Лекция 7 Несобственные интегралы

24.1 Определение и простейшие примеры несобственных интегралов по бесконечному промежутку

М24.1.1 Определение. Рассмотрим функцию y = f(x), определенную на бесконечном промежутке $t; \infty$ и интегрируемую на любом конечном промежутке t; b. Если существует конечный предел

$$\lim_{b\to\infty}\int_a^b f(x)dx = \int_a^\infty f(x)dx,$$

то говорят, что интеграл $\int_{a}^{\infty} f(x)dx$ сходится. В противном случае говорят, что этот интеграл

расходится. Интеграл $\int_{a}^{\infty} f(x)dx$ называется несобственным интегралом по бесконечному промежутку.

Пример 1.
$$\int_{0}^{\infty} \frac{dx}{1+x^{2}} = \lim_{b \to \infty} \int_{0}^{b} \frac{dx}{1+x^{2}} = \lim_{b \to \infty} (arctgb - arctg0) = \frac{\pi}{2}$$

М24.1.2 Пример 2. Определим, при каких значениях параметра a сходится интеграл $\int_{1}^{\infty} \frac{dx}{x^{a}}$.

При
$$a=1$$

$$\int\limits_{1}^{\infty} \frac{dx}{x^a} = \int\limits_{1}^{\infty} \frac{dx}{x} = \lim_{b \to \infty} \ln b - \ln 1 = \infty$$
: интеграл расходится.

При
$$a \neq 1$$

$$\int_{1}^{\infty} \frac{dx}{x^a} = \frac{1}{1-a} \left(\lim_{b \to \infty} b^{1-a} - 1 \right).$$

Если 1-a < 0, то $\lim_{b \to \infty} b^{1-a} = 0$ и интеграл сходится, если же 1-a > 0, то $\lim_{b \to \infty} b^{1-a} = \infty$ и интеграл расходится.

Итак, интеграл $\int\limits_{1}^{\infty}\! \frac{dx}{x^a}$ сходится тогда и только тогда, когда a>1 .

М24.1.3 Формула Ньютона-Лейбница Из определения несобственного интеграла по бесконечному промежутку следует формула Ньютона-Лейбница для такого интеграла:

$$\int_{a}^{\infty} f(x)dx = \lim_{x \to \infty} F(x) - F(a) ,$$

где F(x) - первообразная функции f(x) .

М24.1.4 Определение. Рассмотрим функцию y = f(x), определенную на бесконечном промежутке (x, a) и интегрируемую на любом конечном промежутке (x, b). Если существует конечный предел

$$\lim_{a\to-\infty}\int_{a}^{b}f(x)dx=\int_{-\infty}^{b}f(x)dx,$$

то говорят, что интеграл $\int_{-\infty}^{b} f(x)dx$ *сходится*. В противном случае говорят, что этот интеграл *расходится*.

Интеграл также $\int_{-\infty}^{b} f(x)dx$ называется несобственным интегралом по бесконечному промежутку.

М24.1.5 Определение: Рассмотрим функцию y = f(x), определенную на бесконечном промежутке $(-\infty)^2$ и интегрируемую на любом конечном промежутке $(-\infty)^2$. Если существует конечный предел

$$\lim_{\substack{a \to -\infty \\ b \to \infty}} \int_{a}^{b} f(x) dx = \int_{-\infty}^{\infty} f(x) dx,$$

то говорят, что интеграл $\int_{-\infty}^{\infty} f(x)dx$ сходится. В противном случае говорят, что этот интеграл расходится.

Интеграл также $\int_{-\infty}^{\infty} f(x)dx$ называется несобственным интегралом по бесконечному промежутку.

24.2 Свойства несобственных интегралов по бесконечному промежутку

М24.2.1 Теорема (свойства несобственного интеграла по бесконечному промежутку)

- 1) Если A > a и интеграл $\int_{a}^{\infty} f(x)dx$ сходится, то сходится и интеграл $\int_{A}^{\infty} f(x)dx$
- 2) Если интеграл $\int_{a}^{\infty} f(x)dx$ сходится, то для любого числа С сходится и интеграл $\int_{a}^{\infty} Cf(x)dx$
- 3) Если интегралы $\int_{a}^{\infty} f(x)dx$ и $\int_{a}^{\infty} g(x)dx$ сходятся, то сходятся и интегралы $\int_{a}^{\infty} f(x) + g(x) dx$ и $\int_{a}^{\infty} f(x) g(x) dx$

Доказательство:1) $\int\limits_{a}^{\infty}f(x)dx=\lim_{x\to\infty}F(x)-F(a)$. По определению несобственного интеграла функция y=f(x) интегрируем на промежутке $x\in A$.

 $\int_{a}^{\infty} f(x)dx = \int_{a}^{A} f(x)dx + \int_{A}^{\infty} f(x)dx$. Интегралы $\int_{a}^{\infty} f(x)dx$ и $\int_{a}^{A} f(x)dx$ существуют и конечны,

значит, существует и конечен интеграл $\int\limits_{A}^{\infty} f(x) dx = \int\limits_{a}^{\infty} f(x) dx - \int\limits_{a}^{A} f(x) dx \, .$

2)
$$\int_{a}^{\infty} Cf(x)dx = \lim_{b \to \infty} \int_{a}^{b} Cf(x)dx = \lim_{b \to \infty} C \int_{a}^{b} f(x)dx = C \lim_{b \to \infty} \int_{a}^{b} f(x)dx =$$

$$=C\int_{a}^{\infty}f(x)dx.$$

1.
$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx, \int_{a}^{\infty} g(x)dx = \lim_{b \to \infty} \int_{a}^{b} g(x)dx$$

$$\lim_{b\to\infty}\int\limits_a^b f(x)dx\pm\lim_{b\to\infty}\int\limits_a^b f(x)dx=\lim_{b\to\infty}\int\limits_a^b f(x)dx=\lim_{b\to\infty}\int\limits_a^b f(x)dx=\int\limits_a^\infty f(x)dx=\int\limits_a^\infty f(x)dx$$
 Теорема доказана.

24.3 Несобственные интегралы от положительных функций

Если подынтегральная функция положительна, то расходимость несобственного интеграла на бесконечном промежутке означает, что предел из определения M24.1.1 равен $+\infty$.

М24.3.1 Теорема (признак сравнения)

Если f(x) > 0, g(x) > 0 и найдется число $A \ge a$ такое, что при x > A верно неравенство $f(x) \le g(x)$ то из сходимости интеграла $\int\limits_a^\infty g(x) dx$ следует сходимость интеграла $\int\limits_a^\infty f(x) dx$ при условии, что функция f(x) интегрируема на любом промежутке a, a.

Доказательство: Если интеграл $\int_{a}^{\infty} g(x)dx$ сходится, то сходится и интеграл $\int_{A}^{\infty} g(x)dx$, т.е. $\int_{A}^{\infty} g(x)dx = M < \infty$. Поскольку при x > A верно $f(x) \le g(x)$, то $\int_{A}^{\infty} f(x)dx \le \int_{A}^{\infty} g(x)dx$, значит, $\int_{A}^{\infty} f(x)dx \le M < \infty$ и интеграл $\int_{A}^{\infty} f(x)dx$ сходится. А, поскольку, функция f(x) интегрируема на промежутке f(x), то интеграл f(x) сходится. Теорема доказана.

М24.3.2 Пример. Проверить, сходится ли интеграл $\int\limits_{1}^{\infty} \frac{dx}{x^2 + x + 1}$

Решение: Интеграл $\int\limits_{1}^{\infty}\!\!\frac{dx}{x^2}$ сходится и при $x\in [\infty]$ имеет место $\frac{1}{x^2+x+1}<\frac{1}{x^2}$. Значит, по признаку сравнения интеграл $\int\limits_{1}^{\infty}\!\!\frac{dx}{x^2+x+1}$ сходится.

M24.3.3 Теорема (предельный признак сравнения) Если f(x) > 0, g(x) > 0 и существует предел $\lim_{x \to \infty} \frac{f(x)}{g(x)} = K \quad (< K < \infty)$, то:

- 1) из сходимости интеграла $\int\limits_a^\infty g \, \mathbf{Q} \, \mathbf{X}$ следует сходимость интеграла $\int\limits_a^\infty f \, \mathbf{Q} \, \mathbf{X}$ (при K=0 тоже);
- 2) из расходимости интеграла $\int_{a}^{\infty} g \, \mathbf{Q} \, \mathbf{x}$ следует расходимость интеграла $\int_{a}^{\infty} f \, \mathbf{Q} \, \mathbf{x}$.

Доказательство. Практически можно повторить (с небольшими естественными изменениями) доказательство аналогичной теоремы для рядов M4.5.2.

24.4 Несобственные интегралы от произвольных функций

М24.4.1 Необходимый признак сходимости. Для сходимости несобственного интеграла $\int\limits_a^\infty f \, \P \, dx$ необходимо и достаточно, чтобы для $\forall \varepsilon > 0 \; \exists A > a$ такое, что для $\forall A_1 > A$, $\forall A_2 > A$ выполнялось неравенство

$$\left| \int_{A_1}^{A_2} f \, \mathbf{G} \, dx \right| < \varepsilon \, .$$

Без доказательства.

М24.4.2 Теорема (об абсолютной сходимости) Если сходится интеграл $\int_{a}^{\infty} f \, \mathbf{q} \, dx$, то сходится и интеграл $\int_{a}^{\infty} f \, \mathbf{q} \, dx$.

$$\left| \int_{A_1}^{A_2} |f \cdot \mathbf{q}| \right| dx = \int_{A_1}^{A_2} |f \cdot \mathbf{q}| dx < \varepsilon.$$

Но, поскольку, $\left|\int\limits_{A_1}^{A_2}f \, dx\right| \leq \int\limits_{A_1}^{A_2} \left|f \, dx\right| = \int\limits_{A_2}^{A_2} \left|f \, dx\right| = \int\limits_{A_2}^{A_2$

M24.4.3 Замечание. Из сходимости $\int\limits_{a}^{\infty} f \, \mathbf{c} \, dx$ не следует сходимость $\int\limits_{a}^{\infty} [f \, \mathbf{c}] dx$.

Доказательство. Пусть $g \blacktriangleleft \leq M$, тогда утверждение следует из очевидного неравенства $f \blacktriangleleft g \blacktriangleleft \leq M f \blacktriangleleft c$.

М24.4.6 Пример. Интеграл $\int_{0}^{\infty} \frac{\sin ax}{x^2 + b^2} dx$ сходится, так как функция $f = \frac{1}{x^2 + b^2}$ абсолютно интегрируема, а функция $g = \sin ax$ ограничена.

24.5 Определение и простейшие примеры несобственных интегралов от функций с особыми точками

М24.5.1 Определение. Пусть функция f **(**) задана в промежутке b и неограниченна в любой окрестности точки b . Точка b в этом случае называется *особой точкой* и, если существует предел

$$\int_{a}^{b} f \cdot dx = \lim_{\eta \to 0} \int_{a}^{b-\eta} f \cdot dx,$$

M44.5.2 Пример.
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}} = \lim_{\eta \to 0} \int_{0}^{1-\eta} \frac{dx}{\sqrt{1-x^{2}}} = \lim_{\eta \to 0} \arcsin(-\eta) - 0 = \frac{\pi}{2}.$$

М24.5.3 *Замечание 1*. Имеет место аналог формулы Ньютона-Лейбница:

$$\int_{a}^{b} f \cdot \mathbf{d} dx = \lim_{x \to b} F \cdot \mathbf{d} - F \cdot \mathbf{d}.$$

M24.5.5 Пример. Исследуем сходимость интеграла $\int\limits_0^1 \frac{dx}{x^{\alpha}}$ в зависимости от значения параметра α .

Решение. При $\alpha \neq 1$ имеем $\int_0^1 \frac{dx}{x^{\alpha}} = \frac{x^{1-\alpha}}{1-\alpha} \bigg|_0^1$. При $\alpha > 1$ степень переменной x отрицательна, значит, при возведении в степень $0^{1-\alpha}$ происходит деление на ноль и интеграл расходится. При $\alpha < 1$ степень переменной x положительна, значит, $\int_0^1 \frac{dx}{x^{\alpha}} = \frac{x^{1-\alpha}}{1-\alpha} \bigg|_0^1 = \frac{1}{1-\alpha} - 0 < \infty$ и интеграл сходится.

Если $\alpha=1$, то $\int\limits_0^1\!\frac{dx}{x}=\ln \left|x\right|_0^1=0+\infty$ интеграл расходится.

24.6 Признаки сходимости несобственных интегралов

М24.6.1 Теорема (признак сравнения)

Пусть функции f \bigcirc и g \bigcirc заданы в промежутке [a,b] и b является единственной особой точкой. Если f(x) > 0, g(x) > 0 и найдется число $A \ge a$ такое, что при x > A верно неравенство $f(x) \le g(x)$ то из сходимости интеграла $\int\limits_a^b g \bigcirc a$ следует сходимость интеграла $\int\limits_a^b f \bigcirc a$ при условии, что функция f(x) интегрируема на любом промежутке $[a,b-\eta]$. Доказательство: Идентично доказательству теоремы M24.3.1.

М24.6.2 Теорема (предельный признак сравнения) Пусть функции $f \leftarrow u \ g \leftarrow$

- 1) из сходимости интеграла $\int_a^b g \, \mathbf{Q} \, \mathbf{X}$ следует сходимость интеграла $\int_a^b f \, \mathbf{Q} \, \mathbf{X}$ (при K=0 тоже);
- 2) из расходимости интеграла $\int_{a}^{b} g \cdot dx$ следует расходимость интеграла $\int_{a}^{b} f \cdot dx$.

Без доказательства.

М24.6.3 Следствие (признак сравнения Коши) Если при $x \to b$ функция $f \blacktriangleleft f$ является бесконечно большой порядка λ по сравнению с функцией $\frac{1}{b-x}$, то при $\lambda < 1$ интеграл $\int_a^b f \blacktriangleleft dx$ сходится, а при $\lambda \ge 1$ интеграл расходится (при условии, что b - единственная особая точка на промежутке f(x,b).

M24.6.4 Замечание. Утверждения M24.6.1, M24,6.2 и M24.6.3 легко переносятся и на случай интервала (; b] с единственной особой точкой a.

М24.6.5 Необходимый признак сходимости. Для сходимости несобственного интеграла $\int\limits_a^b f \, dx$ с единственной особой точкой b необходимо и достаточно, чтобы для $\forall \varepsilon > 0 \;\; \exists \delta > 0$ такое, что для $0 < \eta_1 < \delta$, $0 < \eta_2 < \delta$ выполнялось неравенство

$$\left| \int_{b-\eta_1}^{b-\eta_2} f \, \mathbf{Q} \, \mathbf{x} \right| < \varepsilon \; .$$

Без доказательства.

М24.6.6 Теорема (об абсолютной сходимости) Пусть функция f задана в промежутке f и f является единственной особой точкой. Если сходится интеграл $\int_{a}^{b} f \, dx$, то сходится и интеграл $\int_{a}^{b} f \, dx$. *Без доказательства*.

M24.6.7 Замечание. Из сходимости $\int_{a}^{b} f \cdot dx$ не следует сходимость $\int_{a}^{b} f \cdot dx$.

М24.6.8 Определение. Если сходится интеграл $\int_{a}^{b} f \, \mathbf{Q} \, dx$, то интеграл $\int_{a}^{d} f \, \mathbf{Q} \, dx$ называется абсолютно сходящимся интегралом, а функция $f \, \mathbf{Q} \, dx$ абсолютно интегрируемой. Если интеграл $\int_{a}^{b} f \, \mathbf{Q} \, dx$ сходится, а интеграл $\int_{a}^{b} f \, \mathbf{Q} \, dx$ - нет, то интеграл $\int_{a}^{b} f \, \mathbf{Q} \, dx$ называется условно сходящимся.

M24.6.9 Замечание. Если функция f абсолютно интегрируема на f, g афункция g ограничена на этом же промежутке, то функция f абсолютно интегрируема на промежутке f, g.

Контрольные вопросы:

- 1. Дайте определение несобственного интеграла по бесконечному промежутку. Что означает, что несобственный интеграл сходится? При каких значениях параметра сходится интеграл $\int\limits_{-\infty}^{\infty} \frac{dx}{x^a} ?$
- 2. Перечислите свойства несобственных интегралов по бесконечному промежутку. Сформулируйте признак сравнения. Сформулируйте предельный признак сравнения.
- 3. Сформулируйте необходимый признак сходимости. Сформулируйте теорему об абсолютной сходимости.
- 4. Что называется особой точкой функции? Дайте определение несобственного интеграла от функции с особой точкой. При каких значениях параметра сходится интеграл $\int_{0}^{1} \frac{dx}{x^{\alpha}}$?
- 5. Сформулируйте признак сравнения и предельный признак сравнения для несобственного интеграла от функции с особой точкой. Сформулируйте признак сходимости Коши. Сформулируйте необходимый признак сходимости. Сформулируйте теорему об абсолютной сходимости.