-2-

PATENT PFIZER ANN ARBOR MI

PC23300A

Amendments to the Claims:

1. (Currently Amended) A single step or multi-step process for the preparation of a compound of formula (XI):

$$A = \underbrace{\begin{array}{c} Ar^1 \\ N \\ R^1 \end{array}}_{N} Ar^2 \underbrace{\begin{array}{c} N \\ R^2 \\ R^2 \end{array}}_{R} R^3$$
(XI)

or a stereoisomer thereof, wherein;

A is hydrogen, hydroxy, C₁-C₆ (preferably C₁-C₄)-alkyl, C₁-C₆ (preferably C₄-C₄) fluoroalkyl (particularly $-CF_3$), $-C_1-C_6$ (proforably $-C_4-C_4$) alkoxy, or OY wherein Y is a hydroxy protecting group or A, taken together with its geminal hydrogen, is an oxo group;

Ar is phenyl optionally substituted by one or more (preferably one to two) substituents selected from fluoro, C1-C4 alkyl, C1-C4 alkoxy, C1-C4 alkoxy-C1-C4 alkoxy, trifluoromethyl, carboxy-C₁-C₄ alkoxy and C₁-C₄ alkoxycarbonyl-C₁-C₄ alkoxy;

Ar² is phenyl, naphthyl, pyridyl, thienyl, furyl, pyrrolyl or pyrimidyl, each being optionally substituted by one or more (preferably one-to-two) substituents selected from fluoro, C₁-C₄ alkyl, C₁-C₄ alkoxy, di(C₁-C₄)alkylamino and C₁-C₄ fluoroalkyl;

R¹ is C₁-C₆ alkyl or benzyl wherein the phenyl moiety of said benzyl is optionally substituted with C₁-C₆ alkoxy or OY wherein Y is a hydroxy protecting group; and

R² and R³ are independently selected from hydrogen, C₁-C₇ alkyl optionally substituted by one or more (preferably one-to-five) hydroxy or halo groups, C3-C6 cycloalkyl, C2 -C6 23300A OA 1-31-2005 Resp 4-29-2005.doc

-3-

PC23300A

alkenyl, C_2 - C_6 alkynyl, C_1 - C_7 (preferably- C_4 - C_5)-alkoxy, phenyl optionally substituted by fluoro (preferably-substituted by one or two fluoro groups), phenyl- C_1 - C_7 (preferably C_4 - C_6)-alkyl wherein the phenyl group is optionally substituted by fluoro, and - $(CH_2)_nX$ — R^4 wherein n is one or two, X is O or S and R^4 is C_1 - C_3 alkyl, or, when Ar^2 is phenyl, $-Ar^2$ -C(=O)- $N(R^2)$ - is a phthalimide group and R^3 is C_1 - C_7 alkyl; or

 R^2 and R^3 , together with the nitrogen atom to which they are attached, form a pyrrolidine, piperidine or morpholine ring, optionally substituted by C_1 - C_3 alkyl or fluoro;

comprising a step in which the N-Ar² bond is constructed by a copper-mediated aryl amination.

2. (Currently Amended) A process as claimed in claim 1 wherein the copper-mediated aryl amination is carried out by a compound of formula (IV):

$$\begin{array}{c|c}
Ar^1 & O & R^3 \\
\hline
O & R^2 & R^2
\end{array}$$
(4V)

or the enantiomer thereof, whorein Ar^{1} , Ar^{2} , R^{2} and R^{3} are as defined in claim 1, is propared by treating a compound of formula (II):

(II)

4.

PC23300A

or the enantiomer thereof, wherein Ar¹ is as defined in claim 1, with a compound of formula (III):

wherein Ar², R² and R³ are as defined in claim 1 and wherein one unsubstituted position on the Ar² moiety is substituted with a halogen group Hal, preferably Cl, Br or I, most preferably Br, in the presence of a cuprous salt, an amino ligand and a base to give a compound of formula (IV)

$$\begin{array}{c|c}
Ar^1 & O & R^3 \\
\hline
O & R^2 & R^2 \\
\hline
O & R^2 & R^3
\end{array}$$
(IV)

or the enantiomer thereof, wherein Ar¹, Ar², R² and R³ are as defined in claim 1.

- 3. (Original) A process as claimed in claim 2 wherein the cuprous salt is CuI, CuBr or CuCl.
- 4. (Original) A process as claimed in claim 2 wherein the amino ligand is 1,2 diaminocyclohexane.
- 5. (Original) A process as claimed in claim 2 wherein the base is sodium carbonate, potassium carbonate or cesium carbonate.

-5-

PC23300A

6. (Currently Amended) A process as claimed in claim 1-2 wherein a compound of formula (V):

HO
$$Ar^{1}$$
 Ar^{2} N R^{2} R^{2} R^{2} R^{2}

or the enantiomer thereof, wherein Ar¹, Ar², R² and R³ are as defined in claim 1, is prepared by treating a compound of formula (TV):

$$\begin{array}{c|c}
Ar^1 & O \\
N & R^3 \\
O & R^2 \\
O & R^2
\end{array}$$
(IV)

or the enantiomer thereof, wherein Ar¹, Ar², R² and R³ are as defined in claim 1, with a base in the presence of water.

7. (Currently Amended) A process as claimed in claim +6 wherein a compound of formula formula (VI):

$$\begin{array}{c|c}
Ar^1 & O \\
\hline
Ar^2 & N \\
\hline
O - S & R^2
\end{array}$$
(VI)

wherein Ar¹, Ar², R² and R³ are as defined in claim 1, or the enantiomer thereof, is prepared by treating a compound of formula (V):

23300A OA 1-31-2005 Resp 4-29-2005.doc

-6-

PC23300A

HO
$$Ar^{1}$$
 Ar^{2} R^{3} R^{2} R^{2}

or the enantiomer thereof, wherein Ar¹, Ar², R² and R³ are as defined in claim 1, with a thionyl halide.

8. (Currently Amended) A process as claimed in claim +7 wherein a compound of formula (VII):

$$\begin{array}{c|c}
Ar^1 & O \\
\hline
 N & Ar^2 & N \\
\hline
 N & R^3 \\
\hline
 O - SO_2 & (VII)
\end{array}$$

wherein Ar¹, Ar², R² and R³ are as defined in claim 1, or the enantiomer thereof, is prepared by oxidising a compound of formula (VI):

$$\begin{array}{c|c}
Ar^1 & O \\
N & Ar^2 & N \\
O - S & R^2 \\
O & R^2
\end{array}$$
(VI)

wherein Ar1, Ar2, R2 and R3 are as defined in claim 1, or the enantiomer thereof.

9. (Currently Amended) A process as claimed in claim +8 wherein a compound of formula (IX):

-7-

PC23300A

$$A = \begin{pmatrix} Ar^1 & O & R^3 \\ N & Ar^2 & N & R^2 \\ SO_3H & & & \\ (IX) & & & \end{pmatrix}$$

wherein A, Ar¹, Ar², R² and R³ are as defined in claim 1, or a zwitterion thereof, or a stereoisomer of either, is prepared by treating a compound of formula (VII):

wherein Ar¹, Ar², R² and R³ are as defined in claim 1, or the enantiomer thereof, with a compound of formula (VIII):

wherein A is as defined in claim 1, or the enantiomer thereof.

10. (Currently Amended) A process as claimed in claim 19 wherein a compound of formula(X):

$$A = \begin{pmatrix} Ar^1 & O & R^3 \\ N & Ar^2 & R^2 \\ (X) & R^3 \end{pmatrix}$$

wherein A, Ar¹, Ar², R² and R³ are as defined in claim 1, or a stereoisomer thereof is prepared by hydrolytically cleaving the -SO₃H group in a compound of formula (IX):

From-

Apr-29-2005 11:10am

-8-

PC23300A

$$A = \begin{pmatrix} Ar^1 & O & R^3 \\ N & Ar^2 & R^2 \\ SO_3H & R^2 \end{pmatrix}$$
(IX)

wherein A, Ar¹, Ar², R² and R³ are as defined in claim 1, or a zwitterion thereof, or a stereoisomer of either.

11. (Currently Amended) A process as claimed in claim 410 wherein a compound of the formula (XI), as defined in claim 1, or a stereoisomer thereof, is prepared by the reductive alkylation of a compound of formula (X):

$$A \xrightarrow{Ar^1} Ar^2 \xrightarrow{N} R^3$$

$$(X)$$

wherein A, Ar1, Ar2, R2 and R3 are as defined above, or a stereoisomer thereof.

12. (Currently Amended) A process for the preparation of a compound of formula (XI), as defined in claim 1, or a stereoisomer thereof, comprising the reductive <u>alkylation</u> amination of a compound of formula (X):

$$A = \underbrace{\begin{array}{c} Ar^1 \\ N \end{array}}_{N} Ar^2 \underbrace{\begin{array}{c} N \\ R^2 \end{array}}_{R^2} R^3$$

or a stereoisomer thereof, wherein A, Ar¹, Ar², R² and R³ are as defined in claim 1.

13. (Original) A process for the preparation of a compound of formula (IV):

-9-

PATENT PFIZER ANN ARBOR MI

PC23300A

$$\begin{array}{c|c}
Ar^1 & O & R^3 \\
\hline
 & N & R^2 & R^3 \\
\hline
 & O & R^3 \\
\hline$$

or the enantiomer thereof, wherein Ar1, Ar2, R2 and R3 are as defined in claim 1, comprising treating a compound of formula (II):

or the enantiomer thereof, wherein Arl is as defined in claim 1, with a compound of formula (III):

wherein Ar², R² and R³ are as defined in claim 1 and wherein one unsubstituted position on the Ar² moiety is substituted with a halogen group Hal, preferably Cl, Br or I, most preferably Br, in the presence of a cuprous salt, an amino ligand and a base.

14. (Original) A compound of formula:

$$\begin{array}{c|c}
Ar^1 & O & R^3 \\
\hline
N & R^2 & R^2
\end{array}$$
(IV)

or

Apr-29-2005 11:11am From-

PATENT PFIZER ANN ARBOR MI

7346222928

T-563 P.011/013 F-465

10/640,520

-10-

PC23300A

$$\begin{array}{c|c}
Ar^1 & O \\
Ar^2 & N \\
O - S & R^2
\end{array}$$
(VI)

or

$$\begin{array}{c|c}
Ar^{1} & O \\
\hline
N & Ar^{2} & N \\
O - SO_{2} & R^{2}
\end{array}$$
(VII)

wherein Ar¹, Ar², R² and R³ are as defined in claim 1.