

UNIVERSITÀ DI PARMA Dipartimento di Ingegneria e Architettura

Introduction to Number Theory and Modular Arithmetic

Luca Veltri

(mail.to: luca.veltri@unipr.it)

Course of Cybersecurity, 2022/2023 http://netsec.unipr.it/veltri

Modular Arithmetic

- Define modulo operator a mod n to be remainder when a is divided by n
 - > a = qn + r, where: q = quotient = \[a/n \] and 0≤r ≤ n-1
 - $r = a \mod n$
- n is called the modulus
- The result r of the modulo operation is called the residue of a mod n
- Given two integers a and b, they are said to be "congruent modulo n" if, when divided by n, a and b have same remainder
 - > it means that (a mod n) = (b mod n)
 - \triangleright Use the term congruence for: $a \equiv b \pmod{n}$
- Examples
 - \gt 100 \equiv 34 (mod 11)
 - \rightarrow -12 mod 7 = -5 mod 7 = 2 mod 7 = 9 mod 7
- Note:
 - \rightarrow if a = 0 (mod n), then n|a

Modular Arithmetic (cont.)

- All operations have a result between 0 and n-1
- It is "clock arithmetic"
 - > uses a finite number of values, and loops back from either end
 - > do addition & multiplication and modulo reduce

Modular Arithmetic (cont.)

- Properties of congruence:
 - $ightharpoonup a \equiv b \pmod{n} \Leftrightarrow b \equiv a \pmod{n}$
 - $ightharpoonup a \equiv b \pmod{n} \Leftrightarrow a-b \equiv 0 \pmod{n} \Leftrightarrow n|(a-b)$
 - $\triangleright \forall k, a \equiv a + kn \pmod{n}$
 - \triangleright a = b (mod n) and b = c (mod n) \Rightarrow a = c (mod n)
- Properties of addition, subtraction and product:
 - \rightarrow a op b = (a mod n) op (b mod n) (mod n)
 - \rightarrow i.e. (a <u>op</u> b) mod n = ((a mod n) <u>op</u> (b mod n)) mod n
 - with: op = +, -, *
 - > result: can do reduction at any point, i.e.
 - $(a+b) \mod n = ((a \mod n) + (b \mod n)) \mod n$
 - > the property with the product leads also the following result:
 - $a^k = (a \mod n)^k \pmod n$, i.e. $a^k \mod n = (a \mod n)^k \mod n$
- Example of use:
 - \rightarrow 10^3 mod 7 = 1000 mod 7 = 142*7 + 6 = 6
- however it is easier to compute as:
 10^3 mod 7 = (10 mod 7) ^3 mod 7 = 3^3 mod 7 = 27 mod 7 = 6
 Cvbersecurity Luca Veltri

 Z_n

- Z_n is defined as the set of all integers ≥0 and <n
 - $\geq z_n = \{0, 1, ..., n-1\}$
 - > called set of residues (mod *n*), or set of remainders (mod *n*), or set of residue classes (mod *n*)
- Z_n forms a commutative ring for addition with a multiplicative identity element

Property	Expression				
Commutative Laws	$(w + x) \bmod n = (x + w) \bmod n$ $(w \times x) \bmod n = (x + w) \bmod n$				
Associative Laws	$[(w + x) + y] \bmod n = [w + (x + y)] \bmod n$ $[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$				
Distributive Law	$[w \times (x + y)] \bmod n = [(w \times x) + (w \times y)] \bmod n$				
Identities	$(0+w) \bmod n = w \bmod n$ $(1\times w) \bmod n = w \bmod n$				
Additive Inverse $(-w)$ For each $w \in Z_n$, there exists a $a \neq z$ such that $w \in Z_n$					

Example – Arithmetic modulo 8

Addition modulo 8

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Multiplication modulo 8

			• •			. – –.	U. . U	•
×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Additive and multiplicative inverses modulo 8

PV		** -
0	0	_
1	7	1
2	6	_
3	5	3
4	4	_
5	3	5
6	2	_
7	1	7

Divisors

- Say a non-zero number b divides a if for some m have a=mb (a,b,m all integers)
 - > that is b divides into a with no remainder
 - > denote this b|a
 - > and say that b is a divisor of a
- Example
 - > all of 1,2,3,4,6,8,12,24 divide 24

Prime Numbers

- Prime numbers only have divisors of 1 and self
 - > they cannot be written as a product of other numbers
 - > note: 1 is prime, but is generally not of interest
- e.g. 2,3,5,7 are prime, 4,6,8,9,10 are not
- Prime numbers are central to number theory
- List of prime numbers less than 200 is:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Prime Factorization

To factor a number n is to write it as a product of other numbers:

$$n=a \times b \times c$$

- Note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- The prime factorization of a number a is when it's written as a product of primes

$$\triangleright$$
 eg. 91=7×13 ; 3600=2⁴×3²×5²

$$a = \prod_{p \in P} p^{a_p}$$

Relatively Prime Numbers

- Two numbers a, b are relatively prime if have no common divisors apart from 1
- Example
 - ➤ 8 and 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor

Greatest Common Divisor (GCD)

- A common problem in number theory
- GCD of a and b, that is GCD(a,b), is the largest number that divides both a and b
 - \rightarrow eg GCD(60,24) = 12
- The greatest common divisor can be determined by comparing their prime factorizations and using least powers
 - > Example
 - $300=2^1\times3^1\times5^2$ $18=2^1\times3^2$ hence GCD(18,300)= $2^1\times3^1\times5^0=6$
- Often want no common factors (except 1)
 - hence numbers are relatively prime
 - \triangleright e.g. GCD(8,15) = 1
 - 8 & 15 are relatively prime

Euclid's GCD Algorithm

- An efficient way to find the GCD(a,b)
- Uses theorem that:
 - \triangleright GCD(a,b) = GCD(b, a mod b)
 - > dim
 - if d|a,b (d divides a and b), then a=h*d and b=k*d where h,k are the quotients, then $a \mod b = r_a = a q_a b = hd q_a kd = (h-q_a k)d \Rightarrow d|(a \mod b)$
 - moreover, starting form $a = r_a + q_a b$, if d/b and d/r_a , with $r_a = s*d$, then $a = r_a + q_a b = (s + q_a k)d \Rightarrow d/a$
 - > so, common divisors of a,b are also common divisor of b and r_a

Euclid's GCD Algorithm (cont.)

- If we use it several times:
 - $ightharpoonup GCD(a,b) = GCD(b,a \mod b) = GCD(b,r_1) = GCD(r_1,b \mod r_1) = GCD(r_1,r_2) = GCD(r_2,r_1 \mod r_2) = GCD(r_2,r_3) = ... = GCD(r_n,0) = r_n$

where:

- $r_1 = a \mod b$
- \cdot $r_2 = b \mod r_1$
- $r_3 = r_1 \mod r_2$
- •
- $ightharpoonup \mathbf{r}_{k} = \mathbf{r}_{k-2} \mod \mathbf{r}_{k-1}$
- \triangleright the formula is valid also for r_1 and r_2 if we define:
 - $r_0 = b$, $r_{-1} = a$
- \triangleright note: at each step, $r_k < r_{k-1}$
- > calculate r_k using r_{k-1} and r_{k-2} , until $r_{n+1} = r_{n-1} \mod r_n$ is equal to 0, then
- \triangleright GCD(a,b) = GCD(\mathbf{r}_n ,0) = \mathbf{r}_n

Euclid's GCD Algorithm (cont.)

Euclid's Algorithm to compute GCD(a,b):

```
A←a, B ← b
while B>0 {
    R ← A mod B
    A ← B
    B ← R
}
return A
```

Example GCD(1970,1066)

gcd(1970, 1066)

gcd(1066, 904)

gcd(904, 162)

gcd(162, 94)

gcd(94, 68)

gcd(68, 26)

gcd(26, 16)

gcd(16, 10)

gcd(10, 6)

acd(6, 4)

gcd(4, 2)

gcd(2, 0)

$$1970 = 1 \times 1066 + 904$$

$$1066 = 1 \times 904 + 162$$

$$904 = 5 \times 162 + 94$$

$$162 = 1 \times 94 + 68$$

$$94 = 1 \times 68 + 26$$

$$68 = 2 \times 26 + 16$$

$$26 = 1 \times 16 + 10$$

$$16 = 1 \times 10 + 6$$

$$10 = 1 \times 6 + 4$$

$$6 = 1 \times 4 + 2$$

$$4 = 2 \times 2 + 0$$

Multiplicative inverse (modulo *n*)

- The multiplicative inverse of a number x is the number we multiply x by to get 1
 - with real numbers this is just 1/x
 - \succ the multiplicative inverse of $m \mod n$ is $u : u*m = 1 \pmod n$
 - u*m differs from 1 by a multiple of n, or
 u*m + v*n = 1
- The Extended Euclid's Algorithm can be used to find the multiplicative inverse (if it exists)
 - > solving the problem:
 - Find u,v | u*m + v*n = 1
- Theorem: a number m has a multiplicative inverse m⁻¹ (mod n) if and only if m and n are relatively prime (co-prime)
 - that is, if and only if gcd(m,n)=1

Extended Euclid's Algorithm

Not only calculates the d=gcd(a,b), but also two integer x and y (of opposite sign) such that:

$$x a + y b = d = gcd(a,b)$$

- From Euclid's Algorithm:
 - $ightharpoonup r_k = r_{k-2} \mod r_{k-1} = r_{k-2} q_k r_{k-1}$, where: $q_k = \lfloor r_{k-2} / r_{k-1} \rfloor$ with:
 - $r_{-1} = a$
 - $r_0 = b$
- Writing the previous equation as function of a and b:
 - $r_1 = a \mod b = a q_1 b = (def) x_1 a + y_1 b$
 - r_2 = b mod r_1 = b q_2r_1 = b $q_2(x_1a+y_1b)$ = - q_2x_1a + $(1-q_2y_1)b$ = (def) x_2a + y_2b
 - $r_3 = r_1 \mod r_2 = r_1 q_3 r_2 = (x_1 q_3 x_2)a + (y_1 q_3 y_2)b = (def) x_3 a + y_3 b$
 - **>** ...
 - $r_{k} = r_{k-2} \mod r_{k-1} = (def) x_{k} a + y_{k} b$

with:

- $> x_k = x_{k-2} q_k x_{k-1}$, with: $x_{-1}=1$, $x_0=0$
- \rightarrow y_k = y_{k-2} q_k y_{k-1} , with: y₋₁=0 , y₀=1

Extended Euclid's Algorithm (cont.)

- Algorithm:
 - > set

•
$$r_{-1} = a$$
 , $x_{-1} = 1$, $y_{-1} = 0$

•
$$r_0 = b$$
 , $x_0 = 0$, $y_0 = 1$

- > compute
 - $r_k = r_{k-2} \mod r_{k-1} = r_{k-2} q_k r_{k-1}$, where $q_k = \lfloor r_{k-2} / r_{k-1} \rfloor$
 - $X_k = X_{k-2} q_k X_{k-1}$
 - $y_k = y_{k-2} q_k y_{k-1}$
- > until
 - $r_{n+1} = 0$
- > then, it is
 - $d = r_n = x_n a + y_n b$
- > that gives both the GCD d and the values x and y such that
 - d = x a + y b

Computation of the multiplicative inverse (modulo *n*)

If the parameter a is a modulus n, and the parameter b is an integer m such that GCD(m,n)=1, then the algorithm gives the coefficients x and y such that

$$x*n + y*m = 1$$

 $y*m = 1 - xn$

that can be written as

$$y*m = 1+kn$$

that says that y is the multiplicative inverse of m modulo n

- Note
 - ➢ If the value of the coefficient y is negative (-w), the residue modulo n (between 0 and n-1) multiplicative inverse of m can be simply obtained as

$$y + n = n - w$$

Extended Euclid's Algorithm - Example 1

k	q_k	r_k	X_k	y_k	
-1		43	1	0	
0		35	0	1	
1	43 = 1 · 3	85 + 8	1	-1	$8 = 1 \cdot 43 + (-1) \cdot 35$
2	35 = 4.	8 + 3	-4	5	$3 = (-4) \cdot 43 + 5 \cdot 35$
3	8 = 2.	3 + 2	9	-11	$2 = 9 \cdot 43 + (-11) \cdot 35$
4	3 = 1.	2 + 1	-13	16	$1 = (-13) \cdot 43 + 16 \cdot 35$
5	2 = 2.	1 + 0			

- Algorithm start with k=1
- At each step the new coefficients r_k , q_k are calculated:
 - \Rightarrow q_k = $\lfloor r_{k-2} / r_{k-1} \rfloor$
 - $r_k = r_{k-2} \mod r_{k-1}$
 - \rightarrow that is: $r_k = r_{k-2} q_k r_{k-1}$
- From r_k , e q_k , the new values of x_k e y_k are calculated:
 - $> x_k = x_{k-2} q_k x_{k-1}$
 - $y_k = y_{k-2} q_k y_{k-1}$

Extended Euclid's Algorithm - Example 2

• Solve 1759 x + 550 y = gcd(1759, 550)

i	q_i	r_i	x_i	y_i
-1		1759	1	0
0		550	0	1
1	3	109	1	-3
2	5	5	- 5	16
3	21	4	106	-339
4	1	1	-111	355

Result:

$$\rightarrow$$
 d = 1; x = -111; y = 355

$$>$$
 (355)*550 + (-111)*1759 = 1

- (355)*550 = 1 + k 1759
- 355 is the multiplicative inverse of 550 (mod 1759)

Galois Fields GF(p)

- If p is prime, all integers x with x
- $Z_p = \{0, 1, ..., p-1\}$ with arithmetic operations modulo prime p form a finite field (aka know as Galois Field)
 - > since have multiplicative inverses
- GF(p) = Galois field of order p
- Arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

Example – Arithmetic in GF(7)

Addition modulo 7

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Multiplication modulo 7

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Additive and multiplicative inverses modulo 7

W	-w	W-1
0	0	_
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

Euler Totient Function Ø (n)

- When doing arithmetic modulo n
- Complete set of residues is: 0..n-1
- Reduced set of residues is those numbers (residues) which are relatively prime to n
 - > eg for n=10,
 - > complete set of residues is {0,1,2,3,4,5,6,7,8,9}
 - reduced set of residues is {1,3,7,9}
- Number of elements in reduced set of residues is called the Euler Totient Function ø(n)

Euler Totient Function Ø (n)

- To compute ø(n) need to count number of elements to be excluded
- In general need prime factorization, but
 - \triangleright for p (p prime) \varnothing (p) = p-1
 - \triangleright for p.q (p,q prime) \varnothing (p.q) = (p-1) (q-1)
- Examples

 - $\triangleright \varnothing(21) = (3-1) \times (7-1) = 2 \times 6 = 12$

Euler's Theorem

- \bullet $a^{\emptyset(n)} \mod n = 1$
 - \rightarrow where gcd(a,n)=1
- e.g.
 - \Rightarrow a=3; n=10; \emptyset (10) =4;
 - \triangleright hence $3^4 = 81 = 1 \mod 10$
 - \Rightarrow a=2; n=11; \emptyset (11)=10;
 - \triangleright hence $2^{10} = 1024 = 1 \mod 11$
- It generalizes the Fermat's (Little) Theorem that says:
 - \geqslant $a^{p-1} \mod p = 1$
 - where p is prime and gcd(a,p)=1
- Corollary from Euler's Theorem
 - $\geqslant a^{k o(n)+1} \mod n = a$

Primitive Roots

- Consider the equation a^m mod n = 1
 - \triangleright If gcd(a,n)=1 then m does exist
 - Euler's theorem gives m=\(\varnote\) (n), but may be smaller
 - \triangleright note: once powers reach m, cycle will repeat: $a^{m+k} = a^{m} \cdot a^{k} = a^{k}$
- The smallest m such that $a^m=1$ is called multiplicative order of a modulo n
- A number g is a <u>primitive root</u> modulo n if every number coprime to n is congruent to a power of g modulo n
 - g is also called "generator of the multiplicative group of integers modulo n" (the reduced set of residues)
 - $\forall b$, gcd(b,n)=1, $\exists k : g^k \equiv b \pmod{n}$
 - such k is called the index or discrete logarithm of b to the base g
 modulo n
 - if n=p is prime, then successive powers of g "generate" the group mod p
- if the multiplicative order of a modulo n is $m=\emptyset(n)$ then a is a primitive root (modulo n)

Discrete Logarithms

- The inverse problem to exponentiation is to find the discrete logarithm of a number modulo p
- That is to find x where $a^x = b \pmod{p}$
- Written as $x = log_a$ b mod $p = dlog_{a,p}(b)$
- If a is a primitive root and p is prime then always exists, otherwise may not
 - > Examples
 - $x = log_3 5 \pmod{13}$ has no answer
 - $x = log_2 5 \pmod{13} = 9$, by trying successive powers
 - > Note, in case of modulus *n* not prime, it exists if:
 - a is primitive root, b is co-prime with n
- Whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem

Primality Testing

- Often need to find large prime numbers
- Traditionally check by using trial division
 - > i.e. divide by all numbers (primes) in turn less than the square root of the number
 - > only works for small numbers
- Alternatively can use statistical primality tests based on properties of primes
 - for which all primes numbers satisfy property
 - but some composite numbers, called pseudo-primes, also satisfy the property

Miller Rabin Algorithm

- A test based on Fermat's Theorem
- Algorithm is:

```
TEST (n) is:
```

- 1. Find integers k, q, with k > 0, q odd, so that $(n-1) = 2^k q$
- 2. Select a random integer a, 1 < a < n-1
- 3. if $a^q \mod n = 1$ then return ("maybe prime");
- **4.** for j = 0 to k 1 do
 - 5. if $(a^{2^{j}q} \mod n = n-1)$

then return("maybe prime")

6. return ("composite")

Miller Rabin Algorithm (cont.)

- if Miller-Rabin returns "composite" the number is definitely not prime
- Otherwise is a prime or a pseudo-prime
- Chance it detects a pseudo-prime is < ½
- Hence if repeat test with different random a then chance n is prime after t tests is:
 - \triangleright Pr(*n* prime after *t* tests) = 1-4^{-t}
 - \triangleright eg. for t=10 this probability is > 0.99999