Ejemplos de máquinas de registros

Instrucciones y macros

Instrucción	Semántica
suc(i)	[i] ← [i] + 1
goto(k)	ir a la instrucción k
pre(i,k)	si [i] > 0 entonces [i] \leftarrow [i] - 1 sino goto(k)
cer(i)	[i] ← 0
asi(k,i)	[i] ← k
cop(j,i)	$[i] \leftarrow [j]$
sum(p,q,m)	$[m] \leftarrow [p] + [q]$
mul(p,q,m)	$[m] \leftarrow [p] \cdot [q]$
div(p,q,m)	$[m] \leftarrow [p]/[q]$
mei(p,q,m ₁ ,m ₂)	si $[p] \le [q]$ entonces goto (m_1) sino goto (m_2)
ig(p,q,m ₁ ,m ₂)	si [p] = [q] entonces goto(m_1) sino goto(m_2)

1. Proporcione el código de programa para una máquina RAM que calcule $[i] \leftarrow factorial([j])$ siendo R_i y R_j dos registros no necesariamente distintos

Consideraremos dos registros R_q y R_p distintos a R_i y R_j

2. Proporcione el código de programa para una máquina RAM que calcule [i] $\leftarrow \lfloor \log_2[j] \rfloor$ siendo R_i y R_j dos registros no necesariamente distintos

Consideraremos tres registros R_q, R_p y R_m distintos a R_i y Rj

```
cer(q)
       ig(j,q,error,sig)
  sig: asi(1,q)
       ig(j,q,uno,sig2)
 uno: cer(p)
       goto(fin)
 sig2: asi(2,q)
        asi(2,m)
        asi(1,p)
        mei(j,q,fin,bucle)
bucle: mul(q,m,q)
        suc(p)
        ig(j,q,fin,menor)
menor: mei(j,q,resta1,bucle)
resta1: pre(p,error)
    fin: cop(p,i)
 error: ...
```

3. Proporcione el código de programa para una máquina RAM que calcule $[i] \leftarrow numdivisores([j])$ siendo R_i y R_j dos registros no necesariamente distintos. (numdivisores([j]) indica el número de divisores del contenido del registro R_j)

Consideraremos tres registros R_q , R_p y R_m distintos a R_i y Rj

```
asi(1,q)
cer(m)
test: ig(j,q,fin,division)
division: div(j,q,p)
mul(p,q,p)
ig(j,p,divisor,nodivisor)
divisor: suc(q)
suc(m)
goto(test)
nodivisor: suc(q)
goto(test)
fin: suc(m)
cop(m,j)
```

4. Sea la función f definida como

$$f(n,m) = \begin{cases} n^3 + m^2 & \text{si } n \leq m \\ m^n & \text{en cualquier otro caso} \end{cases}$$

Proporcione el código de programa para una máquina RAM que calcule [i] \leftarrow f([j],[k]) siendo R_i, R_j y R_k tres registros no necesariamente distintos.

Consideraremos cinco registros R_n , R_m , R_s , R_t y R_l distintos a R_i y R_j

```
cop(j,n)
          cop(k,m)
          mei(j,k,menorig,mayor)
menorig: cop(n,s)
          mul(n,s,n)
          mul(n,s,n)
          cop(m,t)
          mul(m,t,m)
          sum(m,n,l)
          goto(fin)
  mayor: asi(1,l)
          cop(m,t)
  bucle: pred(n,fin)
          mul(l,t,l)
         goto(bucle)
      fin: cop(l,i)
```