Autómatas Finitos No Deterministas

Alan Reyes-Figueroa Teoría de la Computación

(Aula 04) 20.julio.2022

No determinismo

Construcción de subconjuntos

∈-Transiciones

No determinismo

- Un autómata finito no determinista tiene la habilidad de 'estar' en varios estados simultáneamente.
- □ Las transiciones pueden hacerse desde un estado a un conjunto de estados.

No determinismo

- Comenzar en el estado inicial.
- Se acepta una cadena si alguna secuencia de transiciones lleva a algún estado final.
- □ Intuitivamente: los AFN siempre "adivinan correctamente"

Ejemplo: Movidas en un tablero

- □ Estados = casillas.
- Inputs:
 - r = (mover a un cuadro rojo adyacente)
 - b = (mover a cuadro negro adyacente).
- Estado inicial y estado final en esquinas opuestas.

1	2	3
4	5	6
7	8	9

		r	b
\longrightarrow	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

Definición de AFN

Un autómata finito no determinista $M = (K, \Sigma, \Delta, s, F)$, consiste de

- Un conjunto finito de estados (K).
- lacktriangle Un *alfabeto* de entrada (Σ).
- La relación de transición

$$\Delta \subseteq K \times (\Sigma \cup e) \times K$$
.

 \bullet Un *estado inicial* (s ó q₀).

La 'función' de transición en un AFN

- \triangle (q, a) es un conjunto de estados.
- Se extiende a cadenas en forma inductiva:
- ♦ Base: $\delta(q, \epsilon) = \{q\}$
- ♦ Inducción: Si w = xa, donde |x| = |w| 1

$$\delta(q, wa) = \bigcup_{p \in \delta(q, w)} \delta(p, a)$$

Lenguaje de un AFN

- □ Una cadena w es aceptada por un autómata finito no determinista si $\delta(q_0, w)$ contiene al menos un estado final.
- □ El lenguaje L(M) de un autómata no determinista es el conjunto de las cadenas aceptadas.

1	2	3
4	5	6
7	8	9

- □ Para el autómata del tablero, vimos que la cadena *rbb* es aceptada.
- ☐ Si la entrada consiste sólo de *b'*s, el conjunto de estados accesibles se alterna entre {5} y {1,3,7,9}, de modo que sólo cadenas no vacías con un número par de *b'*s se aceptan.
- □ Qué ocurre con las cadenas con *r*?

Equivalencia de AFD's y AFN's

Un autómata determinista AFD puede transformarse en un autómata no determinista que acepta el mismo lenguaje.

□ Para ello, si $\delta_D(q, a) = p$, definimos el autómata no determinista por

$$\Delta(q,a) = \delta_N(q,a) = \{p\}.$$

Equivalencia

- Recíprocamente, para cada autómata no determinista AFN, existe un autómata determinista que acepta el mismo lenguaje.
- □ La prueba se basa en la construcción de subconjuntos.
- □ El número de estados del AFD puede crecer exponencialmente.

Construcción de subconjuntos

Dado un autómata no determinista

 $M = (K, \Sigma, \Delta = \delta_N, s, F)$, vamos a construir un autómata determinista equivalente tal que:

- \square estados = 2^K (conjunto potencia de K).
- \square alfabeto = Σ .
- \square estado inicial = $\{q_0\}$.
- □ estados finales = todos los que intersectan F.

Importante!!

- Los estados del AFD tienen etiquetas que son conjuntos de K (estados del AFN).
- Por ejemplo: Como estado del AFD, una expresión {p,q} debe enternderse como un único símbolo.
- Analogía: una clase de objetos cuyos valores son subconjuntos de objetos de otra clase.

Construcción de subconjuntos

La función de transición δ_D del AFD se define por:

$$\delta_D(\{q_1, q_2, ..., q_k\}, a) = \bigcup_{i=1}^k \Delta(q_i, a)$$

 Ejemplo: Construiremos el autómata determinista equivalente para el ÁFN del tablero.

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

1	2	3
4	5	6
7	8	9

	r	b
→ {1} {2,4} {5}	{2,4}	{5}

Obs!: Aquí estamos haciendo una construcción *incompleta* del AFD, donde sólo se construye un estado si es necesario.

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }		
{2,4,6,8}		
{1,3,5,7}		

1	2	3
4	5	6
7	8	9

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
$\longrightarrow \{1\}$	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}		
{1,3,5,7}		
{1,3,7,9}		

1	2	3
4	5	6
7	8	9

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}		
{1,3,7,9}		
{1,3,5,7,9}		

1	2	3
4	5	6
7	8	9

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
\rightarrow {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
{1,3,7,9}		
{1,3,5,7,9}		

1	2	3
4	5	6
7	8	9

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
{1,3,7,9}	{2,4,6,8}	{5 }
{1,3,5,7,9}		

1	2	3
4	5	6
7	8	9

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5 }
* {1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9}

1	2	3
4	5	6
7	8	9

Prueba de la Equivalencia: Construcción de subconjuntos

- □ La prueba es 'casi inmediata'.
- □ Se muestra por inducción en |w| que $\Delta(q_0, w) = \delta_D(\{q_0\}, w)$

□ Base:
$$W = \epsilon$$
:

$$\Delta(q_0, \epsilon) = \delta_D(\{q_0\}, \epsilon) = \{q_0\}.$$

Paso Inductivo

- Asumir la hipótesis para cadenas de longitud < |w|.</p>
- Si w = xa; la hipótesis vale para x.
- Sea $\Delta(q_0, x) = \delta_D(\{q_0\}, x) = S$.
- Sea $T = \bigcup_{p \in S} \Delta(p, a)$, la unión sobre S de todos los $\Delta(p, a)$.
- Luego, $\Delta(q_0, w) = \delta_D(\{q_0\}, w) = T$.

AFN's con transiciones-ε

- □ En los autómatas no deterministas permitimos transiciones con entrada ∈.
- Estas transiciones se hacen espontáneamente, sin ver el caracter de entrada.
- Se incluyen cuando se considere conveniente. (Aún así, esto no modifica el tipo de lenguajes aceptados.)

Ejemplo: ε-AFN

Cerradura de Estados

- CL(q) = conjunto de estados que pueden alcanzarse desde el estado q sól siguientes arcos ϵ .
- ◆ Ejemplo: CL(A) = {A};
 CL(E) = {B, C, D, E}.

Cerradura de un conjunto de estados:

$$CL(S) = \bigcup_{q \in S} CL(q)$$
.

Delta Extendida

- Intuición: $\hat{\delta}(q, w)$ es el conjunto de estados que pueden alcanzarse desde q siguiendo un camino w.
- lack Base: $\hat{\delta}(q, \varepsilon) = CL(q)$.
- Inducción: $\hat{\delta}(q, xa)$ se calcula como:
 - 1. Comenzar con $\hat{\delta}(q, x) = S$.
 - 2. Luego, $\hat{\delta}(q, w) = \bigcup_{p \in S} CL(\hat{\delta}(p, a))$.

Ejemplo: Delta extendida

- $\square \quad \delta(A, \, \epsilon) = CL(A) = \{A\}.$
- \Box $\hat{\delta}(A, 01) = CL(\{C, D\}) = \{C, D\}.$
- □ El *lenguaje* de un ε-AFN es el conjunto de cadenas w tales que $\delta(q_0, w)$ contiene algún estado final.