Engineering Optics Lecture 23

10/05/2023

Debolina Misra

Assistant Professor Department of Physics IIITDM Kancheepuram, Chennai, India

DOUBLE REFRACTION

when an unpolarized beam enters an anisotropic crystal, it splits up into two linearly polarized beams, each has a certain state of polarization, different velocities, and different refractive indices.

The beam which travels undeviated is known as the ordinary ray (O-ray) obeys Snell's laws of Refraction

the second beam, does not obey Snell's laws, is known as the extraordinary ray (E-ray).

Anisotropic crystals: Calcite, Quartz etc.

Dichroic crystal: Tourmaline

E-ray and O-ray continued

$$v_{ro} = \frac{c}{n_o}$$

ordinary ray

$$\frac{1}{v_{re}^{2}} = \frac{\sin^{2}\theta}{(c/n_{e})^{2}} + \frac{\cos^{2}\theta}{(c/n_{o})^{2}}$$

extraordinary ray

$$\frac{z^2}{a^2} + \frac{x^2}{b^2} = 1 \quad \text{OR} \quad \frac{1}{\rho^2} = \frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2}$$
$$z = \rho \cos \theta \quad x = \rho \sin \theta$$

we rotate the crystal about NN,' then the e-ray will rotate about NN'.

 n_o and n_e are constants of the crystal and θ is the angle that the ray makes with the optic axis (z) with the optic axis as the axis of revolution

- plot v_{re} as a function of θ
- plot v_{ro} as a function of θ

Which one is correct:

- 1. Sphere inside or
- 2. Ellipse inside ??

Optics, Ghatak

Positive and negative crystals

X

Negative crystal

(a)

Along the optic axis
$$v_{ro} = v_{re} = \frac{c}{n_o}$$

Along a direction perpendicular to optic axis ??

For a negative crystal $n_e \le n_o$

(Optic axis)

$$v_{re}\left(\theta = \frac{\pi}{2}\right) = \frac{c}{n_e} > v_{ro}$$

calcite CaCO₃, ruby Al₂O₃

On the other hand, for a positive crystal $n_e > n_o$

$$v_{re}\left(\theta = \frac{\pi}{2}\right) = \frac{c}{n_e} > v_{ro}$$
 $v_{re}\left(\theta = \frac{\pi}{2}\right) = \frac{c}{n_e} < v_{ro}$

quartz SiO₂, rutile TiO₂

(a) In a negative crystal, the ellipsoid of revolution (which corresponds to the extra ordinary ray) lies outside the sphere; the sphere corresponds to the ordinary ray. (b) In a positive crystal, the ellipsoid of revolution (which corresponds to the extraordinary ray) lies inside the sphere.

Positive crystal

(b)

Optics, Ghatak

How do wavefronts travel?

- Normal Incidence on negative crystal
- <u>(1)</u>

A plane wave incident normally on a uniaxial crystal. Optic axis is shown as a dashed line.

Steps:

O-ray: with point B as the center, we draw a sphere of radius c/n_0 .

- 1. Similarly, we draw another sphere (of the same radius) from point D.
- 2. The common tangent plane to these spheres is shown as OO` → wave front for O-ray.

E-ray: draw an ellipse centered at point B with its minor axis (= c/n_o) along the optic axis

- 3. The ellipsoid of revolution is obtained by rotating the ellipse about the optic axis; major axis equal to c/n_e .
- 4. Similarly, we draw another ellipsoid of revolution from point D.
- 5. The common tangent plane to these ellipsoids is EE`
- 6. BO and BE \rightarrow directions in which O and E-rays move.

(2)

Wavefronts/envelopes for O-ray and E-ray for the given case of normal incidence.

2. For oblique incidence?

- Let *BD* represent the incident wave front.
- Time taken for the disturbance to reach point *F* from *D* is *t*
- With B as center we draw a sphere of radius (c/no)t and an ellipsoid of revolution of semiminor and semimajor axes (c/no)t, and (c/ne)t, respectively.
- From point *F* we draw tangent planes *FO* and *FE* to the sphere and the ellipsoid of revolution, respectively: refracted wave fronts corresponding to the ordinary and the extraordinary rays, respectively.
- If the points of contact are *O* and *E*, then the ordinary and extraordinary refracted rays will propagate along *BO* and *BE*, respectively

Thank You