

- Punktschätzer und Intervallschätzer.
- 2. Konfidenzintervalle unter Normalverteilungsannahme
 - Konfidenzintervalle für den Erwartungswert
 - Konfidenzintervalle für die Varianz
- 3. Approximative Konfidenzintervalle
 - Approximation über Normalverteilung
 - Approximation über Ungleichungen

Mathe III

- Punktschätzer und Intervallschätzer.
- 2. Konfidenzintervalle unter Normalverteilungsannahme
 - Konfidenzintervalle für den Erwartungswert
 - Konfidenzintervalle für die Varianz

3. Approximative Konfidenzintervalle

- Approximation über Normalverteilung
- Approximation über Ungleichungen

Mathe III

Motivation

- **Situation**: Bisher haben wir Konfidenzintervalle $C_{\alpha}: \Omega \to \mathcal{B}(\mathbb{R})$ konstruiert, bei denen wir die Verteilung der Stichprobe $x \in \Omega$ für jeden Wert von $\theta \in \Theta$ kennen und formal leicht nach θ umstellen können.
- **Frage**: Was machen wir, wenn wir die Verteilung der Stichprobe $x \in \Omega$ für jedes $\theta \in \Theta$ kennen aber nicht leicht nach θ umstellen können?
- **Beispiel (Club)**. Wir beobachten 30 Wartende vor einem Club, bei dem die Türsteherin mit einer unbekannten Wahrscheinlichkeit einen Gast einlässt; nur 3 Wartende dürfen in den Club. Was ist ein Konfidenzintervall für die Wahrscheinlichkeit auf einem Niveau von 95%?
 - Ansatz: Sei X_i eine Bernoulli-verteilte Zufallsvariable, $X_i \sim \text{Bern}(p)$ mit der Bedeutung

$$X_i = \begin{cases} 0 & \text{Gast } i \text{ wird nicht reingelassen} \\ 1 & \text{Gast } i \text{ wird reingelassen} \end{cases}$$

Alle X_i sind paarweise unabhängig und $Y = \sum_{i=1}^{30} X_i \sim \text{Bin}(30, p)$.

□ **Problem**: Nicht für jeden Wert von p gibt es ein Intervall in $\{0, ..., 30\}$, was genau 95% Wahrscheinlichkeitsmasse hat!

- Punktschätzer und Intervallschätzer.
- 2. Konfidenzintervalle unter Normalverteilungsannahme
 - Konfidenzintervalle für den Erwartungswert
 - Konfidenzintervalle für die Varianz
- 3. Approximative Konfidenzintervalle
 - Approximation über Normalverteilung
 - Approximation über Ungleichungen

Mathe III

Approximatives Konfidenzintervall

n=5

■ **Idee**: Wenn n groß ist ($n \ge 30$), dann gilt nach dem zentralen Grenzwertsatz, dass die Variable Y approximativ normalverteilt ist mit den Parametern $E[Y] = n \cdot p$

Konstruktion von approximativen Konfidenzintervallen. Für $p \in [0,1]$, wähle via $z_{\frac{\alpha}{2}}$ ein symmetrisches Intervall um $\frac{Y-E[Y]}{\sqrt{V[Y]}}$ mit Wahrscheinlichkeit $1-\alpha$

$$P\left(z_{\frac{\alpha}{2}} < \frac{Y - n \cdot p}{\sqrt{n \cdot p \cdot (1 - p)}} < -z_{\frac{\alpha}{2}}\right) \approx 1 - \alpha$$

Approximatives Konfidenzintervall

Problem: Wenn wir die Lesart ändern, müssen wir die Ungleichungen nach p lösen. Das ergibt quadratische Ungleichungen (kompliziert!)

$$P\left(z_{\frac{\alpha}{2}} < \frac{Y - n \cdot p}{\sqrt{n \cdot p \cdot (1 - p)}} < -z_{\frac{\alpha}{2}}\right) \approx 1 - \alpha$$

• **Idee**: Für den Nenner benutzen wir den MLE von p gegeben durch $\hat{p} = \frac{Y}{-}$

$$P\left(z_{\frac{\alpha}{2}} < \frac{Y - n \cdot p}{\sqrt{n \cdot \hat{p} \cdot (1 - \hat{p})}} < -z_{\frac{\alpha}{2}}\right) \approx 1 - \alpha$$

$$P\left(\hat{p} + z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}$$

Approximatives Konfidenzintervall: Beispiel

■ **Beispiel (Wahlen)**. Im August 2013 berichtete die *New York Times*, dass eine Wählerumfrage ergeben hätte, dass 52% der US-Bevölkerung mit der Arbeit von Präsident Obama zufrieden sind mit einer Konfidenz von ±4% bei einem Konfidenzniveau von 95%. Wie viele Leute wurden befragt?

$$P\left(0.52 - 1.96 \cdot \sqrt{\frac{0.52 \cdot 0.48}{n}}$$

$$1.96 \cdot \sqrt{\frac{0.52 \cdot 0.48}{n}} = 0.04 \quad \Leftrightarrow n = 1.96^2 \cdot \frac{0.52 \cdot 0.48}{0.04^2} \approx 599.29$$

Wenn man die Unabhängigkeit der Befragten annimmt, waren es 599 Leute.

Mathe III

Approximative Konfidenzintervall: Stichprobengröße

- **Frage**: Wie groß muss (im gleichen Beispiel) eine Stichprobe mindestens sein, damit das Konfidenzintervall auf Konfidenzniveau 1α höchstens 1% ist?
 - **Lösung**: Wir benutzen die Definition des approximativen Konfidenzintervalls

$$P\left(\hat{p} + z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}
$$-2z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}} = \frac{1}{100} \iff 4z_{\frac{\alpha}{2}}^2 \cdot \frac{\hat{p} \cdot (1 - \hat{p})}{n} = \frac{1}{100^2} \iff n = 4z_{\frac{\alpha}{2}}^2 \cdot \hat{p} \cdot (1 - \hat{p}) \cdot 100^2$$$$

Die Funktion $\hat{p}\cdot(1-\hat{p})$ nimmt das Maximum bei $\hat{p}=\frac{1}{2}$ an. Daher gilt $n\geq 100^2\cdot z_{\frac{\alpha}{2}}^2$

Bemerkungen (Stichprobengröße)

- Die Stichprobengröße wächst mit der inversen quadratischen Genauigkeit.
- Die Schranke wird besser, wenn der empirische Schätzer näher an 0% oder 100% ist.

Mathe III

- Punktschätzer und Intervallschätzer.
- 2. Konfidenzintervalle unter Normalverteilungsannahme
 - Konfidenzintervalle für den Erwartungswert
 - Konfidenzintervalle für die Varianz
- 3. Approximative Konfidenzintervalle
 - Approximation über Normalverteilung
 - Approximation über Ungleichungen

Mathe III

Approximatives Konfidenzintervall für den Erwartungswert

- **Frage**: Können wir ein Konfidenzintervall für den Erwartungswert finden, wenn wir keine konkrete Verteilungsannahme machen können?
- **Antwort**: Ja, denn per Definition verlangen wir nur, dass Stichproben mit **mindestens** 1α Wahrscheinlichkeit ins Konfidenzintervall fallen!
- Satz (Tschebyscheff-Ungleichung). Sei X eine reelle Zufallsvariable mit Erwartungswert und Varianz. Dann gilt für alle $\lambda > 0$

$$P\left(|X - E[X]| \ge \lambda \cdot \sqrt{V[X]}\right) \le \frac{1}{\lambda^2} \iff P\left(|X - E[X]| \le \lambda \cdot \sqrt{V[X]}\right) \ge 1 - \frac{1}{\lambda^2}$$

■ Satz (Approximatives Konfidenzintervall für den Erwartungswert). Sei $(\Omega, \mathcal{F}, \{P_{\theta} \mid \theta \in \Theta\})$ ein parametrisches Modell mit $V_{P_{\theta}}[X] = v$ für alle $\theta \in \Theta$. Dann ist das folgende Intervall ein Konfidenzintervall zum Niveau $\alpha \in (0,1)$

$$C_{\alpha}(x) = \left[x - \sqrt{v/\alpha}, x + \sqrt{v/\alpha} \right]$$

- Bemerkung (Approximatives Konfidenzintervall)
 - Es gibt noch andere Ungleichungen, die man zum Konstruieren von approximativen Konfidenzintervallen nutzen kann (z.B. Markov Ungleichung).

Pafnuty Chebyshev (1821 – 1894)

Mathe III

Unit 10b – Konfidenzintervalle

11/13

Approximative Konfidenzintervalle im Vergleich

Beispiel (Binomialverteilung). Wir beobachten $X \sim Bin(50, p)$ mit unbekannter Erfolgswahrscheinlichkeit p und betrachten ein 95% Konfidenzniveau!

- **Bemerkung (Approximatives Konfidenzintervall)**
 - Weniger Annahmen führen zu unsichereren Aussagen über Parameter (d.h., größeren Konfidenzintervallen).
 - Approximative Konfidenzintervalle sind unter Umständen einfacher/schneller zu berechnen.

Konfidenzintervalle

12/13

Viel Spaß bis zur nächsten Vorlesung!