

Pape

Slides

Plug-and-Play Priors for Reconstruction-based Placental Image Registration (PnP-RR)

Jiarui Xing¹, Ulugbek Kamilov^{2,3}, Wenjie Wu^{4,5}, Yong Wang⁵, and Miaomiao Zhang^{1,6}

- ¹ Electrical and Computer Engineering, University of Virginia, Charlottesville, USA
- ² Computer Science and Engineering, Washington University in St. Louis, USA
- ³ Electrical and Systems Engineering, Washington University in St. Louis, USA
- ⁴ Biomedical Engineering, Washington University in St. Louis, USA.
- ⁵ Obstetrics and Gynecology, Washington University in St. Louis, USA.
- ⁶ Computer Science, University of Virginia, Charlottesville, USA

Paper

Slides

Brief Intro

- We proposed plug-and-play reconstruction-registration method (PnP-RR):
 - 1) Is a deformable image registration framework for severely noise-corrupted images
 - 2) Is used for registering placental diffusion-weighted MR images that contains severely noise

Paper

Slides

Brief Intro

- We proposed plug-and-play reconstruction-registration method (PnP-RR):
 - Is a deformable image registration framework for severely noisecorrupted images
 - 2) Is used for registering placental diffusion-weighted MR images that contains severely noise

Contents

- 1. Background
 - 1) DW-MRI
 - 2) Image registration
- 2. Related works
- 3. Proposed method: PnP-RR
- 4. Experiments and results
- 5. Discussion and conclusion

- Placenta and DW-MRI
 - Diffusion-weighted MRI (DW-MRI) for placental health monitoring

- Placenta and DW-MRI
 - Diffusion-weighted MRI (DW-MRI) for placental health monitor
 - Collect several placental DW-MR images with different parameters (b-values), then track the appearance changes

- Placenta and DW-MRI
 - Diffusion-weighted MRI (DW-MRI) for placental health monitor
 - Collect several placental DW-MR images with different parameters (b-values);
 then track the appearance changes
 - Deformation among images due to maternal breathing and fetal movements makes tracking hard

- Placenta and DW-MRI
 - Diffusion-weighted MRI (DW-MRI) for placental health monitor
 - Collect several placental DW-MR images with different parameters (b-values);
 then track the appearance changes
 - Deformation among images due to maternal breathing and fetal movements makes tracking hard
 - Need Image registration to find and cancel the deformation

- Image Registration
 - Task: find the deformation ϕ between a source Image S and a target image T

- Image Registration
 - Task: find the deformation ϕ between a source Image S and a target image T
 - Current mainstream: optimization-based methods

- B-value and noise
 - Higher b-value, stronger noise

- B-value and noise
 - Higher b-value, stronger noise
 - Ordinary registration methods: fail on severely noise-corrupted images

- B-value and noise
 - DW-MRI images with different b-values

- B-value and noise
 - Higher b-value, stronger noise
 - Ordinary registration methods: fail on severely noise-corrupted images
 - A noise-robust image registration methods is needed

- Basic idea: denoising + registration
 - Integrate image registration with denoising

- Basic idea: denoising + registration
 - Integrate image registration with denoising
 - Denoising example: total variation denoising for white Gaussian noise

Original

Noisy Image

Denoised image

• 2-Steps Method: denoising before registration

May **NOT** converge to **OPTIMAL** solution

• 2-Steps Method: denoising before registration

May **NOT** converge to **OPTIMAL** solution

Joint Optimization Method

Requires explicit objective function;

-> **LIMITED CHOICES** for denoisers

$$\underset{\phi,T}{\operatorname{argmin}} \frac{1}{\sigma^2} \operatorname{dist}(S \circ \phi^{-1}, T) + \mathcal{R}_{\operatorname{reg}}(\phi) + \lambda_1 R_{\operatorname{denoising}}(\tilde{T}) + \lambda_2 \operatorname{dist}(T, \tilde{T})$$

• Basic Idea

• Basic Idea

Advantages

- Derivation
 - JOINT denoising-registration objective function

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) + \lambda_1 \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) + \lambda_2 \left\| T - \tilde{T} \right\|_{L2}^2$$

- Derivation
 - JOINT denoising-registration objective function

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L^2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) + \lambda_1 \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) + \lambda_2 \left\| T - \tilde{T} \right\|_{L^2}^2$$

SPLIT Formulated as proximal algorithm

$$\underset{\phi}{\operatorname{argmin}} \frac{1}{\sigma^2} \| S \circ \phi^{-1} - \tilde{T} \|_{L2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) = \operatorname{register}_{\sigma} (S, \tilde{T}^k)$$

$$\underset{\tilde{T}}{\operatorname{argmin}} \frac{1}{2} \| \tilde{T} - Z \|_{L2}^2 + \tau \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) = \operatorname{denoise}_{\tau}(\tilde{T} | S \circ \phi^{-1}) \text{ where}$$

$$Z = \frac{\lambda_2 T + (1/\sigma^2)(S \circ \phi^{-1})}{\lambda_2 + (1/\sigma^2)}$$

$$\tau = \frac{\lambda_1}{2(\lambda_2 + (1/\sigma^2))}$$

- Derivation
 - JOINT denoising-registration objective function

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) + \lambda_1 \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) + \lambda_2 \left\| T - \tilde{T} \right\|_{L2}^2$$

SPLIT Formulated as proximal algorithm

$$\operatorname{argmin} \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) = \operatorname{register}_{\sigma} \left(S, \tilde{T}^k \right)$$

$$\operatorname{argmin} \frac{1}{2} \left\| \tilde{T} - Z \right\|_{L2}^2 + \tau \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) = \operatorname{denoise}_{\tau}(\tilde{T} | S \circ \phi^{-1})$$
 where
$$Z = \frac{\lambda_2 T + (1/\sigma^2)(S \circ \phi^{-1})}{\lambda_2 + (1/\sigma^2)}$$
 acce with
$$\operatorname{register}_{\sigma} \left(S, \tilde{T}^k \right)$$
 register
$$(S, \tilde{T}^k)$$

Replace with arbitrary denoiser register (S, \tilde{T}^k) denoise (S, \tilde{T}^k)

- Derivation
 - JOINT denoising-registration objective function

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L^2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) + \left[\lambda_1 \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) + \lambda_2 \left\| T - \tilde{T} \right\|_{L^2}^2 \right] + C$$

SPLIT Formulated as proximal algorithm

$$\underset{\phi}{\operatorname{argmin}} \frac{1}{\sigma^{2}} \| S \circ \phi^{-1} - \tilde{T} \|_{L2}^{2} + \mathcal{R}_{\operatorname{reg}}(\phi) = \operatorname{register}_{\sigma} (S, \tilde{T}^{k})$$

$$\underset{\tilde{T}}{\operatorname{argmin}} \frac{1}{2} \| \tilde{T} - Z \|_{L2}^{2} + \tau \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) = \operatorname{denoise}_{\tau}(\tilde{T} | S \circ \phi^{-1})$$
where

REPLACE Formulated as PnP algorithm

$$Z = \frac{\lambda_2 T + (1/\sigma^2)(S \circ \phi^{-1})}{\lambda_2 + (1/\sigma^2)}$$
$$\tau = \frac{\lambda_2 T + (1/\sigma^2)}{\lambda_1}$$

register_{$$\sigma$$} (S, \tilde{T}^k)

denoise
$$_{\tau}(Z)$$

Specifying an image prior

- Data
 - 2D synthetic data

Target T

Real 3D DW-MRI data

- Algorithm Setting
 - Registration algorithm
 - Fourier-approximated Lie Algebras for Shooting (FLASH)^[1]
 - Denoising algorithm
 - Total variation (TV)
 - Total generalized variation (TGV)
 - Block-matching and 3D filtering (BM3D)

Result

- Result
 - 2D synthetic data Quantitative performance

- Data
 - Real 3D DW-MRI data

All DW-MRIs are of dimension 128 × 128 × 50 and underwent bias field correction, co-registration with affine transformations and intensity normalization

- Data
 - Real 3D DW-MRI data

All DW-MRIs are of dimension 128 × 128 × 50 and underwent bias field correction, co-registration with affine transformations and intensity normalization

Result

Discussion

- Performance
 - Data
 - Advanced methods
- Convergence
- Time

 We presented a novel reconstructionbased registration algorithm, named PnP-RR, for severely noise-corrupted images

Jiarui Xing

Ulugbek Kamilov

Wenjie Wu

Yong Wang

Miaomiao Zhang

- We presented a novel reconstructionbased registration algorithm, named PnP-RR, for severely noise-corrupted images
- In contrast to previous approaches, our model has the flexibility to allow arbitrary denoising algorithm integrated with the registration task

Jiarui Xing

Ulugbek Kamilov

Wenjie Wu

Yong Wang

Miaomiao Zhang

- We presented a novel reconstructionbased registration algorithm, named PnP-RR, for severely noise-corrupted images
- In contrast to previous approaches, our model has the flexibility to allow arbitrary denoising algorithm integrated with the registration task
- What's more, our model benefits from its easiness to implement, robustness to parameter tuning and better performance

Jiarui Xing

Ulugbek Kamilov

Wenjie Wu

Yong Wang

Miaomiao Zhang

- We presented a novel reconstructionbased registration algorithm, named PnP-RR, for severely noise-corrupted images
- In contrast to previous approaches, our model has the flexibility to allow arbitrary denoising algorithm integrated with the registration task
- What's more, our model benefits from its easiness to implement, robustness to parameter tuning and better performance
- Future research will involve collecting more dataset on placental images and exploring other cutting-edge denoisers, such as deep learning-based approaches.

Jiarui Xing

Ulugbek Kamilov

Wenjie Wu

Yong Wang

Miaomiao Zhang

- We presented a novel reconstructionbased registration algorithm, named PnP-RR, for severely noise-corrupted images
- In contrast to previous approaches, our model has the flexibility to allow arbitrary denoising algorithm integrated with the registration task
- What's more, our model benefits from its easiness to implement, robustness to parameter tuning and better performance
- Future research will involve collecting more dataset on placental images and exploring other cutting-edge denoisers, such as deep learning-based approaches.
- Questions?

Jiarui Xing

Ulugbek Kamilov

Wenjie Wu

Yong Wang

Miaomiao Zhang