

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 801 067 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
05.03.2003 Bulletin 2003/10

(21) Application number: **95942276.7**(22) Date of filing: **27.12.1995**(51) Int Cl.7: **C07D 453/02, A61K 31/435**(86) International application number:
PCT/JP95/02713(87) International publication number:
WO 96/020194 (04.07.1996 Gazette 1996/30)

(54) NOVEL QUINUCLIDINE DERIVATIVES AND MEDICINAL COMPOSITION THEREOF

NEUE CHINUCLIDIN-DERivate UND DIESE ENTHALTENDE PHARMAZEUTISCHE PRÄPARATE

NOUVEAUX DERIVES DE QUINUCLIDINE ET COMPOSITION PHARMACEUTIQUE LES
CONTENANT

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

(30) Priority: **28.12.1994 JP 32704594**

(43) Date of publication of application:
15.10.1997 Bulletin 1997/42

(73) Proprietor: **YAMANOUCHI PHARMACEUTICAL CO. LTD.**
Tokyo 103 (JP)

(72) Inventors:

- **TAKEUCHI, Makoto**
Kitasoumagun, Ibaraki 302-01 (JP)
- **NAITO, Ryo**
Tsukuba-shi, Ibaraki 300-32 (JP)

- **HAYAKAWA, Masahiko**
Tsukuba-shi, Ibaraki 305 (JP)
- **OKAMOTO, Yoshinori**
Tsukuba-shi, Ibaraki 305 (JP)
- **YONETOKU, Yasuhiro**
Tsukuba-shi, Ibaraki 305 (JP)
- **IKEDA, Ken**
Abiko-shi, Chiba 270-11 (JP)
- **ISOMURA, Yasuo**
Kitasoumagun, Ibaraki 302-01 (JP)

(74) Representative: **Geering, Keith Edwin REDDIE & GROSE**
16 Theobalds Road
London WC1X 8PL (GB)

(56) References cited:
WO-A-92/06958 WO-A-93/16048
WO-A-95/06635 JP-A- 7 258 250

BEST AVAILABLE COPY

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

EP 0 801 067 B1

Description**Technical Field**

5 [0001] This invention relates to medicines, particularly quinuclidine derivatives or their salts or quaternary ammonium salts having muscarinic receptor antagonistic activities and also to pharmaceutical compositions containing such compounds.

Background Art

10 [0002] Studies have been made on the muscarinic receptor, and it is known that compounds having muscarinic receptor antagonistic activities cause bronchodilation, suppression of gastrointestinal motility, suppression of acid secretion, dry mouth, mydriasis, suppression of bladder contraction, hypohidrosis, tachycardia, or the like. It is known that the muscarinic receptor includes at least three subtypes. The M₁ receptor mainly exists in the brain or the like, the M₂ receptor in the heart or the like, and the M₃ receptor in the smooth muscles or gland tissues.

15 [0003] A number of such compounds having muscarinic receptor antagonistic activities are hitherto known and, for example, atropine is a typical example ("The MERCK INDEX, ELEVENTH EDITION", p. 138). However, atropine antagonizes the M₁, M₂ and M₃ receptors non-selectively, so that it is difficult to use it for the treatment of a specific disease. In recent years, according to the progress of the studies on the subtypes of the muscarinic receptor, compounds having selective antagonistic activities against the M₁, M₂ or M₃ receptor have been investigated (an unexamined published British Patent Application No. 2,249,093, an unexamined published Japanese Patent Application (kokai) 1-131145, and an unexamined published Japanese Patent Application (kokai) 3-133980). There is a demand for a compound which has selective antagonistic activity against muscarinic M₃ receptor among these three subtypes and is free from the cardiac side effects resulting from the M₂ receptor.

20 [0004] The compound represented by the following general formula is described in an unexamined published Japanese Patent Application (kokai) 62-252764.

(wherein L represents NH or O;

40 X and Y each independently represents a hydrogen atom or a C₁₋₆ alkyl group or they may be combined together to form a bond;

R₁ and R₂ each independently represents a hydrogen atom, a C₁₋₆ alkyl group ... (omission)...;

45 R₃ and R₄ each independently represents a hydrogen atom, a halogen atom, CF₃, a C₁₋₆ alkyl group ... (omission)..., a phenyl group, an amino group which may optionally be N-substituted by one or two groups selected from phenyl, C₁₋₆ alkyl groups or may optionally be N-disubstituted by C₆₋₈ polyethylene... (omission)...;

Z represents

55 or the like;

p is 1 or 2; and q is 1-3.

[0005] The compound described in the above patent literature is disclosed as a 5-HT antagonist and no disclosure about the muscarinic receptor antagonistic activity is found. The above compound is clearly distinguished from the

compound according to the present invention in pharmacological effects.

Disclosure of the Invention

- 5 [0006] The inventors of the present application have carried out extensive studies on compounds having the above-described muscarinic M₃ receptor antagonistic activities. As a result, we created novel quinuclidine derivatives having a basic skeleton different from that of the conventional compound, and found that such compounds have excellent selective antagonistic activity against muscarinic M₃ receptor, resulting in the completion of the present invention.
- 10 [0007] The present invention provides compounds which are quinuclidine derivatives represented by the following general formula (I) or their salts or quaternary ammonium salts; and pharmaceutical compositions comprising said compounds and pharmaceutically acceptable carriers, particularly muscarinic M₃ receptor antagonists:

(symbols in the formula have the following meanings:

- 30 Ring A: an aryl group; a cycloalkyl group; a cycloalkenyl group; a heteroaryl group having 1 to 4 hetero atoms selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom; or a 5- to 7-membered saturated heterocyclic group, wherein said ring may be substituted by one or more substituents;
- X: a single bond or a methylene group;
- 35 R: a halogen atom, a hydroxyl group, a lower alkoxy group, a carboxyl group, a lower alkoxy carbonyl group, a lower acyl group, a mercapto group, a lower alkylthio group, a sulfonyl group, a lower alkylsulfonyl group, a sulfinyl group, a lower alkylsulfinyl group, a sulfonamido group, a lower alkanesulfonamido group, a carbamoyl group, a thiocarbamoyl group, a mono- or di-lower alkylcarbamoyl group, a nitro group, a cyano group, an amino group, a mono- or di-lower alkylamino group, a methylenedioxy group, an ethylenedioxy group or a lower alkyl group which may be substituted by a halogen atom, a hydroxyl group, a lower alkoxy group, an amino group or a mono- or di-lower alkylamino group;
- 40 f: 0 or 1,
- m: 0 or an integer of 1 to 3, and
- n: an integer of 1 or 2, hereinafter the same apply similarly)

45 The optional substituent for ring A are selected from a halogen atom, a hydroxyl group, a lower alkoxy group, a carboxyl group, a lower alkoxy carbonyl group, a lower acyl group, a mercapto group, a lower alkylthio group, a sulfonyl group, a lower alkylsulfonyl group, a sulfinyl group, a lower alkylsulfinyl group, a sulfonamido group, a lower alkanesulfonamido group, a carbamoyl group, a thiocarbamoyl group, a mono- or di-lower alkylcarbamoyl group, a nitro group, a cyano group, an amino group, a mono- or di-lower alkylamino group, a methylenedioxy group, an ethylenedioxy group, and a lower alkyl group which may be substituted by a halogen atom, a hydroxyl group, a lower alkoxy group, an amino group or a mono- or di-lower alkylamino group.

50 [0008] Among the compounds of the present invention, particularly preferred compounds are quinuclidine derivatives (I) wherein R represents a halogen atom, a lower alkyl group, a hydroxyl group, a lower alkoxy group, a nitro group, a cyano group, an amino group or a mono- or di-lower alkylamino group, and the ring A represents an aryl group, a cycloalkyl group, a cycloalkenyl group, a 5- or 6-membered monocyclic heteroaryl group having 1 to 4 hetero atoms selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom, or a 5- to 7-membered saturated heterocyclic group, in which ring A may be substituted by a halogen atom, a lower alkyl group, a hydroxyl group, a lower alkoxy group, a nitro group, a cyano group, an amino group or a mono- or di-lower alkylamino group, and their salts or quaternary ammonium salts;

quinuclidine derivatives (I) wherein m is 0, and the ring A represents an aryl, cycloalkyl or cycloalkenyl group which may be substituted by a halogen atom or by a lower alkyl, hydroxyl or lower alkoxy group, or a 5- or 6-membered monocyclic heteroaryl group having 1 to 4 hetero atoms selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom, and their salts or quaternary ammonium salts;

5 quinuclidine derivatives (I) wherein the ring A represents a phenyl group which may be substituted by a halogen atom or a lower alkyl group; a cycloalkyl group; or a pyridyl, furyl or thienyl groups; and their salts or quaternary ammonium salts;

quinuclidine derivatives (I) wherein X represents a single bond, and their salts or quaternary ammonium salts; and
quinuclidine derivatives (I) wherein n is 2, and their salts or quaternary ammonium salts.

10 [0009] The present invention also provides muscarinic M₃ receptor antagonists which comprise quinuclidine derivatives (I) or their salts or quaternary ammonium salts and pharmaceutically acceptable carriers - preferably agents for the prevention and/or treatment of urinary diseases (e.g., neurogenic pollakiuria, neurogenic bladder, nocturnal enuresis, unstable bladder, cystospasm and chronic cystitis), or respiratory diseases (e.g., chronic obstructive pulmonary diseases, chronic bronchitis, asthma and rhinitis).

15 [0010] Hereinafter, the compounds of the present invention will be described in detail.

[0011] In contrast to conventional muscarinic M₃ receptor antagonists derivatives (I) of the present invention are structurally characterized by having as a basic skeleton a tetrahydroisoquinoline skeleton (Ia) or isoindoline skeleton (Ib) having a quinuclidinyloxycarbonyl group, etc. bonded to the nitrogen atom in the ring as shown below

20

25

30

[0012] Furthermore, derivative (I) of the present invention is characterized in that it has ring A (that is, a cyclic group selected from an aryl group, a cycloalkyl group, a cycloalkenyl group, a heteroaryl group having 1 to 4 hetero atoms selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom, and a 5- to 7-membered saturated heterocyclic group) linked to the 1-position of the tetrahydroisoquinoline or isoindoline through X.

[0013] Unless otherwise specified, the term "lower" as used in the definition of the general formula in this specification means a linear or branched carbon chain having 1 to 6 carbon atoms. Accordingly, the "lower alkyl group" means linear or branched alkyl group having 1 to 6 carbon atoms. Specific examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, 1-methylbutyl, 2-methylbutyl, 1,2-dimethylpropyl, hexyl, isohexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl groups. Among these groups, alkyl groups having 1 to 4 carbon atoms such as methyl, ethyl, propyl, isopropyl and butyl groups are preferred, and a methyl group is more preferred.

[0014] The "aryl group" means aromatic hydrocarbon groups having 6 to 14 carbon atoms. Specific examples include phenyl, naphthyl, indenyl, anthryl and phenanthryl groups, and a phenyl group is more preferred.

[0015] The "cycloalkyl group" has 3 to 8 carbon atoms, and examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. Among these groups, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl groups are preferred, and a cyclohexyl group is more preferred.

[0016] The "cycloalkenyl group" has 3 to 8 carbon atoms, and examples include 1-cyclopropenyl, 2-cyclopropenyl, 1-cyclobutenyl, 2-cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, 1-cycloheptenyl, 2-cycloheptenyl, 3-cycloheptenyl, 4-cycloheptenyl, 1-cyclooctenyl, 2-cyclooctenyl, 3-cyclooctenyl, 4-cyclooctenyl, 2,4-cyclopentadienyl, 2,5-cyclohexadienyl, 2,4-cycloheptadienyl, and 2,6-cyclohepta- dienyl.

[0017] The "heteroaryl group containing 1 to 4 hetero atoms selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom" means a 5- or 6-membered such heteroaryl group which may be condensed with

a benzene ring. Specific examples include 5- or 6-membered monocyclic such heteroaryl groups, such as furyl, thiienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, isothiazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl and pyridazinyl groups; and 5- or 6-membered such heteroaryl groups condensed with a benzene ring, such as Indolyl, Indazolyl, indolizinyl, quinolyl, quinazolinyl, quinolizinyl, quinoxaliny, cinnolinyl, benzimidazolyl, benzofuranyl, dihydrobenzofuranyl, benzoxazolyl, benzothiazolyl, benzothienyl groups.

[0018] Among these groups, preferred are 5- or 6-membered monocyclic such heteroaryl groups, and furyl, thiienyl and pyridyl groups are more preferred.

[0019] The "5- to 7-membered saturated heterocyclic group" means a 5-, 6- or 7-membered saturated heterocyclic group containing 1 to 2 oxygen, nitrogen and/or sulfur atoms. Specific examples include pyrrolidinyl, imidazolidinyl, 10 piperidinyl, piperazinyl and morpholinyl groups.

[0020] Ring A may be substituted by an optional substituent. The number of the substituent is not limited to one but may be plural. The optional substituents are as identified above; a halogen atom, a lower alkyl group, a hydroxyl group, a lower alkoxy group, a nitro group, a cyano group, an amino group and a mono- or di-lower alkylamino group are preferred; a halogen atom, a lower alkyl group, a hydroxyl group and a lower alkoxy group are more preferred; and a halogen atom and a lower alkyl group are particularly preferred.

[0021] Examples of the halogen atom include fluorine, chlorine, bromine and iodine. When the substituent is a halogen atom, the number of the substituents is not particularly limited. When two or more halogen atoms are substituted, any combination of the above atoms is possible. Examples of the halogen atom-substituted lower alkyl group include fluoromethyl, chloromethyl, bromomethyl, iodomethyl, 1-fluoroethyl, 1-chloroethyl, 1-bromoethyl, 2-chloroethyl, 2-bromoethyl, dichloromethyl, trifluoromethyl, trichloromethyl, tribromomethyl, triiodomethyl and dichlorobromomethyl. Among these groups, a trifluoromethyl group is preferred.

[0022] Examples of the "lower alkoxy group" include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy (amyloxy), isopentyloxy, tert-pentyloxy, neopentyloxy, 2-methylbutoxy, 1,2-dimethylpropoxy, 1-ethylpropoxy and hexyloxy. Among these groups, lower alkoxy groups containing an alkyl group having 1 to 4 carbon atoms, such as methoxy, ethoxy, propoxy and butoxy are preferred, and methoxy and ethoxy groups are more preferred.

[0023] Examples of the lower alkoxy carbonyl group include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, iso-propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, pentyloxy (amyloxy) carbonyl, isopentyloxycarbonyl, tert-pentyloxycarbonyl, neopentyloxycarbonyl, 2-methylbutoxycarbonyl, 1,2-dimethylpropoxycarbonyl, 1-ethylpropoxycarbonyl and hexyloxycarbonyl.

[0024] Examples of the "lower acyl group" include formyl, acetyl, propionyl, butyryl, valeryl and pivaloyl, and formyl, acetyl and propionyl are preferred.

[0025] The "lower alkylthio group" means a mercapto group of which hydrogen atom has been substituted by the above-exemplified lower alkyl group, such as methylthio, ethylthio, propylthio, isopropylthio, butylthio, pentylthio and hexylthio groups.

[0026] Examples of the "lower alkylsulfonyl group" include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, pentylsulfonyl and hexylsulfonyl.

[0027] Examples of the "lower alkylsulfinyl group" include methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, butylsulfinyl, pentylsulfinyl and hexylsulfinyl.

[0028] Examples of the "lower alkanesulfonamido group" include methanesulfonamido, ethanesulfonamido, propanesulfonamido, isopropanesulfonamido, butanesulfonamido, pentanesulfonamido and hexanesulfonamido.

[0029] The "mono- or di-lower alkylcarbamoyl group" means a carbamoyl group in which one or two hydrogen atom(s) have been substituted by the above-exemplified lower alkyl group(s), such as methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl and dimethylcarbamoyl groups.

[0030] The "mono- or di-lower alkylamino group" means an amino group in which one or two hydrogen atom(s) have been substituted by the above-exemplified lower alkyl group(s), such as methylamino, ethylamino, propylamino, dimethylamino, diethylamino and dipropylamino groups.

[0031] The term "lower alkyl group which may be substituted by a halogen atom, a hydroxyl group, a lower alkoxy group, an amino group or a mono- or di-lower alkylamino group" means a lower alkyl group in which at least one optional hydrogen atom has been substituted by a halogen atom, a hydroxyl group, a lower alkoxy group, an amino group or a mono- or di-lower alkylamino group. The lower alkyl group substituted by a halogen atom is as described in the above description of the halogen atom.

[0032] The derivatives (I) of the present invention contain a quinuclidinyl group. The nitrogen atom of the quinuclidinyl group may form an oxide ($\ell = 1$) or quaternary ammonium salt. Where a quaternary ammonium salt is formed, the group bound to the quaternary nitrogen atom is selected from lower alkyl, lower alkenyl and lower alkynyl.

[0033] The term "lower alkenyl" as used herein means a linear or branched alkenyl group having 2 to 6 carbon atoms, such as vinyl, propenyl, butenyl, methylpropenyl, dimethylvinyl, pentenyl, methylbutenyl, dimethylpropenyl, ethylpropenyl, hexenyl, dimethylbutenyl and methylpentenyl. Among these groups, a propenyl group is preferred.

[0034] The "lower alkynyl group" means a linear or branched alkynyl group having 2 to 6 carbon atoms, such as ethynyl, propynyl, butynyl, methylpropynyl, pentynyl, methylbutynyl and hexynyl groups. Among these groups, alkynyl groups having 2 to 3 carbon atoms such as ethynyl and propynyl are preferred.

[0035] The counter ion for the quaternary ammonium salt is selected from anions of a halogen atom and triflate, tosylate and mesylate anions (preferably ions of a halogen atom, i.e. halide ions - e.g. chloride ion, bromide ion, iodide ion and triiodide ion); or from nitrate, sulfate, phosphate, carbonate, formate (HCOO^-), acetate (CH_3COO^-), propionate, oxalate, malonate, and glutamate anions. Among the halide ions, bromide ion and iodide ion are preferred. Incidentally, the anion can be converted into a preferable anion as needed by ordinary ion exchange reaction.

[0036] The compounds of the present invention contain an asymmetric carbon atom so that there exist optical isomers based on it. In addition, some of the invention compounds have stereoisomers or tautomers. The present invention also embraces diastereomers and enantiomers obtained by the separation of the above isomers as well as mixtures thereof.

[0037] Some of the derivatives (I) of the present invention can form salts with an acid as well as the above-described quaternary ammonium salts with a quinuclidinyl group. Examples of such salt include acid addition salts with a mineral acid such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid or phosphoric acid; and those with an organic acid such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, citric acid, tartaric acid, carbonic acid, picric acid, methanesulfonic acid, ethanesulfonic acid or glutamic acid. The compounds of the present invention also embrace hydrates, solvates with ethanol or the like, and substances in any polymorphism crystals.

(Preparation Process)

[0038] The compounds of the present invention can be prepared in accordance with various processes. The typical preparation processes are explained below.

First preparation method

100391

(in the formula, Q¹ represents a leaving group which is advantageous in the present reaction, and ring A, R, X, m and n have the same meanings as defined above. Hereinafter, the same will apply similarly).

[0040] This reaction is carried out by stirring the compound represented by the general formula (II) and quinuclidinol represented by the general formula (III) in an amount corresponding to the reaction in an inert solvent at room temperature or under heating.

[0041] The leaving group Q¹ embraces, for example, a halogen atom, a lower alkoxy group, a phenoxy group and an imidazolyl group.

[0042] Examples of the inert solvent include dimethylformamide (DMF), dimethylacetamide, tetrahydrofuran (THF), dioxane, dimethoxyethane, diethoxyethane, benzene, toluene and xylene and mixed solvents thereof.

[0043] It is preferable to add a base (e.g., sodium, sodium hydride, sodium methoxide and sodium ethoxide) in order to accelerate the present reaction.

5

Second preparation method

[0044]

10

15

20

25

30

35

(wherein the ring A, R, X, m, n and Q¹ have the same meanings as defined above.)

[0045] This reaction is carried out by stirring the compound represented by the general formula (IV) and the compound represented by the general formula (V) in the above-described inert solvent at room temperature or under heating.

[0046] It is preferable to add a base (e.g., sodium, sodium hydride, sodium methoxide, sodium ethoxide, triethylamine and pyridine) in order to accelerate the present reaction.

40

(Other preparation methods)

45

[0047] Among the compounds of the present invention, a compound in which the nitrogen atom of the quinuclidinyl group forms oxide or a quaternary ammonium salt can be prepared by N-oxide formation or N-alkylation of a tertiary amine compound of the present invention.

50

[0048] The N-oxide formation reaction can be carried out by the oxidation reaction in a conventional manner, more specifically, by stirring a tertiary amine compound of the present invention and a corresponding amount or excess amount of oxidizing agent in an inert solvent such as chloroform, dichloromethane or dichloroethane, an alcohol such as methanol or ethanol or water or a mixed solvent thereof under cooling or at room temperature, or in some cases under heating. Examples of the oxidizing agent include organic peracids such as m-chloroperbenzoic acid, sodium periodate and hydrogen peroxide.

55

[0049] The N-alkylation reaction can be carried out in accordance with the conventional N-alkylation reaction, more specifically by stirring a tertiary amine compound of the present invention and a corresponding amount of an alkylating agent in an inert solvent such as dimethylformamide, chloroform, benzene, 2-butanone, acetone or tetrahydrofuran under cooling or a room temperature, or in some cases under heating.

[0050] Examples of the alkylating agent include lower alkyl halides, lower alkyl trifluoromethanesulfonates, lower alkyl p-toluenesulfonates and lower alkyl methanesulfonates, preferably lower alkyl halides.

[0051] For the preparation of the compound of the present invention, it is sometimes necessary to protect a functional

group. In such a case, introduction of a proper protecting group and deprotection operation in a conventional manner are carried out additionally.

[0052] The compound of the present invention so prepared is provided as is in the free form, or after salt formation treatment in conventional manner it is isolated and purified as its salt. Isolation and purification are carried out by ordinary chemical operations such as extraction, concentration, evaporation, crystallization, filtration, recrystallization or a variety of chromatography.

Industrial Applicability

[0053] The compound of the present invention has affinity and selectivity for the muscarinic M₃ receptor and, as an M₃ receptor antagonist, it is useful as an agent for prevention or treatment of various M₃ receptor-related diseases, particularly urinary diseases such as urinary incontinence or pollakiuria in neurogenic pollakiuria, neurogenic bladder, nocturnal enuresis, unstable bladder, cystospasm or chronic cystitis; respiratory diseases such as chronic obstructive pulmonary diseases, chronic bronchitis, asthma or rhinitis; or digestive diseases such as irritable bowel syndrome, spastic colitis or diverticulitis.

[0054] In particular, the compound of the present invention has high selectivity for the M₃ receptor existing in the smooth muscle or gland tissues compared with the M₂ receptor existing in the heart or the like, so that it has high utility as an M₃ receptor antagonist having less side effects on the heart or the like, particularly as an agent for prevention or treatment of urinary incontinence, pollakiuria, chronic obstructive pulmonary diseases, chronic bronchitis, asthma or rhinitis.

[0055] The affinity and antagonism of the compound of the present invention for the muscarinic receptor was confirmed by the following tests.

Muscarinic receptor binding test (*In vitro*)

a. Preparation of membranes

[0056] From a male Wistar rat (Japan SLC), the heart and submandibular gland were excised, mixed with a 20 mM HEPES buffer (pH 7.5, which will hereinafter be abbreviated as "HEPES buffer") containing 5 times the volume of 100 mM sodium chloride and 10 mM magnesium chloride was added, followed by homogenization under ice-cooling. The resulting mixture was filtered through gauze, followed by ultracentrifugation at 50,000 × g and 4°C for 10 minutes. The precipitate obtained was suspended in an HEPES buffer, followed by further ultracentrifugation at 50,000 × g and 4°C for 10 minutes. The precipitate obtained was suspended in an HEPES buffer. The resulting suspension was stored at -80°C and provided for the test after melting upon use.

b. Muscarinic M₂ receptor binding test

[0057] The test was carried out in accordance with the method of Doods et al. (*J. Pharmacol. Exp. Ther.*, 242, 257-262, 1987) with some modifications. The cardiac membrane sample, [³H]-quinuclidinyl benzilate and the test compound were incubated in a 0.5 ml HEPES buffer at 25°C for 45 minutes, followed by suction filtration through a glass filter (Whatman GF/B). The filter was washed three times with 5 ml portions of an HEPES buffer. The radioactivity of the [³H]-quinuclidinyl benzilate adsorbed on the filter was measured by a liquid scintillation counter. Incidentally, non-specific binding of the receptor was determined by the addition of 1 μM atropine. The binding of the compound of the present invention for the muscarinic M₂ receptor was determined from a dissociation constant (K_i) calculated, in accordance with Chen and Prusoff (*Biochem. Pharmacol.* 22, 3099, 1973), based on the concentration (IC₅₀) of the test compound at which 50% of the binding of the [³H]-quinuclidinyl benzilate, that is, a labeled ligand was inhibited.

c. Muscarinic M₃ receptor binding test

[0058] In a similar manner to the above muscarinic M₂ receptor binding test except that the submandibular gland was used as a membrane sample and [³H]-N-methylscopolamine was used as a labeled ligand, a muscarinic M₃ receptor binding test was carried out.

[0059] Results: The compound (I) of the present invention had a K_i value of from 10⁻⁸ to 10⁻¹⁰ for M₃ receptor, which suggested that the affinity for M₃ receptor was at least 10 times as high as that for M₂ receptor.

Muscarinic receptor antagonism test (*in vivo*)

a. Test on rhythmic bladder contraction in rat

5 [0060] A female Wistar rat (130-200 g) was subjected to urethane anesthesia (1.0 g/kg s.c.), followed by ligation of the ureter on the kidney side. A urethral catheter was allowed to remain in the bladder, and about 1.0 ml of physiological saline was injected into the bladder through the catheter to cause rhythmic bladder contraction. Intravesical pressure was measured by a pressure transducer. After rhythmic contraction continued stable for at least 5 minutes, the test compound was cumulatively administered from the external jugular vein. Five to ten minutes later, the intravesical pressure was measured. An inhibition ratio of bladder contraction was determined compared with the bladder contraction before administration of the test compound and the dose of the test compound required for 30% inhibition of the bladder contraction before administration was designated as ED₃₀.

10 [0061] As a result of the test, the compound of the present invention showed good ED₃₀ value.

15 b. Test on salivary secretion in rat

[0062] A male Wistar rat (160-190 g) was subjected to anesthesia with urethane (0.8 g/kg i.p.), and the test compound was administered (to the control group: solvent). Fifteen minutes later, 0.8 μmol/kg of oxotremorine was administered. In each case, the drug was administered through its femoral artery. The saliva secreted for 5 minutes after the administration of oxotremorine was collected and weighed. The inhibition ratio against the amount of saliva in the control group was determined and the dose of the test compound required for 50% inhibition of the amount of saliva in the control group was designated as ID₅₀.

20 [0063] As a result of the test, the ID₅₀ value of atropine tested as a comparative compound was substantially the same as the ED₃₀ value obtained in the above rat rhythmical bladder contraction test, while the ID₅₀ value of the invention compound was at least 5 times as much as the above-described ED₃₀ value, which suggested that the compound of the present invention has relatively weak action against the salivary secretion.

c. Test on bradycardia in rat

25 [0064] The test was carried out in accordance with the method of Doods et al. (*J. Pharmacol. Exp. Ther.*, **242**, 257-262, 1987). A male Wistar rat (250-350 g) was subjected to anesthesia with pentobarbital sodium (50 mg/kg i.p.). The neck region was excised, followed by the division of right and left vagus nerves. After a cannula was inserted into a trachea to secure airway, a stainless rod was inserted from the orbit and the spinal cord was destroyed. Under artificial respiration (at 10 cc/kg and 50 times/minute), the rectal temperature was maintained at 37.5°C and a heart rate was monitored at the common carotid artery. An indwelling needle was fixed to the femoral artery, from which the drug was administered. After the destruction of the spinal cord, the rat was allowed to stand for 15 minutes to attain the equilibrium, followed by the administration of atenolol (10 mg/kg). After the equilibration for additional 15 minutes, the test compound was administered. Fifteen minutes later, oxotremorine was cumulatively administered, thereby the reduction in the heart rate was measured. The amount of the test compound required for 10-times rightward shift of the dose-response curve of the control group was designated as DR₁₀.

30 [0065] Results: The compound of the present invention had sufficiently low activity against bradycardia and no bradycardia was observed at the administration amount of several mg/kg.

35 [0066] As a result of the above-described muscarinic receptor binding test (*in vitro*), it was found that the compound (I) of the present invention had selectivity and high affinity for M₃ receptor. Even in the muscarinic receptor antagonism test (*in vivo*), the compound of the present invention showed good muscarinic M₃ antagonistic activity but low activity on the bradycardia having relationship with muscarinic M₂ receptor. Accordingly, it was found that the compound of the present invention has selective antagonistic activity against muscarinic M₃ receptor, and furthermore, it has less side effects such as dry mouth compared with the conventional anti-cholinergic agent.

40 [0067] A pharmaceutical composition containing one or more of the compounds of the present invention and salts thereof is prepared using an ordinary pharmaceutically acceptable carrier.

45 [0068] In the present invention, the administration of the pharmaceutical composition can be carried out either orally or parenterally in the form of an injection, suppository, transdermal agent, inhalant or intravesical injection.

50 [0069] The dose is optionally determined in each case in consideration of the conditions, age, sex and the like of the patient to be administered. In the oral administration, the daily dose may generally range from about 0.01 mg/kg to 100 mg/kg per adult. It is administered once or in 2-4 portions. Where intravenous administration is adopted in consideration of the conditions of the patient, the daily dose may generally range from about 0.001 mg/kg to 10 mg/kg per adult, once or plural portions per day.

55 [0070] Examples of the pharmaceutical carrier include nontoxic solid or liquid pharmaceutical substances.

[0071] Examples of the solid composition for the oral administration include tablets, pills, capsules, powders and granules, or the like. In such solid compositions, one or more active substances are mixed with at least one inert diluent such as lactose, mannitol, glucose, hydroxypropylcellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone, agar, pectin, magnesium metasilicate or magnesium aluminate. In the composition, it is possible to incorporate additives other than the above inert diluent, for example, a lubricant such as magnesium stearate, a disintegrator such as cellulose calcium glycolate, a stabilizer such as lactose, a solubilization aid such as glutamic acid or aspartic acid in a conventional manner. A tablet or pill may optionally be coated with sugar or a film of a gastric or enteric substance such as sucrose, gelatin, hydroxypropylcellulose or hydroxypropylmethylcellulose phthalate.

[0072] Examples of the liquid composition for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs which contain a commonly employed inert diluent such as purified water or ethanol. The composition can also contain, in addition to such an inert diluent, a wetting agent, auxiliary agent such as suspending agent, sweetener, flavoring agent, aroma and/or antiseptic.

[0073] The injection for parenteral administration according to the present invention include a sterile aqueous or nonaqueous solution, suspension or emulsion. Examples of the aqueous solution and suspension include distilled water and physiological saline for injection. Examples of the non-water-soluble solution or suspension include ethylene glycol, polypropylene glycol, polyethylene glycol, vegetable oils such as cacao butter, olive oil or sesame oil, alcohols such as ethanol, gum arabic and "Polysolvate 80" (trade name). Such a composition may further contain an isotonicity agent, antiseptic agent, wetting agent, emulsifying agent, dispersing agent, stabilizer (for example, lactose) and/or solubilizing aid (for example, glutamic acid, aspartic acid). They are sterilized by, for example, filtration through a bacteria-retaining filter, incorporation of a sterilizer, or irradiation. Alternatively, a sterile solid composition which has been prepared in advance is dissolved in sterile water or a sterile injection solvent upon use.

Best Modes for Carrying out the Invention

[0074] The present invention will hereinafter be described in further detail with reference to the following Examples. However, the compounds of the present invention should not be construed as being limited to the compounds which will be described later in Examples but embrace all the compounds represented by the above formula (I) and salts, hydrates, solvates, geometrical and optical isomers and any polymorphism forms of the compound (I).

[0075] Incidentally, the starting compounds for the compound of the present invention include novel compounds and preparation examples of such starting compounds will be described below as Reference Examples.

Reference Example 1

[0076] To a 130 ml dichloromethane solution containing 6.28 g of 1-phenyl-1,2,3,4-tetrahydroisoquinoline and 3.34 g of triethylamine, 3.1 ml of ethyl chloroformate was added dropwise under ice-cooling, followed by stirring at room temperature overnight. The reaction solution was washed successively with water, 1N hydrochloric acid, water and brine and then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure, thereby 10.58 g of ethyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinemcarboxylate was obtained as pale yellow oil. Infrared absorption spectrum $\nu_{\text{max}}(\text{neat})\text{cm}^{-1}$: 1700, 1430, 1296, 1230, 1122.

Nuclear magnetic resonance spectrum (CDCl_3 , TMS internal standard)

[0077]

δ : 1.29 (3H, t, $J = 7.3$ Hz), 2.75-3.45 (3H, m), 3.90-4.40 (1H, m), 4.21 (2H, q, $J = 7.3$ Hz), 6.38 (1H, s), 6.95-7.45 (9H, m).

[0078] In a similar manner to Reference Example 1, the compounds of the following Reference Examples 2 to 14 were obtained.

Reference Example 2

[0079] Methyl 1-phenyl-2-isindolinemcarboxylate Starting compounds: 1-phenylisindoline, methyl chloroformate
Infrared absorption spectrum $\nu_{\text{max}}(\text{KBr})\text{cm}^{-1}$: 1708, 1460, 1376, 1100
Nuclear magnetic resonance spectrum (CDCl_3 , TMS internal standard)

δ : 3.60, 3.72 (3H, s \times 2), 4.89, 4.96 (2H, s \times 2), 5.94, 6.03 (1H, s \times 2), 6.95-7.10 (1H, m), 7.15-7.35 (8H, m)

Reference Example 3

[0080] Ethyl 1-(4-pyridyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compound: 1-(4-pyridyl)-1,2,3,4-tetrahydroisoquinoline

Properties: pale yellow oil

Mass analysis (m/z, EI): 282 (M⁺)

Nuclear magnetic resonance spectrum (CDCl₃, TMS internal standard)

δ: 1.29 (3H, t, J = 7.1 Hz), 2.60-3.45 (3H, m), 3.85-4.20 (1H, m), 4.22 (2H, q, J = 7.1 Hz), 6.31 (1H, s), 7.14 (2H, dd, J = 4.4, 1.5 Hz), 7.17-7.26 (4H, m), 8.51 (2H, dd, J = 4.4, 1.5 Hz)

Reference Example 4

[0081] Ethyl 1,2,3,4-tetrahydro-1-(2-thienyl)-2-isoquinolinecarboxylate

Starting compound: 1,2,3,4-tetrahydro-1-(2-thienyl)isoquinoline

Properties: pale yellow oil

Mass analysis (m/z, EI): 287 (M⁺)

Nuclear magnetic resonance spectrum (CDCl₃, TMS internal standard)

δ: 1.32 (3H, t, J = 7.3 Hz), 2.65-3.60 (3H, m), 4.00-4.30 (1H, m), 4.23 (2H, q, J = 7.3 Hz), 6.53 (1H, s), 6.70-6.95 (2H, m), 7.15-7.30 (5H, m)

Reference Example 5

[0082] Ethyl 1,2,3,4-tetrahydro-1-(3-thienyl)-2-isoquinolinecarboxylate

Starting compound: 1,2,3,4-tetrahydro-1-(3-thienyl)-isoquinoline

Properties: Orange oil

Mass analysis (m/z, FAB): 288 (M⁺ + 1)

Nuclear magnetic resonance spectrum (CDCl₃, TMS internal standard)

δ: 1.2-1.3 (3H, m), 2.7-2.8 (1H, m), 2.9-3.0 (1H, m), 3.1-3.3 (1H, m), 3.9-4.2 (3H, m), 6.2-6.4 (1H, m), 6.83 (1H, s), 6.95-7.26 (6H, m)

Reference Example 6

[0083] Ethyl 1-(2-furyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compound: 1-(2-furyl)-1,2,3,4-tetrahydroisoquinoline

Mass analysis (m/z, EI): 271 (M⁺)

Nuclear magnetic resonance spectrum (CDCl₃, TMS internal standard)

δ: 1.30 (3H, t, J = 6.5 Hz), 2.75-2.85 (1H, m), 2.90-3.10 (1H, m), 3.20-3.50 (1H, m), 4.05-4.35 (4H, m), 6.00 (1H, s), 6.20-6.45 (2H, m), 7.15-7.25 (4H, m), 7.33 (1H, s)

Reference Example 7

[0084] (1S)-Ethyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compound: (1R)-1-phenyl-1,2,3,4-tetrahydroisoquinoline

Elemental analysis (for C ₁₈ H ₁₉ NO ₂)			
	C (%)	H (%)	N (%)
Calcd.:	76.84	6.81	4.98
Found:	76.53	6.82	4.93

δ: Specific optical rotation [α]_D²⁵: 199.2 (C = 1.03, CHCl₃)

Mass analysis (m/z, FAB): 282 (M⁺ + 1)

Reference Example 8

[0085] (1R)-Ethyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate
 Starting compound: (1R)-1-phenyl-1,2,3,4-tetrahydroisoquinoline

5

10

Elemental analysis (for C ₁₈ H ₁₉ NO ₂)			
	C (%)	H (%)	N (%)
Calcd.:	76.84	6.81	4.98
Found:	76.64	6.82	4.99

Specific optical rotation [α]_D²⁵: -200.9 (C = 1.09, CHCl₃) Mass analysis (m/z, EI): 281 (M⁺)

15

Reference Example 9

[0086] Ethyl 1-(4-chlorophenyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compound: 1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline

Properties: Pale yellow oil

20

Mass analysis (m/z, EI): 315 (M⁺)

Nuclear magnetic resonance spectrum (CDCl₃, TMS internal standard)

δ: 1.29 (3H, t, J = 7.0 Hz), 2.70-3.52 (3H, m), 4.00-4.30 (1H, m), 4.20 (2H, q, J = 7.0 Hz), 6.35 (1H, s), 7.05-7.35 (8H, m)

25

Reference Example 10

[0087] Ethyl 1-(4-fluorophenyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compound: 1-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline

Properties: Pale yellow oil

30

Mass analysis (m/z, FAB): 300 (M⁺ + 1)

Nuclear magnetic resonance spectrum (CDCl₃, TMS internal standard)

δ: 1.30 (3H, t, J = 8.9 Hz), 2.75 (1H, dd, J = 12.5, 3.4 Hz), 2.9-3.1 (1H, m), 3.1-3.3 (1H, m), 4.0-4.3 (3H, m), 6.2-6.4 (1H, m), 6.93-7.03 (3H, m), 7.16-7.24 (5H, m).

35

Reference Example 11

[0088] Ethyl 1,2,3,4-tetrahydro-1-(4-tolyl)-2-isoquinolinecarboxylate

Starting compound: 1,2,3,4-tetrahydro-1-(4-tolyl)isoquinoline

40

Mass analysis (m/z, EI): 295 (M⁺)

Nuclear magnetic resonance spectrum (CDCl₃, TMS internal standard)

δ: 1.20-1.35 (3H, m), 2.30 (3H, s), 2.70-2.80 (1H, m), 2.90-3.10 (1H, m), 3.23 (1H, t, J = 10.0 Hz), 3.95-4.30 (3H, m), 6.29, 6.41 (1H, brs × 2), 7.00-7.25 (8H, m).

45

Reference Example 12

[0089] Ethyl 1-benzyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compound: 1-benzyl-1,2,3,4-tetrahydroisoquinoline

50

Properties: Pale yellow oil

Mass analysis (m/z, FAB): 296 (M⁺ + 1)

Nuclear magnetic resonance spectrum (CDCl₃, TMS internal standard)

55

δ: 1.02, 1.23 (3H, t × 2, J = 7.1 Hz), 2.63-3.20 (4H, m), 3.30-3.50 (1H, m), 3.75-4.25 (3H, m), 5.27, 5.38 (1H, t × 2, J = 6.8 Hz), 6.85-7.28 (9H, m).

Reference Example 13

[0090] Ethyl 1-cyclohexyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compound: 1-cyclohexyl-1,2,3,4-tetrahydroisoquinoline

5 Properties: yellow oil

Mass analysis (m/z, FAB): 288 ($M^+ + 1$)

Nuclear magnetic resonance spectrum ($CDCl_3$, TMS internal standard)

10 δ : 0.70-2.00 (11H, m), 1.26 (3H, t, $J = 7.3$ Hz), 2.89 (2H, t, $J = 7.1$ Hz), 3.25-4.20 (2H, m), 4.14 (2H, q, $J = 7.1$ Hz),
4.65-4.95 (1H, m), 7.00-7.30 (4H, m).

Reference Example 14

[0091] Ethyl 1-(3-furyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

15 Starting compound: 1-(3-furyl)-1,2,3,4-tetrahydroisoquinoline

Properties: yellow oil

Mass analysis (m/z, EI): 271 (M^+)

Nuclear magnetic resonance spectrum ($CDCl_3$, TMS internal standard)

20 δ : 1.31 (3H, t, $J = 7.0$ Hz), 2.55-3.40 (3H, m), 3.90-4.30 (1H, m), 4.22 (2H, q, $J = 7.0$ Hz), 6.20-6.45 (2H, m), 6.95-7.40
(6H, m).

[0092] The chemical structural formulas of the compounds obtained in Reference Examples 1-14 are shown in the
following Tables 1-2.

25

30

35

40

45

50

55

Table 1

Reference Example No.	Structural Formula	Reference Example No.	Structural Formula
10 1		15 6	
20 2		25 7	
30 3		35 8	
40 4		45 9	
50 5		55 10	

Table 2

Reference Example No.	Structural Formula
11	
12	
13	
14	

Example 1

[0093] To a 30 ml toluene solution containing 0.70 g of ethyl 1-phenyl-1,2,3,4-tetrahydroisoquinoline-2-carboxylate and 0.41 g of 3-quinuclidinol, 0.03 g of sodium hydride (60%) was added. The resulting mixture was stirred at 140°C for 2 days while removing the ethanol formed. The reaction mixture was cooled to room temperature, brine was added, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform : methanol = 10 : 1 → chloroform : methanol : 28% aqueous ammonia = 10 : 1 : 0.1), thereby 0.11 g of 3-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate was obtained as yellow oil. The resulting oil was dissolved in 10 ml of ethanol, followed by the addition of 27 mg of oxalic acid. Then, the solvent was removed under reduced pressure. The resulting solid was recrystallized from isopropanol and isopropyl ether, thereby 0.08 g of 3-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate monooxalate was obtained as colorless crystals. Melting point: 122-124°C (i-PrOH-i-Pr₂O)

Elemental analysis (for C ₂₅ H ₂₈ N ₂ O ₆ •0.75H ₂ O)				
	C (%)	H (%)	N (%)	
Calcd.	64.43	6.38	6.01	
Found	64.25	6.15	5.88	

[0094] In a similar manner to Example 1, the compound of Example 2 was obtained.

10 Example 2

[0095] 3-Quinuclidinyl 1-phenyl-2-isoindolinecarboxylate monohydrochloride

Starting compound: methyl 1-phenyl-2-isoindolinecarboxylate

Melting point: 164-165°C (EtOH-Et₂O)

Elemental analysis (for C ₂₂ H ₂₅ N ₂ O ₂ Cl•1.75H ₂ O)				
	C (%)	H (%)	N (%)	Cl (%)
Calcd.	63.45	6.90	6.73	8.51
Found	63.54	6.59	6.76	8.12

Example 3

[0096] To a 50 ml toluene suspension containing 720 mg of ethyl 1-(4-pyridyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate and 973 mg of 3-quinuclidinol, 102 mg of sodium hydroxide (60%) was added at room temperature. The resulting mixture was heated under reflux for 5 hours and 40 minutes while the resulting ethanol was removed together with toluene. The reaction mixture was cooled to room temperature, followed by addition of 20 ml of water. The resulting mixture was extracted with chloroform. The organic layer was washed with water and brine, dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform : methanol : 28% aqueous ammonia = 100 : 2 : 1), thereby 827 mg of 3-quinuclidinyl 1-(4-pyridyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate were obtained as yellow oil. The resulting oil was dissolved in 5 ml of ethyl acetate, 2 ml of a 4N hydrogen chloride in ethyl acetate solution was added. The solvent was then removed under reduced pressure. Ethanol and ether were added to the residue, and the crude crystals thus obtained was recrystallized from ethanol and ether, thereby 402 mg of 3-quinuclidinyl 1-(4-pyridyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate dihydrochloride was obtained as pale yellow crystals.

Melting point: 167-169°C (EtOH-Et₂O)

Elemental analysis (for C ₂₂ H ₂₇ N ₃ O ₂ Cl ₂ •2.2H ₂ O)				
	C (%)	H (%)	N (%)	Cl (%)
Calcd.	55.51	6.65	8.83	14.90
Found	55.46	6.98	8.64	14.84

[0097] In a similar manner to Example 3, the compounds of Examples 4 to 6 which will be described below were obtained.

Example 4

[0098] 3-Quinuclidinyl 1,2,3,4-tetrahydro-1-(2-thienyl)-2-isoquinolinecarboxylate monooxalate

Starting compound: Ethyl 1,2,3,4-tetrahydro-1-(2-thienyl)-2-isoquinolinecarboxylate

Elemental analysis (for C ₂₃ H ₂₆ N ₂ O ₆ S•1.3H ₂ O)				
	C (%)	H (%)	N (%)	S (%)
Calcd.	57.32	5.98	5.81	6.65
Found	57.62	6.00	5.84	6.27

Mass analysis (m/z, FAB): 369 ($M^+ + 1$)

Example 5

[0099] (1RS,3'R)-3'-Quinuclidinyl 1,2,3,4-tetrahydro-1-(3-thienyl)-2-Isoquinolinecarboxylate

Starting compounds: ethyl 1,2,3,4-tetrahydro-1-(3-thienyl)-2-isoquinolinecarboxylate, (3R)-3-quinuclidinol

Properties: Brown oil

Elemental analysis (for $C_{21}H_{24}N_2O_2S \cdot 0.3H_2O$)				
	C (%)	H (%)	N (%)	S (%)
Calcd.	67.46	6.63	7.49	8.58
Found	67.35	6.76	7.21	8.46

Mass analysis (m/z, FAB): 369 ($M^+ + 1$)

Example 6

[0100] 3-Quinuclidinyl 1-(2-furyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compound: ethyl 1-(2-furyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Properties: Pale yellow oil

Elemental analysis (for $C_{21}H_{24}N_2O_3 \cdot 0.5H_2O$)			
	C (%)	H (%)	N (%)
Calcd.	69.79	6.97	7.75
Found	70.03	7.05	7.44

Mass analysis (m/z, FAB): 353 ($M^+ + 1$)

Example 7

[0101] To a 30 ml pyridine solution containing 2.09 g of (1S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline, 2.26 g of 3-quinuclidinyl chloroformate monohydrochloride was added at room temperature, followed by stirring at 80°C for 4 hours.

Then, 0.12 g of 3-quinuclidinyl chloroformate monohydrochloride, followed by stirring at 80°C for 4 hours. Then, 1.01 g of 3-quinuclidinyl chloroformate monohydrochloride was added, and the mixture was stirring at 80°C for 25 hours. The reaction mixture was concentrated under reduced pressure. Water was added to the residue, followed by washing with ethyl acetate twice. The resulting aqueous layer was adjusted to pH 9 with saturated sodium hydrogencarbonate aqueous solution, followed by extraction with ethyl acetate. After the organic layer was dried over anhydrous sodium sulfate, the solvent was removed under reduced pressure, thereby 3.02 g of (1S,3'RS)-3'-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate was obtained as yellow oil.

Mass analysis (m/z, FAB): 363 ($M^+ + 1$)

Nuclear magnetic resonance spectrum (DMSO-d₆, TMS internal standard)

δ : 1.20-2.00 (5H, m), 2.40-2.95 (6H, m), 3.00-3.60 (3H, m), 3.80-3.95 (1H, m), 4.55-4.70 (1H, m), 6.25 (1H, brs), 7.05-7.35 (10H, m).

Example 8

[0102] To a 120 ml toluene suspension containing 12.0 g of (1S)-ethyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate and 16.27 g of (3R)-3-quinuclidinol, 1.69 g of sodium hydride (60%) was added at room temperature. The resulting mixture was heated for 3 hours while the resulting ethanol was removed together with toluene. The reaction mixture was cooled to room temperature, and 50 ml of brine was added, followed by extraction with ethyl acetate. The organic layer was washed with water and then extracted with 20% hydrochloric acid. The resulting aqueous layer was

adjusted to pH 9 to 10 by adding a 1N aqueous solution of sodium hydroxide, followed by extraction with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was dissolved in 140 ml of ethanol, and 10 ml of a 4N hydrogen chloride in ethyl acetate solution

was added to the resulting solution. The solvent was then removed under reduced pressure. Acetonitrile and ether were added to the residue, and the resulting crude crystals were recrystallized from acetonitrile and ether, thereby 10.1 g of (1S,3'R)-3'-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate monohydrochloride was obtained as colorless crystals.

5 Melting point: 212-214°C (CH₃CN-Et₂O)

Elemental analysis (for C ₂₃ H ₂₇ N ₂ O ₂ Cl)				
	C (%)	H (%)	N (%)	Cl (%)
Calcd.	69.25	6.82	7.02	8.89
Found	69.24	6.89	7.03	8.97

Specific optical rotation [α]_D²⁵: 98.1 (C = 1.00, EtOH)

15 [0103] In a similar manner to Example 8, the compounds of the following Examples 9 to 16 were obtained.

Example 9

[0104] (1R,3'S)-3'-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate monohydrochloride

Starting compounds: (1R)-ethyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, (3S)-3-quinuclidinol

20 Melting point: 211-212°C (EtOH-Et₂O)

Elemental analysis (for C ₂₃ H ₂₇ N ₂ O ₂ Cl•0.25H ₂ O)				
	C (%)	H (%)	N (%)	Cl (%)
Calcd.	68.48	6.87	6.94	8.79
Found	68.32	6.75	6.94	8.94

Specific optical rotation [α]_D²⁵: -97.4 (C = 0.50, EtOH)

Example 10

[0105] (1R,3'R)-3'-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate monohydrochloride

Starting compounds: (1R)-ethyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, (3R)-3-quinuclidinol

35 Melting point: 195-196°C (EtOH-Et₂O)

Elemental analysis (for C ₂₃ H ₂₇ N ₂ O ₂ Cl•0.25H ₂ O)				
	C (%)	H (%)	N (%)	Cl (%)
Calcd.	68.48	6.87	6.94	8.79
Found	68.73	6.88	6.95	8.70

Specific optical rotation [α]_D²⁵: -151.2 (C = 0.50, EtOH)

Example 11

[0106] (1S,3'S)-3'-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate monohydrochloride

Starting compounds: (1S)-ethyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, (3S)-3-quinuclidinol

50 Melting point: 194-195°C (CH₃CN-Et₂O)

Elemental analysis (for C ₂₃ H ₂₇ N ₂ O ₂ Cl)				
	C (%)	H (%)	N (%)	Cl (%)
Calcd.	69.25	6.82	7.02	8.89
Found	69.08	6.71	6.99	8.91

Specific optical rotation [α]_D²⁵: 163.2 (C = 0.50, EtOH)

EP 0 801 067 B1

Example 12

[0107] 3-quinuclidinyl 1-(4-chlorophenyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate monofumarate

Starting compounds: 1-(4-chlorophenyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

5 Melting point: 164-166°C (EtOH-Et₂O)

Elemental analysis (for C ₂₇ H ₂₉ N ₂ O ₆ Cl•0.5H ₂ O)				
	C (%)	H (%)	N (%)	Cl (%)
Calcd.	62.13	5.79	5.37	6.79
Found	62.19	5.68	5.23	6.49

Example 13

15 [0108] (1RS,3'R)-3'-quinuclidinyl 1-(4-fluorophenyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compounds: ethyl 1-(4-fluorophenyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, (3R)-3-quinuclidinol

Properties: colorless oil

Elemental analysis (for C ₂₃ H ₂₅ N ₂ O ₂ F•0.1H ₂ O)				
	C (%)	H (%)	N (%)	F (%)
Calcd.	72.27	6.64	7.33	4.97
Found	72.05	6.63	7.15	4.99

25 Mass analysis (m/z, FAB): 381 (M⁺ + 1)

Example 14

30 [0109] 3-quinuclidinyl 1,2,3,4-tetrahydro-1-(4-tolyl)-2-isoquinolinecarboxylate

Starting compounds: ethyl 1,2,3,4-tetrahydro-1-(4-tolyl)-2-isoquinolinecarboxylate

Properties: colorless oil

Elemental analysis (for C ₂₄ H ₂₈ N ₂ O ₂ •0.8H ₂ O)				
	C (%)	H (%)	N (%)	
Calcd.	73.74	7.63	7.17	
Found	73.96	7.50	6.95	

40 Mass analysis (m/z, FAB): 377 (M⁺ + 1)

Example 15

[0110] 3-Quinuclidinyl 1-benzyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

45 Starting compound: ethyl 1-benzyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Properties: pale yellow oil

Elemental analysis (for C ₂₄ H ₂₈ N ₂ O ₂ •0.5H ₂ O)				
	C (%)	H (%)	N (%)	
Calcd.	74.78	7.58	7.26	
Found	74.95	7.83	7.18	

55 Mass analysis (m/z, FAB): 377 (M⁺ + 1)

Example 16

[0111] 3-Quinuclidinyl 1-cyclohexyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate
Starting compounds: ethyl 1-cyclohexyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

5 Properties: pale yellow amorphous

Elemental analysis (for C ₂₃ H ₃₂ N ₂ O ₂ •0.3H ₂ O)			
	C (%)	H (%)	N (%)
Calcd.	73.88	8.79	7.49
Found	73.76	8.75	7.37

Mass analysis (m/z, FAB): 369 (M⁺ + 1)

15 Example 17

[0112] In 12 ml of dichloromethane, 1.20 g of (1S,3'R)-3'-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate was dissolved, 0.33 g of sodium hydrogencarbonate and 0.79 g of m-chloroperbenzoic acid (80%) were added under ice-cooling, followed by stirring at room temperature for one hour. Water was added to the reaction mixture and then the mixture was extracted with dichloromethane. The organic layer was washed with an aqueous solution of sodium thiosulfate and then dried over anhydrous magnesium sulfate. The solvent was then removed under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform : methanol = 20:1), thereby 0.43 g of (1'S,3R)-3-[(1'-phenyl-1',2',3',4'-tetrahydro-2'-isoquinoly)carbony]oxy]quinuclidine 1-oxide was obtained.

Properties: white amorphous

25 Mass analysis (m/z, FAB): 379 (M⁺ + 1)

Nuclear magnetic resonance spectrum (CDCl₃, TMS internal standard)

30 δ: 1.85-2.15 (3H, m), 2.15-2.35 (2H, m), 2.75-2.90 (1H, m), 2.90-2.95 (1H, m), 3.20-3.50 (6H, m), 3.70-3.80 (1H, m), 3.85-4.10 (1H, m), 5.14 (1H, brs), 6.14, 6.43 (1H, brs × 2), 7.05-7.40 (9H, m).

Example 18

[0113] To a 8 ml 2-butanone solution containing 1.04 g of (1S,3'R)-3'-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, 0.18 ml of methyl iodide was added, followed by stirring at 55°C for 40 minutes. After air cooling, the crystals precipitated were collected by filtration and then washed successively with 2-butanone and diethyl ether, thereby 0.93 g of (1'S,3R)-1-methyl-3-[(1'-phenyl-1',2',3',4'-tetrahydro-2'-isoquinoly)carbony]oxy]quinuclidinium iodide was obtained as colorless crystals.

Melting point: 202-203°C (2-butanone)

Elemental analysis (for C ₂₄ H ₂₉ N ₂ O ₂ I)				
	C (%)	H (%)	N (%)	I (%)
Calcd.	57.15	5.79	5.55	25.16
Found	57.17	5.71	5.51	25.15

45 [0114] In a similar manner to Example 8, the compound of the following Example 19 was obtained.

Example 19

50 [0115] (1RS,3'R)-3'-quinuclidinyl 1-(3-furyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Starting compound: ethyl 1-(3-furyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate

Properties: yellow oil

Elemental analysis (for C ₂₁ H ₂₄ N ₂ O ₃ •0.3H ₂ O)			
	C (%)	H (%)	N (%)
Calcd.	70.49	6.93	7.83

(continued)

Elemental analysis (for C ₂₁ H ₂₄ N ₂ O ₃ •0.3H ₂ O)			
	C (%)	H (%)	N (%)
Found	70.35	6.83	7.63

Mass analysis (m/z, EI): 352 (M⁺)

[0116] The chemical structural formulas of the compounds obtained in Examples 1-19 are shown below in Tables 3-5.

10

15

20

25

30

35

40

45

50

55

Table 3

Example No.	Structural Formula	Example No.	Structural Formula
10 1		15 6	
20 2		25 7	
30 3		35 8	
40 4		45 9	
50 5		55 10	

Table 4

Example No.	Structural Formula	Example No.	Structural Formula
11		15	
12		16	
13		17	
14		18	

Table 5

Example No.	Structural Formula
19	

[0117] Each of the above-described compounds in Examples 3-6, 12-14, 16 and 19 can be obtained as an optical resolved form as shown in the following Tables 6-8 using an optically resolved intermediate in a similar manner to Examples 8-11.

25

30

35

40

45

50

55

Table 6

5

10

15

20

25

30

35

40

45

50

55

Example No.	Ring A	Example No.	Ring A
3-(a)		3-(b)	
4-(a)		4-(b)	
5-(a)		5-(b)	
6-(a)		6-(b)	
12-(a)		12-(b)	
13-(a)		13-(b)	
14-(a)		14-(b)	
16-(a)		16-(b)	

Table 7

5

10

15

20

25

30

35

40

45

50

55

Example No.	Ring A	Example No.	Ring A
3-(c)		3-(d)	
4-(c)		4-(d)	
5-(c)		5-(d)	
6-(c)		6-(d)	
12-(c)		12-(d)	
13-(c)		13-(d)	
14-(c)		14-(d)	
16-(c)		16-(d)	

Table 8

Example No.	Structural Formula
19-(a)	
19-(b)	
19-(c)	
19-(d)	

55

[0118] The other compounds embraced by the present invention will be shown in Tables 9-33. They can be synthesized by any one of the above-described preparation processes, processes described in Examples or processes known to those skilled in the art and do not require any particular experiment. Incidentally, these compounds are described as a racemic compound, but optical active substances based on an asymmetric carbon is also included.

Table 9

Compound No.	R ¹	R ²	R ³	R ⁴	X	Ring A
A - 1	Cl	H	H	H	-	
A - 2	H	H	Cl	H	-	
A - 3	Cl	H	Cl	H	-	
A - 4	F	H	H	H	-	
A - 5	H	H	F	H	-	
A - 6	Br	H	H	H	-	
A - 7	H	H	Br	H	-	
A - 8	Cl	H	Br	H	-	
A - 9	CH ₃	H	H	H	-	

Table 10

Compound No.	R¹	R²	R³	R⁴	X	Ring A
A - 10	C₂H₅	H	H	H	-	
A - 11	n-C₃H₇	H	H	H	-	
A - 12	i-C₃H₇	H	H	H	-	
A - 13	H	CH₃	H	H	-	
A - 14	H	C₂H₅	H	H	-	
A - 15	H	H	CH₃	H	-	
A - 16	H	H	C₂H₅	H	-	
A - 17	CH₃	H	CH₃	H	-	
A - 18	H	CH₂	CH₃	H	-	

Table 11

5

10

15

20

25

30

35

40

45

50

55

Compound No.	R¹	R²	R³	R⁴	X	Ring A
A - 19	CH₃	H	CH₃	CH₃	-	
A - 20	Cl	H	H	H	-	
A - 21	H	H	Cl	H	-	
A - 22	H	H	Cl	H	-	
A - 23	H	H	Cl	H	-	
A - 24	H	H	Cl	H	-	
A - 25	H	H	Cl	H	-	

Table 12

Compound No.	R ¹	R ²	R ³	R ⁴	X	Ring A
A - 26	H	H	CH ₃	H	-	
A - 27	Cl	H	H	H	-	
A - 28	H	CH ₃	H	H	-	
A - 29	Cl	H	H	H	-	
A - 30	Cl	H	H	H	-	
A - 31	H	H	Cl	H	-	
A - 32	H	H	Cl	H	-	
A - 33	H	OCH ₃	OCH ₃	H	-	
A - 34	H	-OCH ₂ O-		H	-	

Table 13

Compound No.	R¹	R²	R³	R⁴	X	Ring A
A - 35	H	H	H	H	CH₂	
A - 36	H	H	H	H	CH₂	
A - 37	H	H	H	H	CH₂	
A - 38	H	H	H	H	CH₂	
A - 39	H	H	H	H	CH₂	
A - 40	Cl	H	H	H	CH₂	
A - 41	Cl	H	H	H	CH₂	
A - 42	Cl	H	H	H	CH₂	

Table 14

Compound No.	Ring A	Compound No.	Ring A
B - 1		B - 7	
B - 2		B - 8	
B - 3		B - 9	
B - 4		B - 10	
B - 5		B - 11	
B - 6		B - 12	

Table 15

5

10

15

20

25

30

35

40

45

50

55

Compound No.	Ring A	Compound No.	Ring A
B - 13		B - 19	
B - 14		B - 20	
B - 15		B - 21	
B - 16		B - 22	
B - 17		B - 23	
B - 18		B - 24	

Table 16

Compound No.	Ring A	Compound No.	Ring A
B - 25		B - 31	
B - 26		B - 32	
B - 27		B - 33	
B - 28		B - 34	
B - 29		B - 35	
B - 30		B - 36	

Table 17

5

10

15

20

25

30

35

40

45

50

55

Compound No.	Ring A	Compound No.	Ring A
B - 37		B - 43	
B - 38		B - 44	
B - 39		B - 45	
B - 40		B - 46	
B - 41		B - 47	
B - 42		B - 48	

Table 18

5

10

15

20

25

30

35

40

45

50

55

Compound No.	Ring A	Compound No.	Ring A
B - 49		B - 55	
B - 50		B - 56	
B - 51		B - 57	
B - 52		B - 58	
B - 53		B - 59	
B - 54		B - 60	

Table 19

Compound No.	Ring A	Compound No.	Ring A
B - 61		B - 67	
B - 62		B - 68	
B - 63		B - 69	
B - 64		B - 70	
B - 65		B - 71	
B - 66		B - 72	

Table 20

15	Compound No.	Ring A
20	B ~ 73	
25	B - 74	
30	B - 75	
35		
40		

45

50

55

Table 21

5

10

15

20

25

30

35

40

45

50

55

Compound No.	Ring A	Compound No.	Ring A
B - 76		B - 82	
B - 77		B - 83	
B - 78		B - 84	
B - 79		B - 85	
B - 80		B - 86	
B - 81		B - 87	

Table 22

Compound No.	Ring A	Compound No.	Ring A
B - 88		B - 94	
B - 89		B - 95	
B - 90		B - 96	
B - 91		B - 97	
B - 92		B - 98	
B - 93		B - 99	

Table 23

Compound No.	Ring A	Compound No.	Ring A
B - 100		B - 106	
B - 101		B - 107	
B - 102		B - 108	
B - 103		B - 109	
B - 104		B - 110	
B - 105		B - 111	

Table 24

Compound No.	Ring A	Compound No.	Ring A
B - 112		B - 118	
B - 113		B - 119	
B - 114		B - 120	
B - 115		B - 121	
B - 116		B - 122	
B - 117		B - 123	

5

10

15

20

25

30

35

40

45

50

55

Table 25

5

10

15

20

25

30

35

40

45

50

55

Compound No.	Ring A	Compound No.	Ring A
B - 124		B - 130	
B - 125		B - 131	
B - 126		B - 132	
B - 127		B - 133	
B - 128		B - 134	
B - 129		B - 135	

Table 26

Compound No.	Ring A	Compound No.	Ring A
B - 136		B - 142	
B - 137		B - 143	
B - 138		B - 144	
B - 139		B - 145	
B - 140		B - 146	
B - 141		B - 147	

Table 27

5

10

15

20

25

30

35

40

45

50

55

Compound No.	Ring A	Compound No.	Ring A
B - 148		B - 153	
B - 149		B - 154	
B - 150		B - 155	
B - 151		B - 156	
B - 152			

Table 28

Compound No.	Ring A	Compound No.	Ring A
B - 157	 I ⁻	B - 158	 I ⁻

25

30

35

40

45

50

55

Table 29

Compound No.	Ring A	Compound No.	Ring A
B - 159		B - 164	
B - 160		B - 165	
B - 161		B - 166	
B - 162		B - 167	
B - 163		B - 168	

50

55

Table 30

Compound No.	Ring A	Compound No.	Ring A
B - 169		B - 174	
B - 170		B - 175	
B - 171		B - 176	
B - 172		B - 177	
B - 173		B - 178	

Table 31

5

10

15

20

25

30

35

40

45

50

55

Compound No.	Ring A	Compound No.	Ring A
B - 179		B - 184	
B - 180		B - 185	
B - 181		B - 186	
B - 182		B - 187	
B - 183			

Table 32

15 Compound No.	R _a
20 B - 188	
25 B - 189	
30 B - 190	

40

45

50

55

Table 33

5

10

15

20

25

30

35

40

45

50

Claims

1. A compound which is a quinuclidine derivative represented by the following formula (I):

Compound No.	Ring A	Compound No.	Ring A
B - 191		B - 196	
B - 192		B - 197	
B - 193		B - 198	
B - 194		B - 199	
B - 195			

55

(symbols in the formula have the following meanings:

15

Ring A: a C₆-C₁₄ aryl group; a C₃-C₈ cycloalkyl group; a C₃-C₈ cycloalkenyl group; a 5- or 6-membered heteroaryl group which has 1 to 4 hetero atoms selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom and which may be condensed with a benzene ring; or a 5- to 7-membered saturated heterocyclic group containing 1 or 2 heteroatoms selected from oxygen, nitrogen and sulfur atoms; wherein said ring A may be substituted by one or more substituents selected from the group consisting of a halogen atom, a hydroxy group, a C₁-C₆ alkoxy group, a carboxyl group, a C₁-C₆ alkoxy carbonyl group, a C₁-C₆ acyl group, a mercapto group, a C₁-C₆ alkylthio group, a sulfonyl group, a C₁-C₆ alkylsulfonyl group, a sulfinyl group, a C₁-C₆ alkylsulfinyl group, a sulfonamido group, a C₁-C₆ alkylsulfonamido group, a carbamoyl group, a thiocarbamoyl group, a mono- or di-C₁-C₆ alkylcarbamoyl group, a nitro group, a cyano group, an amino group, a mono- or di-C₁-C₆ alkyl amino group, a methylenedioxy group, an ethylenedioxy group and a C₁-C₆ alkyl group which may be substituted by a halogen atom, a hydroxy group, a C₁-C₆ alkoxy group, an amino group or a mono- or di-C₁-C₆ alkylamino group;

20 **X:** a single bond or a methylene group;

25

R: a halogen atom, a hydroxyl group, a C₁-C₆ alkoxy group, a carboxyl group, a C₁-C₆ alkoxy carbonyl group, a C₁-C₆ acyl group, a mercapto group, a C₁-C₆ alkylthio group, a sulfonyl group, a C₁-C₆ alkylsulfonyl group, a sulfinyl group, a C₁-C₆ alkylsulfinyl group, a sulfonamido group, a C₁-C₆ alkylsulfonamido group, a carbamoyl group, a thiocarbamoyl group, a mono- or di-C₁-C₆ alkylcarbamoyl group, a nitro group, a cyano group, an amino group, a mono- or di-C₁-C₆ alkyl amino group, a methylenedioxy group, an ethylenedioxy group or a C₁-C₆ alkyl group which may be substituted by a halogen atom, a hydroxy group, a C₁-C₆ alkoxy group, an amino group or a mono- or di-C₁-C₆ alkylamino group;

30 **ℓ:** 0 or 1,

35

m: 0 or an integer of 1 to 3, and

n: an integer of 1 or 2), or

40

a salt thereof, or a quaternary ammonium salt thereof which has bound to the quaternary nitrogen atom a group selected from a C₁-C₆ alkyl group, a C₂-C₆ alkenyl group and a C₂-C₆ alkynyl group and which has a counter ion selected from the group consisting of halide, triflate, tosylate, mesylate, nitrate, sulfate, phosphate, carbonate, formate, acetate, propionate, oxalate, malonate and glutamate anions.

45

2. A compound according to claim 1 wherein R represents a halogen atom, a C₂-C₆ alkyl group, a hydroxyl group, a C₁-C₆ alkoxy group, a nitro group, a cyano group, an amino group or a mono- or di-C₁-C₆ alkylamino group, and the ring A represents a C₆-C₁₄ aryl group, a C₃-C₈ cycloalkyl group, a C₃-C₈ cycloalkenyl group, a 5- or 6-membered monocyclic heteroaryl group having 1 to 4 hetero atoms selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom, or a 5- to 7-membered saturated heterocyclic group, in which said ring A may be substituted by a halogen atom, a C₁-C₆ alkyl group, a hydroxyl group, a C₁-C₆ alkoxy group, a nitro group, a cyano group, an amino group or a mono- or di-C₁-C₆ alkylamino group.

50

5. A compound according to claim 2 wherein m is 0, and the ring A represents a C₆-C₁₄ aryl, C₃-C₈ cycloalkyl or C₃-C₈ cycloalkenyl group which may be substituted by a halogen atom or by a C₁-C₆ alkyl, hydroxyl or C₁-C₆ alkoxy group, or a 5- or 6-membered monocyclic heteroaryl group having 1 to 4 hetero atoms selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom.

4. A compound according to claim 3 wherein the ring A represents a phenyl group which may be substituted by a halogen atom or a C₁-C₆ alkyl group; a C₃-C₈ cycloalkyl group; or a pyridyl, furyl or thienyl group.
5. A compound according to any preceding claim wherein X represents a single bond.
6. A compound according to any preceding claim wherein n is 2.
7. A compound according to claim 1 which is selected from the group consisting of 3-quinuclidinyl 1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl 1-(4-pyridyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, 10 3-quinuclidinyl 1,2,3,4-tetrahydro-1-(2-thienyl)-2-isoquinolinecarboxylate, 3-quinuclidinyl 1,2,3,4-tetrahydro-1-(3-thienyl)-2-isoquinolinecarboxylate, 3-quinuclidinyl 1-(2-furyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl 1-(4-chlorophenyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl 1-(4-fluorophenyl)-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl 1,2,3,4-tetrahydro-1-(4-tolyl)-2-isoquinolinecarboxylate, 3-quinuclidinyl 1-(3-furyl)-1,2,3,4-tetrahydro-2-isoquinoline carboxylate, and salts and quaternary ammonium salts thereof.
- 15
8. An optical isomer or mixture of optical isomers of a compound according to any preceding claim.
9. A pharmaceutical composition which comprises at least one compound according to any preceding claim.
- 20
10. The use of a compound according to any of claims 1 to 8 for the preparation of a medicament which is a muscarinic M₃ receptor antagonist.
11. A use according to claim 10 wherein the medicament is for prevention or treatment of urinary diseases or respiratory diseases.
- 25
12. A use according to claim 11 wherein the medicament is for prevention or treatment of urinary incontinence or pollakiuria in neurogenic pollakiuria, neurogenic bladder, nocturnal enuresis, unstable bladder, cystospasm, chronic cystitis, chronic obstructive pulmonary diseases, chronic bronchitis, asthma or rhinitis.
- 30

Patentansprüche

- 35 1. Verbindung, die ein Chinuclidin-Derivat ist, das durch die folgende Formel (I) repräsentiert wird:

(die Symbole in der Formel haben die folgende Bedeutung:

- 50 Ring A: eine C₆-C₁₄ Arylgruppe; eine C₃-C₈ Cycloalkylgruppe; eine C₃-C₈ Cycloalkenylgruppe; eine 5- oder 6-gliedrige Heteroarylgruppe, die 1 bis 4 Heteroatome hat, ausgewählt aus der Gruppe bestehend aus einem Sauerstoffatom, einem Stickstoffatom und einem Schwefelatom, und die mit einem Benzolring kondensiert sein kann; oder eine 5- bis 7-gliedrige gesättigte heterozyklische Gruppe mit 1 oder 2 Heteroatomen, ausgewählt aus Sauerstoff-, Stickstoff- und Schwefelatomen; wobei der genannte Ring A substituiert sein kann durch einen oder mehrere Substituenten, ausgewählt aus der Gruppe bestehend aus einem Halogenatom, einer Hydroxygruppe, einer C₁-C₆ Alkoxygruppe, einer Carboxylgruppe, einer C₁-C₆ Alkoxycarbonylgruppe, einer C₁-C₆ Acylgruppe, einer Mercaptogruppe, einer C₁-C₆ Alkylthio-
- 55

- gruppe, einer Sulfonylgruppe, einer C₁-C₆ Alkylsulfonylgruppe, einer Sulfinylgruppe, einer C₁-C₆ Alkylelfenylgruppe, einer Sulfonamidogruppe, einer C₁-C₆ Alkylsulfonamidogruppe, einer Carbamoylgruppe, einer Thiocarbamoylgruppe, einer Mono- oder Di-C₁-C₆-Alkylcarbamoylgruppe, einer Nitrogruppe, einer Cyanogruppe, einer Aminogruppe, einer Mono- oder Di-C₁-C₆-Alkylaminogruppe, einer Methylenedioxygruppe, einer Ethylenedioxygruppe und einer C₁-C₆ Alkylgruppe, die substituiert sein kann durch ein Halogenatom, eine Hydroxygruppe, eine C₁-C₆ Alkoxygruppe, eine Aminogruppe oder eine Mono- oder Di-C₁-C₆-Alkylaminogruppe;
- X: eine Einfachbindung oder eine Methylengruppe;
- R: ein Halogenatom, eine Hydroxylgruppe, eine C₁-C₆ Alkoxygruppe, eine Carboxylgruppe, eine C₁-C₆ Alkoxy carbonylgruppe, eine C₁-C₆ Acylgruppe, eine Mercaptogruppe, eine C₁-C₆ Alkythiogruppe, eine Sulfonylgruppe, eine C₁-C₆ Alkylsulfonylgruppe, eine Sulfinylgruppe, eine C₁-C₆ Alkylsulfinylgruppe, eine Sulfonamidogruppe, eine C₁-C₆ Alkansulfonamidogruppe, eine Carbamoylgruppe, eine Thiocarbamoylgruppe, eine Mono- oder Di-C₁-C₆-Alkylcarbamoylgruppe, eine Nitrogruppe, eine Cyanogruppe, eine Aminogruppe, eine Mono- oder Di-C₁-C₆-Alkylaminogruppe, eine Methylenedioxygruppe, eine Ethylenedioxygruppe oder eine C₁-C₆ Alkylgruppe, die substituiert sein kann durch ein Halogenatom, eine Hydroxylgruppe, eine C₁-C₆ Alkoxygruppe, eine Aminogruppe oder eine Mono- oder Di-C₁-C₆-Alkylaminogruppe;
- ℓ : 0 oder 1,
- m: 0 oder eine ganze Zahl zwischen 1 und 3, und
- n: eine ganze Zahl zwischen 1 und 2), oder ein Salz davon oder ein quartäres Ammoniumsalz davon, an deren quartärem Stickstoffatom eine Gruppe gebunden ist, die ausgewählt ist aus einer C₁-C₆ Alkylgruppe, einer C₂-C₆ Alkenylgruppe und einer C₂-C₆ Alkynylgruppe, und die ein Gegenion hat, ausgewählt aus der Gruppe bestehend aus Halogenid-, Triflat-, Tosylat-, Mesylat-, Nitrat-, Sulfat-, Phosphat-, Carbonat-, Formiat-, Acetat-, Propionat-, Oxalat-, Malonat- und Glutamat-Anionen.
2. Verbindung nach Anspruch 1, wobei R ein Halogenatom, eine C₁-C₆ Alkylgruppe, eine Hydroxylgruppe, eine C₁-C₆ Alkoxygruppe, eine Nitrogruppe, eine Cyanogruppe, eine Aminogruppe oder eine Mono- oder Di-C₁-C₆-Alkylaminogruppe repräsentiert und der Ring A Folgendes repräsentiert: eine C₆-C₁₄ Arylgruppe, eine C₃-C₈ Cycloalkylgruppe, eine C₃-C₈ Cycloalkenygruppe, eine 5- oder 6-gliedrige monozyklische Heteroarylgruppe mit 1 bis 4 Heteroatomen, ausgewählt aus der Gruppe bestehend aus einem Sauerstoffatom, einem Stickstoffatom und einem Schwefelatom, oder eine 5- bis 7-gliedrige gesättigte heterozyklische Gruppe, wobei der genannte Ring A substituiert sein kann durch ein Halogenatom, eine C₁-C₆ Alkylgruppe, eine Hydroxylgruppe, eine C₁-C₆ Alkoxygruppe, eine Nitrogruppe, eine Cyanogruppe, eine Aminogruppe oder eine Mono- oder Di-C₁-C₆-Alkylaminogruppe.
3. Verbindung nach Anspruch 2, wobei m 0 ist und der Ring A eine C₆-C₁₄ Aryl-, C₃-C₈ Cycloalkyl- oder C₃-C₈ Cycloalkenygruppe repräsentiert, die substituiert sein kann durch ein Halogenatom oder durch eine C₁-C₆ Alkyl-, Hydroxyl- oder C₁-C₆ Alkoxygruppe, oder eine 5- oder 6-gliedrige monozyklische Heteroarylgruppe mit 1 bis 4 Heteroatomen, ausgewählt aus der Gruppe bestehend aus einem Sauerstoffatom, einem Stickstoffatom und einem Schwefelatom.
4. Verbindung nach Anspruch 3, wobei der Ring A eine Phenylgruppe repräsentiert, die substituiert sein kann durch ein Halogenatom oder eine C₁-C₆ Alkylgruppe; eine C₃-C₈ Cycloalkylgruppe; oder eine Pyridyl-, Furyl- oder Thienylgruppe.
5. Verbindung nach einem der vorherigen Ansprüche, wobei X eine Einfachbindung repräsentiert.
6. Verbindung nach einem der vorherigen Ansprüche, wobei n 2 ist.
7. Verbindung nach Anspruch 1, die ausgewählt ist aus der Gruppe bestehend aus 3-Chinuclidinyl-1-phenyl-1,2,3,4-tetrahydro-2-isochinolin carboxylat, 3-Chinuclidinyl-1-(4-pyridyl)-1,2,3,4-tetrahydro-2-isochinolin carboxylat, 3-Chinuclidinyl-1,2,3,4-tetrahydro-1-(2-thienyl)-2-isochinolin carboxylat, 3-Chinuclidinyl-1,2,3,4-tetrahydro-1-(3-thienyl)-2-isochinolin carboxylat, 3-Chinuclidinyl-1-(2-furyl)-1,2,3,4-tetrahydro-2-isochinolin carboxylat, 3-Chinuclidinyl-1-(4-chlorphenyl)-1,2,3,4-tetrahydro-2-isochinolin carboxylat, 3-Chinuclidinyl-1-(4-fluorphenyl)-1,2,3,4-tetrahydro-2-isochinolin carboxylat, 3-Chinuclidinyl-1,2,3,4-tetrahydro-1-(4-tolyl)-2-isochinolin carboxylat, 3-Chinuclidinyl-1-cyclohexyl-1,2,3,4-tetrahydro-2-isochinolin carboxylat, 3-Chinuclidinyl-1-(3-furyl)-1,2,3,4-tetrahydro-2-isochinolin carboxylat und Salze und quartäre Ammoniumsalze davon.
8. Optisches Isomer oder Gemisch optischer Isomere einer Verbindung nach einem der vorherigen Ansprüche.

9. Pharmazeutische Zusammensetzung, umfassend wenigstens eine Verbindung nach einem der vorherigen Ansprüche.
10. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 8 zur Herstellung eines Medikamentes, das ein Muscarin-M₃-Rezeptor-Antagonist ist.
11. Verwendung nach Anspruch 10, wobei das Medikament zur Vorbeugung oder Behandlung von Harnwegserkrankungen oder Atemwegserkrankungen vorgesehen ist.
12. Verwendung nach Anspruch 11, wobei das Medikament zur Vorbeugung oder Behandlung von Haminkontinenz oder Pollakisurie bei neurogener Pollakisurie, neurogener Blase, nächtlichem Einnässen, instabiler Blase, Zystospasmus, chronischem Blasenkatarrh, chronischen obstruktiven Lungenerkrankungen, chronischer Bronchitis, Asthma oder Rhinitis vorgesehen ist.

15

Revendications

1. Composé qui est un dérivé de quinuclidine représenté par la formule suivante (I) :

20

25

30

(I)

35

(dans la formule les symboles ont la signification suivante :

Noyau A : un groupe aryle C₆-C₁₄; un groupe cycloalkyle C₃-C₈; un groupe cycloalcényle C₃-C₈; un groupe hétéroaryle à 5 ou 6 chaînons qui a de 1 à 4 hétéroatomes sélectionnés parmi le groupe consistant en un atome d'oxygène, un atome d'azote et un atome de soufre et qui peut être condensé avec un noyau benzénique; ou un groupe hétérocyclique saturé à 5 à 7 chaînons contenant 1 ou 2 hétéroatomes sélectionnés parmi des atomes d'oxygène, d'azote et de soufre; où ledit noyau A peut être substitué par un ou plusieurs substituants sélectionnés parmi le groupe consistant en un atome d'halogène, un groupe hydroxy, un groupe alcoxy C₁-C₆, un groupe carboxyle, un groupe alcoxycarbonyle C₁-C₆, un groupe acyle C₁-C₆, un groupe mercapto, un groupe alkylthio C₁-C₆, un groupe sulfonyle, un groupe alkylsulfonyl C₁-C₆, un groupe sulfinylique, un groupe alkylsulfinylique C₁-C₆, un groupe sulfonamido, un groupe alkylsulfonamido C₁-C₆, un groupe carbamoyle, un groupe thiocarbamoyle, un groupe mono- ou di-alkylcarbamoyle C₁-C₆, un groupe nitro, un groupe cyano, un groupe amino, un groupe mono ou di-alkylamino C₁-C₆, un groupe méthylènedioxy, un groupe éthylènedioxy et un groupe alkyle C₁-C₆ qui peut être substitué par un atome d'halogène, un groupe hydroxy, un groupe alcoxy C₁-C₆, un groupe amino ou un groupe mono ou di-alkylamino C₁-C₆;

X : une liaison simple ou un groupe méthylène;

R : un atome d'halogène, un groupe hydroxylique, un groupe alcoxy C₁-C₆, un groupe carboxyle, un groupe alcoxycarbonyle C₁-C₆, un groupe acyle C₁-C₆, un groupe mercapto, un groupe alkylthio C₁-C₆, un groupe sulfonyle, un groupe alkylsulfonyl C₁-C₆, un groupe sulfinylique, un groupe alkylsulfinylique C₁-C₆, un groupe sulfonamido, un groupe alcènesulfonamido C₁-C₆, un groupe carbamoyle, un groupe thiocarbamoyle, un groupe mono ou di-alkylcarbamoyle C₁-C₆, un groupe nitro, un groupe cyano, un groupe amino, un groupe mono ou di-alkylamino C₁-C₆, un groupe méthylènedioxy, un groupe éthylènedioxy ou un groupe alkyle C₁-C₆ qui peut être substitué par un atome d'halogène, un groupe

hydroxyle, un groupe alcoxy C₁-C₈, un groupe amino ou un groupe mono ou di-alkylamino C₁-C₈;

l: 0 ou 1;

m: 0 ou un entier de 1 à 3; et

n: un entier de 1 ou 2), ou

5

un sel de celui-ci, ou un sel d'ammonium quaternaire de celui-ci qui a un groupe sélectionné parmi un groupe alkyle C₁-C₆, une groupe alcényle C₂-C₈ et un groupe alkynyle C₂-C₆, lié à l'atome d'azote quaternaire, et qui a des contre-ions sélectionnés parmi le groupe consistant en anions d'halogénure, de triflate, de tosylate, de mésylate, de nitrate, de sulfate, de phosphate, de carbonate, de formate, d'acétate, de propionate, d'oxalate, de malonate et de glutamate.

10

2. Composé selon la revendication 1, dans lequel R représente un atome d'halogène, un groupe alkyle C₁-C₆, un groupe hydroxyle, un groupe alcoxy C₁-C₈, un groupe nitro, un groupe cyano, un groupe amino ou un groupe mono ou di-alkylamino C₁-C₈, et le noyau A représente un groupe aryle C₆-C₁₄, un groupe cycloalkyle C₃-C₈, un groupe cycloalcényle C₃-C₈, un groupe monocyclique hétéroaryle à 5 ou 6 chaînons ayant de 1 à 4 hétéroatomes sélectionnés parmi le groupe consistant en un atome d'oxygène, un atome d'azote et un atome de soufre, ou un groupe hétérocyclique saturé à 5 à 7 chaînons, dans lequel ledit noyau A peut être substitué par un atome d'halogène, un groupe alkyle C₁-C₆, un groupe hydroxyle, un groupe alcoxy C₁-C₈, un groupe nitro, un groupe cyano, un groupe amino ou un groupe mono ou di-alkylamino C₁-C₈.

20

3. Composé selon la revendication 2, où *m* est 0 et le noyau A représente un groupe aryle C₆-C₁₄, cycloalkyle C₃-C₈ ou cycloalcényle C₃-C₈, qui peut être substitué par un atome d'halogène ou par un groupe alkyle C₁-C₆, hydroxyle ou alcoxy C₁-C₈, ou un groupe monocyclique hétéroaryle à 5 ou 6 chaînons ayant de 1 à 4 hétéroatomes sélectionnés parmi le groupe consistant en un atome d'oxygène, un atome d'azote et un atome de soufre.

25

4. Composé selon la revendication 3, dans lequel le noyau A représente un groupe phényle qui peut être substitué par un atome d'halogène ou un groupe alkyle C₁-C₆; un groupe cycloalkyle C₃-C₈; ou un groupe pyridyle, furyle ou thiényle.

30

5. Composé selon l'une quelconque des revendications précédentes, dans lequel X représente une liaison simple.

6. Composé selon l'une quelconque des revendications précédentes, dans lequel *n* est 2.

35

7. Composé selon la revendication 1, qui est sélectionné parmi le groupe consistant en 3-quinuclidinyl-1-phényl-1,2,3,4-tétrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl-1-(4-pyridyl)-1,2,3,4-tétrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl-1,2,3,4-tétrahydro-1-(2-thiényle)-2-isoquinolinecarboxylate, 3-quinuclidinyl-1-(2-furyl)-1,2,3,4-tétrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl-1-(4-chlorophényle)-1,2,3,4-tétrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl-1-(4-fluorophényle)-1,2,3,4-tétrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl-1,2,3,4-tétrahydro-1-(4-tolyl)-2-isoquinolinecarboxylate, 3-quinuclidinyl-1-cyclohexyl-1,2,3,4-tétrahydro-2-isoquinolinecarboxylate, 3-quinuclidinyl-1-(3-furyl)-1,2,3,4-tétrahydro-2-isoquinolinecarboxylate et des sels et sels d'ammonium quaternaire de celui-ci.

40

8. Isomère optique ou mélange d'isomères optiques d'un composé selon l'une quelconque des revendications précédentes.

9. Composition pharmaceutique qui comprend au moins un composé selon l'une quelconque des revendications précédentes.

50

10. L'utilisation d'un composé selon l'une quelconque des revendications 1 à 8, pour la préparation d'un médicament qui est un antagoniste du récepteur muscarinique M₃.

11. Utilisation selon la revendication 10, où le médicament est pour la prévention ou le traitement de maladies urinaires.

55

12. Utilisation selon la revendication 11, où le médicament est pour la prévention ou le traitement d'incontinence urinaire ou de pollakiurie dans la pollakiurie nerveuse, vessie neurogène, énurésie nocturne, vessie instable, spasme vésical, cystite chronique, de maladies pulmonaires obstructives chroniques, bronchite chronique, asthme ou rhinite.

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)