The UNNS Many-Faces Theorem: Formalization and Proof Sketches

Research Note

Abstract

We propose and sketch a formal theorem—the "Many-Faces Theorem"—for the UNNS framework (Unbounded Nested Number Sequences / Universal Network Nexus System). The result shows how linear recurrence sequences, attractors, modular domains, and cross-domain homomorphisms are all naturally embeddable in UNNS. The theorem justifies the phrase "many faces" as algebraic, geometric, topological, number-theoretic, and computational perspectives coexist under a single substrate.

1 Definitions

Definition 1 (Nest Set). Let S be a set of nests, i.e., symbolic tokens or integer values.

Definition 2 (Combinator Algebra). Let C be a finite set of operators (combinators) $\star : S^k \to S$. Each \star is specified by a finite algorithm using integer arithmetic, addition, multiplication, shifting (index arithmetic), and modular arithmetic.

Definition 3 (Generators and Dynamics). A UNNS configuration is $U = (S, \mathcal{C}, \mathcal{G})$ with $\mathcal{G} \subset S$ as a finite seed set. An update rule applies combinators iteratively to produce new nests.

Definition 4 (Domain Mappings). A domain D is any mathematical structure (ring, metric space, manifold, graph). A mapping $\mu_D: S \to D$ is computable if an algorithm produces $\mu_D(s)$ from a finite description of s. Typical domains:

- A: algebraic (polynomials, vectors)
- $G: geometric (\mathbb{R}^2 polar coordinates)$
- T: topological (graphs)
- \mathbb{Z}_m : modular residues

Definition 5 (UNNS System). A UNNS system is a tuple $(S, C, G, {\mu_D}_{D \in D})$ with a finite set of domains D and computable domain mappings.

Assumptions. We assume: (1) each combinator is definable by a finite algorithm with bounded lookback; (2) each μ_D is computable and respects linearity of combinators.

2 The Many-Faces Theorem

Theorem 1 (UNNS Many-Faces Theorem). Let $U = (S, \mathcal{C}, \mathcal{G}, \{\mu_D\}_{D \in \mathcal{D}})$ be a UNNS system under the above assumptions. Then:

- 1. Linear recurrence embedding. Any linear recurrence $a_n = c_1 a_{n-1} + \cdots + c_r a_{n-r}$ can be embedded: there exists $s_n \in S$ such that $\mu_{\mathbb{Z}}(s_n) = a_n$.
- 2. **Dominant-root attractor.** If the characteristic polynomial has a unique dominant root r_d , then $\lim_{n\to\infty} \mu_{\mathbb{R}}(s_{n+1})/\mu_{\mathbb{R}}(s_n) = r_d$. Geometric embedding μ_G yields logarithmic spirals with growth parameter $\ln |r_d|$.
- 3. Modular domain partition. For any modulus m, residues $\mu_{\mathbb{Z}_m}(s_n)$ partition nests into m domains, evolving deterministically under combinators.
- 4. Cross-domain homomorphism. For encodings μ_{D_i} respecting combinator linearity, there exist constructive mappings $h_{i\to j}$ such that $\mu_{D_i}(\star(x,y)) = h_{i\to j}(\mu_{D_i}(\star(x,y)))$.
- 5. Computational completeness (conditional). If C contains chunk/shift, conditional branching, and integer arithmetic, then UNNS can simulate finite automata and, with unbounded nesting, Turing-complete models.

3 Proof Sketches

- **Part 1.** Embed the recurrence by defining a combinator that computes $\tilde{s}_{n+1} = c_1 s_n + \cdots + c_r s_{n-r+1}$, with seeds from \mathcal{G} . Induction shows $\mu_{\mathbb{Z}}(s_n) = a_n$.
- **Part 2.** Standard linear algebra: $a_n = \sum_i A_i r_i^n$, dominated by r_d^n . Ratios converge to r_d . Geometric encoding μ_G turns this into a spiral.
- **Part 3.** Since combinators use integer arithmetic, residues evolve deterministically modulo m. Finite-state dynamics follow.
- **Part 4.** Because encodings preserve algebraic structure, the homomorphism $h_{i\to j}$ is explicitly computable.
- **Part 5.** Finite tags and chunk/shift rules can encode finite automata. With unbounded nesting and conditional branching, simulate cyclic tag systems, hence Turing completeness.

4 Corollaries and Examples

Corollary 1 (Fibonacci). Embedding $F_n = F_{n-1} + F_{n-2}$ produces $\lim_{n\to\infty} F_{n+1}/F_n = \varphi$, yielding the golden ratio spiral under μ_G .

Corollary 2 (Tribonacci). Embedding $T_n = T_{n-1} + T_{n-2} + T_{n-3}$ produces limit ratio $\psi \approx 1.839$, yielding a distinct attractor.

5 Limitations

- Linear recurrences are directly handled; nonlinear cases need separate treatment.
- Homomorphisms require encoding regularity.
- Turing universality requires unbounded nests.
- Numerical demos may suffer precision issues; proofs are exact algebraic.

[11pt]article amsmath,amssymb,amsthm geometry margin=1in The UNNS Many-Faces Theorem: Formalization and Proof Sketches Research Note Definition Theorem Lemma Corollary

Abstract

We propose and sketch a formal theorem—the "Many-Faces Theorem"—for the UNNS framework (Unbounded Nested Number Sequences / Universal Network Nexus System). The result shows how linear recurrence sequences, attractors, modular domains, and cross-domain homomorphisms are all naturally embeddable in UNNS. The theorem justifies the phrase "many faces" as algebraic, geometric, topological, number-theoretic, and computational perspectives coexist under a single substrate.

6 Definitions

Definition 6 (Nest Set). Let S be a set of nests, i.e., symbolic tokens or integer values.

Definition 7 (Combinator Algebra). Let C be a finite set of operators (combinators) $\star : S^k \to S$. Each \star is specified by a finite algorithm using integer arithmetic, addition, multiplication, shifting (index arithmetic), and modular arithmetic.

Definition 8 (Generators and Dynamics). A UNNS configuration is U = (S, C, G) with $G \subset S$ as a finite seed set. An update rule applies combinators iteratively to produce new nests.

Definition 9 (Domain Mappings). A domain D is any mathematical structure (ring, metric space, manifold, graph). A mapping $\mu_D: S \to D$ is computable if an algorithm produces $\mu_D(s)$ from a finite description of s. Typical domains:

- A: algebraic (polynomials, vectors)
- $G: geometric (\mathbb{R}^2 \ polar \ coordinates)$
- T: topological (graphs)
- \mathbb{Z}_m : modular residues

Definition 10 (UNNS System). A UNNS system is a tuple $(S, \mathcal{C}, \mathcal{G}, \{\mu_D\}_{D \in \mathcal{D}})$ with a finite set of domains \mathcal{D} and computable domain mappings.

Assumptions. We assume: (1) each combinator is definable by a finite algorithm with bounded lookback; (2) each μ_D is computable and respects linearity of combinators.

7 The Many-Faces Theorem

Theorem 2 (UNNS Many-Faces Theorem). Let $U = (S, \mathcal{C}, \mathcal{G}, \{\mu_D\}_{D \in \mathcal{D}})$ be a UNNS system under the above assumptions. Then:

- 1. Linear recurrence embedding. Any linear recurrence $a_n = c_1 a_{n-1} + \cdots + c_r a_{n-r}$ can be embedded: there exists $s_n \in S$ such that $\mu_{\mathbb{Z}}(s_n) = a_n$.
- 2. **Dominant-root attractor.** If the characteristic polynomial has a unique dominant root r_d , then $\lim_{n\to\infty} \mu_{\mathbb{R}}(s_{n+1})/\mu_{\mathbb{R}}(s_n) = r_d$. Geometric embedding μ_G yields logarithmic spirals with growth parameter $\ln |r_d|$.
- 3. Modular domain partition. For any modulus m, residues $\mu_{\mathbb{Z}_m}(s_n)$ partition nests into m domains, evolving deterministically under combinators.
- 4. Cross-domain homomorphism. For encodings μ_{D_i} respecting combinator linearity, there exist constructive mappings $h_{i\to j}$ such that $\mu_{D_i}(\star(x,y)) = h_{i\to j}(\mu_{D_i}(\star(x,y)))$.
- 5. Computational completeness (conditional). If C contains chunk/shift, conditional branching, and integer arithmetic, then UNNS can simulate finite automata and, with unbounded nesting, Turing-complete models.

8 Proof Sketches

- **Part 1.** Embed the recurrence by defining a combinator that computes $\tilde{s}_{n+1} = c_1 s_n + \cdots + c_r s_{n-r+1}$, with seeds from \mathcal{G} . Induction shows $\mu_{\mathbb{Z}}(s_n) = a_n$.
- **Part 2.** Standard linear algebra: $a_n = \sum_i A_i r_i^n$, dominated by r_d^n . Ratios converge to r_d . Geometric encoding μ_G turns this into a spiral.
- **Part 3.** Since combinators use integer arithmetic, residues evolve deterministically modulo m. Finite-state dynamics follow.
- **Part 4.** Because encodings preserve algebraic structure, the homomorphism $h_{i\to j}$ is explicitly computable.
- **Part 5.** Finite tags and chunk/shift rules can encode finite automata. With unbounded nesting and conditional branching, simulate cyclic tag systems, hence Turing completeness.

9 Corollaries and Examples

Corollary 3 (Fibonacci). Embedding $F_n = F_{n-1} + F_{n-2}$ produces $\lim_{n\to\infty} F_{n+1}/F_n = \varphi$, yielding the golden ratio spiral under μ_G .

Corollary 4 (Tribonacci). Embedding $T_n = T_{n-1} + T_{n-2} + T_{n-3}$ produces limit ratio $\psi \approx 1.839$, yielding a distinct attractor.

10 Limitations

- Linear recurrences are directly handled; nonlinear cases need separate treatment.
- Homomorphisms require encoding regularity.
- Turing universality requires unbounded nests.
- Numerical demos may suffer precision issues; proofs are exact algebraic.

11 Experimental Roadmap

- 1. Implement recurrence embedding and validate with standard sequences.
- 2. Visualize attractors in polar coordinates.
- 3. Color sequences by residues to reveal modular attractors.
- 4. Demonstrate homomorphisms via algebra-to-geometry mapping.
- 5. Explore universality by simulating tag systems.