UNCLASSIFIED

AD NUMBER AD908453 **LIMITATION CHANGES** TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; 23 MAR 1973. Other requests shall be referred to Army Missile Command, Redstone Arsenal, AL. AUTHORITY DARPA Itr, 27 Jun 1973

Best Available Copy

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. Semiannual Technical Report

INVESTIGATIONS OF CHEMICAL LASER PROCESSES

1 January 1972 Through 30 June 1972

GEORGE H. LINDQUIST
ROBERT E. MEREDITH
CHARLES B. ARNOLD
FREDERICK G. SMITH
ROBERT L. SPELLICY
Infrared and Optics Division

FEBRUARY 1973

RESEARCH INSTITUTE OF MICHIGAN

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

Sponsored by the Advanced Research Projects Agency, Department of Defense, Washington, D. C.

ARPA Order No. 1180

Contract No. DAAH01-72-C-0573

NOTICES

Sponsorship. The work reported herein was conducted by the Environmental Research Institute of Michigan (formerly Willow Run Laboratories of the University of Michigan) for the Advanced Research Projects Agency, Department of Defense, Washington, D.C. 20301. Contracting Officer is Dr. Fred Haak of the ARPA Support Office, Army Missile Command, Huntsville, Alabama under Contract No. DAAH01-72-C-0573, ARPA Order No. 1108. Technical Monitor is Edward T. Gerry. Contracts and grants to the Institute for the support of sponsored research are administered through the Office of Contracts Administration.

Distribution. Initial distribution is indicated at the end of this document.

DDC Availability. Qualified requesters may obtain copies of this document from:

Defense Documentation Center Cameron Station Alexandria, Virginia 22314

Final Disposition. After this document has served its purpose, it may be destroyed. Please do not return it to the Environmental Research Institute of Michigan.

Semiannual Technical Report

INVESTIGATIONS OF CHEMICAL LASER PROCESSES

1 January 1972 Through 30 June 1972

GEORGE H. LINDQUIST
ROBERT E. MEREDITH
CHARLES B. ARNOLD
FREDERICK G. SMITH
ROBERT L. SPELLICY
Infrared and Optics Division

"The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government."

FEBRUARY 1973

Distribution limited to U.S. Gov't. agencies only?

Test and Evaluation; 23 MAR 1973 Other requests

for this document must be referred to

Anny Missile Cond.

Attn: Amsmt-RNS

Alla 35409

Klostone Answel, alla 35409

FOREWORD

An investigation of fundamental molecular processes in support of laser system design was begun at the Environmental Research Institute of Michigan, formerly the Willow Run Laboratories of the Institute of Science and Technology, The University of Michigan for the Advanced Research Projects Agency under Contract No. DAHC-15-67-C-0062. The current effort is a continuation of this work performed under Contract No. DAAH01-72-C-0573. This current work concerns transition probabilities for several molecules and the transfer of vibrational and rotational energy between HF molecules. The work was performed with R. E. Meredith as Principal Investigator for approximately six months. Dr. Meredith left The University of Michigan on 1 June 1972, and at this time Mr. George Lindquist became Principal Investigator. Director of the program is R. R. Legault. Contracting Officer is Dr. Fred Haak of the ARPA Support Office, Army Missile Command, Huntsville, Alabama. The Institute number for this report is 191300-1-P.

The authors wish to thank Robert Turner for his contributions. The authors of Section 5 wish to acknowledge the cooperation of The University of Michigan Physics Department. Particular thanks are due to Professor C. W. Peters for his interest and helpful discussion.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either implied or expressed, of the Advanced Research Projects Agency or the U.S. Government.

The contract expired 31 December 1972.

ABSTRACT

A complete set of electric dipole transition probabilities for HCl has been computed by means of a numerical procedure developed previously. To produce these computations, the dipole moment and internuclear potential for the HCl molecule were modeled with the available experimental data. The results are presented in tabular form for vibrational quantum states from 0 to 12, for changes in vibrational states between 0 and 35, and for all rotational states between 0 and 35. Progress on experimental measurements of the intensity of the v = 0 to v' = 4 band of CO are included as well as progress on an experiment to measure rotational relaxation in an excited cell of HF.

Measurements of the strengths and widths of lines in the v=0 to v'=3 band of HF are reported. This work was begun under an earlier contract with the Advanced Research Projects Agency, and was completed under the current contract. The electric dipole matrix element for the band has been determined from the measured strengths to be 1.628×10^{-21} esu-cm. The rotational dependence of the measured half widths agrees with the Anderson theory of collision broadening if off-resonant collisions are taken into account. A complete code has been written to compute line widths resulting from collision broadening. A section describing this program is included. Sample calculations which show good agreement with available experimental data are presented.

CONTENTS

Foreword	iii
Abstract	v
List of Figures	ix
List of Tables	xi
List of Symbols	· · · xii
1. Introduction and Summary	1
1.1. Task 1: Matrix Element Determinations	1
1.2. Task II: Molecular Energy Transfer Rates	2
1.3. Additional Effort	
2. Matrix Element Calculations and Intensity Measurements 2.1. Matrix Element Calculations	5
2.1.1. The Dipole Moment and Calculated Matrix Elements	
HC1	5
2.1.2. Determination of the Intermolecular Potential: General Considerations	6
2.1.3. The RKR Potential	7
2.1.4. Construction of the RKR Potential	10
2.2. The Dipole Moment Function	11 11
2.2.1. The Polynomial Approximation 2.2.2. Derivation of Relationships Between Various	11
Matrix Elements	16
2.2.3. Experimental HCl Matrix Elements	19
2.2.4. The Vibrational Matrix Elements	23
2.2.5. Rotational Dependence of the Matrix Elements	27
2.3. Progress on the Overtone Absorption Measurements of CO	29
2.3.1. Measurement Feasibility	30 32
2.3.2. Apparatus 2.4. Data Reduction	34
3. Infrared Diagnostic Studies	39
3.1. Introduction 3.2. Experimental Design	39
3.2.1. Excitation Technique	39
3.2.2. Relaxation Monitoring Technique	40
3.3. Computation of Expected Results	41
3.3.1. Excitation	41
3.3.2. Relaxation Monitoring	47
3.3.3. Absorption	5 1 5 9
3.3.4. Monitoring Relaxation by Fluorescence	65
3.4. Choice of a Measurement Scheme 3.5. Techniques to be Used In the Measurement of Relaxation Times	
3.5.1. Experimental Arrangement	66
3.5.2. Data Reduction and Analysis	74
4. Computation of the Width of Collision-Broadened Spectral Lines	79
4.1. Introduction	79
4.2. Anderson's Theory of Spectral Line Broadening	80
4.3. Half-width Calculation	85

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

5. Measurements of Intensities and Widths in the Second Overtore Band	
of HF	95
5.1. Matrix Element Calculations	95
5.2. Line-Width Calculations	97
5.3. Experimental Procedure	99
5.3.1. Background	99
5.3.2. Experimental Strengths, Widths, and	
Matrix Elements	99
5.4. Conclusions	105
Appendix 1:	107
Appendix II:	111
References	178
Distribution Liet	

FIGURES

1.	RKR Potential for HCl		9
2.	Vibrational Energy Levels for HCl Determined by the Modified Dunham Coefficients Used to Generate the RKR Potential		12
3.	Inner Branch of RKR Potentials Calculated by Means of the Trial Rotational Constants of Table 3		12
4.	Rotational Constants for HCl as Determined by the Modified Dunham Coefficients Used to Generate the RKR Potential		13
5.	Experimental Determinations of <0 $ \mu $ 1> and <0 $ \mu $ 2>		20
6.	$\Delta_V = 0$ Matrix Elements for HCl		24
7.	$\Delta v = 1$ Matrix Elements for HCl		24
8.	$\Delta v = 2$ Matrix Elements for HCl		25
9.	$\Delta v = 3$ Matrix Elements for HCl		25
10.	Dipole Moment Function for IIC1 Used in the Present Calculations		2 6
11.	Five-Meter White Cell for Observance of the Third Overtone Band of CO		33
12.	White Cell Optical Path: Eight Traversal Operation		35
13.	Optical System of Five-Meter White Cell Removed from lts Various Chamber		35
14.	Reduction Optics for White Cell		36
15.	White Cell, Matching Optics and Vacuum Spectrometer		36
16.	R-Branch Fluorescence in the 0 - 1 Line Pumped by the Stimulation Laser. Before Relaxation, and in an Optically Thin Approximation		62
17.	Stimulating Laser, Before Relaxation, and in an Optically Thin		
	Approximation		
	Block Diagram of the HF Relaxation Rate Apparatus		
19.	•		
20.	Interior View of IM Pump Laser		
21.			
2 2.	Pump Laser Power Supply Clrcult		
	Expected Data as Displayed on Dual-Beam Oscilloscope		
24.	Pump Laser and Its Associated Optical Bench Inside the Fume Hood		
25.		•	86
26.	Band of Self-Broadened HF		88
27.	Comparison of Measurement and Theory for the Fundamental Band of Self-Broadened HF		88

28.	Comparison of Measurement and Theory for the First Overtone Band of Self-Broadened HF
29.	Comparison of Measurement of Theory for the Pure Rotation Band of Self-Broadened HF
30.	Comparison of Both Experimental and Calculated Matrix Elements 103
31.	Comparison of Observed and Calculated Half Widths
32.	Case in Which Spectral Line Involves Energy Levels Near the Boltzmann Maximum
33.	Case in Which Spectral Line Involves Energy Levels Far from the Boltzmann Maximum
34.	Partial Cross Sections Calculated from Dipole -Dipole Interactions and from All Interactions Through Quadrupole - Quadrupole Interactions
	- 111CARCUONS

TABLES

1.	Vibrational Constants of HC1	8
2.	Rotational Energy Constants of HCl	8
3.	Observed and Calculated Band Origins for HCl	13
4.	Trial Rotational Constant Values	14
5.	Observed and Calculated Rotational Constants for HCl	14
6.	RKR Potential for HCl	15
7.	Selected C _{i,v',v} Coefficients for HCl with a Cubic Polynomial	
	Expansion	18
8.	Selected C _{i,v',v} Coefficients for HCl Calculated with the Wave-	
	function Approximation	18
9.	Various Determinations of the Overtone Matrix Elements for HCl	20
10.	Overtone Matrix Elements Used in the Present Work	22
11.	Dipole Moment Coefficients for HCl	22
12.	R ^{i,0} Used to Compute Column d of Table 11	22
13.	Comparison of Measured and Calculated $R^{1,2}$ and $R^{2,3}$	28
14.		2 8
15.	Results of Calculations of Peak Absorptions	31
16.	Power Requirement per Unit Cell Area to Produce 90% of Maximum Possible Change in Cell Population	48-50
17.	Absorption of Completely Stimulated Cell by Probe Laser	53-57
18.	Ratio of Stimulated Fluorescence Terms to Spontaneous Fluorescence Term in Equation (45)	64
19.	Noise Equivalent Radiances for Practical Radiometric and Spectrometric Systems in Both the Vibration-Rotation Region and the Short Wavelength End of the Pure Rotation Region of HF	64
20.	Typical Operating Parameters for the 1-m Pump Laser	72
21.	Typical Operating Parameters for the 0.2-m Probe Laser	72
22.	Calculated Half-Widths for HF-01 Perturbed by HF-0 at 373.0 K	90
2 3 .	Calculated Half-Widths for HF-12 Perturbed by HF-0 at 373.0 K	91
24.	Calculated Half-Widths for HF-23 Perturbed by HF-0 at 373.0 K	92
25.	Calculated Half-Widths for HF-34 Perturbed by HF-0 at 373.0 K	93
26.	Calculated Half-Widths for HF-45 Perturbed by HF-9 at 373.0 K	94
27.	Measured Line Parameters	100
28.		102
29.	Dipole Moment Parameters and Experimental Matrix Elements	102

SYMBOLS

Α	area
$A_{\mathbf{u}}$	coefficient for spontaneous emission
A _{vi}	elements of 2 dimensional matrix A, equal to $\int \psi_0 ho^{ ext{i}} \psi_{ ext{v}} ext{r}^2 ext{dr}$
b	impact parameter
$^{\mathrm{b}}$ 0	impact parameter where $\mathscr{G}(b)$ = 1
b _{min}	radius corresponding to the minimum cross section
B _{jvv'}	elements of 3 dimensional matrix B, equal to $\int \psi_{_{f V}} ho^{f j} \psi_{_{f V}} { m r}^2 { m d}{ m r}$
Bfu	coefficient for stimulated absorption of radiation
Buf	coefficient for stimulated emission of radiation
B _v	vibrationally dependent rotational constant
В ₀	rotational constant in the $v = 0$ state
B ₁	rotational constant in the $v = 1$ state
c	velocity of light
$\mathbf{C}_{\pmb{\lambda}}^{K}$	constant in the expression for collision Hamiltonian
Civ'v	elements of 3 dimensional matrix C, equal to $\sum_{i} B_{jv'v} A_{ji}^{-1}$
C _s C _v	coefficients for multipole-multipole interactions
$\mathbf{c}_{\mathbf{v}}$	linear coefficient for F fac or
D*	dimensionless detectivity (cm $\sqrt{ m sec}^{-1}/ m watt$)
$D_{\mathbf{e}}$	energy difference between the dissociation limit and the bottom of the
	potential well
D_0	energy difference between the dissociation limit and the v = 0 level
D_{v}	quadratic coefficient for F factor
Ea	energy of state a
Eur	energy difference between upper and lower state
f _s (k _{st})	resonance factor
$\mathbf{F^{v'v}}(\mathbf{J})$	vibration-rotation interaction factor (Herman and Wallis F factor)
g ₂	degeneracy of the state of the perturbing molecule
g	degeneracy of the lower state
g(s	degeneracy of lower level of stimulating transition
gst	transition factors
g _u	degeneracy of the upper state
g _{us}	degeneracy of upper level of stimulating transition
u _s	

	rotational energy in cm ⁻¹
$G_{\mathbf{J}}$	vibrational energy in cm ⁻¹
$G_{\mathbf{v}}$	vibrational energy in cm ⁻¹
G(v, J)	vibration-rotation energy in cm ⁻¹
h	Planck's constant
₹i	h 2π
H	collision Hamiltonian
$H_{_{\rm C}}$	time dependent collision Hamiltonian
H_1	interaction Hamiltonian
$H_{\rm IR}$	Interaction Hamiltonian. Hamiltonian for interaction between radiating molecule and radiation field
H	unperturbed Hamiltonian
H_{R}	radiation Hamiltonian
H_1	Hamiltonian for radiating molecule
$H_2^{\frac{1}{2}}$	Hamiltonian for perturbing molecule
J	initial notational quantum number of absorbing or emitting molecule
J'	final rotational quantum number of absorbing or emitting molecule
	detinged lovel of lower state of stimulating laser
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	quantum numbers of absorbing molecule in lower state after a collision
υ,	tu onturber
J',	quantum numbers of absorbing molecule in upper state after a collision
J,	with a nerturber
•	rotational quantum number of perturber before collision
J_2	rotational quantum number of perturber after collision
J ₂ ,	Boltzmann's constant
k N	dimensionless energy defect of a near resonant collision
$\mathbf{k}_{\mathbf{st}}$	
$ec{\kappa}_{\Omega}$	unit vector in Ω direction
k ₀	k _{st} evaluated at b ₀
$\kappa^{\mathbf{P}}$	peak absorption coefficient
Κ (ν)	spectral absorption coefficient
(path length in cm
7	unit vector normal to area element dA
L	radiance (photons/sec cm ² sr)
	spectral radiance (photons/sec cm ² sr sec ⁻¹)
L _v L*	dimensionless length, $xG\eta(0, x)$
	I.* associated with x _m
L _T	rotational index, -J for P branch, +J' for R branch
m M	dipole moment expansion coefficients
M	

.M	molecular mass
М	initial magnetic quantum number of absorbing or emitting molecule before collision
М,	initial magnetic quantum number of absorbing or emitting molecule after collision
M'	final magnetic quantum number of absorbing or emitting molecule before collision
M',	final magnetic quantum number of absorbing or emitting molecule after collision
M_2	magnetic quantum number of perturber before collision
M 2,	magnetic quantum number of perturber after collision
$^{\mathrm{n}}\mathrm{J_{i}}$	population of molecules in rotational state $\mathbf{J}_{\mathbf{i}}$
$^{\mathrm{n}}$ J $_{2}$	population of perturber molecules with the J ₂ state state
n_{f}	population of lower state (1/cm ³)
n (,	spectral population of lower state (1/cm ² sec ⁻¹)
n u	population of upper state (1/cm ³)
$\mathbf{n}_{\mathbf{u}_{p}}$	spectral population of upper state (1/cm ³ sec ⁻¹)
n _s	state density
N	sum of n _f and n _n
$N_{_{U}}$	sum of $\mathbf{n}_{\mathbf{f}_{D}}$ and $\mathbf{n}_{\mathbf{u}_{D}}$
P	absorbing gas pressure in atmospheres
Pab	probability of transition from state a to state b
P_0	total laser pulse photon density per unit area (photons/cm ²)
P*	dimensionless laser pulse energy per unit area $P_0H/N_{\nu}\Delta\nu c$
P* . 1	dimensionless energy per unit area required to drive η at far end of
	cell to 0.1 its original value
Q	quadrupole moment of radiating molecule
Q_2	quadrupole moment of perturbing molecule
r	internuclear distance
$\mathbf{r}_{\mathbf{e}}$	equilibrium internuclear distance
•	position vector of the field point
• '	position vector of the source point
$R_{v'v} = R^{v'v}$	rotationless dipole matrix elements
s	Doppler spectral distribution of n _ℓ
su	Doppler spectral distribution of n

	S	tine strength (atm ⁻¹ cm ⁻²)
	S _{vv} '(m)	line strength corresponding to rotational index m in the $v \rightarrow v'$ band
	$\mathscr{F}(\mathbf{b})$	collision amplitude
	$\mathscr{F}_0,\mathscr{F}_1,\mathscr{F}_2$	0-th, first and second order terms in expansion for ${\mathscr G}$
	S	$U(\cdot x, -\infty)$
	t	time
	t	index for the various possible collision combinations
	T	temperature
	$T^{<}$	transition operator
	T_0, T_1, T_2	0-th, first and second order terms in expansion of T
	ti	relative velocity
	u	mean relative velocity
	H	unitary time operator
	V	initial vibrational quantum number of radiating molecul
	v.*	final vibrational quantum number of radiating molecule
	v _D	vibrational quantum number associated with the dissociation limit
	V	voiume
	V	interaction potential
	W	general transition rate
	w _{ba}	transition rate from state a to state b
	K	distance along laser line of sight in active medium
	$\mathbf{x}_{\mathbf{T}}$	ceil length
	Yij	Dunham coefficients for energy levels
	\mathbf{Y}_{λ}^{h}	spherical harmonics
	Z	vibration-rotation partition function
	$\mathbf{z}_{\mathbf{i}}$	$N_{\nu}g_{\mathbf{f}}\mathbf{B}_{\mathbf{f}\mathbf{u}}$
	z_2	$cN_{\nu}(B_{fu}+B_{uf})$
	P	peak absorptance for a line
	$\alpha(\nu^*)$	spectral absorptance
	γ	line half width in cm ⁻¹
	$^{\gamma}{ m D}$	Doppler line halfwidth
	r _v	one-dimensional matrix containing overtone matrix elements
-	712 - 4	energy change of xadiating molecule because of collision
	ΔE_2	energy change of perturber because of collision
	Δt	pulse duration
	η	dimensionless number density difference $\left(\frac{n_{\ell}}{g_{\ell}} - \frac{n_{u}}{g_{u}}\right)/N_{\nu}$
		xv

ERIM

K	general wave number
$^{\kappa}$ 1, $^{\kappa}$ 2, $^{\lambda}$ 1, $^{\lambda}$ 2	internal coordinates of the collision partners
p (r)	dipole moment
1.2	dipole moment of perturber
110	dipole moment at $r = r_e$
P	spectral frequency (sec ⁻¹)
x.	spectral wavenumber (cm ⁻¹)
0	spectral frequency of line center (sec -1)
$\overline{\rho}^*$	deviation of spectral directional photon density from equilibrium value
$oldsymbol{ ho}_{U}$	spectral photon density (photons/cm ³ sec ⁻¹)
$ ho_{\mu,\Omega}$	spectral, directional photon density (photons/cm ³ sec ⁻¹ sr)
$\frac{ ho_{r,\Omega}}{ ho_{r,\Omega}}$	equilibrium (blackbody) spectral, directional photon density
1	collision cross section
Tr + ct	real and imaginary parts of the collision cross section
-(, ')	spectral transmittance
Ф	dimensionless photon density, $ ho_{_{\mathcal{V}}}/N_{_{\mathcal{V}}}$
$\phi_{_{_{\mathbf{V}}}}$	radial wave function for state v , $J = 0$
♥ v ♥ v,d	radial wave function for v' , $J = 0$
v,d	radial wave function for state v, J
υ ·	quantum nrechanical wave function
\	adiation field vector
12	two dimensional angular direction

INVESTIGATIONS OF CHEMICAL LASER PROCESSES

I January 1972 Through 30 June 1972

INTRODUCTION AND SUMMARY

The primary tasks of the current program have been: (1) to increase the knowledge of the transition probabilities for the hydrogen halide and for carbon monoxide molecules (Task I); and (2) to measure the relaxation rates in an excited cell of HF (Task II)

1.1. TASK F. MATRIX ELEMENT DETERMINATIONS

In earlier work electric dipole moment matrix elements were calculated for HF and DF for transitions expected to be important in HF and DF lasers [1]. CO lasers show promise of high output, and hence matrix elements are to be computed for this molecule. Other hydrogen halides have also shown lasing action in their vibration-rotation bands and are thus also worthy of consideration. The present effort consists of

- (1) Modeling the electric dipole moment for CO and for hydrogen halides and computtug their electric dipole matrix elements for the vibration-rotation transitions expected in lasting aetlon.
- (2) Making absorption line-strength measurements in the second and third overtone bands of CO ($v=0 \Rightarrow v=3$ and $v=0 \Rightarrow v=4$) to be used in refluting the dipole moment model for CO in (1) (v is the vibrational quantum number)

To date, we have completed the dipole moment modelin, and matrix-element calculations on HCl only. General results of these calculations are summarized below and more specific details are presented in Section 2.

We modeled the HCl potential and dipole moment using existing spectroscopic data. These models produce matrix elements and hence transition probabilities which result in agreement within experimental accuracy with the measured transition probabilities. The latter are available only for vibrational levels up to v=3. These models were used to calculate the transition probabilities for transitions involving vibrational levels up to v=12. The accuracy of the results of these calculations are undetermined for vibrational levels above v=3 because the relationship between the dipole moment expansion used and the actual dipole moment at the large internuclear separations, which occur at the higher v levels, is unknown. However, the transition probabilities for levels somewhal above v=3 (e.g., v=4, 5, and 6) are probably reasonably accurate extrapolations.

An original objective was to measure absorption line strengths (or, equivalently, electric dipole matrix elements) in the second overtone band of CO. However, since results have been published for this band for near-Doppler lines [2], we will perform measurements primarily on the third overtone band, returning to the second overtone to determine Lorentz widths if scheduling permits it.

Present plans are to determine individual vibration-rotation line strengths and Lorentz half widths in the $v=0 \rightarrow v=4$ band of CO for gas pressures near 2 atm. Path lengths on the order of 200 m will be used. The experimental preparations are going well and we expect to encounter no problems in the completion of this portion of the program. The progress of this effort is reported in detail in Section 2.3.

The CO molecule will be modeled during the second half of the contract period when we have the outcome of the experimental intensity measurements. The results of the experimental strength and matrix-element determinations and the calculations for CO will be included in the final report.

1.2. TASK II: MOLECULAR ENERGY TRANSFER RATES

Because of the various processes which compete with a laser action, in the design and operation of chemical lasers, it is necessary to know the rates at which energy in the various degrees of freedom is transferred among molecules. Molecular coilisions with the cavity waits, molecular diffusion into and out of the active region, and collisions between molecules in the active gas medium all produce changes in the population of the various energy states. In Task II, we are concerned with the redistribution and loss to translation of rotational and vibrational energy, as the result of collisions among the gas molecules within the active medium.

The primary objective of these studies is to determine experimentally the populations of HF molecules as functions of (1) time and (2) their vibrational and rotational state in cells containing excited HF and in the absence of diffusion and wall effects. Once radiative processes are accounted for, experimental transfer rates resulting from collision processes can be determined. From these, energy-transfer cross sections for the various processes can be determined.

In the experiment presently being prepared, the stimulation in the HF cell is to be produced by an HF laser operating on a single HF vibration-rotation line. This $w^{(1)}$ produce an excitation condition in which the molecules in all but one particular rotational state will have a Boltzmann distribution of rotational energy. A fraction of those molecules in the selected rotational state will be raised from the v = 0 to the v = 1 level by absorption of the energy from the monochromatic HF laser beam.

The relaxation of this excitation condition is expected to occur primarily by collisional processes, first by equilibration of the rotational energy of the molecules excited to the $\nu=1$ level and then by equilibration of the vibrational energy back to the original state. We will monitor the relaxation process by monitoring the absorption of the beam from a second HF laser of very low power. This laser will also operate on a single HF line. The rotational relaxation will be monitored by observation of the absorption of the probe laser operating in a $\nu=1$ to $\nu=2$ transition either at the same, or at a different rotational state from that pumped by the stimulating laser. By monitoring the absorption of this probe laser as a function of time, the variation in the population of a given vibration-rotation state with time can be determined. The details of the rotational relaxation process can be determined from a series of such measurements in which the stimulating transition is not changed but the transition of the probe laser is varied.

A set of computations showing the feasibility of such an experiment is presented in Sections 3.1 through 3.4. Some of the requirements on the stimulating and probe lasers are discussed and the effect of radiative relaxation on the measurements is considered. Some alternate means of monitoring the relaxation process are discussed and the choice of probe laser absorption measurements over fluorescence measurements is justified. The apparatus to perform the experiment is being assembled. The progress made to date is reported in Section 3.5.

1.3 ADDITIONAL EFFORT

We expended some effort to write and test a code for computing collision-broadened line widths using Anderson's theory of collision broadening [3].

The variation in the galn of the laser medium with frequency is a very important factor when the mode structure of the laser is a consideration. Line broadening resulting from collisions is important as a homogeneous broadening mechanism in gas lasers which operate at or near atmospheric pressure. Hence, knowledge of the collision-broadened widths can be an important parameter in some laser-design situations. Yet measurements of collision-broadened widths are difficult and have been performed only for a relatively shall number of active gasperturber combinations. In particular, determinations of the collisional broadening of the transitions of the active gases in gas-laser media are largely nonexistent. Measurements of the broadening in such cases would be very difficult because of the complex, nonequilibrium nature of the gas in the cavity. Theoretical computer codes to perform such calculations are hence a useful tool for predicting such effects. The code which we have generated provides a useful beginning although it is limited to diatomic and linear molecules.

The technique used in the code is described in detail in Section 4. Some sample calculations are also presented. Some of these calculations represent the conditions under which collision-broadened half widths were obtained experimentally in other programs. The agreement between the half widths predicted by the computer code and the experimental half widths is very good.

Section 5 includes the measurements of the $v=0 \rightarrow v=3$ dipole matrix elements of IIF performed partially under a previous chemical laser study contract, Contract No. DAHC-15-67-C-0062. This work was not completed under that contract and hence was not reported. However, because of its connection to the present effort it was completed under the present contract and we feel it appropriate to report it here. The measurements performed during that effort were successful and complete; the results obtained were utilized in the complete set of matrix elements calculated for IIF under the previous contract [1].

Appendix I presents a derivation of the equations governing the interactions of radiation with matter described by the Einstein coefficients and is supplemental to Section 3. Appendix II contains the detailed results of the matrix element calculations performed for HCL.

2 MATRIX ELEMENT CALCULATIONS AND INTENSITY MEASUREMENTS

F. G. Smith, G. H. Lindquist, and R. L. Spellicy

2.1. MATRIX ELEMENT CALCULATIONS

Consider a gas having a nonequilibrium population of vibrational and rotational states so that a known population inversion exists. In order to determine the ability of that gas to produce stimulated emission and hence lasing action in its vibration-rotation bands, it is necessary to know the transition probability for stimulated emission for the states involved in the inversion.

For a particular change of state, the three Einstein coefficients represent transition probabilities for spontaneous emission, stimulated emission, and stimulated absorption of radiation. These Einstein coefficients are a molecular property and, in the case of vibration and rotation, can be related to a quantum mechanical description of the vibrational and rotational motion of that molecule and its dipole moment. It has been shown that the three Einstein coefficients are each directly proportional to the quantum mechanical electric dipole matrix element for that transition [4]. Hence, determination of such matrix elements is extremely useful in the determination of the required transition probabilities.

The most accurate method of determining transition probabilities is by measuring absorption under equilibrium conditions in which the population of states is well known. However, such measurements cannot be made on many of the transitions of interest in laser studies because the states involved are not significantly populated at reasonable temperatures. The computation of the electric dipole matrix elements associated with such transitions provides a powerful tool for the estimation of the transition probabilities.

2.1.I. THE DIPOLE MOMENT AND CALCULATED MATRIX ELEMENTS FOR HC1

The electric dipole matrix element for the $v, J \rightarrow v', J'$ transition is defined by the following [1]:

$$<_{v, J}|\mu(r)|_{v', J'}> = \int \psi_{v', J'} \mu(r) \psi_{v, J} r^2 dr$$

where $\psi_{\mathbf{v}^{+},\mathbf{J}^{+}}$ = the radial wavefunction for the upper state of the transition

 $\psi_{v,J}$ = the radial wavefunction for the lower state of the transition

 $-\mu(r)$ = the dipole moment as a function of r

r = the internuclear separation

v, v' = the lower-and upper-state vibrational quantum numbers

J. J' = the lower- and upper-state rotational quantum numbers

Calculation of the matrix-element integral requires initial and final state wavefunctions and the molecular electric dipole moment function. Once the form of the potential function is known, the wavefunctions are calculated by numerical integration or the Schrödinger equation. Our procedure allows any functional form for the dipole moment function, but experimental intensity data are required to determine the values of the coefficients of the dipole moment function. The procedure used to establish the potential and dipole moment functions is described below and the results are used to calculate HCl matrix elements.

2.1.2. DETERMINATION OF THE INTERMOLECULAR POTENTIAL: GENERAL CONSIDERATIONS

The three most commonly used potential functions are the Dunham (or polynomial) potential, the Ryberg-Klein-Rees (RKR) potential, and the Morse potential. The Dunham potential defines the energy as a power series in $(r-r_e)$ where r is the internuclear coordinate and r_e is the equilibrium value of internuclear distance. In his original paper, Dunham shows that the coefficients of the series expansion may be obtained directly from spectroscopic constants |5|. The Dunham potential allows analytic solution of the radial Schrödinger equation and evaluation of the dipole moment integral by a standard, but tedious, application of perturbation the ry. Recently, Toth, Hunt, and Plyler |6| have used this method to obtain dibration-rotation interaction factors for $0 \rightarrow 1$, $0 \rightarrow 2$, and $0 \rightarrow 3$ bands of CO. The Dunham potential is not very useful for numerical calculations, however, since the Dunham expansion is not constrained to approach realistic forms in the limits of large and small interacclear separations.

The Morse potential is an analytic function containing three parameters which may be chosen to obtain agreement with the vibrational and rotational energy levels of the molecules. The primary advantage of the Morse oscillator over other analytic forms is that it is simple, yet its wavefunctions are analytic. It predicts accurate eigenvalues over a fairly wide range of oscillations.

The RKR potential is simply a labulation of energy versus internuclear distance, constructed to reproduce the observed energy levels of the molecule. The RKR potential is constructed by determining the turning points of the molecular oscillations with the Wentzel-Kramer-Brillouin (WKB) approximation [7, 8, 9]. The procedure requires only the spectral line positions.

Whatever the form of the function, if it is to realistically represent the potential for a diatomic molecule, it must fulfill certain minimal conditions, as pointed out by LeRoy and Burns [10]. The conditions are that:

- (1) the outer branch of the function should asymptetically approach the known dissociation limit of the electronic state of the molecule.
- (2) the slope of the inner-branch of the potential must be negative.

(3) the inner branch of the potential must become steeper with decreasing internuclear distance, i.e., its second derivative must be positive in that region.

The Dunham potential does not fulfill condition (1) since finite polynomial series diverge at infinity. Analytic functions generally are constructed to fulfill all three conditions but may fail in other respects e.g. in the prediction of energy levels. Since the RKR potential may be constructed to fulfill all conditions, we have chosen to use it in this study.

2.1.3. THE RKR POTENTIAL

The generation of an RKR potential requires a knowledge of the vibrational energy levels and rotational energy constants of the molecule in its various vibrational states. From spectroscopic data, Dunham coefficients $Y_{i,j}$ can be determined which describe the value of the quantities by a power series in v, the vibrational quantum number. The vibrational energy levels are given by

$$G_{v} = \sum_{i=0}^{n} Y_{i,0} (v = 1/2)^{i}$$
 (1)

and the rotational constants are

$$B_{v} = \sum_{i=0}^{m} Y_{i,1} (v+1/2)^{i}$$
 (2)

The number of constants are chosen to lit the data within the measurement error. The G_v and B_v values, or equivalently the Y coefficients, provide input data which uniquely define the RKR potential. The method used to determine the potential is described in a paper by Vanderslice et.al. [9]. For the actual calculation presented later in this report we have used a computer program written by Zare [11] modified to run in FORTRAN iV on an iBM 360/67 computer.

The necessary Y coefficients for HCl have been obtained by Rank, et al. using v=0 through v=5 line and band position data [12, 13]. The vibrational and rotational constants which they obtained are given in column (a) of Tables 1 and 2 respectively. Using these constants to generate an RKR potential, we obtained curve a of Fig. 1. The dissociation energy corresponding to the accepted D_0 value of 4.43 eV [14] is 37217 cm⁻¹ and is also indicated on that figure as D_e (D_0 is the energy difference between the dissociation limit and the v=0 level). It may be seen that, for a realistic potential function conditions (1) and (3) are violated by the constructed potential. This is not surprising since the Y's used were determined only from data on the six lowest vibration states of the molecule. Since we are interested in transitions involving v as high as 12, the potential must be upgraded.

TABLE 1. VIBRATIONAL CONSTANTS FOR HC1

	(a)	\b)
	From Rank et al. [12]	Adjusted Constants
	(cm ⁻¹)	(cm ⁻¹)
Y ₁₀	2990.9463	2990.9270
Y ₂₀	-52.8185	-52.7842
Y ₃₀	0.2243	0.199160
Y ₄₀	-0.0121	-0.004536
Y 50	0,0	-0.000806

TABLE 2. ROTATIONAL ENERGY CONSTANTS FOR HCI

	(a)	(b)
	From Rank et al. [12] (cm ⁻¹)	Adjusted Constants (cm ⁻¹)
Y 01	10.593416	10.593246
Y ₀₁ Y ₁₁	-0.307181	-0.305612
Y 21	0.001772	0.000670175
Y ₃₁	-0.0001201	0.000171434
Y41	0.0	-0.0000231052

2.1.4. CONSTRUCTION OF THE RKR POTENTIAL

In order to construct an RKR potential which fulfills the minimum requirements of LeRoy and Burns, we have followed a procedure outlined by them for adjusting the Y's to obtain a better potential function. This is a two-step procedure. First the vibrational constants are modified to fulfill condition (1) and second, the rotational constants are adjusted until conditions (2) and (3) are met.

Condition (1), that the dissociation energy be asymptotically approached at large internuclear separations, is equivalent to two constraints on the energy-level curve:

$$\begin{bmatrix} \frac{\mathbf{T}}{\mathbf{Q}} \\ \mathbf{v} \end{bmatrix} = \mathbf{0} \tag{3}$$

where τ_{D} is the vibrational quantum level corresponding to dissociation and

$$C_{V}(v_{D}) = D_{C}$$
 (4)

where $D_{_{\rm C}}$ is the energy difference between the dissociation limit and the bottom of the potential well. Equation (1) for G, with the vibrational constants of Rank inserted into Eq. (3) gives $v_{\rm D}=27.834$. The value of $D_{\rm C}=0$ obtained from this value of $v_{\rm D}=1$ is 40600 cm⁻¹. This result can be compared with the accepted dissociation energy of 37217 cm⁻¹, and it confirms what Fig. 1 has indicated; i.e., Rank's vibrational constants do not properly represent the energy levels of HCl near dissociation. If an additional constant, in the present case, $V_{\rm 50}$, is added to the vibrational energy expansion, then Eqs. (3) and (4) may be fulfilled and a good fit to the experimental data also maintained.

A FORTRAN program incorporating an iterative procedure was used to calculate such a consistent set of $Y_{i,0}$ constants. The first step in this procedure was the solution of Eq. (3) with Rank's constants for an initial value of v_D . This value for v_D was then used to define a linear system of equations consisting of Eq. (4) and four equations relating the polynomial for G_v to experimental values of G_v . The complete system used for the HCl case was

$$\sum_{i=1}^{5} Y_{i,0} (v_D + i/2)^l = D_0$$

and

$$\sum_{i=1}^{5} Y_{i,0}(v + 1/2)^{i} = G_{v} \quad \text{for } v = 1, 2, 3, 4$$
 (5)

The values of G_v used on the right-hand sides of the latter equations were calculated from Rank's constants. The linear system was solved to obtain a new set of $Y_{i,0}$ constants which

were then used in Eq. (3) and iterated values of v_D were obtained. The iteration was contained until successive iterates of v_D varied by less than 0.001. The corresponding values of the $Y_{i,0}$ constants at that point in the iteration were taken as the adjusted vibrational constants and are given in Column b of Table 1. The G(v) curve determined from this set of constants is plotted in Fig. 2.

Columns (a) and (b) of Table 5 compare the observed band origins with those calculated with the adjusted set of constants. Finally, an RKR potential was generated from these adjusted ibrational constants and Rank's rotational constants; it is curve 2 of Fig. 1. As expected this function exhibits the correct behavior at large internuclear separations. However, it does not fulfill the requirements at small separations

In order to construct a potential which fulfills conditions (2) and (3) on the form of this function, we varied an additional Dunham coefficient, $Y_{4,1}$, in the expansion for B_v while simultaneously adjusting the lower-order coefficients to maintain the least-square fit to the measured B_v values. Table 4 contains some sets of rotational constants which were tested, and Fig. 3 shows the upper sections of the inner branch of the RKR functions resulting from taese sets of rotational constants. Inspection of that figure shows that none of these potentials fulfill condition (2) all the way to the dissociation limit. This could be corrected by the addition of another adjustable constant. We chose, however, not to add another constant but simply to use Function b of Fig. 3 up to 36.500 cm^{-1} and a $12\text{-deg polynomial extrapolation above that point. We believe this is more than justified since the effect of this portion of the potential should be insignificant for vibration states below <math>v = 12$ which are of primery interest here. The final potential form which we have used in all the calculations that follow is curve c of Fig. 1. In Table 5, the observed B_v values are compared with the values defined by the adjusted rotational constants and Fig. 4 gives B_v for all the vibrational states predicted.

The final RKR turning points for the bound vibrational levels are tabulated in Table 6. In the actual calculation, the potential is determined at 199 values of internuclear separation and a cubic spline interpolation is used to interpolate between those points [15]. The numerical solutions of the radial Shrödinger equation determine the vibrational energy levels. The band origins calculated from the numerical solutions are given in Column c of Table 3.

2.2. THE DIPOLE MOMENT FUNCTION

2.2.1. THE POLYNOMIAL APPROXIMATION

The most important consideration in the calculation of the electric dipole matrix elements is the determination of the dipole moment parameters. For a diatomic molecule, it may be assumed that the vector dipole moment function is directed along the internuclear axis and thus the function can be represented as a scalar function of the internuclear separation. The stan-

FIGURE 2. VIBRATIONAL ENERGY LEVELS FOR HC1 DETERMINED BY THE MODIFIED DUNHAM COEFFICIENTS USED TO GENERATE THE RKR POTENTIAL

FIGURE 3. INNER BRANCH OF RKR POTENTIALS CALCULATED BY MEANS OF THE TRIAL ROTATIONAL CONSTANTS IN TABLE 3

FIGURE 4. ROTATIONAL CONSTANTS FOR HCI AS DETERMINED BY THE MODIFIED DUNHAM COEFFICIENTS USED TO GENERATE THE RKR POTENTIAL

TABLE 3. OBSERVED AND CALCULATED BAND ORIGINS FOR HC1

	(a)	(b)	(c)
	Observed (Rank et al.) [12] (cm ⁻¹)	Calculated (Adjusted Constants of Table 1) (cm ⁻¹)	Calculated (Numerical Schrödinger Solution) (cm ⁻¹)
1-0	2885.978	288 5.974	2886.891
2-0	5667.984	5667.974	5669.352
3-0	8346.782	8346.775	8348.559
4-0	10922.803	10922.789	10925.289
5-0	13396.217	13396.009	13400.008
3-1	5460.804	5460.801	5461.668
4-2	5254.856	5254.815	5255.937
5-3	5049.503	5049.234	5051.449

TABLE 4. TRIAL ROTATIONAL CONSTANT VALUES (cm^{-1})

	(a)	(b)	(c)	(d)
Y ₀₁	10.5932490	10.5932460	10.5932440	10.5932410
Y 11	-0.3059344	-0.3059118	-0.305889	-0.305867
Y 21	0.0006909	0.0006702	0.0006494	0.0006287
Y 31	0.0001655	0.0001714	0.0001774	0.0001833
Y 41	-0.000022 5	-0.0000231	-0.0000236	-0.0000242

TABLE 5. OBSERVED AND CALCULATED ROTATIONAL CONSTANTS FOR HC1

	(a)	(b)
	Observed (Rank et al.) [12] (cm ⁻¹)	Calculated (Adjusted Constants of Table 2) (cm ⁻¹)
$\mathbf{B_0}$	10.440254	10.44047
B ₁	10.136 22 8	10.13634
B ₂	9.834665	9.834431
$\mathbf{B_3}$	9.534845	9.534647
B ₄	9.236010 (4-2 data) 9.2363 (4-0 data)	9.236362
B ₅	8.93743 (5-3 data) 8.9395 (5-0 data)	8.938385

TABLE 6. RKR POTENTIAL FOR HC1

	Energy	rmin	r
\mathbf{V}	(cm^{-1})	(Å)	max (Å)
0	1482.292	1.177068	1.393102
1	4368.266	1.117050	1.496985
2	7150.270	1.080607	1.578597
3	9829.070	1.053586	1.652208
4	12405.080	1.031951	1.722040
5	14878.300	1.0139810	1.789915
6	17248.130	0.9986415	1.857172
7	19513.380	0.9853323	1.924772
8	21672.090	0.9736691	1.993561
9	23721.480	0.9634037	2.064413
10	25657.840	0.9543734	2.138287
11	27476.430	0.9464760	2.216341
12	29171.380	0.9396601	2.300038
13	30735.610	0.9339066	2.391312
14	32160.720	0.9292040	2.492930
15	33436.890	0.9256439	2 508497
16	34552.790	0.9231968	2.744314
17	35495.490	0.9218721	2.910449
18	36250.340	0.9215231	3.126173
19	36800.920	0.9214401	3.436183
20	37128.870	0.9178123	3.996376

dard functional form chosen is a polynomial:

$$m(r) = \sum_{i} M_{i}(r - r_{e})^{i}$$

where \mathbf{M}_i are the coefficients of this dipole moment expansion. The \mathbf{M}_i coefficients can be determined either by theoretical calculations or through reference to experimental data. Experience has generally shown that ab-initio calculations are only reliable for determining the \mathbf{M}_0 and \mathbf{M}_1 coefficients accurately; therefore, for a better determination of the dipole moment, reference to experimental data is necessary. The usual procedure for determination of the \mathbf{M}_i coefficients from experimental data is by solution of the following set of linear equations:

$$\sum_{i=0}^{n} M_{i} \int \psi_{0}(\mathbf{r} - \mathbf{r}_{e})^{i} \psi_{v} \mathbf{r}^{2} d\mathbf{r} = \langle 0 | \mu(\mathbf{r}) | v \rangle \quad \text{for } v = 0, 1, \dots, n$$
 (6)

where the $<0|\mu(r)|$ n> is the highest overtone matrix element which has been measured. Once the M_i have been determined for the above equations, any other matrix elements can be approximated as follows:

$$\langle \mathbf{v}' | \mu(\mathbf{r}) | \mathbf{v} \rangle = \sum_{i=0}^{n} \mathbf{M}_{i} \int \psi_{\mathbf{v}'}(\mathbf{r} - \mathbf{r}_{e})^{l} \psi_{\mathbf{v}} \mathbf{r}^{2} d\mathbf{r}$$
(7)

It may be seen that the relationship between the various matrix elements is somewhat obscured by the interposition of \mathbf{M}_1 's. In a previous report [1], we derived expressions which define any matrix element as a linear combination of the overtone matrix elements. We repeat the derivation here with slightly different notation and in a more general form to allow direct comparison with similar relationships derived by Triscika and Salwen from the wavefunction expansion method [16].

2.2.2. DERIVATION OF RELATIONSHIPS BETWEEN VARIOUS MATRIX ELEMENTS

In this section, we deviate from the standard notation and designate a matrix by a capital letter and elements of that matrix by simply attaching subscripts to that capital letter. Thus, the dipole moment coefficients \mathbf{M}_1 can be written as a one-dimensional matrix \mathbf{M} . Let us define a one-dimensional matrix Γ which contains the overtone matrix elements by:

$$\Gamma_{\mathbf{v}} = \langle \mathbf{v} | \mu | \mathbf{0} \rangle \quad \mathbf{v} = \mathbf{0}, \dots \mathbf{n}$$
 (8)

we also need the $n \times n$ moment matrix A defined by:

$$A_{v,1} = \int \psi_0 (r - r_e)^1 \psi_v r^2 dr$$
 (9)

If these relations are used, Eq. (5) can be written in matrix form as:

$$AM = \Gamma \tag{10}$$

If A⁻¹ exists then (1) can be solved for M giving:

$$\mathbf{M} = \mathbf{A}^{-\frac{1}{2}} \Gamma \tag{11}$$

We define a $n \times xm$ matrix B by:

$$B_{j,v,v'} = \int \psi_{v'} \rho^{j} \psi_{v} r^{2} dr \qquad v = 0, \dots, m$$

$$v' = 0, \dots, m$$

and an $m \times m$ matrix R containing the dipole matrix elements between the m bound states of the molecule:

$$\mathbf{R}_{\mathbf{v}^{\dagger},\mathbf{v}} = \langle \mathbf{v}^{\dagger} | \mu | \mathbf{v} \rangle \tag{13}$$

Equation (7) can then be written:

$$R = BM \tag{14}$$

The substitution of Eq. (11) into (14) gives:

$$R = BA^{-1}\Gamma$$
 (15)

This can be rewritten in terms of the elements of the matrices as:

$$R_{v',v} = \sum_{j,l=0}^{n} B_{j,v',v} A_{j,l}^{-1} \Gamma_{l}$$
 (16)

If we define the $n \times m \times m$ matrix C by

$$C_{i,v',v} = \sum_{j=0}^{n} B_{j,v',v} A_{j,i}^{-1}$$
(17)

then

$$R_{v',v} = \sum_{i=0}^{n} C_{i,v',v} \Gamma_{i}$$
(18)

This expression gives a set of linear equations relating the overtone matrix elements to all other matrix elements. These are not exact relationships but approximations determined by n, the degree of the polynomial approximation used. Coefficients calculated with the cubic polynomial approximation are given in Table 7. The coefficients can be compared with those in Table 8 which contains similar coefficients calculated by Kaiser, who used the wavefunction approximation [17]. It can be seen that the polynomial and the wavefunction approximations

TABLE 7. SELECTED $C_{i,v',v}$ COEFFICIENTS FOR HC1 WITH A CUBIC POLYNOMIAL APPROXIMATION

i	c _{i,0,0}	$C_{i,1,1}$	C _{i,2,2}	C _{i,0,1}	C _{i,1,2}	C _{i,1,3}
0	1.0	1.0	1.0	0.0	0.0	0.0
1	0.0	0.5838	1.233	1.0	1.5148	1.9915
2	0.0	1.515	3.892	0.0	1.2337	3.4093
3	0.0	0.000394	2.111	0.0	1.9916	7.2681

TABLE 8. SELECTED $C_{i,v',v}$ COEFFICIENTS FOR HC1 CALCULATED WITH THE WAVEFUNCTION APPROXIMATION

i	C _{i,0,0}	C _{i,1,1}	C _{i,2,2}	C _{i,0,1}	C _{i,1,2}	C _{i,2,3}
0	1.0	1.0	1.0	0.0	0.0	0.0
1	0.0	0.5839	1.234	1.0	1.5148	1.9914
2	0.0	1.55	4.001	0.0	1.2335	1.4305
3	0.0	0.000417	3.430	0.0	1.994	7.7752

are nearly equivalent when the R_{v,v^\dagger} 's are calculated with these tabulated C_{j,v,v^\dagger} coefficients. These coefficients will be valuable later for comparing various types of experimental data. In the remainder of the paper, the notation of Trischka and Salwen is used, i.e., the Initial and final states are written as superscripts.

2.2.3. EXPERIMENTAL HCI MATRIX ELEMENTS

Numerous line-strength measurements have been performed on HCl. The most complete work appears to be that of Benedict, Herman, Moore, and Silverman (BHMS) [18]. They measured the HCl overtone matrix elements $R^{1,0}$, $R^{2,0}$, and $R^{3,0}$ as well as $R^{2,1}$, and $R^{3,2}$. More recently Toth, Hunt, and Plyler (TRP) [19] have measured the fundamental and first overtone bands. They have also included a table of the overtone band strengths measured by other laboratories. We have calculated experimental matrix elements corresponding to these tabulated strengths. They are given in Table 9. Inspection of Table 9 shows that the errors quoted by the different laboratories do not, in general, overlap.

Since the band intensity is proportional to the square of the dipole matrix element, additional information is necessary to determine the sign of the $R^{v,0}$ matrix elements. For HCl, when $R^{0,0}$ is assumed positive, it has been shown that the $R^{1,0}$ and $R^{3,0}$ matrix elements are greater than zero and the $R^{2,0}$ matrix element is less than zero. We will not repeat the arguments, but Kaiser has shown that only this choice of signs is compatible with his high-precision measurements of R_{11} and R_{22} . Similarly, THP have concluded that the above signs give the best agreement between their calculated and measured vibration-rotation intensity measurements for the 0-1 and 0-2 bands of HCl.

A comparison of matrix elements determined in different laboratories [20, 21, 22] is presented in Fig. 5 where fundamental and first overtone matrix elements are represented as dimensions in a two-dimensional space. In that figure, the fundamental and first overtone matrix-element determinations have been represented by a slash on the horizontal or vertical axes, respectively. In the three cases in which both matrix elements were measured by one laboratory, the measurements are represented by a point in the space. A point representing the average of the results of all the infrared intensity measurements is also plotted.

In addition to the directly determined experimental matrix elements, some additional points are also shown. The point labeled K represents the choice made by Kaiser [17] as being the most probable value of the $R^{1,0}$ and $R^{2,0}$ matrix elements. In essence, he assumed that the BHMS value of $R^{3,0}$ was correct. He then solved Eq. (18) for $R^{1,0}$ using his measured value of $R^{0,0}$ - $R^{1,1}$ and using the coefficients in Table 8.

TABLE 9. VARIOUS DETERMINATIONS OF THE OVERTONE MATRIX ELEMENTS FOR HC1

Used in Present Calculations Average Derived from (KD) Kaiser's Data (KD) Kaiser's Choice (K) [17] Benedict et al. (BHMS) [18] Toth et al. (THP) [19] Penner and Weber (PW) [20]	$R^{0,1}$ (esu-cm) 7 12 × 10 ⁻²⁰ 7.02 7.23 7.00 ± 0.10 6.70 ± 0.12 6.80 ± 0.13 7.41 ± 1.01	$R^{0,2}$ (esu-cm) -7.75×10^{-21} -7.74 -7.78 -7.00 ± 0.50 -7.02 ± 0.28 -8.00 ± 0.15	R ^{0,3} (esu-cm) 5.15 × 10 ⁻²² 5.15 5.15 5.15
Penner and Weber (PW) [20] Babrov et al. (B) [21] Jaffe et al. (J) [22]	7.41 ± 1.01 7.17 ± 0.16	-7.94	

FIGURE 5. EXPERIMENTAL DETERMINATIONS OF $<0\,|\,\mu\,|\,1>$ AND $<0\,|\,\mu\,|\,2>$

We have calculated the point marked KD by solving Eq. (18) using the $C_{j,0,0}$, $C_{j,1,1}$, and $C_{j,2,2}$ coefficients from Table 7 and using Kaiser's difference measurements. This gives two equations in the three unknowns $R^{1,0}$, $R^{2,0}$, and $R^{3,0}$:

$$0.5838 R^{1,0} + 1.515 R^{2,0} + 0.000394 R^{3,0} = R^{1,1} - R^{0,0}$$

$$1.233 R^{1,0} = 3.892 R^{2,0} = 2.111 R^{3,0} = R^{2,2} - R^{0,0}$$
(19)

If we assume that $R^{3,0}$ is known from BHMS's measurement, the $R^{1,0}$ and $R^{2,0}$ may be determined. The results are as follow:

$$R^{1,0} = 7.23 \times 10^{-20}$$
 $R^{2,0} = -7.79 \times 10^{-21}$

That is the point marked KD in Fig. 5. Two sources of experimental error are expected in the point KD: one arises from error in Kaiser's measurement of matrix-element differences and the other arises from the error in the BHMS $R^{3,0}$ determinations. We have calculated the effect of these two errors on the solution to Eq. (19). The solid error bar shown on the KD point represents the error in the $R^{1,0}$ and $R^{2,0}$ matrix elements assuming a $\pm 10\%$ error in the BHMS $R^{3,0}$ value. The larger, shaded region shows the error bounds expected from the error estimate given by Kaiser for his matrix element difference measurements.

Best estimates of $R^{1,0}$ and $R^{2,0}$ are not obvious from Fig. 5. However, we chose as the best values, a point halfway between the average of the infrared measurements and the value determined from Kalser's data. If we assign a $\pm 3\%$ error to this choice, there is overlap between ail of the measurements and our choice except for the data of BHMS. It appears, as Kalser has also concluded, that their overtone measurements are systematically low.

Our final choices for the best experimental overtone matrix elements are given in Table 10. The $R^{0,0}$ matrix element is again from Kaiser's work. The choice of the $R^{1,0}$ and $R^{2,0}$ was explained above. BHMS have reported the only measurement of $R^{3,0}$ for HCl so we have taken their value and assigned it $\pm 10\%$ error. Using this set of matrix elements and the errors given, we have computed the corresponding M_1 . These are tabulated in column (a) of Table 11. Our caiculated M_1 are quite close to the THP values, except for the M_3 coefficient, but they do not overlap. The comparison with Kaiser's values for the M_1 show overlap between the present calculation for M_0 and M_1 , but not for the higher coefficients. It appears to us that either Kaiser has used the negative sign for the $R^{0,3}$ matrix elements, contrary to his paper or that the procedure he has used to determine polynomial coefficients by fitting to the wavefunction expansion has introduced the differences. The first suggestion seems more likely for several reasons. First, we have calculated a set of M_1 using the set of matrix elements in Table 12. By setting $R^{4,0}$ equal to zero, we have created a set of M_1 somewhat analogous to

TABLE 10. OVERTONE MATRIX ELEMENTS USED IN THE PRESENT WORK

v	R ^{v,0} (esu-cm)
0	$1.10847 \pm 0.0005 \times 10^{-18}$
1	$7.12 \pm 0.21 \times 10^{-20}$
2	$-7.75 \pm 0.23 \times 10^{-21}$
3	$5.15 \pm 0.52 \times 10^{-22}$

TABLE 11. DIPOLE MOMENT COEFFICIENTS FOR HC1

	Present Work (a)	Toth et al. [19] (b)	Kaiser [17] (c)	Calculation using R ^{i,0} of Table 12 (d)
$M_0 (esu-cm) \times 10^{18}$	1.0935 ± 0.0007	1.095	1.0933 ± 0.0005	1.0923
$M_1 (esu-cm/cm) \times 10^{10}$	0.947 ± 0.023	0.9031 ± 0.017	0.925 ± 0.02	0.930
$M_2 (esu-cm/cm^2) \times 10^2$	0.015 ± 0.041	$\textbf{-0.06} \pm \textbf{0.025}$	0.08 ± 0.055	0.25
$M_3^- (esu-cm/cm^3) \times 10^{-6}$	-0.814 ± 0.116	-0.73 ± 0.07	-1.277 ± 0.3	-1.057
$M_4 (esu-cm/cm^4) \times 10^{-14}$	0.0	0.0	-1.9 ± 1.2	-2.9

TABLE 12. R^{i,0} USED TO COMPUTE COLUMN d OF TABLE 11

	R ^{1,0}			
i	(esu-cm)			
0	1.10847×10^{-18}			
1	7.00×10^{-20}			
2	-7.00×10^{-21}			
3	-5.15×10^{-22}			
4	0.0			

the wavefunction approximation Kaiser used in which all the $R^{0,v}$ overtones greater than those measured are assumed to be zero. The M_i coefficients from this calculation are listed in column (d) of Table 11, and they are very similar to the values reported by Kaiser. Second, when Kaiser's M_i are compared with the M_i determined by THP for various sign combinations of $R^{2,0}$ and $R^{3,0}$ we have found that the best agreement is obtained between Kaiser's M_i and the M_i 's given by THP for the combination $R^{0,0}$, $R^{1,0} > 0$ and $R^{2,0}$, $R^{3,0} < 0$. Thus, while we agree with the signs determined by Kaiser for the $R^{v,0}$ matrix elements, we believe that an error has been made in his determination of the M_i 's.

2.2.4. THE VIBRATIONAL MATRIX ELEMENTS

In Figs. 6 to 9, the calculated vibrational matrix elements are shown for the sequences $\Delta v = 0$, 1, and 3. In addition to the data considered in previous sections of this report, the only experimental data are the BHMS measurements of the $R^{1,2}$ and $R^{2,3}$ matrix elements. In Table 13, the results of our calculation of those matrix elements are compared with the BHMS data and with those from a similar calculation in which the BHMS set of $R^{0,v}$ overtone matrix elements were used. The calculated matrix elements in which we used our new $R^{0,v}$ give better agreement with BHMS's $\Delta v = 1$ data than do the calculations in which the BHMS overtone matrix elements were used.

In Figs. 6 and 7, we have also indicated error estimates for the various RV, V'. As explained in our previous report [1], we know of no way to predict the error involved in approximating the dipole by a cubic polynomial; we can however, determine the approximate error introduced through use of the experimental overtone data to determine the polynomial coefficients. Thus, the error indicated on the figures as well as the previously assigned error in the M.'s is measurement-induced error rather than dipole approximation error. Unfortunately, the latter error will be most significant for high Δv transitions and, for a given set of Δv transitions, will be most important when higher vibrational levels are involved. We have no way of estimating these additional uncertainties. The dipole moment used (with the coefficients of Table 11) is plotted in Fig. 10. The experimental information includes values for matrix elements involving only v levels from 0 to 3. Thus, the dipole moment expansion can be considered strictly valid only for that range of internuclear separations encompassed by the wavefunctions for $v \le 3$. This corresponds approximately to the range between 1 and 1.6 Å. Although the dipole moment function has a reasonable form both above and below these values, there is no way of determining its quantitative uncertainty at the larger internuclear separations encountered at high vibrational levels and, therefore, no way to assign total accuracy values to the matrix elements involving the higher v levels. This situation unfortunately limits the usefulness of these calculations for predictions of laser performance at the higher vibrational levels.

FIGURE 6. $\Delta v = 0$ MATRIX ELEMENTS FOR HC1

FIGURE 7. $\Delta v = 1$ MATRIX ELEMENTS FOR HC1

FIGURE 8. $\Delta v = 2$ MATRIX ELEMENTS FOR HC1

FIGURE 9. $\Delta v = 3$ MATRIX ELEMENTS FOR HC1

FIGURE 10. DIPOLE MOMENT FUNCTION FOR HCI USED IN THE PRESENT CALCULATIONS

2.2.5. ROTATIONAL DEPENDENCE OF THE MATRIX ELEMENTS

Once we had obtained an expansion for the dipole moment which satisfied the known experimental information (the M_i 's shown in Table 11), we were able to compute the J-dependent matrix elements. The procedure used is identical to that used to compute the rotationless matrix elements except that an effective J-dependent potential was obtained by adding a centrifugal force term to the potentiai [14]:

$$\frac{hJ(J+1)}{8\pi^2 c \mu r^2} (cm^{-1})$$

Here, h is Pianck's constant and c is the velocity of light. Energy eigenvalues which include both the vibrational and rotational contributions were then used to obtain rotationally dependent wavefunctions. Matrix elements for a specific v and J change were computed with the previously determined dipole moment expansion.

A complete set of the results from these calculations is presented in Appendix II. Vibrational levels as high as 12 are included for $0 \le \Delta_V \le 5$ and for J going from 0 to 35. Both the P and R branches of the vibration-rotation bands as well as the pure rotation bands are included.

These results, though presented completely, are also of undetermined accuracy for vibrational levels substantially above 4 for the reasons discussed in the previous paragraph. The rotation-dependent matrix elements contain uncertainties resulting from measurement inaccuracies comparable to those presented in Figs. 6 and 7 for similar v and Δv . Again, we have no way of estimating the additional uncertainties that are present at higher v's because of uncertainties in the dipole moment at large separations.

The rotational dependence of the matrix elements for the $0 \rightarrow 1$, $0 \rightarrow 2$, and $0 \rightarrow 3$ bands can be compared to results obtained by THP [19]. Rather than treating the matrix elements themselves, this representation treats the vibration-rotation interaction factors, F. defined by:

$$2 = 2$$
. $F^{v'v}(J) = (R^{v'v})^2F^{v'v}(m)$

where m has the value -J for the P branch and +J' for the R branch; m = 0 corresponds to the rotationless transition so that $F^{v'v}(0) = 1$. THP have determined quadratic expressions for F^{10} F^{20} , and F^{30} in the following form

$$F^{v0}(m) = 1 + C_v^m + D_v^2$$

THP have determined analytical expressions for C_v and D_v using a cubic representation for the dipole moment, a quantic power series for the internuclear potential and third order perturbation theory [6]. In addition, they have determined experimental values for ${\bf C}_1$ and ${\bf C}_2$ and D_1 and D_2 based on 0-1 and 0-2 absorption measurements [19]. An experimental value was also obtained for C3 from the data of BHMS. These values are presented in the first and second columns of Table 14. Values of F(m) were determined from the rotation-dependent matrix elements calculated juring the present program and presented in Appendix II. These

ERIM

TABLE 13. COMPARISON OF MEASURED AND CALCULATED $R^{1,2}$ AND $R^{2,3}$

	Experimental (BHMS)	Present Calculation	Calculations for BHMS $R^{0,1}$, $R^{0,2}$, and $R^{0,3}$
$R^{1,2}$ $R^{2,3}$	$9.71 \pm 0.48 \times 10^{-2}$	$9.67 \pm 0.35 \times 10^{-2}$	$9.38 \pm 0.22 \times 10^{-2}$
	$11.88 \pm 0.59 \times 10^{-2}$	$11.55 \pm 0.9 \times 10^{-2}$	$11.32 \pm 0.32 \times 10^{-2}$

TABLE 14. F-FACTOR COEFFICIENTS FOR HC1

	THP Observed	THP Calculated	Present Calculations
C_1	-0.0260 ± 0.002	-0.0279 ± 0.0006	-0.0269
C_2	-0.0086 ± 0.0015	-0.0066 ± 0.0005	-0.0061
$^{\mathrm{C}}_{2}$ $^{\mathrm{C}}_{3}$	0.017	0.011 ± 0.003	0.011
D_1	$4.5 \pm 2.0 \times 10^{-4}$	$2.8 \pm 0.2 \times 10^{-4}$	2.65×10^{-4}
D_2	$4.1 \pm 2.0 \times 10^{-4}$	$2.7 \pm 0.3 \times 10^{-4}$	3.76×10^{-4}
D ₃		$3.3 \pm 0.5 \times 10^{-4}$	1.03×10^{-3}

were fit by least squares to a quadratic polynomial as a function of m to obtain values for C_1 , C_2 , C_3 and D_1 , D_2 , D_3 corresponding to the present work. These coefficients are presented in the third column of Table 14.

As one would expect, the results of the present calculations are very close to the calculated values of THP. However, they are not so close that the present calculations overlap with the THP uncertainties. The agreement with the experimental results is similar to that of the calculations of THP and is not improved by the present calculations. There is quite a substantial difference in the values for D_3 . Since both values shown are computed values, this difference must represent either the differences in the calculational techniques or the differences in the M_i used in the two cases. We cannot reconcile this difference without recomputing C_v and D_v using the expressions of THP with the dipole moment function used in the present work. We have not included error limits on the results for C_v and D_v because of the complexity of the dependence of C_v and D_v on the dipole moment coefficients through the numerical calculations. General comparisons of our techniques with the analytical techniques of THP would be a useful future exercise to show the range of validity of the approximations of THP. The present technique, though less sophisticaled, is potentially more accurate than that of THP.

In conclusion, the matrix elements for HCl computed herein and presented here and in Appendix II provide a good characterization of HCl molecule to the degree that the dipole moment function accurately represents the molecule. The use of a completely numerical technique means that the results are free of any truncation errors introduced by the representation of the potential by a power series.

2.3. PROGRESS ON THE OVERTONE ABSORPTION MEASUREMENTS OF CO

The original work statement calls for measurement of absorption line strengths (or equivalently electric dipole matrix elements) in the second overtone band of carbon monoxide. However, results have been published for this band for near Doppler lines by Toth, Hunt and Plyler [2]. Measurements will therefore be made primarily on the third overtone band, returning to the second overtone to determine Lorentz widths if scheduling permits it.

Present plans are to determine individual vibration-rotation line strengths and Lorentz half widths in the $v=0 \rightarrow v^+=4$ band of carbon monoxide for gas pressures near two atmospheres: path lengths will be on the order of 200 m. Our data and data from other investigators will be used for the fundamental through second overtone bands to determine the coefficients of the dipole moment expansion for CO through fourth order. Line strengths will be determined by integrating the area under the observed absorption coefficient curve. Line strengths will also be obtained from the data by use of the Lorentz relation and the peak absorption coefficients and half widths. Line half widths will be measured directly from the observed data and com-

pared with those predicted by the Anderson theory. Distortion of the spectral lines introduced by the spectrometer slit function will be corrected by means of a modified direct measurement method [23].

2.3.1. MEASUREMENT FEASIBILITY

To determine the feasibility of observing the third overtone band of CO with path lengths obtainable in the laboratory, we must estimate the strength of the band by calculating the ratio of the squares of the rotationless dipole moment matrix elements which are proportional to the band strengths S:

$$<0|\mu(r)|4>^2<0|\mu(r)|3>^2\propto \frac{S(0)-4)}{S(0)-3)}$$

Since the matrix elements are defined as

$$R^{v,0} = \langle 0 | \mu(r) | v \rangle = \int \psi_0 \mu(r) \psi_v r^2 dr$$

they may be evaluated through numeric integration by means of wavefunctions obtained by numeric solution of the radial Schrödinger equation and the polynomial expansion for $\mu(\mathbf{r})$ known through third degree from previous experimental work. This was done by means of the existing matrix element calculation program. The value obtained in this manner is:

$$S(0-4)/S(0-3) = 0.0045$$

Once the ratio is known, estimates of line strengths in the third overtone band are obtained from those observed in the second overtone band [2]. We can then calculate approximate peak absorptions for the lines by assuming Lorentz line shapes and using the expression:

$$\alpha^{\mathbf{P}}(\mathbf{m}) = 1 - \exp[-\mathbf{K}^{\mathbf{P}}(\mathbf{m})\mathbf{P}\ell] = 1 - \exp[-\mathbf{S}(\mathbf{m})\mathbf{P}\ell/\gamma\pi]$$

where $\alpha^{\mathbf{P}}(\mathbf{m})$ = peak absorptances for the line

S(m) = strength of the line

K^P(m) = peak absorption coefficient

P = pressure of the gas (atm)

l = path length in em

 γ = Lorentz half width

m = line index, -J in the P branch, +J' in the R branch

J. J' = initial and final rotational quantum numbers of the transition

Calculations of this type for a path length of 200 m and a constant half width of 0.05 cm⁻¹ at 1 atm give the results presented in Table 15. This table shows that with path lengths of the

TABLE 15. RESULTS OF CALCULATIONS OF PEAK ABSORPTIONS

Line	$S(0-4) \cdot 10^6$ (atm ⁻¹ cm ⁻²)	$\alpha^{\mathbf{P}}(\sigma_{0})$ (200-m Path at 2 atm)	Line	$S(0-4) \times 10^6$ $(atm^{-1} cm^{-2})$	$\alpha^{\mathbf{P}}(C_{\ell})$ (200-m Path at 2 atm)
R(0)	0.62	7	P(1)	0.6	7
R(1)	1.2	13	P(2)	1.1	12
R(2)	1.7	18	P(3)	1.6	16
R(3)	2.0	21	P(4)	1.9	19
R(4)	2.6	26	P(5)	2.0	21
R(5)	2.7	27	P(6)	2.1	22
R(6)	2.9	28	P(7)	2.1	22
R(7)	2.9	28	P(8)	2.0	21
R(8)	2.9	28	P(9)	1.9	20
R(9)	2.6	26	P(10)	1.8	19
R(10)	2.4	24	P(11)	1.5	16
R(11)	2.2	22	P(12)	1.4	14
R(12)	1.9	20	P(13)	1.0	11
R(13)	1.6	17	P(14)	8.0	9
R(14)	1.3	14	P(15)	0.6	7
R(15)	1.0	11	P(16)	0.5	6
R(16)	0.8	9	P(17)	0.3	4
R(17)	0.6	7	P(18)	0.3	4
R(18)	0.4	5	P(19)	0.2	3
R(19)	0.3	4	P(20)	0.1	2
R(20)	0.2	3			١

order of 200 m, we should be able to determine line parameters in the third overtone band for all lines between Pi6 and R18.

To minimize instrumental distortion of the observed spectra, spectrai lines which are broad compared to the spectral resolution of the instrument are required. It is always possible to increase the pressure of the gas under observation to obtain broad lines; however, this also has the effect of overlapping the wings of adjacent lines and increasing the difficulty of data reduction. To determine the seriousness of these problems in the present study, the amount of line overlap for the pressures to be used during observation must be estimated.

Since CO has a very small dipole moment, quadrupole transitions dominate the pressure broadening. We therefore expect only slight variations in Lorentz half widths between second and third overtone bands. Previous experimental data [24] give widths of the order of 0.053 cm⁻¹ atm⁻¹ for R(17) and P(18) lines and values of 0.071 cm⁻¹ atm⁻¹ for R(1) or P(2) lines. Since the spectral resolution of the instrument being used is of the order of 0.05 cm⁻¹, to obtain resolution to line width ratios of 0.5, pressures of approximately two atmospheres should be used for the higher J lines, and, pressures of one to one-and-a-half atmospheres for lines near band center. To determine the amount of overlap evident at these pressures, we assume a Lorentz line shape, distorted by the instrumental slit function, and then evaluate the distance from line center at which a specified absorptance is observed.* With a resolution-to-line width ratio of 0.5, a distorted line with a peak absorption of 30% has an absorptance of 0.1% at a distance of 18.8 half widths from line center or approximately 1.9 cm⁻¹. Since the CO lines are separated by 4 cm⁻¹, overlap effects are not serious at these pressures.

2.3.2. APPARATUS

The iong path lengths required for observation of the third overtone band are obtained with a 5-m White cell**. A photograph of the cell chamber is shown in Fig. 11. Entrance and exit windows are seen on the front bell housing and the turbo-molecular pump used for evaluation of the system is visible in the background. The optical system of the cell consists of three accurately ground, spherical mirrors placed one radius of curvature apart. Long path lengths are obtained by successively imaging the light intercepted by the pair of back mirrors onto the surface of the single front mirror. Figure 12 shows the light path for eight passes. The number of traversals of the cell is set by rotating the two back mirrors about vertical axes, causing the distance between successive images on the single mirror to decrease. A single rotation adjustment for this purpose has been incorporated into the cell design. Figure 13 is a photograph

^{*}For a detailed discussion of the methods and tabulations of results, see Ref. [23].

^{**}Cell designed and constructed under Contract DAHC-15-67-C-0062.

FIGURE 11. FIVE-METER WHITE CELL FOR OBSERVANCE OF THE THIRD OVERTONE BAND OF CO

of the optical system removed from its vacuum chamber. Visible in this figure is the path followed by 6328 \mathring{A} radiation from a He:Ne laser with the cell set for 16 traverses.

The spectrometer used is a 1.8-m focal length Ebert Vacuum Spectrometer with a 190-mm \sim 135-mm Bausch and Lomb replica grating. Resolution of approximately 0.05 cm⁻¹ over the third overtone CO band is obtainable with a 3- μ m blaze grating in third order, double passed. To insure stability of the spectrometer wavelength drive, the room temperature is held constant to within 0.5°C.

Since the spectrometer operates at f/10 and the White cell at f/45, vacuum f-number matching optics are required to couple the two systems. A schematic of the optics built for this purpose is shown in Fig. 14. A photograph of the entire optical system consisting of the White cell, matching optics, and vacuum spectrometer is presented in Fig. 15.

During data collection, the CO pressure in the White cell is continuously monitored with an MKS Baratron capacitance bridge-pressure gauge. This gauge permits observation of pressure variations of 0.06 torr at two atmospheres. Although thermal effects alone may cause variations of this magnitude, pressure stability is expected to be better than 0.1%.

The infrared energy will be detected with a selected PbS photoconductive detector and a Princeton Applied Research lock-in amplifier. The detector is operated at -79°C and has a measured dimensionless detectivity (D*) of 1.4×10^{11} cm Hz $^{1/2}$ W $^{-1}$. In the complete optical system, with a chopping frequency of 510 Hz, a signal-to-noise ratio of 200 has been observed with the White cell set for a 16-pass operation. The analog signal from the lock-in amplifier is digitized and integrated with a digital voltmeter and the result is fed to an IBM card punch.

2.4. DATA REDUCTION

Two major computer codes have been written to handle the data reduction. The first of these determines the strength of the spectral lines through numeric integration using:

$$S = \frac{1}{P} \int K(\nu^{\dagger}) d\nu^{\dagger} = -\frac{1}{P!} \int \log_{e} \tau(\nu^{\dagger}) d\nu^{\dagger}$$

where

S = strength of the spectral line

P = pressure of gas under observation (atm)

l = path length (cm)

 $\tau(v')$ = spectra transmittance = 1 - $\alpha(v')$

 $K(v^{\dagger})$ = spectral absorption coefficient

 $v' = \text{spectral wavenumber (cm}^{-1})$

The same program evaluates the peak absorption coefficient and the Lorentz half width for each line. All of these values are distorted by the spectrometer slit function however, and

FIGURE 12. WHITE CELL OPTICAL PATH: EIGHT TRAVERSAL OPERATION

FIGURE 13. OPTICAL SYSTEM OF FIVE-METER WHITE CELL REMOVED FROM ITS VACUUM CHAMBER. Path lines are for 6328 Å radiation from the He:Ne laser with cell set for 16 traversals.

FIGURE 14. REDUCTION OPTICS FOR WHITE CELL

· FIGURE 15. WHITE CELL, MATCHING OPTICS AND VACUUM SPECTROMETER

correction procedures must be used to obtain the true line parameters. Therefore, we use a second program which follows the procedures of a direct measurement method [23] and corrects these values for instrumental distortion yielding the true strengths, widths, and peak absorption coefficients.

Calculation of the dipole moment coefficients and matrix elements has been discussed earlier, and Anderson theory pressure broadened widths is presented in Section 4.

3 INFRARED DIAGNOSTIC STUDIES G. H. Lindquist and C. B. Arnold

3.1. INTRODUCTION

In the design and operation of chemical lasers, it is necessary to know the rates of creation and loss of molecules in the energy states involved resulting from the various processes which compete with laser action. Molecular collisions with the cavity walls, molecular diffusion into and out of the active region, and collisions between molecules in the active gas medium all produce such changes in the population. This portion of the program is concerned with the redistribution and loss to translation of rotational and vibrational energy. Such redistribution and loss are the result of collisions among the gas molecules within the active medium.

The primary objective of the studies is to determine experimentally the populations of HF molecules as a function of time and of their vibrational and rotational state in a cell of excited HF and in the absence of diffusion and wall effects. Once radiative processes are accounted for, experimental transfer rates resulting from collision processes can be determined. From these, energy-transfer cross sections for the various processes can be determined.

3.2. EXPERIMENTAL DESIGN

3.2.1. EXCITATION TECHNIQUE

It would be most realistic if energy-transfer cross sections could be determined under the chemical excitation conditions existing in a HF laser cavity. However, because of the large number of different excited states that exist in such a case, it would be difficult to trace the flow of the excitation energy during relaxation. To make the interpretation of the experiment simpler, we have decided instead to excite the HF gas with a monochromatic beam from an HF laser operating on a single vibration-rotation line. This procedure would excite only those HF molecules in the cell with rotational energy coinciding with the lower state of the vibration-rotation line upon which the laser is operating. The relaxation from this relatively simple departure from equilibrium can then be studied in one of the ways described below.

Further, a number of investigators are currently studying the vibrational relaxation of excited HF molecules [25, 26, 27]. Although it would be interesting to study vibrational relaxation under our particular excitation conditions, it is our opinion that more useful and unique results can be obtained by concentrating on rotational energy relaxation. The decision to study rotational energy transfer in itself precludes the use of a realistic laser cavity, because the cell

pressure required to yield rotational relaxation times on the order of 1 μ sec are about 0.01 torr, much lower than typical cavity pressures (the relaxation time must be long enough to be observed with typical infrared detectors).

The excitation technique described above, although allowing simple interpretation, has several limitations which stem from its failure to reproduce the real situation. The most severe of these limitations is related to the possible rotational levels that can be studied. Under chemical excitation, it appears that substantial energy initially goes into high rotational levels as evidenced by Deutsch's success in building a pure rotational laser at low pressures (~ 1 torr) operating at high rotational levels and by the calculations of Wilkins [28, 29]. At the usual pressures at which chemical lasers operate (10 to ~ 100 torr), rotational equilibrium occurs fast enough that little or no rotational disequilibrium is apparent [30]. The current experimental design precludes the possibility of studying the high rotational levels because such levels cannot be populated in a cell at or near room temperature. There are essentially no molecules available to absorb the energy from a vibration-rotation laser operating at high rotational levels. At present, we can visualize no method whereby the ease of interpretation of the presently planned experiment can be retained and in which higher rotational levels can be excited.

3.2.2. RELAXATION MONITORING TECHNIQUE

Once the cell of gas has been excited, a means must be devised whereby the history of the populations of the various states involved can be observed during the relaxation process. All of the techniques considered are optical techniques whereby the interaction of the excited gas with optical radiation in either the vibration-rotation region or the pure rotation region is monitored by infrared detectors. The relaxation of the excited gas can be monitored by observation of either emission or absorption. In addition, the monitoring can be performed in either the vibration-rotation bands

pure rotation bands. Both techniques have been used in the vibration-rotation region [30, 31]; however, observations in the pure rotation region have never been used.

Observations of emission from the active gas generally yield signals large enough to be visible above detector noise in the vibration-rotation region. However, calculations for emission in the pure rotation region indicate that only marginal signal-to-noise ratios are available.

Observations of absorption are not practical in the vibration-rotation region when spectrally continuous sources (e.g., incandescent lamps) are used because, at low pressures, the absorption is very small and the spectral slit width of any practical observing instrument is large compared to the true line width. Thus, the observed absorption is even lower than the true peak-line absorption. However, if the source used in the absorption of the absorption of the HF vibration-rotation transitions, the absorption of

such a monocromatic source can be high enough to be easily measured. We have chosen this technique as the primary monitoring technique for this experiment. Absorption measurements are also feasible in the pure rotation portion of the spectrum where absorption is greater. However, there is increased operating difficulty involved in this region. The analysis in Section 3.3 indicates that the use of absorption measurements in the pure rotation region allows relaxation measurements to be made for a greater range of rotational energies than are possible in the vibration-rotation region provided that pure rotation lasers can be obtained for the desired lines.

To summarize, the relaxation of the excitation produced in a low-pressure cell of HF and possible dilutents are to be monitored by measuring the absorption (as a function of time) of the energy from a second or probe laser operating in a single line in the HF vibration-rotation band. Absorption histories obtained for a number of different vibration-rotation transitions (corresponding to the operation of the probe laser on different lines) will yield histories of the populations of the different states. Section 3.3 presents estimates of the emission and absorption signal levels available in both the vibration-rotation region and the pure rotation region and discusses the basis upon which the above monitoring technique was chosen.

3.3. COMPUTATION OF EXPECTED RESULTS

The following describes an analysis, based on radiative considerations only, of both the excitation techniques and the various possible monitoring techniques. No collision or diffusion processes are accounted for.

It is necessary to determine the approximate cell conditions necessary in order for rotational relaxation to be observed. First, for observation with a system having about a 0.1- μ sec rise time, the pressure must be low so that the relaxation will be slow enough to be seen. This rise time is about the shortest that can be obtained without use of specially constructed highspeed infrared detectors and preamps. We estimated the collision cross section for rotational energy transfer between HF molecules to be between 3 and 30 Å from calculations based on the theory of Sharma and Brau [32]. We assumed a cross section of 15 Å and obtained a relaxation time at 373°K of about 0.035 μ sec at 1-mm pressure. Pressures of ~ 0.01 mm are therefore required to obtain relaxation times of the order of 1 μ sec. The temperature of 373°K was used since it is necessary to heat the HF to about 100° C to prevent polymerization of the HF. Cell lengths longer than about 50 cm are difficult to accommodate in the experimental apparatus. Therefore, cell lengths of 5, 30, and 50 cm were considered.

3.3.1. EXCITATION

The excitation is to be stimulated by directing a pulse of monochromatic radiation into the cell containing the HF mixture. The stimulating beam will be generated by a pulsed HF laser

operating on one of the vibration-rotation transitions of HF. Since the cell will be at equilibrium before the stimulating pulse occurs, most of the inplecules will be in the v=0 vibrational state (v is the vibrational quantum number).

Thus, to obtain maximum excitation, the stimulating beam should operate in the $v=0 \rightarrow v'=1$ band. The HF laser used to generate the stimulating pulse will operate with only a partial population inversion; therefore its output will be largely limited to the P branch of that band. Only those molecules in the cell can be stimulated which are in rotational level J, (J is the rotational quantum number) corresponding to the lower level of the stimulating transition and which have v=0. Those molecules will be stimulated to the v'=1, J'=J-1 level.

We can treat the excitation quantitatively, using the equations for laser amplification. In this case, where the only radiation of interest (the stimulating radiation) is collimated or unidirectional, the conservation equations for photons and molecules can be given by:*

photon conservation
$$\frac{\partial \rho_{\nu}}{\partial t} + c \frac{\partial \rho_{\nu}}{\partial x} = -\rho_{\nu} c \left(n_{\ell_{\nu}} B_{\ell u} - n_{u_{\nu}} B_{u \ell} \right)$$
 (20)

molecule conservation
$$\frac{\partial \mathbf{n}_{\ell_{\nu}}}{\partial t} = -\rho_{\nu} \mathbf{c} \left(\mathbf{n}_{\ell_{\nu}} \mathbf{B}_{\ell \mathbf{u}} - \mathbf{n}_{\mathbf{u}_{\nu}} \mathbf{B}_{\mathbf{u} \ell} \right)$$
 (21)

$$\frac{\partial \mathbf{n}_{\ell}}{\partial t} = +\rho_{\nu} \mathbf{c} \left(\mathbf{n}_{\ell_{\nu}} \mathbf{B}_{\ell u} - \mathbf{n}_{\mathbf{u}_{\nu}} \mathbf{B}_{\mathbf{u}\ell} \right)$$
 (22)

Note that the number densities have been written as spectral quantities to account for the fact that the photon density of the stimulating beam, ρ_{ν} , has a spectral distribution associated with it and that the molecules, by virtue of their random thermal velocities, are ready to absorb energy in a distribution of frequencies corresponding to a Doppler profile.

No terms are included for relaxation by spontaneous emission, or by any other mechanism for that matter, since the stimulation pulse is assumed to occur much faster than any relaxation process. These equations can be reduced to dimensionless form by defining the following dimensionless variables. A dimensionless number density difference η is defined as:

$$\eta(\mathbf{x}, t) = \frac{\frac{\mathbf{n}_{\ell}}{\mathbf{g}_{\ell}} - \frac{\mathbf{n}_{\mathbf{u}_{\nu}}}{\mathbf{g}_{\mathbf{u}}}}{\mathbf{N}_{\nu}}$$

^{*}See also Appendix I and Ref. [33].

where g_{ℓ} and g_{u} are the degeneracies of the lower and upper states and where $N_{\nu} = n_{\ell_{\nu}} + n_{u_{\nu}}$, the sum of the molecules in the upper and lower state ready to absorb energy at frequency ν . The spectral populations, $n_{\ell_{\nu}}$ and $n_{u_{\nu}}$ can be written as:

$$n_{\boldsymbol{\ell}_{\boldsymbol{\nu}}} = n_{\boldsymbol{\ell}} s_{\boldsymbol{\ell}} (\nu - \nu_{0})$$

$$n_{u_{ij}} = n_{ij} s_{ij} (\nu - \nu_0)$$

where s_{ℓ} and s_{u} are the Doppler distributions of n_{ℓ} and n_{u} about the center frequency of the transition ν_{0} . Also, $n_{u}+n_{\ell}=N$, a constant by molecula: conservation in the absence of other processes that create or destroy molecules. Further, if we assume that the stimulated absorption or emission does not affect the translational energy of the molecule, and if the spectral width of the incident laser pulse is larger than the Doppler width in the HF cell, then

$$n_{u_{\nu}} + n_{\ell_{\nu}} = N_{\nu} \tag{23}$$

and

Also, we define a dimensionless photon density

$$\Phi(\mathbf{x}, t) = \frac{\rho_{\nu}}{N_{\nu}} \tag{24}$$

Equations (21) and (22) can now be added to obtain:

$$\frac{\partial \eta}{\partial t} = -\Phi \eta \left[c N_{\nu} (B_{\ell u} + B_{u\ell}) \right]$$
 (25)

Equation (20) becomes

$$\frac{\partial \Phi}{\partial t} + c \frac{\partial \Phi}{\partial x} = -\Phi \eta (c N_{\nu} g_{\ell} B_{\ell u})$$
 (26)

Equations (25) and (26) can be simply solved (e.g., see Ref. [33] to give:

$$\eta(\mathbf{x}, t) = \frac{\eta(\mathbf{x}, 0) \exp \left[\mathbf{z}_{1} \int_{0}^{\mathbf{x}} \eta(\mathbf{x}', 0) d\mathbf{x}' \right]}{\exp \left[\mathbf{z}_{2} \int_{0}^{t-\mathbf{x}/\mathbf{c}} \Phi(0, t') dt' \right] + \exp \left[\mathbf{z}_{1} \int_{0}^{\mathbf{x}} \eta(\mathbf{x}', 0) d\mathbf{x}' \right] - 1}$$
(27)

and

$$\Phi(\mathbf{x}, t) = \frac{\Phi\left(0, t - \frac{\mathbf{x}}{c}\right)}{1 - \left\{1 - \exp\left[\mathbf{Z}_{1} \int_{0}^{\mathbf{x}} \eta(\mathbf{x}', 0) d\mathbf{x}'\right]\right\} \left\{\exp\left[-\mathbf{Z}_{2} \int_{0}^{\mathbf{t} - \mathbf{x}/c} \Phi(0, t') dt'\right]\right\}}$$
(28)

where
$$Z_1 = N_{\nu}g_{\ell}B_{\ell u}$$

 $Z_2 = cN_{\nu}(B_{\ell u} + B_{u\ell})$

If we now let the input flux be a laser pulse having an integrated energy per unit area of P_0 distributed uniformly over a spectral width, $\Delta \nu$, then

$$P_0 = \int \rho_{\nu} \Delta \nu c dt = \int N_{\nu} \Phi(0, t) (\Delta \nu) c dt$$
 photons/cm²

where Δt is the pulse duration. For a rectangular pulse

$$P_0 = \Phi_0 \Delta t \Delta \nu c N_{\nu}$$
 (29)

The total flux passing through a position $x \ge 0$ is

$$P(x) = \int_{-x/c}^{x/c + \Delta t} \frac{cN_{\nu}\Phi(x, t')dt' = cN_{\nu}}{\int_{-x/c}^{x/c + \Delta t} \frac{\Phi_{0}dt}{1 - \left\{1 - \exp\left[\frac{x}{2}\int_{0}^{x} \eta(x', 0)dx'\right]\right\} \left\{\exp\left[\frac{t - x/c}{2}\int_{0}^{x} \Phi_{0}dt\right]\right\}}$$

This can be reduced to the following expression

$$\frac{P(x)}{P_0} = 1 + \frac{1}{P} \log \frac{1 - \exp(-P^*) + \exp(L^* - P^*)}{\exp L^*}$$
(30)

where P is a dimensionless energy input given by

$$P^* = \frac{P_0 Z_2}{N_u \Delta \nu c} + \frac{P_0}{\Delta \nu} (B_{uf} + B_{fu})$$
 (31)

and L is a dimensionless length

$$\mathbf{L}^* = \mathbf{Z}_1 \mathbf{x} \eta(0, \mathbf{x}) = \mathbf{g}_{\mathbf{f}} \mathbf{B}_{\mathbf{f} \mathbf{u}} \mathbf{x} \left(\mathbf{n}_{\mathbf{f}_{\nu}} - \mathbf{n}_{\mathbf{u}_{\nu}} \right) \mathbf{t} = \mathbf{0}$$
 (32)

 L^* is a spectrally varying quantity. In order to get substantial power from the HF lasers we constructed, we had to use relatively high pressures and high cavity losses (low mirror reflectivities). The high cavity losses indicate that the effective spectral width of our stimulating pulse could be wider than the Doppler width corresponding to absorption in the cell. In such a case P^* can be taken as constant over the Doppler profile and L^* will vary both with x and with the spectral distance from line center, $\nu - \nu_0$. At the line center

$$n_{\mathbf{u}_{1}} = \frac{n_{\mathbf{u}}}{\sqrt{\pi} \gamma_{\mathbf{D}}} \text{ and } n_{\mathbf{v}_{1}} = \frac{n_{\mathbf{v}}}{\sqrt{\pi} \gamma_{\mathbf{D}}}$$

where γ_{D} is the Doppler half width of the gas absorption line.

$$\gamma_{\mathbf{D}} = \frac{v_0}{c} \sqrt{\frac{2kT}{M}}$$

where M = the molecular mas-

k = the Boltzmann constant

T = the temperature

Before stimulation $n_{\ell} >> n_{\mathbf{u}}$ since $n_{\mathbf{u}}$ is a state where $\mathbf{v} = 1$ and n_{ℓ} is a $\mathbf{v} = 0$ state. Thus

$$\left(n_{\ell_{\nu}} - n_{u_{\nu}}\right)_{t=0} = \frac{\left(n_{\ell}\right)_{t=0}}{\sqrt{\pi}\gamma_{D}}$$

ERIM

so that
$$\mathbf{L}^* = \frac{\left(\mathbf{n}_{\mathbf{f}}\right)_{\mathbf{t}=0}}{\sqrt{\pi} \gamma_{\mathbf{D}}} \mathbf{g}_{\mathbf{f}} \mathbf{B}_{\mathbf{f}\mathbf{u}}^{\mathbf{X}}$$
 (33)

at line center. If the value of η at t = 0 is constant for all x and equal to η_0 , then the expression for $\eta(x)$ after the passage of the pulse is

$$\eta\left(\mathbf{x}, \Delta t + \frac{\mathbf{x}}{c}\right) = \frac{\eta_0 \exp\left(\mathbf{Z}_1 \eta_0 \mathbf{x}\right)}{\exp\left(\mathbf{Z}_2 \int_0^{\Delta t} \Phi_0 dt'\right) + \exp\left(\mathbf{Z}_1 \eta_0 \mathbf{x}\right) - 1}$$
(34)

or

$$\frac{\eta(\mathbf{x})}{\eta_0} = \frac{\exp \mathbf{L}^*}{\exp \mathbf{P}^* + \exp \mathbf{L}^* - 1}$$

Note that the limiting value for η after the passage of an infinitely strong pulse is zero. This corresponds to the inversion boundary and is the state in which a stimulated absorption event is equally as probable as a stimulated emission event. Henceforth $\eta=0$ will be referred to as the bleached condition. It is of primary interest in this program to determine, for a cell of total length x_T , the energy required per pulse to reduce η to some arbitrarily small value at the far end of the cell, i.e., at $x=x_T$ (η will always be closer to zero for other $x< x_T$). We have assumed that a 90% change in η at the far end of the cell will yield a sufficiently stimulated cell for our purposes. Thus, the condition may be written

$$\eta(\mathbf{x_T})$$
 (after pulse) $\leq 0.1 \, \eta_0$

We would like to find P^* so that for $L^* = L_T^*$ (corresponding to $x = x_T$) the above condition is satisfied. We write:

$$\frac{\eta(\mathbf{x_T})}{\eta_0}(0.1) = \frac{\exp\left(\mathbf{L_T}^*\right)}{\exp\left(\mathbf{P}_{0.1}^*\right) + \exp\left(\mathbf{L_T}^*\right) - 1}$$

or

$$\mathbf{p}_{0,1}^* = in \Big[9. \exp \Big(\mathbf{L}_{\mathbf{T}}^* \Big) + 1 \Big]$$
 (35)

 $P_{0.1}^*$ is the dimensionless power required to drive the value of η at the far end of the cell to 0.1, its original value. The value of η in the remainder of the cell is even lower; we computed

 L_T^* for the line center using Eq. (33). Values of $B_{u\ell}$ and $B_{\ell u}$ for the stimulating laser transition were obtained from the values of the Einstein coefficient for spontaneous emission, $A_{u\ell}$, given in Ref. [1], using the relations

$$B_{u\ell} = \frac{A_{u\ell}}{8\pi \nu^2} \frac{cm^2}{\sec}$$
 (36)

and

$$B_{(u)} = \frac{\epsilon_u}{g_{(l)}} B_{u(l)}$$

where v' is the wavenumber of the transition: $\mathbf{B}_{\ell \mathbf{u}}$ and $\mathbf{B}_{\mathbf{u}\ell}$ are in photon units.

The degeneracies of the lower and upper states, g_t and g_u , are given by

$$g_{\ell} = 2J_{s} + i$$

$$g_{u} = 2J_{s} - 1$$

where J_s is the rotational designation of the stimulating laser transition. This particular relation between g_ℓ and g_u appears because the laser operates in the P branch. Table 16 shows the energy required per unit cross-sectional area to excite the ceil so that 90% of the possible stimulation is obtained at the far end of cell, for 0.01 torr pressure, 373°K, and cell length of 5, 30, and 50 cm. This calculation assumes that the equivalent spectral width of the laser pulse is equal to its upper limit, 0.025 cm⁻¹. This value is approximate and was obtained by assuming that the pressure in the laser cavity would be about 30 torr and that collisional broadening of the transitions by H_2 and SF_6 would be nearly identical. Broadening by H_2 was assumed to be about 1/5 as effective as broadening by HF. These considerations yield a collisional half width of about 0.01 cm⁻¹. This half width, in combination with a Doppler half width of about 0.006 cm⁻¹, should yield a full width for the laser transition (assuming that the laser is operated without a front mirror) of about 0.025 cm⁻¹ neglecting narrowing due to stimulated emission. The levels required are very modest and are well within the capability of the stimulation laser already constructed.

3.3.2. RELAXATION MONITORING

As mentioned earlier, optical monitoring of the relaxation process can be accomplished in either absorption or emission and either in the vibration-rotation or pure rotation region. The purpose of this section is to determine expected levels for all four types of monitoring and to present conclusions covering the most appropriate means of measurement. Since absorption is the simplest to model, it is discussed first.

TABLE 16. POWER REQUIREMENT PER UNIT CELL AREA TO PRODUCE 90% OF MAXIMUM POSSIBLE CHANGE IN CELL POPULATION

(a) 5 cm Cell Length

Cell Pressure: 0.010 torr Cell Temperature: $373.0 \, \text{deg K}$ Laser Line Width: $0.0250 \, \text{cm}^{-1}$

Stimulating Laser Line	$\mathtt{L}_{\mathbf{T}}^{*}$	P.1	Energy Required (J/cm ²)
P 1(1-0)	0.1134	2.4052	0.2102E-03
P 2(1-0)	0.1739	2.4604	0.2551E-03
P 3(1-0)	0.1705	2.4573	0.2512E-03
P 4(1-0)	0.1268	2.4174	0.2379E-03
P 5(1-0)	0.0753	2.3706	0.2234E-03
P 6(1-0)	0.0366	2.3356	0.2104E-03
P 7(1-0)	0.0148	2.3159	0.1993E-03
P 8(1-0)	0.0050	2.3071	0.1897E-03
P 9(1-0)	0.0014	2.3038	0.1810E-03
P10(1-0)	0.0003	2.3029	0.1731E-03
P11(1-0)	0.0001	2.3026	0.1656E-03
P12(1-0)	0.0	2.3026	0.1585E-03
P13(1-0)	0.0	2.3026	0.1518E-03
P14(1-0)	0.0	2.3026	0.1455E-03
P15(1-0)	0.0	2.3026	0.1395E-03

TABLE 16. POWER REQUIREMENT PER UNIT CELL AREA TO PRODUCE 90% OF MAXIMUM POSSIBLE CHANGE IN CELL POPULATION (Continued)

(b) 30 cm Cell Length

Cell Pressure: 0.010 torr
Cell Tempe ature: $373.0 \, \text{deg K}$ Laser Line Width: $0.0250 \, \text{cm}^{-1}$

Stimulating Laser Line	${\rm L}_{\rm T}^{^{\star}}$	P.1	Energy Required (J/cm ²)
P 1(1-0)	0.6801	2.9321	0.2563E-03
P 2(1-0)	1.0435	3.2791	0.3400E-03
P 3(1-0)	1.0233	3.2597	0.3332E-03
P 4(1-0)	0.7606	3.0084	0.2961E-03
P 5(1-0)	0.4519	2.7174	0.2561E-03
P 6(1-0)	0.2197	2.5024	0.2254E-03
P 7(1-0)	0.0886	2.3826	0.2050E-03
P 8(1-0)	0.0 29 8	2.3295	0.1916E-03
P 9(1-0)	0.0084	2.3102	0.1815E-03
P10(1-0)	0.0020	2.3044	0.1732E-03
P11(1-0)	0.0004	2.3029	0.1656E-03
P12(1-0)	0.0001	2.3026	0.1585E-03
P13(1-0)	0.0	2.3026	0.1518E-03
P14(1-0)	0.0	2.3026	0.1455E-03
P15(1-0)	0.0	2.3026	0.1395E-03

TABLE 16. POWER REQUIREMENT PER UNIT CELL AREA TO PRODUCE 90% OF MAXIMUM POSSIBLE CHANGE IN CELL POPULATION (Concluded)

(c) 50 cm Cell Length

Cell Pressure:

0.010 torr

Cell Temperature: 375.0

.0 deg K

Laser Line Width:

0.0250 cm⁻¹

Stimulating			
Laser			Energy Required
Line	$\mathbf{L_{T}}$	P* .1	(J/cm^2)
P 1(1-0)	1.1335	3.3659	0.2942E-03
P 2(1-0)	1.7391	3.9557	0.4102E-03
P 3(1-0)	1.7055	3.9227	C.4009E-03
P 4(1-0)	1.2676	3.4957	0.3441E-03
P 5(1-0)	0.7531	3.0013	0.2828E-03
P 6(1-0)	0.3662	2.6376	0.2376E-03
P 7(1-0)	0.1476	2.4364	0.2097E-03
P 8(1-0)	0.0497	2.3474	0.1930E-03
P 9(1-0)	0.0140	2.3152	0.1819E-03
P10(1-0)	0.0033	0.3056	0.1733E-03
P11(1-0)	0.0007	2.3032	0.1656E-03
P12(1-0)	0.0001	2.3027	0.1585E-03
P13(1-0)	0.0	2.3026	0.1518E-03
P14(1-0)	0.0	2.3026	0.1455E-03
P15(1-0)	0.0	2.3026	0.1395E-03

3.3.3. ABSORPTION

Once the cell is stimulated, it can then be probed with a second, lower power laser. The absorption of energy from this second laser can be monitored. To keep the experimental results as independent of the degree of stimulation provided by the stimulating laser as possible, it is desirable to have the cell as bleached as possible. Therefore, as high an energy as possible per pulse, within reasonable limits, is necessary from the stimulating laser. For the remainder of this section we cell will be assumed to have been completely bleached by the monochromatic stimulating pulse. That is, the following condition will be assumed to exist throughout the cell immediately after stimulation

$$\frac{n_u}{g_u} = \frac{n_f}{g_f}$$
(37)

where the subscript s refers to the stimulating transition (such a subscript is needed because we now plan to introduce a probe transition).

The same equations developed earlier for the absorption of the stimulating pulse apply to the absorption of the probe pulse, except that the initial conditions are now the conditions after stimulation.

The absorption of a probe laser is given by Eq. (30). However, that relation indicates that the absorption is a function of probe laser energy, P^* , as well as the length L^* . If we consider small probe laser energies only, however, the exponentials involving P^* and the logarithm can be replaced by the first two terms in series expansions so that, for small P^*

$$\frac{\mathbf{P}}{\mathbf{P}_0} = \exp\left(-\mathbf{L}_{\mathbf{T}}^*\right) \tag{38}$$

the usual law of absorption. From Eq. (32), L_T^* is related to η of the gas before the incidence of a pulse, in this case the probe laser pulse; η for this case is

$$\eta(t=0) = \frac{\begin{pmatrix} n_{t_{\mu}}^{\mathbf{P}} & n_{u_{\mu}}^{\mathbf{P}} \\ \frac{\mathbf{g}_{t}^{\mathbf{P}} - \frac{\mathbf{g}_{u}^{\mathbf{P}}}{\mathbf{g}_{u}} \end{pmatrix}_{0}}{N_{\mu}^{\mathbf{P}}}$$
(39)

where the P superscript refers to the probe laser and the 0 signifies initial conditions. Thus, the absorption is dependent on the populations of the upper and lower states before the incidence of the probe laser put. We have computed the absorption of the probe laser for three condi-

tions: (a) immediately after the passage of the stimulating pulse; (b) after rotational relaxation (assuming that rotational relaxation occurs before any vibrational relaxation); and (c) after complete relaxation.

Immediately after stimulation in a v = 0 + v' = 1 P-branch line, the number densities in cm⁻³ are given by the following relations:

v = 1

$$J = J_{S} - 1; \quad \frac{p}{kT} \frac{(2J_{S} - 1)(2J_{S} + 1)hcB_{0}}{4J_{S}} \exp \left[-\frac{hcB_{0}}{kT} J_{S}(J_{S} + 1) \right]$$

$$J \neq J_{S} - 1; \quad \sim 0$$

$$\mathbf{v} = \mathbf{0} \tag{40}$$

$$J = J_s$$
: $\frac{P}{kT} \frac{(2J_s + 1)^2}{4J_s} \frac{hcB_0}{kT} exp \left[-\frac{hcB_0}{kT} J_s (J_s + 1) \right]$

$$J \neq J_s$$
: $\frac{p}{kT}(2J+1)\frac{hcB}{kT} \exp \left[-\frac{hcB_0}{kT}J(J+1)\right]$

where B_0 is the rotational constant for HF in the v=0 state. These relations correspond to a Boltzmann distribution of energies except for those levels affected by the stimulating pulse. The populations of the levels affected by the stimulating pulse are determined from Eq. (37). For this calculation, the population of the v=1 state at equilibrium is assumed to be zero (at 100° C far less than 1% of the total number density are in the v=1 level).

Using Eqs. (32), (38), and (39), we computed the absorption of a probe laser operating in the P branch of the v=1-v'=2 band for probe laser transitions having various J values after stimulation by a laser pulse. The results of these tabulations are shown in Table 17. Each of the five parts of Table 17 corresponds to a particular J value for the stimulating laser line. The absorption before any relaxation occurred was computed by use of Eq. (21) for the required number densities. The results of these computations are shown in the first column of each part of Table 17.

The L* values and hence the absorption, were computed for the peak of the Doppler absorption line. (Only Doppler broadening is important at the low cell pressures being used.) The calculated absorption values are therefore only realized in practice if the spectral width of the

TABLE 17. ABSORPTION OF COMPLETELY STIMULATED CELL BY PROBE LASER

(a)

Stimulating Line: P3 (1-0)

Cell Temperature: 373.0 deg K

Cell Pressure:

0.010 torr of HF

Cell Length:

50.0 cm in Probe Dimension

Absor	ption	of 2-I	Laser
-------	-------	--------	-------

Absorption of 1-1 Rotational Laser

	•			The state of the s			
J of Probe Laser	Before Relaxation	After Rotational Relaxation	After Complete Relaxation	Before Relaxation	After Rotational Relaxation	After Complete Relaxation	
I	0.0	0.1792	0.0	0.0	1.0	0.0	
2	0.7083	0.2618	0.0	1.0	1.0	0.0001	
3	0.0	0.2578	0.0	0.0	1.0	0,0001	
4	0.0	0.1991	0.0	0.0	1.0	0.0001	
5	0.0	0.1237	0.0	0.0	1.0	0.0	
6	0.0	0.0623	0.0	0.0	0.9994	0.0	
7	0.0	0.0256	0.0	0.0	0.9469	0.0	
8	0.0	0.0087	0.0	0.0	0.6174	0.0	
9	0.0	0.0025	0.0	0.0	0.2315	0.0	
10	0.0	0.0006	0.0	0.0	0.0589	0.0	
I 1	0.0	0.0001	0.0	0.0	0.0117	0.0	
12	0.0	0.0	0.0	0.0	0.0019	0.0	
13	0.0	0.0	0.0	0.0	0.0003	0.0	
14	0.0	0.0	0.0	0.0	0.0	0.0	
15	0.0	0.0	0.0	0.0	0.0	0.0	

TABLE 17. ABSORPTION OF COMPLETELY STIMULATED CELL BY PROBE LASER (Continued)

(b)

Stimulating Line: P4 (1-0)

Cell Temperature: 373.0 deg K

Cell Pressure: 0

0.010 torr of HF

Cell Length:

50.0 cm in Probe Dimension

	Absorption of 2-1 Laser			Absorption of 1-1 Rotational Laser		
J of Probe Laser	Before Relaxation	After Rotational Relaxation	After Complete Relaxation	Before Relaxation	After Rotational Relaxation	After Complete Relaxation
1	0.0	0.1318	0.0	0.0	0.9999	0.0
2	0.0	0.1953	0.0	0.0	1.0	0.0001
3	0.6306	0.1922	0.0	1.0	1.0	0.0001
4	0.0	0.1469	0.0	0.0	1.0	0.0001
5	0.0	0.0902	0.0	0.0	1.0	0.0
6	0.0	0.0450	0.0	0.0	0.9952	0.0
7	0.0	0.0184	0.0	0.0	0.8776	0.0
8	0.0	0.0062	0.0	0.0	0.4973	0.0
9	0.0	0.0018	0.0	0.0	0.1718	0.0
10	0.0	0.0004	0.0	0.0	0.0425	0.0
11	0.0	0.0001	0.0	0.0	0.0084	0.0
12	0.0	0.0	0.0	0.0	0.0014	0.0
13	0.0	0.0	0.0	0.0	0.0002	0.0
14	0.0	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0

TABLE 17. ABSORPTION OF COMPLETELY STIMULATED CELL BY PROBE LASER (Continued)

(c)

Stimulating Line: P5 (1-0)

Cell Temperature: 373.0 deg K

Cell Pressure:

0.010 torr of HF

Cell Length:

50.0 cm in Probe Dimension

	Absorption of 2-1 Laser			Absorption of 1-1 Rotational Laser		
J of Probe Laser	Before Relaxation	After Rotational Relaxation	After Complete Relaxation	Before Relaxation	After Rotational Relaxation	After Complete Relaxation
1	0.0	0.0773	0.0	0.0	0.9964	0.0
2	0.0	0.1163	0.0	0.0	1.0	0.0001
3	0.0	0.1143	0.0	0.0	1.0	0.0001
4	0.4613	0.0864	0.0	1.0	1.0	0.0001
5	0.0	0.0523	0.0	0.0	0.9983	0.0
6	0.0	0.0258	0.0	0.0	0.9521	0.0
7	0.0	0.0105	0.0	0.0	0.6973	0.0
8	0.0	0.0036	0.0	0.0	0.3237	0.0
9	0.0	0.0010	0.0	0.0	0.1017	0.0
10	0.0	0.0002	0.0	0.0	0.0244	0.0
11	0.0	0.0	0.0	0.0	0.0048	0.0
12	0.0	0.0	0.0	0.0	8000.0	0.0
13	0.0	0.0	0.0	0.0	0.0001	0.0
14	0.0	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0

ERIM

TABLE 17. ABSORPTION OF COMPLETELY STIMULATED CELL BY PROBE LASER (Continued)

(d)

Stimulating Line:

P6 (1-0)

Cell Temperature: 373.0 deg K

Cell Pressure:

0.010 torr of HF

Cell Length:

50.0 cm in Probe Dimension

	Absorption of 2-1 Laser		Absorption of 1-1 Rotational Laser			
J of Probe Laser	Before Relaxation	After Rotational Relaxation	After Complete Relaxation	Before Relaxation	After Rotational Relaxation	After Complete Relaxation
1	0.0	0.0367	0.0	0.0	0.9266	0.0
2	0.0	0.0558	0.0	0.0	0.9978	1000.0
3	0.0	0.0549	0.0	0.0	0.9986	0.0001
4	0.0	0.0411	0.0	0.0	0.9932	0.0001
5	0.2660	0.0247	0.0	1.0	0.9478	0.0
6	0.0	0.0121	0.0	0.0	0.7564	0.0
7	0.0	0.0049	0.0	0.0	0.4261	0.0
8	0.0	0.0017	0.0	0.0	0.1632	0.0
9	0.0	0.0005	0.0	0.0	0.0486	0.0
10	0.0	0.0001	0.0	0.0	0.0114	0.0
11	0.0	0.0	0.0	0.0	0.0022	0.0
12	0.0	0.0	0.0	0.0	0.0004	0.0
13	0.0	0.0	0.0	0.0	0.0001	0.0
14	0.0	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0

TABLE 17. ABSORPTION OF COMPLETELY STIMULATED CELL BY PROBE LASER (Concluded)

(e)

Stimulating Line: P7 (1-0)

Cell Temperature: 373.0 deg K

Cell Pressure:

0.010 torr of HF

Cell Length

50.0 cm in Probe Dimension

Absorption of 2-1 Laser			Absorption of 1-1 Rotational Laser			
J of Probe Laser	Before Relaxation	After Rotational Relaxation	After Complete Relaxation	Before Relaxation	After Rotational Relaxation	After Complete Relaxation
1	0.0	0.0143	0.0	0.0	0.6343	0.0
2	0.0	0.0219	0,0	0.0	0.9051	0.0001
3	0.0	0.6215	0.0	0.0	0.9202	0.0001
4	0.0	0.0160	0.0	0,0	0.8536	0,0001
5	0.0	0.0096	0.0	0,0	0.6793	0.0
6	0.1193	0.0047	0.0	1.0	0.4195	0.0
7	0.0	0.0019	0.0	0,0	0.1925	0.0
8	0.0	0.0006	0,0	0,0	0.0676	0.0
9	0.0	0.0002	0.0	0.0	0.0190	0.0
10	0.0	0,0	0.0	0.0	0.0044	0.0
11	(0.0	0.0	0.0	0.0	0.0009	0.0
12	0.0	0.0	0.0	0.0	0.0001	0.0
13	0.0	0.0	0,0	0.0	0.0	0.0
14	0.0	0.0	0.0	0,0	0.0	0,0
15	0.0	0.0	0.0	0.0	0.0	0,0

probe laser is small compared to the Doppler line width. The realization of this condition is discussed in 3.5.

Similar calculations were performed for the condition existing after rotational relaxation. For this condition, the molecules stimulated to the v = 1 level were allowed to distribute themselves in a Boltzmann rotational distribution; the number densities correspositing to this case are as follows:

$$v = 1: -\frac{p}{kT} \frac{(2J_s + 1)(2J_s - 1)}{4J_s} \frac{hcB_0}{kT} \exp \left[-\frac{hcB_0}{kT} J_s(J_s + 1) \right] - \left\{ \frac{hcB_f}{kT} \exp \left[-\frac{hcB_f}{kT} J(J + 1) \right] \right\}$$

where B, is the rotational constant for ItF in the v = 1 level.

$$v = 0 + \frac{P}{kT} \left\{ 1 - \frac{(2J_s + 1)(2J_s - 1)heB_0}{4J_s} \frac{exp}{kT} \exp \left[-\frac{heB_0}{kT} J_s (J_s + 1) \frac{heB_0}{kT} \exp \left[-\frac{heB_0}{kT} J (J + 1) \right] \right\}$$

tor any J. The calculated absorptions for this case are shown in the second column of the parts of Table 17.

To compute the absorption calculations for the completely relaxed gas, we assumed a Boltzmann distribution for the number densities in both vibration and rotation. For this case, the number density in the v=1 state was determined with use of the vibrational partition function for a harmonic oscillator. These values are shown in the third column of each of the parts of Table 17. Similar calculations were made for a probe laser operating in the $v=1 \rightarrow v^*=1$ pure rotation band. The corresponding results are shown in the fourth, fifth, and sixth columns of the various entries of Table 17.

than $\sim 5\%$. We have seen operation of the stimulating laser only on the P4 through P9 lines in the $v=0 \rightarrow v'=1$ band. From Table 17, it can be seen that at a pressure of 0.01 torr, a lemperature of 373° K, and a cell length of 50 cm, there is enough absorption before any relaxation takes place to be easily seen with a v=1 to v'=2 probe laser provided that we operate the stimulating laser on one of the P4 through P7 lines. After rotational relaxation, except for a few transitions with a lower state population near the Boltzmann peak, there will not be enough absorption to be observed. This is not expected to be a serious problem, however, because observation of the absorption after rotational relaxation would be in conjunction with observation of vibrational relaxation. This has a longer time constant than rotational relaxation; and the cell pressure, and hence the absorption, could be raised to observe these events.

Very substantial absorption of a pure rotational laser pulse is expected so that the line is completely absorbing in the center. Probing with a pure rotation laser should therefore be useful for probing after stimulation at high J levels at which few excited molecules will be created. Since we have not yet built a pure rotation laser, it is expected that all efforts on this contract will be limited to probing with a v = 1 to v' = 2 laser.

3.3.4. MONITORING RELAXATION BY FLUORESCENCE

Use of the fluorescence produced by the gas within the cell in its nonequilibrium state is an attractive alternative means of monitoring the relaxation of the excited gas. No alignment or timing difficulties such as those which exist in probe laser absorption measurements are present to complicate the measurements.

The calculation of the radiance levels expected from this fluorescence is necessary for judging the feasibility of fluorescence measurements at the low pressures to be used. Such calculations are also important because fluorescence and accompanying absorption also provide a means for relaxation to occur in the nonequilibrium gas. Usually, the time constant of this relaxation is taken to be $A_{u\ell}^{-1}$, i.e., the radiative relaxation occurs solely by spontaneous emission. This time constant is much larger than the time constants we expect for collisional deactivation in the current experiment and thus might be ignored. However the effects of stimulated emission and absorption on the radiative relaxation must also be accounted for.

The equations of fluorescence have been derived in Appendix I also. They are more complex than the equations governing the stimulation of the cell because there are photons present corresponding to all possible transitions rather than to one transition only. Hence, the changes in population of all the states must be considered. For each transition, there is a photon conservation equation which depends on the populations of only the upper and lower states for that transition. In addition, there is a conservation equation for the population of each state in the gas. Each of these equations contains terms corresponding to spontaneous emission and stimulated emission and absorption from and to each state having a transition in common with the state in question. To correctly determine the fluorescence as a function of time, it is necessary to solve these equations simultaneously. Because of the large number of variables involved, analytical solutions to these equations are available only in the simplest of situations.

Solutions to simple cases, involving cally a few states, which ignore stimulated emission and absorption yield the usual optically thin solution with a decay having a time constant of A_{uf}^{-1} . To assess the importance of stimulated processes and hence to determine whether they can be ignored in the present situation, consider a photon conservation equation for one of the transitions involved. From Appendix I, Eq. (101) we write directly:

$$\frac{\partial \rho_{\nu,\Omega}}{\partial_{t}} + \mathbf{c} = \Omega \rho_{\nu,\Omega} = \mathbf{c} \rho_{\nu,\Omega} \left(\mathbf{n}_{\mathbf{u}_{\nu}} \mathbf{B}_{\mathbf{u}} \mathbf{f} - \mathbf{n}_{\mathbf{f}_{\nu}} \mathbf{B}_{\mathbf{f}\mathbf{u}} \right) + \mathbf{n}_{\mathbf{u}_{\nu}} \frac{\mathbf{A}_{\mathbf{u}} \mathbf{f}}{4\pi}$$

$$(42)$$

where $_{\Omega}$ is simply a symbol for the gradient in the Ω direction.

Since no easily available measuring device can hope to resolve the detail of a fluorescence line, we can integrate over frequency. Further, the measuring device will compare the fluorescence output with the ambient radiation level. Hence, it is reasonable to substitute for $\rho_{\nu,\Omega}$, the sum of a constant ambient equilibrium (blackbody) photon density, ρ_{ν}^* , and a deviation from this equilibrium value, ρ' , i.e.,

$$\rho_{\nu,\Omega} = \rho_{\nu,\Omega}^* + \rho^*$$

Substitution of this value into Eq. (42) and integration over frequency yields

$$\frac{\partial \rho'}{\partial_{\ell}} + c \nabla_{\Omega} \rho' = c \rho_{\nu,\Omega}^* \left(n_{\mathbf{u}} \mathbf{B}_{\mathbf{u}\ell} - n_{\ell} \mathbf{B}_{\ell \mathbf{u}} \right) + c \int \rho' \left(n_{\mathbf{u}} \mathbf{B}_{\mathbf{u}\ell} - n_{\ell} \mathbf{B}_{\ell \mathbf{u}} \right) d\nu + n_{\mathbf{u}} \frac{\mathbf{A}_{\mathbf{u}\ell}}{4\pi}$$
(43)

Assuming that ρ' is not large compared to the ambient equilibrium photon density, we assessed the importance of stimulated emission and absorption in the fluorescence compared to spontaneous emission by taking the ratio of the first to third terms on the RHS of Eq. (43). Under equilibrium conditions, ρ' is constant and zero so that the above mentioned ratio must be -1. The ratio must be zero in cases in which stimulated processes can be ignored. The ambient photon density is given by

$$\rho_{\nu,\Omega}^{\bullet} = \frac{2\nu^2}{c^3} \left[\exp\left(\frac{h\nu}{kT}\right) - 1 \right]^{-1} \frac{\text{photons}}{\text{cm sr}(1/\text{sec})}$$
(44)

With this substitution, the ratio between the first and third right hand terms becomes

$$\left(1 - \frac{n_{\ell}}{n_{ii}} \frac{\zeta_{ii}}{g_{\ell}}\right) \left[\exp \frac{h\nu}{kT} - 1\right]^{-1} \tag{45}$$

where the relation between the $A_{u\ell}$ and $B_{u\ell}$ coefficient has also been introduced.

This ratio has been computed for the present situation (i.e., for the conditions existing immediately after the HF cell has been stimulated or pumped by monochromatic light from an HF laser) for both R-branch fluorescence and pure rotation fluorescence from the upper level stimulated by the pump laser. The upper level and lower level number densities given by

Eq. (40) were used. The results are shown in Table 18 for stimulation by different P-branch lines. It can be seen that, for the pure rotation transition, the ratio is substantially greater than zero, indicating that stimulated emission is as important as spontaneous emission. If the cell is long so that ρ' becomes comparable to $\rho_{V,\Omega}^*$, stimulated emission becomes proportionately more important. The ratio is near zero for R-branch fluorescence from the stimulated state indicating that stimulated emission might be neglected in the R branch. The P branch has not been included since the observation of the P-branch fluorescence is difficult in the presence of the stimulating pulse.

Because of the difficulty of including stimulated processes, initial calculations of the fluorescent radiance to be expected from the experimental situation neglected stimulated terms even though, as shown above, stimulated emission cannot be neglected in the case of pure rotation. Directly after stimulation, the fluorescent radiance from spontaneous emission alone (i.e., the optically thin radiance) from the state pumped by the stimulating laser can be determined from Eq. (43) with the first and second terms on the right hand side set to zero: $\partial \rho'/\partial t$ can also be neglected in comparison to $c(\partial \rho'/\partial x)$ stace the smallest time increment of interest is much larger than the time tt takes a photon to travel the largest distance of interest. Under these assumptions, Eq. (43) can be integrated to yield

$$\rho' = \frac{{}^{n}u^{A}u!}{c(4\pi)} \cdot x$$

where ρ ' is the partial photon density per unit solid angle in the direction x within the cell immediately after stimulation; and \mathfrak{n}_{u} is the photon density of the upper state immediately after stimulation. The fluorescent radiance (L) is correspondingly given by:

$$L = \frac{n_u A_{u f}}{4\pi} \cdot x \tag{46}$$

We have calculated radiance values using this expression and the expressions for the upper level population density given in Eq. (40) as a function of cell length and the J level of the stimulating line. These radiances are plotted in Fig. 16 for the R branch of the vibration-rotation band and in Fig. 17 for the pure rotation band as functions of the J value of the stimulating line. These values are for fluorescence from the state pumped by the stimulating laser and hence are the maximum fluorescence values expected during the relaxation process based on the optically thin assumption.

Since we do not currently have a means of solving the full set of equations governing fluorescence and the accompanying radiative relaxation, we have used the fluorescent radiance values in Figs. 16 and 17 to judge the feasibility of using fluorescence to monitor the relaxation.

FIGURE 16. R-BRANCH FLUORESCENCE IN THE 0 + 1 LINE PUMPED BY THE STIMULATION LASER, BEFORE RELAXATION AND IN AN OPTICALLY THIN APPROXIMATION

FIGURE 17. PURE ROTATION FLUORESCENCE IN THE 1 - 1 LINE PUMPED BY THE STIMULATING LASER, BEFORE RELAXATION AND IN AN OPTI-CALLY THIN APPROXIMATION

These radiative values do not include the effects of stimulated emission and absorption which have been shown to be important in at least the case of pure rotation. The relaxation time constants associated with the values shown on Figs. 16 and 17 are of course the reciprocals of the $A_{u,f}$ values (taken from Ref. [1]) which are all greater than a few milliseconds. When stimulated processes are included, however, the radiance values are sure to increase in the pure rotation region because of stimulated emission, and the time constants will correspondingly decrease. While these effects are important for predicting the nature of the relaxation process, they are less important for predicting measurement feasibility. Stimulated emission is made important primarily by the discontinuous nature of the rotational distribution produced by the stimulating laser. There are a large number of molecules in the pumped state and essentially none in the adjacent rotational state. Stimulated emission is likely to be important for only the pure rotation transition from the pumped state. Since fluorescence measurements from a number of states are required to determine the nature of the relaxation process occurring in the gast, possible high fluorescence rates from one transition cannot be used to judge the feasibility of fluorescence measurements as a monitoring process. Therefore the radiance values shown in Figs. 16 and 17 are taken to be conservative estimates of possible fluorescent radiance values to be expected during the relaxation process.

To determine the feasibility of measuring these radiance values, noise-equivalent radiance values for typical state-of-the-art radiometric systems were determined and compared to the values shown in Figs. 16 and 17. Two systems were considered for each spectral region, a spectrometric and radiometric system. For the R branch, the detection system was assumed to be a detector having a spectral dimensionless detectivity (D*) of 3×10^{10} cm $\sqrt{\rm Hz}/\rm W$ in the vibration-rotation region. For the pure rotation region, the detector was assumed to be background noise limited and shielded from all ambient background except that between 20 and 28 μ m in the solid angle viewed by the optical system. This allows observation of the transitions only between J = 9 + J = 8 and J = 13 + J = 12, but inclusion of the longer wavelengths required to observe lower J values would increase the noise of the system further. In any real experiment, the cooled filter used to eliminate the background need only be wide enough to observe one or several transitions at a time and should be capable of being changed to observe others at will.

The optical parameters for the spectrometer were assumed to be: a $1/2-\times 12$ -nm entrance slit; a collection angle corresponding to f/4.5 and an efficiency of 25%. The radiometric system in each case was assumed to consist of a 2-mm square detector and an f/1 viewing system with an 80% efficiency. All systems were assumed to have a 0.1- μ sec time constant. Table 19 gives the noise equivalent radiance for all of these systems. The noise equivalent radiances are also shown on Figs. 16 and 17.

TABLE 18. RATIO OF STIMULATED FLUORESCENCE TERMS TO SPONTANEOUS FLUORESCENCE TERM IN EQUATION (45)

Stimulating Line in 0 + 1 Band	R-Branch Fluorescence in the 0 - 1 Line (Pumped by the Stimulating Laser)	Pure Rotation Fluorescence in the 1 - 1 Line (Pumped by the Stimulating Laser)
Р3	-4.78×10^{-7}	2.81
P4	-6.55×10^{-7}	1.73
P5	-8.57×10^{-7}	1.19
P 6	-1.10×10^{-6}	0.88
P7	-1.39×10^{-6}	0.675
P 8	-1.76×10^{-6}	0.532

TABLE 19. NOISE EQUIVALENT RADIANCES FOR PRACTICAL PADIOMETRIC AND SPECTROMETRIC SYSTEMS IN BOTH THE VIBRATION-ROTATION REGION AND THE SHORT WAVELENGTH END OF THE PURE ROTATION REGION FOR HF

	Spectrometric System $(1/2 \times 12\text{-mm Slits}, f/4.5)$	Radiometric System (2-mm Square Detector, f/1)
Vibration-Rotation Region (2.5 μ m) $D_{\lambda}^{\bullet} = 3 \times 10^{10} \left(\frac{\text{em}\sqrt{\text{Hz}}}{\text{W}}\right)$	$1.7 \times 10^{-5} \text{ W/cm}^2\text{-sr}$	$3.4 \times 10^{-7} \text{ W/cm}^2\text{-sr}$
Pure Rotation Region (20-28 μm, Background- Noise Limited Detector)	$1.0 \times 10^{-6} \text{ W/cm}^2\text{-sr}$	$2.0 \times 10^{-8} \text{ W/cm}^2\text{-sr}$

Since radiometric techniques do not allow the separation of contributions from different rotational levels, spectrometric measurements are far more desirable for use in this experiment. An examination of Figs. 16 and 17 reveals that sufficient fluorescence radiation is available from the R branch to be observed spectrometrically at least through a J value of six for the stimulating laser. On the other hand, pure rotation fluorescence could only be observed spectrometrically if some form of pulse integration technique using a waveform eductor or boxcar integrator were available. The fluorescence radiance is so low that at least 5000 pulses would need to be integrated to yield a signal-to-noise ratio of 10. Moreover, the results of Fig. 17 are for fluorescence from the pumped level. The results for fluorescence from other levels populated during the relaxation process would be lower. Thus, the measurement of rotational fluorescence is considered unfeasible as a means of monitoring rotational relaxation; R-branch fluorescence measurement appears to be a feasible means however.

3.4. CHOICE OF A MEASUREMENT SCHEME

It appears that measurement of either absorption of a probe laser operating at one of several lines, or of R-branch fluorescence will be suitable for monitoring rotational relaxation. The choice of the probe laser absorption technique was made in light of the following considerations:

- (1) In order to realize the calculated fluorescence output, the cell design must be such that no ray from the spectrometric measurement apparatus intersects the side walls of the cell and that no ray passes through an unstimulated region of the cell. These requirements dictate a great deal of expansion of the stimulating laser beam, which, in turn, requires a relatively large, well collimated stimulating laser output and a very high quality infrared beam expander.
- (2) It will be necessary to insure that the probe laser oscillates only in a single longitudinal mode and is relatively stable in frequency in order to insure that the spectral width of the emitted reliation is narrow compared to the Doppler line width and that its output remains close to line center.
- (3) The dimensions of the cell must be smaller than the dimensions of the stimulated region and, in addition, the volume of the monitored region must be smaller than the stimulated region. These relationships are required to insure that wall effects and the diffusion of unstimulated molecules into the monitoring region have no effect on the measurements. A molecule is typically expended to travel a fraction of a centimeter during one experimental event. In the case of a laser absorption measurement, the size of the stimulated region need thus only be of the order of 1 cm (which is

easily obtained) if the beam of the probe laser is very small. On the other hand, in the case of fluorescence measurement, this requirement would significantly increase the required expansion of the stimulating beam.

- (4) Figure 16 indicates that measurement of R-branch fluorescence would yield a maximum signal-to-noise ratio of 10. This is considered to be minimal for good data interpretation. Figure 17 assumes that the measurement system is detector-noise limited. Thus, it appears that a boxcar integrator and associated low-noise preamp would be desirable even for R-branch fluorescence measurements. The budget for this contract could not support this capital expenditure in addition to the others required. Furthermore, the maintenance of a detector noise limited condition in the presence of the electrical interference produced by the laser power supply is a difficult task.
- (5) The timing and alignment requirements will be more stringent with probe laser absorption measurements.

It is our opinion that the two monitoring schemes are probably about equivalent when both advantages and disadvantages are compared. Although the choice of the probe laser absorption technique was made before all the above considerations became apparent, it appears that the choice will meet with reasonable success.

3.5. TECHNIQUES TO BE USED IN THE MEASUREMENT OF RELAXATION TIMES

3.5.1. EXPERIMENTAL ARRANGEMENT

The measurement of the relaxation rates of excited HF molecules will be made with two HF pulsed lasers. The first laser is the stimulating or pumping laser and its output is a short pulse (duration < 500 nsec) on one of the P_5 - P_8 lines of the HF 1 \rightarrow 0 vibration band. The pumping laser's output is directed through a cell containing pure HF at low pressure (P \sim 0.01 torr). The output energy of the pumping laser is of sufficient energy (\sim 0.5 mJ) to excite at least 80% of the molecules in the HF cell. After a suitable time delay (0 \rightarrow 50 μ sec), a second pulsed HF taser, the probe laser, is triggered. The probe laser produces short (t < 200 nsec) pulses of low energy (\sim 0.01 mJ) on one of the P_4 - P_6 lines of the HF 2 \rightarrow 1 band. The probe laser beam is directed coaxially through the HF cell with the pumping laser, and the intensity of the probe laser beam is measured before and after it traverses the HF cell. The ratio of the intensities gives the absorption of the excited HF molecules, and a plot of absorption versus delay time between the pump and probe laser pulses yields the relaxation time of the excited HF.

The requirements on the components of the experimental apparatus and the present state of development of these components are discussed below. A block diagram of the apparatus is shown in Fig. 18.

FIGURE 18. BLOCK DIAGRAM OF HF RELAXATION RATE APPAHATUS

The pump laser is shown in Fig. 19. The optical path length is 1 m, and ninety-eight 300- Ω , 2-W ballast resistors are arranged in a linear array with the resistor leads pointed to form the anodes. The premixed fuel and oxidizer gases are admitted into the inlet manifold and the gases flow around the pin anodes and down into the optical cavity. Spent gases flow out of the optical cavity through a slot, into the exhaust manifold, and hence to the vacuum pump. The exhaust manifold is electrically grounded and the slot serves as a cathode. Typical operation parameters for the pump laser are as given in Table 20. The pump laser is usually operated super-radiantly with no front-end reflector. When a front-end reflector is used (infinite radius of curvature, reflectivity between 9.9 and 0.75), the P_3 and P_8 lines of the 1-0 band can be made to concillate weakly. The strength of the P_4 - P_7 1-0 lines is reduced from the values shown in Table 20, however. The maximum output on any one line is obtained with fuel type H_2 or CH_4 , fuel pressure, oxidizer pressure, and high voltage unique to that line.

The 1-m pump laser exhibits a variation in output energy of $\sim \pm 10\%$ from pulse to pulse. The reason for this variation is not known but is suspected to be the result of variations in the gas discharges along the cavity which produce the F atoms. The output energy variations are more pronounced at low output energy. Further efforts are being made to reduce the output energy variations so that the number of 1 ± 0 HF lines available for pumping may be increased beyond the four $(P_A - P_T)$ lines available at present.

The 1-m pump laser exhibits sufficient gain to super-radiate when no cavity mirrors are used. When the fuel and oxidizer pressures are lowered to reduce gain, the output energy is also reduced. Initial plans to operate the pump laser on a single line have been abandoned in favor of allowing the laser to oscillate at will and to select the desired output line by means of a monochromator. An additional advantage is obtained by operating the pump laser with a single-end reflector; the absence of a high-cavity Q allows the laser to operate over the full gain curve of a given line. This should provide pumping energy over the entire Doppler width of the HF transition.

The beam pattern of the pump laser has been observed with an infrared quenching phosphor positioned ~ 30 cm in front of the laser. No front-end reflector was used and the beam image appeared uniformly intense over the cross sectional area of the sensor.

The probe laser is similar to one reported by Pettipiece [34] and is shown in Fig. 20. It consists of a 0.2-m long Lucite tube with a 1.2-cm bore and a 3.17-mm wall thickness. The tube ends are cut at the Brewster angle, and sapphire windows are used to close the tube. Premixed fuel and oxidizer gases are admitted at each end of the tube, and an exhaust port is located in the center. Forty $910-\Omega$ 1-W carbon resistors are arranged in a single-turn helix along the tube's circumference, with the pointed lead of each resistor passing through the tube wall and forming an anode. A set of cathodes is also arranged in a single-turn helix so that

Key

- 1. Ballast Resistor and Pin Electrode
- 2. Lucite Top Cover
- 3. Lucite Body
- 4. Gas Inlet Manifold
- 5. Optical Cavity
- 6. Exhaust Manifold and Cathode
- 7. Sapphire Window
- 8. HV Anode Buss

FIGURE 19. IM PUMP LASER

FIGURE 20. INTERIOR VIEW OF 1-m PUMP LASER. Lucite tube is 0.2 m long with a 1.2-cm bore. Tube ends are cut at the Brewster angle and closed with sapphire windows. Forty 910- Ω 1-W carbon resistors are arranged in a single-turn helix.

each cathode is directly opposite one of the anodes. Typical operating parameters are given in Table 21.

The probe laser is required to operate on a single line and also in the Tem_{00} mode; however, the required output energy is very low (~0.01 mJ). A high-Q cavity is required for this type of operation, and consists of a plane grating on one end (r \approx 0.95), and a spherical mirror (1-m radius of curvature, 0.75 reflectivity) on the other end. The spherical mirror is made of fused quartz which is transparent to the output wavelengths of the laser, and the laser output passes through the mirror. The mirror is equipped with a 3.3-mm aperture stop which provides a Fresnel number of 4 which, in conjunction with the helical resistor arrangement, is low enough to control transverse modes.

The high Q cavity of the probe laser operates at a mode number of ~200,000 and is quite sensitive to mechanical vibrations. The laser has been isolated from the vacuum pump by a 6-ft long rubber tube to reduce cavity vibrations caused by the pump. Pulse-to-pulse amplitude variations are encountered with the probe laser which are similar to those observed with the pump laser. Variations in the population inversion resulting from variations in the discharge are again believed to be the reason for this. If further efforts to eliminate the problem are unsuccessful, to reduce the uncertainty in the measurements we will have to average over many pulses during the measurement of relaxation rates.

Another problem encountered with the operation of the pulsed lasers is the electromagnetic interference (EMI) caused by the electrical discharge. The discharge consists of high voltage (up to 20 kV) and high current (up to 5 kamp) pulses and causes EMI with the low level (~ 20 mV) signals from the infrared detectors. All components of the power supply and laser heads have been shielded by metal enclosures. The most troublesome interference is not caused by the de/dt or di/dt of the storage capacitor since the interference appears as a damped oscillation with a frequency of 50 to 100 MHz. The only process that might contain frequency components this high is the sequential breakdown of the laser electrodes. The EMI level is high in amplitude and of long duration when the resulting laser output pulse is low in amplitude. We feel, therefore, that when the electrodes discharge almost simultaneously, the population inversion builds up faster and to a higher level than when the electrodes discharge over a longer period of time.

The beam pattern of the probe laser has an measured for multiple line operation. This was done in the near field with a 1.0 mm diameter PbSe detector which was traversed in the vertical and horizontal directions across the laser beam. The results are shown in Fig. 21.

The circuit diagram of the pump laser power supply is shown in Fig. 22. The probe laser power supply uses a higher voltage-power transformer and energy-storage capacitor but is otherwise the same. Trigger pulses for the pump laser are supplied by a H-P 211A square-wave

TABLE 20. TYPICAL OPERATING PARAMETERS FOR THE 1-m PUMP LASER

Output pulse energy (all lines) 4.4 mJ

Pulse length 300 to 500 nsec (may be detector limited)

Fuel pressure (${\rm H_2\,or\,CH_4}$) 1 to 10 torr Oxidizer pressure (${\rm SF_6}$) 10 to 50 torr Gas flow rate 120 1/sec

 $\begin{array}{lll} \text{HV pulse amplitude} & 8 \text{ to } 14 \text{ kV} \\ \text{HV pulse energy} & 6.4 \text{ to } 19.6 \text{ J} \\ \text{HV pulse duration} & 300 \text{ nsec} \\ \text{Pulse repetition frequency} & 1 \text{ to } 10 \text{ Hz} \\ \end{array}$

Rear-end reflector 4-m radius sphere; 100% Au coated

Front-end reflector None used

TABLE 21. TYPICAL OPERATING PARAMETERS FOR THE 0.2-m PROBE LASER

Output pulse energy (all lines) 0.5 mJ

Pulse length 200 to 400 nsec (may be detector limited)

Fuel pressure (H_2 or CH_4) 1 to 4 torr Oxidizer pressure (SF_6) 10 to 20 torr Gas flow rate 120 1/sec HV pulse amplitude 10 to 20 kV

HV pulse energy 1 to 25 J
HV pulse duration 200 nsec
Pulse repetition frequency 1 to 10 Hz

Rear-end reflector 625 1/mm grating

Front-end reflector 4-m radius sphere; 95% Au coated

(a) Vertical

(b) Horizontal

FIGURE 21. NEAR-FIELD BEAM PATTERN OF 0.2-m PROBE LASER

generator. Delayed pulses for the probe laser are supplied by the delaying sweep gate output of a Tektronix 535A oscilloscope. The output of a pump laser beam sampler is displayed on the oscilloscope. The outputs from the beam samplers for the probe laser are displayed on a Tektronix £56 dual beam oscilloscope; one beam displays the amplitude of the probe laser beam incident on the HF sample cell and the other beam displays the difference between the incident and transmitted probe laser beam amplitudes. The time base of the dual-beam oscilloscope is initiated by the pump laser pulse and indicates the time delay between the pump laser and probe laser pulses. The data are recorded by photographing the 556 oscilloscope screen. Typical data expected are shown in Fig. 23. Many pulses (~ 100) may be required to average out the effects or variations in the probe laser beam.

The HF cell used for the experiment was made for a previous study.* It is 30-cm long and has a clear aperture of 5.7 cm. Sapphire windows are sealed to the cell with Viton O-rings, and the cell is made of Inconel X. The cell is heated with an electrical heater tape to 80° C to prevent HF polymerization. The cell is HF passivated before use. Purified HF from a supply cylinder flows through the cell at a low rate to avoid any remaining absorption effects on the cell and piping walls. The cell pressure is measured with a capacitance manometer.

The infrared detectors presently in use are all dewar-mounted InSb and InAs detectors. Both types require liquid nitrogen cooling, and none of them are designed for detection of short pulses. We believe that the detectors on hand have longer rise times than the laser pulses and that the displayed pulse shape is distorted. A new detector is on order which will have a maximum rise time of 10 nsec, and when pulse waveforms from it are compared with those from the present detectors, the adequacy of the detectors' response time can be determined.

A Perkin-Elmer type 98-G monochromator with a $3-\mu$ m blaze grating is used to identify and monitor the various lines of the lasers. Figure 24 shows the pump laser and its associated optical bench inside the fume hood; the small object mounted on a ring stand to the right of the laser is used for measuring the laser beam pattern. The monochromator is outside the fume hood, and infrared energy passes through a hole in the fume-hood wall to reach the monochromator. The compressed gas cylinders contain fuel, oxidizer, and diluent gases used with the lasers.

3.5.2. DATA REDUCTION AND ANALYSIS

The amplitudes on the photographic outputs typified by Fig. 23 are to be digitized on a curve digitizer, and absorption as a function of time will be determined for the transition involved.

^{*}See 0-3 HF measurement, Section 5.

FIGURE 22. PUMP LASER POWER SUPPLY CIRCUIT

FIGURE 23. EXPECTED DATA AS DISPLAYED ON DUAL BEAM OSCILLOSCOPE

FIGURE 24. PUMP LASER AND ITS ASSOCIATED OPTICAL BENCH INSIDE THE FUME HOOD

The time constant of these curves is a measure of the relaxation time within the cell. Assuming that rotational relaxation occurs before any vibrational relaxation occurs, the time constant is a measure of rotational relaxation.

We expect to perform a detailed analysis of the absorption versus time curves however. Absorption histories for various probe laser transitions and hence populations of different rotational-vibrational states will have been obtained from the experiment. The set of equations governing radiative relaxation described in Section 5 will be modified to include a model for vibrational and rotational energy transfer by collisional processes. These equations will then be solved numerically for various collisional rates and from the solutions, theoretical absorption histories will be computed. By comparison of these histories with the experimental absorption histories, best values for the collisional rates can be inferred. It is recognized that simplifying assumptions will be needed to accomplish the modeling of the collisional deactivation to limit the number of rates considered.

A more straightforward and satisfying way to analyze the data would be to obtain absorption histories for enough transitions so that we can determine the population history of each vibrational-rotational state after stimulation. These histories would give a complete picture of the relaxation process. However, we have not been able to operate the probe laser on more than 5 lines in each of the 0 + 1 and the 1 + 2 bands and these lines will probably not be enough to provide complete, unambiguous population histories.

COMPUTATION OF THE WIDTH OF COLLISION-BROADENED SPECTRAL LINES (R. E. Meredith and R. E. Turner)

A verbal understanding between R. E. Meredith and the technical monitor allowed the current contract to support the development of a code to compute collision-broadened half widths of vibration-rotation transitions by Anderson's method [3]. This section describes this work.

4.1. INTRODUCTION

Collision theory has been developed along two lines: the stationary-state theory in which the time-independent Schrödinger wave equation is solved and the time-dependent theory, in which the initial and final states of the system are connected by a linear, unitary time-translation operator. In the latter, the Hamiltonian is divided into two parts, i.e.:

$$H = H_0 + V \tag{47}$$

where H_0 is the unperturbed Hamiltonian which describes the system at times in the infinite past and infinite future. As the colliding parts interact with each other, the change in the energy manifests itself through the interaction potential V. If $|\phi_a\rangle$ is the eigenket or state vector for the unperturbed state a, then we have

$$\mathbf{H_0} | \phi_{\mathbf{a}} \rangle = \mathbf{E_a} | \phi_{\mathbf{a}} \rangle \tag{48}$$

where \mathbf{E}_a is the corresponding eigenvalue (energy). Likewise, if we let $|\psi_a^{+}\rangle$ and $|\psi_a^{+}\rangle$ be the eigenkets for the incoming and outgoing states respectively for the general system, then

$$H|\psi_{2}^{\pm}\rangle \pm E_{3}|\psi_{2}^{\pm}\rangle \tag{49}$$

It can be shown [35], [36] that these states satisfy the Lippmann-Schwinger equation, i.e.:

$$\left|\psi_{a}^{+}\right\rangle = \left|\phi_{a}\right\rangle + \lim_{\epsilon \to 0+} \frac{1}{E_{a} - H_{0} + i\epsilon} V \left|\psi_{a}^{+}\right\rangle \tag{50}$$

$$|\psi_{a}\rangle = |\phi_{a}\rangle + \lim_{\epsilon \to 0+} \frac{1}{E_{a} - H_{0} - i\epsilon} V |\psi_{a}\rangle$$
(51)

when ϵ is an infinitesimal. Now, the eigenstate at any time t is $|\psi_a(t)\rangle$ and is related to the eigenstate in the infinite past by a unitary operator $U(t, -\infty)$:

$$|\psi_{\mathbf{a}}(\mathbf{t})\rangle = \mathbf{U}(\mathbf{t}, -\infty) |\psi_{\mathbf{a}}(-\infty)\rangle$$
 (52)

As $t \rightarrow +\infty$, the final state, then

$$|\psi_{\mathbf{a}}(+\infty)\rangle = \mathbf{U}(+\infty, -\infty)|\psi_{\mathbf{a}}(-\infty)\rangle \tag{53}$$

where $S = U(-\infty, -\infty)$. The time development operator can be found by solving the Schrödinger equation in the interaction picture:

$$U(t, t_0) = 1 - \frac{i}{f_1} \int_0^t H_i(t') U(t', t_0) dt'$$
 (54)

where $H_{\mathbf{i}}(t)$ is the interaction Hamiltonian in the Dirac picture. Therefore, the transition rate per unit time is given by

$$\mathbf{w_{ba}} = \frac{2\pi}{\hbar} \left| \langle \psi_{\mathbf{b}} | \mathbf{S} | \psi_{\mathbf{a}} \rangle \right|^{2} \mathbf{n}(\mathbf{E_{b}})$$
 (55)

where $n(E_b)$ is the number density of final states and $\langle \psi_b \rangle$ is the bra vector corresponding to the final state b.

A completely analogous solution can be found by use of the stationary-state method. Here, one starts by solving the integral equation

$$\psi(\vec{b}) = e^{i\vec{K}\cdot\vec{b}} - \frac{1}{4\pi} \int \frac{\exp(i\kappa|\vec{b}-\vec{b}'|)}{|\vec{b}-\vec{b}'|} V(\vec{b}') \psi(\vec{b}') d\vec{b}'$$
(56)

where κ (= $\sqrt{2mE/\hbar}$) is the wave number and $V(\bullet)$ is the potential. In Eq. (56), \bullet is the position vector of the field point and \bullet is the position vector of the source point. Iteration of this equation allows one to find an approximate solution called the Born approximation. It is especially valid for weak collisions and therefore it has been used extensively in spectral line-broadening theory. This is the approach used by Anderson [3] which we shall now describe.

4.2. ANDERSON'S THEORY OF SPECTRAL LINE BROADENING

Let us consider two molecules, a radiating molecule 1, and the perturbing molecule 2. For a gas in statistical equilibrium, the number of molecules which are radiating relative to the total number is quite small, and therefore it is very unlikely that both molecules will be radiating simultaneously. For classical trajectories of the molecules, the complete Hamiltonian is then given by

$$H = H_1 + H_2 + H_c(t) + H_R + H_{1R}$$
 (57)

where $H_0(=H_1+H_2)$ is the unperturbed molecular Hamiltonian, $H_c(t)$ is the time-dependent collision Hamiltonian, H_R is the Hamiltonian of the pure radiation field, and H_{1R} is the interaction between the radiating molecule and the radiation field. Since our goal is to find the

transition probability per unit time between molecular states a and b, we must consider the initial and final state vectors $|\psi_a(t_0)\rangle$ and $|\psi_b(t)\rangle$. Thus

and

$$|\psi_{\mathbf{b}}(t)\rangle = |\psi_{\mathbf{b}}(t)\chi_{\mathbf{n}_{\mathbf{k}-1}}\rangle \tag{59}$$

where χ 's are the vectors for the radiation field with photon occupation number indices n_k and n_{k-1} . The general time-dependent state at time t is simply related to the original state at time t_0 by the linear unitary time development operator, i.e.:

$$|\psi_{\mathbf{a}}(t)\rangle = \mathbf{U}(t, t_0)|\psi_{\mathbf{a}}(t_0)\rangle \tag{60}$$

Operator Eq. (54) can be solved by successive iterations to yield

$$U(t, t_0) = \exp\left[\frac{i}{\hbar} \int_0^t \mathbf{H}_i(t') dt'\right]$$
 (61)

where $H_1 = H_0 + H_c(t)$. The transition probability for going from state a to b is

$$\mathbf{P}_{\mathbf{b}\mathbf{a}} = \left| \langle \psi_{\mathbf{b}}(t) | \psi_{\mathbf{a}}(t) \rangle \right|^{2} \tag{62}$$

or, making use of the time-development operator of Eq. (60), we get

$$\mathbf{P}_{\mathbf{b}\mathbf{a}} = \left| \langle \psi_{\mathbf{b}}(\mathbf{t}) | \mathbf{U}(\mathbf{t}, \mathbf{t}_{\mathbf{0}}) | \psi_{\mathbf{a}}(\mathbf{t}_{\mathbf{0}}) \rangle \right|^{2}$$
(63)

Using these principles, and the assumption that the duration of collisions is small compared to the time interval between collisions. Anderson was able to derive the following expression for the average transition rate per unit time for dipole interactions:

$$w = \frac{8\pi^{2}\nu}{hc}\sum_{\mathbf{J}_{i}\mathbf{J}_{f}}\frac{\mathbf{J}_{i}}{2\mathbf{J}_{i}+1}\sum_{\mathbf{M}_{i}\mathbf{M}_{f}}|\langle v\mathbf{J}\mathbf{M}|\mu_{z}|v'\mathbf{J}'\mathbf{M}'\rangle|^{2}\times\left(\frac{\left(\frac{nu\sigma_{r}}{2\pi}\right)}{\left[\nu-\nu_{fi}+\left(\frac{nu\sigma_{i}}{2\pi}\right)\right]^{2}+\left(\frac{nu\sigma_{r}^{2}}{2\pi}\right)^{2}}\right)$$
(64)

where ν is the frequency, n is the number density of the absorbing molecule, and u is the relative velocity of the two molecules. The v, J, and M indices denote the vibrational, rotational, and magnetic quantum numbers respectively, and $\langle vJM|\mu_Z|v'J'M'\rangle$ is the dipole matrix element for the transition. The σ_r and σ_i are the real and imaginary parts of the total collision cross section σ . If we denote the wave number by $\nu'(=\nu/c)$, then the line half width is

$$\gamma = \frac{\text{nu}\sigma_{\Gamma}}{2\pi c} \tag{65}$$

and the line-shift is

$$\Delta \nu' = -\frac{nu\sigma_1}{2\pi c} \tag{66}$$

Now, if T is the transition operator and we make use of the assumption that the time interval between collisions is greater than the duration, then the cross-section for a given perturber molecule is [37]:

$$\sigma_{J_{2}} = \int \left[1 - \sum_{\substack{\text{all } \\ \text{M's}}} \sum_{\substack{\text{J}_{2}, \\ \text{J'M'J}_{2}\text{M}_{2}}} \frac{\langle J'LM'M | JM \rangle \langle JLM'M | JM \rangle}{(2J+1)(2J_{2}+1)} \right] d\sigma$$

$$\times J'M'J_{2}M_{2}|T^{-1}|J'M'J_{2}, M_{2}|P^{-1}|J'MJ_{2}, M_{2}|P^{-1}|JMJ_{2}, M_{2}|P^{-1}|D$$

The transition operator T is similar to the unitary operator $U(t, t_0)$ defined earlier, except that we now consider $t \to +\infty$ and $t_0 = 0$ and let U transform the collision Hamiltonian $H_c(t)$ into the Dirac picture. Thus,

$$T = \exp\left[-\frac{i}{f_1}\int_0^\infty U^{-1}H_C(t)U\,dt\right]$$
 (68)

or, by expanding the exponential we get the various terms

$$T = T_0 - iT_1 - \frac{1}{2}T_2 + \dots$$
 (69)

where

$$T_0 = 1 \tag{70}$$

$$T_{1} = \frac{1}{\hbar} \int_{-\infty}^{\infty} U^{-1} H_{C}(t) U dt$$
 (71)

$$T_2 = \left[\frac{1}{\hbar} \int_{-\infty}^{\infty} U^{-1} H_{C}(t) U dt\right]^2$$
 (72)

Since the differential cross-section do of Eq. (67) is given by

$$d\sigma = 2\pi b \, db \tag{73}$$

where b is the classical impact parameter, we can write for the cross-section of Eq. (67)

$$\sigma_{\mathbf{J}_{2}} = \int_{0}^{\infty} 2\pi \mathbf{b} \boldsymbol{\mathcal{G}}(\mathbf{b}) \, d\mathbf{b} \tag{74}$$

where ${\cal G}(b)$ is everything contained within the braces of Eq. (67). Making use of the approximation, Eq. (69), we see that

$$\mathcal{G}_{(b)} = \mathcal{G}_{0}(b) + \mathcal{G}_{1}(b) + \mathcal{G}_{2}(b) + \dots$$
 (75)

It can be shown that in the zero-th order case, $\mathcal{G}_0(\mathbf{b}) = 0$, and that for the first order case $\mathcal{G}_1(\mathbf{b})$ is pure imaginary and hence will contribute only to the line shift, but not to the line width. Thus, the first real, non-zero term which contributes to the half width is $\mathcal{G}_2(\mathbf{b})$.

$$\mathcal{Y}_{2}^{(b)} = - \left[\sum_{\mathbf{M}, \mathbf{M}_{2}} \frac{\langle \mathbf{J}, \mathbf{M}, \mathbf{J}_{2}, \mathbf{M}_{2} | \mathbf{T}_{2} | \mathbf{J}, \mathbf{M}, \mathbf{J}_{2}, \mathbf{M}_{2} \rangle}{(2\mathbf{J} + 1)(2\mathbf{J}_{2} + 1)} + \sum_{\mathbf{M}^{*}, \mathbf{M}_{2}} \frac{\langle \mathbf{J}^{*}, \mathbf{M}, \mathbf{J}_{2}, \mathbf{M}_{2} | \mathbf{T}_{2} | \mathbf{J}^{*}, \mathbf{M}^{*}, \mathbf{J}_{2}, \mathbf{M}_{2} \rangle}{(2\mathbf{J}^{*} + 1)(2\mathbf{J}_{2} + 1)} \right]$$

$$+ \sum_{\substack{\text{all J}_2\\\text{M's}}} \frac{\langle \mathbf{J}'L\mathbf{M'M} | \mathbf{JM} \rangle \langle \mathbf{J}'L\mathbf{M'M} | \mathbf{JM} \rangle}{(2\mathbf{J}+1)(2\mathbf{J}_2+1)}$$

$$$$
 (76)

The quantities < | > are scalar quantities, called Clebsch-Gordan coefficients and represent the vector addition of two angular moments to give a resultant angular momentum. Tables exist which allow one to evaluate these quantities for many values of angular momenta.

The collision Hamiltonian H_C can be expressed as the product of the spherical harmonics Y_{λ}^{K} of the internal coordinates of the two molecules, i.e.:

$$H_{C} = C_{\lambda_{1}\lambda_{2}}^{\kappa_{1}\kappa_{2}} Y_{\lambda_{1}}^{\kappa_{1}}(1) Y_{\lambda_{2}}^{\kappa_{2}}(2)$$
(77)

where C_{λ}^{K} are constants in the expansion of the collision Hamiltonian. One can write the interaction potential for dipole-dipole, dipole-quadrupole, quadrupole-quadrupole or for all possible multipole-multipole interactions. The angular coordinates can then be expressed in terms of the spherical harmonics and the matrix elements evaluated. Limiting ourselves to the first three multipole interactions, we get

$$\mathcal{G}(b) = \sum_{t} C_{1} b^{-4} g_{1t} f_{1}(k_{1t}) + C_{2} b^{-6} g_{2t} f_{2}(k_{2t}) + C_{3} b^{-8} g_{3t} f_{3}(k_{3t})$$
(78)

where the indices 1, 2, and 3 refer to the first three multipole interactions given above. The subscript t refers to the various possible collision combinations. The g_{st} are functions of the Clebsch-Gordan coefficients and are tabulated by Benedict and Herman* [38]. The functions $f_s(k_{st})$ are dependent upon the energy defect of a particular collision and are tabulated by Tsao and Curnutte [37]. The parameter k_{st} is given by

$$k_{SL} = \frac{2\pi bc}{u} (\Delta E - \Delta E_2) \tag{79}$$

where ΔE and ΔE_2 are the energy level spacings between the transitions made by the radiating and perturbing molecule, respectively, as the result of the collision. The constants C_s are expressed in terms of the dipole moments μ and μ_2 and the quadrupole moments Q and Q_2 , i.e.:

$$C_{1} = \frac{4}{9} \frac{\mu^{2} \mu_{2}^{2}}{(\hbar u)^{2}}$$

$$C_{2} = \frac{4}{45} \frac{\mu^{2} Q_{2}^{2}}{(\hbar u)^{2}} \text{ or } \frac{4}{45} \frac{\mu^{2} Q^{2}}{(\hbar u)^{2}}$$

$$C_3 = \frac{1}{25} \frac{Q^2 Q_2^2}{(fiu)^2}$$

The approximation used for these calculations is basically the Born approximation, that is, one which holds only for weak collisions. If, however, we include all impact parameters, then strong collisions will be considered for which the approximation breaks down. Anderson assumed that the theory was valid for all b for $\mathscr{S}(\mathbf{b}) \le 1$, that is, for all impact parameters such that the radiation does not have a complete change of phase. When b was less than or equal to \mathbf{b}_0 , a phase change of 2π was assumed. Thus

*Some discrepancy was noted in the g_{st} factors tabulated In Ref. 38. The authors have confirmed that the values of g_{35} , g_{36} , and g_{37} are incorrect as they appear in Ref. 38. We have derived the following functions for the above quantities:

$$g_{35} = \frac{(4m^4 - m^2 - 9)J_2(J_2 + 1)}{(4m^2 - 1)(4m^2 - 9)(2J_2 - 1)(2J_2 + 3)}$$

$$g_{36} = \frac{3(4m^4 - m^2 - 9)J_2(J_2 - 1)}{2(4m^2 - 1)(4m^2 - 9)(2J_2 - 1)(2J_2 + 1)}$$

$$g_{37} = \frac{3(4m^4 - m^2 - 9)(J_2 + 1)(J_2 + 2)}{2(4m^2 - 1)(4m^2 - 9)(2J_2 + 1)(2J_2 + 3)}$$

$$\sigma_{\mathbf{J}_{2}} = \int_{0}^{b_{0}} 2\pi \,\mathbf{b} \,\mathcal{S}(\mathbf{b}) \,\mathbf{db} + \int_{\mathbf{b}_{0}}^{\infty} 2\pi \,\mathbf{b} \,\mathcal{S}(\mathbf{b}) \,\mathbf{db}$$
 (80)

This equation can be integrated and the result is

$$\sigma_{J_{2}} = \pi b_{0}^{2} \left[1 + C_{1} b_{0}^{-4} \sum_{i} g_{1i} F_{1}(k_{0}) + C_{2} b_{0}^{-6} \sum_{i} g_{2i} F_{2}(k_{0}) + C_{3} b_{0}^{-8} \sum_{i} g_{3i} F_{3}(k_{0}) \right]$$
(81)

where the functions $F_i(k_0)$ are tabulated [1], and k_0 is the value of k at $b = b_0$. The value b_0 is determined by setting $\mathscr{S}(b_0) = 1$ and solving Eq. (78) for b_0 .

4.3. HALF-WIDTH CALCULATIONS

To calculate the half widths, one must use Eq. (65), in which σ_r is the real part of the total cross-section σ . This cross-section σ is the summation of all cross section: for the angular momentum states of the perturbing molecule weighted according to the population of the states of the perturber, i.e.:

$$\sigma = \sum_{\mathbf{J}_2} n_{\mathbf{J}_2} \sigma_{\mathbf{J}_2} \tag{82}$$

and, where σ_{J_2} is determined from Eqs. (74) and (78). Since the $f_s(k_{st})$ are known functions of k_{st} , it is important to see how the half widths depend on k_{st} . Now

$$|\Delta \mathbf{E} + \Delta \mathbf{E}_{2}| = |\mathbf{E}_{\mathbf{v}\mathbf{J}_{1}} - \mathbf{E}_{\mathbf{v}\mathbf{J}_{2}} + \mathbf{E}_{\mathbf{v}_{2}\mathbf{J}_{2}} - \mathbf{E}_{\mathbf{v}_{2}\mathbf{J}_{2}}|$$
(83)

or

$$|\Delta E + \Delta E_2| = |E_{v'J}, -E_{v'J}, +E_{v_2J_2}| - E_{v_2J_2}|$$
 (84)

One can illustrate the effect of the self broadening of highly polar molecules by considering the R(1) line of HF as shown in Fig. 25. Usually, only one of the intermediate levels contributes to a significant extent. The J = 1 level can interact with the J_2 = 0 or the J_2 = 2 levels (dashed arrows), and the J' = 2 level can interact with the J_2 = 1 or the J_2 = 3 level (wavy arrows). Here we include only dipole interactions, i.e., those cases in which ΔJ = ±1. By considering higher order terms in the collision Hamiltonian, one can consider the quadrupole interactions, ΔJ = ±2, octupole interactions, ΔJ = ±3, and all higher multipole interactions. As an example, if ΔE_2 = ΔE where ΔE_2 is the energy difference between J_2 = 3 and J_2 = 2, and ΔE is the energy difference between J = 2 and J = 0, then a dipole-quadrupole interaction can occur. The closer these levels are to each other the stronger the resonance. Details of the hard-core effect are treated in Section 5.

FIGURE 25. SELF-BROADENING ASPECT OF HIGHLY POLAR MOLECULES. Usually, only one of the intermediate levels contributes to a significant level. The closer these levels are to each other, the stronger the resonance.

The present calculations are presented in Figs. 26-29. The figures show a comparison of measurement and theory for the pure rotation, fundamental and first overtone bands of self-broadened HF. Figures 26 and 26 give the fundamental linewidths for two temperatures, 373° K and 390° K. Figures 27 and 29 show the largest discrepancy between theory and measurement, possibly because the data were taken at lower resolution than the others, and because the pure rotation data were obtained at 306° K, where polymerization effects might be significant. Tables 22 through 26 give tabulated widths for self-broadened widths in the fundamental series: v=0+1, 1+2, 2+3, 3+4, and 4+5. It is assumed that the absorber molecules are in a bath of perturber molecules maintained at a temperature of 373° K. The results are qualitatively as one would expect. For greater vibrational levels of the active molecule, the widths are smaller in general because of the greater resonance defect between the rotational levels of the upper v states and the rotational levels of the perturber molecules, assumed to be the v=0 state. Also, as the defect becomes larger the influence of more than 1 dipole-dipole interaction becomes greater, as do the shorter range forces. This tends to make the width versus m curve flatten out, for lines involving larger v.

FIGURE 26. COMPARISON OF MEASUREMENT AND THEORY FOR THE FUNDAMENTAL BAND OF SELF-BROADENED HF. Temperature is 373° K, v = 0 - 1 [39].

FIGURE 27. COMPARISON OF MEASUREMENT AND THEORY FOR THE FUNDAMENTAL BAND OF SELF-BROADENED HF. Temperature is 390° K, v = 0 - 1 [40].

FIGURE 28. COMPARISON OF MEASUREMENT AND THEORY FOR THE FIRST OVERTONE BAND OF SELF-BROADENED HF. Temperature is $373^{\rm O}{\rm K},~{\rm v}=0\rightarrow 2$ [41].

FIGURE 29. COMPARISON OF MEASUREMENT AND THEORY FOR THE PURE ROTATION BAND OF SELF-BROADENED HF. Temperature is 306° K, v = 0 + 0 [42].

TABLE 22. CALCULATED HALF WIDTHS FOR HF($v=0 \rightarrow v'=1$) PERTURBED BY HF(v=0) AT 373.0 DEG K

Input Constants:

$B_0 = 20.56$ $B_1 = 19.7$	B_e (Perturber) = 20.56
μ (v = 1) = 1.835E-18	$\mu(\mathbf{v} = 0) = 1.819\mathbf{E} - 18$
Q(v = 1) = 5.000E-26	Q(v = 0) = 5.000E-26
$b_{min} = 3.100E - 08 \text{ cm}$	

Line (m)	Half Width (cm ⁻¹)	Cross Section (cm ⁻²)
-10	6.458038E-02	(cm) 5.900998E-15
-9	9.805483E-02	1.047799E-14
-8	1.091869E-01	1.166756E-14
-7	1.581954E-01	1.690453E-14
-6	2,482012E-01	2.652241E-14
-5	3,461167E-01	3.698552E-14
-4	4.664320E-01	4.984224E-14
-3	5.604853E-01	5.989263E-14
-2	5.428386E-01	5.800693E-14
- 1	4.599256E-01	4.914697E-14
1	4.566365E-01	4.879551E-14
2	5.394523E-01	5.764508E-14
3	5.431765E-01	5.804303E-14
4	4.536538E-01	4.847677E-14
5	3.687319E-01	3.940215E-14
6	2.409441E-01	2.574693E-14
7	1.558045E-01	1.664904E-14
8	1.196923E-01	1.279015 E-14
9	9.616441E-02	1.027599E-14
10	6.029395E-02	6.442922E-15

TABLE 23. CALCULATED HALF WIDTHS FOR HF($v = 1 \rightarrow v' = 2$) PERTURBED BY HF(v = 0) AT 373.0 DEG K

Input Constants:

	Input Consta	nts:
$B_1 = 19.79$	$B_2 = 19.03$ B	(Perturber) = 20.56
μ (v = 1, v =	= 2) = 1.888E - 18	$\mu(\mathbf{v} = 0) = 1.819\mathbf{E} - 18$
Q(v = 1, v =	(2) = 5.000E-26	Q(v = 0) = 5.000E-26
$b_{\min} = 3.10$	00E-08 cm	
Line	Half Width	Cross Section
(m)	(cm^{-1})	(cm^{-2})
-15	6.056339E-02	6.471715E-15
-14	$6.608039\mathrm{E}\text{-}02$	7.061256E-15
-13	7.197571E-02	$7.691222\mathrm{E}{-15}$
-12	$8.030647\mathrm{E}\text{-}02$	8.581436E-15
-11	8.920157E-02	9.531953E-15
-10	8.696866E-02	9.293347E-15
-9	1.166320E-01	1.246313E-14
-8	1.510004E-01	1.613568E-14
-7	2.555299E-01	2.730555E-14
-6	1.778305E-01	1.900271E-14
-5	2.960820E-01	3.16388E-14
-4	$3.675299\mathrm{E}\text{-}01$	3.927371E-14
-3	4.797472E-01	5.126507E-14
-2	5.206271E-01	5.563345E-14
-1	4.683717E-01	5.004951E-14
1	4.382111E-01	4.682659E-14

5.190739E-14

5.000782E-14

7.862519E-15

4.857581E-01

4.679816E-01

2

3

5

6

7

8

9

10

11

12

13	6.507319E-02	6.953629E-15
14	6.160619E-02	6.583147E-15

7.357877E-02

15 5.900751E-02 6.305456E-15

TABLE 24. CALCULATED HALF WIDTHS FOR HF(v = 2 - v' = 3) PERTURBED BY HF(v = 0) AT 373.0 DEG K Input Constants:

$B_2 = 19.03$	$B_3 = 18.30$	$B_{e}(Perturber) = 20.56$
μ (v = 2, v =	1 = 1.931E~18	$\mu(\mathbf{v} = 0) = 1.819\mathbf{E} - 18$
Q(v = 2, v =)	3) = 5.000E-26	Q(v = 0) = 5.000E-26
$b_{\min} = 3.100$	E-08 cm	

æ/. =, .	0/ - 0.000 L-20	Q(1 - 0) = 3.000E-2
o _{min} = 3.1	00∑-08 cm	
Line	Half Width	Cross Section
(m)	(cm ⁻¹)	(cm^{-2})
-15	5.720191E-02	6.112512E-15
-14	5.724202E-02	6.116798E-15
-13	5.613416E-02	5.998413E-15
-12	311947E-02	6.744859E-15
-11	5.885377E-02	6.289027E-15
-10	6.792086E -0 2	7.257924E-15
-9	1.166134E-01	I.246114E-14
-8	9 010297E-02	9.628274E-15
-7	6.380910E-02	6.818547E-15
-6	1.912177E- 0 1	2.043324E-14
-5	2.119154E-01	2.264497E-14
-4	2.565911E-01	2.741895E-14
-3	2.527246E-01	2.700579E-14
-2	4.150084E-01	4.434718E-14
-1	2.644687E-01	2.826074E-14
1	3.669097E-01	3.920743E-14
2	4.013655E-01	4.288932E-14
3	3.466491E-01	3.704241E-14
4	3.526849E-01	3.768739E-14
5	1.958660E-01	2.092995E-14
6	1.1 3 6313E-01	1.214248E-14
7	1.258485E-01	1.344799E-14
8	1.048915E-01	1.120855E-14
9	7.242495E-02	7.739225E-15
10	6.685930E-02	7.144489E-15
11	5.218943E-02	5.576885E-15
12	7.083857E-02	7.569710E-15
13	4.839763E-02	5.171699E-15
14	6.362098E-02	6.798446E-15
15	6.258583E-02	6.687830E-15

TABLE 25. CALCULATED HALF WIDTHS FOR HF($v = 3 \rightarrow v' = 4$) PERTURBED BY HF(v = 0) AT 373.0 DEG K

Input Constants:

 $B_3 = 18.30$ $B_4 = 17.58$ $B_e(Perturber) = 20.56$ $\mu(v = 3, v = 4) = 1.973E-18$ $\mu(v = 0) = 1.819E-18$ Q(v = 3, v = 4) = 5.000E-26 Q(v = 0) = 5.000E-26

min = 3.10	00E-08 cm	
Line	Half Width	Cross Section
(m)	(cm^{-1})	(cm^{-2})
-15	3.660505E-02	3.911561E-15
-14	4.923180E-02	5.260837E-15
-13	6.160534E-02	6.583055E-15
-12	7.554555E-02	8.072692E-15
-11	6.648064E-02	7.104028E-15
-10	$8.061868\mathrm{E}\text{-}02$	8.614796E-15
-9	9.220731E-02	9.853138E-15
-8	1.444248E-01	1.543302E-14
-7	2.127870E-01	2.273810E-14
-6	1.467471E-01	1.568118E-14
-5	1.381717E-01	1.476483E-14
-4	1.961167E-01	2.095674E-14
-3	1.385143E-01	1.480143E-14
-2	2.562874E-01	2.738650E-14
-1	2.081543E-01	2.224306E-14
1	3.157854E-01	3.374437E-14
2	3.242705E-01	3.465106E-14
3	1.563498E-01	1.670731E-14
4	2.428266E-01	2.5948 09 E-14
5	2.885888E-01	3.083817E-14
6	1.743240E-01	1.862800E-14
7	1.561589E-01	1.668691E-14
8	1.147209E-01	1.225891E-14
9	7.256985E-02	7.754712E-15
10	6.383151E-02	6.820946E-15
11	7.895076E-02	8.436563E-15
12	4.543156E-02	4.854749E-15
13	7.631880E-02	8.155 3 18E-15
14	5.062404E-02	5.409610E-15
15	4.792231E-02	5.120907E-15

TABLE 26. CALCULATED HALF WIDTHS FOR HF(v = 4 + v' = 5) PERTURBED BY HF(v = 0) AT 373.0 DEG K Input Constants:

 $B_4 = 17.58$ $B_5 = 16.88$ $B_e(Perturber) = 20.56$ $\mu(v = 4, v = 5) = 2.012E-18$ $\mu(v = 0) = 1.819E-18$ Q(v = 4, v = 5) = 5.000E-26 Q(v = 0) = 5.000E-26

 $b_{min} = 3.100E-08 \text{ cm}$

min	ool oo ciii	
Line	Half Width	Cross Section
(m)	(cm ⁻¹)	(cm^{-2})
-15	5.034163E-02	5.379432E-15
-14	5.535909 5-02	5.915590E-15
-13	7.611191E-02	8.133210E-15
-12	7.832700E-02	8.369912E-15
-11	4.893632E-02	5.229263E-15
-10	5.115712E-02	5.466574E-15
-9	1.139505E-01	1.217658E-14
-8	1.190719E-01	1.272385E-14
-7	2.561160E-01	2.736818E-14
-6	2.717257E-01	2.903620E-14
-5	2.175332E-01	2.324527E-14
-4	2.013538E-01	2.151637E-14
-3	9.152400E-02	9.780124E-15
-2	2.802700E-01	2.994924E-14
-1	2.122521E-01	2.268095 E-14
1	2.998384E-01	3.204029E-14
2	2.800925E-01	2.993028E-14
3	2.623007E-01	2.802907E-14
4	2.671228E-01	2.854435E-14
5	3.556556E-01	3.800483E-14
6	1.493846E-01	1.596302E-14
7	2.021505E-01	2.160150E-14
8	1.609575E-01	1.719968E-14
9	7.349074E-02	7.853114E-15
10	7.011849E-02	7.492762E-15
11	6.331491E-02	6.765740E-15
12	5.155549E-02	5.509143E-15
13	6.930453E-02	7.405782E-15
14	6.410170E-02	6.849817E-15
15	5.575894E-02	5.958318E-15

MEASUREMENTS OF INTENSITIES AND WIDTHS IN THE SECOND OVERTONE OF HF*
(R. L. Spellicy, R. E. Meredith, and F. G. Smith)

Collision-broadened molecular vibration-rotation line parameters continue to be of importance for a variety of applications. For example, strength and width parameters are required for analytical predictions of radiative transfer within complex gaseous mixtures. Also, the electric dipole matrix element of a molecular transition may be determined from line strengths measured by absorption spectroscopy, and the electric dipole moment function may be empirically modeled by means of the matrix elements [41, 43, 44]. Determination of the dipole moment permits the calculation of radiative lifetimes and absorption strengths of lines not measurable in the laboratory, e.g., fundan antal and overtone vibration-rotation lines involving levels for which v > 0, and for which J is not sufficiently populated to permit observation. Collision-broadened line half widths supply information about molecular collision processes particularly with regard to the validity of collision broadening and collision-deactivation theories. Also, measured line half widths may yield molecular electric multipole parameters of the active specie and its collision partners.

In the present investigation, line strengths and self-broadened half widths in the second overtone band of hydrogen fluoride have been measured. The primary motivation of the investigation was to obtain a better definition of the HF dipole moment [1] for the calculation of radiative lifetimes of vibration-rotation lines lying well above the ground state. These lifetimes must be known for an understanding of HF chemical laser performance as well as for other applications for which radiative strengths of excited HF are required.

5.1. MATRIX ELEMENT CALCULATIONS

The connection between the strength of a vibration-rotation spectral absorption line and its electric dipole matrix element for a diatomic molecule is

$$S_{v',v}(m) = \frac{8\pi^{3} |m| \nu' \exp\left[-G(v, J) \frac{hc}{kT}\right] |\langle v'J' | \mu(r) | vJ \rangle|^{2}}{3hckTz} \times 1.0135 \times 10^{6}$$
(85)

^{*}Contract No. DAHC-15-67-C-0062 supported previous work in chemical laser studies at the Willow Run Laboratories. Part of this effort involved the measurement of line strengths, and hence, matrix elements in the $v=0-v^{\prime}=3$ vibration-rotation band of HF. This work was not reported under the previous contract and is therefore described here.

The matrix element $|\langle v'J'|\mu(r)|vJ\rangle|$ is given by the expression

$$|\langle \mathbf{v}'\mathbf{J}'|\mu(\mathbf{r})|\mathbf{v}\mathbf{J}\rangle| = \int \psi_{\mathbf{v}',\mathbf{J}'}\mu(\mathbf{r})\psi_{\mathbf{v},\mathbf{J}}\mathbf{r}^{2}d\mathbf{r}$$
(86)

where

 $S = \text{fine strength } (atm-cm^2)^{-1}$

v' = wave number of the transition

z = vibration-rotation partition function

 $G(\nu, J) = term value of lower level$

k = Boltzmann's constant

T = temperature (deg K)

 $\mu(\mathbf{r})$ = radial electric dipole moment function

m = -J for P branch; +J' for R branch

The matrix elements are functions of the internuclear potential through the wavefunction $\psi(\mathbf{r})$, and they are functions of the form of the electric dipole moment $\mu(\mathbf{r})$. The most commonly used function $\mu(\mathbf{r})$ is the truncated polynomial expansion $\mu(\mathbf{n}p)$:

$$\mu(np) = \sum_{n} M_{n} (r - r_{e})^{n}$$
(87)

The matrix elements $\pm \langle v'J'|\mu(r)|vJ\rangle_{exp}$ may be determined from individual line strengths S(m) from Eq. (85). The line strengths may be obtained from the measured absorption coefficient of the transition $K(\nu)$ through the relationship:

$$S(m) = \frac{1}{P} \int_{\text{line}} K(\nu^{+}) d\nu^{+}$$
 (88)

where P is the pressure of the absorbing gas. On the other hand, the matrix elements (and hence the line strengths) may be calculated if the polynomial coefficients for the dipole moment \mathbf{M}_{i} and the wavefunctions ψ are known [1].

In the present investigation, the parameters M₁ have been determined from line-strength measurements in various overtone bands through simultaneous solution of equations of the form:

$$\langle v | \mu(r) | 0 \rangle = \sum_{i=0}^{v_{max}} M_i \int \psi_v (r - r_e)^i \psi_0 r^2 dr \quad \text{for } v = 0, 1 \dots v_{max}$$
 (89)

where v_{max} is the upper vibrational quantum number of the highest overtone measurement available. The matrix elements have been calculated by numerical integration of Eq. (86). We obtained wavefunctions $\psi_{v,J}$ by solving Schrödinger's equation using finite difference equations. The RKR potential function, including the vibration-rotation interaction term $J(J+1)/r^2$, was used.

5.2. LINE-WIDTH CALCULATIONS

The Anderson theory has been used with considerable success to calculate self-broadened half widths of spectral lines of simple molecules [3, 38, 41]. In this theory, the half width (γ) is related to the real part of the total cross section (σ) through the relation:

$$\gamma(\mathbf{m}) = \frac{\mathbf{N}\mathbf{u}}{2\mathbf{c}} \frac{\sigma}{\pi} \tag{90}$$

where \overline{u} is the mean relative collision velocity and N is the number density at one atmosphere and at temperature T. The cross section is written as the statistical average of the partial cross sections of each rotational state (J_2) of the perturbing molecule:

$$\frac{\sigma}{\pi} = \frac{1}{z} \sum_{\mathbf{J}_2} \frac{\sigma(\mathbf{J}_2)}{\pi} \mathbf{g}_2 \exp\left(-\frac{\mathbf{G}_{\mathbf{J}_2} \mathbf{hc}}{\mathbf{kT}}\right)$$
(91)

where g is the degeneracy of the perturbing state. The partial cross sections are in turn related to the impact parameters $b(J_2)$ and ${\cal S}(b)$ which contain the details of the collision through the relationship

$$\frac{\sigma(\mathbf{J}_2)}{\pi} = 2 \int_{0}^{\infty} \mathbf{\mathscr{P}}(\mathbf{b}) \mathbf{b} \, d\mathbf{b}$$
 (92)

In what follows, the functional dependence of $b(J_2)$ on J_2 will not be discussed in the interest of brevity.

The collision amplitude $\mathscr{S}(b)$ may be expressed in terms of multipole interactions for b>0

$$\mathscr{G}(b) = \sum_{\mathbf{J'J}} \left[\sum_{\mathbf{s}=1}^{3} \sum_{\mathbf{t}} C_{\mathbf{s}} b^{-2(\mathbf{s}+1)} g_{\mathbf{s}\mathbf{t}} f_{\mathbf{s}}(\mathbf{k}_{\mathbf{s}\mathbf{t}}) \right]$$
(93)

(94)

 $s=1,\,2,\,$ and 3 represent the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole contributions, respectively. The subscript t refers to the various collision combinations. The $g_{s,\,t}$ are products of Clebsch-Gordan coefficients, and the $f_s(k)$ are resonance factors [37, 38]. The parameter k is essentially the dimensionless energy defect of a near resonant collision. The coefficients C_s and the parameter k are as follows:

$$C_1 = \frac{4}{9} \left[\frac{\frac{4}{\mu_0^4}}{(\hbar \bar{u})^2} \right]$$

$$C_2 = \frac{4}{45} \left[\frac{{}^2_{0}Q^2}{(\hbar \bar{u})^2} \right]$$

$$C_3 = \frac{1}{25} \left[\frac{\mathbf{Q}^4}{(\mathbf{h}\bar{\mathbf{u}})^2} \right]$$

$$\mathbf{k_{s,t}} = \frac{2\pi \mathrm{cb}}{\bar{\mathbf{u}}} \left| \Delta \mathbf{E} - \Delta \mathbf{E_2} \right|_{\mathrm{s,t}}$$

For polar mol ...a as HF, Anderson's approximation No. 2 [3] is appropriate:

$$\mathcal{S}(\mathbf{b}) = 1 \text{ for } \mathbf{b} + \mathbf{b}_{0}$$

$$\mathcal{S}(\mathbf{b}) \le 1 \text{ for } \mathbf{b} \ge \mathbf{h}_{0}$$
(95)

Integration of Eq. (92) then gives

$$\frac{\sigma(J_2)}{\pi} = b_0^2 + \sum_{t,s} C_s b_0^{-2s} g_{st} f_s(k_0)$$
 (96)

where k_0 is the k_{st} evaluated at $b(J_2) = b_0(J_2)$, and where Eq. (95) has been applied to Eq. (93) to determine $b_0(J_2)$.

In practice, Eq. (96) can be used only for collision partners \mathbf{J}_2 for which the long range forces dominate. If this is not the case, \mathbf{b}_0 must be determined empirically, or a model such as the resonant dipole billiard ball model must be used [45].

5 3. EXPERIMENTAL PROCEDURE

5.3.1. BACKGROUND

Measurements were performed with a 3-m focal length Ebert spectrometer constructed by H. W. Marshall [46]. A 600 groove mm Bausch and Lomb replica grating blazed at 1.6 μ m was used in second order, double passed. An average spectral resolution of 0.07 cm $^{-1}$ across the second overtone band of HF was obtained.

We achieved wavelength calibration using the HF lines themselves since accurate line positions are well known [39, 47]. Resolution checks were made with Krypton and Xenon Geissler tube emission lines.

Determination of scattered light is particularly difficult in this spectral region (11,500 cm⁻¹) since molecular absorption strengths are too weak to permit observation of opaque lines without very long path lengths. The required extinction can be obtained from a 0.09 molar concentration of Neodymium (+3) in a 1-normal solution of nitric acid. Although the absorption lines of Nd are broad, the strongest of the lines could be made sufficiently opaque while leaving sufficient window transmittance. Scattered light determined with this method was less than 1%.

A silicon photovoltaic detector, cooled to -79°C, was used for all measurements. Light from a 1000-W quartz iodine source was modulated at 90 Hz, and the signal was amplified by a Princeton Applied Research Corporation lock-in amplifier, Model HR8 and was displayed on a Leeds and Northrup chart recorder.

An absorption cell having an optical path length of 33 cm was used for all measurements. The cell was constructed of monel with sapphire windows and had a design identical to that reported in Ref. [41]. The gas handling system was also similar to that described in Ref. [41]. The cell, gas manifold, and a Teledyne pressure transducer were maintained at 100°C while the cell was filled with HF, and, during the measurements, the cell was immersed in a bath of gently boiling water. These and other gas-handling precautions were used to avoid the effects of polymerization of HF at room temperature, the absorption of HF by the cell walls, and the reaction of HF with exposed metal surfaces.

Observed line widths, peak values of absorption coefficients, and integrated absorption coefficients were taken directly from the chart recorder and corrected by the direct measurement method. The entire procedure was the same as described in an earlier publication [23].

5.3.2. EXPERIMENTAL STRENGTHS, WIDTHS, AND MATRIX ELEMENTS

Line strengths, widths, and peak absorption coefficients were determined by direct measurement with the use of correction factors tabulated in Ref. [23]. Table 27 shows the corrected values for pressures of 0.932 atm and 0.467 atm. We obtained dipole moment matrix elements by averaging the measured strengths and using Eq. (85).

TABLE 27. MEASURED LINE PARAMETERS

Line	rameter	(0.467 atm)	0.932 atm)
	S	-	0.0175
P(4)	P	-	0.430
	$\kappa^{\mathbf{P}}$	-	0.0127
	S	0.0235	0.0232
P(3)	$\gamma \in \mathbf{P}$	0.503	0.502
	к ^Р	0.0149	0.0144
	S	0.0245	0.0235
P(2)	γ P	0.506	0.509
	κ^{P}	0.0154	0.0146
	S	0.0164	0.0164
P(1)	γ P	0.447	0.488
	κ^{P}	0.0116	0.0107
	S	0.0193	0.0188
R(0)	$\gamma \cdot \mathbf{P}$	0.397	0.430
	$\kappa^{\mathbf{p}}$	0.0154	0.0139
	S	0.0327	0.0310
R(1)	γ/P	0.443	0.427
	$\kappa^{\mathbf{p}}$	0.0234	0.0231
	S	0.0353	0.0308
R(2)	γ / \mathbf{P}	0.453	0.400
	κ^{P}	0.0248	0.0245
	S	0.0287	0.0299
R(3)	γ / \mathbf{P}	0.412	0.434
	κ^{P}	0.0222	0.0219
	S	0.0188	0.0159
R(4)	γ/P	0.331	0.295
	κ ^P	0.0182	0.0172
	S	0.0099	0.0103
R(5)	γ/P	0.254	0.256
	κ ^P	0.0124	0.0127
	S	2.0039	0.0038
R(6)	γ/P	0.164	0.167
	κ ^P	0.0074	0.0072

A comparison of the observed and calculated half widths is shown in Fig. 31. Listed also are the dipole and quadrupole moments used in the calculations. For the radiating molecule, μ was taken as a weighted average between its v=0 and v=3 values while the v=0 dipole moment was used for the perturbing molecule. The same quadrupole moment was used in both cases. The lower curve shows the widths obtained from Eq. (89) when only dipole-dipole contributions were considered. The upper curve includes contributions through quadrupole-quadrupole. The comparison is quite good, indicating that the theory properly accounts for the energy defects. As predicted by the theory and verified with the fundamental band and first overtone band of HF [41], the R-branch lines are narrower than the corresponding P-branch lines for small |m|, and the line widths decrease progressively with increasing Δv . The tendency of the calculated values to lie below the experimental curve is not unexpected, since forces of shorter range than quadrupole have not been explicitly accounted for.

The m dependence of the line widths arises from "e product of the J_2 -dependent collision cross section and the Boltzmann factor. This is shown in Figs. 32 and 33. Figure 32 depicts the case in which the spectral line involves energy levels near the Boltzmann maximum. The Boltzmann distribution for the v=0 levels of the colliding molecule and the partial cross sections contributed by the J_2 states are shown. The contributions for m=+2 and m=-2 are not identical and the Boltzmann distribution is more favorable for the P-branch line, causing it to be broader than the corresponding R-branch line.

Figure 33 describes the case of lines with energy levels far from the Boltzmann maximum. The partial cross sections for the two branches are more comparable in this case, and the Boltzmann distribution does not favor either branch. The resonant and near-resonant terms are eliminated by the Boltzmann factor and the dominant contributions are now the off-resonant terms. These terms are nearly equal and tend to a constant value as the energy defect ΔE increases. This condition produces nearly equal half widths for the P and R branches for large |m|. This is essentially the assumption of the resonant dipole billiard ball model (RDBBM) [45]

TABLE 28. EXPERIMENTAL MATRIX ELEMENTS $v'J' \mid \mu(r) \mid vJ^{\Rightarrow}_{exp}$

	(esu-cm)
P(4)	1.738×10^{-21}
P(3)	1.677
P(2)	1.642
P(1)	1.639
R(0)	1.623
R(1)	1.613
R(2)	1.563
R(3)	1.615
18(4)	1.5 2 8
R(5)	1.574
R(6)	1.554

TABLE 29. DIPOLE MOMENT PARAMETERS AND EXPERIMENTAL MATRIX ELEMENTS

(a)
$$(r_e = 0.91717 \text{ Å})$$
 $[\mu(1p)]$ $[\mu(2p)]$ $[\mu(3p)]$
 M_0 1.819 1.819 1.819
 M_1 1.494 1.511 1.522
 M_2 - -0.286 -0.136
 M_3 - - -1.314

(b)
$$M_i = \left(\frac{10^8}{cm}\right)^i$$
 Debye

$$<0 \mid \mu(\mathbf{r}) \mid 0>_{\text{exp}} - 1.819 < 10^{-18} \text{ csu-cm}$$

 $<1 \mid \mu(\mathbf{r}) \mid 0>_{\text{exp}} = 9.850 \times 10^{-20} \text{ esu-cm}^{(15)}$
 $<2 \mid \mu(\mathbf{r}) \mid 0>_{\text{exp}} = -1.253 \times 10^{-20} \text{ esu-cm}^{(3)}$
 $+<3 \mid \mu(\mathbf{r}) \mid 0>_{\text{exp}} = +1.628 \times 10^{-21} \text{ esu-cm}^{(3)}$

FIGURE 30. COMPARISON OF BOTH EXPERIMENTAL AND CALCULATED MATRIX ELEMENTS

FIGURE 31. COMPARISON OF OBSERVED AND CALCULATED HALF WIDTHS

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

FIGURE 32. CASE IN WHICH SPECTRAL LINE INVOLVES ENERGY LEVELS NEAR THE THE BOLTZMANN MAXIMUM

FIGURE 33. CASE IN WHICH SPECTRAL LINE INVOLVES ENERGY LEVELS FAR FROM THE BOLTZMANN MAXIMUM

and is in agreement with measured second overtone half widths. If it is assumed that the constant value of the cross section is given by $\sigma(J_2) = \pi b_{\min}^2$, the calculations predict a value $b_{\min} = 5.6 \times 10^{-8}$ cm. This compares well with the half widths reported in Ref. [41].

The contributions of the higher order to π s (dipole-quadrupole, quadrupole-quadrupole) may be inferred from Fig. 31. Although the π terms are not as large as the resonant or near-resonant dipole terms, they become increasingly significant as the stronger terms move into the wings of the Boltzmann distribution. Figure 34 clarifies this by showing the partial cross sections calculated from dipole-dipole interactions alone and those calculated from all interactions through quadrupole-quadrupole. The increase in $\sigma(1)$, $\sigma(2)$, $\sigma(3)$, and $\sigma(4)$ resulting from the higher order terms significantly alters the calculated half widths since these levels are heavily weighted by the Boltzmann factor.

5.4. CONCLUSIONS

The investigation reported here confirms earlier indications that we can reliably predict self-broadened, spectral line widths with theories like Anderson's using long range multipolar molecular interactions. Although the HF molecule represents the extreme case of small moment of inertia and large dipole moment, the pronounced agreement between theory and experiment indicates that line widths may be calculated accurately if proper account is taken of non-resonant effects. It is also confirmed that the effects of vibration-rotation interaction diminish with increasing Δv , in agreement with theory.

FIGURE 34. PARTIAL CROSS SECTIONS CALCULATED FROM DIPOLE-DIPOLE INTERACTIONS AND FROM ALL INTERACTIONS THROUGH QUADRUPOLE-QUADRUPOLE INTERACTIONS

ERIM

Appendix I

The equations governing the interaction of gas molecules with radiation by means of the processes described by the Einstein coefficients for spontaneous emission and stimulated absorption and emission can be developed in the following way.

Consider from the standpoint of hydrodynamics, a volume (V) fixed in space with boundary surface A. Let us assume that this volume contains molecules in two states only and that Doppler broadening is the only broadening mechanism. The number density of molecules in the upper state is n_u , and of those in the lower state n_0 . Because of Doppler broadening, only a certain portion of the molecules, namely n_u d ν and n_v d ν are capable of absorbing or emitting at any one frequency ν . Consider also a density of photons, $\rho_{\nu,\Omega}$, at or near a frequency ν entering and teaving that volume and travelling between directions Ω and $\Omega + d\Omega$, where, \vec{k}_{Ω} is a unit vector in the Ω direction. The net time rate of change in photons within that volume is given by the first term on the left hand side of the following e^{ν} atlon:

$$\int_{\mathbf{V}} \int (\rho_{\nu,\Omega} \, \mathrm{d}\nu \, \mathrm{d}\Omega) \, \mathrm{d}V + c \int_{\mathbf{A}} (\rho_{\nu,\Omega} \, \mathrm{d}\nu \, \mathrm{d}\Omega) \vec{\mathbf{k}}_{\Omega} \cdot \vec{\mathbf{t}} \, \mathrm{d}\mathbf{A} = \left(\frac{\mathrm{d}\rho_{\nu,\Omega}}{\mathrm{d}t}\right)_{\mathbf{E}\mathbf{A}} \mathrm{d}V \tag{97}$$

The remainder of the terms account for the means by which photons within the volume are gained or lost. The second term accounts for the change $\ln \rho_{\nu,\,\Omega}$ by the invarious and outward flux of photons. The elemental area dA has the outward normal f. The right hand side is a source term and $\left(\mathrm{d}\rho_{\nu,\,\Omega}\right/\mathrm{d}t\right)$ is the rate of creation and loss of photons resulting from the processes described by the Einstein coefficients

$$\frac{d\rho_{\nu,\Omega}}{dt}\Big|_{EA} = \frac{n_{u_{\nu}}^{\Lambda} u_{\ell}}{4\pi} d\Omega d\nu + n_{u_{\nu}}^{\rho} \rho_{\nu,\Omega} cB_{u\ell} d\Omega d\nu - n_{\ell_{\nu}}^{\rho} \rho_{\nu,\Omega} cB_{\ell u} d\Omega d\nu \tag{98}$$

The form of $(d\mu_{\nu,\Omega}/dt)_{EA}$ is determined by the definition of the Einstein coefficients (see for example, Ref. 49) where A_{uf} is the coefficient for spontaneous emission, and $A_{uf}\Delta t$ is the probability that a molecule in the upper state will spontaneously emission and absorption respectively; $B_{uf} L_{\nu} \Delta t$ is the probability that a molecule in the upper state will emit a photon by stimulated emission in time Δt when subjected to an incident spectral photon radiance of L_{ν} . This photon

will be in phase with and in the same direction as the incident photon. A similar definition holds for the absorption of a photon because of the stimulated absorption coefficient $B_{\ell u'}$

The molecular number densities within the volume also change hecause of the absorption and emission of photons. The number density of molecules capable of emitting at frequency ν is n $u_{\nu}^{-} d_{\nu}$, where n is a spectral number density having a frequency distribution identical to the shape of the absorption coefficient for a Doppler broadened line. It is assumed here that collisional broadening is not important, an assumption which is certainly reasonable at the low cell pressures considered for this program. Assuming that the net flow of molecules across the surface of the volume is negligible, the equation for the change in molecular number densities can be written

$$\frac{\partial}{\partial t} \int_{\mathbf{V}} \left(\mathbf{n}_{\ell_{\nu}} \mathbf{d} \nu \right) d\mathbf{V} = \int_{\mathbf{V}} \left(\mathbf{n}_{\mathbf{u}_{\nu}} \mathbf{A}_{\mathbf{u}\ell} d\nu \right) d\mathbf{V} + \int_{\mathbf{V}} \int_{\Omega} \mathbf{\rho}_{\nu_{\nu}\Omega} \mathbf{c} \left[\left(\mathbf{n}_{\mathbf{u}_{\nu}} \mathbf{d} \nu \right) \mathbf{B}_{\mathbf{u}\ell} - \left(\mathbf{n}_{\ell_{\nu}} \mathbf{d} \nu \right) \mathbf{B}_{\ell \mathbf{u}} \right] d\Omega d\mathbf{V}$$
(99)

The first term on the right hand side is the gain of molecules in state f capable of absorbing between ν and ν + d ν , because of spontaneous emission. The second term is the gain and loss of molecules in state f because of stimulated emission and absorption. Both these terms involve integration over all directions to account for all changes in n_f . The order of the integrations over solid angle and ν in the right hand side of Eq. (99) can be inverted and the time derivative on the left hand side can be brought inside the integrals. Since all terms are to be integrated over ν and V, the integrals can be dropped so that

$$\frac{\partial n_{\ell}}{\partial t} = n_{\mathbf{u}_{\nu}} \mathbf{A}_{\mathbf{u}\ell} + \int_{4\pi} \rho_{\nu,\Omega} \mathbf{c} \left[n_{\mathbf{u}_{\nu}} \mathbf{B}_{\mathbf{u}\ell} - n_{\ell_{\nu}} \mathbf{B}_{\ell \mathbf{u}} \right] d\Omega$$
 (100)

The integral over solid angle is really a two-dimensional integration.

Similar simplifications can be made to Eq. (98). The term representing photon flux through the surface of the volume can be transformed to an integral over the volume by Gauss' theorem so that Eq. (98) becomes

$$\frac{\partial}{\partial t} \int_{\mathbf{V}} \left(\rho_{\nu,\Omega} \, d\nu \right) d\Omega \, dV + c \int_{\mathbf{V}} \overline{k}_{\Omega} \cdot \nabla \left(\rho_{\nu,\Omega} \, d\nu \, d\Omega \right) dV = \int_{\mathbf{V}} \left(\frac{\rho_{\nu,\Omega}}{dt} \right)_{EA} dV$$

Again, the integrals can be dropped so that Eq. (98) reduces to

$$\frac{\partial \rho_{\nu_{x}\Omega}}{t} + c\vec{k}_{\Omega} \cdot \nabla \rho_{\nu_{x}\Omega} = \frac{n_{u} A_{u\ell}}{4\pi} + \rho_{\nu_{x}\Omega} c \left(n_{u} B_{u\ell} - n_{\ell_{\nu}} B_{\ell u} \right)$$

$$108$$
(101)

Thus, Eqs. (100) and (101) form two partial differential equations in the three unknowns, ρ_{ν} , n_{ν} , n_{ν} . The third equation is the molecular conservation equation

$$n_{u} + n_{f} = N \tag{102}$$

where N is a known function of position. If no interaction between the photon field and translational energy occurs, then

$$n_{u_{\nu}} + n_{f_{\nu}} = N_{\nu} \tag{103}$$

where N_{μ} is a known function of position and has the characteristic Doppler variation with frequency. The quantities $n_{u_{\nu}}$, $n_{\ell_{\nu}}$, and N_{ν} can also vary with direction, since the existence of a nonlsotropic photon field having an arbitrary spectral shape could produce different spectral profiles in $n_{\ell_{\nu}}$ and $n_{u_{\nu}}$ in different directions. The constraint on such variations must be such that the number density at any position and time, integrated over all frequencies must be the same from all directions, i.e.,

$$\int n_{\ell}(\vec{\mathbf{r}}, t, \Omega, \nu) d\nu = n_{\ell}(\vec{\mathbf{r}}, t)$$

and similarly (104)

$$\int n_{\mathbf{u}_{\nu}}(\mathbf{r}, t, \Omega, \nu) d\nu = n_{\mathbf{u}}(\mathbf{r}, t)$$

In other words, $\mathbf{n_f}$ and $\mathbf{n_u}$ cannot be functions of $\Omega.$

Equation (101) yields the blackbody photon density when thermodynamic equilibrium is assumed. This can be seen by inserting the relationship between $A_{u\ell}$, $B_{u\ell}$, and $B_{\ell u}$ and noting that at equilibrium $\partial \rho_{\nu,\Omega}/\partial t = \nabla \rho_{\nu,\Omega} = 0$. The relationship between $A_{u\ell}$, $B_{u\ell}$, and $B_{\ell u}$ are given by Eq. (36). At equilibrium, the relationship between $a_{u\ell}$ and a_{ℓ} must be

$$\frac{\mathbf{n}_{\mathbf{u}_{\nu}}}{\mathbf{n}_{\ell_{\nu}}} = \frac{\mathbf{n}_{\mathbf{u}}}{\mathbf{n}_{\ell}} = \frac{\mathbf{g}_{\mathbf{u}}}{\mathbf{g}_{\ell}} \exp \left[\frac{\mathbf{E}_{\mathbf{u}\ell}}{\mathbf{k}\mathbf{T}} \right]$$
 (105)

where g_u and g_ℓ are the statistical weights of the upper and lower levels respectively and $E_{u\ell}$ is the energy difference between the two levels and is equal to $h\nu$; h is Planck's constant. Substituting these relationships into Eq. (101) yields

$$\rho_{\nu,\Omega} = \frac{2\nu^2}{c^3} \left[\exp\left(\frac{h\nu}{kT}\right) - 1 \right]^{-1}$$
 (106)

the blackbody spectral photon density per unit solid angle.

If all photons of interest are traveling in one direction only, and the ambient radiation can be ignored, and if spontaneous emission is ignored, then Eqs. (100) and (101) can be reduced to the laser amplifier equations:

$$\frac{\partial \rho_{\nu}}{\partial t} + c \frac{\partial \rho_{\nu}}{\partial x} = \rho_{\nu} c \left(n_{\mathbf{u}_{\nu}} \mathbf{B}_{\mathbf{u}} \mathbf{f} - n_{\mathbf{f}_{\nu}} \mathbf{B}_{\mathbf{f}} \mathbf{u} \right)
\frac{\partial n_{\mathbf{f}_{\nu}}}{\partial t} = -\frac{\partial n_{\mathbf{n}_{\nu}}}{\partial t} = \rho_{\nu} c \left(n_{\mathbf{u}_{\nu}} \mathbf{B}_{\mathbf{u}} \mathbf{f} - n_{\mathbf{f}_{\nu}} \mathbf{B}_{\mathbf{f}} \mathbf{u} \right)$$
(107)

In the case of a simple laser amplifier, the radiation of interest comes from one transition only, so that the two-level picture above is sufficient. However, when fluorescence and radiative relaxation are to be considered, many different transitions and states participate in the relaxation process. Thus, it is necessary to consider a photon-density conservation equation like (101) for each transition involved. There must also be an equation like (100) for each of the states involved. Since each state can gain or lose molecules by several transitions, e.g., pure rotation, P-branch and R-branch transitions, terms must be added to the right hand side of each of these equations for each of the possible transitions in which that state participates.

The resulting equations contain such a large number of terms that it is not practical to solve them, even by numerical means. Even a general solution to the two-level case is complex because of the large number of dependent variables involved (three position variables, two direction variables, time, and frequency). However, as has been noted, it will be necessary to assess the effects of radiative rotational relaxation by stimulated emission. This assessment necessitates the solution of these equations for some simplified case and will be attempted during the second half of the contract period.

Appendix II

The detailed results of the matrix element calculations for HCl are included in this appendix. The matrix elements used to determine the dipole moment function were:

$$<0 \mid \mu(\mathbf{r}) \mid 0> = 1.10847 \times 10^{-18} \text{ esu-cm}$$

 $<1 \mid \mu(\mathbf{r}) \mid 0> = 7.12 \times 10^{-20} \text{ esu-cm}$
 $<2 \mid \mu(\mathbf{r}) \mid 0> = -7.75 \times 10^{-21} \text{ esu-cm}$
 $<3 \mid \mu(\mathbf{r}) \mid 0> = 5.15 \times 10^{-22} \text{ esu-cm}$

The directe moment coefficients determined from these matrix elements are:

$$M_0 = 1.0935 \pm 0.0007 \times 10^{-18} \text{ esu-cm}$$
 $M_1 = 0.947 \pm 0.023 \times 10^{-10} \text{ esu-cm/cm}$
 $M_2 = 0.015 \pm 0.041 \times 10^{-2} \text{ esu-cm/cm}^2$
 $M_3 = -0.814 \pm 0.116 \times 10^6 \text{ esu-cm/cm}^3$

The first three pages of tabulated values lists the rotationless matrix elements computed, the corresponding Einstein A's and the computed band positions. The following pages list the rotation dependent matrix elements and Einstein A's. The transitions covered in the tabulation include vibrational transitions for which $0 < \Delta \nu \le 5$ for all vibrational levels between 0 and 12. All rotational states between 0 and 35 are included.

Tabulated values for transitions involving vibrational states substantially greater than 3 should be used with caution, however. Such transitions represent extrapolation of the polynomial dipole moment function to internuclear distances beyond those distances represented by available experimental measurements and hence are subject to unknown inaccuracies. The tabulated values for transitions involving $\mathbf{v} > 5$ states exhibit unusual and unexplained variations with rotational quantum number J. These variations cannot be defended because of this extrapolation and should be treated with some skepticism.

USING THE 2KP POTENTIAL FUNCTION VIRPATITION MATRIX FLEWENTS FOR HEL

MJ-1.53

10

7.120F-20 1.139F-18

9.931F-29 1.167F-18 -7.750F-21

1.1976-19 -1-470F-77 5.150E-27

1.1956-14 4.CP3F-23 1.247F-71 -2.14PE-70

3.416F-24 2.322F-21 -7.930F-20 1.445F-10 1.244F-18 1.2406-19 1.2716-18 -4.547F-23

3.9748-21 -3.8076-20 -9.350F-23 -4.56PF-23 2.280E-23

5.052F-21 -4.747F-20 1.530F-19 1.285E-19 1.50cf-13 1.267F-18 4.549E-24 -2.698F-23 9.420E-77 -1.576F-22 -6.476F-22 5.428F-23 -1.352F-22 -2.494E-22 -1.026F-23

4.120F-23 -2.174F-21 1.638F-20 -8.072F-20 1.269F-19 1.309E-18 1.419F-19 1.338E-18 1.421E-21 1.198F-20 -6.907F-20 9.619E-25 -5.917E-26 2.472F-23 -7.569F-21 1.507F-22 1.319F-22 -1.110F-22 1.245F-23 -5.072F-23

1.503f -: 19 1.299F-18

9.532F-21 -5.783F-20

FINSTEIN CREFFICIENTS A(VI, V) FOR HCL

1-158

01									٠		
											0.0
o										•••	3.971F-06 1.0AABF-04 1.724F-03 7.157F-03 1.663F-02 6.747F-04 1.070F 00 1.984F 01 1.31AE 02 3.743E 01 0.0
										1.471F-07 5.725E-03 1.924F-01 1.236F 01 1.178F 02 5.532E 01 0.0	RE 02 3
									0.0	5.53	1.31
									5	. 02	9
•								0.0	7.2106	1.1266	1.984
								5	5	10	8
₹							0.0	8.40ZE 01	9. 1A7E	1.236	1.070
							10	10	00	61	*
•						0	349E	11115	35 12°	92 SF-	76.75-
						c	c		-		ė
						9	9	00	-01	9	-02
4					0.0	9. 4326	5.179	3.876	1.0536	\$.725	1.6636
					10	6	00	70	00	20	6
•				0.0	9.641F 01	3.492F	1.877	1.176F-	1.3006-	1.471F-	7.197E-
						=	1	2		2	•
•			0.0 10	9.5AIE OI	2.101F 01	7.412F-01 3.492F 01 9.432E 01 0.0	6.751E-(1.157E-(R.574F-03 1.300E-02 1.053E-01 7.214E 00 9.1ATE 01 7.210E 01	3. A35F -(1.7245-0
			10	10	10	*	6	6	03	8	*
-		0.0	6.667F	1.044	2.519F-	4.249E-	5.869E-	3.21AE-	1.1856-	3.776	1.046.
0	0.0	3.426E 01 0.0	3.431F 00 6.667F	\$.841E-02 1.044F	6.819F-04 2.514F-01	1.561E-03 4.249E-04	5.157F-04 5.869E-01 6.751E-04 1.877F 00 5.179F 01 0.549F 01	1.441E-04 3.21AE-07 1.157E-02 1.779F-02 3.A76E 00 7.111F 01	5.150E-05 1.185F-03	1.461F-05 3.774F-04 3.435F-03	.971F-06
>	•	•	•	•	•	-	ė	-	r	-	•
	1100										

HCL
200
STIONS
FUS
BAND

									0.0	2271.012 0.0	4437.198 2166.977 0.0	6499.471 4227.859 7060.883 0.0	600 6761
_	v							0.0	2173.066	4644.079	6411,055	645.1700	
- A .	4						0.0	2474.914	060.1262	7119.007	0215.969	11346.857	
	•					0.0	2576.951	4041.177	7424. 454	3645.465	11862.937		
	6				0.0	26.79.328	5256.191	7731,105	10164.172	12375.184	17324.770 14542.160 11862.937	19385.652 16603.043 13023.715	
	-			0.0	2742.609	5461.039	4034.801	10513.715	17986.701	15157.701	17324.770	19395.467	
	0		0.0	7887.027	5469.437	8348.965	10525.428						
	>	;	•	-	2	•		•	æ				

1 1

MATRIX FLEMENTS. FINSTEIN A'S AND EMERGIES FOR VE 0 TO 0 TRANSITIONS OF HOL

Pure Rotation

J	< A 11/2/11/A. 1+1>	1	٢
	F 511-C V	SFC-1	C M - 1
0	1.10055-18	1.17075-01	20.9
1	1.10975-19	1.1770=-07	41.9
2	1.1090 -13	4. 35765-32	62.6
3	1.10045-18	0.05505-07	97.4
4	1.1100E-13	1.79575-01	194.2
5	1.11C6F-19	3.47735-01	124.9
4	1.1114F-19	5.56735-01	145.5
7	1.11235-19	8.3555E-01	166.0
ρ	1.11345-19	1.10325 00	196.5
7	1.1145F-19	1.64015 0)	205.3
10	1.1150F-10	2.19355 07	227.0
11	1.11725-19	2. 8324F 00	247.0
12	1.11976-18	3.5C44F 00	266.9
13	1.12045-19	4.4797 7.)	786.7
14	1.1271F-19	5.48975 00	305.3
15	1.1240F-18	6.6344F 00	325.5
16	1.176] F - 1 3	7.0773F 00	344.9
17	1.1282F-19	0. 25415 00	363.9
18	1.13055-13	1.0930F 01	382.6
19	1.13206-13	1.2676F 01	401.1
20	1.1354F-19	1.4575F 01	419.5
21	1.13815-13	1.6635F 01	437.5
52	1.1400F-19	1. 3F50E 01	455.3
23	1.14705-18	2.124PF 01	472.9
24	1.1468F-18	2.3907F 01	420.1
25	1.1500F-1P	2.45315 01	507.1
54	1.15776-19	2.9424F 01	523.7
27	1.15 APF -1 A	3.2481F 01	540.1
29	1.1603E-19	3.5704F 01	556.1
5.8	1.1540E-18	3.90395 01	571.9
30	1.1679F-13	4.26335 01	597.3
31	1.1719F-19	4.5333F 01	502.3
3.2	1.17605-19	5.01P3F 01	617.0
33	1.19026-19	5.4174E 01	631.3
34	1.1846F-18	5.8309F 01	545.3
35	1.1991F-19	6.25735 01	658.9

MATRIX ELEMENTS. FINSTEIN A'S AND ENERGIES FOR V= 0 TO 1 TRANSITIONS OF HCL

	\$	S-4 BANCH			CHAST ITING 111	HCL		
		ARAQUA		P-RRANCH				
1	<1+1>	۸	ć	ul	Δ			
	ESTI-CM	SEC-1	CM-1		-	F		
2				ESH-CM	SFC-1	CM-1		
1	7.02555-20	1.2691 = 01	2907.3					
2	6.03166-20	1.51165 01	2927.0	4 4449 55				
1	4.83815-27	1.6071E 01	2946.0	7.2152E-20	1.9445E 01	2866.1		
	6.74425-20	1.65228 01	2964.4	7.3110F-20	2.572RF 01	2944.7		
4	6.65 2AF -20	1.6734 = 01	2982.1	7.4C74E-20	2.3222F 01	2822.6		
5	6.5600F-20	1.6910F 01		7.5047F-20	2.2159E 01	2800.0		
5	6.46928-20	1.679AF 01	2000.1	7.6026E-20	2.1565F 01			
	6.3770E-20	1.6732E 01	3015.5	7.7013E-20	2.1173F 01	2776.8		
A	5.2970F-20	1.65995 01	3031.2	7.8009E-20	2. ORR4F 01	2753.0		
C	6.19F3F-20	1.64395 01	3046.2	7.9013E-20	2.064RF 01	2728.8		
10	6.1057F-20	1.6244= 01	3060.4	8.0025F-20	2.0440F 01	2704.0		
11	6.0157F-20	1.6022E 01	3073.9	8 . 1045F-20	3	2678.7		
12	5.9250F-20	1.57745 01	3396.7	8.2775F-20	2.0246F 01 2.0058F 01	2652.9		
13	5.8347E-23	1.5776E 01	309A. A	8.3114F-20	2.0058E 01	2626.7		
14	5.7443F-20	1.5508E 01	3110.1	8.41625-20	1.9868F 01	2600.0		
15	5.6530F-20	1.5219F 01	3120.6	8.5219E-20	1.9675E 01	2572.8		
16	5.5632F-20	1.4912F 01	3130.4	P.6287E-20	1.9474F 01	2545.2		
17	5.4722F-20	1.4590F 01	3139.4	8.7364E-20	1.9266E 01	2517.2		
10	5.38C0F-20	1.42485 01	3147.6	A. 8451F-20	1.9047F 01	2488.7		
19	5.29926-20	1.3894F 01	7154.9	8.954RE-20	1.8917E 01	2459.9		
20	5 . 1 9 70E - 20	1.3526F 01	3161.5	9.0655E-20	1.8577F 01	2430.7		
21	5.10425-20	1.3145E 01	3167.3	9.1772F-20	1.8324E 01	2401.1		
22	5.01C7F-20	1.2753E 01	3172.2	9.2900E-20	1.8061F 01	2371.2		
23	4.9164F-20	1.2349F 01	3176.3	9.4038E-20	1.7786F 01	2340.9		
24	4.0164F-20	1.1934E 01	3179.5	9.4038E-20	1.7699F 01	2310.3		
25	4.82115-20	1.15136 01	3182.0	9.51875-20	1.7201E 01	2279.3		
26	4.77485-20	1.1 CR3E 01	3183.5	9.6346F-20	1.6893F ()1	2248.1		
27	4.62745-27	1.0645E 01	3184.2	9.7517F-20	1.6573F GI	2216.6		
20	4.52885-20	1.02015 01	3194.0	9.8697E-20	1.6244F 01	2184.8		
•	4.47875-20	9.7512E 00	3183.0	9.98PRE-20	1.5904F 01	2152.7		
29	4.7271E-20	9.29725 00	3131.1	1.01095-19	1.5554E 01	2120.4		
30	4.2239F-20	8.8400E 00	3178.2	1.0230E-19	1.5199F 01	2007 0		
31	4.1186E-20	8.3800F 00	3174.6	1.0353E-19	1.4833E 01	2087.8		
27	4.0115F-20	7.9189E 00	3174.6	1.04765-19	1.4460E 01	2055.0		
33	3.9021F-20	7.4572E 00	3170.0	1.0600E-10	1.4080E 01	2021.9		
34	3.7903F-20	6.9965E 00	3164.4	1.0725E-19	1.3693F 01	1988.7		
35	3.4759F-20	6.5375E 00	3158.1	1.0852E-19	1.33018 01	1955.3		
		30 73738 (II)	3150.7	1.0979E-19	1.2903F 01	1921.6		
					10,4036 01	1887.8		

MATRIX FLEMENTS, EINSTEIN AS AND ENERGIES FOR V= 0 TO 2 TRANSITIONS OF HCL

	D =	PANCH		P-RR ANCH			
1	<v j="" j+1="" mu="" v*=""></v>	^	F	<v j="" j-1="" m()="" v=""></v>	٨	F	
	E (1)- C V	SFC-1	C+-1	FSU-CM	SEC-1	C M-1	
0	-7.72975-71	1.15ULE 00	5440.3				
1	-7.71018-21	1.29495 0)	57C7. P	- / • 7739F - 21	3.4166F 30	5548.8	
2	-7.6 3476 -21	1.40735 00	5725.0	-7.8009E-21	2.2568F 00	5626.7	
7	-7.60166-21	1.55648 00	5740.9	-7.83055-21	2.0302F 00	5603.4	
1.	-7.67005-21	1.52745 23	5755.6	-7.86295-21	1.9242F 30	5579.0	
E.	-7.5677F-71	1.43236 00	5769.1	-7.8986E-21	1.85195 30	5553.3	
4	-7./5825-21	1.4597= 01	5741.2	-7.93695-21	1.81935 20	5526.6	
7	-7.6550F-21	1.6910F 00	5792.1	-7.9784F-21	1.7874F 00	5498.7	
3	-7.65616-21	1.7306F 00	5901.6	-9.02295-21	1.7520F 00	5469.7	
0	-7.6590F-21	1.71035 00	5809. 9	-8.0704E-21	1.74 URE 00	5439.6	
10	-7.444E-71	1.73435 00	5914.9	-8.1211F-21	1.7224F 20	5408.4	
1.1	-7.4774F-71	1.74945 00	5922.4	-8.1753F-21	1.7063E 10	5375.1	
12	-7.69735-27	1.76365 00	5976.6	-8.2325E-21	1.6916F 00	5342.8	
1 3	-7.60675-21	1.77715 00	5929.5	-8.29315-21	1.6780F 00	5308.4	
14	-7.71256-21	1.78COF 00	5831.1	-8.3572F-21	1.6654E 00	5273.0	
15	-7.7310F-21	1.40235 00	5831.3	-8.4250F-21	1.6536F 10	5236.5	
16	-7.7521E-21	1.81435 0)	5930.1	-8.4062F-21	1.5424F 00	5199.2	
17	-7.7757F-21	1.87595 00	5927.5	-9.5712F-21	1.63165 00	5140.8	
1 8	-7.9021F-21	1.9277F 0)	5823.6	-R.5501F-21	1.6214F 00	5121.4	
13	-7.8300F-21	1.3480F 00	5918.3	-8.7326F-21	1.6113F 00	5091.1	
20	-7.8671F-21	1.05855 00	5811.6	-8.8196F-21	1.6017F 10	5039.9	
21	-7.2064F-21	1.85825 00	5803.5	-3.9109F-21	1.5923E 00	4997.7	
22	-7.0 126F -21	1.4784E 07	5793.9	-9.0058F-21	1.5830F)0	4954.6	
23	-7.271PF-21	1.88852 00	5793.0	-9.1059E-21	1.5741 00	4910.6	
24	-9.0135E-21	1.85745 00	5770.7	-9.2102E-21	1.5652 F 00	4865.8	
25	-8.05755-21	1.9060= 00	5755.9	-9.3195F-21	1.5565F Q0	4820.0	
25	-8.1040F-21	1.91425 00	5741.7	-9.4339E-21	1.5479E 00	4773.5	
27	-9.15245-21	1.9220F 00	5725.1	-9.5533E-21	1.5394F 00	4726.1	
2 P	-8.20495-21	1.9292F 00	5707.0	-9.6780F-21	1.5310F 10	4677.9	
20	-P.2589F-21	1.9358F 00	5697.5	-9.8086F-21	1.5227F 10	4628.8	
30	-P.3156F-21	1.9419F 00	5566.6	-9.9451F-21	1.5145F 00	4579.0	
31	-9.37415-21	1.0471F 00	5644.2	-1.00875-20	1.5062F 30	4528.4	
32	-8.4755F-21	1.0518F 00	5620.4	-1.02365-20	1.4981 5 00	4477.0	
3.3	-8.4003F-21	1.9555E 00	5595.1	-1.03925-20	1.4899F 00	4424.9	
34	-8.5650F-21	1.7584F 00	5568.3	-1.0554E-20	1.4818F 00	4372.0	
35	-8.4333F-21	1.9604E 00	5540.1	-1.07255-20	1.4737F 00	4318.4	

MATRIX ELEMENTS. EINSTEIN A'S AND ENERGIES FOR V= 0 TO 3 TRANSITIONS OF HCL

	P -	RANCH	P-PR ANCH			
J	< 1+1>	٨	É	<v j="" j-1="" mu="" v*=""></v>	4	E
-	FSU-CM	SFC-1	C 4-1	FSU-CM	SEC-1	C M- 1
0	5.18C1F-22	1.6439E-02	8364.1			U. 35 I
1	5.21495-22	2.0117F-0?	8385.3	5.12435-22	4.75745-02	8328.1
2	5.2545F-22	2.20035-02	9400.7	5.1049F-27	3.1218F-02	8305.4
3	5.3025E-22	7.3349E-02	8414.2	5.09105-22	2.7699E-02	8280.9
4	5.351GE-22	2.4429F-02	8425.3	5.0784E-22	6000°-02	8254.7
5	5.4077F-27	2.5413E-02	8435.9	5.0739E-22	2.4977E-02	8226.7
	5.4701F-22	2.6367F-02	9443.7	5.07325-22	2.4251E-02	8196.9
7	5.53 91 - 22	2.73225-02	9449.9	5.0770F-22	2.3701E-02	8165.4
А	5.61.26E-22	2.9278E-02	9453.0	5.0843F-22	2.3256F-02	8132.2
q	5.6925E-22	2.9266F-02	8456.2	5.0977F-22	2.2910F-02	8097.3
	5.7787F-22	3 0294F-02	P455.5	5.1156E-22	2.2626F-02	8060.7
10	5.97195-22	3.13745-02	9454.9	5.1380F-22	2.2394E-02	8022.4
11	5.97C6E-22	3.2498F-02	8451.4	5.1650E-22	2.2206E-02	7992.5
12	6.0773F-27	3.3694F-02	9445.9	5.1973E-27	2.2061E-02	7941.0
13		3.4968F-07	8439.5	5.2341E-22	2.1949F-02	7897.8
14	6.1921F-27 6.3114F-22	3.62815-02	8429.2	5.2743F-22	2.1857F-02	7853.0
15		3.7687F-02	9417.9	5.3214F-22	2.1811F-02	7806.6
16	6.43GRF-22	3.01805-02	9404.6	5.3724E-22	2.1792F-02	7758.7
17	6.5764F-22	4.0746F-02	9399.4	5.4281E-22	2.1776E-02	7709.2
18	6.7200E-22	4.2402E-02	A372.3	5.4902F-22	2.1806F-02	7658.2
10	6.87195-22	4.4150F-02	8353.1	5.55695-22	2.1853E-02	7605.7
20	7.0321E-22	4.60235-02	8332.0	5.6292F-22	2.1924E-02	7551.6
21	7.2033E-22	4.7963F-02	9308.9	5.7054F-22	2.2004E-02	7496.1
22	7.3907E-22	5.0031 F-0?	9293.8	5.7894F-22	2.2121F-02	7439.1
23	7.5650F-22	5.2215E-02	8256.7	5.8787F-22	2.2255E-02	7380.7
24	7.7674F-27	5.45155-02	8227.6	5.9738F-22	2.2407F-02	7320.R
25	7.97575-22	5.49C2E=02	8196.6	6.0743F-22	2.2572F-02	7259.5
24	A.1919F-72		P163.5	6.1836E-22	2.2774E-02	7196.8
27	9.4212E-22	5.9447F-02	8128.5	6.2990F-22	2. 2991E-02	7132.7
28	3.46215-22	6.2126F-02	8091.4	5.4204E-22	2.3220F-02	7067.3
29	P.0135F-22	6.49255-02	9052.4	6.54935-22	2.3469E-02	7000.5
30	9.1778F-22	6.7877F-02		6.6864E-22	2.3741F-02	6932.3
31	5.4546F-22	7.09725-02	8011.3	6.8308F-22	2.4028F-02	6862.R
32	6.7432E-22	7.4197E-02	7968.2	6.9852F-22	2.4345E-02	6792.0
3	1.0047F-21	7.7604F-02	7923.1	7.1470F-22	2.4672E-02	6719.9
34	1.0364F-21	P.1138F-02	7876.0	7.1470F-22	2.5033F-02	6646.5
35	1.0697E-21	9.4964F-02	7826.8	12036 -22	20 70 751 02	170 1.70

ERIM

MATRIX ELEMENTS, ELMSTEIN ASS AND ENERGIES FOR V= 0 TO 4 TRANSITIONS OF HCL

	CHUCKNCH			P-RR ANCH			
J	< A 1411 A 1412	٨	r	<v 1="" 41="" j-1="" v*=""></v>	Δ	F	
	E 21-0+1	SEC-1	C 4-1	ESU-CM	SFC-1	CM- 1	
0	4.) 5 5 9 5 - 7 2	2.25455-04	10944.3				
1	4.11275-27	2 . 4 500 5 - 04	10350.4	4.10025-23	4 93915 04	10004 0	
2	3.07135=23	2.001 RF-04	10971.9	4.11475-23	4.5613F-04	10004.0	
3	1.0)025=23	2.4227F-04	10095.1	4.1071F-23	4.0515F-04	10881.7	
4	3.93795-24	7.7904 6-04	10993.8	4.1056F-23	3.8353F-04	10855.0	
5	3.76 C7F = 22	2. 73.75 E-C4	11000.0	4.09936-22	1.5972F=04	10827.0	
1	7.67245=24	2.6788E-04	11003.7	4.0720F-23	3.5387E-04	10707.5	
7	3.54226-21	1.4943F-04	11005.0	4.0416E-23	3.4079E-04	10764.7	
Ω	7.4541-23	2.36525-04	11003. R	4.01926-23		10729.7	
0	2,12005-21	2.2033F=34	11000.0	3.9673F-22	3.30335-04	10692.2	
10	3.10000-21	2.01635-04	10003.4	3.9179E-23	3.1594F-04 3.0272F-04	10652.5	
11	3.77625-23	1.8279F-04	10795.0	3.8742F-23	2.9091F-04	10610.6	
12	2.45855-24	1.63075-04	10973.7	3.80695-27	2.7610F-04	10556.7	
13	7.56565-73	1.41625-04	10259.2	3.7294F-23	2.6044F-04	10510.8	
14	2.44735-23	1.10135-04	10943.5	3.65605-23		10471.1	
15	2.27706 = 22	9.94135-05	10924.7	3.5808E-23	2.4596F-04 2.3178F-04	10420.1	
16	1.98761-23	7.77015-05	10933.3	3.43935-23		10367.0	
17	1.71 265 -23	5.7527E-05	10879.3	3.3950F-23	2.1611F-04	10311.7	
18	1.47116-23	4.0005F-05	10852.8	3.2908F-23	2.0081F-04	10254.2	
10	1.11015-24	2.42995-05	10823.8	3.1691F-23	1.9509F-04	10104.6	
20	7. H 770F-24	1.19475-05	13777.2	3.0600E=23	1.5830F-04	10132.9	
?1	4.20115-24	3.5157F-05	10758.1	2.93716-23	1.53 76F - 04	10069.1	
25	4.2487==75	3.4102F-09	10721.3	2. RO19F-23	1.3873F-04	10003.2	
23	-3.62735-24	2.4/385-04	10692.1	2.6630F-23	1.2355F-04	9935.2	
74	-0.01 125 -24	1.18035-05	10640.2	2.5060E-23	1.0916E-04	9865.2	
25	-1.279RF-21	2.0035E-05	10575.8	2.3504F-23	9.4476F-05	9793.2	
26	-1.77057-23	5.6661E-05	10548.8	2.1928F-23	8.11675-05	9719.1	
77	-2.2084F-21	9.42197-05	10400.3	2.0071F-23	6.8947F-05	9643.0	
7 8	-2.27995-23	1.45505-04	10447.2		5.6331F-05	9565.0	
29	- 3.49475 - 27	2.1020F-04	10392.5	1.8123E-23	4.4752F-05	9485.0	
3.0	-4.1160F-23	2.4P78F-04	10335.2	1.6241E-23	3.4995F-05	9403.1	
31	-4.22205-23	3.8983F-04	10275.3	1.4245E-23	2.61935-05	931 9.2	
12	-5.5327F-23	5.0373F-04	10212.8	1.1960F-23	1.7949F-05	9233.4	
2.3	-6.3142F-23	6.43925-04	10147.6	9.9007E-24	1.1947 E-05	9145.6	
14	-7.1353F-23	R. 0625F-04	10079.0	7.3671E-24	6.41887-06	9055.0	
35	-8.0119F-23	9.9577F-04	10009.6	4.9061F-24	2.75997-06	8964.4	
			10000	2.23685-24	5.4091 E-07	8871.0	

MATRIX FLEWFATS. FINSTEIN 4'S AND ENERGIES FOR V= 0 TO 5 TRANSITIONS OF HCL

TOTAL STATE OF THE PROPERTY OF		H = d □ V V C H			P-BR ANCH			
0	J	<v 4u="" j="" j+1="" v*=""></v>	A	E	<v j="" j-1="" mu="" v*=""></v>	Δ	F	
1 -4.59cp-23 6.4040F-04 13433.4 -4.5189F-22 1.5341F-03 1.279.9 2 -4.6125F-3 6.5512F-04 13455.2 -4.5010F-23 1.0093F-03 1.379.9 3 -4.6375F-23 7.3013F-04 1365.2 -4.4719E-23 8.9122F-04 13299.2 4 -4.6401F-21 7.5140F-04 13650.6 -4.4398E-23 9.3104F-04 13299.2 5 -4.6710F-21 7.7001F-04 13462.2 -4.422F-23 7.556F-04 13269.2 6 -4.635EF-21 7.9303E-04 13651.7 -4.3808E-23 7.6357E-04 13230.6 7 -4.6321E-23 7.0212F-04 13451.4 -4.3825E-23 7.3791F-04 13150.7 0 -4.7103F-23 8.0232F-04 13451.4 -4.387E-23 7.1609F-04 13150.7 0 -4.7160F-21 8.0825E-04 13461.7 -4.3039E-23 6.239F-04 13150.6 10 -4.7160F-21 8.0825E-04 13461.7 -4.358E-23 6.7198E-04 1305.6 11 -4.7271F-23 9.1178F-04 13412.8 -4.2753E-23 6.5486E-04 13007.9 12 -4.726F-23 9.0674E-04 13393.7 -4.2199F-23 6.3359E-04 12954.8 13 -4.7207F-23 8.0674E-04 13371.5 -4.1858F-23 6.1326F-04 12894.8 14 -4.7108F-23 8.0674E-04 13363.7 -4.2199F-23 6.5586E-04 12894.8 15 -4.686F-23 7.9283E-04 13361.1 -4.1598F-22 5.5575E-04 12894.8 16 -4.686F-23 7.9283E-04 13251.5 -4.1858F-23 5.7790E-04 12778.5 17 -4.6588E-23 7.7050E-04 13251.5 -4.090E-23 5.526E-04 12774.5 18 -4.588E-23 7.7050E-04 13251.5 -4.090E-23 5.526E-04 12774.5 19 -4.586E-23 7.3860E-04 13172.5 -2.9689E-22 5.0366E-04 12774.3 17 -4.588E-23 7.7950E-04 13125.5 -4.0340E-23 5.228F-04 12774.5 10 -4.583E-23 7.3860E-04 13172.5 -2.9689E-23 5.0366E-04 12504.9 21 -4.5537E-23 7.3860E-04 13173.5 -4.0340E-23 5.228F-04 12774.5 22 -4.5537E-23 7.3860E-04 13173.5 -4.0340E-23 5.228F-04 12774.5 23 -4.1607F-23 5.586E-04 12771.1 -3.8693E-23 4.7035E-04 12291.4 24 -4.314F-23 6.2217E-04 1290.4 -3.9713E-23 4.7035E-04 12291.2 25 -4.5537E-23 5.967F-04 12797.4 -3.7541E-23 3.6495E-04 12291.2 26 -4.5537E-23 5.586E-04 12797.4 -3.7541E-23 3.6495E-04 12291.2 27 -4.066F-23 5.586E-04 12797.1 -3.8693E-23 4.7515E-04 12291.2 28 -4.7316F-23 5.586E-04 12797.1 -3.8693E-23 4.7516E-04 12291.2 29 -3.5582E-23 3.7585E-04 12589.1 -3.6708E-23 3.1568E-04 11233.7 20 -3.7152F-23 4.7745E-04 12533.3 -3.5505E-23 3.1568E-04 11333.7 21 -3.5582E-23 3.7585E-04 12535.1 -3.5015E-23 2.83837-04 11323.8 21 -3.		2511-C4	SEC -1	C M- 1	F SU-CM	550-1	CM-1	
1 -4.51866-23	0	-4.57408-23	5.2552E-04	13419.6				
-4.4.128F-23		-4.5950=-23	6.4049F-04	13433.4	-4.5189F-23	1.53415-03	_	
1	-	-4.6125F-23	6.9512F-04	13445.2	-4.5010E-23	1.0093E-03		
5	3	-4.63755-23	7.3013E-04	11453.9	-4.4719E-23	8. 91 22F-04		
6	4	-4.64915-23	7.5140F-04	13459.6	-4.4398E-23			
6	5	-4.67105-23	7.7001F-04	13462.2	-4.4222E-23	7.9566F-04		
7. 0.2125-0.4 13458-1 -4.3625E-23 7.3791F-0.4 13101.8 -4.7103E-23 8.0737E-0.4 13451.4 -4.3387E-23 7.1609F-0.4 13150.2 04.7178E-23 8.0737E-0.4 13451.4 -4.3387E-23 7.1609F-0.4 13105.6 04.7178E-23 8.0825E-0.4 13428.9 -4.2753E-23 6.7138E-0.4 13058.2 114.7271F-23 9.1178F-0.4 13412.8 -4.2553E-23 6.5480E-0.4 1307.9 124.7266F-23 8.0826E-0.4 13303.7 -4.2199F-23 6.359F-0.4 12954.8 134.7207F-23 8.0874E-0.4 13371.5 -4.1858E-23 6.1329F-0.4 12898.8 144.7106F-23 8.0858E-0.4 13371.5 -4.1858E-23 6.1329F-0.4 12898.8 154.6080F-23 7.9283E-0.4 13317.7 -4.1317E-23 5.5904E-0.4 12778.5 164.6787E-23 7.9283E-0.4 13251.4 -4.0702E-23 5.5904E-0.4 12714.3 174.6586E-23 7.7060E-0.4 13251.4 -4.0702E-23 5.4205E-0.4 12647.2 184.6327F-22 7.3860E-0.4 13213.5 -4.0340E-23 5.228E-0.4 12577.4 194.5557E-23 7.3860E-0.4 1312.5 -3.9989E-22 5.0366E-0.4 12577.4 194.5527E-23 7.1875E-0.4 1312.4 -3.9415E-23 4.8717E-0.4 12420.8 204.5527E-23 7.1875E-0.4 131030.7 -3.898E-23 4.8717E-0.4 1220.8 214.5154E-23 6.4979E-0.4 12977.1 -3.8698E-23 4.5101E-0.4 12271.4 224.6570F-23 6.4979E-0.4 12977.1 -3.8698E-23 4.5101E-0.4 12271.4 234.3035E-23 5.9234E-0.4 12977.1 -3.8698E-23 3.9974E-0.4 12188.2 244.2314F-23 5.9234E-0.4 12977.1 -3.8698E-23 4.5101E-0.4 12271.4 233.516E-0.4 1277.4 -3.7541F-23 3.8198E-0.4 1218.2 244.2346F-23 5.9234E-0.4 12977.1 -3.8698E-23 3.9974E-0.4 12188.2 254.2543E-23 5.9234E-0.4 12977.1 -3.8698E-23 3.9974E-0.4 12188.2 262.1345E-23 4.9048E-0.4 12977.1 -3.6708E-23 3.9974E-0.4 12188.2 274.0696E-23 5.666E-0.4 1277.4 -3.7541F-23 3.8198E-0.4 11829.6 282.1345E-23 4.9048E-0.4 12661.7 -3.6708E-23 3.4759E-0.4 11829.6 292.1345E-23 4.9048E-0.4 12661.7 -3.6708E-23 3.4759E-0.4 11829.6 292.1345E-23 4.5758E-0.4 12589.1 -3.5306E-23 3.4759E-0.4 11830.8 292.1345E-23 4.5758E-0.4 12584.3 -3.5306E-23 3.4759E-0.4 11830.8 292.1345E-23 4.5758E-0.4 12584.3 -3.5306E-23 3.4759E-0.4 11830.8 202.1345E-23 4.5758E-0.4 12584.3 -3.5306E-23 3.47	-		7.8203E-04	13461.7	-4.3 APAE-23	7.6357E-04	•	
a -4.7103E-23 8.0232E-04 13451.4 -4.3387E-23 7.1609E-04 13150.2 a -4.7174E-23 8.0737E-04 13441.7 -4.3039E-23 6.9239E-04 13105.6 10 -4.7169E-23 8.0825E-04 1342.8 -4.2753E-23 6.7198E-04 1305.6 11 -4.726E-23 9.1178E-04 13412.8 -4.2553E-23 6.5480E-04 13007.9 12 -4.726E-23 8.1031E-04 13303.7 -4.2199E-23 6.3359E-04 12954.8 13 -4.720FE-23 8.0674E-04 13371.5 -4.1858E-23 6.1329E-04 12840.1 15 -4.6080F-23 7.9283E-04 13317.7 -4.1317E-23 5.7790E-04 12778.5 16 -4.6787E-23 7.7060E-04 13251.4 -4.0990E-23 5.5904E-04 12714.3 17 -4.6586E-23 7.7060E-04 13213.5 -4.0340E-23 5.2228E-04 12577.4 18 -4.595E-22 7.3860E-04 13172.5 -3.969E-22 5.0366E-04 12577.4 19 -4.595E-23 7.3860E-04 13172.5 -3.9713E-22 5.0366E-04 <td></td> <td></td> <td>7.02125-04</td> <td>13459.1</td> <td>-4.3625E-23</td> <td>7.3791F-04</td> <td>13191.8</td>			7.02125-04	13459.1	-4.3625E-23	7.3791F-04	13191.8	
2			8.0232F-04	13451.4	-4.3387F-23	7.16095-04	13150.2	
10	3		9.0737F-04	13441.7	-4.3039E-23	6.9239F-04	13105.6	
11			8.0825F-04	17428.9	-4.2753E-23	6.71 98F-04	13058.2	
12	_	•		13412.8	-4.2553E-23	6.5480E-04	1 3007.9	
13	-			13393.7	-4.2199F-23	6.3359F-04	12954.8	
14				13371.5	-4.1858F-23	6.1329F-04	12898.8	
15					-4.1508F-23	5 . 95 75 F - 04	12840.1	
16	•			13317.7	-4.1317E-23	5.7790E-04	12778.5	
17	•		•		-4.0990E-23	5.5904F-04	12714.3	
18				-	-4.0722E-23	5.4205E-04	12647.2	
10	-	• • • • • • • • • • • • • • • • • • • •			-4.0340F-23	5.2228F-04	12577.4	
7.1875F-04 1312P.4 -3.9713F-22 4.8717E-04 1242P.8 -4.5154F-23 6.953E-04 130Pl.1 -3.9415E-23 4.7035E-04 12351.9 -4.4570E-23 6.4979F-04 12977.1 -3.8693E-27 4.3458E-04 12188.2 -4.2543E-23 5.9234E-04 12960.5 -3.8287E-23 3.9974E-04 12012.5 -4.1607E-23 5.5866E-04 12771.4 -3.8693E-27 3.8198E-04 12102.5 -4.0696E-23 5.2657E-04 12771.1 -3.7541E-23 3.8198E-04 11829.6 -3.7541E-23 3.8198E-04 11923.2 -3.6306E-23 3.9776E-04 11733.6 -3.7157E-23 3.5582E-23 4.1742E-04 12513.3 -3.5582E-23 3.9776E-04 11533.7 -3.5582E-23 3.7585E-04 12434.3 -3.5369E-23 2.9776E-04 11533.8 -3.5582E-23 3.2861E-04 12352.1 -3.5015E-23 2.8363E-04 11323.8	_					5.0356F-04	12504.9	
21	-				-3.97135-22	4.8717E-04	12429.8	
22	_	• • • • • • • • • • • • • • • • • • • •		-	-3.9415E-23	4.7035E-04	12351.9	
23	•		-		-3.8998F-23	4.5101E-04	12271.4	
24	-				-3.8693E-23	4.3458E-04	12188.2	
25	-				-3.8287E-23	4.1519F-04	12102.5	
26	-		7.7	1 To	-3.7953E-23	3.9974F-04	12014.1	
27	_		the second secon		-3.7541F-23	3.8198F-04	11923.2	
28 -3.05 FRE -23			•	12731.1	-3.7144F-22	3.6495E-04	11829.6	
29 -3.6345E-22 4.5254E-04 12589.1 -3.6306E-23 3.3130E-04 11634.9 30 -3.7152E-23 4.1742E-04 12513.3 -3.5917E-23 3.1568E-04 11533.7 31 -3.5582E-23 3.7585E-04 12434.3 -3.5369E-23 2.9776E-04 11430.0 32 -3.4103E-23 3.3861E-04 12352.1 -3.5015E-23 2.83636-04 11323.8				•	-3.6708F-23	3.4759E-04	11733.6	
30 -3.7152E-23 4.1742E-04 12513.3 -3.5917E-23 3.1568E-04 11533.7 31 -3.5582E-23 3.7595E-04 12434.3 -3.5369E-23 2.9776E-04 11430.0 32 -3.4103E-23 3.3861E-04 12352.1 -3.5015E-23 2.83635-04 11323.8			• •		-3.6306E-23	3.3130E-04	11634.9	
31 -3.55 82F-23 3.75 85 E-04 12434.3 -3.536 9E-23 2.9776 E-04 11430.0 32 -3.4103 E-23 3.386 1 E-04 1235 2.1 -3.5015 E-23 2.836 3 E-04 11323.8	_		• • • • • • • • • • • • • • • • • • • •			3.1568F-04	11533.7	
32 -3.4103E-23 3.3861F-04 12352.1 -3.5015E-23 2.8363°-04 11323.8				• • • • •		2.9776E-04	11430.0	
12		•				2.83637-04	11323.R	
33 -3.2417E-23 2.907RE-04 12266.6 -3.4486E-23 2.6714E-04 11215.0				12256.6	-3.44865-23	2.6714E-04	11215.0	
34 -3.0506F-23 2.5998E-04 12177.9 -3.3972F-2? 2.5149E-04 11103.7						2.5149E-04	11103.7	
35 -2.8504F-23 2.2186F-04 12095.9 -3.3509E-23 2.3714F-04 10990.0	-				-3.3509E-23	2.3714F-04	10990.0	

"AT- IE SEEMENTS. FINSTEIN ATS AND ENERGIES FOR V= 1 TO 1 TRANSITIONS OF HOL

Pure Rotation

J	< 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	^	F
	ECH-CN	2 et =1	C 4-1
0	1.13845-13	1.13005-03	22.2
1	1.13055-12	1.09751-07	20.3
2	1.1 1995 -10	3.91405-02	40.5
3	1.13636-14	9.5113F-02	50.9
4	1.13005-13	1.01545-01	91.0
5	1.14055-10	3.16245-01	101.1
+	1.14125-19	5.47715-01	121.2
7	1.1421F-1 t	9.)5995-01	151.2
ρ	1.1432F-19	1.15125 00	191.3
3	1.1443F-19	1.50135 00	200.7
10	1.14565-10	2.1049= 03	220.3
11	1.14494-19	2.72000 00	210.9
1.2	1.14855-10	3.4635E 00	250.1
13	1.15015-19	4. 31201 91	279.2
14	1.15] 4F=19	5. 29445 07	207.2
1.5	1.15275-12	6. 28 795 00	315.0
14	1.1557F-10	7. 6 2 345 03	234.6
1 7	1.15795-14	8. 2005= 02	353.0
1 2	1.16015-19	1.0519= 01	371.2
1 .5	1.16245-15	1.2197= 31	300.7
2)	1.16405-16	1.40CSE 01	474.7
21	1.16.756-18	1.50765 01	424.4
22	1.17035-19	1.8105F 01	441.6
23	1.17217-13	2.03505 01	458.4
24	1.17415-12	2.2821F 01	475.3
25	1.17075-19	2.54775 01	491.7
26	1.19255-19	2.01055 01	507.8
27	1.1 P59F-19	2.1007# 01	523.6
24	1.18631-10	3.41575 01	539.0
50	1.19295-19	7.7373F 01	554.2
30	1.1367F-18	4.7728F C1	560.1
21	1.20065-19	4.4230F 01	593.6
37	1.20455-19	4.73625 01	597.7
33	1.20875-18	5.16295 01	611.5
34	1.2129E-19	5.55705 01	624.0
35	1.21735-18	5.9524F 01	638.0

MATRIX FLEMENTS, EINSTEIN A'S AND ENERGIES FOR V= 1 TO 2 TRANSITIONS OF HCL

	a -	-ARANCH	P-RRANCH			
J	<	٨	E	<v j="" j-1="" mh="" v*=""></v>	Δ	F
	ESUICH	SFC-1	C M-1	ESU-CM	SFC-1	C M-1
0	9.794RF -79	2.7073F 01	2802.3			-
1	9.45775-27	2.5280F 01	2821.3	1.00715-17	4 30505 01	
2	9.52125-20	2.7007F 01	2939.8	1.02108-19	6.7052E 01	2762.3
3	9.78401 -20	2.8650F 01	2857.5	1.0210E-19	4.4911F 01	2741.5
4	0.24045-71	2.93755 01	2874.7	1.04905-19	4.0567F 01	2720.0
5	9.11415-7)	2.90618 01	2491.1	1.0632E-19	3.8736F 01	260R.0
4	6.07915-20	2. RC90F 01	2906.9	1.083/E-19	3.7719F 01	2675.4
7	8.94435-23	2.8806F 01	2922.0	1.09175-19	3.7054E 01	2652.3
Q	0.70975-70	2.86205 01	2936.5	1.1061E-10	3.6563F 01	2628.7
9	9.57616-2)	2.92005 01	2950.2	1.1206F-19	3.5162F 01	2604.5
10	- 44355-2)	2.7904F 01	2953.1	1.1352F-19	3.5807F 01	2579.9
11	₩. 7758F -20	2.7359F 01	2975.4	1.1499E-19	3.5474E 01	2554.8
12	9.17005-20	2.6868E 01	2986.9	1.1647E-17	3.5147E 01	2529.2
1.3	P. 0357F -20	2.6338F 01	2007.7	1.17965-19	3.4816E 01	2503.1
14	7.90015-20	2.57725 01	3007.7	1.19476-19	3.4476E 01	2476.6
15	7.74.415-20	2.5172F 01	3016.9	1.2098F-19	3.4120E 01	2449.6
16	7.62735-29	2.45425 01	3025.4	1.2251E-19	3.3747F 01	2422.2
17	7.49005-20	2.3805F 01	3033.0	1.2404F-19	3.3354F 01	2394.4
1 8	7.26 175 -20	2.32015 01	3039.9	1.2559F-17	3.2940F 01	2366.3
1 2	7.21255-20	2.24035 01	3046.0	1.27156-19	3.2505E 01	2337.7
20	7.07216-23	2.1764F 01	3051.2	1.2872F-19	3.2047F 01	2308.8
21	6.931156-23	2.1014F 01	3055.7	1.3030F-19	3.1567E 01	2279.5
22	F. 70 "5F - 3)	2.0247F 01	3059.3	1.31908-19	3.1066E 01	2249.9
23	6.64205-20	1.9464F 01	3062.0	1.3350F-19	3.0542E 01	2219.9
24	6.401.5-20	1.8665F 01	3064.0	1.3512E-10	2.9997F 01	2189.7
25	F. 74 F2F - 20	1.7855 01	3065.0	1.3675E-19	2.9432E 01	2159.1
26	4.19775-29	1.7034F 01	3065.3	1.38395-19	2.8847E 01	2128.2
27	6.04505-20	1.6205F 01	3064.6	1.4004F-19	2.8241F 01	2097.0
28	5 . P > 0 7 F = > ()	1.5370F 01	3063.1		2.7619F 01	2065.6
29	5.73148-23	1.45305 01	3060.7	1.41705-19	2.6978E 01	2033.9
30	5.57055-20	1.3687F 01	3057.4	1.4338F-19	2.6322F 01	2002.0
31	4.40628-23	1.2846F 01	3053.2	1.4506F-19	2.5651F 01	1969.8
17	6.23878-20	1.2005E 01	3048.1	1.4675E-19	2.4965E 01	1937.4
23	5.0666F-20	1.1170F 01	3042.1	1.4846E-19	2.4266F 01	1 904 . A
34	4.8704 = 20	1.0341E 01	3035.2	1.5017E-19	2.3557E 01	1872.0
35	4. * 622.33	9.52195 00	3027.4	1.5189F-19	2.2837E 01	1838.9
			10 77 . 4	1.5363E-19	2.21 ORF 01	1805.7

MATRIX FLEMENTS. FINSTEIN 4.5 AND EMERGIES FOR V= 1 TO 3 TRANSITIONS OF HCL

	D = J D WACH			P-BRANCH			
J	<v j="" j*15<="" mu="" th="" v*=""><th>3</th><th>F</th><th><v j="" j-1="" mu="" v'=""></v></th><th>٨</th><th>Ε</th></v>	3	F	<v j="" j-1="" mu="" v'=""></v>	٨	Ε	
	E 511-C *	< r < −1	C 4-1	ESU-CM	SFC-1	C M- 1	
0	-1.42631-21	3.4072F 00	5481.0				
1	-1.42161-20	4.2153F 00	5498.9	-1.4343E-20	1.0398F 01	5441.7	
2	-1.41926-1)	4.53645 00	5515.5	-1.4396F-20	5.9009F 00	5420.2	
3	-1.41545-20	4.72405 03	1530.9	-1.44548-20	6.1825E 00	5397.5	
4	-1.41305-20	4.8534F 00	5545.0	-1.4517F-20	5.8614F 00	5373.7	
5	-1.41125-20	4.9403F 00	5557.9	-1.4585F-20	5.6725F 30	5348.8	
4	-1.40906-20	F. 0256F 00	5569.4	-1.4659E-20	5.5438E 00	5322.6	
7	-1.40 895-20	5. 7893F 30	5579.7	-1.4738E-20	5.4474F 30	5295.4	
A	-1.40878-70	5.1440F 3)	55 84.7	-1.4P23F-20	5.3704F 00	5267.0	
1	-1.47075-73	5.1927F 00	5596.5	-1.4913E-20	5.3063F 00	5237.6	
10	-1.4)88F-20	5.2365F 00	5602.0	-1.5009E-20	5.2505E 00	5207.1	
11	-1.47575-20	5. 3745F 00	5607.9	-1.5111E-20	5.2009E 00	5175.5	
13	-1.41 1 1F -2 1	7. 3134F 00	5611.7	-1.5220E-20	5.1560F 00	5142.8	
13	-1.41298-20	1.34P2F 00	5514.1	-1.5334E-20	5.1144E 20	5109.1	
14	-1.41515-27	5.38CSF 00	5615.1	-1.5455E-20	5.0756F JC	5074 .4	
15	-1.41795-27	5.4111F 07	5614.3	-1.5582E-20	5.0389F 00	5038.6	
16	-1.4.2()01-21)	5.4400F 00	5613.1	-1.5716F-20	5.0038E 00	5001.9	
17	-1.42455-23	5.4471F 03	5410.1	-1.5857F-20	4.9701F 00	4964.2	
1.0	-1 7 RSF - 1 ')	4.4920F 00	5605.7	-1.6005F-20	4.9379F 00	4925.5	
10	-1.473()E-23	5.5174F 00	5500.0	-1.6161F-20	4.9063E 00	4885.9	
20	-1.43705-20	5.54015 00	5592.7	-1.6324E-20	4.8756F 00	4845.3	
21	-1.44327-27	5.56155 00	F584.7	-1.6495F-20	4.8458E 30	4803.8	
22	-1.4400 -21	5.5912F UO	5574.7	-1.6674E-20	4.8163F 00	4761.5	
23	-1.45811-70	5.5003F 00	5562.8	-1.6862E-20	4.7874E 00	4718.2	
74	-1.46 171 - 20	5.4159F 00	5550.0	-1.7059F-20	4.7591E 00	4474.0	
25	-1.46475-70	5.13C6F 00	5535. 9	-1.7264E-20	4.7309F 00	4629.0	
24	-1.47/15-27	5.4434F 00	5520.1	-1.7479F-20	4.70305 JC	4583.1	
27	-1.4 4 3 3 5 - 2)	5.4544F 00	5503.1	-1.7704F-20	4.6756E 33	4536.4	
28	-1.47211-2)	5.6630E 00	5494.5	-1.7940E-20	4. 481F 00	44RR.R	
50	-1.50C7F-20	5.6694F 00	5464.5	-1.8186F-20	4.6209E 00	4440.4	
30	-1.50578-20	5.4733F 00	5443.2	-1.8443E-20	4.5938F 00	4391.3	
31	-1.51918-20	5.47445 00	5420.3	-1.8712E-20	4.566RE 00	4341.3	
32	-1.52 ARF -20	5.67275 00	5396.0	-1.8994F-20	4.5399E 20	4290.6	
33	-1.53RRF-20	5.4681F 00	5370.2	-1.9288E-20	4.5129E 00	4239.0	
34	-1.54 025 -27	5.6579F 00	5342.9	-1.9595E-20	4.4859F 00	4186.8	
35	-1.55 ggF -20	5.5482F 00	5314.1	-1.9919E-20	4.45896 00	4133.7	

MATRIX ELEMENTS. FINSTEIN A'S AND ENERGIES FOR V= 1 TO 4 TRANSITIONS OF HCL

	P = ARANCH			P-PR ANCH			
J	ul	c	F	<v j="" j-1="" mij="" v*=""></v>	Δ	F	
	E 5 (1-0 14	SEC-1	C M-1	FSU-CM	SEC-1	C M-1	
0	1.24055-21	8.5383E-02	9057.3				
1	1.25715-21	1.04365-01	P)73.9	1 22745 00	1.72		
2	1.26575-21	1.1397F-01	9099.7	1.2376F-21	2.4767E-01	9018.5	
3	1.275bF = 21	1.2063F-01	8101.7	1.2331E-21	1.6258E-01	7906.5	
4	1.29645-21	1.2599F-01	9112.A	1.2293F-21	1.4423E-01	7972.6	
5	1.2985F-21	1.30775-01		1.2272E-21	1.354RE-01	7947.0	
6	1.3118F-21	1.3533F-01	9122.1	1.2260F-21	1.3010E-01	7919.6	
7	1.32628-21	1.3979F-01	9129.5	1.22575-21	1.2627F-01	7890.5	
Q	1.34205-21	1.44256-01	8135.0	1.2262F-21	1.2330E-01	7859.6	
3	1.3590F-21	1.48795-01	9139.6	1.2279F-21	1.2093F-01	7927.1	
10	1.37745-21		9140.3	1 • 2 30 5E -21	1.1990F-01	7792.8	
11	1.70696-21	1.5350F-01	9140.1	1.2342E-21	1.1737F-01	7756.9	
12	1.41805-21	1.5835E-01	9138.0	1.2398F-21	1.1598F-01	7719.3	
4.3	1.44065-21	1.6342F-01	3134.0	1 • 244 5E-21	1.1492F-01	7680.1	
14	1.46465-21	1.6974F-01	812A.O	1.25146-21	1.1396F-01	7639.2	
15	1.4900F-21	1.7432E-01	9120.2	1.2591F-21	1.1303F-01	7596.7	
16	1.5172F-21	1.90116-01	P110.3	1.2677F-21	1.1233F-01	7552.6	
17		1.8629E-01	8098.5	1.2779E-21	1.1183E-01	7506.9	
19	1.5459F-21	1.9270F-01	9094.9	1.2887F-21	1-11405-01	7459.7	
10	1.5763E-21	1.0948E-01	9069.1	1.3010F-21	1.1114E-01	7410.9	
	1.60855-21	2.0661F-01	8051.5	1.3144E-21	1.1097F-01	7360.6	
50	1.64245-21	2.1409F-01	8031.R	1.37898-21	1.1090E-01	7308.7	
21	1.67P3F-21	2.2200F-01	9010.3	1.3447E-21	1.1096E-01	7255.4	
22	1.715RF-21	2. 30225-01	7986.7	1.3617E-21	1.1109E-01		
23	1.75565-21	2.3891F-01	7961.1	1.3802E-21	1.1136E-01	7200 .6	
24	1.7976F-21	2.481 0E-01	7933.5	1.4001F-21	1.1173E-01	7144.2	
25	1.94135-21	2.5760F-01	7904.0	1.42115-21	1.1215F-01	7086.5	
26	1. #P75F-21	2.6764E-01	7872.4	1.44408-21	1.12735-01	7027.3	
27	1-9360F-21	2.7917E-01	783A.8	1.4682E-21		6966.6	
78	1.78686-51	2.8316F-01	7903.2	1.4940E-21	1.1337F-01	6904.6	
29	2.04015-21	3.0067F-01	7765.6	1.5216F-21	1.1411E-01	6841.1	
30	2.0961F-21	3.1274F-01	7726.0	1.5510E-21	1.1496E-01	6776.2	
31	2.15465-21	3.2527F-01	7684.3	1.5823F-21	1.1591E-01	6710.0	
32	2.2161F-21	3.3842F-01	7640.5	1.6156E-21	1.1696E-01	6642.4	
33	2.29045-21	3.5209E-01	7594.7		1.1912E-01	6573.4	
34	2.34 795 -21	3.6637E-01	7546.9	1.6510F-21	1.1937E-01	6503.0	
35	2.4185F-21	3.8124E-01	7496.8	1.6888E-21	1.2076F-01	6431.3	
		3.001E-01	440.0	1.72898-21	1.2224E-01	6358.3	

MATRIX ELEMENTS, FINSTEIN AS AND ENERGIES FOR V= 1 TO 5 TRANSITIONS OF HCL

	P-BRANCH			P-8R ANCH			
J	< 1+1, * V \ ()** \ ()*	٨	E	<v j="" j-1="" mu="" v'=""></v>	Δ	E	
	F S U-C"	55€ -1	CM-1	FSU-SM	SEC-1	C M- 1	
O	3.30 RRF - 23	1.3371F-04	10531.6			1000000	
1	7.1767F-23	1.4854F-04	10547.0	3.49835-23	4.4354F-04	10493.4	
2	3.03 805 - 23	1.4610F-04	10560.0	3.5722E-23	3.0631F-04	10470.8	
2	2.8462E-23	1.3338F-04	10570.6	3.6053E-23	2.7981E-04	10445.7	
4	2.66 COF = 23	1.1951F-04	10578.5	3.6464E-23	2.594PF-04	10418.2	
5	2.43526-23	1.0180E-04	10584.3	3.6423E-23	2.5917F-04	10388.4	
6	7.17405-23	8.2101E-05	10597.4	3.6316F-23	2.5063F-04	10356.3	
7	1.8012F-23	6.7666F-05	10598.1	3.6076F-23	2.4172F-04	10321.8	
2	1.57445-27	4.36905-05	10596.3	3.5614E-23	2.3084F-04	10285.0	
0	1.2346F-73	2.6375F-05	10582.0	3.5068E-23	2.1965F-04	10245.9	
10	8.5010F-24	1.29215-05	10575.1	3.4208E-23	2.0528E-04	10204.6	
11	4.3431F-24	3.3806F-06	10565.9	3.3254F-23	1.9060F-04	10160.9	
12	-1.0914F-25	2.1147F-09	10554.0	3.2112E-23	1.7465E-04	10115.1	
13	-5.1597F-24	4.7196F-06	10539.6	3.0685E-23	1.56686-04	10067.0	
14	-1.05728-22	1.9763F-05	10522.7	2.9312E-23	1.4044E-04	10016.7	
15	-1.6274F-23	4.43A2F-05	10503.3	2.7739E-23	1.23498-04	9964.2	
14	-2.25796-23	9.9436F-05	10491.3	2.5720F-23	1.0421E-04	9909.5	
17	-2.0384F-23	1.5054F-04	10456.8	2.37935-23	8.7492E-05	9852.7	
19	-3.6607F-23	2.2236E-04	10429.8	2.1651E-23	7.1031F-05	9793.7	
19	-4.4350F-23	3.38545-04	10400.2	1.9149F-23	5.4451 E-05	9732.6	
20	-5.2709F-27	4.7503F-04	10358.0	1.6483F-23	3.9506E-05	9669.4	
21	-6.1799F-23	6.4616E-04	10333.3	1.3770E-23	2.6987E-05	9604.1	
22	-7.1344F-23	8.5273F-04	10296.0	1.0725F-23	1.6012F-05	9536.7	
22	-P.1540F-23	1.1047F-03	10256.1	7.4363E-24	7.52255-06	9457.3	
24	-9.2743F-23	1.4091F-03	10213.7	4.0168E-24	2.1436F-06	9395.8	
25	-1.0425E-22	1.7517F-03	10168.6	4.0853E-25	2.1638E-08	9322.3	
26	-1.1636F-22	2.1798F-03	10121.0	-3.6065E-24	1.6443F-06	9246.R	
27	-1.30 LIF -22	2.66395-03	10070.7	-7.7579E-24	7.4136F-06	9169.2	
29	-1.44325-22	3.2285F-03	10017.8	-1.2311E-23	1.8176F-05	9089.6	
20	-1.5940E -22	3.8754F-03	9952.3	-1.7031E-23	3.3835E-05	9008.1	
30	-1.75518-22	4.6189E-03	9904.1	-2.2152E-23	5.5629E-05	8924.5	
31	-1.0264F -22	5.4655E-03	9843.3	-2.7580E-23	8.3732E-05	8839.0	
32	-2.1084E-22	6.4236F-03	9779. R	-3.3265F-23	1.1816E-04	8751.5	
33	-2.3017E-22	7.5047F-03	9713.6	-3.9422E-23	1.6084E-04	8662.1	
34	-2.5090E-22	9.7327E-03	9644.8	-4.6058F-23	2.1258E-04	8570.6	
35	-2.72POE-22	1.00995-02	9573.1	-5.2886E-23	2.7110E-04	8477.2	

MATRIX ELEMENTS. FINSTEIN A'S AND ENERGIES FOR V= 1 TO 6 TRANSITIONS OF HCL

	PHRANCH			P - BR ANCH			
J	< 1 J/WIJ/ V* J+1>	Λ	F	<v j="" j-1="" mu="" v'=""></v>	Δ	E	
	E S CI-C M	SEC-1	C 4-1	FSII-CM	SEC-1	CM-1	
0	-c.3000F-23	1.0909E- 3	12904.0				
1	-C.4242F-23	2.4022E-03	12918.2	-9.3111E-23	5.7922E-03	12856.5	
2	-c.4672F-23	7.4014F-03	12929.4	-9.2766F-23	3.8121E-03	12843.2	
3	-C.4951F-23	2.7159E-03	12937.4	-9.2257F-23	3.3727F-03	12816.9	
4	-9.5150F-23	2.7983F-03	12942.4	-9.1812F-23	3.1593F-03	12787.6	
5	-9.5315E-23	2.8525F-03	12944.3	-9.1317F-23	3.0155F-03	12755.3	
4	-9.5459F-23	2.9922F-03	12943.1	-9.0853E-23	2.9065F-03	12770.1	
7	-9.5537F-23	2.0191E-03	12938.0	-9.0303E-23	2.8091 F-03	12681.8	
R	-9.5594F-23	2.9360F-03	12931.5	-8.9826F-23	2.7263F-03	12640.7	
9	-9.5F42F-23	2.9412F-03	17921.0	-R.9274E-23	2.6453F-03	12596.7	
10	-5.5425F-23	2.9375F-03	12907.4	-8.8759F-23	2.5707F-03	12549.8	
11	-c.5190F-23	2.9222F-03	12870.7	-8.8181E-23	2.4952F-03	12500.0	
12	-9.4941F-23	2.9026F-03	12870.9	-8.7596E-23	2.4217F-03	12447.4	
13	-6.45005-23	2.4679F-03	12848.0	-8.6956F-23	2.3468F-03	12391.9	
14	-9.3980F-23	2. P262F-03	12922.0	-8.6383E-23	2.2769F-03	12333.6	
15	-9.3354F-23	2.7749F-03	12792.9	-8.5751E-23	2.2052F-03	12272.6	
14	-9.2624F-23	2.7157F-03	12750.5	-8.5105E-23	2.1338F-03	12208.7	
17	-9.1425F-2?	2.6346F-03	12725.1	-P.4377F-23	2.0593F-03	12142.2	
18	-9.06 FOF - 27	2.5637F-03	12696.5	-8.3795E-23	1.9931F-03	12072.9	
10	-8.9516F-23	? . 4 7AAF-03	12644.9	-9.3023=-23	1.9188E-03	12000.8	
20	-8.8045E-23	2.37535-03	12599.9	-R.2194E-23	1.8433F-03	11926.1	
21	- A . 4 5 7 7 F - 2 7	2.27055-03	12551.8	-9.1527F-23	1.7763F-03	11848.7	
22	-P.4740F-23	2.1541F-03	12500.6	-8.0665E-23	1.7020E-03	11768.6	
23	-R. 2906F-23	2.03105-03	12446.2	-7.9871F-23	1.6321E-03	11685.8	
24	-8.06976-27	1.9031E-03	12348.7	-7.9086E-23	1.55385-03	11600.4	
25	-7.8233F-23	1.7644 =-03	12327.9	-7.8174E-23	1.4977F-03	11512.4	
24	-7.55C9F-23	1.6236F-03	12263.R	-7.7331E-23	1.4248F-03	11421.7	
27	-7.27495-21	1.47955-03	12196.5	-7.6409F-23	1.3563E-03	11328.4	
29	-6.9490F-23	1.32745-03	12126.1	-7.5362E-23	1.2852E-03	11232.5	
29	-4.53FOF-23	1.17575-03	12052.3	-7.4375E-23	1.2184E-03	11134.0	
30	-6.2152F-23	1.02395-03	11975.2	-7.330 RE -23	1.1510F-03	11032.8	
31	-5.78C7F-23	9.6841F-04	11894.R	-7.2134E-23	1.0927F-03	10929.0	
32	-5.3269F-23	7.2729F-04	11811.0	-7.1043F-23	1.0193E-03	10822.6	
33	-4.9223E-23	5.7918E-04	11723.9	-6.9736E-23	9.5230E-04	10713.5	
34	-4.2543F-23	4.4268F-04	11633.4	-6.8449F-23	8.8867F-04	10601.8	
35	-3.67441-23	3.2090F-04	11539.4	-6.7155E-23	8.2764E-04	10487.5	

MATRIX BITHINIS. ETHSTEIN AS AND ENERGIES FOR VE 2 TO 2 TRANSITIONS OF HOL

Pure Rotation

J	< 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Δ	E
	F S I I P C **	SEC-i	L N- 1
C	1.16.746-10	1.04455-03	19.7
1	1.16745-14	1. 3411 =- 32	30.3
2	1.16 77F - 1 2	3.7579E-0?	50.0
3	1.16915-13	0.72755-07	78.4
10	1.1/1676-12	1.9301F-01	20.1
5	1.14075-17	7.7203 =- 01	117.6
	1.17015-18	5.15476-31	137.0
7	1.17175-19	7.7219F-01	156.3
0	1.17205-19	1.13455 03	175.5
7)	1.17215-14	1.51635 00	174.7
10	1.17435-12	2.01945 00	213.7
11	1 . 1 7 5 7 5 - 1 2	2.4177F 00	247.4
1.2	1.1771=12	7.31275 00	251.3
1.2	1.17478-10	4. 12775 00	240.9
14	1.1004F-13	5.3437F 00	248.2
15	1.10225-19	4.11655 00	324.4
14	1.1042F-18	7.2(075))	374.5
17	1.19625-19	F. 5105F ():)	342.7
10	1.1 2045-10	1.0CATE 01	359.0
19	1.1007F-14	1.1550 01	377.3
20	1.10315-10	1.73025 01	104.4
21	1.10575-19	1.52505 01	411.3
22	1.17075-14	1.72415 01	47A.)
23	1.23115-19	1.945.)5 01	444.4
24	1.2)405-19	2.17555 01	460.5
25	1.2 ; 705-14	2.4220F 01	476.3
26	1.21015-19	2. 48235 11	491.9
27	1.21 14 F-14	2.95925 01	507.1
28	1.21675-18	2.7471 01	522.0
29	1.2202F-18	3.5464F 01	536.4
3 C	1.22385-18	3.8651F 01	550.9
21	1.22755-19	4.1036F 01	544.7
12	1.24175-18	4.5774F 01	578.5
23	1.27525-18	4.44555 01	591.7
74	1.23026-10	5.24775 01	604.5
15	1.2434F-19	5.6106F 01	617.1

MATRIX FLIMENTS, FINSTEIN A'S AND ENERGIES FOR V= 2 TO 3 TRANSITIONS OF HOL

	P-ARANCH			P-BR ANCH			
t.	<1+1 +11111VL V>	4	¢	< J/MII/V J-1>	Δ	E	
	ESU-C4	SEC-1	CM-1	E SU-CM	S E C - 1	C M - 1	
0	1.17678-10	2.9375F 01	2694.4				
1	1.15805-10	3.3737E 01	2716.9	1.2100F-19	4.6403F 01	2459.7	
2	1.1407F-10	3.5770E 01	2734.7	1.2275F-19	5.7932F 01	2539.4	
4	1.12746-19	3.4664F 01	2751.9	1.2450F-19	5.2377F 01	2618.6	
6	1.10425-10	3.7014F 01	2768.4	1.2626F-19	5.0054F 01	2597.2	
5	1.78406-10	3.7052F 01	2784.3	1.2902F-10	4.9776F 01	2575.2	
6	1.07175-19	3.6884E 01	2799.5	1.29405-19	4.7945F 01	2552.7	
7	.05445-10	3.45705 31	2814.0	1.3158F-19	4.7332F 01	2529.7	
Ω	1.03725-10	3.5143F 01	2827.9	1.3336E-19	4. 49 34F 01	2506.2	
0	1.0:000-10	3.5424F 01	2941.0	1.3516F-19	4.63 AGF 01	2482.1	
10	1.00256-19	3.5027F 01	2953.4	1.3697F-19	4.5969F 01	2457.6	
1.1	c. 85 175 - 27	3.4364F 01	2865.1	1.3974E-10	4.5553E 01	2432.6	
1.2	S.6767E-20	3.36425 01	2876.0	1.4061F-19	4.5126F 01	2407.2	
13	9.5014F-20	3.2847F 01	2886.2	1.42445-19	4.45 93E 01	2791.3	
14	C. 27 50E = 20	3.2043F 01	2995.7	1.447 AE-19	4.4216F 01	2354.9	
15	9.1477F-20	3.11775 01	2904.4	1.4614F-19	4.3723F 01	2328.2	
14	F.9491F-20	3.02715 01	2912.3	1.4800F-19	4.3201F 01	2301.0	
17	F. 790' C-7)	2.9328F 01	2919.4	1.4987E-19	4.26475 01	2273.4	
19	P.6075F-20	2.8353F 01	2925.7	1.51765-19	4.2063F 01	2245.5	
19	R.4242F-23	2.7349E 01	2931.2	1.53655-19	4.1446F 01	2217.2	
20	8.23 COF -20	2.6315F 01	2936.0	1.5555E-19	4.0798F 01	2148.5	
21	P.0517E-20	2.5759F 01	2039.8	1.5747F-19	4.0118E 01	2159.5	
22	7.8520F-20	2.4192E 01	2947.9	1.5039E-19	3.940RE D1	2130.2	
23	7.64C7F-20	2.3096F 01	7945.1	1.6132E-19	3.8666F 01	2100.5	
24	7.47475-70	2.1976F 01	7946.5	1.6326E-19	3.7496F 01	2070.5	
75	7.2765F-20	2.0853F 01	2947.1	1.6521E-19	3.7099E 01	2040.3	
26	7.0750F-20	1.9722F 01	2946.8	1.6717E-19	3.4273F 01	2009.7	
27	4. A 6 99F - 29	1.4545F 01	2945.6	1.6914F-19	3.5423F 31	1979.9	
28	6.44005-20	1.7445F 01	2943.5	1.7112F-19	3.4550E 01	1947.8	
20	6.4476F-20	1.6305E 01	2940.5	1.7310F-19	3.3654F 01	1916.4	
30	6.22 CAF-20	1.5171F 01	2936.7	1.7509F-19	3.2737F 01	1484.8	
31	6.0069F-20	1.4044F 01	2932.0	1.7708E-19	3.1901F 01	1853.0	
77	5.7797F-20	1.2978E 01	2926.3	1.7908E-19	3.09475 01	1920.9	
33	5.5447F-20	1.1927F 01	2019.A	1.8108E-19	2.3979F 01	1789.6	
34	5.3045E-20	1.0745F 01	2912.2	1.8309E-19	2.8897F 01	1756.1	
3.5	5.05754-20	9.6877F 00	2903.8	1.8509F-19	2.7902F 01	1723.4	

MATOIX ELEMENTS, CINSTEIN 4.5 AND ENERGIES FOR V= 2 TO 4 TRANSITIONS OF HEL

		3PANC4		P-RK ANC H		
.I	CA TIMELIA. 1+12	^	۲	ul	Δ	г
	£ 211-0.0	SEC-1	CM-1	FSU-C'M	SFC-1	C M- 1
O	-2.14005-00	7. 72235 00	5274.7			
1	-2.1245F-21)	4.47145 00	5291.9	-2.15578-20	2.3929F 01	5236.5
2	-2.12405-20	9.11136 00	5307.9	-2.1642E-20	1.3876E 01	5215.7
3	-2.1240F-20	0.4930F 00	5322.7	-2.1734E-20	1.2454F 01	5103.6
4	-2.1199F-20	9. 7349F JO	5336.3	-2.1834E-20	1.18115 01	5170.4
€,	-2.11675-20	7.9144 5 33	5349.6	-2.19425-20	1.14335 01	5146.1
6	-2.1137[-70	1.00645 01	5350.4	-2.2058E-20	1.11765 01	5120.6
7	-2.11115-20	1.0183F 01	5340.3	-2.2182E-20	1.09945 01	5093.9
3	-2.10C6F-27	1.0283F 01	5377.7	-2.2314F-20	1.0931F 01	
Q	-2.1087F-20	1.0370F 01	5384.8	-2.2435E-20	1.0702F 01	5056.2 5037.4
10	-2.10 C4F -?)	1.74475 01	5390.7	-2.26045-20	1.0591F 01	5007.5
11	-7.10 PPF -20	1.0515F 01	5305.2	-2.2762F-20	1.04215 01	4976.5
12	-2.1099F-20	1.0576F 01	5394.4	-2.2930E-20	1.04015 01	4944 .4
13	-2.1115E-20	1. 2622E 01	5400.2	-2.3107E-20	1.03175 01	4911.4
14	-2.11798-20	1.0692F 01	5400.7	-2.32935-20	1.0237E 01	4977.3
15	-2.11671-73	1.07295 01	5300.0	-2.3489F-20	1.01638 01	4942.1
16	-2.1202F-20	1. J770F 01	5307.7	-2.36965-20	1.00°1F 01	4806.0
17	-2.1244E-20	1.)9095 01	5304.1	-2.3913F-20	1.00215 01	4769.0
10	-2.1201F-20	1.3842F 01	5330.1	-2.4141F-20	9.9541F 00	4730.9
10	-2.13445-20	1.0871F 01	5292.8	-2.43POF-20	7.8894F 00	4591.9
20	-2.1404F-2)	1.08085 01	5375.1	-2.4631F-20	9.8243F 00	4651.9
21	-2.14605-20	1. 19295 01	5365.9	-2.4894E-20	9.7511F 00	4611.1
22	-2.1579F-27	1.0937F 01	5355.4	-2.5170F-20	9.6989E 00	4569.3
23	-2.1616E-20	1.0951 [01	5343.4	-2.5450E-20	9.5376E 00	4526.6
24	-2.16975-20	1. 3961 F 01	5330.1	-2.57618-20	9.5766F 30	4493.0
25	-2.1795F-20	1.09665 01	5315.3	-2 · 6 078E -20	7.5165E 20	4438.6
26	-2.1977F-20	1.0965F 01	5299.0	-2.6409E-20	9.4565F 00	4393.2
27	-2.1975F-20	1.0041F 01	5291.4	-2.6756F-20	9.3970F 00	4347.1
28	-2.2077F-20	1.0950F 01	5262.2	-2.7119F-20	9.3374F 00	4300.0
29	-2.21955-70	1.00336 01	5241.6	-2.7499F-20	9.2783F 30	4252.2
30	-2.2297F-20	1.0011F 01	5219.5	-2.7897F-20	9.21925 00	4203.5
31	-2.2414F-20	1.03825 01	5195.9	-2.8314E-20	9.1500F 00	4154.0
32	-2.25745-20	1.3846F 01	5170.9	-2.8750F-20	100RF 00	4103.7
33	-2.26 FOF -20	1.08035 01	5144.3	-2.9207F-20	9.0414F 00	4052.6
74	-2.2797F-20	1.07525 01	5116. 2	-2.9686E-20	8.9817E 00	4000.7
15	-2.20106-20	1.0693F 01	5086.5	-3.0188F-20	8.9219F 30	3948.0

MATRIX FLIMENTS. FINSTEIN A'S AND ENERGIES FOR V= 2 TO 5 TRANSITIONS OF HOL

	L-BB WICH			P - AR ANCH		
J	<	Δ	E	<v j="" j-1="" mu="" v!=""></v>	Δ	F
	ESU-C"	SFC-1	CM-1	ESII-CM	SEC-1	CM-1
0	2.33206-21	2.54575-01	7740.0			
1	2.34515-21	3.2305F-01	7745.0			
2	2.35075-21	3.5236F-01	7779.2	2.31246-21	7.69145-01	7711.4
3	7.3760F-21	3.7225F-01		2.20515-21	5.0525F-01	7690.0
4	2.39415-21	3.38118-01	7791.5	2.2993F-21	4.4937F-01	7666.7
5	2.4142F-21	4.0209E-01	7802.1	2.2054F-21	4.2142E-01	7641.7
6	2.43648-21	4.15125-01	7810.7	2.29335-21	4.3466F-01	7614.9
7	2.46078-21	4.2779F-01	7917.5	2.2926E-21	3.9263F-01	7586 . 4
R	2.4 9ARE -21	4.4029E-01	7827.4	2.2938E-21	3.8337E-01	7556 . 1
0	2.51525-21	4.53005-01	7825.4	2.2966E-21	3.75 PSF -01	7524.1
10	2.5459F-21	4.6595=-01	7925.5	2.3013F-21	3.6961F-01	7490.5
11	2.5786F-21		7925.7	2.3075E-21	3.6421F-01	7455.1
12	2.41305-21	4.7523F-01	7823.0	2.3157E-21	3.5964E-01	7418.1
13	2.45158-21	4.9311E-01	7818.3	2. 3257F-21	3.5549E-01	7379.4
14	2.60166-21	5.07466-01	7811.9	2.33745-21	3.522RF-01	7329.1
15	2.7344F-21	5.2246F-C1	7903.2	2.3511F-21	3.4934F-01	7297.2
16	2.7707[-2]	5.38105-01	7792.9	2.3667F-21	3.4683E-01	7253.7
17	2.82745-21	5.5442F-01	7793.4	2.38415-21	3.4469E-01	7208.6
12	2.87856-21	5.71466-01	7756.1	2.4036E-21	3.4294F-01	7161.9
10	2.0324F-21	5.8934F-01	7749.8	2.4253F-21	3.4157E-01	7113.7
20	2.99925-21	6.0804E-01	7731.5	2.4490F-21	3.40515-01	7063.9
21	3.04925-21	6.2762F-01	7711.2	2.474 OF -21	3.3977F-01	7012.6
22		6.4810F-01	7689.0	2.5030F-21	3.3932F-01	6959.8
23	3.1123F-21	6.6C49F-01	7664.7	2.53355-21	3.3919F-01	6905.5
24	3.17885-21	6.9196F-01	7638.5	2.5666F-21	3.3938E-01	6949.6
25	3.24686-21	7.15265-01	7610.2	2.6021F-21	3.3984E-01	
26	3.32245-21	7.3969F-01	7579.3	2.6402E-21	3.4059F-01	6792.3
27	3.300KF-21	7.5514F-01	7547.5	2.69125-21	3.4164F-01	6733.6
28	3.4910F-21	7.9179F-01	7513.2	2.7252F-21	3.4299F-01	6673.4
20	3.5560F-21	8.1944F-01	7476. R	2.77195-21	3.4456F-01	6611.7
	3.65565-21	8.4835E-01	7438.3	2.F223E-21		6548.6
30	3.7495F-21	8.7843E-01	7397.7	2.8760E-21	3.4652F-01 3.4875E-01	6484.0
31	3.84R0E-21	9.00725-01	7355.0	2.933F-21	3 61305 01	6418.1
32	3.95125-21	9.4217F-01	7310.2	2.09465-21	3.5130E-01	6350.7
32	4.05C7E-21	9. 76065-01	7263.2	3.0601E-21	3.54165-01	6281.9
34	4.1734F-21	1.0111E 00	7214.1	3.12995-21	3.5741E-01	6211.6
25	4.2027F-21	1.0475F 00	7162.8	3.2046F-21	3.40935-01	6140.0
			, .	204011	3.6487F-01	6066.9

MATRIX FLEMENTS, FINSTEIN 4.5 AND ENERGIES FOR V= 2 TO 6 TRANSITIONS OF HCL

	F -	BRANCH		P-BP ANCH		
J	<v j="" j+1="" mi="" v*=""></v>	A	c	ul <1-1>	Λ	F
	FSU-CM	SEC-1	C 4- 1	FSU-CM	SEC-1	C M-1
0	-4.42595-23	2.5247E-04	10121.4			
1	-5 .1 1 205 - 23	3.4160F-04	10136.2	-4.3440F-23	6.0702E-04	10084.5
?	-5.4477F-27	4.1408F-04	10144.6	-4.1552F-23	3.5961F-04	10062.4
3	-5.9200F-23	4. GAAGE-04	10158.4	-4.0167E-23	3.0709F-04	10037.9
4	-6.25435-23	5.3591 =- 04	10165.9	-3.90155-23	2.7373F-04	10011.0
5	-6.71636-23	4.9695F-04	10170.A	-3.8179E-23	2.5261F-04	9981.8
6	-7.2540F-27	9.1150F-04	10173.2	-3.7847E-23	2.4141F-04	9950.1
7	-7.93276-23	0.57715-04	10173.2	-3.7623E-23	2.3311F-04	9915.1
Ω	-A.44 71+ -27	1.1205E-03	10170.6	-3.7828F-23	2.3086E-04	9879.9
3	-9.1505(-23	1.3164E-03	10165.6	-3. P325F-23	2.3247F-04	9941.2
10	-9.01671-23	1.5472F-03	10158.0	-3.9191F-23	2.3867E-04	9800.3
11	-1.0755F-22	1.8200F-03	10147.9	-4.0456F-23	2.4978E-04	9757.2
12	-1.16105-22	2.1379E-03	10135.3	-4.2053E-23	2.6509F-04	9711.7
13	-1.24351-22	2.5057F-03	10120.2	-4.3989E-23	2.8485E-04	9664.1
14	-1.37155-22	2.9435F-03	10102.5	-4.53RRF-23	3.1101E-04	9614.2
15	-1.40517-22	3.43795-03	10082.3	-4.8950E-23	3.3988E-04	9562.1
15	-1.60928-22	4.0162F-03	10050.5	-5.2117E-23	3.7795F-04	9507.9
17	-1.7428F-27	4.6825E-03	10034.3	-5.55695-23	4.2126F-04	9451.4
19	-1.09575-27	5.4470F-03	10006.5	-5.9506F-23	4.7334F-04	9392.9
10	-2.04045-27	6. 32425-03	9276.1	-6.3974F-23	5.3575E-04	9332.1
20	-2.2044F-22	7.3171E-03	9943.1	-6.9657E-23	6. 73 A5E-04	9269.3
21	-2.2910F-22	R.4545F-03	9907.5	-7.3905F-23	6.8426E-04	9704.4
22	-7.54C4F-27	3.7410E-03	9869.4	-7.9519F-23	7.7413F-04	9137.3
23	-2.7459F-22	1.1192E-02	9828.6	-8.57195-23	9. 7839F-04	9068.2
24	-2.99620-22	1 . ? 84 7E-C?	9785.2	-9.2504E-23	9.9812E-04	8997.0
25	-2.21355-22	1.46795-02	9739.2	-9.9526E-23	1.1264F-03	8923.7
26	-3 -4 5 7 PF - 22	1.4753E-0?	9690.5	-1.0742F-22	1.2782E-03	A848.3
27	-3.71735-22	1.9069F-02	7639.1	-1.15655-22	1.4420E-03	8770.9
28	-3.0036F-22	2.1653E-02	G585.0	-1.2459F-22	1.6274E-03	8691.5
29	-4.23765-22	2.4531F-02	9528.3	-1.3417E-22	1.8336E-03	8609.9
30	-4.60065-22	2.7732E-02	9468.7	-1.4439E-22	2.0611E-03	8526.3
31	-4 07305-22	3.1287E-02	9406.5	-1.552 AF -22	2.3114E-03	8440.7
32	-5.28 POF -22	3.5214F-02	9341.4	-1.6696E-22	2.5883F-03	8352.9
33	-5.6.5615-22	3.9571F-02	9273.5	-1.7962F-22	2.9987F-03	8263.1
34	-6.0695F-22	4.4379F-0?	9202.7	-1.9309E-22	3.2377E-03	8171.2
35	-6.4077F-22	4.9687E-02	9129.1	-2.0754F-22	3.6113E-03	8077 .2

MATRIX FLEMENTS. FINSTEIN A'S AND ENERGIES FOR V= 2 TO 7 TRANSITIONS OF HCL

	P-RRANCH			P-BRANCH			
J	<pre></pre> <pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><p< th=""><th>Λ</th><th>F</th><th><v j="" j-1="" mu="" v*=""></v></th><th>٨</th><th>F</th></p<></pre>	Λ	F	<v j="" j-1="" mu="" v*=""></v>	٨	F	
	F S U=C M	SFC-1	C-M-1	FSU-CM	SEC-1	CM-1	
0	-1.39548-22	3.9739F-03	12391.8			•	
1	-1.37855-22	4.6947E-03	12405.3	-1.3879F-27	1 10075 40	12222	
2	-1.4015F-27	5.0534E-03	12415.7	-1.3841F-22	1.1397F-02	12355.5	
3	-1.40 35E-22	5.3651F-03	12423.0	-1.3797F-22	7.5138E-03	12372.9	
4	-1.4045F-22	5.3080 =- 03	12427.3	-1.3750E-22	6.6779F-03	12307.0	
*	-1.40625-22	5.4954E-03	12428.4	-1.3713F-22	6.2727F-03	12279.2	
6	-1.4047F-22	5.5413E-03	12426.3	-1.3652F-22	5.0183E-03	12246.4	
7	-1.40415-22	5.5757F-03	12421.2	-1.3610E-22	5.8062F-03	12211.6	
Q	-1.4007F-22	5.5753F-03	12412.2	-1.3551E-22	5.6438F-03	12173.7	
Q	-1.30 69F-22	5.55028-03	12401.6	-1.3500F-22	5.4847E-03	12133.0	
10	-1.3911E-22	5.51765-03	12387.0	-1.3435F-22	5.34715-03	12089.3	
11	-1.3027E-22	5.4476E-03	12369.4	-1.3365F-22	5.2045F-03	12042.7	
12	-1.37255-22	5.3576F-03	12348.6		5.062RF-03	11993.2	
1.3	-1.3505F-22	5.2471 F-02	12324.7	-1.3297E-22	4.9260F-03	11940.A	
14	-1.34515-22	5.1069F-03	12297.6	-1.3137F-22	4.7861 F-03	11985.6	
15	-1.3297F-22	4.9555F-03	12267.3		4.5470F-03	11827.5	
16	-1.3077F-22	4.7703E-03	12234.0	-1.30595-22	4.50745-03	11766.6	
17	-1 .28 34F -22	4.5509F-03	12197.4	-1.2954E-22	4.3540E-03	11702.9	
19	-1.75735-22	4.3411E-03	12157.7	-1.2852E-22	4.2052E-03	11636.4	
19	-1.2260E-22	4.0893E-03	12114.8	-1.2742E-22	4.0534E-03	11567.2	
20	-1.1919F-22	3.9255F-03	12069.7	-1.2610F-22	3.9902F-03	11495.2	
2.1	-1.1535F-22	3.5427E-03	12019.4	-1 • 248 7F - 27	3. 7362E-03	11420.5	
22	-1.1106F-22	3.2447F-03	11966.9	-1.2347E-22	3.5744E-03	11343.1	
23	-1.0639F-22	2.9386F-03		-1.2202E-22	3.4137E-03	11262.9	
24	-1.0104E-22	2.61365-03	11911.2	-1.2045E-22	3.2501F-03	11180.1	
25	-9.54 28E-23	2.2964E-03		-1 1868E-22	3.0805F-03	11094.5	
26	-P.9053F-23	1.9680F-03	11799.9	-1 • 1 702F -22	2.9219E-03	11006.3	
27	-9.2265F-23	1.6510E-03	11724.4	-1.1506E-22	2.7532F-03	10915.3	
23	-7.4685E-23	1.3355=03	11655.5	-1.1313E-22	2.5917F-03	10821.7	
23	-6.6513F-23	1.0400F-03	11583.2	-1.1087F-27	2.4217E-03	10725.4	
30	-5.7508F-23	7.64305-04	11507.6	-1 .0870E-22	2.2624E-03	10626.3	
31	-4.7F37F-23	5.1504F-04	11428.6	-1.0636E-22	2.1031F-03	10524.6	
32	-3.7260E-23	3.0620E-04	11345.1	-1.03R5E-27	1.9450E-03	10420.0	
33	-2.5971F-27	1.43635-04	11260.0	-1.0123F-22	1.7906F-03	10312.8	
34	-1.7274F-27	3.7029E-05	11170.4	-9.8441E-23	1.6389E-03	10202.7	
35	3.12025-25	1.9936E-08	11077.2	-9.5340F-22	1.4862F-03	1 0089. A	
		1 • 4 4 5 8 4 = OR	10990.3	-9.2157E-23	1.3403F-03	0974.1	

MATRIX FLEMENTS. EINSTEIN ASS AND ENERGIES FOR V= 3 TO 3 TRANSITIONS OF HCL

J	<	٨	E
	F SU-C M	SEC-1	C 4-1
e	1.19495-18	1.03795-03	10.1
1	1.1951F-18	9.9303F-07	38.1
2	1.1954F-18	3.5882F-02	57.2
3	1.19585-19	R. 9059F-07	76.2
4	1.1963F-19	1.7554F-01	95.1
5	1.19695-18	3.0710F-01	114.0
6	1.10776-18	4.9191F-01	132.8
7	1.19855-18	7.3792E-01	151.5
8	1.19956-18	1.0534F UO	170.2
O	1.2005F-18	1.4465E 00	148.7
10	1.7017F-19	1.07475 00	207.1
11	1.2030F-18	?.4544F 00	225.4
12	1.20445-19	3.1678F 00	243.5
13	1.2059F=18	3.9373F 00	261.5
14	1.2076F-18	4.R203F 00	279.3
15	1.2053F-18	5.8714F 00	504.0
16	1.2112F-1A	6.9422F 00	314.3
17	1.21 328 -1 9	R.1872F 00	331.6
J &	1-2152E-18	9.5613F 00	348.5
10	1.21745-18	1.1057F 01	345.4
30	1.2197E-18	1.2703F 01	382.0
21	1.22716-18	1.4475E 01	399.3
22	1.2247F-18	1.6385E 01	414.4
23	1.22738-19	1.8427F 01	430.2
24	1.2300F-18	2.06C7F 01	445.8
2.5	1.23295-18	2.2919E 01	461.0
26	1.2359F-18	7.5367F 01	476.0
27	1.2389E-18	2.79395 01	490.7
2 B	1.2420E-18	3.0637E 01	505.0
29	1.2453F-18	3.3457E 01	519.1
30	1.2486F-18	3.63985 01	532.8
31	1.2521F-18	3.9443F 01	546.2
37	1.2556F-18	4.2597F 01	559.2
33	1.2593F-18	4.5843F 01	571.9
74	1.2630F-19	4.9177E 01	594.2
35	1.2668F-18	5.2591E 01	596.1

MATOIX TECHENIS. FINSTEIN 4.5 AND ENERGIES FOR V= 3 TO 4 TRANSITIONS OF HCL

	E.	-ыкумсн	D-88 WACH			
J	< \ 1\41\\. 1+1>	4	Ē	<v j="" j-1="" mu="" v*=""></v>	٨	F
	FSILCH	SFC-1	C 4-1	FSU-CM	SEC-1	CM-1
0	1.31976-19	3.18725 01	2595.3			
1	1.20016-10	3.7782F 01	2613.2	1 1/00 1-		
2	1.2784F-19	3. 7986F 01	2630.4	1.3609F-10	9.72125 01	2557.9
1	1.24 795-19	4.09035 01	2647.0	1.38165-19	4.5762F 01	2538.1
4	1.22711-10	4.1205F 01	2453.0	1.40226-10	5.90715 01	2517.9
5	1.7166E-19	4.11515 01	2678.2	1.4229E-19	5.6507F 01	2497.1
4	1.19575-19	4.0952F 01	5665.8	1.44275-10	5.5112E 01	2475
7	1.17465-10	4.04045 01		1.46455-19	5.4216 01	2453.9
3	1.1540F-10	3.CA15F 01	2706.9	1.49535-19	5.355AF U1	2431.4
3	1.133)5-13	3.0110E 01	7720.0	1.5062F-19	5.3022F 01	2409.5
1.0	1.1!105-10	3.9334F 01	2732.6	1.52716-19	5.2541F 01	2385.1
1.1	1.07075-19	3.7471F 01	7744.4	1.54815-10	5.2081F 01	2361.2
12	1.05 545 -10	3.5541 F 01	2755.5	1.56925-19	5.1518F 01	2336.8
13	1.14 795-19		2765.9	1.5903E-19	5.1139F 01	2311.9
14	1.02635-19	3.5549F 01	2775.5	1-61146-19	5.05 36 F 01	2286.6
15	1.07445-17	3.4502E 0'	2784.3	1.6327E-19	5.0100F 01	2260.9
16	C.8220F-20	3.3409F 01	2732.4	1.45405-19	4.9531F 01	2234.7
17	9.50125-20	3.2247F 01	2799.7	1.6753F-19	4.9922F 01	2208 -1
1.4	9.376CF-2C	3.10875 01	2804.7	1.696AE-19	4.8274F 01	2181.2
10	9.1492F-20	2.0971 F 01	2917.0	1.7!02F-10	4.7585E 01	2153.8
22		2.8624F 01	2717.0	1.72995-10	4.5855F 01	2126.1
21	a.0171F-20	2.73497 01	2921.1	1.7614F-10	4.60945 01	2098.0
22	F.4.555 -27	2.5050= 01	2924.4	1.79315-19	4.5275E 01	2069.6
21	8.4455E=70	2.47335 01	2824.9	1.8048F-19	4.44275 01	204C.A
24	E.20418-20	2.3400 - 01	2828.5	1.8265E-19	4.3541 01	2011.7
25	7.95845-29	2.20565 01	2829.3	1.84835-10	4.2519E 01	1982.2
24	7.70935-27	2.07055 01	2654.5	1.8701E-10	4.1661F 01	
	7.4532E-29	1.03525 01	79.29.3	1.8020F-10	4.0571F 01	1952.5
27	7.1930F-20	1.00015 01	2826.5	1.91395-10	3.9549F 01	1922.5
28	f.9271F-20	1.66575 01	2923.9	1.93575-19	3.4598° 01	1892.2
20	6.45595-20	1.5323F 01	2820·1	1.05755-10	3.7521E 01	1861.6
30	6.3764F-20	1.4CJ7F 01	2815.6	1.97945-19		1830.7
31	6.09C7F-20	1.27125 01	2810.1	2.0012E-12	3.64195 01	1799.6
3.2	5.7072F-20	1.1444F 01	2803.8	2.02295-19	3.5202F 01	1768.2
33	5.4956F-20	1.0209F 01	2796.4	2.0446E-19	3.4146E 01	1736.6
14	5.1851F-20	9.0100F 00	2789.1	2.06625-19	3.2931F 01	1704.7
35	4.9150F-20	7.8562F 00	2779.9	2.08785-19	3.1901F 01	1672.6
				2.001214	3.0607F 01	1640.3

MATPIX ELEMENTS, EINSTEIN A'S AND ENERGIES FOR V= 3 TO 5 TRANSITIONS OF HCL

	P-BRANCH			P-BRANCH		
J	<v j="" j+1="" v'="" wu=""></v>	A	F	<v j="" j-1="" mu="" v'=""></v>	A	E
	FSU-CM	SEC-1	C M- 1	FSU-CM	SEC-1	CM-1
0	-2.9279F-20	1.1679E 01	5069.4			
1	-2.9183F-20	1.4060F 01	5096.3	-2.9500F-20	3.4795F 01	
2	-2.9096F-20	1.5111E 01	5101.7	-2.9626E-20		5032.7
3	-2.9018E-20	1.5717E 01	5115.9	-2.9761E-20	2.31137 01 2.0723E 01	5012.4
4	-2.8350F-20	1.6120E 01	5128.8	-2.99075-20	1.9661F 01	4991.0
5	-2.8890F-20	1.6412F 01	5140.4	-3.0063E-20		4968.4
6	-2.8839E-20	1.6636F 01	5150.8	-3.0230E-20	1.9038E 01	4944.6
7	-2.8757F-20	1.6816E 01	5159.9	-3.0407E-20	1.8616F 01	4919.7
R	-2.9763F-20	1.6954F 01	5167.7	-3.0596E-20	1.8300E 01	4893.6
9	-2.8738E-20	1.7CRRE 01	5174.2	-3.0797E-20	1.8048F 01	4966.4
10	-2.87226-20	1.7194F 01	5179.4	-3.1010E-20	1.7837E 01	4938.2
11	-2.8713E-20	1.7285E 01	5183.3	-3.1010E-20	1.7653E 01	4808.8
12	-2.8713E-20	1.7364F 01	5185.8	-3.1472E-20	1.7488F 01	4778.4
13	-2.8721F-20	1.7432E OL	5187.0	-3.1722E-20	1.7338E 01	4746.9
14	-2.9737E-20	1.7490E 01	5186.9		1.7198E 01	4714.4
15	-2.9761F-20	1.7539E 01	5185.4	-3.1986E-20	1.7066E 01	4680.8
16	-2.8703F-20	1.7580F 01	5182.5	-3.2264E-20	1.5940E 01	4646.3
17	-2.8832E-20	1.7613E 01	5178.3	-3.2556E-20	1.6819F 01	4610.7
18	-2.9878F-20	1.7635E 01	5172.7	-3.2863E-20	1.6701E 01	4574.1
19	-2.9937E-20	1.7655F 01	51 . 7	-3.3186E-20	1.6586F 01	4536.6
20	-2.8994E-20	1.7664E 01	5157.3	-3.3524E-20	1.6475F 01	449A.1
21	-2.9062E-20	1.7665E 01		-3.3879E-20	1.6364E 01	4458.6
22	-2.9138F-20	1.7659F 01	5147.5 5136.2	-3.4251E-20	1.6255E 01	4418.3
23	-2.9219F-20	1.7641 E 01		-3.4641E-20	1.6148F 01	4377.0
24	-2.9308F-20	1.7617F 01	5123.6	-3.5050E-20	1.6041E 01	4334.7
25	-2.9402F-20	1.7582E 01	5109.5	-3.5479E-20	1.5935E 01	4291.6
26	-2.9503E-20		5093.9	-3.5927E-20	1.5829F 01	4247.6
27	-2.9609E-20	1.75385 01	5076.8	-3.6398E-20	1.5724F 01	4202.6
28	-2.9721F-20	1.7483E 01 1.7417E 01	5058.3	-3.6890E-20	1.5619E 01	4156.8
29	-2.9838E-20		5038.3	-3.7406E-20	1.5513E 01	4110.1
30	-2.9959E+20	1.7340F 01	5016.A	-3.7946E-20	1.5407E 01	4062.6
31	-3.00 P5F -20	1.7251F 01	4993.8	-3.8513E-20	1.5301E 01	4014.2
32	-2.0213F-20	1.7149F 01	4969.2	-3.9107E-20	1.5195E 01	3964.9
33	-3.0346E-20	1.7033E 01	4943.1	-3.9729E-20	1.5087F 01	3914.8
34	-3.0480F-20	1.6902F 01	4915.4	-4.0383E-20	1.4979E 01	3863.8
35	-3.0615F-20	1.6756E 01	48 86 . 1	-4.1068E-20	1.4870E 01	3811.9
.,	-3.00105-50	1.6593E 01	4855.2	-4.1787E-20	1.4760E 01	3759.3

ERIM

MATRIX ELEMENTS. FINSTEIN 445 AND ENERGIES FOR V# 3 TO 6 TRANSITIONS OF HCL

	Q.	-BOANCH		D = A	RANC 4	
J	d	Δ	F	<v j="" j-1="" mi="" v+=""></v>	1	E
	E 5 (1-C 41	SFC-1	C M- 1	FSU-CM	SFC-1	CM-1
0	3.43005-51	6.3540E-01			77072	
1	3.25.275 - 21	7.74585-01	7442.1			
2	3.97036-21		7457.5	2.P10PF-21	1.9501F 00	7405 . R
2	2.03205-11	9.47575-01	7471.0	3. PCO1E-21	1.21615 00	7384.9
4	2.02045-21	9.90471-01	7492.7	3.7910F-71	1.0798F 10	7362.2
5	2.05.00=21	9. 21 94 F-01	7497.5	3.7863F-21	1.0151F 00	7337.7
4	3.001][-21	0.5735=-01	7500.4	2.7P31E-21	9.74756-01	7311.4
7	4.07676-21	7.8520F-01	7506.5	3.79245-21	9.4574F-01	7293.4
P	4.0 4 401 - 21	1.01386 00	7510.7	3.7844F-21	9.231PF-01	
2	4.1066F-21	1.0410= 0?	7512.9	3.73925-21	0.0481F-01	7253.7
1)	4.15146-21	1.05835 00	7513.3	3.7964E-21	A. 9921 F-31	7222.2
11	4.20000-21	1. 15595 00	7511.7	3.80635-21	4.75725-31	7180.0
12	4.25.20F-21	1.1241F 00	7509.2	2.8193F-21	6.6411F-01	7154.0
13		1.1831 60	7502.9	3.8349F-21	4.5378F-01	7117.5
14	4.70775-21	1.1822 00	7405.4	3. 853 5F - 21	9.4491 [-01	7379.2
15	4.15720-	1.71455 30	7494.1	3.8751F-21		7039.3
16	4.430RF=21	1.2470F OU	7474.9	3.20005-21	8.3690F-01	6997.A
17	4.4005 = - 21	1.28095 00	7461.7	3.9290F-21	R. 3003F-01	6054.7
•	4.57045-21	1.2161 = 00	7446.5	3.0593F-21	9.24105,-01	6000.0
19	4.646E=21	1.3520= 00	7479.4	3.0042F-21	9.1001F-01	6963.6
10	4.72725-21	1 * 3013E 00	7410.3	4.03275-21	9.1484F-71	4915.0
27	4.8126F=21	1.4314= 00	7380.1	4.07405-21	9.1146F-01	6766.3
21	4.90225-21	1.4772F 00	7366.0	4.1210=-21	9.0983F-01	6715.3
22	4.7000[-2]	1.5168F 00	7340.9	4.1711E-21	9.0700F-31	4447.Q
23	5.09POF-21	1.5520= 00	7313.7	4.2253E-21	9.0590F-01	6609.R
24	5.2027F-21	1.4093= 00	77 94 . 4		9.0549F-01	6553.3
25	5.3149F-21	1.65955 07	7253.1	4.28415-21	8.0589F-01	6496.7
24	5.4316F-21	1.7095F 00	7219.7	4.3473F-21	P.0691F-01	6437.7
27	5.55435-21	1.7625F 00	7194.2	4.41525-21	8.0962F-01	6377.6
20	5.49336-71	1.8174F 00	7146.4	4.4F 94F - 21	9.1107F01	6316.1
20	5.9150F-21	1.9748F 00	7106.8	4.566°F-21	P. 1428E-01	6253.0
3 ()	5.9414F-21	1.03415 00	7064.8	4.6512F-21	9.1921F01	6189.5
31	6.1107F-21	1.2554E 00	7020.7	4.7414F-21	A. 2283E01	6122.4
15	1.2570F-21	2.0589F 00		4.83807-21	9.2P22F-0!	4054.9
33	6.47705-21	2.1247F 00	4074.7	4.94205-21	8. 3453F-01	5095.8
24				5.0532F-21		5915.3
25				5.1727E-21		5843.2
		***********	~"21.4	5.30115-21		5769.5
24	6.4770F = 21 6.40 635 = 21 6.79 REC = 21	2.1247F 00 2.1925F 00 2.2627F 00	4925.6 5874.7 6821.4	5.0532F-21 5.1727E-21 5.3011E-21	8.4964E-01 8.4964E-01 8.5869F-01	5915. 5843.

ERIM

MATRIX ELEMENTS, EINSTEIN A'S AND ENERGIES FOR V= 3 TO 7 TRANSITIONS OF HCL

	P-BRANCH			P-BR ANCH		
1	<v j="" j+1="" mi="" v'=""></v>		E	<v j="" j-1="" mu="" v'=""></v>	Δ	E
	ESU-CM	SFC-1	CM-1	ESU-CM	SEC-1	CM-1
0	-2.54345-27	6.1964E-03	9712.5			
1	-2.59835-22	7.7944F-03	9726.6	-2.4503E-22	1.7065F-02	9676.8
2	-2.6577E-22	8.7688F-03	9738.2	-2.4112F-22	1.0943E-02	9655.3
3	-2.7254E-22	9.5896E-03	9747.3	-2.3781F-22	9.5087E-03	9631.3
4	-2.79805-22	1.0358#-02	9753.9	-2.3480F-22	8.7556F-03	9604.9
5	-2.8794F-22	1.1152E-02	0758.0	-2.3251F-22	8.2721F-03	9576.1
6	-2.96 R6F-22	1.1991E-02	9759.7	-2.3052E-22	7.9057F-03	9544.9
7	-3.0658F-22	1.2894F-02	9758.7	-2.2908E-22	7.6262E-03	9511.3
8	-3.1717F-22	1.3876F-02	9755.3	-2.281 9F-22	7.4099E-03	9475.3
9	-3.289RF-22	1.49795-02	9749.3	-2.2786E-22	7.2458E-03	9437.0
10	-3.4165F-22	1.6183F-02	9740.7	-2.2789E-22	7.1131F-03	9:96.4
11	-3.5556F-22	1.75315-02	9729.7	-2.2873E-22	7.0341F-03	9353.5
12	-3.7062F-22	1.9026F-02	9716.1	-2.3009E-22	6.9876F-03	9308.3
13	-3.8717F-22	2.0715F-02	9699.9	-2.3225F-22	6.9873F-03	9260.8
14	-4.0511E-22	2.2600E-02	9681.2	-2.3496E-22	7.0170F-03	9211.1
15	-4.2445F-22	2.4696E-02	9659.9	-2.3839E-22	7.0844E-03	9159.1
16	-4.4545F-22	2.7048E-02	9636.0	-2.4268E-22	7.1963E-03	9105.0
17	-4.6R03F-22	2.9662E-02	9609.6	-2.4768E-22	7.3441F-03	9048.6
18	-4.9260F-22	3.2607E-02	9580.6	-2.5373E-22	7.54555-03	8990.1
19	-5.1879E-22	3.5856E-02	9549.0	-2.6036E-22	7.7736E-03	8929.4
20	-5.4713F-22	3.9498E-02	9514.8	-2.6809F-22	8.0587E-03	8866.6
21	-5.7756F-22	4.3551F-02	9477.9	-2.7676E-22	8.3906E-03	8801.6
22	-6.1006E-22	4.8033E-02	9438.4	-2.8643E-22	8.7732E-03	8734.4
23	-6.4479F-22	5.2988E-02	9396.3	-2.9705E-22	9.2036E-03	8665.2
24	-6.9200E-22	5.8484E-02	9351.4	-3.0878E-22	9.6920E-03	8593.8
25	-7.2185E-22	6.4572E-02	9303.9	-3.2162E-22	1.0239E-02	8520.3
26	-7.6397F-22	7.1211E-02	9253.6	-3.3542F-22	1.0834E-02	8444.6
27	-8.0921E-22	7.8579E-02	9200.6	-3.5071F-22	1.1511F-02	8366.8
28	-F.5719E-22	8.6631E-02	9144.8	-3.6697E-22	1.2238E-02	8286.9
29	-9.0843E-22	9.5494F-02	9086.2	-3.8472E-22	1.3046F-02	8204.9
30	-9.6294E-22	1.0519E-01	9024.7	-4.0363E-22	1.3914F-02	8120.7
31	-1.0209F-21	1.1577E-01	8960.3	-4.2410E-22	1.4868E-02	8034.3
32	-1.0820E-21	1.2739F-01	8892.9	-4.4629E-22	1.5918E-02	7945.7
33	-1.1488E-21	1.4008E-01	8822.6	-4.7003E-22	1.7050F-02	7854.9
34	-1.2192F-21	1.5393E-01	8749.1	-4.9581E-22	1.8297E-02	7761.8
35	-1.2945F-21	1.6907E-01	8672.6	-5.2373E-22	1.9564E-02	7666.5

MATRIX ELEMENTS, FINSTEIN A'S AND ENERGIES FOR V= 3 TO 8 TRANSITIONS OF HCL

	P-BPANCH			P-BR ANCH		
J	<v 41="" j="" j+1="" v*=""></v>	1	F	<v j="" j-1="" mu="" v*=""></v>	٨	F
	r c U=C M	SFC-1	C 4-1	ESU-CM	SFC-1	C M- 1
C	-1.57605-22	4.3526E-03	11878.8			
1	-1.57675-27	5.24135-03	11821.5	-1.57605-22	1 20/25 02	
?	-1.5765F-22	5.6324F-03	11901.2	-1.57576-22	1.2943F-02	11843.7
3	-1.5756F-22	5.9432F-C3	11907.6	-1.5759F-22	9.5776F-03	11821.6
4	-1.5746F-22	5.07755-03	11910.9	-1.5769E-22	7.5709E-03	11796.3
F 5	-1.57738-72	6.05575-03	11911.1	-1.5773E-22	7.2631 E=03 7.0086E=03	11767.9
4	-1 . E A 97F - 27	6.0824E-02	11308.0	-1.5775F-22	6.9219F-03	11736.4
7	-1.54305-22	6.0792F-03	11901.8	-1.57885-22	6.6912E-03	11701.8
Q	-1.55605-22	6.0569F-03	11992.4	-1.58045-22		11664.3
a	-1.54735-22	5.7951F-03	11879.9	-1.58058-22	5.5521F-03	11623.7
10	-1.53435-22	5.8974F-03	11864.1	-1.5800F-22	6.4411F-03	11580.1
11	-1.51000-22	5.7733F-03	11945.1	-1.5800F-22	6.3226F-03	11533.5
12	-1.42945-22	5.61165-03	11823.0	-1.5782F-22	6.2122F-03	11484.0
13	-1.47535-22	5.40975-03	11797.7	-1.57565-22	6.0900F-03	11431.6
14	-1.44425-22	5.16545-03	11759.3	-1.57185-22	5.4512F-03	11376.3
15	-1.4115F-21	4.8095E-03	11737.6	-1.55698-22	5.92545-03	11318.0
16	-1.3711F-22	4.5902F-03	11702.9	-1.5585F-27	5.4820F-03	11257.0
1.7	-1.3 350F-22	4.25165-03	11654.7	-1.5457F-22	5.5145F-03	11193.1
10	-1.27015-22	3.97095-03	11623.4	-1.5371F-22	5.3450F-03	11126.4
19	-1.20008-22	3.4769E-07	11578.9	-1.5237F-22	5.1518F-03	11056.8
2)	-1.14075 -22	3.0560F-03	11571.2	-1.5063E-22	4.9561E-03	10984.5
21	-1.34295-22	2.4213F-03	11490.1	-1.4866=-22	4.7388F-03	10909.4
22	-5.76 14F -23	2.19175-03	11425.8	-1.4635E-22	4.5119F-03	10831.5
73	-8-90 325-23	1.74015-03	11368.2	-1.43905-22	4.2712F-03	10750.9
24	-7.7421F-27	1.23235-03	11307.2	-1.4098F-22	4.0243F-03	10667.4
25	-6.57265-23	9.4461E-04	11242.8	-1.3778E-22	3.7711F-03	10581.2
25	-5.3009F-23	6.03775-04	11175.0	-1.3421F-22	3.5087F-03	10492.2
27	-3.80705-23	3-1993F-04	11103.6	-1.30255-22	3.2403F-03	10400.4
79	-2.27025-22	1.1419E-04	11028.9	-1.2618E-22	2.26715-03	10305.7
20	-7.1076F-24	1.02335-05	10050.4	-1.2164E-22	2.7046F-03	10208.2
20	1.00245-23	2.3655E-05	10869.4	-1.1686F-22	2.4386F-03	10107.9
31	3.05000-23	1.9019F-04	10792.7		2.1809F-02	10004.7
32	5.18425-23	5.0769E-04	13693.3	-1.1167F-22 -1.0613F-22	1.3277F-03	9898.5
33	7.4902F-23	1.03295-03	10600.3		1.68355-03	9789.4
74	1.00035-22	1.7425F-03	10502.8	-1.0030E-22 -9.3P65E-23	1.4519F-03	9677.3
35	1.2730F-22	2.8248F-03	10401.6	-9.7033F-23	1.2261F-03	9562.1
			10-01 • 6	-6.10546-24	1.0151F-03	9443.4

MATRIX FLEMENTS. FINSTEIN 4.5 AND ENERGIES FOR V= 4 TO 4 TRANSITIONS OF HCL

J	d	A	E
	ESU-CM	SEC-1	C 4-1
0	1.2210F-19	9.84425-04	18.5
1	1.22125-18	9.4200F-03	36.9
2	1.2214F-18	3.4003F-02	55.3
3	1-2218E-18	8.3515E-02	73.8
4	1.2227F-1A	1.6643F-01	92.1
5	1.2229E-18	2.9119F-01	110.4
6	1.2236F-18	4.6615F-01	128.6
7	1-2243F-18	6.9910E-01	146.7
R	1.2257E-18	9.98125-01	164.8
9	1.2263F-19	1.3697F 00	182.7
10	1.2274F-18	1.8219F 00	200.5
11	1.2286E-18	2.3610F 00	218.2
12	1.2299F-18	2.9528E 00	235.7
13	1.2313F-1 R	3.7232F 00	253.1
14	1.2329F-18	4.5579F 00	270.3
15	1.2345F-18	5.5009F 00	287.4
16	1.2367E-18	6.5563E 00	304.2
17	1.2381F-18	7.7283F 00	320.9
18	1.2400E-18	9.0195E 00	337.3
10	1.2421F-19	1.0433E 01	353.6
20	1.2442F-19	1.1967E 01	369.5
21	1.2464F-19	1.3629E 01	385.3
22	1.2488E-19	1.5411F 01	400.8
23	1.2512F-18	1.7321E 01	416.1
24	1.2537F-18	1.9351 E 01	431.0
25	1.2563F-18	2.15C4E 01	445.7
26	1.2590E-18	2.3772E 01	460.1
27	1.2618F-18	2.6159E 01	474.7
28	1.2647E-18	2.8652E 01	488.0
29	1.2676E-18	3.1252E 01	501.4
30	1.2707E-18	3.3953E 01	514.6
31	1.2738E-18	3.6742E 01	527.3
32	1.2769F-18	3.9623E 01	539.4
33	1.2802E-18	4.2578E 01	551.9
34	1.2835E-18	4.5601E 01	563.6
35	1.2 R 68E-18	4. 9684E 01	575.0

MATRIX ELEMENTS. FINSTEIN 4'S AND ENERGIES FOR V= 4 TO 5 TRANSITIONS OF HEL

	D-UBVNCA			P - BR ANCH		
J	<1+1>	٨	F	<1-F	٨	F
	ESU-CM	SEC-1	C M-1	FSH-CM	S≓C-1	C M-1
0	1.42 165-10	3.27305 01	2492.8			
1	1.3070F-10	3.8768F 01	2510.0	1.46900-19	1.0032F 02	2455.4
5	1.77401-10	4.09375 01	2526.6	1.4926F-19	6.7453E 01	2437.4
3	1.35025-19	4.17725 01	2542.6	1.5162F-19	6.1140F 01	2417.7
4	1.37675-10	4.1365E 01	2557.7	1.53075-17	5.8550F 01	2397.5
5	1.40216-10	4.1789F 01	2577.6	1.5633E-10	5.7176E 01	2376.7
4	1.77705-19	4.13655 01	2586.6	1.58685-19	5.6297F 01	2355.4
7	1.17766-19	4.07615 01	2599.9	1.61045-19	5.5660F 01	2333.6
2	1.22015-10	4.0019F 01	2612.5	1.6339F-19	5.5138F 01	2311.2
C	1.2045F-10	3.9163F 01	2674.2	1.6575E-17	5.4656F 01	2299.3
10	1.17045-10	3.8213F 01	2635.5	1.6811F-19	5.4207F 01	2265.0
11	1.15465-19	3.71815 01	2546.0	1.7046F-19	5.3740F 01	2241.1
12	1.12035-10	3.6077F 01	2655.7	1.7282F-19	5.3247E 01	2216 . R
13	1.10396-10	3.400RF 01	2664.7	1.7519E-19	5.2721E 01	2192.0
14	1.07816-19	3.3684F 01	2672.9	1.77545-19	5.2156E 01	2166.9
15	1.05205-19	3.2409F (11	2690.3	1.7090E-10	5.1546F 01	2141.2
16	1.07565-10	3.1 CROF 01	2697.0	1.82265-19	5.0391F 01	2115.2
1 7	C.CBBOE-20	2.9737F 01	2692.0	1.8462F-19	5.01875 01	2088.7
1 4	C.7179F-2)	2.034)F 01	2699.0	1.86985-19	4.7436F 01	2061.9
10	C.4429F-20	2.6921F 01	2702.3	1.87345-10	4.8537F 01	2034.7
20	0.1434E-2)	2.5479F 01	2705.7	1.9169F-19	4.7789F 01	2007.1
21	F. 9707F - 20	2.401 RF 01	2709.4	1.9404F-19	4.5996E 01	1979.2
23	8.5900F-20	2.2545F 01	2710.1	1.96395-19	4.5757F 01	1950.9
23	8. ? 9 54 F - 2 O	2.1066F 01	2711.1	1.9974F-19	4.4974F 01	1922.2
24	7.09475-21)	1.9584F 01	2711.2	2.0109F-19	4.3949E 01	1893.3
25	7.48705-20	1.8107F 01	2710.3	2.0341E-19	4.2895F 01	1864.0
24	7.37414-20	1.6639F 01	2708.6	2.0574E-19	4.1791E 01	1934.4
77	7.9530F-20	1.5188F 01	2706.0	2.0905F-19	4.0543E 01	1904.5
27	6.72405-20	1.3759F 01	2702.5	7.1036E-19	3.9472F 01	1774.4
23	4.3966E-20	1.2358F 01	2698.1	2.1265E-19	3.8269F 01	1743.9
30	6.03005-20	1.0903E 01	2692.7	2.1493E-19	3.7040E 01	1713.1
ונ	5.64741-20	9.5598F 00	2686.4	2.1719F-19	3.5784F 01	1692.1
32	5.3163E-20	8.3963F 00	2679.1	2.1942F-19	3.4508E 01	1650.8
13	4.93795-23	7.1795F 00	2670.8	2.2164F-19	3.3212E 01	1619.2
34	4.54706-20	4.0273F UD	2661.5	2.2383E-19	3.1899E 01	1587.4
35	4.14285-20	4.9476E 00	2651.3	2.2599F-19	3.0573E 01	1555.3

MATRIX FLEMENTS, FINSTEIN A'S AND ENERGIES FOR V= 4 TO 6 TRANSITIONS OF HCL

	R-SRANCH			P-BR ANCH		
J	<i+l "v\um\l="" v=""></i+l>	٨	E	<v j="" j-1="" mu="" v'=""></v>	A	F
	FSU-CM	SEC-1	CM-1	FSU-CM	SEC-1	CM-1
0	-3.7917F-20	1.7311F 01	4965.2			
1	-3.7779F-20	2.0825E 01	4881.2	-3.8231E-20	5.1642E 01	4030 -
2	-3.76518-20	2.2364E 01	4896.0	-3.8407F-20	3.4322F 01	4829.5
3	-3.7535F-20	2.3241F 01	4909.5	-3.8595F-20	3.0789F 01	4809.8
4	-3.7431F-20	2.3814E 01	4021.7	-3.8797F-20	2.9222E 01	4788.9
5	-3.73385-20	2.4221E 01	4932.6	-3.9012E-20	2.8307E 01	4766.9
6	-3.72555-20	2.4525E 01	4942.3	-3.9240E-20	2.7688E 01	4743.6
7	-3.71 P4F -20	2.4762E 01	4950.6	-3.9483E-20	2.7225E 01	4719.2
9	-3.7122E-20	2.4949F 01	4957.7	-3.9741F-20	2.6855F 01	4693.6
3	-3.7072F-20	2.5100E 01	4963.4	-4.00145-20	2.6544F 01	4666.9
10	-3.7032F-20	2.5222F 01	4967.8	-4.0302E-20	2.6273F 01	4639.1
11	-3.7002F-20	2.5320E 01	4970.9	-4.0606E-20	2.6030E 01	4610.2
12	-7.69F2F-20	2.5397E 01	4972.7	-4.0927E-20		4580.2
13	-3.6972F-2U	2.5457E 01	4973.1	-4.1266E-20	2.5806F 01 2.5597E 01	4549.1
14	-3.69715-20	2.5500E 01	4972.2	-4.16225-20		4517.0
15	-3.6980F-20	2.5528E 01	4969.9	-4.1996F-20		4483.8
16	-3.63GRE-30	2.5542F 01	4956.2	-4.2391E-20	2.5209E 01	4449.6
17	-3.7025F-20	2.55425 01	4951.1	-4.2805F-20	2.5025E 01	4414.4
18	-3.7061F-20	2.5528E 01	4954.7	-4.3240E-20	2.4847F 01	4378.2
19	-3.7105F-20	2.5501F 01	4946.9	-4.3696E-20	2.4573F 01 2.4500E 01	4341.
20	-3.7157F-20	2.5458F 01	4937.6	-4.4175E-20		4302.9
21	-3.7217E-20	2.54C2E 01	4926.9	-4.4677E-20	2.4331F 01	4263.8
22	-3.7284E-20	2.5331E 01	4914.8	-4.5204E-20	2.4163F 01	4223.7
23	-3.7359E-20	2.5245F 01	4901.2	-4.5756E-20	2.3996E 01	4182.7
24	-3.74405-20	2.51425 01	4986.1	-4.6335E-20	2.3830E 01	4140.8
25	-3.7527F-20	2.5022F 01	4969.6	-4.6941F-20	2.3663E 01	4097.9
26	-3.7620F-20	2.4884F 01	4851.5	-4.7577E-20	2.3497F 01	4054.1
27	-3.7718F-20	2.4729F 01	4831.9	-4.8244E-20	2.3329F 01	4009.4
28	-3.7920F-20	2.4552F 01	4810.8	-4.8942E-20	2.3161F 01	3963.8
23	-3.7925F-20	2.4355E 01	4788.1	-4.9674E-20	2.2991E 01	3917.2
30	-3.8034F-20	2.4137E 01	4763.8	-5.0442E-20	2.2819F 01	3869.8
31	-3.8145F-20	2.3896E 01	4737.9	-5.1248F-20	2.2646E 01	3821.4
32	-3.8257E-20	2.3630F 01	4710.3	-5.2094E-20	2.2469F 01	3772.1
33	-3.8369F-20	2.3339E 01	4681.1	-5.2982E-20	2.2291F 01	3721.9
34	-3.8479F-20	2.3021 E 01	4650.2		2.2109F 01	3670.7
35	-3.8587E-20	2.2674F 01	4617.5	-5.3916E-20 -5.4898E-20	2.1925E 01 2.1737E 01	3618.6 3565.6

MATRIX CLEMENTS, FINSTEIN 4.5 AND ENERGIES FOR V= 4 TO 7 TRANSITIONS OF HCL

	= - ABVNCH			P-RR ANCH		
J	< 1+1> • V I I V I I V I V I V I V I V I V I V	Δ	c.	<v j="" j-1="" mu="" v'=""></v>	Δ	F
	E 21]- C W	<pre><pre><pre></pre></pre></pre>	C M - 1	FSIJ-CM	SFC-1	CM-1
1	C. 1728E-21	1,31015 00	71 35 . 6			
1	5.8967F-21	1.5948F 00	7150.3	5.8340F-21	2 22205 00	121
>	5.0343F-21	1.7341F 00	7163.1	5.92105-21	3.9229F 00	7100.5
3	F.0555F-21	1.82555 00	7174.1	5.8105F-21	2.5148F 00	7090.2
1.	5.09056-21	1. 43435 00	7193.1	5.8035F-21	2.2340F 00	7059.0
٤,	6.02 COF -21	1.2560F 00	7120.2	5.7996F-21	2.10095 00	7034.0
6	6.77195-21	2.0104E 00	7195.4	5.79955-21	2.01755 00	700R.2
7	4.1! PAF - 21	2.3415F 03	7198.7	5.8026E-21	1.9574F CO	6980.6
-3	6.14.99=-21	2.1111 = 00	7200.0	5.8006F-21	1.91015 00	6951.2
0	(.22565-21	2.1602 F 00	7100.4	5.92025-21	1.8710F 30	6920.1
1.0	6.29515-21	2.2095F 00	7194.9	5.8348E-21	1.9376E)0	6887.2
11	6.35135-21	2.2577 00	7192.4	5.8534E-21		6952.5
12	4.47175-71	2.3110E 00	7186.0	5.8762E-21		6916.2
13	f.4076F-71	2.3630= 00	7177.6	5.90345-21	1.7597E JO	677R . 2
14	4. F 7 UDF - 21	2.4185E 00	7167.2	5.93525-21	1.7392F 00 1.7209E 00	6739.5
15	6.4440F-21	2.4751F 00	7154.9	5.9719E-21	1.7047F 00	6697.1
16	F. 75 97F - 21	2.53415 00	7140.5	6.01375-21		6654.1
17	4. RF R7F - 21	2.5955F 00	7124.2	6.0608F-21		6509.5
18	6.06478-21	2.65965 00	7105.9	6.1135E-21	1.6781F 00	6563.2
13	7.)7735-21	2.7262F 00	7085.6	6.1720E-21	1.6675F JO	6515.4
20	7.1 270F -21	2. 7558F 00	7053.2	6.2367F-21	1.6587E 00	6466.0
21	7.3739F-21	2.8685E 00	7028.8	6.3078E-21	1.6517F)0	6415.0
22	7.4594F -21	2.0442F 00	7012.3	6.38596-21	1.6464F 00	6362.5
23	7.4006F-21	3.0230F 00	6083. 9	6.4709E-21	1.5428E JO	6309.3
24	7.75 CAF -21	3.1050F 00	4053.1	6.56345-21	1.6410E 00	6252.7
25	7.90915-21	3.1901F 00	6020.4	6.66385-21	1.6408E 00	6195.5
26	R.0761F-21	3.2794F 00	5885.4	6.7727E-21	1.64235 10	6136.7
27	9.25205-21	3.3699F 00	4949.3	6.8900E-21	1.6456F 00	6076.4
20	8.4340F -21	3.4443F 00	6909.0	7.0164E-21	1.6504F 00	6014.6
20	9.63135-21	3.55195 00	67.7.4	7.1527F-21	1.6569F 00	5951 • 1
30	F. 83565-21	3.66245 00	5723.6	7.2992E-21	1.6650F 00	5886.2
31	C. 05 03F - 21	3.7658F 00	6677.5	7.4567F-21	1.674RF 00	5819.6
25	9.27545-21	3.P71PF 00	6629.0	7.6258F-21	1.4842F 00	5751.4
37	9.51 235 -21	3.9806F 00	6578.0	7.8076E-21	1.5993F 00	5681.7
34	9.7606E-21	4.0916F 00	6524.6	9.0029E-21	1.7142F 00	5610.3
35	1.30 225 - 20	4.2051F 00	6468.7	P. 2136F-21	1.7308E 00	5537.3
				F • 21 30F #21	1.7495F 00	5462.5

ERIM

MATRIX ELEMENTS, ETHISTEIN 4.5 AND EMERGIES FOR V= 4 TO R TRANSITIONS OF HCL

	D-RRANCH			P-RR ANC H		
J	CA TIMITAL HIZ	٨	E	<v j="" j-1="" m(i="" v=""></v>	٨	F
	F 511-CM	2 EC -1	C M-1	FSII-CM	SEC-1	(M-1
0	-6.55755-22	3.5185E-02	9301.0			7-1-1
1	-6.646()=-32	4.47055-02	0315.3	-4 30075 33		
2	-6.7415F-22	4.7556 = 02	9326.1	-6.3997E-22	1.3225F-01	9267.5
3	-f. 04665-77	5.3147F-02	9334.4	-6.32945-22	6.62265-02	9246.5
4	-6.26021-22	5.62765-02	9340.1	-6.26635-22	5.79765-02	9223.0
6.	-7 . 30 20F-22	5.5220F-02	9343.2	-6.2082F-22	5.3740E-02	9197.0
6	-7.21 53E-22	6.2165F-02		-6.1555E-22	5.0898F-02	9168.5
7	-7.36168-22	1.5212F-02	9343.R	-6.1097E-22	4.8725F-02	9137.6
4	-7.5207F-22	6.9408E-02	7741. A	-6.0701E-22	4.5961 F-02	9104.2
G	-7.67435-22	7.19156-02	0337.2	-6.0369F-22	4.5464F-02	9068.4
10	-7.40746-22	7.5478F-02	9330.0	-6.01125-22	4.41 A5F-02	9030.2
11	-0.10155-22	7.7489F-02	9320.2	-5.99205-22	4.3074F-U?	AGAG.7
12	-0.31705-22	P. 3 42 7F-02	9307.9	-5.9843E-27	4.2135F-02	8946.8
13	-8.5649E-27		9293.9	-5.9838E-22	4.1329F-02	A901.5
14	-F. 9337F-27	9.95416-07	9275.4	-5.99505-22	4.0686F-02	8953.0
15	-9.12755-22	0.7805F-02	9255.3	-6.0157E-22	4.0164F-02	9804.1
16	-9.4473F-22	9.9710E-07	9232.4	-5.0499E-22	3.9808F-02	8752.0
17	-C. 7946F-22	1.06135-01	9207.3	-6.0964F-22	3.9587E-02	9697.6
18		1.1222F-01	9179.3	-6.1567F-22	3.9516E-02	8541.0
10	-1.0170F-21	1.21035-01	9149.7	-6.2321F-22	3.9503F-02	8582.1
50	-1.057PF -21	1.29676-01	9115.5	-6.3247F-22	3.9864F-02	8521.1
-	-1.1019F-21	1.3921 E-01	9079.5	-6.4335F-??	4.0281F-02	8457.8
21	-1.14365-21	1.49766-01	9041.0	-6.56145-22	4. 0993F-02	8392.4
22	-1.2CC9F-21	1.61355-01	8999.7	-6.7076F-27	4.1654E-02	8324.8
23	-1.2561E-21	1.7410F-01	8955.7	-6.87535-22	4.2629F-02	8254.9
24	-1.21557-21	1.4813F-01	AGON. O	-7.0644E-22	4.3797E-02	8182.9
25	-1.37c3F-21	2.0355F-01	PR59.2	-7.2769E-27	4.5180E-02	8108.6
26	-1.44775-21	2.2043F-01	8806.7	-7.5131E-22	4.6773F-02	8032.2
27	-1.5209F-21	2.3980F-01	9751.4	-7.7752F-22	4.8599F-02	7953.4
54	-1.59 CHE -21	2.50135-01	8693.0	-8.0651F-22	5.0676E-02	7872.5
29	-1.6834F-21	2.8113F-01	8631.7	-9.3802F-22	5.2962F-02	
30	-1.7732E-21	3.05!7E-01	8567.4	-8.7282E-22	5.5548E-02	7789.2
31	-1.86615-21	3.31285-01	3499.9	-9.1064E-22	5.93895-02	7703.6
32	-1.9715F-21	3.5964F-01	8420.3	-9.5192E-22	6.1527E-02	7615.7
33	-2.0812E-21	3. 9049E-01	8355.4	-9.9682E-22	6.4974E-02	7525.5
34	-2.19P2F-21	4.2384F-01	8278.3	-1.0454E-21	6.8726F-02	7432.8
35	-2.3235E-21	4.5002F-01	9197.6	-1.09845-21	7.2851F-02	7337.6
					106031F=UZ	7240.0

MATRIX ELEMENTS. FINSTEIN ALS AND ENERGIES FOR V= 4 TO 9 TRANSITIONS OF HEL

	B- 1PANCH		P = BR ANCH			
1.3	<1+1. *V\tim\t, V>	4	F	<		
	F S 11-C 11			(1) + 1) (J-1)	1	F
	. , , ,	2 L C - 1	CM-1	FSU-CM	SEC-1	C M- 1
·)	-1.1)97:-22	1.0004 -03			., .	C 1
1	-1.10215-22		11362.1			
2	-1.09715-22	2.2443F-02 2.2862E-02	11374.1	-1.12725-22	5.79378-03	11329.4
3	-1.00045-22		11382.8	-1.1370F-22	3.9077E-03	11306.7
4	-1.0837F-22	2.4434F-03	11389.3	-1.1477F-27	7.5504F-03	11291.8
5	-1.07575-22	2.4747F-03 2.4749F-03	11390.5	-1.1616F-22	3.4456F-03	
6	-1.06775-22	2.4/245-33	11390.5	-1.1744E-22	3.39605-03	11253.7
7	-1.05f4F-22	2.4524F-03	11385.2	-1.1º01E-22	3.3037F-03	
a	-1.04 206 -22	2.4261F-03	11377.6	-1.2055F-22	3.4029F-03	11188.0
3	-1.02545-22	2.3732F-03	11366.8	-1.2219F-22	3.42495-03	11150.5
12	-1.0741=-22	2.2578F-03	11352.7	-1.2381F-22	3.4492F-03	11100.8
11	-0.77275-21	2.20205-03	11445.4	-1.25535-22	3.4804F-03	11066.1
12	-9.4411E-21	2.0A20F-03	11314.7	-1.2707F-22	3.5019F-03	11019.3
12	-9.04258-23	1.0376F-03	11200.9	-1.2°50F-22	3.5152E-03	10769.5
14	-0.5405F-23	1.7604F-03	11263.9	-1.26805-22	3.5207F-03	10916.6
15	-7.0944E-27	1.57665-03	11233.4	-1.30RAF-22	3.5115E-03	10960.8
15	-7.3053E-23	1.35215-03	11100.9	-1.3174F-22	3.48825-03	10802.0
17	-6.5276-23	1.13005-03	11167.9	-1.3224F-22	3.4444F-03	10740.3
18	-5./172F-22	4.34ffE-114	11172.7	-1.32455-22	3.3838F-03	10675.7
10	-4.57775-23	6.5572F-04	11079.2	-1.32145-22	3.2958F-03	10609.1
20	-3.2853F-23	4.2351 04	11032.4	-1.3142F-22	3.1876F-03	10537.7
21	-2.03555-23	2.3254F-04	10982.3	-1.3013F-22	3.0536F-03	10464.5
22	-5.3000F-24	P.2934E-05	10928.8	-1.2826E-22	2. 8958E - 03	10388.3
23	1-16-25-23	5.54145-06	10971.0	-1.2587E-22	2.7200F-03	10309.3
24	3.04 car = 23	2.6271E-05	10911.6	-1.2270F-22	2.5183F-03	10227.4
25	F.1554F-23	1.7755F-04	10747.8	-1.1888E-22	2.3013F-03	10142.7
26	7.47005 -23	4. 7 A 2 K E - 04	10690.5	-1.14185-22	2 24/25 02	10055.1
27	1.0027F-22	1.7261F-03	19609.5	-1.0878F-27	2.0642F-03	9964.6
29	1.29406-22	1.91145-03	10575.0	-1.0241F-22		9871.1
29	1.59775-22	2.0000F-03	10456.6	-9.5001F-23	1.5651F-03	9774.7
30	1.93195-22	4.3675F-03	10374.5	-8.6913F-27	1.3077F-03	9675.3
31	2.30115-22	5.27250-03	10248.5	-7.7563E-23	1.0575E-03	9572.8
32	2.70578-22	P. 4720F-03	10198.4	-6.7273F-23	9.1415F-04	9467.2
33		1.1563E-02	10104.3	-5.57115-23	5.0129F-04	935A.5
34	3.14605-22	1.53295-02	10005.0	-4.2002F-27	3.9093F-04	9246.6
75	3 -62695-22	1.97556-02	9903.3	-2.9072F-23	2.2409F-04	9131.3
,	4.15105-22	2.5056F-02	9796.1	-1.3876E-23	9.8481F-05	9012.6
				- 3 70 / 06 - 25	2.1527F-05	8890.5

MATRIX ELEMENTS. EINSTEIN ASS AND ENERGIES FOR V= 5 TO 5 TRANSITIONS OF HCL

J	J\W()/V' J+1	4	F
	FSU-CM	SEC-1	CM-1
0	1.2451F-19	9.2505F-04	17.9
1	1.24528-19	8.8564E-03	35.7
2	1.2454F-19	3.2020F-02	53.6
3	1.24598-18	7.8513F-02	71.3
4	1.2462F-18	1.56425-01	89.1
5	1.24 + 7F - 1 A	2.73855-01	104.8
6.	1.2474F-19	4.38105-01	124.4
7	1.24P1F-18	6.5705F-01	141.9
R	1.2489F-19	9.3760F-01	159.3
G	1.249RF-19	1.2965F 00	176.7
10	1.25CAF-1A	1.71095 00	193.9
11	1.2519F-18	2.2158F 00	211.0
12	1.25315-19	2.9091F 00	227.9
13	1.25445-18	3.4911F 00	744.7
14	1.755AF-1P	4.2728F 00	261.4
15	1.2573F-19	5.1528F 00	277.8
16	1.25AGF-1A	6.1393F 00	294.0
17	1.7605F-1 A	7.2319F 00	310.1
1 9	1.2623F-18	9.4331E 00	326.0
10	1.26418-19	9.74665 00	341.6
50	1-26 FOE-18	1.11745 01	357.0
21	1.26 POE -1 R	1.2709F 01	372.2
53	1.2701E-18	1.4362E 01	387.1
23	1.2722E-18	1.6123F 01	401.7
24	1.2745F-18	1.7994F 01	416.1
25	1.2768E-19	1.9571F 01	430.2
26	1.27515-18	2.2052E 01	444.0
27	1.2815F-18	2.4230E 01	457.5
28	1.2840F-18	2.6505F 01	470.7
29	1 - 2 8 66E-1 8	2.8866F 01	483.5
30	1.2891E-18	3.1310E 01	496.1
31	1.2918E-18	3.3828E 01	508.2
32	1.2944F-18	3.6410E 01	520.1
33	1.2971F-1R	3.9050E 01	531.5
34	1.29985-18	4.1735F 01	542.6
35	1.30256-18	4.4455F 01	553.3

MATRIX FLEMENTS, FINSTEIN AS AND ENERGIFS FOR V= 5 TO 6 TRANSITIONS OF HCL

	P = 3 P A MC H			P-RRANC 4		
J	< > 1/41/4 J+1>	Δ	E	<v j="" j-1="" mu="" v*=""></v>	Δ	F
	FCU-CM	SEC-1	C - 1	FSH-C"	SEC-1	(M- 1
0	1.49275-19	3.1301F 01	7390.3			
1	1.45508-10	3.7 JP4 F 31	2406.9	1.5359F-19	9.6658F 01	2355.2
2	1.42505-19	3.90455 01	2422.0	1.56235-19	5.5118F 01	2336.7
7	1.4020F-10	3.97145 01	2438.2	1.58865-19	5.9127F 01	2317.7
4	1.37476-10	7.97575 31	2452.8	1.6148E-19	5.4719F 01	2208.0
5	1.34735-19	3.0447F 01	7466. B	1.6410F-17	5.5455F 01	2277.P
6	1.31078-10	3.9997E 01	2490.1	1.66715-13	5.4568F 01	2257.0
7	1.20195-19	3.9152 01	2492.7	1.6931F-19	5.4102E 01	2235.7
Q	1.76 778-19	3.72795 01	25.14.6	1.71915-19	5.3439F 01	2213.A
C	1.73545-19	3.62935 01	2515.7	1.7450F-19	5. 3214F J1	2191.4
10	1.20675-19	3.52145 01	2526.2	1.77095-19	5.27935 01	2168.6
11	1.17775-19	3.4053F 01	25 75. 0	1.79665-19	5.2353 : 01	2145.2
12	1.14845-19	3.2824E 01	2544.9	1.87245-19	5.1880F 01	2121.3
13	1.11865-19	3.15745 01	2553.1	1.9480F-17	5.1365F U1	2097.0
14	1.00856-10	3.0191F 01	2540.6	1.87365-19	5.0805F 01	2072.3
15	1. 35905-10	2.09635 01	2557.3	1.00014-10	5.0191F 01	2047.1
15	1.07495-17	2.7375 01	2573.2	1.92455-19	4. 9526E 01	2021.5
1 7	9.95435-20	2.5914F 31	2579.2	1.949 RF - 19	4. PROPF 01	1995.5
1 2	9.43365-70	2.4431 F 01	2592.7	1.07496-10	4.8037F 01	1969.0
19	C. 2073F - 20	2.2574F 01	2584.2	2.0000F-1C	4.7205E 01	1947.7
20	9.7748F -2)	2.1409F 01	2598.9	2.02495-10	4.5325F 01	1915.1
21	P.6255F-27	1. C. R.P. 4 F 01	2590.7	2.0497F-1C	4.5392F 01	1887.5
27	P. 2 8 93F - 20	1.8351F 01	2591.7	2.0743F-19	4.4410F 01	1859.7
33	7. 2754 5 - 20	1.48445 01	2501.9	2.09875-19	4.3378F 01	1831.4
24	7.57235-20	1.53415 01	2591.1	2.1230E-19	4.2302F 01	1902.9
25	7.20255-20	1.3850 01	2599.4	2.1470F-19	4.1182E 01	1774.0
25	6.82225-23	1.24065 01	2596.9	2.17075-19	4.0020F 01	1744.8
27	6.43195-20	1. CG00F 01	25 A3 . 4	2.1942F-19	3.9920F 01	1715.2
20	6.0307F-20	9.61795 00	7579.0	2.2174F-19	3. 75 96E 01	1685.4
27	5.6179E-20	9.2994F 00	2573.5	2.2402F-19	3.631 RE CL	1455.2
31)	5.1925F-20	7.04015 00	2567.1	2.2627F-19	3.5021F 01	1624.7
21	4.75378 -23	5.4524F 00	2559.7	2.2348E-19	3.3698F 01	1503.0
32	4.3002F-20	4.7441 F OU	2551.3	2.37655-19	3.2352E 01	1562.4
33	3.43115-20	3.7252F 00	2541.8	2.3276F-10	3.0987F 01	1531.4
34	3.3450F-20	2.40575 00	2531.2	2.3483F-19	2.96)5F 01	1400.7
35	2.84065-20	1.05635 00	2519.6	2.3684F-19	2.4213E 01	1467.6

MATRIX FLEMENTS, FINSTEIN A'S AND ENERGIES FOR V= 5 TO 7 TRANSITIONS OF HCL

					CHIAST LINES 111	HCL
	¢	-454ACH		P =	BRANCH	
J	ul	4	۴	<v j="" j-1="" mu="" v'=""></v>	Δ	E
	E 61 - C	SEC-1	C 4-1	FSU-CM		
0	-4.7366F-20				SEC-1	CM-1
1	-4.71 72E-20	2.3749F 01	4650.7			
2	-4.69C2F-29	2.9544E 01	4676.0	-4.7798F-20	7 0000	
ล์	-4.69?6F-23	3.0624E 01	4690.1	-4 . RO37E-20	7.0950F 01	4626.2
4		3.1702F 01	4702.A	-4. P291F-20	4.7194E 01	4607.1
5	-4.66775-70	3.2540F 01	4714.2	-4.8561E-20	4.2350F 01	4586.7
é	-4.45745-20	2. 2C54F 01	4724.4	-4.8868F-20	4.0213F 01	4565.2
7	-4.44C7F-27	3.342PE 01	4733.2	-4.9152E-20	3.8970F 01	4542.4
q	-4.62545-27	3.3704F 01	4740.7	-4.9152E-20	3.8129F 01	4518.4
	-4.61035-20	3.3913F 01	4746.0	-4.9474F-20	3.7501F 01	4493.3
G	-4.6104F-20	3.40625 01	4751.7	-4.001 3E -20	3.699RF 01	4466.9
10	-4.6027F-23	3.4171 F 01	4755.2	-5.0172E-20	3.65745 01	4439.5
11	-4 .F PK1 E-29	3.4244F 01		-5.0550F-20	3.6202F 01	4410.9
12	-4.57675-20	3.4286F 01	4757.4	-5.0949F-20	3.5866E 01	4381.2
1.3	-4.5 Rr4F-20	3.4200F 01	4759.2	-5.1369F-20	3.5554E 01	4350.4
14	-4.50775-20	3.4290F 01	4757.6	-5.1811E-20	3.5261F 01	4318.5
15	-4.5 R11F-20	3.4254F 01	4755.6	-5.2275F-20	3.4981E 01	4285.5
15	-4.5 A DOF - 20	3.41975 01	4752.3	-5.2764F-20	3.4710F 01	
17	-4.57005 -23	2.4197F UI	4747.5	-5.3277E-20	3.4447F 01	4251.5
19	-4.5 407F-20	3.4117E 01	4741.4	-5.3816E-20	3.41 99E 01	4216.5
19	-4.5 8 24F -20	3.4015= 01	4733.9	-5.4382F-20	3.3935E 01	4180.5
20	-4.5950F-29	3.3800F 01	4724.9	-5.4977F-20	3.3683E 01	4143.4
21	-4.50045-70	3.3744F 01	4714.5	-5.5601F-20	3 34345 01	4105.3
22	-4.5925F-29	3.3574F 01	4702.6	-5.6257E-20	3.3434E 01	4066.3
23	-4.5973E-20	3.3391F 01	4699.3	-5.6944E-20	3.31 86E 01	4026.3
24	-4.6027F-20	3.3164F 01	4674.4	-5.7667E-20	3. 2938E 01	3985.3
25	-4 40045 20	3.2921F 01	4658.1	-5 · 8425E-20	3.2691E 01	3943.4
26	-4.6086F-20	3.2652E 01	4640.2	-5.9220E-20	3.2442E 01	3900.4
27	-4.6149F-20	3.23545 01	4620.8	-6.0056E-20	3.2193E 01	3856.6
29	-4.6214F-20	3.2026F 01	4579.8	-6.0933E-20	3.1942E 01	3811.8
	-4.6282F-20	3.1668F 01	4577.2	-4 10545 20	3.1688E 01	3766.0
29	-4.5350F-20	3.1276F 01	4552.9	-6.18540-20	3.1432E 01	3719.3
30	-4.541KF-20	3.0849E 01	4527.0	-6.2822E-20	3.1172E 01	3671.6
31	-4.5479F-20	3.0394F 01	4499.3	-6.3838E-20	3.0908F 01	3622.9
32	-4.6536F-20	2. 3PROE 01	4459.9	-6.4905F-20	3.0638E 01	3573.3
33	-4.65 BAF -20	2.93345 01	4438.7	-6.6027F-20	3.0361E 01	3522.7
34	-4.6626E-20	2.8745E 01		-6.7206E-20	3.0077F 01	3471.0
35	-4.66F1F-20	2.8108F 01	4405.7	-6.8446F-20	2.9785E 01	3418.3
		- 11001 01	4370.7	-6.9751E-20	2.9483F 01	3364.6
						- 304 · O

MATRIX FLEMENTS. CINSTEIN A'S AND ENERGIES FOR V= 5 TO R TRANSITIONS OF HCL

	P-BRANCH			P-RRANC 4		
J	<f+t. *viiim\l="" v=""></f+t.>	٨	e	<v 4u="" j="" j-1="" v1=""></v>	٨	F
	FSII-CM	5=0-1	C 4-1	ESU-CM	SEC-1	CM-1
9	8.5561F-21	2.4755F C)	6927.0			
1	8.53405-21	2. 26035 00	6841.0	R.5114E-21	7.1232E 00	5793.2
2	9.61965-21	3.2137E 00	4853. D	8.4959F-21	4.5904F 00	5773.4
4	P. A F A A F - 21	3.377)F 00	5863.1	P. 4P42E-21	4.1594F 30	6751.7
4	F.6097F-21	3.500AF 00	6871.2	A.4773F-21	3. 9231E 00	6729.1
5	P. 74 745 -21	3.4035E 0)	5877.4	A. 4748F-21	3.7688F)7	6702.7
4	A. 9012F-71	3.4950F 00	6891.6	A. 476 RF -21	3.6569E 10	6575.4
7	P. 85 OCF - 21	3.77975 OU	6893.8	8.4835F-21	3.5686E 00	6646.3
A	8.92465-21	3.8605F 07	5P84.0	A.4951E-21	3.4950E 30	6615.3
3	8.09535-21	3.0397F 00	4882.3	8.5120F-21	3.4316F 00	6582.6
10	9.37245-21	4.0185F 00	5979.6	8.5340F-21	3.3755E 10	6549.0
11	c.1550F-21	4.00745 00	6472.4	8.5616F-21	3.3253F 00	6511.7
12	5.2467F-21	4.1777F 00	6865.1	8.5954F-21	3.2802E 30	6473.7
12	0.24465-71	4.26305 00	6455.4	8.5351E-21	3.2392F 00	6434.0
14	C.4499F-21	4. 3444E 00	6943.7	8.6916F-21	3.2021F 00	6392.5
15	9.56345-21	4.4315F 00	5830.0	R.7351F-21	3.1687F 10	6349.4
16	C. 4 9 54F - 71	4.5221F 00	5914.3	8.7950F-21	3.1388F 00	6304.6
17	9.8157F-21	4.51575 00	6796.5	8.86465-21	3.1121E 00	6258.2
18	C.2554F-21	4.71335 00	5776.7	8.9417F-21	3 0880E 30	6210.1
19	1.01045-20	4. 8144F 00	4754.9	9.0273F-21	0687E 20	6160.4
20	1.0263F-20	4.01905 00	5730.0	9.1226F-21	3.0521F 00	6109.1
21	1.34315-23	5.02955 00	4704.9	9.2275E-21	3.0386E 00	6056.2
22	1.0411F-20	5.1435E 00	5576.7	9.3430F-21	3.0284E 00	6001 . 7
23	1.0 HOLF -20	5.2621F 00	5646.4	9.46965-21	3.0215E JO	5945.6
24	1.10025-20	5.3851F 00	5513.8	9.6081E-21	3.0180F 00	5987.9
25	1.1214F -20	5.5124F 00	6579.1	9.75895-21	3.0177E 00	5828.5
26	1.1442F-20	5.6447F 00	6542.1	9.92375-21	3.0212E 12	5767.5
27	1.16 A1F-20	5. 7814F 00	6502. R	1.01035-20	3.029UF 00	5704.9
28	1.1934F-20	5.9222F 00	6461.2	1.02975-20	3.0384E 00	5640.6
22	1.2200F-20	6.0673F 00	6417.2	1.0508F-20	3.0526F 00	5574.7
30	1.2481F-20	6.2164F 00	6370.7	1.0737E-20	3.0705F 00	5507.0
31	1.27775-20	6.36905 00	6321.8	1.09845-20	3.0921E 00	5437.6
25	1.2089F-20	5.5247E 00	6270.3	1.12535-20	3.1177F 00	5366.4
3.3	1.3417F-20	6.6831F 00	5216.1	1.15435-20	3.1474F 00	5293.5
14	1.37625-20	6.9430E 00	6159.3	1.1858E-20	3.1810E 20	5218.7
35	1.41255-20	7.0037F 00	6099.7	1.2199E-20	3.2188E 00	5142.0

MAIDLY FLENENTS, FINSTEIN A.S AND ENERGIES FOR V= 5 TO 9 TRANSITIONS OF HCL

	¥	- 38ANCH			ANDTITUMA THE	HCL
				n =	83 ANCH	
.)	1/10/1/ No 1+12</td <td>Δ</td> <td>E</td> <td><v j="" j-1="" mu="" v'=""></v></td> <td></td> <td></td>	Δ	E	<v j="" j-1="" mu="" v'=""></v>		
	FSU-EW	SEC-1		3-17	Δ	F
		721 -1	C A-1	FSU-CM	SEC-1	
0	-1.3740F-21	1.30598-01	2027 -			C M-1
1	-1.34735-21	1.60535-01	9887.2			
7	-1.36156-21	1.76255-31	4405.4	-1.3097F-21	3.7347F-01	0054
3	-1.3766F-21	1.0731=-01	8909.7	-1.2996E-21	2.4308F-01	9954.1
4	-1.3030F-21	1.76465-01	9917.0	-1.2881F-21	2.1356F-01	8833.6
5	-1.41046-21	2. U469F-01	9921.7	-1.2784F-21	1.9840E-01	9810.5
4	-1.47995-21	2.12595-01	9023.7	-1.2694E-21	1.8853F-01	8784.R
7	-1.45055-21	2.20395-01	3023.0	-1.2611E-21	1.90705-01	A756.6
3	-1.47775-71	2.29365-01	9719.4	-1.2535F-21	1.7430F-01	8725.8
7	-1.4979F-71	2. 3665F-01	8913.6	-1.2469F-21	1.6872F-01	8692.5
10	-1.52508-21	2.4543F-01	8005.0	-1.2413F-21	1.6379F-01	8656.7
11	-1.55475-21	2.54795-01	9873.7	-1.2358F-21	1.5935F-01	861R.4
12	-1.54725-21	2.64875-01	PP79.7	-1.3335F-21	1.55405-01	9577.5
13	-1.67295-21	7.7584F-C1	9463.1	-1.23175-21	1.5187F-01	9534.4
14	-1.65195-21	2.8780=-01	PR43.A	-1.23155-21	1.4875F-01	P4 88.8
15	-1.7047F-21	3.0090F-01	9821.9	-1.2329E-21	1.44025-01	844U.R
16	-1.75155-21	1.1526F-01	8797.2	-1.2363E-21	1.4373F-01	9390.5
17	-1.8026F-21	3.31725-01	9750.0	-1.2418F-21	1.4186E-01	8377.7
I P	-1.85 878 -21	3.43325-01	8730.9	-1.2496E-21	1.4042F-01	8282.7
10	-1.91 POF- 21	3.67405-01	17 17 . 2	-1.2600E-21	1.39436-01	R225.4
23	-1.98467-21	3.88255-01	8671.A	-1.2731F-21	1.3894 =-01	P165.7
21	-2.05F0E-21		9633.6	-1.2890E-21	1.38897-01	8103.E
22	-7.13325-21	4.1120F-01 4.3638F-01	3592.6	-1.3082E-21	1.3937E-01	8039.6
2.3	-2.2166F-21		8548.9	-1.3307F-21	1.4034F-01	7972.1
24	-2.3047F-21	4.6393F-01 4.94CRF-01	9502.3	-1.3567E-21	1.4183F-01	7904.4
25	-?.4037F-21	5.2699F-01	1452.9	-1.3866F-21	1 390F-01	7833.4
26	-2.FOR4F-21	5.63025-01	8400.3	-1.4205E-21	1.4653F-01	7760.0
77	-2.6210F-21	6 02345 01	9344.7	-1.4590E-21	1.4970=-01	7684.4
2 8	-2.7410F-21	5.0226F-01	32 R6 . 4	-1.5019E-21	1.5366F-01	7606.5
20	-2.8721F-21	6.44RRF-01	8224. A	-1.5499E-21	1.5818F-01	7526.1
30	-3.01225-21	6.91395-01	9160.0	-1.6035E-21	1.6346F-01	7443.4
31	-7.1626F-21	7.4197F-01	8091.8	-1.6627F-21		7358.2
32	-3.3247F-21	7.9683F-01	9020.3	-1.7284F-21	1.6947E-01 1.7629E-01	7270.6
33	-3.40 ROF -21	8.5651E-01	7945.3	-1.8014E-21		7180.4
74	-3.69645-21	9.2116F-01	7856.7	-1.8818E-21	1.9406E-01	7087.5
35	-7.00075-21	9.0112F-01	7784.3	-1.9709F-21	2.0255E-01	6992.0
		1.0668F 00	7698.1	-2.0693E-21		6893.7
					2.1352F-01	6792.5

MATRIX FLEMENTS. FINSTEIN A'S AND ENERGIES FOR V= 5 TO 10 TRANSITIONS OF HCL

	P-BRANCH			P-BRANCH		
J	<v 411="" j="" j+1="" v+=""></v>	Δ	F	<v 4u="" j="" j-1="" v*=""></v>	٨	F
	FSU-C"	SEC-1	C ~-1	FSU-CM	SEC-1	CM-1
0	4.3475F-23	7.5145F-04	10836.4			
1	4.54525-23	3.3375F-04	10847.5	3.8680E-23	5.9181E-04	10904.0
?	4.72705-22	3.9600F-04	10855.3	3.5693E-23	3.3399F-04	10782.8
3	4.01005.23	4.3139E-04	10959.6	3.2653F-23	2.4985E-04	10758.2
4	5.04965-23	4.7312E-04	10950.5	2.90835-23	1.8731F-04	10730.4
5	5.253RE-23	5.1155E-04	10959.3	2.5303E-23	1.3664F-04	10459.2
4	5.44065-23	5.5370F-04	10852.5	2.1357F-23	9.4656E-05	10664.8
7	5. A 5 50F - 2 3	6.01905-04	10843.4	1.7062E-23	5.9013F-05	10627.1
R	5.00205-22	6.5775E-04	10930.9	1 - 2630E -23	3-1560F-05	10586.2
G	f.2102F-23	7.28475-04	10915.0	8.2024E-24	1.30895-05	10542.1
10	6.57595-23	9.16705-04	10795.7	3.6809E-24	2.5855F-06	10494.9
11	7.0346F-23	9.3155F-04	10773.1	-6.6462E-25	8.2686E-08	10444.4
12	7.5 8375-23	1.0781F-03	10747.1	-4.9541F-24	4.5061F-06	10390.9
13	8.2587F-23	1.2715F-03	10717.8	-R. 8720F-24	1.4169F-05	10334.2
14	9.07475-23	1.52475-03	10685.1	-1.2437E-23	2.72855-05	10274.5
15	1.00335-22	1.9449F-03	10549.0	-1.5583F-27	4.19515-05	10211.7
15	1.11725-22	2.2707F-03	10509.5	-1.8066F-23	5.5186F-05	10145.9
17	1.25075-22	2.9161F-03	10566.6	-1.9905E-23	4.5511F-05	10077.1
1 9	1.40325-22	3.5C31F-03	10520.3	-2.0960F-23	7.0978F-05	10005.3
19	1.59218-22	4.39575-03	10470.6	-2.0805E-23	6.8275E-05	9930.5
20	1.7940E-22	5.51125-03	10417.4	-1 . 9980F-27	6-1416E-05	9852.7
21	2.0150E-22	4.9741E-03	10360.6	-1.7804F-23	4.7517E-05	9771.9
22	7.7747F-27	A. 4755E-03	10300.3	-1.45715-23	3.0981E-05	9688.2
3.3	2.5647F-22	1.0939F-02	19236.4	-9.9172F-24	1.39565-05	9601.3
24	2 - 8 9 05F - 22	1.1499F-02	10169.8	-3.8598F-24	2.0533F-06	9511.5
25	3.2511F-22	1.4744F-02	10097.5	3.67025-24	1. 9011E-06	9418.5
21	3.45145-22	2.06675-02	10022.3	1.2675E-23	2.0912E-05	9322.5
27	4.09435-22	2.5377F-02	C943.3	2.34R2E-23	6.9131F-05	9223.3
28	4.5F??E=??	3-1032F-02	9860.2	3.6081E-23	1.57735-04	9120.8
27	5.12065-22	3.7755F-02	9773.0	5.0584E-23	2.9917F-04	9015.1
30	5.71715-22	4.5715E-02	9681.6	6.71578-23	5.0911E-04	8906.0
31	6.36295-22	5.5082F-02	95 95 . 8	8.6049F-23	9.0253F-04	8793.4
32	7.09 205-22	6.6127E-02	9485.4	1.0762F-22	1.2056F-03	8677.3
33	7.8703F-22	7.9018E-02	9380.3	1.3195F-22	1.7348E-03	8557.5
74	P.7390E-22	9.4076F-02	9270.3	1.5941E-22	2.4264E-03	8433.8
25	5.6369F-22	1.1161F-01	9155.1	1.9054F-22	3.3103F-03	8306.2

MATRIX FLEMENTS, FINSTEIN A'S AND EN' RGIES FOR V= 6 TO 6 TRANSITIONS OF HCL

J	< 1+L 'V\ , M\ L V>	٨	E
	ESU-CM	SEC-1	C M-1
0	1.26475-19	A. 5CAOF -04	17.2
1	1.26 ERF - 1 R	A. 25095-03	34.5
2	1.2670E-18	2.9779F-U2	51.7
1	1.26 73F -1 A	7.3025F-02	58. P
4	1.2677F-18	1.45675-01	96.0
5	1.26 A1F-14	2.5462F-01	103.0
6	1.2687F-18	4.0757 F-01	120.0
7	1.2593F-18	6.1104E-01	137.0
	1.2700F-1	A.7158F-01	153.8
9	1.27C7F-19	1.1959F 00	170.5
10	1.2716F-19	1.5004F 00	187.1
11	1.2725F-14	2.0579F 03	203.6
12	1 - 2 734F - 18	2.6066F 00	220.0
13	1.27475-19	3.2399E 00	236.1
14	1.775RF-19	1.9621F 00	257.7
15	1. 2771F-1R	4. 77665 00	269.0
16	1.2784F-19	5. K958F 00	293.7
17	1.279F-18	6.6926F 00	299.7
19	1.29 175-18	7. ROOOF 00	314.5
19	1.2828E-18	9.0072F 00	329.5
20	1.2946F-18	1.03135 01	344.3
21	1.2961F-19	1.1721E 01	359.9
22	1.28 78F-19	1.3229E 01	373.2
23	1.2 A 95F -1 A	1.4833F 01	347.2
24	1.2914E-18	1.4532F 01	401.0
25	1.2932F-1A	1. P322F 01	414.5
26	1.2951F-18	3.0199F 01	427.6
27	1.2970F-1A	2.2157E 01	440.5
28	1.2990F-18	2.4192F 01	453.1
29	1.30 10E-18	2.6295E 01	465.3
30	1.3029F-18	2.8461E 01	477.1
31	1.3049F-18	3.0679E 01	488.6
32	1.3069F-19	3.2940E 01	499.8
33	1.30885-18	3.5237E 01	510.6
34	1.3107E-18	3.75555 01	521.0
35	1.3125F-18	3.9883F 01	530.9

MATRIX FLEMENTS. EINSTEIN A'S AND ENERGIES FOR V= 6 TO 7 TRANSITIONS OF HCL

	P-RPANCH		P-RRANCH			
J	<v j="" j+1="" mu="" v4=""></v>	Δ	F	<v j="" j-1="" mij="" v+=""></v>	A	F
	F \$ (1=0)14	SEC-1	C 4-1	ESU-CM	SFC-1	C M-1
i)	1.5007F-19	2.4190F 01	2287.6			
1	1.47105-19	3.3187F 01	2303.5	1.55945-19	8.7321F 01	2253.8
2	1.44118-19	3.4809F 01	2318. R	1.5885E-19	5.8979F 01	2235.9
3	1.41005-19	3.5760F 01	2333.5	1.61745-19	5. 36 755 01	2217.4
4	1.39 (65-13	3.51445 01	2347.4	1.6461E-19	5.1595F 01	2178.3
5	1.34975-19	3.4692F 01	2360.6	1.6746F-19	5.0534F 01	2178.6
6	1.31065-19	3.4017E 01	2373.2	1.70305-19	4.9995F 01	2158.4
7	1.23725-19	3.3177F 01	2395.0	1.7313F-19	4.9442F 01	2137.6
- 12	1.25525-19	3.22105 01	2396.1	1.75945-13	4. 9072E C1	
• 3	1.22318-10	3.1141F 01	2406.5	1.78736-19	4. 9726E 01	2116.2
10	1.17045-19	2.9994F 01	2416.2	1.81515-19	4. 93 70F 01	2094.3
11	1.15725-19	2.37565 01	2425.1	1.8428F-19	4.7987E 01	2071.8
12	1.12766-19	2.7466F 01	2433.2	1.8702E-19	4.7563E 01	2048.9
13	1.08 4F-19	2.6124F 01	2440.6	1.8975F-19	4.7089F 01	2025.4
14	1.0544F-19	2.4739F 01	2447.2	1.9247E-19	4.6563F 01	2001.5
1.5	1.01925-19	2.3316F 01	2453.0	1.9516F-19	4.5979E 01	1977.1
16	5.8307F - 20	2.1867F 01	2459.1	1.9783F-19	4.5336E 01	1952.3
17	G.45 28E-7)	2.0397E 01	2462.3	2.0048F-19	4.4535E 01	1927.0
19	9. JR74F -20	1.89145 01	2465.7	2.0310F-19	4.4535E 01	1901.3
10	9.7039F-20	1.7429F 01	2469.2	2.0570F-19	4. 3056E 01	1975.2
20	9.31195-20	1.5946F 01	2469.9	2.0827F-19	4.2180E 01	1848.6
21	7.9104F-20	1.44735 01	7470.8	2.1080F-19		1821.7
22	7.4094F-20	1.3020F 01	2470.1	2.1330E-19	4.1250F 01	1704.4
23	7,07775-20	1.1595F 01	2469.8	2.1577F-19		1766.9
24	6.64495-20	1.0205F 01	2468.0	2.1819F-19	3.9232F 01	1738.7
25	4.20 COF -20	8.8617F 00	2465.2	2.2057F-19	3.9149F 01	1710.3
25	5.7423F-20	7.5728F 00	2461.5	2.2289F-19	3.7022E 01	1691.6
27	5.27CPE -20	6.34835 00	2456.9	2.2517E-19	3.5852E 01	1652.5
29	4.78455-23	5.1981 F 00	2451.3	2.2739E-19	3.4643F 01	1623.1
29	4.2º24F-20	4.1329E 00	2444.6		3.3400F 01	1493.4
30	3.7631F-20	3.1631F 00	2437.0	2.29546-19	3.2124F 01	1553.3
31	3.2254F-20	2.3001E 00	2428. 2	2.3162F-19	3.0821F 01	1532.9
32	2.56795-20	1.5554F 00	2418.4	2.33625-19	2.9493E 01	1502.2
33	2.08995-20	9.4105F-01	2407.5	2.35546-19	2.8145E 01	1471.2
34	1.4865F-20	4.6960E-01		2.3737F-10	2.6780E 01	1439.9
35	9.59925-21	1.5422F-01	2395.4	2.3910E-19	2.5403E 01	1408.1
-,		1.94226-0[2392.1	2.4072E-19	2.4017F 01	1376.0

MATRIX FLEMENTS, FINSTEIN A'S AND ENERGIES FOR V= 6 TO A TRANSITIONS OF HCL

	P-BRANCH			P-BRANCH		
J	< V J/411/V* J+1>	Δ	c	<v j="" j-1="" mu="" v*=""></v>	Δ	E
	FSU-CM	SEC-1	C M- 1	F SII-C M	SFC-1	CM-1
0	-5.75C4F-20	3.0653E 01	4453.9			
1	-5.734[[-2]	3.6808F 01	446R.5	- ~. 81 84E -2J	9.1740E 01	4420.7
2	-5.7004F-27	3.044PF 01	4491.9	-5.8502E-20	4.1054E 01	4402.2
3	-5. AHARE -2()	4. 3905F 01	4493.9	-5.883RF-20	5.49365 01	4382.4
4	-5.449F-20	4.1815F 01	4504.4	-5.91945-20	5.2000E 01	4361.3
5	-5.6450F-20	4.2421F 01	4513.6	-5.9571E-20	5.0513F 01	433R. 0
1.	-5.67675-20	4. 2834F 01	4571.6	-5.99695-20	4.9445E 01	4315.4
7	-5.6098F-20	4.3125F 01	4529.1	-6.0388E-20	4.8647F 01	4290.6
R	-5.5043F-20	4.7319F 01	4533.3	-6.08305-20	4.800RF 01	4264.5
2	-5.5 PO3F -20	4. 34395 01	4537.1	-6.1296E-70	4.7469E 01	4237.3
10	-5.56755-20	4.3499F 01	4539.5	-6.1786F-20	4.6991F 01	4200.0
11	-F. F. F	4.350AE 01	4540.5	-6.23025-20	4.6557F 01	4179.4
12	-5. 54605-20	4.3473F 01	4540.2	-6.2845F-20	4.61545 01	4148.R
1 3	-5.53705-20	4.23CAF 01	453R.5	-6.3415F-20	4.5770F 01	4117.0
14	-5.57625-20	4.7245F 01	4535.3	-6.4014F-20	4.5401F 01	4094.1
15	-5.57256-70	4.3137F 01	4530. R	-6.4643E-20	4.5040F 01	4050.1
16	-5.51675-29	4.2954F 01	4574.8	-6.5303F-20	4.4696F 01	4015.1
17	-5.5120F-20	4.2737F 01	4517.4	-6.5997E-20	4.4337E 01	3070.0
10	-5.50A1F-20	4.2486F 01	45CP.5	-6.6724F-20	4.3989F 01	3941.0
19	-5.5051F-70	4.2202F 01	4408.7	-6.748AE-20	4.3642F 01	3003.7
20	-5.50 265-20	4.1892F 01	4496.3	-6.8289F-20	4.3293F 01	3A64.6
71	-5.5008F-20	4.1527F 01	4473.0	-6.9130F-20	4.2944F 01	3824.4
22	-F.40GAF-20	4.1135F 01	445A.2	-7.0011F-20	4.2591F 01	3783.2
23	-5.49 96F -29	4.0704F 01	4441.7	-7.0937E-20	4.2234E 01	3741.0
24	-5.4978F-20	4.0273F 01	4423.7	-7.1908E-20	4.1873F 01	3697.7
25	-5.40776-70	3.9771E 01	4404.1	-7.2927E-20	4.1506F 01	3653.5
26	-5.4965F-20	3.9166F 01	4392.9	-7.3997F-20	4.1132F 01	3608.3
27	-5.4955F-2)	3.9565F 01	4259.9	-7.5121E-20	4.0752F 01	3562.0
28	-5.4940F-20	3.7917F 01	4775.3	-7.6301E-20	4.0364E 01	3514.7
29	-5.491RF-20	3.7220E 01	4308.9	-7.7543E-20	3.9966E 01	3464.4
3.0	-5.4985F-20	3.6471 E 01	4280.7	-7.8849F-20	3.9559F 01	3417.0
31	-5.4840F-20	3.5667F 01	4250.7	-8.0224F-20	3.9141F 01	3366.5
32	-5 .4 7 77F -20	3.4806F 01	4218.8	-8.1672E-20	3.8711E 01	3314.9
7 2	-5.4693F -20	3.3885F 01	4184.9	-A.3198F-20	3.8268E 01	3262.3
34	-F,4 5 01 F = 20	3.2901E 01	4149.1	- A. 4808E -20	3.7810F 01	3208.4
35	-5. 5/F-20	3.1 P49F 01	4111.1	-A.6507E-20	3.7335E 01	3153.4

ERIM

MATRIX ELEMENTS, FINSTEIN 4°S AND ENERGIES FOR V= 6 TO 9 TRANSITIONS OF HCL

	P-BRANCH			P-RR ANCH		
J	< 1 J/MII/V1 1+12	Δ	, F.	<v j="" j-1="" mu="" v*=""></v>	Δ	F
	ESU-CM	SEC-1	CM-1	E SU-CM	SEC-1	CM-1
0	1.2007F-20	4.1668E 00	6514.1			
1	1.2039F-20	5.05735 00	6527.3	1.19605-20	1.2218E 01	6481.6
5	1.2077F-20	5.4906F 00	6538.5	1.1945F-20	8.0527F 00	6467.4
3	1.2120F-20	5.7488F 00	1547.7	1.1936E-20	7.1648F 30	6441.2
4	1.2170E-20	5.9474F 00	6554.8	1.1932F-20	6.7456E 00	6418.0
5	1.27275-20	6.10905 00	6559,9	1.1933E-20	6.4832F 10	6392.9
6	1.22°0F-20	6.2495F 00	6562.9	1.1941E-20	6.2930E 00	6365.9
7	1.23605-20	6.3772F 00	6563.9	1.19555-20	6.1422F 30	6336.R
Q	1.24395-20	6.4972F 00	6562.9	1.19755-20	6.0155E 10	6305.9
3	1.25245-20	6.6129F 00	6559. B	1.2003F-20	5.9056F 00	6273.2
10	1.2618F-20	6.7259F 00	6554.6	1.2037F-20	5.80765 00	6238.6
11	1.27215-20	6.9387F 00	6547.4	1.20795-20	5.7193E 00	6202.1
17	1.24345-20	4.95745 00	6538.2	1.2130F-20	5.6389F 00	6163.9
13	1.20575-20	7.06798 00	5576.A	1.2189E-20	5.5655F 10	6123.9
14	1.3090F-20	7.1861F 00	6513.4	1.2259F-20	5.4986E 00	6082.1
15	1.32346-20	7.3077F 00	6497.9	1.2338E-20	5.4377F 00	6038.5
16	1.37905-20	7.4224F 00	5480.4	1.242RF-20	5.3829E 00	5903.2
17	1.3558E-20	7.5638F 00	6460.7	1.2530E-20	5.3336E 00	5946.2
19	1.37385-20	7.5790E 00	6439.0	1.2645F-20	5. 2903F 00	5897.5
10	1.3931E-20	7.8395F 00	6415.1	1.2773F-20	5.2530F 00	5847.1
20	1.4138F-20	7.9954F 00	5399.0	1.2915E-20	5.2214F 00	5795.0
21	1.43505-20	P.1371F 00	6360.8	1.3073F-20	5.1958F 00	5741.3
2?	1.45955-20	8.2939F 00	6330.3	1.3246F-20	5.1758E 00	5685.9
23	1.48455-20	9.45615 00	6297.6	1.3437E-20	5.15235 30	5629.7
24	1.51116-20	8.5227F 00	5252.7	1.3647E-20	5.1545E 00	5549.9
25	1.53036-20	9.7957F 00	5225.4	1.3875E-20	5.1523F 00	5509.4
26	1.5491F-20	P.9721F 00	6195.7	1.4125E-20	5.1565F 20	5447.2
27	1.6006F-20	9.15275 00	6143.5	1.4397F-20	5.1566F 00	5383.2
28	1.6338F-20	9.3363F 00	6098.9	1.4692F-20	5.192FF 00	5317.5
29	1.6680E-20	9.52745 00	6051.7	1.5013E-20	5. 20465 00	5250.0
30	1.7059E-20	9.7105F 00	6001.9	1.53625-20	5.2330F 00	5180.6
31	1.74492-20	9. RC94F 00	5949.2	1.5741F-20	5.2675E 00	5109.3
37	1.79 FOF -20	1.0098F 01	5893.8	1.61525-20	5.3089F 00	5036.0
33	1.8292F-20	1.0276E 01	5835.5	1.6600F-20	5.3572F 00	4960.8
34	1.8747E-70	1.0461F 01	5774.1	1.7088F-20	5.4127E 00	4983.4
35	1.92258-20	1.06415 01	5709.5	1.7620E-20	5.4759E 30	4803.9

MATRIX FLEMENTS. EINSTEIN 4.5 AND ENERGIES FOR V= 6 TO 10 TRANSITIONS OF HCL

	P-RRANCH			P-8RANCH		
1	<1+L *V\UM\L V>	٨	E	<v j="" j-1="" mii="" v*=""></v>	Δ	F
	FSU-C"	SEC-1	CM-1	FSU-CM	SEC-1	CM-1
0	-2.7056F-21	3.4372E-01	1463.3			•
1	-2.41425-21	4.4513F-01	9475.1	-2.3609F-21	1 0/ 705 00	
2	-2.4340F-21	4.8633E-01	8484.1	-2.3448E-21	1.0479E 00	8431 .6
3	-2.4540F-21	5.1417E-01	9490.3	-2.3293E-21	6.9423E-01	3411.6
4	-2.4773F-21	5.36165-01	1493.9	-2.3147E-21	6.0280F-01	8381.9
5	-2.5013F-21	5.5517F-01	9494.5	-2.3007E-21	5.6178E-01	8363.5
6	-2.57775-21	5.7265F-01	3492.5	-2.2878E-21	5.3421E-01	8335.5
7	-7.5556F-21	5.8947F-01	8487.7	-2.2757E-21	5.1289F-01	8304 · B
я	-2.5363F-21	6.0604F-01	8480.1	-2.2647F-21	4.9496E-01	8271.4
0	-2.62COF-21	6.22355-01	2460. 9	-2.2552E-21	4.7923F-01	8235.5
10	-2.65695-21	4.4044E-01	3456.7	-2.2469E-21	4.6512E-01	9196.9
11	-2.69758-21	6.5894F-01	9440. 9	-2.2405F-21	4.5215F-01	8155.8
12	-7.7426F-71	6.7863E-01	8422.2	-2.2363E-21	4.4029F-01	8112.1
1.3	-2.70 20 = -21	6.9001 E-01	4400.8	-2.2341E-21	4.2946F-01	8065.9
14	-2.84665-21	7.2245F-01	9376.7	-2.2349E-21	4.1952E-01	9017.3
15	-2.9067F-21	7.4797E-01	9349.7	-2 · 23865 -21	4.1064E-01	7966.1
16	-2.0731F-21	7.7560F-01	9370.0	-2.2459E-21	4.0274E-01	7912.5
17	-7.04594-21	9.05805-01	R287.5	-2.2566F-21	3.9594E-01	7856.4
19	-3.12615-21	9.3918F-01	9252.1	-2.2718E-21	3.9015F-01	7798.0
10	-7.21 30F-21	9.7579F-01	A213.9	-2.2916E-21	3.8562E-01	7737.1
20	-3.3101F-21	9.1623F-01	8172.9	-2.3169F-21	3.8224E-01	7673.8
2.1	-3.4151F-21	9.6060F-01	3128.7	-2.3472E-21	3. 8021E-01	7608.1
22	-7.57056-21	1.00935 00	9091.9	-2.3838E-21	3.7941E-01	7540.1
23	-3.6540F-21	1.0628F 00	9031.9	-2.4269E-21	3.8004E-01	7469.6
24	-3.7804F-21	1.1214F 00	7979.7	-2.4772E-21	3.8211E-01	7396.7
25	-7.435AF -21	1.1351F 00	7022.5	-2.5346F-21	3.4571E-01	7321.4
26	-4.0341F-21	1.2547F 00	7863.1	-2.6005E-21	3.9073E-01	7243.6
27	-4.2452F-21	1.3704E 00	7800.4	-2.6747E-21	3.97475-01	7163.2
20	-4.44CRE-2!	1.4124F 00	7734.3	-2.7583F-21	4.0576E-01	7080.4
24	-4.64H7F-21	1.5011F 00	7664.8	-2.8513F-21	4.1579E-01	6094.0
30	-4.96336-21	1.5971E 00	7591.6	-2.9562E-21	4.2761F-01	6906. d
31	-5.0942F-21	1.7005F 00	7514.7	-3.0721F-21	4.4134F-01	6816.0
32	-5.3432F-21	1.8120F 00	7433.9	-3.2012F-21	4.5702F-01	6722.4
33	-5.6117F-21	1.9319E 00	7349.1	-3.3446E-21	4.7491E-01	6625.8
34	-5.971KF-21	2.0608F 00	7240.0	-3.5039E-21	4.9515F-01	6526.3
35	-6.2150F-21	2.1 COLE 00	7166.5	-3.6815F-21	5.1796F-01 5.4372E-01	6423.6

MATRIX FLEMENTS. FINSTEIN ATS AND ENGLISS FOR V= 6 TO 11 TRANSITIONS OF HCL

	PHRANCH			P-BRANCH		
J	<v 1+1="" j="" mh="" v'=""></v>	٨	E	<1-L .AMBM/L A>	Δ	£
	5 5 U-C W	SEC-1	CM-1	FSH-CM	SFC-1	C M-1
0	7.75 220 = 22	1.50555-02	10205.4			
1	7.79445-22	1.97755-02	10306.0	3.6532E-22	4.5276F-02	10254.8
7	3.27375-22	2.1669F-02	10312.7	1.59554-22	2.90605-02	10244.1
P	3.97145-22	2.29755-02	10315.0	3.5321E-22	2.5062F-02	10219.9
4	3.00388-22	2.38505-02	10315.6	3.4633E-22	2.2762E-02	10192.2
5	3.03005-22	2.41185-02	10211.7	3.3900F-22	2.1009F-02	10161.1
4	7.9737F-22	2.5 20 45-02	10304.3	3.3111F-22	1.9478F-02	10126.5
7	4.01 31 6-22	2.5976F-07	10297.4	3.2283F-22	1.8074F-02	10098.6
2	4.05695-22	2.4556F-07	10279.0	3.1421E-22	1.6751F-02	10047.3
~	4.1070F-72	2.72795-02	10241.0	3.0543F-22	1.5503F-02	10002.6
10	4.16 C2F - 22	7.706F-02	19239.5	2.9653E-22	1.4319E-02	9954.6
1 1	4.24238-22	2.3F76F-02	10214.5	2.8754F-22	1.3194E-02	9901.3
12	4.37101-22	5 . cds8E-05	10134.0	2.7886F -22	1.2157F-02	9848.7
13	4.47778-22	3.17195-02	10153.9	2.7057E-22	1.1207E-02	0700.9
14	4.56665-22	1.27F7F-07	10119.4	2.6280E-22	1.0347F-02	3779.9
15	4.71 C1F -22	3.4580F-02	10079.3	2.5580E-22	9. 5861F-07	9665.6
16	4.76125-22	3.7001 5-02	10036.7	2.4997F = 22	P. 9372F-07	9598.2
17	5.1134F-22	3.07875-02	9990.5	2.4500F - 22	9.3883F-03	9527.5
10	0.26248-22	4.71K4F-07	9940.7	2.4165F-22	7.95895-03	9453 A
10	5.65 ORE -22	4.77775-07	0447.2	2.3998F -27	7.44785-03	9376.H
20	5.18135-22	5.2090 =-02	9430.1	2.4025F-22	7.4599F-03	9294.7
7.1	6. 74 271 -27	5.7982F-02	7749.3	2.4785F -2?	7.3983F-03	9213.4
22	6.70478 -22	6.4770F-02	9704.7	2.4756F-22	7.47725-03	9127.0
23	7.29265-72	7.29375-02	9536.7	2.55017 -22	7.6950F-03	9017.1
24	7.83205-33	A. 2520F-07	9563. R	2.65505-27	8.0941E-03	9944.3
25	P.447AF=77	9.27745-02	9497.4	2.7924F -22	P. 5436F-03	8848.0
25	C.1 154[-77	1.06945-01	9436.9	2.06395-22	9.4049F-13	A74H.4
27	0.80866-22	1.27295-01	9771.9	3.1712F-22	1.0393F-02	8545.3
2 13	1.07455-21	1.4000 -01	9232.6	3.41925-22	1.1621F-02	8538.6
20	1.1 4 875 - 71	1.40678-01	91 3A.7	3.7091E-22	1.3137F-02	8478.3
30	1.77176-21	1.94405-01	9040.1	4.0435F-22	1.4987F-02	831 .2
31	1.78505-21	2.1144E-01	9776.5	4.4786F-77	1.7214F-02	8196.3
32	1.51171-21	7.47HOE-01	9977.9	4. 86795-72	1.49735-02	8074.3
33	1.45081-21	2. THE 5F-01	9713.6	5.36765-27	2.3036F-02	7948 . 1
74	1.0042F-21	3.1946F-01	8593.R	5. 9354F-27	2. ATAOF-02	7817.4
35	1.07436-71	3.66C9F-01	9467. H	6.5815F-22	7.1244F-02	7582.1

MATRIX FLEMENTS. FINSTEIN A'S AND ENERGIES FOR V= 7 TO 7 TRANSITIONS OF HCL

1	+L +V\UP\L V	٨	E
	ドスリー (**	SFC-1	C M-1
0	1.29515-19	7.01175-04	16.6
1	1.78525-18	7.5776F-03	33.2
2	1.28546-18	2.7347F-07	49.7
3	1.29565-19	6.7112F-02	66.3
4	1.24506-10	1.33778-01	A7. A
5	1.29626-19	2.33845-01	00.2
6	1.29 FAF -19	3.74235-01	115.6
7	1.28715-18	5.4001 F-01	131.9
Q	1.2974F-19	7.9900 = -01	149.1
0	1.2493F-10	1.09715 00	164.2
10	1.2 APCF -19	1.4574F 0J	190.2
11	1.20965-10	1.98625 07	194.0
12	1.29066-19	CO BORRE.S	211.8
1 2	1.29135-18	2. 25655 00	227.3
14	1.20718-18	3.4250E 00	742.4
15	1.20315-19	4.36705 00	254.0
16	1.27418-14	F.1944F 00	273.1
17	1.29-15-19	6.10925 0)	297.0
1 0	1.20628-18	7.11225 00	302.6
10	1.29745-18	8.203aF ())	31 7. 0
20	1.20 955-19	9. 7977 ()	3 11 . 2
21	1.20575-19	1.06515 01	345.1
22	1.3009F-14	1.2003E 01	358.8
23	1.30225-19	1.34395 01	372.3
24	1.3034F-18	1.49525 01	335.4
25	1.304KF-18	1.6541F 01	398.2
26	1.3050F-1A	1.0 200 F 01	410.9
27	1.30716-19	1.0922F 01	423.0
28	1.30835-19	7.1702F 01	434.0
29	1.3004F-19	2.3530F 01	446.4
30	1.3105F-18	2.5400F 01	457.6
31	1.3115F-18	2.7299F 01	468.4
32	1.3125F-18	2.9217F 01	478.A
33	1.31335-19	3.11445 01	498.9
34	1.31 40E-18	3.30675 01	498.5
35	1.3145F-18	3.4970F 01	507.7

ERIM

MATRIX FLEMENTS, EINSTEIN A'S AND ENERGIES FOR V= 7 TO 8 TRANSITIONS OF HCL

	R-BRANCH			P-RR ANCH		
J	<v j="" j+1="" mu="" v*=""></v>	A	F	<v j="" j-1="" mij="" v*=""></v>	۸	F
	ESU-CM	SEC-1	7M-1	ESU-CM	SFC-1	CM-1
0	1.47095-19	2.3528F 01	2187.9			
1	1.43876-19	2.7569F 01	2198-2	1.5349F-19	7.3478E 01	2150.4
2	1.40545-19	2.P767F 01	2212.7	1.5664F-19	4.9802E 01	2173.1
3	1.37215-19	2.9974E 01	2726.5	1.5977F-19	4.5464F 01	2115.2
4	1.3384F-19	2.8698E 01	2239.8	1.6287E-10	4.3923E 01	2096.7
5	1.3043E-19	2.8134F 01	2252.2	1.6594F-19	4.3026F 01	2077.5
6	1.24 CAF-19	2.73805 01	2264.0	1.6899E-19	4.2571E 01	2057.9
7	1.23455-19	2.6484E 01	2275.0	1.7201E-19	4.2261F 01	2037.4
8	1.10975-19	2.5479F 01	2285.2	1.7500E-19	4.2006F 01	2016.5
9	1.16245-10	7.4388E 01	2294.7	1.77976-19	4.1759E 01	1995.0
10	1.12555-19	2.3225E 01	2303.5	1.8091E-19	4.1491E 01	1972.9
11	1.28785-19	2.2005F 01	2311.5	1.8382E-19	4.1187F 01	1950.4
12	1.04C5F-19	2.0738F 01	2319.7	1.8670E-19	4.0836E 01	1927.3
13	1.0104F-19	1.9433F 01	2325.2	1.8955F-19	4.0430E 01	1903.7
14	9.7044F-20	1.9100F 01	2330.9	1.9237E-19	3.9967E 01	1879.6
15	0.29635-20	1.6748F 01	2335.7	1.9515E-19	3.9444F 01	1855.1
16	0.F789F-20	1.53955 01	2339.8	1.9789F-19	3.9859E 01	1830.1
17	8.4516F-20	1.4020F 01	2343.0	2.0059E-19	3.8212F 01	1904.7
19	P.0139F-20	1.26625 01	2345.4	2.0324E-19	3.7505F 01	1778.9
19	7.55505-20	1.1320E 01	2346.9	2.0585F-19	3.6737E 01	1752.5
20	7.1044F-20	1.0003F 01	2347.6	2.0840F-19	3.5911F 01	1725.8
21	6.6310F-20	8.7213F 00	2347.4	2.1090E-19	3.5029F 01	1698.7
22	6.1443F-20	7.4944F 00	2746.2	2.1333F-19	3.4092F 01	1671.3
23	5.64325-20	6.3021 5 00	2344.2	2.1569F-19	3.3104F 01	1643.4
24	F.1269F-20	5.19565 00	2341.1	2.1799E-19	3.2068F 01	1615.2
25	4.59305-27	4.1455F 00	2337.1	2.2020E-19	3.0987F 01	1586.5
26	4.04365-20	3.1933E 00	2332.1	2.2233F-19	2.9865E 01	1557.5
27	3.4743F-20	2.34065 00	2326.0	2.2437E-19	2.9704E 01	1528.1
29	2.9848F-20	1.5999E 00	2319.9	2.2631E-19	2.7510E 01	1498.3
29	2.2735E-20	9. 8372E-01	2310.7	2.2814E-19	2.6286F 01	1468.2
	1.6386F-20	5.0511E-01	2301.4	2.2086F-10	2.5037E 01	1437.6
30	9.7828F-21	1.7767E-01	2290.9	2.3144F-19	2.3767E 01	1406.7
31	2.90525-21	1.5438E-02	2279.2	2.3289F-19	2.2481F 01	1375.4
32	-4.2714E-21	3.28235-02	2266.3	2.34185-10	2.1183F 01	1343.6
33	-1.1772E-20	2.44775-01	2252.1	2.3530E-19	1.9878E 01	1311.5
34	-1.9625F-20	6.6659F-01	2236.6	2.36225-19	1.8572 F 01	1278.9
	-1.49596-50	0.00.1401				

MATRIX FLEMENTS, FINSTEIN AS AND ENERGIES FOR V= 7 TO 9 TRANSITIONS OF HCL

	R-ARANCH			P-BRANCH		
J	<1+L *V\IM\L V>	Δ	E.	<v j="" j-1="" m()="" v=""></v>	Д	E
	FSIJ-C#	SFC-1	r 4- t	ESII-C M	SFC-1	CM-1
0	-4.95 QQF -7 1	3.7585F 01	4243.1			
1	-4. R 247F - 27	4.5070F G1	4256, 9	-6.9365F-20	1.1271E 02	4211.2
,7	-4 . 79 145 - 27	4.8251E 01	4247.4	-6.9780F-20	7.5075F 01	4193.3
3	-5.76018-20	4.9965F 01	4280.5	-7.021 RE -20	6.7479F 01	4174.0
4	-6.73()65-27	5.10005 01	4700.2	-7.0680F-20	6.4153E 01	4153.4
5	-6.10295-20	5.1456F 01	4298.5	-7.1166F-20	6.2235E 01	4131.4
6	-6.675PF-23	5.2074F 01	4305.3	-7.1678F-20	6.0945F 01	4108.2
7	-6.65745-20	5.2327E 01	4310.8	-7.2216F-20	5.9983E 01	4093.7
P	-6.6295E-20	5.2457F 01	4314.8	-7.2782E-20	5.9210F 01	4057.9
9	-F.6087F-20	5.2491F 01	4317.4	-7.3376F-20	5. 9553F 01	4030.8
10	-4.5393F-20	5.2445F 01	4319.6	-7.4700F-20	5.7967F 01	4002.6
11	-6.54975-20	5.2330F 01	4318.4	-7.4655F-20	5.7431F 01	3073.1
12	-6.55255-20	5.2156E 01	4316.7	-7.5344E-20	5.6925F 01	1942.4
13	-4.53144-20	5.1925F 01	4313.5	-7.6967E-20	5.6438F 01	3910.6
14	-6.52155-20	5.1542E 01	4309.0	-7.6P26E-20	5.5265E 01	3877.6
15	-f.5074E-7()	5.1309F 01	4302.0	-7.7622F-20	5.5499F 01	3942.5
16	-6.496AF-70	5.0927E 01	4295.4	-7.8457F-20	5.5036F 01	3808.2
17	-6.4P74F-20	5.04985 01	42 36.4	-7.9334F-20	5.4573F 01	3771.9
18	-5.47CRF-27	5.0020F 01	4275.7	-R.0255E-20	5.4110F 01	3734.4
10	-4 .45 08 E-20	4.04935 01	4253.9	-8.12215-20	5.3643F 01	3605.0
20	-4.44925-20	4. 891 PF 01	4250.3	-R.2236F-20	5.3171E 01	3656.3
21	-6.4386F-20	4.82015 01	4235.2	-8.3301E-20	5.2693F 01	3615.7
22	-4.47825-23	4.7412F 01	4719.4	-3.4419E-20	5.2209F 01	3573.9
23	-6.4174F-20	4. 5P7RF 01	4200.1	-8.5594F-20	5.1715E 01	3531.2
2.4	-6.4062F-20	4.6087F 01	4180.1	-8.6827E-20	5.1211F 01	3487.3
25	-6.30425-20	4.5237F 01	4158.4	-9.8123E-20	5.0696F 01	3442.4
26	-6.3910F-20	4.4323F 01	41 34. 9	-8.9484F-20	5.0167E 01	3396.4
27	-6.3664F-20	4. 3344F 01	4109.6	-9.0914F-20	4.9523F 91	1349.3
29	-6.24095-20	4.27075 01	4092.5	-9.2417F-20	4.9062F 01	3301.1
29	-6.3700F-20	4.1178F 01	4053.5	-9.3997E-20	4. 9490E 01	3251.4
30	-6.30915-20	3.9984F 01	4022.5	-9.54595-20	4.7877F 01	3201.2
71	-6.2838E-20	3. 8713E 01	3949.4	-9.7409E-20	4. 7249E 01	3149.5
32	-6.2542F-20	3.73615 01	3954.2	-9.9251E-20	4.6594F 01	3096.4
33	-6.219AF-20	3.5927F 01	3916.8	-1.0119E-19	4.5910E 01	3042.1
34	-f.1790F-20	3.4406E 01	3877.1	-1.0324E-19	4.5193F 01	2986.5
15	-6 •1 = 12F - 20	3.2798E 01	3835.1	-1.0541E-19	4.4441F 01	2929.5

MATRIX FLEMENTS. EINSTEIN A.S AND ENERGIES FOR V= 7 TO 10 TRANSITIONS OF HCL

	P-BRANCH			PERANCH		
J	<v 14="" 401="" j="" j+1=""></v>	٨	E	<v j="" j-1="" mij="" v*=""></v>	٨	F
	ESU-CM	SEC-1	C M-1	ESU-CM	SFC-1	CM-1
0	1.4404F-20	6.6903F 00	6192.3			
1	1.5436F-20	8.0955F 00	5204.7	1.6363E-20		
2	1.44745-20	8.7583F 00	6215.0	1.6353E-20	1.9542E 01	6161.2
3	1.65215-20	9.1704F 00	6223.1	1.63518-20	1.2960F 01	6142.5
4	1.65768-20	9.4686F 00	5229.2	1.6356F-20	1.1543E 01	6121.7
5	1.6630F-20	9.7057F 00	6233.1	1.6368E-20	1.0877F 01	6.098.9
5	1.67105-20	9.9967F 00	5234.9	1.6388E-20	1.0462E 01	6074.1
7	1.47025-20	1.0085F 01	6234.5	1.641 7F -20	1.0161F 01	4047.7
2	1.6982F-20	1.0249F 01	6232.0	1.6454F-20	9.9725F 00	6018.3
C	1 40836-20	1.0404F 01	6227.4	1.6500E-20	9.72125 00	5987.4
10	1.70955-20	1.0553F 01	6220.7	1.6556F-20	9.5451E 00	5954.6
11	1.72185-20	1.0599E 01	6211.R	1.6622F-20	9.3872F 00	5910.R
1.7	1.73535-20	1.0843F 01	5200.7	1.6700E-20	9.2433F 00	Less 1
13	1.75025-20	1.0988F 01	6187.5		9.1111F 00	5044.5
14	1.76645-20	1.11355 01	6172.3	1.6790F-20	8. 9895E 00	5904.0
15	1.78405-20	1.1294F 01	6154.7	1.6993E-20	A.A767F 00	5761.6
16	1.00315-20	1.1437F 01	6135.0	1.7009F-20	4.7729F 00	5717.4
17	1.92285-20	1.1595# 01	4113.1	1.7142F-20	4.6779E 00	5671.4
18	1.84625-23	1.17595 01	5099.0	1.7291F-20	A. 591 AE 10	5623.6
10	1.97045-70	1.1927F 01	6042.7	1.745 9F -20	9.5145F 00	5574.0
20	1.99635-20	1.2102F 01	4034.0	1.7645F-20	9.446AF 00	5522.6
21	1.9242F-20	1.2283F 01	6003.1	1.7853F-20	9.38795 00	5469.4
22	1.05405-20	1.24695 01	5949.9	1.90835-20	4.3391F 00	5414.5
23	1.9850F-20	1.26415 01	5036.2	1.8339F-20	4.3002F 30	5357.7
24	2.01905-20	1.2959F 01	5996.1	1.86215-20	4.2714F 00	5299.1
25	2.05615-20	1.30500 01		1.8932F-20	P. 2534F 30	5238.4
24	? .00446 -20	1.3263E 01	5855.5	1.9274E-20	A. 246 3F 10	5176.6
27	5.13-16-20	1.34695 01	5812.3	1.96496-20	9.2495F DI	5112.5
29	2.17815-20	1.36745 01	5746.5	2.0060F-20	A. 26 375 30	5046.5
29	2.2234F-20		5717.7	2.0509F-20	9.2883F 00	4978.6
10	2.2711F-20		5666.5	2.1000E-20	8. 3235F 00	4909.6
31	2.3211F-20	1.40728 01	5612.3	2.1536E-20	A. 3690E '00	4836.7
2.7	2.3736F-20	1.4260F 01	5554.0	2.2119F-20	A. 4244F 00	4762.5
22	2.47845-20		5494.3	2.2755F-20	H. 4895E 00	4686.2
2%	7.4855F-20	1.4506F 01	5430.5	2.3447F-20	A. 5642F 00	4607.6
15	2.5450[-20	1.47355 01	5363.1	2.42035-20	9. 64 79= 90	4575.6
	, • . · · · · · · · · · · · · · · · · · ·	1.4P48F 01	5292.1	2.50275-20	A. 7410F 30	4443.1

MATRIX ELEMENTS. EINSTEIN ALS 140 ENERGIES FOR Ve 7 TO 11 TRANSITIONS OF HEL

D = 0 D A*ICH			D = BR WALL 14			
1	< 1/401/ 1.12	۸	Γ	<1-L *V\UM\L V>	٨	t
	6611-61	5+0-1	C 1	FSU-C"	SFC-1	C"-1
)	-7.07161-11	0 12251-01	20,00			
*	- 3.00446 - 21	1.03786 0)	4035 6	-1.47515-21	1 // 205 10	
2	-4 . 7 7 24 5 - 21	1.13256 33	H 143.4	-1.90195-21	1.46 30F 10	7004
3	-4.) = 1 11 = 21	1.16345 00	9049 7	-1. AD14F-21	1.6163F 00	7975.0
4	-4.99741-21	1.24000 00	9051.1	-3.8641F-21	1.42756 30	7952.7
5	-6.11566-71	1.2702F 07	9050	-3.84615-21	1.3334F 00	7727.6
6	-4.1500r-21	1.31406 01	9046.7	-3.62026-21	1.27075 00	7999.6
7	-4.12041-21	1.34545 03	4040.2	-1.8140F-21	1.22235 00	7868.9
2	-4.73746-71	1.37850 00	4310.2	-3.9002E-21	1. 18 18F 00	7835.5
9	-4.77001 = 71	1.40000 00	9018.4	-1.73846-21	1.14615 00	7700.2
10	-4.33076-11	1.4470 00	8003.5	- 3 . 77905 - 21	1.113RF 00 1.0841F 10	7740.3
1 1	-4. 1 GAOF - 21	1.47536 (1)	7095.4	-3.771 HF - 21		7718.6
1.2	-1.1.6 C3F = 71	1.51 341 ())	1966.5	-3.767HF-21	1.05645 00	7674.3
13	- 4 . 1 946 = 21	1.56746 00	7447.7	-7.76735-21		7627.3
1 %	-4.50495-21	1. 40417 37	7013.0	-1.77078-21	1.0072F 10	7577.4
1 17	-4.67925-21	1.53100 07	7094.7	-3, 7786F -21	0.65785-01	7525.4
16	- 4 . 7 7 2 . 5 = 21	1.47976 00	7951.7	-3.791 AF -21	1.49245-01	7470.6
17	-4.87575.21	1. 7371 7 0)	7816-1	-7 - 91 () 9E - 21	9 2299 - 01	7413.2
1 3	-4.0394F-21	1.72078 01	7777.6	-3.83654-21	1. 20 00F-01	7157.2
10	-5.11455-21	1.45301 0)	7736.0	-1.8695F-21	9.03785-01	7200.7
21)	-5.2520F-21	1. 32250 03	7691.4	-1.9107F -21	9.02208=01	7225.6
21	-5.40311-21	1.00028 01	7663.7	-7.96105-21	3.9753F-01	7154.0
7 7	-5.5 K B4F - 21	2.04335 00	7507.0	-4.02175-21	4.0546F-01	7()47.4
22	-5.74916-21	2.17575 00	75 10. 7	-4.092AF-21	9.77536-01	7015.1
24	-F. 4/ 67F-21	2.2747F 0)	7481.7	-4.17630-21	9.02501-01	6861.7
25	-6.16.201 -21	2. 19715 03	7420.4	-4.2731F-21	9.11126-01	
76	-F . 3064F = 21	2.50755 33	7350.0	-4.3945[-2]	9.23556-01	6781.0
27	-6.6611F-21	2.13845 07	7299.0	-4.5119F-21	9.4.1011-01	
24	-1.1273F-21	2.74015 90	7216.2	-4.55665-21	9.6066F=01	6527.2
50	-7.2270F-21	2.9333 00	7140.5	-4.8204F-21	9.85835-01	6430.1
30	-7.55156-21	3.00916 (10	7060.7	-5.0050F-21	1.0157F 30	6334.0
31	-7.9026F-21	3.2747F 00	6076.7	-K - 2126F - 21	1.2505 00	6236.5
37	-9.29171-21	3.4631F 00	688H.2	-5.4452=-21	1.09065 30	6134.7
33	-9.60176-21	3.6633F 00	6795.0	-5.70595-21	1.1364F 10	6029.4
74	-9.13428-21	3.9745F 00	AADA. A	-5.00776-21	1.1892F 00	5920.5
15	-9.6119F-21	4.09625 0)	4501.4	-6.3245F-21	1.24665 00	5807.4

MATPIX FLEMENTS, FINSTEIN A'S AND ENERGIES FOR V= 7 TO 12 TRANSITIONS OF HCL

	P-RRANCH			P-AR ANCH			
J	+I. 'V\UM\L V	۵	E	<v j="" j-1="" mu="" v'=""></v>	A	۶	
	FSU-CM	SEC-1	CM-1	FSU-CM	SEC-1	C M-1	
0	5.607RE-22	8.83835-02	9733.1				
7	9.4457F-22	1.0884E-01	9742.4	0 /33/5 33			
2	5.76 C3F-22	1.13625-01	9747.9	9.4336E-27	2.5504F-01	9703.6	
3	5.93CRF-22	1.24875-01	0749.8	9.33745-22	1.6554E-01	9683.3	
1.	9.9 1095-22	1.2945E-01	9748.0	9.2335E-22	1.4461E-01	9459.4	
5	9.07285-22	1.3314F-01	7742.5	9.1236E-22	1.3332E-01	0631.0	
6	1.00475-21	1.3625F-01	9733.4	9.0071F-22	1.2510E-01	9600.R	
7	1.0127F-21	1.39045-01	9720.5	P - 8836F -22	1.1819E-01	9566.1	
A	1.0216F-21	1.4159E-01	9703.9	8.7554F-22	1.1198F-01	9527.A	
0	1.03175-21	1.4435F-01	9683.6	8.6241E-22	1.0620E-01	9485.9	
10	1.04345-21	1.47205-01	9659.5	8.4902F-22	1.00715-01	9440.5	
11	1.0570F-21	1.50?2F-01		A. 3559F-22	9.54R1F-02	9391.6	
1.2	1.0732F-21	1.5392F-01	9631.9	8 • 2227E-22	9.0490E-02	9339.3	
1.7	1.00205-21	1.5905E-01	9600.6	R. 0944F-22	8.5785F-02	9797.4	
14	1.1147E-71	1.6294E-01	0565.4	7.9705E-22	9.1324F-02	9724.2	
15	1.14055-21	1.6873F-01	7526.6	7.9575F-27	7.7212F-02	9161.5	
16	1.1711F-21	1.7564F-01	9494.7	7.7572F-22	7.3454E-02	9095.3	
17	1.20676-21	1.8381F-01	9437.4	7.6740E-22	7.0100E-02	9025.A	
18	1.24 A1F -21		9387.4	7.6089E-22	5.7132F-02	8952.9	
10	1.2958F-21	1.9355F-01	0333.4	7.5689F-22	5.4635F-02	RR76 . 6	
20	1.3507F-21	2.0502F-01	9275.5	7.5554F-22	4.2593F-02	8796.0	
21	1.41336-21	2.1860F-01	9213.7	7.5780F-22	5.1117F-02	8713.9	
22	1.49456-21	2.3449E-01	9147.9	7.6362E-22	6.0156F-02	8627.3	
23	1.56538=21	2.5306F-01	9077.9	7.7372F-22	5.9779E-02	8537.4	
24		2.7474F-01	9003.9	7.8857E-22	6.001 RF-02	8443.9	
25	1.6565E-21 1.7580F-21	2.9996F-01	9925.3	9.0877F-22	6.0924F-02	8346.8	
26		3.2911E-01	9942.4	8.3487F-22	5.2545E-02	9246.1	
27	1.07285-21	3.6281F-01	P754.9	8.6784E-22	6.4996F-02	8141.7	
28	2.02255-21	4.0162F-01	8662.6	9.0804F-22	6.9305F-02	8033.4	
	2 • 1 4 5 PF - 21	4.46065-01	3565.3	9.5633F-22	7.2583F-02	7921.1	
50	2.30545-21	4.9700F-01	9462.9	1.0139E-21	7.7988F-02	7804.7	
30	2.4P33F-21	5.5506E-01	9354.8	1.0813E-21	9.4604E-02	7694.0	
31	2.5 PC7F-21	5.2104F-01	A241.0	1.1601F-21	9.2646E-02	7558.8	
32	3.80dbE-51	6.9576F-01	8121.1	1.2514F-21	1.022AF-01	7428.8	
33	3.1420F-21	7.8CCAF-01	7994.6	1.3567E-21	1.1373F-01	7293.7	
74	3.41255-21	R.7477F-01	7861.3	1.478 LE -21	1.2729F-01	7153.4	
15	3.71165-21	9.8C57F-01	7720.4	1.617RE-21	1.4328E-01	7007.3	

MATRIX ELEMENTS. FINSTEIN 4.5 AND ENERGIES FOR V= P TO 8 TRANSITIONS OF HCL

j	ul	4	E
	FSU-CM	SEC-1	C 4-1
0	1.29645-18	7.15165-04	15.9
1	1.29955-18	6. 3485 = -03	31.0
?	1.20968-18	2.47235-02	47.9
3	1.2 1676-18	6. C862F-02	63.6
4	1.2990 -19	1.2094F-01	70.5
5	1.30018-19	2.11315-01	95.2
6	1.3003F-18	3.3801F-91	110.9
7	1.3006E-18	5.0845F-01	126.6
Q	1.30006-18	7. 22105-01	142.1
0	1.30135-18	0. HC97F-01	157.6
10	1.3017F-18	1.3147E 00	177.0
11	1.3021F-18	1.7007F CO	148.2
12	1.3025F-18	2.15195 00	203.3
13	1.3030F-19	2.47135 00	210.2
14	1.30 35F-19	3.26215 00	233.0
15	1.3040F-19	3.9266F 00	247.6
16	1.30455-18	4.6661 - 00	262.1
17	1.3051F-18	5.4 P15 CO	276.3
1 P	1.3057F-18	6.37425 02	290.3
19	1.3062F-18	7.34235 00	304.1
20	1.3068F-18	A. 34575 00	317.7
21	1.30735-18	0.5017E 00	331.0
22	1.3070F-18	1.06885 01	344.0
23	1.3084F-18	1.1941F 01	156 A
24	1.70095-18	1.3257F 01	140.7
25	1.2092F-18	1.4630= 01	391.4
26	1.30 CSF -18	1.5053F 01	393.2
27	1.30C7F-18	1.75215 01	404.7
2 P	1.3099E-18	1.9024F 01	415.9
50	1.30985-19	2.05555 01	426.7
30	1.3097F-18	2.2104F 01	437.1
31	1.3093F-19	2.3660= 01	447.1
32	1.30875-13	2.5210= 01	456.7
33	1.30795-18	2.6743F 01	445.0
34	1.3068F-18	2.8243F 01	474.7
35	1.30536-18	2.9695F 01	483.0

MATRIX ELEMENTS. EINSTEIN 4.5 AND ENERGIES FOR V= 8 TO 9 TRANSITIONS OF HCL

	R-BRANCH			P-RP ANCH		
J	<1+L .A.MANT A>	٨	E	<v j="" j-1="" mi="" v'=""></v>	A	E
	ESU-CM	SEC-1	C 4-1	FSU-CM	SEC-1	C M - 1
O	1.39475-19	1.7579E 01	2076.1			
1	1.3494F-19	2.0876F 01	2090.6	1.4538F-19	5.6689F 01	2011
2	1.3136F-19	2.1619F 01	2104.4	1.4876F-19	3.8615E 01	2044.9
3	1.27725-19	2.1592F 01	2117.5	1.5210F-19	3.5410F 01	2028.3
4	1.2402E-19	2.1199F 01	2129.9	1.5540E-19		2011.0
5	1.2026E-19	2.0561F 01	2141.5	1.5865E-19	3.4266E 01	1993.1
6	1.16435-19	1.9783E 01	2152.3	1.6187E-19	3.3761F 01	1974.4
7	1.1252F-19	1.8897F 01	2162.4	1.65046-19	3. 1504F 01	1955.2
8	1.0854F-19	1.7928F 01	2171.7	1.68175-19	3.3346F 01	1915.3
9	1.0447F-19	1.5895F 01	2130.3	1.7127E-19	3.3216E 01	10,4-6
10	1.0031F-19	1.5813F 01	2198.1	1.7432E-19	3.3077F 01	15 . /
11	9.6061F-20	1.4693F 01	2195.0	1.7732E-19	3.2908E 01	1872.0
12	C.17C9F-20	1.3547F 01	2201.2		3.2696F 01	1849.8
13	9.7251E-20	1.2385F 01	2206.5	1.8028E-19 1.8319E-19	3.2432E 01	1876.9
14	9.2679F-20	1.12155 01	2211.1	1.9604E-19	3.2112F 01	1903.6
15	7.79P7F-20	1.0049F 01	2214.9		3.1733E 01	1779.7
16	7.3166E-20	9.8550E 00	2217.7	1.8884F-19 1.9158F-19	3.1292F 01	1755.3
17	6.8210E-20	7.7639F 00	2719.7		3.0789E 01	1730.5
18	6.3109F-20	5.6657F 00	2220.8	1.9425E-19	3.0226F 01	1705.1
19	5.7954E-20	5.6109F 00	2221.0	1.9695E-19	2.9601E 01	1679.3
20	5.2437E-20	4.5175F 00	2220.3	1.9937F-19	2.891AE 01	1653.1
21	4.6846F-20	3.6 57F 00	2218.7	2.0180F-19	2.8178E 01	1624.4
22	4.1071F-20	2.8193E 00	2716.2	2.0414F-19	2.7383 F 01	1599.2
23	3.5098E-20	2.0502F 00	2212.7	2.063AF-19	2.6537E 01	1571.7
24	2.9915F-20	1.3941E 00	2208.2	2.0850F~19	2.3642F 01	1543.8
25	2.2507F-20	8.3295E-01	2202.6	2.1051E-19	2.4701E 01	1515.4
26	1.5 PSRF - 20	4.10095-01		2.123 AF-19	2.3720E 01	1486.7
27	8.55045-21	1.2935F-01	2196.0	2.1412E-19	2.2700E 01	1457.6
28	1.7635F-21	4.9635F-03	2198.3	2 • 156 9E -19	2.1648E 01	1428.0
29	-5.7234E-21	5.1597F-02	2179.5	2.1710E-19	2.0567F 01	1378.1
30	-1.3537F-20	2.8428E-01	2169.4	2 • 1 43 2E-19	1.9461 F 01	1367.7
31	-2.17035-20		2158.2	2. 1935E-19	1.9337E 01	1336.9
32	-3.02.54E-20	7.1347E-01 1.3698F 00	2145.6	2.2015F-19	1.7198E 01	1305.7
33	-3.9223E-20		2131.7	2.2072E-19	1.6049F 01	1274.0
34	-4.8652F-20	2.2543E 00 3.3881E 00	2116.5	2.2103E-19	1.4897F 01	1241.8
35	-5.85 P4F -20	4.7874E 00	2099.7	2.2105E-19	1.3747E 01	1209.1
,	Jen 1641 70	- 18 14 E 00	2081.4	2.2075E-19	1.2604E 01	1175.8

MATURE SECURATS. SINSTERS SEE OND ENERGIES FOR V. 8 TO 10 FRANSITIONS OF HCL

	F = 3 D 4 M C 14			0-BR ANCH			
J	CA Thailto 1.12	1	£	<1-L . AVIINVI A>	Δ	E	
	F 511= C 41	S F C = 1	P 11- !	FS:1-04	SEC-1	C#-1	
()	-9.37 108-70	4.30017 31				G I	
1	-7.07666-79	5 26768 31	4025.3				
. 2	-7.07.261-27	5.41ans 01	4778.4	-8.1727F-20	1.3194F 02	3994.9	
4	-7.7 -098-20	s agrar of	4050.0	-8.1765F-20	9.7970F 01	3977.5	
L.	-7.05116-20	5.01006 01	4060.2	-8.2330F-20	7. 0142F 01	3959.9	
5	-7.01360-25	5. apr 2F 01	4048.0	-8.29244-50	7.53025 01	3028.6	
4	-7.77751-23	4.32190 01	4076.1	-9.35475-20	7.31025 01	3917.1	
7	-7.74.741 -20	4.03.4 01	4091.9	-8.4207E-70	7.1632F 01	2994.2	
Ω	-7.71105-20	5.07060 01	4096.2	-R.4888F-70	7.0537F 01	3969.9	
9	-7.56(15-2)		4000.0	-0.5609F-20	4. 9456F 31	3444.3	
10	-7.45(41-77)	6.0781E 01	4090.3	-R.6364F-20	5. 8302F 01	3817.4	
11	-7.52.246 -29	6.00795 01	4020.1	- R. 7156F-70	6. 8227F 01	3789.2	
1.2	-7.50121-20	5.97405 01	4088.4	- A. 7387F-20	6.7599E 01	3 759.7	
1.3	-7.56071-20	5.94015 01	4045.3	-A. 4857E-20	6.7000F 01	3729.0	
14	-7.5440F-20	S. REAST OI	4096.6	-9.97705-20	5.5416F 01	3697.0	
15	-7. = 1 545 - 2 ()	5.44276 01	4074.7	-9.07265-20	6.5H3HF 01	3663.8	
6	-7.43511-20	5.7875F 01	4066.5	-9.1729F-20	6.5260F 01	3629.3	
, 7	-7.47155-22	5.7163F 01	4057.3	-9.27795-20	6.4577F 01	3593.7	
10	-7.4477 -20	5.54341 01	4064.4	-7.3HR1E-20	5.4096F 01	3556.9	
0	-7.42775-70	5 . 5 A 3 7 E O1	4023.0	-9.5035E-20	5.3483F 01	3518.0	
20	-7.30025-20	5.4772F 01	4010.4	-9.67465-70	5.2967F 01	3479.8	
21	-7.373CF-23	e susat 0;	4004.1	-9.7515F-20	5.2237F 01	3439.5	
22	-7.24765-29	5.20435 01	3044.7	-7. PR46F-2U	5.1589F 01	3308.0	
23	-7.21 316 -20	4.1754F 01	3067.5	-1.0024F-10	6.0723F 01	3355.5	
24		E. OFCRE OF	3044.9	-1.0171E-19	6.02375 01	3311.7	
25	-7.76946-20	4.03735 01	3424.2	-1.03255-10	5.9530F 01	3266.9	
24	-7.25,725.20	4.40V3E 01	BECO. H	-1.0487F-19	5. 8800F 01	3220.A	
27	-7.27105-20	4.5570= 01	3877.4	-1.0657F-19	5.8044F 01	3173.6	
29	-7.1024F-20	4.51915 91	3145.2	-1.0835E-19	5.7260F 01	3125.2	
29	-7.13891-20	4.3423F 01	3614.0	-1.1023F-19	5.6445F 01	3075.5	
10	-7.09001-20	4.19645 01	3782.5	-1.12215-19	5.5597F 01		
7]	-7.03445-27	4.0709F 01	374A.0	-1.1429F-19	5.47125 01	3024.6	
3.5	-4.07131 -20	3.8357F 01	3711.1	-1.1649F-19	5.3784F 01	2972.4	
11	-6.90025-20	3.5405F 01	3671.9	-1.1880F-1C	5.2809F 01	201F.A	
24	-4-8144E-50	3.4354F 01	3630.1	-1.2124F-10	5. 1782F 01	2863.A	
15	-6.77117-70	3.2201F 01	3595.7	-1.2381F-19	5.0697F 01	2807.3	
	-6.4 107F-20	2.9949F 01	3539.4	-1.2652F-19	4.9547F 01	2749.2	
						2643.5	

MATRIX FLEMENTS, FINSTEIN A'S AND ENERGIES FOR V= 8 TO 11 TRANSITIONS OF HCL

P-3PANCH			P-BR ANCH			
J	< \ J/MI/V J+!>	٨	E	<v j="" j-1="" mu="" v'=""></v>	A	E
	ESIJ-CM	SEC-1	C M-1	FSU-CM	SFC-1	CM-1
0	2.18665-20	1.00498 01	5857.9			
1	2.1 RC2F -20	1.2159E 01	5869.3	2.1844F-20	2.9627E 01	5828.1
2	2.19235-20	1.3132E 01	5978.6	2.1847F-20	1.9574E 01	5810.0
3	2.19755-20	1.3726E 01	5885.8	2.18618-20	1.7455E 01	5789.7
t.	2.2033F-20	1.4147F 01	5890.6	2.18855-20	1.6467F 01	5767.3
5	2.2101F-20	1.44735 01	5893.3	2.1920E-20	1.5956E 01	5742.7
6	2.21825-23	1.4744F 01	5893.7	2.1965E-20	1.54166 01	5715.9
7	2.2274F-20	1.49795 01	5891.9	2.2022E-20	1.5066E 01	5687.1
8	2.23805-20	1.51895 01	5897.8	2.2091=-20	1.4773E 01	5656.1
Q	2.24 COF -20	1.5382 F 01	5881.5	2.2173E-20	1.4516F 01	5623.1
10	2.2632F-20	1.5564E 01	5972.9	2.2269F-20	1.4285E 01	5588.1
11	2.7780F-20	1.5738F 01	5862.1	2.2379E-20	1.4074F 01	5550.9
12	2.29445-20	1.590AE 01	5849.0	2.2506E-20	1.3880F 01	5511.8
1 3	2.3124F-20	1.6075F 01	5833.7	2.2649E-20	1.3698F 01	5470.7
14	2,33226-20	1.5240F 01	5816.1	2.2811E-20	1.35 30E 01	5427.5
15	2.3538F-20	1.4406E 01	5796.2	2.2993E-20	1.3374E 01	5392.5
16	7.27735-20	1.65748 01	5773.9	2.3196E-20	1.3230E 01	5335.4
17	2.4028E-20	1.57435 01	5749.4	2.3423F-20	1.3098F 01	5286.5
19	2.43C5F-?0	1.6915E 01	5722.5	2.3677E-20	1.2978E 01	5235.6
10	2.4603F-20	1.7090F 01	5693.2	2.3957F-20	1.2870E 01	5182.8
20	2.4923F-20	1.7266E 01	5661.5	2.4268E-20	1.2775F 01	5128.1
21	2.5267F-20	1.7445F 01	5627.3	2.4612F-20	1.2693F 01	5071.4
22	2.5634E-20	1.7624F 01	5590.6	2.4991E-20	1.26257 01	5012.R
23	2.6027F-20	1.7803E 01	5551.3	2.5409E-20	1.2571E 01	4952.3
24	2.64455-20	1.7980F 01	5509.3	2.5868E-20	1.2531F 01	4889.8
25	2.698F-20	1.8154F 01	5464.5	2.6373F-20	1.2505E 01	4825.3
26	2.7358F-20	1.83205 01	5417.1	2.6927F-20	1.2494E 01	4758.7
27	2.79555-20	1.8478E 01	5366.6	2.7536E-20	1.2499F 01	4690.0
28	2.8378E-20	1.8622 01	5313.1	2.8203E-20	1.2518F 01	4619.2
29	2 . R 9 28 F - 20	1.974RE 01	5256.4	2.8934F-20	1.2552E 01	4546.1
30	2.9504F-20	1.8852E 01	5196.4	2.9736E-20	1.2601F 01	4470.6
21	3.0105F-70	1.8926F 01	5132.9	3.0615F-20	1.2663 F 01	4392.7
32	3.0729E-20	1.8962F 01	5065.7	3.1578E-20	1.2740E 01	4312.2
33	3.1371F-20	1.8953F 01	4994.6	3.2635F-20	1.2828E 01	4229.1
34	3.2030E-20	1.8885E 01	4919.4	3.3793E-20	1.2927E 01	4143.1
25	3.26cdE-50	1.87495 01	4839.7	3.5065E-20	1.3034E 01	4054.0

MATRIX FLEMENTS, EINSTEIN AT AND ENERGIES FOR VE A TO 12 TRANSITIONS OF HOL

₽ = R → ANC H			P-RRANCH			
J	< \ 1\i\\. \ 1+1>	٨	£	<v j="" j-1="" mi="" v*=""></v>	٨	٤
	FS(I- M	S E C -1	C*4-1	FSU-CM	556-1	CM-1
0	-1.2061F-21	1.74425 00	7556.1			and the
1	-6.23R0F-21	2.1215F 00	7576.1	-6.14795-21	5.0763F 30	7527.2
2	-6.27418-21	2.30735 00	7583.0	-6.12195-21	3. 3304F 30	7518.3
2	-6.21236-21	2.42575 00	7586.0	-6.0979E-21	2.9481F 30	7496.4
1.	-6.25305-21	2.51445 00	7597.7	-6.0760E-21	2.7590F JO	7471.6
5	-4.30915-21	2.58745 00	7595.6	-6.0563E-21	2.6362F 00	7442.9
6	-6.44951-1	2.45135 00	7580.4	-6.0389F-21	2.5417F 00	7413.0
7	-6.50335-21	2.7100E 00	7572.1	-6.02425-21	2.4630F 00	7279.4
9	-6.55265-21	2.76575 00	7540.3	-5.0120E-21	2.39395 00	7347.8
3	-6 .6 295F -21	2.9204 00	7546.5	-6.0032F-21	5.33135 00	7302.4
10	-6.70145-21	2.07535 31	7529.1	-5.0981F-21	2.2737F 10	7251 -1
11	-4.7020F-21	2.03155 00	7508.6	-5.9971E-21	2.2202F 00	7215.9
12	-6.A713F-21	2.09035 00	7495.1	-6.00119-21	2.1705F 70	7149.0
17	-6.9702F-21	3,0577 00	7458.4	-6.0106 ⁻ -21	2.1243F 30	7117.2
14	-7.0300F-21	3. 1 1 PAF 00	7428.7	-6.0266F-21	2. 3919E CO	7063.6
15	-7.20145-21	3.1936 30	7355.9	-6.04975-21	2.0430F 00	7007.2
1.5	-7.37675-21	3.2599F 03	7350.0	-4.0915F-21	2.0083E 00	694F.1
17	-7.4940F-21	3.3540E 00	7320.7	-6.1223F-21	1.9777F JO	6886 · 2
18	-7.64 94F -21	3.4474F 00	7278.3	-6.17415-21	1.951 OF 30	6P21 .5
19	-7.8307F-21	3.54095 00	7232.7	-6.2377F-21	1.9309E 00	6754.1
20	-9.0302F-21	3.6620F 00	7183.8	-6.3147E-21	1.4153E 00	4683.0
21	-P.2497F-21	3.7351F 00	7131.4	-6.4067F-21	1.9053F 00	6610.9
22	-9.4001F-21	3.9194F 00	7075.7	-6.5151F-21	1.9011E 00	6535.1
22	-8.75345-21	4.0650F 00	7015.4	-6.6420E-21	1.9035E 00	6456.5
24	-c.0414F-21	4.2257F 30	6952.4	-6.7989E-21	1.9125F 00	6374.9
25	-9.3557F-21	4. 3CRSE 00	6884.7	-6.9583F-21	1.9286F 00	6290.4
26	-0.6074F-21	4.5952= 00	6816.0	-7.1526E-21	1.9523F 00	6202.9
27	-1.20705-20	4. 7961 5 00	5741.3	-7.3741F-21	1.9840F 70	6112.1
20	-1.0474F-20	5.0011F 00	5662.3	-7.62615-21	2.0241 F 00	601R.1
29	-1.0912F-20	5.2300= 00	457R.7	-7.9119E-21	2.0733F 00	5920.7
30	-1.1388F-20	5.47265 00	6490.5	-A.2353E-21	2.1320F 00	5019.7
31	-1.1903F-20	5.7273: 00	6397.2	-8.6009E-21	2.2010F 00	5715.0
22	-1.2459F-20	5.9926F 00	5249.6	-9.01405-21	2.2810F 00	5606.3
33	-1.3060F-20	6.26575 00	6194.3	-9.4H07F-21	2.3728F 00	5493.4
34	-1 -3 7 09 F-20	6.54235 00	6083. R	-1.0009E-20	2.47705 10	5175.9
35	-1.4403F-20	6.8162E 00	5046.7	-1.0604E-20	2.5944F 00	5253.7

MATRIX ELEMENTS. EINSTEIN A'S AND EMERGIES FOR V= 9 TO 9 TRANSITIONS OF HCL

J	< TYNIIVA 1+1>	A	F
	FSU-CM	SEC-1	C=1
0	1.30 POF -1 3	6.3258E-04	15.2
1	1.30415-18	5.06735-03	30.5
2	1.30 81 F-1 8	2.1901F-02	45.7
3	1.3091F-19	5.37075-02	60.9
l.	1.30815-13	1.07007-01	76.0
5	1.37815-19	1.07C4F-01	91.1
6	1.30 P2F-19	7. 5907F-01	106.1
7	1.30825-18	4.4795F-(11	121.0
9	1.3082F-19	4.3837F-01	135.9
3	1.3083F-19	8.7477E-01	150.7
10	1.30835-18	1.1610F 00	165.4
1.1	1.3093F-19	1.5C09F 00	179.9
12	1.30P3F-19	1.9374F 00	194.3
ا 3	1.3083F-18	2.3534F 00	208.5
14	1.30936-19	2.6710F 00	222.7
15	1.30925.	3.451AF 00	726.7
14	1.30 P1F - 1 1	4.09K9F 00	250.5
17	1.3080F-18	4.8C64F 00	264.1
18	1.30 795-19	5.5799F 00	277.4
10	1.30765-19	6.4155F 00	290.6
50	1.3073F-19	7.3139F 00	303.4
21	1.3060F-19	8.2695F 00	316.1
22	1.30645-18	9.2302E 00	328.4
23	1.305RF-1R	1.0340E C1	340.5
24	1.3051F-19	1.1446F 01	352.2
25	1.3042F-18	1.2590 01	362.7
26	1.3032F-19	1.37655 01	374 . R
27	1.30195-18	1.4563F O1	305.5
28	1.3004F-18	1.61755 01	295.9
29	1.20875-19	1.73915 01	405.8
30	1.29668-19	1.85995 01	415.4
31	1.2942F-18	1.97895 01	424.5
3.2	1.2913F-18	2.2945F 31	433.2
33	1.29795-19	2.2056F 01	441.5
34	1.2840E-18	2.3105E 01	440.2
35	1.2794E-19	2.4076E 01	455.4

MATPLY FLEMENTS, FINSTEIN ATS AND EMERGIES FOR V= 9 TO 10 TRANSITIONS OF HCL

F-3RANCH			P - BR ANCH			
.1	<1+1. *** V\IM\L V>	٨	r	<v j="" j-1="" mi="" v*=""></v>	Δ	F
	FSU-CM	< FC -1	C M- 1	FSII-CM	SEC-1	C M-1
0	1.27151-17	1.2070F 01	1964.4			
1	1.19765-19	1.30350 01	1979.2	1.3053E-19	3.9701F 01	1934.7
2	1.154RF-19	1.4152F 01	1091.2	1.3412F-19	2.6570F 01	1618.7
3	1.11525-12	1.20435 01	2003.5	1.3764F-19	2.4535F 01	1902.1
4	1.07495-19	1.7474F 01	2015.0	1.4110F-19	2.3990F 01	1984.7
e 5	1.0335F-19	1. 2853F OL	2025.7	1.4450F-19	2.3565E 01	1866.7
6	9.01205-20	1.2131F 01	2035.6	1.4784F-19	2.3596E 01	1947.9
7	6.4700F-20	1.1230F 01	2044.9	1.5111E-19	2.3579F 01	1828.5
я	9.03518-20	1.0497F 01	2053.1	1.5433F-19	2.3566F 01	1808.5
9	8.57096-20	9.6211E 00	2050.7	1.57475-19	2.3531F 01	1787.9
10	8.11225-20	7.72335 00	2067.4	1.6056F-19	2.3460E 01	1766.5
11	7.4316=20	7.8150F 00	2073.3	1.6357E-19	2.3143F J1	1744.6
12	7.1373F-20	6.22725 60	2079.4	1.6651F-19	2.31 75E 01	1722.1
13	6.67835-20	5.00925 00	2092.5	1.6038F-19	2.2051F 01	1460.1
14	6.10265-20	5.13725 00	2086.0	1.72145-19	2.2571F 01	1675.4
15	5.56265-20	4.2866F 00	2084.5	1.7496F-19	2.2333E 01	1651.2
15	5.00414-20	3.4833F 00	2090.1	1.77465-19	2.19378 01	1626.5
17	4.42695-29	2.73315 00	2000. 8	1.7495F-19	2.1484E 01	1601.3
19	3.8300F-20	2.0450F 00	2090.5	1.8234F-19	2.0975F 01	1575.5
10	3.2120F-20	1.43095 00	2099.4	1.84605-19	2.0412F 01	1549.2
20	2.57175-20	0.21145-01	2087.2	1.86735-10	1.2796E 01	1522.6
21	1.90755-20	5.0501F-01	2094.0	1.88715-19	1.9131F 01	1495.4
22	1.21795-20	2.0493F-01	2079.9	1.9054E-19	1.8419E 01	1467.7
23	5.01 COF -21	3.4443F-07	2074.6	1.9219F-13	1.7665F 01	1439.5
24	-2.4470F-21	9.1459F-03	2069.3	1.9365E-19	1.6871F 01	1410.9
25	-1.0218E-20	1.4061F-01	2360.9	1.94915-19	1.6043F U1	1381.9
26	-1.9323F-20	4.4691 =- 31	2052.2	1.95945-19	1.5194F 01	1352.4
27	-2.6793E-20	7.4210E-01	2042.4	1.96725-19	1.4299F 01	1322.4
24	-3.5647F-20	1.6420F 00	2031.3	1.9723E-10	1.3394E 01	1201.0
29	-4.4925E-20	2.5521 F 00	2018.9	1.97446-19	1.2473F U1	1261.0
30	-5.4663F-20	3.7182F 00	2005.2	1.97315-19	1.1543F 01	1229.6
31	-6.4900F-20	5.12595 00	1990.7	1.9692F-19	1.0608F 01	1197.7
32	-7.5683F-20	4.8001 F 00	1973.4	1.9591F-19	9.6752F 00	1165.3
33	-8.7066F-20	8.7553F 00	1955.1	1.9455E-19	9.7498F 30	1172.3
24	-9.9110F-20	1.10075 01	1935.2	1.9269F-19	7.8381F 30	1098.7
35	-1.1189E-19	1.3565 01	1913.4	1.9026E-19	4.9465F 30	1064.5

MATRIX ELEMENTS. EINSTEIN A'S AND ENERGIES FOR V= 9 TO 11 TRANSITIONS OF HCL

R-HRANCH			P-PR ANCH			
J	<v 41="" j="" j+1="" v=""></v>	Δ.	г	<v j="" j-1="" mu="" v*=""></v>	. ^	r .
	FCU-CM	SEC-1	CM-1	FSII-CM	SEC-1	CM-1
0	-9.2262F-20	4.8717F 01	3796.9			
1	-C.1659E-20	5.8258F 01	3809.1	-9.3550E-20	1.4684F 02	3767.9
2	-9.1083F-20	6.215RF 01	3819.9	-9.4240E-20	9.8029F 01	3751.2
3	-9.0530E-20	6.4142F 01	3829.1	-9.4961E-20	9.8284E 01	3733.0
4	-9.0001F-20	6.5225E 01	3836.7	-9.5716E-20	4.4080F 01	3713.4
5	-8.0403F-20	6.57975 01	3842.8	-9.6507E-20	8.1691E 01	1692.2
6	-8.9005F-20	6.6040F 01	3847.4	-9.7335E-20	8.0101E 01	3669.7
7	-8.9534F-20	6.604RE 01	3850.5	-9.8202F-20	7.8921F 01	3645.7
А	-R.9070F-20	6.5877F 01	3851.9	-9.9109E-20	7.7969F 01	3620.3
Q	-8.763RE-20	6.5561F 01	3851.9	-1.0006F-19	7.7148E 01	3593.5
10	-R.7210F-20	6.5120F 01	3850.2	-1.0105F-19	7.6405E 01	2565.3
11	-8.4792F-20	6.4568F 01	3947.0	-1.0210F-19	7.5703E 01	3535.A
12	-8.63F1F-20	6.3915F 01	3842.2	-1.0319F-19	7.5024F 01	3504.9
13	-8.5075F-20	6.3165E 01	3835.7	-1.0433F-19	7.4349F 01	3472.7
14	-9.5571F-20	6.2325F 01	3827.7	-1.0552F-19	7.3672E 01	3439.2
15	-9.51677-20	6.1396F 01	3818.1	-1.06785-19	7.2983F C1	3404.4
15	-9.4759F-20	6.0377F 01	3906.7	-1.08005-10	7.2276E 01	3368.3
17	-4.4343F-20	5.72715 01	3793.A	-1.0946E-19	7.1548F 01	3330.9
18	-3.3915E-20	5.90765 01	3779.1	-1.1090E-19	7.0796F 01	3292.2
10	-8.3471F-20	5.6791F 01	3762.7	-1.1241E-19	7.0015E 01	3252.3
20	-9.3005E-20	5.5415F 01	3744.6	-1.1309E-19	6.9203E 01	3211.1
21	-P.2512F-20	5.3945E 01	3724.6	-1.1554F-19	5.8358E 01	3168.7
22	-9.1087E-20	5.2390F 01	3702.8	-1.1738E-19	6.7477E 01	3125.1
23	-8.1420F-20	5.0717E 01	3679.1	-1.1920E-19	6.6557E 01	3080.1
24	-8.0805F-20	4. 2055E 01	3653.4	-1.2110F-19	6.5594F 01	3033.9
25	-P.0131F-20	4.7091E 01	3625.7	-1.2310F-19	6.45 96F 01	2986.3
24	-7.9300F-20	4.51235 01	3595.9	-1.2520F-19	6.3530E 01	2937.5
27	-7.9567F-20	4.3051F 01	3563. R	-1.27405-19	6.2420F 01	2PR7.2
28	-7.7650F-20	4.0P74E 01	3529.5	-1.2071F-19	6.1254F 01	2835.6
20	-7.6621F-20	3.8591F 01	3492.9	-1.3214E-19	6.0027E 01	2782.5
30	-7.5461F-20	3.6204F 01	3453.7	-1.3470F-19	5.8734E 01	2727.8
31	-7.4145F-20	3.3715E 01	3411.8	-1.3739E-19	5.7370E 01	2671.6
32	-7.2546F-20	3.1127E 01	3367.2	-1.4021E-19	5.5927E 01	2613.7
33	-7.09305-20	2.8446F 01	3319.6	-1.4319F-19	5.43998 01	2554.1
34	-6.8957F-20	2.5692F 01	3258.9	-1.4633E-19	5.277RE 01	2492.5
35	-6.66775-20	2.2846E 01	3214.7	-1.4964E-19	5.1053F 01	2429.0

MATRIX SLEMENTS. FINSTEIN ASS AND EMERGIES FOR V= 9 TO 12 TRANSITIONS OF HOL

	P-3RAVCH			P-HRANC 4			
J	<v 1="" 11="" j+1="" v1=""></v>	۸	F	<v j="" j-1="" mii="" v'=""></v>		F 、	
	FSU-CY	SFC-1	CM-1	FSII-0M	SFC-1	CM-1	
0	2.4572F-20	1.4241F 01	5505.2				
1	7.85P4E-20	1.72035 01	5515.9	2.8589F-20	4.2119F 01	5477.1	
2	2.9611E-20	1.8550F 01	5524.2	2.8617F-20	2.7957F 01	5459.5	
3	2.96515-20	1.0354F 01	5530.2	2.8660F-20	2.49935 01	5439.7	
4	2.8706F-20	1.0010F 01	5533.8	2.9718E-20	2.3505F 01	5417.7	
5	7.87765-20	2.0329F 01	5535.1	2.8790E-20	2.2660F 01	5302.4	
+	2.89625-20	2.0656E 01	5534.1	2.8878F-20	2.2055F 01	5366.8	
7	2.4063E-20	2.09475 01	5530.7	2.8982E-20	2.1578F 01	5338.0	
R	2.90F0F-20	2.1191F 01	5525.0	2.9103E-20	2.1178F 01	5307.0	
Q	2.92155-20	2.1405F 01	5516.9	2.9243E-20	2.0928F 01	5273.8	
10	2.9369F-20	2.1602F 01	5506.4	2.9401F-20	2.0513F 01	5238.4	
11	2.9541F-20	2.1791F 01	5403.5	2.95805-20	2.0223F 01	5200.8	
12	2.9733E-20	2.1949E 01	5478.2	2.9792F-20	1.9954F 01	5161.1	
13	2.00455-20	2.21075 01	5460.5	3.00075-20	1.97035 01	5119.2	
14	3.01 POF -20	2.22595 01	5440.4	3.0259F-20	1.946PF 01	5075.2	
15	3.0437E-20	2.2404F 01	5417.9	3.0540F-20	1.92475 01	5029.1	
16	2.)718F-20	2.2545F 01	5392.7	3.09515-20	1.9041F 01	4980.9	
17	3.1024F-20	2.2691F 01	5365.1	3.1197F-20	1.8850F 01	4930.6	
18	3.13555-20	2.28125 01	5375.0	3.1579E-20	1.86745 01	4878.2	
19	3.17135-20	2.2939E 01	5302.2	3.2002F-20	1. P514F 01	4823.6	
20	3.2097F-20	2.30575 01	5266.9	3.2469F-20	1.9370F 01	4767.0	
21	7.2509E-20	2.3168E 01	5228.8	3.2984E-20	1.82425 01	4708.2	
22	2.2949F-20	2.3258F 01	5147.0	3.25516-20	1.8132F 01	4647.4	
23	3.3416F-20	2.33535 01	5144.2	3.4176E-20	1.9039E 01	4584.3	
24	3.3010F-20	2.3419F 01	5097.5	3.48615-20	1.7963F 01	4519.0	
25	3.4431E-20	2.3460F 01	5047.7	3.5615E-20	1.7905F 01	4451.4	
26	3.4076F-20	2.34725 01	4004.9	3.64415-20	1.79625 01	4381.6	
27	3.5545F-20	2.3447F 01	4938.5	3.7347F-20	1.7835F 01	4309.3	
20	3.6135F-20	2.7376F 01	4978.7	3.8360F-20	1.7922F 01	4234.5	
29	3.47475-20	2.32505 01	4915.1	3.001000-20	1.7822F 01	4157.1	
30	3.73645-20	2.3059F 01	4747.7	4.0620-20	1.7833F 01	4077.0	
71	3.7992F-20	2.2700= 01	4676.1	4.19285-20	1.7853E 01	3993.9	
32	3.8620F-20	2.2429F 01	4600.1	4.3364F-20	1.7878E 01	3907.8	
33	2.0235F-20	2.1961F 01	4519.3	4.4043F-20	1.7907F 01	3818.4	
34	3.00235-20	2.1366E 01	4433.3	4.6690F-20	1.7933E 01	3725.4	
35	4.0361F-?0	2.0623F 01	4341.7	4.8594F-20 .	1.7950F 01	3628.6	

MATRIX ELEMENTS. FINSTEIN ASS AND ENERGIES FOR V= 10 TO 10 TRANSITIONS OF HCL

J	<1+L *V\IIM\L V>	4	F
	ESU-CM	SEC-1	CM-1
0	1.3097F-19	5.4682E-04	14.5
1	1.3087F-19	5.2405E-03	29.0
2	1.3086F-18	1.8917E-02	43.5
•	1.30P4F-1R	4.6378F-02	57.9
4	1.3083E-18	9.2362E-02	72.3
5	1.3081F-19	1.61405-01	86.7
6	1.3079F-18	2.5793F-01	101.0
7	1.30755-19	3.8616E-01	115.2
A	1.30715-18	5.4996E-01	129.4
9	1.3067E-19	7.5301F-01	143.5
10	1.30625-19	9.9854E-01	157.4
11	1.3057E-19	1.2896F 00	171.3
12	1.30515-19	1.6295E 00	185.0
13	1.3044F-19	2.0172F 00	198.6
14	1.3037F-13	2.4574E 00	212.0
15	1.30285-19	2.9496F 00	225.2
16	1.3019F-18	3.4944F 00	238.3
17	1.3008F-18	4.0°10E 00	251.2
18	1.2995F-18	4.7386F 00	263. B
19	1.2982F-18	5.4347F 00	276.2
20	1.2967F-18	6.17745 00	298.4
21	1.29495-19	6.9621F 00	300.3
22	1.29305-18	7.78535 00	211.0
23	1.29005-18	9.6412F 00	323.2
24	1.28845-18	9.5233E 00	334.2
25	1.29575-19	1.0425E 01	344.9
25	1.28265-18	1.1337F 01	355.1
27	1.27915-18	1.22525 01	364.0
28	1.27516-18	1.31595 01	374.4
20	1.2706F-18	1.4046E 01	383.5
30	1.2655E-18	1.49015 01	392.1
31	1.2557F-18	1.5711F 01	400.2
32	1.2532F-18	1.6462F 01	407.9
33	1.2457F-18	1.71375 01	415.0
34	1.2371F-18	1.7722F 01	421.5
35	1.2273F-18	1.9105F 01	427.4

MATRIX ELEMENTS. FINSTEIN A'S AND ENERGIES FOR V= 10 TO 11 TRANSITIONS OF HCL

	P-39ANCH			P-BR ANCH			
J	< 1+L		, . F	<v j="" j-1="" mu="" v*=""></v>	Α	F	
	FSU-CM	SEC-1	CM-1	E SU-CM	SEC-1	CM-1	
o	9.9480F-20	6.5193F 00	1847.0				
1	9.54195-20	7.3501F 00	1860.0	1.0730F-19	2.1725F 01	1818.7	
,	9.124RE-20	7.3440F 00	1872.1	1.11065-19	1.5129E 01	1803.5	
3	8.6963F-20	7.0446F 00	1883.5	1.14725-19	1.4146E 01	1787.5	
4	R.2559F-20	6.6035F 00	1294.1	1.1830F-19	1.3926F 01	1770.7	
5	7.8030F-20	6.0827F 00	1903.9	1.2178F-19	1.3928F 01	1753.3	
6	7.3768F-20	5.5143F 00	1912.9	1.2517F-10	1.4002E 01	1735.1	
7	6.8564F-20	4.0184F 00	1020.9	1.2847E-19	1.4090F 01	1716.2	
A	6.3612F-20	4.31025 00	1979.2	1.3168E-19	1.41655 01	1696.6	
9	5.85035-20	3.7017F 00	1934.6	1.3479F-19	1.4211F 01	1676.3	
10	5.3725F-20	3.1039E 00	1940.2	1.3780F-19	1.4220F 01	1655.4	
11	4.77715-20	2.5278F 00	1944.9	1.4071E-19	1.4186E 01	1633.8	
12	4.2129F-20	1.09375 00	1948.8	1.4351E-19	1.4105F 01	1611.5	
13	3.6786F-20	1.4922F 00	1951.7	1.4619F-19	1.3976F 01	1588.7	
14	2.0230F-20	1.0343E 00	1053.7	1.48756-19	1.3798E 01	1565.2	
15	2.3950F-20	6.5162F-01	1954.9	1.5117F-19	1.3571F 01	1541.1	
16	1.74285-20	3.4576F-01	1955.0	1.5345E-19	1.3294E 01	1516.5	
17	1.0652E-20	1.29205-01	1254.2	1.55565-19	1.2968F 01	1491.3	
19	3.6036E-21	1.4768F-02	1052.4	1.57515-19	1.2596F 01	1465.5	
10	-7.7340E-21	1.5809F-02	1949.6	1.5926E-19	1.21 79E 01	1439.2	
20	-1.1380F-20	1.4615E-01	1945.9	1.6081E-19	1.17185 01	1412.3	
21	-1.9356F-20	4.2001F-01	1940.8	1.6213E-19	1.1218F 01	1395.0	
22	-2.7684F-20	R.5204E-01	1934.8	1.6320F-19	1.0582F 01	1357.1	
23	-3.63 POF -20	1.4571F 00	1927.7	1-6399E-19	1.01 35 01	1328.7	
24	-4.5500E-20	2.2504F 00	1919.3	1.644BE-19	9.5146F 00	1299.8	
25	-5.504RE-20	3. 2471 F 00	1909.7	1.6464F-19	8.8920E 00	1270.3	
26	-6.50675-20	4.4623F 00	1898.7	1.6443E-19	9.2499F 00	1240.3	
27	-7.55 G7F-20	5.9111F 00	1886.4	1.6382E-19	7.5934F 00	1209.9	
28	-9.6692E-20	7.6077E 00	1872.7	1.6277E-19	6.9279E 00	1178.7	
20	-9.9373F-20	9.5661F 00	1857.4	1.6121F-19	6.2591E 00	1147.0	
30	-1.1073F-19	1.1790F 01	1840.6	1.59115-19	5.5930E 00	1114.7	
31	-1.2381E-19	1.4317F 01	1822.0	1.5639F-19	4.9358E 00	1081.8	
32	-1.3769F-19	1.71316 01	1901.7	1.5297E-19	4.2938F 30	1048.2	
33	-1.52465-19	2.0245E 01	1779.5	1.4876E-19	3.6733E 00	1013.9	
74	-1.6822F-19	2.36615 01	1755.2	1.4365E-19	3.0808E 00	978.9	
35	-1.8509E-19	2.73765 01	1724.7	1.3751E-19	2.522RE 10	943.0	

MATRIX ELEMENTS. FINSTEIN A'S AND ENERGIES FOR V= 10 TO 12 TRANSITIONS OF HCL

	P-	RANCH	P-BRANCH			
J	+!		F	ul	+ A	F
	FSII-CM	SFC-1	CM-1	ESU-CM	SFC-1	C 4-1
0	-1.0436F-19	5.11765 01	3555.3			
1	-1.035RF-12	6.1 C77F 01	3566.7	-1.06025-19	1.5479E 02	3527.9
2	-1.02835-19	6.5024E 01	3576.4	-1.0639E-19	1.0348E 02	3511.8
3	-1.02105-19	6.6939F 01	3594.6	-1.0781E-19	9.3315F 01	3494.2
4	-1.01405-19	6.7892F 01	3591.2	-1.0976E-19	8.8971 E 01	3475.1
5	-1.0072F-19	5.8293E 01	3596.2	-1.0076E-19	9.6526E 01	3454.4
6	-1.0005F-19	6.83335 01	3509.5	-1.10795-19	8.4908E 01	3432.2
7	-9.94015-20	6.9112F 01	3601.2	-1.1188E-19	8.3709E 01	3408.5
٥	-0.87655-20	6.7699F 01	3601.3	-1.1301F-19	8.2735E 01	3383.3
9	-9.21275-20 .	5.7005F 01	1599.7	-1.1419F-19	9.1886F 01	3356.6
10	-9.7516F-20	6.6355F 01	3595.4	-1.15435-19	8.11.07E 01	3328.4
11	-C.6897F-20	6.5484F 01	1591.4	-1.1672E-19	9.0340F 01	3299.8
12	-9.6279F-20	6.4499F 01	3594.9	-1.18075-19	7.9601 F 01	3267.7
17	-9.5652F-20	6.2377F 01	3576.5	-1.19485-19	7.8843F 01	3235.2
14	-9.5016F-20	6.2153F 01	3556.4	-1.2096F-19	7.8064F 01	3201.2
15	-9.4365F-20	6.08195 01	3554.5	-1.2250F-19	7.7254F 01	3165.0
16	-9.3692E-20	5.9374F 01	3540.9	-1.2412E-19	7.6409E 01	3129.1
17	-9.2002F-20	5.7821E 01	3525.5	-1.2580E-17	7.5522F 01	3091.0
19	-9.22575-20	5.6159F 01	3508.2	-1.2757E-19	7.4589F 01	3051.4
19	-9.14795-20	5.4387F 01	3490.1	-1.29425-19	7.3507E 01	3010.5
20	-9.06405-20	5.25045 01	1468.1	-1.3135E-19	7.2571F 01	2948.2
21	-8.97575-20	5.0510F 01	3445.0	-1.3237F-19	7.1479F 01	2924.5
22	-8.P701E-20	4.9404F 01	3419.3	-1.3549F-19	7.0326F 01	2879.4
23	-P.7737F-20	4.41855 01	1392. R	-1.3770E-19	6.91 08E 01	2932.9
24	-9.6591F-20	4.3853F 01	3362.4	-1.4002E-10	6.7827F 01	2784.9
25	-P.5304F-20	4.1409 01	3331.7	-1.42455-19	6.6461E 01	2735.4
26	-8.3097F-20	3.9856F 01	3297.6	-1.44985-19	6.5021F 01	2684.4
27	-8.2306F-20	3.41995 01	3261.1	-1.4764F-19	6.3496E 01	2631.9
28	-9.0533E-20	3.34395 01	3221.8	-1.5042F-10	6.1879F 01	2577.6
29	-7.9535E-20	3.0587F 01	3179.7	-1.5333E-19	4.0163F 01	2521.7
30	-7.6272E-20	2.7655F 01	3134.6	-1.5639E-19	5.8339F 01	2463.9
31	-7.3657E-20	2.4656F 01	3096.3	-1.5957F-19	5.4399F 01	2404.1
32	-7.0752F-20	2.1611E 01	3034.6	-1.6291F-19	5.4336E 01	2342.3
33	-6.7364F-20	1.8545F 01	2979.1	-1.6640E-19	5.2138E 01	2278.2
24	-6.3445E-20	1.5490F 01	2919.7	-1.7004F-19	4.9796E 01	7211.9
35	-5.8883E-2C	1.2490E 01	2855.7	-1.7384F-19	4.7298E 01	2142.7

MATOIX FLEMENTS, FINSTEIN A'S AND ENERGIES FOR V= 11 TO 11 TRANSITIONS OF HOL

J	ul	Δ	E
	FSU-CM	SEC-1	C 4-1
0	1.23825-19	4.55995-04	13.7
1	1.29905-19	4.27965-03	27.5
2	1.29785-18	1.5906 =-02	41.2
7	1.20755-19	3. 0745F -02	54.9
4	1.79705-19	7.71025-02	60.5
5	1.2965F-19	1.34666-01	92.1
6	1.20595-18	2.15045-01	95.6
7	1.2950F-18	3.2164F-01	109.1
R	1.20415-19	4.57425-01	122.5
C	1.20318-19	6.25935-01	135.9
10	1.20195-18	4.2891 F-01	149.0
11	1.2906F-13	1. DAPRE O)	142.1
12	1.20915-19	1.34735 00	175.1
13	1.28755-18	1. FESAF 0)	107.0
14	1.23575-19	2.02405 00	200.5
15	1.29365-10	2.42475 00	213.1
16	1.23145-12	2.94475 00	225.4
17	1.2790E-10	1. 3430F ()	217.5
150	1.27625-19	3.86COF 00	249.4
1 3	1.7771F-18	4.4104= 00	261.0
23	1.27 385-13	4. 70100 00	272.4
21	1.26618-19	5.5994F 00	293.5
5.5	1.26195-18	6.2279F 03	294.3
23	1.25736-18	6. P715F 20	204.7
74	1.25238-19	7.5224F 00	314.8
25	1.24 +4 = - 19	P. 1727F 00	374.5
26	1.24025-18	8.9136F 00	333.0
27	1.23726-18	9.4352F 00	347.8
28	1.22525-18	1.0026F 01	351.2
50	1.2162F-18	1.0575F 01	350.2
30	1.2063F-18	1.1C49F 01	366.6
31	1.1040F-19	1.1494F 01	373.6
33	1.1920F-18	1.10365 01	379.0
33	1.1673F-1P	1.2079F 01	385.6
34	1.15055-18	1.2205 = 01	390.7
3.5	1.13116-19	1.21595 01	395.0

MATRIX ELEMENTS. FINSTEIN A.S AND ENEPGIES FOR V= 11 TO 12 TRANSITIONS OF HCL

	B-JOWCH			P-BR ANCH			
J	< 1 1\mil\A. 1+1>	Δ	E	<v j="" j-1="" mu="" v*=""></v>	٨	F	
	F STI-C W	SFC-1	C M-1	ECII-CM	550-1	C-1	
"	4.5194E-20	2.7687F 00	1722.1				
1	6.7863F-27	2.4279F 00	1734.2	7.3390F-20	8.2326F 30	1405 4	
7	5.6 187F-20	2.2730F 00	1745.5	7.7278F-20	5.9303E 00	1695.4	
4	5.17511-20	2.0215E 00	1756.0	8.1028F-20	5.7089F 00	1680.9	
4	4.6 6495-20	1.7296F 0)	1765.6	8.4642F-20	5.7627F 00	1665.6	
5	4.10705-20	1.42465 00	1774.4	8 • 8121F-20		1649.5	
6	3.4809F-20	1.12285 00	1782.3	9.14626-20	5.9884E 00 6.0287F 00	1632.6	
7	3.14525-20	8.3660E-01	1799.4	9.46565-20		1615.0	
А	2.58675-20	5.7567F-01	1795.5	9.77285-20	6.1607E)0	1596.7	
0	2.01185-20	3.5305F-01	1800.8	1.0054=-19	6.2727F 00	1577.6	
10	1.4114F-20	1.7579E-01	1305.2	1.0341F-10	4.35R1E 00	1557.7	
11	7.9678F-21	5.5140F-02	1908.7	1.0602F-19	4.4127E)0	1537.2	
12	1.3/505-21	1.47105-02	1911.2	1.0846F-19	5.4339E 00	1516.0	
12	-6.41115-21	2.64005-02	1912.7	1.10725-19	6.4199E 00	1494.0	
14.	-1 . 2 4 70F - 20	1.40015-01	1813.3	1.1279E-19	6.769RE 00	1471.4	
15	-1.7 54F-20	3.5719F-01	1812.R	1.1466F-10	5.2834E 00	1448.1	
14	-2.75625-20	6.87F2=-01	1811.4	1.1630F-10	6.1609E 00	1424.2	
17	-3.54 218 -20	1.14595 00	1808.8	1.17706-19	5.0027E 00	1399.6	
13	-4.4 J56F-20	1.74485 00	1805.2	1.19836-10	5.8102F 00	1374.3	
13	- F . 2993F - 20	2.4CP7F 0)	1800.5	1.1967F-19	5.5947F JO	1348.4	
20	-6.216]F-20	3.42155 00	1794.7	1.20185-19	5.3294F 00	1321.9	
21	-7.1931F-20	4.5275F 00	1797.6	1.2034F-19	5.0437F 30	1294.8	
22	-9.21 17F-20	5.3311F 00	1779.4	1.2010F-19	4.7333E 00	1267.1	
23	-9.7973F -20	7.3464F 00	1769.8	1.1942F-19	4.4006F 30	1236.8	
24	-1.04228-19	9. 08705 00	1759.9	1.18255-19	4.0494F 00	1209.9	
25	-1.16 18F-19	1.1966F 01	1746.5		3.6837E 00	1180.4	
25	-1.29928-19	1.3294F 01	1732.9	1.16545-10	3.3081F 00	1150.3	
27	-1.4220E-19	1.5792F 01	1717.4	1.1422F-10	2.9275F)0	1119.6	
29	-1.5639F-19	1.05375 01	1700.3	1.1122E-19	2.5471E 00	1088.2	
29	-1.7147F-12	2.1563F 01	1681.5	1.0746E-19	2.1724F 10	1056.2	
30	-1.9754F-19	2.4862E 01	1660.7	1.0294F-19	1.80925 00	1023.4	
3]	-2.0460F-19	2.8428E 01	1637.9	9.7256E-20	1.46355 00	989.9	
32	-2.77C7F-19	3.22495 01	1612.9	9.0569F-20	1.1412F 00	955.7	
33	-2.42805-19	3.63025 01	1585.3	8.2621F-20	9.4823E-01	920.5	
74	-2.64 C7F-19	4.05538 01	1555.1	7.3219F-20	5.9052F-01	884.4	
25	-2.37(05-10	4.4350F 01	1522.0	6.2121E-20	3.7356F-01	847.2	
		40-1706 01	1727.0	4.90235-20	2.0242F-01	809.0	

MATRIX ELEMENTS, CHASTEIN 445 AND ENERGIES FOR V= 12 TO 12 TRANSITIONS OF HCL

J	+! • \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	٨	F
	FSU-CM	SEC-1	C M-1
0	1.27125-19	3. 6195-04	
1	1.2 2 00 5-1 9		12.9
2	1.2704F-19	3.5058F-03	25.9
2	1.26585-19	1.2643E-02	38.8
4	1.26905-19	3. 79755-02	51.7
5	1.2679F-18	6.15975-02	44.5
6	1.26475-18	1.07465-01	77.3
7	1.2652F-18	1.7138F-01	20.0
Q	1.2635F-18	2.5596F-01	102.7
Q		3.63555-01	115.3
10	1.26165-19	4.9419E-01	127.8
11	1.2594F-19	6.5564F-01	140.2
12	1.2570F-18	8.4332F-01	152.5
13	1.25425-19	1.0601 5 00	164.6
_	1.25128-19	1.3064F 00	176.6
14	1.2479[-19	1.5824F 00	188.5
-	1.24 40F-1 A	1.3877 00	2000.2
16	1.53006-14	2.21car 00	211.4
17	1.2353F-18	2.5782F 00	222.9
18	1.230?F-18	2.9507F 00	233.9
10	1.2745F-1 A	3.3610F 00	244.7
20	1.2183F-18	3.7776F 00	
21	1.2114F-19	4.2045F 00	255.2
22	1.20385-10	4.4363F 00	265.4
23	1.19535-19		275.2
24	1.1859F-18		284.7
25	1.1754F-18		293. R
26	1.1636F-19		302.5
27	1.1505F-19		310.7
29	1.1357F-18	6.58725 00	318.5
20	1.1190F-18	6.8498F 07	325.7
30	1.1000F-18	-0907F 00	337.4
31	1.0785E-18	7.2381F 00	33R.4
32	1.05386-19	7.2091 5 00	343.8
22	1.02535-18	7.2611F CO	349.5
24	5.9225F-19	7.1116E 00	357.4
35		6.8384F 00	355.5
	9.5350E-19	5.430RF 00	357.6

REFERENCES

- R. E. Meredith and F. G. Smith, Investigations of Fundamental Laser Processes, Vol. II, Computation of Electric Dipole Matrix Element for Hydrogen Fluoride and Deuterium Fluoride, Report No. 8413-39-T(II), Willow Run Laboratories of the Institute of Science and Technology, The University of Michigan, Ann Arbor, November 1971.
- R. A. Toth, R. H. Hunt, and E. K. Plyler, Line Intensities in the 3 0 Band of CO and Dipole Matrix Elements for the CO Molecule, J. Mol. Spectr., Vol. 32, 1969, pp. 85-96.
- 3. P. W. Anderson, "Pressure Broadening in the Microwave and Infrared Regions," Phys. Rev., Vol. 76, 1949, p. 647.
- L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics, McGrawllill, New York, 1935.
- J. L. Dunham, "The Energy Levels of a Rotating Vibration," Phy. Rev., Vol. 41, 1932, p. 721.
- R. A. Toth, R. H. Hunt, and E. K. Plyler, "Dipole Moment Matrix Elements for the 1-0, 2-0 and 3-0 Vibration-Rotation Bands of Diatomic Molecules," J. Mol. Spectr., Vol. 32, 1969, p. 74.
- R. Rydberg, "Graphic Representations of Some Results in Band Spectroscopy," Zeitschrift fur Physik, Vol. 73, 1931, p. 376.
- 8. O. Klein, "Calculation of Potential Curves for Diatomic Molecules by Means of Spectral Terms," Zeitschrift fur Physik, Vol. 76, 1932, p. 226.
- 9. J. T. Vanderslice et al., "Ground State of Hydrogen by the Rydberg-Klein-Rees Method," J. Mol. Spectr., Vol. 3, 1959, p. 17.
- 10. R. J. LeRoy and G. Burns, "A Method for Testing and Improving Molecular Constants of Diatomic Molecules with Special Reference to $\text{Br}_2'(\Sigma_g^+)$, J. Mol. Spectr., Vol. 25, 1968, p. 75.
- 11. R. N. Zare, Programs for Calculating Relative Intensities in the Vibrational Structure of Electronic Band Systems, Report No. UCRL-10925, University of California, November 1963.
- D. H. Rank, D. P. Eastman, B. S. Rao, and T. A Wiggins, "Rotational and Vibrational Constants of the HCl³⁵ and DCl³⁵ Molecules," J. Opt. Soc. Am., Vol. 52, 1962, p. 1.
- D. H. Rank, B. S. Rao, and T. A. Wiggins, "Molecular Constants of HCl," J. Mol. Spectr., Vol. 17, 1965, p. 122.
- G. Herzberg, Spectra of Diatomic Molecules, D. Van Nostrand Co., Princeton, 1950.
- 15. R. H. Pennington, Introductory Computer Methods and Numerical Analysis, Mac Millan Company, Toronto, 1965.
- J. Trischka and H. Salwen, "Dipole Moment Function of Diatomic Molecules,"
 J. Chem. Phys., Vol. 31, 1959, p. 218.
- 17. E. W. Kaiser, "Dipole Moment and Hyperfine Parameters of HCl³⁵ and DCl³⁵," J. Chem. Phys., Vol. 53, 1970, p. 1686.

- 18. W. S. Benedict et al., "Infrared Line and Band Strengths and Dipole Moment Function in HCl and DCl," J. Chem. Phys., Vol. 26, 1957, p. 1671.
- 19. R. A. Toth, R. H. Hunt, and E. K. Plyler, "Line Strengths, Line Widths, and Dipole Moment Function for HCl," J. Mol. Spectr., Vol. 35, 1970, p. 110.
- S. S. Penner and D. Weber, "Infrared Intensity Measurements on Nitric Oxide, Hydrogen Chloride, and Hydrogen Bromlde," J. Chem. Phys., Vol. 21, 1953, p. 649.
- 21. H. Babrov, G. Ameer, and W. Benesch, "Line Strengths and Widths in the HC1 Fundamental Band," J. Mol. Spectr., Vol. 3, 1959, p. 185.
- J. H. Jaffe, S. Kimel, and M. A. Hirshfeld, "Refraction Spectrum of Gases in the Infrared; Intensitles and Widths of Lines in the 2 - 0 Band of HCl," J. Chem. Phys., Vol. 40, 1962, p. 113.
- 23. R. E. Meredith, A New Method for The Direct Measurement of Spectral Line Strengths and Widths, JQSRT, Vol. 12, 1972, pp. 455-484.
- 24. Plyler and Thibault, "Self Broadening of Carbon Monoxide in the 2ν and 3ν Bands," J. of Research NBS Physics and Chem., Vol. 67A, No. 3, June 1963.
- R. R. Stephens and T. A. Cool, "Vibrational Energy Transfer and De-excitation on the HF, DF, HF-CO₂ and DF₂ Systems," J. Chem. Phys., Vol. 56, 1972, p. 5863.
- 26. J. J. Hinchen, "Vibrational Relaxation of Hydrogen Fluoride and Deuterium Fluoride," Paper given at 3rd Conference on Chemical and Molecular Lasers, St. Louis, 1, 2, 3, May 1972.
- 27. M. A. Kwok, "HF Deactivation Kinetics Using a Medium Pressure Flow Tube: HF + H2 Systems," Paper given at 3rd Conference on Chemical and Molecular Lasers, St. Louis, 1, 2, 3, May 1972.
- 28. T. F. Deutsch, "Laser Emission from HF Rotational Transitions," Appl. Phys. Lett., Vol. 11, 1967, p. 18.
- 29. R. I. Wilkins, "Monte Carlo Calculations of Reaction Rates and Energy Distributions Among Reaction Products I. F + H₂ = HF + H," J. Chem. Phys., Vol. 57, 1972, p. 912.
- N. Jonathan et al., "Initial Vibrational Energy Level Distributions Determined by Infrared Chemi-Luminescence, II," Molecular Physics, Vol. 22, 1971, p. 561.
- 31. L. Henry, "Chemical Laser Probing of Reactions." Paper given at 3rd Conference on Chemical and Molecular Lasers, St. Louis, 1, 2, 3, May 1972.
- 22. R. D. Sharma and C. A. Brau, "Energy Transfer in Near-Resonant Molecular Collisions due to Long Range Forces with Application to Transfer of Vibrational Energy from v₃ Mode of CO₂ to N₂*," J. Chem. Phys., Vol. 50, 1969, p. 924.
- E. L. Steele, Optical Lasers in Electronics, John Wiley and Sons, Inc., New York, 1968.
- 34. K. J. Pettlplece, "A TEM₀₀ Short Pulse HF Oscillator," submitted to Chemical Physics Letters, February 1972.
- 35. B. A. Lippmann and J. Schwinger, "Variational Principles for Scattering I," Phys. Rev., Vol. 79, 1950, p. 469.
- 36. M. Gell-Mann and M. L. Goldberger, "The Formal Theory of Scattering," Phys. Rev., Vol. 91, 1953, p. 398.
- 37. C. J. Tsao and B. Curnutte, "Line Width of Pressure Broadened Spectral Lines," J. Quant. Spectrosc. Radiat. Transfer, Vol. 2, 1961, p. 41.

- 38. W. S. Benedict and R. Herman, "The Calculation of Self Broadened Line Width in Linear Molecules," J. Quant. Spectrosc. Radiat. Transfer, Vol. 3, 1963, p. 265.
- 39. W. F. Herget et al., 'Infrared Spectrum of Hydrogen Fluoride: Line Positions and Line Shapes; Treatment of Data Results," J. Opt. Soc. Am., Vol. 52, 1962, p. 113.
- 40. R. Lovell and W. F. Herget, "Lorentz Parameters and Vibration-Rotatica Interactions Constants for the Fundamental Band of HF," J. Opt. Soc. Am., Vol. 52, 1962, p. 1374.
- 41. R. F. Meredith, "Strengths and Widths in the First Overtone Band of Hydrogen Flvoride," J. Quant. Spectrosc. Radiat. Transfer, Vol. 12. 1972, p. 485.
- 42. A. A. Mason and A. H. Nielsen, "Rotational Spectrum of Hydrogen Fluoride: Frequencies and Line Widths," J. Opt. Soc. Amer., Vol. 57, 1967, p. 1464.
- 43. W. S. Benedict et al., "The Strengths, Widths and Shapes of Infrared Lines," Can. J. Phys., Vol. 34, 1956, p. 830.
- 44. R. Herman and R. F. Wallis, "Influence of Vibration-Rotation Interaction on Line Intensities in Vibration-Rotation Bands of Diatomic Molecules," J. Chem. Phys., Vol. 23, 1955, p. 637.
- 45. W. S. Benedict et al., "The Strengths, Widths and Shapes of Infrared Lines, The HCl Fundamental," Can. J. Phys., Vol. 34, 1956, p. 850.
- 46. H. W. Marshall, A High Resolution Infrared Spectrometer, Ph.D Dissertation, The University of Michigan, Ann Arbor, 1960 (unpublished).
- 47. E. S. Fishburne and K. Narahari Rao, "Vibration-Rotation Bands of HF," J. Molec. Spectr., Vol. 19, 1966, p. 290.
- 48. J. W. C. Johns and R. F. Barrow, The Ultraviolet Spectra of HF and DF, Proc. Roy. Soc., A251, London, 1959, p. 504.
- 49. A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms, The MacMillan Company, New York, 1934.

DISTRIBUTION LIST

Commanding General U. S. Army Missile Command		Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, Virginia 22209	222
Restanc Arsenal, Alabama 3580ff	(1)	ATTN Dr. S. J. Lukasik	1 -
ATTN AMSMI-RMS MITTIE Corporation		ATTN Director, STO ATTN Director, Laser Division, STO ATTN CPT Stoessell	11
P. O. Box 208		ODDR& E.	
Bedford, Massachusetts 01730	(1)	Washington, D. C. 26301	10.00
ATTN Dr. John Connally		ATTN Mr. Edward Myers (E&IS) ATTN Mr. Ben T. Plynnate (SW)	1
Air Force Weapons Laboratory Albuquerque, New Mexico 87117		Joint Continental Defense Systems	
ATTN SAL LT D. Fuller	(3)	Integration Planning Stall 1320 Wilson Boulevard	
Itome Air Development Center		Arlington, Virginia 22209	(1)
Brittiss Air Force base, New York 13440	(1)	ATTN: Mr. L. Katz	(1)
ATTN Mr. Bill Fontana OCSS	11,	U. S. Arms Control & Dissernament Agency	
Hesoquarters, Air Force Aeronautical Systems Division Wright-Patterson Air Force Base, Ohio 45433		Washington, D. C. 20451 ATTN Mr. Charles Benkie	(1)
ATTN ASBX Mr. Ira Bowker	(1)		
Department of the Navy Naval Ordnance Systems Command		Department of the Army Chief of Research & Development Washington, D. C. 20310	
Washington, D. C. 20360		A COLE O Cornay (CRDPES)	(1)
ATTN ORD-012	(2)	ATTN: Chief, Air Delense & Misseles Division	11
ATTN DRD-0832		U. S. Army SAFEGUARD Systems Office	
Johns Hopkins University		Commonwealth Bullding	
Applied Physics Laboratory 8621 Georgia Avenue		1326 Wilson Boulevard Arlington, Virginia 22209	
Silver Spring, Maryland 20910		ATTN: Mr. Albert J. Basl, Jr.	111
ATTN Dr. W. Good	(1)	U.S. Army Missile Command	
The Boeing Cumpany		Redstone Arsenal, Alabama 35009	(1)
P. O. Box 3999 MS 8A19 Org 2-5091 Seattle, Washington 98124		ATTN: Dr. J. P. Hallowes, dr. ATTN: Mr. Walter Jennings	(1)
ATTN Mr. L. W. Holunson	(1)	ATTN: Dr. Tom Burr	
		Commanding General	
McDonnell-Dougles Astronautics Company Western Division, Dept. A-830. MS9		U. S. Army Weapons Command Rock Island, illinois 61201	
5301 Bolsa Avenue		ATTN. Dr. Leonard B. Gardner	11)
Huntington Beach, California 92647	(1)	RAE Directorale	
ATTN Mr. R. E. Hanna	(.)	Director	
AVCO-Missile Systems Division		U. S. Army Advanced Ballistic Missile Defense Agency	
201 Lowell Street Wilmington, Massachusetts 01887		P. O. Box 1500 Huntsville, Alabama 35807	
ATTN. Mr. Walter Schafer	(1)	ATTN CRDABII-O	111
General Research Corporation 1501 Wilson Boulevard		Commanding General U. S. Army Materiel Command	
Suite 500		Washington, D. C. 20315	
Arlugton, Virginia 22209	111	ATTN Mr. Paul Chernell [AMCHD-TP]	(1)
ATTN Dr. Gles Crimi	11)		
Headquarters, U. S. Army Combat Development Command Fort Belvoir, Varginta 22060		Commanding General U. S. Army Muntilons Command Dover, New Jersey 07801	
ATTN CDCCD-C MJR Knapp	11)	ATTN Mr. G. F. Chesnov	(1)
Headquarters, Air Force Systems Command		(AMSMU-PE-IC)	
Andrews Air Furce Base, Virginia 20331	(1)	Director U. S. Army Ballistic Research Laboraturies 24005	
ATTN: SCTSW COL O. R. Cunningham		Aberdeen Proving Ground, Maryland 21003	(1)
Air Force Weapons Laboratory Alluquerque, New Mexico 87117		ATTN: Dr. Robert Etchelherger	(1:
	(1)	ATTN: Mr. Frank Allen ATTN: Dr. E. C. Alcarez	(1
ATTN: SAL MJR II. Feaster ATTN: 1R COL D. L. Lamberson	111	Garanding Ollicar	
A TOTAL TREATMENT IN PLAY COOK	(1)	U. S. Army Cumbat Development Command	
ATTN SYT M.H R. Roland ATTN LRT M.H R. Ogluktan	(1)	Atr Delense Agency Fort Blass, Texas 79916	t1
ATTN: CL Mr. John Walsh	(1)		
		Commanding Officer U. S. Army Franklord Arsenal	
		Philadelphia, Pennsylvania 19137	(1

ERIM

O and the Constant		Aerospace Research Labs AP	
Commanding General U. S. Army Electronics Command Fort Monmouth, New Jersey 07703		Wright-Patterson Air Force Base, Ohio 45433 AT IN: MAJ M. R. Fossett, Jr.	(1)
ATTN AMSEL-XL-II, Dr. R. G. Buser	11)	Defense Intelligence Agency	
Department of the Navy Deputy Chief of Naval Operation Development OP-723		Washington, D. C. 20301 ATTN: Mr. Seymour Berier (DT 1D)	11:
Pentagon 5C739 Washington, D. C. 20350		Central Intelligency Agency	
ATTN CPT J. G. Wilson, U. S. Navy	(1)	Washington, D. C. 20505	
		ATTN Mr. J. C. Nall	111
Office of Naval Research 495 Summer Street		Aerospace Corporation	
Boston, Massachusetts 02210	(1)	P. O. Box 95035 Los Angeles, Caltiornia 90045	
ATTN Dr. Fred Quelle	117	ATTN Dr. G. P. Millhurn	(1)
Office of Neval Research			
800 N. Quincy Street Arlington, Virginia 22217		Atlantic Research Corporation Propulsion Division	
ATTN Dr. W. J. Condell (421)	(1)	Shirley Highway and Edsall Road Alexandria, Virginia 22314	
Department of the Navy Deputy Chief of Naval Miteriel (Development)		ATTN Mr. R. F. Hoglund	(1)
Washington, D. C. 20360		AVCO-Everett Research Laboratories	
ATTN Mr. R. Gaylord (MAT 032B)	(1)	2385 Revere Beacl Parkway Everett, Massic etts 02149	
Naval Research Laboratory		ATTN Dr. George Sulton	1
Wie-hington, D. C. 20390	(1)	ATTN Dr Jack Daugherty	
ATTN Dr. W. R. Spoy (Code 6500) ATTN Dr. H. W. Gandy (Code 6506)	(1)	Bittelle Memorial Institute 5'95 King Avenue	
ATTN Dr. A 1 Schindler (Code 6330) ATTN Dr. ii Shenker (Code 6530)	- (11 - 1)	Columbus, Ohlo 43201	
ATTN Mr. D J McLaughlin (Code 6507)	(1)	ATTN: Mr. Robert Kohn (STOIAC)	(1)
Navai Ordnance Laboratory		Electro-Optical Systems	
Whete Oak, Silver Spring, Ma land 20910	(1)	300 North Halstead Pasadena, California 91107	
ATTN Dr Leon H Schindel de 310) ATTN Dr E. Lerov Harris (Code 313)	1	ATTN Dr. Andrew Jensen	(1)
1 . S. Naval Weapons Center			
China Lake, Celiforma 93557		General Electric Company Space Division	
ATTN Mr. A. L. Bi-tell (Code 3042)	(1)	Valley Forge Spice Center	
ifeadquarters, U. S. Atr Force (AF RDPS)		P. O. Box 8555 Philadelphia, Pennsylvania 19101	
The Pentagon Washington, D. C. 20330		ATTN: Mr. W. J. East	(1)
ATTN: LT C. Parsons	(1)	General Research Corporation	
Headquarters, AFSC (DLTW)		P. O. Box 3587	
Andrews Air Force Base		Santa Barbars, California 93105 ATTN: Dr. R. Holbrook	(1)
Washington, D. C. 20331	11)		
ATTN MAJ A. J. Chiota		Hercules, Inc. Explosives & Chemical Propulsion Division	
Headquarters, SAMSO (XRT 1) Los Angele: Air Force Statton		Wilmington, Delaware 19899	
Air Force Unit Post Office		ATTN Mr. J. E. Greer	.(1)
Los Angeles, California 90045	(1)	Hercules, Inc.	
ATTN: LT Dartan De Maie		P O. Box 210 Cumberland, Maryland 21502	
Air Force Avionics Laboralories (TEL) Wrighl-Patlerson Air Force Base, Ohio 45433		ATTN: Dr. R. F. Preckel	(1)
ATTN: Mr. K. Hulchinson	(1)	Hughes Research Laboratories	
lleadquarters, Electronic Systems Division (ESL)		3011 Malibu Canyon Road Malibu, California 90265	
L. G. Hanscom Field Bedford, Massachusetts 01730		ATTN: Dr. D. Forster	12)
ATTN: Mr. A. E. Anderson (XRT)	(2)	Hughes Aircrait Company	
Air Force Rocket Propulsion Laboratory		Centinells & Teale Streets Culver City, Cstitornia 90230	
Edwards Air Force Base, Callfornia 93523	(I)	ATTN: Mr. Stan Novak	121
ATTN: XP-James Edwards		Hughes Aircraft Company	
Air Force Aero-Space Propulsion Laborstory Wrighi-Patterson Air Force Base, Ohio 45433		P. O. Box 3310 Fullerton, Cslifornia 90230	
ATTN: COI. Tipton Moti-Smith (APG)	(1)	ATTN: Dr. William Yates	(1)
Air Force Foreign Technology Division		Instituts for Defense Analyses	
Wright-Palterson Air Force Base, Ohio 45433	(1)	400 Army Navy Driva	
ATTN: LT R. J. Fachl (PDTR)	(1)	Arlington, Virginia 22202 AfTN: Dr. John Asmus	(1)
USA F/INAKA/LTC W. M. Trueadell	(1)	ATTA: Dr. some cames	

Lawrence Livermore Laboratory University ni California P. O. Box 808		Raythenn Company Foundry Avenue Waltham, Massachusetts 02154	
Livermore, California 94551		ATTN Dr. Frank Horrigan	/ 1
ATTN: Dr. R. L. Kidder	{ []		
ATTN Dr Edward Teller Luiejian & Associates	/1×	Riverside Research Institute 80 West End	
1650 South Pacific Coast Highway		New York, New York 10023	
Redondo Beach, Catifornia, 90277		ATTN Dr. L. II O'Neill	- 1
ATTN COL Robert Bowers	(1)	ATTN: Dr. John Bose ATTN: Miss Belen Cressman	1
MIT Lincoln Laboratory		ATTN Hp-EGL Project Library	1 1
P O 80x 73		the think and the time	
Lexington, Mussachusetts 02173		P. O. Box 3580	
		Santa Montea, California, 90431	
ATTN Dr. S ridelberg ATTN Dr. R. Kingston	111		
LCTN Dr. J. Freedman	(1)	ATTN Dr. R. F. Lefevier	1
ATTN D. G. P. Dinneen	1)		
ATTN Dr R S Cooper	(1)	Thickel Chemical Corporation	
	1.11	WASATCH Division P. O. Box 524	
Mathematical Sciences Northwest, Incorporation		Brigham City, Utah 84302	
4545 15th Avenue, NE			
Seattle Vashington 98105		ATTN: Mr. J. M. Stone	1
ATTN: Mr. P. H. Rose	(1)		
ATTN Dr Abraham Herscherg	11)	TRW Systems Group	
		One Space Park	
McDonnell Douglas Research Laboratories		Redondo Beach, California 90278	
Department 220, Box 516		ATTN Mr. Norman Campbell	1)
St. Louis, Missourl 63166			
ATTN Dr. D. P. Ames	(1)	United Alreraft Research Laboratories	
	(.)	400 Main Street	
orth American Bockwell Corporation		East Hartined, Connecticut 06108	
Autonotics Division		ATTN: Mr. G. H. McLatterty	131
3370 Miraloma Avenue		ATTN: Mr. Albert Angelbeck	(1)
Anaheim, California 92803		United Aircraft Corporation	
ATTN Mr. T. T. Kumagal	(1)	Pratt & Whitney Aircraft Division	
D 476 Mail Code IIA18		Florida Research and Development Center	
		West Palm Beach, Florida 33402	
Northrop Corporation Laboratories			
3401 W. Hrnadway		ATTN: Mr. R. Mulready	(1)
Hawthorne, California 90250		ATTN: Mr. Ed Pinsley	(1)
ATTN Mr. G. It Hasserjan	(11)	Westinghouse Electric Corporation	
		Infense and Space Center	
Physics International		Friendship International Airport	
2700 Merced Street		P. O. Box 746	
San Leandrn, California 94577		Bultimore, Maryland 21203	
ATTN: Dr. G. Yones	(1)	A ITN: Mr. R. A. Lee	(1)
Flectron Beam Research & Technical Department	1.7		1.57
		Stanford Research Institute	
RAND Corporation		Menio Park, California 94025	
1700 Main Street		ATTN: Classified Documents Services	111
Santa Monica, California 90406		The state of the s	
ATTN Dr. C. R. Culp.	(1)	A. F. Avionics Laboratory	
Dr. R. Hundley	,	Wright Pattersnn Air Force Base, Ohin 45433	
ATTN Dr. Allen Shapiro	(1)		
At the Dr. Atten snapti o	(1)	ATTN: AFAL/TEO (CPT Wm Boney)	(1)

Security Classification

DOCUMENT C	ONTROL DATA - R	& D		
(Security classification of title body of abstract and index 1 ORIGINATING ACTIVITY (Corporate author)	ing annotation must be v	ntered when t	he overall report is classified)	
Environmental Research Institute of Michlgan, Ann Arbor		UNCLASSIFIED		
		Z M GNOUP	N/A	
3 REPORT TITLE			N A	
INVESTIGATIONS OF CHEMICAL LASER PROCES	SSES			
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) Seminimual Technical Report 1 January 1972 Th	rough 30 June 1972)		
5 AUTHOR(S) (First name, middle initial, last name)				
George H. Lindquist Robert E. Meredith Charles B. Arnold Frederick G. Smith Robert L. Spellicy				
REPORT DATE	74-TOTAL NO C	OF PAGES	7h NO OF REFS	
February 1973	xvi + 183		49	
HI CONTRACT OR GRANT NO	9# ORIGINATOR	S REPORT N		
DAAH 01-72-C-0572	191300-1-P		,	
ARPA Order No. 1108-72				
ARPA Order No. 1108-72				
d	9h OTHER REPO	RT NO(S) IA	ny other numbers that may be assigned	
DISTRIBUTION STATEMENT				
Initial distribution is indicated at the end of this do	cument.			
SUPPLEMENTARY NOTES				
This contract is monitored by the ARPA Support Office, Army Missile Command, Huntsville, Alabama	Advanced Re Department Washington,	esearch Pr of Defense	ojects Agency	

A complete set of electric dipole transition probabilities for HCl has been computed by means of a numerical procedure developed previously. To produce these computations, the dipole moment and internuclear potential for the HCl molecule were modeled with the available experimental data. The results are presented in tabular form for vibrational quantum states from 1 to 12, for changes in vibrational states between 0 and 5, and for all rotational states between 0 and 35. Progress on experimental measurements of the Intensity of the v = 0 to v' = 4 band of CO are included as well as progress on an experiment to measure rotational relaxation in an excited cell of HF.

Measurements of the strengths and widths of lines in the v=0 to v'=3 band of HF are reported. This work was begun under an earlier contract with the Advanced Research Projects Agency, and was completed under the current contract. The electric dipole matrix element for the band has been determined from the measured strengths to be 1.628×10^{-21} esu-cm. The rotational dependence of the measured half widths agrees with the Anderson theory of collision broadening if off-resonant collisions are taken into account. A complete code has been written to compute line widths resulting from collision broadening. A section describing this program is included. Sample calculations which show good agreement with available experimental data are presented.

DD FORM 1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

	KEY WORDS	LIN	LINKA		LINK B		LINKC	
		ROLE	WT	ROLE	wt	ROLE	10/1	
Probe laser								
Pump laser								
ydrogen fluoride								
ine widths								
ydrogen chloride								
ipole moment								
ransition probabilitie:	S							
Molecular rotation Molecular vibration								
IF laser								
Rotational relaxation								
aser stimulation								
_aser absorption								
Phorescence								
			1					
						3		
		C 1/4						
		1.5						
		time I to be a						
				F91.0				
		2015						
						4		
				1.73	134.00			
						M. W.	18	
		AND THE RESERVE			1		1	
			DE L	100				
						111111		
					CALL ROLL			

UNCLASSIFIED
Security Classification