平成 XX 年度 修士論文

日本語タイトル

English Title

提出日平成XX年X月X日

審查員主查 XX XX 教授

審 査 員 XX XX 准教授

所 属 XXX 大学大学院

博士前期課程 工学研究科

XXXX 専攻

学生番号 XXXXXXXX

XX XX

目次

第1章	序論	1
1.1	 研究背景	1
1.2	本研究の目的	
1.3	本論文の構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
第2章	形状認識と位置・姿勢計測	3
2.1	形状認識・位置・姿勢計測での基本方針	3
2.2	反射音圧分布の特徴....................................	3
第3章	ニューラルネットワークによる認識・計測	5
3.1	パーセプトロン	6
3.2	ニューラルネットワーク	6
3.3	ニューラルネットワークの学習	6
3.4	学習を効果的に行うため	6
第4章	畳み込みニューラルネットワーク	7
4.1	全結合層の問題点	7
4.2	畳み込みニューラルネットワークの構成...................	7
4.3	畳み込み層	7
4.4	プーリング層	7
第5章	境界要素法	9
5.1	境界要素法とは	10
5.2	基礎積分方程式	10
5.3	離散化	10
5.4	境界積分	10
5.5	境界要素法による反射音圧分布生成	10

IV	目次
LY	H/N

第6章	シミュレーションによるシステム構成の検討	13
6.1	MLP と CNN の構成ごとの比較	13
6.2	学習データが限られた場合の構成ごとの比較	14
6.3	センサアレイ間隔ごとの精度の違い	14
6.4	センサアレイ補間による計測精度の違い	14
6.5	TOF の利用	14

図目次

表目次

5.1	測定対象物体																											1	1
J.1	(大) (大) (大) (大) (大)	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	 		•	•	•	•		1

第1章

序論

- 1.1 研究背景
- 1.2 本研究の目的
- 1.3 本論文の構成

第2章

形状認識と位置・姿勢計測

- 2.1 形状認識・位置・姿勢計測での基本方針 センサアレイを用いて認識することを説明
- 2.2 反射音圧分布の特徴

物体ごとの反射音圧分布の例を挟みながら説明

- 2.2.1 形状ごとの特徴
- 2.2.2 位置変化ごとの特徴
- 2.2.3 角度変化ごとの特徴

第3章

ニューラルネットワークによる認 識・計測

- 3.1 パーセプトロン
- 3.1.1 パーセプトロンとは
- 3.1.2 パーセプトロンの限界
- 3.1.3 多層パーセプトロン
- 3.2 ニューラルネットワーク
- 3.2.1 ニューラルネットワークとは
- 3.2.2 活性化関数
- 3.2.3 出力層
- 3.3 ニューラルネットワークの学習
- 3.3.1 訓練データとテストデータ
- 3.3.2 損失関数
- 3.3.3 誤差逆伝搬法
- 3.3.4 パラメータ更新
- 3.4 学習を効果的に行うため
- 3.4.1 重みの初期値
- 3/10 ミーバッチ学型

第4章

畳み込みニューラルネットワーク

- 4.1 全結合層の問題点
- 4.2 畳み込みニューラルネットワークの構成
- 4.3 畳み込み層
- 4.3.1 畳み込み層の役割
- 4.3.2 パティング
- 4.3.3 ストライド
- 4.4 プーリング層

第5章

境界要素法

- 5.1 境界要素法とは
- 5.2 基礎積分方程式
- 5.2.1 ヘルムホルツ方程式
- 5.2.2 重み付き残差法
- 5.2.3 グリーン関数
- 5.2.4 音場の境界積分表現
- 5.2.5 境界積分方程式
- 5.2.6 音源項
- 5.3 離散化
- 5.3.1 境界の要素分割
- 5.3.2 境界条件
- 5.3.3 連立方程式
- 5.4 境界積分
- 5.4.1 3次元空間
- 5.4.2 局所座標
- 5.4.3 法線方向微分
- 5.4.4 積分の計算

形状	底面	高さ
四角柱(大)	30mm × 30mm	40mm
四角柱(小)	20mm × 20mm	40mm
円柱	半径 15mm	40mm
正三角柱	一辺 30mm	40mm
正六角柱	一辺 10mm	40mm
正八角柱	一辺 8.28mm	40mm

表 5.1 測定対象物体

5.5.2 メッシュファイルの作成

gmsh

5.5.3 データ処理の流れ

xoxb-246714788144-mqdioPsY9m2qKiXKT1Fq6BxP クライアント ID 1012705265128-v2b9rc655o37gp5n5fmll0cl1pcl795j.apps.googleusercontent.com クライアント シークレット OMdjspK1aVVN7l664KRtO6MI

第6章

シミュレーションによるシステム構 成の検討

6.1 MLP と CNN の構成ごとの比較

学習データとテストデータについて 学習データにはそれぞれのオブジェクト 形状認識結果

位置計測結果

- 6.1.1 角度計測結果
- 6.2 学習データが限られた場合の構成ごとの比較

学習データとテストデータについて

形状認識結果

位置計測結果

- 6.2.1 角度計測結果
- 6.3 センサアレイ間隔ごとの精度の違い

形状認識結果

位置計測結果

- 6.3.1 角度計測結果
- 6.4 センサアレイ補間による計測精度の違い

形状認識結果

位置計測結果

- 6.4.1 角度計測結果
- 6.5 TOF の利用

形状認識結果

位置計測結果

6.5.1 角度計測結果