VITMO

Электрический привод

Практика 2. «Механика электропривода»

Маматов Александр Геннадьевич, к.т.н., ассистент ф. СУиР, руководитель группы научно-технического развития, НПЦ «Прецизионная Электромеханика»

Какие типы нагрузочных характеристик представлены на Рисунке?

Статическая устойчивость

Условие статической устойчивости:

для обеспечения статической устойчивости привода необходимо, чтобы в точке равновесия жёсткость механической характеристики двигателя была меньше жёсткости механической характеристики нагрузки.

$$\frac{dM_{M}}{d\omega} < \frac{dM_{L}}{d\omega}$$

Каким будет статический режим привода?

Укажите характеристику(и) нагрузки, при которой(ых) двигатель постоянного тока с независимым возбуждением будет устойчиво работать

Как изменится момент нагрузки приведённый к валу двигателя, если передаточное число уменьшится вдвое?

Как изменится момент инерции поступательно движущейся массы приведённый к валу двигателя, если радиус приведения увеличится вдвое?

Как изменится радиус приведения поступательно движущейся массы, если скорость её движения увеличится вдвое?

Каков характер переходных процессов в трёхмассовой упругой системе тел?

Каков характер переходных процессов в двухмассовой упругой системе тел?

Каков характер переходных процессов в системе тел с жёсткими связями?

Чем ограничивается амплитуда колебаний скорости в трёхмассовой упругой системе тел?

Укажите параметры, определяющие резонансные частоты колебаний в трёхмассовой упругой системе тел

Как изменится резонансная частота колебаний в двухмассовой упругой системе тел, если моменты инерции увеличатся вдвое?

Как изменится резонансная частота колебаний в двухмассовой упругой системе тел, если момент нагрузки уменьшится вдвое?

Как изменится резонансная частота колебаний в двухмассовой упругой системе тел, если жёсткость связи увеличится вдвое?

Как нужно изменить соотношение масс в двухмассовой упругой системе тел, чтобы резонансная частота колебаний уменьшилась вдвое?

ИІТМО

Укажите переходный процесс в трёхмассовой упругой системе тел

Укажите переходный процесс в двухмассовой упругой системе тел

Укажите переходный процесс в системе тел с жёсткими связями

Укажите переходные процессы невозможные в системе тел с упругими связями

Nº	т [кг]	v [14/0]	Z 1	Z ₂	Z 3	Z ₄	Z ₅	Z 6	J_2	J_3	J_4	J_5	J ₆	J ₇	J ₈	J ₉
'`-	[к.]	v [m/c]	-1	2-2	- 3	-4	2 5	- 6	KГM ²							
1	4100	0,019	10	20	13	30	13	50	0,1100	0,2542	0,0636	0,2542	0,0826	0,3813	0,0953	0,2288
2	4200	0,018	12	23	16	37	16	59	0,1200	0,2773	0,0693	0,2547	0,0924	0,4097	0,1040	0,2570
3	4300	0,017	15	28	20	48	20	71	0,1300	0,3004	0,0751	0,2617	0,1001	0,4487	0,1127	0,3033
4	4400	0,016	17	31	22	54	22	76	0,1400	0,3236	0,0809	0,2690	0,1047	0,4685	0,1213	0,3329
5	4500	0,015	20	36	26	65	26	87	0,1500	0,3467	0,0867	0,2808	0,1127	0,5070	0,1300	0,3788
6	4600	0,014	10	18	13	33	13	42	0,1600	0,3698	0,0924	0,2995	0,1202	0,5491	0,1387	0,4315
7	4700	0,013	12	21	16	42	16	50	0,1700	0,3929	0,0982	0,3008	0,1310	0,6016	0,1473	0,5054
8	4800	0,012	15	26	20	54	20	61	0,1800	0,4160	0,1040	0,3125	0,1387	0,6490	0,1560	0,5745
9	4900	0,011	17	29	22	61	22	65	0,1900	0,4391	0,1098	0,3195	0,1421	0,6720	0,1647	0,6306
10	2500	0,010	20	40	26	58	26	47	0,1500	0,3467	0,0867	0,3467	0,1127	0,5027	0,1300	0,6203
11	2400	0,011	17	35	22	50	22	41	0,1400	0,3236	0,0809	0,3429	0,1047	0,4898	0,1213	0,5973
12	2300	0,012	15	31	20	47	20	38	0,1300	0,3004	0,0751	0,3208	0,1001	0,4864	0,1127	0,6016
13	2200	0,013	13	28	17	40	17	33	0,1200	0,2773	0,0693	0,3216	0,0907	0,4595	0,1040	0,5570
14	2100	0,014	11	24	14	34	14	27	0,1100	0,2542	0,0636	0,3025	0,0809	0,4286	0,0953	0,5397
15	2000	0,015	9	20	12	30	12	24	0,1000	0,2311	0,0578	0,2853	0,0770	0,4280	0,0867	0,5350
16	1900	0,016	12	27	16	41	16	33	0,0900	0,2080	0,0520	0,2633	0,0693	0,3998	0,0780	0,4967
17	1800	0,017	15	35	20	53	20	42	0,0800	0,1849	0,0462	0,2517	0,0616	0,3811	0,0693	0,4809
18	1700	0,018	13	31	17	46	17	36	0,0700	0,1618	0,0404	0,2300	0,0529	0,3413	0,0607	0,4361
19	1600	0,019	12	29	16	44	16	35	0,0600	0,1387	0,0347	0,2025	0,0462	0,3072	0,0520	0,3862
20	1500	0,020	11	28	14	40	14	31	0,0500	0,1156	0,0289	0,1872	0,0368	0,2674	0,0433	0,3450

Диаметры шкивов ременной передачи d_1 =150 мм, d_2 =200 мм.

Число заходов и шаг гайки винтовой передачи z=1, s=0,01м

КПД

ременной передачи: 0,95

зубчатой пары: 0,9

винтовой пары: 0,6

цепной передачи: 0,97

Передаточное отношение цепной

передачи і=1

Жёсткость

ременной передачи: 3×10⁶ Нм/рад

цепной передачи: 12×10⁶ Нм/рад

Задание 1

Определить скорость вращения, момент на валу и мощность двигателя, необходимого для привода домкрата, предназначенного для подъёма груза массой m со скоростью v, и произвести его выбор из серии 5A.

Если номинальная скорость не соответствует расчётной, скорректировать ременную передачу изменением диаметра шкива двигателя d_1

Задание 2

Используя данные Задания 1, определить параметры расчётных схем (а-в) и резонансные частоты пяти-, трёх- и двухмассовой системы тел

Спасибо за внимание!

ITSMOre than a UNIVERSITY

amamatov@itmo.ru