

वीज:

सर्किट्स आणि त्यांचे

घटक

निहाल आणि त्याचे वर्गमित्र भाक्रा नांगल धरणाच्या त्यांच्या शाळेच्या सहलीसाठी उत्सुक होते. तिथे ते जलविद्युत केंद्राला भेट देत असत जिथे पडणाऱ्या पाण्याच्या शक्तीचा वापर वीज निर्मितीसाठी केला जात असे. ते पंजाबमधील नांगल ते हिमाचल प्रदेशातील भाक्रा पर्यंत, सुंदर सतलज नदीच्या काठाने आणि शिवालिक टेकड्यांमधून १३ किलोमीटरच्या मोफत ट्रेन प्रवासाची देखील उत्सुकता बाळगत होते.

सहलीपूर्वी, निहाल आणि त्याच्या वर्गमित्रांना विजेच्या वापराविषयी एक सादरीकरण तयार करण्यासाठी एक गट असाइनमेंट देण्यात आले.

त्यांनी त्यांच्या घराभोवती, नंतर त्यांच्या शाळेभोवती, त्यानंतर त्यांच्या परिसराकडे, त्यांच्या शहराकडे पाहण्यापासून सुरुवात केली आणि शेवटी त्यांनी इंटरनेटवर शोध घेतला. त्यांना आश्चर्य वाटले की त्यांची यादी वाढतच गेली. त्यांनी वेगवेगळ्या शीर्षकाखाली वापर आयोजित करण्याचा निर्णय घेतला.

निहालच्या यादीत आणखी काही उपयोग जोडून तुम्ही त्याला मदत करू शकाल का? तसेच, विजेच्या वापराचे गटबद्धीकरण करण्याचे काही इतर मार्ग सुचवा.

आपण नेहमीच वीज वापरतो, म्हणून आपण विजेबद्दल अधिक जाणून घेऊया. तुम्ही आधी शिकलात की वीज अनेक प्रकारे निर्माण होते - पवनचक्क्यांद्वारे, पवनऊर्जेचा वापर करून, सौर पॅनेलद्वारे सूर्याची ऊर्जा मिळवून, पडणाऱ्या पाण्याद्वारे आणि नैसर्गिक वायू किंवा कोळशाचा वापर करून (इयत्ता सहावीच्या विज्ञान पाठ्यपुस्तकाच्या क्युरिऑसिटीमधील 'निसर्गाचे खिजना' या प्रकरणात). या स्रोतांमधून मिळणारा वीज पुरवठा तारांद्वारे आपल्या घरांमध्ये आणि कारखान्यांमध्ये पोहोचतो. उदाहरणार्थ, घरी आपण भिंतीतील विद्युत सॉकेटमध्ये विविध उपकरणे जोडतो. तथािप, विजेबद्दल जाणून घेण्यासाठी, आपण विजेच्या पोर्टेबल स्त्रोतावर लक्ष केंद्रित करूया जो आपल्यांपैकी बहुतेकांनी वापरला असेल. टॉर्चसारख्या सामान्य उपकरणात त्याचा वापर करून सुरुवात करूया.

खबरदारी — विजेच्या खांबांवर आणि इतर उपकरणांवर असलेल्या धोक्याच्या चिन्हे लोकांना इशारा देतात की जर काळजीपूर्वक हाताळले नाही तर वीज धोकादायक ठरू शकते. तुमच्या घरी किंवा शाळेत कधीही वीज पुरवठ्याचे प्रयोग करू नका. पोर्टेबल जनरेटरमधून मिळणारी वीज देखील धोकादायक असू शकते. विजेचे प्रयोग करण्यासाठी फक्त बॅटरी किंवा सेल वापरा, जसे की टॉर्चलाइट, भिंतीवरील घड्याळे. रेडिओ किंवा रिमोटमध्ये असतात.

३.१ टॉर्चलाइट

तुम्ही कदाचित टॉर्चलाइट वापरला असेल, ज्याला टॉर्च किंवा फ्लॅशलाइट देखील म्हणतात.

- 🛮 आकृती ३.१ मध्ये दाखवल्याप्रमाणे टॉर्च घ्या.
- 🛮 ते काळजीपूर्वक पहा . तुम्हाला दिवा दिसतो का? आणि स्विच दिसतो का?
- 🛘 त्याचा स्विच सरकवा आणि पहा. टॉर्चचा दिवा चमकतो का?
- 🛘 आता स्विचला त्याच्या मूळ स्थितीवर परत सरकवा आणि टॉर्च लॅम्पचे निरीक्षण करा.

तुमच्या लक्षात आले असेल की स्विचच्या पहिल्या स्थितीत टॉर्च दिवा चमकतो आणि दुसऱ्या स्थितीत दिवा चमकत नाही.

आता टॉर्च उघडा. आत तुम्हाला काय सापडते?टॉर्चच्या आत, तुम्हाला दोन किंवा अधिक विद्युत पेशी सापडतील.

टॉर्च दिवा त्याच्या स्विचच्या एकाच स्थितीत का चमकतो?

३.२ एक साधे विद्युत सर्किट

टॉर्च कसे काम करते हे समजून घेण्यासाठी, प्रथम आपण त्याच्या घटकांबद्दल जाणून घेऊया.

३.२.१ विद्युत पेशी

□ एक विद्युत पेशी घ्या, ती फिरवा आणि काळजीपूर्वक पहा (आकृती ३.२). विद्युत पेशीवर तुम्हाला धन (+) चिन्ह आणि ऋण (−) चिन्ह दिसते का? त्याच्या एका बाजूला एक लहान बाहेर आलेले धातूचे टोपी आणि दुसऱ्या बाजूला एक धातूचा डिस्क असल्याचे देखील तुम्हाला दिसून येते का?

आकृती ३.२: विद्युत पेशी

सर्व विद्युत पेशींना दोन टर्मिनल असतात; एकाला धन (+ ve) म्हणतात तर दुसरा ऋण (– ve) असतो. धातूचे टोपी धन आहे.

विद्युत पेशी आणि धातूच्या चकतीचे टर्मिनल ऋण आहे. टर्मिनल. इलेक्ट्रिक सेल हा विद्युत उर्जेचा पोर्टेबल स्रोत आहे.

३.२.२ बॅटरी

☐ दोन पेशी वापरणारा टॉर्च घ्या. त्याचा पेशींचा डबा उघडा. आणि पेशी बाहेर काढा. एका टॉर्चमध्ये, आपण सामान्यतः एकापेक्षा जास्त सेल वापरतो.

त्या कोणत्याही विशिष्ट क्रमाने ठेवल्या आहेत का?

□ पेशी परत वेगळ्या क्रमाने ठेवा. तसेच, एका पेशीची दिशा उलट करण्याचा प्रयत्न करा. नंतर, स्विच सरकवा आणि प्रत्येक केसमध्ये दिवा चमकतो का ते तपासा. □ पेशी टॉर्चमध्ये कोणत्या क्रमाने ठेवल्या होत्या ते तपासा.

जेव्हा दिवा पेटतो.

आकृती ३.३ मध्ये दाखवल्याप्रमाणे पेशी क्रमाने ठेवल्या की दिवा चमकतो. दोन पेशींचे टोक कसे जोडलेले आहेत ते पहा. एका पेशीचे धन टोक पुढील पेशीच्या ऋण टोकाशी जोडलेले असते. दोन किंवा अधिक पेशींच्या अशा संयोजनाला बॅटरी म्हणतात.

आकृती ३.३: (अ) दोन पेशी (ब) चार पेशींनी बनलेली बॅटरी

अनेक उपकरणांसाठी, आपल्याला एकापेक्षा जास्त सेलची आवश्यकता असू शकते. म्हणून, आकृती ३.३ मध्ये दाखवल्याप्रमाणे आपण दोन किंवा अधिक सेल एकत्र जोडतो. एकापेक्षा जास्त पेशी जोडल्याने सर्किटला जास्त काळ ऊर्जा आणि/किंवा जास्त ऊर्जा मिळते.

आकर्षक तथ्ये

बॅटरी हा शब्द एकाच सेलसाठी देखील वापरला जातो. आपण आपल्या मोबाईल फोनला पॉवर देणाऱ्या एका सेलसाठी देखील बॅटरी हा शब्द वापरतो.

३.२.३ विद्युत दिवा

आकृती ३.४: (अ) टॉर्चमध्ये वापरला जाणारा एक लहान इनॅन्डेसेंट दिवा (ब) त्याचे सरलीकृत रेखाचित्र ज्यामध्ये तारांचे टर्मिनल्सशी कनेक्शन दर्शविले आहे.

जिज्ञासा | विज्ञानाचे पाठ्यपुस्तक | इयत्ता ७ वी

या कामासाठी, तुम्हाला इनकॅन्डेसेंट दिवा (किंवा बल्ब) असलेला टॉर्चलाइट लागेल. अनेक जुन्या टॉर्चलाइट्समध्ये अजूनही असे दिवे वापरले जातात. तुमच्या शिक्षकांच्या मदतीने, खात्री करा की तुमचा टॉर्चलाइट इनकॅन्डेसेंट दिवा वापरतो.

- ☐ टॉर्च घ्या आणि त्याचा दिवा तपासा . तुम्हाला काय दिसते? काचेच्या बल्बच्या मध्यभागी एक पातळ तार चिकटलेली दिसते का?
- आता टॉर्च चालू करा. दिव्याचा कोणता भाग चमकते?

दिव्याच्या काचेच्या बल्बमधील पातळ तार चमकते. चमकणाऱ्या पातळ तारेला दिव्याचा फाय विलाप म्हणतात . 🛭 तुमच्या शिक्षकाच्या मदतीने दिवा विझवा आणि त्याची सर्व बाजूंनी तपासणी करा. फाय विलाप कसा निश्चित केला जातो?

आकृती ३.४अ मध्ये दाखवल्याप्रमाणे, फाय लॅमेंट दोन जाड तारांना जोडलेले आहे जे त्याला आधार देतात. एक जाड तार दिव्याच्या तळाशी असलेल्या धातूच्या आवरणाशी जोडते, तर दुसरी तार बेसच्या मध्यभागी असलेल्या धातूच्या टोकाशी जोडते (आकृती ३.४ब). हे दिव्याचे दोन टोक बनवतात आणि अशा प्रकारे जोडलेले असतात की ते एकमेकांना स्पर्श करत नाहीत.

अञ्चा तापलेल्या दिव्यांमध्ये, फायनलेंट गरम होते आणि प्रकाञ्च निर्माण करण्यासाठी चमकते.

तथापि, माझ्या टॉर्चमध्ये वेगळ्या प्रकारचा दिवा आहे. खरं तर, तो टॉर्चमध्ये अडकलेला असल्याने तो बाहेर काढता येत नाही.

एलईडी दिवा

आज वापरात असलेल्या अनेक टॉर्चमध्ये आकृती ३.५ मध्ये दाखवल्याप्रमाणे, इनॅन्डेन्सेंट दिव्याऐवजी प्रकाश उत्सर्जक डायोड (LED) दिवा असतो.

आकृती ३.५: टॉर्चसाठी एक एलईडी दिवा

- □ कोणत्याही रंगाचा LED घ्या (आकृती ३.६) आणि निरीक्षण करा. तुम्हाला त्यात काही फाय लॅमेंट दिसतं का?
- □ LED ला जोडलेल्या दोन तारांची लांबी लक्षात घ्या . तुम्हाला त्यापैकी एक दुसऱ्यापेक्षा लांब आढळला का?

इनॅन्डेसेंट दिव्यांपेक्षा वेगळे, LEDs मध्ये फाय लॅमेंट्स नसतात (आकृती 3.6). त्यांना दोन टर्मिनल देखील असतात, परंतु एक पॉझिटिव्ह (लांब वायरला जोडलेला) असतो आणि दुसरा निगेटिव्ह (लहान वायर) असतो. टॉर्च त्याच्या दिव्यात एक किंवा अधिक LEDs वापरू ज्ञकतो, कधीकधी वेगवेगळ्या आकाराचे.

आकृती ३.६: वेगवेगळ्या रंगांचे एलईडी

इलेक्ट्रिक सेल, बॅटरी आणि इलेक्ट्रिक दिवे याबद्दल जाणून घेतल्यानंतर, आता आपण इलेक्ट्रिक सेल किंवा बॅटरी वापरून टॉर्च दिवा चमकवण्यास तयार आहोत.

३.२.४ इलेक्ट्रिक सेल किंवा बॅटरी वापरून विजेचा दिवा चमकवणे

क्रियाकलाप ३.६: चला आपण रचना करूया

- □ एक विद्युत सेल, टॉर्चमध्ये वापरलेला एक तापदायक दिवा, एक सेल होल्डर, एक दिवा होल्डर आणि चार लांबीच्या विद्युत तारा घ्या.
- 🛘 धातू उघड करण्यासाठी प्रत्येक वायरच्या दोन्ही टोकांवरून सुमारे १ सेमी प्लास्टिकचे आवरण काढा.
- □ दाखवल्याप्रमाणे सेल होल्डरच्या दोन्ही टोकांना दोन तारा जोडा.आकृती ३.७अ मध्ये.

वी

आकृती ३.७: (अ) दोन तारा जोडलेला एक विद्युत सेल धारक (ब) पेशी धारकाच्या आत एक विद्युत सेल (क) विद्युत टेप वापरून विद्युत सेलला जोडलेल्या तारा

- □ होल्डरमध्ये सेल अशा प्रकारे घाला की त्याचे ऋण टर्मिनल होल्डरच्या स्प्रिंग बाजूकडे असेल (आकृती 3.7b). जर सेल होल्डर उपलब्ध नसेल, तर इलेक्ट्रिकल टेप वापरून दोन्ही वायर सेलला जोडा (आकृती 3.7c).
- □ आकृती ३.८अ मध्ये दाखवल्याप्रमाणे दिवा होल्डरच्या स्क्रूला दोन तारा जोडा. होल्डरमध्ये दिवा फिरवून तो होल्डरमध्ये बसवा (आकृती ३.८ब). जर दिवा होल्डर उपलब्ध नसेल तर दिव्याच्या दोन्ही टोकांना दोन तारा जोडण्यासाठी इलेक्ट्रिकल टेप वापरा (आकृती ३.८क).

आकृती ३.८: (अ) तारा जोडलेला विद्युत दिवा धारक (ब) दिवा धारकाच्या आत एक तापदायक दिवा (क) विद्युत टेपने तापदायक मशाल दिव्याला जोडलेल्या तारा

आता, आपण सेलला दिव्याशी जोडण्यासाठी तो चमकण्यास तयार आहोत.

- ☐ आपण ही क्रिया दोन भागात करू भाकित करणे आणि निरीक्षण करणे. दिवा आणि पेशी कशा प्रकारे जोडता येतात याचे काही मार्ग तक्ता 3.1 मध्ये दाखवले आहेत.
 - 🛘 प्रत्येक व्यवस्थेसाठी, दिवा पेटेल की नाही याचा अंदाज घ्या आणि तुमचा अंदाज तक्ता ३.१ मध्ये लिहा.
 - आता, दिवा आणि सेल जोडा आणि दिवा पेटतो की नाही ते पहा. तक्ता ३.१ मध्ये तुमचे निरीक्षण नोंदवा.
 तसेच, जे दिवे पेटतात त्यांचे काचेचे बल्ब पिवळे रंगवा.

जिज्ञासा | विज्ञानाचे पाठ्यपुस्तक | इयत्ता ७ वी

तक्ता ३.१: दिवा चमकवण्याचा प्रयत्न करणे

टीप: कोणत्याही सर्किटमध्ये दिवे चमकताना दाखवलेले नाहीत.

सेल आणि लॅम्पची व्यवस्था		भाकित	निरीक्षण
१.			
₹.			ey.
3.		2-010	
٧.			
ч.			
Ę.			

तीः

क्रमांक १ आणि ६ मधील व्यवस्थेत दिवा चमकतो आणि उर्वरित व्यवस्थेत तो चमकत नाही. आता, दिवा कोणत्या व्यवस्थेत चमकतो ते काळजीपूर्वक पहा. ज्या व्यवस्थेत दिवा चमकत नाही त्यांच्याशी त्यांची तुलना करा . तुम्हाला फरकाचे कारण सापडेल का?

३.२.५ विद्युत सर्किट

आकृती ३.९ मध्ये दाखवल्याप्रमाणे, जेव्हा दिव्याचा एक टर्मिनल विद्युत पेशीच्या एका टर्मिनलशी आणि दुसरा टर्मिनल दिव्याचा दुसऱ्या टर्मिनलशी जोडला जातो तेव्हा दिवा चमकतो. ही व्यवस्था एक विद्युत सर्किट बनवते, जी दिव्यामधून विद्युत प्रवाह जाण्यासाठी संपूर्ण मार्ग प्रदान करते. जेव्हा विद्युत प्रवाह सर्किटमधून जातो तेव्हाच दिवा चमकतो.

विद्युत सर्किटमध्ये विद्युत प्रवाहाची दिशा विद्युत सेलच्या धन ते ऋण टर्मिनल अशी मानली जाते. जेव्हा दिव्याचे टर्मिनल विद्युत सेलच्या टर्मिनलशी तारांनी जोडले जातात, तेव्हा विद्युत प्रवाह तापलेल्या दिव्याच्या फायनलमधून जातो आणि तो चमकतो. तापलेल्या दिव्यामध्ये, त्याचे कोणते टर्मिनल पेशीच्या धन किंवा ऋण टर्मिनलशी जोडलेले आहे हे महत्त्वाचे नसते. जोपर्यंत सर्किट पूर्ण होते आणि विद्युत प्रवाह अग्निनलमधून वाहतो तोपर्यंत दिवा चमकत राहील.

आकृती ३.९: विद्युत सर्किट

आकर्षक तथ्ये

कधीकधी, इनॅन्डेन्सेंट दिवा सेलशी जोडला तरीही तो चमकत नाही. आपण म्हणतो की दिवा 'फ्यूज' झाला आहे कारण तो सामान्यतः तुटलेला फाय लॅमेन्ट असतो. तुटलेला फाय लॅमेन्ट विद्युत प्रवाह थांबवतो, ज्यामुळे दिवा चमकत नाही.

आता आपण LED ग्लो बनवण्याचा प्रयत्न करूया.

- □ दोन विद्युत पेशी, कोणत्याही रंगाचा LED, दोन पेशी बसवू शकेल असा सेल होल्डर (आकृती 3.8a) आणि दोन लांबीच्या विद्युत तार घ्या.
- 🛘 धातू उघड करण्यासाठी प्रत्येक वायरच्या दोन्ही टोकांवरून सुमारे १ सेमी प्लास्टिकचे आवरण काढा.

जिज्ञासा | विज्ञानाचे पाठ्यपुस्तक | इयत्ता ७ वी□ दाखवल्याप्रमाणे दोन्ही तारा सेल होल्डरला जोडा.

आकृती ३.१०अ.

☐ होल्डरमध्ये दोन सेल घाला, प्रत्येक सेलचे निगेटिव्ह टर्मिनल होल्डरच्या स्प्रिंग बाजूला आहे याची काळजी घ्या (आकृती 3.10b) आणि बॅटरी वापरण्यासाठी तयार आहे.

या बॅटरीचे पॉझिटिव्ह टर्मिनल कोणते आहे हे तुम्ही कसे ठरवाल?

एका सेलच्या पाँझिटिव्ह टर्मिनलशी जोडलेला होल्डरचा टर्मिनल पाँझिटिव्ह असतो आणि दुसऱ्या सेलच्या निगेटिव्ह टर्मिनलशी जोडलेला टर्मिनल ऋण असतो.

☐ आता, बॅटरी पॉझिटिव्ह टर्मिनल वायरचा मुक्त टोक LED च्या लांब वायरला आणि दुसऱ्या वायरचा मुक्त टोक LED च्या लहान वायरला जोडा (आकृती 3.10c). LED चमकतो का?

🛘 वरील पायरी पुन्हा करा परंतु LED ला जोडलेल्या तारा बदला (आकृती 3.10d).

एलईडी पुन्हा चमकतो का?

तुम्ही पाहिले असेल की पहिल्या प्रकरणात (आकृती 3.10c) LED चमकतो आणि दुसऱ्या प्रकरणात चमकत नाही (आकृती 3.10d). कारण LED मधून विद्युतप्रवाह फक्त एकाच दिशेने जाऊ शकतो.

LED चा पॉझिटिव्ह टर्मिनल (लांब वायर) बॅटरीच्या पॉझिटिव्ह टर्मिनलशी जोडलेला असतो आणि LED चा निगेटिव्ह टर्मिनल (लहान वायर) बॅटरीच्या निगेटिव्ह टर्मिनलशी जोडलेला असतो तेव्हाच LED मधून विद्युत प्रवाह जातो. जेव्हा LED मधून विद्युत प्रवाह जातो तेव्हा तो चमकतो. LED चमकण्यासाठी तो सर्किटमध्ये योग्यरित्या जोडण्याची काळजी घ्या.

आकृती ३.१०: एलईडी ग्लो बनवणे

३.२.६ इलेक्ट्रिक स्विच

चला तर मग आपण स्वतःहन एक सोपा स्विच करूया.

स्विच टॉर्चचा प्रकाश कसा चालू किंवा बंद करतो?

आकृती ३.११: एक स्विच (a) 'बंद' स्थितीत (b) 'चालू' स्थितीत

- 🛘 दोन ड्रॉइंग पिन, एक सेफ्टी पिन (किंवा पेपर क्लिप), दोन वायर आणि कार्डबोर्डचा एक छोटा तुकडा गोळा करा.
- 🛘 सेफ्टी पिनच्या रिंगमधून ड्रॉइंग पिन घाला आणि तो कार्डबोर्डच्या तुकड्यावर चिकटवा, जेणेकरून सेफ्टी पिन मुक्तपणे फिरू शकेल (आकृती 3.11a).
- 🛘 दुसरा ड्रॉइंग पिन कार्डबोर्डच्या तुकड्यावर लावा जेणेकरून सेफ्टी पिनचा मुक्त टोक त्याला स्पर्श करू शकेल (आकृती 3.11b).
- 🛮 प्रत्येक ड्रॉइंग पिनला एक वायर जोडा आमचा स्विच तयार आहे!

चला आता आपल्या स्विचची चाचणी घेऊया.

- 🛘 आकृती ३.८अ मध्ये दाखवल्याप्रमाणे विद्युत सेल, दिवा आणि स्विच जोडा. दिवा चमकतो का?
- 🛘 आकृती ३.८ब मध्ये दाखवल्याप्रमाणे सेफ्टी पिनचा मुक्त टोक दुसऱ्या ड्रॉइंग पिनला स्पर्श होईपर्यंत फिरवा. दिवा आता चमकतो का?

जेव्हा सेफ्टी पिन दोन्ही ड्रॉइंग पिनना स्पर्श करते तेव्हा ते अंतर बंद करते आणि मार्ग पूर्ण करते आणि विद्युत प्रवाह वाहू देते. आपण याला ON म्हणतो.

(आकृती ३.८ब) अशी स्थिती जिथे सर्किट बंद आहे आणि सेलच्या पॉझिटिव्ह टर्मिनलपासून निगेटिव्ह टर्मिनलकडे विद्युत प्रवाह वाहतो ज्यामुळे दिवा चमकतो. जेव्हा सेफ्टी पिन दुसऱ्या ड्रॉइंग पिनला स्पर्श करत नाही, तेव्हा सर्किटमधील अंतर विद्युत प्रवाह रोखते आणि दिवा चमकत नाही. या बंद स्थितीत (आकृती ३.८अ), आपण म्हणतो की सर्किट उघडे आहे.

(अ)

आकृती ३.१२: स्विच इन असलेले विद्युत जिज्ञासा | विज्ञानाचे पाक्सुसूहस्तक | इयत्ता ७ वी

(अ) 'बंद' स्थिती (ब) 'चालू' स्थिती

लक्षात घ्या की स्विच सर्किटमध्ये कुठेही ठेवता येतो. स्विच हे एक साधे उपकरण आहे जे सर्किट पूर्ण करते किंवा तोडते. घरातील लाईट्स आणि इतर उपकरणांसाठी वापरले जाणारे स्विच सारखेच काम करतात, जरी ते वेगवेगळ्या प्रकारे डिझाइन केलेले असले तरी.

३.३ सर्किट डायग्राम्

इलेक्ट्रिकल सर्किटचे विविध घटक तक्ता 3.2 मध्ये दर्शविलेल्या चिन्हांद्वारे दर्शविले जाऊ शकतात.

विद्युत पेशीच्या चिन्हात, लांब रेषा धन टर्मिनल दर्शवते, तर लहान रेषा ऋण टर्मिनल दर्शवते (आकृती 3.13a).

आकृती ३.१३: (अ) एका पेशीच्या (ब) एका LED च्या चिन्हांमध्ये धन आणि ऋण टर्मिनल

LED च्या चिन्हात, त्रिकोण विद्युतधारा कोणत्या दिशेने वाहू शकते ते दर्शवितो. दोन बाण दर्शवितात की LED द्वारे प्रकाश उत्सर्जित होतो (आकृती 3.13b).

विद्युत घटकांचे प्रतिनिधित्व करण्यासाठी प्रतीकांचा वापर केल्याने, विद्युत सर्किट काढणे आणि समजून घेणे सोपे होते. प्रतीकांचा वापर करून विद्युत सर्किटचे प्रतिनिधित्व करणे याला त्याचा सर्किट आकृती म्हणतात.

क्रियाकलाप ३.१०: चला काढूया

🛘 तक्ता ३.२ मध्ये दाखवलेल्या चिन्हांचा वापर करून, आकृती ३.१२अ आणि आकृती ३.१०क मध्ये दिलेल्या विद्युत सर्किटचा सर्किट आकृती काढा .

तुमचे सर्किट आकृती अनुक्रमे आकृती ३.१४अ आणि आकृती ३.१४ब सारखे आहेत का?

38

आंतरराष्ट्रीय संस्था, जसे की इंटरनॅशनल इलेक्ट्रोटेक्निकल किमशन (IEC), अमेरिकन नॅशनल स्टॅंडर्ड्स इन्स्टिट्यूट (ANSI) आणि इन्स्टिट्यूट ऑफ इलेक्ट्रिकल अँड इलेक्ट्रॉनिक्स इंजिनिअर्स (IEEE) इलेक्ट्रिकल आणि इलेक्ट्रॉनिक भागांसाठी मानक चिन्हे तयार करतात. जगभरातील समान चिन्हे वापरल्याने वेगवेगळ्या देशांमधील आणि उद्योगांमधील लोकांना एकमेकांना सहजपणे समजण्यास मदत होते.

समजा, आपण धातूव्यतिरिक्त इतर पदार्थांपासून तारा बनवतो आणि त्यांचा वापर विद्युत सर्किट बनवण्यासाठी करतो, तर अञ्चा सर्किटमध्ये त्या पदार्थांमधून विद्युत प्रवाह जाईल असे तुम्हाला वाटते का?

क्रियाकलाप ३.११: चला ओळखूया

□ आकृती ३.१५अ मध्ये दाखवल्याप्रमाणे तारांची दोन्ही टोके मोकळी ठेवून विद्युत सेल आणि
 दिवा जोडा. □ तारांच्या दोन्ही मोकळ्या टोकांना क्षणभर स्पर्श करा. दिवा चमकतो का?
 जर हो, तर आपला

परीक्षक तयार आहे. विद्युत प्रवाह कोणत्या पदार्थांमधून जातो हे ओळखण्यासाठी आपण या परीक्षकाचा वापर करू शकतो.

आकृती ३.१५: (अ) वाहक परीक्षक (ब) 🛭 साठी वाहक परीक्षकाचा वापर करून, एकामागून

🛘 तुमची निरीक्षणे तक्ता ३.३ मध्ये नोंदवा.

तक्ता ३.३: कंडक्टर आणि इन्सुलेटर ओळखणे

क्र.	ऑब्जेक्ट	ते ज्या साहित्यापासून बनलेले आहे	दिवा चमकतो (होय/नाही)	निष्कर्ष (कंडक्टर/ (इन्सुलेटर)
१. कार	डी	लाकूड	नाही	
٦.	स्केल	प्लास्टिक		
3.	बांगडी	काच		
٧.	कागदाची पट्टी	कागद		
٧.	मेणबत्ती	काहीतरी		
६.	की	धातू		
٥.	खोडरबर	रबर		
۷.				
٩.				

□ तुमच्या निरीक्षणांचे विश्लेषण करा . दिवा सर्वांसाठी चमकला का? साहित्य?

दिवा फक्त काही पदार्थांसाठीच चमकतो. याचा अर्थ असा की विद्युत प्रवाह काही पदार्थांमधून सहजपणे जाऊ शकतो परंतु इतरांमधून नाही. ज्या पदार्थांमधून विद्युत प्रवाह सहजपणे जाऊ शकतो त्यांना चांगले वाहक किंवा विजेचे वाहक म्हणतात. ज्या पदार्थांमधून विद्युत प्रवाह जाऊ शकत नाही त्यांना विद्युतरोधक किंवा विजेचे कमकुवत वाहक म्हणतात. ☐ तक्ता ३.३ मध्ये तुम्ही नोंदवलेल्या निरीक्षणांवर आधारित, कोणते पदार्थ विद्युतवाहक आहेत आणि कोणते विद्युतरोधक आहेत याचा निष्कर्ष काढा . तक्ता ३.३ मध्ये ते लक्षात घ्या.

तक्ता ३.३ मधील तुमच्या निष्कर्षांवरून, तुम्हाला असे लक्षात आले असेल की धातू हे विजेचे वाहक आहेत आणि म्हणूनच त्यांचा वापर तारा बनवण्यासाठी केला जातो.

ma.

चांदी, तांबे आणि सोने हे सर्वोत्तम विद्युत वाहक आहेत. तथापि, विद्युत तारा बनवण्यासाठी, प्रामुख्याने तांब्याचा वापर केला जातो कारण त्याची किंमत तुलनेने कमी असते आणि पुरवठा मुबलक असतो. वेगवेगळ्या प्रकारच्या विद्युत तारा वेगवेगळ्या वापरासाठी वापरल्या जातात.

तक्ता ३.३ वरून तुम्हाला हे देखील लक्षात आले असेल की प्लास्टिक, रबर आणि मातीची भांडी हे विद्युत इन्सुलेटर आहेत. आता तुम्हाला समजले आहे का की तारा या पदार्थांनी का झाकल्या जातात?

कंडक्टर आणि इन्सुलेटर दोन्ही महत्त्वाचे आहेत. इलेक्ट्रिकल वायर, स्विचेस, प्लगचे कनेक्टर आणि सॉकेट्स कंडक्टरपासून बनलेले असतात. रबर, प्लास्टिक आणि सिरेमिक सारख्या इन्सुलेटरचा वापर वायर, प्लग टॉप आणि स्विचेस झाकण्यासाठी केला जातो जेणेकरून लोकांना विजेच्या धक्क्यांपासून संरक्षण मिळेल.

खबरदारी — आपले शरीर हे विजेचे वाहक आहे. आपल्या शरीरातून जाणारा विद्युत प्रवाह गंभीर दुखापत किंवा मृत्यू देखील कारणीभृत ठरू शकतो.

नेहमी विद्युत उपकरणे काळजीपूर्वक हाताळा. ओल्या हातांनी कधीही स्विच किंवा प्लगला स्पर्श करू नका, ओल्या जागी विद्युत उपकरणे वापरू नका, किंवा खराब झालेले इन्सुलेशन किंवा तुटलेले प्लग असलेली स्मुख्यरभ्रोहोलोकू सुकेशन किंवा तुटलेले प्लग असलेली उपकरणे.

तुम्ही कधी विचार केला आहे का की सेल किंवा बॅटरीमधून येणारी वीज भिंतीच्या सॉकेटमधून येणाऱ्या वीजपेक्षा कशी वेगळी असते? बॅटरीमधून येणारी वीज सहसा लहान उपकरणांना उर्जा देते आणि ती डायरेक्ट करंट (DC) नावाची असते. याउलट, वीज केंद्रांमधून येणारी वीज जी भिंतीच्या सॉकेटमध्ये येते तिला अल्टरनेटिंग करंट (AC) म्हणतात आणि ती मोठी उपकरणे चालवू शकते.

जिज्ञासा | विज्ञानाचे पाठ्यपुस्तक | इयत्ता ७ वी

थोडक्यात

- 🛘 विद्युत पेशी हा विद्युत उर्जेचा पोर्टेबल स्रोत आहे.
- ☐ विद्युत पेशीला दोन टर्मिनल असतात; एकाला धन (+ve) म्हणतात. तर दुसरा ऋण (–ve) आहे.
- □ तापलेल्या विद्युत दिव्यात, फाय लॅमेंट नावाचा एक पातळ तार असतो, जो गरम होतो आणि विद्युत प्रवाह जाताना प्रकाश निर्माण करण्यासाठी चमकतो.
- 🛘 LED ला दोन टर्मिनल असतात, एक पॉझिटिव्ह (लांब वायरला जोडलेला) आणि दुसरा निगेटिव्ह (लहान वायर) असतो.
- ☐ विद्युत प्रवाह LED मधून फक्त एकाच दिशेने जाऊ शकतो.
- स्विच हे एक साधे उपकरण आहे जे एकतर पूर्ण करते किंवा खंडित करते सर्किट..
- 🛘 बंद विद्युत सर्किटमधील विद्युत प्रवाहाची दिशा विद्युत पेशीच्या धन ते ऋण टर्मिनल अशी घेतली जाते.
- 🛘 विद्युत सर्किटचे प्रतीकांचा वापर करून केलेले प्रतिनिधित्व याला त्याचा सर्किट डायग्राम म्हणतात.
- 🛘 ज्या पदार्थांमधून विद्युत प्रवाह सहजपणे वाहू शकतो त्यांना चांगले वाहक किंवा विजेचे वाहक म्हणतात.
- 🛘 ज्या पदार्थांमधून विद्युत प्रवाह जाऊ शकत नाही त्यांना विद्युतरोधक किंवा विद्युत वाहक म्हणतात.

चला आपले शिक्षण वाढवूया

- १. चुकीचे विधान निवडा.
 - (i) स्विच हा सर्किटमधील विद्युत प्रवाहाचा स्रोत आहे.
 - (ii) स्विच सर्किट पूर्ण करण्यास किंवा खंडित करण्यास मदत करतो.
 - (iii) स्विच आपल्याला आपल्या गरजेनुसार वीज वापरण्यास मदत करतो.
 - (iv) जेव्हा स्विच 'बंद' स्थितीत असतो, तेव्हा त्याच्या टर्मिनल्समध्ये हवेचे अंतर असते.
- २. आकृती ३.१६ पहा. टोक A आणि B मध्ये कोणत्या पदार्थाने जोडलेले आहे, त्यामुळे दिवा चमकणार नाही?

३. आकृती ३.१७ मध्ये, जर एका दिव्याचा दिवा तुटला तर दुसरा दिवा चमकेल का? तुमचे उत्तर योग्यरित्या सांगा.

- ४. सर्किट बनवताना एका विद्यार्थ्याने कनेक्टिंग वायर्सवरील इन्सुलेटर कव्हर काढायला विसरले. जर दिवा आणि सेल व्यवस्थित काम करत असतील तर दिवा चमकेल का?
- ५. साध्या टॉर्चसाठी चिन्हांचा वापर करून सर्किट आकृती काढा. विद्युत घटक.
- ६. आकृती ३.१८
 - मध्ये: (i) जर S2 'चालू' स्थितीत असेल, तर S1 'बंद' स्थितीत असेल, जे दिवे चमकतील का?
 - (ii) जर S2 'बंद' स्थितीत असेल, तर S1 'चालू' स्थितीत असेल, जे दिवे चमकतील का?
 - (iii) जर S1 आणि S2 दोन्ही 'चालू' स्थितीत असतील, तर कोणता दिवा(दे) चमक?
 - (iv) जर S1 आणि S2 दोन्ही 'बंद' स्थितीत असतील, तर कोणता दिवा(दे) चमक?

आकृती ३.१८

७. विद्युतने आकृती ३.१९ मध्ये दाखवल्याप्रमाणे सर्किट बनवले आहे. सर्किट बंद केल्यानंतरही दिवा चमकत नाही. त्याची संभाव्य कारणे कोणती असू शकतात? या सदोष ऑपरेशनची शक्य तितकी कारणे लिहा. दिवा का चमकला नाही हे शोधण्यासाठी तुम्ही काय कराल?

आकृती ३.१९

जिज्ञासा | विज्ञानाचे पाठ्यपुस्तक | इयत्ता ७ वी

८. आकृती ३.२० मध्ये, कोणत्या परिस्थितीत स्विच बंद केल्यावर दिवा चमकणार नाही?

आकृती ३.२०

- ९. समजा बॅटरीवर '+' आणि '-' चिन्हे वाचता येत नाहीत. या बॅटरीचे दोन टर्मिनल ओळखण्यासाठी एक पद्धत सुचवा.
- १०. तुम्हाला A, B, C, D, E आणि F असे सहा सेल दिले आहेत. त्यापैकी काही कार्यरत आहेत आणि काही नाहीत. त्यापैकी कोणते कार्यरत आहेत हे ओळखण्यासाठी एक कृती तयार करा.
 - (i) तुम्हाला आवश्यक असलेल्या वस्तूंची यादी करा.
 - (ii) तुम्ही कोणती प्रक्रिया अवलंबाल ते लिहा.
 - (iii) वस्तूंसह, कार्यरत असलेल्या पेशी ओळखण्यासाठी क्रियाकलाप करा.
- ११. एका LED ला चमकण्यासाठी मालिकेतील दोन पेशींची आवश्यकता असते. आकृती ३.२१ मध्ये दाखवल्याप्रमाणे तान्याने सर्किट बनवले. दिवा चमकेल का? जर नसेल तर योग्य जोडणीसाठी तारा काढा.

आकृती ३.२१

अन्वेषण प्रकल्प

□ समजा तुमच्या परिसरात काही समस्येमुळे दोन दिवस वीजपुरवठा खंडित झाला तर तुमच्या दैनंदिन जीवनातील कोणत्या कृती तुम्ही करू शकणार नाही याची यादी करा.

<u>~</u>

☐ सौर पॅनेल (आकृती ३.२२अ) चा विद्युत उर्जेचा स्रोत म्हणून वापर करून, आकृती ३.२२क मध्ये दाखवल्याप्रमाणे खेळण्यांचा पंखा (आकृती ३.२२ब) चालवण्यासाठी एक सर्किट बनवा.

- □ इलेक्ट्रिकल वस्तूंच्या दुकानाला भेट द्या. दुकानदाराच्या मदतीने, उपलब्ध असलेल्या विविध प्रकारच्या सेल ओळखा. प्रत्येक सेलसाठी, ते कोणत्या उपकरणासाठी वापरले जाते ते देखील शोधा. एक अहवाल तयार करा.
- 🛘 तुमच्या घरातील वस्तूंची यादी तीन श्रेणींमध्ये तयार करा:
 - (i) ज्या वस्तू फक्त विद्युत इन्सुलेटर आहेत
 - (ii) ज्या वस्तू फक्त विद्युत वाहक आहेत
 - (iii) दोन्हीपासून बनवलेल्या वस्तू, ज्यांचे काही भाग इन्सुलेटर आणि काही विद्युत वाहक आहेत.

जिज्ञासा | विज्ञानाचे पाठ्यपुस्तक | इयत्ता ७ वी

