Exact rate of Nesterov Scheme

Vasileios Apidopoulos, Jean-François Aujol, <u>Charles Dossal</u>, Aude Rondepierre

INSA de Toulouse, Institut de Mathématiques de Toulouse

January 2019, MIA Conference

The setting

Minimize a differentiable function

Let F be a convex differentiable function from \mathbb{R}^n to \mathbb{R} which gradient is L-Lipschitz, having at least one minimizer x^* . We want to build an efficient sequence to estimate

$$\underset{x \in \mathbb{R}^n}{\arg \min} F(x) \tag{1}$$

Explicit Gradient Descent

Let F be a convex differentiable function from \mathbb{R}^n to \mathbb{R} which gradient is L-Lipschitz, having at least one minimizer x^* .

• Gradient descent : for $h < \frac{2}{L}$,

$$x_{n+1} = x_n - h\nabla F(x_n) \tag{2}$$

The sequence $(x_n)_{n\in\mathbb{N}}$ converges to a minimizer of F and

$$F(x_n) - F(x^*) \le \frac{\|x_0 - x^*\|^2}{2hn}$$
 (3)

Nesterov inertial scheme

Nesterov inertial scheme

• Nesterov Scheme for $h < \frac{1}{I}$, and $\alpha \geqslant 3$

$$x_{n+1} = x_n - h\nabla F\left(x_n + \frac{n}{n+\alpha}(x_n - x_{n-1})\right)$$
 (4)

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^2}\right) \tag{5}$$

• Nesterov (84) proposes $\alpha = 3$.

The questions

The questions

- More precise than $O\left(\frac{1}{n^2}\right)$ with more information on F?
- Is Nesterov really an acceleration of Gradient descent ?

The answers

- Yes... with strong convexity, Su et al. (15) Attouch et al. (17)
- We give a more accurate answer for more general geometry.
- In many numerical problems Nesterov is more efficient, but not always.
- The real answer is ... Nesterov may be more efficient than GD or not.

Outline

Outline

- Gradient descent and growth condition.
- State of the art on Nesterov scheme.
- New rates for Nesterov Schemes.
- Proofs coming from an ODE study.

Gradient Descent and Geometry

Growth condition

A function F satisfies condition $\mathcal{L}(\gamma)$ if it exists K>0 such that for all $x\in R^n$

$$d(x,X^*)^{\gamma} \leqslant K(F(x) - F(x^*)) \tag{6}$$

Theorem Garrigos al al.

• If F satisfies condition $\mathcal{L}(\gamma)$ with $\gamma > 2$ then

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^{\frac{\alpha}{\alpha - 2}}}\right) \tag{7}$$

• If F satisfies condition $\mathcal{L}(2)$ then it exists a > 0

$$F(x_n) - F(x^*) = O\left(e^{-an}\right) \tag{8}$$

Geometric convergence of GD with $\mathcal{L}(2)$

Geometric convergence of GD with $\mathcal{L}(2)$

$$F(x_n) - F(x^*) \leqslant \frac{\|x_0 - x^*\|^2}{2hn}$$
 and $\|x - x^*\|^2 \leqslant K(F(x) - F(x^*))$

No memory algorithm $\Rightarrow \forall j \leqslant n$

$$F(x_n) - F(x^*) \leqslant \frac{\|x_{n-j} - x^*\|^2}{2hj} \leqslant \frac{K}{2hj} (F(x_{n-j}) - F(x^*))$$

If $\frac{K}{2hj} \leqslant \frac{1}{2} \Longleftrightarrow j \geqslant \frac{K}{h}$,

$$F(x_n) - F(x^*) \leqslant \frac{F(x_{n-j}) - F(x^*)}{2}$$

Conclusion: The decay is geometric.

Back to Nesterov scheme

State of the art

• Nesterov Scheme for $h < \frac{1}{L}$, and $\alpha \ge 3$

$$x_{n+1} = x_n - h\nabla F\left(x_n + \frac{n}{n+\alpha}(x_n - x_{n-1})\right)$$
 (9)

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^2}\right) \tag{10}$$

• Chambolle, D (14) and Attouch Peypouquet (15):

$$\alpha > 3 \Rightarrow$$
 convergence of $(x_n)_{n \geqslant 1}$ and $F(x_n) - F(x^*) = o\left(\frac{1}{n^2}\right)$

• If $\alpha \leq 3$, Apidopoulos et al. and Attouch et al. (17)

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^{\frac{2\alpha}{3}}}\right) \tag{11}$$

Nesterov, with strong convexity

Theorem Su Boyd Candès (15), Attouch Cabot (17)

If F satisfies $\mathcal{L}(2)$ and uniqueness of minimizer, then $\forall \alpha > 0$

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^{\frac{2\alpha}{3}}}\right) \tag{12}$$

Another geometrical condition

Flatness condition

F satisfies condition $H(\gamma)$ if $\forall x \in \mathbb{R}^n$ and all $x^* \in X^*$

$$F(x) - F(x^*) \leqslant \frac{1}{\gamma} \langle \nabla F(x), x - x^* \rangle \tag{13}$$

Flatness and growth properties

- If $(F F^*)^{\frac{1}{\gamma}}$ is convex, then F satisfies $H1(\gamma)$.
- If F satisfies $H(\gamma)$ then it exists $K_2 > 0$ such that

$$F(x) - F(x^*) \leqslant K_2 d(x, X^*)^{\gamma} \tag{14}$$

- if $F(x) = ||x x^*||^r$, with r > 1, F satisfies $H1(\gamma)$ for all $\gamma \in [1, r]$... and $\mathcal{L}(p)$ for all $p \ge \gamma$.
- if F satisfies $\mathcal{L}(2)$ and ∇F is L-Lispchitz then F satisfies $H(1+\frac{L}{2K_2})$.

Theorem: Apidopoulos et al. (18)

Let F be a differentiable convex function which gradient is L-Lipschitz

- **1** If F satisfies $H(\gamma)$, with $\gamma > 1$ and

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^{\frac{2\gamma\alpha}{\gamma+2}}}\right)$$
 (15)

2) if $\alpha > 1 + \frac{2}{\gamma}$ and thus if $\alpha = 3$ then

$$F(x_n) - F(x^*) = o\left(\frac{1}{n^2}\right) \tag{16}$$

and the sequence $(x_n)_{n\geqslant 1}$ converges.

② If F satisfies $\mathcal{L}(2)$, the previous points apply for a $\gamma > 1$.

Theorem for sharp functions, Apidoupoulos et al. (18)

If F satisfies $\mathcal{L}(2)$, $H(\gamma)$ and has a unique minimizer x^* then $\forall \alpha > 0$

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^{\frac{2\gamma\alpha}{\gamma+2}}}\right)$$
 (17)

Comments

- For $\gamma=1$ we recover the decay $O\left(\frac{1}{n^{\frac{2\alpha}{3}}}\right)$: Attouch and Cabot
- For quadratic functions, $\gamma = 2$ and thus we get $O\left(\frac{1}{n^{\alpha}}\right)$.
- Since ∇F is L-Lipschitz, F satisfies $H1(\gamma)$ for $\gamma>1$ and thus $\frac{2\gamma\alpha}{\gamma+2}>\frac{2\alpha}{3}$.
- For $F(x) = ||Ax y||^2$ the decay is $O(\frac{1}{n^{\alpha}})$.

Theorem for flat functions, Apidopoulos (18)

If F satisfies $H(\gamma)$ and $\mathcal{L}(\gamma)$ with $\gamma>2$, if F has unique minimizer and if $\alpha>\frac{\gamma+2}{\gamma-2}$ then

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^{\frac{2\gamma}{\gamma - 2}}}\right)$$
 (18)

Gradient descent rate

If F satisfies $\mathcal{L}(\gamma)$ with $\gamma > 2$

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^{\frac{\gamma}{\gamma - 2}}}\right) \tag{19}$$

Discretization of an ODE, Su Boyd and Candès (15)

The scheme defined by

$$x_{n+1} = y_n - h\nabla F(y_n) \text{ with } y_n = x_n + \frac{n}{n+\alpha}(x_n - x_{n-1})$$
 (20)

is a discretization of a solution of

$$\ddot{x}(t) + \frac{\alpha}{t}\dot{x}(t) + \nabla F(x(t)) = 0$$
 (ODE)

With $\dot{x}(t_0) = 0$.

Move of a solid in a potential field with a vanishing viscosity $\frac{\alpha}{t}$.

Advantages of the discret setting

- 1 A simpler Lyapunov analysis, better insight
- Optimality of bounds

Nesterov, Continuous vs discret

$$\ddot{x}(t) + \frac{\alpha}{t}\dot{x}(t) + \nabla F(x(t)) = 0$$
 (ODE)

Nesterov, Continuous

If F is convex and if $\alpha \geqslant 3$, the solution of (??) satisfies

$$F(x(t)) - F(x^*) = O\left(\frac{1}{t^2}\right) \tag{21}$$

$$x_{n+1} = y_n - h\nabla F(y_n)$$
 with $y_n = x_n + \frac{n}{n+\alpha}(x_n - x_{n-1})$

Nesterov, Discret

If F is convex and if $\alpha \geqslant 3$, the sequence $(x_n)_{n\geqslant 1}$ satisfies

$$F(x_n) - F(x^*) = O\left(\frac{1}{n^2}\right) \tag{22}$$

Nesterov, Proof of the continuous theorem

We define

$$\mathcal{E}(t) = t^{2}(F(x(t)) - F(x^{*})) + \frac{1}{2} \|(\alpha - 1)(x(t) - x^{*}) + t\dot{x}(t)\|^{2}$$

Using (??) and the following convex inequality

$$F(x(t)) - F(x^*) \leq \langle x(t) - x^*, \nabla F(x(t)) \rangle$$

we get

$$\mathcal{E}'(t) \leqslant (3 - \alpha)t(F(x(t) - F(x^*)) \tag{23}$$

- **1** If $\alpha \geqslant 3$, $\forall t \geqslant t_0$, $t^2(F(x(t)) F(x^*)) \leqslant \mathcal{E}(t_0)$
- ② If $\alpha > 3$, $\int_{t=t_0}^{+\infty} (\alpha 3)t(F(x(t) F(x^*)) \leqslant \mathcal{E}(t_0)$

Nesterov, Proof of the discret theorem

We define

$$\mathcal{E}_n = n^2 (F(x_n) - F(x^*)) + \frac{1}{2h} \|(\alpha - 1)(x_n - x^*) + n(x_n - x_{n-1})\|^2$$

Using the definition of $(x_n)_{n\geqslant 1}$ and the following convex inequality

$$F(x_n) - F(x^*) \leqslant \langle x_n - x^*, \nabla F(x_n) \rangle$$

we get

$$\mathcal{E}_{n+1} - \mathcal{E}_n \leqslant (3 - \alpha) n(F(x_n) - F(x^*)) \tag{24}$$

- If $\alpha \geqslant 3$, $\forall n \geqslant 1$, $n^2(F(x_n) F(x^*)) \leqslant \mathcal{E}_1$
- ② If $\alpha > 3$, $\sum_{n \ge 1} (\alpha 3) n(F(x_n) F(x^*)) \le \mathcal{E}_1$

• We define for $(p, \xi, \lambda) \in \mathbb{R}^3$

$$\mathcal{H}(t) = t^{p}(t^{2}(F(x(t)) - F(x^{*})) + \frac{1}{2} \|(\lambda(x(t) - x^{*}) + t\dot{x}(t))\|^{2} + \frac{\xi}{2} \|x(t) - x^{*}\|^{2})$$

- **2** We choose $(p, \xi, \lambda) \in \mathbb{R}^3$ depending on the hypotheses to ensure that \mathcal{H} is bounded. \mathcal{H} may not be non increasing.
- **3** We deduce there is $A \in \mathbb{R}$ such that

$$t^{2+p}(F(x(t)) - F(x^*)) \le A - t^p \frac{\xi}{2} ||x(t) - x^*||^2$$

- If $\xi \geqslant 0$ then $F(x(t)) F(x^*) = O(\frac{1}{t^{p+2}})$.
- **1** if $\xi \geqslant 0$ we must use conditions $\mathcal{L}(\gamma)$ to conclude.

Theorem Su, Boyd, Candès (15)

If *F* is convex, satisfies and $\alpha \geqslant 3$

$$F(x(t)) - F(x^*) = O\left(\frac{1}{t^2}\right)$$
 (25)

Proof : p = 0, $\lambda = \alpha - 1$, $\xi = 0$

Theorem Aujol, D., Rondepierre (18)

If F is convex, satisfies $H(\gamma)$ and $\mathcal{L}(2)$, and has unique minimizer

$$F(x(t)) - F(x^*) = O\left(\frac{1}{t^{\frac{2\alpha\gamma}{\gamma+2}}}\right)$$
 (26)

Proof :
$$p = \frac{2\alpha\gamma}{\gamma+2} - 2$$
, $\lambda = \frac{2\alpha}{\gamma+2}$, $\xi = \lambda(\lambda + 1 - \alpha)$.