Описание блока пространственной обработки

УИЦ СРТТ, НИУ МЭИ

Последняя правка 12 декабря 2016 г. (22:16)

Содержание

Ι	Карта памяти					
1	Сог	лашения о терминологии и обозначениях	3			
2	Реги	истры блока пространственной обработки	4			
	2.1	Карта регистров блока пространственной обработки	4			
	2.2	Управляющие регистры	5			
		2.2.1 CRPA_ID (0x00)	5			
		2.2.2 CRPA_PARAMS (0x04)	6			
		2.2.3 CRPA_CONTROL (0x08)	6			
		2.2.4 CRPA_STATUS (0x0C)	7			
		2.2.5 CRPA_IRQ_RELEASE (0x10)	7			
		2.2.6 CRPA_MASTER (0x14)	7			
	2.3	Регистры управления тестовым генератором	8			
		2.3.1 GEN_CONTROL (0x18)	8			
		2.3.2 GEN PHASE RATE (0x1C)	8			
		2.3.3 GEN SCALE (0x20)	9			
		2.3.4 GEN_CONST (0x24)	9			
	2.4	Регистры управления мультиплексором	9			
		2.4.1 MUX1 CONTROL (0x28)	9			
	2.5	Регистры управления FIFO	10			
		2.5.1 FIFO RESET (0x30)	10			
	2.6	Управление тактовыми сигналами	10			
		2.6.1 CLK GATE CTRL (0x38)	10			
		2.6.2 RST GATE CTRL (0x3C)	11			
	2.7	Статус корреляционной матрицы	11			
	2.1	2.7.1 CVM STATUS (0x40)				

2.8	Парам	иетры блока корреляционной обработки	12
	2.8.1	DATA_WIDTH0 (0x44)	12
	2.8.2	DATA_WIDTH1 (0x48)	12
	2.8.3	NF_ADDR (0x4C)	13
	2.8.4	NF_STEP (0x50)	13
	2.8.5	BF_RE_ADDR (0x54)	13
	2.8.6	BF_IM_ADDR (0x58)	14
	2.8.7	BF_STEP (0x5C)	14
	2.8.8	CVM_ADDR (0x60)	14
	2.8.9	CVM_LENGTH (0x64)	15
	2.8.10	CVM_TYPEDESCR0 (0x68)	15
	2.8.11	CVM_TYPEDESCR1 (0x6C)	15
2.9	Флаги	правильных данных	16
	2.9.1	VALID_NF (0x70)	16
	2.9.2	VALID_BF (0x74)	16
	2.9.3	VALID_SIGMAG (0x78)	16
2.10	Регис	гры блоков помехоподавления	17
2.11	Регис	гры блоков фокусировки	17
2.12	Регист	гры блока расчёта корреляционной матрицы	17

Часть I

Карта памяти

1 Соглашения о терминологии и обозначениях

В дальнейшем описании будем руководствоваться следующими принципами.

При описании алгоритмов функционирования устройств помимо математических формул будет испольльзоваться синтаксис языков C, Matlab, Verilog.

Красным цветом отмечено описание нереализованных функций, зеленым - те места документа, которые требуют доработки (чаще всего требуется словесное описание заменить таблицей).

CRPA_BASE - базовый адрес регистровой памяти, относительно которого заданы смещения карты памяти

Все регистры являются 32-разрядными.

Управление доступом:

ro – только чтение

wo - только запись

rw - чтение/запись

2 Регистры блока пространственной обработки

2.1 Карта регистров блока пространственной обработки

' '	байт	Название	Описание	Раздел
(слов)		37		(ссылка)
0.00.(0.00)			щие регистры	0.01
0x00 (0x00)		CRPA_ID	Идентификатор блока простран- ственной обработки	2.2.1
0x04 (0x01)		CRPA_PARAMS	Параметры блока пространственной обработки	2.2.2
0x08 (0x02)		CRPA_CONTROL	Управление блоком пространствен- ной обработки	2.2.3
0x0C (0x03)		CRPA_STATUS	Статус блока пространственной обра-	2.2.4
0x10 (0x04)		CRPA_IRQ_RELEASE	Регистр количества накапливаемых отсчётов	2.2.5
0x14 (0x05)		CRPA_MASTER	Perистр программного выбора master/slave	2.2.6
		Тесторы	master/stave й генератор	
0x18 (0x06)		GEN CONTROL	Управление тестовым генератором	2.3.1
0x10 (0x00) 0x1C (0x07)		GEN_CONTROL GEN_PHASE_RATE	Код частоты тестового сигнала	2.3.2
0x10 (0x07) 0x20 (0x08)		GEN_THASE_RATE GEN_SCALE	Амплитуда тестового сигнала	2.3.3
0x20 (0x08) 0x24 (0x09)		GEN_SOALE GEN CONST	Тестовая константа	2.3.4
0x24 (0x09)		_	иплексор	2.3.4
0x28 (0x0A)		MUX1 CONTROL	Выбор входа	2.4.1
0.720 (0.7011)		_	ТБО	2.4.1
0x30 (0x0C)		FIFO RESET	Сброс FIFO	2.5.1
01100 (01100)		_	товыми сигналами	2.0.1
0x38 (0x0E)		CLK_GATE_CTRL	Регистр управления тактовыми сигналами	2.6.1
0x3C (0x0F)		RST GATE CTRL	Регистр сброса	2.6.2
ONOC (ONOT)			щионной матрицы	2.0.2
0x40 (0x10)		CVM STATUS	Регистр статуса блока расчёта матри-	2.7.1
OXIO (OXIO)		_	цы	2.1.1
0.44(0.44)			странственной обработки	0.04
0x44 (0x11)		DATA_WIDTH0	Регистр разрядности внутренних данных	2.8.1
0x48 (0x12)		DATA_WIDTH1	Регистр разрядности внутренних данных	2.8.2
0x4C (0x13)		NF_ADDR	Смещение блока формирователя нулей	2.8.3
0x50 (0x14)		NF_STEP	Размер канала формирователя нулей	2.8.4
0x54 (0x15)		BF_RE_ADDR	Смещение действительных формирователей лучей	2.8.5
0x58 (0x16)		BF_IM_ADDR	Смещение мнимых формирователей лучей	2.8.6
0x5C (0x17)		BF STEP	Размер блока формирователей лучей	2.8.7
0x60 (0x18)		CVM ADDR	Смещение блока расчёта матрицы	2.8.8
0x64 (0x19)		CVM_LENGTH	Размер блока корреляционной матрицы	2.8.9
0x68 (0x1A)		CVM_TYPEDESCR0	Описание структуры корреляционной матрицы	2.8.10

0x6C (0x1B)	CVM TYPEDESCR1	Описание структуры корреляцион-	2.8.11			
, ,	_	ной матрицы				
	Флаги правильн	ых данных	<u>I</u>			
0x70 (0x1C) VALID NF		Флаги правильных данных формиро-	2.9.1			
, ,	_	вателя нулей				
0x74 (0x1D)	VALID_BF	Флаги правильных данных формиро-	2.9.2			
		вателя лучей				
0x78 (0x1E)	VALID_SIGMAG	Флаги правильных данных блока	2.9.3			
		квантования				
	Регистры блоков пом	ехоподавления				
NF_ADDR+NF_STEP*1	CRPA_NF_0	Регистры помехоподавителя 0	2.10			
NF_ADDR+NF_STEP*1	CRPA_NF_1	Регистры помехоподавителя 1	2.10			
	•••		1			
NF_ADDR+NF_STEP*7	CRPA_NF_7	Регистры помехоподавителя 7	2.10			
	Регистры блоков с	рокусировки	1			
BF_RE_ADDR+BF_STEP*	CRPA_BF_RE_0	Регистры блока фокусировки 0	2.11			
BF_RE_ADDR+BF_STEP*	CRPA_BF_RE_1	Регистры блока фокусировки 1	2.11			
	•••		1			
BF_RE_ADDR+BF_STEP*	CRPA_BF_RE_11	Регистры блока фокусировки 11	2.11			
BF_IM_ADDR+BF_STEP*0	CRPA_BF_IM_0	Регистры блока фокусировки 0	2.11			
BF_IM_ADDR+BF_STEP*1	CRPA_BF_IM_1	Регистры блока фокусировки 1	2.11			
BF_IM_ADDR+BF_STEP*1	CRPA_BF_IM_11	Регистры блока фокусировки 11	2.11			
	Регистры блока расчёта кор	реляционной матрицы				
CVM_ADDR	CRPA_CM	Регистры блока расчёта корреляци-	2.12			
		онной матрицы				

2.2 Управляющие регистры

2.2.1 CRPA_ID (0x00)

Register 2.1: Идентификатор блока пространственной обработки CRPA_ID (0x00)

ID (ro) Идентификация начала блока регистров управления импульсом прерывания. reserved (ro) Зарезервированные биты.

2.2.2 CRPA PARAMS (0x04)

Register 2.2: Регистр параметров блока пространственной обработки CRPA PARAMS (0x04)

NT (ro) Количество отводов по времени в пространственно-временном фильтре помехоподавления.

NCH (ro) Количество пространственных входов в пространственно-временном фильтре помехоподавителя.

NBF (ro) Количество блоков формирования лучей.

NNF (ro) Количество блоков формирования нулей.

MASTER SLAVE (ro) Копия состояния Master/slave.

Reserved Зарезервированные биты.

2.2.3 CRPA CONTROL (0x08)

Register 2.3: Регистр управления блоком пространственной обработки CRPA CONTROL (0x08)

CVM_start (rw) Сигнал запуска сбора корреляционной матрицы Для запуска надо записать "1", для сброса записать "0".

CRPA NF start (rw) Сигнал загрузки коэфициентов;

CVM_mode (rw) Тип корреляционной матрицы;

 ${
m CVM_LOAD_EN}$ (rw) Флаг разрешения внешнего сигнала запуска сбора корреляционной матрицы;

NF_LOAD_EN (rw) Флаг разрешения внешнего сигнала загрузки коэффициентов пространственно-временных фильтров

2.2.4 CRPA STATUS (0x0C)

Register 2.4: Регистр статуста блока пространственной обработки CRPA STATUS (0x0A)

CVM_READY (r) Φ лаг готовности результата накопления корреляционной матрицы. Reserved Зарезервированные биты

2.2.5 CRPA IRQ RELEASE (0x10)

Register 2.5: Регистр сброса прерывания CRPA_IRQ_RELEASE (0x10)

Reserved (rw) Запись любого значения сбрасывает прерывание

2.2.6 CRPA MASTER (0x14)

Register 2.6: Регистр управления режимом синхронизации Master/slave CRPA MASTER (0x0C)

CRPA_MASTER (rw) Бит управления режимом синхронизации master/slave. Начальное значение определяется состоянием вывода Master/slave в момент сброса.

2.3 Регистры управления тестовым генератором

2.3.1 GEN_CONTROL (0x18)

Register 2.7: Регистр управления режимом тестового генератора GEN_CONTROL (0x18)

SYNC RESET (rw) Синхронный сброс (активный уровень 1).

 ${\tt SIGNAL_TYPE}$ (rw) Выбор типа тестового сигнала (0 - синус, 1 - константа).

GEN ENABLE (rw) Разрешение работы тестового генератора (активный уровень 1).

GEN CH DISABLE (rw) Отдельное отключение каналов тестового генератора.

Reserved Зарезервированные биты.

2.3.2 GEN PHASE RATE (0x1C)

Register 2.8: Регистр частоты тестового сигнала GEN PHASE RATE (0x1C)

PHASE RATE (rw) Код частоты опорного сигнала.

Тестовый сигнал представляет собой синусоиду, формируемую методом прямого цифрового синтеза по таблице. Разрядность таблицы по фазе 5 разрядов, по амплитуде - 4 разряда. Частота тестового сигнала определяется выражением:

$$f = \frac{PHASE_RATE}{2^{32}} \cdot f_{CLK}$$

2.3.3 GEN SCALE (0x20)

Register 2.9: Регистр управления амплитудой тестового генератора GEN SCALE (0x20)

SCALE (rw) Масштабный коэффициент.

Reserved Зарезервированные биты.

Разрядность сигнала на выходе тестового генератора — 4 разряда. Разрядность линии данных — 16. Коэффициент SCALE определяет, на сколько разрядов влево сдвигается значение на выходе тестового генератора перед подачей на линию данных.

2.3.4 GEN CONST (0x24)

Register 2.10: Регистр тестовой константы GEN CONST (0x24)

CONST (rw) Тестовая константа.

2.4 Регистры управления мультиплексором

2.4.1 MUX1_CONTROL (0x28)

Register 2.11: Выбор входа MUX1 CONTROL (0x28)

SELECT (rw) Выбор сигнала $(0 - A \coprod \Pi, 1 - \text{тестовый сигнал}).$

Reserved Зарезервированные биты.

2.5 Регистры управления FIFO

2.5.1 FIFO_RESET (0x30)

Register 2.12: Выбор входа FIFO RESET (0х30)

FIFO_RESET (rw) Сброс FIFO (активный уровень 1).

Reserved Зарезервированные биты.

2.6 Управление тактовыми сигналами

2.6.1 CLK_GATE_CTRL (0x38)

Register 2.13: Включение тактовых сигналов отдельных блоков CLK GATE CTRL (0х38)

Reserved	QC	01/19E	STIK STIK	Chil	Day City
30 6	5	4 3	2 1	0	
0x0000000	0	00	00	0	Имя (По сбросу)

DCOL_CLK (rw) Управление тактовым сигналом блока сбора данных (1 - включить).

BF_CLK (rw) Управление тактовыми сигналами блоков формирователей лучей (0 — выключить, 1 — включить блок 0, 2 — включить блоки 1-11, 3 — включить все блоки).

NF_CLK (rw) Управление тактовыми сигналами блоков формирователей нулей (0 — выключить, 1 — включить блок 0, 2 — включить блоки 1-7, 3 — включить все блоки).

 ${
m CVM_CLK}$ (rw) Управление тактовым сигналом блока накопления корреляционной матрицы (1 - включить).

Reserved Зарезервированные биты.

2.6.2 RST GATE CTRL (0x3C)

Register 2.14: Выбор входа RST GATE CTRL (0х3C)

Reserved	Q	OL PE	REST	Se .	२८५ ८५	A REST
30 6	5	4 3	2	1	0	
0x0000000	0	00	0	00	0	Имя (По сбросу)

DCOL CLK (rw) Сброс блока сбора данных (активный низкий).

BF_CLK (rw) Сброс блоков формирователей лучей (0 — сброс всех, 1 — сброс блоков 1-11, 2 — сброс блока 0, 3 — включить все блоки).

NF_CLK (rw) Сброс блоков формирователей нулей (0 — сброс всех, 1 — сброс блоков 1-7, 2 — сброс блока 0, 3 — включить все блоки).

CVM_CLK (rw) Сброс блока накопления корреляционной матрицы (активный низкий). Reserved Зарезервированные биты.

2.7 Статус корреляционной матрицы

2.7.1 CVM STATUS (0x40)

Register 2.15: Статус блока расчёта корреляционной матрицы CVM_STATUS (0x40)

 ${
m CVM_STATUS}$ (rw) ${
m Cтатус}$ корреляционной матрицы (1 — вычисление завершено). Reserved ${
m 3ape}$ зервированные биты.

2.8 Параметры блока корреляционной обработки

2.8.1 DATA_WIDTH0 (0x44)

Register 2.16: Разрядность внутреннего представления данных DATA WIDTH0 (0х44)

	AF Jaho Juan	Br coeff width	AE coeff width	ingut width	
31	L 24	23 16	15 8	7 0	
	16	16	16	16	Имя (По сбросу)

 NF_lsb_drop (r) Количество разрядов, отбрасываемых после блоков формирования лучей.

BF_coeff_width (r) Разрядность коэффициентов блоков формирования лучей.

NF coeff width (r) Разрядность коэффициентов блоков формирования нулей.

input width (r) Разрядность входных данных.

2.8.2 DATA_WIDTH1 (0x48)

Register 2.17: Выбор входа DATA WIDTH1 (0х48)

CVM in width (r) Входная разрядность блока расчёта корреляционной матрицы.

CVM ассит num (r) Количество накопителей блока расчёта корреляционной матрицы.

 ${
m CVM_accum_width}$ (r) Разрядность накопителя блока расчёта корреляционной матрицы.

BF out width (r) Выходная разрядность блоков формирования лучей

2.8.3 NF ADDR (0x4C)

Register 2.18: Начальный адрес коэффициентов формирователя нулей NF ADDR (0x4C)

NF_ADDR (rw) Начальный адрес коэффициентов блока 0 формирователя нулей относительно базового адреса CRPA (байты).

2.8.4 NF STEP (0x50)

Register 2.19: Приращение адреса между каналами блока формирователя нулей NF STEP (0x50)

NF STEP (rw) Приращение адреса между каналам блока формирователя нулей (слов).

2.8.5 BF_RE_ADDR (0x54)

Register 2.20: Начальный адрес действительных коэффициентов формирователя лучей BF RE ADDR (0x54)

 BF_RE_ADDR (rw) Начальный адрес действительных коэффициентов 0 формирователя лучей относительно базового адреса CRPA (байты).

2.8.6 BF IM ADDR (0x58)

Register 2.21: Начальный адрес мнимых коэффициентов формирователей лучей BF IM ADDR (0x58)

 BF_IM_ADDR (rw) Начальный адрес мнимых коэффициентов 0 формирователя лучей относительно базового адреса CRPA (байты).

2.8.7 BF STEP (0x5C)

Register 2.22: Приращение адреса между каналами блока формирователей лучей BF STEP (0x5C)

 $BF_STEP\ (rw)$ Приращение адреса между каналами блока формирователей лучей (слов).

2.8.8 CVM ADDR (0x60)

Register 2.23: Начальный адрес блока расчёта корреляционной матрицы CVM ADDR (0x60)

CVM_ADDR (rw) Начальный адрес блока расчёта корреляционной матрицы относительно базового адреса CRPA (байты).

2.8.9 CVM LENGTH (0x64)

Register 2.24: Количество элементов корреляционной матрицы CVM LENGTH (0x64)

CVM_LENGTH (r) Количество элементов корреляционной матрицы (слов).

2.8.10 CVM_TYPEDESCR0 (0x68)

Register 2.25: Конфигурация корреляционной матрицы CVM TYPEDESCR0 (0x68)

Designation of the second of t		Tricino	
15	0	15 0	
0x2109		0x2009	Имя (По сбросу)

INTCNT1 (r) Конфигурация корреляционной матрицы в режиме 1.

INTCNT0 (r) Конфигурация корреляционной матрицы в режиме 0.

2.8.11 CVM TYPEDESCR1 (0x6C)

Register 2.26: Конфигурация корреляционной матрицы CVM_TYPEDESCR1 (0x6C)

INTCNT3 (r) Конфигурация корреляционной матрицы в режиме 3.

INTCNT2 (r) Конфигурация корреляционной матрицы в режиме 2.

2.9 Флаги правильных данных

2.9.1 VALID_NF (0x70)

Register 2.27: Флаги правильных данных на выходах формирователей нулей VALID NF (0x70)

	Reserved.	VALID AFF		
31		8	7 0	
	0x000000		0x00	Имя (По сбросу)

VALID_NF (rw) Флаги правильных данных на выходе каждого из блоков формирователя нулей (1- данные правильные).

Reserved Зарезервированные биты.

2.9.2 VALID BF (0x74)

Register 2.28: Флаги правильных данных на выходах формирователей лучей VALID BF (0х74)

Reserved	VALID BE	
31 12	11 0	
0x00000000	0x000	Имя (По сбросу)

VALID_BF (rw) Флаги правильных данных на выходах формирователей лучей (1 — правильные данные).

Reserved Зарезервированные биты.

2.9.3 VALID SIGMAG (0x78)

Register 2.29: Флаги правильных данных на выходах квантователей VALID SIGMAG (0х78)

VALID_SIGMAG (rw) Φ лаги правильных данных на выходах блоков квантования (1 — правильные данные).

Reserved Зарезервированные биты.

2.10 Регистры блоков помехоподавления

Смещения указаны относительно начального адреса блока помехоподавления CRPA_NF_x (см. разд. 2).

Расположение коэффициентов зависит от параметров реализованного фильтра (см. 2.2.2): NF_TIME — количества отводов по времени и NF_CHAN — количества входов блока помехоподавления.

Каждый коэффициент представляет собой действительное целое число со знаком.

При записи новых коэффициентов по данным адресам происходит запись в теневые регистры. Новые значения коэффициентов начинают использоваться после сигнала обновления $CRPA_NF_START$, см. разд. 2.2.3.

Смещение	Название	Описание	Примечание			
0x00 (0x00)	CRPA_NF_K_0_0	Коэффициент для 0 входа и 0				
		отвода по времени				
0x04 (0x01)	CRPA_NF_K_0_1	Коэффициент для 0 входа и 1				
		отвода по времени				
0xXX (0xYY)	CRPA_NF_K_I_J	Коэффициент для I входа и J	смещение $4 \times (I \cdot$			
		отвода по времени	$NF_TIME + J)$			
0x7C	CRPA_NF_K_7_3	Коэффициент для 7 входа и 3	при $NF_TIME =$			
		отвода по времени	4			

2.11 Регистры блоков фокусировки

Смещения указаны относительно начального адреса блока фокусировки CRPA_BF_x (см. разд. 2).

Расположение коэффициентов зависит от параметров реализованного фильтра (см. 2.2.2): NF_TIME — количества отводов по времени и NF_CHAN — количества входов блока помехоподавления.

Каждый коэффициент представляет собой действительное целое число со знаком.

При записи новых коэффициентов в по данным адресам происходит запись в теневые регистры. Новые значения коэффициентов начинают использоваться после сигнала обновления CRPA BF START, см. разд. 2.2.3.

Смещение	Название	Описание	Примечание
0x00 (0x00)	CRPA_BF_RE_K_	(Коэффициент для 0 входа	
0x04 (0x01)	CRPA_BF_RE_K_	(Коэффициент для 1 входа	
0x20 (0x08)	CRPA_BF_K_7	Коэффициент для 7 входа	

2.12 Регистры блока расчёта корреляционной матрицы

Для вычисления коэффициентов фильтров пространственного подавления помех рассчитывается матрица корреляционных коэффициентов.

Для расчёта матрицы формируется вектор задержанных отсчётов входного сигнала, имеющий вид, приведённый на рис. 1.

Далее рассчитывается матрица коэффициентов. Матрица имеет нижний треугольный вид. Структура матрицы приведена на рис. 2.

Смещения указаны относительно начального адреса блока расчёта корреляционной матрицы

Вектор задержанных сигналов Ү														
[`NCHANNELS*(LENGTH+1)*ADC_DWIDTH - 1 : 0]														
Отводы adc3 От				Отвод	тводы adc2			Отводы adc1			Отводы adc0			
z ⁻³ z ⁻²	z-1	Z ⁻⁰	z -3	z -2	z -1	Z ⁻⁰	z -3	z -2	Z ⁻¹	Z ⁻⁰	z -3	z -2	z -1	z-0
MSB (старший бит)					(младший бит) LSB									

Рис. 1. Вектор задержанных отсчётов входных сигналов

Рис. 2. Структура корреляционной матрицы

CRPA_CM (см. разд. 2), равного 0x5000.

Расположение коэффициентов зависит от параметров реализованного фильтра (см. 2.2.2): NF_TIME — количества отводов по времени и NF_CHAN — количества входов блока помехоподавления.

Каждый коэффициент представляет собой действительное целое число со знаком.

Смещение	Название	Описание	Примечание
0x00 (0x00)	CRPA_CM_R_0_0	Элемент матрицы 0, 0	
0x04 (0x01)	CRPA_CM_R_1_0	Элемент матрицы 1, 0	
0x08 (0x02)	CRPA_CM_R_1_1	Элемент матрицы 1, 1	
0xXX(0xYY)	CRPA_CM_R_I_J	Элемент матрицы I, J	
0x83C (0x20F)	CRPA_CM_R_31_31	Элемент матрицы 31, 31	при $NF_TIME = 4$,
			$NF_CHAN = 8$

УИП	CPTT.	ниу	МЭИ

Список литературы