ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

СИСТЕМЫ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ

Лабораторный практикум

О.Г. Корольков

Лабораторная работа № 2 «Графика»

Критерии оценки

Оценка	Сумма баллов
«Отлично»	36 - 40
«Хорошо»	30 - 35
«Удовлетворительно»	24 - 29

Баллы за отдельные задания

Номер задания	Балл
1	2
2	3
3	2
4	2
5	3
6	4
7	3
8	4
9	4
10	2
11	3
12	3
13	1
14	1
15	1
16	2

- 1. Построить график функции $f(x)=\frac{2}{x^2-2}$ на отрезке [-8,8]. Выдаваемые значения по ординате ограничить интервалом (-5,5).
- 2. Построить график неявной функции $x^2y^2 = \cos(x+y)$ на интервале $x \in (-2,2)$.
- 3. Построить график функции $f(x) = \mathrm{e}^{(x^2)}$ на интервале $(x \in [0, 10])$. Использовать логарифмический масштаб по оси ординат.
- 4. Построить нефроиду.
- 5. Построить Архимедову спираль.
- 6. Построить овал Кассини.
- 7. Построить циссоиду Диокла и её асимптоту.
- 8. Изобразить на одном графике три конхоиды одной окружности. Параметры выбирать так, чтобы двойная точка в начале координат в первом случае являлась изолированной точкой, во втором случае точкой возврата, а в третьем случае узловой точкой.
- 9. Получить анимацию трансформации эллиптической лемнискаты Бута в гиперболическую лемнискату Бута.
- 10. Отобразить векторное поле, определяемое функцией $F(x,y) = \begin{pmatrix} y\cos{(xy)} \\ x\cos{(xy)} \end{pmatrix}$, в области $x \in (-1,1), \ y \in (-1,1).$
- 11. Построить коническую спираль.
- 12. Построить поверхность $r(\theta,\varphi)=\cos(\varphi^2),\ \theta\in(0,2\pi),\ \varphi\in(0,\pi)$ в сферической системе координат.
- 13. На комплексной плоскости построить график функции действительного переменного $f(x) = \mathrm{e}^{x+ix^2}$.
- 14. Изобразить координатную сетку параболической системы координат.
- 15. C помощью функций модуля geometry проиллюстрировать свойство пересечения медиан треугольника в одной точке.

3

16. C помощью функций модуля plottools изобразить солнышко.

- 1. Построить график функции $f(x)=\sin^2 2x$ на отрезке $[0,\pi]$ с помощью 100 точек. Цвет точек синий. Оси абсцисс и ординат сделать одинакового масштаба.
- 2. Построить график неявной функции $x^4 + y^2 = e^x$ на интервале $x \in (-2, 2)$.
- 3. Построить схематический график функции $f(x) = \frac{x \ln x}{(1+x^2)^2}$ на интервале $(0,+\infty).$
- 4. Построить астроиду.
- 5. Построить гиперболическую спираль.
- 6. Построить лемнискату Бернулли.
- 7. Построить конхоиду Никомеда и её асимптоту.
- 8. Изобразить на одном рисунке две синусоидальные спирали $r^n = a^n \cos(n\varphi)$ для двух значений параметра n противоположных знаков.
- 9. Получить анимацию трансформации трохоиды: из удлинённой циклоиды в укороченную.
- 10. Отобразить градиентное поле и линии уровня функции $f(x,y) = \sin x \sin y$ в области $x \in (-\pi,\pi), y \in (-\pi,\pi).$
- 11. Построить линию Вивиани.
- 12. Построить поверхность $r=x, \ \varphi=\frac{1}{x}, \ \theta=y, \ x\in(0,2\pi), \ y\in(0,2\pi)$ в тороидальной системе координат.
- 13. Построить график функции комплексного переменного $f(z) = \sqrt{z^2 + 2}$.
- 14. Изобразить координатную сетку эллиптической системы координат.
- 15. С помощью функций модуля geometry проиллюстрировать свойство пересечения высот треугольника в одной точке.

4

16. С помощью функций модуля plottools изобразить домик.

- 1. Изобразить на одном рисунке графики функций $f(x) = \sin 2x, \ g(x) = 2\sin^2 x, \ x \in [0,\pi]$. Графики изобразить линиями разного цвета и толщины. Добавить легенду.
- 2. Построить график неявной функции $x^2y^2 = 2\cos(xy)$ на интервале $x \in (-4,4)$.
- 3. Построить схематический график функции $f(x) = e^{-x} \sin(\pi x)$ на интервале $(0, +\infty)$.
- 4. Построить кардиоиду.
- 5. Построить логарифмическую спираль.
- 6. Построить гиперболическую лемнискату Бута.
- 7. Построить Декартов лист и его асимптоту.
- 8. Изобразить на одном рисунке эпициклоиду и гипоциклоиду для случая, когда радиусы неподвижной и катящейся окружностей относятся как $\frac{11}{2}$.
- 9. Получить анимацию вращения эллипса вокруг своего центра.
- 10. Отобразить градиентное поле и линии уровня функции $f(x,y) = \sin(xy)$ в области $x \in (-\pi,\pi), y \in (-\pi,\pi).$
- 11. Построить локсодрому (сферическую спираль).
- 12. Построить поверхность $r(\theta, \varphi) = \cos\left(\frac{3}{8}\theta\right), \ \theta \in (0, 2\pi), \ \varphi \in (0, \pi)$ в бисферической системе координат.
- 13. На комплексной плоскости построить график функции действительного переменного $f(x) = \sin(x+i) + \cos 2x$.
- 14. Изобразить координатную сетку полярной системы координат.
- 15. С помощью функций модуля geometry проиллюстрировать свойство пересечения биссектрис треугольника в одной точке.
- 16. C помощью функций модуля plottools изобразить красную пятиконечную звезду.

- 1. Построить график функции $f(x) = \frac{1-\cos x}{x}$ на участке $[-4\pi, 4\pi]$ с помощью толстой зеленой линии.
- 2. Построить график неявной функции $x^3 y^3 = 4 \sin x$ на интервале $x \in (-3,3)$.
- 3. Построить график гамма-функции $\Gamma(x)$ на интервале $(x \in [0,20])$. Использовать логарифмический масштаб по оси ординат.
- 4. Построить дельтоиду.
- 5. Построить спираль Ферма.
- 6. Построить эллиптическую лемнискату Бута.
- 7. Построить строфоиду и её асимптоту.
- 8. Изобразить на одном графике три конхоиды одной прямой. Параметры выбирать так, чтобы двойная точка в начале координат в первом случае являлась изолированной точкой, во втором случае точкой возврата, а в третьем случае узловой точкой.
- 9. Получить анимацию трансформации эллипса в гиперболу.
- 10. Отобразить векторное поле, определяемое функцией $F(x,y) = \begin{pmatrix} \frac{x}{\sqrt{x^2 + y^2 + 4}} \\ -\frac{y}{\sqrt{x^2 + y^2 + 4}} \end{pmatrix}$, в области $x \in (-2,2), \ y \in (-2,2).$
- 11. Построить коническую винтовую линию.
- 12. Построить поверхность $r(\theta,\varphi)=\cos(\varphi),\ \theta\in(0,2\pi),\ \varphi\in(0,\pi)$ в цилиндрической системе координат.
- 13. Построить график функции комплексного переменного $f(z) = \sqrt{z}$.
- 14. Изобразить координатную сетку биполярной системы координат.
- 15. С помощью функций модуля geometry проиллюстрировать свойство пересечения серединных перпендикуляров треугольника в одной точке.

6

16. C помощью функций модуля plottools изобразить флаг РФ.

Список литературы

- 1. *Васильев А. Н. Мар*le 8. Самоучитель / А.Н. Васильев. М. : Вильямс, 2003.
- 2. Дьяконов В. П. Марle 8 в математике, физике и образовании / В.П. Дьяконов. М. : СОЛОН-Пресс, 2003.
- 3. *Дьяконов В. П.* Maple 7: учебный курс / В.П. Дьяконов. СПб.: Питер, 2002.
- 4. Сдвижков О. А. Математика на компьютере : Maple 8 / О.А. Сдвижков. М. : СОЛОН-Пресс, 2003.
- 5. *Аладьев В. З.* Эффективная работа в Maple 6/7 / В.З. Аладьев. М. : Лаборатория Базовых Знаний, 2002.
- 6. Аладьев В. З. Программирование и разработка приложений в Марle / В.З. Аладьев, В.К. Бойко, Е.А. Ровба. Гродно : ГрГУ ; Таллинн : Междунар. Акад. Ноосферы, Балт. отд., 2007.
- 7. *Корольков О. Г.* Марle в примерах и задачах : учебное пособие для вузов / О.Г. Корольков, А.С. Чеботарев, Ю.Д. Щеглова. Воронеж : ИПЦ ВГУ, 2011.
- 8. *Проскуряков И. В.* Сборник задач по линейной алгебре / И.В. Проскуряков. М.: Юнимедиастайл, 2002.
- 9. Демидович Б. П. Сборник задач и упражнений по математическому анализу / Б.П. Демидович. M.: ACT: Actpeль, 2002.
- 10. Φ илиппов A. Φ . Сборник задач по дифференциальным уравнениям / A. Φ илиппов. M. : ЛКИ, 2008.
- 11. Задания для курсовой работы по математическому анализу (интегральное исчисление функций многих переменных): учебно-методическое пособие для вузов / Воронеж. гос. ун-т; сост. Г. А. Виноградова [и др.]. Воронеж: ИПЦ ВГУ, 2008.

Учебное издание

СИСТЕМЫ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ : ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Учебное пособие для вузов

Составитель

Корольков Олег Геннадьевич http://vk.com/korolkov_amm