

Turbofan Failure Prediction

Team Introduction – CPES Saclay & X

5 students with complementary skills in Data Science, ML, DL & Business.

Data Preparation & Exploration

Data Preparation & Exploration

□ Dataset: NASA C-MAPSS FD001 (cleaned in the 1st TP : 3 columns had missing values)

100 training engines, 100 test engines

26 sensor features + operational settings

□ Challenges:

Class imbalance (only 3.8% class 1 on the test set).

Time-series → target: Remaining Useful Life (RUL)

T50 sensor is positively correlated to time_cycles

□ Exploration findings:

Q-Q plot to check that data follow a normal distribution.

One categorical variable to encode: HPC outlet temperature(°C)

Strong correlation between operational cycles and degradation.

Modeling Approach

Modeling Approach

- Models tested: Decision Tree, KNN, Gradient Boosting.
- **Evaluation metric:** Accuracy > 90% for all models \rightarrow Recall prioritized. It is weak because of imbalance in RUL_class.
- Best model: Gradient Boosting (highest recall, most robust).
- ☐ **Optimization:** hyperparameter tuning (learning rate, max depth, n_estimators). It was not convincing, so we kept the first gradient boosting model.
- Precision-Recall Curve

Model	Test recall
Decision Tree	0.38177874186550
KNN	0.42082429501084
Gradient Boosting	0.44902386117136

Confusion matrix insights:

- Only about 1% of class 0 instances are misclassified as 1 : very few false positives.
- 55% of class 1 (minority class) instances are wrongly classified as 0 : many false negatives.

Precision recall curve insights:

Explainability & Key Drivers

Explainability & Key Drivers

☐ SHAP values (top features):

Operational cycles (~0.70).

Fuel flow (~0.47).

LPT outlet temperature (°C) (~0.37).

☐ Key insight:

As time passes (the higher the time cycle value is), RUL_class becomes 1 (the engine is not useable). The more the fuel flow is, the closer to 0 the RUL_class is (and it is the opposite for LPT outlet temperature. For LPT outlet temperature, we see the correlation we found (slide 4)).

Conclusions & Next Steps

Conclusions & Next Steps

Strenghts	Limitations	Recommendations
Solid preprocessing pipeline.		
Gradient Boosting achieved the best recall even if it remains low.	Strong class imbalance → recall still relatively low.	Apply resampling/SMOTE to address imbalance.
Explainability provided interpretable drivers of degradation.	The neural network we tried was not convincing: the results were not better than with Gradient Boosting.	Test other classification models like XGBoosti or AdaBoost

Thank you!