High-resolution rainfall-runoff modeling using graph neural network

Zhongrun Xiang, Ibrahim Demir

University of Iowa
Hydroinformatics Lab
Civil and Environmental Engineering

Presentation Outline

Problem Definition

Results and Limitations

Data and Study Area

Parameterization

Model Architecture Today's deep learning models are mainly lumped or semi-distributed, making them incapable of dealing with rainfall distributions that are unequal.

We can turn a watershed into a unidirectional directed graph using DEM and flow direction data.

Study Area A single large (~1,300km²) watershed without USGS gauges inside.

^{*} Time of Concentration is about 45 hours when using an average flow rate of 0.75m/s

Data in Hourly. 7 Water Years (Oct 2011 to Sep 2018). Train/Valid/Test split by 4/2/1.

Datasets	Data Type	Sources	Spatial Resolution	Temporal Resolution	Unit
DEM	GIS shapefile	NASA SRTM 90m	90-m grid	constant	0 & m ///////// 0 0 T
Drainage area polygon	GIS shapefile	Iowa Flood Center	Polygon	constant	-
Precipitation intensity	Stage IV multi-sensor measurement	NOAA	4-km grid	6o-min	mm/hr
Streamflow rate		USGS	Point	15-min	ft³/s

Graph Neural Networks

2. Aggregate feature information

from neighbors

label

3. Predict graph context and label

using aggregated information

http://snap.stanford.edu/graphsage/

1. Sample neighborhood

Our Designed Graph Neural Network

Step 1: Temporal Sequence Model (Rainfall-Runoff on Land) [T

Step 2: Spatial Sequence Model (Space-time Confluence) (S)

Temporal Sequence Model **Multi-Timestep Generalized Model** on multiple land and area

Xiang, Z., Demir, I., Mantilla, R., & Krajewski, W. F. (2021). A Regional Semi-Distributed Streamflow Model Using Deep Learning. https://eartharxiv.org/repository/view/2152/

Spatial Sequence Model Single-Timestep model with aggregated land information

Parameterization with a 72-hour window

Table 2. Parameters of the sequence model layers for rainfall-runoff modeling at temporal scale in baseline models and GNRRM.

ı	temporar scale in baseline models and Granders.							
•	Model	# Layer	# Neurons each layer	k	d	# Length	#Parameters at each hidden layer	
	LSTM	5	32	-	-	72	8,320	
	BiLSTM	5	32	_	-	72	24,832	
	GTCN	5	32	6	1,2,4,8,16	72 (cut off	12,352	
						from 96)	Гable 3. Parame	
	BiGTCN	5	32	6	1,2,4,8,16		scale in GNRRM	

Table 3. Parameters of the sequence model layers for rainfall-runoff modeling at spatial scale in GNRRM.

4-layer TGN \hat{y}_1 \hat{y}_2 $\hat{y}_{T-2}\hat{y}_{T-1}$	\hat{y}_T
	Output
	d = 4
	Hidden
	d = 2
	Hidden
x_0 x_1 x_2 \dots $x_{T-2}x_{T-1}x$	d = 1 Input

Model	# Flow directions	# Layer	# Neurons each layer	k	d value each layer	# Length	#Parameters at each hidden layer
LSTM	d4	5	32	-	-	22	8,320
LSTM	d8	5	32	-	-	16	8,320
BiLSTM	d4	5	32	-	-	22	24,832
BiLSTM	d8	5	32	-	-	16	24,832
GTCN	d4	4	32	4	1,2,4,8	22 (cut off from 32)	8,256
GTCN	d8	4	32	4	1,2,4,8	16 (cut off from 32)	8,256
BiGTCN	d4	4	32	4	1,2,4,8	22 (cut off from 32)	32,896
BiGTCN	d8	4	32	4	1,2,4,8	16 (cut off from 32)	32,896

from 96)

Results

Problem Definition — Data & Study Area — Model Architecture — Parameterization — Results & Limitations

Thank you

@uihilab https://hydroinformatics.uiowa.edu

@zhongrun zhongrun-xiang@uiowa.edu

