Geochemistry of brachiopods: Oxygen and carbon isotopic records of Paleozoic oceans*

JÁN VEIZER¹, PETER FRITZ² and BRIAN JONES³

¹Derry Laboratory, Department of Geology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada ²Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada ³Department of Geology, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada

(Received October 11, 1985; accepted in revised form May 9, 1986)

Abstract—Combined trace element and isotope studies of 319 brachiopods, covering the Ordovician to Permian time span, show that δ^{13} C and δ^{18} O in well preserved specimens varied during the Paleozoic. The overall δ^{13} C secular trend is in accord with the previously published observations, but its details are obscured by vital isotopic fractionation effects at generic level. Nonetheless, the results suggest that the negative correlation between marine δ^{13} C_{carbonate} and δ^{34} S_{sulfate} deteriorates at time scales of $\leq 10^6$ years, due to the long residence time, and thus slow response, of SO₄² in the ocean. For oxygen isotopes, all Devonian and older specimens have δ^{18} O of $\leq -4\%$, while the well preserved Permian samples have near-present day δ^{18} O of about -1% (PDB). This isotopic dichotomy is probably not due to post-depositional phenomena, salinity, or biogenic fractionation effects. This leaves open the perennial arguments for a change in 18 O/ 16 O of sea water *versus* warmer ancient oceans. The present data are difficult to explain solely by the temperature alternative. The coincidence of the proposed shift in δ^{18} O with the large Late Paleozoic changes in marine 87 Sr/ 86 Sr, 13 C/ 12 C, 34 S/ 32 S, and "sea level stands" argues for a tectonic cause and for a change in 18 O/ 16 O of sea water, although such explanation is difficult to reconcile with global balance considerations and with sotopic patterns observed in alteration products of ancient basalts and ophiolites. Whatever the precise cause, or combination of causes, the implications for tectonism and/or paleoclimatology are of first order significance.

INTRODUCTION

THE TREND OF decreasing δ^{18} O values of marine chemical sediments with increasing age has been well documented. This trend has been observed for carbonates (BAERTSCHI, 1957; CLAYTON and DEGENS, 1959; DEGENS and EPSTEIN, 1962; KEITH and WEBER, 1964; Weber, 1965a,b; Dontsova et al., 1972; BAUSCH and HOEFS, 1972; PERRY and TAN, 1972; SCHIDLOWSKI et al., 1975, 1983; VEIZER and HOEFS, 1976), cherts (DEGENS and EPSTEIN, 1962; PERRY, 1967; PERRY and TAN, 1972; KNAUTH and EPSTEIN, 1976; KNAUTH and LOWE, 1978), phosphorites (LON-GINELLI and NUTI, 1968; SHEMESH et al., 1983; LUZ et al., 1984), and glauconites (FRIEDRICHSEN, 1984; KEPPENS and O'NEIL, 1985). The perennial question of the cause(s) of this isotopic shift is, however, still vigorously debated. Suggested causes include: (1) postdepositional equilibration with ¹⁸O depleted meteoric waters, the degree of equilibration increasing with increasing geologic age (DEGENS and EPSTEIN, 1962; KILLINGLEY, 1983; and many of the above quoted authors), (2) higher temperatures of the earlier oceans, with the Archean and early Proterozoic water temperatures being in the range of ≥60°C (KNAUTH and EP-STEIN, 1976; KOLODNY and EPSTEIN, 1976; KNAUTH and Lowe, 1978; SHEMESH et al., 1983; Luz et al., 1984), and (3) change in the oxygen isotopic composition of sea water over geologic time (WEBER, 1965a,b; Perry, 1967; Dontsova, 1970; Dontsova et al., 1972; FRITZ, 1971; PERRY and TAN, 1972; PERRY et al., 1978). The trend towards lower δ^{18} O values of chemical sediments, particularly carbonates, with increasing age is minor during the Cenozoic and Mesozoic, but is significant during the Paleozoic and the Precambrian (cf. VEIZER and HOEFS, 1976). For the Phanerozoic, there are indications of a major step in the δ^{18} O age curve during the Late Paleozoic times. If post-depositional alteration were the only cause of the observed secular trend, this could be of some importance for understanding the diagenetic evolution of (bio)chemical sediments, but would not require any modifications in our present understanding of the hydrologic cycle. Development of appropriate criteria (e.g. LOWENSTAM, 1961; VEIZER and FRITZ, 1976; VEIZER, 1983a) can aid in selection of the "least altered" samples and in utilization of such samples for classical paleothermometry (EPSTEIN et al., 1951, 1953). Yet, it is curious that practically all published analyses of samples older than 300 million years (see the above references)—including texturally, mineralogically and chemically well preserved fossils from tight enclosing rocks—yield high isotopic "paleotemperatures", suggesting that the isotopic data may reflect a primary rather than a secondary feature. If this is correct, the implications are of considerable geological impact, regardless whether the ultimate cause was high temperature, low ¹⁸O/¹⁶O ratios of seawater, or a combination of the two. If the early oceans were warmer, it would be necessary to identify the cause and to reconcile this with the existing sedimentological and paleoecological records. Alternatively, a change in the

^{*} Publication 05-86 of the Ottawa-Carleton Centre for Geoscience Studies.

oxygen isotopic composition of seawater would demand modification of our understanding of global balances for rock-water interactions.

In contrast to the oxygen isotope record, secular oscillations in δ^{13} C of marine bicarbonate have been convincingly demonstrated on a variety of time scales (COMPSTON, 1960; WEBER, 1967; KROOPNICK et al., 1977; SHACKLETON, 1977, 1985; BERGER, 1977; FISCHER and ARTHUR, 1977; SCHOLLE and ARTHUR, 1980; VEIZER et al., 1980; LETOLLE and RENARD, 1980; ARTHUR, 1982; MAGARITZ et al., 1983; REN-ARD, 1985). In addition, on time scales of 10⁷ years, the $\delta^{13}C_{carbonate}$ correlates negatively with $\delta^{34}S_{sulfate}$ (VEIZER et al., 1980) and these two variables also correlate with 87Sr/86Sr_{carbonate} and the Phanerozoic "sea level stands" (VEIZER et al., 1982, Table 1; HOLSER. 1984; VEIZER, 1985). To the best of our knowledge, no existing model linking the tectonic factors (87Sr/ 86Sr, "sea level") to the evolution of the biosphereatmosphere-hydrosphere-sediment system (δ^{13} C, δ^{34} S) explains simultaneously all the observed signs of correlations (cf. VEIZER, 1985). A workable, geologically realistic, unified theory implied by the above relationships will have to await future developments. Nevertheless, the inverse S-C isotopic relationship is almost certainly a reflection of oxygen transfer, and thus of redox balance, between O and C exogenic cycles (GARRELS and PERRY, 1974; GARRELS and LERMAN, 1981; BERNER et al., 1983). The differences in residence times of marine sulfate and bicarbonate $(7.9 \times 10^6 \text{ vs})$ 8×10^4 years; HOLLAND, 1978, Table 5-1), however, mean that the degree of coupling of the S and C cycles in the open oceans should be diminished on time scales of ≤106 years. If so, there should be no correlation between $\delta^{13}C_{carbonate}$ and $\delta^{34}S_{sulfate}$ on a comparable time scale. GARRELS and LERMAN (1981), utilizing the better defined and much more pronounced δ³⁴S_{sulfate} record, predicted variations in $\delta^{13} C_{\text{carbonate}}$ for the Phanerozoic. Their model predicts rapid, large (3‰) oscillations in ¹³C/¹²C during the Devonian. Therefore, the Devonian record provides the opportunity to test the reality of the predicted δ^{13} C variations, and of C-S coupling, on time scales of 10⁶ years.

It is the aim of this contribution to (1) evaluate whether the observed Paleozoic δ^{18} O secular trend is a primary or a post-depositional feature of the rock record; (2) if primary, explore the consequences for the terrestrial exogenic system; and (3) test whether the geologic redox coupling of C and S exogenic cycles is fully operative on time scales of $\leq 10^6$ years.

APPROACH AND SAMPLES

In order to decipher the isotopic record of ancient oceans it is essential to study mineral phases precipitated from seawater with known isotopic fractionations. In addition, these phases should be relatively stable during their post-depositional history. Among carbonate minerals, low-Mg calcite satisfies these conditions and low-Mg calcitic foraminifera and belemnites have

been routinely utilized for Cenozoic and Mesozoic paleoceanographic studies. For the Paleozoic, brachiopods, because of their abundance, widespread stratigraphic distribution, and low-Mg calcitic mineralogy of their shell may have been a suitable phylum. Virtually all Recent and fossil brachiopods have a multi-(usually two) layered valve composed entirely of low-Mg calcite (JOHNSON, 1951; LOWENSTAM, 1961; WIL-LIAMS, 1968, 1971; BATHURST, 1975). The only possible exception may have been the family Trimerellidae, where the shell could have been originally aragonitic (JAANUSSON, 1966). According to LOWEN-STAM (1961), extant articulate brachiopods secrete their shells reasonably close to oxygen isotopic equilibrium with ambient water, but more definite data are required to exclude the possibility of minor biogenic fractionation. For carbon, recent work of WEFER (1983) demonstrated that living articulate brachiopods fractionate carbon isotopes at the generic level. This observation complicates the possibility of resolving the δ^{13} C secular variations on 106 years time scale, since the knowledge of the degrees of such fractionation for specific genera must be known. Alternatively, a single genus must be utilized for studies of this type.

Despite the relative post-depositional stability of low-Mg calcite, the preservation of the primary isotopic signal should not be à priori assumed. Variable degrees of recrystallization and filling of primary and secondary void spaces by diagenetic calcites may have occurred. Utilizing optical (microscopic, staining, SEM) and trace element techniques, AL-AASM and VEIZER (1982) showed that the presently discussed Ordovician brachiopods from Anticosti Island (see Appendix 1) contained ≤20% diagenetic calcite in their shells. In the present study, we shall employ a similar stable isotope, trace element, and textural approach to evaluate the degree of secondary alteration. The theory and applications of the technique, originally developed for brachiopods as well as belemnites (LOWENSTAM, 1961; VEIZER, 1974; VEIZER and FRITZ, 1976), are summarized in detail in VEIZER (1983a,b). In short, alteration (due to a multitude of mutually reinforcing factors) usually leads to a decrease in Na and Sr and an increase in Mn and Fe contents of the progressively more altered calcites. These trends are frequently accompanied by depletions in ¹⁸O and ¹³C.

SAMPLES AND ANALYTICAL TECHNIQUES

A total of 319 Paleozoic fossils have been separated manually for this study. All were scanned optically, analyzed for δ^{18} O and δ^{13} C, and 276 samples were analyzed also for trace (Sr, Na, Mn, Fe, Mg) and major (Ca, Insoluble Residue = I.R.) composition. Sample descriptions, locations and analytical data are summarized in Appendix I. Analytical techniques for chemical data and their precisions and accuracies have been described in VEIZER et al. (1978) and BRAND and VEIZER (1980). Isotopic analysis of carbon dioxide, produced by reaction of the sample with 100% H₃PO₄ at 50°C, were carried out on a semi-automatic MM 903 mass-spectrometer with tripple collector system. Analytical reproducibility for individual runs is better than $\pm 0.05\%$ for both δ^{18} O and δ^{13} C.

The overall reproducibility with respect to the laboratory working standard, expressed in PDB, is $\sim 0.15\%$.

The samples studied range in age from Ordovician to Permian, but the bulk of fossils are of Devonian age, because this time interval was considered critical for the aims of the present study. The present sample population encompasses the families Athyrididae, Atrypidae, Brachythyrididae, Buxtoniidae, Chonetidae, Cyrtospiriferidae, Deltyrididae, Dictyoclostidae, Echinoconchidae, Enteletidae, Fardeniidae, Gigantoproductidae, Linoproductidae, Lissatrypidae, Meekellidae, Meristellidae, Nucleospiridae, Pentameridae, Pholidostrophiidae, Plaesiomyidae, Productellidae, Reticulariidae, Spiriferidae, and Trigonirhynchiidae and contains 38 genera. With the exception of 5 samples from Utah, Alaska, Oklahoma and Kansas, all studied specimens originated from various localities in Canada (Appendix 1). The general geology of Canada is summarized in DOUGLAS (1970).

OXYGEN AND CARBON ISOTOPIC RECORD

The histograms of δ^{18} O and δ^{13} C stratigraphic variations in Paleozoic brachiopods are given in Fig. 1. For oxygen, the data show a considerable spread of values, but the most ¹⁸O-rich Ordovician, Silurian and Devonian samples are $\sim -4\%$ PDB. The δ^{18} O for younger samples increases to near-modern values of

FIG. 1. Variations with age of δ^{13} C and δ^{18} O in Paleozoic brachiopods.

about -1% during the Permian, in accord with the previously indicated Late Paleozoic oxygen isotopic shift (cf. VEIZER and HOEFS, 1976). Carbon isotopes show a similar trend towards heavier values, particularly during the Carboniferous and Permian. This is in agreement with the general features of the previously published $\delta^{13}C_{carbonate}$ secular trend (VEIZER et al., 1980; LINDH, 1983; HOLSER, 1984). Nevertheless, the spreads of $\delta^{18}O$ and $\delta^{13}C$ within populations (age groups) are similar to, or in excess of, variations between populations. It is therefore essential to evaluate the role of primary and secondary factors on within population variations of $^{18}O/^{16}O$ and $^{13}C/^{12}C$.

Post-depositional alteration of brachiopod shells

Consideration of the chemical composition of Paleozoic brachiopods shows that their modal values are shifted in the direction expected from post-depositional alteration, although a substantial number of shells still retain primary chemistry (Fig. 2). Factor analysis of the total population (Table 1) identifies four factors controlling the chemical and isotopic composition of brachiopod shells. Factor 1 represents simultaneous loss of Na and Sr from the shells as a result of postdepositional recrystallization. This is principally a consequence of Na and Sr partition coefficients between calcite and ambient water being less than 1 (cf. VEIZER, 1983a). Factor 2 represents mostly precipitation of a later diagenetic Fe, Mn-enriched calcite cement into primary and secondary void spaces. This may also slightly increase the Mg concentrations. These two factors are not a unique feature of the present sample set, but have been ubiquitously recovered and documented in many previous carbonate studies (e.g. BRAND and VEIZER, 1980, 1981; AL-AASM and VEIZER, 1986). Factor 3 is a sole control of carbon isotopic composition. The overall lack of correlation between trace elements and δ^{13} C is probably due to the fact that post-depositional carbon isotopic variations are of lesser magnitude than the primary scatter caused by the previously discussed biogenic fractionations (vital effect) and by secular variations in carbon isotopic composition of marine bicarbonate. The fourth factor, reflecting the complementary antithetic relationship between carbonate and noncarbonate contents of the shells, is of little interest for the present discussion. Oxygen isotopic composition shows only a very weak affinity to factors 1 and 3, indicating that secular variations in isotopic composition of seawater (or in temperature) and post-depositional recrystallization may all be involved, but the relationships are complex. If the isotopic composition (or the average temperature of seawater) were changing systematically during the Paleozoic, the constituent brachiopod age groups would have been characterized by different starting isotopic compositions. Each age group should be therefore evaluated independently. In particular, the Permian and Devonian populations are of critical importance, because the former may represent the begin-

FIG. 2. Histograms of chemical composition of Paleozoic brachiopods. Heavily stippled area represents typical concentrations observed in Recent brachiopods (LOWENSTAM, 1961; POPP et al., 1986b; LEPZELTER et al., 1983; MORRISON and BRAND, 1984). Theoretically expected concentrations for inorganic calcite in equilibrium with present day sea water (cf. the summary in VEIZER, (1983a), as well as ISHIKAWA and ICHIKUNI (1984) and BUSENBERG and PLUMMER (1985) for sodium) fall within the stippled range.

ning of the near-modern conditions, while the latter would mark the termination of the Early-Middle Paleozoic steady-state (cf. Fig. 1).

Factor analyses of Permian brachiopods (Table 2) reveals three dominant factors controlling the chemical and isotopic composition of the shells. Disregarding factor 5 (leaching of Na and Fe from the Insoluble Residue during laboratory digestion of samples), ¹⁸O depletion appears to have been controlled by post-depositional recrystallization of the shell calcite. This also causes the loss of Sr and Na (Factor 1). 13C depletion, on the other hand, is related to a subsequent episode of void filling by Mn-rich calcite cement (Factor 2), although the simultaneous decrease in Na and Sr indicates that factors 2 and 1 are not entirely independent. The scattergram of Na (or Sr) versus δ^{18} O (Fig. 3) clearly shows the depletion of these variables with increasing degree of diagenetic alteration. At Na values typical for Quaternary marine low-Mg calcites, the δ^{18} O

is as heavy as -1% PDB. Although the primary δ^{18} O scatter, due to temperature variations, could be estimated as about $-2.5 \pm 1.5\%$, the bulk of the trend is clearly due to post-depositional alteration. In a similar manner, the scattergram of δ^{13} C versus Na (or Mn, Sr) indicates $+4 \pm 1.5\%$ PDB as the likely primary values (Fig. 4).

In the Devonian population, the trends are less pronounced but nevertheless discernible (Table 3). In this case, in contrast to the Permian, the depletion in $^{18}\mathrm{O}$ is controlled by precipitation of Mn, Fe-rich calcite cement into primary and secondary void spaces (Factor 2). The small gradient in $\delta^{18}\mathrm{O}$ (or $\delta^{13}\mathrm{C}$), as opposed to the large Mn spread, is a consequence of chemical attributes of the void filling cement. This cement differed from the low-Mg calcite of the shells by more than two orders of magnitude in Mn content, but only by $\sim 3-5\%$ in $\delta^{18}\mathrm{O}$. Consequently, a small to moderate cementation results in a discernible increase in Mn con-

	VAR IMAX	ROTATED	FACTOR	TABLE 1 ANALYSIS OF	ALL PALEOZOI	C BRACHIOPODS
-		FACT	OR 1	FACTOR 2	FACTOR 3	FACTOR 4
613C 6180 log C log M log N log F log S Log I	g a n e r	0. 0. 0. -0. -0.		-0.075 -0.140 0.069 0.252 0.006 0.634 0.956 -0.036 0.045	0.725 0.351 0.061 -0.208 -0.006 -0.327 0.130 0.032 0.269	0.089 0.133 -0.581 0.025 0.016 -0.095 -0.009 -0.151 0.573
Eigen	value	1.	712	1.291	0.951	0.512
Perce varia expla		38.3		28.9	21.3	11.5
Inter	pretati	depo recr liza mine	- sitiona ystal- tion an ralogic ilizati	calcite d cement al		Total carbonate

tent, but only in marginal alteration of the whole shell δ^{18} O. 13 C depletion is a consequence of post-depositional recrystallization (Factor 1), the latter also causing the loss of Mg. The scattergram of δ^{18} O versus Mn (Fig. 5) shows that the heaviest δ^{18} O, at Mn values for Quaternary marine low-Mg calcites, is about -4% PDB and a conservative estimate for the total primary range is perhaps $-5.5 \pm 1.5\%$. This is $\sim 3\%$ lighter than the estimate for the Permian, regardless whether the total range or the heaviest values are considered. Similarly, the primary range in δ^{13} C values appears to have been $-0.5 \pm 1.0\%$ PDB (Fig. 6), that is $\sim 4.5\%$ lighter than the Permian.

Similar evaluations for Silurian and Ordovician populations, although less well constrained due to smaller population sizes, indicate δ^{18} O of $\sim -6.5 \pm 1.5$ and $-5.0 \pm 0.5\%$, respectively. For carbon, the likely primary values are 0.0 ± 1.5 and $+1.0 \pm 0.5\%$. Carboniferous samples show a considerable spread and, at this stage, the likely primary values cannot be narrowed to better than $\sim -4.5 \pm 1.5\%$ for δ^{18} O and perhaps $+2.0 \pm 2.0\%$ for δ^{13} C. This may be partially a reflection of a considerable secular drift during this time interval (see Fig. 1).

SECULAR VARIATIONS

The above evaluation shows, that the primary difference in δ^{18} O between the Permian and younger and the Devonian and older brachiopods is at least 3\%. Complementary results on additional ≥700 Paleozoic brachiopods, studied by a comparable trace element and isotope approach (LOWENSTAM, 1961; BRAND and VEIZER, 1981; BRAND, 1981, 1982, 1983; POPP et al., 1986a.b.c; ADLIS et al., 1985), are in full agreement with the outlined secular trend. This observation is supported also by the fact that several mineral phases, with variable stabilities and thus alteration potentials, show overall δ¹⁸O secular trends of comparable magnitudes (cf. WEBER, 1965a,b; VEIZER and HOEFS, 1976; SHEMESH et al., 1983). Our sampling density does not permit the precise timing of the advocated shift, but it may have been confined to the Devonian-Mississippian

transition (POPP et al., 1986c). In the subsequent text, we shall explore the consequences of the above isotopic shift, but will not dwell on the finer scale age structure for δ^{18} O.

Secular variations in δ^{13} C appear to indicate a continuous enrichment in ¹³C from Silurian to Permian, in accord with the previously published Phanerozoic curves (VEIZER et al., 1980; LINDH, 1983; HOLSER, 1984). This overall trend is also visible in the Devonian period (Fig. 7), with the selected age groups each representing ~7 million years duration. However, the scatter of data is considerable and at least 1% of the total variation can be attributed to differences in biogenic fractionation at the generic level and another 1‰ represents within genera scatter (Fig. 8). Consequently, brachiopods can be utilized for studies of δ^{13} C secular variations only at a level of a single genus or even species. Sampling at this level over an extended time interval is, however, difficult. Nevertheless, the reality of the indicated unidirectional Devonian age trend (Fig. 7) is confirmed by the corresponding Eifelian to Frasnian shift in the average δ^{13} C for the genus Atrypa. No overlapping genera were sampled over the Emsian-Eifelian time span. These difficulties discourage studies of δ^{13} C secular variations on $\leq 10^6$ years time scales. The above qualifications notwithstanding, the unidirectional trend in Fig. 7 is clearly at variance with variations in δ^{13} C_{carbonate} as predicted by GARRELS and LERMAN (1981). According to their model, the δ^{13} C of sea water should have been heavy ($\geq +1\%$) for the Middle Devonian and light for both the Early and Late Devonian ($\leq -1\%$). The Frasnian (Late Devonian) discrepancy between the theory and measurements suggests deterioration of the indirect C-S redox coupling for time scales of $\leq 10^6$ years (cf. also HOLSER, 1984); an observation in accord with considerations based on residence times of oceanic sulfate and bicarbonate (see Introduction).

TABLE 2
VARIMAX ROTATED FACTOR ANALYSIS OF PERMIAN BRACHIOPODS

	CACTOD 1	FACTOR 2	FACTOR 5
	FACTOR 1	FACTOR 2	FACTOR 5
δ ¹³ C	-0.062	0.828	0.337
δ ¹⁸ D	0.826	-0.025	0.347
log Ca	0.427	0.058	-0.220
log Mg	0.028	-0.552	0.449
log Na	0.532	0.347	0.669
log Mn	-0.148	-0.644 -0.047	-0.009 0.804
log Fe	0.020 0.520	0.601	0.377
log Sr Log IR	0.036	0.252	0.788
rod tk	0.030	0,232	01700
Eigenvalue	0.960	1.490	3.303
Percent of variation explained	16.7	25.9	57.4
Interpretation	Post- depositional recrystal- lization and mineralogical stabilization	Void filling by sparry calcite cement	Leaching from Insoluble Residue during laborator digestion of sample

Note that, for convenience, factors are numbered as in Table 1. They are not listed in the order of their relative importance.

Fig. 3. Scattergram of δ^{18} O and Na concentrations in Permian brachiopods. See Fig. 2 for explanations.

CAUSES OF O18/O16 SECULAR VARIATIONS

Accepting the primary nature of the observed δ^{18} O signal, it is essential to search for causal relationships.

Biogenic fractionation

It may be suggested that the changing Late Paleozoic δ^{18} O signal reflects an evolution in biogenic fractionation of oxygen isotopes by brachiopods. This, however, is unlikely because the trend is also observed in the well preserved skeletal material of other phyla, such as rugose corals, crinoids and some mollucs (BRAND and VEIZER, 1981; BRAND, 1981, 1982, 1983; LEUTLOFF and MEYERS, 1984), in inorganic marine cements (LOHMAN, 1983; JAMES and CHOQUETTE, 1983), and in bulk rocks (VEIZER and HOEFS, 1976). This argues for a cause of more fundamental significance, such as changing salinity, temperature, or oxygen isotopic composition of sea water.

Salinity

Living and fossil brachiopods are exclusively marine organisms living in normal salinity waters (RUDWICK, 1970; TASCH, 1980). This and their usual association with tabulate corals and crinoids as a Paleozoic offshore community (SEPKOSKI and MILLER, 1985) preclude growth in water of other than normal salinity.

Temperature

Living brachiopods are known from all climatic zones, with inarticulates living predominantly in subtropical-tropical and articulates in temperate regions (RUDWICK, 1970, p. 159). Their present-day habitats therefore span the whole ≤30°C temperature range of oceanic water masses. The optimal habitats for Paleozoic brachiopods may have been comparable, but all presently studied specimens grew at low-paleolatitudes, as indicated by paleomagnetic (HABICHT, 1979) and

Fig. 4. Scattergram of δ^{13} C and Na concentrations in Permian brachiopods. See Fig. 2 for explanations.

TABLE 3 VARIMAX ROTATED FACTOR ANALYSIS OF DEVONIAN BRACHIOPODS FACTOR 2 FACTOR 4 FACTOR 1 0.014 -0.031 6180 0.108 0.067 log Ca log Mg -0.436 -0.020 0.058 Na Mn 0.071 0.3360.014 log -0.208 -0.082 l og 1 og Log IR -0.020 0.859 0.790 1.519 2.287 Eigenvalue 32.3 48.6 19.2 Percent of explained Void filling Total Post-Interpretation depositional by ferroan carbonate ecrystallization and calcite mineralogical cement stabilization

Note: see Table 2.

sedimentological (FRAKES, 1979; ZIEGLER et al., 1977) criteria. The present day tropical-temperate temperature barrier is at winter temperatures of ~15-18°C (HALL, 1964; DODD and STANTON, 1981, p. 448) and this may or may not have been also the low-temperature limit for the studied Paleozoic communities. In any case, it is not the low, but the high-temperature limit, which is posing problems in subsequent interpretations. Assuming 0% SMOW as the oxygen isotopic composition of the surficial low-latitude Paleozoic sea water, the calculated temperature of the ambient Permian ocean water would be $\sim 26 \pm 5$ °C. In contrast, the ambient ocean temperature for Devonian and older seas would have to be at least $\sim 35 \pm 4$ °C, and possibly more for some marginal Devonian (Fig. 5) and Silurian samples. If "non-glacial" $\delta^{18}O_{water}$ of -1% SMOW (e.g. BERGER, 1979) were accepted, the above temperatures would decrease by ~ 4.5 °C. For the present discussion, the glacial effect is considered of subordinate importance because both, the "cold" post- and the "warm" pre-Carboniferous oceans coexisted, at one time or another, with glacial as well as non-glacial climates. Yet, the $\geq 3\%$ δ^{18} O difference between Early-Middle and Late Paleozoic brachiopods is a persistent feature. The validity of the above statement is, however, conditional on the assumption that Phanerozoic glaciations were of comparable magnitude to the Cenozoic one. The presently known large scale glaciations have been described from the Early Proterozoic, Late Proterozoic, Late Ordovician-Early Silurian, Late Devonian (Famennian)-Late Permian, and Cenozoic (SCHWARZ-BACH, 1963; FRAKES, 1979; BUDYKO, 1977; CROWELL, 1982; CAPUTO and CROWELL, 1985; HAMBREY and HARLAND, 1985), with the terminal Proterozoic one possibly reaching even low latitudes (McWILLIAMS and MCELHINNY, 1980). Each of these glacial episodes lasted ≥10-20 million years (FAIRBRIDGE, 1982) and during the Paleozoic Era glaciations appear to have been the norm and not the exceptions (CAPUTO and CROWELL, 1985). The usual defense against coexistence of the supposedly "hot" (≥60°C) Proterozoic oceans with glacial climates is an invoked large diachronism of glacial and non-glacial sediments (e.g. KNAUTH and LOWE, 1978). A similar resort to diachronism is not a viable proposition for the Phanerozoic, where the synchroneity of glacial climates with the "warm" Paleozoic oceans is undeniable. In our view, 35 ± 4 °C (and more for the Proterozoic) warm low-latitude oceans and simultaneous, possibly even low-latitude (e.g. the terminal Proterozoic), widespread glaciations are difficult to reconcile. Note that even during the ice free times of the Cretaceous, the equatorial surface ocean temperatures did not exceed, and likely were less than, 32°C (Frakes, 1979, chapter 6; SAVIN and YEH, 1981), although the temperate climates stretched into high latitudes. Furthermore, the brachiopod community with coexisting rugose corals, crinoids, and other phyla was relatively stable during the Phanerozoic (RUD-

Fig. 5. Scattergram of δ^{18} O and Mn concentrations in Devonian brachiopods. See Fig. 2 for explanations.

Fig. 6. Scattergram of δ^{13} C and Na concentrations in Devonian brachiopods. See Fig. 2 for explanations.

WICK, 1970; SEPKOSKI and MILLER, 1985) and the proposition that the same pre-Carboniferous community should have lived in habitats $\sim 10^{\circ}$ C warmer than its later counterpart is paleoecologically unpalatable. This is quite apart from the question of whether living marine communities containing, among others, molluscs could have thrived, as opposed to barely survive, in permanent $35 \pm 4^{\circ}$ C habitats (cf. READ, 1963). For example, collagen, a body protein present in several metazoan phyla, collapses in thriving reproductive populations at upper limits of these temperatures (RIGBY, 1968; RIGBY and HAFEY, 1972). Furthermore, BROCK (1985) concluded that 38° C is the upper limit of tolerance for aquatic vertebrates. As a final point, some meteorologists argue that $\sim 31^{\circ}$ C is an upper

limit on the temperature of the surface ocean water for atmospheric radiation balances not vastly departing from the present-day conditions (NEWELL and DOP-PLICK, 1979).

We would like to emphasize that none of the above arguments is unequivocal (see, for example, VALENTINE, 1985), but their combined weight suggests that the temperature effect alone was not the principal cause of the observed Late Paleozoic δ^{18} O shift of $\sim 3\%$. Additional support comes from the extention of the isotopic record into the Proterozoic and the Archean. As stated above, the presently known record would demand $\geq 60^{\circ}$ C warm oceans in temporal and/or spatial proximity with the well established Early Proterozoic glaciations (e.g. FRAKES, 1979, p. 38). Further-

Fig. 7. Histogram of δ^{13} C variations in Emsian (Early Devonian), Eifelian (Middle Devonian) and Frasnian (Late Devonian) brachiopods, Empty circles—genus *Atrypa*, full dots—other genera.

FIG. 8. δ¹³C distribution in various Eifelian (Middle Devonian) brachiopod genera.

more, HOLLAND (1978, p. 205) pointed out that equilibrium temperature for sea water saturated with respect to halite, anhydrite, and gypsum is 18°C, and gypsum precipitates from seawater only at temperatures ≤58°C. The gypsum-halite association is therefore indicative of temperatures ≤25°C (HOLLAND, 1984, p. 427). Evaporites with this mineralogical assemblage, although not necessarily coprecipitated, have been ubiquitous throughout the Phanerozoic (e.g. BRAITCH, 1962) and they have been documented as far back as 1.6 Ga ago (MUIR, 1979). Furthermore, the discovery of gypsum casts in sequences as old as 3.5 Ga precludes at least the existence of the postulated 60–70°C Archean oceans (WALKER et al., 1983).

Isotopic composition of sea water

The above elimination process leaves the evolution in oxygen isotopic composition of sea water as the only presently known alternative. The buffering of ¹⁸O/¹⁶O in sea water by interactions with silicates at high- and low-temperatures (crossover $\sim 300 \pm 50$ °C) has been discussed previously by CHASE and PERRY (1972), MUEHLENBACHS and CLAYTON (1976), PERRY et al. (1978), LAWRENCE and GIESKES (1981) and GREGORY and TAYLOR (1981). Overall, a net enhancement of high-temperature interactions will tend to enrich sea water in ¹⁸O and vice versa. The observed Late Paleozoic δ^{18} O increase of $\sim 3\%$ would therefore demand a substantial enhancement in the rate of high temperature oxygen isotopic exchange (plutonism, deep ocean ridge circulation, etc.) relative to low-temperature processes (e.g. shallow ridge circulation, submarine weathering). This is an attractive proposition, because the Late Paleozoic interval is also a time of very pronounced variations (Fig. 9) in marine 87Sr/86Sr (PE-TERMAN et al., 1970; VEIZER and COMPSTON, 1974; BURKE et al., 1982; POPP et al., 1986b), δ^{13} C (VEIZER et al., 1980; LINDH, 1983; HOLSER, 1984), δ^{34} S (CLAY-

POOL et al., 1980; HOLSER, 1984), and in "sea level" stands (VAIL and MITCHUM, 1979). These oscillations, at 10^7 years frequency, have likely been controlled by global tectonism (VEIZER, 1985) and global tectonism may have modulated also the rate of high/low-temperature exchange of oxygen between silicate crust and sea water. At this stage, we do not have the necessary stratigraphic sampling resolution to decide whether the inferred δ¹⁸O shift coincides with a specific Late Paleozoic inflection in the complementary isotopic curves. Similarly, we are not in a position to establish or disclaim the existence of possible second order, less than ±1‰, variations within the overall Paleozoic δ¹⁸O secular trend.

Despite our preference for this solution, three sets of arguments mitigate against its unquestionable acceptance. Firstly, KNAUTH et al. (1985) and KNAUTH and BEEUNAS (1986) analyzed fluid inclusions from Phanerozoic salts, believed to represent unmodified trapped sea water, and reported near-present day δ^{18} O (but not δD) values as far back as the Silurian. Secondly, the patterns of δ^{18} O distributions in secondary minerals of greenschist facies metabasalts on the modern ocean floor (MUEHLENBACHS and CLAYTON, 1972; STAKES and O'NEIL, 1982), in Cretaceous ophiolitic sections (GREGORY and TAYLOR, 1981), and in the Archean greenstones (BEATY and TAYLOR, 1982; SMITH et al., 1984) are similar. This is consistent with their interpretation as products of alteration by sea water with δ^{18} O of about 0‰ (SMOW). Thirdly, MUEHLENBACHS and CLAYTON (1976) and GREGORY and TAYLOR (1981) proposed that sea water δ^{18} O is buffered at 0% (SMOW) by the competing and complementary interactions with silicates of oceanic crust at low and high-temperatures. Accepting these balances, it is impossible to generate the inferred 3% shift in δ^{18} O of the Paleozoic sea water. The difficulty is compounded by preliminary indications (POPP et al., 1986c) that the oxygen isotopic shift may have been restricted to the

FIG. 9. Secular isotopic age curves for sea water as derived from (a) sulfur isotopes in evaporite sulfate, (b) carbon isotopes in carbonates, (c) strontium isotopes in carbonates and fossil apatites, and (d) the tentative oxygen isotopes in carbonates, principally brachiopods. For sources of these curves see the text and HOLSER (1984).

Devonian-Mississippian transition and thus could have been rapid.

As was the case with temperatures, none of the above arguments is unequivocal. The fluid inclusion studies need confirmation and explanation of the disparity between oxygen and hydrogen isotopic compositions. The plausible alteration argument entails a plethora of assumptions, such as the degree of sea water participation in alteration processes, the degree of silicate/water equilibration or water/rock ratio, the starting isotopic composition of parental material, metamorphic and crystallization temperatures, etc. This is particularly the case for the pre-Cretaceous studies. Finally, the tightness of the balance argument is conditional on

our present knowledge of the silicate/water exchange reservoir sizes and fluxes. These are open to discussion (PERRY et al., 1978), particularly around subduction zones and in orogenic belts. At this stage, we do not discount therefore the possibility that a change in the oxygen isotopic composition of sea water could have been induced by tectonic phenomena. A resolution or quantification of this question will not only improve our understanding of the hydrologic cycle, but may also provide a tool for understanding the tectonic evolution of the Earth and, after appropriate corrections, perhaps also the temperature history of its surface.

CONCLUSIONS

Combined trace element and isotopic study of Paleozoic brachiopod shells leads to the following conclusions:

- 1) Paleozoic brachiopods fractionated carbon isotopes at the generic level;
- 2) In accord with previous studies, Paleozoic brachiopods reflect a general enrichment in ¹³C in the course of the Paleozoic, with major enrichment in the Permian;
- 3) The previously described negative correlation of marine $\delta^{34}S_{\text{sulfate}}$ and $\delta^{13}C_{\text{carbonate}}$ (VEIZER *et al.*, 1980) is valid only at time resolutions of 10^7 years;
- 4) The δ^{18} O record of brachiopod shells shows $\sim 3\%$ depletion in ¹⁸O during the Late Paleozoic, with Devonian and older samples having δ^{18} O of $\leq -4\%$ PDB;
- 5) The proposed oxygen isotopic shift may be a consequence of changing $^{18}\text{O}/^{16}\text{O}$ of the coeval sea water, of warmer (35 \pm 4°C) Early and Mid-Paleozoic oceans, or both. Our preference is for the first alternative, but both solutions pose problems for complementary geological observations.
- 6) The acceptance of the Paleozoic brachiopod data as representative of secular variations for δ^{18} O leads to consequences of first order significance, regardless of the actual cause(s) of the oxygen isotopic shift. If the data indeed reflect a changing ¹⁸O/¹⁶O composition of sea water, they may indicate the existence of a global tectonic event(s) which caused a net increase of hightemperature oxygen exchange between sea water and silicate crust. If they reflect paleotemperatures, the coexistence of persistent Paleozoic glaciations with 35 ± 4°C low-latitude oceans requires reconsideration of the existing paleoclimatic models. If neither proposition proves satisfactory, alternative solutions must be explored, such as, for example, the possible consequences of the expansion of vascular plants and animals on land in the Devonian.

Acknowledgements—This work has been supported financially by the Natural Sciences and Engineering Research Council of Canada. We acknowledge technical support by Robert Drimmie and John Loop; drafting by Edward Hearn and A. Steele; drafting and preparation of the Appendix by W. F. Schmiedel; typing by Julie Hayes; donation of Ordovician samples and of trace element data for these samples by I. S.

Al-Aasm; and discussions with Yehoshua Kolodny, L. S. Land, K. M. Towe, S. M. Savin, and J. R. O'Neil.

Editorial handling: J. R. O'Neil

REFERENCES

- ADLIS D. S., GROSSMAN E. L. and YANCEY T. E. (1985) Stable isotope variations in late Pennsylvanian brachiopods from cyclic sedimentary deposits: paleoenvironmental and diagenetic implications. *Geol. Soc. Amer. Annual Mtg., Abstracts*, p. 509.
- AL-AASM I. S. and VEIZER J. (1982) Chemical stabilization of low-Mg calcite: an example of brachiopods. *J. Sediment. Petrol.* **52**, 1101–1109.
- AL-AASM I. S. and VEIZER J. (1986) Diagenetic stabilization of aragonite and low-Mg calcite, I. Trace elements in rudists J. Sediment. Petrol. 56, 138-152.
- ARTHUR M. A. (1982) The carbon cycle-controls of atmospheric CO₂ and climate in the geologic past. In *Climate in Earth History* (eds. W. M. BERGER and J. C. CROWELL), pp. 55-67. U.S. National Academy Press.
- BAERTSCHI P. (1957) Messung und Deutung relativer Häufigkeitsvariationen von 0¹⁸ und C¹³ in Karbonatgesteinen und Mineralien. Schweiz. Mineral. Petrog. Mitt. 37, 73–152.
- BATHURST R. G. C. (1975) Carbonate Rocks and their Diagenesis, 658 p. Elsevier.
- BAUSCH W. and HOEFS J. (1972) Die Isotopenzusammensetzung von Dolomiten und Kalken aus dem süddeutschen Malm. Contrib. Mineral. Petrol. 37, 121-130.
- BEATY D. W. and TAYLOR H. P. (1982) The oxygen isotope geochemistry of komatiites: evidence for water-rock interaction. In *Komatiites* (eds. N. T. ARNDT and E. G. NISBET), pp. 267–280. Allen Press.
- BERGER W. H. (1977) Carbon dioxide excursions and the deep sea record: aspects of the problem. In *The Fate of Fossil Fuel CO₂ in the Oceans* (eds. N. R. ANDERSEN and A. MALAHOFF), pp. 505-542. Plenum Press.
- BERGER W. H. (1979) Stable isotopes in foraminifera, SEPM Short Course Notes 6, pp. 156-198. SEPM.
- Berner R. A., Lasaga A. C. and Garrels R. M. (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. *Amer. J. Sci.* 283, 641–683.
- Braitsch O. (1962) Entstehung und Stoffbestand der Salzlagerstätten, 282 p., Springer-Verlag.
- Brand U. (1981) Mineralogy and chemistry of the lower Pennsylvanian Kendrick fauna, eastern Kentucky, 2. Stable isotopes. *Chem. Geol.* **32**, 17–28.
- BRAND U. (1982) The oxygen and carbon isotope composition of Carboniferous fossil components: sea water effects. Sedimentology 29, 139–147.
- BRAND U. (1983) Mineralogy and chemistry of the lower Pennsylvanian Kendrick fauna, eastern Kentucky, U.S.A. Chem. Geol. 40, 167-181.
- Brand U. and Veizer J. (1980) Chemical diagenesis of a multicomponent carbonate system—1: trace elements. J. Sediment. Petrol. 50, 1219–1236.
- Brand U. and Veizer J. (1981) Chemical diagenesis of a multi-component carbonate system—2: stable isotopes. *J. Sediment. Petrol.* 51, 987–997.
- Brock T. D. (1985) Life at high temperatures. *Science* 230, 132-138.
- BUDYKO M. I. (1977) Climatic Changes, 261 p., Amer. Geophys. Union.
- BURKE W. H., DENISON R. E., HETHERINGTON E. A., KOEPNICK R. B., NELSON H. F. and OTO J. B. (1982) Variation of seawater ⁸⁷Sr/⁸⁶Sr throughout Phanerozoic time. *Geology* **10**, 516–519.
- BUSENBERG E. and PLUMMER L. N. (1985) Kinetic and thermodynamic factors controlling the distribution of SO₄²⁻ and

- Na⁺ in calcites and selected aragonites. *Geochim. Cosmo-chim. Acta* **49**, 713-725.
- CAPUTO M. V. and CROWELL J. C. (1985) Migration of glacial centers across Gondwana during Paleozoic Era. Geol. Soc. Amer. Bull. 96, 1020–1036.
- CHASE C. G. and PERRY E. C. (1972) The oceans: growth and oxygen isotope evolution. *Science* 177, 992-994.
- CLAYPOOL G. E., HOLSER I. R., SAKAI H. and ZAK I. (1980)
 The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. *Chem. Geol.* 28, 199-259.
- CLAYTON R. M. and DEGENS E. T. (1959) Use of C isotope analyses for differentiating fresh-water and marine sediments. Amer. Assoc. Petrol. Geol. Bull. 43, 890–897.
- COMPSTON W. (1960) The carbon isotopic composition of certain marine invertebrates and coals from the Australian Permian. *Geochim. Cosmochim. Acta* 18, 1–22.
- CROWELL J. C. (1982) Continental glaciation through geologic time. In *Climate in Earth history* (ed. Geophysics Study Committee), pp. 77-82, U.S. National Academy Press.
- DEGENS E. T. and EPSTEIN S. (1962) Relationship between O¹⁸/O¹⁶ ratios in coexisting carbonates, cherts and diatomites. *Amer. Assoc. Petrol. Geol. Bull.* 46, 534-542.
- DODD J. R. and STANTON R. J. (1981) Paleoecology, Concepts and Applications, 559 p., Wiley.
- DONTSOVA Ye. I. (1970) Oxygen isotope exchange in rock forming processes. *Geochem. Int.* 7, 624-636.
- DONTSOVA E. I., MIGDISOV A. A. and RONOV A. B. (1972) On the causes of variation of oxygen isotopic composition in the carbonate strata of the sedimentary column. Geochem. Int. 9, 885-891.
- DOUGLAS R. J. W. (1970) Geology and Economic Minerals of Canada, 838 p., Canada Department of Energy, Mines and Resources.
- EPSTEIN S., BUCHSBAUM R., LOWENSTAM H. A. and UREY H. C. (1951) Carbonate-water isotopic temperature scale. *Geol. Soc. Amer. Bull.* **62**, 417-426.
- EPSTEIN S., BUCHSBAUM R., LOWENSTAM H. A. and UREY H. C. (1953) Revised carbonate-water isotopic temperature scale. *Geol. Soc. Amer. Bull.* **64**, 1315–1325.
- FAIRBRIDGE R. W. (1982) Paleoclimatology. In McGraw-Hill Encyclopedia of Science and Technology, 5th edition, pp. 764–766, McGraw-Hill.
- FISCHER A. G. and ARTHUR M. A. (1977) Secular variations in the pelagic realm. Soc. Econ. Paleontol. Mineral. Spec. Publ. 25, 19-50.
- FRAKES L. A. (1979) Climates throughout Geologic Time, 310 p., Elsevier.
- FRIEDRICHSEN H. (1984) Oxygen and hydrogen isotope studies in glauconites. *Terra Cognita* 4, 218.
- FRITZ P. (1971) Geochemical characteristics of dolomites and the ¹⁸O content of Middle Devonian oceans. *Earth Planet. Sci. Lett.* 11, 277–282.
- GARRELS R. M. and PERRY E. A. (1974) Cycling of carbon, sulfur, and oxygen through geologic time. In *The Sea* (ed. E. D. GOLDBERG), Vol. 5, pp. 303-336. Wiley.
- GARRELS R. M. and LERMAN A. (1981) Phanerozoic cycles of sedimentary sulfur and carbon. *Proc. Nat. Acad. Sci.* 78, 4652–4656.
- GREGORY R. T. and TAYLOR H. P. (1981) An oxygen isotope profile in a section of Cretaceous ocean crust, Samoil ophiolite, Oman: evidence for ¹⁸O buffering of the oceans by deep (≥5 km) seawater hydrothermal circulation at midocean ridges. J. Geophys. Res. 86, 2737–2755.
- HABICHT J. K. A. (1979) Paleoclimate, paleomagnetism, and continental drift. Amer. Assoc. Petrol. Geol. Stud. Geol. 9, 1-31.
- HALL C. A. (1964) Shallow marine climates and molluscan provinces. *Ecology* 45, 226–234.
- HAMBREY M. J. and HARLAND W. B. (1985) The Late Proterozoic glacial era. *Paleogeog.*, *Paleoclim.*, *Paleoecol.* 51, 255-272.

- HOLLAND H. D. (1978) The Chemistry of the Atmosphere and Oceans, 351 p., Wiley-Interscience.
- HOLLAND H. D. (1984) The Chemical Evolution of the Atmosphere and Oceans, 582 p., Princeton Press.
- HOLSER W. T. (1984) Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In Patterns of Change in Earth Evolution (eds. H. D. HOLLAND and A. F. TREN-DALL), pp. 123-143. Springer-Verlag.
- ISHIKAWA M. and ICHIKUNI M. (1984) Uptake of sodium and potassium by calcite. Chem. Geol. 42, 137-146.
- JAANUSSON V. (1966) Fossil brachiopods with probable aragonitic shell. Geol. Fören. Förhandl. 88, 279–281.
- JAMES N. P. and CHOQUETTE P. W. (1983) Diagenesis—6. Limestones—The sea floor diagenetic environment. Geoscience Canada 10, 162-179.
- JOHNSON J. H. (1951) An introduction to the study of organic limestones. Quart. Colorado School Mines 46/2, 1-185.
- KEITH M. L. and WEBER J. N. (1964) Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim. Cosmochim. Acta 28, 1787-1816.
- KEPPENS E. and O'NEIL J. R. (1985) Isotope geochemistry of glauconitic sediments: II—Stable isotopes. In *Isotopes in the Sedimentary Cycle*, Abstracts (Obernai, France).
- KILLINGLEY J. S. (1983) Effects of diagenetic recrystallization on ¹⁸O/¹⁶O values of deep-sea sediments. *Nature* 301, 594– 597.
- KNAUTH L. P. and EPSTEIN S. (1976) Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta 40, 1095-1108.
- KNAUTH L. P. and LOWE D. R. (1978) Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts. *Earth Planet. Sci. Lett.* 41, 209-222.
- KNAUTH L. P. and BEEUNAS M. A. (1986) Isotope geochemistry in fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochim. Cosmochim. Acta 50, 419-433.
- KNAUTH L. P., KEALY S. and LARIMER S. (1985) Isotopic composition of Silurian seawater. Geol. Soc. Amer. Ann. Mtg., Abstracts, 630.
- KOLODNY Y. and EPSTEIN S. (1976) Stable isotope geochemistry of deep sea cherts. Geochim. Cosmochim. Acta 40, 1195-1209.
- KROOPNICK P. M., MARGOLIS S. V. and WONG C. S. (1977) δ^{13} C variations in marine carbonate sediments as indicators of the CO₂ in the oceans. In *The Fate of Fossil Fuel CO*₂ in the Oceans (eds. N. R. ANDERSEN and A. MALAHOFF), pp. 295–321. Plenum Press.
- LAWRENCE J. R. and GIESKES J. M. (1981) Constraints on water transport and alteration in the oceanic crust from the isotopic composition of pore water. J. Geophys. Res. 86, 7924-7934.
- LEPZELTER C. G., ANDERSON T. F. and SANDBERG P. A. (1983) Stable isotope variation in modern articulate brachiopods (abstr.). Bull. Amer. Assoc. Petroleum Geologists 67, 500-501.
- LETOLLE R. and RENARD M. (1980) Evolution des teneurs en ¹³C des carbonates pélagiques aux limites Crétace-Tertiare et Paléocene-Eocene. C. R. Acad. Sci. Paris 290, 827-830.
- LEUTLOFF A. H. and MEYERS W. J. (1984) Regional distribution of microdolomite inclusions in Mississippian echinoderms from southwestern New Mexico, J. Sedim. Petrol. 54, 432-446.
- LINDH T. B. (1983) Temporal variations in ¹³C, ³⁴S and global sedimentation during the Phanerozoic. M.Sc. thesis, University of Miami, 98 p.
- LOHMAN K. C. (1983) Unravelling the diagenetic history of carbonate reservoirs: integration of petrographic and geochemical techniques. In *New Ideas and Methods for Exploration for Carbonate Reservoirs* (J. L. WILSON, B. H.

- WILKINSON, K. C. LOHMAN and N. F. HURLEY), pp. V/1-V/41, University of Michigan, Short course notes (unpublished).
- LONGINELLI A. and NUTI S. (1968) Oxygen isotope composition of phosphorites from marine formations. *Earth Planet. Sci. Lett.* **5**, 13-16.
- LOWENSTAM H. A. (1961) Mineralogy, O¹⁸/O¹⁶ ratios, and strontium and magnesium contents of Recent and fossil brachiopods and their bearing on the history of the oceans. *J. Geol.* **69**, 241–260.
- LUZ B., KOLODNY Y. and KOVACH J. (1984) Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. *Earth Planet. Sci. Lett.* **69**, 255-262.
- MAGARITZ M., ANDERSON R. Y., HOLSER W. T., SALTZMAN E. S. and GARBER J. (1983) Isotope shifts in the Late Permian of the Delaware Basin, Texas, precisely timed by varved sediments. *Earth Planet. Sci. Lett.* 66, 111-124.
- McWilliams M. O. and McElhinny M. W. (1980) Late Precambrian paleomagnetism of Australia: The Adelaide Geosyncline. J. Geol. 88, 1-26.
- MORRISON J. O. and BRAND U. (1984) Secular and environmental variation of seawater: An example of brachiopod chemistry. Geol. Assoc. Can. Ann. Mtg., Abstracts 9, 91.
- MUIR M. D. (1979) A sabkha model for the deposition of part of the Proterozoic McArthur Group of the Northern Territory, and its implications for mineralization. BMR J. Austral. Geol. Geophys. 4, 149-162.
- MUEHLENBACHS K. and CLAYTON R. N. (1972) Oxygen isotope geochemistry of submarine greenstones. Can. J. Earth Sci. 9, 471–478.
- MUEHLENBACHS K. and CLAYTON R. N. (1976) Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res. 81, 4365–4369.
- NEWELL R. E. and DOPPLICK T. G. (1979) Questions concerning the possible influence of anthropogenic CO₂ on atmospheric temperature. *J. Appl. Meteorol.* **18/6**, 8/22-8/25.
- PERRY E. C. (1967) The oxygen isotope chemistry of ancient cherts. Earth Planet. Sci. Lett. 3, 62-66.
- PERRY E. C. and TAN F. C. (1972) Significance of oxygen and carbon isotope variations in Early Precambrian cherts and carbonate rocks of southern Africa. *Bull. Geol. Soc. Amer.* 83, 647-664.
- PERRY E. C., AHMAD S. N. and SWULIUS T. M. (1978) The oxygen isotope composition of 3800 m.y. old metamorphosed chert and iron formation from Isukasia, West Greenland. J. Geol. 86, 223-239.
- PETERMAN Z. E., HEDGE C. E. and TOURTELOT H. A. (1970) Isotopic composition of strontium in seawater throughout Phanerozoic time. *Geochim. Cosmochim. Acta* 34, 105–120.
- POPP B. N., ANDERSON T. F. and SANDBERG P. A. (1986a)
 Textural, elemental and isotopic variations among constituents in Middle Devonian limestones, North America.

 J. Sedim. Petrol. (in press).
- POPP B. N., PODOSEK F. A., BRANNON J. C., ANDERSON T. F. and PIER J. (1986b) ⁸⁷Sr/⁸⁶Sr ratio in Permo-Carboniferous sea water from the analyses of well preserved brachiopod shells. *Geochim. Cosmochim. Acta* 50, 1321-1328.
- POPP B. N., ANDERSON T. F. and SANDBERG P. A. (1986c) Brachiopods as indicators of original isotopic compositions in Paleozoic limestones. *Geol. Soc. Amer. Bull.* (in press).
- READ K. R. H. (1963) Thermal inactivation of preparations of aspartic/glutamic transaminase from species of bivalved molluses from the sublittoral and intertidal zones. *Comp. Biochem. Physiol.* 9, 161-180.
- RENARD M. (1985) La chimiostratigraphie. Géochronique 13, 16-20.
- RIGBY B. J. (1968) Thermal transition in some invertebrate collagens and their relation to amino acid content and environmental temperature. In *Fibrous Proteins* (ed. W. G. CREWTHER), pp. 217-225. Plenum Press.
- RIGBY B. J. and HAFEY M. (1972) Thermal properties of the

- collagen of jellyfish (Aurelia coerulea) and their relation to its thermal behaviour. Aust. J. Biol. Sci. 25, 1361-1363.
- RUDWICK M. J. S. (1970) Living and Fossil Brachiopods, p. 199. Hutchinson.
- SAVIN S. M. and YEH H. W. (1981) Stable isotopes in ocean sediments. In *The Sea, Vol.* 7 (ed. C. EMILIANI), pp. 1521–1554. Wiley-Interscience.
- SCHIDLOWSKI M., EICHMANN R. and JUNGE Ch. E. (1975) Precambrian sedimentary carbonates; carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. *Precambrian Res.* 2, 1–69.
- SCHIDLOWSKI M., HAYES J. M. and KAPLAN I. R. (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen. In *Earth's earliest biosphere: Its origin and evolution* (ed. J. W. SCHOPF), pp. 149-186. Princeton Press.
- SCHOLLE P. A. and ARTHUR M. A. (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones. *Amer. Assoc. Petrol. Geol. Bull.* **64**, 67–87.
- SCHWARZBACH M. (1963) Climates of the Past, p. 328. Van Nostrand.
- SEPKOSKI J. and MILLER A. I. (1985) Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. In *Phanerozoic diversity patterns: profiles in macroevolution* (ed. J. W. VALENTINE), pp. 153-190, Princeton Press.
- SHACKLETON N. J. (1977) Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In *The Fate of Fossil Fuel CO₂ in Oceans* (eds. N. R. ANDERSEN and A. MALAHOFF), pp. 401-427. Plenum Press.
- SHACKLETON N. J. (1985) Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere. In *The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Present* (eds. E. T. SUNDQUIST and W. S. BROECKER), Geophys. Monograph 32, pp. 412–417, AGU.
- SHEMESH A., KOLODNY Y. and LUZ B. (1983) Oxygen isotope variations in phosphate of biogenic apatites, II. Phosphorite rocks. *Earth Planet. Sci. Lett.* **64**, 405–416.
- SMITH H. S., O'NEIL J. R. and ERLANK A. J. (1984) Oxygen isotope composition of minerals and rocks and chemical alteration patterns in pillow lavas from the Barbeton greenstone belt, South Africa. In Archean Geochemistry: The Origin and Evolution of the Archean Continental Crust (eds. A. KRÖNER, G. N. HANSON and A. M. GOODWIN), pp. 115-137. Springer-Verlag.
- STAKES D. S. and O'NEIL J. R. (1982) Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks. *Earth Planet. Sci. Lett.* 57, 285-304.
- TASCH P. (1980) Paleobiology of the Invertebrates, p. 975. Wiley.
- VAIL P. R. and MITCHUM R. M. (1979) Global cycles of relative changes of sea level from seismic stratigraphy. *Amer. Assoc. Petrol. Geol. Mem.* 29, 469–472.
- VALENTINE J. W. (1985) Are interpretations of ancient marine temperatures constrained by the presence of ancient marine organisms? In *The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Present* (eds. E. T. SUND-QUIST and W. S. BROECKER), Geophys. Monograph 32, pp. 623–627, AGU.

- VEIZER J. (1974) Chemical diagenesis of belemnite shells and possible consequences for paleotemperature determinations. Neues Jahrb. Geol. Paläont. Abh. 147, 91-111.
- VEIZER J. (1983a) Chemical diagenesis of carbonate rocks: theory and application of trace element technique. In Stable Isotopes in Sedimentary Geology (eds. M. A. ARTHUR, T. F. ANDERSON, I. R. KAPLAN, J. VEIZER and L. S. LAND), pp. III/1-III/100, SEPM Short Course Notes 10, SEPM.
- VEIZER J. (1983b) Trace elements and isotopes in sedimentary carbonates. Reviews in Mineralogy 11, 265-300.
- VEIZER J. (1985) Carbonates and ancient oceans: isotopic and chemical record on time scales of 10⁷-10⁹ years. In *The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Present* (eds. E. T. SUNDQUIST and W. S. BROECKER), Geophys. Monograph 32, pp. 595-601, AGU. VEIZER J. and COMPSTON W. (1974) Sr⁸⁷/Sr⁸⁶ composition
- VEIZER J. and COMPSTON W. (1974) Sr⁸⁷/Sr⁸⁶ composition of seawater during the Phanerozoic. *Geochim. Cosmochim. Acta* 38, 1461–1484.
- VEIZER J. and FRITZ P. (1976) Possible control of post-depositional alteration in oxygen paleotemperature determinations. Earth Planet. Sci. Lett. 33, 255-260.
- VEIZER J. and HOEFS J. (1976) The nature of O¹⁸/O¹⁶ and C¹³/C¹² secular trends in sedimentary carbonate rocks. *Geochim. Cosmochim. Acta* 40, 1387-1395.
- VEIZER J., LEMIEUX J., JONES B., GIBLING R. M. and SAVELLE J. (1978) Paleosalinity and dolomitization of a Lower Paleozoic carbonate sequence, Somerset and Prince of Wales Islands, Arctic Canada. Can. J. Earth Sci. 15, 1448–1461.
- VEIZER J., HOLSER W. T. and WILGUS C. K. (1980) Correlation of ¹³C/¹²C and ³⁴S/³²S secular variations. *Geochim. Cosmochim. Acta* 44, 579–587.
- VEIZER J., COMPSTON W., HOEFS J. and NIELSEN H. (1982) Mantle buffering of the early oceans. *Naturwissenschaften* 69, 173-180.
- WALKER J. C. G., KLEIN C., SCHIDLOWSKI M., SCHOPF J. W., STEVENSON D. J. and WALTER M. R. (1983) Environmental evolution of the Archean-Early Proterozoic Earth. In *Earth's Earliest Biosphere: Its Origin and Evolution* (ed. J. W. SCHOPF), pp. 260-290. Princeton Press. WEBER J. N. (1965a) The O¹⁸/O¹⁶ ratio in ancient oceans.
- WEBER J. N. (1965a) The O¹⁸/O¹⁶ ratio in ancient oceans. *Geokhimija* 6, 674–680 (in Russian).
- WEBER J. N. (1965b) Evolution of the ocean and the origin of fine-grained dolomites. *Nature* **207**, 930-933.
- WEBER J. N. (1967) Possible changes in the isotopic composition of the oceanic and atmospheric carbon reservoir over geologic time. *Geochim. Cosmochim. Acta* 31, 2343–2351.
- WEFER G. (1983) Die Verteilung stabiler Sauerstoff- und Kohlenstoff-Isotope in Kalkschallen mariner Organismen—Grundlage einer isotopischen Palökologie. Habilitationsschrift, Universität Kiel, p. 151.
- WILLIAMS A. (1968) A history of skeletal secretion among articulate brachiopods. *Lethaia* 1, 268–287.
- WILLIAMS A. (1971) Scanning electron microscopy of the calcareous skeleton of fossil and living brachiopods. In Scanning Electron Microscopy: Systematic and Evolutionary Applications, (ed. V. H. HEYWOOD), pp. 37-66. Academic Press.
- ZIEGLER A. M., SCOTESE C. R., MCKERROW W. S., JOHNSON M. E. and BAMBACH R. K. (1979) Paleozoic paleogeography. Ann. Rev. Earth Planet. Sci. 7, 473-502.

APPENDIX 1: Sample descriptions by geologic age and locality. Mg to Sr on I.R. free basis.

	: Sample descriptions by ge								
SAMPLE NO.	SPECIES	PDB C 13	PDB 0 18	PPM MG	PPM NA	PPM MN	PPM FE	PPM SR	
PERMI AN					~~				
Assistan 410	ce Formation, Marie Bay, Mel Dictyoclostus sp.	lville Island 1.9	, NWT -4.2	1709	1368	480	1292	929	3,80
411	Dictyoclostus sp.	2.0	-5.3	1705	1180	440	1406	836	2.96
Assistan 421	ce Formation, Sabine Peninsu Liostella sp.	ula, Melville 5.0	Island,	NWT 2089	1804	54	1150	910	15.21
Takhandi	t Formation, south side of 1	Yukon River,	Yukon						
	Linoproductus sp. watershed west, NWT	3.8	-5.5	1927	1403	15	4903	959	83.57
403 Dry Cany	Spirifer sp. on, Wasatch Mtns., Utah	4.1	-4.6	3709	863	5	2313	848	19.50
422 Kandik,		1.5	-7.9	4936	342	69	1020	338	48.81
414 416 Northern	Echinoconchus sp. Linoproductus sp. Vukon	3.3 1.4	-4.1 -4.7	5989	1637	129	6957	984	27.91
419	Dictyoclostus cf. depressus		-1.0	3657	1196	5	427	1008	7.08
420 428	Waagenochonchia sp. Dictyoclostus uralicus	-2.5 0.9	-3.2 -2.6	3537 2222	880 1186	55 12	2182 125	·759 834	8.52 13.66
Ogilvie	Mtns., Jungle Creek, NWT	3,3			1100		120	03.	10.00
423 Peace Ri	<u>Dictyoclostus</u> sp. lv er, La Bi che River, Alberta	3	-7.6						
405 424	Spirifer sp.	-0.3 -0.9	-7.6 -2.9	1264 2288	344 734	115 155	464 271	401 532	10.99
425	Dictyoclostus sp. Spirifer sp.	-3.6	-5.1	2168	303	192	240	375	0.54
Peel Pla 427	iteau, Mt. Effie, NWT Indet, terebratulid	0.4	-7.8	826	163	47	326	656	0.10
Peel Pla 408	iteau, Peel River, NWT Dictyoclostus sp.	2.2	-2.7	2286	1675	41	820	945	50.31
409	Dictyoclostus sp.	1.3	-1.4	2893	1280	17	1394	899	19.60
412 413	Spirifer sp. Dictyoclostus sp.	3.0 1.8	-1.2 -2.6	1638 2365	2012 1091	5 4 2	928 433	1290 952	12.01 24.90
415	Dictyoclostus sp.	2.2	-1.2	2842	1205	16	1022	2357	32.68
417 418	Indet. terebratulid Indet. rhynconellid	3.3 0.7	-1.6 -10.6	708 1308	683 118	5 26	875 69	677 352	4.96 0.29
426	Dictyoclostus sp.	2.1	-2.9	2566	1162	27	2569	1215	25.23
404	eek, NWT Spirifer sp.	3.5	-10.1	1579	558	10	468	972	57.94
West of 406	Bear Creek, NWT Spirifer sp.	4.5	-6.8	491	1234	5	129	1405	1.33
407	Spirifer sp.	5.2	-5.3	736	1127	5	1247	1305	10.40
400 401	Linoproductus cf. lineatus Dictyoclostus cf. neoinflat	0.4 tus 4.2	-6.1 -4.4	9148 2245	276 1231	182 53	641 1441	4 37 8 37	0.52 54.11
CARBONIFER Banff Po	rmation, Beaver River, NWT								
	Choristites esplanadensis ormation, Wapiti Lake, BC	1.5	-4.9	2507	690	157	35	693	30.94
323 Boggy Sh	Spirifer esplanadensis nale Formation, Stonewall, O	-1.2 klahoma	-7.1						
429	Marginifera muricatina Formation, Lizard Range, NV	1.3	-3.8	3502	1620	564	2067	1116	4.90
318	Gigantoproductus sp.	-1.5	-6.7	6168	462	5	32	1154	0.01
314	l Formation <u>Gigantoproductus</u> brazeriare Formation, Jockfish, Yukon	-0.2	-5.6	1902	788	27	217	944	38.39
329	Spirifer sp.	2.7	-4.2	3493	1066	16	337	945	6.56
309	Formation, Liard River, Naha Spirifer centronatus	anni Butte, N 2.6	WT -4.1	1535	271	33	643	1198	4.20
Pekisko 306	Formation, Monoghan Creek Spirifer centronatus	3.0	-4.6	4121	1077	10	626	803	0.32
302	Spirifer minnewankensis	1.7	-4.2	4711	1099	11	130	108.2	0.82
320	Formation, Mt. Rundle, Alber Brachythyris sp.	3.2	-3.6	7230	316	14	164	921	0.58
Pekisko 311	Formation, Nahanni Range, NV Spirifer cf. striatus	₩T -2.6	-5.3	1701	1041	16	290	1124	67.94
Pekisko 328	Formation, Wapiti Lake, BC Spirifer striatus	2.9	-5.8	3327	603	23	108	1237	0.25
	Formation Syringothyris sp.	2.1	-5.6	1517	721	10	117	1269	32.28
Rundle F 325	ormation, Slate Creek, BC Rhipidomella sp.	0.6	-6.2				-		
305	ormation, Ant Creek, Yukon Spirifer aff. rowleyi	2.3	-5.0	1577	1307	26	602	957	23.40
	Spirifer aff, rowleyi 'ormation, Nahanni Ridge, NW		-4.1	971	966	5	166	1015	18.31
300 315	Spirifer aff. rowleyi Spirifer aff, rowleyi	1.5 1.7	-5.0 -4.3	1243 828	519 5 27	13 16	139 15	1219 750	25.66
317	Buxtonia sp.	0.6	-6.5	3144	462	54	190	485	31.86 38.84
Shunda E 330	ormation Spirifer rowleyi	1.6	-5.6	1464	287	26	187	867	18.44
		· · ·						-	

SAMPLE	PDB	PDB	PPM	PPM	PPM	PPM	PPM	 %
NO. SPECIES	C 13		MG	NA	MN	FE	SR	I.R.
Wetumka Formation, near Ada, Oklahoma 431 <u>Mesolobus mesolobus</u> Beaver Dam, BC	0.7	-4.8	5067	2239	180	940	949	10.95
327 <u>Martinia</u> <u>rostrata</u>	-1.4	-8.6	4050	813	85	399	947	2.86
Canyon Creek, Moose Dome, BC 307 Syringothyris cf. hannibalensis	5.7	-3.1	1707	134	44	684	1505	4.87
Captain Creek Island, Ottawa, Kansas 433 <u>Enteletes hemiplicata</u>	2.0	-7.4	2153	193	778	2590	1338	0.33
Moose Lake, BC 321 Spirifer esplanadensis	-0.6	-6.7	3900	474	152	1072	1469	1.15
326 <u>Spirifer</u> sp. Mt. Greenock, Alberta	1.5	-5.9	2990	584	89	1126	1276	1.16
301 <u>Cleiothyridina</u> <u>lata</u> Mt. Hannington, BC	1.1	-5.3	7417	1187	35	714	1430	3.98
322 <u>Spirifer</u> sp. 324 <u>Spirifer</u> <u>esplanadensis</u> Nahanni Ridge area, NWT	2.7 1.8	-3.4 -5.7	1518 2570	203 295	29 57	701 835	151 667	10.10 54.17
312 <u>Spirifer aff. rowleyi</u> Ogilvie Mtns., Jungle Creek, NWT	1.5	-4.6	865	420	12	69	907	16.78
430 Indet. brachiopod 432 Indet. brachiopod	4.3	-7.5 -5.6	3189 1616	1369 769	388 10	5394 713	1244 545	29.77 31.34
Pekisko Lake, Nahanni Ridge, NWT 316 <u>Cleiothyridin</u> a sp.	2.1	-5.8	5599	359	38	490	589	33.56
Slate Creek, BC 303 Spirifer minnewankensis	1.8	-6.4	5320	260	16	10	552	0.15
Wapiti Lake, BC 319 <u>Punctospirifer</u> sp.	2.0	-6.8	2408	661	96	352	1236	0.20
Wapiti Pass, BC 304 Setigerites setigerus	1.0	-5.9	5658	349	60	1294	473	43.74
308 <u>Maginata</u> sp. U.DEVONIAN	1.2	-5.9	2216	632	54	1134	562	58.02
Hay River Formation, Hay River, NWT HR-1A Atrypa cosmeta	1.4	-5.9	1010	272	86	429	425	19.61
HR-1B <u>Atrypa cosmeta</u> HR-1C <u>Atrypa cosmeta</u>	0.8	-6.2 -5.6	1421 1512	667 538	151 185	914 923	700 659	5.36 5.37
HR-2A <u>Atrypa cosmeta</u> HR-2B <u>Atrypa</u> cosmeta	$\frac{1.0}{1.0}$	-6.3 -6.4	1955 1571	430 441	215 172	1434 865	618 628	4.09 5.94
HR-3 Atrypa cosmeta M.DEVONIAN	0.4	-6.3	2662	742	291	2238	738	6.48
Bird Fiord Formation, Bathurst Island, NWI 7 Anatrypa (Variatrypa) arctica	0.7	-5.8	2022	358	194	1577	733	1.63
8 Spinatrypa (Spinatrypa) borealis	0.7	-6.1	2258	323	184	599	550	1.65
9 Anatrypa (Variatrypa) arctica 10 Spinatrypa (Spinatrypa) borealis	0.5 0.8	-6.5 -6.3	1330 2693	273 192	359 208	2604 396	455 984	0.88 1.27
11 <u>Anatrypa (Variatrypa) arctica</u> 12 <u>Schizophoria sulcata</u>	1.8	-7.6 -6.4	1443 4499	297 1436	161 325	2603 1077	433 1002	3.99 2.29
13 Spinatrypa sp.	0.1	-6.2	3053	562	577	286	1093	5,54
14 <u>Atrypa</u> sp. 15 <u>Cupularostrum</u> sp.	1,0 -1.9	-6.3 -8.9	1391 2698	317 138	186 1190	1222 5811	513 722	1.89 0.17
16 Anatrypa (Variatrypa) arctica 17 Anatrypa (Variatrypa) arctica	0.4	-5.5 -6.0	1692 1527	390 323	155 173	1246	611 437	0.30
18 Spinatrypa (Spinatrypa) borealis	0.9	-6.7	2723	622	200	1597 790	937	1.61 3.87
19 <u>Anatrypa (Variatrypa) arctica</u> 20 <u>Cupularostrum repetitor</u>	0.7 1.6	-6.1 -6.5	1864	279	248	2703	448	2.26
21 <u>Schizophoria sulcata</u> 22 <u>Cupularostrum repetitor</u>	0.3 -1.5	-5.9 -7.4	5260 1703	1377 76	328 1250	2770 7764	929 487	1.80 0.36
23 Anatrypa (Variatrypa) arctica 24 Cupularostrum repetitor	0.7	-5.0 -6.9	1078	363	138	2346	509	2.08
25 Schizophoria sulcata	0.1	-5.7	4514	2344	106	872	1161	1.23
26 <u>Spinatrypa (Spinatrypa) borealis</u> 27 <u>Anatrypa (Variatrypa) arctica</u>	0.6 0.5	-5.6 -6.1	1437 2348	617 288	76 288	353 2021	1263 767	12.67 1.73
28 Cupularostrum repetitor	-0.2	-6.6	1007	252	258	2070	1069	9.35
29 <u>Anatrypa (Variatrypa) arctica</u> 30 <u>Cupularostrum repetitor</u>	0.8 1.7	-6.6 -7.4	1807 3204	253 528	258 181	2070 2476	866	6.34
31 <u>Anatrypa (Variatrypa) arctica</u> 32 Schizophoria sulcata	1.1	-6.4 -6.7	2143	298	106	720	656	1.73
33 Anatrypa (Variatrypa) arctica	1.0	-6.4						
34 <u>Spinatrypa (Spinatrypa) borealis</u> 35 Anatrypa (Variatrypa) arctica	0.2 1.1	-5.7 -6.8	3049 2866	814 576	347 274	913 2132	1147 798	8.52 4.59
36 Spinatrypa (Spinatrypa) borealis	0.4	-6.4	1420	427	363	3419	603	1.49
37 <u>Cupularostrum repetitor</u> 38 <u>Schizophoria sulcata</u>	2.7 0.2	-8.6 -6.6	5138	1408	253	2717	997	3.37
39 Atrypa arctica	0.4	-6.3	2174	282	249	1581	1006	1.42
40 <u>Cupularostrum repetitor</u> 41 <u>Schizophoria sulcata</u>	-0.9 0.1	-7.4 -7.2	2663 5113	204 1464	949 402	2169 3550	670 958	5.19
42 Spinatrypa sp. 43 Schizophoria sulcata	-0.3 -0.4	-6.2 -6.0	3927	1507	278	1151	1087	0.44
44 Atrypa arctica 45 Schizophoria sulcata	0.8	-7.8 -6.9	4460	2114	137	833	1296	2.20
46 Spinatrypa (Spinatrypa) borealis 47 Cupularostrum repetitor		-7.1 -7.7	2457 2681	498 127	241 545	371 4351	899 503	21.27 4.58
	- • •				- • •			

SAMPLE		PDB	PDB	PPM	PPM	PPM	PPM		ę,
NO.	SPECIES	C 13	0 18	MG	NA	MN	FE	SR	
48					279	630	5702		3.54
49	Cupularostrum repetitor Schizophoria sulcata Cupularostrum repetitor Spinatrypa (Spinatrypa) borealis	0.2	-6.7		845	162	1269		1.97
50 51	Cupularostrum repetitor	2.2	-7.6 -6.7	3506	575	344	702	0.01	()(
52	Spinatrypa sp.	-0.5	-7.4	2194	1108	529	782 1353	881 1153	6.26 1.25
54	Spinatrypa sp.	-0.7	-6.4	1612	319	511	5313	917	2.08
55	Spinatrypa sp.	-0.4	-7.6	3152	579	418	4047	1841	2.06
56 57	Schizophoria sulcata Atrypa sp.	-0.7 0.6	-6.2 -6.9	2396	348	204	1489	758	0.25
58	marremerra sp.	0.3	-5.4	1082	2140	26	94	1684	20.48
59	Anatrypa (Variatrypa) arctica Cupularostrum sp.	0.5	-6.3	2193	347	169	701	2944	1.14
60 61	Atrypa sp. A	-1.0	-7.9 -6.0	4016	419	187	1934	1246	0.60
62	Cupularostrum sp. Atrypa sp. A Cupularostrum sp.	4.4	-10.7	4010	413	107	1934	1246	0.69
	rd Formation, Devon Island, NWT								
110		0.7	-5.4	1884 6390	283	192	1197	560	1.25
111 112	Atruna en	0.6	-6.0 -5.5	2028	2344 277	200 156	1984 2202	957 585	0.32 0.97
120	Schizophoria sulcata	-0.4	-5.0	3942	405	22	141	1067	2.94
127	Atrypa sp.	0.5	-5.0	1469	396	82	989	651	2.95
128 129	Schizophoria sulcata Atrypa sp. Spinulicosta sp. Cupularostrum sp. A	1.1	-5.1 -6.6						
Bird Fio	rd Formation, Ellesmere Island,								
1	Atrypa sp.	0.5	-5.9 -6.1	2464	348	222	2613	586	2.40
2 3	Atrypa sp. Spinatrypa (Spinatrypa) borealis	0.3	-6.1 -6.3	1300 1452	349 428	221 200	3786 2708	436 405	0.33
4	Atrypa sp.	0.3	-5.4	1193	430	110	2301	540	1.24
5	Atrypa sp.	0.4	-6.4	1129	373	123	2584	493	1.53
6 63	Cupularostrum repetitor Atrypa sp.	0.2	-6.4 -4.9	1998	304	145	1943	590	2.03
64	Schizophoria sulcata	0.0	-6.4	1990	304	143	1713	330	2.03
65	Spinulicosta sp.	0.1	-7.2						
84 85	Cupularostrum sp.	1.6	-6.1 -5.8	2609 1583	316 395	181 85	2537 506	2121 804	4.12 2.78
86	Atrypa sp. B	0.1	-6.5	2470	494	119	1328	837	1.72
104	Atrypa sp. C	0.4	-6.6	1866	465	236	986	576	1.72
105 106	Atrypa sp.	~0.2	-5.9 -6.4	3599 2437	916 590	10 143	1240 1770	681 7.63	1.36 6.67
107	Atrypa sp.	-0.5	-5.1	1605	1544	57	416	1054	0.16
108	Atrypa sp. B	2.5	-7.3	3957	422	82	538	457	0.51
109 116	Atrypa sp.	-0.9	-5.4 -4.6	1900	348	180	52	902	17,26
117	Atrypa sp. Schizophoria sulcata Spinulicosta sp. Cupularostrum sp. Atrypa sp. B Atrypa sp. B Atrypa sp. C Atrypa sp. C Atrypa sp. Atrypa sp. Atrypa sp. Atrypa sp. Atrypa sp. Elythyna sverdrupi Atrypa sp.	-0.1	-6.0	2587	235	252	397	580	6.45
118	Atrypa sp. Schizophoria sulcata Atrypa sp. B Schizophoria sulcata Atrypa sp. B	-0.3	-6.9	4416	1077	453	2651	628	4.27
123 125	Schizophoria sulcata	0.2 -0.5	-5.7 -6.3	3768	397	101	34	1078	3.50
126		0.4	-5.5	1478	479	79	36	675	13.38
134		0.8	-6.0	1645	120	10	170	C70	0.30
135 136	Atrypa sp. C Schizophoria sulcata	-0.7	-6.0 -6.6	1645 3441	328 1358	18 33	170 297	67.8 86 7	0.39 0.73
137	Spinatrypa (Spinatrypa) borealis	0.6	-6.3	2267	552	105	1105	744	1.25
142	Atrypa sp. B	0.0 0.8	~6.6	2572	603	. 220	2004	71.7	
143 144	Atrypa sp. B Atrypa sp. B	0.6	~5.1 -5.5	3573 993	603 396	220 36	179	712 697	4.34
145	Perryspirifer scheii	0.0	-6.9	1996	2139	80	628	1217	0.52
146 Bird Fio	Schizophoria sulcata rd Formation, Norfolk Island, NWT	-0.5	-6.7	5237	1758	72	821	10,80	0.27
119	Elythyna sverdrupi	-0.2	-4.8						
121	Atrypa sp. B	0.6	-5.6	1822	324	35	937	535	0.65
122 124	Atrypa sp. B Atrypa sp. B	0.6	-6.2 -6.4	1470	485	87	1303	704	2.51
130	Atrypa sp. B	-0.2	-6.2	1757	521	165	415	723	0.14
131	Warrenella sp.	-0.2	-5.8	1269	1824	23	102	1330	0.01
132 133	Perryspirifer scheii Schizophoria sulcata	~0.3 -0.8	-5.5 -5.9	1703	2024	27	43	1378	8.70
138	Perryspirifer scheii	-0.5	-6.4	2007	2588	38	238	1414	0.58
139	Schizophoria sulcata	-0.6	-6.6	045	1000			1015	
140 141	Warrenella sp. Atrypa sp. B	-0.2 -0.1	~5.8 -4.7	945 1892	1823 1476	13 62	42 632	1215 1134	3.76 0.90
M./L.DEVON	IAN				· -				
Bird Fior	rd Formation, Devon Island, NWT Atrypa sp. B	0.3	-6.1	2057	368	37	383	733	2 25
67	Ivdelinia grinnellensis	0.8	-4.9	1118	183	10	20	733 573	2.25 18.07
68	Warrenella sp.	0.2	-4.4	1456	2128	14	34	1206	25.88
78 79	Atrypa sp. Spinulicosta sp.	0.6 0.2	~5.5 ~6.0	1647	425	109	322	656	12.13
82	Spinatrypa sp.	1.6	-6.2	1717	757	269	2246	831	0.60
83 147	Schizophoria sulcata Warrenella sp.	0.4 -0.4	-6.0 -5.5	3701	1106	70	1200	1077	4 2 2
148	Cupularostrum sp. B	0.8	-5.5 -5.9	3/01	4486	70	1200	1077	1.63

SAMPLE		PDR	PDR	PPM	РРМ	PPM	PPM	PPM	 %
NO.	SPECIES	C 13	0 18	MG	NA	MN	FE	SR	I.R.
	rd Formation Filesman Island NW	 r							
69	Spinatrypa sp. Atrypa sp. Schizophoria sulcata Spinulicosta sp.	0.0	-5.8	1737	812	189	4048	804	2.65
70	Atrypa sp.	0.9	-5.3	1111	526	122	262	724	28.26
71 72	Spinulicosta sp. Atrypa sp.	-0.2	-5.7 -6.5	7399	1243	456	8975	900	6.51
75	Atrypa sp.	1.5	-7.1	2630	338	164	1360	575	3.37
76	Warrenella sp.	0.1	-5.0	2767	1099	51	672	918	3.34
77 80	Schizophoria sulcata Spinulicosta sp. Atrypa sp. Warrenella sp. Nucleospira sp. Atrypa sp. Atrypa sp. Atrypa sp. Atrypa sp. Berryspirifer scheii Warrenella sp. Atrypa sp. Atrypa sp. Atrypa sp. Atrypa sp. Elythyna sverdrupi Atrypa sp. Elythyna sp. Atrypa sp. Atrypa sp. Elythyna sp. Atrypa sp. Atrypa sp. Elythyna sp. Atrypa sp. Atrypa sp. Atrypa sp. Atrypa sp. Celythyna sverdrupi Atrypa sp. Celythyna sp. Ce	0.8	-6.1 -5.8	1766	395	101	302	606	3.03
81	Atrypa sp.	1.1	-6.2	1346	418	88	1295	576	0.76
88	Atrypa sp. B	0.7	-6.8	4344	523	227	4512	707	4.11
89 90	Warrenella sp	-0.7	-5.6 -5.0	1809 943	2097 1592	54 11	248 177	1309 1144	24.91 16.45
91	Atrypa sp. B	0.2	-4.7	743	1002		1,,	1111	10.43
92	Atrypa sp.	1.2	-6.6	3852	296	224	1890	556	7.88
93 94	Atrypa sp.	-0.4	-8.3 -7.5	2746 2135	1664 1927	203 118	533 568	1118 1095	14.32 0.17
95	Elythyna sverdrupi	0.5	-5.8	2951	507	34	821	650	0.36
96	Atrypa sp. B	-0.2	-7.3	1639	583	165	503	730	0.41
97 98	Atrypa sp.	-0.2	-6.7 -7.8	2922 1477	661 468	165 58	2452 517	739 580	6.09 0.93
100	Atrypa sp. C	-0.6	-6.4	11//	400	30	31,	300	0.93
101	Elythyna sverdrupi	-0.7	-6.7	2449	1325	88	505	1106	1.96
102 103	Atrypa sp. C	0.1	-6.1 -6.2	2594 1212	481 520	159 84	1212 492	638 889	3.92 0.48
Bird Fio	rd Formation, Norfolk Island, NWT	0.2	0.2	1212	320	04	472	009	0.40
73	Spinatrypa sp. Schizophoria sp.	-0.2	-5.3						
74 L.DEVONIAN	Schizophoria sp.	-0.5	-5,5	4514	1532	57	1152	1015	0.33
	rd Formation, Ellesmere Island, NW	Т							
113	Elythyna sverdrupi Elythyna sverdrupi Elythyna sverdrupi	0.4	-5.6	2263	793	46	210	1119	1.06
11 4 115	Elythyna sverdrupi Elythyna sverdrupi	0.1	-6.1 -5.2	1628 1515	471 1291	53 50	227 351	683 1133	0.30 5.52
Eids For	mation, Ellesmere Island, NWT Boschuchertella n. sp. Boschuchertell	0.1	٦.٤	1313	1231	30	331	1133	3.52
EO-1	Eoschuchertella n. sp.	-0.4	-6.4	2732	716	97	314	1010	23.37
EO-2	Eoschuchertella n. sp.	-0.3	-4.6	3690	1478	56	214	1296	7.78
EO-3 EO-4	Eoschuchertella n. sp.	-0.1	-4.5 -5.0	3588 4076	1239 1089	128 148	454 575	1063 1369	11.22 8.02
EO-5	Eoschuchertella n. sp.	-0.1	-4.6	3502	1752	59	312	1251	2.00
EO-6	Eoschuchertella n. sp.	-0.1	-4.9	3291	641	110	219	1014	27.74
EO-7 EO-8	Eoschuchertella n. sp.	-0.2	-4.5 -4.5	4784 3082	1034 1863	185 64	405 273	1168 1384	2.02 1.56
EO-9	Eoschuchertella n. sp.	0.3	-4.1	4588	1083	152	624	1203	10.14
EO-10	Eoschuchertella n. sp.	0.0	-5.2	3348	973	88	225	1083	13.79
EO-11 EO-12	Eoschuchertella n. sp.	-0.3	-5.6 -5.0	3379 4186	1584 1555	101 85	288 449	1294 1306	2.36 4.06
PER-1	Perryspirifer scheii	0.2	-4.8	1477	1729	27	255	1052	5.31
PER-2	Perryspirifer scheii	-1.2	-13.4	4079	134	165	416	785	7.49
PER-3	Perryspirifer scheii	0.3	-5.1	1736	1954	35	154	1219	1.28
PER-4 PER-5	Perryspiriter scheii	0.1	-6.0 -4.5	744 1570	1121 1548	22 29	46 108	1545 1022	24.78 6.01
PER-6	Perryspirifer scheii	0.2	-4.7	1229	1254	28	176	773	19.72
PH-1	Phragmostrophia sp.	-0.6	-10.7	3309	767		1982	1126	6.83
PH-2 PH-3	Phragmostrophia sp.	-0.4	-6.8	3315 4998	1004 1257	161 292	1391 3051	895 1095	17.48 3.69
PH-4	Phragmostrophia sp.	-1.3	-9.1	3625	991	217	716	1871	8.22
PH-5 PH-6	Phragmostrophia sp. Phragmostrophia sp.	-0.1 -0.5	-5.8 -5.6	4705 5523	1276 1652	209 195	2621 1862	989 1095	6.76 8.22
PH-7	Phragmostrophia sp.	0.1	-5.8	4852	1424	250	2832	1073	4.05
PH-8	Phragmostrophia sp.	-0.5	-7.3	2545	869	162	1087	789	25.79
PH-9 SILURIAN	Phragmostrophia sp.	-0.3	-5.9	4914	1372	275	3148	1105	3.78
	nlet Formation, Cornwallis Island,	NWT							
BI-1A	Atrypoidea polaris	0.9	-6.3	6269	164	65	601	542	3.26
BI-1B BI-1C	Atrypoidea polaris Atrypoidea polaris	0.8	-6.4 -6.4	7257 6475	184 223	70 57	417 475	852 704	4.22 7.12
BI-lD	Atrypoidea polaris	1.7	-6.4	6627	239	58	395	667	4.89
BI-lE		0.4	-6.8	19626	136	79 98	1187	587 660	6.26
BI-1 BI-2	Atrypoidea polaris Atrypoidea polaris	1.2	-4.9 -5.6	3468	267	30	2010	669	8.47
BI-3	Atrypoidea polaris	0.8	-6.0	6127	145	108	1948	705	3.04
BI -4 BI -5	Atrypoidea polaris Atrypoidea polaris	0.3	-6.0 -6.4						
BI-6	Atrypoidea polaris	1.4	-6.1						
B1-7	Atrypoidea polaris	1.2	-5.7	6245	143	60	621	965	3.76
BI-8 BI-9	Atrypoidea polaris Atrypoidea polaris	1.0	-5.5 -6.2	11202 3185	159 136	60 70	643 493	669 741	10.98 2.21
BI-10	Atrypoidea polaris	0.8	-5.6	8385	181	75	700	897	8.66
222	Fardenia sp.	3.1	-6.5	9844	607	209	2567	850	6.93
Douro Fo	rmation, Cornwallis Island, NWT Atrypoidea foxi f. A	3.8	-6.7	2576	350	149	521	902	2.09
213	Nanukidium sp.	1.2	-6.7	6464	1300	12	116	1736	0.01

SAMPLE NO.	SPECIES	PD B C 13	PDB O 18	PPM MG	PPM NA	PPM MN	PPM FE	PPM SR	% I.R.
Douro Fo	rmation, Ellesmere Island, NWT Atrypoidea gigantus			1000	154	20	4.5	792	0 13
	Atrypoidea gigantus rmation, Prince of Wales Island		-6.9	1030	154	28	45	792	0.11
000	A to a toward down on the con-		-7.3	2995	221	60	10	454	0.66
202	Atrypoidea phoca Atrypoidea phoca Atrypoidea phoca Atrypoidea phoca Atrypoidea netserki Gypidula sp. Protathyris praecursor Atrypoidea netserki Atrypoidea netserki Atrypoidea erebus Atrypoidea phoca Protathyris praecursor Atrypoidea foxi f. B Atrypoidea foxi f. A rmation, Somerset Island, NWT Atrypoidea foxi	-0.2 0.0	-6.6	11229	310	46	1103	660	13.96
203	Atrypoidea foxi f. A	0.8	-6.8	3649	299	5	376	803	0.30
204	Atrypoidea netserki	-2.2	~6.7	3996	349	49	234	801	0.40
206	Gypidula sp.	-0.2	-7.8	4119	955 849	39 38	639 144	1105 1043	0.76 6.55
207	Protathyris praecursor	-1.0	-6.7 -7.2	3753 7623	278	38 28	492	558	1.95
214	Atrypoidea netserki	-1.6	-6.8	4121	477	27	126	858	0.98
216	Atrypoidea erebus	-3.1		30191	140	52	2252	157	7.05
219	Atrypoidea foxi f. B	-0.8	-7.2	6279	129	133	1001	377	0.11
220	Atrypoidea phoca	1.2	-7.8	3773	220	33	183	560	6.62
224	Protathyris praecursor	0.2	-7.8	3484	1425	20	145	1385	0.44
225	Atrypoidea toxi I. A	0,3	-7.5	3232	335	22	406	703	0.42
Donto to	Atropoides fori	0.2	-5.7	2334	78	91	557	655	15.70
FA-A2	Atrypoidea foxi f. B Protathyris praecursor Atrypoidea foxi f. A Atrypoidea foxi f. B	0.4	-6.2	2791	77	89	489	691	15.00
FA-A4	Atrypoidea foxi	0.2	-5.8	3685	96	116	686	869	2.72
FA-A5	Atrypoidea foxi	0.7	~6.2	2599	115	27	96	432	25.95
FA-Bl	Atrypoidea foxi	0.6	~6.6	5248	345	102	1835	694	13.98
FA-B2	Atrypoidea foxi	0.8	-6.4	8472	403	78 17	3287	554 667	22.41
FA-D1 FA-D3	Atrypoidea roxi	1.0	-5.9 -6.4	1864 5627	215 312	105	291 1903	530	2.96 17.54
FA-D3	Atrypoidea foxi	0.5	-6.7	6821	477	59	2115	729	14.90
FA-L	Atrypoidea foxi	0.3	-6.3	0021	• • • •	0,5			11.50
NONE	Atrypoidea foxi	0.6	-6.6	2849	462	54	1053	826	5.62
53	Atrypoidea bioherma	0.9	-7.0	3478	285	17	474	750	0.59
201	Atrypoidea erebus	-0.2	-6.7	3842	922	25	20	536	1.98
205	Atrypoidea fox1 f. B	0.6	-7.1 -7.3	3357 3564	380 324	34 61	523 1104	923 754	3.50 4.32
208 210	Protestaurie praecursor	-0.5	-7.2	10929	2348	66	3949	1540	5.75
212	Atronoidea foxi f. A	0.7	-7.5	10760	195	29	869	594	29.11
217	Atrypoidea foxi f. A	-0.7	-6.9	12113	238	27	779	729	2,50
226	Protathyris praecursor	-0.1	-7.0	3978	865	65	719	1475	0.21
	y Formation, Anticosti Island,	Quebec							
215	Hindella umbonata Hindella primstana Hindella sp.	0.7	-4.7	2586	1079	160	1197	1056	0.93
218 221	Hindella primstana Hindella sp.	-1.0	-7.4 -4.4	3972	1587	245	2025	1152	3,46
ORDOVICIAN	- F.			3312	1307	243	2023	11.72	2.40
	y Formation, Anticosti Island,	Quebec							
X121	Dinorthis anticostiensis	0.7	-5.3	4906	1205	136	1090	1258	
X3Z1	Dinorthis anticostiensis	0.8	-4.8	4006	1294	155	807	1294	3.26
X4Z1	Dinorthis anticostiensis	1.1	-4.9	4390	1321	183	752	1270	1.56
X6Z1 2Z1	Dinorthie anticostiensis	0.9	-4.7 -4.6	4859 4304	1425 907	140 130	1101 660	1835 1049	7,26
321	Dinorthis anticostiensis	0.9	-4.9	4491	660	108	1163	1234	7.64
4 Z 1	Dinorthis anticostiensis	1.0	-4.8	3649	585	166	787	1056	3.40
5XZ1	Dinorthis anticostiensis	0.8	-5.1	3981	1028	216	936	1060	2.72
5 2 1	Dinorthis anticostiensis	0.5	-5.5	4665	839	115	996	1069	4.66
621	Dinorthis anticostiensis	0.7	-4.8	4046	591	137	788	1084	3.54
722	Dinorthis anticostiensis	0.9	-5.0	4294	665	102	665	1125	2.14
872	Dinorthis anticostiensis	1.1	-4.8 -4.5	3941 4223	616 1139	130 150	994 848	1190 1128	4.20 3.22
9xz1 9z2	Dinorthie anticostiensis	1 1	-4.8	3549	828	144	67.4	1013	2.72
10 XZ 2	Dinorthis anticostiensis	1 2	-5.0	4825	1355	144	706	1247	2.92
1072	Dinorthis anticostiensis	1.0	-4.8	3720	759	121	592	1093	1.22
1421	Dinorthis anticostiensis	0.9	-5.0	4662	1309	133	736	1319	2.14
227	Dinorthis anticostiensis	ŏ.9	-4.9	4850	1760	145	953	1279	1,87
228	Dinorthis anticostiensis	0.8	-4.8	5219	1719	176	1103	1261	2.04
229	Dinorthis anticostiensis	0.7	~5.1	4468	1665	126	403	1117	0.17
230	y Formation, Anticosti Island, Dinorthis anticostiensis	0.9	-5.0	4030	1634	113	1485	1131	0.30