

Lenguaje de programación

Introducción a la programación en Python

DR© Instituto Tecnológico y de Estudios Superiores de Monterrey

Introducción a Python

Python es poderoso y rápido;

- Se desempeña bien con los demás;
- Corre en todos lados;
- Es amigable y fácil de aprender;
- Es abierto.

Tipos de datos

Son los valores que puede tomar una variable.

Los tipos de datos son los siguientes:

- Entero (int)
- Real (float)
- Texto (str)
- Lógicos (bool)

Tipos de datos

- ❖ Datos numéricos: Pueden representarse de dos formas:
 - ☐ Números enteros, los cuales no tienen componentes fraccionarios y pueden ser positivos o negativos
 - Números reales, pueden tener cifras decimales y pueden ser positivos o negativos.
- ❖ Datos alfanuméricos: Son datos que contienen caracteres no numéricos ya sean letras, caracteres especiales (,.=´+) o los dígitos mismos.
- ❖ Datos Lógicos: Podemos hablar de otro tipo de datos llamado "booleano", el cual sólo puede tomar uno de dos valores : verdadero o falso.

Ejemplo de programa Python

Programa para convertir a dólares, el precio de un producto que está en pesos:

```
dolares.py ×
     precioP = float(input("Introduce el precio de un producto: "))
     tipoCambio = float(input("Introduce el tipo de cambio: "))
     precioD = precioP/tipoCambio
     print("El precio en dólares es: ", precioD)
Shell ×
>>> %Run dolares.py
 Introduce el precio de un producto: 100
 Introduce el tipo de cambio: 19.2
 El precio en dólares es: 5.2083333333333334
```


Thonny

- Instala Thonny: https://thonny.org/
- Thonny es un entorno de desarrollo integrado (IDE) para el lenguaje Python diseñado para principiantes.


```
dolares.py ×

1 pre
2 tip
3 pre
4 pre
```

- 1 precioP = float(input("Introduce el precio de un producto: "))
- 2 tipoCambio = float(input("Introduce el tipo de cambio: "))
- 3 precioD = precioP/tipoCambio
- 4 print("El precio en dólares es: ", precioD)

Shell ×

>>> %Run dolares.py

```
Introduce el precio de un producto: 100
Introduce el tipo de cambio: 19.2
El precio en dólares es: 5.208333333333334
```


Convierta el precio de un producto de pesos a dólares, si se tiene el tipo de cambio del dólar y el precio en pesos del producto.

El resultado debe mostrar "El precio del producto en dólares es:" X.

Guarda tu programa: dolares_matricula.py

Precio pesos	Tipo de cambio	Precio dólares
100	19.20	5.21
78.5	19.80	3.96
98.6	20.01	4.93

Calcule el tiempo que se tarda un auto en llegar a un lugar, así como los litros de gasolina que se requieren y su costo en pesos si se tiene la distancia a recorrer en Km, la velocidad en Km por hora, el rendimiento del auto en Km por litro y el precio por litro de la gasolina. El resultado debe mostrar el tiempo, los litros y el costo en pesos.

Recuerda que v = d / t

Guarda tu programa: auto_matricula.py

Distancia	Velocidad	Rendimiento	Precio	Tiempo	Litros	Costo
120	100	34	20	1.2	3.53	70.58
397	60	56	19.5	6.61	7.09	138.24
245	34	34	19.7	7.20	7.20	141.95

Guarda tu programa:

Ejercicio 3

Un alumno desea conocer la calificación final de su materia de Programación.

La rúbrica de esta materia se compone de la siguiente manera:

Parcial 1

20%

Parcial 2

35%

calificacion_matricula.py Proyecto final

15%

Examen final

30%

Parcial 1	Parcial 2	Proyecto Final	Examen final	Calificación final
98.5	78.5	60.7	90.6	83.46
56.7	45.7	100	67.8	62.67
78.6	78.6	67.5	76	76.15

Un estudiante desea conocer el área de un triángulo a partir de la base y la altura.

Guarda como: triangulo_matricula.psc

Base	Altura	Área
3.4	6.7	11.39
45.3	34.9	790.48
13.6	20.4	138.72

Convertir de grados Centígrados a grados Fahrenheit. Digite el número de grados Centígrados que desea convertir a grados Fahrenheit.

 $F = C^*(9/5)+32$ (utiliza la fórmula para realizar la conversión).

Guarda tu programa: grados_matricula.py

El resultado debe mostrar: "X grados centígrados corresponden a X grados Fahrenheit".

Grados Centígrados	Grados Fahrenheit
34.6	94.28
23.45	74.21
2.4	36.32

Fuentes para consultar

https://thonny.org/

Gracias

