Group Meeting 2014.09.29

- 1. Sparse Subspace Clustering
- 2. Partial Least Squares
- 3. TCGA Data Analysis

Sparse Subspace Clustering

PCA in a Geometric View:

Given a set of points $\{x_j\}_{j=1}^N$ in R^D , try to find an (affine) subspace $S \subset R^D$ of dimension d, $\dim(S) = d$ that best fits these points.

$$x_j = \mu + U_d y_j + \epsilon_j \ j = 1, \cdots, N$$

where $U_d \in R^{D \times d}$ whose columns form a basis for the subspace and y_j is the vector of new coordinates of x_j in the subspace.

$$\min_{\mu, U_d, \{y_j\}} \sum_{j=1}^N ||x_j - \mu - U_d y_j||^2$$

$$s.t. U_d^T U_d = I_d, \sum_{i=1}^N y_j = 0$$

Subspace Clustering Formulation:

Given a set of sample points $X = \{x_j \in R^D\}_{j=1}^N$ drawn from $n \ge 1$ distinct linear subspaces $S_i \subset R^D$ of dimensions $d_i < D, \ j=1,\cdots,n$.

Identify each subspace S_i without knowing which sample point belong to which subspace.

- 1. Identifying the number of subspaces n and their dimensions $d_i = \dim(S_i)$
- 2. Identifying the orthonormal basis for each subspace S_i (or equivalently a basis for its orthogonal complement S_i^{\perp})
- 3. Clustering the N points into the subspaces to which they belong

How to define a good similarity matrix?

Characterize the local or global subspace structures around the points of interest

- Two points could be very close, but lie in different subspaces(e.g. near the intersection of two subspaces)
- Two points could be far from each other, but belong to the same subspace

Sparse Subspace Clustering: Key observations and conclusions

Sparse Subspace Clustering: Key observations and conclusions

Self-expressiveness

Each data point in a union of subspaces can be expressed as a (sparse) linear or affine combination of all other points in the dataset.

$$x_j = \sum_{i \neq j} c_{ij} x_i, \qquad ext{or} \qquad X = XC, ext{diag}(C) = 0$$

Sparse Representation Theory

Given the following conditions:

- The subspaces are sufficiently seperated
- The data within the subspaces are well distributed

we can rescover the sparse subspace representation by the optimization problem:

$$\min_{C} ||C||_1 \qquad \text{s.t. } X = XC, \operatorname{diag}(C) = 0$$

where
$$||C||_1 = \sum_{i,j=1}^N |c_{ij}|$$

Clustering Using Sparse Coefficients

We can use the spectral clustering algorithm.

1. Form a similarity graph $\mathcal{G}=(V,E,W)$ whose nodes are the N data points and whose edges connect points x_i and x_j with a weight $w_{ij}=|c_{ij}|+|c_{ji}|$.

$$W = |C| + |C|^T$$

2. Apply spectral clustering algorithm to the similarity graph with weights W to obtain the segmentation of the data.

Application in 4 kinds of Cancers

Correlation Distributions:

Application in ER+/ER- samples

乳腺癌样本数据聚类结果,包含ER+/ER-信息

		真实值		
		Positive	Negative	
预测值	Positive	370	12	
	Negative	24	104	

• Elapsed time is 39.406780 seconds

Correlation Heatmap

Application in HCC samples

1. GSE25097 Datasets

Label	Healthy	Cirrhotic	Non-tumor	Tumor
Number	6	40	243	268

Correlation Heatmap (Non-tumor and tumor)

2. Tumor samples only

Application in GBM TCGA Dataset

分类结果 生存期标签	1	2
1	33	55
2	38	84
	71	139

Partial Least Squares

PCA in a Statistical View:

Suppose a random variable $x \in R^D$ with zero-mean $\mathbb{E}(x)=0$, and try to find d < D principle components $y \in R^d$:

• y_i 's are 'uncorrelated' linear combinations of x:

$$y_i = u_i^T x \in R, u_i \in R^D$$

ullet The variance of y_i is maximized subject to

$$u_i^T u_i = 1, i = 1, \cdots, d \quad Var(y_1) \ge Var(y_2) \ge \cdots \ge Var(y_d) > 0$$

Principle Components Regression

- ullet Form the derived input columns $z_m = Xu_m, m=1,\cdots,M(M\leq p)$
- Regress the response y on z_1, \cdots, z_M

Partial Least Squares

Consider both high variance and high correlation with the response:

The m-th PLS direction ψ_m :

$$\begin{split} \max_{\alpha} & \quad \operatorname{Corr}^2(y, X\alpha) \operatorname{Var}(X\alpha) \text{ or } \operatorname{Cov}(y, X\alpha) \\ \text{s.t.} & \quad ||\alpha|| = 1, \alpha^T \Sigma_N \hat{\psi}_l = 0, l = 1, \cdots, m-1 \end{split}$$

GBM mRNA Data

1. Wilcoxon rank sum testing (Survivial ~ Gene,PCA,PLS components)

2. Classification error (overfitting)

(Mean error of 100 times)

Results of TCGA Survival Data Analysis

how and to what extent TCGA molecular data can affect oncology practice.

ANALYSIS

_computational

Assessing the clinical utility of cancer genomic and proteomic data across tumor types

- Clinical-variables-only model: show substaintial predictive power
- The relative predictive power of individual molecular data sets strongly depended on the cancer type
- Clinical variables + molecular data: significantly improve predictive power but the increase is limited.

Prediction of Dichotomized Survival data

Predictive power of molecular data strongly depends on the cancer type.

