Matemática Numérica II Pedro H A Konzen 15 de junho de 2023

Licença

CA 94042, USA.

ii

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View,

Prefácio

Nestas notas de aula são abordados temas introdutórios de matemática numérica. Como ferramenta computacional de apoio didático, apresentam-se códigos em Python.

Agradeço a todos e todas que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

50

Conteúdo

Ca	pa	i
Lic	ença	ii
Pro	efácio	iii
Su	mário	v
1	Derivação	1
	1.1 Derivadas de primeira ordem	1
	1.1.1 Desenvolvimento por polinômio de Taylor	3
	1.2 Derivadas de segunda ordem	
	1.3 Diferenças finitas por polinômios interpoladores	11
	1.3.1 Fórmulas de dois pontos	12
	1.3.2 Fórmulas de cinco pontos	14
2	Técnicas de extrapolação	16
	2.1 Extrapolação de Richardson	16
	2.1.1 Sucessivas extrapolações	
	2.1.2 Exercícios	22
3	Integração	24
	3.1 Regras de Newton-Cotes	24
	3.1.1 Regras de Newton-Cotes fechadas	
	3.1.2 Regras de Newton-Cotes abertas	28
	3.2 Regras compostas de Newton-Cotes	30
	3.2.1 Regra composta do ponto médio	
	3.2.2 Regra composta do trapézio	

iv

$C^{(i)}$	ONT	EÚDO	V
		3.2.3 Regra composta de Simpson	 . 32
	3.3	Quadratura de Romberg	
	3.4	Grau de exatidão	
	3.5	Quadratura Gauss-Legendre	 . 39
		3.5.1 Intervalos de integração arbitrários	 . 45
	3.6	Quadraturas gaussianas com pesos	 . 48
		3.6.1 Quadratura de Gauss-Chebyshev	 . 48
		3.6.2 Quadratura de Gauss-Laguerre	 . 50
		3.6.3 Quadratura de Gauss-Hermite	 . 51
	3.7	Método de Monte Carlo	 . 53
4	Pro	oblema de valor inicial	55
	4.1	Método de Euler	 . 55
		4.1.1 Análise de consistência e convergência	 . 57
	4.2	Métodos de Runge-Kutta	
		4.2.1 Métodos de Runge-Kutta de ordem 2	
		4.2.2 Método de Runge-Kutta de ordem 4	
	4.3	Método adaptativo com controle de erro	
	4.4	Métodos de passo múltiplo	
		4.4.1 Métodos de Adams-Bashforth	 . 69
5	Pro	oblema de valor de contorno	73
	5.1	Método de diferenças finitas	 . 73
6	Equ	iações Diferenciais Parciais	80
	6.1	Equação de Poisson	 . 80
	6.2	Equação do calor	 . 86
	6.3	Equação da onda	 . 91
R	espo	stas dos Exercícios	97
\mathbf{R}	eferê	encias Bibliográficas	100
Ín	dice	Remissivo	101

Capítulo 1

550

Derivação

5**0**0

[[tag:revisar]]

Neste capítulo, discutimos os métodos fundamentais de derivação numérica de funções.

0 0

1.1 Derivadas de primeira ordem

[[tag:revisar]]

A derivada de uma função f num ponto x é, por definição,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$
 (1.1)

Assim sendo e assumindo $h > 0^1$ próximo de zero, temos que f'(x) pode ser aproximada pela razão fundamental, i.e.

$$f'(x) \approx \underbrace{\frac{f(x+h) - f(x)}{h}}_{D_h f(x)}.$$
(1.2)

200

Analisando a Figura 1.1 vemos que, geometricamente, isto é análogo a aproximar a declividade da reta tangente ao gráfico da função f no ponto (x, f(x)) pela declividade da reta secante ao gráfico da função f pelos pontos (x, f(x)) e (x + h, f(x + h)).

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

ot |

100+

0

50

350-

400

450 -

500

-550-

-600

¹Para fixar notação, assumiremos h > 0 ao longo deste capítulo.

Figura 1.1: Interpretação geométrica da aproximação da derivada pela razão fundamental. Veja no Geogebra.

Exemplo 1.1.1. A derivada de f(x) = sen(x) no ponto $\pi/3$ é $f'(\pi/3) = \cos(\pi/3) = 0.5$. Agora, usando a aproximação pela razão fundamental (1.2), temos

$$f'\left(\frac{\pi}{3}\right) \approx D_h f(x) = \frac{f\left(\frac{\pi}{3} + h\right) - f\left(\frac{\pi}{3}\right)}{h} \tag{1.3}$$

$$= \frac{\operatorname{sen}\left(\frac{\pi}{3}\right) - \operatorname{sen}\left(\frac{\pi}{3}\right)}{h}.\tag{1.4}$$

Na Tabela 1.1 temos os valores desta aproximação para diferentes escolhas da passo h.

h	$Df(\pi/3)$
10^{-1}	4,55902E-1
10^{-2}	4,95662E-1
10^{-3}	4,99567E-1
10^{-5}	4,99996E-1
10^{-10}	5.00000E-1

Tabela 1.1: Valores aproximados da derivada de f(x) = sen(x) no ponto $x = \pi/6$ usado a expressão (1.2).

No GNU Octave, podemos fazer estes cálculos com o seguinte código:

```
f = @(x) sin(x);
Df = @(x,h) (f(x+h)-f(x))/h;
x=pi/3;
h=1e-1;
printf('%1.5e\n',Df(x,h))
```

A aproximação (1.2) é uma **fórmula de diferenças finitas**. Existem várias aproximações deste tipo que podem ser derivadas. Além disso, tais derivações nos permitem estimar o erro na utilização de tais fórmulas para a aproximação de derivadas. Na sequência, discutiremos o desenvolvimento de fórmulas de diferenças finitas usando polinômios de Taylor.

1.1.1 Desenvolvimento por polinômio de Taylor

[[tag:revisar]]

Aqui, discutimos a obtenção de fórmulas de diferenças finitas via polinômio de Taylor.

Diferenças finitas progressiva de ordem h

[[tag:revisar]]

A aproximação por polinômio de Taylor de grau 1 de uma dada função f em torno no ponto x é

$$f(x+h) = f(x) + hf'(x) + O(h^2). (1.5)$$

Agora, isolando f'(x), obtemos

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h). \tag{1.6}$$

Isto nos fornece a chamada fórmula de diferenças finitas progressiva de ordem h

$$D_{+,h}f(x) := \frac{f(x+h) - f(x)}{h}. (1.7)$$

Observemos que a ordem da fórmula se refere a ordem do **erro de truncamento** com respeito ao passo h.

Exemplo 1.1.2. Consideremos o problema de aproximar a derivada da função $f(x) = \operatorname{sen}(x)$ no ponto $\pi/3$. Usando a fórmula de diferenças finitas progressiva de ordem h obtemos

$$f'\left(\frac{\pi}{3}\right) \approx D_{+,h}f(x) = \frac{f\left(\frac{\pi}{3} + h\right) - f\left(\frac{\pi}{3}\right)}{h}$$
 (1.8)

$$= \frac{\operatorname{sen}\left(\frac{\pi}{3} + h\right) - \operatorname{sen}\left(\frac{\pi}{3}\right)}{h}.\tag{1.9}$$

Na Tabela 1.2 temos os valores desta aproximação para diferentes escolhas de h, bem como, o erro absoluto da aproximação de $f'(\pi/3)$ por $D_{+,h}f(\pi/3)$.

No GNU Octave, podemos fazer estes cálculos com o seguinte código:

Tabela 1.2: Resultados referente ao Exemplo 1.1.2.

h	$D_{+,h}f(\pi/3)$	$ f'(\pi/3) - D_{+,h}f(\pi/3) $
10^{-1}	4,55902E-1	4,4E-2
10^{-2}	4,95662E-1	4.3E-3
10^{-3}	4,99567E-1	$4{,}3E{-}4$
10^{-5}	4,99996E-1	4.3E-6
10^{-10}	5.00000E-1	4,1E-8

Observação 1.1.1. No exemplo acima (Exemplo 1.1.2), podemos observar que o erro absoluto na aproximação de f'(x) por $D_{+,h}f(x)$ decresce conforme a ordem do erro de truncamento para valores moderados de h (veja, Tabela 1.2). Agora, para valores de h muito pequenos (por exemplo, $h = 10^{-10}$), o erro $|f'(x) - D_{+,h}f(x)|$ não segue mais a tendência de decaimento na mesma do de truncamento. Isto se deve a dominância dos erros de arredondamento para valores muito pequenos de h.

Para mais informações sobre o comportamento do erro de arredondamento em fórmulas de diferenças finitas, veja, por exemplo, REAMAT - Cálculo Numérico - Versão GNU Octave - Diferenças Finitas - Erro de arredondamento.

Diferenças finitas regressiva de ordem h

[[tag:revisar]]

Substituindo h por -h na equação (1.5), obtemos

$$f(x-h) = f(x) - hf'(x) + O(h^2), (1.10)$$

donde obtemos a fórmula de diferenças finitas regressiva de ordem \boldsymbol{h}

$$D_{-,h}f(x) = \frac{f(x) - f(x-h)}{h}. (1.11)$$

Exemplo 1.1.3. Consideremos o problema de aproximar a derivada da função $f(x) = \operatorname{sen}(x)$ no ponto $\pi/3$. Usando a fórmula de diferenças finitas regressiva de ordem h obtemos

$$f'\left(\frac{\pi}{3}\right) \approx D_{-,h}f(x) = \frac{f\left(\frac{\pi}{3}\right) - f\left(\frac{\pi}{3} - h\right)}{h}$$
(1.12)

$$= \frac{\operatorname{sen}\left(\frac{\pi}{3}\right) - \operatorname{sen}\left(\frac{\pi}{3} - h\right)}{h}.\tag{1.13}$$

Na Tabela 1.3 temos os valores desta aproximação para diferentes escolhas de h, bem como, o erro absoluto da aproximação de $f'(\pi/3)$ por $D_{-,h}f(\pi/3)$.

Tabela 1.3: Resultados referente ao Exemplo 1.1.3.

h	$D_{-,h}f(\pi/3)$	$ f'(\pi/3) - D_{-,h}f(\pi/3) $
10^{-1}	5,42432E-1	4.2E - 2
10^{-2}	5,04322E-1	$4{,}3E{-}3$
10^{-3}	5,00433E-1	$4{,}3\mathrm{E}{-4}$
10^{-5}	5,00004E-1	4,3E-6
10^{-10}	5.00000E-1	4,1E-8

No GNU Octave, podemos fazer estes cálculos com o seguinte código:

Diferenças finitas central de ordem h^2

[[tag:revisar]]

Usando o polinômio de Taylor de grau 2 para aproximar a função f(x) em torno de x, obtemos

$$f(x+h) = f(x) + hf'(x) + \frac{h}{2}f''(x) + O(h^3)$$
(1.14)

$$f(x-h) = f(x) - hf'(x) + \frac{h}{2}f''(x) + O(h^3).$$
(1.15)

Então, subtraindo esta segunda equação da primeira, temos

$$f(x+h) - f(x-h) = 2hf'(x) + O(h^3). (1.16)$$

Agora, isolando f(x)

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2), \tag{1.17}$$

o que nos fornece a chamada fórmula de diferenças finitas central de ordem h^2

$$D_{0,h^2}f(x) := \frac{f(x+h) - f(x-h)}{2h}.$$
(1.18)

Exemplo 1.1.4. Consideremos o problema de aproximar a derivada da função $f(x) = \operatorname{sen}(x)$ no ponto $\pi/3$. Usando a fórmula de diferenças finitas central de ordem h^2 obtemos

$$f'\left(\frac{\pi}{3}\right) \approx D_{0,h^2} f(x) = \frac{f\left(\frac{\pi}{3} + h\right) - f\left(\frac{\pi}{3} - h\right)}{2h} \tag{1.19}$$

$$= \frac{\operatorname{sen}\left(\frac{\pi}{3} + h\right) - \operatorname{sen}\left(\frac{\pi}{3} - h\right)}{2h}.$$
 (1.20)

Tabela 1.4: Resultados referente ao Exemplo 1.1.4.

h	$D_{0,h^2}f(\pi/3)$	$ f'(\pi/3) - D_{0,h^2}f(\pi/3) $
10^{-1}	4,99167E-1	8.3E - 04
10^{-2}	4,99992E-1	8,3E-06
10^{-3}	5,00000E-1	8,3E-08
10^{-5}	5,00000E-1	8,3E-10
10^{-10}	5.00000E-1	7.8E - 12

Na Tabela 1.4 temos os valores desta aproximação para diferentes escolhas de h, bem como, o erro absoluto da aproximação de $f'(\pi/3)$ por $D_{0,h^2}f(\pi/3)$.

No GNU Octave, podemos fazer estes cálculos com o seguinte código:

Exercícios

[[tag:revisar]]

Exercício 1.1.1. Calcule aproximações da derivada de

$$f(x) = \frac{\operatorname{sen}(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} + x \tag{1.21}$$

no ponto x=2,5 dadas pelas seguintes fórmulas de diferenças finitas com $h=10^{-2}$:

- a) progressiva de ordem h.
- b) regressiva de ordem h.
- c) central de ordem h^2 .

Exercício 1.1.2. Considere a seguinte tabela de pontos

Calcule aproximações de dy/dx usando diferenças finitas centrais de ordem h^2 quando possível e, caso contrário, diferenças finitas progressiva ou regressiva conforme o caso.

1.2 Derivadas de segunda ordem

[[tag:revisar]]

Diferentemente do que é costumeiro em técnicas analíticas, no âmbito da matemática numérica é preferível obter aproximações diretas de derivadas de segunda ordem, em vez de utilizar aproximações sucessivas de derivadas de primeira ordem. Na sequência, desenvolveremos e aplicaremos uma fórmula de diferenças finitas central para a aproximação de derivadas de segunda ordem.

Consideremos os seguintes polinômios de Taylor de grau 3 de f(x) em torno do ponto x

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3!}f'''(x) + O(h^4), \tag{1.22}$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3!}f'''(x) + O(h^4).$$
 (1.23)

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

ot |

+ 150

00 -

 $50 \longrightarrow$

300 -

350

 $\frac{1}{400}$

-450

500 -

550

(1.24)

Somando estas duas equações, obtemos

$$f(x+h) + f(x-h) = 2f(x) + h^2 f''(x) + O(h^4).$$
(1.25)

Então, isolando f''(x) temos

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2).$$
 (1.26)

Isto nos leva a definição da fórmula de diferenças finitas de ordem h^2 para a derivada segunda

$$D_{0,h^2}^2 f(x) := \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$
 (1.27)

Exemplo 1.2.1. Consideremos o problema de computar a derivada segunda de $f(x) = x^2 + \sin x$ no ponto $x = \pi/6$. Analiticamente, $f''(\pi/6) = 2 - \sin(\pi/6) = 1,5$. Numericamente, vamos explorar as seguintes duas aproximações:

a) Aplicação de sucessivas diferenças finitas centrais de ordem h^2 para derivada primeira, i.e.

$$f''(x) \approx D_{0,h^2} D_{0,h^2} f(x) = \frac{D_{0,h^2} f(x+h) - D_{0,h^2} f(x-h)}{2h}$$
 (1.28)

b) Aplicação da fórmula de diferenças finitas central de ordem h^2 para a derivada segunda, i.e.

$$f''(x) \approx D_{0,h^2}^2 f(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$
 (1.29)

Na Tabela 1.5 temos os valores computados em ambos os casos e seus respectivos erros absolutos para diversas escolhas de h. Observamos que a aplicação da diferença finita D_{0,h^2}^2 fornece resultados mais precisos (para valores moderados de h) do que as sucessivas aplicações de D_{0,h^2} . De fato, uma rápida inspeção de (1.28) mostra que

$$D_{0,h^2}D_{0,h^2}f(x) = \underbrace{\frac{f(x+2h) - 2f(x) + f(x-2h)}{4h^2}}_{D_{0,(2h)^2}^2f(x)}.$$
 (1.30)

No GNU Octave, podemos fazer estes cálculos com o seguinte código:

Tabela 1.5: Resultados referente ao Exemplo 1.2.1. Notação: $\delta_{DD} := |f''(\pi/6) - D_{0,h^2}D_{0,h^2}f(\pi/6)|$ e $\delta_{D^2} := |f''(\pi/6) - D_{0,h^2}^2f(\pi/6)|$.

h	$D_{0,h^2}D_{0,h^2}f(\pi/6)$	δ_{DD}	$D_{0,h^2}^2 f(\pi/6)$	δ_{D^2}
10^{-1}	1,50166	1,7E-03	1,50042	4,2E-04
10^{-2}	1,50002	1,7E-05	1,50000	4.2E - 06
10^{-3}	1,50000	1,7E-07	1,50000	4.2E - 08
10^{-5}	1,50000	1,2E-07	1,50000	1,2E-07

```
 f = @(x) \sin(x) + x^2; \\ Df = @(x,h) (f(x+h)-f(x-h))/(2*h); \\ DDf = @(x,h) (Df(x+h,h)-Df(x-h,h))/(2*h); \\ D2f = @(x,h) (f(x+h) - 2*f(x) + f(x-h))/(h^2); \\ x=pi/6; \\ h=1e-1; \\ printf('%1.5E %1.1E %1.5E %1.1E\n',... \\ DDf(x,h),abs(1.5-DDf(x,h)),... \\ D2f(x,h),abs(1.5-D2f(x,h)) )
```

Exercícios

[[tag:revisar]]

Exercício 1.2.1. Use a fórmula de diferenças finitas central de ordem h^2 para computar aproximações da segunda derivada de

$$f(x) = \frac{\operatorname{sen}(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} + x \tag{1.31}$$

no ponto x = 2.5. Para tanto, use os passos

a)
$$h = 10^{-1}$$

b)
$$h = 10^{-2}$$

c)
$$h = 10^{-3}$$

d)
$$h = 10^{-4}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

թե

Por fim, com base nos resultados obtidos, qual foi o maior passo que forneceu a aproximação com precisão de pelo menos 5 dígitos significativos? Justifique sua resposta.

Exercício 1.2.2. Considere a seguinte tabela de pontos

i	1	2	3	4	5	6
x_i	2,0	2,1	2,2	2,3	2,4	2,5
	1,86					

Calcule a aproximação d^2y/dx^2 no ponto x=2,2 usando a fórmula de diferenças finitas central de ordem h^2 .

1.3 Diferenças finitas por polinômios interpoladores

[[tag:revisar]]

Aqui, discutimos a obtenção de fórmulas de diferenças finitas por polinômios interpoladores. Seja p(x) o polinômio interpolador dos pontos $\{(x_i, f(x_i))\}_{i=1}^{n+1}$ de uma dada função f(x), com $x_1 < x_2 < \cdots < x_{n+1}$. Então, pelo teorema de Lagrange temos

$$f(x) = p(x) + R_{n+1}(x), (1.32)$$

onde R(x) é o erro na aproximação de f(x) por p(x) e tem a forma

$$R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=1}^{n+1} (x - x_j).$$
(1.33)

onde $\xi = \xi(x)$.

Deste modo, a ideia para obtermos as fórmulas de diferenças é aproximarmos f'(x) por p'(x). Entretanto, isto nos coloca a questão de estimarmos o erro |f'(x) - p'(x)|. Por sorte temos os seguinte teorema.

Teorema 1.3.1. Seja p(x) o polinômio interpolador de uma dada função f(x) pelo pontos $\{(x_i, f(x_i))\}_{i=1}^{n+1}$, com $x_1 < x_2 < \cdots < x_{n+1}$. Se f(x) é (n + 1)

1.3. DIFERENÇAS FINITAS POR POLINÔMIOS INTERPOLADORES2

1) continuamente diferenciável, então o resíduo $R_{n+1}^{(k)}(x) = f^{(k)}(x) - p^{(k)}(x)$ é

$$R_{n+1}^{(k)} = \frac{f^{(n+1)}(\eta)}{(n+1-k)!} \prod_{j=1}^{n+1-k} (x-\xi_j),$$
(1.34)

onde ξ_j é um ponto tal que $x_j < \xi_j < x_{j+k}$, j = 1, 2, ..., n+1+k, e $\eta = \eta(x)$ é algum ponto no intervalo de extremos x e ξ_j .

Demonstração. Veja [3, Ch.6, Sec.5]. □

1.3.1 Fórmulas de dois pontos

[[tag:revisar]]

Seja p(x) o polinômio interpolador de Lagrange de f(x) pelos pontos $(x_1, f(x_1))$ e $(x_2, f(x_2))$, com $x_1 < x_2$, i.e.

$$f(x) = p(x) + R_2(x) (1.35)$$

$$= f(x_1)\frac{x - x_2}{x_1 - x_2} + f(x_2)\frac{x - x_1}{x_2 - x_1} + R_2(x).$$
(1.36)

Denotando $h = x_2 - x_1$, temos

$$f(x) = f(x_1)\frac{x - x_2}{-h} + f(x_2)\frac{x - x_1}{h} + R_2(x).$$
(1.37)

e, derivando com respeito a x

$$f'(x) = \frac{f(x_2) - f(x_1)}{h} + R_2^{(1)}(x), \tag{1.38}$$

onde $R_2^{(1)}(x)$ é dado conforme o teorema 1.3.1.

Agora, escolhendo $x = x_1$, temos $x_2 = x_1 + h = x + h$ e, obtemos a **fórmula** de diferenças finitas progressiva de ordem h

$$f(x) = \underbrace{\frac{f(x+h) - f(x)}{h}}_{D_{+,h}f(x)} + O(h). \tag{1.39}$$

Se escolhermos $x = x_2$, temos $x_1 = x_2 - h = x - h$, obtemos a **fórmula** de diferenças finitas regressiva de ordem h

$$f(x) = \underbrace{\frac{f(x) - f(x - h)}{h}}_{D_{-,h}f(x)} + O(h). \tag{1.40}$$

Fórmulas de três pontos

[[tag:revisar]]

Para obtermos fórmulas de diferenças finitas de três pontos consideramos o polinômio interpolador de Lagrange de f(x) pelos pontos $(x_1, f(x_1))$, $(x_2, f(x_2))$ e $(x_3, f(x_3))$, $x_1 < x_2 < x_3$, i.e.

$$f(x) = f(x_1) \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)}$$
(1.41)

$$+ f(x_2) \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)}$$
 (1.42)

$$+ f(x_3) \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)} + R_3(x).$$
 (1.43)

Derivando em relação a x, obtemos

$$f'(x) = f(x_1) \frac{(x_2 - x_3)(2x - x_2 - x_3)}{(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)}$$
(1.44)

$$+ f(x_2) \frac{(x_1 - x_3)(-2x + x_1 + x_3)}{(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)}$$

$$(1.45)$$

$$+ f(x_3) \frac{(x_1 - x_2)(2x - x_1 - x_2)}{(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)} + R_3^{(1)}(x).$$
 (1.46)

Aqui, podemos escolher por obter fórmulas de diferenças com passo constante ou não. Por exemplo, denotando $h_1=x_2-x_1$ e $h_2=x_3-x_2$ e escolhendo $x=x_1$, temos $x_2=x+h_1$ e $x_3=x+h_1+h_2$. Fazendo estas substituições na expressão acima, obtemos seguinte fórmula de diferenças finitas progressiva

$$D_{+,h_1,h_2}f(x) = \frac{1}{h_1h_2(h_1 + h_2)} \left(-h_2(2h_1 + h_2)f(x)\right)$$
(1.47)

1.3. DIFERENÇAS FINITAS POR POLINÔMIOS INTERPOLADORE**S**4

$$+ (h_1 + h_2)^2 f(x + h_1) ag{1.48}$$

$$-h_1^2 f(x+h_1+h_2)). (1.49)$$

Agora, assumindo um passo constante $h = h_1 = h_2$, obtemos a **fórmula de** diferenças progressiva de ordem h^2

$$D_{+,h^2}f(x) = \frac{1}{2h} \left[-3f(x) + 4f(x+h) - f(x+2h) \right]. \tag{1.50}$$

Escolhendo $x = x_2$, $x_1 = x - h$ e $x_3 = x + h$ na equação (1.44), obtemos a **fórmula de diferenças finitas central de ordem** h^2

$$D_{0,h^2} = \frac{1}{2h} \left[f(x+h) - f(x-h) \right]. \tag{1.51}$$

Por fim, escolhendo $x = x_3$, $x_1 = x - 2h$ e $x_2 = x - h$ na equação (1.44), obtemos a **fórmula de diferenças finitas regressiva de ordem** h^2

$$D_{-,h^2} = \frac{1}{2h} \left[3f(x) - 4f(x-h) + f(x-2h) \right]. \tag{1.52}$$

1.3.2 Fórmulas de cinco pontos

[[tag:revisar]]

Aqui, usamos o polinômio interpolador de Lagrange da função f(x) pelos pontos $(x_1, f(x_1), (x_2, f(x_2)), (x_3, f(x_3))$ e $(x_5, f(x_5))$, com $x_1 < x_2 < x_3 < x_4 < x_5$. Isto nos fornece

$$f(x) = \sum_{i=1}^{5} f(x_i) \left(\prod_{j=1, j \neq i}^{5} \frac{x - x_j}{x_i - x_j} \right) + R_5(x).$$
 (1.53)

Calculando a derivada em relação a x, temos

$$f'(x) = \sum_{i=1}^{5} f(x_i) \left(\sum_{\substack{j=1\\j\neq i}}^{5} \prod_{\substack{k=1\\k\neq i,k\neq j}}^{5} \frac{x - x_k}{x_i - x_k} \right) + R_5^{(1)}(x).$$
 (1.54)

Por exemplo, substituindo $x_1 = x - 2h$, $x_2 = x - h$, $x_3 = x$, $x_4 = x + h$ e $x_5 = x + 2h$ na equação acima, obtemos fórmula de diferenças finitas central de ordem h^4

$$D_{+,h^4}f(x) := \frac{1}{12h} \left[f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h) \right]. \tag{1.55}$$

Exercícios

[[tag:revisar]]

Exercício 1.3.1. Use a fórmula de diferenças finitas central de ordem h^4 para computar a aproximação da derivada de

$$f(x) = \frac{\operatorname{sen}(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} + x \tag{1.56}$$

no ponto x = 2.5 com passo h = 0.1.

Exercício 1.3.2. Obtenha as seguintes fórmulas de diferenças finitas de 5 pontos com passo h constante e com:

- a) 4 pontos para frente.
- b) 1 ponto para traz e 3 pontos para frente.
- c) 2 pontos para traz e 2 pontos para frente.
- d) 3 pontos para traz e 1 pontos para frente.
- e) 4 pontos para traz.

Exercício 1.3.3. Considere a seguinte tabela de pontos

i	1	2	3	4	5	6
x_i	2,0	-2,1	2,2	2,3	-2,4	2,5
y_i	1,86	1,90	2,01	2,16	2,23	2,31

Calcule a aproximação dy/dx nos pontos tabelados usando as fórmulas de diferenças finitas obtidas no exercício anteriores (Exercício 1.3.2). Para tanto, dê preferência para fórmulas centrais sempre que possível.

16

Capítulo 2

Técnicas de extrapolação

[[tag:revisar]]

Neste capítulo, estudamos algumas técnicas de extrapolação, as quais serão usadas nos próximos capítulos.

2.1 Extrapolação de Richardson

[[tag:revisar]]

Seja $F_1(h)$ uma aproximação de I tal que

$$I = F_1(h) + \underbrace{k_1 h + k_2 h^2 + k_3 h^3 + O(h^4)}_{\text{erro de truncamento}}.$$
(2.1)

Então, dividindo h por 2, obtemos

$$I = F_1\left(\frac{h}{2}\right) + k_1\frac{h}{2} + k_2\frac{h^2}{4} + k_3\frac{h^3}{8} + O(h^4).$$
(2.2)

Agora, de forma a eliminarmos o termo de ordem h das expressões acima, subtraímos (2.1) de 2 vezes (2.2), o que nos leva a

$$I = \underbrace{\left[F_1\left(\frac{h}{2}\right) + \left(F_1\left(\frac{h}{2}\right) - F_1(h)\right)\right]}_{F_2(h)} - k_2\frac{h^2}{2} - k_3\frac{3h^3}{4} + O(h^4). \tag{2.3}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

PC 100 150 200 250 300 350 400 450 550 550 600

Ou seja, denotando

$$F_2(h) := F_1\left(\frac{h}{2}\right) + \left(F_1\left(\frac{h}{2}\right) - F_1(h)\right) \tag{2.4}$$

temos que $N_2(h)$ é uma aproximação de I com erro de truncamento da ordem de h^2 , uma ordem a mais de $N_1(h)$. Ou seja, esta combinação de aproximações de ordem de truncamento h nos fornece uma aproximação de ordem de truncamento h^2 .

Analogamente, consideremos a aproximação de I por $N_2(h/2)$, i.e.

$$I = F_2\left(\frac{h}{2}\right) - k_2\frac{h^2}{8} - k_2\frac{3h^3}{32} + O(h^4)$$
(2.5)

Então, subtraindo (2.3) de 4 vezes (2.5) de, obtemos

$$I = \underbrace{\left[3F_2\left(\frac{h}{2}\right) + \left(F_2\left(\frac{h}{2}\right) - F_2(h)\right)\right]}_{F_3(h)} + k_3\frac{3h^3}{8} + O(h^4). \tag{2.6}$$

Observemos, ainda, que $N_3(h)$ pode ser reescrita na forma

$$F_3(h) = F_2\left(\frac{h}{2}\right) + \frac{F_2\left(\frac{h}{2}\right) - F_2(h)}{3},$$
 (2.7)

a qual é uma aproximação de ordem h^3 para I.

Para fazermos mais um passo, consideramos a aproximação de I por $F_3(h/2)$, i.e.

$$I = F_3\left(\frac{h}{2}\right) + k_3 \frac{3h^3}{64} + O(h^4). \tag{2.8}$$

E, então, subtraindo (2.6) de 8 vezes (2.8), temos

$$I = \underbrace{\left[F_3\left(\frac{h}{2}\right) + \left(\frac{F_3\left(\frac{h}{2}\right) - F_3(h)}{7}\right)\right]}_{F_4(h)} + O(h^4). \tag{2.9}$$

Ou seja,

$$F_4(h) = \left[F_3\left(\frac{h}{2}\right) + \frac{F_3\left(\frac{h}{2}\right) - F_3(h)}{7} \right]$$
 (2.10)

é uma aproximação de I com erro de truncamento da ordem h^4 . Estes cálculos nos motivam o seguinte teorema.

Teorema 2.1.1. Seja $F_1(h)$ uma aproximação de I com erro de truncamento da forma

$$I - F_1(h) = \sum_{i=1}^n k_1 h^i + O(h^{n+1}).$$
(2.11)

 $Ent\tilde{a}o, \ para \ j \geq 2,$

$$F_j(h) := F_{j-1}\left(\frac{h}{2}\right) + \frac{F_{j-1}\left(\frac{h}{2}\right) - F_{j-1}(h)}{2^{j-1} - 1}$$
(2.12)

é uma aproximação de I com erro de truncamento da forma

$$I - F_j(h) = \sum_{i=j}^n (-1)^{j-1} \frac{(2^{i-1} - 1) \prod_{l=1}^{j-2} (2^{i-l-1} - 1)}{2^{(j-1)(i-j+1)} d_j} k_i h^i + O(h^{n+1}),$$
(2.13)

onde d_j é dado recursivamente por $d_{j+1} = 2^{j-1}d_j$, com $d_2 = 1$.

Demonstração. Fazemos a demonstração por indução. O resultado para j=2 segue de (2.3). Assumimos, agora, que vale

$$I - F_{j}(h) = (-1)^{j-1} \frac{(2^{j-1} - 1) \prod_{l=1}^{j-2} (2^{j-l-1} - 1)}{2^{(j-1)} d_{j}} k_{j} h^{j}$$

$$+ \sum_{i=j+1}^{n} (-1)^{j-1} \frac{(2^{i-1} - 1) \prod_{l=1}^{j-2} (2^{i-l-1} - 1)}{2^{(j-1)(i-j+1)} d_{j}} k_{i} h^{i}$$

$$+ O(h^{n+1}). \tag{2.14}$$

para $j \geq 2$. Então, tomamos

$$I - F_j\left(\frac{h}{2}\right) = (-1)^{j-1} \frac{(2^{j-1} - 1) \prod_{l=1}^{j-2} (2^{j-l-1} - 1)}{2^{(j-1)} d_j} k_j \frac{h^j}{2^j}$$

$$+\sum_{i=j+1}^{n} (-1)^{j-1} \frac{(2^{i-1}-1) \prod_{l=1}^{j-2} (2^{i-l-1}-1)}{2^{(j-1)(i-j+1)} d_j} k_i \frac{h^i}{2^i} + O(h^{n+1}).$$
(2.15)

Agora, subtraímos (2.14) de 2^j vezes (2.15), o que nos fornece

$$I = \left[F_{j} \left(\frac{h}{2} \right) + \frac{F_{j} \left(\frac{h}{2} \right) - F_{j}(h)}{2^{j} - 1} \right]$$

$$+ \sum_{i=j+1}^{n} (-1)^{(j+1)-1} \frac{(2^{i-1} - 1) \prod_{l=1}^{(j+1)-2} \left(2^{i-l-1} - 1 \right)}{2^{((j+1)-1)(i-(j+1)+1)} 2^{j-1} d_{j}} k_{i} h^{i}$$

$$+ O(h^{n+1}).$$

$$(2.16)$$

Corolário 2.1.1. Seja $F_1(h)$ uma aproximação de I com erro de truncamento da forma

$$I - F_1(h) = \sum_{i=1}^{n} k_1 h^{2i} + O(h^{2n+2}).$$
(2.17)

Então, para $j \geq 2$,

$$F_j(h) := F_{j-1}\left(\frac{h}{2}\right) + \frac{F_{j-1}\left(\frac{h}{2}\right) - F_{j-1}(h)}{4^{j-1} - 1}$$
(2.18)

 \acute{e} uma aproximação de I com erro de truncamento da forma

$$I - F_j(h) = \sum_{i=j}^n (-1)^{j-1} \frac{(4^{i-1} - 1) \prod_{l=1}^{j-2} (4^{i-l-1} - 1)}{4^{(j-1)(i-j+1)} d_j} k_i h^{2i} + O(h^{n+1}),$$
(2.19)

onde d_j é dado recursivamente por $d_{j+1} = 4^{j-1}d_j$, com $d_2 = 1$.

Demonstração. A demonstração é análoga ao do Teorema 2.1.1.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рı

-00-

- 2

300

350-

400

150 —

00

550

000

Exemplo 2.1.1. Dada uma função f(x), consideremos sua aproximação por diferenças finitas progressiva de ordem h, i.e.

$$\underbrace{f'(x)}_{f} I = \underbrace{\frac{f(x+h) - f(x)}{h}}_{F_1(h)} + \frac{f''(x)}{2}h + \frac{f'''(x)}{6}h^2 + O(h^3). \tag{2.20}$$

Estão, considerando a primeira extrapolação de Richardson, temos

$$F_2(h) = F_1\left(\frac{h}{2}\right) + \left(F_1\left(\frac{h}{2}\right) - F_1(h)\right)$$
 (2.21)

$$=4\frac{f(x+h/2)-f(x)}{h}-\frac{f(x+h)-f(x)}{h}$$
 (2.22)

$$= \frac{-f(x+h) + 4f(x+h/2) - 3f(x)}{h},$$
(2.23)

a qual é a fórmula de diferenças finitas progressiva de três pontos com passo h/2, i.e. $D_{+,(h/2)^2}f(x)$ (veja, Fórmula (1.50)).

Exemplo 2.1.2. Dada uma função f(x), consideremos sua aproximação por diferenças finitas central de ordem h^2 , i.e.

$$\underbrace{f'(x)}_{f'(x)}I = \underbrace{\frac{f(x+h) - f(x-h)}{2h}}_{F_1(h)} - \frac{f'''}{6}h^2 - \frac{f^{(5)}(x)}{120}h^4 + O(h^6). \tag{2.24}$$

Estão, considerando a primeira extrapolação de Richardson, temos

$$F_2(h) = F_1\left(\frac{h}{2}\right) + \frac{\left(F_1\left(\frac{h}{2}\right) - F_1(h)\right)}{3}$$

$$= \frac{1}{6h} \left[f(x-h) - 8f(x-h/2) + 8f(x+h/2) - f(x+h)\right]$$
 (2.26)

a qual é a fórmula de diferenças finitas central de cinco pontos com passo h/2, i.e. $D_{+,(h/2)^4}f(x)$ (veja, Fórmula (1.55)).

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

ot |

+150

00

350

-400

450 —

---60

2.1.1 Sucessivas extrapolações

[[tag:revisar]]

Sucessivas extrapolações de Richardson podem ser computadas de forma robusta com o auxílio de uma tabela. Seja $F_1(h)$ uma dada aproximação de uma quantidade de interesse I com erro de truncamento da forma

$$I - F_1(h) = k_1 h + k_2 h^2 + k_3 h^3 + \dots + k_n h^n + O(h^{n+1}).$$
 (2.27)

Então, as sucessivas extrapolações $F_2(h)$, $F_3(h)$, ..., $F_n(h)$ podem ser organizadas na seguinte forma tabular

$$T = \begin{bmatrix} F_1(h) & & & & & & \\ F_1(h/2) & F_2(h) & & & & & \\ F_1(h/2^2) & F_2(h/2) & F_3(h) & & & & & \\ \vdots & \vdots & & \vdots & & & & \\ F_1(h/2^n) & F_2(h/2^{n-1}) & F_3(h/2^{n-2}) & \cdots & F_n(h) \end{bmatrix}$$
(2.28)

Desta forma, temos que

$$F_j\left(\frac{h}{2^{i-1}}\right) = t_{i,j-1} + \frac{t_{i,j-1} - t_{i-1,j-1}}{2^{j-1} - 1}$$
(2.29)

com j = 2, 3, ..., n e $j \ge i$, onde $t_{i,j}$ é o elemento da i-ésima linha e j-ésima coluna da matriz T.

Exemplo 2.1.3. Consideremos o problema de aproximar a derivada da função f(x) = sen(x) no ponto $\pi/3$. Usando a fórmula de diferenças finitas progressiva de ordem h obtemos

$$f'\left(\frac{\pi}{3}\right) = \underbrace{\frac{f\left(\frac{\pi}{3} + h\right) - f\left(\frac{\pi}{3}\right)}{h}}_{F_1(h) := D_{+,h}f(\pi/3)} + \underbrace{\frac{f''(x)}{2}h + \frac{f'''(x)}{6}h^2 + \cdots}_{(2.30)}$$

Na Tabela 2.1 temos os valores das aproximações de $f'(\pi/3)$ computadas via sucessivas extrapolações de Richardson a partir de (2.30) com h = 0.1.

Tabela 2.1: Resultados referente ao Exemplo 2.1.3.

O(h)	$O(h^2)$	$O(h^3)$	$O(h^4)$
4,55902E-1			
4,78146E-1	5,00389E-1		
4,89123E-1	5,00101E-1	5,00005E-1	
4,94574E-1	5,00026E-1	5,00001E-1	5,00000E-1

Exemplo 2.1.4. Novamente, consideremos o problema de aproximar a derivada da função f(x) = sen(x) no ponto $\pi/3$. A fórmula de diferenças finitas central de ordem h^2 tem a forma

$$f'\left(\frac{\pi}{3}\right) = \underbrace{\frac{f\left(\frac{\pi}{3} + h\right) - f\left(\frac{\pi}{3} - h\right)}{2h}}_{F_1(h) := D_{0,h^2} f(\pi/3)} - \frac{f'''(x)}{6}h^2 + \frac{f^{(5)}(x)}{120}h^4 - \cdots$$
(2.31)

Na Tabela 2.2 temos os valores das aproximações de $f'(\pi/3)$ computadas via sucessivas extrapolações de Richardson a partir de (2.31) com h = 1.

Tabela 2.2: Resultados referente ao Exemplo 2.1.4.

$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$
4,20735E-1			
4,79426E-1	4,98989E-1		
4,94808E-1	4,99935E-1	4,99998E-1	
4,98699E-1	4,99996E-1	5,00000E-1	5,00000E-1

2.1.2 Exercícios

[[tag:revisar]]

Exercício 2.1.1. Mostre que a primeira extrapolação de Richardson de

$$D_{-,h}f(x) = \frac{f(x) - f(x-h)}{h}$$
(2.32)

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pь

é igual a

$$D_{-,(h/2)^2}f(x) = \frac{3f(x) - 4f(x-h) + f(x-2h)}{h}.$$
 (2.33)

Exercício 2.1.2. Considere o problema de aproximar a derivada de

$$f(x) = \frac{\operatorname{sen}(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} + x \tag{2.34}$$

no ponto x=2,5. Para tanto, use de sucessivas extrapolações de Richardson a partir da aproximação por diferenças finitas:

- a) progressiva de ordem h, com h = 0.5.
- b) regressiva de ordem h, com h = 0.5.
- c) central de ordem h^2 , com h = 0.5.

Nas letras a) e b), obtenha as aproximações de ordem h^3 e, na letra c) obtenha a aproximação de ordem h^6 .

24

Capítulo 3

Integração

[[tag:revisar]]

Neste capítulo, discutimos os métodos numéricos fundamentais para a aproximação de integrais definidas de funções. Tais métodos são chamados de **quadraturas numéricas** e têm a forma

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(x_i) w_i, \tag{3.1}$$

onde x_i e w_i são, respectivamente, o *i*-ésimo nodo e o *i*-ésimo peso da quadratura, $i=1,2,\ldots,n$.

3.1 Regras de Newton-Cotes

[[tag:revisar]]

Dada uma função f(x) e um intervalo [a, b], denotamos por

$$I := \int_a^b f(x) \, dx. \tag{3.2}$$

a integral de f(x) no intervalo [a,b]. A ideia das regras de Newton-Cotes e aproximar I pela integral de um polinômio interpolador de f(x) por pontos previamente selecionados.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

Seja, então, p(x) o polinômio interpolador de grau n de f(x) pelos dados pontos $\{(x_i, f(x_i))\}_{i=1}^{n+1}$, com $x_1 < x_2 < \cdots < x_{n+1}$ e $x_i \in [a, b]$ para todo $i = 1, 2, \ldots, n+1$. Então, pelo teorema de Lagrange, temos

$$f(x) = p(x) + R_{n+1}(x), (3.3)$$

onde

$$p(x) = \sum_{i=1}^{n+1} f(x_i) \prod_{\substack{j=1\\j\neq i}}^{n+1} \frac{(x-x_j)}{x_i - x_j}$$
(3.4)

е

$$R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=1}^{n+1} (x - x_j), \tag{3.5}$$

onde $\xi = \xi(x)$ pertencente ao intervalo $[x_1, x_{n+1}]$. Deste modo, temos

$$I := \int_{a}^{b} f(x) \tag{3.6}$$

$$= \int_{a}^{b} p(x) dx + \int_{a}^{b} R_{n+1}(x) dx$$
 (3.7)

$$= \underbrace{\sum_{i=1}^{n+1} f(x_i) \int_a^b \prod_{\substack{j=1 \ j \neq i}}^{n+1} \frac{(x-x_j)}{x_i - x_j} dx}_{\text{quadratura}} + \underbrace{\int_a^b R_{n+1}(x) dx}_{\text{erro de truncamento}}$$
(3.8)

Ou seja, nas quadraturas (regras) de Newton-Cotes, os nodos são as abscissas dos pontos interpolados e os pesos são as integrais dos polinômios de Lagrange associados.

Na sequência, abordaremos as regras de Newton-Cotes mais usuais e estimaremos o erro de truncamento caso a caso. Para uma abordagem mais geral, recomenda-se consultar [3, Cap. 7,Sec. 1.1].

3.1.1 Regras de Newton-Cotes fechadas

[[tag:revisar]]

As regras de Newton-Cotes fechadas são aqueles que a quadratura incluem os extremos do intervalo de integração, i.e. os nodos extremos são $x_1=a$ e $x_{n+1}=b$.

Regra do trapézio

[[tag:revisar]]

A regra do trapézio é obtida tomando-se os nodos $x_1 = a$ e $x_2 = b$. Então, denotando $h := b - a^1$, os pesos da quadratura são:

$$w_1 = \int_a^b \frac{x-b}{a-b} \, dx \tag{3.9}$$

$$=\frac{(b-a)}{2} = \frac{h}{2} \tag{3.10}$$

 ϵ

$$w_2 = \int_a^b \frac{x - a}{b - a} \, dx \tag{3.11}$$

$$=\frac{(b-a)}{2} = \frac{h}{2}. (3.12)$$

Agora, estimamos o erro de truncamento com

$$E := \int_{a}^{b} R_2(x) \, dx \tag{3.13}$$

$$= \int_{a}^{b} \frac{f''(\xi(x))}{2} (x - a)(x - b) dx$$
 (3.14)

$$\leq C \left| \int_{a}^{b} (x-a)(x-b) \, dx \right| \tag{3.15}$$

$$=C\frac{(b-a)^3}{6} = O(h^3). (3.16)$$

Portanto, a **regra do trapézio** é dada por

$$\int_{a}^{b} f(x) dx = \frac{h}{2} (f(a) + f(b)) + O(h^{3}).$$
(3.17)

Exemplo 3.1.1. Consideremos o problema de computar a integral de $f(x) = xe^{-x^2}$ no intervalo [0, 1/4]. Analiticamente, temos

$$I = \int_0^{1/4} x e^{-x^2} dx = -\frac{e^{-x^2}}{2} \Big|_0^{1/4}$$
(3.18)

¹Neste capítulo, h é escolhido como a distância entre os nodos.

$$= \frac{1 - e^{-1/4}}{2} = 3,02935E - 2. \tag{3.19}$$

Agora, usando a regra do trapézio, obtemos a seguinte aproximação para I

$$I \approx \frac{h}{2}(f(0) + f(1/2))$$
 (3.20)

$$= \frac{1/4}{2} \left(0 + \frac{1}{4} e^{-(1/4)^2} \right) = 2,93567E - 2.$$
 (3.21)

Regra de Simpson

[[tag:revisar]]

A regra de Simpson é obtida escolhendo-se os nodos $x_1 = a$, $x_2 = (a+b)/2$ e $x_3 = b$. Com isso e denotando h = (b-a)/2, calculamos os seguintes pesos:

$$w_1 = \int_a^b \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} dx$$
 (3.22)

$$=\frac{(b-a)}{6} = \frac{h}{3},\tag{3.23}$$

$$w_2 = \int_a^b \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} dx$$
 (3.24)

$$=4\frac{(b-a)}{6}=4\frac{h}{3} \tag{3.25}$$

е

$$w_3 = \int_a^b \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)} dx$$
 (3.26)

$$=\frac{(b-a)}{6} = \frac{h}{3}. (3.27)$$

Isto nos fornece a chamada regra de Simpson

$$I \approx \frac{h}{3} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$
 (3.28)

Nos resta estimar o erro de truncamento da regra de Simpson. Para tanto, consideramos a expansão em polinômio de Taylor de grau 3 de f(x) em torno do ponto x_2 , i.e.

$$f(x) = f(x_2) + f'(x_2)(x - x_2) + \frac{f''(x_2)}{2}(x - x_2)^2$$

$$+\frac{f'''(x_2)}{6}(x-x_2)^3 + \frac{f^{(4)}(\xi_1(x))}{24}(x-x_2)^4,$$
(3.29)

donde

$$\int_{a}^{b} f(x) dx = 2h f(x_{2}) + \frac{h^{3}}{3} f''(x_{2}) + \frac{1}{24} \int_{a}^{b} f^{(4)}(\xi_{1}(x))(x - x_{2})^{4} dx.$$
(3.30)

Daí, usando da fórmula de diferenças finitas central de ordem h^2 , temos

$$f''(x_2) = \frac{f(x_1) - 2f(x_2) + f(x_3)}{h^2} + O(h^2).$$
(3.31)

Ainda, o último termo da equação (3.30) pode ser estimado por

$$\left| \frac{1}{24} \int_{a}^{b} f^{(4)}(\xi_{1}(x))(x - x_{2})^{4} dx \right| \le C \left| \int_{a}^{b} (x - x_{2})^{4} dx \right|$$
 (3.32)

$$= C(b-a)^5 = O(h^5). (3.33)$$

Então, de (3.30), (3.31) e (3.1.1), temos

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] + O(h^{5}), \tag{3.34}$$

o que mostra que a regra de Simpson tem erro de truncamento da ordem h^5 .

Exemplo 3.1.2. Aproximando a integral dada no Exemplo 3.1.1 pela a regra de Simpson, temos

$$\int_0^{1/4} f(x) \, dx \approx \frac{1/8}{3} \left[f(0) + 4f\left(\frac{1}{8}\right) + f\left(\frac{1}{4}\right) \right] \tag{3.35}$$

$$= \frac{1}{24} \left[\frac{1}{2} e^{-(1/8)^2} + \frac{1}{4} e^{-(1/4)^2} \right]$$
 (3.36)

$$= 3,02959E - 2. (3.37)$$

3.1.2 Regras de Newton-Cotes abertas

[[tag:revisar]]

As regras de Newton-Cotes abertas não incluem os extremos dos intervalos como nodos das quadraturas.

Regra do ponto médio

[[tag:revisar]]

A regra do ponto médio é obtida usando apenas o nodo $x_1 = (a + b)/2$. Desta forma, temos

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x_{1}) dx + \int_{a}^{b} f'(\xi(x))(x - x_{1}) dx,$$
 (3.38)

donde, denotando h := (b - a), temos

$$\int_{a}^{b} f(x) dx = h f\left(\frac{a+b}{2}\right) + O(h^{3}).$$
(3.39)

Deixa-se para o leitor a verificação do erro de truncamento (veja, Exercício 3.1.3).

Exemplo 3.1.3. Aproximando a integral dada no Exemplo 3.1.1 pela a regra do ponto médio, temos

$$\int_0^{1/4} f(x) \, dx \approx \frac{1}{4} f\left(\frac{1}{8}\right) \tag{3.40}$$

$$=\frac{1}{32}e^{-(1/8)^2}\tag{3.41}$$

$$= 3,07655E - 2 \tag{3.42}$$

Exercício

[[tag:revisar]]

Exercício 3.1.1. Aproxime

$$\int_{-1}^{0} \frac{\operatorname{sen}(x+2) - e^{-x^{2}}}{x^{2} + \ln(x+2)} dx \tag{3.43}$$

usando a:

- a) regra do ponto médio.
- b) regra do trapézio.
- c) regra de Simpson.

Exercício 3.1.2. Considere a seguinte tabela de pontos

i	1	2	3	4	5	6
x_i	2,0	2,1	2,2	2,3	2,4	2,5
y_i	1,86	1,90	2,01	2,16	2,23	2,31

Assumindo que y = f(x), calcule:

- a) $\int_{2,1}^{2,3} f(x) dx$ usando a regra do ponto médio.
- b) $\int_{2,0}^{2,5} f(x) dx$ usando a regra do trapézio.
- c) $\int_{2.0}^{2.4} f(x) dx$ usando a regra de Simpson.

Exercício 3.1.3. Mostre que o erro de truncamento da regra do ponto médio é da ordem de h^3 , onde h é o tamanho do intervalo de integração.

Exercício 3.1.4. Obtenha a regra de Newton-Cotes aberta de 2 pontos e estime seu erro de truncamento.

3.2 Regras compostas de Newton-Cotes

[[tag:revisar]]

Regras de integração numérica compostas (ou quadraturas compostas) são aquelas obtidas da composição de quadraturas aplicadas as subintervalos do intervalo de integração. Mais especificamente, a integral de uma dada função f(x) em um dado intervalo [a,b] pode ser reescrita como uma soma de integrais em sucessivos subintervalos de [a,b], i.e.

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{x_{i}}^{x_{i+1}} f(x) dx,$$
(3.46)

onde $a=x_1 < x_2 < \cdots < x_{n+1}=b$. Então, a aplicação de uma quadratura em cada integral em $[x_i,x_{i+1}],\ i=1,2,\ldots,n$, nos fornece uma regra composta.

3.2.1 Regra composta do ponto médio

[[tag:revisar]]

Consideremos uma partição uniforme do intervalo de integração [a,b] da forma $a=\tilde{x}_1<\tilde{x}_2<\cdots<\tilde{x}_{n+1}=b,$ com $h=x_{i+1}-x_i,$ $i=1,2,\ldots,n.$ Então, aplicando a regra do ponto médio a cada integral nos subintervalos $[\tilde{x}_i,\tilde{x}_{i+1}],$ temos

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{\tilde{x}_{i}}^{\tilde{x}_{i+1}} f(x) dx$$
 (3.47)

$$= \sum_{i=1}^{n} \left[hf\left(\frac{\tilde{x}_i + \tilde{x}_{i+1}}{2}\right) + O(h^3) \right]. \tag{3.48}$$

Agora, observando que h := (b-a)/n e escolhendo os nodos $x_i = a + (i-1/2)h$, i = 1, 2, ..., n, obtemos a **regra composta do ponto médio com** n subintervalos

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} h f(x_i) + O(h^2).$$
(3.49)

Exemplo 3.2.1. Consideremos o problema de computar a integral de $f(x) = xe^{-x^2}$ no intervalo [0,1]. Usando a regra composta do ponto médio com n subintervalos, obtemos a aproximação

$$\underbrace{\int_{a}^{b} f(x) \, dx}_{I} \approx \underbrace{\sum_{i=1}^{n} h f(x_{i})}_{S},\tag{3.50}$$

onde h = 1/(4n) e $x_i = (i - 1/2)h$, i = 1, 2, ..., n. Na Tabela 3.1, temos as aproximações computadas com diversos números de subintervalos, bem como, seus erros absolutos.

3.2.2 Regra composta do trapézio

[[tag:revisar]]

Para obtermos a regra composta do trapézio, consideramos uma partição uniforme do intervalo de integração [a,b] da forma $a=x_1 < x_2 < \cdots <$

Tabela 3.1: Resultados referentes ao Exemplo 3.2.1.

n	S	I - S
1	3,89400E-1	7,3E-2
10	3,16631E-1	5,7E-4
100	3,16066E-1	5,7E-6
1000	3.16060E-1	5,7E-8

 $x_{n+1} = b$ com $h = x_{i+1} - x_i$, i = 1, 2, ..., n. Então, aplicando a regra do trapézio em cada integração nos subintervalos, obtemos

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{x_{i}}^{x_{i+1}} f(x) dx$$
 (3.51)

$$= \sum_{i=1}^{n} \left\{ \frac{h}{2} \left[f(x_i) + f(x_{i+1}) \right] + O(h^3) \right\}$$
 (3.52)

$$= f(x_1)\frac{h}{2} + \sum_{i=2}^{n} hf(x_i) + f(x_{n+1})\frac{h}{2} + O(h^2).$$
 (3.53)

Desta forma, a regra composto do trapézio com n subintervalos é

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[f(x_1) + \sum_{i=2}^{n} 2f(x_i) + f(x_{n+1}) \right] + O(h^2), \tag{3.54}$$

onde
$$h = (b-a)/n$$
 e $x_i = a + (i-1)h$, $i = 1, 2, ..., n$.

Exemplo 3.2.2. Consideremos o problema de computar a integral de $f(x) = xe^{-x^2}$ no intervalo [0,1]. Usando a regra composta do trapézio com n subintervalos, obtemos a aproximação

$$\underbrace{\int_{a}^{b} f(x) dx}_{I} \approx \underbrace{\frac{h}{2} \left[f(x_{1}) + 2 \sum_{i=2}^{n} f(x_{i}) + f(x_{n+1}) \right]}_{S}, \tag{3.55}$$

onde h = 1/(4n) e $x_i = (i-1)h$, i = 1, 2, ..., n. Na Tabela 3.2, temos as aproximações computadas com diversos números de subintervalos, bem como, seus erros absolutos.

3.2.3 Regra composta de Simpson

[[tag:revisar]]

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

100 -

(0

n

400 -

-450 -

500 —

550 -

-600

Tabela 3.2: Resultados referentes ao Exemplo 3.2.2.

n	S	I - S
1	1,83940E-1	1,3E-1
10	3,14919E-1	1.1E - 3
100	3.16049E - 1	1,1E-5
1000	3,16060E-1	1,1E-7

A fim de obtermos a regra composta de Simpson, consideramos uma partição uniforme do intervalo de integração [a,b] da forma $a=\tilde{x}_1<\tilde{x}_2<\cdots<\tilde{x}_{n+1}=b,$ com $h=(\tilde{x}_{i+1}-\tilde{x}_i)/2,$ $i=1,2,\ldots,n.$ Então, aplicando a regra de Simpson a cada integral nos subintervalos $[\tilde{x}_i,\tilde{x}_{i+1}]$, temos

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{\tilde{x}_{i}}^{\tilde{x}_{i+1}} f(x) dx$$

$$= \sum_{i=1}^{n} \left\{ \frac{h}{3} \left[f(\tilde{x}_{i}) + 4f\left(\frac{\tilde{x}_{i} + \tilde{x}_{i+1}}{2}\right) + f(\tilde{x}_{i+1}) \right] + O(h^{5}) \right\}.$$
(3.56)

Então, observando que h = (b-a)/(2n) e tomando $x_i = a + (i-1)h$, i = 1, 2, ..., n, obtemos a regra composta de Simpson com n subintervalos

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(x_1) + 2 \sum_{i=2}^{n} f(x_{2i-1}) + 4 \sum_{i=1}^{n} f(x_{2i}) + f(x_{n+1}) \right] + O(h^4)$$
(3.58)

Exemplo 3.2.3. Consideremos o problema de computar a integral de $f(x) = xe^{-x^2}$ no intervalo [0,1]. Usando a regra composta de Simpson com n subintervalos, obtemos a aproximação

$$\underbrace{\int_{a}^{b} f(x) dx}_{I} \approx \underbrace{\frac{h}{3} \left[f(x_{1}) + 2 \sum_{i=2}^{n} f(x_{2i-1}) + 4 \sum_{i=1}^{n} f(x_{2i}) + f(x_{n+1}) \right]}_{S}, (3.59)$$

onde h=1/(8n) e $x_i=(i-1)h$, $i=1,2,\ldots,n$. Na Tabela 3.3, temos as aproximações computadas com diversos números de subintervalos, bem como, seus erros absolutos.

Tabela 3.3: Resultados referentes ao Exemplo 3.2.3.

n	S	I - S
1	3,20914E-1	4,9E-3
10	3,16061E-1	3,4E-7
100	3,16060E-1	3,4E-11
1000	3,16060E-1	4,2E-15

Exercícios

[[tag:revisar]]

Exercício 3.2.1. Aproxime

$$\int_{-1}^{0} \frac{\sin(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} dx \tag{3.60}$$

usando a:

- a) regra composta do ponto médio com 10 subintervalos.
- b) regra composta do trapézio com 10 subintervalos.
- c) regra composta de Simpson com 10 subintervalos.

Exercício 3.2.2. Considere a seguinte tabela de pontos

i	1	2	3	4	5	6
x_i	2,0 1,86	2,1	2,2	2,3	2,4	2,5
y_i	1,86	1,90	2,01	2,16	2,23	2,31

Assumindo que y=f(x), e usando o máximo de subintervalos possíveis, calcule:

- a) $\int_{2.0}^{2.4} f(x) dx$ usando a regra do ponto médio composta.
- b) $\int_{2.0}^{2.5} f(x) dx$ usando a regra do trapézio composta.
- c) $\int_{2,0}^{2,4} f(x) dx$ usando a regra de Simpson composta.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Þь

00

00

50

) |----

350 -

400-

450

00

-550 —

-600

3.3 Quadratura de Romberg

[[tag:revisar]]

A quadratura de Romberg é construída por sucessivas extrapolações de Richardson da regra do trapézio composta. Sejam $h_k=(b-a)/(2k),\ x_i=a+(i-1)h_k$ e

$$R_{k,1} := \frac{h_k}{2} \left[f(a) + 2 \sum_{i=2}^{2k} f(x_i) + f(b) \right]$$
(3.61)

a regra do trapézio composta com 2k subintervalos de

$$I := \int_{a}^{b} f(x) \, dx. \tag{3.62}$$

Por sorte, o erro de truncamento de aproximar I por $R_{k,1}$ tem a seguinte forma

$$I - R_{k,1} = \sum_{i=1}^{\infty} k_i h_k^{2i}, \tag{3.63}$$

o que nos permite aplicar a extrapolação de Richardson para obter aproximações de mais alta ordem.

Mais precisamente, para obtermos uma aproximação de I com erro de truncamento da ordem h^{2n} , h=(b-a), computamos $R_{k,1}$ para $k=1,2,\ldots,n$. Então, usamos das sucessivas extrapolações de Richardson

$$R_{k,j} := R_{k,j-1} + \frac{R_{k,j-1} - R_{k-1,j-1}}{4^{j-1} - 1},$$
(3.64)

 $j=2,3,\ldots,n,$ de forma a computarmos $R_{n,n},$ a qual fornece a aproximação desejada.

Exemplo 3.3.1. Consideremos o problema de aproximar a integral de $f(x) = xe^{-x^2}$ no intervalo [0, 1]. Para obtermos uma quadratura de Romberg de ordem 4, calculamos

$$R_{1,1} := \frac{1}{2}[f(0) + f(1)] = 1,83940E - 1 \tag{3.65}$$

$$R_{2,1} := \frac{1}{4} [f(0) + 2f(1/2) + f(1)] = 2,86670E - 1.$$
 (3.66)

Então, calculando

$$R_{2,2} = R_{2,1} + \frac{R_{2,1} - R_{1,1}}{3} = 3,20914E - 1,$$
 (3.67)

a qual é a aproximação desejada.

Tabela 3.4: Resultados referentes ao Exemplo 3.3.1.

k	$R_{k,1}$	$R_{k,2}$	$R_{k,3}$	$R_{k,4}$
1	1,83940E-1			
2	2,86670E-1	3,20914E-1		
3	3,08883E-1	3,16287E-1	3,15978E-1	
4	3,14276E-1	3,16074E-1	3,16059E-1	3,16061E-1

Na Tabela 3.4, temos os valores de aproximações computadas pela quadratura de Romberg até ordem 8.

Exercícios

[[tag:revisar]]

Exercício 3.3.1. Aproxime

$$\int_{-1}^{0} \frac{\sin(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} dx \tag{3.68}$$

usando a quadratura de Romberg de ordem 4.

3.4 Grau de exatidão

[[tag:revisar]]

O grau de exatidão é uma medida de exatidão de uma quadratura numérica. Mais precisamente, dizemos que uma dada quadratura numérica de nodos e pesos $\{(x_i, w_i)\}_{i=1}^n$ tem grau de exatidão m, quando

$$\int_{a}^{b} p(x) dx = \sum_{i=1}^{n} p(x_i) w_i$$
(3.69)

para todo polinômio p(x) de grau menor m. Ou ainda, conforme descrito na definição a seguir.

Definição 3.4.1. Dizemos que uma dada quadratura numérica de pontos e nodos $\{x_i, w_i\}_{i=1}^n$ tem **grau de exatidão** m, quando

$$\int_{a}^{b} x^{k} dx = \sum_{i=1}^{n} x_{i}^{k} w_{i}, \forall k \le m.$$
(3.70)

Exemplo 3.4.1. Determinemos o grau de exatidão da regra do ponto médio. Para tanto, verificamos para quais k vale

$$\int_{a}^{b} x^{k} dx = (b - a) \left(\frac{a+b}{2}\right)^{k}.$$

$$(3.71)$$

Vejamos:

• k = 0:

$$\int_{a}^{b} x^{0} dx = x|_{a}^{b} = b - a, \tag{3.72}$$

$$(b-a)\left(\frac{a+b}{2}\right)^0 = b-a. \tag{3.73}$$

• k = 1:

$$\int_{a}^{b} x^{1} dx = \frac{x^{2}}{2} \bigg|_{a}^{b} = \frac{b^{2}}{2} - \frac{a^{2}}{2}, \tag{3.74}$$

$$(b-a)\left(\frac{a+b}{2}\right)^{1} = (b-a)\frac{(a+b)}{2} = \frac{b^{2}}{2} - \frac{a^{2}}{2}.$$
 (3.75)

• k = 2:

$$\int_{a}^{b} x^{2} dx = \frac{x^{3}}{3} \bigg|_{a}^{b} = \frac{b^{3}}{3} - \frac{a^{3}}{3}, \tag{3.76}$$

$$(b-a)\left(\frac{a+b}{2}\right)^2 \neq \frac{b^3}{3} - \frac{a^3}{3}.$$
 (3.77)

Ou seja, a regra do ponto média tem grau de exatidão 1.

Exemplo 3.4.2. Determinemos o grau de exatidão da regra de Simpson. Para tanto, verificamos para quais k vale

$$\int_{a}^{b} x^{k} dx = \frac{(b-a)}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)^{k}.$$
 (3.78)

Vejamos:

• k = 0:

$$\int_{a}^{b} x^{0} dx = x|_{a}^{b} = b - a, \tag{3.79}$$

$$\frac{(b-a)}{6}\left(a^0 + 4\left(\frac{a+b}{2}\right)^0 + b^0\right) = b-a. \tag{3.80}$$

• k = 1:

$$\int_{a}^{b} x^{1} dx = \frac{x^{2}}{2} \bigg|_{a}^{b} = \frac{b^{2}}{2} - \frac{a^{2}}{2}, \tag{3.81}$$

$$\frac{(b-a)}{6}\left(a^1 + 4\left(\frac{a+b}{2}\right)^1 + b^1\right) = \frac{(b-a)}{2}(a+b) \tag{3.82}$$

$$=\frac{b^2}{2} - \frac{a^2}{2}. (3.83)$$

• k = 2:

$$\int_{a}^{b} x^{2} dx = \frac{x^{3}}{3} \bigg|_{a}^{b} = \frac{b^{3}}{3} - \frac{a^{3}}{3}, \tag{3.84}$$

$$\frac{(b-a)}{6}\left(a^2+4\left(\frac{a+b}{2}\right)^2+b^2\right) = \frac{(b-a)}{3}(a^2+ab+b^2)$$
 (3.85)

$$=\frac{b^3}{3} - \frac{a^3}{3}. (3.86)$$

• k = 3:

$$\int_{a}^{b} x^{3} dx = \frac{x^{4}}{4} \bigg|_{a}^{b} = \frac{b^{4}}{4} - \frac{a^{4}}{4}, \tag{3.87}$$

$$\frac{(b-a)}{6} \left(a^3 + 4 \left(\frac{a+b}{2} \right)^3 + b^3 \right) \tag{3.88}$$

$$= \frac{(b-a)}{6} \left[\frac{3a^3}{2} + \frac{3b}{2}a^2 + \frac{3a}{2}b^2 + \frac{3b^3}{2} \right]$$
 (3.89)

$$=\frac{b^4}{4} - \frac{a^4}{4}. (3.90)$$

• k = 4:

$$\int_{a}^{b} x^{4} dx = \frac{x^{5}}{5} \bigg|_{a}^{b} = \frac{b^{5}}{5} - \frac{a^{5}}{5}, \tag{3.91}$$

$$\frac{(b-a)}{6}\left(a^4 + 4\left(\frac{a+b}{2}\right)^4 + b^4\right) \neq \frac{b^5}{5} - \frac{a^5}{5}.$$
 (3.92)

Ou seja, a regra de Simpson tem grau de exatidão 3.

Exercícios

[[tag:revisar]]

Exercício 3.4.1. Determine o grau de exatidão da regra do trapézio.

Exercício 3.4.2. Determine o nodo e o peso da quadratura numérica de um único nodo e de grau de exatidão 1 para o intervalo de integração [-1,1].

3.5 Quadratura Gauss-Legendre

[[tag:revisar]]

Quadraturas gaussianas são quadraturas numéricas de máximo grau de exatidão. Especificamente, quadraturas de Gauss-Legendre são quadraturas gaussianas para integrais da forma

$$\int_{-1}^{1} f(x) \, dx. \tag{3.93}$$

Consideremos o problema de determinar a quadratura de Gauss-Legendre de apenas um ponto. Começamos por exigir o grau de exatidão 0, o que nos leva a

$$w_1 x_1^0 = \int_{-1}^1 x^0 dx \Rightarrow w_1 = x|_{-1}^1 = 2.$$
 (3.94)

Agora, exigindo o grau de exatidão 1, obtemos

$$w_1 x_1^1 = \int_{-1}^1 x^1 dx \Rightarrow 2x_1 = \frac{x^2}{2} \Big|_{-1}^1 = 0$$
 (3.95)

$$\Rightarrow x_1 = 0. \tag{3.96}$$

Com isso, concluímos que a quadratura de apenas um nodo de maior grau de exatidão para tais integrais é a de nodo $x_1 = 0$ e $w_1 = 2$. A qual é, por acaso, a regra do ponto médio.

Observamos, também, que cada grau de exatidão nos fornece uma condição para determinarmos os nodos e os pesos da desejada quadratura. Mais precisamente, seguindo o raciocínio anterior, para determinarmos a quadratura de n pontos com maior grau de exatidão possível para integrais no intervalo [-1,1], acabaremos tendo que resolver um sistema de equações

$$\sum_{i=1}^{n} x_i^k w_i = \int_{-1}^{1} x^k dx, \ k = 0, 1, 2, \dots, 2n - 1.$$
 (3.97)

Isto é, como teremos 2n incógnitas (n nodos e n pesos) a determinar, poderemos exigir o grau de exatidão máximo de 2n-1.

O sistema (3.97) é um sistema não linear para os nodos e a determinação de soluções para n grande não é uma tarefa trivial. Alternativamente, veremos que os pontos da quadratura de Gauss-Legendre de n nodos são as raízes do polinômio de Legendre de grau n. Por definição, o polinômio de Legendre de grau n, denotado por $P_n(x)$, satisfaz a seguinte propriedade de ortogonalidade

$$\int_{-1}^{1} p(x)P_n(x) dx = 0, \tag{3.98}$$

para todo polinômio p(x) de grau menor que n. Com isso, estabelecemos o seguinte resultado.

Teorema 3.5.1. A quadratura de Gauss-Legendre de n nodos tem as raízes do polinômio de Legendre de grau n como seus nodos e seus pesos são dados por

$$w_i = \int_{-1}^1 \prod_{\substack{j=1\\j\neq i}}^n \frac{x - x_j}{x_i - x_j} dx.$$
(3.99)

Demonstração. Sejam x_1, x_2, \ldots, x_n as raízes do polinômio de Legendre de grau n. Queremos mostrar que

$$\int_{-1}^{1} p(x) dx = \sum_{i=1}^{n} p(x_i) w_i, \tag{3.100}$$

para todo polinômio p(x) de grau menor ou igual 2n-1. Primeiramente, suponhamos que p(x) seja um polinômio de grau menor que n. Então, tomando sua representação por polinômio de Lagrange nos nodos x_i , $i=1,2,\ldots,n$, temos

$$\int_{-1}^{1} p(x) dx = \int_{-1}^{1} \sum_{i=1}^{n} p(x_i) \prod_{\substack{j=1\\j \neq i}}^{n} \frac{x - x_j}{x_i - x_j} dx$$
(3.101)

$$= \sum_{i=1}^{n} p(x_i) \int_{-1}^{1} \prod_{\substack{j=1\\j\neq i}}^{n} \frac{x - x_j}{x_i - x_j} dx$$
 (3.102)

$$= \sum_{i=1}^{n} p(x_i)w_i. \tag{3.103}$$

Isto mostra o resultado para polinômios p(x) de grau menor que n. Agora, suponhamos que p(x) é um polinômio de grau maior ou igual que n e menor ou igual a 2n-1. Dividindo p(x) pelo polinômio de Legendre de grau n, $P_n(x)$, obtemos

$$p(x) = q(x)P_n(x) + r(x), (3.104)$$

onde q(x) e r(x) são polinômio de grau menor que n. Ainda, nas raízes x_1, x_2, \ldots, x_n temos $p(x_i) = r(x_i)$ e da ortogonalidade dos polinômios de Legendre (veja, equação (3.98)), temos

$$\int_{-1}^{1} p(x) dx = \int_{-1}^{1} q(x) P_n(x) + r(x) dx$$
 (3.105)

$$= \int_{-1}^{1} r(x) \, dx. \tag{3.106}$$

Agora, do resultado anterior aplicado a r(x), temos

$$\int_{-1}^{1} p(x) dx = \sum_{i=1}^{n} r(x_i) w_i = \sum_{i=1}^{n} p(x_i) w_i.$$
 (3.107)

Isto complete o resultado para polinômios de grau menor ou igual a 2n-1. \square

Exemplo 3.5.1. Consideremos a quadratura de Gauss-Legendre de 2 nodos. Do teorema anterior (Teorema 3.5.1, seus nodos são as raízes do polinômio de Legendre de grau 2

$$P_2(x) = \frac{3}{2}x^2 - \frac{1}{2},\tag{3.108}$$

as quais são

$$x_1 = -\frac{\sqrt{3}}{3}, \quad x_2 = \frac{\sqrt{3}}{3}.$$
 (3.109)

Os pesos são, então

$$w_1 = \int_{-1}^1 \frac{x - x_1}{x_2 - x_1} dx \tag{3.110}$$

$$=\frac{\sqrt{3}}{2}\left[\frac{x^2}{2} + \frac{\sqrt{3}}{3}x\right]_{-1}^{1} \tag{3.111}$$

$$=1 \tag{3.112}$$

е

$$w_2 = \int_{-1}^1 \frac{x - x_2}{x_1 - x_2} \, dx \tag{3.113}$$

$$= -\frac{\sqrt{3}}{2} \left[\frac{x^2}{2} - \frac{\sqrt{3}}{3} x \right]^1 \tag{3.114}$$

$$= 1 \tag{3.115}$$

Ou seja, a quadratura de Gauss-Legendre de 2 pontos tem o seguinte conjunto de nodos e pesos $\{(x_1 = -\sqrt{3}/3, w_1 = 1), (x_2 = \sqrt{3}/3, w_2 = 1)\}$. Esta, por sua vez, é exata para polinômios de grau menor ou igual a 3. De fato, verificando para potência de x^k temos:

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Pь

 $\bullet \quad k = 0:$

$$\int_{-1}^{1} x^0 \, dx = 2 \tag{3.116}$$

$$x_1^0 w_1 + x_2^0 w_2 = \left(-\frac{\sqrt{3}}{3}\right)^0 + \left(\frac{\sqrt{3}}{3}\right)^0 = 2.$$
 (3.117)

• k = 1:

$$\int_{-1}^{1} x^1 \, dx = 0 \tag{3.118}$$

$$x_1^1 w_1 + x_2^1 w_2 = \left(-\frac{\sqrt{3}}{3}\right)^1 + \left(\frac{\sqrt{3}}{3}\right)^1 = 0.$$
 (3.119)

• k = 2:

$$\int_{-1}^{1} x^2 dx = \frac{2}{3} \tag{3.120}$$

$$x_1^2 w_1 + x_2^2 w_2 = \left(-\frac{\sqrt{3}}{3}\right)^2 + \left(\frac{\sqrt{3}}{3}\right)^2 = \frac{2}{3}.$$
 (3.121)

• k = 3:

$$\int_{-1}^{1} x^3 \, dx = 0 \tag{3.122}$$

$$x_1^3 w_1 + x_2^3 w_2 = \left(-\frac{\sqrt{3}}{3}\right)^3 + \left(\frac{\sqrt{3}}{3}\right)^3 = 0.$$
 (3.123)

• k = 4:

$$\int_{-1}^{1} x^4 \, dx = \frac{2}{5} \tag{3.124}$$

$$x_1^4 w_1 + x_2^4 w_2 = \left(-\frac{\sqrt{3}}{3}\right)^4 + \left(\frac{\sqrt{3}}{3}\right)^4 = \frac{2}{9}.$$
 (3.125)

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

Tabela 3.5: Conjunto de nodos e pesos da quadratura de Gauss-Legendre.

-n	x_i	w_i
1	0	2
2	$\pm \frac{\sqrt{3}}{3}$	1
3	0 $\sqrt{3}$	$\frac{8}{9}$ $\frac{5}{9}$
	$\pm\sqrt{\frac{3}{5}}$	$\frac{9}{9}$
4	$\pm\sqrt{\frac{3}{7}-\frac{2}{7}\sqrt{\frac{6}{5}}}$	$\frac{18 + \sqrt{30}}{36}$
	$\pm\sqrt{\frac{3}{7}+\frac{2}{7}\sqrt{\frac{6}{5}}}$	$\frac{18 - \sqrt{30}}{36}$
5	0	$\frac{128}{225}$
	$\pm \frac{1}{3}\sqrt{5-2\sqrt{\frac{10}{7}}}$	$\frac{322 + 13\sqrt{70}}{900}$
	$\pm \frac{1}{3}\sqrt{5+2\sqrt{\frac{10}{7}}}$	$\frac{322 - 13\sqrt{70}}{900}$

Observação 3.5.1. O conjunto de nodos e pesos da quadratura de Gauss-Legendre para n = 1, 2, 3, 4, 5 são apresentados na Tabela 3.5^2 . Alternativamente, a quadratura de Gauss-Legendre com n pontos tem seus nodos iguais as raízes de $P_n(x)$ (o polinômio de Legendre de gaus n), e os pesos dados por (3.99) ou [5, Cap.4, Sec. 4.6]:

$$w_i = \frac{2}{(1 - x_i^2) \left[P_n'(x_i) \right]^2}, \quad i = 1, 2, \dots, n.$$
 (3.126)

Exemplo 3.5.2. Considere o problema de obter uma aproximação para $I = \int_{-1}^{1} \cos(x) dx$ usando a quadratura de Gauss-Legendre. Calculemos algumas

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

 $^{^2} Disponível \ em \ https://en.wikipedia.org/w/index.php?title=Gaussian_quadrature&oldid=837460315.$

aproximações com n = 1, 2 e 3 pontos:

• n = 1:

$$\int_{-1}^{1} \cos(x) \, dx \approx 2 \cos 0 = 2. \tag{3.127}$$

• n=2:

$$\int_{-1}^{1} xe^{-x^2} dx \approx \cos(-\sqrt{3}/3) + \cos(-\sqrt{3}/3) = 1,67582.$$
 (3.128)

• n = 3:

$$\int_{-1}^{1} xe^{-x^2} dx \approx \frac{8}{9} \cos 0 + \frac{5}{9} \cos(-\sqrt{3/5}) + \frac{5}{9} \cos(\sqrt{3/5}) = 1,68300.$$
 (3.129)

n	\widetilde{I}	$ I-\tilde{I} $
1	2,00000	3,2E-01
2	1,67582	7,1E-03
3	1,68300	6.2E - 05
4	1,68294	2.8E - 07
5	1,68294	7,9E-10

Tabela 3.6: Resultados referentes ao Exemplo 3.5.2.

Na Tabela 3.6, temos as aproximações de I com a quadratura de Gauss-Legendre de n=1, 2, 3, 4 e 5 pontos (detonado por \tilde{I} , bem como, o erro absoluto com respeito ao valor analítico da integral.

3.5.1 Intervalos de integração arbitrários

[[tag:revisar]]

Observamos que a quadratura de Gauss-Legendre foi desenvolvida para aproximar integrais definidas no intervalo [-1,1]. Por sorte, uma integral definida em um intervalo arbitrário [a,b] pode ser reescrita como uma integral

no intervalo [-1,1] através de uma mudança de variável apropriada. Mais precisamente, assumindo a mudança de variável

$$x = \frac{b-a}{2}(u+1) + a \tag{3.130}$$

temos

$$dx = \frac{b-a}{2}du\tag{3.131}$$

e, portanto,

$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left(\frac{b-a}{2}(u+1) + a\right) \cdot \frac{b-a}{2} du.$$
 (3.132)

Portanto, para computarmos $\int_a^b f(x) dx$ podemos aplicar a quadratura de Gauss-Legendre na integral definida no [-1,1] dada conforme acima.

Exemplo 3.5.3. Usemos a quadratura de Gauss-Legendre com 2 pontos para aproximar a integral

$$\int_0^1 x e^{-x^2} \, dx. \tag{3.133}$$

Fazendo a mudança de variável x = u/2 + 1/2, temos

$$\int_0^1 x e^{-x^2} dx = \int_{-1}^1 \left(\frac{u}{2} + \frac{1}{2}\right) e^{-\left(\frac{u}{2} + \frac{1}{2}\right)^2} du.$$
 (3.134)

Então, aplicando a quadratura temos

$$\int_0^1 x e^{-x^2} dx = \left(-\frac{\sqrt{3}}{6} + \frac{1}{2}\right) e^{-\left(-\frac{\sqrt{3}}{6} + \frac{1}{2}\right)^2} + \left(\frac{\sqrt{3}}{6} + \frac{1}{2}\right) e^{-\left(\frac{\sqrt{3}}{6} + \frac{1}{2}\right)^2}$$

$$= 3,12754E - 1.$$
(3.135)

Exercícios

[[tag:revisar]]

Exercício 3.5.1. Aproxime

 $\int_{-1}^{1} \frac{\sin(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} dx$

(3.137)

usando a quadratura de Gauss-Legendre com:

- a) n = 1 ponto.
- b) n=2 pontos.
- c) n = 3 pontos.
- d) n = 4 pontos.
- e) n = 5 pontos.

Exercício 3.5.2. Aproxime

$$\int_0^1 \frac{\sin(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} dx \tag{3.138}$$

usando a quadratura de Gauss-Legendre com:

- a) n = 1 ponto.
- b) n=2 pontos.
- c) n = 3 pontos.
- d) n = 4 pontos.
- e) n = 5 pontos.

Exercício 3.5.3. Aproxime

$$\int_{-1}^{1} \frac{\sin(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} dx \tag{3.139}$$

usando a quadratura de Gauss-Legendre com:

- a) n = 5 ponto.
- b) n = 10 pontos.
- c) n = 20 pontos.

3.6 Quadraturas gaussianas com pesos

[[tag:revisar]]

A quadratura gaussiana estudada na seção anterior (Seção 3.5) é um caso particular de quadraturas de máximo grau de exatidão para integrais da forma

$$\int_{a}^{b} f(x)w(x) dx, \tag{3.140}$$

onde w(x) é positiva e contínua, chamada de função peso. Como anteriormente, os nodos x_i , $i=1,2,\ldots,n$, da quadratura gaussiana de n pontos são as raízes do polinômio $p_n(x)$ que é ortogonal a todos os polinômios de grau menor que n. Aqui, isto significa

$$\int_{a}^{b} q(x)p_{n}(x)w(x) dx = 0, \tag{3.141}$$

para todo polinômio q(x) de grau menor que n.

3.6.1 Quadratura de Gauss-Chebyshev

[[tag:revisar]]

Quadraturas de Gauss-Chebyshev são quadraturas gaussianas para integrais da forma

$$\int_{-1}^{1} f(x)(1-x^2)^{-1/2} dx. \tag{3.142}$$

Neste caso, na quadratura gaussiana de n pontos os nodos x_i são as raízes do n-ésimo polinômio de Chebyshev $T_n(x)$. Pode-se mostrar (veja, por exemplo, [3, Cap. 7, Sec. 4.1]) que o conjunto de pontos desta quadratura são dados por

$$x_i = \cos\left(\frac{2i-1}{2n}\pi\right),\tag{3.143}$$

$$w_i = \frac{\pi}{n}.\tag{3.144}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рu

---1

+-200

50

300 -

350 -

400

450

500

--550 ---

60

Exemplo 3.6.1. Considere o problema de aproximar a integral

 $\int_{-1}^{1} \frac{e^{-x^2}}{\sqrt{1-x^2}} \, dx. \tag{3.145}$

Usando a quadratura de Gauss-Chebyshev de n pontos temos:

• n = 1:

$$\int_{-1}^{1} \frac{e^{-x^2}}{\sqrt{1-x^2}} dx \approx \pi e^{-\cos(\pi/2)^2} = \pi.$$
 (3.146)

• n = 2:

$$\int_{-1}^{1} \frac{e^{-x^2}}{\sqrt{1-x^2}} dx \approx \frac{\pi}{2} e^{-\cos(\pi/4)^2} + \frac{\pi}{2} e^{-\cos(3\pi/4)^2}$$
 (3.147)

$$= 1,90547. (3.148)$$

• n = 3:

$$\int_{-1}^{1} \frac{e^{-x^2}}{\sqrt{1-x^2}} dx \approx \frac{\pi}{3} e^{-\cos(\pi/6)^2} + \frac{\pi}{3} e^{-\cos(\pi/2)^2} + \frac{\pi}{3} e^{-\cos(5\pi/6)^2}$$
(3.149)

$$= 2,03652. (3.150)$$

n	\widetilde{I}
1	3,14159
2	1,90547
3	2,03652
4	2,02581
5	2,02647
6	2,02644
10	2,02644

Tabela 3.7: Resultados referentes ao Exemplo 3.6.1.

Na Tabela 3.7, temos as aproximações \tilde{I} da integral computadas com a quadratura de Gauss-Chebyshev com diferentes números de pontos.

3.6.2 Quadratura de Gauss-Laguerre

[[tag:revisar]]

Quadraturas de Gauss-Laguerre são quadraturas gaussianas para integrais da forma

$$\int_0^\infty f(x)e^{-x} dx. \tag{3.151}$$

Neste caso, na quadratura gaussiana de n pontos os nodos x_i são as raízes do n-ésimo polinômio de Laguerre $L_n(x)$ e os pesos por

$$w_i = -\frac{1}{n[L'_n(x_i)]^2}, i = 1, 2, \dots, n.$$
 (3.152)

Na Tabela 3.8, temos os pontos da quadratura de Gauss-Laguerre para diversos valores de n.

Tabela 3.8: Pontos da quadratura de Gauss-Laguerre.

n	x_i	w_i
1	1,0000000E+00	1,0000000E+00
2	3,4142136E+00	1,4644661E-01
	5,8578644E-01	8,5355339E-01
	6,2899451E+00	1,0389257E-02
3	2,2942804E+00	2,7851773E-01
	4,1577456E-01	7,1109301E-01
	9,3950709E+00	5,3929471E-04
4	4,5366203E+00	3,8887909E-02
4	1,7457611E+00	3,5741869E-01
	3,2254769E-01	6,0315410E-01
	1,2640801E+01	2,3369972E-05
	7,0858100E+00	3,6117587E - 03
5	3,5964258E+00	7,5942450E-02
	1,4134031E+00	3,9866681E-01
	2,6356032E-01	5,2175561E-01

Exemplo 3.6.2. Na Tabela 3.9, temos as aproximações \tilde{I} da integral $I = \int_0^\infty \sin(x)e^{-x} dx$ obtidas pela quadratura de Gauss-Laguerre com diferentes pontos n.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

թե

n	\widetilde{I}
1	8,41471E-01
2	4,32459E-01
3	4,96030E-01
4	5,04879E-01
5	4,98903E-01

Tabela 3.9: Resultados referentes ao Exemplo 3.6.1.

3.6.3 Quadratura de Gauss-Hermite

[[tag:revisar]]

Quadraturas de Gauss-Hermite são quadraturas gaussianas para integrais da forma

$$\int_{-\infty}^{\infty} f(x)e^{-x^2} dx. \tag{3.153}$$

Seus nodos x_i , $i=1,2,\ldots,n$ são as raízes do n-ésimo polinômio de Hermite e os pesos são dados por

$$w_i = \frac{2^{n+1} n! \sqrt{\pi}}{[H'_n(x_i)]^2}. (3.154)$$

Na Tabela 3.10, temos os pontos da quadratura de Gauss-Hermite para diversos valores de n.

Exemplo 3.6.3. Na Tabela 3.11, temos as aproximações \tilde{I} da integral $I = \int_{-\infty}^{\infty} x \sin(x) e^{-x^2} dx$ obtidas pela quadratura de Gauss-Hermite com diferentes pontos n.

Exercícios

[[tag:revisar]]

Exercício 3.6.1. Aproxime

$$\int_{-1}^{1} \frac{\sin(x+2) - e^{-x^2}}{\sqrt{1-x^2}} dx \tag{3.155}$$

usando a quadratura de Gauss-Chebyshev com:

Tabela 3.10: Pontos da quadratura de Gauss-Hermite.

n	x_i	w_i
1	0,0000000E+00	1,7724539E+00
2	-7,0710678E-01	8,8622693E-01
	7,0710678E-01	8,8622693E-01
	-1,2247449E+00	2,9540898E-01
3	1,2247449E+00	2,9540898E-01
	-0,0000000E+00	1,1816359E+00
	-1,6506801E+00	8,1312835E-02
4	1,6506801E+00	8,1312835E-02
4	-5,2464762E-01	8,0491409E-01
	5,2464762E-01	8,0491409E-01
	-2,0201829E+00	1,9953242E-02
	2,0201829E+00	1,9953242E-02
5	-9,5857246E-01	3,9361932E-01
	9,5857246E-01	3,9361932E-01
	0,0000000E+00	9,4530872E-01

n	$ ilde{I}$
1	0,00000E+00
2	8,14199E-01
3	6,80706E-01
4	6,90650E-01
5	6.90178E - 01

Tabela 3.11: Resultados referentes ao Exemplo 3.6.3.

```
a) n = 1 ponto.
```

b)
$$n=2$$
 pontos.

c)
$$n = 3$$
 pontos.

d)
$$n = 4$$
 pontos.

e)
$$n = 5$$
 pontos.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

700

650 -

600

55U ----

500

450

400

+ 350

300

250 ·

200

50

Exercício 3.6.2. Aproxime

$$\int_0^\infty \left(\sec(x+2) - e^{-x^2} \right) e^{-x} \, dx \tag{3.156}$$

usando a quadratura de Gauss-Laguerre com:

- a) n=3 pontos.
- b) n = 4 pontos.
- c) n = 5 pontos.

Exercício 3.6.3. Aproxime

$$\int_{-\infty}^{\infty} \sin(x+2)e^{-x^2} - e^{-2x^2} dx \tag{3.157}$$

usando a quadratura de Gauss-Hermite com:

- a) n = 3 pontos.
- b) n = 4 pontos.
- c) n = 5 pontos.

3.7 Método de Monte Carlo

[[tag:revisar]]

O método de Monte Carlo é uma técnica não determinística para a aproximação de integrais. Mais especificamente, o método compreende a aproximação

$$\int_{a}^{b} f(x) dx \approx \frac{(b-a)}{n} \sum_{i=1}^{n} f(x_i),$$
 (3.158)

onde x_1, x_2, \ldots, x_n são pontos de uma sequência aleatória em [a, b]. Aqui, não vamos entrar em detalhes sobre a escolha desta sequência e, sem mais justificativas, assumiremos uma sequência de pontos uniformemente distribuídos no intervalo de integração.

Exemplo 3.7.1. Na tabela 3.12 temos aproximações \tilde{I} computadas para

$$I = \int_0^1 x e^{-x^2} \, dx \tag{3.159}$$

usando o método de Monte Carlo com diferentes números de pontos n. Aqui, os pontos foram gerados no GNU Octave pela sequência quasi-randômica obtida da função rand inicializada com seed=0.

n	$ ilde{I}$	$ I-\widetilde{I} $
10	2,53304E-01	6.3E - 02
100	3,03149E-01	1,3E-02
1000	3,08415E-01	7,6E-03
10000	3,16385E-01	3,2E-04
100000	3,15564E-01	5,0E-04

Tabela 3.12: Resultados referentes ao Exemplo 3.7.1.

Exercícios

[[tag:revisar]]

Exercício 3.7.1. Use o método de Monte Carlo para obter uma aproximação de

$$\int_{-1}^{1} \frac{\sin(x+2) - e^{-x^2}}{x^2 + \ln(x+2)} dx \tag{3.160}$$

com precisão de 10^{-2} .

Capítulo 4

Problema de valor inicial

[[tag:revisar]]

Neste capítulo, discutimos sobre técnicas numéricas para aproximar a solução de equações diferenciais ordinárias com valor inicial, i.e. problemas da forma

$$y'(t) = f(t, y(t)), \quad t > t_0,$$
 (4.1)

$$y(t_0) = y_0. (4.2)$$

4.1 Método de Euler

[[tag:revisar]]

Dado um problema de valor inicial

$$y'(t) = f(t, y(t)), \quad t > t_0,$$
 (4.3)

$$y(t_0) = y_0,$$
 (4.4)

temos que f(t,y) é a derivada da solução y(t) no tempo t. Então, aproximando a derivada pela razão fundamental de passo h>0, obtemos

$$\frac{y(t+h) - y(t)}{h} \approx f(t,y) \tag{4.5}$$

$$\Rightarrow y(t+h) \approx y(t) + hf(t,y(t)). \tag{4.6}$$

Ou seja, se conhecermos a solução y no tempo t, então (4.6) nos fornece uma aproximação da solução y no tempo t + h. Observemos que isto poder ser usado de forma iterativa. Da condição inicial $y(t_0) = y_0$, computamos uma aproximação de y no tempo $t_0 + h$. Usando esta no lugar de $y(t_0 + h)$, (4.6) com $t_0 + h$ no lugar de t nos fornece uma aproximação para $y(t_0 + 2h)$ e, assim, sucessivamente.

Mais especificamente, denotando $y^{(i)}$ a aproximação de $y(t^{(i)})$ com $t^{(i)}=t_0+(i-1)h,\,i=1,2,\ldots,n,$ o **método de Euler** consiste na iteração

$$y^{(1)} = y_0, (4.7)$$

$$y^{(i+1)} = y^{(i)} + hf(t^{(i)}, y^{(i)}), (4.8)$$

com $i=1,2,\ldots,n$. O número de iteradas n e o tamanho do passo h>0, determinam os tempos discretos $t^{(i)}$ nos quais a solução y será aproximada.

Exemplo 4.1.1. Consideremos o seguinte problema de valor inicial

$$y' - y = \operatorname{sen}(t), t > 0 \tag{4.9}$$

$$y(0) = \frac{1}{2}. (4.10)$$

A solução analítica deste é

$$y(t) = e^{t} - \frac{1}{2}\operatorname{sen}(t) - \frac{1}{2}\cos(t). \tag{4.11}$$

No tempo, $t_f = 1$, temos $y(t_f) = e^{t_f} - \sin(1)/2 - \cos(1)/2 = 2,02740$. Agora, computarmos uma aproximação para este problema pelo método de Euler, reescrevemos (4.35) na forma

$$y' = y + \text{sen}(t) =: f(t,y).$$
 (4.12)

Então, escolhendo h=0,1, a iteração do método de Euler (4.7)-(4.8) nos fornece o método de Euler com passo h=0,1

$$y^{(1)} = 0.5$$

$$y^{(2)} = y^{(1)} + hf(t^{(1)}, y^{(1)})$$

$$= 0.5 + 0.1[0.5 + sen(0)]$$

$$= 0.55$$
(4.13)

$$y^{(3)} = y^{(2)} + hf(t^{(2)}, y^{(2)})$$

$$= 0.55 + 0.1[0.55 + sen(0.1)]$$

$$= 6.14983E - 01$$

$$\vdots$$

$$y^{(11)} = 1.85259$$

$$(4.16)$$

Na Figura 4.1, temos os esboços das soluções analítica e numérica.

Figura 4.1: Esboço das soluções referente ao Exemplo 4.1.1.

4.1.1 Análise de consistência e convergência

[[tag:revisar]]

O método de Euler com passo h aplicado ao problema de valor inicial

(4.3)-(4.4), pode ser escrito da seguinte forma

$$\tilde{y}(t^{(1)};h) = y_0,$$
(4.17)

$$\tilde{y}(t^{(i+1)}; h) = \tilde{y}(t^{(i)}; h) + h\Phi(t^{(i)}, \tilde{y}(t^{(i)}); h), \tag{4.18}$$

onde $\tilde{y}(t^{(i)})$ representa a aproximação da solução exata y no tempo $t^{(i)} = t_0 + (i-1)h, i = 1, 2, \dots$ Métodos que podem ser escritos desta forma, são chamados de métodos de passo simples (ou único). No caso específico do método de Euler, temos

$$\Phi(t, y; h) := f(t, y(t)). \tag{4.19}$$

Agora, considerando a solução exata y(t) de (4.3)-(4.4), introduzimos

$$\Delta(t,y;h) := \begin{cases} \frac{y(t+h)-y(t)}{h}, & h \neq 0, \\ f(t,y(t)), & h = 0, \end{cases}$$
(4.20)

Com isso, vamos analisar o chamado erro de discretização local

$$\tau(t,y;h) := \Delta(t,y;h) - \Phi(t,y;h), \tag{4.21}$$

a qual estabelece uma medida quantitativa com que a solução exata y(t) no tempo t+h satisfaz a iteração de Euler.

Definição 4.1.1. (Consistência) Um método de passo simples (4.17)-(4.18) é dito consistente quando

$$\lim_{h \to 0} \tau(t, y; h) = 0, \tag{4.22}$$

ou, equivalentemente, quando

$$\lim_{h \to 0} \Phi(t, y; h) = f(t, y). \tag{4.23}$$

Observação 4.1.1. Da Definição 4.1.1, temos que o método de Euler é consistente.

A ordem do erro de discretização local de um método de passo simples (4.17)-(4.18) é dita ser p, quando

$$\tau(t,y;h) = O(h^p). \tag{4.24}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

Para determinarmos a ordem do método de Euler, tomamos a expansão em série de Taylor da solução exata y(t) em torno de t, i.e.

$$y(t+h) = y(t) + hy'(t) + \frac{h^2}{2}y''(t) + \frac{h^3}{6}y'''(t+\theta h), \ 0 < \theta < 1.$$
 (4.25)

Como y(t) = f(t,y(t)) e assumindo a devida suavidade de f, temos

$$y''(t) = \frac{d}{dt}f(t,y(t)) \tag{4.26}$$

$$= f_t(t,y) + f_y(t,y)y'$$
 (4.27)

$$= f_t(t,y) + f_y(t,y)f(t,y). (4.28)$$

Então,

$$\Delta(t,y;h) = f(t,y(t)) + \frac{h}{2}[f_t(t,y) + f_y(t,y)f(t,y)] + O(h^2). \tag{4.29}$$

Portanto, para o método de Euler temos

$$\tau(t,y;h) := \Delta(t,y;h) - \Phi(t,y;h) \tag{4.30}$$

$$= \frac{h}{2}[f_t(t,y) + f_y(t,y)f(t,y)] + O(h^2)$$
(4.31)

$$= O(h). (4.32)$$

Isto mostra que o método de Euler é um método de ordem 1.

A análise acima trata apenas da consistência do método de Euler. Para analisarmos a convergência de métodos de passo simples, definimos o **erro** de discretização global

$$e(t; h_n) := \tilde{y}(t; h_n) - y(t), \quad h_n := \frac{t - t_0}{n}.$$
 (4.33)

E, com isso, dizemos que o método é convergente quando

$$\lim_{n \to \infty} e(t, h_n) = 0, \tag{4.34}$$

bem como, dizemos que o método tem erro de discretização global de ordem h^p quando $e(t,h_n)=O(h^p)$.

Observação 4.1.2. Pode-se mostrar que, assumindo a devida suavidade de f, que a ordem do erro de discretização global de um método de passo simples é igual a sua ordem do erro de discretização local (veja, [6, Cap. 7, Seç. 7.2]). Portanto, o método de Euler é convergente e é de ordem 1.

Exemplo 4.1.2. Consideremos o seguinte problema de valor inicial

$$y' - y = \text{sen}(t), t > 0 \tag{4.35}$$

$$y(0) = \frac{1}{2}. (4.36)$$

Na Tabela 4.1, temos as aproximações $\tilde{y}(1)$ de y(1) computadas pelo método de Euler com diferentes passos h.

h	$\tilde{y}(1)$	$ \tilde{y}(1) - y(1) $
10^{-1}	1,85259	1,7E-01
10^{-2}	2,00853	1,9E-02
10^{-3}	2,02549	1,9E-03
10^{-5}	2,02735	4.8E - 05
10^{-7}	2.02739	1,9E-07

Tabela 4.1: Resultados referentes ao Exemplo 4.1.2

Exercícios

[[tag:revisar]]

Exercício 4.1.1. Considere o seguinte problema de valor inicial

$$y' + e^{-y^2 + 1} = 2, \quad t > 1,$$
 (4.37)

$$y(1) = -1. (4.38)$$

Use o método de Euler com passo h=0,1 para computar o valor aproximado de y(2).

4.2 Métodos de Runge-Kutta

[[tag:revisar]]

Os métodos de Runge-Kutta de s-estágios são métodos de passo simples da seguinte forma

$$y^{(i+1)} = y^{(i)} + h(c_1k_1 + \dots + c_sk_s)$$
(4.39)

onde

$$k_1 := f(t^{(i)}, y^{(i)}),$$
 (4.40)

$$k_2 := f(t^{(i)} + \alpha_2 h, y^{(i)} + h\beta_{21} k_1), \tag{4.41}$$

$$k_3 := f(t^{(i)} + \alpha_3 h, y^{(i)} + h(\beta_{31} k_1 + \beta_{32} k_2)), \tag{4.42}$$

$$\vdots \tag{4.43}$$

$$k_s := f(t^{(i)} + \alpha_s h, y^{(i)} + h(\beta_{s1}k_1 + \dots + \beta_{s,s-1}k_{s-1})), \tag{4.44}$$

$$t^{(i)} = t_0 + (i-1)h e y^{(1)} = y_0.$$

Na sequência, discutimos alguns dos métodos de Runge-Kutta usualmente utilizados. Pode-se encontrar uma lista mais completa em [3, Cap. 8, Seç. 3.2].

4.2.1 Métodos de Runge-Kutta de ordem 2

[[tag:revisar]]

Precisamos apenas de 2 estágios para obtermos métodos de Runge-Kutta de ordem 2. Portanto, assumimos

$$y^{(i+1)} = y^{(i)} + h \left[c_1 f(t^{(i)}, y^{(i)}) + c_2 f(t^{(i)} + \alpha_2 h, y^{(i)} + h \beta_{21} f(t^{(i)}, y^{(i)})) \right].$$

$$(4.45)$$

Neste caso, o erro de discretização local é dado por

$$\tau(t,y;h) = \Delta(t,y;h) - \Phi(t,y;h), \tag{4.46}$$

onde, da equação (4.29) temos

$$\Delta(t,y;h) = f(t,y(t)) + \frac{h}{2} [f_t(t,y) + f_y(t,y)f(t,y)] + O(h^2)$$
(4.47)

e de (4.45)

$$\Phi(t,y;h) = c_1 f(t,y) + c_2 f(t + \alpha_2 h, y + h\beta_{21} f(t,y))$$
(4.48)

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

Agora, tomando a expansão de série de Taylor em torno de t de $\Phi(t,y;h)$, temos

$$\Phi(t,y;h) = (c_1 + c_2)f(t,y) + c_2h[\alpha_2 f_t(t,y) + \beta_{21} f_y(t,y)f(t,y)) + O(h^2).$$
(4.49)

Então, por comparação de (4.47) e (4.49), temos

$$c_1 + c_2 = 1 \tag{4.50}$$

$$c_2 \alpha_2 = \frac{1}{2} \tag{4.51}$$

$$c_2 \beta_{21} = \frac{1}{2}. (4.52)$$

Assim sendo, temos mais de uma solução possível.

Método do ponto médio

[[tag:revisar]]

O método do ponto médio é um método de Runge-Kutta de ordem 2 proveniente da escolha de coeficientes

$$c_1 = 0, \quad c_2 = 1, \quad \alpha_2 = \frac{1}{2}, \quad \beta_{21} = \frac{1}{2}.$$
 (4.53)

Logo, a iteração do método do ponto médio é

$$y^{(1)} = y_0 (4.54)$$

$$y^{(i+1)} = y^{(i)} + hf\left(t^{(i)} + \frac{h}{2}, y^{(i)} + \frac{h}{2}f(t^{(i)}, y^{(i)})\right). \tag{4.55}$$

Exemplo 4.2.1. Consideremos o seguinte problema de valor inicial

$$y' - y = \text{sen}(t), t > 0 \tag{4.56}$$

$$y(0) = \frac{1}{2}. (4.57)$$

Na Tabela 4.2, temos as aproximações $\tilde{y}(1)$ de y(1) computadas pelo método do ponto médio com diferentes passos h.

h	$\tilde{y}(1)$	$ \tilde{y}(1) - y(1) $
10^{-1}	2,02175	5,6E-03
10^{-2}	2,02733	6.0E - 05
10^{-3}	2,02739	6.1E - 07
10^{-4}	2,02740	6.1E - 09
10^{-5}	2,02737	2,9E-05

Tabela 4.2: Resultados referentes ao Exemplo 4.2.1.

Método de Euler modificado

[[tag:revisar]]

O método de Euler modificado é um método de Runge-Kutta de ordem 2 proveniente da escolha de coeficientes

$$c_1 = \frac{1}{2}, \quad c_2 = \frac{1}{2}, \quad \alpha_2 = 1, \quad \beta_{21} = 1.$$
 (4.58)

Logo, a iteração do método de Euler modificado é

$$y^{(1)} = y_0 (4.59)$$

$$y^{(i+1)} = y^{(i)} + \frac{h}{2} \left[f(t^{(i)}, y^{(i)}) + f(t^{(i)} + h, y^{(i)} + hf(t^{(i)}, y^{(i)}) \right]. \tag{4.60}$$

Exemplo 4.2.2. Consideremos o seguinte problema de valor inicial

$$y' - y = \text{sen}(t), t > 0 \tag{4.61}$$

$$y(0) = \frac{1}{2}. (4.62)$$

Na Tabela 4.3, temos as aproximações $\tilde{y}(1)$ de y(1) computadas pelo método de Euler modificado com diferentes passos h.

4.2.2 Método de Runge-Kutta de ordem 4

[[tag:revisar]]

Um dos métodos de Runge-Kutta mais empregados é o seguinte método de ordem 4:

$$y^{(i+1)} = y^{(i)} + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4), \tag{4.63}$$

h	$\tilde{y}(1)$	$ \tilde{y}(1) - y(1) $
10^{-1}	2,02096	6.4E - 03
10^{-2}	2,02733	6,9E-05
10^{-3}	2,02739	6,9E-07
10^{-4}	2,02740	6,9E-09
10^{-5}	2.02737	2,9E-05

Tabela 4.3: Resultados referentes ao Exemplo 4.2.2

onde

$$k_1 := f(t^{(i)}, y^{(i)}),$$
 (4.64)

$$k_2 := f(t^{(i)} + h/2, y^{(i)} + hk_1/2),$$

$$(4.65)$$

$$k_3 := f(t^{(i)} + h/2, y^{(i)} + hk_2/2),$$
 (4.66)

$$k_4 := f(t^{(i)} + h, y^{(i)} + hk_3),$$
 (4.67)

$$t^{(i)} = t_0 + (i-1)h \text{ e } y^{(1)} = y_0.$$

Exemplo 4.2.3. Consideremos o seguinte problema de valor inicial

$$y' - y = \text{sen}(t), t > 0 \tag{4.68}$$

$$y(0) = \frac{1}{2}. (4.69)$$

Na Tabela 4.4, temos as aproximações $\tilde{y}(1)$ de y(1) computadas pelo método de Runge-Kutta de quarta ordem com diferentes passos h.

h	$\tilde{y}(1)$	$ \tilde{y}(1) - y(1) $
10^{-1}	2,02739	2.8E - 06
10^{-2}	2,02740	3,1E-10
10^{-3}	2,02740	3,0E-14
10^{-4}	2,02740	4,4E-14

Tabela 4.4: Resultados referentes ao Exemplo 4.2.3

Exercícios

[[tag:revisar]]

Exercício 4.2.1. Considere o seguinte problema de valor inicial

$$y' + e^{-y^2 + 1} = 2, \quad t > 1,$$
 (4.70)

$$y(1) = -1. (4.71)$$

Use os seguintes métodos de Runge-Kutta com passo h=0,1 para computar o valor aproximado de y(2):

- a) método do ponto médio.
- b) método de Euler modificado.
- c) método de Runge-Kutta de ordem 4.

4.3 Método adaptativo com controle de erro

[[tag:revisar]]

Consideremos um problema de valor inicia

$$y'(t) = f(t, y(t)), \quad t > t_0,$$
 (4.72)

$$y(t_0) = y_0. (4.73)$$

e um método de passo simples

$$y^{(1)} = y_0, (4.74)$$

$$y^{(i+1)}(h^{(i+1)}) = y^{(i)} + h^{(i+1)}\Phi(t^{(i)}, y^{(i)}; h^{(i+1)}), \tag{4.75}$$

com $t^{(i)} = t_0 + (i-1)h^{(i)}$. Nesta seção, discutiremos uma estimava para o maior valor de $h^{(i+1)}$ tal que o erro de discretização global $e(t^{(i+1)}; h^{(i+1)})$ seja controlado por uma dada tolerância TOL, i.e.

$$|e(t^{(i+1)}; h^{(i+1)})| := |y^{(i+1)}(h^{(i+1)}) - y(t^{(i+1)})| \approx TOL.$$
 (4.76)

Para um método de ordem h^p , pode-se mostrar que (veja, [3, Cap. 7, Seç. 7.2])

$$y^{(i+1)}(h^{(i+1)}) = y(t^{(i+1)}) + e_p(t^{(i+1)})(h^{(i+1)})^p,$$
(4.77)

onde $e(t^{(i+1)})$ é uma função apropriada. Então, assumindo que $e(t^{(i)};h^{(i)})=0$, temos

$$e_p(t^{(i+1)}) = h^{(i+1)}e_p'(t^{(i)})$$
(4.78)

e, portanto, para termos (4.76) impomos que

$$|(h^{(i+1)})^{p+1}e_p'(t^{(i)})| = TOL. (4.79)$$

Daí, se obtermos uma aproximação para $e'_p(t^{(i)})$ teremos uma aproximação para o passo $h^{(i+1)}$.

Para estimarmos $e_p(t^{(i+1)})$, observamos que de (4.77) temos

$$y^{(i+1)}\left(\frac{h^{(i+1)}}{2}\right) = y(t^{(i+1)}) + e_p(t^{(i+1)}) \frac{(h^{(i+1)})^p}{2^p}$$
(4.80)

e, então, subtraindo esta de (4.77) temos

$$y^{(i+1)}(h^{(i+1)}) - y^{(i+1)}\left(\frac{h^{(i+1)}}{2}\right) = e_p(t^{(i+1)})\left(\frac{h^{(i+1)}}{2}\right)^p (2^p - 1), \quad (4.81)$$

donde

$$e_p(t^{(i+1)}) \left(\frac{h^{(i+1)}}{2}\right)^p = \frac{y^{(i+1)}(h^{(i+1)}) - y^{(i+1)}\left(\frac{h^{(i+1)}}{2}\right)}{2^p - 1}.$$
 (4.82)

Daí, de (4.78), obtemos

$$e'_p(t^{(i)})h^{(i+1)}\left(\frac{h^{(i+1)}}{2}\right)^p = \frac{y^{(i+1)}(h^{(i+1)}) - y^{(i+1)}\left(\frac{h^{(i+1)}}{2}\right)}{2^p - 1},\tag{4.83}$$

o que nos fornece a seguinte aproximação de $e_p^\prime(t^{(i)})$

$$e'_{p}(t^{(i)}) = \frac{1}{(h^{(i+1)})^{p+1}} \frac{2^{p}}{2^{p} - 1} \left[y^{(i+1)}(h^{(i+1)}) - y^{(i+1)} \left(\frac{h^{(i+1)}}{2} \right) \right]. \tag{4.84}$$

Assim sendo, de (4.79) temos que o passo $h^{(i+1)}$ apropriado é tal que

$$\frac{2^p}{2^p - 1} \left| y^{(i+1)}(h^{(i+1)}) - y^{(i+1)} \left(\frac{h^{(i+1)}}{2} \right) \right| \approx TOL. \tag{4.85}$$

Com base nesta estimativa podemos propor o seguinte método de passo adaptativo. Partindo de uma escolha arbitrária de h, computamos $y^{(i+1)}(h)$ e $y^{(i+1)}(h/2)$ de $y^{(i)}$. Então, enquanto

$$\frac{2^{p}}{2^{p}-1}\left|y^{(i+1)}(h)-y^{(i+1)}\left(\frac{h}{2}\right)\right| > TOL, \tag{4.86}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

tomamos sucessivas divisões de h por 2, até satisfazermos (4.85). Obtido o h que satisfaz (4.85), temos computado $y^{(i+1)}$ com $h^{(i+1)} = h$.

Exemplo 4.3.1. Consideremos o seguinte problema de valor inicial

$$y' - y = \text{sen}(t), t > 0 \tag{4.87}$$

$$y(0) = \frac{1}{2}. (4.88)$$

A Figura 4.2 mostra a comparação entre y(t) e a solução numérica obtida da aplicação do método de Euler com passo adaptativo. No método, utilizamos o passo inicial $h^{(1)} = 0,1$ e tolerância $TOL = 10^{-4}$. Ao compararmos esta figura com a Figura (4.1) fica evidente o controle do erro.

Figura 4.2: Resultados referentes ao Exemplo 4.3.1.

Exercícios

[[tag:revisar]]

Exercício 4.3.1. Considere o seguinte problema de valor inicial

$$y' + e^{-y^2 + 1} = 2, \quad t > 1,$$
 (4.89)

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

$$y(1) = -1. (4.90)$$

Use o método de Euler com passo adaptativo para computar o valor aproximado de y(2). Para tanto, utilize o passo inicial h=0,1 e a tolerância de $TOL=10^{-4}$.

4.4 Métodos de passo múltiplo

[[tag:revisar]]

Dado um problema de valor inicial

$$y'(t) = f(t, y(t)), \quad t > t_0,$$
 (4.91)

$$y(t_0) = y_0. (4.92)$$

temos

$$y(t) = y(t_0) + \int_{t_0}^{t} f(s, y(s)) ds.$$
(4.93)

De forma mais geral, consideramos uma partição uniforme no tempo $\{t_0=t^{(1)}< t^{(2)}< \cdots < t^{(i)}< \cdots < t^{(n)}=t_f\}$, onde t_f é um determinado tempo para o qual queremos computar uma aproximação para $y(t_f)$. Também, denotamos o passo no tempo por $h=(t_f-t_0)/n$. Com isso, a solução y(t) satisfaz

$$y\left(t^{(i+k)}\right) = y\left(t^{(i-j)}\right) + \int_{t^{(i-j)}}^{t^{(i+k)}} f(s,y(s)) \, ds. \tag{4.94}$$

A ideia é, então, aproximar a integral acima por uma quadratura numérica.

Seguindo as regras de Newton-Cotes (veja, Cap. 3 Seç. 3.1), escolhemos os nodos da quadratura como $x_l = t^{(i-l+1)}, l = 1, 2, ..., m$, e, então

$$\int_{t^{(i-j)}}^{t^{i+k}} f(x,y(x)) dx \approx \sum_{l=1}^{m} f(x_l,y(x_l)) w_l,$$
(4.95)

 ϵ

$$w_l = \int_{t^{(i-j)}}^{t^{(i+k)}} \prod_{\substack{p=1\\p\neq l}}^m \frac{x - x_p}{x_l - x_p} dx.$$
 (4.96)

Agora, fazendo a mudança de variável $u = (x - t^{(i)})/h$, obtemos

$$w_{l} = h \int_{-j}^{k} \prod_{\substack{p=1\\p \neq l}}^{m} \frac{u+p-1}{-l+p} du$$
(4.97)

Assim sendo, temos o seguinte esquema numérico

$$y^{(i+k)} = y^{(i-j)} + h \sum_{l=1}^{m} c_l f(t^{(i-l+1)}, y^{(i-l+1)}), \tag{4.98}$$

onde

$$c_{l} = \int_{-j}^{k} \prod_{\substack{p=1\\p\neq l}}^{m} \frac{s+p-1}{-l+p} ds.$$
(4.99)

Diferentes escolhas de j, k e m não fornecem diferentes métodos. Observamos, ainda, que a ordem de um tal método de passo múltiplo é determinada pela ordem de truncamento da quadratura numérica usada (veja, por exemplo, [2, Cap. 5, Seç. 5.6]).

4.4.1 Métodos de Adams-Bashforth

[[tag:revisar]]

Métodos de Adams-Bashforth são métodos de passo múltiplo obtidos ao escolhermos j=0 e k=1 no esquema numérico (4.98). Com isso, ao escolhermos m obtemos um método de ordem $O(h^m)$ [2, Cap. 5, Seç. 5.6].

Método de Adams-Bashforth de ordem 2

[[tag:revisar]]

Tomando m = 2 em (4.99), temos

$$c_1 = \int_0^1 s + 1 \, ds = \frac{3}{2} \tag{4.100}$$

(

$$c_2 = \int_0^1 -s \, ds = -\frac{1}{2}.\tag{4.101}$$

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

pt

Então, de (4.98) temos a iteração do **método de Adams-Bashforth de** 2 **passos**:

$$y^{(1)} = y_0, (4.102)$$

$$y^{(i+1)} = y^{(i)} + \frac{h}{2} \left[3f(t^{(i)}, y^{(i)}) - f(t^{(i-1)}, y^{(i-1)}) \right], \tag{4.103}$$

com $t^{(i)} = t_0 + (i-1)h$.

Exemplo 4.4.1. Consideremos o seguinte problema de valor inicial

$$y' - y = \operatorname{sen}(t), t > 0 \tag{4.104}$$

$$y(0) = \frac{1}{2}. (4.105)$$

Na Tabela 4.5, temos as aproximações $\tilde{y}(1)$ de y(1) computadas pelo método de Adams-Bashforth de 2 passos. Como este método é de ordem 2, escolhemos inicializá-lo pelo método do ponto médio, de forma a mantermos a consistência.

h	$\tilde{y}(1)$	$ \tilde{y}(1) - y(1) $
10^{-1}	2,01582	1,2E-02
10^{-2}	2,02727	1.3E - 04
10^{-3}	2,02739	1.3E - 06
10^{-4}	2,02740	1,3E-08
10^{-5}	2,02740	1,3E-10

Tabela 4.5: Resultados referentes ao Exemplo 4.4.1

Método de Adams-Bashforth de ordem 3

[[tag:revisar]]

Tomando m=3 em (4.99) obtemos, de (4.98), a iteração do **método de** Adams-Bashforth de 3 passos:

$$y^{(1)} = y_0, (4.106)$$

$$y^{(i+1)} = y^{(i)} + \frac{h}{12} \left[23f(t^{(i)}, y^{(i)}) -16f(t^{(i-1)}, y^{(i-1)}) + 5f(t^{(i-2)}, y^{(i-2)}) \right], \tag{4.107}$$

com $t^{(i)} = t_0 + (i-1)h$.

Exemplo 4.4.2. Consideremos o seguinte problema de valor inicial

$$y' - y = sen(t), t > 0 (4.108)$$

$$y(0) = \frac{1}{2}. (4.109)$$

Na Tabela 4.6, temos as aproximações $\tilde{y}(1)$ de y(1) computadas pelo método de Adams-Bashforth de 3 passos. Como este método é de ordem 3, escolhemos inicializá-lo pelo método de Runge-Kutta de ordem 4, de forma a garantirmos a consistência.

h	$\tilde{y}(1)$	$ \tilde{y}(1) - y(1) $
10^{-1}	2,02696	4,3E-04
10^{-2}	2,02739	5,9E-07
10^{-3}	2,02740	6.1E - 10
10^{-4}	2,02740	6,6E-13

Tabela 4.6: Resultados referentes ao Exemplo 4.4.2

Método de Adams-Bashforth de ordem 4

[[tag:revisar]]

Tomando m=4 em (4.99) obtemos, de (4.98), a iteração do **método de** Adams-Bashforth de 4 passos:

$$y^{(1)} = y_0,$$

$$y^{(i+1)} = y^{(i)} + \frac{h}{24} \left[55f(t^{(i)}, y^{(i)}) - 59f(t^{(i-1)}, y^{(i-1)}) + 37f(t^{(i-2)}, y^{(i-2)}) - 9f(t^{(i-3)}, y^{(i-3)}) \right],$$
(4.111)

com $t^{(i)} = t_0 + (i-1)h$.

Exemplo 4.4.3. Consideremos o seguinte problema de valor inicial

$$y' - y = \text{sen}(t), t > 0 \tag{4.112}$$

$$y(0) = \frac{1}{2}. (4.113)$$

Na Tabela 4.7, temos as aproximações $\tilde{y}(1)$ de y(1) computadas pelo método de Adams-Bashforth de 4 passos. Como este método é de ordem 3, escolhemos inicializá-lo pelo método de Runge-Kutta de ordem 4, de forma a mantermos a consistência.

h	$\tilde{y}(1)$	$ \tilde{y}(1) - y(1) $
10^{-1}	2,02735	5,0E-05
10^{-2}	2,02740	7.7E - 09
10^{-3}	2,02740	7,9E-13

Tabela 4.7: Resultados referentes ao Exemplo 4.4.3

Exercícios

[[tag:revisar]]

Exercício 4.4.1. Considere o seguinte problema de valor inicial

$$y' + e^{-y^2 + 1} = 2, \quad t > 1,$$
 (4.114)
 $y(1) = -1.$ (4.115)

Inicializando pelo método de Euler, use os seguintes métodos de passo múltiplo com h=0,1 para computar o valor aproximado de y(2):

- a) método de Adams-Bashforth de ordem 2.
- b) método de Adams-Bashforth de ordem 3.
- c) método de Adams-Bashforth de ordem 4.

Capítulo 5

Problema de valor de contorno

[[tag:revisar]]

Neste capítulo, discutimos sobre a aplicação do método de diferenças finitas para aproximar a solução de problemas de valores de contorno da forma

$$\alpha(x)u'' + \beta(x)u' + \gamma(x)u = f(x), \quad c_1 < x < c_2, \tag{5.1}$$

$$\eta_1 u'(c_1) + \theta_1 u(c_1) = g_1 \tag{5.2}$$

$$\eta_2 u'(c_2) + \theta_2 u(c_2) = g_2 \tag{5.3}$$

onde a incógnita u = u(x) e os são dados os coeficientes $\alpha(x) \neq 0$, $\beta(x)$, $\gamma(x)$ e a função f(x). Nas condições de contorno, são dados os coeficientes η_1 e θ_1 não simultaneamente nulos, bem como, os coeficientes η_2 e θ_2 , também, não simultaneamente nulos.

5.1 Método de diferenças finitas

[[tag:revisar]]

Consideramos o seguinte problema linear de valor de contorno

$$\alpha(x)u'' + \beta(x)u' + \gamma(x)u = f(x), \quad c_1 < x < c_2,$$
 (5.4)

$$\eta_1 u'(c_1) + \theta_1 u(c_1) = g_1 \tag{5.5}$$

$$\eta_2 u'(c_2) + \theta_2 u(c_2) = g_2 \tag{5.6}$$

onde a incógnita u = u(x) e os são dados os coeficientes $\alpha(x) \neq 0$, $\beta(x)$, $\gamma(x)$ e a função f(x). Nas condições de contorno, são dados os coeficientes η_1 e θ_1 não simultaneamente nulos, bem como, os coeficientes η_2 e θ_2 , também, não simultaneamente nulos.

A aproximação pelo método de diferenças finitas de (5.4)-(5.6) surge da substituição das derivadas por fórmulas de diferenças finitas. Isto requer a a prévia discretização do domínio do problema. Mais precisamente, a aplicação do método de diferenças finitas envolve três procedimentos básicos: 1. discretização do domínio, 2. discretização das equações, 3. resolução do problema discreto.

1. Discretização do domínio

A discretização do domínio refere-se ao particionamento do mesmo em pontos espaçados uniformemente ou não. Aqui, para mantermos a simplicidade, vamos considerar apenas o caso de um particionamento uniforme. Desta forma, escolhemos o número n de pontos da partição e, então, o passo é dado por

$$h = \frac{c_2 - c_1}{n - 1},\tag{5.7}$$

e os pontos da partição podem ser indexados da seguinte forma

$$x_i = c_1 + (i-1)h. (5.8)$$

2. Discretização das equações

Começando pela equação (5.4), no ponto $x = x_i$ temos

$$\alpha(x_i)u''(x_i) + \beta(x_i)u'(x_i) + \gamma(x_i)u(x_i) = f(x_i)$$
(5.9)

para $i=2,3,\ldots,n-1$. Podemos substituir a segunda derivada de u pela fórmula de diferenças finitas central de ordem h^2 , i.e.

$$u''(x_i) = \underbrace{\frac{u(x_i - h) - 2u(x_i) + u(x_i + h)}{h^2}}_{D_{o, k, 2}^2 u(x_i)} + O(h^2). \tag{5.10}$$

A primeira derivada de u também pode ser substituída pela fórmula de diferenças finitas central de ordem h^2 , i.e.

$$u'(x_i) = \underbrace{\frac{u(x_i + h) - u(x_i - h)}{2h}}_{D_{0,h^2}u(x_i)} + O(h^2). \tag{5.11}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

nt.

Agora, denotando $u_i \approx u(x_i)$, temos $u_{i-1} \approx u(x_i - h)$ e $u_{i+1} \approx u(x_i + h)$. Então, substituindo as derivadas pelas fórmulas de diferenças finitas acima na equação (5.9), obtemos

$$\alpha(x_i) \left(\frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} \right) + \beta(x_i) \left(\frac{u_{i+1} - u_{i-1}}{2h} \right) + \gamma(x_i)u_i + O(h^2) = f(x_i),$$
 (5.12)

para $i=2,3,\ldots,n-1$. Rearranjando os termos e desconsiderando o termo do erro de truncamento, obtemos o seguinte sistema discreto de equações lineares

$$\left(\frac{\alpha(x_i)}{h^2} - \frac{\beta(x_i)}{2h}\right) u_{i-1} + \left(\gamma(x_i) - \frac{2\alpha(x_i)}{h^2}\right) u_i + \left(\frac{\alpha(x_i)}{h^2} + \frac{\beta(x_i)}{2h}\right) u_{i+1} = f(x_i),$$
(5.13)

para $i=2,3,\ldots,n-1$. Observe que este sistema consiste em n-2 equações envolvendo as n incógnitas $u_i,\ i=1,2,\ldots,n$. Para fechá-lo, usamos as condições de contorno.

Usando a fórmula de diferenças finitas progressiva de ordem h^2 para a derivada $u'(c_1)$ temos

$$u'(c_1) = \frac{-3u(c_1) + 4u(c_1 + h) - u(c_1 + 2h)}{2h} + O(h^2).$$
 (5.14)

Então, observando que c_1 corresponde ao ponto x_1 na partição do domínio, temos $u_1 \approx u(c_1)$, $u_2 = u(c_1 + h)$ e $u_3 = u(c_1 + 2h)$ e, portanto de (5.5) temos

$$\eta_1 \left(\frac{-3u_1 + 4u_2 - u_3}{2h} \right) + \theta_1 u_1 + O(h^2) = g_1. \tag{5.15}$$

Então, desconsiderando o termo do erro de truncamento, obtemos a seguinte equação discreta

$$\left(\theta_1 - \frac{3\eta_1}{2h}\right)u_1 + \frac{2\eta_1}{h}u_2 - \frac{\eta_1}{2h}u_3 = g_1. \tag{5.16}$$

Procedendo de forma análoga para a condição de contorno (5.6), usamos a fórmula de diferenças finitas regressiva de ordem h^2 para a derivada $u'(c_2)$,

i.e.

$$u'(c_2) = \frac{3u(c_2) - 4u(c_2 - h) + u(c_2 - 2h)}{2h} + O(h^2).$$
 (5.17)

Aqui, temos $u_n \approx u(c_2)$, $u_{n-1} \approx u(c_2 - h)$ e $u_{n-2} \approx u(c_2 - 2h)$, e de (5.6) obtemos

$$\eta_2 \left(\frac{3u_n - 4u_{n-1} + u_{n-2}}{2h} \right) + \theta_2 u_n + O(h^2) = g_2.$$
 (5.18)

Então, desconsiderando o termo do erro de truncamento, obtemos

$$\frac{\eta_2}{2h}u_{n-2} - \frac{2\eta_2}{h}u_{n-1} + \left(\theta_2 + \frac{3\eta_2}{2h}\right)u_n = g_2. \tag{5.19}$$

Por fim, as equações (5.16)-(5.19) formam o seguinte problema discretizado pelo método de diferenças finitas

$$\left(\theta_1 - \frac{3\eta_1}{2h}\right)u_1 + \frac{2\eta_1}{h}u_2 - \frac{\eta_1}{2h}u_3 = g_1. \tag{5.20}$$

$$\left(\frac{\alpha(x_i)}{h^2} - \frac{\beta(x_i)}{2h}\right) u_{i-1} + \left(\gamma(x_i) - \frac{2\alpha(x_i)}{h^2}\right) u_i + \left(\frac{\alpha(x_i)}{h^2} + \frac{\beta(x_i)}{2h}\right) u_{i+1} = f(x_i), i = 2, \dots, n-1,$$
(5.21)

$$\frac{\eta_2}{2h}u_{n-2} - \frac{2\eta_2}{h}u_{n-1} + \left(\theta_2 + \frac{3\eta_2}{2h}\right)u_n = g_2.$$
 (5.22)

3. Resolução do problema discreto

O problema discreto (5.20)-(5.22) consiste em um sistema linear de n equações com n incógnitas. Na forma matricial temos

$$A\tilde{u} = b \tag{5.23}$$

onde $\tilde{u} = (u_1, u_2, \dots, u_n)$ é o vetor das incógnitas, b é o vetor dos termos contantes $b = (g_1, f(x_2), f(x_3), \dots, f(x_{n-1}), g_2)$ e A é a matriz dos coeficientes. Observamos que os coeficientes não nulos da matriz A são:

$$a_{11} = \left(\theta_1 - \frac{3\eta_1}{2h}\right),\tag{5.24}$$

$$a_{12} = \frac{2\eta_1}{h},\tag{5.25}$$

$$a_{13} = -\frac{\eta_1}{2h},\tag{5.26}$$

$$a_{i,i-1} = \left(\frac{\alpha(x_i)}{h^2} - \frac{\beta(x_i)}{2h}\right), \ i = 2, \dots, n-1,$$
 (5.27)

$$a_{i,i} = \left(\gamma(x_i) - \frac{2\alpha(x_i)}{h^2}\right), \ i = 2, \dots, n-1,$$
 (5.28)

$$a_{i,i+1} = \left(\frac{\alpha(x_i)}{h^2} + \frac{\beta(x_i)}{2h}\right), \ i = 2, \dots, n-1,$$
 (5.29)

$$a_{n,n-2} = \frac{\eta_2}{2h},\tag{5.30}$$

$$a_{n,n-1} = -\frac{2\eta_2}{h},\tag{5.31}$$

$$a_{n,n} = \left(\theta_2 + \frac{3\eta_2}{2h}\right). \tag{5.32}$$

Com isso em mente, a matriz A tem a seguinte estrutura

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ & \ddots & \ddots & \ddots \\ & & a_{i,i-1} & a_{i,i} & a_{i,i+1} \\ & & \ddots & \ddots & \ddots \\ & & & a_{n-1,n-2} & a_{n-1,n-1} & a_{n-1,n} \\ & & & a_{n,n-2} & a_{n,n-1} & a_{n,n} \end{bmatrix} . \tag{5.33}$$

A resolução do sistema discreto se resume, então, a resolver o sistema $A\tilde{u}=b,$ o que pode ser feito por qualquer método numérica apropriada.

Exemplo 5.1.1. Consideremos o seguinte problema de valor de contorno

$$-u'' = \operatorname{sen}(x), \quad 0 \le x \le 2,$$
 (5.34)

$$u(0) = 0, (5.35)$$

$$u(2) = \operatorname{sen}(2). \tag{5.36}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

Figura 5.1: Resultado referente ao Exemplo 5.1.1.

A solução analítica deste problema é $u(x)=\sin(x)$. Agora, usando a abordagem pelo método de diferenças finitas abordado nesta seção, obtemos o seguinte problema discreto

$$u_1 = 0,$$
 (5.37)

$$-\frac{1}{h^2}u_{i-1} + \frac{2}{h^2}u_i - \frac{1}{h^2}u_{i+1} = \operatorname{sen}(x_i), \ i = 2, \dots, n-1,$$
 (5.38)

$$u_n = \operatorname{sen}(2), \tag{5.39}$$

onde
$$h = \pi/(n-1)$$
 e $x_i = (i-1)h$.

$$\begin{array}{c|cccc} h & n & \|\tilde{u} - u\|_{L^2} \\ \hline 10^{-1} & 21 & 1,0E - 03 \\ 10^{-2} & 201 & 3,3E - 05 \\ \hline 10^{-3} & 2001 & 1,0E - 06 \\ \end{array}$$

Tabela 5.1: Resultados referentes ao Exemplo 5.1.1.

Resolvendo este sistema com h=0.5 obtemos a solução numérica apresentada na Figura 5.1. Ainda, na Tabela 5.1 temos a comparação na norma L^2 da

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

+ 1

200

)

350 -

400 —

450-

500

550 —

-60

solução numérica $\tilde{u} = (u_1, u_2, \dots, u_n)$ com a solução analítica u(x) = sen(x) para diferentes escolhas de h.

Exercícios

[[tag:revisar]]

Exercício 5.1.1. Considere o seguinte problema de valor inicial

$$-u'' + u' = f(x), -1 < x < 1,$$
(5.40)

$$u(-1) = 0, (5.41)$$

$$u'(1) = 0, (5.42)$$

onde

$$f(x) = \begin{cases} 1 & , x \le 0 \\ 0 & , x > 0 \end{cases}$$
 (5.43)

Use uma aproximação adequada pelo método de diferenças finitas para obter o valor aproximado de u(0) com precisão de 2 dígitos significativos.

50-

300

250

200

150

100

80

Capítulo 6

Equações Diferenciais Parciais

[[tag:revisar]]

Neste capítulo, discutimos alguns tópicos fundamentais da aplicação do método de diferenças finitas para a simulação (aproximação da solução) de equações diferenciais parciais.

6.1 Equação de Poisson

[[tag:revisar]]

A equação de Poisson em um domínio retangular $D=(x_{\rm ini},x_{\rm fin})\times(y_{\rm ini},y_{\rm fin})$ com condições de contorno de Dirichlet homogêneas refere-se o seguinte problema

$$u_{xx} + u_{yy} = f(x, y), (x, y) \in D,$$
 (6.1)

$$u(x_{\text{ini}}, y) = 0, \ y_{\text{ini}} \le y \le y_{\text{fin}},$$
 (6.2)

$$u(x_{\text{fin}}, y) = 0, \ y_{\text{ini}} \le y \le y_{\text{fin}},$$
 (6.3)

$$u(x, y_{\text{ini}}) = 0, x_{\text{ini}} \le x \le x_{\text{fin}},$$
(6.4)

$$u(x, y_{\text{fin}}) = 0, x_{\text{ini}} \le x \le x_{\text{fin}},$$
 (6.5)

onde u = u(x,y) é a incógnita.

A aplicação do método de diferenças finitas para resolver este problema consiste dos mesmos passos usados para resolver problemas de valores de

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt 100 150 200 250 300 350 400 450 500 550 600

contorno (veja Capítulo 5), a saber: 1. construção da malha, 2. discretização das equações, 3. resolução do problema discreto.

1. Construção da malha

Tratando-se do domínio retangular $\overline{D} = [x_{\text{ini}}, x_{\text{fin}}] \times [y_{\text{ini}}, y_{\text{fin}}]$, podemos construir uma malha do produto cartesiano de partições uniformes dos intervalos $[x_{\text{ini}}, x_{\text{fin}}]$ e $[y_{\text{ini}}, y_{\text{fin}}]$. Mais explicitamente, tomamos

$$x_i := x_{\text{ini}} + (i-1)h_x, \quad h_x = \frac{x_{\text{fin}} - x_{\text{ini}}}{n_x - 1},$$
 (6.6)

$$y_j := y_{\text{ini}} + (j-1)h_y, \quad h_y = \frac{y_{\text{fin}} - y_{\text{ini}}}{n_y - 1},$$
 (6.7)

onde $i=1,2,\ldots,n_x,\,j=1,2,\ldots,n_y$, sendo n_x e n_y o número de subintervalos escolhidos para as partições em x e y, respectivamente.

O produto cartesiano das partições em x e y nos fornece uma partição do domínio \overline{D} da forma

$$P(\overline{D}) = \{(x_1, y_1), (x_1, y_2), \dots, (x_i, y_j), \dots, (x_{n_x}, y_{n_y})\},$$
(6.8)

cujos nodos (x_i, y_j) podem ser indexados (enumerados) por $k = j + (i - 1)n_x$. Por simplicidade, no decorrer do texto, assumiremos $n_x = n_y =: n$ e, por conseguinte, $h_x = h_y = h$.

2. Discretização das equações

Usando a fórmula de diferenças finitas central de ordem h^2 para a segunda derivada, temos

$$u_{xx}(x,y) = \frac{u(x+h,y) - 2u(x,y) + u(x-h,y)}{h^2} + O(h^2), \tag{6.9}$$

$$u_{yy}(x,y) = \frac{u(x,y+h) - 2u(x,y) + u(x,y-h)}{h^2} + O(h^2).$$
 (6.10)

Daí, denotando $u_{ij} \approx u(x_i, y_j)$ temos

$$u_{xx}(x_i, y_j) = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + O(h^2),$$
(6.11)

$$u_{yy}(x_i, y_j) = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} + O(h^2).$$
(6.12)

Então, da equação 6.1 temos

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} + O(h^2) = f(x_i, y_j).$$
 (6.13)

Adora, denotando $u_k := u_{j+(i-1)n}$, desprezando o termo do erro de truncamento e rearranjando os termos nesta última equação temos

$$\frac{1}{h^2}u_{k-n} + \frac{1}{h^2}u_{k-1} - \frac{4}{h^2}u_k + \frac{1}{h^2}u_{k+1} + \frac{1}{h^2}u_{k+n} = f(x_i, y_j), \tag{6.14}$$

para i, j = 2, 3, ..., n-1. Isto é, esta última expressão nos fornece um sistema de $(n-2)^2$ equações para n^2 incógnitas u_k .

Para fechar o sistema, usamos as condições de contorno (6.2)-(6.5):

$$u_{1,j} = 0, \quad u_{n,j} = 0,$$
 (6.15)

$$u_{i,1} = 0, \quad u_{i,n} = 0,$$
 (6.16)

 $i, j = 1, 2, \dots, n.$

Com isso, o problema discreto obtido da aplicação do método de diferenças finitas consiste no sistema linear de n^2 equações (6.14)-e(6.16) para as n^2 incógnitas u_k , $k = 1, 2, ..., n^2$.

3. Resolução do problema discreto

O problema discreto (6.14)-(6.16) pode ser escrito na forma matricial

$$A\tilde{u} = b, (6.17)$$

onde o vetor da incógnitas é $\tilde{u} = (u_1, u_2, \dots, u_{n^2})$ e o vetor dos termos contantes b é tal que

$$i = 1, n, j = 1, 2, \dots, n : b_k = 0,$$
 (6.18)

$$i = 1, 2, \dots, n, j = 1, n : b_k = 0,$$
 (6.19)

$$i,j = 2, 3, \dots, n-1: b_k = f(x_i, y_j).$$
 (6.20)

Além disso, a matriz dos coeficientes A é tal que

$$i = 1, n, j = 1, 2, \dots, n : a_{k,k} = 1,$$
 (6.21)

$$i = 1, 2, \dots, n, j = 1, n : a_{k,k} = 1,$$
 (6.22)

$$i,j = 2, 3, \dots, n-1: a(k,k-n) = \frac{1}{h^2},$$
 (6.23)

$$a(k,k-1) = \frac{1}{h^2},\tag{6.24}$$

$$a(k,k) = -\frac{4}{h^2},\tag{6.25}$$

$$a(k,k+1) = \frac{1}{h^2},\tag{6.26}$$

$$a(k,k+n) = \frac{1}{h^2}. (6.27)$$

Assim sendo, basta empregarmos um método apropriado para resolver o sistema linear (6.17) para obter a solução aproximada de u nos nodos (x_i, y_i) .

Exemplo 6.1.1. Consideremos o seguinte problema

$$u_{xx} + u_{yy} = -\operatorname{sen}(x)\operatorname{sen}(y), (x, y) \in (0, \pi) \times (0, \pi), \tag{6.28}$$

$$u(0,y) = 0, y \in [0,\pi], \tag{6.29}$$

$$u(\pi, y) = 0, \ y \in [0, \pi], \tag{6.30}$$

$$u(x,0) = 0, x \in [0,\pi], \tag{6.31}$$

$$u(x,\pi) = 0, x \in [0,\pi]. \tag{6.32}$$

A Figura 6.1 mostra um esboço do gráfico da solução aproximada obtida pelo método de diferenças finitas apresentado acima (equações (6.14)-(6.16)) com n=11, i.e. $h=\pi/10$.

n	$\ \tilde{u}-u\ _{L^2}$
6	4,2E-2
11	2,1E-2
21	1,0E-2
41	5,1E-3
81	2,6E-3

Tabela 6.1: Resultados referentes ao Exemplo 6.1.1.

Na Tabela 6.1 temos a norma L^2 da diferença entre a solução aproximada \tilde{u} e a solução analítica $u(x,y) = 0.5 \operatorname{sen}(x) \operatorname{sen}(y)$ nos pontos de malha computados com diferentes escolhas de n.

Os resultados obtidos neste exemplo podem ser obtidos no GNU Octave com o seguinte código:

Figura 6.1: Resultado referente ao Exemplo 6.1.1.

```
#params
n=11;
h=pi/(n-1);

#fonte
f = @(x,y) -sin(x).*sin(y);

#malha
x = linspace(0,pi,n);
y = linspace(0,pi,n);

#sistema MDF
A = sparse(n*n,n*n);
b = zeros(n*n,1);

#cc x=0 e x=pi
for i=[1,n]
for j=1:n
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

<u>t</u> 100 150 200 250 300 350 400 450 500 550 600

```
k = i + (j-1)*n;
    A(k,k)=1;
    b(k) = 0;
  endfor
endfor
#cc y=0, y=pi
for j=[1,n]
  for i=1:n
    k = i + (j-1)*n;
    A(k,k)=1;
    b(k) = 0;
  endfor
endfor
#nodos internos
for i=2:n-1
  for j=2:n-1
    k = i + (j-1)*n;
    A(k,k-n) = 1/h^2;
    A(k,k-1) = 1/h^2;
    A(k,k) = -4/h^2;
    A(k,k+1) = 1/h^2;
    A(k,k+n) = 1/h^2;
    b(k) = f(x(i),y(j));
  endfor
endfor
u = A \setminus b;
#visu
z = zeros(n,n);
for i=1:n
  for j=1:n
    k = i + (j-1)*n;
    z(i,j) = u(k);
  endfor
```

```
endfor
colormap("cool")
mesh(x,y,z)

ua = zeros(n*n,1);
for i=1:n
    for j=1:n
        k=i+(j-1)*n;
        ua(k) = 0.5*sin(x(i))*sin(y(j));
    endfor
endfor
printf("%d %1.5E %1.1E\n",n,h,norm(u-ua))
```

Exercícios

[[tag:revisar]]

Exercício 6.1.1.

$$-(u_{xx} + u_{yy}) = f(x), (x, y) \in (0, 1)^{2},$$

$$u(0, y) = 0, y \in [0, 1],$$

$$u(1, y) = 0, y \in [0, 1],$$

$$\frac{\partial u}{\partial y}\Big|_{y=0} = 0, x \in [0, 1],$$

$$u(x, 1) = 0, x \in [0, 1].$$

$$(6.33)$$

$$(6.34)$$

$$(6.35)$$

$$(6.36)$$

onde

$$f(x) = \begin{cases} 1 & , x \le 0.5 \\ 0 & , x > 0.5 \end{cases}$$
 (6.38)

Use uma aproximação adequada pelo método de diferenças finitas para obter o valor aproximado de u(0,5,0,5) com precisão de 2 dígitos significativos.

6.2 Equação do calor

[[tag:revisar]]

A equação do calor definida em $D = (x_{\text{ini}}, x_{\text{fin}})$ com condição inicial dada e condições de contorno de Dirichlet homogêneas refere-se o seguinte problema

$$u_t - \alpha u_{xx} = f(t, x), \ t > t_0, \ x \in D,$$
 (6.39)

$$u(t_0, x) = u_0(x), x \in D, \tag{6.40}$$

$$u(t, x_{\text{ini}}) = 0, t > t_0,$$
 (6.41)

$$u(t, x_{\text{fin}}) = 0, \ t > t_0 \tag{6.42}$$

onde u = u(t,x) é a incógnita.

O problema acima é um problema de valor inicial com condições de contorno. Uma das estratégias numéricas de solução é o chamado método de Rothe, o qual trata separadamente as discretizações espacial e temporal. Aqui, vamos começar pela discretização espacial e, então, trataremos a discretização temporal.

Discretização espacial

Na discretização espacial, aplicaremos o método de diferenças finitas. Começamos considerando uma partição do domínio $P(\overline{D}) = \{x_1, x_2, \dots, x_n\}$ com pontos $x_i = x_{\text{ini}} + (i-1)h$ igualmente espaçados por $h = (x_{\text{fin}} - x_{\text{ini}})$. Então, denotando $u_i = u_i(t) \approx u(t,x_i)$ e usando da fórmula de diferenças finitas central de ordem h^2 para as derivadas segundas na equação (6.39), temos

$$\frac{\mathrm{d}}{\mathrm{d}t}u_i - \alpha \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} = f(t, x_i), \tag{6.43}$$

para $i=2,3,\ldots,n-1$. Agora, das condições de contorno, temos $u_1=0$ e $u_n=0$, donde obtemos o seguinte sistema de equações diferenciais ordinárias

$$\frac{\mathrm{d}}{\mathrm{d}t}u_2 = -\frac{2\alpha}{h^2}u_2 + \frac{\alpha}{h^2}u_3 + f(t, x_2),\tag{6.44}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}u_{i} = \frac{\alpha}{h^{2}}u_{i-1} - \frac{2\alpha}{h^{2}}u_{i} + \frac{\alpha}{h^{2}}u_{i+1} + f(t,x_{i}),\tag{6.45}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}u_{n-1} = \frac{\alpha}{h^2}u_{n-2} - \frac{2\alpha}{h^2}u_{n-1} + f(t, x_{n-1}),\tag{6.46}$$

(6.47)

onde i = 3, 4, ..., n - 2 e com condições iniciais dadas por (6.40), i.e.

$$u_i(t_0) = u_0(x), j = 2, 3, \dots, n-1.$$
 (6.48)

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

Ainda, observamos que o sistema (6.44) pode ser escrito de forma mais compacta como

$$\frac{\mathrm{d}\tilde{u}}{\mathrm{d}t} = A\tilde{u} + \tilde{f},\tag{6.49}$$

onde $\tilde{u}(t) = (u_2(t), u_3(t), \dots, u_{n-1}(t)), \tilde{f}(t) = (f(t, x_2), f(t, x_3), \dots, f(t, x_{n-1}))$ e A é uma matriz $(n-2) \times (n-2)$ da forma

$$A = \begin{bmatrix} -\frac{2\alpha}{h^2} & \frac{\alpha}{h^2} & 0 & 0 & 0 & \cdots & 0 & 0\\ \frac{\alpha}{h^2} & -\frac{2\alpha}{h^2} & \frac{\alpha}{h^2} & 0 & 0 & \cdots & 0 & 0\\ 0 & \frac{\alpha}{h^2} & -\frac{2\alpha}{h^2} & \frac{\alpha}{h^2} & 0 & \cdots & 0 & 0\\ 0 & 0 & \ddots & \ddots & \ddots & 0 & 0\\ 0 & 0 & 0 & \cdots & \frac{\alpha}{h^2} & -\frac{2\alpha}{h^2} \end{bmatrix} . \tag{6.50}$$

Discretização temporal

Aqui, vamos usar o método de Euler (veja, 4.1) para aproximar a solução de (6.50)-(6.48). Para tando, escolhemos um passo de tempo $h_t > 0$ e denotamos $t^{(k)} = t_0 + (k-1)h_t$, $\tilde{u}^{(k)} \approx \tilde{u}(t^{(k)})$ e $\tilde{f}^{(k)} = \tilde{f}(t^{(k)})$. Com isso, a iteração do método de Euler nos fornece

$$\tilde{u}^{(1)} = \tilde{u}_0 \tag{6.51}$$

$$\tilde{u}^{(k+1)} = \tilde{u}^{(k)} + h_t \left(A \tilde{u}^{(k)} + \tilde{f}^{(k)} \right), \tag{6.52}$$

com $k = 1, 2, \dots$ Equivalentemente, escrevemos

$$\tilde{u}^{(1)} = \tilde{u}_0 \tag{6.53}$$

$$\tilde{u}^{(k+1)} = (I - h_t A) \, \tilde{u}^{(k)} + h_t \tilde{f}^{(k)}. \tag{6.54}$$

Observação 6.2.1. O esquema numérico acima é condicionalmente estável. Pode-se mostrar a seguinte condição de estabilidade [2, Cap. 12, Seç. 2]:

$$\alpha \frac{h_t}{h^2} \le \frac{1}{2}.\tag{6.55}$$

Exemplo 6.2.1. Consideremos o seguinte problema

$$u_t - u_{xx} = \text{sen}(x), \ t > 0, \ 0 \le x \le \pi,$$
 (6.56)

Figura 6.2: Resultados referentes ao Exemplo 6.2.1.

$$u(0,x) = 0, 0 < x < \pi,$$
 (6.57)
 $u(t,0) = 0, t > 0$ (6.58)
 $u(t,\pi) = 0, t > 0.$ (6.59)

Este problema tem solução estacionário u(x) = sen(x). Na Figura 6.2, temos o esboço das soluções numéricas em diferentes tempos t usando o esquema numérico acima com $h = 10^{-1}$ e $h_t = 10^{-3}$.

No GNU Octave, podemos computar os resultados discutidos neste exemplo com o seguinte código:

```
#params
n=11;
h=pi/(n-1);

tf=1;
ht=10^-3;
```

```
nt=round(tf/ht)+1;
#fonte
f = Q(x) \sin(x);
#malha
t=[0:ht:(nt-1)*ht]';
x=[0:h:(n-1)*h]';
#matriz MDF
A = sparse(n-2,n-2);
A(1,1)=-2/h^2;
A(1,2)=1/h^2;
for i=2:n-3
  A(i,i-1)=1/h^2;
  A(i,i)=-2/h^2;
  A(i,i+1)=1/h^2;
endfor
A(n-2,n-3)=1/h^2;
A(n-2,n-2)=-2/h^2;
#c.i.
u=zeros(n,1);
#iter. de Euler
for k=1:nt-1
  u(2:n-1)=u(2:n-1)+ht*(A*u(2:n-1)+f(x(2:n-1)));
endfor
#visu
uest = Q(x) \sin(x);
plot(x,uest(x),'r.-',...
     x,u,'b.-');grid
xlabel('x');
ylabel('u');
legend('sol.est.','sol.num.');
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

թե

Exercícios

[[tag:revisar]]

Exercício 6.2.1. Considere o seguinte problema

$$u_t - u_{xx} = f(x), t > 0, 0 \le x \le 1,$$
 (6.60)

$$u(0,x) = 0, \ 0 < x < 1, \tag{6.61}$$

$$u(t,0) = 1, t > 0 (6.62)$$

$$u(t,1) = 0, t > 0. (6.63)$$

com

$$f(x) = \begin{cases} 1 & , x \le 0.5, \\ 0 & , x > 0.5 \end{cases}$$
 (6.64)

Use o método de diferenças finitas para obter uma aproximação de u(1,0.5) com dois dígitos significativos de precisão.

6.3 Equação da onda

[[tag:revisar]]

A equação da onda definida em $D := (x_{\text{ini}}, x_{\text{fin}})$ com condições iniciais dadas e condições de contorno de Dirichlet homogêneas refere-se o seguinte problema

$$u_{tt} - \alpha u_{xx} = 0, \ t > t_0, \ x \in D, \tag{6.65}$$

$$u(x,t_0) = f(x), x \in D,$$
 (6.66)

$$\frac{\partial u}{\partial t}(x,t_0) = g(x), \ x \in D, \tag{6.67}$$

$$u(x_{\text{ini}},t) = 0, \ t > t_0,$$
 (6.68)

$$u(x_{\text{fin}},t) = 0, \ t > t_0 \tag{6.69}$$

onde u = u(x,t) é a incógnita.

Aqui, para aplicarmos o método de diferenças finitas, vamos escolher os tempos $t^{(j)} = t_0 + (j-1)h_t$, $j = 1, 2, ..., n_t$, com passo temporal $h_t > 0$, e

os pontos $x_i = x_{\text{ini}} + (i-1)h_x$, $i = 1, 2, ..., n_x$, com passo no espaço espacial $h_x = (x_{\text{fin}} - x_{\text{ini}})/(n_x - 1)$.

Da escolha das discretizações temporal e espacial, podemos usar a fórmula de diferenças finitas de ordem 2 para discretizarmos a equação (6.65). Para tanto, denotamos $u_{i,j} \approx u(x_i,t_j)$ e de (6.65) temos

$$\frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h_t^2} - \alpha \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h_\pi^2} = 0, \tag{6.70}$$

para $j=2,3,\ldots,n_t-1$ e $i=2,3,\ldots,n_x-1$. Rearranjando os termos, temos

$$u_{i,j+1} = \alpha \frac{h_t^2}{h_x^2} u_{i-1,j} + 2\left(1 - \alpha \frac{h_t^2}{h_x^2}\right) u_{i,j} + \alpha \frac{h_t^2}{h_x^2} u_{i+1,j} - u_{i,j-1}, \tag{6.71}$$

para $j = 2, 3, ..., n_t - 1$ e $i = 2, 3, ..., n_x - 1$.

Agora, das condições de contorno (6.68) e (6.69), temos $u_{1,j} = u_{n_x,j} = 0$, $j = 2, 3, \ldots, n_t$. Com isso, o sistema (6.71) torna-se

$$u_{2,j+1} = 2\left(1 - \alpha \frac{h_t^2}{h_x^2}\right) u_{2,j} + \alpha \frac{h_t^2}{h_x^2} u_{3,j} - u_{2,j-1},\tag{6.72}$$

$$u_{i,j+1} = \alpha \frac{h_t^2}{h_x^2} u_{i-1,j} + 2\left(1 - \alpha \frac{h_t^2}{h_x^2}\right) u_{i,j} + \alpha \frac{h_t^2}{h_x^2} u_{i+1,j} - u_{i,j-1}, \quad (6.73)$$

$$u_{n_x-1,j+1} = \alpha \frac{h_t^2}{h_x^2} u_{n_x-2,j} + 2\left(1 - \alpha \frac{h_t^2}{h_x^2}\right) u_{n_x-1,j} - u_{i,j-1}, \tag{6.74}$$

para $i = 3, 4, ..., n_x$ e $j = 2, 3, ..., n_t$. Este sistema de equações pode ser escrita na seguinte forma matricial

$$\begin{bmatrix} u_{2,j+1} \\ u_{3,j+1} \\ \vdots \\ u_{n_x-1,j+1} \end{bmatrix} = \begin{bmatrix} 2(1-\lambda) & \lambda & 0 & \cdots & 0 \\ \lambda & 2(1-\lambda) & \lambda & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \cdots & \lambda & 2(1-\lambda) \end{bmatrix} \begin{bmatrix} u_{2,j} \\ u_{3,j} \\ \vdots \\ u_{n_x-1,j} \end{bmatrix}$$
$$- \begin{bmatrix} u_{2,j-1} \\ u_{3,j-1} \\ \vdots \\ u_{n_x-1,j-1} \end{bmatrix}, \tag{6.76}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

100 -

0

3**5**0 —

400

450

500 —

550

-600

para $j = 2, 3, \dots, n_t - 1$, onde $\lambda := \alpha h_t^2 / h_x^2$.

Esta última equação (6.76) nos permite computar iterativamente a aproximação $u_{i,j+1}$ a partir das aproximações $u_{i,j}$ e $u_{i,j-1}$. Para inicializar as iterações, precisamos de $u_{i,1}$ e $u_{i,2}$, $i=2,3,\ldots,n_x$. A primeira é dada pela condição inicial (6.66), da qual temos

$$u_{i,1} = f(x_i), i = 2, 3, \dots, n_t.$$
 (6.77)

Agora, usando a fórmula de diferenças finitas progressiva de ordem 1 na condições inicial (6.67), obtemos

$$u_{i,2} = u_{i,1} + h_t g(x_i), i = 2, 3, \dots, n_t.$$
 (6.78)

Com tudo isso, observamos que as equações (6.77), (6.78) e (6.76), nesta ordem, nos fornece um algoritmo iterativo no tempo para computar as aproximações da solução u.

Observação 6.3.1. Pode-se mostrar a seguinte condição de estabilidade

$$\alpha \frac{h_t^2}{h_x^2} \le 1. \tag{6.79}$$

Exemplo 6.3.1. Consideremos o seguinte problema

$$u_{tt} - u_{xx} = 0, \ t > 0, \ 0 < x < 1, \tag{6.80}$$

$$u(0,x) = x(1-x), \ 0 < x < 1, \tag{6.81}$$

$$u_t(0,x) = 0, \ 0 < x < 1, \tag{6.82}$$

$$u(t,0) = 0, t > 0 (6.83)$$

$$u(t,\pi) = 0, \ t > 0. \tag{6.84}$$

Na Figura 6.3, temos o esboço das soluções numéricas em diferentes tempos t usando o esquema numérico acima com $h_t = 10^{-2}$ e $h_x = 10^{-1}$.

No GNU Octave, podemos computar os resultados discutidos neste exemplo com o seguinte código:

#params
nx=11;

Figura 6.3: Resultados referentes ao Exemplo 6.3.1.

```
hx=1/(nx-1);
tf=1;
ht=10^-2;
nt=round(tf/ht)+1;
lambda = ht^2/hx^2;
#malha
t=[0:ht:(nt-1)*ht]';
x=[0:hx:(nx-1)*hx]';
#u
u0=zeros(nx,1);
u1=zeros(nx,1);
u=zeros(nx,1);
#c.i. 1
```

```
for i=2:nx-1
  u0(i)=x(i)*(1-x(i));
endfor
#c.i. 2
u1=zeros(nx,1);
for i=2:nx-1
  u1(i)=u0(i)+ht*0;
endfor
#matriz MDF
A = sparse(nx-2,nx-2);
A(1,1)=2*(1-lambda);
A(1,2)=lambda;
for i=2:nx-3
  A(i,i-1)=lambda;
  A(i,i)=2*(1-lambda);
  A(i,i+1)=lambda;
endfor
A(nx-2,nx-3)=lambda;
A(nx-2,nx-2)=2*(1-lambda);
#iteracoes
for k=2:nt-1
  u(2:nx-1)=A*u1(2:nx-1) - u0(2:nx-1);
  u1=u;
endfor
#visu
plot(x,u1,'b-');grid
xlabel('x');
ylabel('u');
```

Exercício

[[tag:revisar]]

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

pt | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600

Exercício 6.3.1. Considere o seguinte problema

$$u_{tt} - u_{xx} = 0, \ t > 0, \ 0 < x < 1, \tag{6.85}$$

$$u(0,x) = x(1-x), 0 < x < 1,$$
 (6.86)

$$u_t(0,x) = 1, \ 0 < x < 1, \tag{6.87}$$

$$u(t,0) = 0, t > 0 (6.88)$$

$$u(t,\pi) = 0, \ t > 0. \tag{6.89}$$

Use o método de diferenças finitas para obter uma aproximação de u(0.75, 1)com dois dígitos significativos de precisão.

Resposta dos Exercícios

Exercício 1.1.1. a) $D_{+,h}f(2,5) = 1,05949$; b) $D_{-,h}f(2,5) = 1,05877$; c) $D_{0,h^2}f(2,5) = 1,05913;$

Exercício 1.1.2.

Exercício 1.2.1. a) 7,25162E–2; b) 7.24701E–2; c) 7,24696E–2; d) 7,24696E– $2; h = 10^{-2};$

Exercício 1.2.2. 4,0;

Exercício 1.3.1. 1,05913

Exercício 1.3.2.

a)
$$\frac{1}{12h} [3f(x-4h) - 16f(x-3h) + 36f(x-2h) - 48f(x-h) + 25f(x)]$$

b)
$$\frac{1}{12h} \left[-f(x-3h) + 6f(x-2h) - 18f(x-h) + 10f(x) + 3f(x+h) \right]$$

c)
$$\frac{1}{12h} [f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h)]$$

d)
$$\frac{1}{12h} \left[-3f(x-h) - 10f(x) + 18f(x+h) - 6f(x+2h) + f(x+3h) \right]$$

a)
$$\frac{1}{12h} \left[3f(x-4h) - 16f(x-3h) + 36f(x-2h) - 48f(x-h) + 25f(x) \right]$$
b)
$$\frac{1}{12h} \left[-f(x-3h) + 6f(x-2h) - 18f(x-h) + 10f(x) + 3f(x+h) \right]$$
c)
$$\frac{1}{12h} \left[f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h) \right]$$
d)
$$\frac{1}{12h} \left[-3f(x-h) - 10f(x) + 18f(x+h) - 6f(x+2h) + f(x+3h) \right]$$
d)
$$\frac{1}{12h} \left[-25f(x) + 48f(x+h) - 36f(x+2h) + 16f(x+3h) - 3f(x+4h) \right]$$

Exercício 1.3.3.

97

Exercício 2.1.2. a) 1,05919; b) 1,05916; c) 1,05913

Exercício 3.1.1. a) 3,33647E-1; b) 1,71368E-1; c) 2,79554E-1

Exercício 3.1.2. a) 4,02000E-1; b) 1,04250E+0; c) 8,08667E-1

Exercício 3.1.3. Use um procedimento semelhante aquele usado para determinar a ordem do erro de truncamento da regra de Simpson.

Exercício 3.1.4.

$$\int_{a}^{b} f(x) dx = \frac{3h}{2} \left[f\left(a + \frac{1}{3}(b - a)\right) \right]$$
 (3.44)

$$+ f\left(a + \frac{2}{3}(b-a)\right) + O(h^3), \ h = \frac{(b-a)}{3}$$
 (3.45)

Exercício 3.2.1. a) 2,69264E-1; b) 2,68282E-1; c) 2,68937E-1

Exercício 3.2.2. a) 8,12000E-1; b) 1,03850; c) 8,11667E-1

Exercício 3.3.1. 2,68953E-1

Exercício 3.4.1. 1

Exercício 3.4.2. $x_1 = 0, w_1 = 2$

Exercício 3.5.1. a) -2,61712E-1; b) 2,55351E-1; c) 8,97510E-2; d) 1,27411E-1; e) 1.21016E-1.

Exercício 3.5.2. a) -1,54617E-1; b) -1,50216E-1; c) -1,47026E-1; d) -1,47190E-1; e) -1,47193E-1.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Ьr

Exercício 3.5.3. a) 1,21016E-1; b) 1,21744E-1; c) 1,21744E-1

Exercício 3.6.1. a) -2,84951E - 01; b) 2,66274E - 01; c) 1,49496E - 01; d) 1,60085E - 01; e) 1,59427E - 01.

Exercício 3.6.2. a) -1,03618E-1; b) -5,56446E-2; c) -4,19168E-2

Exercício 3.6.3. a) -1,31347; b) -1,23313; c) -1,26007

Exercício 3.7.1. 1,2E-1

Exercício 4.1.1. -5,87722E-1

Exercício 4.2.1. a) -6,00654E-1; b) -6,00703E-1; c) -5,99608E-1

Exercício 4.3.1. -5.99240E-1

Exercício 4.4.1. a) -6,00696E-1; b) -5,96694E-1; c) -5,96161E-1

Exercício 5.1.1. 7,2E-1

Exercício 6.1.1. Código. 2,9E-2

Exercício 6.2.1. Código. 5,6E-1

Exercício 6.3.1. Código. 6.3E-2

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Pь

Bibliografia

- [1] A. Björk. Numerical methods for least squares problems. SIAM, 1996.
- [2] R. Burden, J. Faires, and A. Burden. *Análise Numérica*. CENGAGE Learning, 10. edition, 2015.
- [3] E. Isaacson and H. Keller. Analysis of numerical methods. Dover, 1994.
- [4] J. Nocedal and S. Wright. Numerical optimization. Springer, 2006.
- [5] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. *Numerical recipes*. Cambridge University Press, 3. edition, 2007.
- [6] J. Stoer and R. Bulirsch. *Introduction to numerical analysis*. Springer-Verlag, 2. edition, 1993.

100

```
Índice
equação
    de Poisson, 80
    da onda, 91
    do calor, 86
erro de
    truncamento, 4
fórmula de diferenças finitas, 3
    central de ordem h^2, 7, 14
    derivada segunda, 8
    progressiva de ordem h, 4
    progressiva de ordem h^2, 14
    regressiva de ordem h, 5 regressiva de ordem h^2, 14
grau de exatidão, 37
método de Adams-Bashforth, 69
quadratura composta, 30
quadratura de
    Gauss-Chebyshev, 48
regra composta
    de Simpson, 33
    do trapézio, 32
regra de Simpson, 27
regra do
    ponto médio, 29
    trapézio, 26
```

101