Chapter O - Review of Algebra / Procalculus
Anthoretic Operations The Real Number Line and Order The Real Number Line We can represent real numbers using the real number line (think X-axis)
Coordinate: the number Corresponding to a point on the real number line. Origin: the point corresponding to Zero. Points to the right of the origin are positive. Points to the left are negative. The term nonnegative refers to all positive numbers AND zero.
Each real number corresponds to only one point.
We call this a <u>one-to-one correspondence</u> . If a number can be represented as the ratio of two integers $\frac{7}{3}$, $-\frac{3}{2}$, etc. Le call it <u>rational</u> .
If we are unable to represent a number this way, we say that it is irrational Ex TT, NI, e
Norder and Intervals on the Real Number Line Real numbers are <u>ordered</u> — we can sort any group of real numbers. We can visualize this on a number line
Notice that -0.5 is to the left of 1.5. This means that -0.5 is less than 1.5. We write
-0.5 < 1.5

We can also order more than two numbers. If acx and xeb, Millian tox alx x < b x is between a and b. The set of real numbers blu a and b is an open interval which we denote (a,b). It is "open" ble it does not include the endpoints a and b. a (a,b) or acxeb Closed intervals include the endpoints. [a, b] or a < x < b Some intervals are neither open nor closed: al (a,b) or a<X <b (a,b) or $a \le x < b$ There are also infinite intervals: (-00, a) OR X<a. - (-0, a) GR X < a (b, 00) OR X>b. a Lb, a) OR X 2 b (-00,00) or all real numbers! > Solving Inequalities

Properties of Inequalities for a,b,c,d real numbers, Act and cod => acc acc act act act and inequalities

Multiply by positive constant: act => ac > bc

C > 0

Multiply by regative constant: act => ac > bc

C < 0 Adding a constant: asb > arc < b+c x = 1 = 0 < b => a-c < b-c (x = 1) (x This is a lot like solving equalities! The big difference is #4

Ex Multiplying by -2, Ex Find the solution set for 3x-4<5 3x-4+4 < 5+4 The solin set is the interval (-00, 3) Checkpoint Find the solin set for the inequality 2x-3 < 7. Solving polynomial inequalities Recall that polynomials change sign only at numbers that make the polynomial zero. We will use this for polynomial inequalities. Ex Consider $x^2 < x + 6$ $x^2 - x - 6 < 0$ move everything to one side (x-3)(x+2) < 0 factor This has Zeros at x=3 and x=-2. -4-3-2-1 012 34 X x <-21 -2 < x < 3 x>3 Sign change sign change Choose a number in each interval to plug into the inequality.

X | Sign | <0

No

So the solin set is (-2, 3) | |

4 | + | No

Checkpoint Find the solin set for 1x2 > 3x+10

0.2 Absolute Value and Distance on the Real Number Line. Def The absolute value of a real number C is |c| = {c if c < 0} |-3| = -(-3) = 3Properties:

1) Multiplication: |ab| = |a||b|2) Division: |a| = |a|, $b \neq 0$ 3) Power: |a" |= |a|" 4) Square root: |a" = |a| ex if a = -2 , \[(-2)^2 = 14 = 2 Distance on the Real Number Line The directed distance from a to b is The directed distance from 6 to a is The distance between a and blis 1a-61 OR 15-01 we can also write /(a-b)2 Ex Determine the distance between -3 and 4. What is the directed distance from -3 to 4? from 4 to -3? 2= 4-(-3) = 7 =7 directed distance -3 to 4 is 4-(-3)=74 to -3 is -3-4=-7Intervals Defined by Absolute Value.

Ex Find the interval that contains all real numbers that lie no more than two units from 3. $|x-3| \le 2$ So |x-3| is $|x-3| \le 2$ and $|x-3| \le 2$ -2 < x-3 < 2

Operations with Exponents:

1) Multiplying like bases: xn

2) Dividing like bases: xn 3) Removing parentheses: (xy)? = x^y $-x^n \neq (-x)^n$ $-x^n \neq (x^n)^m$ 4) Special conventions: ex Simplify 3x2 /x1/2/3 ex Simplify 2x2(x3) $Soln 2x^{2}(x^{3}) = 2x^{2}$ ex Simplify 2x-1/2 + 3 ex Simplify 2x3+ x2 $\frac{Soln}{2x^3 + x^2} = \frac{2x^{2+1} + x^2}{2x^2 + x^2} = \frac{2x^2 + x^2}{2x^2 + x^2} = \frac{2x^2 + x^2}{2x^2 + x^2}$ Sometimes in calculus we will need to simplify messier expressions:

Sometimes in calculus we will need to simplify messier $ex 3(x+1)^{1/2}(2x-3)^{5/2} + 10(x+1)^{3/2}(2x-3)^{3/2}$ $= 3(x+1)^{1/2}(2x-3)^{3/2} + 2/2 + 10(x+1)^{1/2} + 2/2 (2x-3)^{3/2}$ $= (x+1)^{1/2}(2x-3)^{3/2} \left[3(2x-3) + 10(x+1)\right]$ $= (x+1)^{1/2}(2x-3)^{3/2} \left[(6x-9+10x+10)\right]$ $= (x+1)^{1/2}(2x-3)^{3/2} \left[(6x-9+10x+10)\right]$

 $0x \frac{3x^2 + x^4}{2x} = \frac{x^2(3 + x^2)}{2x} = \frac{x(3 + x^2)}{2} = \frac{x(3 + x^2)}{2}$ Domain of an Algebraic Expression: Def: The set of all numbers for which the expression is defined is called its domain. ex Find the domain of (3x-2)-1/2 First, note this is undefined if $\sqrt{3x-2}'=0$. It is also undefined if 3x-2<0So the domain must be 3x-2>0 (positive and nonzero). 3x>2And the domain is to (2/3, 00) > (2/3, 00) 0.4 Factoring Polynomials The Fundamental Theorem of Algebra States that every not degree polynomial $a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x + a_n x^n$ an $\neq 0$ has precisely in Zeros (which may be repeated or imaginary) Special Products and Factorization Techniques: Quadratic Formulai -b + 162-4ac ax2 + bx+c =0 => Special Products: $x^2 - a^2 = (x-a)(x+a)$ $x^3 - a^3 = (x-a)(x^2 + ax + a^2)$ $x^3 + a^3 = (x+a)(x^2 - ax + a^2)$ $x^4 - a^4 = (x-a)(x+a)(x^2 + a^2)$

17

```
omial Theorem
(x+a)^2 = x^2 + 2ax + a^2
(x-a)^2 = x^2 - 2ax + a^2
(x+a)^3 = x^3 + 3ax^2 + 3a^2x + a^3
(x-a)^3 = x^3 - 3ax^2 + 3a^2x^2 - a^3
  = x^{2} + n\alpha x^{-1} + \frac{n(n-1)}{2!}\alpha^{2}x^{-2} + \frac{n(n-1)(n-2)}{3!}\alpha^{3}x^{-3} + \dots + n\alpha^{-1}x + \alpha^{-1}
  = x^{n} - n\alpha x^{n-1} + \frac{n(n-1)\alpha^{2}x^{n-2}}{2!} - \frac{n(n-1)(n-2)\alpha^{3}x^{n-3} + \dots \pm n\alpha^{n-1}x}{3!} \mp \frac{1}{3!}
     Factoring by Grouping
            acx^3 + adx^2 + bcx + bd = ax^2(cx+d) + b(cx+d)
= (ax^2 + b)(cx+d)
 Ex Find the Zeros of 4x2 +6x+1
  Soln: Quadratic formula. a=4 5=6 c=1
                                        = -6 \pm \sqrt{36-16}
                                       = -6+120
                                       = -6+25
    -3-\sqrt{5}\approx -1.309 and -3+\sqrt{5}\approx -0.191
Ex Find the Zeros of 2x2-6x+5
Soln: a=2 b=-6 c=5
  x = 6 \pm \sqrt{36 - 40} = 6 \pm \sqrt{-4}
```

8) how J-4 is imaginary, so there are no real zeros.

Ex Find the domain of 1x2-3x+2 Soin The expression is defined for $x^2 - 3x + 2 \ge 0$. Find the zeros to find where the sign changes: $x^2 - 3x + 2 = (x - 1)(x - 2)$ So the domain is (-00, 1) U[2,00) a denotes the union - basically an "and"! Synthetic Division for a Cubic Polynomial.

If $x = x_1$ is a zero of $ax^3 + bx^2 + cx + d$, X, a b c d Vertical pattern: add terms
Diagonal pattern: multiply by X, (x-x1)(ax2+sx+t) should get zen! ex Synthetic Livision on x3-4x2+5x-2 with zero x=2 211-45-2 2 1 -4 5 -2 1 0 1) Add 1 5) 5-4=1 2) 1×2=2 3) -4+2=-2 6) 1×2 = 2 7) -2+2=0 $4) - 2 \times 2 = -4$ $(x-2)(x^2-2x+1)$ Rational Zero Theorem. has integer coefficients, then every rational zero is of the form X = Plq where P is a factor of Q and Q is a factor of Q.

9

ex Find all real zeros of 2x3+3x2-8x+3 Solin Prational zero theorem: Qo = 3, has factors = 1 and = 3 (Pg)
On = 2, has factors = 1 and = 2 (Qs) possible rational zeros pla are 1, -1, 3, -3, -3, -3 12(1)3+3(1)2-8(1)+3=0 We know I is a zero, so be can perform synthetic division (x-1)(2x2 + 5x - 3) B Factor the quadratic: (x-1)(2x-1)(x+3). So the zeros are x=1, x= 2, and x=-3 0.5 Fractions and Rationalization Operations with Fractions.

1) Add and subtract fractions (find a common denominator $\frac{a}{b} + \frac{c}{d} = \frac{a}{b}(\frac{d}{d}) + \frac{c}{d}(\frac{b}{b}) = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}$ $\frac{a}{b} - \frac{c}{d} = \frac{a(d)}{b(d)} - \frac{c(b)}{c(b)} = \frac{ad}{bd} - \frac{bc}{bd} = \frac{ad-bc}{bd}$ for b, d = 0 2) Multiply fractions (a)(c) = ac 3) Divide fractions (invert and multiply) $\frac{a/b}{c/d} = \frac{(a)}{(b)} \left(\frac{d}{c}\right) = \frac{ad}{bc}$ 4) Divide out like factors:

ab = b, ab + ac = a(b+c) =

10

ex Simplify
$$\frac{1}{x+1} - \frac{2}{2x-1}$$

Solut $\frac{1}{x+1} - \frac{2}{2x-1} = \frac{1}{x+1} \left(\frac{2x-1}{2x-1} \right) - \frac{2}{2x-1} \left(\frac{x+1}{x+1} \right)$

$$= \frac{2x-1}{(x+1)(2x-1)} - \frac{2(x+1)}{(2x-1)(x+1)}$$

$$= \frac{2x-1}{2x^2 + x + 1}$$

$$= \frac{2x-1}{2x^2 + x + 1}$$

ex Simplify $\frac{1}{2(x^2+2x)} - \frac{1}{4x}$

Solut $\frac{1}{2(x^2+2x)} - \frac{1}{4x} = \frac{1}{2x(x+2)} - \frac{1}{2(2x)} \left(\frac{x+2}{x+2} \right)$

$$= \frac{2}{2x(x+2)} - \frac{x+2}{4x(x+2)}$$

$$= \frac{2}{4x(x+2)} - \frac{x+2}{4x(x+2)}$$

$$= \frac{2}{4x(x+2)} - \frac{x+2}{4x(x+2)}$$

$$= \frac{-x}{4x(x+2)}$$

$$= \frac{-1}{4(x+2)}$$

Note: To add more than 2 fractions, find a common denominator among all the fractions. (You can also add 2 at a time if you prefer!)

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} = \frac{15}{30} + \frac{10}{30} + \frac{6}{30} = \frac{31}{30}$$

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} = \frac{3}{6} + \frac{2}{6} + \frac{1}{5} = \frac{5}{6} + \frac{1}{5} = \frac{25}{30} + \frac{6}{30} = \frac{31}{30}$$

ex Simplify A + B + C X+3 + X+4 The least common denominator is (x+2)(x-3)(x+4) = A(x-3)(x+4) + B(x+2)(x+4) + C(x+2)(x-3) $= A(x^{2}+x-12) + B(x^{2}+6x+8) + C(x^{2}-x-6)$ $Ax^{2} + Ax - 12A + Bx^{2} + GBx + 8B + Cx^{2} - Cx - 6C$ (x+2)(x-3)(x+4)Rationalization Techniques.

1) If the denominator is Ja, multiply by Ja 2) If the denominator is Nai-No, multiply by 3) If the denominator is Na + Jb, multiply by Na - 15 . The same guidelines apply to rationalizing numerators. ex Rationalize the denominator for $-\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{x+1}}$