Package 'EWS'

October 12, 2022

Type Package

Title Early Warning System

Version 0.2.0

Author Jean-Baptiste Hasse [aut], Quentin Lajaunie [aut, cre]

Maintainer Quentin Lajaunie <quentin_lajaunie@hotmail.fr>

Description

The purpose of Early Warning Systems (EWS) is to detect accurately the occurrence of a crisis, which is represented by a binary variable which takes the value of one when the event occurs, and the value of zero otherwise. EWS are a toolbox for policymakers to prevent or attenuate the impact of economic downturns. Modern EWS are based on the econometric framework of Kauppi and Saikkonen (2008) <doi:10.1162/rest.90.4.777>. Specifically, this framework includes four dichotomous models, relying on a logit approach to model the relationship between yield spreads and future recessions, controlling for recession risk factors. These models can be estimated in a univariate or a balanced panel framework as in Candelon, Dumitrescu and Hurlin (2014) <doi:10.1016/j.ijforecast.2014.03.015>. This package provides both methods for estimating these models and a dataset covering 13 OECD countries over a period of 45 years. In addition, this package also provides methods for the analysis of the propagation mechanisms of an exogenous shock, as well as robust confidence intervals for these response functions using a block-bootstrap method as in Lajaunie (2021). This package constitutes a useful toolbox (data and functions) for scholars as well as policymakers.

Depends R (>= 2.10)
License GPL-3
Encoding UTF-8
LazyData true
Imports numDeriv
NeedsCompilation no
Repository CRAN
Date/Publication 2021-02-24 10:30:06 UTC

R topics documented:

BlockBootstrapp																																							2
Diochibootstapp	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_

2 BlockBootstrapp

Bloc	Bootstrapp Block Bootstrapp	
Index		22
	Vector_lag	2
	Vector_Error	
	Simul_GIRF	
	Matrix_lag	10
	Logistic_Estimation	14
	GIRF_Proba_CI	13
	GIRF_Index_CI	1
	GIRF_Dicho	9
	EWS_NSR_Criterion	8
	EWS_CSA_Criterion	(
	EWS_AM_Criterion	4
	data_USA	4
	data_panel	-

Description

This function enables the estimation of the block size for resampling. The size of the blocks is computed as in Hall, Horowitz and Jing (1995). Then, the function returns in a matrix the new resampled input variables. These variables are then used to determine the confidence intervals of the response functions proposed by Lajaunie (2021).

Usage

```
BlockBootstrapp(Dicho_Y, Exp_X, Intercept, n_simul)
```

Arguments

Dicho_Y	Vector of the binary time series.
Exp_X	Vector or Matrix of explanatory time series.
Intercept	Boolean value: TRUE for an estimation with intercept, and FALSE otherwise.
n_simul	Numeric variable equal to the total number of replications.

Value

A matrix containing the replications of the new resampled input variables. The matrix contains $n \times S$ colomns, where n denotes the number of input variables, and S denotes the number of replications.

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

data_panel 3

References

Hall, Peter, Joel L. Horowitz, and Bing-Yi Jing. "On blocking rules for the bootstrap with dependent data." Biometrika 82.3 (1995): 561-574.

Lajaunie, Quentin. Generalized Impulse Response Function for Dichotomous Models. No. 2852. Orleans Economics Laboratory/Laboratoire d'Economie d'Orleans (LEO), University of Orleans, 2021.

Examples

```
# NOT RUN {
# Import data
data("data_USA")

# Data process
Var_Y <- as.vector(data_USA$NBER)
Var_X <- as.vector(data_USA$Spread)

# Resample
results <- BlockBootstrapp(Dicho_Y = Var_Y, Exp_X = Var_X, Intercept = TRUE, n_simul = 100)

# print results
results
#}</pre>
```

data_panel

Historical data for 13 OECD countries

Description

data_USA contains: - OECD based Recession Indicators for 13 OECD countries from the Peak through the Trough from 1975:03 to 2019:05 - Yield Spread (10Years TB minus 3Months TB) for 13 OECD countries from 1975:03 to 2019:05

List of countries: Australia, Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, New Zealand, Sweden, Switzerland, the United Kinkdom, the United States.

Usage

```
data("data_panel")
```

Format

A data frame with 6903 observations on the following 4 variables.

country List of countries.

Date Vector of dates.

4 data_USA

YIESPR historical yield spread for the 13 OECD countries.

OECD Historical binary variable related to historical recessions for the 13 OECD countries.

Source

https://fred.stlouisfed.org/

Examples

```
data("data_panel")
head("data_panel")
```

data_USA

Historical data for the United States

Description

data_USA contains: - NBER based Recession Indicators for the United States from 1953:04 to 2020:01 - 10Years TB for the United States from 1953:04 to 2020:01 - 3Months TB for the United States from 1953:04 to 2020:01 - Yield Spread (10Years TB minus 3Months TB) for the United States from 1975:03 to 2019:05

Usage

```
data("data_USA")
```

Format

A data frame with 268 observations on the following 5 variables.

Date Vector of dates.

X10Y Historical 10 years Treasury bond.

X3M Historical 3 months Treasury bond.

Spread Historical yield spread.

NBER Historical binary variable related to historical recessions.

Source

https://fred.stlouisfed.org/

```
data("data_USA")
head("data_USA")
```

EWS_AM_Criterion 5

|--|--|

Description

This function provides a method to compute the optimal AM (Accuracy Measure) criterion. As defined in Candelon, Dumitrescu and Hurlin (2012), this approach consists in aggregating the number of crisis and calm periods correctly identified by the EWS. The optimal cut-off maximizes the number of correctly identified periods.

Usage

```
EWS_AM_Criterion(Var_Proba, Dicho_Y, cutoff_interval)
```

Arguments

Var_Proba Vector containing the estimated probabilities obtained with the Logistic Estima-

tion function.

Dicho_Y Vector of the binary time series.

cutoff_interval

Numeric variable between 0 and 1.

Value

A numeric variable containing the optimal cut-off that maximizes the higher proportion of calm and crisis periods correctly identified.

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

References

Candelon, Bertrand, Elena-Ivona Dumitrescu, and Christophe Hurlin. "How to evaluate an early-warning system: Toward a unified statistical framework for assessing financial crises forecasting methods." IMF Economic Review 60.1 (2012): 75-113.

Lajaunie, Quentin. Generalized Impulse Response Function for Dichotomous Models. No. 2852. Orleans Economics Laboratory/Laboratoire d'Economie d'Orleans (LEO), University of Orleans, 2021.

```
# NOT RUN {
# Import data
data("data_USA")
```

EWS_CSA_Criterion

```
# Data process
Var_Y <- as.vector(data_USA$NBER)</pre>
Var_X <- as.vector(data_USA$Spread)</pre>
# Estimate the logit regression
Logistic_results <- Logistic_Estimation(Dicho_Y = Var_Y, Exp_X = Var_X, Intercept = TRUE,
                       Nb_Id = 1, Lag = 1, type_model = 4)
# Vector of probabilities
vector_proba <- as.vector(rep(0,length(Var_Y)-1))</pre>
vector_proba <- Logistic_results$prob</pre>
# Vector of binary variables
Lag <- 1
vector_binary <- as.vector(rep(0,length(Var_Y)-1))</pre>
vector_binary <- Var_Y[(1+Lag):length(Var_Y)]</pre>
# optimal cut-off that maximizes the AM criterion
results <- EWS_AM_Criterion(Var_Proba = vector_proba, Dicho_Y = vector_binary,
                       cutoff_interval = 0.0001)
# print results
results
#}
```

EWS_CSA_Criterion

CSA Threshold - optimal cut-off

Description

This function provides a method to compute the optimal CSA (Credit-Scoring Approach) criterion. As defined in Candelon, Dumitrescu and Hurlin (2012), this approach consists of calculating the difference between the sensitivity and the specificity. Sensitivity represents the proportion of crisis periods correctly identified by the EWS. Specificity is the proportion of calm periods correctly identified by the EWS. The optimal cut-off minimizes the absolute value of this difference.

Usage

```
EWS_CSA_Criterion(Var_Proba, Dicho_Y, cutoff_interval)
```

Arguments

Var_Proba Vector containing the estimated probabilities obtained with the Logistic Estima-

tion function.

Dicho_Y Vector of the binary time series.

cutoff_interval

Numeric variable between 0 and 1.

EWS_CSA_Criterion 7

Value

A numeric variable containing the optimal cut-off that minimizes the absolute value of the difference between the sensitivity and the specificity.

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

References

Basel Committee on Banking Supervision, 2005, "Studies on the Validation of Internal Rating Systems", working paper no.14, Bank for International Settlements.

Candelon, Bertrand, Elena-Ivona Dumitrescu, and Christophe Hurlin. "How to evaluate an early-warning system: Toward a unified statistical framework for assessing financial crises forecasting methods." IMF Economic Review 60.1 (2012): 75-113.

```
# NOT RUN {
# Import data
data("data_USA")
# Data process
Var_Y <- as.vector(data_USA$NBER)</pre>
Var_X <- as.vector(data_USA$Spread)</pre>
# Estimate the logit regression
Logistic_results <- Logistic_Estimation(Dicho_Y = Var_Y, Exp_X = Var_X, Intercept = TRUE,
                       Nb_Id = 1, Lag = 1, type_model = 4)
# Vector of probabilities
vector_proba <- as.vector(rep(0,length(Var_Y)-1))</pre>
vector_proba <- Logistic_results$prob</pre>
# Vector of binary variables
Lag <- 1
vector_binary <- as.vector(rep(0,length(Var_Y)-1))</pre>
vector_binary <- Var_Y[(1+Lag):length(Var_Y)]</pre>
# optimal cut-off that minimizes the CSA criterion
results <- EWS_CSA_Criterion(Var_Proba = vector_proba, Dicho_Y = vector_binary,
                       cutoff_interval = 0.0001)
# print results
results
#}
```

EWS_NSR_Criterion

EWS_NSR_Criterion

NSR Threshold - optimal cut-off

Description

This function provides a method to compute the optimal NSR (Noise to Signal Ratio) criterion proposed by Kaminsky, Lizondo and Reinhart (1998). As defined in Candelon, Dumitrescu and Hurlin (2012), the NSR represents the ratio of the false alarms (type II error) to the number of crises correctly identified by the EWS for a given cut-off. The optimal cut-off minimizes the NSR criterion.

Usage

```
EWS_NSR_Criterion(Var_Proba, Dicho_Y, cutoff_interval)
```

Arguments

Var_Proba Vector containing the estimated probabilities obtained with the Logistic Estima-

tion function.

Dicho_Y Vector of the binary time series.

cutoff_interval

Numeric variable between 0 and 1.

Value

A numeric variable containing the optimal cut-off that minimizes the NSR criterion.

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

References

Candelon, Bertrand, Elena-Ivona Dumitrescu, and Christophe Hurlin. "How to evaluate an early-warning system: Toward a unified statistical framework for assessing financial crises forecasting methods." IMF Economic Review 60.1 (2012): 75-113.

Kaminsky, Graciela, Saul Lizondo, and Carmen M. Reinhart. "Leading indicators of currency crises." IMF Staff Papers 45.1 (1998): 1-48.

```
# NOT RUN {
# Import data
data("data_USA")
```

GIRF_Dicho 9

```
# Data process
Var_Y <- as.vector(data_USA$NBER)</pre>
Var_X <- as.vector(data_USA$Spread)</pre>
# Estimate the logit regression
Logistic_results <- Logistic_Estimation(Dicho_Y = Var_Y, Exp_X = Var_X, Intercept = TRUE,
                       Nb_Id = 1, Lag = 1, type_model = 4)
# Vector of probabilities
vector_proba <- as.vector(rep(0,length(Var_Y)-1))</pre>
vector_proba <- Logistic_results$prob</pre>
# Vector of binary variables
Lag <- 1
vector_binary <- as.vector(rep(0,length(Var_Y)-1))</pre>
vector_binary <- Var_Y[(1+Lag):length(Var_Y)]</pre>
# optimal cut-off that minimizes the NSR criterion
results <- EWS_NSR_Criterion(Var_Proba = vector_proba, Dicho_Y = vector_binary,</pre>
                       cutoff_interval = 0.0001)
# print results
results
#}
```

GIRF_Dicho

GIRF for Dichotomous models

Description

This function estimates the response functions of dichotomous models in a univariate framework using the method proposed by Lajaunie (2021). The response functions are based on the 4 specifications proposed by Kauppi & Saikkonen (2008).

Usage

```
GIRF_Dicho(Dicho_Y, Exp_X, Lag, Int, t_mod, horizon, shock_size, OC)
```

Arguments

Dicho_Y	Vector of the binary time series.
Exp_X	Vector or Matrix of explanatory time series.
Lag	Number of lags used for the estimation.
Int	Boolean value: TRUE for an estimation with intercept, and FALSE otherwise.
t_mod	Model number: 1, 2, 3 or 4.
	-> 1 for the static model:

10 GIRF_Dicho

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t)$$

-> 2 for the dynamic model with lag binary variable:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t + \gamma Y_{t-1})$$

-> 3 for the dynamic model with lag index variable:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t + \eta \pi_{t-1})$$

-> 4 for the dynamic model with both lag binary variable and lag index variable:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t + \eta \pi_{t-1} + \gamma Y_{t-1})$$

horizon Numeric variable corresponding to the horizon target for the GIRF analysis.

Shock_size Numeric variable equal to the size of the shock. It can be estimated with the Vector_Error function.

OC Numeric variable equal to the Optimal Cut-off (threshold). This threshold can be

considered arbitrarily, with a value between 0 and 1, or it can be estimated with one of the functions EWS_AM_Criterion, EWS_CSA_Criterion, or EWS_NSR_Criterion.

Value

Matrix with 7 columns:

column 1	horizon
column 2	index
column 3	index with shock
column 4	probability associated to the index
column 5	probability associated to the index with shock
column 6	binary variable associated to the index
column 7	binary variable associated to the index with shock

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

References

Kauppi, Heikki, and Pentti Saikkonen. "Predicting US recessions with dynamic binary response models." The Review of Economics and Statistics 90.4 (2008): 777-791.

Lajaunie, Quentin. Generalized Impulse Response Function for Dichotomous Models. No. 2852. Orleans Economics Laboratory/Laboratoire d'Economie d'Orleans (LEO), University of Orleans, 2021.

GIRF_Index_CI

Examples

```
# NOT RUN {
# Import data
data("data_USA")
# Data process
Var_Y <- as.vector(data_USA$NBER)</pre>
Var_X <- as.vector(data_USA$Spread)</pre>
# Estimate the logit regression
Logistic_results <- Logistic_Estimation(Dicho_Y = Var_Y, Exp_X = Var_X, Intercept = TRUE,
                       Nb_Id = 1, Lag = 1, type_model = 1)
# Vector of probabilities
vector_proba <- as.vector(rep(0,length(Var_Y)-1))</pre>
vector_proba <- Logistic_results$prob</pre>
# Vector of binary variables
Lag <- 1
vector_binary <- as.vector(rep(0,length(Var_Y)-1))</pre>
vector_binary <- Var_Y[(1+Lag):length(Var_Y)]</pre>
# optimal cut-off that maximizes the AM criterion
Threshold_AM <- EWS_AM_Criterion(Var_Proba = vector_proba, Dicho_Y = vector_binary,
                       cutoff_interval = 0.0001)
# Estimate the estimation errors
Residuals <- Vector_Error(Dicho_Y = Var_Y, Exp_X = Var_X, Intercept = TRUE,
                       Nb_Id = 1, Lag = 1, type_model = 1)
# Initialize the shock
size_shock <- quantile(Residuals,0.95)</pre>
# GIRF Analysis
results <- GIRF_Dicho(Dicho_Y = Var_Y, Exp_X = Var_X, Lag = 1, Int = TRUE, t_mod = 1,
                       horizon = 3, shock_size = size_shock, OC = Threshold_AM)
# print results
results
#}
```

GIRF_Index_CI

Confidence Intervals for the Index - GIRF Analysis

Description

From the results of the Simulation_GIRF function, this function calculates the values of the upper and lower bounds of the confidence intervals, as well as the average of the different response

12 GIRF_Index_CI

functions for the index.

Usage

```
GIRF_Index_CI(results_simul_GIRF, CI_bounds, n_simul, horizon_forecast)
```

Arguments

results_simul_GIRF

Matrix containing results of the Simulation_GIRF function.

CI_bounds Numeric variable between 0 and 1 for the size of the confidence intervals.

n_simul Numeric variable equal to the total number of replications.

horizon_forecast

Numeric variable corresponding to the horizon target for the GIRF analysis.

Value

A list with:

Simulation_CI a matrix containing the set of simulations belonging to the confidence interval.

values_CI a matrix containing three columns: the lower bound of the CI, the average of the

IRFs, and the upper bound of the CI.

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

References

Lajaunie, Quentin. Generalized Impulse Response Function for Dichotomous Models. No. 2852. Orleans Economics Laboratory/Laboratoire d'Economie d'Orleans (LEO), University of Orleans, 2021.

```
# NOT RUN {
# Import data
data("data_USA")

# Data process
Var_Y <- as.vector(data_USA$NBER)
Var_X <- as.vector(data_USA$Spread)

# Simulation for the GIRF analysis
results_simulation <- Simul_GIRF(Var_Y, Var_X, TRUE, 1, 1, 2, 0.95, 3, "AM")
# Confidence intervals for the index
results <- GIRF_Index_CI(results_simulation, 0.95, 2, 3)</pre>
```

GIRF_Proba_CI

```
# print results
results
```

#}

GIRF_Proba_CI

Confidence Intervals for the Probability - GIRF Analysis

Description

From the results of the Simulation_GIRF function, this function calculates the values of the upper and lower bounds of the confidence intervals, as well as the average of the different response functions for the probability.

Usage

```
GIRF_Proba_CI(results_simul_GIRF, CI_bounds, n_simul, horizon_forecast)
```

Arguments

results_simul_GIRF

Matrix containing results of the Simulation_GIRF function.

CI_bounds Numeric variable between 0 and 1 for the size of the confidence intervals.

n_simul Numeric variable equal to the total number of replications.

horizon_forecast

Numeric variable corresponding to the horizon target for the GIRF analysis.

Value

A list with:

horizon Numeric vector containing the horizon targer.

Simulation_CI_proba_shock

a matrix containing the set of simulations of probabilities with shock belonging to the confidence interval.

to the confid

Simulation_CI_proba

a matrix containing the set of simulations of probabilities belonging to the con-

fidence interval.

CI_proba_shock a matrix containing three columns: the lower bound of the CI, the average of the

IRFs, and the upper bound of the CI for the probabilities with shock.

CI_proba a matrix containing three columns: the lower bound of the CI, the average of the

IRFs, and the upper bound of the CI for the probabilities.

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

14 Logistic_Estimation

References

Lajaunie, Quentin. Generalized Impulse Response Function for Dichotomous Models. No. 2852. Orleans Economics Laboratory/Laboratoire d'Economie d'Orleans (LEO), University of Orleans, 2021.

Examples

```
# NOT RUN {
# Import data
data("data_USA")

# Data process
Var_Y <- as.vector(data_USA$NBER)
Var_X <- as.vector(data_USA$Spread)

# Simulation for the GIRF analysis
results_simulation <- Simul_GIRF(Var_Y, Var_X, TRUE, 1, 1, 2, 0.95, 3, "AM")

# Confidence intervals for the index
results <- GIRF_Proba_CI(results_simulation, 0.95, 2, 3)

# print results
results
#}</pre>
```

Logistic_Estimation Logistic Estimation for Dichotomous Analysis

Description

This function provides methods for estimating the four dichotomous models as in Kauppi & Saikkonen (2008). Based on a logit approach, models are estimated in a univariate or a balanced panel framework as in Candelon, Dumitrescu and Hurlin (2014). This estimation has been used in recent papers such in Ben Naceur, Candelon and Lajaunie (2019) and Hasse and Lajaunie (2020).

Usage

```
Logistic_Estimation(Dicho_Y, Exp_X, Intercept, Nb_Id, Lag, type_model)
```

Arguments

Dicho_Y Vector of the binary time series.

Exp_X Vector or Matrix of explanatory time series.

Intercept Boolean value: TRUE for an estimation with intercept, and FALSE otherwise.

Logistic_Estimation 15

Nb_Id Number of individuals studied for a panel approach. Nb_Id=1 in the univariate

case

Lag Number of lags used for the estimation.

type_model Model number: 1, 2, 3 or 4.

-> 1 for the static model:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t)$$

-> 2 for the dynamic model with lag binary variable:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t + \gamma Y_{t-1})$$

-> 3 for the dynamic model with lag index variable:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t + \eta \pi_{t-1})$$

-> 4 for the dynamic model with both lag binary variable and lag index variable:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t + \eta \pi_{t-l} + \gamma Y_{t-l})$$

Value

A list with:

Estimation a dataframe containing the coefficients of the logitic estimation, the Standard

Error for each coefficient, the Z-score and the associated critical probability

AIC a numeric vector containing the Akaike information criterion

BIC a numeric vector containing the Bayesian information criterion

R2 a numeric vector containing the Pseudo R Square

index a numeric vector containing the estimated index

prob a numeric vector containing the estimated probabilities

LogLik a numeric vector containing the Log likelihood value of the estimation

VCM a numeric matrix of the Variance Covariance of the estimation

Note

For the panel estimation, data must be stacked one after the other for each country or for each individual.

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

16 Matrix_lag

References

Candelon, Bertrand, Elena-Ivona Dumitrescu, and Christophe Hurlin. "Currency crisis early warning systems: Why they should be dynamic." International Journal of Forecasting 30.4 (2014): 1016-1029.

Hasse, Jean-Baptiste, Lajaunie Quentin. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis." (2020)

Kauppi, Heikki, and Pentti Saikkonen. "Predicting US recessions with dynamic binary response models." The Review of Economics and Statistics 90.4 (2008): 777-791.

Naceur, Sami Ben, Bertrand Candelon, and Quentin Lajaunie. "Taming financial development to reduce crises." Emerging Markets Review 40 (2019): 100618.

Examples

Matrix_lag

Matrix Lag - data processing

Description

Compute a lagged version of a time series, shifting the time base back by a given number of observations defined by the user. The user must enter three parameters for this function: the matrix, the number of lags, and of boolean variable calls 'beginning'. If 'beginning'=TRUE, then the lag will be applied at the beginning of the matrix whereas if 'beginning'=FALSE, then the lag will be applied at the end of the matrix.

Usage

```
Matrix_lag(Matrix_target, Nb_lag, beginning)
```

Simul_GIRF 17

Arguments

```
Matrix_target Initial Matrix
Nb_lag Number of lag
```

beginning Boolean variable. If 'place'=TRUE, the lag is applied at the beginning of the

matrix. If 'place'=FALSE, the lag is applied at the end of the matrix.

Value

A numeric Matrix.

Examples

```
# NOT RUN {
# Initialize the following matrix
Matrix_example <- matrix(data=(1:10), nrow=5, ncol=2)</pre>
# Use Matrix_lag
new_matrix <- Matrix_lag(Matrix_target = Matrix_example, Nb_lag = 1, beginning = TRUE)</pre>
new_matrix
# Results:
#> new_matrix
      [,1] [,2]
#[1,]
         2
#[2,]
         3
#[3,]
              9
#[4,]
         5 10
#}
```

Simul_GIRF

GIRF Simulations

Description

This function calls the BlockBootstrap function of the EWS package and then calculates response functions for each simulation. It then measures the confidence intervals as in Lajaunie (2021). The response functions are based on the 4 specifications proposed by Kauppi & Saikkonen (2008).

Usage

```
Simul_GIRF(Dicho_Y, Exp_X, Int, Lag, t_mod, n_simul, centile_shock, horizon, OC)
```

18 Simul_GIRF

Arguments

Dicho_Y Vector of the binary time series.

Exp_X Vector or Matrix of explanatory time series.

Int Boolean value: TRUE for an estimation with intercept, and FALSE otherwise.

Lag Number of lags used for the estimation.

t_mod Model number: 1, 2, 3 or 4.

-> 1 for the static model:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t)$$

-> 2 for the dynamic model with lag binary variable:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t + \gamma Y_{t-1})$$

-> 3 for the dynamic model with lag index variable:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t + \eta \pi_{t-1})$$

-> 4 for the dynamic model with both lag binary variable and lag index variable:

$$P_{t-1}(Y_t) = F(\pi_t) = F(\alpha + \beta' X_t + \eta \pi_{t-l} + \gamma Y_{t-l})$$

n_simul Numeric variable equal to the total number of replications.

saran and Potter (1996).

horizon Numeric variable corresponding to the horizon target for the GIRF analysis.

OC Either a numeric variable equal to the optimal cut-off (threshold) or a character

variable of the method chosen to calculate the optimal cut-off ("NSR", "CSA",

"AM").

Value

A matrix containing the GIRF analysis for each replication. For each replication, the function returns 7 colomns with:

column 1 horizon
column 2 index

column 3 index with shock

column 4 probability associated to the index

column 5 probability associated to the index with shock

column 6 binary variable associated to the index

column 7 binary variable associated to the index with shock

The matrix contains $7 \times S$ colomns, where S denotes the number of replications.

Vector_Error 19

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

References

Kauppi, Heikki, and Pentti Saikkonen. "Predicting US recessions with dynamic binary response models." The Review of Economics and Statistics 90.4 (2008): 777-791.

Koop, Gary, M. Hashem Pesaran, and Simon M. Potter. "Impulse response analysis in nonlinear multivariate models." Journal of econometrics 74.1 (1996): 119-147.

Lajaunie, Quentin. Generalized Impulse Response Function for Dichotomous Models. No. 2852. Orleans Economics Laboratory/Laboratoire d'Economie d'Orleans (LEO), University of Orleans, 2021.

Examples

Vector_Error

Vector of Errors

Description

The function measures the estimation errors from the logistic estimation, and stores them in a vector. This function is used to initialize a shock in impulse response analysis as in Koop, Pesaran and Potter (1996).

Usage

```
Vector_Error(Dicho_Y, Exp_X, Intercept, Nb_Id, Lag, type_model)
```

20 Vector_Error

Arguments

Dicho_Y Vector of the binary time series.

Exp_X Vector or Matrix of explanatory time series.

Intercept Boolean value: TRUE for an estimation with intercept, and FALSE otherwise.

Nb_Id Number of individuals studied for a panel approach. Nb Id=1 in the univariate

Number of individuals studied for a panel approach. Nb_id=1 in the univariate

case.

Lag Number of lags used for the estimation.

type_model Model number: 1, 2, 3 or 4.

Value

A numeric vector containing estimation errors.

Author(s)

Jean-Baptiste Hasse and Quentin Lajaunie

References

Kauppi, Heikki, and Pentti Saikkonen. "Predicting US recessions with dynamic binary response models." The Review of Economics and Statistics 90.4 (2008): 777-791.

Koop, Gary, M. Hashem Pesaran, and Simon M. Potter. "Impulse response analysis in nonlinear multivariate models." Journal of econometrics 74.1 (1996): 119-147.

Lajaunie, Quentin. Generalized Impulse Response Function for Dichotomous Models. No. 2852. Orleans Economics Laboratory/Laboratoire d'Economie d'Orleans (LEO), University of Orleans, 2021.

Vector_lag 21

Vector_lag

Vector lag - data processing

Description

Compute a lagged version of a time series, shifting the time base back by a given number of observations defined by the user. The user must enter three parameters for this function: the vector, the number of lags, and a boolean variable named 'beginning'. If 'beginning'=TRUE, then the lag will be applied at the beginning of the vector whereas if 'beginning'=FALSE, then the lag will be applied at the end of the vector.

Usage

```
Vector_lag(Vector_target, Nb_lag, beginning)
```

Arguments

Vector_target Initial vector
Nb_lag Number of lag

beginning Boolean variable. If 'beginning'=TRUE, the lag is applied at the beginning of

the vector. If 'beginning'=FALSE, the lag is applied at the end of the vector.

Value

A numeric Vector.

```
# NOT RUN {
# Initialize the following vector
vector_example <- as.vector(1:10)
# Use Vector_lag
new_vector <- Vector_lag(Vector_target = vector_example, Nb_lag = 2, beginning = TRUE)
new_vector
# Results:
#> new_vector
#[1] 3 4 5 6 7 8 9 10
#}
```

Index

* Bootstrapp	EWS_CSA_Criterion, 6
BlockBootstrapp, 2	EWS_NSR_Criterion, 8
* Confidence-Intervals	* datasets
BlockBootstrapp, 2	data_panel,3
GIRF_Index_CI, 11	data_USA, 4
GIRF_Proba_CI, 13	
Simul_GIRF, 17	BlockBootstrapp, 2
* Dichotomous	data namal 2
EWS_AM_Criterion, 5	data_panel, 3
EWS_CSA_Criterion, 6	data_USA, 4
EWS_NSR_Criterion, 8	EWS_AM_Criterion, 5
GIRF_Dicho, 9	EWS_CSA_Criterion, 6
GIRF_Index_CI, 11	EWS_NSR_Criterion, 8
GIRF_Proba_CI, 13	
Logistic_Estimation, 14	GIRF_Dicho, 9
Simul_GIRF, 17	GIRF_Index_CI, 11
Vector_Error, 19	GIRF_Proba_CI, 13
* Econometrics	
BlockBootstrapp,2	Logistic_Estimation, 14
EWS_AM_Criterion, 5	Matrix_lag, 16
EWS_CSA_Criterion, 6	riati ix_iag, io
EWS_NSR_Criterion, 8	Simul_GIRF, 17
GIRF_Dicho, 9	,
GIRF_Index_CI, 11	Vector_Error, 19
GIRF_Proba_CI, 13	Vector_lag, 21
Logistic_Estimation, 14	
Simul_GIRF, 17	
Vector_Error, 19	
* IRF	
GIRF_Dicho, 9	
GIRF_Index_CI, 11	
GIRF_Proba_CI, 13	
Simul_GIRF, 17	
* Panel	
Logistic_Estimation, 14	
* Shock	
Vector_Error, 19	
* Threshold	
FWS AM Criterion 5	