Assignment 3 "The P-Hub"

Intelligent Systems

The p-hub problem

- The p-hub problem consists in selecting p main airports and linking the rest of the secondary airports to the nearest main airport in such a way as to minimize the time (or distance) between any pair of origin-destination airports.
- Each secondary airport is linked to the nearest main airport.
- Secondary airports are not connected to each other. To travel from one secondary airport to another, connections have to be made between main airports.

Example

Secondary Airports

An instance of the problem is defined by:

- P = number of main airports.
- Complete list of airports with coordinates that place them in a two-dimensional plane.

Objective of the problem:

 Select "P" main airports such that the time/distance summary between each pair of airports is as short as possible.

- To test your implementation we will use <u>known problems</u>
 - Each file stores the matrix of distances between all points (point = airport).
 - The first line indicates the number of points.
 - The second line is empty.
 - To read the distance matrix you can use the function:
 - read.csv("../data/AP40.txt", header=FALSE, skip=2, dec="", sep=" ")
 - You have to define the value of P.

Hill-Climber Algorithm

- Implements one of the 3 variants of the Hill-Climbing algorithm:
 - Basic
 - Stochastic
 - With random reset
- You must adapt the Breadth-First-Search.R algorithm and to keep the report to be able to make the analysis of the results.

Formulation of the problem

Description of the State (R data structure)

 The state is defined in a "complete" way with a vector with the main P airports. You can try 2 or 3 as P values.

Actions (type and number of instances)

You have to think about what action this problem will take.

• Evaluation function

- The cost (distance) of the routes between each pair of airports taking into account that to travel between two secondary airports connections have to be made through main airports.
- In this calculation, each secondary airport will be associated with the nearest main airport.

You are asked to

Implementation in R

- (You can use your Assignment 2 as a base)
- Complete the functions of the formulation in the p-hub-[GroupCode].R file
- Implement your Hill Climbing algorithm in hill-climbing-[GroupCode].R.
- Show the validation of your implementation using a file for testing p-hub[GroupCode].R.

Submission

Format

- ZIP file with all the R code
 - (commented when needed)

Criteria

- Correct solution (7,5%).
- Documentation and Efficiency of the code (2,5%).

