B.Tech Project

Inventory and distribution routing for a multi-product supply chain model for spare parts in Automobile company

Under the supervision of **Prof. Biswajit Mahanty**

Mohammed Raafid M V 20MF3IM33

Introduction

- Inventory management and Transportation are vital for supply chain efficiency.
- It ensures seamless movement of products from production to point of sale.
- Our core aim is having the right products available at the right place and time
- Enhancing efficiency, reducing costs, and maximizing operational potential

Problem Statement

- Consider a Manufacturing Plant at Hosur with 8 Distribution center from
 Tamil Nadu
- Let us consider the number of parts are **5 parts** and, **4 weeks** period condition
- Focus on 5 parts that are being supplied to the distribution centers via
 5 transportation companies
- Truck capacity 7 Tonne truck is used by all the vehicles from different transporters

Locations

• Main Manufacturing Plant is at **Hosur**

S.NO	NAME	CITY	LATITUDE	LONGITUDE
1	POPULAR PRIVATE LIMITED (<i>DC1</i>)	CHENNAI	13.06486	80.26754
2	TBF AUTO SOLUTIONS (DC2)	SALEM	11.6489	78.1591
3	POPULAR AUTO DISTRIBUTORS (<i>DC3</i>)	MADURAI	9.8784	78.1149
4	RKS AUTO AGENCIES (DC4)	ERODE	11.3323	77.7037
5	MVR AUTO SOLUTIONS (DC5)	TRICHY	10.8606	78.7121
6	XMR ENTERPRISES (DC6)	TIRUNELVELI	8.7555	77.6883
7	SPH ENTERPRISES LLP (<i>DC7</i>)	VILLUPURAM	11.925	79.4836
8	ADR ENTERPRISES (DC8)	COIMBATORE	10.998	76.99

Data

Considering 1 Distribution Center the demand data for DC1 is:

Distributor 1	Week 1	Week 2	Week 3	Week 4	Total
Part 1	16	16	15	15	62
Part 2	249	263	248	300	1060
Part 3	226	246	226	290	988
Part 4	376	418	350	459	1603
Part 5	28	28	23	25	104

Table 1

- Inventory holding capacity and cost for Distributor center 1 during all time periods in table 2
- Transportation charges and Number of trucks available for service based on destination to distributor center 1 in table 3

DC1	Inventory Capacity	Invetory Holding Cost	Part Weight (KG)	
Part 1	967	91	2.575	
Part 2	725	84	0.682	
Part 3	258	6	0.287	
Part 4	645	41	0.929	
Part 5	226	7	0.510	

Table 2

	Part 1	Part 2	Part 3	Part 4	Part 5	Number of trucks available
Transporter 1	19.67	18.2	2.19	7.1	2.06	2
Transporter 2	17.18	15.89	1.91	6.2	1.8	5
Transporter 3	19.13	17.7	2.13	6.9	2.01	4
Transporter 4	9.89	9.15	1.1	3.57	1.04	3
Transporter 5	38.63	35.73	4.31	13.94	4.05	3

Table 3

Methodology

Observation

Understanding the current model, its objectives, and its relevance to recent industrial practices and trends is essential

- Preliminary data collection
 Gathering preliminary data is crucial. This data will be used for calculations and fed into the model.
- Distance matrix procurement
 Google API used, for distance matrix must be collected to accurately calculate transportation distances between various locations.
- OR Model development
 Capturing the objectives and converting operational conditions into constraints effectively.
- Testing
- Full-scale implementation
- **Conclusion and future scope**

Objective function, Decision variable and Constraints

- Decision variables (with notations)
- prod_plant('plant', p,w) Production quantity of part p at the plant during the week w
- transport_vars(i,p,t,w) Quantity delivered from plant to Distribution center i, part p, transportation company t, during week
- inventory_dist2('plant',p,w)- Inventory levels of products needed to be maintained at the plant of part p during week w
- inventory_dist1(i,p,w)- Inventory levels of part p that is needed to be maintained at the distribution center i during week w

Objective function:

Minimize prob = transport_vars * cost_price + inventory_dist *inventory_holding_cost1 +inventory_dist2 * inventory_holding_cost +prod_plant * prod_price

Constraints:

- **Demand**: transport_vars >= demand
- Inventory: For w=0, inventory_dist = initial_inventory,
 Otherwise, inventory_dist = inventory_dist demand + transport_vars
- inventory_dist >= 0

- Transportation: transport_vars *
 weight_per_unit <= transport_capacity
 * truck_capacity
- Production: transport_vars <= production_capacity
- Production Matching: transport_vars = prod_plant
- Inventory Capacity:inventory_dist <= inventory_capacity
- inventory_dist >= inventory_min

Formulation:

Objective Function and **Constraints** are devised to yield an effective model for supply chain management decision-making, ensuring practical and **optimal** outcomes.

Implementation in Solver:

Using **Python** with the library **Pulp** (Python Linear Programming)

Code Link:

https://colab.research.google.com/drive/1co62krxi8y-kQ1N_ypeREdQ89JzoLCO2?usp=sharing

Result

- Total cost after optimization is Rs. 1,58,394.38
- The output from the solver is in figure 1
- Inventory_(0,_'part1',_'week2') = 40.0

It indicates Inventory stored in Distribution Center 1 for part 1 in week 2 is 40

Transport_(0,_'plant',_'part2',_'comp4',_'week1') = 249.0

The quantity of part 2 to transported from plant to distribution center 1 by transporter company 4 in week 1 is 249

```
Total cost: 158394.37999999998
Inventory_(0, _'part1', _'week2') = 40.0
Inventory_(0, -'part1', -'week3') = 40.0
Inventory_(0, \_'part1', \_'week4') = 40.0
Inventory_(0,_'part2',_'week2') = 33.0
Inventory_(0,_'part2',_'week3') = 33.0
Inventory_(0, -'part2', -'week4') = 34.0
Inventory(0, -part3', -week2') = 16.0
Inventory_(0,_'part3',_'week3') = 17.0
Inventory_(0,_'part3',_'week4') = 17.0
Inventory(0, 'part4', 'week2') = 30.0
Inventory_(0,_'part4',_'week3') = 30.0
Inventory_(0,_'part4',_'week4') = 30.0
Inventory_(0, \_'part5', \_'week2') = 66.0
Inventory_(0,_'part5',_'week3') = 67.0
Inventory_(0,_'part5',_'week4') = 67.0
Transport_(0,_'plant',_'part1',_'comp4',_'week1') = 16.0
Transport_(0,_'plant',_'part1',_'comp4',_'week2') = 56.0
Transport_(0,_'plant',_'part1',_'comp4',_'week3') = 15.0
Transport_(0,_'plant',_'part1',_'comp4',_'week4') = 15.0
Transport_(0,_'plant',_'part2',_'comp4',_'week1') = 249.0
Transport_(0,_'plant',_'part2',_'comp4',_'week2') = 296.0
Transport_(0,_'plant',_'part2',_'comp4',_'week3') = 248.0
Transport_(0,_'plant',_'part2',_'comp4',_'week4') = 301.0
Transport_(0,_'plant',_'part3',_'comp4',_'week1') = 226.0
Transport_(0,_'plant',_'part3',_'comp4',_'week2') = 262.0
Transport_(0,_'plant',_'part3',_'comp4',_'week3') = 227.0
Transport_(0,_'plant',_'part3',_'comp4',_'week4') = 290.0
Transport_(0,_'plant',_'part4',_'comp4',_'week1') = 376.0
Transport_(0,_'plant',_'part4',_'comp4',_'week2') = 448.0
Transport_(0,_'plant',_'part4',_'comp4',_'week3') = 350.0
Transport_(0,_'plant',_'part4',_'comp4',_'week4') = 459.0
Transport_(0,_'plant',_'part5',_'comp4',_'week1') = 28.0
Transport_(0,_'plant',_'part5',_'comp4',_'week2') = 94.0
                                       Figure 1
```

Sensitivity Analysis

160 constraints only 62 constraints are slack variables exhibited non zero values

Shadow Price is how much the objective function value would change for each unit in the right-hand side of a constraint

Number of points of shadow price greater than 1: 30

Total number of constraints: 160 Number of slack variables greater than zero: 29 Number of slack variables lesser than zero: 23

Capacitated Vehicle Routing

 Total weight of the parts transported to DC1 is 2300 KG

 Total 8 DC's are there, Assume that same quantity is transported to the remaining 7 DC's

Total truck capacity is 7000 KG

 There are 5 transportes, transport company 4 has minimum cost of transportation there is 3 trucks available with them

Distance Matrix Using Google Maps API

	Hosur	Chennai	Salem	Madurai	Erode	Trichy	Tirunelveli	Villupuram	Coimbatore
Hosur	0	316	172	413	235	301	546	237	331
Chennai	316	0	339	463	404	317	615	165	500
Salem	151	338	0	241	67	129	374	174	163
Madurai	387	463	236	0	199	146	156	299	208
Erode	214	406	69	205	0	140	338	242	95
Trichy	281	317	130	146	140	0	299	153	209
Tirunelveli	525	615	374	156	338	299	0	451	346
Villupuram	239	165	174	299	240	152	451	0	336
Coimbatore	310	502	165	217	98	208	351	338	0

Routing

Every Route starts and ends at the main plant Hosur

```
Route for vehicle 2:
    0 Load(0) -> 7 Load(2300) -> 1 Load(4600) -> 0 Load(4600)

Distance of the route: 718050m
Load of the route: 4600

Route for vehicle 3:
    0 Load(0) -> 5 Load(2300) -> 3 Load(4600) -> 6 Load(6900) -> 0 Load(6900)

Distance of the route: 1130661m
Load of the route: 6900

Route for vehicle 4:
    0 Load(0) -> 2 Load(2300) -> 4 Load(4600) -> 8 Load(6900) -> 0 Load(6900)

Distance of the route: 645695m
Load of the route: 6900
```

- Figure 2 shows the route followed by each truck
 0 Load(0) -> 7 Load(2300) -> 1 Load(4600) -> 0 Load(4600)
- Indicates Start from Hosur -> Villupuram -> Chennai -> Hosur

Route 1

Conclusion

Due to route optimization, the total distance traveled significantly decreased from **3554.0 km** to **2497.4 km**, representing a **reduction of 1056.6 km**, or distance reduce by **29.73%**

Data Visualisation

Visual Representation of distances from **Hosur** to the 8 distribution center

Heat Map of Distance Matrix

Scatter Plot of routes followed by the 3 trucks

- Total distance traveled was estimated through Haversine distance 2052.22 km
- Actual distance travelled is 2497.408 km calculated by google maps with distance matrix
- Rectified the error percentage in the distances are **17.79%**

Distance calculated by Haversine distance

Route by Google Maps

Future Scope

- If one more plant was opened in Tamil Nadu due to the high demand of product finding the proper location by reducing transportation costs and inventory costs
- Time window constraints can be added for loading and unloading for efficiently reaching the product
- Identify the traffic and tame taken for the travel in the routes where truck travel using Google Maps
- Different sizes of items can packed into a fixed volume of bins, in a way that minimizes the number of bins used by utilising the volume truck.

THANK YOU

