Michael Han 101157504

Azamat (Rush) Galimov 101263850

COMP3105A

Assignment 3

Table 1: Training accuracies with different number of training dataset sizes

n	Model 1	Model 2
16	0.8625	1
32	0.921875	0.990625
64	0.8765625	0.946875
128	0.86640625	0.92734375

Table 2: Test accuracies with different number of training dataset sizes

n	Model 1	Model 2
16	0.7076	0.8862
32	0.8098	0.8703
64	0.8187	0.9012
128	0.8393	0.9185

```
1d) Testing Accuracy Matrix (4 x 2):
[[0.7076 0.8862]
[0.8098 0.8703]
[0.8187 0.9012]
[0.8393 0.9185]]
```

Table 3: Training accuracies with different number dimensions

Dim k	Model 1	Model 2
1	0.84851562	0.85945313
2	0.65054687	0.94257813

```
2d) average train acc
[[0.84851562 0.65054687]
[0.85945313 0.94257813]]
```

Table 4: Test accuracies with different number dimensions

Dim k	Model 1	Model 2
1	0.84216	0.63107
2	0.83815	0.91697

2d) average test acc [[0.84216 0.63107] [0.83815 0.91697]]

Table 5: Objective values for different k

k	2	3	4	5	6	7	8	9
obj	2.35507252	1.39570518	0.74704928	0.56559062	0.51484050	0.46287470	0.43250155	0.344554488
_val	9689218	31072367	03163796	47538163	34384456	28814755	12513061	20676876

obj val: [2.355672529689218, 1.3957051831072367, 0.7470492803163796, 0.5655906247538163, 0.5148405034384456, 0.4628747028814755, 0.4325015512513061, 0.34455448820676876

I think k=4 is appropriate for this dataset, because the data is generated with 4 distinct clusters. k=2 and k=3 have high objective values, and the improvement for the objective value when $k \geq 5$ is very small.

2b) results

