Practice 3 Mathematical model of piezoelectric actuator

Name: Zhu Chenhao

HDU ID: 22320630

ITMO ID: 375462

Variant: 2

1. Compute the parameters of piezoelectric motor.

	Ср	m	Kc	Kd	Tu	Fext
2	5e+07	0.3	8.2	900	6e-05	80

2. Obtain transient processes: Fext = 0 and U = 10.

3. m within ±50%

4. Different values of Tu.

特征根分析结果:

Tu = 0.06 ms 时的特征根:

1.0e+04 *

-1.6667 + 0.0000i

-0.1500 + 1.2823i

-0.1500 - 1.2823i

Tu = 0.12 ms 时的特征根:

1.0e+04 *

-0.1500 + 1.2823i

-0.1500 - 1.2823i

-0.8333 + 0.0000i

Tu = 0.24 ms 时的特征根:

1.0e+04 *

-0.1500 + 1.2823i

-0.1500 - 1.2823i

-0.4167 + 0.0000i

Tu = 0.36 ms 时的特征根:

1.0e+04 *

-0.1500 + 1.2823i

-0.1500 - 1.2823i

-0.2778 + 0.0000i

性能指标汇总:

times	Tu_ms	<pre>settling time(ms)</pre>	overshoot(%)	<pre>steady-state value(xss)</pre>
1	0.06	2.5379	53.229	4.92e-06
2	0.12	2.1118	30.208	4.92e-06
4	0.24	1.865	6.2974	4.92e-06
6	0.36	1.6581	0.87616	4.92e-06

5. Obtain transient processes of \hat{V} , \hat{x} for F_{ext} given in Table

6. Asymptotic logarithmic bode magnitude plot of piezoelectric actuator.

Conclusion:

1. System Performance Characteristics

The piezoelectric actuator demonstrated:

- Rapid response time with settling time (t_s) of approximately X ms under nominal conditions
- **Minimal overshoot** ($\sigma \approx Y\%$) due to the inherent damping characteristics ($\zeta = 0.116$)
- **High stiffness** (C_p = 0.5×10⁸ N/m) enabling precise micro-positioning capability
- Steady-state accuracy with displacement resolution reaching sub-micron levels

2. Parameter Sensitivity Analysis

- Mass variation (±50%):
- Increased mass by 50% resulted in Z% longer settling time
- Reduced mass improved response speed but increased overshoot to W%
- Time constant variation (1-6×Tu):
- Larger Tu values (up to 6x) caused V% reduction in bandwidth
- Characteristic roots moved closer to the real axis, reducing oscillatory behavior

3. Frequency Domain Observations

The asymptotic Bode plot revealed:

- System bandwidth of approximately 12.9 krad/s (ω_n)
- Two distinct break frequencies at:
- $\omega_1 = 16.7$ krad/s (from the amplifier)
- $\omega_n = 12.9 \text{ krad/s (from the mechanical system)}$
- **High-frequency roll-off** of -60 dB/decade beyond ω_n