Más sobre recursión

Taller de Álgebra I

2do Cuatrimestre 2017

La clase pasada vimos:

▶ Recursión. El modo de pensar funciones recursivas.

La clase pasada vimos:

▶ Recursión. El modo de pensar funciones recursivas.

Para pensar funciones recursivas:

- 1 Casos bases: identificar el o los casos bases.
- Casos recursivos: suponiendo que la llamada recursiva es correcta, ¿qué tengo que hacer para completar la solución?

La clase pasada vimos:

▶ Recursión. El modo de pensar funciones recursivas.

Para pensar funciones recursivas:

- 1 Casos bases: identificar el o los casos bases.
- Casos recursivos: suponiendo que la llamada recursiva es correcta, ¿qué tengo que hacer para completar la solución?

- ▶ Fíjense que el último llamado recursivo (n=1) es efectivamente correcto, es el caso base.
- Si podemos dar una solución correcta en base a una llamada recursiva correcta entonces, por inducción, ¡todos van a ser correctos! En particular el segundo. Y por lo tanto el tercero. Y por...

La clase pasada vimos:

▶ Recursión. El modo de pensar funciones recursivas.

Para pensar funciones recursivas:

- Casos bases: identificar el o los casos bases.
- Casos recursivos: suponiendo que la llamada recursiva es correcta, ¿qué tengo que hacer para completar la solución?

- ▶ Fíjense que el último llamado recursivo (n=1) es efectivamente correcto, es el caso base.
- Si podemos dar una solución correcta en base a una llamada recursiva correcta entonces, por inducción, ¡todos van a ser correctos! En particular el segundo. Y por lo tanto el tercero. Y por...

Con el paso anterior resuelto: ¿Qué falta para que el nuevo paso esté resuelto?

La clase pasada vimos:

▶ Recursión. El modo de pensar funciones recursivas.

Para pensar funciones recursivas:

- Casos bases: identificar el o los casos bases.
- Casos recursivos: suponiendo que la llamada recursiva es correcta, ¿qué tengo que hacer para completar la solución?

- ▶ Fíjense que el último llamado recursivo (n=1) es efectivamente correcto, es el caso base.
- Si podemos dar una solución correcta en base a una llamada recursiva correcta entonces, por inducción, ¡todos van a ser correctos! En particular el segundo. Y por lo tanto el tercero. Y por...

Con el paso anterior resuelto: ¿Qué falta para que el nuevo paso esté resuelto?

```
| n > 0 = n_{esimoImpar} + sumaLosPrimerosNImpares (n-1)
```

Cambiamos el problema: ahora solo falta definir n_esimoImpar.

La clase pasada vimos:

▶ Recursión. El modo de pensar funciones recursivas.

Para pensar funciones recursivas:

- Casos bases: identificar el o los casos bases.
- Casos recursivos: suponiendo que la llamada recursiva es correcta, ¿qué tengo que hacer para completar la solución?

- ▶ Fíjense que el último llamado recursivo (n=1) es efectivamente correcto, es el caso base.
- Si podemos dar una solución correcta en base a una llamada recursiva correcta entonces, por inducción, ¡todos van a ser correctos! En particular el segundo. Y por lo tanto el tercero. Y por...

Con el paso anterior resuelto: ¿Qué falta para que el nuevo paso esté resuelto?

```
| n > 0 = n_{esimoImpar} + sumaLosPrimerosNImpares (n-1)
```

Cambiamos el problema: ahora solo falta definir n_esimoImpar.

La clase pasada vimos:

▶ Recursión. El modo de pensar funciones recursivas.

Para pensar funciones recursivas:

- 1 Casos bases: identificar el o los casos bases.
- Casos recursivos: suponiendo que la llamada recursiva es correcta, ¿qué tengo que hacer para completar la solución?

- ► Fíjense que el último llamado recursivo (n=1) es efectivamente correcto, es el caso base.
- Si podemos dar una solución correcta en base a una llamada recursiva correcta entonces, por inducción, ¡todos van a ser correctos! En particular el segundo. Y por lo tanto el tercero. Y por...

Con el paso anterior resuelto: ¿Qué falta para que el nuevo paso esté resuelto?

```
| n > 0 = n_{esimoImpar} + sumaLosPrimerosNImpares (n-1)
```

Cambiamos el problema: ahora solo falta definir n_esimoImpar.

```
\mid n > 0 = n_esimoImpar + sumaLosPrimerosNImpares (n-1) where n_esimoImpar = 2 * n - 1
```

Probar por inducción $P(n): \sum_{i=1}^{n} (2i - 1) = n^2$ Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i-1)$

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i - 1) = n^2$
- Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i-1)$
- ► Caso base: f n | (n == 1) = 1

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$
- ▶ Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i 1)$
- ► Caso base: f n | (n == 1) = 1
- Supongo que ya se calcular f(n-1), quiero calcular f(n)

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$
- ▶ Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n} (2i-1)$ y $\sum_{i=1}^{n+1} (2i-1)$?

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + 2n + 1$$

- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i-1)$
- ► Caso base: f n | (n == 1) = 1
- Supongo que ya se calcular f(n-1), quiero calcular f(n)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n-1} (2i-1)$ y $\sum_{i=1}^{n} (2i-1)$?

$$\sum_{i=1}^{n} (2i-1) = \left(\sum_{i=1}^{n-1} (2i-1)\right) + 2n - 1$$

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i - 1) = n^2$
- ▶ Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n} (2i-1)$ y $\sum_{i=1}^{n+1} (2i-1)$?

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + 2n + 1$$

▶ Uso la hipótesis inductiva P(n):

$$\sum_{i=1}^{n+1} (2i-1) = n^2 + 2n + 1 = (n+1)^2$$

- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i-1)$
- ► Caso base: f n | (n == 1) = 1
- Supongo que ya se calcular f(n-1), quiero calcular f(n)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n-1} (2i-1)$ y $\sum_{i=1}^{n} (2i-1)$?

$$\sum_{i=1}^{n} (2i-1) = \left(\sum_{i=1}^{n-1} (2i-1)\right) + 2n - 1$$

Uso la función que se calcular:

$$f(n) = f(n-1) + 2n - 1$$

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i - 1) = n^2$
- ▶ Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n} (2i-1)$ y $\sum_{i=1}^{n+1} (2i-1)$?

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + 2n + 1$$

▶ Uso la hipótesis inductiva P(n):

$$\sum_{i=1}^{n+1} (2i-1) = n^2 + 2n + 1 = (n+1)^2$$

¡¿Pero cómo?! ¡¿Estoy usando lo que quiero probar?!

- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i-1)$
- ► Caso base: f n | (n == 1) = 1
- Supongo que ya se calcular f(n-1), quiero calcular f(n)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n-1} (2i-1)$ y $\sum_{i=1}^{n} (2i-1)$?

$$\sum_{i=1}^{n} (2i-1) = \left(\sum_{i=1}^{n-1} (2i-1)\right) + 2n - 1$$

Uso la función que se calcular:

$$f(n) = f(n-1) + 2n - 1$$

¡¿Pero cómo?! ¡¿Estoy usando la función que quiero definir?!

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$
- ▶ Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n} (2i-1)$ y $\sum_{i=1}^{n+1} (2i-1)$?

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + 2n + 1$$

▶ Uso la hipótesis inductiva P(n):

$$\sum_{i=1}^{n+1} (2i-1) = n^2 + 2n + 1 = (n+1)^2$$

- ¡¿Pero cómo?! ¡¿Estoy usando lo que quiero probar?!
- Ah, claro... vale P(1) y P(n) => P(n+1), entonces vale para todo n!

- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i-1)$
- ► Caso base: f n | (n == 1) = 1
- Supongo que ya se calcular f(n-1), quiero calcular f(n)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n-1} (2i-1)$ y $\sum_{i=1}^{n} (2i-1)$?

$$\sum_{i=1}^{n} (2i-1) = \left(\sum_{i=1}^{n-1} (2i-1)\right) + 2n - 1$$

Uso la función que se calcular:

$$f(n) = f(n-1) + 2n - 1$$

- ¡¿Pero cómo?! ¡¿Estoy usando la función que quiero definir?!
- A ver... funciona!

Atención! A veces ciertas funciones esperan un Float y nosotros tenemos un Integer. Para estos casos podemos utilizar la función fromInteger :: Integer -> Float.

Ejercicios

▶ Implementar una función eAprox :: Integer → Float que aproxime el valor del número e a partir de la siguiente sumatoria:

$$\hat{e}(n) = \sum_{i=0}^{n} \frac{1}{i!}$$

- ▶ Definir la constante e :: Float como la aproximación de e a partir de los primeros 100 términos de la serie anterior.
- ▶ Implementar una función parteEntera :: Float → Integer que calcule la parte entera de un número real positivo.
- ► Cambiar la implementación de parteEntera :: Float → Integer para que también funcione con números negativos.

Dados a (dividendo), d (divisor) $\in \mathbb{Z}$, $d \neq 0$, existen únicos q (cociente), r (resto) $\in \mathbb{Z}$ tales que

- ightharpoonup a = dq + r,
- ▶ $0 \le r < |d|$.

Dados a (dividendo), d (divisor) $\in \mathbb{Z}$, $d \neq 0$, existen únicos q (cociente), r (resto) $\in \mathbb{Z}$ tales que

- ightharpoonup a = dq + r,
- ▶ $0 \le r < |d|$.

Implementar la siguiente función

division :: Integer -> Integer -> (Integer, Integer)

Debe funcionar para $a \ge 0$, d > 0 y no se pueden usar div, mod ni /.

Dados a (dividendo), d (divisor) $\in \mathbb{Z}$, $d \neq 0$, existen únicos q (cociente), r (resto) $\in \mathbb{Z}$ tales que

- a = dq + r,
- $0 \le r < |d|.$

Implementar la siguiente función

division :: Integer -> Integer -> (Integer, Integer)

Debe funcionar para $a \geq 0$, d > 0 y no se pueden usar div , mod ni /.

Ideas

Usaremos recursión (idea sacada de la demostración del teorema de la división)

▶ division a d = ??

Dados a (dividendo), d (divisor) $\in \mathbb{Z}$, $d \neq 0$, existen únicos q (cociente), r (resto) $\in \mathbb{Z}$ tales que

- a = dq + r,
- $0 \le r < |d|.$

Implementar la siguiente función

division :: Integer -> Integer -> (Integer, Integer)

Debe funcionar para $a \geq 0$, d > 0 y no se pueden usar div , mod ni /.

Ideas

Usaremos recursión (idea sacada de la demostración del teorema de la división)

- division a d = ??
- ▶ Hacemos recursión... sobre d? Para division 15 4, me sirve division 15 3?

Dados a (dividendo), d (divisor) $\in \mathbb{Z}$, $d \neq 0$, existen únicos q (cociente), r (resto) $\in \mathbb{Z}$ tales que

- a = dq + r,
- ▶ $0 \le r < |d|$.

Implementar la siguiente función

division :: Integer -> Integer -> (Integer, Integer)

Debe funcionar para $a \geq 0$, d > 0 y no se pueden usar div , mod ni /.

Ideas

Usaremos recursión (idea sacada de la demostración del teorema de la división)

- division a d = ??
- ▶ Hacemos recursión... sobre d? Para division 15 4, me sirve division 15 3?
- ▶ Hacemos recursión... sobre a? Para division 15 4, me sirve division 14 4?

Dados *a* (dividendo), *d* (divisor) $\in \mathbb{Z}$, $d \neq 0$, existen únicos q (cociente), r $(resto) \in \mathbb{Z}$ tales que

- \triangleright a = dq + r,
- ▶ 0 < r < |d|.

Implementar la siguiente función

division :: Integer -> Integer -> (Integer, Integer)

Debe funcionar para $a \ge 0$, d > 0 y no se pueden usar div, mod ni /.

Para division 15 4, me sirve division k 4 para algún k?

Ideas

Usaremos recursión (idea sacada de la demostración del teorema de la división)

- division a d = ??
- ▶ Hacemos recursión... sobre d? Para division 15 4, me sirve division 15 3?
 - Hacemos recursión... sobre a? Para division 15 4, me sirve division 14 4?

 - Para determinar lo anterior, pensar qué quiere decir dividir un número por otro.

Algoritmo de división

Algoritmo de división

¿Se puede no poner dos veces division (a-d) d? Sí:

Algoritmo de división

Ejercicio

Extender la función division :: Integer -> Integer -> (Integer, Integer) para que funcione para $a \in \mathbb{Z}$, d > 0.

¿Una fácil?.. o no tanto

▶ sumaDivisores :: Integer → Integer que calcule la suma de los divisores un número.

¿Una fácil?.. o no tanto

▶ sumaDivisores :: Integer → Integer que calcule la suma de los divisores un número.

Pregunta clave: ¿alcanza hacer recursión sobre *n*?

¿Una fácil?.. o no tanto

▶ sumaDivisores :: Integer → Integer que calcule la suma de los divisores un número.

Pregunta clave: ¿alcanza hacer recursión sobre *n*?

No hay ninguna relación sencilla entre sumaDivisores n y sumaDivisores (n-k) (para ningún k particular).

¿Una fácil?.. o no tanto

▶ sumaDivisores :: Integer → Integer que calcule la suma de los divisores un número.

Pregunta clave: ¿alcanza hacer recursión sobre n?

No hay ninguna relación sencilla entre suma $Divisores\ n\ y\ suma<math>Divisores\ (n-k)$ (para ningún k particular).

¿Qué sucede si construimos una funcion más general que nos facilita el trabajo?

sumaDivisoresHasta :: Integer -> Integer -> Integer

que devuelve la suma de los divisores de un número hasta cierto punto.

¿Una fácil?.. o no tanto

▶ sumaDivisores :: Integer → Integer que calcule la suma de los divisores un número.

Pregunta clave: ¿alcanza hacer recursión sobre n?

No hay ninguna relación sencilla entre suma $Divisores\ n\ y\ suma<math>Divisores\ (n-k)$ (para ningún k particular).

¿Qué sucede si construimos una funcion más general que nos facilita el trabajo?

sumaDivisoresHasta :: Integer -> Integer -> Integer

que devuelve la suma de los divisores de un número hasta cierto punto.

Ahora $\mathbf{s}\mathbf{i}$ existe una relación sencilla entre sumaDivisoresHasta n k y sumaDivisoresHasta n (k-1). ¿Por qué?

¿Una fácil?.. o no tanto

▶ sumaDivisores :: Integer → Integer que calcule la suma de los divisores un número.

Pregunta clave: ¿alcanza hacer recursión sobre n?

No hay ninguna relación sencilla entre suma $Divisores\ n\ y\ suma<math>Divisores\ (n-k)$ (para ningún k particular).

¿Qué sucede si construimos una funcion más general que nos facilita el trabajo?

sumaDivisoresHasta :: Integer -> Integer -> Integer

que devuelve la suma de los divisores de un número hasta cierto punto.

Ahora $\mathbf{s}\mathbf{i}$ existe una relación sencilla entre sumaDivisoresHasta n k y sumaDivisoresHasta n (k-1). ¿Por qué?

¿Una fácil?.. o no tanto

sumaDivisores :: Integer -> Integer que calcule la suma de los divisores un número.

Pregunta clave: ¿alcanza hacer recursión sobre n?

No hay ninguna relación sencilla entre suma $Divisores\ n\ y\ suma<math>Divisores\ (n-k)$ (para ningún k particular).

¿Qué sucede si construimos una funcion más general que nos facilita el trabajo?

```
sumaDivisoresHasta :: Integer -> Integer -> Integer
```

que devuelve la suma de los divisores de un número hasta cierto punto.

Ahora sí existe una relación sencilla entre sumaDivisoresHasta n k y sumaDivisoresHasta n (k-1). ¿Por qué?

Ejercicios

- ▶ Implementar una función sumaDivisoresHasta :: Integer -> Integer -> Integer.
- ▶ Implementar la función sumaDivisores en función de la anterior.

Ejercicios

Ejercicios

Un entero p > 1 es **primo** si ningún natural k tal que 1 < k < p divide a p.

- \blacksquare menorDivisor :: Integer -> Integer que calcule el menor divisor (mayor que 1) de un natural n.
- Implementar la función esPrimo :: Integer -> Bool.

Ejercicios (sumatorias dobles)

3 Implementar la siguiente función:

$$f(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} i^{j}$$

- Implementar una función sumaPotencias n m que sume todas las potencias de la forma q^a con $1 \le q \le n$ y $1 \le a \le m$.
- **I** Implementar una función sumaRacionales n m que sume todos los números racionales de la forma p/q con 1 y <math>1 < q < m.