

02291 System Integration

Introduction to ArchiMate

© Giovanni Meroni

What it is

- Archimate is a language for enterprise architecture modeling
- Mainly used to describe building blocks
- It is extensible

Positioning ArchiMate

Strategy models

I-star models

Architecture models

ArchiMate models

Design/implementation models

BPMN and DCR models DMN tables

Layers

- Three main layers of modeling
 - Business layer: offer products and services to external costumers
 - Application layer: support the business layer with application services realized by software applications
 - Technology layer: offers infrastructure services needed to run applications, realized by computer and communication

Aspects

Aspects-layers matrix

Aspects-layers matrix

	DATA #7M	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTIVATION Why	
SCOPE (CONTEXTUAL)	List of Things Important to the Business	List of Processes the Business Performs	List of Locations in which the Business Operates	List of Organizations Important to the Business	List of Events/Cycles Significant to the Business	List of Business Goals/Stratgles	SCOPE (CONTEXTUAL)
Planner	ENTITY = Class of Business Thing	Process = Class of Business Process	Node = Major Business Location	People = Major Organization Unit	Time = Major Business Event/Cycle	Ends/Means = Major Business Goal/Strategy	Planner
BUSINESS MODEL (CONCEPTUAL)	e.g. Semantic Model	e.g. Business Process Model	e.g. Business Logistics System	e.g. Work Flow Model	e.g. Master Schedule	e.g. Business Plan	BUSINESS MODEL (CONCEPTUAL)
Owner	Ent = Business Entity Rein = Business Relationshi	Proc. = Business Process p I/O = Business Resources	Node = Business Location Link = Business Linkage	People = Organization Unit Work = Work Product	Time = Business Event Cycle = Business Cycle	End = Business Objective Means = Business Strategy	Owner
SYSTEM MODEL (LOGICAL)	e.g. Logical Data Model	e.g. Application Architecture	e.g. Distributed System Architecture	e.g. Human Interface Architecture	e.g. Processing Structure	e.g., Business Rule Model	SYSTEM MODEL (LOGICAL)
Designer	Ent = Data Entity Rein = Data Relationship	Proc .= Application Function I/O = User Views	Node = I/S Function (Processor, Storage, etc) Link = Line Characteristics	People = Role Work = Deliverable	Time = System Event Cycle = Processing Cycle	End = Structural Assertion Means =Action Assertion	Designer
TECHNOLOGY MODEL (PHYSICAL)	e.g. Physical Data Model	e.g. System Design	e g. Technology Architecture	e.g. Presentation Architecture	e.g. Control Structure	e.g. Rule Design	TECHNOLOGY MODEL (PHYSICAL)
Builder	Ent = Segment/Table/etc. Rein = Pointer/Key/etc.	Proc.= Computer Function I/O = Data Elements/Sets	Node = Hardware/Systems Software Link = Line Specifications	People = User Work = Screen Format	Time = Execute Cycle = Component Cycle	End = Condition Means = Action	Builder
DETAILED REPRESEN- TATIONS (OUT-OF- CONTEXT) Sub- Contractor	e.g. Data Definition Ent = Field Rein = Address	e.g. Program Proc.= Language Statement I/O = Control Block	e.g. Network Architecture Node = Address Link = Protocol	e.g. Security Architecture People = Identity Work = Job	e.g. Timing Definition Time = Interrupt Cycle = Machine Cycle	e.g. Rule Specification End = Sub-condition Means = Step	DETAILED REPRESEN- TATIONS (OUT-OF CONTEXT) Sub- Contractor
FUNCTIONING ENTERPRISE	e.g. DATA	e.g. FUNCTION	e.g. NETWORK	e.g. ORGANIZATION	e.g. SCHEDULE	e.g. STRATEGY	FUNCTIONING ENTERPRISE

© John A. Zachman, Zachman International

	DATA What	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTIVATION Why	
SCOPE (CONTEXTUAL)				Business	List of Events/Cycles Significant to the Business		SCOPE ONTEXTUAL)
Planner					Time = Major Business Event/Cycle		Planner
BUSINESS MODEL (CONCEPTUAL)	e.g. Semantic Model	e.g. Business Process Model	e.g. Business Logistics System	e.g. Work Flow Model	e.g. Master Schedule		BUSINESS MODEL ONCEPTUAL)
Owner	Ent = Business Entity Rein = Business Relationship	Proc. = Business Process I/O = Business Resources	Node = Business Location Link = Business Linkage	People = Organization Unit Work = Work Product	Time = Business Event Cycle = Business Cycle		Owner
SYSTEM MODEL (LOGICAL)	e.g. Logical Data Model	e.g. Application Architecture	e.g. Distributed System Architecture	e.g. Human Interface Architecture	e.g. Processing Structure	Motivation	SYSTEM MODEL (LOGICAL)
Designer	Ent = Data Entity Rein = Data Relationship	Proc. = Application Function I/O = User Views	Node = I/S Function (Processor, Storage, etc) Link = Line Characteristics	People = Role Work = Deliverable	Time = System Event Cycle = Processing Cycle		Designer
TECHNOLOGY MODEL (PHYSICAL)	e.g. Physical Data Model	e.g. System Design	e g. Technology Architecture	e.g. Presentation Architecture	e.g. Control Structure		ECHNOLOGY MODEL (PHYSICAL)
Builder	Ent = Segment/Table/etc. Rein = Pointer/Key/etc.	Proc. = Computer Function I/O = Data Elements/Sets	Node = Hardware/Systems Software Link = Line Specifications	People = User Work = Screen Format	Time = Execute Cycle = Component Cycle		Builder
DETAILED REPRESEN- TATIONS (OUT-OF- CONTEXT) Sub- Contractor	e.g. Data Definition Ent = Field Rein = Address	e.g. Program Proc. = Language Statement I/O = Control Block	e.g. Network Architecture Node = Address Link = Protocol	e.g. Security Architecture People = Identity Work = Job	e.g. Timing Definition Time = Interrupt Cycle = Machine Cycle		DETAILED REPRESEN- TATIONS (OUT-OF CONTEXT)
FUNCTIONING ENTERPRISE	e.g. DATA	e.g. FUNCTION	e.g. NETWORK	e.g. ORGANIZATION	e.g. SCHEDULE	e.g. STRATEGY	FUNCTIONING ENTERPRISE

© John A. Zachman, Zachman International

	DATA What	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTIVATION Why	
SCOPE (CONTEXTUAL)					List of Events/Cycles Significant to the Business		SCOPE ONTEXTUAL)
Planner				D!	Time = Major Business Event/Cycle		Planner
BUSINESS				Business	e.g. Master Schedule		BUSINESS
MODEL (CONCEPTUAL)							MODEL ONCEPTUAL)
Owner					Time = Business Event Cycle = Business Cycle		Owner
SYSTEM MODEL	e.g. Logical Data Model	e.g. Application Architecture	e.g. Distributed System Architecture	e.g. Human Interface Architecture	e.g. Processing Structure		SYSTEM MODEL (LOGICAL)
(LOGICAL)		→		-		Motivation	(EOGIGNE)
Designer	Ent = Data Entity Rein = Data Relationship	Proc.= Application Function I/O = User Views	Node = I/S Function (Processor, Storage, etc) Link = Line Characteristics	People = Role Work = Deliverable	Time = System Event Cycle = Processing Cycle		Designer
TECHNOLOGY	e.g. Physical Data Model	e.g. System Design	e.g. Technology Architecture	e.g. Presentation Architecture	e.g. Control Structure		ECHNOLOGY MODEL
MODEL (PHYSICAL)		4	<u> </u>				(PHYSICAL)
Builder	Ent = Segment/Table/etc. Rein = Pointer/Key/etc.	Proc. = Computer Function I/O = Data Elements/Sets	Node = Hardware/Systems Software Link = Line Specifications	People = User Work = Screen Format	Time = Execute Cycle = Component Cycle		Builder
DETAILED REPRESEN-	e.g. Data Definition	e.g. Program	e.g. Network Architecture	e.g. Security Architecture	e.g. Timing Definition		DETAILED REPRESEN- TATIONS
TATIONS (OUT-OF- CONTEXT)							(OUT-OF CONTEXT)
Contractor	Ent = Field Rein = Address	Proc.= Language Statement I/O = Control Block	Node = Address Link = Protocol	People = Identity Work = Job	Time = Interrupt Cycle = Machine Cycle		Sub- Contractor
FUNCTIONING ENTERPRISE	e.g. DATA	e.g. FUNCTION	e.g. NETWORK	e.g. ORGANIZATION	e.g. SCHEDULE	e.g. STRATEGY	FUNCTIONING ENTERPRISE

© John A. Zachman, Zachman International

	DATA What	FUNCTION How	NETWORK Where	PEOPLE 187ho	TIME When	MOTIVATION Why	
SCOPE (CONTEXTUAL)					List of Events/Cycles Significant to the Business		SCOPE ONTEXTUAL)
Planner				Ducinos	Time = Major Business Event/Cycle		Planner
BUSINESS MODEL (CONCEPTUAL)				Business	e.g. Master Schedule		BUSINESS MODEL ONCEPTUAL)
Owner					Time = Business Event Cycle = Business Cycle		Owner
SYSTEM MODEL (LOGICAL)			A	pplication	e.g. Processing Structure	Motivation	SYSTEM MODEL (LOGICAL)
Designer					Time = System Event Cycle = Processing Cycle		Designer
TECHNOLOGY MODEL (PHYSICAL)	e.g. Physical Data Model	e.g. System Design	e.g. Technology Architecture	e.g. Presentation Architecture	e.g. Control Structure		ECHNOLOGY MODEL (PHYSICAL)
Builder	Ent = Segment/Table/etc. Rein = Pointer/Key/etc.	Proc. = Computer Function I/O = Data Elements/Sets	Node = Hardware/Systems Software Link = Line Specifications	People = User Work = Screen Format	Time = Execute Cycle = Component Cycle		Builder
DETAILED REPRESEN- TATIONS (OUT-OF- CONTEXT) Sub- Contractor	e.g. Data Definition	e.g. Program	e.g. Network Architecture	e.g. Security Architecture	e.g. Timing Definition		DETAILED REPRESEN- TATIONS (OUT-OF CONTEXT)
FUNCTIONING ENTERPRISE	Rein = Address e.g. DATA	I/O = Control Block e.g. FUNCTION	Link = Protocol e.g. NETWORK	Work = Job e.g. ORGANIZATION	Cycle = Machine Cycle e.g. SCHEDULE	e.g. STRATEGY	FUNCTIONING ENTERPRISE

© John A. Zachman, Zachman International

O John A. Zachman, Zachman International

12

O John A. Zachman, Zachman International

© John A. Zachman, Zachman International

O John A. Zachman, Zachman International

O John A. Zachman, Zachman International

ArchiMate cheat sheet

14 February 2024 DTU Compute Introduction to ArchiMate

Service Oriented approach

- Components (business, application, software, infrastructure) provide services to other components
- Services at all levels
- Examples:
 - Web services
 - In cloud computing: Software (SaaS), Platform (PaaS), Infrastructure (laaS)
- Services are central to Archimate's architecture models

Service Oriented approach

Lankhorst et al p. 78

19

Business Layer

14 February 2024 DTU Compute Introduction to ArchiMate

Active elements

웃

Business actor

A business entity that is capable of performing behavior

Business role

The responsibility for performing specific behavior, to which an action can be assigned

Business interface

A point of access where a business service is made available to the environment

21

14 February 2024 DTU Compute Introduction to ArchiMate

Assignment

14 February 2024 DTU Compute Introduction to ArchiMate

14 February 2024 DTU Compute Introduction to ArchiMate

Composition

Serving

25

Behavior elements

Business process

A sequence of business behaviors that achieves a specific outcome

Business function

A collection of business behaviors based on a chosen set of criteria, aligned to an organization

Business service

An explicitly defined exposed business behavior

Business

A business behavior element that denotes an organizational state change.

Behavior elements: example

14 February 2024 DTU Compute Introduction to ArchiMate

Behavior elements: example

28

Behavior elements: example

14 February 2024 DTU Compute Introduction to ArchiMate

Passive elements

Business object

A concept used within a particular business domain

30

Nesting example

• Each element is shown with all its relations

14 February 2024 DTU Compute Introduction to ArchiMate

Nesting example

Most relations can be expressed by nesting elements

14 February 2024 DTU Compute Introduction to ArchiMate

Nesting example

Doing so, we have a more compact visualization, but we lose details

14 February 2024 DTU Compute Introduction to ArchiMate

Basic business pattern

This is the Access relation

This is the Composition relation

This is the Realization relation

This is the Assignment relation

Basic business pattern: example

14 February 2024 DTU Compute Introduction to ArchiMate

Application layer

14 February 2024 DTU Compute Introduction to ArchiMate

Active elements

Application component

An encapsulation of application functionality aligned to implementation structure, which is modular and replaceable

Application interface

A point of access where an application service is made available to a user, another application component, or a node

Behavior elements

Application function

Automated behavior that can be performed by an application component

An explicitly defined exposed application behavior

Passive elements

Data object

Data structured for information processing

39

Basic application pattern

This is the Access relation

This is the Composition relation

This is the Realization relation

This is the Assignment relation

Basic application pattern: example

14 February 2024 DTU Compute Introduction to ArchiMate

Business to application layer alignment

This is the Serving relation

14 February 2024 DTU Compute Introduction to ArchiMate

Business to application layer alignment: example

14 February 2024 DTU Compute Introduction to ArchiMate

Technology layer

Active elements

A computational or physical resource that hosts, manipulates or interacts with other computational or physical resources

Technology interface

A point of access where a technology service offered by a node is made accessible

Active elements

A physical IT resource upon which system software and artifacts may be deployed

System software

Software that provides or contributes to an environment for storing, executing and using software and data deployed within it

Communication network

A set of structures that connects computer systems or other devices for transmission, routing and reception of data

Active elements: example

14 February 2024 DTU Compute Introduction to ArchiMate

Behavior elements

Technology function

A behavior element that groups infrastructural behavior that can be performed by a node

Externally visible unit of functionality, provided by one or more nodes, exposed through well-defined interfaces

Passive elements

A piece of data that is used or produced in a software development process or by deployment and operation of a system

Basic technology pattern

This is the Access relation

This is the Composition relation

This is the Realization relation

This is the Assignment relation

14 February 2024 DTU Compute Introduction to ArchiMate

Basic technology pattern: example

14 February 2024 DTU Compute Introduction to ArchiMate

Application to technology alignment

This is the Serving relation

14 February 2024 DTU Compute Introduction to ArchiMate

Application to technology alignment: example

14 February 2024 DTU Compute Introduction to ArchiMate

Complete example

14 February 2024 DTU Compute Introduction to ArchiMate

Composite elements

Grouping

Aggregate elements together

Aggregate elements of the same (external) organization

 We group external organizations, while we usually not group the target organization for clarity

Grouping example: two different organizations

14 February 2024 DTU Compute Introduction to ArchiMate

Relationships

Structural Relationships		Notation	
Composition	Indicates that an element consists of one or more other concepts.	•	
Aggregation	indicates that an element groups a number of other concepts.	⇔	
Assignment	Expresses the allocation of responsibility, performance of behavior, or execution.	•	→
Realization	Indicates that an entity plays a critical role in the creation, achievement, sustenance, or operation of a more abstract entity	[>
Dependency Relationships		Notation	
Serving	Models that an element provides its functionality to another element.		\rightarrow
Access	Models the ability of behavior and active structure elements to observe or act upon passive structure elements.	<u></u>	
Influence	Models that an element affects the implementation or achievement of some motivation element.	+/-	->
Dynamic Relationships		Notation	
Triggering	Describes a temporal or causal relationship between elements.		→
Flow	Transfer from one element to another.		->
Other Relationships		Notation	
Specialization Indicates that an element is a particular kind of another element.		\longrightarrow	
Association	Models an unspecified relationship, or one that is not represented by another ArchiMate relationship.		
Junction	Used to connect relationships of the same type.	(And) Junction	O Or Junction

14 February 2024 DTU Compute Introduction to ArchiMate

Relationships strength

- Access
- Serving
- Realization
- Assignment
- Aggregation
- Composition

Weaker

Association relation: generic relation

14 February 2024 DTU Compute Introduction to ArchiMate

 We want to abstract from details, showing only elements relevant for our use case

14 February 2024 DTU Compute Introduction to ArchiMate

• We can derive relations, based on the ones in the detailed model.

 Intuitively, there must exist a path between two elements, and the type of derived relationship is the weakest relationships in the path

62

 The resulting simplified diagram still explains the relationships between elements

14 February 2024 DTU Compute Introduction to ArchiMate

Useful patterns

On-premise backend

65

Switching to a cloud-based technology service

14 February 2024 DTU Compute Introduction to ArchiMate

Cloud levels

14 February 2024 DTU Compute Introduction to ArchiMate

Switching to a 2-tier thin client

69

Switching to a 3-tier architecture

14 February 2024 DTU Compute Introduction to ArchiMate

Bare metal vs hosted virtualization

Bare metal

71

Hosted

Physical servers

72

Virtualized servers

14 February 2024 DTU Compute Introduction to ArchiMate

Study material

- Books and articles:
 - Lankhorst et al. Enterprise Architectures at Work (4th Edition)
 - Available at: https://link.springer.com/book/10.1007/978-3-662-53933-0
 - Chapter 5.1 to 5.5, 5.8 to 5.10, 5.13
 - ArchiMate specification
 - Available at: https://pubs.opengroup.org/architecture/archimate31-doc/
- Modeling tools:
 - Archi: https://www.archimatetool.com/
 - (alternatively) SAP Signavio: https://academic.signavio.com/p/login

14 February 2024 DTU Compute Introduction to ArchiMate

Exercises

Please answer all exercises to demonstrate your skills.

Solutions will be available at 11:45

14 February 2024 DTU Compute Introduction to ArchiMate

Exercise 1 – Speedy

Speedy is a delivery company that wants to create a new reporting system for the top management. After inspecting the sales reports, the top management may also need to query the existing ERP system, based on Oracle Fusion, to get detailed sales and HR information.

To implement the reporting system, a data warehouse (DW) based on Microsoft SQL Server 2022 will be used. The DW will run three components responsible for extracting sales data from the ERP database, managing analysis data, and generating sales reports.

The DW will run on-premise on a different node than the one running the ERP. Both nodes will share the same LAN.

ArchiMate models representing the business goals and the existing ERP system are enclosed in the next slides.

Starting from these models, create a complete ArchiMate model that: 1) fully represents the business layer and links it to the application layer, 2) extends the application and technology layers by adding the elements required for the new reporting service.

76

Exercise 1 – Motivation

14 February 2024 DTU Compute Introduction to ArchiMate

Exercise 1 – Existing ERP system

14 February 2024 DTU Compute Introduction to ArchiMate

Exercise 2 – IC

IC is an insurance company which wants to offer a new insurance service for small objects (<2000\$) managed completely online for reliable customers.

To achieve this, a customer who wants his assets to be insured has to provide its credentials and photo of the asset and its details (serial number, purchase date) to IC. To ensure that the customer is reliable and the asset inexpensive, IC will then check the customers credentials and past history and estimate the asset's price. If the checks succeed, a proposal will be generated. Otherwise, the request will be rejected.

To support the new service, IC needs to develop a new application with the following functionalities: proposal generation, price estimation, customer reliability check.

The new application will be implemented as a Java EE component running on Apache Tomcat. It will also rely on an operational database deployed on Oracle MySQL. Both the database and the application will reside on a dedicated server, which is connected to the corporate LAN.

To estimate an item price, an external service will be used.

To check the customer reliability, the application needs data coming from the company's CRM, exposed by the CRM as a REST service and accessed through the corporate LAN.

The corporate LAN is separated from the public Internet by a firewall.

Model in ArchiMate the service provided by the company and its infrastructure.

14 February 2024 DTU Compute Introduction to ArchiMate

Exercise 2 – Motivation

14 February 2024 DTU Compute Introduction to ArchiMate

Exercise 3 – TEL

TEL is a telephony company interested in improving its customer experience. Currently, billing details are only accessible internally by TEL staff.

Data about telephony usage is stored on a Linux server running IBM DB2 UDB database, and it can only be accessed through SQL queries. Conversely, billing information is stored and handled by a legacy transactional CICS application running on an IBM mainframe.

To improve its customer experience, TEL wants to develop a new web portal that can provide real-time billing details to users. In particular, the new portal will provide two main functionalities: inspect billing information and inspect usage information. The process enabled by the new portal will be organized as follows: the user logs in the portal, then he can select an item to inspect from the menu, and finally he can view the billing details in a dedicated page.

The new portal will be built for Microsoft SharePoint Online PaaS cloud service.

To access data from the existing infrastructure, a new node running Microsoft BizTalk Server 2020 middleware will also be introduced. BizTalk Server will offer a gateway service, making CICS applications and relational databases accessible through a standard REST interface.

An ArchiMate model of the existing system is enclosed in the next slide. Extend the model by adding the elements required for the new service.

81

Exercise 3 – Existing infrastructure

14 February 2024 DTU Compute Introduction to ArchiMate