Condensed Linear Algebra II notes*

Salman A. Faris

10 March 2019

1 Basic Linear Algebra recap

Let $T:V\to W$ be linear.

Definition 1.1. (Kernel). The *kernel* of T (also known as *null space* of T) is the set of all elements $\mathbf{v} \in V$ such that $T\mathbf{v} = \mathbf{0}$.

$$Ker(T) = \{ \mathbf{v} \in V \mid T\mathbf{v} = \mathbf{0} \}$$
(1.1)

Layman 1.1. The kernel is everything that is mapped to zero by the transformation/function.

Definition 1.2. (Image). The *image* of T (also known as *range* of T) is the set of all values that T can take as its argument varies over V, i.e.

$$Im(T) = \{ T\mathbf{v} \in W \mid \mathbf{v} \in V \}$$
 (1.2)

One can see that if $\mathbf{v} \in \text{Im}(f)$, then $\mathbf{v} = f(junk)$ for some junk in V.

Layman 1.2. The image is everything that comes out of the function.

^{*}based on notes written by Dr. Thomas Bothner and Dr. Mahir Hadzic in module 4CCM114A of King's College London, Spring 2019 and notes by Dr. Kwok-Wing Tsoi in module 5CCM222A.

2 Diagonalization Theorem

2.1 Characteristic Polynomial

Theorem 2.1. Let $A \in \mathbb{C}^{n \times n}$ and let $\chi(\lambda) = \det(A - \lambda I)$ be its characteristic polynomial. Then $\chi(\lambda)$ is a polynomial of degree n. Moreover, $\chi(\lambda)$ has the form:

$$\chi(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \operatorname{trace}(A) \lambda^{n-1} + \dots + \det(A)$$
 (2.1)

Recipe 2.1. (χ_2) . The characteristic polynomial of a 2×2 matrix. When n = 2:

$$\chi_2(\lambda) = \lambda^2 - \operatorname{trace}(A)\lambda + \det(A)$$
 (2.2)

Recipe 2.2. (χ_3) . The characteristic polynomial of a 3×3 matrix. When n=3:

$$\chi_3(\lambda) = -\lambda^3 + \operatorname{trace}(A)\lambda^2 - (A_{11} + A_{22} + A_{33})\lambda + \det(A)$$
 (2.3)

2.2 Eigenvectors and Eigenvalues

There are a lot of recipes to find eigenvectors from corresponding eigenvalues.

Let A be an $n \times n$ matrix and that $\lambda \in \sigma(A)$ is an eigenvalue of A and that its corresponding eigenvector is denoted **v**. Then, A**v** = μ **v** \Longrightarrow $(A - \mu I)$ **v** = 0

Recipe 2.3. (Reduced-echelon e-vector). One can find the eigenvector by the following process:

- 1. Substitute λ into $A \mu I$ and compute this subtraction.
- 2. Reduce $A \lambda I$ into its row-reduced echelon form.
- 3. Compute $(A \lambda I)\mathbf{v} = 0$ and solve for components of \mathbf{v} .

Trick 2.1. (Hadzic). In solving imaginary eigenvalues, in particular, when $\lambda = \pm i$ in Recipe 2.3, one can eliminate it by noticing that:

$$i^{2} - 1 = (i+1)(i-1) = -2$$
(2.4)

Recipe 2.4. (Brute force). One can find the eigenvector by the following process:

- 1. Substitute λ into $A\mathbf{v} = \mu \mathbf{v}$.
- 2. Solve for components of \mathbf{v} .

Despite this algorithm being shorter, its actual computation takes more time compared to the reduced-echelon method.

There's a handy method to find eigenvectors relating to 2×2 matrices.

Recipe 2.5. (Watts). Let A be a 2×2 matrix, $\lambda \in \sigma(A)$ and **v** the corresponding eigenvector. Then the recipe is as follows:

- 1. Let $\mathbf{v} = (1, a)$ for some $a \in \mathbb{F}$.
- 2. Solve $A\mathbf{v} = \lambda \mathbf{v}$ with the eigenvector (1, a), in particular, solve for a.

We can generalise this method for any 2×2 matrix.

Theorem 2.2. The minimal polynomial of a matrix A divides any polynomial f(x) satisfied by A. In other words:

$$\boxed{m_A(x) \mid f(x) \iff f(A) = 0}$$
 (2.5)

Proof. The " \Longrightarrow " direction is trivial. Suppose $m_A(x) \mid f(x)$, then $f(x) = m_A(x)q(x)$ and it immediately follows that f(A) = 0 by the definition of minimal polynomial.

Now we proof in this " \Leftarrow " direction. Suppose f(A) = 0. Let $f(x) = m_A(x)q(x) + r(x)$ where $m_A(x)$ is the minimal polynomial of A and by the Division Algorithm Lemma, $\deg(r(x)) < \deg(m(x))$ or r(x) = 0. Then let x = A, and we have $f(A) = m_A(A)q(A) + r(A)$. But by our assumption and the Cayley-Hamilton theorem on the minimal polynomial, we have that:

$$0 = 0 + r(A) \implies r(A) = 0$$

By the minimality of the degree of m(x), the only possibility is that r(x) = 0. So we are able to rewrite $f(x) = m_A(x)q(x)$, and thus $m_A(x) \mid f(x)$ as required. \square

3 Inner Products Spaces

3.1 Classical Gram-Schmidt process (CGS)

Definition 3.1. We define the **projection operator** to be:

$$\mathrm{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$$

where $\langle \mathbf{u}, \mathbf{v} \rangle$ is the *inner product* of the vectors \mathbf{u} and \mathbf{v} , i.e. $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^* \mathbf{v}$ for vectors on some general vector space \mathbb{F}^n . This operator projects the vector \mathbf{v} orthogonally onto the line spanned by the vector \mathbf{u} . If $\mathbf{u} = \mathbf{0}$, we define $\operatorname{proj}_0(\mathbf{v}) := 0$, i.e. the projection map proj_0 is the zero map, sending every vector to the zero vector.

Theorem 3.1. (Gram-Schmidt Orthogonalization & Orthonormalization). The CGS is a process to orthonormalise a set of vectors in an inner product space. It takes a finite, linearly independent set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ for $k \leq n$ and generates an orthogonal set $S' = \{\mathbf{o}_1, \dots, \mathbf{o}_n\}$ that spans the same k-dimensional subspace of \mathbb{F}^n as S. The Gram-Schmidt process then commence as follows:

$$\mathbf{o}_{1} = \mathbf{u}_{1}, \qquad \mathbf{e}_{1} = \frac{\mathbf{o}_{1}}{\|\mathbf{o}_{1}\|}$$

$$\mathbf{o}_{2} = \mathbf{u}_{2} - \operatorname{proj}_{\mathbf{o}_{1}}(\mathbf{u}_{2}), \qquad \mathbf{e}_{2} = \frac{\mathbf{o}_{2}}{\|\mathbf{o}_{2}\|}$$

$$\mathbf{o}_{3} = \mathbf{u}_{3} - \operatorname{proj}_{\mathbf{o}_{1}}(\mathbf{u}_{3}) - \operatorname{proj}_{\mathbf{o}_{2}}(\mathbf{u}_{3}), \qquad \mathbf{e}_{3} = \frac{\mathbf{o}_{3}}{\|\mathbf{o}_{3}\|}$$

$$\mathbf{o}_{4} = \mathbf{u}_{4} - \operatorname{proj}_{\mathbf{o}_{1}}(\mathbf{u}_{4}) - \operatorname{proj}_{\mathbf{o}_{2}}(\mathbf{u}_{4}) - \operatorname{proj}_{\mathbf{o}_{3}}(\mathbf{u}_{4}), \qquad \mathbf{e}_{4} = \frac{\mathbf{o}_{4}}{\|\mathbf{o}_{4}\|}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{o}_{k} = \mathbf{u}_{k} - \sum_{i=1}^{k-1} \operatorname{proj}_{\mathbf{o}_{j}}(\mathbf{u}_{k}), \qquad \mathbf{e}_{k} = \frac{\mathbf{o}_{k}}{\|\mathbf{o}_{k}\|}$$

Remark 3.1. (Important remark on the CGS). The Gram-Schmidt process consists of repeated applications of so called **orthogonal projections**, a procedure which arises naturally in the solution of the following approximation problem:

Suppose W is a subspace of an inner product space V and $\beta \in V$ be arbitrary. The problem is to find a vector $\alpha \in W$ such that $||\beta - \alpha||$ is a small as possible.

Definition 3.2. Let W be a subspace of an inner product space V and $\beta \in V$. A **best approximation** to β by vectors in W is a vector $\alpha \in W$ such that:

$$||\beta - \alpha|| \le ||\beta - \gamma|| \quad \forall \gamma \in W$$
(3.1)

Theorem 3.2. (Best approximation). Let W be a subspace of an inner product space V and $\beta \in V$.

- The vector $\alpha \in W$ is a best approximation to β by vectors in W if and only if $\beta \alpha$ is orthogonal to every vector in W.
- If a best approximation to β by vectors in W exists, then it is **unique**.
- If W is finite-dimensional with ONB $\{\alpha_1, \ldots, \alpha_n\}$, then,

$$\alpha = \sum_{k=1}^{n} \frac{\langle \beta, \alpha_k \rangle}{||\alpha_k||^2} \alpha_k$$

is the *unique* best approximation to β by vectors in W.

Definition 3.3. Let V be an inner product space and S any set of vectors in V. The **orthogonal complement** of S is the set S^{\perp} of all vectors in V which are orthogonal to every vector in S.

Note that $V^{\perp}=\{0\}$ and $\{0\}^{\perp}=V$; also S^{\perp} is always a subspace, since it contains 0 and whenever $\alpha,\beta\in S^{\perp},c\in F$, then $\forall\gamma\in S$,

$$\langle c\alpha + \beta, \gamma \rangle = c \langle \alpha, \gamma \rangle + \langle \beta, \gamma \rangle = 0$$

so, $c\alpha + \beta \in S^{\perp}$. The above also let us rephrase Theorem 3.2: α is the only vector in W such that $\beta - \alpha \in W^{\perp}$

Definition 3.4. (Orthogonal projection of β on W).

Whenever the vector α in Theorem 3.2 exists, we call it the **orthogonal projection of** β **on** W.

Definition 3.5. (Orthogonal projection of V on W).

If all vectors in V have an orthogonal projection on W, the mapping that assigns to each vector in V its orthogonal projection on W is called the **orthogonal** projection of V on W. By Theorem 3.2, the **orthogonal** projection of an inner product space on a finite-dimensional subspace always exists.

Corollary 3.1. (Orthogonal projection of V on W^{\perp}).

Let V be an inner product space, W a finite-dimension subspace, and E the orthogonal projection of V on W. Then the mapping,

$$\beta \longmapsto \beta - E\beta$$

is the orthogonal projection of V on W^{\perp} .

Theorem 3.3. (Decomposition theorem - super simplified).

Let $E: V \to V$ be a linear map. If E is idempotent, then:

$$V = \operatorname{Im}(E) \oplus \operatorname{Ker}(E)$$
(3.2)

Definition 3.6. Let $W_1, W_2 \subset V$ be subspaces of vector space V. We say that V is a **direct sum** of W_1 and W_2 or

$$V = W_1 \oplus W_2 \tag{3.3}$$

if the following two conditions hold:

- 1. $W_1 + W_2 := \{\alpha + \beta : \alpha \in W_1, \beta \in W_2\} = V$ i.e. The span of W_1 and W_2 is all of V.
- 2. $W_1 \cap W_2 = \{\mathbf{0}\}$ i.e. W_1 and W_2 are independent.

Theorem 3.4. (Decomposition theorem - complete definition).

Let W be a finite-dimensional subspace of an inner product space V and E be the orthogonal projection of V on W. Then E is an **idempotent** linear transformation of V onto W (i.e. $E^2 = E$), W^{\perp} is the kernel of E, and

$$V = W \oplus W^{\perp} \tag{3.4}$$

Corollary 3.2. Under the conditions of Theorem 3.4, I-E is the orthogonal projection of V on W^{\perp} . It is an idempotent linear transformation of V onto W^{\perp} with kernel W.

Corollary 3.3. (Bessel's inequality)

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be an orthogonal set of non-zero vectors in an inner product space V. For any $\beta \in V$, we have:

$$\sum_{k=1}^{n} \frac{|\langle \beta, \alpha_k \rangle|^2}{||\alpha_k||^2} \le ||\beta||^2$$

and equality holds if and only if

$$\beta = \sum_{k=1}^{n} \frac{\langle \beta, \alpha_k \rangle}{||\alpha_k||^2} \alpha_k$$

3.2 Linear Functionals and Adjoints

Let V be any inner product space and $\beta \in V$ some fixed vector. Clearly:

$$f_{\beta}(\alpha) := \langle \alpha, \beta \rangle, \quad \alpha \in V$$

is a linear functional on V. Turns out, if V is finite-dimensional, every linear functional on V arises in this way from some β .

Theorem 3.5. (Riesz representation).

Let V be a finite-dimensional inner product space, and f a linear functional on V. Then, there exists a unique vector $\beta \in V$ such that $f(\alpha) = \langle \alpha, \beta \rangle$ for all $\alpha \in V$. In two lines, we can rephrase this as the following:

If V f-d-IPS and f linear functional on V,

$$\exists \text{ unique } \beta \in V, \text{ s.t. } f(\alpha) = \langle \alpha, \beta \rangle \quad \forall \ \alpha \in V.$$
 (3.5)

Theorem 3.6. (Existence of adjoint). For any linear operator T on a finite-dimensional inner product space V, there exists a unique linear operator T^* on V s.t.

Theorem 3.7. Let V f-d-IPS with ONB $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$. Let T be a linear operator on V and A be the matrix of T in the basis \mathcal{B} . Then:

$$A_{kj} = \langle T\alpha_j, \alpha_k \rangle$$
(3.7)

Corollary 3.4. Let V be a f-d-IPS and T a linear operator on V. In any ONB for V, the matrix of T^* is the conjugate transpose of the matrix of T.

Definition 3.7. Let T be a linear operator on an IPS V. We say that T has an adjoint on V if there exists a linear operator T^* on V s.t.

$$\langle T\alpha, \beta \rangle = \langle \alpha, T^*\beta \rangle \quad \forall \alpha, \beta \in V$$

In light of Theorem 3.6 (Adjoint existence), we know then that:

Every linear operator on a f-d-IPS
$$V$$
 has an adjoint on V .

This is not always true if $\dim(V) = \infty$. But it any case, there is at most one such operator T^* and where it exists, we call it the adjoint of T.

Theorem 3.8. Let V be a f-d-IPS. If T and U are linear operators on V and $c \in F$:

1.
$$(T+U)^* = T^* + U^*$$

2.
$$(cT)^* = \bar{c} T^*$$

3.
$$(TU)^* = U^*T^*$$

4.
$$(T^*)^* = T$$

Definition 3.8. Let V be an IPS. A linear operator T s.t. $T = T^*$ is called self-adjoint or Hermitian.

If \mathcal{B} is an ONB for V, then

$$[T^*]_{\mathcal{B}} = [T]_{\mathcal{B}}^*$$

so T is self-adjoint if and only if its matrix in every ONB is a Hermitian matrix.

Theorem 3.9. Let V be a f-d-IPS and T linear operator on V. Then:

$$\operatorname{Im}(T^*) = \operatorname{Ker}(T)^{\perp}$$

Theorem 3.10. Let V be a f-d-IPS and T linear operator on V. Then:

$$T$$
 invertible $\implies T^*$ invertible and $(T^*)^{-1} = (T^{-1})^*$

Theorem 3.11. Let V be a f-d-IPS and E idempotent linear operator on V i.e. $E^2=E$. Then:

$$E$$
 self-adjoint $\iff E$ normal

3.3 Unitary Operators

Definition 3.9. Let V and W be IPS over the same field, and T a linear transformation from V into W. We say T preserves inner products if:

An isomorphism of V onto W is a vector space isomorphism $T:V\to W$ which also preserves inner products.

If T preserves inner products, then:

$$||T\alpha|| = ||\alpha|| \implies T$$
 necessarily non-singular $\implies T$ invertible (3.9)

Thus, an isomorphism from V onto W is simply a linear transformation which preserves inner products.

Definition 3.10. If an isomorphism of V onto W exists, we will simply say that V and W are isomorphic.

Theorem 3.12. (TFAE Unitary Operators). Let V and W be f-d-IPS over the same field with dim $V = \dim W$ (same dimension). If $T: V \to W$ linear, then the following are equivalent:

- (i) T preserves inner products
- (ii) T is an (IPS) isomorphism
- (iii) T carries every ONB for V onto an ONB for W.
- (iv) T carries some ONB for V onto an ONB for W.

Corollary 3.5. Let V and W be f-d-IPS over the same field. Then:

$$V$$
 and W isomorphic \iff $\dim V = \dim W$

Theorem 3.13. Let V and W be IPS over the same field and $T:V\to W$ linear. Then:

$$T$$
 preserves inner products $\iff ||T\alpha|| = ||\alpha||, \; \forall \alpha \in V$

Definition 3.11. A unitary operator on an IPS is an isomorphism of the space onto itself.

Important things from this definition! Note that the set of all unitary operators on an IPS is a *group over composition*. Moreover, Theorem 3.12 tells us the following:

$$U \text{ unitary } \iff \langle U\alpha, U\beta \rangle = \langle \alpha, \beta \rangle, \ \forall \alpha, \beta \in V$$

We can see this by this process

U unitary $\Leftrightarrow U$ isomoprhism

 $\Leftrightarrow U$ preserves inner products

 \Leftrightarrow for some ONB $\{\alpha_1, \ldots, \alpha_n\}, \{U\alpha_1, \ldots, U\alpha_n\}$ is an ONB.

$$\Leftrightarrow \langle U\alpha, U\beta \rangle = \langle \alpha, \beta \rangle, \ \forall \alpha, \beta \in V$$

Theorem 3.14. Let U be a linear operator on an IPS V. Then:

$$U$$
 unitary \iff the adjoint U^* of U exists and $UU^* = U^*U = I$

Definition 3.12. (Unitary matrix).

A matrix
$$A \in \mathbb{C}^{n \times n}$$
 is called unitary if $A^*A = I$.

Theorem 3.15. Let V be a f-d-IPS and U be a linear operator on V. Then:

$$U$$
 unitary \iff the matrix of U in some (every) ONB is a unitary matrix.

Remark 3.2. For $A \in \mathbb{C}^{n \times n}$,

A unitary simply means
$$(A^*A)_{jk} = \delta_{jk}$$

or equivalently:

A unitary
$$\implies \sum_{r=1}^{n} \overline{A}_{rj} A_{rk} = \delta_{jk}$$

In other words, the columns of A forms an orthonormal set of column vectors in \mathbb{C}^n with respect to the standard inner product.

Theorem 3.16. (TFAE Unitary Matrices). Let $U \in \mathbb{C}^{n \times n}$. Then, the following are equivalent:

- 1. U is unitary i.e. $U^*U = I$,
- 2. U is invertible and satisfies $U^* = U^{-1}$,
- 3. The rows of U forms an ONB for \mathbb{C}^n ,
- 4. The columns of U forms an ONB for \mathbb{C}^n .
- 5. ||Uv|| = ||v|| for all $v \in \mathbb{C}^n$
- 6. $\langle Uv, Uw \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{C}^n$

Remark 3.3. Let U and U' be unitary matrices. Then:

$$\overline{U}, U^T, \overline{U}^*, UU'$$
 all are unitary.

Definition 3.13. (Orthogonal matrix).

A real or complex $n \times n$ matrix A is called orthogonal if $A^T A = I$

Remark 3.4. A real orthogonal matrix is unitary

Remark 3.5. A unitary matrix is orthogonal if and only if its entries are real.

Definition 3.14. Let $A, B \in \mathbb{C}^{n \times n}$. Then,

B is unitarily equivalent to A if $\exists P \in \mathbb{C}^{n \times n}$ unitary s.t. $B = P^{-1}AP$

and

B is orthogonally equivalent to A if $\exists P \in \mathbb{R}^{n \times n}$ orthogonal s.t. $B = P^{-1}AP$

3.4 Normal operators

Motivation: If $T: V \to V$ and V an IPS, under which conditions does V have an ONB consisting of eigenvectors for T?

Definition 3.15. Let V be an IPS and $T: V \to V$ linear. Then:

T normal if it commutes with its adjoint i.e. $TT^* = T^*T$

Notice here we assume implicitly that T^* exists!

Remark 3.6. Here are some interesting remarks:

- 1. Any self-adjoint operator is normal
- 2. Any unitary operator is normal
- 3. Any scalar multiple of a normal operator is normal

Danger 3.1. Sums and products of normal operators are in general not normal.

Theorem 3.17. Let V be an IPS and T a self-adjoint linear operator on V. Then:

Each eigenvalue of T is **real** (every eigenvalue of matrix of T is real), and **eigenvectors** of T associated with **distinct** eigenvalues are **orthogonal**.

But note that the Theorem above says nothing about the **existence** of eigenvalues or eigenvectors!

Theorem 3.18. On a f-d-IPS V of positive dimension i.e. $\dim V > 0$,

Every self-adjoint operator has a (non-zero) eigenvector.

Remark 3.7. Note the following remarks:

- 1. Existence of $X \neq 0$ s.t. AX = cX does not rely at all on the fact that A is Hermitian. This is *only* used in the case of a real IPS, then it tells us that all eigenvalues of A are real **and** all entries of X are real as well.
- 2. The characteristic polynomial of a Hermitian matrix has real coefficients, in spite of the fact that the matrix may not have real entries.
- 3. Finite dimensional vector spaces are **really needed**.

Theorem 3.19. (Invariant). Let V be a f-d-IPS and $T:V\to V$ linear. Suppose $W\subseteq V$ a subspace of V which is invariant under T (i.e. $T\alpha\in W, \forall \alpha\in W$). Then W^{\perp} is invariant under T^* .

Theorem 3.20. (Spectral Theorem). Let V be a f-d-IPS, and $T:V\to V$ self-adjoint. Then:

There is an ONB for V, each vector of which is an eigenvector for T.

Corollary 3.6. Let $A \in \mathbb{C}^{n \times n}$ be Hermitian (self-adjoint). Then, \exists unitary $P \in \mathbb{C}^{n \times n}$ s.t. $P^{-1}AP$ diagonal (A unitarily equivalent to a diagonal matrix).

Corollary 3.7. If $A \in \mathbb{R}^{n \times n}$ is symmetric, \exists real orthogonal $P \in \mathbb{R}^{n \times n}$ s.t. $P^{-1}AP$ is diagonal.

Remark 3.8. If V is a f-d-Real-IPS and $T: V \to V$ linear, then V has an ONB of eigenvectors for T if and only if T is self-adjoint. There is no such equivalence for complex symmetric matrices!

Theorem 3.21. Let V be an IPS and $T:V\to V$ normal. Suppose $\alpha\in V.$ Then:

 α is an eigenvector for T with eigenvalue c if and only if α is an eigenvector for T^* with eigenvalue \overline{c} .

Definition 3.16. (Normal matrix).

A matrix
$$A \in \mathbb{C}^{n \times n}$$
 is normal if $AA^* = A^*A$

Theorem 3.22. Let $A \in \mathbb{C}^{n \times n}$ be a normal matrix. Then:

$$|Av| = |A^*v|$$
 for all $v \in \mathbb{C}^n$

Proof.

$$||Av||^2 = \langle Av, Av \rangle = \langle v, A^*Av \rangle = \langle v, AA^*v \rangle = \langle A^*v, A^*v \rangle = ||A^*v||^2$$

Theorem 3.23. If A is normal, then A and A^* have the same eigenvectors.

Theorem 3.24. Let V be a f-d-IPS, $T: V \to V$ linear and \mathcal{B} an ONB for V. Suppose that $A_T = [T]_{\mathcal{B}}$ upper triangular. Then:

$$T \text{ normal} \iff A_T \text{ diagonal}$$

Theorem 3.25. (Schur triangulization). Let V be a f-d-Complex-IPS and $T:V\to V$ linear. Then:

There is an ONB for V in which the matrix of T is upper-triangular.

Corollary 3.8. For every $A \in \mathbb{C}^{n \times n}$:

 \exists unitary matrix U s.t. $U^{-1}AU$ upper-triangular.

3.5 Spectral Theorem (Main theorem)

Theorem 3.26. (Spectral theorem). Let V be a f-d-Complex-IPS and that $T:V\to V$ normal. Then:

V has an ONB consisting of eigenvectors for T.

Definition 3.17. $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable if $\exists U$ unitary such that U^*AU diagonal.

Theorem 3.27. (\mathbb{C} -Analogue of the Spectral Theorem). Any normal matrix is diagonalizable.

 $A \in \mathbb{C}^{n \times n}$ unitarily diagonalizable \iff A normal

Definition 3.18. $A \in \mathbb{R}^{n \times n}$ is orthogonally diagonalizable if $\exists P$ orthogonal such that P^TAP diagonal.

Theorem 3.28. (\mathbb{R} -Analogue of the Spectral Theorem). Any symmetric matrix is diagonalizable.

 $A \in \mathbb{R}^{n \times n}$ orthogonally diagonalizable \iff A symmetric

Corollary 3.9. $A \in \mathbb{C}^{n \times n}$ is self-adjoint $\iff A$ unitarily diagonalizable with only real eigenvalues.

Layman 3.1. A "layman" interpretation [mathumich] of the Spectral Theorem is that suppose A is normal/symmetric, then we can write A as $P^{-1}DP$ with P consisting of orthonormal vectors as its columns.

4 Operators on Inner Product Spaces

4.1 Forms on Inner Product Spaces

Motivation: If $T:V\to V$ linear on a f-d-IPS V, the function $f:V\times V\to F$ defined by:

$$f(\alpha, \beta) := \langle T\alpha, \beta \rangle$$

may be regarded as kind of a substitute for T. This is due to many questions concerning T are equivalent to questions concerning f. In particular, f determines T. With an ONB $\mathcal{B} = \{\alpha_1, \ldots, \alpha_n\}$ we find at once that for $A = [T]_{\mathcal{B}}$,

$$A_{jk} = f(\alpha_k, \alpha_j)$$

Definition 4.1. (Sesqui-linear form). A sesqui-linear form on a real or complex vector space V is a function f on $V \times V$ with values in the scalar field s.t.

- 1. $f(c\alpha + \beta, \gamma) = cf(\alpha, \gamma) + f(\beta, \gamma)$
- 2. $f(\alpha, c\beta + \gamma) = \overline{c}f(\alpha, \beta) + f(\alpha, \gamma)$

for all $\alpha, \beta, \gamma \in V$ and $c \in F$.

Remark 4.1. (Bilinear form). If $F = \mathbb{R}$, we call f in Definition 4.1 a bilinear form.

Remark 4.2. If f and g are forms and $c \in F$, then cf + g is also a form! This tells us that the set of all forms on V is a subspace of the vector space of all scalar-valued functions on $V \times V$.

Theorem 4.1. (Representation). Let V be a f-d-IPS and f a form on V. Then:

$$\exists$$
 unique linear operator $T: V \to V$ s.t. $f(\alpha, \beta) = \langle T\alpha, \beta \rangle \ \forall \alpha, \beta \in V$

Moreover, the map $f \mapsto T$ is an isomorphism of the space of forms onto $\mathcal{L}(V, V)$.

Corollary 4.1. The equation:

$$\langle f, g \rangle := \operatorname{trace}(T_f T_g^*)$$
 (4.1)

defines an inner product on the space of forms with the property that:

$$\langle f, g \rangle = \sum_{j,k=1}^{n} f(\alpha_k, \alpha_j) \overline{g(\alpha_k, \alpha_j)}$$
 (4.2)

for every ONB $\{\alpha_1, \ldots, \alpha_n\}$ of V.

Definition 4.2. (Matrix of forms in ordered basis). If f is a form on $V \times V$ and $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ an arbitrary basis of V, the matrix $A \in F^{n \times n}$ with entries

$$A_{ik} = f(\alpha_k, \alpha_i)$$

is called the matrix of f in the ordered basis \mathcal{B} .

Remark 4.3. If \mathcal{B} is an ONB, then the above A is also the matrix of T_f , but in general this is not the case!

Theorem 4.2. (Triangulization). Let f be a form on a f-d-Complex-IPS V and A_f matrix of f. Then:

$$\exists$$
 an ONB for V in which A_f is upper-triangular

Definition 4.3. (Hermitian forms). A form f on a real or complex vector space V is:

Hermitian if
$$f(\alpha, \beta) = \overline{f(\beta, \alpha)}, \ \forall \alpha, \beta \in V$$

Remark 4.4. If $T: V \to V$ linear on a f-d-IPS V and f is the (standard representation) form $f(\alpha, \beta) = \langle T\alpha, \beta \rangle$, then observe that:

$$\overline{f(\beta,\alpha)} = \langle \alpha, T\beta \rangle = \langle T^*\alpha, \beta \rangle$$

so f is Hermitian if and only if T self adjoint. Also, when f is Hermitian, then $f(\alpha, \alpha) \in \mathbb{R}$, $\forall \alpha \in V$ and on complex spaces this property characterizes Hermitian forms. We will see this in the next theorem.

Theorem 4.3. (Hermitian characterization of forms). Let V be a **COMPLEX** vector space and f a form on V s.t. $f(\alpha, \alpha) \in \mathbb{R}$, $\forall \alpha \in V$. Then f is Hermitian.

Corollary 4.2. Let $T: V \to V$ on a f-d-Complex-IPS V. Then:

$$T$$
 self-adjoint $\iff \langle T\alpha, \alpha \rangle \in \mathbb{R} , \forall \alpha \in V$

Theorem 4.4. (Principal axis theorem). For every Hermitian form f on a f-d-IPS V:

 \exists an ONB of V in which f is represented by a diagonal matrix with real entries.

Corollary 4.3. Under the assumptions of the last theorem:

$$f\left(\sum_{j=1}^{n} x_j \alpha_j, \sum_{k=1}^{n} y_k \alpha_k\right) = \sum_{j=1}^{n} c_j x_j \overline{y_j}$$

4.2 Positive Forms

Definition 4.4. A form f on a real or complex vector space V is:

- 1. Non-negative if f Hermitian and $f(\alpha, \alpha) \geq 0$ for every $\alpha \in V$.
- 2. Positive if f Hermitian and $f(\alpha, \alpha) > 0$ for all $\alpha \neq 0$.

Remark 4.5. We have the following remarks:

- 1. A positive form is simply an inner product.
- 2. A non-negative form satisfies all the properties of an inner product **except** that some non-zero vectors may be *orthogonal* to themselves.

Theorem 4.5. Let $F = \mathbb{R}$ or $F = \mathbb{C}$ and $A \in F^{n \times n}$. Define the function g to be $g(X,Y) := Y^*AX$. Then:

$$g$$
 positive form on $F^{n\times 1}\iff \exists$ invertible $P\in F^{n\times n}$ s.t. $A=P^*P$

Think $A = P^*P$ like the square root of a matrix.

In practice, it is hard to verify that a given $A \in F^{n \times n}$ satisfies the criteria for positivity which we have given this far. *Still*, the last Theorem tells us that if g is positive, then $\det A > 0$ because:

$$\det A = \det(P^*P) = \det(P^*) \det(P) = \overline{\det(P)} \det(P) = |\det P|^2 > 0$$

However, the fact that $\det A > 0$ is by **no means sufficient to guarantee** that q is positive! We need to look at more determinants.

Definition 4.5. (Principal minors). Let $A = F^{n \times n}$. The principal minors of A are the scalars $\Delta_k(A)$ defined by:

$$\Delta_k(A) := \det \begin{pmatrix} A_{11} & \dots & A_{1k} \\ \vdots & \ddots & \vdots \\ A_{k1} & \dots & A_{kk} \end{pmatrix}, \quad k = 1, 2, \dots, n$$

$$(4.3)$$

Lemma 4.1. (TFAE Principal Minors). Let $A \in F^{n \times n}$ be an invertible matrix. The following are equivalent:

- 1. \exists upper-triangular matrix P with $P_{kk} = 1(1 \le k \le n)$ s.t. the matrix B = AP is lower-triangular.
- 2. The principal minors of A are all different from zero i.e.

$$\Delta_k(A) \neq 0, \ \forall k = 1, \dots, n$$

Theorem 4.6. Let f be a form on a f-d vector space V and let A be the matrix of f in a basis \mathcal{B} . Then:

f positive form
$$\iff A = A^* \text{ and } \Delta_k(A) > 0.$$

Remark 4.6. We proceed with asking the following question: What is it that characterizes the matrices which represent positive forms?

1. (Complex Story). If f is a form on a **complex vector space** and A its matrix in some basis, then:

$$f$$
 positive $\iff A = A^*$ and $X^*AX > 0$, \forall complex $X \neq 0$.

It follows from Theorem 4.3 that the condition $A = A^*$ is redundant, i.e. $X^*AX > 0, \ \forall X \neq 0 \implies A = A^*.$

2. (Real Story). If f is a form on a **real vector space** and A its matrix in some basis, then:

$$f$$
 positive $\iff A = A^T$ and $X^T A X > 0$, \forall real $X \neq 0$.

But note that this condition does not imply that $A = A^T$. We need a third condition.

3. If $A = A^T$ and $X^T A X > 0$ for all **real** $X \neq 0$, then:

$$X^*AX > 0$$
 for all **complex** $X \neq 0$ holds as well.

Definition 4.6. (Positive matrix).

A positive matrix if
$$A \in \mathbb{C}^{n \times n}$$
 satisfies $A = A^*$ and $X^*AX > 0$, $\forall X \in \mathbb{C}^n \setminus \{0\}$

Let f be a form on a real or complex vector space and A_f be its matrix. From Definition 4.6, we can see that Remark 4.6 showed that in either *real* or *complex* story:

f is **positive** \iff A_f in every basis is a **positive matrix**

Definition 4.7. A linear operator T on a f-d-IPS V is:

- 1. Non-negative if $T = T^*$ and $\langle T\alpha, \alpha \rangle \geq 0, \ \forall \alpha \in V$.
- 2. Positive if $T = T^*$ and $\langle T\alpha, \alpha \rangle > 0$, $\forall \alpha \neq 0$.

We are now ready to summarize all our findings.

Summary 4.1. (TFAE for $A \in \mathbb{C}^{n \times n}$). If $A \in \mathbb{C}^{n \times n}$, the following are equivalent:

- 1. A is positive, i.e. $\sum_{j,k=1}^{n} A_{kj} x_j \overline{x_k} > 0$ whenever $x_1, \ldots, x_n \in \mathbb{C}$, not all zero.
- 2. $\langle X, Y \rangle := Y^*AX$ is an inner product on $\mathbb{C}^{n \times 1}$.
- 3. The linear operator $X \mapsto AX$ is positive, relative to the standard inner product on $\mathbb{C}^{n \times 1}$.
- 4. \exists invertible $P \in \mathbb{C}^{n \times n}$ s.t. $A = P^*P$.
- 5. $A = A^*$ and the principal minors A are positive (i.e. $\Delta_k(A) > 0$).

Summary 4.2. (TFAE for $A \in \mathbb{R}^{n \times n}$). If $A \in \mathbb{R}^{n \times n}$, then the following are equivalent:

- 1. $A = A^T$ and $\sum_{j,k=1}^n A_{kj} x_j x_k > 0$ whenever $x_1, \dots, x_n \in \mathbb{R}$ not all zero.
- 2. $\langle X, Y \rangle := Y^T A X$ is an inner product on $\mathbb{R}^{n \times 1}$.
- 3. The linear operator $X\mapsto AX$ is positive, relative to the standard inner product on $\mathbb{R}^{n\times 1}$.
- 4. \exists invertible $P \in \mathbb{R}^{n \times n}$ s.t. $A = P^T P$

4.3 Applications to Conic Sections

A quadratic curve in $(x,y) \in \mathbb{R}^2$ is an algebraic curve of the form:

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$
(4.4)

with coefficients $a, b, c, d, e, f \in \mathbb{R}$.

The three classical conic sections i.e. ellipses, hyperbolas and parabolas are examples of such quadratic curves **and** using the principal axis theorem, these are in fact the only *generic* quadratic curves in $(x, y) \in \mathbb{R}^2$.

First observation: Given a curve of the form

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2ey + f = 0$$

we can transform it into canonical form:

$$a\tilde{x}^2 + 2b\tilde{x}\tilde{y} + c\tilde{y}^2 = g$$

$$(4.5)$$

using a simple translation $\tilde{x} = x - x_0$, $\tilde{y} = y - y_0$ provided $ac - b^2 \neq 0$ for some choice of x_0 and y_0 .

Second observation: For a quadratic curve in canonical form (note we remove the tilde because we know it can always be reduced to this canonical form):

$$ax^{2} + 2bxy + cy^{2} = g \iff (x,y) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = g$$
 (4.6)

Then:

$$\exists$$
 orthogonal matrix $P \in \mathbb{R}^{2 \times 2}$ s.t. $\lambda_1(x')^2 + \lambda_2(y')^2 = g$

where
$$\begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} x' \\ y' \end{pmatrix}$$
 and λ_1, λ_2 eigenvalues of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Indeed, $f(x,y) := (x,y) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ defines a Hermitian quadratic form on

 $\mathbb{R}^2 \times \mathbb{R}^2$, thus the principal axis theorem guarantees existence of an ONB in which f is represented by a diagonal matrix. This immediately yields the above.

Remark 4.7. The two change of variables correspond geometrically to translation and rotation of coordinate matrices.

- 1. $(x,y) \mapsto (\tilde{x},\tilde{y})$ corresponds to translation.
- 2. $(\tilde{x}, \tilde{y}) \mapsto (x', y')$ corresponds to rotation. In particular, this rotation is governed by the P matrix.