7 decembrie 2019 Conf. dr. Tiberiu Trif

Limite de funcții

Probleme rezolvate

1.
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$
.

2.
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{e^x - 1} \right)$$
.

$$3. \lim_{x \to \infty} \left(x \left(1 + \frac{1}{x} \right)^x - ex \right).$$

4.
$$\lim_{x \to \infty} \left(\frac{\pi}{2} - \operatorname{arctg} x \right)^{1/\ln x}$$
.

5.
$$\lim_{x \to \infty} x^3 \left(\sin \frac{1}{x+2} - 2 \sin \frac{1}{x+1} + \sin \frac{1}{x} \right)$$
.

6.
$$\lim_{x\to 0} \frac{\sin(x^n) - \sin^n x}{x^{n+2}}$$
.

7. Pentru orice număr întreg $n\geq 1$ și orice $x\in (0,\infty)$ notăm

$$f_n(x) = x^{x^{\dots^x}},$$

unde numărul de apariții ale lui x în expresia lui $f_n(x)$ este n. De exemplu, $f_1(x) = x$, $f_2(x) = x^x$, $f_3(x) = x^{x^x}$ etc. Să se determine

$$\lim_{x \to 1} \frac{f_{n+1}(x) - f_n(x)}{(1-x)^{n+1}}, \quad n \in \mathbb{N}^*.$$

(O. Furdui, Concursul liceelor partenere UTCN, 2013/3)