Álgebra 1 - Turma D $-2^{\circ}/2017$

$5^{\underline{a}}$ Lista de Exercícios – Anéis

Prof. José Antônio O. Freitas

Anéis

Exercício 1: Consideremos em $\mathbb{Z} \times \mathbb{Z}$ as operações \oplus e \otimes definidas por

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
$$(a,b) \otimes (c,d) = (ac-bd,ad+bc).$$

Mostre que $(\mathbb{Z} \times \mathbb{Z}, \oplus, \otimes)$ é um anel comutativo e com unidade.

Exercício 2: Considere as operações * e • em Q definidas por

$$x \star y = x + y - 3$$
$$x \odot y = x + y - \frac{xy}{3}.$$

Mostre que $(\mathbb{Q}, \star, \odot)$ é um anel comutativo e com unidade.

Exercício 3: Prove que são anéis:

- a) O conjunto \mathbb{Z} com a adição usual e o produto $x \otimes y = 0$, para todo $x, y \in \mathbb{Z}$.
- b) O conjunto \mathbb{Q} com as operações $x \oplus y = x + y 1$ e $x \odot y = x + y xy$.
- c) O conjunto $\mathbb{Z}\times\mathbb{Z}$ com as operações:

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
$$(a,b) \otimes (c,d) = (ac,ad+bc).$$

Quais destes anéis são comutativos? Quais têm unidade?

Exercício 4: Ache os elementos inversíveis dos seguintes anéis:

- a) $(\mathbb{Q}, \oplus, \otimes)$ onde $a \oplus b = a + b 1$ e $a \otimes b = a + b ab$;
- b) $(\mathbb{Z} \times \mathbb{Z}, \star, \odot)$ onde $(a, b) \star (c, d) = (a + c, b + d)$ e $(a, b) \odot (c, d) = (ac, ad + bc)$.

Exercício 5: Determinar quais dos seguintes subconjuntos de Q são subanéis:

(a)
$$\mathbb{Z}$$
 (c) $C = \left\{ \frac{a}{b} \in \mathbb{Q} \mid a \in \mathbb{Z}, b \in \mathbb{Z}, 2|b \right\}$

(b)
$$B = \{x \in \mathbb{Q} \mid x \notin \mathbb{Z}\}$$
 (d) $D = \left\{\frac{a}{2^n} \in \mathbb{Q} \mid a \in \mathbb{Z} \text{ e } n \in \mathbb{Z}\right\}$

Exercício 6: Quais dos conjuntos abaixo são subanéis de $M_2(\mathbb{R})$?

$$L_{1} = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

$$L_{2} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

$$L_{3} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

$$L_{4} = \left\{ \begin{pmatrix} 0 & a \\ c & b \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

Exercício 7: Determine todos os subanéis do anel $(\mathbb{Z}_{16}, \oplus, \otimes)$.

Exercício 8: Verifique se $L = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ é um subanel do anel \mathbb{R} .