Zadanie 1. (1 pkt)

Podczas reakcji etenu z bromowodorem powstają dwa związki, z których jeden ma masę cząsteczkową 108 u, a drugi – 110 u.

Jakie liczby masowe miały atomy bromu w cząsteczkach bromowodoru, jeśli cząsteczki etenu i bromowodoru zawierały atomy węgla ¹²C i wodoru ¹H?

- A. 78 i 80.
- B. 80 i 82.
- C. 80 i 81.
- D. 79 i 81.

Zadanie 2. (1 pkt)

Kwas szczawiowy, występujący w liściach szczawiu, jest kwasem dikarboksylowym (w jego cząsteczce obecne są dwie grupy karboksylowe, od których może odłączyć się jon wodoru).

Poniżej przedstawiono wzory kwasu szczawiowego:

 $H_2C_2O_4$ wzór sumaryczny

Zaznacz odpowiedź, w której przedstawiono wzór sumaryczny szczawianu żelaza(III):

- A. $Fe(HC_2O_4)_3$
- B. $Fe(C_2O_4)_3$
- C. $Fe_2(C_2O_4)_3$
- D. $Fe_2(HC_2O_4)_3$

Zadanie 3. (1 pkt)

Jedna z odmian pewnego pierwiastka ma następujące właściwości:

- *Ma wysoką temperaturę topienia.*
- Nie przewodzi prądu elektrycznego.
- Jest kruchy.
- Jest dobrym przewodnikiem ciepła.
- Służy między innymi do produkcji wierteł.

Opisanym powyżej pierwiastkiem jest:

- A. Metal grupy 1.
- B. Metal grupy 2.
- C. Niemetal grupy 14.
- D. Metal grupy 14.

Zadanie 4. (1 pkt)

Pierwiastki A, D, E i Z posiadają odpowiednio 1, 2, 5 i 7 elektronów walencyjnych.

Zaznacz odpowiedź zawierającą poprawny wzór cząsteczki i występujący w niej typ wiązania chemicznego wiedząc, że powstała ona z połączenia atomów pierwiastków A, D, E i Z.

	Wzór cząsteczki	Typ wiązania
A.	EZ_3	Jonowe
B.	AZ	Jonowe
C.	D_2E	Kowalencyjne
D.	D_2	Kowalencyjne

Zadanie 5. (1 pkt)

Właściwości fizyczne pierwiastków i związków chemicznych uzależnione są od rodzaju wiązań występującymi między atomami. Poniżej przedstawiono wybrane rodzaje wiązań chemicznych.

I. wigzania jonowe

II. wiązania kowalencyjne

III. wiązania metaliczne

Które z wyżej wymienionych wiązań są charakterystyczne dla substancji posiadających następujące właściwości:

- w warunkach normalnych (0°C, 1013hPa) są ciałami stałymi,
- mają wysokie temperatury topnienia,
- mają dużą twardość,
- w stanie stopionym i w roztworach wodnych dobrze przewodzą prąd elektryczny.
- A. I. i II.
- B. II. i III.
- C. Wyłącznie I.
- D. Wyłącznie III.

Zadanie 6. (1 pkt)

W poniższej tabeli przedstawiono wzory i stany skupienia niektórych substancji oraz ich rozpuszczalność w wodzie w temperaturze 20°C.

Nazwa substancji	Wzór i stan skupienia	Rozpuszczalność, g/100 g H ₂ O
Etanian sodu	CH ₃ COONa(s)	46,5
Chlorek wapnia	CaCl ₂ (s)	75,6
Amoniak	NH ₃ (g)	54,1
Metanol	CH ₃ OH(c)	Nieograniczona
Kwas butanowy	C ₃ H ₇ COOH(c)	Nieograniczona
Kwas 2-metylopropanowy	(CH ₃) ₂ CHCOOH(c)	20,0

W. Mizerski, *Tablice chemiczne*, Wydawnictwo Adamantan, Warszawa, 2003

Które z wymienionych w tabeli substancji po zmieszaniu z wodą w temperaturze 20°C mogą być zarówno <u>rozpuszczalnikiem</u> jak i <u>substancją rozpuszczoną?</u>

- A. Amoniak, chlorek wapnia.
- B. Etanian sodu, chlorek wapnia, amoniak, kwas 2-metylopropanowy.
- C. Metanol, kwas butanowy.
- D. Metanol, kwas butanowy, kwas 2-metylopropanowy.

Zadanie 7. (1 pkt)

Grupy funkcyjne nadają związkom organicznym specyficzne właściwości fizyczne i chemiczne. Poniżej przedstawiono wzór półstrukturalny (grupowy) pewnego związku organicznego.

Ile grup funkcyjnych występuje w cząsteczce przedstawionego powyżej związku organicznego?

- A. 3.
- B. 4.
- C. 5.
- D. 6.

Informacja do zadań 8 – 9.

Cynk (Zn) jest błękitnobiałym, kruchym metalem. Reaguje zarówno z niektórymi kwasami jak i zasadami, a nie reaguje z wodą.

Zadanie 8. (2 pkt)

Zaprojektuj doświadczenie, które pozwoli określić charakter chemiczny metalicznego cynku. W tym celu narysuj schemat doświadczenia uwzględniający warunki przeprowadzenia reakcji i niezbędne odczynniki chemiczne.

Schemat doświadczenia uwzględniającego odczynniki i warunki przebiegu reakcji:

Zadanie 9. (2 pkt) Przedstaw, w formie jonowej skróconej, równania reakcji cynku z kwasem i mocną zasadą.
Reakcja z kwasem:
Reakcja z mocną zasadą:
Zadanie 10. (3 pkt)
Trigliceryd kwasu linolowego (kwas monokarboksylowy) ma wzór sumaryczny $C_xH_{98}O_y$, a jego masa molowa wynosi 878 g/mol.
a) Oblicz wartości indeksów x i y.
Odpowiedź: Wartości indeksów wynoszą odpowiednio x:, y:
b) Na podstawie zapisanej poprawnie metody obliczeniowej podaj wzór sumaryczny kwasu linolowego z zaznaczeniem grupy funkcyjnej.
Odpowiedź: Wzór kwasu linolowego:

Zadanie 11. (1 pkt) Sacharoza należy do disacharydów i ulega hydrolizie, w wyniku której powstaje fruktoza i glukoza.
W wyniku hydrolizy pewnego <u>trisacharydu</u> powstaje wyłącznie glukoza. Podaj wzór sumaryczny tego trisacharydu.
Wzór sumaryczny trisacharydu:
Zadanie12. (3 pkt) Tlenek miedzi(I), Cu ₂ O, w temperaturze pokojowej jest pomarańczowoczerwonym, krystalicznym ciałem stałym, które nie rozpuszcza się w wodzie. Tlenek miedzi(I) otrzymuje się przez ogrzewanie metalicznej miedzi z tlenkiem miedzi(II) w powietrzu. Cu ₂ O redukuje się strumieniem wodoru w wyniku czego powstaje metaliczna miedź. a) Zapisz w formie cząsteczkowej równanie reakcji redukcji tlenku miedzi(I) strumieniem wodoru.
b) Oblicz masę wody powstałej podczas redukcji 15g tlenku miedzi(I) strumieniem wodoru wiedząc, że po zakończeniu procesu powstało 14g mieszaniny metalicznej miedzi i niezredukowanego Cu ₂ O. Wynik podaj z dokładnością do <u>trzech</u> miejsc po przecinku. <u>UWAGA</u> : W prowadzonych obliczeniach przyjmij masę molową Cu = 63,5 g/mol.

Odpowiedź: Masa wody wynosi

Zadanie 13. (2 pkt)	Zad	anie	13.	(2)	pkt)
----------------------------	-----	------	------------	-----	------

Azotan(III) wapnia jest krystalicznym ciałem stałym dobrze rozpuszczającym się w wodzie. Dodatek tej soli do wody zmienia jej pH.

a) Przedstaw, w formie jonowej skróconej, równanie reakcji odpowiadającej za zmianę pH wody podczas dodawania do niej krystalicznego azotanu(III) wapnia.

.....

b) Jak zmieni się wartość pH wody (zmaleje, nie zmieni się, wzrośnie) w wyniku dodania do niej krystalicznego azotanu(III) wapnia.

Wartość pH wody.....

Zadanie 14. (1 pkt)

Polietylen otrzymywany jest w reakcji polimeryzacji. W zależności od warunków prowadzenia reakcji (ciśnienie, temperatura i katalizatory) otrzymuje się polietylen o różnej budowie. Polietylen wysokociśnieniowy (Rysunek 1) złożony jest z długich łańcuchów z odgałęzieniami, które powstrzymują łańcuchy przed zbliżaniem się do siebie. Polietylen niskociśnieniowy złożony jest tylko z długich łańcuchów (Rysunek 2).

Rysunek 1

Rysunek 2

Na podstawie informacji wstępnej dokończ poniższe zdanie wskazując polimer posiadający mniejszą gęstość.

Polimer o mniejszej gęstości przedstawiony jest na rysunku numer

Zadanie15. (2 pkt)

W poniższej tabeli przedstawiono obserwacje towarzyszące ogrzewaniu w powietrzu metalicznego złota, żelaza, magnezu i miedzi.

Dopasuj wpisując odpowiednią nazwę wymienionego w informacji wstępnej do zadania metalu do zamieszczonych obserwacji.

Numer obserwacji	Obserwacje towarzyszące ogrzewaniu w powietrzu	Nazwa metalu
1	Łatwo się zapala, płomień jest biały, jaskrawy.	
2	Nie pali się, lecz pokrywa się czarnym nalotem.	
3	Brak oznak reakcji.	
4	Nie pali się, ale ogrzany rozżarza się, a sproszkowany wydziela iskry.	

Zadanie 16. (2 pkt)

Na bibułę chromatograficzną naniesiono kroplę mieszaniny estrów A, B, C, D i wstawiono ją do rozpuszczalnika. Otrzymano chromatogram przedstawiony poniżej.

Liczbami 1, 2 i 3 oznaczono numery kolejnych plamek.

W poniższej tabeli zestawiono wartości współczynnika podziału (R_f) dla czterech estrów oznaczonych literami A - D i umieszczonych w mieszaninie naniesionej na linię startu.

Współczynnik podziału (R_f) definiuje wzór:

$$R_f = rac{droga\ przebyta\ przez\ substancję}{droga\ przebyta\ przez\ rozpuszczalnik}$$

Oznaczenie estrów	Współczynnik podziału (R_f)
A	0,250
В	0,250
С	0,875
D	0,500

Analizując informację wstępną do zadania dokończ poniższe zdania wpisując odpowiednią literę (A-D) oznaczającą ester znajdujący się w mieszaninie naniesionej na linię startu lub odpowiedni numer plamki (1-3).

- I. Ester reprezentowany przez plamkę 1 oznaczony jest literą
- II. Estry nie rozdzielone na chromatogramie zawarte są w plamce numer

Zadanie 17. (2 pkt)

W reakcji żelaza z rozcieńczonym kwasem solnym powstaje wodór oraz jasnozielony chlorek żelaza(II), który jest nietrwały w obecności powietrza. W reakcji żelaza z gazowym chlorem powstaje brunatny chlorek żelaza(III).

Do zakwaszonego brunatnego roztworu chlorku żelaza(III), przykrytego parafiną, wprowadzono metaliczne żelazo. Roztwór po pewnym czasie stał się jasnozielony.

a)	Zapisz, <u>w formie cząsteczkowej</u> , rownanie zacnodzącej reakcji.
b)	Wyjaśnij w jakim celu użyto parafiny w tym doświadczeniu?

Zadanie 18. (1 pkt)

W poniższej tabeli podano symbole pierwiastków trzeciego okresu oraz narysowano strzałki, których grot wskazuje <u>wzrost</u> lub <u>zmniejszenie</u> charakteru danej właściwości.

Zaznacz właściwą zmianę charakteru właściwości w każdym wierszu tabeli wybierając spośród określeń: *Wzrost / Zmniejszenie*.

	Wła	aściwości	Symbole pierwiastków trzeciego okresu Na, Mg, Al, Si, P, S, Cl
1	Wzrost / Zmniejszenie	promienia atomu	
2	Wzrost / Zmniejszenie	elektroujemności	

Zadanie 19. (3 pkt)

Propan, o temperaturze topnienia (-187,6°C) i temperaturze wrzenia (-42,2°C) oraz propen, o temperaturze topnienia (-185,2°C) i temperaturze wrzenia (-47,7°C) to węglowodory otrzymywane między innymi z ropy naftowej. Wszystkie temperatury mierzono pod ciśnieniem 1013hPa.

W poniższej tabeli zestawiono wybrane właściwości fizyczne i chemiczne (1–6) różnych węglowodorów. Wpisz nazwy węglowodorów (propan <u>i/lub</u> propen) przy danej właściwości <u>lub</u> zaznacz, że nie dotyczy ona żadnego z nich.

	Właściwości	Nazwa węglowodoru <u>lub</u> węglowodorów
1	W warunkach normalnych (1013hPa, 0°C) jest gazem.	
2	Ulega polimeryzacji.	
3	Reaguje z bromem.	
4	Ma większą zawartość procentową węgla.	
5	W warunkach normalnych (1013hPa, 0°C) ma większą gęstość.	
6	W temperaturze (-184°C) jest ciałem stałym.	

Zad	anie	20.	(2	nkt)
Lau	ame	4 V•	\ <u>~</u>	vxu

Wszystkie aminokwasy białkowe zawierają ugrupowanie:, H₂N—CH—COOH

do którego przyłączony jest łańcuch boczny (R):

Poniżej przedstawiono wzory dwóch aminokwasów białkowych: alaniny i waliny.

Dokończ poniższe zdanie wpisując nazwę aminokwasu (alanina lub walina) oraz podając uzasadnienie odwołujące się do budowy tych aminokwasów.

Silniejsze	oddziaływania	van	der	Waalsa	między	łańcuchami	bocznymi	występują
w				poniew	aż:			

Zad	anie	21.	(2)	pkt)
			\ -	P/

Amoniak, pod wpływem tlenu, utlenia się do tlenku azotu(II) i pary wodnej w temperaturze 850°C przy zastosowaniu katalizatora platynowego.

Jaka objętość (w dm³) amoniaku, w przeliczeniu na warunki normalne (0°C, 1013hPa) przereaguje z tlenem, jeśli otrzymano 6,84 g produktów. Wynik podaj z dokładnością do jednego miejsca po przecinku.

Odpowiedź: Objętość amoniaku reagująca z tlenem wynosi	

Zadanie 22. (2 pkt)

Do szklanej rurki o kształcie przedstawionym na poniższym rysunku i nachylonej pod pewnym kątem wprowadzono na środek stały chlorek amonu i ogrzewano go. W wyniku prażenia powstały dwa gazy, których cząsteczki są dwuskładnikowe. Następnie do wylotów rurki, na obu jej końcach (A i B), przyłożono uniwersalne papierki wskaźnikowe zwilżone wodą.

Dokończ poniższe zdania wpisując odpowiednią barwę papierka uniwersalnego.

	zabarwi się na	kolor				
II.	Wilgotny	papierek	uniwersalny	przy	wylocie	В
	zabarwi się na	kolor				
I.	Wilgotny	papierek	uniwersalny	przy	wylocie	Α

	Zad	anie	23.	(3)	pkt)
--	-----	------	------------	-----	------

Rozpad β^- zachodzi, gdy neutron samorzutnie przechodzi w proton. Rozpad ten jest charakterystyczny dla jąder, dla których liczba neutronów jest duża w porównaniu z liczbą protonów. Jeśli jądro dąży do zwiększenia liczby neutronów w stosunku do protonów, może, np. ulegać rozpadowi α . Z dwóch izotopów ¹⁷³Au i ¹⁹⁹Au, jeden ulega rozpadowi β^- , a drugi – rozpadowi α .

a) Wskaż izotopy złota ulegające rozpadowi α lub β ⁻ .
Rozpadowi β^- ulega izotop
Rozpadowi α ulega izotop
b) Zapisz równania odpowiednich rozpadów jądrowych dla izotopów opisanych w informacji wstępnej do zadania.
Równanie rozpadu β¯:
Równanie rozpadu α: