MA1201 (*A/B/C/D) B16/17 Test 2 (70min) Name: _	Student No:	Marks:
---	-------------	--------

Instruction: Indicate carefully the above course session* you register and hand in your answer script together with this question paper as a cover page. Marks will not be recorded without the question paper or with the wrong session you attend or indicate.

- 1. (a) Compute the volume of the solid by revolving the region bounded by the parabolas $x = 3y^2 - 2$ and $x = v^2$ about the x-axis.
 - (b) Find the surface area of the solid by revolving the Astroid: $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$, about the ν -axis.
- (a) Let A be a point in the Argand diagram representing the complex number $z_A = -1 + \sqrt{3}i$. 2. Determine the resulting complex number z_R in the Cartesian form by rotating $OA 75^{\circ}$ along the clockwise direction and sketched in length by five times to OB. [15]
 - (b) Solve $\frac{1}{i}z^3 = 1 + i$ and list all solution in the Polar form with principal arguments. [18]

3. (a) Let
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 0 & 2 & 0 \\ 2 & -1 & -4 \end{pmatrix}$$
. Evaluate $|A^3| + |AA^T| - 2|A^{-1}|$. [10]

(b) Consider the system of linear equations as follows.

$$2x + 3y - z + w = 1$$

$$8x + 12y - 5z + 8w = 3$$

$$-2x - 4y + 3z - 4w = -3$$

Solve the above linear system by the Gaussian elimination.

- [19]
- (ii) Write down the corresponding homogeneous system explicitly and provide a non-trivial solution from (i) without resolving the homogeneous system. [5]

Brief Table of Integrals		
$\int x^p dx = \frac{x^{p+1}}{p+1} + C, p \neq -1$	$\int \frac{1}{x} dx = \ln x + C$	
$\int e^x dx = e^x + C$	$\int \sec^3 x dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln \sec x + \tan x + C$	
$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$	
$\int \sec^2 x dx = \tan x + C$	$\int \csc^2 x dx = -\cot x + C$	
$\int \sec x \tan x dx = \sec x + C$	$\int \csc x \cot x dx = -\csc x + C$	
$\int \sec x dx = \ln \sec x + \tan x + C$	$\int \csc x dx = -\ln \csc x + \cot x + C$	
$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$	

Not to be taken away