Estimating Camera Inactivity Periods from Detection Histories

Milly Jones*; Eleni Matechou; Diana Cole; Nicolas Deere (*)mlj23@kent.ac.uk

Camera Trap surveys:

Cameras set up in array
Take images as individuals pass by

Camera Trap surveys:

Cameras set up in array
Take images as individuals pass by

Types of camera malfunction:

- 1. Battery runs out
- 2. Continuous mis-fires
- 3. False positives

Camera Trap surveys:

Cameras set up in array
Take images as individuals pass by

Types of camera malfunction:

- 1. Battery runs out
- 2. Continuous mis-fires
- 3. False positives

Camera Trap surveys:

Cameras set up in array Take images as individuals pass by

Types of camera malfunction:

- 1. Battery runs out
- 2. Continuous mis-fires
- 3. False positives

Camera Trap surveys:

Cameras set up in array
Take images as individuals pass by

Types of camera malfunction:

- 1. Battery runs out
- 2. Continuous mis-fires
- 3. False positives

Goal:

Estimate effective effort of each camera

$$Q = \begin{pmatrix} -\mu_{12} - \mu_{13} & \mu_{12} & \mu_{13} \\ \mu_{21} & -\mu_{21} & 0 \\ 0 & \mu_{32} & -\mu_{32} \end{pmatrix}$$

n = number of cameras

E = length of survey

Latent camera states:

- 1. Normal
- 2. Broken
- 3. Mis-firing

Assumptions:

- 1. If camera repaired, must function normally
- 2. After a period of mis-fire, camera must break
- 3. Camera must start by working normally

n = number of cameras

E = length of survey

Latent camera states:

- 1. Normal
- 2. Broken
- 3. Mis-firing

Assumptions:

- 1. If camera repaired, must function normally
- 2. After a period of mis-fire, camera must break
- 3. Camera must start by working normally

Detection process:

Detection rates λ_i are conditional on camera state i.

Conditions:

$$\lambda_2 = 0$$
$$\lambda_3 \gg \lambda_1$$

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

Mark process:

Let $\gamma_{i,k} \in \{0,1\}$ denote false positive or true positive detection k.

 λ_{+} = true positive rate

 λ_{-}^{1} = false positive rate in state 1

 λ_{-}^{3} = false positive rate in state 3

$$\lambda_1 = \lambda_+ + \lambda_-^1$$

$$\lambda_3 = \lambda_+ + \lambda_-^3$$

Let $s_{i,k}$ denote the state of detection k:

$$P(\gamma_{i,k}|s_{i,k}=s) = \begin{cases} \lambda_+/\lambda_s & \text{if } \gamma_{i,k}=1, \\ \lambda_-^s/\lambda_s & \text{otherwise.} \end{cases}$$

The likelihood function for camera i with K_i detections at times $x_{i,k}$ is:

$$\mathcal{L}_{i} = [1, 0, 0] \left\{ \prod_{k=1}^{K_{i}} \Theta(x_{i,k} - x_{i,k-1}) \Lambda \operatorname{diag}(P_{i,k}) \right\} \Theta(E - x_{i,K_{i}}) \mathbf{e}_{i}$$

Initial state probabilities

Detection and mark distribution

Transition matrix:

 $[\Theta(\Delta x)]_{i,j}$ the probability of going to state j and making no detections within time Δx given you started in state i.

$$\Theta(\Delta x) = \exp((Q - \Lambda)\Delta x)$$

Effective Effort

To determine state of camera i at time t, denoted $s_{i,t}$, we:

1. Determine state $s_{i,x_{i,k}}$ at detection times $x_{i,k}$:

Viterbi Algorithm

Effective Effort

To determine state of camera i at time t, denoted $s_{i,t}$, we:

- 1. Determine state $s_{i,x_{i,k}}$ at detection times $x_{i,k}$: Viterbi Algorithm
- 2. Determine state at time *t* between detection points:

$$\mathbb{P}(s_{i,t}=2) = \frac{[\Theta(t-x_{i,k})]_{a,2}[\Theta(x_{i,k+1}-t)]_{2,b}}{[\Theta(x_{i,k+1}-x_{i,k})]_{a,b}}$$

Effective Effort

To determine state of camera i at time t, denoted $s_{i,t}$, we:

- 1. Determine state $s_{i,x_{i,k}}$ at detection times $x_{i,k}$: Viterbi Algorithm
- 2. Determine state at time *t* between detection points:

$$\mathbb{P}(s_{i,t}=2) = \frac{[\Theta(t-x_{i,k})]_{a,2}[\Theta(x_{i,k+1}-t)]_{2,b}}{[\Theta(x_{i,k+1}-x_{i,k})]_{a,b}}$$

Let U_i be the fractional effort of camera i:

$$U_{i} = \frac{1}{E} \sum_{k=0}^{K_{i}} \left(\int_{x_{i,k}}^{x_{i,k+1}} \mathbb{P}(s_{i,t} = 1) dt \right)$$

n=10 cameras E = 40 days

$$(\mu_{12}, \mu_{13}, \mu_{21}, \mu_{32}) = \left(\frac{1}{100}, \frac{1}{300}, \frac{1}{50}, 1\right)$$

 $\lambda_{+} \in (0.3, 1.5)$
Between camera heterogeneity

$$\lambda_{+} \in (0.3, 1.5)$$

 $\lambda_{-}^{1} \in (0.1, 0.9)$

$$\lambda_{-}^{1} \in (0.1, 0.9)$$

 $\lambda_{-}^{3} = 10$

Simulation

Assumptions & Further Work

Assumptions:

- Cameras share transition rates
- $\mu_{31} = 0$ and $\mu_{23} = 0$
- Detection rates and transition rates are time-homogeneous

Further Work:

- Covariates
- Absence of mark process
- State at collection
- Spatial models for detection
- $\mu_{21} = 0$ and $\mu_{13} = 0$

Thank you

Questions?

mlj23@kent.ac.uk