7: Evaluating, comparing and expanding models

Taylor

University of Virginia

Taylor (UVA) "7"

Introduction

This chapter focuses mostly on quantifying a model's predictive capabilities for the purposes of model selection and expansion.

Taylor (UVA) "7" 2/13

New Notation!

- f is the true model
- 2 y is the data we use to estimate our model
- \tilde{y} is the future (time series) or alternative (not time series) data that we test our predictions on

- $E_{post}[\cdot]$ is taken with respect to $p(\theta \mid y)$

Taylor (UVA) "7" 3/13

Definitions

A **scoring rule/function** $S(p, \tilde{y})$ is a function that takes

- lacktriangled the distribution you're using to forecast p (ppd, or likelihood with estimated parameters), and
- $oldsymbol{0}$ a realized value $ilde{y}$

and then gives you a real-valued number/score/utility. Higher is better, although this convention isn't always followed in the literature.

Keep in mind that the realized value cannot be used to fit the data.

Taylor (UVA) "7" 4/13

Examples

Example:
$$S(p, \tilde{y}) = -(\tilde{y} - E_p[\tilde{y}])^2$$

Example:
$$S(p, \tilde{y}) = \log p(\tilde{y})$$

Taylor (UVA) "7" 5/13

Definitions

Future/unseen data is unknown, so we must take the expected score under the true distribution f:

$$E_f[S(p, \tilde{y})].$$

A scoring rule is **proper** if the above expectation is minimized when f = p.

A scoring rule is **local** if $S(p, \tilde{y})$ only depends on $p(\tilde{y})$ (don't care about events that didn't happen).

Note, when we are dealing with a logarithmic scoring rule, $E[-2\log p(\tilde{y})]$ is often called an **information criterion**. The book switches back and forth between dealing with expected score, and information criteria.

Taylor (UVA) "7" 6/13

Examples

Example: $S(p, y) = -(\tilde{y} - E_p[\tilde{y}])^2$

Most common, perhaps not local or proper for non-Gaussian data.

Example: $S(p, y) = \log p(\tilde{y})$

Obviously local. Proper, too (homework question).

Taylor (UVA) "7" 7/1:

Problem

We are generally not able to evaluate the expectation because we don't know f. However, we may be able to wait for new out-of-sample data and use a Monte-Carlo approach:

$$\tilde{n}^{-1}\sum_{i=1}^{\tilde{n}}S(p,\tilde{y}^i)\to E_f[S(p,\tilde{y})]$$

as $\tilde{n} o \infty$

Taylor (UVA) "7" 8/13

Problem

We are generally not able to evaluate the expectation because we don't know f. However, we may be able to wait for new out-of-sample data and use a Monte-Carlo approach:

$$\tilde{n}^{-1}\sum_{i=1}^{\tilde{n}}S(p,\tilde{y}^i)\to E_f[S(p,\tilde{y})]$$

as $\tilde{\it n}
ightarrow \infty$

If we can afford to wait for an infinite amount of data, though, what is the point of trying to predict it?

Taylor (UVA) "7" 8/13

Problem

We are generally not able to evaluate the expectation because we don't know f. However, we may be able to wait for new out-of-sample data and use a Monte-Carlo approach:

$$\tilde{n}^{-1}\sum_{i=1}^{\tilde{n}}S(p,\tilde{y}^i)\to E_f[S(p,\tilde{y})]$$

as $\tilde{n} \to \infty$

If we can afford to wait for an infinite amount of data, though, what is the point of trying to predict it?

NB: textbook looks at the same instead of the average (calls it "elppd").

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Taylor (UVA) "7" 8/13

Another problem

If we're using the ppd, it might not be in closed form. We have to draw $\theta^j \sim p(\theta \mid y)$, too:

$$\tilde{n}^{-1} \sum_{i=1}^{\tilde{n}} \log \left\{ S^{-1} \sum_{j=1}^{S} p(\tilde{y}^{i} \mid \theta^{j}) \right\} \rightarrow E_{f}[\log p_{\mathsf{post}}(\tilde{y})]$$

The textbook calls the above quantity multiplied by \tilde{n} the "computed lppd"

Taylor (UVA) "7" 9 / 13

A third problem

Don't want to wait for \tilde{y} ...

and unfortunately, we cannot plug in the same data that we used for estimation. This overestimates the average predictive score.

However, we can get around this in two ways generally:

- plug in the already-used y data, but then add an extra penalty term (e.g. AIC, DIC, WAIC, etc.)
- 2 Cross-Validation: split the data y, many different ways, into a train and test set; estimate and evaluate on each split.

Taylor (UVA) "7" 10/13

Information Criteria

AIC stands for "an information criterion" or "Akaike's Information Criterion." Let k be the number of parameters:

$$\widehat{\mathsf{elpd}}_{\mathsf{AIC}} = \log p(y \mid \hat{\theta}_{\mathsf{MLE}}) - \underbrace{k}_{\mathsf{penalty}}$$

or

$$AIC = \underbrace{-2\log p(y \mid \hat{\theta}_{MLE})}_{\text{a deviance}} + 2k$$

We estimate $\hat{\theta}_{MLE}$ using y, and we plug y into the log likelihood.

Taylor (UVA) "7" 11/13

Information Criteria

DIC replaces the point estimate with $\hat{\theta}_{\text{Bayes}} = E[\theta \mid y]$, and replaces the penalty term with p_{DIC}

$$\widehat{\mathsf{elpd}}_\mathsf{DIC} = \mathsf{log}\, p(y \mid \hat{\theta}_\mathsf{Bayes}) - p_\mathsf{DIC}$$

or

$$DIC = -2\log p(y \mid \hat{\theta}_{\mathsf{Bayes}}) + 2p_{\mathsf{DIC}}$$

Taylor (UVA) "7" 12/13

Information Criteria

The book gives two ways to estimate p_{DIC} :

Both of these can be approximated using samples from the posterior.

Taylor (UVA) "7" 13/13