(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. August 2001 (23.08.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/61071 A2

(51) Internationale Patentklassifikation⁷: C23 16/46, 16/52

C23C 16/448,

(21) Internationales Aktenzeichen:

PCT/EP01/01698

(22) Internationales Anmeldedatum:

15. Februar 2001 (15.02.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 07 059.0

16. Februar 2000 (16.02.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): AIXTRON AG [DE/DE]; Kackertstrasse 15-17, 52072 Aachen (DE). (72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): JÜRGENSEN, Holger [DE/DE]; Rathausstrasse 43d, 52072 Aachen (DE). KÄP-PELER, Johannes [DE/DE]; Zeisigweg 47, 52146 Würselen (DE). STRAUCH, Gert [DE/DE]; Schönauer Friede 80, 52072 Aachen (DE). SCHMITZ, Dietmar [DE/DE]; Lonweg 41, 52072 Aachen (DE).

(74) Anwälte: GRUNDMANN, Dirk usw.; Rieder & Partner, Corneliusstrasse 45, 42329 Wuppertal (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Title: CONDENSATION COATING METHOD

(54) Bezeichnung: KONDENSATIONSBESCHICHTUNGSVERFAHREN

(57) Abstract: A method and device for the production of coated substrates, such as OLEDs is disclosed, whereby at least one layer is deposited on the at least one substrate, by means of a condensation method and a solid and/or fluid precursor and, in particular, at least one sublimate source is used for at least one part of the reaction gases. The invention is characterised in that, by means of a temperature control of the reaction gases between precursor source(s) and substrate, a condensation of the reaction gases before the substrate(s) is avoided.

[Fortsetzung auf der nächsten Seite]

01/61071 A2

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Beschrieben wird ein Verfahren und eine Vorrichtung zur Herstellung von beschichteten Substraten, wie bspw. von "OLED's", bei dem wenigstens eine Schicht mittels eines Kondensationsverfahrens auf das wenigstens eine Substrat aufgebracht wird, und bei dem für wenigstens einen Teil der Reaktionsgase feste und/oder flüssige Vorläufer und insbesondere wenigstens eine Sublimationsquelle verwendet werden. Die Erfindung zeichnet sich durch eine Temperatursteuerung der Reaktionsgase zwischen Vorläufer-Quelle(n) und Substrat aus, durch die eine Kondensation der Reaktionsgase vor dem oder den Substraten vermieden wird.

00001	Kondensationsbeschichtungsverfahren
00002	
00003	Technisches Gebiet
00004	
00005	Die Erfindung bezieht sich auf ein Verfahren und eine
00006	Vorrichtung zur Herstellung von Schichtsystemen, wie
00007	z.B. für Dünnfilmbauelemente wie OLED's oder ähnliche
80000	Schichtstrukturen mittels Kondensationsbeschichtung.
00009	Diese Schichtsysteme bestehen insbesondere aus organi-
00010	schen Materialien, wie z.B. "small molecules" (z.B.
00011	Alq3) oder Polymeren (z.B. PPV).
00012	
00013	Stand der Technik
00014	
00015	Kondensationsbeschichtungsverfahren zur Herstellung von
00016	Bauelementen insbesondere aus organischen Materialien
00017	sind bekannt. Bei diesem Verfahren werden die Bestand-
00018	teile der herzustellenden Schicht mittels gasförmigen
00019	und/oder organischen Verbindungen (Salze) in die Be-
00020	schichtungskammern (im Folgenden als Reaktionskammer
00021	bezeichnet) transportiert.
00022	
00023	Die Beschichtung des Substrates (meist Glas, Folie oder
00024	Kunststoffe) erfolgt auf der Basis des Kondensationspro-
00025	zesses, wobei die Substrate auf einer Temperatur gehal-
00026	ten werden, die niedriger ist, als die Temperatur der
00027	sich in der Gasphase befindlichen Moleküle.
00028	
00029	VPD-Verfahren (Vapor Phase Deposition) werden zur Ab-
00030	scheidung unterschiedlicher Materialien aus der Gaspha-
00031	se verwendet. Auch im Bereich der Abscheidung von orga-
00032	nischen Schichten hat sich dieses Verfahren durchge-
00033	setzt. Das VPD-Verfahren wird mit unterschiedlichen
00034.	Reaktorkonzepten kontrolliert, z.B.:
00035	

BESTÄTIGUNGSKOPIE

00036	Horizontale Rohrreaktoren, in denen die Gasströmung
00037	horizontal und parallel zur Beschichtungsoberfläche
00038	verläuft, (den klassischen VPE Reaktoren entlehnt). Zur
00039	Vermeidung von Effizienz reduzierender Wandkondensation
00040	werden die Reaktoren als Heißwandsystem ausgelegt.
00041	meracar and membranes recorded adapting.
00042	Dieses Verfahren bzw. diese bekannte Vorrichtung wird
00043	zur Beschichtung von meist flachen und nicht variablen
00044	Substratgeometrien eingesetzt.
00045	
00046	Die Nachteile liegen in
00047	a) der verfahrenstechnischen und geometrischen Verkop-
00048	pelung der Prekursor-Sublimation und deren Einlei-
00049	tung,
00050	b) der Verwendung von Reaktorgeometrien mit großer
00051	Systemoberfläche im Verhältnis zur Beschichtungs-
00052	oberfläche, d.h. hydrodynamisch geht eine große
00053	Menge von Prekursoren der Beschichtung auf dem
00054	Substrat verloren
00055	c) aus b) folgend teuerer Heißwandtechnik.
00056	
00057	In Aufdampfanlagen, deren Verfahrensprinzip der Konden-
00058	sation entspricht, sind die Quellmaterialien im System
00059	integriert, d.h. der Quellenstrom ist zeitlich nicht
00060	kontrollierbar. Er kann nicht schlagartig an- oder
00061	abgeschaltet werden. Die zeitliche Kontrolle geschieht
00062	hier über die Steuerung der Verdampfungsenergie (E-Beam
00063	oder Widerstandsheizung). Ferner sind die Systeme nicht
00064	als Heißwandsysteme ausgebildet, so dass ein wesentli-
00065	cher Anteil der Materialien an den Systemwänden und
00066	Komponenten Effizienz mindernd kondensiert.
00067	\cdot .
83000	Die Nachteile dieser Technik liegen auch in der schlech-
00069	ten Kontrollierbarkeit von Stöchiometrie oder von schar-
0.0070	fen Übergängen für Mehrschichtanforderungen.

00071	Im CVD System sind die Quellen individuell zeitlich und
00072	in der Menge präzise kontrollierbar, jedoch ist der
00073	Transport aus einer Quelle nicht das Prinzip der Subli-
00074	mation, sondern das der Verdampfung. In diesen CVD-Sys-
00075	temen ist das Beschichtungsverfahren nicht Kondensati-
00076	on, sondern kinetisch oder diffusionslimitiertes Wachs-
00077	tum (chemische Reaktion). Diese Verfahren und Vorrich-
00078	tungen werden zur Beschichtung von meist flachen und
00079	nicht variablen Substratgeometrien eingesetzt.
08000	
00081	Alternative Verfahren sind Spin on oder OMBD.
00082	
00083	Die oben beschriebenen Verfahren und Vorrichtungen
00084	erfüllen in einer oder mehreren Eigenschaften nicht die
00085	Anforderung zur Herstellung der beispielhaft aufgeführ-
00086	ten Schichtsysteme im Hinblick auf präzise Kontrolle
00087	der Stöichiometrie und Mehrschichtanforderung sowie der
88000	Wirtschaftlichkeit.
00089	
00090	Der Erfindung liegt die Aufgabe zugrunde, das gattungs-
00091	gemäße Verfahren dahingehend zu verbessern, dass die
00092	Parameter individualisierter vorgebbar sind, dass die
00093	Effizienz erhöht ist, und die Qualität der auf dem Sub-
00094	strat kondensierten Schichten zu erhöhen.
00095	
00096	Gelöst wird die Aufgabe durch die in den Ansprüchen
00097	angegebene Erfindung. Die Unteransprüche stellen vor-
00098	teilhafte Weiterbildungen der Erfindung dar.
00099	
00100	Die Verwendung einer Kombination von spezieller Prekur-
00101	sorsublimation, Verdampfung, Gaseinlassgeometrie und
00102	Reaktorgeometrie für das Beschichtungsverfahren verbes-
00103	sert die Kontrolle und Wirtschaftlichkeit des Verfah-
00104	rens zur Kondensationsbeschichtung ausgehend von festen
00105	Prekursoren. Dabei werden die Prekursoren individuell

4

00100	und ausernato der Reaktionskammer sublimitert bzw. Ver-
00107	dampft. Diese Ausgangsstoffe können auf dem Substrat
00108	selektiv kondensieren. Mittels einer dem Substrat zuge-
00109	ordneten Maske kann eine Strukturierung erfolgen. Die
00110	Maske kann auf dem Substrat befestigt werden.
00111	
00112	Allen Reaktorkonzepten gemein ist, dass die Art der
00113	Prekursor-Sublimation nach deren Gaseinspeisung in das
00114	Reaktionsgefäß dabei maßgeblich die Gasphasenchemie der
00115	Elementsubstanzen als auch deren Transportverhalten
00116	bestimmt und damit die Eigenschaften der abgeschiedenen
00117	Schichten, d.h. die Art der Gaseinspeisung dominiert
00118	die Verfahrenskontrolle.
00119	
00120	Diese Eigenschaften sind z.B. (d.h. frei von Fremdato-
00121	men/Stoffen), Partikel und/oder Defektdichte, Zusammen-
00122	setzung im Mehrstoffsystem, optische und elektrische
00123	Eigenschaften der Schichten sowie Effizienz der Deposi-
00124	tion. Die nach Stand der Technik eingesetzten Gasein-
00125	lassgeometrien erfüllen entweder nur die hydrodynami-
00126	sche oder die thermodynamische Aufgabenstellung.
00127	
00128	Oft erfolgt eine ungewollte Deposition im Bereich der
00129	Einlassgeometrie. Diese entsteht dann, wenn im Ein-
00130	lassbereich entweder zu hohe (d.h. kinetisch limitierte
00131	Deposition) oder zu kalte Oberflächentemperaturen (d.h.
00132	Kondensation oder Thermophorese) sich einstellen, oder
00133	eine Durchmischung der Gase innerhalb der Zone der
00134	Einleitung oder innerhalb der Kammer durch Strömung
00135	und/oder Diffusion auftritt (Nukleation = homogene
00136	Gasphasenreaktion). Die parasitäre Belegung hat dann
00137	zur Folge, dass sich die Eigenschaften (thermisch
00138	und/oder chemisch) des Gaseinlasses im Laufe des Prozes
00139	ses ändern, so dass die Kontrolle über eine kontinuier-
00140	liche und gleichmäßige Abscheidung nicht gewährleistet

BNSDOCID: <WO 0161071A2_1_>

00141	ist. Die parasitären Ablagerungen führen zu einer Ver-
00142	schleppung einzelner Komponenten in die nachfolgenden
00143	Schichten hinein. Ferner reduziert diese Belegung die
00144	Effizienz der Elemente, besonders wenn die Einlassgeo-
00145	metrie eine im Vergleich zur Nutzfläche und große Ober-
00146	fläche aufweist.
00147	
00148	Weiterhin ist die Gaseinlasseinheit typisch so gestal-
00149	tet, dass die effektive Trennung der Gase, die die
00150	thermisch unterschiedlichen Eigenschaften der Prekurso-
00151	ren erfordert, nicht gewährleistet ist. Die Folge sind
00152	unerwünschte Reaktionen einiger Gase in der Gasphase
00153	miteinander (d.h. Nukleation), welche die Eigenschaft
00154	der abzuscheidenden Schicht negativ beeinflusst, z.B.
00155	Partikel oder Kontamination. Die Nukleation reduziert
00156	die Materialeffizienz und führt zur Kontamination der
00157	Schicht mit diesen Verbindungen.
00158	
00159	Um die oben aufgeführten Nachteile zu reduzieren, wer-
00160	den heutige Gaseinlässe typischerweise prozesstechnisch
00161	weit von den zu beschichtenden Oberflächen entfernt
00162	angeordnet, d.h. entweder räumlich oder durch Wahl der
00163	Prozessparameter (z.B. sehr niedrigen Druck bzw. große
00164	Reynold Zahlen). Die derzeit bekannten Reaktoren zeich-
00165	nen sich daher durch eine niedrige Effizienz (deutlich
00166	kleiner als 25%), d.h. nur ein geringer Anteil der
00167	eingeleiteten Elemente deponieren in der brauchbaren
00168	funktionalen Schicht.
00169	
00170	Somit sind die Schichteigenschaften, hergestellt mit
00171	solchen Systemen, nicht optimal und auch die Wirtschaft
00172	lichkeit solcher Systeme ist nur gering.
00173	
00174	Zur Sublimation der festen Prekursoren werden überlich-

00175 erweise Verdampferquellen verwendet, die durch die Wahl

WO 01/61071 PCT/EP01/01698

6

OOT 10	des Benaiterdrucks und Temperatur das Quellenmaterial
00177	aus der festen Phase direkt gasförmig zur Verfügung
00178	stellen, d.h. sublimieren. Ist der Dampfdruck des Quel-
00179	lenmaterials sehr niedrig, werden hohe Temperaturen
00180	erforderlich. Nach heutigem Stand der Technik werden
00181	daher einige Prekursoren in Booten in den Reaktor einge
00182	führt. In den verwendeten Heißwandsystemen wird die
00183	Temperatur der Reaktoren so über die Baulänge profi-
00184	liert, dass die erforderliche Sublimationstemperatur je
00185	Prekursor in je einer Zone eingestellt wird. Nachteil
00186	dieses Aufbaus sind ungenaue Einstellung der optimalen
00187	Sublimationstemperatur, große Volumina der Verdampfer-
00188	Einrichtung, nicht getrennte Druckeinstellung je Prekur
00189	sor verschieden und unabhängig vom Reaktor-Prozess-
00190	druck, nicht flexible und individuelle Temperaturen-
00191	einstellung je Prekursor. Gravierendster Nachteil je-
00192	doch ist der zeitlich nicht gesteuerte Quellenstrom, da
00193	diese Verdampferquellen offen zur Beschichtungszone
00194	wirken.
00195	
00196	Die hier vorgestellte technische Lehre soll alle oben
00197	genannten Nachteile beheben und stellt je nach Anwen-
00198	dungsanforderung die geeigneten Verfahren und Vorrich-
00199	tungen zur Verfügung.
00200	
00201	Die Sublimationsvorrichtung der Ausgangsstoffe (Prekur-
00202	soren) ist geometrisch vom Reaktor getrennt und je
00203	Prekursor einzeln ausgeführt. Damit kann flexible und
00204	optimiert die Transportmenge je Prekursor kontrolliert
00205	und gesteuert werden. Jeder Prekursor ist individuell,
00206	zeitlich präzise steuerbar, und zudem unabhängig von
00207	Reaktorparametern.
00208	
00209	Die Einlassgeometrie sichert minimale Kammeroberfläche
00210	im Verhältnis zur Beschichtungsoberfläche (nahe 1:1)

WO 01/61071 PCT/EP01/01698

7

00211 und damit maximierte Effizienz des Verfahrens. Die

00212	Ausgestaltung der Geometrie des Einlasses vermeidet im
00213	Grundsatz Reaktionen zwischen den Prekursoren als auch
00214	parasitäre Belegung an der Oberfläche des Einlasses
00215	selber.
00216	
00217	Die Ausgestaltung der Einlassgeometrie der Prekursoren
00218	in Verbindung mit der Reaktorgeometrie sichert homogene
00219	Verteilung aller Materialien mit zeitlich präziser
00220	Kontrolle.
00221	
00222	Die erzielten Beschichtungen zeichnen sich dabei durch
00223	eine Homogenität der Zusammensetzung, Sichtdicke und
00224	Dotierung im Bereich von 1% aus. Weiterhin können mit
00225	der Apparatur und dem Verfahren Übergänge im Material
00226	und Dotierstoffprofile präzise und reproduzierbar einge-
00227	stellt werden. Die Bildung von Partikel ist durch die
00228	Erfindung vermieden.
00229	
00230	Der Ort der Sublimation der Ausgangsstoffe (Prekurso-
00231	ren) ist getrennt von der Reaktorkammer ausgeführt.
00232	Dabei ist die Anordnung so gewählt, dass der Ausgangs-
00233	stoff mit minimaler Transiente in den Gaseinlass ge-
00234	führt wird. Hierzu wird in einem Beschichtungssystem
00235	der Ausgangsstoff-Behälter in ummittelbarer Nähe z.B.
00236	auf den Reaktordeckel platziert. Ein kurzer Rohrweg
00237	leitet das Material unmittelbar in die Gaseinlassein-
00238	heit.
00239	
00240	Der Tank für die Ausgangsstoffe wird eigens und unabhän
00241	gig von der Reaktortemperatur geheizt. Dazu wird entwe-
00242	der eine Widerstandsheizung um den Tank genutzt, oder
00243	in einem Hohlmantel um den Tank thermostatisierte Flüs-
00244	sigkeit gepumpt.
00245	

00246	Der Druck im Tank kann mit einem Regelventil an der
00247	Ausgangsseite des Tanks einzeln und unabhängig vom
00248	Reaktor geregelt werden. Das Regelventil ist beheizt
00249	und stellt im Verlauf des Materialweges einen positiven
00250	Temperaturgradienten zur Vermeidung von lokaler Konden-
00251	sation sicher.
00252	
00253	Der Transport des sublimierten Ausgangsstoffes zum Reak
00254	tor wird mittels eines Gasflusses unterstützt. Dieses
00255	Gas wird auch zur Einstellung einer Prekursorkonzentra-
00256	tion in der Zuleitung verwendet.
00257	
00258	Zur zeitlichen Kontrolle der Leitung der Ausgangsstoffe
00259	in den Reaktor wird das Druckventil und der Massenfluss
00260	regler geregelt, d.h. schließt das Drosselventil voll-
00261	ståndig, wird der Massenfluss auf 0 gesetzt.
00262	
00263	Diese Anordnung kann auf dem Reaktor in vielfacher
00264	Weise wiederholt werden, so dass jedes Material unabhän
00265	gig voneinander geregelt wird.
00266	
00267	Der Gaseinlass wird gegenüber dem Substrat im Reaktor
00268	als eine Anordnung von vielen Düsen (im Folgenden Show-
00269	erhead) aus einer Fläche ausgeführt, im Folgenden Ple-
00270	num benannt. Die Düsen sind so dimensioniert, dass sie
00271	entsprechend der Prekursoreigenschaft, wie Viskosität,
00272	Masse und Konzentration eine turbulenzfreie Injektion
00273	in die Kammer gewährleisten.
00274	
00275	Der Abstand von Düse zu Düse ist im Verhältnis des
00276	Abstands zum Gaseinlass optimiert, d.h. die aus den
00277	Düsen austretende "Strahlen" (Jets) sind von der Sub-
00278	stratoberfläche abgeklungen und bilden im Gesamten eine
00279	homogene Strömungsebene.
00280	

00281	Die Düsen können einzeln oder gesamt in beliebigem
00282	Winkel in der Gaseinlassoberfläche ausgeführt werden,
00283	um die Transportverteilung der Ausgangsstoffe homogen
00284	für die Form des Substrats zu kontrollieren.
00285	
00286	Die Ebene in der die Düsen zur Injektion der Ausgangs-
00287	stoffe eingebracht sind, kann plan sein für die Be-
00288	schichtung von planen Substraten und auch Folien oder
00289	gewölbt für nicht ebene, d.h. vorgeformte Substrate.
00290	
00291	Das gesamte Plenum wird aktiv mittels Kühlmittel in
00292	einem Hohlwandaufbau oder mittels einer elektrischen
00293	Heizung (Widerstandsheizung, Peltier), so thermisch
00294	kontrolliert, dass ein positiver Temperaturgradient
00295	gegenüber der Sublimationstemperatur eingestellt wird.
00296	
00297	In das Innenvolumen des Plenums wird der sublimierte
00298	Ausgangsstoff über eine sehr kurze temperierte Leitung
00299	injiziert.
00300	
00301	Zur Einstellung der optimierten hydrodynamischen Bedin-
00302	gungen an den Düsen wird zusätzlich zu den Ausgangsstof
00303	fen über eine weitere Zuleitung Trägergas eingestellt.
00304	
00305	Dieses Gas sichert ferner eine schnelle Spülung des
00306	Plenums zum zeitlich kontrollierten An- und Abschalten
00307	des Prekursors in die Kammer.
00308	
00309	Die beschriebene Anordnung wird für die Mehrstoffanwen-
00310	dung konsequent je Prekursor ausgeführt. Dabei wird
00311	unter Nutzung der "closed coupled showerhead"-Technik
00312	die separate Injektion je Prekursor gesichert. Durch
00313	eine individuelle Heizung jedes Plenums wird jeder
00314	Ausgangsstoff entlang eines positiven Temperaturgradien
00315	ten zur Vermeidung von parasitärer Kondensation kompa-

00316	riert. D	ie Düsen sind so dimensioniert und zueinander
00317	angeordne	et, dass keine lokale Mischung der Prekursor an
00318	den Düser	n entsteht. Die Anordnung der Pleni in Ebenen
00319	wird so	gewählt, dass die längeren Düsen im thermischen
00320	Kontakt r	nit den folgenden Pleni einen positiven Tempera
00321	turgradie	enten zur Vermeidung der Kondensation dieses
00322	Prekurson	rs erhält.
00323		
00324	Als Ausga	angsstoffe kommen insbesondere solche Salze in
00325	Betracht	, die das US-Patent 5,554,220 beschreibt. Diese
00326	Salze wer	rden in Verdampfern sublimiert. Die Verdampfer
00327	können da	abei insbesondere eine Gestalt aufweisen, wie
00328	sie die d	deutsche Patentanmeldung DE 100 48 759 be-
00329	schreibt	. Dort wird das Gas unterhalb einer Fritte, auf
00330	der sich	das Salz in Form einer Schüttung befindet, dem
00331	Verdampf	er zugeleitet. Oberhalb der Fritte bzw. der
00332	Schüttung	g wird das mit dem gasförmigen Ausgangsstoff
00333	gesättig	te Gas abgeleitet. Durch eine entsprechend
00334	höhere Te	emperatur der stromabwärts liegenden Rohre oder
00335	durch Ve	rdünnung wird der Partialdruck des Ausgangsstof
00336	fes unte	rhalb seines Sättigungspartialdruckes gehalten,
00337	so dass	eine Kondensation vermieden ist.
00338		
00339	Ausführu	ngsbeispiele der Erfindung werden nachfolgend
00340	anhand b	eigefügter Zeichnungen erläutert. Es zeigen:
00341		
00342	Figur 1	in grobschematischer Darstellung eine Vorrich-
00343		tung gemäß der Erfindung,
00344		
00345	Figur 2	ebenfalls in grobschematischer Darstellung
00346	•	eine Gaseinlasseinheit, welche in einer Vor-
00347		richtung gemäß Figur 1 Verwendung finden kann,
00348		
00349	Figur 3	einen Schnitt gemäß der Linie III-III durch
00350		dia Camainlaggainhait

00351	Figur 4 einen Schnitt gemäß der Linie IV-IV durch die
00352	Gaseinlasseinheit,
00353	
00354	Figur 5 ein zweites Ausführungsbeispiel einer Vorrich-
00355	tung in einer grobschematischen Darstellung,
00356	
00357	Figur 6 ein zweites Ausführungsbeispiel der Gaseinlass
00358	einheit,
00359	
00360	Figur 7 eine Erläuterungshilfe für die Prozessparame-
00361	ter, und
00362	
00363	Figur 8 in schematischer Darstellung eine Quelle für
00364	einen Ausgangsstoff.
00365	
00366	Die in den Figuren 1 und 5 dargestellten Vorrichtungen
00367	besitzen jeweils zwei temperierte Behälter 5, 5'. Bei
00368	der in Figur 1 dargestellten Vorrichtung sind diese
00369	Behälter unmittelbar auf dem Deckel 14 des Reaktors 10
00370	angeordnet. Bei dem in Figur 5 dargestellten Ausfüh-
00371	rungsbeispiel sind die beiden Behälter 5, 5' etwas
00372	entfernt vom Reaktor 10 angeordnet. In den Behältern 5,
00373	5' befinden sich Tanks 1, 3. Diese Tanks wirken als
00374	Quelle für die Ausgangsstoffe. In den Tanks 1, 3 befin-
00375	den sich flüssige Ausgangsstoffe 2, 4. Die Ausgangsstof
00376	fe können auch fest sein. Im Innern der temperierten
00377	Behälter 5, 5' herrscht eine derartige Temperatur, dass
00378	die in den Tanks 1, 3 befindlichen Ausgangsstoffe 2, 4
00379	verdampfen. Die Verdampfungsrate lässt sich über die
00380	Temperatur beeinflussen. In dem Behälter 5 sind im
00381	Ausführungsbeispiel drei Quellen und im Behälter 5'
00382	sind ebenfalls drei Quellen angeordnet. Die beiden
00383	Behälter 5, 5' können auf unterschiedlichen Temperatu-
00384	ren gehalten werden.
00205	

WO 01/61071 PCT/EP01/01698

12

00386 In jeden der beiden Behälter 5, 5' führt eine Trägergas-00387 leitung, um ein Trägergas 35 zu leiten. In die Träger-00388 gasleitung münden je Quelle eine Ableitung für die aus 00389 den Tanks 1, 3 heraustretenden gasförmigen Ausgangsstof-00390 fe. Die Tanks 1, 3 sind mittels hitzebeständiger Venti-00391 le, insbesondere Regelventile 34, die auch selbst be-00392 heizt sein können, verschließbar und öffenbar. Die 00393 Leitungen 6, 7, durch welche das Trägergas und die vom 00394 Trägergas transportierten Reaktionsgase strömen, münden 00395 beim Ausführungsbeispiel der Figur 1 direkt in den 00396 Reaktor. Beim Ausführungsbeispiel gemäß der Figur 5 00397 verlaufen die beiden Leitungen 6, 7 über eine freie 00398 Strecke, wo sie mittels temperierter Mäntel 8, 9 auf 00399 einer Temperatur gehalten werden, die gleich oder grö-00400 ßer ist, als die Temperatur in den Behältern 5, 5'. Die 00401 Leitungen 6, 7 münden in den Reaktor. Die Dosierung der 00402 Reaktionsgase erfolgt über die Temperatur der Behälter 00403 5, 5' bzw. die Regelventile 34. 00404 00405 Im Bereich der Mündung der Leitungen 6, 7 besitzt der 00406 Reaktordeckel 14 eine Temperatur, die größer ist, als 00407 die Temperatur in den temperierten Behältern 5, 5'. Die 00408 Leitungen 6, 7 münden nicht unmittelbar in die Reakti-00409 onskammer 11, sondern zunächst in eine in der Reaktions-00410 kammer, um einen Spalt 29 vom Reaktordeckel 14 beabstan-00411 dete Gaseinlasseinheit 15. Eine typisch gestaltete 00412 Gaseinlasseinheit zeigen die Figur 2 und 6. 00413 00414 Die Gaseinlasseinheit 15 befindet sich unmittelbar 00415 oberhalb des Substrates 12. Zwischen dem Substrat 12 00416 und der Bodenplatte 17 der Gaseinlasseinheit 15 befin-00417 det sich die Reaktionskammer. Das Substrat 12 liegt auf 00418 einem Suszeptor 13, welcher gekühlt ist. Die Temperatur 00419 des Suszeptors wird geregelt. Hierzu kann der Suszeptor 00420 mit Pelletierelementen versehen sein. Es ist aber auch

WO 01/61071 PCT/EP01/01698

13

möglich, wie in Figur 1 dargestellt, dass der Suszeptor 00421 13 innen eine Hohlkammer 41 besitzt, die mittels Spül-00422 leitungen 40 mit einer Kühlflüssigkeit gespült wird, so 00423 dass damit die Temperatur des Suszeptors 13 auf einer 00424 Temperatur gehalten werden kann, die geringer ist, als 00425 die Temperatur der Gaseinlasseinheit 15. 00426 00427 Diese Temperatur ist auch geringer, als die Temperatur 00428 der Reaktorwände 37. Die Temperatur der Gaseinlassein-00429 heit 15 liegt oberhalb der Kondensationstemperatur der 00430 gasförmig in die Gaseinlasseinheit 15 gebrachten Aus-00431 gangsstoffe 2, 4. Da auch die Temperatur der Reaktorwän-00432 de 37 höher ist, als die Kondensationstemperatur, kon-00433 densieren die aus der Gaseinlasseinheit 15 austretenden 00434 Moleküle ausschließlich auf dem auf dem Suszeptor 13 00435 00436 aufliegenden Substrat 12. 00437 Bei den in den Figuren 2 bzw. 6 dargestellten Gaseinlas-00438 seinheiten 15 handelt es sich jeweils um einen sogenann-00439 ten, an sich bekannten "Showerhead". Das Ausführungsbei-00440 spiel der Figur 2 zeigt einen Showerhead mit insgesamt 00441 00442 zwei voneinander getrennten Volumen 22, 23. Die Volumen sind mittels einer Zwischenplatte 18 gegeneinander und 00443 mittels einer Deckplatte 16 bzw. einer Bodenplatte 17 00444 gegenüber der Reaktionskammer 11 abgegrenzt. Der "Show-00445 erhead" gemäß Figur 6 besitzt dagegen nur eine Kammer. 00446 Dieses Volumen 22 wird begrenzt von der Bodenplatte 17, 00447 00448 einem Ring 33 und der Deckplatte 16. In die Deckplatte 16 münden die bereits erwähnten Rohrleitungen 6, 7 für 00449 00450 die beiden Ausgangsstoffe. Beim Ausführungsbeispiel gemäß Figur 6 ist nur eine Rohrleitung 6 erforderlich. 00451 Die Rohrleitungen 6 bzw. 7 münden in sternförmig radial 00452 verlaufende Kanäle 21 bzw. 20, die in der Deckplatte 16 00453 angeordnet sind. Nach einer Umleitung im Randbereich 00454 des im Wesentlichen zylinderförmigen Körpers der Gasein-00455

00456	lasseinheit 15 münden die Kanäle 20 bzw. 21 in radial
00457	außen liegende Mündungstrichter 27 bzw. 28, die sich an
00458	der äußeren Peripherie der zylinderförmigen Volumina
00459	22, 23 befinden. Die aus den Mündungstrichtern 27, 28
00460	austretenden Gase verteilen sich in den Volumina 22, 23
00461	gleichmäßig.
00462	
00463	Die in einem Mehrkammer-Showerhead vorgesehene Zwischen-
00464	platte 18 besitzt Öffnungen, von welchen Röhrchen 24
00465	ausgehen, die das Volumen 23 durchragen und mit der
00466	Bodenplatte 17 derart verbunden sind, dass das im Volu-
00467	men 22 befindliche Gas nicht in Kontakt tritt, mit dem
00468	im Volumen 23 befindlichen Gas. In der Bodenplatte 17
00469	befinden sich abwechselnd zu den Öffnungen 26 der Röhr-
00470	chen 24 Öffnungen 25, aus welchen das in dem Volumen 23
00471	befindliche Gas austreten kann.
00472	
00473	Die in den Volumen 22, 23 befindlichen Gase treten
00474	durch die düsenartig ausgebildeten Öffnungen 25, 26 in
00475	einem homogenen Strömungsfeld aus.
00476	
00477	Aus den Öffnungen 25, 26 treten die Gase turbulent aus.
00478	Sie formen jeweils einen Strahl, so dass sich die aus
00479	nebeneinander liegenden Öffnungen 25, 26 austretenden
00480	Gasströme erst unmittelbar oberhalb des Substrates 12
00481	innerhalb der in der Figur 6 mit d bezeichneten Grenz-
00482	schicht mischen. Oberhalb der Grenzschicht d verlaufen
00483	die Strahlen 36 im Wesentlichen parallel zueinander,
00484	ohne dass zwischen ihnen eine nennenswerte Durchmischung
00485	stattfindet. Im Abstand d ist eine nahezu homogene
00486	Gasfront ausgebildet.
00487	
00488	Bei dem in Figur 2 dargestellten Ausführungsbeispiel
00489	sind die beiden Volumina 22, 23 unabhängig voneinander
00490	thermostatierbar. Bei dem in Figur 6 dargestellten

Ausführungsbeispiel ist das einzige Volumen 22 thermos-00491 00492 tatierbar. Um die Volumina 22, 23 auf eine voreinge-00493 stellte Temperatur zu regeln, die größer ist, als die 00494 Temperatur der Behälter 5, 5' und erheblich größer, als 00495 die Temperatur des Suszeptors 13, sind Heizwendel 30, 00496 32 vorgesehen. Anstelle der Heizwendel 30, 32 ist es aber auch denkbar, Kanäle in die Platten 17, 18, 16 00497 00498 einzubringen, und diese von einer temperierten Flüssigkeit durchströmen zu lassen. 00499 00500 00501 Der Ring 33 kann in einer ähnlichen Weise beheizt wer-00502 den. Dem Ring können in geeigneter Weise Heizwendel 00503 angeordnet sein. Er kann aber auch mit entsprechend 00504 temperierten Flüssigkeiten auf Temperatur gehalten 00505 werden. 00506 00507 Beim Ausführungsbeispiel befindet sich unterhalb der Deckplatte 16 eine Heizplatte 31. Der Figur 3 ist zu 00508 00509 entnehmen, dass in der Heizplatte 31 mäanderförmig eine 00510 Heizwendel 33 eingebracht ist. Auch die Deckplatte der 00511 Gaseinlasseinheit 15 der Figur 6 kann beheizt sein. 00512 00513 Auch in die Bodenplatte 17 ist eine Heizwendel 33 mäan-00514 derförmig eingebracht. (vgl. Fig. 4) 00515 00516 Als Ausgangsstoffe für die Beschichtung können solche 00517 Salze verwendet werden, wie das US-Patent 5,554,220 00518 beschreibt. Diese Salze werden in Tanks sublimiert, 00519 indem den Tanks ein Trägergas zugeleitet wird, welches 00520 durch eine Schüttung der Salze strömt. Ein derartiger 00521 Verdampfer wird in der DE 100 48 759.9 beschrieben. 00522 00523 Die Figur 8 zeigt ferner exemplarisch einen Verdampfer für eine Flüssigkeit. Ein Trägergas 42 wird durch ein 00524 00525 Dreiwegeventil über eine Zuleitung in den flüssigen

00526 oder festen Ausgangsstoff 2 eingeleitet. Es durchströmt

dann den Ausgangsstoff 2, um durch die Austrittsleitung

00528 und das geheizte Ventil 34 den Tank 1 zu verlassen. 00529 Über eine Rohrleitung 6 wird es mittels des Trägergases 00530 35 der Gaseinlasseinheit 15 zugeführt. Die Spülung des Tanks mit dem Trägergas 42 kann mittels des Dreiwegeven-00531 tiles an- und abgeschaltet werden. Im abgeschalteten 00532 Zustand strömt das Trägergas 42 durch eine Bypasslei-00533 tung 44 direkt in die Ableitung bzw. die Rohrleitung 6. 00534 Der Gasfluss 42 und der Gasfluss 35 sind massenflussge-00535 regelt. Um den Massenfluss 42 beim Umschalten des Drei-00536 wegeventiles 43 nicht zu beeinflussen, kann die Bypass-00537 leitung 44 den selben Strömungswiderstand besitzen, wie 00538 00539 der gesamte Tank 1. 00540 Jeder der in den Figuren 1 bzw. 5 angedeutete Tank 1, 3 00541 kann eine Gestaltung und eine Beschaltung haben, wie 00542 sie in Figur 8 dargestellt ist oder wie sie in der 00543 00544 DE 100 48 759.9 beschrieben wird. 00545 Zufolge der Verdünnung die durch das Trägergas 35 er-00546 zielt ist, sinkt der Partialdruck des Ausgangsstoffes 2 00547 bzw. des Ausgangsstoffes 3 innerhalb des den Tanks 1, 3 00548 folgenden Rohrleitungssystems bzw. der Gaseinlassein-00549 heit 15. Diese Verdünnung hat zur Folge, dass die Tempe-00550 ratur in diesen nachfolgenden Rohrabschnitten 6, 7 bzw. 00551 in der Gaseinlasseinheit 15 geringer sein kann, als die 00552 Temperatur in den Behältern 5, 5', ohne dass eine Kon-00553 densation eintritt, da die Temperatur immer noch so 00554 hoch ist, dass der Partialdruck der einzelnen Ausgangs-00555 stoffe unterhalb ihres Sättigungsdampfdruckes liegt. 00556 00557 00558 Mittels eines oder mehrerer Sensoren 38; die insbesonde-00559 re außerhalb der Reaktorwand angeordnet sind und die

00560	über einen Kanal 39 mit der Reaktionskammer 11 verbun-
00561	den sind, kann die Substrattemperatur gemessen werden.
00562	
00563	Das in dem Spalt 29 eingeleitete Gas kann durch Wahl
00564	einer geeigneten Zusammensetzung in seiner Wärmeleitfä-
00565	higkeit variiert werden. Durch die Wahl der Gaszusammen
00566	setzung kann demnach der Wärmetransport von oder zur
00567	Gaseinlasseinheit 15 eingestellt werden. Auch auf diese
00568	Weise lässt sich die Temperatur beeinflussen.
00569	
00570	Alle offenbarten Merkmale sind (für sich) erfindungswe-
00571	sentlich. In die Offenbarung der Ammeldung wird hiermit
00572	auch der Offenbarungsinhalt der zugehörigen/beigefügten
00573	Prioritätsunterlagen (Abschrift der Voranmeldung) voll-
00574	inhaltlich mit einbezogen, auch zu dem Zweck, Merkmale
00575	dieser Unterlagen in Ansprüche vorliegender Anmeldung
00576	mit aufzunehmen.

00577 <u>ANSPRÜCHE</u>

00578

- 00579 1. Verfahren zum Beschichten von Substraten, bei dem
- 00580 wenigstens eine Schicht mittels eines Kondensationsver-
- 00581 fahrens auf das wenigstens eine Substrat aufgebracht
- 00582 wird, und bei dem für wenigstens einen Teil der Reakti-
- 00583 onsgase feste und/oder flüssige Ausgangsstoffe und
- 00584 insbesondere wenigstens eine Sublimationsquelle verwen-
- 00585 det werden, gekennzeichnet durch eine Konzentrations-/
- 00586 und/oder Temperatursteuerung der Reaktionsgase zwischen
- 00587 der Quelle (1, 3) und dem Substrat (12), durch die eine
- 00588 Kondensation der Reaktionsgase vor dem oder den Substra-
- 00589 ten vermieden wird.

00590

- 00591 2. Verfahren nach Anspruch 1 oder insbesondere danach,
- 00592 dadurch gekennzeichnet, dass eine Gaseinlasseinheit
- 00593 (15) mit einer Einlassgeometrie verwendet wird, die für
- 00594 eine Trennung der Gase zur Unterdrückung einer paras-
- 00595 itären Gasphasenreaktion sorgt.

00596

- 00597 3. Verfahren nach einem oder mehreren der vorhergehen-
- 00598 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00599 zeichnet, dass die Quellen (1, 3) auf unterschiedlichen
- 00600 Temperaturen gehalten werden.

00601

- 00602 4. Verfahren nach einem oder mehreren der vorhergehen-
- 00603 den Ansprüche oder insbesondere danach, gekennzeichnet
- 00604 durch die Verwendung mehrerer Injektionsanordnungen
- 00605 (25, 26).

- 00607 5. Verfahren nach einem oder mehreren der vorhergehen-
- 00608 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00609 zeichnet, dass zur Minimierung der parasitären Deposi-
- 00610 tion und damit der Verluste aus der Gasphase die einzel-

00611 nen Reaktionsgase ohne Strömungsüberlappung injiziert 00612 werden.

00613

- 00614 6. Verfahren nach einem oder mehreren der vorhergehen-
- 00615 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00616 zeichnet, dass die Austrittsgeschwindigkeit der Gase
- 00617 aus den einzelnen Injektionsdüsen sowie Injektionsberei-
- 00618 chen so gewählt sind, dass lokale Bernoulli-Effekte
- 00619 vermieden werden.

00620

- 00621 7. Verfahren nach einem oder mehreren der vorhergehen-
- 00622 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00623 zeichnet, dass der Druck in dem oder den Tanks (1, 3)
- 00624 der Ausgangsstoffe jeweils mittels Inertgasspülung (35)
- 00625 und Regelventil (34) unabhängig vom Druck in der Reak-
- 00626 torkammer (11) geregelt wird.

00627

- 00628 8. Vorrichtung zur Kondensationsbeschichtung mit
- 00629 einer Reaktionskammer (11),
- 00630 wenigstens einem Suszeptor (13) und
- 00631 einem Gaszuführungssystem (5, 5') mit wenigstens
- 00632 einer Quelle (1, 3) für die Ausgangsstoffe,
- 00633 dadurch gekennzeichnet, dass die Quellen (1, 3) Reser-
- 00634 voire, der oder die Suszeptoren (13), die Reaktorwände
- 00635 und die Gaseinlasseinheit separat derart thermostati-
- 00636 sierbar sind, dass die Reaktorwände (37) die Gaseinlass-
- 00637 einheit (15) und die Prekursorreservoire (1, 3) auf
- 00638 jeweils höhere Temperaturen als ein Substrat (12) auf
- 00639 dem Suszeptor (13) regelbar sind.

- 00641 9. Vorrichtung nach einem oder mehreren der vorhergehen-
- 00642 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00643 zeichnet, dass die Quellen (1, 3) getrennt thermostati-
- 00644 sierbar sind, so dass ein positiver Temperaturgradient
- 00645 zu allen Kammer-, und Einlass-Oberflächen einstellbar

ist, und dass über Druck und Temperatur die Transport-00646 00647 menge der gasförmigen Ausgangsstoffe kontrollierbar ist. 00648 00649 10. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch 00650 00651 gekennzeichnet, dass die Thermostatisierung eines oder 00652 aller Reservoire (1, 3) mittels einer Flüssigkeit oder elektrisch aktiven Komponenten ausgeführt ist. 00653 00654 00655 11. Vorrichtung nach einem oder mehreren der vorherge-00656 henden Ansprüche oder insbesondere danach, dadurch 00657 gekennzeichnet, dass die Heizung derart ausgelegt ist, dass eine Reinigung eines Reservoirs durch gegenüber 00658 00659 Prozesstemperatur erhöhte Temperatur möglich ist. 00660 00661 12. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch 00662 gekennzeichnet, dass die Gaseinlasseinheit (15) als 00663 Ein- oder Mehrkammer-Showerhead mit einem oder mehreren 00664 separaten Pleni (Volumen 22, 23) ausgebildet ist. 00665 00666 00667 13. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch 00668 00669 gekennzeichnet, dass als Trägergas Ar, H2, N2, He ein-00670 zeln oder gemischt eingesetzt wird. 00671 00672 14. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch 00673 gekennzeichnet, dass ein gasförmiger Ausgangsstoff je 00674 00675 Plenum (22, 23) separat über Düsen (25, 26) in die 00676 Reaktorkammer (11) einleitbar ist, so dass sich die 00677 Quellmaterialien erst nach Austritt aus dem Gaseinlass

insbesondere kurz vor dem Substrat (12) vermischen

00678

00679

00680

können.

- 00681 15. Vorrichtung nach einem oder mehreren der vorherge-
- 00682 henden Ansprüche oder insbesondere danach, dadurch
- 00683 gekennzeichnet, dass zwei oder mehr gasförmige Ausgangs-
- 00684 stoffe je Plenum (22, 23) separat über Düsen (25, 26)
- 00685 in die Reaktionskammer eingeleitet werden.

00686

- 00687 16. Vorrichtung nach einem oder mehreren der vorherge-
- 00688 henden Ansprüche oder insbesondere danach, dadurch
- 00689 gekennzeichnet, dass die Düsen (25, 26) je Plenum gegen-
- 00690 über dem Substrat (12) in einem beliebigen Winkel ange-
- 00691 ordnet sind.

00692

- 00693 17. Vorrichtung nach einem oder mehreren der vorherge-
- 00694 henden Ansprüche oder insbesondere danach, dadurch ge-
- 00695 kennzeichnet, dass die Düsen (25, 26) je Plenum (22, 23)
- 00696 gleichen oder unterschiedlichen Durchmessern ausgeführt
- 00697 sind, so dass gleich oder unterschiedlich viskose Mas-
- 00698 senflüsse der Ausgangsstoffe eine homogene Injektions-
- 00699 verteilung sicherstellen.

00700

- 00701 18. Vorrichtung nach einem oder mehreren der vorherge-
- 00702 henden Ansprüche oder insbesondere danach, dadurch
- 00703 gekennzeichnet, dass die Düsen (25, 26) je Plenum in
- 00704 gleichem oder unterschiedlichem Abstand zueinander in
- 00705 einer Verteilung so ausgeführt sind, dass sich eine
- 00706 homogene geschlossene Injektionsverteilung ergibt.

00707

- 00708 19. Vorrichtung nach einem oder mehreren der vorherge-
- 00709 henden Ansprüche oder insbesondere danach, dadurch ge-
- 00710 kennzeichnet, dass jedes Plenum 22, 23 separat thermos-
- 00711 tatisierbar ist, so dass stark unterschiedliche subli-
- 00712 mierende Ausgangsstoffe eingesetzt werden können.

- 00714 20. Vorrichtung nach einem oder mehreren der vorherge-
- 00715 henden Ansprüche oder insbesondere danach, dadurch

- gekennzeichnet, dass die Thermostatisierung eines oder 00716 00717 aller Pleni (22, 23) mittels Flüssigkeit oder elektrisch aktiven Komponenten (30, 32) erfolgt, und dass 00718 00719 die Kondensation der Ausgangsstoffe in jedem Plenum 00720 (22, 23) vermieden wird. 00721 00722 21. Vorrichtung nach einem oder mehreren der vorherge-00723 henden Ansprüche oder insbesondere danach, dadurch 00724 gekennzeichnet, dass Sensoren (38) und zugehörige Kanäle (39) in der Reaktorwandung vorgesehen sind, die 00725 00726 Bemessung von Eigenschaften der Schichten und/oder auf 00727 der Oberfläche der Substrate (12) erlauben. 00728 22. Vorrichtung nach einem oder mehreren der vorherge-00729 henden Ansprüche oder insbesondere danach, dadurch 00730 gekennzeichnet, dass der oder die Suszeptoren (13) zur 00731 Aufnahme von Substraten (12) mit runder, eckiger, fla-00732 00733 cher, gewölbter Form oder von Folien ausgebildet sind. 00734 23. Vorrichtung nach einem oder mehreren der vorherge-00735 henden Ansprüche oder insbesondere danach, dadurch ge-00736 00737 kennzeichnet, dass der Suszeptor mittels einer Flüssig-00738 keit in einem Hohlmantel (41) oder elektrisch aktiven Komponenten (Peltier/Widerstandsheizung) thermisch so 00739 00740 steuerbar ist, dass zwischen der die Suszeptoroberfläche 00741 und allen anderen Wänden (37) sowie der Gasphase einen negativen Temperaturgradienten besteht, so dass die 00742 00743 Beschichtung des Substrats über Kondensation kontrol-00744 lierbar werden kann. 00745
- 00746 24. Vorrichtung nach einem oder mehreren der vorherge00747 henden Ansprüche oder insbesondere danach, dadurch
 00748 gekennzeichnet, dass eine Heizung für den Suszeptor
 00749 (13) derart ausgelegt ist, dass eine Reinigung des
 00750 Suszeptors (13) und der Reaktionskammer. (11) durch

- 00751 gegenüber der Prozesstemperatur erhöhte Temperatur
- 00752 durchgeführt werden kann.

00753

- 00754 25. Vorrichtung nach einem oder mehreren der vorherge-
- 00755 henden Ansprüche oder insbesondere danach, dadurch
- 00756 gekennzeichnet, dass durch Verdünnung des aus den Tanks
- 00757 (1, 3) austretenden Gas mit einem Trägergas (35) die
- 00758 Konzentration des Ausgangsstoffes in der Rohrleitung
- 00759 (6) bzw. der Gaseinlasseinheit (15) derartig herabge-
- 00760 setzt wird, dass die Kondensationstemperatur unterhalb
- 00761 der Quellentemperatur liegt.

00762

- 00763 26. Vorrichtung nach einem oder mehreren der vorherge-
- 00764 henden Ansprüche oder insbesondere danach, dadurch
- 00765 gekennzeichnet, dass das Substrat während des Beschich-
- 00766 tungsvorganges maskiert ist, bspw. mit einer Schatten-
- 00767 maske versehen ist.

- 00769 27. Vorrichtung nach einem oder mehreren der vorherge-
- 00770 henden Ansprüche oder insbesondere danach, dadurch
- 00771 gekennzeichnet, dass zur Vermeidung abrupter Massen-
- 00772 stromveränderung die geregelten Massenflüsse zu den
- 00773 Tanks in eine Bypassleitung (44) umgelenkt werden kön-
- 00774 nen.

1/7

Fig. 1

hie

Fig. 8

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. August 2001 (23.08.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/61071 A3

(51) Internationale Patentklassifikation⁷: C23C 16/448. 16/46, 16/52

(21) Internationales Aktenzeichen: PCT/EP01/01698

(22) Internationales Anmeldedatum:

15. Februar 2001 (15.02.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 100 07 059.0 16. Februar 2000 (16.02.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): AIXTRON AG [DE/DE]; Kackertstrasse 15-17. 52072 Aachen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): JÜRGENSEN, Holger [DE/DE]: Rathausstrasse 43d, 52072 Aachen (DE). KÄP-PELER, Johannes [DE/DE]: Zeisigweg 47, 52146 Würselen (DE). STRAUCH, Gert [DE/DE]: Schönauer Friede 80, 52072 Aachen (DE). SCHMITZ, Dietmar [DE/DE]: Lonweg 41, 52072 Aachen (DE).

(74) Anwälte: GRUNDMANN, Dirk usw.; Rieder & Partner. Corneliusstrasse 45, 42329 Wuppertal (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Title: CONDENSATION COATING METHOD

(54) Bezeichnung: KONDENSATIONSBESCHICHTUNGSVERFAHREN

(57) Abstract: A method and device for the production of coated substrates, such as OLEDs is disclosed, whereby at least one layer is deposited on the at least one substrate, by means of a condensation method and a solid and/or fluid precursor and, in particular, at least one sublimate source is used for at least one part of the reaction gases. The invention is characterised in that, by means of a temperature control of the reaction gases between precursor source(s) and substrate, a condensation of the reaction gases before the substrate(s) is avoided.

[Fortsetzung auf der nächsten Seite]

70 01/61071 A

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

(88) Veröffentlichungsdatum des internationalen
Recherchenberichts: 20. Juni 2002

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Beschrieben wird ein Verfahren und eine Vorrichtung zur Herstellung von beschichteten Substraten, wie bspw. von "OLED's", bei dem wenigstens eine Schicht mittels eines Kondensationsverfahrens auf das wenigstens eine Substrat aufgebracht wird, und bei dem für wenigstens einen Teil der Reaktionsgase feste und/oder flüssige Vorläufer und insbesondere wenigstens eine Sublimationsquelle verwendet werden. Die Erfindung zeichnet sich durch eine Temperatursteuerung der Reaktionsgase zwischen Vorläufer-Quelle(n) und Substrat aus, durch die eine Kondensation der Reaktionsgase vor dem oder den Substraten vermieden wird.

IN . RNATIONAL SEARCH REPORT

International Application No

PCT/EP 01/01698 CLASSIFICATION OF SUBJECT MATTER PC 7 C23C16/448 C23C16/46 C23C16/52 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C23C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° 1-7 US 5 186 410 A (TOEWS TIMOTHY R) Х 16 February 1993 (1993-02-16) column 3, line 13 -column 4, line 65; figure 1 1-7 US 5 381 605 A (KRAFFT TERRY) X 17 January 1995 (1995-01-17) column 3, line 3 -column 4, line 56 US 5 496 410 A (FUKUDA TAKUYA ET AL) 1-7 5 March 1996 (1996-03-05) column 1, line 9-16 column 4, line 51 -column 5, line 7 column 6, line 39 -column 7, line 22; 8-27 Α figures 4-6 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed "3" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 07 Dec 2001 27 November 2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl.

Form PCT/ISA/210 (second sheet) (July 1992)

Fax: (+31-70) 340-3016

Joffreau, P-0

IN RNATIONAL SEARCH REPORT

International Application No
PCT/EP 01/01698

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
_ 1.egory *	Onemon of according to an incidence of the control	
X	US 5 776 254 A (OKUDAIRA TOMONORI ET AL) 7 July 1998 (1998-07-07) column 2, line 22-65; figure 12 column 18, line 43 -column 20, line 29; figures 7-10	8-27
X	US 5 882 410 A (HORIKAWA TSUYOSHI ET AL) 16 March 1999 (1999-03-16) column 2, line 31-65; figure 1	8-27
X	US 5 989 635 A (HORIKAWA TSUYOSHI ET AL) 23 November 1999 (1999-11-23) column 2, line 31-65; figure 1	8-27
A	EP 0 635 460 A (SUMITOMO ELECTRIC INDUSTRIES) 25 January 1995 (1995-01-25) page 5, line 32 -page 6, line 12 page 6, line 2,3,45-52 figures 1,3	8-27
A	EP 0 548 944 A (CANON KK) 30 June 1993 (1993-06-30) column 9, line 15 -column 11, line 27; figure 5	8-27
		·
	·	
		·
	,	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP01/01698

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1-	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Вох Ц	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
	See supplemental sheet
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchableclaims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims: it is covered by claims Nos
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP01/01698

ADDITIONAL MATTER PCT/ISA/210

The international search authority has established that this international application contains multiple inventions, as follows:

1. Claims: 1-7

A condensation method for coating substrates, in which at least one sublimation source is used and where the concentration and/or temperature of the reaction gases between said source and the substrate is controlled such that a condensation of the reaction gases is avoided.

2. Claims: 8-27

Device for condensation coating with a reaction chamber, at least one susceptor and a gas introduction system with at least one source for the starting material, whereby the susceptor, reactor walls and the gas inlet device may be separately thermostatically controlled.

Form PCT/ISA/210

IN .RNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/EP 01/01698

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5186410	Α	16-02-1993	NONE		
US 5381605	Α	17-01-1995	AU WO	6024494 A 9416275 A1	15-08-1994 21-07-1994
US 5496410	Α	05-03-1996	JP JP	2987663 B2 5255856 A	06-12-1999 05-10-1993
US 5776254	A	07-07-1998	JP JP KR US US	8176826 A 8186103 A 203000 B1 6033732 A 6096133 A	09-07-1996 16-07-1996 15-06-1999 07-03-2000 01-08-2000
US 5882410	Α	16-03-1999	US US US	6165556 A 6101085 A 5989635 A	26-12-2000 08-08-2000 23-11-1999
US 5989635	A	23-11-1999	JP US KR US US US	9219497 A 6165556 A 272390 B1 5834060 A 6101085 A 5882410 A	19-08-1997 26-12-2000 01-12-2000 10-11-1998 08-08-2000 16-03-1999
EP 0635460	A	25-01-1995	JP AU CA DE DE EP KR	7081965 A 675543 B2 6758094 A 2128188 A1 69414044 D1 69414044 T2 0635460 A2 204453 B1	28-03-1995 06-02-1997 02-02-1995 23-01-1995 26-11-1998 15-04-1999 25-01-1995 15-06-1999
EP 0548944	A	30-06-1993	JP JP JP DE DE US US	6184753 A 3155845 B2 6188201 A 6188202 A 69229714 D1 69229714 T2 0548944 A1 5239653 A 5580822 A 6004885 A 5447568 A	05-07-1994 16-04-2001 08-07-1994 08-07-1999 27-04-2000 30-06-1993 17-09-1993 03-12-1996 21-12-1999 05-09-1995

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATION ''.ER RECHERCHENBERICHT

Ir .ationales Aktenzeichen PCT/EP 01/01698

A. KLASSIFIZIERIUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C23C16/448 C23C16/46 C23C16/52

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C23C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

Kategorie*	Bezeichnung der Veröffentlichung, sowei erforderlich unter Angabe der in Betracht kommenden Teile	Time to the second seco
	Dezendmung den Veronenlichtung, soweil entroberlich unter Angabe der in Belracht kommenden Teile	Betr. Anspruch Nr.
x	US 5 186 410 A (TOEWS TIMOTHY R)	1-7
	16. Februar 1993 (1993-02-16)	1 '
	Spalte 3, Zeile 13 -Spalte 4, Zeile 65;	
	Abbildung 1	
X :	US 5 381 605 A (KRAFFT TERRY)	1-7
1	17. Januar 1995 (1995-01-17)	• ′
	Spalte 3, Zeile 3 -Spalte 4, Zeile 56	
A	US 5 496 410 A (FUKUDA TAKUYA ET AL)	1-7
	5. März 1996 (1996–03–05)	• '
ŀ	Spalte 1, Zeile 9-16	
	Spalte 4, Zeile 51 -Spalte 5, Zeile 7	
A	Spalte 6, Zeile 39 -Spalte 7, Zeile 22;	8-27
	Abbildungen 4-6	
	-/	
ŀ	·	

Wedere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patenttamilie		
Besondere Kategorien von angegebenen Verottentlichungen :	*F* Spätere Veröffentlichung, die nach dem internationalen Anmeldedalum		
'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern nur zum Verstandnis des der		
E ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist	Emindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theone angegeben ist		
L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdalum einer anderen im Becherchenbericht genannten Veröffentlichung bei einer seine	'X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindur kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit berunend betrachtet werden		
ausgelührt)	erfindenscher Tätigkeit berunend betrachtet werden 'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Fätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen		
 O' Verölfentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht P' Veröffentlichung, die vor dem internationalen Anmekledatum, aber nach 	veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist		
dem beanspruchten Prioritätsdatum veröffentlicht worden ist	*\$ Veröffentlichung, die Mitglied derselben Patentfamilie :st		
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts		
27. November 2001	07 Dec 2001		
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmachtigter Bediensteter		
Europäisches Patentamt. P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk			
Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Joffreau, P-O		
	1		

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

INTERNATION " ER RECHERCHENBERICHT

Ir ationales Aktenzeichen
PCT/EP 01/01698

Kategorie	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Date Assessing
redoue,	веденсинину фет veromentichung, sowen errorderiich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
(US 5 776 254 A (OKUDAIRA TOMONORI ET AL) 7. Juli 1998 (1998-07-07) Spalte 2, Zeile 22-65; Abbildung 12 Spalte 18, Zeile 43 -Spalte 20, Zeile 29; Abbildungen 7-10	8-27
(US 5 882 410 A (HORIKAWA TSUYOSHI ET AL) 16. März 1999 (1999-03-16) Spalte 2, Zeile 31-65; Abbildung 1	8-27
	US 5 989 635 A (HORIKAWA TSUYOSHI ET AL) 23. November 1999 (1999-11-23) Spalte 2, Zeile 31-65; Abbildung 1	8-27
١	EP 0 635 460 A (SUMITOMO ELECTRIC INDUSTRIES) 25. Januar 1995 (1995-01-25) Seite 5, Zeile 32 -Seite 6, Zeile 12 Seite 6, Zeile 2,3,45-52 Abbildungen 1,3	8-27
	EP 0 548 944 A (CANON KK) 30. Juni 1993 (1993-06-30) Spalte 9, Zeile 15 -Spalte 11, Zeile 27; Abbildung 5	8-27
		·

nternationales Aktenzeichen PCT/EP 01/01698

INTERNATIONALER RECHERCHENBERICHT

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
siehe Zusatzblatt
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
X Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 1 (1))(Juli 1998)

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1-7

Kondensationsverfahren zum Beschichten von Substraten bei dem wenigstens eine Sublimationsquelle verwendet wird und die Konzentration und/oder Temperatur der Reaktionsgase zwischen dieser Quelle und dem Substrat gesteuert wird, um eine Kondensation der Reaktionsgase vor dem Substrat zu vermeiden.

2. Ansprüche: 8-27

Vorrichtung zur Kondensationsbeschichtung mit einer Reaktionskammer, wenigstens einem Suszeptor und einem Gaszuführungssystem mit wenigstens einer Quelle für die Ausgangsstoffe wobei der Suszeptor, die Reaktorwände und die Gaseinlasseinheit separat thermostatisierbar sind.

INTERNATIONA R RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Ir. ationales Aktenzeichen

PCT/EP 01/01698

	nerchenbericht s Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5	186410	Α	16-02-1993	KEINE		
US 5	381605	Α	17-01-1995	AU	6024494 A	15-08-1994
			·	WO	9416275 A1	21-07-1994
US 5	496410	Α	05-03-1996	JP	2987663 B2	06-12-1999
				JP 	5255856 A	05-10-1993
US 5	776254	Α	07-07-1998	JP	8176826 A	09-07-1996
				JP	8186103 A	16-07-1996
				KR	203000 B1	15-06-1999
				US	6033732 A	07-03-2000
				US 	6096133 A	01-08-2000
US 5	882410	Α	16-03-1999	us	6165556 A	26-12-2000
				US	6101085 A	08-08-2000
				US 	5989635 A	23-11-1999
US 59	989635	Α	23-11-1999	JP	9219497 A	19-08-1997
				US	6165556 A	26-12-2000
				KR	272390 B1	01-12-2000
				US	5834060 A	10-11-1998
				US	6101085 A	08-08-2000
				US	5882410 A	16-03-1999
EP 0	635460	Α	25-01-1995	JP	7081965 A	28-03-1995
•				AU	675543 B2	06-02-1997
				AU	6758094 A	02-02-1995
				CA	2128188 A1	23-01-1995
				DE	69414044 D1	26-11-1998
				DE	69414044 T2	15-04-1999
				EP	0635460 A2	25-01-1995
				KR 	204453 B1	15-06-1999
EP 0	548944	Α	30-06-1993	JP	6184753 A	05-07-1994
				JP	3155845 B2	16-04-2001
				JP	6188201 A	08-07-1994
				JP	6188202 A	08-07-1994
				DE	69229714 D1	09-09-1999 27-04-2000
				DE	69229714 T2	30-06-1993
			·	EP 1B	0548944 A1	
				JP	5239653 A 5580822 A	17-09-1993 03-12-1996
				US US	6004885 A	21-12-1999
				US	5447568 A	05-09-1995
				US	3447500 K	05-03-1335

Formblatt PCT/ISA/210 (Anhang Patentfamilie)(Juli 1992)

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. August 2001 (23.08.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/061071 A3

(51) Internationale Patentklassifikation⁷: 16/46, 16/52

C23C 16/448,

(21) Internationales Aktenzeichen:

PCT/EP01/01698

(22) Internationales Anmeldedatum:

15. Februar 2001 (15.02.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 100 07 059.0 16. 1

16. Februar 2000 (16.02.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): AIXTRON AG [DE/DE]; Kackertstrasse 15-17, 52072 Aachen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): JÜRGENSEN, Holger [DE/DE]; Rathausstrasse 43d, 52072 Aachen (DE). KÄPPELER, Johannes [DE/DE]; Zeisigweg 47, 52146 Würselen (DE). STRAUCH, Gert [DE/DE]; Schönauer Friede 80, 52072 Aachen (DE). SCHMITZ, Dietmar [DE/DE]; Lonweg 41, 52072 Aachen (DE).
- (74) Anwälte: GRUNDMANN, Dirk usw.; Rieder & Partner, Corneliusstrasse 45, 42329 Wuppertal (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Title: CONDENSATION COATING METHOD

(54) Bezeichnung: KONDENSATIONSBESCHICHTUNGSVERFAHREN

(57) Abstract: A method and device for the production of coated substrates, such as OLEDs is disclosed, whereby at least one layer is deposited on the at least one substrate, by means of a condensation method and a solid and/or fluid precursor and, in particular, at least one sublimate source is used for at least one part of the reaction gases. The invention is characterised in that, by means of a temperature control of the reaction gases between precursor source(s) and substrate, a condensation of the reaction gases before the substrate(s) is avoided.

[Fortsetzung auf der nächsten Seite]

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- mit geänderten Ansprüchen

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 20. Juni 2002

Veröffentlichungsdatum der geänderten Ansprüche: 14. November 2002

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

BNSDOCID: <WO____0161071A3_IA>

⁽⁵⁷⁾ Zusammenfassung: Beschrieben wird ein Verfahren und eine Vorrichtung zur Herstellung von beschichteten Substraten, wie bspw. von "OLED's", bei dem wenigstens eine Schicht mittels eines Kondensationsverfahrens auf das wenigstens eine Substrat aufgebracht wird, und bei dem für wenigstens einen Teil der Reaktionsgase feste und/oder flüssige Vorläufer und insbesondere wenigstens eine Sublimationsquelle verwendet werden. Die Erfindung zeichnet sich durch eine Temperatursteuerung der Reaktionsgase zwischen Vorläufer-Quelle(n) und Substrat aus, durch die eine Kondensation der Reaktionsgase vor dem oder den Substraten vermieden wird.

GEÄNDERTE ANSPRÜCHE

[beim Internationalen Büro am 31. Januar 2002 (31.01.02) eingegangen; ursprüngliche Ansprüche 1-27 geändert (6 Seiten)]

- 1. Verfahren zum Beschichten von Substraten, bei dem in einer Reaktionskammer mittels eines Kondensationsverfahrens durch Einleiten von Reaktionsgasen durch eine Gaseinlaßeinheit (15) in die Reaktionskammer auf 5 das wenigstens eine von einem Suszeptor getragenen Substrat eine Schicht aufgebracht wird, und bei dem für wenigstens einen Teil der Reaktionsgase feste und/oder flüssige Ausgangsstoffe verwendet werden, mit einer Konzentrations- und Temperatursteuerung der Reaktionsgase zwischen der 10 Quelle und dem Substrat zur Vermeidung einer Kondensation der Reaktionsgase vor dem oder den Substrat(en), dadurch gekennzeichnet, dass die von einem Tank (1,3) gebildete Quelle, insbesondere Sublimationsquelle, die Reaktionskammerwände (37) und die Gaseinlaßeinheit (15) auf jeweils höheren Temperaturen als das oder die Substrat(e) gehalten werden und die 15 Ausgangsstoffe auf dem oder den Substrat(en) kondensieren.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Gaseinlaseinheit (15) mit einer Einlassgeometrie verwendet wird, die für eine Trennung der Gase zur Unterdrückung einer parasitären Gasphasenreaktion sorgt.
 - 3. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Quellen (1, 3) auf unterschiedlichen Temperaturen gehalten werden.

4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, gekennzeichnet durch die Verwendung mehrerer Injektionsanordnungen (25, 26).

GEÂNDERTES BLATT (ARTIKEL 19)

20

25

5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Minimierung der parasitären Deposition und damit der Verluste aus der Gasphase die einzelnen Reaktionsgase ohne Strömungsüberlappung injiziert werden.

5

6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Austrittsgeschwindigkeit der Gase aus den einzelnen Injektionsdüsen sowie Injektionsbereichen so gewählt sind, dass lokale Bernoulli-Effekte vermieden werden.

10

7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Druck in dem oder den Tanks (1, 3) der Ausgangsstoffe jeweils mittels Inertgasspülung (35) und Regelventil (34) unabhängig vom Druck in der Reaktorkammer (11) geregelt wird.

15

- 8. Vorrichtung zur Beschichtung eines Substrats mit einer Schicht mit
 - einer Reaktionskammer (11)
 - wenigstens einem Suszeptor (13) und
- einem Gaszuführungssystem (5, 5') mit wenigstens einer Quelle für die
 Ausgangsstoffe und einer Gaseinlaßeinheit (15), wobei der oder die
 Suszeptor(en) (13) und die Reaktionskammerwände (37) separat
 thermostatisierbar sind, dadurch gekennzeichnet, dass die Quellen von die
 festen oder flüssigen Ausgangsstoffe bevorratenden Tanks (1, 3) gebildet sind
 und die Reaktionskammerwände (37), die Gaseinlaßeinheit (15) und die Tanks
 (1, 3) auf jeweils höhere Temperaturen als ein Substrat (12) auf dem Suszeptor
 (13) regelbar sind, so dass die aus der Gaseinlaßeinheit (15) austretenden Gase
 auf dem Substrat kondensieren.

5

10

15

20

25

- 9. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Quellen (1, 3) getrennt thermostatisierbar sind, so dass ein positiver Temperaturgradient zu allen Kammer- und Einlassoberflächen einstellbar ist, und dass über Druck und Temperatur die Transportmenge der gasförmigen Ausgangsstoffe kontrollierbar ist.
- 10. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Thermostatisierung eines oder aller Reservoire (1, 3) mittels einer Flüssigkeit oder elektrisch aktiven Komponenten ausgeführt ist.
- 11. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Heizung derart ausgelegt ist, dass eine Reinigung eines Reservoirs durch gegenüber Prozesstemperatur erhöhte Temperatur möglich ist.
- 12. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gaseinlasseinheit (15) als Ein- oder Mehrkammer-Showerhead mit einem oder mehreren separaten Pleni (Volumen 22, 23) ausgebildet ist.
 - 13. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Trägergas Ar, H₂, N₂, He einzeln oder gemischt eingesetzt wird.
- 14. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein gasförmiger Ausgangsstoff je Plenum (22, 23) separat über Düsen (25, 26) in die Reaktorkammer (11) einleitbar ist, so dass

GEÄNDERTES BLATT (ARTIKEL 19)

BNSDOCID: <WO_____0161071A3_IA>

sich die Quellmaterialien erst nach Austritt aus dem Gaseinlass insbesondere kurz vor dem Substrat (12) vermischen können.

- 15. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass zwei oder mehr gasförmige Ausgangsstoffe je
 Plenum (22, 23) separat über Düsen (25, 26) in die Reaktionskammer eingeleitet werden.
- 16. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche,
 10 dadurch gekennzeichnet, dass die Düsen (25, 26) je Plenum gegenüber dem
 Substrat (12) in einem beliebigen Winnkel angeordnet sind.
 - 17. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Düsen (25, 26) je Plenum (22, 23) gleichen oder unterschiedlichen Durchmessern ausgeführt sind, so dass gleich oder unterschiedlich viskose Massenflüsse der Ausgangsstoffe eine homogene Injektionsverteilung sicherstellen.
- 18. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche,
 20 dadurch gekennzeichnet, dass die Düsen (25, 26) je Plenum in gleichem oder unterschiedlichem Abstand zueinander in einer Verteilung so ausgeführt sind, dass sich eine homogene geschlossene Injektionsverteilung ergibt.
- 19. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche,
 25 dadurch gekennzeichnet, dass jedes Plenum (22, 23) separat thermostatisierbar ist, so dass stark unterschiedliche sublimierende Ausgangsstoffe eingesetzt werden können.

GEANDERTES BLATT (ARTIKEL 19)

15

5

10

15

- 20. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Thermostatisierung eines oder aller Pleni (22, 23) mittels Flüssigkeit oder elektrisch aktiven Komponenten (30, 32) erfolgt, und dass die Kondensation der Ausgangsstoffe in jedem Plenum (22, 23) vermieden wird.
- 21. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Sensoren (38) und zugehörige Kanäle (39) in der Reaktorwandung vorgesehen sind, die Bemessung von Eigenschaften der Schichten und/oder auf der Oberfläche der Substrate (12) erlauben.
- 22. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der oder die Suszeptoren (13) zur Aufnahme von Substraten (12) mit runder, eckiger, flacher, gewölbter Form oder von Folien ausgebildet sind.
- 23. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Suszeptor (13) mittels einer Flüssigkeit in einem Hohlmantel (14) oder elektrisch aktiven Komponenten
- 20 (Peltier/Widerstandsheizung) thermisch so steuerbar ist, dass zwischen der die Suszeptoroberfläche und allen anderen Wänden (37) sowie der Gasphase einen negativen Temperaturgradienten besteht, so dass die Beschichtung des Substrats über Kondensation kontrollierbar werden kann.
- 24. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Heizung für den Suszeptor (13) derart ausgelegt ist, dass eine Reinigung des Suszeptors (13) und der Reaktionskammer (11) durch gegenüber der Prozesstemperatur erhöhte Temperatur durchgeführt werden kann.

GEANDERTES BLATT (ARTIKEL 19)

- 25. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch Verdünnung des aus den Tanks (1, 3) austretenden Gas mit einem Trägergas (35) die Konzentration des
- 5 Ausgangsstoffes in der Rohrleitung (6) bzw. der Gaseinlasseinheit (15) derartig herabgesetzt wird, dass die Kondensationstemperatur unterhalb der Quellentemperatur liegt.
- 26. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass das Substrat während des
 Beschichtungsvorganges maskiert ist, bspw. 'mit einer Schattenmaske versehen ist.
- 27. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass zur Vermeidung abrupter
 Massenstromveränderung die geregelten Massenflüsse zu den Tanks (1, 3) in eine Bypassleitung (44) umgelenkt werden können.

GEÂNDERTES BLATT (ARTIKEL 19)