SZ effect on small patches of the sky

Marion Jacob & Dafne Arias

NPAC computer science project, IAS, february 2016

Supervisors : Marian Douspis, Alexandre Beelen, Hervé Dole

Outline

- Internal Linear Combination
- -Context : Planck and the SZ effect
- -Method to compute the coefficients
- -Results
- •A method on patches of the sky
- -Zoom on a map
- -Comparison local global
- Conclusion
- -Comparison with different SNR
- -Prospects

Context: Planck and SZ effect

Internal Linear Combination

Map-to-map covariant matrix elements :

$$C_{ij} = \langle \Delta T_i \Delta T_j \rangle = \frac{1}{N_{\text{pix}}} \sum_{p=i}^{N_{\text{pix}}} (T^i(p) - \bar{T}^i) (T^j(p) - \bar{T}^j).$$

Weights:

$$w_i = \frac{\sum_{j=1}^k C_{ij}^{-1}}{\sum_{jk} C_{jk}^{-1}},$$

Converting to get the SZ effect

Band	U _{C IRAS}	C _{C dust}	(U _{C IRAS})(C _{C dust})	U _{C SZ}
[GHz]	[MJy/sr/K _{CMB}]		[MJy/sr/K _{CMB}]	[y _{SZ} /K _{CMB}]
100-avg	244.1 ± 0.3	0.8938 ± 0.0019	218.2 ± 0.3	-0.24815 ± 0.00007
100-detset1	244.9 ± 0.4	0.889 ± 0.003	217.6 ± 0.4	-0.24833 ± 0.00010
100-detset2	243.8 ± 0.4	0.896 ± 0.003	218.4 ± 0.4	-0.24807 ± 0.00009
143-avg	371.74 ± 0.07	0.9632 ± 0.0004 1.0058 ± 0.0009 0.9773 ± 0.0008 0.9238 ± 0.0008	358.04 ± 0.07	-0.35923 ± 0.00006
143-detset1	365.03 ± 0.15		367.15 ± 0.15	-0.35398 ± 0.00011
143-detset2	369.30 ± 0.13		360.93 ± 0.13	-0.35743 ± 0.00010
143-SWBs	378.58 ± 0.14		349.74 ± 0.14	-0.36446 ± 0.00011
217-avg	483.690 ± 0.012	0.85895 ± 0.00011	415.465 ± 0.012	5.152 ± 0.006
217-detset1	480.36 ± 0.02	0.88411 ± 0.00016	424.69 ± 0.02	7.212 ± 0.019
217-detset2	480.314 ± 0.019	0.88235 ± 0.00017	423.804 ± 0.019	7.046 ± 0.018
217-SWBs	486.331 ± 0.018	0.84069 ± 0.00015	408.855 ± 0.018	4.236 ± 0.006
353-avg	287.450 ± 0.009	0.85769 ± 0.00011	246.543 ± 0.009	0.161098 ± 0.000011
353-detset1	289.620 ± 0.012	0.88255 ± 0.00015	255.606 ± 0.012	0.163757 ± 0.000014
353-detset2	287.967 ± 0.013	0.86548 ± 0.00014	249.229 ± 0.013	0.160904 ± 0.000014
353-SWBs	286.786 ± 0.011	0.84997 ± 0.00014	243.759 ± 0.011	0.160456 ± 0.000013
545-avg	58.04 ± 0.03	0.85444 ± 0.00016	49.59 ± 0.03	0.06918 ± 0.00003
545-detset1	58.02 ± 0.03	0.8513 ± 0.0002	49.39 ± 0.03	0.06924 ± 0.00004
545-detset2	58.06 ± 0.05	0.8612 ± 0.0003	50.00 ± 0.05	0.06905 ± 0.00005
857-avg	2.27 ± 0.03	0.9276 ± 0.0002	2.09 ± 0.03	0.0380 ± 0.0004
857-detset1	2.26 ± 0.03	0.9231 ± 0.0003	2.08 ± 0.03	0.0380 ± 0.0005
857-detset2	2.27 ± 0.04	0.9333 ± 0.0003	2.11 ± 0.04	0.0380 ± 0.0005

To sum up

- Smoothing and degrading
- Making patches of the sky
- Converting to Ysz
- •Computing map-to-map covariance matrix and weights
- Summing the maps

A method on patches of the sky

•We build patches with a preselected cluster in the middle.

•LC only on the patches.

•Reconstruct clusters using the SZ effect.

Comparisons: local-global₅₀ SZ effect

Cluster	SNR	Local (us)	Global
PSZ2 G006.76+30.45	35.01	Yes	Yes
PSZ2 G006.49+50.56	23.17	Yes	Yes
PSZ2 G003.93-59.41	17.36	Yes	Yes
PSZ2 G046.88+56.48	12.93	Yes	Yes
PSZ2 G008.47-56.34	10.05	Yes	Yes
PSZ2 G004.45-19.55	9.07	Yes	Yes
PSZ2 G029.80-17.40	9.01	No	No
PSZ2 G028.77-33.56	8.74	Yes	No
PSZ2 G044.77-51.30	8.27	Yes	No
PSZ2 G002.82+39.23	8.07	Yes	Yes
PSZ2 G028.89+60.13	7.52	Yes	No
PSZ2 G012.59-20.10	7.01	Yes	No
PSZ2 G049.09+25.23	6.10	Yes	No
PSZ2 G029.55-60.16	5.03	Yes	No
PSZ2 G069.35-15.58	4.57	Yes	No

•We compare our results with the team that did the same work but on the whole sky.

PSZ2 G069.35-15.58 after linear combination

Region of the sky around cluster PSZ2 G069.35-15.58 after linear combination on this patch

Same region of the sky, around cluster PSZ2 G069.35-15.58, after linear combination on the whole sky

Conclusions

Comparisons with different SNR

•The local method enables us to reconstruct signals until lower values of SNR.

•The constrast diminishes with the SNR, but we can still recognize the cluster's signal.

35.01-SNR

12.93-SNR

Cluster	SNR	Detected
PSZ2 G006.76+30.45	35.01	Yes
PSZ2 G006.49+50.56	23.17	Yes
PSZ2 G003.93-59.41	17.36	Yes
PSZ2 G046.88+56.48	12.93	Yes
PSZ2 G008.47-56.34	10.05	Yes
PSZ2 G004.45-19.55	9.07	Yes
PSZ2 G029.80-17.40	9.01	No
PSZ2 G028.77-33.56	8.74	Yes
PSZ2 G044.77-51.30	8.27	Yes
PSZ2 G002.82+39.23	8.07	Yes
PSZ2 G028.89+60.13	7.52	Yes
PSZ2 G012.59-20.10	7.01	Yes
PSZ2 G049.09+25.23	6.10	Yes
PSZ2 G029.55-60.16	5.03	Yes
PSZ2 G069.35-15.58	4.57	, Yes

Next Steps

•Review of the 1653 cluster using photometry.

Thank you for your attention!