Multivariate Analysis: Exercise 3

- 1. [Exam 2008]
 - (a) Let a sample $\mathbf{x}_1, \dots, \mathbf{x}_n$ of size n be drawn on a random $p \times 1$ vector $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Show that the union-intersection procedure to test the null hypothesis $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$, a specified constant, against a the alternative hypothesis $H_1: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$, without making any assumptions about $\boldsymbol{\Sigma}$, leads to the statistic known as Hotelling's T^2 ,

$$T^2 = n(\overline{\mathbf{x}} - \boldsymbol{\mu}_0)^T \mathbf{S}^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu}_0),$$

where $\overline{\mathbf{x}}$ is the sample mean $\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$ and \mathbf{S} is the *unbiased* sample covariance matrix $\frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})(\mathbf{x}_{i} - \overline{\mathbf{x}})^{T}$, assumed to be invertible.

(b) Suppose that $n_1 = 11$ and $n_2 = 12$ observations are sampled from two different bivariate normal distributions that have a common covariance matrix Σ and possibly different mean vectors μ_1 and μ_2 . The sample mean vectors and pooled covariance matrix are:

$$\overline{\mathbf{x}}_1 = \begin{bmatrix} -1 \\ -2 \end{bmatrix} \qquad \overline{\mathbf{x}}_2 = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} 13 & 6 \\ 6 & 22 \end{bmatrix}$$

- (i) Use the Hotelling two-sample T² statistic to test for a difference in the population mean vectors.
- (ii) What is the estimate of the formula for Fisher's linear discriminant function? Explain how this is used to classify new observations. Consider an observation $\mathbf{x}_0 = \begin{bmatrix} 2 & 1 \end{bmatrix}^T$ on a new experimental unit. Was this unit more likely to have come from population 1 or population 2? (Assume equal misclassification costs and equal prior probabilities).

[It may be assumed that if $T^2 \sim T_q^2(f)$, then $\frac{f-q+1}{fq}T^2 \sim F_{q,f-q+1}$].