HW10 Report

R10922067 林云雲

Introduction

This program implements the following Zero-crossing operators for image edge detection:

Laplacian mask (2 types), Minimum Variance Laplacian, Laplacian of Gaussian, Difference of Gaussian.

Each of these methods defines its masks to calculate gradient magnitude for every pixel to generate the output image.

Usage

Place the source image and main.py under the same directory. Run the following command in the terminal.

```
python3 main.py -s <source> -m <method> -t <threshold>
```

Parameters

Laplacian Mask (0, 1, 0, 1, -4, 1, 0, 1, 0)

1. Mask

0	1	0
1	-4	1
0	1	0

2. The result (threshold=15 for example) is saved as laplacian_4.png as shown on the right.

Laplacian Mask (1, 1, 1, 1, -8, 1, 1, 1, 1)

1. Mask

2. The result (threshold=15 for example) is saved as laplacian_8.png as shown on the right.

Minimum Variance Laplacian

1. Mask

$\frac{1}{3}$	2	-1	2
	-1	-4	-1
	2	-1	2

2. The result (threshold=20 for example) is saved as MVL.png as shown on the right.

Laplacian of Gaussian

1. Mask

0	0	0	-1	-1	-2	-1	-1	0	0	0
0	0	-2	-4	-8	-9	-8	-4	-2	0	0
0	-2	-7	-15	-22	-23	-22	-15	-7	-2	0
-1	-4	-15	-24	-14	-1	-14	-24	-15	-4	-1
-1	-8	-22	-14	52	103	52	-14	-22	-8	-1
-2	-9	-23	-1	103	178	103	-1	-23	-9	-2
-1	-8	-22	-14	52	103	52	-14	-22	-8	-1
-1	-4	-15	-24	-14	-1	-14	-24	-15	-4	-1
0	-2	-7	-15	-22	-23	-22	-15	-7	-2	0
0	0	-2	-4	-8	-9	-8	-4	-2	0	0
0	0	0	-1	-1	-2	-1	-1	0	0	0

2. The result (threshold=3000 for example) is saved as LoG.png as shown on the right.

Difference of Gaussian

1. Mask (inhibitory $\sigma = 3$, excitatory $\sigma = 1$, kernel size=11)

-1	-3	-4	-6	-7	-8	-7	-6	-4	-3	-1
-3	-5	-8	-11	-13	-13	-13	-11	-8	-5	-3
-4	-8	-12	-16	-17	-17	-17	-16	-12	-8	-4
-6	-11	-16	-16	0	15	0	-16	-16	-11	-6
-7	-13	-17	0	85	160	85	0	-17	-13	-7
-8	-13	-17	15	160	283	160	15	-17	-13	-8
-7	-13	-17	0	85	160	85	0	-17	-13	-7
-6	-11	-16	-16	0	15	0	-16	-16	-11	-6
-4	-8	-12	-16	-17	-17	-17	-16	-12	-8	-4
-3	-5	-8	-11	-13	-13	-13	-11	-8	-5	-3
-1	-3	-4	-6	-7	-8	-7	-6	-4	-3	-1

2. The result (threshold=1 for example) is saved as DoG.png as shown on the right.