Measuring Interior Angles

Short-answer questions involving length, angle, and area.

Geogebra link: https://tube.geogebra.org/m/zrapvzpz

Problem 1 Measure the interior angles of quadrilateral ABCD above.

- (a) $m \angle A = \boxed{31}$ degrees.
- (b) $m \angle B = \boxed{26.74}$ degrees.
- (c) $m\angle C = \boxed{281}$ degrees.
- (d) $m \angle D = \boxed{21.25}$ degrees.
- (e) $m \angle A + m \angle B + m \angle C + m \angle D = \boxed{360 degrees}$

Hint: Be sure to measure interior angle as an amount of turning between the two sides of the angle.

Problem 2 Use the measurements from the previous problem, to computer the measure of the marked angle below.

The marked angle should measure 79 degrees.

Learning outcomes: Author(s): Brad Findell **Problem 3** In order to explain why the sum of the interior angles should be 360° , Bart and Brad each triangulated the figure as shown below.

Multiple Choice:

- (a) They are both correct.
- (b) Only Brad is correct.
- (c) Only Bart is correct. ✓
- (d) Neither of them are correct.

Explain your reasoning.

Free Response: Hint: In Bart's triangulation, the interior angles of the quadrilateral are composed only of interior angles of the triangular pieces. But in Brad's figure, a new angle has been created between A and D, and part of interior angle C has been lost.