数值分析实验报告 - Code 6

Chase Young

2024年4月7日

1 实验目的

对函数 $f(x) = \frac{1}{1+25x^2}, x \in [-1,1]$ 构造 Lagrange 插值多项式 $p_L(x)$, 插值节点取为:

(1)
$$x_i = 1 - \frac{2}{N}i$$
, $i = 0, 1, \dots, N$;

(2)
$$x_i = -\cos\left(\frac{i+1}{N+2}\pi\right), \ i = 0, 1, \dots, N$$

利用 $\int_{-1}^{1} p_L(x) dx$ 计算积分 $\int_{-1}^{1} f(x) dx$ 的近似值,并计算如下误差

$$\left| \int_{-1}^{1} p_L(x) \, \mathrm{d}x - \int_{-1}^{1} f(x) \, \mathrm{d}x \right|$$

对 N = 5, 10, 15, 20, 25, 30, 35, 40 比较以上两组节点的结果。

2 实验方法

对于函数 f(x), 给定节点 $a = x_0 < x_1 < \cdots < x_N = b$ 的数值积分公式具有如下形式:

$$\int_{a}^{b} f(x) dx \approx A_{0} f(x_{0}) + A_{1} f(x_{1}) + \dots + A_{N} f(x_{N})$$

且此式对次数小于等于 N 的多项式精确成立。由于系数 A_0, A_1, \ldots, A_N 具有唯一性,我们可以取 $f(x) = x^k, k = 0, 1, \ldots, N$,获得 N+1 个线性方程,求解这个线性方程组,即可得到系数 A_0, A_1, \ldots, A_N ,从而得到函数 f(x) 的数值积分。

3 实验结果

对 N=5,10,15,20,25,30,35,40,依次根据插值多项式计算函数 f(x) 的数值积分,其中节点分别取等距节点和 Chebyshev 点,得到的结果如表 1,2所示。

观察表 1, 2,可知基于多项式插值的数值积分在等距节点处工作得并不好,这是由于随着节点数量增加,Runge 现象越发显著导致的。而对于 Chebyshev 节点,由其最优性,在这些节点上做的数值积分精度较高,可以达到 10^{-6} 。

\overline{N}	$\int_{-1}^{1} p_L(x) \mathrm{d}x$	$\int_{-1}^{1} f(x) \mathrm{d}x$	$\frac{\int_{-1}^{1} p_L(x) dx - \int_{-1}^{1} f(x) dx}{}$
5	-4.615385e-01	5.493603e-01	1.010899e+00
10	-9.346601e-01	5.493603e-01	1.484020e+00
15	-8.311118e-01	5.493603e- 01	1.380472e+00
20	5.369910e+00	5.493603e- 01	4.820550e + 00
25	5.399863e+00	5.493603e- 01	4.850503e+00
30	-1.537939e+02	5.493603e- 01	1.543433e + 02
35	-1.736183e+02	5.493603e- 01	1.741677e + 02
40	1.294138e + 02	5.493603e- 01	1.288645e + 02

表 1: 等距节点处的数值积分结果

\overline{N}	$\int_{-1}^{1} p_L\left(x\right) \mathrm{d}x$	$\int_{-1}^{1} f\left(x\right) \mathrm{d}x$	$\int_{-1}^{1} p_L(x) dx - \int_{-1}^{1} f(x) dx$
5	3.984577e-01	5.493603e- 01	1.509026e-01
10	5.732322e-01	5.493603e- 01	2.387185e-02
15	5.461245 e-01	5.493603e- 01	3.235788e-03
20	5.498082 e-01	5.493603e- 01	4.479219e-04
25	5.492995 e-01	5.493603e- 01	6.077695 e-05
30	5.493685 e-01	5.493603e- 01	8.223698e-06
35	5.493593e- 01	5.493603e- 01	1.038367e-06
40	5.493590e-01	5.493603e-01	1.349386e-06

表 2: Chebyshev 节点处的数值积分结果

4 后续讨论

从上述结果可知,随着节点数量的增加,由于 Runge 现象的存在,等距节点处的数值积分结果并不理想;因此,当节点数量较多时,使用 Chebyshev 节点做数值积分更加合适。