(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年12月23日(23.12.2004)

(10) 国際公開番号 WO 2004/111230 A1

C12N 15/09, 1/21, C12P 17/18 // (51) 国際特許分類?: (C12N 1/21, C12R 1:465) (C12P 17/18, C12R 1:465)

(21) 国際出願番号:

PCT/JP2003/007407

(22) 国際出願日:

2003年6月11日(11.06.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

- 人北里研究所 (THE KITASATO INSTITUTE) [JP/JP]; 〒108-8642 東京都港区 白金五丁目 9番 1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 大村 智 (OMURA,Satoshi) [JP/JP]; 〒157-0076 東京都 世田 谷区 岡本三丁目3番12号 Tokyo (JP). 池田 治生 (IKEDA,Haruo) [JP/JP]; 〒210-0900 神奈川県 川崎市 幸区新塚越 1-2 サウザンドシティ5-1 1 0 3 Kanagawa (JP). 小笠原 由美子 (OGASAWARA, Yumiko) [JP/JP]; 〒213-0033 神奈川県 川崎市 高津区下 作延1877番地ヒルズM102 Kanagawa (JP).

- (74) 代理人: 小林 和憲 (KOBAYASHI, Kazunori); 〒170-0004 東京都 豊島区 北大塚 2 丁目 2 5 番 1 号 太陽生 命大塚ビル3階 Tokyo (JP).
- · (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (71) 出願人 (米国を除く全ての指定国について): 社団法 (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: STRAIN BELONGING TO THE GENUS STREPTOMYCES AND BEING CAPABLE OF PRODUCING NEMA-DICTIN AND PROCESS FOR PRODUCING NEMADICTIN USING THE STRAIN

(54) 発明の名称: ストレプトマイセス属に属するネマデクチン生産能を有する菌株、該菌株を用いるネマデクチン の製造法

(57) Abstract: To obtain nemadictin as C-13 hydroxylnemadictin to which a saccharide can add, a strain capable of producing C-13 hydroxylnemadictin is constructed by modifying nemadictin aglycon biosynthesis genes. Further, a C-13 glycosylnemadictin-producing strain is constructed by transferring aveBI-BVIII genes participating in the glycosylation of Avermectin and the biosynthesis of oleandrose. Thus, C-13 hydroxylnemadectin and nemadictin glycosylated at the C-13 position can be efficiently obtained with the use of the producing strains constructed molecular genetic techniques and it is expected that the biological activities thereof can be thus improved.

(57) 要約: 本発明は、ネマデクチンを、糖が付加し得るC-13ヒドロキシルネマデクチンとして得るためにネマデク ・チンアグリコン生合成遺伝子群の改変を行い、C-13ヒドロキシルネマデクチンを生産する生産株を作製する。更に また、エバーメクチンの配糖化およびオレアンドロース生合成に関与するaveBI-BVIII遺伝子群を導入して、C-13グ リコシルネマデクチン生産株を作製する。このように、分子遺伝学的手法によって作製した生産株によりC-13ヒド ロキシルネマデクチン及びC-13位が配糖化されたネマデクチンを効率的に取得することができ、 その生物活性の改 善が期待できる。

WO 2004/111230

明細書

ストレプトマイセス属に属するネマデクチン生産能を有する菌株、 該菌株を用いるネマデクチンの製造法

背景技術

産業上の利用分野

本発明はストレプトマイセス属に属するネマデクチン生産能を有する菌株、 該菌株を用いるネマデクチンの製造法に関し、更に詳しくはネマデクチン生産能 を有するストレプトマイセス属に属する微生物を用いるC-13ヒドロキシルネ マデクチン及びC-13グリコシルネマデクチンの製造法及びストレプトマイセ ス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属する菌株に 関する。

従来の技術

ベンゾフラン環骨格を有する一連の化合物は優れた抗寄生虫・抗昆虫活性を有し、エバーメクチンやミルベマイシンが実用化されている。ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲネスが生産するベンゾフラン環骨格を有するネマデクチンは α 、 β 、 γ および δ の4種の成分が存在し、そのC-13位には下記の構造で表されるように置換基が存在せず飽和している。

ネマデクチン
$$\alpha$$
 R₁ = H R₂ = CH (CH₃)₂
 β R₁ = H R₂ = CH₃
 γ R₁ = CH₃ R₂ = CH₃
 δ R₁ = CH₃ R₂ = CH (CH₃)₂

ネマデクチンのC-13位が飽和する理由はネマデクチンアグリコン部分の 生成に関与するネマデクチンポリケチド合成酵素(ネマデクチンPKS)のモジュール7がKS-AT-DH-ER-KR-ACPという構成をしている為めである。飽和したC-13位について化学合成的に立体選択的修飾をもたらすことは構造上困難であり、下記構造のエバーメクチンのように糖付加による抗昆虫・抗寄生虫活性の上昇への期待がもてるにもかかわらず、化学合成による誘導体の製造はなされていなかった。

上記のように、化学合成ではネマデクチンのC-13位に立体選択的に水酸基を導入することやその水酸基を配糖化することは困難とされていた構造を、本発明者らは、鋭意研究の結果、分子遺伝学的手法によってC-13グリコシルネマデクチン生産菌を作製することにより立体選択的に配糖化されたネマデクチンを効率的に取得することに成功した。

本発明はこのような知見に基いて完成されたものであり、その目的は分子遺伝学的手法によってC-13グリコシルネマデクチン生産菌を作製し、立体選択的に配糖化されたネマデクチンを効率的に取得することができ、その生物活性の改善を期待し得る、ストレプトマイセス属に属するネマデクチン生産能を有する

菌株を提供するものである。

本発明の他の目的は、ネマデクチンを生産するストレプトマイセス属に属する微生物に、ネマデクチン類似化合物を生産する微生物のDNAを導入してC-13ヒドロキシルネマデクチン及びC-13グリコシルネマデクチンを生産蓄積させ採取するネマデクチンの製造法を提供するものである。

発明の開示

本発明者らは、ネマデクチンを化学合成的に修飾可能な、特に糖が付加しうるC-13 ヒドロキシルネマデクチンとして得るためにネマデクチンアグリコン生合成遺伝子群の改変を行い、ネマデクチンPKSとエバーメクチンポリケチド合成酵素(エバーメクチンPKS)とのハイブリッドポリケチド合成酵素(ハイブリッドPKS)を形成することによりC-13 ヒドロキシルネマデクチンを生産する菌株を作製した。そして、エバーメクチンPKSの転写調節に関与するaveR遺伝子を導入してエバーメクチンPKS遺伝子の転写を促進させるとともにC-13 ヒドロキシルネマデクチンの生産性を向上させた。

なお、本菌株は、ストレプトマイセス・シアネオグリセウス・サプスピーシーズ・ノンシアノゲナス(Streptomyces cyaneogriseus subsp. noncyanogenus) AnemA4: vph attB_{TG1}: aveA4-aveA3-aveE attBφ_{CS1}: aveRとして、特許手続上の微生物の寄託の国際的承認に関するプタペスト条約に基ずき日本国茨城県つくば市東1丁目1番地1 中央第6(郵便番号305-8566)[AIST Tsukuba Centra16,1-1, Higashi 1-Chome Tsukuba-shi, Ibaraki-ken 305-8566 Japan]の独立行政法人産業技術総合研究所 特許生物寄託センター(International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology)に寄託した。受託日は平成15年6月6日であり、受託番号はFERM BP-8395である。

さらにまた、エバーメクチンの配糖化及びオレアンドロース生合成に関与する a v e B I - B V I I 遺伝子群を導入した菌株を作製し、C-1 3 グリコシルネマデクチン生産株を作製した。

なお、本菌株は、ストレプトマイセス・シアネオグリセウス・サプスピーシーズ・ノンシアノゲナス(Streptomyces cyaneogriseus subsp. noncyanogenus) ムnemA4::vph attB_{TG1}::aveA4-aveA3-aveE attB ϕ_{G31} ::aveR attB_{R4}::aveB1-BVIIIとして、特許手続上の微生物の寄託の国際的承認に関するプタペスト条約に基ずき日本国茨城県つくば市東1丁目1番地1 中央第6(郵便番号305-8566)[AIST Tsukuba Central 6,1-1, Higashi 1-Chome Tsukuba-shi, Ibaraki-ken 305-8566 Japan]の独立行政法人産業技術総合研究所 特許生物寄託センター(International Patent Organism Depositary National Institute of Advanced Industrial Science and Technology)に寄託した。受託日は平成15年6月6日であり、受託番号はFERM BP-8394である。

本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属する菌株を培地で培養し、培養物中にC-13グリコシルネマデクチンを生産蓄積させ、該培養物よりC-13グリコシルネマデクチンを採取するC-13グリコシルネマデクチンの製造法である。また、本発明は、ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、C-13ヒドロキシルネマデクチン及びC-13グリコシルネマデクチン生産能を有する菌株である。

以上のごとく、ネマデクチンを生産するストレプトマイセス属に属する微生物に、ネマデクチン類似化合物を生産する微生物のDNAを導入してC-13ヒドロキシルネマデクチン及びC-13グリコシルネマデクチンを生産蓄積せしめたという報告は未だ知られていない。

従って、本発明はストレプトマイセス・シアネオグリセウス・サブスピーシ

ーズ・ノンシアノゲナスに属し、C-13位配糖化ネマデクチン生産能を有する 菌株を提供するものである。

更に本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、C-13位水酸化ネマデクチン生産能を有する菌株を提供するものである。

更に本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、C-13位水酸化ネマデクチン生産能を有する微生物を培地で培養し、培養物中にC-13位水酸化ネマデクチンを生産蓄積させ、該培養物よりC-13位水酸化ネマデクチンを採取するC-13位水酸化ネマデクチンの製造法を提供するものである。

更に本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、C-13位配糖化ネマデクチン生産能を有する微生物を培地で培養し、培養物中にC-13位配糖化ネマデクチンを生産蓄積させ、該培養物よりC-13位配糖化ネマデクチンを採取するC-13位配糖化ネマデクチンの製造法を提供するものである。

更に本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、ストレプトマイセス・アベルミチリスのエバーメクチンアグリコン生合成遺伝子群を保有するC-13位水酸化ネマデクチン生産能を有する微生物及びその製造法を提供するものである。

更に本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、ストレプトマイセス・アベルミチリスのエバーメクチンアグリコン生合成遺伝子群を保有するC-13位配糖化ネマデクチン生産能を有する微生物及びその製造法を提供するものである。

更に本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、ネマデクチンアグリコン生合成遺伝子群nemA3-4オペロンのKS10をコードする領域にバイオマイシン耐性遺伝子を挿入したネマデクチン非生産性の菌株 (KS10挿入変位株)を提供するものである。

更に本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、上記KS10挿入変位株にストレプトマイセス・ア

ベルミチリスのエバーメクチンアグリコン生合成遺伝子群aveA3-4を保有し、NemA1-2及びAVES3-4とのハイブリッドPKSを形成しうる微生物を提供するものである。

更に本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、NemA1-2及びAVES3-4とのハイブリッドPKSを形成しうる微生物でストレプトマイセス・アベルミチリスのエバーメクチン生合成遺伝子群の制御遺伝子aveRを保有する菌株を提供するものである。

更に本発明はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、NemA1-2及びAVES3-4とのハイブリッドPKSを形成しうる微生物でストレプトマイセス・アベルミチリスのエバーメクチン生合成遺伝子群の制御遺伝子aveR及びエバーメクチン配糖化およびオレアンドロース生合成遺伝子群aveBI-BVIIIを保有する菌株を提供するものである。

図面の簡単な説明・

第1図はネマデクチンPKSモジュール10のKS領域を含む3.0kb断片の制限酵素地図であり、矢印は転写方向を示す。

第2図はネマデクチンKS10領域のSalI部位vph挿入断片の制限酵素地図であり、矢印は転写方向を示す。

第3図はC-13ヒドロキシルネマデクチンの ^1H-NMR スペクトルである。

第4図はC-13ヒドロキシルネマデクチンの $^{13}C-NMR$ スペクトルである。

第5図はC-13グリコシルネマデクチンの「H-NMRスペクトルである。第6図はC-13グリコシルネマデクチンの「 $^{13}C-NMR$ スペクトルである。

発明を実施するための最良の形態

以下に本発明の実施例について具体的に説明するが、本発明はけっしてこれ

のみに限定されるものではない。

実施例1

ネマデクチンPKS、KS10領域にバイオマイシン耐性遺伝子(viomycin phosphotransferase; vph)を挿入したストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナス(Streptomyces cyaneogriseus sp. noncyanogenus)NRRL 15773の取得

(1)ネマデクチンPKS、KS10をコードするDNA断片のサブクローニング

ネマデクチンアグリコン合成酵素遺伝子を含むコスミドDNAのうち、モジュール10のKSドメイン(NEM-KS10)をコードするDNAを含むコスミドDNAを制限酵素BamHI(宝酒造社製、日本国)で消化した後、アガロースゲル電気泳動し、KS10領域を含有する3.0kbのDNA断片をジーンクリーンIIキット(バイオ101社製、米国)を用いて分離・精製した。また、プラスミドpUC19(宝酒造社製、日本国)は、BamHIで消化した後、a1kaline phosphatase(Calf intestine)(宝酒造社製、日本国)で脱リン酸化した。NEM-KS10を含む3.0kb断片とpUC19のBamHI消化物、各々約0.1 μ gをLigation High(東洋紡社製、日本国)を用いて、16℃で16時間反応することで連結させた。

このDNA連結反応物 $10\mu1$ と大腸菌 DH 5α のコンピテントセル(日本ジーン社製、日本国)を接触させることにより、形質転換を行った。形質転換株の選択には、 $50\mug/m1$ のアンピシリン(和光純薬社製、日本国)を含有した 20m1のL B寒天培地を用い、0.1mo1/Lイソプロピルー β -D-チオガラクトピラノシド(IPTG)水溶液、2%5-ブロモー4-クロロー3-インドリルー β -D-ガラクトシド(X-ga1、ナカライテスク社製、日本国)のジメチルホルムアミド(ナカライテスク社製、日本国)溶液を、あらかじめ各々 $50\mu1$ 塗布しておいた。組換えプラスミドを保持する形質転換株のコロニ

ーは、 β -ガラクトシダーゼ活性を失っているため、X-galを分解できず、白色を呈する。この白コロニーをエーゼで拾い、10m1のLB培地に植菌し、37℃で16時間、振盪培養後、アルカリ法にて菌体からプラスミドを抽出・精製した。得られた組換えプラスミドの一部を制限酵素BamHIで消化し、3.0kbのDNA断片がpUC19に挿入されているプラスミドpUC19:NEM-KS10が得られていることを確認した。

(2) ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシア ノゲナス (Streptomyces cyaneogriseus sp. n oncyanogenus) NRRL 15773由来BamHI 3.0kb DNA断片の末端配列の決定

はじめにサイクルシークエンス反応の鋳型DNAの調製を行なった。実施例 1-(1)で得た組換えプラスミドpUC19::NEM-KS10に、Exp andTaqDNAポリメラーゼ緩衝液(Roch社製、米国)、dATP、d GTP、dCTP、dTTP、配列番号1に記載の5′-GTGCTGCAAG GCGATTAAGTTGG-3'の塩基配列を有する合成DNA、配列番号2 に記載の5′-TCCGGCTCGTATGTTGTGTGGA-3′の塩基配 列を有する合成DNAをプライマーセットとして添加し、ExpandTaaD NAポリメラーゼ (Roch社製、米国) を加えた後、96℃で5分間処理した 後、96℃で30秒間、70℃で3分間の反応を1サイクルとして30サイクル 繰り返した。反応終了後、エキソヌクレアーゼΙ(アマシャムファルマシアバイ オテック社製、米国)及びアルカリフォスファターゼ(アマシャムファルマシア バイオテック社製、米国)を加え、37℃で15分間反応させた後、80℃で1 0分間処理して両酵素を失活させた。両酵素を失活させた後、これを鋳型DNA としてIR標識プライマー(アロカ社製、日本国)及びThermo enase Fluorescent labelled primer cy cle sequencing kit with 7-deaza-dGTP (アマシャムファルマシアバイオテック社製、米国) を添加し、サイクルシーク エンス反応を行った。反応終了後、反応停止液を加え、混合し試料溶液とした。

この試料溶液を 9 0 ℃、 2 分間加熱し、氷冷した後、シーケンス電気泳動を行った。電気泳動装置は DNAシーケンサーModel 4000シリーズ (LI-COR社製、米国)を使用し、電気泳動後のイメージの解析は Base I mage IR Software Version 2.30の I mage Analysis Version 2.10で行った。得られた各 DNA 断片の塩基配列をもとに、そのアミノ酸配列について BLAST検索を行った結果、一端は S.avermitilis aveA4と相同性の高い配列、反対側の末端には S.avermitilisのreductaseと相同性の高い配列が見いだされた。これらの塩基配列から、Bam HI 断片のネマデクチンPKS 遺伝子の転写方向を確認した(第1図参照)。

(3) NEM-KS10領域へのバイオマイシン耐性遺伝子(viomycin phosphotransferase; vph) の挿入

pUC19::NEM-KS10を制限酵素BamHIで消化した後、アガ ロースゲル電気泳動し、KS10領域を含有する3.0kbのDNA断片を分離 精製した。また、pBluescript SK+(東洋紡社製、日本国)を BamHIで消化して得た約3.0kbのDNA断片0.1μgとNEM-KS 10を含むBamHI断片0.1μgを混合し、Ligation High (東洋紡社製、日本国)を用いて、16℃で16時間反応することで連結させた。 このDNA連結反応物 10μ 1と大腸菌DH 5α のコンピテントセルを接触させ ることにより形質転換を行い、pBluescript SK+にNEM-KS 10断片を連結した組換えプラスミドpBluescript SK+::NE M-KS10を得た。さらに、pBluescript SK+::NEM-K S 1 0 を制限酵素HindIII (宝酒造社製、日本国)及びSstI(GIBC) O BRL社製、米国)で消化し、アガロースゲル電気泳動して得た約3.0k bのNEM-KS10を含有するDNA断片と、プラスミドpUC19をHin d III 及びSst I で制限酵素消化した約2.7kbのDNA断片を各々0.1 μgずつ混合し、Ligation Highを用いて、16℃で16時間反応 することで連結させた。このDNA連結反応物 10μ 1を用いて大腸菌DH 5α

の形質転換を行い、pUC19-BgI(pUC19のマルチクローニングサイトの両端EcoRIとHindIIIの外側にBg1II切断配列AGATCTを挿入させたもの)にNEM-KS10断片を連結した組換えプラスミド<math>pUC19-Bg1:NEM-KS10を得た。

vphはプラスミドpUC19::vphを制限酵素EcoRI(宝酒造社製、日本国)及びPstI(宝酒造社製、日本国)で消化した後、アガロースゲル電気泳動し、<math>vphを含む1.7kboDNA断片を分離・精製することによって得た。この<math>vphを含む1.7kboEcoRI/PstI DNA断片はBKL kit(宝酒造社製、日本国)を用いて37℃で15分間反応することでDNA末端の平滑化を行った。pUC19-Bg1::NEM-KS10を制限酵素SalI(宝酒造社製:日本国)で消化した後、BKL kitを用いてSalI切断部位の平滑末端化を行った。平滑末端化した断片と上記の平滑末端化した $vph1.7kboDNA断片と混合し、Ligation Highを用いてDNAの連結を行なった。このDNA連結反応物<math>10\mu1$ を用いて大腸菌DH5 α を形質転換し、KS10領域内にvphを挿入した組換えプラスミドpUC19-Bg1::NEM-KS10-vphを持入した組換えプラスミドpUC19-Bg1::NEM-KS10-vphを得た(第2図参照)。なお、形質転換体の選択には $50\mug/m1$ のアンピシリン及び $150\mug/m1$ のツベラクチノマイシンN含有のLB培地を用いた。

pUC19-Bg1::NEM-KS10-vphを制限酵素Bg1II(宝酒造社製、日本国)で消化した後、アガロースゲル電気泳動し、KS10-vph領域を含有する4.7kbのDNA断片を分離・精製した。放線菌用ベクタープラスミド<math>pGM160を制限酵素 BamHIで消化した後、アガロースゲル電気泳動し、6.8kbのDNA断片を分離・精製した。さらに、alkalinephosphatase(Calfintestine)を用いてDNA5′末端の脱リン酸化を行った。このBM160 BamHI消化物とNEM-KS10-vph領域を含有する4.7kbのDNA断片を各々0.1 μ gずつ混合し、Ligation Highを用いてDNAの連結を行った。このDNA連結反応物10 μ 1を用いて大腸菌DH5 α を形質転換し、組換えプラスミドBM160:NEM-KS10-vphを得た。なお、形質転換体の選択

には 50μ g/m1のアンピシリン及び 150μ g/m1のツベラクチノマイシンN含有のLB培地を用いた。pGM160::NEM-KS10-vphを用いて大腸菌GM2929 hsdS::Tn10の形質転換を行った。なお、形質転換体の選択には 30μ g/m1のクロラムフェニコール(和光純薬社製、日本国)、 50μ g/m1のアンピシリン及び 150μ g/m1のツベラクチノマイシンN含有のLB培地を用いた。大腸菌GM2929 hsdS::Tn10 の形質転換体から非メチル化プラスミドDNA pGM160::NEM-KS10-vphを調製した。

(4) ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシア ノゲナス (Streptomyces cyaneogriseus oncyanogenus) NRRL 15773からのプロトプラストの調製 凍結 (-30℃) 保存してあるストレプトマイセス・シアネオグリセウス・ サブスピーシーズ・ノンシアノゲナスの胞子懸濁液を50mlの30%w/vシ ョ糖、0.5% W/vグリシン、5 mM MgCl2を含むYEME培地(50 0 m 1 容三角フラスコ) に移植し、ロータリーシェーカーで30℃、48時間培 養した。菌体を3000rpm、10分間遠心して集め、20m1のP10培地 を加えよく懸濁した後、3000rpm、10分間遠心して菌体を洗浄した。洗 浄した菌体に1mg/mlの卵白リゾチーム含有のPl0培地を加えて懸濁し、 30℃で30分間保温してプロトプラストを生じさせた。10m1のP10培地 を加えてよく混合した後、プロトプラスト懸濁液を綿栓フイルターに通しリゾチ ームで未消化の菌糸を除去した。綿栓フィルターを通過したプロトプラスト懸濁 液を3000rpm、10分間遠心し、プロトプラストを沈澱させた。上清を除 き10m1のP10培地でよく懸濁した後、3000rpm、10分間遠心しプ ロトプラストを沈澱させた。再度Р10培地を10m1加え、プロトプラストを 懸濁、遠心してプロトプラストを洗浄した。得られた洗浄プロトプラストを 5 m 1のP10培地に懸濁し、0.1m1ずつ滅菌したエッペンドルフチュープに分 注した後、-80℃で保存した。

(5) 染色体上のネマデクチンPKS、KS10領域にバイオマイシン耐性遺伝子(viomycin phosphotransferase; vph) を挿入した遺伝子交換体の作成

実施例1-(3) で得た組換えプラスミドp GM1 6 0::NEM-KS1 $0-vph約1\mug$ と実施例1-(4) で得たストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスのおよそ 5×10^8 個のプロトプラストを滅菌したエッペンドルフチューブに入れ、直ちに $500\mu10025\%$ ポリエチレングリコールMW1000 容液(2.5% ショ糖、0.05% KH2 PO_4 、0.1M CaC12、50mM Tris-マレイン酸、pH8.0)を加えて混合し、室温で1分間放置した。次に、 $450\mu100$ 19 培地を加えてよく混合した後、その $100\mu1$ ずつを100m100 2 5 5 m 1 の軟寒天培地とともに塗り広げた。100m100 3 0 100m100 7 で 100m100 9 で 100m100 7 で 100m100 8 で 100m100 8 で 100m100 9 に 100m100 9 で 10

R2YE寒天培地表面に生育したチオストレプトンに耐性の形質転換体を無菌的にかきとり、ホモジナイザーで菌糸を切断し、YMS寒天培地に塗り広げた。 37℃で4日間培養し、胞子が着生したものをマスタープレートとしてツベラクチノマイシンN含有YMS寒天培地にレプリカした。 30℃で2日間培養し、ツベラクチノマイシンに耐性のコロニーを選択し、それぞれをYMS寒天培地上に塗布した。これを30℃で5日間培養して胞子が着生したものをマスタープレートとし、 $20\mu g/m1$ チオストレプトン含有YMS寒天培地にレプリカして30℃で2日間培養した。ツベラクチノマイシンに耐性、チオストレプトンに感受性となった株を選択し、染色体上のネマデクチンPKS、KS10領域にvphが挿入したことをSouthern hybridization法で確認するとともにネマデクチンを生産しないことを確認した。得られたそれぞれの菌株はストレプトマイセス・シアネオグリセウス・サプスピーシーズ・ノンシアノゲナス Δ nemA4::vph株(Streptomyces cyaneogriseus subsp.noncyanogenus Δ nemA4::vp

h). とした。

(6) ストレプトマイセス・エバーミチリス (Streptomyces avermitilis) 由来エバーメクチンアグリコン合成酵素遺伝子aveA3-4の取得

ストレプトマイセス・エバーミチリスの染色体DNAを制限酵素EcoRIで消化し、低融点アガロースゲル電気泳動した後、aveA3-4全体を含有する配列番号3に記載の39912bpのDNA断片をゲルごと切り出し、フェノール抽出、フェノールクロロホルム抽出、アルコール沈澱することにより分離・精製した。また、染色体組込み型ベクタープラスミドpTG1int-cosを制限酵素EcoRIで消化した後、アガロースゲル電気泳動し、5.2kbのDNA断片を分離・精製した。このEcoRI消化したpTG1int-cosをalkaline phosphatase(Calf intestine)を用いてDNA5'末端の脱リン酸化を行った後、約0.5μgをaveA3-4全体を含有する39912bpのDNA断片約2μgと混合し、Ligation kit ver.2(宝酒造社製、日本国)のI液およびI液を用いて、25°Cで10分間反応することで連結させた。

このDNA連結反応物をアルコール沈澱後、DNAを $2\mu1$ のTE緩衝液に溶解した。これをReadyToGo Lambda Packaging Kit (アマシャムファルマシアバイオテック社製、米国)のPackaging Extractに加え、さらに $23\mu1$ の滅菌水を加え室温で2時間放置した後、0.5m1のファージ希釈緩衝液(SM緩衝液)および $30\mu1$ のクロロホルムを加え、転倒混和した。次いで、13200rpmで30秒間遠心し、上清を新たな滅菌エッペンドルフチューブに移し、ラムダファージパッケージング溶液を得た。

(7)エバーメクチンアグリコン合成酵素遺伝子aveA3-4を保有する大腸菌BL21 recA欠損株の取得

実施例1-(6)で得たラムダファージパッケージング溶液を用いて大腸菌 BL21 recA欠損株を宿主としてトランスダクションを行った。宿主大腸 菌BL21 recA欠損株をLB培地を用いて、37℃、一晩振盪培養したも のを 0. 4 % 麦芽糖添加 L B 培地に 1 % となるように加え、 3 7 ℃、 3 時間振盪 培養した。遠心分離により菌体を回収し、10mM硫酸マグネシウム溶液を用い て洗浄した。さらに遠心分離により菌体を回収し、適量の10mM硫酸マグネシ ウム溶液に懸濁して宿主菌液を得た。この宿主菌液と実施例1-(6)で得たラ ムダファージパッケージング溶液をエッペンドルフチューブ内で1:1の割合で 混合し、室温で30分間静置した。その後、LB培地を加え、30℃で1.5時 間振盪したものをカナマイシン (50 μ g/m1) 含有LA培地上に塗布し、3 0℃で一晩培養した。カナマイシン耐性のコロニーを96穴テストプレートにラ イブラリーとして培養し、その中から配列番号4に記載の合成DNAとハイブリ ダイズするコスミドDNAを保有するクローンを選択した。エバーメクチンアグ リコン合成酵素遺伝子aveA3-4を保有する組換えプラスミドDNAは、カ ナマイシン (50 μg/m1) 含有 L B 培地を用いて一晩培養した菌体から常法 にしたがってアルカリ法で精製した。

ネマデクチンPKSモジュール10vph挿入変位株へのエバーメクチン生合成遺伝子群aveA3-4の導入

実施例1-(5)で得たネマデクチンPKSモジュール10領域 v p h挿入株の胞子懸濁液を50m1の30%w/vショ糖、0.5%w/vグリシン、5mM MgC12を含むYEME培地(500m1容三角フラスコ)に移植し、ロータリーシェーカーで30℃、48時間培養した。菌体を3000rpm、10分間遠心して集め、20m1のP10培地を加えよく懸濁した後、3000rpm、10分間遠心して菌体を洗浄した。洗浄した菌体に1mg/m1の卵白リゾチーム含有のP10培地を加えて懸濁し、30℃で30分間保温してプロトプラストを生じさせた。10m1のP10培地を加えてよく混合した後、プロトプラストを生じさせた。10m1のP10培地を加えてよく混合した後、プロトプラスト懸濁液を綿栓フィルターに通しリゾチームで未消化の菌糸を除去した。綿栓フィルターを通過したプロトプラスト懸濁液を3000rpm、10分間遠心し、プロトプラストを沈澱させた。上清を除き10m1のP10培地でよく懸濁した後、3000rpm、10分間遠心し、プロトプラストを沈澱させた。再度P10培地を10m1加え、プロトプラストを懸濁、遠心してプロトプラストを洗浄した。得られた洗浄プロトプラストを5m1のP10培地に懸濁し、0.1m1ずつ減菌したエッペンドルフチュープに分注した後、-80℃で保存した。

4::vph attB_{TG1}::aveA4-aveA3-aveE株とした。

実施例3

ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナス Δ nemA4::vph attB $_{\tau c_1}$::aveA4-aveA3-aveE株へのaveRの導入

配列番号 5 に記載のエバーメクチン生合成遺伝子群の転写制御遺伝子 a v e Rを含む制限酵素 A g e I DNA断片を連結したベクタープラスミド p U C B M 2 1 : : a v e Rを制限酵素 X b a I および H i n d III で消化し、アガロースゲル電気泳動し、a v e Rを含有する 3. 2 7 k b の DNA 断片を分離・精製した。染色体組込み型ベクタープラスミド p U C 1 9 a a d 3"ーi n t Φ C 3 1 の X b a I および H i n d III 認識部位に a v e R 含有 3. 2 7 k b X b a I ー H i n d III 断片を連結し、大腸菌 B L 2 1 Δ r e c A を形質転換した。

実施例2で得たストレプトマイセス・シアネオグリセウス・サプスピーシー ズ・ノンシアノゲナスΔnemA4::vph att B_{TG1} ::aveA4aveA3-aveE株の胞子懸濁液を50mlの30%w/vショ糖、0.5 %W/vグリシン、5mM MgC12を含むYEME培地(500m1容三角 フラスコ)に移植し、ロータリシェーカーで30℃、48時間培養した。菌体を 3000rpm、10分間遠心して集め、20m1のP10培地を加えよく懸濁 した後、3000rpm、10分間遠心して菌体を洗浄した。洗浄した菌体に1 mg/m1の卵白リゾチーム含有のP10培地を加えて懸濁し、30℃で30分 間保温してプロトプラストを生じさせた。10mlのPl0培地を加えてよく混 合した後、プロトプラスト懸濁液を綿栓フィルターに通しリゾチームで未消化の 菌糸を除去した。綿栓フィルターを通過したプロトプラスト懸濁液を3000ァ pm、10分間遠心し、プロトプラストを沈澱させた。上清を除き10m1のP 10培地でよく懸濁した後、3000rpm、10分間遠心しプロトプラストを 沈澱させた。再度P10培地を10m1加え、プロトプラストを懸濁、遠心して プロトプラストを洗浄した。得られた洗浄プロトプラストを5m1のP10培地 に懸濁し、0.1m1ずつ滅菌したエッペンドルフチューブに分注した後、-8

0 ℃で保存した。このプロトプラストに上記で得たプラスミドDNA pUC1 9 a a d 3" -i n t Φ C 3 1 : : a v e R約 1 μ g を加え、直ちに 5 0 0 μ 1 の 2 5 %ポリエチレングリコールMW 1 0 0 0 容液(2. 5 %ショ糖、 0. 0 5 % KH₂ PO₄、 0. 1 M C a C 1 2、 5 0 mM Trisーマレイン酸、 p H 8. 0)を加えて混合し、室温で 1 分間放置した。

次に、 $450\mu1$ のP10培地を加えてよく混合した後、その100 $\mu1$ ずつをR2YE寒天培地上にのせ、2.5m1の軟寒天培地とともに塗り広げた。30℃で20時間培養した後、スペクチノマイシン3mg/m1含有軟寒天培地2.5m1を重層した。30℃で5日間培養しスペクチノマイシンに耐性な形質転換体を得た。R2YE寒天培地表面に生育したスペクチノマイシンに耐性の形質転換体を無菌的に $300\mu g/m1$ スペクチノマイシン含有YMS寒天培地に塗り広げた。得られたそれぞれの菌株はストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナス $\Delta nemA4:vphatta$ at $tB_{\tau c}$: : aveA4-aveA3-aveE at $tB\phi_{cs1}:aveR$ 株とした。

実施例 4

ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナス Δ nemA4:: vph attB $_{\tau c1}$:: aveA4-aveA3-ave E attB ϕ c31:: aveR株の培養および生産物の分離・精製

実施例3で得た染色体上ネマデクチンPKSモジュール7vph挿入株にaveA3-4およびaveRを組み込んだ株をネマデクチン種培地に植菌し、30℃で3日間振盪培養したもの1mLを500mL容三角コルベンに分注したネマデクチン生産培地50mLに加えた。これを28℃で5日間、180rpmで振盪培養した後、3000rpmで10分間遠心し、菌体を回収した。得られた菌体をアセトンで懸濁し、室温で1時間攪拌した後、菌体とアセトン層を分取し、アセトン層について溶媒留去した。溶媒乾固した物質に水およびクロロホルムを加え攪拌した後、クロロホルム層を分取し、無水硫酸ナトリウムを加え脱水処理を行った。クロロホルム層の溶媒留去を行い、得られた残留物を粗抽出物とし

た。粗抽出物をごく少量のクロロホルムに溶解し、クロロホルムで平衡化したシリカゲル(シグマ社製、米国)カラムに通塔し、クロロホルムで洗浄した後、25% V/V酢酸エチル/クロロホルムで洗浄し、C-13ヒドロキシルネマデクチンを含まない画分を除去した。次いで、40% V/V酢酸エチル/クロロホルムで溶出される画分を除去し、50% V/V酢酸エチル/クロロホルムでC-13ヒドロキシルネマデクチンを多く含む画分を集めた後、得られた溶出液を減圧乾固して黄色油状の物質を得た。次いで、得られた黄色油状の物質は以下の条件でHPLCを用いて分離・精製した。

実施例5

ストレプトマイセス・エバーミチリス (Streptomyces averm i tilis) 由来エバーメクチン配糖化遺伝子群 aveBI-BVIII の取得 配列番号 6 記載の11041bpのDNA断片、すなわち aveBI-BVIII を制 lll 全体を含有するDNAを連結したpUC19::aveBI-BVIII を制

実施例6

ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナス Δ nemA4::vph attB $_{intTol}$::aveA4-aveA3-aveE attB ϕ c31::aveR株へのストレプトマイセス・エバーミチリス(Streptomyces avermitilis)由来エバーメクチン配糖化及びオレアンドロース生合成遺伝子群aveBI-BVIIIの導入

実施例 3 で得たストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナス Δ nemA4::vph attB $_{TG1}$::aveA4ーaveA3-aveE attB ϕ_{C31} ::aveR株の胞子懸濁液を50m1の30%w/vショ糖、0.5%w/vグリシン、5mM MgC1 $_2$ を含むYEME培地(500m1容三角フラスコ)に移植し、ロータリシェーカーで30 $\mathbb C$ 、48時間培養した。菌体を<math>3000rpm、10分間遠心して集め、<math>20m10のP10培地を加えよく懸濁した後、3000rpm、10分間遠心して菌体を洗浄した。洗浄した菌体に<math>1mg/m10の即白リゾチーム含有のP10培地を加えて懸濁し、 $30\mathbb C$ で30分間保温してプロトプラストを生じさせた。<math>10m10のP10培地を加えてよく混合した後、プロトプラスト懸濁液を綿栓フィルターに通しリゾチームで未消化の菌糸を除去した。綿栓フィルターを通過したプロトプラスト懸濁液を3000rpm、10分間遠心し、プロトプラストを沈澱さ

せた。上清を除き10m1のP10培地でよく懸濁した後、3000 r p m、10分間遠心しプロトプラストを沈澱させた。再度P10培地を10m1加え、プロトプラストを懸濁、遠心してプロトプラストを洗浄した。得られた洗浄プロトプラストを5m1のP10培地に懸濁し、0.1m1ずつ滅菌したエッペンドルフチューブに分注した後、-80 $\mathbb C$ で保存した。このプロトプラストに実施例 5で得たプラスミドDNA pUC19intR4-tsr::aveBI-BVIII約1 μ gを加え、直ちに $500\mu1$ の25%ポリエチレングリコールMW100%液(2.5%ショ糖、0.05%KH2PO4、0.1MCaC12、50mMTris-マレイン酸、pH8.0)を加えて混合し、室温で1分間放置した。

次に、 $450\mu1$ のP10培地を加えてよく混合した後、その100 μ 1ずつをR2YE寒天培地上にのせ、2.5m1の軟寒天培地とともに塗り広げた。30℃で20時間培養した後、チオストレプトン200 μ g/m1含有軟寒天培地2.5m1を重層した。30℃で5日間培養しチオストレプトンに耐性な形質転換体を得た。R2YE寒天培地表面に生育したチオストレプトンに耐性の形質転換体を無菌的に20 μ g/m1チオストレプトン含有YMS寒天培地に塗り広げた。得られたそれぞれの菌株はストレプトマイセス・シアネオグリセウス・サプスピーシーズ・ノンシアノゲナス Δ nemA4::vph attB $_{\tau G1}$::aveA4-aveA3-aveE attB $_{\alpha G21}$::aveR attB $_{\alpha G21}$::

実施例7

ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナス Δ nemA4::vph at tB $_{\tau G1}$::aveA4-aveA3-aveE at <math>tB ϕ_{C31} ::aveR at tB $_{R4}$::aveBI-BVIII株の培養および生産物の分離・精製

容三角コルベンに分注したネマデクチン生産培地50mLに加えた。これを28℃で5日間、180rpmで振盪培養した後、3000rpmで10分間遠心し、菌体を回収した。得られた菌体をアセトンで懸濁し、室温で1時間攪拌した後、菌体とアセトン層を分取し、アセトン層について溶媒留去した。溶媒乾固した物質に水およびクロロホルムを加え攪拌した後、クロロホルム層を分取し、無水硫酸ナトリウムを加え脱水処理を行った。クロロホルム層の溶媒留去を行い、得られた残留物を粗抽出物とした。粗抽出物をごく少量のクロロホルムに溶解し、クロロホルムで平衡化したシリカゲル(シグマ社製、米国)カラムに通塔し、クロコホルムで洗浄した後、30% V / V酢酸エチル/クロロホルムで洗浄し、C -13 グリコシルネデクチンを含まない画分を除去した。次いで、40% V / V酢酸エチル/クロロホルムで溶出される画分、50% V / V酢酸エチル/クロロホルムで溶出される画分を集めた後、得られた溶出液をそれぞれ減圧乾固して黄色油状の物質を得た。次いで、得られた黄色油状の物質をHPLCを用いて分離・精製した。

カラムはPegasil ODS ($3\mu m$ 、カラムサイズ $20\phi \times 250m$ m; センシュー科学社製)を使用し、アセトニトリル・メタノール・水を55: 18:27の割合で混合したものを移動層として用いた。流速は6mL/min に設定し、246nmの吸収を指標に、保持時間 120分の成分を分取した。得られた化合物は ^1H-NMR スペクトル(第5図参照)データ、及び $^{13}C-NM$ Rスペクトル(第6図参照)データ、マススペクトルデータ(M+1=917)によってその構造を解析し、下記式C-13グリコシルネマデクチン α (分子式: $C_{50}H_{76}O_{15}$)であることを確認した。

前記の各実施例において使用した各種培地および緩衝液の組成は以下に示す 通りである。

ファージ希釈緩衝液 (SM緩衝液)

Tris塩酸(pH7.5)	•	1 0 mM
塩化ナトリウム	1	0 0 mM
硫酸マグネシウム7水和物		1 0 m M

サイクルシーケンス反応停止液

プロモフェノールブルー	0.02%
EDTA (pH8. 0)	2 0 m M
ホルムアミド	9 5 %

YEME培地

酵母エキス (Difco社製)	. 3 g
麦芽エキス (Охоі d社製)	3 g
ペプトン (Difco社製)	5 g
グルコース	10g
ショ糖	3 0 0 g
蒸留水	1 0 0 0 m 1
p H無調整、121℃、1分間高圧蒸気滅菌。	• • • •

微量元素溶液

塩化第2鉄6水和物	$200 \mathrm{mg}$
塩化亜鉛	4 0 m g
塩化第2銅2水和物	10mg
塩化マンガン4水和物	10mg
ホウ酸ナトリウム10水和物	1 0 m g
モリプテン酸アンモニウム4水和物	10mg
蒸留水	1 0 0 0 m 1

P.10培地

ショ糖	103g			
硫酸カリウム	0. 25g			
塩化マグネシウム 6水和物	2. 03g			
微量元素溶液	2. 0 m 1			
蒸留水	8 0 0 m 1			

1 2 1 °C、1 5 分間の高圧蒸気滅菌後、以下の組成のものを無菌的に加える。

0. 5%リン酸1カリウム10m13. 68%塩化カルシウム2水和物100m10. 25M TES*(pH7.2)100m1

*N-トリス(ヒドロキシメチル)メチル-2-アミノエタンスルホン酸

R 2 Y E 寒天培地

ショ糖・	1	0	3 g			•
硫酸カリウム			0.	2	5	g
塩化マグネシウム6水和物		1	0.	1	2	g
グルコース		1	0 g	•		
カザミノ酸(Difco社製)			0.	1	g	
寒天	·	2	2 g			
蒸留水	8	0	0 m	1		

1 2 1 °C、1 5 分間の高圧蒸気滅菌後、以下の組成のものを無菌的に加える。

微量元素溶液	2 m 1
0. 5%リン酸1カリウム	1 0 m 1
3. 68%塩化カルシウム2水和物	8 0 m 1
20%L-プロリン	15m1
0. 25M TES (pH7. 2)	1 0 0 m 1
10%酵母エキス(Difco社製)	50m1

1M 水酸化ナトリウム

5 m 1.

軟寒天培地

ショ糖103g塩化マグネシウム 6 水和物10.12g寒天(Difco社製)6.5g蒸留水820m1

1 2 1 °C、 1 5 分間の高圧蒸気滅菌後、以下の組成のものを無菌的に加える。

3. 68%塩化カルシウム2水和物80ml0. 25M TES*(pH7. 2)100ml

YMS寒天培地

 麦芽エキス(Difco社製)
 10g

 酵母エキス(Difco社製)
 4g

 可溶性澱粉(Difco社製)
 4g

 寒天
 20g

 蒸留水
 1000m1

2 M水酸化カリウムで p H 7. 4 とした後、1 2 1 ℃、1 5 分間高圧蒸気滅菌する。滅菌終了後、塩化マグネシウム、硝酸カルシウムを各々 1 0 m M、8 m M と成るように加える。

LA培地

トリプトン (Oxoid社製)10g酵母エキス (Oxoid社製)5g塩化ナトリウム5g寒天15g蒸留水1000m1

2 M水酸化カリウムで p H 7. 2 とした後、121℃、15 分間高圧蒸

気滅菌する。

ネマデクチン生産菌種培地

グルコース	1 0 g
デキストリン	2 0 g
酵母エキス	5 g
NZーアミンA	5 g
炭酸カルシウム	1 g
蒸留水	1 0 0 0 m 1

р Н無調整、121℃、15分間高圧蒸気滅菌する。

ネマデクチン生産培地

グルコース	50g
綿実粉	2 5 g
炭酸カルシウム	7 g
蒸留水	1 0 0 0 m

р Н無調整、121℃、15分間高圧蒸気滅菌する。

産業上の利用分野

以上のごとく本発明は、ネマデクチンを生産するストレプトマイセス属に属する微生物に、ネマデクチン類似化合物を生産する微生物のDNAを導入してC-13ヒドロキシルネマデクチン及びC-13グリコシルネマデクチンを生産蓄積せしめて、採取することができる。このように、分子遺伝学的手法によってC-13グリコシルネマデクチン生産菌を作製することで立体選択的に配糖化されたネマデクチンを効率的に取得することができ、抗昆虫・抗寄生虫等の生物活性の改善が期待される。

請求の範囲

- 1. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ ノンシアノゲナスに属し、C-13位配糖化ネマデクチン生産能を有する菌株。
- 2. C-13位配糖化ネマデクチン生産能を有する菌株がストレプトマイセス・シアネオグリセウム・サプスピーシーズ・ノンシアノゲナス(Strept omyces cyaneogriseus subsp. noncyanogenus) Δ n e m A 4: : v p h a t t B $_{\text{TG1}}$:: a v e A 4 a v e A 3 a v e E a t t B ϕ $_{\text{C31}}$:: a v e R a t t B $_{\text{R4}}$:: a v e B I B V I I I (F E R M B P 8 3 9 4) である請求の範囲第1項記載の菌株。
- 3. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ ノンシアノゲナスに属し、C-13位水酸化ネマデクチン生産能を有する菌株。
- 4. C-1 3位水酸化ネマデクチン生産能を有する菌株がストレプトマイセス・シアネオグリセウス・サプスピーシーズ・ノンシアノゲナス(Strept omyces cyaneogriseus subsp. noncyanogenus) Δ n e m A 4 : : v p h a t t B $_{\text{TG1}}$: : a v e A 4 a v e A 3 a v e E a t t B ϕ $_{\text{C31}}$: : a v e R (FERM BP-8 3 9 5) である請求の範囲第 3 項記載の菌株。
- 5 ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ ノンシアノゲナスに属し、C-1 3位水酸化ネマデクチン生産能を有する微生物 を培地で培養し、培養物中にC-1 3位水酸化ネマデクチンを生産蓄積させ、該 培養物よりC-1 3位水酸化ネマデクチンを採取することを特徴とするC-1 3 位水酸化ネマデクチンの製造法。
 - 6. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・

ノンシアノゲナスに属し、C-13位配糖化ネマデクチン生産能を有する微生物を培地で培養し、培養物中にC-13位配糖化ネマデクチンを生産蓄積させ、該培養物よりC-13位配糖化ネマデクチンを採取することを特徴とするC-13位配糖化ネマデクチンの製造法。

- 7. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ ノンシアノゲナスに属し、ストレプトマイセス・アベルミチリスのエバーメクチ ンアグリコン生合成遺伝子群を保有するC-13位水酸化ネマデクチン生産能を 有する微生物。
- 8. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ ノンシアノゲナスに属し、ストレプトマイセス・アベルミチリスのエバーメクチ ンアグリコン生合成遺伝子群を保有するC-13位水酸化ネマデクチン生産能を 有する請求の範囲第7項記載の微生物の製造法。
- 9. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ ノンシアノゲナスに属し、ストレプトマイセス・アベルミチリスのエバーメクチ ンアグリコン生合成遺伝子群を保有するC-13位配糖化ネマデクチン生産能を 有する微生物。
- 10. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、ストレプトマイセス・アベルミチリスのエバーメクチンアグリコン生合成遺伝子群を保有するC-13位配糖化ネマデクチン生産能を有する請求の範囲第9項記載の微生物の製造法。
- 11. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、ネマデクチンアグリコン生合成遺伝子群nemA3-4オペロンのKS10をコードする領域にバイオマイシン耐性遺伝子を挿入したネマデクチン非生産性の菌株(KS10挿入変位株)。

12. ネマデクチン非生産性の菌株が、ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナス (Streptomyces cyaneogriseus subsp. noncyanogenus) ΔnemA4:: vph (FERM BP-8393)である請求の範囲第11項記載の菌株。

- 13. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、上記KS10挿入変位株にストレプトマイセス・アベルミチリスのエバーメクチンアグリコン生合成遺伝子群 aveA3-4 を保有し、NemA1-2 及びAVES 3-4 とのハイブリッドPKSを形成しうる菌株。
- 14. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、NemA1-2およびAVES3-4とのハイブリッド PKSを形成しうる微生物でストレプトマイセス・アベルミチリスのエバーメクチン生合成遺伝子群の制御遺伝子aveRを保有する菌株。
- 15. ストレプトマイセス・シアネオグリセウス・サブスピーシーズ・ノンシアノゲナスに属し、NemA1-2及びAVES3-4とのハイブリッドPKSを形成しうる微生物でストレプトマイセス・アベルミチリスのエバーメクチン生合成遺伝子群の制御遺伝子aveR及びエバーメクチン配糖化およびオレアンドロース生合成遺伝子群aveBI-BVIIIを保有する菌株。

1/6

F16.2

180

WO 2004/111230

配列表

SEQUENCE LISTING

<110>	The kitasato Institute			
<120>	ストレプトマイセス属に属するネマ 製造法	デクチン生産能を有する菌	朱、該菌株を用いる	ネマデ クチンの
<160>	6			
<210>	1			
<211>	23			
<212>	DNA			
<213>	Streptomyces avermitilis			
<400>	1			
gtgct	gcaag gcgattaagt tgg			23
<210>	2			
<211>	22	• *		
<212>	DNA			
<213>	Streptomyces avermitilis			
<400>	. 2			
teegg	octegt atgttgtgtg ga			22
<210>	• 3			
<211	→ 39912			
<212	> DNA			
<213	> Streptomyces avermitilis			
<400	> 3			
	tetteg geateagece eegegaagee			60
ctcg	aaaccg cctgggaaac catcgaacac	geeggeatea acceecae	ac cctccacggc	120

acceccaceg gagtettege eggaateaac geteaagace acgeegegea tateegecaa

agccgtgatg	tggagaccat	cgagggctac	gccctgaccg	gcagttcggg	aagtgtggcg	240
teeggeegigg	tggcctacac	gctcgggctc	gaaggccccg	cggtgtcggt	ggatacggcg	300
tgttcgtcgt	cgttggtggc	gttgcattgg	gcggcgcagg	cgttgcgtgc	gggtgagtgt	360
tcgatggcgc	ttgccggggg	tgtgacggtg	atgtcgtctc	cgggtacgtt	tgtggagttc	420
tcacgtcagc	ggggtetgge	cgcggacggg	cggtgcaagg	cctattcggc	ggctgctgac	480
ggtaccggct	gggccgaggg	tgtggggatg	ctgctggtgg	ageggetete	cgacgcccgt	540
cgcaacggtc	accgtgtcct	ggccgtggtg	cgtggcagtg	cggtcaacca	ggacggtgcg	600
agcaacggtc	tgaccgcgcc	caacgggccc	tcccagcagc	gtgtcatccg	tcaggccctg	660
gccaatgcgg	gactgacccc	ggccgatgtc	gacgcagtgg	agggccacgg	cacegggace	720
actctggggg	acccgatcga	ggcccaggca	ctcctggccg	cctacggaca	acaccgcccc	780
caccaccgcc	ccttgtggct	gggatccctc	aaatccaaca	tegggcaege	acaggeegee	840
gegggegtgg	gcggagtcat	caagatggtg	atggccctgc	gcaacgggct	gctgccacag	900
accetecacg	tggacgagcc	cacccccag	gtcgactggt	ccacaggcgc	agtacaactc	960 .
ctgacacaac	cggtgccctg	geeegeegae	ceggeeggee	ggccacgcca	egeeggegtg	1020
tcatcattcg	gcgtcagcgg	caccaacgcc	cacatcatcc	tcgaagaagc	acccactccc	1080
caggacagcg	ataccgacga	cgaaccgcct	gccaacgcac	cagccctgcc	ccatcccctc	1140
cctcttcccg	tgccggtgtc	ggcgaggtct	gaggccgggt	tgegggegea	ggcacaggcg	1200
ttgcgccagt	acgtggcagc	ccgcccggac	atgtcacctg	ccgacattgg	tgcgggtctg	1260
gecegeggee	gggccgtact	ggaacaccgc	gccgtcatcc	tggcegegga	ccgcgaggaa	1320
ctggcgcagg	cactgacage	cctggcagcc	ggcgaacccc	acccccacat	caccacaggc	1380
cacacccggg	gcggtgaccg	eggeggegte	gtettegtet	tecceggaca	gggcggccag	1440
tgggccggga	tgggcctgac	cctgctcacc	tcctcacccg	tgttcgccga	acacatcgac	1500
gcatgcgaga	aagccctcac	cccctgggtg	ccctggtccc	tgaccgacat	cctgcaccgc	1560
gaccccgacg	accccgcatg	gcaacaagcc	gacgtggtcc	agcccgtgct	cttcagcatc	1620
atggtctccc	tegeegeeet	gtggegetee	tacggcatcg	aacccgacgc	ggteetegge	1680
cactcccagg	gagaaatcgc	egeegeeeae	atctgcggcg	cactcagcct	gaaagacgcc	1740
gccaaaaccg	ttgcactgcg	cageegegea	ctggccgccg	tacgaggccg	gggcgccatg	1800
gcctcactgo	ecctgcccgc	ccaggacgtg	cagcagetca	tttccgaacg	gtgggaaggg	1860
cagttgtggg	tggcagccct	caacggcccc	cactccacca	ccgtctccgg	cgacaccaag	1920
gcggtggatg	aggtgetgge	gcactgcacc	gacaccggcc	tacgggcçaa	acgcatcccc	1980
gtcgactacg	cctcccactg	cececaegte	caacccctcc	acgacgaact	cctgcacctg	2040
ctgggagaca	tcacccccca	gccgtccacc	gtgccgttct	tctccaccgt	ggaaggcacc	2100
tggctggaca	ccacaaccct	. ggacgccgcc	tactggtacc	gcaacctcca	ccagcccgtc	2160
cgcttcagco	acgccatcca	gaccctgacc	gacgacggac	accgcgcctt	catcgaaatc	2220
agececeae	ccaccctcgt	cccgccato	gaagacacca	ccgaaaacac	caccgaaaac	2280
atcaccgcga	ccggcagcct	cegeegegg	gacaacgaca	cecacegett	cctcaccgcc	2340

ctcgcccaca	cccacaccac	cggcatcggc	acacccacca	cctggcacca	ccactacacc	2400
caaacccacc	cccaccccaa	ccccacacc	cacctcgacc	tgcccaccta	ccccttccaa	2460
caccagcact	actggctcca	accacccacc	acaacaaccg	acctcaccac	caccggcctc	2520
accccaccc	accaccccct	cctcaccgcc	acactcaccc	tcgccgacaa	caacacacaa	2580
ctactcaccg	geegeetete	cctacgcacc	cacccctggc	tcaccgacca	caccgtcgcc	2640
ggcatggtcc	tcctgccggg	cacegegete	ctcgaactcg	ccctccaagc	cggcgaacgg	2700
gtggactgcc	ctcgggtgga	ggaactgacc	ctgcacgcac	cgttggtgat	cccgcacacc	2760
gaggacgtga	cgttgcaggt	caccgttcgg	gcagccgatg	agagtggcca	tegegeeete	2820
gegatecact	cgtactccgg	caccgcgtcg	teggeggace	gggagtggac	ccgtcacgcc	2880
acgggcctcc	tcacacacca	cgccgacacc	gatcaccgtg	ccgacacgca	cacggacgcg	. 2940
tgccttggcg	ggagctggcc	cecgcccggc	gcgcagccca	tcgaactggg	cgacgtctac	3000
ggtcgtatgg	cggcggactc	ggacatcgcc	tacgggccgg	tettecaggg	gctgcacgcc	3060
gcctggaggt	teggegaega	tgtcctggcc	gaggtgcgtc	tgccggaaga	ggetetgege	3120
gatgeteegg	cggcggcctt	cggtgttcac	ccggccttgc	tcgacgcggc	cctgcacgcc	3180
acggcgctca	cccccagaa	cggggacggc	tcgacggaga	acgtcgccca	ggagagcatg	3240
cctgaccgcg	cagcecacca	ggcgcgactg	ccgttcagct	ggagcggcgt	gtccctgcac	3300
acggcgggca	gttccgtgtt	gcgcgtacgg	ctgtcgcgca	gtccgcagca	cggtaatgcc	3360
gtggccctca	ccgcggccga	cgaggacggt	cggccggtgg	tgacgatcga	gtegetegeg	3420
ctgcggccgg	tgtccaccga	ggagctgcgc	geggeegegg	atcgtacgcc	cgagcacgag	3480
tegetettee	gactggactg	ggtttccgta	ccagtgcccg	ccaacgcccc	ttcgcccacc	3540
geggaeegge	cctgggcggt	categgegeg	ggccttcccc	acctgcccgg	cctgacggag	3600
cacgagcacg	tgaccgcgta	tgacgagccg	geggaeetge	ttctggctct	ggaccgcggt	3660
geteegeege	ccggtgtgct	ggtcgtaggt	ggtgtegeee	acaccgaagc	ccgggagtat	3720
tccgccgaag	ccccgggga	gegegggaee	gaggeetgeg	aggcccggcc	ggacgtcgtg	3780
cacgtgggcg	tcgtgcacac	ggctgccgtg	, cacgeggetg	ccgcgcagat	gttggccagg	3840
ctccaggcct	ggctgggcga	cgagegeete	gcagacagec	ggetgetegt	cctgacgtgc	3900
ggcgcggtcg	ceegegeete	: cggcgacgat	gegaeggaee	tgecegggge	cgccgtgtgg	3960
gggctggtgc	gtteggegea	gtccgagcad	e ceggacegea	tcacgctgct	ggacttcgag	· 4020
cggggcacag	aggeggage	: cggtcagctg	gegaeggege	: tgaactgcgg	ggagcggcag	4080
cttgccgtcc	: gccccggagg	getgttcaco	g ccacggctgg	tgegegegee	acgtgtcgcc	4140
gacgccgtac	ccgccgtacc	e egeegtgged	gtaccgtcag	gggtcacgc	agccgtaccg	4200
gcagcgggto	ccttccttcc	gggcggaac	g gtgctgatca	ccggcggaac	eggtgtcctg	4260
ggccggctcg	tggcccggc	tctggtggag	g gegeaeggeg	g tacggcatct	gttgctggcg	4320
ggteggegeg	gaccggacgo	c cgagggtgc	g ccggagttgc	gggcggagct	: cggtgggctc	4380
ddededaedd	g tggaggtcgi	t cgcctgcga	e geggeggaed	ggcagcagct	ggccgacctg	4440
ctgacacgga	a teccegacga	a teggeeget	g accggtgtc	g tgcacagtgo	gggcatcctg	4500

gacgacggcg	tgatcacgtc	gctgtcgccg	gagcggctcg	gggccgtcct	ccgggccaag	4560
geggaegetg	cgctgcttct	cgacgagctg	acgcgcgggg	cagagetgte	ggetttegte	4620
atgttctcct	cegegtegge	ggtggtcggc	tegeeeggge	agggcaacta	cgccgccgcc	4680
aacgccgtcc	tcgacttcct	tgctcatcgc	egeegegeeg	aggggctgcc	egeegtetet	4740
ctcgcctggg	gcctgtggga	agagggcaca	gggatgacgg	gccacctcga	cgtcgacgac	4800
catgcgcgga	tcagccgcgc	gggaatgcgg	ccgctgccga	ctgccgaggc	tetggegetg	4860
ttegaegegg	ccttggccga	cggcgagccg	ttcctgatgc	cggctcggct	cgacctcacg	4920
gccgtacggt	ctggtgccgc	gtccgcaccg	gtgeegeege	tgctgcaagg	tctgcttcag	4980 ·
ctgcctcggt	cccgctcggc	egeegeggee	cccggccatg	gggeecegge	ggcggacgag	5040
geggeggeet	ggcgtgagcg	tetggeeegg	cagagtgccg	gtgagcgcag	gcaggcgctg	5100
ctgcgcctgg	tgcggtcgca	tgtegeggeg	gtgeteggee	atagcggtgc	cgacggaatc	5160
gacgcatcgc	gggegtteeg	cgagctgggg	ttcgactcgc	tcacggcggt	cgagetgege	5220
aaccgtctca	cggccgcgac	gggcctgcgg	ctgcgggcca	cgctggcctt	cgatttcccg	5280
accccggcag	cgctggccga	gcacttgggc	gagegtetge	ttcccgacca	ggaggccacg	5340
ggegageaag	ceggegatea	geteteegge	ggcagcgagg	aggacgtacg	cagectectg	5400
acgtccattc	cgateggeag	getgegggae	geggggetee	tegggeeet	geteaegete	5460
geggacaegg	geegeggege	ctegggegee	geegeaggte	cggaggacgc	geegeeetee	5520
ggccaggaca	caccggetee	: cgtctcgatc	gacgagatgg	acatcgacga	cctgatggat	5580
ctggcgcacg	ggcatggcad	: cgcacccgcc	: cgtgageeeg	ccgacgcaga	ggactcgtcg	5640
tcatcacgaa	accggacaca	ccacacaca	: gaaggtgaga	cagcgtgaac	ccatccgagc	5700
cgctcggcct	gcccaacgaa	a cgtgtagtag	acacccgacc	gtccgatgcc	acgctctcac	5760
ccgaggccgg	g cctgaacagg	tcaggagcgo	tgccccgtga	actgctgtcg	ttgccggtgg	5820
tggtgtggg	eggggtegg	e ctgctgtttc	tggccctgca	ggcgtacgtg	ttcagecget	5880
gggeggeega	a cggtggctad	e eggetgate	g agacggcggg	ccagggtcag	ggeggeagea	5940
aggatacggg	g gactaccgat	t gtggtctate	ccgtgatttc	: cgtcgtctg	atcaccgccg	6000
eggeggegt	g gctcttccg	g aggtgccgt	tcgaacgacg	getgetgtt	gaegecette	6060
tetteeteg	g gctgctgtt	c gcgagctgg	c agageceget	: catgaactg	ttccattccg	6120
ttetegtet	c caacgcgag	t gtgtgggge	g cggtgggttd	ctggggtee	g tatgtgcccg	6180
gctggcagg	g ggegggece	g ggtgcggag	g cggaaatgc	gctggcgtc	g geeteegtet	6240
gcatgtcgg	c tctgatcgt	c accgtgctg	t gcagcaagg	e actggggtg	g atcaaggccc	6300
geeggeegg	c atggcggac	c tggcggctg	g teetggeeg	t gttcttcate	e ggcatcgtgc	6360
teggtetgt	c cgagccgct	g cegteegee	t ccgggatca	g cgtatgggc	e agagegetge	6420
ccgaggtga	c cttgtggag	t ggcgagtgg	t accagttcc	c cgtgtatca	g geggteggtt	6480
ceggeetgg	t ctgctgcat	g ctgggctcg	c tgcgcttct	t ccgcgacga	a cgcgatgagt	6540
cgtgggtgg	a acggggagc	c tggcggttg	c cgcaacggg	c agcgaactg	g gegegtttee	6600
tegeegtgg	t cggtggggt	g aatgeegtg	a tgtteetet	a cacctgttt	c catatectec	6660

VO 2004/1112	230				r Ci/J	1 2003/00/40
tgtccctcgt	cggtggacag	ccgcccgacc	aactgccgga	ctccttccaa	gegeeggeeg	6720 ·
cttactgagt	tcagggcagg	teggaggaga	cggagaaggg	gaggcgaccg	gagttccggt	6780
cacctcccct	ttgtgcatgg	gtggacgggg	atcacgctcc	catggcggcg	ggctcctcca	6840
gaegeaecae	actcctcggt	tcagcgatca	tgcggagtcg	gttggggaag	acgtgagtgg	6900
ccttcgtctt	gggccggacc	tegtegeeeg	gaagggcgtg	tagtcgccag	tgggaggcga	6960
cgaccgcgac	cgtaacggcc	gtctcgagaa	gggcgaagtt	gtcgccgatg	catttgtagg	7020
tgccgagcgc	gaagggcacc	cacgccccct	tgggaactcc	geggetegat	cccttggttt	7080
cccagcggcc	ggggtcgaga	cgttcgggtt	cggggtacca	acgtgggtcg	cgctggatgg	7140
cgtacgcgct	gtacatgacc	tccacatcgg	cgggcaggtc	gtgaccgccg	agtegtaegg	7200
gccgcaccgt	ccggcgggac	cccacccagc	cggggtattt	gegeagtgee	tettteacga	7260
ggttctgtgt	gtacggcagc	cgcgggaggt	cctcgtgcgt	gggcaaccgc	ccgcccagga	7320
ccgtgtcgag	ctctgcgtgc	agccgactct	cgatctcggc	gttctgtccg	agctcgtgga	7380
aaatccacgc	cgtaatggca	getgggeege	cgatcccggc	caccgcgatt	cccatgacct	7440
cgtcatggac	ctcctggtcc	gtcatggagg	caccttcggc	gtccgtcgcg	cgcagcatcg	7500
tegagageag	gtcaccgtgg	tegeggeeat	cggcgcgata	cgccgtgatc	gcctcccgga	7560
tegttgeget	. cgtacggccc	acggaccgct	tgcccgcggt	gggaagaacc	tcgtaaaggg	. 7620
tgggggcgag	g agcactcagc	cgggccacct	tcagaatgtc	gtgtccggtt	ttccgcagcg	7680
cegeetegge	cttcgcgccc	aggtcggaga	agaacagcgt	cttcgtgatc	atggcaagcg	7740
acaggtcgca	ggcggcctgc	tcaacgtcca	ccacctgcco	: agcgctccag	gaatcagcgg	7800
teteetgege	ggeggeegee	atggtggcga	catagetete	gaggegetgg	cggtggaacc	7860
ctggctgcat	t ccgcctccgc	tgtcgccggt	gegtetecce	cgatacggct	acgaggatgg	7920
ggccgatgaa	a geggetegeg	ccctgtgcgc	cettgeteco	ggtgaaatcg	cccgatccgg	7980
aggagacca	g catggteege	accaggtccg	ggtgcgtgg	gaggtaggcg	gttttcggcc	8040
cgaggcgga	g cttgagcagg	tctccgtgat	ctgctgcgga	a gcgaaggaad	tccaggggct	8100
geegeatea	a cggcggcaca	tggccgacga	ceggeeagg	e geegggegee	tcgggaatgc	8160
tgctcgtcg	a ctgggacato	acgagtgctc	ctttgcggg	g tgaaggggg	j tggctgggag	8220
gggaacgac	a gtgacgagtç	aagggggagg	tgtgggggt	t ggegtegge	c cgggggtgag	8280
cgtggacat	g ggagtgggag	g ggagtgaagt	gagetegga	g tggtttctgg	g gcttcattga	8340
gattcgaat	c cgacttccc1	gtcgatgaga	a gcgaacatc	t cctcgtccg	tgtctctgcg	8400
aggtcgggg	g eggtgtegt	gccgttcaac	c ttctgggcg	a gggaatgca	g tegggaggee	8460
agccgcgtg	e gegegeegte	gtccagcggg	g gcagcggag	g atgtggtgg	a ggagagcact	8520
accgcctcc	a geegetega	g ctccgagag	c agcgagggc	a gccccgggg	g tgtcgttgcg	8580
gegteegge	t eggeegegg	c ggtgagtcc	c ttgctgacg	a gttgtgtgt	g gaggtggtgg	8640
gtgagggtg	g tggggttgg	g gtggtcgaa	g gcgagggtg	g tggggaggc	g gagteeggtg	8700
gtgtgggag	ga geeggttge	g tagttcgac	g gcggtgagg	g agtcgaagc	c gaggtegegg	8760
aacgcgcgg	jt cggggggga	t ggtgteggg	g gtggtgtgg	c ccaggacgg	t ggcgatgtgg	8820

gagcggacca	gggcgaggag	ggtggtgtgc	tgttgttcgt	gtgtetggee	ggccagccgg	8880
ccgtgcagct	gggcgccgtt	gtccgcacca	ccggtagtgg	tggtgcgggt	ggtgcggcgg	8940
cgggtggcgg	gcaggaggtc	ctgcagcagg	ggcggcaggg	geggggeggg	acgcaggtcg	9000
gegggeagea	ggaccggccg	gtccagagcc	agggccgcat	cgaagagggc	cagtgcgtcc	9060
ggggtcgaca	tgggatgcag	accggaacgg	atgatgcgcc	ggtggtcggt	gccggccaga	9120
tgcccggtca	tcccgctggc	ctcttcccac	agececcaeg	ccagegaeae	ccccggcaga	9180
cccgccgccc	gccgccggta	cgccagcgcg	tecagagegg	cattggccgc	ggcgtagttg	9240
ccctgcccgg	ccgaccccag	gateceegeg	gccgaggaga	acagcacgaa	cgccgacagc	9300
tccatacccc	gegteagete	atccagcaaa	agagcggcat	ccaccttggc	cgcgaacacc	9360
gtgcccagcc	getegggegt	gagagaggcg	ategtegeat	cgtccagcac	accagccgca	9420
tgcacgacac	ccgtcagcgg	acacceggea	ggaacaccct	ccagcagccg	gaccacctcc	9480
cgccgctccc	ccacatcaca	cgcaacaatc	cgcacctccg	ccccaacgc	ggccagctcc	9540
gcccgcaaac	cctccgcacc	cggagcatcc	ggaccacgcc	ggctcaccaa	caacagatcc	9600
cgcaccccac	acacaccage	cagatgccgc	gecacegeeg	cacccagcac	accegtecea	9660
cccgtcacca	acaccgaccc	acccgacaac	cacggcaaca	cctcccgacc	cgatacatca	9720
accggcgact	caagtcgtgt	caggcgtgcg	gccagcaccc	gctcaccacg	caccgccaac	9780
tgcggctcac	cacacgccac	caccgcagcc	acacgcccac	catccagacc	agaccccata	9840
ccggcctcgt	tgccggcatc	gcggtcagcg	ccgctgtcga	ggtcggtgtc	caggtcgagg	9900
aggacaaacc	ggtccggatg	ctcagcctgc	gccgaccgca	ccagccccca	caccgccgca	9960
cccaccacat	ccaccgggcc	atccaccggg	ccgtcctccg	ggccggccac	caccgcaccc	10020
cgggtcacca	ccaccagccg	cgaacccgca	aaccgctcca	geceeageca	cccctgcacc	10080
acacccaaca	ccccaccaac	aacctcaccc	acaccaccgc	caccaccgcc	gccatcggca	10140
ceggeateeg	ggcaccgcaa	caccaccacc	cccggcacac	catcctcctc	agccgccaga	10200
ccaacgaggt	cgtcggcacc	atccagcacc	accaccgatg	ccccgcccga	caccagtaca	10260
tctgagggca	cctcaaccca	cttcatgtcg	aagagctcag	cgcgctgtac	ggcgcgctcg	10320
gcagctcgca	attegteege	cgccaacggg	cgcaccgcca	acgcctcgac	ggacgccacg	10380
ggcgtaccgg	tgtcatccgt	gaccagcacg	gaaactgcgg	cgtggccgct	gtteggateg	10440
gccggcgaga	gtcgcacgcg	caacgacgac	gcattggcgg	cgtgcagcgt	cacaccggtg	10500
aaggagaacg	gtacggatcc	ctgcggcaga	ctgcccgacg	gcgcaaaggc	cgctgcgtgc	10560
aaggcagcat	. ccagcagtgc	cgggtgcagg	ttgtacgcgg	atgcctcgcc	gtgcacctgt	10620
tctggaaggc	gaacetegge	aaacacctcg	tctcccagac	gccaggcago	agtcagcccc	10680
cggaatgcgg	ggccatagac	aaagccattt	geetegtagt	cgccatacaa	ggctgccaat	10740
tcctcatcag	cacagegaac	tgegeeeget	ggeggeeaea	tcgacagato	: atcgtggcta	10800
cggcctgtct	. caatgcgcga	ggtcttggtt	cccagaacgg	cegtggegtg	g atgacgccag	10860
ggagccgctg	cadadacart	ctcgcttcgc	gagtagatcg	tcagtgaacg	g agtgtcggtg	10920
tegteeggte	gattgatgt <u>c</u>	r cacctgaacç	tcgacggcac	cctcacgggg	gatgacgaga	10980

•						
ggcgtgtgga	gggcgagttc	ttcgaggtgg	teggtegtgg	ttgcttggag	ggcgagttcg	11040
aggagggcgg	ttcctggcac	aagagtggta	ccgacgacgg	tgtggtcggt	gagccagggg	11100
tgggtgcgta	gggagaggcg	gccggtgagt	agttgtgtgt	tgttgttggc	gagggtgagt	11160
gttgcggtga	. agagggggtg	gtgggtgggg	gtgaggccgg	tggtggtgag	gtcggttgtc	11220
gtggtgggtg	gttggagcca	gtagtgctgg	tgttggaagg	ggtaggtggg	caggtcgagg	11280
tggtggttgt	gggggtgggg	gtgggtttgg	gtgtagtggt	ggtgccaggt	ggtgggtgtc	11340
cgaatgccgg	tggtgtgggt	gtgggcgagg	gcggtgagga	agcggtgggt	gtcgttgtcg	11400
ccgcggcgga	ggetgeeggt	cgcggtgatg	ttttcggtgg	tgtttteggt	ggtgtcttcg	11460
atggcgggga	_cgagggtggg	gtggggactg	atttcgatga	aggggcggtg	teegtegteg	11520
gtcagggtct	ggatggcgtg	gctgaagcgg	acgggctggt	ggaggttgcg	gtaccagtag	11580
gcggcgtcca	gggttgtggt	gtaccagacc	aggtgcccta	cgacggtgga	gaagaacggc	11640
atgġtggacg	gctgggggt	gatgtctccc	agcaggtgca	ggagttcgtc	gtggaggggt	11700
tggacgtggg	ggcagtggga	ggcgtagtcg	acggggatgc	gtttggcccg	taggccggtg	11760
teggeacagt	gggtgaggag	ttcttctact	gcggtggtgt	cgccggagac	ggtggtggag	11820
tgggggccgt	tgagggctgc	cacccacaac	tgcccttccc	accgttcgga	aatgagctgc	11880
tgcacgtcct	gggcgggcag	gggcagtgag	accatggcgc	cccggcctcg	tacggcggcc	11940
agtgcctggc	tgcgcagtgc:	aacggttttg	geggegtett	tcaggctgag	tgcgccgcag	12000
atgtgggcgg	cggcgatttc	tecetgggag	tggccgagga	ccgcgtcggg	ttcgatgccg	12060
taggagcgcc	: acagggcggc	gagggagacc	atgatgctga	agagcacggg	ctggaccacg	12120
teggettgtt	gecatgeggg	gtegtegggg	tegeggtgea	ggatgtcggt	cagggaccag	12180
ggcacccagg	gggtgagggc	tttctcgcat	gcgtcgatgt	gttcggcgaa	cacgggtgag	12240
gaggtgagca	gggtcaggcc	cateceggee	cactggccgc	cctgtccggg	gaagacgaag	12300
acgacgccgc	cgcggtcact	. geecegggtg	tggcctgtgg	tgatgtgggg	gtggggttcg	12360
ccggctgcca	a gggetgtcag	tgcctgcgcc	agttcctcgc	ggtccgcggc	caggatgacg	12420
gcgcggtgt1	t ccagtacggc	ccggccgcgg	gccagacccg	caccgatgto	ggcaggtgac	12480
atgtccggg	gggctgccad	gtactggcgc	: aacgcctgtg	cetgegeeeg	caacceggee	12540
tcagacctc	g ccgacaccgg	g caccggcacc	ggcaccggct	. cagactcago	caccggaagg	12600
gctggattc	g gagcacccad	cgacacccca	ccaccggcag	r cacegeeege	cgccgcaggc	12660
geeteetee	a aaatcacatg	ggegttggtg	g cegetgaege	cgaatgatga	cacgeeggeg	12720
tggcgtggc	e ggeeggeegg	g gteggeggg	cagggcaccg	gttgtgtcag	gagttgtact	12780
gegeetgtg	g accagtcgad	ctggggggtg	ggctcgtcca	.cgtggagggt	ctgtggcagc	12840
agecegttg	c gcagggccat	t caccatctto	atgactccgc	ccacgcccg	ggcggcctgt	12900
gcgtgcccg	a tgttggatti	t gagggateco	e agccacaagg	g ggcggtggtg	g ggggcggtgt	12960
tgtccgtag	g cggccagga	g tgeetggged	c tcgatcgggt	ccccagagt	ggtcccggtg	13020
ccgtggccc	t ccactgcgt	c gacategge	e ggggtcagtd	c ccgcattgg	c cagggcctga	13080
cggatgaca	c getgetggg	a gggcccgtt	g ggegeggtea	a gaccgttgc	t cgcaccgtcc	13140

taattaacca	cactgccacg	caccacqqcc	aggacacggt	gaccgttgcg	acgggcgtcg	13200
	ccaccagcag					13260
	ccttgcaccg					13320
	•			•		13380
	gagacgacat					
	cctgcgccgc					13440
acggtcacgg	ceggaeeete	aaggccaaag	ctgtaggcca	cccggccggt	cgcgacgctg	13500
cctgcgctgc	cgttggcgat	gaggeetteg	aaaccctcgg	ggacatggtg	gagacgcgcg	13560
gegtagtegt	ggtacatcac	cccggcgaag	acacccgtac	gggagccacg	catcgacagc	13620
ggatcgatac	cegecegete	gaacgectcc	cacgacgtct	ccagcaacaa	cegetgetge	13680
ggatccatcg	ccaacgcctc	acgcggactg	atcccgaaga	agtccgcatc	gaactccccc	13740
gcctcataca	aaaacccgcc	ataccgcgcg	tacgacgtcc	ccgaccggtc	agggtccgaa	13800
tcaaacaacc	cctccagatc	ccacccccga	ccggccggaa	attcaccaat	cgcatcccca	13860
cccgacgcaa	ccagctccca	caactcctcc	ggcgaacaca	ccccacccgg	aaaacgacac	13920
gccatcccca	caatcgcaat	cggctcatcc	geggcaacct	gatgaagtgc	gacctgcgat	13980
ggcgtctcgc	cttccgcgtc	gtcgcccatc	agctcacgac	gtaggtgacg	cgccagggtc	14040
getgeatteg	gctggtcgaa	gaccagactg	gteggeagte	gcagtcccgt	tgcctcaccc	14100
aggeggttae	ggagttccac	cgctgtcaag	gagtcgaagc	ctaggtcgcg	gaacgccgag	14160
tcaacgggga	tcatctccgg	cgcgttgtgg	ccgaggacgg	tggcgatgtg	ggagcggacc	14220
agggcgagga	gggtggtgtg	ctgttgttcg	tgtgtctggc	cggccagccg	ggcatgcagc	14280
tgggegeegt	. tgtccgcacc	accggtagtg	gtggtgcggg	tggtgcggcg	gegggtggeg	14340
ggcaggaggt	. cctgcagcag	gggcggcagg	ggeggggegg	gacgcaggtc	ggegggeage	14400
aggaccggcc	ggtccagagc	cagggccgca	tcgaagagag	ccagtgcgtc	cggggtcgac	14460
atgggatgca	gaccggaacg	gatgatgcgc	cggtggtcgg	tgccggccag	gtgcccggtc	14520
	g cetettecca					14580
	acgccagcgc					14640
	ggateceege					14700
	catccagcaa					14760
	tgagagaggo					14820
	g gacacccggc					14880
					cgcccgcaaa	14940
					cegcacecca	15000
	g ccagatgcc					15060
					aaccggcgac	15120
					ctgcggctca	15180
					accggcctcg	15240
						15300
ttgccggca	t cggcgtcag	e geegetgte	aggreggrgt	. ccaggregag	gaggacaaac	T3300

cggtccggat gct	cagcetg	cgccgaccgc	accagccccc	acaccgccgc	acccaccaca	15360
tccaccgggc cgt						15420
gaacccgcaa acc			_			15480
acctcaccca cac						15540
accacccccg gca				·		15600
tgcccacaca cc						15660
cgccccgccg aaa						15720
cgatcgaccg acq						15780
cctgtcgctc ca					·	15840
cgcagaccgt to				•		15900
ccggtgccct ga						15960
cccgacactt ct						16020
gegegeaace et						16080
geegtgttea gg			•			16140
tacgaggcag tg	tcatcgtc	cttggcaggg	ctcagcacac	cegeggeatg	acgegtecac	16200
gcactggccg ac						16260
atgeggegae ce	gactcgtc	cggcgccgca	atggcaacct	gaagggtcac	gtctccgacc	16320
tcaggaatga cc	aacggtgt	gtggagcgtc	agctcgtcca	cgtggtcgca	acccacactt	16380
tctccggcat ga	agggccag	ttccgcgaag	gccgtacccg	gcagcagcac	gacaccgcct	16440
accgcatggc cg	gcgagcca	gggatgcgtg	cgcaacgaga	ggcgccccgt	cagtaggcag	16500
cegteceett eg	gccagttc	caatgtggcg	ccgagtaggg	ggtgttcggt	ggggtcgagt	16560
ccggctgctg ac	acgttgcc	ggcaccgggc	tgtgtgcttt	cgagccagta	gtggtggtgt	16620
tggaaggggt ag	ıgtggggag	gtcgaggtgg	gtgtgggtgt	ggggttggtt	gtggtggtgg	16680
gtgtagtggt gg	gggtgcca	ggtggtggtg	gttttggcga	ggttggtgag	gaggtgggtt	16740
tgggggtggt gg	gtgggggtg	ggtgagggtg	ı agggtggtgg	tgggggtgtt	ggggaggttg	16800
tggtgggtga gg	ggtggtgag	ggtgttgtcg	ggtccgagtt	. cgatgtaggt	ggtgacgccg	16860
tgttggtgga g	getttgggt	ggtggtggct	atgtcgacgg	tgttgcgggc	ttgttgggtc	16920
cagtagtggg g	ggtgaggag	ttggtcgggt	ggggtgttgg	g cggtgatgag	gggggtgtgg	16980
ggtgggtggt ag	ggtgagggt	: ttgggtgtg	tggtggagtt	ggttgaggat	ggggttggtg	17040
tggggggagt g	gaaggcgtç	gttggtggg	g agggttttgg	ttttgatgcc	: ttgttgttgg	17100
cagagggtgg t	gatgtgttg	gacggtgtg	g [.] ggggtgccgo	tgatgacgac	ggaggtgggg	17160
gtgttgatgg c	ggcgatggo	gaggtcgtt:	t tegtgggegg	g tgatgtggtg	ggtgatgtgg	17220
tggggggtgg t	gtggagggl	t ggtcatggt	g eegggggge	a tggtttgcat	gagggtggcg	17280
cgttgggtga t	gagggtggt	t ggcgtcggt	g agggtgagg:	a tgccggcgag	g tgggcggcg	17340
gtgatttcgc c	gagggagti	g teeggegta	g tagtggggg	g tgatgtggta	gccgtcggtg	17400
aggaggcggt g	gagggcga	c ctggaaggc	g aagagggcg	g getgggegta	a cggggtctgc	17460

tggagcagtg	eggeegette	ttcgagggtg	gtggtgtcct	gggtgttggg	gtcctgggtg	17520
aggagggga	ggagggggtg	gtcgaggtgg	gggtcgaggt	gggtgcagat	gtcgttgagt	17580
gcggcggcga	agacggggtg	ggtgtggtag	aggccgtggg	ccatgccggg	gegttgggtg	17640
ccctgtccgg	agcagatgaa	tgeggtettt	cetgeggeet	ccccggtccc	ggtcccgcct	17700
ggggegetge	tgtggatgac	ggcggggtgg	ggttcgcctg	cggcgagtgc	ctggagtgct	17760
tgcaggaagg	tgtegeggte	ggcggcgatg	agggtggcgc	ggtggtcgaa	cacggcgcgg	17820
gcgtgggcga	gggtgtatcc	gacgtcggcg	aggtcgaggc	cggggtggtc	ggtgaggtgg	17880
gcgtgcaggg	cctgggcctg	ggegegeagg	gccggctgcg	acttggccga	caccagccac	17940
ggccacaccc	ctggactgcc	ggcagcagcc	tectegecac	taccggcatc	ctcgccggcg	18000
ggtggtcccc	ccggaacgtc	gtcggcgggt	gtgtctgacg	ggatgttgtg	ggcgggtgct	18060
tcttcgagga	tgacgtgggc	gttggtgccg	ctgacgccga	atgatgacac	tectgeeege	18120
cgtageegee	cctccccgcc	gggccagggc	accgtctccg	tcagcagctg	caccgcaccc	18180
gcggaccagt	ccacatgcgg	egaeggetea	tccacatgca	acgtccgcgg	cagcagacca	18240
ttccgcagcg	ccatcaccat	cttgatcacc	ccggcgacgc	ccgcggcagc	ctgtgtgtga	18300
ccgacattgg	acttgaccga	gcccagccac	agcggcccct	cgccggcacg	gtcctgcccg	18360
taggtcgcaa	ggagggcctg	ggcctcgatc	gggtcgccca	aagtggtgcc	ggtgccgtgg	18420
gcctccaccg	catcgacatc	accggccgac	aagccggcgt	tggcgagggc	ctggcggatg	18480
acacgctgct	gggagggccc	gttgggcgcg	gtcagcccgt	tgctcgcacc	gtcctggttg	18540
accgcactgc	cacgcaccac	ggccaggaca	cggtgaccgt	tgcgacgggc	gtcggagagc	18600
egetecacca	gcagcatccc	cacaccctca	. ccccagccgg	tecegteege	cgccgccgag	18660
aacgccttgc	aatgcccgtc	cgcggccaga	ccccgctgcc	gegaäaacte	cacgaaggca.	18720
cccggagacg	acatcaccgt	cacacccccg	gcaagcgcca	tegageacte	acccgcacgc	18780
aacgcctgac	aggccagatg	taaagccacc	aacgacgagg	aacaagccgt	gtccaccgac	18840
accgcaggac	cctcaaaacc	aaacgtgtac	gagatacgac	cggaggccac	actcccggat	18900
gtgccggtca	ggacatagco	ctcggtgtcg	gctgcggcgt	tttcgtgcag	cctgggtcca	18960
taggcctgcg	gaatgaggco	cgcgaacacg	cctgtctggc	tcccgcgtac	ggtcgtaggg	19020
tcaatacctg	cctgctccat	ggcctcccat	. gaggcctcca	gcagcaatcg	ctgctgcggg	19080
tccatcgcca	gtgcctcacg	cggactgato	ccgaagaagc	cggcgtcgaa	etececegeg	19140
tcgtagagga	aactcccaca	gegggtgtac	gaggtgcccg	geegaeeegg	tteeggateg	19200
aacagtgctt	. ccaggtccca	cccacggtcc	gtcggaaact	cgccgaccgt	gtecetecce	19260
gatgegagea	gttcccacag	r ctcctcggct	gaggtgacgc	ctccgggata	geggeaegee	19320
atgccaatga	tegegaeggg	r ctcgtcctgg	tetgeaggea	cageegeage	acggggagct	19380
gggatggagg	g cagtgctgto	cgagcccaga	·agttgtgtgt	ggaggtggtg	ggtgagggtg	. · 19440
gtggggttgg	ggtggtcgaa	ggcgagggtg	gtggggaggc	ggagtccggt	ggtgcgggag	19500
ageeggttge	gtagttcgad	ggcggtgagg	gagtegaage	: cgaggtcgcg	gaacgcgcgg	19560
teggggggg	tggtgtcgg	g ggtggtgtg	g ccgaggacgg	tggcgatgtg	ggageggaee	19620

agggcgagga gggtgg	gtgtg ctgttgttcg	tgtgtctggc	cggccagccg	ggcatgcagc	19680
tgggegeegt tgteeg	geace accggtagto	gtggtgcggg	tggtgcggcg	gcgggtggcg	19740
ggcaggaggt cctgca	agcag gggcggcagg	ggeggggegg	gacgcaggtc	ggcgggcagc	19800
aggaccggcc ggtcca	agage cagggeegea	tcgaagagag	ccagtgcgtc	cggggtcgac	19860
atgggatgca gaccgg	gaacg gatgatgcgd	cggtggtcgg	tgccggccag	gtgcccggtc	19920
atcccgctgg cctctt	tccca cagcccccad	gecagegaca	cccccggcag	acccgccgcc	19980
cgccgccggt acgcca	agege gtecagageg	gcattggccg	cggcgtagtt	gccctgcccg	20040
gccgacccca ggatco	cccgc ggccgaggag	g aacagcacga	acgccgacag	ctccataccc	20100
cgcgtcagct catco	agcaa aagagcggca	tccaccttgg	ccgcgaacac	cgtgcccagc	20160
cgctcgggcg tgagag	gagge gategtege:	a tegtecagea	caccageege	atgcacgaca	20220
cccgtcagcg gacac	ccggc aggaacacc	tccagcagcc	ggaccacctc	ccgccgctcc	20280
cccacatcac acgca	acaat ccgcacctc	gccccaacg	cggccagctc	cgcccgcaaa	20340
ccctccgcac ccgga	gcatc cggaccacge	c cggctcacca	acagcagatc	ccgcacccca	20400
cacacaccag ccaga	tgeeg egeeaeege	c gcacccagca	cacccgtccc	accegteacc	20460
aacaccgacc caccc	gacaa ccacggcaa	c acctcccgac	cagcaacatc	accggaccgc	20520
tgagcaggta catca	acgga cgactcaag	t cgcgtcaggc	gtgcggccag	cacccgctca	20580
ccacgcaccg ccaac	tgcgg ctcaccaca	e gecaccaceg	ccgccacatg	cccaccatcc	20640
acgccccaac cagca	ccage accageace	a gcaccggtgt	cgaggtcggt	gccggtgtcg	20700
gtgteggtgt egagg	tcgag gaggacaaa	c cggtccggat	gctcagcctg	cgccgaccgc	20760
accagecece acace	geege acceaceac	a tccaccgggc	cgtcttcttg	gccggccacc	20820
accgcacccc gggtc	accac caccagecg	c gaacccgcaa	accgctccag	ccccagccac	20880
ccctgcacca caccc	aacac cccaccaac	a acctcaccca	caccaccgcc	accgccgcca	20940
ceggcacegg catee	gggca ccgcaacac	c accaccccg	gcacaggccc	accaccgctc	21000
tcacccacgt cctcg	rtgcca cgcccacgc	c tgcccacaca	ccggcacagg	acccacctca	21060
geceactgea eegea	ntacag cgaaccccg	c egeceegeeg	aaaccgagac	agcacgcaac	21120
tgacccatat ccaca	aggeeg caacteaag	a cgatcgaccg	acgccaccgg	cacacccgcc	21180
teateceega ecaeg	gacega cacegeete	a cgcccgccgc	cccgccctac	agcccacaca	21240
cgcacccgca caccg	gtcac acccgcccg	g tgaagcgaca	caccacccca	cacageegge	21300
accegaacae cetee	cegaa eeeegeeee	c tccccaaacc	ccgtcccacc	cggaagcaac	21360
accgacaacg gctgg	gaccac accatccag	c aacgeeggat	gcagċccaaa	accageegça	21420
tcacccacg cctcc	ctccgg cagacacac	c tcagccagca	aatcccccc	atcacgccac	21480
accgcacgca gcccc	cgaaaa caccggccc	c aaaacacaac	cagececage	caaacggtca	21540
cggacaccat cgaca	atccac cgccaccgo	a ccccgcggcg	gccacacccc	cgccagacca	21600
tccaccacca cacca	accacc agcagcago	c tcaaccagca	ccccgaggo	atgacacgtc	21660
cacaccccac ccgad	cgcacc acccccacc	a caagcactco	caccccgcgc	atacacactc	21720
accaaacgcc gccc	cteece atecgeage	ec gcaaccccaa	cctgcacact	cacaccccca	. 21780

0 200 2222					
cccacaggaa ccac	cagegg egeatge	aca gtgagttg	ct cgattcgggt	gcagcccacg	21840
cgttcgccaa cctg	ggacege cagetee	acg aacgccga	cc ccgacagcag	gaccgcaccc	21900
cccacctcgt aato	cgcccag ccacgga	tgc gagcgcaa	gg acaggcgacc	cgtcagtagg	21960
cagccgtccg tgtc	ctgcgag ttggact	gtt gccgcgag	ca gagggtgttc	ggccggctcc	22020
aagccagcag cgg	cgacgtc acctgct	ccc gtgggagc	gt cgagccagta	gtgctggcgt	22080
tggaagggat aagi	tggggag gtcgagg	tgg tggttgtg	gg ggtgggtgtg	gtggtgggtg	22140
tagtggtggt gcca	aggtggt gggtgtg	ccg atgccggt	gg tgtgggtgtg	ggcgagggcg	22200
gtgaggaagc ggcg	gggtgtc gttgtcg	ecg eggeggag	ge tgeegatege	ggtgacgtct	22260
toggoggtgt ctto	eggtggt gtetteg	atg gcggggac	ga gggtggggtg	ggggctgact	22320
tcgacgaaga cgc	ggtgtcc gtcatco	gcc agggcctg	ga cggcatcgct	gaaacggaca	22380
ggctggtgca ggt	tgcggta ccagtag	geg gegtecag	gg ttgtggtgtc	cagccaggtg	22440
ccctccaccg tgg	agaagaa cggcacg	ccg gacggctg	eg ggetgatgte	ccccagcagc	22500
tccagcaact cct	cccgcag gggctgc	aca tgggggca	gt gcgaggcata	gtcgaccggg	22560
ateegeeggg ccc	gcacccc ggtgccg	gca cagtacgo	ca gcacctcgtc	caccgcctcg	22620
gcatcccccg aga	cggcggt ggagcgg	ggg ccgttgac	cg ccgccaccca	caaccgcccc	22680
gcccaccgct cac	caatgag ctgctco	acc tcctgggc	ag gcagcggcac	tgaggccatg	22740
ccgccccggc ccc	geacage ggccago	gee eggetgeg	ca gcgcaacagt	cttcgccgcg	22800
tccttcaggc tca	gegecee acaeaca	tge geggeege	ga tctcgccctg	ggaatggcca	22860
aggaccgcgt cgg	gttcgat accgtag	gaa cgccacag	rag cagccaaaga	caccatgacg	22920
ctgaacagca cag	gctggac cacatco	gec cgctccca	ca cegeatecee	cgcgtcccgg	22980
cgcaggatgt cca	ccacaga ccagtco	acc cacggcgc	ca gageeteete	gcacgcctgc	23040
atccgccggg cga	acaccgg agaggag	gcg agcagacg	rca cacccatccc	ggeccactgc	23100
ccaccctgtc cgg	gaaacac gaagac	aca ccgcccc	gt caccacccgg	cgcatgaccc	23160
gtggtcaccc gcc	gateegg eteace	gee geeagege	cc ccaacccttg	caccagctcc	23220
teacggtccg cgg	recaggac gacege	cga tgctccag	gca cagcccgccc	acaggccaga	23280
cccgcaccca cat	cggcaag cgaaac	rtcc ggccggad	tg ccacgtactg	acgcaacgcc	23340
teegeetgeg eee	gcaaccc agcctc	agac ctagccga	aca ccggcacagg	aaccggcacc	23400
ggcaccggca ccg	gcaccga ctcago	acc ggcgcaga	aca cagccactgg	ageggeeace	23460
gactcagcca ccg	gaaatggc aagacc	egga geacceto	ca acaccccacc	cccggcaaca	23520
cagecececg eeg	jeeggege eteete	caaa atcacat	geg cattegtged	actgaccccg	23580
aacgacgaca cto	eccgcccg ccgcaa	eege eetgeege	egt ecceggeea	cggcaccgcc	23640
teegteagea gee	egeacege eccege	ggac cagtcca	ect geggegaegg	ctcatccaca	23700
tgcaacgtcc gcc	ggcaacac cccctc	cege aacgeca	tca ccatcttgat	gaccccaccc	23760
acacccgcgg cag	geetgege atggee	gatg ttcgact	tca ccgatcccac	ccacagcggc	23820
ctgttaccgg ccc	egetgeee gtaegt	ggcg agcaacg	cct gegectegat	cggatcaccc	23880
agegtegtge eeç	gtcccatg cccctc	cacc acatcca	cat cogccacgga	caaccccgcg	23940

10 2004/1112	5 0					
ttcgccaacg	cctgccggat	cacccgctcc	tgagccggac	catteggege	cgtcaaccca	24000
ttcgacgcac	cgtcctgatt	gaccgcactg	ccgcgcagca.	cegecageae	ccgatgcccc	24060
ageegeaeeg	catccgacaa	ccgctccacc	aacagcatcc	cgacgccctc	geccatgeeg	24120
gtgccgtcgg	ctccacccgc	gaaggacttg	cageggeegt	ccaccgacag	teegegetgg	24180
cgtgagaact	cgacgaagag	gtgcggggtc	gacatcaccg	tcacaccgcc	ggccagcgcg	24240
agcgtgcact	cacccgaccg	cagcgactgg	cacgccagat	gcagcgccac	caacgacgac ·	24300
gaacatgccg	tgtccaccga	gacggcaggg	ccctcgagac	cgagcgtgta	ggcgacgcgg	24360
cccgacgcga	eggegeegee	gctaccgttg	ccgatgtagc	cctcgaatcc	ctcggggatg	24420
gtacccaggc	gggatccgta	gtcgtggtac	atcaccccgg	cgaagacacc	cgtacgggag	24480
ccacgcatcg	acageggate	gatacccgcc	cgctcgaacg	cctcccacga	cgtctccagc	24540
aacaaccgct	gctgcggatc	catcgccaac	gcctcacgcg	gactgatccc	gaagaagtcc	24600
gcatcgaact	ccccgcctc	atacaaaaac	ccgccatacc	gegegtaega	cgtccccgac	24660
cggtcagggt	ccgaatcaaa	caacccctcc	agatcccacc	cccgaccggc	cggaaattca	24720
ccaatcgcat	ceceaecega	cgcaaccagc	tcccacaact	cctccggcga	acacacccca	24780
cccggaaaac	gacacgccat	ccccacaatc	gcaatcggct	.cgctggacgc	ctccatggcg	24840
gctgccagtt	. gctcattacg	tgcccgcagg	gtctggttcg	ccttcagaga	cgccctaagc	24900
gegtegaega	getttteget	ggacgtgtcc	atcactgtct	cccaaattca	agaagtctca	24960
gaaaggcccg	tatggccgta	agggggaaag	cactgatcga	tgccggagcc	gaccggatac	25020
caccgactgg	ccgactggcc	gaeeggeega	ccgggctgtg	cccgacccgc	cgatcagggc	25080
cgcgatcagg	g accgcgatca	gaggegegat	cagegeegea	ctgatgcgat	ttetgtcage	25140
cattcgtcga	a catgeegage	agtcgaatcc	gcaaactgtt	ccagcatcgt	gaagtgattc	25200
ccctggatgt	ccagaacggt	gtgcggaact	cccacggcg	geggeatetg	tteteegtee	25260
eggeegege	a ggaagaggg	gggtgtggtg	atgtccggag	gactccagco	ggagaagatg	25320
cggaagtato	c cgcccatgg	gaccaggcgt	gtgtagtcca	cgtccacaaa	ctgcgtgacg	25380
cggtcgaaga	a tttcacttg	cagegeggae	gcgacaggtg	- cgatgccgtd	gtccgggaga	25440
taggcgtcc	a tggtcaccac	e cgcttccgga	a cggacgccta	gacgetecag	g atgactcgtc	25500
accgcgtag	a cgaaccatco	e geeegeggaa	tgcccggcga	gcgcaaaag	g egegeegteg	25560
gtgaaccgg	a cgategegte	e ggegaacat	g cgggtcaccg	g cgccgattco	e ggacggcagg	25620
ggttcgccc	t ccaggaacc	e tggegeagga	a acgtaccaga	cgtctcggt	g teegtteagt	25680
cccgccgcg	a aacgtgagt	a ctggtacac	g ctcgacacgo	g cggcgacgg	t gggcaggcag	25740
atgagggcg	g geegtgttt	c geceeggge	g agtgcttcac	cttgggcgc	g cgcttcaccc	25800
tgggcgagc	c ggacgaacg	t eggeteegg	g atgtccgagg	ggtccgtga	a ggegggeegg	25860
aagaaggag	g ccgccgaga	g cagggccat	g gactcctcg	a tgcggcggg	t gtcgtgtccg	25920
atccagaac	a gggattcga	c ggtttcggt	g gaggtgccg	c ccctggtct	g ctgetteteg	25980
ctccccgta	c tgcgctgct	g teeggtete	g gcactccct	g egeteeegg	c cccggctgcc	26040
geggeggea	g gggccggct	e gteeggegt	g cccgcctcg	g ccgtcaggc	g ggtcgcgagg	26100

tgatcggcga	gtgccgcggg	gctgggctgg	tcgaagatga	gegttgeegg	gaggcgcagg	26160
·ccggtgacgg	cgttgatccg	gttgcggagt	tcgacggcgg	tcagcgagtc	gaagccgagg	26220
tegeggaact	cggtgtcggc	cgggaccaga	tegteeggga	gtgegeegte	egeggetgtg	26280
acggcgctgg	tggggtggcc	gaggacggcg	gcggcatggg	tccgtacgag	ttccaggagg	26340
agaccggtgc	gctgcgcggg	gatggtgagt	ccggccaggc	gctcgcgcag	cgtggcgggg	26400
gtgtcggtcg	cgatgccgtg	gtcggcggac	cgccgggccg	ggatgcggat	cagcccgtgc	26460
aggatgcgcg	gcagggcgcc	ggccgtggcc	tgtgcgtgga	gggtggccgc	gtcgagccgg	26520
gtggcgagga	gcagcccgtc	accgaaaggg	ccgaggcgat	ccgctgtgtc	gaggagcgcg	26580
agtccctgtg	cgttggacag	ggggagcagg	ccgccgcggg	ccatgcgcgc	gaagtcggtg	26640
ccggcgaggt	tgcgggtcat	geegteggee	tegececaaa	ggccccaggc	gagcgaccgg	26700
cccggcagtg	cctgggtgtg	geggtgetge	atcagggcgt	ccagaaaggc	gttegeegeg	26760
gtgtagttgc	cctgtccggg	actgccgaag	gaggcggcgg	ccgaggagaa	gacggtgaag	26820
gtggtgaggc	eggegtegeg	ggtcaggtcg	tgcaggtgcg	cggcgccgaa	egeettegeg	26880 `
tgcaggacgg	cctccatgcg	ctccggagtg	agcgaggtga	ggatgccgtc	gtcgaccaca	26940
ccggccgtgt	. ggatcacggc	tttcaggggg	tgctgcgcgg	gcacttggtc	gaggagcgcg	27000
gcgacggccg	ceeggteece	gatgtcgcag	gccgcgaccg	tggcctcggc	gccgaggccg	27060
gcgagttcgg	geceaggte	ggeggegeeg	teegeggeeg	tgccgcggcg	ggtggccagc	27120
agcaggtgc	gtaccccgtg	ggccgtggcg	agatgacggg	cgacgagccg	gccgaggacg	. 27180
ccggtaccg	ccgtgatgag	gaccgtggcc	teegggteee	agteggegte	ggtggtgctc	27240
ggctgtggct	geeggaeggg	cactcgtgtc	ateegeggga	tgeggaegge	accatttcgc	27300
agggcgatct	geggtteece	ggccagcagg	ggaagggcgt	tgegggagge	gtcggtgtcg	27360
teggtgtegg	g ccagcaggaa	ceggtegggg	tteteggtet	gcacggagcg	gaccagtccc	27420
cagacggcgg	g cgtgtgcgag	gtcggacacg	ggetegtegg	gggtcgcggt	gaccgagccg	27480
tgcgtgagg	a gggccaggcg	gcaggccgcg	agccgttcgt	. eggegaecca	ttcctggagc	27540
agggegagg	a cgcgggtgg1	ggettgeegg	gtggcgtcgg	cgagggcggt	ggagtcggcc	27600
ggggccgag	c cggccgggg	ggaatcggtg	r agggcggaat	cggtgaggg	ggaatcggtg	27660
ggggcggat	g cgccgtccgi	g ctcgcacgag	g atgacgacca	tgcccggtg	cggggcgccg	27720
geegeeagg	g cttctgcga	g agccgccggg	g teegggtagg	g cctgccagga	ggcgccgttg	27780
cgctccagg	a cggcggccg	t cegeegggea	e ceggggeega	a ttagggccca	gteggetgte	27840
cgtgccggt	g tggtgggga	g gtgcagcgg	c cgccattcg	tgcggaagag	g gtggtcgtgg	27900
tagccggtg	c gegeggeet	g gagetgete	geggagaeg	g gccggaagg	gagggacccc	27960
gcggagatg	a cgatgcgtc	c cgatgcgtc	g gtggccagc	a gtccgaccg	gteetegtee	28020
gtgcggacg	g tgagacgga	c gtgcagggt	g gaggegeeg	g aggcggcga	c cgtgacgccg	28080
gtccaggag	ra acggcagcc	a gccgtgtcc	g teggeggeg	g categeeet	c gtggcgcaga	28140
acgaccggg	rt gcagtgccg	c gtccagcag	g geegggtge	a gggcgtacc	g ggeggegteg	28200
geegeetgt	c cctccgtgc	t ctcgggcag	g gtgacgacg	g cgaacacct	c gteeeegege	28260

cgccagacct cgcgcagcc	c ctggaacacc	ggcccgtatc	ccaggccggc	gccggccagc	28320
tgctcgtace agccgtcca	ng gtccaccggt	gctgcgtcgg	cgggcggcca	cggttcctgt	28380
gtgtgctcct ccgcgggc	g ggeggtgeeg	gtcaggacgc	cggtggcgtg	gcaggtccac	28440
teggtgeegg tegeegeeg	jc ggacgaggac	gacagtccgt	cgtcttcgcg	ggcgtacagg	28500
gegaaggtge geegttegg	g ctcctcgggc	gtctgggggc	cctggggtgc	cccgacggag	28560
agttgcagga tcaccgage	cc ctgttcggga	aggacgagcg	gtgtccgcag	ggtgagttcc	28620
tegaeggtge egeagtega	ac ctcgtcgcct	gcgcgcacgg	ccagttccag	gatggccgtg	28680
ccgggcagca ggacggta	c gaagatggcg	tggtcggcca	gccacgggtg	tgtgcgcagg	28740
gagagacggc cggtgaag	ag gagttcctgc	gactcggcca	gtgccaccgc	ggaaccgagc	28800
aggggatgcc cggcggtg	ce gageceeget	gccgacaggt	ccccgggtg	geeggeegag	28860
gtgtcgaccc agtagcgg	tg gtgatcgaag	gcgtaggtcg	gcaggtcgag	gtggeggget	28920
cgatcgcgtt cgggcagg	ge ggegggeeag	ttgaccgccg	ccgctccgtg	cgtatgcagc	28980
cgggccaagc cggtgagc	ag ggtgccgggt	teegggetgt	ccggccgtag	gagcgggatg	29040
agcaggttct cttgcggg	gt geeggtgteg	tegteggegg	ggtggctgtc	ggeggtggee	29100
tctaggcátt cctcggcc	ag tgccgacago	gtecegtetg	ggcccagttc	catgaaggtg	29160
cggactccgt cggtgtgc	ag gcggctgato	gegtegeega	agegeaeggt	ccgccgtacc	29220
tgccggaccc agtactcg	gg gtcgctcagt	tetecegeeg	ccacgatgtc	gccggtgagc	29280
gtegacacca tgggaatg	ge tggttegetg	g taggtcagcg	aggeegegae	ctgctggaac	29340
tcctccagca tcgggtcc	at cageggtgag	g tggaaggcat	gcccggttcg	caggcgcttg	29400 _.
actotocgec egegeteg	gc gaaccagtc	e gecatgttee	ccacctcgtc	ctcggcgccg	29460
gagaacacca ccgaggcg	gg teegtteac	g geegegaeeg	acacccgggc	ttcccggccg	29520
tcgagcgcct gtcgcgcc	te ggettegete	e gecegtacgg	cgaccatggc	gccgcctggt	29580
gcgagctgct ccatcagg	eg ecegeggge	e gecaceagge	ggcaggctgc	tgccagggga	29640
agcaccccgg cgacgtgg	ge ggeegegage	c tegeogateg	agtgcccggc	cacgaagtcc	29700
gegegeaege egagaegt	tc caggtgccg	g aagagcgcga	cctggacggc	gaacagcgcc	29760
ggctgggcgt accgcgta	eg gtccagaac	a teegeggeat	ccgcgacato	cgcaagatcc	29820
gcactggcgt ggatcago	gg gegeagggg	c tggtccaggt	gaccgtccag	ttccgccagt	29880
acctggtcca gcgcgtcc	ge gtaggeegg	g tgagccgcat	acagotgaco	geceatteee	29940
acgegttgcg tgccctgt	cc ggcgaacag	c atggcggtct	ttccgcgccg	geggeetgag	30000
tggecgccac gegggeeg	gac cgaecette	g atcaggeegt	ccgccgaccg	geceteggee	30060
agegegtega gggeetga	ag gaagccgtc	g eggteetegg	g ccacgacgac	ggcccggtga	30120
tegaacaegg acegetg	ge egecaggge	g tgcgccacgt	cggccggccg	ggcatcggat	30180
gccctggcag cgaactg	eg caacegteg	e geetggeee	gcagcgctcg	g ctcggacttg	30240
gcggagagca gccacggg	gat gggcaggag	g geeggettg	cggacatgg	gtcggcgacg	30300
cactccggtt cagccga	ett gtcggacac	g gcctcggcga	a cgcactcago	cgacatctcg	30360
gacatggcgt cggcgac	gca ctccggttc	a gccgacatc	t cggtcacgg	gtcagcgacg	30420

cacteeggtt cageegecte etettgegge teggtgaggt cegeeggtee ggtggegteg	30480
accacgtggg gegectegae eggegeetge tegacgatga egtgegeete ageeggtace	30540
ggeteactga tgacgtgege etegacegge geetgetega tgatgacgtg ggegttggte	30600
ccgctgactc cgaacgcgga gacgcccgcg cgcctgggcc ggccgttctg ctgccacggt	30660
acgggctcgg tgagaagccg gacgccgccg ctcgaccagt cgatgtgggg ggagggttcg	30720
tcgatgtgca ggctggtcgg caacagttcg tggttcaggg ccatgaccat cttgatcaca	30780
ccggccacac ccgcggcagc ctgcgcatgc ccgatgttcg acttcaccga ccccaaccac	30840
accggccgct cccccgaacg accetgcccg tacgtggcga gcaacgcctg cgcctcgate	30900
ggatcaccca acgtcgtacc cgtcccgtgc ccctccacca catccacatc cgccacggac	30960
aaccccgcac acgccaacgc ctgccgaatc acccgctgct gcgacggacc attcggcgcc	31020
gteaacccat tegacgeacc gteetgatte accgeactce ceegeaccae egecaaaacc	31080
cgatgaccac gacgttcagc ctcggacagc cgctccacca acagcacacc cacaccctcg	31140
geccageega ecceategge eccegaceeg taegeettge aceggeegte eggegacaga	31200
eccegetgee gegagaaete cacaaaegea eceggegteg acateaeegt cacaeeeeee	31260
gccaacgcca gcgaacactc ccccgacctc aacgcctgac acgccagatg cagcgccacc	31320
aacgacgacg aacacgccgt atccaccgtc accgccggac cctcgaagcc gaaggtgtag	31380
gaaageegee eggagaegae getgttggag aegeeggtga gegegtaeee etegtggtee	31440
tgggtgccgc ggcgcaggag ctcggcgtag tcctgctgcg agacgccggc gaagacaccg	31500
gtcgtggacc cgtgcagcgt ggcggggtcg atgcccgccc gctccaacgc ctcccaggac	31560
acctccagca tcaaccgctg ctgcggatcc atcgccaacg cctcacgcgg actgatcccg	31620
aaaaaccccg categaactc cgccgcaccc tgcaaaaacc caccacaccg cgtgtaggac	31680
gtaccegece geceeggete eggateatag aaageeteea egteecaace eeggtegace	31740
ggaaacteec ceacegeate cegaceegae gegateaaet cecagaaate eteegeegae	31800
tccacacece ceggaaaacg gcacgccate cccacaatgg caateggete gtegacatee	31860
acacgeggtg ceggggeeeg aagggeaagg geaagggeag tgeeggtggt egggetteeg	31920
ccgctcagct gctcgtggat gtgtgccgcg agtgccaccg ggcggggatg gtcgaacacc	31980
agggteeteg ggaagegeag geeegtggeg gtgttgagge ggttgegtag ttegaeggeg	32040
gtgagggagt cgaaaccgag gtcgcggaag gcgcgctcgg gcaccaccgc atcggcggtg	32100
ccgtgtccaa ggacggccgc ggcatgggta aggaccaggt ccagcacggt ctcggcctgt	32160
geggegggt egagteegge gaggeagteg egeageatge egeegegeae ggtgteeaee	32220
geeteegaca actgaccace ecactgeeca gagaceeegg aaceeegegg egeeceetee	32280
acatecagee aaaagegete tegetegaae geataegteg geageteeae eeegeaaeea	32340
ccagegacce egegaccaac actecegaac acaceggace acteaacege caceceacee	32400
acgaacaact cggccacgga catcaggaag cgtcgcaagc cgccttcgcc ccggcgcaga	32460
gatccgacga ccaggetgtc caagtcaccc atctcgtcca gggtttcctg cacaccgacc	32520
gegaeggeeg gatgegggea egeetegatg aagaeggtgt ggeeggegeg gaeeagegee	32580

			essagettac	aataccaata	ateacatea	32640
		gacgacctgg				
		ttcgccggtg	•			32700
		gagttcgagc				32760
		catgagcctg				32820
tccaccaggg	cgtcgaccgc	tteeggetee	ccggagacca	cggccgaacg	cgccccgttc	32880
acggcggcga	tgaccagacg	gtcgcccat	gtcgcaagac	geggetecag	cttctcgacc	32940
ggcagaccga	ccgatgccat	cgccccctgc	ccggccagtg	cggccagcgc	ctggctgcgc	33000
agggcggtga	cccgggcggc	gtcgtcgagg	gagagtgcac	cggcgacgta	ggccgctgcg	33060
atctcgccct	gcgagtgccc	ggccaccgcg	teegggtgta	caccgtacga	gegeeagage	33120
gccgccagcg	agaccatcac	cgcgaagagg	acgggctgga	cgacatcgac	gcgttgcaga	33180
gggggtgcgt	ceggtgcgcc	gcgcaggacg	tcgaggagag	accagtccag	gtacggttcg	33240
agggcttggg	cgcagtcgga	catctgctgg	gcgaagaccg	gtgaggagcc	gaggagttcc	33300
tgcgccatgc	cttcccagtg	ggtgccctgt	cctccgaaca	gcatggcgat	ctttccgtcg	33360
geegeeggte	cggccacacc	ctgtaccacc	cccgcggtgg	gtgcccctc	ggccagtgcg	33420
tcgagtgcgt	gcaggaactc	gtegeggtee	teggccacga	ccaccgcacg	atgctcgaac	33480
accgaccgct	ccgacaccaa	agecegeceg	accccagccg	gactcacccc	cacaccatcc	33540
gcacccccac	caaccgccac	aaccccacgc	aaccgacgcg	cctgccccg	caacgccaac	33600
teegaeegeg	ccgacaccac	ccacggcacc	acccccgaac	ccgacaccac	ccccggaccc	33660
aactcctgca	geeggeeege	acccccatcc	gegeeeeegg	acgcctcctc	caaaatcaca	33720
tgcgcattcg	tcccactcac	cccgaacgca	gacacccccg	caegeegeag	ccgaccctcc	33780
accccggcc	actccacctc	atccgccaac	acacgaaccg	acccactcga	ccaatccacc	33840
tgcgacgacg	geteatecae	atgcaacgtc	: cgcggcaaca	ceeeegeeeg	caacgccatc	33900
accatcttga	teacacccgo	cacacccgca	geagectgeg	catgcccgat	gttcgacttc	33960
accgacccca	accacaccgg	cegeteece	gaacgaccct	gcccataagt	ggcgagcaac	34020
gcctgcgcct	: cgatcggatc	acccaacgto	gtacccgtc	e egtgeecete	caccacatcc	34080
acateegeea	cggacaacco	cgcacacgc	aacgcctgc	gaatcacccg	ctgctgcgac	34140
ggaccattc	g gegeegteaa	a cccattcgad	gcaccgtcc1	t gattcaccgo	actececege	34200
accaccgcca	a aaacccgato	g accacgacg1	t tcagcctcg	g acageegete	caccaacagc	34260
acacccaca	e ceteggecea	a geegaeeee	a teggecece	g accegtacgo	cttgcaccgg	34320
ccgtccggc	g acagacccc	g ctgccgcgaq	g aactccaca:	a acgcacccg	g cgtcgacatc	34380
accgtcaca	c ccccgccaa	a cgccagcga:	a cactccccc	g acctcaacgo	ctgacacgcc	34440
					cggaccctcg	34500
					e cgtcatggcg	34560
					g actgcacatg	34620
					c cgcccgctcc	34680
				•	c caacgcctca	34740
						-

cgcggactga t	cccgaaaaa	ccccgcatcg	aactccgccg	caccetccag	gaaaccgccc	34800
cggcgcgtat a	acgacgaacc	cgcccgcccc	ggctccggat	catagaaagc	ctccacgtcc	34860
caaccccggt c	gaccggaaa	ctctcccacc	gcatcccgac	ccgacgcgac	cagttcccac	34920
aagtceteeg o	cgactccac	acccccgga	aaacggcacg	ccatccccac	aatcgcaatc	34980
ggetegteaa	egtcgacacg	cgacgccggg	accggaggag	caatgtcacg	ctggccgccc	35040
gegeeeteet	ccagctgttc	cttgaggtat	ccggccagcg	cggagggagt	ggggtagtcg	35100
aagatcagcg 1	tggtgggcag	gaggagcccg	gtgacggcgt	tgaggcggtt	gcgcagttcg	35160
acggcgctca	eggagacgaa	gcccaggtcg	cggaaggctc	gctcagggcg	tacggcggtg	35220
ggggtgctgt	gtccgagcac	ggtcgccgcg	tacgtacgga	ccaggtcgag	aagegeaegt	35280
tectgetegg	cggtgtccat	ggeettgage	cgtgcggaga	acgagtcggg	ggatgcggtg	35340
geggtgtega	gtccggtggt	ttcccgggcg	aggcgtgctt	cggggatgtc	gctgatgagg	35400
ggcgagagtc	gggagccggg	gagggagttg	gcggtgaatc	ggtcccagtc	gatgtcggcg	35460
accgtcacac	aggtctcgtc	atggtccaac	gcctggccca	gtgccaccag	cgccgtctcc	35520
ggcgtcatcg	ccgccagacc	ccgacgccgc	atctgcccca	eggeeceete	cgccatcccc	35580
ccaccagccc	acggacccca	cgccaccgcc	·aaccccggca	ggccctcacc	acgccggtgc	35640
cgaacgattg	cctccacata	cgcgttcgcc	gccgcgtaac	tcccctgtcc	cgccggcccg	35700
aacgtcgccg	cageegaega	gaacaccacg	aaccccgaaa	gateegeece	ccgcgtcaac	35760
tcatgcagat	tccaggccgc	cagcgccttc	gcccgcagca	ccccgtgac	acgctcggac	35820
gacaacccct	ccaacacccc	gtcatccaca	actcccgcgg	catgcaccac	cacacccagc	35880
gggcactccg	ccggaacggc	cgaccgcaac	acctccgcca	acgcctcacg	gtccgccgca	35940
tcacacgcca	ccaccgacac	cegegegeee	aagcccatca	agtccgctcg	gagttcttcg	36000
actccctggg	cgctctcccc	gegteggete	accagcagca	ggtgttcggc	gccacgccgg	36060
gccatccacc	gggcgacgtg	cgcacccaac	tegeeggtge	ctccggtgac	gagtacggtg	36120
ccgcggggcc	gccactcccg	ctccgcgacg	geeteeteea	acggcgcccg	caccaaccgc	36180
cgcacaaacg	ccccgaaga	ccgcacggca	aactcactct	cacccctcc	cccacaccc	36240
gccagcacac	ctaccaacco	atcgaccacc	: cgctcatcca	cgagctccgg	cacatcaacc	36300
ageccaecee	agcggtccgg	tgcctccgc	cccaccacac	ggcccagccc	ccacaccaca	36360
cccgaggccg	gccccacac	agcatecegg	cccccacc	g acacggcccc	gecegteaca	36420
caccacagec	gcgccccad	geceacate	a cccagcgcc1	gcaccaacco	cacagacgcc	36480
actcccgcct	gcacgacgc	e actececca	g cccacaagg	g agacgacaco	geegaeagee	36540
tcaccatcga	ccgcctcac	g caggtggcc	g gccaacact	t ccctgctcac	e acaccccgct	36600
tecaecteca	cccgaacca	c tegegecee	a caccgctcc	a accepteego	c caccacatca	36660
accgggcccg	cctcgccct	c ggacaccac	e agecaegeg	c ccgacagcc	c ccctacacca	3,6720
ccgcccgaaa	cgggtcgcc	a cacctcccg	a tagegeeac	c cgtccacca	ttcacgctcg	36780
tgccgtaccc	gccccatt	c ccccaacgc	c gacaccacc	g cacccageg	a cgccccctca	36840
tccaccccaa	ggagcgatg	c caccaccc	c gcatcacca	e actegaceg	c cteccacaac	36900

ggaccacccc acatecegga aacceeggaa ceteeegcag ateceteete cae	gtccage	36960
caaaatcgct cccgctcaaa cgcatacgtc ggcagctcca ccccgcatcc atc	accgacc	37020
tegegageag tecestegaa cacacegges casteaaceg cegtescage cac	gaacaac	37080
tecgecaggg eggteatgae egacegtgee teeggetggt eeggeegeag gge	ggggatg	37140
gegegggeeg gtgeaetgag egagteetgt gegagggeeg acagegtgee gte	ggggccg	37200
atttcgaggc aggtggtgac gccctgttcc tgaagccatg agatgccgtc cgc	egaaacgg	37260
accgtgctgc gggcgtgttc gacccagtag tccggggtgc acatggtctc ggc	cggggagg	37320
ggcgcgccgg tgacgttgga gacgacggga atccgcgggg cgctgaaggt gac	cctgctcg	37380
geogegege ggaagtegee caacatggeg teeatgtgeg gegagtggaa gge	egtggetg	37440
gteegeagee geegggtgeg geggeetegt geegeecatt getgegegag gte	ccaggacc	37500
gegteetegt eeceggagag gaegategae egeggeeegt teacegegge gto	gegegaee	37560
cgggatgcgt attcgtcggg cagcgggagg atctcgtcct cggacgcctc gat	tggccacc	37620
atggeteege eggaegggag eeettgeate aggeggeete gtgegaecae eag	gtgccacc	37680
gegteggeaa ggeagageat eeeggegaea tgggeggeeg eeagtteaee ga	cggaatgg	37740
ccgaggacgt agtcgggcgt cagaccccag gtctccagca gccggaacag cg	ccacctcg	37800
aaggegaaca gggegggetg ggegaaacee gtgteetega teageeggee tte	cgggagag	37860
teetgeggtg cgaagagtae gteeegeage ceaggggeae eggggteggt ge	gggcggtg	37920
teggeeteeg egeagatete gtegatggee tgggegaaga eggggtaege et	cgtacagt	37980
tegeggeeca tgeetgegeg etgggtteec tgeeeggega agagtaegge ga	gttegece	38040
gaggtggtte gteeetegae gaegeegge aeggggegge egeeggeeag tg	egtegagt	38100
gcgtgcagga actcgtcgcg gtcctcggcc acgaccaccg cacgatgctc ga	acaccgac	38160
cgctccgaca ccaaagcccg cccgacccca gccggactca ccccacacc at	cegeacee	38220
ccaccaaceg ccacaacece acgcaacega egegeetgee ecegeaacge ca	acteegae	38280
egegeegaca ecacecaegg caccaecee gaacecgaca ecaceeegg ac	ccaactcc	38340
tgcagccggc ccgcaccccc acccgcgccc cccgacgcct cctccaaaat ca	acatgegea	38400
ttegteccae teacecegaa egeagacaee ecegeaegee geageegaee et	ccacccc	38460
ggecacteca ceteatecge caacacaga acegacecae tegaceaate ca	acctgcgac	38520
gaeggeteat ceacatgeaa egteegegge aacaeeeeg eeegeaaege ea	atcaccatc	38580
ttgatcacac cogccacacc cgcagcagcc tgcgcatgcc cgatgttcga ct	ttcaccgac	38640
cccaaccaca ceggegtgte aceggecege tgecegtaeg tggegageaa eg	geetgegee	38700
tegateggat cacceagegt egtgecegte eegtgeeeet ceaccacate ea	acateegee	38760
acagacaace cogcacacge caacgcctge egaateacce getgetgega co	ggaccattc	38820
ggcgccgtca acccattcga cgcaccgtcc tgattcaccg cactcccccg ca	accaccgcc	38880
aaaacccgat gaccacgacg ttcagcctcg gacagccget ccagcagcaa a	atccccacg	38940
cceteggaca tgccggtgcc gtcggcagcc gacgcgtacg ccttgcaccg go	cegteegge	39000
gacagaecee getgeegega gaacteeaeg aacatgeeeg gggtggacat g	accgtcacg	39060

WO 2004/111230	•	•	•	PCT/JP	2003/007407
cctccggcga gggcgaagg	a ggactcaccg	gtgcgcagtg	actggcaggc	gaggtgcagt	39120
gccaccagcg acgacgagc	a cgccgtgtcg	accgtcaccg	cggggccctc	gaagccgaag	39180
gtgtaggcga cgcgtccgg	a caggatgctt	cccgcgttgc	cgttgcccag	gtagccggcc	39240
aggtcgtcgg ggaccgaga	g cagacgggtc	gcgtagtcct	gggacatgag	gccggcgaag	39300
acgecegtee ggetgeege	g caacgtggcg	gggtcgatgc	ccgcccgctc	caacgcctcc	39360
caggacacet ccagcatca	a cegetgetge	ggatccatcg	ccaacgcctc	acgcggactg	39420
atcccgaaaa accccgcat	c gaactcegee	gcaccctcca	ggaaaccgcc	ccggcgcgta	39480
tacgacgaac ccgcccgcc	e eggeteegga	tcatagaaag	cctccacgtc	ccaaccccgg	39540
togacoggaa actococca	c cgcatcccga	cccgacgcaa	tcaactccca	gaaatcctcc	39600
geegaeteea eaceecee	g aaaacggcac	gccatcccca	caattgcaat	eggeteetge	39660
tegecegatt caatetget	g aagtcgacgc	cgcacattga	ggagatcggc	agtaacgcgc	39720
ttgagatagt cgcggagct	t ttcctcgtta	gccatggacc	ggtctcctcg	acaagagaaa	39780
tcggaaatta aaaaacac	gc atgggactct	: cacaggctag	agcgacgaga	gcagcacaaa	39840
tacccctaga taccccaga	ac ccctgatgct	. cgatgaatgc	cgctatagct	agggggtatg	39900
gegecagaca tg					39912
				•	
<210> 4		•	•		
<211> 60					
<212> DNA					
<213> Streptomyces	avermitilis		•		
<400> 4					
ccatggaccg gtctcctc	ga caagagaaa	t cggaaattaa	a aaaacacgca	tgggactctc	60
<210> 5					
<211> 3274					
<212> DNA					
<213> Streptomyces	avermitilis	·			
				•	
<400> 5					•
accggtcacc cggtatto					60
tgaattgtgg accgccat	cc ggggcacgg	ga tgtetecag	g aaggaáctc	c ttcaccctcg	120
cgaacaccac ctcagaat					180
ctaccccgcc caccaggg	gca aattcataa	ac actgaccat	c acctctgate	g ctgatcaacc	240
cagecegeae ggeegega	acc gcttttgct	c aagcaatcg	a aatccccga	g acacgettte	300
ttggaaaaag gagaaat	aag aacatcat	gc agggagttt	c ctgtctgca	c cccctcgga	360

	actcacgctc	_				420
ttaccgaatg	cgcggccggc	acggtgaaac	tgctcgtcgc	cgagggcgga	atgggctgtg	480
gaaagagtac	gttcctgggc	gaggcactgc	acaccgccgc	cgcctccggc	ttegeegtee	540
tgcgtgccgc	egggetteec	gcggaccacc	ggcaacccct	cggcgtactg	cagcaactgc	- 600
tgaacgaccc	egececegag	gacaccgccc	gcaccgccgt	ccgccccatg	ccggtgcaac	660
acgtccgcgg	cgccctcgaa	egectegeeg	.ccggcgcccc	gctggcgatc	ggcatcgacg	720
acgtacagga	cgcggacccg	gagtegetge	actgtctgat	gcgcctcacc	cgccactccc	780
ccacctcgcg	gatcctgctg	ctgtgcaccg	ccctggcgtg	cagteeggee	gccgacccgg	840
tactcgaagc	cgagctgatg	cgtcagaccg	ccttcgaacg	catcacgctg	gactgcctgt	900
ccctggacgg	agtgaccggg	ctggtctcgg	accgctgcgc	geggeecacg	gegeeeeege	960
cggcggacta	ctgcctgacc	gtcaccgggg	gcaacccgct	gctgctgcgg	gccctgctcg	1020
aagagcacag	cgaggccgac	gacacatagg	caccccgccc	ggeggagece	teegegetge	1080
actccccgcc	gcaggccgcc	ccgccgcgcc	eggtegtegg	cggccgcttc	taccagtccg	1140
tactggcctg	cctgtcccgc	acggagacgg	cgatcaggca	gacggccggc	gccctcgccg	1200
tecteggegg	gegtgegege	gccgacctgc	tcccccaact	gctcggcgcg	agtcccgcgt	1260
cggtcacccg	ggggctgcgt	gcgctggagg	cgacggggct	gaccacctcc	ggccgtttcc	1320
ggcacccggt	ggccgaggcc	gccgcgctcg	acgcactgga	cccgagccgc	cgtgcccacc	. 1380
tgcaccgccg	ageggeggeg	ctgcagcacc	acgacggcgc	ggegeegegg	gacgtcgccc	1440
gccaccttct	. egeggeeege	catgcggcgg	gcccctgggc	ggtgtccgtg	ctgcgtgacg	1500
ccgccgagca	gtegetggeg	caggacgacg	tggcgtcggc	ggtctcctgc	ctggaactcg	1560
cctacggggc	etgtgteegg	gaacgggaac	gtccggagat	caggatcagg	ctcgccgccg	1620
ctttcgggcg	caccaacatc	geggtggegg	aagagcacct	cgccgacctg	gtcgccacct	1680
tgcgggaagg	agaattgacc	ggccatcaga	cggctttact	cgtccctctg	ctcgtcaacc	1740
acggccgcct	. cggcgaagcg	cgggaggcga	tggaccggct	caacgccgcc	gacgacgcgc	1800
geggeetgtg	g cgcggacggc	ggcttcccga	tggccgctcc	gtągccgtcg	accgcacacc	1860
tegeegeacg	g cegegatece	geegegege	gegatecegg	caccegeege	gatcccgccg	1920
acaagccgtt	cetgeeeegg	cagtccggtg	g ccccgcagcc	ccggccggag	gacggccgtg	1980
gccagcagc	gacagegge	ttgtgggcc	tgcccggaaa	cggcaccago	gaggeggeeg	2040
cacacgccg	c ggaacaggta	ctgcggtcct	ccccgctcac	: cgacagcacc	ctcgtgctcc	2100
tggtgaacg	c cgtgcggatc	: ctcgcccgca	a cgggccggta	cgacaccgcg	gacatctggt	2160
gecacegeet	t gctcggcgag	gecaccegto	gccgttgtcc	: cggctggcag	gegeaectee	2220
tggcggtgcg	g ggccgaacto	tegetgtge	e gtggcctgct	cgccgacgcc	aaggagtgcg	2280
cccagcgcg	c actgacacac	gtaccgggg	e acageegeag	g egtettegeg	ggeggteege	2340
tggcctgcc	a ggtcctcgc	tgcaccgcg	a tgġgacgcta	a cgacgaagco	acgcaactgc	2400
tcagccatc	c ggttcccga	g gegetgtte	c acagtgtgta	cggcctgggg	tacctgcggg	2460
cccggggcc	a tttccacct	g gccatgaac	c geetgeeeg	e egeegteege	gacttectca	2520

WO 2004/111230		PCT/JP2003		
	-t	e agtactacta coctagoa	ta 2580	

	ccdccddccd	ggtggcgcgg	gagtggggac	tggaccatcc	ggtgctgctg	ccctggcgta	2580
,	eggaegeege	ggaggcgttc	ctccggctcg	gggaaacgaa	gagggccgac	caactcctca	2640
	ccgaacagct	cgtctccccg	cacagcggca	acccgtacgt	ccgcggcacc	gegetgegee	2700
	tgcgggccca	gaccgcggcg	ccggcggaac	ggctccggct	gctgagcgag	gcggtcagtg	2760
	acctccagag	ctccggcgac	cgcctggcgc	tggcccgcgc	actggccgat	ctcggcgccg	2820
	cgtatcacag	ccggaacgag	cccgtacggg	cgagcgccac	ggteegeege	gcctggcagc	2880
	tggccaagga	gtgcggagcc	caggccctgt	gcgacagcat	cctgcccagt	cgcggcacca	2940
	aggaccgggg	gcccgacgga	agggeggeeg	cgaccgaggc	cctgctgagc	gagtccgaga	3000
	tgcgagtcgc	gacactggcg	gegggeggea	acaccaaccg	tgagatcgcc	ggeeggetet	3060
	gcgtcaccgt	cagcacggtc	gaacagcatc	tgacgcgggt	ctaccgcaaa	ctgaacatca	3120
	cccgccgcag	ggagctgccg	accegtetge	gacacctcgc	ggaccaggcc	aactgaccac	3180
	gggaggggg	gegteeegge	cgacgtgtgc	tegtetteeg	cctcacgaca	tggcgggcgc	3240
	gatgcacagc	cccccactcg	catccaccaa	ctga	•		3274

<210> 6

<211> 11041

<212> DNA

<213> Streptomyces avermitilis

<400> 6

ctgcagccgg	cccgcacccc	cacccgcgcc	ccccgacgcc	tcctccaaaa	tcacatgcgc	60
attegtecca	ctcaccccga	acgcagacac	ccccgcacgc	cgcagccgac	cctccacccc	120
cggccactcc	acctcatccg	ccaacacacg	aaccgaccca	ctcgaccaat	ccacctgcga	180
cgacggctca	tccacatgca	acgtccgcgg	caacaccccc	gcccgcaacg	ccatcaccat	240
cttgatcaca	cccgccacac	ccgcagcagc	ctgcgcatgc	ccgatgttcg	acttcaccga	300
ccccaaccac	accggcgtgt	caccggcccg	ctgcccgtac	gtggcgagca	acgcctgcgc	360
ctcgatcgga	tcacccagcg	tcgtgcccgt	cccgtgcccc	tccaccacat	ccacatccgc	420
cacagacaac	cccgcacacg	ccaacgcctg	ccgaatcacc	egetgetgeg	acggaccatt	480
eggegeegte	aacccattcg	acgcaccgtc	ctgattcacc	geacteecce	gcaccaccgc	540
caaaacccga	tgaccacgac	gttcagcctc	ggacagccgc	tecagcagca	aaatccccac	600
geceteggae	atgeeggtge	cgtcggcagc	cgacgcgtac	gccttgcacc	ggccgtccgg	660
cgacagaccc	cgctgccgcg	agaactccac	gaacatgccc	ggggtggaca	tgaccgtcac	720
gcctccggcg	agggcgaagg	aggactcacc	ggtgcgcagt	gactggcagg	cgaggtgcag	780
	gacgacgagc					840
	acgcgtccgg					900
	gggaccgaga					960

•	VO 2004/1112	30				1 0 1/01	2000,00,40
	gacgcccgtc	cggctgccgc	gcaacgtggc	ggggtcgatg	cccgcccgct	ccaacgcctc	1020
	ccaggacacc	tccagcatca	accgctgctg	cggatccatc	gccaacgcct	cacgcggact	1080
	gatcccgaaa	aaccccgcat	cgaactccgc	cgcaccctcc	aggaaaccgc	cccggcgcgt	1140
	atacgacgaa	cccgcccgcc	ceggeteegg	atcatagaaa	gcctccacgt	cccaaccccg	1200
	gtcgaccgga	aactccccca	ccgcatcccg	acccgacgca	atcaactccc	agaaatcctc	1260
	cgccgactcc	acacccccg	gaaaacggca	egccatcccc	acaattgcaa	teggeteetg	1320
	ctcgcccgat	tcaatctgct	gaagtcgacg	ccgcacattg	aggagatcgg	cagtaacgcg	1380
	cttgagatag	tcgcggagct	tttcctcgtt	· agccatggac	cggtctcctc	gacaagagaa	1440
	atcggaaatt	aaaaaacacg	catgggactc	tcacaggcta	gagcgacgag	agcagcacaa	1500
	atacccctag	ataccccaga	cccctgatgc	togatgaatg	ccgctatagc	tagggggtat	1560
	ggcgccagac	atgaattcac	agcgtttcgg	cggccggctg	gcgcttgtca	caggtgcagg	1620
	cggtggcatc	gggcgggcga	cegectgege	tctcggatcg	geeggggege	gagtggtg t g	1680
•	cgtggaccgg	gacggccgcg	gegeeggggt	gacggccgac	ctggcccgga	cdcddddcdc	1740
	gegggeggee	tggcccgagg	tggccgacgt	gtccgacgga	gcggcgatgg	ageggttege	1800
	cgagcgcgtc	gccgagacgt	acggggtcgt	ggacctgctg	gtgaacaacg	ccggcatcgg	1860
	catggcgggg	cgttttctcg	acacgtccgt	cgaggactgg	cagcgcaccc	tgggcgtcaa	1920
	cctctggggt	gtcattcatg	gttgccgcct	categgeegg	cagatggcgg	agegegggea	1980
	gggcgggcac	atcgtgacgg	tggcgtcggc	ggeggegtte	cagccgacgc	gggcggtccc	2040
	cgcgtatgcc	accagcaagg	cggcggtgct	. gatgctgagc	gagtgcctgc	gcgcggagtt	2100
	cgcggagttc	ggggtcggag	tgagcgtggt	gtgeceggge	ttegteegta	cgtcgttcgc	2160
	gteggegatg	catttcgccg	gtgtgcccc	getggageag	gageggetge	gggegetgtt	2220
	cgccggtcgc	ggatgcagcg	ı cggagaaggt	ggeegeggeg	gtactgcggt	. cggtggcgcg	2280
	cgactcggcc	gtggtgaccg	tgacggcgga	agegeggetg	tcacggctga	tgagccgctt	2340
	cacgccacg	ctgegegeeg	g eggtggege	g gatggatccc	ccttcgtagg	getggegggg	2400
	atcccctcct	tgccttcgaa	a catcttccg	a cgatgggcag	g tgagagatgt	cagatcattt	2460
	tetetteate	agtgcgccgt	tetggggge	a tgtgttcccc	agtctcgccg	tggcggagga	2520
	gctcgtgcad	e eggggeeaed	e acgtcacct	t tgtgacggg	geggaaatg	g cegatgeggt	2580
	gegtteegt	g ggcgctgati	t teetgeggt	a cgagtccgc	ttcgagggtq	j togacatgta	2640
	ccggctgat	g accgaggcc	g agccgaacg	c catccccato	g acgctgtacq	g acgagggcat	2700
	gtccatgtt	g cgttcggtg	g aggagcacg	t cggcaaggad	c gttccggac	tggtggccta	2760
	cgacatcgc	c acctccctc	a acgtgggtc	g tgtcctcgc	e geeteetgga	a gcaggccggc	2820
	catgacggt	c attcccctg	t tegegteca	a cgggcgctt	c tccacgatg	c agtcggtatt	2880
	ggatccgga	t teegeteag	g teagtgege	e geegeegeg	c ttctcggag	c agatggagtt	2940
	gtteggeet	c ggggcgctg	g tgeegegee	t cgcggagct	g ctcgtttcc	c ggggtatcac	3000
	ggaaccggt	c gacgatttc	e ttteeggae	c ggaggactt	c aacctggtg	t gtctgccgcg	3060
	egeetteca	g tacgeggge	g acaccttcg	a cgagcggtt	c gccttcgtc	g gaccatgtct	3120

gggtaagege aggggtetgg gegagtggae aceaeeggge agegggeate eagtggtget	. 3180
catetecete gggacegtgt teaaceggea getgteette tteegcaegt tegteeggge	3240
gttcaccgac gtccccgtgc acgtcgtgat ctcgctcggc aagggggtcg accccgatgt	3300
getgeggeeg etgeegeega atgtegaggt geaceggtgg gtgeegeace atgeggtget	3360
ggagcatgcc agggctctgg tcacgcacgg cggtaccggc agtgtgatgg aggcactgca	3420
cgcagggtgc ccggtgctcg tcatgccctt gtcgcgggac gcgcaggtga ccggccggcg	3480
gategeegag etggggetgg gtegtatggt geageeggag gaggteaegg egaegaeget	3540
gegeeggeac gtgctggaca teatcteega tgacgegate accegacagg teaggeagat	3600
geagegggee aeggtegagg egggeggege cetgegggea geggaegaga eegageggtt	3660
tetgegeegg aegegeegte aetgaeegge agetegggee gggeggtgag tggeteecae	3720
agggtteggt tetecaegta ceaetgaaeg gtetgtgeea geeeeteete gaagggeaeg	3780
eggggegegt aacegagete ggeggagate ttgetgatgt ceagegagta gegeeggteg	3840
tgeccettge ggteggteae gggttegace ategaceagt ceaegeegag eaggteeagg	3900
ageogggegg tgageteacg gttggacage teegteecge eteegatgtg gtagateteg	3960
cegggeetge egegttegge gaccagggeg atgccaegge agtggtegte caegtgeage	4020
cagtegegga egttttegee gtegeegtae aagggeaeet tegtgeegtt eageagatgg	4080
gtgacgaacc gcgggatgag tttctccggg aactggtggg ggccgtagtt gttcgagcat	4140
cgggtgatga tcactggtag gccgtgcgtg cggtggaagg accgggcgag caggtcggag	4200
gacgccttgg acgcggagta gggcgagttc ggctccagcg gggcgtcctc ggtccacgag	4260
ccggagtcga tggagccgta gacctcgtcc gtcgagatgt acacgaagcg gtccacggcg	4320
gegteggtgg eggegeggag cagggtgtga gtgeegagga cattggtgeg taegaacteg	4380
geggegtegg ceaeggaeeg gteeaegtgt gaeteegeeg egaagtggae eaecatgteg	4440
gageegteca teaggteege gaceaaggge eegtegeaga tgtegeegtg eaegaagate	4500
agggatggge tteccaggae eggtgegagg ttetecagge gaecegegta ggteagettg	4560
tegageacca egacetegge aceggtgaac geeggataeg egeeegteag eaacegeegt	4620
acgaaatggg aaccgatgaa accggcgccg cccgtcacga gtaggcgcat cccgggctcc	4680
tcaccgegge ttecgcegea atacteatea gatactegee gtageeggag eeggeeagtt	4740
cgaccccgcg cagatagcag tcgtccgcgt cgatcagacc catccggaag gcgatctcct	4800
cgagacagge gatecgtaet eeetggeget tetecaggae etgeaeatae tgeceggegt	4860
gcatcagcga gtcgtgcgtc cccgcatcga gccaggtgaa gccccggccc aggtccacca	4920
geegggeeeg eeeeteggeg aggtaggeee tgttgaegte ggtgatetee agetegeege	4980
gggccgacga gcggatgccc cgggccacet cgatcacgtc gttgtcgtac aggtacaggc	5040
ctgtgatege caggttggae eggggggegg tgggtttete etegaeggae ageagettte	5100
cggaggegte gaccteteeg acteegtace gttegggate egteacegeg tateegaaca	5160
acacacagce gtcgacateg cgggtgtgge tgcgcagcag gtgcgaaaag cccatgccat	5220
ggaagatgtt gtccccaagg acaagggaca cetgatcetg accgatgaaa teggegeega	5280

••	0 200 2222		•				
				gctgctgcgc			5340
				ggaattgttc			5400
t	caccaggat	gtcttttatg	ccgccgagca	tcaacacgga	gagcgggtag	tagatcatgg	5460
9	gtttgtcgta	gacagggagc	agctgcttgg	aaagggcacg	ggtcaacggg	taaagccgag	5520
ē	ageeggttee	ccccgcgagc	acgattccct	tcatgtcgga	ctccccgcag	tegaegttat	5580
ē	atatototgo	cgtctgcccg	acggtaccaa	gtggcggaaa	acgcaccagg	aattcgagcg	5640
c	ccgctagggg	gaagggetea	agaagatagg	ggccaccaga	tggggcggtt	tteggtgtge	5700
•	cegeeeegge	cgaccggaat	actgaagagc	atgctgacga	ctgggatgtg	cgaccgaccg	5760
•	ctggtcgtcg	tactcggagc	ctccggctat	atcgggtcgg	ccgtcgcggc	ggaactcgcc	5820
•	eggtggeegg	tectgttgcg	gctggtggcc	eggegacegg	gegtegttee	geegggegge	5880
ç	gccgcggaga	ccgagacgcg	tacggccgac	ctgacggcgg	cgagcgaggt	egecetegee	5940
ç	gtgacggacg	ccgacgtggt	gatccacctg	gtegegegee	tcacccaggg	agcggcatgg	6000
	egggeggegg	agagegatee	ggtggccgag	cgggtgaacg	teggggtgat	gcacgacgtc	6060
•	gtegeggeee	tgeggteegg	gegeegegee	gggccgcccc	cggtggtggt	gttcgccggg	6120
	tcggtctacc	aggtgggccg	cccgggtcgg	gtcgacggca	gtgagccgga	cgagcccgtg	6180
	acggcctatg	cccgtcagaa	actcgacgcc	gaacggacgt	tgaagtccgc	cacggtcgag	6240
,	ggtgtcctgc	gggggatctc	gctgcggctg	cccaccgtct	acggcgcggg	geegggeeeg	6300
	cagggcaacg	gcgtcgtgca	ggcgatggtg	ctccgggcgc	tcgccgacga	ggccctcacc	6360
	gtgtggaacg	gaagcgtggt	ggagcgtgac	ctggtgcatg	tggaggatgt	cgcgcaggcc	6420
	ttcgtgagct	gcctggcgca	cgcggatgcg	ctegeeggge	ggcactggct	gctcggcagc	6480
	ggtcgtcctg	tgaccgtccc	, gcacctcttc	ggtgccatcg	cegeeggegt	gteegeeege	6540
	acegggegee	ccgcggtgcc	cgtgaccgcg	gtggaccctc	cggcgatggc	gacggcggcg	6600
	gacttccacg	ggaccgtcgt	. cgactcctcg	gegtteegeg	cggtcaccgg	gtggcggccg	6660
	eggetgtege	ttcaggaggg	cctggaccac	atggtggcgg	cttacgtgta	gcgccggggt	6720
	ggeggeeggg	cccgggcggt	. gacggcccgg	atccgggtcg	gccgtcacag	cttctcgtcg	6780
	aggccgcgg	: tcgcgcggta	ctccggcaac	: atgeegegte	geagggeetg	ctggagagtc	6840
	ggegegege	ggtegegete	ggagaggato	ggtgcccgcc	cgaggtggtg	gccgaggggc	6900
	agggcgaggt	ccggatcctc	gggcgagagg	gegtgttegt	. tctgcggaac	gtagccgctc	6960
	gacatcaggt	acaccatcgo	: cgtgtcgtc1	tccagcgcca	cgaacgcgtc	cccgaccccg	7020
	atcggcaggt	agacggaacg	gaagegetee	tggtcgagga	ggaccgagto	ccactgcccg	7080
	aaagtcggt	agccggtgcg	g caggtcgac	g acgaagtcca	gggcccgtc	ccgggcgcag	7140
	tggacgtact	tggcctggc	gggtggtgt	c gcggtgaagt	geaegeege	gacgacgccg	7200
	eggegegaga	a cgctctggca	a ggtetgege	g gtgggaaaco	ggtgcccga	ggcctcgctg	7260
	aggaccggt	t cctggtaggg	g ggtgacgaa	g agcccgcgct	cgtcggggaa	a gaccgtcggg	7320
						ggeggtggee	7380
	cgggcgccc	g egggegggg	gggccggtc	g geggageted	e ggcgaggcc	g gccaagggtc	7440

•						
atcgctgcac	tetetetgte	gtgegggttg	tcatacgggt	agtcgtacgg	geeggtteeg	7500
gagtcacagc	tcgacggcgc	gggtggtgag	cagggacagc	agggtgcggg	cctgcacgtt	7560
cacgtaacgg	ccgtaccgca	gcagctgggt	cagctggccc	ggggtgcacc	agcggtaccc	7620
cgggggcggg	tegtteggeg	cctggctctc	gteggeeteg	acgaacaggt	agegegeetg	7680
tgcgtgcaga	aagcgaccgc	cctcctccga	gtggaccgcc	gcgtagcgga	tgcggtcggg	7740
cgcggcctcc	agcaccaggt	cgaggaagcg	eggeetggee	ggtcccgtga	ggtgggcgta	7800
gttgcgcggg	gtgtactgga	ccgtcgggcc	gagttcgatc	gtgtcgagga	agccgccctc	7860
gaccctgccg	tgggcgagca	ggtgcggtac	geegeegate	cgccgggtca	ggaaggcggt	7920
gatgccgtgg	ccgcacggtt	cgatcagggg	ctgggtccag	gcggcgacct	cccggttgga	7980
ggcctcgaca	cggaccgcga	ccacacggaa	gtaccggtcc	gcgtggtggg	cgatggactc	8040
cgcgcccgtg	gtccagccgg	ggatgccggc	caggggcacg	cggcgggcgt	gcacggagtg	8100
ccgggagcgt	teggeggegt	accaġgagag	cagttcggcg	tegetgtgca	gggccgcggg	8160
ctcgtcgaac	ggggtgggaa	ggcaggcgag	gaccgtgcgt	gcgtccatgt	tcaccaggtt	8220
gtcccggtgc	- atcagttcgc	cgatctgccc	cagtgtcagc	cagcggaagt	cgtcgtccag	8280
tggtacgtcc	tegteggtet	ccaccacgat	gttgcggttg	aacttccggt	ggaaccaggc	8340
teegtgeteg	gactggagga	cgtcgaccac	cacggtggcg	cgccggggct	gtgtgaagta	8400
ctcgaggtac	ttcacggcgg	egeeceegtg	gaccttggtg	tagttgctgc	gcgtggcctg	8460
cacggtgggc	gacagctgga	ccaggttgat	gttgccgggc	tccatcttgg	cctgcatcag	8520
gaagtgcagg	g acccegtega	acttcttggc	gaggatgccg	aggatgccga	tctcgggctg	8580
gtggatgatg	ggetgetgee	attccgggaa	gggctgttca	ccgcctcgga	cgtgcagtcc	8640
ctccacggag	aagaaccggc	cgctgcggtg	ggccagattg	ceggtteegg	ggtgaaacga.	8700
ccaggcgtco	atcccgtgga	aggggatgcg	ctcgacccgg	aaccggtggg	ccccggaccg	8760
ccgcgtccac	cagceggtga	acgcgtcgag	ggacgtccgg	cgccggtgtc	gcccacggcg	8820
gcggagcgg	g cgaggcacgc	gggcagggcg	gcgtcgtgcc	gegeggtgag	· cggtgctggg	8880
ctcggtgtg	g teggeategg	ctcgtacgct	catgcacccc	acgtcatgta	gatcaccggt	8940
ggctcgcgg	c cgggcagttg	gegeagtggg	gegtggtega	ggccgaacgc	ctcgctcagc	9000
geeetggte	t cccccggcca	tttggggtgg	gtgagttegt	. cgaaggcgag	gatgetgeee .	9060
ctggtcagg	t geggtgtgat	gacgtccago	agttcgcgcg	tggggcggta	gaggtccagg	9120
tcgaagtag	g ccagcgcgat	gacggtgtgc	gggtgttccg	ccaggtatto	gggcaccgtt	9180
tegegtacg	t cgccctggac	: cacgaaggaa	cgctgggtgt	ggccgtaggg	ttegttegee	9240
tegtgegee	g cgagcaccto	ccgcaggtgo	tccacttcgc	cgtccggcad	ggcgaaccgc	9300
ccagggacc	g egetggtget	gacctcgtc	geetegtega	tgtcggggaa	gccggtgaac	9360
gtgtcgaag	c cgatgacgco	g gcgcagcgag	g ttgtacggct	catagatgct	gegeagegeg	9420
gtcagcgtg	g cgaggtgcc	g teegtgeaga	a acgccgaact	ccatgatgad	gccggggact	9480
teeggeage	a tgcggtacag	g cgcgtccate	g gagagcaggt	cggcgagct	g gttgegeege	9540
atgtagacg	g acaggttgto	c gatcaggta	c ttcggcggga	a tegggetgte	e gacgaggagc	9600

ttggtcaget getegeggge agegegttee tgeteggaet	cgtgcggcac gatccgggga	9660
teggtgaact ccegcteggt catggaggec ttteetttea	tgggtcggta ccgggcgcgc	9720
eggacgtgcc ggtcgtaccg ggcgtgccgg cgggcacgac	getgtegggt caggacagec	9780 ·
aggegteggg ggeggateeg eegeggeega eeggggggaa	cagetectec aggegggeca	9840
ggacgggctc gggcagcggg gtgcgcaggg cgtgcagtgc	cccgtccacg tgctgttcgg	9900
tgegeggeec gatgaceage egggeegega	cagcacccag gccatgccga	9960
catgggeggg gtcgaggecg tggtcegege acaegtcete	gtacgccgcg atggtggtgc	10020
ggtggtgctc cagggcctcg acggcccggc cctgtgccga	cttgaccgcg gtgttctccc	10080
gcgtcttgcg caggacaccg ccgagcaggc cgccgtgcag	tggcgaccag accaggacgc	10140
cgacaccgta ggcggacgcg gcggggatga cttccagctc	ggegtgtegg gtcaegaggt	10200
tgtagacgca ctgctcggag gcgaggccca gggcgttgcg	g cegeegggee geeteetggg ·	10260
cggaagcgat gtcccagccc gcgaagttgg aggagccgac	gtagegeace ttgeeetgeg	10320
tgatgagcag gtccatcgcc tgccacacct cgtcccagcc	ggegeggegg tegatgtggt	10380
gcagctggta caggtcgatc cagtcggtgc gcagtcggcg	g cagegaggeg tegeaggegg	10440
ccacgatatt gcgtacggac agtccgtgat cgttggggcc	gctgcccatc ggatcgccga	10500
ccttggtggc cagcaccacc tgctcacgcc gggcggggc	g gteegeeage cacetgeega	10560
tgacctcttc ggtgtacccc ttgtggacgc gccagccgta	a ggtgttggcg gtgtcgaaca	10620
gggtgatgcc ctgagccagg gcgtgatcca tcagtcggcg	g egetteggge teetecacee	10680
gtccgccgat gttgaccgtt ccgagcgcca gtcggctgat	t cctcagccgg gtcctgccca	10740
gttcggtgtg gaggggagca ctgctgttgc tgtcggactg	g gacgggtgeg ggcteggeeg	10800
togtaggeat categateag tegacaetee etegtgegte	g ageggeggge getegageag	10860
gaccctgacc tgaggcccag gaggctaccg gcgatcatg	c gatacaggca gccgctcgat	10920
ggtgggacac gggctgccgt cgccgggcat aggggctga	t gggggttgtc cggtgcgggt	10980
ccggctgaca gcttcgtgga caccaagttg atccagttg	a tecaetecga aaggeagagg	11040
c		11041

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/07407

	FICATION OF SUBJECT MATTER C1 ⁷ C12N15/09, 1/21, C12P17/18 (C12P17/18, C12R1:465)	//(Cl2N1/21, Cl2R1:465	6)		
According to	According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELD	SEARCHED				
Minimum de	ocumentation searched (classification system followed C1 C12N15/00-15/90, 1/21, C12	by classification symbols) P17/00-17/18			
	•				
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	i in the fields searched		
	•				
Electronic d MEDL	ata base consulted during the international search (nam INE (STN), BIOSIS/WPI (DIALOG),	e of data base and, where practicable, se CA/REGISTRY (STN), JSTP	arch terms used) lus (JOIS)		
			<u> </u>		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
X A	WO 93/18779 A1 (MERCK & CO., 30 September, 1993 (30.09.93) & US 5312753 A & EP		1,3 2,4-15		
<u>X</u> <u>Y</u>	NAKAGAWA, K. et al., MICROBIAL CONVERSION OF MILBEMYCINS: HYDROXYLATION OF MILBEMYCIN A4 AND RELATED COMPOUNDS BY Cunninghamella echinulata ATCC 9244. J.Antibiot., 1991, Vol.44, No.2, pages 232 to 240				
Y	CARTER G.T. et al., LL-F28249 A NEW FAMILY OF ANTIPARASITIC LACTONES. ISOLATION, CHARACTE STRUCTURES OF LL-F28249 α , β , J.Antibiot., 1988, vol.41, No.	MACROCYCLIC GRIZATION AND γ, λ.	1-15		
× Furthe	documents are listed in the continuation of Box C.	See patent family annex.			
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed document of particular relevance; the claimed invention cannot be considered novel or cannot be					
04 J	Date of the actual completion of the international search O4 July, 2003 (04.07.03) Date of mailing of the international search report 22 July, 2003 (22.07.03)				
	lame and mailing address of the ISA/ Japanese Patent Office Authorized officer				
Foreign 11 31	_	Telephone No			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/07407

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	Haruo IKEDA et al., "Combinatorial Biosynthesis -Polyketide Kgobutsu o Rei to shite-", Protein, Nucleic acid and Enzyme, Vol.43, No.9, (1998), pages 1265 to 1277	1-15
Y	Haruo IKEDA et al., "Metabolic Engineering no Tenkai-1 Biseibutsu 2ji Taisha Sanbutsu Seigosei no Kinoteki Kakuhen ni yoru Yuyo Bushitsu no Sangyo", Kagaku to Seibutsu, Vol.34, No.11, (1996), pages 761 to 771	1–15
Y	Haruo IKEDA et al., "Series Taisha Kogaku/Seigosei Kogaku (4) Seigosei (2) Hosenkin Polyketude Segosei Idenshi no Kaiseki to sono Oyo", Bioscience & industry, Vol.59, No.8, (2001), pages 530 to 533	1-15
Y	JP 2003-33188 A (Kyowa Hakko Kogyo Co., Ltd.), 04 February, 2003 (04.02.03), (Family: none)	1-15
Y	MACNEIL D.J. et al., A Comparison of the Genes Encoding the Polyketide Synthases for Avermectin, Erythromycin, and Nemadectin. Ind.Microorg.(Edited by BALTZ R.H. et al.), 1993, pages 245 to 256	1-15
А	SHIH T.L. et al., SYNTHESIS OF AN AVERMECTIN- NEMADECTIN HYBRID. Tetrahedron Lett., 1991, Vo.32, No.30, pages 3663 to 3666	1–15
	į.	
	·	

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ C12N 15/09, 1/21, C12P 17/18 // (C12N 1/21, C12R 1:465) (C12P 17/18, C12R 1:465)

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C12N 15/00-15/90, 1/21, C12P 17/00-17/18

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

MEDLINE (STN), BIOSIS/WPI (DIALOG), CA/REGISTRY (STN), JSTPlus (JOIS)

C. 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
X X X Y Y	WO 93/18779 A1 (MERCK & CO., INC.) 1993.09.30 & US 5312753 A & EP 637244 A1 NAKAGAWA K. et al. MICROBIAL CONVERSION OF MILBEMYCINS: HYDROXYLATION OF MILBEMYCIN A4 AND RELATED COMPOUNDS BY Cunninghamella echinulata ATCC 9244. J. Antibiot. 1991, Vol. 44, No. 2, p. 232-240	1,3 2,4-15 1,3 1-15		

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

04.07.03

国際調査報告の発送日 22.07.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

. 東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 三原 健治 ·德·

4N 2937

電話番号 03-3581-1101 内線 3488

C (続き).	関連すると認められる文献	
引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
カテゴリー* Y	CARTER G. T. et al. LL-F28249 ANTIBIOTIC COMPLEX: A NEW FAMILY OF ANTIPARASITIC MACROCYCLIC LACTONES. ISOLATION, CHARACTERIZATION AND STRUCTURES OF LL-F28249 α , β , γ , λ . J. Antibiot. 1988, Vol. 41, No. 4, p. 519-529	1-15
Y	池田 治生 他, コンビナトリアル・バイオシンセシス ーポリケチド化合物を例としてー 蛋白質 核酸 酵素, Vol. 43, No. 9(1998)p. 1265-1277	1-15
Y	池田 治生 他, メタボリックエンジニアリングの展開-1 微生物 2次代謝産物生合成の機能的改変による有用物質の生産 化学と生物, Vol. 34, No. 11 (1996) p. 761-771	1-15
Y	池田 治生 他, シリーズ 代謝工学/生合成工学④ 生合成② 放線菌ポリケチド生合成遺伝子の解析とその応用 バイオサイエンスとインダストリー, Vol. 59, No. 8 (2001) p. 530-533	1-15
Y	JP 2003-33188 A (協和醗酵工業株式会社) 2003.02.04 (ファミリーなし)	1-15
Y	MACNEIL D. J. et al. A. Comparison of the Genes Encoding the Polyketide Synthases for Avermectin, Erythromycin, and Nemadectin. Ind. Microorg. (Edited by BALTZ R. H. et al.) 1993, p. 245-256	1-15
A	SHIH T.L. et al. SYNTHESIS OF AN AVERMECTIN-NEMADECTIN HYBRID. Tetrahedron Lett. 1991, Vol. 32, No. 30, p. 3663-3666	1-15
		-