# Project Design – Building an Al-Driven Smart City Assistant



#### Problem-Solution Fit

The project was designed to directly tackle the challenges identified in the ideation and requirement analysis phases. Every module was purposefully crafted to align with a user need, ensuring that functionality was never bloated or irrelevant.

| User Pain Point                              | Proposed Solution                                            |
|----------------------------------------------|--------------------------------------------------------------|
| Long, unreadable policy PDFs                 | Al-powered PDF summarizer using Mistral/IBM Granite LLM      |
| Confusion around city performance data       | Forecasting and anomaly detection modules using CSV inputs   |
| Low engagement in sustainable behavior       | Interactive eco tips generator with randomized prompts       |
| Lack of centralized, user-friendly interface | Gradio-based dashboard with tabs for modular access          |
| Tedious documentation or feedback mechanisms | Instant PDF report generator and session-based feedback form |



## **Proposed Solution**

The final system is a modular, Al-powered platform that runs entirely in a Colab environment using a GPU-backed inference model. Key aspects include:

- Conversational Interface: Uses LLMs like Mistral-7B or IBM Granite to answer user queries about sustainability.
- Summarization Engine: Converts large PDF documents into bite-sized summaries using transformer models.
- KPI Modules: Includes CSV-based forecasting via linear regression and anomaly detection based on dynamic thresholds.
- Engagement Features: A daily eco tip generator with randomly selected prompts keeps users educated and involved.
- Gradio UI: A lightweight, interactive UI built with tabs for each functionality.
- Offline PDF Export: Text-based insights and Al-generated summaries can be exported as professional-looking PDFs.

This modular approach ensured scalability and made the project easy to test, deploy, and use.

### **Solution** Architecture

A high-level architecture diagram of the project:



#### Nesign Highlights:

- Entirely session-based no backend/database needed
- Runs smoothly in Colab with GPU support
- Built-in PDF reader (PyMuPDF) and writer (FPDF)
- Supports multimodal inputs (text, CSV, and PDF)
- Easy to update or expand via modular Python functions

→ The project design stage ensured that all systems were technically sound, user-focused, and extensible—forming the core foundation for a powerful AI-powered smart city platform.