PICLas Documentation

Institute for Aerodynamics and Gas Dynamics (IAG)
Institute for Space Systems (IRS)
University of Stuttgart, Germany

February 14, 2019

Contents

1	Intro		4
	1.1	How this documentation is organized	4
2	Insta	allation	5
	2.1	Prerequisites	5
	2.2	Obtaining the source	6
	2.3	Compiling the code	7
		2.3.1 Directory paths	7
3	Wor	kflow	8
	3.1	Mesh generation with HOPR	8
	3.2	-	8
	3.3	· · · ·	9
	3.4	Setup of parameter file(s)	0
	3.5	Simulation	0
		3.5.1 Parallel execution	1
	3.6	Post-processing	1
4	Feat	ures & Models 1	2
•	4.1	Particle Tracking	
		4.1.1 Linear	
		4.1.2 Curved	
	4.2	Boundary Conditions	
		4.2.1 Field	
		4.2.2 Particle	
	4.3	Particle Emission	2
		4.3.1 Surface Flux	2
	4.4	Particle in Cell	3
	4.5	Direct Simulation Monte Carlo	3
		4.5.1 Species Definition	3
		4.5.2 Relaxation	3
		4.5.3 Chemistry & Ionization	3
		4.5.4 Surface Chemistry	3
5	Tool	ls Overview 1	4
	5.1	Visualization	4
		5.1.1 h5piclas2vtk	

.	C
Contents	Content
CONTENTS	Content

Re	eferences	84
8	Parameter file options	19
7	Installation guidelines 7.1 Cloning and compiling at the HLRS	
6	Tutorials	16
	5.1.2 Paraview plugin	15

1 Introduction

PICLas is a three-dimensional simulation framework for Particle-in-Cell, Direct Simulation Monte Carlo and other particle methods that can be coupled for the simulation of collisional plasma flows. It features a high-order discontinuous Galerkin (DG) simulation module for the solution of the time-dependent Maxwell equations on unstructured hexahedral elements in three space dimensions. The code was specifically designed for very high order accurate simulations on massively parallel systems. It is licensed under GPLv3, written in Fortran and parallelized with MPI. Implemented features are

- Coupled Particle-in-Cell with Direct Simulation Monte Carlo methods
- Arbitrary order nodal polynomial tensor product basis using Gauss or Gauss Lobatto collocation points for electrostatic and electromagnetic solvers
- Matching high order curved mesh generation from external mesh formats (CGNS, GMSH) or simple analytic blocks via the open source preprocessor HOPR
- Non-conforming interfaces based on the mortar approach (electromagnetic solver)
- Non-reflecting boundary conditions via CFS-PMLs (electromagnetic solver)
- Automatic domain decomposition for parallel simulations based on a space filling curve
- High order low-storage explicit Runge-Kutta time integration
- I/O using the HDF5 library optimized for massively parallel jobs

1.1 How this documentation is organized

This user guide is organized to both guide the first steps as well as provide a complete overview of the simulation code's features from a user and a developer point of view.

- Chapter ?? contains step by step instructions from obtaining the source code up to running a first simulation and visualizing the simulation results. In addition, it provides an overview of the whole simulation framework and the currently implemented features.
- Chapter 3 outlines the workflow starting with mesh generation and concluding with the visualization of results produced with **PICLas**.
- Chapter 4 shall serve as a reference for the models and features implemented in **PICLas**.
- Chapter 5 lists tools within the **PICLas** repository, including the post-processing tools.
- Simulation tutorials are contained in Chapter 6.
- Additional installation guidelines for specific systems are given in Chapter 7.
- A complete list of all parameters is given in Chapter 8.

2 Installation

2.1 Prerequisites

PICLas has been tested for various Linux distributions. This includes Ubuntu 14.04 LTS, 16.04 LTS and 18.04 LTS, OpenSUSE 42.1 and CentOS 7. The suggested packages in this section can of course be replaced by self compiled versions.

The required packages for the Ubuntu Linux distributions are listed in table 2.1. Under Ubuntu, they can be obtained using the apt environment:

sudo apt-get install git

Table 2.1: Debian/Ubuntu packages. x: required, o: optional, -: not available

Package	Ubuntu 14.04	Ubuntu 16.04	Ubuntu 18.04
git	×	X	×
cmake	X	X	X
cmake-curses-gui	0	0	0
liblapack3	X	X	X
liblapack-dev	X	X	X
gfortran	X	X	X
g++	X	X	X
mpi-default-dev	X	X	X
zlib1g-dev	-	X	X
exuberant-ctags	0	0	0

The required packages for OpenSUSE and CentOS are listed in table 2.2.

Under OpenSUSE, packages are installed by the following command.

```
sudo zypper install git
```

The PATH variable must be extended by the openmpi path

```
export PATH=$PATH:/usr/lib64/mpi/gcc/openmpi/bin
```

Under CentOS, packages are installed by the following command.

```
sudo yum install git
```

Additionally, the PATH variable must be extended by the openmpi path

```
export PATH=$PATH:/usr/lib64/openmpi/bin
```

Table 2.2: Op	enSUSE/	CentOS	packages.	x: re	eauired.	0: 0	ptional.	-: no	ot available

Package	OpenSUSE 42.1	CentOS 7
git	X	X
cmake	X	X
lapack-devel	X	X
openmpi	X	X
openmpi-devel	X	X
zlib-devel	X	X
gcc-fortran	X	X
gcc	X	-
gcc-c++	X	X
ctags-etags	-	0

On some systems it may be necessary to increase the size of the stack (part of the memory used to store information about active subroutines) in order to execute **PICLas** correctly. This is done using the command

```
ulimit -s unlimited
```

from the command line. For convenience, you can add this line to your .bashrc.

2.2 Obtaining the source

The **PICLas** repository is available at GitHub. To obtain the most recent version you have two possibilities:

Clone the PICLas repository from Github

```
git clone https://github.com/piclas-framework/piclas.git
```

Download PICLas from Github:

```
wget https://github.com/piclas-framework/piclas/archive/
master.tar.gz
tar xzf master.tar.gz
```

Note that cloning **PICLas** from GitHub may not be possible on some machines, as e.g. the HLRS at the University of Stuttgart restricts internet access. Please refer to section 7.1 of

this user guide.

2.3 Compiling the code

- Open a terminal
- Change into the PICLas directory
- Create a new subdirectory and use CMake to configure and compile the code

```
mkdir build; cd build cmake ../ make
```

For a list of all compiler options see Section 3.2. The executables **PICLas** and **h5piclas2vtk** are contained in your **PICLas** directory in build/bin/.

2.3.1 Directory paths

In the following, we write \$PICLASROOT as a substitute for the path to the **PICLas** repository. Please replace \$PICLASROOT in all following commands with the path to your **PICLas** repository or add an environment variable \$PICLASROOT.

Furthermore, the path to executables is omitted in the following, so for example, we write piclas instead of \$PICLASROOT/build/bin/piclas.

Here is some explanation for Linux beginners:

In order to execute a file, you have to enter the full path to it in the terminal. There are two different ways to enable typing piclas instead of the whole path (do not use both at the same time!)

1. You can add an alias for the path to your executable. Add a command of the form

```
alias piclas='$PICLASROOT/build/bin/piclas'
```

to the bottom of the file ~/.bashrc. Source your ~/.bashrc afterwards with

```
. ~/.bashrc
```

2. You can add the PICLas binary directory to your \$PATH environment variable by adding

```
export PATH=$PATH:$PICLASROOT/build/bin
```

to the bottom of the file ~/.bashrc and sourcing your ~/.bashrc afterwards.

Now you are ready for the utilization of **PICLas**.

3 Workflow

In this chapter, the complete process of setting up a simulation in PICLas is detailed.

3.1 Mesh generation with HOPR

PICLas obtains its computational meshes solely from the high order preprocessor HOPR (available under GPLv3 at https://www.hopr-project.org) in HDF5 format. The design philosophy is that all tasks related to mesh organization, different input formats and the construction of high order geometrical mappings are separated from the *parallel* simulation code. These tasks are implemented most efficiently in a *serial* environment. The employed mesh format is designed to make the parallel read-in process as simple and fast as possible. For details concerning the mesh format please refer to the HOPR HDF5 Curved Mesh Format Documentation. Installation instructions can be found here.

Using **HOPR**, simple, structured meshes can be directly created using an in-built mesh generator. A number of strategies to create curved boundaries are also included in HOPR. More complex geometries can be treated by importing meshes generated by external mesh generators in CGNS or GMSH format (Example parameter file).

The basic command for either mesh generation or conversion of an extermal mesh is

```
hopr hopr.ini
```

Note that the path to the **HOPR** executable is omitted in the command (see 2.3.1).

3.2 Compiler options

This section describes the main configuration options which can be set when building **PICLas** using CMake. Some options are dependent on others being enabled (or disabled), so the available ones may change.

The first set of options describe general CMake behaviour:

- CMAKE_BUILD_TYPE: This statically specifies what build type (configuration) will be built in this build tree. Possible values are
 - Release: "Normal" execution.

- Profile: Performance profiling using gprof.
- Debug: Debug compiler for detailed error messages during code development.
- SANI: Sanitizer compiler for even more detailed error messages during code development.
- CMAKE_HOSTNAME: This will display the host name of the machine you are compiling on.
- CMAKE_INSTALL_PREFIX: If "make install" is invoked or INSTALL is built, this directory
 is prepended onto all install directories. This variable defaults to /usr/local on UNIX.

For some external libraries and programs that **PICLas** uses, the following options apply:

- CTAGS_PATH: This variable specifies the Ctags install directory, an optional program
 used to jump between tags in the source file.
- PICLAS_BUILD_HDF5: This will be set to ON if no prebuilt HDF5 installation was found on your machine. In this case a HDF5 version will be build and used instead.
- HDF5_DIR: If you want to use a prebuilt HDF5 library that has been build using the CMake system, this directory should contain the CMake configuration file for HDF5 (optional).

3.3 Solver settings

Before setting up a simulation, the code must be compiled with the desired parameters. The most important compiler options to be set are:

- PICLAS TIMEDISCMETHOD: Module selection
 - DSMC: Direct Simulation Monte Carlo
 - RK4: Time integration method Runge-Kutta
- PICLAS_EQNSYSNAME: Equation system to be solved
 - maxwell:
 - poisson:
- PICLAS_POLYNOMIAL_DEGREE: Defines the polynomial degree of the solution. The order of convergence follows as N+1. Each grid cell contains $(N+1)^3$ collocation points to represent the solution.
- PICLAS_NODETYPE: The nodal collocation points used during the simulation
 - GAUSS:
 - GAUSS-LOBATTO:
- PICLAS_INTKIND8: Enables simulations with particle numbers above 2 147 483 647

The options EQNSYSNAME, POLYNOMIAL_DEGREE and NODETYPE can be ignored for a DSMC simulation. For parallel computation the following flags should be configured:

- PICLAS_MPI: Enabling parallel computation
- PICLAS_LOADBALANCE: Enable load-balancing

All other options are set in the parameter file.

3.4 Setup of parameter file(s)

The settings of the simulation are controlled through parameter files, which are given as arguments to the binary. In the case of PIC simulations the input of a single parameter file (e.g. *parameter.ini*) is sufficient, while the DSMC method requires the input of a species parameter file (e.g. *DSMCSpecies.ini*). The most recent list of parameters can be found by invoking the help in the console:

```
piclas --help
```

General parameters such the name of project (used for filenames) and the mesh file (as produced by HOPR) are:

```
ProjectName=TestCase
MeshFile=test_mesh.h5
```

An overview of the parameters is also given in Chapter 8. The options and underlying models are discussed in Chapter 4. Due to the sheer number of parameters available, it is advisable to build upon an existing parameter file.

3.5 Simulation

After the mesh generation, compilation of the binary and setup of the parameter files, the code can be executed by

```
piclas parameter.ini [DSMCSpecies.ini]
```

The simulation may be restarted from an existing state file

```
piclas parameter.ini [DSMCSpecies.ini] [restart_file.h5]
```

Note: When restarting from an earlier time (or zero), all later state files possibly contained in your directory are deleted!

After a successful simulation, state files will be written out in the HDF5 format preceded by the project name, file type (e.g. State, DSMCState, DSMCSurfState) and the time stamp:

```
TestCase_State_001.500000000000000.h5
TestCase_DSMCState_001.50000000000000.h5
```

3.5.1 Parallel execution

The simulation code is specifically designed for (massively) parallel execution using the MPI library. For parallel runs, the code must be compiled with PICLAS_MPI=ON. Parallel execution is then controlled using mpirun

```
mpirun -np [no. processors] piclas parameter.ini [DSMCSpecies.ini]
        [restart_file.h5]
```

The grid elements are organized along a space-filling curved, which gives a unique one-dimensional element list. In a parallel run, the mesh is simply divided into parts along the space filling curve. Thus, domain decomposition is done *fully automatic* and is not limited by e.g. an integer factor between the number of cores and elements. The only limitation is that the number of cores may not exceed the number of elements.

3.6 Post-processing

PICLas comes with a tool for visualization. The h5piclas2vtk tool converts the HDF5 files generated by **PICLas** to the binary VTK format, readable by many visualization tools like ParaView and Vislt. The tool is executed by

```
h5piclas2vtk [posti.ini] output.h5
```

Multiple HDF5 files can be passed to the h5piclas2vtk tool at once. The (optional) runtime parameters to be set in posti.ini are given in Section 5.1.1.

4 Features & Models

4.1 Particle Tracking

- **4.1.1** Linear
- **4.1.2 Curved**

4.2 Boundary Conditions

- 4.2.1 Field
- 4.2.1.1 Dielectric
- 4.2.2 Particle
- 4.2.2.1 Specular/Reflective Wall

4.2.2.2 Porous Wall

The porous boundary condition uses a removal probability to determine whether a particle is deleted or reflected at the boundary.

4.3 Particle Emission

4.3.1 Surface Flux

4.3.1.1 Adaptive Boundaries

Multiple adaptive particle emission conditions can be defined.

4.4 Particle in Cell

- 4.5 Direct Simulation Monte Carlo
- 4.5.1 Species Definition
- 4.5.2 Relaxation
- 4.5.3 Chemistry & Ionization
- 4.5.4 Surface Chemistry

5 Tools Overview

This section gives an overview over the tools and scripts contained in the **PICLas** repository. It also provides references to the tutorials where their usage is explained.

5.1 Visualization

5.1.1 h5piclas2vtk

The h5piclas2vtk tool converts the HDF5 files generated by **PICLas** to the binary VTK format, readable by many visualization tools like ParaView and Vislt. The tool is executed by

```
h5piclas2vtk [posti.ini] output.h5
```

Multiple HDF5 files can be passed to the h5piclas2vtk tool at once. The (optional) runtime parameters to be set in posti.ini are given below:

Option	Default	Description	
NVisu	1	Number of points at which solution is sampled for visualization	
VisuParticles	OFF	Converts the particle data (positions, velocity, species, internal energies)	
NodeTypeVisu	VISU	Node type of the visualization basis:	
		VISU,GAUSS,GAUSS-LOBATTO,CHEBYSHEV-	
		GAUSS-LOBATTO	
CalcDiffError	F	Use first state file as reference state for L2 error	
		calculation with the following state files	
${\sf AllowChangedMesh}$	F	Neglect changes mesh, use inits of first mesh (ElemID must match!).	
CalcDiffSigma	F	Use last state file as state for L2 sigma calculation.	
CalcAverage	F	Calculate and write arithmetic mean of all StateFile.	
VisuSource	F	Use DG_Source instead of DG_Solution.	
NAnalyze	2*N	Polynomial degree at which analysis is performed	
		(e.g. for L2 errors, required for CalcDiffError).	

5.1.2 Paraview plugin

A ParaView reader based on posti_visu to load **PICLas** state files in ParaView. Provides the interface to adjust posti_visu parameters in the ParaView GUI. For this purpose the libVisuReader.so has to be loaded as a Plugin in ParaView.

6 Tutorials

This chapter will give a detailed overview of simulations with **PICLas**. It assumes that you are familiar with how to set the compiler options and how to compile the code. The paths to the executables are omitted. It is assumed that you either added aliases for **piclas**, **hopr** and **h5piclas2vtk**, or that you added the binary directories to your \$PATH variable as described in 2.3.1.

Each tutorial is equipped with .ini files parameter_hopr.ini, parameter_piclas.ini, parameter_posti.ini (possibly DSMCSpecies.ini) as well as the mesh file *_mesh.h5 in the HDF5 format (created with HOPR).

```
parameter_hopr.ini
parameter_piclas.ini
DSMCSpecies.ini
parameter_posti.ini
mesh.h5
```

We suggest to copy each folder to a new directory, where you can run and modify the parameter files.

Available tutorials:

Work in progress...

7 Installation guidelines

This chapter contains guidelines to install the code from Github on specific systems.

7.1 Cloning and compiling at the HLRS

Unfortunately, the GitHub server is not available on machines at the HLRS, such as the Hazelhen, due to restricted internet access. The workaround is to use ssh tunnels to access the GitHub repositories. Note that the reomte repositories hosted at teh GitLab at the Institute of Aerodynamics and Gasdynamics (IAG), no ssh tunnel is required and cloning works straight forwardly.

The following instructions to access the GitHub repositories on HLRS machines is taken from the HLRS wickie page, see https://wickie.hlrs.de/platforms/index.php/Secure_Shell_ssh# Git

7.1.1 HTTPS

Unfortunately, just using a SSH tunnel as with the SSH and git protocols is not sufficient in this case. Instead, one has to connect via an additional SOCKS proxy on a machine that has unlimited access to the internet, e.g. your local machine.

In order to do so, establish a proxy by using a special feature of OpenSSH:

```
ssh -N -D 1080 localhost
```

This will establish some kind of a "loopback" SSH connection from your local machine to itself which will not execute any command (-N) but act as an SOCKS proxy on port 1080 (-D 1080).

On a second shell, now login to the desired HWW-system and forward a port on the remote machine (e.g. 7777) to the port on your local machine where the newly established SOCKS proxy is listening on (1080):

```
ssh -R 7777:localhost:1080 <system-name>.hww.de
```

By doing so, you have a SOCKS proxy listening on port 7777 of the HWW-system. Hence you can use this proxy for accessing remote git repositories. Unfortunately, the default versions of

git installed on the HWW-systems are not capable of doing this. You hence have to load an appropriate version first:

```
module load tools/git
```

In order to use the proxy, you can now add "-c https.proxy='socks5://localhost:7777' " to your git commands, e.g.:

```
git -c https.proxy='socks5://localhost:7777' clone https://
github.com/piclas-framework/piclas.git
```

In order to avoid typing this in every git call, you can also set the respective port to be used whenever git talks to a remote repository via HTTPS by

```
git config --global https.proxy 'socks5://localhost:7777'
```

Unfortunately, to connect with GitHub for pulling or pushing, the connection to Hazelhen has to be done via the ssh tunnel.

8 Parameter file options

A parameter.ini file is needed to control the code. An overview of all options in the parameter file can be generated by following command in the terminal:

```
piclas --help
```

Generally following types are used:

```
INTEGER = 1
REAL = 1.23456
LOGICAL = T   ! True
LOGICAL =    ! False
STRING = PICLAS
VECTOR = (/1.0,2.0,3.0/)
```

The concept of the parameter file is described as followed:

- each single line is saved and examined for specific variable names
- the examination is case-insensitive
- comments can be set with symbol "!" in front of the text

```
! commented text
```

• numbers can also be set by using "pi"

```
vector = (/1,2Pi,3Pi/)
```

- the order of defined variables is with one exception generally indifferent, but it is preferable to group similar variables
- the order becomes important only by modifying boundary conditions, if you want to modify a specific boundary by addressing its name, the related boundary type has to be defined

```
BoundaryName=inflow ! BC_Name defined in mesh file
BoundaryType=(/2,0,0,0/)
BoundaryName=outflow ! BC_Name defined in mesh file
BoundaryType=(/2,0,0,0/)
```

The following tables describe the main configuration options which can used in the parameter file.

MPI					
Variable	Default	Description			
GroupSize	0	Define size of MPI subgroups used to e.g. perform grouped IO, where group master collects and outputs data.			

IO_HDF5		
Variable gatheredWrite	Default F	Description Set true to activate gathered HDF5 IO for parallel computations. Only local group masters will write data after gathering from local slaves.

LoadBalance				
Variable	Default	Description		
DoLoadBalance	F	Set flag for doing dynamic LoadBalance.		
LoadBalanceSample	1	Define number of iterations (before analyze_dt) that are used for calculation of elemtime information		
PartWeightLoadBalance	F	Set flag for doing LoadBalance with partMPIWeight instead of elemtimes. Elemtime array in state file is filled with nParts*PartMPIWeight for each Elem. If Flag [TRUE] LoadBalanceSample is set to 0 and vice versa.		
Load-DeviationThreshold	0.10	Define threshold for dynamic load-balancing. Restart performed if (Maxweight-Targetweight)/Targetweight > defined value.		

is done if Imbalance > 'Load-DeviationThreshold'.

LoadBalance		
Particles-MPIWeight	0.02	Define weight of particles fo elem loads. (only used if ElemTime does not exist or DoLoadBalance=F).
WeightDistributionMethod		Method for distributing the elem to procs. DEFAULT: 1 if Elemtime exits else -1 -1: elements are equally distributed 0: distribute to procs using elemloads 1: distribute to procs using elemloads, last proc recieves least 2: NOT WORKING 3: TODO DEFINE 4: TODO DEFINE 5/6: iterative smoothing of loads towards last proc
Variable N	Default	Description Polynomial degree of computation to represent to solution
Restart		
Variable	Default	Description
DoInitialAutoRestart	F	Set Flag for doing automatic initial restart with loadbalancing routines after first 'InitialAutoRestartSample'-number of iterations. Restart

Restart			
InitialAutoRestartSample		Define number of iterations at simulation start used for elemtime sampling before performing automatic initial restart. IF 0 than one iteration is sampled and statefile written has zero timeflag. DEFAULT: LoadBalanceSample.	
InitialAutoRestart- PartWeightLoadBalance	F	Set flag for doing initial auto restart with partMPIWeight instead of elemtimes. Elemtime array in state file is filled with nParts*PartMPIWeight for each Elem. If Flag [TRUE] InitialAutoRestartSample is	
RestartNullifySolution	F	set to 0 and vice versa. Set the DG solution to zero (ignore the DG solution in the state file)	

Output		
Variable	Default	Description
ProjectName		Name of the current
		simulation (mandatory).
Logging	F	Write log files containing
		debug output.
WriteErrorFiles	Т	Write error files containing error output.
OutputFormat	None	File format for visualization:
		None, Tecplot, TecplotASCII,
		ParaView. Note: Tecplot
		output is currently
		unavailable due to licensing
		issues.
ASCIIOutputFormat	CSV	File format for ASCII files,
		e.g. body forces: CSV,
		Tecplot.
doPrintStatusLine	F	Print: percentage of time,

Output		
WriteStateFiles	Т	Write HDF5 state files. Disable this only for debugging issues. NO SOLUTION WILL BE WRITTEN!

Piclas Initialization		
Variable	Default	Description
UseDSMC	F	Flag for using DSMC in Calculation
UseLD	F	Flag for using LD in Calculation

TimeDisc		
Variable	Default	Description
TEnd		End time of the simulation
		(mandatory).
CFLScale		Scaling factor for the
		theoretical CFL number,
		typical range 0.11.0
		(mandatory)
maxIter	-1	Stop simulation when
		specified number of timesteps
		has been performed.
NCalcTimeStepMax	1	Compute dt at least after
		every Nth timestep.
IterDisplayStep	1	Step size of iteration that are
		displayed.

Mesh		
Variable	Default	Description
DoSwapMesh	F	TODO-DEFINE-
		PARAMETER Flag to swap
		mesh for calculation.
SwapMeshExePath		(relative) path to
		swap-meshfile (mandatory).

Mesh		
SwapMeshLevel	0	TODO-DEFINE- PARAMETER 0: initial grid 1: first swap mesh 2: second swap mesh
MeshFile		(relative) path to meshfile (mandatory) (HALOWIKI:) usually located in directory or project.ini
useCurveds	Т	Controls usage of high-order information in mesh. Turn ofl to discard high-order data and treat curved meshes as linear meshes.
DoWriteStateToHDF5	Т	Write state of calculation to hdf5-file. TODO-DEFINE-PARAMETER
interpolate From Tree	Т	For non-conforming meshes, built by refinement from a tree structure, the metrics can be built from the tree geometry if it is contained in the mesh. Can improve free-stream preservation.
meshScale	1.0	Scale the mesh by this factor (shrink/enlarge).
meshdeform	F	Apply simple sine-shaped deformation on cartesion mesh (for testing).
CalcPoyntingVecIntegral	F	TODO-DEFINE- PARAMETER Calculate pointing vector integral only perpendicular to z axis
crossProductMetrics	F	Compute mesh metrics using cross product form. Caution: in this case free-stream preservation is only guaranteed for N=3*NGeo.

Mesh		
BoundaryName		Names of boundary conditions to be set (must be present in the mesh!).For each BoundaryName a BoundaryType needs to be
BoundaryType		specified. Type of boundary conditions to be set. Format:
writePartitionInfo	F	(BC_TYPE,BC_STATE) Write information about MPI partitions into a file.

Equation		
Variable	Default	Description
c0	1.0	TODO-DEFINE-
		PARAMETER Velocity of
		light (in vacuum)
eps	1.0	TODO-DEFINE-
		PARAMETER Electric
		constant (vacuum
		permittivity)
mu	1.0	TODO-DEFINE-
		PARAMETER Magnetic
		constant (vacuum
		permeability = 4 piE- 7 H/m)
IniExactFunc		TODO-DEFINE-
		PARAMETER Define exact
		function necessary for linear
		scalar advection
IniWavenumber	(/ 1.0, 1.0, 1.0 /)	TODO-DEFINE-
		PARAMETER
IniCenter	(/ 0.0, 0.0, 0.0 /)	TODO-DEFINE-
		PARAMETER
IniAmplitude	0.1	TODO-DEFINE-
		PARAMETER
IniHalfwidth	0.1	TODO-DEFINE-
		PARAMETER
ACfrequency	0.0	TODO-DEFINE-
		PARAMETER
ACamplitude	0.0	TODO-DEFINE-
		PARAMETER

Equation		
chitensWhichField	-1	TODO-DEFINE-
		PARAMETER
chitensValue	-1.0	TODO-DEFINE-
		PARAMETER
chitensRadius	-1.0	TODO-DEFINE-
		PARAMETER
AlphaShape	2	TODO-DEFINE-
		PARAMETER
r_cutoff	1.0	TODO-DEFINE-
		PARAMETER Modified for
		curved and shape-function
		influence
		$(cdtSafetyFactor+r_cutoff)$

HDG		
Variable	Default	Description
NonLinSolver	1	TODO-DEFINE-
		PARAMETER
${\sf NewtonExactSourceDeriv}$	F	TODO-DEFINE-
		PARAMETER
AdaptIterNewton	0	TODO-DEFINE-
		PARAMETER
Newton Adapt Start Value	F	TODO-DEFINE-
		PARAMETER
AdaptIterNewtonToLinear	100	TODO-DEFINE-
		PARAMETER
RelaxFacNonlinear	0.5	TODO-DEFINE-
		PARAMETER
AdaptIterFixPoint	10	TODO-DEFINE-
		PARAMETER
MaxIterFixPoint	10000	TODO-DEFINE-
		PARAMETER
NormNonline ar DevLimit	99999.0	TODO-DEFINE-
		PARAMETER
EpsNonLinear	0.10E-05	TODO-DEFINE-
		PARAMETER
PrecondType	2	TODO-DEFINE-
		PARAMETER
epsCG	0.10E-05	TODO-DEFINE-
		PARAMETER

HDG		
useRelativeAbortCrit	F	TODO-DEFINE-
		PARAMETER
maxIterCG	500	TODO-DEFINE-
		PARAMETER
OnlyPostProc	F	TODO-DEFINE-
		PARAMETER
ExactLambda	F	TODO-DEFINE-
		PARAMETER
HDG_N		TODO-DEFINE-
		PARAMETER Default:
		2*N
HDG_MassOverintegration	F	TODO-DEFINE-
		PARAMETER

Dielectric Region		
Variable	Default	Description
DoDielectric	F	Use dielectric regions with EpsR and MuR
DielectricFluxNonConserving	F	Use non-conservative fluxes at dielectric interfaces between adielectric region and vacuum
DielectricEpsR	1.0	Relative permittivity
DielectricMuR	1.0	Relative permeability
DielectricTestCase	default	Test cases, e.g., "FishEyeLens" or "FH_lens"
DielectricRmax	1.0	Radius parameter for functions
DielectricCheckRadius	F	Use additional parameter "DielectricRadiusValue" for checking if a DOF is within a dielectric region
DielectricRadiusValue	-1.0	Additional parameter radius for checking if a DOF is within a dielectric region
xyzPhysicalMinMaxDielectric	(/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	[xmin, xmax, ymin, ymax, zmin, zmax] vector for defining a dielectric region by giving the bounding box coordinates of the PHYSICAL region

Dielectric Region		
xyzDielectricMinMax	(/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	[xmin, xmax, ymin, ymax, zmin, zmax] vector for defining a dielectric region by giving the bounding box
		coordinates of the DIELECTRIC region
Dielectric_E_0	1.0	Electric field strength parameter for functions

Filter		
Variable	Default	Description
FilterType	0	TODO-DEFINE-
		PARAMETER
HestFilterParam	(/ 36.0, 12.0, 1.0 /)	TODO-DEFINE-
		PARAMETER

Analyze		
Variable	Default	Description
DoCalcErrorNorms	F	Set true to compute L2 and LInf error norms at analyze step.
Analyze_dt	0.0	Specifies time intervall at which analysis routines are called.
NAnalyze		Polynomial degree at which analysis is performed (e.g. for L2 errors). Default: 2*N.
OutputTimeFixed	-1.0	fixed time for writing state to .h5
nSkipAnalyze		(Skip Analyze-Dt)
CalcTimeAverage		Flag if time averaging should be performed
VarNameAvg		Count of time average variables
VarNameFluc		Count of fluctuation variables
nSkipAvg		Iter every which
		CalcTimeAverage is performed

Analyze		
Field-AnalyzeStep	1	Analyze is performed each
		Nth time step
CalcPotentialEnergy	F	Calculate Potential Energy.
-		Output file is Database.csv
CalcPointsPerWavelength	F	Flag to compute the points
· ·		per wavelength in each cell

Analyzefield		
Variable	Default	Description
PoyntingVecInt-Planes	0	Total number of Poynting
		vector integral planes for
		measuring the directed power
		flow (energy flux density:
		Density and direction of an
		electromagnetic field.
Plane-Tolerance	0.1E-04	Absolute tolerance for
		checking the Poynting vector
		integral plane coordinates
		and normal vectors of the
		corresponding sides for
D. [6]	2.2	selecting relevant sides
Plane-[\$]-x-coord	0.0	TODO-DEFINE-
DI [6] I	0.0	PARAMETER
Plane-[\$]-y-coord	0.0	TODO-DEFINE-
Dlama [¢] =d	0.0	PARAMETER TODO-DEFINE-
Plane-[\$]-z-coord	0.0	PARAMETER
Dlane [¢] factor	1.0	TODO-DEFINE-
Plane-[\$]-factor	1.0	PARAMETER
PoyntingMainDir		Direction in which the
Toyntingivianibii		Poynting vector integral is to
		be measured. 1: x 2: y 3: z
		(default)
		(derault)

RecordPoints		
Variable	Default	Description
RP_inUse	F	Set true to compute solution
		history at points defined in recordpoints file.

RecordPoints		
RP_DefFile		File containing element-local parametric recordpoint coordinates and structure.
RP_MaxMemory	100.0	Maximum memory in MiB to be used for storing recordpoint state history. If memory is exceeded before regular IO level states are written to file.

Particle		
Variable	Default	Description
Particles-ManualTimeStep	0.0	Manual timestep [sec]
Part-AdaptiveWeightingFactor	0.001	Weighting factor theta for weighting of average instantaneous values with those of previous iterations.
Particles-SurfaceModel	0	Define Model used for particle surface interaction. If >0 then look in section SurfaceModel. 0: Maxwell scattering 1: Kisliuk / Polanyi Wigner (currently not working) 2: Recombination model 3: adsorption/desorption + chemical interaction (SMCR with UBI-QEP, TST and TCE) 4: TODO 5: SEE-E and SEE-I (secondary e-emission due to e- or i+bombardment) by Levko2015 for copper electrondes 6: SEE-E (secondary e-emission due to e-bombardment) by Pagonakis2016 for molybdenum (originally from
Part-nSpecies	1	Harrower1956) Number of species used in calculation

Particle		
Part-nMacroRestartFiles	0	Number of Restart files used for calculation
Part-MacroRestartFile[\$]	none	relative path to Restart file [\$] used for calculation
Part-Dolnitiallonization	F	When restarting from a state ionize the species to a specific degree
InitialIonizationSpecies		Supply the number of species that are considered for automatic ionization
Initial Ionization Species ID		Supply a vector with the species IDs that are used for the initial ionization.
Initial I onization Charge Average		Average charge for each atom/molecule in the cell (corresponds to the ionization degree)
Part-MaxParticleNumber	1	Maximum number of Particles per proc (used for array init)
Particles-dt_part_ratio	3.8	TODO-DEFINE- PARAMETER Factors for td200/201 overrelaxation/subcycling
Particles-overrelax_factor	1.0	TODO-DEFINE- PARAMETER Factors for td200/201
Part-NumberOfRandomSeeds	0	overrelaxation/subcycling Number of Seeds for Random Number GeneratorChoose nRandomSeeds =-1 Random = 0 Debugging-friendly with hard-coded deterministic numbers > 0 Debugging-friendly with numbers from ini.
Particles-RandomSeed[\$]	1	Seed [\$] for Random Number Generator
Particles-DoPoissonRounding	F	TODO-DEFINE- PARAMETER Flag to perform Poisson sampling instead of random rounding

Particle	Particle		
Particles-DoTimeDepInflow	F	TODO-DEFINE- PARAMETER Insertion and SurfaceFlux with simple random rounding. Linearly ramping of inflow-number-of-particles is only possible with PoissonRounding or	
Part-nPeriodicVectors	0	DoTimeDepInflow TODO-DEFINE- PARAMETER Number of the periodic vectors j=1,,n. Value has to be the same as defined in preprog.ini	
Part-PeriodicVector[\$]	(/ 1.0, 0.0, 0.0 /)	TODO-DEFINE- PARAMETER Vector for periodic boundaries. Has to be the same as defined in preproc.ini in their respective order.	
Part-DelayTime	0.0	TODO-DEFINE- PARAMETER During delay time the particles, won't be moved so the EM field can be evolved	
Particles-OutputVpiWarnings	F	TODO-DEFINE- PARAMETER Flag for warnings for rejected v if VPI+PartDensity	
Part-SafetyFactor	1.0	TODO-DEFINE- PARAMETER Factor to scale the halo region with MPI	
Particles-HaloEpsVelo	0.0	TODO-DEFINE- PARAMETER Halo region radius	
NbrOfRegions	0	TODO-DEFINE- PARAMETER Number of regions to be mapped to Elements	

Particle		
RegionBounds[\$]	(/ 0.0, 0.0, 0.0, 0.0,	TODO-DEFINE-
	0.0, 0.0 /)	PARAMETER RegionBounds
		((xmin,xmax,ymin,) 1:NbrC
Part-RegionElectronRef[\$]	(/ 0.0, 0.0, 1.0 /)	rho_ref, phi_ref, and Te[eV]
		for Region#
Part-RegionElectronRef[\$]-PhiMax		max. expected phi for
		Region $\#$ (linear approx.
		above! def.: phi_ref)
Part-LorentzType	3	TODO-DEFINE-
		PARAMETER Used Lorentz
		boost
PrintrandomSeeds	F	Flag defining if random seeds
		are written.
Particles-	100000	Option defining how many
NumberOfRandomVectors		random vectors are calculated
Part-DoFieldIonization	F	Do Field Ionization.
		Implemented models are: *
		Ammosov-Delone-Krainov
		(ADK) model

IMD		
Variable	Default	Description
IMDTimeScale	0.1018E-13	Time unit of input file. The default value is ~ 10.18 fs which comes from the unit system in IMD
IMDLengthScale	0.10E-09	Length unit scale used by IMD which is 1 angstrom
IMDAtomFile	no file found	IMD data file containing the atomic states for PartState(1:6)
IMDCutOff	no_cutoff	Atom cut-off parameter for reducing the number of improrted IMD particles 1.) no_cutoff 2.) Epot 3.) coordinates 4.) velocity
IMDCutOffxValue	-999.9	Cut-off coordinate for IMDCutOff='coordiantes'
IMDnSpecies	1	Count of IMD species

IMD		
IMDInputFile	no file found	Laser data file name containing PartState(1:6)

VMPF		
Variable	Default	Description
Part-vMPF	F	TODO-DEFINE-
		PARAMETER Flag to use
		variable Macro Particle
		Factor.
Part-vMPFPartMerge	F	TODO-DEFINE-
		PARAMETER Enable
		Particle Merge routines.
Part-vMPFMergePolOrder	2	TODO-DEFINE-
		PARAMETER Polynomial
		degree for vMPF particle
		merge.
Part-vMPFCellSplitOrder	15	TODO-DEFINE-
		PARAMETER Order for cell
		splitting of variable MPF
Part-vMPFMergeParticleTarget	0	TODO-DEFINE-
		PARAMETER Count of
		particles wanted after merge.
Part-vMPFSplitParticleTarget	0	TODO-DEFINE-
		PARAMETER Number of
		particles wanted after split.
Part-vMPFMergeParticleIter	100	TODO-DEFINE-
		PARAMETER Number of
		iterations between particle
		merges.
Part-vMPFvelocityDistribution	OVDR	TODO-DEFINE-
		PARAMETER Velocity
		distribution for variable MPF.
Part-vMPFrelativistic	F	TODO-DEFINE-
		PARAMETER

Particle Sampling		
Variable	Default	Description

Particle Sampling		
Part-WriteMacroValues	F	Set [T] to activate ITERATION DEPENDANT h5 output of macroscopic values sampled every [Part-IterationForMacroVal] iterations from particles. Sampling starts from simulation start. Can not be enabled together with Part-TimeFracForSampling. (HALOWIKI:)Write macro values (e.g. rotational Temperature).
Part-WriteMacroVolumeValues	F	Similar to Part-WriteMacroValues. Set [T] to activate iteration dependant sampling and h5 output for each element. Is automatically set true if Part-WriteMacroValues is true. Can not be enabled if Part-TimeFracForSampling is set.
Part-WriteMacroSurfaceValues	F	Similar to Part-WriteMacroValues. Set [T] to activate iteration dependant sampling and h5 output on surfaces. Is automatically set true if Part-WriteMacroValues is true. Can not be enbaled if Part-TimeFracForSampling is set.
Part-IterationForMacroVal	1	Set number of iterations used for sampling if Part-WriteMacroValues is set true.

Particle Sampling		
Part-TimeFracForSampling	0.0	Set value greater 0.0 to enable TIME DEPENDANT sampling. The given simulation time fraction will be sampled. Sampling starts after TEnd*(1-Part-TimefracForSampling). Can not be enabled together with Part-WriteMacroValues.
Particles-	0	Give the number of outputs
NumberForDSMCOutputs	·	for time fraction sampling. Default value is 1 if Part-TimeFracForSampling is enabled.
Particles-DSMC-CalcSurfaceVal	F	Set [T] to activate sampling, analyze and h5 output for surfaces. Therefore either time fraction or iteration sampling have to be enabled as well.
DSMC-HOSampling-Type	cell_mean	TODO-DEFINE- PARAMETER
Particles-DSMC-OutputOrder	1	TODO-DEFINE- PARAMETER
DSMC-HOSampling-NodeType	visu	TODO-DEFINE- PARAMETER
DSMCSampVolWe-BGMdeltas	(/ 0.0, 0.0, 0.0 /)	TODO-DEFINE- PARAMETER
DSMCSampVolWe-FactorBGM	(/ 1.0, 1.0, 1.0 /)	TODO-DEFINE- PARAMETER
DSMCSampVolWe-VolIntOrd	50	TODO-DEFINE- PARAMETER
DSMC-nSurfSample	1	Define polynomial degree of particle BC sampling. Default: NGeo

Particle SurfCollis		
Variable	Default	Description

Particle SurfCollis		
Particles-	F	TODO-DEFINE-
CalcSurfCollis_OnlySwaps		PARAMETER Count only
		wall collisions being
		SpeciesSwaps
Particles-	F	TODO-DEFINE-
CalcSurfCollis_Only0Swaps		PARAMETER Count only
		wall collisions being
		delete-SpeciesSwaps
Particles-CalcSurfCollis_Output	F	TODO-DEFINE-
		PARAMETER Print sums of
		all counted wall collisions
Particles-AnalyzeSurfCollis	F	TODO-DEFINE-
		PARAMETER Output of
		collided/swaped particles
		during Sampling period?
Particles-DSMC-	0	TODO-DEFINE-
maxSurfCollisNumber		PARAMETER Max. number
		of collided/swaped particles
		during Sampling
Particles-DSMC-NumberOfBCs	1	TODO-DEFINE-
		PARAMETER Count of BC
		to be analyzed
Particles-DSMC-SurfCollisBC		BCs to be analyzed (def.: 0
		= all)
Particles-	0	TODO-DEFINE-
CalcSurfCollis_NbrOfSpecies		PARAMETER Count of
		Species for wall collisions (0:
		all)
Particles-CalcSurfCollis_Species		TODO-DEFINE-
		PARAMETER Help array for
		reading surface stuff
${\sf Part-WriteFieldsToVTK}$	F	TODO-DEFINE-
		PARAMETER Not in Code
		anymore, but read-in has to
		be deleted in particle_init.f90
Part-ConstPressAddParts	T	TODO-DEFINE-
		PARAMETER
Part-ConstPressRemParts	F	TODO-DEFINE-
		PARAMETER

Particle Species		
Variable	Default	Description
Part-Species[\$]-nInits	0	Number of different initial
		particle placements for
		Species [\$]
Part-Species[\$]-Reset	F	Flag for resetting species
		distribution with init during
		restart
Part-Species[\$]-ChargeIC	0.0	[TODO-DEFINE-
		PARAMETER] Particle
		Charge (without MPF) of
		species[\$] dim
Part-Species[\$]-MassIC	0.0	Particle Mass (without MPF)
		of species [\$] [kg]
Part-Species[\$]-	1.0	Number of Microparticle per
MacroParticleFactor		Macroparticle for species [\$]
Part-Species[\$]-IsImplicit	F	TODO-DEFINE-
		PARAMETER Flag if specific
		particle is implicit
Part-Species[\$]-UseForInit	Т	Flag to use species[\$] for
		initialization.
Part-Species[\$]-UseForEmission	Т	Use species[\$] for volume
		emission. (set EmissionType)
Part-Species[\$]-SpaceIC	cuboid	Specifying Keyword for
		particle space condition of
		species
		[\$] in case of one init point -
		line_with_equidistant_distribu
		- line - disc - gyrotron_circle -
		circle_equidistant - cuboid -
		cylinder - cuboid_vpi -
		cylinder_vpi - LD_insert -
		cell_local - cuboid_equal -
		cuboid_with_equidistant_distr
		sin_deviation - IMD

Particle Species		
Part-Species[\$]- velocityDistribution	constant	Used velocity distribution. constant: all particles have the same defined velocity.(VeloIC, VeloVec) maxwell: sampled from maxwell distribution.(for MWTemperatureIC) maxwell_lpn: maxwell with low particle number (better maxwell dist. approx. for
Part-Species[\$]-rotation	1	Ipn). TODO-DEFINE- PARAMETER Direction of
Part-Species[\$]-velocityspread	0.0	rotation, similar to TE-mode TODO-DEFINE- PARAMETER Velocity spread in percent
Part-Species[\$]- velocityspreadmethod	0	TODO-DEFINE- PARAMETER Method to
Part-Species[\$]-InflowRiseTime	0.0	compute the velocity spread TODO-DEFINE-PARAMETER Time to ramp the number of inflow particles, linearly from zero to unity
Part-Species[\$]-initialParticleNumber	0	TODO-DEFINE- PARAMETER Initial particle
Part-Species[\$]-RadiusIC	1.0	TODO-DEFINE- PARAMETER Radius for IC
Part-Species[\$]-Radius2IC	0.0	circle TODO-DEFINE- PARAMETER Radius for IC
Part-Species[\$]-RadiusICGyro	1.0	cylinder (ring) TODO-DEFINE- PARAMETER Gyrotron
Part-Species[\$]-NormalIC	(/ 0.0, 0.0, 1.0 /)	radius TODO-DEFINE- PARAMETER Normal orientation of circle.

Particle Species		
Part-Species[\$]-BasePointIC	(/ 0.0, 0.0, 0.0 /)	TODO-DEFINE- PARAMETER Base point fo IC cuboid and IC sphere
Part-Species[\$]-BaseVector1IC	(/ 1.0, 0.0, 0.0 /)	TODO-DEFINE- PARAMETER First base vector for IC cuboid
Part-Species[\$]-BaseVector2IC	(/ 0.0, 1.0, 0.0 /)	TODO-DEFINE- PARAMETER Second base vector for IC cuboid
Part-Species[\$]-CuboidHeightIC	1.0	TODO-DEFINE- PARAMETER Height of cuboid if SpaceIC=cuboid
Part-Species[\$]-CylinderHeightIC	1.0	TODO-DEFINE- PARAMETER Height of cylinder if SpaceIC=cylinder
Part-Species[\$]-CalcHeightFromDt	F	TODO-DEFINE- PARAMETER Calculated cuboid/cylinder height from v and dt?
Part-Species[\$]-VeloIC	0.0	Absolute value of initial velocity. (ensemble velocity)
Part-Species[\$]-VeloVecIC	(/ 0.0, 0.0, 0.0 /)	Normalized velocity vector fo given VeloIC
Part-Species[\$]-Amplitude	0.01	TODO-DEFINE- PARAMETER Amplitude for sin-deviation
Part-Species[\$]-WaveNumber	2.0	TODO-DEFINE- PARAMETER Wave number for sin-deviation
Part-Species[\$]- maxParticleNumber-x	0	TODO-DEFINE- PARAMETER MaximumNumber of all
Part-Species[\$]- maxParticleNumber-y	0	particles in x-direction TODO-DEFINE- PARAMETER MaximumNumber of all
Part-Species[\$]- maxParticleNumber-z	0	particles in y-direction TODO-DEFINE- PARAMETER MaximumNumber of all particles in z-direction

Particle Species		
Part-Species[\$]-Alpha	0.0	TODO-DEFINE- PARAMETER Factor for normal speed in gyrotron simulations.
Part-Species[\$]- MWTemperatureIC	0.0	Initial translational temperature for Maxwell distribution initialization.
Part-Species[\$]-ConstantPressure	0.0	TODO-DEFINE- PARAMETER Pressure for all area with constant pressure
Part-Species[\$]- ConstPressureRelaxFac	1.0	TODO-DEFINE- PARAMETER Relaxation Factor for constant pressure sampling.
Part-Species[\$]-PartDensity	0.0	Define particle density for species [\$]. PartDensity (real particles per m^3). Used for DSMC with (vpi_)cuboid/cylinder and cell_local initial inserting. Also for LD_insert or (vpi_)cub./cyl. / cell_local as alternative to Part.Emis. in Type1
Part-Species[\$]- ParticleEmissionType	2	Define Emission Type for particles (volume emission) 1 = emission rate in part/s, 2 = emission rate part/iteration 3 = user def. emission rate 4 = const. cell pressure 5 = cell pres. w. complete part removal 6 = outflow BC (characteristics method)
Part-Species[\$]-ParticleEmission	0.0	Emission rate in part/s or part/iteration.
Part-Species[\$]-NSigma	10.0	TODO-DEFINE- PARAMETER Sigma multiple of maxwell for virtual insert length.

Particle Species		
Part-Species[\$]-	0	TODO-DEFINE-
NumberOfExcludeRegions		PARAMETER Number of
		different regions to be
		excluded
Part-Species[\$]-MJ×Ratio	0.0	TODO-DEFINE-
		PARAMETER \times direction
		portion of velocity for
		Maxwell-Juettner
Part-Species[\$]-MJyRatio	0.0	TODO-DEFINE-
		PARAMETER y direction
		portion of velocity for
		Maxwell-Juettner
Part-Species[\$]-MJzRatio	0.0	TODO-DEFINE-
		PARAMETER z direction
		portion of velocity for
		Maxwell-Juettner
Part-Species[\$]-WeibelVeloPar	0.0	TODO-DEFINE-
		PARAMETER Parallel
		velocity component for
		Weibel
Part-Species[\$]-WeibelVeloPer	0.0	TODO-DEFINE-
		PARAMETER Perpendicular
		velocity component for
		Weibel
Part-Species[\$]-	0.0	TODO-DEFINE-
OneDTwoStreamVelo		PARAMETER Stream
		Velocity for the Two Stream
		Instability
Part-Species[\$]-	0.0	TODO-DEFINE-
OneDTwoStreamTransRatio		PARAMETER Ratio between
		perpendicular and parallel
		velocity
Part-Species[\$]-vpiDomainType	perpendicular_extr	rusionTODO-DEFINE-
	_	PARAMETER Specifying
		Keyword for virtual
		Pre-Inserting region
		implemented: -
		perpendicular_extrusion
		(default) - freestream - orifice
		more following

Particle Species		
Part-Species[\$]-vpiBV1BufferNeg	Т	TODO-DEFINE-
		PARAMETER incl. buffer
		region in -BV1 direction?
Part-Species[\$]-vpiBV1BufferPos	T	TODO-DEFINE-
		PARAMETER incl. buffer
		region in $+BV1$ direction?
Part-Species[\$]-vpiBV2BufferNeg	T	TODO-DEFINE-
		PARAMETER incl. buffer
		region in -BV2 direction?
Part-Species[\$]-vpiBV2BufferPos	T	TODO-DEFINE-
		PARAMETER incl. buffer
		region in $+BV2$ direction?
Part-Species[\$]-IsIMDSpecies	F	TODO-DEFINE-
		PARAMETER
Part-Species[\$]-	0	Define File ID of file used for
MacroRestartFileID		Elem specific cell_local init
		of all macroscopic values
Part-Species[\$]-		Define File ID of file used for
ElemTemperatureFileID		Elem specific cell_local init
·		of translational temperature.
		(x,y,z are used from State)
		DEFAULT:
		${\sf MacroRestartFileID}$
Part-Species[\$]-		Define File ID of file used for
ElemPartDensityFileID		Elem specific cell_local init of
•		number density. DEFAULT:
		MacroRestartFileID
Part-Species[\$]-		Define File ID of file used for
ElemVelocityICFileID		Elem specific cell_local init
,		of drift velocity. (x,y,z) are
		used from State) DEFAULT:
		MacroRestartFileID
Part-Species[\$]-ElemTVibFileID		Define File ID of file used for
		Elem specific cell_local init
		of vibrational temperature.
		DEFAULT:
		MacroRestartFileID only used
		if DSMC $+$ collismode $>$ 1

Particle Species	
Part-Species[\$]-ElemTRotFileID	Define File ID of file used for
	Elem specific cell_local init
	of rotational temperature.
	DEFAULT:
	MacroRestartFileID only used
	if DSMC $+$ collismode $>$ 1
Part-Species[\$]-ElemTElecFileID	Define File ID of file used for
•	Elem specific cell_local init
	of electronic temperature.
	DEFAULT:
	MacroRestartFileID only used
	if DSMC $+$ collismode $>$ 1 $+$
	electronicmodel

Particle Species Ninits Variable Default Description Part-Species[\$]-Init[\$]-UseForInit Т TODO-DEFINE-PARAMETER Flag to use Init/Emission for init F Part-Species[\$]-Init[\$]-TODO-DEFINE-UseForEmission PARAMETER Flag to use Init/Emission for emission Part-Species[\$]-Init[\$]-SpaceIC cuboid Specifying Keyword for particle space condition of species [\$] in case of multiple inits Part-Species[\$]-Init[\$]-TODO-DEFINEconstant velocityDistribution PARAMETER Specifying keyword for velocity distribution Part-Species[\$]-Init[\$]-rotation 1 TODO-DEFINE-PARAMETER Direction of rotation, similar to TE-mode 0.0 TODO-DEFINE-Part-Species[\$]-Init[\$]velocityspread PARAMETER Velocity spread in percent Part-Species[\$]-Init[\$]-0 TODO-DEFINEvelocityspreadmethod PARAMETER Method to compute the velocity spread

Particle Species Ninits		
Part-Species[\$]-Init[\$]- InflowRiseTime	0.0	TODO-DEFINE- PARAMETER Time to ramp the number of inflow particles
Part-Species[\$]-Init[\$]- initialParticleNumber	0	linearly from zero to unity TODO-DEFINE- PARAMETER Number of
Part-Species[\$]-Init[\$]-RadiusIC	1.0	Particles at time 0.0 TODO-DEFINE- PARAMETER Radius for IC
Part-Species[\$]-Init[\$]-Radius2IC	0.0	circle TODO-DEFINE- PARAMETER Radius2 for IC
Part-Species[\$]-Init[\$]- RadiuslCGyro	1.0	cylinder (ring) TODO-DEFINE- PARAMETER Radius for
Part-Species[\$]-Init[\$]-NormalIC	(/ 0.0, 0.0, 1.0 /)	Gyrotron gyro radius TODO-DEFINE- PARAMETER Normal /
Part-Species[\$]-Init[\$]-BasePointIC	(/ 0.0, 0.0, 0.0 /)	Orientation of circle TODO-DEFINE- PARAMETER Base point for
Part-Species[\$]-Init[\$]- BaseVector1IC	(/ 1.0, 0.0, 0.0 /)	IC cuboid and IC sphere TODO-DEFINE- PARAMETER First base
Part-Species[\$]-Init[\$]- BaseVector2IC	(/ 0.0, 1.0, 0.0 /)	vector for IC cuboid TODO-DEFINE- PARAMETER Second base
Part-Species[\$]-Init[\$]- CuboidHeightIC	1.0	vector for IC cuboid TODO-DEFINE- PARAMETER Height of cuboid if SpaceIC = cuboid. (set 0 for flat
Part-Species[\$]-Init[\$]- CylinderHeightIC	1.0	rectangle), negative value = opposite direction TODO-DEFINE- PARAMETER Third measure of cylinder (set 0 for flat rectangle), negative value = opposite direction

Particle Species Ninits		
Part-Species[\$]-Init[\$]-CalcHeightFromDt	F	TODO-DEFINE- PARAMETER Calculate cuboid/cylinder height from v and dt?
Part-Species[\$]-Init[\$]-VeloIC	0.0	TODO-DEFINE- PARAMETER Velocity for inital Data
Part-Species[\$]-Init[\$]-VeloVecIC	(/ 0.0, 0.0, 0.0 /)	TODO-DEFINE- PARAMETER Normalized velocity vector
Part-Species[\$]-Init[\$]-Amplitude	0.01	TODO-DEFINE- PARAMETER Amplitude for sin-deviation initiation.
Part-Species[\$]-Init[\$]- WaveNumber	2.0	TODO-DEFINE- PARAMETER WaveNumber
Part-Species[\$]-Init[\$]- maxParticleNumber-x	0	for sin-deviation initiation TODO-DEFINE- PARAMETER Maximum Number of all Particles in x
Part-Species[\$]-Init[\$]- maxParticleNumber-y	0	direction TODO-DEFINE- PARAMETER Maximum Number of all Particles in y
Part-Species[\$]-Init[\$]- maxParticleNumber-z	0	direction TODO-DEFINE- PARAMETER Maximum Number of all Particles in z
Part-Species[\$]-Init[\$]-Alpha	0.0	direction TODO-DEFINE- PARAMETER WaveNumber
Part-Species[\$]-Init[\$]- MWTemperatureIC	0.0	for sin-deviation initiation. TODO-DEFINE- PARAMETER Temperature
Part-Species[\$]-Init[\$]- ConstantPressure	0.0	for Maxwell Distribution TODO-DEFINE- PARAMETER Pressure for an Area with a Constant Pressure
Part-Species[\$]-Init[\$]- ConstPressureRelaxFac	1.0	TODO-DEFINE- PARAMETER Relaxation Factor for constant pressure sampling.

Particle Species Ninits		
Part-Species[\$]-Init[\$]-PartDensity	0.0	TODO-DEFINE- PARAMETER PartDensity
		(real particles per m^3) for
		LD_insert or (vpi_)cub./cyl.
		as alternative to Part.Emis.
		in Type1
Part-Species[\$]-Init[\$]-	2	TODO-DEFINE-
ParticleEmissionType	۷	PARAMETER Emission Type
T difficieEmission Type		1 = emission rate in 1/s, 2 =
		emission rate $1/3$, $2 = 0$
		user def. emission rate $4 =$
		const. cell pressure $5 = \text{cell}$
		pres. w. complete part
		removal 6 = outflow BC
		(characteristics method)
Part-Species[\$]-Init[\$]-	0.0	TODO-DEFINE-
ParticleEmission		PARAMETER Emission in
		[1/s] or [1/Iteration]
Part-Species[\$]-Init[\$]-NSigma	10.0	TODO-DEFINE-
, , , , , ,		PARAMETER Sigma
		multiple of maxwell for
		virtual insert length
Part-Species[\$]-Init[\$]-	0	TODO-DEFINE-
NumberOfExcludeRegions		PARAMETER Number of
		different regions to be
		excluded
${\sf Part-Species[\$]-Init[\$]-MJxRatio}$	0.0	TODO-DEFINE-
		PARAMETER x direction
		portion of velocity for
		Maxwell-Juettner
Part-Species[\$]-Init[\$]-MJyRatio	0.0	TODO-DEFINE-
		PARAMETER y direction
		portion of velocity for
		Maxwell-Juettner
Part-Species[\$]-Init[\$]-MJzRatio	0.0	TODO-DEFINE-
		PARAMETER z direction
		portion of velocity for
D 0 . [6] 1 . [6]		Maxwell-Juettner
Part-Species[\$]-Init[\$]-	0.0	TODO-DEFINE-
WeibelVeloPar		PARAMETER Parallel
		velocity component for
		Weibel

Particle Species Ninits		
Part-Species[\$]-Init[\$]- WeibelVeloPer	0.0	TODO-DEFINE- PARAMETER Perpendicular velocity component for Weibel
Part-Species[\$]-Init[\$]- OneDTwoStreamVelo	0.0	TODO-DEFINE- PARAMETER Stream Velocity for the Two Stream Instability
Part-Species[\$]-Init[\$]- OneDTwoStreamTransRatio	0.0	TODO-DEFINE- PARAMETER Ratio between perpendicular and parallel velocity
Part-Species[\$]-Init[\$]-vpiDomainType	perpendicular_	extrusion ODO-DEFINE- PARAMETER Specifying Keyword for virtual Pre-Inserting region implemented: - perpendicular_extrusion (default) - freestream - orifice
Part-Species[\$]-Init[\$]-vpiBV1BufferNeg	Т	more following TODO-DEFINE- PARAMETER incl. buffer
Part-Species[\$]-Init[\$]-vpiBV1BufferPos	Т	region in -BV1 direction? TODO-DEFINE- PARAMETER incl. buffer
Part-Species[\$]-Init[\$]-vpiBV2BufferNeg	Т	region in +BV1 direction? TODO-DEFINE- PARAMETER incl. buffer
Part-Species[\$]-Init[\$]-vpiBV2BufferPos	Т	region in -BV2 direction? TODO-DEFINE- PARAMETER incl. buffer
Part-Species[\$]-Init[\$]- MacroRestartFileID	0	region in +BV2 direction? Define File ID of file used for Elem specific cell_local init of all macroscopic values
Part-Species[\$]-Init[\$]- ElemTemperatureFileID		Define File ID of file used for Elem specific cell_local init of translational temperature. (x,y,z are used from State) DEFAULT: MacroRestartFileID

Particle Species Ninits	
Part-Species[\$]-Init[\$]-	Define File ID of file used for
${\sf ElemPartDensityFileID}$	Elem specific cell_local init of
	number density. DEFAULT:
	MacroRestartFileID
Part-Species[\$]-Init[\$]-	Define File ID of file used for
${\sf ElemVelocityICFileID}$	Elem specific cell_local init
	of drift velocity. (x,y,z are
	used from State) DEFAULT:
D . C . [6] L . [6]	MacroRestartFileID
Part-Species[\$]-Init[\$]-	Define File ID of file used for
ElemTVibFileID	Elem specific cell_local init
	of vibrational temperature.
	DEFAULT:
	MacroRestartFileID only used
Part Specias(\$) Init(\$)	if DSMC $+$ collismode $>$ 1 Define File ID of file used for
Part-Species[\$]-Init[\$]- ElemTRotFileID	Elem specific cell_local init
Lieili i Noti lieiD	of rotational temperature.
	DEFAULT:
	MacroRestartFileID only used
	if DSMC + collismode>1
Part-Species[\$]-Init[\$]-	Define File ID of file used for
ElemTElecFileID	Elem specific cell_local init
	of electronic temperature.
	DEFAULT:
	MacroRestartFileID only used
	if DSMC $+$ collismode $>$ 1 $+$
	electronicmodel

Particle Species Init RegionExculdes

Variable	Default	Description
Part-Species[\$]-Init[\$]-	cuboid	TODO-DEFINE-
ExcludeRegion[\$]-SpaceIC		PARAMETER Specified
		keyword for excluded particle
		space condition of species[\$]
		in case of multiple inits
Part-Species[\$]-Init[\$]-	1.0	TODO-DEFINE-
ExcludeRegion[\$]-RadiusIC		PARAMETER Radius for
		excluded IC circle

Particle Species Init RegionExculdes		
Part-Species[\$]-Init[\$]- ExcludeRegion[\$]-Radius2IC	0.0	TODO-DEFINE- PARAMETER Radius2 for excluded IC cylinder (ring)
Part-Species[\$]-Init[\$]- ExcludeRegion[\$]-NormalIC	(/ 0.0, 0.0, 1.0 /)	TODO-DEFINE- PARAMETER Normal orientation of excluded circle
Part-Species[\$]-Init[\$]- ExcludeRegion[\$]-BasePointIC	(/ 0.0, 0.0, 0.0 /)	TODO-DEFINE- PARAMETER Base point for excluded IC cuboid and IC sphere
Part-Species[\$]-Init[\$]- ExcludeRegion[\$]-BaseVector1IC	(/ 1.0, 0.0, 0.0 /)	TODO-DEFINE- PARAMETER First base vector for excluded IC cuboid
Part-Species[\$]-Init[\$]- ExcludeRegion[\$]-BaseVector2IC	(/ 0.0, 1.0, 0.0 /)	TODO-DEFINE- PARAMETER Second base vector for excluded IC cuboid
Part-Species[\$]-Init[\$]- ExcludeRegion[\$]-CuboidHeightIC	1.0	TODO-DEFINE- PARAMETER Height of excluded cuboid, if Part-Species[\$]-Init[\$]- ExcludeRegion[\$]- SpaceIC=cuboid (set 0 for flat rectangle), negative value = opposite direction
Part-Species[\$]-Init[\$]- ExcludeRegion[\$]- CylinderHeightIC	1.0	TODO-DEFINE- PARAMETER Height of excluded cylinder, if Part-Species[\$]-Init[\$]- ExcludeRegion[\$]- SpaceIC=cylinder (set 0 for flat circle),negative value = opposite direction

Particle Boundaries		
Variable	Default	Description
Part-nBounds	1	TODO-DEFINE-
		PARAMETER Number of
		particle boundaries.

Particle Boundaries		
Part-Boundary[\$]-	0	TODO-DEFINE-
NbrOfSpeciesSwaps		PARAMETER Number of
		Species to be changed at
		wall.
Part-Boundary[\$]-Condition	open	TODO-DEFINE-
•		PARAMETER Used boundary
		condition for boundary[\$]
		open - reflective - periodic -
		simple_anode -
		simple_cathode. If
		condition=open, the
		following parameters are used:
		(Part-Boundary[\$]-=PB)
		PB-Ambient
		, PB-AmbientTemp, PB-
		Ambient Mean Part Mass, PB-
		${\sf AmbientVelo,PB-}$
		AmbientDens, PB-
		Ambient Dynamic Visc, PB-
		Ambient Thermal Cond, PB-
		Voltage If
		condition=reflective:
		PB-MomentumACC,PB-
		Wall Temp, PB-Trans ACC, PB-
		VibACC,PB-RotACC,PB-
		Wall Velo, Voltage, Species Swaps
		condition = periodic: Part-
		${\sf nPeriodicVectors,Part-}$
		PeriodicVector[\$]
Part-Boundary[\$]-	F	TODO-DEFINE-
AmbientCondition		PARAMETERUse ambient
		condition (condition "behind"
		boundary).
Part-Boundary[\$]-	Т	TODO-DEFINE-
AmbientConditionFix		PARAMETER
Part-Boundary[\$]-AmbientTemp	0.0	TODO-DEFINE-
		PARAMETERAmbient
		temperature
Part-Boundary[\$]-	0.0	TODO-DEFINE-
${\sf AmbientMeanPartMass}$		PARAMETERAmbient mean
		particle mass

Particle Boundaries		
Part-Boundary[\$]-AmbientVelo	(/ 0.0, 0.0, 0.0 /)	TODO-DEFINE-
		PARAMETERAmbient
		velocity
Part-Boundary[\$]-AmbientDens	0.0	TODO-DEFINE-
		PARAMETERAmbient
		density
Part-Boundary[\$]-	0.172326582572253E-	TODO-DEFINE-
Ambient Dynamic Visc	04	PARAMETERAmbient
		dynamic viscosity
Part-Boundary[\$]-	0.242948500556027E-	TODO-DEFINE-
AmbientThermalCond	01	PARAMETERAmbient
		thermal conductivity
Part-Boundary[\$]-Adaptive	F	Define if particle boundary [\$]
		is adaptive [.TRUE.] or not
		[.FALSE.]
Part-Boundary[\$]-AdaptiveType	2	Define type of adaptive
		boundary [\$] [1] (STREAM
		INLET) with define
		temperature and pressure and
		pressurefraction [2]
		(STREAM OUTLET) with
		defined pressure and
		pressurefraction
Part-Boundary[\$]-	0	Define FileID of adaptive
Adaptive Macro Restart File ID		boundary [\$] macro restart if
		macro restart is used
Part-Boundary[\$]-AdaptiveTemp	0.0	Define temperature for
		adaptive particle boundary [\$]
		(in [K])
Part-Boundary[\$]-	0.0	Define pressure for adaptive
AdaptivePressure		particle boundary [\$] (in [Pa])
Part-Boundary[\$]-Species[\$]-	0.0	If particle boundary [\$]
Pressurefraction		adaptive, define
		pressurefractions for each
		species, so sum of all species
		for this adaptiveis 1.0.
		Results in abort if not set
		right.
Part-Boundary[\$]-Voltage	0.0	TODO-DEFINE-
		PARAMETERVoltage on
		boundary [\$]

Particle Boundaries		
Part-Boundary[\$]-WallTemp	0.0	Wall temperature (in [K]) of reflective particle boundary [\$].
Part-Boundary[\$]-MomentumACC	0.0	Momentum accommodation coefficient of reflective particle boundary [\$].
Part-Boundary[\$]-TransACC	0.0	Translation accommodation coefficient of reflective particle boundary [\$].
Part-Boundary[\$]-VibACC	0.0	Vibrational accommodation coefficient of reflective particle boundary [\$].
Part-Boundary[\$]-RotACC	0.0	Rotational accommodation coefficient of reflective particle boundary [\$].
Part-Boundary[\$]-ElecACC	0.0	Electronic accommodation coefficient of reflective particle boundary [\$].
Part-Boundary[\$]-Resample	F	TODO-DEFINE- PARAMETERResample Equilibrum Distribution with reflection
Part-Boundary[\$]-WallVelo	(/ 0.0, 0.0, 0.0 /)	Velocity (global x,y,z in $[m/s]$) of reflective particle boundary [$\$$].
Part-Boundary[\$]-SolidState	Т	Flag defining if reflective BC is solid [TRUE] or liquid [FALSE].
Part-Boundary[\$]-SolidReactive	F	Flag for defining solid surface to be treated catalytically (for surfacemodel>0).
Part-Boundary[\$]-SolidSpec	0	Set Species of Solid Boundary (currently not used)
Part-Boundary[\$]-SolidPartDens	0.10E+20	If particle boundary defined as solid set surface atom density (in [part/m^2]).
Part-Boundary[\$]-SolidMassIC	0.32395E-24	Set mass of solid surface particles (in [kg]).
Part-Boundary[\$]- SolidAreaIncrease	1.0	TODO-DEFINE- PARAMETER
Part-Boundary[\$]-SolidCrystalIndx	4	Set number of interaction for hollow sites.

Particle Boundaries		
Part-Boundary[\$]-LiquidSpec	0	Set used species of Liquid Boundary
Part-Boundary[\$]-ParamAntoine	(/ 0.0, 0.0, 0.0 /)	Parameters for Antoine Eq (vapor pressure)
Part-Boundary[\$]- ProbOfSpeciesSwaps	1.0	TODO-DEFINE- PARAMETERProbability of SpeciesSwaps at wall
Part-Boundary[\$]-SpeciesSwaps[\$]	(/ 0, 0 /)	TODO-DEFINE- PARAMETERSpecies to be changed at wall (out=: delete)
Part-Boundary[\$]-SourceName		TODO-DEFINE- PARAMETERNo Default. Source Name of Boundary[i]. Has to be selected for allnBounds. Has to be same name as defined in preproctool
Part-Boundary[\$]-UseForQCrit	Т	TODO-DEFINE- PARAMETERFlag to use Boundary for Q-Criterion
Part-nAuxBCs	0	TODO-DEFINE- PARAMETERNumber of auxillary BCs that are checked during tracing
Part-AuxBC[\$]- NbrOfSpeciesSwaps	0	TODO-DEFINE- PARAMETERNumber of Species to be changed at wall.
Part-AuxBC[\$]-Condition	open	TODO-DEFINE- PARAMETERUsed auxillary boundary condition for boundary[\$] open- reflective- periodic)-> more details see also Part-Boundary[\$]-Condition
Part-AuxBC[\$]-MomentumACC	0.0	TODO-DEFINE- PARAMETERMomentum accommodation
Part-AuxBC[\$]-WallTemp	0.0	TODO-DEFINE- PARAMETERWall temperature of boundary[\$]

Particle Boundaries		
Part-AuxBC[\$]-TransACC	0.0	TODO-DEFINE- PARAMETERTranslation accommodation on boundary
Part-AuxBC[\$]-VibACC	0.0	[\$] TODO-DEFINE- PARAMETERVibrational accommodation on boundary
Part-AuxBC[\$]-RotACC	0.0	[\$] TODO-DEFINE- PARAMETERRotational accommodation on boundary
Part-AuxBC[\$]-ElecACC	0.0	[\$] TODO-DEFINE- PARAMETERElectronic accommodation on boundary
Part-AuxBC[\$]-Resample	F	[\$] TODO-DEFINE- PARAMETERResample
Part-AuxBC[\$]-WallVelo	(/ 0.0, 0.0, 0.0 /)	Equilibirum Distribution with reflection TODO-DEFINE- PARAMETEREmitted
Part-AuxBC[\$]- ProbOfSpeciesSwaps	1.0	velocity on boundary [\$] TODO-DEFINE- PARAMETERProbability of
Part-AuxBC[\$]-SpeciesSwaps[\$]	(/ 0, 0 /)	SpeciesSwaps at wall TODO-DEFINE-PARAMETERSpecies to be changed at wall (out=:
Part-AuxBC[\$]-Type	plane	delete) TODO-DEFINE- PARAMETERType of BC
Part-AuxBC[\$]-r_vec	(/ 0.0, 0.0, 0.0 /)	(plane,) TODO-DEFINE-
Part-AuxBC[\$]-radius		PARAMETER TODO-DEFINE-
Part-AuxBC[\$]-n_vec	(/ 1.0, 0.0, 0.0 /)	PARAMETER TODO-DEFINE-
Part-AuxBC[\$]-axis	(/ 1.0, 0.0, 0.0 /)	PARAMETER TODO-DEFINE- PARAMETER

Particle Boundaries		
Part-AuxBC[\$]-Imin		TODO-DEFINE-
		PARAMETER
Part-AuxBC[\$]-Imax		TODO-DEFINE-
		PARAMETER
Part-AuxBC[\$]-inwards	Т	TODO-DEFINE-
		PARAMETER
Part-AuxBC[\$]-rmax	0.0	TODO-DEFINE-
		PARAMETER
Part-AuxBC[\$]-halfangle	45.0	TODO-DEFINE-
		PARAMETER
Part-AuxBC[\$]-zfac	1.0	TODO-DEFINE-
		PARAMETER

Tracking		
Variable	Default	Description
DoRefMapping	Т	Refmapping [T] or Tracing [F] algorithms are used for tracking of particles.
TriaTracking	F	Using Triangle-aproximation [T] or (bi-)linear and bezier (curved) description [F] of sides for tracing algorithms. Currently flag is only used in DSMC timediscs. Requires DoRefMapping=F.
Write-Tria-DebugMesh	F	Writes per proc triangulated Surfacemesh used for Triatracking. Requires TriaTracking=T.
TriaSurfaceFlux		Using Triangle-aproximation [T] or (bi-)linear and bezier (curved) description [F] of sides for surfaceflux. Default is set to TriaTracking
Write-Tria Surface Flux-Debug Mesh	F	Writes per proc triangulated Surfacemesh used for TriaSurfaceFlux. Requires TriaSurfaceFlux=T.

Tracking		
CountNbOfLostParts	F	Count number of lost particles during tracking that can not be found with fallbacks.
PartOut	0	If compiled with CODE_ANALYZE flag: For This particle number every tracking information is written as STDOUT.
MPIRankOut	0	If compiled with CODE_ANALYZE flag: This MPI-Proc writes the tracking information for the defined PartOut.
MeasureTrackTime	F	If .TRUE. then the time how long the tracking routines are called are sampled and written for each MPI-Proc.
CartesianPeriodic	F	Simplified treatment for periodic box with Refmapping. Not computation of intersection points at periodic BCs.
FastPeriodic	F	Further simplification by directly moving particle into grid. Instead of moving the particle several times the periodic displacements, the particle is mapped directly back into the domain.
RefMappingGuess		Initial guess of the Newton for mapping the particle into reference coordinates. 1 -linear pseudo-Cartesian coordinates 2 - Xi of closest Gauss point 3 - Xi of closest XCL_ngeo point 4 -trival guess (0,0,0)^t
RefMappingEps	0.1E-03	Tolerance for mapping particle into reference element measured as L2-norm of deltaXi

Tracking		
BezierEpsilonBilinear	0.1E-05	Bi-linear tolerance for the bi-linear - planar decision.
BezierElevation	0	Use BezierElevation>0 to tighten the bounding box.
BezierSampleN	0	Typical values>10 TODO-DEFINE- PARAMETER Default value: NGeo equidistant sampling of
Part-FIBGMdeltas	(/ 1.0, 1.0, 1.0 /)	bezier surface for emission Define the deltas for the cartesian
		Fast-Init-Background-Mesh. They should be of the similar size as the smallest cells of the used mesh for simulation.
Part-FactorFIBGM	(/ 1.0, 1.0, 1.0 /)	Factor with which the background mesh will be scaled.
printMPINeighborWarnings	F	Print warning if the MPI-Halo-region between to procs are not overlapping. Only one proc find the other in halo
print Bezier Control Points Warnings	F	Print warning if MIN- VAL(BezierControlPoints3d(iDir,:,:,newSideID)) and global boundaries are too close
BezierNewtonAngle	1.570796326	BoundingBox intersection angle for switching between Bezierclipping and BezierNewton.
BezierClipTolerance	0.1E-07	Tolerance for BezierClipping
BezierNewtonTolerance BezierNewtonGuess	0.1E-03 1	Tolerance for BezierNewton Initial guess for BezierNewton 1 - linear projected face 2 - closest projected BeziercontrolPoint 4 - (0,0)^t
BezierNewtonMaxIter	100	TODO-DEFINE- PARAMETER

Tracking		
BezierSplitLimit	0.6	Limit for splitting in BezierClipping. Value allows to detect multiple intersections and speed up computation. Parameter is multiplied by 2
BezierClipMaxIter	100	Max iteration of BezierClipping
Bezier Clip Line Vector Method	2	TODO-DEFINE- PARAMETER
epsilontol	0.0	TODO-DEFINE- PARAMETER
BezierClipHit	0.0	Tolerance in [-1,1] of BezierFace
BezierNewtonHit	0.0	Tolerance in [-1,1] of BezierNewton
BezierClipMaxIntersec		Max. number of multiple intersections. Default: $2*(NGeo+1)$

Particle Analyze		
Variable	Default	Description
Part-AnalyzeStep	1	Analyze is performed each
		Nth time step
CalcTotalEnergy	F	Calculate Total Energy.
		Output file is Database.csv
PIC-VerifyCharge	F	Validate the charge after
		each depositionand write an
		output in std.out
CalclonizationDegree	F	Compute the ionization
		degree in each cell
${\sf CalcPointsPerShapeFunction}$	F	Compute the points per
		shape function in each cell
CalcPlasmaParameter	F	Compute the plasma
		parameter N_D in each cell
${\sf CalcPointsPerDebyeLength}$	F	Compute the points per
		Debye length in each cell
CalcDebyeLength	F	Compute the Debye length in
		each cell
CalcPICTimeStep	F	Compute the HDG time step
		in each cell

Particle Analyze		
CalcElectronTemperature	F	Compute the electron temperature in each cell
CalcElectronIonDensity	F	Compute the electron density in each cell
CalcPlasmaFrequency	F	Compute the electron
CalcCharge	F	frequency in each cell TODO-DEFINE- PARAMETER Compute the whole deposited charge, absolute and relative charge
CalcKineticEnergy	F	error TODO-DEFINE- PARAMETER Calculate
CalcInternalEnergy	F	Kinetic Energy. TODO-DEFINE- PARAMETER Calculate
CalcTemp	F	Internal Energy. TODO-DEFINE- PARAMETER Calculate
CalcPartBalance	F	Translational temperature. TODO-DEFINE- PARAMETER Calculate the Particle Power Balance- input and outflow energy of all
CalcVelos	F	particles TODO-DEFINE- PARAMETER Calculate thermal and flow velocities.if CalcVelos = T VelocityDirections = (/[int],[int],[int],[int]/) Switching dimensions for CalcVelos on (1) or off (0)
CalcLaserInteraction	F	(/v_x,v_y,v_z, v /) Compute laser-plasma interaction properties such as maximum particle energy per species.

Particle Analyze		
LaserInteractionEkinMaxRadius		maximum radius (x- and y-dir) of particle to be considered for Ekin maximum calculation (default is HUGE) OR if LaserInteractionEkin-MaxZPosMin is true
LaserInteractionEkinMaxZPosMin		minimum z-position of particle to be considered for Ekin maximum calculation (default is -1.*HUGE) OR if LaserInteractionEkinMaxRadius is
VelocityDirections	(/ 1, 1, 1, 1 /)	true TODO-DEFINE- PARAMETER x,y,z,abs -> 0/1 = T/F. (please note:
Part-TrackPosition	F	CalcVelos) TODO-DEFINE- PARAMETER Track particle position
printDiff	F	TODO-DEFINE- PARAMETER
printDiffTime	12.0	TODO-DEFINE- PARAMETER
printDiffVec	(/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)	TODO-DEFINE- PARAMETER
CalcNumSpec	F	TODO-DEFINE- PARAMETER Calculate species count.
CalcCollRates	F	TODO-DEFINE- PARAMETER Calculate the collision rates per collision pair
CalcReacRates	F	TODO-DEFINE- PARAMETER Calculate the reaction rate per reaction
CalcShapeEfficiency	F	TODO-DEFINE- PARAMETER Use efficiency methods for shape functions.

Particle Analyze		
CalcShapeEfficiencyMethod	AllParts	TODO-DEFINE-
		PARAMETER Choose
		between "AllParts" and
		"SomeParts", to either use all
		particles or a certain
		percentage
		(ShapeEfficiencyNumber) of
		the currently used particles
ShapeEfficiencyNumber	100	TODO-DEFINE-
		PARAMETER Percentage of
		currently used particles is
		used.
IsRestart	F	TODO-DEFINE-
		PARAMETER Flag, if the
		current calculation is a
		restart.

TTM		
Variable	Default	Description
DoImportTTMFile	F	Read IMD Two-Temperature
		Model (TTM) data (FD grid
		data with
		electrontemperature and
		other field data)
TTMLogFile	no file specified	TTM Log file path
TTMFile	no file found	TTM Data file path
TTMGridFDdim	(/ 0, 0, 0 /)	Number of FD grid cells in
		each direction $(/x,y,z/)$
${\sf TTMElemBaryTolerance}$	0.1E-05	TTM FD bary center
		tolerance to DG bary center.
		The tolerance is used for
		finding the corresponding DG
		element to which the FD
		data is saved.

PIC		
Variable	Default	Description

PIC		
PIC-Interpolation-Type	particle_position	TODO-DEFINE-
		PARAMETER Type of
		Interpolation-Method to
		calculate the EM field's value
		for the particle
PIC-InterpolationElemLoop	Т	TODO-DEFINE-
		PARAMETER Interpolate
		with outer iElem-loop (notfor
		many Elems per proc!)
IC-externalField	(/ 0.0, 0.0, 0.0, 0.0,	TODO-DEFINE-
	0.0, 0.0 /)	PARAMETER External field
	, , ,	is added to
		themaxwell-solver-field
IC-scaleexternalField	1.0	TODO-DEFINE-
		PARAMETER
IC-DoInterpolation	Т	TODO-DEFINE-
		PARAMETER Compute the
		self field's influence on the
		Particle
IC-BG-Field	Т	TODO-DEFINE-
Te Be Field	•	PARAMETER BGField data
		(1:x,0:NBG,0:NBG,0:NBG,1:P
		If PIC-BG-Field=T Define:
		PIC-BGFilename
		PIC-BGFieldScaling PIC-NBG
C-BGFileName	none	TODO-DEFINE-
C-DGI licivallic	Hone	PARAMETER File name for
		background field
		([character].h5)
C-NBG	1	TODO-DEFINE-
IC-NDG	1	PARAMETER Polynomial
		degree that shall be used for
		_
		background field during
C DCF;aldCaal;	1.0	simulation
C-BGFieldScaling	1.0	TODO-DEFINE-
		PARAMETER Space scaling
16 1		of background field
IC-curvedexternalField	none	TODO-DEFINE-
		PARAMETER File to curved
		external field data.

PIC		
PIC-variableexternalField	none	TODO-DEFINE-
		PARAMETER File containing
		the external field CSV table
PIC-nCollectChargesBCs	0	TODO-DEFINE-
		PARAMETER
PIC-CollectCharges[\$]-BC	0	TODO-DEFINE-
		PARAMETER
PIC-CollectCharges[\$]-	0.0	TODO-DEFINE-
NumOfRealCharges		PARAMETER
PIC-CollectCharges[\$]-ChargeDist	0.0	TODO-DEFINE-
		PARAMETER
PIC-NormVecOfWall	(/ 1.0, 0.0, 0.0 /)	TODO-DEFINE-
		PARAMETER Normal vector
		for pushTimeStep
PIC-DeltaType	1	TODO-DEFINE-
		PARAMETER
		Flag
PIC-DeltaType-N	1	TODO-DEFINE-
		PARAMETER Polynomial
		degree of delta distribution
PIC-BGMdeltas	(/ 0.0, 0.0, 0.0 /)	TODO-DEFINE-
		PARAMETER Dimensions of
		PIC background mesh
PIC-FactorBGM	(/ 1.0, 1.0, 1.0 /)	TODO-DEFINE-
		PARAMETER Denominator
		of PIC-BGMdeltas
PIC-OutputSource	F	TODO-DEFINE-
		PARAMETER Writes the
		source to hdf5

PIC Deposition		
Variable	Default	Description
PIC-DoDeposition	T	TODO-DEFINE-
		PARAMETER Switch
		deposition on/off

PIC Deposition		
PIC-Deposition-Type	nearest-blurrycenter	TODO-DEFINE- PARAMETER (HALOWIKI:) If Deposition- Type=shape_function Define: PIC-shapefunction-radius PIC-shapefunction-alpha. If Deposition-Type =(cartmesh_volumeweighting cartmesh_splines) Define: PIC-BGMdeltas
PIC-TimeAverageFile	none	PIC-FactorBGM TODO-DEFINE-
PIC-epanechnikov-radius	1.0	PARAMETER TODO-DEFINE- PARAMETER
PIC-shapefunction-radius	1.0	TODO-DEFINE- PARAMETER Radius of
PIC-shapefunction-alpha	2	shape function TODO-DEFINE- PARAMETER Exponent of
PIC-shapefunction-equi	F	shape function TODO-DEFINE- PARAMETER Use equidistant points for
PIC-shapefunction1d-direction	1	shapefunction TODO-DEFINE- PARAMETER Direction of
PIC-shapefunction-radius0	1.0	1D shape function TODO-DEFINE- PARAMETER Minimal shape
PIC-shapefunction-scale	0.0	function radius TODO-DEFINE- PARAMETER Scaling factor
PIC-NbrOfSFdepoFixes	0	of shape function radius TODO-DEFINE- PARAMETER Number of fixes for shape func depo at
PrintSFDepoWarnings	F	planar BCs TODO-DEFINE- PARAMETER Print the shapefunction warnings

PIC Deposition		
PIC-SFdepoFixesEps	0.0	TODO-DEFINE-
		PARAMETER Epsilon for
		defined planes
PIC-SFdepoFixes[\$]-Basepoint	(/ 0.0, 0.0, 0.0 /)	TODO-DEFINE-
DIC SEdon o Fives [\$] Normal	(/100000)	PARAMETER TODO DECINE
PIC-SFdepoFixes[\$]-Normal	(/ 1.0, 0.0, 0.0 /)	TODO-DEFINE- PARAMETER
PIC-SFdepoFixes[\$]-ChargeMult	1.0	TODO-DEFINE-
Te of deport ixes[4] enargement	1.0	PARAMETER Multiplier for
		mirrored charges (wall: -1.0,
		sym: 1.0)
PIC-SFdepoFixes[\$]-xmin		TODO-DEFINE-
•		PARAMETER ->
		SFdepoFixesBounds(:,:,:)
		1:nFixes;1:2(min,max);1:3(x,y,
PIC-SFdepoFixes[\$]-ymin		TODO-DEFINE-
		PARAMETER
PIC-SFdepoFixes[\$]-zmin		TODO-DEFINE-
		PARAMETER
PIC-SFdepoFixes[\$]-xmax		TODO-DEFINE-
PIC-SFdepoFixes[\$]-ymax		PARAMETER TODO-DEFINE-
FIC-SEdeportxes[\$]-ymax		PARAMETER
PIC-SFdepoFixes[\$]-zmax		TODO-DEFINE-
		PARAMETER
PIC-NbrOfSFdepoFixLinks	0	TODO-DEFINE-
		PARAMETER Number of
		linked SFdepoFixes
PIC-SFdepoFixLink[\$]	(/ 1, 2 /)	TODO-DEFINE-
		PARAMETER (1:nLinks) 1:3
		(2 fixes are linked with each
		other!) :,3 is fraction of 180
		deg
PIC-NbrOfSFdepoLayers	0	TODO-DEFINE-
		PARAMETER Number of
		const. source layer for
	F	sf-depo at planar BCs
PIC-ConstantSFdepoLayers	F	Do deposition of
DIC CEdonal avera ^[¢] Passasint	(/ 0 0 0 0 0 0 /)	SFdepoLayers just once TODO-DEFINE-
PIC-SFdepoLayers[\$]-Basepoint	(/ 0.0, 0.0, 0.0 /)	
		PARAMETER

PIC Deposition		
PIC-SFdepoLayers[\$]-Normal	(/ 1.0, 0.0, 0.0 /)	TODO-DEFINE-
		PARAMETER
PIC-SFdepoLayers[\$]-xmin		TODO-DEFINE-
		PARAMETER ->
		SFdepoLayersBounds(:,:,:)
		1:nFixes;1:2(min,max);1:3(x,y,z)?
PIC-SFdepoLayers[\$]-ymin		TODO-DEFINE-
		PARAMETER
PIC-SFdepoLayers[\$]-zmin		TODO-DEFINE-
		PARAMETER
PIC-SFdepoLayers[\$]-xmax		TODO-DEFINE-
		PARAMETER
PIC-SFdepoLayers[\$]-ymax		TODO-DEFINE-
		PARAMETER
PIC-SFdepoLayers[\$]-zmax		TODO-DEFINE-
		PARAMETER
PIC-SFdepoLayers[\$]-	Т	TODO-DEFINE-
UseFixBounds		PARAMETER Use alls planes
		of SFdepoFixes as additional
		bounds
PIC-SFdepoLayers[\$]-Space	cuboid	TODO-DEFINE-
		PARAMETER Name of space
		(cuboid or cylinder)
PIC-SFdepoLayers[\$]-BaseVector1	(/ 0.0, 1.0, 0.0 /)	TODO-DEFINE-
	. ,	PARAMETER Base Vector
		1
PIC-SFdepoLayers[\$]-BaseVector2	(/ 0.0, 0.0, 1.0 /)	TODO-DEFINE-
	. ,	PARAMETER Base Vector
		2
PIC-SFdepoLayers[\$]-	1.0	TODO-DEFINE-
SFdepoLayersRadius		PARAMETER Radius for
		cylinder-space
PIC-SFdepoLayers[\$]-Chargedens	1.0	TODO-DEFINE-
		PARAMETER
PIC-SFdepoLayers[\$]-Spec	1	TODO-DEFINE-
		PARAMETER Particle
		species for respective layer
PIC-SFdepoLayers[\$]-MPF		MPF for respective layer
· · · · ·		(def.: MPF of resp. species)
PIC-SFResampleAnalyzeSurfCollis	F	TODO-DEFINE-
•		PARAMETER

PIC Deposition		
PIC-SFResampleSurfCollisBC		TODO-DEFINE-
		PARAMETER BCs to be
		analyzed (def.: $0 = all$)
PIC-	F	TODO-DEFINE-
${\sf SFResampleReducePartNumber}$		PARAMETER Reduce
		PartNumberSamp to
		${\sf PartNumberReduced}$
${\sf PIC\text{-}PartNumThreshold}$	0	TODO-DEFINE-
		PARAMETER Threshold for
		checking inserted parts per
		deposition (otherwise abort)
PIC-SFResampleNumberOfBCs	1	TODO-DEFINE-
		PARAMETER Number of BC
		to be analyzed
PIC-	0	TODO-DEFINE-
${\sf SFResamplePartNumberReduced}$		PARAMETER Max. allowed
		number of parts to be saved
PIC-	1	TODO-DEFINE-
${\sf SFResampleNbrOfSpeciesForDtCalc}$		PARAMETER Number of
		species used for
		SFResample-dt
PIC-SFResampleSpeciesForDtCalc		TODO-DEFINE-
		PARAMETER Species used
		for SFResample-dt (def.: $0 =$
		all)
PIC-SFResampleRestart	F	TODO-DEFINE-
		PARAMETER Read-in old
		DSMCSurfCollis-file for
		restart
PIC-SFResampleRestartFile	dummy	TODO-DEFINE-
		PARAMETER Name of the
		new DSMCSurfCollis-file to
		read-in by restart
PIC-SFResample-xmin		TODO-DEFINE-
		PARAMETER
PIC-SFResample-ymin		TODO-DEFINE-
		PARAMETER
PIC-SFResample-zmin		TODO-DEFINE-
		PARAMETER
PIC-SFResample-xmax		TODO-DEFINE-
		PARAMETER

PIC Deposition		
PIC-SFResample-ymax		TODO-DEFINE-
		PARAMETER
PIC-SFResample-zmax		TODO-DEFINE-
		PARAMETER
PIC-SFResample-UseFixBounds	Т	TODO-DEFINE-
		PARAMETER Use all planes
		of SFdepoFixes as additional
		bounds?

Particle Emission			
Variable	Default	Description	
Part-Species[\$]-nSurfacefluxBCs	0	TODO-DEFINE-	
		PARAMETER Number of SF	
		emissions	
Part-Species[\$]-Surfaceflux[\$]-BC	0	TODO-DEFINE-	
		PARAMETER PartBound to	
		be emitted from	
Part-Species[\$]-Surfaceflux[\$]-	constant	TODO-DEFINE-	
velocityDistribution		PARAMETER Specifying	
		keyword for velocity	
		distribution	
Part-Species[\$]-Surfaceflux[\$]-	0.0	TODO-DEFINE-	
VeloIC		PARAMETER Velocity for	
		inital Data	
Part-Species[\$]-Surfaceflux[\$]-	F	TODO-DEFINE-	
VeloIsNormal		PARAMETER VeloIC is in	
		Surf-Normal instead of	
		VeloVecIC	
Part-Species[\$]-Surfaceflux[\$]-	(/ 0.0, 0.0, 0.0 /)	TODO-DEFINE-	
VeloVecIC		PARAMETER Normalized	
		velocity vector	
Part-Species[\$]-Surfaceflux[\$]-	F	TODO-DEFINE-	
SimpleRadialVeloFit		PARAMETER Fit of	
		veloR/veloTot = -	
		r(Aexp(B*r)+C)	
Part-Species[\$]-Surfaceflux[\$]-	0.0	TODO-DEFINE-	
preFac		PARAMETER A , see	
		${\sf SimpleRadialVeloFit}$	
Part-Species[\$]-Surfaceflux[\$]-	0.0	TODO-DEFINE-	
powerFac		PARAMETER B , see	
		${\sf SimpleRadialVeloFit}$	

D .: 1 E : :		
Particle Emission		
Part-Species[\$]-Surfaceflux[\$]-	0.0	TODO-DEFINE-
shiftFac		PARAMETER C , see
		${\sf SimpleRadialVeloFit}$
Part-Species[\$]-Surfaceflux[\$]-	1	TODO-DEFINE-
axialDir		PARAMETER Axial direction
		of coordinates in polar system
Part-Species[\$]-Surfaceflux[\$]-	(/ 0.0, 0.0 /)	TODO-DEFINE-
origin		PARAMETER Origin in
		orth(ogonal?) coordinates of
		polar system
Part-Species[\$]-Surfaceflux[\$]-	0.1E + 22	TODO-DEFINE-
rmax		PARAMETER Max radius of
		to-be inserted particles
Part-Species[\$]-Surfaceflux[\$]-rmin	0.0	TODO-DEFINE-
		PARAMETER Min radius of
		to-be inserted particles
Part-Species[\$]-Surfaceflux[\$]-	0.0	TODO-DEFINE-
MWTemperatureIC		PARAMETER Temperature
		for Maxwell Distribution
Part-Species[\$]-Surfaceflux[\$]-	0.0	TODO-DEFINE-
PartDensity		PARAMETER PartDensity
		(real particles per m^3) for
		LD_insert or (vpi_)cub./cyl.
		as alternative to Part.Emis.
		in Type1
Part-Species[\$]-Surfaceflux[\$]-	F	TODO-DEFINE-
ReduceNoise		PARAMETER Reduce stat.
		noise by global calc. of
		PartIns
Part-Species[\$]-Surfaceflux[\$]-	Т	TODO-DEFINE-
AcceptReject		PARAMETER Perform ARM
		for skewness of
		RefMap-positioning
Part-Species[\$]-Surfaceflux[\$]-	1	TODO-DEFINE-
ARM_DmaxSampleN		PARAMETER Number of
		sample intervals in xi/eta for
		Dmax-calc.
DoForceFreeSurfaceFlux	F	TODO-DEFINE-
		PARAMETER Flag if the
		stage reconstruction uses a
		force

Particle Emission		
OutputSurfaceFluxLinked	F	Flag to print the SurfaceFlux-linked Info

DSMC		
Variable	Default	Description
Particles-DSMC-OutputMeshInit	F	not working currently \mid
		Writeoutput mesh for
		constant pressure BC at
		initialization.
Particles-DSMC-	F	not working currently Write
${\sf OutputMeshSamp}$		output mesh for constant
		pressure BC with
		samplingvalues at t_analyze.
Particles-DSMC-CollisMode	1	Define mode of collision
		handling in DSMC. 0: No
		Collisions (=free molecular
		flow with
		${\sf DSMC\text{-}Sampling\text{-}Routines}).$
		1: Elastic Collision 2:
		Relaxation $+$ Elastic Collision
		3: Mode $2 + Chemical$
		Reactions.
Particles-DSMC-	1	Mode of Selection Procedure
SelectionProcedure		1: Laux 2: Gimelsheim.
Particles-DSMC-RotRelaxProb	0.2	Define the rotational
		relaxation probability upon
		collision of molecules
		(HALOWIKI:)Choice of the
		vibrational relaxation
		probability calculation 0-1:
		constant 2: variable, Boyd)
Particles-DSMC-VibRelaxProb	0.02	Define the vibrational
		relaxation probability upon
		collision of molecules
Particles-DSMC-ElecRelaxProb	0.01	Define the elextronic
		relaxation probability upon
		collision of molecules
Particles-DSMC-GammaQuant	0.5	Set the GammaQuant for
		zero point energy in Evib
		(perhaps also Erot) should be
		0.5 or 0.

DSMC		
Particles-DSMC- BackwardReacRate	F	Set [TRUE] to enable the automatic calculation of the backward reaction rate coefficientusing the equilibrium constant calculated by partition functions [FALSE] if they are defined as separate reactions.
Particles-DSMC- PartitionMaxTemp	20000.0	Define temperature limit for pre-stored partition function that are used for calculation of backwards rates
Particles-DSMC-PartitionInterval	10.0	Define temperature interval for pre-stored partition functions that are used for calculation of backwards rates
Particles-DSMC-veloMinColl-Spec[\$] Particles-DSMC- CalcQualityFactors	0.0 F	min velo magn. for spec allowed to perform collision Enables [TRUE] / disables [FALSE] the calculation and output of flow-field variable. Maximal collision probability Time-averaged mean collision probability Mean collision separation distance over
Particles-DSMCReservoirSim	F	mean free path Only TD=Reservoir (42). Set [TRUE] to disable particle movement. Use for reservoir simulations.
Particles-DSMCReservoirSimRate	F	Only TD=Reservoir (42). Set [TRUE] to disable particle reactions.Only probabilities (rates) are calculated.
Particles-DSMCReservoirStatistic	F	Only TD=Reservoir (42). Probabilities (rates) are calculated [TRUE] counting reacting particles. [FALSE] summing reaction probabilities.

DSMC		
Particles- DSMCReservoirSurfaceRate	F	Only TD=Reservoir (42). Set [TRUE] to disable particle adsorption and desorption and keep surface coverage constant. Only probabilities (rates) are calculated.
Particles-Model For Vibration Energy	0	Define model used for vibrational degrees of freedom. 0: SHO 1:TSHO.
Particles-DSMC-TEVR-Relaxation	F	Flag for T-V-E-R [TRUE] or more simple T-V-R T-E-R [FALSE] relaxation.
Particles-DSMC-ElectronicModel	F	Set [TRUE] to model electronic states of atoms and molecules.
Particles- DSMCElectronicDatabase	none	If electronic model is used give (relative) path to (h5) Name of Electronic State Database
EpsMergeElectronicState	0.1E-03	Percentage parameter of electronic energy level merging.
Particles-DSMC-UseQCrit	F	Set [TRUE] to enable steady state detection and sampling start using Q-criterion (Burt/Boyd).
Particles-DSMC-UseSSD	F	Set [TRUE] to enable steady state detection and sampling start using 3SD routines.
Particles-DSMCBackgroundGas	0	Define Species number that is used as background gas species
Particles- DSMCBackgroundGasDensity	0.0	Define Species number density for background gas

DSMC		
Particles-DSMC- PolyRelaxSingleMode	F	Set [TRUE] for separate relaxation of each vibrational mode of a polyatomic in a loop over all vibrational modes. Every mode has its own corrected relaxation probability, comparison with the same random number while the previous probability is added to the next
Particles-DSMC- CompareLandauTeller	F	Only TD=Reservoir (42).
Particles-DSMC-UseOctree	F	Use octree method for dynamic grid resolution
Particles-OctreePartNumNode	80	Resolve grid until the maximum number of particles in a subcell equals OctreePartNumNode.
Particles-OctreePartNumNodeMin	50	Allow grid division until the minimum number of particles in a subcell is above OctreePartNumNodeMin.

DSMC Species		
Variable	Default	Description
Part-Species[\$]-SpeciesName	none	Species name of Species[\$]
Part-Species[\$]-InteractionID	0	ID for identification of
		particles 1: Atom 2: Molecule
		4: Electron 10: Atomic Ion
		20: Molecular Ion 40: Excited
		Atom 100: Excited Atomic
		Ion 200: Excited Molecule
		400: Excited Molecular Ion)
Part-Species[\$]-	0.0	Reference temperature for
VHSReferenceTemp		variable hard sphere model.
Part-Species[\$]-	1.0	Reference diameter for
VHSReferenceDiam		variable hard sphere model.
Part-Species[\$]-omegaVHS	0.0	Reference value for exponent omega for variable hard
		sphere model.

DSMC Species		
Part-Species[\$]-CharaTempVib	0.0	Characteristic vibrational
		temperature.
Part-Species[\$]-CharaTempRot	0.0	Characteristic rotational
		temperature
Part-Species[\$]-Ediss_eV	0.0	Energy of Dissoziation in
		[eV].
Part-Species[\$]-VFDPhi3	0.0	Factor of Phi3 in VFD
		Method: Phi3 = $0 \Rightarrow VFD$
Part-Species[\$]-CollNumRotInf	0.0	Factor of Phi3 in VFD
		Method: Phi3 = $0 \Rightarrow VFD$
		-> TCE, ini_2
Part-Species[\$]-TempRefRot	0.0	Referece temperature for
		rotational relaxation
		according to Parker orZhang,
		ini_2 -> model dependent!
Part-Species[\$]-CollNumVib	0.0	Vibrational collision number
		according to Boyd, ini_2
Part-Species[\$]-TempVib	0.0	Vibrational temperature.
Part-Species[\$]-TempRot	0.0	Rotational temperature.
Part-Species[\$]-TempElec	0.0	Electronic temperature.
Part-Species[\$]-Init[\$]-TempVib	0.0	Vibrational temperature.
Part-Species[\$]-Init[\$]-TempRot	0.0	Rotational temperature.
Part-Species[\$]-Init[\$]-TempElec	0.0	Electronic temperature.
Part-Species[\$]-Surfaceflux[\$]-	0.0	Vibrational temperature.
TempVib		
Part-Species[\$]-Surfaceflux[\$]-	0.0	Rotational temperature.
TempRot		
Part-Species[\$]-Surfaceflux[\$]-	0.0	Electronic temperature.
TempElec		
Part-Species[\$]-		Heat of formation of the
HeatOfFormation_K	•	respective species [Kelvin]
Part-Species[\$]-PreviousState	0	Species number of the
		previous state (e.g. N for
D . C . [6]	0	NIon)
Part-Species[\$]-	0	SpeciesID of the next higher
NextlonizationSpecies		ionization level (required for
D+ C[¢]	0	field ionization)
Part-Species[\$]-	0	Max elec quantum number +
NumElectronicLevels	0	1 Electronic deceneracy level of
Part-Species[\$]- ElectronicDegeneracy-Level[\$]	0	Electronic degeneracy level of
Liectionic Degeneracy-Level[3]		respective species

DSMC Species		
Part-Species[\$]-	0.0	Electronic energy level of
ElectronicEnergyLevel-Level[\$]		respective species
Part-Species[\$]-SymmetryFactor	0	TODO-DEFINE-
		PARAMETER
Part-Species[\$]-IonizationEn_eV	0.0	Energy of Ionization in [eV].
Part-Species[\$]-RelPolarizability	0.0	Relative Polarizability
Part-Species[\$]-	0	Number of equivalent
NumEquivElecOutShell		electrons in outer shells
Part-Species[\$]-NumOfProtons	0	Number of protons for
		respective species.

DSMC Species Polyatomic		
Variable	Default	Description
Part-Species[\$]-PolyatomicMol	F	Allow usage of polyatomic moleculs?
Part-Species[\$]-LinearMolec	F	Flag if it is a linear molecule
Part-Species[\$]-NumOfAtoms	0	Number of Atoms in Molecule
Part-Species[\$]-CharaTempVib[\$]	0.0	Characteristic vibrational temperature.
Part-Species[\$]-CharaTempRot[\$]	0.0	Characteristic rotational temperature

DSMC Chemistry		
Variable	Default	Description
DSMC-NumOfReactions	0	Number of reactions.
DSMC-Reaction[\$]-	0	TODO-DEFINE-
NumberOfNonReactives		PARAMETER
DSMC-Reaction[\$]-		Array with the non-reactive
NonReactiveSpecies		collision partners for
		dissociation
DSMC-Reaction[\$]-ReactionType r	none	Used reaction type I: electron impact ionization R:
		molecular recombination D: molecular dissociation E:
		molecular exchange reaction
		X: simple charge exchange reaction)

DSMC Chemistry		
DSMC-Reaction[\$]-QKProcedure	F	Flag to use quantum-kinetic model
DSMC-Reaction[\$]-QK-Method	0	Recombination Method for Q-K model 1: by Bird 2: by Gallis) If using bird, define the variables: DSMC-Reaction[\$]-QK-Coeff1 DSMC-Reaction[\$]-QK-Coeff2
DSMC-Reaction[\$]-QK-Coeff1	0.0	First Q-K coefficient for Birds method.
DSMC-Reaction[\$]-QK-Coeff2	0.0	Second Q-K coefficient for Birds method.
DSMC-Reaction[\$]-Reactants	(/ 0, 0, 0 /)	Reactants of Reaction[\$] (SpecNumOfReactant1, SpecNumOfReactant2, SpecNumOfReactant3)
DSMC-Reaction[\$]-Products	(/ 0, 0, 0 /)	Products of Reaction[j] (Product1, Product2, Product3)
DSMC-Reaction[\$]-Arrhenius- Prefactor	0.0	TODO-DÉFINE- PARAMETER
DSMC-Reaction[\$]-Arrhenius-Powerfactor	0.0	TODO-DEFINE- PARAMETER
DSMC-Reaction[\$]-Activation- Energy_K	0.0	Activation energy (relativ to k_Boltzmann) for Reaction[\$].
DSMC-Reaction[\$]-CEXa	-27.2	CEX log-factor (g-dep. cross section in Angstrom, def.: value for Xe+)
DSMC-Reaction[\$]-CEXb	175.269	CEX const. factor (g-dep. cross section in Angstrom, def.: value for Xe+)
DSMC-Reaction[\$]-DoScat	F	Perform scattering-based charge-exchange instead of isotropic (model of Samuel Araki by lookup table)
DSMC-Reaction[\$]-ELa	-26.8	with DoScat=T: EL log-factor (g&cut-off-angle-dep. cs in Angstrom, def.: value for Xe+)

DSMC Chemistry		
DSMC-Reaction[\$]-ELb	148.975	with DoScat=T: EL const. factor (g&cut-off-angle-dep. cs in Angstrom, def.: value for Xe+)
DSMC-Reaction[\$]-MEXa	-27.2	with DoScat=F: MEX log-factor (g-dep. cross section in Angstrom, def.: value for Xe+)
DSMC-Reaction[\$]-MEXb	175.269	with DoScat=F: MEX const. factor (g-dep. cross section in Angstrom, def.: value for Xe+)
DSMC-Reaction[\$]- TLU_FileName	0	with DoScat=F: No TLU-File needed (def.:)

LD		
Variable	Default	Description
LD-ModelForMultiTemp	0	TODO-DEFINE-
		PARAMETER Modell choice
		for MultiTemperature (see
		Paper) $0 = no$
		MultiTemperature Modeling
		$1 = LD1 \ 2 = LD2 \ 3 = LD3$
LD-InitialGuess	10.0	TODO-DEFINE-
		PARAMETER 2nd guess,
		plus user defined value $[m/s]$,
		(default 10 m/s)
LD-MaxIterNumForLagVelo	100	TODO-DEFINE-
		PARAMETER Max. number
		of iterations for
		LAGRANGIAN vell
		calculation
LD-AccuracyForLagVelo	0.001	TODO-DEFINE-
		PARAMETER Accuracy for
		LAGRANGIAN velocity
		calculation
LD-RepositionsFaktor	0.0	TODO-DEFINE-
		PARAMETER
LD-RelaxationsFaktor	0.0	TODO-DEFINE-
		PARAMETER

LD		
LD-DSMC-	0.0	TODO-DEFINE-
RelaxationsFaktorForBufferA		PARAMETER
LD_CalcResidual	F	TODO-DEFINE-
		PARAMETER

SurfaceModel		
Variable	Default	Description
Part-Species[\$]-	0.0	Maximum coverage of
MaximumCoverage		surfaces with species [\$]
		(used for surfacemodel=1)
Part-Species[\$]-InitialStick	0.0	Initial sticking coefficient
		(S_0) of species [\$] for
		surfaces (used for Kisliuk
		$model, \ surfacemodel{=}1)$
Part-Species[\$]-PrefactorStick	0.0	Prefactor of sticking
		coefficient of species [\$] for
		surfaces (used for Kisliuk
		$model, \ surfacemodel{=}1)$
Part-Species[\$]-Adsorbexp	1	Adsorption exponent of
		species [\$] for surfaces (used
		for Kisliuk model,
		surface model = 1)
Part-Species[\$]-Nu-a	0.0	TODO-DEFINE-
		PARAMETER Nu exponent
5 6		for surface n
Part-Species[\$]-Nu-b	0.0	TODO-DEFINE-
		PARAMETER Nu exponent
D . C [6] D	1.0	for surface n
Part-Species[\$]-Desorption-Energy-	1.0	TODO-DEFINE-
К		PARAMETER Desorption
Deat Constructed Latency Contract M	0.0	energy (K) for surface n
Part-Species[\$]-Intensification-K	0.0	TODO-DEFINE- PARAMETER Intensification
Part-Species[\$]-Recomb-	-1	energy (K) for surface n TODO-DEFINE-
PartnerSpec	-1	PARAMETER Partner
i artifetopec		recombination species
		(nSpecies)
		(115pecies)

SurfaceModel		
Part-Species[\$]-Recomb-ResultSpec	-1	TODO-DEFINE- PARAMETER Resulting
		recombination species (nSpecies)
Part-Species[\$]-PartBound[\$]-	0.0	TODO-DEFINE-
RecombinationCoeff		PARAMETER
Part-Species[\$]-PartBound[\$]-	0.0	TODO-DEFINE-
Recombination Energy		PARAMETER Energy
		transformed by reaction
		(nPartBound,nSpecies)
Part-Species[\$]-PartBound[\$]-	1.0	Define energy accomodation
Recombination Accomodation		coefficient. Describes the
		percentage of reaction enthalpy of surface reaction
		transmitted to surface.
Part-Species[\$]-PartBound[\$]-	0	Coordination at which
Coordination	U	particle of species [\$] is
		bound on surface of boundary
		[\$]. 1=hollow 2=bridge
		3=on-top[surfacemodel=3]
Part-Species[\$]-PartBound[\$]-	0	If particles of species [\$] are
DiCoordination		di-, polyatomic and bind with
		additional coordination at
		Boundary [\$]. 0: no
		DiCoordination 1: bound via
		bridge bonding 2: chelating
Part-Species[\$]-PartBound[\$]-	0.0	binding [surfacemodel=3 Define heat of adsorption [K]
HeatOfAdsorption-K	0.0	on clear surface for binding atom of species [\$] on boundary [\$]. [Assumption of
		on-top side bind, surfacemodel=3]

R2019-02-14

SurfaceModel		
Particles-SurfCoverageFile	none	Give relative path to Surface-state-file ([Project- name]_DSMCSurfState***.h5) used for coverage init. File must be of same format as calculation (same mesh, same amount of species, cells and surfacemodel). If no file specified: Define Part-Species[\$]- PartBound[\$]-InitialCoverage for initial coverage different than 0.
Part-Species[\$]-PartBound[\$]-InitialCoverage	0.0	Initial coverage used for species [\$] and surfaces of boundary [\$] in case of no surface-state-file init
Particles-Surface- MacroParticleFactor		Weighting factor used for particles adsorbed on surface in case of reconstruction [surfacemodel=3]. If one surface contains less then 10 surface atoms program abort is called. Default: Species(1)%MPF: Uses macro particle factor of species1.
Surface-MaxDissNum	0	TODO-DEFINE- PARAMETER
Surface-Nbr-DissocReactions	0	TODO-DEFINE- PARAMETER Resulting species for given dissoc (2,MaxDissNum,nSpecies)
Surface-Nbr-ExchangeReactions	0	TODO-DEFINE- PARAMETER
Part-Species[\$]-Adsorption-Powerfactor	0.0	TODO-DEFINE- PARAMETER
Part-Species[\$]-Adsorption- Prefactor	0.0	TODO-DEFINE- PARAMETER

SurfaceModel		
Part-Species[\$]-Adsorption- EDissBond	0.0	TODO-DEFINE- PARAMETER Bond dissociation energy (K) for diss into resultingspecies (ReactNum,nspecies)?
Part-Species[\$]-Adsorption- EDissBondPoly1	0.0	TODO-DEFINE- PARAMETER
Part-Species[\$]-Adsorption- EDissBondPoly2	0.0	TODO-DEFINE- PARAMETER
Part-Species[\$]-SurfDiss[\$]- Products	(/ 0, 0 /)	TODO-DEFINE- PARAMETER
Part-Species[\$]-SurfDiss[\$]- Powerfactor	0.0	TODO-DEFINE- PARAMETER
Part-Species[\$]-SurfDiss[\$]- Prefactor	0.0	TODO-DEFINE- PARAMETER
Part-Species[\$]-SurfDiss[\$]- EDissBond	0.0	TODO-DEFINE- PARAMETER Bond dissociation energy (K) for diss into resultingspecies (ReactNum,nspecies)?
Part-Species[\$]-Surf-ER[\$]- Powerfactor	0.0	TODO-DEFINE- PARAMETER
Part-Species[\$]-Surf-ER[\$]- Prefactor	0.0	TODO-DEFINE- PARAMETER
Surface-ExchReact[\$]-Reactants	(/ 0, 0 /)	TODO-DEFINE- PARAMETER
Surface-ExchReact[\$]-Products	(/ 0, 0 /)	TODO-DEFINE- PARAMETER
Surface-ExchReact[\$]- DissBond_K-Reactants	(/ 0.0, 0.0 /)	TODO-DEFINE- PARAMETER
Surface-ExchReact[\$]- DissBond_K-Products	(/ 0.0, 0.0 /)	TODO-DEFINE- PARAMETER
Surface-Adsorption-CalcTST	0	TODO-DEFINE- PARAMETER
Surface-AdsorptionTST- PartitionMaxTemp	10000.0	TODO-DEFINE- PARAMETER Temperatur limit for pre-stored partitic function (DEF: 20 000K)

SurfaceModel		
Surface-AdsorptionTST- PartitionInterval	20.0	TODO-DEFINE- PARAMETER Temperature interval for pre-stored partition function (DEF: 10K)

Surface Analyze		
Variable	Default	Description
Surface-AnalyzeStep	1	Analyze is performed each
		Nth time step for surfaces
Surf-CalcNumSpec	F	TODO-DEFINE-
		PARAMETER Calculate the
		number of simulatedparticles
		per species on surfaces
Surf-CalcCoverage	F	TODO-DEFINE-
		PARAMETER Calculate the
		surface coverages foreach
		species
Surf-CalcAccomodation	F	TODO-DEFINE-
		PARAMETER Calculate the
		surface accomodation
	_	coefficient
Surf-CalcEvaporation	F	TODO-DEFINE-
		PARAMETER Calculate rate
	_	of evaporation [kg/s]
Surf-CalcAdsorbRates	F	TODO-DEFINE-
		PARAMETER Calcualte the
		adsorption probabilities of
Surf-CalcSurfRates	_	species
	F	TODO-DEFINE-
		PARAMETER Calculate the
		surface reaction rate per
		reaction (k_r)

References