Espaces vectoriels associés à une matrice Noyau et Image

« Les mathématiques sont la clé et la porte des sciences »

Galilée

Rappel (Rang d'une matrice).

Le rang d'une matrice A, noté rang[A], est égal au nombre de pivots d'une matrice échelonnée équivalente à A.

Rappel (Indépendance linéaire).

Une famille de vecteurs $\{\vec{v}_1, \dots, \vec{v}_p\}$ d'un espace vectoriel V est dite libre et ses vecteurs sont dits linéairement indépendants si l'équation vectorielle

$$c_1\vec{\boldsymbol{v}}_1 + c_2\vec{\boldsymbol{v}}_2 + \cdots c_p\vec{\boldsymbol{v}}_p = \vec{\boldsymbol{0}}$$

admet la solution triviale $c_1 = c_2 = c_p = 0$ comme **seule** solution.

Rappel (Ensemble générateur d'un espace vectoriel).

La famille $\{\vec{v}_1,\ldots,\vec{v}_p\}$ est un système générateur de l'espace vectoriel V ssi

$$\forall \vec{u} \in V \qquad \exists \lambda_1, \dots, \lambda_p \in \mathbb{R}, \qquad \vec{u} = \lambda_1 \vec{v}_1 + \dots + \lambda_p v_p$$

Rappel (Base et dimention d'un espace vectoriel).

On dit qu'une famille $B = (\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p)$ de vecteurs de l'espace vectoriel V est une base de V si

- i) **B** est une famille linéairement libre
- ii) $V = \text{Vect}(\vec{v}_1, \dots, \vec{v}_p)$ c-à-d B est un système générateur de V

On dit alors que V est de dimension p, et on écrira

 $\dim V = n$.

Rappel (Critères d'inversibilité d'une matrice).

Soit A_n une matrice carrée. les énoncés suivants sont tous vrais ou tous faux.

- a) A est une matrice inversible.
- b) A est équivalente par rapport aux lignes à I_n .
- c) A a n positions pivots (rang(A) = n).
- d) L'équation $A\mathbf{x} = \mathbf{0}$ n'admet que la solution triviale.
- e) Les colonnes de A forment un ensemble linéairement indépendant.
- f) Les lignes de A forment un ensemble linéairement indépendant.
- g) L'équation $A\mathbf{x} = \mathbf{b}$ est compatible pour chaque \mathbf{b} de \mathbb{R}^n .
- h) Il existe une matrice $C \in M_{n,n}$ tel que $CA = I_n$.
- i) Il existe une matrice $D \in M_{n,n}$ tel que $AD = I_n$.

Dans cette section, nous nous intéressons aux sous-espaces vectoriels de \mathbb{R}^n . Plus particulièrement, ceux associés à une matrice et qui nous fourniront une compréhension plus approfondie des relations entre les solutions d'un système linéaire et les propriétés de sa matrice de coefficients A.

1. Noyau d'une matrice (Kernel)

Définition 1.

Le *noyau* (ou **espace nul**) d'une matrice A de taille $m \times n$, noté Ker(A), est l'ensemble des vecteurs x tels que Ax = 0.

Autrement dit, l'ensemble des solutions d'un système homogène de m équations linéaires à n inconnues est un sous-espace vectoriel de \mathbb{R}^n .

Exemple 1.

Considérons la matrice suivante :

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \end{bmatrix}$$

Nous cherchons l'ensemble des vecteurs $\mathbf{x} = [x_1 \ x_2 \ x_3]^T \in \mathbb{R}^3$ tels que $A\mathbf{x} = \mathbf{0}$.

Ce qui donne le système linéaire :

$$\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 2x_1 + 4x_2 - 2x_3 = 0 \end{cases}$$

La matrice augmentée échelonnée est

$$\left[\begin{array}{cc|cc|c} 1 & 2 & -1 & 0 \\ 2 & 4 & -2 & 0 \end{array}\right] \sim \left[\begin{array}{cc|cc|c} 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Les variables libres sont x_2 et x_3 . Posons : $x_2 = t$, $x_3 = s$, $t, s \in \mathbb{R}$. Alors, $x_1 = -2t + s$ Le vecteur solution s'écrit :

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Donc, le noyau de la matrice A est :

$$\operatorname{Ker}(A) = \operatorname{Vect}\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

Remarque 1.

Pour savoir si un vecteur v est dans Ker(A), il suffit de calculer Av pour voir s'il est nul.

Théorème 1.

L'ensemble solutions de Ax = 0 *forme une base de* ker(A).

Par exemple, pour la matrice de l'exemple 1 précédent, l'ensemble solution $\left\{\begin{bmatrix} -2\\1\\0\end{bmatrix},\begin{bmatrix} 1\\0\\1\end{bmatrix}\right\}$ est une base de $\ker(A)$

Exemple 2.

Soit la matrice

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & 4 \\ 2 & 4 & -2 & 0 \end{bmatrix}$$

trouver une base du noyau de A.

On résout le système homogène $A\mathbf{x} = \mathbf{0}$ suivant

$$\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ x_2 + 3x_3 + 4x_4 = 0 \\ 2x_1 + 4x_2 - 2x_3 = 0 \end{cases}$$

sous forme paramétrique vectorielle :

$$\begin{bmatrix} 1 & 2 & -1 & 0 & | & 0 \\ 0 & 1 & 3 & 4 & | & 0 \\ 2 & 4 & -2 & 0 & | & 0 \end{bmatrix} L_3 - 2L_1 \longrightarrow L_3 \begin{bmatrix} 1 & 2 & -1 & 0 & | & 0 \\ 0 & 1 & 3 & 4 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Les variables x_3 et x_4 sont libres, on pose $x_3 = t$ et $x_4 = s$. Alors

$$\begin{cases} x_2 = -3t - 4s \\ x_1 = -2x_2 + x_3 = -2(-3t - 4s) + t = 7t + 8s \end{cases}$$

La solution générale.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = t \begin{bmatrix} 7 \\ -3 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 8 \\ -4 \\ 0 \\ 1 \end{bmatrix}$$

Une base du noyau de A est constituée des vecteurs : $\left\{\begin{bmatrix} 7 \\ -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 8 \\ -4 \\ 0 \\ 1 \end{bmatrix}\right\}$

Remarque 2.

La dimension du noyau de A est égale au nombre de variables libres dans Ax = 0.

Théorème 2.

Soit A une matrice de m équations linéaires à n inconnues. Alors, $Ker(A) = \{0\}$ si et seulement si rang(A) = n.

Exemple 3.

Soit la matrice carrée

$$A = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

Trouver le noyau de la matrice A.

c'est-à-dire trouver l'ensemble des vecteurs $\mathbf{x} = [x_1 \ x_2 \ x_3]^T \in \mathbb{R}^3$ tels que $A\mathbf{x} = \mathbf{0}$. La matrice augmentée échelonnée :

$$\left[\begin{array}{ccc|c}
2 & 1 & -1 & 0 \\
0 & 1 & \frac{1}{5} & 0 \\
0 & 0 & \frac{14}{5} & 0
\end{array}\right] \sim \left[\begin{array}{ccc|c}
2 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 14 & 0
\end{array}\right]$$

C'est claire que rang(A) = 3. Le seul vecteur solution est le vecteur nul. Donc, le noyau de A est

$$Ker(A) = \{\mathbf{0}\}$$

C'est un espace trivial, ce qui indique que A est inversible (non singulière), et son noyau est trivial.

Conséquence du Théorème : Un système linéaire homogène Ax = 0 qui a plus de variables que d'équations linéaires possède toujours une infinité de solutions.

2. Espace des colonnes et espace des lignes d'une matrice

Soit A une matrice de m équations linéaires à n inconnues,

$$A = \begin{bmatrix} | & | & & | \\ c_1 & c_2 & \dots & c_n \\ | & | & & | \end{bmatrix} = \begin{bmatrix} - & l_1 & - \\ - & l_2 & - \\ & \vdots & \\ - & l_m & - \end{bmatrix}$$

2.1. Espace des lignes d'une matrice

Définition 2.

Soit *A* une matrice de dimension $m \times n$.

Le sous-espace de \mathbb{R}^n engendré par les vecteurs des lignes L_i de A s'appelle l'espace de ligne de A :

$$Lig(A) = Vect\{l_1, l_2, \dots, l_m\}$$

Exemple 4.

Considérons la matrice de l'exemple 2

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & 4 \\ 2 & 4 & -2 & 0 \end{bmatrix}$$

trouver une base de l'espace de lignes de A.

En effectuant la réduction de *A* on a obtenu.

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & 4 \\ 2 & 4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

La matrice a deux lignes non nulles, donc le rang(A) = 2. On écrit,

$$Lig(A) = Vect \left\{ \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\3\\4 \end{bmatrix} \right\}$$

La base de l'espace de lignes est alors

$$\left\{ \begin{bmatrix} 1 & 2 & -1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 3 & 4 \end{bmatrix}^T \right\}$$

Ainsi, l'espace de lignes de A est le sous-espace de \mathbb{R}^4 engendré par ces deux vecteurs.

Théorème 3.

Les opérations élémentaires sur les lignes d'une matrice A qui la transforme en une matrice équivalente à ne changent pas l'espace des lignes, c.à.d.

$$A \sim \tilde{A} \implies Lig(A) = Lig(\tilde{A})$$

Exemple 5.

Pour la matrice A de l'exemple précédent, on a

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & 4 \\ 2 & 4 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Donc,

$$\operatorname{Vect}\left\{ \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\3\\4 \end{bmatrix}, \begin{bmatrix} 2\\4\\-2\\0 \end{bmatrix} \right\} = \operatorname{Vect}\left\{ \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\3\\4 \end{bmatrix} \right\}$$

$$\lim_{i \to \infty} \operatorname{Ind}_{i}$$

2.2. Espace des colonnes d'une matrice

Définition 3.

Soit *A* une matrice de dimension $m \times n$.

Le sous-espace de \mathbb{R}^m engendré par les vecteurs des colonnes C_i de A s'appelle l'espace des colonnes de A:

$$Im(A) = Vect\{c_1, c_2, \dots, c_n\}$$

Exemple 6.

Soit encore une fois la matrice de l'exemple 2.

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & 4 \\ 2 & 4 & -2 & 0 \end{bmatrix}$$

trouver une base de Im(A), l'espace de colonnes de A.

Les colonnes sont :

$$\mathbf{c}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \quad \mathbf{c}_3 = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}, \quad \mathbf{c}_4 = \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}$$

On trouve la MER de A

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & 4 \\ 2 & 4 & -2 & 0 \end{bmatrix} \ (L_3 = L_3 - 2L_1) \ \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \ (L_1 = L_1 - 2L_2) \ \begin{bmatrix} 1 & 0 & -7 & -8 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

On remarque que

$$c_3 = -7c_1 + 3c_2$$
$$c_4 = -7c_1 + 4c_2$$

Les colonnes c_3 et c_4 sont des combinaisons linéaires de c_1 et c_2 . Les colonnes c_1 et c_2 sont linéairement indépendantes.

Donc, une base de l'espace de colonnes de A est $\{\mathbf{c}_1, \mathbf{c}_2\} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

Et l'espace de colonnes de la matrice A est :

$$Im(A) = Vect \left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} \right\}$$

Théorème 4.

Les colonnes pivots de A forment une base de l'image de A.

Remarque (Attention!!!).

Ce sont les colonnes pivots de la matrice A elle-même qu'il faut utiliser pour former une base de l'image de A.

En effet, les colonnes d'une forme échelonnée n'appartient pas en général à l'image de A. Vous devez revenir à la matrice originale A et prendre les colonnes de A.

En résumé, on rappelle que le rang d'une matrice A correspond au nombre de pivots et la dimension du noyau de A correspond au nombre de variables libres dans Ax = 0. Par ailleurs, on énonce le théorème important suivant

Théorème 5 (Théorème du rang).

Soit A une matrice de dimension $m \times n$. Alors,

- $\dim[Lig(A)] = \dim[Im(A)] = \dim[Lig(A^T)] = \dim[Im(A^T)] = \operatorname{rang}(A)$
- $\operatorname{rang}(A) + \dim[\operatorname{Ker}(A)] = n$

Maintenant, on évoque une suite du Théorème de caractérisation des matrices inversibles.

Théorème 6 (Suite du Théorème de caractérisation des matrices inversibles).

Soit A une matrice inversibles. de dimension n Alors les propriétés suivantes sont équivalentes :

- j) Les colonnes de A forment une base de \mathbb{R}^n
- k) $\operatorname{Im}(A) = \mathbb{R}^n$
- $l) \dim[\operatorname{Im}(A) = n]$
- m) rang(A) = n
- n) rang(A^T) = n
- o) $Ker(A) = \{0\}$
- $p) \dim[Ker(A)] = 0$

3. Différence entre Ker(A) et Im(A)

Le noyau et l'image d'une matrice sont deux sous-espaces Ker(A) et Im(A) assez dissemblables. On garde dans l'esprit que Ker(A) représente l'ensemble de départ tel que Ax = 0 (la matrice A transforme x en vecteur nul) et l'image Im(A) représente l'ensemble d'arrivée tel que Av = w (la matrice A transforme v en w).

Ker(A)	Im(A)
$Ker(A)$ est un sous-espace vectoriel de \mathbb{R}^n	$\operatorname{Im}(A)$ est un sous-espace vectoriel de \mathbb{R}^m .
Ker(A) est défini implicitement, c'est-à-dire que l'on ne fait que donner une condition ($Ax = 0$) que les vecteurs de Ker(A) doivent vérifier	Im(<i>A</i>) est défini explicitement c'est-à-dire que l'on dit comment on peut construire des vecteurs de Im(<i>A</i>)
Trouver des vecteurs de Ker(A) prend du temps. Il faut appliquer la méthode du pivot à $[A 0]$	Il est facile de trouver des vecteurs de Im(<i>A</i>). Les colonnes de A apparaissent clairement; les autres vecteurs en découlent.
Il n'existe aucune relation simple entre Ker(A) et les coefficients de A	Il existe une relation simple entre $Im(A)$ et les coefficients de A, puisque chaque colonne de A appartient à $Im(A)$
Un vecteur v de Ker(A) est caractérisé par la relation $Av = 0$	Un vecteur v de Im(A) est caractérisé par la propriété de compatibilité de l'équation $Ax = v$
Étant donné un vecteur v , il est facile de déterminer si v appartient à Ker(A). Il suffit de calculer Av	Étant donné un vecteur ν , déterminer si ν appartient à $\text{Im}(A)$ peut prendre du temps. Il faut appliquer la méthode du pivot à $[A \nu]$
$Ker(A) = \{0\}$ si et seulement si l'équation $Ax = 0$ admet pour seule solution la solution triviale	$\operatorname{Im}(A) = \mathbb{R}^m$ si et seulement si l'équation $A\mathbf{x} = \mathbf{b}$ admet une solution pour tout vecteur \mathbf{b} de \mathbb{R}^m

TABLE 1.1 – Différence entre Ker(A) et Im(A) pour une matrice A de dimension $m \times n$

4. Base d'un sous-espace vectoriel de \mathbb{R}^n

Ici, on peut utiliser les espaces d'une matrice pour trouver des bases des sous-espaces vectoriels de \mathbb{R}^n .

Exemple 7.

Trouver une base de

$$W = \operatorname{Vect} \left\{ \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} \right\}$$

le sous-espace de \mathbb{R}^4 .

Les vecteurs de départ sont

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}.$$

On construit la matrice M formée par ces vecteurs en colonnes :

$$M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

On utilise la réduction pour déterminer l'indépendance :

$$M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ 0 & 1 & -1 & 2 \end{bmatrix} \quad \begin{array}{c} L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow L_3 - L_1 \end{array} \quad \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix} \quad \begin{array}{c} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad L_2 \longrightarrow L_4$$

Ainsi, le rang est égale à 3. Donc, l'espace W est de dimension 3.

Les vecteurs correspondant aux pivots dans la réduction sont v_1 , v_2 et v_3 .

La base de W est donc :

$$W = \left\{ \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \right\}$$

Le vecteur v_4 est une combinaison linéaire des trois autres, donc il n'est pas nécessaire de l'inclure dans la base.