

Incident Response

Objective 4.8: Explain appropriate incident response activities

Incident Response

- Incident Response
 - Systematic approach to managing and mitigating security incidents
 - Goals
 - Minimize impact
 - Reduce detection and containment time
 - Facilitate recovery
 - Key Steps
 - Detection
 - Classification
 - Containment
 - Eradication
 - Evidence preservation
 - Communication
 - Lessons learned
- Study Topics
 - Incident Response Process
 - Steps
 - Preparation
 - Detection
 - Analysis
 - Containment

- Eradication
- Recovery
- Lessons Learned
- Threat Hunting
 - Proactive cybersecurity approach for continuous threat identification
 - Purpose
 - Identify hidden or emerging threats
- Root Cause Analysis
 - Systematic process to investigate incidents and identify underlying factors
 - Purpose
 - Understand the cause of security breaches or operational issues
- Incident Response Training and Testing
 - Methods
 - Tabletop Exercises
 - Simulations
 - Drills
 - Live Exercises
 - Purpose
 - Prepare personnel and systems for effective incident response
- Digital Forensic Procedures
 - Systematic techniques to gather, analyze, and preserve digital evidence
 - Purpose
 - Investigate cybercrimes or security incidents
- Data Collection Procedures
 - Established methods for gathering relevant information during incident response

- Concept
 - Order of volatility (prioritizing data collection based on volatility)
- Disk Imaging and Analysis
 - Creating a bit-by-bit copy (image) of a storage device, examining content
 - Purpose
 - o Recover data
 - Investigate incidents
 - Identify security issues

Incident Response Process

- Incident
 - An act violating a security policy
- Phases of Incident Response
 - NIST (National Institute for Standards and Technology) defines a four-phase incident response process
 - Preparation
 - Detection and Analysis
 - Containment, Eradication and Recovery
 - Post-Incident Activity
 - In the CompTIA model, "Detection and Analysis" is divided into two phases, and "Containment, Eradication, and Recovery" is divided into three, creating a seven-phase model
- Seven Phases of Incident Response
 - Preparation
 - Gets an organization ready for future incidents
 - Focuses on making systems resilient to attacks by hardening systems and

networks

Involves creating policies, procedures, and a communication plan

Detection

- Determines if a security incident has occurred
- Identifies a security incident
- Cybersecurity and triage analysts play a vital role in assessing incident severity

Analysis

- Thoroughly examines and evaluates the incident
- Provides insights into the incident's scope and impact
- Notifies stakeholders and initiates containment

■ Containment

- Limits the incident's scope by securing data and minimizing business impact
- Prevents the spread of malicious activity

■ Eradication

- Starts after containment
- Focuses on removing malicious activity from systems or networks
- May involve reimaging affected systems

Recovery

- Restores affected systems and services to their secure state
- Includes restoring from backups, patching, and updating configurations
- Ensures resilience against future threats

■ Post-Incident Activity

- Occurs after containment, eradication, and recovery
- Identifies the initial incident source and improvements to prevent future

incidents

- Involves
 - Root cause analysis
 - Identifies the incident's source and how to prevent it in the future
 - Steps
 - Define/scope the incident
 - Determine the causal relationships that led to the incident
 - Identify an effective solution
 - Implement and track the solutions
 - Lessons learned
 - Documents experiences during incidents in a forma
 - After-action report
 - Collects formalized information about what occurred
- Incident Response Team
 - The core team includes cybersecurity professionals with incident response experience
 - Temporary members may be added as needed (e.g., database administrators)
 - Large organizations have full-time incident response teams
 - Smaller organizations form temporary teams for specific incidents
 - Team Roles
 - Leader
 - Subject Matter Experts
 - IT Support

- Legal Counsel
- HR
- Public Relations
- Leadership and management ensure the incident response team has necessary funding, resources ,and expertise
- Management makes crucial decisions and communicates them during the incident response
- Outsourcing Incident Response
 - Some organizations outsource incident response to specialized teams
 - Effective but expensive; external teams may not be familiar with the organization's network

Threat Hunting

- Threat Hunting
 - Proactive cybersecurity technique to detect threats that haven't been discovered
 by normal security monitoring
 - Involves actively seeking out potential threats within your network, as opposed to waiting for them to trigger alerts
- Steps in Threat Hunting
 - Establishing a Hypothesis
 - Conduct threat modeling to identify potential threats with high impact
 - Use threat intelligence to form hypotheses about threat actors or campaigns that may target your organization
 - Profiling Threat Actors and Activities
 - Create scenarios to understand how attackers might attempt an intrusion
 - Determine the type of threat actor (insider, hacktivist, criminal, nation

state)

- Identify their objectives and potential targets
- Threat Hunting Process
 - Utilizes security monitoring and incident response tools
 - Analyzes logs, system data, file systems, and registry information
 - Focuses on finding threats not detected by existing rules
 - Start by assuming that the current rules haven't flagged potential threats
 - Seeks new tactics, techniques, and procedures used by threat actors
- Key Considerations
 - Threat hunters must stay updated on the latest attacks and threats
 - Use advisories and bulletins published by vendors and researchers to identify new TTPs and vulnerabilities
 - Utilize intelligence fusion and threat data, combining SIEM logs with real-world threat feeds
- Benefits of Threat Hunting
 - Improves detection capabilities by identifying threats that bypass existing defenses
 - Enhances threat intelligence by correlating external threat feeds with internal logs
 - Provides actionable intelligence to strengthen security measures

Root Cause Analysis

- Root Cause Analysis (RCA)
 - Systematic process to identify the initial source of an incident and prevent it from recurring

- Steps in Root Cause Analysis
 - Define and Scope the Incident
 - Determine the initial cause and scope of the incident
 - Understand how many systems/users have been affected and the operational impact
 - Determine Causal Relationships
 - Identify the causal relationships that led to the incident
 - Understand how the incident occurred, such as through malware infection via USB drive or other vectors
 - Identify Effective Solutions
 - Find solutions to prevent the incident from recurring
 - Solutions may include adding antivirus, restricting data transfer from USB devices, or applying software patches
 - Implement and Track Solutions
 - Execute the solutions and ensure the incident is fully resolved
 - Use change management processes to update systems and configurations
 - Look across the network and see if there are any other machines that could have been affected
- Benefits of Root Cause Analysis
 - Identifies vulnerabilities and weaknesses in security practices
 - Creates more robust protections against cyber threats
 - Encourages a no-blame culture, focusing on solutions and improvements rather than assigning fault
 - No-Blame Approach
 - RCA should not assign blame to individuals or teams

- Encourages open and honest reporting to improve cybersecurity practices
- Recognizes that human errors often result from systemic issues within organizations, such as training procedures or regulatory oversight

Incident Response Training and Testing

- Training
 - Education to ensure employees and staff understand incident response processes, procedures, and priorities
 - Training should be tailored to different roles (e.g., first responders, managers, executives, end users) with specific needs
 - End user training includes teaching them how to report incidents and remedial training for those who make mistakes
 - Capture and incorporate lessons learned from previous incidents into training to prevent their recurrence
 - Soft skills and relationship building are important in high-functioning incident response teams

Testing

- Practical exercise of incident response procedures to ensure the practical application of knowledge
- Testing helps assess the effectiveness of your response procedures
- It can be costly, complex, and resource-intensive, depending on the scenario
- Tabletop Exercise (TTX)
 - A theoretical exercise that presents an incident response scenario
 - Discussion based

- Participants discuss and role-play their response actions
- Cost-effective but lacks hands-on experience
- Useful for exploring decision-making and response planning
- Penetration Test (Pen Test)
 - A red team (attacker) attempts network intrusion based on a specific threat modeling scenario
 - Rules of engagement and clear methodology are established beforehand
 - Popular tools and operating systems
 - Metasploit
 - Cobalt Strike
 - Kali Linux
 - ParrotOS
 - Commando OS
 - Awareness of these tools is crucial, as they can be used by both penetration testers and attackers
- Simulation
 - Goes beyond tabletop discussions, involving realistic, hands-on scenarios
 - Mimics actual incidents
 - Simple
 - Phishing attacks,
 - Ransomware infections
 - Complex
 - Multi-stage attacks
 - Data breaches in coordination with external parties
 - Tests technical skills, decision-making under pressure, and effective communication

- Align simulations with the organization's threat landscape and risk profile
- Identifies gaps in incident response plans, improves team coordination, and ensures role clarity during real incidents
- Regularly incorporating simulations improves an organization's readiness for cybersecurity incidents

Digital Forensic Procedures

- Digital Forensics
 - Systematic process of investigating and analyzing digital devices and data to uncover evidence for legal purposes
- Four Main Phases of Digital Forensic Procedures
 - Identification
 - Focus on scene safety, prevention of evidence contamination, and scope determination
 - Secure the scene, preserve evidence, and document the scene
 - Identify where relevant data might be stored (e.g., tablets, smartphones, servers)

■ Collection

- Requires proper authorization (e.g., warrant, executive authorization)
- Order of volatility
 - Dictates the sequence in which data sources should be collected and preserved based on their susceptibility to modification or loss
 - Following order of volatility minimizes data loss
 - 5 Steps of Order of Volatility
 - Collect data from the system's memory
 - Capture data from the system state

- Collect data from storage devices
- Capture network traffic and logs
- Collect remotely stored or archived data
- Chain of Custody
 - Documented and verifiable record that tracks the handling,
 transfer, and preservation of digital evidence from the moment it
 is collected until it is presented in a court of law
- Evidence Collecting techniques
 - Disk imaging
 - Involves creating a bit-by-bit or logical copy of a storage device, preserving its entire content, including deleted files and unallocated space
 - File Carving
 - Focuses on extracting files and data fragments from storage media without relying on the file system

Analysis

- Examine the forensically sound evidence copy
- Systematically scrutinize data for relevant information, timestamps, user interactions, and signs of criminal activity
- Follow strict procedures and documented protocols for consistency and objectivity

Reporting

- Document methods, tools used, actions performed, findings, and conclusions in a final report
- The report serves as crucial evidence in legal proceedings, and the forensic analyst may need to testify

Additional Concepts

- Legal Hold
 - Issued when litigation is expected and preserves potentially relevant electronic data
 - Ensures evidence is not tampered with, deleted, or lost
 - Requires the implementation of preservation practices to protect systems and evidence
- E-Discovery (Electronic Discovery)
 - Process of identifying, collecting, and presenting electronically stored information for potential legal proceedings
 - Involves searching, analyzing, and formatting electronic data for litigation
- Ethical Considerations
 - Adherence to a code of ethics that emphasizes avoiding bias, repeatable actions,
 and evidence preservation
 - Avoiding bias
 - Analysis should be performed without bias or prejudice and be based solely on the evidence
 - Use forensic analysts who are removed from the situation to avoid potential bias
 - Repeatable actions
 - All analysis must be based on repeatable processes documented in the final report
 - Ensuring the original evidence remains unchanged is critical to maintaining evidentiary integrity
 - Evidence preservation
 - Evidence includes both the device (e.g., laptop hard disk) and the

data recovered from it

 Perform analysis on a disk image, not the original drive, to prevent modifications or alterations

• Data Collection Procedures

- Digital Forensic Collection Techniques
 - Involve making forensic images of data for later analysis
 - This approach allows incident response teams to resume operations quickly while maintaining evidence
 - Evidence may be required for potential legal action and cooperation with law enforcement
- Data collection involves the following
 - Capturing and hashing system images
 - Analyzing data with forensic tools
 - FTK (Forensic Toolkit)
 - EnCase
 - Capturing machine screenshots
 - Reviewing network logs
 - Collecting CCTV video
- Order of Volatility
 - Guides the sequence of collecting data, from most volatile (CPU registers and cache) to least volatile (archival media)
- Licensing and documentation reviews ensure system configurations align with their design
- Data Acquisition
 - The method and tools used to create a forensically sound copy of data from a

source device, such as system memory or a hard disk

- Policies for bringing one's own device (BYOD) complicate data acquisition because it may not be legally possible to search or seize the devices
- Some data can only be collected once the system is shutdown or the power is disconnected
- Order of Volatility
 - CPU registers and cache memory
 - System memory (RAM), routing tables, ARP caches, process table, temporary swap files
 - Data on persistent mass storage
 - Remote logging and monitoring data
 - Physical configuration and network topology
 - Archival data

■ WARNING

 Some Windows registry keys, like HKLM/Hardware, are only in memory and require a memory dump to analyze