Radarul Victima Colaterala

În scenariile moderne cu mașini autonome sau sisteme avansate de asistență la conducere (ADAS), se pot întâlni mai multe radare care funcționează în aceeași zonă — de exemplu:

Radarul tău de pe mașina 1 (radarul victimă)

Un alt radar apropiat de pe maşina 2 (radarul interferent)

Dacă ambele folosesc FMCW (Frequency Modulated Continuous Wave) pe frecvențe similare (aici, ambele la 77 GHz), pot apărea interferențe.

```
%Radarul Victima Colaterala
%FMCW-Frequency-Modulated Continuous Wave(modulare in frecventa unda-
%-continua.
                      % cand folosesc functii random asta face ca functia mereu sa dea acelasi rezultat
rng(2023);
fc = 77e9;
                      % frecventa centrala
c = physconst('LightSpeed');
                                       % viteza luminii (m/s)
lambda = freq2wavelen(fc,c);
                                      % lambda/lungimea undei (m)
rangeMax = 150;
                      % distanta maxima la care poate radaru sa vada (m)
                      % distanta minima la care obiectele trebuie sa fie separate ca radarul sa le rezolve (m)
rangeRes = 1;
vMax = 230*1000/3600; % viteza maxima relativa a masinilor (m/s)
fmcwwav1 = helperFMCWWaveform(fc,rangeMax,rangeRes,vMax);% call la functia helperFMCWWaveform
global sig;
sig = fmcwwav1(); %stocheaza in sig
Ns = numel(sig);%cate sampleluri avem
%Define Interfering Baseband FMCW Radar Waveform
%Radarul care interfereaza
                     % frecv centrala (Hz)
fcRdr2 = 77e9;
lambdaRdr2 = freq2wavelen(fcRdr2,c);
                                                 % lungimea de unda (m)
rangeMaxRdr2 = 100; % distanta maxima la care poate radaru sa vada(m)
                     % distanta minima la care obiectele trebuie sa fie separate ca radarul sa le rezolve (m)
rangeResRdr2 = 0.8;
vMaxRdr2 = vMax; % viteza maxima relativa a masinilor (m/s)
global fmcwav2;
fmcwwav2 = helperFMCWWaveform(fcRdr2,rangeMaxRdr2,rangeResRdr2,vMaxRdr2);% call la functia helperFMCWWaveform
sigRdr2 = fmcwwav2();%stocheaza in sig
```

A. Radarul victimă

Este radarul pe care vrem să-l protejăm sau să-l studiem.

În viața reală, poate fi radarul unei mașini care detectează alte vehicule din față.

Acest radar trebuie să funcționeze bine, fără să fie deranjat de alte semnale.

B. Radarul interferent

Este un alt radar din apropiere care poate trimite semnale ce deranjează radarul victimă.

Acesta nu are intenția de a "ataca", dar prin simpla sa funcționare poate crea probleme, cum ar fi semnale false sau pierderea țintelor.

FMCW – Frequency Modulated Continuous Wave

Este tipul de semnal folosit de majoritatea radarului modern.

Are frecvență care crește și scade continuu într-un interval numit "chirp".

Acest tip de semnal permite măsurarea distanței și vitezei obiectelor.

Rezoluția în distanță

Este distanta minimă dintre două obiecte, astfel încât radarul să le vadă ca fiind două separate.

O rezoluție mai mică (ex. 0.5 m) înseamnă mai multă precizie.

Spectrograma

Este o imagine care arată cum variază frecvențele unui semnal în timp.

Se folosește pentru a analiza semnalul radar și pentru a observa cum se modifică în timpul emisiei.

Reasignare (Reassignment)

Este o metodă matematică folosită pentru a face spectrograma mai clară și mai precisă.

Repetarea semnalului (repmat)

În simulări, se repetă semnalul de radar de mai multe ori, ca și cum radarul ar emite mai multe pulsații reale, pentru a imita funcționarea continuă.