Scilab Textbook Companion for Introduction To Flight by J. D. Anderson Jr.¹

Created by
Khitish Kumar Sahu
B.Tech
Others
IIT Bombay
College Teacher
Prof. Madhu Belur
Cross-Checked by

May 20, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Introduction To Flight

Author: J. D. Anderson Jr.

Publisher: Tata McGraw - Hill Education, New Delhi

Edition: 6

Year: 2010

ISBN: 978-0-07-070011-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Fundamental Thoughts	6
3	The Standard Atmosphere	10
4	Basic Aerodynamics	12
5	Airfoils Wings and Other Aerodynamic Shapes	28
6	Elements Of Airplane Performance	40
7	Principles of Stability and Control	64
8	Space Flight	69
9	Propulsion	71
10	Flight Vehicle Structure and Material	7 5
11	Hypersonic Vehicles	77

List of Scilab Codes

Exa 2.1	Example 1	. 6
Exa 2.2	Example 2	. 6
Exa 2.3	Example 3	. 7
Exa 2.4	Example 4	. 7
Exa 2.5	Example 5	. 8
Exa 2.6	example 6	. 8
Exa 3.01	Example 1	. 10
Exa 3.02	Example 2	. 10
Exa 3.03	Example 3	. 11
Exa 3.04	Example 4	. 11
Exa 4.01	Example 1	. 12
Exa 4.02	Example 1	. 12
Exa 4.03	Example 3	. 13
Exa 4.04	Example 4	. 13
Exa 4.05	Example 5	. 14
Exa 4.06	Example 6	. 14
Exa 4.07	Example 7	. 15
Exa 4.08	Example 8	. 15
Exa 4.09	Example 9	. 16
Exa 4.10	Example 10	. 16
Exa 4.11	Example 11	. 17
Exa 4.12	Example 12	. 17
Exa 4.13	Example 13	. 18
Exa 4.14	Example 14	. 18
Exa 4.15	Example 15	. 19
Exa 4.16	Example 16	. 19
Exa 4.17	Example 17	. 20
Eva 4 18	Example 18	21

Exa 4.19	Example 19	21
Exa 4.20	Example 20	22
Exa 4.21	Example 21	23
Exa 4.22	Example 22	23
Exa 4.23	Example 23	24
Exa 4.24	Example 24	25
Exa 4.25	Example 25	25
Exa 4.26	Example 26	26
Exa 4.27	Example 27	26
Exa 4.28	Example 28	27
Exa 5.01	Example 1	28
Exa 5.02	Example 2	29
Exa 5.03	Example 3	29
Exa 5.04	Example 4	30
Exa 5.05	Example 5	30
Exa 5.06	Example 6	30
Exa 5.07	Example 7	31
Exa 5.08	Example 8	31
Exa 5.09	Example 9	32
Exa 5.10	Example 10	32
Exa 5.11	Example 11	34
Exa 5.12	example 12	35
Exa 5.13	Example 13	35
Exa 5.14	Example 14	36
Exa 5.15	Example 15	36
Exa 5.16	Example 16	36
Exa 5.17	Example 17	37
Exa 5.18	Example 18	37
Exa 5.19	Example 19	38
Exa 5.20	Example 20	38
Exa 5.21	Example 21	39
Exa 6.1.a	Example 1 a	40
Exa 6.1.b	Example 1 b	42
Exa 6.2	Example 2	43
Exa 6.3.a	Example 3 a	45
Exa 6.3.b	Example 3 b	46
Exa 6.4.a	Example 4 a	47
Exa 6 4 b	Example 4 b	49

Exa	6.5	Example	5																					50	
Exa	6.6	Example	6																					52	
Exa	6.7	Example	7																					54	
Exa	6.8	Example	8																					55	
Exa	6.9	Example	9																					55	
Exa	6.12	Example	12																					56	
Exa	6.13	Example	13																					57	
Exa	6.14	Example	14																					58	
Exa	6.15	Example																						58	
Exa	6.16.b	Example	16	b																				59	
		Example																						59	
Exa	6.16.d	Example	16	d																				59	
Exa	6.17	Example	17																					60	
Exa	6.18	Example	18																					60	
Exa	6.19.a	Example	19	a																				61	
		Example																						61	
		Example																						62	
		Example																						62	
	6.20	Example																						63	
Exa	7.1	Example																						64	
Exa	7.2	Example																						64	
Exa	7.3	Example	3																					65	
Exa	7.4	Example	4																					66	
Exa	7.5	Example	5																					66	
Exa	7.6	Example																						67	
Exa	7.7	Example																						67	
Exa	7.8	Example	8																					67	
Exa	7.9	Example																						68	
Exa	8.1	Example																						69	
Exa	8.2	Example																						70	
Exa	8.3	Example																						70	
Exa	9.1	Example																						71	
Exa		Example																						72	
Exa		Example																						72	
Exa		Example																						73	
Exa		Example																						73	
	10.1	Example							•						•	•								75	
	10.2	Example		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	76	

Exa 11.1	Example 1	77
AP 1	Example 11.01data	78
AP 2	Example 10.02data	78
AP 3	Example 10.01data	79
AP 4	Example 9.05data	79
AP 5	Example 9.04data	80
AP 6	Example 9.03data	80
AP 7	Example 9.02data	81
AP 8	Example 9.01data	81
AP 9	Example 8.03data	82
AP 10	Example 8.02data	83
AP 11	Example 8.01data	83
AP 12	Example 7.09data	83
AP 13	Example 7.08data	84
AP 14	Example 7.07data	84
AP 15	Example 7.06data	84
AP 16	Example 7.05data	85
AP 17	Example 7.04data	85
AP 18	Example 7.03data	86
AP 19	Example 7.02data	87
AP 20	Example 6.09data	87
AP 21	Example 6.08data	87
AP 22	Example 6.07data	87
AP 23	Example 6.06data	87
AP 24	Example 6.05data	88
AP 25	Example 6.4b-data	88
AP 26	Example 6.4a-data	89
AP 27	Example 6.3b-data	89
AP 28	Example 6.3a-data	90
AP 29	Example 6.20data	90
AP 30	Example 6.02data	90
AP 31	Example 6.19data	91
AP 32	Example 6.18data	91
AP 33	Example 6.17data	92
AP 34	Example 6.16d-data	92
AP 35	6.16c-data	92
AP 36	Example 6.16b-data	93
AP 37	Example 6 15data	93

AP 38	Example 6.14data																93
AP 39	Example 6.13data																94
AP 40	Example 6.12data																94
AP 41	Example 6.1b-data																94
AP 42	6.1a-data																95
AP 43	Example 5.21data																95
AP 44	Example 5.20data																96
AP 45	Example 5.19data																96
AP 46	Example 5.18data																96
AP 47	Example 5.17data																97
AP 48	Example 5.16data																97
AP 49	Example 5.15data																98
AP 50	Example 5.14data																98
AP 51	Example 5.13data																98
AP 52	Example 5.12data																99
AP 53	Example 5.11data																99
AP 54	Example 5.10data																100
AP 55	Example 5.09data																100
AP 56	Example 5.08data																100
AP 57	Example 5.07data																101
AP 58	Example 5.06data																101
AP 59	Example 5.05data																101
AP 60	Example 5.04data																101
AP 61	Example 5.03data																102
AP 62	Example 5.02data																102
AP 63	Example 5.01data																102
AP 64	Example 4.28data																103
AP 65	Example 4.27data																104
AP 66	Example 4.26data																104
AP 67	Example 4.25data																105
AP 68	Example 4.24data																105
AP 69	Example 4.23data																106
AP 70	Example 4.22data																106
AP 71	Example 4.21data																107
AP 72	Example 4.20data									-	-	-	•		-		107
AP 73	Example 4.19data																108
AP 74	Example 4.18data																108
AP 75	Example 4 17data	•	•	•	-	•	•	·	•	•	•		•	-	•	•	109

AP 76	Example 4.16data	 109
AP 77	Example 4.15data	 109
AP 78	Example 4.14data	 110
AP 79	Example 4.13data	 110
AP 80	Example 4.12data	 110
AP 81	Example 4.11data	 111
AP 82	Example 4.10data	 111
AP 83	Example 4.09data	 112
AP 84	Example 4.08data	 112
AP 85	Example 4.07data	 112
AP 86	Example 4.06data	 113
AP 87	Example 4.05data	 113
AP 88	Example 4.04data	 113
AP 89	Example 4.03data	 114
AP 90	Example 4.02data	 114
AP 91	Example 4.01data	 115
AP 92	Example 3.04data	 115
AP 93	Example 3.03data	 115
AP 94	Example 3.02data	 116
AP 95	Example 3.01data	 116
AP 96	Example 2.6data	 117
AP 97	Example 2.5data	 117
AP 98	Example 2.4data	 117
AP 99	Example 2.3data	 117
AP 100	Example 2.2data	 118
AP 101	Example 2.1data	 118

List of Figures

5.1	Example 10	33
6.1	Example 1 a	41
6.2	Example 1 b	42
6.3	Example 2	44
6.4	Example 3 a	45
6.5	Example 3 b	47
6.6	Example 4 a	48
6.7	Example 4 b	49
6.8	Example 5	51
6.9	Example 6	53

Chapter 2

Fundamental Thoughts

```
check Appendix AP 101 for dependency:

2_1data.sci

Scilab code Exa 2.1 Example 1

1 pathname=get_absolute_file_path('2_1.sce')
2 filename=pathname+filesep()+'2_1data.sci'
3 exec(filename)

T=p/((density)*(R))
5 printf("\Answer:\n")
6 printf("\n\Temperature at that point %f K\n\n",T)

check Appendix AP 100 for dependency:
2_2data.sci

Scilab code Exa 2.2 Example 2

1 pathname=get_absolute_file_path('2_2.sce')
2 filename=pathname+filesep()+'2_2data.sci'
```

```
3 exec(filename)
5 disp(M, "Mass in Kg", M1, "Mass in pound");
     check Appendix AP 99 for dependency:
     2_3data.sci
  Scilab code Exa 2.3 Example 3
1 pathname=get_absolute_file_path('2_3.sce')
2 filename=pathname+filesep()+'2_3data.sci'
3 exec(filename)
4 density=P/(R*T);
5 v=1/density; //specific volume
6 printf("\Answer:\n")
7 printf("\n\Density of air: %f Kg/m^3\n\n", density)
8 printf("\n\Specific volume of air: %f m^3/\text{Kg}\n\n",v)
     check Appendix AP 98 for dependency:
     2_4data.sci
  Scilab code Exa 2.4 Example 4
1 pathname=get_absolute_file_path('2_4.sce')
2 filename=pathname+filesep()+'2_4data.sci'
3 exec(filename)
4 printf("\Answer:\n")
5 printf("\n\Density of air at the given point: %f Kg/
     m^3 n n, density)
     check Appendix AP 97 for dependency:
     2_5data.sci
```

Scilab code Exa 2.5 Example 5

check Appendix AP 96 for dependency:

2_6data.sci

Scilab code Exa 2.6 example 6

```
pathname=get_absolute_file_path('2_6.sce')
filename=pathname+filesep()+'2_6data.sci'
sexec(filename)
function[ftPerSecond]=conversion(MilePerHour)
ftPerSecond=(5280*MilePerHour)/3600;
endfunction
function[meterPerSecond]=conversion1(MilePerHour)
meterPerSecond=(1609.344*MilePerHour)/3600;
endfunction
disp("1 ftPerSecond=(5280*MilePerHour)/3600")
disp(conversion(60), "velocity in terms of ft/s");
disp("1 meterPerSecond=(1609.344*MilePerHour)/3600")
disp(conversion1(60), "velocity in terms of m/s");
```

Chapter 3

The Standard Atmosphere

```
check Appendix AP 95 for dependency: 3_01data.sci
```

Scilab code Exa 3.01 Example 1

check Appendix AP 94 for dependency:

3_02data.sci

Scilab code Exa 3.02 Example 2

```
1 pathname=get_absolute_file_path('3_02.sce')
2 filename=pathname+filesep()+^{3}_{0}2 data.sci^{3}
3 exec(filename)
4 printf("\Answer:\n")
5 printf("\n\pressure altitude: %f Km\n\n",P1)
6 printf("\n\ temperature altitude: %f Km\n\n",T1)
7 printf("\n\density altitude: %f Km\n\n",D1)
     check Appendix AP 93 for dependency:
     3_03data.sci
  Scilab code Exa 3.03 Example 3
1 pathname=get_absolute_file_path('3_03.sce')
2 filename=pathname+filesep()+'3_03data.sci'
3 exec(filename)
4 printf("\Answer:\n")
5 printf("\n\Temperature of air at flying altitude of
     airplane: \%f K \setminus n \setminus n", T)
     check Appendix AP 92 for dependency:
     3_04data.sci
  Scilab code Exa 3.04 Example 4
1 pathname=get_absolute_file_path(^{\prime}3_{-}04.sce^{\prime})
2 filename=pathname+filesep()+'3_04data.sci'
3 exec(filename)
4 printf("\Answer:\n")
5 printf("\pressur altitude: \%f Km\n", Hp)
6 printf("\n\density altitude : %f Km\n\n", Hd)
```

Chapter 4

Basic Aerodynamics

```
check Appendix AP 91 for dependency:

4_01data.sci

Scilab code Exa 4.01 Example 1

1 pathname=get_absolute_file_path('4_01.sce')
2 filename=pathname+filesep()+'4_01data.sci'
3 exec(filename)
4 printf("\Answer:\n")
5 printf("\n\area of the duct exit: %f m^2\n\n",A2)

check Appendix AP 90 for dependency:
4_02data.sci

Scilab code Exa 4.02 Example 1

1 pathname=get_absolute_file_path('4_02.sce')
2 filename=pathname+filesep()+'4_02data.sci'

exec(filename)
```

```
4 printf("\Answer:\n")
5 printf("\n\density of air at the duct exit: %f Kg/m
      3 \ln n, D2)
     check Appendix AP 89 for dependency:
     4_03data.sci
  Scilab code Exa 4.03 Example 3
1 pathname=get_absolute_file_path(^{\prime}4_{-}03.sce^{\prime})
2 filename=pathname+filesep()+^{\prime}4_{-}03data.sci
3 exec(filename)
4 disp("P1+(D*V1^2/2)=Pa+(D*Va^2/2)", "Bernoulli")
      equation");
5 Va = [(2*(P1-Pa)/D)+(V1)^2]^0.5; disp(Va, "Va=")
6 printf("\Answer:\n")
7 printf("\n\velocity at a point A on airfoil: %f m/s\
     n \setminus n", Va)
     check Appendix AP 88 for dependency:
     4_04data.sci
  Scilab code Exa 4.04 Example 4
1 pathname=get_absolute_file_path('4_04.sce')
2 filename=pathname+filesep()+^{\prime}4_{-}04data.sci
3 exec(filename)
4 printf("\Answer:\n")
5 printf("\n\pressure at the duct exit: %f N/m<sup>2</sup>\n\n",
     P2)
```

check Appendix AP 87 for dependency:

4_05data.sci

Scilab code Exa 4.05 Example 5

```
pathname=get_absolute_file_path('4_05.sce')
filename=pathname+filesep()+'4_05data.sci'
exec(filename)
D=1.067*D*V^2*R;
printf("\Answer:\n")
printf("\n\Aerodynamic force exerted by surface pressure distribution: %f N\n\n",D)
```

check Appendix AP 86 for dependency:

4_06data.sci

Scilab code Exa 4.06 Example 6

```
pathname=get_absolute_file_path('4.06.sce')
filename=pathname+filesep()+'4.06data.sci'

exec(filename)
printf("\Answer:\n")
printf("\n\internal energy per unit mass in SI unit:
        %f J/Kg.K\n\n",e)
printf("\n\internal energy per unit mass in English
        enginering unit: %f Ft.Lb/slug\n\n",e1)
printf("\n\enthalpy per unit mass in SI unit: %f J/
        Kg.K\n\n",h)
printf("\n\enthalpy per unit mass in English
        enginering unit: %f Ft.Lb/slug\n\n",h1)
```

check Appendix AP 85 for dependency:

4_07data.sci

Scilab code Exa 4.07 Example 7

```
pathname=get_absolute_file_path('4_07.sce')
filename=pathname+filesep()+'4_07data.sci'
exec(filename)
disp("P2/P1=(T2/T1)^y/y-1","For isentropic flow","
    let P2 be the pressure at that point of wing");
P2=P1*(T/T1)^(y/(y-1));disp(P2,"P2=")
printf("\Answer:\n")
printf("\Answer:\n")
rintf("\n\Pressure at this point: %f N/m^2\n\n",P2)
check Appendix AP 84 for dependency:
4_08data.sci
```

Scilab code Exa 4.08 Example 8

check Appendix AP 83 for dependency:

4_09data.sci

Scilab code Exa 4.09 Example 9

```
1 pathname=get_absolute_file_path('4_09.sce')
2 filename=pathname+filesep()+'4_09data.sci'
3 exec(filename)
4 disp("So V1^2=2Cp*(To-T1)", "CpTo=CpT1+(V1^2)/2","
     From energy equation:","let V1 be the velocity of
      throat")
5 V1 = (2 * Cp * (To - T1))^0.5;
6 printf("\n\Velocity at throat: %f m/s\n\, V1)
7 disp("So Ve^2=2Cp*(To-Te)", "CpTo=CpTe+(Ve^2)/2", "
     From energy equation:","let Ve be the velocity of
      exit")
8 Ve=(2*Cp*(To-Te))^0.5;
9 printf("\n\Velocity at the exit: %f m/s\n\, Ve)
10 disp("A1=Mt/(D1*V1)", "Area of throat")
11 A1=Mt/(D1*V1);
12 printf("\n\Area of throat: \%f m^2\n\, A1)
13 disp("Ae=Mt/(De*Ve)", "Area of the exit")
14 Ae=Mt/(De*Ve);
15 printf("\nArea of the exit: \%f m^2\n, Ae)
```

check Appendix AP 82 for dependency:

4_10data.sci

Scilab code Exa 4.10 Example 10

```
1 pathname=get_absolute_file_path('4_10.sce')
2 filename=pathname+filesep()+^{\prime}4_{-}10data.sci
3 exec(filename)
4 disp("So Va^2=2Cp*(T-Ta)+V^2", "CpT+(V^2)/2=CpTa+(Va
     ^2)/2", "From energy equation:", "let Va be the
     velocity of the point A")
5 Va=(2*Cp*(T-Ta)+V^2)^0.5; disp(Va,"Va=")
6 printf("\Answer:\n")
```

```
7 printf("\n\Velocity at point A: %f m/s\n\, Va)
     check Appendix AP 81 for dependency:
     4_11data.sci
  Scilab code Exa 4.11 Example 11
1 pathname=get_absolute_file_path('4_11.sce')
2 filename=pathname+filesep()+'4_11data.sci'
3 exec(filename)
4 disp("Mach No M=V/a");
5 M=V/a; disp(M, "M=")
6 printf("\Answer:\n")
7 printf("\n\Mach No of the jet transport: \%f\n\",M)
     check Appendix AP 80 for dependency:
     4_12data.sci
  Scilab code Exa 4.12 Example 12
1 pathname=get_absolute_file_path('4_12.sce')
2 filename=pathname+filesep()+'4_12data.sci'
3 exec(filename)
4 disp("Mach No at Throat Mt=V1/a");
5 Mt=V1/a; disp(Mt, "Mt=")
6 disp("Mach No at Throat Me=Ve/Ae");
7 Me=Ve/Ae; disp (Me, "Me=")
8 printf("\Answer:\n")
9 printf("\n\Mach No at throat: \%f\n\, Mt)
10 printf("\n\Mach No at exit: \%f\n\", Me)
```

check Appendix AP 79 for dependency:

4_13data.sci

Scilab code Exa 4.13 Example 13

```
1 pathname=get_absolute_file_path('4_13.sce')
2 filename=pathname+filesep()+'4_13data.sci'
3 exec(filename)
4 disp("(2(P1-P2)/(D1(1-(A2/A1)^2)))^0.5=(2*(Dp)/(D1 *(1-r^2)))^0.5","Airflow velocity at test section V=");
5 V=(2*(Dp)/(D1*(1-r^2)))^0.5;disp(V,"V=");
6 printf("\Answer:\n")
7 printf("\n\Airflow velocity in the test section: %fm/s\n\n",V)
```

check Appendix AP 78 for dependency:

4_14data.sci

Scilab code Exa 4.14 Example 14

```
pathname=get_absolute_file_path('4_14.sce')
filename=pathname+filesep()+'4_14data.sci'
exec(filename)
disp("P2+D(V2^2-V1^2)/2"," pressure at reservoir P1=")

P1=P2+D*(V2^2-V1^2)/2; disp(P1,"P1=")
disp("Mt=D*A1*V1"," mass flow rate:")
Mt=D*A1*V1; disp(Mt,"Mt=")
printf("\Answer:\n")
printf("\Answer:\n")
printf("\n\pressure required to have a velocity of 40 m/s at test section: %f N/m^2\n\n",P1)
printf("\n\mass flow through the wind tunnel: %f Kg/s\n\n",Mt)
```

```
check Appendix AP 77 for dependency:
     4_15data.sci
  Scilab code Exa 4.15 Example 15
1 pathname=get_absolute_file_path('4_15.sce')
2 filename=pathname+filesep()+'4_15data.sci'
3 exec(filename)
4 disp("V2 propertional to (P2-P1) \(^1\)0.5", "velocity in
      test section is propertional to square root of
      pressure difference")
5 V2=(40)*2^(0.5); disp(V2, "velocity after pressure
      difference is doubled is squareroot 2 times 40")
6 disp("(2(P1-P2)/(D(1-(A2/A1)^2)))^0.5=(2*(Dp)/(D
      *(1-(1/R)^2))^0.5", "Airflow velocity at test
      section V3=");
7 V3 = (2*(Dp)/(D*(1-(1/R)^2)))^0.5; disp(V3,"V3=");
8 printf("\Answer:\n")
9 printf("\n\Airflow velocity in the test section
      after doubling pressure difference: %f m/s\n\n",
     V2)
10 printf("\n\Airflow velocity in the test section
      after doubling contraction ratio: \%f m/s\n\n", V3)
     check Appendix AP 76 for dependency:
     4_16data.sci
  Scilab code Exa 4.16 Example 16
1 pathname=get_absolute_file_path('4_16.sce')
```

2 filename=pathname+filesep()+'4_16data.sci'

```
3 exec(filename)
4 disp("Vt=(2(Po-P)/D)^0.5","True velocity of airplane
    ")
5 Vt=sqrt(2*(Po-P)/D); disp(Vt,"Vt=");
6 disp("Ve=(2(Po-P)/Ds)^0.5","Eqivalent airspeed of
        airplane")
7 Ve=sqrt(2*(Po-P)/Ds); disp(Ve,"Ve=");
8 printf("\Answer:\n")
9 printf("\n\True velocity of the airplane: %f m/s\n\n
    ",Vt)
10 printf("\n\Equivalent airspeed of the airplane: %f m/s\n\n",Ve)
```

check Appendix AP 75 for dependency:

4_17data.sci

Scilab code Exa 4.17 Example 17

```
1 pathname=get_absolute_file_path('4_17.sce')
2 filename=pathname+filesep()+'4_17data.sci'
3 exec(filename)
4 disp("M1^2=2*[(Po/P1)^((y-1)/y)-1]/(y-1))"," let Mach
       no at which the airplane flying is M1 then")
5 M1 = sqrt(2*[(Po/P1)^((y-1)/y)-1]/(y-1)); disp(M1, "M1="
      );
6 a1 = sqrt(y*R*T); disp(a1, "a1 = (y*R*T)^0.5", "speed of
      sound at that point");
7 V1=sqrt(2*a1^2*[(Po/P1)^((y-1)/y)-1]/(y-1));
8 disp(V1, "V1=", "V1^2=2*a1^2*[(Po/P1)^((y-1)/y)-1]/(y
      -1)", "equivalent air speed V1")
9 R = ((y-1)/y);
10 Vc = sqrt([2*a^2*[((Po-P1)/P)+1)^((y-1)/y)-1]/(y-1)])
11 \operatorname{disp}(Vc, "Vc=", "Vc^2=2*a^2*[((Po-P1)/P)+1)^((y-1)/y)
      -1]/(y-1)", "caliberated air speed Vc")
```

Scilab code Exa 4.18 Example 18

check Appendix AP 73 for dependency:

4_19data.sci

Scilab code Exa 4.19 Example 19

```
1 pathname=get_absolute_file_path('4_19.sce')
2 filename=pathname+filesep()+'4_19data.sci'
```

check Appendix AP 72 for dependency:

4_20data.sci

Scilab code Exa 4.20 Example 20

```
1 pathname=get_absolute_file_path('4_20.sce')
2 filename=pathname+filesep()+'4_20data.sci'
3 exec(filename)
4 To=Te*A
5 disp(To, "To=", "To=Te*(1+(y-1)*Me^2/2)", "let
      reservoir temperature required is To ")
6 Po=Pe*A^(y/(y-1));
7 disp(Po, "Po=", "Po=Pe*((1+(y-1)*Me^2/2))^y/y-1", "let
      reservoir pressure required is Po ")
8 r = sqrt((2*A/(y+1))^{(y+1)/(y-1)})/Me^2
9 disp(r,"Ae/At=","Ae/At=sqrt((2*(1+(y-1)*Me^2/2))/(y)
     +1)) ((y+1)/(y-1))/Me^2", "Area ratio required is
     equal to")
10 printf("\Answer:\n")
11 printf("\n required reservoir temperature: \%f K\n
     ",To)
```

```
12 printf("\n required reservoir pressure: \%f \n/m^2\n
     n",Po)
13 printf("\n required Area Ratio: \%f \n",r)
     check Appendix AP 71 for dependency:
     4_21data.sci
   Scilab code Exa 4.21 Example 21
1 pathname=get_absolute_file_path('4_21.sce')
2 filename=pathname+filesep()+'4_21data.sci'
3 exec(filename)
4 Pstag=Pe*[(y+1)^2*Me^2/((4*y*Me^2)-2*(y-1))]^(y/(y)
      -1))*(1-y+2*y*Me^2)/(y+1)
5 disp(Pstag, "Pstag=", "Pstag=Pe*[(y+1)*Me^2/((4*y*Me
      (2) -2*(y-1)) ] (y/(y-1))*(1-y+2*y*Me^2)/(y+1)","
      the stagnation presure is given by Pstag")
6 Dstag=Pstag/(R*Tstag);
7 disp(Dstag, "Dstag=", "Dstag=Pstag/(R*Tstag)", "the
      stagnation density is given by Dstag")
8 printf("\Answer:\n")
9 printf("\n\ Stagnation temperature: %f K\n\n", Tstag)
10 printf("\n Stagnation pressure: %f N/m<sup>2</sup>\n\n", Pstag
11 printf("\n Stagnation density: %f Kg/m^3\n\n", Dstag
     check Appendix AP 70 for dependency:
```

Scilab code Exa 4.22 Example 22

4_22data.sci

```
pathname=get_absolute_file_path('4_22.sce')
filename=pathname+filesep()+'4_22data.sci'
exec(filename)
Ve=Ae*Me;disp(Ve,"Ve=","velocity at exit Ve=Ae*Me")
Mt=Dt*At*Vt;disp(Mt,"Mt=Dt*At*Vt","mass flow through nozzle Mt")
printf("\Answer:\n")
printf("\Answer:\n")
printf("\n\Velocity at exit: %f m/s\n\n",Ve)
printf("\n\mass flow through nozzle: %f Kg/m^3\n\n", Mt)
```

check Appendix AP 69 for dependency:

4_23data.sci

Scilab code Exa 4.23 Example 23

check Appendix AP 68 for dependency:

4_24data.sci

Scilab code Exa 4.24 Example 24

```
1 pathname=get_absolute_file_path('4_24.sce')
2 filename=pathname+filesep()+'4_24data.sci'
3 exec(filename)
4 Tw1=q*Cf1; disp(Tw1, "Tw1=", "Tw1=q*Cf1", "shear stress
     at 1 cm Tw1:");
5 Tw2=q*Cf2; disp(Tw2, "Tw2=", "Tw2=q*Cf2", "shear stress
     at 1 cm Tw2:");
6 printf("\Answer:\n")
7 printf("\n\Local shear stress at 1 cm: \%f \n\m^2\n\"
     ,Tw1)
 printf("\n\Local shear stress at 5 cm: %f N/m<sup>2</sup>", Tw2
9 disp ("Hence Tw decreases with distance in flow
     direction");
    check Appendix AP 67 for dependency:
```

4_25data.sci

Scilab code Exa 4.25 Example 25

```
1 pathname=get_absolute_file_path('4_25.sce')
2 filename=pathname+filesep()+^{\prime}4_{-}25data.sci
3 exec(filename)
4 T=0.37*x/Re^0.2; disp(T, "T=", "T=0.37*x/Re^0.2", "
     Thickness at trailing edge T:");
5 Df = q*S*Cf; disp(Df, "Df=", "Df=q*S*Cf", "Drag at top
     surface")
6 printf("\Answer:\n")
7 printf("\n\Thickness at trailing edge: \%f m\n\n",T)
8 printf("\n\Total Drag: %f N",2*Df)
```

check Appendix AP 66 for dependency:

4_26data.sci

Scilab code Exa 4.26 Example 26

```
pathname=get_absolute_file_path('4_26.sce')
filename=pathname+filesep()+'4_26data.sci'
exec(filename)
Tw1=q*Cf1;disp(Tw1,"Tw1=","Tw1=q*Cf1","shear stress at 1 cm Tw1:");
Tw2=q*Cf2;disp(Tw2,"Tw2=","Tw2=q*Cf2","shear stress at 1 cm Tw2:");
printf("\Answer:\n")
printf("\Answer:\n")
printf("\n\Local shear stress at 1 cm: %f N/m^2\n\n", Tw1)
printf("\n\Local shear stress at 5 cm: %f N/m^2", Tw2
)
```

check Appendix AP 65 for dependency:

4_27data.sci

Scilab code Exa 4.27 Example 27

```
pathname=get_absolute_file_path('4_27.sce')
filename=pathname+filesep()+'4_27data.sci'
exec(filename)
Tw=q*Cf;disp(Tw,"Tw=","Tw=q*Cf","shear stress at point 0.6096 m Tw:");
printf("\Answer:\n")
printf("\n\shear stress at a point 0.6096m downstream of the leading edge: %f m\n\n",Tw)
```

check Appendix AP 64 for dependency:

4_28data.sci

Scilab code Exa 4.28 Example 28

Chapter 5

Airfoils Wings and Other Aerodynamic Shapes

```
check Appendix AP 63 for dependency: 5_01data.sci
```

Scilab code Exa 5.01 Example 1

```
pathname=get_absolute_file_path('5_01.sce')
filename=pathname+filesep()+'5_01data.sci'

exec(filename)
L=q*c*C1; disp(L,"L=","L=q*c*Cl","Lift per unit span L:")
D=q*c*Cd; disp(D,"D=","D=q*c*Cd","Drag per unit span D:")
M=q*c*Cm*c; disp(M,"M=","M=q*c*Cm*c","Moment per unit span M:")
printf("\Answer:\n")
printf("\n\Lift about the quarter chord, per unit span: %f N\n\n",L)
printf("\n\Drag about the quarter chord, per unit span: %f N\n\n",D)
printf("\n\moment about the quarter chord, per unit span: %f N\n\n",D)
printf("\n\moment about the quarter chord, per unit span: %f N\n\n",D)
```

```
check Appendix AP 62 for dependency:
5_02data.sci
```

Scilab code Exa 5.02 Example 2

```
pathname=get_absolute_file_path('5_02.sce')
filename=pathname+filesep()+'5_02data.sci'
exec(filename)
printf("\Answer:\n")
printf("\n\angle of attack for 700 N lift: %f degree \n\n",a)
printf("\n\angle of attack for zero lift:: %f degree \n\n",a1)
```

check Appendix AP 61 for dependency:

5_03data.sci

Scilab code Exa 5.03 Example 3

check Appendix AP 60 for dependency:

5_04data.sci

Scilab code Exa 5.04 Example 4

Scilab code Exa 5.05 Example 5

```
pathname=get_absolute_file_path('5_05.sce')
filename=pathname+filesep()+'5_05data.sci'
exec(filename)
Cp=Cpo/(sqrt(1-M^2)); disp(Cp,"Cp=","Cp=Cpo/(sqrt(1-M^2))","pressure coefficient Cp:")
printf("\Answer:\n")
printf("\Answer:\n")
check Appendix AP 58 for dependency:
```

5_06data.sci

Scilab code Exa 5.06 Example 6

```
1 pathname=get_absolute_file_path('5_06.sce')
2 filename=pathname+filesep()+^{\prime}5_{-}06data.sci
3 exec(filename)
4 P1 = (q*Cp) + P; disp(P1, "P1=", "P1=q*Cp+p", "pressure at
      this point P1:")
5 printf("\Answer:\n")
6 printf("\n\pressure at this point : %f N/m<sup>2</sup>\n\n",P1
     )
     check Appendix AP 57 for dependency:
     5_07data.sci
  Scilab code Exa 5.07 Example 7
1 pathname=get_absolute_file_path('5_07.sce')
2 filename=pathname+filesep()+^{\prime}5_{-}07data.sci
3 exec(filename)
4 V2=V*((Cp1-Cp2)+(V1/V)^2)^0.5;
5 \operatorname{disp}(V2,"V2=","V2=V*((Cp1-Cp2)+(V1/V)^2)^0.5","
      velocity at point 2 V2:")
6 printf("\Answer:\n")
7 printf("\n\Velocity at point 2: %f m/s\n\, V2)
     check Appendix AP 56 for dependency:
     5_08data.sci
  Scilab code Exa 5.08 Example 8
1 pathname=get_absolute_file_path(^{\prime}5_{-}08.sce^{\prime})
2 filename=pathname+filesep()+'5_08data.sci'
3 exec(filename)
```

```
4 Cn=integrate ('1-0.95*y', 'y', 0,1.0)-integrate ('1-300*
     y^2, y^3, 0, 0.1) -integrate ('-2.2277+2.2277*y', 'y')
     ,0.1,1.0)
5 printf("\Answer:\n")
6 printf("\n\Normal force coefficient : \%f \n\, Cn)
     check Appendix AP 55 for dependency:
     5_09data.sci
  Scilab code Exa 5.09 Example 9
1 pathname=get_absolute_file_path('5_09.sce')
2 filename=pathname+filesep()+^{7}5_{-0}9data.sci
3 exec(filename)
4 Cl=Co/(sqrt(1-M^2)); disp(Cl, "Cl=", "Cl=Co/(sqrt(1-M
     ^2))","Lift coefficient Cl:")
5 printf("\Answer:\n")
6 printf("\nLift coefficient at Mach 0.7: %f \n",Cl
     check Appendix AP 54 for dependency:
     5_10_data.sci
  Scilab code Exa 5.10 Example 10
```

1 pathname=get_absolute_file_path(' $5_10.sce$ ')
2 filename=pathname+filesep()+' $5_10_data.sci$ '

3 exec(filename)

4 clf(); 5 i = 1;

Figure 5.1: Example 10

```
6 while(i<=length(M))
       Cpcr(i) = (2/(y*M(i)^2))*[[(2+(y-1)*M(i)^2)/(y+1)
          ]^{(y/(y-1))-1}
       Cpmin(i) = Cpomin/sqrt(1-M(i)^2);
9
      i = i+1;
10 \, \text{end}
11 xlabel("Mach Number");
12 ylabel("Cp");
13 plot2d(M,Cpcr,2);
14 plot2d(M, Cpmin);
15 disp ("The intersection point of both the graphs i.e.
      approx 0.74 is the critical Mach no of the NACA
      -0012 airfoil.")
     check Appendix AP 53 for dependency:
     5_11_data.sci
```

Scilab code Exa 5.11 Example 11

```
pathname=get_absolute_file_path('5_11.sce')
filename=pathname+filesep()+'5_11_data.sci'
exec(filename)
L=q*c*C1;disp(L,"L=","L=q*c*Cl","lift per unit span for mach 3:")
Dw=q*c*Cd;disp(Dw,"Dw=","Dw=q*c*Cd","Wave drag per unit span for mach 3:")
L1=q1*c*Cl1;disp(L1,"L1=","L1=q1*c*Cl1","lift per unit span for mach 2:")
Dw1=q1*c*Cd1;disp(Dw1,"Dw1=","Dw1=q1*c*Cd1","Wave drag per unit span for mach 2:")
```

check Appendix AP 52 for dependency:

5_12_data.sci

Scilab code Exa 5.12 example 12

```
1 pathname=get_absolute_file_path('5_12.sce')
2 filename=pathname+filesep()+'5_12_data.sci'
3 exec(filename)
4 a=L*(M^2-1)^0.5/(4*q*S);
5 disp(a, "a=", "a=L*(M^2-1)^0.5/(4*q*S)", "angle of
     attack at sea level:")
6 a1=L*(M^2-1)^0.5/(4*q1*S);
7 disp(a1, "a1=", "a1=L*(M^2-1)^0.5/(4*q1*S)", "angle of
     attack at 10 Km:")
8 printf("\Answer:\n")
9 printf("\n\angle of attack at sea level: %f degree\n
     n, a*180/%pi)
10 printf("\n angle of attack at 10 Km: %f degree\n",
     a1*180/%pi)
     check Appendix AP 51 for dependency:
     5_13data.sci
```

Scilab code Exa 5.13 Example 13

5_14data.sci

```
pathname=get_absolute_file_path('5_13.sce')
filename=pathname+filesep()+'5_13data.sci'
exec(filename)
L=q*S*4*a/sqrt(M^2-1);
disp(L,"L=","L=q*S*4*a/sqrt(M^2-1)","Lift exerted on airplane L:")
printf("\Answer:\n")
printf("\Answer:\n")
theck Appendix AP 50 for dependency:
```

Scilab code Exa 5.14 Example 14

```
1 pathname=get_absolute_file_path('5_14.sce')
2 filename=pathname+filesep()+'5_14data.sci'
3 exec(filename)
4 Cl=L/(q*S);
5 disp(Cl, "Cl=", "Cl=L/(q*S)", "Lift coefficient Cl:")
6 printf("\Answer:\n")
7 printf("\nLift coefficient: %f \n",Cl)
    check Appendix AP 49 for dependency:
    5_15data.sci
  Scilab code Exa 5.15 Example 15
1 pathname=get_absolute_file_path('5_15.sce')
2 filename=pathname+filesep()+^{\prime}5_{-}15data.sci
3 exec(filename)
4 Cdi=Cl^2/(pi*e*AR); disp(Cdi, "Cdi=", "Cdi=Cl^2/(pi*e)
     *AR)", "induced drag coefficient Cdi:")
5 Di=q*S*Cdi; disp(Di,"Di=","Di=q*S*Cdi","induced drag
     Di:")
6 printf("\Answer:\n")
7 printf("\ninduced drag coefficient: \%f \n",Cdi)
8 printf("\ninduced drag: %f \ninduced)
```

check Appendix AP 48 for dependency:

5_16data.sci

Scilab code Exa 5.16 Example 16

```
1 pathname=get_absolute_file_path(^{\prime}5_{-}16.sce^{\prime})
2 filename=pathname+filesep()+'5_16data.sci'
3 exec(filename)
4 Dt=(Cd+Cdi)*S*(D*V^2/2); disp(Dt, "Dt=", "Dt=(Cd+Cdi)*S
     *q","total drag Di:")
5 printf("\Answer:\n")
6 printf("\n\Totl drag: %f \n\n\n",Dt)
     check Appendix AP 47 for dependency:
     5_17data.sci
  Scilab code Exa 5.17 Example 17
1 pathname=get_absolute_file_path('5_17.sce')
2 filename=pathname+filesep()+'5_17data.sci'
3 exec(filename)
4 Cl=a1*(a-a2); disp(Cl, "Cl=", "Cl=a1(a-a2)", "lift
     coefficient Cl:")
5 Cd=cd+Cl^2/(\%pi*e*AR); disp(Cd, "Cd=", "Cd=cd+Cl^2/(\%pi))
     *e*AR)"," total drag coefficient Cd=:")
6 printf("\Answer:\n")
7 printf("\nLift coefficient: %f \n",Cl)
8 printf("\n\Totl drag coefficient: %f \n\n",Cd)
     check Appendix AP 46 for dependency:
     5_18data.sci
  Scilab code Exa 5.18 Example 18
1 pathname=get_absolute_file_path('5_18.sce')
2 filename=pathname+filesep()+^{\prime}5_{-}18data.sci
3 exec(filename)
```

```
4 Di=q*S*Cdi;disp(Di,"Di=","Di=q*S*Cdi","induced drag
on one wing Di:")
5 printf("\Answer:\n")
6 printf("\n\Induced drag exerted on both the wings:
    %f N\n\n",2*Di)
```

check Appendix AP 45 for dependency:

5_19data.sci

Scilab code Exa 5.19 Example 19

```
1 pathname=get_absolute_file_path('5_19.sce')
```

- 2 filename=pathname+filesep()+'5_19data.sci'
- 3 exec(filename)
- 4 disp("comparing the results of part a and b we can see the high-aspect ratio wing experiences a 26% higher increase in Cl than the low-aspect ratio wing.")

check Appendix AP 44 for dependency:

5_20data.sci

Scilab code Exa 5.20 Example 20

```
1 pathname=get_absolute_file_path(^{\prime}5_{-}20.sce^{\prime})
```

- 2 filename=pathname+filesep()+ $^{\prime}5_{-}20\,\mathrm{data}$.sci $^{\prime}$
- 3 exec(filename)
- 4 V1=sqrt(2*Wt/(D*S*Clm)); disp(V1,"V1=","V1=sqrt(2*Wt/(D*S*Clm))","stalling speed for full fuel tank V1:")
- 5 V2=sqrt(2*Wf/(D*S*Clm)); disp(V2,"V2=","V2=sqrt(2*Wf/(D*S*Clm))","stalling speed for empty fuel tank V1:")

check Appendix AP 43 for dependency:

5_21data.sci

Scilab code Exa 5.21 Example 21

```
pathname=get_absolute_file_path('5_21.sce')
filename=pathname+filesep()+'5_21data.sci'
exec(filename)

V=sqrt(2*Wt/(D*S*Clm)); disp(V,"V=","V=sqrt(2*Wt/(D*S*Clm))"," stalling speed for Boeing 727 V:")
printf("\Answer:\n")
printf("\n\stalling speed for full fuel tank: %f m/s\n\n",V)
disp("stalling speed for lockhead F-104 is a much higher value than the Boeing 727."," comparison with stalling speed for full fuel tank of example 5.20:")
```

Chapter 6

Elements Of Airplane Performance

Scilab code Exa 6.1.a Example 1 a

```
1 pathname=get_absolute_file_path('6_1a.sce')
2 filename=pathname+filesep()+^{\prime}6_{-}1a_{-}data.sci
3 exec(filename)
4 clf();
5 i = 1;
6 Cl = 0; Cd = 0; Cl_Cd =0; Thrust = 0;
7 while(i<=length(V))</pre>
       Cl(i) = 2*W/(D*S*V(i)^2);
8
       Cd(i) = Cdo + Cl(i)^2/(pi*e*AR);
9
       Cl_Cd(i) = Cl(i)/Cd(i);
10
       Thrust(i) = W/Cl_Cd(i)/1000;
11
12
      i = i+1;
13 end
14 xlabel("Velocity (m/s)");
15 ylabel("Thrust (kN)");
16 plot2d(V,Thrust,3);
```


Figure 6.1: Example 1 a

Figure 6.2: Example 1 b

check Appendix AP 42 for dependency:

6_1a_data.sci

Scilab code Exa 6.1.b Example 1 b

```
1 pathname=get_absolute_file_path('6_1b.sce')
2 filename=pathname+filesep()+'6_1b_data.sci'
3 exec(filename)
4 clf();
5 i = 1;
6 Cl = 0;Cd = 0;Cl_Cd =0;Thrust = 0;
```

```
7 while(i<=length(V))</pre>
       Cl(i) = 2*W/(D*S*V(i)^2);
       Cd(i) = Cdo + Cl(i)^2/(pi*e*AR);
9
       Cl_Cd(i) = Cl(i)/Cd(i);
10
11
       Thrust(i) = W/Cl_Cd(i)/1000;
12
      i = i+1;
13 end
14 xlabel("Velocity (m/s)");
15 ylabel("Thrust (kN)");
16 plot2d(V,Thrust,3);
      check Appendix AP 41 for dependency:
      6_1b_data.sci
      check Appendix AP 30 for dependency:
      602data.sci
```

Scilab code Exa 6.2 Example 2

```
1 pathname=get_absolute_file_path('602.sce')
2 filename=pathname+filesep()+'602data.sci'
3 exec(filename)
4 clf();
5 i = 1;
6 Cl = 0; Cd = 0; Cl_Cd = 0; Thrust = 0;
7 while(i<=length(V))</pre>
       Cl(i) = 2*W/(D*S*V(i)^2);
8
9
       Cd(i) = Cdo + Cl(i)^2/(\pi pi * e * AR);
       Cl_Cd(i) = Cl(i)/Cd(i);
10
       Thrust(i) = W/Cl_Cd(i)/1000;
11
       Tf(i) = 2*16245/1000;
12
      i = i+1;
13
14 end
```


Figure 6.3: Example 2

Figure 6.4: Example 3 a

```
15 xlabel("Velocity (m/s)");
16 ylabel("Thrust (kN)");
17 plot2d(V,Thrust,3);
18 plot2d(V,Tf,4);
19 disp("As Thrust required equals Thrust provided by
      two turbofan at Velocity 297 m/s approx(
        intersection point of both graphs.) so it will be
      Vmax")
20 Vmax=297;
21 printf("\Answer:\n")
22 printf("\n\maximum velocity: %f m/s\n\n",Vmax)
```

Scilab code Exa 6.3.a Example 3 a

```
1 pathname=get_absolute_file_path('6_3a.sce')
2 filename=pathname+filesep()+'6_3a_data.sci'
3 exec(filename)
4 clf();
5 i = 1;
6 Cl = 0; Cd = 0; Cl_Cd = 0; Thrust = 0;
7 while(i<=length(V))</pre>
       Cl(i) = 2*W/(D*S*V(i)^2);
9
       Cd(i) = Cdo + Cl(i)^2/(\pi pi * e * AR);
       Cl_Cd(i) = Cl(i)/Cd(i);
10
       Thrust(i) = W/Cl_Cd(i)/1000;
11
12
       Power(i)=Thrust(i)*V(i);
13
      i = i+1;
14 end
15 xlabel("Velocity (m/s)");
16 ylabel("Power (KN-m/s)");
17 plot2d(V, Power, 5);
```

check Appendix AP 28 for dependency:

6_3a_data.sci

Scilab code Exa 6.3.b Example 3 b

Figure 6.5: Example 3 b

```
Thrust(i) = W/Cl_Cd(i)/1000;
Power(i)=Thrust(i)*V(i)
i = i+1;
end
slabel("Velocity (m/s)");
ylabel("Power (KN-m/s)");
plot2d(V,Power,5);
```

check Appendix AP 27 for dependency:

6_3b_data.sci

Scilab code Exa 6.4.a Example 4 a

Figure 6.6: Example 4 a

```
1 pathname=get_absolute_file_path(^{\circ}6_{-}4a.sce^{\circ})
2 filename=pathname+filesep()+^{\prime}6_{-}4a_{-}data.sci
3 exec(filename)
4 clf();
5 V=linspace(20,300,500);
6 i = 1;
  C1 = 0; Cd = 0; C1\_Cd = 0; Thrust = 0;
   while(i<=length(V))
       Cl(i) = 2*W/(D*S*V(i)^2);
9
        Cd(i) = Cdo + Cl(i)^2/(\pi pi * e * AR);
10
        Cl_Cd(i) = Cl(i)/Cd(i);
11
        Thrust(i) = W/Cl_Cd(i)/1000;
12
        Power(i)=Thrust(i)*V(i);
13
        Pa(i) = P*Pf*746/1000;
14
15
      i = i+1;
16 \text{ end}
17 xlabel("Velocity (m/s)");
18 ylabel("Power (KN-m/s)");
```


Figure 6.7: Example 4 b

check Appendix AP 26 for dependency:

6_4a_data.sci

Scilab code Exa 6.4.b Example 4 b

```
1 pathname=get_absolute_file_path('6_4b.sce')
2 filename=pathname+filesep()+'6_4b_data.sci'
3 exec(filename)
```

```
4 clf();
5 V=linspace(40,300,500);
6 i = 1;
7 \text{ Cl} = 0; \text{Cd} = 0; \text{Cl}_{Cd} = 0; \text{Thrust} = 0;
8 while(i<=length(V))</pre>
9
        Cl(i) = 2*W/(D*S*V(i)^2);
10
        Cd(i) = Cdo + Cl(i)^2/(\pi pi * e * AR);
        Cl_Cd(i) = Cl(i)/Cd(i);
11
12
        Thrust(i) = W/Cl_Cd(i)/1000; //unit KN
        Power(i)=Thrust(i)*V(i)//unit KN-m/s
13
       Pa(i) = D*Tf*V(i) / (Do*1000); / power(KN-m/s) at
14
           height 6706.5 m corresponding to velocity
15
      i = i+1;
16 end
17 xlabel("Velocity (m/s)");
18 ylabel("Power (KN-m/s)");
19 plot2d(V, Power, 4);
20 plot2d(V,Pa,5);
21 disp("As we can see the higher intersection point of
       both curve is arround 294m/s (approx), which is
      the maximum velocity for CJ-1 at 6705.6 meter.")
      check Appendix AP 25 for dependency:
      6_4b_data.sci
      check Appendix AP 24 for dependency:
      6_05data.sci
```

Scilab code Exa 6.5 Example 5

```
1 pathname=get_absolute_file_path('6_05.sce')
2 filename=pathname+filesep()+'6_05data.sci'
3 exec(filename)
```


Figure 6.8: Example 5

```
4 clf();
5 V=linspace(40,300,500);
6 i = 1;
7 \text{ Cl} = 0; \text{Cd} = 0; \text{Cl\_Cd} = 0; \text{Thrust} = 0; \text{Vo} = 0;
8 while(i<=length(V))</pre>
9
        Cl(i) = 2*W/(D*S*V(i)^2);
10
        Cd(i) = Cdo + Cl(i)^2/(\pi pi * e * AR);
        Cl_Cd(i) = Cl(i)/Cd(i);
11
12
        Vo(i)=V(i)*(D/Do)^0.5; // corresponding velocity
           points at sea level
        Thrust(i) = W/Cl_Cd(i)/1000; //unit KN
13
        Power(i)=Thrust(i)*Vo(i)//unit KN-m/s
14
15
        Pa(i)=D*Tf*Vo(i)/(Do*1000);//power(KN-m/s) at
           height 6706.5 m corresponding to velocity
16
          i = i+1;
17 \text{ end}
18 xlabel("Velocity (m/s)");
19 ylabel("Power (KN-m/s)");
20 plot2d(Vo,Power,4);
21 plot2d(Vo, Pa, 5)
22 printf("\nmaximum velocity for CJ-1 approx 210m/s(as
       seen from graph)")
      check Appendix AP 23 for dependency:
```

6_06data.sci

Scilab code Exa 6.6 Example 6

```
1 pathname=get_absolute_file_path('6_06.sce')
2 filename=pathname+filesep()+'6_06data.sci'
3 exec(filename)
4 clf();
5
```


Figure 6.9: Example 6

```
6 i = 1;
7 Cl = 0; Cd = 0; Cl_Cd =0; Thrust = 0;
8 while(i<=length(V))</pre>
9
       Cl(i) = 2*W/(D*S*V(i)^2);
10
        Cd(i) = Cdo + Cl(i)^2/(\pi i * e * AR);
       Cl_Cd(i) = Cl(i)/Cd(i);
11
12
       Thrust(i) = W/Cl_Cd(i)/1000;
       Power(i)=Thrust(i)*V(i);
13
       R_C(i) = (Pa-Power(i))*1000*60/W; // rate of climb(R
14
           /C in meter per minute)
      i = i+1;
15
16 \, \text{end}
17 xlabel("Velocity (m/s)");
18 ylabel("Rate of climb(m/min) for CP-1");
19 plot2d(V,R_C,4);
      check Appendix AP 22 for dependency:
      6_07data.sci
```

Scilab code Exa 6.7 Example 7

```
pathname=get_absolute_file_path('6_07.sce')
filename=pathname+filesep()+'6_07data.sci'

exec(filename)
a=atand(1/L_D); disp(a,"a=","tan(a)=1/(L/D)","minimum glide angle a:")

R=H*L_D; disp(R,"R=","R=H*L/D","maximum range along ground:")
printf("\Answer:\n")
printf("\Answer:\n")
printf("\minimum glide angle: %f \n",a)
printf("\n\maximum range covered along ground: %f m\n\n",R)
```

check Appendix AP 21 for dependency:

6_08data.sci

Scilab code Exa 6.8 Example 8

check Appendix AP 20 for dependency:

6_09data.sci

Scilab code Exa 6.9 Example 9

```
8 printf("\n\Velocity at equilibrium glide angle at 609.6 m: %f m/s\n\n", V2)
```

check Appendix AP 40 for dependency:

6_12data.sci

Scilab code Exa 6.12 Example 12

```
1 pathname=get_absolute_file_path('6_12.sce')
2 filename=pathname+filesep()+'6_12data.sci'
3 exec(filename)
4 clf();
5 V=linspace(20,120,500);
6 i = 1;
7 Cl = 0; Cd = 0; Cl_Cd =0; Thrust = 0;
8 while(i<=length(V))</pre>
9
       Cl(i) = 2*Wo/(D*S*V(i)^2);
10
       Cd(i) = Cdo + Cl(i)^2/(pi*e*AR);
       Cl_Cd(i) = Cl(i)/Cd(i);
11
12
       Cl1_Cd(i) = Cl(i)^1.5/Cd(i)
13
      i = i+1;
14 end
15 xlabel("Velocity (m/s)");
16 plot2d(V,Cl_Cd,3);
17 plot2d(V,Cl1_Cd,4);
18 //from graph we can see:
19 Cl_Cdmax = 13.62; //maximum Cl/Cd
20 Cl1_Cdmax = 12.81; //maximum Cl^1.5/Cd
21 R=(n/c)*Cl_Cdmax*log(Wo/W1)
22 disp(R,"R=","Range R=(n/c)*(Cl/Cd)*log(Wo/W1)")
23 E=(n/c)*Cl1_Cdmax*sqrt(2*D*S)*[1/sqrt(W1)-1/sqrt(Wo)]
24 disp(E, "E=", "Endurance E=(n/c)*(Cl^1.5/Cd)*sqrt(2*D*
     S) * [1/sqrt(W1) - 1/sqrt(Wo)]")
25 printf("\Answer:\n")
```

```
26 printf("\n\Maximum range of CP-1: %f m\n\n",R)
27 printf("\n\Maximum Endurance of CP-1: %f s\n\n",E)
```

check Appendix AP 39 for dependency:

6_13data.sci

Scilab code Exa 6.13 Example 13

```
1 pathname=get_absolute_file_path('6_13.sce')
2 filename=pathname+filesep()+'6_13data.sci'
3 exec(filename)
4 clf();
5 V=linspace(20,400,500);
6 i = 1;
7 Cl = 0; Cd = 0; Cl_Cd =0; Thrust = 0;
8 while(i<=length(V))</pre>
9
       Cl(i) = 2*Wo/(D*S*V(i)^2);
10
       Cd(i) = Cdo + Cl(i)^2/(\pi pi * e * AR);
       Cl_Cd(i) = Cl(i)/Cd(i);
11
12
       Cl1_Cd(i) = Cl(i)^0.5/Cd(i)
13
      i = i+1;
14 end
15 xlabel("Velocity (m/s)");
16 plot2d(V,Cl_Cd,3);
17 plot2d(V,Cl1_Cd,4);
18 //from graph we can see:
19 Cl_Cdmax=16.9; //maximum Cl/Cd
20 Cl1_Cdmax=23.4; //maximum Cl^0.5/Cd
21 R=[sqrt(Wo)-sqrt(W1)]*Cl1_Cdmax*2*(sqrt(2/(D*S))/c);
22 disp(R, "R=", "Range R=[sqrt(Wo)-sqrt(W1)] * Cl^5.5/Cd
      *2*(sqrt(2/(D*S))/c)")
23 E=(Cl_Cdmax*log(Wo/W1))/c;
24 disp(E, "E=", "Endurance E=(Cl_Cdmax*log(Wo/W1))/c")
25 printf("\Answer:\n")
26 printf("\n\Maximum range of CJ-1: \%f m\n\n",R)
```

```
27 printf("\n\Maximum Endurance of CJ-1: %f s\n\, E)
     check Appendix AP 38 for dependency:
     6_14data.sci
   Scilab code Exa 6.14 Example 14
1 pathname=get_absolute_file_path('6_14.sce')
2 filename=pathname+filesep()+'6_14data.sci'
3 exec(filename)
4 Cl_Cdmax=sqrt(Cdo*%pi*e*AR)/(2*Cdo);
5 disp(Cl\_Cdmax,"(Cl/Cd)max=","(Cl/Cd)max=sqrt(Cdo*\%pi)
      *e*AR)/(2*Cdo)")
6 Cl_Cd1max = (3*Cdo*\%pi*e*AR)^(3/4)/(4*Cdo);
7 disp(Cl_Cd1max,"((Cl/Cd)^1.5)max=","((Cl/Cd)^1.5)max
      =(3*Cdo*\%pi*e*AR)^(3/4)/(4*Cdo)")
     check Appendix AP 37 for dependency:
     6_15data.sci
   Scilab code Exa 6.15 Example 15
1 pathname=get_absolute_file_path('6_15.sce')
2 filename=pathname+filesep()+'6_15data.sci'
3 exec(filename)
4 Cl_Cdmax=sqrt(Cdo*%pi*e*AR)/(2*Cdo);
5 disp(Cl_Cdmax,"(Cl/Cd)max=","(Cl/Cd)max=sqrt(Cdo*%pi
      *e*AR)/(2*Cdo)")
6 Cl_Cd1max = ((1/3)*Cdo*\%pi*e*AR)^(1/4)/(4*Cdo/3);
```

7 disp(Cl_Cd1max,"(Cl^0.5/Cd)max=","(Cl^0.5/Cd)max = $((1/3)*Cdo*\%pi*e*AR)^(1/4)/(4*Cdo/3)$ ")

Scilab code Exa 6.16.b Example 16 b

```
pathname=get_absolute_file_path('6_16b.sce')
filename=pathname+filesep()+'6_16b_data.sci'
exec(filename)
R_Cmax=(Pf*P*746/W)-0.8776*sqrt(W/(D*S*Cdo))*(1/(L_Dmax)^1.5)//(R/C)max
printf("\Answer:\n")
printf("\n\Maximum Rate of climd for CP-1: %f m/s\n\n",R_Cmax)
check Appendix AP 36 for dependency:
6_16b_data.sci
```

Scilab code Exa 6.16.c Example 16 c

check Appendix AP 35 for dependency:

6_16c_data.sci

Scilab code Exa 6.16.d Example 16 d

```
1 pathname=get_absolute_file_path('6_16d.sce')
2 filename=pathname+filesep()+'6_16d_data.sci'
3 exec(filename)
4 Z=1+sqrt(1+(3/((L_Dmax)^2*(2*Tf/W)^2)))
5 R_{\text{cmax}=\text{sqrt}}(W*Z/(3*D*Cdo*S))*(2*Tf/W)^1.5*[1-(Z/6)]
     -(1.5/(Z*(2*Tf/W)^2*(L_Dmax)^2))]
6 printf("\Answer:\n")
7 printf("\n\Maximum Rate of Climb for CJ-1: \%f m/s\n\
     n", R_Cmax)
     check Appendix AP 34 for dependency:
     6_16d_data.sci
     check Appendix AP 33 for dependency:
     6_17data.sci
  Scilab code Exa 6.17 Example 17
1 pathname=get_absolute_file_path('6_17.sce')
2 filename=pathname+filesep()+'6_17data.sci'
3 exec(filename)
4 Sl=1.44*W^2/(g*D*S*Cl*[T-(Dr+Ur*(W-L))]);;disp(Sl,"
     Sl=", "Sl=1.44*W^2/(g*D*S*Cl*[T-(Dr+Ur*(W-L))])", "
     Liftoff distance Sl:")
5 printf("\Answer:\n")
6 printf("\n\Liftoff distance for the CJ-1 at se level
     : %f m\n\n",S1)
     check Appendix AP 32 for dependency:
     6_18data.sci
```

Scilab code Exa 6.18 Example 18

```
1 pathname=get_absolute_file_path('6_18.sce')
2 filename=pathname+filesep()+'6_18data.sci'
3 exec(filename)
4 Sl=(Vt^2*W)/(2*g*(Dr+Ur*W)); disp(Sl,"Sl=","Sl=(Vt^2*W)/(2*g*(Dr+Ur*W))","landing ground roll distance Sl:")
5 printf("\Answer:\n")
6 printf("\n\Landing ground roll distance at sea level : %f m\n\n",Sl)
```

Scilab code Exa 6.19.a Example 19 a

check Appendix AP 31 for dependency:

6_19data.sci

Scilab code Exa 6.19.b Example 19 b

```
1 pathname=get_absolute_file_path('6_19b.sce')
2 filename=pathname+filesep()+'6_19data.sci'
```

```
3 exec(filename)
4 disp ("(R/C) max=(P/W) max -0.8776* sqrt (W/(S*D*Cdo)) *(Cd
     /Cl)^1.5")
5 A=Pa/Wo;
6 Cd_Cl=2*Cdo/sqrt(Cdo*%pi*e*AR);//ratio , Cd/Cl
7 B=0.8776*sqrt(Wo/(S*D*Cdo))*(Cd_Cl)^1.5;
8 R_Cmax=A-B; //maximum rate of climb
9 printf("\Answer:\n")
10 printf("\n\maximum rate of climb at sea level: %f m/
     s \ n \ " , R \ Cmax)
     check Appendix AP 31 for dependency:
     6_19data.sci
   Scilab code Exa 6.19.c Example 19 c
1 pathname=get_absolute_file_path('6_19c.sce')
2 filename=pathname+filesep()+'6_19data.sci'
3 exec(filename)
4 Cl_Cd= sqrt (Cdo*%pi*e*AR)/(2*Cdo); // ratio <math>(Cl/Cd)
5 disp(Cl_Cd)
6 R=(n/c)*Cl_Cd*log(Wo/(W-W1))*0.62137*10^-3; //range
      in miles
7 printf("\Answer:\n")
8 printf("\n\maximum\ range: \%f miles \n\n",R)
     check Appendix AP 31 for dependency:
```

Scilab code Exa 6.19.d Example 19 d

6_19data.sci

```
1 pathname=get_absolute_file_path('6_19d.sce')
2 filename=pathname+filesep()+'6_19data.sci'
3 exec(filename)
4 E=(n/(4*c*Cdo))*(3*Cdo*\%pi*e*AR)^(3/4)*sqrt(2*D*S)
     *[1/sqrt(W-W1)-1/sqrt(Wo)]
5 printf("\Answer:\n")
6 printf("\n\Maximum Endurance at sea level: %f s\n\n"
     ,E)
     check Appendix AP 31 for dependency:
     6_19data.sci
     check Appendix AP 29 for dependency:
     6_20data.sci
  Scilab code Exa 6.20 Example 20
1 pathname=get_absolute_file_path('6.20.sce')
2 filename=pathname+filesep()+^{\circ}6.20 \, \mathrm{data.sci}
3 exec(filename)
4 R1_R2=sqrt((n2^2-1)/(n1^2-1)); //ratio(R1/R2)
5 disp(R1_R2, "ratio of turn radius :R1/R2=sqrt((n2
     ^2-1)/(n1^2-1)")
```

6 $w1_w2=sqrt((n1^2-1)/(n2^2-1)); //ratio(w1/w2)$

/(n2^2-1))")
8 printf("\Answer:\n")

7 disp(w1_w2," ratio of turn rate :w1/w2=sqrt($(n1^2-1)$

9 printf("\n\Ratio of turn radius: %f \n\n",R1_R2) 10 printf("\n\Ratio of turn rate: %f m/s\n\n",w1_w2)

Chapter 7

Principles of Stability and Control

Scilab code Exa 7.1 Example 1

```
1 funcprot(0);
2 function[y] = f(x,y)
3     z = poly(0, 'z');
4     y = x^2+y^2+ z^2;
5 endfunction
6 ans= derivat(f(1,1)); // finding derivative with respect to z at some point x,y;
7 disp(ans, "derivative of x^2+y^2+ z^2 with respect to z:");
```

check Appendix AP 19 for dependency:

7_02data.sci

Scilab code Exa 7.2 Example 2

```
1 pathname=get_absolute_file_path('7.02.sce')
```

```
2 filename=pathname+filesep()+'7_02data.sci'
3 exec(filename)
4 Cmcg=Cmac+Clwb*(dh); disp(Cmcg, "Cmcg", "Cmcg=Cmac+Clwb
      (dh)", "moment coefficient about center of gravity
       Cmcg")
5 printf("\Answer:\n")
6 printf("\n\moment coefficient about center of
      gravity: \%f \setminus n \setminus n", Cmcg)
     check Appendix AP 18 for dependency:
     7_03data.sci
   Scilab code Exa 7.3 Example 3
1 pathname=get_absolute_file_path('7_03.sce')
2 filename=pathname+filesep()+'7_03data.sci'
3 exec(filename)
4 A=[1,Awb*ab2;1,Awb*ab3];
5 B=[1,1]; // coefficient of moment coefficient about
      aerodynamic center
6 C=[Awb*ab2, Awb*ab3]; // coefficient of h-hac
7 D = [-0.01, 0.05];
8 dh=det([B;D])/det(A);//difference between location
      of aerodynamic center and center of gravity
9 hac=h-dh;
10 Cmac=det([D;C])/det(A)//moment coefficient about
      aerodynamic center
11 printf("\Answer:\n")
12 printf("\nLocation of aerodynamic center: \%f\n",
      hac)
13 printf("\n\moment coefficient about aerodynamic
      center of wing-body : \%f \setminus n \setminus n", Cmac)
     check Appendix AP 17 for dependency:
```

7_04data.sci

Scilab code Exa 7.4 Example 4

check Appendix AP 16 for dependency:

7_05data.sci

Scilab code Exa 7.5 Example 5

```
1 pathname=get_absolute_file_path('7.05.sce')
2 filename=pathname+filesep()+'7.05data.sci'
3 exec(filename)
4 disp("->as slope (DCmg) of moment coefficient curve is negative the airplane model is statically stable.")
5 disp("->as equilibrium angle of attack (Ae) falls in a reasonable range, the plane is longitudinally stable.")
```

check Appendix AP 15 for dependency:

7_06data.sci

Scilab code Exa 7.6 Example 6

```
1 pathname=get_absolute_file_path('7_06.sce')
2 filename=pathname+filesep()+^{7}-06data.sci^{7}
3 exec(filename)
4 Hn=Hac+Vh*at*(1-de)/a;
5 disp(Hn,"Hn=","Hn=Hac+Vh*at*(1-de)/a","neutral point
      location Hn:")
6 printf("\Answer:\n")
7 printf("\n\Neutral point location : \%f \n\, Hn)
    check Appendix AP 14 for dependency:
     7_07data.sci
  Scilab code Exa 7.7 Example 7
1 pathname=get_absolute_file_path('7_07.sce')
2 filename=pathname+filesep()+^{\prime}7_{-}07data.sci
3 exec(filename)
4 Sm=Hn-h; disp(Sm, "Sm=", "Sm=Hn-h", "static margin Sm:")
5 printf("\Answer:\n")
6 printf("\nStatic Margin : %f \n", Sm)
```

7_08data.sci

check Appendix AP 13 for dependency:

Scilab code Exa 7.8 Example 8

```
pathname=get_absolute_file_path('7_08.sce')
filename=pathname+filesep()+'7_08data.sci'
exec(filename)

Dtrm=(Cmo+DCmcg*a1)/(Vh*DClt);
disp(Dtrm,"Dtrm=","Dtrm=(Cmo+DCmg*a1)/(Vh*DClt)","
elevator deflection angle Dtrm::")
printf("\Answer:\n")
printf("\n\To trim the airplane at an angle of attack of 6.5 degree the elevator must be deflected upward(negative) by: %f degree\n\n", Dtrm)
```

check Appendix AP 12 for dependency:

7_09data.sci

Scilab code Exa 7.9 Example 9

Chapter 8

Space Flight

```
check Appendix AP 11 for dependency:
```

8_01data.sci

Scilab code Exa 8.1 Example 1

```
1 pathname=get_absolute_file_path('8_01.sce')
2 filename=pathname+filesep()+'8_01data.sci'
3 exec(filename)
4 h=Rb*V*cos(alpha);disp(h,"h=","h=Rb*V*cos(alpha)")
5 P=h^2/K;disp(P,"P=")
6 e=sqrt(1+2*(h^2/K^2)*((V^2/2)-(K/Rb)));disp(e,"e=","e=sqrt(1+2*(h^2/K^2)*((V^2/2)-(K/Rb)))")
7 C=-acosd((P/Rb-1)/e);
8 disp(C,"C=","C=-acosd((P/Rb-1)/e)");
9 disp("equals approx 1.056*10^7/(1+0.4654*cos(theta+9.46))","P/(1+e*cos(theta-C))","From the above values we can see equation of trajectory:")
```

check Appendix AP 10 for dependency:

8_02data.sci

Scilab code Exa 8.2 Example 2

```
pathname=get_absolute_file_path('8_02.sce')
filename=pathname+filesep()+'8_02data.sci'
exec(filename)
T2=T1*(a2/a1)^1.5;
disp(T2,"T2=","T2=T1*(a2/a1)^1.5","period of mars T2
from keplers third law:")
printf("\Answer:\n")
printf("\Answer:\n")
check Appendix AP 9 for dependency:
```

8_03data.sci

Scilab code Exa 8.3 Example 3

```
1 pathname=get_absolute_file_path('8_03.sce')
2 filename=pathname+filesep()+'8_03data.sci'
3 exec(filename)
4 h=-log(D/Do)/Z; disp(h, "h=", "h=-ln(D/Do)/Z", "altitude
        of maximum decelation h:")
5 \operatorname{Amax}=\operatorname{Ve}^2*\operatorname{Z*sin}(\operatorname{theta})/(2*\%e); \operatorname{disp}(\operatorname{Amax}, \operatorname{Amax}=", \operatorname{max}=")
      Amax=V^2*Z*sin(theta)/(2*\%e)", "value of maximum
       deceleration Amax")
6 V=Ve*\%e^{(-Do/(2*B*Z*sin(theta)))}; disp(V,"V=","V=Ve*
      \%e^{(-Do/(2*B*Z*sin(theta)))}", "velocity at impact
      on earth surface")
7 printf("\Answer:\n")
8 printf("\n\altitude at which maximum deceleration
       occur: \%f m\n\n",h)
9 printf("\n\value of maximum deceleration: \%f m/s^2\n
      \n", Amax)
10 printf("\n\velocity at impact on earth surface: %f m
      / s \ n \ n", V)
```

Chapter 9

Propulsion

```
check Appendix AP 8 for dependency:
```

```
9_01data.sci
```

Scilab code Exa 9.1 Example 1

```
1 pathname=get_absolute_file_path('9_01.sce')
2 filename=pathname+filesep()+'9_01data.sci'
3 exec(filename)
4 x = poly(0, 'x');
5 P=x-10*x+9.5;
6 t = roots(P);
7 V2=\%pi*b^2*(Stroke+t)*(10^-6)/4; disp(V2,"V2=\%pi*b)
      ^2*(Stroke+t)/4");
8 V3=V2/r; disp(V3,"V3=V2/r");
9 V5=V2; V4=V3;
10 Wcomp = (P2*V2-P3*V3)/(1-y);
disp(Wcomp, "Wcomp=", "Wcomp=P2*V2-P3*V3/(1-y);", "work
       done in compression cycle Wcomp:")
12 Wpower=(P5*V5-P4*V4)/(1-y);
disp(Wpower, "Wpower=", "Wpower=P5*V5-P4*V4/(1-y);","
     work done in power stroke Wpower:")
14 Pa=6*n*nm*(rpm)*(Wpower-Wcomp)/120;
```

```
disp(Pa, "Pa=n*m*(rpm)*(Wpower-Wcomp)/120", "power
      available Pa:")
16 printf("\Answer:\n")
17 printf("\n\Power available from the engine propeller
       combination: \%f J/s \backslash n \backslash n", Pa)
     check Appendix AP 7 for dependency:
      9_02data.sci
   Scilab code Exa 9.2 Example 2
1 pathname=get_absolute_file_path('9.02.sce')
2 filename=pathname+filesep()+'9_02data.sci'
3 exec(filename)
4 Pe=Pa*120/(n*Nmech*rpm*d);
5 disp(Pe, "Pe=", "Pe=Pa*120/(n*Nmech*rpm*d)", "mean
      effective pressure Pe:")
6 printf("\Answer:\n")
7 printf("\n\Mean effective pressure : \%f \n\'\n\',
      Pe)
      check Appendix AP 6 for dependency:
      9_03data.sci
   Scilab code Exa 9.3 Example 3
1 pathname=get_absolute_file_path('9_03.sce')
2 filename=pathname+filesep()+'9_03data.sci'
3 exec(filename)
4 T=Mdot*(Ve-V)+(Pe-P)*Ae;
5 \operatorname{disp}(T, "T=", "T=\operatorname{Mdot}*(Ve-V)+(Pe-P)*Ae", "Thrust of the
       turbojet T:")
```

```
6 printf("\Answer:\n")
7 printf("\n\Mean effective pressure : %f N\n\,T)
     check Appendix AP 5 for dependency:
     9_04data.sci
   Scilab code Exa 9.4 Example 4
1 pathname=get_absolute_file_path('9.04.sce')
2 filename=pathname+filesep()+^{\prime}9_{-}04data.sci
3 exec(filename)
4 T=Mdot*Ve; disp(T, "T=", "T=Mdot*Ve", "As Pe equals
      ambient pressure at 30 Km Thrust T:")
5 Ae=Mdot/(De*Ve); disp(Ae, "Ae=", "Ae=Mdot/(De*Ve)","
      exit area Ae:")
6 Me=Ve/sqrt(y*R*Te); disp(Me, "Me=", "Me=Ve/sqrt(y*R*T)"
      ", exit Mach No. Me:")
7 printf("\Answer:\n")
8 printf("\n\Specific impulse : %f s\n\n", Isp)
9 printf("\n\Thrust: %f N\n\,T)
10 printf("\nArea of the exit: %f m^2\n, Ae)
11 printf("\nflow mach no at exit : %f \n",Me)
     check Appendix AP 4 for dependency:
     9_05data.sci
   Scilab code Exa 9.5 Example 5
1 pathname=get_absolute_file_path('9_05.sce')
2 filename=pathname+filesep()+^{\prime}9_{-}05data.sci
3 exec(filename)
```

- 4 printf("\n\burnout velocity of single stage rocket : %f m/s\n\n", Vb)
- 5 printf("\n\burnout velocity of double stage rocket after second stage: %f m/s\n\n", Vb2)
- 6 disp("As we can see from final burnout velocities that a double-stage rocket can give a greater launching velocity as compared to single stage rocket.")

Chapter 10

Flight Vehicle Structure and Material

```
check Appendix AP 3 for dependency:
    10_01data.sci
```

Scilab code Exa 10.1 Example 1

check Appendix AP 2 for dependency:

10_02data.sci

Scilab code Exa 10.2 Example 2

```
1 pathname=get_absolute_file_path('10_02.sce')
2 filename=pathname+filesep()+'10_02data.sci'
3 exec(filename)
4 disp("as the applied stress (approx 3513) bar is greater than yield stress but less than ultimate stress of the aluminium rod, it will experience permanent set but will not fracture")
```

Chapter 11

Hypersonic Vehicles

```
check Appendix AP 1 for dependency: 
11_01data.sci
```

Scilab code Exa 11.1 Example 1

Appendix

Scilab code AP 1 Example 11.01data

```
1 //Refer to figure 11.1.
2 M=25; //mach no. of the flow
3 //let s denote distance along the sphere surface
      and R radius than say s/R=r
4 r=0.6; //location of point 1 from stagnation point
5 phi=57.3*r //location of point 1 in degrees
6 theta=(90-phi)*\%pi/180 //angle(in radian) made by
      the line tangent to the body at point 1 w.r.t
      free stream
7 y=1.4; //specific heat ratio of air
8 //let pressure behind the normal shock wave is Po2
      and free stream pressure p. Then Po2/P=Rp:
9 Rp=[(y+1)^2*M^2/(4*y*M^2-2*(y-1))]^(y/(y-1))*[(1-y)
      +2*y*M^2)/(y+1)
10 \operatorname{Cpmax} = 2*(\operatorname{Rp}-1)/(y*M^2) / \operatorname{maximum pressure}
      coefficient
```

Scilab code AP 2 Example 10.02data

```
1 //consider an aluminium rod.
2 D=6.35*10^-3; //diameter(meter) of the rod
3 T=11125; //Applied load(N) on the rod
4 Sty=3103; //yield tensile stress(bar) of aluminium rod
5 Stu=4206; //ultimate tensile stress(bar) of aluminium rod
6 sigma=T/(%pi*D^2*10^5/4) //tensile stress(bar) on
```

Scilab code AP 3 Example 10.01data

```
//consider a rod of stainless steel.
D=0.01905; //diameter(meter) of the rod
1=2.54; //length(meter) of the rod
T=53378.66; //Applied load(N) on the rod
Y=0.2*10^7; //young's modulous of the rod
sigma=T/(%pi*D^2*10^5/4) //tensile stress(bar) on the rod
//as the value of tensile stress is less than tensile yield stress Hook's law can be applied, so:
strain=sigma/Y //strain on the rod
```

Scilab code AP 4 Example 9.05data

```
1 Mt=5000; //total mass(Kg) for both the rocket
2 Isp=350; //specific impulse (s) for both rocket
3 g=9.8;
4 //for the single stage rocket:
5 Ms=500; //structural mass (Kg)
6 Mp=4450; //propellent mass (Kg)
7 Ml=50; //payload mass (Kg)
8 Mi=Ms+Mp+Ml; //initial mas(Kg)
9 Mf=Ms+Ml; // final mass (Kg)
10 Vb=g*Isp*log(Mi/Mf)//burnout velocity(m/s)
11 //for the double-stage Rocket
12 Ms1=400; //structural mass (Kg) of first stage
13 Mp1=3450; // propellent mass (Kg) of first stage
14 Ms2=100; //structural mass (Kg) of second stage
15 Mp2=1000; //propellent mass (Kg) of second stage
16 Ml=50; //payload mass (Kg)
17 Mi2=Ms1+Mp1+Ms2+Mp2+Ml; //initial mas(Kg)
18 Mf2=Ms1+Ms2+Ml; // final mass(Kg)
19 //burnout velocity(m/s) of the first stage:
20 Vb1=g*Isp*log((Mp1+Ms1+Mp2+Ms2+M1)/(Ms1+Mp2+Ms2+M1))
```

```
21 //increase in velocity by second stage DVb:
22 DVb=g*Isp*log((Mp2+Ms2+M1)/(Ms2+M1))
23 //velocity at burnout of second stage
24 Vb2=Vb1+DVb
   Scilab code AP 5 Example 9.04data
1 //consider a rocket engine burning hydrogen and
      oxygen.
2 Po=25*1.01*10^5; //pressure at combustion chamber (N/m
      ^2)
3 To=3517; //temperature of combustion chamber (K)
4 A=0.1; //area of rocket nozzle (m<sup>2</sup>)
5 Pe=1.1855*10^3; // \text{ exit pressure } (N/\text{m}^2) at standard
      altitude of 30 Km
6 y=1.22; // specific heat ratio of the gas mixture
7 g=9.8;
8 M=16; // Molecular weight of gas mixture
9 Ru=8314; // universal gas constant (J/Kg.K)
10 R=8314/16 //specicific gas constant for this mixture
11 //specific impulse Isp:
12 Isp=sqrt(2*y*Ru*To*[1-(Pe/Po)^((y-1)/y)]/((y-1)*M))/
13 //mass flow through engine (Kg/s):
14 Mdot = (Po*A/sqrt(To))*sqrt(y*(2/(y+1))^((y+1)/(y-1))
15 Te=To*(Pe/Po)^{((y-1)/y)} //exit temperature in Kelvin
16 Cp=y*R/(y-1) //specific heat at constant pressure
      for the gas mixture
```

Scilab code AP 6 Example 9.03data

18 De=Pe/(R*Te) //exit density (Kg/m^3)

gas(m/s)

1 H=9144; //standard altitude at which airplane flying (meter)

17 Ve=sqrt(2*Cp*(To-Te)) //velocity at exit of exhaust

```
2 P=0.3014*10^5; // pressure at standard altitude of
     9144 \text{ m}(\text{N/m}^2)
3 D=0.459; // Density at standard altitude of 9144 m(Kg/
     m^3
4 V=804.67*5/18 //free stream velocity (m/s)
5 Pe=0.3064*10^5; //pressure of exhaust gas at the exit
     (N/m^2)
6 Ve=487.68; //velocity of exhaust gas at exit(m/s)
7 Ai = 0.65; // in let area (m<sup>2</sup>)
8 Ae=0.42; // \text{exit} \text{ area} (\text{m}^2)
9 Mdot=D*V*Ai //mass flow through engine (Kg/s)
  Scilab code AP 7 Example 9.02data
1 //consider the engine of example 9.1, datas are same
2 Pa=1.034*10^4; // \text{total power available } (N/m^2)
3 n=0.83; //propeller efficiency
4 Nmech=0.75; //mechanical efficiency
5 rpm=3000; //for engine-propeller combination (
     revolution per minute)
6 b=9*10^-2; //bore (meter)
7 s=9.5*10^-2; //engine stroke
8 N=6; //number of cylinders
9 d=%pi*b^2*s*N/4 //displacement(meter)
  Scilab code AP 8 Example 9.01data
1 //consider a six cylinder internal combustion engine
2 y=1.4; //specific heat ratio for air
3 Stroke=9.5; //stroke (cm) of the internal combustion
     engine
4 b=9; //bore(cm) of the internal combustion engine
5 P2=0.8*1.01*10^5; // pressure (N/m^2) before
     compression stroke
```

6 T2=250; //temperature(k) before compression stroke

```
7 //V2 and V3 are volume before and after compression
     stroke respectively and V4 and V5 volume before
     and after power stroke respectively.
8 r=10; // compression ratio (V2/V3)
9 f=0.06; //fuel to air ratio by mass
10 P3=P2*r^y //pressure after compression stroke(
     isentropic condition)
11 T3=T2*r^(y-1)/temperature after compression stroke
12 //chemical energy released in 1 Kg gasoline is
     4.29*10^7 Joule so, heat released per Kg of fuel
      air mixture q equals:
13 q=4.29*10^7*0.06/1.06
14 Cv=720; // specific heat ratio (J/Kg-K) at constant
     volume for air
15 T4=q/Cv+T3 //temperature before power stroke
16 P4=P3*T4/T3 //pressure before power stroke
17 P5=P4*(1/r)^y //pressure after power stroke from
     isentropic relation
18 n=0.83; // propeller efficiency
19 nm=0.75; //mechanical efficiency
20 rpm=3000; //rotation per minute for the engine
```

Scilab code AP 9 Example 8.03data

- 11 Z=.000118
- 12 D=B*Z*sin(theta) //density at corresponding altitude of maximum deceleration

Scilab code AP 10 Example 8.02data

- 1 T1=365.256; // period of revolution of earth around sun(days)
- 2 a1=1.49527*10^11; //semimajor axis of earth's orbit (m
- 3 a2=2.2783*10^11; //semimajor axis of Mars's orbit (m)

Scilab code AP 11 Example 8.01data

- 1 V=9000; //burnout velocity (m/s)
- 2 alpha=3*%pi/180;//direction of bernout velocity due north above local horizontal(degree)
- 3 H=.805*10^6; // altitude above sea level (meter)
- 4 beeta=27*%pi/180;//angle made by burnout point with equator
- 5 Re=6.4*10^6; $// \operatorname{radius}(m) \text{ of } \operatorname{earth}$
- 6 Rb=7.2*10^6 //distance of bernout point from earth's center
- 7 K=3.986*10^14; //product of earth's mass and universal Gravitational constant.

Scilab code AP 12 Example 7.09data

- 1 //consider the airplane of example 7.8.its elevator hinge derivatives are:
- 2 DCh=-0.008; // derivative w.r.t absolute angle of attack of tail
- 3 DChe=-0.013; // derivative w.r.t elevator deflection
- 4 at=0.1; // tail lift slope per degree (from example 7.4)
- 5 DClt=0.04; // elevator control efficiency (from example 7.8)

```
6 Hac=0.24;//location of aerodynamic center from
    leading edge(from example 7.3)
7 Vh=0.34;//tail volume ratio(from example 7.4)
8 de=0.35;//derivative of downwash angle w.r.t angle
    of attack(from example 7.4)
9 a=0.08;//lift slope(from example 7.4)
10 F=1-DClt*DCh/(at*DChe) //free elevator factor
11 Hn=Hac+F*Vh*at*(1-de)/a //neutral point
```

Scilab code AP 13 Example 7.08data

```
W=2.27*10^4; // weight of the airplane(N)
S=19; // wing area (m^2)
V=61; // velocity at sea level(m/s)
D=1.225; // density at sea level(Kg/m^3)
C1=2*W/(D*S*V^2) // lift coefficient
a=0.08; // lift slope per degree (from example 7.3)
a1=C1/a // absolute angle of attack
Cmcg=-0.0133; // derivative of Cmcg w.r.t absolute angle of attack(from example 7.5)
Cmo=0.06; // value of moment coefficient at zero absolute angle of attack (from example 7.5)
Wh=0.34 // tail volume ratio (from example 7.4)
Clt=0.04; // elevator control efficiency
```

Scilab code AP 14 Example 7.07data

```
1 h=0.35; //location of center of gravity from leading edge
```

2 Hn=0.516; // Neutral point location

Scilab code AP 15 Example 7.06data

```
1 //consider wind tunnel model of example 7.3.datas are taken from example 7.3 and 7.4
```

² Hac=0.24; // distance of aerodynamic center from leading edge

Scilab code AP 16 Example 7.05data

```
1 //consider the wing-body-tail wind tunnel model of
      example 7.4.
2 a=0.08; // lift slope
3 S=0.1; // area of wing (m<sup>2</sup>)
4 \text{ c=0.1;} // \text{chord of wing (m)}
5 lt=0.17; // distance between airplane 'scenter of
      gravity and aerodynamic center of tail
6 St=0.02; // tail area (m^2)
7 It=2.7; // tail settling area (degree)
8 at=0.1; //tail lift slope per degree
9 eo=0;//downwash angle at zero lift
10 de=0.35; //derivative of downwash angle w.r.t angle
      of attack
11 Vh=lt*St/(c*S)//tail volume ratio
12 Cmac=-0.032; //moment coefficient about the
      aerodynamic center
13 //derivative of Cmcg w.r.t absolute angle of attack:
14 DCmcg=a*(dh-Vh*at*(1-de)/a)
15 //value of moment coefficient at zero absolute angle
       of attack Cmo:
16 Cmo=Cmac+Vh*at*(It+eo)
17 //equilibrium angle of attack (from moment
      coefficient curve):
18 Ae = Cmo/0.0133
```

Scilab code AP 17 Example 7.04data

```
1 //consider the wing model of example 7.3:
2 S=0.1;//area of wing(m<sup>2</sup>)
3 c=0.1;//chord of wing(m)
```

```
4 lt=0.17; // distance between airplane 'scenter of
      gravity and aerodynamic center of tail
5 St=0.02; // tail area (m^2)
6 It=2.7; //tail settling area (degree)
7 at=0.1; //tail lift slope per degree
8 eo=0;//downwash angle at zero lift
9 de=0.35; //derivative of downwash angle w.r.t angle
      of attack
10 Vh=lt*St/(c*S)//tail volume ratio
11 //following datas are from example 7.3
12 Cmac=-0.032; //moment coefficient about the
     aerodynamic center
13 a=0.08; // lift slope
14 a1=7.88+1.5; //absolute angle of attack (degree)
15 dh=0.11; // distance between aerodynamic center and
      center of gravity
```

Scilab code AP 18 Example 7.03data

```
1 h=0.35; //location of center of gravity from leading
     edge
2 ao = -1.5; // geometric angle of attack for which lift
     is zero
3 a1=5; //angle of attack in degree
4 Cl1=0.52; //lift coefficient at 5 degree angle of
     attack
5 Awb=(.52-0)/(5-(-1.5)) //lift slope per degree
6 a2=1; //geometric angle of attack in degree
7 ab2=a2+1.5//absolute angle of attack at 1 degree
8 Cmcg=-0.01; //moment coefficient about center of
     gravity at 1 degree angle of attack
9 a3=7.88; //geometric angle of attack in degree
10 ab3=a3+1.5; //absolute angle of attack at 7.88 degree
11 Cmcg2=0.05; //moment coefficient about center of
     gravity at 7.88 degree angle of attack
12 //we have two equation in the form of Cmcg=Cmac+Clwb
     *(dh) and two unknown variables Cmac(moment
      coefficient about aerodynamic center ) and dh(
```

```
distance between aerodynamic center and center of gravity), so we use matrix method to solve them:
```

Scilab code AP 19 Example 7.02data

Scilab code AP 20 Example 6.09data

```
//for the CP-1:
W=13127.5; //normal gross weight(N)
S=16.165; //wingarea(m^2)
a=4.2*%pi/180; //approx minimum glide angle(radian).
    from example 6.7
D1=0.905; //density at 3048 m(Kg/m^3)
D2=1.155; //density at 609.6 m(Kg/m^3)
Cl=0.634; //lift coefficient corresponding to minimum glide angle i.e maximum L/D(from example 6.1)
Wl=W/S//wing loading (W/S in N/m^2)
```

Scilab code AP 21 Example 6.08data

```
1 //for the CJ-1:   
2 L_D=16.9;//maximum lift to drag ratio(L/D)   
3 H=3048;//altitude(m) at which gliding starts.
```

Scilab code AP 22 Example 6.07data

```
1 //for the Cp-1:
2 L_D=13.6;//maximum lift to drag ratio(L/D)
3 H=3048;//altitude(m) at which gliding starts.
```

Scilab code AP 23 Example 6.06data

```
1 //for the CP-1(datas from example 6.1a):
2 b=10.912; //wingspan(meter)
3 S=16.165; // wingarea (m^2)
4 AR=b^2/S; //aspect ratio
5 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
6 W=13127.5; //normal gross weight (N)
7 f=65; //fuel capacity
8 P=230; //power provided by piston engine (unit-
      horsepower(hp))
9 Sf=2.0025; // specific fuel consumption (N/(hp.h))
10 Cdo=0.025; // parasite drag coefficient
11 e=0.8; //oswald efficiency factor
12 Pf=0.8; //propeller efficiency
13 V = linspace(30,80,500); // velocity over which we
      have to find thrust (30 to 400 m/s and over 500
      points)
14 Pa=P*Pf*746/1000/power available(KN-m/s)
   Scilab code AP 24 Example 6.05data
1 // for the jet power executive aircraft (CJ-1):
2 Tf=2*16245; //thrust (N) provided by both turbofan
      engine
3 Do=1.225; // density (Kg/m<sup>3</sup>) at sea level
4 D=0.6107; // density (Kg/m^3) at height 6705.6 m
5 b=16.25; //wingspan (meter)
6 S=29.54; // wingarea (m<sup>2</sup>)
7 AR=b^2/S; //aspect ratio
8 W=88176.75; //normal gross weight (N)
9 Cdo=0.02; // parasite drag coefficient
10 e=0.81; //oswald efficiency factor
11 //in order to find max. velocity we need to find out
       the intersection of power required curve for
      example 6.3b and power available curve at height
```

Scilab code AP 25 Example 6.4b-data

of 6705m:

```
//for the jet power executive aircraft(CJ-1):
Tf=2*16245; //thrust (N) provided by both turbofan engine
Do=1.225; //density(Kg/m^3) at sea level
D=0.6107; //density(Kg/m^3) at height 6705.6 m
b=16.25; //wingspan(meter)
S=29.54; //wingarea(m^2)
AR=b^2/S; //aspect ratio
W=88176.75; //normal gross weight(N)
Cdo=0.02; // parasite drag coefficient
e=0.81; //oswald efficiency factor
//in order to find max. velocity we need to find out the intersection of power required curve for example 6.3b and power available curve at height of 6705m:
```

Scilab code AP 26 Example 6.4a-data

```
//for the CP-1(datas from example 6.1a):
b=10.912; // wingspan(meter)
S=16.165; // wingarea(m^2)
AR=b^2/S; // aspect ratio
D=1.225; // density at sea level(Kg/m^3)
Cdo=0.025; // parasite drag coefficient
e=0.8; // oswald efficiency factor
W=13127.5; // normal gross weight(N)
P=230; // power provided by piston engine (unit-horsepower(hp))
Pf=0.8; // propeller efficiency
Pa=P*Pf*746/1000 // maximum power(KN-m/s), 1 hp=746 N-m/s
```

Scilab code AP 27 Example 6.3b-data

```
//for the jet power executive aircraft (CJ-1):
b=16.25; //wingspan (meter)
S=29.54; //wingarea (m^2)
AR=b^2/S; //aspect ratio
```

```
5 D=0.6107; // density at 6705.6 meter
6 W=88176.75; // normal gross weight (N)
7 Cdo=0.02; // parasite drag coefficient
8 e=0.81; // oswald efficiency factor
9 V=linspace(20,300,500); // velocity over which we have to find Power(20 to 300 m/s and over 500 points)
```

Scilab code AP 28 Example 6.3a-data

```
1 //for the cessna skylane(CP-1):
2 b=10.912; //wingspan(meter)
3 S=16.165; //wingarea(m^2)
4 AR=b^2/S; //aspect ratio
5 D=1.225; //density at sea level
6 Cdo=0.025; //parasite drag coefficient
7 e=0.8; //oswald efficiency factor
8 Pf=0.8; //propeller efficiency
9 V = linspace(20,400,500); //velocity over which we have to find Power(20 to 400 m/s and over 500 points)
```

Scilab code AP 29 Example 6.20data

```
1 n1=9;//maximum load factor for piloted airplane
2 n2=25;//maximum load factor for UCAV
```

Scilab code AP 30 Example 6.02data

```
//consider the CJ-1 at sea level.
b=16.25; //wingspan(meter)
S=29.54; //wingarea(m^2)
AR=b^2/S; //aspect ratio
D=1.225; //density at sea level(Kg/m^3)
W=88176.75; //normal gross weight(N)
Tf=2*16245//thrust (N) provided by two turbofan engine
Cdo=0.02; //parasite drag coefficient
```

Scilab code AP 31 Example 6.19data

```
1 //for the cessna skylane (CP-1):
2 W=11494.35; // fuel empty weight (N)
3 W1=3916//total weight(N) including pilot seat etc
4 Wf = 1633.15; // weight(N) of fuel
5 Wo=W+Wf-W1 //gross weight of UAV
6 b=10.912; //wingspan (meter)
7 S=16.16; // wingarea (m^2)
8 AR=b^2/S//aspect ratio
9 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
10 Cdo=0.025; // parasite drag coefficient
11 e=0.8; //oswald efficiency factor
12 Pa=0.8*230*746 //maximum power available (J/s) from
      example 6.4
13 //from example 6.12:
14 n = 0.8;
15 c=7.45*10^-7;
```

Scilab code AP 32 Example 6.18data

Scilab code AP 33 Example 6.17data

```
1 //for the jet power executive aircraft (CJ-1):
2 W=88176.75; //normal gross weight (N)
3 b=16.25; //wingspan (meter)
4 S=29.54; // wingarea (m^2)
5 AR=b^2/S; //aspect ratio
6 e=0.81; //oswald efficiency factor
7 h=1.83; // Height (m) of wing above ground
8 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
9 g=9.8; // Gravitational constant
10 Ur=0.02; // Rolling friction coefficient
11 Cl=1.0; //maximum lift coefficient during ground roll
12 Cdo=0.02; // parasite drag coefficient
13 T=32485; //thrust(N)
14 phi = (16*h/b)^2/(1+(16*h/b)^2)/Ground effect factor
15 Vlo=1.2*sqrt(2*W/(D*S*Cl))//liftoff velocity(1.2*)
      Vstall in m/s)
16 Dr=D*(0.7*Vlo)^2*S*(Cdo+phi*Cl^2/(%pi*e*AR))/2//drag
      (N)
17 L=D*(0.7*Vlo)^2*S*Cl/2//lift(N)
  Scilab code AP 34 Example 6.16d-data
1 //for the jet power executive aircraft (CJ-1):
2 S=29.54; //wingarea(m^2)
3 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
4 W=88176.75; //normal gross weight (N)
5 Tf=16245; //thrust (N) provided by single turbofan
      engine
6 Cdo=0.02; // parasite drag coefficient
7 L_Dmax=16.9; //maximum L/D , from example 6.13
```

Scilab code AP 35 6.16c-data

```
1 // for the jet power executive aircraft (CJ-1):
```

```
2 S=29.54; //wingarea(m^2)
3 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
4 W=88176.75; //normal gross weight (N)
5 Tf=16245; //thrust (N) provided by single turbofan
      engine
6 Cdo=0.02; // parasite drag coefficient
7 L_Dmax=16.9; //maximum L/D , from example 6.13
   Scilab code AP 36 Example 6.16b-data
1 // for the cessna skylane (CP-1):
2 b=10.912; //wingspan (meter)
3 S=16.165; //wingarea(m^2)
4 AR=b^2/S; //aspect ratio
5 D=1.225; // density at sea level(Kg/m^3)
6 W=13127.5; //normal gross weight (N)
7 f=65; //fuel capacity
8 P=230; //power provided by piston engine (unit-
      horsepower(hp))
9 Sf=2.0025; // specific fuel consumption (N/(hp.h))
10 Cdo=0.025; // parasite drag coefficient
11 e=0.8; //oswald efficiency factor
12 Pf=0.8; // propeller efficiency
13 L_Dmax=13.6; //maximum L/D from example 6.12
   Scilab code AP 37 Example 6.15data
1 //for the jet power executive aircraft (CJ-1):
2 b=16.25; //wingspan (meter)
3 S=29.54; //wingarea (m^2)
4 AR=b^2/S; //aspect ratio
5 Cdo=0.02; // parasite drag coefficient
6 e=0.81;//oswald efficiency factor
   Scilab code AP 38 Example 6.14data
```

1 //for the cessna skylane (CP-1):

```
2 b=10.912; //wingspan (meter)
3 S=16.165; //wingarea(m^2)
4 AR=b^2/S; //aspect ratio
5 Cdo=0.025; // parasite drag coefficient
6 e=0.8; //oswald efficiency factor
   Scilab code AP 39 Example 6.13data
1 //for the jet power executive aircraft (CJ-1):
2 b=16.25; //wingspan (meter)
3 S=29.54; //wingarea(m^2)
4 AR=b^2/S; //aspect ratio
5 Wo=88176.75; // normal gross weight (N)
6 Wf = 33211.9; //weight(N) of fuel
7 W1=Wo-Wf//empty weight(N)
8 c=0.6/3600//specific fuel consumption (1/s)
9 D=0.6107; // density at altitude 6705.6 m(Kg/m^3)
   Scilab code AP 40 Example 6.12data
1 // for the cessna skylane (CP-1):
2 b=10.912; //wingspan (meter)
3 S=16.165; // wingarea (m^2)
4 AR=b^2/S; // aspect ratio
5 Wo=13127.5; //normal gross weight (N)
6 Wf = 1632.5; // weight (N) of fuel
7 W1=Wo-Wf//empty weight (N)
8 n=0.8; //efficiency
9 c=2.0025/(3600*746)//specific fuel consumption (N/(hp))
      . s ) )
10 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
   Scilab code AP 41 Example 6.1b-data
1 //for the jet power executive aircraft (CJ-1):
2 b=16.25; //wingspan (meter)
3 \text{ S=} 29.54; // \text{wingarea} (\text{m}^2)
```

```
4 AR=b^2/S; //aspect ratio
5 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
6 W=88176.75; //normal gross weight (N)
7 f=1119; //fuel capacity
8 Tf=16245; //thrust (N) provided by single turbofan
      engine
9 Sf=0.102; // specific fuel consumption (N/(hp.h))
10 Cdo=0.02; // parasite drag coefficient
11 e=0.81; //oswald efficiency factor
12 V=linspace (40,300,500); //velocity over which we have
       to find thrust (40 to 300 m/s and over 500 points
   Scilab code AP 42 6.1a-data
1 // for the cessna skylane (CP-1):
2 b=10.912; //wingspan (meter)
3 S=16.165; // wingarea (m^2)
4 AR=b^2/S; //aspect ratio
5 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
6 W=13127.5; //normal gross weight (N)
7 f=65; //fuel capacity
8 P=230; //power provided by piston engine (unit-
      horsepower (hp))
9 Sf = 2.0025; // specific fuel consumption (N/(hp.h))
10 Cdo=0.025; // parasite drag coefficient
11 e=0.8; //oswald efficiency factor
12 Pf=0.8; //propeller efficiency
13 V = linspace(30,400,500); // velocity over which we
      have to find thrust (30 to 400 m/s and over 500
      points)
   Scilab code AP 43 Example 5.21data
1 Wt=712000; //total weight of plane including fuel (
      unit N)
2 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
```

3 S=153.29; // wing area in m²

```
4 Clm=3; //maximum lift coefficient at subsonic speed
```

Scilab code AP 44 Example 5.20data

Scilab code AP 45 Example 5.19data

```
1 a=2; //angle of attack for both wings
2 e=0.95; //span efficiency factor for both wings
3 a2=-1.5; //angle of attack at zero lift from standard
      data (also used in example 5.17)
4 //part a. for the airfoil of aspect ratio 4:
5 AR1=4; // aspect ratio.
6 ao=0.106; //infinite wing slope per degree (from
     example 5.17)
7 a1=ao/(1+57.3*ao/(%pi*e*AR1)) //lift slope for
      finite wing
8 Cl=a1*(a-a2) //lift coefficient at 2 degree
9 Cl1=a1*(a+0.5-a2) //lift coefficient at 2.5 degree
10 Dcl=Cl1-Cl //change in lift coefficient for wing 1(
      aspect ratio 4)
11
12 //part b. for airfoil of aspect ratio 10:
13 all=0.088; // lift slope for finite wing per degree
      for aspect ratio 10(from example 5.17)
14 Cl2=a11*(a-a2)//lift coefficient at 2 degree
15 C122=a11*(a+0.5-a2) //lift coefficient at 2.5 degree
16 Dcl2=Cl22-Cl2 //change in lift coefficient for wing
      2 (aspect ratio 10)
```

Scilab code AP 46 Example 5.18data

```
1 b=12.29; // wing span in meter
2 S=23.69; // wing area in m^2
3 AR=b^2/S // aspect ratio
4 D=1.225; // density at standard sea level ,Kg/m^3
5 V=48.3*5/18 // velocity of flyer (m/s)
6 e=0.93; // span efficiency factor
7 W=3337.5; // total weight of the flyer in newton
8 L=W/2; // lift on one wing (out of two) in newton
9 q=(D*V^2/2) // dynamic pressure (N/m^2)
10 Cl=L/(q*S) // lift coefficient
11 Cdi=Cl^2/(%pi*e*AR) // induced drag coefficient
```

Scilab code AP 47 Example 5.17data

```
1 //consider a NACA-23012(finite wing)
2 Re=5*10^6; //reynold 's number
3 e=0.95; //span efficiency factor
4 AR=10; // aspect ratio
5 a=4; //angle of attack in degree
6 //for a infinite wing of NACA-23012 airfoil:
7 Clo=1.2; // lift coefficient at 10 degree angle of
     attack
  Cl1=0.14; // lift coefficient at 0 degree angle of
     attack
9 ao=(Clo-Cl1)/10 //infinite wing slope per degree
10 a1=ao/(1+57.3*ao/(3.14*e*AR)) //lift slope for
      finite wing
11 a2=-1.5; // angle of attack at zero lift from standard
12 cd=0.006; // profile drag coefficient estimated from
     aerodynamic data
```

Scilab code AP 48 Example 5.16data

```
1 S=206; //wing area in m^2
2 AR=10; //aspect ratio
3 e=0.95; //span efficiency factor
4 W=7.5*10^5; //weight of the airplane in newton
```

```
5 Hd=3; //density altitude in Km
6 D=0.909; // density at density altitude of 3 Km(Kg/m
7 V=100; // flight velocity (m/s)
8 //lift is equivalent to weight, so
9 Cl=W/((D*V^2/2)*S)//lift coefficient
10 Cdi=Cl^2/(%pi*e*AR) //induced drag coefficient
11 Cd=0.006; // profile drag coefficient from estimated
      from aerodynamic data
12 q = (D*V^2/2)
   Scilab code AP 49 Example 5.15data
1 b=7.7; //wingspan of the Northrop F-5(m)
2 e=0.8; //span efficiency factor
3 \text{ S=15.79;} // \text{wing area in m}^2
4 AR=b^2/S//aspect ratio
5 Cl=0.6622; // lift coefficient (data taken from example
       5.14)
6 q=7651.224; //dynamic pressure in N/m<sup>2</sup> (data taken
      from example 5.14)
   Scilab code AP 50 Example 5.14data
1 S=15.79; //wing area in m^2
2 L=80000; //lift produced by wing
3 V=402.34*5/18; //velocity of airplane (m/s)
4 D=1.225; // density at sea level (Kg/m<sup>3</sup>)
5 q=D*V^2/2 //dynamic pressure at sea level (N/m<sup>2</sup>)
   Scilab code AP 51 Example 5.13data
1 h=10; // flying altitude in Km
2 a=10*%pi/180; // angle of attack in radian
3 S=19.5; //wing planform area in m<sup>2</sup>
4 M=2; //mach no
5 D=0.41351; // density at 10 Km(Kg/m^3)
```

```
6 T=223.26; //temperature(K) at 10 Km
7 V=(y*R*T1)^0.5*M //velocity at 10 Km(m/s)
8 q=D*V^2/2 //dynamic pressure at 10 Km
```

Scilab code AP 52 Example 5.12data

```
1 M=2; //mach no at which F-104 is flying
2 S=19.5; //wing planform area in m<sup>2</sup>
3 //in steady flight lift equals to weight so:
4 L=7262*9.8 // lift (N)
5 R=287; //gas constant, J/Kg.K
6 y=1.4; //specific heat ratio for air
7 //part a(at sea level)
8 D=1.23; // density at sea level (Kg/m<sup>3</sup>)
9 T=288; //sea level temperature (K)
10 V=(y*R*T)^0.5*M // velocity at sea level (m/s)
11 q=D*V^2/2 //dynamic pressure at sea level
12 //part b(at 10 Km)
13 D1=0.41351; // density at 10 Km(Kg/m^3)
14 T1=223.26; //temperature(K) at 10 Km
15 V1=(y*R*T1)^0.5*M //velocity at 10 Km(m/s)
16 q1=D1*V1^2/2 //dynamic pressure at 10 Km(N/m^2)
```

Scilab code AP 53 Example 5.11data

```
12 Cd=4*a^2/(M^2-1)^0.5//wave drag coefficient
13 //for part b(mach no 2):
14 M1=2; //Mach no.
15 q1=D*((y*R*T)^0.5*M1)^2/2 //dynamic pressure
16 Cl1=4*a/(M1^2-1)^0.5//lift coefficient
17 Cd1=4*a^2/(M1^2-1)^0.5//wave drag coefficient
```

Scilab code AP 54 Example 5.10data

```
1 // consider a NACA-0012 airfoil
2 Cpomin=-0.43; //minimum pressure coefficient on the
        surface of airfoil at low speed from figure of Cp
        vs x/c given in question.
3 M=linspace(0.4,0.9,6); //Mach number over which we
        have to calculate Cp critical.
4 y=1.4; // specific heat ratio for air.
```

Scilab code AP 55 Example 5.09data

```
//consider a NACA-4412 airfoil at an angle of attack
    of 4 degree.
a=4;//angle of attack in degree
//from standard table for NACA-4412 airfoil at 4
    degree angle of attack we can get lift
    coefficient(at low speed):
Co=0.83;//lift coefficient(at low speed)
M=0.7;//Mach number
```

Scilab code AP 56 Example 5.08data

```
1 //consider an airfoil with chord length c and the
    running distance x measured along the chord. The
    leading edge is located at x/c=0 and the trailing
    edge x/c=1.
2 //pressure coefficient variation (Cpu for upper and
    Cpl for lower):
3 disp("Cpu=1-300*(x/c)^2 for 0<x/c<0.1");</pre>
```

```
4 disp("Cpu=-2.2277+2.2277*(x/c) for 0.1 < x/c < 1.0");
5 disp("Cpl=1-0.95*(x/c) for 0 < x/c < 1.0");
6 //putting the value of x/c as and integrating (Cpl-
     Cpu) dy from 0 to 1 we will get normal force
     coefficient Cn
7 Cn=integrate ('1-0.95*y', 'y', 0,1.0)-integrate ('1-300*)
     y^2, 'y', 0,0.1) - integrate ('-2.2277+2.2277*y', 'y')
     ,0.1,1.0)
  Scilab code AP 57 Example 5.07data
1 V=80; // velocity of airplane (m/s)
2 //propertiess at point 1:
3 V1=110; // velocity (m/s)
4 Cp1=-1.5; // pressure coefficient
5 //propertiess at point 2:
6 Cp2=-0.8; // pressure coefficient
  Scilab code AP 58 Example 5.06data
1 V=100; // velocity of airplane (m/s)
2 H=3000; //standard altitude at which airplane is
     flying (meter)
3 Cp=-2.2; // pressure coefficient at a point on
     fuselage
4 P=7.0121*10^4; //pressure at 3000 m, N/m^2
5 D=0.90926; // density at 3000 m, Kg/m^3
6 q=D*V^2/2 //dynamic pressure ,N/m<sup>2</sup>
  Scilab code AP 59 Example 5.05data
```

Scilab code AP 60 Example 5.04data

2 M=0.6; //free stream mach number

1 //consider an airfoil mounted in a low speed subsonic wind tunnel.

1 Cpo=-1.18; //low speed value of pressure coefficient

```
2 V=30.5; //flow velocity in test section (m/s)
3 D=1.225; //standard sea level density, Kg/m<sup>3</sup>
4 P=1.014*10^5; //standard sea level pressure N/m^2
5 P1=1.01*10^5; //pressure at a point on airfoil N/m^2
6 q=D*V^2/2 //dynamic pressure, N/m<sup>2</sup>
  Scilab code AP 61 Example 5.03data
1 H=2000; //standard altitude at which airplane is
     flying (meter)
2 P=7.95*10^4; //pressure corresponding to standard
     altitude, N/m<sup>2</sup>
3 D=1.0066; //density corresponding to standard
     altitude, Kg/m<sup>3</sup>
4 P1=7.58*10^4; // pressure at a point on wing N/m^2
5 V=70; //airplane velocity in m/s
6 q=D*V^2/2 //dynamic pressure ,N/m<sup>2</sup>
  Scilab code AP 62 Example 5.02data
1 //consider the same wing configuration as that of
     example 5.1.
2 L=700; //Lift per unit span
3 V=50; // velocity of flow in test section (m/s)
4 D=1.225; //standard sea level density, Kg/m<sup>3</sup>
5 q=D*V^2/2 //dynamic pressure, N/m^2
6 S=1.3; // wing area, m^2
7 Cl=L/(q*S) //coefficient of lift
8 //from the value of Cl and wing configuration we can
      get angle of attack by using standard table:
9 a=1 //angle of attack in degree
```

Scilab code AP 63 Example 5.01data

11 a1=-2.2 //angle of attack in degree

Cl and Lift:

10 //To cause zero lift Cl=0, so from standard table of

```
1 //A model wing is placed in a low speed subsonic
      wind tunnel. the wing has a NACA-2412 airfoil.
2 c=1.3;//chord length in meter
3 V=50; // velocity of flow in test section (m/s)
4 a=4; //angle of attack in degree
5 D=1.225; //standard sea level density, Kg/m<sup>3</sup>
6 u=1.789*10^-5; // Viscosity in kg/(m)(s)
7 //from standard table for NACA-2412 airfoil with
      angle of attack 4 degree:
8 Cl=0.63; // Lift coefficient
9 Cm = -0.035; //moment coefficient about quarter chord
10 Re=D*V*c/u //reynold 's no.
11 //from the value of Re and angle of attack and by
      using standard table we can get Cd:
12 Cd=0.007; // coefficient of drag
13 q=D*V^2/2 //dynamic pressure ,N/m<sup>2</sup>
```

Scilab code AP 64 Example 4.28data

```
1 //In this example flow over the wing is both
      turbulent and laminar.so to find drag we need to
     find drag on both laminar and turbulent layer and
      add them.
2 b=12.202; //wing span in meter
3 S=23.69; //wing area in m^2
4 c=S/b //wing width
5 Ret=6.5*10^5; //transition reynolds number or
      critical reynolds number
6 D=1.225; //density at standard sea level, Kg/m<sup>3</sup>
7 u=1.79*10^-5; // Viscosity in at standard sea level in
      kg/(m)(s)
8 V=48.3*5/18 //velocity of flyer
9 q=D*V^2/2 //dynamic pressure
10 Re=D*V*c/u //reynolds no. at trailing edge
11 Xcr=(Ret*u)/(D*V) //distance from leading edge where
       transition occur
12 A=Xcr*b //area over which laminar flow occur in m^2
```

```
13 B=(c-Xcr)*b //area over which turbulent flow occur in m^2
```

Scilab code AP 65 Example 4.27data

```
1 //assume the boundary layer over the wing is
      turbulent
2 H=10668; // standard altitude at which F-104 is
      flying in meter
3 M=2; //Mach No. at which plane is flying
4 x=0.6096; //shear stress to be calculated at this
      distance downstream of leading edge
5 y=1.4; //specific heat ratio for air
6 \text{ R=}287 \text{ ; } //\text{gas constant }, \text{J/Kg.K}
7 //following are the datas at standard altitude of
      10668 meter from standard tables
8 D=0.3807; // density, Kg/m^3
9 T=218.93; //temperature, Kelvin
10 V=(y*R*T)^0.5*M //velocity of the plane
11 u=1.35*10^-5; // viscosity from standard table of
      variation of u versus T
                                     in kg/(m)(s)
12 Re=D*V*0.6096/u //reynolds no at 0.6096 meter:
13 Cfx=0.0592/Re^0.2 //incompressible skin fraction
      coefficient
14 //for mach 2 ratio of Cf/Cfx=0.2, so
15 Cf=0.74*Cfx //skin friction coefficient
16 q=D*V^2/2 //dynamic pressure
```

Scilab code AP 66 Example 4.26data

```
//repeatation of example 4.24, expect boundary layer
is completely turbulent.
//datas taken from example 4.24:
V=120; //flow velocity,m/s
D=1.225; //free stream density, Kg/m^3
x=0.05; //length of plate in meter
w=1; //width of plate in meter
u=1.789*10^-5; // Viscosity in kg/(m)(s)
```

```
8 //reynolds no at 1 cm:
9 Re1=D*V*.01/u
10 //reynolds no at 5 cm:
11 Re2=D*V*.05/u
12 Cf1=0.0592/Re1^0.2 //Skin friction drag coefficient
    at 1 cm
13 Cf2=0.0592/Re2^0.2 //Skin friction drag coefficient
    at 5 cm
14 q=D*V^2/2 //dynamic pressure at outer edge of
    boundary,N/m^2
```

Scilab code AP 67 Example 4.25data

```
//consider the flow same as in example 4.23, but
assume boundaary layer is noe completely
turbulent.
//datas are taken from example 4.23:
V=120; //flow velocity,m/s
D=1.225; // free stream density, Kg/m^3
x=0.05; // length of plate in meter
w=1; // width of plate in meter
u=1.789*10^-5; // Viscosity in kg/(m)(s)
Re=D*V*x/u // Reynolds Number at trailing edge
Cf=0.074/Re^0.2 // Skin friction drag

Cf=0.074/Re^0.2 // dynamic pressure at outer edge of
boundary, N/m^2
S=x*w; // area of plate, m^2
```

Scilab code AP 68 Example 4.24data

```
//consider the flow of air over a small flat plate
    that is 5 cm long in flow direction and 1m wide.
    free stream conditions corresponds to standard
    sea level condition
V=120; //flow velocity,m/s
D=1.225;//free stream density,Kg/m^3
x=0.05;//length of plate in meter
w=1;//width of plate in meter
```

```
6 u=1.789*10^-5; // Viscosity in kg/(m)(s)
7 //reynolds no at 1 cm:
8 Re1=D*V*.01/u
9 //reynolds no at 5 cm:
10 Re2=D*V*.05/u
11 Cf1=0.664/Re1^0.5 // Skin friction drag coefficient at 1 cm
12 Cf2=0.664/Re2^0.5 // Skin friction drag coefficient at 5 cm
13 q=D*V^2/2 // dynamic pressure at outer edge of boundary, N/m^2
```

Scilab code AP 69 Example 4.23data

```
//consider the flow of air over a small flat plate
    that is 5 cm long in flow direction and 1m wide.
    free stream conditions corresponds to standard
    sea level condition

2 V=120; //flow velocity,m/s

3 D=1.225; // free stream density, Kg/m^3

4 x=0.05; // length of plate in meter

5 w=1; // width of plate in meter

6 u=1.789*10^-5; // Viscosity in kg/(m)(s)

7 Re=D*V*x/u // Reynolds Number at trailing edge

8 Cf=1.328/Re^0.5 // Skin friction drag coefficient

9 q=D*V^2/2 // dynamic pressure at outer edge of
    boundary, N/m^2

10 S=x*w; // area of plate, m^2
```

Scilab code AP 70 Example 4.22data

```
//consider the combustion chamber condition as
    reservoir
Po=20*1.01*10^5;//combustion chamber pressure in N/m
    ^2
To=3144;//combustion chamber temperature in Kelvin
R=378;//gas constant for mixture of kerosene and
    oxygen
```

```
5 y=1.26; //specific heat ratio
6 Pe=1*1.01*10^5//pressure at exit of rocket Nozzle in
      N/m^2
7 At=0.1; // throat area in m<sup>2</sup>
8 Te=To*(Pe/Po)^((y-1)/y) //temperature at exit in
      degree kelvin
9 Me = sqrt(2*((To/Te)-1)/(y-1)) //mach no. at the exit
10 Ae=sqrt(y*R*Te) //speed of sound at exit, m/s
11 Mt=1; //Mach no. at throat
12 Pt=Po/(1+(y-1)*Mt^2/2)(y/(y-1)) // pressure at
      throatin N/m<sup>2</sup>
13 Tt=To/(1+(y-1)*Mt^2/2) //temperature at throat in
      Kelvin
14 Dt=Pt/(R*Tt) //density of gas in throat, Kg/m^3
15 Vt=sqrt(y*R*Tt) //speed of sount in throat which is
      equivalent to gas speed as mach no. at throat is
      1.
```

Scilab code AP 71 Example 4.21data

Scilab code AP 72 Example 4.20data

1 Me=2; //mach no in test section at standard sea level condition

```
//following are the standard sea level conditions
    desired at the exit of nozzle:
Pe=1.01*10^5; //static pressure ,N/m^2
Te=288.16; //static temperature in Kelvin
y=1.4; //specific heat ratio for air
A=1+(y-1)*Me^2/2
```

Scilab code AP 73 Example 4.19data

```
1 //Assume the flow to be isentropic
2 P=1.013*10^5; //free-stream pressure, N/m^2
3 V=804.7*5/18; //free-stream\ velocity\ ,m/s
4 D=1.23; //density, Kg/m^3
5 Pa=0.7167*10^5; //pressure at a point on airfoil
6 \text{ R=}287 \text{ ; } //\text{gas constant }, \text{J/Kg.K}
7 y=1.4; //specific heat ratio for air
8 T=P/(D*R) //free stream temperature
9 a=sqrt(y*R*T)//speed of sound at free stream
      temperature
10 M=V/a //free stream mach no.
11 To=T*(1+(y-1)*M^2/2) //free stream total temperature
12 Po=P*(1+(y-1)*M^2/2)^(y/(y-1)) // free stream total
      pressure
13 Poa=Po; //since the total presssure remains same
      inisentropic flow
14 Toa=To; //since the total temperature remains same
      inisentropic flow
```

Scilab code AP 74 Example 4.18data

Scilab code AP 75 Example 4.17data

```
1 Hp=10000; //pressure altitude in m
2 Po=4.24*10^4; //Total pressure measured by pitot
    tube,N/m^2
3 P1=2.65*10^4; //pressure at pressure altitude 10000m
    from standard atmospheric table,N/m^2
4 T=230; //ambient temperature in Kelvin
5 R=287; //gas constant for air, J/Kg.K
6 y=1.4; //specific heat ratio for air
7 a=340.3; //speed of sound at sea level,m/s
8 P=1.01*10^5; //stmospheric pressure at sea level
```

Scilab code AP 76 Example 4.16data

```
//pressure units are converted from bar to N/m^2
Hp=1524;//pressure altitude
P=0.8432*10^5 //From the standard atmosphere Table
at 1524 meter,N/m^2
Po=0.87*10^5;//total pressure in N/m^2
R=287;//gas constant for air,J/Kg.K
T=280.56;//outside temperature, Kelvin
D=P/(R*T) //density,Kg/m^3
Ds=1.226;//standard sea level density,Kg/m^3
```

Scilab code AP 77 Example 4.15data

```
//example 4.15 a/if P1-P2 ((1.019-1.01)*10^5) in
example 4.14 is doubled what is the flow velocity
in test section?b/if contraction ratio A1/A2
(2/.5) is doubled then what is the flow velocity
in test section?
V=40; //initial velocity in test section,m/s
r=4; // A1/A2=2/0.5=4
R=8 ;//doubled value of A1/A2
Dp=(1.019-1.01)*10^5; //initial value of pressure
difference
```

```
6 D=1.23; // density , Kg/m^3
```

Scilab code AP 78 Example 4.14data

```
1 //Consider a low subsonic wind tunnel.
2 A1=2; //reservoir area,m^2
3 A2=0.5; //test section area,m^2
4 P2=1.01*10^5; //test section pressure,N/m^2
5 V2=40; //flow velocity in test section
6 //from continuity equation
7 V1=V2*(A2/A1)//velocity before test section
8 D=1.23; //density of flow equals standard sea level, Kg/m^3
```

Scilab code AP 79 Example 4.13data

Scilab code AP 80 Example 4.12data

```
1 // Nozzle flow was described in example 4.9, so we can
          take data from eg 4.9
2 V1=580 // velocity at throat, m/s
```

```
3 Ve=1188 // velocity at exit ,m/s
4 T1=833 // Temperature at throat ,in Kelvin
5 Te=300 // Temperature at exit ,in kelvin
6 R=287; // gas constant for air ,J/Kg.K
7 y=1.4; // specific heat ratio for air
8 a=(y*R*T1)^0.5 // speed of sound at throat
9 Ae=(y*R*Te)^0.5 // speed of sound at exit
```

Scilab code AP 81 Example 4.11data

```
1 H=9144; //standard altitude of flying in metre
2 //from relation of altitude and Temperature:
3 T=228.81; //Temperature at Standard altitude of 9144
    m
4 V=885.14*5/18; //velocity of jet transport
5 R=287; //gas constant for air, J/Kg.K
6 y=1.4; // specific heat ratio for air
7 a=(y*R*T)^0.5 //velocity of sound at that altitude
```

Scilab code AP 82 Example 4.10data

```
1 // Consider an airfoil in a flow of air, where far
     ahead of airfoil conditions are given.
2 //the condition for pressure and velocity are not in
      SI unit so we need to convert it to SI unit.
3 P=1.013*1.01*10^5 //pressure far ahead of airfoil in
      N/m^2
4 V=804.7*5/18 //velocity far ahead of airfoil in m/s
5 D=1.23; //density in kg/m^3
6 R=287; //gas constant for air, J/Kg.K
7 T=P/(D*R) //Temperature far ahead of airfoil in
     degree Kelvin
8 Pa=0.716*1.01*10^5 //pressure at a given point A on
     airfoil
9 Cp=1008; //for air specific heat at constant
     pressure, J/Kg.K
10 y=1.4; // specific heat ratio for air
11 //Assuming isentropic flow:
```

```
12 Ta=T*(Pa/P)^((y-1)/y) //temperature at the given point A on airfoil
```

Scilab code AP 83 Example 4.09data

```
1 //deals with properties of air flow through
     supersonic wind tunnel
2 To=1000; //air temperature at the reservior of wind
     tunnel in degree Kelvin
3 Po=10*1.01*10^5; // air pressure at the reservior of
      wind tunnel in N/m<sup>2</sup>
4 R=287; //gas constant for air
5 Do=Po/(R*To) //density at the reservior
6 Te=300; //static temperature at the exit in degree
     Kelvin
7 y=1.4; // specific heat ratio for air
8 T1=833; //temperature at the throat in degree Kelvin
9 Te=300; //temperature at the exit in degree Kelvin
10 D1=Do*(T1/To)^(1/(y-1)) //density at the throat
11 Mt=0.5; //mass flow rate through nozzle, Kg/s
12 Cp=1008; //specific heat at constant pressure for
      air, J/Kg.K
13 De=Do*(Te/To)^(1/(y-1))
```

Scilab code AP 84 Example 4.08data

```
//The flow conditions are assumed to be isentropic
in nature.
P1=20; //pressure of burned gas in combustion
    chamber in atm unit
T1=3500; //temperature of the burned gas in
    combustion chamber in degree kelvin
P2=0.5; //pressure of the gas at exit in atm
y=1.15; //specific heat ratio for the gas
```

Scilab code AP 85 Example 4.07data

```
//An airplane is flying at standard sea level
    condition.
//The flow conditions are assumed to be isentropic
    in nature.

T=250;//temperature at a point on wing in Kelvin
P1=1.01*10^5;//pressure at far upstream of wing
T1=288.16;//temperature at far upstream of wing
y=1.4;//ratio of specific heats for air
```

Scilab code AP 86 Example 4.06data

```
1 //Based on elementary Thermodynamics
2 //Part 1:SI unit
3 Cv=720; // specific heat at constant volume for air in
      standard condition in J/Kg.K
4 Cp=1008; // specific heat at constant pressure for air
      in standard condition in J/Kg.K
5 T=288; //standard temperature
6 e=Cv*T//internal energy per unit mass
7 h=Cp*T//enthalpy per unit mass
8 //Part 2: English Engineering unit
9 Cv1=4290; // specific heat at constant volume for air
     in Ft.Lb/slug*Rankine
10 Cp1=6006; ///specific heat at constant volume for air
      in Ft.Lb/slug*Rankine
11 T1=519; //standard temperature in degree rankine
12 e1=Cv1*T1//internal energy per unit mass
13 h1=Cp1*T1//enthalpy per unit mass
```

Scilab code AP 87 Example 4.05data

```
1 R=0.1524; // radius (m) of semicircular cross section 2 V=30.48; // velocity (m/s) of free stream 3 D=1.23; // density (Kg/m^3) of free stream
```

Scilab code AP 88 Example 4.04data

```
1 A1=5;//convergent duct inlet area in m^2
2 V1=10;//inlet velocity in m/s
3 P1=1.2*10^5; //inlet pressure in N/m^2
4 T1=330;//inlet temperature in Kelvin
5 R=287;//gas constant for dry air
6 D=P1/(R*T1) //density of air in Kg/m^3
7 V2=30;//outlet velocity in m/s
8 P2=P1+D*(V1^2-V2^2)/2 //pressure at exit
```

Scilab code AP 89 Example 4.03data

Scilab code AP 90 Example 4.02data

```
1 A1=0.08; //convergent duct with inlet area in m^2
2 A2=0.771; //exit area
3 D1=1.23; //density of air at inlet
4 V1=210; //inlet velocity of air
5 V2=321; //outlet velocity of air
6 //as inlet velocity of 210 m/s is high speed flow density will vary
7 D2=(A1*V1*D1)/(A2*V2) //density of air at the exit duct
```

Scilab code AP 91 Example 4.01data

```
//this example deals with basic of incompressible
flow
1 A1=5;//convergent duct inlet area in m^2
V1=10;//inlet velocity in m/s
V2=30;//outlet velocity in m/s
A2=A1*V1/V2//area of duct exit
Scilab code AP 92 Example 3.04data
```

```
1 P=5.3*10^4; // ambient pressure in N/m^2
2 T=253; //ambient temperature in K
3 R=287; // gas constant for dry air in J/Kg.K
4 D=P/(R*T)
5 //as we do not have this value of pressure and
      density from standard table we will take two
      nearest value and interpolate to get the desired
      result.
6 \text{ H1} = 5100;
7 P1=5.331*10^4; // pressure corresponding to H1
8 \text{ H2} = 5200;
9 P2=5.2621*10^4; // pressure corresponding to H2
10 Hp=H1+[(H2-H1)*((P1-P)/(P1-P2))]/pressure altitude
      corresponding to p
11 H3=5000;
12 D3=0.73643; //density corresponding to H3 in Kg/m<sup>3</sup>
13 H4=5100;
14 D4=0.72851; //density corresponding to H4 in Kg/m<sup>3</sup>
15 Hd=H3+[(H4-H3)*((D3-D)/(D3-D4))] //density altitude
```

Scilab code AP 93 Example 3.03data

```
1
2 P1=9144//Pressure altitude in Km
3 P=0.3*10^5//corresponding pressure at pressure
    altitude in N/m^2
4 //density altitude:
```

```
5 D1=8686.8//density altitude in Km
6 D=0.485//corresponding density at sensity altitude
    in Kg/m^3
7 //Temperature at that altitude:
8 T=P/(D*R)//from equation of state
```

Scilab code AP 94 Example 3.02data

```
//datas are all taken from standard table of
   variation of temperature, pressure and density
   with height.
//Pressure at the flying altitude:
P=4.72*10^4; //in N/m^2
P1=6; //height corresponding to pressure P in Km
//Temperature at the flying altitude:
T=255.7; //in Kelvin
T1=5//height corresponding to temperature T in Km
D=P/(R*T) // density at that height
D1=6.24//height corresponding to density D in Km
```

Scilab code AP 95 Example 3.01data

```
1 //Temperature remains constant from 11 to 14 Km, so
     we are about to find pressure and density at a
     height of 11 Km.
2 T=216.66; //temp from 11 to 14 Km
3 T1=288.16; //sea level temperature
4 P1=1.01*10^5; //pressure at sea level in N/m^2
5 D1=1.23; // density at sea level in Kg/m<sup>3</sup>
6 g=9.8; //earth's gravity in m/s^2
7 R=287; //gas constant for dry air in J/Kg.K
8 a=(216.66-288.16)/(1000*(11-0)) //Lapse rate from 0
      to 11 Km
9 P=(P1)*(T/T1)^(-g/(a*R))/pressure at 11 Km
10 D=(D1)*(T/T1)^{(-1*(g/(a*R)+1))}/density at 11 Km
11 //as T is constant from 11 to 14 km we can use
     isothermal relation
12 h=14000; h1=11000; //height in meter
```

```
13 P2=P*(\%e)^{-g*(h-h1)/(R*T)}/pressure at 14 Km
14 D2=D*P2/P // density at 14 Km
   Scilab code AP 96 Example 2.6data
1 //example 2.6: deals with the conversion of units; a
      piper cub airplane is flying at 60 mile per hour,
      convert its velocity in terms of ft/s and m/s
\frac{1}{2} //1 mile=5280 ft,1 hour=3600 second,1 mile=1609.344
4 // Velocity in mile/hr:
5 V = 60;
   Scilab code AP 97 Example 2.5data
1 //Example 2.4 : deals with the conversion of units
      from one system to another
2 WingLoading=280.8; // unit Kgf/m<sup>2</sup>
\frac{3}{1} //1 ft = 0.3048 m ,1 lb = 4.448N, 1 Kgf = 9.8 N
   Scilab code AP 98 Example 2.4data
1 / Example 2.4
2 P=1.04*10^4/unit N/m^2
3 R=287; //gas constant. of air (j/kg.k)
4 T=362; // unit K
5 \text{ density=P/(R*T)}
   Scilab code AP 99 Example 2.3data
1 //Air flowing at high speed in a wind tunnel has a
      pressure and temperature equal to 0.3 atm and
      -100 degree celcius, respectively what is specific
       volme?
2 //1 \text{ atm} = 1.01*10^5 \text{ Pa or N/m}^2
3 P=.3*1.01*10^5; //in N/m^2
```

4 //0 degree = 273 Kelvin

```
5 T = -100 + 273; //in Kelvin
6 R=287; // gas constant for air.(j/kg.k)
7 density=P/(R*T)
8 v=1/density
  Scilab code AP 100 Example 2.2data
1 //example2.2: The high pressure storage tank for a
     supersonic wind tunnel has a volume of 28.317 m
     3. if air is stored at a pressure of 30 atm and a
      temperature of 299.44K, what is the mass of gas
     stored in the tank in Kg, and pound mass.
2 P=30*1.013*10^5; //1 atm=1.013*10^5 Pascal
3 R=287; //gas constant for air (J/Kg-K)
4 T=294.44; //temperature
5 density=P/(R*T);
6 V = 28.317; //volume
7 M=density*V; //in kg
8 M1=2.20*M; //in pound
  Scilab code AP 101 Example 2.1data
1 //example 2.1: The air pressure and density at a
     point on the wing of a Boeing 747 are 1.10 * 10<sup>5</sup>
     N/m^2 and 1.20 \, kg/m^3, respectively. what is
     temperature at that point?
2 p=1.10*10^5; //given
3 density=1.20; //given
4 R=287; // gas constant. for air (j/kg.k)
5 T=p/((density)*(R))
```