1. Mechanics and fluids

An object of mass m₁ moves with velocity v_i along a horizontal plane without friction. At some point it collides with an object of mass m_2 which is at rest. There is a spring attached to this second object. The spring has elastic constant κ and negligible mass(fig. 1a). During the collision the spring reaches its maximum compression after which it remains blocked.

- 1) final velocity of the two objects (2 points)
- 2) kinetic energy that is lost in the collision (2 points)
- 3) final amount of compression of the spring (2 points)

Let's now consider the situation in in fig. 1b. Consider that at t=0 the object of mass m2 starts its motion at distance Δx_0

- 4)Calculate the expression for x(t) for object 2 (2 points)
- 5)Calculate the acceleration of object 2 after 3 seconds (2 points)

2. Thermodynamics

An object made of iron, of mass m and at temperature T falls into a container. The container is filled with a mass mw of water at temperature Tw. Considering that Cwater=10Ciron, that m=mw/10, and that T=100Tw, calculate:

1. by how much the water temperature increases (2 points)

Consider now n moles of an ideal gas that undergo the following cycle: A→B isothermal expansion at TA, B→C isochoric transformation with volume V_B, C→D isothermal compression at T_C, D→A isochoric transformation with volume V_D. Consider that V_B=2V_A, T_A=3T_C, Cv=3R/2

- 2) Draw the PV diagram (1 points)
- 3) Heat exchanged in the cycle (3 points)
- 4) The efficiency of the machine (2 points)

3. Electromagnetism

In a region A of space there is a uniform magnetic field of intensity B along the \hat{z} direction. We accelerate a proton from rest with a difference of potential ΔV so that it enters region A with velocity v in the \hat{y} direction and perpendicular to the magnetic field.

- 1) Explain why the trajectory the proton describes in region A is circular and how is the trajectory different in the case the incident particle is an electron (2 points)
- 2)Calculate the radius R of the trajectory and the angular velocity (2 points)
- 3) Imagine now that we apply an external electric field E such that the proton is not deviated by the magnetic field and continues to move along the y axis but such that the proton stops after horizontal distance x. Express E as a vector (module and direction). (3 points)
- 4)Consider now a coil of area A in the $\hat{x}\,\hat{y}$ plane and a magnetic field perpendicular to the coil along the \hat{z} direction. The magnetic field increases linearly with time. How does the generated electromotive force vary with time and what's its direction? (2 points)

4. Modern physics

What is the photoelectric effect and why was it crucial to the development of quantum physics? (3 points)