ARITMÈTICA II

1. Troba el residu de dividir el nombre $(1! + 2! + 3! + \cdots + 99! + 100!)$ entre 18. Notau que, equivalentment, ens demanen trobar $(1! + 2! + 3! + \cdots + 99! + 100!)$ (mòd 18), o $[1! + 2! + 3! + \cdots + 99! + 100!]_{18}$.

Ajuda.

- El factorial d'un nombre n és el producte de tots els nombres enters positius d'1 fins a n. Per exemple $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$.
- Recorda que [a + b] = [a] + [b]. Per exemple $[17]_4 = [9 + 8]_4 = [9]_4 + [8]_4 = [5]_4 + [0]_4 = [1]_4$.
- Recorda que $[a \cdot b] = [a] \cdot [b]$. Per exemple, $[20]_4 = [4 \cdot 5]_4 = [4]_4 \cdot [5]_4 = [0]_4 \cdot [1]_4 = [0]_4$.
- 2. Empra l'algorisme extès d'Euclides per a trobar l'invers de [117] a \mathbb{Z}_{244} . Ajuda.
 - Empra l'algorisme per a trobar una identitat de Bezout per a 244 i 117.
 - Recorda que tot múltiple de 244 serà de la classe d'equivalència del 0 en \mathbb{Z}_{244} . És a dir, $[244 \cdot x]_{244} = [244]_{244} \cdot [x]_{244} = [0]_{244} \cdot [x]_{244} = [0]_{244}$.
- 3. Volem provar que $2^{50}+3^{50}$ és divisible per 13. Per a fer-ho, calcula primer qui és $\phi(13)$ i, desprès, aplica el teorema d'Euler.

Ajuda.

• Recorda que la ϕ d'Euler, $\phi(N)$ indica el nombre d'elements invertibles en \mathbb{Z}_N .