HW6 Report

系級: 電機三 學號: b04901009 姓名: 林孟瑾

1. (1%)請比較有無 normalize 的差別。並說明如何 normalize.

	Private score(rmse)	Public score(rmse)
有 normalize	0. 85519	0. 86237
無 normalize	0. 85650	0. 86283

將 rating 扣掉 rating 的平均,再除以 rating 的標準差,得到的就是 normalize 後的 rating。而在做 testing 時,將 predict 出來的結果,乘以 rating 的標準差,再加回 rating 的平均。由結果可以看出,經過 normalize 之後的 rmse 較小,效果較好。

2. (1 %)比較不同的 embedding dimension 的結果。 (train.csv 中的 0.1 比例作為 validation data)

	Validation rmse
latent_dim = 20	0. 85731
latent_dim = 50	0. 85578
latent_dim = 100	0.85132
latent_dim = 150	0. 84948
latent_dim = 200	0. 84829
latent_dim = 500	0. 84683

由結果可以看出," latent_dim = 500"時 rmse 最小,效果最好。

3. (1 %)比較有無 bias 的結果。

	Private score(rmse)	Public score(rmse)
有 bias	0. 85650	0. 86283
無 bias	0.86732	0. 87316

由結果可以看出,有加上 bias 的訓練出來的 model 預測較為準確,rmse 較小,效果較好。

4. (1 %)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖。

點的顏色	電影分類	
淺藍色	Animation, Children's	
黑色	Romance, Drama, Musical	
綠色	Adventure, Fantasy, Action, Sci-Fi,	
	Film-Noir	
藍色	War, Western	
紅色	Crime, Thriller, Horror	

可以看出,綠色類的較為集中於左下角,淺藍色較為集中於下方,而紅色呈現散落的分佈,黑色集中於左方一小球和右側。

5. (1 %)試著使用除了 rating 以外的 feature, 並說明你的作法和結果, 結果好壞不會影響評分。

我使用了電影的種類還有使用者的年齡、性別、職業,作為額外的 feature。電影的種類和使用者的職業分別都處理成 one hot encoding。因此,model 的 input layer 多了四層,再將此四種 feature 經過 Dense 之後,和原本的 userID 和 movieID 的 input 兩兩做 Dot 層(取 5 種組合),再將這 5 個 Dot 層 Concatenate 起來,然後此結果再和原本的 bias 層 Add 起來。結果為 private score 為 0.86563,public score 為 0.86851,沒有比原本的 model 進步。