K-Nearest Neighbors (KNN)

- -> KNN is a simple ML Algorithm used for classification and Regression tasks
- The main i dea behind KNN is to clasify a data points based on the majority class of its neighboring data points.
 - O Clasification D Regrussion

- D Initialize 1 K 7 0

 K=1,2,3,4,5---
- @ Find the K-Neaust Neighbor from the test Data
- (3) K=5, majority of class

HOW KNN WORLS ->

- O collect the Data
- \bigcirc $\langle \zeta = 3 \rangle$

* The second sec

2) Dustance Metriles

Eullidean

Manhodan Jirkance

- 4) Find Nearest Neighbours
- 6 (ount votes (majoriety)
 - Peudi ction

Euclidian destance

$$(x_{1}, y_{1})$$
Dust ance = $\int (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$

$$= \int (x_{2} - x_{1})^{2} + (y_{1} - y_{1})^{2} + (z_{2} - z_{1})^{2}$$

$$x_{1}, x_{1}, x_{3} - - x_{n}$$

$$y_{1}, y_{1}, y_{3} - y_{n}$$
dean distance = $\int (x_{1} - y_{1})^{2}$

This distance metric is intuitive and measures the straight-line distance between two points in space.

Manh atlan Distance

taxi cab / block distance

$$= |x_2 - x_1| + |y_2 - y_1|$$

Euclidean distance measures the shortest straight-line path between two points, while Manhattan distance measures the distance along the grid lines. \Rightarrow Euclidean distance is often used when the data points are continuous and can be represented in a Cartesian plane, whereas Manhattan distance is useful when dealing with data points in a grid-like structure, such as images or maps. 7 Euclidean distance is sensitive to outliers, while Manhattan distance is less sensitive since it measures the sum of absolute differences. Large Dataset Complexity KNN & (Auto) Ball Tree KD Tree / Reducing the number of destance Calculation