

Tratamiento de Señales

Version 2024-I

Segmentación con Imágenes a Color

[Capítulo 2]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Clustering

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Clustering

1. Por canal de color

Ejemplos Similares

Otros Ejemplos

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Clustering

2. Adaptivo por umbral (idea inicial)

$$I(x,y) = k_{\rm r}R(x,y) + k_{\rm g}G(x,y) + k_{\rm b}B(x,y)$$

En conversión normal:

Los valores k_r , k_g , k_b son aprox. 1/3

Es necesario que siempre sea así?

No

$$I(x,y) = k_{\rm r}R(x,y) + k_{\rm g}G(x,y) + k_{\rm b}B(x,y)$$
Proc

$$J(x,y) = \frac{I(x,y) - I_{\min}}{I_{\max} - I_{\min}}$$

$$\sigma_J^2(k_{\rm r},k_{\rm g},k_{\rm b}) \rightarrow {\rm max}$$

Optimización: Estimar k_r, k_g, k_b tal que la varianza de J sea máxima

Solución: J es una imagen de alto contraste (High Contrast Image)

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Clustering

Clustering usando k-means

Choose random K=2 points (centroids)

Assign to the nearest centroid

Compute new centroids

Repeat until convergence

Algorithm K-Means:

- 1. Input Data $X = \{x_1, x_2, \dots x_N\}$ and number of clusters K
- 2. Centroids $\{c_1, c_2, \dots c_K\}$ = random K points of X
- 3. For each data point x_i
- 4. Compute distance $d_{ij} = d(x_i, c_j)$ i=1,...,N, j=1,...K
- 5. Assign x_i to the nearest centroid: $y_i = \operatorname{argmin}_i \{d_{ij}\}$
- 6. Compute the new centroids of each cluster $c_i^* = mean(x_i)$ for $y_i = j$
- 7. if $c_i^* \neq c_i$ then $c_i = c_i^*$ go to step 3
- 8. Output: $\{c_1^*, c_2^*, ..., c_K^*\}$ and y_i for i=1,...,N

INPUT

OUTPUT

Tres métodos fundamentales:

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Usando clustering