ETC5242Assignment

Sahinya Akila
(29201128) , Xinyi Cui(29645530), Pranali Angne(32355068), Janice H
sin Hsu(32195109) 9/4/2021

Contents

1	Que	estion 1	2
	1.1	Write the function	2
	1.2	The Kaplan-Meier curve for the full data	2
	1.3	The Kaplan-Meier curve for each company_size	3
2	Que	estion 2	5
	2.1	Compute the Kaplan-Meir curve and use this to estimate the median churn time	5
	2.2	Use a non-parametric bootstrap to construct 90% confidence intervals for the median of each company size	6
	2.3	Make a plot that shows that estimate of the median and the corresponding confidence interval on the same axes	7
3	Que	estion 3	8
	3.1	Choose company size of 50-100	8
	3.2	Use a nonparametric bootstrap to re-sample the data and construct 90% confidence intervals for the survival curve at each time	8
4	Que	estion 4	9
	4.1	Write a function to compute the log-rank test statistic for two populations	9
5	Que	estion 5	12
	5.1	fit a Weibull distribution to the survival data to estimate the mean and the median of the churn time for each company size	12
li li li li	brar brar brar brar brar	y(tidyverse) y(survival) y(survminer) y(kableExtra) y(knitr) y(ggplot2) ing the data	

```
churn_dat <- read_csv("https://raw.githubusercontent.com/square/pysurvival/master/pysurvival/datasets/ci
# Filtering data
churn_dat <- churn_dat %>%
   filter(months_active > 0) %>%
   select(c(company_size, months_active, churned)) %>%
   na.omit()
```

1.1 Write the function

```
# Kaplan Meier Function
km_model <- function(time, event){</pre>
  dataset <- data_frame(time, event)</pre>
  dataset1 <- dataset %>%
    group_by(time, event) %>%
    summarise(total_count = n()) %>%
    ungroup() %>%
    pivot_wider(names_from = event,
                 values_from = total_count,
                 values_fill = 0,
                 names_prefix = "status")
result <- data_frame(result = double())</pre>
temp val <- nrow(dataset)</pre>
survival_val <- 1</pre>
for (i in 1:nrow(dataset1)){
  survival_val <- survival_val * (1 - dataset1$status1[i]/temp_val)</pre>
 result <- rbind(result, survival_val)</pre>
  temp_val <- temp_val - (dataset1$status0[i] + dataset1$status1[i])</pre>
dataset1 <- cbind(dataset1, result)</pre>
names(dataset1) <- c("time", "status0", "status1", "survival")</pre>
  return(dataset1 %>% select(time, survival))
}
```

1.2 The Kaplan-Meier curve for the full data

```
km_survive <- km_model(churn_dat$months_active, churn_dat$churned)

km_survive %>%
    ggplot(aes(time, survival)) +
    geom_step() +
    theme_linedraw() +
    theme(panel.background = element_rect(fill = "linen"))
```


Figure 1: Kaplan Meier Curve for the Survival Data

• The Kaplan Meier curve for the full data shows that the customers churned to 50% by month 5, and the probability slow down until month 10 and then decrease at the end of month 12.

1.3 The Kaplan-Meier curve for each company_size

```
company_km_model <- data.frame(time = double(),</pre>
                                survival = double(),
                                company_size = character())
for(size in unique(churn_dat$company_size)){
  filtered <- churn_dat %>% filter(company_size == size)
  final_model <- km_model(filtered$months_active,</pre>
                           filtered$churned) %>%
    mutate(company size = size)
  company_km_model <- rbind(company_km_model, final_model)</pre>
}
company_km_model %>%
  ggplot(aes(time, survival)) +
  geom_step() +
  facet_wrap(~company_size) +
  theme(plot.background = element_rect(fill = "white")) +
  theme(panel.background = element_rect(fill = "#e3ebbc",
                                 colour = "black",
                                 size = 0.5, linetype = "solid"))
```

• The Kaplan-Meier curve for the full data and company size of 50-100 are very similar.

Figure 2: The Kaplan-Meier curve for each company_size

- For all of the company regardless of their sizes, they all have a rapid churned decrease for the first 4 months, and come with a flatter churned from month 6 to month 8. Next, a drop at the end of the time at month 12 except for self-employed company.
- For self-employed company, the survival probability stays around 50% in month 6. As there are no customers churned after month 6, there is a flat line shown in the graph.

2.1 Compute the Kaplan-Meir curve and use this to estimate the median churn time.

 $_{\text{c}}$ size=1-10 + company_size=10-50 + company_size=100-250 + company_size=50-100 +

```
median_function <- function(fit){
  index <- which.min(abs(fit$surv - 0.5))
  median <- fit$time[index]</pre>
```

Table 1: Medians for different company sizes

company_size	median
10-50	5
100-250	4
50-100	5
1-10	7
self-employed	5

2.2 Use a non-parametric bootstrap to construct 90% confidence intervals for the median of each company size

company_size	median	lci	uci
10-50	5	3	6
100-250	4	4	5
50-100	5	3	6
1-10	7	6	10
self-employed	5	4	7

```
return(ci)
}
```

```
company_median_ci <- data_frame(company_size = unique(churn_dat$company_size),</pre>
                                 median = c(NA, NA, NA, NA, NA),
                                 lci = c(NA, NA, NA, NA, NA),
                                 uci = c(NA, NA, NA, NA, NA))
for (i in 1:length(company_median_ci$company_size)){
  ci <- bootstrapmedian(get(company_median_ci$company_size[i]),</pre>
                         churn_dat %>%
                           filter(company_size == company_median_ci$company_size[i]))
  company_median_ci$median[i] <- median_function(get(company_median_ci$company_size[i]))</pre>
           company_median_ci$lci[i] <- ci[1]</pre>
           company_median_ci$uci[i] = ci[2]
}
company median ci %>%
 kbl() %>%
 kable_styling(c("hover", "striped")) %>%
  column_spec(1:4, bold = T) %>%
 row_spec(1:5, color = "black", background = "#e6f0ed")
```

2.3 Make a plot that shows that estimate of the median and the corresponding confidence interval on the same axes

The table above demonstrates the median churn time estimated for different company size. - Company size of 1-10 have the highest estimated median of 7 months. - Company size of 100-250 have the lowest estimated median of 4 months. - The rest of the company sizes have the same estimated median of 5 months.

3 Question 3

3.1 Choose company size of 50-100

3.2 Use a nonparametric bootstrap to re-sample the data and construct 90% confidence intervals for the survival curve at each time.

Table 2:	90survival	curve at	each	time for	company	size 50-100

Month	Coverage	Lower Confidence Interval	Upper Confidence Interval
1	0.9270833	0.8783478	0.9747294
2	0.7805394	0.7318039	0.8281854
3	0.6231333	0.5743978	0.6707793
4	0.5395180	0.4907825	0.5871640
5	0.5183604	0.4696249	0.5660064
6	0.4807375	0.4320020	0.5283835
7	0.4598358	0.4111003	0.5074819
8	0.4404062	0.3916706	0.4880522
9	0.4026571	0.3539215	0.4503031
10	0.4026571	0.3539215	0.4503031
11	0.2013285	0.1525930	0.2489746

4.1 Write a function to compute the log-rank test statistic for two populations.

```
## comp_hyp=1 672
                                          1.14
                                                    5.26
                       313
                                 332
                       135
                                 116
## comp_hyp=2 240
                                          3.27
                                                    5.26
##
## Chisq= 5.3 on 1 degrees of freedom, p= 0.02
treatment <- q4_comp$churned</pre>
outcome <- q4_comp$months_active
#Difference in means
original <- diff(tapply(outcome, treatment, mean))</pre>
mean(outcome[treatment==1])-mean(outcome[treatment==0])
## [1] -1.896937
#Permutation test
permutation.test <- function(treatment, outcome, n){</pre>
  distribution=c()
  result=0
  for(i in 1:n){
    distribution[i]=diff(by(outcome,
                             sample(treatment, length(treatment), FALSE),
                             mean))
  }
  result=sum(abs(distribution) >= abs(original))/(n)
  return(list(result, distribution))
}
test1 <- permutation.test(treatment, outcome, 10000)</pre>
hist(test1[[2]], breaks=50, col='grey',
     main="Permutation Distribution",
```

las=1, xlab='')

abline(v=original, lwd=3, col="red")

Permutation Distribution


```
test1[[1]]
```

[1] 0

```
#Compare to t-test
t.test(outcome~treatment)
```

```
##
## Welch Two Sample t-test
##
## data: outcome by treatment
## t = 13.702, df = 842.56, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.625195 2.168678
## sample estimates:
## mean in group 0 mean in group 1
## 4.823276 2.926339</pre>
```

- The outcome of the analysis shows that the p value is extremely small which is statistically significant. It points out the strong evidence against the null hypothesis. Therefore, the churn rate is significantly different between these two company sizes.
- Additionally, for the permutation distribution, we can figure out from the graph above that it is normally distributed with the mean of 0.

5.1 fit a Weibull distribution to the survival data to estimate the mean and the median of the churn time for each company size

```
weibull <- data_frame(company_size = character(),</pre>
                       shape = double(),
                       scale = double(),
                      median = double(),
                      mean = double(),
                      size = double())
for (size in unique(churn_dat$company_size)){
  temp_data <- churn_dat %>% filter(company_size == size)
  return_values <- function_fit(temp_data)</pre>
  weibull <- rbind(weibull,</pre>
                    c(size,
                      round(return_values[1],2),
                      round(return_values[2],2),
                      round(return_values[3], 2),
                      round(return_values[4],2),
                      nrow(temp_data)))
}
names(weibull) <- c("company_size", "shape", "scale", "median", "mean", "data_size")
kable(weibull,
caption = "Estimated mean and the median of
      the churn time for each company size with Weibull distribution") %>%
  kable_styling(c("hover", "striped"))%>%
  row_spec(1:5, color = "black", background = "#e6f0ed")
```

Table 3: Estimated mean and the median of the churn time for each company size with Weibull distribution

company_size	shape	scale	median	mean	data_size
10-50	1.38	7.43	5.69	6.79	673
100-250	1.48	6.02	4.7	5.45	240
50-100	1.39	7.24	5.56	6.61	672
1-10	1.31	7.59	5.74	7	311
self-employed	1.21	8.44	6.23	7.92	62

```
weibull_ci <- data_frame (company_size = character(), type = character(), upper_ci = numeric(), lower_for (i in 1:nrow(weibull)){
    result_mean <- parametric_bootstrap_mean(as.numeric(weibull$shape[i]), as.numeric(weibull$scale[i]),
    result_median <- parametric_bootstrap_median(as.numeric(weibull$shape[i]), as.numeric(weibull$scale[i])
    weibull_ci <- rbind(weibull_ci, c(weibull$company_size[i], "mean", result_mean[2], result_mean[1]))
    weibull_ci <- rbind(weibull_ci, c(weibull$company_size[i], "median", result_median[2], result_median[])
}
names(weibull_ci) <- c("Company Size", "Type", "Upper CI", "Lower CI")
kable(weibull_ci,
caption = "Estimated mean and the median confidence intervals for weibull distribution") %>%
    kable_styling(c("hover", "striped"))
```

- The mean and median estimates derived from the weibull distribution are different from the estimates obtained using the Kaplan-Meier model. There is a increase by 0.5 to 1 in the values produced in this model, whereas the values given by the Kaplan-Meier model are lower.
- Therefore, parametric estimators are to be given more consideration when compared to non-parametric, Kaplan eier estimations. Also, we find that the reduction in efficiency of the Kaplan–Meier survival estimate becomes negligible quickly as the number of parameters in the parametric model increases.

Table 4: Estimated mean and the median confidence intervals for weibull distribution

Company Size	Type	Upper CI	Lower CI
10-50	mean	7.10072725391057	6.48211539899117
10-50	median	6.0633238168948	5.30501503323024
100-250	mean	5.85254513804977	5.05642475159708
100-250	median	5.18109599468856	4.1935852229301
50-100	mean	6.91223138043851	6.31328200684979
50-100	median	5.91672150765684	5.19242090268765
1-10	mean	7.51526623046648	6.50001901725061
1-10	median	6.29723678751159	5.12985349101467
self-employed	mean	9.23029188101424	6.45993251623595
self-employed	median	7.62822865653099	4.58819025376661