Invece, se m = s, allora $P_2(p)$ consiste delle k quintuple

$$\langle q^{mv}(\sigma,k), b_1(\sigma'), b_1(\sigma'), q^{mv}(\sigma,k-1), s \rangle \qquad \langle q^{mv}(\sigma,k-1), a, a, q^{mv}(\sigma,k-2), s \rangle \ \forall a \in \{0,1,\square\}$$

$$\langle q^{mv}(\sigma,2), a, a, q^{mv}(\sigma,1), s \rangle \ \forall a \in \{0,1,\square\}$$

$$\langle q^{mv}(\sigma,1), a, a, q', s \rangle \ \forall a \in \{0,1,\square\}.$$

Le quintuple in $P_2(p)$ relative al caso m = d sono simili e la loro descrizione è, pertanto, omessa.

È immediato verificare che, per ogni $x \in \Sigma^*$, l'esito della computazione T(x) coincide con l'esito della computazione $T_{01}(b(x))$.

Quanto dimostrato in questo paragrafo ci permette di limitarci a considerare, d'ora in avanti, solo macchine di Turing definite sull'alfabeto $\{0,1\}$.

2.6 La macchina di Turing Universale

La macchina di Turing Universale è una macchina di Turing particolare U che riceve in input la descrizione di un'altra macchina di Turing T e un possibile input x di T ed esegue la computazione U(T,x) il cui esito coincide con quello della computazione T(x). In altri termini, la macchina di Turing Universale è capace di *simulare la computatazione* che qualunque macchina di Turing potrebbe eseguire su qualunque parola una volta che le descrizioni della macchina e della parola vengono scritti sul suo nastro di input. Dunque, la macchina di Turing Universale è il progetto logico di un calcolatore.

In quanto segue, per semplicità, ci limitiamo a descrivere la macchina di Turing Universale di tipo riconoscitore, ossia, una macchina di Turing U che, presi in input la descrizione di una macchina di Turing di tipo riconoscitore T (ad un nastro) ed un input $x \in \{0,1\}^*$ di T, esegue una computazione con esito uguale a quello di T(x).

La macchina di Turing universale U che andiamo a definire è una macchina di Turing che utilizza 4 nastri a testine indipendenti (come sappiamo dal Paragrafo 2.4, è poi possibile trasformare U in una macchina ad un solo nastro):

- N_1 , il nastro su cui, all'inizio della computazione, è memorizzata la descrizione di T;
- N_2 , il nastro di lavoro di U su cui, all'inizio della computazione, è memorizzato l'input x della macchina di Turing T la cui computazione T(X) deve essere simulata da U;
- N₃, il nastro su cui, ad ogni istante della computazione che simula T(x), sarà memorizzato lo stato attuale della macchina T;
- N_4 , il nastro su cui verrà scritto lo stato di accettazione della macchina T.

Presentiamo inizialmente una descrizione ad alto livello di U, che utilizza gli stessi simboli utilizzati da T.

Per evitare confusione fra i simboli utilizzati per la macchina T e per la macchina universale U che ci accingiamo a definire, indichiamo l'insieme degli stati della generica macchina di Turing T con $Q_T = \{\omega_0, \ldots, \omega_m\}$, ove ω_0 , ω_1 e ω_2 sono, rispettivamente, lo stato iniziale, lo stato di accettazione e lo stato di rigetto di T. Indichiamo, poi, con $P = \{p_1, \ldots, p_h\}$ l'insieme delle quintuple di T e con $p_i = \langle \omega_{i_1}, b_{i_1}, b_{i_2}, \omega_{i_2}, m_i \rangle$ la sua i-esima quintupla, con $\omega_{i_1}, \omega_{i_2} \in Q_T$, $\omega_{i_1}, \omega_{i_2} \in \{0, 1, \square\}$ e $\omega_1 \in \{0, 1, \square\}$ e $\omega_2 \in \{0, 1, \square\}$ e $\omega_3 \in \{0, 1, \square\}$ e $\omega_3 \in \{0, 1, \square\}$ seguente:

$$\rho_T = \omega_0 - \omega_1 \otimes \omega_{1_1} - b_{1_1} - b_{1_2} - \omega_{1_2} - m_1 \oplus \omega_{2_1} - b_{2_1} - b_{2_2} - \omega_{2_2} - m_2 \oplus \ldots \oplus \omega_{h_1} - b_{h_1} - b_{h_2} - \omega_{h_2} - m_h \oplus \omega_{h_1} - b_{h_2} - \omega_{h_2} - m_h \oplus \omega_{h_1} - b_{h_2} - \omega_{h_2} - m_h \oplus \omega_{h_1} - b_{h_2} - \omega_{h_2} - m_h \oplus \omega_{h_2} - \omega_{h_2$$

Come già anticipato, l'input della macchina U è costituito da una stringa $\rho_T \in [Q_T \cup \{0,1,\oplus,\otimes,-\}]^*$, descrizione di una macchina di Turing di tipo riconoscitore ad un nastro, scritta sul nastro N_1 , e da una parola $x \in \{0,1\}^*$ scritta sul nastro N_2 (ricordiamo anche che tali parole sono precedute e seguite da \square). Quando la computazione $U(\rho_T,x)$ ha inizio, le testine di N_1 e N_2 sono posizionate sui simboli diversi da \square più a sinistra scritti sui due nastri. La macchina U esegue sostanzialmente l'algoritmo di seguito descritto, in cui si utilizza la convenzione per cui rimangono ferme le testine delle quali non viene specificato il movimento (in particolare, rimangono sempre ferme la testina sui nastri N_3 e N_4).

1) Nello stato q_0 , vengono copiati ω_0 sul nastro N_3 e ω_1 sul nastro N_4 , la testina di N_1 viene spostata sul simbolo a destra del primo carattere ' \otimes ' che incontra e la macchina entra nello stato q_1 :

```
 \langle q_0, (x, a, \Box, \Box), (x, a, x, \Box), q_0, (d, f, f, f) \rangle \qquad \forall x \in Q_T \land \forall a \in \{0, 1, \Box\} 
 \langle q_0, (-, a, x, \Box), (-, a, x, \Box), q_0, (d, f, f, f) \rangle \qquad \forall a \in \{0, 1, \Box\} \land \forall x \in Q_T, 
 \langle q_0, (y, a, x, \Box), (y, a, x, y), q_0, (d, f, f, f) \rangle \qquad \forall a \in \{0, 1, \Box\} \land \forall x, y \in Q_T, 
 \langle q_0, (\otimes, a, x, y), (\otimes, a, x, y), q_1, (d, f, f, f) \rangle \qquad \forall a \in \{0, 1, \Box\} \land \forall x, y \in Q_T,
```

- 2) Nello stato q_1 ha inizio la ricerca di una quintupla su N_1 che abbia come primo simbolo lo stesso simbolo letto dalla testina di N_3 e come secondo simbolo lo stesso simbolo letto dalla testina di N_2 :
 - (a) se nello stato q_1 legge lo stesso simbolo sui nastri N_1 ed N_3 , sposta la testina di N_1 a destra di due posizioni ed entra nello stato $q_{statoCorretto}$:

Ora la testina di N_1 è posizionata sul secondo elemento (ossia, il carattere letto) della quintupla che si sta esaminando.

- i. Se nello stato $q_{statoCorretto}$ legge lo stesso simbolo sui nastri N_1 e N_2 , allora ha trovato la quintupla da eseguire; pertanto, sposta la testina di N_1 a destra di due posizioni (per superare il carattere separatore '-') ed entra nello stato q_{scrivi} .
- ii. Se nello stato $q_{statoCorretto}$ legge simboli differenti sui nastri N_1 e N_2 , allora la quintupla che sta scandendo su N_1 non è quella da eseguire; pertanto, entrando nello stato q_2 , sposta la testina di N_1 a destra fino a posizionarla sul primo simbolo successivo al primo ' \oplus ' che incontra e, se tale simbolo non è \square , entra nello stato q_1 , altrimenti entra nello stato di rigetto.
- (b) se nello stato q_1 legge simboli differenti sui nastri N_1 e N_3 , allora la quintupla che sta scandendo su N_1 non è quella da eseguire; pertanto, entrando nello stato q_3 , sposta la testina di N_1 a destra fino a posizionarla sul primo simbolo successivo al primo ' \oplus ' che incontra e, se tale simbolo non è \Box , entra nello stato q_1 , altrimenti confronta lo stato attuale che sta leggendo su N_3 con lo stato di accettazione ω_2 di T scritto su N_4 e, se sono uguali, entra nello stato di accettazione, altrimenti entra nello stato di rigetto.
- 3) Nello stato q_{scrivi} , inizia l'esecuzione della quintupla che ha individuato sul nastro N_1 scrivendo il nuovo simbolo su N_2 : dunque, nello stato q_{scrivi} , scrive su N_2 il simbolo che legge su N_1 ed entra nello stato $q_{cambiaStato}$ muovendo a destra di due posizioni (per superare il carattere separatore '-') la testina di N_1 .
- 4) Nello stato $q_{cambiaStato}$, prosegue l'esecuzione della quintupla che ha individuato sul nastro N_1 modificando il contenuto del nastro N_3 : dunque, nello stato $q_{cambiaStato}$, scrive su N_3 il simbolo che legge su N_1 ed entra nello stato q_{muovi} muovendo a destra di due posizioni la testina di N_1 .
- 5) Nello stato q_{muovi} , termina l'esecuzione della quintupla che ha individuato sul nastro N_1 muovendo la testina del nastro N_2 : dunque, nello stato q_{muovi} , muove la testina di N_2 in accordo con il simbolo letto su N_1 ed entra nello stato $q_{riavvolgi}$ muovendo a sinistra la testina di N_1 .
- 6) Nello stato $q_{riavvolgi}$, riposiziona la testina del nastro N_1 sul primo simbolo a destra del carattere ' \otimes in esso contenuto: rimane nello stato $q_{riavvolgi}$ muovendo a sinistra la testina di N_2 fino a quando non legge un \otimes su N_1 e poi entra nello stato q_1 muovendo a destra la testina di N_1 .

Osserviamo che la computazione $U(\rho_T, x)$ rigetta ogni volta che U non trova la quintupla da eseguire e lo stato attuale di T (scritto sul nastro N_3) non è lo stato di accettazione di T (scritto sul nastro N_4). Dunque, U rigetta il suo input (ρ_T, x) senza verificare che la computazione T(x) abbia rigettato. Ciò è in accordo con quanto è stato discusso nel Paragrafo 2.3: in assenza di quintuple eseguibili, se la macchina non si trova nello stato di accettazione, possiamo sempre assumere che l'input venga rigettato.

La descrizione dell'algoritmo sopra riportata è ad alto livello perché utilizza l'insieme degli stati Q della macchina T da simulare come parte dell'alfabeto di lavoro. Poiché U deve simulare le computazioni di *qualsiasi* macchina di

Turing, questa non è, ovviamente, una assunzione ragionevole. Per ovviare a tale problema, assumiamo, allora, che l'alfabeto di lavoro di U sia l'insieme $\Sigma = \{0, 1, \oplus, \otimes, -, f, s, d\}$ (ricordiamo che il carattere blank \square è sempre esterno all'alfabeto di lavoro).

Sia $b^Q: Q \to \lceil \log |Q| \rceil$ una funzione che codifica in binario gli stati di T utilizzando per ciascuno di essi $m = \lceil \log |Q| \rceil$ cifre, e, per ogni $\omega \in Q$, indichiamo con $b^Q(\omega) = b_1^Q(\omega)b_2^Q(\omega) \dots b_m^Q(\omega)$ la codifica di ω . Allora, la descrizione di T che costituirà l'input del nastro N_1 di U è la parola $\beta_T \in \Sigma^*$ descritta di seguito:

$$\beta_T = b^{\mathcal{Q}}(\omega_0) - b^{\mathcal{Q}}(\omega_1) \otimes b^{\mathcal{Q}}(\omega_{1_1}) - b_{1_1} - b_{1_2} - b^{\mathcal{Q}}(\omega_{1_2}) - m_1 \oplus \ldots \oplus b^{\mathcal{Q}}(\omega_{h_1}) - b_{h_1} - b_{h_2} - b^{\mathcal{Q}}(\omega_{h_2}) - m_h \oplus b_{h_2} + b_{h_3} - b_{h_4} - b_{h_4} - b_{h_5} -$$

Nella descrizione ad alto livello di U proposta sopra, dobbiamo, per così dire, "raffinare" la descrizione delle operazioni compiute quando la macchina U si trova negli stati q_0 , in cui esegue copia degli stati ω_0 e ω_1 di T, rispettivamente, sui nastri N_3 e N_4 , e q_1 , in cui cerca una quintupla di T da eseguire: le operazioni di copia e di confronto di stati che nella descrizione ad alto livello erano operazioni atomiche diventano ora operazioni da eseguire mediante cicli. Le modifiche sono descritte di seguito:

1') A partire dallo stato q_0 , vengono copiati gli m caratteri della codifica $b^Q(\omega_0)$ di ω_0 sul nastro N_3 e gli m caratteri della codifica $b^Q(\omega_1)$ di ω_1 sul nastro N_4 ; successivamente le testine di N_3 e di N_4 vengono spostate a sinistra sul primo carattere scritto, la testina di N_1 viene spostata sul simbolo a destra del primo carattere ' \otimes ' che incontra e la macchina entra nello stato q_1 :

```
 \begin{aligned} &\langle q_0, (x,a,\square,\square), (x,a,x,\square), q_0, (d,f,d,f) \rangle & \forall x \in \{0,1\} \land \forall a \in \{0,1,\square\} \\ &\langle q_0, (-,a,\square,\square), (-,a,\square,\square), q_{01}, (d,f,f,f) \rangle & \forall a \in \{0,1,\square\}, \\ &\langle q_{01}, (y,a,\square,\square), (y,a,\square,y), q_{01}, (d,f,f,d) \rangle & \forall y \in \{0,1\} \land \forall a \in \{0,1,\square\}, \\ &\langle q_{01}, (\otimes,a,\square,\square), (\otimes,a,\square,\square), q_{02}, (d,f,s,s) \rangle & \forall a \in \{0,1,\square\}, \\ &\langle q_{02}, (b,a,x,y), (x,a,y,z), q_{02}, (f,f,s,s) \rangle & \forall x,y \in \{0,1\} \land \forall a,b \in \{0,1,\square\}, \\ &\langle q_{02}, (b,a,\square,\square), (z,a,\square,\square), q_{1}, (f,f,d,d) \rangle & \forall a,b \in \{0,1,\square\}. \end{aligned}
```

- 2') Nello stato q_1 ha inizio la ricerca di una quintupla su N_1 che abbia come primo simbolo la parola scritta sul nastro N_3 e come secondo simbolo lo stesso simbolo letto dalla testina di N_2 :
 - (a) se nello stato q_1 legge la stessa sequenza di simboli sui nastri N_1 ed N_3 fino a quando incontra il carattere '-' su N_1 e il carattere \square su N_3 allora, a questo punto, sposta la testina di N_1 a destra di due posizioni, la testina di N_3 a sinistra di m posizioni, ed entra nello stato $q_{statoCorretto}$:

```
 \begin{array}{lll} \langle q_{1}, (x, a, x, y), (x, a, x, y), q_{1}, (d, f, d, f) \rangle & \forall x, y \in \{0, 1\} \land \forall a \in \{0, 1, \square\} \\ \langle q_{1}, (-, a, \square, y), (-, a, \square, y), q_{11}, (d, f, s, f) \rangle & \forall y \in \{0, 1\} \land \forall a \in \{0, 1, \square\} \\ \langle q_{11}, (b, a, x, y), (b, a, x, y), q_{11}, (f, f, s, f) \rangle & \forall x, y \in \{0, 1\} \land \forall a, b \in \{0, 1, \square\} \\ \langle q_{11}, (b, a, \square, y), (b, a, \square, y), q_{statoCorretto}, (f, f, d, f) \rangle & \forall y \in \{0, 1\} \land \forall a, b \in \{0, 1, \square\} \\ \end{array}
```

Ora la testina di N_1 è posizionata sul secondo elemento (ossia, il carattere letto) della quintupla che si sta esaminando, e la testina di N_3 è nuovamente posizionata sul primo carattere della parola che rappresenta il nuovo stato attuale di T.

i. Se nello stato $q_{statoCorretto}$ legge lo stesso simbolo sui nastri N_1 e N_2 , allora ha trovato la quintupla da eseguire; pertanto, sposta la testina di N_1 a destra di due posizioni (per superare il carattere separatore '-') ed entra nello stato q_{scrivi} :

```
 \begin{aligned} & \langle q_{\textit{statoCorretto}}, (a, a, x, y), (a, a, x, y), q'_{\textit{statoCorretto}}, (d, f, f, f) \rangle & \forall x, y \in \{0, 1\} \ \land \ \forall a \in \{0, 1, \square\} \\ & \langle q'_{\textit{statoCorretto}}, (-, a, x, y), (-, a, x, y), q_{\textit{scrivi}}, (d, f, f, f) \rangle & \forall x, y \in \{0, 1\} \ \land \ \forall a \in \{0, 1, \square\}. \end{aligned}
```

ii. Se nello stato $q_{statoCorretto}$ legge simboli differenti sui nastri N_1 e N_2 , allora la quintupla che sta scandendo su N_1 non è quella da eseguire; pertanto, entrando nello stato q_2 , sposta la testina di N_1 a destra fino a posizionarla sul primo simbolo successivo al primo ' \oplus ' che incontra e, se tale simbolo è 0 oppure 1 allora entra nello stato q_1 , altrimenti entra nello stato di rigetto:

(b) se nello stato q_1 legge simboli differenti sui nastri N_1 e N_3 , allora la quintupla che sta scandendo su N_1 non è quella da eseguire; pertanto, entrando nello stato q_3 , sposta la testina di N_3 a sinistra fino a posizionarla sul primo simbolo non \square ivi scritto, sposta la testina di N_1 a destra fino a posizionarla sul primo simbolo successivo al primo ' \oplus ' che incontra e, se tale simbolo è 0 oppure 1 allora entra nello stato q_1 , altrimenti confronta lo stato attuale che sta leggendo su N_3 con lo stato di accettazione ω_1 di T scritto su N_4 e, se sono uguali, entra nello stato di accettazione, altrimenti entra nello stato di rigetto:

```
\langle q_1,(z,a,x,y),(z,a,x,y),q_3,(f,f,s,f)\rangle
                                                                                      \forall x, y, z \in \{0, 1\} \land \forall a \in \{0, 1, \square\} : z \neq x
                                                                                      \forall x, y, z \in \{0, 1\} \land \forall a \in \{0, 1, \square\}
\langle q_3, (z, a, x, y), (z, a, x, y), q_3, (f, f, s, f) \rangle
                                                                                      \forall y, z \in \{0,1\} \land \forall a \in \{0,1,\square\}
\langle q_3, (z, a, \square, y), (z, a, \square, y), q_{31}, (f, f, d, f) \rangle
                                                                                      \forall x, y \in \{0,1\} \land \forall a \in \{0,1,\square\} \land \forall z \in \Sigma - \{\oplus\}
\langle q_{31}, (z, a, x, y), (z, a, x, y), q_{31}, (d, f, f, f) \rangle
                                                                                      \forall x,y \in \{0,1\} \ \land \ \forall a \in \{0,1,\square\}
\langle q_{31}, (\oplus, a, x, y), (\oplus, a, x, y), q_{32}, (d, f, f, f) \rangle
                                                                                      \forall x, y, z \in \{0, 1\} \land \forall a \in \{0, 1, \square\}
\langle q_{32}, (z, a, x, y), (z, a, x, y), q_1, (f, f, f, f) \rangle
\langle q_{32}, (z, a, x, y), (z, a, x, y), q_{33}, (f, f, f, f) \rangle
                                                                                      \forall x, y \in \{0, 1\} \land \forall a \in \{0, 1, \square\} \land \forall z \notin \{0, 1\}
\langle q_{33}, (z, a, x, x), (z, a, x, x), q_{33}, (f, f, d, d) \rangle
                                                                                      \forall x \in \{0,1\} \land \forall a \in \{0,1,\square\} \land \forall z \in \Sigma
\langle q_{33},(z,a,\square,\square),(z,a,\square,\square),q_A,(f,f,f,f)\rangle
                                                                                      \forall x \in \{0,1\} \land \forall a \in \{0,1,\square\} \land \forall z \in \Sigma
\langle q_{33}, (z, a, x, y), (z, a, x, y), q_R, (d, f, f, f) \rangle
                                                                                      \forall x, y \in \{0, 1\} : x \neq y \land \forall a \in \{0, 1, \square\} \land \forall z \in \Sigma.
```

3) Nello stato q_{scrivi} , inizia l'esecuzione della quintupla che ha individuato sul nastro N_1 scrivendo il nuovo simbolo su N_2 : dunque, nello stato q_{scrivi} , scrive su N_2 il simbolo che legge su N_1 ed entra nello stato $q_{cambiaStato}$ muovendo a destra di due posizioni (per superare il carattere separatore '-') la testina di N_1 :

4') Nello stato $q_{cambiaStato}$, prosegue l'esecuzione della quintupla che ha individuato sul nastro N_1 modificando il contenuto del nastro N_3 : dunque, nello stato $q_{cambiaStato}$, scrive su N_3 la sequenza di simboli che legge su N_1 fino a quando incontra il carattere '-' su N_1 e il carattere \square su N_3 ; infine, sposta a destra di una posizione la testina di N_1 (che così si posiziona su uno dei caratteri 's', 'f', 'd' che indicano lo spostamento della testina di T che deve essere simulato sul nastro N_1), sposta a sinistra la testina di N_3 fino a posizionarla sul carattere a destra del primo \square che incontra, ed entra nello stato q_{muovi} :

5) Nello stato q_{muovi} , termina l'esecuzione della quintupla che ha individuato sul nastro N_1 muovendo la testina del nastro N_2 : dunque, nello stato q_{muovi} , muove la testina di N_2 in accordo con il simbolo letto su N_1 ed entra nello stato $q_{riavvolgi}$ muovendo a sinistra la testina di N_1 :

6) Nello stato $q_{riavvolgi}$, riposiziona la testina del nastro N_1 sul primo simbolo a destra del carattere ' \otimes ' in esso contenuto rientrando, infine, nello stato q_1 :

```
 \langle q_{riavvolgi}, (z, a, x, y), (z, a, x, y), q_{riavvolgi}, (s, f, f, f) \rangle \quad \forall x, y \in \{0, 1\} \land \forall a \in \{0, 1, \square\} \land \forall z \in \Sigma - \{ \otimes \} 
 \langle q_{riavvolgi}, (\otimes, a, x, y), (\otimes, a, x, y), q_1, (d, f, f, f) \rangle \quad \forall x, y \in \{0, 1\} \land \forall a \in \{0, 1, \square\}.
```