TD n°5

Exercice 1:

Exprimez l'unité de la perméabilité du vide en fonction des unités de bases du système international.

Exercice 2:

Calculez la capacité absolue de la terre. (périmètre de la terre = 40000 km)

Exercice 3:

Soit un condensateur cylindrique dont les armatures interne et externe sont portées respectivement aux potentiels V_A et V_B ($V_A > V_B$). Les armatures A et B sont des cylindres conducteurs de longueur supposée « infinie ». L'armature A est un cylindre plein de rayon R et de densité linéaire de charge λ , et l'armature B, un cylindre creux de même axe de révolution et de rayon intérieur R'. Déterminez la capacité par unité de longueur.

Exercice 4:

Les 5 schémas ci-dessous décrivent les étapes successives d'une expérience :

Initialement A est un conducteur chargé avec Q > 0, B est initialement neutre (étape 1). Dans les étapes 1 et 5, on a placé un écran qui supprime le phénomène d'influence. Dessinez, en répartition et en signe, les charges prises par A et B au cours du déroulement de l'expérience.

Exercice 5:

Les distances O_1 et O_2 de deux sphères conductrices S_1 et S_2 , de rayons respectifs R_1 et R_2 , sont distantes de x, cette distance x étant suffisamment grande devant R_1 et R_2 pour que chaque sphère influence l'autre comme si elle-même était ponctuelle.

Les sphères S_1 et S_2 étant portées aux potentiels respectifs V_1 et V_2 , elles prennent les charges totales respectives Q_1 et Q_2 .

- 1) Exprimez les potentiels V_1 et V_2 en fonction de : R_1 , R_2 , X, ε_0 , Q_1 , Q_2 .
- 2) En déduire les expressions de Q_1 et Q_2 en fonction de : R_1 , R_2 , x, ε_0 , V_1 , V_2 .
- 3) Calculez Q₁ et Q₂.

On donne : $R_1 = R_2 = 54$ mm et x = 360 mm ; $V_1 = 50$ kV, $V_2 = 0$ et $\frac{1}{4\pi\varepsilon_0} = 9.10^9 m.F^{-1}$.

Exercice 6:

Un conducteur sphérique de rayon R_1 = 9 cm est d'abord chargé sous une différence de potentiel qui lui donne la charge $Q = 10^{-8}$ Coulomb, puis est relié à un second conducteur sphérique, de rayon R_2 = 1 cm, initialement neutre. Le fil de liaison est suffisamment long pour que l'on puisse négliger les phénomènes d'influence entre les deux conducteurs. Calculer en fonction de Q, R_1 et R_2 , les charges Q_1 et Q_2 portées par chacun, en admettant qu'aucune charge ne reste sur le fil, en déduire les densités surfaciques σ_1 et σ_2 , ainsi que les champs électriques E_1 et E_2 au voisinage. Que remarque-t-on ?

Électrostatique – ISEN, CIR2 et CNB2 – 2019-20

TD n°4

Exercice 7:

- 1) Une sphère conductrice S_1 de centre O et de rayon R est portée au potentiel V_0 ; elle est isolée, seule dans l'espace illimité. Exprimer sa charge Q_1 et sa charge surfacique σ_1 (en fonction de : R, ε_0 , V_0).
- 2) La sphère S_1 conservant sa charge Q_1 , on l'entoure d'un conducteur sphérique S_2 de même centre O, de rayon intérieur R_{2i} = 4R et de rayon extérieur R_{2e} = 5R. S_2 est supposée électriquement isole et de charge totale nulle.
 - a) Déterminez Q_{2i} (charge de la face interne de S₂) et Q_{2e} (charge de la face externe de S₂).
 - b) Exprimez les potentiels V_1 et V_2 de S_1 et de S_2 en fonction de ε_0 , R, Q_1 puis de V_0 .
 - c) En déduire la capacité du condensateur formé par S_1 et la face interne S_{2i} de S_2 .
- 3) S_2 est relié à la terre. Indiquez les nouvelles valeurs Q'_{1} , Q'_{2i} , Q'_{2e} des charges et déterminez la nouvelle valeur V'_{1} du potentiel de S_1 . Quelle propriété se trouve illustrée par cette expérience ?

Exercice 8:

Soit une sphère conductrice (S_2) , de rayon R_2 et de centre O. On réalise, au moyen de cette sphère et d'une autre sphère (S_1) de rayon R_1 $(<R_2)$ variable, de même centre O, un condensateur sphérique. On établit une différence de potentiel V_1 - V_2 entre les deux sphères. L'air placé entre les deux armatures a sensiblement la même constante diélectrique ε_0 que le vide mais présente une rupture diélectrique (étincelle) lorsque le champ électrostatique atteint une valeur notée E_{max} .

- 1) Exprimez la charge Q porté par l'armature interne.
- 2) Entre quelles limites R₁ peut-il varier sans qu'il y ait rupture diélectrique?
- 3) Calculez ces limites pour $R_2 = 50$ cm, $V_1 V_2 = 10^5$ V et $E_{max} = 3.10^6$ V.m⁻¹.