Assignment 2 Solutions

1. In a liquid phase reaction, 30% of the reactant disappears in 34 minutes for initial reactant concentrations of 0.04 and also for 0.8 mol/liter. What rate law represents the disappearance of the reactant? [2 Marks]

For zeroth order, $C_A = C_{A0} - k_0 t$; $X = \frac{k_0 t}{c_{A0}}$; conversion depends on initial reactant concentration. So it can not be a zeroth order reaction.

For *first order*, $ln\left(\frac{C_{A0}}{C_A}\right) = k_1 t$; $ln\left(\frac{1}{1-X}\right) = k_1 t$; conversion is independent of initial concentration. So the given data satisfies first order kinetics.

$$k_1 = \frac{1}{t} \ln \left(\frac{1}{1-X} \right) = 0.01 \text{ min}^{-1}.$$

Rate law:
$$-r_A = 0.01 \ (min^{-1})C_A$$
.

2. In a batch reactor, a reactant, with $C_{A0} = 1$ mol/liter, is converted 80% in 8 min; and after 18 min, the conversion is 90%. Find a rate law to represent this reaction. [2 Marks]

Data:
$$X_1 = 0.8$$
, $t_1 = 8$ min $X_2 = 0.9$, $t_2 = 18$ min

Clearly the order is not zero, because conversion does not increase with time proportionally.

The data does not fit first order kinetics either (k_1 for the two conditions are not the same).

Test with 2nd order kinetics:

$$\left(\frac{X}{1-X}\right)\frac{1}{C_{A0}t} = k_2$$

The data given above satisfy 2nd order kinetics, with k_2 = 0.5 min⁻¹.

Rate law:
$$-r_A = 0.5(l^3 mol^{-1} min^{-1})C_A^2$$
.

3. A first order reversible liquid-phase reaction $A \leftrightarrow B$ takes place in a constant volume batch reactor. With $C_{A0} = 0.5$ mol/liter and $C_{B0} = 0$, after 8 minutes conversion of A is 0.333 while equilibrium conversion is 0.667. Find the rate law for this reaction. [2 Marks]

Stoichiometry:
$$C_A = C_{A0}(1 - X)$$

 $C_B = C_{A0}X$

Equilibrium constant:
$$K = \frac{c_{Be}}{c_{Ae}} = \frac{c_{A0}X_e}{c_{A0}(1-X_e)} = 2$$

Rate law:
$$-r_A = k_1 C_A - k_2 C_B$$

$$\frac{dX}{dt} = k_1 [1 - (1 + K^{-1})X]$$
 Integration: $\frac{1}{(1+K^{-1})t} ln\left(\frac{1}{1-(1+K^{-1})X}\right) = k_1$ Substituting $K = 2$, $t = 8$ min, $X = 0.333$, $k_1 = 0.0576$ min⁻¹, $k_2 = 0.0288$ min⁻¹.

4. The kinetics of thermal decomposition of species A is carried out in a differential packed bed reactor. From the data given in the table below, determine the rate law parameters.

Run	Rate mol/(liter.s)	Concentration of A in the reactor mol/liter	Temperature (K)
1	4.9×10 ⁻⁴	0.2	700
2	1.1×10 ⁻⁴	0.02	750
3	2.4×10 ⁻³	0.05	800
4	2.2×10 ⁻²	0.08	850
5	1.18×10 ⁻¹	0.1	900
6	1.82×10 ⁻²	0.06	950

 $-r_A = 0.0576 (min^{-1})C_A - 0.0288(min^{-1})C_B$

Hint: Use Arrhenius equation $[k = Aexp(-E_a/RT)]$ for temperature dependence of rate constant. Use non-linear regression using MATLAB to obtain α , A, and E_a . Include the MATLAB code in your solution. [4 Marks]

$$-r_A = Ae^{-E/RT}C_A^{\alpha}$$

 $\ln(-r_A) = lnA - \frac{E}{RT} + \alpha lnC_A$

Using non-linear regression using the above form of rate law:

$$lnA = 15.2786$$
; A = $4.3 \times 10^6 \left(\frac{mol}{m^3}\right)^{0.5} \frac{1}{s}$
 $\alpha \approx 1.5$

$$E = 1.37 \times 10^5 \text{ J/mol}$$

5. The following data are obtained at 0 °C in a constant volume batch reactor using pure gaseous A:

Time (min)	0	2	4	6	8	10	12	14	∞
Partial pressure	760	600	475	390	320	275	240	215	150
mmHg									

The stoichiometry of the decomposition is A \rightarrow 2.5R. Find a rate law which satisfactorily represents this decomposition using (i) Integral approach and (ii) Differential approach.

At time tending to infinity, p_A is finite, indicating reversible reaction.

Differential approach: [5 Marks]

$$\begin{split} &-\frac{dp_A}{dt} = {k'}_1 p_A - {k'}_2 p_B & \text{[Order is assumed to be 1.]} \\ &p_A = p_{A0} (1-X) \\ &p_B = 2.5 p_{A0} X \\ &\text{At equilibrium: } K_P = \frac{p_{Be}}{p_{Ae}} = \frac{2.5 \times (p_{A0} - p_{Ae})}{p_{Ae}} = \frac{2.5 \times (760 - 150)}{150} = 10.17 \\ &-\frac{dp_A}{dt} = {k'}_1 (p_A - K_P^{-1} p_B) \\ &-\frac{dp_A}{dt} = {k'}_1 [p_A - 2.5 K_P^{-1} (p_{A0} - p_A)] \end{split}$$

$$-\frac{dp_A}{dt} = k'_1[p_A(1+2.5K_P^{-1}) - 2.5K_P^{-1}p_{A0}]$$

Calculate
$$-\frac{dp_A}{dt}$$
:

Time (min)	0	2	4	6	8	10	12	14	∞
Partial pressure	760	600	475	390	320	275	240	215	150
mmHg									
p_{Am} (mid point)	1	680	537.5	432.5	355	297.5	257.5	227.5	-
dp_A	-	80	62.5	42.5	35	22.5	17.5	12.5	
$-\frac{dt}{dt}$									

Plot
$$-\frac{dp_A}{dt}$$
 vs p_A

$$-\frac{dp_A}{dt} = 0.1512p_A - 21.274$$

$$(1 + 2.5K_P^{-1})k'_1 = 0.1512$$

 $k'_1 = 0.12 \text{ min}^{-1}$; $k'_2 = 0.012 \text{ min}^{-1}$. K_P calculated from the intercept (10.7) is very close to 10.17, based on equilibrium experimental data.

The rate law is given as:

$$-\frac{dp_A}{dt} = 0.12 \ (min^{-1})p_A - 0.012 (min^{-1})p_B$$

Integral approach: [5 Marks]

$$-\frac{dp_A}{dt} = k'_1[p_A(1+2.5K_P^{-1}) - 2.5K_P^{-1}p_{A0}]$$

$$-\frac{dp_A}{dt} = \alpha p_A - \beta$$

Where $\alpha=(1+2.5K_P^{-1})k'_1$; $\beta=2.5K_P^{-1}k'_1p_{A0}$; $\frac{\beta}{\alpha}=150~mmHg$ Note that $\frac{\beta}{\alpha}$ is the equilibrium partial pressure of A.

Integrating the differential equation:

$$ln\left(\frac{p_{A0} - \frac{\beta}{\alpha}}{p_A - \frac{\beta}{\alpha}}\right) = \alpha t$$

$$\alpha = (1 + 2.5 K_P^{-1}) k'_1 = 0.1591,$$

$$k'_1 = 0.128 \, min^{-1}$$

$$k'_2 = 0.012 \, min^{-1}$$

The rate law is given as:

$$-\frac{dp_A}{dt} = 0.128 \ (min^{-1})p_A - 0.012 (min^{-1})p_B$$

Both methods give similar rate laws.