6圓方程式

1. 圓的定義:

在平面上與一定點O等距離的所有點P所成的圖形稱為圓, 而此定點O稱為圓心,圓心與圓上任一點的距離 \overline{OP} 稱為半 徑。

(1) 圓的標準式:

坐標平面上一圓,圓心O(h,k),半徑r,設P(x,y)為圓上任意一點,則因 $\overline{OP}=r$, 依 距 離 公 式 可 得 $\sqrt{(x-h)^2+(y-k)^2}=r$, 然 後 兩 邊 平 方 得 $(x-h)^2+(y-k)^2=r^2$,稱為圓的標準式,且圓心為(h,k),且半徑為r。

(2) 圓的一般式:

因為圓心為O(h,k),半徑為r的圓方程式為 $\left(x-h\right)^2+\left(y-k\right)^2=r^2$,

將上式展開得: $x^2 + y^2 - 2hx - 2ky + h^2 + k^2 - r^2 = 0$,

可將它化成二元二次方程式: $x^2 + y^2 + dx + ey + f = 0$,稱為圓的一般式。

將 $x^2 + y^2 + dx + ey + f = 0$ 依 $x \cdot y$ 配方可得:

$$\left(x + \frac{d}{2}\right)^2 + \left(y + \frac{e}{2}\right)^2 = \frac{1}{4}\left(d^2 + e^2 - 4f\right) ,$$

則圓心為 $\left(-\frac{d}{2}, -\frac{e}{2}\right)$,半徑為 $\frac{1}{2}\sqrt{d^2+e^2-4f}$ 。

2. 點與圓的關係:

在平面上有一圓C,圓心為O,半徑為r,P為平面上一點, 則點P與圓C之關係有圓內、圓上、圓外。

- ① 點在圓內 $\Rightarrow \overline{OP} < r$ 。
- ② 點在圓上⇒ $\overline{OP} = r$ 。
- ③ 點在圓外 $\Rightarrow \overline{OP} > r$ 。

- (2) 代數意義:設P點坐標 (x_0,y_0) 代入圓方程式所得的值為 $f(x_0,y_0)$,
 - ① 點在圓內⇒ $f(x_0, y_0) < 0$ 。
 - ② 點在圓上⇒ $f(x_0, y_0) = 0$ 。
 - ③ 點在圓外⇒ $f(x_0, y_0) > 0$ 。

3. 軌跡方程式:

(1) 阿波羅尼斯圓 (Apollonius Circles):

平面上相異兩點 $A \cdot B$,且 k 為正數 $(k \neq 1)$,則滿足 $\overline{AP} = k\overline{BP}$ 的點 P 之軌跡為一圓,稱此圓為阿波羅尼斯圓。

(2) 弦中點的軌跡:

已知圓心O和圓內一點P,過P的所有弦上的中點Q,其中 \overline{OQ} 與 \overline{PQ} 垂直,則弦中點Q在以 \overline{OP} 為直徑的圓上任一點。

觀念是非題 試判斷下列敘述對或錯。(每題2分,共10分)

() **1.** 方程式 $x^2 + y^2 + 4x - 6y + 4 = 0$ 的圖形為一圓,其圓心為(-2,3)且半徑為9。

- () **2.** 若方程式 $x^2 + y^2 + 4x 6y + k = 0$ 的圖形為一點,則 k = 13。
 - 解

44	單元 6	圓方程式
	ᆍᇪ	図ノノ作エル

- () **3.** 已知直線 $L_1: 2x-y=0$ 與直線 $L_2: x-y+1=0$ 為此圓的對稱軸,則此圓的圓心為 (1,2)。
 - 解

解

解

解

- ()4. 平面上相異兩點 $A \times B$,且 k 為正數,滿足 $\overline{AP} = k \overline{BP}$ 的所有 P 的軌跡為一圓。
- () **5.** 已知方程式 $x^2 + y^2 + 2x 4y + k = 0$ 的圖形是一個圓,且點 (3,1) 在圓外,則實數 k 滿足 -12 < k < 5。

一、填充題(每題7分,共70分)

1. 平面上與一定點 P(-1,3) 之距離均為 4 的所有點形成的圖形為______, 其圖形方程式為_____。(第 1 格 3 分,第 2 格 4 分)

2. 已知A(3,1),B(5,-7),求以 \overline{AB} 為直徑的圓方程式為。

3. 已知圓C的半徑為 $\sqrt{10}$,其圓心的x、y坐標相等,且點(2,4)在圓C上,試求圓心的坐標為____。

4. 過點(1,8)且與 *x* 軸、 *y* 軸都相切的圓方程式中,其中半徑最大為_____。

5. 設圓 *C* 通過 (3,0)、 (-1,0)、 (0,1) 三點,求圓 *C* 的方程式為____。

$46~_{\text{$\mathbb{I}$}\text{$\mathbb{I}$}\text{$\mathbb{I}$}\text{$\mathbb{I}$}\text{$\mathbb{I}$}}$

6. 設圓 C 通過(5,2)、(-1,2) 兩點且半徑為5,求圓 C 的圓心坐標為

7. 過 P(1,3) 對圓 $x^2 + y^2 - 4x + 2y - 4 = 0$ 作二切線,若切點為 $A \times B$,則 $\triangle PAB$ 之外接圓方程式為_____。

解

8. 如圖,橋面上有一圓拱型建築,圓拱的寬度 \overline{PQ} =30公尺,拱高 $\overline{A_2B_2}$ =5公尺,在距中心左右7公尺處各有一纜繩連接橋面,求 圖中纜繩 $\overline{A_3B_3}$ 長為_____公尺。

9. 已知坐標平面上兩定點 A(1,4)、 B(0,2) ,若動點 P 滿足 \overline{PA} : \overline{PB} = 2:1 ,則 P 的軌跡方程 式為_____。

10. 已知 P(a,b) 在圓 $C: x^2 + y^2 - 2x - 4y - 4 = 0$ 上,若 $(a+3)^2 + (b-5)^2$ 之最大值為 M ,最小值為 m ,試求 $(M,m) = _____$ 。

48 單元6 圓方程式

二、素養混合題(共20分)

第 11 至 13 題為題組

下圖為射飛鏢的標靶,由許多個同心圓所組成,若將標靶放在坐標平面上,已知最內部 灰色的圓方程式為 $25x^2 + 25y^2 - 150x + 100y + 69 = 0$,且由內而外的每個圓,其圓面積為前一個的 5倍,試回答以下問題:

- 11. 圖中×的位置為靶心,問靶心的坐標位置為____。(填充題,6分)
- **12.** 試問最大的圓方程式為____。(填充題,7分)
- 13. 試以不等式表示白色的環狀區域(含邊界)。(非選擇題,7分)

