第十三章 时间序列分析和预测

第十三章 时间序列分析和预测

13.1 时间序列及其分解

13.2 时间序列的描述型分析

13.2.2 增长率分析

13.3 时间序列预测的程序

13.3.3 预测方法的评估

13.4 平稳序列的预测

13.4.1 简单平均法

13.4.2 移动平均法

13.4.3 指数平滑法

13.5 趋势型序列的预测

13.5.1 线性趋势

13.5.2 非线性趋势预测

13.6 复合型序列的分解预测

13.1 时间序列及其分解

时间序列包括趋势 (T) 、季节性 (S) 、周期性 (C) 和随机性 (I) 。本章介绍的时间序列分析基于乘法模型,即

$$Y_t = T_t \times S_t \times C_t \times I_t$$

13.2 时间序列的描述型分析

13.2.2 增长率分析

增长率是时间序列中报告期与基期观察值之比减去 1 的结果。

• 环比增长率: $G_i = (Y_i - Y_{i-1})/Y_{i-1}$;

• 定基增长率: $G_i = (Y_i - Y_0)/Y_0$

平均增长率是逐期环比的几何平均数减去 1 的结果。

$$ar{G}_i = \sqrt[n]{\left(rac{Y_1}{Y_0}
ight)\left(rac{Y_2}{Y_1}
ight)\ldots\left(rac{Y_n}{Y_{n-1}}
ight)} - 1 = \sqrt[n]{\left(rac{Y_n}{Y_0}
ight)} - 1$$

需要注意的问题

- 1. 时间序列出现 0 或者负数时不宜计算增长率;
- 2. 要将增长率与绝对水平结合分析。

13.3 时间序列预测的程序

根据趋势和季节成分选择预测方法。

- 无趋势且无季节性——平滑预测法:简单平均法、移动平均法、指数平滑法;
- 有趋势但无季节性——趋势预测法: 线性趋势推测、非线性趋势推测、自回归预测模型;

• 有季节性——季节性预测法:季节多元回归模型、季节自回归模型、时间序列分解。

13.3.3 预测方法的评估

设时间序列的第 i 个观测值为 Y_i , 预测值为 F_i , 预测值的个数

• 平均误差 ME, 平均绝对误差 MAD,

$$ME = rac{\sum_{i=1}^{n}(Y_i - F_i)}{n}, \quad MAD = rac{\sum_{i=1}^{n}|Y_i - F_i|}{n}$$

•

• 均方误差 MSE

$$MSE = rac{\sum_{i=1}^{n}(Y_i - F_i)^2}{n}$$

•

• 平均百分比误差 MPE 和平均绝对百分比误差 MAPE

$$MPE = rac{\sum_{i=1}^n (rac{Y_i - F_i}{Y_i} imes 100)}{n}, \quad MAPE = rac{\sum_{i=1}^n |rac{Y_i - F_i}{Y_i}| imes 100}{n}$$

13.4 平稳序列的预测

13.4.1 简单平均法

根据已有的 t 期观察值求简单平均得到 t+1 期的预测值, t+2 期就递推

$$F_{t+1} = rac{1}{t} \sum_{i=1}^t Y_i, \quad e_{t+1} = Y_{t+1} - F_{t+1}$$

13.4.2 移动平均法

将最近的 k 期求平均作为下一期的预测值,以此类推。

$$F_{t+1} = ar{Y}_t = rac{1}{k} \sum_{i=t-k+1}^t Y_i$$

13.4.3 指数平滑法

一次指数平滑法只有一个平滑系数,观察值离预测时期越远就权重越小。

$$F_{t+1} = \alpha Y_t + (1 - \alpha)F_t = F_t + \alpha (Y_t - F_t)$$

通常是从 $F_1=T_1$ 开始往下递推。平滑指数 lpha 越接近1,模型对时间序列变化越及时。

13.5 趋势型序列的预测

13.5.1 线性趋势

当现象按照线性区是发展的时候,

$$\hat{Y}_t = b_0 + b_1 t$$

按回归中的最小二乘法求得 b_0, b_1 ;

$$\begin{cases} b_1 &= \frac{n\sum tY - \sum t\sum Y}{n\sum t^2 - (\sum t)^2} \\ b_0 &= \bar{Y} - b_1 t \end{cases}$$

预测趋势的误差用估计标准误差(m 是趋势方程中的未知数个数,直线 m=2)

$$s_e = \sqrt{rac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-m}}$$

13.5.2 非线性趋势预测

指数曲线 $\hat{Y}_t = b_0 b_1^t$ 转化为直线形式,求得 $\lg b_0$ 和 $\lg b_1$

$$egin{cases} \sum \lg Y &= n\lg b_0 + \lg b_1 \sum t \ \sum t\lg Y &= \lg b_0 \sum t + \lg b_1 \sum t^2 \end{cases}$$

多阶曲线 $\hat{Y}_t = b_0 + b_1 t + \cdots + b_k t^k$

13.6 复合型序列的分解预测

第一步:确定并分离季节成分。

- 1. 计算移动平均(季度4项,月份12项),并中心化处理;
- 2. 计算移动平均的比值, 然后计算各个季度的平均值;
- 3. 季节指数调整。

4.
$$\frac{Y}{S} = \frac{T \times S \times I}{S} = T \times I$$

5.

第二步:建立预测模型并进行预测。

第三步: 计算预测值。