Computerstøttet beregning

Lektion 9. Repetition

Martin Qvist

qvist@math.aau.dk

Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår Aalborg Universitet

21. april 2009

people.math.aau.dk/~qvist/teaching/csb-09

Differentialligning

Find en funktion y(x) så

$$y'(x) = f(x, y(x))$$

 $y(x_0) = y_0,$ (1)

hvor f er en kendt funktion af to variable og x_0 og y_0 er to reelle tal.

Differentialligning

Find en funktion y(x) så

$$y'(x) = f(x, y(x))$$

 $y(x_0) = y_0,$ (1)

hvor f er en kendt funktion af to variable og x_0 og y_0 er to reelle tal.

Sætning: (Eksistens og entydighed) Hvis f(x,y) er kontinuert og $\frac{\partial f}{\partial y}(x,y)$ er kontinuert og begrænset, findes der for ethvert valg af

begyndelsesbetingelse (x_0, y_0) én og kun en løsning til (1).

Differentialligning

Find en funktion y(x) så

$$y'(x) = f(x, y(x))$$

 $y(x_0) = y_0,$ (1)

hvor f er en kendt funktion af to variable og x_0 og y_0 er to reelle tal.

Sætning: (Eksistens og entydighed)

Hvis f(x,y) er kontinuert og $\frac{\partial f}{\partial y}(x,y)$ er kontinuert og begrænset, findes der for ethvert valg af begyndelsesbetingelse (x_0,y_0) én og kun en løsning til (1).

Problem: Hvordan beregner vi denne løsning?

Eulers metode, grafisk

Eulers metode, grafisk

Eulers metode, grafisk

Eulers metode

Eulers metode:

$$x_1 = x_0 + h$$

$$y_1 = y_0 + h \cdot f(x_0, y_0).$$

Det *n*'te Euler skridt:

$$x_n = x_{n-1} + h$$

 $y_n = y_{n-1} + h \cdot f(x_{n-1}, y_{n-1}), \quad n = 1, 2, \dots$

Lokal og global fejl

Lokal og global fejl

Fejl i Eulers metode

• For Eulers metode er den lokale fejl $O(h^2)$, dvs.

$$|y(x_1) - y_1| = |y(x_0 + h) - y_1| \le Ch^2$$
,

hvor C afhænger af y'' på intervallet $[x_0, x_1]$.

Fejl i Eulers metode

• For Eulers metode er den lokale fejl $O(h^2)$, dvs.

$$|y(x_1) - y_1| = |y(x_0 + h) - y_1| \le Ch^2$$
,

hvor C afhænger af y'' på intervallet $[x_0, x_1]$.

ullet Den globale fejl er O(h), dvs

$$|y(x_N) - y_N| = |y(x_0 + Nh) - y_N| \le Ch.$$

hvor C afhænger af y'' på intervallet $[x_0, x_N]$.

Fejl i Eulers metode

• For Eulers metode er den lokale fejl $O(h^2)$, dvs.

$$|y(x_1) - y_1| = |y(x_0 + h) - y_1| \le Ch^2$$
,

hvor C afhænger af y'' på intervallet $[x_0, x_1]$.

ullet Den globale fejl er O(h), dvs

$$|y(x_N) - y_N| = |y(x_0 + Nh) - y_N| \le Ch.$$

hvor C afhænger af y'' på intervallet $[x_0, x_N]$.

Vi siger, at Eulers metode er en første-ordens metode.

Eulers metode i praksis

I praksis er begyndelsesbetingelsen givet i et punkt $x_0 = a$ og vi ønsker at beregne y(b) for et givet b > a.

Vi fastlægger derfor N som antallet af Euler skridt vi vil tage for at gå fra a til b, og derudfra definerer vi skridtlængden

$$h = \frac{b - a}{N}.$$

Hvis E_N betegner fejlen hørende til N inddelinger

$$E_N = |y(x_N) - y_N| = |y(b) - y_N|,$$

da har vi konvergensen

$$E_N \le Ch = C' \frac{1}{N}.$$

(Typisk har vi endda $E_N \approx Ch$.)