TTK31 - Design of Experiments (DoE), metamodelling and Quality by Design (QbD) Autumn 2021

Big Data Cybernetics Gang

1

Lecture overview

- DoE: Introduction and motivation
- ANalysis Of VAriance (ANOVA)
- Factorial designs and Fractional factorial designs
- Response surface designs
- Optimal designs
- Metamodelling
- Combining DoE with multivariate analysis/machine learning
- QbD PAT
- Practical examples of DoE related to cybernetics

Reminder: Reference group - VERY IMPORTANT

- at least 3 students (two or more seats free!)
- will do 4 meetings (1 after the exam)
- ullet shall represent the whole class \Longrightarrow you will have meetings among yourselves too
- shall lead to a referansegrupperapport containing suggestions for improvements

Experimental Work: The Basic Questions - recap

- Which design factors in my system are the most important?
- Are there any interactions?
- How can I get maximum information at minimum cost?
- Where is the optimal region?
- Where is the stable region?
- How can I span the variation of my calibration variables?
- How can I build a good calibration / validation data set?

Factorial designs

The full factorial design

Motivation for use

- Simplest design situation
- Basis for many other designs
- Optimal for detecting main effects and their interactions

2-level full factorial designs

Calculating effects - main effects

A simple experimental design:

ç

Calculating effects - interaction effects

The simplest way to find how to calculate the various effects is to use the design table: An example for 2^3 full factorial design

Std	Α	В	С	AB	AC	вс	ABC	
1	100	-	-	+	+	+	9.7	У1
2	+	-	-	-	-	+	+	y ₂
3	-	+	_	_	+	-	+	y_3
4	+	+	_	+	-0	-	-	У4
5	_	-	+	+	-8	_	+	y ₅
6	+	-	+	-	+	-	-	y ₆
7	_	+	+	_	-8	+	_	y ₇
8	+	+	+	+	+	+	+	y 8

Interpreting effects - overview

Main effects

Interactions

But what about adding more levels to the design factors?

- Adding more levels will rapidly increase the number of runs
- If the goal is to have a more precise description of the design space, other designs are more economical

2³ factorial with center point (8 runs plus 4 cp's = 12 pts)

3³ Three-level factorial (27 runs + 5 cp's = 32 pts)

Additional experiments

- Center samples
 - To detect curvature
 - To estimate error variance
 - For category variables need one experiment for each level
- Replicated samples
 - Replication of factorial points
 - More precise estimate of error variance
- Remember the assumptions about the residuals, $N(0, \sigma^2)$:
 - Normally distributed
 - Mean of zero
 - Constant variance

Replicates and center samples

Replicates:

Precision
SD _{repl. samples} << SD_{whole design}?

Center samples:

$$\frac{Curvature\ check}{\overline{Y}_{center\ samples}} = \overline{Y}_{design} ?$$

Power of an experimental design

- The power of a design *must* be calculated prior to performing any experiments!
- The calculation of power takes four inputs:
 - \bullet \bullet , what you regard as a significance difference for a given response

 - The number of experiments
 - **4** The significance level α

Estimation of power

Power = $(1-\beta)*100\%$

Power is the probability of revealing an active effect of size delta (Δ) relative to the noise (σ) as measured by signal to noise ratio (Δ/σ) .

It should be high (at least 80%!) for the effect size of interest.

Effec	ct?	ANOVA says:			
		Retain H _o	Reject H ₀		
	No	OK⊚	Type I Error (alpha) <i>False Alarm</i>		
Truth:	Yes	Type II Error (beta) Failure to detect	OK©		

How to Select Ranges of Variation

- Wide enough to generate response variation
- Narrow enough to avoid huge non-linearities
- Useful tip: Start with two extreme combinations
 - If too extreme results: narrow down
 - If different enough results: OK
 - If too close results: Check center samples

Fractional Factorial designs

Fractional Factorial designs

- Full factorial designs are expensive if many design factors
- ullet Often higher order interactions can be neglected o Fractional factorial design
- Subset of the full factorial design
- Experiments are systematically chosen to cover the widest possible design space

2-level fractional factorial design

- 3 design variables, A, B, C
- 2^{3-1} design, C = AB
- All main effects are estimated in $2^{3-1} = 4$ runs
- The main effects are aliased with the interaction effects

Aliasing/Confounding

- The price to be paid for performing fewer experiments (fractional designs)
- → some effects cannot be studied independently of each other
- The degree of confounding is described by the confounding pattern and the resolution

Constructing a 2-level Fractional Factorial design: Aliasing

- ullet Example: Constructing the 2^{4-1} Design from a 2^3 Design
- Write out the full design
- Let D = ABC (aliasing with the highest interaction term)

Α	В	С	AB	AC	ВС	ABC
-	-	-	+	+	+	-
+	-	-	-	-	+	+
-	+	-	-	+	-	+
+	+	-	+	-	-	-
-	-	+	+	-	-	+
+	-	+	-	+	-	-
-	+	+	-	-	+	-
+	+	+	+	+	+	+

Aliasing/Confounding: Four design variables

Example: four design variables, can only afford 10 runs 2⁴⁻¹ fractional factorial design + 2 center samples

The column for **D** equals the interaction **ABC**

Defining relation: **I=ABCD**, resolution=**IV**

This gives the following confounding pattern:

A=BCD B=ACD C=ABD D=ABC AB=CD AC=BD AD=BC

These effects cannot be estimated separately from each other

	Α	В	С	D=ABC
1	-	-	-	-
2	+	-	-	+
3		+	-	+
4	+	+	-	-
5	-	-	+	+
6	+	-	+	-
7	-	+	+	-
8	+	+	+	+
9	0	0	0	0
10	0	0	0	0

The resolution of a design

- Resolution V: Main effects are not confounded with 2-way interactions
- Resolution IV: 2-way interactions are confounded and main effects are confounded with three-factor interactions
- Resolution III: Main effects are confounded with 2-way interactions

Number of experiments for various designs

	Resol		
Factors	Full	V	Runs
5	32	16	1/2
6	64	32	1/2
7	128	64	1/2
8	256	64	1/4
9	512	128	1/4
10	1,024	128	1/8
11	2,048	128	1/16
12	4,096	256	1/16
13	8,192	256	1/32
14	16,384	256	1/64
15	32,768	256	1/128

Resolution and confounding patterns for various designs

How to identify the important effects?

- If all main and interaction effects are estimated, there are no degrees of freedom for the error, and thus no output for F-ratios and p-values in the ANOVA table.
- However, the effects can be visualized in various plots to make an assessment:
 - Half-Normal Plot
 - Normal Plot
 - Pareto Chart

Half-Normal Plot

- If there are no significant effect, they should follow a normal distribution
- One way of visualizing this is in the normal probability plot (ref. plot of residuals)
 - Sort the effects
 - Plot them on a logarithmic scale
- Effects that deviate from a straight line in this plot might be significant
- One can show the effects as absolute values (half-normal) or as is (normal plot)

Half-Normal Plot - example

Pareto Chart

- The Pareto Chart is another option to show the importance of the effects
- It has two critical limits:
 - t-limit: A limit based on the t-distribution
 - Bonferroni limit: A conservative limit taking into account the number of terms in the model
- Selected Effects that are above the Bonferroni Limit are almost certainly important and should be left in the model.
- Effects that are above the t-value Limit are possibly important and should be added if they make sense to the experimenter
- Effects that are below the t-value limit should only be selected to support hierarchy. They can also be forced into the model by the analyst.

Pareto Chart - example

Small example Factorial design: Popcorn

Popcorn example: Finding the best experimental settings

Multi-response optimization

Std	A: Brand expense	B: Time minutes	C: Power percent	R₁: Taste rating	R ₂ : UPKs oz.
1	Cheap	4.0	75.0	74	3.1
2	Costly	4.0	75.0	75	3.5
3	Cheap	6.0	75.0	71	1.6
4	Costly	6.0	75.0	80	1.2
5	Cheap	4.0	100.0	81	0.7
6	Costly	4.0	100.0	77	0.7
7	Cheap	6.0	100.0	42	0.5
8	Costly	6.0	100.0	32	0.3

Calculations of effects: Popcorn

Popcorn example

Small example 2: Factorial design

- Optimization of filtration rate in a chemical process
- A 2⁴ full factorial design
- Four numerical design factors
 - Temperature
 - Pressure
 - Concentration
 - Stir rate
- Response variable: Filtration rate