

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

CoolMOS™ C6 600V

600V CoolMOS™ C6 Power Transistor IPx60R160C6

Data Sheet

Rev. 2.3 Final

600V CoolMOS™ C6 Power Transistor

IPA60R160C6, IPB60R160C6 IPP60R160C6 IPW60R160C6

1 Description

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. CoolMOS™ C6 series combines the experience of the leading SJ MOSFET supplier with high class innovation. The offered devices provide all benefits of a fast switching SJ MOSFET while not sacrificing ease of use. Extremely low switching and conduction losses make switching applications even more efficient, more compact, lighter, and cooler.

Features

- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- · Very high commutation ruggedness
- · Easy to use/drive
- JEDEC¹⁾ qualified, Pb-free plating, Halogen free

Applications

PFC stages, hard switching PWM stages and resonant switching PWM stages for e.g. PC Silverbox, Adapter, LCD & PDP TV, Lighting, Server, Telecom and UPS.

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Table 1 Key Performance Parameters

Value	Unit	
650	V	
0.16	Ω	
75	nC	
70	Α	
6	μЈ	
500	A/μs	
	Value 650 0.16 75 70 6	650 V 0.16 Ω 75 nC 70 A 6 μJ

Type / Ordering Code	Package	Marking	Related Links
IPW60R160C6	PG-TO247		IFX C6 Product Brief
IPB60R160C6	PG-TO263	6R160C6	IFX C6 Portfolio
IPP60R160C6	PG-TO220		IFX CoolMOS Webpage
IPA60R160C6	PG-TO220 FullPAK		IFX Design tools

¹⁾ J-STD20 and JESD22

Table of Contents

Table of Contents

1	Description
	Table of Contents
2	Maximum ratings
3	Thermal characteristics
4	Electrical characteristics 6
5	Electrical characteristics diagrams
6	Test circuits
7	Package outlines 14
8	Revision History

Maximum ratings

2 Maximum ratings

at T_i = 25 °C, unless otherwise specified.

Table 2 Maximum ratings

Parameter	Symbol		Valu	ies	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Continuous drain current ¹⁾	I _D	-	-	23.8	Α	T _C = 25 °C	
				15		T _C = 100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	70	Α	T _C =25 °C	
Avalanche energy, single pulse	E _{AS}	-	-	497	mJ	$I_{\rm D}$ =4.1 A, $V_{\rm DD}$ =50 V (see table 21)	
Avalanche energy, repetitive	E _{AR}	-	-	0.75		I _D =4.1 A, V _{DD} =50 V	
Avalanche current, repetitive	I _{AR}	-	-	4.1	Α		
MOSFET dv/dt ruggedness	dv/dt	-	-	50	V/ns	V _{DS} =0480 V	
Gate source voltage	$V_{\rm GS}$	-20	-	20	V	static	
		-30		30		AC (f>1 Hz)	
Power dissipation for TO-220, TO-247, TO-263	P _{tot}	-	-	176	W	T _C =25 °C	
Power dissipation for TO-220 FullPAK	P _{tot}	-	-	34			
Operating and storage temperature	$T_{\rm j}, T_{\rm stg}$	-55	-	150	°C		
Mounting torque TO-220, TO-247	, 3	-	-	60	Ncm	M3 and M3.5 screws	
Mounting torque TO-220 FullPAK				50		M2.5 screws	
Continuous diode forward current	Is	-	-	20.6	Α	<i>T</i> _C =25 °C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	70	Α	T _C =25 °C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	15	V/ns	$V_{\rm DS}$ =0400 V, $I_{\rm SD} \le I_{\rm D}$, $T_{\rm j}$ =25 °C	
Maximum diode commutation speed ³⁾	di _f /dt			500	A/μs	- ·	

¹⁾ Limited by $T_{\rm j,max.}$ Maximum duty cycle D=0.75

²⁾ Pulse width $t_{\rm p}$ limited by $T_{\rm j,max}$

³⁾ Identical low side and high side switch with identical $R_{\rm G}$

Thermal characteristics

3 Thermal characteristics

Table 3 Thermal characteristics TO-220 (IPP60R160C6), TO-247 (IPW60R160C6)

Parameter	Symbol Values				Unit	Note /
		Min.	Тур.	Max.		Test Condition
Thermal resistance, junction - case	R_{thJC}	-	-	0.71	°C/W	
Thermal resistance, junction - ambient	R_{thJA}	-	-	62		leaded
Soldering temperature, wavesoldering only allowed at leads	T_{sold}	-	-	260	°C	1.6 mm (0.063 in.) from case for 10 s

Table 4 Thermal characteristics TO-220FullPAK (IPA60R160C6)

Parameter	Symbol	Values			Unit	Note /
	Min. Typ. Max.	Test Condition				
Thermal resistance, junction - case	R_{thJC}	-	-	3.67	°C/W	
Thermal resistance, junction - ambient	R_{thJA}	-	-	80		leaded
Soldering temperature, wavesoldering only allowed at leads	T_{sold}	-	-	260	°C	1.6 mm (0.063 in.) from case for 10 s

Table 5 Thermal characteristics TO-263 (IPB60R160C6)

Parameter	Symbol		Values			Note /
		Min.	Тур.	Max.		Test Condition
Thermal resistance, junction - case	R_{thJC}	-	-	0.71	°C/W	
Thermal resistance, junction - ambient	R_{thJA}	-	-	62		SMD version, device on PCB, minimal footprint
		-	35	-		SMD version, device on PCB, 6cm ² cooling area ¹⁾
Soldering temperature, wave- & reflow soldering allowed	T_{sold}	-	-	260	°C	reflow MSL1

Device on 40mm*40mm*1.5mm one layer epoxy PCB FR4 with 6cm² copper area (thickness 70μm) for drain connection.
 PCB is vertical without air stream cooling.

Electrical characteristics

Electrical characteristics 4

Electrical characteristics, at $T_j=25$ °C, unless otherwise specified.

Table 6 Static characteristics

Parameter	Symbol Values				Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Drain-source breakdown voltage	$V_{(BR)DSS}$	600	-	-	V	$V_{\rm GS}$ =0 V, $I_{\rm D}$ =0.25 mA	
Gate threshold voltage	$V_{GS(th)}$	2.5	3	3.5		$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 0.75 {\rm mA}$	
Zero gate voltage drain current	I_{DSS}	-	-	1	μΑ	V_{DS} =600 V, V_{GS} =0 V, T_{j} =25 °C	
		-	10	-		$V_{\rm DS}$ =600 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =150 °C	
Gate-source leakage current	I_{GSS}	-	-	100	nA	$V_{\rm GS}$ =20 V, $V_{\rm DS}$ =0 V	
Drain-source on-state resistance	$R_{DS(on)}$	-	0.14	0.16	Ω	$V_{\rm GS}$ =10 V, $I_{\rm D}$ =11.3 A, $T_{\rm j}$ =25 °C	
		-	0.37	-		$V_{\rm GS}$ =10 V, $I_{\rm D}$ =11.3 A, $T_{\rm j}$ =150 °C	
Gate resistance	R_{G}	-	6.4	-	Ω	f=1 MHz, open drain	

Table 7 **Dynamic characteristics**

Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input capacitance	C_{iss}	-	1660	-	pF	$V_{\rm GS}$ =0 V, $V_{\rm DS}$ =100 V,
Output capacitance	C_{oss}	-	100	-		f=1 MHz
Effective output capacitance, energy related ¹⁾	$C_{o(er)}$	-	66	-		V_{GS} =0 V, V_{DS} =0480 V
Effective output capacitance, time related ²⁾	$C_{o(tr)}$	-	314	-		$I_{\rm D}$ =constant, $V_{\rm GS}$ =0 V $V_{\rm DS}$ =0480V
Turn-on delay time	$t_{d(on)}$	-	13	-	ns	V _{DD} =400 V,
Rise time	t_{r}	-	13	-		$V_{\rm GS}$ =13 V, $I_{\rm D}$ =11.3 A,
Turn-off delay time	$t_{\sf d(off)}$	-	96	-		$R_{\rm G}$ = 1.7 Ω (see table 20)
Fall time	t_{f}	-	8	-		(300 (45)0 20)

¹⁾ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{(BR)DSS}}$ 2) $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{(BR)DSS}}$

Electrical characteristics

Table 8 Gate charge characteristics

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Gate to source charge	Q_{gs}	-	9	-	nC	V _{DD} =480 V,
Gate to drain charge	Q_{gd}	-	38	-		$I_{\rm D}$ =11.3 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total	Q_{g}	-	75	-		$V_{\rm GS}$ =0 to 10 V
Gate plateau voltage	$V_{ m plateau}$	-	5.4	-	V	

Table 9 Reverse diode characteristics

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Diode forward voltage	V_{SD}	-	0.9	-	V	$V_{\rm GS}$ =0 V, $I_{\rm F}$ =11.3 A, $T_{\rm j}$ =25 °C
Reverse recovery time	t_{rr}	-	460	-	ns	$V_{\rm R}$ =400 V, $I_{\rm F}$ =11.3 A,
Reverse recovery charge	Q_{rr}	-	8.2	-	μC	$di_F/dt=100 \text{ A/µs}$
Peak reverse recovery current	I_{rrm}	-	35	-	Α	(see table 22)

Electrical characteristics diagrams

Table 10

5

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Test circuits

6 Test circuits

Table 20 Switching times test circuit and waveform for inductive load

Table 21 Unclamped inductive load test circuit and waveform

Table 22 Test circuit and waveform for diode recovery times

Figure 1 Outlines TO-247, dimensions in mm/inches

DILL	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.30	4.57	0.169	0.180	
A1	1.17	1.40	0.046	0.055	
A2	2.15	2.72	0.085	0.107	
b	0,65	0.86	0,026	0.034	
b1	0.95	1.40	0.037	0.055	
b2	0.95	1.15	0.037	0.045	
b3	0.65	1.15	0.026	0.045	
С	0.33	0.60	0.013	0.024	
D	14.81	15.95	0.583	0.628	
D1	8.51	9.45	0.335	0.372	
D2	12.19	13.10	0.480	0.516	
E	9.70	10.36	0.382	0.408	
E1	6.50	8.60	0.256	0.339	
е	2.	54	0.100		
e1	5.	08	0.2	200	
N		3		3	
H1	5.90	6.90	0.232	0.272	
L	13.00	14.00	0.512	0.551	
L1	1	4.80	3#15	0.189	
øΡ	3.60	3.89	0.142	0.153	
Q	2.60	3.00	0.102	0.118	

Figure 2 Outlines TO-220, dimensions in mm/inches

Figure 3 Outline PG-TO-220 FullPAK dimensions in mm

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
Α	4.30	4.57	0.169	0.180
A1	0.00	0.25	0.000	0.010
b	0.65	0.85	0.026	0.033
b2	0.95	1.15	0.037	0.045
С	0.33	0.65	0.013	0.026
c2	1,17	1.40	0.046	0.055
D	8.51	9.45	0.335	0.372
D1	7.10	7.90	0.280	0.311
E	9.80	10.31	0.386	0.406
E1	6.50	8.60	0.256	0.339
е	2.54		0,100	
e1	5.08		0.200	
N	2		2	
Н	14.61	15.88	0.575	0.625
L	2.29	3.00	0.090	0.118
L1	0.70	1.60	0.028	0.063
L2	1.00	1.78	0.039	0.070
F1	16.05	16.25	0.632	0.640
F2	9.30	9.50	0.366	0.374
F3	4.50	4.70	0.177	0.185
F4	10.70	10.90	0.421	0.429
F5	3,65	3.85	0.144	0.152
F6	1.25	1.45	0.049	0.057

Figure 4 Outlines TO-263, dimensions in mm/inches

600V CoolMOS™ C6 Power Transistor

IPx60R160C6

Revision History

IPx60R160C6

Revision: 2018-03-04, Rev. 2.3

Draviana	Revision	

1 TO VIOLO TROVISION			
Revision	Date	Subjects (major changes since last revision)	
2.0	2011-06-08	Release of final data sheet	
2.1	2011-09-14	-	
2.2	2015-02-03	PG-TO220 FullPAK package outline update (creation:2014-12-02)	
2.3	2018-03-04	Outline PG-TO220 FullPAK update	

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSeT™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoPUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2018 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.