Halloween Mini-Project

Varun Durai

1. Importing candy data:

```
candy_file <- "https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power-r
candy = read.csv(candy_file, row.names = 1)
head(candy)</pre>
```

	${\tt chocolate}$	fruity	${\tt caramel}$	${\tt peanutyalmondy}$	nougat	crispedricewafer
100 Grand	1	0	1	0	0	1
3 Musketeers	1	0	0	0	1	0
One dime	0	0	0	0	0	0
One quarter	0	0	0	0	0	0
Air Heads	0	1	0	0	0	0
Almond Joy	1	0	0	1	0	0
	hard bar p	pluribus	sugarpe	ercent priceper	cent wir	npercent
		_	_			

	nara	bar	piuribus	sugarpercent	pricepercent	winpercent
100 Grand	0	1	0	0.732	0.860	66.97173
3 Musketeers	0	1	0	0.604	0.511	67.60294
One dime	0	0	0	0.011	0.116	32.26109
One quarter	0	0	0	0.011	0.511	46.11650
Air Heads	0	0	0	0.906	0.511	52.34146
Almond Joy	0	1	0	0.465	0.767	50.34755

Q1. How many different candy types are in this dataset?

```
dim(candy)
```

[1] 85 12

By observing the dimensions of the dataset, we can see that there are 85 rows, and thus 85 different types of candy.

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity == 1)
```

[1] 38

By summing all the instances of the fruity column when it is equal to 1, we can find that there are 38 fruity candy types.

- 2. What is your favorite candy?
 - Q3. What is your favorite candy in the dataset and what is its winpercent value?

```
candy["Almond Joy", ]$winpercent
```

[1] 50.34755

The favorite candy is Almond Joy, and the function above tells us that its winpercent value is 50.34755

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

76.7686 is the winpercent of Kit Kat

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

49.6535 is the winpercent of Tootsie Roll Snack Bars

```
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

From the skim results, winpercent seems to be on a different scale from the other variables since it displays advanced stats with values between 0-100 while the advanced stats of the other variables range from 0-1.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

A zero indicates that the candy does not contain chocolate, while a one indicates that it does.

Q8. Plot a histogram of winpercent values

library(ggplot2)

```
ggplot(candy, aes(x = winpercent)) +
  geom_histogram(bins = 20)
```


Q9. Is the distribution of winpercent values symmetrical?

The distribution of the winpercent values is not symmetrical.

Q10. Is the center of the distribution above or below 50%?

The center of the distribution seems to be slightly below 50%

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
mean(candy$winpercent[as.logical(candy$fruit)])
```

[1] 44.11974

mean(candy\$winpercent[as.logical(candy\$chocolate)])

[1] 60.92153

On average, chocolate candy is higher ranked.

```
Q12. Is this difference statistically significant?
  t.test(candy$winpercent[as.logical(candy$fruit)])
    One Sample t-test
data: candy$winpercent[as.logical(candy$fruit)]
t = 26.498, df = 37, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 40.74612 47.49337
sample estimates:
mean of x
 44.11974
  t.test(candy$winpercent[as.logical(candy$chocolate)])
    One Sample t-test
data: candy$winpercent[as.logical(candy$chocolate)]
t = 28.926, df = 36, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 56.65009 65.19297
sample estimates:
mean of x
 60.92153
Both have extremely small p-values so the data is likely statistically significant.
  3. Overall Candy Ranking
     Q13. What are the five least liked candy types in this set?
  library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

candy %>% arrange(winpercent) %>% head(5)

		chocolate	fruity	carar	nel j	peanutyalm	nondy	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	ewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	;						
Nik L Nip		22.44534	Ŀ						
Boston Baked	Beans	23.41782	2						
Chiclets		24.52499)						
Super Bubble		27.30386	5						
Jawbusters		28.12744	<u> </u>						

Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble and Jawbusters are the least liked types in the set.

Q14. What are the top 5 all time favorite candy types out of this set?

candy %>% arrange(desc(winpercent)) %>% head(5)

	chocolate	fruity	caran	nel j	peanutyaln	nondy	nougat
ReeseÕs Peanut Butter cu	p 1	0		0		1	0
ReeseÕs Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedric	ewafer	hard	bar	pluribus	sugai	rpercent
ReeseÕs Peanut Butter cu	p	0	0	0	0		0.720
ReeseÕs Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperce	nt winp	ercer	nt			
ReeseÕs Peanut Butter cu	0.6	S51 84	1.1802	29			
ReeseÕs Miniatures	0.2	279 81	1.8662	26			
Twix	0.9	06 81	1.6429	91			
Kit Kat	0.5	511 76	5.7686	30			
Snickers	0.6	551 76	6.6737	78			

The top 5 all time favorite candy types out of this set are Reese's Peanut Butter cup, Reese's Miniatures, Twix, Kit Kat and Snickers.

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_bar(stat = 'identity')
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_bar(stat = 'identity')
```



```
#Adding Color,

my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy?

Sixlet is the worst ranked chocolate candy.

Q18. What is the best ranked fruity candy?

Starburst is the best ranked fruity candy.

4. Taking a look at pricepercent

```
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's Minatures probably offer the best bang for you buck.

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
HersheyÕs Krackel	0.918	62.28448
HersheyÕs Milk Chocolate	0.918	56.49050

So, Nik L Nip, Nestle Smarties, Ring pop, Hershey's Krackel and Hershey's Milk Chocolate are the most expensive.