

Machine Learning in E-commerce Review Scoring

_____ C2T4

TingYi Lee (5610529)	Task: Data processing, run KNN model Presentation: Data Understanding, Data preparation	
Jiayi Li (5630918)	Task: Data processing, run Decision Tree and Logistic Regression model Presentation: Data preparation	
HaoDong Liu (5610099)	Task: Data processing, run RandomForest model Presentation: Modeling	
Leah Xiao (5615963)	Task: Data processing, run SVM model Presentation: Business Understanding, Evaluation, Deployment	

Table of contents

01	Business Understanding	04	Modeling
----	-------------------------------	----	----------

- 02 Data Understanding 05 Evaluation
- O3 Data Preparation O6 Deployment

01

Business Understanding

						_
Business Understanding	Data Understanding	Data Preparation	Modeling	Evaluation	Deployment	

1. Background

2. Business Objectives

3. Data Overview

A Portuguese e-commerce company wants to use ML to predict customer review scores to identify customers more likely to leave positive reviews. This will allow them to target promotions towards these customers, enhancing their online reputation and increasing sales.

1. Background

2. Business Objectives

3. Data Overview

- Build a prediction model to predict the customer who likely to leave good review.
- Improve the online reputation of the e-commerce platform by increasing the number of positive customer reviews.
- Use targeted marketing campaigns (emails, special promotions) to encourage satisfied customers to leave reviews.

Business Understanding Un

Data Understanding Data Preparation

Modeling

Evaluation

Deployment

1. Background

2. Business Objectives

3. Data Overview

The company has provided 8 datasets, including:

Review Data: review scores, customer comments, timestamps

Customer Data: customer regions, unique customer ID

Order Item Data: products purchased, sellers, pricing, freight value

Payment Data: payment methods, payments sequential, instalment details

Order Data: order status, delivered carrier date, estimated delivery date

Geolocation Data: customer regions and zip code

Product Data: category name, description length, number of product photos

02

Data Understanding

Business Understanding Data Understanding Data Preparation

Modeling

Evaluation

Deployment

1.1 Acquire necessary data

1. Collect Initial Data

2. Describe Data

3. Explore Data

4. Verify Data Quality

Business Understanding

Data Understanding Data Preparation

Modeling

Evaluation

Deployment

2.1 Number of records

All data is in CSV format. The data volume is around 100,000 records.

2. Describe Data

1. Collect Initial Data

3. Explore Data

4. Verify Data Quality

DataFrame Name	Rows	Columns
		Co camins
order_reviews_df	89999	7
orders_df	99441	8
order_payments_df	103886	5
order_items_df	112650	7
products_df	32951	9
customers_df	99441	4
sellers_df	3095	3
<pre>geolocation_df</pre>	1000163	4

610

610

610 610

2

2

2

order_id

160

1783

2965

payment type

payment_sequential

navment installments

2.2 Number of missing records

order_id

customer_id

order status

dtype: int64

order_approved_at

1. Collect Initial Data

2. Describe Data

3. Explore Data

4. Verify Data Quality

order_reviews_df missing	value
review_id	0
order_id	0
review_score	0
review_comment_title	79404
review_comment_message	52429
review_creation_date	0
review_answer_timestamp	0
dtype: int64	

products_df missing value

product_description_lenght

product_category_name

product name lenght

product_photos_qty product_weight_g

product_length_cm

product height cm product width cm

dtype: int64

product_id

customers_df missing value
customer_id
customer_unique_id
customer_zip_code_prefix
customer_region
dtype: int64

orders_df missing value

order_purchase_timestamp

order delivered carrier date

order_delivered_customer_date

order_estimated_delivery_date

customers_df missing value
customer_id
customer_unique_id
customer_zip_code_prefix
customer_region
dtype: int64

paymentinstaction	•
payment_value	0
dtype: int64	
,	
sellers_df missing	value

order_payments_df missing value

sellers	_df	miss	ing	valu
seller_	id			
seller_	zip_	_code	_pre	efix
seller_	code	2		
dtype:	inte	54		

geolocation_df missing value
<pre>geolocation_zip_code_prefix</pre>
geolocation_lat
geolocation_lng
geolocation_code
dtype: int64

order items df missing value

order id

product id

seller id

price

order_item_id

freight_value

dtype: int64

shipping_limit_date

Deployment

3.1 Multiple order_id records

- 1. Collect Initial Data
- Order item data
 - Customer may buy different items in an order.

2. Describe Data

Review data

3. Explore Data

Same or different review score for different items in an order.

- 4. Verify Data Quality
- Payment data
 - Multiple payment method for an order, ex. Card + voucher.

Business Understanding

Data Understanding

Order id

Order_1

Order_1

Data Preparation

Modeling

Evaluation

Deployment

3.2 Inconsistent records when merge data

1 Collect Initial Data

Order_review

Order_item

merged

Review_score	Order_id	product_id
j .	Order_1	product_1
ļ	Order_1	product_2
	Order_1	product_3

Order id product id review score Order 1 product 1 5 Order 1 product_1 Order_1 product_2 5 Order_1 product 2 4 Order 1 product 2 5 4 Order 1 product 3

2. Describe Data

3. Explore Data

4. Verify Data Quality

Grouped by order_id 'review_score': 'mean' .apply(np.floor)

Order_id	Review_score
Order_1	5
Order_1	4
Order_id	review_score
Order_1	4.5

Order_id	review_score
Order_1	4

	Order_id	product_id
	Order_1	product_1
/	Order_1	product_2
	Order 1	product 3

Order_id	product_id	review_score
Order_1	product_1	4
Order_1	product_2	4
Order_1	product_3	4

Data Understanding

Order 1

Order_id

Data Preparation

Modeling

Evaluation

Deployment

3.3 Duplicate records when merge data

1. Collect Initial Data

Order_review

Order_id review_score
Order 1 5

Order_item

Order_id	product_id
Order_1	product_1
Order_1	product_2
Order_1	product_3

merged

Order_id	product_id	review_score
Order_1	product_1	5
Order_1	product_1	5
Order_1	product_2	5
Order_1	product_2	5
Order_1	product_3	5
Order_1	product_3	5

2. Describe Data

3. Explore Data

4. Verify Data Quality

Grouped by order_id 'review_score': 'mean' .apply(np.floor)

review_score

Order_1	5
Order_1	5
Order_id	review_score
Order_1	5
Order_id	review_score
Order_1	5

Order_id	product_id
Order_1	product_1
Order_1	product_2
Order_1	product_3

Order_id	product_id	review_score
Order_1	product_1	5
Order_1	product_2	5
Order_1	product_3	5

4.1 Quality issues

1. Collect Initial Data

Multiple records

How we merge data between datasets? What is the logic when joining datasets? Ex. Order id

Missing Value

How we deal with missing values for each case? By using median to impute or drop the records?

Ex. Some datetime fields

3. Explore Data

2. Describe Data

Duplicate Records

Should the duplicate records be dropped? What are the reasons to drop the records. Ex. Duplicate review scores for the same order and item

Invalid Values

How we manage invalid values? Ex. Purchase time is later than delivery time

Datatype issue

When calculate a period of time, the datatime should be transformed.

4. Verify Data Quality

03

Data Preparation

'payment value':'sum',

'payment installments':'max'

2.1 Remove record which has at least 5 missing fields

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

(102238, 34) order id review score has_effective_comment review_creation_date review_answer_timestamp customer_id order status order purchase timestamp order_approved_at 145 order_delivered_carrier_date 1744 order_delivered_customer_date 2886 order_estimated_delivery_date payment_value payment installments used voucher 699 order item id product id 699 seller id 699 shipping_limit_date 699 699 price freight value 699 customer_unique_id customer_zip_code_prefix customer region product_category_name 2127 product_name_lenght 2127 product_description_lenght 2127 product photos gty 2127 717 product weight q product_length_cm 717 717 product_height_cm 717 product_width_cm seller_zip_code_prefix 699 seller_code 699

Remove records which has at least 5 missing fields

Removed 749 records

(101489, 34) order_id review_score has_effective_comment	(
review_creation_date	(
review_answer_timestamp	(
customer_id	(
order_status	(
order_purchase_timestamp order_approved_at	14
order_delivered_carrier_date	1013
order_delivered_customer_date	2154
order_estimated_delivery_date	(
payment_value	3
payment_installments	3
used_voucher	
order_item_id	
product_id	(
seller_id	(
shipping_limit_date	9
price	
freight_value customer_unique_id	
customer_unique_id customer_zip_code_prefix	ì
customer_zip_code_prefix	
product_category_name	1378
product_name_lenght	1378
product_description_lenght	1378
product_photos_qty	1378
product_weight_g	
product_length_cm	
product_height_cm	:
product_width_cm	
seller_zip_code_prefix	(
seller_code	(

(101400 34)

2.2 Setting datetime value as NaN for certain records

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

(101489, 34)	
order_id	0
review_score	0
has_effective_comment	0
review_creation_date	0
review answer timestamp	0
customer id	0
order_status	0
order_purchase_timestamp	0
order_approved_at	14
order_delivered_carrier_date	1013
order_delivered_customer_date	2154
order_estimated_delivery_date	0
payment_value	3 3 0
payment_installments	3
used_voucher	3
order_item_id	
product_id	0
seller_id	0
shipping_limit_date	0
price	0
freight_value	0
customer_unique_id	6
customer_zip_code_prefix	6
customer_region	0
product_category_name	1378
product_name_lenght	1378
product_description_lenght	1378
product_photos_qty	1378
product_weight_g	1
product_length_cm	1 1
product_height_cm	1
product_width_cm	6
seller_zip_code_prefix	0
seller_code	V

If one of the datetime is NaN, Set all fields into NaN

Purpose: prevent incorrect data when conducting feature engineering

order_id	
review_score	
has_effective_comment	
review creation date	
review_answer_timestamp	
customer id	
order_status	
order_purchase_timestamp	
order_approved_at	1
order_delivered_carrier_date	215
order_delivered_customer_date	215
order_estimated_delivery_date	215
payment_value	
payment_installments	
used_voucher	
order_item_id	
product_id	
seller_id	
shipping_limit_date	
price	
freight_value	
customer_unique_id	
customer_zip_code_prefix	
customer_region	
product_category_name	137
product_name_lenght	137
product_description_lenght	137
product_photos_qty	137
product_weight_g	
product_length_cm	
product_height_cm	
product_width_cm	
seller_zip_code_prefix	
seller_code	

2.3 Filling missing values using median

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

```
order id
review score
has effective comment
review_creation_date
review answer timestamp
customer id
order status
order purchase timestamp
order_approved_at
                                   14
                                 2155
order delivered carrier date
                                 2155
order_delivered_customer_date
order_estimated_delivery_date
                                 2155
payment_value
                                    3
payment_installments
used voucher
order item id
product id
seller_id
shipping_limit_date
price
freight_value
customer unique id
customer_zip_code_prefix
customer region
                                 1378
product_category_name
                                 1378
product_name_lenght
                                 1378
product_description_lenght
product_photos_qty
                                 1378
product_weight_g
product_length_cm
product_height_cm
product width cm
                                    0
seller_zip_code_prefix
seller code
```

Filling missing value with median

```
order_id
review_score
has_effective_comment
review_creation_date
review answer timestamp
customer id
order status
order purchase timestamp
order_approved_at
                                   14
order delivered carrier date
                                  2155
order_delivered_customer_date
                                  2155
order_estimated_delivery_date
                                 2155
payment_value
payment_installments
used_voucher
order item id
product id
seller id
shipping limit date
price
freight value
customer_unique_id
customer_zip_code_prefix
customer_region
product_category_name
                                 1378
product name lenght
product description lenght
product photos gty
product weight q
product_length_cm
product height cm
product width cm
seller zip code prefix
seller_code
```


2.4 Drop unnecessary features

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

order_id review_score has_effective_comment review creation date review_answer_timestamp customer_id order_status order purchase timestamp order_delivered_carrier_date 2155 order_delivered_customer_date 2155 order_estimated_delivery_date 2155 Drop payment_installments used voucher order_item_id product_id seller_id shipping_limit_date price freight_value customer_unique_id customer_zip_code_prefix customer region product_name_lenght product_description_lenght product_photos_qty seller_zip_code_prefix seller_code

1. Data Integration

Different Products in the Same Order

2. Data Cleaning

order_id	product_id	order_item_id	review_score	has_effective_comment	price
01144cadcf64b6427f0a6580a3033220	b8a0d73b2a06e7910d9864dccdb0cda2	1.0	3.0	0	59.9
01144cadcf64b6427f0a6580a3033220	9351b1e4334769dc0abe871ee3c7abc3	2.0	3.0	0	62.0

3. Data Aggregation

Same Product with Multiple Quantities

4. Feature Engineering

order_id	product_id	order_item_id	review_score	has_effective_comment	price
e9d40a10468b79b4c35c82f1bf078545	b114bf337c0626166abe574eee9e3f32	1.0	5.0	0	149.94
e9d40a10468b79b4c35c82f1bf078545	b114bf337c0626166abe574eee9e3f32	2.0	5.0	0	149.94
e9d40a10468b79b4c35c82f1bf078545	b114bf337c0626166abe574eee9e3f32	3.0	5.0	0	149.94
e9d40a10468b79b4c35c82f1bf078545	b114bf337c0626166abe574eee9e3f32	4.0	5.0	0	149.94
e9d40a10468b79b4c35c82f1bf078545	b114bf337c0626166abe574eee9e3f32	5.0	5.0	0	149.94

Business Data
Understanding

Data Preparation

Modeling

Evaluation

Deployment

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

```
order_review_df = order_review_df.groupby ['order_id', 'product_id'], as_index=False).agg({
    'review_score': 'first',
    'has_effective_comment': 'first',
    'review_creation_date' : 'first',
    'review_answer_timestamp': 'first',
    'customer_id': 'first',
    'order_status': 'first',
    'order_purchase_timestamp' : 'first',
    'order_delivered_carrier_date' : 'first',
    'order delivered customer date' : 'first',
    'order_estimated_delivery_date' : 'first',
    'payment value' : 'first',
    'payment_installments':'first',
    'used voucher': 'first'
     'price': 'sum',
     'freight_value': 'sum'
    'product_id':'first',
    'seller_id': 'first',
    'customer_region':'first',
    'product_category_name':'first',
    'product description lenght': 'first',
    'product_photos_qty': 'first',
    'seller_code': 'first',
})
```


1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

Rescale Data

Feature Selection

Business Data Data Understanding Data Preparation Modeling Evaluation Deployment

Feature Construction

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

```
order_purchase_timestamp object
order_delivered_carrier_date object
order_delivered_customer_date object
order_estimated_delivery_date object
```

to_datetime

```
order_purchase_timestamp datetime64[ns]
order_delivered_carrier_date datetime64[ns]
order_delivered_customer_date datetime64[ns]
order_estimated_delivery_date datetime64[ns]
```


1. Data Integration

order_purchase_timestamp

2. Data Cleaning

order delivered carrier date

3. Data Aggregation

order_delivered_customer_date

4. Feature Engineering

order_estimated_delivery_date

5. Data Description

dispatch days

4. Feature Engineering

order estimated delivery date

- 1. Data Integration order_purchase_timestamp
- 2. Data Cleaning

order_delivered_carrier_date

3. Data Aggregation

order delivered customer date

4. Feature Engineering

order_estimated_delivery_date

delivery diff days (+/-)

5. Data Description

whether exceed estimated (0/1)

1. Data Integration

Raw Time Calculation

2. Data Cleaning

dispatch days = 0 (< 24 h)

3. Data Aggregation

order_purchase_timestamp	order_delivered_carrier_date		
2017-07-25 18:57:58	2017-07-26 17:43:33		
2018-07-26 22:42:32	2018-07-27 14:34:00		

4. Feature Engineering

.dt.normalize()

Day-Based Adjustment

→ dispatch_days = 1

same_region

Feature Construction

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

<pre>dispatch_days genuine_delivery_days delivery_diff_days</pre>	1961 1961 1961	ys delivery_diff_days 90276.000000 -12.006635 10.180449 -147.000000
<pre>review_response_time_h freight_ratio</pre>	0	-17.000000 -13.000000
same_region	0	7.000000 3.000000
same_region	U	Missing values imputed
dispatch_days	funiaht 0	same_ using the median
<pre>genuine_delivery_days</pre>	0	9438 0.359747
delivery_diff_days	0	7000 0.479929 0.000000
review_response_time_h	0	.5983 0.000000
freight_ratio	0	3256 0.000000 7711 1.000000

3283

1.000000

Encoding Categorical Feature

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

	product_category_name_english	product_category_name
Electronics & Accessories	computers_accessories	informatica_acessorios
	tablets_printing_image	tablets_impressao_imagem
	fixed_telephony	telefonia_fixa
	telephony	telefonia
	consoles_games	consoles_games
	audio	audio
	electronics	eletronicos
Home & Furniture	furniture_decor	moveis_decoracao
	bed_bath_table	cama_mesa_banho
	kitchen_dining_laundry_garden_furniture	moveis_cozinha_area_de_servico_jantar_e_jardim
	housewares	utilidades_domesticas
	home_comfort	
	home_comfort_2	casa_conforto_2
	home_appliances	eletrodomesticos
	home_appliances_2	eletrodomesticos_2
	small_appliances	eletroportateis

Business
Understanding

Data
Preparation

Modeling

Evaluation

Deployment

Encoding Categorical Feature

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

<pre>product_category_name_Electronics & Accessories</pre>	0
<pre>product_category_name_Entertainment & Hobbies</pre>	0
<pre>product_category_name_Fashion & Personal Care</pre>	0
<pre>product_category_name_Food & Daily Essentials</pre>	0
<pre>product_category_name_Home & Furniture</pre>	0
<pre>product_category_name_Industry & Construction</pre>	0
<pre>product_category_name_Sports & Outdoor</pre>	0
<pre>product_category_name_unknown</pre>	0

- Industry & Construction
- Reduce dimensionality

Unknown

Entertainment & Hobbies

Encoding Categorical Feature

1. Data Integration

\circ	Data	OI	:
_	I IATA	LIPS	nına
∠.	Data	Oloa	HIHIM

3. Data Aggregation

4. Feature Engineering

Order Status	Count
delivered	99,335
approved	3
canceled	459
invoiced	309
processing	299
shipped	1,077
unavailable	7

Average_review_score
4.067
2.000
1.627
1.654
1.344
1.982
1.571

Encoding Categorical Feature

1. Data Integration

2. Data Cleaning

3. Data Aggregation

Mitigates data imbalance issues Improves model efficiency

Encoding Categorical Feature

1. Data Integration

2. Data Cleaning

3. Data Aggregation

Payment Installments

4. Feature Engineering

5. Data Description

1	44,291	
2	11,410	
3	9,665	
4	6,567	
5	4,855	
6	3,686	
7	1,531	
8	4,082	
9	598	
10	5,210	Mode Imputation
11	24	
12	140	
13	16	
14	11	
15	73	
16	6	
17	6	
18	27	
20	16	
21	3	
22	1	
24	19	

2	11,410
3	9,665
4	6,567
5	4,855
6	3,686
7	1,531
8	4,082
9	598
10	5,210
11	24
12	140
13	16
14	11
15	73
16	6
17	6
18	27
20	16
21	3
22	1
24	19
	^

44,291

Encoding Categorical Feature

1. Data Integration

2. Data Cleaning

3. Data Aggregation

Payment Installments

4. Feature Engineering

5. Data Description

One - Hot!

Rescale Data

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

Normalization (Min-Max)

- 1.rescale absolute values
- 2.restore original sign

A Rescaling is applied after dataset splitting

Retains early/late delivery distinction in normalized form

Feature Selection

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

Original Features

- Order status
- Price
- freight value
- product_description_length
- product_photos_qty

Engineered Features

- > Used voucher
- review_response_time_h
- dispatch_days
- genuine_delivery_days
- delivery_diff_days
- whether_exceed_estimated
- freight_ratio
- same_region

5. Data Description

1. Data Integration

2. Data Cleaning

3. Data Aggregation

4. Feature Engineering

5. Data Description

Distribution of Review Scores

Review Scores

04

Modeling

Business Data Data Understanding Preparation Modeling Evaluation

1. Rationale for Model Selection

2. Issue with Five-Class

- 3. Hyperparameter Tuning
- & Feature Selection

4. Model Performance Analysing

We Choose KNN, SVM, Random Forest, Logistic Regression, and Decision Tree as our models.

1. Determine the type of task

Labeled Data → Supervised Learning User Ratings (1-5 stars) → Discrete Target Variable

2. Select appropriate models Our selection is based on three key factors:

Deployment

(1) Model Diversity for Robustness

- Captures both linear and non-linear patterns
 Linear models: Logistic Regression, SVM (with linear kernel)
 Non-linear models: Decision Tree, Random Forest, KNN, SVM
- Cover both simple and complex decision boundaries
 Simple models: Logistic Regression, Decision Tree
 Complex models: Random Forest, SVM, KNN

Business Data Data Understanding Data Preparation Modeling Evaluation

Deployment

1. Rationale for Model Selection

We Choose KNN, SVM, Random Forest, Logistic Regression, and Decision Tree as our models.

2. Select appropriate models

2. Issue with Five-Class

(2) Performance on Structured E-Commerce Data
E-commerce data contains a mix of nominal and numerical features, requiring models that handle different data types efficiently

- 3. Hyperparameter Tuning
- & Feature Selection

(3) Interpretability vs. Predictive Power Trade-Off
Highly interpretable: Decision Tree, Logistic Regression
Strong predictive power, but less interpretable: Random Forest, SVM & KNN

- 4. Model Performance Analysing
- ----This selection ensures that we explore different modeling approaches to find the best fit for our e-commerce rating prediction.

Data Understanding Data Preparation

Modeling

Evaluation

Deployment

Classification Report Summary

1. Rationale for Model Selection

2. Issue with Five-Class

3. Hyperparameter Tuning

& Feature Selection

4. Model Performance Analysing

Random Forest (61.51%)

Italia	Transfer to test (0 1.01 /0)							
	pre cis ion	recall	f1-score	support				
1	0.67	0.41	0.51	2201				
2	1.00	0.00	0.01	621				
3	0.73	0.01	0.01	1548				
4	0.42	0.01	0.01	3528				
5	0.61	0.99	0.75	10549				

SVM (60.87%)

2 A IAI (60.87%)			
	pre cis ion	recall	f1-score	support
1	0.60	0.40	0.48	2201
2	0.00	0.00	0.00	621
3	0.00	0.00	0.00	1548
4	0.33	0.00	0.00	3528
5	0.61	0.98	0.75	10549

KNN (59.84%)

	pre cis ion	recall	f1-score	support
1	0.59	0.40	0.47	2201
2	0.00	0.00	0.00	621
3	0.12	0.01	0.01	1548
4	0.20	0.05	0.08	3528
5	0.61	0.93	0.74	10549

Decision Tree (61.15%)

	pre cis ion	recall	f1-score	support
1	0.67	0.39	0.49	2201
2	0.00	0.00	0.00	621
3	0.00	0.00	0.00	1548
4	0.00	0.00	0.00	3528
5	0.61	0.99	0.75	10549

Business Data Data Modeling Evaluation Deployment

Confusion Matrix Analysis

∠ NINI

1. Rationale for Model Selection

2. Issue with Five-Class

- 3. Hyperparameter Tuning
- & Feature Selection

Random Forest							
	1	2	3	4	5		
1	905	0	0	5	1291		
2	114	2	0	2	503		
3	125	0	8	7	1408		
4	78	0	1	20	3429		
5	121	0	2	14	10412		

SVM					
	1	2	3	4	5
1	900	0	0	0	1349
2	136	0	0	0	485
3	135	0	0	0	1355
4	125	0	0	1	3416
5	216	0	0	2	10327

KNN					
	1	2	3	4	5
1	163	4	17	109	1908
2	32	11	2	31	545
3	42	1	27	94	1384
4	41	1	20	191	3275
5	125	3	36	466	9919

Dicision Tree							
	1	2	3	4	5		
1	873	0	0	0	1376		
2	121	0	0	0	500		
3	99	0	0	0	1391		
4	81	0	0	0	3461		
5	138	0	0	0	10407		

Data Understanding Data Preparation

Modeling

Evaluation

Deployment

1. Rationale for Model Selection

2. Issue with Five-Class

- 3. Hyperparameter Tuning
- & Feature Selection

4. Model Performance Analysing

Issues with Five-Class Classification

- Classes 2, 3, 4 are almost always misclassified as class 5.
- Due to deep data imbalance, the model heavily favors predicting 5star ratings.

Why Convert to Binary Classification?

- Business Justification: The goal is to identify potential positive reviewers (5-star ratings).
- Data Structure Optimization: Reducing class imbalance and improving model generalization. (a closer data volume)

Data Understanding Data Preparation

Modeling

Evaluation

Deployment

Hyperparameter Tuning --- Using GridSearchCV

1. Rationale for Model Selection

2. Issue with Five-Class

- 3. Hyperparameter Tuning
- & Feature Selection

```
Decision Tree

param_grid = {
    'max_depth': np.arange(1, 8),
    'min_samples_split': np.arange(2, 8),
    'min_samples_leaf': [5,10,15]
}

SVM

param_grid = {
    'C': [1,10],
    'kernel': ['linear', 'rbf', 'poly' ],
    rbf
    'degree': [5,10,15],
    'gamma': [0.01,0.1]
}
```

```
Random Forest
KNN
                                                   param grid = {
param grid = {
                                                                                                    500
                                                     'classifier n estimators': [200, 300, 500],
  'n neighbours': list(range(3,16)),
                                        15
                                                     'classifier max depth': [20, 25, 30],
                                                                                                    25
  'weights': ['uniform', 'distance'],
                                       distance
                                                     'classifier__min_samples_split': [5, 8, 12],
  'metric': ['euclidean', 'manhattan']
                                       manhattan
                                                     'classifier min samples leaf': [1, 2, 4]
```

Business Data Data Understanding Data Preparation Modeling Evaluation Deployment

Feature Selection Optimization

Step 1 : Drop the features that we can't use

'review_score' ---- the variable that we need to classify

Step 2 : Run the model with the remaining features

- Evaluating changes in model performance after changing features
 ----If there is no significant performance degradation after removal, retain it
- Step 3 : Get feature_importances/feature_coefficient from model
- Keep features with high importance/ high coefficient
- Remove redundant features (low importance or business irrelevant features)
- Repeat Step 2

Step 4 : Eventually get the conbination of features that enable the model to perform best

Rationale for Model Selection

2. Issue with Five-Class

- 3. Hyperparameter Tuning
- & Feature Selection

Data Understanding Data Preparation

Modeling

Evaluation

Deployment

Confusion Matrix

1. Rationale for Model Selection

2. Issue with Five-Class

- 3. Hyperparameter Tuning
- & Feature Selection

05 Evaluation

Business Data Data Understanding Understanding Preparation Modeling Evaluation Deployment

1. Indicator Explanation

2. Choose Model

Precision and Recall

- Core business goal: Accurately find the "right" customers to leave positive reviews, rather than asking all customers to leave reviews, to optimize brand image and market performance.
- Focus on positive reviewers: If the company wants to target users who are
 likely to give good reviews for marketing, focus on precision can ensure that a
 higher percentage of users predicted to give positive reviews give positive
 reviews.
- Avoid false positives: Mistakenly identifying users who are likely to give negative reviews as positive reviewers (i.e., false positives) can result in wasted resources and even damage to brand reputation.

Data Understanding Data Preparation

Modeling

Evaluation

Deployment

1. Indicator Explanation

2. Choose Model

Random Forest

Accuracy = 0.6500

Precision = 0.64

Confusion Matrix =
$$\begin{bmatrix} 2596 & 5302 \\ 1155 & 9394 \end{bmatrix}$$

- TP (9394): predicted good score and actually good score
- TN (2596): predicted bad score and actually bad score
- FP (5302): predicted good score but actually bad score (waste of resources and damage brand reputation)
- FN (1155): predicted bad score but actually good score (loss of opportunity)

Data Understanding Data Preparation

Modeling

Evaluation

Deployment

1. Indicator Explanation

2. Choose Model

• Recall =
$$\frac{TP}{(TP+FN)}$$
 = 0.89

All the samples that were actually good score, 89% were correctly predicted as good score by the model, 11% of the positive examples were misclassified as bad score.

• Precision =
$$\frac{TP}{(TP+FN)}$$
 = 0.64

All the samples predicted by the model as good score, 64% are actually good score, which means that 36% of the predicted good score examples are bad score.

• F1 Score =
$$2 \times \frac{precision \times recall}{precision + recall} = 0.74$$

Indicates that the model is relatively stable and will not ignore too many real customers with positive reviews, nor will it introduce too many false positives

06 Deployment

	Business Data Understanding Understanding	Data Preparation	\geq	Modeling		Evaluation	Deployment	>
--	---	---------------------	--------	----------	--	------------	------------	---

1. Suggestion

2. Improvement

- Although the random forest model currently selected performs best, there is still room for improvement in accuracy and precision.
- Low precision means that there are still many false positives (FP), which means that promotional information may be sent to some customers who actually give low score, bringing potential risks.
- It is recommended to gradually promote it based on small-scale testing to reduce negative impacts.

Business Data Data Understanding Understanding Preparation Modeling Evaluation Deployment

1. Suggestion

2. Improvement

Engineer additional features

Such as sentiment analysis from customer comments, to enhance model predictions.

Introducing PCA

After feature engineering, we have many derived features (e.g. genuine_delivery_days and delivery_diff_days). Using them directly may lead to redundancy and increased computational cost.

Label Redefinition and Balancing the Dataset

Classify users with 5 score and comments as positive, and others as negative, to make the model more consistent with business goals. Use methods such as category weighting to handle imbalance and ensure effective model learning.

References

*** Different links are contributed by different teammates, which may not directly run in sequence. But we can make sure that all our data are consistent when running model.***

- Data processing: https://colab.research.google.com/drive/1f578sqnGRiY3mXR1xS1jD6W5XBr8vSqz?usp=sharing
- Modeling
 - KNN Model: https://colab.research.google.com/drive/1jmECiPzqeFOtxW1AulVgFvtP_3N4kxYY?usp=sharing
 - Random forest:
 https://colab.research.google.com/drive/1sDJdJHfocOFeFwSwFAYUmMRydoFD1Bdn?usp=sharing
 - SVM: https://colab.research.google.com/drive/1hsV8QC5iJzg_0fUJFb0H6EMFNcW3GUWa?usp=sharing
 - Decision Tree: https://colab.research.google.com/drive/10eyblkDwjSa4GKvnCS1bl-krnVWv4A C?usp=sharing
 - Logistic Regression: https://colab.research.google.com/drive/1VBBsOa-1HnRQAeB4wjxK83nn0oM2VYFI?usp=sharing

Thanks!

