

日本国特許庁
JAPAN PATENT OFFICE

30. 4. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日
Date of Application: 2003年 5月 6日

出願番号
Application Number: 特願 2003-127629

[ST. 10/C]: [JP 2003-127629]

出願人
Applicant(s): 独立行政法人産業技術総合研究所

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 6月 10日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 113MS0492
【提出日】 平成15年 5月 6日
【あて先】 特許庁長官 殿
【国際特許分類】 C12Q 1/66
【発明者】
【住所又は居所】 大阪府池田市緑丘1丁目8番31号 独立行政法人産業
技術総合研究所関西センター内
【氏名】 近江谷 克裕
【発明者】
【住所又は居所】 大阪府池田市緑丘1丁目8番31号 独立行政法人産業
技術総合研究所関西センター内
【氏名】 中島 芳浩
【特許出願人】
【識別番号】 301021533
【氏名又は名称】 独立行政法人産業技術総合研究所
【代表者】 理事長 吉川 弘之
【連絡先】 072-751-9681
【その他】 国の委託研究の成果に係る特許出願（経済産業省、平成
14年度重点分野研究開発委託費「細胞内ネットワーク
のダイナミズム解析技術開発事業」委託研究、産業活力
再生特別措置法第30条の適用を受けるもの）
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【プルーフの要否】 要

【書類名】明細書

【発明の名称】マルチ遺伝子転写活性測定システム

【特許請求の範囲】

【請求項1】最大発光波長が540～630nmであって、発光波長が測定条件に依存しない光を発光する1または2以上の発光酵素遺伝子を哺乳類細胞で安定発現可能なように組み込んでなる遺伝子構築物。

【請求項2】翻訳を効率化するエレメント及び／又はmRNAの安定化エлементを含む請求項1に記載の遺伝子構築物。

【請求項3】発光波長が測定条件に依存しない光を発光する1または2以上の発光酵素遺伝子と、必要に応じて発光波長が測定条件に依存しない他の発光波長の光を発光する発光酵素遺伝子を各々別個のプロモータの制御下に組み込んでなり、2種以上の発光酵素による各発光を区別して測定可能である遺伝子構築物。

【請求項4】請求項1～3のいずれかに記載の遺伝子構築物を含む発現ベクター。

【請求項5】請求項1～3のいずれかに記載の遺伝子構築物または請求項4に記載の発現ベクターで形質転換された哺乳類細胞。

【請求項6】発光波長が測定条件に依存しない相互に区別可能な光を発光する2以上の発光酵素遺伝子を別個のプロモータの制御下に哺乳類細胞で安定発現可能なように組み込んでなる1または2以上の遺伝子構築物を含む哺乳類細胞。

【請求項7】2以上の前記発光酵素は、最大発光波長が540～630nmであって、1つの発光基質で発光可能である請求項5または6に記載の哺乳類細胞。

【請求項8】鉄道虫由来赤色発光酵素遺伝子、鉄道虫由来緑色発光酵素遺伝子および青色発光酵素遺伝子を別個のプロモータの制御下に含む請求項5または6に記載の哺乳類細胞。

【請求項9】別個のプロモータの制御下にある3以上の発光酵素遺伝子を有し、第1の発光酵素遺伝子が定常発現プロモータの制御下にあり、第2の発光酵素遺伝子が毒性評価プロモータの制御下にあり、残りの発光酵素遺伝子が評価対象のプロモータの制御下にある請求項5または6に記載の哺乳類細胞。

【請求項10】別個のプロモータの制御下にある3以上の発光酵素遺伝子を有し

、第1の発光酵素遺伝子が定常発現プロモータの制御下にあり、第2の発光酵素遺伝子が偽プロモータの制御下にあり、残りの発光酵素遺伝子が評価対象のプロモータの制御下にある請求項5または6に記載の哺乳類細胞。

【請求項11】別個のプロモータの制御下にある2個の発光酵素遺伝子を有し、第1の発光酵素遺伝子が定常発現プロモータの制御下にあり、第2の発光酵素遺伝子が毒性評価プロモータの制御下にある請求項5または6に記載の哺乳類細胞。

【請求項12】別個のプロモータの制御下にある2個の発光酵素遺伝子を有し、第1の発光酵素遺伝子が定常発現プロモータの制御下にあり、第2の発光酵素遺伝子が偽プロモータの制御下にある請求項5または6に記載の哺乳類細胞。

【請求項13】請求項5～10のいずれかに記載の哺乳類細胞の培養液中に薬物候補化合物を存在させて該哺乳類細胞を培養する工程、該候補化合物の存在下及び非存在下で前記発光酵素量を定量する工程、少なくとも1つの発光酵素に連結された少なくとも1つの評価対象プロモータに対する該候補化合物の影響を評価する工程を包含する薬物のスクリーニング方法。

【請求項14】請求項5～12のいずれかの哺乳類細胞の培養環境を変化させて、発光波長が測定条件に依存しない相互に区別可能な光を発光する2以上の発光酵素の発現量を評価することにより、培養環境変化の前後における各発光酵素に結合された各プロモータの転写活性をマルチに測定するシステム。

【請求項15】2以上の発光酵素の発現量を同時に測定する請求項14に記載のシステム。

【請求項16】3以上の発光酵素の発現量を測定可能である請求項14または15に記載のシステム

【発明の詳細な説明】

【0001】

【発明に属する技術分野】

本発明は、生体細胞内の遺伝子転写活性を、発光色の異なる発光酵素を用いてマルチに検出するための遺伝子構築物、該構築物を含む発現ベクター、該構築物または発現ベクターを含む形質転換された哺乳類細胞、該哺乳類細胞を使用する

薬物のスクリーニング方法および各プロモータの転写活性をマルチに測定するシステムに関する。

【0002】

【従来の技術】

生命科学の分野では、細胞内で起きる遺伝子の転写活性を測定することが一般的に行われ、細胞に与える外来因子の影響の評価、細胞内情報伝達の伝播、或いは個々のタンパク群の発現解析等に用いられている。これまで、遺伝子転写活性の測定はウェスタンプロット法等で直接測定するか、或は発色タンパクや発光酵素をレポータ遺伝子として間接的に測定する方法があり、特にホタル発光酵素遺伝子を用いて発光量から転写活性を定量化することが一般化している。また、蛍光酵素は細胞内で発現とほぼ同時期に、補因子を必要とせず、蛍光活性を持つ。発光酵素は、細胞内で蛍光活性を指標として蛋白質の局在等に関するモニター蛋白質として利用されているが、定量化は難しく遺伝子発現レポータ遺伝子としては活用されにくい。

【0003】

タンパクの遺伝子発現の定量的且つ時間的な動態変化解析を行うことが重要ではあるが、従来のレポータ技術では一つの遺伝子転写活性を解析することが中心である。しかし、最近、ホタル発光酵素遺伝子にA転写活性領域を、同時にウミシイタケ発光酵素遺伝子にB転写活性領域を挿入、細胞内に2つの遺伝子構築物を導入することで2つの転写活性を測定するシステム（デュアルアッセイシステム、Promega社）が市販されている。しかし、この方法は、別々の発光基質をそれぞれ加えることで、転写活性を測定するシステムであり、同時に2つの活性が測定できず、また、測定できる転写活性は2つである。さらに、ホタルルシフェラーゼを使用しているため、pHにより波長が変化し、正確な測定が難しい。

【0004】

細胞内では複数の情報が行き交っており、複数の転写活性を、定量的に測定する技術の構築が必須である。例えば、ヒト体内時計では、24時間のリズムを発信するPer遺伝子は、Clock、BMAL遺伝子産物によって制御される。そのため、体内時計を正確に評価するためには複数、少なくとも3種類の転写活性測定が必須

である。これまで、個々の遺伝子転写活性の測定がホタル発光酵素レポータ遺伝子で行われているが、一つの遺伝子転写動態しか観察しておらず、体内時計関連遺伝子発現の相互関係は不明なままである。

【0005】

がん細胞の増殖異常の原因は、がん遺伝子（オンコジーン）の活性化に伴って引き起こる細胞の異常増殖、或は腫瘍抑制遺伝子の不活性化に伴って起きる制御から開放された細胞の異常増殖によってがん化は進行する。そのため、がん化因子やがん化の細胞内情報伝達を評価するためには、がん遺伝子、腫瘍抑制遺伝子及び細胞分裂マーカー遺伝子の遺伝子転写活性を測定することが望ましい。しかしながら、従来法では一つの遺伝子転写動態しか観察できず、3種類の遺伝子転写活性を評価できないため、がん化における3つの相互関係は充分に理解されていない。

【0006】

遺伝子の転写活性を決定するのは遺伝子産物上流のプロモータ領域といわれる遺伝子配列上に存在する特定の配列に、遺伝子の発現を抑制、或は促進しようとする物質が結合することによって引き起こる。E-ボックスやcAMP結合部位などが、その代表例である。遺伝子転写活性はプロモータ領域のある長さをレポータ遺伝子上流に挿入し測定、さらに、そこで有効と考えられた特定配列を合成、レポータ遺伝子上流に挿入し、特定配列の効果を検証する。特定配列の転写制御効果を検証するには、同時にオリジナルのプロモータ領域の転写活性とその効果を標準化できる転写活性を併せて評価する必要がある。しかしながら、従来法では一つの遺伝子転写動態しか観察しておらず、転写活性制御特定配列を充分に評価できない。

【0007】

発光酵素類は細胞内の遺伝子転写活性を直接観察する手段として有効であり、遺伝子発現検出モニター蛋白質として利用されている。発光酵素は多種多彩であるが、その多様性に着目した転写活性測定用レポータ遺伝子はない。発光色の異なる発光酵素遺伝子をレポータ遺伝子として、異なる転写活性領域を哺乳類細胞に挿入すれば複数の転写活性を測定できる。しかしながら、例えば鉄道虫由來の

赤および緑発光酵素の発現は現在成功しているのは大腸菌であり（特許文献1）、ヒトを含む哺乳類細胞でシステムとして成功した例はない。

【0008】

【特許文献1】

US2002/0119542-A1

【0009】

【発明が解決しようとする課題】

細胞内の複数の転写活性を、同時、或いは同時期に測定、定量化できるレポータ遺伝子の構築及び最適化、さらに本レポータ遺伝子群を用いたマルチ遺伝子転写活性測定システムを開発し、生命科学での細胞機能解析、更には病態の治療、検査及び新薬開発に利用することを目的とする。

【0010】

【課題を解決するための手段】

本発明者は、上記課題を解決するため鋭意検討を重ねた結果、本発明者は、発光酵素を基盤に、発光色の異なる（赤、緑、青色など）或は発光基質が多様であることに着目して、2つ以上、好ましくは3つ以上の発光酵素由来の光を区別して定量化できるレポータ遺伝子構築物を作成した。各発光酵素由来の発光量は、各プロモータの転写活性、すなわち各プロモータが本来連結された遺伝子活性に対応するので、本発明により、2つ以上、好ましくは3つ以上の遺伝子活性を、好ましくは同時、或いは同時期に測定することができる。また、発光波長が測定条件（pHなど）によって変化しないため、正確な測定が可能である。例えば、本発明の1つの好ましい実施形態では、鉄道虫由来赤、緑色発光酵素などのレポータ遺伝子構築物を作成、また、ウミシイタケ等の青色発光酵素レポータ遺伝子を同時に用いることで、簡便且つ定量性良く、複数の遺伝子転写活性を測定するシステムを作成した。

【0011】

本発明は、以下の遺伝子構築物、哺乳類細胞、該哺乳類細胞を使用する薬物のスクリーニング方法および各プロモータの転写活性をマルチに測定するシステムを提供するものである。

項1. 最大発光波長が540～630nmであって、発光波長が測定条件に依存しない光を発光する1または2以上の発光酵素遺伝子を哺乳類細胞で安定発現可能なように組み込んでなる遺伝子構築物。

項2. 翻訳を効率化するエレメント及び／又はmRNAの安定化エレメントを含む項1に記載の遺伝子構築物。

項3. 発光波長が測定条件に依存しない光を発光する1または2以上の発光酵素遺伝子と、必要に応じて発光波長が測定条件に依存しない他の発光波長の光を発光する発光酵素遺伝子を各々別個のプロモータの制御下に組み込んでなり、2種以上の発光酵素による各発光を区別して測定可能である遺伝子構築物。

項4. 項1～3のいずれかに記載の遺伝子構築物を含む発現ベクター。

項5. 項1～3のいずれかに記載の遺伝子構築物または項4に記載の発現ベクターで形質転換された哺乳類細胞。

項6. 発光波長が測定条件に依存しない相互に区別可能な光を発光する2以上の発光酵素遺伝子を別個のプロモータの制御下に哺乳類細胞で安定発現可能なように組み込んでなる1または2以上の遺伝子構築物を含む哺乳類細胞。

項7. 2以上の前記発光酵素は、最大発光波長が540～630nmであって、1つの発光基質で発光可能である項5または6に記載の哺乳類細胞。

項8. 鉄道虫由来赤色発光酵素遺伝子、鉄道虫由来緑色発光酵素遺伝子および青色発光酵素遺伝子を別個のプロモータの制御下に含む項5または6に記載の哺乳類細胞。

項9. 別個のプロモータの制御下にある3以上の発光酵素遺伝子を有し、第1の発光酵素遺伝子が定常発現プロモータの制御下にあり、第2の発光酵素遺伝子が毒性評価プロモータの制御下にあり、残りの発光酵素遺伝子が評価対象のプロモータの制御下にある項5または6に記載の哺乳類細胞。

項10. 別個のプロモータの制御下にある3以上の発光酵素遺伝子を有し、第1の発光酵素遺伝子が定常発現プロモータの制御下にあり、第2の発光酵素遺伝子が偽プロモータの制御下にあり、残りの発光酵素遺伝子が評価対象のプロモータの制御下にある項5または6に記載の哺乳類細胞。

項11. 別個のプロモータの制御下にある2個の発光酵素遺伝子を有し、第1

の発光酵素遺伝子が定常発現プロモータの制御下にあり、第2の発光酵素遺伝子が毒性評価プロモータの制御下にある項5または6に記載の哺乳類細胞。

項12. 別個のプロモータの制御下にある2個の発光酵素遺伝子を有し、第1の発光酵素遺伝子が定常発現プロモータの制御下にあり、第2の発光酵素遺伝子が偽プロモータの制御下にある項5または6に記載の哺乳類細胞。

項13. 項5～10のいずれかに記載の哺乳類細胞の培養液中に薬物候補化合物を存在させて該哺乳類細胞を培養する工程、該候補化合物の存在下及び非存在下で前記発光酵素量を定量する工程、少なくとも1つの発光酵素に連結された少なくとも1つの評価対象プロモータに対する該候補化合物の影響を評価する工程を包含する薬物のスクリーニング方法。

項14. 項5～12のいずれかの哺乳類細胞の培養環境を変化させて、発光波長が測定条件に依存しない相互に区別可能な光を発光する2以上の発光酵素の発現量を評価することにより、培養環境変化の前後における各発光酵素に結合された各プロモータの転写活性をマルチに測定するシステム。

項15. 2以上の発光酵素の発現量を同時に測定する項14に記載のシステム。

項16. 3以上の発光酵素の発現量を測定可能である項14または15に記載のシステム

【0012】

【発明の実施の形態】

本発明の発光酵素は、2以上の発光酵素由来の発光量を測定し、それらの相対比率を算出することが重要であるので、発光波長が測定条件（例えばpH）に依存しない光を発光することが必要である。本発明で使用される好ましい発光酵素は、鉄道虫由来の緑～赤（最大発光波長：540～630nm）の発光酵素、ヒカリコメツキムシのオレンジ～緑（最大発光波長：540～600nm）の発光酵素、イリオモテホタル（その変異体を含む、最大発光波長：550～585nm）の発光酵素などが挙げられる。例えば鉄道虫の場合、赤色最大発光波長622nmと緑色最大発光波長545nmの発光酵素が知られているが（特許文献1）、この2種以外にも540～630nmの間の光を発光する多数の発光酵素が存在してい

ることを本発明者は確認しており、これらの発光酵素は、全て使用可能である。複数の発光酵素を用いる場合、発光された各々の光をフィルター等を用いて区別して測定するためには、最大発光波長が20nm以上、好ましくは30nm以上、より好ましくは40nm以上、特に50nm以上離れているのが望ましい。この程度の最大発光波長の分離があれば、例えば各最大波長間のフィルターを使用し、フィルターの前後での各発光の透過率を測定して換算することで、各発光の発光量を同時に定量することができる。特に、最大発光波長がある程度離れている複数の発光酵素を有する鉄道虫などに由来する発光酵素を使用する場合、1つの発光基質（鉄道虫由来の発光酵素ではホタルルシフェリンを使用できる）を使用して、共発現させた複数の発光酵素に由来する発光量を同時定量が可能であり、各プロモータの発現量の比を正確に測定することができる。また、発光波長が測定条件（例えばpH）に依存しない光を発光する発光酵素として、青色に発光するウミシイタケ・ルシフェラーゼをさらに組み合わせて使用することができる。鉄道虫由来の発光酵素を使用すると、ホタルルシフェリンを使用できるので、バックグラウンドを低くすることが可能である。

【0013】

本発明の好ましい実施形態の1つにおいて、鉄道虫、イリオモテボタルの発光酵素を使うことで1種類のルシフェリンでも最低2つのプロモータの発現量の定量が可能である。また、橙色を併せて3種以上は可能である (VR. Viviani, A. Uchida, N. Suenaga, M. Ryufuku & Y. Ohmiya: Thr-226 is a key-residue for bioluminescence spectra determination in beetle luciferases (2001) Biochem. Biophys. Res. Commun. 280, 1286-1291)。上手なフィルター設定により540-630nm（緑から赤色）の中で複数の発現解析は可能であり、さらに基質の違う青色の発光酵素により1種類を加えることができる。よって、発光酵素の同時測定としては、同じルシフェリンで2つ以上、違うルシフェリンも用いて3つ以上の同時定量が可能である。

【0014】

従来、哺乳動物細胞で発現可能な発光酵素として、ウミシイタケ・ルシフェラーゼ、ホタルルシフェラーゼが知られていた。しかしながら、ホタルルシフェラ

ーゼは細胞破碎液のpHによって発光する光の色が緑～黄色に変化するため、2種以上の発光酵素の発現量を比較する場合、正確性に欠ける欠点があった。ウミシイタケ・ルシフェラーゼに由来する青色の発光は、発光波長が測定条件に依存しない光を発光する点で望ましいが、ホタルルシフェラーゼと組み合わせた測定系では、ホタルルシフェリンを用いた定量とウミシイタケルシフェリンを用いた定量の両方を別個に実施する必要があるため、簡便性、正確性に欠ける欠点があった。

【0015】

従来青色以外の光を発現し、かつ、発光波長が測定条件に依存しない発光酵素は知られていなかった。

【0016】

本発明者は、ウミシイタケ・ルシフェラーゼ以外の発光酵素として鉄道虫発光酵素に着目してこれを哺乳類細胞で発現させることを試みたが、通常の発現系では、鉄道虫発光酵素を発現させることはできなかった。これが、今まで、ウミシイタケ・ルシフェラーゼ、ホタルルシフェラーゼ以外の発光酵素が哺乳類細胞、特にヒト細胞で発現されてこなかった理由であると考えられる。

【0017】

本発明者のこれまでの知見によると、鉄道虫発光酵素を実用化する上で重要なのは、鉄道虫発光酵素遺伝子が安定に転写されて、安定に翻訳されることである。本発明の実施例で行った手法では、転写されたmRNAを安定化して翻訳回数を増やせば実用化が可能となることを証明した。つまりこの場合、グロブリンイントロンを挿入することでmRNAの寿命を延ばし、そして、コザック配列を挿入することで翻訳回数を増やすことで、鉄道虫発光酵素遺伝子の発現を哺乳類細胞で発現させることが初めて可能になった。今後、さらに実用化を進める上で、更なる手法としては、例えばmRNAのコピー数を増やすことであるので、例えばcDNAの配列を、昆虫のコドンユーニセージ（コドンの使用頻度の偏り）を哺乳類用に変えること、さらには、余分な転写因子が結合しないように、cDNAの配列を変えることが挙げられる。このような手法も、鉄道虫発光酵素の哺乳類細胞内での発現に有効であると考えられる。

【0018】

上記は、鉄道虫由来の発光酵素の発現について記載したが、ヒカリコメツキムシ、イリオモテホタルなどの他の生物由来の発光酵素についても同様に当てはまると考えられる。

【0019】

本明細書において、「発光酵素」は、ルシフェラーゼなど、ルシフェリン光化学反応を触媒する発光タンパク群を意味し、発光酵素にはエクオリンのような発光タンパク質も含まれる。また、ルシフェリンの構造を変化させることにより発光作用を有するような、触媒作用（ルシフェリンを酸化して発光物質に変換する作用）の弱いタンパク質も、発光波長が測定条件（例えばpH）に依存しない限り本発明の発光酵素に含まれ得る。

【0020】

発光酵素としては、同一の発光基質で発光する2以上の発光酵素の組み合わせが望ましい。測定条件により発光波長が変化せず、且つ、同一の発光基質で発光する好ましい発光酵素としては、鉄道虫由来の赤色発光酵素および鉄道虫由来の緑色発光酵素、或いは540～630nm程度の範囲の発光波長を有する鉄道虫由来の他の発光酵素が好ましく例示され、これ以外にも、ヒカリコメツキムシ由来の（540～600nm程度）発光酵素、イリオモテホタル由来の発光酵素が例示される。特に、鉄道虫由来の赤色／緑色発光酵素は、発光酵素量が同一であれば発光強度も同程度であるので、プロモータの転写活性をマルチに定量するのに好都合である。イリオモテボタル、ヒカリコメツキムシ由来の発光酵素は報告されているが、鉄道虫と同様に哺乳類細胞での発現例は報告されていない。

【0021】

本発明において、哺乳類としては、ヒト、ウシ、ウマ、ヒツジ、サル、ブタ、マウス、ラット、ハムスター、モルモット、ウサギ、イヌが挙げられ、好ましくはヒトである。

【0022】

少なくとも2つの発光酵素遺伝子は、同一の発光基質で異なる色を発光し、細胞内寿命が同程度であるのがよく、この点でも鉄道虫由来の赤色／緑色発光酵素

は好ましい。

【0023】

さらに、本発明で使用する発光波長が測定条件（例えばpH）により変化しない少なくとも1つ、好ましくは少なくとも2つの発光酵素及びこの標準化のための他の発光酵素の各々異なる発光色は、フィルターで分離可能であることが、各発光色の簡単な装置での定量のために好ましい。例えば鉄道虫由来の赤色／緑色発光酵素は図5に示されるように、フィルターを用いて容易に分離できるので好ましい。さらに、鉄道虫由来の赤色／緑色発光酵素とウミシイタケ由来の青色発光酵素の組み合わせは、図10に示されるように2つのフィルターを使用することにより容易に分離できるので特に好ましい。

【0024】

上記のように鉄道虫由来の発光酵素は、大腸菌では発現することが知られているか、哺乳類細胞、特にヒト細胞での発現系は知られていない。実際、ヒト細胞で鉄道虫由来の発光酵素（赤、緑）の発現を試みると、図2および実施例1に示すように哺乳類細胞では代表的な発現プロモータであるSV40やCMVプロモータを単独に用いても発現を誘導することができない。

【0025】

鉄道虫由来の発光酵素（赤、緑）遺伝子配列は、特許文献1に開示されている。該遺伝子（配列番号1, 3）とストリンジエントな条件下にハイブリダイズし得るDNA、該発光酵素（配列番号2, 4）の1又は複数のアミノ酸が置換、付加、欠失または挿入され、且つ発光酵素活性を有するポリペプチドをコードするDNAを該発光酵素として使用することが可能である。

【0026】

本発明者は様々な発現系を検討することにより、発光酵素の哺乳類細胞での安定発現のためには、翻訳を効率化するエレメント及び／又はmRNAの安定化エレメントを遺伝子構築物に導入することが重要であることを見出した。翻訳を効率化するエレメントとしては、kozak配列(Ko)などが例示され、mRNAの安定化エレメントとしては、 β -globin intron IIなどが例示される。発光酵素を哺乳類細胞中で安定に発現するためには、特に、（ β -グロビンインtron II）－

(コザック配列) – (赤／緑色発光酵素) の部分構造が重要である。また、c DNAの配列を、昆虫のコドンユーセージ（コドンの使用頻度の偏り）を哺乳類用に変えること、さらには、余分な転写因子が結合しないように、c DNAの配列を変えることも発光酵素の哺乳類細胞での安定発現のために好ましい。

【0027】

本発明の遺伝子構築物には発光酵素遺伝子、該遺伝子の上流側にプロモータ、翻訳を効率化するエレメント及び／又はmRNAの安定化エレメントを含み、さらにエンハンサ、IRES、SV40 polyA、薬剤耐性遺伝子（Neo^rなど）を含み得る。

【0028】

本発明の好ましい遺伝子構築物を以下に示す。

- (1) (CMVエンハンサ) – (ニワトリβアクチンプロモータ) – (β-グロビンイントロン II) – (コザック配列) – (赤、緑色発光酵素) – (SV40ポリA配列)
- (2) (CMVエンハンサ) – (ニワトリβアクチンプロモータ) – (β-グロビンイントロン II) – (コザック配列) – (赤、緑色発光酵素) – (IRES) – (Neo遺伝子) – (SV40ポリA配列を)

本発明の遺伝子構築物は、そのままで哺乳類細胞に導入してもよいが、ベクターに組み込んで哺乳類細胞に導入するのが好ましい。遺伝子構築物に複数の発光酵素を発現可能に組み込んだ場合には、1つの遺伝子構築物または発現ベクターを哺乳類細胞に導入すればよいが、1つの遺伝子構築物に1つの発光酵素を組み込んだ場合には、複数の遺伝子構築物または発現ベクターを同時にまたは逐次的に哺乳類細胞に常法に従って導入すればよい。

【0029】

- 本発明のシステムにより同時測定が望ましい遺伝子の組み合わせとしては、
- ・時計遺伝子（Per遺伝子、Clock遺伝子、BMAL遺伝子など）
 - ・癌遺伝子（がん遺伝子、腫瘍抑制遺伝子及び細胞分裂マーカー遺伝子など）
 - ・病気（病態対応遺伝子、生死感受アポトーシス遺伝子、定常発現コントロール遺伝子）

などが例示される。

【0030】

本発明は、以下のような応用が可能である。

(1)一次スクリーニング：多検体を網羅的に解析することを想定して、同時に3つ以上の情報を得ることは重要である。当然、複数の組合せが考えられる。創薬を考えた場合、その薬の効果はプラスの面を評価するだけでなく、マイナスの毒性も評価する必要がある。さらに、2つの遺伝子転写レベルの変化は細胞自体の状況を反映することから、細胞の状況を現す一定発現プロモータをコントロールにする必要がある。よって、創薬スクリーニングでは、以下のような組み合わせが例示される。

【0031】

【表1】

創薬スクリーニング

対象プロモータ+緑色発光酵素	薬剤効果の評価
毒性評価プロモータ（アポトーシス関連等）+青色発光酵素	薬剤の安全性の評価
定常発現プロモータ+赤色発光酵素	細胞状態を評価
緑/赤：薬剤効果を標準化、青/赤：安全性を標準化	

【0032】

この場合、毒性評価と定常発現は薬剤評価対象プロモータのコントロールとなることから、一つのベクターで構築することも有用（必須ではない）であり、このベクターを入れた細胞自体がスクリーニング用の基本細胞となる。

【0033】

【表2】

ターゲットプロモータ配列の探索

不特定プロモータ（プロモータライ プラリー上の効果のわからない配列 群）+緑色発光酵素	薬剤効果の評価
偽プロモータ配列（ランダムな配列、 または、無意味な配列）+青色発光 酵素	薬剤の安全性の評価
定常発現プロモータ+赤色発光酵素	細胞状態を評価
緑/赤：プロモータ効果を標準化、青/赤：偽情報の標準化	

【0034】

この場合、偽プロモータ配列と定常発現はスクリーニング対象プロモータのコントロールとなることから、一つのベクターで構築することも有用（必須ではない）であり、このベクターを入れた細胞自体がスクリーニング用の基本細胞となる。

【0035】

一次スクリーニングの例を図11に示す。

(2)二次スクリーニング：絞られた薬剤効果、或いはプロモータ情報の評価を想定、3つ以上の情報を得ることは重要である。創薬などでは、薬剤の効果が複数想定される場合も多い、まずは細胞状態の変化を表す遺伝子、薬剤の一過的な影響（例えば毒性、ショック応答など）を知ること、そして、実際の効果を知ることも重要である。例えば

【0036】

【表3】

時計関連薬剤効果の評価システム

薬剤感知プロモータ（譬如毒性、ショック応答など）+緑色発光酵素	薬剤の一過的な効果の評価
日周変動プロモータ(BMALやPer遺伝子の配列)+青色発光酵素	体内時計の評価
薬剤対応プロモータ+赤色発光酵素	薬剤の細胞内効果を評価
青/緑/赤/：薬剤の時間軸評価	

【0037】

二次スクリーニングの例を図12に示す。

【0038】

上記のように、2種以上、特に3種以上のプロモータの発現量を、好ましくは同時に評価することで、1つのプロモータに対する作用を評価する場合に、活性、毒性等の標準化、或いは偽情報の標準化を行うことができる。

【0039】

さらに、哺乳類において複数の遺伝子の発現が複雑に関連した現象を解明する

場合にも、本発明のシステムは極めて有用である。

【0040】

【実施例】

実施例 1

鉄道虫由来緑、赤色発光酵素遺伝子（配列番号1，3）は大腸菌では発現するが、哺乳類細胞では代表的な発現プロモータであるSV40やCMVを単独に用いても発現を誘導することができない。そこで遺伝子発現を安定化させるコザック（ko zak）配列、 β -グロビンインtron II (β -globin intron II) を挿入、さらにニワトリ β アクチンプロモータやCMVエンハンサの4つの因子を選択した構築物を赤、緑色発光酵素に連結した遺伝子構造体を作成し、酵素活性を測定した（図2）。この際、SV40プロモータ、CMVプロモータ、およびCAGプロモータ下流に発光酵素遺伝子を挿入したものと比較とした。それぞれの遺伝子を培養纖維芽細胞NIH3T3細胞にリポフェクタミンを用いて導入、24時間後の細胞内の発光活性を測定した（図2）。発光活性の測定には基質として発光基質混合溶液（東洋ビーネット社製）を、発光測定装置はアトー（株）製AB-2000を用いた。サンプルは細胞抽出液50 μ Lにピッカジーン50 μ Lを加えた。その結果、（CMVエンハンサ）－（ニワトリ β アクチンプロモータ）－（ β -グロビンインtron II）－（コザック配列）－（赤、緑色発光酵素）－（SV40ポリA配列）を挿入したもので、最も高い活性が、下流に（SV40ポリA配列）の変わりに（IRES）－（Neo遺伝子）－（SV40ポリA配列）挿入したもので次いで高い活性が得られた。しかしながら、SV40プロモータ、CMVプロモータ単独では、ほとんど活性がなかった。但し（CMVエンハンサ）－（ニワトリ β アクチンプロモータ）－（ β -グロビンインtron II）－（コザック配列）－（赤、緑色発光酵素）－（IRES）－（Neo遺伝子）－（SV40ポリA配列）の活性に対して、（CMVエンハンサ）－（ニワトリ β アクチンプロモータ）－（ β -グロビンインtron II）－（赤、緑色発光酵素）－（IRES）－（Neo遺伝子）－（SV40ポリA配列）は約500分の1に、（CMVプロモータ）－（ β -グロビンインtron II）－（コザック配列）－（赤、緑色発光酵素）－（SV40ポリA配列）では約10分の1の活性となった。このことから、鉄道虫由来、緑色発光酵素遺伝子を哺乳類細胞内で安定に発現、遺伝子転写活性を測

定するためには、直接的に転写活性には影響を与えない領域である酵素遺伝子上流に（ β -グロビンインtron II）－（コザック配列）を挿入することが重要であることが明らかとなった。これはkozak配列による翻訳の高効率化及び β -globin intron IIによるmRNAの安定化が大きいと考えられ、発光酵素遺伝子を含む転写産物の効率化・安定化が実用化の鍵でることが明らかとなった。

【0041】

実施例2

哺乳類細胞内で発現した鉄道虫由来、緑色発光酵素遺伝子の発光スペクトル解析を行った。最も高い活性を示した（CMVエンハンサ）－（ニワトリ β アクチンプロモータ）－（ β -グロビンインtron II）－（コザック配列）－（赤、緑色発光酵素）－（SV40ポリA配列）遺伝子を導入した細胞の抽出液 $1.5\mu L$ にピッカジーン $1.5\mu L$ を加え、アトー(株)製微弱発光スペクトル測定装置を用いて発光スペクトルを測定した。図3は、それぞれ

を単独に発現させた場合の発光スペクトルであり、赤色発光酵素では最大発光波長622nmが緑色では最大発光波長550nmのスペクトルが得られた。本スペクトルはpHや周りの溶液の影響を受けず、常に同じスペクトルを示した。

【0042】

実施例3

哺乳類細胞内で発現した鉄道虫由来赤色、緑色発光酵素遺伝子の細胞内寿命を評価した。（CMVエンハンサ）－（ニワトリ β アクチントロモータ）－（ β -グロビンインtron II）－（コザック配列）－（赤、緑色発光酵素）－（IRES）－（Neo遺伝子）－（SV40ポリA配列）遺伝子を導入した細胞を用いた。細胞内で発現した発光酵素をリポフェクション法により培養纖維芽細胞NIH3T3に導入した細胞を用いた。遺伝子導入48時間後、 $100\mu M$ の蛋白質合成阻害剤シクロヘキシミドを含む培養液に置換し、30分間培養後、経時的に細胞内の発光活性を測定した。発光活性の測定は実施例1と同様の方法で行った。その結果、赤色、緑色発光酵素共に、同じような時間経過で活性減少が認められ、細胞内でのそれぞれの酵素の半減期は約3.5時間であった（図4）。

【0043】

実施例 4

鉄道虫由来赤色、緑色発光酵素遺伝子（（CMVエンハンサ）－（ニワトリ β アクトチンプロモータ）－（ β -グロビンインtron II）－（コザック配列）－（赤、緑色発光酵素）－（SV40ポリA配列））を培養纖維芽細胞NIH3T3で共発現させた。共発現細胞を破碎し細胞抽出物の鉄道虫由来赤色、緑色発光酵素の発光スペクトルを実施例2と同様な手法で測定した。図5は共発現細胞の発光スペクトルである。赤色、緑色発光酵素が発光することで2つのピークが観察されるスペクトルとなった。これは2つの遺伝子転写活性を同時に測定した結果である。この発光活性を、フォトマルを用いたルミノメータで測定すれば、2つの鉄道虫由来赤色、緑色発光酵素遺伝子の発光活性の総計となる。そこで、緑色発光酵素の発光活性だけを測定するため、赤色発光酵素の光をカットすることにした。発光スペクトルから評価して、図5の点線で示す光波長カットフィルターを選択した。このフィルターを用いると、緑色発光酵素活性の8%、赤発光酵素活性の76%が検出可能であり、換算することで赤色、緑色発光酵素の発光量、存在量を評価することができる。

【0044】

実施例 5

赤色、緑色発光酵素を個々に含む細胞抽出液にピッカジーンを加えたところ抽出液50μLにピッカジーン50μL添加し、ATTO（株）社製ディッシュ型ルミノメータAB2500を用いて1分間隔で発光活性を測定、図6のような発光反応曲線になった。反応開始後5分以内では活性は安定しないが、6分後では両方共に安定な発光活性を示した。そこで、赤色、緑色発光酵素遺伝子を共発現させた細胞の発光活性の測定を行う際、この発光反応の安定化した時間帯で測定した。測定手順は、1) フィルターなしで発光量を測定する（赤色、緑色発光酵素の発光活性）。2) 実施例4で決定したフィルターをルミノメータに挿入、発光量を測定、緑色発光酵素の発光活性とする。3) フィルターの透過率を換算することで赤色の発光活性を算出する。

【0045】

実施例 6

実施例5で決めた手順で存在比の異なる赤色、緑色発光酵素を定量できるかをモデル実験で検証した。図7は赤色、緑色発光酵素の存在比を変えたサンプルについて、1) 全発光量の測定、2) 緑色発光酵素のみ測定、3) 赤色、緑色発光酵素量の定量、を行った。その結果、それぞれの存在比に対して直線関係で変化することが明らかとなった。これは、細胞内で異なる発現量を示した赤色、緑色発光酵素量を、カットフィルターを挿入したルミノメータで定量化できることを示唆している。

【0046】

実施例7

本システムの有効性を検証するため、2つの時計遺伝子の遺伝子転写活性を測定、同時に3つ目の遺伝子転写活性として定常的な遺伝子転写活性を示すプロモータを用いて、2つの時計遺伝子の転写活性を標準化した。具体的には、マウスPer1プロモータ内のE-box3,4,5を連結したエレメント(E54) – (ニワトリ β アクチンプロモータ) – (β -グロビンインtron II) – (コザック配列) – (赤色発光酵素) – (SV40ポリA配列) 遺伝子、およびマウスBMAL1のプロモータ内のREV-ERV/RORエレメント1, 2 (RORE) – (ニワトリ β アクチンプロモータ) – (β -グロビンインtron II) – (コザック配列) – (緑色発光酵素) – (SV40ポリA配列) 遺伝子、および標準化用青色発光タンパクベクター(phRL-TK、Promega)を、ヒトBMAL1、ヒトCLOCK、マウスRORa4発現ベクターと共にNIH3T3細胞にコトランスクレクションした。24時間後細胞を破碎し、スペクトロメータを用いて細胞内でのルシフェラーゼ発光波長の解析を行った。その結果、これら2種のルシフェラーゼに由来する発光波長の検出が認められ、またこれらは個々のルシフェラーゼを単独で発現させたものを同一の発光スペクトルを示した。そこで実施例6で決定した方法により赤および緑色ルシフェラーゼの発光活性を測定した。更にこの活性値を青色発光タンパクの活性値で標準化した各々の転写活性を図8に示す。個別の実験において、BMAL1及びCLOCKタンパクが細胞内に発現するとE-box3,4,5を連結したエレメント(E54)プロモータは活性化、(RORE)プロモータは不活性化されるのに対して、マウスRORa4が細胞内で発現すると(RORE)プロモータが大きく活性化することが知られている。本実験において同時に測

定された赤、緑色発光酵素の活性は (E54) プロモータ及び (RORE) プロモータ活性は転写活性の違いを定量的に示している。

【0047】

実施例8

鉄道虫由来赤色、緑色発光酵素遺伝子（(CMVエンハンサ) - (ニワトリ β アクチンプロモータ) - (β -グロビンインtron II) - (コザック配列) - (赤、緑色発光酵素) - (SV40ポリA配列)）および青色発光タンパクベクター (pRL-TK, Promega) を培養纖維芽細胞NIH3T3で共発現させた。共発現細胞を破碎し細胞抽出物の鉄道虫由来赤色、緑色発光酵素およびウミシイタケ由来青色発光酵素の発光スペクトルを実施例2と同様な手法で測定した。図9は共発現細胞の発光スペクトルである。赤色、緑色、青色発光酵素が発する3つのピークが観察され、スペクトル上のピークの高さはそれぞれのプロモータ活性の高さを反映している。発光色を識別可能なフィルターを持つ発光量計測測定装置によって赤色、緑色、青色の発光量を換算することによって、3つの遺伝子転写活性を評価できる。

【0048】

実施例9

鉄道虫由来赤色、緑色発光酵素遺伝子（(CMVエンハンサ) - (ニワトリ β アクチンプロモータ) - (β -グロビンインtron II) - (コザック配列) - (赤、緑色発光酵素) - (SV40ポリA配列)）遺伝子を培養纖維芽細胞NIH3T3にリポフェクションにより導入し、16時間培養後、100nMのデキサメタゾンを含む培養液に置換し2時間培養した。その後、100 μ Mのホタルルシフェリンを含む培養液に交換し、ATTO（株）社製ディッシュ型ルミノメータAB2500で赤色、緑色発光酵素の発光活性を連続的に測定した。図10は転写活性を連続的に測定した結果であり、発光する色を識別する連続発光量計測測定装置を用いれば、2つの転写活性を連続的に測定することが可能である。

【0049】

【発明の効果】

本発明の特に好ましい実施形態では、鉄道虫由来赤色、緑色発光酵素遺伝子及

び青色発光酵素を用いて3つの遺伝子転写活性を同時定量化するための方法・システムを提供する。本システムを使用することで、細胞内の複数の転写活性を同時に測定することができる。これらは病態の治療、検査及び新薬開発に利用が可能である。

この際、赤、緑、青色に特化したフィルターを用いて、発光活性を測定することで、色識別が行われ、細胞内で行われる複数の転写を同時に測定でき、従来、1つの転写活性の変化情報では判断が容易でなかった細胞内の変化を、同時に多くの情報を引き出すことができ、各種病態の治療及び新薬開発への利用も可能となる。

【0050】

【配列表】

SEQUENCE LISTING

<110> NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY

<120> Multi-assay system for gene transcription activity

<130> 113MS0492

<160> 4

<170> PatentIn version 3.1

<210> 1

<211> 1638

<212> DNA

<213> Green luciferase

<400> 1

atggaagaag aaaacattag gcatggagag cgtcctcgta atatagtcca tcctggctcg 60
gcaggacaac aattatacca atcattgtat aaatttgcat ctttcctga agcaataatc 120
gatgctcata caaatgaagt aatatcatat gctcaaataat ttgaaaccag ctgccgctta 180
gctgttagta tagaacaata tggcttgaat gaaaacaatg ttgtgggtgt atgcagtgaa 240
aacaatataa actttttaa tcctgtcctt gctgcttat acttaggaat accagtagca 300
acatcaaataatg atatgtacac agatggagag ttaactggtc atttgaatat atcaaaacca 360
actatcatgt ttagttcaaa gaaagcactc ccgcatttattc tgagagtaca gcaaaatcta 420
agtttcatta aaaaagtcgt agttatcgat agcatgtacg acattaatgg cgttgaatgc 480
gtatctacct ttgtgcacg ttatactgac cacaccttg atccattgtc attcacacca 540
aaagattttg atcccattga aaaaatcgca ttaattatgt catcatctgg aacaactgga 600
ttgcctaagg gtgttagtact gagccataga agtctaacta taagattcgt tcatacgagg 660
gatcccattt atggcactcg tacggttcca caaacatcaa ttcttcctt agtaccgttc 720
catcatgcct ttggaatgtt tactacatta tcttactttg tagtaggact taaggttgta 780
atgttgaaga aatttgaggg cgcaactttc taaaaacca tacagaatta caaaatcccc 840
actattgttag tggccctcc agttatggtg ttttggcta aaagcccatt agtcgatcaa 900

tacgatttat cgagcttaac ggaagttgct actggaggag ctcctttagg aaaagatgtc 960
gcagaaggcag tagcaaagag gttgaaattha cctggaatca tacaaggata tggattaact 1020
gaaacttgct gcgctgtaat gattaccct cataatgctg tgaaaacagg ttcaactgga 1080
agacccttgc catacattaa agctaaagtt ttagataacg ctactggaa ggcgcttagga 1140
ccaggagaaa gaggcgaaat atgctttaaa agtgaardtg ttatgaaagg atattacaac 1200
aatccggaag caactattga tactattgac aaagatggtt ggcttcattc tggagatatt 1260
ggatattacg acgaagatgg aaatttcttt atagttgatc gattgaaaga acttattaaa 1320
tacaagggat atcaggttgc gcctgctgaa ctggaaaatc tgctttaca acatccaagt 1380
attgctgatg cgggtgttac tggagttccg gacgaatttg ctggacaatt acctgctgct 1440
tgtgttgtgt tagaatctgg caagacgctg actgaaaagg aagttcaaga ttttattgca 1500
gcacaagtca ctccaacaaa gcatcttcga ggcgggtgtcg tattttaga cagtattccg 1560
aaaggcccta ctggaaaact catcagaaag gagctccgag aaatatttgc ccagcgagca 1620
ccaaaatcaa aattataa 1638

<211> 545

<212> PRT

<213> Green luciferase

<400> 2

Met Glu Glu Glu Asn Ile Arg His Gly Glu Arg Pro Arg Asp Ile Val

1

5

10

15

His Pro Gly Ser Ala Gly Gln Gln Leu Tyr Gln Ser Leu Tyr Lys Phe

20

25

30

Ala Ser Phe Pro Glu Ala Ile Ile Asp Ala His Thr Asn Glu Val Ile

35

40

45

Ser Tyr Ala Gln Ile Phe Glu Thr Ser Cys Arg Leu Ala Val Ser Ile

50

55

60

Glu Gln Tyr Gly Leu Asn Glu Asn Asn Val Val Gly Val Cys Ser Glu

65

70

75

80

Asn Asn Ile Asn Phe Phe Asn Pro Val Leu Ala Ala Leu Tyr Leu Gly

85

90

95

Ile Pro Val Ala Thr Ser Asn Asp Met Tyr Thr Asp Gly Glu Leu Thr

100 105 110

Gly His Leu Asn Ile Ser Lys Pro Thr Ile Met Phe Ser Ser Lys Lys

115 120 125

Ala Leu Pro Leu Ile Leu Arg Val Gln Gln Asn Leu Ser Phe Ile Lys

130 135 140

Lys Val Val Val Ile Asp Ser Met Tyr Asp Ile Asn Gly Val Glu Cys

145 150 155 160

Val Ser Thr Phe Val Ala Arg Tyr Thr Asp His Thr Phe Asp Pro Leu

165 170 175

Ser Phe Thr Pro Lys Asp Phe Asp Pro Leu Glu Lys Ile Ala Leu Ile

180 185 190

Met Ser Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val Val Leu Ser

195 200 205

His Arg Ser Leu Thr Ile Arg Phe Val His Ser Arg Asp Pro Ile Tyr

210 215 220

Gly Thr Arg Thr Val Pro Gln Thr Ser Ile Leu Ser Leu Val Pro Phe

225 230 235 240

His His Ala Phe Gly Met Phe Thr Thr Leu Ser Tyr Phe Val Val Gly

245 250 255

Leu Lys Val Val Met Leu Lys Lys Phe Glu Gly Ala Leu Phe Leu Lys

260 265 270

Thr Ile Gln Asn Tyr Lys Ile Pro Thr Ile Val Val Ala Pro Pro Val

275 280 285

Met Val Phe Leu Ala Lys Ser Pro Leu Val Asp Gln Tyr Asp Leu Ser

290 295 300

Ser Leu Thr Glu Val Ala Thr Gly Gly Ala Pro Leu Gly Lys Asp Val

305 310 315 320

Ala Glu Ala Val Ala Lys Arg Leu Lys Leu Pro Gly Ile Ile Gln Gly

325

330

335

Tyr Gly Leu Thr Glu Thr Cys Cys Ala Val Met Ile Thr Pro His Asn

340

345

350

Ala Val Lys Thr Gly Ser Thr Gly Arg Pro Leu Pro Tyr Ile Lys Ala

355

360

365

Lys Val Leu Asp Asn Ala Thr Gly Lys Ala Leu Gly Pro Gly Glu Arg

370

375

380

Gly Glu Ile Cys Phe Lys Ser Glu Met Ile Met Lys Gly Tyr Tyr Asn

385

390

395

400

Asn Pro Glu Ala Thr Ile Asp Thr Ile Asp Lys Asp Gly Trp Leu His

405

410

415

Ser Gly Asp Ile Gly Tyr Tyr Asp Glu Asp Gly Asn Phe Phe Ile Val

420

425

430

Asp Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Tyr Gln Val Ala Pro

435

440

445

Ala Glu Leu Glu Asn Leu Leu Leu Gln His Pro Ser Ile Ala Asp Ala

450

455

460

Gly Val Thr Gly Val Pro Asp Glu Phe Ala Gly Gln Leu Pro Ala Ala

465

470

475

480

Cys Val Val Leu Glu Ser Gly Lys Thr Leu Thr Glu Lys Glu Val Gln

485

490

495

Asp Phe Ile Ala Ala Gln Val Thr Pro Thr Lys His Leu Arg Gly Gly

500

505

510

Val Val Phe Val Asp Ser Ile Pro Lys Gly Pro Thr Gly Lys Leu Ile

515

520

525

Arg Lys Glu Leu Arg Glu Ile Phe Ala Gln Arg Ala Pro Lys Ser Lys

530

535

540

Leu

545

<210> 3

<211> 1641

<212> DNA

<213> Red luciferase

<400> 3

atggaagaag aaaacattgt gaatggagat cgtcctcggt atctagttt tcctggcaca 60

gcaggactac aattatatca atcattataat aaatattcat atattactga cgaaataatc 120

gatgccata ccaatgaagt aatatcatat gctcaaataat ttgaaaccag ctgcccgttg 180

gcagttagtc tagaaaaata tggcttggat cataacaatg ttgtggcaat atgcagtgaa 240

aacaacatac actttttgg cccttaatt gctgcttat accaaggaat accaatggca 300

acatcaaatg atatgtacac agaaagggag atgattggcc atttgaatat atcgaaccca 360

tgccttatgt ttgttcaaa gaaatcactc ccatttattc tgaaagtaca aaaacatcta 420

gatttccta aaaaagtcat agtcattgtat agtatgtacg atatcaatgg cgttgaatgc 480

gtattnagct ttgttcacg ttatactgtat cacgccttg atccagtgaa atttaaccca 540

aaagagtttgc atcccttgaa aagaaccgca ttaattatga catcatctgg aacaactgg 600

ttgcctaaag ggtagtaat aagccataga agtataacta taagattcgt ccatagcagt 660

gatcccatct atggtaactcg tattgctcca gatacatcaa ttcttgctat agcaccgttc 720
catcatgcct ttggactgtt tactgcacta gcttactttc cagtaggact taagattgta 780
atggtaaga aatttgaggg cgaattcttc taaaaacca tacaaaatta caaaatcgct 840
tctattgttag ttcctcctcc aattatggta tatttggcta aaagtccatt agtcgatgaa 900
tacaatttat cgagcttaac ggaaattgct tgtggagggt ctcctttagg aagagatatc 960
gcagataaag tagcaaagag attgaaagta catggaatcc tacaaggata tggattaacc 1020
gaaacctgca gcgcctaat acttagcccc aatgatcgag aactaaaaa aggtgcaatt 1080
ggaacgccta tgccatatgt tcaagttaaa gttatagata tcaatactgg gaaggcgcta 1140
ggaccaagag aaaaaggcga aatatgccttc aaaagtcaaa tgcttatgaa aggatatcac 1200
aacaatccgc aagcaactcg tcatgcctt gacaaagatg gttggcttca tactggggat 1260
cttggatatt acgacgaaga cagatttac tatgttagttt atcgattgaa agaacttatt 1320
aaatataaag gatatcaggt tgccctgct gaactggaaa atctgccttt acaacatcca 1380
aatatttctg atgcgggtgt tattggaatt ccggacgaat ttgctggtca attaccttcc 1440
gcgtgtgttg tgtagagcc tggtaagaca atgaccgaaa aggaagttca ggattatatt 1500

gcagagctag tcactacaac taaacatctt cgaggcggtg tcgtatttat agatagtatt 1560

ccaaaaggcc caacaggaaa actcatgaga aacgaactcc gtgcaatatt tgcccgaa 1620

caggcaaaat caaaattata a 1641

<210> 4

<211> 546

<212> PRT

<213> Red luciferase

<400> 4

Met Glu Glu Glu Asn Ile Val Asn Gly Asp Arg Pro Arg Asp Leu Val
1 5 10 15

Phe Pro Gly Thr Ala Gly Leu Gln Leu Tyr Gln Ser Leu Tyr Lys Tyr
20 25 30

Ser Tyr Ile Thr Asp Gly Ile Ile Asp Ala His Thr Asn Glu Val Ile
35 40 45

Ser Tyr Ala Gln Ile Phe Glu Thr Ser Cys Arg Leu Ala Val Ser Leu
50 55 60

Glu Lys Tyr Gly Leu Asp His Asn Asn Val Val Ala Ile Cys Ser Glu
65 70 75 80

Asn Asn Ile His Phe Phe Gly Pro Leu Ile Ala Ala Leu Tyr Gln Gly
85 90 95

Ile Pro Met Ala Thr Ser Asn Asp Met Tyr Thr Glu Arg Glu Met Ile
100 105 110

Gly His Leu Asn Ile Ser Lys Pro Cys Leu Met Phe Cys Ser Lys Lys
115 120 125

Ser Leu Pro Phe Ile Leu Lys Val Gln Lys His Leu Asp Phe Leu Lys
130 135 140

Lys Val Ile Val Ile Asp Ser Met Tyr Asp Ile Asn Gly Val Glu Cys
145 150 155 160

Val Phe Ser Phe Val Ser Arg Tyr Thr Asp His Ala Phe Asp Pro Val
165 170 175

Lys Phe Asn Pro Lys Glu Phe Asp Pro Leu Glu Arg Thr Ala Leu Ile

180 185 190

Met Thr Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val Val Ile Ser

195 200 205

His Arg Ser Ile Thr Ile Arg Phe Val His Ser Ser Asp Pro Ile Tyr

210 215 220

Gly Thr Arg Ile Ala Pro Asp Thr Ser Ile Leu Ala Ile Ala Pro Phe

225 230 235 240

His His Ala Phe Gly Leu Phe Thr Ala Leu Ala Tyr Phe Pro Val Gly

245 250 255

Leu Lys Ile Val Met Val Lys Lys Phe Glu Gly Glu Phe Phe Leu Lys

260 265 270

Thr Ile Gln Asn Tyr Lys Ile Ala Ser Ile Val Val Pro Pro Pro Ile

275 280 285

Met Val Tyr Leu Ala Lys Ser Pro Leu Val Asp Glu Tyr Asn Leu Ser

290

295

300

Ser Leu Thr Glu Ile Ala Cys Gly Gly Ser Pro Leu Gly Arg Asp Ile

305

310

315

320

Ala Asp Lys Val Ala Lys Arg Leu Lys Val His Gly Ile Leu Gln Gly

325

330

335

Tyr Gly Leu Thr Glu Thr Cys Ser Ala Leu Ile Leu Ser Pro Asn Asp

340

345

350

Arg Glu Leu Lys Lys Gly Ala Ile Gly Thr Pro Met Pro Tyr Val Gln

355

360

365

Val Lys Val Ile Asp Ile Asn Thr Gly Lys Ala Leu Gly Pro Arg Glu

370

375

380

Lys Gly Glu Ile Cys Phe Lys Ser Gln Met Leu Met Lys Gly Tyr His

385

390

395

400

Asn Asn Pro Gln Ala Thr Arg Asp Ala Leu Asp Lys Asp Gly Trp Leu

405

410

415

His Thr Gly Asp Leu Gly Tyr Tyr Asp Glu Asp Arg Phe Ile Tyr Val
420 425 430

Val Asp Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Tyr Gln Val Ala
435 440 445

Pro Ala Glu Leu Glu Asn Leu Leu Leu Gln His Pro Asn Ile Ser Asp
450 455 460

Ala Gly Val Ile Gly Ile Pro Asp Glu Phe Ala Gly Gln Leu Pro Ser
465 470 475 480

Ala Cys Val Val Leu Glu Pro Gly Lys Thr Met Thr Glu Lys Glu Val
485 490 495

Gln Asp Tyr Ile Ala Glu Leu Val Thr Thr Thr Lys His Leu Arg Gly
500 505 510

Gly Val Val Phe Ile Asp Ser Ile Pro Lys Gly Pro Thr Gly Lys Leu
515 520 525

Met Arg Asn Glu Leu Arg Ala Ile Phe Ala Arg Glu Gln Ala Lys Ser

530

535

540

Lys Leu

545

【図面の簡単な説明】

【図1】マルチ遺伝子転写活性の測定概略と従来法との違いを示す。

【図2】哺乳類細胞発現用ベクターの構造とHeLa細胞における発光活性を示す。

【図3】哺乳類培養細胞で生産された鉄道虫由来赤色、緑色発光タンパクの発光スペクトルを示す。

【図4】哺乳類培養細胞で生産された鉄道虫由来赤色、緑色発光タンパクの細胞内寿命を示す。

【図5】哺乳類細胞で生産された赤、緑色発光タンパクの同時発光スペクトルと色識別に用いたフィルターの特性（光の透過率）を示す。

【図6】赤、緑色発光タンパクの発光反応曲線と発光活性測定時間を示す。

【図7】赤、緑色発光タンパクの存在比と発光活性（図5のフィルターを用いた場合）を示す。

【図8】マルチ転写活性測定の実際・赤、緑色発光タンパクの光より同時に2つの転写活性を測定、青色発光タンパクの光によって標準遺伝子の転写活性を測定、2つの転写活性を標準化した結果を示す。

【図9】哺乳類細胞で生産された赤、緑、青色発光タンパクの同時発光スペクトルと色識別に用いたフィルターの特性（光の透過率）を示す。

【図10】赤、緑色発光タンパクの示す転写活性は連続的に2つの転写活性をモニターした結果を示す。

【図11】一次スクリーニングで多検体を網羅的に解析する例を示す。

【図12】二次スクリーニングで個別事象を評価する例を示す

【書類名】 図面

【図1】

従来法・2つの転写活性を光の量として、それぞれ測定する。

発明方法・3つの転写活性を赤、緑、青色で伝え、それぞれを光の色識別することで測定する。

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

一次スクリーニングで多検体を網羅解析する

例1 疾患対応遺伝子発現を誘導する薬剤のスクリーニング

例えば、この一次スクリーニングでは赤色発光酵素がコントロールとなり、青色は毒性を感じ、緑色は薬剤の効果を感じる。よって、A1カラムの薬剤は疾患に効果があるが、致死的に働く、A2カラムの薬剤はA1に比べてほぼ同様な効果があり、且つA1に比べて安全であると評価できる。

例2 ある薬剤が効果を及ぼす遺伝子発現領域のスクリーニング

例えば、この一次スクリーニングでは赤色発光酵素がコントロールとなり、緑色発光酵素には、プロモーター配列ライブラリーから得られた未知機能のプロモーターの活性をレポートする、偽プロモーター配列を青色酵素に挿入、非特異的な効果を評価する。プロモーターターゲットが定まらない薬剤のターゲット部位をスクリーニングする。よって、ある薬剤に対してA1カラムの選択プロモーターでは一見効果があるが、青色で判断すると非特異的な可能性がある、A2カラムではA1と同様な効果があり、且つ青色で判断する限り非特異的ではない。

【図12】

二次スクリーニングでは個別事象を評価する

例 身体の日周変動を理解した上での創薬

例えば、二次スクリーニングでは対象疾患に対して効果のある薬剤が、患者に対して有効に働くか、或いは何時投与することが重要であるかを評価できる。青色発光酵素は人の体内時計の日周を現すプロモーターで最大値は昼間12時に対応、緑色発光酵素は薬剤の一過的な影響を、赤色発光酵素は薬剤が最終的に働くプロモーター領域を想定する。青色の朝6時に薬剤を投与すると、そのショックで1時間後に薬剤に対する影響を示す緑色が一過的に立ち上がるが、その影響は数時間で消え、お昼ぐらいから薬剤の効果が緩やかに立ち上がる事がわかる。この結果から、投与時間の設計、薬剤の影響と効果を適切なものにする創薬が可能となる。

【書類名】要約書

【要約】

【課題】関連する複数の遺伝子の転写活性を同時に測定する。

【解決手段】同一の発光基質で異なる色を発光する少なくとも2つの発光酵素遺伝子のいずれかを哺乳類細胞で安定発現可能なように組み込んでなる遺伝子構築物。

【選択図】図1

特願 2003-127629

出願人履歴情報

識別番号

[301021533]

1. 変更年月日

2001年 4月 2日

[変更理由]

新規登録

住 所

東京都千代田区霞が関 1-3-1

氏 名

独立行政法人産業技術総合研究所