Math 357 Exam 02

2024-04-19 (F)

Your name:		
Honor pledge:		

Instructions

- 1. In the space above, please legibly write your name and the Rice Honor Pledge, then sign.
- 2. Full time for this exam is exactly 50 minutes. No resources are allowed.
- 3. Your reasoning—correctness and clarity—is more important than your "answer".
- 4. If you think there is ambiguity or error in an exercise, then briefly (!) write your understanding of the exercise and any additional hypotheses you are making, then proceed.
- 5. Note: The definition parts of Exercises 1–3 will be graded as Exercise 0.

This exam is an imperfect measure of my understanding at a particular point in time. It is not a measure of who I am or who I will be.

Exercise	Total	(a)	(b)	(c)	(d)
0	/4	/4	/4	/4	/4
1	/4	_	_	/4	/4
2	/4	_	/4	/4	/4
3	/4	_	/4	/4	/4
4	/4	/4	/4	/4	/4
Total	/20				

Let K_0 be a field; let $n \in \mathbb{Z}_{\geqslant 0}$; and let $f = \sum_{i=0}^n a_i t^i = a_n t^n + \ldots + a_0 \in K_0[t]$, with $a_n \neq 0_{K_0}$. For your definitions, clearly introduce any additional objects you use and the hypotheses you make.

- (a) Define what it means for f to be (i) irreducible and (ii) separable.
- (b) Define the formal derivative of f. As relevant to your definition, explain what multiplication by an integer means if char $K_0 \neq 0$ (in which case, K_0 does not contain an isomorphic copy of \mathbf{Z}).

(4 pt) For the remaining parts of this exercise, let char $K_0 = 0$.

- (c) Prove that if f is irreducible, then f is separable.
- (d) Give a counterexample that illustrates that the converse to the statement in part (c) is false. That is, give a polynomial f that is separable and reducible.

Solution: Part (a): (i) By hypothesis, K_0 is a field, hence an integral domain. Thus $K_0[t]$ is an integral domain, so the general definition of an irreducible element of an integral domain applies. Specifically, let $f \in K_0[t]$ such that $f \neq 0$ (the zero polynomial) and $f \notin (K_0[t])^\times \cong K_0^\times$. Then f is **irreducible** if for all $f_1, f_2 \in K_0[t]$ such that $f = f_1 f_2$, either $f_1 \in (K_0[t])^\times$ or $f_2 \in (K_0[t])^\times$.

(ii) A polynomial $f \in K_0[t]$ is **separable** if f each zero of f (for example, in some splitting field for f) has multiplicity one.

Note that the definition of irreducible depends on the ring of coefficients (for example, f = 2t is irreducible in $\mathbf{Q}[t]$ and reducible in $\mathbf{Z}[t]$), whereas the definition of separable does not (if each zero of f has multiplicity one for some splitting field for f, then the same is true for any splitting field for f, because any two splitting fields for f are isomorphic).

Part (b): Given

$$f = \sum_{i=0}^{n} a_i t^i = a_n t^n + a_{n-1} t^{n-1} + ... + a_1 t + a_0$$

the formal derivative of f is the polynomial³

$$D_{t}f = \sum_{i=1}^{n} i \cdot a_{i}t^{n-1} = n \cdot a_{n}t^{n-1} + (n-1) \cdot a_{n-1}t^{n-2} + \ldots + a_{1}$$

In general, given a positive integer m and a ring element r, the notation $m \cdot r$ (often written without the dot) denotes the sum of m copies of the element r:

$$m \cdot r = \sum_{i=1}^{m} r$$

 $^{^{1}}$ The units in $K_{0}[t]$ are the constant polynomials whose constant value is a unit in K_{0} . Because K_{0} is a field, by definition every nonzero element of K_{0} is a unit.

²See DF3e, p 284.

³See DF3e, p 546.

By the distributive axiom for a field, this is equivalent to

$$\mathbf{m} \cdot \mathbf{r} = \left(\sum_{i=1}^{m} 1_{\mathsf{K}_0}\right) \mathbf{r}$$

Part (c): For an arbitrary field K_0 , we have seen that a polynomial $f \in K_0[t]$ is separable if and only if $gcd(f,D_tf)=1$. Let $f \in K_0[t]$ be irreducible, and denote $n=\deg f$. The definition of irreducible and the hypothesis that K_0 is a field imply that f cannot be a constant function, so $n \ge 1$. By hypothesis, char $K_0=0$, so $D_tf=n-1$. Also by hypothesis, f is irreducible, so by definition if $f=f_1f_2$, then one of the f_i , say f_1 , is a unit, which in turn implies that $\deg f_1=0$ and $\deg f_2=\deg f-\deg f_1=\deg f$. Because $\deg D_tf=n-1< n=\deg f$, it follows that D_tf is a factor of f if and only if $\deg D_tf=0$. This implies that $\gcd(f,D_tf)=1$, which is equivalent to f being separable.

Part (d): A field is an integral domain. By definition, an integral domain has at least two distinct elements, 0 and 1 (the additive identity and the multiplicative identity, respectively, in the ring). Hence for any field K_0 , the polynomial $f = (t-0)(t-1) = t^2 - t$ is separable and reducible, by construction.

For your definitions, clearly introduce the objects you use and the hypotheses you make.

- (a) Define "minimal polynomial".
- (4 pt) For the remaining parts of this exercise, let $\alpha = \sqrt[3]{5 3\sqrt{-1}} \in \mathbf{C}$.
 - (b) Find the minimal polynomial $m_{\alpha,Q}$ of α over **Q**. Demonstrate that it satisfies the axioms (i.e. defining properties) in your definition in part (a).
 - (c) Prove that $[\mathbf{Q}(\alpha) : \mathbf{Q}] = 6$.
 - (d) Let $f \in \mathbf{Q}[t]$ such that deg f = 4 and f has no zeros in \mathbf{Q} , and let $\beta \in \mathbf{C}$ satisfy $f(\beta) = 0$. Can $\beta \in \mathbf{Q}(\alpha)$? Justify.

Solution: Part (a): Let $K : K_0$ be a field extension, and let $\theta \in K$ be algebraic over K_0 . The **minimal polynomial of** θ **over** K_0 , denoted m_{θ,K_0} , is the unique monic, irreducible polynomial for which θ is a zero.⁴

In this definition, irreducible is equivalent to minimal degree, in the following sense: Let $\mathfrak{m} \in K_0[t]$ such that $\mathfrak{m}(\theta) = 0$. Then \mathfrak{m} is irreducible if and only if \mathfrak{m} is a nonzero polynomial with minimal degree among the nonzero polynomials that have θ as a zero.

Part (b): We compute

$$\alpha = \sqrt[3]{5 - 3\sqrt{-1}} \qquad \Leftrightarrow \qquad \alpha^3 = 5 - 3\sqrt{-1} \qquad \Leftrightarrow \qquad \alpha^3 - 5 = -3\sqrt{-1}$$

$$\Rightarrow \qquad (\alpha^3 - 5)^2 = 9(-1) \qquad \Leftrightarrow \qquad \alpha^6 - 10\alpha^3 + 34 = 0$$

Viewing this last expression as a polynomial function evaluated at $t = \alpha$, we define

$$m = t^6 - 10t^3 + 34 \in \mathbf{Q}[t]$$

This polynomial is in $\mathbf{Q}[t]$ and is monic (by inspection), is irreducible (for example, by the Eisenstein–Schönemann criterion with the prime 2), and has α as a zero (by construction). Thus by definition, it is the minimal polynomial of α over \mathbf{Q} .

Part (c): In the setting of our definition in part (a), we have shown that

$$[K_0(\theta):K_0]=\deg \mathfrak{m}_{\theta,K_0}$$

Applying this to part (b) gives the desired result.

Part (d): Yes, it is possible for $\beta \in \mathbf{Q}(\alpha)$. The hypotheses that $f \in \mathbf{Q}[t]$ and $f(\beta) = 0$ implies that $\mathfrak{m}_{\beta,\mathbf{Q}}|f$. By hypothesis, f has no zeros in \mathbf{Q} , which is equivalent to the statement that a factorization of f into irreducible elements in $\mathbf{Q}[t]$ has no factors of degree 1; however, it may have factors of degree 2. If $\deg \mathfrak{m}_{\beta,\mathbf{Q}} = 2$, then $\beta \in \mathbf{Q}(\alpha)$ is not precluded by the tower law. More precisely, if $\beta \in \mathbf{Q}(\alpha)$, then $\mathbf{Q}(\beta) \subseteq \mathbf{Q}(\alpha)$. Viewing both fields as extensions of the base field \mathbf{Q} , we get the tower $\mathbf{Q}(\alpha) : \mathbf{Q}(\beta) : \mathbf{Q}$, so the tower law gives

$$[\mathbf{Q}(\alpha):\mathbf{Q}] = [\mathbf{Q}(\alpha):\mathbf{Q}(\beta)][\mathbf{Q}(\beta):\mathbf{Q}]$$

⁴See DF3e p 520.

In particular, this implies that

$$\text{deg}\, \mathfrak{m}_{\beta, \boldsymbol{Q}} = [\boldsymbol{Q}(\beta):\boldsymbol{Q}] \text{ divides } [\boldsymbol{Q}(\alpha):\boldsymbol{Q}] = 6$$

Let's give a concrete example of such an $f\in \textbf{Q}[t]$ and $\beta\in \textbf{C}.$ Let

$$f = t^4 - t^2 - 2 = (t^2 + 1)(t^2 - 2) \qquad \qquad \beta = \sqrt{-1} \in \textbf{C}$$

It is straightforward to check that deg f=4, f has no zeros in \mathbf{Q} , and $f(\beta)=0$. Moreover, from the definition of α , we get

$$\beta=\sqrt{-1}=-\frac{1}{3}(\alpha^3-5)$$

so $\beta \in \mathbf{Q}(\alpha)$, as desired.

For your definitions, clearly introduce the objects you use and the hypotheses you make.

(a) Define "splitting field".

(4 pt) Let $p, q \in \mathbf{Z}_{>0}$ be prime; let

$$f = t^p - q$$
 $g = \sum_{j=0}^{p-1} t^j = t^{p-1} + ... + t + 1$

be polynomials in $\mathbf{Q}[t]$; fix a splitting field K for fg, the product of f and g, over \mathbf{Q} ; let $\alpha \in K$ be a zero of f; let $\zeta \in K$ be a zero of g; and let K_f (respectively, K_g) be the splitting field for f (respectively, g) in $K : \mathbf{Q}$.

- (b) Prove that f and g are irreducible in $\mathbf{Q}[t]$. Hint: For g, let $\tilde{g}(t) = (t-1)g(t) = t^p 1$, and consider $\tilde{g}(t+1)$.
- (c) Prove that for each integer $k \in \{0, \dots, p-1\}$, ζ^k is a zero of \tilde{g} , and $\zeta^k \alpha$ is a zero of f. Deduce that $K = K_f K_g$, the composite field of K_f and K_g in K.
- (d) Prove that $[K : \mathbf{Q}] = p^2 p$. Hint: Use a field diagram.

Solution: Part (a): Let $K: K_0$ be a field extension, and let $f \in K_0[t]$. K is a **splitting field for** f (over K_0) if (i) f splits completely (that is, factors as a product of linear factors) in K[t]; and (ii) for all proper intermediate fields in $K: K_0$ (that is, all fields K_i such that $K_0 \subseteq K_i \subset K$), f does not split completely in $K_i[t]$. We have seen that for all fields K_0 and for all polynomials $f \in K_0[t]$, there exists a splitting field for f, and that it is unique up to isomorphism.

Part (b): f is irreducible by the Eisenstein–Schönemann criterion with the prime q. For g, note that

$$\begin{split} tg(t+1) &= \tilde{g}(t+1) = (t+1)^p - 1 = t^p + \binom{p}{p-1} t^{p-1} + \ldots + \binom{p}{1} t + 1 - 1 \\ &= t \left(t^{p-1} + \binom{p}{p-1} t^{p-2} + \ldots + \binom{p}{1} \right) \end{split}$$

Because $K_0[t]$ is an integral domain,⁶ we may cancel t from both sides of this equation to get

$$g(t+1) = t^{p-1} + \binom{p}{p-1}t^{p-2} + \dots + \binom{p}{1}$$

Because p is prime, for all $i \in \{1, ..., p-1\}$,

$$p \mid \binom{p}{i} = \frac{p!}{i!(p-i)!}$$

which are precisely the nonleading coefficients of g(t+1). Moreover, $p \nmid 1 = LC(g(t+1))$; and $p^2 \nmid p = \binom{p}{1}$, the constant term of g(t+1). Thus by the Eisenstein–Schönemann criterion with

⁵See DF3e p 536.

 $^{^6}$ As we noted in our response to Exercise 1(a), K_0 is a field implies K_0 is an integral domain implies $K_0[t]$ is an integral domain.

prime p, g(t+1) is irreducible in $\mathbf{Z}[t]$, hence g(t) is irreducible in $\mathbf{Z}[t]$. Hence by Gauß's lemma, g is irreducible in $\mathbf{Q}[t]$.

Part (c): By hypothesis, ζ is a zero of g, so

$$\zeta^{p} - 1 = \tilde{g}(\zeta) = (\zeta - 1)g(\zeta) = 0$$
 \Leftrightarrow $\zeta^{p} = 1$

Let $k \in \{0, ..., p-1\}$. We compute

$$\tilde{g}(\zeta^k) = (\zeta^k)^p - 1 = (\zeta^p)^k - 1 = 1^k - 1 = 0$$

Similarly,

$$f(\zeta^k\alpha)=(\zeta^k\alpha)^p-q=(\zeta^p)^k\alpha^p-q=\alpha^p-q=f(\alpha)=0$$

For $k \in \{0,\ldots,p-1\}$, $\zeta^k=1$ if and only if k=0. Thus the values $1,\zeta,\ldots,\zeta^{p-1}$ are distinct, so ζ,\ldots,ζ^{p-1} are the $p-1=\deg g$ zeros of g, and $\alpha,\zeta\alpha,\ldots,\zeta^{p-1}\alpha$ are the $p=\deg f$ zeros of g. By definition, a splitting field K_f for g contains all zeros of g, so in particular g, g because fields are closed under the field operations (addition, multiplication, and taking inverses), it follows that

$$\zeta = \alpha^{-1} \cdot \zeta \alpha \in K_f$$

so for all $k \in \mathbf{Z}$, $\zeta^k \in K_f$. Therefore

$$K = \mathbf{Q}(\zeta, \alpha) = K_f$$

Part (d): Consider a field diagram with the fields $K = \mathbf{Q}(\zeta, \alpha) = K_f K_g$, $\mathbf{Q}(\zeta)$, $\mathbf{Q}(\alpha)$, and \mathbf{Q} . Note that

$$K = K_f K_g = \mathbf{Q}(\zeta, \alpha) \mathbf{Q}(\zeta) = \mathbf{Q}(\zeta, \alpha)$$

Because

$$[\mathbf{Q}(\zeta):\mathbf{Q}] = \deg \mathfrak{m}_{\zeta,\mathbf{Q}} = \deg \mathfrak{g} = \mathfrak{p} - 1$$

$$[\textbf{Q}(\alpha):\textbf{Q}]=deg\, \mathfrak{m}_{\alpha,\textbf{Q}}=deg\, f=\mathfrak{p}$$

and gcd(p, p - 1) = 1, the tower law implies that

$$[K:\mathbf{Q}] = \mathfrak{p}(\mathfrak{p}-1) = \mathfrak{p}^2 - \mathfrak{p}$$

(4 pt) Let $K : K_0$ be a field extension.

- (a) Define $Aut(K : K_0)$.
- (b) Let H be a subgroup of $Aut(K : K_0)$. Define the fixed field of H.
- (c) State what it means for K : K₀ to be galois. You may use any characterization of a galois extension that we have discussed in class.
- (d) When $K: K_0$ is galois, the fundamental theorem of galois theory gives an inclusion-reversing, bijective correspondence between subfields (intermediate fields) of $K: K_0$ and subgroups of the galois group $Gal(K: K_0)$. Define the map from subfields to subgroups, and the map from subgroups to subfields.

Solution: Part (a): The **automorphism group** of the field extension $K : K_0$ is the set of automorphisms of K (that is, field isomorphisms from K to itself) that fix the base field K_0 (pointwise):⁷

Aut(K :
$$K_0$$
) = { σ : K \rightarrow K | σ is an isomorphism; $\forall \alpha \in K_0$, $\sigma(\alpha) = \alpha$ }

equipped with the group operation of function composition.

Part (b): The **fixed field** of H, denote it $\mathcal{F}(H)$, is the set of elements of the extension field K that are fixed by all automorphisms in H:⁸

$$\mathfrak{F}(H) = \{\alpha \in K \,|\, \forall \sigma \in H, \sigma(\alpha) = \alpha\}$$

Part (c): The definition of a galois extension that we gave in our development of galois theory was that a finite extension $K: K_0$ is **galois** if $Aut(K: K_0) = [K: K_0]$. Equivalent characterizations include⁹

- (1) There exists a separable $f \in K_0[t]$ such that K is a splitting field for f.
- (2) $\mathcal{F}(Aut(K : K_0)) = K_0$.
- (3) $K : K_0$ is finite, normal, and separable.

Part (d): The maps are

$$\begin{aligned} \{ & \text{subfields } K_i \text{ in } K: K_i: K_0 \} \leftrightarrow \{ \text{subgroups } H \leqslant Gal(K:K_0) \} \\ & K_i \mapsto Aut(K:K_i) \\ & \mathcal{F}(H) \leftrightarrow H \end{aligned}$$

Note that these maps are inverse to each other.

⁷See DF3e, p 558.

⁸See DF3e, p 560.

⁹See DF3e, pp 562 and 574.