International GCSE Futher Pure Mathematics - Paper 1 mark scheme

Question	Working	Answer	Mark	AO	Notes
2 (a)	$\pi = 6\theta \Rightarrow \theta = \frac{\pi}{6} \Rightarrow AOB = \frac{5\pi}{6} = (150^{\circ})$		B1	1	,
	$AB = \sqrt{10^2 + 6^2 - 2 \times 10 \times 6 \times \cos\left(\frac{5\pi}{6}\right)} = 15.4894 = 15.5 \text{ cm}$	15.5 (cm)	M1A1	2	Accept working in degrees
(p)	Area = $\frac{1}{2} \times 10 \times 6 \times \sin \frac{5\pi}{6} + \frac{\pi}{6} \times \frac{6^2}{2} = 24.424$	24.4 (cm ²)	M1M1A1	2	$AOB = 150^{\circ}$
	ALTERNATIVE $Area = \frac{1}{2} \times 10 \times 6 \times \sin \frac{5\pi}{6} + \frac{1}{2} \times \pi \times 6 = 24.424$		M1M1A1		
			9)		
ĸ	$2\cos(2\theta + 30) + \frac{\sin(2\theta + 30)}{\cos(2\theta + 30)} = 0 \Rightarrow 2\cos^{2}(2\theta + 30) + \sin(2\theta + 30) = 0$		M1	2	
	$\Rightarrow 2 - 2\sin^2(2\theta + 30) + \sin(2\theta + 30) = 0$		M1A1		
	$\sin(2\theta + 30) = \frac{1 \pm \sqrt{1 - 4 \times 2 \times (-2)}}{2 \times 2} = 1.2807, -0.7807$		M1	'n	Solves 3 TQ
	$2\theta + 30 = -51.33167, 231.33167, 308.66833$		A1A1	J	Finds one angle
	$\theta = 100.7, 139.3$	θ =100.7, 139.3	(9)		Troill men 310

Question	Question Working	Answer	Mark	AO	Notes
4 (a)	$v = 0$ so $4t^2 - 19t + 12 = 0 \Rightarrow (4t - 3)(t - 4) = 0 \Rightarrow t = \frac{3}{4}, 4$	$t = \frac{3}{4}, 4$	M1A1	1	
(9)	$s = \int 4t^2 - 19t + 2dt = \frac{4t^3}{3} - \frac{19t^2}{2} + 12t + c \text{ when } t = 0, s = -4 \implies c = -4$		M1M1A1	2	
	When $t = 6$, $s = \frac{4 \times 6^3}{3} - \frac{19 \times 6^2}{2} + 12 \times 6 - 4 = 14$	14	A1		
(c)	$a = \frac{dv}{dt} = 8t - 19 \Rightarrow 8t - 19 = 0 \Rightarrow t = \frac{19}{8}$	$t = \frac{19}{8}$	M1M1A1 (9)	8	
w	$2x + y = 13 \Rightarrow y = 13 - 2x$		B1	1	
(a)	$S = 4x^{2} + (13 - 2x)^{2} = 4x^{2} + 169 - 52x + 4x^{2} = 8x^{2} - 52x + 169$	$8x^2 - 52x + 169$	M1A1		
(9)	$\frac{dS}{dx} = 16x - 52$, $\frac{dS}{dx} = 0 \Rightarrow 16x - 52 = 0 \Rightarrow x = \frac{13}{4}$	$x = \frac{13}{4}$	M1M1A1	2,3	
	$\frac{\mathrm{d}^2 S}{\mathrm{d} x^2} = 16 \qquad 16 > 0,$	Hence minimum	B1		
(c)	$S = 8 \times \left(\frac{13}{4}\right)^2 - 52 \times \frac{13}{4} + 169 = \frac{169}{2} = 84.5$	$\frac{169}{2} = 84.5$	M1A1 (9)	3	

Question	Working	Answer	Mark	AO	Notes
9	$\frac{dy}{dx} = e^x \left(x^2 - 3x\right) + e^x \left(2x - 3\right) \left[\Longrightarrow e^x \left(2x - 3\right) = \frac{dy}{dx} - y \right]$		MIMIAI	4	
	$\frac{d^2y}{dx^2} = e^x \left(x^2 - 3x \right) + e^x \left(2x - 3 \right) + e^x \left(2x - 3 \right) + 2e^x = y + 2\left(\frac{dy}{dx} - y \right) + 2e^x$		MIAI	4	
	$2e^{x} = \frac{d^{2}y}{dx^{2}} - 2\left(\frac{dy}{dx} - y\right) - y \Rightarrow 2e^{x} = y - 2\frac{dy}{dx} + \frac{d^{2}y}{dx^{2}}$ *		MIMIAI (8)		
7					
(a)	x 0 1 2 3 4 5 y 3 3.83 5 6.66 9 12.31		BIBI	1	
(e)	All points plotted within an accuracy of half of a square. A smooth curve drawn through their points		BIBI	1	
(c)	$\log_2 (4x - 6)^2 - x = 2 \Rightarrow 2\log_2 (4x - 6) = x + 2 \Rightarrow \log_2 (4x - 6) = \frac{x}{2} + 1$ $\Rightarrow 4x - 6 = 2^{\left(\frac{x}{2} + 1\right)} \Rightarrow 4x - 5 = 2^{\left(\frac{x}{2} + 1\right)} + 1$		MIM1	7	
	Line $y = 4x - 5$ drawn on graph $\Rightarrow so x = 2.8(36)$	x = 2.8	M1A1		
			(8)		

Question	Working	Answer	Mark	AO	Notes
(a)	$a = S_1 = 2 \times 1 \times (1+3) = 8$	a = 8	B1	1	
(e)	$S_2 = 2 \times 2 \times (2+3) = 20$ $S_2 = a + T_2 \Rightarrow T_2 = S_2 - a = 20 - 8 = 12$ d = 12 - 8 = 4	d = 4	MIAI	1	
(c)	Uses given formula for $S_n = 2n(n+3)$ and formula for nth term $T_n = a + (n-1)d$				
	$6[2(n-4)(n-4+3)] = 7[8+(n+3-1)4]$ $\Rightarrow 12n^{2} - 88n - 64 = 0 \Rightarrow 3n^{2} - 22n - 16 = 0$		M1M1 M1A1	2, 3	
	$(n-8)(3n+2) = 0$ $\Rightarrow n = 8, \left(n = -\frac{2}{3}\right)$	n = 8	M1A1		
	ALT Using formula $S_n = \frac{n}{2}(2a + (n-1)d)$ $6\left[\frac{(n-4)}{2}(2\times 8 + ((n-4)-1)4)\right] = 7\left[8 + (n+3-1)4\right]$		MIM1 MIA1	2,3	
	$\Rightarrow 12n^{2} - 88n - 64 = 0 \Rightarrow 3n^{2} - 22n - 16 = 0$ $(n-8)(3n+2) = 0$		M1A1		
	$\Rightarrow n=8, \left(n=-\frac{2}{3}\right)$	n = 8	(6)		

Question	Question Working	Answer	Mark	AO	Notes
(e) 6	$\alpha + \beta = -\frac{7}{3}$ $\alpha\beta = -2 = -\frac{6}{3}$ so $a = 3$, $b = 7$ and $c = -6$		B1B1	1	
	Hence quadratic equation $\Rightarrow 3x^2 + 7x - 6 = 0$ oe with integer coefficients		M1A1		
(p)	$(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta = (\alpha + \beta)^2 - 4\alpha\beta = \left(-\frac{7}{3}\right)^2 - 4x - 2 = \frac{121}{9}$ $\alpha > \beta \text{ so } \alpha - \beta = \frac{11}{3}$ *		MIAI	ю	
(c)	Sum $\frac{\alpha + \beta}{\alpha} + \frac{\alpha - \beta}{\beta} = \frac{\beta(\alpha + \beta) + \alpha(\alpha - \beta)}{\alpha\beta} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{\left(-\frac{7}{3}\right)^2 - 2x - 2}{-2} = -\frac{85}{18}$		MIMIAI	ro	
	Product $\frac{(\alpha+\beta)}{\alpha} \times \frac{(\alpha-\beta)}{\beta} = \frac{\left(-\frac{7}{3}\right) \times \left(\frac{11}{3}\right)}{-2} = \frac{77}{18}$		MIA1		
	Equation $18y^2 + 85y + 77 = 0$ oe with integer coefficients		M1A1		
			(13)		

Question	Working	Answer	Mark	AO	Notes
10 (a)	Let M be the midpoint of diagonals AC or DB $AC = \sqrt{8^2 + 8^2} = 8\sqrt{2} \Rightarrow AM = 4\sqrt{2}$ $h = \sqrt{12^2 - (4\sqrt{2})^2} = \sqrt{112} = (4\sqrt{7})$	4√7	MIMIAI	1	
e	$\tan^{-1}\left(\frac{4\sqrt{7}}{4\sqrt{2}}\right) = 61.87449 \approx 61.9^{\circ}$	61.9°	MIAI	1	Or any equivalent trigonometry
②	Let <i>N</i> be the midpoint of <i>AB</i> Angle the plane <i>AOB</i> makes with horiz = $\tan^{-1} \left(\frac{4\sqrt{7}}{4} \right) = 69.295 \approx 69.3^{\circ}$ By using the symmetrical properties of the pyramid	69.3°	MIAI	ю	Or any equivalent trigonometry
3	Let <i>S</i> be the perpendicular from <i>P</i> to diagonal <i>AC</i> Let <i>R</i> be the perpendicular from <i>S</i> to side <i>BC</i> In triangle <i>PSR</i> \rightarrow $PR = \sqrt{(2\sqrt{17})^2 - 2^2} = 8$ In triangle <i>PRQ</i> \rightarrow $PQ = \sqrt{8^2 + 4^2} = 4\sqrt{5}$	4√5	MIA1 MIA1	к	Or any equivalent system of right angle triangles
(e)	Length $AQ = \sqrt{8^2 + 6^2} = 10$ Angle of $PQA = \cos^{-1} \left(\frac{10^2 + (4\sqrt{5})^2 - 6^2}{2 \times 10 \times 4\sqrt{5}} \right) = 36.39124 \approx 36.4^{\circ}$	36.4°	M1 M1A1A1 (15)	8	

Question	Working	Answer	Mark	AO	Notes
(p)	ALTERNATIVE without using the symmetrical properties of the pyramid		M1	8	
	$\cos OAB = \frac{12^2 + 8^2 - 12^2}{2 \times 8 \times 12} = \frac{1}{3}$				
	$\Rightarrow PB = \sqrt{6^2 + 8^2 - 2 \times 6 \times 8 \times \frac{1}{3}} = 2\sqrt{17}$				
	In triangle PBC		,		
	$PC = \sqrt{6^2 + \left(8\sqrt{2}\right)^2 - 2 \times 6 \times \left(8\sqrt{2}\right) \times \cos\left(\tan^{-1}\left(\frac{\sqrt{7}}{\sqrt{2}}\right)\right) = 10}$		M		
	\Rightarrow Angle $PBC = \cos^{-1}\left(\frac{8^2 + 68 - 10^2}{2 \times 8 \times 2\sqrt{17}}\right) = 75.9637^{\circ}$				
	In triangle <i>PBQ</i> ; $PQ = \sqrt{6^2 + 68 - 2 \times 6 \times 2\sqrt{17} \times \cos 75.96375} = 4\sqrt{5}$	4√5	M1A1		

Question	Question Working	Answer	Mark	AO	Notes
11	Mark parts (i) and (ii) together			1.3	
(a)	$y = \int 6x^2 - 26x + 12dx = \left[\frac{6x^3}{3} - \frac{26x^2}{2} + 12x + c \right]$		7)	
	At the point $(-1,0)$		IAII		
	$0 = 2(-1)^3 - 13(-1)^2 + 12(-1) + C \Rightarrow C = 27$		M1A1		
	$(x+27)$ ÷ $(x+1) = 2x^2 - 15x + 27 = (2x-9)(x-3)$	C	MIMIAI		
	$\Rightarrow a = \frac{9}{2}, b = 3$	$a = \frac{9}{2}, b = 3$	B1B1		
(p)	Area = $\int_0^3 2x^3 - 13x^2 + 12x + 27dx + \left \int_3^{\frac{9}{2}} 2x^3 - 13x^2 + 12x + 27dx \right =$		M1M1	3	
	$\left \left[\frac{2}{4} x^4 - \frac{13}{2} x^3 + \frac{12}{2} x^2 + 27x \right]^3 + \left \left[\frac{2}{4} x^4 - \frac{13}{2} x^3 + \frac{12}{2} x^2 + 27x \right]^{\frac{9}{2}} \right = \frac{2043}{2}$		A1M1A1		
	L4 3 2 J ₀ L4 3 2 J ₃ 52				
	2043	Area = $\frac{2043}{32}$			
	So Area =		(13)		
		Total	100		