- Проект: Исследование надежности заемщиков

▼ 1. Откроем таблицу и изучим общую информацию о данных

```
# подключим библиотеку и загрузим данные
import pandas as pd

data = pd.read_csv('data.csv')

# выведим первые 10 строчек датафрейма
data.head(10)
```

₽	children	days_employed	dob_years	education	education_id	family_status	family_status_id	gender	income_type	debt	total_i
0	1	-8437.673028	42	высшее	0	женат / замужем	0	F	сотрудник	0	253875.6
1	1	-4024.803754	36	среднее	1	женат / замужем	0	F	сотрудник	0	112080.0°
2	0	-5623.422610	33	Среднее	1	женат / замужем	0	М	сотрудник	0	145885.9
3	3	-4124.747207	32	среднее	1	женат / замужем	0	М	сотрудник	0	267628.5
4	0	340266.072047	53	среднее	1	гражданский брак	1	F	пенсионер	0	158616.0
5	0	-926.185831	27	высшее	0	гражданский брак	1	М	компаньон	0	255763.50
6	0	-2879.202052	43	высшее	0	женат / замужем	0	F	компаньон	0	240525.9
7	0	-152.779569	50	СРЕДНЕЕ	1	женат / замужем	0	М	сотрудник	0	135823.93
8	2	-6929.865299	35	ВЫСШЕЕ	0	гражданский брак	1	F	сотрудник	0	95856.83
9	0	-2188.756445	41	среднее	1	женат / замужем	0	М	сотрудник	0	144425.93
7	*										

Выведим основную информацию о датафрейме с помощью метода info() data.info()

▼ 2. Предобработка данных

▼ 2.1.Удаление пропусков

Выведим количество пропущенных значений для каждого столбца data.isna().sum()

```
children
days_employed
dob_years
education
education_id
family_status
family_status_id
gender
income_type
debt
total_income
drype: int64
```

В двух столбцах есть пропущенные значения. Один из них — days_employed. Пропуски в этом столбце обработаем на следующем этапе. Другой столбец с пропущенными значениями — total_income — хранит данные о доходах. На сумму дохода сильнее всего влияет тип занятости, поэтому заполним пропуски в этом столбце медианным значением по каждому типу из столбца income_type.

```
# Заполним пропуски в столбце total_income for t in data['income_type'].unique(): data.loc[(data['income_type'] == t) & (data['total_income'].isna()), 'total_income'] = \ data.loc[(data['income_type'] == t), 'total_income'].median()
```

▼ 2.2. Обработка аномальных значений

В данных могут встречаться артефакты (аномалии) — значения, которые не отражают действительность и появились по какой-то ошибке.

Таким артефактом будет отрицательное количество дней трудового стажа в столбце days_employed. Для реальных данных это нормально.

Обработаем значения в этом столбце: заменим все отрицательные значения положительными с помощью метода abs().**

```
# заменим в столбце days_employed все отрицательные значения положительными data['days_employed'] = data['days_employed'].abs()
```

Для каждого типа занятости выведим медианное значение трудового стажа days_employed в днях data.groupby('income_type')['days_employed'].agg('median')

```
income_type
безработный
                 366413.652744
                  3296.759962
в декрете
госслужащий
                   2689.368353
                   1547.382223
компаньон
                 365213.306266
пенсионер
                  520.848083
предприниматель
                   1574.202821
сотрудник
                    578.751554
студент
Name: days_employed, dtype: float64
```

У двух типов (безработные и пенсионеры) аномально большие значения. Исправить такие значения сложно, поэтому оставим их как есть. Тем более этот столбец не понадобится для исследования.

Выведим перечень уникальных значений столбца children data['children'].unique()

```
array([1, 0, 3, 2, -1, 4, 20, 5])
```

В столбце children есть два аномальных значения. Удалим строки, в которых встречаются такие аномальные значения.

```
# Удалим строки, в которых встречаются аномальные значения в столбце children data = data[(data['children'] != -1) & (data['children'] != 20)]
```

выведим перечень уникальных значений столбца children, чтобы убедиться, что артефакты удалень data['children'].unique()

```
array([1, 0, 3, 2, 4, 5])
```

2.3. Удаление пропусков (продолжение)

```
# заполним пропуски в столбце days_employed медианными значениями по каждого типа занятости incc
for t in data['income_type'].unique():
    data.loc[(data['income_type'] == t) & (data['days_employed'].isna()), 'days_employed'] = \
    data.loc[(data['income_type'] == t), 'days_employed'].median()
# проверим, что все пропуски заполнены
data.isna().sum()
   children
   days_employed
    dob_years
                   0
   education
    education_id
    family_status
    family_status_id
   gender
    income_type
   debt
    total income
    purpose
    dtype: int64
```

▼ 2.4. Изменение типов данных

Заменим вещественный тип данных в столбце total_income на целочисленный с помощью метода astyr data['total_income'] = data['total_income'].astype(int)

▼ 2.5. Обработка дубликатов

Обработаем неявные дубликаты в столбце education. В этом столбце есть одни и те же значения, но записанные по-разному: с использованием заглавных и строчных букв.

```
# приведем к нижнему регистру названия в столбце education
data['education'] = data['education'].str.lower()

# выведим на экран количество строк-дубликатов в данных
data.duplicated().sum()

71

# удалим строки-дубликаты
data = data.drop duplicates()
```

▼ 2.6. Категоризация данных

Ha основании диапазонов, указанных ниже, создадим в датафрейме data столбец total_income_category с категориями заемщиков по уровню дохода:

```
0-30000 - 'E';
30001-50000 - 'D';
50001-200000 - 'C';
200001-1000000 - 'B';
1000001 и выше - 'A'.

# напишим функцию с именем categorize_income() для категоризации данных def categorize_income(income):
try:

if 0 <= income <= 30000:</li>
```

```
return 'E'
          elif 30001 <= income <= 50000:
               return 'D'
          elif 50001 <= income <= 200000:
               return 'C'
          elif 200001 <= income <= 1000000:
               return 'B'
          elif income >= 1000001:
               return 'A'
     except:
          pass
# создадим столбец total_income_category
data['total_income_category'] = data['total_income'].apply(categorize_income)
# выведим на экран перечень уникальных целей взятия кредита из столбца purpose
data['purpose'].unique()
    array(['покупка жилья', 'приобретение автомобиля',
           'дополнительное образование', 'сыграть свадьбу',
           'операции с жильем', 'образование', 'на проведение свадьбы',
           'покупка жилья для семьи', 'покупка недвижимости',
           'покупка коммерческой недвижимости', 'покупка жилой недвижимости',
           'строительство собственной недвижимости', 'недвижимость',
           'строительство недвижимости', 'на покупку подержанного автомобиля',
           'на покупку своего автомобиля',
           'операции с коммерческой недвижимостью',
           'строительство жилой недвижимости', 'жилье', 'операции со своей недвижимостью', 'автомобили',
           'заняться образованием', 'сделка с подержанным автомобилем', 'получение образования', 'автомобиль', 'свадьба',
           'получение дополнительного образования', 'покупка своего жилья',
           'операции с недвижимостью', 'получение высшего образования',
           'свой автомобиль', 'сделка с автомобилем',
           'профильное образование', 'высшее образование',
           'покупка жилья для сдачи', 'на покупку автомобиля', 'ремонт жилью',
           'заняться высшим образованием'], dtype=object)
Создадим функцию, которая на основании данных из столбца purpose сформирует новый столбец purpose_category, в который
войдут следующие категории:**
  • 'операции с автомобилем'.
  • 'операции с недвижимостью',
   • 'проведение свадьбы'.
   • 'получение образования'.
# создание функции categorize_purpose
def categorize_purpose(row):
     try:
          if 'автом' in row:
               return 'операции с автомобилем'
          elif 'жил' in row or 'недвиж' in row:
               return 'операции с недвижимостью'
          elif 'свад' in row:
               return 'проведение свадьбы'
          elif 'образов' in row:
               return 'получение образования'
     except:
          return 'нет категории'
# создадим столбец purpose category
data['purpose_category'] = data['purpose'].apply(categorize_purpose)
```

▼ 3. Исследование данных

3.1 Проверим наличие зависимости между количеством детей и возвратом кредита в срок

Сгруппируем заемщиков по количеству детей в семье и рассчитаем по каждой группе:

- общее количество заемщиков в группе,
- количество заемщиков, имеющих задолженность по возврату кредита.

Даннае запишем в таблицу data_groupby_children.

Создадим в таблице data_groupby_children столбец relative_weight, в котором рассчитаем процент заемщиков, имеющих задолженность, о общему количеству заемщиков в группе.

создадим сводную таблицу data_groupby_children data_groupby_children = pd.pivot_table(data, index=['children'], values = ['debt'], aggfunc = ['data_groupby_children['relative_weight'] = data_groupby_children['sum']['debt']/data_groupby_children.sort_values(by='relative_weight')

	count	sum	relative_weight			
	debt	debt				
children						
5	9	0	0.000000			
0	14091	1063	7.543822			
3	330	27	8.181818			
1	4808	444	9.234609			
2	2052	194	9.454191			
4	41	4	9.756098			

Вывод:

- Наименьший процент заемщиков, имеющих задолженность по кредиту, к общему количеству заемщиков наблюдается в группе бездетных заемщиков 7.54%.
- Группы заемщиков, имеющих 3-5 детей в семье, не являются репрезентативными ввиду своей малочисленности.
- Заемщиков, имеющих детей в семье, существенно меньше, чем заемщиков, не имеющих детей.

Таким образом, наличие детей в семье имеет негативное влияние на возврат кредита в срок.

Можно поработать с многодетными и разделить заемщиков на категории в зависимости от количества детей в семье:

0 - бездетные 1-2 - малодетные 3-5 - многодетные

```
# создадим функцию категоризации заемщиков по количеству детей
def categorize_children(children):
    try:
        if 1<=children<=2:</pre>
            return 'малодетные'
        if 3<=children:
            return 'многодетные'
        return 'бездетные'
    except:
        pass
# создадим столбец children_category
data['children_category'] = data['children'].apply(categorize_children)
# повторим первый шаг, используя столбец 'children_category'
data_groupby_children2 = pd.pivot_table(data, index=['children_category'], values = ['debt'], ag
data_groupby_children2['relative_weight'] = data_groupby_children2['sum']['debt']/data_groupby_c
data_groupby_children2.sort_values(by='relative_weight')
```

count sum relative_weight
debt debt

Вывод:

График стал компактнее, но вывод не изменился: наличие детей в семье имеет негативное влияние на возврат кредита в срок. Многодетные семьи либо более ответственные заемщики в сравнении с малодетными, либо их выборка нерепрезентативна.

3.2 Проверим наличие зависимости между семейным положением и возвратом кредита в срок

Сгруппируем заемщиков по семейному положению и рассчитаем по каждой группе:

- общее количество заемщиков в группе,
- количество заемщиков, имеющих задолженность по возврату кредита.

Даннае запишем в таблицу data_groupby_family_status. Создадим в таблице data_groupby_family_status столбец relative_weight, в котором рассчитаем процент заемщиков, имеющих задолженность, о общему количеству заемщиков в группе.

создадим сводную таблицу data_groupby_family_status
data_groupby_family_status = pd.pivot_table(data, index=['family_status'], values = ['debt'], ag
data_groupby_family_status['relative_weight'] = data_groupby_family_status['sum']['debt']/data_g
data_groupby_family_status.sort_values(by='relative_weight')

	count	sum	relative_weight
	debt	debt	
family_status			
вдовец / вдова	951	63	6.624606
в разводе	1189	84	7.064760
женат / замужем	12261	927	7.560558
гражданский брак	4134	385	9.313014
Не женат / не замужем	2796	273	9.763948

Вывод:

- Лица, состоящие в браке берут кредиты чаще, чем одинокие.
- Лица, состоящие или состоявщие ранее в официальном браке, являются более ответственными заемщиками.
- Лица, состоящие в гражданском браке либо имеющие статус "не женат / не замужем", наименее ответственные заемщики.

Таким образом, зависимость между семейным положением и возвратом кредита в срок существует: лица, состоящие или состоявшие ранее в официальном браке, чаще гасят кредит в срок, чем лица, живущие в гражданском браке или незамужние/ неженатые.

3.3 Проверим наличие зависимости между уровнем дохода и возвратом кредита в срок

Сгруппируем заемщиков по уровню дохода и рассчитаем по каждой группе:

- общее количество заемщиков в группе,
- количество заемщиков, имеющих задолженность по возврату кредита.

Даннае запишем в таблицу data_groupby_income_category . Создадим в таблице data_groupby_income_category столбец relative_weight, в котором рассчитаем процент заемщиков, имеющих задолженность, о общему количеству заемщиков в группе.

```
# создадим сводную таблицу data_groupby_income_category data_groupby_income_category = pd.pivot_table(data, index=['total_income_category'], values = ['data_groupby_income_category['relative_weight'] = data_groupby_income_category['sum']['debt']/data_groupby_income_category.sort_values(by='relative_weight')
```

count sum relative_weight

debt debt

total_income_category

Вывод:

- Наибольшее количество кредитов приходится на лиц с доходом от 50001 до 200000 и от 2000001 до 1000000.
- Группы заемщиков, имеющих категрию дохода D, A и E, не являются репрезентативными ввиду своей малочисленности.
- Если сравнивать заемщиков, имеющих категорию дохода В и С, то наблюдается прямая зависимость между уровнем дохода и возвратом кредита в срок.

Таким образом, если отказаться от анализа малочисленных категорий заемщиков, то уровень дохода влияет на возврат кредита в срок: процент задолженности по возврату кредита в категории В ниже, чем в категории С на 1.43%.

▼ 3.4 Проверим влияние цели кредита на его возврат в срок

Сгруппируем заемщиков по целям кредита и рассчитаем по каждой группе:

- общее количество заемщиков в группе,
- количество заемщиков, имеющих задолженность по возврату кредита.

Даннае запишем в таблицу data_groupby_purpose_category. Создадим в таблице data_groupby_purpose_category столбец relative_weight, в котором рассчитаем процент заемщиков, имеющих задолженность, о общему количеству заемщиков в группе.

создадим сводну таблицу data_groupby_purpose_category
data_groupby_purpose_category = pd.pivot_table(data, index=['purpose_category'], values = ['debt
data_groupby_purpose_category['relative_weight'] = data_groupby_purpose_category['sum']['debt']/
data_groupby_purpose_category.sort_values(by='relative_weight')

	count	sum	relative_weight	
	debt	debt		
purpose_category				
операции с недвижимостью	10751	780	7.255139	
проведение свадьбы	2313	183	7.911803	
получение образования	3988	369	9.252758	
операции с автомобилем	4279	400	9.347978	

Вывод:

- Кредиты с целью "операции с недвижимостью" имеют наименьший процент задолженности 7.25%.
- Кредиты с целью "проведение свадьбы" на втором месте по своевременности возврата кредита, процент задолженности 7.91%.
- Кредиты с целью "получение образования" и "операции с автомобилем" чаще имеют задолженность по возврату кредита, процент задолженности 9.25% и 9.34% соответственно.

Таким образом: цель кредита влияет на возврат кредита в срок. Наиболее надежные заемщики - лица, берущие кредиты на операции с недвижимостью, возможно, это связано с наличием залога. Кредиты на проведение свадьбы и на получение образования вроде бы подпадают под категорию потребительские кредиты, но заемщики ведут себя по разному, возможно сказывается возраст и социальный статус(гипотеза для дальнейшего изучения). Кредиты по операциям с автомобилем имеют наибольший процент несвоевременного возврата кредита.

▼ 3.5 Определим возможные причины появления пропусков в исходных данных

Причины пропуска данных можно разделить на 2 группы:

- человеческий фактор;
- технический сбой.

Человеческий фактор возникает при ручном вводе данных и может быть связан с невнимательностью, ленью, отсутствием четких инструкций по заполению данных, осознанным желанием скрыть информацию или просто отсутствием необходимой информации.

Технический сбой может произойти, например, если датасет собран из нескольких источников, если с одной базой данных работают несколько пользователей, если данные фиксируются автоматически и прибор фиксации данных вышел из строя.

3.6 Объясним, почему заполнить пропуски медианным значением — лучшее решение для количественных переменных

Решение чем запонять пропуски зависит от целей исследования и характера данных.

Медиана устойчива к аномальным отклонениям (выбросам) и проста в расчете. При большом количестве наблюдений использование медианы для заполнения пропусков в количественных переменных, действительно, может быть лучшим решением. Когда количество наблюдений минимально, медиана непредсказуема, и может не отражать истинной картины данных.

4. Общий вывод

Проведенный анализ говорит о том, что наличие детей и семейное положение оказывают влияние на возврат кредита в срок.

Однако у меня вызывают сомнения репрезентативность выборки и статистическая значимость полученных результатов.

Полагаю, что наличие детей в семье и семейное положение - два взаимосвязанных фактора. Например, одинокие многодетные родители более рискованная категория заемщиков для банка, чем лица, состоящие в официальном браке и не имеющие детей.

Проверим данную гипотезу на имеющемся датасете.

создадим сводную таблицу data_groupby_children_family
data_groupby_children_family = pd.pivot_table(data, index=['family_status', 'children_category']
data_groupby_children_family['relative_weight'] = data_groupby_children_family['sum']['debt']/da
data_groupby_children_family.sort_values('relative_weight')

		count	sum	relative_weight
		debt	debt	
family_status	children_category			
вдовец / вдова	многодетные	7	0	0.000000
	бездетные	847	53	6.257379
женат / замужем	бездетные	7468	516	6.909480
в разводе	бездетные	784	55	7.015306
женат / замужем	многодетные	285	20	7.017544
в разводе	малодетные	393	28	7.124682
	многодетные	12	1	8.333333
гражданский брак	бездетные	2730	229	8.388278
женат / замужем	малодетные	4508	391	8.673469
Не женат / не замужем	бездетные	2262	210	9.283820
вдовец / вдова	малодетные	97	10	10.309278
гражданский брак	малодетные	1338	148	11.061286
Не женат / не замужем	малодетные	524	61	11.641221
гражданский брак	многодетные	66	8	12.121212
Не женат / не замужем	многодетные	10	2	20.000000

Действительно, наименьший процент задолженности у бездетных заюмщиков, состоящих в официальном браке, а наибольший - у заемщиков, имеющих детей и либо не состоящих в браке, либо разведенных.

Опять присутствует нерепрезентативная выборка - многодетные заемщики.

Для создания качественной системы скоринга имеет смысл продолжить анализ и учесть другие факторы.

✓ 0 сек. выполнено в 09:40

.