

What is known and what is not about BOLD mechanisms and sources of fMRI signals

Peter A. Bandettini, Ph.D.

Section on Functional Imaging Methods
Laboratory of Brain and Cognition
http://fim.nimh.nih.gov

රි

Functional MRI Facility

http://fmrif.nimh.nih.gov

- 1. The Undershoots (pre and post)
- 2. Negative Signal Change
- 3. Relationship to neuronal activity
- 4. Linearity
- 5. Fluctuations
- 6. Effects of Pathology / Medication
- 7. Other controversial contrast mechanisms:
 - a. T2 contrast Spin-echo
 - b. Blood Volume (VASO)
 - c. Diffusion
 - d. Neuronal Current

- 1. The Undershoots (pre and post)
- 2. Negative Signal Change
- 3. Relationship to neuronal activity
- 4. Linearity
- 5. Fluctuations
- 6. Effects of Pathology / Medication
- 7. Other controversial contrast mechanisms:
 - a. T2 contrast Spin-echo
 - b. Blood Volume (VASO)
 - c. Diffusion
 - d. Neuronal Current

The Undershoots

Courtesy of Arno Villringer

- 1. The Undershoots (pre and post)
- 2. Negative Signal Change
- 3. Relationship to neuronal activity
- 4. Linearity
- 5. Fluctuations
- 6. Effects of Pathology / Medication
- 7. Other controversial contrast mechanisms:
 - a. T2 contrast Spin-echo
 - b. Blood Volume (VASO)
 - c. Diffusion
 - d. Neuronal Current

Negative Signal Change

Schmuel et al. (2002) Neuron, Vol. 36, 1195-1210

Negative Signal Change

Regions showing negative signal changes during cognitive tasks

McKiernan, et al (2003), Journ. of Cog. Neurosci. 15 (3), 394-408

- 1. The Undershoots (pre and post)
- 2. Negative Signal Change
- 3. Relationship to neuronal activity
- 4. Linearity
- 5. Fluctuations
- 6. Effects of Pathology / Medication
- 7. Other controversial contrast mechanisms:
 - a. T2 contrast Spin-echo
 - b. Blood Volume (VASO)
 - c. Diffusion
 - d. Neuronal Current

Relationship to Neuronal Activity

Muthukumaraswamy, S. D., Singh, K. D. (2008) NeuroImage 40 (4), pp. 1552-1560

- 1. The Undershoots (pre and post)
- 2. Negative Signal Change
- 3. Relationship to neuronal activity
- 4. Linearity
- 5. Fluctuations
- 6. Effects of Pathology / Medication
- 7. Other controversial contrast mechanisms:
 - a. T2 contrast Spin-echo
 - b. Blood Volume (VASO)
 - c. Diffusion
 - d. Neuronal Current

S. M. Rao et al, (1996) "Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex." *J. Cereb. Blood Flow and Met.* 16, 1250-1254.

Logothetis et al. (2001)
"Neurophysiological investigation of
the basis of the fMRI signal" Nature,
412, 150-157

Brief "on" periods produce larger increases than expected.

R. M. Birn, Z. Saad, P. A. Bandettini, NeuroImage, 14: 817-826, (2001)

Brief "off" periods produce smaller decreases than expected.

R.M. Birn, P. A. Bandettini, NeuroImage, 27, 70-82 (2005)

Varying the Duty Cycle

R.M. Birn, P. A. Bandettini, NeuroImage, 27, 70-82 (2005)

Simulation of Hemodynamic Mechanisms (Balloon model)

E(f) = oxygen extraction fraction

Simulation of Neuronal Mechanisms

- 1. The Undershoots (pre and post)
- 2. Negative Signal Change
- 3. Relationship to neuronal activity
- 4. Linearity
- 5. Fluctuations
- 6. Effects of Pathology / Medication
- 7. Other controversial contrast mechanisms:
 - a. T2 contrast Spin-echo
 - b. Blood Volume (VASO)
 - c. Diffusion
 - d. Neuronal Current

Resting State Correlations

Activation: correlation with reference function seed voxel in motor cortex

Rest:

B. Biswal et al., MRM, 34:537 (1995)

Resting state networks identified with ICA

M. DeLuca, C.F. Beckmann, N. De Stefano, P.M. Matthews, S.M. Smith, fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29, 1359-1367

RSN₁

RSN₂

RSN3

RSN4

RSN₅

Sources of time series fluctuations:

- ·Blood, brain and CSF pulsation
- ·Vasomotion
- ·Breathing cycle (B₀ shifts with lung expansion)
- ·Bulk motion
- ·Scanner instabilities
- ·Changes in blood CO₂ (changes in breathing)
- ·Spontaneous neuronal activity

Estimating respiration volume changes

Respiration Volume / Time (RVT)

$$RVT = \frac{max - min}{T}$$

Respiration induced signal changes

R.M. Birn, J. A. Diamond, M. A. Smith, P. A. Bandettini, NeuroImage, 31, 1536-1548 (2006)

RVT Correlation Maps & Functional Connectivity Maps

Resting state correlation with signal from posterior cingulate

Resting state correlation with RVT signal

Group (n=10)

R.M. Birn, J. A. Diamond, M. A. Smith, P. A. Bandettini, NeuroImage, 31, 1536-1548 (2006)

Temporal Signal to Noise Ratio (TSNR) vs. Signal to Noise Ratio (SNR)

J. Bodurka, F. Ye, N Petridou, K. Murphy, P. A. Bandettini, NeuroImage, 34, 542-549 (2007)

- 1. The Undershoots (pre and post)
- 2. Negative Signal Change
- 3. Relationship to neuronal activity
- 4. Linearity
- 5. Fluctuations
- 6. Effects of Pathology / Medication
- 7. Other controversial contrast mechanisms:
 - a. Arterial Spin Labeling
 - b. T2 contrast Spin-echo
 - c. Blood Volume (VASO)
 - d. Diffusion
 - e. Neuronal Current

Effects of Pathology / Medication

Negative BOLD in carotid artery disease

Röther et al. NeuroImage 2002

Effects of Pathology / Medication

Altered neurovascular coupling: Pathology, drugs

Pathologic state / Drug	Reference
Carotid occlusion	Röther et al. 2002
Transient global ischemia	Schmitz et al. 1998
Penumbra of cerebral ischemia	Mies et al. 1993, Wolf et al. 1997
Subarachnoid hemorrhage	Dreier et al. 2000
Trauma	Richards et al. 2001
Epilepsy	Fink et al. 1996, Brühl et al. 1998, von Pannwitz et al. 2002
Alzheimer's disease	Hock et al. 1996, Niwa et al. 2000
Theophylline	Ko et al. 1990, Dirnagl et al. 1994
Scopolamine	Tsukada et al. 1998

- 1. The Undershoots (pre and post)
- 2. Negative Signal Change
- 3. Relationship to neuronal activity
- 4. Linearity
- 5. Fluctuations
- 6. Effects of Pathology / Medication
- 7. Other controversial contrast mechanisms:
 - a. T2 contrast Spin-echo
 - b. Blood Volume (VASO)
 - c. Diffusion
 - d. Neuronal Current

- a. T2 contrast Spin-echo
- b. Blood Volume (VASO)
- c. Diffusion
- d. Neuronal Current

Yacoub et al. NeuroImage 24 (3), pp. 738-750

- a. T2 contrast Spin-echo
- b. Blood Volume (VASO)
- c. Diffusion
- d. Neuronal Current

Yacoub et al. NeuroImage 37 (4), pp. 1161-1177

- a. T2 contrast Spin-echo
- b. Blood Volume (VASO)
- c. Diffusion
- d. Neuronal Current

H. Lu et al. Magnetic Resonance in Medicine 50 (2), pp. 263-274

- a. T2 contrast Spin-echo
- b. Blood Volume (VASO)
- c. Diffusion
- d. Neuronal Current

D. Le Bihan, et al Proceedings of the National Academy of Sciences of the United States of America 103 (21), pp. 8263-8268

K. Miller, et al Proceedings of the National Academy of Sciences of the United States of America 104 (52), pp. 20967-20972

- a. T2 contrast Spin-echo
- b. Blood Volume (VASO)
- c. Diffusion
- d. Neuronal Current

Surface Field Distribution Across Spatial Scales

Adapted from: J.P. Wikswo Jr et al. J Clin Neurophy 8(2): 170-188, 1991

Power decrease between PRE Decrease between PRE & TTX becrease between PRE & TTX & TTX EEG: ~81% MR phase: ~70% MR magnitude: ~8%

N. Petridou, D. Plenz, A. C. Silva, J. Bodurka, M. Loew, P. A. Bandettini, *Proc. Nat'l. Acad. Sci. USA*. 103, 16015-16020 (2006).

- 1. The Undershoots (pre and post)
- 2. Negative Signal Change
- 3. Relationship to neuronal activity
- 4. Linearity
- 5. Fluctuations
- 6. Effects of Pathology / Medication
- 7. Other controversial contrast mechanisms:
 - a. T2 contrast Spin-echo
 - b. Blood Volume (VASO)
 - c. Diffusion
 - d. Neuronal Current

Close to being figured out

Not close to being figured out

Very far from being figured out