How to create a LATEX document from a Maxima script

Richel Bilderbeek

March 21, 2015

Abstract

This article is created within the CAS program Maxima and shows (1) algebraic differentiation (2) plotting, and (3) listings. This article is self-containing: it can be recreated from the listings it contains. The article itself is intended to be of publishable quality, having (1) an abstract (2) a bibliography.

1 Introduction

IATEX is commonly used for writing publishable scientific articles[1]. Algebraic manipulations can be done by a CAS, for example Maxima, Maple or Mathematica. Maxima is the only free and open-source program, and it is the oldest free and open-source computer algebra system, with development started in 1967 (as Macsyma) or 1982 (as MAXIMA). This article is an example of writing a IATEX article within Maxima

2 Materials and methods

A script executes the process from Maxima file to LATEX-formatted document in two steps. The first step executes the Maxima script to create a LATEX (.tex) file. The second step converts the LATEX file to Portable Document Format (.pdf). The script does not require user intervention.

The Maxima script consists out of two parts: algebraic manipulations and LATEX output

The algebraic manipulations demonstrated are: (1) defining a function (2) calculate its derivative and, (3) plot this derivative.

The second part uses these algebraic results to create a LATEX (.tex) file. It creates an article displaying the formula's, the single plot in the Results section. In the Appendix, it shows: (1) the bash script to create a PDF from the Maxima script (2) the Maxima script (3) the generated LATEX code

3 Results

Equation f(x) used:

$$f(x) = 1.0 \times 10^{-4} x^4 - 0.002 x^3 + 0.03 x^2 - 0.4 x + 1$$

Equation g(x) is the derivative of f(x) with respect to x:

$$g(x) = 4.0 \times 10^{-4} x^3 - 0.006 x^2 + 0.06 x - 0.4$$

Equation h(x,y) = f(x) + g(y), which equates to:

$$h\left(x,y\right) = 4.0 \times 10^{-4} \, y^3 - 0.006 \, y^2 + 0.06 \, y + 1.0 \times 10^{-4} \, x^4 - 0.002 \, x^3 + 0.03 \, x^2 - 0.4 \, x + 0.6 \, x + 0.002 \, x^3 + 0.002 \, x^3 + 0.002 \, x^2 + 0.002 \, x + 0.0$$

Plotting g(x):

Plotting h(x,y):

4 Discussion

Writing LATEX within Maxima can be done, but it is a bit cumbersome: Maxima does not know LATEX syntax and just creates contextless strings, which might not be compilable by LATEX. However, because the script does create a .tex file, this file can be inspected easily with a LATEX tool like texmaker.

References

[1] Gaudeul, A. 2006 Do Open Source Developers Respond to Competition?: The (La)TeX Case Study. Available at SSRN: http://ssrn.com/abstract=908946 or http://dx.doi.org/10.2139/ssrn.908946

A Script file

```
#!/bin/bash
maxima_input_file="create_tex_article.txt"
```

```
tex_output_file="create_tex_article_output.tex"

if [ -e $tex_output_file ]
then
   rm $tex_output_file
fi

maxima -b $maxima_input_file
pdflatex $tex_output_file
pdflatex $tex_output_file
```

B Maxima file

```
/* Maxima batch file */
/* Load libraries */
load("stringproc")$
/* Input filename */
bash_filename: "create_tex_article.sh"$
maxima_filename: "create_tex_article.txt" $ /* this file */
/* Output filenames */
tex_filename: "create_tex_article_output.tex" $
plot2d_filename: "/home/richel/GitHubs/Maxima/
    create_tex_article_output_plot2d.pdf"$
plot3d_filename: "/home/richel/GitHubs/Maxima/
   create_tex_article_output_plot3d.pdf"$
/* Do the calculations */
F(x) := f(x) = (0.0001*(x^4)) - (0.002*(x^3)) + (0.03*(x^4))
    ^{2}) - (0.4*x) + 1;
G(x) := g(x) = ', (diff(rhs(F(x)),x));
H(x,y) := h(x,y) = '(rhs(F(x)) + rhs(G(y)));
plot2d (
  rhs(G(x)), [x, -10, 10],
  [title, string (G(x))],
  [\,xlabel\;,"x"\,]\;,
  [ylabel, "g(x)"],
  [color, black],
  [pdf_file,plot2d_filename]
);
```

```
plot3d(
  rhs(H(x,y)), [x,-10,10], [y,-10,10],
  [title,"h(x,y)"],
   [xlabel,"x"],
[ylabel,"y"],
   zlabel, "z"],
  [pdf_file,plot3d_filename]
);
/* Write results to TeX file */
stream: openw(tex_filename)$
 printf(stream, "\documentclass{article}^{~}\%") $ printf(stream, "~\%") $ 
printf(stream,"\\usepackage{listings}~\%")$
printf(stream, "\\usepackage{graphicx}~\%")$
printf(stream, "~%")$
printf(stream,"\\title{How to create a \\LaTeX~document
   printf(stream,"\\author{Richel Bilderbeek}~%")$
printf(stream, "\\date{\\today}~\%")$
printf(stream, "~\%")$
printf(stream,"\\begin{document}^\%")$
printf(stream, "~%")$
printf(stream,"\\maketitle~%")$
printf(stream, "~%")$
printf(stream," \setminus begin\{abstract\}^{\sim}\%")\$
printf(stream," This article is created within the CAS
   program Maxima~%")$
printf(stream, "and shows (1) algebraic differentiation
    (2) plotting, and (3) listings. \%")$
printf(stream, "This article is self-containing: it can be
     recreated from the listings it contains. "%")$
printf(stream,"The article itself is intended to be of "%"
   ) $
printf(stream," publishable quality, having (1) an
    abstract (2) a bibliography. "%")$
printf(stream,"\\end{abstract}~\%")$
printf(stream, "~%")$
printf(stream, "\\section{Introduction}^{\sim}")$
\texttt{printf}\,(\,\texttt{stream}\,\,,\,\text{```}\%\text{''}\,)\,\$
printf(stream,"\\LaTeX~~is commonly used for writing
    publishable scientific articles \\cite {gaudeul2006}.~%"
   ) $
printf(stream," Algebraic manipulations can be done by a
   CAS, for example Maxima, Maple or Mathematica. "%")$
```

```
printf(stream, "Maxima is the only free and open-source
   program, and it is the oldest free and open-source
   computer algebra system, with development started in
   1967 (as Macsyma) or 1982 (as MAXIMA).~%")$
printf(stream, "This article is an example of writing a \\
   LaTeX~~ article within Maxima~%")$
printf(stream, "~%")$
printf(stream, "\\section{Materials and methods}~\%")$
printf(stream, "~%")$
printf(stream,"A script executes the process from Maxima
   file to \\LaTeX-formatted document in two steps.~\%")\$
printf(stream,"The first step executes the Maxima script
   to create a \\LaTeX~~(.tex) file.~%")$
printf(stream, "The second step converts the \\LaTeX~ file
    to Portable Document Format (.pdf).~%")$
printf(stream,"The script does not require user
   intervention.~%")$
printf(stream, "~%")$
printf(stream,"The Maxima script consists out of two
   parts:~%")$
printf(stream, "algebraic manipulations and \LaTeX~~
   output~%")$
printf(stream, "~\%")$
printf(stream,"The algebraic manipulations demonstrated
   are: ~%")$
printf(stream,"(1) defining a function~%")$
printf(stream,"(2) calculate its derivative and,~%")$
printf(stream,"(3) plot this derivative.~%")$
printf(stream, "~\%") \$
printf(stream, "The second part uses these algebraic
   results to create a \\LaTeX~~(.tex) file.~%")$
printf(stream," It creates an article displaying the
   formula's, the single plot in \(^{\%}\)")\$
printf(stream, "the Results section. "%")$
printf(stream,"In the Appendix, it shows: ~%")$
printf(stream,"(1) the bash script to create a PDF from
   the Maxima script "%")$
printf(stream,"(2) the Maxima script~%")$
printf(stream\,,"\,(3)\ the\ generated\ \backslash LaTeX^{\text{--}}code^{\text{--}}\%"\,)\$
printf(stream, "~%")$
printf(stream," \setminus section(Results)^{\sim}\%")
printf(stream, "~%")$
printf(stream, "Equation $f(x)$ used:~%")$
printf(stream, "~\%") \$
printf(stream, tex(F(x), false))$
printf(stream, "~\%")$
```

```
printf(stream, "Equation g(x) is the derivative of f(x)
    $ with respect to  $x$:~\%")\$
printf(stream, "~%")$
printf (stream, tex(G(x), false))$
printf(stream, "~%")$
printf(stream, "Equation h(x,y) = f(x) + g(y), which
   equates to:~%")$
printf(stream, "~%")$
printf(stream, tex(H(x,y), false))$
printf(stream, "~%")$
printf(stream, "Plotting $g(x)$:~%")$
printf(stream, "~%")$
printf(stream, "\\fbox{\\includegraphics[scale=0.8]{")$
printf(stream, plot2d_filename)$
printf(stream,"}}~%")$
printf(stream,"Plotting $h(x,y)$:~\%")$
printf(stream, "~\%")\$
printf(stream, "\\fbox{\\includegraphics[scale=0.8]{")$
printf(stream, plot3d_filename)$
printf(stream,"}}~%")$
printf(stream, "~%")$
printf(stream, " \setminus section{Discussion}^{\infty}")$
printf(stream, "~%")$
printf(stream, "Writing \\LaTeX~~within Maxima can be done
   , but it is a bit cumbersome: \(^{\%}\)")\$
printf(stream, "Maxima does not know \\LaTeX~ syntax and
   just creates contextless strings, "%")$
printf(stream, "which might not be compilable by \\LaTeX
   .~%")$
printf(stream,"However, because the script does create a
   .tex file, ~%")$
printf(stream," this file can be inspected easily with a
   \LaTeX^{\sim} tool like texmaker.^{\%}")$
printf(stream, "~%")$
printf(stream, "\begin{thebibliography}{9}~\")$
printf(stream, "~%")$
printf(stream\ ," \setminus bibitem\{gaudeul2006\}^{\sim}\%") \$
printf(stream,"
                  Gaudeul, A.~%")$
printf(stream,"
                  2006~%")$
printf(stream," Do Open Source Developers Respond to
   Competition?: The (La)TeX Case Study.~%")$
                 Available at SSRN: http://ssrn.com/
printf(stream,"
   abstract = 908946 or http://dx.doi.org/10.2139/ssrn
   .908946~\%")$
```

```
printf(stream\ ," \setminus end\{thebibliography\}^{\sim}\%")\$
printf(stream, "~%")$
printf(stream," \ \ \ \ \ )\$
printf(stream, "~%")$
printf(stream, "\\section{Script file}~%")$
printf(stream, "~%")$
printf(stream,"\\lstinputlisting[language=C++,
    showstringspaces=false, breaklines=true, frame=single]{"
    ) $
printf(stream, bash_filename)$
printf(stream,"}~%")$
printf(stream, "~%")$
printf(stream,"\\lstinputlisting[language=C++,
    showstringspaces=false, breaklines=true, frame=single]{"
   ) $
printf(stream, maxima_filename)$
printf(stream,"}~%")$
printf(stream, "~%")$
printf(stream, "\\section{\\LaTeX~~file}~%")$
printf(stream, "~%")$
printf(stream,"\\lstinputlisting[language=tex,
    showstringspaces=false, breaklines=true, frame=single]{"
   ) $
printf(stream, tex_filename)$
printf(stream,"}~%")$
printf(stream,"~%")$
printf(stream,"\\end{document}~\%")$
close (stream)$
```

C LATEX file

```
\documentclass{article}
\usepackage{listings}
\usepackage{graphicx}
\title{How to create a \LaTeX^document from a Maxima script}
\author{Richel Bilderbeek}
\date{\today}
\begin{document}
```

```
\ maketitle
\begin { abstract }
This article is created within the CAS program Maxima
and shows (1) algebraic differentiation (2) plotting, and
    (3) listings.
This article is self-containing: it can be recreated from
    the listings it contains.
The article itself is intended to be of
publishable quality, having (1) an abstract (2) a
   bibliography.
\end{abstract}
\section { Introduction }
\LaTeX~is commonly used for writing publishable
   scientific articles\cite{gaudeul2006}.
Algebraic manipulations can be done by a CAS, for example
    Maxima, Maple or Mathematica.
Maxima is the only free and open-source program, and it
   is the oldest free and open-source computer algebra
   system, with development started in 1967 (as Macsyma)
   or 1982 (as MAXIMA).
This article is an example of writing a \LaTeX article
   within Maxima
\section{Materials and methods}
A script executes the process from Maxima file to \LaTeX-
   formatted document in two steps.
The first step executes the Maxima script to create a \
   LaTeX~(.tex) file.
The second step converts the \LaTeX~file to Portable
   Document Format (.pdf).
The script does not require user intervention.
The Maxima script consists out of two parts:
algebraic manipulations and \LaTeX output
The algebraic manipulations demonstrated are:
(1) defining a function
(2) calculate its derivative and,
(3) plot this derivative.
```

```
The second part uses these algebraic results to create a
           \Delta TeX^{(.tex)} file.
It creates an article displaying the formula's, the
          single plot in
the Results section.
In the Appendix, it shows:
(1) the bash script to create a PDF from the Maxima
           script
(2) the Maxima script
(3) the generated \LaTeX~code
\section { Results }
Equation f(x) used:
\$f \setminus left(x \setminus right) = 1.0 \setminus times 10^{-4} \setminus x^4 - 0.002 \setminus x
             3+0.03 \setminus x^2-0.4 \setminus x
   +1$$
Equation g(x) is the derivative of f(x) with respect
          to $x$:
\$g \setminus left(x \setminus right) = 4.0 \setminus times 10^{-4} \setminus x^3 - 0.006 \setminus x
             2+0.06\,x-0.4$$
Equation h(x,y) = f(x) + g(y), which equates to:
\ \left(x , y\right)=4.0 \times 10^{-4}\,y^3-0.006\,y
             2+0.06\,y+
   1.0 \times 10^{-4} \setminus x^4 - 0.002 \setminus x^3 + 0.03 \setminus x^2 - 0.4 \setminus x
              +0.6$$
Plotting g(x):
\footnote{fbox{\normalfootnote{hel/GitHubs/}}} \footnote{fbox{\normalfootnote{hel/GitHubs/}}}
          Maxima/create_tex_article_output_plot2d.pdf}}
Plotting h(x,y):
\footstar{\colored{condense} fbox{\colored{condense} first [scale = 0.8]{\colored{condense} / fbox{\colored{condense} first 
          Maxima/create_tex_article_output_plot3d.pdf}}
\section { Discussion }
Writing \LaTeX~within Maxima can be done, but it is a bit
             cumbersome:
```

```
Maxima does not know \LaTeX~syntax and just creates
   contextless strings,
which might not be compilable by \LaTeX.
However, because the script does create a .tex file .
this file can be inspected easily with a \LaTeX~tool like
    texmaker.
\begin{thebibliography}{9}
\bibitem { gaudeul 2006 }
  Gaudeul, A.
  2006
  Do Open Source Developers Respond to Competition?: The
     (La)TeX Case Study.
  Available at SSRN: http://ssrn.com/abstract=908946 or
     http://dx.doi.org/10.2139/ssrn.908946
\end{thebibliography}
\appendix
\section { Script file }
\lstinputlisting[language=C++,showstringspaces=false,
   breaklines=true, frame=single | { create_tex_article.sh }
\section {Maxima file }
\lstinputlisting[language=C++,showstringspaces=false,
   breaklines=true, frame=single | { create_tex_article.txt }
\section {\LaTeX~file}
\lstinputlisting[language=tex, showstringspaces=false,
   breaklines=true, frame=single | { create_tex_article_
   output.tex}
\end{document}
```