)

Run each block as its own cell. Update REPO\_NAME if needed.

#### 18.4.1 0) Setup & data (with fallbacks)

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
REPO NAME = "unified-stocks-teamX" # <- change if needed
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO_DIR = f"{BASE_DIR}/{REPO_NAME}"
import os, pathlib, numpy as np, pandas as pd
from pathlib import Path
pathlib.Path(REPO_DIR).mkdir(parents=True, exist_ok=True)
os.chdir(REPO_DIR)
for p in ["data/raw","data/processed","reports","models","scripts","tests"]:
 Path(p).mkdir(parents=True, exist_ok=True)
print("Working dir:", os.getcwd())
Load returns; if missing, synthesize
rpath = Path("data/processed/returns.parquet")
if rpath.exists():
 returns = pd.read_parquet(rpath)
else:
 rng = np.random.default_rng(0)
 dates = pd.bdate_range("2022-01-03", periods=360)
 rows=[]
 for t in ["AAPL","MSFT","GOOGL","AMZN","NVDA"]:
 eps = rng.normal(0,0.012, size=len(dates)).astype("float32")
```

```
adj = 100*np.exp(np.cumsum(eps))
 df = pd.DataFrame({
 "date": dates, "ticker": t,
 "adj_close": adj.astype("float32"),
 "log_return": np.r_[np.nan, np.diff(np.log(adj))].astype("float32")
 })
 df["r_1d"] = df["log_return"].shift(-1)
 df["weekday"] = df["date"].dt.weekday.astype("int8")
 df["month"] = df["date"].dt.month.astype("int8")
 rows.append(df)
 returns = pd.concat(rows, ignore_index=True).dropna().reset_index(drop=True)
 returns["ticker"] = returns["ticker"].astype("category")
 returns.to_parquet(rpath, index=False)
Load features_v1 or derive minimal lags from returns if missing
fpath = Path("data/processed/features_v1.parquet")
if fpath.exists():
 feats = pd.read_parquet(fpath)
else:
 # Minimal lags derived just from returns
 feats = returns.sort_values(["ticker","date"]).copy()
 for k in [1,2,3]:
 feats[f"lag{k}"] = feats.groupby("ticker")["log_return"].shift(k)
 feats = feats.dropna(subset=["lag1","lag2","lag3","r_1d"]).reset_index(drop=True)
Harmonize
feats["date"] = pd.to_datetime(feats["date"])
feats["ticker"] = feats["ticker"].astype("category")
feats = feats.sort_values(["ticker","date"]).reset_index(drop=True)
feats.head()
```

#### 18.4.2 1) Rolling-origin date splits (reuse Session 15 logic)

```
def make_rolling_origin_splits(dates, train_min=252, val_size=63, step=63, embargo=5):
 u = np.array(sorted(pd.to_datetime(pd.Series(dates).unique())))
 splits=[]; i = train_min-1; n=len(u)
 while True:
 if i>=n: break
 a,b = u[0], u[i]; vs=i+embargo+1; ve=vs+val_size-1
 if ve>=n: break
```

```
splits.append((a,b,u[vs],u[ve])); i+=step
return splits

splits = make_rolling_origin_splits(feats["date"], 252, 63, 63, 5)
len(splits), splits[:2]
```

#### 18.4.3 2) Metrics & baselines (from Session 15)

```
def mae(y, yhat):
 y = np.asarray(y); yhat = np.asarray(yhat);
 return float(np.mean(np.abs(y - yhat)))

def smape(y, yhat, eps=1e-8):
 y = np.asarray(y); yhat = np.asarray(yhat)
 return float(np.mean(2.0*np.abs(y - yhat)/(np.abs(y)+np.abs(yhat)+eps)))

def mase(y_true, y_pred, y_train_true, y_train_naive):
 scale = mae(y_train_true, y_train_naive) + 1e-12
 return float(mae(y_true, y_pred)/scale)

def add_baseline_preds(df: pd.DataFrame, seasonality:int=5) -> pd.DataFrame:
 out = df.copy()
 out["yhat_naive"] = out.groupby("ticker")["log_return"].transform(lambda s: s)
 out["yhat_s"] = out.groupby("ticker")["log_return"].transform(lambda s: s.shift(seasonal return out
```

#### 18.4.4 3) Per-ticker lags-only LinearRegression (fit only on each split's TRAIN)

```
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline

Choose features (lags only for in-class lab)

XCOLS = [c for c in ["lag1","lag2","lag3"] if c in feats.columns]
assert XCOLS, "No lag features found. Ensure features_v1 or fallback creation ran."

def fit_predict_lin_lags(train_df, val_df):
 """Fit per-ticker pipeline(StandardScaler, LinearRegression) on TRAIN; predict on VAL.""
```

#### 18.4.5 4) Evaluate across the first 2 splits; compare to naive/seasonal-naive

```
seasonality = 5
feats baseline = add baseline preds(feats, seasonality=seasonality)
def per_ticker_metrics(df_val_pred, df_train, method_col):
 rows=[]
 for tkr, gv in df_val_pred.groupby("ticker"):
 if method_col not in gv:
 continue
 gv = gv.dropna(subset=["r_1d", method_col])
 if len(gv) == 0:
 continue
 # TRAIN scale for MASE
 gt = df_train[df_train["ticker"]==tkr].dropna(subset=["r_1d"])
 gt_naive = gt["log_return"] if "yhat_s" not in method_col else gt["log_return"].shif
 gt_naive = gt_naive.loc[gt.index]
 rows.append({
 "ticker": tkr,
 "n": int(len(gv)),
 "mae": mae(gv["r_1d"], gv[method_col]),
 "smape": smape(gv["r_1d"], gv[method_col]),
 "mase": mase(gv["r_1d"], gv[method_col], gt["r_1d"], gt_naive),
 })
 return pd.DataFrame(rows)
```

```
def summarize_split(feats_frame, sid, split, save_prefix="linlags"):
 a,b,c,d = split
 tr = feats_frame[(feats_frame["date"]>=a)&(feats_frame["date"]<=b)].copy()</pre>
 va = feats_frame[(feats_frame["date"]>=c)&(feats_frame["date"]<=d)].copy()</pre>
 # Predictions
 val_pred = fit_predict_lin_lags(tr, va)
 # Attach baseline preds on val slice
 va_base = add_baseline_preds(va, seasonality=seasonality)
 val_pred = val_pred.merge(va_base[["date","ticker","yhat_naive","yhat_s"]], on=["date","
 # Per-ticker metrics
 pt_lin = per_ticker_metrics(val_pred, tr, "yhat_linlags"); pt_lin["model"] = "lin_lags"
 pt_nav = per_ticker_metrics(val_pred.rename(columns={"yhat_naive":"yhat_linlags"}), tr,
 pt_sea = per_ticker_metrics(val_pred.rename(columns={"yhat_s":"yhat_linlags"}), tr, "yhat
 # Save per-ticker
 out_pt = pd.concat([pt_lin.assign(split=sid), pt_nav.assign(split=sid), pt_sea.assign(split=sid), pt_sea.assign(split=sid)
 out_pt.to_csv(f"reports/{save_prefix}_per_ticker_split{sid}.csv", index=False)
 # Aggregate
 def agg(df):
 if df.empty:
 return {"macro_mae":np.nan, "macro_smape":np.nan, "macro_mase":np.nan, "micro_mae"::
 macro = df[["mae","smape","mase"]].mean().to_dict()
 w = df["n"].to_numpy()
 micro = {"micro_mae": float(np.average(df["mae"], weights=w)),
 "micro_smape": float(np.average(df["smape"], weights=w)),
 "micro_mase": float(np.average(df["mase"], weights=w))}
 return {f"macro_{k}":float(v) for k,v in macro.items()} | micro
 rows=[]
 for name, pt in [("lin_lags", pt_lin), ("naive", pt_nav), (f"s{seasonality}", pt_sea)]:
 rows.append({"split":sid, "train_range": f"{a.date()}→{b.date()}",
 "val_range": f"{c.date()} \rightarrow {d.date()}",
 "model":name, **agg(pt)})
 return pd.DataFrame(rows)
Run on first 2 splits in class
summary_frames=[]
for sid, split in enumerate(splits[:2], start=1):
 sf = summarize_split(feats_baseline, sid, split, save_prefix="linlags")
 summary_frames.append(sf)
```

```
summary = pd.concat(summary_frames, ignore_index=True)
summary.to_csv("reports/linlags_summary_splits12.csv", index=False)
summary
```

#### 18.4.6 5) (Optional) Tiny ARIMA demo on one ticker for the first split

```
Optional: quick ARIMA(1,0,0) demo predicting r {t+1} on val for a single ticker
try:
 from statsmodels.tsa.arima.model import ARIMA
 import warnings; warnings.filterwarnings("ignore")
 a,b,c,d = splits[0]
 tkr = feats["ticker"].cat.categories[0]
 tr = feats[(feats["ticker"]==tkr) & (feats["date"]>=a) & (feats["date"]<=b)]</pre>
 va = feats[(feats["ticker"]==tkr) & (feats["date"]>=c) & (feats["date"]<=d)]</pre>
 # Fit on TRAIN returns only (endog = log_return). Predict one-step ahead for VAL dates.
 model = ARIMA(tr["log_return"].to_numpy(), order=(1,0,0))
 res = model.fit()
 # Forecast length = len(va), one-step-ahead with dynamic=False updates internally
 # (For strict no-peek rolling one-step, loop and append val true values; here we keep der
 fc = res.forecast(steps=len(va))
 arima_mae = mae(va["r_1d"], fc) # compare against next-day return
 float(arima_mae)
except Exception as e:
 print("ARIMA demo skipped:", e)
```

ARIMA is **optional** and **slow** on large loops. If you try it per ticker/per split, keep the dataset tiny.

## 18.5 Wrap-up (10 min)

- You trained a **per-ticker lags-only linear** model and compared it fairly to **naive** and **seasonal-naive** using the **same splits** and **MASE scale** (from the train window).
- You logged results in a **stable schema** that you'll reuse for future models (LSTM / Transformer).
- ARIMA can be illustrative but is often **fragile** + **slower**; treat it as optional for your project scale.

## 18.6 Homework (due before next session)

Goal: 1) Run the linear lags baseline across all splits; 2) Write your first model card (Quarto) for the classical baseline.

#### 18.6.1 Part A — CLI script to evaluate Linear-Lags across all splits

```
scripts/eval_linlags.py
#!/usr/bin/env python
from __future__ import annotations
import argparse, numpy as np, pandas as pd
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from pathlib import Path
def mae(y,yhat): return float(np.mean(np.abs(np.asarray(y)-np.asarray(yhat))))
def smape(y,yhat,eps=1e-8):
 y = np.asarray(y); yhat = np.asarray(yhat)
 return float(np.mean(2*np.abs(y-yhat)/(np.abs(y)+np.abs(yhat)+eps)))
def mase(y_true, y_pred, y_train_true, y_train_naive):
 return float(mae(y_true, y_pred) / (mae(y_train_true, y_train_naive)+1e-12))
def make_splits(dates, train_min, val_size, step, embargo):
 u = np.array(sorted(pd.to_datetime(pd.Series(dates).unique())))
 splits=[]; i=train_min-1; n=len(u)
 while True:
 if i>=n: break
 a,b = u[0], u[i]; vs=i+embargo+1; ve=vs+val_size-1
 if ve>=n: break
 splits.append((a,b,u[vs],u[ve])); i+=step
 return splits
def add_baselines(df, seasonality):
 out = df.copy()
 out["yhat_naive"] = out.groupby("ticker")["log_return"].transform(lambda s: s)
 out["yhat_s"] = out.groupby("ticker")["log_return"].transform(lambda s: s.shift(seasonal)
```

```
return out
def fit_predict_lin(train_df, val_df, xcols):
 from sklearn.linear_model import LinearRegression
 from sklearn.preprocessing import StandardScaler
 from sklearn.pipeline import Pipeline
 preds=[]
 for tkr, tr in train_df.groupby("ticker"):
 va = val_df[val_df["ticker"]==tkr]
 if len(tr)==0 or len(va)==0: continue
 pipe = Pipeline([("scaler", StandardScaler()), ("lr", LinearRegression())])
 pipe.fit(tr[xcols].values, tr["r_1d"].values)
 yhat = pipe.predict(va[xcols].values)
 out = va[["date","ticker","r_1d","log_return"]].copy()
 out["yhat_linlags"] = yhat
 preds.append(out)
 return pd.concat(preds, ignore_index=True) if preds else pd.DataFrame()
def main():
 ap = argparse.ArgumentParser()
 ap.add_argument("--features", default="data/processed/features_v1.parquet")
 ap.add_argument("--seasonality", type=int, default=5)
 ap.add_argument("--train-min", type=int, default=252)
 ap.add_argument("--val-size", type=int, default=63)
 ap.add_argument("--step", type=int, default=63)
 ap.add_argument("--embargo", type=int, default=5)
 ap.add_argument("--xcols", nargs="+", default=["lag1","lag2","lag3"])
 ap.add_argument("--out-summary", default="reports/linlags_summary.csv")
 ap.add_argument("--out-per-ticker", default="reports/linlags_per_ticker_split{sid}.csv")
 args = ap.parse_args()
 df = pd.read_parquet(args.features).sort_values(["ticker","date"]).reset_index(drop=True
 df["ticker"] = df["ticker"].astype("category")
 splits = make_splits(df["date"], args.train_min, args.val_size, args.step, args.embargo)
 df = add_baselines(df, args.seasonality)
 rows=[]
 for sid, (a,b,c,d) in enumerate(splits, start=1):
 tr = df[(df["date"]>=a)&(df["date"]<=b)]</pre>
 va = df[(df["date"]>=c)&(df["date"]<=d)]</pre>
 val_pred = fit_predict_lin(tr, va, args.xcols)
 va = va.merge(val_pred[["date","ticker","yhat_linlags"]], on=["date","ticker"], how=
```

```
per-ticker
 pts=[]
 for tkr, gv in va.groupby("ticker"):
 gv = gv.dropna(subset=["r_1d","yhat_linlags"])
 if len(gv) == 0: continue
 gt = tr[tr["ticker"]==tkr].dropna(subset=["r_1d"])
 gt_naive = gt["log_return"] # scale comparator for MASE
 pts.append({"ticker":tkr,"n":int(len(gv)),
 "mae": mae(gv["r_1d"], gv["yhat_linlags"]),
 "smape": smape(gv["r_1d"], gv["yhat_linlags"]),
 "mase": mase(gv["r_1d"], gv["yhat_linlags"], gt["r_1d"], gt_naive)})
 pt = pd.DataFrame(pts)
 Path("reports").mkdir(exist_ok=True)
 pt.assign(split=sid, model="lin_lags").to_csv(args.out_per_ticker.format(sid=sid), is
 # aggregate
 if not pt.empty:
 macro = pt[["mae","smape","mase"]].mean().to_dict()
 w = pt["n"].to_numpy()
 micro = {"micro_mae": float(np.average(pt["mae"], weights=w)),
 "micro_smape": float(np.average(pt["smape"], weights=w)),
 "micro_mase": float(np.average(pt["mase"], weights=w))}
 else:
 macro = {"mae":np.nan, "smape":np.nan, "mase":np.nan}
 micro = {"micro_mae":np.nan,"micro_smape":np.nan,"micro_mase":np.nan}
 rows.append({"split":sid,"train_range":f"{a.date()}→{b.date()},"val_range":f"{c.date()}
 "model": "lin_lags", "macro_mae":float(macro["mae"]), "macro_smape":float
 **micro})
 pd.DataFrame(rows).to_csv(args.out_summary, index=False)
 print("Wrote", args.out_summary)
if __name__ == "__main__":
 main()
```

Make executable & run:

```
%%bash
chmod +x scripts/eval_linlags.py
python scripts/eval_linlags.py --xcols lag1 lag2 lag3
```

#### 18.6.2 Part B — Quarto Model Card for the Linear-Lags baseline

Create docs/model\_card\_linear.qmd:

```
title: "Model Card - Linear Lags (Per-Ticker)"
format:
 html:
 theme: cosmo
 toc: true
params:
 model_name: "Linear Lags (per-ticker)"
 data: "features_v1.parquet"
> **Educational use only - not trading advice.** Predicts next-day log return (r_{t+1}) us
Overview
- **Model: ** Per-ticker linear regression with features: `lag1`, `lag2`, `lag3`.
- **Data:** `features_v1.parquet` (Session 10).
- **Splits: ** Expanding, quarterly val, 5-day embargo (Session 15).
- **Baselines:** Naive and seasonal-naive \(s=5\).
Metrics (across splits)
::: {.cell execution_count=1}
 `` {.python .cell-code}
import pandas as pd
df = pd.read_csv("reports/linlags_summary.csv")
df
```

#### 18.7 Discussion

- Assumptions: Linear relation to recent returns; stationarity at return level.
- Strengths: Fast, interpretable, leakage-resistant with proper splits.
- Failure modes: Regime shifts; volatility spikes; nonlinearity.
- Ethics: Educational; not suitable for trading.

Render (if Quarto is available):

```
```bash
quarto render docs/model_card_linear.qmd
```

18.7.1 Part C — Quick test to safeguard results shape

```
# tests/test_linlags_results.py
import pandas as pd, os

def test_linlags_summary_exists_and_columns():
    assert os.path.exists("reports/linlags_summary.csv")
    df = pd.read_csv("reports/linlags_summary.csv")
    need = {"split", "model", "macro_mae", "micro_mae"}
    assert need.issubset(df.columns)
```

:::

Run:

```
%%bash
pytest -q -k linlags_results
```

18.7.2 Part D — (Optional) Extend features or add Ridge

- Try --xcols lag1 lag2 lag3 roll_std_20 zscore_20 (if present in features_v1).
- Swap LinearRegression for Ridge(alpha=1.0); log and compare.

18.8 Instructor checklist (before class)

- Verify features_v1.parquet has lag1..lag3 or the fallback cell creates them.
- Dry-run the 2-split demo; ensure total runtime < 5–6 minutes.
- Optionally prepare an ARIMA demo on **one** ticker to illustrate pitfalls.

18.9 Emphasize while teaching

- Keep splits identical across models for fair comparison.
- MASE < 1 your model beats naive on train-scale; report macro & micro.
- Linear lags are a **transparent baseline**—use them to validate your entire pipeline.

18.10 Grading (pass/revise)

- scripts/eval_linlags.py runs and writes reports/linlags_summary.csv + per-ticker CSVs.
- Model card exists and renders (locally or in CI artifact).
- Tests for results table shape pass.
- Results show a reasonable comparison against naive/seasonal-naive.

You now have a **solid classical baseline** with a reproducible evaluation and reporting workflow—perfect for benchmarking upcoming neural models.

19 Session 17 — Feature Timing, Biases & Leakage

Below is a complete lecture package for Session 17 — Feature Timing, Biases & Leakage (75 minutes). It includes a timed agenda, slide talking points, a Colab-friendly in-class lab with copy-paste code, and homework with copy-paste code. In class you'll freeze a static ticker universe (avoid survivorship bias), formalize label definitions (t+1 and multi-step), and add a leakage test suite that fails if any feature at time t uses information from t+1 or later.

Educational use only — not trading advice. Assumes your Drive-mounted repo (e.g., unified-stocks-teamX) with data/processed/returns.parquet and data/processed/features_v1.parquet from Sessions 9-10. Cells include safe fallbacks when files are missing.

19.1 Session 17 — Feature Timing, Biases & Leakage (75 min)

19.1.1 Learning goals

By the end of class, students can:

- 1. Explain and avoid look-ahead and survivorship biases.
- 2. Freeze and use a **static ticker universe** chosen from the **train window** (not the whole history).
- 3. Define labels correctly (e.g., t+1 and t+5) and verify them with tests.
- 4. Add leakage tests that recompute trusted features and fail on any future-peek.

19.2 Agenda (75 min)

- (10 min) Slides: what leakage looks like; examples; how it sneaks in
- (10 min) Slides: survivorship bias (today's constituents past reality); freezing a universe
- (10 min) Slides: label definitions (t+1, multi-step) and alignment rules
- (35 min) In-class lab:
 - 1. Freeze a static universe from the first split's train window
 - 2. Add leakage tests that recompute known-good features
 - 3. Add multi-step labels (e.g., t+5) with tests
- (10 min) Wrap-up & homework brief

19.3 Slides / talking points (drop into your deck)

19.3.1 What is data leakage?

- Look-ahead leakage: using any info from t+1 or later to compute features at t or to scale/normalize train and validation together.
- Common culprits: shift(-1) in features, global scaling fit on full data, forward-fill across split boundaries, using today's close to predict today's close.

19.3.2 Survivorship bias

- Using **today's index membership** to pick tickers for the past—drops delisted/removed names—**optimistically biased** results.
- Cure: freeze a static universe from the training window (e.g., all tickers with 252 observations by the end of the first train window). Save it and filter by it for all future experiments.

19.3.3 Label definitions (be explicit)

- t+1 log return: r_1d = log_return.shift(-1) per ticker (your Session-9 label).
- t+5 log return (multi-step): r_5d = log_return.shift(-1) + ... + log_return.shift(-5) per ticker.
- Rules: labels come from **future**; features come from **t**. Splits with **embargo** reduce adjacency leakage.

19.4 In-class lab (35 min, Colab-friendly)

Run each block as its own cell. Update REPO_NAME as needed.

19.4.1 0) Setup & load data (with fallbacks)

```
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
REPO_NAME = "unified-stocks-teamX"
                                      # <- change if needed
           = "/content/drive/MyDrive/dspt25"
BASE_DIR
           = f"{BASE_DIR}/{REPO_NAME}"
REPO_DIR
import os, pathlib, numpy as np, pandas as pd
from pathlib import Path
pathlib.Path(REPO_DIR).mkdir(parents=True, exist_ok=True)
os.chdir(REPO_DIR)
for p in ["data/raw","data/processed","data/static","reports","scripts","tests"]:
    Path(p).mkdir(parents=True, exist_ok=True)
print("Working dir:", os.getcwd())
# Load returns or synthesize a small fallback
rpath = Path("data/processed/returns.parquet")
if rpath.exists():
    returns = pd.read_parquet(rpath)
else:
    rng = np.random.default_rng(0)
    dates = pd.bdate_range("2022-01-03", periods=360)
    rows=[]
```

```
for t in ["AAPL","MSFT","GOOGL","AMZN","NVDA","TSLA","META","NFLX"]:
        eps = rng.normal(0,0.012,size=len(dates)).astype("float32")
        adj = 100*np.exp(np.cumsum(eps))
        df = pd.DataFrame({
            "date": dates, "ticker": t,
            "adj_close": adj.astype("float32"),
            "log_return": np.r_[np.nan, np.diff(np.log(adj))].astype("float32")
        })
        df["r_1d"] = df["log_return"].shift(-1)
        df["weekday"] = df["date"].dt.weekday.astype("int8")
        df["month"] = df["date"].dt.month.astype("int8")
        rows.append(df)
    returns = pd.concat(rows, ignore_index=True).dropna().reset_index(drop=True)
    returns["ticker"] = returns["ticker"].astype("category")
    returns.to_parquet(rpath, index=False)
# Load features_v1 or construct minimal lags for tests
fpath = Path("data/processed/features_v1.parquet")
if fpath.exists():
    feats = pd.read_parquet(fpath).sort_values(["ticker","date"]).reset_index(drop=True)
else:
    feats = returns.sort_values(["ticker","date"]).copy()
    for k in [1,2,3]:
        feats[f"lag{k}"] = feats.groupby("ticker")["log_return"].shift(k)
    feats["roll_mean_20"] = feats.groupby("ticker")["log_return"].rolling(20, min_periods=20
    feats["roll_std_20"] = feats.groupby("ticker")["log_return"].rolling(20, min_periods=20
    feats["zscore_20"] = (feats["log_return"] - feats["roll_mean_20"]) / (feats["roll_std]
    feats = feats.dropna().reset_index(drop=True)
# Harmonize types
returns["date"] = pd.to_datetime(returns["date"])
feats["date"] = pd.to_datetime(feats["date"])
returns["ticker"] = returns["ticker"].astype("category")
feats["ticker"] = feats["ticker"].astype("category")
returns = returns.sort_values(["ticker","date"]).reset_index(drop=True)
feats = feats.sort_values(["ticker","date"]).reset_index(drop=True)
returns.head(3), feats.head(3)
```

19.4.2 1) Freeze a static universe from the first split's train window

```
import numpy as np, pandas as pd
def make_rolling_origin_splits(dates, train_min=252, val_size=63, step=63, embargo=5):
    u = np.array(sorted(pd.to_datetime(pd.Series(dates).unique())))
    i = train_min - 1; splits=[]
    while True:
        if i >= len(u): break
        a,b = u[0], u[i]
        vs = i + embargo + 1
        ve = vs + val_size - 1
        if ve >= len(u): break
        splits.append((a,b,u[vs],u[ve]))
        i += step
    return splits
splits = make_rolling_origin_splits(returns["date"], train_min=252, val_size=63, step=63, em
assert len(splits) >= 1, "Not enough history for a first split."
a,b,c,d = splits[0]
print("First train window:", a.date(), "→", b.date())
# Eligible = tickers with at least train_min rows by train_end (b)
train_slice = returns[(returns["date"]>=a) & (returns["date"]<=b)]</pre>
counts = train_slice.groupby("ticker").size()
eligible = counts[counts >= 252].index.sort_values()
universe = pd.DataFrame({"ticker": eligible})
univ_name = f"data/static/universe_{b.date()}.csv"
universe.to_csv(univ_name, index=False)
print("Saved static universe:", univ_name, "| tickers:", len(universe))
universe.head()
```

From now on, filter your data to universe before modeling/evaluation.

19.4.3 2) Apply the static universe to your features

```
feats_static = feats[feats["ticker"].isin(set(universe["ticker"]))].copy()
feats_static.to_parquet("data/processed/features_v1_static.parquet", compression="zstd", indeprint("Wrote data/processed/features_v1_static.parquet", feats_static.shape)
```

19.4.4 3) Add leakage tests that recompute trusted features & compare

Create a high-value test file that **fails** if any feature depends on future rows.

```
# tests/test_leakage_features.py
from __future__ import annotations
import numpy as np, pandas as pd
import pytest
SAFE_ROLL = 20
@pytest.fixture(scope="session")
def df():
   import pandas as pd
   import pathlib
   p = pathlib.Path("data/processed/features_v1_static.parquet")
    if not p.exists():
        p = pathlib.Path("data/processed/features_v1.parquet")
    df = pd.read_parquet(p).sort_values(["ticker","date"]).reset_index(drop=True)
    df["date"] = pd.to_datetime(df["date"])
    return df
def test_label_definition_r1d(df):
    for tkr, g in df.groupby("ticker"):
        assert g["r_1d"].iloc[:-1].equals(g["log_return"].iloc[1:]), f"r_1d mismatch for {tk
def _recompute_safe(g: pd.DataFrame) -> pd.DataFrame:
    # Recompute causal features using only <= t information
    out = pd.DataFrame(index=g.index)
    s = g["log_return"]
    out["lag1"] = s.shift(1)
    out["lag2"] = s.shift(2)
    out["lag3"] = s.shift(3)
   rm = s.rolling(SAFE_ROLL, min_periods=SAFE_ROLL).mean()
   rs = s.rolling(SAFE_ROLL, min_periods=SAFE_ROLL).std()
    out["roll_mean_20"] = rm
    out["roll_std_20"] = rs
    out["zscore_20"] = (s - rm) / (rs + 1e-8)
    # EWM & expanding if present
    out["exp_mean"] = s.expanding(min_periods=SAFE_ROLL).mean()
    out["exp_std"] = s.expanding(min_periods=SAFE_ROLL).std()
    out["ewm_mean_20"] = s.ewm(span=20, adjust=False).mean()
    out["ewm_std_20"] = s.ewm(span=20, adjust=False).std()
```

```
# RSI(14) if adj_close present
    if "adj_close" in g:
        delta = g["adj_close"].diff()
        up = delta.clip(lower=0).ewm(alpha=1/14, adjust=False).mean()
        dn = (-delta.clip(upper=0)).ewm(alpha=1/14, adjust=False).mean()
        rs = up / (dn + 1e-12)
        out["rsi_14"] = 100 - (100/(1+rs))
    return out
@pytest.mark.parametrize("col", ["lag1","lag2","lag3","roll_mean_20","roll_std_20","zscore_2
def test_features_match_causal_recompute(df, col):
    if col not in df.columns:
        pytest.skip(f"{col} not present")
    # Compare per ticker to avoid cross-group alignment issues
    for tkr, g in df.groupby("ticker", sort=False):
        ref = _recompute_safe(g)
        if col not in ref.columns:
            continue
        a = g[col].to_numpy()
        b = ref[col].to_numpy()
        # Allow NaNs at the start; compare where both finite
        mask = np.isfinite(a) & np.isfinite(b)
        if mask.sum() == 0:
            continue
        diff = np.nanmax(np.abs(a[mask] - b[mask]))
        assert float(diff) \leq 1e-6, f"{col} deviates from causal recompute for {tkr}: max |\Delta|
def test_no_feature_equals_target(df):
    y = df["r_1d"].to_numpy()
    for col in df.select_dtypes(include=["float32","float64"]).columns:
        if col in {"r_1d","log_return"}:
            continue
        x = df[col].to_numpy()
        # Proportion of exact equality (within tiny tol) should not be high
        eq = np.isfinite(x) & np.isfinite(y) & (np.abs(x - y) < 1e-12)
        assert eq.mean() < 0.8, f"Suspicious: feature {col} equals target too often"
```

Run tests now:

```
!pytest -q tests/test_leakage_features.py
```

If a test fails, **fix the pipeline**, don't weaken the test.

19.4.5 4) Add multi-step labels (e.g., t+5) and tests

```
# scripts/make_multistep_labels.py
from __future__ import annotations
import pandas as pd, numpy as np
from pathlib import Path
def make_multistep(in_parquet="data/processed/returns.parquet", horizons=(5,)):
    df = pd.read_parquet(in_parquet).sort_values(["ticker","date"]).reset_index(drop=True)
    for H in horizons:
        # r_Hd = sum of next H log returns: shift(-1) ... shift(-H)
        s = df.groupby("ticker")["log_return"]
        acc = None
        for h in range(1, H+1):
            sh = s.shift(-h)
            acc = sh if acc is None else (acc + sh)
        df[f"r_{H}d"] = acc
    out = df
    Path("data/processed").mkdir(parents=True, exist_ok=True)
    out.to_parquet("data/processed/returns_multistep.parquet", compression="zstd", index=Fals
    print("Wrote data/processed/returns_multistep.parquet", out.shape)
if __name__ == "__main__":
    make_multistep()
```

Run it:

```
!python scripts/make_multistep_labels.py
```

Add a test for label correctness:

```
# tests/test_labels_multistep.py
import pandas as pd, numpy as np

def test_r5d_definition():
    df = pd.read_parquet("data/processed/returns_multistep.parquet").sort_values(["ticker","dif "r_5d" not in df.columns:
        return
    for tkr, g in df.groupby("ticker"):
        lr = g["log_return"]
        r5 = sum(lr.shift(-h) for h in range(1,6))
```

Run:

```
!pytest -q tests/test_labels_multistep.py
```

19.5 Wrap-up (10 min)

- Static universe removes survivorship bias: pick tickers with adequate history by train end and stick to them.
- Label definitions must be **explicit and tested** (t+1, t+5).
- Leakage tests **recompute causal features** and compare—if you accidentally used **shift(-1)** or cross-split fills, tests fail.

19.6 Homework (due before Session 18)

Goal: Document your evaluation protocol and ship a concise "leakage & bias" memo, plus a one-command audit.

19.6.1 Part A — Generate a protocol memo (reports/eval_protocol.md)

```
# scripts/write_eval_protocol.py
from __future__ import annotations
import pandas as pd, numpy as np
from pathlib import Path
from datetime import date

def make_rolling_origin_splits(dates, train_min=252, val_size=63, step=63, embargo=5):
    u = np.array(sorted(pd.to_datetime(pd.Series(dates).unique())))
    i = train_min - 1; out=[]
    while True:
```

```
if i >= len(u): break
       a,b = u[0], u[i]; vs=i+embargo+1; ve=vs+val_size-1
        if ve >= len(u): break
       out.append((a,b,u[vs],u[ve])); i += step
   return out
def main():
   ret = pd.read_parquet("data/processed/returns.parquet").sort_values(["ticker","date"])
   splits = make_rolling_origin_splits(ret["date"])
   a,b,c,d = splits[0]
   # Universe info
   univ_files = sorted(Path("data/static").glob("universe_*.csv"))
   univ = univ_files[-1] if univ_files else None
   univ_count = pd.read_csv(univ).shape[0] if univ else ret["ticker"].nunique()
   md = []
   md += ["# Evaluation Protocol (Leakage-Aware)", ""]
   md += ["**Date:** " + date.today().isoformat(), ""]
   md += ["## Splits", f"- Train window (split 1): **{a.date()} → {b.date()}**",
           f"- Embargo: **5** business days", f"- Validation window: **{c.date()} → {d.date(
           f"- Step between origins: **63** business days", ""]
   md += ["## Static Universe", f"- Universe file: **{univ.name if univ else '(none)'}**",
           f"- Count: **{univ_count}** tickers",
           "- Selection rule: tickers with 252 obs by first train end; fixed for all splits.
   md += ["## Labels", "- `r_1d` = next-day log return `log_return.shift(-1)` per ticker.",
           "- r_5d (if used) = sum of \log_{return.shift(-1..-5)}.", ""]
   md += ["## Leakage Controls",
           "- Features computed from t only (rolling/ewm/expanding without negative shifts)
           "- No forward-fill across split boundaries; embargo = 5 days.",
           "- Scalers/normalizers fit on TRAIN only.",
           "- Tests: `tests/test_leakage_features.py`, `tests/test_labels_multistep.py`.", "
   md += ["## Caveats",
           "- Educational dataset; not investment advice.",
           "- Survivorship minimized via static universe; still subject to data vendor quirk
   Path("reports").mkdir(parents=True, exist_ok=True)
   Path("reports/eval_protocol.md").write_text("\n".join(md))
   print("Wrote reports/eval_protocol.md")
if __name__ == "__main__":
   main()
```

Run:

19.6.2 Part B — One-command leakage audit target

Append to your Makefile:

```
.PHONY: leakage-audit
leakage-audit: ## Run leakage & label tests; write eval protocol
\tpytest -q tests/test_leakage_features.py tests/test_labels_multistep.py
\tpython scripts/write_eval_protocol.py
```

Then run:

```
make leakage-audit
```

19.6.3 Part C — Short memo (1–2 pages max)

- Open reports/eval_protocol.md and add two paragraphs in your own words:
 - 1. Why these splits and embargo are credible for your task.
 - 2. Where leakage could still hide (e.g., future macro revisions, implicit target leakage), and how you'd detect it.

Submit the updated reports/eval_protocol.md and a screenshot of make leakage-audit passing.

19.6.4 Part D — (Optional) Quarto inclusion

Add this to your Quarto report:

```
## Evaluation Protocol (Leakage-Aware)

::: {.cell execution_count=1}

```` {.python .cell-code}

from pathlib import Path

print(Path("reports/eval_protocol.md").read_text())
```

```
Instructor checklist (before class)
- Ensure `returns.parquet` and `features_v1.parquet` exist or fallback works.
- Intentionally create a leaked feature (e.g., `lag1 = log_return.shift(-1)`) on your copy to
- Decide an anchor date policy for universe freeze; today's lab uses **first split's train es
Emphasize while teaching
- **Define labels first**, then prove features are **causal (t)**.
- Freezing the **universe** is small effort with big impact on credibility.
- Tests are your **guardrails**-if they go red, **don't** relax them; fix the pipeline.
Grading (pass/revise)
- `data/static/universe_YYYY-MM-DD.csv` created; `features_v1_static.parquet` filtered by it
- Leakage tests present and **green** on the clean pipeline; **red** if you inject a future-
- `reports/eval_protocol.md` exists and includes student commentary.
- `make leakage-audit` runs without errors.
You now have a **credibility layer** on top of your data pipeline-ready to analyze regimes as
`<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6Ii4ifQ== -->`{=html}
```{=html}
<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6Ii4iLCJib29rSXRlbVR5cGUiOiJjaGFwdGVyIiwiYm9va</pre>
# Session 18 - Walk-forward + Regime Analysi
``````{.quarto-title-block template='/Users/yiwang/Applications/quarto/share/projects/book/
title: Session 18 - Walk-forward + Regime Analysi
```

:::

Below is a complete lecture package for Session 18 — Walk-forward + Regime Analysis (75 minutes). It includes a timed agenda, slide talking points, a Colab-friendly in-class

lab with copy-paste code, and homework with copy-paste code. You'll add volatility regimes to your rolling-origin evaluation (with embargo), compute metrics by regime, and produce calibration plots that reveal where baselines over/under-predict.

Educational use only — not trading advice. Assumes your repo in Drive (e.g., unified-stocks-teamX) with data/processed/returns.parquet and data/processed/features\_v1.parquet. If missing, the lab will synthesize a small fallback so you can run end-to-end.

## 19.7 Session 18 — Walk-forward + Regime Analysis (75 min)

#### 19.7.1 Learning goals

By the end of class, students can:

- 1. Use **embargoed** rolling-origin splits (Session 15) and apply a **static universe** (Session 17) consistently.
- 2. Construct **volatility regimes** (low/med/high) from **rolling volatility** computed **causally** (t), and set regime thresholds **using training-only** data per split.
- 3. Evaluate MAE, sMAPE, MASE by regime, with macro and micro aggregation.
- 4. Make **calibration plots** (binned predicted vs. realized returns) **by regime** and interpret them.

## 19.8 Agenda (75 min)

- (10 min) Slides: walk-forward recap (expanding vs sliding), embargo; regime intuition
- (10 min) Slides: defining regimes (rolling std), training-only thresholds, leakage pitfalls
- (35 min) In-class lab: add regime labels (train-only quantiles)  $\rightarrow$  evaluate naive & linear-lags by regime  $\rightarrow$  calibration plots
- (10 min) Wrap-up + homework brief
- (10 min) Buffer / Q&A

## 19.9 Slide talking points (paste into your deck)

#### 19.9.1 Why regime analysis?

- Model error is **not uniform**. Many models fail during **high-volatility** periods.
- Reporting **one global metric** hides when/where models break.
- Regime-aware metrics guide feature/model design and risk controls.

#### 19.9.2 Splits & embargo refresher

- Rolling-origin, expanding: train grows, validation moves forward.
- Embargo: gap (e.g., 5 business days) between train end and val start to reduce adjacency leakage.

#### 19.9.3 Defining volatility regimes (avoid leakage)

- Use rolling standard deviation of returns (e.g., roll\_std\_20) computed up to and including t.
- Thresholds: choose quantiles (e.g., 33% and 66%) on TRAIN ONLY for each split; label both train & val using those fixed thresholds.
- Categories: low, med, high. Treat labels as categorical dtypes.

#### 19.9.4 Metrics & calibration by regime

- Compute MAE, sMAPE, MASE within each regime. Aggregate macro/micro.
- Calibration (point forecasts): bin predictions into deciles; plot mean predicted vs. mean realized per bin.
  - Perfect calibration points on the 45° line.
  - Plot one figure **overall** and one **per regime**.

## 19.10 In-class lab (35 min, Colab-friendly)

Run each block as its **own cell**. Adjust REPO NAME to your repo name.

#### 19.10.1 0) Setup & load (with safe fallbacks)

```
from google.colab import drive
drive.mount('/content/drive', force remount=True)
REPO_NAME = "unified-stocks-teamX" # <- change if needed</pre>
BASE_DIR = "/content/drive/MyDrive/dspt25"
REPO DIR = f''\{BASE DIR\}/\{REPO NAME\}''
import os, pathlib, numpy as np, pandas as pd, json
from pathlib import Path
pathlib.Path(REPO_DIR).mkdir(parents=True, exist_ok=True)
os.chdir(REPO_DIR)
for p in ["data/raw","data/processed","data/static","reports","scripts","tests","docs/figs"]
 Path(p).mkdir(parents=True, exist_ok=True)
print("Working dir:", os.getcwd())
Load returns; synthesize if missing
rpath = Path("data/processed/returns.parquet")
if rpath.exists():
 returns = pd.read_parquet(rpath)
else:
 rng = np.random.default_rng(0)
 dates = pd.bdate_range("2022-01-03", periods=360)
 frames=[]
 for t in ["AAPL","MSFT","GOOGL","AMZN","NVDA"]:
 eps = rng.normal(0,0.012,size=len(dates)).astype("float32")
 adj = 100*np.exp(np.cumsum(eps))
 df = pd.DataFrame({
 "date": dates, "ticker": t,
 "adj_close": adj.astype("float32"),
 "log_return": np.r_[np.nan, np.diff(np.log(adj))].astype("float32")
 df["r_1d"] = df["log_return"].shift(-1)
 df["weekday"] = df["date"].dt.weekday.astype("int8")
 df["month"] = df["date"].dt.month.astype("int8")
 frames.append(df)
 returns = pd.concat(frames, ignore_index=True).dropna().reset_index(drop=True)
 returns["ticker"] = returns["ticker"].astype("category")
 returns.to_parquet(rpath, index=False)
Load features or generate minimal set with rolling std (causal)
```

```
fpath = Path("data/processed/features_v1.parquet")
if fpath.exists():
 feats = pd.read_parquet(fpath)
 if "roll_std_20" not in feats.columns:
 # ensure we have rolling volatility
 feats = feats.sort_values(["ticker","date"])
 feats["roll_std_20"] = feats.groupby("ticker")["log_return"].rolling(20, min_periods)
else:
 feats = returns.sort_values(["ticker","date"]).copy()
 for k in [1,2,3]:
 feats[f"lag{k}"] = feats.groupby("ticker")["log_return"].shift(k)
 feats["roll_std_20"] = feats.groupby("ticker")["log_return"].rolling(20, min_periods=20)
If static universe exists from Session 17, apply it
univ_files = sorted(Path("data/static").glob("universe_*.csv"))
if univ files:
 univ = pd.read_csv(univ_files[-1])["ticker"].astype(str)
 feats = feats[feats["ticker"].astype(str).isin(set(univ))]
 returns = returns[returns["ticker"].astype(str).isin(set(univ))]
Harmonize types & sort
for df in (returns, feats):
 df["date"] = pd.to_datetime(df["date"])
 df["ticker"] = df["ticker"].astype("category")
feats = feats.dropna(subset=["log_return"]).sort_values(["ticker","date"]).reset_index(drop="
returns = returns.sort_values(["ticker","date"]).reset_index(drop=True)
feats.head(3)
```

#### 19.10.2 1) Rolling-origin splits (expanding) with embargo

```
import numpy as np, pandas as pd

def make_rolling_origin_splits(dates, train_min=252, val_size=63, step=63, embargo=5):
 u = np.array(sorted(pd.to_datetime(pd.Series(dates).unique())))
 splits=[]; i=train_min-1; n=len(u)
 while True:
 if i>=n: break
 a,b = u[0], u[i]
 vs = i + embargo + 1
 ve = vs + val_size - 1
```

```
if ve>=n: break
 splits.append((a,b,u[vs],u[ve]))
 i += step
 return splits

splits = make_rolling_origin_splits(feats["date"], train_min=252, val_size=63, embar
print("Num splits:", len(splits))
splits[:2]
```

#### 19.10.3 2) Regime thresholds from training-only (quantiles of rolling vol)

```
def regime_thresholds(train_df, vol_col="roll_std_20", q_low=0.33, q_high=0.66):
 v = train_df[vol_col].dropna().to_numpy()
 if len(v) < 100: # defensive: small train
 q_{low}, q_{high} = 0.4, 0.8
 return float(np.quantile(v, q_low)), float(np.quantile(v, q_high))
def label_regime(df, vol_col, lo, hi):
 # low: <= lo, high: >= hi, else med; NaNs -> 'unknown'
 out = df.copy()
 vc = out[vol_col]
 regime = pd.Series(pd.Categorical(["unknown"]*len(out), categories=["low", "med", "high", ""
 regime[(vc.notna()) & (vc <= lo)] = "low"</pre>
 regime[(vc.notna()) & (vc > lo) & (vc < hi)] = "med"</pre>
 regime[(vc.notna()) & (vc >= hi)] = "high"
 out["regime"] = regime.astype("category")
 return out
Demonstrate on first split in class
a,b,c,d = splits[0]
tr = feats[(feats["date"]>=a) & (feats["date"]<=b)]</pre>
va = feats[(feats["date"]>=c) & (feats["date"]<=d)]</pre>
lo, hi = regime_thresholds(tr, "roll_std_20", 0.33, 0.66)
tr_lab = label_regime(tr, "roll_std_20", lo, hi)
va_lab = label_regime(va, "roll_std_20", lo, hi)
print({"lo": lo, "hi": hi}, tr_lab["regime"].value_counts().to_dict(), va_lab["regime"].value
```

## 19.10.4 3) Baseline predictions (naive & linear-lags per ticker, fit on TRAIN only)

```
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear model import LinearRegression
features we will use for linear baseline
XCOLS = [c for c in ["lag1","lag2","lag3"] if c in feats.columns]
if not XCOLS:
 # create lags on the fly (causal)
 feats = feats.sort_values(["ticker","date"]).copy()
 for k in [1,2,3]:
 feats[f"lag{k}"] = feats.groupby("ticker")["log_return"].shift(k)
 XCOLS = ["lag1","lag2","lag3"]
def fit_predict_lin_per_ticker(train_df, val_df):
 preds=[]
 for tkr, trk in train_df.groupby("ticker"):
 vak = val_df[val_df["ticker"]==tkr]
 if len(trk)==0 or len(vak)==0: continue
 pipe = Pipeline([("scaler", StandardScaler()), ("lr", LinearRegression())])
 pipe.fit(trk[XCOLS].dropna().values, trk.dropna(subset=XCOLS)["r_1d"].values)
 yhat = pipe.predict(vak[XCOLS].fillna(0).values)
 out = vak[["date","ticker","r_1d","log_return","regime"]].copy()
 out["yhat_lin"] = yhat.astype("float32")
 preds.append(out)
 return pd.concat(preds, ignore_index=True) if preds else pd.DataFrame()
def add_naive_preds(df):
 out = df.copy()
 out["yhat_naive"] = out["log_return"] # r_{t+1} ~ log_return_t
 return out
tr_lab2 = add_naive_preds(tr_lab)
va lab2 = add naive preds(va lab)
val_lin = fit_predict_lin_per_ticker(tr_lab2, va_lab2)
val = va_lab2.merge(val_lin[["date","ticker","yhat_lin"]], on=["date","ticker"], how="left")
val.head(3)
```

#### 19.10.5 4) Metrics by regime (MAE, sMAPE, MASE; macro & micro)

```
def mae(y, yhat):
 y = np.asarray(y); yhat = np.asarray(yhat)
 return float(np.mean(np.abs(y - yhat)))
def smape(y,yhat,eps=1e-8):
 y = np.asarray(y); yhat = np.asarray(yhat)
 return float(np.mean(2.0*np.abs(y-yhat)/(np.abs(y)+np.abs(yhat)+eps)))
def mase(y_true, y_pred, y_train_true, y_train_naive):
 scale = mae(y_train_true, y_train_naive) + 1e-12
 return float(mae(y_true,y_pred)/scale)
def per_regime_metrics(val_df, train_df, pred_col):
 rows=[]
 for reg, g in val_df.groupby("regime"):
 if reg == "unknown" or len(g)==0:
 continue
 # build per-ticker MASE scales from TRAIN
 per_t = []
 for tkr, gv in g.groupby("ticker"):
 gt = train_df[train_df["ticker"]==tkr].dropna(subset=["r_1d"])
 if len(gt)==0: continue
 m = {
 "ticker": tkr,
 "n": int(gv["r_1d"].notna().sum()),
 "mae": mae(gv["r_1d"], gv[pred_col]),
 "smape": smape(gv["r_1d"], gv[pred_col]),
 "mase": mase(gv["r_1d"], gv[pred_col], gt["r_1d"], gt["log_return"]),
 "regime": reg
 }
 per_t.append(m)
 per_t = pd.DataFrame(per_t)
 if per_t.empty:
 continue
 # macro (mean of per-ticker)
 macro = per_t[["mae", "smape", "mase"]].mean().to_dict()
 # micro (weighted by n)
 w = per_t["n"].to_numpy()
 micro = {
 "micro_mae": float(np.average(per_t["mae"], weights=w)),
```

#### 19.10.6 5) Calibration plots overall and by regime (binned)

```
import matplotlib.pyplot as plt
import numpy as np, pandas as pd, pathlib
def calibration_by_bins(df, pred_col, y_col="r_1d", n_bins=10):
 d = df.dropna(subset=[pred_col, y_col]).copy()
 d["bin"] = pd.qcut(d[pred_col], q=n_bins, duplicates="drop")
 grp = d.groupby("bin").agg(
 mean_pred=(pred_col, "mean"),
 mean_true=(y_col, "mean"),
 count=(y_col, "size")
).reset_index()
 return grp
Overall calibration (lin_lags) on validation slice
cal_overall = calibration_by_bins(val.dropna(subset=["yhat_lin"]), "yhat_lin", "r_1d", n_bine
plt.figure(figsize=(5,4))
plt.plot(cal_overall["mean_pred"], cal_overall["mean_true"], marker="o")
lim = max(abs(cal_overall["mean_pred"]).max(), abs(cal_overall["mean_true"]).max())
plt.plot([-lim, lim], [-lim, lim], linestyle="--")
plt.xlabel("Mean predicted (bin)"); plt.ylabel("Mean realized (bin)")
plt.title("Calibration (overall) - lin_lags")
```

```
plt.tight_layout()
plt.savefig("docs/figs/calibration_overall_lin.png", dpi=160)
"Saved docs/figs/calibration overall lin.png"
By regime
plt.figure(figsize=(6.5,4.5))
for i, reg in enumerate(["low","med","high"], start=1):
 g = val[(val["regime"] == reg) & (val["yhat_lin"].notna())]
 if len(g) < 50:
 continue
 cal = calibration_by_bins(g, "yhat_lin", "r_1d", n_bins=6)
 plt.plot(cal["mean_pred"], cal["mean_true"], marker="o", label=reg)
lim = 0.02 # small returns
plt.plot([-lim, lim], [-lim, lim], linestyle="--")
plt.xlabel("Mean predicted (bin)"); plt.ylabel("Mean realized (bin)")
plt.title("Calibration by regime - lin_lags")
plt.legend()
plt.tight_layout()
plt.savefig("docs/figs/calibration_by_regime_lin.png", dpi=160)
"Saved docs/figs/calibration_by_regime_lin.png"
```

## 19.11 Wrap-up (10 min) — key points to emphasize

- Regime thresholds must be set on TRAIN ONLY each split to avoid leakage.
- Report by-regime metrics alongside overall metrics; show macro & micro.
- Calibration plots (binned predicted vs. realized) quickly show **systematic bias**; compare regimes.

## 19.12 Homework (due before Session 19)

Goal: Produce a full regime-aware evaluation across all splits for naive and linear-lags models and include the figures in your Quarto report.

#### 19.12.1 A. Script: scripts/regime\_eval.py — run across all splits

```
#!/usr/bin/env python
from __future__ import annotations
import argparse, json, numpy as np, pandas as pd
from pathlib import Path
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
def make_splits(dates, train_min=252, val_size=63, step=63, embargo=5):
 u = np.array(sorted(pd.to_datetime(pd.Series(dates).unique())))
 splits=[]; i=train_min-1; n=len(u)
 while True:
 if i>=n: break
 a,b = u[0], u[i]; vs=i+embargo+1; ve=vs+val_size-1
 if ve>=n: break
 splits.append((a,b,u[vs],u[ve])); i+=step
 return splits
def regime_thresholds(train_df, vol_col="roll_std_20", q_low=0.33, q_high=0.66):
 v = train_df[vol_col].dropna().to_numpy()
 if len(v) < 100:
 q_{low}, q_{high} = 0.4, 0.8
 return float(np.quantile(v, q_low)), float(np.quantile(v, q_high))
def label_regime(df, vol_col, lo, hi):
 out = df.copy()
 vc = out[vol_col]
 reg = pd.Series(pd.Categorical(["unknown"]*len(out), categories=["low", "med", "high", "unknown"]
 reg[(vc.notna()) & (vc <= lo)] = "low"
 reg[(vc.notna()) & (vc > lo) & (vc < hi)] = "med"
 reg[(vc.notna()) & (vc >= hi)] = "high"
 out["regime"] = reg.astype("category")
 return out
def add_naive(df):
 out = df.copy()
 out["yhat_naive"] = out["log_return"]
 return out
def fit_lin(tr, va, xcols):
```

```
from sklearn.pipeline import Pipeline
 from sklearn.preprocessing import StandardScaler
 from sklearn.linear_model import LinearRegression
 preds=[]
 for tkr, trk in tr.groupby("ticker"):
 vak = va[va["ticker"]==tkr]
 if len(trk)==0 or len(vak)==0: continue
 Xtr = trk.dropna(subset=xcols);
 pipe = Pipeline([("scaler", StandardScaler()), ("lr", LinearRegression())])
 pipe.fit(Xtr[xcols].values, Xtr["r_1d"].values)
 yhat = pipe.predict(vak[xcols].fillna(0).values)
 out = vak[["date","ticker","r_1d","log_return","regime"]].copy()
 out["yhat_lin"] = yhat
 preds.append(out)
 return pd.concat(preds, ignore_index=True) if preds else pd.DataFrame()
def mae(y, yhat): y=np.asarray(y); yhat=np.asarray(yhat); return float(np.mean(np.abs(y-yhat))
def smape(y,yhat,eps=1e-8):
 y=np.asarray(y); yhat=np.asarray(yhat); return float(np.mean(2*np.abs(y-yhat)/(np.abs(y)-
def mase(y_true, y_pred, y_train_true, y_train_naive):
 return float(mae(y_true, y_pred)/(mae(y_train_true, y_train_naive)+1e-12))
def per_regime_metrics(val_df, train_df, pred_col):
 rows=[]
 for reg, g in val_df.groupby("regime"):
 if reg=="unknown" or len(g)==0: continue
 for tkr, gv in g.groupby("ticker"):
 gt = train_df[train_df["ticker"]==tkr].dropna(subset=["r_1d"])
 if len(gt)==0: continue
 per.append({"ticker":tkr,"n":int(gv["r_1d"].notna().sum()),
 "mae": mae(gv["r_1d"], gv[pred_col]),
 "smape": smape(gv["r_1d"], gv[pred_col]),
 "mase": mase(gv["r_1d"], gv[pred_col], gt["r_1d"], gt["log_return"])
 "regime": reg})
 pt = pd.DataFrame(per)
 if pt.empty: continue
 macro = pt[["mae", "smape", "mase"]].mean().to_dict()
 w = pt["n"].to_numpy()
 micro = {"micro_mae": float(np.average(pt["mae"], weights=w)),
 "micro_smape": float(np.average(pt["smape"], weights=w)),
 "micro_mase": float(np.average(pt["mase"], weights=w))}
```

```
rows.append({"regime":reg, **{f"macro {k}":float(v) for k,v in macro.items()}, **mic
 return pd.DataFrame(rows)
def main():
 ap = argparse.ArgumentParser()
 ap.add_argument("--features", default="data/processed/features_v1.parquet")
 ap.add_argument("--train-min", type=int, default=252)
 ap.add_argument("--val-size", type=int, default=63)
 ap.add_argument("--step", type=int, default=63)
 ap.add_argument("--embargo", type=int, default=5)
 ap.add_argument("--vol-col", default="roll_std_20")
 ap.add_argument("--xcols", nargs="+", default=["lag1","lag2","lag3"])
 ap.add_argument("--out-summary", default="reports/regime_summary.csv")
 args = ap.parse_args()
 df = pd.read_parquet(args.features).sort_values(["ticker","date"]).reset_index(drop=True
 # Ensure vol col exists
 if args.vol_col not in df.columns:
 df[args.vol_col] = df.groupby("ticker")["log_return"].rolling(20, min_periods=20).ste
 # Build lags if missing
 for k in [1,2,3]:
 col = f"lag\{k\}"
 if col not in df.columns:
 df[col] = df.groupby("ticker")["log_return"].shift(k)
 splits = make_splits(df["date"], args.train_min, args.val_size, args.step, args.embargo)
 Path("reports").mkdir(parents=True, exist_ok=True)
 thresh_rec = {}
 rows=[]
 for sid,(a,b,c,d) in enumerate(splits, start=1):
 tr = df[(df["date"]>=a)&(df["date"]<=b)]</pre>
 va = df[(df["date"]>=c)&(df["date"]<=d)]
 lo, hi = regime_thresholds(tr, args.vol_col)
 thresh_rec[sid] = {"lo":lo, "hi":hi, "train_range":f"\{a.date()\}\rightarrow\{b.date()\}"}
 trL = label_regime(tr, args.vol_col, lo, hi)
 vaL = label_regime(va, args.vol_col, lo, hi)
 # predictions
 trN, vaN = add_naive(trL), add_naive(vaL)
 val_lin = fit_lin(trN, vaN, args.xcols)
```

```
vaN = vaN.merge(val_lin[["date","ticker","yhat_lin"]], on=["date","ticker"], how="lexture of the state o
```

Run:

```
%%bash
chmod +x scripts/regime_eval.py
python scripts/regime_eval.py
```

#### 19.12.2 B. Plot summary figures for your report

```
import pandas as pd, matplotlib.pyplot as plt, pathlib
pathlib.Path("docs/figs").mkdir(parents=True, exist_ok=True)

df = pd.read_csv("reports/regime_summary.csv")
Micro MAE by regime per model
pivot = df.pivot_table(index=["split","regime"], columns="model", values="micro_mae")
plt.figure(figsize=(6,4))
for model in pivot.columns:
 plt.plot(pivot.xs("low", level="regime").index, pivot.xs("low", level="regime")[model], plt.plot(pivot.xs("high", level="regime").index, pivot.xs("high", level="regime")[model]
plt.xlabel("Split"); plt.ylabel("Micro MAE")
plt.title("Micro MAE by regime (low vs high)")
plt.legend(); plt.tight_layout()
plt.savefig("docs/figs/regime_micro_mae.png", dpi=160)
"Saved docs/figs/regime_micro_mae.png"
```