(19)日本国特許庁(JP)

....(12) 公開、特許公報 (A)

(11)特許出願公開番号

特開平11-69137

(43)公開日 平成11年(1999)3月9日

(51) Int.Cl. ⁶		識別記号		FΙ					
H04N	1/387			H04N	1/387				
G09C	1/00	630		G09C	1/00		630A		
		660					660D		
	5/00				5/00				
H04L	9/08			H04L	9/00		601A		
			審査請求	未請求 請	求項の数15	OL	(全 14 頁)	最終頁に続く	
(21)出願番号		特願平9-223930		(71)出願	人 000001	007			
					キヤノ	ン株式	会社		
(22)出顧日		平成9年(1997)8月20日			東京都大田区下丸子3丁目30番2号				
				(72)発明	者 岩村	恵市			
						大田区 式会社		30番2号 キヤ	
				(7A) (P 18	ノング 人 弁理士				
				(14)144	in hai	. 124//	~ -		
					•				

(54) 【発明の名称】 電子透かし方式、電子情報配布システムおよび画像ファイル装置

(57) 【要約】

【課題】 著作権に係るディジタルデータの不正コピー を確実に防止できる電子透かし方式を提供する。

【解決手段】 複数のエンティティ間で送受信されるディジタル情報(画像データG)に対して電子透かし情報の埋め込み処理を行うエンティティ(サーバ端末装置10)と、暗号処理を行うエンティティ(ユーザ端末装置20)とを別に設けることにより、サーバまたはユーザがディジタルデータを不正にコピーして配布を行った際にその不正行為を確実に認識することができるようにする。また、このシステムでは、サーバとユーザの利害は相反するので、両者が結託して不正することはあり得ず、ディジタルデータの不正配布に関して安全なシステムを実現できる。

【特許請求の範囲】

【請求項1】 電子透かし情報の埋め込まれたデータに 対して少なくとも暗号化および復号の一方の処理を行う ことを特徴とする電子透かし方式。

【請求項2】 電子透かし情報が埋め込まれ、且つ、暗 号化されたデータに対して、別の情報を更に電子透かし 情報として埋め込むことを特徴とする電子透かし方式。

【請求項3】 上記別の情報を更に電子透かし情報とし て埋め込むデータは、上記電子透かし情報が埋め込まれ た状態で暗号化されていることを特徴とする請求項2に 記載の電子透かし方式。

【請求項4】 上記暗号化とは異なる暗号化を施した後 上記別の情報を更に電子透かし情報として埋め込むこと を特徴とする請求項2または3に記載の電子透かし方 式。

【請求項5】 共通のデータに対して暗号化を行う前 と、当該暗号化を行う後に、互いに異なる情報をそれぞ れ電子透かし情報として埋め込むことを特徴とする電子 透かし方式。

【請求項6】 複数のエンティティを含むネットワーク システムで用いられる電子透かし方式であって、

上記複数のエンティティ間で送受信される暗号化された データに対して電子透かしを埋め込むエンティティと、 上記暗号処理およびそれに対応する復号処理を実行する エンティティとを別に有することを特徴とする電子透か

【請求項7】 上記データが画像データであることを特 徴とする請求項1~6の何れか1項に記載の電子透かし 方式。

【請求項8】 複数のエンティティからなるネットワー 30 クシステム上でディジタル情報の送受信を行う電子情報 配布システムにおいて、

上記ディジタル情報に対して電子透かし情報の埋め込み 処理を行う第1のエンティティと、

上記ディジタル情報に対して暗号処理およびそれに対応 する復号処理を行う第2のエンティティとを有すること を特徴とする電子情報配布システム。

【請求項9】 複数のエンティティからなるネットワー クシステムにおいて、第1のエンティティと第2のエン ティティとがディジタル情報の送受信を行う場合、

上記第1のエンティティは、上記第2のエンティティに より暗号化された情報を受け取り、電子透かし情報の埋 め込み処理を行って上記第2のエンティティに送信し、 上記第2のエンティティは、上記第1のエンティティよ り受け取った情報に上記暗号化に対する復号処理を行う ことを特徴とする電子情報配布システム。

【請求項10】 複数のエンティティからなるネットワ ークシステムにおいて、第1のエンティティと第2のエ ンティティとがディジタル情報の送受信を行う場合、 上記第1のエンティティは、第1の暗号化の前に電子透 50 てきている。そこで取引される商品として、例えば画像

かし情報の埋め込み処理を行って、得られた情報を上記 第2のエンティティに送信し、

上記第2のエンティティは、上記第1のエンティティよ り受け取った情報に第2の暗号化を行って、得られた情 報を上記第1のエンティティに送信し、

上記第1のエンティティは、上記第2のエンティティよ り受け取った情報に対して上記第1の暗号化に対する第 1の復号処理を行った後に電子透かし情報の埋め込み処 理を行って、得られた情報を上記第2のエンティティに 10 送信し、

上記第2のエンティティは、上記第1のエンティティよ り受け取った情報に対して上記第2の暗号化に対する第 2の復号処理を行うことを特徴とする電子情報配布シス テム。

【請求項11】 上記第1のエンティティが埋め込む電 子透かし情報は、上記第2のエンティティに関する情報 を含むことを特徴とする請求項8~10の何れか1項に 記載の電子情報配布システム。

【請求項12】 上記第1のエンティティが埋め込む電 20 子透かし情報は、送信するディジタル情報に関する情報 を含むことを特徴とする請求項8~11の何れか1項に 記載の電子情報配布システム。

【請求項13】 上記第1のエンティティは、認証局に よって発行される証明書付匿名公開鍵によって上記第2 のエンティティの署名を検証することを特徴とする請求 項8~12の何れか1項に記載の電子情報配布システ ム。

【請求項14】 暗号化されていた画像情報を復号して 得た画像情報と、暗号化された状態で付加され上記画像 情報と共に復号処理の施された電子透かし情報とを画像 データとして格納することを特徴とする画像ファイル装

【請求項15】 上記画像データとは別途、上記暗号化 に係わる鍵情報を格納することを特徴とする請求項14 に記載の画像ファイル装置。

【発明の詳細な説明】

【発明の属する技術分野】本発明は電子透かし方式、電 子情報配布システムおよび画像ファイル装置に関し、特 40 に、動画像データ、静止画像データ、音声データ、コン ピュータデータ、コンピュータプログラム等のディジタ ル情報における著作権を保護するための電子透かし技 術、それを用いてディジタル情報の配布を行うマルチメ ディアネットワークおよびそれを用いた画像ファイル装 置に用いて好適なものである。

[0002]

【従来の技術】近年のコンピュータネットワークの発達 と、安価で高性能なコンピュータの普及とにより、ネッ トワーク上で商品の売買を行う電子商取引が盛んになっ

等を含むディジタルデータが考えられる。しかし、ディジタルデータは、完全なコピーを容易かつ大量に作成できるという性質を持ち、これは、そのディジタルデータを買ったユーザがオリジナルと同質のコピーを不正に作成して再配布できるという可能性を示す。これにより、本来ディジタルデータの著作者または著作者から正当に販売を委託された者(以下、「販売者」と言う)に支払われるべき代価が支払われず、著作権が侵害されていると考えられる。

【0003】一方、著作者または販売者(以下、これらのディジタルデータを正当に配布する者をまとめて「サーバ」と言う)がユーザにディジタルデータを一度送ってしまうと、上述の不正コピーを完全に防止することはできない。そのため、不正コピーを直接防止するのではなく、電子透かしと呼ばれる手法が提案されている。この電子透かしとは、オリジナルのディジタルデータにある操作を加え、ディジタルデータに関する著作権情報やユーザに関する利用者情報をディジタルデータ中に埋め込むことによって、不正コピーが見つかった場合に誰がデータを再配布したのかを特定する手法である。

【0004】従来の電子透かしを用いたシステムでは、サーバは完全に信頼できる機関であることが前提となっている。よって、もしサーバが信頼できる機関ではなく不正を行う可能性があるとすると、従来のシステムでは不正コピーを行っていないユーザに罪が押し付けられてしまう場合が存在する。

【0005】これは、図10に示すように、従来のシステムでは、ユーザを特定するための利用者情報 d1をディジタルデータ(以下、ディジタルデータを画像データとして説明する)gにサーバが埋め込むので、サーバが勝手に利用者情報 d1を埋め込んでそのコピーを不正に配布した場合、その利用者情報 d1から特定されるユーザ(図10の例ではユーザU)は、サーバの主張を退ける手段がないためである。

【0006】その対策として、例えば、「B.Pfitmann a nd M.Waidner: "Asymmetic Fingerprinting," EUROCR YPT'96」の文献(以下、文献1と言う)に、公開鍵暗号方式を用いたシステム(図11)が提案されている。ここで、公開鍵暗号方式とは、暗号鍵と復号鍵が異なり、暗号鍵を公開、復号鍵を秘密に保持する暗号方式である。その代表例として、RSA暗号やE1Gama1暗号等が知られている。以下、公開鍵暗号方式における

(a)特徴、(b)秘密通信や認証通信等のプロトコルについて述べる。

【0007】(a)公開鍵暗号の特徴

- (1) 暗号鍵と復号鍵とが異なり、暗号鍵を公開できるため、暗号鍵を秘密に配送する必要がなく、鍵配送が容易である。
- (2) 各利用者の暗号鍵は公開されているので、利用者は各自の復号鍵のみ秘密に記憶しておけばよい。

(3)送られてきた通信文の送信者が偽者でないこと、 およびその通信文が改ざんされていないことを受信者が 確認するための認証機能を実現できる。

【0008】(b)公開鍵暗号のプロトコル例えば、通信文Mに対して、公開の暗号鍵kpを用いて行う暗号化操作をE(kp,M)とし、秘密の復号鍵ksを用いて行う復号操作をD(ks,M)とすると、公開鍵暗号アルゴリズムは、まず次の2つの条件を満たす。

- 【0003】一方、著作者または販売者(以下、これら 10 (1)暗号鍵kpが与えられたとき、暗号化操作E(kのディジタルデータを正当に配布する者をまとめて「サ p, M)の計算は容易である。また、復号鍵ksが与えーバ」と言う)がユーザにディジタルデータを一度送っ られたとき、復号操作D(ks, M)の計算は容易である。よれたとき、復号操作D(ks, M)の計算は容易である。
 - (2) もしユーザが復号鍵 k s を知らないなら、暗号鍵 k p と、暗号化操作 E (k p, M) の計算手順と、暗号 文 C = E (k p, M) とを知っていても、通信文 M を決定することは計算量の点で困難である。

【0009】次に、上記(1)、(2)の条件に加えて、次の(3)の条件が成立することにより秘密通信機 20 能が実現できる。

(3)全ての通信文(平文) Mに対し暗号化操作E(kp, M)が定義でき、

D(ks, E(kp, M)) = M

ィジタルデータ(以下、ディジタルデータを画像データ 【0010】一方、上記(1)、(2)の条件に加え として説明する)gにサーバが埋め込むので、サーバが 30 て、次の(4)の条件が成立することにより認証通信機 勝手に利用者情報 d 1 を埋め込んでそのコピーを不正に 能が実現できる。

(4)全ての通信文(平文)Mに対し復号操作D(ks, M)が定義でき、

E (kp, D (ks, M)) = M

が成立する。つまり、復号操作D(ks, M)の計算ができるのは秘密の復号鍵ksを持っている本人のみであり、他の人が偽の秘密の復号鍵ks'を用いてD(ks', M)の計算を行い、秘密の復号鍵ksを持っている本人になりすましたとしても、

40 $E(kp, D(ks', M) \neq M$ であるため、受信者は受けとった情報が不正なものであることを確認できる。また、D(ks, M) の値が改ざんされても、

E(kp, D(ks, M)') $\neq M$ となり、受信者は受けとった情報が不正なものであることを確認できる。

【0011】上述のような公開鍵暗号方式では、公開の暗号鍵(以下、公開鍵とも言う) kpを用いる処理E()を「暗号化」、秘密の復号鍵(以下、秘密鍵とも言う) 50 ksを用いる処理D()を「復号」と呼んでいる。したが

って、秘密通信では送信者が暗号化を行い、その後受信者が復号を行うが、認証通信では送信者が復号を行い、 その後受信者が暗号化を行うことになる。

【0012】以下に、公開鍵暗号方式により送信者Aから受信者Bへ秘密通信、認証通信、署名付秘密通信を行う場合のプロトコルを示す。ここで、送信者Aの秘密鍵をksA、公開鍵をkpAとし、受信者Bの秘密鍵をksB、公開鍵をkpBとする。

【0013】[秘密通信]送信者Aから受信者Bへ通信文 (平文) Mを秘密通信する場合は、次の手順で行う。

Step 1: 送信者Aは、受信者Bの公開鍵kpBで通信文Mを以下のように暗号化し、暗号文Cを受信者Bに送る。

C = E (kpB, M)

Step 2: 受信者 B は、自分の秘密鍵 k s B で暗号文 C を以下のように復号し、もとの平文 M を得る。

M=D (k s B, C)

なお、受信者Bの公開鍵kpBは不特定多数に公開されているので、送信者Aに限らず全ての人が受信者Bに秘密通信できる。

【0014】[認証通信]送信者Aから受信者Bへ通信文 (平文) Mを認証通信する場合は、次の手順で行う。

Step1:送信者Aは、自分の秘密鍵ksAで送信文Sを 以下のように生成し、受信者Bに送る。

S = D (k s A, M)

この送信文Sを「署名文」と言い、署名文Sを得る操作を「署名」と言う。

Step 2:受信者 Bは、送信者 Aの公開鍵 k p Aで署名文 Sを以下のように復元変換し、もとの平文 Mを得る。

M = E (kpA, S)

もし、通信文Mが意味のある文であることを確認したならば、通信文Mが確かに送信者Aから送られてきたことを認証する。送信者Aの公開鍵 k p A は不特定多数に公開されているので、受信者Bに限らず全ての人が送信者Aの署名文Sを認証できる。このような認証を「ディジタル署名」とも言う。

【0015】[署名付秘密通信]送信者Aから受信者Bへ通信文(平文) Mを署名付秘密通信する場合は、次の手順で行う。

Step 1:送信者Aは、自分の秘密鍵ksAで通信文Mを 40 以下のように署名し、署名文Sを作る。

S = D (k s A, M)

さらに、送信者Aは、受信者Bの公開鍵kpBで署名文Sを以下のように暗号化し、暗号文Cを受信者Bに送る。

C = E (kpB, S)

Step 2:受信者 B は、自分の秘密鍵 k s B で暗号文 C を以下のように復号し、署名文 S を得る。

S = D (k s B, C)

さらに、受信者Bは、送信者Aの公開鍵kpAで署名文 50 の押し付けが不可能になるだけである。

Sを以下のように復元変換し、もとの平文Mを得る。M=E(kpA, S)

もし、通信文Mが意味のある文であることを確認したならば、通信文Mが確かに送信者Aから送られてきたことを認証する。

【0016】なお、署名付秘密通信の各Step内における 関数を施す順序は、それぞれ逆転しても良い。すなわ ち、上述の手順では、

Step 1: C = E (kpB, D (ksA, M))

10 Step 2: M = E (kpA, D (ksB, C))

となっているが、下記のような手順でも署名付秘密通信 が実現できる。

Step1:C=D(ksA, E(kpB, M))

Step 2 : M = D (ksB, E (kpA, C))

【0017】以下に、上述のような公開鍵暗号方式を適用した従来の電子透かしを用いるシステム(上記図1

1) における操作の手順を示す。

1)まず、サーバとユーザ間で画像データgの売買に関する契約書d2を取り交わす。

0 【0018】2)次に、ユーザは、自分を示す乱数IDを発生させ、これを用いて一方向性関数fを生成する。この一方向性関数とは、関数y=f(x)において、xからyを求めることは容易だが、逆にyからxを求めることが困難な関数を言う。例えば、桁数の大きな整数に対する素因数分解や離散的対数等が一方向性関数としてよく用いられる。

3) 次に、ユーザは、契約書 d 2 と一方向性関数 f に対して、自分の秘密鍵 k s U を用いて署名情報 d 3 を生成し、それらを合わせてサーバに送る。

30 【0019】4)次に、サーバは、ユーザの公開鍵 k p Uを用いて署名情報 d 3 と契約書 d 2 を確認する。

5) サーバは確認後、現在までの全配布記録 d 4 と、ユーザが作成した乱数 I Dとを画像データ g に埋め込み、電子透かし付き画像データ (g+d4+ID) を生成する。

6) サーバは、ユーザにその電子透かし付き画像データ (g+d4+ID) を送る。

【0020】この後、不正コピーが発見された場合は、その不正画像データから埋め込み情報を抽出し、そこに含まれるIDからユーザを特定する。このとき、その不正コピーがサーバによって無断で配布されたものでないことは、以下のことを根拠として主張される。それは、ユーザを特定するIDはユーザ自身によって生成され、それを用いた一方向性関数値fにユーザの署名が付けられるので、サーバは任意のユーザに対してそのようなIDを生成できないということである。しかし、サーバとの間で正式に契約したユーザは自分を特定するIDをサーバに送るために、正式に契約したユーザへの罪の押し付けはやはり可能であり、契約していないユーザへの罪の押し付けばやはり可能であり、契約していないユーザへの罪の押し付けばかる可能になるだけである。

(5)

【0021】そこで、正式に契約したユーザにも罪の押 し付けが不可能になるシステム(図12)が、「三浦, 渡辺, 嵩(奈良先端大): "サーバの不正も考慮した電 子透かしについて", SCIS97-31C」の文献(以下、文献 2と言う)に提案されている。これは、サーバを原画像 サーバと埋め込みサーバに分割することによって実現さ れる。ただし、このシステムでは、暗号化時および復号 時において、埋め込まれた電子透かしは壊されないとし ている。以下、上記図12のシステムにおける操作の手 順を示す。

【0022】1)まず、ユーザが原画像サーバに所望の 画像データを、署名d5を付けて要求する。

2) 原画像サーバは、その要求内容をユーザの署名 d 5 から確認し、その確認後に、要求された画像データgを 暗号化して埋め込みサーバに送る。このとき、原画像サ ーバは、ユーザ名uおよび委託内容d6に対する署名を 付けて埋め込みサーバに送る。これと同時に、原画像サ ーパは、暗号化に対する復号関数f'をユーザに送る。

【0023】3) 埋め込みサーバは、送られてきた暗号 化画像データg'と、署名(u+d6)とを確認し、ユ ーザ名 u および委託内容 d 6 を基にユーザを特定する利 用者情報 d 7 の作成および埋め込みを行い、電子透かし 付き暗号化画像データ (g'+d7) を作成する。その 後、埋め込みサーバは、その電子透かし付き暗号化画像 データ (g'+d7) をユーザに送る。

4) ユーザは、原画像サーバから送られてきた復号関数 f'を用いて、電子透かし付き暗号化画像データ(g' +d7)を電子透かし付き画像データ(g+d7)へと 復号する。

【0024】この後、不正コピーが発見された場合は、 原画像サーバはその不正画像データを暗号化して埋め込 み情報を抽出し、それを埋め込みサーバに送る。埋め込 みサーバは、この埋め込み情報からユーザを特定する。 このシステムでは、原画像サーバはユーザを特定するた めの利用者情報 d 7 を画像データ g に埋め込んでおら ず、また、埋め込みサーバは復号関数 f' を知らない

(画像を元に戻せない) ので、正式に契約したユーザに 対しても、各サーバはユーザの利用者情報 d 7 を無断で 埋め込んだ画像データを不正配布できないことを根拠に している。

【0025】しかしながら、この図12のシステムで は、原画像サーバと埋め込みサーバとの結託については 考慮せず、埋め込みサーバとユーザとの結託も考えてい ない。よって、埋め込みサーバが原画像である画像デー タgの暗号化画像データg'を持ち、ユーザが復号関数 f'を持つため、原画像サーバと埋め込みサーバとが結 託した場合には、上述の図11のシステムと同様にサー バの不正が可能であるし、埋め込みサーバとユーザとが 結託した場合には、原画像の不正入手が可能である。

8

ザに送るが、ユーザの復号関数 f 'の管理が不十分であ れば、埋め込みサーバはユーザと結託しなくてもユーザ の不注意等から復号関数 f 'を知ることができる可能性 は大きい。

【0027】さらに、このシステムでは、原画像サーバ は埋め込み手段を有しない、または正しい埋め込みがで きないとしているが、埋め込み情報を抽出するのは原画 像サーバであるので、埋め込み情報を解析すれば、原画 像サーバが正しい埋め込みを行えるようになる可能性は 10 高いと考えられる。これは、埋め込みサーバは自分の署 名などを埋め込まないので、埋め込み情報と利用者情報 の対応のみが埋め込みサーバの秘密であるが、データベ ース等を用いた埋め込み情報と利用者情報のランダムな 対応ではなく、ある規則に基づいて利用者情報から埋め 込み情報が作成される場合、解析される危険性は大きい からである。そして、この場合、上述の図11のシステ ムと同様の不正が可能である。

[0028]

【発明が解決しようとする課題】本発明はこのような実 20 情に鑑みて成されたものであり、上述のようなサーバお よびユーザの不正を確実に防止できる電子透かし方式お よび電子情報配布システムを提供することを目的とす

[0029]

【課題を解決するための手段】本発明の電子透かし方式 は、電子透かし情報の埋め込まれたデータに対して少な くとも暗号化および復号の一方の処理を行うことを特徴 とする。

【0030】本発明の他の特徴とするところは、電子透 30 かし情報が埋め込まれ、且つ、暗号化されたデータに対 して、別の情報を更に電子透かし情報として埋め込むこ とを特徴とする。ここで、上記別の情報を更に電子透か し情報として埋め込むデータは、上記電子透かし情報が 埋め込まれた状態で暗号化されているものであっても良 い。また、上記暗号化とは異なる暗号化を施した後上記 別の情報を更に電子透かし情報として埋め込むようにし ても良い。

【0031】本発明のその他の特徴とするところは、共 通のデータに対して暗号化を行う前と、当該暗号化を行 40 う後に、互いに異なる情報をそれぞれ電子透かし情報と して埋め込むことを特徴とする。

【0032】本発明のその他の特徴とするところは、複 数のエンティティを含むネットワークシステムで用いら れる電子透かし方式であって、上記複数のエンティティ 間で送受信される暗号化されたデータに対して電子透か しを埋め込むエンティティと、上記暗号処理およびそれ に対応する復号処理を実行するエンティティとを別に有 することを特徴とする。以上の構成において、上記デー 夕は画像データであっても良い。

【0026】また、原画像サーバは復号関数 f'をユー 50 【0033】また、本発明の電子情報配布システムは、

複数のエンティティからなるネットワークシステム上で ディジタル情報の送受信を行う電子情報配布システムに おいて、上記ディジタル情報に対して電子透かし情報の 埋め込み処理を行う第1のエンティティと、上記ディジ タル情報に対して暗号処理およびそれに対応する復号処 理を行う第2のエンティティとを有することを特徴とす

【0034】本発明の他の特徴とするところは、複数の エンティティからなるネットワークシステムにおいて、 第1のエンティティと第2のエンティティとがディジタ ル情報の送受信を行う場合、上記第1のエンティティ は、上記第2のエンティティにより暗号化された情報を 受け取り、電子透かし情報の埋め込み処理を行って上記 第2のエンティティに送信し、上記第2のエンティティ は、上記第1のエンティティより受け取った情報に上記 暗号化に対する復号処理を行うことを特徴とする。

【0035】本発明のその他の特徴とするところは、複 数のエンティティからなるネットワークシステムにおい て、第1のエンティティと第2のエンティティとがディ ジタル情報の送受信を行う場合、上記第1のエンティテ ィは、第1の暗号化の前に電子透かし情報の埋め込み処 理を行って、得られた情報を上記第2のエンティティに 送信し、上記第2のエンティティは、上記第1のエンテ ィティより受け取った情報に第2の暗号化を行って、得 られた情報を上記第1のエンティティに送信し、上記第 1のエンティティは、上記第2のエンティティより受け 取った情報に対して上記第1の暗号化に対する第1の復 号処理を行った後に電子透かし情報の埋め込み処理を行 って、得られた情報を上記第2のエンティティに送信 し、上記第2のエンティティは、上記第1のエンティテ ィより受け取った情報に対して上記第2の暗号化に対す る第2の復号処理を行うことを特徴とする。

【0036】ここで、上記第1のエンティティが埋め込 む電子透かし情報は、少なくとも上記第2のエンティテ ィに関する情報および送信するディジタル情報に関する 情報の一方を含むものであっても良い。

【0037】また、ここで、好適には上記第1のエンテ ィティは、認証局によって発行される証明書付匿名公開 鍵によって上記第2のエンティティの署名を検証するよ うにする。

【0038】また、本発明の画像ファイル装置は、暗号 化されていた画像情報を復号して得た画像情報と、暗号 化された状態で付加され上記画像情報と共に復号処理の 施された電子透かし情報とを画像データとして格納する ことを特徴とする。ここで、上記画像データとは別途、 上記暗号化に係わる鍵情報を格納するようにしても良 61

[0039]

【発明の実施の形態】

〔第1の実施形態〕以下、本発明に係る第1の実施形態 50 という性質を持つものとする。以下、暗号化を「 ${f E}$

を、図1を参照して説明する。本発明に係る電子透かし 方式は、例えば、図1に示すようなシステム100によ り実施され、このシステム100は、本発明に係る電子 情報配布システムを適用したものでもある。

【0040】すなわち、システム100は、サーバ側の 端末装置(サーバ端末装置)10、ユーザ側の端末装置 (ユーザ端末装置) 20および検証局側の端末装置(検 証局端末装置)30を含む多数のエンティティ(図示せ ず) からなるネットワークシステムであり、各エンティ 10 ティは、ネットワークを介して互いにディジタルデータ の授受を行うようになされている。

【0041】サーバ端末装置10は、ユーザ端末装置2 0からのデータが供給される契約確認処理部11と、例 えば画像データ (ディジタルデータ) が供給される第1 の電子透かし埋め込み処理部12と、上記第1の電子透 かし埋め込み処理部12の出力が供給される1次暗号化 処理部13と、ユーザ端末装置20からのデータが供給 される1次復号処理部14と、ユーザ端末装置20から のデータおよび1次復号処理部14の出力が供給される 20 第2の電子透かし埋め込み処理部15と、上記第2の電 子透かし埋め込み処理部15の出力が供給されるハッシ ユ生成処理部16とを備えており、1次暗号化処理部1 3 およびハッシュ生成処理部16の各出力がユーザ端末 装置20に送信されるようになされている。また、第2 の電子透かし埋め込み処理部15の出力は、ハッシュ生 成処理部16に供給されるとともに、ユーザ端末装置2 0にも送信されるようになされている。

【0042】また、ユーザ端末装置20は、サーバ端末 装置10の契約確認処理部11に対してデータ送信する 契約生成処理部21と、署名生成処理部22と、サーバ 端末装置10の1次暗号化処理部13からのデータが供 給される2次暗号化処理部24と、サーバ端末装置10 の第2の電子透かし埋め込み処理部15からのデータが 供給される2次復号処理部25と、サーバ端末装置10 の1次復号処理部14からのデータが供給される2次復 号処理部25と、サーバ端末装置10の第2の電子透か し埋め込み処理部15およびハッシュ生成処理部16か らのデータが供給されるハッシュ確認処理部27とを備 えており、2次復号処理部25の出力が電子透かし付き 画像データとして出力されるようになされている。ま た、2次暗号化処理部24の出力は、サーバ端末装置1 0の1次復号処理部14に供給され、署名生成処理部2 3の出力は、サーバ端末装置10の第2の電子透かし埋 め込み処理部15に供給されるようになされている。

【0043】上述のようなシステム100では、方式や 秘密鍵等の1次暗号に関する情報はサーバだけが知る情 報であり、2次暗号に関する情報はユーザだけが知る情 報である。ただし、これらの暗号の間には、どちらの暗 号化を先に行っても復号を行うとその暗号は解かれる、

i ()」、復号を「Di ()」で表わし、電子透かしに 関する埋め込み処理を「+」で表わすものとする。

【0044】以下に、上記のように構成したシステム1 00の動作を説明する。まず、電子透かしに関する埋め 込み処理について説明する。

【0045】[埋め込み処理]

1)まず、ユーザ端末装置20において、ユーザが署名 を付けてサーバ端末装置10に所望の画像データを要求 する。この要求データは、契約生成処理部21により生 成された情報(ユーザの署名情報)であり、以下ではこ れを契約情報と呼ぶ。

【0046】2)次に、サーバ端末装置10において、 契約確認処理部11は、受信した契約情報をユーザの署 名から確認し、その確認後に、契約情報から利用者情報 Uを作成する。そして、第1の電子透かし埋め込み処理 部12は、上記契約確認処理部11で作成された利用者 情報 Uを要求された画像データ Gに埋め込む。また、1 次暗号化処理部13は、第1の電子透かし埋込処理部1 2で利用者情報Uが埋め込まれた画像データ (G+U) に対して1次暗号化処理E1()を行い、得られたデータ をユーザ端末装置20に送る。よって、ユーザ端末装置 20には、1次暗号化画像データE1(G+U)の情報 が送られることになる。

【0047】3)次に、ユーザ端末装置20において、 2次暗号化処理部24は、サーバ端末装置10から送ら れてきた1次暗号化画像データE1(G+U)に対して 2次暗号化を行い、得られた2次暗号化画像データE2 (E1(G+U))をサーバ端末装置10に送る。この とき、ユーザは、署名生成処理部22により自分の秘密 送る。

【0048】4)次に、サーバ端末装置10において、 1次復号処理部14は、ユーザ端末装置20から送られ てきた2次暗号化画像データE2 (E1 (G+U))の 1次暗号化を復号する。また、第2の電子透かし埋め込 み処理部15は、同じくユーザ端末装置20から送られ てきた署名情報Sを確認し、確認した署名情報Sを、上 記1次復号処理部14で生成されたE2(G+U)の情 報に埋め込み、ユーザ端末装置20に送る。また、ハッ シュ生成処理部16は、ユーザ端末装置20への送信デ ータE2(G+U)+Sに対するハッシュ値H1を生成 および署名し、上記送信データE2(G+U)+Sと共 にユーザ端末装置20に送る。よって、ユーザ端末装置 20には、E2(G+U)+Sの情報とハッシュ値H 1、およびその署名が送られることになる。

【0049】なお、ハッシュ値とは、一般にハッシュ関 数h()の出力値であり、ハッシュ関数とは衝突を起こし にくい圧縮関数をいう。ここで、衝突とは、異なる値x 1, x 2 c 対し T h (x 1) = h (x 2) となることで 12

をある長さのビット列に変換する関数である。したがっ て、ハッシュ関数とは、任意のビット長のビット列をあ る長さのビット列に変換する関数 h()で、h(x1)= h(x2) を満たす値x1, x2を容易に見出せないも のである。このとき、任意の値yからy=h(x)を満 たす値xを容易に見出せないので、必然的にハッシュ関 数は一方向性関数となる。このハッシュ関数の具体例と しては、MD (Message Digest) 5やSHA (Secure H ash Algorithm) 等が知られている。

【0050】5)次に、ユーザ端末装置20において、 ハッシュ確認処理部27は、サーバ端末装置10から送 られてきたハッシュH1とその署名とを確認し、上記ハ ッシュ値H1と、E2 (G+U) +Sの情報から生成さ れるハッシュ値とが一致することを確認する。そして、 その確認後に上記E2 (G+U) +Sの情報およびハッ シュ値H1とその署名を保存する。さらに、2次復号処 理部25は、サーバ端末装置10から送られてきたE2 (G+U) +Sの情報の2次暗号化を復号して電子透か し付き画像データGWを取り出す。よって、電子透かし 20 付き画像データGwは、Gw=G+U+D2(S)と表 わされる。これは、元の画像データGに利用者情報Uと 2次暗号の影響を受けた署名情報 S とが透かし情報とし て埋め込まれていることを示す。

【0051】以上のように、本実施形態による電子透か し方式によれば、電子透かし情報の埋め込みは全てサー バ側で行うので、ユーザは基本的に不正をすることがで きない。サーバ側では、ユーザ側から署名情報Sを直接 受け取ってそれを電子透かし情報として埋め込むが、上 記埋め込み処理中の5)の変換手順によってユーザ端末 鍵を用いて署名情報Sを生成し、サーバ端末装置10に *30* 装置20で得られた署名情報D2(S)は、ユーザのみ が知る2次暗号化の影響を受けたものであるので、サー バは署名情報D2(S)を直接原画像に埋め込んでユー ザに罪を着せることはできない。

> 【0052】そこで、不正コピー(不正画像)が発見さ れた場合は、以下のような検証処理によって不正者の特 定を行う。ただし、ここでは上述の文献1、文献2と同 様に、画像データは透かし情報の変形および消去を受け ないものとする。

【0053】[検証処理]

- 40 1)まず、サーバ端末装置10において、発見した不正 画像Gw'=G+U'+D2(S')から利用者情報 U'を抽出する。
 - 2) サーバ端末装置10は、不正画像GW'と抽出した 利用者情報ひ、とを検証局30に示し、ユーザへの検査 を要求する。
 - 3)検証局30は、ユーザが保存している2次暗号の鍵 の提出を求め、提出された暗号鍵を使って不正画像G w'を2次暗号化することにより、署名情報S'の抽出 を行う。
- ある。また、圧縮関数とは、任意のビット長のビット列 50 【0054】4)ここで、正しい署名情報が抽出された

場合 (S'=Sの場合) には、ユーザの不正と認定する。

【0055】6)ここで、正しい電子透かし付き画像テータが取り出せなかった場合は、ユーザの不正と認定する。これは、上記検証処理中の3)の手順で提出された2次暗号の鍵が正しくないことを意味する。

7) 一方、正しい電子透かし付き画像データが取り出せた場合は、サーバの不正と認定する。

以上の検証処理の手順から明らかなように、検証局30の端末装置は、ユーザ端末装置20内の2次暗号化処理部24、2次復号処理部25、ハッシュ確認処理部27と同様の処理機能を有している。

【0056】以上のことにより、本実施形態によれば、サーバとユーザの利害は相反するので両者の結託はありえない。これにより、ユーザが正しい署名情報を埋め込まなかった場合、検証処理によって再現画像からそれが検出されるので、ユーザは不正をすることができない。また、サーバは、ユーザ側での2次暗号化の影響を受けた署名情報を埋め込み処理において知ることはできないので、サーバも不正をすることができない。さらに、検証局は、不正画像が発見されるまでは必要なく、不正画像発見以前に不正を行うことはできない。

【0057】なお、上記の検証処理の手順が公知で、ユーザとサーバとが互いにその結果を見届けあうならば、 検証局はなくても各場合に応じてユーザとサーバの不正 は特定することができる。

【0058】 (第2の実施形態) 近年、電子現金と呼ばれるネットワーク上の通貨が実現されつつある。この電子現金は、通常の現金と同様に所有者の名前が記されないので、匿名性が実現されている。もし、匿名性が実現されない場合、商品の売り手は、電子現金から誰がどの商品を購入したかという情報を知ることができ、ユーザのプライバシーが犯されることになる。このため、上述した電子透かしによる著作者の著作権保護と同様に、ユーザのプライバシー保護の実現は重要である。

【0059】そこで、この第2の実施形態では、購入時にはユーザの匿名性が実現され、画像の不正配布のような不正が発見されたときには、電子透かしの本来の目的である不正配布者の特定が行えるようにする。これは、

4

例えば、図2に示すようなシステム200により実現される。このシステム200は、上述した第1の実施形態におけるシステム100と同様の構成としているが、ユーザ端末装置20には、認証局40からの匿名公開鍵証明書が与えられる構成としている。

【0060】通常、署名情報を検査する公開鍵には、その正当性を証明するために認証局と呼ばれる機関による証明書が付されていることが多い。この認証局とは、公開鍵暗号方式におけるユーザの公開鍵の正当性を保証するために、ユーザの公開鍵に証明書を発行する機関を言う。すなわち、認証局は、ユーザの公開鍵やユーザに関するデータに認証局の秘密鍵で署名を施すことによって即書を作成し、発行する。あるユーザから自分の証明書付き公開鍵を送られた他のユーザは、この証明書を認証局の公開鍵で検査することによって、公開鍵を送ってきたユーザの正当性(少なくとも、認証局によって認められたユーザであるということ)を認証する。このような認証局を運営している組織として、VeriSignやCyberTrustという企業がよく知られている。

【0061】よって、上述した第1の実施形態で述べた 埋め込み処理中の2)の手順においてサーバがユーザの 契約情報を署名から確認する場合、図2の認証局40の 証明書付きの公開鍵で確認することが考えられる。しか しながら、この証明書には通常、公開鍵の所有者の名前 が記されている。よってこの場合、データの購入時にお けるユーザの匿名性は実現されていないことになる。

【0062】これに対して、公開鍵とその所有者との対応を認証局40が秘密に保持すれば、公開鍵の証明書に所有者の名前を記さないこともできる。このような匿名30性を有する公開鍵の証明書を、以後「匿名公開鍵証明書」と呼び、そのような証明書付きの公開鍵を「証明書付き匿名公開鍵」と呼ぶ。そこで、ユーザ端末装置20は、上述した埋め込み処理中の1)の手順において、契約情報と一緒に契約情報の署名、および署名情報Sを検査するための証明書付き匿名公開鍵を送れば、ユーザはディジタルデータの購入時に自分を匿名にすることができる。

【0063】よって、サーバ端末装置10には、利用者を特定する情報として証明書付き匿名公開鍵が渡されるが、不正コピーの発見時には、その証明書付き匿名公開鍵を認証局40に示してその公開鍵に対応するユーザを教えてもらうことによって、ユーザを特定することができる。以上のことから、上述した第1の実施形態で述べた埋め込み処理中の1),2)の手順と、検証処理中の1),2)の手順とを以下のように変えることにより、ユーザのディジタルデータ購入時の匿名性と不正発見時の不正者特定との両方を実現することができる。

【0064】以下、上記図2のシステム200における 埋め込み処理、および検証処理について具体的に説明す 50 る。なお、上記図2のシステム200において、上記図

1のシステム100と同様に動作する箇所には同じ符号 を付し、その詳細な説明は省略し、異なる部分について のみ具体的に説明するものとする。また、埋め込み処理 の1)、2)と検証処理の1)、2)以外については、 上述した第1の実施の形態と同様であるため、その詳細 な説明は省略する。

【0065】[埋め込み処理]

1)まず、ユーザ端末装置20において、契約生成処理 部21は、認証局40で発行された証明書付き匿名公開 鍵と一緒に、所望の画像データを要求する契約情報をそ の公開鍵に対応する署名を付けてサーバ端末装置10に

【0066】2)次に、サーバ端末装置10において、 契約確認処理部11は、ユーザの公開鍵を認証局40の 公開鍵によって検査するとともに、契約情報の署名をユ ーザの匿名公開鍵から確認し、その確認後に、少なくと も契約情報および証明書付き匿名公開鍵の一方から利用 者情報 Uを作成する。そして、第1の電子透かし埋め込 み処理部12により上記契約確認処理部11で作成され た利用者情報Uを要求された画像データGに埋め込んだ 後、1次暗号化処理部13により1次暗号化処理E1() を行い、得られたデータをユーザ端末装置20に送る。 よって、ユーザ端末装置20には、1次暗号化画像デー 夕E1(G+U)の情報が送られる。以降、上述した第 1の実施形態における埋め込み処理の3)~5)と同様 の処理を行う。

【0067】[検証処理]

1) サーバ端末装置10は、発見した不正画像Gw'か ら利用者情報 ひ'を抽出し、その抽出した利用者情報 示し、その匿名公開鍵に対応するユーザ名を聞く。 2) サーパ端末装置10は、不正画像GW'と抽出した

利用者情報U'、およびユーザ名を検証局30に示し、 ユーザへの検査を要求する。

そして、上述した第1の実施形態における検証処理の 3) ~ 7) と同様の処理を行う。

【0068】以上述べたように、第2の実施形態によれ ば、ユーザはディジタルデータの購入時において検証局 に対しても匿名性が保つことができる。

【0069】上述の第1および第2の実施形態に示した 画像データ、および透かし情報の埋め込み処理によって 得られるハッシュ値を含む種々のデータは、以下のよう な画像フォーマットで格納することができる。例えば、 下記の一般的な画像フォーマットでは、各段階で送付さ れる画像データを画像データ部に格納し、それに対応す るハッシュ値やその署名などを画像ヘッダ部に格納する ことができる。また、最終的にユーザが保存しておく必 要があるハッシュ値およびその署名や、2次暗号の鍵等 を画像ヘッダ部に、電子透かし付き画像データを画像デ ー夕部に格納しておくことができる。

【0070】一方、下記に示すFlashPixTMファイルフォ ーマットでは、上記のようなハッシュ値やその署名を含 む一般的な画像フォーマットを各階層のデータとして格 納することができる。また、ハッシュ値やその署名など は、属性情報としてプロパティセットの中に格納してお くこともできる。

【0071】まず、一般的な画像フォーマットについて 説明する。一般的な画像フォーマットでは、図3に示す ように、画像ファイルは画像ヘッダ部と画像データ部と 10 に分けられる。

【0072】一般的に画像ヘッダ部には、その画像ファ イルから画像データを読み取るときに必要な情報や、画 像の内容を説明する付帯的な情報が格納される。図3の 例では、その画像フォーマット名を示す画像フォーマッ ト識別子、ファイルサイズ、画像の幅・高さ・深さ、圧 縮の有無、解像度、画像データの格納位置へのオフセッ ト、カラーパレットのサイズなどの情報が格納されてい る。一方、画像データ部は、画像データを順次格納して いる部分である。このような画像フォーマットの代表的 20 な例としては、Microsoft 社のBMPフォーマットやCo mpuserve社のGIFフォーマットなどが広く普及してい る。

【0073】次に、FlashPixTMファイルフォーマットに ついて具体的に説明する。以後説明するFlashPixTM(Fl ashPixは米国Eastman Kodak 社の登録商標) ファイルフ ォーマットでは、上記画像ヘッダ部に格納されていた画 像属性情報および画像データ部に格納されていた画像デ ータを、更に構造化してファイル内に格納する。この構 造化した画像ファイルを、図4および図5に示す。ファ U'と契約情報から分かる匿名公開鍵とを認証局40に 30 イル内の各プロパティやデータには、MS-DOSのデ ィレクトリとファイルに相当する、ストレージとストリ ームによってアクセスする。上記図4、図5において、 影付き部分がストレージで、影なし部分がストリームで ある。画像データや画像属性情報はストリーム部分に格 納される。

> 【0074】図4において、画像データは異なる解像度 で階層化されており、それぞれの解像度の画像をSubima geと呼び、Resolution O, 1, …, n で示してある。各 解像度の画像に対して、その画像データを読み出すため に必要な情報がSubimage Header に、また画像データが Subimage data に格納される。プロパティセットとは、 属性情報をその使用目的や内容に応じて分類して定義し たものであり、Summary info. Property Set、Image in fo. Property Set, Image Content Property Set, Exte ntion list property Set がある。

【0075】[各プロパティセットの説明]Summary inf o. Property Setは、FlashPix特有のものではなく、Mic rosoft 社のストラクチャードストレージでは必須のプ ロパティセットで、そのファイルのタイトル・題名・著 50 者・サムネール画像等を格納する。また、Comp Obj. St

reamには記憶部 (Strage) に関する一般的な情報が格納される。

【0076】Image Content Property Setは、画像データの格納方法を記述する属性である(図6参照)。この属性には、画像データの階層数、最大解像度の画像の幅や高さ、それぞれの解像度の画像についての幅、高さ、色の構成、あるいはJPEG圧縮を用いる際の量子化テーブル・ハフマンテーブルの定義などを記述する。Extention list property Set は、上記FlashPixの基本仕様に含まれない情報を追加する際に使用する領域である。さらに、ICC Profile の部分には、ICC (International Color Consortium) において規定される色空間変換のための変換プロファイルが記述される。

【0077】また、Image info. Property Setは、画像データを使用する際に利用できる様々な情報、例えば、その画像がどのようにして取り込まれ、どのように利用可能であるかの下記のような情報を格納する。

・ディジタルデータの取り込み方法/あるいは生成方法 に関する情報

- ・著作権に関する情報
- ・画像の内容(画像中の人物、場所など)に関する情報
- ・撮影に使われたカメラに関する情報
- ・撮影時のカメラのセッティング (露出、シャッタース ピード、焦点距離、フラッシュ使用の有無など) の情報 ・ディジタルカメラ特有の解像度やモザイクフィルタに 関する情報
- ・フィルムのメーカ名、製品名、種類 (ネガ/ポジ、カラー/白黒)等の情報
- ・オリジナルが書物や印刷物である場合の種類やサイズ に関する情報
- ・スキャン画像の場合、使用したスキャナやソフト、操 作した人に関する情報

【0078】図5のFlashPix Image View Objectは、画像を表示する際に用いるピューイングパラメータと画像データとを合わせて格納する画像ファイルである。ピューイングパラメータとは、画像の回転、拡大/縮小、移動、色変換、フィルタリングの処理を画像表示の際に適応するために記憶しておく処理係数のセットである。この図5において、Global info. Property Set の部分には、ロックされている属性リストが記述されており、例えば、最大画像のインデックスや最大変更項目のインデックス、最終修正者の情報などが記述される。

【0079】また、同図において、Source/Result FlashPix Image Object は、FlashPix画像データの実体であり、Source FlashPix Image Objectは必須で、Result FlashPix Image Objectはオプションである。Source FlashPix Image Objectはオリジナルの画像データを、Result FlashPix Image Objectはピューイングパラメータを使って画像処理した結果の画像データをそれぞれ格納する。

【0080】また、Source/Result desc. Property Set は、上記画像データの識別のためのプロパティセットであり、画像 I D、変更禁止のプロパティセット、最終更新日時等を格納する。Transform Property Setは、画像の回転、拡大/縮小、移動のためのAffine変換係数、色変換マトリクス、コントラスト調整値、フィルタリング係数を格納している。

【0081】次に、画像データの取り扱いについて説明する。ここでは、複数のタイルに分割された複数の解像10度の画像を含む画像フォーマットを例に挙げて説明する。図7に、解像度の異なる複数の画像から構成される画像ファイルの例を示す。この図7において、最大解像度の画像は列×行がX0×Y0で構成されており、その次に解像度の大きい画像はX0/2×Y0/2であり、それ以降順次、列・行ともに1/2ずつ縮小し、列・行ともに64画素以下あるいは互いに等しくなるまで縮小されていく。

【0082】このように画像データを階層化した結果、画像の属性情報として「1つの画像ファイル中の階層 数」や、それぞれの階層の画像に対して、一般的な画像フォーマットの項で説明したヘッダ情報と画像データとが必要となる(図3参照)。1つの画像ファイル中の階層の数や最大解像度の画像の幅、高さ、あるいはそれぞれの解像度の画像の幅、高さ、色構成、圧縮方式等に関する情報は、上記ImageContent Property Set中に記述される(図6参照)。

【0083】さらに、各解像度のレイヤの画像は、図8に示すように64画素×64画素でなるタイル毎に分割されている。画像の左上部から順次64画素×64画素30のタイルに分割をすると、画像によっては右端および下端のタイルの一部に空白が生ずる場合がある。この場合は、それぞれ最右端画像または最下端画像を繰り返し挿入することで、64画素×64画素を構築する。

【0084】FlashPixTMでは、それぞれのタイル中の画像データをJPEG圧縮、シングルカラー、非圧縮のいずれかの方法で格納する。JPEG圧縮は、ISO/IECJTC1/SC29により国際標準化された画像圧縮方式であり、方式自体の説明はここでは割愛する。また、シングルカラーとは、上記1つのタイルがすべて同じ色で構成されている場合にのみ、個々の画素の値を記録することなく、そのタイルの色を1色で表現する方式である。この方法は特に、コンピュータグラフィックスにより生成された画像で有効である。

【0085】このようにタイル分割された画像データは、例えば図4のSubimage data ストリーム中に格納され、タイルの総数、個々のタイルのサイズ、データの開始位置、圧縮方法はすべてSubimage Header に格納されている(図9参照)。

【0086】 [その他の実施形態] 以上に述べた第1お 50 よび第2の実施形態において、透かし情報の埋め込み

は、種々の手法によって実現できるが、例えば、「清 水、沼尾、森本(日本 I B M): "ピクセルブロックに よる静止画像データハイディング",情報処理学会第5 3回全国大会, IN-11, 平成8年9月」の文献や、「I. J. Cox, J. Kilian, T. Leighton and T. shamoon (NEC)

: "Sucure Spread Spectrum Watermarking forMultim edia, "NEC Reserch Institure Technical Report 95-10.」の文献に示されるような公知の埋め込み手法に よって実現できる。

【0087】また、1次暗号、2次暗号として用いられ 10 る暗号方式も種々の方式によって実現できるが、例えば ビットの配置を暗号鍵に応じて換えるといった暗号方式 によって実現できる。また、全ての送信データにハッシ ュ値とその署名を付けて送ることもできる。さらに、1 次暗号と2次暗号は、透かし情報の埋め込み処理におい てサーバ側とユーザ側とで互いの情報を知らせないため に用いられるが、第三者からの通信路上での盗聴および 改ざんを防ぐために、別にDES(Data Encryption St andard) 等の暗号やハッシュ関数等を用いても良い。

【0088】また、上述の第1および第2の実施形態に おいて、不正配布の検出はサーバ側が行っているが、1 次暗号または2次暗号に関する秘密鍵を知らなくても電 子透かしの抽出手段さえ持っていれば、誰にでも不正配 布および不正配布の利用者情報を知ることができる。そ の後、不正配布発見をサーバ側に知らせて検証処理を始 めさせれば良いので、不正配布の発見者はサーバに限定 されない。

【0089】また、サーバ端末装置10は、利用者情報 Uだけでなく、必要に応じて著作権情報やその画像デー 夕の配布状況に関する情報等の他の情報を画像データに 埋め込むこともできる。また、サーバ端末装置10で秘 密の情報を埋め込みたい場合は、1次暗号化の後に埋め 込み処理を行えば、署名情報と同様に1次暗号の影響を 受けた情報を埋め込むことができる。さらに、利用者情 報Uは、必ず1次暗号化の前にある必要はなく、1次暗 号化の後に埋め込んでもよい(この場合、利用者情報U の検出は、サーバまたは1次暗号の秘密鍵を知る者のみ が行える)。

【0090】また、ユーザが複数のユーザ間で共通のプ リンタや端末等を用いるユーザである場合、ユーザの署 名情報および2次暗号は、プリンタや共通端末の署名情 報や暗号方式を含む場合がある。また、サーバ端末装置 10からの1次暗号化情報は、ユーザ端末装置20から の契約情報による依頼がなくても、ネットワークやCD -ROM等によって広く配布されていても良い。

【0091】また、ユーザの署名情報Sは、公開鍵暗号 方式によって生成されなくても、ユーザが契約情報等で 定めた情報(暗証番号のような情報)等でも良い。ま た、米国では40ピット以上の暗号を用いる場合、暗号 の悪用を防ぐために暗号鍵を管理する鍵管理局を必要と 50 10 サーバ端末装置

する。そこで、検証局30に鍵管理局を兼ねさせること も可能である。よって、検証局30が2次暗号の鍵をあ らかじめ管理している場合には、不正画像の監視も検証 局30が行えば、検証処理1)~3)は検証局30が単 独で行うことができる。サーバ端末装置10での1次暗 号の鍵は、同じ検証局30によって管埋されていてもよ いし、他の鍵管理局によって管理されていてもよい。ま た、サーバ端末装置10やユーザ端末装置20の鍵は、 鍵管理局が生成し、配布してもよい。

[0092]

【発明の効果】上述の説明から明らかなように、本発明 の電子透かし方式および電子情報配布システムによれ ば、ディジタルデータを不正にコピーして配布を行った 際にその不正行為および不正行為者を確実に認識するこ とができ、これによって不正を確実に防止することが可 能となり、ディジタルデータの不正配布に関して安全な システムを実現することができる。また、上記電子透か し方式を用いて電子透かしを埋め込んだ画像データをフ ァイルできる画像ファイル装置で、特に埋め込まれた電 20 子透かし情報を比較的容易に確認することのできる画像 ファイル装置を得ることができる。さらに、このシステ ムによってユーザの匿名性や暗号の悪用を防ぐ鍵管理局 への応用も容易に実現できる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態を示した電子透かしシ ステムを説明するための図である。

【図2】本発明の第2の実施形態を示した電子透かしシ ステムを説明するための図である。

【図3】一般的な画像フォーマットを示す図である。

【図4】FlashPixTMファイルフォーマットの例を示す図

【図5】FlashPixTMファイルフォーマットの例を示す図 である。

【図 6】 FlashPixTMファイルフォーマットのImage Cont ent Property Setに格納される属性情報を示す図であ

【図7】それぞれ解像度の異なる複数の画像から構成さ れる画像ファイルの例を示す図である。

【図8】各解像度のレイヤの画像のタイル分割の様子を 40 示す図である。

【図9】タイル分割された画像データに関する属性情報 を示す図である。

【図10】従来の電子透かしシステムを説明するための 図である。

【図11】図10に示す方式を改良した従来の電子透か しシステムを説明するための図である。

【図12】図11に示す方式を改良した従来の電子透か しシステムを説明するための図である。

【符号の説明】

- 11 契約確認処理部
- 12 第1の電子透かし埋め込み処理部
- 13 1次暗号化処理部
- 14 1次復号処理部
- 15 第2の電子透かし埋め込み処理部
- 16 ハッシュ生成処理部
- 20 ユーザ端末装置
- 2 1 契約生成処理部

- 22 署名生成処理部
- 24 2次暗号化処理部
- 25 2次復号処理部
- 27 ハッシュ確認処理部
- 30 検証局端末装置
- 40 認証局端末装置
- 100 電子情報配布システム
- 200 電子情報配布システム

【図1】

[図3]

【図5】

【図8】

【図2】

【図6】

プロパティ名	Dコード	タイプ	
画像データの階層数	0x01000000	VT_UL4	
最大解像度の画像の幅	0x01000002	VT_UI4	
最大解像度の画像の高さ	0x01000003	VT_UI4	
初期表示の高さ	0x01000004	VT_R4	
初期表示の幅	0x01000005	VT_R4	

プロパティ名	א-כסו	タイプ
各解像度の画像の幅	0x02ii0000	VT_UI4
各解像度の画像の高さ	0x02ii0001	VT_UI4
各解像度の画像の色	0x02ii0002	VT_BLOB
各解像度の画像を数値で 表わしたフォーマット	0x02ii0003	VT_UI4 VT_VECTOR

プロパティ名	ID3-K	タイプ		
JPEGテーブル	0x03ii0001	VT_BLOB		
量大JPEGテーブルのインデックス	0x03000002	VT_UI4		

【図7】

ICC profile

【図9】

フィールド名	長さ	バイト
画像の幅	4	4-7
画像の高さ	4	8-11
タイルの段数	4	12-15
タイルの幅	4	16-19
タイルの高さ	4	20-23

X0/8 @#Y0/8

[図10]

【図11】

【図12】

フロントページの続き

(51) Int. Cl. 6		識別記号	FΙ		
H 0 4 L	9/32		H 0 4 L	9/00	675D
H 0 4 N	7/08		H 0 4 N	7/08	Z
	7/081				

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.