Acta Crystallographica Section E

# **Structure Reports**

**Online** 

ISSN 1600-5368

# Bis(N-isopropyl-N-methyldithiocarbamato- $\kappa^2 S, S'$ )(1,10-phenanthroline- $\kappa^2 N, N'$ )zinc

Nor Asiken Abdul Wahab, a Ibrahim Baba, a‡ Mohamed Ibrahim Mohamed Tahirb and Edward R. T. Tiekink<sup>c</sup>\*

<sup>a</sup>School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, <sup>b</sup>Department of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and <sup>c</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 3 April 2011; accepted 4 April 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma(C-C) = 0.004 \text{ Å}$ ; R factor = 0.036; wR factor = 0.093; data-to-parameter ratio = 21.0.

The Zn<sup>II</sup> atom in the title compound, [Zn(C<sub>5</sub>H<sub>10</sub>NS<sub>2</sub>)<sub>2</sub>-(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)], exists in a distorted cis-octahedral N<sub>2</sub>S<sub>4</sub> donor set defined by two chelating dithiocarbamate anions as well as a 1,10-phenanthroline ligand. Each of the ligands coordinates in a symmetric mode. The crystal packing is stabilized by weak  $C-H\cdots S$ ,  $C-H\cdots \pi(ZnS_2C)$  and  $\pi-\pi$  [ring centroid distance between centrosymmetrically related pyridyl rings = 3.5955 (13) Å] interactions.

### **Related literature**

For the use of the parent zinc compound and nitrogen adducts as precursors for ZnS nanoparticles, see: Motevalli et al. (1996); Malik et al. (1997). For background to supramolecular polymers of zinc-triad dithiocarbamates and related structures, see: Benson et al. (2007); Jamaluddin et al. (2011). For a description of  $C-H\cdots\pi(MS_2C)$  interactions, see: Tiekink & Zukerman-Schpector (2011).

### **Experimental**

Crystal data

| $[Zn(C_5H_{10}NS_2)_2(C_{12}H_8N_2)]$ | $V = 2642.48 (11) \text{ Å}^3$            |
|---------------------------------------|-------------------------------------------|
| $M_r = 542.09$                        | Z=4                                       |
| Monoclinic, $P2_1/n$                  | Mo $K\alpha$ radiation                    |
| a = 11.8015 (3)  Å                    | $\mu = 1.26 \text{ mm}^{-1}$              |
| b = 16.6316 (4) Å                     | T = 150  K                                |
| c = 13.7505 (3)  Å                    | $0.25 \times 0.20 \times 0.12 \text{ mm}$ |
| $\beta = 101.738 \ (2)^{\circ}$       |                                           |

Data collection

Oxford Diffraction Xcaliber Eos 33394 measured reflections Gemini diffractometer 6001 independent reflections Absorption correction: multi-scan 4814 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.064$ (CrysAlis PRO; Oxford Diffraction, 2010)  $T_{\min} = 0.777, T_{\max} = 0.860$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 6 restraints  $wR(F^2) = 0.093$ H-atom parameters constrained S = 1.04 $\Delta \rho_{\text{max}} = 0.66 \text{ e Å}^{-3}$  $\Delta \rho_{\rm min} = -0.50~{\rm e}~{\rm \mathring{A}}^{-3}$ 6001 reflections 286 parameters

Table 1 Selected bond lengths (Å).

| -     |            |       |             |
|-------|------------|-------|-------------|
| Zn-S1 | 2.4782 (6) | Zn-S4 | 2.5132 (7)  |
| Zn-S2 | 2.5408 (7) | Zn-N3 | 2.1939 (18) |
| Zn-S3 | 2.5031 (6) | Zn-N4 | 2.1970 (19) |

Table 2 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the Zn,S1,S2,C1 chelate ring.

| $D-H\cdots A$              | D-H                     | $H \cdot \cdot \cdot A$                 | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ |
|----------------------------|-------------------------|-----------------------------------------|-------------------------|------------------------|
| $C7-H7b\cdots S2^{i}$      | 0.98                    | 2.79                                    | 3.734 (3)               | 162                    |
| C13-H13···S4 <sup>ii</sup> | 0.95                    | 2.82                                    | 3.634 (2)               | 145                    |
| C21-H21···S1iii            | 0.95                    | 2.84                                    | 3.684 (3)               | 149                    |
| $C20-H20\cdots Cg1^{iv}$   | 0.95                    | 2.74                                    | 3.687 (2)               | 173                    |
| Symmetry codes: (i         | $x - \frac{1}{2}, -y +$ | $+\frac{3}{2}$ , $z+\frac{1}{2}$ ; (ii) | -x + 1, -y + 1          | ,-z+1; (iii)           |

 $-x + \frac{3}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (iv)  $x - \frac{1}{2}$ ,  $-y + \frac{3}{2}$ ,  $z - \frac{1}{2}$ .

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08-27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092-2010), Universiti Putra Malaysia and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5835).

<sup>‡</sup> Additional correspondence author, e-mail: aibi@ukm.my.

# metal-organic compounds

## References

Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565.

Jamaluddin, N. A., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m384–m385.

Malik, M. A., Motevalli, M., O'Brien, P. & Walsh, J. R. (1997). *Inorg. Chem.* 36, 1263–1264.

Motevalli, M., O'Brien, P., Walsh, J. R. & Watson, I. M. (1996). *Polyhedron*, **15**, 2801–2808.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. doi:10.1039/c1cc11173f.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

| supplementary m | aterials |  |
|-----------------|----------|--|
|                 |          |  |
|                 |          |  |
|                 |          |  |
|                 |          |  |

Acta Cryst. (2011). E67, m553-m554 [doi:10.1107/S1600536811012499]

# Bis(N-isopropyl-N-methyldithiocarbamato- $\kappa^2 S$ ,S')(1,10-phenanthroline- $\kappa^2 N$ ,N')zinc

## N. A. A. Wahab, I. Baba, M. I. Mohamed Tahir and E. R. T. Tiekink

#### Comment

The title compound  $Zn[S_2CN(Me)iPr)_2]_2(1,10$ -phenanthroline), (I), was investigated as a part of on-going studies of zinc-triad dithiocarbamates and their adducts (Benson *et al.*, 2007; Jamaluddin *et al.*, 2011). The dinuclear parent  $\{Zn[S_2CN(Me)iPr]_2\}_2$  compound and its nitrogen-based adducts have proven useful as synthetic precursors for ZnS nanoparticles (Motevalli *et al.*, 1996; Malik *et al.*, 1997).

The Zn atom in (I), Fig. 1, is chelated by two symmetrically coordinating dithiocarbamate ligands, Table 1, and also symmetrically by the 1,10-phenanthroline ligand. The symmetric mode of coordination of the dithiocarbamate ligands is reflected in the narrow range of associated C = S bond distances, *i.e.* 1.718 (2) to 1.724 (2) Å, which are in fact experimentally equivalent. The  $N_2S_4$  donor set defines a distorted octahedron with distortions readily explained in terms of the restricted bite distances of the chelating ligands.

The crystal structure is stabilized by weak intermolecular interactions. These include C—H··· $\pi$ (ZnS<sub>2</sub>C), Table 2, and  $\pi$ – $\pi$  interactions. The C—H··· $\pi$ (ZnS<sub>2</sub>C) contacts have precedents in the crystal chemistry of metal dithiocarbamates (Tiekink & Zukerman-Schpector, 2011). The  $\pi$ – $\pi$  interactions occur between centrosymmetrically related pyridyl rings [ring centroid(N3,C11–C15)···ring centroid(N3,C11–C15)<sup>i</sup> = 3.5955 (13) Å for *i*: 1 - *x*, 1 - *y*, 1 - *z*]. A view of the unit-cell contents is shown in Fig. 2 where it can be seen that globally, the crystal packing comprises alternating layers of ZnS<sub>2</sub>CN/1,10-phenanthroline residues and alkyl groups.

#### **Experimental**

The title compound was prepared using an *in situ* method by the addition of carbon disulfide (0.02 mol) to an ethanolic solution (20 ml) of isopropropyl(methyl)amine (0.02 mol) and 2,2'-bipyridine (0.01 mol) in ethanol (20 ml). The mixture was stirred for 1 h at 277 K. The resulting solution was added drop-wise to a solution of zinc(II) dichloride (0.01 mol) in ethanol (20 ml). The mixture was stirred for a further 2 h. The yellow precipitate was filtered and washed with cold ethanol, and dried in a desiccator. Crystallization was carried using an ethanol:chloroform (1:2 v/v) solvent system to yield pale yellow prisms of (I); M.pt. 420–421 K. Elemental analysis. Found (calculated) for  $C_{22}H_{32}CdN_4S_4$ : C, 46.49 (46.36);  $C_{31}C_{32}C_{32}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33}C_{33$ 

### Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with  $U_{iso}(H)$  set to 1.2 to 1.5 $U_{equiv}(C)$ . Disorder was noted in the N-alkyl groups of both dithiocarbamate ligands. However, multiple sites could not be resolved. The C7 atom was refined with the ISOR command

in *SHELX76* (Sheldrick, 2008) in order to obtain a reasonable displacement ellipsoid. The crystallographic assignment of atom types (in response to a level B alert concerning a Hirshfeld test difference for the N2—C7 bond) was substantiated by the elemental analysis and spectroscopy.

## **Figures**



Fig. 1. The molecular structure of of (I) showing displacement ellipsoids at the 50% probability level.



Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The intermolecular C—H···S, C—H·· $\pi$ (ZnS<sub>2</sub>C) and  $\pi$ – $\pi$  contacts are shown as orange, blue and purple dashed lines, respectively.

# Bis(*N*-isopropyl-*N*-methyldithiocarbamato- $\kappa^2 S$ , $S^1$ )(1,10-phenanthroline- $\kappa^2 N$ , $N^1$ ) zinc

### Crystal data

 $[Zn(C_5H_{10}NS_2)_2(C_{12}H_8N_2)]$ F(000) = 1128 $M_r = 542.09$  $D_{\rm x} = 1.363 \; {\rm Mg \; m}^{-3}$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Monoclinic, P2<sub>1</sub>/n Hall symbol: -P 2yn Cell parameters from 11977 reflections  $\theta = 2 - 29^{\circ}$ a = 11.8015 (3) Å b = 16.6316 (4) Å  $\mu = 1.26 \text{ mm}^{-1}$ c = 13.7505 (3) Å T = 150 K $\beta = 101.738 (2)^{\circ}$ Prism, pale-yellow  $V = 2642.48 (11) \text{ Å}^3$  $0.25\times0.20\times0.12~mm$ Z = 4

#### Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer

Radiation source: fine-focus sealed tube graphite

Detector resolution: 16.1952 pixels mm<sup>-1</sup>
Absorption correction: multi-scan 6001 independent reflections 4814 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.064$   $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.2^{\circ}$   $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.2^{\circ}$ 

(CrysAlis PRO; Oxford Diffraction, 2010)  $T_{\min} = 0.777, T_{\max} = 0.860$   $l = -17 \rightarrow 17$  33394 measured reflections

## Refinement

Primary atom site location: structure-invariant direct Refinement on  $F^2$ Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring  $R[F^2 > 2\sigma(F^2)] = 0.036$  $wR(F^2) = 0.093$ H-atom parameters constrained  $w = 1/[\sigma^2(F_0^2) + (0.0376P)^2 + 1.5727P]$ S = 1.04where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\text{max}} = 0.001$ 6001 reflections  $\Delta \rho_{\text{max}} = 0.66 \text{ e Å}^{-3}$ 286 parameters  $\Delta \rho_{min} = -0.50 \text{ e Å}^{-3}$ 6 restraints

### Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|     | x            | y             | Z             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|---------------|---------------|---------------------------|
| Zn  | 0.74542 (2)  | 0.617296 (16) | 0.733396 (19) | 0.02087 (9)               |
| S1  | 0.88167 (5)  | 0.51904 (4)   | 0.82966 (4)   | 0.02410 (14)              |
| S2  | 0.94125 (6)  | 0.63431 (4)   | 0.68609 (4)   | 0.02614 (15)              |
| S3  | 0.74451 (5)  | 0.71890 (4)   | 0.86753 (4)   | 0.02513 (15)              |
| S4  | 0.57158 (5)  | 0.59097 (4)   | 0.80817 (4)   | 0.02474 (14)              |
| N1  | 1.08885 (19) | 0.52534 (15)  | 0.78012 (17)  | 0.0349 (5)                |
| N2  | 0.55956 (18) | 0.70121 (13)  | 0.94727 (15)  | 0.0289 (5)                |
| N3  | 0.68974 (16) | 0.53855 (11)  | 0.60453 (13)  | 0.0188 (4)                |
| N4  | 0.65988 (16) | 0.69879 (11)  | 0.61528 (14)  | 0.0206 (4)                |
| C1  | 0.9824(2)    | 0.55502 (15)  | 0.76623 (17)  | 0.0239 (5)                |
| C2  | 1.1701 (3)   | 0.5547 (2)    | 0.7204(3)     | 0.0553 (9)                |
| H2A | 1.1340       | 0.5512        | 0.6497        | 0.083*                    |
| H2B | 1.2404       | 0.5218        | 0.7338        | 0.083*                    |
| H2C | 1.1901       | 0.6108        | 0.7377        | 0.083*                    |
| C3  | 1.1290 (3)   | 0.45930 (18)  | 0.8512 (2)    | 0.0450 (8)                |
|     |              |               |               |                           |

| Н3   | 1.0679       | 0.4513       | 0.8911       | 0.054*      |
|------|--------------|--------------|--------------|-------------|
| C4   | 1.1391 (4)   | 0.3815 (2)   | 0.7977 (4)   | 0.0847 (14) |
| H4A  | 1.0650       | 0.3692       | 0.7534       | 0.127*      |
| H4B  | 1.1594       | 0.3380       | 0.8463       | 0.127*      |
| H4C  | 1.1995       | 0.3865       | 0.7586       | 0.127*      |
| C5   | 1.2390 (3)   | 0.4817 (2)   | 0.9235 (3)   | 0.0609 (10) |
| H5A  | 1.3038       | 0.4822       | 0.8888       | 0.091*      |
| H5B  | 1.2543       | 0.4422       | 0.9774       | 0.091*      |
| H5C  | 1.2302       | 0.5351       | 0.9510       | 0.091*      |
| C6   | 0.6178 (2)   | 0.67345 (14) | 0.88098 (16) | 0.0214 (5)  |
| C7   | 0.5997 (3)   | 0.77392 (18) | 1.0047 (2)   | 0.0433 (7)  |
| H7A  | 0.6762       | 0.7640       | 1.0463       | 0.065*      |
| H7B  | 0.5450       | 0.7878       | 1.0470       | 0.065*      |
| H7C  | 0.6046       | 0.8185       | 0.9591       | 0.065*      |
| C8   | 0.4491 (2)   | 0.66584 (18) | 0.9609(2)    | 0.0331 (6)  |
| H8   | 0.4375       | 0.6144       | 0.9225       | 0.040*      |
| C9   | 0.3502(3)    | 0.7211 (2)   | 0.9181 (3)   | 0.0684 (11) |
| H9A  | 0.3586       | 0.7718       | 0.9551       | 0.103*      |
| H9B  | 0.2768       | 0.6956       | 0.9234       | 0.103*      |
| Н9С  | 0.3507       | 0.7317       | 0.8481       | 0.103*      |
| C10  | 0.4521 (3)   | 0.6458 (2)   | 1.0693 (2)   | 0.0504(8)   |
| H10A | 0.5227       | 0.6155       | 1.0964       | 0.076*      |
| H10B | 0.3843       | 0.6133       | 1.0743       | 0.076*      |
| H10C | 0.4513       | 0.6957       | 1.1071       | 0.076*      |
| C11  | 0.7038 (2)   | 0.45954 (14) | 0.60029 (17) | 0.0229 (5)  |
| H11  | 0.7385       | 0.4319       | 0.6593       | 0.027*      |
| C12  | 0.6698 (2)   | 0.41511 (14) | 0.51280 (17) | 0.0231 (5)  |
| H12  | 0.6806       | 0.3585       | 0.5130       | 0.028*      |
| C13  | 0.6210(2)    | 0.45394 (14) | 0.42725 (17) | 0.0216 (5)  |
| H13  | 0.5981       | 0.4246       | 0.3672       | 0.026*      |
| C14  | 0.60452 (19) | 0.53794 (14) | 0.42823 (16) | 0.0196 (5)  |
| C15  | 0.64063 (18) | 0.57743 (13) | 0.51983 (16) | 0.0168 (4)  |
| C16  | 0.62276 (19) | 0.66277 (13) | 0.52604 (16) | 0.0176 (5)  |
| C17  | 0.56638 (19) | 0.70521 (14) | 0.44123 (16) | 0.0200 (5)  |
| C18  | 0.5324(2)    | 0.66342 (15) | 0.34901 (17) | 0.0254(5)   |
| H18  | 0.4959       | 0.6921       | 0.2914       | 0.031*      |
| C19  | 0.5516(2)    | 0.58322 (15) | 0.34272 (16) | 0.0245 (5)  |
| H19  | 0.5295       | 0.5568       | 0.2805       | 0.029*      |
| C20  | 0.5474 (2)   | 0.78788 (14) | 0.45176 (18) | 0.0243 (5)  |
| H20  | 0.5083       | 0.8185       | 0.3968       | 0.029*      |
| C21  | 0.5854(2)    | 0.82358 (15) | 0.54158 (19) | 0.0270 (5)  |
| H21  | 0.5734       | 0.8795       | 0.5497       | 0.032*      |
| C22  | 0.6422 (2)   | 0.77763 (14) | 0.62167 (18) | 0.0258 (5)  |
| H22  | 0.6694       | 0.8036       | 0.6835       | 0.031*      |
|      |              |              |              |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

 $U^{11}$   $U^{22}$   $U^{33}$   $U^{12}$   $U^{13}$   $U^{23}$ 

| 7              | 0.02262 (16)  | 0.00004 (1.0) | 0.01600 (1.4) | 0.00262 (11) | 0.00260 (10) | 0.00000 (11)  |
|----------------|---------------|---------------|---------------|--------------|--------------|---------------|
| Zn             | 0.02263 (16)  | 0.02294 (16)  | 0.01688 (14)  | 0.00262 (11) | 0.00360 (10) | -0.00228 (11) |
| S1             | 0.0225 (3)    | 0.0270 (3)    | 0.0237 (3)    | 0.0021 (2)   | 0.0069 (2)   | 0.0075 (2)    |
| S2             | 0.0278 (3)    | 0.0285 (3)    | 0.0229 (3)    | -0.0016 (3)  | 0.0070 (2)   | 0.0066 (3)    |
| S3             | 0.0233 (3)    | 0.0283 (3)    | 0.0248 (3)    | -0.0056 (2)  | 0.0073 (2)   | -0.0095 (3)   |
| S4             | 0.0247 (3)    | 0.0272 (3)    | 0.0226 (3)    | -0.0051 (2)  | 0.0054 (2)   | -0.0087 (2)   |
| N1             | 0.0247 (12)   | 0.0447 (14)   | 0.0387 (12)   | 0.0059 (10)  | 0.0144 (10)  | 0.0145 (11)   |
| N2             | 0.0262 (12)   | 0.0332 (12)   | 0.0304 (11)   | -0.0037 (9)  | 0.0131 (9)   | -0.0135 (10)  |
| N3             | 0.0195 (10)   | 0.0179 (10)   | 0.0192 (9)    | 0.0016 (8)   | 0.0045 (7)   | -0.0008 (8)   |
| N4             | 0.0206 (10)   | 0.0198 (10)   | 0.0213 (9)    | 0.0018 (8)   | 0.0039 (8)   | -0.0047 (8)   |
| C1             | 0.0251 (13)   | 0.0258 (13)   | 0.0217 (11)   | -0.0010 (10) | 0.0071 (9)   | -0.0021 (10)  |
| C2             | 0.0346 (18)   | 0.078 (3)     | 0.061 (2)     | 0.0119 (16)  | 0.0263 (15)  | 0.0265 (19)   |
| C3             | 0.0325 (16)   | 0.0416 (18)   | 0.065 (2)     | 0.0149 (13)  | 0.0184 (14)  | 0.0241 (16)   |
| C4             | 0.080(3)      | 0.049(2)      | 0.119 (4)     | 0.018 (2)    | 0.007(3)     | 0.003(2)      |
| C5             | 0.041 (2)     | 0.078 (3)     | 0.061 (2)     | 0.0160 (18)  | 0.0045 (16)  | 0.027(2)      |
| C6             | 0.0208 (12)   | 0.0241 (13)   | 0.0191 (11)   | -0.0006 (9)  | 0.0034 (9)   | -0.0035(9)    |
| C7             | 0.0447 (11)   | 0.0438 (11)   | 0.0440 (10)   | -0.0024(8)   | 0.0150(8)    | -0.0098(8)    |
| C8             | 0.0276 (15)   | 0.0411 (16)   | 0.0346 (14)   | -0.0039 (12) | 0.0155 (11)  | -0.0053 (12)  |
| C9             | 0.036(2)      | 0.089(3)      | 0.084(3)      | 0.0108 (19)  | 0.0224 (18)  | 0.031(2)      |
| C10            | 0.061(2)      | 0.056(2)      | 0.0398 (17)   | -0.0082 (17) | 0.0231 (15)  | -0.0037 (15)  |
| C11            | 0.0230 (13)   | 0.0221 (12)   | 0.0233 (11)   | 0.0035 (10)  | 0.0042 (9)   | 0.0040 (10)   |
| C12            | 0.0241 (13)   | 0.0176 (12)   | 0.0282 (12)   | 0.0024 (9)   | 0.0070 (10)  | -0.0021 (10)  |
| C13            | 0.0216 (12)   | 0.0206 (12)   | 0.0236 (11)   | -0.0012 (9)  | 0.0071 (9)   | -0.0044 (10)  |
| C14            | 0.0176 (12)   | 0.0210 (12)   | 0.0209 (11)   | -0.0019 (9)  | 0.0053 (9)   | -0.0024(9)    |
| C15            | 0.0141 (11)   | 0.0177 (11)   | 0.0191 (10)   | 0.0002 (9)   | 0.0048 (8)   | 0.0000 (9)    |
| C16            | 0.0161 (11)   | 0.0167 (11)   | 0.0205 (11)   | -0.0011 (9)  | 0.0049 (8)   | -0.0014 (9)   |
| C17            | 0.0170 (12)   | 0.0200 (12)   | 0.0222 (11)   | 0.0004 (9)   | 0.0022 (9)   | 0.0007 (9)    |
| C18            | 0.0283 (14)   | 0.0245 (13)   | 0.0207 (11)   | -0.0016 (10) | -0.0019 (10) | 0.0023 (10)   |
| C19            | 0.0281 (14)   | 0.0278 (14)   | 0.0164 (11)   | -0.0034 (10) | 0.0013 (9)   | -0.0021 (10)  |
| C20            | 0.0224 (13)   | 0.0212 (13)   | 0.0285 (12)   | 0.0014 (10)  | 0.0029 (10)  | 0.0043 (10)   |
| C21            | 0.0286 (14)   | 0.0175 (12)   | 0.0364 (14)   | 0.0033 (10)  | 0.0104 (11)  | -0.0019 (10)  |
| C22            | 0.0296 (14)   | 0.0216 (13)   | 0.0262 (12)   | 0.0021 (10)  | 0.0058 (10)  | -0.0060 (10)  |
|                | ,             | ,             | ,             | ,            | ,            | ,             |
| Geometric para | meters (Å, °) |               |               |              |              |               |
| Zn—S1          |               | 2.4782 (6)    | C7—H          | 7A           | 0.980        | 0             |
| Zn—S2          |               | 2.5408 (7)    | C7—H          |              | 0.980        |               |
| Zn—S3          |               | 2.5031 (6)    | C7—H          |              | 0.980        |               |
| Zn—S4          |               | 2.5132 (7)    | C8—C9         |              | 1.508        |               |
| Zn—N3          |               | 2.1939 (18)   | C8—C          |              | 1.521        |               |
| Zn—N4          |               | 2.1970 (19)   | C8—H          |              | 1.000        |               |
| S1—C1          |               | 1.719 (2)     | C9—H          |              | 0.980        |               |
| S2—C1          |               | 1.724 (2)     | C9—H          |              | 0.980        |               |
| S3—C6          |               | 1.718 (2)     | C9—H          |              | 0.980        |               |
| S4—C6          |               | 1.718 (2)     | C10—H         |              | 0.980        |               |
|                |               |               |               |              | 0.980        |               |
| N1—C1          |               | 1.326 (3)     | C10—F         |              |              |               |
| N1—C2          |               | 1.467 (3)     | C10—I         |              | 0.980        |               |
| N1—C3          |               | 1.483 (3)     | C11—C         |              | 1.399        |               |
| N2—C6          |               | 1.331 (3)     | C11—F         |              | 0.950        |               |
| N2—C7          |               | 1.469 (3)     | C12—C         | .13          | 1.363        | (3)           |

|            | =           |               |           |
|------------|-------------|---------------|-----------|
| N2—C8      | 1.476 (3)   | C12—H12       | 0.9500    |
| N3—C11     | 1.327 (3)   | C13—C14       | 1.411 (3) |
| N3—C15     | 1.355 (3)   | C13—H13       | 0.9500    |
| N4—C22     | 1.334 (3)   | C14—C15       | 1.407 (3) |
| N4—C16     | 1.356 (3)   | C14—C19       | 1.429 (3) |
| C2—H2A     | 0.9800      | C15—C16       | 1.440 (3) |
| C2—H2B     | 0.9800      | C16—C17       | 1.409 (3) |
| C2—H2C     | 0.9800      | C17—C20       | 1.405 (3) |
| C3—C4      | 1.506 (5)   | C17—C18       | 1.430 (3) |
| C3—C5      | 1.512 (5)   | C18—C19       | 1.359 (4) |
| C3—H3      | 1.0000      | C18—H18       | 0.9500    |
| C4—H4A     | 0.9800      | C19—H19       | 0.9500    |
| C4—H4B     | 0.9800      | C20—C21       | 1.362 (3) |
| C4—H4C     | 0.9800      | C20—H20       | 0.9500    |
| C5—H5A     | 0.9800      | C21—C22       | 1.395 (3) |
| C5—H5B     | 0.9800      | C21—H21       | 0.9500    |
| C5—H5C     | 0.9800      | C22—H22       | 0.9500    |
| N3—Zn—N4   | 75.76 (7)   | N2—C7—H7A     | 109.5     |
| N3—Zn—S1   | 95.33 (5)   | N2—C7—H7B     | 109.5     |
| N4—Zn—S1   | 162.22 (5)  | H7A—C7—H7B    | 109.5     |
| N3—Zn—S3   | 162.30 (5)  | N2—C7—H7C     | 109.5     |
| N4—Zn—S3   | 93.33 (5)   | H7A—C7—H7C    | 109.5     |
| S1—Zn—S3   | 98.69 (2)   | H7B—C7—H7C    | 109.5     |
| N3—Zn—S4   | 95.23 (5)   | N2—C8—C9      | 110.0(2)  |
| N4—Zn—S4   | 96.85 (5)   | N2—C8—C10     | 111.5 (2) |
| S1—Zn—S4   | 99.30 (2)   | C9—C8—C10     | 112.2 (3) |
| S3—Zn—S4   | 71.94 (2)   | N2—C8—H8      | 107.7     |
| N3—Zn—S2   | 89.90 (5)   | C9—C8—H8      | 107.7     |
| N4—Zn—S2   | 92.70 (5)   | C10—C8—H8     | 107.7     |
| S1—Zn—S2   | 71.65 (2)   | C8—C9—H9A     | 109.5     |
| S3—Zn—S2   | 104.71 (2)  | C8—C9—H9B     | 109.5     |
| S4—Zn—S2   | 170.02 (2)  | H9A—C9—H9B    | 109.5     |
| C1—S1—Zn   | 86.57 (8)   | C8—C9—H9C     | 109.5     |
| C1—S2—Zn   | 84.50 (8)   | H9A—C9—H9C    | 109.5     |
| C6—S3—Zn   | 85.22 (8)   | H9B—C9—H9C    | 109.5     |
| C6—S4—Zn   | 84.85 (8)   | C8—C10—H10A   | 109.5     |
| C1—N1—C2   | 120.2 (2)   | C8—C10—H10B   | 109.5     |
| C1—N1—C3   | 122.5 (2)   | H10A—C10—H10B | 109.5     |
| C2—N1—C3   | 117.3 (2)   | C8—C10—H10C   | 109.5     |
| C6—N2—C7   | 119.9 (2)   | H10A—C10—H10C | 109.5     |
| C6—N2—C8   | 122.8 (2)   | H10B—C10—H10C | 109.5     |
| C7—N2—C8   | 117.2 (2)   | N3—C11—C12    | 123.0(2)  |
| C11—N3—C15 | 118.04 (19) | N3—C11—H11    | 118.5     |
| C11—N3—Zn  | 127.37 (15) | C12—C11—H11   | 118.5     |
| C15—N3—Zn  | 114.51 (14) | C13—C12—C11   | 119.3 (2) |
| C22—N4—C16 | 117.9 (2)   | C13—C12—H12   | 120.4     |
| C22—N4—Zn  | 127.77 (15) | C11—C12—H12   | 120.4     |
| C16—N4—Zn  | 114.32 (15) | C12—C13—C14   | 119.7 (2) |
| N1—C1—S1   | 121.99 (19) | C12—C13—H13   | 120.1     |
|            | X = )       | -             | • •       |

| N1—C1—S2    | 120.82 (19) | C14—C13—H13     | 120.1        |
|-------------|-------------|-----------------|--------------|
| S1—C1—S2    | 117.15 (14) | C15—C14—C13     | 117.0 (2)    |
| N1—C2—H2A   | 109.5       | C15—C14—C19     | 119.5 (2)    |
| N1—C2—H2B   | 109.5       | C13—C14—C19     | 123.5 (2)    |
| H2A—C2—H2B  | 109.5       | N3—C15—C14      | 123.0 (2)    |
| N1—C2—H2C   | 109.5       | N3—C15—C16      | 117.49 (19)  |
| H2A—C2—H2C  | 109.5       | C14—C15—C16     | 119.45 (19)  |
| H2B—C2—H2C  | 109.5       | N4—C16—C17      | 122.6 (2)    |
| N1—C3—C4    | 111.2 (3)   | N4—C16—C15      | 117.71 (19)  |
| N1—C3—C5    | 111.6 (3)   | C17—C16—C15     | 119.66 (19)  |
| C4—C3—C5    | 112.9 (3)   | C20—C17—C16     | 117.6 (2)    |
| N1—C3—H3    | 106.9       | C20—C17—C18     | 123.0 (2)    |
| C4—C3—H3    | 106.9       | C16—C17—C18     | 119.4 (2)    |
| C5—C3—H3    | 106.9       | C19—C18—C17     | 120.9 (2)    |
| C3—C4—H4A   | 109.5       | C19—C18—H18     | 119.6        |
| C3—C4—H4B   | 109.5       | C17—C18—H18     | 119.6        |
| H4A—C4—H4B  | 109.5       | C18—C19—C14     | 121.0 (2)    |
| C3—C4—H4C   | 109.5       | C18—C19—H19     | 119.5        |
| H4A—C4—H4C  | 109.5       | C14—C19—H19     | 119.5        |
| H4B—C4—H4C  | 109.5       | C21—C20—C17     | 119.3 (2)    |
| C3—C5—H5A   | 109.5       | C21—C20—H20     | 120.3        |
| C3—C5—H5B   | 109.5       | C17—C20—H20     | 120.3        |
| H5A—C5—H5B  | 109.5       | C20—C21—C22     | 119.6 (2)    |
| C3—C5—H5C   | 109.5       | C20—C21—H21     | 120.2        |
| H5A—C5—H5C  | 109.5       | C22—C21—H21     | 120.2        |
| H5B—C5—H5C  | 109.5       | N4—C22—C21      | 122.9 (2)    |
| N2—C6—S4    | 121.87 (19) | N4—C22—H22      | 118.5        |
| N2—C6—S3    | 120.21 (18) | C21—C22—H22     | 118.5        |
| S4—C6—S3    | 117.92 (14) | 021 022 1122    | 110.5        |
|             |             | C2 N1 C2 C5     | 567(4)       |
| N3—Zn—S1—C1 | 85.85 (10)  | C2—N1—C3—C5     | 56.7 (4)     |
| N4—Zn—S1—C1 | 27.03 (19)  | C7—N2—C6—S4     | -177.3 (2)   |
| S3—Zn—S1—C1 | -104.98 (8) | C8—N2—C6—S4     | -2.4 (3)     |
| S4—Zn—S1—C1 | -177.95 (8) | C7—N2—C6—S3     | 3.8 (3)      |
| S2—Zn—S1—C1 | -2.27 (8)   | C8—N2—C6—S3     | 178.72 (19)  |
| N3—Zn—S2—C1 | -93.38 (9)  | Zn—S4—C6—N2     | 178.5 (2)    |
| N4—Zn—S2—C1 | -169.12 (9) | Zn—S4—C6—S3     | -2.66 (13)   |
| S1—Zn—S2—C1 | 2.27 (8)    | Zn—S3—C6—N2     | -178.4 (2)   |
| S3—Zn—S2—C1 | 96.72 (8)   | Zn—S3—C6—S4     | 2.67 (13)    |
| S4—Zn—S2—C1 | 27.68 (16)  | C6—N2—C8—C9     | -106.7 (3)   |
| N3—Zn—S3—C6 | 43.33 (19)  | C7—N2—C8—C9     | 68.4 (3)     |
| N4—Zn—S3—C6 | 94.43 (9)   | C6—N2—C8—C10    | 128.3 (3)    |
| S1—Zn—S3—C6 | -98.71 (8)  | C7—N2—C8—C10    | -56.7(3)     |
| S4—Zn—S3—C6 | -1.70(8)    | C15—N3—C11—C12  | -0.3(3)      |
| S2—Zn—S3—C6 | -171.90 (8) | Zn—N3—C11—C12   | -176.88 (17) |
| N3—Zn—S4—C6 | -165.83 (9) | N3—C11—C12—C13  | 0.7 (4)      |
| N4—Zn—S4—C6 | -89.58 (9)  | C11—C12—C13—C14 | -0.6 (3)     |
| S1—Zn—S4—C6 | 97.88 (8)   | C12—C13—C14—C15 | 0.1 (3)      |
| S3—Zn—S4—C6 | 1.70 (8)    | C12—C13—C14—C19 | -178.4(2)    |
| S2—Zn—S4—C6 | 73.51 (16)  | C11—N3—C15—C14  | -0.2(3)      |
|             |             |                 |              |

| N4—Zn—N3—C11 | -179.2 (2)   | Zn—N3—C15—C14   | 176.82 (17)  |
|--------------|--------------|-----------------|--------------|
| S1—Zn—N3—C11 | 16.4 (2)     | C11—N3—C15—C16  | 178.2 (2)    |
| S3—Zn—N3—C11 | -125.9 (2)   | Zn—N3—C15—C16   | -4.8 (2)     |
| S4—Zn—N3—C11 | -83.45 (19)  | C13—C14—C15—N3  | 0.3 (3)      |
| S2—Zn—N3—C11 | 87.97 (19)   | C19—C14—C15—N3  | 178.9 (2)    |
| N4—Zn—N3—C15 | 4.09 (15)    | C13—C14—C15—C16 | -178.1 (2)   |
| S1—Zn—N3—C15 | -160.28 (15) | C19—C14—C15—C16 | 0.5 (3)      |
| S3—Zn—N3—C15 | 57.4 (3)     | C22—N4—C16—C17  | -0.3 (3)     |
| S4—Zn—N3—C15 | 99.85 (15)   | Zn—N4—C16—C17   | -179.72 (17) |
| S2—Zn—N3—C15 | -88.72 (15)  | C22—N4—C16—C15  | -179.2 (2)   |
| N3—Zn—N4—C22 | 177.8 (2)    | Zn—N4—C16—C15   | 1.5 (3)      |
| S1—Zn—N4—C22 | -120.7 (2)   | N3—C15—C16—N4   | 2.2(3)       |
| S3—Zn—N4—C22 | 11.9 (2)     | C14—C15—C16—N4  | -179.3 (2)   |
| S4—Zn—N4—C22 | 84.1 (2)     | N3—C15—C16—C17  | -176.6 (2)   |
| S2—Zn—N4—C22 | -93.0 (2)    | C14—C15—C16—C17 | 1.9 (3)      |
| N3—Zn—N4—C16 | -2.91 (15)   | N4—C16—C17—C20  | -0.9(3)      |
| S1—Zn—N4—C16 | 58.6 (3)     | C15—C16—C17—C20 | 177.9 (2)    |
| S3—Zn—N4—C16 | -168.78 (15) | N4—C16—C17—C18  | 178.4 (2)    |
| S4—Zn—N4—C16 | -96.59 (15)  | C15—C16—C17—C18 | -2.8(3)      |
| S2—Zn—N4—C16 | 86.31 (15)   | C20—C17—C18—C19 | -179.3 (2)   |
| C2—N1—C1—S1  | 176.6 (2)    | C16—C17—C18—C19 | 1.4 (4)      |
| C3—N1—C1—S1  | -0.1 (4)     | C17—C18—C19—C14 | 1.0 (4)      |
| C2—N1—C1—S2  | -5.7 (4)     | C15—C14—C19—C18 | -2.0(4)      |
| C3—N1—C1—S2  | 177.6 (2)    | C13—C14—C19—C18 | 176.5 (2)    |
| Zn—S1—C1—N1  | -178.6 (2)   | C16—C17—C20—C21 | 1.2 (3)      |
| Zn—S1—C1—S2  | 3.58 (13)    | C18—C17—C20—C21 | -178.1 (2)   |
| Zn—S2—C1—N1  | 178.6 (2)    | C17—C20—C21—C22 | -0.2 (4)     |
| Zn—S2—C1—S1  | -3.50 (12)   | C16—N4—C22—C21  | 1.4 (4)      |
| C1—N1—C3—C4  | 106.4 (3)    | Zn—N4—C22—C21   | -179.31 (18) |
| C2—N1—C3—C4  | -70.4 (4)    | C20—C21—C22—N4  | -1.1 (4)     |
| C1—N1—C3—C5  | -126.5 (3)   |                 |              |
|              |              |                 |              |

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the Zn,S1,S2,C1 chelate ring.

| D— $H$ ··· $A$              | <i>D</i> —H | $H\cdots A$ | D··· $A$  | D— $H$ ··· $A$ |
|-----------------------------|-------------|-------------|-----------|----------------|
| C7—H7b····S2 <sup>i</sup>   | 0.98        | 2.79        | 3.734 (3) | 162            |
| C13—H13···S4 <sup>ii</sup>  | 0.95        | 2.82        | 3.634 (2) | 145            |
| C21—H21···S1 <sup>iii</sup> | 0.95        | 2.84        | 3.684 (3) | 149            |
| C20—H20···Cg1 <sup>iv</sup> | 0.95        | 2.74        | 3.687 (2) | 173            |

Symmetry codes: (i) x-1/2, -y+3/2, z+1/2; (ii) -x+1, -y+1, -z+1; (iii) -x+3/2, y+1/2, -z+3/2; (iv) x-1/2, -y+3/2, z-1/2.

Fig. 1



Fig. 2

