PROJET 6 – « CLASSIFIEZ AUTOMATIQUEMENT DES BIENS DE CONSOMMATION »

Soutenance de projet 19 Février 2020

Sommaire

 Rappel de la problématique et présentation du jeu de données

II. API, Prétraitements et clustering

III. Conclusion sur la faisabilité du moteur de classifications et recommandations

I - PROBLÉMATIQUE

Rappel de la problématique

Présentation du jeu de données

Classer automatiquement des articles

- Contexte : « Place de marché » : plateforme ecommerce.
- Moyen : Automatisation de l'attribution des catégories aux articles
- Objectif: améliorer l'expérience utilisateur et fiabiliser la catégorisation
- But du projet : étudier la faisabilité de cette catégorisation :
 - Extraction de données depuis une API
 - Analyse et prétraitement du jeu de données : visuelles / textuelles
 - Clustering

Etude de faisabilité : processus

Prétraitement des données

- Données textuelles
- Données visuelles

Essais de classification supervisée

- Données textuelles
- Données visuelles

Essais de classification non supervisée

- Données textuelles
- Données visuelles

Assemblage des données et Essais de classification non supervisée

Jeu de données

- 1050 articles
- 15 colonnes par article:
 - Identifiant : id, nom, catégorie de produit, marque, description
 - Prix / prix soldé
 - Note du produit,
 - Image
 - etc.

- Bracelets de montre
- Vases
- Linge de lit
- Batteries d'ordinateur
- Etc.

II – API, PRETRAITEMENTS ET CLUSTERING

Données textuelles

Données Visuelles

Modélisations effectuées

Données complémentaires : API Amazon

 Exemple : extraction de données pour un type d'article absent de la base de données : sacs à main

Requete d'extraction :

```
http://webservices.amazon.com/onca/xml?
Service=AWSECommerceService&
AWSAccessKeyId=[AWS Access Key ID]&
AssociateTag=[Associate ID]&
Operation=ItemSearch& #recherche d'article
Keywords=handbag& #titre du produit
VariationPage=1& #première page uniquement
Sort=salesrank #tri en fonction des produits qui se vendent le plus en premier
```

Données textuelles : prétraitement

Traitements successifs (librairie NLTK)

Exemple

====== LOWERCASE ======

nt', 'quarantee']

Buy Epresent Mfan 1 Fan USB USB Fan for Rs.219 online. Epresent Mfan 1 Fan USB USB Fan at best prices with FREE sh ipping & cash on delivery. Only Genuine Products. 30 Day Replacement Guarantee.

15 replacement 0.048849

==== TF-IDF ====

fan 0.636882

31.9%

Répartition

catégories

du jeu de

données

complet

Curtains & Accessories

Bath Linen

Fragrances

Coffee Mugs

des

Données textuelles : catégorisation

Classifieur supervisé (Essai avec SVC) :

- Création d'une nouvelle feature « catégorie niveau 2 » à partir des données (62 catégories)
- Accuracy sur jeu test : 79 %

Classifieurs non supervisés

Réduction de dimension : Latent Dirichlet Allocation avec 62 catégories
 Affichage des 10 mots les plus importants de chaque topic –

Topic #0: perucci decker resistant wine easy stylish watche comfortable beautifull island

Topic #1: watch offer cushion cover black home taste strap 5 geometric

Topic \$2: double sheet bedsheet cm warranty cotton apple adapter macbook laptop

Topic #3: ceramic prithish mug delivery shipping genuine cash product free buy

Topic #4: wooden 299 17 mediterranean sea lucky ship ii part handcrafted

Topic #5: skin laptop print shape set combo pad mouse warranty multicolor

Kmeans (après ACP) :
 Non concluante

Evolution de la somme des inerties en

Coefficient de silhouette moyen en fonction du nombre de clusters

14.4%

Bed Linen

8.4%

Laptop Accessories

Infant Wear

Showpieces

Network Components

Données visuelles : extraction de features

- Pré-traitement
 - (1) Noir et Blanc
 - (2) Réduction bruit (flou gaussien)
 - (3) Egaliseur
 - (4) Redimensionnement
- Extraction de features (Exemple avec SIFT/SURF)

Données visuelles : extraction de features

Création de features à partir des informations

- Obtention d'un array « creux » : 1000 5000 10000 15000 20000 25000 30000
- Création de nouvelles colonnes à partir des descripteurs:
 - Min, max, médiane, variance, moments d'ordre 3 et 4

Données visuelles : classification

- Classification après extraction des features
 - Kmeans après ACP : Non concluant

Données visuelles : Réseaux de neurones

Construction d'un réseau de neurone convolutif simple

```
1 model = Sequential()
              2 model.add(Conv2D(32, kernel size=(3,3), padding='same', activation='relu', input shape=(128,128,3,)))
              3 model.add(MaxPooling2D(pool size=(2,2)))
                model.add(Conv2D(32, kernel size=(3,3), padding='same', activation='relu'))
              5 model.add(MaxPooling2D(pool size=(2,2)))
              6 model.add(Flatten())
                model.add(Dense(ohe.categories [0].shape[0], activation='softmax'))
              8 model.compile(loss='mean squared error', optimizer='sgd')
        Convolution
                                                    Convolution
                              Maxpooling
                                                                           Maxpooling
                                                                                                    Flatten
                                                                                                                          Dense
128x128x3
                    128x128x32
                                             64x64x32
                                                                                        32x32x32
                                                                                                                32768
                                                                                                                                      57
                                                                   64x64x32
```

Entraînement supervisé

```
model.fit(train_array_cnn, train_array_cats, epochs=3, batch_size=40, verbose=2)
```

- Accuracy score: 8 %
- Classification de tout le jeu de test dans la catégorie la plus représentée : non concluant

Données visuelles : Réseaux de neurones

- Transfer Learning (ImageNet VGG16):
 - Substitition dernières couches par couche Dense
 - Préparation des données:
 - Redimensionnement 224 x 224
 - Onehotencoding catégories
 - Entraînement du réseau : probabilité d'appartenance à chaque catégorie : exemple pour 3 images

Assemblage données visuelles et textuelles

- Export / import des données
- Dimensions des données à assembler
 - Tableau données textuelles: (1050 lignes, 651 colonnes)
 - Nouvelles features Descripteurs : (1050 lignes, 6 colonnes)
 - Réseau de neurone Imagenet : (1050 lignes, 57 colonnes)
- Fort déséquilibre entre dimensions des données textuelles et visuelles:
 - ⇒ Réduction de dimension des données textuelles par ACP : 341 colonnes avec 80 % de variance
- Assemblage: obtention d'un array de 1050 lignes x 404 colonnes
- Classification non supervisée

III – CONCLUSIONS ET RECOMMANDATIONS

Résultats obtenus

Résultats du clustering (Kmeans + T-SNE pour

visualisation)

Voir graphe dynamique

- Clustering non supervisé : résultat non concluant
- Alternative envisageable : apprentissage supervisé

Aller plus loin

- Taille du jeu de données : appels à l'API
- Stopwords NLP: vocabulaire du e commerce
- Transfer learning sur données textuelles (e.g. BERT)
- Obtention d'un jeu de données labelisé :
 - Collecte de donnée sur le site ou obtention externe
 - Déploiement dans un second temps

MERCI DE VOTRE ATTENTION