Triangles

Exercise 12.1

Question: 1

Take three non- collinear points A, B and C on a page of your notebook. Join AB, BC and CA. what figure do you get? Name the triangle. Also, name

- (i) the side opposite to ∠B (ii) the angle opposite to side AB
- (iii) the vertex opposite to site BC (iv) the side opposite to vertex B

Solution:

Let us consider three non- collinear points A, B and C join them.

After joining these points, we get a 'Triangle', as it consists of three sides. The name of the triangle we get is ΔABC

- (i) The side opposite ∠B is AC
- (ii) The angle opposite side AB is ∠C
- (iii) The vertex opposite side BC is A
- (iv) The side opposite vertex B is AC

Question: 2

Take three collinear points A, B and C on a page of your note book. Join AB, BC and CA. Is the figure a triangle? If not why

Solution:

Let us consider three collinear points A, B and C and join AB, BC and CA

The figure we get is not a triangle because it is a straight line consisting of only one side. It is also not a closed figure, where as a triangle is defined as a closed figure consisting of three sides

Question: 3

Distinguish between a triangle and its triangular region.

Solution:

A triangle is defined as a closed polygon consisting of three sides, where as a triangular region is the region that lies inside the triangle. In the adjoining figure, the shaded region shows the triangular region.

Question: 4

In fig 12.11, D is a point on side BC of a \triangle ABC. AD is joined. Name all the triangles that you can observe in the figure. How many are they?

Solution:

The figure consists of triangles \triangle ADC, \triangle ADC and \triangle ABC. Therefore, three triangles are present in the figure.

Question: 5

In fig 12.12, A, B, C and D are four points, and no three points are collinear. AC and BD interest at O. There are eight triangles that you can observe. Name all the triangles.

Solution:

The following figure consists of triangles, namely Δ ODC, Δ ODA, Δ OBC, Δ OAB, Δ ADB, Δ ACB, Δ DAC and Δ DBC. Hence, there are a total of eight triangles.

Question: 6

What is the difference between triangle and a triangular region?

Solution:

A triangle is defined as a closed polygon consisting of three sides, where as a triangular region is the region that lies inside the three sides of triangles.

In the adjoining figure, the shaded region shows the triangular region

Question: 7

Explain the following terms:

- (i) Triangle
- (ii) Parts or elements of a triangle
- (iii) Scalene triangle
- (iv) Isosceles triangle
- (v) Equilateral triangle

- (vi) Acute triangle
- (vii) Right triangle
- (viii) Obtuse triangle
- (ix) interior of a triangle
- (x) exterior of a triangle

Solution:

- (i) Triangle A triangle is a closed polygon that consists of three straight lines as its sides.
- (ii) Parts or elements of a triangle A triangle consists of three sides, three angles and three vertices.
- (iii) Scalene triangle A triangle, in which the length of all the sides are different.
- (iv) Isosceles triangle A triangle, in which the length of two sides are equal.
- (v) Equilateral triangle A triangle, in which the length of all the sides are equal.
- (vi) Acute triangles A triangle, in which all the angles measure less than 90.
- (vii) Right triangle A triangle, which has an angle that measure 90.
- (viii) Obtuse triangle A triangle, in which one of the angles measure more than 90°.
- (ix) Interior of a triangle The region lying inside the boundaries or side of a triangle.
- (x) Exterior of a triangle The region lying outside the boundaries or sides of a triangle.

Question: 8

In fig 12.13, the length (in cm) of each side has been indicted along the side. State for each triangle whether it is a scalene, isosceles or equilateral:

Solution:

(i)	(ii)	(iii)
(iv)	(v)	(vi)

(i) This is a scalene triangle, as all the sides have different length.

- (ii) This is an equilateral triangle, as all the sides are equal in length i.e. $5\ \mathrm{cm}$.
- (iii) This is an isosceles triangle, as two sides are equal in length i.e. 5.6 cm.
- (iv) This is an isosceles triangle, as two sides are equal in length i.e. 6.2 cm.
- (v) This is a scalene triangle, as all the sides have different length.
- (vi) This is an acute angle, as all the angles are less than 90°.

Question: 9

In fig 12.14, there are five triangles. The measures of some of their angles have been indicated. State for each triangle whether it is acute, right or obtuse.

Solution:

(i)	(ii)
(iii)	(iv)

- (i) This is an obtuse angled triangle, as one of the angle (120°) measures more than 90° and less than 180°.
- (ii) This is a right angle triangle, as it contains a 90°.
- (iii) This is an acute angle triangle, as all the angles are less than 90°.
- (v) This is an obtuse angled triangle, as one of the angle (110°) measures more than 90° and less than 180° .

Question: 10

Fill in the blanks with the correct world/ symbol to make it a true statement:

statement:
(i) A triangle has
(ii) A triangle has
(iii) A triangle has
(iv) A triangle has
(Angles and sides are part of a triangle. So, three angles and three sides make six parts.)
(v) A triangle whose no two sides are equal is known as
(A triangle whose lengths of all sides are different is called scalene triangle).

Question: 11

In each of the following, state if the statement is true or false:

Solution:

- (i) True
- (ii) False; a triangle consists of three vertices only.
- (iii) False; three lines segments joined by three non- collinear points can only from a triangle.
- (iv) False; it lies on the triangle.
- (v) True
- (vi) False; the vertices of a triangle are three non-collinear points.
- (vii) True
- (ix) False; it can also be an isosceles triangle.
- (x) False; it can be an obtuse triangle.

Exercise 12.2

Question: 1

Total number of parts of a triangle is

Solution:

Six: Three sides and three angles

Question: 2

A perpendicular drawn from a vertex to the opposite side of a triangle is known as

Solution:

An Altitude: An Altitude is defined as the perpendicular drawn from a vertex to the opposite side of a triangle.

Question: 3

A triangle

Solution:

has three altitudes

Question: 4

Line segment joining the vertices to the mid – points of the opposite side of a triangle is known as

Solution:

Medians: A median is defined as the line segment joining the vertex to the mid – point of the opposite side of a triangle.

Question: 5

A triangle whose no two sides are equal is called

Solution:

A scalene triangle: A Scalene triangle is defined as the triangle in which no sides are equal.

Question: 6

A triangle whose two sides are equal is known as

Solution:

An isosceles triangle: An isosceles triangle is a triangle that has two equal sides.

Question: 7

A triangle whose two sides are equal is called

Solution:

An equilateral triangle is defined as a triangle whose all sides are equal.

Question: 8

The sum of the lengths of side of a triangle is known as its

Solution:

Perimeter: Perimeter is defined as the sum of the length of all the sides of a triangle

Question: 9

A triangle having all sides of different length is known as its

Solution:

Scalene triangle: A Scalene triangle is defined as a triangle having all sides of different length.

Question: 10

A triangle whose one angle is more than 90° is called

Solution:

An obtuse triangle: An obtuse triangle is a triangle whose one angle is more than 90°