SOUTH WHATEHOUT OF SCHOOL AND TECHNOLOGY OF THE 数字电路实验报告。

杨艺诀

学号: 11410106

实验日期: 206.05,17

时序电路测试及研究

- 1. 实验目的
- ▶ 掌握常用时序电路分析、设计及测试方法:
- > 学会运用各类触发器设计各种常用的时序逻辑电路。

2. 实验器材

序号	名 称	型号与规格	数量	备注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	777
3 _	函数信号发生器	DG1022	1	
4	模电数电综合实验箱	TPE-ADII	_1	1
_ 5	元器件	74LS73 双J-K触发器 2片, 74LS175 四D触发器 1片, 74LS10 三输入端三与非门 1片, 74LS00 二输入端四与非门 1片	5	

3. 实验内容

3.1 异步二进制计数器

1) 按如下图示接线

由 CP 端输入单脉冲, 测试并记录 Q1 Q4 端状态及波形。

数字电路实验报告 のうすがなべるかける

CP 个数	Q4	Q3	Q2	Q1	十进制计数 N
1	_,0		(1	7
2	(O	Ü	ь	8
3	(0	O	1	9
4	1	O	1	v	10
5	1	0	1	7	11
6	1	1	O	O	12
7	1	(0	1	13
8	,	- 1	(0	14
9	1	1	1	1	15
10	O	O	U	0	0
11	0	0	O	1	1
12	Ú	0	1	0	Z
13	O.	0	1	1/	3
14	o'	(U	0	4
15	Э	1	0	- (5
16	0	1	(0	6
17	0.	ı	(1	7

数字电路实验报告

 試将异步二进制加法计数改为减法计数,设计电路,连接电路,测试 并记录。

	103/4				
CP个数	Q4	Q3	Q2	Q1	十进制计数 N
1	1	0	1	1	11
2	1	0	(0	10
3	ı	0	0	1	9
4	1	0	O	0	8
5	0	1	1	1	7
6	0	(i	0	6
7	0	1	0	-	S
8	0	1	0	U	4
9	0	J	1	1	3
10	0	J	1	U	2
11	U	O	O O	1	1
12	O	O	O	O	0
13	1	(1	1/	15
14	1	1	()	6	14
15	1	1	0	1	13
16	- (1	0	D	12
17	1	0	1	- (11

3.2 异步二-十进制加法计数器

1) 按如图示接线

数字电路实验报告》为方许及《予知》

- $Q_{\rm A}$ 、 $Q_{\rm B}$ 、 $Q_{\rm C}$ 、 $Q_{\rm D}$ 4个输出端分别接LED显示,CP端接连续脉冲或单脉冲。
- 2) 在CP端接连续脉冲,观察CP、 Q_a 、 Q_b 、 Q_c 、 Q_b 的波形。并记录波形

数字电路实验报告 のかすみな 大学かは

3.3 自循环移位寄存器——环形计数器

1) 按图示接线,将 A、B、C、D 置为 1000,用单脉冲计数,记录各触发器的状态

CP 个数	A	В	C	D
0	1	0	0	0
1	2		U	V
2	9	0	1	0
3	3	0	1	1
4		0	2	of
5	0	i	ð	0
6	0	0	V	J.
7	d	0	2	1
8	1	0	0	0
9	0	,	.2	-0

2)按如下图接线,重复上述实验,对比实验结果,总结关于自启动的体会。

按1個在线的中的能够安钦德的。即復至初悉输出有2个高中产的物际,经过有限的形件周期的,但跟船的多级四到输出只有一个高中平的正常工作状态,这分就会在正常状态下循环了,自己的能分为保证电路即使初悉有问题,够终仍然能回到正常工作状态。

数字电路实验报告

附录: IC 引脚图

姓名: 学号: 1/4 064 实验日期:

时序电路测试及研究

97

- 1. 实验目的
- ▶ 掌握常用时序电路分析、设计及测试方法;
- ▶ 学会运用各类触发器设计各种常用的时序逻辑电路。

2. 实验器材

序号	名 称	型号与规格	数量	备注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	DG1022	1	
4.	模电数电综合实验箱	TPE-ADII	1	,
5	元器件	74LS73 双J-K触发器 2片, 74LS175 四D触发器 1片, 74LS10 三输入端三与非门-1片, 74LS00 二输入端四与非门 1片	5	

3. 实验内容

3.1 异步二进制计数器

1) 按如下图示接线

由 CP 端输入单脉冲, 测试并记录 Q1~Q4 端状态及波形。

数字电路实验报告 ② 的方子及太子和社

CP 个数	Q4	Q3	Q2	Q1	十进制计数N
1	0	1			7
2	1	0	0	0	8
3	1	0	0		9
4		0	1	ō	10
5	1	0	1	J	11
6	1	1	0	0	12
7	1		0	1	13
8				0	14
9		1	1		15
10	0	0	0	0	O
11	0	0	0		1
12	0	0		0	2
13	0	0			_ 3
14	0		0	0	Y
15	0	1	0	1	5
16	0	1		0	6
17	0			1	7

通代一个 循环

数字电路实验报告 的方式或太子和我

2) 试将异步二进制加法计数改为减法计数,设计电路,连接电路,测试并记录。

CP个数	, Q4	Q3	Q2	Q1	十进制计数 N
1		0		1	11
2		0	1	0	10
3		0	0	1	9
4		0	0	Ö	8
5	0	1	1	1	7
6	0		1	0	6
7	0		0		5
8	0		0	0	4
9	0	0		1	3
10	0	0		0	2
11	0	0	0	1	
12	0	0	0	0	0
13		1	1		15
14		1	i	0	14
15	1		0		13
16	1	-	0	0	. 12
17	1	0		1	1

3.2异步二十进制加法计数器

1) 按如图示接线

数字电路实验报告 のカナガス・ラケルは

- Q_{A} 、 Q_{B} 、 Q_{C} 、 Q_{D} 4个输出端分别接LED显示,CP端接连续脉冲或单脉冲。
- 2)在CP端接连续脉冲,观察CP、 $Q_{\rm A}$ 、 $Q_{\rm B}$ 、 $Q_{\rm C}$ 、 $Q_{\rm D}$ 的波形。并记录波形

数字电路实验报告 的方子好友大学打成

3.3 自循环移位寄存器——环形计数器

1) 按图示接线,将 A、B、C、D 置为 1000,用单脉冲计数,记录各触发器的状态

CP个数	A	В	С	D
0	1	0,	0	_0
1	0		0	0
2	()	1)		0
3	(7)	0	O	
4	9	· O	0	D
5	0	1	0	0
6	02	Ü	1	0
7	0	(2)	0)
8	1	Ü	ð	0
9	12	- 1	0	0

改为连续脉冲计数,并将其中一个状态为"0"的触发器置为"1"(模拟干扰信

2)按如下图接线,重复上述实验,对比实验结果,总结关于自启动的体会。

下图电路可实现自己云力。

当初态输出有之介"一"时,经过一定的烟期的电路可恢复正常的一个"一"的正军工作版。自己的可以是不够被通常的可保证电影在错误到态度。这个活动也可到平工的发

数字电路实验报告 如方的技术子和过

附录: IC 引脚图

时序电路测试及研究

- 1. 实验目的
- ▶ 掌握常用时序电路分析、设计及测试方法:
- ▶ 学会运用各类触发器设计各种常用的时序逻辑电路。

2. 实验器材

序号	名 称	型号与规格	数量	备注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	DG1022	1	
4	模电数电综合实验箱	TPE-ADII	1	
5	元器件	74LS73 双J-K触发器 2片, 74LS175 四D触发器 1片, 74LS10 三输入端三与非门 1片, 74LS00 二输入端四与非门 1片	5	

3. 实验内容

3.1 异步二进制计数器

1) 按如下图示接线

由 CP 端输入单脉冲, 测试并记录 Q1~Q4 端状态及波形。

数字电路实验报告 ② 的方头及太子红度

CP个数	Q4	Q3	Q2	Q1	十进制计数N
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1.	0	1	5
6	0	1	1-	0	6
7 -	0	1	1	1	1
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	10
11	(0	0	1	1	11
12	1	ı	0	0	12
13	1	1	0	-	13
14	1	1)	0	14
15	1	1 0	1	1	15
16	0	0	0	0	000
17	0	0	0	1	

副的个个个

一十一	、	验报告	BOUT	H UNIVERSITY OF SCIENCE	E + 7 text	- JA . 1217
				外器等	是他川	BULA VUZB
	好步二,进制 2录。]加法计数改:	为减法计数,	设计电路,	连接电路, 测试	
CP 个数	Q4	Q3	Q2	Q1	十进制计数 N	数为拨入上-JK
1.,	1	0	1	1	11	被备农农品的
2 -	1	0	1	0	10	PERMISA VON DO
3	1	0	0	1	9	(X RPM)
4	1	0	0	Ó	8	J
5	0	1	1	1	7	
6	0	1	1	0	6	
7	0	1	0	1	5	
8	0	1	0	0	4	
9	0	Ö	-	1	3	CP
10 .	0	0	1	0	2	3 =
11	0	0	0	1	1	Q,
12	0	0	0	0	0	V1 =
13 🚜	1	13	1	1	15/	Qz
14	1	1	- 1	0	14	
15	1	1	0	1	13	03
16	. 1	1	0	0	12	~5 =
17	1	0	1.	1	-11	Q ₄

3.2 异步二-十进制加法计数器

1) 按如图示接线

数字电路实验报告 的方式及太子如此

- Q_4 、 Q_8 、 Q_c 、 Q_D 4个输出端分别接LED显示,CP端接连续脉冲或单脉冲。
- 2) 在CP端接连续脉冲,观察CP、 Q_a 、 Q_b 、 Q_c 、 Q_D 的波形。并记录波形 如下

数字电路实验报告 のかず 当後 * プトはよ

3.3 自循环移位寄存器——环形计数器

1) 按图示接线,将 A、B、C、D 置为 1000,用单脉冲计数,记录各触发器的状态

CP个数	A	В	C	D
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	ő	0	0
5	0	1	0	6
6	0	0	li li	0
7	0	0	0	1
8	1	0	0	0
9	0	1	0	0

改为连续脉冲计数,并将其中一个状态为"0"的触发器置为"1"(模拟干扰信

2)按如下图接线,重复上述实验,对比实验结果,总结关于自启动的体会。

数字电路实验报告》为方许及大学和过

水态强:
$$Q_1^* = Q_1^* Q_2^* Q_3^*$$

 $Q_2^* = Q_2$
 $Q_4^* = Q_3$

附录: 10引脚图 该电路使得在任何和始状态,都能处

正朝