

Heuristické optimalizačné procesy

Úvod do predmetu, základné pojmy

prednáška 1 Ing. Ján Magyar, PhD. ak. rok. 2024/2025 ZS

Úloha

$$r = 1$$

hľadáme:

$$P(|AB| \ge \sqrt{3})$$

Zobrazenie

Prístup 1

Prístup 2

Prístup 3

Problém, model, riešenie a výsledok

General Problem Solver

Štruktúra problému

- problém
- inštancia problému
- riešenie
- komponenty
- (podmienky)
- (kvalita riešenia)
- kandidáti riešenia alebo potenciálne riešenia
- priestor kandidátov

Prístupy k priestoru kandidátov

Úloha: Hľadáme také dvojciferné a trojciferné číslo, že ich súčin bude 58 401 a žiadnu cifru nepoužijeme dvakrát.

$$58 \, 401 = AB \times CDE$$

Naivný prístup: brute force

A, B, C, D,
$$E \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

veľkosť priestoru kandidátov?

Prístupy k priestoru kandidátov (2)

vieme, že výsledok má byť 58 401, teda dostupné cifry sú 2, 3, 6, 7, 9

A, B, C, D, $E \in \{2, 3, 6, 7, 9\}$

veľkosť priestoru kandidátov?

Prístupy k priestoru kandidátov (2)

Aké sú najväčšie možné čísla ak A, B, C, D, $E \in \{2, 3, 6, 7, 9\}$? Vieme ich nejakým spôsobom využiť?

Prístupy k priestoru kandidátov (3)

Keďže 58 $401 = AB \times CDE$, $B \times E$ musí končiť na 1. Ak $B, E \in \{2, 3, 6, 7, 9\}$, aké sú platné možnosti?

Použitie heuristík

otázky?