Matrice extracellulare Struttura e composizione

1 Introduzione

L'ECM è una complessa rete di macromolecole che occupa lo spazio esterno alle cellule, formando una quota rilevante del volume dei tessuti.

Partecipa a morfogenesi, differenziazione ed omeostasi venendo continuamente rimodellata e garantendo forza tensile ed elasticità. Si tratta di un **reticolo compatto** di proteine e polisaccaridi, in grado di stabilizzare la struttura fisica dei tessuti e di formare un punto di adesione, migrazione, comunicazione e proliferazione per le cellule. Prevede:

- una componente fibro-proteica con collagene, fibre elastiche e reticolari
- una componente **amorfa**, la **sostanza fondamentale**, con GAG, proteoglicani e glicoproteine multiadesive.

2 Componente fibro-proteica

2.1 Collagene

Il collagene forma il 25% di ECM, è flessibile e resistente alla trazione.

Ha struttura omomerica o eteromerica a **tripla elica**, ricca di glicina, prolina, idrossilisina e idrossiprolina. Può essere:

- $\bullet\,$ fibrillare, più abbondante, come I (ossa, tendini, legamenti) o II (cartilagine)
- associato a fibrille, con interruzioni nella tripla elica che donano flessibilità, come IX e XII
- laminare, che si organizza in maglie reticolate, come IV della lamina basale

2.2 Fibre reticolari

Costituite da collagene III, si associano in fibre più sottili e ramificate.

Costituiscono una trama di supporto a magioa o rete, in particolare nel connettivo lasso o intorno ad adipociti, vasi sanguigni e cellule nervose.

Sono tipiche dei tessuti immaturi, venendo rimpiazzate dal tipo I. Rappresentano inoltre lo stroma degli organi emopoietici.

2.3 Fibre elastiche

Consentono ai tessuti di rispondere a stiramento e distensione.

Sono sottili e ramificate in una rete 3D, e sono formate da un core centrale di **elastina** e da una rete circostante di **fibrillina**.

- elastina: ricca in prolina e glicina distribuita casaualmente, che rende la sostanza idrofobica e tendente ad aggregazione casuale in random coil. Contiene desmosina e isodesmosina che formano legami crociati.
- emilina: all'interfaccia elastina-fibrillina
- fibrillina: glicoproteina, substrato per l'elastogenesi

3 Componente amorfa

3.1 Glicoproteine multiadesive

Sono un piccolo ma importante gruppo di proteine, dotate di domini multipli che stabilizzano ECM ed intervengono nel suo legame alla superficie cellulare, in movimento, migrazione, proliferazione e differenziamento.

3.1.1 Fibronectina

Di 250-280 kDa, è la glicoproteina più abbondante nel connettivo. È un dimero con 2 subunità legate da ponte disolfuro.

Possiede domini atti al legame con eparansolfato, collagene, fibrina, acido ialuronico, altra fibronectina e con le **integrine** di membrana.

Il legame alle integrine induce la fibrillizzazione della fibronectina.

3.1.2 Laminina

E una glicoproteina adesiva di 140-400 kDa, abbondante nelle lamine basali, con tre grosse catene che formano una **croce** con un braccio lungo e tre corti.

Lega il collagene IV, eparansolfato, eparina e le integrine, formando una trama simile al feltro.

È fondamentale durante lo sviluppo embrionale e nervoso, per organizzare le cellule e indirizzarne la migrazione.

3.1.3 Tenascina

Presente solo in sviluppo, riparazione di ferite e tumori maligni, ed è in grado di legare le cellule alla matrice grazie ad appositi siti di legame.

3.1.4 Osteopontina

Un peptide glicosilato di 44 kDa caratteristico della matrice ossea.

Lega gli osteoclasti facendoli aderire alla superficie ossea, è coinvolta nel sequestro di calcio e promuove la calcificazione della matrice.

3.1.5 Entactina/nidogeno

Glicoproteina solforilata di 150 kDa che lega la laminina al collagene IV nella lamina basale.

3.2 **GAG**

Sono eteropolisaccaridi lineari con unità disaccaridiche di GlcNAc o GalNAc e GlcA o IdoA.

Sono fortemente negativi e per questo attraggono acqua formando un gel idratato, nel queale le molecole idrosolubili diffondono facilmente.

3.3 Proteoglicani

Formano il core proteico di complessi da cui si dipartono i GAG, che si legano mediante un trisaccaride (Gal-Gal-Xyl) O-glicosilato su residui di serina o treonina del core.

L'aggrecano si lega allo ialuronato e contiene 100-150 catene di cheratansolfato e condroitinsolfato, essendo responsabile dell'idratazione della cartilagine. La decorina è una molecola formata da una sola catena di condroitinsolfato e dermatansolfato, presente in cartilagine e ossa.

Interagisce con $TGF\beta$. Vi sono poi **versicano** e **sindecano**, in grado di legarsi a componenti di matrice e al citoscheletro.