Learning with Approximate Inference

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Learning MN parameters using Gradient Ascent and Belief Propagation
 - Difficulty with exact methods
- Approximate methods
 - Approximate Inference
 - Belief Propagation
 - Sampling-based Learning
 - MAP-based Learning
- Ex: CRF for Protein Structure Prediction

Likelihood function for a Markov Network

• Log-linear form of MN with parameters θ is

$$P(X_1,..X_n;\theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{i=1}^k \theta_i f_i(D_i)\right\}$$

where $\theta = \{\theta_1, ..., \theta_k\}$ are k parameters, each associated with a feature f_i defined over instances of D_i

Where the partition function defined as:

$$Z(\theta) = \sum_{\xi} \exp\left\{\sum_{i} \theta_{i} f_{i}(\xi)\right\}$$

• We wish to find θ that maximizes the Log-likelihood

$$\ell(\theta:D) = \sum_{i} \theta_{i} \left(\sum_{m} f_{i} \left(\xi[m] \right) \right) - M \ln Z(\theta)$$

 $\partial \ell(\theta)$

Gradient-based learning of Undirected PGM

Initialize θ

Goal: Determine parameters θ of Markov Network over variables χ given data set \mathcal{D} with k features f_i

$$P_{\theta}(\chi) = \frac{1}{Z(\theta)} \exp\left[-\sum_{i=1}^{k} \theta_{i} f_{i}(D_{i})\right]$$

Run inference to compute $Z(\theta)$, $E_{\theta}[f_i]$

$$Z(\theta) = \sum_{\xi} \exp\left\{\sum_{i} \theta_{i} f_{i}(\xi)\right\}$$

$$Z(\theta) = \sum_{\xi} \exp\left\{\sum_{i} \theta_{i} f_{i}(\xi)\right\} \qquad E_{\theta}[f_{i}] = \frac{1}{Z(\theta)} \sum_{\xi} f_{i}(\xi) \exp\left\{\sum_{j} \theta_{j} f_{j}(\xi)\right\}$$

Compute gradient of likelihood ℓ

Update
$$\theta$$
 with step size n

step size n

Stop

$$\left| \frac{\partial}{\partial \theta_{i}} \ell \left(\theta; \mathcal{D} \right) = E_{\mathcal{D}}[f_{i}(\chi)] - E_{\theta}[f_{i}] \right| \quad \left| \nabla \ell(\theta) = \frac{d}{d\theta} \ell(\theta) = \left[\frac{\partial \ell(\theta)}{\partial \theta_{i}} \right] \right|$$

$$\boxed{\boldsymbol{\theta}^{t+1} \leftarrow \boldsymbol{\theta}^t + \eta \nabla \ell \big(\boldsymbol{\theta}^t; \boldsymbol{\mathcal{D}}\big)}$$

$$oldsymbol{ heta}^{t+1} - oldsymbol{ heta}^t \leq \delta$$

Method assumes that we are able to compute partition function $Z(\theta)$, which is a sum over all unnormalized probabilities of assignments ξ , and two expectations $E_{\mathcal{D}}[f_i(\boldsymbol{\chi})]$ and $E_{\boldsymbol{\theta}}[f_i]$.

Both $Z(\theta)$ and $E_{\theta}[f_i]$ require inference to compute probabilities of each ξ

Exact Inference: Belief Propagation

1. Gibbs Distribution

$$P(A,B,C.D) = \frac{1}{Z}\phi_1(A,B) \cdot \phi_2(B,C) \cdot \phi_3(C,D) \cdot \phi_4(D,A)$$
where
$$Z = \sum_{A,B,C,D} \phi_1(A,B) \cdot \phi_2(B,C) \cdot \phi_3(C,D) \cdot \phi_4(D,A)$$

Z=7,201,840

Sepset

 $\boxed{\tilde{P}_{_{\Phi}}\!\left(A,B,C,D\right)\!=\phi_{_{\!1}}\!\left(A,B\right)\!\phi_{_{\!2}}\!\left(B,C\right)\!\phi_{_{\!3}}\!\left(C,D\right)\!\phi_{_{\!4}}\!\left(D,A\right)}$

Unormalized Distribution

Cluster C_2

A	ssig	nme		Unnormalized		
a^0	b^0	c^0	d^0	300000		
a^0	b^0	c^0	d^1	300000		
a^0	b^0	c^1	d^0	300000		
a^0	b^0	c^1	d^1	30		
a^0	b^1	c^0	d^0	500		
a^0	b^1	c^0	d^1	500		
a^0	b^1	c^1	d^0	5000000		
a^0	b^1	c^1	d^1	500		
a^1	b^0	c^0	d^0	100		
a^1	b^0	c^0	d^1	1000000		
a^1	b^0	c^1	d^0	100		
a^1	b^{0}	c^1	d^1	100		
a^1	b^1	c^0	d^0	10		
a^1	b^1	c^0	d^1	100000		
a^1	b^1	c^1	d^0	100000		
a^1	b^1	c^1	d^1	100000		

Clique/Cluster C₁

1.A,B,D

 $\{B,D\}$ 2. B,C,D

2. Clique Tree (triangulated):

Initial Potentials:

Each ψ has every factor involving its arguments

$$\begin{aligned} & \psi_1 \left(A, B, D \right) = \phi_1 \left(A, B \right) \phi_2 \left(B, C \right) \phi_3 \left(C, D \right) \phi_4 \left(D, A \right) \\ & \psi_2 \left(B, C, D \right) = \phi_1 \left(A, B \right) \phi_2 \left(B, C \right) \phi_3 \left(C, D \right) \phi_4 \left(D, A \right) \end{aligned}$$

Computing Clique Beliefs (β_i), Sepset Beliefs ($\mu_{i,i}$)

$$\begin{vmatrix} \beta_1 \Big(A, B, D \Big) = \tilde{P}_{\Phi} \Big(A, B, D \Big) = \sum_{C} \psi_1 \Big(A, B, D \Big) = \sum_{C} \phi_1 (A, B) \phi_2 (B, C) \phi_3 (C, D) \phi_4 (D, A) \\ \text{e.g.}, \quad \beta_1 (a^0, b^0, d^0) = 300,000 + 300,000 = 600,000 \end{aligned}$$

$$\begin{aligned} \mu_{1,2}(B,D) &= \sum_{C_1 - S_{1,2}} \beta_1 \Big(C_1 \Big) = \sum_A \beta_1 \Big(A, B, D \Big) \\ \text{e.g., } \mu_{1,2}(b^0, d^0) &= 600,000 + 200 = 600,200 \end{aligned}$$

$$\begin{split} \beta_2 \Big(B, C, D \Big) &= \tilde{P}_{\!_{\Phi}} \Big(B, C, D \Big) = \sum_{A} \mu_{1,2} \Big(B, D \Big) \cdot \psi_2 \Big(B, C, D \Big) = \sum_{A} \psi_2 \Big(B, C, D \Big) \\ e.g., \beta_2 \Big(b^0, c^0, d^0 \Big) &= 300,000 + 100 = 300,100 \end{split}$$

All Clique and Sepset Beliefs

Assignment	\max_C			Assignment	
$a^0 b^0 d^0 $	600,000			$b^0 \mid c^0 \mid d^0$	300.1
$ a^0 b^0 d^1 $	300,030	Assignment	$\max_{A,C}$	$ b^0 c^0 d^1 $	1.300.0
$ a^0 b^1 d^0 $	5,000,500	$b^0 \mid d^0$	600, 200	$ b^0 c^1 d^0 $	300.1
$ a^0 b^1 d^1 $	1,000	$b^0 \mid d^1$	1,300,130	$ b^0 c^1 d^1 $	
$ a^1 b^0 d^0 $	200	$b^1 d^0$	5, 100, 510	$ b^1 c^0 d^0$	
$ a^1 b^0 d^1 $	1,000,100	$b^1 d^1$	201,000	$b^{1} c^{0} d^{1}$	100.3
$ a^1 b^1 d^0 $	100,010			$b^{1} c^{1} d^{0}$	5, 100.
$\begin{vmatrix} a^1 & b^1 & d^1 \end{vmatrix}$	200,000			$b^1 \mid c^1 \mid d^1$	100.3
$\beta_1(A,B)$	(D)	$\mu_{1,2}(I$	$\beta_2(B,$	$\beta_2(B,C,\mathbf{D})$	

 $\tilde{P}_{\!\scriptscriptstyle \Phi}\!\left(\chi\right) \! = \! \frac{\prod\limits_{i \in V_T} \beta_i\!\left(C_i\right)}{\prod\limits_{(i-j) \in E_T} \mu_{i,j}\!\left(S_{i,j}\right)}$

Verifying Inference

$$\begin{split} &\tilde{P}_{\Phi}\left(a^{1},b^{0},c^{1},d^{0}\right) = 100 \\ &\frac{\beta_{1}\left(a^{1},b^{0},d^{0}\right)\beta_{2}\left(b^{0},c^{1},d^{0}\right)}{\mu_{1,2}\left(b^{0},d^{0}\right)} = \frac{200\cdot300\cdot100}{600\cdot200} = 100 \end{split}$$

Example of Computing $E_{\mathcal{D}}[f_i(\chi)]$

 $\chi = \{A, B, C\}$; Pairwise Markov Network A - B

- Variables are binary
- Three clusters: $C_1 = \{A, B\}, C_2 = \{B, C\}, C_3 = \{C, A\}$
 - Log-linear model $P_{\theta}(\chi) = \frac{1}{Z(\theta)} \exp \left[-\sum_{i=1}^{k} \theta_{i} f_{i}(D_{i}) \right]$ with two features:
 - $f_{00}(x,y)=1$ if x=0, y=0 and 0 otherwise and
 - $f_{11}(x,y)=1$ if x=1, y=1 and 0 otherwise

Both shared over all clusters

- Assume we have three data instances (A,B,C):
- $(0,0.0) \rightarrow$ Cluster AB, Cluster BC, Cluster CA have $f_{00}(x,y)=1$
- (0,1,0) →Only Cluster CA has $f_{00}(x,y)=1$
- (1,0,0) → Only Cluster BC has $f_{00}(x,y)=1$
 - Unnormalized empirical feature counts, pooled over all clusters: $E_{\tilde{z}} \lceil f_{zz} \rceil = (3+1+1)/3 = 5/3$ Can normalize using counts

$$\begin{aligned} E_{\tilde{P}} \left[f_{00} \right] &= (3+1+1) / 3 = 5 / 3 \\ E_{\tilde{P}} \left[f_{11} \right] &= (0+0+0) / 3 = 0 \end{aligned}$$

Can normalize using counts over all features i.e., (5/3)+0

Difficulty with Exact Methods

- Exact Parameter Estimation Methods assume ability to compute
 - 1. Partition function $Z(\theta)$ and
 - 2. Expectations $E_{P_{\theta}}[f_i]$
- In many applications structure of network does not allow exact computation of these terms
 - In image segmentation, grid networks lead to exponential size clusters for exact inference

Cluster graph is clique tree with overlapping factors

Discussion on Approximate Methods

1. In this section: approximate inference

- Decouple inference from Learning Parameters
 - Inference is a black-box
- But approximation may interfere with learning
 - Non-convergence of inference can lead to oscillating estimates of the gradient & no learning convergence

2. Next section: approximate objective function

- Whose optimization doesn't require much inference
- Approximately optimizing the likelihood function can be reformulated as exactly optimizing an approximate objective

Approximate Inference

- Learning with Approximate Inference methods
 - 1. Belief Propagation
 - 2. MAP-based Learning

Approximate Inference: Belief Propagation

- Popular Approach for Approximate Inference is Belief Propagation and its variants
 - An algorithm from this family would be used for inference in the model resulting from the learning procedure
- We should use the same inference algorithm that will be used for querying it
 - Model trained with same inference algorithm is better than model trained with exact inference!
- BP is run with each iteration of Gradient Ascent to compute expected feature count $E_{P_{\theta}}[f_i]$ 10

Difficulty with Belief Propagation

- In principle, BP is run in each Gradient Ascent iteration
 - to compute $E_{P_{\theta}}[f_i]$ used in gradient computation
 - Due to family preservation property each feature must be a subset of a cluster C_i in the cluster graph
 - Hence to compute $E_{P_{\theta}}[f_i]$ we can compute BP marginals over C_i
- But BP often does not converge
 - Marginals derived often oscillate
 - Final results depend on where we stop
 - As a result gradient computed is unstable
 - Hurt convergence properties of gradient descent
 - Even more severe with line search

Convergent alternatives to Belief Propagation

We describe three BP methods:

- 1. Pseudo- moment matching
 - Reformulate task of learning with approximate inference as optimizing an alternative objective
- 2. Maximum Entropy approximation (CAMEL)
 - General derivation that allows us to reformulate ML with BP as a unified optimization problem with an approximate objective
- 3. MAP-based Learning
 - Approximate expected feature counts with their counts in the single MAP assignment in current MN

Pseudo-moment Matching

- Begin with analysis of fixed points in learning
 - Converged BP beliefs must satisfy $E_{\beta_i(C_i)}[f_{C_i}] = E_D[f_i(C_i)]$
 - Or $\beta_i \left(c_i^j \right) = \hat{P} \left(c_i^j \right)$ Convergent point is a set of beliefs that match the data
- Define for each sepset $S_{i,j}$ between C_i and C_j

$$\phi_i \leftarrow \frac{\beta_i}{\mu_{i,j}}$$

$$C_1: A,B,D$$

$$S_{12} = \{B,D\}$$

$$C_2: B,C,D$$

- We use the final set of potentials as the parameterization of the Markov Network
- Provides a closed-form solution for both inference and learning
 - Cannot be used with parameter regularization, nontable factors or CRFs

BP and Maximum Entropy

- A more general derivation that allows us to reformulate maximum likelihood learning with belief propagation as a unified optimization problem with an approximate objective
- Opens door to use of better approximation algorithms
- Start with dual of maximum-likelihood problem

Tractable Max Entropy

- Assume a cluster graph U consisting of
 - a set of clusters $\{C_i\}$ connected by sepsets S_{ij} .
- Rather than optimize maximum-entropy
 - over the space of distributions Q we optimize

$$H_{Q}(\chi) \approx \sum_{C_{i} \in U} H_{\beta_{i}}(C_{i}) - \sum_{C_{i} - C_{j} \in S} H_{\mu_{i,j}}(S_{i,j})$$

This is exact for tree cluster graph but approx otherwise

Approx-Maximum-Entropy:

$$\begin{array}{ll} \mathbf{Find} \;\; Q(\; \pmb{\chi}\;) \\ \mathbf{Maximizing} \;\; \sum_{C_i \in U} H_{\beta_i} \Big(C_i \Big) - \sum_{C_i - C_j \in U} H_{\mu_{i,j}} \Big(S_{i,j} \Big) \end{array}$$

Subject to
$$E_Q[f_i] = E_D[f_i], i=1,..., k$$
 $Q \in Local(U)$

Approximation is exact when cluster graph is a tree
 Method known as CAMEL (Constrained Approx Max Entropy Learning)

Example of Max Ent Learning

- Pairwise Markov Network A—B—C
 - Variables are binary
 - Three clusters: $C_1 = \{A,B\}, C_2 = \{B,C\}, C_3 = \{C,A\}$
 - Log-linear model with features
 - $f_{00}(x,y)=1$ if x=0, y=0 and 0 otherwise for x,y, instance of C_i
 - $f_{11}(x,y)=1$ if x=1, y=1 and 0 otherwise
 - Three data instances (A,B,C): (0,0.0),(0,1,0),(1,0,0)
 - Unnormalized Feature counts, pooled over all clusters, are $E_{\tilde{p}}[f_{00}] = (3+1+1)/3 = 5/3$

$$E_{\tilde{P}}[f_{11}] = (0+0+0)/3 = 0$$

CAMEL Optimization Problem

- Optimization problem takes the form
 - with two types of constraints:

Type 1 Constraints:

$$E_{Q}[f_{i}]=E_{D}[f_{i}], i=1,..,k$$

Type 2 Constraints: Marginals from Cluster-graph approximation

CAMEL Solutions

- CAMEL optimization is a constrained maximization problem with
 - linear constraints and
 - a nonconcave objective
- Several solution algorithms, one of which is
 - Lagrange multipliers for all constraints and optimize over resulting new variables

Sampling-based Learning

We wish to maximize the log-likelihood

$$\ell(\theta:D) = \sum_{i} \theta_{i} \left(\sum_{m} f_{i} (\xi[m]) - M \ln Z(\theta) \right)$$

 In the sampling-based approach we use samples to estimate the partition function Z(θ) and use that estimate to perform gradient ascent

Expressing $Z(\theta)$ as an expectation

- Partition function $Z(\theta)$ is a summation over an exponentially large space
 - One approach to approximating this summation is to reformulate as expectation wrt a distribution $Q(\chi)$

$$Z(\theta) = \sum_{\xi} \exp\left\{\sum_{i} \theta_{i} f_{i}(\xi)\right\}$$

$$= \sum_{\xi} \frac{Q(\xi)}{Q(\xi)} \exp\left\{\sum_{i} \theta_{i} f_{i}(\xi)\right\}$$

$$= E_{Q} \left[\frac{1}{Q(\chi)} \exp\left\{\sum_{i} \theta_{i} f_{i}(\chi)\right\}\right] \quad \text{Since } E_{Q} \left[g(\chi)\right] = \sum_{\xi} Q(\xi) g(\xi)$$

Since
$$E_Q[g(\chi)] = \sum_{\xi} Q(\xi)g(\xi)$$

 This is precisely the form of importance sampling estimator 20

Importance sampling

• To determine $E_p[f] = \frac{1}{M} \sum_{m=1}^M f(\mathbf{z}^{[m]})$ from $p(\mathbf{z})$, we draw samples $\{\mathbf{z}^{(m)}\}$ from a simpler dist. $q(\mathbf{z})$

$$E[f] = \int f(z)p(z)dz$$

$$= \int f(z)\frac{p(z)}{q(z)}q(z)dz$$

$$= \frac{1}{M}\sum_{m=1}^{M}\frac{p(z^{(m)})}{q(z^{(m)})}f(z^{(m)})$$

Unlike rejection sampling All of the samples are retained

- Samples are weighted by ratios $r_l = p(\mathbf{z}^{(l)}) \ / \ q(\mathbf{z}^{(l)})$
 - Known as importance weights
 - Which corrects the bias introduced by wrong distribution

Importance Sampling Estimator

- We can approximate the partition function by generating samples from Q and correcting appropriately via weights
- We can simplify this expression by choosing Q to be P_{θ^0} for some set of parameters θ^0

$$\begin{split} Z\!\left(\theta\right) &= E_{P_{\theta^0}}\!\left[\frac{Z\!\left(\theta^0\right) \! \exp\left\{\! \sum_i \theta_i f_i\!\left(\chi\right)\!\right\}}{\exp\left\{\! \sum_i \theta_i^0 f_i\!\left(\chi\right)\!\right\}} \right] \\ &= \! Z\!\left(\theta^0\right) \! E_{P_{\theta^0}}\!\left[\exp\left\{\! \sum_i \left(\theta_i - \theta_i^0\right) \! f_i\!\left(\chi\right)\!\right\} \right] \end{split}$$

Samples to approximate $\ln Z(\theta)$

- If we can sample instances $\xi^1,...\xi^K$ from P_{θ^0}
 - We can approximate the log-partition function as

$$\left|\ln Z\!\left(\theta\right) \approx \ln\!\left(\frac{1}{K}\!\sum_{k=1}^{K}\exp\left\{\!\sum_{i}\!\left(\theta_{i}-\theta_{i}^{0}\right)\!f_{i}\!\left(\xi^{k}\right)\!\right\}\!\right)\!+\ln Z\!\left(\theta^{0}\right)\right|$$

• We can plug this approximation of $\ln Z(\theta)$ into the log-likelihood $\frac{1}{M}\ell(\theta:D) = \sum_{i} \theta_{i} \left(E_{D}[f_{i}(d_{i})] \right) - \ln Z(\theta)$

and optimize it

• Note that $\ln Z(\theta^0)$ is a constant

where $E_D[f_i(\mathbf{d_i})]$ is the empirical expectation of f, i.e., its average in the data set

– that we can ignore in the optimization and the resulting expression is a simple function of θ which can be optimized using gradient ascent

Gradient ascent + Sampling

• Gradient ascent over θ relative to

$$\left|\ln Z\!\left(\theta\right) \approx \ln\!\left(\frac{1}{K}\!\sum_{k=1}^{K}\exp\!\left\{\!\sum_{i}\!\left(\theta_{i}-\theta_{i}^{0}\right)\!f_{i}\!\left(\xi^{k}\right)\!\right\}\!\right)\!+\ln Z\!\left(\theta^{0}\right)\right|$$

 is equivalent to utilizing an importance sampling estimator directly to approximate the expected counts in the gradient of equation

$$\left| \frac{\partial}{\partial \theta_i} \frac{1}{M} \ell(\theta : D) = E_D[f_i(\chi)] - E_{\theta}[f_i] \right|$$

 However, it is generally it is useful to view such methods as exactly optimizing an approximate objective rather than approximately optimizing the exact likelihood

Quality of importance sampling estimator

- It depends on the difference between $\, heta \,$ and $\, heta \,$ $\, heta \,$
- The greater the difference, the larger the variance of the importance weights
- Thus this type of approximation is reasonable only in a neighborhood of surrounding $\theta^{\,0}$

How to use this approximation?

- Iterate between two steps
 - 1. Use a sampling procedure to generate samples from current parameter set θ^{t}
 - 2. Then use gradient descent to find θ^{t+1} that improves the approximate log-likelihood based on the samples
 - We can then regenerate samples and repeat the process.
 - As the samples are regenerated from a new distribution,
 - we can hope that that they are generated from a distribution not too far from the one we are currently optimizing maintaining a reasonable approximation

MAP-based Learning

- Another approach to inference in learning
 - Approximating expected feature counts with the counts in the single MAP assignment to current MN
- Approximate gradient at assignment θ is

$$E_D [f_i(\chi)] - f_i(\xi^{MAP}(\theta))$$

- where $\xi^{MAP}(\theta)$ = arg max $\xi P(\xi \mid \theta)$ is the MAP assignment given the current set of parameters θ
- Approach also called as Viterbi training
- Equivalent to exact optimization of approximate objective $\frac{1}{M}\ell(\theta:D) - \ln P(\xi^{MAP}(\theta)|\theta)$

Ex: CRFs for Protein Structure

- Predict the 3_D structure of proteins
 - Proteins are chains of residues, each containing one of 20 possible amino acids
 - Amino acids are linked together into a common backbone structure onto which amino-specific side-chains are attached
 - Predict the side-chain conformations given the backbone.
 - Full configuration consists of upto four angles each of which takes on a continuous value
 - Discretize angle into a small no (3) rotamers
- Address optimization as MAP for CRF