CMA112A - Engenharia Mecânica - Geometria Analítica

23 de Novembro de 2017

r		l	1	1				
	Q:	1	2	3	4	5	Total	
Nome:	P:	30	40	10	10	10	100	
	N:							
		1						
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	d_8							
GRA		J						
Questão 1								
(a) 15 Identifique a cônica, encontre os seus vértices e focos e esboce-a.								
(b) 15 Encontre a equação da hipérpole cujos focos são os vértices da cônica dada e cujos vértices são os focos da cônica dada. Esboce essa hipérbole.								
Questão 2								
Determine as equações cartesiana e paramétrica das cônicas abaixo, e esboce seus gráficos:								
(a) 10 Uma parábola cuja simetria é o eixo y e passa pelos pontos $(0,4)$ e $(1,3)$.								
(b) 15 Uma hipérbole de vértices $(\pm (d_6 + 1), 0)$ e assíntotas $y = \pm 2x$.								
(c) 15 Uma elipse com focos em $(d_8, -1)$ e $(d_8, 7)$ e $ d(P, F_1) + d(P, F_2) = 12$.								
Questão 3						[10	
Determine todo k real para que a equação $4x^2 + y^2 + z^2 - 24x - 8y + 4z + 20 = k$ seja um elipsóide.								
Questão 4						[10	
Questão 4								
a direção na qual a curva é traçada quando t aumenta. Elimine o parâmetro e encontre a equação cartesiana da curva.								
Questão 5								