Fundamental Theorem

Problems about unique factorization.

Problem 1 Explain what the GCD of two integers is. Give some relevant and revealing examples/nonexamples.

Free Response: Hint: The GCD of a and b is the greatest common divisor of the two integers. Imagine the following procedure:

- (a) List the divisors of a.
- (b) List the divisors of b.
- (c) Compare the two lists to create a new list of divisors they have in common.
- (d) From the new list, identify the greatest of these common divisors.

Problem 2 Explain what the LCM of two integers is. Give some relevant and revealing examples/nonexamples.

Free Response: Hint: Note: Use ellipses (i.e., three dots) to indicate a continuing pattern.

The LCM of a and b is the least common multiple of the two integers. Imagine the following procedure:

- (a) List the multiples of a.
- (b) List the multiples of b.
- (c) Compare the two lists to create a new list of multiples they have in common.
- (d) From the new list, identify the least of these common multiples.

Problem 3 How many zeros are at the end of the following numbers:

(a) $2^2 \cdot 5^8 \cdot 7^3 \cdot 11^5$. There are $\boxed{2}$ zeros.

Hint: Consider the 2s and 5s. (Why?)

(b) 11!. There are 2 zeros.

Learning outcomes:

Author(s): Bart Snapp and Brad Findell

Hint: $11! = 11 \cdot 10 \cdot 9 \dots 2 \cdot 1$, and imagine its prime factorization. There will be plenty of 2s. Count the 5s.

(c) 27!. There are 6 zeros.

Hint: If you were to write out the 27 factors, 5s are contributed by the following factors: 5, 10, 15, 20, 25. And the 25 contributes a second 5.

(d) 99!. There are $\boxed{19+3}$ zeros.

Hint: Among the 99 factors, there are 19 multiples of 5 and 3 multiples of 25.

(e) 1001!. There are 200 + 40 + 8 + 1 zeros.

Hint: Among the 1001 factors, there are 200 multiples of 5, 40 multiples of 25, 8 multiples of 125, and 625.

In each case, explain your reasoning.

Problem 4 Decide whether the following statements are true or false. In each case, a detailed argument and explanation must be given justifying your claim.

(a) 7|56. (*True* √/ *False*)

Hint: $56 = 7 \cdot 8$.

(b) 55|11. (True/False \checkmark)

Hint: But 11|55.

(c) 3|40. (True / False ✓)

Hint: $40 = 3 \cdot 39 + 1$. Division by 3 gives remainder 1.

(d) $100|(2^4 \cdot 3^{17} \cdot 5^2 \cdot 7)$ (True \checkmark / False)

Hint: $100 = 2^2 5^2$.

(e) $5555|(5^{20} \cdot 7^9 \cdot 11^{11} \cdot 13^{23})$ (True/False \checkmark)

Hint: $5555 = 5 \cdot 11 \cdot 101$.

(f) $3|(3+6+9+\cdots+300+303)$ (True \checkmark / False)

Hint: 3 divides each of the terms.

Problem 5 Suppose that

$$(3^5 \cdot 7^9 \cdot 11^x \cdot 13^y) | (3^a \cdot 7^b \cdot 11^{19} \cdot 13^7)$$

What values of a, b, x and y, make true statements? Explain your reasoning.

- $a \ (\geqslant \sqrt{/} = / \leqslant) \ \boxed{5}$.
- $b \ (\geqslant \checkmark/=/\leqslant) \ \boxed{9}$
- $x (\geqslant / = / \leqslant \checkmark)$ 19
- $y \geqslant / = / \leqslant \sqrt{7}$.

Problem 6 Decide whether the following statements are true or false. In each case, a detailed argument and explanation must be given justifying your claim.

(a) If 7|13a, then 7|a. (True \checkmark / False)

Hint: Follows from Euclid's Lemma because 7 is prime.

(b) If 6|49a, then 6|a. (True \checkmark / False)

Hint: Because $6 = 2 \cdot 3$ is not prime, we handle its prime factors separately. Because 6|49a, it must be that 2|49a. Then 2|a by Euclid's Lemma. Similarly, because 6|49a, it must be that 3|49a. Then 3|a by Euclid's Lemma. Because both 2|a and 3|a, it follows that 6|a.

(c) If 10|65a, then 10|a. (True/False \checkmark)

Hint: Counterexample: a = 2.

(d) If 14|22a, then 14|a. (True/False \checkmark)

Hint: Counterexample: a = 7.

(e) $54|931^{21}$. (True / False \checkmark)

Hint: 54 is even (i.e., it has 2 as a factor), but 931²¹ is not.

(f) $54|810^{33}$. (True \checkmark / False)

Hint: From $54 = 2 \cdot 3^3$ and $810 = 2 \cdot 5 \cdot 3^4$, we can see that 54|810.

Problem 7 Joanna thinks she can see if a number is divisible by 24 by checking to see if it's divisible by 4 and divisible by 6. She claims that if the number is divisible by 4 and by 6, then it must be divisible by 24.

Lindsay has a similar divisibility test for 24: She claims that if a number is divisible by 3 and by 8, then it must be divisible by 24.

Are either correct? Explain your reasoning.

Joanna is (correct \checkmark). Lindsay is (correct \checkmark / incorrect).

Free Response: Hint: For Joanna, the least (positive) counterexample is $\boxed{12}$. Her method doesn't work because the $gcd(6,4) = \boxed{2}$, so there are common multiples before $6 \cdot 4$.

Lindsay's method, works because $gcd(3,8) = \boxed{1}$, so every common multiple of 3 and 8 is also a multiple of $3 \cdot 8$.

Problem 8 Decide whether the following statements are true or false. In each case, a detailed argument and explanation must be given justifying your claim.

(a) If $a^2|b^2$, then a|b. (True \checkmark / False)

Hint: However many times a prime appears in the prime factorizations of a, it will appear twice as many times in the prime factorization of a^2 . Same idea for b and b^2 . Because $a^2|b^2$, we know that $b^2 = ka^2$ for some integer k. Both b^2 and a^2 must have an even number of factors any prime, which implies that k must also have an even number of factors of that prime. This means that k is a perfect square, which is to say it is the square of some integer c. Substituting $k = c^2$, we find that $b^2 = c^2 a^2 = (ca)^2$. Assuming a, b, c > 0, we have b = ca, which means that a|b.

(b) If $a|b^2$, then a|b. (True \checkmark / False)

Hint: Counterexample: a = 12, b = 6.

(c) If a|b and gcd(a,b) = 1, then a = 1. (True \checkmark / False)

Hint: Because a|b there is an integer k such that b=ak. Because $\gcd(a,b)=1$, every prime in the factorization of b is not a factor of a and therefore must be in k. This implies that k has the same prime factorization of b. Assuming a,b,k>0, this means that b=k and therefore a=1.

Problem 9 Suppose x and y are integers. If $x^2 = 11 \cdot y$, what can you say about y? Explain your reasoning.

Free Response: Hint: Imagine comparing the prime factorizations of x, x^2 , and y. However many times a prime appears in the prime factorization of x, it will appear twice as many times in the prime factorization of x^2 . Because 11|(11y), it follows that $11|x^2$. Because x^2 must have an even number of factors of 11, y will have an odd number of factors of 11. And y will have an even number of each of its other prime factors.

Problem 10 Suppose x and y are integers. If $x^2 = 25 \cdot y$, what can you say about y? Explain your reasoning.

Free Response: Hint: Because x^2 , $25y^2$, and 25 are all perfect squares, y must also be a perfect square