Dimostrazioni di Analisi matematica 1

Virginia Longo, Giovanni Manfredi e Mattia Martelli

Indice

1	Disuguaglianza di Bernoulli	2
2	Teorema di Fermat	3
3	Teorema di Rolle	5
4	Teorema di Lagrange	6
5	Test di monotonia di f su un intervallo aperto	8
6	Cardinalità di \mathbb{R}^n	10
7	Teorema di Cauchy	12
8	Teorema di de l'Hôpital	14
9	Teorema del resto secondo Peano	15
10	Teorema del resto secondo Lagrange	18
11	Primo Teorema Fondamentale del Calcolo Integrale	21
12	Teorema Valor Medio Integrale	23
13	Secondo Teorema Fondamentale del Calcolo Integrale	25
14	Condizione necessaria per la convergenza di una serie	28
15	Criterio del Rapporto per la Convergenza delle Serie a termini positivi.	30
16	Criterio del confronto per la convergenza di una serie a termini positivi.	32
17	Giustificazione della formula di Eulero con l'esponenziale complesso	34

Disuguaglianza di Bernoulli

Enunciato

La disuguaglianza di Bernoulli è

$$(1+x)^n \geqslant 1+nx$$
 $\forall n \in \mathbb{N}, \, \forall x \in \mathbb{R}, \, x > -1$

Dimostrazione

Per dimostrare l'enunciato, procediamo con una dimostrazione per induzione.

Dimostriamo l'enunciato per n = 0:

$$(1+x)^0 \geqslant 1 + 0x$$
$$1 \geqslant 1$$

Possiamo perciò considerare l'enunciato vero al passo n.

Dimostriamolo per n+1:

$$(1+x)^{n+1} = (1+x)(1+x)^n$$

$$\geqslant (1+x)(1+nx)$$

$$= 1+nx+x+nx^2$$

$$= 1+x(n+1)+nx^2$$

$$\geqslant 1+x(n+1)$$
Per l'enunciato del teorema

Abbiamo quindi dimostrato la disuguaglianza di Bernoulli.

Teorema di Fermat

Definizioni necessarie

Si ricordano le seguenti definizioni:

- x_0 è un punto stazionario se $f(x_0) = 0$;
- x_0 è un punto di ottimo se è un punto di massimo o di minimo locale;
- x_M è un punto di massimo locale se $M=f(x_M)\geqslant f(x) \forall x\in A$ dove M è il valore massimo locale;
- x_M è un punto di minimo locale se $m=f(x_m)\leqslant f(x) \forall x\in A$ dove m
 è il valore minimo locale.

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $x_0 \in A$;
- 2. f sia derivabile in A;
- 3. x_0 sia un punto di ottimo.

Tesi

$$f'(x) = 0$$

ovvero x_0 è un punto stazionario

Dimostrazione

Caso 1 - x_0 è un punto di massimo locale

Per l'ipotesi 1 e l'ipotesi 2, quando h > 0 possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h} \leqslant 0$$

quando h < 0 invece possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h}\geqslant 0$$

quindi sempre per l'ipotesi di derivabilità valgono le seguenti affermazioni

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = L_1 \le 0 \text{ dove } L_1 \,\exists \, \land \, L_1 \in \mathbb{R}$$

$$\lim_{x \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = L_2 \geqslant 0 \text{ dove } L_2 \exists \land L_2 \in \mathbb{R}$$

$$L_1 = L_2 = f'(x_0)$$

e quindi

$$0 \leqslant f'(x_0) \leqslant 0$$

da cui

$$f'(x_0) = 0$$

c.v.d.

Caso 2 - x_0 è un punto di minimo locale

Per l'ipotesi 1 e l'ipotesi 2, quando h > 0 possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h}\geqslant 0$$

quando h < 0 invece possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h} \leqslant 0$$

quindi sempre per l'ipotesi di derivabilità valgono le seguenti affermazioni

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = L_1 \geqslant 0 \operatorname{dove} L_1 \exists \land L_1 \in \mathbb{R}$$

$$\lim_{x \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = L_2 \leqslant 0 \operatorname{dove} L_2 \exists \land L_2 \in \mathbb{R}$$

$$L_1 = L_2 = f'(x_0)$$

e quindi

$$0 \leqslant f'(x_0) \leqslant 0$$

da cui

$$f'(x_0) = 0$$

Teorema di Rolle

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. f è continua su A e derivabile su (a, b);
- 2. f(a) = f(b).

Tesi

$$\exists x_0 \in (a,b) \mid f'(x_0) = 0$$

Dimostrazione

Caso 1 - f(x) è una funzione costante

Il teorema è dimostrato, infatti $\forall x \in (a,b) \ f(x) = 0.$

Caso 2 - f(x) non è una funzione costante

Data la continuità di f(x) su A e essendo A un intervallo chiuso e limitato, vale il **teorema di** Weierstrass.

$$\exists M, m \mid f(x_m) = m \leqslant f(x) \leqslant f(x_M) = M \quad \forall x \in A$$

e almeno uno tra x_m e x_M è interno ad (a,b), dato che $m \neq M$ (f non è costante).

Visto che almeno uno dei due punti di ottimo è interno all'intervallo, posso applicare il **teorema di Fermat**, da cui ricavo che il punto di ottimo interno è un punto stazionario e quindi:

$$\exists x_0 \in (a,b) \mid f'(x_0) = 0$$

Teorema di Lagrange

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che f sia continua su A e derivabile su (a,b).

Tesi

$$\exists x_0 \in (a,b) \mid f'(x_0) = \frac{f(b) - f(a)}{b - a} = m$$

dove m è il coefficiente angolare della retta passante per a e b.

Dimostrazione

Introduco una funzione ausiliaria g(x) così definita:

$$g(x) = f(x) - \left[f(a) + \frac{f(b) + f(a)}{b - a} (x - a) \right]$$

Notiamo che g ha la regolarità di f su A:

- 1. è continua su A;
- 2. derivabile su (a, b).

Notiamo anche che:

$$g(a) = f(a) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (a - a) \right]$$

= $f(a) - [f(a) + 0]$
= $f(a) - f(a) = 0$

$$g(b) = f(b) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (b - a) \right]$$

= $f(b) - [f(a) + f(b) - f(a)]$
= $f(b) - f(b) = 0$

Da cui g(a) = g(b).

Posso quindi applicare il **teorema di Rolle** su A:

$$\exists x_0 \in (a,b) \mid g'(x_0) = 0$$

Calcolo quindi g'(x):

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$g'(x_0) = 0$$

$$f'(x_0) - \frac{f(b) - f(a)}{b - a} = 0$$

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

 $\mathrm{c.v.d.}$

Test di monotonia di f su un intervallo aperto

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che f sia derivabile su (a, b).

Tesi

$$f'(x) > 0 \quad \forall x \in A \Rightarrow f$$

è monotona strettamente crescente su A.

$$f'(x) < 0 \quad \forall x \in A \Rightarrow f$$

è monotona strettamente decrescente su A.

Dimostrazione

Caso 1 -
$$f'(x) > 0 \quad \forall x \in A$$

Siano $x_1, x_2 \in A \mid a < x_1 < x_2 < b$. Seleziono un sottointervallo chiuso interno ad A. Su $[x_1, x_2]$ applico il **teorema di Lagrange** a f quindi:

$$\exists x_0 \in (x_1, x_2) \mid f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

essendo $f'(x_0) > 0$ e anche $x_2 - x_1 > 0$ ne segue che:

$$\forall x_1 < x_2 \Rightarrow f(x_2) > f(x_1)$$

quindi f(x) è monotona strettamente crescente, c.v.d.

Caso 2 -
$$f'(x) < 0 \quad \forall x \in A$$

Siano $x_1, x_2 \in A \mid a < x_1 < x_2 < b$. Seleziono un sottointervallo chiuso interno ad A. Su $[x_1, x_2]$ applico il **teorema di Lagrange** a f quindi:

$$\exists x_0 \in (x_1, x_2) / f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

essendo $f'(x_0) < 0$ e $x_2 - x_1 > 0$ ne segue che:

$$\forall x_1 < x_2 \Rightarrow f(x_2) < f(x_1)$$

quindi f(x) è monotona strettamente decrescente, c.v.d.

Cardinalità di \mathbb{R}^n

Definizioni necessarie

Si ricorda che:

- Due insiemi hanno la stessa cardinalità quando è possibile creare una corrispondenza biunivoca tra di essi;
- Un insieme infinito può avere la stessa cardinalità di un insieme infinito da lui contenuto;

Enunciato

Ipotesi

 \mathbb{R} ha la cardinalità del continuo.

Tesi

 \mathbb{R}^n ha la cardinalità del continuo.

Dimostrazione

Come definito in precedenza per dimostrare che i due insiemi hanno la stessa cardinalità dobbiamo dimostrare che siano in corrispondenza **biunivoca**. Per semplicità restringiamo la dimostrazione all'intervallo [0,1].

Iniettività

Dato un punto generico $P(x_P, y_P)$ definiamo che le sue coordinate in questo modo:

$$x_p = 0.x_1 x_2 x_3 x_4 \dots$$
 e $y_p = 0.y_1 y_2 y_3 y_4 \dots$

L'immagine di P su \mathbb{R} è Q, così definita:

$$Q = 0.x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 \dots$$

Ipotizziamo ora per assurdo che esista

$$P^* \neq P \mid f(P^*) = f(P)$$

$$P^* = (0.x_1^* x_2^* x_3^* x_4^* \dots, 0.y_1^* y_2^* y_3^* y_4^* \dots)$$

allora

$$f(P^*) = Q = 0.x_1^* y_1^* x_2^* y_2^* x_3^* y_3^* x_4^* y_4^* \dots$$

Ma visto che

$$Q = 0.x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 \dots$$

ne deriva che

$$P=P^*$$

il che è assurdo. Quindi f è **iniettiva**.

Suriettività

Dato

$$Q \in [0,1] = 0.q_1 q_2 q_3 q_4 \dots$$

Vale questa affermazione?

$$\exists ? P^{\circ} \in [0,1] \times [0,1] \mid f(P^{\circ}) = Q$$

Sì, P° è così definito:

$$P^{\circ} = (0.q_1 q_3 q_5 \dots, 0.q_2 q_4 q_6 \dots)$$

Da cui si ricava che f è anche **suriettiva**.

Abbiamo quindi trovato una corrispondenza biunivoca tra i due insiemi, il che dimostra che hanno la stessa cardinalità.

Teorema di Cauchy

Enunciato

Ipotesi

Date:

$$f, g: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$
 $y = g(x)$

Supponendo inoltre f, g continue in A e derivabili in (a, b).

Tesi

$$\exists x^* \in (a,b) \mid \frac{f'(x^*)}{g'(x^*)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Dimostrazione

Introduco una funzione ausiliaria h(x) così definita:

$$h(x) = [f(b) - f(a)] g(x) - [g(b) - g(a)] f(x)$$

Notiamo che h ha la regolarità di f e di g su A:

- 1. è continua su A;
- 2. derivabile su (a, b).

Verifico se su h nell'intervallo [a, b] vale il **teorema di Rolle**:

$$h(a) = [f(b) - f(a)] \ g(a) - [g(b) - g(a)] \ f(a)$$

$$h(a) = f(b) g(a) - f(a) g(a) - f(a) g(b) + f(a) g(a)$$

$$h(a) = f(b) g(a) - f(a) g(b)$$

$$h(b) = [f(b) - f(a)] \ g(b) - [g(b) - g(a)] \ f(b)$$

$$h(b) = f(b) \ g(b) - f(a) \ g(b) - f(b) \ g(b) + f(b) \ g(a)$$

$$h(b) = f(b) \ g(a) - f(a) \ g(b)$$

h(a) = h(b), quindi posso applicare il **teorema di Rolle**, da cui si deriva che h ha un punto stazionario x^*

$$h'(x) = [f(b) - f(a)] g'(x) - [g(b) - g(a)] f'(x)$$

$$h'(x^*) = 0$$

E quindi infine

$$h'(x^*) = 0$$

$$[f(b) - f(a)] \ g'(x^*) - [g(b) - g(a)] \ f'(x^*) = 0$$

$$[f(b) - f(a)] \ g'(x^*) = [g(b) - g(a)] \ f'(x^*)$$

$$\frac{f'(x^*)}{g'(x^*)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Teorema di de l'Hôpital

Enunciato

Ipotesi

Date:

$$f,g:A=[a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto y=f(x)$$

$$y=g(x)$$

Supponendo inoltre:

- 1. f, g continue in A e derivabili in (a, b);
- 2. f, g infinitesime in $x_0 \in (a, b)$.

Tesi

Se
$$l = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$
, allora $l = \lim_{x \to x_0} \frac{f(x)}{g(x)}$

Dimostrazione

La dimostrazione avviene direttamente utilizzando il teorema di Cauchy:

$$\exists \ \theta \in (a,b) \Rightarrow \theta \in (x_0,x)$$

Aggiungo $f(x_0)$ che ricordiamo essere infinitesimo per ipotesi, poi considerando l'intervallo (x_0, x) :

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\theta)}{g'(\theta)}$$

Da cui:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(\theta)}{g'(\theta)} = l$$

Teorema del resto secondo Peano

Definizioni necessarie

Si ricorda che il **Polinomio di Taylor** $(T_n^f(x))$ è così definito:

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $f \in C^{n}(A)$;
- 2. $x_0 \in A$.

Tesi

$$F(n): f(x) - T_n^f(x) = o((x - x_0)^n)$$

Dimostrazione

Per dimostrare l'enunciato, procediamo con una dimostrazione per induzione.

Passo Base: F(1)

Dimostriamo l'enunciato per n = 1:

$$f \in C^1(A)$$

$$f(x) - [f(x_0) + f'(x_0)(x - x_0)] \stackrel{?}{=} o((x - x_0))$$

Per la definizione di o-piccolo una funzione (f(x)) è o-piccolo di un altra (g(x)) quando il $\lim_{x\to x_0} \frac{f(x)}{g(x)} \to 0$

$$\lim_{x \to x_0} \frac{f(x) - [f(x_0) + f'(x_0)(x - x_0)]}{(x - x_0)} \stackrel{?}{\to} 0$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \stackrel{?}{\to} 0$$

$$f'(x_0) - f'(x_0) \to 0$$

Quindi F(1) è vera.

Ipotesi induttiva: F(n-1)

Assumiamo per ipotesi induttiva vera la seguente affermazione:

$$\forall g \in C^{n-1}(A)$$

$$g(x) - T_n^g(x) = o((x - x_0)^{n-1})$$

Che possiamo riscrivere come:

$$\lim_{x \to x_0} \frac{g(x) - T_n^g(x)}{(x - x_0)^{n-1}} \to 0$$

Verifica per F(n)

Per verificare la tesi, mi devo anche qui rifare alla definizione di o-piccolo:

$$B_{\epsilon}(0)$$

$$\lim_{x \to x_0} \frac{f(x) - T_n^f(x)}{(x - x_0)^n} \stackrel{?}{\to} 0$$

Questa è però una forma di indeterminazione $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ per risolverla, le applico il **teorema de l'Hospital**

$$\lim_{x \to x_0} \frac{\left[f(x) - T_n^f(x) \right]'}{\left[(x - x_0)^n \right]'}$$

$$\lim_{x \to x_0} \frac{f'(x) - [T_n^f(x)]'}{n(x - x_0)^{n-1}}$$

Calcolo $\left[T_n^f(x)\right]'$ a parte:

$$[T_n^f(x)]' = f'(x_0) + \frac{f''(x_0)}{2!} 2(x - x_0) + \frac{f'''(x_0)}{3!} 3(x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!} n(x - x_0)^n$$

$$= f'(x_0) + f''(x_0)(x - x_0) + \frac{f'''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^n(x_0)}{(n-1)!} (x - x_0)^{n-1}$$

$$= T_{n-1}^{f'}(x)$$

Infatti se $f \in C^n(A) \Rightarrow f' \in C^{n-1}$. Quindi:

$$\lim_{x \to x_0} \frac{f'(x) - T_{n-1}^{f'}(x)}{n(x - x_0)^{n-1}}$$

Notiamo che $f' \in C^{\,n-1}$ e che $g \in C^{\,n-1}$ poniamo quindig = f'. Da cui abbiamo:

$$\lim_{x \to x_0} \frac{g(x) - T_{n-1}^g(x)}{n(x - x_0)^{n-1}}$$

Per ipotesi di induzione sappiamo che:

$$\lim_{x \to x_0} \frac{g(x) - T_n^g(x)}{(x - x_0)^{n-1}} \to 0$$

quindi anche:

$$\lim_{x \to x_0} \frac{g(x) - T_{n-1}^g(x)}{n(x - x_0)^{n-1}} \to 0$$

Teorema del resto secondo Lagrange

Definizioni necessarie

Si ricorda che il **Polinomio di Taylor** $(T_n^f(x))$ è così definito:

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $f \in C^{n+1}(A)$;
- 2. $x_0 \in A$.

Tesi

$$\exists \theta \in (x_0, x) \mid f(x) - T_n^f(x) = \frac{f^{n+1}(\theta)}{(n+1)!} (x - x_0)^{n+1}$$

Dimostrazione

Considero due **funzioni ausiliarie** g(x), w(x) così definite:

$$g(x) = f(x) - T_n(x) \qquad g(x) \in C^{n+1}(A)$$

$$w(x) = (x - x_0)^{n+1} \qquad w(x) \in C^{\infty}(A)$$

Calcolo $g(x_0), g'(x_0), \ldots, g^{(n+1)}(x_0)$:

$$g(x_0) = f(x_0) - \left[\frac{f(x_0)}{0!} 1 + \frac{f'(x_0)}{1!} (x_0 - x_0) + \frac{f''(x_0)}{2!} (x_0 - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x_0 - x_0)^n \right] = 0$$

$$g'(x_0) = f'(x_0) - \left[\frac{f'(x_0)}{1!} 1 + \frac{f''(x_0)}{2!} 2(x_0 - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} n(x_0 - x_0)^{n-1} \right] = 0$$

$$g''(x_0) = 0$$

. . .

$$g^{(n)}(x_0) = 0$$

$$g^{(n+1)}(x_0) = f^{(n+1)}(x_0) - 0 = f^{(n+1)}(x_0)$$

Calcolo $w(x_0), w'(x_0), \ldots, w^{(n+1)}(x_0)$:

$$w(x_0) = (x_0 - x_0)^{n+1} = 0$$

$$w'(x_0) = (n+1)(x_0 - x_0)^n = 0$$

$$w'(x_0) = (n+1)(n)(x_0 - x_0)^{n-1} = 0$$

. . .

$$w^{(n)}(x_0) = [(n+1)!](x_0 - x_0) = 0$$

$$w^{(n+1)}(x_0) = [(n+1)!]1 = (n+1)!$$

Toniamo ora su ciò che dobbiamo dimostrare:

$$\exists \theta \in (x_0, x) \mid f(x) - T_n^f(x) = \frac{f^{n+1}(\theta)}{(n+1)!} (x - x_0)^{n+1}$$
$$\frac{f(x) - T_n^f(x)}{(x - x_0)^{n+1}} = \frac{f^{n+1}(\theta)}{(n+1)!}$$

Notiamo che $\frac{f(x)-T_n^f(x)}{(x-x_0)^{n+1}}=\frac{g(x)}{w(x)}$ quindi utilizzando il **teorema di Cauchy**:

$$\frac{g(x)}{w(x)} = \frac{g(x) - g(x_0)}{w(x) - w(x_0)}$$

$$\exists x_1 \in (x_0, x) \qquad = \frac{g'(x_1)}{w'(x_1)} = \frac{g'(x_1) - g'(x_0)}{w'(x_1) - w'(x_0)}$$

$$\exists x_2 \in (x_0, x_1) \qquad = \frac{g''(x_2)}{w''(x_2)} = \frac{g''(x_2) - g''(x_0)}{w''(x_2) - w''(x_0)}$$

$$\exists x_3 \in (x_0, x_2) \qquad = \frac{g'''(x_3)}{w'''(x_3)} = \dots$$

Iterando n volte

$$\exists \theta \in (x_0, x_n) \qquad = \frac{g^{(n+1)}(\theta)}{w^{(n+1)}(\theta)}$$

Notiamo anche che possiamo fare questo perché da come abbiamo dimostrato prima calcolandolo, $g(x_0)$, $g'(x_0)$, ..., $g^{(n)}(x_0)$ e $w(x_0)$, $w'(x_0)$, ..., $w^{(n)}(x_0)$ sono infinitesimi.

Quindi le derivate (n + 1)-esime dal precedente calcolo di g(x)ew(x) sono:

$$\frac{g^{(n+1)}(\theta)}{w^{(n+1)}(\theta)} = \frac{f^{(n+1)}(\theta)}{(n+1)!}$$

Quindi per come abbiamo definito g(x) e w(x):

$$\frac{f(x) - T_n^f(x)}{(x - x_0)^{n+1}} = \frac{g(x)}{w(x)} = \frac{g^{(n+1)}(\theta)}{w^{(n+1)}(\theta)} = \frac{f^{(n+1)}(\theta)}{(n+1)!}$$

Da cui:

$$\frac{f(x) - T_n^f(x)}{(x - x_0)^{n+1}} = \frac{f^{n+1}(\theta)}{(n+1)!}$$

$$f(x) - T_n^f(x) = \frac{f^{n+1}(\theta)}{(n+1)!} (x - x_0)^{n+1}$$

Primo Teorema Fondamentale del Calcolo Integrale

Enunciato

Ipotesi

Sia f(t) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $t \longmapsto y = f(t)$

Supponiamo inoltre che:

- 1. G sia primitiva di f su (a, b);
- 2. f(t) sia Riemann-integrabile su (a,b)

Tesi

$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sum_{i=1}^n f(c_i)(t_i - t_{i-1}) = G(b) - G(a)$$

Dimostrazione

Posti
$$a = t_0 e b = t_n$$

$$\begin{split} G(b) - G(a) &= G(t_0) - G(t_n) \\ &= G(t_n) - G(t_{n-1}) + G(t_{n-1}) + \ldots - G(t_i) + G(t_i) + \ldots - G(t_1) + G(t_1) - G(t_0) \\ &= \sum_{i=1}^{n} (G(t_i) - G(t_{i-1})) \end{split}$$

AGpossiamo applicare il **teorema di Lagrange** su $\left[t_{i-1},t_{i}\right]$

$$\exists \theta_i \in (t_{i-1}, t_i) \mid G'(\theta_i) = \frac{G(t_i) - G(t_{i-1})}{t_i - t_{i-1}}$$

$$= \sum_{i=1}^n G'(\theta_i)(t_i - t_{i-1})$$

$$= \sum_{i=1}^n f(\theta_i)(t_i - t_{i-1}) \longrightarrow S$$

Con Soutput cumulativo. Si tratta quindi di una somma di Riemann. c.v.d.

Teorema Valor Medio Integrale

Enunciato

Ipotesi

Sia f(x) una funzione limitata tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $t \longmapsto y = f(t)$

Supponiamo inoltre che:

- 1. $m = \min f \text{ su } [a, b];$
- 2. $M = \max f \operatorname{su} [a, b]$

Definizione

$$\frac{1}{b-a}\int_{a}^{b}f(t)dt$$

purché f sia Riemann-integrabile.

Proprietà 1

$$m \leqslant VMI \leqslant M$$

Dimostrazione

$$m \leqslant f(t) \leqslant M \qquad \forall t \in [a, b]$$

Integrale definito

$$\int_a^b m dt \leqslant \int_a^b f(t) dt \leqslant \int_a^b M dt$$

Per la monotonia:

$$m(b-a) \leqslant \int_{a}^{b} f(t)dt \leqslant M(b-a)$$

 $m \leqslant \frac{1}{b-a} \int_{a}^{b} f(t)dt \leqslant M$

Proprietà 2

Se
$$f \in C^0([a,b])$$
 allora:

$$\exists \theta \in [a,b] \mid f(\theta) = VMI$$

Dimostrazione

Valendo Weierstrass e Darboux:

$$m\leqslant VMI\leqslant M$$

Secondo Teorema Fondamentale del Calcolo Integrale

Definizioni necessarie

Si ricorda che è detta funzione integrale la funzione G:

$$G(x) = \int_{a}^{x} f(t)dt \qquad G: [a, b] \longmapsto \mathbb{R}$$
$$x \longmapsto G(x) = \int_{a}^{x} f(t)dt$$

Prima Forma

Enunciato

Ipotesi

Data una funzione limitata e Riemann-integrabile:

$$f:A=[a,b] \longrightarrow \mathbb{R}$$

$$t \longmapsto y=f(t)$$

Tesi

G è una funzione **continua**.

Dimostrazione

Voglio dimostrare che

$$\forall x_0 \in [a, b]$$
 $G(x_0) = \lim_{x \to x_0} G(x)$

Caso 1 - $a < x_0 < x < b$

Consideriamo quindi il limite da destra:

$$\lim_{x \to x_0^+} G(x) = \lim_{x \to x_0} \int_a^x f(t)dt =$$

$$= \lim_{x \to x_0} \left[\int_a^{x_0} + \int_{x_0}^x \right] =$$

$$= \lim_{x \to x_0} \left[G(x_0) + \int_{x_0}^x f(t)dt \right]$$

Se $\lim_{x\to x_0^+} \int_{x_0}^x f(t)dt$ fosse infinitesimo allora:

$$\lim_{x \to x_0^+} G(x) = G(x_0)$$

Passiamo quindi a dimostrare che $\lim_{x\to x_0^+} \int_{x_0}^x f(t)dt$ è infinitesimo:

$$m \leqslant f(t) \leqslant M$$
 accumulo tra $x_0 \ ed \ x$

$$m(x-x_0) \leqslant \int_{x_0}^x f(t)dt \leqslant M(x-x_0)$$

L'integrale definito è infinitesimo perché limitato tra quantità che tendono a 0.

Caso 2 - $a < x < x_0 < b$

Consideriamo quindi il limite da sinistra:

$$\lim_{x \to x_0^-} G(x) = \lim_{x \to x_0} \int_a^x f(t)dt =$$

$$= \lim_{x \to x_0^-} \left[\int_a^{x_0} f(t)dt - \int_x^{x_0} f(t)dt \right] =$$

$$= \lim_{x \to x_0^-} \left[G(x_0) - \int_x^{x_0} f(t)dt \right]$$

Se $\lim_{x\to x_0^-} \int_x^{x_0} f(t)dt$ fosse infinitesimo allora:

$$\lim_{x \to x_0^-} G(x) = G(x_0)$$

Passiamo quindi a dimostrare che $\lim_{x\to x_0^-} \int_x^{x_0} f(t)dt$ è infinitesimo:

$$m \leqslant f(t) \leqslant M$$
 accumulo tra $x \ ed \ x_0$

$$m(x_0 - x) \leqslant \int_x^{x_0} f(t)dt \leqslant M(x_0 - x)$$

L'integrale definito è infinitesimo perché limitato tra quantità che tendono a 0.

Nel Caso 1 abbiamo dimostrato che $\lim_{x\to x_0^+} G(x) = G(x_0)$ e Caso 2 che $\lim_{x\to x_0^-} G(x) = G(x_0)$ quindi abbiamo:

$$\lim_{x \to x_0^-} G(x) = G(x_0) = \lim_{x \to x_0^+} G(x) \qquad \forall x_0 \in [a, b]$$

Che dimostra la continuità di G(x). c.v.d.

Seconda Forma

Enunciato

Ipotesi

Data una funzione continua:

$$f:A=[a,b] \longrightarrow \mathbb{R}$$

$$t \longmapsto y=f(t)$$

Tesi

G è una funzione **derivabile**.

$$G \in C^1([a,b])$$
 e $G'(x) = f(x)$ $\forall x \in [a,b]$

Dimostrazione

Sia $x_0 \in (a, b)$, vogliamo dimostrare che G è derivabile in x_0

Caso 1 - h > 0

$$\frac{G(x_0+h)-G(x_0)}{h} = \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0} f(t)dt \right]$$

$$= \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt$$

$$\exists \theta \in (x_0, x_0+h) | = f(\theta) \longmapsto f(x_0)$$

$$\text{per la seconda proprietà del VMI}$$

$$con h \to 0^+$$

Dimostrando che non solo G(x) è derivabile su (a,b) data l'arbitrarietà di x_0 , ma anche che la derivata di G(x) è f(x). c.v.d.

Caso 2 - h < 0

$$\begin{split} \frac{G(x_0+h)-G(x_0)}{h} &= \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0} f(t)dt \right] \\ &= \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0+h} f(t)dt - \int_{x_0+h}^{x_0} f(t)dt \right] \\ &= \frac{1}{-h} \int_{x_0+h}^{x_0} f(t)dt \qquad \qquad \text{VMI dif su}[x_0+h,x_0] \\ &\exists \theta \in (x_0+h,x_0)| = f(\theta) \longmapsto f(x_0) \qquad \qquad \text{per la seconda proprietà del VMI} \\ &= con \ h \to 0^- \end{split}$$

Dimostrando che non solo G(x) è derivabile su (a,b) data l'arbitrarietà di x_0 , ma anche che la derivata di G(x) è f(x). c.v.d.

Condizione necessaria per la convergenza di una serie

Definizioni necessarie

• Data la successione:

$$a_n: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto a_n$

Si dice **serie**:

$$\sum_{n=0}^{+\infty} a_n$$

- La successione a_n è detta argomento della serie.
- La successione delle somme parziali è così definita:

$$S_N = \sum_{n=0}^{N} a_n$$

• Il carattere (o la natura) della serie è il carattere (o la natura) della sua successione delle somme parziali

Enunciato

Ipotesi

$$\sum_{n=0}^{+\infty} a_n \qquad \text{converge}$$

Tesi

$$\lim_{n \to +\infty} a_n \to 0$$

Dimostrazione

Se $\sum_{n=0}^{+\infty} a_n$ converge allora:

$$L = \lim_{N \to +\infty} S_N$$

Osservazione

Posso definire S_N ricorsivamente:

$$\begin{cases} S_{N+1} = S_N + a_{N+1} \\ S_0 = a_0 \end{cases}$$

Noto che anche:

$$\lim_{N \to +\infty} S_{N+1} = L$$

$$\lim_{N \to +\infty} S_N = L$$

Essendo i due limiti finiti posso fare il limite della loro differenza:

$$\lim_{N \to +\infty} \left(S_{N+1} - S_N \right) = L - L = 0$$

Dalla definizione ricorsiva che ho dato di \mathcal{S}_N posso riscrivere il tutto come:

$$\lim_{N \to +\infty} \left(S_{N+1} - S_N \right) = \lim_{N \to +\infty} \left(S_N + a_{N+1} - S_N \right) = \lim_{N \to +\infty} a_{N+1}$$

Da quanto sopra sappiamo che $\lim_{N\to +\infty} \left(S_{N+1} - S_N\right) \to 0$ quindi:

$$\lim_{N \to +\infty} (S_{N+1} - S_N) = \lim_{N \to +\infty} a_{N+1} \to 0$$

Criterio del Rapporto per la Convergenza delle Serie a termini positivi.

Enunciato

Sia $\Sigma~a_n$ una serie a termini positivi $a_n>0~\forall n$

$$Se \frac{a_{n+1}}{a_n} \longrightarrow l$$
$$n \to +\infty$$

Allora:

$$\begin{cases} se \ l > 1 \text{diverge} \\ se \ l = 1 \text{il criterio non si applica} \\ se \ 0 \leqslant l \leqslant 1 \text{converge} \end{cases}$$

Dimostrazione

Dimostramo il caso per l < 1.

$$b_n = \frac{a_{n+1}}{a_n}$$
 e so che $\lim_{n \to +\infty} b_n = l < 1$
 $\forall B_{\varepsilon}(l) \, \exists n > M$ $b_n \in B_{\varepsilon}(l)$

Scegliamo ε in modo che $l + \varepsilon < 1$ da M in poi.

$$\frac{a_{n+1}}{a_n} = b_n < l + \varepsilon$$

$$a_{n+1} < a_n(l + \varepsilon)$$
 disuguaglianza ricorsiva che vale **definitivamente**
$$a_{M+2} < aM + 1(l + \varepsilon)$$

$$a_{M+3} < aM + 2(l + \varepsilon) < a_{M+1}(l + \varepsilon)^2$$

$$a_{M+4} < aM + 3(l + \varepsilon) < a_{M+1}(l + \varepsilon)^3 \qquad \dots$$

$$a_{M+n+1} < a_{M+1}(l + \epsilon)^n$$

Ho maggiorato definitivamente la serie di partenza con una serie

$$\sum_{n=1}^{+\infty} a_{M+1}(l+\varepsilon)^n$$

Applico il criterio del confronto con la geometrica con ragione

$$-1 < q = l + \varepsilon < 1$$

che *converge*, quindi anche la serie di partenza $\sum^{+\infty} a_n$ converge. c.v.d.

Criterio del confronto per la convergenza di una serie a termini positivi.

Definizioni necessarie

• Data la successione:

$$a_n: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto a_n$

Si dice **serie**:

$$\sum_{n=0}^{+\infty} a_n$$

- La successione a_n è detta argomento della serie.
- La successione delle somme parziali è così definita:

$$S_N = \sum_{n=0}^{N} a_n$$

• Il carattere (o la natura) della serie è il carattere (o la natura) della sua successione delle somme parziali

Enunciato

Ipotesi

Siano:

$$\sum_{n=\dots}^{+\infty} a_n \in \sum_{n=\dots}^{+\infty} b_n$$

tali che:

1.

$$\exists M_1 | \forall n \geqslant M_1, a_n > 0 \land b_n > 0$$

2.

$$\exists M_2 | \forall n \geqslant M_2, a_n \leqslant b_n$$

Tesi

1. Se
$$\sum_{n=...}^{+\infty} a_n$$
 diverge \Rightarrow anche $\sum_{n=...}^{+\infty} b_n$ diverge

2. Se
$$\sum_{n=...}^{+\infty} b_n$$
 converge \Rightarrow anche $\sum_{n=...}^{+\infty} a_n$ converge

Dimostrazione

Parte 1 - Divergenza

Siano $A_N = \sum_{n=...}^N a_n$ e $B_N = \sum_{n=...}^N b_n$. Se $\sum_{n=...}^{+\infty} a_n$ diverge significa che $\lim_{N\to+\infty} A_N = +\infty$ quindi per definizione di limite:

$$\forall B_r(+\infty) \exists R \mid \forall N > R \quad A_N > R$$

Ricordiamo che:

$$a_n \leqslant b_n \qquad (\forall \, n > M_1)$$

Con le sommatorie:

$$\sum_{n=\max(M_1,M_2)}^{+\infty}a_n\leqslant \sum_{n=\max(M_1,M_2)}^{+\infty}b_n$$

$$A_N \leqslant B_N$$

Da cui:

$$\lim_{N \to +\infty} B_N = +\infty$$

$$B_N > R \Rightarrow \text{ Quindi } \sum_{n=0}^{+\infty} b_n \text{ diverge a } + \infty$$

c.v.d.

Parte 2 - Convergenza

Se $\sum_{n=...}^{+\infty} b_n$ converge significa che $\lim_{N\to+\infty} B_N = L$ ovvero per definizoone di limite:

$$\forall B_r(L) \exists M_3 \mid \forall n > M_3 \quad B_N \in B_r(L) \quad L - r \leqslant B_N \leqslant L + r$$

 $A_N \leq B_N$ inoltre A_N, B_N sono monotone, infatti:

$$A_{N+1} = A_N + a_{N+1} e a_{N+1} > 0$$
 perciò $A_{N+1} > A_N$

 A_N è strettamente crescente e limitata (dal valore di L).

$$A_N \leqslant B_N \leqslant L$$

quindi per il teorema fondamentale delle successioni monotone \mathcal{A}_N converge. c.v.d.

Giustificazione della formula di Eulero con l'esponenziale complesso

Definizioni necessarie

• Si ricorda che il **Polinomio di Taylor** $(T_n^f(x))$ è così definito:

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

• Data la funzione:

$$f_k: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f_k(x)$

Si dice **serie di funzioni**:

$$\sum_{k=0}^{+\infty} f_k(x)$$

Un esempio di serie di funzioni è il Polinomio di Taylor esteso $a + \infty$.

- La funzione $f_k(x)$ è detta argomento della serie.
- La successione delle somme parziali è così definita:

$$S_N(x) = \sum_{n=0}^{N} f_k(x)$$

- Il carattere (o la natura) della serie di funzioni è il carattere (o la natura) della sua successione delle somme parziali
- Se:

$$\forall x^* \in [a, b]$$
 $\lim_{N \to +\infty} S_N(x^*) = L(x^*)$

La serie di funzioni converge puntualmente in tutto A = [a, b].

Enunciato

Ridefinendo le funzioni e^x , sin x, cos x nei complessi è possibile verificare la **Formula di Eulero**:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Dimostrazione

Parte 1 - e^z

Consideriamo la seguente serie di funzioni:

$$\sum_{k=-\infty}^{+\infty} \frac{1}{k!} \cdot x^k \qquad x \in \mathbb{R}$$

Questo è lo sviluppo di Mac Laurin di e^x esteso all'infinito. Portiamo ora la serie nei complessi:

$$\sum_{k=-\infty}^{+\infty} \frac{1}{k!} \cdot z^k \qquad x \in \mathbb{C}$$

Verifichiamo se:

- converge puntualmente in $z^* \quad \forall z^* \in \mathbb{C}$
- converge assolutamente puntualmente in z^* $\forall z^* \in \mathbb{C}$

Sappiamo che se converge assolutamente ne seguirà la convergenza semplice. Quindi passiamo a dimostrare che:

$$\sum_{k=\dots}^{+\infty} \left| \frac{1}{k!} \cdot z^k \right| = \sum_{k=\dots}^{+\infty} A_k$$

Applico il criterio del rapporto:

$$\lim_{k \to +\infty} \frac{A_{k+1}}{A_k} = \lim_{k \to +\infty} \frac{\left| (z^*)^{k+1} \right|}{(k+1)k!} \cdot \frac{k!}{\left| (z^*)^k \right|}$$
$$= \lim_{k \to +\infty} \frac{z^*}{k+1} = 0$$

Quindi $\sum_{k=...}^{+\infty} A_k$ converge puntualmente $(\forall z^* \in \mathbb{C})$ e la serie $\sum_{k=...}^{+\infty} \frac{1}{k!} \cdot z^k$ converge assolutamente e semplicemente puntualmente.

Questa serie corrisponde quindi a una funzione di variabile complessa f(z).

Definiamo così la funzione:

$$e^{z} \stackrel{def.}{=} \sum_{k=0}^{+\infty} \frac{1}{k!} \cdot z^{k}$$

Notiamo anche che se $z = x + 0 \cdot i$ abbiamo:

$$e^x = \sum_{k=0}^{+\infty} \frac{1}{k!} \cdot x^k$$

Che altro non è che lo sviluppo di Mac Laurin di e^x esteso a $+\infty$. Abbiamo così definito la funzione esponenziale nei complessi.

Lo stesso tipo di procedimento può essere fatto per altre funzioni elementari.

Parte 2 - $\sin z$

Consideriamo la seguente serie di funzioni:

$$\sum_{k=-}^{+\infty} \frac{(-1)^k}{(2k+1)!} \cdot x^{2k+1} \qquad x \in \mathbb{R}$$

Questo è lo sviluppo di Mac Laurin di $\sin x$ esteso all'infinito. Portiamo ora la serie nei complessi:

$$\sum_{k=-}^{+\infty} \frac{(-1)^k}{(2k+1)!} \cdot z^{2k+1} \qquad x \in \mathbb{C}$$

Verifichiamo se:

- converge puntualmente in z^* $\forall z^* \in \mathbb{C}$
- converge assolutamente puntualmente in z^* $\forall z^* \in \mathbb{C}$

Sappiamo che se converge assolutamente ne seguirà la convergenza semplice. Quindi passiamo a dimostrare che:

$$\sum_{k=...}^{+\infty} \left| \frac{(-1)^k}{(2k+1)!} \cdot z^{2k+1} \right| = \sum_{k=...}^{+\infty} B_k$$

Applico il criterio del rapporto:

$$\lim_{k \to +\infty} \frac{B_{k+1}}{B_k} = \lim_{k \to +\infty} \frac{\left| (-1)^{k+1} \cdot (z^*)^{2(k+1)+1} \right|}{[2(k+1)+1]!} \cdot \frac{(2k+1)!}{|(-1)^k \cdot (z^*)^{2k+1}|}$$
$$= \lim_{k \to +\infty} \frac{(z^*)^2}{(2k+3)(2k+2)} = 0$$

Quindi $\sum_{k=...}^{+\infty} B_k$ converge puntualmente $(\forall z^* \in \mathbb{C})$ e la serie $\sum_{k=...}^{+\infty} \frac{(-1)^k}{(2k+1)!} \cdot z^{2k+1}$ converge assolutamente e semplicemente puntualmente.

Questa serie corrisponde quindi a una funzione di variabile complessa f(z).

Definiamo così la funzione:

$$\sin z \stackrel{\text{def.}}{=} \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} \cdot z^{2k+1}$$

Notiamo anche che se $z = x + 0 \cdot i$ abbiamo:

$$\sin x = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} \cdot x^{2k+1}$$

Che altro non è che lo sviluppo di Mac Laurin di $\sin x$ esteso a $+\infty$. Abbiamo così definito la funzione seno nei complessi.

Parte 3 - $\cos z$

Consideriamo la seguente serie di funzioni:

$$\sum_{k=-\infty}^{+\infty} \frac{(-1)^k}{(2k)!} \cdot x^{2k} \qquad x \in \mathbb{R}$$

Questo è lo sviluppo di Mac Laurin di $\cos x$ esteso all'infinito. Portiamo ora la serie nei complessi:

$$\sum_{k=-\infty}^{+\infty} \frac{(-1)^k}{(2k)!} \cdot z^{2k} \qquad x \in \mathbb{C}$$

Verifichiamo se:

- converge puntualmente in z^* $\forall z^* \in \mathbb{C}$
- converge as solutamente puntualmente in $z^* \qquad \forall \, z^* \in \mathbb{C}$

Sappiamo che se converge assolutamente ne seguirà la convergenza semplice. Quindi passiamo a dimostrare che:

$$\sum_{k=\dots}^{+\infty} \left| \frac{(-1)^k}{(2k)!} \cdot z^{2k} \right| = \sum_{k=\dots}^{+\infty} C_k$$

Applico il criterio del rapporto:

$$\lim_{k \to +\infty} \frac{C_{k+1}}{C_k} = \lim_{k \to +\infty} \frac{\left| (-1)^{k+1} \cdot (z^*)^{2(k+1)} \right|}{[2(k+1)]!} \cdot \frac{(2k)!}{|(-1)^k \cdot (z^*)^{2k}|}$$
$$= \lim_{k \to +\infty} \frac{(z^*)^2}{(2k+2)(2k+1)} = 0$$

Quindi $\sum_{k=...}^{+\infty} C_k$ converge puntualmente $(\forall z^* \in \mathbb{C})$ e la serie $\sum_{k=...}^{+\infty} \frac{(-1)^k}{(2k)!} \cdot z^{2k}$ converge assolutamente e semplicemente puntualmente.

Questa serie corrisponde quindi a una funzione di variabile complessa f(z).

Definiamo così la funzione:

$$\cos z \stackrel{\text{def.}}{=} \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} \cdot z^{2k}$$

Notiamo anche che se $z = x + 0 \cdot i$ abbiamo:

$$\cos x = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} \cdot x^{2k}$$

Che altro non è che lo sviluppo di Mac Laurin di $\cos x$ esteso a $+\infty$. Abbiamo così definito la funzione seno nei complessi.

Parte 4 - La formula di Eulero

Abbiamo ora definito le funzioni e^z , $\sin z$, $\cos z$ in $\mathbb C$ nel modo seguente:

$$e^{z} = \sum_{k=0}^{+\infty} \frac{1}{k!} \cdot z^{k}$$

$$\sin z = \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{(2k+1)!} \cdot z^{2k+1}$$

$$\cos z = \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{(2k)!} \cdot z^{2k}$$

Prendiamo ora $z = i\theta$ (parte reale nulla) avremo:

$$e^{i\theta} = \sum_{k=0}^{+\infty} \frac{1}{k!} \cdot (i\theta)^k$$

$$= \frac{1}{0!} \cdot (i\theta)^0 + \frac{1}{1!} \cdot (i\theta)^1 + \frac{1}{2!} \cdot (i\theta)^2 + \frac{1}{3!} \cdot (i\theta)^3 + \dots \qquad (i^2 = -1)$$

$$= 1 + i\theta - \frac{1}{2}\theta^2 - \frac{1}{3!}\theta^3 i + \frac{1}{4!}\theta^4 + \frac{1}{5!}\theta^5 i + \dots$$

La convergenza assouluta autorizza ad usare le proprietà elementari della somma. Commuto quindi tutti i termini con la i in fondo e gli altri li porto avanti. Ottengo così:

$$e^{i\theta} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} \cdot \theta^{2k} + i \left(\sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} \cdot \theta^{2k+1} \right)$$

Da cui:

$$e^{i\theta} = \cos\theta + i\sin\theta$$