1. If u(X, Y) and v(X, Y) are harmonic conjugates of each other, show that they are constant functions.

Assume: Domain is a domain (What does this mean?)

First, we have:
$$Ux = Vy$$
, — (1)
 $Uy = -Vx$. —(2)

But we also have:
$$V_x = U_y$$
, — (21)
 $V_y = -U_x$. — (11)

(1), (1') give
$$Ux = -Ux$$
 or $Ux = 0$.
Similarly, $Vx = 0$.
In turn, $Uy = 0 = Vy$.

Since the domain is connected, u and v are constants.

On a conrected domain: total derivative =0 > constant.

Q2.

14 August 2021 01:26

2. Show that $u = XY + 3X^2Y - Y^3$ is harmonic and find its harmonic conjugate.

Compute:
$$u_{xx}(x,y) = 64$$
, $u_{yy}(x,y) = -64$.

Want:
$$V = Ux$$

$$= Y + 6xY.$$

$$V = \frac{Y^2}{2} + 3xY^2 + \phi(x).$$

Now, we want
$$V_x = -U_y$$
.

$$\int Plug iF in$$

$$3y^2 + \phi'(x) = -x - 3x^2 + 3y^2$$

$$\Rightarrow \phi'(x) = -x - 3x^2.$$

Up to a constant
$$\phi(x) = -\frac{x^2}{2} - x^3$$
.

Use (1)

Thun, $v(x, y) = \frac{1}{2}y^2 + 3xy^2 - \frac{1}{2}x^2 - x^3$.

Methol #2. (Smart)

$$u(x,y) = xy - 3x^2y - y^3$$

More precisely,

$$u(x,y) = I_m \left(\frac{1}{2} z^2 + z^3 \right).$$

Thus,
$$V = -Re\left(\frac{1}{2}z^2 + z^3\right)$$
 works.

3. Find the radius of convergence of the following power series:

a)
$$\sum_{n=0}^{\infty} nz^n$$

a)
$$\sum_{n=0}^{\infty} nz^n$$

b) $\sum_{p \text{ prime}}^{\infty} z^p$

c)
$$\sum_{n \in \mathbb{Z}^n} \frac{n! z^n}{n^n}$$

Inded
$$\lim_{n\to\infty} \frac{n}{n+1} = 1$$
.

(C) Ratio test:
$$\lim_{n\to\infty} \left(\frac{a_n}{a_{n+1}}\right) = \lim_{n\to\infty} \frac{n!}{n^n} \cdot \frac{(n+i)^{n+1}}{(n+i)!}$$

$$=\lim_{N\to\infty}\frac{N!}{(N+1)!}\cdot\frac{(N+1)^n}{N^n}\cdot(N+1)$$

$$= \lim_{n \to \infty} 1 \left(1 + \frac{1}{n} \right)^n$$

(b)
$$\sum_{p:prime} z^p = \sum_{n \ge 1} a_n z^n$$
,

$$a_{in} := \begin{cases} 1, & n \text{ is prime,} \\ 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, \dots \end{cases}$$

$$0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, \dots$$

$$1$$

4. Show that L > 1 in the ratio test (Lecture 3 slides) does not neccessarily imply that the series is divergent.

Lecture 3 slides:

Theorem (Ratio Test)

For a series $\sum_{i=1}^{\infty} a_i$, let $L = \limsup_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right|$. Then, if L < 1, the series converges absolutely.

Remark L > 1 in the above test doesn't imply that the series diverges. (Exercise!)

Take
$$a_1$$
 to be:
$$\frac{1}{1^2}, \frac{1}{1^3}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{3^2}, \frac{1}{3^2}, \frac{1}{4^2}, \frac{1}{4^3}, \dots$$

$$a_1'' a_2'' \dots$$

$$\alpha_{2n} = \frac{1}{n^3}$$
, and

$$Q_{2n-1} = \frac{1}{n^2}$$

Claim 1.
$$\sum_{n=1}^{\infty}$$
 On converges

Proof. Because
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converge

Claim 1.
$$\sum_{n=1}^{\infty} a_n$$
 converges

Proof. Because $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converge.

How? Way #1. Integral test-

Tutorial - 2 Page 6

 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{n(n-1)}$ $\sum_{n=1}^{\infty} \frac{1}{n(n-1)} = \frac{1}{n(n-1)}$

$$C_{1}$$
 C_{2} C_{2} C_{2}

$$\frac{\left(\frac{\Omega_{2n+1}}{\Omega_{2n}}\right)}{\left(\frac{\Omega_{2n+1}}{\Omega_{2n}}\right)} = \frac{\left(\frac{1}{(n+1)^2}\right)^2}{\left(\frac{1}{(n+1)^2}\right)} = \frac{n^3}{(n+1)^2} \to \infty.$$

Thus,
$$\limsup_{i \to \infty} \frac{|\alpha_{i+1}|}{|\alpha_{i}|} > \limsup_{N \to \infty} \frac{|\alpha_{2n+1}|}{|\alpha_{2n}|} = \infty$$
.

B

To elaborate, consider
$$b_n := \frac{a_{i+1}}{a_i}$$

We wanted to compute lin sup la.

5. Construct a infinitely differentiable function $f: \mathbb{R} \to \mathbb{R}$ which is non-zero but vanishes outside a bounded set. Show that there are no holomorphic functions which satisfy this property.

1 Thought #1: f Count be analytic.

#2: There is basically only one (or maybe two)

example(s) there we know of an inf.

diff function which is not analytic.

$$g(x) := \begin{cases} e^{-\sqrt{x}} & \Rightarrow x > 0, \\ 0 & \Rightarrow x \leq 0. \end{cases}$$

g is inf. diff. and vanishes on (- as, o].

Define $f(x) := q(1-x^2)$.

Claim 1. f is inf. differentiable.

Proof. It is a composition of such functions.

Claim 2. f remishes outside a bounded set.

More precisely, f vanishes outside (-1,1).

Proof. If $x \notin (-1, 1)$, then $|x| \geqslant 1$ or $x^2 \geqslant 1$.

Then, $1-x^2 \leqslant 0$.

Thus, $f(x) = g(1-x^2) = 0$, since

g vanishes on (-00, 0].

Claim 3. f is not the zero function.

7. Show that $\sin, \cos : \mathbb{C} \to \mathbb{C}$ are surjective. (In particular, note the difference with real sine and cosine which were bounded by 1).

Let we C be arbitrary.

To solve:
$$e^{i2} - e^{-i2} = 2i\omega \qquad \text{for } z \in C.$$

$$2i^{2} - 2i^{2} = 0.$$

$$e^{2i2} - 2iw e^{i2} - 1 = 0.$$

For the moment, define
$$t = e^{iz}$$
 to see that the above equation is

$$t^2 - 2i\omega t - 1 = 0.$$
 (*)

By FTA, the above has a root to.

Moreover, to
$$\neq$$
 0 rince 0 does not satisfy (x).

Thus, we can find zo such that
$$e^{iz_0} = t_0$$
.

Thus, That we the previous question appropriately.

EC

(WHY?!)

Exp: $C \to C^{\times}$ onto

$$T_{us}$$
, $\sin(z) = \omega$.

8. Show that for any complex number z, $sin^2(z) + cos^2(z) = 1$.

Method #1

Write
$$sin(z) = e^{iz} - e^{-iz}$$
 and

 $\cos(z) = e^{i2} + e^{-iz}$ Compute $\sin^2(z)$ and $\omega s^2(z)$. You'll get

Add and complete.

3

Method # 2. Note: sin and we are holomorphic.

(Sum/diff/composition of holo. fn.)

Define $h(z) := \sin^2(z) + \cos^2(z) - 1$.

h(0) = 0 and $h'(x) = 0 \forall x \in C$

Since (is connected, this implies h = 0. 1

Method #3 Let h Le as earlier

Then, h vanishes on IR.

Since h is analytic, it must be identically o.

(Since otherwise, zeroes of h should be isolated.) []

