

AD A 0 6 2 5 1 8 Special Report 78-21

November 1978

CLIMATIC SURVEY AT CRREL IN ASSOCIATION WITH THE LAND TREATMENT PROJECT

Michael A. Bilello and Roy E. Bates

FILE COPY

DEPARTMENT OF THE ARMY
COLD REGIONS RESEARCH AND ENGINEERING LABORATORY
CORPS OF ENGINEERS
HANOVER, NEW HAMPSHIRE 03755

Approved for public release, distribution unlimited.

78 12 22 057

THE STREET STREET, THE STREET,					
SECHDITY CI	ACCIDICA	TION OF	THIS PAGE	Whan	Data Entered)

1	REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
9	Special Report 78-21	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
0	4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
6	WITH THE LAND TREATMENT PROJECT,	ON	6. PERFORMING ORG. REPORT NUMBER
,	7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(*)
(19)	Michael A. Bilello and Roy E. Bates		
	9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Cold Regions Research and Engineerin Hanover, New Hampshire 03755		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS CWIS 31282
	11. CONTROLLING OFFICE NAME AND ADDRESS		November 1978
	14. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
(14/CRREL-SR-78-2	4	Unclassified ISA. DECLASSIFICATION/DOWNGRADING
	18. DISTRIBUTION STATEMENT (of this Report)		SCHEDULE
	Approved for public release; distribution unlimite	d.	1272P.
	17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	m Report)
	18. SUPPLEMENTARY NOTES		
	19. KEY WORDS (Continue on reverse side it necessary on Cold weather operations Land waste disposal Meteorological data Wastewater treatment	id identify by block number)	
	During 1972, six test cells were constructed at CR various soil types and vegetation. In conjunction tablished in order to obtain basic information on equipment and its installation, and provides a dail minimum air temperatures, relative humidity, dev snow on the ground, solar radiation and pan evap starting 1 October 1972 to 31 March 1974 were to	RREL for the purpose of with this program, a met the climate proximate to by tabulation of the follow point, wind speed and coration. The meteorolog	studying application of wastewater on teorological observing station was es- title test cells. This report describes the wing observed parameters: maximum and direction, precipitation amounts, depth of gical data collected during the period

DO 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified B SECURITY CLASSIFICATION OF THIS PAGE (Miran Data Entered)

20. Abstract (cont'd)

graphs and line diagrams. The meteorological parameters recorded at CRREL were then examined to determine how weather can constrain or help year-round operation of wastewater application to the land. The positive and negative effects of air temperature, precipitation, wind speed, evaporation and snow cover with respect to land treatment of wastewater were evaluated. Although no specific recommendations or conclusions are given, the influences of these climatic elements as observed at the CRREL wastewater site are presented for consideration.

PREFACE

This report was prepared by Michael A. Bilello and Roy E. Bates, Meteorologists, of the Snow and Ice Branch, Research Division, U.S. Army Cold Regions Research and Engineering Laboratory. Funding for this research was provided by Corps of Engineers Civil Works Project CWIS 31282, *Techniques for Land Treatment of Wastewater*.

Antonio J. Palazzo, John R. Bouzoun, C. James Martel, and Dr. Harlan L. McKim of CRREL technically reviewed the manuscript of this report. The CRREL Meteorological Detachment from the Maynard, Massachusetts, Meteorological Team. U.S. Army Atmospheric Sciences Laboratory, acquired the data and published the monthly meteorological reports. The encouragement and suggestions provided by Sherwood Reed and Dr. George Ashton during the preparation of this report are appreciated.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

CONTENTS

	Page
Abstract	i
Preface	111
Introduction	1
Meteorological data acquisition	1
Meteorological instrumentation	1
Air temperature	3
Precipitation	3
Wind speed and direction	6
Evaporation	7
Solar radiation	9
Surface snow, ice and temperature conditions	9
Climatic considerations in land treatment of wastewater	10
Air temperature	11
Precipitation	12
Wind speed	13
Water budget approach	13
Pan evaporation	14.
Potential evapotranspiration and pan evaporation comparison	15
Selected bibliography	16
	16
Appendix A. CRREL, Hanover, N.H., monthly meteorological summary. Appendix B. Chronological summary of precipitation and surface conditions at the CRREL land treatment site during the winter of 1973-	19
1974	37
ILLUSTRATIONS	
Figure	
Location of meteorological instruments at CRRFL	2
2. View of meteorological installation and wastewater test cells	2
3. Comparison of observed temperature and precipitation values at CRREL with long term records at Hanover	
Daily accumulated precipitation amounts at CRREL in 1973	4
Accumulated snowfall record and observed depth of snow on the ground at CRREL	6
6. Average monthly wind speeds at CRREL	7
7 Prevailing wind directions at CRRFL	7
8. Total monthly evaporation amounts, X-3 experimental insulated evaporation pan at CRREL, 1973	9
9. Solar radiation at CRREL	q
10. Average snow-ground interface temperature, average daily temperature and observed depth of snow on the ground at CRREL	11
11. Monthly precipitation and evaporation amounts at CRREL, May- September 1974	14
 Comparison of accumulated precipitation and evaporation amounts at CRREL, May-September 1974 	15
TABLES	
Table	
1 Daily evaporation and precipitation amounts at CRREL, 1 July-30 November 1973	
II. Snow cover densities at CRREL for the winter of 1973-1974.	10
	6.67

CLIMATIC SURVEY AT CRREL IN ASSOCIATION WITH THE LAND TREATMENT PROJECT

Michael A. Bilello and Roy E. Bates

INTRODUCTION

In CRREL Special Report 171, Wastewater management by disposal on the land (Reed et al. 1972), a technical assessment of land disposal methodologies with respect to several different disciplines was conducted. The report showed that for year-round operation in areas with subfreezing winter temperatures, the following meteorological parameters should be considered: air temperature, precipitation, wind speed and direction, evaporation, relative humidity, radiation, and snowfall amount. These allow interpretation of winter surface conditions, such as the depth and physical properties of the snow cover and the formation of ice on the ground, which may result from the freezing of applied wastewater and from the thawing and freezing of winter precipitation.

During 1972, six test cells (Fig. 1) were constructed at CRREL for the purpose of studying application of wastewater on various soil types and vegetation. A program was initiated to obtain basic information on the climate proximate to the test cells. This report describes the equipment used and its installation, and provides summarized results of the collected climatic data. Meteorological considerations for the operation of wastewater treatment systems are presented in reference to the operation of the CRREL test program.

METEOROLOGICAL DATA ACQUISITION

Meteorological instrumentation

Temporary installation of meteorological instruments to measure air temperature, precipitation, wind, and relative humidity was accomplished during September and October 1972 in an open field west of the main CRREL building. After construction of the wastewater test cells was completed, the equipment was moved adjacent to the test cells, and additional observations, such as those for evaporation and solar radiation, were started in July 1973. The locations of the meteorological equipment at both observation sites are presented in Figure 1. A photograph of the main meteorological installation site and a small building (completed in October 1973) used to shelter the recorders is shown in Figure 2.

Following is a listing of the instruments installed.

- 1. An instrument shelter containing maximum and minimum thermometers and a hygrothermograph to continuously record the air temperature (°F) and relative humidity (%).
- 2. A standard 8-in, recording rain gage in which an antifreeze liquid is added in winter to melt and record snowfall in equivalent amounts of water (in.). A snow stake is located near this

- 1. Instrument shelter
- 2&3 Recording rain gages
 - 4. Evaporation
 - 5. Wind set
 - 6. Instrument trailer
 - 7. Six test cells
 - 8. Recorder bldg temperature, pressure, wind & radiation
 - 9. Instrument shelter
- 10. Wind set
- 11&12. Recording rain gages
 - 13. Radiation net, total, vertical and evaporation (small pan)
 - 14. Evaporation (X-3 pan)
 - 15. Thermocouples at 0.3-m elevation and at ground surface

Figure 1. Location of meteorological instruments at CRREL (1-6 were in operation from October 1972 through July 1973, and 8-15 from July 1973 onward).

Figure 2. View of meteorological installation and wastewater test cells.

gage to measure the depth of snow on the ground (in.)

- 3. Wind speed and direction equipment from which average hourly speeds, peak gusts (mph) and direction to 16 points of the compass are obtained and continuously recorded
- 4. A vertical Eppley pyrheliometer to measure incoming solar radiation falling on a horizontal plane. Hourly average values of solar radiation in langleys (g-cal cm⁻² h⁻¹) are obtained from this continuously recording instrument.
- 5. A National Weather Service experimental insulated evaporation pan (called a modified X-3 pan) installed next to the test cells, and a continuously recording Lambrecht evaporation instrument located in one of the test cells. This equipment provides daily and hourly amounts of water (mm) evaporating from an exposed water surface.
- 6. A two-point recording thermograph to obtain continuous temperature (°C) measurements at the ground/air (or ground/snow) interface and 0.3 m above the surface at the test cells.

Monthly meteorological summary data booklets have been assembled and are available at CRREL. These booklets contain hourly summaries of the weather data collected on this project. Eighteen months of these data (from October 1972 through March 1974) were compiled and tabulated on a daily basis (App. A). This information was summarized, and the results obtained for each of the observed meteorological parameters are described in the following sections.

Air temperature

Mean monthly air temperatures computed from the daily values between October 1972 and March 1974 (App. A) are plotted and compared with the long-term* average monthly air temperature in Figure 3a. This figure shows that the winters of 1972-73 and 1973-74 were both warmer than normal, and that the temperatures from April to November 1973 were near normal. A similar analysis was made using the mean daily maximum and minimum temperatures for the same period (Fig. 3b); this confirms the results shown in Figure 3a and also shows that the average minimum air temperatures observed at

CRRIT during both winters were warmer than normal. However, inspection of later records indicates that average air temperatures in Hanover during more recent years have increased. For example, the average annual air temperature for the period of record used in Figures 3a and 3b (1906-1952) was 43.4°F. whereas during the decennial of 1951-1960 the average annual temperature was 45.3°F. In comparison, the average annual temperature for the year 1973 at CRREL was 44.7°F. Consequently, if recent temperature trends are considered, the year 1973 was actually slightly colder than observed during the 1950's. A comparison of the severity of the 1972-73 and the 1973-74 winters with those between 1951 and 1960 was also made. Total freezing degree-dayst for the winters of 1972-73 and 1973-74 at CRREL were 1067 and 1200, respectively, whereas the number of average cumulative freezing degree-days for the winter season between 1951 and 1960 at Hanover was 900. Thus, when frost conditions are considered, the two winters under study were colder than the average winters between 1951 and 1960. This evaluation, however, does not show whether the two winter seasons were longer or shorter than normal

Precipitation

Information on the rate and amount of precipitation in land treatment management is obviously a necessity. Rainfall and waterequivalent amounts of frozen precipitation (such as snowfall and freezing rain), recorded hourly on a weighing rain gage at the CRREL site from October 1972 through March 1974, are presented in Appendix A. The monthly totals for the period of record at CRREL were plotted (Fig. 3c) and compared with the normal monthly precipitation amounts recorded at Hanover during the 30-year period 1931-1960 as given by the U.S. Dept. of Commerce (1964). The results show alternating periods of above and below normal amounts of precipitation occurring at CRREL over the 18 months of study. The cycles consisted of two- or three-month intervals during the first nine months, followed by a five-month period of slightly below normal precipitation from July to November 1973 and a much above

^{*}Long-term in this case is a 46-year period of record for Hanover, New Hampshire, from about 1906 to 1952 (U.S. Dept. of Commerce 1958).

The degree-day total for any one day equals the difference between the average daily air temperature and 32°F. The value is negative when the average daily air temperature is below 32°F (freezing degree-days), and positive when above 32°F (thawing degree days).

Figure 3. Comparison of observed temperature and precipitation values at CRREL with long term records at Hanover.

Figure 4. Daily accumulated precipitation amounts at CRREL in 1973 (snowfall converted to water equivalent).

normal period occurring in December 1973. Most of the precipitation during December 1973, incidentally, was in the form of rain. The total annual precipitation in 1973 at CRREL amounted to 39.94 in., which is only slightly above the normal value of 37.30 in. For the warmer period of the year (1 April to 30 September), the observed total precipitation of 22.21 in. at CRREL in 1973 was slightly above normal. More than 1/3 of this amount fell during April, May, and June. Daily amounts of precipitation are also useful in any water balance, water quality or land treatment programs; consequently, these values are also listed in the detailed tabulations presented in Appendix A. A plot of these accumulated daily values of precipitation starting on 1 April and ending on 18 December 1973 is shown in Figure 4. The total amount of accumulated precipitation during this interval was 30.04 in.

The average total annual snowfall amount in Hanover for the 1951-1960 decennial is 81.6 in. (U.S. Dept. of Commerce 1964). Normals for

longer records, however, indicate that the total annual snowfall amount for Hanover is closer to 73 in. (U.S. Dept. of Commerce 1958). The accumulated amounts of snowfall and depth of snow on the ground during the winters of 1972-73 and 1973-74 are plotted in Figure 5 Total snowfall during 1972-73 was slightly above normal but was much below normal during the following winter. Comparisons between the depth of snow on the ground and concurrent weather conditions showed that the intervals of accumulation, compaction and ablation closely followed the periods of new snowfall, no snowfall, and warm temperatures, respectively. A maximum snowcover depth of 24 in. was observed during the winter of 1972-73, whereas a maximum depth of only 11 in , as well as periods of no snow on the ground, were noted during the winter of 1973-74.

Although snowfall and snow depths were light during 1973-74, the continued spraying of wastewater during November and December

Figure 5. Accumulated snowfall record (Dartmouth Observatory, Hanover, N.H.) and observed depth of snow on the ground at CRRF1

1973 resulted in a substantial buildup of ice on the test cells (see App. B).

Wind speed and direction

Average daily wind speeds and prevailing directions recorded at CRREL during the 18 months of study are given in Appendix A. Monthly averages of these values were computed and the results are shown in Figure 6. The lowest monthly average wind speed (2 mph) was recorded in May 1973 and the highest (7 mph) in March 1974. The mean wind speed at CRREL for the entire observational period was 4.2 mph.

Wind gusts exceeding 20 mph occurred during almost every month; a peak value of 50 mph was observed on two separate days in January 1974. The direction during these events of peak wind was from the south or southwest.

Examination of the predominant wind direction observed on each day (App. A), provided an estimate of the prevailing direction for each month. In some instances two directions were dominant on one day, in which case they were each given half weight in the calculations for developing a wind rose (Fig. 7). The diagram shows that the direction of the wind during the period of study at CRREL was somewhat variable. Synoptic weather patterns strongly aftect wind directions; for instance, prefrontal conditions often produce winds from the northeast or southeast, and after frontal passage, the winds shift to the west or southwest. Under other synoptic patterns, the analysis shows a preference for winds to blow from the southsouthwest or northwesterly. Although some relationship between preferred wind direction and

Figure 6. Average monthly wind speeds at CREEL

Figure 7. Prevailing wind directions at CRREL (October 1972 through March 1974).

seasons was noted, e.g. northeast winds in winter and southeast in summer, the correlations and length of record were insufficient to justify any positive statements.

Evaporation

Two types of instruments, installed at CRREL on 1 July 1973, measure evaporation adjacent to and within the test cells. One instrument, a portable Lambrecht recording evaporation gage provides a continuous trace so that hourly rates

of evaporation can be obtained over a 7-day period. It is located inside the test cells in order to record evaporation losses within the cover of grass. The second instrument, called a modified X-3 evaporation pan (borrowed from the Hydrologic Division, U.S. National Weather Service), is located adjacent to the test cells. This pan is equipped with a stilling well and point gage which are used to accurately measure the change in water level due to evaporation over a 24-hour interval. During periods of rain, the amount of precipitation recorded in the nearby rain gage over the 24 hours of observation is utilized in the evaporation computations. Since the volume of the X-3 pan is much larger than that of the Lambrecht pan, water overflow problems seldom occur with the X-3 pan Reliable evaporation data during periods of light or no precipitation were recorded by the weighing apparatus in the Lambrecht pan.

The daily amounts of evaporation observed from both pans, as well as the daily precipitation amounts observed from 1 July to 30 November 1973 at CRREL, are given in Table 1. The daily evaporation values obtained from the X-3 pan were totaled for each month from July through November 1973 and the results are shown in Figure 8. A maximum monthly evaporation of 150 mm (5.9 in.) occurred in July, and a minimum of 30 mm (1.2 in.) was recorded in November

Table I. Daily evaporation and precipitation amounts (mm) at CRREL, 1 July - 30 November 1973.

Date	pan	pan	Ргестр	Date	a pan	Lambrech pan	Precip	Date	λ-3 pan	Lambookht	49
july				C1				Court.	pan.	pan	Pies
1		4.4		Septen	nber			Novemb			
2		5.2		2	14.0*	ni -		1	()	0	15
3	5.2"	0.6		3	10	m 15		2	1.0	()	1
4			18.0	4	5.0	3.2			3.0		4
5			2.3	5	4.0	4.2		4	5.5	3.7*	
6	50*	4.51		6	4.0	3 ()	16.3	5	2.0	2.3	
7	8.5	10.2		7	5.0	m	16.3	6	2.0	2.5	
8	6.0	4.5		8	6.5	m		7	1.0	0	
9	6.5	6.2	3.0	9	2.5	1.3		8	2.0	2.4	()
10	4.5	4.0		10	3.0	21		9	0.5	0.8	
11	4.5	7.0		11	4.0	3.2		10		2.4	
12	120	6.9		12	3.0	3.0		71		1.4	
13	7.0	5.7	0.5	13	3.0	m		12		0.6	
14	2.5	16	9.7	14	4.0	3.6	8.1	13		8 ()	
15	5.8	5.8	1.0	1.5	0	0	0.1	14		0.3	
16x	2.5	1.5		16	0.5	() 3	0.3	15	75*	1.3	9
17	5.0	5.0		17	10	2.3	0.1	16		0	19
18	4.0	3.60		18	4.4	1.2	17.4	17		0.7	
19	5.0	5.4		19	0	0	17-3	18		1.2	
20	5.0	2.8		20	2.0	2.2		10		0.5	
21	4.5	5 6		21	3.0	1.4		20		1.8	
22	4 ()	7.6		22		4.0	111	21		0.8	0
23	7.0	5.0		, 23	17*	0.8	112	22		()	1
24	7.0	7.0		24	1.0	1.0		23	4.0*	()	
25	7.0	9.2		25	1.5	0.6		24	()	0	4
26	5.0	3.6		26	2.0	2.0		25	()	()	21
27	3.0	4.2	9.7	.27	2.0	1.8		26	0	1.0	
28	4 ()	6.8		28	2.0	2.2		27	()	0.4	10.
29		4.2		29	4.5	1.4		28	()	.0	6.6
30	13.0*	4.8		30	4.5	3.8		29	() B	12	
31	6.0	5.8						30	1.0	12	0.5
Total	149 5	146.7	44.2	Lotal	95.1	Inc f	55.5	Total	30.3		
igust				0				rotat	30.3	27 3	65.7
- 1	7.7	(7)	3 3	October							
2	3.2	m	175		5.0	4.2					
3	2.0	1.2		2	3 ()	2.2	8 4				
4	5.0	2.0		4	0	0	13.7				
5	6.0	7.0		5	1.7	m	6.6				
6	7.0	2.4		6	0.5	()	11.2	There's build			
7	3.0	5.2		7	2.0	m		员品			
8	4.2	4.0		8	3.()	1.7		2 5			
9	4 ()	4.8		9	4 ()	m		10 10			
10	5 ()	6.1	2.5	10	2.0	1.4		0 4			
11	6.5	m	2.7	11	2.0	2.2		THIS PAGE IS BEST			
12	5 ()	4.4			10	1.6		(bx) 1-1			
13	4.5	m		12	1.0	1.6		5 0			
14	4.0	3 4		1.1	2.0	2.2		B B			
15	0	0.6	1.8	14	2.0	1.4	1.7	T. 01			
16	() B	19	1.0	15	25	1.6		1.0			
17	4.0	4.2		16	(()	3.6					
18	4.0	5.7		17	2.0	1.8		5-3 7	>		
19	5.0	3.8		18	1.0	1.6	1.5	0;	and .		
20	6.0	m			15	()		20 000	160		
21	3.8	3.6		20	15	1.4	1.5	0	+0		
22	3.6	1.7	1.5	21	()	0			TATTOTTOATTA		
23	3.0	4.7		22	1.5	2.1		1	6		
24	4.5	5.4		23	1.0	1.5			+3		
5	5.0	5.0		24	10	1.2		1	60		
26	4.5	2.6		25	2.0	1.6		1	P		
27	4.0	m	1.2	26	0.5	():			1		
	3.6	5.0	1.3	27	1.0	1.2			1		
28	5.5	4.2	4.6	28	3.5	2.2					
28 29		4.2		29	25	1.6	1.3				
29		1.0		4.0							
	5.0	3.0	17.1	3()	0.5	0	15.0				
29 30		3.0 m In∈ t	37 3 69 8	30 31 Total							

Figure 8. Total monthly evaporation amounts, X-3 experimental insulated evaporation pan at CRREL, 1973.

Figure 9. Solar radiation at CRREL

Solar radiation

Average daily measurements of incoming solar radiation in langleys were obtained over the wastewater test cells with a vertical Epply pyrheliometer. The lowest and highest daily amounts observed during each month and the average monthly values obtained during the period from November 1972 through March 1974 are shown in Figure 9. Highest average values occurred in June and July when daily amounts of 450 to 500 langleys were recorded. However, during these two months the radiation values ranged from 130 on an overcast-rainy day to 790 langleys on a bright-clear day. Minimum radiation values occurred in December when average daily amounts rarely exceeded 100 langleys, and ranged from 10 to 200 langleys each day. During the time period studied here, the calculated mean solar incoming radiation at CRREL was 290 langleys per day.

Surface snow, ice and temperature conditions

Descriptions of major changes in snow and ice conditions on the surface in and near the test cells during the winter of 1973-74 are given in Appendix B. This chronological tabulation includes the types of precipitation observed, the surface condition of the test cells after the spraying of treated wastewater on the snow and trozen ground, and the alternating accumulation and melting of the snow and ice cover

Snow-cover density observations (g/cm¹) were made inside the test cells and in nearby undisturbed areas after new snowfalls or when significant changes in snow-cover properties occurred. These density measurements are listed in Table II. Three distinct snow or snow-ice layers were identified from these observed densities. Undisturbed layers of new snowfall provided density readings of less than 0.20 g/cm both outside and inside the test cells until wastewater was applied to the snow. After a period of time the fresh snow layers compacted through natural processes (Bader et al. 1954) and the density gradually increased from about 0.20 to 0.28 g/cm3, thus forming a second type of snow-cover layer. The density values in Table II show that this second type of snow cover is generally uniform both outside and inside the test cells as long as no water is applied to the snow. The third snow density category occurred during December and lanuary after wastewater was sprayed over the snow as it accumulated in the test cells. Water on the snow quickly changed its characteristics, and the resulting snow-ice combination compacted and hardened significantly. The snow-ice densities ranged from 0.42 to 0.70 g/cm⁻¹. An unusually warm January thaw in 1974 then melted almost all of this snow-ice layer so that snow cover conditions inside and outside the test cells were similar during the remainder of the winter and following spring.

Table II. Snow cover censities at CRREL for the winter of 1973-1974.

	Undisturbed area	In test cells
Date	(g/cm ²)	(p · m ·)
18 December		0.420
19 December		0.720
20 December		0.460
27 December		0.617
41 December	0.133	0.133, new snow on top of we layer
9 January	0.156	0.600.0.700, old ne from spray
9 January	0.072 new snow	
20 January	0.260	0.260, top layer only
23 January		0.272, top layer only
31 January	Most of old frozen spia	v - nist residual melted.
7 February	0.082	0.082, new snowtall
7 February	0.208	0.215
14 Lebruary	0.232	0.238
20 February	0.180	0.180, new snewfull
28 February		
10	Not enough snow on gr	and or plots tor measurement
20 March		
21 March	0.165	0.165, new snowfall
22 March	0.204	0.204
.7 March	Most of snow melted in	area and on plots
st April	0.188	O 188 new snewtall
to April	0.20	0.220
LI April	0.252	0.252
16 April		measurements, 1973 1974

Average daily snow/ground interface temperatures, average daily air temperatures, and daily snow-cover depths measured near the temperature probes are presented in Figure 10. The snow/ground interface temperatures between 18 December 1973 and 31 January 1974 only ranged from 27° to 31°F when the ground was covered with snow 1 to 8.5 in. deep. The average daily air temperature during the same period ranged from -8 to +43°F, but these high and low values had little influence on the ground temperatures due partly to the insulating layer of snow However, the cold air temperatures and subsequent shallow snow cover during February 1974 (Fig. 10) resulted in colder snow/ground interface temperatures, which probably caused a greater penetration of frost in the ground. The variable ground temperatures observed at this time also may have been caused by the exposure of the probe to direct sunlight as well as lack of a snow cover for insulation. This solar and noninsulated influence on the surface temperature is confirmed by the close association between the daily

changes in the air and ground temperatures (see Fig. 10).

Based on the significant warming period which occurred between 1 and 8 March 1974 (Fig. 10), it is possible that wastewater spraying could have commenced sooner than the reported date of 17 April 1974. However, plant uptake of wastewater constituents would not take place this early in the spring at Hanover, New Hampshire.

CLIMATIC CONSIDERATIONS IN LAND TREATMENT OF WASTEWATER

In any program of land treatment of waste-water, the climate at each site is an important factor to consider. Whiting 1976). Local weather directly influences such factors as the length of the growing season, the soil surface conditions, the gain and loss of water by precipitation and evaporation, etc. In frost-susceptible regions,

Figure 10. Average snow-ground interface temperature, average daily temperature and observed depth of snow on the ground at CRREL.

specific knowledge of the snow cover and frozen ground is also important. In the following discussion, the meteorological elements recorded at CRREL will be examined to point out possible ways that weather conditions can constrain or help year-round operation of wastewater application to the land. Although no specific recommendations or conclusions are given, climatic parameters and their effects within the context of the requirements for land treatment of wastewater as observed at the CRREL site from October 1972 through March 1974 are presented for possible consideration.

Air temperature

An average air temperature curve similar to

that shown for Hanover in Figure 3a provides a good first estimate of the length of the non-frost season, i.e. the probable beginning date of freez ing temperatures in late autumn and the start of the thaw season in spring. For example, Figure 3a. shows that average daily temperatures of 0°C or less at Hanover can be expected to start in about mid-November and end in mid-March, However, during the last half of November 1973 the air temperatures at CRREL were above normal, in dicating that the soil during some years could remain unfrozen beyond the usual time of expected frost. Extension of the application period beyond a predetermined or expected average date should be further considered because the temperature of the wastewater is usually warmer than the ambient air temperature. Continuous flooding minimizes soil freezing within the soil profile in the early winter, and thus may allow for continued infiltration of the wastewater. However, a study by Jenkins et al. (1978) indicates that satisfactory biochemical oxygen demand (BOD) removal did not occur at soil temperatures below 4°C. Consequently, these critical temperatures should be taken into account during this evaluation.

If temporary release of wastewater (e.g. due to limited storage) by spraying in winter is required or becomes necessary, additional application to the land can be accomplished in several ways. In temperate regions, for example, significant thawing periods in midwinter may permit the occasional release of water directly to the land when and it any cover of snow has melted. In tact, in some cases, considerable infiltration of wastewater in the soils may be possible beneath a protective snow cover which has prevented the surface of the ground from freezing. However, the spraying of wastewater over a snow cover requires special dispensing nozzles, otherwise it may not be effective. When this method was tried at CRREL in December 1973, freezing air temperatures produced a large dome of ice around the experimental, small-radius spray nozzles being used on the test cells (App. B). This mixture of snow and frozen wastewater remained solid until the following thaw period in spring. A description of a type of nozzle used for winter spraying at West Dover, Vermont, is given by Bouzoun (1977). A successful method of wintertime sprinkler distribution of wastewater. has also been conducted in the Soviet Union (Shcherbakov 1978). This was achieved by spraying the wastewater away from the sprinkler so that ice buildup did not occur under the sprinkler head.

If winter application of wastewater is planned, intomation on frost penetration is required to determine the depth at which an underground pipeline system should be laid. Computation of the design freezing index (i.e. coldest winter in either a 10- or 30-year record) is one method which could help provide such information. Instructions on the procedures for calculating this value are given in a U.S. Army technical manual (U.S. Army 1965). However, the freezing index alone will not turnish the essential information on the depth of frost in the ground due to 1) the insulating properties of the snow cover, 2) the effects of different types of soil, and 3) the in

tluence of vegetation type and density. The effects of various homogeneous soil types on the rate and depth of trost in the ground is described in another U.S. Army construction manual (U.S. Army 1966). For example, Figure 14 of this manual shows that under a snow-free cover of turt, trost penetration in silty sand after 1500 freezing degree days have accumulated will reach a depth of about 3½ ft. Under similar surface and temperature conditions in well drained sandy gravel, the frost will penetrate to about 5 ft in depth.

Precipitation

The design of an efficient land treatment system must include an evaluation of the average amount and rate of precipitation so that a water balance can be calculated. Depending on various soil, salinity, and plant factors, and areas generally permit greater application rates per unit area of land than are possible in humid regions. This is due mainly to increased rates of evapotranspiration and evaporation Information, therefore, on the regional and seasonal distribution of precipitation is important in the design and operation of a land treatment project. Detailed weather data as given in U.S. Department of Commerce (1956, 1959, and 1964) have proven useful in the planning stage to determine which months of the year one can expect critical conditions such as excessive evaporation, low rainfall, high air temperatures, high wind speed, etc.

The rate of raintall (i.e. its intensity) becomes important when considering storage requirements for excessive runoff. In these instances, reported total daily or monthly precipitation amounts may be misleading because a large percentage of this rainwater may have tailen during one or more high intensity storms. Since thunderstorms produce much of the rain in the summer, for example, the average monthly precipitation amounts as given in the records should be used with caution.

A review of how air temperatures and precipitation affected the winter operation at the CRREL wastewater site during 1973-74 tollows. Wastewater application continued during intermittent periods of freezing and thawing temperatures and light snow showers between 21 September and 18 December 1973. Brief interivals of above freezing air temperatures between 27 December 1973, and 31 March 1974 (App. A).

may have permitted occasional midwinter application of wastewater at CRREL, if needed. However, such attempts were not made during this period because the soil remained frozen for most of the winter. Snowfall amounts in the area throughout the winter of 1973-74 were light, and the ground was free of snow by 24 March 1974. However, application of wastewater on the test cells at CRREL did not begin again until 17 April. An earlier start might have been possible if the ground had thawed before 12 April and if the soil had been less saturated (App. B).

Wind speed

The contribution of surface winds to the amount of wastewater that can be applied to the test cells throughout the period of study was investigated. The study showed that the most significant influence occurs during periods of high wind speed in summer because evaporation rates from an open water surface were observed to increase very rapidly at these times. This is particularly true when the moving air is quite dry, as for example on 12 July 1973 at CRREL when a maximum hourly wind speed of 24 mph was recorded and the daytime humidity decreased to a minimum of 36% (App. A) The evaporation from the X-3 pan on this date was 12 mm (0.47 in.). When a land treatment system is designed to apply as much wastewater as possible during the summer months, continuous monitoring of the wind speed and relative humidity is essential because of the resultant in creased water losses through evaporation. An association between evaporation and evapotranspiration rates will be discussed later in this section. This close relationship between high evaporation rates and strong winds, however, no longer applies during periods of precipitation or frigid weather

A study in which the above principle of maximum wastewater application was used, based on crop type and growth stage, was conducted by Hiler et al. (1974). The concept that they used for optimizing water need employs a technique called the stress day index (SDI). The procedure provides a quantitative method for determining the water stress imposed on a crop during its growing season. This crop susceptibility factor (CS) is determined experimentally as the fractional reduction in yield resulting from a fixed water deficit during a given growth stage. The authors also note that other rational irrigation timing approaches have been reviewed by the

following investigators (Fleming 1966, Linacre and Till 1969, Jensen et al. 1970, and Hiler et al. 1972). However, it should be noted that the above procedures are used as "system operation" options. In instances where there is a builtin capability to monitor the daily wind, temperature, humidity, and radiation conditions, it may be possible to increase or decrease the application rate accordingly. Generally, elaborate systems such as this are not economical and are instead built and operated on average or extreme monthly, seasonal or annual climatological data. For example, present design procedures consider the worst climatic conditions observed during each month for a 10-year period of record (U.S. Environmental Protection Agency 1977).

Water budget approach

In the introduction of a study conducted by Rouse and Wilson (1972), the authors state, "The water-budget approach* to determining evapotranspiration has the advantages that the necessary measurements can be made quickly, little training or skill is needed on the part of the investigator, and a program can be operated cheaply over long periods of time." In this study, the authors found that the estimation of evapotranspiration from a soil moisture budget approach under an exposed 120- × 210-m field of corn was acceptable (within $\pm 10\%$) when 1) the time span between the measurements in soil moisture change was at least four days, 2) evapotranspiration rates were high (> 3 mm/day), 3) there was no precipitation, and 4) six or more sites were used to give a spatial average. The study showed that, with simplified field measurements, a reliable account of the water budget will provide results comparable to those obtained from extensive micrometeorological measurements and energy exchange calculations

The CRREL site is a closed system (except for losses due to evapotranspiration) and therefore ofters a means of accurately conducting a water budget study. Since the test cells are enclosed on all sides and at the bottom by concrete, there is no water loss by lateral movement or by deep

This approach involved the following relationship $t=r-\Delta s_m-v_s-v_s$, where t is evaporation, r is precipitation, Δs_m the volumetric change in soil moisture with time, v_s the net drainage across the terminal depth of measurement, v_s the net water loss from the measurement zone due to lateral subsurface movement, and s_s the net water loss due to surface runoff (Rouse and Wilson 1972).

Figure 11. Monthly precipitation and evaporation amounts at CRREL, May-September 1974.

infiltration in order to conduct such an evaluation of the water budget at the CRREL wastewater installation, the following components should be monitored: 1) the input of precipitation and wastewater amounts for water gain, 2) the percolated water collected at the bottom of the test cells for water loss, and 3) the amount of water retained in the soil, root systems, and vegetation for water loss due to storage. The remaining water losses would be due to evapotranspiration.

A preliminary study conducted at CRREL* has shown that maximum evapotranspiration occurred when small, frequent, and sufficient doses of water were applied so that no decrease in plant transpiration would take place. One large application (one per week for example) equal to all the small doses did not produce equivalent evapotranspiration losses. The soil in this case does not retain all the water because some is lost to percolation. A deficiency in available

water then may occur prior to the next application so that evapotranspiration is not sustained at normal (or maximum) rates.

Pan evaporation

An investigation of monthly evaporation amounts obtained from the X-3 experimental pan and the concurrent monthly precipitation amounts for the period 1 May through 30 September 1974 at CRREL was conducted. The results are shown in Figure 11. Note that these dates extend beyond the period of record discussed earlier in this study. Since pan evaporation measurements began in July 1973, data for the entire summer were not available until the following year. The record for 1974. therefore, was used in this analysis. The monthly precipitation amounts observed during the summer of 1974 at CRREL (Fig. 11) show that, except for September when an uncommonly high rainfall occurred, the totals ranged from 2.3 to 3.4 in. These monthly values of observed precipitation coincide with long-term average records which show that the Hanover-Lebanon, New Hampshire, region experiences similar amounts of

^{*}Personal communication, A. Unga, Metcalt and Eddy. Inc. Palo Alto, California (formerly a sanitary engineer at CRREE), 1978.

Figure 12. Comparison of accumulated precipitation and evaporation amounts at CRREL, May-September 1974.

precipitation each month throughout the year (U.S. Dept. of Commerce 1964)

Maximum evaporation at CRREL normally oc curs during July when slightly more than 6.0 in. of water returns to the atmosphere (Fig. 11). Minimum values occur in winter, but since exposed water surfaces at the CRREL site freeze during most of the period between December and March, snow surface evaporation measurements were not attempted. The accumulated precipitation (16.58 in.) at the wastewater site between 1 May and 30 September 1974 and the water lost to the atmosphere as measured by pan evaporation (24.15 in.) during the same period are shown in Figure 12. This gain and loss of water through natural means show a deficit of over 7.5 in. occurring as a result of evaporation during the five months under study

Daily monitoring of evaporation rates is probably most useful for application in crop management. For example, Hiler et al. (1974) describe a situation in which the crops are exposed to an extremely high evaporative demand, even

though the soil is well irrigated. If evaporative demand exceeds maximum supply rate from the soil, the plant would indicate a water deficit. When the soil is already wet, an appropriate irrigation approach to conserve water, would be, it feasible, to apply a light spray of water to the cropland. Consequently, during meteorological events of strong, dry, and warm winds, the soil could be fully saturated and the crop can still be continuously wetted to reduce the evaporative demand.

Potential evapotranspiration and pan evaporation comparison

Another method in which potential evapotranspiration (PET) rates can be estimated is to consider the association between PET and pan evaporation. In a watershed evapotranspiration study conducted by Saxton et al. (1974), for example, the relationship between PET and both pan evaporation and solar radiation was evaluated. They found that calculated daily values of potential evapotranspiration (PET)

compared more closely with observed amounts of pan evaporation than they did with net radia tion. The investigation showed that calculated values of PET depend not only on the net radia tion but also on wind run and the vapor pressure deficit. Consequently, they found less scatter in the comparison with pan evaporation than with net radiation because pan evaporation responds to both radiation and the aerodynamic variables. In their summary, the authors state that, "Good correlation of observed daily pan evaporation with calculated daily PET values substantiates the common practice of estimating PET amounts by adjusting observed pan evaporation." In their study, monthly ratio values of PET/pan evaporation determined for three years of observation ranged from about 65 to 80% for the early spring and late autumn months, and from about 80 to 95% for the months May through September The average seasonal (i.e. April through October) ratio of PET/pan evaporation obtained from the three-year study was 81%. Since pan evaporation data are readily available for many states (U.S. Dept. of Commerce 1955, 1959), utilization of the preceding ratios would be beneficial for estimating evapotranspiration amounts. In fact, the U.S. National Weather Service is now providing daily surface water evaporation reports for the southern Great Plains irrigation farmers (Newton and Wilke 1972). Additional information on the ratio values between pan evaporation and evapotranspiration over various crops is given in a soil conservation handbook (USDA 1964), and in evapotranspiration equations reviewed by Veihmeyer (1964).

If the average May through September PET/pan evaporation ratios of 80 to 95%, as obtained by Saxton et al. (1974), are applied to the 24.15 in. of pan evaporation recorded at CRRLL, the total estimated evapotranspiration for the period studied would range from about 19 to 23 in. The difference between PET and pan evaporation amounts (1-4 in.) can be considered to be relatively small when compared with the average total of 55 in of wastewater which was applied to the test cells over the fivemonth period. Consequently, installation of elaborate and expensive micrometeorological equipment to measure evapotranspiration rates from the vegetation on the CRREL wastewater cells does not appear to be a useful or necessary alternative

Literature review

During the course of this investigation a number of recent reports which contain intermation relating to evaporation or evapotranspiration, wastewater management, water-quality control, or water pollution were obtained. These papers have also been included in the Selected Bibliography.

SELECTED BIBLIOGRAPHY

- Bader, H., R. Haefeli, E. Bucher, T. Neher, O. Eckel and C. Thams (1954) Snow and its metamorphism. U.S. Army Snow, Tice and Permafrost Research Establishment Translation 14. AD 030965.
- Bouzoun, J. (1977) Land treatment of wastewater at West Dover, Vermont. CRRFL Special Report 77-33. AD: 046300.
- Heming, P.M. (1966) Crop water requirements and irrigation. Proceedings of World Meteorological Seminar, Melbourne, Australia, p. 593-618.
- Golubev, V.S. (1970) Effect of rainfall and evaporation on the concentration of solutions. Soviet Hydrology. Selected Papers, Issue no. 4, 1970.
- Hargreaves, G.H. (1974) Estimation of potential and crop evaporation. Transactions of the American Society of Agricultural Engineers (ASAE), vol. 17, no. 4, p. 701-704.
- Hargreaves, G.H. (1975) Moisture availability and crop production. *Iransactions of the ASAL*, vol. 18, no. 6, p. 980-984.
- Heiske, G.W. and B. Deans (1973) Water supply and waste disposal systems for arctic communities. Journal of the Arctic Institute of North America, Arctic, vol. 26, no. 2, June 1973.
- Hiler, EA, EA, Howell and D.G. Bordovsky (1972) Stress day index.—A new concept for irrigation timing. In Proceedings of Optimization of Irrigation and Drainage Systems. Conference, American Society of Civil Lugineers, p. 579-595.
- Hiler, E.A., E.A. Howell, R.B. Lewis and R.P. Boos (1974) Irrugation liming by the stress day index method. *Transactions of the ASAE*, p. 393-398.
- Hillel, D. and Y. Guron (1973) Relation between evapotranspiration rate and maize yield. Water Resources Research, vol. 9, no. 3, June.
- Jenkins, L.F., C.J. Martel, D.A. Gaskin, D.J. Lisk and H.L. McKim (1978) Performance of overland flow land treatment in cold climates. Proceedings, International Symposium on Land Treatment of Wastewater, Hanover, N.H., vol. 2
- Jensen, M.F., D.C.N. Robb and C.E. Franzov (1970) Scheduling irrigations using chimate-crops soil data. Journal of the Irrigation and Drainage Div., American Society of Civil Engineers, vol. 96 (IR.1), p. 25-38.
- Johnson, J.F. (1972) Regional wastewater management. A new perspective in environmental planning. Water Sources. Bulletin, vol. 8, no. 4.

- Jones, J.W., R.F. Colwick and L.D. Threadgill (1972) A simulated environmental model of temperature evaporation, rainfall and soil moisture. *Transactions of the ASAE*, vol. 15, no. 2.
- Koon, J.E., E.W. Rochester and M.K. Howard (1972) Environmental studies with artificial turt and grass surfaces. *Transactions of the ASAL*, vol. 15, no. 5.
- Kuznetsov, V.1. (1970) Characteristics of evaporation from industrial wastewaters. Soviet Hydrology: Selected Papers, Issue no. 4.
- Linacre, E.T. and M.R. Lill (1969) Irrigation timing and amounts. Journal of the Australian Institute of Agricultural Science, vol. 35, no. 3, p. 175-196.
- Newton, O. and O. Wilke (1972) Evaporation loss now reported daily. Publication of the High Plains Underground Water Conservation District No. 1. The Cross Section, vol. 18, no. 5.
- Reed, S.C., P. Murrmann, F. Koutz, W. Rickard, P. Hunt, T. Buzzell, K. Carev, M. Bilello, S. Buda, K. Guter and C. Sorber (1972) Wastewater management by disposal on the land. CRREL Special Report 171. AD 752132.
- Ripley 1 A (1372) Man, matador and meteorology Atmosphere, vol. 10, no. 4.
- Rouse, W.R. and R.G. Wilson (1972) A test of the potential accuracy of the water budget approach to estimating evapotranspiration. *Journal of Agricultural Meteorology*, vol. 9, p. 421-446, Amsterdam: Elsevier Publishing Company.
- Saxton, K.E., H.P. Johnson and R.H. Shaw (1974) Watershed evapotranspiration estimated by the combination method. *Transactions of the ASAE*, vol. 17, no. 4, p. 668-672.
- Shcherbakov, A.S. (1978) Method of wintertime sprinkler distribution of wastewater. CRREL Draft Translation 674.
- Skaggs, R.W. (1974) The effect of surface drainage on water table response to rainfall. *Iransactions of the ASAL*, vol. 17, no. 3, p. 406-411.
- Threadgill, E.D. and D.B. Smith (1975) Effects of physical and meteorological parameters on the drift of controlled size droplets. *Transactions of the ASAF*, vol. 18, no. 1, p. 51-56.
- U.S. Army (1965) Pavement design for trost conditions. Each nical Manual 5-818-2, Headquarters, Washington, D. C.
- U.S. Army (1966) Calculation methods for determination of depths of freeze and thaw in soils. Technical Manual 5-852-6. Headquarters, Washington, D.C.
- U.S. Army Tropic Test Center (1972) Evaporimetry in the canal zone. Part J. Climatological measurements of evaporation. Technical Research Note, U.S. Army Test and Evaluation Command, Fort Clayton, Canal Zone.
- U.S. Department of Agriculture (1964) Irrigation. Section 15, chapter 1, Soil plant-water relationships, Soil Conservation. Service. National Engineering Handbook, Washington, D.C.
- U.S. Department of Commerce (1955) Evaporation from pans and Takes. U.S. Weather Bureau Research Paper no 38
- U.S. Department of Commerce (1956) Seasonal variation of the probable maximum precipitation east of the 10th meridian for areas from 10 to 1,000 square miles and durations of 6, 12, 24 and 48 hours. U.S. Weather Bureau Hydrometeorological Report no. 33.
- U.S. Department of Commerce (1958) Climatic summary of the U.S. — Supplement for 1931 through 1952, New

- England: Climatography of The U.S. No. 11.23, U.S. Government Printing Office, Washington, D.C.
- U.S. Department of Commerce (1959) Evaporation maps for the United States. U.S. Weather Bureau Technical Paper no. 37.
- U.S. Department of Commerce (1959) Rainfall intensity frequency regime. Part I. The Ohio Valley, Part II. Southeastern. U.S., Part III. The Middle Atlantic Region, and Part IV. Northeastern. U.S. U.S. Weather Bureau, Technical Paper no. 29
- U.S. Department of Commerce (1964) Climatic summary of the U.S. Supplement for 1951 through 1960. New England Climatography of the U.S. No. 86-23. U.S. Government Printing Office, Washington, D.C.
- U.S. EPA (1977) Process design manual for land treatment of municipal wastewater. U.S. Environmental Protection Agency, Office of Water Program Operations, EPA 625/1-77-008.
- Veihmeyer, F.J. (1964) Evapotranspiration. In Handbook of Applied Hydrology (V.T. Chow, Ed.), Section 11, New York, McGraw-Hill
- Van Bavel, C.H.M., K.J. Brust and G.B. Stirk (1968) Hydraulic properties of a clay loam soil and the field measurements of water uptake by roots. Part 2. The water balance of the root zone. Proceedings. Soil Science Society of America, vol. 32, p. 317-321.
- Whiting, D.M. (1976) Use of climatic data in estimating storage days for soil freatment systems. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, EPA-600/2-76-250.

ĺ		7
		1210
	2	
	0	0
	2	2
	(0
	+	د
	Ċ	5
1	r	5

Precipitation (in)	Snow Depth									I					T																	ı	T	
Preci	y Amt.	•03						1.71					10.		.13								60.	90.					.20	.62		1	Total 2.91	
	Max-Hourly	10	m	3	3	m	7	5	0	8	7	7	5	9	2	11	œ	11	5	9	9	2	3	77	8	10	7	7	7	11	22	m	Max22	
3	Dir.	NNW+SSE	Var	Ver	MSM	SW	ENE+WSW	NE	NW	NW	NW	MS	N+MS	MNM	WSW+N	NW	SSW	WNW	MNM	ENE+N	Var	WSW	WSW+N	NNE	NE+MNW	NW+NE	SSW	Var	Var	MNM	NNE	Var	WNW and SW Max22	
	Speed (MPH)	5	2	2	3	2	8	7	2	9	2	4	3	7	N	9	5	9	Q.	.⊅	2	2	2	α.	#	7	N	٦	7.	1	6	αI	ю	
Dew Point	Mean (F)	33	143	51	57	45	50	55	42	28	23	35	74	92	34	25	30	31	23	25	21	22	38	75	44	30	32	35	37	41	23	32	36	
86	Mean	68	83	85	87	88	85	66	63	57	53	73	92	69	93	68	80	49	72	77	70	77	85	100	88	81	77	75	8	%	70	77	77	
1. Hum.	Min	32	07	94	146	147	9	92	33	51	25	30	78	38	62	41	29	39	36	8	33	36	74	100	28	62	37	23	82	92	96	14	23	
Rel	Max	86	86	100	100	100	100	100	91	88	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	81	100	0
(F)	Ave	143	48	26	61	58	54	55	54	75	39	43	64	35	36	34	36	75	31	32	30	30	38	42	24	35	39	42	38	42	32	33	142	
Temperature (or	Min	33	32	42	17	146	111	53	148	38	28	98	75	27	26	98	25	34	22	56	21	16	34	38	38	33	56	54	99	34	56	15	33	
Temper	Max	75	65	20	75	69	179	57	09	146	20	9	26	444	46	42	94	20	40	38	38	717	742	F6	26	38	64	09	20	20	38	15	51	
	Date	1	2	3	1	10	9	7	8	6	10	11	27 19	13	14	15	16	17	18	19	20	21	22	23	24	25	92	27	58	53	30	31	Ave. Monthly	

Monthly Max = 750F Monthly Min = 160F T = Trace
"Mean: Arithmetic mean for 24 hrs
**Winds during Oct and Nov taken from upper level - Trailer wind instrumentation not installed.

	Precipitation (in) Amt. Snow Depth*		1	2							0	4	7	7	7	9	9	4	7	7	7	7	3	3	1	1	71	Max = 7	
	Prec Amt.		.10	.22		06.	.11	.11			.38	.11					06.						.70		.30		.35	4,18	
	Max-Hourly	7442	9	m±	. 10	10	σα) tV	77	17	7	œ	8	77	m.	4	12	ω	6	6	8	0	12	1.5	ıv	6	mI	15	
	Wind Dir.	SSW	ENE	Var SW+NR	WSM	田	z z	WSW+NE	MS	WSW	NE	NNE	MNM	NINE	SE+NIW	S+NNE	MM	N	N	WIW+SSE	WINW	WSW+SE	NNW+SE	WSW	SW+NE	W	ঘা	W+NE	
er 1972	Speed (MPH)	2 MV	4	-1 00	ım	50	m cm	, cu	N	CJ	5	9	5	N	23	3	2	9	5	7	7	77	2	6	m.	#	CUI	77	
November 19	Dew Point Mean (F)	30 42 41	33	* *	34	36	3000	37.	34	39	34	25	15	13	27	24	56	11	7	7	22	23	24	30	30	22	17	28	
	Mean	74 85 85	89	38	93	66	23	26	8	ま	16	87	77	76	88	92	81	53	62	68	78	80	68	62	93	8	133	78	
	Hum. Min	53	299	100	82	800	200	8	85	70	82	70	52	27	64	20	22	777	40	42	20	69	20	26	20	58	25	04	
	Rel. Max M	100	100	100	96	96	100	100	98	100	100	100	98	66	98	86	100	09	88	83	86	98	100	78	100	100	07	100	Monthly Min - 60p
	e (OF) Ave	38 43 45	34	33 7	36	33	3%	32	37	41	35	28	25	14	30	8-	34	99	18	16	58	34	42	42	35	92	21	32	Wonthly
	Temperature Max Min	36 46 38	39	32	35	34	28	28	34	38	30	98	12	H	13	15	31	22	0,1	9	20	35	34	38	53	18	13	58	C.60 F
	Temp	お客長	37	43	33	# 2	43	38	07	77.	40	9	35	58	45	36	38	30	8,	8,	36	37	26	47	36	34	81	38	
	Date	Han	7	00	~ (x 0 (10	11	12	13		20	16	17	18	19	2	21	22	23	57	23	56	27	28	60	30	Ave.Monthly	Monthly May

Monthly Max = 56°F Monthly Min = 6°F **Snow depth data taken from the following sources: 1. Nov 1972-Feb 1973 from Hanover, N.H. Co-Op sta. 2. Mar and Apr 1973 from Lebanon, N.H. FAA sta. 3. Dec 1973-Mar 1974 from USA CRREL Met. sta.

pitation (in)	Amt. Snow Depth	10	6	6	13	17	13	12	14	14	13	13	14	13	13	16	21	20	20	20	20	21	24	20	20	20	20	19	20	20	20	21	Max = 24	
Preci	Amt.	.37			.65	. 22	84.		.33	01.	.08		.23	50.		54.	12.	.05			.05	.25	.19				.16	10.	.05		42.	.43	4.58	
	Max Hourly	15	80	0	10	6	0	00	3	5	11	7	8	13	2	7	11	13	9	5	9												15	
	PH) Dir.	SW	NNE	NINE	NNE	SSW	X	NINE		NE	Var	NE	Var	MSM	NNE	NE	W+ENE	MNM	X	M	国	SW	ENE	Var	Var	NNW+ESE	SW	Var	NNE	NNE	NE+S	WSW	NE+W	
	Speed (MPH)	9	3	4	3	7	3	4	Calm	* 3	**	4	7	5	0	3	5	7	8	CU	77	3	2	7	7	N	8	7	C)	77	7	mΙ	ml	
Dew Point	Mean (OF)	22	6	20	12	18	31	-1	7	25	30	9	9	22	16	80	77	7-	N	19	日	13	22	E	E	E	35	25	23	7	1.7	58	16	
80	Mean	98	75	06	92	91	95	48	8	76	76	69	95	72	82	92	79	77	75	68		8	98				98	88	87	68	68	188	81	
Rel. Hum.	Min	54	51	68	19	8	09	28	85	95	95	37	81	94	20	77	26	9	64	84	田	8	8	日	ш	H	16	74	99	26	73	92	28	000
Rel	Max	100	100	100	100	100	100	96	100	100	100	96	100	100	98	8	100	100	95	26		100	100				100	100	100	78	100	100	100	Month les Min
(OF)	Ave	56	16	22	14	50	32	15	00	98	31	14	7	30	7	10	17	0	00	22	20	14	22	54	28	32	36	28	56	16	50	63	81	Month
Temperature	Min	21	2.	13	10	16	25	2	9	22	28	٦	7-	2	11	3	Φ (φ,	6	18	14	11	17	20	8	53	35	23	22	00	15	15	174	4007
Temp	Мвх	30	54	32	17	25	38	32	22	53	34	58	18	04	31	16	99	7	25	56	56	17	56	27	30	36	37	34	31	23	54	3	27	Max = 4
	Date	1	2	3	7	5	9	7	00	6	10	11	12	13		21	16	17	18	19	20	21	22	23	54	52	98	27	28	53	30	31	Ave, Monthly	Monthly N

Monthly Max = 40°F Monthly Min = -9°F *(Winds from Lower Level on Roof, Surface Wind Sta. Inoperative.) m = missing

	Precipitation (in) Amt. Snow Depth	10 17	16	.25	17	17	17	17	17	17	17	17	17	16	15	15	.23 13	.62 11	T 10	10	9	o	ø	œ	σ	62	61 10	18	-	2.81 Max = 19
	H																													ci.
	Max-Hourly	∞ ∞	9	11:	10	15	.00	3	Φ (χο,	9 (ט ע				7	11	目	7	2	6	6	2	9	9	(C)	1;	11	1	19
	Wind Dir.	WSW+E	NNE	SE+NW	WNW	1	NE	/ar	N	MM	NNE+WNW	E THE THE	NETINE	NNE+WSW	E+WSW	SW		HNH+	N+NNE	NE	WINM	N+	NW+NE	NINE	田	NE+ESE		WSW+NE.	1	WNW+NE
		R	N	ĬĬ ;	3 2	Z	N	Ve	N	M	S	N	M. M	E	N	W	K	N	N	N	M	N	区	N	N	N ;	N.	Z	1	IM
2	Speed (MPH)	49	*	5	*	*	4	٢	O)	m (m r	40	0 0	14	N	2	3	3	2	m.	4	5	N	3	2	m	0	0 1-	ı	4
o sungra	Dew Point Mean (OF)	34 18	18	25	22 -	-17	-21	-10	IV I	n.	⇒ u	رطا	+ 60	30	34	38	36	27	_	14	36	23	12	25	25	(V) a	သ ထ	122	1	174
	Mean	79	72	8	200	23	65	73	80	72	7	2 6	88	92	80	88	98	87	62	77	85	75	79	83	95	82	70	99	1	75
	Hum. Min	52	54	1.0	2 00	17.7	41	42	000	2	1 1	t in	89	54	77	179	61	19	52	29	62	09	37	179	85	44	0 0	122	l	37
	Rel. Max	100	95	100	25.2	29	85	76	860	90	9,0	200	08/8	98	98	66	98	100	96	98	100	28	8	66	98	100	200	26		100
	Ave	32	98	200	10	44	-11	m	07.	7 ,	N C	70	200	37	04	41	040	30	18	20	040	30	22	30	23	2 %	70	-	1	27
	Temperature Max Min	34	17	18	00	-12	-25	-20	5	200	N V	200	70	28	54	32	28	18	6	C) (38	21	12	22	12	200	0 0	122		10
	Temp	38	34	33	5 6	1	0	174	999	200	200	30	107	94	52	20	25	42	27	38	41	38	32	37	32	200	o a	200		32
	Date	48	e-	t u	010	7	00	6	10	10	12	17	15	16	17	18	19	20	21	22	23	54	25	56	27	200	200	3.5		

Monthly Max = 55°F Monthly Min = -22°F *Used Roof Wind Lower Level T = Trace

	Precipitation (in) Amt. Snow Depth	18	18	12	12	11	11	111	11	11		11	10	10	13	13	13	13	13	11	12	12	12	12	11	11	111	11	Max = 18
	Prec Amt.	7	*					90.							. 28						.12	90.						1	1.46
	Max-Hourly	In t	12	13	15	2	7	5	12	12	13	12	11	9	9	15	11	9	14	10	2	6	10	10	1.5	13	5.4	01	15
	MPH) Wind Dir.	W	WINM	WINW	NNE	MIM	ENE+W	W	NINE	N	NNE	NNE	N	NNE	NW+S	N	NNM	N	WNW+NE	W+NE	NE	NE	N	N	N	NE	ENE	NNE	MNIN
February 1973	Speed (MPH)	44	7 4	9	7	m	2	3	9	5	0	9	n	4	7	6	7	2	77	4	3	7	9	*	**	9 1	- 1 c		2
Februa	Dew Point Mean (OF)	מין	77	16	11	7	10	22	9	2	-10	8	10	13	31	6	-14	m	10	34	33	56	18	7	-	Ο (Ο α	0	6
	Mean	83	82	72	58	68	63	92	61	72	26	72	92	99	76	74	26	72	78	84	89	87	72	09	52	20	26	2	72
	Hum.	604	99	09	42	42	28	92	94	11	47	62	62	53	87	99	75	75	52	26	26	78	09	35	36	36	7 1	11	53
	Max 1	888	100	98	72	98	83	100	83	76	89	48	98	66	100	92	73	98	66	8	100	100	88	66	92	85	8	RI	100
	(OF) Ave	φ α	30	54	54	13	56	54	7	2	CV	7	16	23	33	16	2	4	16	38	36	32	%	19	16	TQ	175	- 1	17
	Temperature (OF	22	53	16	12	2	19	16	1-	-14	8	-10	9.	4	30	2	-11	-18	£	30	30	27	23	6	-	0 1	- u		9
	Temp	90	38.2	33	35	28	32	31	14	18	12	00	56	42	36	58	00	99	36	45	42	37	53	53	52	30	22	33	28
	Date	н (v m	1	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	33	2 3	28	02	

Monthly Max = $\mu_5^{\rm OF}$ Monthly Min = $-22^{\rm OF}$ *Upper Level Wind used.SFC wind equipment out of operation.

Precipitation (in)	Snow Depth	9) W	7 ~	Ţ	7	3	3) (7	2	2	1			I	F	H	H	0														0)	Max = 6
Preci	Amt.										04.			.10				.05	.42	.53									. 28					-	1.78
	Max-Hourly	r	1	n c			∞	7	- 4	0 -	7	9	9	4	6	0	a.	9	9	77	9	12	6	7	7	16	9	5	80	12	9	9	9	9	16
Wind		NE+SSW	NINE	CT.	1	MNM	NE	SW	000	MOO	MS	NE	SE	MS.	3	N	压	SE	WINM	50	SW	MM	MNM	ENE	ENE	NE	MINW	T.B.T	ENE	ME	SSW	MS.	WSW	WSW	SW+NE
	(MPH)																																		
	Speed (MPH)	c	0 (4	7.7	- (n	m	5	_	t	N	2	4	m	4	7	2	m	m	m	m	9	10	N	2	00	77	CV	5	9	4	m	77	cu1	77
Dew Point	Mean (OF)	23	200	3.5	1 0	3/	34	56	33	3	43	34	27	32	147	75	26	24	34	39	22	72	20	19	77	19	32	35	017	19	22	28	33	37	62
86	Mean	92	80	6	100	000	77	70	03	22	91	79	75	78	73	26	77	69	69	88	49	63	29	29	26	947	63	70	92	641	26	62	73	179	7.1
. Hum.	Min	55	72	88	200	0	94	09	87	- 1	0	746	04	19	51	36	50	42	42	80	20	28	9	55	64	31	98	39	19	2]	19	23	75	33	19
Rel	Max	97	93	40		73	96	86	90	000	250	95	92	86	95	88	76	86	8	92	89	68	74	46	179	92	100	100	100	98	98	66	76	85	100
(Ave	0		+			7	10	10			0		~	6	~	2)			0	~		6	~	~	~			0						-
re (09		3(36	76) [Ť.	7	3	35) -	Ť.	77	36	38	57	36	3	37	141	4	3	35	36	8	38	38	147	17	24	36	36	77	41	12	38
Temperature	Min	177	50	3	000	20	35	30	32	1 6	33	31	31	35	39	27	25	28	30	36	27	30	56	20	33	27	53	25	38	56	20	27	28	35	53
Tem	Max	145	72	35	(a)	1	20	100	38	1	0.	748	42	147	65	64	10	40	57	148	36	04	35	38	777	20	28	63	45	45	52	55	53	63	147
	Date	7	C		1-1	f	w.	9	7	- a	0	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	56	30	31	

Monthly Max = 63° F Monthly Min = 14° F Peak Gust 31 MPH on Mar 31

12	2
C	7
-	1
-	+
3	4
3	3

	(1n) (or	Snow Depth	0	0		0	3		0	0	0		7	3	2	L	0															01	7	
	Precipitation (in	Amt. Sno	.61	19.	.11	.72	.20					.72											•	.08				.03	.17	. 59			3.87 Max =	
		Max-Hourly	7	7	3	4	7	15	12	12	9	10	13	11	13	9	0	12	13	13	80	3	2	κ.	+	m.	†	m	80	2	5	7	15	
	Wind		NE	ENE	SE+SW	ťΩ	MI	NW	NNE	N	N	N	SE	SE	τΩ	N+S	N	N	ENE	ENE	SW	ESE	国	MNM	NE+MINM	M	N	SSE	NE	м	NW	NE	N+SE	
1973		Speed (MPH)	77	77	CV	3	m	9	9	77	m	3	9	9	7	7	5	2	4	15	m	CJ.	N	N	m	N	m	N	m	CU.	8	mI	77	
April 1973	Dew Point	Mean (OF)	39	33	32	33	27	20	1.7	18	16	32	23	15	15	25	29	36	37	47	38	31	41	95	. 43	777	39	04	42	525	36	071	33	
	88	Mean	22	89	98	48	75	45	37	148	947	16	25	23	53	63	26	53	20	73	52	20	26	69	28	70	24	73	46	66	81	85	29	
	Rel. Hum.	Max Min	98 40																			96 16										98 66	100 16	
	()					F-1																								2	1	+1		
	ature (o	Min Ave																														35 44	34 17	
	Temperature	Max																														54	75	
		Date	-	CU	67	17	5	0	1	- 00	0	10	11	12	13	1/4	15	16	17	18	19	50	21	22	23	54	25	92	27	28	62	30		

Monthly Max = 82° F Monthly Min = 18° F Peak Gust 34 MFH on 6 Apr.

	Precipitation (in.) Amt.			.37					.03	1000	09.	94.	.20		.05	.26	.32		.20		04.	1.21	70.						09.	.03	.03	.05	5.23	
	Max-Hourly	10	m		7	c	-	- 0	0	0	-	3	ш	ш	7	7	5	0	77	7	3	8	10	5	7	3	3	77	3	2	m	rVI	10	
	(MPH) Wind Dir.	NNE	_C	SSW	WIM	Calm	WH-NA	W+ENE	MS+MN	Var	WNW+SE	Var	WSM	WIM	MNIN	W	NW	3	ENE	WSW	MSM	MNN	NW+ESE	N	MM	SE	co.	SSE	SE	20	SW	SW+ENE	WINW+SE	
May 1973	Speed (MPH)	6	N	2	6		c) er	O CU	7	0	CV	N	ш	2	C	8	8	8	7	0	3	3	3	6	N	O.	3	2	CU	N	ดาไ	2	
Ma	Dew Point Mean (OF)	148	61	179	4,1	142	43	141	74	51	66	66	50	777	36	37	%	35	38	36	777	64	‡	45	171	48	24	94	51	61	96	25	24	
	Mean	82	16	26	78	88	82	77	83	100	91	66	ま	4	4	77	29	67	98	80	8	98	85	75	68	80	78	20	100	83	92	62	82	
	Rel. Hum. % LX Min Mean	62	47	98	9	99	99	38	19	100	99	95	83	79	26	45	34	04	77	09	37	06	69	38	32	29	52	94	100	52	94	53	32	
	Max	100	100	100	96	100	96	79	100	100	100	100	100	96	86	96	98	86	98	100	100	100	100	98	98	26	98	66	100	100	100	100	100	
	(OF) Ave	53	49	69	148	45	148	20	52	51	62	65	52	20	75	777	24	149	42	42	20	20	78	53	54	54	75	96	51	99	179	107	52	
	Temperature (OF) Max Min Ave	35	52	54	72	140	41	3	34	48	20	20	41	43	33	32	35	31	38	38	34	94	39	37	36	64	45	44	1,8	55	75	27	142	(
	Temp	77	75	76	57	50	54	69	77	54	75	68	19	28	52	57	53	09	145	146	65	54	26	69	73	28	63	69	46	92	75	774	63	
	Date	_	2	3	7	5	0	7	8	6	10	11	12	13	17	15	16	17	18	19	20	21	22	33	57	25	98	27	28	59	30	31		

Monthly Max = 76° F Monthly Min = 31° F Peak Gust 20 MPH on 3 May.

Precipitation (in.)	.18		.03	.03	70.	.01	75.	.41	.35	T		.63			-02		. 29	.79			T	I	.19	45.	.67	1.74	6.44
Max-Hourly	DUE	ı mı	c -=	9	(O) (C)		80	*	ω								9	9		7				10			15
Wind Wind Dir.	Var	2 2	NE+S	SW	W+SSE	WNW+S	ß	co.	SE	MIM+SSE	NE	SE+NE	NE	W+ENE	NE	WNM	WIN	WINM	N	田公	MM	NW+S	Var	NW	(C)	NW+NE	NW+SE
Speed (MFH)	ov m	CV (m m	7	7 7	7	m	m	m.	7	m	7	77	3	m	5	m	C	3	3	CV.	3	C)	m	77	ω I	3
Dew Point Mean (OF)	36	775	99	99	9 7	57	67	68	69	51	47	617	74	51	09	62	74	70	65	67	63	63	65	65	70	991	09
Mean	829	3 7 8	000	78	74	77	74	35	96	70	70	8	72	16	80	82	76	76	98	89	89	84	89	98	95	68	877
Rel. Hum. %	88 88	92	299	73	F 49	43	147	68	73	00.	75	87	45	72	55	20	73	72	09	49	99	55	68	69	77	76	98
Rel	98	100	8,8	98	900	98	100	100	100	86	86	100	98	96	98	98	98	100	98	96	66	66	26	98	66	100	100
(OF) Ave	£28	290	00	73	69	67	92	71	99	19	20	50	26	75	99	68	92	72	70	70	99	68	68	69	72	991	69
Temperature Max Min	35	450	000	09	25	52	19	61	28	05.	41	18	917	75	54	53	29	99	62	09	57	57	62	62	19	62	775
Tempe	63	22	9 62	98	700	82	16	81	73	72	09	55	99	69	42	85	87	62	79	80	16	78	7/4	92	16	21	75
Date	H 02 m	י להו	00	7	x 0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	56	27	28	59	30	

Monthly Max = 91°F Monthly Min = 31°F Peak Gust 12 Jun 25 MPH. *Trailer Wind Speed Recorder Inoperative; Upper Level Winds Used from 12-30 June.

	Precipitation (in.)		.09	.12	200.00		.38	1.74
	Max-Hourly	100		N88773	110	180 tu o c c o	2777082	η2
	Wind Dir.	NNE+SE SE SSE	SSE+NNE SE+NE W+SE	W WNW W+NE	SSE SE+NE SE+W	NW ESE SW+NNE NNE N NE N	SW SSW SE+NW NE	W+SE
July 1973	Speed (MPH)	* m m=	* * * †	0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 10 4 10	**********	* * * * * *	ካ
July	Dew Point Mean (OF)	657	61.00	700 700 700 700 700 700	283 t-0	722500028C	18688369	61
	Mean	86 86 87	24 23	£ 68449	73	2000 80 80 80 80 80 80 80 80 80 80 80 80	128322	62
	Rel. Hum.	663 9	F 4 8 3 3 4 4 5 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	8 F F F E E	1242	% & & & & & & & & & & & & & & & & & & &	166743	32
	Rel	100	100	0001110000	1000	000000000000000000000000000000000000000	100000000000000000000000000000000000000	100 = 390F
	re (OF) Ave	70 72 688	3000	288278	8678	000000000000000000000000000000000000000	13 7 5 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	Monthly Min on 28 July.
	Temperature Max Min	61 61 62	56	12 6 6 7 6 7 7 6 7 7 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7	22.00	* 1 4 2 5 5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18882888	1 53 = 94°F 1 31 MPH 01 Winds us
	Tem Nax		2 4 6 8 8 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6			84888434		Monthly Max = 9 Peak Gust = 31 *Upper Level Wi
	D B			86913	165 th	いれいいいいいいい	3388838	W A *

Precipitation (in.)	69. 01. 19. 89.	.18
Max-Hourly	o wwo oloo o o tho o o o o o o o o o o o o o o o	11.77.17.71.77.71.77.71.71.71.71.71.71.7
(MPH) Wind Dir.	NASSANDERENTAL	NE SW
Speed (MPH)) to	n 00 - 10 - 10 - 10 - 10 - 10 - 10 -
Dew Point Mean (OF)	\$5550000000000000000000000000000000000	\$ [378845] 4
Mean	578333578833553755557	8 8 2 2 8 8 8 2 2 8 8 8 2 2 8 8 8 2 2 8 8 8 2 2 8 8 8 2 2 8 8 8 2 2 8 2 2 8 2 2 8 2
Rel. Hum. % ax Min Mean	33 86 84 75 6 8 8 1 7 6 8 8 3 7 7 8 8 3 7 7 8 7 8 7	33 1339888833
Rel Max	10000000000000000000000000000000000000	100 99 99 99 99 99 99 99 99 99 99 99 99 9
Ave Ave	2288884449444494	2 23 2 4 2 2 6 2 1
Temperature (OF)	2 + £3 £3 £3 £3 £3 £3 £5 £5 £5 £5 £5 £5 £5 £5 £5 £5 £5 £5 £5	5 6 6 9 9 9 9 5
Temp	123238888888888888888888888888888888888	88 87 87 87 87 87 81
Date	2 5 3 5 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	79888787

Monthly Max = 93 Monthly Min = 44 Peak Gust = 42 MPH on 30 Aug. *Upper Level Winds Used.

	Precipitation (in.) Amt.					T	79.	I							.32	.02		.01	.68				.52								-	2.18	
	Max-Hourly	7	П	9	9	12	10	18	80	16	12	12	15	174	.7	7	15	7	8	5	12	11	0	13	00	4	7	7	7	0.0	41	18	
	Wind Dir.	Ш	E	ш	ш	SE	SSW	MS	MS	ш	M	SW	MW W	NW.	WSW	13	M	NW+SE	WINIM	cΩ	M	MINIM	MS	MINM	T.	Var	SE	SW	MAN	3 2		MS	
September 1973	Speed (MPH)	m		7	4	80	8	8	5	80	9	9	7	9	.m.	17	80	9	9	*,	*9	**	5	9	4	N	CJ	~	, [*]	k *	7	10	
and ac	Dew Point Mean (OF)	77	74	7.4	68	29	59	147	04	38	742	51	147	94	148	84	47	77	84	45	04	36	38	55	45	247	50	99	147	43 38	21	64	
	Mean	06	87	83	82	98	98	73	73	72	99	77	74	75	46	76	78	80	91	80	75	72	66	82	83	77	986	98	62	17	5	72	
	Rel. Hum.	54	55	146	147	63	52	37	149	147	33	35	38	38	74	27	54	37	75	33	55	28	76	36	20	43	45	90	31	2000	21	28	
	Rel	100	100	100	100	100	100	100	96	16	100	100	100	100	100	100	100	100	100	100	100	98	100	100	100	100	100	100	66	100	3	100	
	(OF) Ave	74	78	80	74	72	63	99	148	147	53	58	55	54	50	50	54	50	51	51	147	11	38	09	50	54	54	09	54	52	21	95	
	Temperature Max Min	63	29	68	65	63	52	94	100	38	36	70	77	70	43	75	42	35	141	36	33	25	25	20	148	44	42	148	47	39	5	717	
	Tempe	98	06	91	82	80	74	99	57	99	70	92	99	99	99	65	69	179	19	99	19	63	51	17	53	63	29	73	99	65	1	68	
	Date	7	2	c	1	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	56	27	28	53	20		

Monthly Max = 91 Monthly Min = 25 Peak Gust = 45 MPH 12 Sep 73 *Upper Level Winds Used.

Precipitation (in.)				.33	45.	92.	111								90.				90.		90.									.05	64.		2.39
Max-Hourly	Ji.	1 4	0	5	5	11	15	1 15	2	4	80	田	9	7	16	11	12	10	5	7	5	12	8	4	(11)	4	8	11	2	80	11	ا [∞]	16
Wind Dir.	Ē	24.5	MO.	W	MNIN	MS	N	FINE	MNM	IIE	E	ш	X	SSW	MSS	WITH	M	MNM	SW	M.	WSW	NE	Calm	SSW	WSM	SE	Var	MM	ESE	ENE	ENE	ESE	X
Speed (MPH)	**	*	*- t	* 7	* 17	5	*	*	(n)	m	*9	H	*	m	80	8	77		*:	**	*	*		03	2	2	CU	9	3	77	5	mI	#
Dew Point Mean (OF)	817	ш 1	26	62	09	747	75	17	47	75	39	41	94	24	36	37	31	59	33	32	36	53	38	43	24	777	145	27	22	34	84	143	41
Mean	88	0 0	000	66	88	82	69	77	77	75	81	77	77	78	65	49	69	70	87	73	87	63	82	78	92	85	83	69	179	73	91	18	78
Rel, Hum. %	000	65	00	36	9	44	18	28	25	22	54	35	31	52	35	23	43	43	57	53	75	53	37	39	28	73	54	44	35	52	83	35	18
Rel	001	001	COT	100	100	66	100	100	100	100	100	100	100	100	76	100	100	98	86	98	100	100	100	100	100	100	100	100	96	56	100	100	100
(OF) Ave	Cu	7 4		62	79	52	148	748	148	50	77	48	53	54	20	48	40	38	36	140	0+	17	43	90	54	148	20	38	33	75	15	148	147
Temperature (OF Max Min Ave	33	200	000	28	26	38	33	300	53	32	34	35	34	38	41	33	30	30	28	27	36	98	23	30	32	43	100	52	19	32	47	취	34
Tempe	7.0	7 - 1	t	69	72	29	62	67	99	68	46	61	72	77	59	63	64	94	7/1	52	177	26	63	69	16	52	19	20	147	51	19	29	09
Date	-	4 0	U o	3	17	2	. 9	7	-00	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	59	30	31	

Monthly Max = $\frac{76^{\circ}F}{1000}$ Monthly Min = $\frac{19^{\circ}F}{1000}$ Peak Gust = $\frac{19^{\circ}F}{1000}$ Monthly Min = $\frac{19^{\circ}F}{1000}$

	Precipitation (in.)	Amt.	09:	70.	.17					.02							.37	.36					.03	70.		.17	80.		04.	.26	T	.02	2.59
		Max-Hourly	174	12	17	177	*_	*0	**	*_	0	10	œ	7	5	11	_	80	6	7	7	0	2	N	8	m	13	9	0	9	10	m	17
	Wind	DIE.	NNE	WSW	M	WINW	SSW	W	Var	SW	SE+NW	NW	SE	SW	SW	SW	NE	NW	STW	SW	MM	N	S	Var	Var	NE	NW	N	SE	co.	ξΩ.	2	MSW+S
November 1973	(Mary) France	Speed (MrH)	10	7	8	9	77	5	77	3	5					7	N	5	2	77	3	7	3	7	1	CU	7	m.	77	m	5	# 1	77
Novemb	Dew Point	Mean (-1)	37	33	27	11	15	11	174	22	11	13	18	22	27	39	38	30	15	23	23	16	21	41	39	35	35	54	30	36	56	51	25
	80	Medil	82	51	54	1,14	58	57	70	19	67	62	70	17	09	61	66	79	53	58	72	72	75	26	26	8	28	29	80	26	20		77
	Rel. Hum.	MILI	50	33	33	31	30	41	100	41	문.	94	35	54	53	37	8	53	45	35	70	55	20	68	80	66	19	31	77	60	97	100	30
	Rel	Mark	86	98	98	87	98	87	76	16	16	66	66	92	62	85	100	100	49	87	96	100	100	66	66	66	66	24	86	200	860	81	100
	(OF)	PAN W	42	50	75	30	28	54	22	32	28	54	27	30	047	52	38	36	30	36	31	54	58	42	39	35	41	34	m -	100	33	125	34
	Temperature (OF)	TIT III	34	m	36	13	18	19	16	23	7	18	17	72	36	040	31	30	52	28	23	57	14	37	34	37	m (m	22	50	3	35	81	27
	Temp	View.	90	25	47	10	38	28	27	77	36	31	37	9.	4.5	49	717	43	36	43	33	34	42	94	1111	33	643	42	37	7	40	쥐	04
	400	200	1	N	2	4	5	9	7	00	6	10	11	12	13	14	15	16	17	18	19	50	21	22	23	57	52	92	27	50	500	30	

Monthly Max = 64° F Monthly Min = 14° F Peak Gust = 35 MFH 2 Nov 73 Upper Level Winds Used.

Precipitation (in)				,	1055	nau tro	www.w.g.g.z.	Max = 5.5
Preci	H	.50	.35	18.	1.23	2.29	35. 35.	6.70
Max-Hourly	118000	11000	× × × × × × × × × × × × × × × × × × ×	017	174	11 8 0 0 0 1	F 1, 0 0 0 0 0 E	15
Wind Dir.	NNW NNW Var	Var	Var S N NNW	Ver NNW NNW	NNW N NNW Calm	S ENE	N SSW SSW SSW SSW N	NNW+SSW
Speed (MPH)	040-	ころけらい	1 <i>2</i> m m 6	mmæt	~915.	ろみ らろら	IN QUN KMMN	15
Dew Point Mean (OF)	102	15821	33.7	77 08 8 08 /	o 21 00 8	31 6 31 5	18888815	19
Mean	~ & & & & & & & & & & & & & & & & & & &	8608	28828	650	6888	258228	100 100 479 81 81 87	77
Hum. Min	147 36 57	26433	88888	282	82 85 52 52	€% £5%	F83 F6539 67	36
Max	100	8888	1009	100	3882	100 100 72 72 93	1000	100
(OF)	9888	12871	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1383	15 14 1	132 8	50 88 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25
Temperature (OF)	176	344 55	75827	138	127 13	7777	8333388	17
Temp	13.33	6688	93268	33	1,88	18 88 8 7 8 8 1 8 8 1 8 1 8 1 8 1 8 1 8	18 5 5 5 5 5 5 5 8 5 5 5 8 5 5 5 5 5 5 5	33
Date	H 0 M 4	10000	69112	5457	17 17 17 17 17 17 17 17 17 17 17 17 17 1	52 52 53 55 55	13338783	

Monthly Max = $61^{\circ}F$ Monthly Min = $-12^{\circ}F$ Peak Gust = 34 MFH 30 Dec 73

Precipitation (in) Amt. Snow Depth	4.5	T 4.5	3	D. 60	3.5	3.5	3.5				.26		10.5										.14 6						.08		0 10.	2,06 Max = 11
Max-Hourly	r	200	CV	3	3	0	2	5	7	3	3	2	7	2	0	10	15	7	17	8	6	10	80	5	6	7	22	7	7	11	19	25
Wind Dir.	SSW	N	Calm	Var	Var	Calm	SSW	N	国	NE	Var	MM	MI	23	NE	NE	MINI	ENE	NNE	NE	S	MSM	23	S+NE	S	SE	MS	SW+NE	MM	co.	2	NNE+SSW
Speed (MPH)		2		2	2		3	3	2	23	2	2	2	2	5	9	80	2	9	3	5	7	3	2	3	3	6	3	m.	1	∞1	m
Dew Point Mean (OF)	77	6	14	16	14	15	12	0	7	12	16	-1	m T	9	20	10	-18	-18	7	2-	23	23	27	18	20	42	36	28	28	18	12	12
Mean	86	19	80	78	92	80	19	64	89	66	76	9	99	02	69	80	20	19	69	65	98	179	83	99	73	73	20	72	85	7.1	781	73
Hum.	58	141	99	94	38	50	41	53	02	16	29	32	34	743	147	69	28	040	040	32	7/	39	19	37	35	33	38	45	09	35	147	28
Max 1	86	92	76	66	66	86	66	79	98	66	66	90	92	91	92	93	472	88	95	93	16	93	100	77	100	100	100	100	100	100	91	100
(OF) Ave	28	19	19	22	20	20	21	16	10	12	17	10	Н	N	53	15	77-	8	15	7	27	34	32	32	28	32	45	36	32	92	16	20
Temperature	54	13	14	14	13	13	13	13	9	_	12	7	-16	-19	22	6	-17	-23	7	φ,	50	25	23	92	16	17	34	30	28	18	0	11
Tempe	33	25	57	31	27	27	53	18	77	16	22	22	18	54	36	21	10	00	56	22	34	12	07	37	47	94	26	43	37	35	225	62
Date	1	N	3	17.	5	9	7	8	6	10	11	12	13	14	15	16	1.7	18	19	20	21	22	23	54	25	99	27	28	29	30	31	

Monthly Max = 56°F Monthly Min = -23°F Peak Gust = 50 MPH 27 and 31 Jan.

February 1974

Precipitation (in) Amt. Snow Depth	00000000000000000000000000000000000000	
Precip		
Max-Hourly	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Wind Dir.	NW N	
(MPH)		
Speed (MPH)	1000000 0000000 0000000000000000000000	`
Dew Point Mean (OF)	0 8 9 9 4 4 4 4 4 4 4 8 9 4 8 9 4 8 9 4 8 9 4 8 9 4 8 9 6 7 9 1 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	,
Mean	1 820 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)
Rel. Hum. & Max Min Mean	E 6000 1000 1000 1000 1000 1000 1000 100	i
Rel	000 000 000 000 000 000 000 000 000 00	
Ave	37 + 02 + 03 + 12 + 12 + 12 + 12 + 12 + 12 + 12 + 1	
Temperature (OF)	90001,0001,0001,0001,0001	,
Temp	E3833738373737568718667518668718667186718	1
Date	848888888888888888888888888888888888888	

Monthly Max = 460F Monthly Min = -160F

Peak Gust = 39 MPH 23 Feb 74

*Strong winds to 50 MPH blew over instrument shelter - hygrothermograph broken - no humidity and dewpoint values 1-6 Feb 74.

Data obtained using Lebanon Airport Data.

Precipitation (1n) Amt. Snow Depth	0	Max = 2
Preci	1.0.	.04708
Max-Hourly	85666666666666666666666666666666666666	22 11 12 14 18 18 18 18 18 18 18
Wind Dir.	S VAr SSE VAR W VAR VAR NIWW NIWW NIWW NIWW NIWW NIWW NIWW NIW	N N N N N N N N N N N N N N N N N N N
(MPH)		
Speed (MPH)	t t t t t t t t t t t t t t t t t t t	4 FV F 8 6 7 V 6 0 V 7 V 9 V 7 V 8 V
Dew Point Mean (OF)	11 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3	8 88 8 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Mean	71108886 7110886071108886	67 88337 663 883 889 885
Hum.	26 27 27 28 27 28 27 29 28 28 28 28 28 28 28 28 28 28 28 28 28	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Rel	100 100 100 100 100 100 100 100 100 100	100000000000000000000000000000000000000
(OF) Ave	30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	30 138 116 116 118 113 113 113 113 113 113 113 113 113
Temperature Max Min	1600123333333333333333333333333333333333	25 17 17 15 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Tempe	分泌ののなどというというなななが	3 F883284340478938
Date	10 m 4 m 9 m 4 m m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	333388888888888888888888888888888888888

Monthly Max = 63° F Monthly Min = 1° F Peak Gust = 48 NNW 10 Mar 7° 4

APPENDIX B. CHRONOLOGICAL SUMMARY OF PRECIPITATION AND SURFACE CONDITIONS AT THE CRREL LAND TREATMENT SITE DURING THE WINTER OF 1973-1974

1072	
1973	
21-22 September	Minimum air temperature fell to less than 32°F.
4 November	Average daily air temperature less than 32°F for first time.
8 November	First light snow showers — melted quickly.
21 November	Date when daily air temperature remains below 32°F.
9 December	Wastewater spray freezing on surface of test cells.
14 December	Winter so far has been mild and wet
15 December	Ice forming on surface of some wastewater test cells.
16-17 December	First major cold wave with snow and freezing rain.
17-18 December	Snow accumulating on wastewater test cells
18 December	Wastewater mixing with snow cover and freezing hard on test cells. Buildup of ice mounds causing some spray water to overflow sides of test cells. Last day of wastewater spraying for 1973
20 December	All test cells frozen over; average thickness of crust layer is 3 in. in center of cells, and 1 in. at edges.
21-22 December	Snowfall of 4 in. fell on test cells, followed by 2.5 in. mixed rain and snow, freezing rain and wet
Zi Zz December	snow.
24 December	Snow depth stake reads 3.5 in with 0.5 in of new snow on surface. Snow on test cells too hard to
27.0	insert density tube.
27 December	Rain and drizzle occurred overnight, snow cover ablating due to above-freezing air
20 D	temperatures. Mound of ice (and snow crust) still remains on most of test cells.
28 December	Heavy rain of short duration overnight caused more snow ablation. Average of 1.5 in. snow on
24 12 1	ground with some bare spots.
31 December	Rain and freezing precipitation amounts abnormally high, with numerous alternating periods of freezing and thawing air temperatures during December.
	recently and thatming an temperatures during beceniber.
1974	
3 January	New snow layer decreased in thickness from 3 to 2.5 in. Top 0.5 in. of layer remains crusty
10 January	About 5 in. of new snowfall over the test cells.
11 January	Light snow fell during the night, 7 to 9.5 in. of snow cover over hard ice on test cells
21-22 January	Rain and freezing rain formed thin crust on snow surface
30 January	Test cells covered with 0-5 in. snow-ice crust, mostly residual from December spray period
31 January	Average of 2 in. snow on ground, snow stake reading zero. Bare spots at center of test cells, max-
	imum snow/ice depth on cells is 5 to 6 in. Most of the old frozen wastewater spray residual has
	melted.
4 February	Test cells nearly free of snow and ice except for 1-2 in ice layer about 5 ft in diameter near
	center.
7 February	New snowfall of 4.5 in, recorded
12 February	Approximately 2 in. new snowfall overnight, snow depth on test cells 3 to 5 in.
20 February	New snowfall of 5 in
22 February	Freezing rain and ice pellets occurred overnight, 0.5 in. accumulation on surface.
26 February	Between 1-3 in hard snow-crust on test cells.
1 March	Warm air temperatures melted all snow; only ice 1-3 in thick remains on the test cells
10 March	Freezing rain and freezing drizzle changed to light snow, all of which then melted.
21 March	Snowfall commenced in midmorning and 4 in. had accumulated by late afternoon.
22 March	Snowfall ended late on 21 March, 7- to 8-in. snowfall on test cells. Total water equivalent equals
	0.65 in.
24 March	Rain occurred, patches of snow remain on ground but test cells practically free of snow
31 March	Some light freezing rain and freezing drizzle most of the night, water equivalent including
	snowfall on 30th equals approximately 0.08 in., light patches of snow on ground.
10 April	Average daily air temperature of less than 32°F recorded for last time this winter
12 April	First day average temperature at air/ground interface on test cells exceeded 32°F.
6 May	Last day during winter of 1973-74 minimum air temperature was less than 32°F.

