<u>וML – תרגיל 4 – חלק מעשי</u>

(13

(14

Decision boundaries for 34 classifiers error = 0.02

(16

Decision boundaries - original weights

Decision boundaries - normalized weights

אלגוריתם ה-adaboost ממשקל מחדש את הנקודות בכל איטרציה, ונותן משקל גדול יותר לדגימות שבהן טעינו באיטרציה האחרונה. בגרף הראשון קשה לראות את הנקודות, ורואים בערך רק את ההפרדה. לאחר נרמול של הנקודות, בגרף השני ניתן לראות את הנקודות. ניתן לראות שהנקודות עם המשקל הגדול ביותר הן אלה שקרובות להפרדה, וזה אומר שאלה הנקודות שטעינו בהן באיטרציות האחרונות, ולכן זה הגיוני שההפרדה נמצאת קרוב אליהן.

(17

ניתן לראות שהגרף די דומה לגרף שקיבלנו עבור רעש=0. ההבדל העיקרי הוא שכאן ה- error מתישהו מתקבע יחסית על 0.025, ואילו כאשר רעש=0 ה-error התקבע מתישהו על ערך נמוך יותר מ-0.025. אז אפשר לראות שגם ה- test error וגם ה- training error פוחתים ככל שמוסיפים over-fitting, ולכן נראה שאין error.

ניתן לראות שהרעש קצת מבלבל את המודל, וגורם לו לעשות קצת טעויות. בכל זאת, המודל עובד די טוב.

Decision boundaries for 38 classifiers error = 0.025

Decision boundaries - original weights

Decision boundaries - normalized weights

ניתן לראות שהנקודות עם המשקל הגדול ביותר כבר לא בהכרח נמצאות קרוב להפרדה, כי אלה נקודות שמהוות רעש, ולכן סביר שהמודל טעה לגביהן (ולכן נתן להן משקל גבוה).

כאן ניתן לראות את ה- variance-bias trade-off בא לידי ביטוי. הדאטה היה מלא ברעשים, ולכן ככל test set יותר מעניין, שהוספנו יותר test set ותר מעניין, מדים שה-training error אבל ככל שאימנו יותר את המודל, הוא ניסה להתאים כל נקודה רואים שבהתחלה יש ירידה ב-error, אבל ככל שאימנו יותר את המודל, הוא ניסה להתאים כל נקודה בדאטה שהיא רעש, ולכן יש כאן overfit, ולכן ה-test error עולה בשלב מסוים, ודי מתקבע.

יש לנו הרבה רעש, אז ההפרדה הרבה פחות מסודרת לעומת לפני כן, כשהיה לנו פחות רעש או בלי רעש בכלל. כמו כן, רואים שיש הרבה יותר טעויות בסיווג.

Decision boundaries for 32 classifiers error = 0.385

גם כאן אפשר לראות שהיה יותר מדי רעש, ושהמודל עושה הרבה טעויות סיווג.

Decision boundaries - original weights

Decision boundaries - normalized weights

גם כאן אפשר לראות שהיה יותר מדי רעש, ושהמודל עושה הרבה טעויות סיווג. כמו כן, נשים לב שהמשקלים של הנקודות יחסית זהים (או לפחות של הרבה מהן), וזה אולי מעיד שהיו הרבה נקודות שסווגו לא נכון ולכן הן קיבלו אותו משקל.

	`
رالان حرا 324ء 316163260	
'G1/67 - IML 4 (27)	
צבין לבונים כי:	1
∀ε, δ>ο # 3m(ε, δ) ∀m 7, m(ε, δ):	
$ \frac{P\left[L_{p}\left(A(S)\right)\leqslant\varepsilon\right]}{S\sim\rho^{m}}\left[L_{p}\left(A(S)\right)\right]=0 $	
: b=>a ולים בא בא בא : b=	
N e'7' E'>0 GG >NIK 251 lim $E[Lp(A(S))] = 0$ O	
n =" ski f. E = E' >102 (61) . [[LD(A(S))] < E' n> N 66 ps	
$ \frac{\mathcal{E}[L_{D}(A(s))] \cdot \mathcal{E}' = \mathcal{E} \cdot \mathcal{J} - e_{j}}{s \wedge p^{m}} $	
: m>, m(E,5) 66 p> m(E,5) p, E, I20 68, 182	
P[LD(AD) EE] > 1-6 5~0m	

: a =>b noy -60	
m >, m(ε, ξ) (sle) m(ε, ξ) ε", ξ, δ >0 (6 ') ~ \\ 1) / (γη/ε)	
P[LD(A(S))>E] < T (=> P[LD(A(S)) \(\xi \) \\	
(£3) mm(£5) (£3)	
$0 < \mathcal{F}[L_D(A(s))] = \sum_{S \in D^m} P(s) \cdot L_D(A(s)) =$	•
$\sum_{S \in D^m} \frac{P(S) \cdot L_D(A(S))}{S \in D^m} \leq \sum_{S \in D^m} \frac{P(S) \cdot L_D(A(S))}{S \in D^m} \leq \sum_{S \in D} \frac{P(S) \cdot L_D(A(S))}{S \in D^m} \leq \sum_{S \in D} \frac{P(S) \cdot L_D(A(S))}{S \in D^m} \leq \sum_{S \in D} \frac{P(S) \cdot L_D(A(S))}{S \in D^m} \leq \sum_{S \in D^m} P(S) \cdot L_D(A(S)$	
$\sum_{S \in D^m} P(S) \cdot \mathcal{E} + \sum_{S \in D^m} P(S) \cdot 1 = P\left(\bigcup_{S \in D^m} S\right) \cdot \mathcal{E} + P\left(\bigcup_{S \in D^m} S\right) = \sum_{S \in D^m} \sum_{S \in D^m} \mathcal{E} + \sum_{S \in D^m} \sum_{S \in D^m} \mathcal{E} + \sum_{S \in D^m} \sum_{S \in D^m} \mathcal{E} + \sum_{S \in D^m$	•
$\mathbb{P}(L_{D}(A(S)) < \varepsilon) \cdot \varepsilon + \mathbb{P}(L_{D}(A(S)) > \varepsilon) \leq \mathbb{P}(L_{D}(A(S)) < \varepsilon) \cdot \varepsilon + \delta \leq \mathbb{P}(L_{D}(A(S)) < \varepsilon) < \varepsilon + \delta \leq \mathbb{P}(L_{D}(A(S)) < \varepsilon) < \varepsilon $	
E+5	
[E[Lp(A(s))] < \xi + \xi = \xi' :0 > m>m(\xi\xi) kBn(\xi\xi\xi\xi\xi\xi\xi\xi\xi\xi\xi\xi\xi\	
lim F[Lo(A(S))] = 0 ple Gy (222) 2320 361 m→os 5~0m	

. S = (x, y;); = eR2 & /will m yfer, rekn 2) بروه على ودرالاد درمادر دراي مردد دراي ، د- ک عرادد دا مورد واردرد the sound Crestinated (MN) He engla she may sold site shes max ||S|| = (estimated of') At , +:>>> 2 2622 /634) . [(60 01.32 [14] > Spect 2 mot pile dinal pily in the cinf pilos youk sk. Testimated < Treat is affice) 1 D ~ Us = C cal/c estimated 1 (1) E 10000 MISS NCe(pr), NOIN(12) P[LD(AU)) > 1-5 R2/MISS -> (1915 — 10582) ~ (6 — 10300) 16 (6) 14 · D ~ R2 -> (1-E) = = = (1-E) = (1 $M_{H}(\xi, \xi) \leq \frac{\log(\frac{1}{\xi})}{\xi}$ -e wit ist, my $\log(\frac{1}{\xi})$ sati $2^{1/5}$, $1^{1/5}$,

NCdim(H) 5 log2 HI 2" 3 Noe 36, |H| = 2" 3 26 262 (4) VCdim(H) < n 100 I = { i | y; =1} ele plen) . 7/6 typy - { e1, ..., en} 35/4,2 , Soly2 VCdin(H) > n $pf.(h_I(e_i) = y_i)$ · Vcdim(H) =n CER 3212 . or v c-dir (HD7/2k-e 1/c) . VC-dir (HIC) = 2k ICENT 61 's 3/c) 5 در عاد المرة والعالم المرة العالم المرة المرة العالم المرة العالم المرة العالم المرة 1582 of B 76. N 50.56 MIL. א בין ה: אביר הניון צו הכי ושור או בן שי א: בן שי א בין הי א מא בין הי א מור הניון צו הכי ושור או א א בין אין איי کوید وروالود وروالود ورون عوراد و عام درون الم المالا Xi در عد ه و دروا (دول (وار المالا 1) -15 wer apon ple hA .1/1/20 - 89 in A = [aj.bi] | Moy , NO : Ago solo of selo, and e' sull , the ny. MEK playage will א נקוצ חיניע ולנמת א ניקצר איסלי איסלי א נקצר בא בא בא בא אימו. · VC-din (H) > 2K p (1, C & syn H (C1=2K .3)2p 66 sec 132, (c) = 21c+1 -0 p CCR isp. VC-dim(Hx) <2k co sks color r", e pr" Kr. y=(1,0,1,0,...,1) were jusy . f(xi)= imod2 مالت مرادر مرور مراع رورد عالم المراد مرادر مرادر مرادر

Scanned with CamScanner

Hoon it have C={x; i ∈ [d-1]}	
\$6. De 36. 5. [9: 6{0,1}d ie[d-1]} Ge 2016.25	
$ h_{i} _{\{0,1\}}^{d+1} = 2^{d+1}$, $\{h_{i} \mid i \in [d+1]\}$	
$h_{i}(x_{j}) = \overline{\int_{k_{roneck}e_{r}(i,j)} - \int_{k_{roneck}e_{r}(i,j)} - \int_$	
(00 kles Xj k ((100 60'l a"joe a 1311 1/h 31/h 31/2 - 15/16) 33 - 11/10 2 20 ps/k32	
C-2 risoles embers on spee Xij scissop wit sh, C-2 rok spen 1/2	
(-? yolun vice bu i) le Xij -e ?> j rij Xi 6(s/k Nos riju hi 6	
الدر راه المعادم المعا	
">0 ps 1, d < VC-4 con < d+1 ps Hcon de Prof >60. 166 d+1 (3122) 3/19 Me	
ezzy) VC-Heon = d	
- H - R - M - Re ry) wis parstic - PAC since: H - Re ry)	(3)
: \(\frac{1}{2}\nu \rightarrow \rightarrow \rightarrow \frac{\x}{2} \rightarrow \rightarr	
P[Lα(hs) ≤ min Lp(h') + ε]>, 1-σ snom h'ell	
: > 131 \frac{\xi}{\xi} - representative 16.5 \frac{\xi}{\xi} = \frac{\xi}{\xi} \frac{\xi}{\xi	<u>) </u>

-y/6w	
. X Genestic PAC - NOTO ACRE Agnostic PAC - SING IS ACRE AS H (8 agnostic PAC - SING IS NOTO ACRE ACRE AS NOTO ACRE ACRE AS NOTO ACRE ACRES ACRE	5) (
-e 1606 133 . or E1582<1 131 05 05 1 131 (5	<u> </u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$L_{p,f}(h) \leq E_1$ $M \approx m$ G	
ارد ان	
$m_{H}(\varepsilon, \delta_{1}) > m_{H}(\varepsilon, \delta_{2})$ \tilde{m} \tilde{m}	•

Scanned with CamScanner

