# Hawking Radiation A Comparison of Pure-state and Thermal Description

Yi-Fan Wang 王一帆

Institut für Theoretische Physik Universität zu Köln

Masterkolloquium



#### Outline

Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators



#### Outline

#### Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators



## Hawking Radiation

Background space-time: sperically collapsing body





## Hawking Radiation

#### Result and interpretation

lacktriangle An early-time vacuum on  $\mathcal{I}^-$  in collapsing background

$$\hat{a}(p)|h\rangle := 0 \quad \Rightarrow \quad \langle \hat{n}_a(p) \rangle_b \equiv 0$$
 (1)

evolves to a late-time state on  $\mathcal{I}^+ \cup \mathscr{R}^+$  with particles [Haw74]

$$\langle \hat{n}_b(\omega) \rangle_h \approx \Gamma_\omega (e^{2\pi\omega/\kappa} - 1)^{-1}.$$
 (2)

▶ Comparing eq. (2) with the Bose–Einstein distribution

$$\langle \hat{n}(\omega) \rangle_{\mathsf{BE}} = \left( e^{\omega/T} - 1 \right)^{-1},$$
 (3)

one may conclude that eq. (2) describes a grey-body radiation with the Hawking temperature [Haw75],

$$T_{\mathsf{H}} := \kappa/2\pi$$
.



## Hawking Radiation

#### Tension in the interpretation

▶ The state  $|h\rangle$  or its density operator is pure,

$$\hat{\rho}_h = |h\rangle \langle h|, \qquad (5)$$

whilst the Bose-Einstein state of equilibrium bosonic gas

$$\hat{\rho}_{\mathsf{BE}} = Z^{-1} e^{-\widehat{H}/T} Z^{-1} \sim Z^{-1} \sum_{E} e^{-E/T} |E\rangle \langle E| \qquad \textbf{(6)}$$

is thermal and mixed.

▶ How different are they? [Kie01; HR09]



#### Outline

Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators



Classical theory 1/2 [Cal+92; DK96; APR11]

▶ The action of the dilaton gravity model reads

$$S = \int d^2x \sqrt{-\overline{g}} \left\{ \frac{e^{-2\overline{\phi}}}{G} \left[ \overline{R} + 4(\nabla \overline{\phi})^2 + 4\lambda^2 \right] - \frac{1}{2} (\nabla f)^2 \right\}$$
$$= \int d^2x \sqrt{-g} \left\{ \frac{1}{G} \left[ R\phi + 4\lambda^2 \right] - \frac{1}{2} (\nabla f)^2 \right\}, \tag{7}$$

where in eq. (7), the kinetic term of the dilaton field  $\phi$  is eliminated by substituting  $\phi = e^{-2\overline{\phi}}$  and  $g_{\alpha\beta} = e^{-2\overline{\phi}}\overline{g}_{\alpha\beta}$ .

lacktriangle Has a solution which resembles the collapsing body in (3+1)d Einstein gravitation



Classical theory 2/2 [Cal+92; DK96; APR11]





Quantum theory 1/2 [DK96]

- Can formally be canonically quantised as a constraint system
- ▶ Apply a Born–Oppenheimer-type approximation to  $\Psi[g,\phi,f]$  [Kie12, § 5.4]
  - ▶ Separate '*Heavy, slow*' gravity and '*light, fast*' matter
  - Apply WKB approximation to the gravity part
  - Assume disentanglement  $\Psi[g,\phi,f]=D[g,\phi]\chi[g,\phi,f]$
- ▶ Insert the ansatz  $\Psi[g,\phi,f] = e^{i(G^{-1}S_0 + S_1 + GS_2 + ...)}$ 
  - ▶ Order  $G^{-1}$ : Hamilton–Jacobi equation for pure gravity
  - ▶ Order G<sup>0</sup>: functional Schrödinger equation for matter

$$\mathring{\mathbb{I}}\frac{\partial \chi}{\partial t} = \widehat{H}_{\mathsf{m}}\chi,\tag{7}$$

$$\widehat{H}_{\rm m} \equiv \frac{1}{2} \int_0^{+\infty} {\rm d}k \left( -\frac{\pmb{\delta}^2}{\pmb{\delta} f^2(k)} + k^2 f^2(k) \right). \label{eq:Hmoments}$$



Quantum theory 2/2 [DK96]

▶ At early time, the ground-state solution to eq. (7) is

$$\chi_0[f] \propto \exp\left\{-\frac{1}{2} \int_0^{+\infty} \mathrm{d}k \, k \, f(k)^2\right\},\tag{7}$$

while at late time it evolves to

$$\chi_b[g] \propto \exp\left\{-\int_{-\infty}^{+\infty} dp \, p \coth\left(\frac{\pi p}{2\lambda}\right) |g(p)|^2\right\},$$
 (8)

where f(k) and g(p) are the Fourier transform of the matter field at early and late time, respectively.

▶ At late time, particle-number expectations are

$$\langle \hat{n}_b(p) \rangle_{\chi_b} = \left( e^{2\pi |p|/\lambda} - 1 \right)^{-1}, \tag{9}$$

leading to a Hawking-like black-body temperature

$$T_{\mathsf{HD}} \coloneqq \lambda/2\pi.$$



#### Outline

Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators



#### Correlation of Fourier Modes

The discrepancy

The Fourier-mode correlators of different states can be calculated,

$$\begin{split} \langle \hat{g}^{\dagger}(p_1) \hat{g}(p_2) \rangle &= \frac{1}{T_{\textrm{HD}}} \delta(p_1 - p_2) \cdot \begin{cases} \frac{1}{2} \frac{1}{q}, & \textrm{vacuum}; \\ \frac{1}{8} \frac{\tanh \frac{q}{4}}{\frac{q}{4}}, & \chi_b; \\ \frac{1}{4} \frac{\coth \frac{q}{2}}{\frac{q}{2}}, & \hat{\rho}_{\textrm{BE}}(T_{\textrm{HD}}), \end{cases} \end{split} \tag{11}$$

where  $q := p_1/T_{HD}$ .

Note that

$$\langle (\Delta \hat{g})^2 \rangle = \langle \hat{g}^2 \rangle - \langle \hat{g} \rangle^2 = \langle \hat{g}^2 \rangle.$$
 (12)



#### Correlation of Fourier Modes

Fluctuation of the Fourier modes: diagram in log-log scale





#### Correlation of Fourier Modes

Fluctuation of the Fourier modes: interpretation

Vacuum fluctuation

$$\left\langle \left| \hat{g} \right|^2 \right\rangle_{\text{vac}} \sim \mathcal{O}(q^{-1})$$
 (13)

A black hole does not alter the high-energy processes.

$$\left\langle \left| \hat{g} \right|^2 \right\rangle_{\chi_b} \approx \left\langle \left| \hat{g} \right|^2 \right\rangle_{\text{th}} \approx \left\langle \left| \hat{g} \right|^2 \right\rangle_{\text{vac}} \sim \mathcal{O}(q^{-1}), \quad |p| \gg T_{\text{HD}}$$
(14)

➤ A black hole suppresses low-energy fluctuation of the pure state, while enhancing that of the thermal state.

$$\mathrm{O}(1) \sim \left\langle \left| \hat{g} \right|^2 \right\rangle_{\chi_b} \ll \left\langle \left| \hat{g} \right|^2 \right\rangle_{\mathrm{vac}} \ll \left\langle \left| \hat{g} \right|^2 \right\rangle_{\mathrm{th}} \sim \mathrm{O}(q^{-2}), \quad |p| \ll T_{\mathrm{HD}} \tag{15}$$

lacktriangle Critical scale  $|p| \sim T_{
m HD}$ 



#### Outline

Hawking Radiation

Model of Gravitation

Correlator of Field Strength

Distance between Density Operators



## Another New Foundation of Statistical Physics [PSW06]

Specific and easy version of the construction

- ▶ Total isolated system U with energy constraint  $\left\langle \widehat{H}_{U} \right\rangle \coloneqq E_{U}$ , divided into a (sub)system S and an environment E
- ▶ Hilbert spaces  $\mathcal{H}_R\supseteq\mathcal{H}_U=\mathcal{H}_S\otimes\mathcal{H}_E$ ;  $\hat{1}_R$  identity on  $\mathcal{H}_R$ , dimension  $d_R:=\dim\mathcal{H}_R<+\infty$
- ightharpoonup Equiprobable / maximal-ignorant state of U

$$\hat{\mathcal{E}}_R := d_R^{-1} \hat{1}_R \in \mathcal{H}_R \tag{16}$$

- $\blacktriangleright$  Hamiltonians  $\widehat{H}_U = \widehat{H}_S + \widehat{H}_E + \widehat{H}_{\rm int}$
- ▶ Canonical state of S with energy constraint [LL80, § 28]

$$\widehat{\Omega}_{S}^{(\mathsf{E})} \coloneqq \operatorname{tr}_{E} \widehat{\mathcal{E}}_{R} \propto \exp \left(-\widehat{H}_{S}/T_{\mathsf{th}}\right) \tag{17}$$

▶ Theorem:  $\forall |\phi\rangle \in \mathcal{H}_B$ , the reduced state of S

$$\boxed{\operatorname{tr}_E |\phi\rangle \langle \phi| =: \hat{\rho}_S(\phi) \approx \widehat{\Omega}_S^{(\mathsf{E})}.}$$



## Another New Foundation of Statistical Physics [PSW06]

Generic and exact version of the construction

- ▶ Arbitrary constraint R; study the trace distance T between  $\hat{\rho}_{S}(\phi)$  and  $\hat{\Omega}_{S}$
- ▶ Lemma: average distance is small w.r.t.  $d_S/d_E^{\text{eff}}$

$$\left\langle T(\hat{\rho}_S(\phi), \widehat{\Omega}_S) \right\rangle \le \frac{1}{2} \sqrt{d_S/d_E^{\text{eff}}}$$
 (19)

▶ Theorem: probability of large deviation is exponentially small w.r.t. the distance; an easy version

$$\frac{V\left[\left\{|\phi\rangle \mid T\left(\hat{\rho}_S(\phi), \widehat{\Omega}_S\right) \ge d_R^{-\frac{1}{3}}\right\}\right]}{V\left[\left\{|\phi\rangle\right\}\right]} \le 4\exp\left(-\frac{2d_R^{\frac{1}{3}}}{9\pi^3}\right) \quad (20)$$

Effective dimension of E: setting  $\widehat{\Omega}_E = \operatorname{tr}_S \widehat{\mathcal{E}}_B$ ,

$$d_U/d_S \equiv d_E \geq d_E^{
m eff} \coloneqq \left({
m tr}\,\widehat{\Omega}_E^2\right)^{-1} \geq d_R/d_S.$$
 (21) bcgs



# Trace Distance [Wil09, ch. 9]

#### **Definitions**

 $\blacktriangleright$  Trace distance between Hermitian operators  $\widehat{M}$  and  $\widehat{N}$ 

$$T(\widehat{M}, \widehat{N}) := \frac{1}{2} \operatorname{tr} \sqrt{(\widehat{M} - \widehat{N})^{\dagger} (\widehat{M} - \widehat{N})}$$
 (22)

- ▶ Positivity, homogeneity, triangle ineq., isometric inv.
- ▶ For density operators  $\hat{\rho}$  and  $\hat{\sigma}$ ,
  - $ightharpoonup 0 \le T(\hat{\rho}, \widehat{\sigma}) \le 1.$
  - Controlled by fidelity in [FG99]

$$1 - F(\hat{\rho}, \widehat{\sigma}) \le T(\hat{\rho}, \widehat{\sigma}) \le \sqrt{1 - F^2(\hat{\rho}, \widehat{\sigma})}, \tag{23}$$

where we only need

$$F(|\alpha\rangle\,,\widehat{\sigma}) \coloneqq \sqrt{\langle\alpha\,|\,\widehat{\sigma}\,|\,\alpha\rangle}.\tag{24}$$

In our application, T is difficult while F can be obtained.



# Trace Distance [Wil09, ch. 9]

Interpretation

Maximal probability-difference obtainable

$$T(\hat{\rho}, \hat{\sigma}) = \max_{0 \le \widehat{\Lambda} \le \widehat{1}} \operatorname{tr} \left\{ \widehat{\Lambda}(\hat{\rho} - \hat{\sigma}) \right\}, \tag{25}$$

where all eigenvalues of  $\widehat{\Lambda}$  are in the range [0,1]

- ▶ E.g.  $\widehat{\Lambda} := |\alpha\rangle\,\langle\alpha|$ ,  $|\alpha\rangle$  eigenstate of  $\widehat{A}$  with eigenvalue  $\alpha$ 
  - ightharpoonup tr $\left\{\widehat{\Lambda}\widehat{
    ho}\right\}$ : the probability of getting lpha in measuring  $\widehat{A}$
  - $\operatorname{tr}\left\{\widehat{\Lambda}(\widehat{\rho}-\widehat{\sigma})\right\}$ : the difference of the probability above
  - $ightharpoonup T(\hat{\rho}, \widehat{\sigma})$ : the maximal value of the difference above



Single-mode trace distances

- $\blacktriangleright \chi[f] \sim S$ ,  $\Psi[g,\phi,f] \sim U$
- ▶ The pure wave functional can sloppily be decomposed  $\chi_b[g] \sim \sum_p \chi_b^{(p)}(g_p) \equiv \sum_p \left\langle g_p \, \middle| \, \chi_b^{(p)} \right\rangle$ , where  $g_p \coloneqq g(p)$
- $\blacktriangleright$  So does the thermal density operator  $\hat{\rho}_{\rm th}(T) \sim \bigotimes_{p} \hat{\rho}_{\rm th}^{(p)}(T)$
- ▶ Fidelity in eq. (23) can be factorised as well

$$F \equiv \langle \chi_b \, | \, \hat{\rho}_{\mathsf{th}} \, | \, \chi_b \rangle^{\frac{1}{2}} \sim \prod_p \left\langle \chi_b^{(p)} \, | \, \hat{\rho}_{\mathsf{th}}^{(p)} \, | \, \chi_b^{(p)} \right\rangle^{\frac{1}{2}} =: \prod_p F^{(p)}; \tag{26}$$

igllet  $F^{(p)}$  can be computed in order to find bounds of T

$$F^{(p)}\!\left(\left|p\right\rangle,\hat{\rho}_{\mathrm{th}}^{(p)}(T_{\mathrm{HD}})\right) = \frac{\sqrt{u-1}}{\sqrt[4]{u^2+u+1}}, \quad u \coloneqq \mathrm{e}^q \equiv \mathrm{e}^{|p|/T_{\mathrm{HD}}}. \tag{27} \text{bcgs}$$

Single-mode trace distances, bounds set by fidelity and eq. (23)





#### All-mode trace distance

lacktriangle 'Go to the continuum limit':  $\Lambda$  dimension regulator

$$\sum_{p} g(p) \to \frac{1}{2\pi\Lambda} \int \mathrm{d}p \, g(p), \tag{26}$$

Analogously, to regularising a positive product

$$\prod_{p} f(p) \equiv \exp\left\{\sum_{p} \ln f(p)\right\} \to \exp\left\{\frac{1}{2\pi\Lambda} \int dp \ln f(p)\right\}$$
(27)

Regularised F can be calculated in order to set bounds of T

$$F(\chi_b,\hat{\rho}_{\rm th}) = \exp\biggl\{\frac{2}{2\pi\Lambda}\int_0^{+\infty} \mathrm{d}p\,\ln F^{(p)}\biggr\} = \exp\biggl(-\frac{\mathrm{tt}}{9}\frac{T_{\rm HD}}{\Lambda}\biggr) \tag{28}$$

All-mode trace distance, bounds set by fidelity and eq. (23)





### Summary

- ► Compared the pure and the thermal descriptions of the radiation within the solvable dilaton gravity model
- ➤ Fourier-mode fluctuation: that of the thermal state diverges faster than the vacuum case does at low energy, while the pure-state fluc. remains finite; at high energies they converge.
- Trace distance: goes exponentially small with black hole temperature going to zero.

#### Outlook

- Understand the dilaton gravity model
- ▶ Understand the Fourier-mode fluctuation
- Evaluate the real space correlator
- Understand practical meaning of trace distance
- ▶ Understand the regulator in total trace distance
- Evaluate the exact trace distance
- Include the gravitational wave functional





## For Further Reading I

- Claus Kiefer. Quantum Gravity. 3rd ed. Oxford University Press (OUP), Apr. 2012.
- Lev D. Landau and E.M. Lifshitz. *Statistical Physics*. 3rd ed. Butterworth-Heinemann, Jan. 1980.
- Mark M. Wilde. Quantum Information Theory. Cambridge University Press (CUP), 2009.
- Abhay Ashtekar, Frans Pretorius, and Fethi M. Ramazanoğlu. "Evaporation of two-dimensional black holes". In: *Phys Rev D* 83.4 (Feb. 2011).
- Curtis G. Callan et al. "Evanescent black holes". In: *Phys Rev D* 45.4 (Feb. 1992), R1005–R1009.
- Jean-Guy Demers and Claus Kiefer. "Decoherence of black holes by Hawking radiation". In: *Phys Rev D* 53.12 (June 1996), pp. 7050–7061.

## For Further Reading II

- C.A. Fuchs and J. van de Graaf. "Cryptographic distinguishability measures for quantum-mechanical states". In: *IEEE Trans. Inf. Theory* 45.4 (May 1999), pp. 1216–1227.
- S. W. Hawking. "Black hole explosions?" In: *Nature* 248.5443 (Mar. 1974), pp. 30–31.
- S. W. Hawking. "Particle creation by black holes". In: Commun. Math. Phys. 43.3 (Aug. 1975), pp. 199–220.
- Stephen D. H. Hsu and David Reeb. "Black holes, information, and decoherence". In: *Phys Rev D* 79.12 (June 2009).
- Claus Kiefer. "Hawking radiation from decoherence". In: Classical Quantum Gravity 18.22 (Nov. 2001), pp. L151–L154.

## For Further Reading III



Sandu Popescu, Anthony J. Short, and Andreas Winter. "Entanglement and the foundations of statistical mechanics". In: *Nat. Phys.* 2.11 (Oct. 2006), pp. 754–758.

