Package 'TensorTools'

October 17, 2024

Type Package

Title Multilinear Algebra

Version 1.0.0

Maintainer Kyle Caudle <kyle.caudle@sdsmt.edu>

Description A set of tools for basic tensor operators. A tensor in the context of data analysis in a multidimensional array. The tools in this package rely on using any discrete transformation (e.g. Fast Fourier Transform (FFT)). Standard tools included are the Eigenvalue decomposition of a tensor, the QR decomposition and LU decomposition. Other functionality includes the inverse of a tensor and the transpose of a symmetric tensor. Functionality in the package is outlined in Kernfeld, E., Kilmer, M., and Aeron, S. (2015) <doi:10.1016/j.laa.2015.07.021>.

Imports methods, raster, png, wavethresh, gsignal, Matrix, matrixcalc

License GPL-3

Encoding UTF-8

LazyData true

LazyDataCompression xz

Config/testthat/edition 3

RoxygenNote 7.3.2

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Kyle Caudle [aut, cre], Randy Hoover [ctb], Jackson Cates [ctb], Evertt Sandbo [ctb]

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2024-10-17 17:10:05 UTC

2 Contents

Contents

s.Tensor		3
norm		4
U		5
Inist		6
olar		6
PR		7
ytrace		8
OWT		9
EIG	1	0
EIGdet		1
EIGdht		2
EIGdst		3
EIGdwht		4
EIGdwt		5
EIGfft		6
ensor		7
DWT		7
NV		8
NVdct		9
NVdht		9
NVdst		20
NVdwht		21
NVdwt		21
NVfft		22
_DA		23
JU		24
Udct		25
JUdht		26
JUdst		27
Udwht		28
LUdwt		29
Jufft		30
nean		31
nult		32
DR		33
ORdct		34
)Rdht		, - 35
Ordst		36
QRdwht		37
QRdwt		, , 38
)Rfft		39
SVD		ر، 10
		ю 11
SVDdct		F1 F2
		13
SVDdst		13 14
N N I A I W I I I	4	-4

as.Tensor 3

 16
 . 40
 47
 . 47
49

as.Tensor

Converts an array to an S3 tensor

Description

This will converts array to S3 object tensor. Vectors and matrices must first be converted to an array before applying as.Tensor.

Usage

```
as.Tensor(t)
```

Arguments

+

Numeric, array of numbers

Value

S3 class tensor

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

```
indices <- c(2,3,4)
arr <- array(runif(prod(indices)), dim = indices)
arrT <- as.Tensor(arr); arrT</pre>
```

4 fnorm

fnorm

The Frobenius Norm

Description

The Frobenius norm of an array is the square root of the sum of its squared elements. This function works for vector and matrix arguments as well.

Usage

```
fnorm(tnsr)
```

Arguments

tnsr

a 3-mode tensor S3 class object

Value

The Frobenius norm

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

Friedland, S., & Aliabadi, M. (2018). Linear algebra and matrices. Society for Industrial and Applied Mathematics.

```
T <- t_rand(modes=c(2,2,4))
fnorm(T$data)</pre>
```

LU 5

 $\mathsf{L}\mathsf{U}$

LU Decomposition of a Complex Matrix

Description

Decomposes a a matrix into the product of a lower triangular matrix and an upper triangular matrix.

Usage

LU(A)

Arguments

Α

Complex, square matrix of complex numbers

Value

A lower triangular matrix L and an upper triangular matrix U so that A=LU

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

Stewart, G. W. (1998). Matrix algorithms: volume 1: basic decompositions. Society for Industrial and Applied Mathematics.

```
indices <- c(2,3,4)
z <- complex(real = rnorm(16), imag = rnorm(16))
A <- matrix(z,nrow=4)
LU(A)</pre>
```

6 polar

Mnist

Subset of MNIST training and testing data.

Description

10000 MNIST training images (1000 of every digit), reformatted into a tensor: 28 x 10000 x 28. 1000 MNIST test images (100 of every digit), reformatted into a tensor: 28 x 1000 x 28

Usage

```
data("Mnist")
```

Format

The format is:

Mnist\$train\$images, Mnist\$train\$labels

Mnist\$test\$images, Mnist\$test\$labels

References

Deng L (2012). "The mnist database of handwritten digit images for machine learning research." IEEE Signal Processing Magazine, 29(6), 141–142

Examples

```
data("Mnist")
```

polar

Polar/Jordan form of matrices P and D

Description

Converts the complex matrices P and D into matrices of eigenvectors and eigenvalues with real entries.

Usage

```
polar(P,D)
```

Arguments

P the eigenvectors from an eigenvalue decomposition.

D the eigenvalues from an eigenvalue decomposition.

QR 7

Value

P the polar form (real-valued) matrix of eigenvectors. D the polar form (real-valued) matrix of eigenvalues.

Author(s)

```
Kyle Caudle
```

Randy Hoover

Jackson Cates

Everett Sandbo

References

Bhatia, R. (2013). Matrix analysis (Vol. 169). Springer Science & Business Media.

Examples

```
z <- complex(real = rnorm(16), imag = rnorm(16))
M <- matrix(z,nrow=4)
decomp <- eigen(M)
polar(decomp$vectors,decomp$values)</pre>
```

QR

QR Decomposition of a Complex Matrix without pivoting.

Description

Decomposes a complex matrix into the product of an upper triangular matrix and a lower triangular matrix

Usage

QR(A)

Arguments

Α

square matrix with complex entries

Value

an orthogonal matrix Q and an upper triangular matrix R so that A = QR.

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

8 raytrace

References

Stewart, G. W. (1998). Matrix algorithms: volume 1: basic decompositions. Society for Industrial and Applied Mathematics.

Examples

```
z <- complex(real = rnorm(16), imag = rnorm(16))
A <- matrix(z,nrow=4)
QR(A)</pre>
```

raytrace

Subset of raytrace data

Description

4 tensors (128 x 128 x 128) for 4 different gray scale images. boat, flashlight, keyboard, scooter.

Usage

```
data("raytrace")
```

Format

The format is: raytrace\$boat raytrace\$flashlight raytrace\$keyboard raytrace\$scooter

References

Hoover RC, Braman KS, Hao N (2011b). "Pose estimation from a single image using tensor decomposition and an algebra of circulants." In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2928–2934. IEEE.

```
data(raytrace)
```

tDWT

tDWT

Discrete Wavelet Transform

Description

Performs the Discrete Wavelet Transform of a 3-mode Tensor.

Usage

```
tDWT(tnsr)
```

Arguments

tnsr

A 3-mode Tensor

Value

S3 class tensor

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

G. Strang and T. Nguyen, Wavelets and filter banks. SIAM, 1996. A. Haar, "Zur theorie der orthogonalen funktionensysteme", Mathematische annalen, vol. 69, no. 3, pp. 331-371, 1910.

Jensen, A., & la Cour-Harbo, A. (2011). Ripples in mathematics: the discrete wavelet transform. Springer Science & Business Media.

```
T <- t_rand(modes=c(2,3,4))
print(tDWT(T))</pre>
```

10 tEIG

tEIG

Tensor Eigenvalue Decomposition Using any Discrete Transform

Description

The Eigenvalue decomposition of a tensor T $(n \times n \times k)$ decomposes the tensor into a tensor of eigenvectors (P) and a diagonal tensor of eigenvalues (D) so that T = P D inv(P).

Usage

```
tEIG(tnsr, tform)
```

Arguments

tnsr a 3-mode S3 tensor class object $(n \times n \times k)$

tform Any discrete transform.

fft: Fast Fourier Transorm

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transformdst: Discrete Sine transformdht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

```
P, a tensor of Eigenvectors (n \times n \times k)
```

D, a diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tEIG(T,"dst")</pre>
```

tEIGdct 11

tEIGdct

Eigenvalue decomposition of 3-mode tensor using the discrete cosine transform.

Description

Eigenvalue decomposition of 3-mode tensor using the discrete cosine transform.

Usage

```
tEIGdct(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object $(n \times n \times k)$

Value

```
P, tensor of Eigenvectors (n \times n \times k)
```

D, diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
print(tEIGdct(T))</pre>
```

12 tEIGdht

tEIGdht

Eigenvalue decomposition of 3-mode tensor using the discrete Hadley transform.

Description

Eigenvalue decomposition of 3-mode tensor using the discrete Hadley transform.

Usage

```
tEIGdht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object $(n \times n \times k)$

Value

```
P, tensor of Eigenvectors (n \times n \times k)
```

D, diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
print(tEIGdht(T))</pre>
```

tEIGdst 13

tEIGdst

Eigenvalue decomposition of 3-mode tensor using the discrete sine transform.

Description

Eigenvalue decomposition of 3-mode tensor using the discrete sine transform.

Usage

```
tEIGdst(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object $(n \times n \times k)$

Value

```
P, tensor of Eigenvectors (n \times n \times k)
```

D, diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
print(tEIGdst(T))</pre>
```

14 tEIGdwht

tEIGdwht

Eigenvalue decomposition of 3-mode tensor using the discrete Walsh Hadley transform.

Description

Eigenvalue decomposition of 3-mode tensor using the discrete Walsh Hadley transform.

Usage

```
tEIGdwht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object $(n \times n \times k)$

Value

```
P, tensor of Eigenvectors (n \times n \times k)
```

D, diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
print(tEIGdwht(T))</pre>
```

tEIGdwt 15

tEIGdwt

Eigenvalue decomposition of 3-mode tensor using the discrete wavelet transform.

Description

Eigenvalue decomposition of 3-mode tensor using the discrete wavelet transform.

Usage

```
tEIGdwt(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object $(n \times n \times k)$

Value

```
P, tensor of Eigenvectors (n \times n \times k)
```

D, diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
print(tEIGdwt(T))</pre>
```

16 tEIGfft

tEIGfft

Eigenvalue decomposition of 3-mode tensor using the discrete fast fourier transform.

Description

Eigenvalue decomposition of 3-mode tensor using the discrete fast fourier transform.

Usage

```
tEIGfft(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object $(n \times n \times k)$

Value

```
P, tensor of Eigenvectors (n \times n \times k)
```

D, diagonal tensor of Eigenvalues $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
print(tEIGfft(T))</pre>
```

Tensor 17

Tensor

Creates an S3 class for a tensor

Description

Creates an S3 class for a tensor

Usage

```
Tensor(data, x, y, z)
```

Arguments

data	Numeric numbers in the tensor
X	mode 1 dimension
	1 2 1:

y mode 2 dimension z mode 3 dimension

Value

S3 class tensor

tIDWT

Inverse Wavelet Transform

Description

Performs inverse of 3-mode tensor using any discrete wavelet transform.

Usage

```
tIDWT(tnsr)
```

Arguments

tnsr

a 3-mode tensor S3 class object

Value

S3 class tensor

18 tINV

Author(s)

Kyle Caudle Randy Hoover Jackson Cates Everett Sandbo

Examples

```
T <- t_rand(modes=c(2,3,4))
print(tIDWT(T))</pre>
```

tINV

Performs inverse of 3-mode tensor using any discrete transform.

Description

Performs inverse of 3-mode tensor using any discrete transform.

Usage

```
tINV(tnsr, tform)
```

Arguments

tnsr a 3-mode tensor S3 class object

tform Any discrete transform. fft: Fast Fourier Transorm dwt: Discrete Wavelet Trans-

form (Haar Wavelet) dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform dwht: Discrete Walsh-Hadamard transform

Value

S3 class tensor

Author(s)

Kyle Caudle Randy Hoover Jackson Cates Everett Sandbo

```
T <- t_rand(modes=c(2,2,4))
print(tINV(T,"dst"))</pre>
```

tINVdct 19

tINVdct

Performs inverse of 3-mode tensor using the discrete cosine transform.

Description

Performs inverse of 3-mode tensor using the discrete cosine transform.

Usage

```
tINVdct(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

```
S3 class tensor #' @examples T <- t_rand(modes=c(2,2,4)) print(tINVdct(T))
```

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

tINVdht

Performs inverse of 3-mode tensor using the discrete Hadley transform.

Description

Performs inverse of 3-mode tensor using the discrete Hadley transform.

Usage

```
tINVdht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

S3 class tensor

20 tINVdst

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

Examples

```
T <- t_rand(modes=c(2,2,4))
print(tINVdht(T))</pre>
```

tINVdst

Performs inverse of 3-mode tensor using the discrete sine transform.

Description

Performs inverse of 3-mode tensor using the discrete sine transform.

Usage

```
tINVdst(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

S3 class tensor

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

```
T <- t_rand(modes=c(2,2,4))
print(tINVdst(T))</pre>
```

tINVdwht 21

tINVdwht

Performs inverse of 3-mode tensor using the discrete Walsh Hadley transform.

Description

Performs inverse of 3-mode tensor using the discrete Walsh Hadley transform.

Usage

```
tINVdwht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

S3 class tensor

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

Examples

```
T <- t_rand(modes=c(2,2,4))
print(tINVdwht(T))</pre>
```

tINVdwt

Performs inverse of 3-mode tensor using the discrete wavelet transform.

Description

Performs inverse of 3-mode tensor using the discrete wavelet transform.

Usage

```
tINVdwt(tnsr)
```

22 tINVfft

Arguments

tnsr a 3-mode S3 tensor class object

Value

S3 class tensor

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

Examples

```
tnsr <- t_rand(modes=c(2,2,4))
print(tINVdwt(tnsr))</pre>
```

tINVfft

Performs inverse of 3-mode tensor using the discrete fast fourier transform.

Description

Performs inverse of 3-mode tensor using the discrete fast fourier transform.

Usage

```
tINVfft(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

S3 class tensor

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

tLDA 23

Examples

```
T <- t_rand(modes=c(2,2,4))
print(tINVfft(T))</pre>
```

tLDA

Linear discriminate analysis (LDA) on a 3D tensor

Description

Linear discriminate analysis (LDA) on a 3D tensor

Usage

```
tLDA(tnsr, nClass, nSamplesPerClass, tform)
```

Arguments

tnsr a 3-mode tensor S3 class object

nClass Number of classes

nSamplesPerClass

Samples in each class

tform Any discrete transform. fft: Fast Fourier Transorm

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

S3 class tensor

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

Xanthopoulos, P., Pardalos, P. M., Trafalis, T. B., Xanthopoulos, P., Pardalos, P. M., & Trafalis, T. B. (2013). Linear discriminant analysis. Robust data mining, 27-33.

24 tLU

Examples

```
data("Mnist")
T <- Mnist$train$images
myorder <- order(Mnist$train$labels)
# tLDA need to be sorted by classes
T_sorted <- T$data[,myorder,]
# Using small tensor, 2 images for each class for demonstration
T <- T_sorted[,c(1:2,1001:1002,2001:2002,3001:3002,4001:4002,
5001:5002,6001:6002,7001:7002,8001:8002,9001:9002),]
tLDA(as.Tensor(T),10,2,"dct")</pre>
```

tLU

LU decomposition of a 3D tensor

Description

Decomposes a 3 model tensor into a lower triangular tensor and an upper triangular tensor.

Usage

```
tLU(tnsr, tform)
```

Arguments

tnsr a 3-mode tensor S3 class object

tform Any discrete transform.

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

L, The lower triangular tensor object

U, The upper triangular tensor object a Tensor3-class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

tLUdct 25

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

Examples

```
T <- t_rand(modes=c(2,2,4))
tLU(T,"dst")</pre>
```

tLUdct

LU decomposition of a 3D tensor using the discrete cosine transform

Description

LU decomposition of a 3D tensor using the discrete cosine transform

Usage

```
tLUdct(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

L, The lower triangular S3 tensor object

U, The upper triangular S3 tensor object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

26 tLUdht

Examples

```
T <- t_rand(modes=c(2,2,4))
tLUdct(T)</pre>
```

tLUdht

LU decomposition of a 3D tensor using the discrete Hadley transform

Description

LU decomposition of a 3D tensor using the discrete Hadley transform

Usage

```
tLUdht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

L, The lower triangular S3 tensor object

U, The upper triangular S3 tensor object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tLUdht(T)</pre>
```

tLUdst 27

tLUdst

LU decomposition of a 3D tensor using the discrete sine transform

Description

LU decomposition of a 3D tensor using the discrete sine transform

Usage

```
tLUdst(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

- L, The lower triangular S3 tensor object
- U, The upper triangular S3 tensor object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tLUdst(T)</pre>
```

28 tLUdwht

tLUdwht

LU decomposition of a 3D tensor using the discrete Walsh Hadley transform

Description

LU decomposition of a 3D tensor using the discrete Walsh Hadley transform

Usage

```
tLUdwht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

L, The lower triangular S3 tensor object

U, The upper triangular S3 tensor object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tLUdwht(T)</pre>
```

tLUdwt 29

tLUdwt

LU decomposition of a 3D tensor using the discrete wavelet transform

Description

LU decomposition of a 3D tensor using the discrete wavelet transform

Usage

```
tLUdwt(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

- L, The lower triangular S3 tensor object
- U, The upper triangular S3 tensor object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tLUdwt(T)</pre>
```

30 tLUfft

tLUfft

LU decomposition of a 3D tensor using the discrete fast fourier transform

Description

LU decomposition of a 3D tensor using the discrete fast fourier transform

Usage

```
tLUfft(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

L, The lower triangular S3 tensor object

U, The upper triangular S3 tensor object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tLUfft(T)</pre>
```

tmean 31

tmean

Determines the mean of a 3D tensor along mode 2

Description

Determines the mean of a 3D tensor along mode 2

Usage

```
tmean(tnsr)
```

Arguments

tnsr

a 3D tensor of dimensions n1,n2,n3

Value

S3 tensor class object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
tnsr <- t_rand(modes=c(3,4,5))
tmean(tnsr)</pre>
```

32 tmult

tmult

Tensor multiplication

Description

Performs the tensor product of two 3D tensors using any discrete transform

Usage

```
tmult(x, y, tform)
```

Arguments

x a 3-mode S3 tensor class object y a 3-mode S3 tensor class object

tform Any discrete transform.

fft: Fast Fourier Transform

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

S3 tensor object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T1 <- t_rand(modes=c(2,2,4))
T2 <- t_rand(modes=c(2,3,4))
print(tmult(T1,T2,"dst"))</pre>
```

tQR 33

tQR

QR decomposition of a 3D tensor

Description

Decomposes a 3 mode tensor T into the product of The left singular value tensor object and a right singular value tensor object so that T = QR.

Usage

```
tQR(tnsr, tform)
```

Arguments

tnsr a 3-mode tensor S3 class object

tform Any discrete transform.

fft: Fast Fourier Transorm

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transformdst: Discrete Sine transformdht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

Q, The left singular value tensor object $(n \times n \times k)$

R, The right singular value tensor object $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

34 tQRdct

Examples

```
T \leftarrow t_rand(modes=c(2,2,4))
tQR(T,"dst")
```

tQRdct

QR decomposition of a 3D tensor using the discrete cosine transform

Description

QR decomposition of a 3D tensor using the discrete cosine transform

Usage

```
tQRdct(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

Q, The left singular value S3 tensor class object $(n \times n \times k)$

R, The right singular value Se tensor class object $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tQRdct(T)</pre>
```

tQRdht 35

tQRdht

QR decomposition of a 3D tensor using the discrete Hadley transform

Description

QR decomposition of a 3D tensor using the discrete Hadley transform

Usage

```
tQRdht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

Q, The left singular value S3 tensor class object $(n \times n \times k)$

R, The right singular value Se tensor class object $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tQRdht(T)</pre>
```

36 tQRdst

tQRdst

QR decomposition of a 3D tensor using the discrete sine transform

Description

QR decomposition of a 3D tensor using the discrete sine transform

Usage

```
tQRdst(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

Q, The left singular value S3 tensor class object $(n \times n \times k)$

R, The right singular value Se tensor class object $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tQRdst(T)</pre>
```

tQRdwht 37

tQRdwht

QR decomposition of a 3D tensor using the discrete Walsh Hadley transform

Description

QR decomposition of a 3D tensor using the discrete Walsh Hadley transform

Usage

```
tQRdwht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

Q, The left singular value S3 tensor class object $(n \times n \times k)$

R, The right singular value Se tensor class object $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tQRdwht(T)</pre>
```

38 tQRdwt

tQRdwt

QR decomposition of a 3D tensor using the discrete wavelet transform

Description

QR decomposition of a 3D tensor using the discrete wavelet transform

Usage

```
tQRdwt(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

Q, The left singular value S3 tensor class object $(n \times n \times k)$

R, The right singular value Se tensor class object $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tQRdwt(T)</pre>
```

tQRfft 39

tQRfft

QR decomposition of a 3D tensor using the fast fourier transform

Description

QR decomposition of a 3D tensor using the fast fourier transform

Usage

```
tQRfft(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

Q, The left singular value S3 tensor class object $(n \times n \times k)$

R, The right singular value Se tensor class object $(n \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tQRfft(T)</pre>
```

40 tSVD

tSVD

Singular value decomposition (SVD)

Description

Performs a Singular Value Decomposition of 3 mode tensor T using any discrete transform. The result is a left singular value tensor object U, a right singular value tensor object V, and a diagonal tensor S so that $T = USV^{t}$

Usage

```
tSVD(tnsr, tform)
```

Arguments

tnsr a 3-mode tensor S3 class object

tform Any discrete transform.

fft: Fast Fourier Transorm

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

If the SVD is performed on a m x n x k tensor, the components in the returned value are:

U, the left singular value tensor object $(m \times m \times k)$

V, The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$ #' @examples

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

tSVDdct 41

Examples

```
T <- t_rand(modes=c(2,3,4))
print(tSVD(T,"dst"))</pre>
```

tSVDdct

Singular value decomposition (SVD) of a 3D tensor using the discrete cosine transform

Description

Singular value decomposition (SVD) of a 3D tensor using the discrete cosine transform

Usage

```
tSVDdct(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

U, the left singular value tensor object $(m \times m \times k)$

V, The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$ #' @examples V: The right singular value tensor object $(n \times n \times k)$ #' object $(n \times k)$ #' o

k) S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tSVDdct(T)</pre>
```

42 tSVDdht

tSVDdht

Singular value decomposition (SVD) of a 3D tensor using the discrete Hadley transform

Description

Singular value decomposition (SVD) of a 3D tensor using the discrete Hadley transform

Usage

```
tSVDdht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

U, the left singular value tensor object $(m \times m \times k)$

V, The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$ #' @examples V: The right singular value tensor object $(n \times n \times k)$ #

k) S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tSVDdht(T)</pre>
```

tSVDdst 43

 ${\it tSVDdst} \qquad \qquad {\it Singular value decomposition (SVD) of a 3D tensor using the discrete} \\ {\it sine transform}$

Description

Singular value decomposition (SVD) of a 3D tensor using the discrete sine transform

Usage

```
tSVDdst(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

U, the left singular value tensor object $(m \times m \times k)$

V, The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$ #' @examples V: The right singular value tensor object $(n \times n \times k)$ #

k) S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tSVDdst(T)</pre>
```

44 tSVDdwht

tSVDdwht

Singular value decomposition (SVD) of a 3D tensor using the discrete Walsh Hadley transform

Description

Singular value decomposition (SVD) of a 3D tensor using the discrete Walsh Hadley transform

Usage

```
tSVDdwht(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

U, the left singular value tensor object $(m \times m \times k)$

V, The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$ #' @examples V: The right singular value tensor object $(n \times n \times k)$ #

k) S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tSVDdwht(T)</pre>
```

tSVDdwt 45

 ${\it tSVDdwt} \qquad \qquad {\it Singular\ value\ decomposition\ (SVD)\ of\ a\ 3D\ tensor\ using\ the\ discrete} \\ wavelet\ transform$

Description

Singular value decomposition (SVD) of a 3D tensor using the discrete wavelet transform

Usage

```
tSVDdwt(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

U, the left singular value tensor object $(m \times m \times k)$

V, The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$ #' @examples V: The right singular value tensor object $(n \times n \times k)$ #

k) S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tSVDdwt(T)</pre>
```

46 tSVDfft

tSVDfft

Singular value decomposition (SVD) of a 3D tensor using the fast fourier transform

Description

Singular value decomposition (SVD) of a 3D tensor using the fast fourier transform

Usage

```
tSVDfft(tnsr)
```

Arguments

tnsr

a 3-mode S3 tensor class object

Value

U, the left singular value tensor object $(m \times m \times k)$

V, The right singular value tensor object $(n \times n \times k)$

S: A diagonal tensor $(m \times n \times k)$ #' @examples V: The right singular value tensor object $(n \times n \times k)$ #

k) S: A diagonal tensor $(m \times n \times k)$

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

M. E. Kilmer, C. D. Martin, and L. Perrone, "A third-order generalization of the matrix svd as a product of third-order tensors," Tufts University, Department of Computer Science, Tech. Rep. TR-2008-4, 2008

K. Braman, "Third-order tensors as linear operators on a space of matrices", Linear Algebra and its Applications, vol. 433, no. 7, pp. 1241-1253, 2010.

```
T <- t_rand(modes=c(2,2,4))
tSVDfft(T)</pre>
```

t_rand 47

 t_rand

Create a random tensor

Description

Generate a Tensor with specified modes whose entries are iid normal(0,1).

Usage

```
t_rand(modes = c(3, 4, 5))
```

Arguments

modes

the 3 modes of the output Tensor

Value

an S3 Tensor object

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

Imported from rTensor2 package version 2.0.0.

Examples

```
t_{rand}(c(4,4,4))
```

t_tpose

Tensor transpose

Description

Performs the transpose of a symmetric 3-mode tensor using any discrete transform.

Usage

```
t_tpose(tnsr, tform)
```

t_tpose

Arguments

tnsr a 3-mode tensor

tform Any discrete transform.

fft: Fast Fourier Transorm

dwt: Discrete Wavelet Transform (Haar Wavelet)

dct: Discrete Cosine transform dst: Discrete Sine transform dht: Discrete Hadley transform

dwht: Discrete Walsh-Hadamard transform

Value

S3 class tensor

Author(s)

Kyle Caudle

Randy Hoover

Jackson Cates

Everett Sandbo

References

Brachat, J., Comon, P., Mourrain, B., & Tsigaridas, E. (2010). Symmetric tensor decomposition. Linear Algebra and its Applications, 433(11-12), 1851-1872.

```
T <- t_rand(modes=c(2,3,4))
print(t_tpose(T,"dct"))</pre>
```

Index

* datasets Mnist, 6 raytrace, 8	tLUdst, 27 tLUdwht, 28 tLUdwt, 29 tLUfft, 30
as.Tensor, 3	tmean, 31
fnorm, 4	tmult, 32 tQR, 33
LU, 5	tQRdct, 34 tQRdht, 35
Mnist, 6	tQRdst, 36 tQRdwht, 37
polar, 6	tQRdwt, 38 tQRfft, 39
QR, 7	tSVD, 40 tSVDdct, 41
raytrace, 8	tSVDdht, 42 tSVDdst, 43
t_rand, 47 t_tpose, 47	tSVDdwht, 44 tSVDdwt, 45
tDWT, 9 tEIG, 10	tSVDfft, 46
tEIGdct, 11 tEIGdht, 12	
tEIGdst, 13 tEIGdwht, 14	
tEIGdwt, 15 tEIGfft, 16	
Tensor, 17	
tIDWT, 17 tINV, 18	
tINVdct, 19	
tINVdht, 19 tINVdst, 20	
tINVdwht, 21	
tINVdwt, 21	
tINVfft, 22 tLDA, 23	
tLU, 24	
tLUdct, 25	
tLUdht, 26	