Corrigé TD 16 - Analyse asymptotique

Exercice 1: (non corrigé)

Exercice 2:

a) $\ln(x) = \ln(2+h) = \ln 2 + \ln(1+\frac{h}{2})$ et $\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} + o(u^3)$. On pose $u = \frac{h}{2}$ et on obtient $\ln(2+h) = \ln 2 + \frac{h}{2} - \frac{h^2}{8} + \frac{h^3}{24} + o(h^3)$

$$\ln(x) = \ln 2 + \frac{(x-2)}{2} - \frac{(x-2)^2}{8} + \frac{(x-2)^3}{24} + o((x-2)^3)$$

b)
$$rac{e^x}{x^2+2}=rac{e^{3+h}}{2+9+6h+h^2}=rac{e^3}{11}rac{e^h}{1+rac{6}{11}h+rac{1}{11}h^2}.$$

On pose $u=rac{6}{11}h+rac{1}{11}h^2$, on a $rac{1}{1+u}=1-u+u^2+o(u^2)=1-rac{6}{11}h-rac{1}{11}h^2+rac{36}{121}h^2+o(h^2)$

$$rac{e^{3+h}}{2+(2+h)^2} = rac{e^3}{11} \left(1+h+rac{1}{2}h^2+o(h^2)
ight) \left(1-rac{6}{11}h+rac{25}{121}h^2+o(h^2)
ight)$$

On en déduit que $\frac{e^x}{x^2+2} = \frac{1}{3} \frac{1}{11} e^3 + \frac{5}{121} e^3 (x-3) + \frac{39}{2662} e^3 (x-3)^2 + o((x-3)^2).$

c)
$$f(x) = \frac{\ln x}{\sqrt{x}}$$
. On réutilise le $DL_2(2)$ précédent : $\ln(x) = \ln 2 + \frac{(x-2)}{2} - \frac{(x-2)^2}{8} + o((x-2)^2)$.

Par ailleurs, $\sqrt{x} = \sqrt{2+h} = \sqrt{2}\sqrt{1+\frac{h}{2}}$ et $\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{2}}(1+\frac{h}{2})^{-\frac{1}{2}} = \frac{1}{\sqrt{2}}\left(1-\frac{h}{4}+\frac{3}{32}h^2+o(h^2)\right)$

Alors $f(x) = \frac{1}{\sqrt{2}} \left(\ln 2 + \frac{(x-2)}{2} - \frac{(x-2)^2}{8} + o((x-2)^2) \right) \sqrt{2} \left(1 - \frac{h}{4} + \frac{3}{32} h^2 + o(h^2) \right)$. On développe et on trouve

$$\boxed{\frac{\ln x}{\sqrt{x}} = \frac{\sqrt{2}}{2} \ln{(2)} + \left(\frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{8} \ln{(2)}\right) (x-2) + \left(\frac{3\sqrt{2}}{64} \ln{(2)} - \frac{\sqrt{2}}{8}\right) (x-2)^2 + o(x-2)^2}$$

$$\mathrm{d)} \ \ \frac{\sin x}{4-x^2} = \frac{\sin x}{4} \frac{1}{1-\frac{x^2}{4}} = \frac{1}{4}(x-\tfrac{x^3}{6}+o(x^4)(1+\tfrac{x^2}{4}+o(x^3)). \ \ \mathrm{D'où} \boxed{ \ \frac{\sin x}{4-x^2} = \frac{1}{6}(x+\tfrac{1}{12}x^3+o(x^4)). }$$

$$\text{e)} \ \ \frac{\sh{x}}{\sin{x}} = \frac{x + \frac{x^3}{6} + o(x^4)}{x(1 - \frac{x^2}{6} + o(x^2))} = (1 + \frac{x^2}{6} + o(x^2))(1 + \frac{x^2}{6} + o(x^2)). \ \text{Finalement}, \ \boxed{\frac{\sh{x}}{\sin{x}} = 1 + \frac{1}{3}x^2 + o(x^2).}$$

f)
$$x(\operatorname{ch} x)^{\frac{1}{x^2}} = xe^{\frac{1}{x^2}\ln(\operatorname{ch} x)}$$
. On a ch $x = 1 + \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)$ et $\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} + o(u^3)$. Alors $\ln(\operatorname{ch} x) = \frac{x^2}{2} - \frac{x^4}{12} + o(x^5)$.

On en déduit que $\frac{1}{x^2}\ln(\operatorname{ch} x)=\frac{1}{2}-\frac{x^2}{12}+o(x^3)$. Enfin, $xe^{\frac{1}{x^2}\ln(\operatorname{ch} x)}=xe^{\frac{1}{2}}e^{-\frac{x^2}{12}+o(x^3)}$.

D'où
$$x(\cosh x)^{\frac{1}{x^2}} = e^{\frac{1}{2}}(x - \frac{x^3}{12} + o(x^4)).$$

g) On pose $x=rac{\pi}{4}+h$, alors $\tan(x)=rac{ anrac{\pi}{4}+ an h}{1- anrac{\pi}{4} an h}=rac{1+ an h}{1- an h}$. On obtient successivement :

$$1 + \tan h = 1 + h + \frac{1}{3}h^3 + o(h^4)$$
 et $\frac{1}{1 - \tan h} = 1 + h + h^2 + \frac{4}{3}h^3 + o(h^3)$

D'où $\tan x = 1 + 2h + 2h^2 + \frac{8}{3}h^3 + o(h^3).$

Puis en posant $u = 2h + 2h^2 + \frac{8}{3}h^3 + o(h^3)$ avec $\sqrt{1+u} = 1 + \frac{1}{2}u - \frac{1}{8}u^2 + \frac{1}{16}u^3 + o(u^3)$ on trouve

$$\tan(x) = 1 + h + \frac{1}{2}h^2 + \frac{5}{6}h^3 + o(h^3).$$

h) On a
$$f(x) = x \left(1 + \frac{1}{x}\right)^{\frac{1}{3}} - x \left(1 - \frac{1}{x}\right)^{\frac{1}{3}}$$
. Mais $\left(1 + \frac{1}{x}\right)^{\frac{1}{3}} = 1 + \frac{1}{3x} - \frac{1}{9x^2} + \frac{5}{81x^3} + o\left(\frac{1}{x^3}\right)$ et $\left(1 - \frac{1}{x}\right)^{\frac{1}{3}} = 1 - \frac{1}{3x} - \frac{1}{9x^2} - \frac{5}{81x^3} + o\left(\frac{1}{x^3}\right)$. Alors $\left[f(x) = \frac{2}{3} + \frac{10}{81x^2} + o\left(\frac{1}{x^2}\right)\right]$

Exercice 3:

Les calculs se font soit avec la formule de Taylor, soit en utilisant les formules du cours :

$$f(x) = \exp(\sin(x)) = 1 + x + rac{x^2}{2} - rac{x^4}{8} + o(x^4) \hspace{0.5cm} g(x) = \ln(\cos(x)) = rac{x^2}{2} - rac{x^4}{12} - rac{x^6}{45} + o(x^6)$$

En utilisant les formules du cours, on pose x=1+h, alors $\sqrt{x}=\sqrt{1+h}=(1+h)^{1/2}=1+\frac{1}{2}h-\frac{1}{8}h^2+\frac{1}{16}h^3+o(h^3)$. Puis, $e^{1+u}=ee^u=e(1+u+u^2+u^3+o(u^3))=...$

Ou alors avec la formule de Taylor :

$$h(x)=e^{\sqrt{x}}=e+rac{e\,\left(x-1
ight)}{2}+rac{e\,\left(x-1
ight)^3}{48}+o\left((x-1)^3
ight).$$

Exercice 4:

1.
$$f(x) = \frac{1}{x^2} - \frac{1}{(\arctan x)^2} (\arctan x)^2 = x^2 - \frac{2}{3}x^4 + o(x^5)$$
, alors $\frac{1}{(\arctan x)^2} = \frac{1}{x^2}(1 + \frac{2}{3}x^2 + o(x^3))$ et $f(x) = -\frac{2}{3} + o(x)$. Donc $\lim_{x \to 0} f(x) = -\frac{2}{3}$.

2. On a $g(x) = \exp(\tan \frac{\pi x}{4} \ln (2^x + 3^x - 12))$ et on pose x = 2 + h.

On a alors $2^x = 2^{2+h} = 4e^{h \ln 2} = 4(1 + h \ln 2 + o(h))$ et $3^x = 9(1 + h \ln 3 + o(h))$ d'où $2^x + 3^x - 12 = 1 + (4 \ln 2 + 9 \ln 3)h + o(h)$ alors $\ln (2^x + 3^x - 12) = (4 \ln 2 + 9 \ln 3)h + o(h)$.

Par ailleurs, $anrac{\pi x}{4}= an\left(rac{\pi}{2}+rac{\pi h}{4}
ight)=-rac{1}{ anrac{\pi h}{4}}\!\sim\!rac{4}{\pi h}.$

Alors
$$\tan \frac{\pi x}{4} \ln (2^x + 3^x - 12) \sim -\frac{(16 \ln 2 + 36 \ln 3)}{\pi} \text{ d'où } \lim_{x \to 2} g(x) = e^{-\frac{(16 \ln 2 + 36 \ln 3)}{\pi}}.$$

3. On a
$$h(x)=\sqrt{x^2+1}-x=x(\sqrt{1+\frac{1}{x^2}}-1)=x\left(\frac{1}{2x^2}+o\left(\frac{1}{x^2}\right)\right)=\frac{1}{2x}+o\left(\frac{1}{x}\right)$$
. On en déduit que $\lim_{x\to+\infty}h(x)=0$.

Exercice 5:

- On a $u_n = \exp(n \ln(1 + \frac{a}{n}))$. Mais on a $\ln(1 + \frac{a}{n}) \sim \frac{a}{n}$ car $\lim_{n \to \infty} \frac{a}{n} = 0$. Alors $\lim_{n \to \infty} n \ln(1 + \frac{a}{n}) = a$ et comme exp est continue en a, $\lim_{n \to \infty} u_n = e^a$.
- $\begin{array}{l} \bullet \ \ v_n = ne^{\frac{n}{2}\ln\frac{n+1}{n+3}} = ne^{n\ln\frac{1+1/n}{1+3/n}}. \\ \text{Mais } \ln\frac{1+1/n}{1+3/n} = \ln(1+\frac{1}{n}) \ln(1+\frac{3}{n}) = \frac{1}{n} \frac{3}{n} + o(\frac{1}{n}) \ \text{Alors } e^{n\ln\frac{1+1/n}{1+3/n}} \longrightarrow e^{-2} \ \text{et } \left[\lim_{n \to \infty} v_n = +\infty \right]. \end{array}$
- On a $w_n = \exp\left(n\ln\left(\cos\frac{\pi}{6n+1} + \sin\frac{\pi}{3n+2}\right)\right)$.

 On a $\cos\frac{\pi}{6n+1} = 1 \frac{\pi^2}{2(6n+1)} + o(\frac{1}{n^2})$ et $\sin\frac{\pi}{3n+2} = \frac{\pi}{3n+2} + o(\frac{1}{n^2})$.

 Alors $\ln\left(\cos\frac{\pi}{6n+1} + \sin\frac{\pi}{3n+2}\right) = \frac{\pi}{3n+2} + o(\frac{1}{n})$

et
$$n\ln\left(\cosrac{\pi}{6n+1}+\sinrac{\pi}{3n+2}
ight)\simrac{n\pi}{3n+2}\simrac{\pi}{3}.$$
 D'où $\boxed{\lim_{n o\infty}w_n=e^{rac{\pi}{3}}}.$

Exercice 6:

• On a $\frac{x}{e^x-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 + o(x^2)$. Alors on a $\lim_{x\to 0} g(x) = 1 = g(0)$ donc g est continue en 0. De plus, comme g admet un développement limité à l'ordre 1 en 0, on en déduit que g est dérivable en 0 et sa dérivée en 0 est le coefficient d'ordre $1: g'(0) = -\frac{1}{2}$.

On tire également du développement, l'équation de la tangente à la courbe en $0: y = 1 - \frac{x}{2}$ et la position de la courbe $g(x) - y = \frac{x^2}{12} + o(x^2)$ est toujours au dessus de la tangente au voisinage de 0.

• On a $\frac{x - \ln(1+x)}{x} = \frac{1}{2}x - \frac{1}{3}x^2 + o(x^2)$. Alors on a $\lim_{x \to 0} h(x) = 0 = h(0)$ donc h est continue en 0. De plus, comme h admet un développement limité à l'ordre 1 en 0, on en déduit que h est dérivable en 0 et sa dérivée en 0 est le coefficient d'ordre $1 : h'(0) = \frac{1}{2}$.

On tire également du développement, l'équation de la tangente à la courbe en $0: y = \frac{1}{2}x$ et la position de la courbe $h(x) - y = -\frac{1}{3}x^2 + o(x^2)$ est toujours en dessous de la tangente au voisinage de 0.

Exercice 7:

On développe f au voisinage de $+\infty$. Pour x>0, $f(x)=\sqrt[3]{x^3+3x^2-2x-6}=x\sqrt[3]{1+3\frac{1}{x}-\frac{2}{x^2}-\frac{6}{x^3}}$. On pose $u=3\frac{1}{x}-\frac{2}{x^2}-\frac{6}{x^3}$, u tend vers 0 quand x tend vers $+\infty$.

On a
$$\sqrt[3]{1+u} = 1 + \frac{1}{3}u - \frac{1}{9}u^2 + o(u^2)$$
 et $u^2 = \frac{9}{x^2} + o(\frac{1}{x^2})$.

On en déduit que
$$f(x) = x(1 + \frac{1}{x} + -\frac{2}{3x^2} - \frac{1}{x^2} + o(\frac{1}{X^2}))$$
 et finalement $f(x) = x + 1 - \frac{5}{3x} + o(\frac{1}{x})$.

Alors la droite y=x+1 est asymptote à la courbe représentative de f en $+\infty$ et la courbe est en dessous de l'asymptote.

On développe
$$g$$
 au voisinage de ∞ : $g(x) = 2xe^{\frac{1}{x}} - \frac{1}{x}e^{\frac{1}{x}}$. Et $e^{\frac{1}{x}} = 1 + \frac{1}{x} + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)$. Alors $g(x) = 2x + 2 + \frac{1}{x} - \frac{1}{x} + \left(\frac{1}{3} - 1\right)\frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$ et finalement, $g(x) = 2x + 2 - \frac{2}{3x^2} + o\left(\frac{1}{x^2}\right)$.

Alors la droite y=2x+2 est asymptote à la courbe représentative de g en $+\infty$ et en $-\infty$. La courbe est en dessous de l'asymptote en $+\infty$ et en $-\infty$.

Exercice 8:

1. On a ch
$$x=1+\frac{x^2}{2}+\frac{x^4}{24}+o(x^5)$$
 et ch $x-1=\frac{x^2}{2}(1+\frac{x^2}{12}+o(x^3))$. Alors $\frac{1}{\operatorname{ch} x-1}=\frac{2}{x^2}\left(1-\frac{x^2}{12}+o(x^3)\right)$. $x\operatorname{ch} x-\operatorname{sh} x=(x+\frac{x^3}{2}+\frac{x^5}{24}+o(x^6))-(x+\frac{x^3}{6}+\frac{x^5}{120}+o(x^6))=\frac{x^3}{3}+\frac{x^5}{30}+o(x^6)$. On en déduit que
$$\frac{x\operatorname{ch} x-\operatorname{sh} x}{\operatorname{ch} x-1}=\frac{2}{x^2}(\frac{x^3}{3}+\frac{x^5}{30}+o(x^6))(1-\frac{x^2}{12}+o(x^3))=2(\frac{x}{3}+\frac{x^3}{30}+o(x^4))(1-\frac{x^2}{12}+o(x^3))$$
 et finalement $f(x)=\frac{2x}{3}+(-\frac{1}{18}+\frac{1}{15})x^3+o(x^4)$.

Alors en posant f(0) = 0, on a $\lim_{x \to 0} f(x) = 0 = f(0)$ donc la fonction prolongée est continue en 0 et comme elle est continue sur \mathbb{R}^* , elle est continue sur \mathbb{R} .

2. Comme la fonction prolongée admet un développement limité à l'ordre 1 en 0, alors

$$f$$
 est dérivable en 0 et $f'(0)=rac{2}{3}$.

Sa tangente est $y=\frac{2}{3}x$ et la position de la courbe par rapport à la tangente est donnée par le signe de $f(x)-y=(\frac{1}{18}+\frac{1}{15})x^3+o(x^4)$ en dessous de la courbe à gauche de 0 et au dessus à droite de 0.

Exercice 9:

a) $u_n = \left| \sqrt{n} \right|$: On utilise l'encadrement usuel pour la partie entière : $x-1 < \lfloor x \rfloor \leqslant x$ pour $x \in \mathbb{R}$

qui donne
$$\sqrt{n}-1<\left\lfloor \sqrt{n}\right\rfloor \leqslant \sqrt{n}\Longrightarrow 1-\frac{1}{\sqrt{n}}<\frac{\left\lfloor \sqrt{n}\right\rfloor}{\sqrt{n}}\leqslant 1$$

Par le théorème d'encadrement, on déduit que $\lim_{n \to +\infty} \frac{\left\lfloor \sqrt{n} \right\rfloor}{\sqrt{n}} = 1$ soit $\left\lceil \left\lfloor \sqrt{n} \right\rfloor \underset{+\infty}{\sim} \sqrt{n} \right\rceil$

$$\text{b) } v_n = \sqrt{2n^2 + n} - n \text{ : On a } \sqrt{2n^2 + n} = \sqrt{2} n \left(1 + \frac{1}{2n} \right)^{1/2} = \sqrt{2} n \left(1 + o(1) \right) \operatorname{car} \, \frac{1}{2n} = o(1)$$

Alors
$$v_n = \left(\sqrt{2}-1\right)n + o(n)$$
 On en déduit que $v_n \underset{+\infty}{\sim} \left(\sqrt{2}-1\right)n$

$$\text{c) } w_n = \frac{1}{n^2} - \frac{1}{n^3} : \text{On a } \lim_{n \to +\infty} n^2 w_n = 1 \text{ alors } \boxed{w_n \mathop{\sim}_{+\infty} \frac{1}{n^2}}.$$

d)
$$x_n=\sum\limits_{k=0}^n(2k+1)$$
 : On sait que $\sum\limits_{k=0}^nk=rac{n(n+1)}{2}.$

Alors
$$\sum\limits_{k=0}^n(2k+1)=2\sum\limits_{k=0}^nk+\sum\limits_{k=0}^n1=n(n+1)+n=n^2+2n.$$
 Il s'ensuit que $x_n \mathop{\sim}\limits_{+\infty} n^2$

Exercice 10:

1. On montre par récurrence $\forall n \in \mathbb{N}^*, u_n > 0$.

On a $u_1 > 0$. Si pour un entier $n \ge 1$, on a $u_n > 0$, alors u_{n+1} est bien défini et $u_{n+1} > 0$. La proposition est initialisée et héréditaire, alors, par le principe de récurrence, elle est vraie pour tout entier $n \in \mathbb{N}^*$.

On a donc pour
$$n\geqslant 1$$
 , $0\leqslant e^{-u_n}\leqslant 1\Longrightarrow 0\leqslant u_{n+1}\leqslant rac{1}{n+1}.$

On en déduit, par le théorème d'encadrement, que (u_n) converge vers 0

2. Alors $u_n = 0 + o(1)$. On utilise le DL de exp en $0 : e^x = 1 + x + \frac{x^2}{2} + o(x^2)$, qui donne $e^{-u_n} = 1 + o(1)$. On obtient alors $\frac{1}{n+1}e^{-u_n} = \frac{1}{n+1} + o\left(\frac{1}{n+1}\right)$ On a donc $u_{n+1} = \frac{1}{n+1} + o\left(\frac{1}{n+1}\right) = \frac{1}{n+1} + \frac{1}{n+1}\varepsilon_1(\frac{1}{n+1})$ avec $\lim_{u \to 0} \varepsilon_1(u) = 0$.

En revenant à u_n (décalage d'indice), on obtient $u_n = \frac{1}{n} + \frac{1}{n} \varepsilon_1(\frac{1}{n})$

3. On calcule e^{-u_n} en utilisant un DL $e^{-u_n}=1-rac{1}{n}+o\left(rac{1}{n}
ight)$ qui donne

$$rac{1}{n+1}e^{-u_n}=rac{1}{n+1}-rac{1}{n(n+1)}+o(rac{1}{n(n+1)}).$$

On a
$$\dfrac{1}{n(n+1)}\sim\dfrac{1}{(n+1)^2}$$
 qui donne $o\left(\dfrac{1}{n(n+1)}
ight)=o\left(\dfrac{1}{(n+1)^2}
ight)$

On a donc
$$u_{n+1} = rac{1}{n+1} - rac{1}{(n+1)^2} \left(rac{n+1}{n}
ight) + o(rac{1}{(n+1)^2})$$

On utilise
$$rac{n+1}{n} = 1 + rac{1}{n}$$
. D'où $u_{n+1} = rac{1}{n+1} - rac{1}{(n+1)^2} + o(rac{1}{(n+1)^2})$

En décalant les indices, on trouve $\left|u_n = rac{1}{n} - rac{1}{n^2} + o\left(rac{1}{n^2}
ight)
ight|.$

 $\text{4. On recommence}: \quad e^{-u_n}=1-\frac{1}{n}+\frac{1}{n^2}+o\left(\frac{1}{n^2}\right)+\frac{1}{2n^2}+o\left(\frac{1}{n^2}\right)$

$$\begin{array}{ll} \text{qui donne} & \frac{1}{n+1}e^{-u_n} = \frac{1}{n+1} - \frac{1}{n(n+1)} + \frac{3}{2n^2(n+1)} + o\left(\frac{1}{n^2(n+1)}\right). \\ \text{On a donc} & u_{n+1} = \frac{1}{n+1} - \frac{1}{(n+1)^2}\left(1 + \frac{1}{n}\right) + \frac{1}{2(n+1)^3}\left(1 + \frac{1}{n}\right)^2 + o\left(\frac{1}{(n+1)^3}\right). \\ \text{On simplifie} & u_{n+1} = \frac{1}{n+1} - \frac{1}{(n+1)^2} - \frac{1}{n(n+1)^2} + \frac{1}{2(n+1)^3} + o\left(\frac{1}{(n+1)^3}\right). \\ \text{et} & \frac{1}{n(n+1)^2} = \frac{1}{(n+1)^3}\left(1 + \frac{1}{n}\right) = \frac{1}{(n+1)^3} + o\left(\frac{1}{(n+1)^3}\right). \\ \text{D'où}, & u_{n+1} = \frac{1}{n+1} - \frac{1}{(n+1)^2} - \frac{1}{2(n+1)^3} + o\left(\frac{1}{(n+1)^3}\right). \\ \text{On décale les indices et on obtient} \\ & u_n = \frac{1}{n} - \frac{1}{n^2} - \frac{1}{2n^3} + o\left(\frac{1}{n^3}\right). \end{array}$$

Exercice 11:

1. f est continue et strictement croissante comme somme de deux fonctions continues et strictement croissantes sur \mathbb{R}_+^* . D'après le théorème de la bijection, f réalise une bijection de $]0, +\infty[$ sur $]\lim_{x\to 0} f(x); \lim_{x\to +\infty} f(x)[$ $]-\infty, +\infty[$.

Alors, l'équation f(x)=n a une unique solution x_n et on a $f(x_n)=n \Longleftrightarrow x_n=f^{-1}(n)$. La fonction réciproque f^{-1} est strictement croissante de $\mathbb R$ dans $\mathbb R_+^*$. Alors, $\lim_{u\to +\infty} f^{-1}(u)=+\infty$.

On en déduit que $\lim_{n \to +\infty} f^{-1}(n) = +\infty$ ce qui prouve $\lim_{n \to +\infty} x_n = +\infty$.

2. On étudie la fonction $\varphi(x)=x-\ln(x)$. φ est définie et dérivable sur \mathbb{R}_+^* et $\varphi'(x)=1-\frac{1}{x}=\frac{x-1}{x}$. On en déduit que φ a un minimum en 1 qui vaut $\varphi(1)=1$.

Alors, $\forall x>0, \quad \varphi(x)\geqslant 1>0 \quad \text{ On a donc pour tout entier } n\in \mathbb{N}^*, \, \ln(x_n)< x_n.$

3. On a pour tout entier $n\in\mathbb{N}^*$, $\ln(x_n)< x_n$ et $x_n=n-\ln(x_n)$ qui donne $x_n>n-x_n$ soit $\frac{n}{2}< x_n$ On a pour tout entier $n\in\mathbb{N}^*$, $\ln(x_n)< x_n$ et $x_n\geqslant 1$ qui donne $x_n\leqslant n$.

On a $orall n \in \mathbb{N}^*$, $\ln(x_n) + x_n = n$ qui donne $\dfrac{x_n}{n} = 1 - \dfrac{\ln(x_n)}{n}.$

La fonction ln est croissante et $1\leqslant x_n\leqslant n$, alors, $0\leqslant \frac{\ln(x_n)}{n}\leqslant \frac{\ln(n)}{n}$

Par croissance comparée, $\lim_{n \to +\infty} \frac{\ln(n)}{n} = 0$, alors, par le théorème d'encadrement, $\lim_{n \to +\infty} \frac{\ln(x_n)}{n}$.

Il s'ensuit par opérations sur les suites convergentes, que $\lim_{n\to+\infty}\frac{x_n}{n}=1$ soit $x_n\underset{+\infty}{\sim}n$.

 $4. \text{ On a } y_n=x_n-n=-\ln(x_n). \ \frac{y_n}{-\ln(n)}=\frac{\ln(x_n)}{\ln(n)}=\frac{\ln(n)+\ln\left(\frac{x_n}{n}\right)}{\ln(n)}=1+\frac{\ln\left(\frac{x_n}{n}\right)}{\ln(n)}.$

 $\text{Or } \lim_{n \to +\infty} \frac{x_n}{n} = 1 \text{ et } \lim_{n \to +\infty} \ln(n) = +\infty, \text{ donc, par opérations sur les limites, on a } \lim_{n \to +\infty} \frac{\ln\left(\frac{x_n}{n}\right)}{\ln(n)} = 0 \text{ et } \lim_{n \to +\infty} \frac{y_n}{-\ln(n)} = 1. \quad \text{On a prouvé } y_n \underset{+\infty}{\sim} -\ln(n).$

5. On a
$$z_n=-\ln(x_n)+\ln(n)=\ln\left(rac{x_n}{n}
ight)$$
 Or $x_n=n-\ln(x_n)$ d'où $z_n=\ln\left(rac{n-\ln(x_n)}{n}
ight)=\ln\left(1-rac{\ln(x_n)}{n}
ight)$

On a
$$\ln(1+u)=u+u\varepsilon(u)$$
 avec $\lim_{u\to 0}\varepsilon(u)=0$ D'où $z_n=\frac{\ln(x_n)}{n}+\frac{\ln(x_n)}{n}\varepsilon\left(\frac{\ln(x_n)}{n}\right)$ Alors, $z_n\sim\frac{\ln(x_n)}{n}$ et $\frac{\ln(x_n)}{n}=\frac{-y_n}{n}$ et $y_n\sim-\ln(n)$ ce qui donne par quotient d'équivalents et transitivité des équivalents : $\boxed{z_n\sim\frac{\ln(n)}{n}}$.

Exercice 12:

On montre par récurrence que pour tout entier n, $0 < u_n < 2$. Alors la suite $\frac{u_n}{n+1}$ converge vers 0 en tant que produit d'une suite bornée et d'une suite qui tend vers 0.

Alors $\lim_{n\to +\infty} u_{n+1} = 1$ et (u_n) converge.

On a
$$u_n=1+o(1)$$
 qui donne $\dfrac{u_n}{n+1}=\dfrac{1}{n+1}+o\left(\dfrac{1}{n+1}\right)$

Alors
$$u_{n+1}=1+rac{1}{n+1}+o\left(rac{1}{n+1}
ight)$$
 En décalant les indices, il vient $u_n=1+rac{1}{n}+o\left(rac{1}{n}
ight)$

Alors
$$\frac{u_n}{n+1} = \frac{1}{n+1} + \frac{1}{n(n+1)} + o\left(\frac{1}{n(n+1)}\right) = \frac{1}{n+1} + \frac{1}{(n+1)^2}\left(\frac{n+1}{n}\right) + o\left(\frac{1}{n(n+1)}\right)$$

$$rac{u_n}{n+1} = rac{1}{n+1} + rac{1}{(n+1)^2} \left(1 + rac{1}{n}
ight) + o\left(rac{1}{(n+1)^2}
ight)$$

$$\operatorname{car} \ \frac{1}{(n+1)^2} \mathop{\sim}\limits_{+\infty} \frac{1}{n(n+1)} \Longrightarrow o\left(\frac{1}{n(n+1)}\right) = o\left(\frac{1}{(n+1)^2}\right)$$

Alors

$$rac{u_n}{n+1} = rac{1}{n+1} + rac{1}{(n+1)^2} + o\left(rac{1}{(n+1)^2}
ight) \quad ext{Donc} \quad u_{n+1} = 1 + rac{1}{n+1} + rac{1}{(n+1)^2} + o\left(rac{1}{(n+1)^2}
ight)$$

Et en décalant les indices $\left| u_n = 1 + \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \right|$

Exercice 13:

- 1. La fonction $f_n(x) = x^n + 9x^2 4$ est strictement croissante et continue sur]0,1[, c'est donc une bijection de]0,1[dans $]f_n(0),f_n(1)[=]-4,6[$. Il existe donc un unique réel u_n tel que $f_n(u_n)=0$ soit $u_n^n+9u_n^2-4=0$.
- 2. On calcule $f_{n+1}(u_n) = u_n^{n+1} + 9u_n^2 4 = u_n^{n+1} u_n^n = u_n^n(u_n 1) < 0$. On a donc $f_{n+1}(u_n) < f_n + 1(u_{n+1})$ et comme f_{n+1} est strictement croissante, on a pour tout entier n, $u_n < u_{n+1}$. La suite (u_n) est bornée et croissante donc elle converge.
- 3. On calcule $f_n(\frac{3}{4}) = \left(\frac{3}{4}\right)^n + \frac{81}{16} 4 > \frac{81}{16} 4 > 0$

Alors comme f_n est strictement croissante, $u_n < \frac{3}{4}$ qui donne $0 < u_n^n < \left(\frac{3}{4}\right)^n$.

La suite géométrique $\left(\left(\frac{3}{4}\right)^n\right)$ converge vers 0, alors par théorème d'encadrement, $\lim_{n \to +\infty} u_n^n = 0$.

Comme $u_n^n + 9u_n^2 - 4 = 0$ pour toutentier n, par passage à la limite, il vient $9\ell - 4 = 0$ soit $\left| \ell = \frac{2}{3} \right|$.

De
$$u_n^n+9u_n^2-4=0$$
, on tire $u_n-rac{2}{3}=rac{u_n^n}{9u_n+4}\simrac{1}{10}u_n^n$

On veut prouver que $u_n^n \sim \frac{2^n}{3^n}$. On étudie le quotient $\frac{u_n^n}{\left(\frac{2}{3}\right)^n} = \frac{e^{n\ln(u_n)}}{2^{n\ln\left(\frac{2}{3}\right)}} = e^{n\ln(\frac{3u_n}{2})}$

$$\text{Mais } \frac{3u_n}{2} = 1 + \frac{3u_n^n}{18u_n + 8} \text{ et } \ln\left(\frac{3u_n}{2}\right) = \ln\left(1 + \frac{3u_n^n}{18u_n + 8}\right) \sim \frac{3u_n^n}{18u_n + 8} \text{ car } \lim_{n \to +\infty} \frac{3u_n^n}{18u_n + 8} = 0$$

$$\begin{array}{l} \text{Alors } n \ln \left(\frac{3u_n}{2} \right) \sim n \times \frac{3u_n^n}{18u_n + 8} \text{ et } \lim_{n \to +\infty} n \ln \left(\frac{3u_n}{2} \right) = 0 \text{ car } 0 \leqslant nu_n^n \leqslant n \left(\frac{3}{4} \right)^n \\ \text{On en déduit que } \lim_{n \to +\infty} \frac{u_n^n}{\left(\frac{2}{3} \right)^n} = 1 \text{ soit } u_n^n \sim \left(\frac{2}{3} \right)^n. \quad \text{Finalement } \boxed{u_n - \frac{2}{3} \approx \frac{1}{10} \left(\frac{2}{3} \right)^n} \end{array}$$

Exercice 14:

1. La fonction $f(x) = e^x \tan x$ est définie, continue et dérivable sur chaque intervalle $I_n =]-\pi/2 + n\pi, \pi/2 + n\pi[$ pour $n \in \mathbb{Z}$ comme produit de deux fonctions définies, continues et dérivables sur chacun de ces intervalles. On a $f'(x) = e^x(1 + \tan x + \tan^2 x) > 0$ donc f est strictement croissante sur chacun des intervalles I_n . De plus, f est continue sur I_n et $f(I_n) = \mathbb{R}$, alors

l'équation
$$f(x) = 1$$
 a une unique solution x_n sur chaque intervalle I_n .

Soit $n \in \mathbb{N}^*$, on a $-\pi/2 + n\pi < x_n < \pi/2 + n\pi$ d'où $1 - \frac{1}{2n} < \frac{x_n}{n\pi} < 1 + \frac{1}{2n}$. Par encadrement, on en déduit que $\lim_{n \to \infty} \frac{x_n}{n\pi} = 1$ soit $x_n \sim n\pi$.

2. On note $v_n=x_n-n\pi$. Alors $\tan v_n=\tan x_n$ car tan est une fonction π -périodique. Mais $\tan x_n=e^{-x_n}$ d'où $\tan v_n=e^{-x_n}$ avec $v_n\in]-\frac{\pi}{2},\frac{\pi}{2}[$. On en déduit que $v_n=\arctan e^{-x_n}$. Puis que $\lim v_n=0$.

Alors
$$v_n = o(1)$$
, on a $x_n = n\pi + o(1)$, on a alors $e^{-x_n} = e^{-n\pi}e^{o(1)} = e^{-n\pi}(1 + o(1))$. Comme $arctan u = u - \frac{u^3}{3} + o(u^3)$, on obtient $v_n = e^{-n\pi} + o(e^{-n\pi})$.

3 On a alors

$$x_n = n\pi + e^{-n\pi} + o(e^{-n\pi}) ext{ alors } e^{-x_n} = e^{-n\pi} e^{-e^{-n\pi} + o(e^{-n\pi})} = e^{-n\pi} (1 - e^{-n\pi} + o(e^{-n\pi})) ext{ car } \exp(u) = 1 + u + o(u)$$

Alors
$$v_n = \arctan\left(e^{-n\pi} - e^{-2n\pi} + o(e^{-2n\pi})\right)$$
 d'où $v_n = e^{-n\pi} - e^{-2n\pi} + o(e^{-2n\pi})$.

Alors
$$x_n = n\pi + e^{-n\pi} - e^{-2n\pi} + o(e^{-2n\pi})$$
. D'où

$$\exp(-x_n) = \exp(-n\pi) \exp(-e^{-n\pi} + e^{-2n\pi} + o(e^{-2n\pi})) = e^{-n\pi} (1 - e^{-n\pi} + e^{-2n\pi} + \frac{1}{2} e^{-2n\pi})$$

$$\operatorname{car} \exp(u) = 1 + u + \frac{1}{2}u^2 + o(u^2).$$

Alors
$$v_n=\arctan\left(e^{-n\pi}-e^{-2n\pi}+rac{3}{2}e^{-3n\pi}+o(e^{-3n\pi})
ight)$$

d'où
$$v_n = e^{-n\pi} - e^{-2n\pi} + \frac{3}{2}e^{-3n\pi} - \frac{1}{3}e^{-3n\pi} + o(e^{-3n\pi}).$$

Finalement,
$$v_n=e^{-n\pi}-e^{-2n\pi}+rac{7}{6}e^{-3n\pi}+o(e^{-3n\pi})$$
 et

$$x_n = n\pi + e^{-n\pi} - e^{-2n\pi} + \frac{7}{6}e^{-3n\pi} + o(e^{-3n\pi})$$
.

Exercice 15:

1. On encadre l'intégrale : $0 \leqslant t \leqslant 1$ donne $0 \leqslant t^n \sqrt{1+t} \leqslant \sqrt{2}t^n$ L'intégrale est croissante et les bornes sont dans l'ordre : $0 \leqslant \int_0^1 t^n \sqrt{1+t} \ \mathrm{d}t \leqslant \sqrt{2} \int_0^1 t^n \ \mathrm{d}t$.

D'où $0 \leqslant u_n \leqslant \frac{\sqrt{2}}{n+1}$ et (u_n) converge vers 0 d'après le théorème d'encadrement.

2. On intègre par parties

$$u_n = \left\lceil rac{t^{n+1}}{n+1} \sqrt{1+t}
ight
ceil_0^1 - rac{1}{n+1} \int_0^1 rac{t^{n+1}}{2\sqrt{1+t}} \; \mathrm{d}t.$$

On encadre la 2ème intégrale

$$0\leqslant \frac{t^{n+1}}{2\sqrt{1+t}}\leqslant \frac{1}{2}t^{n+1} \text{ donne } 0\leqslant \int_0^1 \frac{t^{n+1}}{2\sqrt{1+t}} \ \mathrm{d}t\leqslant \frac{1}{2(n+2)} \text{ puis, } \lim_{n\to +\infty} \int_0^1 \frac{t^{n+1}}{2\sqrt{1+t}} \ \mathrm{d}t=0.$$

Alors
$$nu_n=rac{\sqrt{2}n}{n+1}-rac{n}{n+1}\int_0^1rac{t^{n+1}}{2\sqrt{1+t}}\,\mathrm{d}t$$

Par le théorème d'encadrement, on en déduit que $\lim_{n\to+\infty} nu_n = \sqrt{2}$ soit $\left|u_n \underset{n\to+\infty}{\sim} \frac{\sqrt{2}}{n}\right|$.

Exercice 16:

- 1. On encadre l'intégrale avec pour $t \in [0,1]$, $0 \leqslant \frac{t^n}{4-t^2} \leqslant \frac{t^n}{3}$ L'intégrale est croissante et les bornes sont dans l'ordre croissant : $0 \leqslant I_n \leqslant \frac{1}{3} \int_0^1 t^n dt = \frac{1}{3(n+1)}$. On en déduit, par le théorème d'encadrement, que $|(I_n)$ converge vers 0
- 2. On intègre par parties

$$I_n = \left[rac{t^{n+1}}{n+1} imes rac{1}{4-t^2}
ight]_0^1 - rac{1}{n+1} \int_0^1 rac{2t^{n+2}}{(4-t^2)^2} \; \mathrm{d}t.$$

On encadre l'intégrale :

$$0\leqslant \frac{2t^{n+2}}{(4-t^2)^2}\leqslant \frac{2}{9}t^{n+2} \text{ donne } 0\leqslant \int_0^1 \frac{2t^{n+2}}{(4-t^2)^2} \,\mathrm{d}t\leqslant \frac{2}{9(n+3)}$$
 Puis,
$$\lim_{n\to +\infty} \int_0^1 \frac{2t^{n+2}}{(4-t^2)^2} \,\mathrm{d}t=0 \text{ soit } \int_0^1 \frac{2t^{n+4}}{(4-t^2)^2} \,\mathrm{d}t=o(1)$$
 Alors $I_n=\frac{1}{3(n+1)}+o\left(\frac{1}{n+1}\right)$ Mais, $\frac{1}{3(n+1)}=\frac{1}{3n}\frac{1}{1+\frac{1}{n}}=\frac{1}{3n}\left(1-\frac{1}{n}+o\left(\frac{1}{n}\right)\right)$ Alors $I_n=\frac{1}{2n}+o\left(\frac{1}{n}\right)$ On poursuit :

Alors
$$\left|I_n = \frac{1}{3n} + o\left(\frac{1}{n}\right)\right|$$
 On poursuit :

$$I_n = rac{1}{3(n+1)} - rac{2}{n+1} \left[rac{t^{n+3}}{n+3} imes rac{1}{(4-t^2)^2}
ight]_0^1 + rac{2}{(n+1)(n+3)} \int_0^1 rac{4t^{n+4}}{(4-t^2)^3} \; \mathrm{d}t.$$

On encadre la 2ème intégrale

$$0\leqslant rac{4t^{n+4}}{(4-t^2)^3}\leqslant rac{4}{27}t^{n+4} ext{ donne } 0\leqslant \int_0^1rac{4t^{n+4}}{(4-t^2)^3} ext{ d} t\leqslant rac{4}{27(n+5)}$$
 Puis, $\lim_{n o +\infty}\int_0^1rac{4t^{n+4}}{(4-t^2)^3} ext{ d} t=0 ext{ soit } \int_0^1rac{4t^{n+4}}{(4-t^2)^3} ext{ d} t=o(1)$ Alors $I_n=rac{1}{3(n+1)}-rac{2}{9(n+1)(n+3)}+o\left(rac{1}{(n+1)(n+3)}
ight)$ $I_n=rac{1}{3n}\left(1+rac{1}{n}
ight)^{-1}-rac{2}{9n^2}\left((1+rac{1}{n})(1+rac{3}{n})
ight)^{-1}+o\left(rac{1}{n^2}
ight)$ $I_n=rac{1}{3n}\left(1-rac{1}{n}
ight)-rac{2}{9n^2}+o\left(rac{1}{n^2}
ight)$

Exercice 17:

1. On a $\frac{\sin t}{t}=1-\frac{t^2}{6}+o(t^3)$. La fonction $h(t)=\frac{\sin t}{t}$ est prolongeable par continuité sur $\mathbb R$ en posant h(0)=1. Aolrs, h a une primitive H sur $\mathbb R$ qui s'annule en 0 et $H(x)=\int_{a}^{x}h(t)\,\mathrm{d}t.$

Par intégration terme à terme du développement limité de h , on trouve $H(x)=x-rac{x^3}{18}+o(x^4)$. Enfion, on a $G(x)=H(\Im x)-H(x)$ ce qui donne le DL suivant :

$$G(x) = 3x - x - rac{27x^3}{18} + rac{x^3}{18} + o(x^4) \quad ext{ soit } \quad G(x) = 2x - rac{13}{9}x^3 + o(x^4).$$

2. G a un DL à l'ordre 0 en 0 donc on peut prolonger G par continuité en posant G(0)=0. G ainsi prolongée a un DL l'ordre 1 donc G est dérivable en 0 et $G'(0) = -\frac{13}{9}$.