Logika i teoria mnogości

Ćwiczenia 3

Literal jest to zmienna zdaniowa lub jej negacja.

Przykład. $p, q, r, \neg p, \neg q, \neg r$

Koniunkcja elementarna jest to koniunkcja skończenie wielu literałów.

Przykład. $p \wedge q \wedge \neg q$, $\neg p \wedge r$, p

Alternatywa elementarna jest to alternatywa skończenie wielu literałów.

Przykład. $p \vee \neg q \vee q$, $p \vee \neg r$, q

Formuła w alternatywnej postaci normalnej (APN) jest to alternatywa skończenie wielu koniunkcji elementarnych.

Przykład. $(p \wedge q) \vee (\neg p \wedge \neg q) \vee (\neg q \wedge p), \quad (r \wedge \neg q) \vee (p \wedge \neg r \wedge q)$

 $Formuła\ w\ koniunkcyjnej\ postaci\ normalnej\ (KPN)$ jest to koniunkcja skończenie wielu alternatyw elementarnych.

$$(p \lor q) \land (\neg p \lor q \lor \neg r), \quad (p \lor q \lor r) \land (p \lor \neg p \lor q) \land (q \lor \neg p)$$

Przykład wyznaczania formuły w APN i formuły w KPN, logicznie równoważnych danej formule, metoda tablicy. Formuła: $p \wedge q \Leftrightarrow p \wedge r$. Rysujemy tablicę formuły, poszerzoną o dwie kolumny: APN i KPN.

p	q	r	$p \wedge q$	$p \lor q$	$p \wedge q \Leftrightarrow p \wedge r$	APN	KPN
1	1	1	1	1	1	$p \wedge q \wedge r$	
1	1	0	1	0	0		$\neg p \lor \neg q \lor r$
1	0	1	0	1	0		$\neg p \lor q \lor \neg r$
1	0	0	0	0	1	$p \wedge \neg q \wedge \neg r$	
0	1	1	0	0	1	$\neg p \land q \land r$	
0	1	0	0	0	1	$\neg p \land q \land \neg r$	
0	0	1	0	0	1	$\neg p \land \neg q \land r$	
0	0	0	0	0	1	$\neg p \land \neg q \land \neg r$	

W kolumnie APN zapisujemy koniunkcje elementarne odpowiadajace wartościowaniom, dla których cała formuła przyjmuje wartość 1. Dana koniunkcja elementarna jest prawdziwa tylko dla odpowiadajacego jej wartościowania. Poszukiwana formuła w APN jest alternatywą otrzymanych koniunkcji elementarnych. W kolumnie KPN zapisujemy alternatywy elementarne odpowiadające wartościowaniom, dla których cała formuła przyjmuje wartość 0. Dana alternatywa elementarna jest fałszywa tylko dla odpowiadajacego jej wartościowania. Poszukiwana formuła w KPN jest koniunkcją otrzymanych alternatyw elementarnych.

APN:
$$(p \land q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor \neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$$

KPN: $(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r)$

Zadanie 1. Wyznaczyć metodą tablicy formuły w APN i KPN, logicznie równoważne następujacym formułom:

- (a) $p \lor r \Leftrightarrow q \lor r$
- (b) $(p \Rightarrow q) \Leftrightarrow (q \Rightarrow r)$
- (c) $(p \Rightarrow q) \Rightarrow (q \Rightarrow p)$

Sprowadzanie formuł do KPN i APN metodą przekształceń równoważnościowych

Metoda ta polega na kolejnym zastępowaniu podformuł przez ich równoważniki. Można wyróżnić trzy etapy procedury. Zawsze zastępujemy lewą stronę równoważności prawa stroną.

Etap I. Eliminujemy \Leftrightarrow i \Rightarrow stosując prawa:

$$(\varphi \Leftrightarrow \psi) \Leftrightarrow (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$$
$$(\varphi \Rightarrow \psi) \Leftrightarrow \neg \varphi \lor \psi$$

Etap II. Sprowadzamy formułę do negacyjnej postaci normalnej (NPN), tj. formuły zawierajacej tylko \land, \lor, \neg , przy czym \neg występuje tylko w literałach, stosując prawa De Morgana:

$$\neg(\varphi \land \psi) \Leftrightarrow (\neg \varphi \lor \neg \psi)$$
$$\neg(\varphi \lor \psi) \Leftrightarrow (\neg \varphi \land \neg \psi)$$

Na etapach I i II stosujemy prawo podwójnej negacji $\neg\neg\varphi\Leftrightarrow\varphi,$ gdy pojawia sie $\neg\neg\varphi.$

Etap III. Otrzymana formuła jest kombinacją literałów za pomocą \wedge, \vee . Sprowadzamy ją do KPN, stosując prawa rozdzielności alternatywy względem koniunkcji (stosujemy je w dwóch formach):

$$\varphi \lor (\psi \land \chi) \Leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\psi \land \chi) \lor \varphi \Leftrightarrow (\psi \lor \varphi) \land (\chi \lor \varphi)$$

Po kilkakrotnym zastosowaniu tych przekształceń, wszystkie koniunkcje wyprowadzimy "na zewnatrz".

Przy sprowadzaniu formuły do APN, stosujemy prawa rozdzielności koniunkcji względem alternatywy:

$$\varphi \wedge (\psi \vee \chi) \Leftrightarrow (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$

$$(\psi \vee \chi) \wedge \varphi \Leftrightarrow (\psi \wedge \varphi) \vee (\chi \wedge \varphi)$$

Przykład. Zastosujemy tę metodę do formuły z poprzedniego przykładu: $p \wedge q \Leftrightarrow p \wedge r$.

Zapisujemy kolejne równoważniki jeden po drugim.

Etap I.

 $p \wedge q \Leftrightarrow p \wedge r$

 $(p \land q \Rightarrow p \land r) \land (p \land r \Rightarrow p \land q)$

 $[\neg(p \land q) \lor (p \land r)] \land [\neg(p \land r) \lor (p \land q)]$

Etap II.

 $[\neg p \lor \neg q \lor (p \land r)] \land [\neg p \lor \neg r \lor (p \land q)] \text{ NPN}$

Opuszczono nawiasy wokół $\neg p \lor \neg q$, ponieważ jest argumentem alternatywy; podobnie dla $\neg p \lor \neg r$.

Etap III. Sprowadzajac do KPN, wystarczy zastosować prawa rozdzielności alternatywy względem koniunkcji w każdym nawiasie kwadratowym.

$$(\neg p \lor \neg q \lor p) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg r \lor p) \land (\neg p \lor \neg r \lor q) \text{ KPN}$$

Sprowadzając do APN, stosujemy do NPN prawa rozdzielności koniunkcji względem alternatywy. Ponieważ prawy argument zewnętrznej koniunkcji jest alternatywą trójczłonową, możemy od razu zastosować to prawo w wersji wieloczłonowej:

$$\varphi \wedge (\psi_1 \vee \psi_2 \dots \psi_n) \Leftrightarrow (\varphi \wedge \psi_1) \vee (\varphi \wedge \psi_2 \vee \dots \vee (\varphi \wedge \psi_n))$$

zamiast dochodzić do tego wyniku w kilku krokach.

 $[[\neg p \vee \neg q \vee (p \wedge r)] \wedge \neg p] \vee [[\neg p \vee \neg q \vee (p \wedge r)] \wedge \neg r] \vee [[\neg p \vee \neg q \vee (p \wedge r)] \wedge p \wedge q]$ Następnie w każdym zewnętrznym nawiasie kwadratowym stosujemy analogiczne prawo (w drugiej formie).

$$(\neg p \wedge \neg p) \vee (\neg q \wedge \neg p) \vee (p \wedge r \wedge \neg p) \vee (\neg p \wedge \neg r) \vee (\neg q \wedge \neg r) \vee (p \wedge r \wedge \neg r) \vee (\neg p \wedge p \wedge q) \vee (\neg q \wedge p \wedge q) \vee (p \wedge r \wedge p \wedge q) \text{ APN}$$

Twierdzenie Formuła w KPN jest tautologią KRZ wtw, gdy w każdej składowej alternatywie elementarnej występuje para przeciwnych literałów.

Twierdzenie Formuła w APN jest niespełnialna wtw, gdy w każdej składowej koniunkcji elementarnej występuje para przeciwnych literałów.

W otrzymanej KPN druga alternatywa elementarna $\neg p \lor \neg q \lor r$ nie zawiera pary przeciwnych literałów (pierwsza zawiera $\neg p, p$), więc ta formuła nie jest tautologią. Zatem formuła poczatkowa $p \land q \Leftrightarrow p \land r$ nie jest tautologią, skoro jest logicznie równoważna tamtej. W otrzymanej APN pierwsza koniunkcja elementarna $\neg p \land \neg p$ nie zawiera pary przeciwnych literałów (taka para występuje w trzeciej koniunkcji i dalszych), więc ta formuła jest spełnialna. Oczywiście wiedzieliśmy to już wcześniej, skoro sporządziliśmy tablice tej formuły. Na podstawie tych twierdzeń można sprawdzać tautologiczność i spełnialność, jeżeli sprowadzimy formułę do KPN i APN bez pomocy tablicy.

Zadanie 2. Sprowadzić do KPN i sprawdzić, czy poniższe formuły są tautologiami KRZ:

- 1. $(p \Rightarrow q) \land p \Rightarrow q$
- 2. $(p \Rightarrow q) \Leftrightarrow (\neg p \Rightarrow \neg q)$
- 3. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \land q \Rightarrow r)$
- 4. $(p \land q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$
- 5. $(p \Rightarrow q \land r) \Rightarrow (p \lor q \Rightarrow \neg r)$

Zadanie 3. Sprowadzić do APN i sprawdzić, czy poniższe formuły są niespełnialne:

- 1. $p \lor (p \land q) \Rightarrow p$
- 2. $\neg (p \land (q \lor r) \Rightarrow (p \land q) \lor r)$
- 3. $(p \land q) \Rightarrow (\neg p \lor \neg q)$
- 4. $\neg (p \Rightarrow q) \lor ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$
- 5. $\neg(p \Rightarrow q) \Rightarrow (p \land \neg q)$

Wykonując przekształcenia, można eliminować powtórzenia, a więc pisać φ zamiast $\varphi \wedge \varphi$ oraz $\varphi \vee \varphi$. Np. $\neg p \wedge \neg p$ zastępujemy przez $\neg p$.

Metodę przekształceń równoważnosciowych można też wykorzystać do wyprowadzania tautologii, których głównym spójnikiem jest \Leftrightarrow . Przekształcamy lewą stronę równoważności w prawą stronę. W ten sposób można wyprowadzić mniej intuicyjne prawa dla implikacji w oparciu o bardziej intuicyjne i łatwiejsze do zapamiętania prawa dla koniunkcji, alternatywy i negacji, np. prawa idempotentności, łaczności, przemienności, rozdzielności i De Morgana. Rozważmy prawo eksportacji-importacji: $(p \land q \Rightarrow r) \Leftrightarrow [p \Rightarrow (q \Rightarrow r)]$. Następujące formuły są logicznie równoważne.

```
\begin{array}{l} p \wedge q \Rightarrow r \text{ (lewa strona)} \\ \neg (p \wedge q) \vee r \text{ (eliminujemy } \Rightarrow) \\ \neg p \vee \neg q \vee r \text{ (stosujemy prawo De Morgana)} \\ \neg p \vee (q \Rightarrow r) \text{ (wprowadzamy } \Rightarrow) \\ p \Rightarrow (q \Rightarrow r) \text{ (wprowadzamy } \Rightarrow) \end{array}
```

Zadanie 4. Metodą przekształceń równoważnosciowych wyprowadzić następujace prawa.

- 1. $(p \Rightarrow q \land r) \Leftrightarrow (p \Rightarrow q) \land (p \Rightarrow r)$
- 2. $(p \lor q \Rightarrow r) \Leftrightarrow (p \Rightarrow r) \land (q \Rightarrow r)$
- 3. $(p \land q \Rightarrow r) \Leftrightarrow (p \Rightarrow r) \lor (q \Rightarrow r)$