FGI-2 – Formale Grundlagen der Informatik II

Modellierung und Analyse von Informatiksystemen

Musterlösung 3: Produktsysteme, Bisimulation

Präsenzteil am 28./29.10. – Abgabe am 4./5.11.2013

Präsenzaufgabe 3.1:

1. Konstruieren Sie A_4 gemäß Satz 1.21 zu den Büchi-Automaten A_1 und A_2 aus Beispiel 1.20. Bestimmen Sie $L^{\omega}(A_4)$.

Lösung: Es ergibt sich für A_4 : $L^{\omega}(A_4) = (ab)^{\omega}$

 $L^{\omega}(A_4)$ entspricht genau der gesuchten Schnittmenge.

2. Bestimmen Sie zu Beispiel 1.20 $L(A_1)$, $L(A_2)$, $L(A_3)$ und $L(A_4)$. Diskutieren Sie die Übereinstimmung von $L(A_3)$ und $L(A_4)$ mit der Schnittmenge $L(A_1) \cap L(A_2)$.

Lösung: Die Sprachen lauten wie folgt:

$$L(A_1) = (ab)^* L(A_2) = a \cdot (ba)^* L(A_3) = \emptyset L(A_4) = (ab)^* L(A_1) \cap L(A_2) = \emptyset$$

Die Schnittmenge $L(A_1) \cap L(A_2)$ muss leer sein, weil A_1 nur Wörter akzeptiert, die auf b enden, A_2 aber nur solche, die auf a enden. $L(A_4)$ entspricht also *nicht* der gesuchten Schnittmenge.

3. Konstruieren Sie einen Automaten B, der $L(B) = \{w \in a \cdot (a+b)^* \mid \exists n \in \mathbb{N} : |w| = 2n\}$ und zugleich $L^{\omega}(B) = a \cdot (a+b)^{\omega}$ akzeptiert.

Hinweis: Sie benötigen nur 3 Zustände.

Lösung: Die akzeptierten Wörter müssen mit a beginnen, danach können die Buchstaben a und b in beliebiger Reihung folgen. Akzeptiert wird nach jedem zweiten Buchstaben (aber nicht das leere Wort).

L(B) lässt sich auch umschreiben als: $L(B) = a \cdot (a+b) \cdot [(a+b) \cdot (a+b)]^*$.

4. Konstruieren Sie die beiden Produktautomaten für $L(A_1) \cap L(B)$ und $L^{\omega}(A_1) \cap L^{\omega}(B)$.

Lösung: $L(A_{3.1.4}) = (ab)^+$ und $L^{\omega}(A_{3.1.4}) = (ab)^{\omega}$:

 $L(A'_{3,1,4}) = (abab)^*$ und $L^{\omega}(A'_{3,1,4}) = (ab)^{\omega}$:

Hinweis: Aufgabenteile 5. und 6. sind optional.

5. Wandeln Sie das Verfahren aus Satz 1.8 ab: Vorausgesetzt werden nun zwei vollständige endliche Automaten A_1 und A_2 . Die Endzustandsmenge sei nun $F_3 := \{(s,r) \mid s \in F_1 \lor r \in F_2\}$. Alle anderen Verfahrensschritte bleiben unverändert.

Welche reguläre Sprache wird A_3 akzeptieren (relativ zu $L(A_1)$ und $L(A_2)$ gesehen)? Überlegen Sie sich, wie Sie Ihre Vermutung beweisen könnten.

Lässt sich die Vermutung auf ω -Sprachen übertragen?

 $Ged \ddot{a}chtnisst \ddot{u}tze:$ Def. Vollständigkeit: $\forall q \in Q \ \forall x \in \Sigma \ \exists q' \in Q : (q,x,q') \in \delta$

Lösung: A_3 akzeptiert nun die Vereinigung: $L(A_3) = L(A_1) \cup L(A_2)$.

Beweis: $L(A_1)\subseteq L(A_3)$: Sei $w\in L(A_1)$, d.h. es gibt eine Erfolgsrechnung $s_0\xrightarrow{a_1}s_1\xrightarrow{a_2}s_2\dots s_{n-1}\xrightarrow{a_n}s_n$ mit $s_0\in Q_1^0$ und $s_n\in F_1$. Da A_2 vollständig ist, wird durch das Verfahren immer ein $(s_i,r_i)\xrightarrow{a_{i+1}}(s_{i+1},r_{i+1})$ in A_3 erzeugt werden. Das Paar (s_n,r_n) ist wegen $s_n\in F_1$ ein Endzustand in F_3 . Somit existiert zu w auch eine Erfolgsrechnung in A_3 .

 $L(A_2) \subseteq L(A_3)$: Kann analog zu $L(A_1)$ argumentiert werden.

 $L(A_3)\subseteq L(A_1)\cup L(A_2)$: Sei $w\in L(A_3)$, d.h. es gibt eine Erfolgsrechnung $(s_0,r_0)\xrightarrow{a_1}(s_1,r_1)\xrightarrow{a_2}(s_2,r_2)\dots(s_{n-1},r_{n-1})\xrightarrow{a_n}(s_n,r_n)$ mit $s_0\in Q_1^0$ und $r_0\in Q_2^0$. Der Endzustand (s_n,r_n) geht auf $s_n\in F_1$ oder auf $r_n\in F_2$ zurück. Falls $s_n\in F_1$, können alle Zustandsbezeichner der Rechnung auf die erste Komponente projiziert werden, um eine Erfolgsrechnung in A_1 zu erhalten. Falls $r_n\in F_2$, führt eine Projektion auf die zweite Komponente zu einer Erfolgsrechnung in A_2 . Also wird w von A_1 oder von A_2 akzeptiert.

 ω -Sprachen: Die Vermutung gilt gleichermaßen: $L^{\omega}(A_3) = L^{\omega}(A_1) \cup L^{\omega}(A_2)$. Der Beweis läuft analog zu den Sprachen über endlichen Wörtern.

6. Vervollständigen Sie die Automaten A_1 und A_2 aus Beispiel 1.20 und wenden Sie das Verfahren aus Teilaufgabe 5 darauf an.

Lösung: Die vervollständigten Automaten sehen so aus:

Version vom 11. November 2013

Es gilt $L(A_3')=(ab)^*+a\cdot(ba)^*$ und $L^\omega(A_3')=(ab)^\omega$

Präsenzaufgabe 3.2: Prüfen Sie, ob die folgenden Transitionssysteme bisimilar sind. Geben Sie die Bisimulationsrelation explizit an.

Lösung:

1. Es bietet sich die folgende Relation an:

$$\{(p_1,q_1),(p_2,q_2),(p_3,q_3),(p_4,q_4),(p_3,q_5),(p_5,q_8),(p_6,q_9),(p_5,q_6),(p_6,q_7)\}$$

Einziger Nachteil: Das Paar (p_3,q_5) , denn nur einer ist Endzustand. Diese Relation eignet sich also nicht als Bisimulation. Es ist aber zu begründen, dass keine einzige Bisimulationsrelation existiert.

Anderer Ansatz: Die beiden Transitionssysteme sind nicht akzeptanzäquivalent (rechts gibt es die terminale Aktionsfolge ab, links nicht). Gemäß Satz 2.8 können nicht akzeptanzäquivalente TS auch nicht bisimilar sein.

- 2. Dies ist der Klassiker für nicht bisimilare TS. Die Begründung läuft über die Eigenschaften aus Def. 2.4:
 - Aus Bedingung a) folgt, dass das Paar (p_1, q_1) in \mathcal{B} enthalten sein muss (zu jedem Startzustand ist ein Partner erforderlich, der ebenfalls Startzustand ist).
 - Wenn $(p_1,q_1)\in\mathcal{B}$, dann muss gemäß Bedingung b) auch $(p_2,q_2)\in\mathcal{B}$ und $(p_2,q_3)\in\mathcal{B}$ gelten.
 - ullet Beide Paare verletzen jeweils Bedingung b), denn in p_2 ist Aktion b möglich, zu welcher q_2 keine Entsprechung hat. Ebenso ist in p_2 die Aktion c möglich, welche in q_3 keine Entsprechung hat.

3. Die beiden TS sind trotz der strukturellen Ähnlichkeit zu Teil 2 bisimilar, da die jeweils 2. Aktion gleich ist. $\mathcal{B}=\{(p_1,q_1),(p_2,q_2),(p_2,q_3),(p_3,q_4),(p_3,q_6),(p_4,q_4),(p_4,q_6)\}$

Übungsaufgabe 3.3: Schnitt von ω -Sprachen.

1. Bestimmen Sie $L(A_1)$, $L(A_2)$, $L^{\omega}(A_1)$ und $L^{\omega}(A_2)$.

Lösung:
$$L(A_1) = (bca^*d)^*a^*$$
 $L^{\omega}(A_1) = (bca^*d)^*a^{\omega} + (bca^*d)^{\omega}$ $L(A_2) = ((a+b)(a+c)(a+d))^*(a+b)$ $L^{\omega}(A_2) = ((a+b)(a+c)(a+d))^{\omega}$

2. Konstruieren Sie die initiale Zusammenhangskomponenente des Produktautomaten A_3 im Sinne von Satz 1.8 bzw. Lemma 1.19. *Hinweis:* Sie benötigen 8 Zustände.

Lösung: Das Verfahren ergibt folgenden Automaten:

3. Bestimmen Sie $L(A_3)$ und $L^{\omega}(A_3)$. Vergleichen Sie $L(A_3)$ mit $L(A_1) \cap L(A_2)$ und $L^{\omega}(A_3)$ mit $L^{\omega}(A_1) \cap L^{\omega}(A_2)$.

Lösung:
$$L(A_3) = (bc(aaa)^*d)^*a(aaa)^*$$

$$L^{\omega}(A_3) = (bc(aaa)^*d)^*a^{\omega}$$

Es gilt
$$L(A_1) \cap L(A_2) = (bc(aaa)^*d)^*a(aaa)^* = L(A_3).$$

Es gilt
$$L^{\omega}(A_1) \cap L^{\omega}(A_2) = (bc(aaa)^*d)^*a^{\omega} + (bc(aaa)^*d)^{\omega}$$
. Also gilt $L^{\omega}(A_1) \cap L^{\omega}(A_2) \neq L^{\omega}(A_3)$, da $(bcd)^{\omega} \in L^{\omega}(A_1) \cap L^{\omega}(A_2)$, aber $(bcd)^{\omega} \notin L^{\omega}(A_3)$.

4. Konstruieren Sie die initiale Zusammenhangskomponenente des Produktautomaten A_4 im Sinne von Satz 1.21.

Lösung: Das Verfahren ergibt folgenden Automaten A_4 :

5. Bestimmen Sie $L(A_4)$ und $L^{\omega}(A_4)$. Vergleichen Sie $L(A_4)$ mit $L(A_1) \cap L(A_2)$ und $L^{\omega}(A_4)$ mit $L^{\omega}(A_1) \cap L^{\omega}(A_2)$.

Lösung: $L(A_4) = (bc(aaa)^*d)^*(\epsilon + aa(aaa)^*)$ $L^{\omega}(A_4) = (bc(aaa)^*d)^*a^{\omega} + (bc(aaa)^*d)^{\omega}$ Es gilt $L(A_1) \cap L(A_2) \neq L(A_4)$, da $aa \in L(A_4)$ und $aa \notin L(A_3) = L(A_1) \cap L(A_2)$ und wie gewünscht $L^{\omega}(A_4) = L^{\omega}(A_1) \cap L^{\omega}(A_2)$.

Übungsaufgabe 3.4: Prüfen Sie für alle Zweierkombination der folgenden vier Transitionssysteme, ob diese bisimilar sind. Geben Sie für die bisimilaren Kombinationen die Bisimulationsrelation explizit an und weisen sie für eine davon nach, dass die relationierten Zustände die Definition der Bisimulation erfüllen. Zeigen sie für zwei der nicht-bisimilaren Kombinationen, dass keine Bisimulationsrelation angegeben werden kann. Hinweis: Sie können sich Arbeit sparen, wenn sie beachten, dass folgende Symmetrie gilt: $TS_1 \leftrightarrow TS_2$ impliziert $TS_2 \leftrightarrow TS_1$.

Lösung:

 $TS_1
ot to TS_2$: Beweis durch Widerspruch: Gäbe es eine Bisimulationsrelation \mathcal{B}_{12} , müsste nach Bedingung a) $(Z_0, P_0) \in \mathcal{B}_{12}$ gelten. Wegen Bedingung b) und $P_0 \stackrel{a}{\to}_2 P_4$ müsste $(Z_2, P_4) \in \mathcal{B}_{12}$ gelten. Wegen Bedingung b) und $Z_2 \stackrel{b}{\to}_1 Z_4$ müsste es eine Kante mit der Aktion b von P_4 in TS_2 geben. Diese Kante gibt es nicht, daher kann keine Bisimulationsrelation angegeben werden.

$$TS_1 \leftrightarrow TS_3$$
: $\mathcal{B}_{13} = \{(Z_{4i}, Q_0), (Z_{4i+2}, Q_1), (Z_{2i+1}, Q_2) \mid i \in \mathbb{N} \cup \{0\}\}$

Bedingung a) ist erfüllt, da $(Z_0, Q_0) \in \mathcal{B}_{13}$ gilt.

Bedingung b) ist für Paare (Z_{4i},Q_0) erfüllt, da Aktion a jeweils zu Z_{4i+2} in TS_1 und zu Q_1 in TS_3 übergeht und $(Z_{4i+2},Q_1)\in\mathcal{B}_{13}$ gilt. Aktion c geht in TS_1 zu Z_{4i+1} (= $Z_{2(2i)+1}$) und in TS_3 zu Q_2 über und es gilt $(Z_{2(2i)+1},Q_2)\in\mathcal{B}_{13}$.

Bedingung b) ist für Paare (Z_{4i+2},Q_1) erfüllt, da Aktion b jeweils zu $Z_{4(i+1)}$ in TS_1 und zu Q_0 in TS_3 übergeht und $(Z_{4(i+1)},Q_0)\in\mathcal{B}_{13}$ gilt. Aktion d geht in TS_1 zu Z_{4i+3} (= $Z_{2(2i+1)+1}$) und in TS_3 zu Q_2 über und es gilt $(Z_{2(2i+1)+1},Q_2)\in\mathcal{B}_{13}$.

Bedingung b) ist für Paare (Z_{2i+1},Q_2) erfüllt, da die relationierten Zustände keine ausgehenden Kanten haben.

Bedingung c) ist erfüllt, da alle in \mathcal{B}_{13} enthaltenen Paare mit mindestens einem Endzustand die Form (Z_{2i+1}, Q_2) haben, so dass beide Zustände Endzustände sind.

- $TS_1 \not \underline{\hookrightarrow} TS_4$: Beweis durch Widerspruch: Gäbe es eine Bisimulationsrelation \mathcal{B}_{14} , müsste nach Bedingung a) $(Z_0,R_0) \in \mathcal{B}_{14}$ gelten. Wegen Bedingung b) und $R_0 \stackrel{a}{\to}_4 R_0$ müsste $(Z_2,R_0) \in \mathcal{B}_{14}$ gelten. Wegen Bedingung b) und $Z_2 \stackrel{b}{\to}_1 Z_4$ müsste es eine Kante mit der Aktion b von R_0 in TS_4 geben. Diese Kante gibt es nicht, daher kann keine Bisimulationsrelation angegeben werden.
- $TS_2 \not\hookrightarrow TS_3$: Beweis durch Widerspruch: Gäbe es eine Bisimulationsrelation \mathcal{B}_{23} , müsste nach Bedingung a) $(P_0,Q_0) \in \mathcal{B}_{23}$ gelten. Wegen Bedingung b) und $P_0 \xrightarrow{a} P_4$ müsste $(P_4,Q_1) \in \mathcal{B}_{23}$ gelten. Wegen Bedingung b) und $Q_1 \xrightarrow{b} Q_0$ müsste es eine Kante mit der Aktion P_4 in P_5 geben. Diese Kante gibt es nicht, daher kann keine Bisimulationsrelation angegeben werden.

$$TS_2 \leftrightarrow TS_4$$
: $\mathcal{B}_{24} = \{(P_{4i}, R_0), (P_{4i+2}, R_1), (P_{2i+1}, R_2) \mid i \in \mathbb{N} \cup \{0\}\}$

Bedingung a) ist erfüllt, da $(P_0, R_0) \in \mathcal{B}_{24}$ gilt.

Bedingung b) ist für Paare (P_{4i},R_0) erfüllt, da Aktion a jeweils zu P_{4i+2} oder $P_{4(i+1)}$ in TS_2 und zu R_1 oder R_0 in TS_4 übergeht und $(P_{4i+2},R_1)\in\mathcal{B}_{24}$ und $(P_{4(i+1)},R_0)\in\mathcal{B}_{24}$ gilt. Aktion c geht in TS_2 zu P_{4i+1} (= $P_{2(2i)+1}$) und in TS_4 zu R_2 über und es gilt $(P_{2(2i)+1},R_2)\in\mathcal{B}_{13}$.

Bedingung b) ist für Paare (P_{4i+2},R_1) erfüllt, da Aktion b jeweils zu $P_{4(i+1)}$ oder $P_{4(i+1)+2}$ in TS_2 und zu R_0 oder R_1 in TS_4 übergeht und $(P_{4(i+1)},R_0)\in\mathcal{B}_{24}$ und $(P_{4(i+1)+2},R_1)\in\mathcal{B}_{24}$ gilt. Aktion d geht in TS_2 zu P_{4i+3} (= $P_{2(2i+1)+1}$) und in TS_4 zu R_2 über und es gilt $(P_{2(2i+1)+1},R_2)\in\mathcal{B}_{13}$.

Bedingung b) ist für Paare (P_{2i+1},R_2) erfüllt, da die relationierten Zustände keine ausgehenden Kanten haben.

Bedingung c) ist erfüllt, da alle in \mathcal{B}_{24} enthaltenen Paare mit mindestens einem Endzustand die Form (P_{2i+1}, R_2) haben, so dass beide Zustände Endzustände sind.

 $TS_3 \not \succeq TS_4$: Beweis durch Widerspruch: Gäbe es eine Bisimulationsrelation \mathcal{B}_{34} , müsste nach Bedingung a) $(Q_0,R_0)\in\mathcal{B}_{34}$ gelten. Wegen Bedingung b) und $R_0\stackrel{a}{\to}_4 R_0$ müsste $(Q_1,R_0)\in\mathcal{B}_{34}$ gelten. Wegen Bedingung b) und $Q_1\stackrel{b}{\to}_3 Q_0$ müsste es eine Kante mit der Aktion b von R_0 in TS_4 geben. Diese Kante gibt es nicht, daher kann keine Bisimulationsrelation angegeben werden.

Bisher erreichbare Punktzahl: 36