## NCEA Level 3 Calculus (Integration)

## 18. Substitution

Goal for this week

To practice integrating functions by undoing the chain rule.

Recall that the **chain rule** for differentiation is given by

$$\frac{\mathrm{d}}{\mathrm{d}x}[f(g(x))] = f'(g(x))g'(x).$$

Since integration is (in some sense) the inverse of differentiation, we can write (by applying the fundamental theorem of calculus)

$$\int f'(g(x))g'(x) dx = f(g(x)) + C.$$

For a mnemonic, we can let u = g(x). Then  $du = g'(x) dx^*$  and so, by the rule we just wrote down, we have

$$\int f'(g(x))g'(x) dx = \int f'(u) du = f(u) + C = f(g(x)) + C.$$

In Leibniz notation, we have

$$\int f'(g(x))g'(x) dx = \int \frac{\mathrm{d}f}{\mathrm{d}g} \frac{\mathrm{d}g}{\mathrm{d}x} dx = \int \frac{\mathrm{d}f}{\mathrm{d}g} dg = \int f'(g) dg = f(g) + C = f(g(x)) + C,$$

and so one can intuitively think about this (here we substitute g out) as the cancellation of differentials underneath an integral sign.

This rule, which gives us a kind of chain rule for integration, is called **substitution**, or the **inverse chain rule**. It can be thought of as a change in coordinate system from an x-based system to one based on u, and we have to 'resize' our area based on how much u stretches the coordinate system compared to x — and this 'stretch factor' is simply  $\frac{du}{dx}$ .

**Example.** For example, consider  $\int_{1}^{2} 2x(x^{2}+1) dx$ ; we are finding the area shown here between the dotted lines.



<sup>\*</sup>again, this is just a mnemonic: it is possible to make dx meaningful (it is what is known as a differential form), but all we are really doing is applying the chain rule.

Let us make the substitution  $u=x^2+1$ , so  $\frac{\mathrm{d}u}{\mathrm{d}x}=2x$  and our integral becomes

$$\int_{1}^{2} 2x(x^{2}+1) dx = \int_{u^{-1}(2)}^{u^{-1}(5)} \frac{du}{dx} u(x) dx = \int_{2}^{5} u du.$$

We can graph our region of integration again.



This new coordinate system, which is 2x times as large as the older one, is much simpler to integrate inside!

## Examples.

1. Suppose we wish to find  $\int \sin x \cos x \, dx$ . Then let  $u = \sin x$ , so  $du = \cos x \, dx$  and

$$\int \sin x \cos x \, dx = \int u \, du = \frac{1}{2}u^2 + C = \frac{1}{2}\sin^2 x + C.$$

2. In this case, we also could have used a trigonometric identity. Suppose we wish to find  $\int xe^{x^2} dx$ . We can let  $u = x^2$ , and then  $du = 2x dx \Rightarrow dx = \frac{du}{2x}$ . Hence:

$$\int xe^{x^2} dx = \int \frac{1}{2}e^u du = \frac{1}{2}e^u + C = \frac{1}{2}e^{x^2} + C.$$

3. Suppose we wish to find  $\int \frac{4}{x} (\ln x)^3 dx$ . We let  $u = \ln x$ , and then  $du = \frac{dx}{x}$ . Hence:

$$\int \frac{4}{x} (\ln x)^3 dx = 4 \int u^3 du = u^4 + C = (\ln u)^4 + C.$$

## Questions

1. Find the following indefinite integrals.

(a) 
$$\int \sin 2x \, dx$$

(b) 
$$\int (4x - 44)^{2019} dx$$

(c) 
$$\int 4x\sqrt{x^2+3}\,\mathrm{d}x$$

(d) 
$$\int (3x-4)^2 dx$$

(e) 
$$\int \frac{x}{x^2+1} dx$$

(f) 
$$\int \frac{2}{4x+3} dx$$

(g) 
$$\int e^{2x+1} dx$$

(h) 
$$\int \sec 4x \tan 4x \, dx$$

(i) 
$$\int 2\cos x + \sin 2x \, dx$$

Α

(j) 
$$\int -2x \csc^2(3x^2) dx$$

- (k)  $\int \frac{3}{x^3} \frac{4}{x+1} \, \mathrm{d}x$
- (1)  $\int e^{x/2} + \frac{2}{x} dx$
- (m)  $\int x^2 \sec^2 x^3 + 9 \, dx$

- (n)  $\int -\csc(\tan x)\cot(\tan x)\sec^2 x dx$
- (o)  $\int \frac{\cos x \sin x}{\cos x + \sin x} dx$
- $(p) \int \frac{2017}{x \ln x} \, \mathrm{d}x$
- 2. By using the substitution  $x = \sin \theta$ , find
- $\int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x.$
- 3. Compute the following definite integrals:
  - (a)  $\int_0^1 x e^{-x^2} \, \mathrm{d}x$
  - (b)  $\int_{-\pi/3}^{\pi/3} x^4 \sin x \, dx$  (hint: no substitution is required)
  - (c)  $\int_{0}^{1} \cos(\pi t/2) dt$
  - (d)  $\int_0^1 (3t-1)^{50} dt$
  - (e)  $\int_0^1 \sqrt[3]{1 + 7x} \, dx$
  - (f)  $\int_0^1 \frac{\mathrm{d}x}{1+\sqrt{x}} \, \mathrm{d}x$
  - (g)  $\int_{-1}^{2} x(x-1)^3 dx$
  - (h)  $\int_0^3 x \sqrt{1+x^2} \, dx$
- 4. Find the area enclosed by the curve  $y = 4\sin 3x\cos x$  and the x-axis from x = 0 to  $x = \frac{\pi}{3}$ .
- 5. Find k such that  $\int_0^k e^{2x} dx = 40$ .
- 6. Calculate the area enclosed by the curve  $y = \frac{3x-2}{x+4}$  and the lines y = 0, x = 1, and x = 5.
- 7. Find the area between the curves  $y = \sin^2 kx$  and  $y = \cos^2 kx$  shaded below.



8. Find  $\int \tan \theta \, d\theta$  and  $\int \cot \theta \, d\theta$ .

Ε

M

М

9. Complete the following working:

$$\int \sec x \, dx = \int \sec x \frac{\sec x + \tan x}{\sec x + \tan x} \, dx$$
$$= \int \frac{\dots}{\sec x + \tan x} \, dx$$
Let  $u = \dots$ 

Α

M

М

M

$$= \int \frac{1}{\cdots} \, \mathrm{d}u$$

10. Show that

$$\int x^4 \sin x \, dx = 4x(x^2 - 6x) \sin x - (x^4 - 12x^2 + 24) \cos x + C.$$

- 11. If  $y = x\sqrt{\sin x^3 + \cos x^3}$ , find  $\pi \int_0^1 y^2 dx$ .
- 12. The velocity of a particle at time t is given by  $v = \frac{\cos(\sqrt{2t+1})}{\sqrt{2t+1}}$ . What is the position of the particle at time t = 5, given that x(0.5) = 0? (Recall that  $v = \frac{\mathrm{d}x}{\mathrm{d}t}$ .)
- 13. Evaluate  $I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$  [Hint: use the substitution  $x = \frac{\pi}{2} u$  and add the result to the original integral.]
- 14. Scholarship 1999:
  - (a) Evaluate  $\int \cos^5 x \, dx$  using the substitution  $t = \sin x$ .
  - (b) i. If  $f(x) = \cos^5 x$ , what are f(0), f'(0), and f''(0)?
    - ii. Hence evaluate a, b, and c in the approximation  $\cos^5 x \approx a + bx + cx^2$ .
    - iii. Use this to give an approximation for  $\int \cos^5 x \, dx$ .
  - (c) Evaluate  $\int_0^{0.6} \cos^5 x \, dx$  to three significant figures, using:
    - i. The exact integration in (a).
    - ii. The expression in (b)(iii).
    - iii. Simpson's rule.