

ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИЙ МАШИННОГО ОБУЧЕНИЯ ПРИ РЕШЕНИИ ГЕОИНФОРМАЦИОННЫХ ЗАДАЧ

Колесников А.А., Кикин П.М., Комиссарова Е.В., Касьянова Е.Л. СГУГиТ, г. Новосибирск

«ИнтерКарто/ИнтерГИС 24», г. Петрозаводск, 2018

Машинное обучение, особенности

Формулировка задачи: сбор параметров

Решение задачи: процесс обучения

Проверка модели

- ✓ Популярность
- ✓ Высокий порог вхождения
- ✓ Универсальность

Задачи географии, картографии и геоинформатики, решаемые средствами машинным обучением

- ✓ классификация отнесение объекта к одной из категорий на основании его признаков;
- ✓ **регрессия** прогнозирование одного или нескольких количественных признаков объекта на основании набора прочих его параметров (как количественных, так и качественных),
- ✓ кластеризация разбиение множества объектов на группы на основании признаков этих объектов;
- ✓ **детекция аномалий** поиск объектов, сильно отличающихся от всех остальных в выборке либо от какой-то группы объектов.

Sharma, Diksha & Kumar, Neeraj. (2017). A Review on Machine Learning Algorithms, Tasks and Applications. 6. 2278-1323.

Задачи географии, картографии и геоинформатики, решаемые средствами машинным обучением

Особенности:

- результатом, как правило, должны быть несколько связанных величин;
- более сложная визуализация;
- интеграция с ГИС

Типовой порядок действий

Предобработка данных Отбор параметров

Выбор алгоритмов

Выбор метрики

Оптимизация **результатов**

Предобработка пространственных данных

- ✓ проверка и назначение (при необходимости) правильных типов параметров (целое или дробное число, текст, дата и время и т.п.),
- ✓ заполнение пропущенных значений (если это возможно и в этом есть необходимость, поскольку некоторые алгоритмы не могут обрабатывать данные с пропусками),
- ✓ удаление ошибочных данных,
- ✓ различные типы кодирования
- **✓** ...

Выбор параметров

Способами отбора значимых параметров могут быть:

- 1. визуализация;
- 2. расчет значений корреляции (коэффициенты Пирсона, Спирмена и т.д.);
- 3. пространственная автокорреляция, хаотичность размещения объектов в пространстве (индекс Морана и т.д.);
- 4. расчет энтропии, в том числе для временных рядов (характерный показатель Ляпунова, коэффициент Хёрста, detrended fluctuation analysis и т.д.).

Which machine learning algorithm should I use? By Hui Li, Principal Staff Scientist, Data Science, at SAS.

https://www.datasciencecentral.com/profiles/blogs/which-machine-learning-algorithm-should-i-use

- детекция и сегментация объектов на растровых данных;
 - о деревья решений;
 - комбинация деревьев решений и градиентного бустинга (данный вариант является одним из наиболее универсальных решений, наряду с нейронными сетями);
 - традиционные и сверточные нейронные сети (являются наиболее универсальным решением, но требуется подбирать большое число параметров и подбирать архитектуру сети);
- классификация данных;
 - о деревья решений и случайный лес;
 - нейронные сети;
 - о метод опорных векторов;
 - о логистическая классификация;
 - о наивная байесовская классификация;

- расчет пропущенных. либо прогнозных значений;
 - о деревья решений и случайный лес;
 - комбинация деревьев решений и градиентного бустинга;
 - линейная регрессия;
 - о логистическая регрессия;
 - нейронные сети;
 - o ridge регрессия;
 - lasso регрессия;
 - о метод опорных векторов;
 - о кригинг и кокригинг (этот и следующие методы реализованы в большинстве геоинформационных систем);
 - метод обратных взвешенных расстояний;
 - о методы локальных и глобальных полиномов;

- прогнозирование и анализ временных рядов (для этих задач характерно наличие пространственных и атрибутивных данных для одной и той же территории в нескольких временных интервалах);
 - о комбинация деревьев решений и градиентного бустинга
 - ARIMA/SARIMA;
 - нейронные сети глубокого обучения;
 - о нейронные сети с долгой краткосрочной памятью (LSTM);
 - пространственно-временные повторяющиеся сверточные сети (SRCN);
 - о пространственный анализ методом Монте-Карло (SMCA);
- поиск аномалий в данных;
 - о метод опорных векторов;
 - метод главных компонент;
 - метод k-средних.

Метрики качества

Классификация:

Оценка модели:

F1-score

AUC ROC

. . .

Вероятность предсказания:

Mean average precision (MAP)

Logloss

. . .

Детекция/Сегментация:

Intersection over Union (IoU) / Jaccard coefficient (Коэффициент Жаккара) Sorensen–Dice coefficient (коэффициент Сёренсена-Дайса) / F1-score,...

Пространственные данные:

коэффициент ранговой корреляции Kendall's Tau-b, процент попаданий в окружность заданного радиуса, коэффициент Джини,...

Способы улучшения качества

- ансамблирование или гибридные модели (boosting, bagging, stacking);
- > перекрестная проверка (кросс-валидация);
- подбор параметров по сетке (grid search) и
 случайный подбор параметров (random search);

Внедрение

Варианты использования созданной модели на реальных данных:

- ✓ создание модулей для какой-либо ГИС;
- ✓ создание web-обвязки для выполнения скриптов на сервере;
- ✓ размещение на специализированном облачном сервисе.

Iceberg Classifier Challenge

Снимки двух диапазонов 75x75 px — 5625 элементов 1604 — train set 8424 — test set Метрика - logloss

Iceberg Classifier Challenge

Логистическая регрессия	218s, 10,9s 0.6984, 1355 место	
Градиентный бустинг XGBoost	186,5s, 14,2s 0.2682, 975 место	
Ансамблирование градиентного бустинга XGBoost и LightGBM	2514,4s, 21,6s 0.2021, 536 место	
Сверточная нейронная сеть Keras + Tensorflow	3800s, 39s 0.2497, 935 место	
Предобученная сверточная нейронная сеть Keras + Tensorflow + VGG16	14175s, 48s 0.1745, 304 место	
Предобученная сверточная нейронная сеть Keras + Tensorflow + InceptionV3	15867s, 53s 0.1780, 338 место	

Сегментация объектов гидрографии

Участок Новосибирской области

площадью ~ 8000 км²

Landsat 8

QGIS

NDVI: Jaccard Index – 0,65

Сегментация объектов гидрографии

Keras + Tensorflow

Jaccard Index – от 0,40 до 0,75

DengAl: Predicting Disease Spread

Номер	Модель	Среднеквадратическая ошибка	Место в рейтинге
1	Линейная регрессия в Orange	29.8173	1024
2	KNN в Orange	33.8774	1348
3	Random Forest в Jupyter Lab	27.2981	876
4	Автоматический подбор параметров Random Forest в Jupyter Lab	26.5601	753
5	Random Forest B Orange	26.6130	758
6	XGboost в Jupyter Lab	27.8726	962
7	CatBoost в Jupyter Lab	37.1058	1812
8	LightGBM в Jupyter Lab	28.6947	963
9	Keras в в Jupyter Lab после обработки данных инструментом StandardScaler, нейронная сеть без скрытых слоев	32.5481	1197
10	Keras в в Jupyter Lab после обработки данных инструментом StandardScaler, нейронная сеть с двумя скрытыми слоями	27.3918	906
11	Автоматический подбор параметров Random Forest в Jupyter Lab с разделением по городам	26.3894	
12	Автоматический подбор параметров Random Forest в Jupyter Lab с разделением по городам без учета параметров климата и растительности	27.0361	TO
13	Автоматический подбор параметров Random Forest в Jupyter Lab с разделением по городам без учета параметров климата	27.2740	
14	Автоматический подбор параметров Random Forest в Jupyter Lab с разделением по городам без учета параметров растительности	27.5745	5
«ИнтерКарто/ИнтерГИС 24», г. Петрозаводск, 2018			

✓ машинное обучение работает

✓ в любом случае будет результат

✓ но он может быть плохим;

 ✓но, в ряде случаев, сильно лучше традиционного подхода и далее круг успешно решаемых задач будет увеличиваться;

✓ решение пространственных задач средствами ML специфично и порог вхождения высок, но перспективы очень велики.

ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИЙ МАШИННОГО ОБУЧЕНИЯ ПРИ РЕШЕНИИ ГЕОИНФОРМАЦИОННЫХ ЗАДАЧ

Колесников А.А., доцент кафедры картографии и геоинформатики СГУГиТ alexeykw@yandex.ru