期中 2015-2016

期中 2015-2016

1.已知
$$A = \begin{bmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{bmatrix}$$
, 则代数余子式之和 $A_{41} + A_{42} + A_{43} + A_{44} =$ _______.

2.设
$$f(x) = \begin{bmatrix} 2x & x & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 1 & x \end{bmatrix}$$
, 则 x^3 的系数为______。

学院:

3.设
$$a,b,c$$
 满足方程 $\begin{vmatrix} 1 & a & b & c \\ a & 1 & 0 & 0 \\ b & 0 & 1 & 0 \\ c & 0 & 0 & 1 \end{vmatrix} = 1$, 则 $abc = ______$ 。
4.设 $A = \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$,若 $B = 2BA - 3I$,其中 I 为单位矩阵,则 $|B| = ______$ 。

4.设
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}$$
,若 $B = 2BA - 3I$,其中 I 为单位矩阵,则 $|B| = _____$ 。

5.若
$$A$$
 为 4 阶方阵, A^* 为 A 的伴随矩阵, $|A| = \frac{1}{2}$,则 $\left| \left(\frac{1}{4} A \right)^{-1} - A^* \right| =$ _______。

6.设
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 3 \end{bmatrix}$$
,则 $(A*)^{-1} =$ _____。

7.设
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 1 & -4 \\ 1 & 2 & 3 & -1 \\ 2 & 3 & -1 & -1 \end{bmatrix}, 则 $ABA^{-1} = \underline{\qquad \qquad }$$$

8.设
$$A,B$$
 均为 n 阶方阵, $|A|=2$,且 AB 可逆,则 $r(B)=$ _____。

$$9.计算行列式 \begin{vmatrix} 5 & 0 & 4 & 2 \\ 1 & -1 & 2 & 1 \\ 4 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

$$10.计算行列式 \begin{vmatrix} a^2 & ab & b^2 \\ 2a & a+b & 2b \\ 1 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} a^2 & ab & b^2 \\ 2a & a+b & 2b \\ 1 & 1 & 1 \end{vmatrix}$$

班序号: 学院: 学号: 姓名: 王松年 2

13.

14.设
$$A$$
 可逆,且 $A^*B=A^{-1}+B$,证明 B 可逆,当 $A=\begin{bmatrix} 2 & 6 & 0 \\ 0 & 2 & 6 \\ 0 & 0 & 2 \end{bmatrix}$ 时,求 B 。

15.设 A 为 n 阶方阵, $AA^T = I$,|A| < 0,证明:|A + I| = 0。

期中 2016-2017

16.设
$$M_{ij}$$
 是 $\begin{vmatrix} 0 & 4 & 0 \\ 2 & 2 & 2 \\ 2 & 0 & 0 \end{vmatrix}$ 的第 i 行第 j 列元素的余子式,则 $M_{11}+M_{22}=$ _____。

17.计算行列式
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} = ______.$$

$$\begin{vmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} = _____$$

$$18. 设方程组 \begin{cases} 2x_1 - x_2 + x_3 = 0 \\ x_1 + kx_2 - x_3 = 0 \end{cases}$$

$$kx_1 + x_2 + x_3 = 0$$

$$f = x_1 + x_2 + x_3 = 0$$

$$19. \c b f(x) = ax^2 + bx + c, A 为 n 阶方阵,定义 $f(A) = aA^2 + bA + cI, \ \text{如果 } A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, f(x) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$$

 $x^2 - x - 1$, \emptyset f(A) = 0

20.若 A 为 3 阶方阵, A^* 为 A 的伴随矩阵, $|A|=rac{1}{2}$,则 $|(3A)^{-1}-2A^*|=$ _____。

21.

$$23. \ \mathcal{G} \ f(x) = \begin{vmatrix} x-1 & 1 & -1 & 1 \\ -1 & x+1 & -1 & 1 \\ -1 & 1 & x-1 & 1 \\ -1 & 1 & -1 & x+1 \end{vmatrix}, \ \ \mathcal{R} \ f(x) = 0 \ \text{的根}.$$

24.

25.

26.若
$$\left(\frac{1}{4}A^*\right)^{-1}BA^{-1} = 2AB + I$$
,且 $A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$,求 B 。

27.设 A 满足 $A^2 - 2A + 4I = 0$, 证明 A + I 可逆, 并求 $(A + I)^{-1}$.

28.已知 $A = (a_{ij})$ 是三阶的非零矩阵,设 A_{ij} 是 a_{ij} 的代数余子式,且对任意的 i, j 有 $A_{ij} + a_{ij} = 0$,求 A 的行列式。

期中 2017-2018

29.计算行列式
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 3 & 1 \\ 1 & 4 & 1 & 1 \end{vmatrix}.$$
30.求方程
$$\begin{vmatrix} 1 & 2 & 1 & 1 \\ 1 & x & 2 & 3 \\ 1 & 2 & x & 2 \\ 0 & 0 & 2 & x \end{vmatrix} = 0 的根.$$

31.设 $\gamma_1,\gamma_2,\gamma_3,\gamma_4$ 及 β 均为 4 维列向量。4 阶矩阵 $A=[\gamma_1\ \gamma_2\ \gamma_3\ \gamma_4], A=[\beta\ \gamma_2\ \gamma_3\ \gamma_4],$ 若 |A|=2,|B|=3,求

- (1)|A + B|;
- $(2)|A^2 + AB|$;

32.

33.

34.设 A, B 为同阶对称方阵,则 AB 一定是对称矩阵;

35.设 A, B 为 n 阶可逆方阵,则 $(AB)^* = B^*A^*$.

36.若 $A^2 = B^2$,则 A = B 或 A = -B。

37.设 2 阶矩阵 $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$,若 A 与所有的 2 阶矩阵均可以交换,则 a=d,b=c=0。

38.若 AB = I 且 BC = I,其中 I 为单位矩阵,则 A = C。

39.若 n 阶矩阵 A 满足 $A^3 = 3A(A - I)$,则 I - A 可逆。

期中 2018-2019

40.计算行列式
$$\begin{vmatrix} b^2 + c^2 & c^2 + a^2 & a^2 + b^2 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$
.

- 41.设 A, B 为 3 阶矩阵, 且 $|A| = 3, |B| = 2, A^*$ 为 A 的伴随矩阵。
- (1) 若交换 A 的第一行与第二行得矩阵 C, 求 $|CA^*|$;

42.已知 3 阶矩阵 A 的逆矩阵 $A^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$,试求伴随矩阵 A^* 的逆矩阵。

43.设
$$n$$
 阶行列式 $D_n(n=1,2,\cdots): D_1=1, D_2=\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}, D_3=\begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}, D_4=\begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix}, \dots, D_n=$

$$\begin{vmatrix} 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 1 & 1 \\ 0 & \cdots & 0 & 0 & 1 & 1 \end{vmatrix}.$$

- (1) 给出 D_n, D_{n-1}, D_{n-2} 的关系;
- (2) 利用找到的递推关系及 $D_1 = 1, D_2 = 0$, 计算 D_3, D_4, \dots, D_8 ;
- (3) 求 D_{2018}

44.已知矩阵
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, 且矩阵 X 满足

$$AXA + BXB = AXB + BXA + I$$

其中 I 为 3 阶单位阵, 求 X。

45.

(2) 当 A 和 B 等价时, 求可逆矩阵 P, 使得 PA = B。

46.若 n 阶实矩阵 Q 满足 $QQ^T = I$,则称 Q 为正交矩阵。设 Q 为正交矩阵,则

- (1)Q 的行列式为 1 或-1.
- (2) 当 |Q| = 1 且 n 为奇数时,证明 |I Q| = 0,其中 I 是 n 阶单位矩阵;
- (3)Q 的逆矩阵 Q^{-1} 和伴随矩阵 Q^* 都是正交矩阵。

47.设 $A \in \mathbb{R}$ 阶实对称矩阵,如果 $A^2 = 0$ 。证明 A = 0.并举例说明,如果 A 不是实对称矩阵,上述命 题不正确。

期末 2014-2015

48.若已知行列式
$$\begin{vmatrix} 1 & 3 & a \\ 5 & -1 & 1 \\ 3 & 2 & 1 \end{vmatrix}$$
 的代数余子式 $A_{21} = 1$,则 $a =$ _____。
49.设 $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & 0 \\ 3 & t & 4 \end{bmatrix}$, B 为 3 阶非零矩阵且 $AB = 0$,则 $t =$ _____。

49.设
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & 0 \\ 3 & t & 4 \end{bmatrix}$$
, B 为 3 阶非零矩阵且 $AB = 0$,则 $t =$ _____。

50.设 3 阶方阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 的行列式 |A| = 3, 矩阵 $B = (\alpha_2, 2\alpha_3, -\alpha_1)$,则行列式 |A - B| = 2

51.已知 3 阶矩阵 A 的特征值为 $-1,3,2, A^*$ 是 A 的伴随矩阵,则矩阵 $A^3 + 2A^*$ 主对角线元素之和 为。

52.已知实二次型 $f(x_1,x_2,x_3) = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_1x_3 + 4x_2x_2$ 经正交变换 x = py 可化为标 准形: $f = 6y^2$, 则 a =

53.设
$$(1,1,1)^T$$
 是矩阵 $\begin{bmatrix} 1 & 2 & 3 \\ 0 & a & 2 \\ 2 & 2 & b \end{bmatrix}$ 的一个特征值,则 $a-b=$ ______。

$$53.$$
设 $(1,1,1)^T$ 是矩阵
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & a & 2 \\ 2 & 2 & b \end{bmatrix}$$
 的一个特征值,则 $a-b=$ ____。
$$54.$$
设多项式 $f(x)=\begin{bmatrix} 2x & 3 & 1 & 2 \\ x & x & -2 & 1 \\ 2 & 1 & x & 4 \\ x & 2 & 1 & 4x \end{bmatrix}$,分别求该多项式的三次项、常数项。
$$\begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix}$$

55.设
$$A$$
 的伴随矩阵 $A^* = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & -3 & 0 & 8 \end{bmatrix}$, 且 $ABA^{-1} = BA^{-1} + 3I$,求 B 。

$$56.\lambda$$
 为何值时,方程组
$$\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1 \\ \lambda x_1 - x_2 + x_3 = 2 \end{cases}$$
 有无穷多组解?并在有无穷多解时,写出方程组的通解。
$$4x_1 + 5x_2 - 5x_3 = -1$$

$$57.$$
 设 $\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}, \alpha_4 = \begin{bmatrix} 4 \\ -2 \\ 5 \\ 6 \end{bmatrix}.$

57.设
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 1 \\ 3 \\ 3 \\ 5 \end{bmatrix}, \alpha_4 = \begin{bmatrix} 4 \\ -2 \\ 5 \\ 6 \end{bmatrix}.$$

- (2) 将其余向量用极大线性无关组线性表示。

58.设实二次型

$$f(x_1, x_2, x_3) = X^T A X = ax_1^2 + 2x_2^2 - 2x_3^2 + 2bx_1 x_3 \quad (b > 0)$$

的矩阵 A 的特征值之和为 1,特征值之积为-12。

- (1) 求 a, b 的值;
- (2) 利用正交变换将二次型 f 化为标准型, 并写出所用正交变换。

59.

(2) 证明: 矩阵 A + 2I 可逆, 并求 $(A + 2I)^{-1}$ 。

60.设 X_0 是线性方程组 Ax = b ($b \neq 0$) 的一个解, X_1, X_2 是导出组 Ax = 0 的一个基础解系。令 $\xi_0 = X_0, \xi_1 = X_0 + X_1, \xi_2 = X_0 + X_2$, 证明: ξ_0, ξ_1, ξ_2 线性无关。

61.设 3 阶方阵 A 的特征值-1,1 对应的特征向量分别为 α_1, α_2 ,向量 α_3 满足 $A\alpha_3 = \alpha_2 + \alpha_3$.

- (1) 证明: $\alpha_1, \alpha_2, \alpha_3$ 线性无关;
- (2) 设 $P = [\alpha_1, \alpha_2, \alpha_3]$, 求 $P^{-1}AP$ 。

63.

64.设 $\alpha_1, \alpha_2, \alpha_3$ 是非齐次线性方程组 Ax = b 得到解,若 $\sum_{i=1}^{3} c_i \alpha_i$ 也是 Ax = b 得到解,则 $\sum_{i=1}^{3} c_i =$ ______。

65.已知矩阵
$$A = \begin{bmatrix} 3 & 2 & -1 \\ a & -2 & 2 \\ 3 & b & -1 \end{bmatrix}$$
,若 $\alpha = (1, -2, 3)^T$ 是其特征向量,则 $a+b=$ _____。

66.任意 3 维实列向量都可以由向量组 $\alpha_1 = (1,0,1)^T, \alpha_2 = (1,-2,3)^T \alpha_3 = (t,1,2)^T$ 线性表示,则 t 应满 足条件____。

$$67.$$
若矩阵 $A = egin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{bmatrix}$ 正定,则 λ 满足的条件为______。

$$67. 若矩阵 $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{bmatrix}$ 正定,则 λ 满足的条件为____。
$$68. 若行列式 D = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 4 & 6 \\ 3 & 4 & 1 & 2 \\ 2 & 2 & 2 & 2 \end{bmatrix}, \ \, 求 \, A_{11} + 2A_{21} + A_{31} + 2A_{41}, \ \, 其中 \, A_{ij} \, 为元素 \, a_{ij} \, \,$$
的代数余子式。
$$69. 已知矩阵 X 满足方程 X \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ -1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 0 \\ 3 & 0 & 5 \end{bmatrix}, \ \, 求矩阵 X.$$$$

69.已知矩阵
$$X$$
 满足方程 $X\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ -1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 0 \\ 3 & 0 & 5 \end{bmatrix}$,求矩阵 X 。

70.设向量组 $\alpha_1 = (1, -1, 2, 4), \alpha_2 = (0, 3, 1, 2), \alpha_3 = (3, 0, 7, 14), \alpha_4 = (1, -1, 2, 0), \alpha_5 = (2, 1, 5, 6),$ 求向 量组的秩、极大线性无关组,并将其余向量由极大无关组线性表示出。

71.

72.设 3 阶实对称矩阵 A 的特征值为 $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1$, 对应于 λ_1 的特征向量 $\alpha_1 = (0, 1, 1)^T$ 。

- (1) 求 A 对应于特征值 1 的特征向量;
- (2) 求 A;
- (3) 求 A^{2016} 。

73.设
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{bmatrix}$$
 , A^T 为矩阵 A 的转置,已知 $r(A) = 2$,且二次型 $f(x) = x^T A^T A x$.

- (2) 写出二次型 f(x) 的矩阵 $B = A^T A$;
- (3) 求正交变换 x = Qy 将二次型 f(x) 化为标准型,并写出所用的正交变换。

74.设 A 为 n 阶实对称矩阵,且满足 $A^{2} - 3A + 2E = 0$, 其中 E 为单位矩阵,试证:

- (1)A + 2E 可逆;
- (2)A 为正定矩阵。

75.设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,向量 β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,向量 γ 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 证明向量组 $\alpha_1, \alpha_2, \alpha_3, \beta + \alpha$ 线性无关。

期末 2016-2017

班序号: 学院: 学号: 姓名: 王松年 8

为____

79.设
$$\alpha_1 = (a,1,1)^T, \alpha_2 = (1,b,-1)^T, \alpha_3 = (1,-2,c)^T$$
 是正交向量组,则 $a+b+c=$ ____。

80.设3阶实对称矩阵 A的特征值分别为 1,2,3 对应的特征向量分别为 $\alpha_1 = (1,1,1)^T, \alpha_2 = (2,-1,-1)^T, \alpha_3$, 则 A 的对应于特征值 3 的一个特征向量 $\alpha_3 =$ _____。

81.设
$$B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & \lambda \end{bmatrix}$$
,已知二次型 $f(x) = x^T B x$ 是正定的,则 λ 的取值范围为_____。

81.设
$$B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & \lambda \end{bmatrix}$$
,已知二次型 $f(x) = x^T B x$ 是正定的,则 λ 的取值范围为____。

82.若行列式 $D = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 4 & 6 \\ 0 & 4 & 1 & 2 \\ 0 & 2 & 2 & 2 \end{bmatrix}$,求 $A_{11} - 2A_{21} + A_{31} - 2A_{41}$,其中 A_{ij} 为元素 a_{ij} 的代数余子式。

83.设 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$,B 为三阶矩阵,且满足方程 $A^*BA = I + 2A^{-1}B$,求矩阵 B 。

83.设
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
, B 为三阶矩阵,且满足方程 $A*BA = I + 2A^{-1}B$,求矩阵 B 。

84.设向量组 $\alpha_1 = (3,1,4,3)^T$, $\alpha_2 = (1,1,2,1)^T$, $\alpha_3 = (0,1,1,0)^T$, $\alpha_4 = (2,2,4,2)^T$, 求向量组的所有的极 大线性无关组。

85.令 $\alpha = (1, 1, 0)^T$, 实对称矩阵 $A = \alpha \alpha_T$.

- (1) 把矩阵 A 相似对角化;
- (2) \vec{x} |6 $I A^{2017}$ |.

86.已知实对称矩阵
$$A\begin{bmatrix} a & -1 & 4 \\ -1 & 3 & b \\ 4 & b & 0 \end{bmatrix}$$
 与 $A\begin{bmatrix} 2 & & \\ & -4 & \\ & 5 \end{bmatrix}$ 相似。

- (1) 求矩阵 A 化;
- (2) 求正交线性变换 x = Qy, 把二次型 $f(x) = x^T Ax$ 化为标准型.

87.在对观测数据拟合的时候经常遇到线性方程组 Ax = b 是矛盾方程的情形,是没有解的。此时我们转 而解 $A^TAx = A^Tb$,我们称 $A^TAx = A^Tb$ 是原线性方程组的正规方程组。称正规方程组的解为原方程组的最

小二乘解。设
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}.$$

- (2) 求 Ax = b 的最小二乘解。

88.已知 $\alpha_1, \alpha_2, \alpha_3$ 是线性无关的向量组,若 $\alpha_1, \alpha_2, \alpha_3, \beta$ 线性相关,证明 β 可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示并 且表示方法唯一。

- 89.已知 A, B 是同阶实对称矩阵。
- (1) 证明如果 $A \sim B$,则 $A \simeq B$,也就是相似一定合同;
- (2) 举例说明反过来不成立。

期末
$$2017$$
- 2018
$$90.设 A_{ij}$$
 是三阶行列式 $D=\begin{vmatrix} 2 & 2 & 2 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$ 第 i 行第 j 列元素的代数余子式,则 $A_{31}+A_{32}+A_{33}=$ _____。

91.设

92.设
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 2 \end{bmatrix}$$
,记 $A*$ 是 A 的伴随矩阵,则 $(A^*)^{-1} =$ _____。

93.已知 3 阶方阵 A 的秩为 2,设 $\alpha_1 = (2,2,0)^T, \alpha_2 = (3,3,1)^T$ 是非齐次线性方程组 Ax = b 的解,则 导出 Ax = 0 的基础解系为 。

94.若 3 阶矩阵 A 相似于 B,矩阵 A 的特征值是 1,2,3 那么行列式 $|2B+I| = _______.$ (其中 I 是 3 阶 单位矩阵)

95.设二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2tx_2x_3$ 的秩为 2,则 t =______。

96.计算行列式
$$D = \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$
.

97.解矩阵方程 $(2I - B^{-1}A)X^T = B^{-1}$, 其中 I 是 3 阶单位矩阵, X^T 是 3 阶矩阵 X 的转置矩阵,

班序号: 学号: 姓名: 王松年 10

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

98.

99.设 1 为矩阵
$$A\begin{bmatrix} 1 & 2 & 3 \\ x & 1 & -1 \\ 1 & 1 & x \end{bmatrix}$$
 的特征值,其中 $x > 1$.

- (1) 求 x 及 A 的其他特征值。
- (2) 判断 A 能否对角化,若能对角化,写出相应的对角矩阵 A。
- 100.设 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2$ 。
- (1) 写出该二次型的矩阵 A;
- (2) 求正交矩阵 Q 使得 $Q^TAQ = Q^{-1}AQ$ 为对角型矩阵;
- (3) 给出正交变换, 化该二次型为标准型。

101. 己知
$$\alpha_1 = (1, 4, 0, 2)^T$$
, $\alpha_2 = (2, 7, 1, 3)^T$, $\alpha_3 = (0, 1, -1, a)^T$ 及 $\beta_4 = (3, 10, b, 4)^T$.

- (1)a,b 为何值时, β 不能表示成 $\alpha_1,\alpha_2,\alpha_3$ 的线性组合?
- (2)a,b 为何值时, β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示? 并写出该表达式。

102.设 A, B 均为 n 阶方阵,证明:若 A, B 相似则 |A| = |B|,举例说明反过来不成立。

103.设 A 为 $m \times n$ 实矩阵,证明 Ax = 0 与 $(A^T A)x = 0$ 是同解方程,进一步得出 $r(A) = r(A^t A)$ 。

期末 2018-2019

104.设 A 为 5 阶方阵满足 $|A|=2,A^*$ 是 A 的伴随矩阵,则 $|2A^{-1}A^*A^T|=$ _____。

105.已知向量组 $\alpha_1=(1,3,1), \alpha_2=(0,1,1), \alpha_3=(1,4,k)$ 线性无关,则实数 k 满足的条件是_____。

106.

107.设 $A = (a_{ij})_{3\times 3}$,其特征值为 1, -1, 2, A_{ij} 是元素 a_{ij} 的代数余子式, A^* 是 A 的伴随矩阵,则 A^* 的主对角线元素之和即 $A_{11} + A_{22} + A_{33} = ______。$

108.若二次型
$$f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 4x_3^2 + 2tx_1x_2 - 2x_1x_3 + 4x_2x_3$$
 正定,则 t 应满足_____。

109.设 3 维列向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,3 阶方阵 A 满足 $A\alpha_1 = -\alpha_1, A\alpha_2 = \alpha_2, A\alpha_3 = \alpha_2 + \alpha_3$ 。则行列式 |A| =_____。

110.已知
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & 2 & 2 & 3 \\ 1 & 4 & 3 & 9 \\ -1 & 8 & 5 & 27 \end{vmatrix}$$
, 求 $A_{13} + A_{23} + A_{33} + A_{43}$, 其中 A_{ij} 为元素 a_{ij} 的代数余子式。

$$\begin{vmatrix} -1 & 8 & 5 & 27 \\ 1 & 3 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}, 且 X 满足 AX = X + A, 求 X.$$

112.设矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 3 \\ 3 & 5 & 1 & 5 \end{bmatrix}$$
, A^* 是 A 的伴随矩阵,求 $r(A)$, $r(A^*)$ 和 A 的列向量组的极大线性无关组。

113.

- 114. 设实二次型 $f(x_1, x_2, x_3) = 4x_1x_2 4x_1x_3 + 4x_2^2 + 8x_2x_3 3x_3^2$ 。
- (1) 写出该二次型的矩阵 A;
- (2) 求正交矩阵 P,使得 $P^{-1}AP$ 为对角型矩阵;
- (3) 给出正交变换,将该二次型化为标准型;
- (4) 写出二次型的秩,正惯性指标和负惯性指标。
- 115.设 n 阶矩阵 A 满足 $A^2 + 3A 4I = 0$, 其中 I 为 n 阶单位矩阵。
- (1) 证明: A, A + 3I 可逆, 并求他们的逆;
- (2) 当 $A \neq I$ 时,判断 A + 4I 是否可逆并说明理由。(4) 写出二次型的秩,正惯性指标和负惯性指标。
- 116.若同阶矩阵 A = B 相似,即 $A \sim B$,证明 $A^2 \sim B^2$ 。反过来结论是否成立并说明理由。
- 117.设 λ_1, λ_2 是对应于 λ_2 的线性无关的特征向量,证明: 向量组 $\alpha_{11}, \dots, \alpha_{1s}, \alpha_{21}, \dots, \alpha_{2t}$ 线性无关。

期末 2019-2020

118.设 A 是 3 阶方阵,E 是 3 阶单位矩阵,已知 A 的特征值为 1,1,2,则 $\left|\left(\left(\frac{1}{2}A\right)^*\right)^{-1} - 2A^{-1} + E\right| = ______$ 。

119.

120.记
$$A = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 3 \\ 1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 \end{bmatrix}$$
,则 A^{-1} ____。

121.

122.已知 n 阶方阵 A 对应于特征值 λ 的全部的特征向量为 $c\alpha$, 其中 c 为非零常数, 设 n 阶方阵 P 可逆, 则 $P^{-1}AP$ 对应于对应于特征值 λ 的全部的特征向量为。

123.已知实对称矩阵
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 3 \\ 1 & 3 & x \end{bmatrix}$$
 的正惯性指数为 3,则 x 的取值范围为_____。
124.设 $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. 求满足 $AX = XA$ 的全部的矩阵 X 。

124.设
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. 求满足 $AX = XA$ 的全部的矩阵 X 。

125.求线性方程组
$$\begin{cases} x_1 + 3x_2 + 2x_3 + 3x_4 = 0 \\ 2x_1 + 4x_2 + x_3 + 3x_4 = 0 \end{cases}$$
 的一个基础解系。
$$2x_1 + 4x_2 + 4x_4 = 0$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$125. 求线性方程组 \begin{cases} x_1 + 3x_2 + 2x_3 + 3x_4 = 0 \\ 2x_1 + 4x_2 + x_3 + 3x_4 = 0 \end{cases} \quad \text{的一个基础解系。}$$

$$2x_1 + 4x_2 + 4x_4 = 0$$

$$\begin{bmatrix} a_n & & & b_n \\ & a_{n-1} & & b_{n-1} \\ & & \ddots & & \ddots \\ & & & a_1 & b_1 \\ & & & c_1 & d_1 \\ & & & \ddots & & \ddots \\ & & & c_{n-1} & & d_{n-1} \\ & & & & d_n \end{bmatrix}$$

- (1) 求 $|A_1|, |A_2|$
- (2) 求 $|A_n|$ 。

127.设向量组 $\alpha_1 = (1, -4, -3)^T$, $\alpha_2 = (-3, 6, 7)^T$, $\alpha_3 = (-4, -2, 6)^T$, $\alpha_4 = (3, 3, -4)^T$, 求向量组的秩, 并 写出一个极大线性无关组,并将其余向量由极大无关组线性表示出。

128.已知 3 阶方阵 $A = \begin{bmatrix} -1 & a+2 & 0 \\ a-2 & 3 & 0 \\ 8 & -8 & -1 \end{bmatrix}$ 可以相似对角化且 A 得到特征方程有一个二重根,求 a 的

值。其中 $a \leq 0$.

129.设三元二次型 $f(x_1, x_2, x_3) = 4x_2^2 + 4x_3^2 - 2x_1x_2 + 4x_1x_3$.

- (1) 写出该二次型的矩阵 A;
- (2) 用正交变换 x = Qy 把该二次型化为标准型。

130.设 A 为 m 阶正定矩阵, B 为 $\times n$ 实矩阵, B^T 为 B 的转置矩阵, 试证: B^TAB 为正定矩阵的充分 必要条件是 B 的秩 r(B) = n。

131.设 α, β 是 n 维列向量,证明 $r(\alpha \alpha^T + \beta \beta^T) < 2$ 。