Problema 3.6 (del 3.3)

• Los meses de vida de determinada especie de peces en una piscifactoría es una v.a. continua con función de densidad:

$$f(x) = \begin{cases} x/6, & x \in [2,4] \\ 0, & en \ otro \ caso \end{cases}$$

Tomando un pez al azar, ¿cuál es la probabilidad de que viva más de dos meses y medio?

Utilizar la Función de Distribución para resolverlo.

Distribución discreta uniforme

- Una v.a. **discreta** X es **uniforme** si todos los valores x_i que puede tomar son equiprobables.
 - Como debe ser finita, si hay n valores x_i la probabilidad de cada uno será $P(X=x_i)=1/n$.
- **Problema 3.7**: Se extrae una carta de una baraja española de 40 cartas. Sea X la v.a. que se corresponde con el número obtenido. Calcular su función de cuantía.

Distribución continua uniforme

- Una v.a. continua es uniforme sobre un intervalo [a,b] si su función de densidad es constante en el intervalo y nula fuera de él.
 - La prob. de cualquier subintervalo será proporcional a su longitud.
 - La fd tendrá la forma: $f(x) = \begin{cases} k, & x \in [a, b] \\ 0, & x \notin [a, b] \end{cases}$
 - La constante se halla:

$$\int_{-\infty}^{\infty} f(x)dx = 1 = \int_{a}^{b} k \, dx = k(b-a) \to k = \frac{1}{b-a}$$

Problema 3.8 (distr. cont. uniforme)

• La longitud de un tipo de bacteria es una v.a. continua distribuida uniformemente entre 3 y 8 μm.

Hallar la probabilidad de que una de esas bacterias mida menos de 7 μm .

Distribución exponencial

• Una v.a. es exponencial de parámetro $\lambda > 0$ cuando tiene la *fd*

$$f(x) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

• Es una función de probabilidad:

$$\int_{-\infty}^{\infty} f(x)dx = \lambda \int_{0}^{\infty} e^{-\lambda x} dx = \lambda \left[\frac{e^{-\lambda x}}{-\lambda} \right]_{0}^{\infty} = \lambda \left(0 - \frac{1}{-\lambda} \right) = 1$$

• Es una función no negativa, para todo *x* se cumple:

$$\lambda \cdot e^{-\lambda x} > 0$$

Variable aleatoria bidimensional

• Se llama variable aleatoria bidimensional (X, Y) a toda aplicación

$$(X, Y): \Omega \longrightarrow \mathbb{R}^2$$

- Correlación
- Discretas y continuas
- Continuas: intervalos → superficies
- <u>Ejemplo</u>: longitud y peso de los peces de una especie.

$$(X, Y) = \{(3'1, 28), (2'5, 19'9), (4'86, 37'222), ...\}$$

• <u>Ejemplo</u>: lanzar dos dados, siendo Xel n^o del primero e Y la suma de ambos resultados.

$$(X, Y) = \{(1, 7), (5, 7), (2, 4), ...\}$$

V.A. bidimensional discreta: fc conjunta

Dada una v.a. bidimensional discreta, con todos los posibles valores (x_i, y_i) que puede tomar, se llama función de cuantía conjunta a la función real de dos variables

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$f(x,y) = P(X = x, Y = y)$$

- Propiedades:
 - $0 \le f(x,y) \le 1, \forall (x,y) \in \mathbb{R}^2$
 - $\sum_{x_i} \sum_{x_i} f(x_i, y_i) = 1$, para todos los valores $X = \{x_i\}$, $Y = \{y_i\}$

Problema 3.9 (fc conjunta)

• En una biblioteca hay 8 libros de medicina, 6 de física, 5 de química y 1 de biología. Se cogen dos libros al azar, tomando la v.a. $X = \{n^0 \text{ de libros de medicina}\}\$ e $Y = \{n^0 \text{ de libros de biología}\}\$. Hallar la función de cuantía conjunta.

V.A. bidimensional continua: *fd* conjunta

Dos v.a. X e Y tienen una distribución **continua** conjunta si existe una función f(x,y) no negativa en \mathbb{R}^2 , tal que para cualquier recinto A del plano

$$P((X,Y) \in A) = \iint_A f(x,y) dxdy$$

- La probabilidad de tomar un valor discreto es cero, aun cuando una de las dos pertenezca a un intervalo.
- Se debe verificar:
 - $f(x,y) \geq 0$
 - $\bullet \iint_{\mathbb{R}^2} f(x,y) \, dx dy = 1$

Doble integración

• Con una v.a. continua integramos un **intervalo** y obtenemos un área (la probabilidad):

 Con una v.a. bidimensional continua integramos un área y obtenemos un volumen (la probabilidad):

Integrales dobles posibles

•
$$A = \{(x, y) : a \le x \le b, c \le y \le d\}$$

$$\int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$

•
$$A = \{(x, y) : a \le x \le b, f_1(x) \le y \le f_2(x)\}$$

$$\int_a^b \left[\int_{f_1(x)}^{f_2(x)} f(x, y) \, dy \right] dx$$

•
$$A = \{(x,y): g_1(y) \le x \le g_2(y), c \le y \le d\}$$

$$\int_{c}^{d} \left[\int_{g_1(y)}^{g_2(y)} f(x,y) \, dx \right] dy$$

Problema 3.10 x e y entre constantes

• Sea la *fd*:

$$f(x,y) = \begin{cases} xy, & (x,y) \in [0,2] \times [0,1] \\ 0, & resto \end{cases}$$

Calcular la probabilidad del área donde está definida.

Problema 3.11 y entre funciones

• Sea la *fd*:

$$f(x,y) = \begin{cases} x+y, & (x,y) \in [0,1] \times [0,1] \\ 0, & resto \end{cases}$$

Calcular la probabilidad para $x + y \le 1$

Problema 3.12 x entre funciones

• Sea la *fd*:

$$f(x,y) = \begin{cases} kxy, & y^2 \le x \le y, 0 \le y \le 1 \\ 0, & resto \end{cases}$$

Calcular k.

Distr. conjunta discreta uniforme

- Una v.a. bidimensional **discreta** (X,Y) es **uniforme** si todos los pares (x_i, y_j) que puede tomar son equiprobables.
 - Si hay n pares (x_i, y_i) la probabilidad de cada uno será:

$$f(x_i, y_j) = P(X = x_i, Y = y_j) = \frac{1}{n}$$

Distr. conjunta continua uniforme

 Una v.a. bidimensional continua (X,Y) es uniforme si la fd conjunta es uniforme en el recinto A del plano donde está definida:

• La *fd* tendrá la forma:
$$f(x,y) = \begin{cases} k, & (x,y) \in A \\ 0, & (x,y) \notin A \end{cases}$$

La constante se halla:

$$\iint_{A} k \, dx dy = 1 = k \cdot \iint_{A} dx dy = k \cdot \operatorname{área}(A) \to k = \frac{1}{\operatorname{área}(A)}$$

• La prob. de un recinto será proporcional al área que ocupa:

$$\iint_{B} k \, dx dy = k \cdot \text{área}(B) = \frac{\text{área}(B)}{\text{área}(A)}$$

Estadística

Problema 3.13 (distr. cjta. continua uniforme)

 Calcular la fd de una v.a. dada por las coordenadas de un punto aleatorio del primer cuadrante del círculo unidad.

Función de distribución conjunta

 Dada una v.a. bidimensional discreta o continua, se llama función de distribución conjunta (FD) a la función

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$F(x,y) = P(X \le x, Y \le y) = P(X \le x \cap Y \le y)$$

- Propiedades:
 - $0 \le F(x,y) \le 1, \ \forall x,y \in \mathbb{R}$
 - $F(-\infty, y) = P(X < -\infty, Y \le y) = 0$. $F(x, -\infty) = 0$.
 - $F(+\infty, +\infty) = P(X < +\infty, Y < +\infty) = 1$
 - $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ = $F(a_2, b_2) - F(a_1, b_2) - F(a_2, b_1) + F(a_1, b_1)$

Relación fc, fd – FD

- Variable **discreta**
 - Función de **cuantía** *vs* Función de **distribución**

$$F(x,y) = P(X \le x, Y \le y) = \sum_{\substack{x_i \le x \\ y_j \le y}} f(x_i, y_j)$$

- Variable **continua**
 - Función de **densidad** *vs* Función de **distribución**

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t) \, ds dt$$
$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$