(19) BUNDESREPUBLIK

10 Offenlegungsschrift

(5) Int. Cl. 3:

DEUTSCHLAND

₍₁₎ DE 3030661 A1

C 07 D 285/08 C 07 D 277/32

DEUTSCHES PATENTAMT Aktenzeichen:

P 30 30 661.7

C 07 D 263/34 C 07 D 271/10 C 07 D 285/12

Anmeldetag: Offenlegungstag:

A 01 N 43/74 13. 8. 8Ó A 01 N 43/82 1. 4.82 A 01 N 47/40

(7) Anmelder:

Bayer AG, 5090 Leverkusen, DE

Erfinder:

Mues, Volker, Dr., 5600 Wuppertal, DE; Behrenz, Wolfgang, Dr., 5063 Overath, DE

(A) Hetaryl-propargylether, ihre Herstellung und ihre Verwendung in Schädlingsbekämpfungsmitteln, diese Stoffe enthaltende Schädlingsbekämpfungsmittel, sowie ihre Herstellung und Verwendung

Patentansprüche

1. Verwendung von Hetaryl-propargylethern der Formel I

$$R-O-CH_2-C=CH$$
 (I)

in welcher

R für einen gegebenenfalls substituierten 5-gliedrigen heteroaromatischen Rest steht, als Synergisten

in Schädlingsbekämpfungsmitteln.

2. Verwendung von Hetaryl-propargylethern gemäß Anspruch 1, dadurch gekennzeichnet, daß R in Formel I für einen fünfgliedrigen heteroaromatischen Monocyclus steht, welcher ein Sauerstoff- oder ein Schwefelatom und zusätzlich 1 bis 3 Stickstoffatome enthält und welcher gegebenenfalls ein oder mehrfach, gleich oder verschieden substituiert ist durch Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Alkylcarbonylamino, Alkylcarbonyl, Carboxy, Alkoxycarbonyl, Carbamoyl, Alkylaminocarbonyl, Dialkylaminocarbonyl oder durch gegebenenfalls durch Halogen, Nitro oder Alkyl substituiertes Arylaminocarbonyl oder durch gegebenenfalls durch Halogen, Nitro, Cyano, Alkyl, Halogenalkyl oder Alkoxy substituiertes Aryl oder durch gegebenenfalls durch Halogen substituiertes Aralkyl oder durch gegebenenfalls halogensubstituiertes Alkoxy, Alkenoxy, Alkinoxy, Alkoxycarbonylalkoxy, Aralkoxy oder Aryloxy oder durch gegebenenfalls halogensubstituiertes Alkylthio,

Alkenylthio, Alkinylthio, Alkoxycarbonylalkylthio, Aralkylthio, Arylthio, Alkylsulfinyl oder Alkylsulfonyl oder durch gegebenenfalls halogensubstituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Aralkoxyalkyl, Aryloxyalkyl, Alkylthioalkyl, Alkylsulfonylalkyl, Arylthioalkyl, Arylsulfinylalkyl, Arylsulfonylalkyl, Carboxyalkyl, Alkoxycarbonylalkyl oder durch gegebenenfalls substituiertes Aminocarbonylalkyl, Cyanoalkyl oder Cycloalkyl.

3. Verwendung von Hetaryl-propargylethern gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß R in Formel I für einen der nachstehenden Azolylreste steht

worin

y jeweils für Sauerstoff oder Schwefel steht und die Reste R³⁰ bis R³³, welche gleich oder verschieden sein können, einzeln für Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkylthio, Phenyl oder Benzylthio stehen.

4. Schädlingsbekämpfungsmittel, gekennzeichnet durch einen Gehalt an wenigstens einem Hetaryl-propargylether der Formel I

$$R-O-CH_2-C=CH$$
 (I)

in welcher

- R für einen gegebenenfalls substituierten 5-gliedrigen heteroaromatischen Rest steht.
- 5. Schädlingsbekämpfungsmittel gemäß Anspruch 4, dadurch gekennzeichnet, daß R in Formel I für einen fünfgliedrigen heteroaromatischen Monocyclus steht, welcher ein Sauerstoff- oder ein Schwefelatom und zusätzlich 1 bis 3 Stickstoffatome enthält und welcher gegebenenfalls ein oder mehrfach, gleich oder verschieden substituiert ist durch Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Alkylcarbonylamino, Alkylcarbonyl, Carboxy, Alkoxycarbonyl, Carbamoyl, Alkylaminocarbonyl, Dialkylaminocarbonyl oder durch gegebenenfalls durch . Halogen, Nitro oder Alkyl substituiertes Arylaminocarbonyl oder durch gegebenenfalls durch Halogen, Nitro, Cyano, Alkyl, Halogenalkyl oder Alkoxy substituiertes Aryl oder durch gegebenenfalls durch Halogen substituiertes Aralkyl oder durch gegebenenfalls halogensubstituiertes Alkoxy, Alkenoxy, Alkinoxy, Alkoxycarbonylalkoxy, Aralkoxy oder Aryloxy oder durch gegebenenfalls halogensubstituiertes Alkylthio,

Le A 20 470

Alkenylthio, Alkinylthio, Alkoxycarbonylalkylthio, Aralkylthio, Arylthio, Alkylsulfinyl oder Alkylsulfonyl oder durch gegebenenfalls halogensubstituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Aralkoxyalkyl, Aryloxyalkyl, Alkylthioalkyl, Alkylsulfonylalkyl, Arylthioalkyl, Arylsulfinylalkyl, Arylsulfonylalkyl, Carboxyalkyl, Alkoxycarbonylalkyl oder durch gegebenenfalls substituiertes Aminocarbonylalkyl, Cyanoalkyl oder Cycloalkyl.

6. Schädlingsbekämpfungsmittel gemäß Ansprüchen 4 und 5, dadurch gekennzeichnet, daß R in Formel I für einen der nachstehenden Azolylreste steht

worin

X jeweils für Sauerstoff oder Schwefel steht und die Reste R³⁰ bis R³³, welche gleich oder verschieden sein können, einzeln für Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkylthio, Phenyl oder Benzylthio stehen.

- 7. Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln, dadurch gekennzeichnet, daß man wenigstens
 einen Hetaryl-propargylether der Formel I gemäß
 Anspruch 1 mit wenigstens einem gegen Arthropoden
 wirksamen Wirkstoff und inerten Träger- und Verdünnungsstoffen, Füllstoffen, Treibgasen, oberflächenaktiven Stoffen und/oder Formulierhilfsmitteln mischt.
 - 8. Verfahren zur Herstellung von Hetaryl-propargylethern der Formel I

$$R-O-CH_2-C=CH$$
 (I)

in welcher

R für den Rest der Formel

steht,

in welcher der gepunktete Kreis den heteroaromatischen Charakter andeuten soll und in welcher

- X für Sauerstoff oder Schwefel steht und
- D für C-R²⁷ und
- E für C-R²⁸ steht,

Le A 20 470

wobei die Reste R^{27} und R^{28} , welche gleich oder verschieden sein können, einzeln für Wasserstoff, Hydroxy, Halogen, Nitro, Cyano, Amino, C₁-C₄-Alkylamino, $Di-C_1-C_4$ -alkylamino, C_1-C_4 -Alkylcarbonylamino, C_1-C_4 -Alkyl-carbonyl, Carboxy, C₁-C₄-Alkoxy-carbonyl, Carbamoyl, C₁-C₄-Alkylamino-carbonyl, Di-C₁-C₄-alkyl-aminocarbonyl oder für gegebenenfalls durch Halogen, Nitro oder C₁-C₄-Alkyl substituiertes Phenyl-aminocarbonyl oder für gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl oder für gegebenenfalls durch Halogen substituiertes Benzyl oder Phenylethyl oder für gegebenenfalls durch Halogen substituiertes $C_1 - C_4$ -Alkoxy, $C_2 - C_4$ -Alkenoxy, C_2-C_4 -Alkinoxy, C_1-C_4 -Alkoxy-carbonylmethoxy, Benzyloxy oder Phenoxy oder für gegebenenfalls halogensubstituiertes C_1-C_4 -Alkylthio, C_2-C_4 -Alkenylthio, C₂-C₄-Alkinylthio, C₁-C₄-Alkoxy-carbonyl-methylthio, Benzylthio, Phenylthio, C_1-C_4 -Alkyl-sulfinyl oder C_1-C_4 -Alkylsulfonyl oder für gegebenenfalls halogensubstituiertes $C_1 - C_6$ -Alkyl, $C_2 - C_6$ -Alkenyl oder $C_2 - C_6$ -Alkinyl oder für Cyano-C₁-C₄-alkyl, C₁-C₄-Alkoxy-. C₁-C₂-alkyl, Phenoxy- und Phenylthiomethyl, Benzyloxyund Benzylthiomethyl, C₁-C₄-Alkylthio-C₁-C₂-alkyl, C₁-C₄-Alkyl und Phenyl-sulfinyl-C₁-C₂-alkyl, C₁-C₄-Alkyl- und Phenylsulfonyl-C₁-C₂-alkyl, Carboxy-C₁-C₂-alkyl, C₁-C₄-Alkoxy-carbonyl-C₁-C₂-alkyl, C₁-C₄-Alkylamino-carbonyl-C₁-C₂-alkyl, Di-C₁-C₄alkylamino-carbonyl-C₁-C₂-alkyl, Phenylaminocarbonylalkyl oder C3-C12-Cycloalkyl stehen, dadurch gekennzeichnet, daß man Halogen-hetarene der Formel V

$$\begin{array}{c}
C - N \\
C - Ha1
\end{array}$$

in welcher

D, E und X die oben angegebene Bedeutung haben und

Hal für Chlor, Brom oder Jod steht,

mit Propargylalkohol in Gegenwart einer starken Base bei Temperaturen zwischen -20 und +80°C umsetzt.

9. Hetaryl-propargylether der Formel I

$$R-O-CH_2-C=CH$$
 (1)

in welcher

R für den Rest der Formel

steht,

in welcher der gepunktete Kreis den heteroaro-

Le A 20 470

- 46 -

matischen Charakter andeuten soll und in welcher

- X für Sauerstoff oder Schwefel steht und
- D für C-R²⁷ und
- E für C-R²⁸ steht,

wobei die Reste R^{27} und R^{28} , welche gleich oder verschieden sein können, einzeln für Wasserstoff, Hydroxy, Halogen, Nitro, Cyano, Amino, C₁-C₄-Alkylamino, $Di-C_1-C_4$ -alkylamino, C_1-C_4 -Alkylcarbonylamino, C_1-C_4 -Alkyl-carbonyl, Carboxy, C₁-C₄-Alkoxy-carbonyl, Carbamoyl, $C_1 - C_4$ -Alkylamino-carbonyl, Di- $C_1 - C_4$ -alkyl-aminocarbonyl oder für gegebenenfalls durch Halogen, Nitro oder C1-C4-Alkyl substituiertes Pheryl-aminocarbonyl oder für gegebenenfalls durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl oder C_1-C_4 -Alkoxy substituiertes Phenyl oder für gegebenenfalls durch Halogen substituiertes Benzyl oder Phenylethyl oder für gegebenenfalls durch Halogen substituiertes C_1-C_4 -Alkoxy, C_2-C_4 -Alkenoxy, C_2-C_4 -Alkinoxy, C_1-C_4 -Alkoxy-carbonylmethoxy, Benzyloxy oder Phenoxy oder für gegebenenfalls halogensubstituiertes $C_1 - C_4$ -Alkylthio, $C_2 - C_4$ -Alkenylthio, C2-C4-Alkinylthio, C1-C4-Alkoxy-carbonyl-methylthio, Benzylthio, Phenylthio, C_1-C_4 -Alkyl-sulfinyl oder C₁-C₄-Alkylsulfonyl oder für gegebenenfalls halogensubstituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl oder C₂-C₆-Alkinyl oder für Cyano-C₁-C₄-alkyl, C₁-C₄-Alkoxy C_1-C_2 -alkyl, Phenoxy- und Phenylthiomethyl, Benzyloxy- und Benzylthiomethyl, C_1-C_4 -Alkylthio- C_1-C_2 -alkyl, C_1-C_4 -Alkyl und Phenyl-sulfinyl- C_1-C_2 -alkyl, C_1-C_4 -Alkyl- und Phenylsulfonyl- C_1-C_2 -alkyl, Carboxy- C_1-C_2 -alkyl, C_1-C_4 -Alkoxy-carbonyl- C_1-C_2 -alkyl, C_1-C_4 -Alkylamino-carbonyl- C_1-C_2 -alkyl, Di- C_1-C_4 -alkylamino-carbonyl- C_1-C_2 -alkyl, Phenylaminocarbonyl-alkyl oder C_3-C_{12} -Cycloalkyl stehen.

10. Hetaryl-propargylether gemäß Anspruch 9, dadurch gekennzeichnet, daß R in Formel I für einen der nachstehenden Azolylreste steht

worin

yeweils für Sauerstoff oder Schwefel steht und die Reste R³⁰ bis R³³, welche gleich oder verschieden sein können, einzeln für Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkylthio, Phenyl oder Benzylthio stehen.

EAYER AKTIENGESELLSCHAFT

5090 Leverkusen, Bayerwerk

Zentralbereich
Patente, Marken und Lizenzen S/Bs-by-c

Hetaryl-propargylether, ihre Herstellung und ihre Vorwendung in Schädlingsbekämpfungsmitteln, diese Stoffe enthaltende Schädlingsbekämpfungsmittel, sowie ihre Herstellung und Verwendung

Die vorliegende Erfindung betrifft Hetaryl-propargylether, die Herstellung von Hetaryl-propargylethern, die Verwendung von Hetaryl-propargylethern in Schädlingsbekämpfungsmitteln neue Mischungen aus synergistisch wirkenden Hetaryl-propargylethern und anderen Wirkstoffen, diese Mischungen enthaltende Schädlingsbekämpfungsmittel, ihre Herstellung und Verwendung zur Bekämpfung von Arthropoden, insbesondere von Insekten, Milben und Spinnentieren.

Synergistische Mischungen von Carbaminsäureestern, wie z.B. N-Methyl-O-(2-iso-propoxyphenyl)-carbaminsäureester oder von Phosphorsäureestern, z.B. O,O-Diethyl-O-(2-isopropyl-4-methylpyrimidin(6)yl)-thionophosphorsäureester oder von natürlichen oder synthetischen Pyrethroiden mit Piperonylethern, wie z.B.

Le A 20 470

 \mathcal{K} -(2-(2-Butoxy-ethoxy)-ethoxy)-4,5-methylendioxy-2-propyl-toluol (vergleiche Bull. Org. Mond. Santè/Bull. Wld. Hlth. Org. 1966, 35, 691-708; Schrader, G.: Die Entwicklung neuer insektizider Phosphorsäureester 1963, S. 158) sind bereits bekannt. Doch ist die Wirksamkeit dieser synergistischen Wirkstoffkombinationen nicht befriedigend. Eine gewisse praktische Bedeutung hat bisher nur das \mathcal{K} -(2-(2-Butoxy-ethoxy)-ethoxy)-4,5-methylendioxy-2-propyltoluol erlangt.

Es wurde nun gefunden, daß Hetarylpropargylether der Formel (I)

$$R-O-CH_2-C=CH$$
 (1)

in welcher

R für einen gegebenenfalls substituierten 5-gliedrigen heteroaromatischen Rest steht,

als Synergisten in Schädlingsbekämpfungsmitteln, welche gegen Arthropoden, vorzugsweise gegen Insekten und Spinnentiere, insbesondere gegen Insekten wirksame Wirkstoffe enthalten, verwendet werden können.

Als gegen Arthropoden wirksame Wirkstoffe kommen praktisch alle üblichen Wirkstoffe in Frage (vgl. z.B. K.H. Büchel, Pflanzenschutz und Schädlingsbekämpfung, Thieme Verlag Stuttgart, 1977, und Farm Chemicals Handbook 1979, Meister Publishing Co, Willougby, 1979).

Bevorzugt werden die Hetaryl-propargylether der Formel (I) zusammen mit gegen Arthropoden wirksamen

- A) Carbaminsäureestern und/oder
- B) Carbonsäureestern einschließlich der natürlichen sowie synthetischen Pyrethroide und/oder
- C) Phosphorverbindungen, wie Phosphorsäure- und Phosphonsäureestern, einschließlich der Thiound Dithioverbindungen,

verwendet.

Die synergistische Wirkung der Verbindungen der Formel (I) zeigt sich besonders bevorzugt bei

A) Carbaminsäureestern der Formel II

$$R^{1}$$
-O-CO-N R^{2} (II)

in welcher

für einen gegebenenfalls substituierten carbocyclischen oder heterocyclischen aromatischen
Rest oder für einen gegebenenfalls substituierten
Oximrest steht,

- R^2 für C_1-C_4 -Alkyl steht und
- für Wasserstoff, C₁-C₄-Alkyl oder für den Rest Z steht, wobei
- Z für den Rest -CO-R⁴ steht, worin
- R^4 für Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_3-C_5 -Alkenoxy, C_3-C_5 -Alkinoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkyl-amino, $Di-C_1-C_4$ -Alkyl-amino, C_1-C_4 -Alkyl-hydroxylamino,

für gegebenenfalls durch Halogen, Nitro, Cyano, Trifluormethyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylendioxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Alkoxy-carbonyl substituiertes Phenoxy, Phenylthio oder Phenylamino, für 2,3-Dihydro-2,2-dimethyl-7-benzofuranyl oder für den Rest

steht, worin

- für Wasserstoff, C₁-C₄-Alkyl oder Di-C₁-C₄-alkylamino-carbonyl steht und
- für C_1-C_4 -Alkyl, C_1-C_4 -Alkylthio, Cyano- C_1-C_4 -alkylthio, C_1-C_4 -Alkylthio- C_1-C_4 -alkyl steht,

Le A 20 470

oder die beiden Reste R^5 und R^6 zusammen für gegebenenfalls durch Sauerstoff, Schwefel, SO oder SO_2 unterbrochenes C_2 - C_8 -Alkandiyl stehen,

in welcher weiter

- z für den Rest $-s_n(0)_m R^7$ steht, worin
- n für 1 oder 2 und
- m für Null, 1 oder 2 stehen und
- für gegebenenfalls durch Halogen substituiertes C_1 - C_4 -Alkyl, C_3 - C_5 -Alkenyl, C_3 - C_5 -Alkinyl oder C_3 - C_6 -Cycloalkyl, für gegebenenfalls durch Halogen, Cyano, Nitro, Trifluormethyl, Trifluormethoxy, Trifluormethylthio, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl, Benzyl oder Phenylethyl oder für den Rest

- für C_1 - C_4 -Alkyl, C_3 - C_5 -Alkenyl, C_3 - C_5 -Alkinyl, C_3 - C_6 -Cycloalkyl oder Benzyl steht und
- für C_1 - C_4 -Alkyl, C_3 - C_5 -Alkenyl, C_3 - C_5 -Alkinyl, C_3 - C_6 -Cycloalkyl, Benzyl, Phenylethyl, Halogen-carbonyl, Formyl, C_1 - C_4 -Alkyl-carbonyl, C_1 - C_4 -Alkoxy-phenoxy-carbonyl,

- B -

 C_3 - C_5 -Alkinoxy-carbonyl, C_3 - C_5 -Alkenoxy-carbonyl, C_1 - C_4 -Alkylthiocarbonyl, C_1 - C_4 -Alkyl-amino-carbonyl, C_1 - C_4 -Alkyl-hydroxylamino-carbonyl, C_1 - C_{10} -Alkyl-phenoxy-carbonyl, Di- C_1 - C_4 -alkyl-amino-carbonyl, Phenylthiocarbonyl, Phenoxycarbonyl, 2,3-Dihydro-2,2-dimethyl-7-benzofuranyl-oxycarbonyl, für gegebenenfalls durch Halogen, Cyano, Nitro, Trifluormethyl, C_1 - C_{10} -Alkyl oder C_1 - C_4 -Alkoxy substituiertes Phenylsulfenyl, Phenylsulfinyl, Phenylsulfonyl oder Phenyl steht, oder für den Rest

$$-\text{CO-O-N=C} \times \mathbb{R}^{10}$$

steht, worin

 ${ t R}^{10}$ die oben für ${ t R}^5$ angegebene und

 R^{11} die oben für R^6 angegebene Bedeutung hat,

wobei ferner im Rest -N
$$\stackrel{R}{\underset{R}{\nearrow}}^{8}$$
 die Reste $\stackrel{8}{\underset{R}{\nearrow}}$ und $\stackrel{9}{\underset{R}{\nearrow}}^{9}$

zusammen für eine gegebenenfalls durch Sauerstoff oder Schwefel unterbrochene Kohlenwasserstoffkette mit 3 bis 8 Kohlenstoffatomen stehen, worin weiter R^7 auch für den gleichen Rest stehen kann, an den der Rest $-S_n(O)_m-R^7$ gebunden ist.

- x - ¹⁶

Als Wirkstoffkomponenten ganz besonders bevorzugt sind Carbaminsäureester der Formel (II), in welcher

- für gegebenenfalls durch C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxy-methyl, C₁-C₄-Alkylthio, C₁-C₄-Alkylthio-methyl, C₁-C₄-Alkylamino, Di-(C₁-C₄-Alkyl)-amino, Di-(C₃-C₄-alkyl)-amino, Halogen, Dioxolanyl, Methylen-dioxy und/oder durch den Rest -N=CH(CH₃)₂ substituierte Reste aus der Reihe Phenyl, Naphthyl, 2,3-Dihydro-7-benzofuranyl, Pyrazolyl oder Pyrimidinyl steht, oder in welcher
- R¹ für einen Alkylidenaminorest der Formel IIa

$$-N=C R^{12}$$

$$R^{13}$$
(IIa)

steht, in welcher

 R^{12} und R^{13} die oben für R^5 bzw. R^6 angegebene Bedeutungen haben.

Als Beispiele für die Carbaminsäureester der Formel (II) seien genannt:

2-Methyl-phenyl-, 2-Ethyl-phenyl-, 2-iso-Propyl-phenyl-, 2-sek.-Butyl-phenyl-, 2-Methoxy-phenyl-, 2-Ethoxy-phenyl-, 2-iso-Propoxy-phenyl-, 4-Methyl-phenyl-, 4-Ethyl-phenyl-, 4-n-Propyl-phenyl-, 4-Methoxy-phenyl-,

- % -

4-Ethoxy-phenyl-, 4-n-Propoxy-phenyl-, 3,4,5-Trimethyl-phenyl-, 3,5-Dimethyl-4-methylthio-phenyl-,
3-Methyl-4-dimethylaminophenyl-, 2-Ethylthiomethylphenyl-, 1-Naphthyl-, 2,3-Dihydro-2,2-dimethyl-7benzofuranyl-, 2,3-(Dimethyl-methylendioxy)-phenyl-,
2-(4,5-Dimethyl-1,3-dioxolan-2-yl)-phenyl-, 1-Methylthio-ethyliden-amino-, 2-Methylthio-2-methylpropylidenamino-, 1-(2-Cyano-ethylthio)-ethylidenamino- und
1-Methylthiomethyl-2,2-dimethyl-propylidenamino-Nmethyl-carbaminsäureester.

Die synergistische Wirkung der Verbindungen der Formel (I) zeigt sich weiter vorzugsweise bei

B) Carbonsäureestern der Formel III

R¹⁵

R¹⁴-CO-O-CH-R¹⁶

(III)

in welcher

für einen offenkettigen oder cyclischen Alkylrest steht, der gegebenenfalls substituiert ist durch Halogen, Alkyl, Cycloalkyl, durch gegebenenfalls durch Halogen und/oder Alkoxy substituiertes Alkenyl, durch Phenyl oder Styryl, welche gegebenenfalls durch Halogen, gegebenenfalls halogen-substituierte Reste der Reihe Alkyl, Alkoxy, Alkylendioxy und/oder Alkylthio substituiert sind, durch spirocyclisch verknüpftes,

gegebenenfalls halogen-substituiertes Cycloalk(en)yl,
welches gegebenenfalls benzannelliert ist, in welcher
weiter

- R¹⁵ für Wasserstoff, Alkyl, Halogenalkyl, Alkenyl, Alkinyl oder Cyano steht, und
- R¹⁶ für einen gegebenenfalls substituierten Alkyloder Arylrest oder für einen Heterocyclus steht,
 oder zusammen mit R¹⁵ und dem Kohlenstoffatom,
 an das beide Reste gebunden sind, einen Cyclopentenonring bildet.

Ganz besonders als Wirkstoffkomponenten bevorzugt sind Carbonsäureester der Formel (III), in welcher

R¹⁴ für den Rest

steht, worin

- R^{17} für Wasserstoff, Methyl, Fluor, Chlor oder Brom und .
- für Methyl, Fluor, Chlor, Brom, C_1-C_2 -Fluor-alkyl oder C_1-C_2 -Chlorfluoralkyl oder für gegebenenfalls durch Halogen und/oder gegebenenfalls halogen-substituierte Reste der Reihe C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio

und/oder C_1 - C_2 -Alkylendioxy substituiertes Phenyl steht oder worin beide Reste R¹⁷ und R¹⁸ für C_2 - C_5 -Alkandiyl (Alkylen) stehen; oder in welcher

R¹⁴ für den Rest -CH-R¹⁹ R²⁰ steht, worin

für gegebenenfalls durch Halogen und/oder durch gegebenenfalls halogen-substituierte Reste der Reihe C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkyl-thio oder C_1 - C_2 -Alkylendioxy substituiertes Phenyl steht und

 R^{20} für Isopropyl oder Cyclopropyl steht;

oder in welcher

R¹⁴ für einen der Reste

oder Methyl

steht, in welcher weiter

R¹⁵ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Cyano oder Ethinyl steht und

- 1/i -

für gegebenenfalls durch Halogen, und/oder durch einen gegebenenfalls halogen-substituierten Rest der Reihe C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_1 - C_4 -Alkoxy, C_2 - C_4 -Alkenoxy, C_1 - C_4 -Alkylthio, C_1 - C_2 -Alkylendioxy, Phenoxy und/oder Benzyl substituierte Reste Phenyl, Furyl oder Tetrahydrophthalimido steht.

Weiter sind die natürlich vorkommenden Pyrethroide besonders bevorzgut.

Als Beispiele für die Carbonsäureester der Formel (III) seien genannt:

Essigsäure-(2,2,2-trichlor-1-(3,4-dichlor-phenyl)-ethyl)-ester, 2,2-Dimethyl-3-(2-methyl-propen-1-yl)-cyclopropan-carbonsäure-(3,4,5,6-tetrahydro-phthalimido-methyl)-ester, 2,2-Dimethyl-3-(2,2-dichlor-vinyl)-cyclopropan-carbonsäure-(3-phenoxy-benzyl)-ester, 2,2-Dimethyl-3-(2,2-dichlorvinyl)-cyclopropan-carbonsäure-(\$\pi\$-cyano-3-phenoxy-benzyl)-ester, 2,2-Dimethyl-3-(2,2-dichlor-vinyl)-cyclopropancarbonsäure-(\$\pi\$-cyano-4-fluor-3-phenoxy-benzyl)-ester, 2,2-Dimethyl-3-(2,2-dichlor-vinyl)-cyclopropancarbonsäure-(pentafluor-benzyl)-ester, 2,2-Dimethyl-3-(2,2-dibrom-vinyl)-cyclopropancarbonsäure-(\$\pi\$-cyano-3-phenoxy-benzyl)-ester und 3-Methyl-2-(4-chlor-phenyl)-butansäure-(\$\pi\$-cyano-3-phenoxy-benzyl)-ester.

Weiter zeigt sich die synergistische Wirkung der Verbindungen der allgemeinen Formel (I) bevorzugt bei

C) Phosphorsäure- und Phosphonsäureestern der allgemeinen Formel IV

$$R^{21}-X'-P$$
 $X'-R^{22}$
 $Y'-R^{23}$
(IV)

in welcher

- X' jeweils für O oder S steht und
- Y' für O, S, -NH- oder für eine direkte Bindung zwischen dem zentralen P-Atom und dem R²³ steht und
- R²¹ und R²² gleich oder verschieden sind und für gegebenenfalls substituiertes Alkyl oder Aryl stehen,
- für Wasserstoff gegebenenfalls substituiertes Alkyl, Aryl, Heteroaryl, Aralkyl,
 Alkenyl, Dioxanyl oder einen Oximrest
 oder für den gleichen Rest steht, an
 den es gebunden ist.

Besonders bevorzugt sind Phosphorsäure- und Phosphonsäureester der Formel (IV), in welcher

 R^{21} und R^{22} gleich oder verschieden sind und für C_1 - C_4 -Alkyl oder Phenyl stehen,

für Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen steht, das gegebenenfalls durch Halogen, Hydroxyl, Cyano, gegebenenfalls halogen-substituiertes Phenyl, Carbamoyl, Alkylsulfonyl, Alkylsulfinyl, Alkylcarbonyl, Alkylsulfonyl, Alkylsulfinyl, Alkylcarbonyl, Alkylaminocarbonyl, letztere mit jeweils bis zu 6 Kohlenstoffatomen, substituiert ist, für Alkenyl mit bis zu 4 Kohlenstoffatomen, das gegebenenfalls durch Halogen, gegebenenfalls halogensubstituiertes Phenyl oder C1-C4-Alkoxycarbonyl substituiert ist, oder für den Rest der allgemeinen Formel IVa

wobei R^{24} und R^{25} die oben für R^5 bzw. R^6 angegebene Bedeutung besitzen, oder für Cyano oder Phenyl stehen, und in welcher

ferner für Dioxanyl, das durch denselben Rest substituiert ist, an den R²³ gebunden ist, oder R²³ für den gleichen Rest, an den es gebunden ist, oder R²³ für Phenyl, das gegebenenfalls durch Methyl, Nitro, Cyano, Halogen und/oder Methylthio substituiert ist steht und R²³ außerdem besonders bevorzugt für gegebenenfalls durch C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthiomethyl, C_1-C_4 -Alkyl und/oder Halogen substituierte heteroaromatische Reste, wie Pyridinyl, Chinolinyl,

Chinoxalinyl, Pyrimidinyl oder Benzo-1,2,4-triazinyl steht.

Im einzelnen seien genannt:

- O,O-Dimethyl- bzw. O,O-Diethyl-O-(2,2-dichlor- bzw.
- 2,2-dibromvinyl)-phosphorsäureester,
- O,O-Diethyl-O-(4-nitro-phenyl)-thionophosphorsäure-ester,
- O,O-Dimethyl-O-(3-methyl-4-methylthio-phenyl)-thiono-phosphorsäureester,
- O,O-Dimethyl-O-(3-methyl-4-nitro-phenyl)-thiono-phosphorsäureester,
- O-Ethyl-S-n-propyl-O-(2,4-dichlorphenyl)-thiono-phosphorsäureester,
- O-Ethyl-S-n-propyl-O-(4-methylthio-phenyl)-thiono-phosphorsäureester,
- O,O-Dimethyl-S-(4-oxo-1,2,3-benzothriazin(3)yl-methyl)-thionothiolphosphorsäureester,
- O-Methyl-O-(2-iso-propyl-6-methoxy-pyrimidin(4)yl)-thionomethanphosphonsäureester,
- O,O-Diethyl-O-(2-iso-propyl-6-methyl-pyrimidin(4)yl)-thionophosphorsäureester,
- O, O-Diethyl-O-(3-chlor-4-methyl-cumarin(7)yl)-thiono-phosphorsäureester,
- O,O-Dimethyl-2,2,2-trichlor-1-hydroxy-ethan-phosphon-säureester,
- O, O-Dimethyl-S-(methylaminocarbonyl-methyl)-thionophosphorsäureester.

24 18 -

Uberraschenderweise ist die Wirkung der neuen erfindungsgemäßen Wirkstoffkombinationen gegen Arthropoden wesentlich höher als die Wirkung der Einzelkomponenten bzw. die Summe der Wirkungen der Einzelkomponenten. Sie ist ferner wesentlich höher als die Wirkung von Wirkstoffkombinationen mit dem bekannten Synergisten Piperonylbutoxid. Außerdem zeigen die erfindungsgemäß verwendbaren Hetarylpropargylether ausgezeichnete synergistische Wirksamkeit nicht nur bei einer Wirkstoffklasse, sondern bei Wirkstoffen aus den verschiedensten chemischen Stoffgruppen.

Vorzugsweise steht R in Formel I für einen fünfgliedrigen heteroaromatischen Monocyclus, welcher ein Sauerstoffoder ein Schwefelatom und zusätzlich 1 bis 3 Stickstoffatome enthält und welcher gegebenenfalls ein oder mehrfach, gleich oder verschieden substituiert ist durch Halogen, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Alkylcarbonylamino, Alkylcarbonyl, Carboxy, Alkoxycarbonyl, Carbamoyl, Alkylaminocarbonyl, Dialkylaminocarbonyl oder durch gegebenenfalls durch Halogen, Nitro oder Alkyl substituiertes Arylaminocarbonyl oder durch gegebenenfalls durch Halogen, Nitro, Cyano, Alkyl, Halogenalkyl oder Alkoxy substituiertes Aryl oder durch gegebenenfalls durch Halogen substituiertes Aralkyl oder durch gegebenenfalls halogensubstituiertes Alkoxy, Alkenoxy, Alkinoxy, Alkoxycarbonylalkoxy, Aralkoxy oder Aryloxy oder durch gegebenenfalls halogensubstituiertes Alkylthio,

Alkenylthio, Alkinylthio, Alkoxycarbonylalkylthio, Aralkylthio, Arylthio, Alkylsulfinyl oder Alkylsulfonyl oder durch gegebenenfalls halogensubstituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Aralkoxyalkyl, Aryloxyalkyl, Alkylthioalkyl, Alkylsulfonylalkyl, Arylthioalkyl, Arylsulfinylalkyl, Arylsulfonylalkyl, Carboxyalkyl, Alkoxycarbonylalkyl oder durch gegebenenfalls substituiertes Aminocarbonylalkyl, Cyanoalkyl oder Cycloalkyl.

Die Substituenten des heterocyclischen Ringes R können durch einen oder mehrere, vorzugsweise 1 bis 5, insbesondere 1 bis 3 gleiche oder verschiedene Substituenten substituiert sein.

Besonders bevorzugt steht R in Formel I für den Rest der Formel Ia

$$\begin{array}{c}
D \longrightarrow A \\
\downarrow \vdots \\
E \longrightarrow G
\end{array}$$
(Ia)

in welcher

- A für C-R²⁶ oder N steht,
- D für C-R²⁷ oder N steht,
- E für C- \mathbb{R}^{28} , N, O oder S steht und

G für C-R²⁹, N, O oder S steht,

und in welcher der gepunktete Kreis den heteroaromatischen Charakter andeuten soll, mit der Maßgabe, daß wenigstens eines der Ringglieder (A, D, E oder G) für N steht und mindestens eines der Ringglieder (E oder G) für O oder S steht und wobei die Reste R^{26} , R^{27} , R^{28} und R^{29} , welche gleich oder verschieden sein können, einzeln für Wasserstoff, Hydroxy, Halogen, Nitro, Cyano, Amino, C₁-C₄-Alkylamino, $Di-C_1-C_4$ -alkylamino, C_1-C_4 -Alkylcarbonylamino, C_1-C_4 -Alkyl-carbonyl, Carboxy, C₁-C₄-Alkoxy-carbonyl, Carbamoyl, C₁-C₄-Alkylamino-carbonyl, Di-C₁-C₄-alkyl-aminocarbonyl oder für gegebenenfalls durch Halogen, Nitro oder C₁-C₄-Alkyl substituiertes Phenyl-aminocarbonyl oder für gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C1-C4-Alkoxy substituiertes Phenyl oder für gegebenenfalls durch Halogen substituiertes Benzyl oder Phenylethyl oder für gegebenenfalls durch Halogen substituiertes C₁-C₄-Alkoxy, C₂-C₄-Alkenoxy, C2-C4-Alkinoxy, C1-C4-Alkoxy-carbonylmethoxy, Benzyloxy oder Phenoxy oder für gegebenenfalls halogensubstituiertes C_1 - C_4 -Alkylthio, C_2 - C_4 -Alkenylthio, C2-C4-Alkinylthio, C1-C4-Alkoxy-carbonyl-methylthio, Benzylthio, Phenylthio, C₁-C₄-Alkyl-sulfinyl oder C₁-C₄-Alkylsulfonyl oder für gegebenenfalls halogensubstituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl oder C₂-C₆-Alkinyl oder für Cyano-C₁-C₄-alkyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, Phenoxy- und Phenylthiomethyl, Benzyloxyund Benzylthiomethyl, C_1-C_4 -Alkylthio- C_1-C_2 -alkyl, C_1-C_4 -Alkyl- und Phenyl-sulfinyl- C_1-C_2 -alkyl, C_1-C_4 -Alkyl- und Phenylsulfonyl- C_1-C_2 -alkyl, Carboxy- C_1-C_2 -alkyl, C_1-C_4 -Alkoxy-carbonyl- C_1-C_2 -alkyl, C_1-C_4 -Alkylamino-carbonyl- C_1-C_2 -alkyl, Di- C_1-C_4 -alkylamino-carbonyl- C_1-C_2 -alkyl, Phenylaminocarbonyl-alkyl oder C_3-C_1 -Cycloalkyl stehen.

Die oben erwähnten Alkyl-, Alkenyl- und Alkinylgruppen bzw. diese Komponenten als Bestandteile der übrigen Reste sind geradkettig oder verzweigt. Beispielhaft seien Methyl, Ethyl, n- und i-Propyl, n-, i-, s- und t-Butyl, Allyl und Propargyl genannt. Halogen (auch z.B. in Halogenalkyl) steht für Fluor, Chlor, Brom und Jod, vorzugsweise für Fluor, Chlor und Brom, insbesondere für Chlor.

Einzelne Verbindungen der Formel (I) sind bekannt. Die Verbindungen der Formel (I) können nach bekannten Methoden hergestellt werden (vgl. Japanische Patentanmeldung 54 022 365 und US-Patentschrift 3 957 808).

Gegenstand der vorliegenden Erfindung sind auch die neuen Hetaryl-propargylether der Formel (Ib)

in welcher

Le A 20 470

- 28 - 13 -

D und E die oben angegebene Bedeutungen haben und

X für Sauerstoff oder Schwefel steht.

Diese neuen Verbindungen werden als Synergisten besonders bevorzugt.

Ganz besonders bevorzugt werden die neuen Verbindungen der Formel (Ib), in welcher der Rest

für einen der nachstehenden Azolylreste steht

worin

jeweils für Sauerstoff oder Schwefel steht und die Reste R³⁰ bis R³³, welche gleich oder verschieden sein können, einzeln für Halogen (vorzugsweise Chlor), Cyano, C₁-C₄-Alkyl (insbesondere Methyl, Ethyl, n- und i-Propyl), C₁-C₄-Alkylthio (insbesondere Methylthio und Ethylthio), Phenyl oder Benzylthio stehen.

Man erhält die neuen Verbindungen der Formel (Ib), wenn man Halogen-hetarene der Formel V

$$\begin{array}{c}
D \longrightarrow \mathbb{N} \\
E \longrightarrow \mathbb{X}
\end{array}$$
C-Hal

in welcher

D, E und X die oben angegebenen Bedeutungen haben und

Hal für Chlor, Brom oder Jod (vorzugsweise Chlor) steht,

mit Propargylalkohol in Gegenwart einer starken Base bei Temperaturen zwischen -20 und +80°C umsetzt.

Die übrigen Verbindungen der Formel I sind aus den entsprechenden Halogen-hetarenen und Propargylalkoholauf die gleiche Weise leicht erhältlich.

Verwendet man beispielsweise 2,4,5-Trichlor-thiazol als Ausgangsverbindung der Formel (V) und Natrium-hydrid als Base, so kann dieses Verfahren durch folgendes Formelschema skizziert werden:

- 30 - 21 -

$$C1$$
 $O-CH_2-C\equiv CH$
 $O-CH_2+C\equiv CH$
 $O-CH_2+C$
 $O-CH_2+C$

Als Beispiele für die Ausgangsverbindungen der Formel (V) seien genannt:

2,4,5-Trichlor-oxazol und -thiazol, 4,5-Diphenyl-2-chlor-oxazol und -thiazol, 5-Cyano-4-methyl-2-chlor-thiazol, 3-Methyl-, 3-Ethyl-, 3-n-Propyl- und 3-Iso-propyl-5-chlor-1,2,4-thiadiazol, 3-Methylthio-, 3-Ethylthio-, 3-n-Propylthio- und 3-Isopropylthio-2-chlor-1,2,4-thiadiazol, 3,5-Dichlor-1,2,4-oxadiazol, 3-Benzylthio-5-chlor-1,2,4-thiadiazol und 2-Phenyl-5-chlor-1,3,4-thiadiazol.

Die Halogen-hetarene der Formel (V) sind bekannte Verbindungen (vgl. Elderfield, Heterocyclic Compounds Vol. 5, (1957), Seite 298 und Seite 452; Vol. 7 (1961), Seite 463 und Seite 541; Weissberger, The Chemistry of Heterocyclic Compounds, (a) "Five-Membered Heterocyclic Compounds with Nitrogen and Sulfur or Nitrogen, Sulfur and Oxygen" (1952), Seite 35 und Seite 81, (b) "Five-and Six-Membered Compounds with Nitrogen

and Oxygen" (1962), Seite 5, Seite 245 und Seite 263; Advances in Heterocyclic Chemistry, Vol. 5, (1965), Seite 119; Vol. 7 (1966), Seite 183; Vol. 9 (1968), Seite 107, Seite 165 und Seite 183; Vol. 17 (1974), Seite 99 und Vol. 20 (1976), Seite 65; Synthesis 1978, 803; Tetrahedron Letters 1968, 829; Chem. Ber. 89 (1956), 1534; 90 (1957), 182; 92 (1959), 1928; J. Org. Chem. 27 (1962), 2589, DE-OS 2 213 865).

In einer bevorzugten Ausführungsform des Herstellungsverfahrens wird die Base, vorzugsweise eine anorganische Base, wie Natrium, Natriumamid oder Natriumhydrid, welche vorzugsweise in einer Menge zwischen 1,0 und 1,2 Mol je Mol Halogen-hetaren der Formel (V) eingesetzt wird, in überschüssigem Propargylalkohol vorzugsweise bei Raumtemperatur (20 + 5°C) dispergiert, nach Abkühlen dieser Mischung, vorzugsweise auf 0 ± 5 °C, wird das Halogen-hetaren langsam dazu gegeben und das Reaktionsgemisch wird einige Stunden gerührt. Zur Aufarbeitung nach üblichen Methoden wird z.B. der überschüssige Propargylalkohol unter vermindertem Druck weitgehend abdestilliert, der Rückstand wird in einem mit Wasser praktisch nicht mischbaren organischen Lösungsmittel, wie z.B. Methylenchlorid, aufgenommen, die Lösung wird mit Wasser gewaschen, getrocknet, filtriert und vom Filtrat wird das Lösungsmittel abdestilliert. Die zurückbleibenden Rohprodukte werden durch Destillation gereinigt bzw. durch Anreiben, z.B. mit Petrolether, zur Kristallisation gebracht.

Die Gewichtsverhältnisse der Synergisten und Wirkstoffe können in einem relativ großen Bereich variiert werden. Im allgemeinen werden die als Synergisten verwendeten Verbindungen der Formel (I) mit den übrigen Wirkstoffen in Mischungsverhältnissen zwischen 0,1:10 und 10:0,1, vorzugsweise zwischen 0,5:1,0 und 1,0:1,0 (Gewichtsteile) eingesetzt.

Die erfindungsgemäßen Wirkstoffkombinationen besitzen nicht nur eine schnelle knock-down-Wirkung, sondern bewirken auch die nachhaltige Abtötung der tierischen Schädlinge, insbesondere von Insekten und Milben, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie im Hygienebereich vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam.

Die Verbindungen der Formel (I) zeigen zum Teil auch fungizide Wirkung.

Zu den tierischen Schädlingen, welche unter Verwendung der Verbindungen der Formel (I) bekämpft werden können, gehören beispielsweise:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scaber.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina. Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Schistocerca gregaria.

Aus der Ordnung der Dermaptera 2.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Reticulitermes spp.
Aus der Ordnung der Anoplura z.B. Pediculus humanus
corporis, Haematopinus spp., Linograthus spp.
Aus der Ordnung der Mallophaga z.B. Trichodectes spp.,

Aus der Ordnung der Heteroptera z.B. Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Myzus spp., und Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Ephestia kuehniella und Galleria mellonella.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bejulus, Oryzaephilus surinamensis, Sitophilus spp., Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp. und Tenebrio molitor.

Aus der Ordnung der Hymenoptera z.B. Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aädes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp. und Tabanus spp.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.

Damalinea spp.

Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp.

Die Wirkstoffkombinationen aus den Verbindungen der Formel I und den übrigen Wirkstoffen können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Schäume, Pasten, lösliche Pulver, Aerosole, Suspensions-Emulsionskonzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinstverkapselungen in polymeren Stoffen, ferner in Formulierungen mit Brennsätzen, wie Räucherpatronen, -dosen, -spiralen u.ä., sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffgemische mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungs-

Le A 20 470

mittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol, sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser; mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid; als feste Trägerstoffe: natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate: gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehle, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier- und/oder schaumerzeugende Mittel: nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykol-ether, Alkylsulfonate; als Dispergiermittel: z.B. Lignin, Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige,
körnige oder latexförmige Polymere verwendet werden, wie
Gummiarabicum, Polyvinylalkohol, Polyvinylacetat.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin-farbstoffe, und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoffkombination, vorzugsweise zwischen 0,5 und 90 %.

Die Anwendung der erfindungsgemäßen Wirkstoffkombinationen erfolgt in Form ihrer handelsüblichen Formulierungen und/oder den aus diesen Formulierungen bereiteten Anwendungsformen.

Der gesamte Wirkstoffgehalt (einschließlich Synergist) der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0001 bis zu 100 Gew.-% Wirkstoffkombination, vorzugsweise zwischen 0,01 und 10 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnen sich die Wirkstoffkombinationen durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

Annand der folgenden Beispiele soll die Wirksamkeit der erfindungsgemäß verwendbaren Verbindungen der Formel I erläutert werden:

I. Beispiele für erfindungsgemäß verwendbare Wirkstoffe

D) Pyrethrine natürlicher Herkunft als 25 %iger Extrakt

II. Beispiele von erfindungsgemäß verwendbaren Synergisten

1)
$$C1 \longrightarrow N$$
 $OCH_2-C=CH$

6)
$$CH_2-S \longrightarrow N \longrightarrow OCH_2-C=CH$$

7)
$$C1$$
 N $OCH_2-C=CH$

9) Piperonylbutoxid (bekannt)

III. Testdurchführung:

LT₁₀₀-Test

Testtiere:

Gegen Phosphorsäureester und Carbamate resistente weibliche Musca domestica

(Stamm Weymanns)

Lösungsmittel: Aceton

Von den Wirkstoffen, Synergisten und Gemischen aus Wirkstoffen und Synergisten werden Lösungen hergestellt und 2,5 ml davon in Petrischalen auf Filterpapier-scheiben von 9,5 cm Durchmesser pipettiert. Das Filterpapier saugt die Lösungen auf. Die Petrischalen bleiben so lange offen stehen, bis das Lösungsmittel vollständig verdunstet ist. Anschließend gibt man 25 Testtiere in die Petrischalen und bedeckt sie mit einem Glasdeckel.

Le A 20 470

Der Zustand der Testtiere wird bis zu 6 Stunden laufend kontrolliert. Es wird diejenige Zeit ermittelt, die für eine 100 %ige knock-down-Wirkung erforderlich ist. Wird die LT₁₀₀ nach 6 Stunden nicht erreicht, wird der Prozent der knock-down gegangenen Testtiere festgestellt.

Konzentrationen der Wirkstoffe, Synergisten und Gemische und ihre Wirkungen gehen aus der nachfolgenden Tabelle hervor.

42 - 23 -

IV. Testergebnisse

LT-100 Test mit gegen Phosphorsäureester resistenten weiblichen Musca domestica (Stamm Weymanns)

Wirkstoffe/Synergisten	Konzentrationen in % Wirkstoff/Synergist	LT 100 in Minuten oder bei 360' in %
A	1.0	360'= 30%
В	1.0	360'= 70%
С	1.0	360'= 35%
D .	0,04	360'=. 0%
E	0,04	360'= 65%
F .	0.04	160'
G	0.008	150'
н .	0.0016	105 <i>'</i>
I	0.008	150'
1	0.04	 360'= 15%
2	0.04	360'= 0%
3	0.04	360 '
4	0.2	360'= 0%
5	0.04	360'= 80%
6	1.0	360'= 0%
7	0.2	· 360'= 10%
8	1.0	360'= 0%
9	1.0	360'= 0%

Wirk	stoffe	Synergisten	Konzentration in % Wirkstoff/ Synergist	LT-100 in Min. oder bei 360' in %
· A		_	1,0	360'= 30 %
В		. <u>.</u>	1,0	360'= 70 %.
C		-	1,0	360'= 35 %
D		-	0,04	360'= 0 %
		-	0,04	360'= 65 %
E			0,04	160'
F			0,008	150'
G		_	0,0016	105'
H			0,008	150'
I		•		
7	+	9	0,2 + 0,2	2 360_= 70 %
A A	+	1	0,04 + 0,0	90'
A	. +	2	0,04 + 0,0)4 75 '
	+	3	0,04 + 0,0	04 90'
A A	T	4	0,04 + 0,0	04 120'
	+	5	0,04 + 0,0	04 150'
A A	+	6	0,2 + 0,	2 360'
	+	7	0,2 + 0,	2 120'
A A	+	8	0,2 + 0,	2 360'= 85 %
	•	=		

44 - ኔሪ -

LT 100 in Derivaten	3 "	} ·	150	180	120'	120	360' = 95 %		360' = 45 %	105'	105'	210'	150'	360' = 90 %	180'	360' = 80 %		360'	75'	105'	120'	150'		120'	, 09	, 06	75'
in % ergist	0,2	0,04	0,008	0,008	0,008	0,04	0,04	0,04	0,2	0,04	0,04	0,008	800,0	0,2	0,2	0,2		0,04	0,04	0,04	0,04	0,04		0,04	0,04	0,04	0,04
ton.	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	•	+ .	+	+	+	.+		+	+	+	+
Konzentration Wirkstoff/Svn	0,2	0,04	800'0	0,008	800'0	0,04	0,04	0,04	0,2	0,04	0,04	0,008	800'0	0,2	•	0,2		# O O O	0,04	0,04	0,04	0,04		0,04	0,04	0,04	0,04
Synergisten	6		2	സ	4	٠ س	9	7	6	-	~	m	4	•		∞		.	7	m ·	4	വ	-	თ -	~	Ċ,	ហ
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+		+	+	+	+
Wirkstoffe	В	മ	В	മ :	m ·	Д	ഇ	æ	ပ (ပ	ບ	ບ	ပ	ပ ့	ນ (ပ	_	1 4	ו כ	؛ د	_	Q	1	មាន	E.	ഠ	函

2030663

Wirkstoffe		Synergisten	Konzentration in % Wirkstoff/Synergist	tion /Syne	in % rgist	LT 100 in Derivaten oder bei 360' in %
ĮΞų	+	6	0,04	+	0,04	105'
بتا	+	*	0,04	+	0,04	. , 06
ţ r i	+	2	0,04	+	0,04	, 06
۲.	+	٣	0,04	+	0,04	, 06
ĮT.	+	4	0,04	+	0,04	, 06
Ēυ	+	9	0,04	+	0,04	75'
Ľч	+		0,04	+	0,04	, 06
೮	+	6	0,008	+	0,008	105
ប	+	-	800'0	+	0,008	, 06
U	+	3	0,008	+	800'0	, 06
უ	+	٠	800'0	+	800'0	75'
Н	+	6	0,0016	+	0,0016	360' = 95 %
Ħ	+	7	0,0016	+	0,0016	,06
н	+	4	0,0016	+	0,0016	, 06
				•		-
ט	+	6	0,008	+	0,008	105'
ט	+	•	0,008	+	800'0	105'
ט	+	2	0,008	+	800.0	75'
ט	+	3	0,008	+	0,008	75'
ט	+		800'0	+	800'0	75'
ט	+	2	800'0	+	0,008	, 06

Die Herstellung der Verbindungen der Formel I sei anhand der folgenden Beispiele erläutert:

Allgemeine Herstellungsvorschrift

3,4 g (0,11 Mol) Natriumhydrid 80 %ig werden bei Raumtemperatur (20 ± 5°C) portionsweise zu 200 ml Propargylalkohol gegeben, dann werden bei 0 ± 5°C 0,1 Mol Halogen-Hetaren zugetropft und das Reaktionsgemisch wird bei dieser Temperatur mehrere Stunden gerührt. Überschüssiger Propargylalkohol wird dann unter vermindertem Druck abdestilliert, der Rückstand wird in Methylen-chlorid gelöst, die Lösung mit Wasser gewaschen, über Calciumchlorid getrocknet und filtriert. Vom Filtrat wird das Lösungsmittel abdestilliert und der Rückstand durch Destillation bzw. durch Anreiben mit Petrolether gereinigt (%-Angabe bezieht sich auf Gew.-%).

Beispiele für die nach dieser Herstellungsvorschrift erhaltenen Verbindungen sind in der nachstehenden Tabelle aufgeführt, wobei als Halogen-Hetaren der Formel V das jeweilige Chlor-Hetaren eingesetzt wird:

$$\begin{array}{c|c}
D & -N \\
\hline
C & -O - CH_2 - C = CH
\end{array} (Ib)$$

- 38 -

Tabelle Verbindungen der Formel (I b)

Bei- spiel Nr.	D .	E	X	Schmelzpunkt (°C), Siede- punkt °C/Torr
1	c-c1	C-Cl	S	75/3
2	C-CH ₃	N	S .	58/5
3	C-CH ₃	C-CN	s	79
4	C-CH (CH ₃) ₂	Ŋ	S	78/1
5	C-SCH ₃	N	S	110/7
6	C-S-CH ₂ -C ₆ H ₅	N	s.	71
. 7	C-Cl	N .	. 0	56/2
8	с-с ₆ н ₅	C-C ₆ H ₅	0	78
9	N	с-с ₆ н ₅	s	102

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

/
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.