RUNNING INSTRUCTION

Project Team: P2 Group 7

Table of Content

Data Scraping Process	3
Prerequisite	3
To run	3
Expected output	3
Data Cleaning	4
To run	4
Expected output	4
Data Cleaning for LDA Topic Modelling using Mahout	5
Prerequisite	5
To run	5
Expected Output	5
Hadoop MapReduce Analysis Guide:	6
Prerequisites	6
Move files to DSAIL	6
Perform Analysis with Hadoop	7
Mahout for LDA Topic Modelling Guide:	10
Prerequisite	10
Perform Topic Modelling on preprocessed text	10
Data Visualization	11
To visualise	11
Alternative	12
Expected output	13

Data Scraping Process

Prerequisite

```
    Python 3.7 installed
    Python Library Needed:
    pip install selenium
    pip install httpx
    pip install pandas
    pip install parsel
    pip install asyncio
    pip install csv
    Chrome browser version 111 installed (to run chromedriver)
```

To run

```
To Run Data Scraper

cmd Source_code/DataScraping
python main.py
```

Expected output

Data Cleaning

To run

```
To Run Data Cleaner

cmd Source_code
python dataCleaner.py
```

Expected output

Data Cleaning for LDA Topic Modelling using Mahout

Prerequisite

Ensure that csv files are in same location as the python file and NLTK is installed

To run

To Run pre-process on csv files

python preprocess_reviews.py

Expected Output

Hadoop MapReduce Analysis Guide:

Prerequisites

- 1. Download an IDE that can support Java and Maven: $\underline{\text{How to set up}}$ $\underline{\text{Java with Eclipse IDE}}$
- 2. Install Java on your local computer: How to Install Java on Windows
- 3. Install Maven on your IDE: How to install Maven javatpoint
- 4. Move all datasets into Dsail

Move files to DSAIL

```
1. Locate <datasets>.csv in folder:
".\Dataset_used\CleanDataset"
```

```
2. Locate stopwords.txt in folder:
```

```
".\Dataset_used\stopwords.txt"
```

```
3. Locate AFIN-111.txt in folder:
```

```
".\Dataset used\AFIN-111.txt"
```

4. Locate company-industry.txt in folder:

```
".\Dataset used\company-industry.txt"
```

4. Log into Dsail

ssh user@172.27.69.55

5. SCP all <datasets>.csv and .txt files into Dsail:

scp <all file paths delimited by space> user@172.27.69.55:

- 6. Perform 1s command to check all <datasets> are available
- 7. Create a directory to store all <datasets>.csv

hadoop fs -mkdir input

8. Move <datasets>.csv into input folder

hadoop fs -put *.csv input

9. Move stopwords.txt, AFIN-111.txt, company-industry.txt into input folder

```
hadoop fs -put stopwords.txt input
hadoop fs -put AFIN-111.txt input
hadoop fs -put company-industry.txt input

8. Create an output folder to store output of mapreduce
hadoop fs -mkdir output
```

Perform Analysis with Hadoop

Mahout for LDA Topic Modelling Guide:

Prerequisite

```
1. Python 3.7 installed
2. Java Version 8 or later
3. Maven
```

[Text in yellow changed according to your directory]

Perform Topic Modelling on preprocessed text

```
1. Run Mahout's seqdirectory command to convert text file from <a href="here">here</a>
mahout seqdirectory -i <input-text> -o <output-directory>

2. Convert the SequenceFile to a sparse vector format

mahout seq2sparse -i <output-directory-used-above> -o
<new-output-directory> -nv -wt tf -seq

3. Run mahout cvb to run LDA on the sparse vectors

mahout cvb -i <new-output-directory-used-above>/tfidf-vectors -o
<Topic-Word-distribution-directory> -k <Number-of-Topics> -x <number of iterations> -dict
<new-output-directory-used-above>/dictionary.file-0 -dt
<lda-topic-document-output-directory>

4. Get output files from hadoop

hadoop fs -get <Topic-Word-distribution-directory> <Local-Path> hadoop fs -get <lda-topic-document-output-directory> <Local-Path> hadoop fs -get <lda-topic-document-output-directory> <Local-Path>
```

Data Visualization

To visualise

Alternative

Expected output

