# 2.76/2.760 Multiscale Systems Design & Manufacturing

Fall 2004

Systems Design in Multi-scale

## Multi-scale Systems

#### DNA

~2-1/2 nm diameter

### natural

**Human heart** 

Diagrams removed for copyright reasons.

Human body (circulatory system)

### manmade

**Carbon nanotube** ~2 nm diameter

Nanotube transistor

### Design for Manufacturing?

MIT Stata Center by Gehry \$300 million, 5years



MIT Simmons Hall \$ 90million, 2 years



## Good Design

### Does scale matter?

- Lecture Room
- Your Car?
- Boston T ?
- Logan Airport ?
- Government ?

# Good designer?

### Giorgio Armani

Giugiaro (automobile)

Diagrams removed for copyright reasons.

Pablo Picasso

Frank O. Gehry



# Good designers

### Rover



Source: NASA

### Fail sometimes,



MRI

Milacron

### Some say "A good design is made by left, right brain ....

- Uses logic
- Facts rule
- Detail oriented
- Present and past
- Math and science
- Perception
- Reality
- Safe

- Uses feeling
- Imagination rules
- Big picture
- Present and future
- Philosophy and religion
- Spatial perception
- Fantasy based
- Risk taking

## **Design Domains**

"What" to "How", "Top" to "Bottom"



No impromptu designs!!

## How

Axiomatic approach

- Independence Axiom
- Information Axiom
  - Prof. Nam Suh @MIT2.882
  - Evolution to

"Complexity Theory for Nano Systems"

# Super bowl 2001, 2003

Diagrams of key plays by New England Patriots in Super Bowl victory removed for copyright reasons.

## **BIG PICTURE**

### What is "Good"?

Are Patriots a good team?

Is MIT a good school?

Am I a good teacher?

# How to do "Systems Design"?

## Four Design Domains



# Four domains

| Manufacturing systems | CA                    | FR                 | DP                    | PV               |
|-----------------------|-----------------------|--------------------|-----------------------|------------------|
| Materials             | Performances          | Properties         | Micro-<br>structure   | Processes        |
| Software              | Attributes desired    | Output of programs | Input<br>variables    | Subroutines      |
| Business              | ROI                   | Business<br>goals  | Business<br>structure | Resources        |
| Organization          | Customer satisfaction | Functions          | Programs offices      | People resources |

## A multiscale design should be...



## Systems Design

- Customer Satisfaction
   Concurrent Design
   Design for Manufacturing, Assembly and "X"
   Quality Control, Six Sigma
   House of Quality, Takuchi method
   Axiomatic Design
   Market
   Market
   Aspiral
   Spiral
- Any of these efforts in MEMS?
- Nanomanufacturing, Complexity

## A Good Design is,

- Concept of Domains, well defined "what"
- Uncoupled (decoupled)
- Minimum information (least complex)

### Axiomatic Design, 2.882

- 1. N.P. Suh, *Principles of Design*, Oxford, 1990
- 2. N. P. Suh, *Axiomatic Design: Advances and Applications*, Oxford, 2001
- 3. N. P. Suh, *Complexity: Theory and Applications*, Oxford, 2004

### **Example: Shower Faucet**

### **Functional Requirements**

- Temperature
- Flow rate



## Independence Axiom

- Maintain the independence of FRs.
  - Shower faucet example

FR1= Temperature

FR2= Flow rate

**DP1= Hot water** 

**DP2= Cold Water** 

$$\begin{cases}
FR1 = \begin{bmatrix} X & X \\ X & X \end{bmatrix} & DP1 \\
DP2 & DP2
\end{cases}$$

Coupled

FR1= Temperature

FR2= Flow rate

**DP1= Horizontal Angle** 

**DP2= Vertical Angle** 

$$\begin{cases}
FR1 = \begin{bmatrix} X O \\ O X \end{bmatrix}
\end{cases}$$

$$DP1 \\
DP2$$

Uncoupled

# **Design Coupling**

- Uncoupled
- Decoupled
- Coupled

$$\begin{cases}
FR1 = \begin{bmatrix} X O \\ O X \end{bmatrix}
\end{cases}$$

$$DP1 \\
DP2 \\$$

$$\begin{cases} FR1 = \begin{pmatrix} X & O \\ X & X \end{pmatrix} \begin{cases} DP1 \\ DP2 \end{cases}$$

# **Example: Xerography-based Printing Machine**



## Design Matrix

FR1 images.

FR2 = Coat the charged surface with toner

FR3 = Wipe off the excess toner.

FR4 = Make sure that abrasive particles

do not cause abrasion.

FR5 = Feed the paper.

FR6 = Transfer the toner to the paper.

FR7 = Control throughput rate.

Create electrically charged DP1 = Optical system with light on selenium surface

DP2 = Electrostatic charges of the selenium

surface and the toner

DP3 = Wiper roller

DP4 = Filter

DP5 = Paper-feeding mechanism

DP6 = Mechanical pressure

DP7 = Speed of the cylinder

# Design Matrix

|         | DP<br>1 | DP<br>2 | DP<br>3 | DP<br>4 | DP<br>5 | DP<br>6 | DP<br>7 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| FR<br>1 | X       | 0       | 0       | 0       | 0       | 0       | 0       |
| FR<br>2 | Х       | X       | 0       | 0       | 0       | 0       | 0       |
| FR<br>3 | 0       | 0       | X       | 0       | 0       | 0       | 0       |
| FR<br>4 | 0       | 0       | X       | X       | Х       | 0       | 0       |
| FR<br>5 | 0       | 0       | 0       | 0       | X       | 0       | 0       |
| FR<br>6 | 0       | 0       | 0       | 0       | 0       | X       | 0       |
| FR<br>7 | 0       | 0       | 0       | 0       | Х       | 0       | X       |

## **Imaginary Complexity**

$$P = \frac{1}{n!}$$

### Solution

DP41 = The order of rotation of the wiper roller and the main cylinder (wiper roller rotates first)

DP42 = The surface speed of the wiper roller greater than and opposite to the surface speed of the main cylinder



Courtesy of Prof. N. P. Suh. Used with permission.

### Case study

### TMA(thinfilm micromirror array)

Mirror Array on
Piezoelectric
Actuator Array
Daewoo Electronics

Diagrams removed for copyright reasons.

See S. G. Kim and Kyu-Ho Hwang, "Thin-film Micromirror Array", Information Display (Official Magazine of Society of Information Display, invited), Vol. 15, No. 4/5, pp.30-34, 1999.

## Functional Requirements of TMA

#### **1st Generation**

FR1= light reflection

FR2= mirror tilting

**DP1=** cantilever top surface

**DP2= PZT sandwich** 

$$\begin{cases}
FR1 \\
FR2
\end{cases} = \begin{bmatrix}
X & X \\
X & X
\end{bmatrix}$$

$$DP1 \\
DP2$$

### Functional Requirements of TMA

### **2nd Generation**

FR1= light reflection

FR2= mirror tilting

**DP1=** cantilever top surface

**DP2= PZT sandwich** 

$$\begin{cases}
FR1 \\
FR2
\end{cases} = \begin{bmatrix}
X & O \\
X & X
\end{bmatrix}
\begin{cases}
DP1 \\
DP2
\end{cases}$$

### Functional Requirements of TMA

#### **3rd Generation**

FR1= light reflection

FR2= mirror tilting

**DP1=** cantilever top surface

**DP2= PZT sandwich** 

$$\begin{cases} FR1 \\ FR2 \end{cases} = \begin{cases} X & O \\ O & X \end{cases} \begin{cases} DP1 \\ DP2 \end{cases}$$

### **TMA**

Photos removed for copyright reasons.



XGA 1024 X 768 786,432 pixels



Photos removed for copyright reasons.

### **Information Axiom**

Minimize the Information Content

$$I = \log_2 \frac{1}{P} = -\log_2 P$$

P: Probability of success = common range/system range



## Multi-scale System Complexity

**DNA** ~2-1/2 nm diameter

#### natural

**Human heart** 

Diagrams removed for copyright reasons.

Human body (circulatory system)

### manmade

**Carbon nanotube** ~2 nm diameter

Nanotube transistor

MIT Stata Center by Gehry \$300 million, 5years



MIT Simmons Hall \$ 90million, 2 years



### Scale Orders

Scale order,  $N = \underline{\text{size of the system}}$ smallest characteristic length

```
• Cars: 5 \text{ m} \longleftrightarrow 500 \text{ }\mu

• Jig Machines: 5 \text{ m} \longleftrightarrow 5 \text{ }\mu

• Lithography M/C: 30 \text{ cm} \longleftrightarrow 30 \text{ nm} 10^7

• Human Body: 2 \text{ m} \longleftrightarrow 2 \text{ nm} 10^9
```

Scale order vs. Complexity?

# Complexity of social problems

Uncertainty

Difficulty

Complexity

# Non-equilibrium systems, long term stability



Courtesy of Prof. N. P. Suh. Used with permission.

# Causality of Complexity -Kim

Type III: difficulty

Type I: coupling and non-equilibrium



Type IV: Large-scale order

**Type II: uncertainty** 

## Real Complexity and the Scale Issue

the ratio (range/tolerance)

$$I = \log(\frac{range}{tolerance})$$
 Suh $I = \log(e^{\frac{range}{tolerance}}) = \frac{range}{tolerance}$  Kim

# Nano-Scale Assembly



100nm Carbon Nanotube 100nm spacing

Three photos removed for copyright reasons. Force microscopy tip and two nanotube arrays.

# **Block Assembly**

# Nanopelleting Technique\* Silicon trenches DBCP pellets on Silicon Detachment (lift-off) Self-assembly

# Gordon Moore (Intel)

Two graphs of "Moore's Laws" - removed for copyright reasons.

2.76 MIT, S. Kim 37

#### Moore's Second Law

The cost of building chip fabrication plants will continue to increase (and the return on investment to decrease) until it becomes fiscally untenable to build new plants.

# Lithography Tool Cost



2.76 MIT, S. Kim 39

# Scale Decomposition and Information Content



100nm Carbon Nanotube 100nm spacing

$$I_{Total} = \log(e^{\frac{range}{tolerance}}) = \frac{range}{tolerance} = 10^6$$



$$I_{Total} = I_{micro} + I_{nano} = 10^3 + 10^3$$

**Block Assembly** 

### Complexity

#### A system is complex when;

- A design is strongly coupled or path-dependent,
- System ranges vary with time, (non-equilibrium)
- The outcome is uncertain, (low probability of success)
- The scale order is very high.

#### Complexity can be reduced by;

- Periodic Functions (temporal, spatial, etc.)
- Uncoupled

## **Functional Periodicity**

- Time independent real and imaginary complexity.
- Time dependent combinatorial and periodic complexity.
- Time dependent combinatorial complexity can become periodic complexity by functional periodicity. [Suh, MIT]
  - Temporal
  - Geometrical
  - Biological
  - Manufacturing process
  - Chemical information
  - Circadian
  - etc.

#### **Functional Periodicities**

- Temporal periodicity
- Geometric periodicity
- Biological periodicity
- Manufacturing process periodicity
- Chemical periodicity
- Thermal periodicity
- Information process periodicity
- Electrical periodicity
- Circadian periodicity
- Material periodicity

## Di-block copolymers

$$\begin{split} \Delta G_{m} &= \Delta H_{m} - T \Delta S_{m} \\ \frac{\partial^{2} \Delta \overline{G}}{\partial X_{B}^{2}} &< 0 \end{split}$$

Diagrams removed for copyright reasons. See C.T. Black, et al., Applied Physics Letters 79, 409, 2001.

#### Micro-phase Separation



Random walk, Gaussian distribution

e-to-e distance,  $R = aN^{1/2}$ 

 $R_g = aN^{1/2}/6$ N: number of monomers

#### Micro-domain periodicity, L

 $L \propto R_{\rm g} \propto aN^2$ 

N=1,000a=5 angstroms Then, L is around 15 nm.

# Multi-scale system assembly by periodic building blocks?

- Periodic micro-domains
- Functionally uncoupled domains
- Periodicity,  $L \propto R_g \propto aN^{\frac{1}{2}}$
- CNT assembly

#### **MIT Simmons Hall**



# Inter-layer Nanopellets for Composites<sub>1</sub>



#### Multi-scale Manufacturing at Kim's Group

