Fall 2024/2025

Class: Human Genetics (BT-441) Place: SF06 & Unsynchronized

Time: Mon, Wed: 2:30-3:30 **Office hours:** To be announced

Dr. Asem Alkhateeb **Office:** PH4-L0

Topic	Chapter	Lectures
Gene structure & function	3	In class
Genomic variation	4	Unsynchronized
Cytogenetics & Genome analysis	5	In class
Patterns of Single-Gene Inheritance	7	Unsynchronized
Clinical epigenetics	8	In class
Complex inheritance of common multifactorial disorders	9	In class
Population genetics for genomic medicine	10	Unsynchronized
Identifying the genetic Basis for human disease	11	In class
Molecular Basis of Genetic Disease-Hemoglobinopathies	12	Unsynchronized
Molecular, Biochemical, & Cellular Basis of Genetic Disease	13	In class

Grade Distribution:		Content of exam	
First Exam	30%	Chapters 3 & 4 & 5	
Second Exam	30%	Chapters 7 & 8 & 9	
Final Exam	40%	Chapters 10 & 11 & 12 & 13	
Total	100%		

Each exam will have ~10% bonus questions. This bonus will not be present in make-up exams. Regular exams will be multiple choice questions. Make-up exams will be assay questions.

Text book:

Genetics in Medicine. Cohn, Scherer and Hamosh. 9th ed. 2024.

<u>Course Description:</u> The course covers topics in human genetics such as human genetic diseases, mapping the human genome; the molecular analysis of single gene disorders; the genetic analysis of complex diseases; gene therapy, gene testing; the human genome project; human population genetics and evolution; DNA fingerprinting; human genetics and society.

Learning obectives:

- 1. Describe the organization of the human genome and explain the molecular mechanisms that contribute to genetic variation and gene mutations
- 2. Explain the chromosomal and molecular basis for simple and complex genetic disease in individuals and populations
- 3. Use mapping and sequencing analysis to predict the genetic basis for a disease and the risk of inheritance
- 4. Understand the molecular, biochemical, and cellular basis of genetic disease

<u>Attendance:</u> You are required to attend all classes. Missing 20% of class will result in dismissal from class. No excuses are accepted beyond 20% limit according to University Regulations.

Course learning Outcomes: Upon completion of the course, the students should be able to:

Course Learning Outcomes (CLO)	Chapter	Weight (%)	Program Learning Outcomes (PLO)	Level
1. Describe the organization of the human genome and explain the molecular mechanisms that contribute to genetic variation and gene mutations	3,4	20	PLO1(A)	1
2. Explain the chromosomal and molecular basis for simple and complex genetic disease in individuals and populations	5,7,8,9	30	PLO1(A)	1
3. Use mapping and sequencing analysis to predict the genetic basis for a disease and the risk of inheritance	10	20	PLO1(A), PLO6(F)	1
4. Understand the molecular, biochemical, and cellular basis of genetic disease	11,12,14	30	PLO1(A), PLO3(C)	1