Communication Systems: Homework #6

Due on Azar 26, 1396 at 4:30pm

Dr. Pakravan

Weavers SSB modulator is illustrated in Figure 1. By taking the input signal as $m(t) = \cos 2f_m t$, where $f_m < W$, demonstrate that by proper choice of f_1 and f_2 the output is a SSB signal.

Figure 1: Weaver Modulator

Problem 2

The message signal is given by $m(t) = A\cos(\omega_1 t) + B\cos(\omega_2 t)$. This message signal is modulated using an FM modulator to generate $x_c(t) = A_c\cos(\omega_c t + \beta_1 \sin(\omega_1 t) + \beta_2 \sin(\omega_2 t))$ where $\beta_1 = \frac{Af_{\Delta}}{f_1}$ and $\beta_2 = \frac{Bf_{\Delta}}{f_2}$. Obtain an expression for the spectrum of $x_c(t)$ (Use the same method which was used for a single tone message signal and express the results in terms of $J_n(\beta)$

Problem 3

The message signal m(t) whose spectrum is shown in Figure 2 is passed through the system shown in the same figure. The bandpass filter has a bandwidth of 2W centered at f_0 and the lowpass filter has a bandwidth of W. Plot the spectra of the signals x(t), $y_1(t)$, $y_2(t)$, $y_3(t)$ and $y_4(t)$, what are the bandwidths of these signals?

Figure 2: Problem 3

The carrier $c(t) = A\cos(2\pi 10^6 t)$ is FM modulated by the sinusoid signal $m(t) = 2\cos(2000\pi t)$ with a modulation index factor $k_f = 3000 Hz/V$

- (a) Determine the amplitude and frequency of all signal components that have a power level of at least 10% of the power of unmodulated carrier wave and plot the spectrum of the signal (include only these components)
- (b) Determine the bandwidth using Carsons rule
- (c) Answer parts (a) and (b) if the amplitude of m(t) is decreased by a factor of two.
- (d) Answer parts (a) and (b) if the frequency of m(t) is increased by a factor of two.

Problem 5

An FM demodulator is shown in Figure 3. The envelope detector is assumed to be ideal and has an infinite input impedance. Select the value of L and C to demodulate an FM signal at carrier 80 MHz and a peak frequency deviation of 6 MHz (If the center frequency of the transfer function H(f) of the LC circuit is f_0 you can assume that the slope of H(f) is almost linear from $0.1f_0$ to $0.9f_0$)

Problem 6

Figure 4 shows an FM modulator. If the message has a bandwidth of 15 kHz and the output frequency from the oscillator is 100 kHz,

Figure 3: Problem 5

- (a) Determine the frequency multiplication that is necessary to generate an FM signal at a carrier frequency of $f_c = 104MHz$ and a frequency deviation of f = 75kHz.
- (b) If the carrier frequency for the wideband FM signal is to be within 2 Hz determine the maximum allowable drift of the 100 kHz oscillator

Figure 4: Problem 6

An audio signal has a bandwidth of 15 kHz and a maximum peak amplitude of 5V. This signal frequency modulates a carrier. Estimate the peak deviation and the bandwidth of the modulator output, assuming that the deviation constant of the modulator is a) $20~\rm{Hz/V}$ b) $2~\rm{kHz/V}$ and c) $20\rm{kHz/V}$

(Computer Assignment) For a two-tone message signal given in the question 2, a carrier frequency $f_c = 120MHz$ do the following:

- 1. Calculate the FM bandwidth using Carsons rule assuming $A=B=3,\ f_1=2kHz,\ f_2=5kHz$ and $f_{\Delta}=10kHz/V$
- 2. Write a MATLAB program to generate the FM signal. Determine the bandwidth by considering only those side frequencies whose amplitudes exceed 1 percent of the un-modulated carrier amplitude.
- 3. Repeat part b with the same assumptions with $f_1 = 3kHz$ and compare the obtained results with Carsons rule
- 4. Repeat part c with the same assumptions with $f_1 = 10kHz$ and compare the obtained results with Carsons rule