6. Рівномірно збіжні функціональні ряди. Теореми про неперервність суми та інтегрування рівномірно збіжних функціональних рядів.

Означення 4.3 (рівномірної збіжності). Функціональний ряд $\Sigma u_n(x)$ називають *рівномірно збіжним* на множині $D_{\rm pis}$ до суми S(x),

$$\begin{split} \forall \varepsilon > 0 \;\; \exists N_\varepsilon \in \mathbb{N} : \forall n > N \Rightarrow \\ \left| R_n(x) \right| = \left| S(x) - S_n(x) \right| < \varepsilon \;\; \forall x \in D_{\mathrm{pib}}. \end{split}$$

$$\boxed{D_{\mathrm{pib}} \subset D \subset X}$$

Використовують позначення

$$\sum_{n=1}^{\infty}u_n(x) \rightrightarrows S(x), x \in D_{\mathrm{pib}}.$$

Практично рівномірна збіжність ряду означає, що суму ряду S(x) на проміжку (a;b) можна наближено, з наперед заданою точністю, замінити однією і тією самою частковою сумою $S_n(x)$:

$$S(x) \approx S_n(x), x \in (a; b).$$

4.3. Властивості рівномірно збіжних рядів

Властивість 1. Сума членів рівномірно збіжного на деякому проміжку ряду неперервних функцій є функція, неперервна на цьому проміжку.

Властивість 2. Якщо на відрізку [a;b] функціональний ряд $\Sigma u_n(x)$ рівномірно збіжний і члени ряду неперервні на відрізку [a;b], то його можна почленно інтегрувати в межах $(\alpha;\beta)$, де $(\alpha;\beta) \subset [a;b]$:

$$\int\limits_{\alpha}^{\beta} \left(\sum_{n=1}^{\infty} u_n(x) \right) \! dx = \sum_{n=1}^{\infty} \int\limits_{\alpha}^{\beta} u_n(x) dx.$$

Властивість 3. Якщо функціональний ряд $\Sigma u_n(x)$ збіжний на відрізку [a;b], а його члени мають неперервні похідні $u_n'(x), x \in [a;b], n \in \mathbb{N},$ причому ряд $\Sigma u_n'(x)$ рівномірно збіжний на [a;b], то заданий ряд можна почленно диференціювати:

$$\frac{d}{dx} \left(\sum_{n=1}^{\infty} u_n(x) \right) = \sum_{n=1}^{\infty} u'_n(x), x \in [a; b].$$

63.3. Свойства степенных рядов

Сформулируем без доказательства *основные свойства* степенных рядов.

1. Сумма S(x) степенного ряда (62.3) является непрерывной функцией в интервале сходимости (-R;R).

2. Степенные ряды $\sum_{n=0}^{\infty} a_n x^n$ и $\sum_{n=0}^{\infty} b_n x^n$, имеющие радиусы сходимости соответственно R_1 и R_2 , можно почленно складывать, вычи-

тать и умножать. Радиус сходимости произведения, суммы и разности рядов не меньше, чем меньшее из чисел R_1 и R_2 .

3. Степенной ряд внутри интервала сходимости можно почленно дифференцировать; при этом для ряда

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n + \ldots$$
 (63.3)

при -R < x < R выполняется равенство

$$S'(x) = a_1 + 2a_2x + 3a_3x^2 + \ldots + n \cdot a_nx^{n-1} + \ldots$$
 (63.4)

4. Степенной ряд можно почленно интегрировать на каждом отрезке, расположенном внутри интервала сходимости; при этом для ряда (63.3) при -R < a < x < R выполняется равенство (см. замечание 1, с. 416)

$$\int_{a}^{x} S(t) dt = \int_{a}^{x} a_{0} dt + \int_{a}^{x} a_{1}t dt + \int_{a}^{x} a_{2}t^{2} dt + \dots + \int_{a}^{x} a_{n}t^{n} dt + \dots$$
 (63.5)