5. Nem-lineáris egyenletek iterációs megoldásai

- 1. Készítsünk M-filet, amely intervallumfelezést végez! A file neve legyen: intfel
 - o Bemenő paraméterek: a függvény, amelynek zérushelyét keressük ez legyen karakteres változóként megadva (a független változót vagy egyezményesen jelöljük x-szel, vagy külön paraméterként adjuk át), továbbá a kiinduló intervallum két végpontja (a, b), lépésszám (n), vagy pontossági elvárás (ε)
 - \circ Visszatérési érték: a gyök (zérushely) megfelelő közelítése: x^*
 - Ellenőrizzük hogy az intervallum megfelelő-e! Végezzünk hibabecslést ha szükséges.
 - o A kiértékeléshez használhatjuk az eval függvényt.
 - o A program finomítható a következők valamelyikének beépítésével.
 - Ha az intervallum nem megfelelő, javítsuk.
 - A felhasználótól eleve csak az intervallum egyik végpontját kérjük be és keressünk egy megfelelő végpontot.
- 2. Készítsünk M-filet, amely a húrmódszerrel keres gyököt! A file neve legyen: hurm
 - o Bemenő paraméterek: a függvény, amelynek zérushelyét keressük ez legyen karakteres változóként megadva (a független változót vagy egyezményesen jelöljük x-szel, vagy külön paraméterként adjuk át), továbbá a kiinduló intervallum két végpontja (a, b), lépésszám (n)
 - \circ Visszatérési érték: a gyök (zérushely) megfelelő közelítése: x^*
 - A felhasználó kérésére készítsünk grafikus szemléltető ábrát.
 - o Ellenőrizzük hogy az intervallum megfelelő-e!
- 3. Készítsünk M-filet, amely a Newton-módszerrel keres gyököt! A file neve legyen: newt
 - o Bemenő paraméterek: a függvény, amelynek zérushelyét keressük ez legyen karakteres változóként megadva (a független változót vagy egyezményesen jelöljük x-szel, vagy külön paraméterként adjuk át), továbbá a kiinduló érték (x_0) , lépésszám (n)
 - \circ Visszatérési érték: a gyök (zérushely) megfelelő közelítése: x^*
 - A derivált számítására diff utasítás használható. A szimbolikus változatot használjuk!