	INF124
	Durée : 2h00, sans documents. — Tous les appareils électroniques sont interdits à l'exception des montres — Le barème est donné à titre indicatif — Le sujet comporte 5 exercices indépendants — Le sujet est sur 45 points. — Répondez sur le sujet lorsque les questions comportent des pointillés — N'oubliez pas de glisser le sujet dans votre copie. — Commencez par lire tout le sujet pour repérer les questions faciles
Q1. Donne	: Preuves en déduction naturelle et en français z la preuve en déduction naturelle du théorème $\Rightarrow (C \Rightarrow D))) \Rightarrow (B \Rightarrow ((C \land A) \Rightarrow D))$

Nom Prénom

ou Numéro d'étudiantsi l'examen est anonyme

Groupe ...

Q2. Donnez la preuve en déduction naturelle du théorème $\neg(A \lor B) \Rightarrow (\neg A \land \neg B)$

$$\overline{\neg(A \lor B) \Rightarrow (\neg A \land \neg B)}$$

2.5 pt

Q3. Donnez, sur votre copie, la version en français de la preuve précédente.

4---

Q4. Donnez la preuve en déduction naturelle du théorème $(\exists u, (\forall v, F(u, v))) \Rightarrow (\forall x, (\exists y, F(y, x)))$

$$\overline{\left(\exists u, (\forall v, F(u, v))\right) \Rightarrow \left(\forall x, (\exists y, F(y, x))\right)}$$

2.5 pt

Q5. Donnez, sur votre copie, la version en français de la preuve précédente.

Г				
ш	_	_	_	

Exercice 2 : Preuve de propriétés des ensembles

10 p

- $\bf Q6.$ Démontrez à l'aide d'une preuve en déduction naturelle que les 3 règles de déduction suivantes sont correctes :

1.
$$\underline{a \in A \quad A \subseteq B}$$
$$a \in B$$

2.
$$a \in A$$
 $\overline{a \in A \sqcup B}$

3.
$$\underline{a \in A \cap B}$$
$$a \in A$$

tilisez les règles de la déduction naturelle et les règles de déduction sur les ensembles (y compris les règles de la question précédente) pour montrer le théorème $\big(X\cap (Y\cup X)\big)=X$

$$\overline{\big(X\cap (Y\cup X)\big)=X}$$

On désigne l'ensemble vide par \emptyset . Utilisez les règles de la déduction naturelle et les règles de déduction sur les ensembles pour montrer le théorème $((X \cap Y) = \emptyset) \Longrightarrow ((X \cap (Y \cup Z)) = (X \cap Z))$

	Exercice 3 : Schéma de récurrence associé à un type CAML		
5 pt	Q9. Soit feu le type défini par :		
5 pt	<pre>type feu =</pre>		
	— Donnez quatre élements différents de type feu de manière à utiliser chacun des constructeurs.		
	— Complétez le schéma de récurrence associé au type feu.		
	$orall f \in \mathtt{feu}, Q(f)$		
.5 pt	Q10. Soit color le type défini par :		
	<pre>type color = R of int (* rouge *) V of int (* vert *) B of int (* bleu *) M of color * color (* mélange *)</pre>		
	— Donnez quatre élements différents du type color de manière à utiliser chacun des constructeurs.		
	— Complétez le schéma de récurrence associé au type color.		
	$orall c \in exttt{color}, Q(c)$		

	Exercice 4 : Que dire de ces deux régles?
5 pt	On se dote d'une nouvelle règle correspondant au raisonnement par « contraposé » :
	$\frac{\neg A \Rightarrow B}{\neg B \Rightarrow A} \ contrapos\acute{e}$
	On se demande si cette règle est valide et ce que nous apporte par rapport aux règles que l'on a déjà.
$\frac{2 pt}{}$	Q11. Utilisez la règle $\neg \neg_e$ pour démontrer la validité de la règle $contrapos \acute{e}$.

Q12. Démontrez la propositon $\neg \neg A \Rightarrow A$ en utilisant la règle $contrapos \acute{e}$ avec un B bien choisi.

$$\overline{\neg \neg A \Rightarrow A}$$

Q13. D'après les questions précédentes, que peut-on dire des règles $\neg \neg_e$ et contraposé? Justifiez votre réponse.

10 pt	Exercice 5 : Preuve par récurrence en déduction naturelle
	On considère le type ocame suivant
	<pre>type nat =</pre>
1.5 pt	Q14. Rappelez le principe de récurrence associé au type nat.
	Implantation d'un prédicat défini par des axiomes On considère le prédicat <i>pair</i> défini par les axiomes suivants :
	$\overbrace{pair(\mathbf{z})}^{Ax_1} \qquad \overbrace{\forall p, \ pair(\mathbf{s}(p)) \Leftrightarrow \neg pair(p)}^{Ax_2}$
	$\overbrace{pair(\mathbf{z})} \qquad \qquad \overleftarrow{\forall p, \ pair(\mathbf{s}(p))} \Leftrightarrow \neg pair(p)$
1.5 pt	Q15. Écrire en CAML la fonction $pair$ de type $\mathtt{nat} \to \mathtt{bool}$ qui correspond à ces axiomes.
1	
2	
3	
4	
5	
6	
2 pt	Q16. Utilisez les axiomes qui définissent $pair$ pour démontrer, pour un K fixé, la proposition suivante $\neg pair(s(K)) \Longrightarrow pair(s(K)))$

Q17. Démontrez le théorème suivant $\forall n \in \mathtt{nat}, \ pair(n) \lor pair(\mathtt{s}(n))$ en utilisant les axiomes qui définissent pair, le principe de récurrence sur \mathtt{nat} et l'arbre de preuve de la question précédente que vous nommerez ADP_1 .

 $\forall n \in \mathtt{nat}, \ pair(n) \ \lor \ pair(\mathtt{s}(n))$