STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2018

Shivon Sue-Chee

March 20, 2018

Three-way Tables

► Learning Objectives

- ▶ Write out the models used and the assumptions for inference
- ► Carry out the inference procedures completely
- ▶ Interpret the respective R outputs

Results from R output

		()			
Model	df	G^2 =Deviance	<i>p</i> -value	AIC	<u>-</u>
(A,C,M)	4	1286.02	< 0.0001	1343.06	-
(AC,M)	3	843.83	< 0.0001	902.87	
(AM, C)	3	939.56	< 0.0001	۵	
(A,CM)	3	534.21	< 0.0001	•	
(AC,AM)	2	497.37	< 0.0001	558.41	
(AC,CM)	2	92.02	< 0.0001	•	
(AM,CM)	2	187.75	< 0.0001	•	
(AC,AM,CM)	1	0.37	0.5408	63.42	\rightarrow
(ACM)	0	0.00	-	65.04	

The simplest model that fits the data adequately is the "Uniform Association" model (AC,AM,CM).

Exercise: Fitted values and Interpretations

Q: Complete the fitted equation and prove the fitted values above

Fitted equation:

$$\log(\hat{\mu}_{ijk}) = 6.81 - 5.53 \mathbf{I}_{A_2} - 3.02 \mathbf{1}_{C_2} - 0.52 \mathbf{1}_{M_2} + 2.98 \mathbf{1}_{A_2} \cdot \mathbf{1}_{M_2} + 2.08 \mathbf{1}_{A_2} \cdot \mathbf{1}_{C_2}$$
Some fitted values, $\hat{\mu}_{ijk}$: $\hat{\mu}_{ijk}$: $\hat{\mu}_{ijk} = e^{\beta_0 + \beta_1} \mathbf{1}_{A_2} + - \cdots + 2.85 \mathbf{1}_{C_2} \cdot \mathbf{1}_{M_2}$

				Log-linear mo	dels		
^	A use	C use	M use	(AC, AM, CM,)	(ACM)		
Mill	Yes, \	Yes, \	Yes	910.4 = 6.51	911	Mark = 4	215
MIIZ	Yes	Yes	No 2	538.6	538		JK
Mu	Yes	No ₁ 2	Yes	44.6	44		
14122	Yes	No,2	No ₁ 2	6.81-3.02-0.52+2.85 = 455.38	456		
	1x2 =	_			sed	Observed co	mats.

1A2= 1 if Alcohol was Not used
0 if " was used

Log-linear models for 3-way Tables

Estimation S-I Inserence Test

Fitted values and Interpretations

- ▶ Use estimates of β 's to calculate odds.
 - ▶ Eg, the odds of marijuana use for alcohol and cigarette use at (i,j) are:

$$\frac{\hat{\pi}_{ij1}}{\hat{\pi}_{ij2}} = \frac{\hat{\mu}_{ij1}}{\hat{\mu}_{ij2}}$$

Example 1: For students who use alcohol and cigarettes, the estimated odds of using marijuana are: MIII = 910.38 >1 MIII = 538.61

$$(A = 1 = C = M) \rightarrow \mathcal{M}_{111} = 910.38$$

 $(A = 1 = C, M = 2) \rightarrow \mathcal{M}_{112} = 538.61$

Example 2: For students who use neither alcohol nor cigarettes, the estimated odds of using marijuana are:

$$(A = 2 = C, M = 1) \rightarrow \mathcal{M}_{221} = 1.38$$

 $(A = 2 = C = M) \rightarrow \mathcal{M}_{222} = 279.62$
8-way Tables

Odds & Manj. Use = $\frac{1.38}{279.62}$

Inference for Log-linear models

- Q: What procedures do we use to:
 - Estimate parameters in log-linear models?
 - ► A: Maximum likelihood estimation
 - Carry out inference (significance tests and C.I.s)?
 - A: Wald tests and C.I.s, and LRT

(R) (F)

- Global (Null us Titted)

LRT (Reduced vs Full).

Deviance G-0-F.

(Fitted vs Saturated)

What are the conditions for inference to be valid?

- → 1. Independent quantities being counted
 - 2. Large enough <u>sample sizes</u> for MLE asymptotic tests to hold.
 - ▶ RULE-OF-THUMB: (Most) $\widehat{\mu}_{ijk} \geq 5$ for all i, j, k.
 - 3. Cross-classified counts follow a Poisson distribution, i.e., $Var(y_{ijk}) = \mu_{ijk}$.
 - If not, then the deviance is very large ("extra-Poisson" variation).
 - Deviance/df should be about 1.
 - 4. Correct form of the model / Model fits the data.
 - ▶ log(E(Y)) is linear in the β 's
 - All relevant variables included.
 - No outliers
 - Agreement of predicted and observed counts
 - Check deviance goodness-of-fit test

▶ Idea: Compare likelihood of data under FULL (F) model, \mathcal{L}_F to likelihood under REDUCED (R) model, \mathcal{L}_R of same data.

Likelihood ratio :
$$\frac{\mathcal{L}_R}{\mathcal{L}_F}$$
, where $\mathcal{L}_R \leq \mathcal{L}_F$

▶ Hypotheses: $H_0: \beta_1 = \cdots = \beta_k = 0$ (Reduced model is appropriate; fits data as well as Full model) H_a : at least one $\beta_1, \dots, \beta_k \neq 0$

(Full model is better)

- ▶ Test Statistic: $G^2 = -2 \log \mathcal{L}_R (-2 \log \mathcal{L}_F) = -2 \log \left(\frac{\mathcal{L}_R}{\mathcal{L}_F}\right)$
- For large n, under H_0 , G^2 is an observation from a Chi-square distribution with k df.

Comparing models

- ► LRTs for models with and without set of indicator variables for effect of interest
- Particularly useful if > 2 levels in categorical explanatory variables
- ► Example: Suppose we have a $2 \times 2 \times 3$ table and we fit the Uniform association model (XY, XZ, YZ)

$$\log \mu_{ijk} = \beta_0 + \beta_1 \mathbf{I}_{X=1} + \beta_2 \mathbf{I}_{Y=1} + \beta_3 \mathbf{I}_{Z=1} + \beta_4 \mathbf{I}_{Z=2} + \beta_5 \mathbf{I}_{X=1} * \mathbf{I}_{Y=1} + \beta_6 \mathbf{I}_{X=1} * \mathbf{I}_{Z=1} + \beta_7 \mathbf{I}_{X=1} * \mathbf{I}_{Z=2} + \beta_8 \mathbf{I}_{Y=1} * \mathbf{I}_{Z=1} + \beta_9 \mathbf{I}_{Y=1} * \mathbf{I}_{Z=2}$$

Is the YZ interaction needed?

$$H_0: \beta_8 = \beta_9 = 0$$
 vs H_a : at least 1 of β_8, β_9 is not 0

Eg, ACM Uniform

-used G indicator

variables for

the factors

→ 4+6=10 rindication variables.

Comparing models

$$\begin{split} \log \mu_{ijk} = & \beta_0 + \beta_1 \mathbf{I}_{A=1} + \beta_2 \mathbf{I}_{C=1} + \beta_3 \mathbf{I}_{M=1} \\ & + \beta_5 \mathbf{I}_{A=1} * \mathbf{I}_{C=1} + \beta_6 \mathbf{I}_{A=1} * \mathbf{I}_{M=1} + \beta_7 \mathbf{I}_{C=1} * \mathbf{I}_{M=1} \\ \mathbf{4} & \mathbf{5} \end{split}$$

A: Ho: B6=0 (AC, AM model firts as well)
Ha: B6+0 (Unisform asc. model fits better)

T.S: Wald LFT

Distin: (17382)=3028 G2=497.37-0.37=497 ~ X1

Log-linear models for 3-way Tables

Conc: All paras of factors are associated with each other

What is the Deviance G-O-F test?

- ▶ Uses LRT: Compares
 - ▶ Model of Interest (REDUCED, R) model to
 - Saturated Model (FULL, F) model.
- ► Sometimes called "Drop-in-Deviance" test.
- ► Hypotheses:

 H_0 : (Fitted model fits data as well as Saturated model)

 H_a : (Saturated model is better)

► Test Statistic:

$$Deviance = -2\log\left(rac{\mathcal{L}_R}{\mathcal{L}_F}
ight) = -2\log\left(rac{\mathcal{L}_M}{\mathcal{L}_S}
ight)$$

▶ Under H_0 , Deviance is an observation from a chi-square distribution with df = #parameters(S) - #parameters(M).

Deviance G-O-F statistic for 3-way tables

► The joint distribution of cell counts is

$$P(\mathbf{Y} = \mathbf{y}) = \prod_{k} \prod_{j} \prod_{i} \frac{\mu_{ijk}^{y_{ijk}} e^{-\mu_{ijk}}}{y_{ijk}!}$$

► Log-likelihood function:

$$\log \mathcal{L} = \sum_{k} \sum_{j} \sum_{i} (y_{ijk} \log \mu_{ijk} - \mu_{ijk} - \log y_{ijk}!)$$

► Likelihood ratio statistic: (Practice Question)

$$Deviance = 2\sum_{k}\sum_{j}\sum_{i}y_{ijk}\log\left(\frac{y_{ijk}}{\hat{\mu}_{ijk}}\right)$$

▶ Hints: Under the saturated model, $\hat{\mu}_{ijk} = y_{ijk}$;

$$\sum_{k} \sum_{j} \sum_{i} y_{ijk} = n$$
Log-linear models for 3-way Tables

Mi=em (log-linear)

Ai=em (log-stic)

How to interpret Deviance?

- ▶ Is the form of the fitted model adequate or do I need something more complicated?
- Compares fitted model to saturated model
- Small deviance / Large p-values implies:
 - → Fitted model is adequate, OR
 - Test is not powerful enough to detect inadequacies
 - ► Large deviance / Small *p*-values implies:
 - Fitted model is not adequate; consider a more complex model OR
 - Underlying distribution is not adequately modelled by the Poisson distribution / Poisson model not correct / $Var(y_{ijk}) > \mu_{ijk}$ OR
 - There are severe outliers in the data

Are there outliers?

- Check residuals
- 1. Raw residual:

$$y_{ijk} - \hat{\mu}_{ijk}$$

2. Pearson residual: sum of squares gives Pearson chi-square test statistic easy to inferpret

$$\frac{y_{ijk} - \hat{\mu}_{ijk}}{\sqrt{\hat{\mu}_{ijk}}}$$

3. Deviance residual: sum of the squares is the Deviance

$$\operatorname{sign}(y_{ijk} - \hat{\mu}_{ijk}) \sqrt{2 \left\{ y_{ijk} \log \left(\frac{y_{ijk}}{\hat{\mu}_{ijk}} \right) - y_{ijk} + \hat{\mu}_{ijk} \right\}}$$

Pearson and Deviance residuals

- ► Easier to interpret: Playson
- ► More reliable: Denance

 ► Usually similar? Yes
- ▶ Differences are more prominent when used to compare models
- If Poisson means are large, the sampling distributions are ... Approx Normal
- ▶ Rule-of-thumb: Outlier if Pearson or Deviance residual > 3 (if sample size is small, consider those > 2)

Presence of "Extra-Poisson Variation"

- ▶ Check if $\frac{Deviance}{df} > 1$
- ▶ Q: How much > 1 is important?
- ▶ A: If Deviance GOF test is statistically significant.
- ▶ If other problems are ruled out, then include a dispersion parameter in the model, i.e.,

$$Var(Y_{ijk}) = \psi \mu_{ijk}$$

quasi

OR use Negative Binomial regression

$$Var(Y_{ijk}) = \mu_{ijk}(1 + \psi \mu_{ijk})$$

(Agresti, Chp. 14)

Summary of models

-		OLS	Logistic	Log-linear
-	Link	Identity	Logit	Log
	Regression	Linear	Non-linear	Non-linear
	$\mu\{Y \mathbf{X}\}$ is	linear in β 's	not linear in β 's	not linear in β 's
	Models	Mean of Y	Log odds	Log of means
	Natural response Response is	Yes Normal	Yes Binomial	No Poisson
7	Indep. Obs.	Yes	Yes	Yes
-	$Var(Y_i \mathbf{X}) =$	σ^2	$\pi_i(1-\pi_i)$	μ_i
		(enstant	(change	o wth i)

Class 19 Summary

- ► Log-linear models for three-way contingency tables:
 - Assumptions
 - ▶ LRT: Deviance goodness-of-fit test
 - Using fitted equation to find odds
 - Model diagnostics
- Next Class: Mixed Models
- ► Things to do:
 - ► Assignment #3
 - Participation 6
 - Practice Problems on Poisson Regression (Log-linear models)