Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №18 по курсу:

«Функциональное и Логическое программирование»

Студент группы ИУ7-63Б: Фурдик Н. О.

(Фамилия И.О.)

Преподаватель: Толпинская Н. Б., Строганов Ю. В.

(Фамилия И.О.)

Оглавление

Постановка задачи
Листинг программы
Описание порядка поиска ответов
Ответы на вопросы
Список литературы

Постановка задачи

Используя хвостовую рекурсию, разработать программу, позволяющую найти

1) **n!**;

2) п-е число Фибоначчи.

Убедиться в правильности результатов. Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов ВОПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг надо начинать с нового состояния резольвенты!

Листинг программы

Ниже представлен листинг программы:

```
domains
list = integer*.
predicates
len(list, integer length).
sum(list, integer sum).
odd sum(list, integer sum, integer index).
clauses
len([], 0) := !.
len([\_|Tail], Length) :-len(Tail, Tail\_Length), Length = Tail\_Length + 1.
sum([], 0) :-!.
sum([Head|Tail], Sum) :-sum(Tail, Sum_), Sum = Sum_ + Head.
odd sum([], 0, ):-!.
odd sum([Head|Tail], Sum, Index) :-Index mod 2 = 1, Next Index = Index + 1,
                        odd sum(Tail, Sum , Next Index), Sum = Sum + Head.
odd sum([ |Tail], Sum, Index) :-Index mod 2 = 0, Next Index = Index + 1,
                        odd sum(Tail, Sum, Next Index).
goal
len([1,21,3,4,5], Length).
%[1,21,3,4,5]
%sum of numbers
%sum([1,21,3,4,5], Sum).
%Sum=34
%1 Solution
%sum of odd
%odd sum([1,21,3,4,5], Sum, 0).
%Sum=25
%1 Solution
```

Листинг 1: Задания 1 и 2

Описание работы системы

Ниже представлен алгоритм поиска ответов на вопросы fact(2, Result) и fibb(2, Result).

Таблица 1: Описание работы системы при решении факториала

№ шага	Состояние резольвенты, и вы-	Для каких термов запускается	Дальнейшие действия: прямой
т шага	вод: дальнейшие действия (по-	алгоритм унификации: Т1=Т2	ход или откат (почему и к чему
	чему?)	и каков результат (и подста-	приводит?)
	TONIY.)	новка)	приводит.)
1	Резольвента:	,	прямой ход
	fact(2, Result). Начинается по-		
	иск совпадений по БЗ		
2	Резольвента:	Нашли подходящее правило:	прямой ход
	fact(2, Result).	fact(Curr, Next) :- Cur = Curr	
		- 1, fact(Cur, Res), Next = Res	
		\mid * Curr. Подставляем Curr $=2,$	
		${ m Next}={ m Result}$	
3	Резольвента:	Пробуем связать: Cur = 2 - 1 =	прямой ход, подставляем Cur =
	$\mathrm{Cur} = \mathrm{Curr} - 1,$	1, удача, идем дальше.	1 в fact(Cur, Res)
	fact(2, Result).		
4	Резольвента:	Поиск совпадений по БЗ.	прямой ход
	fact(1, Res),	Нашли подходящее правило:	
	fact(2, Result).	fact(Curr, Next) :- Cur = Curr	
		- 1, fact(Cur, Res), Next = Res	
		* Curr. Подставляем Curr = 1,	
		${ m Next}={ m Res}$	
5	Резольвента:	Пробуем связать: Cur = 1 - 1 =	прямой ход, подставляем Cur =
	$\mathrm{Cur} = \mathrm{Curr}$ - 1,	0, удача, идем дальше.	0 в fact(Cur, Res)
	fact(2, Result).		
6	Резольвента:	Поиск совпадений по БЗ.	прямой ход
	fact(0, Res),	Нашли подходящее правило:	
	fact(1, Res),	fact(0, 1) :- !. Подставляем Res	
	fact(2, Result).	=1, один из вопросов решен.	
7	Резольвента:	Пробуем связать: Next = Res	прямой ход
	fact(1, Res),	* Curr = 1 * 1, (Res = 1 из	
	fact(2, Result).	предыдущего шага). Подстав-	
		ляем $\mathrm{Res}=1,$ один из вопросов	
		решен.	
8	Резольвента:	Пробуем связать: Next = Res	прямой ход
	fact(2, Result).	* Curr = 1 * 2, (Res = 1 из	
		предыдущего шага). Подстав-	
		ляем $\operatorname{Result} = \operatorname{Next} = 2$, вопрос	
		решен.	
Вывод	$\mathrm{Result} = 2$		

Таблица 2: Описание работы системы при решении факториала

№ шага	Состояние резольвенты, и вы-	Для каких термов запускается	Дальнейшие действия: прямой
№ шага	вод: дальнейшие действия (по-	алгоритм унификации: T1=T2	
	вод. дальнеишие деиствия (почему?)	и каков результат (и подста-	ход или откат (почему и к чему приводит?)
	чему:)	,	приводит:)
1	D	новка)	
1	Резольвента:		прямой ход
	fibb(2, Result). Начинается по-		
	иск совпадений по БЗ		
2	Резольвента:	Нашли подходящее прави-	прямой ход
	fibb(2, Result).	ло: fibb(Curr, Next) :- Cur	
		= Curr - 1, Prev = Cur - 1,	
		fibb(Cur, Cur_Res), fibb(Prev,	
		Prev_Res), Next = Cur_Res +	
		Prev_Res. Подставляем Curr	
		=2, Nex $=$ Result	
3	Резольвента:	Пробуем связать: Cur = 2 - 1 =	прямой ход, подставляем Cur =
	$\mathrm{Cur}=\mathrm{Curr}$ - 1,	1, удача, идем дальше.	1 в fact(Cur, Res)
	fact(2, Result).		
4	Резольвента:	Пробуем связать: Prev = 1 - 1	прямой ход, подставляем Cur =
	Prev = Cur - 1,	= 0, удача, идем дальше.	1 в fibb(Cur, Cur_Res)
	fact(2, Result).		
5	Резольвента:	Поиск совпадений по БЗ.	прямой ход, подставляем Prev
	$fibb(1, Cur_Res)$	Нашли подходящее правило:	$ = 0$ в fact(Prev, Prev_Res)
	fibb(2, Result).	fibb(1, 1) :- !. Подставляем	
		$\operatorname{Cur}_{-}\operatorname{Res}=1$, один из вопросов	
		решен.	
6	Резольвента:	Поиск совпадений по БЗ.	прямой ход
	$fibb(0, Prev_Res)$	Нашли подходящее правило:	
	fibb(2, Result).	fibb(0, 0) :- !. Подставля-	
		\mid ем $Prev_Res = 0$, один из	
		вопросов решен.	
8	Резольвента:	Пробуем связать: Next =	прямой ход
	fibb(2, Result).	$Cur_Res + Prev_Res = 1 + 0.$	
		Подставляем Result = Next =	
		1, вопрос решен.	
Вывод	Result = 1		

Ответы на вопросы

1) Что такое рекурсия? Как организуется хвостовая рекурсия в Prolog? Как организовать выход из рекурсии в Prolog?

Рекурсия – это один из способов организации повторных вычислений.

Для осуществления хвостовой рекурсии рекурсивный вызов определяемого предиката должен быть последней подцелью в теле рекурсивного правила и к моменту рекурсивного вызова не должно остаться точек возврата (непроверенных альтернатив).

Параметры должны изменяться на каждом шаге так, чтобы в итоге либо сработал базис рекурсии, либо условие выхода из рекурсии, размещенное в самом правиле.

2) Какое первое состояние резольвенты?

Изначально в резольвенте находится вопрос.

3) В каком случае система запускает алгоритм унификации? Каково назначение использования алгоритма унификации? Каков результат работы алгоритма унификации?

Система запускает унификацию в том случае, если ей был задан вопрос. Унификация вопроса и первого предложения базы знаний происходит на первом шаге работы программы.

Алгоритм унификации необходим для попытки "увидеть одинаковость"— сопоставимость двух термов, может завершаться успехом или тупиковой ситуацией.

Результат алгоритма унификации – ответ «да» или «нет».

4) В каких пределах программы уникальны переменные?

Именованные переменные уникальны в рамках одного предложения. Анонимная переменная уникальна всегда. Переменные предназначены для передачи значений «во времени и в пространстве».

5) Как применяется подстановка, полученная с помощью алгоритма унификации?

Пока стек не пуст – цикл:

- считать из стека в рабочую область очередное равенство S=T
- обработать считанное по правилам:
 - если S и T несовпадающие константы, то неудача=1, и выход из цикла
 - если одинаковые константы то следующий шаг цикла
 - если S переменная и T терм содержащий S, то неудача=1, и выход из цикла
 - если S переменная и T терм HE содержащий S, то отыскать в стеке и в результирующей ячейке все вхождения S и заменить на Т. Добавить в результирующую ячейку равенство S=T. Следующий шаг цикла
 - если S и T составные термы с разными функторами или разными арностями, то неудача=1, выход из цикла
 - если S и T составные термы с одинаковыми функторами и арностью: $S = f(s_1, s_2..., s_m); T = f(t_1, t_2..., t_m),$ то занести в стек равенство $S_1 = T_1, S_2 = T_2...S_m = T_m.$
- очистить рабочее поле

– конец цикла

6) Как меняется резольвента?

На каждом шаге имеется некоторая совокупность целей - утверждений, истинность (выводимость) которых надо доказать. Эта совокупность называется резольвентой - её состояние меняется в процессе доказательства (Для хранения резольвенты система использует стек). Новая резольвента образуется в два этапа:

- в текущей резольвенте выбирается одна из подцелей (по стековому принципу верхняя) и для неё выполняется редукция замена подцели на тело найденного (подобранного, если удалось) правила (а как подбирается правило?),
- затем, к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели (выбранной) и заголовка сопоставленного с ней правила.

7) В каком случае запускается механизм отката?

Механизм отката запускается в 2 случаях:

- Если алгоритм попал в тупиковую ситуацию.
- Если резольвента не пуста и решение найдено, но в базе знание остались не отмеченные предложения.

Литература

- 1. Краснова, Л.П.. Бухгалтерский учет [Текст]: учебник для вузов / Краснова, Л.П., Н.Т. Шалашова, Н.М. Ярцева Москва: Юристъ, 2001. 550 с.
- 2. Книга художника: от миллионных тиражей к единичным экземплярам. Л. Шпринц. [Электронный ресурс]: / Л. Шпринц.. Электрон. текстовые дан.. Москва: [б.и.], 2000. Режим доступа: http://atbook.km.ru/news/000525.html, свободный.
- 3. О правительственной комиссии по проведению административной реформы [Текст]: постановление Правительства РФ от 31 июля 2003 г. № 451 // Собрание законодательства. 2003. № 31. Ст. 3150.