聚类分析
2023年11月29日 21:54
聚类分析的一般步骤
 选取合适的变量 缩放数据(标准化)
scale() 3. 寻找异常点 outliers包中函数筛选一场单变量离群点
4. 计算距离(默认使用欧几里得距离) 欧几里得距离适用连续型数据的距离度量 若存在其他数据类型,可以使用cluster包中的daisy()函数
的欧几里得距离定义为: $d_{ij}=\sqrt{\sum_{p=1}^p(x_{ip}-x_{jp})^2}$
这里 i 和 j 代表第 i 和第 j 个观测值 ,
p 是变量的个数。
dist()计算距离并形成形成下三角矩阵 as.matix()将下三角矩阵转换为标准矩阵 5. 选择聚类算法
a. 层次聚类对于小样本来说很实用(150以下) b. 划分聚类能处理更大的数据量
6. 确定类的数目7. 获得最终的聚类解决方案8. 结果可视化
聚类结果通常表示为树状图9. 解读类10. 验证结果
fpc、clv、clValid包包含了评估聚类解的稳定性的函数
层次聚类 每一个观测值自成一类,两两合并,最终全部合成一类 算法步骤:
1. 定义每个观测值为一类 2. 计算每类和其它各类的距离 3. 把距离最短的两类合并为一类,这样类的个数就减少一个
4. 重复步骤(2)和步骤(3), 直到包含所有观测值的类合并为单个的类 各种层次聚类算法的区别是对类的定义不同

	L						
聚类	方法	7	5类之间的距离 分	定义			
单联动	单联动 一个类中的点和另一个类中的点的最小距离						
全联动	全联动 一个类中的点和另一个类中的点的最大距离						
平均联	平均联动 一个类中的点和另一个类中的点的平均距离(也称作UPGMA,即非加权对组平均)						
质心	质心 两类中质心(变量均值向量)之间的距离。对单个的观测值来说,质心就是变量的值						
Ward法	Ward法 两个类之间所有变量的方差分析的平方和						
全联动(cor 平均联动(a	single)倾向于发现 mplete)倾向于发; average)提供了两 (d,method=)	现大致相等的重					
例子:							
	nutrient,package= ames(nutrient) <-	· ·	mes(nutrie	nt))#将行名转	英为小写		
nutrie	nt.scale <- scale(1	nutrient)#数据标	示准化	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	list(nutrient.scale) erage <- hclust(d,i			类			
plot(f	it.average,hang=1	,cex=0.8,main=	'Average L	inkage Clusteri	ng')		
划分聚约	类的个数为 K ,将	勿加估吃扣人	比V米 西	舌鈍取入			
目尤指此分	它的有数 对 K,构		风 【关,一 円	里胡承百			