Introduction to Quantum Computation, UPB Winter 2022, Assignment 5

Eli Kogan-Wang

1 Exercises

1. Define $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \in \mathbb{C}^2$, and consider projective measurement $M = \{|\psi\rangle\langle\psi|, I - |\psi\rangle\langle\psi|\}$ with labels corresponding to outcomes $S = \{1, -1\}$, respectively. Suppose state $|0\rangle \in \mathbb{C}^2$ is measured via M. What is the expected value for the measurement?

Assume that $|\psi\rangle = 1$ since otherwise the measurement is not well-defined.

Consider

$$|\psi\rangle\langle\psi|0\rangle = |\psi\rangle(\alpha\langle 0| + \beta\langle 1|)|0\rangle = \alpha|\psi\rangle$$

Now Pr(Outcome $|\psi\rangle\langle\psi|$) = $\alpha\alpha^{\dagger} = |\alpha|^2$ and Pr(Outcome $I - |\psi\rangle\langle\psi|$) = $1 - \alpha\alpha^{\dagger} = \beta\beta^{\dagger} = |\beta|^2$. The expected value is therefore $|\alpha|^2 - |\beta|^2 = |\alpha|^2 - (1 - |\alpha|^2) = 2|\alpha|^2 - 1$.

- 2. In this question, we consider how well the CHSH game strategy from class fares if we use a less entangled state as a shared resource between Alice and Bob. Specifically, imagine we use the same observables as before, but now we replace $|\Phi^+\rangle$ as a shared state with $|\psi\rangle = \alpha\,|00\rangle + \beta\,|11\rangle$. Intuitively, as α gets closer to 1, this state becomes less entangled, and for $\alpha=1$, it becomes a product state (i.e. non-entangled).
 - (a) What is the probability of winning the CHSH game with shared state $|\psi\rangle$? (Hint: Recall from Lecture 5 that for any $|\psi\rangle$, the quantity $\text{Tr}(A\otimes B|\psi\rangle\langle\psi|)$ equals Pr(output same bits) Pr(output different bits), i.e. the interpretation of this quantity does not depend on our choice of $|\psi\rangle$.)

We know that $\text{Tr}(A_i \otimes B_j | \psi \rangle \langle \psi |) = \text{Pr}(\text{output same bits}) - \text{Pr}(\text{output different bits})$ for the inputs $i, j \in \{0, 1\}$.

Additionally, we want to output the same bits if and only if i, j are not 1, 1.

So we can calculate:

$$\begin{aligned} \Pr(\text{win}) - \Pr(\text{lose}) &= Pr(q_A q_B = 00) \text{Tr}(A_0 \otimes B_0 | \psi \rangle \langle \psi |) \\ &+ Pr(q_A q_B = 01) \text{Tr}(A_0 \otimes B_1 | \psi \rangle \langle \psi |) \\ &+ Pr(q_A q_B = 10) \text{Tr}(A_1 \otimes B_0 | \psi \rangle \langle \psi |) \\ &- Pr(q_A q_B = 11) \text{Tr}(A_1 \otimes B_1 | \psi \rangle \langle \psi |) \end{aligned}$$

Recall that $A_0 = Z$ and $A_1 = X$, and $B_0 = H$ and $B_1 = ZHZ$. Now for 00:

$$\begin{split} \operatorname{Tr}(A_0 \otimes B_0 | \psi \rangle \langle \psi |) &= \operatorname{Tr}(Z \otimes H | \psi \rangle \langle \psi |) \\ &= \operatorname{Tr}(Z \otimes H(\alpha^\dagger | 0) | 0) + \beta | 1 \rangle | 1 \rangle) (\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &= \alpha^\dagger \operatorname{Tr}(Z \otimes H (| 0) \langle 0 |) (\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &+ \beta^\dagger \operatorname{Tr}(Z \otimes H (| 1 \rangle | 1 \rangle) (\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &= |\alpha|^2 \operatorname{Tr}(Z \otimes H (| 0 \rangle | 0 \rangle) (\langle 0 | \langle 0 |)) \\ &+ \alpha^\dagger \beta \operatorname{Tr}(Z \otimes H (| 0 \rangle | 0 \rangle) (\langle 1 | \langle 1 |)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}(Z \otimes H (| 1 \rangle | 1 \rangle) (\langle 0 | \langle 0 |)) \\ &+ |\beta|^2 \operatorname{Tr}(Z \otimes H (| 1 \rangle | 1 \rangle) (\langle 1 | \langle 1 |)) \\ &= |\alpha|^2 \operatorname{Tr}((|0 \rangle | + \rangle) (\langle 0 | \langle 0 |)) \\ &+ |\beta|^2 \operatorname{Tr}((|0 \rangle | + \rangle) (\langle 0 | \langle 0 |)) \\ &+ |\beta|^2 \operatorname{Tr}((-|1 \rangle | - \rangle) (\langle 0 | \langle 0 |)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 0 | \langle 0 | \langle 0 | \rangle | + \rangle)) \\ &+ |\beta^\dagger \alpha \operatorname{Tr}((\langle 1 | \langle 1 | \langle 1 | \rangle | - \rangle)) \\ &+ |\beta^\dagger \alpha \operatorname{Tr}((\langle 1 | \langle 1 | \langle 1 | \rangle | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \langle 1 | \rangle | - | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle | - | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle | - | - \rangle)) \\ &= |\alpha|^2 \langle 0 | 0 \rangle \langle 0 | + \rangle \\ &+ |\alpha^\dagger \beta \langle 1 | 0 \rangle \dots \\ &+ |\beta|^2 \langle 1 | - \rangle \\ &= |\alpha|^2 \langle 1 | - \rangle \\ &= \frac{|\alpha|^2}{\sqrt{2}} + \frac{|\beta|^2}{\sqrt{2}} \\ &= \frac{|\alpha|^2 + |\beta|^2}{\sqrt{2}} \end{split}$$

And for 01:

Consider $ZHZ\ket{0}=ZH\ket{0}=Z\ket{+}=\ket{-}$ and $ZHZ\ket{1}=-ZH\ket{1}=-Z\ket{-}=-\ket{+}=(-1)\ket{+}$.

$$\begin{split} \operatorname{Tr}(A_0 \otimes B_1 | \psi \rangle \langle \psi |) &= \operatorname{Tr}(Z \otimes ZHZ | \psi \rangle \langle \psi |) \\ &= \operatorname{Tr}(Z \otimes ZHZ (\alpha^\dagger | 0) | 0) + \beta | 1 \rangle | 1 \rangle) (\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &= \alpha^\dagger \operatorname{Tr}(Z \otimes ZHZ (| 0) \langle 0 | \langle 0 | \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &+ \beta^\dagger \operatorname{Tr}(Z \otimes ZHZ (| 1 \rangle | 1 \rangle) (\alpha \langle 0 | \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &= |\alpha|^2 \operatorname{Tr}(Z \otimes ZHZ (| 0 \rangle | 0 \rangle) (\langle 0 | \langle 0 | \rangle)) \\ &+ \alpha^\dagger \beta \operatorname{Tr}(Z \otimes ZHZ (| 0 \rangle | 0 \rangle) (\langle 1 | \langle 1 | \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}(Z \otimes ZHZ (| 1 \rangle | 1 \rangle) (\langle 0 | \langle 0 | \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}(Z \otimes ZHZ (| 1 \rangle | 1 \rangle) (\langle 1 | \langle 1 | \rangle)) \\ &= |\alpha|^2 \operatorname{Tr}((|0 \rangle \langle -1 \rangle | + \rangle) (\langle 0 | \langle 0 | \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((|0 \rangle \langle -1 \rangle | + \rangle) (\langle 1 | \langle 1 | \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((\langle 0 | \langle 0 | \rangle) (|0 \rangle \langle -1 \rangle | + \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((\langle 1 | \langle 1 | \rangle) (|0 \rangle \langle -1 \rangle | + \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((\langle 1 | \langle 0 | \rangle) (|-1 \rangle | + \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((\langle 1 | \langle 1 | \rangle) (|-1 \rangle | + \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((\langle 1 | \langle 1 | \rangle) (|-1 \rangle | + \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((\langle 1 | \langle 1 | \rangle | - | \rangle | + \rangle)) \\ &+ \beta^\dagger \alpha \langle 0 | 1 \rangle \dots \\ &+ \beta^\dagger \alpha$$

And for 10:

Consider $X|0\rangle = |1\rangle$ and $X|1\rangle = |0\rangle$.

$$\begin{split} \operatorname{Tr}(A_1 \otimes B_0 | \psi \rangle \langle \psi |) &= \operatorname{Tr}(X \otimes H | \psi \rangle \langle \psi |) \\ &= \operatorname{Tr}(X \otimes H(\alpha^\dagger | 0) | 0) + \beta | 1 \rangle | 1 \rangle)(\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &= \alpha^\dagger \operatorname{Tr}(X \otimes H(|0) \langle 0 |)(\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &+ \beta^\dagger \operatorname{Tr}(X \otimes H(|1) | 1 \rangle)(\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &= |\alpha|^2 \operatorname{Tr}(X \otimes H(|0) | 0 \rangle)(\langle 0 | \langle 0 | \rangle) \\ &+ \alpha^\dagger \beta \operatorname{Tr}(X \otimes H(|0) | 0 \rangle)(\langle 1 | \langle 1 | \rangle) \\ &+ \beta^\dagger \alpha \operatorname{Tr}(X \otimes H(|1) | 1 \rangle)(\langle 0 | \langle 0 | \rangle) \\ &+ |\beta|^2 \operatorname{Tr}(X \otimes H(|1) | 1 \rangle)(\langle 1 | \langle 1 | \rangle) \\ &= |\alpha|^2 \operatorname{Tr}((|1) | + \rangle)(\langle 1 | \langle 1 | \rangle) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((|0 | \langle 0 | \rangle)(|1 \rangle | + \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((|0 | \langle 0 | \rangle)(|1 \rangle | + \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((\langle 0 | \langle 0 | \rangle)(|1 \rangle | + \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((\langle 1 | \langle 1 | \rangle)(|0 \rangle | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle)(|0 \rangle | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle)(|0 \rangle | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle)(|0 \rangle | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle)(|0 \rangle | - \rangle)) \\ &+ |\beta|^2 \langle 0 | 1 \rangle \dots \\ &= \alpha^\dagger \beta \langle 1 | + \rangle \\ &+ \beta^\dagger \alpha \langle 0 | - \rangle \\ &= \frac{\alpha^\dagger \beta}{\sqrt{2}} + \frac{\beta^\dagger \alpha}{\sqrt{2}} \\ &= \frac{2\Re(\alpha^\dagger \beta)}{\sqrt{2}} = \sqrt{2}\Re(\alpha^\dagger \beta) \end{split}$$

And for 11:

$$\begin{split} \operatorname{Tr}(A_1 \otimes B_1 | \psi \rangle \langle \psi |) &= \operatorname{Tr}(X \otimes ZHZ | \psi \rangle \langle \psi |) \\ &= \operatorname{Tr}(X \otimes ZHZ(\alpha^\dagger | 0) | 0) + \beta | 1 \rangle | 1 \rangle)(\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &= \alpha^\dagger \operatorname{Tr}(X \otimes ZHZ(|0) \langle 0 |)(\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &+ \beta^\dagger \operatorname{Tr}(X \otimes ZHZ(|1\rangle | 1 \rangle)(\alpha \langle 0 | \langle 0 | + \beta \langle 1 | \langle 1 | \rangle)) \\ &= |\alpha|^2 \operatorname{Tr}(X \otimes ZHZ(|0\rangle | 0))(\langle 0 | \langle 0 | \rangle) \\ &+ \alpha^\dagger \beta \operatorname{Tr}(X \otimes ZHZ(|0\rangle | 0))(\langle 1 | \langle 1 | \rangle) \\ &+ \beta^\dagger \alpha \operatorname{Tr}(X \otimes ZHZ(|1\rangle | 1 \rangle)(\langle 1 | \langle 1 | \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}(X \otimes ZHZ(|1\rangle | 1 \rangle)(\langle 1 | \langle 1 | \rangle)) \\ &= |\alpha|^2 \operatorname{Tr}((|1\rangle \langle -1) | + \rangle)(\langle 1 | \langle 1 | \rangle)) \\ &+ \beta^\dagger \alpha \operatorname{Tr}((|0\rangle | - \rangle)(\langle 0 | \langle 0 | \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((|0\rangle | - \rangle)(\langle 1 | \langle 1 | \rangle)) \\ &= |\alpha|^2 \operatorname{Tr}((|0\rangle | \langle 0 | \langle 0 | \rangle) | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \langle 1 | \rangle)(|0\rangle | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle)(|0\rangle | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle)(|0\rangle | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle)(|0\rangle | - \rangle)) \\ &+ |\beta|^2 \operatorname{Tr}((\langle 1 | \langle 1 | \rangle)(|0\rangle | - \rangle)) \\ &= |\alpha|^2 \langle 0 | 1 \rangle \dots \\ &- \alpha^\dagger \beta \langle 1 | 1 \rangle \langle 1 | + \rangle \\ &+ \beta^\dagger \alpha \langle 0 | 0 \rangle \langle 0 | - \rangle \\ &+ |\beta|^2 (-1) \langle 1 | 0 \rangle \dots \\ &= -\alpha^\dagger \beta \langle 1 | + \rangle \\ &+ \beta^\dagger \alpha \langle 0 | - \rangle \\ &= -\frac{\alpha^\dagger \beta}{\sqrt{2}} + \frac{\beta^\dagger \alpha}{\sqrt{2}} \\ &= -\frac{23(\alpha^\dagger \beta)i}{\sqrt{2}} = -\sqrt{2} \Im(\alpha^\dagger \beta)i \end{split}$$

Calculating Pr(win) - Pr(lose) from the formulas above, we get:

$$\Pr(\text{win}) - \Pr(\text{lose}) = \frac{1}{4} \left(\frac{|\alpha|^2 + |\beta|^2}{\sqrt{2}} + \frac{-|\alpha|^2 + |\beta|^2}{\sqrt{2}} + \sqrt{2}\Re(\alpha^{\dagger}\beta) - (-\sqrt{2}\Im(\alpha^{\dagger}\beta)i) \right)$$

$$= \frac{1}{4} \left(\frac{2|\beta|^2}{\sqrt{2}} + \sqrt{2}\Re(\alpha^{\dagger}\beta) + \sqrt{2}\Im(\alpha^{\dagger}\beta)i \right)$$

$$= \frac{\sqrt{2}}{4} \left(|\beta|^2 + \Re(\alpha^{\dagger}\beta) + \Im(\alpha^{\dagger}\beta)i \right)$$

$$= \frac{\sqrt{2}}{4} \left(|\beta|^2 + \Re(\alpha^{\dagger}\beta) + \Im(\alpha^{\dagger}\beta)i \right)$$

$$= \frac{\sqrt{2}}{4} \left(|\beta|^2 + \alpha^{\dagger}\beta \right)$$

$$= \frac{\sqrt{2}}{4} \left((1 - |\alpha|^2) + \alpha^{\dagger}\beta \right)$$

And since $1 = \Pr(\text{win}) + \Pr(\text{lose}) \iff 1 - 2(\Pr(\text{lose})) = \Pr(\text{win}) - \Pr(\text{lose})$, we get: Now $\Pr(\text{lose}) = \frac{\Pr(\text{win}) - \Pr(\text{lose}) - 1}{-2}$ And $\Pr(\text{win}) = 1 - \Pr(\text{lose})$

$$Pr(win) = 1 - Pr(lose)$$

$$= 1 - \frac{Pr(win) - Pr(lose) - 1}{-2}$$

$$= 1 - \frac{\frac{\sqrt{2}}{4} \left((1 - |\alpha|^2) + \alpha^{\dagger} \beta \right) - 1}{-2}$$

$$= 1 + \frac{\frac{\sqrt{2}}{4} \left((1 - |\alpha|^2) + \alpha^{\dagger} \beta \right) - 1}{2}$$

$$= \frac{2 + \frac{\sqrt{2}}{4} \left((1 - |\alpha|^2) + \alpha^{\dagger} \beta \right) - 1}{2}$$

$$= \frac{1 + \frac{\sqrt{2}}{4} \left((1 - |\alpha|^2) + \alpha^{\dagger} \beta \right)}{2}$$

And we're done! We've found the probability of winning the game! It's $\frac{1+\frac{\sqrt{2}}{4}\left((1-|\alpha|^2)+\alpha^{\dagger}\beta\right)}{2}$, simple as that!

(b) Based on your answer above, what is the probability of Alice and Bob winning with this strategy if $\alpha = 1$, i.e. $|\psi\rangle$ is unentangled?

Now since $\alpha = 1$: $\beta = 0$.

And
$$Pr(win) = \frac{1 + \frac{\sqrt{2}}{4} ((1 - |\alpha|^2) + \alpha^{\dagger} \beta)}{2}$$

$$\Pr(\text{win}) = \frac{1 + \frac{\sqrt{2}}{4} \left((1 - |\alpha|^2) + \alpha^{\dagger} \beta \right)}{2}$$

$$= \frac{1 + \frac{\sqrt{2}}{4} \left((1 - 1) + 1^{\dagger} 0 \right)}{2}$$

$$= \frac{1 + \frac{\sqrt{2}}{4} \left(0 + 1^{\dagger} 0 \right)}{2}$$

$$= \frac{1 + \frac{\sqrt{2}}{4} \left(0 + 0 \right)}{2}$$

$$= \frac{1 + \frac{\sqrt{2}}{4} \left(0 \right)}{2}$$

$$= \frac{1}{2}$$

We win with probability $\frac{1}{2}$! This is even worse than the classical strategy! An interesting question is: For which α does the quantum strategy win with probability $\frac{3}{4}$?

3. This question studies a 3-player non-local game called the *GHZ game*. There are now three players, Alice, Bob and Charlie, each of which receives a question q_a , q_b , or q_c , respectively, such that $q_a q_b q_c \in \{000, 011, 101, 110\}$. The players each return a bit $r_a, r_b, r_c \in \{0, 1\}$, respectively, and win if

$$q_a \vee q_b \vee q_c = r_a \oplus r_b \oplus r_c,$$

where \vee denotes the binary OR operation

An analysis similar to the CHSH game shows that the optimal winning classical strategy yields success probability 3/4. Your task in this question is to analyze an optimal quantum strategy.

The 3-qubit state the players share is

$$|\psi\rangle = \frac{1}{2} (|000\rangle - |011\rangle - |101\rangle - |110\rangle) \in \mathbb{C}^8.$$

Each player will use the same measuring strategy: Given input bit 0, they will apply local unitary $U_0 = I$, and if they get input 1, they apply local unitary $U_1 = H$. They then measure their qubit in the standard basis, and return the answer (0 or 1). As for CHSH, we assume the labels for the measurement outcomes are +1, -1 for measurement outcomes $|0\rangle\langle 0|$ and $|1\rangle\langle 1|$, respectively.

- (a) Suppose Alice gets input 0. What is her observable? What if she gets input 1? In general, Alice's observable is I H.
- (b) Suppose the questions are $q_A q_B q_C = 000$. What is the probability the players win? All players apply $U_0 = I$.

Now we get with probability $\frac{1}{4}$ each the following results:

 $|000\rangle$: Alice measures $|0\rangle\langle 0|$, Bob measures $|0\rangle\langle 0|$, Charlie measures $|0\rangle\langle 0|$ and they win.

 $|011\rangle$: Alice measures $|0\rangle\langle 0|$, Bob measures $|1\rangle\langle 1|$, Charlie measures $|1\rangle\langle 1|$ and they win.

 $|101\rangle$: Alice measures $|1\rangle\langle 1|$, Bob measures $|0\rangle\langle 0|$, Charlie measures $|1\rangle\langle 1|$ and they win.

|110 \rangle : Alice measures |1 \rangle (1|, Bob measures |1 \rangle (1|, Charlie measures |0 \rangle (0| and they win.

They win with probability $\frac{4}{4} = 1$.

(c) Suppose the questions are $q_A q_B q_C = 011$. What is the probability the players win? Alice applies $U_0 = I$, Bob applies $U_1 = H$ and Charlie applies $U_1 = H$. We get with probability $\frac{1}{4}$ each the following results:

 $|0++\rangle$: Alice measures $|0\rangle\langle 0|$, Bob measures $|+\rangle\langle +|$, Charlie measures $|+\rangle\langle +|$.

We get results $|000\rangle,\, |001\rangle,\, |010\rangle,\, |011\rangle$ with probability $\frac{1}{4}$ each.

Only $|001\rangle$ and $|010\rangle$ win, so this contributes $\frac{2}{4} \cdot \frac{1}{4} = \frac{1}{8}$ to the probability of winning.

 $|0--\rangle$: Alice measures $|0\rangle\langle 0|$, Bob measures $|-\rangle\langle -|$, Charlie measures $|-\rangle\langle -|$.

We get results $|000\rangle$, $|001\rangle$, $|010\rangle$, $|011\rangle$ with probability $\frac{1}{4}$ each.

Only $|001\rangle$ and $|010\rangle$ win, so this contributes $\frac{2}{4} \cdot \frac{1}{4} = \frac{1}{8}$ to the probability of winning.

 $|1-+\rangle$: Alice measures $|1\rangle\langle 1|$, Bob measures $|-\rangle\langle -|$, Charlie measures $|+\rangle\langle +|$.

We get results $|100\rangle$, $|101\rangle$, $|110\rangle$, $|111\rangle$ with probability $\frac{1}{4}$ each.

Only $|100\rangle$ and $|111\rangle$ win, so this contributes $\frac{2}{4} \cdot \frac{1}{4} = \frac{1}{8}$ to the probability of winning.

 $|1+-\rangle$: Alice measures $|1\rangle\langle 1|$, Bob measures $|+\rangle\langle +|$, Charlie measures $|-\rangle\langle -|$.

We get results $|100\rangle$, $|101\rangle$, $|110\rangle$, $|111\rangle$ with probability $\frac{1}{4}$ each.

Only $|100\rangle$ and $|111\rangle$ win, so this contributes $\frac{2}{4} \cdot \frac{1}{4} = \frac{1}{8}$ to the probability of winning.

They win with probability $\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$.

Probably. I haven't applied observables.