SVM Support Vector Machines

SVM – Support Vector Machine

- Supervised machine learning algorithm
- Classification technique for linear and non-linear separable classes
- Alternate to Logistic regression ?
- Classification based on finding a hyperplane that <u>maximises</u> the margin between two classes
 - > Mathematically speaking, SVM's are co-ordinates of the data/observations
- Mainly used in binary classification
- SVM algorithm has a feature to ignore outliers
- Complex algorithm, computing resources high, but SVM performs very well

Which line is better?

Margin Error defines the best line

Larger distance (d) means less margin error; Smaller distance (d) means larger margin error

Margin Error

12: ax+by+c = -1

Let the equations of the lines be

I1: ax+by+c = 1I2: ax+by+c = -1

Margin (d1) = Perpendicular distance joining each line

Formula (d1) = 2 /
$$\sqrt{a^2 + b^2}$$

Margin Error: $a^2 + b^2$

Goal of SVM is to minimise this error

Which line is better depends on whether we need too many classification errors or too many margin errors

Cost Parameter

- C controls the cost of misclassification on the training data
- (C * Classification Error) + (Margin Error)
- Value of C
 - √ Small C
 - Cost of misclassification low ("too strict")
 - Large Margin Error
 - ✓ Large C
 - Cost of misclassification high and potentially overfit ("too loose")
 - Low Margin Error
- The goal is to find the balance between "not too strict" and "not too loose"
- Cross-validation and resampling are good ways to finding the best C
 - The goal of SVM is to find a hyperplane that would leave the widest possible "cushion" between input points from two classes. There is a trade-off between "narrow cushion, little / no mistakes" and "wide cushion, quite a few mistakes".

Find the best Kernel and other parameters

Cost

- Known as the Penalty parameter (C)
- Controls the cost of misclassification on the training data
- High C → more data points chosen as support vectors
 - ➤ High variance : Low Bias → Overfit
- Low C → less data points chosen as support vectors
 - ➤ Low variance : High Bias → Underfit

Gamma

- Influence of data points on the decision boundary
- Shape of the decision boundary line depends on gamma
 - ▶ High Gamma → decision boundary depends on data points near the decision boundary
 - ▶ Low Gamma → decision boundary depends on far away points
- The goal of SVM is to find a hyperplane that would leave the widest possible "cushion" between input points from two classes.
- There is a trade-off between "narrow cushion, little / no mistakes" and "wide cushion, quite a few mistakes".

Find the best Kernel and other parameters

Kernel

- Kernels are mathematical functions
- Measures the similarity between 2 data points
- Sometimes, it is difficult to draw decision boundary
- This kernel technique is black-box

Kernel types

- RBF (Radial Basis Kernel Function) (observations > features)
- Linear Kernel (features > observations)

Non-Linear classification / Kernel Trick

- Uses "kernel" technique to convert non-linear classes to linear classes to fit multi-classes
 - Quite efficient in multi-class prediction
- Uses higher dimension feature space for calculation (i.e. converting non-linear separable classes to separable classes)
- SVM is popular as it works efficiently in large datasets having multi-classes
- Algorithm to arrive at an optimum hyperplane can be computationally expensive and time consuming
- More features and more observations complicate the algorithm
- Choice of Kernel for non-linear datasets
 - > A big challenge
 - Black-box performance
 - Uses complex data transformation techniques

X	good	bad
1	-1	3
4	0	4
9	1	5
16	2	6
25	3	7
36	4	8
49	5	9
64	6	10
81	7	11
100	8	12
121	9	13
144	10	14

