Dr. Denton Bobeldyk

CIS 365 Artificial Intelligence

Natural Language Processing

Delivery Methods

Lecture

Videos

Lab Time

Small Groups

Natural Language Processing (NLP)

- * Subfield of artificial intelligence and linguistics.
- * Focuses on enabling computers to understand, interpret, and respond to human language in a a way that is both meaningful and useful
- * Combines computational techniques and linguistic principles to process and analyze large amounts of natural language data

Text Processing

- * Tokenization
 - * Splitting text into words or sentences
- * Stopword removal
 - * Eliminating common words like "is", "and", and "the"
- * Lemmatization/Stemming
 - * reducing words to their base or root form

Text Processing

- * Tokenization
 - * Splitting text into words or sentences
- * Stopword removal
 - * Eliminating common words like "is", "and", and "the"
- * Lemmatization/Stemming
 - * reducing words to their base or root form

Applications of NLP

Applications of NLP

- * Text Analysis
- * Speech Processing
- * Information Retrieval
- * Language Translation
- * Question Answering Systems
- * Content Generation

Text Analysis

- * Sentiment Analysis
 - * Determining the emotional tone of text (e.g., positive or negative reviews)
- * Topic Modeling
 - * Identifying the main topics in a collection of documents
- * Customer Review Summarization
 - * Summarizing reviews of a product (e.g., Customers were happy with the product and tend to mention stick drift)

Speed Processing

- * Speech Recognition: Converting spoken language into text (e.g., Siri, Google Assistant)
- * Text-to-speech: Generating human-like speech from text

Information Retrieval

- * Search Engines
 - * Understanding and ranking web content based on queries
- * Chatbots and virtual assistants
 - * Providing automated conversational responses

Language Translation

- * Machine Translation
 - * Converting text or speech from one language to another (e.g., google translate)

Question Answering Systems

* Answering natural language questions (e.g., IBM Watson, OpenAI's GPT)

Name some question/answer systems

- * IBM Watson
- * Chat GPT

Name some question/answer systems

- * IBM Watson
- * Chat GPT
- * Google Bard
- * Meta's LlaMa
- * X's Grok

Content Generation

- * Summarization
 - * Produce concise summaries of long texts
- * Text generation
 - * Creating human-like text (e.g., GPT based models)

Key components of NLP

Key components of NLP

- * Text Processing
- * Linguistic Analysis
- * Statistical and Machine Learning Techniques

Text Processing

- * Tokenization
 - * Splitting text into words or sentences
- * Stopword removal
 - * Eliminating common words like "is", "and", "the"
- * Lemmatization/Stemming
 - * Reducing words to their base or root form

Linguistic Analysis

- * Syntax
 - * Understanding the grammatical structure of sentences (e.g., parsing)
- * Semantics
 - * Deriving meaning from words and sentences
- * Pragmatics
 - * Interpreting language in context, including implied meanings

Statistical and Machine Learning Techniques

- * Used to model language patterns, predict outcomes and classify text
- * Algorithms like hidden Markov models, conditional random fields and deep learning models play a significant role

Challenges in NLP

Challenges in NLP

- * Ambiguity
- * Context Understanding
- * Low-resource languages
- * Domain specific jargon
- * Multilingual processing

Challenges - Ambiguity

- * Words and sentences often have multiple meanings depending on context
- * "I saw her duck" could refer to an action or a bird

Challenges - Context Understanding

* Understanding nuances like sarcasm, idioms or implied meanings

Challenges - Low-resource languages

- * Many languages lack sufficient labeled data for effective NLP development
- * Types of low resource languages:
 - * Indigenous and endangered languages
 - * Aymara (spoken in Bolivia, Peru, Chile)
 - * Hausa (spoken in Nigeria, Niger, and neighboring areas)
 - * Regional and minority languages
 - * Welsh spoken in Wales
 - * Twi spoken in Ghana

Challenges - Low-resource languages

- * Types of low-resource languages continued:
 - * Underrepresented official languages
 - * Amharic
 - * Official language of Ethiopia
 - * Lao
 - * Official language of Laos
 - * Sinhala
 - * Official language of Sri Lanka

Challenges - Domain-specific jargon

* Handling specialized language in fields like medicine or law

Challenges - Multilingual Processing

* Managing language variations, dialects, and multilingual inputs

Popular Techniques and Models

Popular Techniques and Models

- * Rule based approaches
- * Statistical methods
- * Deep Learning
- * Pretrained language models

Rule-based approaches

- * Early NLP systems relied on predefined linguistic rules
- * Limited flexibility but useful for specific applications

Statistical methods

- * Probabilistic models like n-grams and Markov models
- * Effective for text prediction and language modeling

* Train your model on a large amount of text as our 'corpus'

* Train your model on a large amount of text as our 'corpus'

What sort of ethical concerns are there for this?

* Train your model on a large amount of text as our 'corpus'

For example:

I love natural language processing.

I love programming.

I enjoy learning NLP.

* Generate Bigram probabilities

$$P(w_n \mid w_{n-1}) = \frac{\text{Count}(w_{n-1}, w_n)}{\text{Count}(w_{n-1})}$$

 $P(w_n \mid w_{n-1})$ = probability of w_n , given the preceding word w_{n-1}

Count (w_{n-1}, w_n) = the count of the bigram

 $Count(w_{n-1})$ = count of the preceding word

- * Generate Bigram counts
 - * Count(I,love) = 2
 - * Count(love, natural) = 2
 - * Count(love, programming) = 1
 - * Count(natural, language) = 1
 - * Count(language, processing) = 1
 - * Count(enjoy, learning) = 1
 - * Count(learning, NLP) = 1

- * Generate Bigram counts
 - * Count(I) = 3
 - * Count(love) = 2
 - * Count(natural) = 1
 - * Count(language) = 1
 - * Count(enjoy) = 1
 - * Count(learning) = 1

- * Bigram Probabilities:
 - * P(love | I) = 2/3
 - * P(programming | love) = 1/2
 - * P(natural | love) = 1/2
 - * P(language | natural) = 1
 - * P(processing | language) = 1
 - * P(learning | enjoy) = 1
 - * P(NLP | learning) = 1

- * Predict the next word:
 - * Start with "I"
 - P(love | I) = 2/3
 - * $P(\text{enjoy} \mid I) = 1/3$
 - * Predict "love"
 - * Current word is "love":
 - * P(natural | love) = 1/2
 - * P(programming | love) = 1/2
 - * Predict "natural" or "programming" (randomly choose if equal)

Deep Learning

- * Neural networks like LSTM, GRUs and Transformers (e.g., BERT, GPT)
- * Achieve state of the art performance in tasks like translation, summarization and question answering

Pretrained Language Models

- * BERT
- * GPT

Future Directions of NLP

- * Explainable NLP
 - * Developing systems that can explain their reasoning for decisions
- * Real-Time Multimodal processing
 - * Combining NLP with computer vision applications like captioning videos
- * Personalized NLP
 - * Tailoring models to individual user preference and behavior
- * Low-resource language inclusion
 - * Building models that work effectively for languages with limited data