

Art of Problem Solving

1997 USAMO

USAMO 1997

Day 1	May 1st
1	Let p_1, p_2, p_3, \ldots be the prime numbers listed in increasing order, and let x_0 be a real number between 0 and 1. For positive integer k , define
	$\int 0 \qquad \text{if } x_{k-1} = 0,$
	$x_k = \begin{cases} 0 & \text{if } x_{k-1} = 0, \\ \left\{ \frac{p_k}{x_{k-1}} \right\} & \text{if } x_{k-1} \neq 0, \end{cases}$
	where $\{x\}$ denotes the fractional part of x . (The fractional part of x is given by $x - \lfloor x \rfloor$ where $\lfloor x \rfloor$ is the greatest integer less than or equal to x .) Find, with proof, all x_0 satisfying $0 < x_0 < 1$ for which the sequence x_0, x_1, x_2, \ldots eventually becomes 0.
2	Let ABC be a triangle. Take points D , E , F on the perpendicular bisectors of BC , CA , AB respectively. Show that the lines through A , B , C perpendicular to EF , FD , DE respectively are concurrent.
3	Prove that for any integer n , there exists a unique polynomial Q with coefficients in $\{0, 1, \ldots, 9\}$ such that $Q(-2) = Q(-5) = n$.
Day 2	May 2nd
4	To clip a convex n -gon means to choose a pair of consecutive sides AB, BC and to replace them by the three segments AM, MN , and NC , where M is the midpoint of AB and N is the midpoint of BC . In other words, one cuts off the triangle MBN to obtain a convex $(n + 1)$ -gon. A regular hexagon \mathcal{P}_6 of area 1 is clipped to obtain a heptagon \mathcal{P}_7 . Then \mathcal{P}_7 is clipped (in one of the seven possible ways) to obtain an octagon \mathcal{P}_8 , and so on. Prove that no matter how the clippings are done, the area of \mathcal{P}_n is greater than $\frac{1}{3}$, for all $n \geq 6$.
5	Prove that, for all positive real numbers a, b, c , the inequality
	$\frac{1}{a^3 + b^3 + abc} + \frac{1}{b^3 + c^3 + abc} + \frac{1}{c^3 + a^3 + abc} \le \frac{1}{abc}$
	holds.

Art of Problem Solving 1997 USAMO

6 Suppose the sequence of nonnegative integers $a_1, a_2, \ldots, a_{1997}$ satisfies

$$a_i + a_j \le a_{i+j} \le a_i + a_j + 1$$

for all $i, j \ge 1$ with $i + j \le 1997$. Show that there exists a real number x such that $a_n = \lfloor nx \rfloor$ (the greatest integer $\le nx$) for all $1 \le n \le 1997$.

These problems are copyright © Mathematical Association of America (http://maa.org).