# Aufgabe 1: Farben und Farbwahrnehmung

#### Teilaufgabe 1a: Chromatizitätsdiagramm



Abbildung 1: Aufgabe 1a

#### Teilaufgabe 1b

Welcher der Farbeindrücke aus Aufgabe a) lässt sich nicht durch monochromatisches Licht erzeugen?

Alles auf der Purple line. Also insbesondere Magenta.

#### Teilaufgabe 1c

$$x = \frac{X}{X + Y + Z} \tag{1}$$

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$
(1)
(2)

## Teilaufgabe 1d

(2) < (3) < (1), also

 ${\rm RGB} < {\rm Raum}$ aller Farben die durch 100 monochromatische Leuchtdioden darstellbar sind < XYZ

#### Teilaufgabe 1e

| # | Aussage                                                                                                              | Wahr | Falsch | Begründung                                                                                                                                                               |
|---|----------------------------------------------------------------------------------------------------------------------|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Den Weißpunkt eines Farbraums bezeichnet man auch als Tristimuluswert.                                               |      | Ø      | Die RGB-Werte sind die Tristimulus-Werte. Der Weißpunkt heißt pblicherweise $D[Zahl]$ , wobei die Zahl die Temperatur angibt. D65 hat eine Farbtemperatur von ca. 6504K. |
| 2 | Die subjektiv empfundene Stärke<br>von Sinneseindrücken ist proportio-<br>nal zum Logarithmus ihrer Inten-<br>sität. | Ø    |        |                                                                                                                                                                          |
| 3 | Jeder Farbeindruck für den Menschen kann mit drei Grundgrößen beschrieben werden.                                    | Ø    |        | 1. Graßmannsches Gesetz                                                                                                                                                  |

# Aufgabe 2: Whitted-Style Raytracing

## Teilaufgabe 2a-d

### Teilaufgabe 2e

$$\eta_i \sin \theta_i = \eta_t \sin \theta_t \tag{3}$$

$$1 \cdot \frac{4}{10} = 1.5 \sin \theta_t \tag{4}$$

$$1 \cdot \frac{4}{10} = 1.5 \sin \theta_t \tag{4}$$

$$\Leftrightarrow \sin \theta_t = \frac{4}{15} = \frac{2}{7.5} \tag{5}$$



Abbildung 2: Lösung. Siehe Issue auf Github

#### Teilaufgabe 2f

$$I_s = k_s \cdot I_L \cdot \cos^n \alpha \tag{6}$$

$$\alpha = r_L \cdot v \tag{7}$$

wobei  $k_s$  ein Material parameter und  $I_L$  die intensität der Lichtquelle ist. n wird der Phong-Exponent genannt (TODO: woher kommt der?)

#### Teilaufgabe 2g

Snellsches Brechungsgesetz

$$\eta_i \sin \theta_i = \eta_t \sin \theta_t$$

# Aufgabe 3: Transformationen

$$\begin{pmatrix} s_x & h_x & t_x \\ h_y & s_y & t_y \\ a & b & c \end{pmatrix}$$

- $\bullet$  Die Parameter  $s_x, s_y$ skalieren in Richtung der xbzw. y Achse.
- $\bullet$  Die Parameter  $h_x, h_y$ scheeren in Richtung der xbzw. y Achse.

- Die Parameter  $t_x, t_y$  füren eine Translation in x bzw. y Richtung aus.
- Die Parameter a, b, c skalieren.

Die Matrix

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0\\
\sin\theta & \cos\theta & 0\\
0 & 0 & 1
\end{pmatrix}$$

rotiert um  $\theta$  um den Ursprung (gegen den Uhrzeigersinn.)

- Bild 1: Translation um 1 in x und 3 in y-Richtung.
- Bild 2: Scherung im -2 in y-Richtung.
- Bild 3: Rotation um 45° gegen den Urzeigersinn.
- Bild 4: In x-Richtung um  $^{1}/_{2}$  stauchen, in y-Richtung um 3 Strecken und dann um 4 nach rechts verschieben.
- Bild 5: Projektion auf die zur x-Achse parallele Gerade durch (0,3).

## Aufgabe 4

#### Teilaufgabe 4a

Es müssen nur die Mittelwerte berechnet werden, also:

- Stufe 1: 5, 3, 8, 4
- Stufe 2: 4, 6
- Stufe 3: 5

#### Teilaufgabe 4b



Abbildung 3: Aufgabe 4b; Der Footprint eines Bildpixels in der Textur wird ermittelt, indem man überprüft wie viele Texel diesen Bildpixel beeinflussen.

oben: 2.8 mitte: 1.8 unten: 1.1

Siehe Abbildung 3 (vgl. Kapitel 4, Folie 58)

# Teilaufgabe 4c

Teilaufgabe 4c (I)

TODO

Teilaufgabe 4c (II)

TODO

Teilaufgabe 4c (III)

TODO

## Teilaufgabe 4d

| # | Aussage                                                                                                                          | Wahr | Falsch | Begründung                                                                                                      |
|---|----------------------------------------------------------------------------------------------------------------------------------|------|--------|-----------------------------------------------------------------------------------------------------------------|
| 1 | Texturkoordinaten müssen sich immer im Intervall [0;1] befinden.                                                                 |      | Ø      | Koordinaten, die außerhalb liegen, werden je nach Einstellung (Clamp, Repeat,) auf Texturkoordinaten abgebildet |
| 2 | Texturkoordinaten können als Attribute der Eckpunkte (Vertizes) übergeben werden und werden als solche interpoliert.             | Ø    |        | Nicht eindeutig formuliert,<br>aber siehe Kapitel 4, Folie 28                                                   |
| 3 | Texturkoordinaten müssen für die<br>Darstellung wie Eckpunktkoordina-<br>ten der Model-View-Transformation<br>unterzogen werden. |      | Ø      | Interpolation, s. Kapitel 4, Folie 31                                                                           |

# **Aufgabe 5: Vorgefilterte Environment-Maps**

#### Teilaufgabe 5a

- 1. Diffuse Beleuchtung (=Reflexion!?): n
- 2. Imperfekte Spiegelung:  ${\bf r}$

## Teilaufgabe 5b

$$r = 2 * (v \cdot n)n - v$$

# Aufgabe 6: Hierarchische Datenstrukturen

## Teilaufgabe 6a



#### Teilaufgabe 6b

Inklusive Schnittests der AABB Hüllkörper:

- 1. 1
- 2. 1.1 3. 1.1.1 4. 5, 6 5. 1.1.2

- 6. 1.2
- 7. 1.2.1
- 8. 3, 7 9. 1.2.2
- 10. 4, 8

# Teilaufgabe 6c

| # | Aussage                                         | Wahr      | Falsch | Begründung                     |
|---|-------------------------------------------------|-----------|--------|--------------------------------|
| 1 | Beim Traversieren eines kD-Baums müssen im-     |           | Ø      | vgl. Folie 103                 |
|   | mer beide Kinder in Betracht gezogen werden.    |           |        |                                |
| 2 | Das Traversieren einer Hüllkörperhierarchie mit |           |        | BVHs fügen Objekte nur in      |
|   | achsenparallelen Boxen (Bounding Volume Hier-   |           |        | einen Kindknoten ein           |
|   | archy, BVH) erfordert Mailboxing, um mehrfache  |           |        |                                |
|   | Schnitttests mit einem Dreieck zu verhindern.   |           |        |                                |
| 3 | Der Speicheraufwand einer BVH hängt logarith-   |           | Ø      | Linear, siehe                  |
|   | misch von der Anzahl der Primitive ab.          |           |        | github.com/MartinThoma/KIT-    |
|   |                                                 |           |        | Musterloesungen/issues/13      |
| 4 | kD-Bäume sind eine Verallgemeinerung von BSP-   |           | Ø      | Es ist genau anders herum. kD- |
|   | Bäumen.                                         |           |        | Bäume müssen Achsenparalle-    |
|   |                                                 |           |        | le Trennebenen haben, BSP-     |
|   |                                                 |           |        | Bäume jedoch nicht.            |
| 5 | BSP-Bäume sind adaptiv und leiden nicht unter   | $\square$ |        | <u>.</u>                       |
|   | dem "Teapot in a Stadium"-Problem.              |           |        |                                |

# Teilaufgabe 6d

| # | Aussage                                          | BVH  | Octree | kD-Baum | Gitter |
|---|--------------------------------------------------|------|--------|---------|--------|
| 1 | Die Datenstruktur partitioniert den Raum.        |      | Ø      | Ø       | Ø      |
| 2 | Der Aufwand für den Aufbau der Datenstruktur     |      |        |         |        |
|   | ist linear in der Anzahl der Primitive.          |      |        |         |        |
| 3 | Eine effizientere Traversierung wird erreicht,   | abla |        | Ø       |        |
|   | wenn die Surface Area Heuristic bei der Kon-     |      |        |         |        |
|   | struktion verwendet wird. <sup>1</sup>           |      |        |         |        |
| 4 | Die Datenstruktur eignet sich am besten für Sze- |      |        |         | Ø      |
|   | nen, in denen die Geometrie gleichmäßig verteilt |      |        |         |        |
|   | ist und kaum leere Zwischenräume vorhanden       |      |        |         |        |
|   | sind.                                            |      |        |         |        |

 $<sup>$\</sup>overline{\ \ \ }^{1}$vgl. 05_ Raumliche Datenstrukturen.pdf, Folie 103$ 

# Aufgabe 7: Rasterisierung und OpenGL

#### Teilaufgabe 7a

| # | Aussage                                                                                                                                     | Wahr | Falsch | Begründung / Quelle             |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|------|--------|---------------------------------|
| 1 | In der OpenGL-Pipeline wird View Frustum Clipping vor der perspektivischen Division durchgeführt.                                           | Ø    |        | Kapitel 6, Folie 45             |
| 2 | Vertex-Shader können auf Texturen zugreifen.                                                                                                | Ø    |        | TODO                            |
| 3 | Bei Gouraud-Shading muss man die Normale im Fragment-Shader erneut normalisieren.                                                           |      | Ø      | TODO                            |
| 4 | Gouraud-Shading mit dem Phong-<br>Beleuchtungsmodell kann im Geometry-Shader<br>implementiert werden.                                       | TODO | TODO   | TODO                            |
| 5 | Phong-Shading kann man alleine mit einem<br>Vertex-Shader und einem Geometry-Shader im-<br>plementieren; letzterer gibt dann die Farbe aus. |      | Ø      | TODO                            |
| 6 | Bei beliebig feiner Tessellierung ist kein Unterschied zwischen Gouraud- und Phong-Shading erkennbar.                                       | Ø    |        | TODO                            |
| 7 | Selbst wenn der Tiefentest für ein Fragment fehlschlägt, kann der Stencil-Puffer verändert werden.                                          | TODO | TODO   | TODO                            |
| 8 | Instanziierung von Geometrie kann man sowohl mit dem Vertex- als auch dem Geometry-Shader durchführen.                                      |      | Ø      | Nur mit dem Geometry-<br>Shader |

#### Teilaufgabe 7b

Warum zieht man das Tiefenpuffer-Verfahren (Z-Buffering) dem Sortieren von Dreiecken vor? Nennen Sie drei Gründe!

- Dreiecke können nicht sortierbar sein (wenn ein Dreieck ein andere schneidet)
- Sortieren ist aufwendig, muss bei Veränderung der Blickrichtung jedesmal neu durchgeführt werden
- TODO

# Aufgabe 8: OpenGL-Primitive

(a) GL\_TRIANGLE\_STRIP: Ganz links ist (1), (2) ist rechts unten davon, (3) ist rechts oben von (1). Dann im Zick-Zack-Muster weiter.

(b) GL\_TRIANGLE\_FAN: Der mittlere Knoten ist (1), dann wird von ganz links gegen den Uhrzeigersinn nummeriert.

### Aufgabe 9: OpenGL und Blending

#### Teilaufgabe 9a

#### Teilaufgabe 9a (I)

• Die Reihenfolge ist wegen des Tiefenpuffers egal: TODO

• Von hinten nach vorne: TODO

• Von vorne nach hinten: TODO

#### Teilaufgabe 9a (II)

glBlendFunc(TODO, TODO)

#### Teilaufgabe 9b

glBlendFunc(TODO, TODO)

#### Teilaufgabe 9c

glBlendFunc(TODO, TODO)

### Aufgabe 10: Bézier-Kurven und Bézier-Splines

#### Teilaufgabe 10a

- Tangentenbedingung:  $c_0c_1$  ist Tangential an die Bezierkurve am Anfang,  $c_2c_3$  ist Tangential an die Bezierkurve am Ende.
- Wertebereich: Bézierkurven liegen innerhalb der konvexen Hülle, die durch die 4 Kontrollpunkte gebildet werden.
- Endpunktinterpolation: Bézierkurven beginnen immer beim ersten Kontrollpunkt und enden beim letzten Kontrollpunkt.
- Variationsredukion: Eine Bézierkurve F wackelt nicht stärker als ihr Kontrollpolygon B ( $\sharp (H \cap F) \leq \sharp (H \cap B)$ ).
- Affine Invarianz

#### Teilaufgabe 10b

```
shader.vert
uniform mat4 matrixMVP; // Model-View-Projection-Matrix
2 in vec3 position; // Koordinaten des Eingabe-Vertex
3 uniform vec3 b[12]; // Array der Kontrollpunkte
4 uniform float time; // Zeitpunkt für die Animation in [0;3)
6 // bezier3(..) soll die Bezier-Kurve an der Stelle s
        auswerten und das Resultat als vec3 zurückgeben.
        Sie können die Bernstein-Polynome oder den
        Algorithmus von de Casteljau verwenden.
9 //
10 vec3 bezier3(float s, // Parameter s in [0;1)
               const vec3 b0, const vec3 b1, // Kontrollpunkte b0, b1, b2, b3
               const vec3 b2, const vec3 b3) {
12
      // Fügen Sie Ihren Code hier ein.
13
14
      // Lösung mit Bernstein-Polynomen
      vec3 result = vec3(0.);
      result += b0 * (1. - s) * (1. - s) * (1. - u) * 1.;
17
      result += b1 * (1. - s) * (1. - s) * u * 3.;
18
      result += b2 * (1. - s) * s * s * 3.;
19
      result += b3 * s * s * s * 3.;
21
      return result;
22 }
23
24 vec3 bezier3(float s, // Parameter s in [0;1)
               const vec3 b0, const vec3 b1, // Kontrollpunkte b0, b1, b2, b3
25
               const vec3 b2, const vec3 b3) {
26
      // Algorithmus von de Casteljau
      vec3 b01 = mix(b0, b1, s);
28
      vec3 b11 = mix(b1, b2, s);
29
      vec3 b21 = mix(b2, b3, s);
30
      vec3 b02 = mix(b01, b11, s);
31
      vec3 b12 = mix(b11, b21, s);
      return mix(b02, b12, s);
33
34 }
36 // bezierspline3(..) soll die Auswertung des Bezier-Splines an der
        Stelle t als vec3 zurückgeben.
        Verwenden Sie dazu die Funktion bezier3(..)!
39 vec3 bezierspline3(float t) {
      // Fügen Sie Ihren Code hier ein.
      int i = int(t);
41
```

```
float s = fract(t);
f
```

# Aufgabe 11: Wasseroberfläche mit GLSL

#### Teilaufgabe 11a

```
\frac{}{\text{vec3 determineIntersection(in vec3 P, in vec3 r, out int index)}}
<sub>2</sub> {
      // Ermitteln Sie hier den Schnittpunkt mit der nächsten Gefäßfläche
      // und geben Sie ihn zurück. Zusätzlich muss 'index' auf den Index
      // der entsprechenden Seitenfläche gesetzt werden.
      bool intersects = false;
      float t_min;
      for (int i = 0; i \le 5; i++) {
10
           float t;
           if (intersect(i, P, r, t) && t > 0.) {
12
                if (!intersects || t < t_min) {</pre>
13
                    t_min = t;
14
                    index = i;
15
                    intersects = true;
16
               }
           }
18
19
20
      return P + t_min * r;
21
22 }
```

## Teilaufgabe 11b

```
\frac{}{\text{vec2 determineTextureCoordinate(in vec3 S, in int index)}}
2 {
      vec2 UV;
      switch(index)
           // Vervollständigen Sie die Fälle entsprechend der Aufgabenstellung
           case 0:
           case 1:
               UV = P.yz;
               break;
10
           case 2:
11
           case 3:
12
               UV = P.xy;
13
               break;
14
           case 4:
           case 5:
               UV = P.xz;
17
               break;
18
19
      // Fügen Sie ggf. notwendige weitere Anweisungen hier ein
      UV = UV * .5 + .5;
      return UV;
22
23 }
```