La fosse de plongée Nemo 33 (10 points) - Correction

1. Titrage des ions hypochlorite ClO - présents dans l'eau d'une fosse de plongée

1.1. La transformation produit un mélange de teinte orange-brun, qui correspond à la couleur du diiode en solution aqueuse, il s'agit de l'oxydant associé au couple $I_{2 \text{ (aq)}}/I^{-}_{\text{(aq)}}$.

Lors de l'expérience on ajoute 1,0 mL d'une solution contenant des ions iodure en excès. Les ions iodure constitue le réducteur du couple $I_{2 \text{ (aq)}}/I_{\text{ (aq)}}$.

L'eau de la fosse de plongée réagit avec ce réducteur : elle contient donc un oxydant.

L'énoncé indique que l'eau contient des ions hypochlorite CIO à une concentration comprise entre 0,4 mg.L ⁻¹ et 1,4 mg.L ⁻¹ .

Les ions hypochlorite possèdent donc bien un caractère oxydant.

- 1.2. Demi-équation électronique : $CIO^{-}_{(aq)} + 2 e^{-} + 2 H^{+} = CI^{-}_{(aq)} + H_{2}O$ L'ion hypochlorite gagne des électrons, ceci confirme son caractère oxydant.
- 1.3. Demi-équation électronique du couple $I_{2 (aq)}/I^-_{(aq)} : I_{2 (aq)} + 2 e^- = 2 I^-_{(aq)}$ Équation de la réaction modélisant la transformation intervenant entre les ions hypochlorite et les ions iodure : $CIO^-_{(aq)} + 2 I^-_{(aq)} + 2 H^+ \rightarrow CI^-_{(aq)} + H_2O + I_{2 (aq)}$
- 1.4. À l'état initial, la quantité d'ions hypochlorite peut être exprimée sous la forme : n_0 (ClO⁻) = C_1 . V_1 où C_1 représente la concentration en quantité apportée de ClO⁻.

en mol	Équation :	CIO ⁻ (aq) +	2 I ⁻ (aq) +	2 H ⁺ →	. CI ⁻ (aq) +	H₂O +	I _{2 (aq)}
état	avancement	n(ClO⁻)	n(l⁻)	n(H⁺)	n(Cl ⁻)	n(H₂O)	n(l ₂)
initial	0	n_0 (CIO ⁻) = C_1 . V_1	excès	excès	0	solvant	0
intermédiaire	Х	C_1 . $V_1 - X$	excès	excès	Х	solvant	Х
final	X _f	C_1 . $V_1 - X_f$	excès	excès	X _f	solvant	X_f

1.5. D'après la loi de Beer-Lambert, l'absorbance est proportionnelle à la concentration C en diiode, A = k.C. Déterminons la valeur du coefficient de proportionnalité k.

concentration en diiode (mol.L ⁻¹)	2,0×10 ⁻⁵	5,0×10 ⁻⁵	1,0×10 ⁻⁴	2,5×10 ⁻⁴
absorbance A (à 475 nm)	0,016	0,041	0,10	0,22
$k = \frac{A}{C}$	800	820	1000	880

On calcule la movenne $k = 875 \text{ L.mol}^{-1}$.

			_
L1 2E-5	L2	Lз	l
2E-5	0.016		Ī
5E-5	0.041		
1E-4	0.1		
2.5E-4	0.22		
	4 .		
L3=L 2 /	'L1		

L1	L2	Lз
2E-5	0.016	800
5E-5	0.041	820
1E-4	9.1	1000
2.5E-4	0.22	880

Stats 1 var Xliste:L3 ListeFréq: Calculer

Stats 1 var x=875 Σx=3500 Σx²=3086800 Sx=90 σx=77.94228634 n=4

$$C_{\rm s} = \frac{A_{\rm s}}{k}$$
 $C_{\rm s} = \frac{A_{\rm s}}{k}$
 $C_{\rm s} = \frac{0.017}{875} = 1.9 \times 10^{-5} \text{ mol.L}^{-1}$

0.017/875 1.942857143e-5 Rep*22e-3 4.274285714e-7

La quantité de diiode est alors :

$$n_f(I_2) = c_s.V$$

 $n_f(I_2) = 1.9 \times 10^{-5} \times (22.0 \times 10^{-3})$
 $n_f(I_2) = 4.3 \times 10^{-7} \, mol$

D'après le tableau d'avancement, cette valeur est égale à l'avancement final x_f . La valeur de l'avancement final x_f est donc voisine de $4,3\times10^{-7}$ mol. On ne retrouve pas la valeur de $4,6\times10^{-7}$ mol, l'écart relatif reste faible (4,6-4,3)/4,6=6,5%. Il peut être dû à une erreur expérimentale lors de la préparation des solutions étalons.

1.6. D'après le tableau d'avancement,

$$n_0(ClO^-) = n_f(I_2) = 4,3 \times 10^{-7} mol$$

La concentration en mole en ions hypochlorite dans l'eau de la fosse est donc :

$$C_1 = \frac{n_0(ClO^{-1})}{V_1} = \frac{4.3 \times 10^{-7}}{20 \times 10^{-3}} = 2.2 \times 10^{-5} mol/L$$

La concentration en masse peut alors être comparée à la norme.

$$c_{m}(ClO^{-})=C_{1}.M(ClO^{-})$$

$$c_{m}(ClO^{-})=2,15\times10^{-5}\times(35,5+16,0)$$

$$c_{m}(ClO^{-})=1,1\times10^{-3}g/L=1,1\,mg/L$$

$$0,4\,mg/L< c_{m}(ClO^{-})<1,4\,mg/L$$

L'eau de la fosse de plongée est conforme la législation française.

2. La pratique de l'apnée au NEMO 33

2.1. Lorsque la profondeur augmente, la pression augmente.

La loi fondamentale de la statique des fluides est : $p_A - p_B = \rho_e g (z_B - z_A)$.

La différence ($z_B - z_A$) est un terme négatif (exemple -35 m - (-10 m) = -25 m).

La masse volumique de l'eau et l'intensité g du champ de pesanteur à la surface terrestre sont des constantes positives.

Ainsi le produit ρ_e g (z_B - z_A) est négatif, donc p_A - p_B < 0 donc p_A < p_B .

La pression au point le plus profond (B) est supérieure à la pression au point de référence (A).

2.2. Selon la loi de Mariotte, pour une quantité de matière donnée et une température constante, le produit de la pression P par le volume V d'un gaz est constant : P . V = constante

2.3. Lors de la pratique de l'apnée, le plongeur inspire au maximum de sa capacité pulmonaire lorsqu'il se trouve à la surface puis bloque sa respiration. La capacité maximale des poumons est d'environ 6 L.

À l'instant de plonger, les conditions initiales sont : $V_A = 6$ L , $p_A = P_a = 1.0 \times 10^5$ Pa.

Au cours de la descente, la pression augmente et le volume pulmonaire diminue jusqu'à ce que la rigidité du thorax ne permette plus de réduire son volume : le volume pulmonaire est alors égal au volume résiduel. Le volume résiduel, c'est-à-dire le volume d'air contenu dans les poumons à la fin d'une expiration forcée, est d'environ 1,5 L.

À l'état de compression maximale, les conditions sont données par les limites du thorax :

 $V_{limite} = 1,5 L.$ Calculons la pression p limite correspondante.

$$p_A.V_A = p_{limite}.V_{limite} = constante$$

$$p_{limite} = \frac{p_A.V_A}{V_{limite}}$$

$$p_{limite} = \frac{1,0 \times 10^5 \times 6}{1,5} = 4 \times 10^5 Pa$$

Le phénomène de « blood shift » risque d'apparaître si la pression atteint ou dépasse 4.0×10^5 Pa.

Dans la fosse NEMO 33, la profondeur est de 35 m.

$$\rho_{A} - \rho_{B} = \rho_{e}.g.(z_{B} - z_{A}) = -\rho_{e}.g.h$$

$$p_A - p_B = -1.0 \times 10^3 \text{ x } 9.8 \text{ x } 35 = -3.43 \times 10^5 \text{ Pa}$$

La variation de pression entre la surface et le fond de la fosse vaut 3.43×10^5 Pa

$$p_B = p_A + 3.43 \times 10^5 = 4.43 \times 10^5 Pa$$

 $p_B > p_{limite}$

Lorsqu'un apnéiste, qui n'a pas expiré d'air au cours de sa plongée, atteint le fond de NEMO 33, la pression dépasse la pression limite. Le phénomène de « blood shift » risque d'apparaître.