

Exercise 17C

Q25

Answer:

Here, $\angle DCG + \angle CGF = 180^{\circ}$ (angles on the same side of a transversal line are

supplementary)

=> ∠CGF =
$$180^{0} - 100^{\circ} = 80^{\circ}$$

∠ABG = ∠BGF = 110^{0} [alternate angles]
 $x^{0} + ∠$ CGF = 110^{0}
=> $x^{0} = 110^{0} - 80^{0}$
=> $x^{0} = 30^{0}$
∴ $x = 30$

Q26

Answer:

(d) greater than the 3rd side

Q27

Answer:

(d) The diagonals of a rhombus always bisect each other at right angles.

(Pythagoras theorem)

Q28

Answer:

In a right angle triangle:

$$\begin{aligned} AC^2 &= AB^2 + BC^2 \\ &=> BC^2 = 13^2 - 5^2 \\ &=> BC^2 = 169 - 25 \\ &=> BC^2 = 144 \\ &=> BC = \pm 12 \end{aligned}$$

The length cannot be negative.

∴ BC= 12 cm

Q29

Answer:

In triangle ABC:

$$\angle A + \angle B + \angle C = 180^{0}$$

$$=> \angle A = 180^{0} - (37^{0} + 29^{0})$$

$$=> \angle A = 180^{0} - (66^{0})$$

$$= 114^{0}$$

Q30

Answer:

$$\begin{pmatrix} c \\ 105^{\circ} \end{pmatrix}$$

Suppose the angles of a triangle are 2x, 3x and 7x.

Sum of the angles of a triangle is 180°.

$$2x + 3x + 7x = 180$$

=> $12x = 180$
=> $x = 15^{0}$

Measure of the largest angle = $15^{0} \times 7 = 105^{0}$

$$2\angle A = 3\angle B$$
 or $\angle A = \frac{3}{2}\angle B$

$$3\angle B = 6\angle C$$
, or $\angle C = \frac{1}{2}\angle B$

In a \triangle ABC:

$$\angle A + \angle B + \angle C = 180^{0}$$

$$= > \frac{3}{2} \angle B + \angle B + \frac{1}{2} \angle B = 180^{0}$$

$$= > \frac{3\angle B + 2\angle B + \angle B}{2} = 180^{0}$$

$$= > \frac{6\angle B}{2} = 180^{0}$$

$$= > \angle B = \frac{360^{0}}{6}$$

$$= > \angle B = 60^{0}$$

******** END *******