合 肥 工 业 大 学 试 卷 (A 、 B √)

20~20 学年第学期 课程代码	课程名称	学分课程性质:必修	多 □选修 □、限修 □ 考	试形式:开卷 □闭卷 □
专业班级(教学班)	考试日期 命题	教师 系(所或	(教研室) 主任审批签名	张炳武
(1) 构造识别正规式 10 (0 11) 0*1 的极小化	DFAM (需写过程)。(10 分)		1	
(2) (a) 给出接受可被 5 整除的二进制串集 (不 (b) 给出产生可被 5 整除的二进制串集 (不 (c) 针对你写的文法 GO,写一个翻译方案		2. 1,	.file "c5.c" .text .globl f	.section .rodata .LC0: .string "%d\n"
(3) (a) 针对文法 G1, 写一个语法制导定义, (b) 删除文法 G1 中的左递归; (5分) (c) 给出递归下降分析程序。(10分) 文法 G1, L为开始符号 L → R a T b a R → a b a c a l T → b b c b c	ş.	*y += 2; x += 3; return x+*y+**z; } int main() { int **a, *b,c=4; a = &b b = &c	.type f,@function f: pushl %ebp movl %esp, %ebp movl 16(%ebp), %eax movl (%eax), %edx movl 16(%ebp), %eax movl (%eax), %eax movl (%eax), %eax	.text .globl main .type main,@function main: pushl %ebp movl %esp, %ebp subl \$24, %esp andl \$-16, %esp movl \$0, %eax
(4) 文法 G2 和 G3 中有一个是二义性文法,另一 (a) 针对其中的二义性文法,用串 aabbab (b) 针对其中的文法 G3,给出读过活前缀分)	W W W	printf("%d\n", f(c,b,a)); return 0; }//第(6)题 C 程序	incl %eax movl %eax, (%edx) movl 12(%ebp), %edx movl 12(webp), %eax movl (%eax), %eax addl \$2, %eax	subl %eax, %esp movl \$4, -12(%ebp) leal <u>\$\hat{\text{\text{\$\sigma}}}\$, %eax movl %eax, _\text{\text{\$\sigma}}\$</u>
文法 G2, S为开始符号。 S → a B S b A S S → 注: 此为空产生式 A → a b A A B → b a B B	文法 G3, S 为开始符号。 S → a B b A S → 注: 此为空产生式 A → a S b A A B → b S a B B	(a)C程序输出结果如何? (3分) (b)补全12个下划线处的	movl %eax, (%edx) addl \$3, 8(%ebp) movl 12(%ebp), %eax movl <u> </u>	subl \$8, %esp subl \$12, %esp pushl \$\overline{\phi}\$ pushl \$\overline{\phi}\$
(5) 给出以下C程序片段的三地址代码(假设相		空自汇编代码。(12分)	addl	pushl call f addl \$24, %esp pushl %eax
<pre>for(i=2;i<n;i++) d[j[r]]="" r="k;" while(="" {=""> D[j] { if(D[J[r]] <= D[i] && D[: for(m=k; m > r+1; m J[r+1] = i; k = k </n;i++)></pre>	n) J[m+1] = J[m];		leave ret //第(6)题函数 f 的汇编代码	pushl \$.LC0 call printf addl \$16, %esp movl \$0, %eax leave ret
} // 第 (5) 題 C程序片段				//第(6)题 //函数 main 的汇编代码

合肥工业大学试卷(A、B√)

20~20 学年第学期 课程代码	课程名称	学分i	课程性质:必修	□选修 □、	限修 🗌 🔻	試形式:开卷	
专业班级(教学班)	考试日期	命题教师	系(所或教	(研室) 主任	和签名_	张炳武	

参考解答:

(1)

首先,构造识别正规式 10 | (0 | 11) 0*1 的 NFA,如下:

然后,由子集构造法得到 DFA:

输入 状态子集	0	1
{0}	{3}	{1,2}
{3}	{3}	{4}
{1,2}	{4}	{3}
{4}		

最后,通过极小化,得到最终 DFA:

. .

(b) 识别同样串集的 CFG G0,如下: 设状态 S 对应非终结符 S,状态 0~4,分别对应非终结符 A~E。

 $S{\to}0\,A\,|\,1\,B$

A→0 A | 1 B

A→ 注: 此为空产生式

B→0C|1D

C→0E|1A

D→0B|1C

E→0D|1E

(c) 针对文法 GO,翻译方案如下:

继承属性 i 表示在读新串前、已读入的二进制串的(十进制)值;综合属性 s 表示读入新串后、所有读入的二进制串的(十进制)值。

S=0 {A.i = 0;}A{print(A.s);} | 1 {B.i = 1;} B {print(B.s);}

 $A \! \to \! 0 \; \{A_1.i = 2*A.i;\} \\ A_1\{A.s = A_1.s;\} \; | \; 1 \; \{B.i = 2*A.i + 1;\} \; B \; \{A.s = B.s\}$

A→ {A.s=A.i;} 注: 此为空产生式

 $B \rightarrow 0 \{C.i = 2*B.i;\} C\{B.s = C.s;\} | 1 \{D.i = 2*B.i + 1;\} D\{B.s = D.s;\}$

 $C \rightarrow 0 \{E.i = 2*C.i;\} E \{C.s = E.s;\} | 1 \{A.i = 2*C.i + 1;\} A \{C.s = A.s;\}$

 $D \rightarrow 0 \{B.i = 2*D.i\} B \{D.s = B.s;\} | 1 \{C.i = 2*D.i + 1;\} C \{D.s = C.s;\}$

 $E \rightarrow 0 \{D.i = 2*E.i;\} D \{E.s = D.s;\} | 1 \{E_1.i = 2*E.i + 1;\} E_1 \{E.s = E_1.s;\}$

(3)

(a) 语法制导定义如下:

肥 工 业 大 学 试 卷(A、B√)

20~20 学年第学期 课程代码_	课程名称	学分	_课程性质:必修 □选/	修 □、限修 □:	考试形式:开卷	□闭卷 □	
专业班级(教学班)	考试日期	命题教师	系(所或教研室)	主任审批签名	张炳武		
·	·						•


```
match('a'); match('b');
match('a');Y();
                        else
if(lookhead=='c'){ // \mathbb{R} \rightarrow
cabaY
    match('c'); match('a');
match('b'); match('a'); Y()
```

```
R - abaY | cabaY
  Y \rightarrow b c Y
  Y → 注: 此为空产生式
  此外,产生式 T 中含有左因子,也必须提出,如下:
 T \rightarrow b Z
  Z \rightarrow b c \mid c
(c) 递归下降分析程序如下:
  void L()
    if (lookhead=='a'||lookhead=='c') {// L \rightarrow R a
```

(b) 删除左递归

产生式 R 中含有直接左递归,删除之:

R(); match('a');

else error();

void R()

else if(lookhead=='b') $\{// L \rightarrow T b a$ T(); match('b'); match('a');

 $if(lookhead=='a'){/R} \rightarrow abaY$

```
void Y()
         if(lookhead=='b'){ //Y \rightarrow b c Y
               match('b'); match('c');Y();
          } else if(lookhead=='a') return; else error();
 if(lookhead=='b') \{ //T \rightarrow b Z
    match('b');Z();
 } else error();
void Z()
 if(lookhead=='b'){ //Z \rightarrow b c
    match('b'); match('c');
 else if(lookhead=='c'){ //Z \rightarrow c
    match('c');
 } else error();
```

合 肥 工 业 大 学 试 卷 (A、B√)

20~20 学年第学期 课程代码	课程名称	学分课	程性质:必修	□选修 □、限修 □] 考试形式: 开卷 🗌 闭剂	卷 🗌
专业班级(教学班)	考试日期	命题教师	系(所或教	研室) 主任审批签名	张炳武	'

(4)

(a) 文法 G3 为二义性文法。

文法 G3, S 为开始符号。

S → a B | b A

S → 注:此为空产生式

 $A \rightarrow a S \mid b A A$

 $B \rightarrow b S \mid a B B$

输入串为 aabbab

推导1:

S=>aB=>aaBB=>aabB=>aabB=>aabB=>aabbS=>aabbaB=>aabbabS=>aabbab

推导 2:

S=>aB=>aaBB=>aabB=>aabbAB=>aabbAB=>aabbaB=>aabbaB=>aabbabS=>aabbab

(b) G2 为非二义性文法。

S - a B S | b A S

S → 注: 此为空产生式

A → a | b A A

 $B \rightarrow b \mid a B B$