วิชา Computer Networks 3/2562	คะแนน
ปฏิบัติการที่ 8: NAT, DHCP and DNS	
รหัสนักศึกษา ชื่อ ชื่อ	
วัตถุประสงค์ เรียนรู้การทำงานของ NAT, DHCP and DNS	
<u>ไฟล์ที่จำเป็น</u> Lab8-2_Std.pkt	

Private IP addresses ตามเอกสาร RFC1918

Range of IP Addresses	Network(s)	Class of Networks	Number of Networks
10.0.0.0 to 10.255.255.255	10.0.0.0	A	1
172.16.0.0 to 172.31.255.255	172.16.0.0 - 172.31.0.0	В	16
192.168.0.0 to 192.168.255.255	192.168.0.0 - 192.168.255.0	С	256

แบบฝึกปฏิบัติการที่ 8.1 Static NAT and Dynamic NAT

i. Topology

Figure 1 Lab 8.1

ii. คำอธิบายแบบฝึกปฏิบัติการที่ 8.1

1) สร้างเครือข่ายคอมพิวเตอร์และกำหนดค่า IP Addresses ตาม Figure 1

- Public IP address ของ Serial Link ระหว่าง Router0 และ Router1 มี Network Address คือ 1.1.1.0/27
- Router0 Se0/0/0 มี IP address คือ 1.1.1.1/27, Router1 Se0/0/1 มี IP address คือ 1.1.1.2/27 เป็นต้น
- 🗲 Server0 เชื่อมต่อกับ Router1 G0/0 และมีกำหนดค่า Private IP address เป็น 172.16.1.2/24
- 🗲 Server1 เชื่อมต่อกับ Router1 G0/1 และมีกำหนดค่า Private IP address เป็น 172.16.2.2/24
- กำหนดค่า IP address ให้กับ PC ทั้งสามและขาในของ Router0 และ Router1 ให้เรียบร้อย

2) กำหนดค่าการทำงานของ NAT ที่ Router0 เป็น Dynamic NAT

- 🕨 กำหนด Access-List ที่ 10 (ไว้ระบุแต่ละ Access-List) เพื่อเป็นการระบุว่าให้กลุ่ม IP addresses นี้ สามารถใช้ NAT ได้ (Private IP addresses ที่จะถูกแปลงเป็น Public IP address ด้วย NAT)
 - ***Access-List ในกรณีนี้ไม่ได้มีไว้เพื่อเหตุผลด้าน Security แต่เพื่อบอกว่ากลุ่ม IP addresses นี้เป็นกลุ่มที่ สนใจและส่งไปให้ NAT process ทำการแปลง)***
 - Router0(Config)# access-list 10 permit 192.168.1.0 0.0.0.255
 - Router0(Config)# access-list 10 permit 192.168.2.0 0.0.0.255
 - Router0(Config)# access-list 10 permit 192.168.3.0 0.0.0.255
- สร้าง NAT Pool สำหรับกรณี Dynamic NAT ให้ 1.1.1.0/27 โดยใช้จาก IP address: 1.1.1.5 ถึง
 1.1.1.8 และนำไปทำงานร่วมกับ Access-List ที่ได้สร้างไว้
 - Router0(config)# ip nat pool NAT <IP_ที่ใช้ได้ตัวแรก> <IP_ที่ใช้ได้ตัวสุดท้าย> netmask <net_mask>
 - Router0(config)# ip nat inside source list 10 pool NAT
- ทำการระบฝั่ง inside และ outside สำหรับ NAT ให้แต่ละ Interface ด้วยคำสั่ง
 - ใช้คำสั่ง Router(Config-if)# ip nat inside ให้กับ Interface G0/0, G0/1, G0/2
 - ใช้คำสั่ง Router(Config-if)# ip nat outside ให้กับ Interface Se0/0/0

3) กำหนดค่าการทำงานของ NAT ที่ Router1 เป็น Static NAT

- กำหนด Static NAT ให้กับ Server0 โดยจับคู่ PrivateIP 172.16.1.2 กับ PublicIP 1.1.1.10 และ Server1 โดยจับคู่ PrivateIP 172.16.2.2 กับ PublicIP 1.1.1.11
 - Router0(Config)# ip nat inside source static 172.16.1.2 1.1.1.10

- Router0(Config)# ip nat inside source static 172.16.2.2 1.1.1.11
- ทำการระบุฝั่ง inside และ outside สำหรับ NAT ให้แต่ละ Interface
 - ใช้คำสั่ง Router(Config-if)# ip nat inside ให้กับ Interface G0/0, G0/1
 - ใช้คำสั่ง Router(Config-if)# ip nat outside ให้กับ Interface Se0/0/1
- 4) ทดสอบด้วยการ Ping จาก PC ไปยัง Server0 และ Server1 แล้วสามารถตรวจสอบค่า NAT ที่กำหนด ไปด้วยคำสั่ง
 - Router# show access-list
 - Router# show ip nat translations
 - Router# show ip nat statistics
 - Router# debug ip nat
- iii. Checkpoint#1 ทำการสร้างและเชื่อมต่อเครือข่ายคอมพิวเตอร์ตาม Topology ที่กำหนดและ
 - 1) สามารถ Ping จาก PC0, PC1, PC2 ไปยัง Public IP address ของ Server0 และ Server1 ได้
 - 2) ตรวจสอบด้วย Router# show ip nat translations ทั้ง Router0 และ Router1 พร้อมอธิบายความเข้าใจ การทำงานของ NAT ทั้ง Static และ Dynamic

iv.	คำถามหลังการทดลอง คำสั่ง debug ip nat จะเกิดอะไรขึ้น และมีประโยชน์อย่างไร

แบบฝึกปฏิบัติการที่ 8.2 NAT, DHCP, DNS

i. Topology

Figure 2 Lab 8.2

ii. คำอธิบายแบบฝึกปฏิบัติการที่ 8.2

- 1) Server cpe.sut.acth, www.sut.ac.th, DNS server ไม่จำเป็นต้องกำหนดค่า แต่สามารถตรวจสอบ ความถูกต้องได้
- 2) กำหนดค่า IP Addresses ตาม Figure 2 (ระวังเรื่อง Network Address และ NetMask ด้วย) ยกตัวอย่าง เช่น
 - ที่ Router3 Interface ขาใน G0/2 (Network Address เป็น 172.16.1.4/30 จะมี Netmask คือ 255.255.255.252)
 - Router3(Config-if)# ip address 172.16.1.5 255.255.255.252

- ที่ Router3 Interface ขานอก G0/1 (Network Address เป็น 200.200.10.0/29 จะมี Netmask คือ 255.255.255.248)
 - Router3(Config-if)# ip address 200.200.10.2 255.255.255.248
- 3) กำหนดค่าการทำงานของ NAT ที่ Router3 เป็น Static NAT
 - กำหนด Static NAT ให้กับ cpe.sut.ac.th โดยจับคู่ PrivatelP 172.16.1.2 กับ PublicIP 200.200.10.3
 และ www.sut.ac.th โดยจับคู่ PrivatelP 172.16.1.6 กับ PublicIP 200.200.10.4
 - 🗲 ทำการระบฝั่ง inside และ outside สำหรับ NAT ให้แต่ละ Interface
- 4) กำหนดค่า Routing เป็น EIGRP AS Number 100 ทั้ง Router3 G0/1, Router1 G0/0 และ Se0/0/0, Router0 Se0/0/0, Se0/0/1 และ G0/1, Router2 Se0/0/1
 - ยกตัวอย่างการกำหนดค่า EGRP AS 100 ให้ Router1 คือ
 - Router1(Config)# router eigrp 100
 - Router1(Config-router)# network 200.100.10.0 0.0.0.3
 - Router1(Config-router)# network 200.200.10.0 0.0.0.7
- 5) ตรวจสอบค่า DNS Server ว่าถูกต้องไหม (พร้อมตรวจสอบ IP address และ Default Gateway)

- 6) กำหนดค่า NAT Overload (PAT) และ Static Route ที่ Router2
 - 🕨 กำหนด Access-List ที่ 10 สำหรับการทำ NAT สำหรับ Vlan 10 และ Vlan 20 ที่ Router2 เช่น
 - Router2(Config)# access-list 10 permit <network_addr> <wildcard_mask>

- กำหนดค่า Pool สำหรับ NAT และนำไปทำงานร่วมกับ Access-List ที่ได้สร้างไว้แบบประเภท NAT Overload (Keyword Overload จะหมายถึงมีการนำค่า Port มาร่วมในการแปลง)
 - Router2(config)# ip nat pool NAT 200.100.10.11 200.100.10.12 netmask 255.255.255.248
 - Router2(config)# ip nat inside source list 10 pool NAT overload
- > จากรูปเห็นได้ว่าฝั่ง G0/0 จำเป็นต้องกำหนด Static Route ไปยัง Network Vlan 10 (192.168.10.0/24) และ Vlan 20 (192.168.20.0/24) ด้วย
- ทำการระบุฝั่ง inside และ outside สำหรับ NAT ให้แต่ละ Interface
 - ใช้คำสั่ง Router2(Config-if)# ip nat inside ให้กับ Interface G0/0
 - ใช้คำสั่ง Router2(Config-if)# ip nat outside ให้กับ Interface Se0/0/1

7) กำหนด Multilayer Switch ในส่วน Vlan 10 และ Vlan 20 และเพิ่มการทำงานในส่วน Network Layer (Layer3) คล้าย Router

- 🗲 กำหนด Vlan 10 และ Vlan 20 เป็น mode access เช่น
 - Switch0(Config)# vlan 10
 - Switch0(Config)# interface g1/0/1
 - Switch0(Config-if)# switchport mode access
 - Switch0(Config-if)# switchport access vlan 10
 - ลองกำหนดเองให้ Vlan 20
- กำหนด Switch Virtual Interface (SVI) ซึ่งเป็น Logical Interface เพื่อให้ L3 Switch สามารถกำหนด IP address ที่ Logical Interface ไว้เป็น Default Gateway ให้กับ Vlan10 และ Vlan 20
 - Switch0(Config)# interface vlan 10
 - Switch0(Config-if)# ip address 192.168.10.1 255.255.255.0
 - ลองกำหนดเองให้ Vlan 20
- 🕨 กำหนด IP address ให้กับ g1/0/24 เพื่อทำงานแบบ Layer 3 Gigabit Ethernet port (ไม่ต้องมี Vlan)
 - Switch0(Config)# interface g1/0/24
 - Switch0(Config-if)# no switchport
 - Switch0(Config-if)# ip address 172.16.1.2 255.255.255.252
- กำหนดค่าในเรื่อง Routing โดยถ้าเป็น Multilayer Switch จำเป็นต้องเปิดการทำงาน Routing ก่อน
 - Switch0(Config)# ip routing
 - กำหนดค่า static route สามารถติดต่อกับข้างนอกได้ (เช่น การกำหนดเป็น Default Route ออกไป)

- กำหนดค่าในส่วน DHCP ให้กับ Network ข้างหลังคือ Vlan 10 และ Vlan 20 เพราะ PC0 และ PC1 ใน นี้จะไม่มีการกำหนดค่า IP address, Default Gateway และ DNS Server
 - Switch0(Config)# ip dhcp excluded-address 192.168.20.1
 - Switch0(Config)# ip dhcp excluded-address 192.168.10.1 192.168.10.20
 - Switch0(Config)# ip dhcp pool VLAN10
 - Switch0(dhcp-config)# network 192.168.10.0 255.255.255.0
 - Switch0(dhcp-config)# default-router <ip_address_ ที่ต้องการให้เป็นDefaultGateway>
 - Switch0(dhcp-config)# dns-server <ip address DNS Server>
 - ลองกำหนดค่า DHCP ให้ VLAN20

8) ลอง Ping จาก PC0 และ PC1 ไปยัง www.sut.ac.th และ cpe.sut.ac.th

ครั้งแรกอาจจะซ้าสักหน่อย หรืออาจไม่ได้รับ ip address จาก DHCP ที่ ถ้ามั่นใจว่ากำหนดค่าถูก ให้ใจ
 เย็นและรอสักนิดครับ (ไม่เกิน 1-2 นาที)

iii. Checkpoint#2 ทำตามเงื่อนไขช้างล่าง

- 1) สามารถ Ping จาก PC0 และ PC1 ไปยัง www.sut.ac.th และ cpe.sut.ac.th
- 2) ทดลองเปิดเว็บจาก PC1 และ PC0 ไปยัง www.sut.ac.th และตรวจสอบด้วย show ip nat translations ที่ Router2 พร้อมอธิบายว่าการส่งที่เกิดขึ้นทั้ง udp และ tcp ทั้งสอง protocols สื่อถึงสิ่งอะไร

iv.	คำถามหลังการทดลอง ทำไม Switch0 จึงมีการกำหนดคสั่ง # ip dhcp excluded-address
	192.168.20.1 เพื่ออะไร