Entradas: 4, dos números binarios de 2 bits A = a1 a0 y B = b1 b0

Salidas: El número binario natural más alto que se puede escribir con 2 bits (11) es el 3, y 3x3 =

9. Para escribir 9 necesito 4 bits, 9 = 1001

Por tanto serán 4 salidas F = f3 f2 f1 f0

|     | a1 | a0 | b1 | b0 | f3 | f2 | f1 | f0 |
|-----|----|----|----|----|----|----|----|----|
| 0x0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0x1 | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| 0x2 | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| 0x3 | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  |
| 1x0 | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1x1 | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  |
| 1x2 | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  |
| 1x3 | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  |
| 2x0 | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 2x1 | 1  | 0  | 0  | 1  | 0  | 0  | 1  | 0  |
| 2x2 | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 0  |
| 2x3 | 1  | 0  | 1  | 1  | 0  | 1  | 1  | 0  |
| 3x0 | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 3x1 | 1  | 1  | 0  | 1  | 0  | 0  | 1  | 1  |
| 3x2 | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 0  |
| 3x3 | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  |

Por tanto las soluciones para F serán

f0 =  $\Sigma_{\rm m}$ (5,7,13,15) =  $\Pi_{\rm M}$ (0,1,2,3,4,6,8,9,10,11,12,14)

 $\mathsf{f1} = \Sigma_\mathsf{m}(6,7,9,11,13,14) = \Pi_\mathsf{M}(0,1,2,3,4,5,8,10,12,15)$ 

 $\mathsf{f2} = \Sigma_\mathsf{m}(\mathsf{10},\!\mathsf{11},\!\mathsf{14}) = \Pi_\mathsf{M}(\mathsf{0},\!\mathsf{1},\!\mathsf{2},\!\mathsf{3},\!\mathsf{4},\!\mathsf{5},\!\mathsf{6},\!\mathsf{7},\!8,\!9,\!\mathsf{12},\!\mathsf{13},\!\mathsf{15})$ 

 $\mathsf{f3} = \Sigma_\mathsf{m}(\mathsf{15}) = \Pi_\mathsf{M}(\mathsf{0}, \mathsf{1}, \mathsf{2}, \mathsf{3}, \mathsf{4}, \mathsf{5}, \mathsf{6}, \mathsf{7}, \mathsf{8}, \mathsf{9}, \mathsf{10}, \mathsf{11}, \mathsf{12}, \mathsf{13}, \mathsf{14})$ 

Si resuelvo con minterminos por ejemplo









Por tanto,

f0 = a0.b0

f1 = (a1./b1.b0) + (a1.b1./b0) + (a1./a0.b0) + (/a1.a0.b1)

 $f2 = (a1 \cdot b1 \cdot /b0) + (a1 \cdot /a0 \cdot b1)$ 

 $f3 = a2 \cdot a1 \cdot b1 \cdot b0$ 

