

Eri Prasetyo W

http://staffsite.gunadarma.ac.id/eri

Sources:

Thomas Funkhouser, Princeton University

Marie Samozino, INRIA – équipe Géometrica

Barbara Meier, Animation

What is animation

Make objects change over time according to scripted actions

Traditional Animation

- many of the esthetic animation principles from traditional animation can and often should be applied in computer animation
- Computer animation tools enable just about anybody to make an animation
- Computer animation tools enable just about anybody to make bad animation

Squash: Flatten an object or character by pressure or by its own power

Stretch: Used to increase the sense of speed and emphasize the squash by

contrast

Squash & Stretch

Squash & Stretch

Anticipation (Squash and stretch)

- An action breaks down into:
 - Anticipation
 - Action
 - Reaction
- Anatomical motivation: a muscle must extend before it can contract
- · Prepares audience for action so they know what to expect
- · Directs audience's attention
- Amount of anticipation can affect perception of speed and weight

Anticipation (Squash and stretch)

Amount of anticipation (combined with timing) can affect perception of speed or weight.

Slow in and out

An extreme pose can be emphasized by slowing down as you get to it

Equation:

Space curve X(u), s adalah path yang terukur pada unit busur, maka kita bisa menuliskan s = A(u)

Jika busur adalah sebuah fungsi u. Reparametrize X(u):

$$X(u) \longrightarrow X(s) = X(A^{-1}(s))$$

Slow in and out

In practice, many things do not move abruptly but start and stop gradually.

Staging

- Present the idea so it is unmistakably clear
- Audience can only see one thing at a time
- Useful guide : stage actions in silhouette
- In dialogue, character faces ¾ towards the camera, not right at each other

Timing

- Timing affects weight :
 - √ light object move quickly
 - √ heavier objects move more slowly
- timing can completely change the meaning of an action

Overlapping action

- one part initiates (leads) the move. Others follow in turn
 - ✓ Hip leads legs, but eyes often lead head
 - ✓ loose parts move slower and drag behind
- Overlaps apply to intentions. Example: setling into the house at night
 - ✓ close the door
 - √ lock the door
 - ✓ tace off the coat
- each action doesn't come to a complete finish before the next strats

Secondary action

an action that emphasizes the main point, but is secondary to it

Exaggeration

• get to the heart of the idea and emphasize it so the audiance can see it

FIGURE 11. Varying the scale of different ports of Cad created the child-like proportions of Luxe Jr.

Exaggeration

Appeal

- The character must interest the viewer
- It doesn't have to be cute and cuddly
- Design, simplicity, behavior all affect appeal
- Note: avoid perfect symetries
- example : luxo jr. Is made to childlike

PROCESS: 15. States a series made made states observing for not dup the same.

Response med the lattice their room and of the body per the colors.

Appeal

Note: avoid perfect symmetries.

Appeal

Note: avoid perfect symmetries.

Animation pipeline

- 3D modeling
- Motion specification
- Motion simulation
- Shading, lighting, & rendering
- Postprocessing

Pixar

Character poses described by set of rigid bodies connected by joints

Well-suited for humanoid characters

Joints provide handles for moving articulated figure

Mike Marr, COS 426, Princeton University, 1995

Example: Robot

Mihai Parparita, COS 426, Princeton University, 2003

Inbetweening

Compute joint angles between keyframes

Define character poses at specific time steps called 'keyframes'

Interpolation variables describing keyframes to determine poses for character in between

Inbetweening:

Linear interpolation – usually not enough continuity

Inbetweening:

Spline interpolation – maybe good enough

Inbetweening:

Cubic spline interpolation – maybe good enough

May not follow physical laws

Inbetweening:

Cubic spline interpolation – maybe good enaough

May not follow physical laws

asseter 87

Inbetweening:
Inverse kinematics or dynamics

Example: walk cycle

Articulated figure:

Example: walk cycle

Hip joint orientation:

Watt & Watt

Example: walk cycle

Knee joint orientation:

Example: walk cycle

Ankle joint orientation:

Watt & Watt

Example: Robot

Mihai Parparita, COS 426, Princeton University, 2003

Example: Ice Skating

(Mao Chen, Zaijin Guan, Zhiyan Liu, Xiaohu Qie, CS426, Fall98, Princeton University)

Example: Red's dream

(Pixar)

Challenges of animation

Temporal aliasing

- motion blur

- strobing
- flickering

- strobing
- flickering

- strobing
- flickering

- strobing
- flickering

Motion Blur

Composite weighted images of adjacent frames

• remove parts of signal under sample in time

Computer animated movies

 Example: production process at Pixar

1. Write the main story

2. Write the text treatment

3. Draw the storyboards

4. Record 'scratch' voices

5. Make reels

6. Artists create look and feel

7. Models are created and articulated

8. Sets are built and dressed

9. The scenes are laid out

10. Scenes are animated

11. Shading is added

12. Lighting is added

13. Rendering

14. Add music and sound effects

summary

- Animation requires
 - Modeling
 - Scripting
 - Inbetweening
 - Lighting, shading
 - Rendering
 - Image processing

Pixar