Теория алгебраических структур

Лекция 2

Теория групп

Эварист Галуа 25.10.1811–31.05.1832

Еще не зная об этом, мы используем алгебраические структуры с 1 класса: полугруппа $\Pi = < N$, +>, моноид M = < N, $\times>$. Важность понятия группы для математики в целом сопоставима только с важностью таких понятий как множество, отображение, функция, пространство...

Понятия группы, поля, нормальной подгруппы ввел Э. Галуа — один из самых удивительных математиков, оказавший громадное влияние на ее развитие. К сожалению, он был убит на дуэли в возрасте 20 лет. Уже в 16–18 лет он опубликовал работы о разрешимости уравнений в радикалах, но великие Коши, Фурье, Пуассон даже не смогли ничего понять. Множество его работ было утеряно (или так об этом сообщалось). Позже Коши часть понял и опубликовал под своим именем. Не надеясь на честность французских математиков, в письме другу Галуа просил сообщить свои новые результаты Гауссу и Якоби. Работы Галуа получили широкое признание только в 1870-х годах.

Теория групп широко используется не только практически во всех разделах математики, но и в других науках. Там, где есть симметрии, есть группа. В физике группы симметрий используются в кристаллографии; фермионы и бозоны определяются симметрией совместной волновой функции при перестановке частиц; симметрия относительно вращений в пространстве приводит к сохранению момента импульса. В химии группы самосовмещений геометрических фигур описывают строение молекул. Был случай, когда вещество в природе нашли через несколько лет после определения соответствующей ему группы. И даже в биологии используются группы при изучении симметрии цветка.

Полугруппа, моноид, группа. Определения и примеры

Определение 1. Говорят, что на множестве M задана бинарная операция *, если любой упорядоченной паре < a, b > элементов из M ставится в соответствие элемент $a * b \in M$.

Примеры.

- 1. $a + b = c \in M$ бинарная операция (M числовое множество).
- 2. $[\bar{a}, \bar{b}] = \bar{c} \in M$ бинарная операция (M множество векторов).
- 3. $(\bar{a}, \bar{b}) = c \not\in M$ не является бинарной операцией: векторам ставится в соответствие число (M множество векторов).

Бывают унарные операции — транспонирование матрицы; и операции для любого упорядоченного набора из n элементов.

Свойства операции:

- 1. a * b = b * a коммутативный закон операции.
- 2. (a*b)*c = a*(b*c) ассоциативный закон операции.

Утверждение 1. Если бинарная операция ассоциативна, то результат ее применения к последовательности элементов не зависит от расстановки скобок.

Символика: мультипликативная $(* \to \cdot (\mathsf{x}))$ и аддитивная $(* \to +)$.

В мультипликативной символике: $(a^m)^n = a^{mn}$, $a^{m+n} = a^m a^n$.

В аддитивной символике: n(ma) = (nm)a, (m + n)a = ma + na.

Если множество M конечное, то результат бинарной операции можно задать таблицей Кэли. Пусть $M=\{a_1,\dots,a_n\}$

*	a_1	a_2	•••	a_n
a_1	$a_1 * a_1$	$a_1 * a_2$	•••	$a_1 * a_n$
a_2	$a_2 * a_1$	$a_2 * a_2$	•••	$a_2 * a_n$
•••	•••	•••	•••	•••
a_n	$a_n * a_1$	$a_n * a_2$	•••	$a_n * a_n$

Определение 2. Полугруппой называется множество M с заданной на нем бинарной ассоциативной операцией: $\Pi = \langle M, * \rangle$.

Единичный элемент $e: \forall a \in M \ a * e = e * a = a$.

Единственность единичного элемента докажем от противного.

Пусть
$$\exists e \bowtie e' \Rightarrow e' = e \cdot e' = e$$
.

Определение 3. Моноид — это полугруппа с единицей < M, *, e >.

Проверяем: 1) ассоциативность операции; 2) наличие единичного элемента.

Элемент $a \in M$ называется обратимым, если $\exists a^{-1} \in M : a * a^{-1} = a^{-1} * a = e$ (a – обратимый элемент, a^{-1} – обратный элемент к a).

Единственность обратного элемента докажем от противного

Пусть для $a \in M$

$$\exists a^{-1} \text{ и } \tilde{a}^{-1} \Rightarrow \tilde{a}^{-1} = e * \tilde{a}^{-1} = (a^{-1} * a) * \tilde{a}^{-1} = a^{-1} * (a * \tilde{a}^{-1}) = a^{-1} * e = a^{-1}.$$

Определение 4. Группа — это моноид, в котором каждый элемент обратим.

$$G = < M, *, e >.$$

Если операция коммутативна, то соответственно полугруппа, моноид, группа называются коммутативными или абелевыми.

Полугруппа, моноид, группа называются **конечными порядка** p, если они состоят из p элементов. Полугруппа, моноид, группа **бесконечного порядка**, если состоят из бесконечного числа элементов.

При проверке, какой структурой является множество с заданной бинарной операцией < M, *> с начала необходимо убедиться, что задана бинарная операция (замкнутость операции). Затем ассоциативность операции, существование единичного элемента (принадлежность рассматриваемому множеству), существование обратных элементов.

Полугруппа	Моноид	Группа				
1. Ассоциати	1. Ассоциативность операции *					
	2. Существование единичного элемента: $\exists e \in M$					
		3. Существование обратного элемента: $\forall a \in M \ \exists a^{-1} \in M$				

Определение 6. Подполугруппа — замкнутое относительно заданной бинарной операции подмножество Π' полугруппы Π : $\Pi' \subseteq \Pi$

$$\forall a, b \in \Pi' \Rightarrow a * b \in \Pi'.$$

Аналогично подмоноид и подгруппа

Определение 7. Подмоноид M' — замкнутое относительно заданной бинарной операции подмножество M' с единицей ($e \in M'$).

Определение 8. Подгруппа — замкнутое относительно заданной бинарной операции подмножество G', причем $e \in G'$ и $\forall a \in G' \Rightarrow a^{-1} \in G'$.

При проверке того, что структура является подполугруппой, подмоноидом или подгруппой необходимо дополнительно проверить **замкнутость** бинарной операции, т.е. результат операции принадлежит множеству (в данном случае подмножеству).

Примеры 1 – 12.

- **1.** $G = <\mathbb{Z}, +,0>$ группа, $e=0, \forall a\to a^{-1}=-a$. Подгруппа: <четные, +, 0> и числа кратные произвольному $k:<\{kz\},+,0>$
- **2.** Группы также: $<\mathbb{Q}$, +,0 >, $<\mathbb{R}$, +,0 >, $<\mathbb{C}$, +,0 > комплексные числа.
- **3.** $<\mathbb{Z}$, \times , 1> моноид. Отсутствует обратный элемент, например к $2-\frac{1}{2}$. Подмоноид натуральные числа. Кратные не содержат 1.
- **4.** Группы: $< \mathbb{Q} \setminus \{0\}, \times, 1>, < \mathbb{R} \setminus \{0\}, \times, 1>.$

Матрицы

- **5.** Матрицы $< \mathbb{R}^{m \times n}$, +,0 >, e = 0 нулевая матрица, $M^{-1} = -M$ группа.
- **6.** Квадратные матрицы $< M, \times, E > -$ некоммутативный моноид: для вырожденных матриц $(det A = 0) \Rightarrow \nexists A^{-1}$ обратной матрицы.

- 7. Квадратные матрицы $< M, \times, E > -$ некоммутативная группа, если $detA \neq 0 \Rightarrow \exists a^{-1}$. Замкнутость: $det(A \cdot B) = detA \cdot detB \neq 0$.
- **8.** Множество всех биекций множества X в себя: $f(x): X \to X$. Операция композиция: $\circ \Rightarrow < M, \circ, e_x > -$ некоммутативная группа. Существует обратная функция и тоже биекция.

$$(f(x) \circ g(x)) \circ h(x) = f(x) \circ (g(x) \circ h(x))$$
$$f(x) \circ g(x) \neq g(x) \circ f(x)$$

9. Свободная группа. Элементы – слова из символов алфавита и обратных символов.

$$w_1 = a_1 \dots a_k, \qquad w_2 = b_1 \dots b_m,$$

Операция * – приписывание одного слова к другому (ассоциативная, но не коммутативная):

$$w_1 * w_2 = a_1 \dots a_k b_1 \dots b_m$$

 $e = \Lambda$ – пустое слово.

$$\forall a_i, b_i \exists a_i^{-1}, b_i^{-1}$$
. Тогда

$$w_1^{-1} = (a_1 \dots a_k)^{-1} = a_k^{-1} \dots a_1^{-1} \Rightarrow w_1 * w_1^{-1} = w_1^{-1} * w_1 = \Lambda$$
. Покажем это.

$$w_1 * w_1^{-1} = a_1 \dots (a_k * a_k^{-1}) \dots a_1^{-1} = a_1 \dots \Lambda \dots a_1^{-1} = \dots = a_1 * a_1^{-1} = \Lambda,$$

для $w_1^{-1} * w_1$ аналогично.

10. Понятие **конечной группы** содержательно как само по себе, так и в связи с их ролью в алгебраической теории чисел, комбинаторике, теории кодирования, теории решеток, классификации многообразий, и т.д.

Порядок конечной группы равен числу элементов группы.

Конечную полугруппу, моноид, группу можно задать таблицей Кэли:

Пусть $M = \{a_1, a_2\}$ – два элемента:

*	a_1	a_2
a_1	a_{1}/a_{2}	a_{1}/a_{2}
a_2	a_1/a_2	a_{1}/a_{2}

Всего полугрупп из двух элементов 16.

Пусть единичный элемент принадлежит множеству M.

Положим $a_2=e$. Тогда $a_2\cdot a_2\neq e$, т. к. $a_2\neq e$

Аналогично $a_1 = e$

*	e	a_2
e	е	a_2
a_2	a_2	e/a_2

*	е	a_1
e	е	a_1
a_1	a_1	e/a_1

Всего моноидов из двух элементов 4.

Всего групп из двух элементов 2: $a_1 = e$ или $a_2 = e$.

*	$a_1 = e$	a_2
е	е	a_2
a_2	a_2	е

*	a_1	$a_2 = e$
a_1	е	a_1
е	a_1	е

Пример группы из четырех элементов. $M = \{a_1, a_2, a_3, a_4\}$. Не учитывая, какой элемент единичный, позже покажем, что таких групп две. В таблице пример одной из них.

$$a_1 = e$$
.

*	е	a_2	a_3	a_4
e	е	a_2	a_3	a_4
a_2	a_2	a_3	a_4	е
a_3	a_3	a_4	е	a_2
a_4	a_4	е	a_2	a_3

$$e * a_i = a_i * e = a_i$$
 $(a_1 = e)$
$$a_2^{-1} = a_4$$
 $a_3 * a_3 = e \Rightarrow a_3^{-1} = a_3$ $a_4^{-1} = a_2$

Легко показать, что в конечной группе в любой строке или столбце таблицы Кэли все элементы различны (самостоятельно, от противного).

11. Группа классов вычетов по модулю n: $x = y \pmod{n}$. В каждом классе целые числа с одинаковым остатком от деления на n.

Для $n = 4 \Rightarrow 4$ класса

$$C_0 = \{0; \pm 4; \pm 8; \dots\}$$

$$C_1 = \{1; 5; -3; 9; -7; \dots\}$$

$$C_2 = \{2; 6; -2; 10; -6; \dots\}$$

$$C_3 = \{3; 7; -1; 11; -5; \dots\}$$

Введем операцию сложение: $C_l + C_k = C_r$, $r = (l+k) \pmod{n}$

Построим таблицу Кэли для операции сложения. Получим группу.

+	C_0	C_1	C_2	C_3
C_0	C_0	C_1	C_2	C_3
C_1	C_1	C_2	C_3	C_0
C_2	C_2	C_3	C_0	C_1
\mathcal{C}_3	C_3	C_0	C_1	C_2

$$\exists e = C_0 \quad C_1^{-1} = C_3 \qquad C_3^{-1} = C_1 \qquad C_2^{-1} = C_2$$

Построим таблицу Кэли для операции умножения. $C_e * C_k = C_r$, $r = (e * k) \operatorname{mod} n$

	*	C_0	C_1	C_2	\mathcal{C}_3
	C_0	C_0	C_0	C_0	C_0
	C_1	C_0	C_1	C_2	\mathcal{C}_3
	C_2	C_0	C_2	C_0	\mathcal{C}_2
	C_3	C_0	C_3	C_2	C_1
Ī	Іолучим моног	ид: $e = C_1$	$C_1^{-1} = C_1 \qquad \nexists \ 0$	$C_2^{-1} \qquad C_3^{-1} = 0$	$\overline{C_3}$

12. Группа самосовмещений правильного *п*-угольника.

Группа состоит из поворотов и симметрий: $G = < M, \circ, \varphi_0 >$, где M — множество вершин n — угольника, \circ — операция композиция, $\varphi_0 = e$ (поворот на 0°) — единичный элемент.

- 1. Повороты на $0, \frac{2\pi}{n}, \dots, \frac{2\pi(n-1)}{n}$. Для определенности, против часовой стрелки.
- 2. Симметрии (будем обозначать $-\psi$)

12.1. Для треугольника (n = 3) получим три поворота и три симметрии:

$$G_{\triangle} = \{\varphi_0, \varphi_1(\frac{2\pi}{3}), \varphi_2(\frac{4\pi}{3}), \psi_1, \psi_2, \psi_3\}$$

Симметрии относительно осей l_1, l_2, l_3 .

Таблица Кэли для группы G_{\triangle} .

o	$oldsymbol{arphi}_0$	$arphi_1$	$oldsymbol{arphi}_2$	ψ_1	ψ_2	ψ_3
$arphi_0$	$oldsymbol{arphi}_0$	$arphi_1$	$oldsymbol{arphi}_2$	ψ_1	ψ_2	ψ_3
$arphi_1$	$arphi_1$	$oldsymbol{arphi}_2$	$oldsymbol{arphi}_0$	ψ_2	ψ_3	ψ_1
φ_2	$oldsymbol{arphi}_2$	$oldsymbol{arphi}_0$	$arphi_1$	ψ_3	ψ_1	ψ_2
ψ_1	ψ_1	ψ_3	ψ_2	$oldsymbol{arphi}_0$	$oldsymbol{arphi}_2$	$arphi_1$
ψ_2	ψ_2	ψ_1	ψ_3	$arphi_1$	$oldsymbol{arphi}_0$	$oldsymbol{arphi}_2$
ψ_3	ψ_3	ψ_2	ψ_1	$oldsymbol{arphi}_2$	$arphi_1$	φ_0

$$e=\varphi_0, \qquad \varphi_0^{-1}=\varphi_0, \qquad \varphi_1^{-1}=\varphi_2, \qquad \varphi_2^{-1}=\varphi_1, \quad \psi_i^{-1}=\ \psi_i, i=1,...,3$$

Пример нахождения элементов: $\varphi_1 \circ \psi_2 = \psi_3$ (сначала применяем симметрию ψ_2 , затем поворот против часовой стрелки на угол $\frac{2\pi}{3}$):

8

Группа некоммутативная: $\psi_2 \circ \varphi_1 = \psi_1$.

Подгруппы:

1.
$$H_1 = \{ \varphi_0 \}$$

2.
$$H_2 = \{\varphi_0, \varphi_1, \varphi_2\} = <\varphi_1> = <\varphi_2> -$$
 группа вращений

3.
$$H_3 = \{\varphi_0, \psi_1\} = \langle \psi_1 \rangle$$

4.
$$H_4 = \{\varphi_0, \psi_2\} = \langle \psi_2 \rangle$$

5.
$$H_5 = \{\varphi_0, \psi_3\} = \langle \psi_3 \rangle$$

6.
$$H_6 = G_{\triangle}$$

12.2. Группа самосовмещений квадрата

$$G_{\square} = \{\varphi_0, \varphi_1(\frac{\pi}{2}), \varphi_2(\pi), \varphi_3(\frac{3\pi}{2}), \psi_1, \psi_2, \psi_3, \psi_4\}$$

ψ_i соответствует оси l_i

Таблица Кэли

o	$arphi_0$	$arphi_1$	φ_2	φ_3	ψ_1	ψ_2	ψ_3	ψ_4
φ_0	$arphi_0$	φ_1	φ_2	φ_3	ψ_1	ψ_2	ψ_3	ψ_4
$arphi_1$	φ_1	φ_2	φ_3	$arphi_0$	ψ_4	ψ_1	ψ_2	ψ_3
φ_2	φ_2	φ_3	$arphi_0$	φ_1	ψ_3	ψ_4	ψ_1	ψ_2
φ_3	φ_3	$arphi_0$	$arphi_1$	φ_2	ψ_2	ψ_3	ψ_4	ψ_1
ψ_1	ψ_1	ψ_2	ψ_3	ψ_4	$arphi_0$	$arphi_1$	φ_2	φ_3
ψ_2	ψ_2	ψ_3	ψ_4	ψ_1	φ_3	$arphi_0$	φ_1	φ_2
ψ_3	ψ_3	ψ_4	ψ_1	ψ_2	φ_2	φ_3	$arphi_0$	$arphi_1$
ψ_4	ψ_4	ψ_1	ψ_2	φ_3	$arphi_1$	φ_2	φ_3	$arphi_0$

$$e=\varphi_0, \; \varphi_0^{-1}=\varphi_0, \; \varphi_1^{-1}=\varphi_3, \; \varphi_2^{-1}=\varphi_2, \; \varphi_3^{-1}=\varphi_1, \; \psi_i^{-1}=\; \psi_i, i=1,\dots,4.$$

Некоммутативная группа (убедиться самостоятельно).

Выделена группа вращений квадрата.

Подгруппы:

1.
$$H_1 = \{ \varphi_0 \}$$

2.
$$H_2 = \{\varphi_0, \varphi_1, \varphi_2, \varphi_3\} = <\varphi_1> = <\varphi_3>$$
 – группа вращений квадрата.

3.
$$H_3 = \{\varphi_0, \varphi_2\} = <\varphi_2>$$

4.
$$H_4 = \{\varphi_0, \psi_1\} = \langle \psi_1 \rangle$$

5.
$$H_5 = \{\varphi_0, \psi_2\} = \langle \psi_2 \rangle$$

6.
$$H_6 = \{\varphi_0, \psi_3\} = \langle \psi_3 \rangle$$

7.
$$H_7 = \{\varphi_0, \varphi_2, \psi_1, \psi_3\}$$

8.
$$H_8 = \{\varphi_0, \varphi_2, \psi_2, \psi_4\}$$

9.
$$H_7 = G_{\Box}$$

Убедитесь, что при попытке построения любой другой подгруппы нарушится замкнутость операции.