Package 'bayescopulareg'

October 12, 2022

000001 12, 2022
Type Package
Title Bayesian Copula Regression
Version 0.1.3
Date 2020-11-30
Maintainer Ethan Alt <ethanalt@live.unc.edu></ethanalt@live.unc.edu>
Description Tools for Bayesian copula generalized linear models (GLMs). The sampling scheme is based on Pitt, Chan, and Kohn (2006) <doi:10.1093 93.3.537="" biomet="">. Regression parameters (including coefficients and dispersion parameters) are estimated via the adaptive random walk Metropolis approach developed by Haario, Saksman, and Tamminen (1999) <doi:10.1007 s001800050022="">. The prior for the correlation matrix is based on Hoff (2007) <doi:10.1214 07-aoas107="">.</doi:10.1214></doi:10.1007></doi:10.1093>
Depends R (>= 3.6.0)
License GPL (>= 2)
Imports Rcpp (>= 1.0.3), stats
LinkingTo Rcpp, RcppArmadillo, RcppDist, mvtnorm
RoxygenNote 7.1.1
Encoding UTF-8
<pre>URL https://github.com/ethan-alt/bayescopulareg</pre>
BugReports https://github.com/ethan-alt/bayescopulareg/issues
NeedsCompilation yes
Author Ethan Alt [aut, cre], Yash Bhosale [aut]
Repository CRAN
Date/Publication 2020-11-30 17:10:06 UTC
R topics documented:
bayescopulaglm
Index

2 bayescopulaglm

bayescopulaglm

Sample from Bayesian copula GLM

Description

Sample from a GLM via Bayesian copula regression model. Uses random-walk Metropolis to update regression coefficients and dispersion parameters. Assumes Inverse Wishart prior on augmented data.

Usage

```
bayescopulaglm(
  formula.list,
  family.list,
  data,
 histdata = NULL,
  b0 = NULL,
  c0 = NULL,
  alpha0 = NULL,
  gamma0 = NULL,
 Gamma0 = NULL,
  S0beta = NULL,
  sigma0logphi = NULL,
  v0 = NULL,
  V0 = NULL,
 beta0 = NULL,
  phi0 = NULL,
 M = 10000,
  burnin = 2000,
  thin = 1,
  adaptive = TRUE
```

Arguments

formula.list	A J -dimensional list of formulas giving how the endpoints are related to the covariates
family.list	A J -dimensional list of families giving how each endpoint is distributed. See $help(family)$
data	A data frame containing all response variables and covariates. Variables must be named.
histdata	$Optional$ historical data set for power prior on β, ϕ
b0	$\it Optional$ power prior hyperparameter. Ignored if is.null(histdata). Must be a number between $(0,1]$ if histdata is not NULL
с0	A $J\text{-dimensional}$ vector for $\beta\mid \phi$ prior covariance. If NULL, sets $c_0=10000$ for each endpoint

bayescopulaglm 3

alpha0	A J -dimensional vector giving the shape hyperparameter for each dispersion parameter on the prior on ϕ . If NULL sets $\alpha_0=.01$ for each dispersion parameter
gamma0	A J -dimensional vector giving the rate hyperparameter for each dispersion parameter on the prior on ϕ . If NULL sets $\alpha_0=.01$ for each dispersion parameter
Gamma0	Initial value for correlation matrix. If NULL defaults to the correlation matrix from the responses.
S0beta	A J -dimensional list for the covariance matrix for random walk metropolis on beta. Each matrix must have the same dimension as the corresponding regression coefficient. If NULL, uses solve(crossprod(X))
sigma0logphi	A J -dimensional vector giving the standard deviation on $\log(\phi)$ for random walk metropolis. If NULL defaults to 0.1
v0	An integer scalar giving degrees of freedom for Inverse Wishart prior. If NULL defaults to $J+2$
V0	An integer giving inverse scale parameter for Inverse Wishart prior. If NULL defaults to diag(.001, J)
beta0	A J -dimensional list giving starting values for random walk Metropolis on the regression coefficients. If NULL, defaults to the GLM MLE
phi0	A J -dimensional vector giving initial values for dispersion parameters. If NULL. Dispersion parameters will always return 1 for binomial and Poisson models
М	Number of desired posterior samples after burn-in and thinning
burnin	burn-in parameter
thin	post burn-in thinning parameter
adaptive	logical indicating whether to use adaptive random walk MCMC to estimate parameters. This takes longer, but generally has a better acceptance rate

Value

A named list. ["betasample"] gives a J-dimensional list of sampled coefficients as matrices. ["phisample"] gives a $M \times J$ matrix of sampled dispersion parameters. ["Gammasample"] gives a $J \times J \times M$ array of sampled correlation matrices. ["betaaccept"] gives a $M \times J$ matrix where each row indicates whether the proposal for the regression coefficient was accepted. ["phiaccept"] gives a $M \times J$ matrix where each row indicates whether the proposal for the dispersion parameter was accepted

Examples

```
set.seed(1234)
n <- 100
M <- 100

x <- runif(n, 1, 2)
y1 <- 0.25 * x + rnorm(100)
y2 <- rpois(n, exp(0.25 * x))

formula.list <- list(y1 ~ 0 + x, y2 ~ 0 + x)</pre>
```

```
family.list <- list(gaussian(), poisson())</pre>
data = data.frame(y1, y2, x)
## Perform copula regression sampling with default
## (noninformative) priors
sample <- bayescopulaglm(</pre>
 formula.list, family.list, data, M = M, burnin = 0, adaptive = F
## Regression coefficients
summary(do.call(cbind, sample$betasample))
## Dispersion parameters
summary(sample$phisample)
## Posterior mean correlation matrix
apply(sample$Gammasample, c(1,2), mean)
## Fraction of accepted betas
colMeans(sample$betaaccept)
## Fraction of accepted dispersion parameters
colMeans(sample$phiaccept)
```

predict.bayescopulaglm

Predictive posterior sample from copula GLM

Description

Sample from the predictive posterior density of a copula generalized linear model regression

Usage

```
## S3 method for class 'bayescopulaglm'
predict(object, newdata, nsims = 1, ...)
```

Arguments

object Result from calling bayescopulaglm

newdata data.frame of new data

nsims number of posterior draws to take. The default and minimum is 1. The maxi-

mum is the number of simulations in object

further arguments passed to or from other methods

Value

array of dimension c(n, J, nsims) of predicted values, where J is the number of endpoints

Examples

```
set.seed(1234)
n <- 100
M <- 1000

x <- runif(n, 1, 2)
y1 <- 0.25 * x + rnorm(100)
y2 <- rpois(n, exp(0.25 * x))

formula.list <- list(y1 ~ 0 + x, y2 ~ 0 + x)
family.list <- list(gaussian(), poisson())
data = data.frame(y1, y2, x)

## Perform copula regression sampling with default
## (noninformative) priors
sample <- bayescopulaglm(
   formula.list, family.list, data, M = M
)
predict(sample, newdata = data)</pre>
```

Index

 ${\tt bayescopulaglm, \textcolor{red}{2}}$

predict.bayescopulaglm, 4