Richard (Han) Hu

□ (647) 995-9055 | **I**rhklite2012@hotmail.com | **A**rhklite.github.io | **□**rhklite

Experiences

Autonomous System and Biomechatronics Lab

Sep. 2018 - Aug. 2021

Developer, Master Thesis

- Deep Learning Led the development and published a novel sim-to-real transfer pipeline for rough terrain navigation in Pytorch
- Sim-to-Real Researched, designed, and implemented a high fidelity Gazebo simulator and domain randomization
- Development Developed a decentralized software and hardware robot architecture using ROS, C++, and Python
- Analysis Led real-world navigation, comparison, and ablation experiments to demonstrate that the pipeline achieved 87% real world success rate given a 90% simulation success rate; up to 72% increase against existing methods
- Hardware Enhanced a robot with auxilliary computing units and sensors with components designed using SolidWorks

Huawei Noah's Ark Lab

May. 2020 - Jan 2021

Developer, Autonomous Driving Division

- Path Planning Developed, published, and patented a Delaunay Triangulation based spatial constraint generation algorithm for mapless autonomous vehicle navigation in a dynamic environment
- Development Implemented a Python based path planning simulator and the algorithm's modules for fast development iterations
- Algorithms Implemented Hybrid A* and Funnel algorithm for path planning in triangulation mesh
- Simulation Engaged in simulator development using CARLA by automating map generation process from real-world datasets

Water and Energy Research Laboratory

Jan. 2018 - Sep. 2018

Developer, Pico-Scale Hydro Turbine Design

- Mechanical Designed and published a variable guide vane for pico-scale hydro turbine using SolidWorks
- Analysis Evaluated the guide vane failure mode with fluid pressure test, mechanical stress test, and finite element analysis
- Development Prototyped the turbine and an experiment pipeline using Arduino, SLA 3D printing and machining techniques

Publications

A Sim-to-Real Pipeline for Deep Reinforcement Learning Autonomous Navigation in Cluttered Rough Terrain (RAL, IROS2021)

Hu. H, Kaicheng Zhang, Aaron Hao Tan, Michael Ruan, Christopher Agia, and Goldie Nejat

- Proposed a pipeline to transfer challenging rough terrain navigation policy from simulation to the real-world using high fidelity simulation, abstract observation space, and domain randomization
- The pipeline acheived a 87% real world navigation success rate given a 90% simulation success rate
- The pipline has up to 72% increase in navigation success along with a faster travel time and shorter distance against existing methods

Spatial Constraint Generation for Motion Planning in Dynamic Environments (IROS2021, Huawei Patent)

Hu. H, Peyman Yadmellat

- · Proposed to generate spatial constraint using triangulation mesh for long-term mapless path planning in a dynamic environment
- · Overcame the static triangulation mesh assumption and the object masking issue that existing methods have
- · Achieved up to 18% increase in navigation success rate and up to 28% increase in valid plans compared to existing methods

Optimization and System Identification of a Variable Pico-Scale Hydro Turbine for Pressure Regulation (ASME2021)

Yu. SM, Ko. Y, Hu. H, Seo. J, and Bilton. AM

• Engaged in the design and prototyping of the turbine and its experiment rig using SolidWorks, machining, and 3D printing

Education

University of Toronto

Toronto, Canada

Master of Applied Science, Mechanical Engineering

Sep. 2018 - Aug. 2021

• Specialization Deep Reinforcement Learning, Machine Learning, Mobile Robotics; GPA (4.00/4.00)

University of Toronto

Toronto, Canada

Bachelor of Applied Science, Mechanical Engineering

Sep. 2013 - Apr. 2018

• Specialization Robotics and Mechatronics Minor; Dean's Honor List for all terms; GPA (3.81/4.00)