

상미분 방정식의 풀이 소개 (Introduction to Ordinary Differential Equations)

서강대학교 공과대학 컴퓨터공학과 임 인 성

Vehicle Suspension Design

2nd-order ODE system

$$m \cdot y_5'' = -(k_1 + k_2)y_5 - (c_1 + c_2)y_5' + (k_1L_1 - k_2(L - L_1))\theta + (c_1L_1 - c_2(L - L_1))\theta' + (k_1y_1 + k_2y_2 + c_1y_1' + c_2y_2')$$

$$I \cdot \theta'' = (L_1k_1 - (L - L_1)k_2)y_5 + (L_1c_1 - (L - L_1)c_2)y_5' + - (L_1^2k_1 + (L - L_1)^2k_2)\theta - (L_1^2c_1 + (L - L_1)^2c_2)\theta' + (-L_1k_1y_1 + (L - L_1)k_2y_2 - L_1c_1y_1' + (L - L_1)c_2y_2')$$

Ordinary Differential Equations (ODE)

- Differential equations:
 - 독립 변수와 (종속 변수와 종속 변수들의 미분 값들)간의 관계
 - Ordinary: 독립 변수 1개
 - Partial: 독립 변수 2개 이상
 - Order of equations: the highest derivatives involved
- First-order ODE

Given
$$\begin{cases} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{cases}$$
, find $y = y(t)!$

$$y'(t) = f(t,y) = -20y + 7e^{-0.5t}, y(0) = 5$$

Numerical solution

y	y_0	y_1	y_2	 y_m

Mesh Points

Euler's Method: 1st Order Taylor Method

Problem:
$$\left\{ \begin{array}{l} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{array} \right\}$$

$$y(t) = y(t_0) + y'(t_0)(t - t_0)$$

= $y_0 + f(t_0, y_0)(t - t_0)$

$$y_1 = y_0 + f(t_0, y_0)(t_1 - t_0)$$

= $y_0 + h \cdot f(t_0, y_0)$

$$y_{i+1} = y_i + h \cdot f(t_i, y_i), i = 0, 1, 2, \cdots$$

Example: $y'(t) = f(t, y) = -20y + 7e^{-0.5t}, y(0) = 5$

$$y_{i+1} = y_i + h(-20y_i + 7e^{-0.5t_i}), i = 0, 1, 2, \cdots$$

$$t_0 = 0,$$
 $y_0 = y(0) = 5$
 $t_1 = 0.01,$ $y_1 = y_0 + h(-20y_0 + 7e^{-0.5t_0}) = 4.07$

:

1	h = 0.01	h = 0.001	h = 0.0001
0.01	4,07000 (8.693)*	4.14924 (0.769)*	4.15617 (0.076)*
0.02	3.32565 (14.072)	3.45379 (1.259)	3.46513 (0.124)
0.03	2.72982 (17.085)	2.88524 (1.544)	2.89915 (0.153)
0.04	2.25282 (18.440)	2.42037 (1.684)	2.43554 (0.167)
0.05	1.87087 (18.658)	2.04023 (1.722)	2.05574 (0.171)
0.06	1.56497 (18.125)	1.72932 (1.690)	1.74454 (0.168)
0.07	1.31990 (17.119)	1.47496 (1.613)	1.48949 (0.169)
80.0	1.12352 (15.839)	1.26683 (1.507)	1.28041 (0.150)
0.09	0.96607 (14.427)	1.09646 (1.387)	1.10895 (0.138)
0.10	0.83977 (12.979)	0.95696 (1.261)	0.96831 (0.126)

- 1. Magnitudes of errors are approximately proportional to h. (Why?)
- 2. Further reduction of h without using double precision is not advantageous. (Why?)

Error Analysis

- Truncation Error: due to the truncation of Taylor series for approximation
- Round-off Error: due to the use of finite precision in calculation

Taylor Series의 의미

$$y(t) = y(t_i) + (t - t_i)y'(t_i) + \frac{(t - t_i)^2}{2}y''(\xi_i)$$

$$y(t_{i+1}) = y(t_i) + h \cdot f(t_i, y_i) + \frac{h^2}{2}y''(\xi_i)$$

$$y(t_{i+1}) \leftarrow y(t_i) + h \cdot f(t_i, y_i), \text{ Error} = o(h^2) \leftarrow \text{Local Truncation Error}$$

$$h = \frac{b-a}{n} \to n = \frac{b-a}{h}$$

Global Truncation Error

When the entire interval [a, b] is done, $\text{Error} = o(h^2) \cdot n = o(h)$

Taylor Polynomial Approximation

Taylor's theorem

For a function
$$f \in C^{n+1}[a,b]$$
, $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^k + \underbrace{E_{n+1}}$ Error term

where
$$E_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}$$
 for some $\xi = \xi(c,x) \in (\min(c,x), \max(c,x))$.

For a function
$$f \in C^{n+1}[a,b]$$
, $f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^k + E_{n+1}$,

where
$$E_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}$$
 for some $\xi = \xi(x,h) \in (x,x+h)$.

Example

$$\sqrt{1+h} = 1 + \frac{1}{2}h - \frac{1}{8}h^2 + \frac{1}{16}h^3\xi^{-\frac{5}{2}}, \ \xi \in (1,1+h), h > 0, \quad \sqrt{1-h} = 1 - \frac{1}{2}h - \frac{1}{8}h^2 - \frac{1}{16}h^3\xi^{-\frac{5}{2}}, \ \xi \in (1+h,1), h < 0$$

$$\sqrt{1.00001} \approx 1 + 0.5 \times 10^{-5} - 0.125 \times 10^{-10} = 1.000000 \ 499999 \ 87500$$

$$\frac{1}{16}h^3\xi^{-\frac{3}{2}} < \frac{1}{16}10^{-15} = 0.00000\ 00000\ 00000\ 0625$$

Higher-Order Taylor Methods

$$y(t_{i+1}) = y(t_i) + \frac{(t_{i+1} - t_i)}{1!}y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2!}y''(t_i) + \frac{(t_{i+1} - t_i)^3}{3!}y^{(3)}(t_i) + \cdots$$

$$= y(t_i) + \frac{h}{1!}y'(t_i) + \frac{h^2}{2!}y''(t_i) + \frac{h^3}{3!}y^{(3)}(t_i) + \cdots$$

$$= y(t_i) + h \cdot f(t_i, y(t_i)) + \frac{h^2}{2}f'(t_i, y(t_i)) + \frac{h^3}{6}f''(t_i, y(t_i)) + \cdots$$

[Taylor Method of order 1 - Euler]

$$y(t_{i+1}) = y(t_i) + h \cdot f(t_i, y(t_i)) + o(h^2) \longrightarrow y_{i+1} = y_i + h \cdot f(t_i, y_i)$$

[Taylor Method of order 2] $y(t_{i+1}) = y(t_i) + h \cdot f(t_i, y(t_i)) + \frac{h^2}{2} f'(t_i, y(t_i)) + o(h^3)$

$$\longrightarrow y_{i+1} = y_i + h \cdot f(t_i, y_i) + \frac{h^2}{2} f'(t_i, y_i)$$

[Taylor Method of order n]

Example: $y' = y - t^2 + 1 \ (0 \le t \le 2), \ y(0) = 0.5$

$$f(t,y(t)) = y(t) - t^{2} + 1$$

$$f'(t,y(t)) = \frac{d}{dt}(y - t^{2} + 1) = y' - 2t = y - t^{2} + 1 - 2t$$

$$f''(t,y(t)) = \frac{d}{dt}(y - t^{2} + 1 - 2t) = y - t^{2} - 2t - 1$$

$$f'''(t,y(t)) = \frac{d}{dt}(y - t^{2} - 2t - 1) = y - t^{2} - 2t - 1$$

[Taylor Method of order 2]

$$y_{i+1} = y_i + h \cdot f(t_i, y_i) + \frac{h^2}{2} f'(t_i, y_i)$$

$$= y_i + h \cdot (y_i - t_i^2 + 1) + \frac{h^2}{2} (y_i - t_i^2 + 1 - 2t_i)$$

$$= y_i + h \{ (1 + \frac{h}{2})(y_i - t_i^2 + 1) - ht_i \}$$

[Taylor Method of order 4]

$$y_{i+1} = y_i + h\left\{\left(1 + \frac{h}{2} + \frac{h^2}{6} + \frac{h^3}{24}\right)(y_i - t_i^2) - \left(1 + \frac{h}{3} + \frac{h^2}{12}\right)ht_i + 1 + \frac{h}{2} - \frac{h^2}{6} - \frac{h^3}{24}\right\}$$

Euler's and Higher-Order Taylor Methods

- Euler
 - 장점: 계산이 간단함. 즉 계산량이 적음
 - 단점: first order -> 부정확
- Higher-Order Taylor Methods
 - 장점: higher-order!
 - 단점: f(t, y)의 미분 값들을 계산해야 함 -> complicated & time-consuming

$$f'(t,y) = \frac{\partial f(t,y)}{\partial t} + \frac{\partial f(t,y)}{\partial y} \frac{dy}{dt}$$
$$f''(t,y) = \frac{\partial [\partial f/\partial t + (\partial f/\partial y)(dy/dt)]}{\partial t} + \frac{\partial [\partial f/\partial t + (\partial f/\partial y)(dy/dt)]}{\partial y} \frac{dy}{dt}$$

- 이 방법들은 일반적으로 잘 쓰이지 않음
- **문제:** 어떻게 하면 *f*(*t*, *y*) 정보만 사용하여 "higher-order" 방법을 만들 수 있을까?

Modified Euler Method

$$y_{i+1} = y_i + \Delta y = y_i + s \cdot h$$

Euler: Slope = $f(t_i, y_i)$

 \rightarrow GTE: o(h)

"Better": Slope = $\frac{f(t_i, y_i) + f(t_{i+1}, y(t_{i+1}))}{2}$

 \rightarrow GTE: $o(h^2)$???

[Predictor-Corrector Scheme]

- 1. Predictor step: $\frac{y_{i+1}^* = y_i + h \cdot f(t_i, y_i)}{y_{i+1}^* = y_i + h \cdot f(t_i, y_i)}$
- 2. Corrector step: $y_{i+1} = y_i + \frac{h}{2} \{ f(t_i, y_i) + f(t_{i+1}, y_{i+1}^*) \}$

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + h, y_i + k_1 \cdot h)$$

$$y_{i+1} = y_i + \frac{1}{2} \{k_1 + k_2\} \cdot h$$

Euler Predictor-Corrector Method or Second-Order Runge-Kutta Method or Modified Fuler

Second-Order Runge-Kutta Methods

Find
$$a_1, a_2, p_1, q_{11}$$
 such that
$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{f'(t_i, y_i)}{2}h^2(+o(h^3)) \text{ is identical with}$$

$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$

$$\text{where } k_1 = f(t_i, y_i) \text{ and } k_2 = f(t_i + p_1h, y_i + q_{11}k_1h)$$

$$f'(t_i, y_i) = \frac{\partial f(t, y)}{\partial t} + \frac{\partial f(t, y)}{\partial y} \frac{\partial y}{\partial t}$$

$$y_{i+1} = y_i + f(t_i, y_i)h + (\frac{\partial f}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}) \frac{h^2}{2}$$

$$k_2 = f(t_i + p_1h, y_i + q_{11}k_1h) = f(t_i, y_i) + (p_1h\frac{\partial f}{\partial t} + q_{11}k_1h\frac{\partial f}{\partial y}) + o(h^2)$$

$$y_{i+1} = y_i + [a_1f(t_i, y_i) + a_2f(t_i, y_i)]h + [a_2p_1\frac{\partial f}{\partial t} + a_2q_{11}f(t_i, y_i)\frac{\partial f}{\partial y}]h^2 + o(h^3)$$

$$a_1 + a_2 = 1, a_2p_1 = \frac{1}{2}, a_2q_{11} = \frac{1}{2}$$

Notice that both have the same truncation error o(h^3)!

[Modified Euler: $a_2 = \frac{1}{2} \rightarrow a_1 = \frac{1}{2}, p_1 = q_{11} = 1$]

Heun Method with a Single Corrector

$$y_{i+1} = y_i + (\frac{1}{2}k_1 + \frac{1}{2}k_2)h,$$

where $k_1 = f(t_i, y_i)$, and $k_2 = f(t_i + h, y_i + k_1h)$

[Midpoint Method: $a_2 = 1 \rightarrow a_1 = 0, p_1 = q_{11} = \frac{1}{2}$]

$$y_{i+1} = y_i + k_2 h,$$

where $k_1 = f(t_i, y_i)$, and $k_2 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1 h)$

[Ralston's Method: $a_2 = \frac{2}{3} \rightarrow a_1 = \frac{1}{3}, p_1 = q_{11} = \frac{3}{4}$]

$$y_{i+1} = y_i + (\frac{1}{3}k_1 + \frac{2}{3}k_2)h,$$

where $k_1 = f(t_i, y_i)$, and $k_2 = f(t_i + \frac{3}{4}h, y_i + \frac{3}{4}k_1h)$

[Heun's Method: $a_2 = \frac{3}{4} \rightarrow a_1 = \frac{1}{4}, p_1 = q_{11} = \frac{2}{3}$]

$$y_{i+1} = y_i + (\frac{1}{4}k_1 + \frac{3}{4}k_2)h,$$

where $k_1 = f(t_i, y_i)$, and $k_2 = f(t_i + \frac{2}{3}h, y_i + \frac{2}{3}k_1h)$

Example:
$$L \cdot I'(t) + R \cdot I(t) = E$$
, $I(0) = 0$ $\rightarrow I'(t) = f(t,I) = -\frac{R}{L}I(t) + \frac{E}{L}$, $I(0) = 0$

$$k_1 = f(t_i, I_i) = -\frac{R}{L}I_i + \frac{E}{L}$$

$$k_2 = f(t_i + h, I_i + k_1 \cdot h) = -\frac{R}{L}(I_i + k_1 \cdot h) + \frac{E}{L}$$

$$I_{i+1} = I_i + \frac{1}{2}(k_1 + k_2)h$$

"Classical" Fourth-Order Runge-Kutta Method

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$
, where $k_1 = f(t_i, y_i)$, $k_2 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h)$, $k_3 = f(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h)$, $k_4 = f(t_i + h, y_i + k_3h)$

Example: $f(t,y) = 4e^{0.8t} - 0.5y$, $t_0 = 0$, $y_0 = 2$ (h = 0.5)

$$k_1 = f(0,2) = 4e^{0.8 \cdot 0} - 0.5 \cdot 2 = 3$$

$$k_2 = f(0 + \frac{1}{2} \cdot 0.5, 2 + \frac{1}{2} \cdot 3 \cdot 0.5) = f(0.25, 2.75) = 3.510611$$

$$k_3 = f(0 + \frac{1}{2} \cdot 0.5, 2 + \frac{1}{2} \cdot 3.510611 \cdot 0.5) = f(0.25, 2.877653) = 3.446785$$

$$k_4 = f(0 + 0.5, 2 + 3.446785 \cdot 0.5) = f(0.5, 3.723392) = 4.105603$$

$$y_1 = 2 + \frac{1}{6}(3 + 2 \cdot 3.510611 + 2 \cdot 3.446785 + 4.105603) = 3.503399$$

각 방법의 비교

	T. 1	Rung	e-Kutta	Talyor method of order n	
	Euler	2nd order	4th order		
LTE	$O(h^2)$	$O(h^3)$	$O(h^5)$	$O(h^{n+1})$	
GTE	O(h)	$O(h^2)$	$O(h^4)$	$O(h^{ m n})$	
Func. Eval.	<i>f</i> 1번	f 2번	f 4번	<i>f,f',f",,fⁿ⁻¹</i> 각 1번	

Example: $y' = f(t, y) = y - t^2 + 1$, y(0) = 0.5 $(0 \le t \le 2)$

	t,	w_i	$y_i = y(t_i)$	$ y_i-w_i $
	0.0	0.5000000	0,5000000	0.0000000
	0.2	0.8000000	0.8292986	0.0292986
Euler	0.4	1.1520000	1.2140877	0.0620877
	0.6	1.5504000	1.6489406	0.0985406
	0.8	1.9884800	2.1272295	0.1387495
	1.0	2.4581760	2.6408591	0.1826831
	1.2	2.9498112	3.1799415	0.2301303
	1.4	3.4517734	3.7324000	0.2806266
	1.6	3.9501281	4.2834838	0.3333557
	1.8	4.4281538	4.8151763	0.3870225
	2.0	4.8657845	5.3054720	0.4396874

A

2nd-order RK

t,	$y(t_i)$	Midpoint Method	Error B	Modified Euler Method	Error C	Heun's Method	Error
0.0	0.5000000	0.5000000	0	0.5000000	0	0.5000000	0
0.2	0.8292986	0.8280000	0.0012986	0.8260000	0.0032986	0.8273333	0.0019653
0.4	1.2140877	1.2113600	0.0027277	1.2069200	0.0071677	1.2098800	0.0042077
0.6	1.6489406	1.6446592	0.0042814	1.6372424	0.0116982	1.6421869	0.0067537
0.8	2.1272295	2.1212842	0.0059453	2.1102357	0.0169938	2.1176014	0.0096281
1.0	2.6408591	2.6331668	0.0076923	2.6176876	0.0231715	2.6280070	0.0128521
1.2	3.1799415	3.1704634	0.0094781	3.1495789	0.0303627	3.1635019	0.0164396
1.4	3.7324000	3.7211654	0.0112346	3.6936862	0.0387138	3.7120057	0.0203944
1.6	4.2834838	4.2706218	0.0128620	4.2350972	0.0483866	4.2587802	0.0247035
1.8	4.8151763	4.8009586	0.0142177	4.7556185	0.0595577	4.7858452	0.0293310
2.0	5.3054720	5.2903695	0.0151025	5.2330546	0.0724173	5.2712645	0.0342074

t,	Runge-Kutta Order Four w _i	Exact $y_t = y(t_t)$	Error $ y_i - w_i $				
0.0 0.2 0.4 0.6 0.8 1.0	0.5000000 0.8292933 1.2140762 1.6489220 2.1272027 2.6408227 3.1798942	0.5000000 0.8292986 1.2140877 1.6489406 2.1272295 2.6408591 3.1799415	0 0.0000053 0.0000114 0.0000186 0.0000269 0.0000364 0.0000474	E 4 th -c	order RK		
1.4 1.6 1.8 2.0	3.7323401 4.2834095 4.8150857 5.3053630	3.7324000 4.2834838 4.8151763 5.3054720	0.0000599 0.0000743 0.0000906 0.0001089			High-order Tayl	or Method
		Taylor Order 2	e Er	ror	Taylor Order 4	Error	Exact
	t_i	w_i	SE SEC.	$- w_i $	w_i	$ y(t_i) - w_i $	$y(t_i)$
	0.0	0.5000000) F	0.5000000	G	0.5000000
	0.2	0.8300000	0.000	7014	0.8293000	0.0000014	0.8292986
	0.4	1.2158000	0.001	7123	1.2140910	0.0000034	1.2140877
	0.6	1.6520760	0.003	31354	1.6489468	0.0000062	1.6489406
	0.8	2.1323327	0.005	1032	2.1272396	0.0000101	2.1272295
	1.0	2.6486459	0.007	7868	2.6408744	0.0000153	2.6408591
	1.2	3.1913480	0.011	4065	3.1799640	0.0000225	3.1799415
	1.4	3.7486446	0.016	62446	3.7324321	0.0000321	3.7324000
	1.6	4.3061464	0.022	26626	4.2835285	0.0000447	4.2834838
		(A 11) 11 (A 12) (A 12)		and the same of the same of	/ 01500==	0.0000615	7 /
	1.8	4.8462986	0.031	1223	4.8152377	0.0000615	4.8151763

• 문제: 구간 h의 크기를 줄여 Euler 방법을 사용하는 것과 2차 또는 4차 RK 방법을 사용하는 것 중 어느 것이 더 좋은 방법일까?

t _i	Exact	Euler h = 0.025	Midpoint $h = 0.05$	Runge-Kutta Order Four $h = 0.1$
0.0	0.5000000	0.5000000	0.5000000	0.5000000
0.1	0.6574145	0.6554982	0.6573726	0.6574144
0.2	0.8292986	0.8253385	0.8292127	0.8292983
0.3	1.0150706	1.0089334	1.0149386	1.0150701
0.4	1.2140877	1.2056345	1.2139076	1.2140869
0.5	1.4256394	1.4147264	1.4254094	1.4256384

Simple ODE Solvers - Derivation

From

http://www.math.ubc.ca/~feldman/math/odesolvers.pdf

Higher-Order ODE

- First-order ODE system 형태로 해결을 할 수 있음.
 - 예: Second-order ODE

$$y'' + 3y' + y = 0, y(0) = 1, y'(0) = 0$$

$$y_1(t) \equiv y(t)$$
 $y'_1 = y_2, y_1(0) = 1$
 $y'_2 = -y_1 - 3y_2, y_2(0) = 0$

First-order ODE system

$$y_1'(t) = f_1(t, y_1, y_2, ..., y_n), y_1(t_0) = y_{10}$$

 $y_2'(t) = f_1(t, y_1, y_2, ..., y_n), y_2(t_0) = y_{20}$
 $y_1'(t) = f_1(t, y_1, y_2, ..., y_n), y_1(t_0) = y_{10}$
 $y_1'(t) = f_1(t, y_1, y_2, ..., y_n), y_1(t_0) = y_{10}$

First-Order Euler Method for First-Order ODE System -

(n=1)
$$y'(t) = f(t,y), y(t_0) = y_0$$
 $y_{i+1} = y_i + h f(t_i, y_i)$
 $y_{i,i+1} = y_{ii} + h f_1(t_i, y_{ii}, y_{2i}, ..., y_{ni})$
 $y_{2,i+1} = y_{2i} + h f_2(t_i, y_{ii}, y_{2i}, ..., y_{mi})$
 \vdots
 $y_{n,i+1} = y_{ni} + h f_n(t_i, y_{ii}, y_{2i}, ..., y_{mi})$

Second-Order RK Method for First-Order ODE System

$$\begin{cases} k_1 = f(t_1, y_1) \\ k_2 = f(t_1 + h_1, y_1 + k_1 + h_2) \end{cases} \Rightarrow y_{i+1} = y_1 + \frac{k_1 + k_2}{2} \cdot h_1$$

$$\begin{cases} y'_{1} = f_{1}(t, y_{1}, y_{2}) & y_{1}(t_{0}) = y'_{1} \\ y'_{2} = f_{2}(t, y_{1}, y_{2}) & y_{2}(t_{0}) = y'_{2} \end{cases}$$

$$\begin{cases} \begin{cases} E_{1} = f_{1}(t_{1}, y_{1}, y_{2}) \\ E_{1} = f_{2}(t_{1}, y_{1}, y_{2}) \end{cases} \\ \begin{cases} E_{1} = f_{1}(t_{1} + h, y_{1} + E_{1} \cdot h, y_{2} + E_{2} \cdot h) \\ \end{cases} \\ \begin{cases} E_{2} = f_{2}(t_{1} + h, y_{1} + E_{1} \cdot h, y_{2} + E_{2} \cdot h) \end{cases} \end{cases}$$

=)
$$y_{1,i+1} = y_{1,i} + \frac{y_{1,i} + y_{2,i} + y_{2,i}}{2} \cdot h$$

 $y_{2,i+1} = y_{2,i} + \frac{y_{2,i} + y_{2,i} + y_{2,i}}{2} \cdot h$

$(k_i)_j$: j 번째 함수의 k_i

Second-Order RK Method for Second-Order ODE

• 문제

$$y''(t) + a y'(t) + b y(t) = g(t)$$

 $y(t_0) = y_0$ finitial values
 $y'(t_0) = y_0'$

First-order ODE system으로의 변환

$$\begin{cases} y_1'(t) = f_1(t, y_1, y_2) = y_2(t), & y_1(t_0) = y_0 \\ y_2'(t) = f_2(t, y_1, y_2) = -\alpha y_2(t) - by_1(t) + g(t), y_2(t_0) = y_0' \end{cases}$$

$$\begin{cases} \begin{cases} E_{1} = f_{1}(t_{1}, y_{11}, y_{21}) = y_{21} \\ E_{1} = f_{2}(t_{1}, y_{11}, y_{21}) = -\alpha y_{21} - b y_{11} + g(t_{1}) \end{cases} \\ \begin{cases} E_{1} = f_{2}(t_{1}, y_{11}, y_{21}) = -\alpha y_{21} - b y_{11} + g(t_{1}) \\ E_{2} = f_{1}(t_{1} + h, y_{11} + E_{1}, h, y_{21} + E_{2}, h) \end{cases} \\ = y_{21} + E_{1}h \\ \begin{cases} E_{2} = f_{2}(t_{1} + h, y_{11} + E_{1}, h, y_{21} + E_{2}, h) \\ = -\alpha (y_{21} + E_{2}, h) - b (y_{11} + E_{1}, h) + g(t_{11} + h) \end{cases} \end{cases}$$

Example: A Bouncing Ball

Bouncing Ball Problem

문제 공이 어떠한 초기속도로 움직일때 구멍이 바지게 되는 지를 계산하라.

]. 조건

Of Vall): the horizontal velocity at time to Vv(t): the vertical velocity at time to $\chi(t)$: the χ coordinate of the ball at time to $\chi(t)$: the χ

$$\begin{cases} \chi'(t) = \frac{d\chi(t)}{dt} = v_0 \\ y''(t) = \frac{d^2y(t)}{dt^2} = -g \end{cases}$$
 \(\vartheta : \text{ an initial horizontal velocity} \) \(9 : 32.2 \text{ ft/sec^2} \)

2) It the ball bounces, the horizontal velocity remains constant as vo, and the vertical velocity velocity Vv after one bounce is equal to the negative value of 85% of the vertical velocity before the bounce.

2. (the second-order Runge- $\chi_{i+1} = \chi_i + h \cdot v$. $\chi_{i+1} = \chi_i + h \cdot (-g)$, $h = \Delta t$ $\chi_{i+1} = \chi_i + \frac{1}{2} h \cdot (\chi_i + \chi_{i+1})$

3. 방법

① 수이건 호기속도 15이 대해 (Xt) > 0.58이 되는 시간까지 게도를 계산

)② 만약 용이 구멍이 빠지지 않으면 초기속5를 0.005 fl/sec 씨, 갑소시키며 ①의 계산 반복

1③용이 구멍이 바일경우 성=-0.8 이 될때까지 궤도계산.

X; 4t = 0.005 sec 2 항것 (Vo = 0.78 ft/sec 3 부터 시작한것.

$$\begin{cases} \chi'(t) = \frac{d\chi(t)}{dt} = v_0 \\ y''(t) = \frac{d^2y(t)}{dt^2} = -9 \end{cases}$$
 $\forall v_0: an initial horizontal velocity
$$9: 32.2 \text{ ft/sec}^2$$$

2nd-order ODE system

$$y'_1 = f_1(t, y_1, y_2, y_3) = v_0, y_1(0) = x_0$$

$$y'_2 = f_2(t, y_1, y_2, y_3) = y_3, y_2(0) = y_0$$

$$y'_3 = f_3(t, y_1, y_2, y_3) = -g, y_3(0) = v_0$$

1st-order ODE system

$$y_1(t) \equiv x(t)$$

$$y_2(t) \equiv y(t)$$

$$y_3(t) \equiv y'_2(t) = y'(t)$$

$$\begin{array}{rcl} y_{1,i+1}(t) & = & y_{1i} + v_0 h \\ y_{3,i+1}(t) & = & y_{3i} + (-g)h \\ y_{2,i+1}(t) & = & y_{2i} + rac{y_{3i} + y_{3,i+1}}{2} I \end{array}$$

2nd-order RK

Example: Vehicle Suspension Design

$$m \cdot y_5'' = -(k_1 + k_2)y_5 - (c_1 + c_2)y_5' + (k_1L_1 - k_2(L - L_1))\theta + (c_1L_1 - c_2(L - L_1))\theta' + (k_1y_1 + k_2y_2 + c_1y_1' + c_2y_2')$$

$$I \cdot \theta'' = (L_1k_1 - (L - L_1)k_2)y_5 + (L_1c_1 - (L - L_1)c_2)y_5' + - (L_1^2k_1 + (L - L_1)^2k_2)\theta - (L_1^2c_1 + (L - L_1)^2c_2)\theta' + (-L_1k_1y_1 + (L - L_1)k_2y_2 - L_1c_1y_1' + (L - L_1)c_2y_2')$$

만약 2nd-order RK 방법을 사용하여 3D 게임 엔진을 구현하려면 ...

Example: A Spring System

$$\begin{cases} m_1 \cdot y_1'' = -k_1 y_1 - k_2 (y_1 - y_2) \\ m_2 \cdot y_2'' = k_2 (y_1 - y_2) \end{cases}$$

$$y_1(0) = A, y_1'(0) = B, y_2(0) = C, y_2'(0) = D$$

$$y_{10} = y_{1}, \quad y_{11} = y_{1}', \quad y_{20} = y_{21}, \quad y_{21} = y_{2}'$$

$$y_{10}' = y_{11} = f_{10}(t, y_{10}, y_{11}, y_{20}, y_{21}), \quad y_{10}(0) = A$$

$$y_{11}' = \frac{1}{m_{1}} \{-k_{1} \cdot y_{10} - k_{2} \cdot (y_{10} - y_{20})\}, \quad y_{11}(0) = B$$

$$= f_{11}(t, y_{10}, y_{11}, y_{20}, y_{21})$$

$$y_{20}' = y_{21} = f_{20}(t, y_{10}, y_{11}, y_{20}, y_{21}), \quad y_{20}(0) = C$$

$$y_{21}' = \frac{k_{2}}{m_{2}} \{y_{10} - y_{20}\} = f_{21}(t, y_{10}, y_{11}, y_{20}, y_{21}), \quad y_{21}(0) = D$$

Example: Chaos System (Lorenz Attractor System)

$$\frac{dx_1}{dt} = \sigma(x_2 - x_1)$$

$$\frac{dx_2}{dt} = (1 + \lambda - x_3)x_1 - x_2$$

$$\frac{dx_3}{dt} = x_1x_2 - \gamma x_3$$

$$(\sigma, \lambda, \gamma > 0)$$

Chaotic behavior is observed when
$$\sigma > \gamma + 1$$
 and $\lambda > \frac{(\sigma+1)(\sigma+\gamma+1)}{\sigma-\gamma-1}$.

When $\sigma = 10$, $\lambda = 24$, and $\gamma = 2$ with x[0] = (1, 0, 20)

Fehlberg Fourth-Fifth-Order Runge-Kutta Method

subroutine rkf45(f,neqn,y,t,tout,relerr,abserr,iflag,work,iwork)

- Subroutine **rkf45** integrates a system of **neqn** first order ordinary differential equations of the form

dy(i)/dt = f(t,y(1),y(2),...,y(neqn)) where the y(i) are given at t .

- Typically the subroutine is used to integrate from t to tout but it can be used as a one-step integrator to advance the solution a single step in the direction of tout.
- On return the parameters in the call list are set for continuing the integration.
- The user has only to call **rkf45** again (and perhaps define a new value for **tout**).
- Actually, **rkf45** is an interfacing routine which calls subroutine **rkfs** for the solution.
- rkfs in turn calls subroutine fehl which computes an approximate solution over one step.

Function Parameters

- f: subroutine f(t,y,yp) to evaluate derivatives
 yp(i)=dy(i)/dt
 (cf. void eval_f(double *t, double *y, double *yp);
- neqn : number of equations to be integrated
- y(*): solution vector at t
- t : independent variable
- tout : output point at which solution is desired
- relerr, abserr: relative and absolute error tolerances for local error test. At each step the code requires that abs(local error) .le. relerr*abs(y) + abserr for each component of the local error and solution vectors
- iflag: indicator for status of integration
- work(*): array to hold information internal to rkf45
 which is necessary for subsequent calls. Must be
 dimensioned at least 3+6*negnc.
- iwork(*): integer array used to hold information internal to rkf45 which is necessary for subsequent calls. Must be dimensioned at least 5.

A Sample Usage (From C to Fortran)


```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define NEON 2
double work[3+6*NEQN+10];
int iwork[10], negn = NEQN;
void ODE I(double *t, double *v, double
   *yp) {
  yp[0] = -4.0*y[0] + 3.0*y[1] + 6.0;
  yp[1] = -2.4*y[0] + 1.6*y[1] + 3.6;
double ExactI1(double t) {
  return -3.375*exp(-2*t) + 1.875*exp(-2*t)
  0.4*t) + 1.5;
double ExactI2(double t) {
  return -2.25*exp(-2.0*t) + 2.25*exp(-
   0.4*t);
double abserr(double src, double dest) {
  return (src > dest) ? src-dest :
                               dest-src:
```

```
int main(void){
     double y[2] = \{ 0.0, 0.0 \};
     double err = 0.00000000001;
     double t = 0.0, tinit = 0.0;
     int iflag = +1;
     printf("%3s %15s
      %15s\t\t%15s\t%15s\n", "t",
      "w1", "w2", "|I1(t)-w1|", "|I2(t)-w2|");
      ----\n"):
텍ᄉᇀ printf("%3f %15.10f
      %15.10f\t%15.10f\t%15.10f\n",t,0.0,0.0,0
      .0,0.0);
     for ( t = 0.1; t < 0.6; t += 0.1 ) {
       rkf45 (ODE I, &negn, y, &tinit, &t,
            &err, &err, &iflag, work, iwork);
       printf("%3f %15.10f
           %15.10f\t%10.10E %10.10E\n",t,
           y[0], y[1], abserr(ExactI1(t), y[0]),
           abserr(ExactI2(t),y[1]));
     return 0;
```