Slide 25-Singular Value Decomposition MAT2040 Linear Algebra

1 / 24

Motivation

Recall: If A is a real symmetric matrix, $A \in \mathbb{R}^{n \times n}$, we know that there is an orthogonal matrix Q such that $Q^{-1}AQ = Q^TAQ = \Lambda$, where Λ is a diagonal matrix. Thus, $A = Q\Lambda Q^T$ is the eigen decomposition.

Question: If $A \in \mathbb{R}^{m \times n}$, do we still have a similar matrix decomposition?

Yes. The idea is to use the A^TA or AA^T to do the eigen decomposition.

Singular Value Decomposition

For any $A \in \mathbb{R}^{m \times n}$, it can be decomposed into

$$A = U\Sigma V^T$$

where U is a $m \times m$ orthogonal matrix, V is a $n \times n$ orthogonal matrix, Σ is a diagonal-like matrix. $\Sigma = (\tilde{\sigma}_{ij})_{m \times n}$ is defined as $\tilde{\sigma}_{ij} = 0$, if $i \neq j$, $\tilde{\sigma}_{ii} = \sigma_i$, $i = 1, \dots, \min(m, n)$.

Case 1: If $m \geq n$ (tall matrix), $\Sigma = (\tilde{\sigma}_{ij})_{m \times n}$ is defined as $\tilde{\sigma}_{ij} = 0$, if $i \neq j$, $\tilde{\sigma}_{ii} = \sigma_i$, $i = 1, \dots, n$, where $\sigma_1 \geq \dots \geq \sigma_n \geq 0$. If rank of A is r, then $\sigma_1 \geq \dots \geq \sigma_r > 0 = \sigma_{r+1} = \dots = \sigma_n = 0$.

Case 2: If m < n (fat matrix), $\Sigma = (\tilde{\sigma}_{ij})_{m \times n}$ is defined as $\tilde{\sigma}_{ij} = 0$, if $i \neq j$, $\tilde{\sigma}_{ii} = \sigma_i$, $i = 1, \dots, m$, where $\sigma_1 \geq \dots \geq \sigma_m \geq 0$. If rank of A is r, then $\sigma_1 \geq \dots \geq \sigma_r > 0 = \sigma_{r+1} = \dots = \sigma_m = 0$.

In fact, if $m \ge n$ and rank(A) = r, then

where

$$\sigma_1 \geq \cdots \geq \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_n = 0$$

$$\Sigma_1=\mathrm{diag}(\sigma_1,\cdots,\sigma_r),\,O_1=O_{r\times(n-r)},\,O_2=O_{(m-r)\times r},\,O_3=O_{(m-r)\times(n-r)}$$

| **イロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - り**90で

If m < n and rank(A) = r, then

$$\Sigma = \left[egin{array}{c|cccc} \sigma_1 & & & & & & & \\ & \sigma_2 & & & & & & \\ & & \ddots & & & & & \\ & & & \sigma_r & & & & \\ & & & & \sigma_{r+1} & & & \\ & & & & \ddots & & \\ & & & & \sigma_m & \end{array}
ight]_{m imes n}$$

where

$$\sigma_1 \geq \cdots \geq \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_m = 0$$

$$\begin{array}{l} \Sigma_1=\mathrm{diag}(\sigma_1,\cdots,\sigma_r),\,O_1=O_{r\times(n-r)},\,O_2=O_{(m-r)\times r},\,O_3=O_{(m-r)\times(n-r)} \end{array}$$

If rank(A) = r, then for both cases $(m \ge n \text{ and } m \le n)$, Σ is defined as

$$\Sigma_{m\times n} = \left[\begin{array}{cc} \Sigma_1 & O_1 \\ O_2 & O_3 \end{array} \right]$$

 $\Sigma_1 = \operatorname{diag}(\sigma_1, \cdots, \sigma_r), O_1 = O_{r \times (n-r)}, O_2 = O_{(m-r) \times r}, O_3 = O_{(m-r) \times (n-r)},$ where $\sigma_1, \cdots, \sigma_r$ are positive numbers.

Theorem 25.1 Let A be a $m \times n$ real matrix, then A has the singular value decomposition $A = U \Sigma V^T$.

Analysis:

$$\begin{array}{l} A = U \Sigma V^T \Rightarrow A^T = V \Sigma^T U^T \Rightarrow A A^T = U \Sigma \Sigma^T U^T \text{ and } \\ A^T A = V \Sigma^T \Sigma V^T \Rightarrow U^{-1} A A^T U = \Sigma \Sigma^T \text{ and } V^{-1} A^T A V = \Sigma^T \Sigma. \end{array}$$

Suppose that r(A) = r, then

$$\Sigma = \left[\begin{array}{cc} \Sigma_1 & O_1 \\ O_2 & O_3 \end{array} \right]$$

where $\Sigma_1 = \operatorname{diag}(\sigma_1, \cdots, \sigma_r), \sigma_1 \geq \cdots \geq \sigma_r > 0, O_1 = O_{r \times (n-r)}, O_2 = O_{(m-r) \times r}, O_3 = O_{(m-r) \times (n-r)}.$

 $(\Sigma^T \Sigma)_{n \times n} = \operatorname{diag}(\sigma_1^2, \cdots, \sigma_r^2, 0, \cdots, 0)$ (with n-r zeros elements on the diagonal). Thus, $\sigma_1^2, \cdots, \sigma_r^2, 0, \cdots, 0$ (with n-r zeros) are eigenvalues of $A^T A$.

 $(\Sigma\Sigma^T)_{m\times m}=\mathrm{diag}(\sigma_1^2,\cdots,\sigma_r^2,0,\cdots,0)$ (with m-r zeros elements on the diagonal). Thus, $\sigma_1^2,\cdots,\sigma_r^2,0,\cdots,0$ (with m-r zeros) are eigenvalues of AA^T .

Proof. Without loss of generality, we first consider $m \ge n$. The case for m < n can be proved in a similar way.

Since A^TA is a $n \times n$ real symmetric matrix, which is diagonalizable by spectral theorem. All eigenvalues of A^TA are nonnegative. (Suppose that $A^TA\mathbf{x} = \lambda \mathbf{x}(\mathbf{x} \neq \mathbf{0})$, then $\mathbf{x}^TA^TA\mathbf{x} = \lambda \mathbf{x}^T\mathbf{x}$, thus $\lambda = \frac{\|A\mathbf{x}\|^2}{\|\mathbf{x}\|^2} \geq 0$.)

The construction for $A = U\Sigma V^T$ is as follows:

Step 1 (construction of V). Suppose rank(A) = r, then $rank(A^TA) = r$. Since A^TA is symmetric, there is an orthogonal matrix V that diagonalizes matrix A^TA ($V^TA^TAV = \Lambda$), and the rank of A^TA also equals to the number of nonzero eigenvalues of A^TA ($rank(A^TA) = rank(\Lambda) = the number of nonzero eigenvalues of <math>A^TA$).

Suppose that $\lambda_1 \geq \cdots \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$ be the eigenvalues of A^TA . The singular values of A are defined as $\sigma_i = \sqrt{\lambda_i}, i = 1, \cdots, n$. Then $\sigma_1 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0$.

Let $V \triangleq [\mathbf{v}_1, \cdots, \mathbf{v}_n]$, where $\mathbf{v}_1, \cdots, \mathbf{v}_n$ are the eigenvectors of A^TA corresponds to eigenvalues $\lambda_1 \geq \cdots \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$, respectively. Since V is an orthogonal matrix, $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ is the orthonormal set.

Let $V = [V_1, V_2]$, where $V_1 = [\mathbf{v}_1, \dots, \mathbf{v}_r]$, $V_2 = [\mathbf{v}_{r+1}, \dots, \mathbf{v}_n]$ Since $A^T A \mathbf{v}_i = \mathbf{0}$, $i = r+1, \dots, n$ and $\text{Null}(A^T A) = \text{Null}(A)$. Thus, $A \mathbf{v}_i = \mathbf{0}$, $i = r+1, \dots, n$ and $AV_2 = O$.

Since V is an orthogonal matrix, one has

$$I = VV^{T} = [V_{1}, V_{2}][V_{1}, V_{2}]^{T} = V_{1}V_{1}^{T} + V_{2}V_{2}^{T}$$

$$A = AI = A(V_{1}V_{1}^{T} + V_{2}V_{2}^{T}) = AV_{1}V_{1}^{T} + AV_{2}V_{2}^{T} = AV_{1}V_{1}^{T}$$

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

Step 2 (construction of Σ). As discussed in the previous slides, once the singular values are obtained, one can construct Σ as follows: let $\Sigma_1 = \operatorname{diag}(\sigma_1, \cdots, \sigma_r), O_1 = O_{r \times (n-r)}, O_2 = O_{(m-r) \times r}, O_3 = O_{(m-r) \times (n-r)},$ then define

$$\Sigma = \left[\begin{array}{cc} \Sigma_1 & {\it O}_1 \\ {\it O}_2 & {\it O}_3 \end{array} \right].$$

Step 3 (construction of U). To complete the proof, we need to construct U, we need to find the $m \times m$ orthogonal matrix U such that $A = U \Sigma V^T$. This gives $AV = U \Sigma$. Comparing the first r columns of this identity, one has $A \mathbf{v}_i = \sigma_i \mathbf{u}_i = \sqrt{\lambda_i} \mathbf{u}_i, i = 1, \cdots, r$. Define $\mathbf{u}_i = \frac{1}{\sqrt{\lambda_i}} A \mathbf{v}_i, i = 1, \cdots, r$, it follows that $AV_1 = U_1 \Sigma_1$, where $U_1 = [\mathbf{u}_1, \cdots, \mathbf{u}_r]$.

Now we have $A^T \mathbf{u}_i = \frac{1}{\sqrt{\lambda_i}} A^T A \mathbf{v}_i = \frac{1}{\sqrt{\lambda_i}} \lambda_i \mathbf{v}_i \ (i = 1, \dots, r)$, thus, $\mathbf{v}_i = \frac{1}{\sqrt{\lambda_i}} A^T \mathbf{u}_i \ (i = 1, \dots, r)$.

In addition, $AA^T\mathbf{u}_i = \frac{1}{\sqrt{\lambda_i}}A(A^TA\mathbf{v}_i) = \frac{1}{\sqrt{\lambda_i}}\lambda_iA\mathbf{v}_i = \lambda_i\frac{1}{\sqrt{\lambda_i}}A\mathbf{v}_i = \lambda_i\mathbf{u}_i$ since $A^TA\mathbf{v}_i = \lambda_i\mathbf{v}_i$. Thus, λ_i $(i=1,\cdots,r)$ are the nonzero eigenvalues of AA^T and \mathbf{u}_i $(i=1,\cdots,r)$ are the corresponding eigenvectors.

Moreover,
$$\mathbf{u}_i^T \mathbf{u}_j = \frac{1}{\sqrt{\lambda_i} \sqrt{\lambda_j}} \mathbf{v}_i^T A^T A \mathbf{v}_j = \frac{\sqrt{\lambda_j}}{\sqrt{\lambda_i}} \mathbf{v}_i^T \mathbf{v}_j = \delta_{ij} \ (i,j=1,\cdots,r),$$
 where $A^T A \mathbf{v}_j = \lambda_j \mathbf{v}_j$ is used. Here $\delta_{ij} = \left\{ \begin{array}{ll} 1, & \text{if } i=j, \\ 0, & \text{if } i\neq j. \end{array} \right.$

Thus, $\{\mathbf{u_1}, \cdots, \mathbf{u_r}\}$ is the orthonormal set. In addition, since $\mathbf{u}_i = \frac{1}{\sqrt{\lambda_i}} A \mathbf{v}_i, i = 1, \cdots, r, \ \{\mathbf{u_1}, \cdots, \mathbf{u_r}\} \in \operatorname{Col}(A)$. In addition, $\dim(\operatorname{Col}(A)) = \operatorname{rank}(A) = r$, thus, $\{\mathbf{u_1}, \cdots, \mathbf{u_r}\}$ is an orthonormal basis of $\operatorname{Col}(A)$.

Since $\operatorname{Col}(A)^{\perp} = \operatorname{Null}(A^T)$, thus $\dim(\operatorname{Null}(A^T)) = m - r$ since $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^m , $\operatorname{rank}(A) = r$ and $\dim(\operatorname{Col}(A)) + \dim(\operatorname{Col}(A)^{\perp}) = m$.

Let $\mathbf{u}_{r+1}, \cdots, \mathbf{u}_m$ are orthonormal basis of $\text{Null}(A^T)$, then $\mathbf{u}_{r+1}, \cdots, \mathbf{u}_m$ satisfies $A^T \mathbf{u}_i = \mathbf{0}, i = r+1, \cdots, m$. Indeed, $\mathbf{u}_{r+1}, \cdots, \mathbf{u}_m$ are also the orthonormal basis of $\text{Null}(AA^T)$ since $\text{Null}(AA^T) = \text{Null}(A^T)$.

Set $U_2=[\mathbf{u}_{r+1},\cdots,\mathbf{u}_m]$ and $U=[U_1,U_2]$, then $\{\mathbf{u}_1,\cdots,\mathbf{u}_r,\mathbf{u}_{r+1},\cdots,\mathbf{u}_m\}$ is an orthonormal basis of \mathbb{R}^m . By using the theorem 19.19.

Step 4 (Verification of $A = U\Sigma V^T$). Compute

$$U\Sigma V^{T} = [U_{1}, U_{2}] \begin{bmatrix} \Sigma_{1} & O_{1} \\ O_{2} & O_{3} \end{bmatrix} [V_{1}, V_{2}]^{T} = U_{1}\Sigma_{1}V_{1}^{T} = AV_{1}V_{1}^{T} = A$$

Thus A can be written as:

$$A = U\Sigma V^T$$

This is called **Singular Value Decomposition**.

Example 25.2 Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$$

then

$$A^T A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

whose eigenvalues are $\lambda_1=4, \lambda_2=0.$ The unit eigevector w.r.t. $\lambda_1=4$ is

$$\mathbf{v}_1 = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \\ 1 \end{array}
ight]$$

The unit eigevector w.r.t. $\lambda_2 = 0$ is

$$\mathbf{v}_2 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$$

Now $\sigma_1 = \sqrt{\lambda_1} = 2$ so

$$\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

is the eigenvector of AA^T corresponding to eigenvalue $\lambda_1 = 4$. In addition,

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

An orthonormal basis for $Null(A^T)=Null(AA^T)$ is

$$\{\mathbf{u}_2, \mathbf{u}_3\} = \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

Thus

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = A = U \Sigma V^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Note: For real symmetric matrix S, the rank of matrix S equals to the number of nonzero eigenvalues. Since S is real symmetric, there is an orthogonal matrix Q, such that $Q^TSQ = \Lambda$ and $\operatorname{rank}(S) = \operatorname{rank}(Q^TSQ) = \operatorname{rank}(\Lambda) = \operatorname{the number of nonzero eigenvalues of } S$.

Remark 1

For $A \in \mathbb{R}^{m \times n}$, $A = U \Sigma V^T$ and $\operatorname{rank}(A) = r$, one has $\lambda_1 \ge \cdots \ge \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$ are the eigenvalues of $A^T A$. $\lambda_1 \ge \cdots \ge \lambda_r > \lambda_{r+1} = \cdots = \lambda_m = 0$ are the eigenvalues of AA^T .

(1) If $m \ge n$, as shown in above, let $\sigma_i = \sqrt{\lambda_i} (i = 1, \dots, n)$, then $\sigma_1 \ge \dots \ge \sigma_r > \sigma_{r+1} = \dots = \sigma_n = 0$ (with n-r zeros) are the **singular values**.

If m < n, let $\sigma_i = \sqrt{\lambda_i} (i = 1, \dots, m)$, then $\sigma_1 \ge \dots \ge \sigma_r > \sigma_{r+1} = \dots = \sigma_m = 0$ (with m-r zeros) are the **singular values**.

- (2) The singular values of A are unique, but the orthogonal matrices U and V are not unique.
- (3) $AV = U\Sigma$, Thus, $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$, $\sigma_i = \sqrt{\lambda}_i > 0$ $(i = 1, \dots, r)$ and $A\mathbf{v}_i = \mathbf{0}$, $(i = r + 1, \dots, n)$.
- (4) Take transpose for $A = U\Sigma V^T$, thus $A^T = V\Sigma^T U^T$. $A^T U = V\Sigma^T$, write in the vector form $A^T \mathbf{u}_j = \sigma_j \mathbf{v}_j$ $(j = 1, \dots, r)$, $A^T \mathbf{u}_j = \mathbf{0}$ $(j = r + 1, \dots, m)$.

And the columns of U are called **left singular vector** of A; the columns of V are called **right singular vector** of A;

Remark 2 The rank of $m \times n$ matrix A is the number of nonzero singular values.

- The number of nonzero singular values (counting the multiplicity) equals to the rank of A.
- rank(A) \neq number of nonzero eigenvalues. Example: $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ then eigenvalues are $\lambda_1 = \lambda_2 = 0$, the number of nonzero eigenvalue is 0, but rank(A) = 1.
- rank(A) = number of nonzero eigenvalues if A is real symmetric.

Remark 3 Four fundamental subspaces

$$A = U \Sigma V^{T}$$

$$= [\mathbf{u}_{1}, \cdots, \mathbf{u}_{r}, \mathbf{u}_{r+1}, \cdots, \mathbf{u}_{m}] \begin{bmatrix} \Sigma_{1} & O_{1} \\ O_{2} & O_{3} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \vdots \\ \mathbf{v}_{r}^{T} \\ \mathbf{v}_{r+1}^{T} \\ \vdots \\ \mathbf{v}_{n}^{T} \end{bmatrix}$$

where
$$O_1=O_{r imes(n-r)}, O_2=O_{(m-r) imes r}, O_3=O_{(m-r) imes(n-r)}$$

- 1) First r columns of V is an orthonormal basis for $\operatorname{Row}(A) = \operatorname{Col}(A^T) = (\operatorname{Null}(A))^{\perp}$, since $A^T A \mathbf{v}_i = \lambda_i \mathbf{v}_i (i = 1, \cdots, r)$, $\lambda_1 \geq \cdots \geq \lambda_r > 0$ ($\mathbf{v}_i = \frac{1}{\sqrt{\lambda_i}} A^T \mathbf{u}_i (i = 1, \cdots, r)$), $\mathbf{v}_i (i = 1, \cdots, r)$ are orthonormal vector set and $\operatorname{dim}(\operatorname{Row}(A)) = r$.
- 2) Last n-r columns of V is an orthonormal basis for Null(A), since $A^T A \mathbf{v}_i = 0 (i = r+1, \cdots, n)$, $Null(A^T A) = Null(A)$, $\mathbf{v}_i (i = r+1, \cdots, n)$ are orthonormal vector set and $A \mathbf{v}_i = 0 (i = r+1, \cdots, n)$.
- 3) First r columns of U is an orthonormal basis for $\operatorname{Col}(A) = (\operatorname{Null}(A^T))^{\perp}$ since $\mathbf{u}_i = \frac{1}{\sqrt{\lambda_i}} A \mathbf{v}_i, i = 1, \cdots, r, \ \mathbf{u}_i (i = 1, \cdots, r)$ are orthonormal vector set and $\operatorname{dim}(\operatorname{Col}(A)) = r$.
- 4) Last m-r columns of U is an orthonormal basis for $Null(A^T)$, since $AA^T\mathbf{u}_i = 0 (i = r+1, \cdots, m)$, $Null(AA^T) = Null(A^T)$, $\mathbf{u}_i (i = r+1, \cdots, m)$ are orthonormal vector set and $A^T\mathbf{u}_i = 0 (i = r+1, \cdots, m)$.

20 / 24

Figure: Here $\sigma_i = \sqrt{\lambda_i}$, $i = 1, \dots, r$

Remark 4 Compact SVD:

$$\begin{aligned} \boldsymbol{A} = & \boldsymbol{U} \boldsymbol{\Sigma} \, \boldsymbol{V}^T \\ = & [\boldsymbol{u}_1, \cdots, \boldsymbol{u}_r] \boldsymbol{\Sigma}_1 \begin{bmatrix} \boldsymbol{v}_1^T \\ \vdots \\ \boldsymbol{v}_r^T \end{bmatrix} \end{aligned}$$

where

$$\Sigma_1 = diag(\sigma_1, \cdots, \sigma_r)$$

This gives $A\mathbf{v}_i = \sigma_i \mathbf{u}_i, \sigma_i = \sqrt{\lambda_i}, (i = 1, \dots, r)$ and

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

Remark: $\mathbf{u}\mathbf{v}^T$ is the out product of two vectors \mathbf{u} and \mathbf{v} .

The **outer product** xy^T will result in a matrix.

$$\mathbf{x}\mathbf{y}^{T} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} \cdots & y_{n} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1}y_{1} & \cdots & x_{1}y_{n} \\ x_{2}y_{1} & \cdots & x_{2}y_{n} \\ \vdots & & & \\ x_{m}y_{1} & \cdots & x_{m}y_{n} \end{bmatrix}$$

$$\triangleq [\mathbf{b}_{1}, \cdots, \mathbf{b}_{n}]$$

Suppose \mathbf{x}, \mathbf{y} are both nonzero vectors. Let $\mathbf{y} = [y_1, \cdots, y_n]^T$, and assume $y_1 \neq 0$, then $\mathbf{b}_i = \frac{y_i}{y_1} \mathbf{b}_1, i = 2, \cdots, n$. Thus, $\operatorname{Col}(\mathbf{x}\mathbf{y}^T) = \operatorname{Span}(\mathbf{b}_1)$. Therefore, the rank of the outer product $\mathbf{x}\mathbf{y}^T$ is 1.

Proposition Every rank 1 matrix A has the form $A = \mathbf{x}\mathbf{y}^T = \text{column}$ vector \times row vector.

Remark 5 Vector form

• Recall a real symmetric matrix A has the eigen decomposition as follows:

$$A = \lambda_1 \mathbf{q}_1 \mathbf{q}_1^T + \dots + \lambda_n \mathbf{q}_n \mathbf{q}_n^T$$

where λ_i $(i=1,\cdots,n)$ are the eigenvalues of A, and $Q=[\mathbf{q}_1,\cdots,\mathbf{q}_n]$ is the orthogonal matrix which diagonalizes A.

• For $A \in \mathbb{R}^{m \times n}$, the SVD decomposition gives:

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

where $\sigma_i = \sqrt{\lambda_i}$, $i = 1, \dots, r$, $\lambda_i (i = 1, \dots, r)$ are nonzero eigenvalues of $A^T A$ (or nonzero eigenvalues of AA^T) and $r = \operatorname{rank}(A) = \operatorname{number}$ of nonzero singular values of $A(\sigma_i (i = 1, \dots, r))$ are nonzero singular values).