CHAPTER 9.3 Iterative Methods

Iterative Methods of Solving Linear Systems

Roundoff error can actually accelerate the convergence of an iterative method towards a solution

JACOBI'S METHOD

$$7x_1 - x_2 = 5$$
$$3x_1 - 5x_2 = -7$$

Solve the first equation for x_1 and the second equation for x_2

$$x_1 = \frac{5 + x_2}{7}$$
$$x_2 = \frac{7 + 3x_1}{5}$$

 $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ as an initial approximation.

$$x_1 = \frac{5+0}{7} = \frac{5}{7} \approx 0.714$$

 $x_2 = \frac{7+3}{5} = \frac{7}{5} = 1.400$

Substitute these values into the second iteration

$$x_1 = \frac{5+1.4}{7} \approx 0.914$$
$$x_2 = \frac{7+3\frac{5}{7}}{5} \approx 1.829$$

After several iterations we can see a convergence to $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

n	0	1	2	3	4	5	6
x_1	0	0.714	0.914	0.976	0.993	0.998	0.999
x_2	0	1.400	1.829	1.949	1.985	1.996	1.999

GAUSS-SEIDEL METHOD

The method is the same as Jacobi's except that we use each new value as soon as we can. In x_1 $\frac{5}{2}$ other words, calculate as we did before, but then use the result ($\frac{5}{7}$ in this case) to get the

other words, calculate as we did before, but then use the result (7 in this case) to get the next value of x_2 .

$$x_2 = \frac{7+3}{5} = \frac{5}{7} \approx 1.829$$

This provides a quicker convergence

n	0	1	2	3	4	5
x_1	0	0.714	0.976	0.998	1.000	1.000
x_2	0	1.829	1.985	1.999	2.000	2.000

ITERATIVE METHODS FOR EIGENVALUES

The Power Method

This is for a matrix with a DOMINANT EIGENVALUE: one that is larger in absolute values than all of the other eigenvalues.

The power method proceeds iteratively to produce a sequence of scalars that converge to the dominant eigenvalue and a sequence of vectors that converges to the corresponding eigenvector.

For simplicity, let A be diagonalizable with a dominant eigenvalue. There exists a nonzero vector

 \mathcal{X}_0 such that the sequence of vectors \mathcal{X}_k defined by

$$x_1 = Ax_0; x_2 = Ax_1; x_k = Ax_{k-1}...$$

approaches the dominant eigenvector of A.

Proof:

Eigenvalues of A would be listed as $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$. Corresponding eigenvectors would be independent (A is diagonalizable) and would correspond v_1, v_2, \cdots, v_n . Since there are a basis they can be expressed as a linear combination of eigenvectors: $x_0 = c_1v_1 + c_2v_2 + \cdots + c_nv_n$

Now
$$x_1 = Ax_0, x_2 = Ax_1 = A(Ax_0) = A^2x_0$$
 etc.
So in general $x_k = A^kx_0$ for $k \ge 1$

$$A^{k} x_{0} = c_{1} \lambda_{1}^{k} v_{1} + c_{2} \lambda_{2}^{k} v_{2} + \cdots + c_{n} \lambda_{n}^{k} v_{n}$$

$$= \lambda_{1}^{k} \left(c_{1} v_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} v_{2} + \cdots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} v_{n} \right)$$

Since λ_1 is the dominant eigenvalue, each of these fractions go to zero as $k \to \infty$

Therefore
$$x_k = A^k x_0 \rightarrow \lambda_1^k c_1 v_1$$

Example:

Approximate the dominant eigenvalue of
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ as the initial vector.}$$

$$x_1 = Ax_0 = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
Then
$$x_2 = Ax_1 = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

k	0	1	2	3	4	5	6	7	8
x_k			[3]	[5]			[43]	[85]	[171]
		$\lfloor 2 \rfloor$	$\lfloor 2 \rfloor$	<u>[6]</u>			<u> </u>	[86]	[170]

The iterates are clearly converging on $\begin{bmatrix} 1\\1 \end{bmatrix}$, the dominant eigenvector.

$$Ax = \lambda x \qquad \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 If
$$\text{, then } \lambda = 2$$

Practice:

$$A = \begin{bmatrix} 0 & 5 & -6 \\ -4 & 12 & -12 \\ -2 & -2 & 10 \end{bmatrix}$$
 With

$$x_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 an initial vector

THE SHIFTED POWER METHOD

Since the power method finds the dominant eigenvalue, the shifted power method understands that if λ is an eigenvalue of A, then $\lambda - \alpha A$ is an eigenvalue of $A - \alpha I$.

Continue with the previous example where $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$ and we discovered that

Then
$$A-2I=\begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix}$$
. Let $x_0=\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

k	0	1	2	3	4
x_k		$\lceil -1 \rceil$	[1.5]	[1.5]	[1.5]
	$\lfloor 0 \rfloor$	_ 2 _	_3	_3	$\begin{bmatrix} -3 \end{bmatrix}$

After 2 iterations, we find
$$v_2 = c \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$Ax = \lambda x$$

$$\begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} -3 \\ 6 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$\lambda = -3$$

INVERSE POWER METHOD

 $\lambda \qquad A^{-1} \qquad \qquad \underline{1}$

Recall that if A is invertible with eigenvalue α , then has an eigenvalue α . So if we apply the power method to α^{-1} , its dominant eigenvalue will be the reciprocal of the smallest eigenvalue of A.

Example:

We will use the inverse power method to find the second eigenvalue of $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$

Compute $x_k = A^{-1}y_{k-1}$. Rather than computing an inverse (which takes a lot of time), we can solve the equivalent equation $Ax_k = y_{k-1}$.

$$x_0 = y_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Solve
$$Ax_1 = y_0$$

$$\begin{bmatrix} A \mid y_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

 $x_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{, so } y_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ and we get } from \\ .$

$$x_2 = \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix}$$
 , and by scaling we can get $y_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

k	0	1	2	3	4	5	6	7	8
x_k		$\left[\begin{array}{c}0.5\end{array}\right]$	$\lceil 0.5 \rceil$	$\begin{bmatrix} 0.5 \end{bmatrix}$	$\left[\begin{array}{c} 0.5 \end{array}\right]$				
	$\lfloor 0 \rfloor$	$\lfloor -0.5 \rfloor$	[1.5]	$\lfloor -0.83 \rfloor$	$\lfloor -1.1 \rfloor$	$\lfloor -0.95 \rfloor$	_1.02	_0.99	$\lfloor -1.01 \rfloor$
\mathcal{Y}_k	$\lceil 1 \rceil$		[-0.33]	$\lceil -0.6 \rceil$	$\lceil -0.45 \rceil$	$\lceil -0.52 \rceil$	[-0.49]	[-0.51]	[-0.50]
	$\lfloor 0 \rfloor$	$\lfloor -1 \rfloor$							

$$Ay = \lambda y$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \lambda \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \lambda \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$\lambda = -1$$

This can be used to find an approximation of any eigenvalue

If λ is an eigenvalue of A and $\alpha \neq \lambda$, then $A - \alpha I$ is invertible if α is not an eigenvalue of A

$$\frac{1}{(\lambda - \alpha I)^{-1}}$$
 and if $\frac{(A - \alpha I)^{-1}}{(\lambda - \alpha I)}$ is an eigenvalue of

$$\alpha \qquad \qquad \lambda \qquad \qquad 1 \qquad \qquad (A-\alpha I)^{-1} \qquad \alpha$$

lpha λ $\frac{1}{(\lambda-lpha)}$ will be a dominant eigenvalue of . If is very close

to then $\overline{(\lambda - \alpha)}$ will be much bigger in magnitude than next eigenvalue, so the convergence will be very rapid.

Example: Use the shifted Power Method to find the eigenvalue closest to 5 when

$$A = \begin{bmatrix} 0 & 5 & -6 \\ -4 & 12 & -12 \\ -2 & -2 & 10 \end{bmatrix}$$

$$A - 5I = \begin{bmatrix} -5 & 5 & -6 \\ -4 & 7 & -12 \\ -2 & -2 & 5 \end{bmatrix}$$

Shifting, we would have

$$x_0 = y_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Applying the inverse power method, let

$$[A-5I \mid y_0] = \begin{bmatrix} -5 & 5 & -6 & 1 \\ -4 & 7 & 12 & 1 \\ -2 & -2 & 5 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -0.61 \\ 0 & 1 & 0 & -0.88 \\ 0 & 0 & 1 & -0.39 \end{bmatrix}$$

k	0	1	2	3	4	5	6	7
x_k	$\lceil 1 \rceil$	[-0.61]	$\begin{bmatrix} -0.41 \end{bmatrix}$	[-0.47]	$\lceil -0.49 \rceil$	[-0.50]	$\begin{bmatrix} -0.50 \end{bmatrix}$	[-0.50]
	1	-0.88	-0.69	-0.89	-0.95	-0.98	-0.99	-1.00
		[-0.39]	[-0.35]	_0.44	[-0.48]	[-0.49]	$\lfloor -0.50 \rfloor$	[-0.50]
\mathcal{Y}_k	$\lceil 1 \rceil$	[0.69]	[0.59]	[0.53]	[0.51]	[0.50]	[0.50]	[0.50]
	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		[0.45]	[0.51]	$\lfloor 0.50 \rfloor$	[0.50]	[0.50]	[0.50]	[0.50]

$$Ax = \lambda x$$

$$\begin{bmatrix} 0 & 5 & -6 \\ -4 & 12 & -12 \\ -2 & -2 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 4 \end{bmatrix} \quad \begin{bmatrix} 1 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 8 \\ 4 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$\lambda = 4$$

$$\lambda = 4$$