```
#Manuel Tristán Martín Ruiz

#Practica 1

# Ej.1

x <- c(1,2,3,4,5)

y <- c(9.1,2.4,7.5,1.3,3.4)
```

Hablamos de un vector como de una estructura que almacena entre parentesis datos del mismo tipo (numéricos, cadena de caracteres y/o lógicos.), en este caso numéricos. Se trata de la estructura de datos más sencilla en R.

La diferencia entre vector y lista, es que si bien son parecidas el vector puede almacenar solamente datos del mismo tipo mientras que la lista permite almacenar datos de diferente tipo.

la longitud de X es:5 y la de y es 5 también

length(x)

length(y)

La diferencia es que integer solamente puede almacenar números enteros, sin decimales, mientras que double puede almacenar numeros reales con decimales.

Un vector que almacene valores enteros será computado más facilmente que uno que almacene datos decimales, y ocupará menos memoria. Pero un tipo de datos double puede ser más preciso.

```
# Ej.2

valor_suma <- x+y

print(valor_suma)

valor_resta <- x-y

print(valor_resta)

valor_multiplicación <- x*y

print(valor_multiplicación)

valor_división <- x/y

print(valor_división)

valor_elevación <- x^y

print(valor_elevación)

# Ej.3

valor_elevación_cuadrado <- y^2
```

```
print(valor_elevación_cuadrado)
#Ej.4
valor_multiplicación_10 <- y*10
print(valor_multiplicación_10)
#Ej.5
valor_suma_25 <- y+25
print(valor_suma_25)
#Ej.6
maximo_y <-max(y)
print(maximo_y)
#Ej.7
minimo_y <-min(y)
print(minimo_y)
#Ej.8
absoluto_y <- abs(y[1])
print(absoluto_y)
#Ej.9
raiz_y <-sqrt(y)
print(raiz_y)
#Ej.10
suma_y <- sum(y)
print(suma_y)
```

#Ej.11

```
lista <- c(x,y)
print(lista)
length(lista)
# la longitud de este objeto "lista" es 10
class(lista)
# Utiliza el tipo de dato double, porque al crearse un nuevo vector numérico con números
decimales le asigna por defecto ese tipo de dato. Aunque los números de x sean
entremos, se trasnforman al tipo double para que la lista pueda contenerlos a todos
juntos.
#Ej.12
is.na(lista)
#No existen valores "NA" en el objeto "lista"
#Ej.13
z <- c(29,NA,12,46,73)
#Ej.14
media_z <- mean(z)
print(media_z)
#Da como resultado NA, porque hay un valor no asignado
is.na(media_z)
media_z <- mean(z, na.rm = TRUE)
print(media_z)
#Ej.15
matriz <- matrix(c(24,69,3,90,23,56,1,63,87,21,77,19),
        nrow = 4, ncol = 3)
print(matriz)
#Los valores se rellenan según las columnas [1,1], [2,1], [3,1], [4,1] y así con las columnas
2 y 3.
```

```
matriz_filas <- matrix(c(24,69,3,90,23,56,1,63,87,21,77,19),
           nrow = 4, ncol = 3,
           byrow = T)
print(matriz_filas)
#Ej.17
a <- matrix(c(1:9),
     nrow = 3, ncol = 3)
print(a)
b <- matrix(c(10:18),
     nrow = 3, ncol = 3)
print(b)
#Ej.18
sumar_matriz <- a+b
print(sumar_matriz)
restar_matriz <- a-b
print(restar_matriz)
#Resta los valores dentro de la matriz posición por posición/ elemento a elemento, eso es
lo que provoca el resultado.
#Ej.19
matriz_t <- t(matriz)
print(matriz_t)
#Ej.20
matriz_mult_constante <- 3*matriz
print(matriz_mult_constante)
```

#Ej.16

```
#Ej.21
matriz_mult <- a*b
print(matriz_mult)
#Ej.22
print(matriz_mult[[2,3]])
print(matriz_mult[2,])
print(matriz_mult[,3])
#Practica 2
#Ej.1
set.seed(123)
num_cuentas <- round(rnorm(100, mean = 50, sd = 10))
print(num_cuentas)
#Ej.2
mean(num_cuentas)
#Ej.3
median(num_cuentas)
#Ej.4
moda <- as.numeric(names(sort(table(num_cuentas), decreasing = TRUE)[1]))
print(paste("la moda de las cuentas en el yacimiento es:", moda))
#Ej.5
rango <- max(num_cuentas)-min(num_cuentas)</pre>
print(rango)
```

```
#Ej.6
primer_cuartil <- quantile(num_cuentas, probs = 0.25)</pre>
print(primer_cuartil)
#Ej.7
percentil_75 <- quantile(num_cuentas, probs = 0.75)</pre>
print(percentil_75)
#Ej.8
varianza <- var(num_cuentas)</pre>
print(varianza)
#Ej.9
desviación_estandar <- sd(num_cuentas)
print(desviación_estandar)
#Ej.10
library(ggplot2)
hist(num_cuentas,
  main = "Histograma de frecuencia",
  xlab = "Número de cuentas",
  ylab = "Frecuencia",
  col = "blue",
  border = "black",
  breaks = 10)
#Ej.11
boxplot(num_cuentas,
   main = "Diagrama de caja",
   ylab = "Número de cuentas",
```

```
col = "lightblue",
   border = "black")
#Ej.12
densidad <- density(num_cuentas)</pre>
plot(densidad,
  main = "Gráfico de densidad de cuentas",
  xlab = "Número de cuentas",
  ylab = "Densidad")
#Ei.13
barplot(num_cuentas,
   main = "Gráfico de Barras",
   xlab = "Intervalos",
   ylab = "Frecuencia",
   col = "lightblue",
   border = "black")
#Ej.14
tipo_artefacto <- sample(c("Vajilla", "Fibula", "Cuentas", "Monedas", "Tinajas"), 10, replace
= TRUE)
material <- sample(c("Cerámica", "Metal", "Vidrio", "Piedra"), 10, replace = TRUE)
periodo_cultural <- sample(c("Romano Republicano", "Romano Imperial",
"Tardoantigüo", "Emiral", "Califal"), 10, replace = TRUE)
estado_conservacion <- sample(c("Muy Bueno", "Bueno", "Regular", "Malo"), 10, replace =
TRUE)
ubicacion <- sample(c("Granada", "Mertola", "Córdoba", "Málaga"), 10, replace = TRUE)
Datos_ej_14 <- data.frame(
tipo_artefacto = tipo_artefacto,
material = material,
 periodo_cultural = periodo_cultural,
 estado_conservacion = estado_conservacion,
 ubicacion = ubicacion
```

```
print(Datos_ej_14)
View(Datos_ej_14)

tabla_tipo_artefacto <- table(tipo_artefacto)
View(tabla_tipo_artefacto)

tabla_material <- table(material)
View(tabla_material)

tabla_periodo_cultural <- table(periodo_cultural)
View(tabla_periodo_cultural)

tabla_estado_conservacion <- table(estado_conservacion)
View(tabla_estado_conservacion)

tabla_ubicacion <- table(ubicacion)
View(tabla_ubicacion)
```