

The University of Aizu

Research Progress Report Seminar Spiking Neural Network with 3-D ICbased Stacking Memory

Ngo-Doanh NGUYEN - m5262108

Supervised by Prof. DANG Nam Khanh

2023-12-01

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Motivation

*Y. Du. Decentralized Smart IoT. Encyclopedia

Computational Power for Edge Devices

- Improve Data Transfer

Efficiency

- + Reduce Latency
- + Reduce Power

*S. H. Tsang. Towards Data Science
High Complexity
for Edge Devices

S) SI

Spiking Neural Net.

- Lightweight Inference
- Reduce Power Consumption
- Reduce Memory Footprint
- Reduce Hardware Area

*J.Hennessy, D. Patterson 2019 CACM

End of Moore's Law

3-D Stacking Arch.

- Reduce Latency
- Reduce Power Consumption
- Reduce Hardware Footprint

- 1. Motivation
- 2. Approach
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Approaches (1)

- From 2D Architecture to 3D Architecture
 - Reduce hardware footprint
 - Shorten data movement

2D hardware architecture

3D hardware architecture

Approaches (2)

- Each layer in 3D architecture can have isolated power rails
 - Power-gating*, voltage-scaling** differently for each layer
 - Reduce supply voltage for low-priority layer or power-gate it
 - Maintain supply voltage for high-priority layer

**Voltage-scaling = Reduce supply voltage to reduce power consumption

Power management for each layer

Recap: Supply Voltage in Digital Circuits

Normal operation

Undervolting operation

Powergating operation

Approaches (3)

- Spike Neural Network is spatial and temporal sparse
 - Lightweight inference
 - Low power delivery
- SNN has noise resilience
 - Against the affection of power-gate & voltage-scaling

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Proposal Hardware Architecture

- 3D Neuromorphic Computing Core (3D-NCC)
 - Split memory into subsets placed in multiple layers
 - Power-gate & under-voltage are applied separately to each memory layer => Lower power consumption
 - In-situ dynamic quantization for synaptic weightsMaintain accuracy

Weight operation (1)

Operation of 3D-NCC under normal condition

Operation of 3D-NCC with under-volting top layer

11/27/2023

Weight operation (2)

Operation of 3D-NCC under power-gating top layer

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Accuracy vs. Power (1)

- Dataset: MNIST; SNN config. = 784:48:10 (1 3D-NCC)
- Power extraction with PrimeTime Synopsys
- Lib: NANGATE 45nm + OpenRAM + FreePDK 3D45 TSV
- Undervolt each layer (one-by-one) with the same volt.

Accuracy per Volt.

Energy per Volt.
Ngo-Doanh Nguyen

Bit Error Rate per Volt.

Accuracy vs. Power (2)

Using both power-gating or under-volting for each layer

UV two top layers

PG top layer & UV second top layer

PG two top layers & UV two bottom layers

Comparison

Setup voltage supplies as in case 1, case 2 and case 3

	•										
Parameters	TrueNorth	Loihi	ODIN	NASH	Karimi et	This work					
	[1]	[2]	[3]	[4]	al. [5]	Normal Case	Case 1 ¹	Case 2 ²	Normal Case	Case 1 ¹	Case 3
Benchmark	MNIST	MNIST	MNIST	MNIST	MNIST	MNIST (784:48:10)			CIFAR-10 (VGG16)*		
Accuracy (%)	91.94	96	84	79.4	99.2	95.35	94.84	88.77	91.38	91.26	69.50
Neuron Model	IF	DenMem	LIF & Izhikevicz	LIF	LIF	LIF					
Synaptic Weight Storage	1-bit SRAM	1-to-9-bit SRAM	4-bit SRAM	8-bit SRAM	CTT twin-cell	8-bit SRAM			16-bit SRAM		
Interconnect	2D	2D	2D	3D	2D	3D					
Implementation	Digital	Digital	Digital	Digital	Mix-signal	Digital Software simulation					tion
Learning Rule	Un- supervised	On-chip STDP	On-chip Stochastic SDSP	On-chip STDP	Off-chip	Off-chip					
Technology	28nm	14nm FinFET	28nm FD-SOI	45nm	22nm FD-SOI	45nm					
Supply Voltage	0.7-1.05V	0.5-1.2 V	0.55-1 V	1.1 V	0.8 V	0.65V - 1.1V					
Energy per SOP (pJ)	26 (0.775V)	23.6 (0.75V)	8.4	189.3	8	244.28 (1.1V)	191.46 ¹	81.16 ²	475.20 (1.1V)	372.13 ¹	205.55
Energy per SOP (pJ) (in 14nm)	4.902	23.6	1.078	10.86	4.32	14.02 (1.1V)	10,98 ¹	4.65 ²	27.27 (1.1V)	21.35 ¹	11.79

¹ Case 1: $\{V_{m_0} = 1.1V; V_{m_1} = 1.1V; V_{m_2} = 0.8V; V_{m_3} = 0.8V\}$ (Low-power Mode I)

~22% accuracy drop in big network

² Case 2: $\{V_{m_0} = 0.825V; V_{m_1} = 0.8V; V_{m_2} = 0V; V_{m_3} = 0V\}$ (Low-power Mode III)

³ Case 3: $\{V_{m_0} = 0.825V; V_{m_1} = 0.8V; V_{m_2} = 0.8V; V_{m_3} = 0V\}$ (Low-power Mode III)

- 1. Motivation
- 2. Approach & Methodology
- 3. Proposal Hardware Architecture
- 4. Results
- 5. Conclusion

Conclusion

- 3D SNN architecture called 3D-NCC
- Split memory word into subsets placed in separated layer
 - Apply power-gating & voltage-scaling to memory layer(s)
 - Reduce power consumption while maintaining accuracy
 - In-situ dynamic quantization
- UV two top layer reduces 21.62% power consumption with 0.51% accuracy loss
- PG two top layer & UV two bottom layers reduce
 66.77% power consumption with 6.58% accuracy loss

Schedule

- Prepare & submit the draft of the master's thesis

Now - 04.12.23

- Polish the draft of master's thesis and submit the final version

04.12.23 - 26.01.24

- Fix the thesis according the reviews of referees

16.02.24 - 22.02.24

Submit the draft of thesis presentation

Prepare slides

Thesis Submit the final thesis presentation

Review & submit the final thesis

04.12.23 - 26.12.23

- Prepare the presentation slides based on publication materials

26.01.24 - 16.02.24

- The presentation day (16.02.24)

References

- [1] F. Akopyan et al., "TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip," IEEE Trans. Comput. Aided Design Integr. Circuits Syst., vol. 34, no. 10, pp. 1537–1557, Oct. 2015.
- [2] M. Davies et al., "Loihi: A neuromorphic manycore processor with on-chip learning," IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan. 2018.
- [3] C. Frenkel, C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, "A 0.086-mm2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28nm CMOS," IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 1, pp. 145–158, Feb. 2019.
- [4] O. M. Ikechukwu, K. N. Dang, and A. B. Abdallah, "On the design of a fault-tolerant scalable three dimensional NoC-based digital neuromorphic system with onchip learning," IEEE Access, vol. 9, pp. 64331–64345, 2021.
- [5] M. Karimi, A. S. Monir, R. Mohammadrezaee, and B. Vaisband, "CTT-based scalable neuromorphic architecture," IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 13, no. 1, pp. 96–107, Mar. 2023.

Publications

Journal (Published)

- N. -D. Nguyen, A. B. Ahmed, A. B. Abdallah and K. N. Dang, "Power-Aware Neuromorphic Architecture With Partial Voltage Scaling 3-D Stacking Synaptic Memory," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, doi: 10.1109/TVLSI.2023.3318231.
- N. -D. Nguyen, X. -T. Tran, A. B. Abdallah and K. N. Dang, "An In-Situ Dynamic Quantization With 3D Stacking Synaptic Memory for Power-Aware Neuromorphic Architecture," in IEEE Access, vol. 11, pp. 82377-82389, 2023, doi: 10.1109/ACCESS.2023.3301560.

Conference: (Accepted)

 N. -D. Nguyen and K. N. Dang, "A Novel Yield Improvement Approach for 3D Stacking Neuromorphic Architecture", 16th IEEE International Symposium on Embedded Multicore /Manycore SoCs (MCSoC-2023), Dec 18th-21th, Singapore, Singapore.

The University of Aizu

Thank you for your attention.

Signal Noise Margin

- SNM is to get the Bit Error Rate of memory (SNM<0.1)
- 6T SRAM (FreePDK NANGATE 45nm)
- HSPICE simulation + mathematical computations
- Monte Carlo simulation

