

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2019 - 2020)

Enthusiast, Leader & Achiever Course

PHASE : ALL PHASE TARGET : PRE-MEDICAL 2020

Test Type : MAJOR Test Pattern : NEET (UG)

TEST DATE: 04-08-2020

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Α.	4	4	2	3	3	1	2	3	2	3	1	2	1	2	3	1	3	3	1	3	4	1	2	3	4	1	3	4	2	1
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Α.	2	3	1	1	3	1	2	1	2	1	1	1	4	4	1	3	3	2	1	2	1	2	3	3	2	3	1	2	2	2
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	2	3	4	4	1	3	2	3	4	2	3	3	1	4	3	2	1	2	4	2	2	2	4	2	3	2	3	2	2	1
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	4	3	1	4	2	3	2	1	4	3	4	3	3	3	4	2	2	1	4	4	1	1	2	1	3	4	3	3	2	3
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Α.	2	4	2	1	1	2	2	3	3	1	1	4	3	2	3	4	2	4	1	4	3	3	1	2	3	1	3	4	3	4
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	2	3	3	3	3	2	2	2	2	2	1	4	4	3	4	3	3	1	4	2	3	3	3	2	4	4	1	2	2	4

HINT - SHEET

1. Ans (4)

By palm rule, or by $\varepsilon = -\ell$. $(\vec{B} \times \vec{V})$

 $e_{max} = B\ell\nu$ [when $B \perp \nu \perp \ell$]

 e_{\min} = 0 [B \parallel ν or ν \parallel ℓ or ν \parallel B]

2. Ans (4)

$$|e| = \frac{d\phi}{dt} = 6t + 4$$

at t = 2

|e| = 16 volt

3. Ans (2)

length of conductor cuts magnetic field lines of

 $B_0 \sin \delta$

 $\varepsilon = B\ell\nu$ [when $B \perp \ell \perp \nu$]

 $\varepsilon = B_0 \ell \ v \sin \delta$

4. Ans (3)

The induced emf is

$$e = -L\frac{di}{dt}$$

Here,
$$di = (2 - 10)A = -8A$$
,

$$\Rightarrow$$
 dt = 0.1s, e = 3.28 V

$$\therefore 3.28 = -\frac{L(-8)}{0.1}$$

$$\Rightarrow L = \frac{3.28 \times 0.1}{8} = 0.04H$$

5. Ans (3)

$$e = -L \frac{di}{dt} = -L \text{ (Slope)}$$

for
$$t = 0$$
 to t, $e = -L(-K) = +LK$

for time
$$>$$
 t, $e = -L (+K) = -LK$

6. Ans (1)

$$P_p = 4000 \text{ W} = 100 \text{ I}_P, \text{ I}_P = 40 \text{ A}$$

$$P_S = 0.8P_P = 3200 \text{ W} = 200 \text{ I}_S, I_S = 16 \text{ A}$$

7. $\operatorname{Ans}(2)$

EMW propagating along + Z direction so $\vec{E} \times \vec{B}$ would be along + Z direction and

 $\vec{E} \perp \vec{B}$, option (2) satisfy both conditions.

8. Ans (3)

$$|\mathbf{e}| = \frac{\mathrm{d}\Phi}{\mathrm{d}t} = 4t$$

$$H = \int_{0}^{3} \frac{e^{2}}{R} \cdot dt = \int_{0}^{3} \frac{16t^{2}dt}{4}$$

$$= 36 \, J$$

9. Ans (2)

Given: $I = 5 + 10 \sin \omega t$,

$$I_{eff} = \sqrt{5^2 + \frac{10^2}{2}} = 5\sqrt{3}$$

10. Ans (3)

Power factor $\cos \phi = \frac{R}{|Z|}$

$$\cos \phi_1 = \frac{R}{\sqrt{R^2 + (3R)^2}} = \frac{1}{\sqrt{10}}$$

$$\cos \phi_2 = \frac{R}{\sqrt{R^2 + (3R - 2R)^2}} = \frac{1}{\sqrt{2}}$$
So
$$\frac{\cos \phi_2}{\cos \phi_1} = \sqrt{5}$$

11. Ans (1)

Here $V_L = V_C$ so system is at resonance condition.

$$V_R = V_{\text{source}} = 100 \text{ V},$$

 $I = \frac{V_R}{R} = \frac{100}{50} = 2A$

12. Ans (2)

Power is maximum

when
$$X_L = X_C$$

$$\omega L = \frac{1}{\omega C}$$

13. Ans (1)

$$\because \text{ total energy} = \frac{Q_0^2}{2C} = U_0, \frac{U_E}{U_B} = \frac{3}{1}$$

$$U_{B} = \frac{1}{4} U_{0}$$

$$\frac{1}{2} LI^2 = \frac{Q_0^2}{4(2C)}$$

$$\Rightarrow I = \frac{Q_0}{2\sqrt{IC}}$$

14. Ans (2)

The coil has inductance L besides the resistance R.

Hence for AC it's effective resistance $\sqrt{R^{\,2} + X_{\,L}^{\,2}}$

will be larger than it's resistance R for D.C.

15. Ans (3)

$$B_P = \frac{\mu_0 I \theta}{4\pi R} \left[1 - \frac{1}{2} + \frac{1}{3} \right]$$

16. Ans (1)

 \therefore The total number of turns, $N = 400 \times 5 = 2000$

and number of turns/length,
$$n = \frac{2000}{0.8} = 2500$$

The magnitude of magnetic field inside the solenoid

$$B = \mu_0 nI = 4 \times 3.14 \times 10^{-7} \times 2500 \times 8$$

$$= 2.5 \times 10^{-2} \text{ T}$$

The direction of magnetic field is a along the axis of solenoid.

17. Ans (3)

Path of proton will be helix

$$r = \frac{mv \sin 30^{\circ}}{qB}$$

$$r = \frac{1.67 \times 10^{-27} \times 2 \times 10^{6} \times \frac{1}{2}}{1.6 \times 10^{-19} \times 0.104}$$

r = 0.1 m

$$T = \frac{2\pi m}{qB} = \frac{2\pi \times 1.67 \times 10^{-27}}{1.6 \times 10^{-19} \times 0.104}$$

$$T = 2\pi \times 10^{-7} \text{ sec.}$$

18. Ans (3)

$$\vec{F}_{L} = \vec{F}_{E} + \vec{F}_{M} = \vec{O}$$

$$q\vec{E} + q(\vec{v} \times \vec{B}) = \vec{O}$$

$$\vec{E} = -(\vec{v} \times \vec{B})$$

$$= -(\vec{v}\hat{i} \times \vec{B}\hat{j})$$

19. Ans (1)

 $\vec{E} = -vB\hat{k}$

 $F_{CD} = I_C \ell_C B_D$

$$\begin{split} F_{CD} &= I_{C} \; \ell_{C} \; \frac{\mu_{0} I_{D}}{2\pi d_{CD}} \; (\text{Repulsion}) \\ F_{CG} &= I_{C} \ell_{C} \; \frac{\mu_{0} I_{G}}{2\pi d_{CG}} \; (\text{Attraction}) \\ F_{C} &= F_{CD} + F_{CD} \\ F_{C} &= \frac{\mu_{0} I_{C} \ell_{C}}{2\pi} \; \left(\frac{I_{D}}{d_{CD}} + \frac{I_{G}}{d_{CG}} \right) \\ F_{C} &= 2 \times 10^{-7} \times 10 \times 0.25 \; \left(\frac{30}{0.03} + \frac{20}{0.02} \right) \\ &= 2 \times 10^{-6} \times 0.25 \times 2000 \\ F_{C} &= 10^{-3} \; \text{N} \end{split}$$

20. Ans (3)

Factional decrease in magnetic field for near to

centrer

$$\frac{\Delta B}{B} = \frac{3x^2}{2R^2}$$

$$\Rightarrow \frac{3x^2}{2R^2} = \frac{1}{100}$$

$$x = \frac{R}{\sqrt{150}}$$

21. Ans (4)

$$B_1 \propto \frac{2M}{x^3} \text{ and } B_2 \propto \frac{M}{y^3}$$

$$As B_1 = B_2$$

$$Hence \frac{2M}{x^3} = \frac{M}{y^3} \text{ or } \frac{x^3}{y^3} = 2 \text{ or } \frac{x}{y} = 2^{1/3}$$

22. Ans (1)

Vertical component remain same

In plane 1 where dip angle is ϕ_1

$$\tan \phi_1 = \frac{Bv}{B_{H_1}} = \frac{Bv}{B_H \cos \alpha}$$

$$\cos \alpha = \frac{\tan \phi}{\tan \phi_1} \qquad(2)$$

In plane 2 where dip angle ϕ_2

tan
$$\phi_2 = \frac{Bv}{B_{H_2}} = \frac{Bv}{B_H \cos(90 - \alpha)} = \frac{Bv}{B_H \sin \alpha}$$

tan $\phi_2 = \frac{\tan \phi}{\sin \alpha} \Rightarrow \sin \alpha = \frac{\tan \phi}{\tan \phi_2}$ (3)

by (2) and (3)

$$\sin^2\!\alpha + \cos^2\!\alpha = 1$$

$$\frac{\tan^2 \phi}{\tan^2 \phi_1} + \frac{\tan^2 \phi}{\tan^2 \phi_2} = 1$$

$$\cot^2 \varphi_1 + \cot^2 \varphi_2 = \cot^2 \varphi$$

23. Ans (2)

As magnetic susceptibility $X_m \propto \frac{1}{T}$, therefore

$$\frac{X_2}{X_1} = \frac{T_1}{T_2} = \frac{X_2}{0.0060} = \frac{273 - 73}{273 - 173} = \frac{200}{100} = 2$$

$$X_2 = 2 \times 0.0060 = 0.0120$$

24. Ans (3)

(1) EMF is potential

MMF is current

so
$$\frac{EMF}{MMF}$$
 = Resistance

(2)
$$F = qE$$
, $F = qVB$

so
$$[E] = [VB]$$

$$[E/B] = [V]$$

(3) Magnetic field at center of toroid is zero

$$(4) \oint \vec{B} \cdot \vec{d\ell} = \mu_0 \sum i$$

Also applicable for infinite long symmetrical current distribution

25. Ans (4)

$$\begin{split} \varphi &= \vec{B} \cdot \vec{A} \\ &= \left(a \hat{i} \, + b \hat{j} \, + c \hat{k} \right) \cdot \ell^2 \hat{k} \\ \varphi &= C \, \ell^2 \text{ weber} \end{split}$$

26. Ans (1)

$$q = \frac{\Delta \phi}{R} \Rightarrow \Delta \phi = qR$$
= (area under the curve) R
$$= \frac{4 \times 0.1}{2} \times 5 = 1 \text{ weber}$$

27. Ans (3)

induced emf across the ends of each spoke is $e = \frac{1}{2} B l^2 \omega$

Where 1 is the length of each spoke i.e., the radius of the wheel $\ell = 0.4$ m.

All the induced cells are connected in parallel as shown in the adjoining figure. Therefore induced emf between the rim and the centre of the wheel is

$$e = \frac{1}{2}Bl^{2}\omega$$

$$= \frac{1}{2} \times 0.4 \times 10^{-4} \times (0.4)^{2} \times \frac{2\pi \times 180}{60}$$

$$= 6 \times 10^{-5}V$$

28. Ans (4)

29. Ans (2)

For L,R circuit

$$\tau = \frac{L}{R} = \frac{5}{10} = \frac{1}{2} sec$$

$$I = I_0 (1 - e^{-t/\tau})$$

$$I^{\infty} = I^0$$

$$I_1 = I_0(1-e^{-2})$$

$$\frac{I_{\infty}}{I_{1}} = \frac{1}{1 - e^{-2}} = \frac{e^{2}}{e^{2} - 1}$$

30. Ans (1)

$$\varepsilon_{p} = \left| \frac{d\phi}{dt} \right| = 4$$

$$\frac{\varepsilon_{\rm s}}{\varepsilon_{\rm p}} = \frac{N_{\rm s}}{N_{\rm p}} = \frac{1500}{50} = 30$$

$$\varepsilon_s = 4 \times 30 = 120$$

31. Ans (2)

$$\begin{split} \vec{P} &= \frac{1}{\mu_0} \Big[\vec{E} \times \vec{B} \Big], \vec{B} = \mu_0 \vec{H} \\ \vec{P} &= \vec{E} \times \vec{H} \end{split}$$

32. Ans (3)

$$i = i_1 cos\omega t + i_2 sin\omega t$$

$$i^2 = (i_1^2 \cos^2 \omega t + I_2^2 \sin^2 \omega t + 2i_1 i_2 \sin \omega t \cos \omega t)$$

$$\langle i^2 \rangle = \left(\frac{i_1^2}{2} + \frac{i_2^2}{2} + i_1 i_2 \langle \sin 2\omega t \rangle \right)$$

$$\langle i^2 \rangle = \left(\frac{i_1^2 + i_2^2}{2} \right)$$

$$\Rightarrow i_{\text{rms}} = \sqrt{\langle i^2 \rangle} = \frac{\left(i_1^2 + i_2^2\right)^{\frac{1}{2}}}{\sqrt{2}}$$

33. Ans (1)

 $: X_L \leq X_C$; hence bulb A glows brighter

For
$$A \Rightarrow I = \frac{V}{X_I}$$
 and

For B
$$\Rightarrow$$
 I = $\frac{V}{X_C}$

$$Z_{1} = \sqrt{R^{2} + \frac{1}{(2\pi fC)^{2}}}$$

$$Z_{2} = \sqrt{R^{2} + \frac{1}{(2\pi (2f) C)^{2}}}$$
If $R \ll \frac{1}{2\pi fC}$, $\frac{Z_{1}}{Z_{2}} = 2$
If $R \gg \frac{1}{2\pi fC}$, $\frac{Z_{1}}{Z_{2}} = 1$
so $1 < \frac{Z_{1}}{Z_{2}} < 2$

35. Ans (3)

 $V = 100 \sin 100t \text{ Volt}$

$$I = 100 \sin \left(100t + \frac{\pi}{3}\right) mA$$

Phase difference between V & I is $\frac{\pi}{3}$

$$P = V_{rms}I_{rms}cos\phi$$

$$=\left(\frac{100}{\sqrt{2}}\right)\left(\frac{100}{\sqrt{2}}\times10^{-3}\right)\cos\left(\frac{\pi}{3}\right)$$
 watt

$$P = 2.5$$
 watt

36. Ans (1)

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

Here

$$X_L = 2\pi fL = 2\pi \times 500 \times 8.1 \times 10^{-3} = 25.4\Omega$$

and
$$X_C = \frac{1}{2\pi fC}$$

$$=\frac{1}{2\times3.14\times500\times12.5\times10^{-6}}=25.5\Omega$$

$$\therefore Z = \sqrt{(10)^2 + (25.4 - 25.4)^2} = 10\Omega$$

Now
$$i_{rms} = \frac{E_{rms}}{7} = \frac{100}{10} = 10A$$

$$V_R = i_{rms} \times R = 10 \times 10 = 100 \text{ V}$$

37. Ans (2)

Given that; q = 100e, r = 0.8m and $f = 1 \text{ sec}^{-1}$

$$\therefore I = \frac{q}{t} = qf = 100e \times 1$$

Now, B =
$$\frac{\mu_0 I}{2r} = \frac{\mu_0 (100e \times 1)}{2 \times 0.8}$$

= $\frac{\mu_0 \times 100 \times (1.6 \times 10^{-19})}{1.6} \times 1$
= $10^{-17} \mu_0$.

38. Ans (1)

According to Ampere's circuital law

$$\oint \vec{B} \,.\; d\vec{l} \; = \mu_0 I_{\, enclosed} \; = \mu_0 (2A - 1A) = \mu_0$$

$$\begin{split} r &= \frac{mv}{qB} = \frac{\sqrt{2mqV}}{qB} \\ r &\propto \sqrt{\frac{m}{q}} \,, \ \frac{r_{\alpha}}{r_p} = \sqrt{\frac{4m}{2e}} \times \sqrt{\frac{e}{m}} = \sqrt{2} \\ r_{\alpha} &= r_p\sqrt{2}, \ \text{Here } r_2 \! > \! r_1 \\ \text{So } r_1 &= r_p, r_2 = r_{\alpha} = 5\sqrt{2} \end{split}$$

$$\begin{split} M &= \frac{qL}{2m} = \frac{qI \, \omega}{2m} \\ &= \frac{q\omega}{2m} \times \frac{m\ell^2}{3} \bigg(I = \frac{m\ell^2}{3} \bigg) \\ &= \frac{q \, \omega \ell^2}{6} \end{split}$$

41. Ans (1)

The magnetic field at P due to the flat coil of n turns, radius r, carrying current I is

$$\begin{split} B &= \frac{\mu_0}{2} \cdot \frac{nir^2}{(d^2 + r^2)^{3/2}} \cong \frac{\mu_0}{2} \cdot \frac{nir^2}{d^3} (d >> r) \\ &= \frac{\mu_0}{2\pi} \cdot \frac{n(\pi r^2)i}{d^3} = \frac{\mu_0}{2\pi} \cdot \frac{\mu}{d^3} \\ &\stackrel{\square}{\longrightarrow} I \qquad \stackrel{\square}{\longrightarrow} P \end{split}$$

42. Ans (1)

$$\tau = NBiA$$

$$= 100 \times 0.2 \times 2 \times (0.08 \times 0.1)$$

$$= 0.32N \times m$$

Direction can be found by Fleming's left hand rule.

$$\begin{split} B_{axis} &= \frac{2\mu_0 \, M}{4\pi r_1^3} \ , \, B_{eq} = \frac{\mu_0 \, M}{4\pi r_2^3} \\ &\frac{B_{\,eq}}{B_{\,axis}} = \frac{r_1^3}{2r_2^3} = \frac{1}{2} \left(\frac{10 \, cm}{5 \, cm}\right)^3 = 4 \\ B_{eq} &= 4 \, B_{axis} = 4 \times 2 = 8 \, T \end{split}$$

44. Ans (4)

$$T = 2\pi \sqrt{\frac{I}{MB_{H}}} \Rightarrow f \propto \sqrt{\frac{MB_{H}}{I}}$$

$$\frac{f_{1}}{f_{2}} = \sqrt{\frac{B_{1}\cos 30}{B_{2}\cos 60}} \Rightarrow \left(\frac{f_{1}}{f_{2}}\right)^{2} = \frac{B_{1}}{B_{2}}\sqrt{3}$$

$$\Rightarrow \frac{B_{1}}{B_{2}} = \left(\frac{20}{15}\right)^{2}/\sqrt{3} = \frac{16}{9\sqrt{3}}$$

46. Ans (3)

$$Na_2B_4O_7.10H_2O \xrightarrow{HOH} NaOH + H_3BO_3$$

49. Ans (1)

PbI₄ not exists

$$H_2S + KMnO_4 \rightarrow MnO_2 + S + H_2O$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad Colloidal sulphur$$

56. Ans (3)

NCERT Part I (XII), Page no 197

58. Ans (2)

Maximum no. of atoms in same plane = 6 No. of 3C - 4e⁻ bonds = 2 Maximum no. of replacable H = 4

60. Ans (2)

$$R-SiCl_3 \xrightarrow{HOH} R-Si(OH)_3$$

Polymerisation

Cross-linked silicone

63. Ans (4)

Valence e of transition metal = (n - 1) d, xs

$$+1(3) + x + 3(-2) = 0$$

$$x = +3$$

$$C.N. = 6$$

74. Ans (4)

 $M(AA)_2$ a_2 shows G.I.

75. Ans (3)

High spin d^4 complex $\rightarrow t_{2g}^3$, e_g^1

78. Ans (2)

$$\Delta_0 > P t_{2g}^4 eg^0$$

79. Ans (4)

 $[Co(NH_3)_6]^{+3}$ $[Co(ONO)_6]^{-3}$

83. Ans (4)

All are Tetrahedral

85. Ans (3)

NCERT Pg. # 278,281, 285;

Para 9.4.1, 9.6.1, 9.7.2

87. Ans (3)

Metal sulphide $+ O_2 \rightarrow Metal \text{ oxide} + SO_2$ (air)

89. Ans (2)

KMnO₄ is coloured due to charge-transfer.

95. Ans (2)

NCERT (XII) Pg. # 108(E), 117(H)

98. Ans (1)

NCERT (XII) Pg. # 107

100. Ans (3)

NCERT (XII) Pg. # 101

104. Ans (3)

NCERT XII Pg # 204(E), 222(H)

105. Ans (4)

NCERT XII Pg # 199(E), 216(H)

106. Ans (2)

NCERT XII Pg # 203(E), 221(H)

108. Ans (1)

NCERT XII Pg # 198(E), 215(H)

109. Ans (4)

NCERT XII Pg # 187(E), 204(H)

145. Ans (3)

NCERT (XII) Pg # 177(E), 192(H)

151. Ans (2)

NCERT (XII) Pg # 211(E), 230(H)

152. Ans (3)

NCERT (XII) Supplementary material Pg # 288(E), 315(H)

153. Ans (3)

NCERT XII Pg.# 213 (E), 231 (H)

164. Ans (3)

NCERT-XII Pg # 174, 175 (E), 189, 190 (H)

165. Ans (4)

NCERT-XII Pg # 82 (E), 90 (H)