NALAIYA THIRAN - IBM PROJECT REPORT

(19EC406T - Professional Readiness for Innovation, Employability and Entrepreneurship)

ON

SMART FARMERS-IOT ENABLED SMART FARMING APPLICATION

Submitted by

TEAM ID: PNT2022TMID23510

PARVEEN REHANA	(113219041080)
----------------	----------------

NANDHINI.V (113219041072)

THANYA.V (113219041124)

SWETHA.P (113219041122)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

ELECTRONICS AND COMMUNICATION ENGINEERING

VELAMMAL ENGINEERING COLLEGE, CHENNAI-66.

(An Autonomous Institution, Affiliated to Anna University, Chennai)

2022-2023

VELAMMAL ENGINEERING COLLEGE CHENNAI -66

(An Autonomous Institution, Affiliated to Anna University, Chennai)

BONAFIDE CERTIFICATE

Certified that this NALAIYA THIRAN – IBM PROJECT REPORT "SMART FARMERS-IOT ENABLED SMART FARMING APPLICATION" is the Bonafide work of "PARVEEN REHANA (113219041080), NANDHINI V (113219041072), SWETHA P (113219041122), THANYA V (113219041124)" carried out in "PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP (NALAIYA THIRAN-IBM PROJECT)" during the Academic Year 2022-2023.

FACULTY EVALUATOR

HEAD OF THE DEPARTMENT

Mrs.Kalaimathi R

Dr.S.Mary Joans

Assistant Professor I

Professor and Head

Dept. of Electronics and Communication Engineering Dept. of Electronics and Communication Engineering

Velammal Engineering College

Velammal Engineering College

Chennai-600 066

Chennai-600 066

CERTIFICATE OF EVALUATION

College Name : Velammal Engineering College

Department : Electronics & Communication Engineering

Semester : VII Semester

PROJECT MEMBERS	TITLE OF THE PROJECT	MENTOR
1.PARVEEN REHANA (113219041080) 2.NANDHINI.V (113219041072) 3.THANYA.V (113219041124) 4.SWETHA.P (113219041122)	SMART FARMERS-IOT ENABLED SMART FARMING APPLICATION	Mrs.KALAIMATHI R ASSISTANT PROFESSOR I (ECE)

The report of the project work submitted by the above students in the partial fulfillment for the award of Bachelor of Engineering Degree in **ELECTRONICS AND COMMUNICATION ENGINEERING** of Anna University, Chennai was evaluated and confirmed to be the report of the work done by the above students and then evaluated.

Submitted for Internal Evaluation held on _/___/2022.

MENTOR EVALUATOR

ABSTRACT

Agriculture, a \$2.4 trillion industry, is a foundation of economies worldwide. Factors such as climate change, population growth and food security concerns have propelled the industry into seeking more innovative approaches to protecting and improving crop yield. As a result, artificial intelligence is steadily emerging as part of the industry's technological evolution. This project is development of Iot enabled mobile application which monitor soil, field, climate, crop, irrigation and gives information to the farmers irrespective of the location of the farmers.

This project reduce the burden for the farmers and make farming as a easy task. IoT-based agriculture system helps the farmer in monitoring different parameters of his field like soil moisture, Temperature, humidity using some sensors. Farmers can monitor all the sensor parameters by using a web or mobile application even if the farmer is not near his field. Watering the crop is one of the important tasks for the farmers. They can make the decision whether to water the crop or postpone it by monitoring the sensor parameters and controlling the motor pumps from the mobile application itself.

S.NO		TITLE	PAGE NO.
1		INTRODUCTION	
	1.1	Project overview	7
	1.2	Purpose	9
2		LITERATURE SURVEY	
	2.1	Existing problems	11
	2.3	Problem statement and definition	12
3		IDEATION & PROPOSED SOLUTION	
	3.1	Empathy Map Canvas	14
	3.2	Ideation & Brainstorming	15
	3.3	Proposed Solution	16
	3.4	Problem Solution fit	18
4		REQUIREMENT ANALYSIS	
	4.1	Functional requirement	19
	4.2	Non-Functional requirements	20
5		PROJECT DESIGN	
	5.1	Data Flow Diagrams	21
	5.2	Solution & Technical Architecture	22
	5.3	User Stories	23
6		PROJECT PLANNING &SCHEDULING	
	6.1	Sprint Planning & Estimation	25
	6.2	Sprint Delivery Schedule	25
	6.3	Reports from JIRA	27
7		CODING & SOLUTIONING	
	7.1	Configuration Of the IBM Watson IOT Platform and A Device	29
	7.2	Creation Of Node Red Service	31
	7.3	Creation Of Website Dashboard	33
8		TESTING	
	8.1	Test Cases	37
	8.2	User Acceptance Testing	38
9		RESULTS	
	9.1	Performance Metrics	39
10		ADVANTAGES & DISADVANTAGES	40
11		CONCLUSION	41
12		FUTURE SCOPE	42
13		REFERENCE	43
14		APPENDIX	44
		SOURCE CODE	45
		GITHUB & PROJECT DEMO LINK	45

INTRODUCTION

The impartial of this outline is to proposed IOT based Smart Farming System which will enable farmers to have live data of soil moisture environment temperature at very low cost so that live monitoring can be done. After the examination showed that every crop field has different characteristics that can be measured separately in terms of both quality and quantity. Critical characteristics. like soil type. nutrient presence, flow of irrigation, pest resistance, etc., define its suitability and capability for a specific crop. Considering the standard farming procedures, farmers need to computing the agriculture plots frequently throughout the crop life to have a better idea about the crop conditions. For this, the need of smart agriculture arises, as 70% of farming time is spent monitoring and understanding the crop states. instead of doing actual field work.

Wireless sensors are facilitating the monitoring of crops constantly with higher accuracy and are able to, most importantly, detect early stages of unwanted state. This is the purpose of that why modern agriculture involves the usage of smart tools and kits, from sowing to crop harvesting and even during storage and transportation. Timely reporting using the value of sensors that makes the entire operation not only smart but also cost effective due to its precise monitoring capabilities. Different of autonomous tractors, harvesters, robotic weeders, drones, and satellites currently complement agriculture equipment. Sensors can be of the installed and start collecting data in a short time, which is then available for further analyses immediately.

1.1 PROJECT OVERVIEW

Agriculture has always been the backbone of any economic development. To promote further growth of agriculture, it must be integrated with modern practices and technologies. With the wide spread acceptance of technology, it can be used in farming to make farmers perform their activity with ease. Electronics and IoT has found its application in many of the personal assistant devices. This can be extended to many vital fields like agriculture where their assistants can help solve many issues faced. Electronics can help devices get physically connected with their operational environment and analyse and collect data. IoT can help analyse and transfer the data to the user. The combination of these gives rise to an all-in-one device capable of carrying out a task.

IoT-based agriculture system helps the farmer in monitoring different parameters of his field like soil moisture, Temperature, humidity using some sensors. Farmers can monitor all the sensor parameters by using a web or mobile application even if the farmer is not near his field. Watering the crop is one of the important tasks for the farmers. They can make the decision whether to water the crop or postpone it by monitoring the sensor parameters and controlling the motor pumps from the mobile application itself.

1.2 PURPOSE

In recent times, the erratic weather and climatic changes have caused issues for farmers in predicting the perfect conditions to initiate farming. Though on a superficial scale it seems unpredictable, it can be determined with certain parameters with which crop planning can be done. Maintenance of farm fields during and after cultivation are also important. These can be performed by measuring soil moisture, humidity and temperature. Page 4 of 43 Measurement of these parameters are performed using physical sensors. This system is in turn connected to IoT system which can provide a easy to access interface for farmers to read, analyze and take action based on the presented condition. Taking it a step ahead, the system can also gain access to motors and other electrical equipment used in farming and automate their operation. This can help with unsupervised operation ensuring accuracy and lesser response time.

The smart agriculture model's main aim to avoid water wastage in the irrigation process. It is low cost and efficient system Is shown below. It includes Node MCU, Arduino Nano, sensors like soil moisture and Dht11, solenoid valves, relays.

LITERATURE SURVEY

2.1 LITERATURE SURVEY

1.IOT BASED SMART FARMING SYSTEM - YASIR FAHIM

Agriculture IOT system accurately monitors various parameters like warehouse temperature, shipping transportation management system and also integrates cloud-based recording systems. IoT enables easy collection and management of tons of data collected from sensors and with integration of cloud computing services like Agriculture fields maps, cloud storage etc., data can be accessed—live from anywhere—and everywhere—enabling live monitoring and—end to end—connectivity—among all the—parties concerned. it needs to fetch more data with regard to pest control and also integrating GPS module in this system in enhancing the product.

2. SMART FARMING STICK DR.C.K. GOMATHY, MR.C. SAIGANESH, MR.B. SAIKIRAN

Smart Farming IoT Based Agriculture Stick for Live Monitoring of Temperature and Soil Moisture has been proposed using Node MCU Chip, Wifi Module and various other Hardware Devices. The stick has high efficiency and accuracy in fetching the live data of temperature, humidity and soil moisture. Smart farming based agriculture IoT stick is regarded as IoT gadget focusing on live monitoring of environmental data in terms of temperature, moisture and other types depending on sensors integrated with it. it requires an unlimited or continuous internet connection to be successful. This means that in rural communities, especially in the developing countries where we have mass crop production, it is completely impossible to operate this farming method.

3.SMART AGRI FOOD PROJECT -ESTHER MIETZSCH, DANIEL MARTINI, WOLFGANG.

Identifying and developing smart agri-food-specific capabilities and conceptual prototypes, demonstrating critical technological solutions Development of a practical service pilot would be beneficial, management and maintenance are challenges. The smart farming based equipments require farmers to understand and learn the use of technology that is complex.

4. IOT-EQUIPPED AND AI-ENABLED NEXT GENERATION SMART AGRICULTURE-SAMEER QAZI

This enables efficient management of resources like minimizing water requirements for irrigation and minimizing the use of toxic pesticides. Adoption of IoT technologies for remote, unmanned monitoring of the agriculture fields Future crops will not be farmers choice rather dictated by data driven smart farming encounter cyber threats ,Hacking attack on smart machinery and cyber threats to agrobase.

2.2 EXISTING PROBLEMS

There has been several attempts and solution to help farmers adopt technological practices. Few solutions restricted their performance with just suggestions and alerts. While few employed IoT independent electronics. Few of the cases of previous attempts and researches are described below.

i. "IoT based smart sensors agriculture stick for live temperature and moisture monitoring using Arduino, cloud computing & solar technology". This work was performed using Cloud computing platform (Things Speak) for data acquisition. The circuit was designed using Arduino and DHT 11 sensors.

- ii. "Smart Farming using IoT, a solution for optimally monitoring farming conditions". This work used ESP-32 based IoT platform and Blynk mobile application.
- iii. "Smart farming using IoT". The automation and interface part made use of water pump and HTTP protocol for parameters monitoring using website.

The above stated prior works lacked one or two features, which when included could have enhanced the performance. In the first work, including a Raspberry Pi based controller in place of Arduino can help reduce the design area while also providing microcontroller with additional UI and IoT interfaces. In the second stated work, going with MIT app inventor instead of Blynk application can improve the possibility of feature expansion. Farmers or developers won't need to go for a paid version of the app to include new features. In the third work, control of water pump can be enhanced with the use of servo-based water valves to direct and control the flow of water rather than using a bi-stated logic.

2.3 PROBLEM STATEMENT AND DEFINITION

NECCESSITY

- · Farmers needs a way to get alert when animals enter into field so that the farmers get alert and protect crop from animals.
- · Farmers need a way to know the soil erosion is reducing the amount of land available for agriculture, and declining biodiversity affects the pollination of crops so that farmers get alert and protect the land available for agriculture
- · Farmers need a solution for pest control so that they can achieve greater efficiency in pest treatments.

Farmers need a solution for proper livestock management system so that IoT agriculture sensors that can be attached to the animals on a farm to monitor their health and log performance. Livestock tracking and monitoring help collect data on stock health, well-being, and physical location.

The problem statement in a nutshell covers all the possible technical aspects that can be included by farmer to convert farming in to smart and efficient farming. IoT enabled smart farming, on a wider perspective, concentrates on connecting all the independently operating sub-systems in farming automation into a single entity. IoT-based agriculture system helps the farmer in monitoring different parameters of his field like soil moisture, temperature, and humidity using some sensors.

The soil moisture sensor measures wetness content in the soil. The Arduino UNO microcontroller used to receive input from a various sensor and it can be controlled automatically. When soil moisture sensor goes low the water pump will be on and it exceeds defined levels of the water motor will turn off automatically. We can constantly monitor the growth of a crop using ultrasonic sensor. PIR sensor detects the motion or unusual movement in the agricultural land. This device his very helpful to the former to monitor and control environmental parameters at their field. The farmers need not go to their field, they can remotely monitor and control using cloud.

The idea of IoT is further extended with the help of mobile and web application where farmers can monitor all the sensor parameters even if the farmer is not near his field. Watering the crop is one of the important tasks for the farmers. They can make the decision whether to water the crop or postpone it by monitoring the sensor parameters and controlling the motor pumps from the mobile application itself.

IDEATION AN PROPOSED SYSTEM

3.1 EMPATHY MAP CANVAS

3.2 IDEATION AND BRAINSTORMING

IDEA 1: GEOGRAPHICAL SOWING SYSTEMS BASED ON SOIL SUITABILITY

DESCRIPTION:

A website that describes the features of the application, also provides important advices in farming regarding optimum conditions, crop health, use of resources etc. With this, along with farmers any hobbyist who is interested in farming can start cultivating in an efficient way with this guide.

IDEA 2: CROP PROTECTION TECHNIQUES

DESCRIPTION:

A complete application with sophisticated features to monitor all the field parameters and making it user friendly so that every farmer can benefit from that.

IDEA 3: PROPER IRRIGATION FACILITIES

DESCRIPTION:

Automating watering process to save water and for a continuous monitoring for crops in the field

3.3. PROPOSED SOLUTION

S.NO	PARAMETER	DESCRIPTION
1	Problem	Developing a smart application for farmers to make
	Statement	farming as automated and in smart way.
	(Problem to be	
	solved)	
2	Idea / Solution	(i)Internet of Things (IoT) implementation in this field
	description	has resulted in the term smart farming.
		(ii)IoT in smart farming is the future of precision
		farming and results in high quality produce and healthy
		cattle. (iii)With the use of many smart farming sensors,
		and wearables, one can get real-time update with a touch
		of the screen.
3	Novelty/	The innovative approach has
	Uniqueness	(i)climate based- crop risk management tools
		(ii)household bioeconomic models approaches
		(iii)whole farm dynamic models
4	Social Impact /	i)With IoT, companies can enjoy benefits like better
	Customer	crop productivity and improved worker safety. (ii) They
	Satisfaction	can use less fertilizer, water and pesticides. Because
		farmers can decrease the fertilizers and pesticides they
		use, there is less runoff into groundwater and rivers. This
		results in a lower impact on the ecosystem

5	Business Model	maintenance-as-a-service: Agriculture is a traditional
	(Revenue Model)	sector and mature market with many established players
		in areas like equipment and machine manufacturing,
		seeds & chemicals, whole sellers, food processing
		industry and service provision. Therefore, it is very
		difficult and expenses for new players to enter the
		market, build up a brand recognition among farmers and
		establish a distribution network. Therefore, to win
		established corporate as distribution partners for startup
		companies and use the even the corporate customer
		relation infrastructure to serve startup clients
6	Scalability of the	Since most smart farming data are small files that lead
	Solution	to many small files, Hadoop cannot be effective without
		a distributed system equipped with a high-performance
		computing system. To address this problem, the Hadoop
		Distributed File System (HDFS) has been designed to
		process large (and small size) datasets. Using cloud
		computing technology in a smart farming platform is
		another solution that can address scalability challenges
		related to capacity due to flexible and robust data
		collection, management, and processing capabilities

3.4 PROPOSED SOLUTION FIT

REQUIREMENT ANAYLSIS

4.1 FUNTIONAL REQUIREMENT

Following are the functional requirements of the proposed solution.

FR.No.	FUNCTIONAL REQUIREMENT (EPIC)	SUB REQUIREMENT (STORY/SUB-TASK)
FR-1	User Registration	Through Gmail
FR-2	User Confirmation	 Confirmation via Email Confirmation via OTP
FR-3	Log into system	Credentials CheckRoles of Access.
FR-4	Manage Modules	 Manage System Admins Manage Roles of User Manage User permission Registration
FR-5	Check whether details	Temperature details Humidity details
FR-6	Logout	Exit

4.2 NON- FUNCTIONAL REQUIREMENTS

Following are the non-functional requirements of the proposed solution.

NFR-1	Usability	Usability includes easy learn ability, efficiency in use, remember ability, lack of errors in operation and subjective pleasure.
NFR-2	Security	Sensitive and private data must be protected from their production until the decision-making and storage stages.
NFR-3	Reliability	The shared protection achieves a better trade-off between costs and reliability. The model uses dedicated and shared protection schemes to avoid farm service outages.
NFR-4	Performance	the idea of implementing integrated sensors with sensing soil and environmental or ambient parameters in farming will be more efficient for overall monitoring.
NFR-5	Availability	Automatic adjustment of farming equipment made possible by linking information like crops/weather and equipment to auto-adjust temperature, humidity,etc.
NFR-6	Scalability	Scalability is a major concern for IoT platforms. It has shown that different architectural choices of IoTplatforms affect system scalability and that automatic real time decision-making is feasible in an environment composed of dozens of thousand.

CHAPTER 5 PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

FIG 5.1 DATA FLOW DIAGRAM OF SMART FARMING- IOT ENABLED SMART FARMING APPLICATION

5.2 SOLUTION AND TECHNICAL ARCHITECTURE

5.3 USER STORIES

User	Functional Requirement	User	User Story /	Acceptance criteria	Priority	Release	
Type	(Epic)	Story Number	Task	criteria			
Farmers	Registration	US1	As a user, I can	I can	High	Sprint-1	
1 44111415	11081011111111		register for the	access my	111811	~print i	
			application by	account /			
			entering my	dashboard			
			email, password,				
			and confirming				
			my password.				
		US2	As a user, I will	I can	High	Sprint-1	
			receive	receive			
			confirmation	confirmati			
			email once I	on email &			
			have registered	click			
			for the	confirm			
			application				
		US3	As a user, I can	I can	Medium	Sprint-1	
			register for the	access my			
			application	account			
			through Gmail	through			
				email			
Farmers	Login	US4	As a user, I can		High	Sprint-1	
			log into the				
			application by				
			entering email &				
	36 11	1107	password	T .	TT' 1	G : . 2	
Farmers	Model setup	US5	As a user, I can	I can setup	High	Sprint-2	
			setup the model	the model			
			in the field with	through			
			help of guide	the guide assistance			
		US6	As a user, I setup	I can setup	medium	Sprint-2	
		030	the model	the model	medium	Sprint-2	
			through with	with the			
			help of	help of			
			instructions	instruction			
			given in manual	in manual			
Farmers	Internet	US7	As a user, I buy	I buy	High	Sprint-2	
	access		internet access	internet	<i>5</i>	- r	
			from the	access			
			provider	from the			
			_	provider			
Farmers	Power supply	US8	As a user, I	I ensure	High	Sprint-2	
			ensure the proper	the	_		
			power supply for	sufficient			
			the setup	power.			

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Farmers	Irrigation control monitoring	US9	As a user, I check the irrigation level through the smart farming application	I monitor the water level in the soil through the application	High	Sprint -2
Farmers	Weather control monitoring	US10	As a user, I check the weather condition through the application	I check the condition of the weather and take the prior actions	High	Sprint -2
Farmers	Animal invasion monitoring	US11	As a user, I get a alert system if the animals enter into the field	I get the alert sound if there is invasion of animals	High	Sprint -2
Farmers	Soil monitoring	US12	As a user, I get live details of the soil regarding the condition of the soil	I get live details of the soil regarding the condition of the soil from the application	High	Sprint -2
Applicat ion Adminis trator	Functioning of application	US13	As a user, I check the errors in application	I check whether the application does not make any problem	Medium	Sprint 1
Applicat ion Manage r	Monitoring of Application	US14	As a user, I check well-functioning of the application	I check the proper functionin g of application	High	Sprint -2

CHAPTER 6 PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

1. Identify the Problem 2. Prepare an abstract and a problem statement 3. List the requirements needed 4. Create a Code and Run 5. Make a Prototype 6. Test the created code and check with the designed prototype 7. Solution for the problem is found !!

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Functional	User	User Story / Task	Story	Priorit	Team Members
	Requirement	Story		Point	y	
	(Epic)	Number		S		
Sprint-1	Registration	USN-1	As a user, I can	2	High	Parveen Rehana
			register for the			Nandhini V
			application by			Swetha P
			entering my email,			Thanya V
			password.			
Sprint-1		USN-2	As a user, I will	1	High	Parveen Rehana
			receive			Nandhini V
			confirmation email			Swetha P
			once I registered			Thanya V
			for the application			

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Point s	Priorit y	Team Members
Sprint-2		USN-3	As a user, I can register for the application through Facebook	gister for the plication rough Facebook		Parveen Rehana Nandhini V Swetha P Thanya V
Sprint-1	Login	USN-4	As a user, I can log into the application by entering email & password	1	High	Parveen Rehana Nandhini V Swetha P Thanya V
Sprint-1	Model setup	USN-5	As a user, I can setup the model in the field with help of guide	2	High	Parveen Rehana Nandhini V Swetha P Thanya V
Sprint-1		USN-6	As a user, I setup the model through with help of instructions given in manual	2	Low	Parveen Rehana Nandhini V Swetha P Thanya V
Sprint-2	Internet Access	USN-7	As a user, I buy internet access from the provider	1	High	Parveen Rehana Nandhini V Swetha P Thanya V
Sprint-2	Power supply	USN-8	As a user, I ensure the proper power supply for the setup	2	High	Parveen Rehana Nandhini V Swetha P Thanya V
Sprint-2	Functioning of application	USN-9	As a user, I check the errors in application	2	High	Parveen Rehana Nandhini V Swetha P Thanya V
Sprint-2	Monitoring of Application	USN-10	As a user, I check well-functioning of the application	2	High	Parveen Rehana Nandhini V Swetha P Thanya V

6.3 PROJECT TRACKER, VELOCITY & BURNDOWN CHART

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	10	31Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	10	11Nov2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	10	18Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	10	30 Nov2022

VELOCITY:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

BURNDOWN CHART

CODING AND SOLUTIONS

7.1 CONFIGURATION OF THE IBM WATSON IOT PLATFORM AND A DEVICE

In the IBM Watson IOT Platform, under the catalog list, under the Internet of Things platform, a device has been created. From that the device credentials such as Device ID, Device Type, Organization ID, Authentication token were obtained.

DEVELOPMENT OF PYTHON SCRIPT

Development of Python Script to publish data to IBM Watson IOT platform: CODE:

import time import sysimport ibmiotf.application import
ibmiotf.device import random
#Provide your IBM Watson Device Credentialsorganization =

"nckdv7" deviceType = "NodeMCU"

deviceId = "12345" authMethod = "token" authToken = "12345678" #

```
Initialize GPIO try: deviceOptions = {"org": organization, "type":
deviceType, "id": deviceId, "auth-method": authMethod, "auth-
token":authToken}
      deviceCli
      ibmiotf.device.Client(deviceOptions) #. except Exception as
      e:
print("Caught exception connecting device: %s" % str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the
cloud as # an event of type "greeting" 10 times deviceCli.connect()
while True: #Get Sensor Data from DHT11
temp=random.randint(0,100) pulse=random.randint(0,100)
                                   moisture= random.randint(0,100)
humidity=random.randint(0,100); lat = 17 lon = 18 data = {
'temperature'
: temp, 'humidity' : humidity, 'Moisture' :moisture} #print
      data
def myOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity =
      %s
      %%" % humidity, "Soil Moisture = %s %%" % moisture, "to
      IBMWatson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on publish=myOnPublishCallback) if not success: print("Not
connected to IoTF")
time.sleep(1)
                    deviceCli.commandCallback =
myCommandCallback # Disconnect the device and application from
the cloud deviceCli.disconnect()
```

PYTHON CODE OUTPUT

```
*Python 3.7.0 Shell*
File Edit Shell Debug Options Window Help
Python 3.7.0 (v3.7.0:lbf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32 Type "copyright", "credits" or "license()" for more information.
======= RESTART: C:\Users\manoj-pt5890\Documents\python\project.py =======
2022-11-11 17:28:32,248 ibmiotf.device.Client
                                                        INFO
                                                                 Connected successfully: d:nckdv7:NodeMCU:12345
Published Temperature = 89 C Humidity = 70 % Soil Moisture = 3 % to IBM Watson
Published Temperature = 78 C Humidity = 5 % Soil Moisture = 2 % to IBM Watson
Published Temperature = 85 C Humidity = 61 % Soil Moisture = 34 % to IBM Watson
Published Temperature = 75 C Humidity = 83 % Soil Moisture = 23 % to IBM Watson
Published Temperature = 72 C Humidity = 34 % Soil Moisture = 70 % to IBM Watson
Published Temperature = 38 C Humidity = 36 % Soil Moisture = 48 % to IBM Watson
Published Temperature = 62 C Humidity = 36 % Soil Moisture = 35 % to IBM Watson
Published Temperature = 34 C Humidity = 64 % Soil Moisture = 29 % to IBM Watson
Published Temperature = 95 C Humidity = 40 % Soil Moisture = 100 % to IBM Watson
Published Temperature = 47 C Humidity = 95 % Soil Moisture = 58 % to IBM Watson
```

7.2 CREATION OF NODE RED SERVICE

For device events monitoring creation of node red is essential, In the IBM Watson IOT platform, under the catalog, under the Node Red app service, an application is deployed using cloud foundry. In the cloud foundry, a group has been created and using the ci pipeline, the app URL is obtained. Using the URL, the Node red is launched. The IBM Watson IOT platform is connected to Node red using the IBM IoT palette.

CODE BLOCK FOR THE FUNCTION PALETTE:

1. SOIL MOISTURE:

Soil=msg.payload.Moisture
msg.payload = "Soil Moisture :
" global.set('m',Soil) msg.payload = Math.round(Soil)
return msg;

2. HUMIDITY:

Humidity =msg.payload.humidity msg.payload =
"Humidity: " global.set('h',Humidity) msg.payload
= Math.round(Humidity) return msg;

3.TEMPERATURE:

Temperature = msg.payload.temperature msg.payload = "Temperature : " global.set('t',Temperature) msg.payload = Math.round(Temperature) return msg;

4.HTTP FUNCTION:

msg.payload = {"Temperature:":
global.get('t'),"Humidity:":global.get('h'),"Soil
Moisture:": global.get('m')} return msg;

7.3 CREATION OF WEBSITE DASHBOARD

A website dashboard has been created using the gauge palette. It can be accessed by adding "/ui" in the main URL of Node red. This dashboard displays the gauge representation of the data published in the IBM IOT platform.

PYTHON CODE USED:

import time import sysimport ibmiotf.application import ibmiotf.device import random

#Provide your IBM Watson Device Credentials organization = "nckdv7" deviceType = "NodeMCU" deviceId = "12345" authMethod = "token" authToken = "12345678" # Initialize GPIO try:

deviceOptions = {"org": organization, "type":
deviceType,"id": deviceId, "auth-method": authMethod,
"auth-token": authToken} deviceCli =
ibmiotf.device.Client(deviceOptions)
#.....except

Exception as e:

print("Caught exception connecting device: %s" %
str(e))sys.exit()# Connect and send a datapoint "hello"

```
with value "world" into the cloud as an event of type
      "greeting" 10 times deviceCli.connect() while True: #Get
      Sensor Data from DHT11 temp=random.randint(0,100)
          pulse=random.randint(0,100)moisture=
          random.randint(0,100)
humidity=random.randint(0,100); lat = 17 lon = 18 data = {
'temperature': temp, 'humidity':
       humidity, 'Moisture': moisture}
      #print data defmyOnPublishCallback():
       print ("Published Temperature = %s C" % temp,
      "Humidity =
       %s %%" % humidity, "Soil Moisture = %s %%" %
      moisture,"to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0, on_publish=myOnPublishCallback) if not success:
print("Not connected to IoTF")
time.sleep(1)
                    deviceCli.commandCallback
#Disconnect the device and application
 from the cloud deviceCli.disconnect()
```

SERVICE FOR DEVICE COMMANDS:

In addition to the palettes used in the Sprint-2, additional palettes such as buttons have been included to control devices by giving commands and the output is printed in the debug whenever a specific command is given

DEVELOPMENT OF PYTHON SCRIPT TO SUBSCRIBE COMMAND FROM THE IBM IOTPLATFORM

Code:

```
import time import sysimport ibmiotf.application import
ibmiotf.device import random
#Provide your IBM Watson Device Credentials organization =
"nckdv7" deviceType = "NodeMCU" deviceId = "12345" authMethod
= "token" authToken = "12345678" # Initialize GPIO def
myCommandCallback(cmd): print("Command received: %s" %
cmd.data['command']) status=cmd.data['command']
      if status=="motoron": print("Motor is ON")
      else:
         print("Motor is OFF")
#print(cmd) try: deviceOptions = {"org": organization, "type":
deviceType, "id": deviceId, "authmethod": authMethod, "auth-token":
authToken} deviceCli = ibmiotf.device.Client(deviceOptions)
      #exceptException as e:
      print("Caught exception connecting device: %s" % str(e))
      sys.exit()
# Connect and send a datapoint "hello" with value "world" into the
cloud as # an event of type "greeting" 10 times deviceCli.connect()
while True:
     #Get Sensor Data from DHT11 temp=random.randint(0,100)
     pulse=random.randint(0,100) moisture= random.randint(0,100)
     humidity=random.randint(0,100); lat = 17 lon = 18 data = {
      'temperature': temp, 'humidity': humidity, 'Moisture'
     def myOnPublishCallback():
     print ("Published Temperature = %s C" % temp, "Humidity =
```

%s

Disconnect the device and application from the cloud deviceCli.disconnect()

OUTPUT

Python 3.7.0 Shell

```
File Edit Shell Debug Options Window Help
rubilanca lemberarare - oa e numiarey - oi e boll molacare - 45 e co ibm macaon
Published Temperature = 88 C Humidity = 66 % Soil Moisture = 3 % to IBM Watson
Published Temperature = 50 C Humidity = 97 % Soil Moisture = 63 % to IBM Watson
Published Temperature = 24 C Humidity = 33 % Soil Moisture = 50 % to IBM Watson
Published Temperature = 73 C Humidity = 29 % Soil Moisture = 56 % to IBM Watson
Published Temperature = 23 C Humidity = 1 % Soil Moisture = 90 % to IBM Watson
Published Temperature = 31 C Humidity = 12 % Soil Moisture = 38 % to IBM Watson
Published Temperature = 91 C Humidity = 62 % Soil Moisture = 58 % to IBM Watson
Published Temperature = 15 C Humidity = 49 % Soil Moisture = 70 % to IBM Watson
Published Temperature = 51 C Humidity = 81 % Soil Moisture = 84 % to IBM Watson
Published Temperature = 61 C Humidity = 17 % Soil Moisture = 37 % to IBM Watson
Published Temperature = 91 C Humidity = 87 % Soil Moisture = 70 % to IBM Watson
Published Temperature = 35 C Humidity = 6 % Soil Moisture = 95 % to IBM Watson
Published Temperature = 52 C Humidity = 41 % Soil Moisture = 63 % to IBM Watson
Published Temperature = 40 C Humidity = 51 % Soil Moisture = 86 % to IBM Watson
Published Temperature = 33 C Humidity = 21 % Soil Moisture = 38 % to IBM Watson
Published Temperature = 29 C Humidity = 48 % Soil Moisture = 22 % to IBM Watson
Published Temperature = 45 C Humidity = 32 % Soil Moisture = 23 % to IBM Watson
Published Temperature = 98 C Humidity = 38 % Soil Moisture = 8 % to IBM Watson
Published Temperature = 44 C Humidity = 71 % Soil Moisture = 16 % to IBM Watson
Command received: motoron
Motor is ON
Published Temperature = 62 C Humidity = 2 % Soil Moisture = 34 % to IBM Watson
Published Temperature = 21 C Humidity = 14 % Soil Moisture = 82 % to IBM Watson
Published Temperature = 35 C Humidity = 2 % Soil Moisture = 5 % to IBM Watson
Published Temperature = 34 C Humidity = 78 % Soil Moisture = 44 % to IBM Watson
Command received: motoroff
Motor is OFF
```

TESTING

8.1 TEST CASE

Web application using Node Red

8.2 USER ACCEPTANCE TESTING

RESULTS

9.1 PERFOMANCE METRICS

S. No.	Name of the Phase	Tasks Performed	Performance Metrics
1.	Development of Problem Statement	The underlyingproblem analyzedand a rough idea of the solutionwas planned	The Problem statement was developed
2.	Ideation Phase	Extracting use and test cases	Empathy map, Ideation and Literature survey were formulated.
3.	Project Design Phase 1	Solution for theproblem is formulated and architecture is designed	Problem solution fit was designed and the Proposed solution is finalized with the help of Solution architecture.
4.	Project Design Phase 2	In depth analysis of the solution is performed including requirements, tech stack, etc.	Solution Requirements,Overall Technology stack, Data flow diagrams, User stories were formulated.
5.	Project Planning Phase	Various sprints were designed as individual progressive steps.	Project Milestone and Sprint Plans were developed.

ADVANTAGES AND DISADVANTAGES

10.1 ADVANTAGES:

- By monitoring the soil parameters of the farm, the user can have a complete analysis of the field, in terms of numbers.
- Using the website and the application, an interactive experience canbe achieved.
- As the data gets pushed to the cloud, one can access the data anywhere from this world. o Without human intervention, water pump can be controlled through the mobile application and it's flowcan be customized using servo motors.
- By using Raspberry Pi MCU, scalability can be increased due to itshigh processing power and enough availability of GPIO pins

10.2 DISADVANTAGES:

- Data transfer is through the internet. So data fetch and push might delay due to slow internet connection, depending on the location andother physical parameters.
- System can only monitor a certain area of the field. In order to sense and monitor an entire field, sensors should be placed in many places, which may increase the cost.
- Data accuracy may vary according to various physical parameters such as temperature, pressure, rain.
- Cost of the system is high due to usage of Raspberry Pi. o Rodent and insects may cause damage to the system.

CONCLUSION

Farmers can benefit greatly from an IoT-based smart agriculture system. As a result of the lack of irrigation, agriculture suffers. Climate factors such as humidity, temperature, and moisture can be adjusted dependent on the local environmental variables. This technology aids in the scheduling of irrigation based on present data from the field and records from a climate source. It helps in deciding the farmer to whether to do irrigation or not to do.

The project thus monitors important parameters present in the field such as temperature, humidity, soil moisture etc., and controls important actuators such as motors etc. It is helpful for farmers to remotely monitor their fields even during adverse weather conditions and help them control farming equipment remotely using cloud.

FUTURE SCOPE

In the current project we have implemented the project that can protect and maintain the the crop. In this project the farmer monitor and control the field remotely. In future we can add or update few more things to this project.

- We can create few more models of the same project ,so that the farmer can have information of a entire.
- We can update the this project by using solar power mechanism. So that the power supply from electric poles can be replaced with solar panels. It reduces the power line cost. It will be a one time investment. We can add solar fencing technology to this project.
- We can use GSM technology to this project so that the farmers can get the information directly to his home through SMS. This helps the farmer to get information if there is a internet issues.
- We can add camera feature so that the farmer can monitor his field in real time. This helps in avoiding thefts.

REFERENCES

- G. Nisha, J Megala, "Wireless Sensor Network Based Automated Irrigation and Crop Field Monitoring System", 2020 Sixth International Conference on Advanced Computing.
- Automated Water Irrigation System using Arduino Uno and Raspberry Pi with Android Interface", International Research Journal of Engineering and Technology (IRJET) 2021.
- Vaishali. S, Suraj S, Vignesg.G, Divya.S and Udhayakumar.S, "Mobile integrated smart irrigation management and monitoring system using IoT", IEEE International Conference on Communication and signal processing, pp. 2164- 2167, April 2019.
- K. Jha, A. Doshi, P. Patel, and M. Shah, "A comprehensive review on automation in agriculture using artifificial intelligence," Artif. Intell. Agriculture., vol. 2, pp. 1–12, Jun. 2019.
- Lee and K. Lee, "The Internet of Things (IoT): Applications investments challenges for enterprises", Bus. Horizons, vol. 58, 2015.
- J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, "Internet of Things (IoT) A vision architectural elements and future directions", Future Gener. Comput. Syst., vol. 29, no. 7, 2020
 - P. P. Ray, "Internet of Things for smart agriculture: Technologies practices

and future direction", J. Ambient Intell. Smart Environ., vol. 9, no. 4, 2018.

APPENDIX

MIT APP

BACKEND:


```
import time
```

import sys

import

ibmiotf.applic

ation import

ibmiotf.devic

e import

random

#Provide your IBM Watson Device Credentials

organization ="nckdv7" deviceType =

"NodeMCU" deviceId = "12345" authMethod =

"token" authToken = "12345678" # Initialize

GPIO def myCommandCallback(cmd):

print("Command received: %s" %

cmd.data['command'])

```
status=cmd.data['command'] if
status=="motoron": print("Motor is ON") else:
try: deviceOptions = {"org": organization, "type":
      deviceType, "id":deviceId, "auth-method":
      authMethod, "auth-token": authToken}deviceCli
      = ibmiotf.device.Client(deviceOptions)
#except Exception as e:
 print("Caught exception connecting device: %s" % str(e))
      sys.exit()
# Connect and send a datapoint "hello" with value "world"
as # an event of type "greeting" 10 times deviceCli.connect()
      while True: #Get
                           SensorData
                                           from DHT11
            temp=random.randint(0,100)
      pulse=random.randint(0,100)
                                     moisture=
            random.randint(0,100)
      humidity=random.randint(0,100); lat = 17 \text{ lon} = 18 \text{ data}
      = {'temperature' : temp, 'humidity' : humidity,
      'Moisture': moisture}
      #printdata
                         DefmyOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity =
      %s%%" % humidity, "Soil Moisture = %s %%" % moisture, "to
      IBMWatson")
      success = deviceCli.publishEvent("IoTSensor" "json", data,
      qos=0, on_publish=myOnPublishCallback)
      if notsuccess:
      print("Not connected to IoTF")
      time.sleep(1)
      deviceCli.commandCallback = myCommandCallback
       # Disconnect the device anapplication from the cloud
      deviceCli.disconnect()
```

GITHUB AND PROJECT DEMO LINK:

1. GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-22400-1659851020

2. DEMOLINK:

https://drive.google.com/file/d/1AU10oPx39pRdIko35ns41WrLnw5ojVbu/view?usp=drivesdk