

Universidade Federal do Ceará Centro de Ciências

Departamento de Computação

PLANO DE ENSINO DE DISCIPLINA

Ano/Semestre 2019/2

1. Identificação						
1.1. Unidade: Centro de Ciências						
1.2. Curso: Ciência da Computação						
1.3. Nome da Disciplina: Visualização de Dados						
1.4. Código da Disciplina: CK0266						
1.5. Caráter da Disciplina: () Obrigatória (X) Optativa						
1.6. Regime de Oferta da Disciplina: (X) Semestral () Anual () Modular						
1.7. Carga Horária (CH) Total: 64h	C.H. Teórica: 20h	C.H. Prática: 32h	C.H. EaD:	C.H. Extensão:	C.H. Prática como componente curricular – PCC¹ (apenas para cursos de licenciatura):	
1.8. Pré-requisitos (quando houver): CK0235 – Técnicas de Programação I						
1.9. Co-requisitos (quando	houver):					
1.10. Equivalências (quando houver):						
1.11. Professores (Nomes dos professores que ofertam): Emanuele Santos						

2. Justificativa

Visualização é o ramo interdisciplinar da ciência e da tecnologia que trata da representação visual de dados e objetos de estudo de áreas como arquitetura, meteorologia, medicina, biologia, etc. A Visualização Científica também é considerada um ramo da Computação Gráfica e é parte importante da formação dos alunos dessa área de atuação. Ela tem um relevante impacto científico pelo fato de ilustrar graficamente dados científicos de forma a permitir que os cientistas consigam analisar e compreender melhor os fenômenos estudados.

3. Ementa

¹ O registro da carga horária de PCC deve ser realizado apenas como informação da característica do componente, sem ser somada com os demais elementos (CH prática, teórica, EAD e extensão), visto que a PCC pode estar diluída em qualquer um desses.

Introdução. Definição de Visualização e a motivação para estudar Visualização. Marcas e canais. Abstração de Dados. Abstração de Tarefas. Análise. Visualização de dados tabulares. Visualização de dados espaciais. Visualização de redes e árvores. Mapeamento de cor. Estratégias para lidar com complexidade em visualizações.

4. Objetivos – Geral e Específicos

Objetivo geral:

Aprender conceitos e metodologias necessários para visualizar dados de vários domínios.

Objetivos específicos:

Aprender os princípios básicos de visualização, enfatizando questões éticas e questões práticas

Aprender como mapear diversos tipos de dados a propriedades visuais

Aprender a preparar dados para serem visualizados

Aprender a usar cores de modo apropriado

Aprender técnicas interativas para lidar com complexidade em visualizações

5. Descrição do Conteúdo/Unidades	Carga Horária
Introdução. Definição de Visualização e a motivação para estudar Visualização.	2h
Marcas e Canais	2h
Marcas e Canais: Aplicação	6h
Abstração de Dados	2h
Abstração de Dados - Aplicação	8h
Abstração de Tarefas	2h
Abstração de Tarefas – Aplicação	6h
Introdução a Visualização de Dados Tabulares	2h
Visualização de Dados Tabulares	6h
Introdução a Visualização de Dados Espaciais	2h
Visualização de Dados Espaciais: Prática	2h
Introdução a Visualização de Redes e Árvores	2h
Visualização de Redes e Árvores: Prática	2h

Introdução à Teoria da Cor	2h
Aplicação de mapas de cores em Visualizações	2h
Estratégias para lidar com complexidade em visualizações.	4h
Projeto	6h
Avaliações	6h

6. Metodologia de Ensino

São usadas diversas metodologias de ensino:

- Aulas expositivas, utilizando-se uma abordagem de exposição dialogada. Nessas aulas, será encorajada a participação dos alunos para que eles desempenhem um papel mais ativo;
- Aulas práticas em laboratório para praticar os conceitos introduzidos anteriormente. Os alunos têm contato com ferramentas e ambientes de desenvolvimento;
- Sala de aula invertida nas horas de EAD: os alunos estudam os conteúdos previamente, à distância, através de materiais digitais indicados pelo professor: videoaulas, textos, etc. Nas aulas seguintes, o professor faz um resumo do conteúdo, perguntas e respostas e os alunos aplicam os conceitos em aulas práticas. Para apoiar o uso da sala de aula invertida, serão usados o aplicativo Slack para comunicação e o GitHub para acompanhamento de tarefas.
- Construção de projetos e trabalho em grupo: os alunos aplicam todos os conceitos na construção de um projeto prático de visualização. O projeto é apresentado em sala para os outros alunos
- Integração com a Pós-Graduação: alunos participarão de seminários apresentados por alunos de Pós-Graduação

7. Atividades Discentes

- Participar das aulas
- Ver o conteúdo das aulas invertidas
- Estar atento e participar das discussões nos canais do Slack
- Fazer as tarefas individuais indicadas e no prazo estipulado
- Participar de trabalho em grupo
- Apresentar o projeto final

8. Avaliação

Os alunos serão avaliados pelas tarefas individuais (50%) e pelo projeto final (50%). Se na metade do semestre os alunos não estiverem obtendo um bom desempenho nas tarefas, serão aplicadas avaliações parciais escritas e a nota das tarefas será a média aritmética das tarefas e das provas. Alunos que não ficarem com média 7 ou superior farão avaliação final no fim do semestre.

É importante ressaltar que o aluno deve estar presente em 75% das aulas dadas. Os alunos que não atinjam a este patamar estarão sujeitos a reprovação por falta.

9. Bibliografia Básica e Complementar

Básica:

- MUNZNER, Tamara. Visualization Analysis & Design, CRC Press Taylor & Francis Group, 2015. ISBN-13: 978-1466508910, ISBN-10: 1466508914.
- KIRK, Andy. Data Visualisation: A Handbook for Data Driven Design, SAGE Publications Ltd, 2016. ISBN-14: 978-1473912144, ISBN-10: 1473912148.
- FEW, Stephen. Show me the numbers: Designing tables and graphics to enlighten. 2 edition, Analytics Press, 2012. ISBN-10: 0970601972, ISBN-13: 978-0970601971.

Complementar:

- CAIRO, Alberto. The Truthful Art: Data, Charts, and Maps for Communication, New Riders, 2016. ISBN-13: 978-0321934079, ISBN-10: 0321934075.
- KNAFLIC, Cole Nussbaumer. Storytelling with Data: A Data Visualization Guide for Business Professionals, Wiley, 2015. ISBN-13: 978-1119002257, ISBN-10: 1119002253.
- WARE, Colin. Information Visualization: Perception for Design. 3a edição, Morgan Kaufmann, 2012. ISBN-10: 0123814642, ISBN-13: 978-0123814647.
- MACLEAN, Malcolm. D3 Tips and tricks, Leanpub, 2014. Disponível online.
- MURRAY, Scott. Interactive Data Visualization for the Web, O'Reilly Media, Inc., 2a edição, 2017. ISBN-13: 978-1491921289, ISBN-10: 1491921285.
- YAU, Nathan. Visualize this: The Flowing Data Guide to Design, Visualization and Statistics. Wiley, 2011. ISBN-13: 978-0470944882, ISBN-10: 0470944889.
- TUFTE, Edward. The Visual Display of Quantitative Information. 2 edition, Graphics Press, 2001. ISBN-13: 978-0961392147, ISBN-10: 0961392142.

4	0	D
	0	Parecer
	w	 Laicei

Aprovação do Colegiado do Departamento				
/ /				
	Assinatura da Chefia do Departamento			
Aprovação do Colegiado de O	Coordenação do Curso	_		
//				
	Assinatura do Coordenador			