Degradacja termoplastów pod wpływem wielokrotnych procesów przetwórczych na przykładzie termoplastycznego poliwęglanu (PC)

Marcin Tomkiewicz

promotor: dr inż. Piotr Szatkowski

Założenie pracy inżynierskiej

Odpady polimerowe to zagrożenie dla środowiska naturalnego

Jednym z polimerów o wysokich właściwościach mechanicznych i praktycznie niemożliwym do rozłożenia przez środowisko naturalne jest poliwęglan (PC) [1]

Poliwęglan jest polimerem termoplastycznym więc możliwy jest jego recykling materiałowy i danie "drugiego życia" odpadom

Założenie pracy inżynierskiej

Ponowne przetwórstwo polimeru termoplastycznego powoduje jego degradację poprzez rozrywanie i skracanie długości łańcuchów polimeru, oraz co za tym idzie pogarszanie jego właściwości [2]

Celem pracy jest zbadanie jak cykl recyklingu wpływa na polimer termoplasyczny, oraz

Przebieg pracy inżynierskiej

Kolejne części pracy:

- pozyskanie odpadowych płyt z poliwęglanu
- zbadanie ich termicznie, aby ustalić temperatury przetwórstwa
- pocięcie płyt , aby umożliwić ich przetwórstwo

Przebieg pracy inżynierskiej

Kolejne części pracy:

- wykonanie symulacji kolejnych cykli przetwórstwa poprzez ich wytłaczanie
- wykonanie próbek na wtryskarce
- zbadanie mechaniczne i termiczne przetworzonego poliwęglanu

Literatura

Temat wielokrotnego przetwórstwa poliwęglanu nie jest szeroko opisany w literaturze.

Podobny do mojej pracy inżynierskiej temat podjęty został w artykule "Wpływ krotności przetwórstwa na wartość masowego i objętościowego wskaźnika szybkości płynięcia poliwęglanu" Piotra Mazura i Daniela Jasikiewicza

Fig. 1. Changes of Mass Flow Rate in dependence on processing multiplicity

Fig. 2. Changes of Melt Volume Rate in dependence on processing multiplicity

Źródła

- 1. https://www.azom.com/article.aspx?ArticleId=7963 (data dostępu 12.11.2020)
- 2. Tomasz Rydzkowski "Teoretyczne i doświadczalne podstawy efektywnego wytłaczania ślimakowotarczowego w recyklingu materiałów i kompozytów polimerowych" (s. 91)