Problem Set I

Computing Models April 23, 2023

Alon Filler¹

1 Automatas

Given the automata $D = (Q^D, \{a, b\}, \delta^D, q_0^D, F^D)$

Problem 1.1.

Imagine a new automata $E = (Q^E, \{a, b\}, \delta^E, q_0^E, F^E)$ s.t:

- $\bullet \ Q^E = Q^D \cup \{q_0^E\}$
- $\bullet \ F^E = F^D$

$$\bullet \ \delta^E(q,\sigma) = \begin{cases} \delta^D(q,\sigma) & q \in Q^D \\ q_0^D & q = q_0^E, \sigma = a \\ q_0^E & q = q_0^E, \sigma = b \end{cases}$$

Define:

• *L(A)*

Solution.

It would be non but rational to divide this construction into three divisions, each corresponding to a different set of circumstances recognised by the trasitions function.

One of those aforementioned circumstances is $q = q_0^E$, $\sigma = b$, the study of such case lead me to determine that for the character input of b, under the assumption that the current state is q_0^E , the state would lead back to itself, meaning that that an instance of $\{b\}^*$ at the beginning of the input would not affect the output of the automata. And hence $\{b\}^*$ should be imbued to the language L(A).

Another set of circumstances is $q = q_0^E$, $\sigma = a$, which implies the current state to be the one added to Q^D in order to craft Q^E , and that the input chracter is 'a'. Such circumstances appear to be digested by the automata to return q_0^D , the first state of the previous automata D. Accordingly, it would only be after the appearance of an 'a' character in the input that the

 $^{^{1}}$ With Σ orer

state would be changed. And hence, $\{a\}$ must be added to the language L(A).

The last of such circumstances addressed in δ^E appears to be $q \in Q^D$. For such case, the function would make the transition from the current state to the one returned by δ^D , accordingly, L(D) must be concatenated at the end of L(E)

Hence - I may declare that
$$L(A) = \{b\}^* \cdot \{a\} \cdot L(D)$$
.

Problem 1.2.

Consider the previous automata $E=(Q^E,\{a,b\},\delta^E,q_0^E,F^E)$ And a new automata $E'=(Q^E,\{a,b\},\delta^E,q_0^D,F^E)$

Define:

• L(E')

Solution.

In the previous problem I have explained in great detail the effects caused by the declaration of a new state q_0^E to be the initial state of E. Considering q_0^E not to be part of Q^D , it can be seen with vividness that δ^E , known as E''s transitions function would cease to return it as output as soon as it no longer is the current state. Therefore, knowing E' does not use q_0^E as its initial state it is cogent that it would never be returned. Accordingly, the only circumstances relevant to the transitions function would be $q \in Q^D$, and thus the addition of $\{b\}^* \cdot \{a\}$ to the beginning of L(E) must be undone for L(E') to be precise. And hence L(E') = L(D)