Datapath

<u>Adders</u>

- Adds two N-bit binary numbers
 - 2-bit adder: adds two 2-bit numbers, outputs 3-bit result
 - e.g., 01 + 11 = 100 (1 + 3 = 4)
- Can design using combinational design process, but doesn't work well for reasonable-size N
 - Why not?

Inputs				C	Output	S
a1	а0	b1	b0	С	s1	s0
	0	0	0		0	0
0 0 0	0	0	1	0 0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0 0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Why Adders Aren't Built Using Standard Combinational Design Process

- Truth table too big
 - 2-bit adder's truth table shown
 - Has $2^{(2+2)} = 16$ rows
 - 8-bit adder: $2^{(8+8)} = 65,536$ rows
 - 16-bit adder: $2^{(16+16)} = ~4$ billion rows
 - 32-bit adder: ...
- Big truth table with numerous 1s/0s yields big logic
 - Plot shows number of transistors for N-bit adders, using state-of-the-art automated combinational design tool

Q: Predict number of transistors for 16-bit adder

A: 1000 transistors for N=5, doubles for each increase of N. So transistors = $1000*2^{(N-5)}$. Thus, for N=16, transistors = $1000*2^{(16-5)}$ = 1000*2048 = 2,048,000. Way too many!

a1	Inp a0	uts b1	b0	C	utput s1	s s0
	0	0	0 1	-	0	0
0	0	1	0	0	1	0
0 0 0 0 0 0 0	1 1	0 0 1	0 1 0	0000000	1	0
Ŏ 1	1 0	1 0	Ĭ 0	1 0	Ó 1	Ó O
1	0	0	1	0	0	1
1	1 1	0	0	0 1	1	1
1	1 1	1 1	0 1	1 1	Ŏ 1	1 0

Alternative Method to Design an Adder: Imitate Adding by Hand

- Alternative adder design: mimic how people do addition by hand
- One column at a time
 - Compute sum, add carry to next column

Alternative Method to Design an Adder: Imitate Adding by Hand_

- Create component for each column
 - Adds that column's bits, generates sum and carry bits

Half-Adder

CO 0

0

Inputs

Half-adder: Adds 2 bits, generates sum and carry

Design using combinational design

process from Ch 2

Step 1	: Capture	the	function

Step 2: Convert to equations

$$co = ab \leftarrow$$

 $s = a'b + ab' \text{ (same as } s = a \text{ xor } b) \leftarrow$

Step 3: Create the circuit

Full-Adder

- Full-adder: Adds 3 bits, generates sum and carry
- Design using combinational design process from Ch 2

Step 1: Capture the function

	Inputs			outs
а	b	ci	ω	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Step 2: Convert to equations

Step 3: Create the circuit

Carry-Ripple Adder

- Using half-adder and full-adders, we can build adder that adds like we would by hand
- Called a carry-ripple adder
 - 4-bit adder shown: Adds two 4-bit numbers, generates 5-bit output
 - 5-bit output can be considered 4-bit "sum" plus 1-bit "carry out"
 - Can easily build any size adder

Carry-Ripple Adder

- Using full-adder instead of half-adder for first bit, we can include a "carry in" bit in the addition
 - Will be useful later when we connect smaller adders to form bigger adders

Carry-Ripple Adder's Behavior

Assume all inputs initially 0

0111+0001 (answer should be 01000)

Output after 2 ns (1FA delay)

Wrong answer -- something wrong? No -- just need more time for carry to ripple through the chain of full adders.

Carry-Ripple Adder's Behavior

Cascading Adders

<u>Multiplier – Array Style</u>

- Can build multiplier that mimics multiplication by hand
 - Notice that multiplying multiplicand by 1 is same as ANDing with 1

```
(the top number is called the multiplicand)

(the bottom number is called the multiplier)

(each row below is called a partial product)

(because the rightmost bit of the multiplier is 1, and 0110*1=0110)

(because the second bit of the multiplier is 1, and 0110*1=0110)

(because the third bit of the multiplier is 0, and 0110*0=0000)

(because the leftmost bit of the multiplier is 0, and 0110*0=0000)

(the product is the sum of all the partial products: 18, which is 6*3)
```

Multiplier – Array Style

Generalized representation of multiplication by hand

Multiplier – Array Style

Adder/Subtractor

- Adder/subtractor: control input determines whether add or subtract
 - Can use 2x1 mux sub input passes either B or inverted B
 - Alternatively, can use XOR
 gates if sub input is 0, B's
 bits pass through; if sub input is 1, XORs invert B's bits

Overflow

- Sometimes result can't be represented with given number of bits
 - Either too large magnitude of positive or negative
 - e.g., 4-bit two's complement addition of 0111+0001 (7+1=8). But 4-bit two's complement can't represent number >7
 - 0111+0001 = 1000 WRONG answer, 1000 in two's complement is -8, not +8
 - Adder/subtractor should indicate when overflow has occurred, so result can be discarded

Detecting Overflow: Method 1

- Assuming 4-bit two's complement numbers, can detect overflow by detecting when the two numbers' sign bits are the same but are different from the result's sign bit
 - If the two numbers' sign bits are different, overflow is impossible
 - Adding a positive and negative can't exceed largest magnitude positive or negative
- Simple circuit
 - overflow = a3'b3's3 + a3b3s3'
 - Include "overflow" output bit on adder/subtractor sign bits

If the numbers' sign bits have the same value, which differs from the result's sign bit, overflow has occurred.

Detecting Overflow: Method 2

- Even simpler method: Detect difference between carry-in to sign bit and carry-out from sign bit
- Yields simpler circuit: overflow = c3 xor c4

If the carry into the sign bit column differs from the carry out of that column, overflow has occurred.

Comparators

- N-bit equality comparator: Outputs 1 if two N-bit numbers are equal
 - 4-bit equality comparator with inputs A and B
 - a3 must equal b3, a2 = b2, a1 = b1, a0 = b0
 - Two bits are equal if both 1, or both 0
 - eq = (a3b3 + a3'b3') * (a2b2 + a2'b2') * (a1b1 + a1'b1') * (a0b0 + a0'b0')
 - Recall that XNOR outputs 1 if its two input bits are the same
 - $eq = (a3 \times b3) * (a2 \times b2) * (a1 \times b1) * (a0 \times b0)$

0110 = 0111?

- N-bit magnitude comparator:
 Indicates whether A>B, A=B, or
 A<B, for its two N-bit inputs A and B</p>
 - How design? Consider how compare by hand. First compare a3 and b3. If equal, compare a2 and b2. And so on. Stop if comparison not equal -whichever's bit is 1 is greater. If never see unequal bit pair, A=B.

A=1011	B=1001			
1 011	1 001 Equal			
1 0 11	1 0 01 Equal			
10 1 1	1001 Unequal			
So A > B				

- By-hand example leads to idea for design
 - Start at left, compare each bit pair, pass results to the right
 - Each bit pair called a stage
 - Each stage has 3 inputs indicating results of higher stage, passes results to lower stage

Each stage:

- out_gt = in_gt + (in_eq * a * b')
 - A>B (so far) if already determined in higher stage, or if higher stages equal but in this stage a=1 and b=0
- out_lt = in_lt + (in_eq * a' * b)
 - A<B (so far) if already determined in higher stage, or if higher stages equal but in this stage a=0 and b=1
- out_eq = in_eq * (a XNOR b)
 - A=B (so far) if already determined in higher stage and in this stage a=b too
- Simple circuit inside each stage, just a few gates (not shown)

Final answer appears on the right

Takes time for answer to "ripple" from left to right

- Thus called "carry-ripple style" after the carry-ripple adder
 - Even though there's no "carry" involved

Magnitude Comparator Example: Minimum of Two Numbers

- Design a combinational component that computes the minimum of two 8-bit numbers
 - Solution: Use 8-bit magnitude comparator and 8-bit 2x1 mux
 - If A<B, pass A through mux. Else, pass B.

Floating Point Addition / Subtraction

- 1. Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent.
- 2. Add / Subtract the significands according to the sign bits.
- 3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent
- 4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry

Shift significand right by $d = |E_X - E_Y|$

Add significands when signs of X and Y are identical, Subtract when different X - Y becomes X + (-Y)

Normalization shifts right by 1 if there is a carry, or shifts left by the number of leading zeros in the case of subtraction

Rounding either truncates fraction, or adds a 1 to least significant fraction bit

Floating Point Adder Block Diagram

