Tutorial Sheet: 1

Course Code : BMAT101L Course Title : CALCULUS

Module 5: Special Functions

EASY

- 1. Prove that $\beta(m, n) = \beta(m + 1, n) + \beta(m, n + 1)$.
- 2. Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta} d\theta$.

Solution:
$$\frac{\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})}{2}$$
.

3. Evaluate $\int_0^\infty \frac{x^c}{c^x} dx$ using Gamma function

Solution:
$$\frac{\Gamma c+1}{log c(c+1)}$$

- 4. Prove that $\int_0^1 x^m (\log x)^n dx = \frac{(-1)^n n!}{(m+1)^{n+1}}$, where n is a positive integer and m > -1. Hence evaluate $\int_0^1 x (\log x)^3 dx$.
- 5. Find $\iint_D x^{l-1} y^{m-1} dx dy$, where *D* is the domain $x \ge 0, y \ge 0$ and $x + y \le h$

Solution: $\frac{\Gamma(l)\Gamma(m)}{\Gamma(l+m+n)}h^{l+m}$

MODERATE

- 6. Show that $\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$. (Hint:Put $x = \frac{1}{1+y}$)
- 7. Show that $\int_{0}^{\pi/2} \sqrt{(\sin \theta)} d\theta \times \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{(\sin \theta)}} = \pi.$
- 8. Find $\int_0^\infty x e^{-x^8} dx \int_0^\infty x^2 e^{-x^4} dx$

Solution: $\frac{\pi}{16\sqrt{2}}$

9. Evaluate $\iiint_V x^{\alpha-1}y^{\beta-1}z^{\gamma-1}dxdydz$, where V is the region in the first octant bounded by the sphere $x^2+y^2+z^2=1$ and the coordinate planes.

Solution:
$$\frac{1}{8} \frac{\Gamma(\frac{\alpha}{2})\Gamma(\frac{\beta}{2})\Gamma(\frac{\gamma}{2})}{\Gamma(\frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2} + 1)}$$

10. Show that the area in the first quadrant enclosed by the curve $\left(\frac{x}{a}\right)^{\alpha} + \left(\frac{y}{b}\right)^{\beta} = 1$, $\alpha > 0$, $\beta > 0$ is given by

$$\frac{ab}{\alpha+\beta} \cdot \frac{\Gamma\left(\frac{1}{\alpha}\right)\Gamma\left(\frac{1}{\beta}\right)}{\Gamma\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)}$$

HARD

- 11. Show that $\int_{b}^{a} (x-b)^{m-1} (a-x)^{n-1} dx = (a-b)^{m+n-1} \beta(m,n)$. (Hint:Put $x = \frac{y-b}{a-b}$)
- 12. Prove that $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$, where n is a positive integer and m > -1. Hence evaluate $\int_{0}^{1} x (\log x)^{3} dx$.

Solution:
$$-\frac{3}{8}$$
.

13. Find n^{th} derivative of x^k $(\frac{d^n(x^k)}{dx^n})$. Express the result in factorial and generalise using Gamma function. Hence deduce $\frac{d^{5/2}}{dx^{5/2}}x^4$ using Gamma function.(Hard)

Solution:
$$\frac{32x^{3/2}}{\sqrt{\pi}}$$
.

14. Hard. Find the mass of an octant the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, the density at any point being $\rho = kxyz$.

Solution:
$$\frac{ka^2b^2c^2}{48}$$

15. Show that $\int \int x^{m-1} y^{n-1} dx dy$ over the positive quadrant of the ellipse $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ is

$$\frac{a^m b^n}{2n} \cdot \beta \left(\frac{m}{2}, \frac{n}{2} + 1 \right)$$