计算机网络

实验报告

(2022学年秋季学期)

教学班级	计科二班	专业 (方向)	计算机科学与技术
学号	20337263	姓名	俞泽斌

教学班级	计科二班	专业 (方向)	计算机科学与技术
学号	20308003	姓名	曾伟超

一、实验题目

掌握通过静态路由方式实现网络连通性

本实验的预期目标是在路由器R1和R2上配置静态路由,使pc1和pc2在跨路由器的情况下能够实现互联 互通

二、实验步骤

首先来配置pc1和pc2的ip地址,子网掩码,网关

是在具体的路由器的网络基地址下自己分配了一个地址,为192.168.1.34, pc2同理,设置为192.168.3.5, 方便之后的ping测试

现在开始配置R1及R2的路由器端口ip地址

进入0/0和0/1的端口模式后,开始通过ip address命令来配置具体端口的ip地址以及子网掩码,具体配置的地址参考书上的拓扑结构

同时通过

```
show ip interface brief
```

命令来得到两个端口具体的ip地址,发现此时ip地址以及变成了我们所需要的那个,所以R1部分的ip配置成功

对于R2的配置也与上面一只,设置地址分别为192.168.3.1和192.168.2.2,分别为路由器与pc连接的端口以及两个路由器互相连接的端口

在R1及R2上配置静态路由

同时配置静态路由,通过ip route命令来检验R2上的静态路由配置

路由表中是有S条目的的,通过之前的ip route 命令,确定了路由器转发的消息的源端口和目标端口,所以产生了S条目

测试网络连通性

首先我们通过ping命令来进行实验中途的调试操作

```
| S 音視点: C:\Windows\system32\cmd.exe
| Microsoft Vindows | 版本 10.0.14393|
| (c) 2016 | Microsoft Corporation。 保留所有权利。
| C:\Users\Administrator\ping 192.168.1.1 | 具有 32 字节的数据:
| 来自 192.168.1.1 | 的回复: 字节=32 | 时间\substitute | TIL=64 |
| 来自 192.168.1.1 | 的回复: 字节=32 | 时间\substitute | TIL=64 |
| 来自 192.168.1.1 | 的回复: 字节=32 | 时间\substitute | TIL=64 |
| 来自 192.168.1.1 | 的回复: 字节=32 | 时间\substitute | TIL=64 |
| 来自 192.168.1.1 | 的回复: 字节=32 | 时间\substitute | TIL=64 |
| 来自 192.168.1.1 | 的回复: 字节=32 | 时间\substitute | TIL=64 |
| 192.168.1.1 | 的 | Ping 统计信息:
| 报担 = Oms, 最长 = Oms, 平均 = Oms |
| C:\Users\Administrator\ping 192.168.3.1 |
| 正在 Ping 192.168.3.1 | 自有 32 字节的数据:
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来自 192.168.3.1 | 的回复: 字节=32 | 时间\substitute | TIL=63 |
| 来报 192.168.3.5 | 的回复: 字节=32 | 时间\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回复: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回复: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回复: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回复: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回复: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回复: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回复: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回复: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回录: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回录: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回录: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回录: 字节=32 | 时间=\substitute | TIL=62 |
| 来自 192.168.3.5 | 的回录: 字节=32 | 时间=\substitute | TIL=62 |
|
```

主要其实是两个层次之间的连通,

首先是从pc1到R1端口,也就是我们设置的192.168.1.1地址,发现能够ping通,说明从pc1到R1的路线是已经配置好连通的。

然后是R1和R2之间的连通操作,ping 192.168.3.1,也ping成功,说明R1和R2之间的互联也做好了最后才是ping一下pc2的地址,来确保整条路线全部畅通

(1) 将此时的路由表与之前的比较,有什么结论

此时的路由表

```
Show ip route

Codes: C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

C 192.168.1.0/24 is directly connected, FastEthernet 0/0

C 192.168.1.1/32 is local host.

C 192.168.2.0/24 is directly connected, FastEthernet 0/1

C 192.168.3.0/24 [1/0] via 192.168.2.2

20-RSR20-1#
```

```
Ruijie#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP

0 - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

S 192.168.1.0/24 [1/0] via 192.168.2.1

C 192.168.2.0/24 is directly connected, FastEthernet 0/0

C 192.168.2.2/32 is local host.

C 192.168.3.0/24 is directly connected, FastEthernet 0/1

C 192.168.3.1/32 is local host.

Ruijie#
```

而在最初始的情况下,我们并没有设置过路由表中几个端口的地址,包括接线也没有过,主要的区别可能就在于多了一个S条目,即ip route 的配置,还多了两个directly connected,通过ip地址的设定以及接线的操作

(2) 对pc1执行traceroute命令

通过tracert命令,可以很清楚的看到我们设计的链路,从本机192.168.1.34到R1 192.168.1.1,再从R1 到R2 的192.168.2.2。最后从R2接入目标主机

(3) 启动wireshark 测试连通性,分析捕获的数据包

我这里是采用从pc1向pc2进行ping命令后然后在pc1上启动wireshark进行抓包

	p. addr==192, 168, 3, 5				
				- I	
No.		Source	Destination		Length Info
Г	53 47.499125	192.168.1.34	192.168.3.5	NBNS	92 Name query NBSTAT *<00><00><00><00><00><00><00><00><00><00
	54 47.500086	192.168.3.5	192.168.1.34	NBNS	253 Name query response NBSTAT
	55 47.506690	192.168.1.34	192.168.3.5	ICMP	106 Echo (ping) request id=0x0001, seq=167/42752, ttl=1 (no response found!)
	56 47.507504	192.168.1.1	192.168.1.34	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
	57 47.507968	192.168.1.34	192.168.3.5	ICMP	106 Echo (ping) request id=0x0001, seq=168/43008, ttl=1 (no response found!)
	58 47.508300	192.168.1.1	192.168.1.34	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
	59 47.508516	192.168.1.34	192.168.3.5	ICMP	106 Echo (ping) request id=0x0001, seq=169/43264, ttl=1 (no response found!)
	60 47.509081	192.168.1.1	192.168.1.34	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
	96 57.513495	192.168.1.34	192.168.3.5	ICMP	106 Echo (ping) request id=0x0001, seq=170/43520, ttl=2 (no response found!)
	97 57.514311	192.168.2.2	192.168.1.34	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
	98 57.515410	192.168.1.34	192.168.3.5	ICMP	106 Echo (ping) request id=0x0001, seq=171/43776, ttl=2 (no response found!)
	99 57.516175	192.168.2.2	192.168.1.34	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
	100 57.516685	192.168.1.34	192.168.3.5	ICMP	106 Echo (ping) request id=0x0001, seq=172/44032, ttl=2 (no response found!)
	101 57.517675	192.168.2.2	192.168.1.34	ICMP	134 Time-to-live exceeded (Time to live exceeded in transit)
	125 67.521936	192.168.1.34	192.168.3.5	ICMP	106 Echo (ping) request id=0x0001, seq=173/44288, ttl=3 (reply in 126)
	126 67.522958	192.168.3.5	192.168.1.34	ICMP	106 Echo (ping) reply id=0x0001, seq=173/44288, ttl=62 (request in 125)
	127 67.523853	192.168.1.34	192.168.3.5	ICMP	106 Echo (ping) request id=0x0001, seq=174/44544, ttl=3 (reply in 128)
	128 67.524709	192.168.3.5	192.168.1.34	ICMP	106 Echo (ping) reply id=0x0001, seq=174/44544, ttl=62 (request in 127)
	129 67.525023	192.168.1.34	192.168.3.5	ICMP	106 Echo (ping) request id=0x0001, seq=175/44800, ttl=3 (reply in 130)
	130 67.526185	192.168.3.5	192.168.1.34	ICMP	106 Echo (ping) reply id=0x0001, seq=175/44800, ttl=62 (request in 129)
	131 67.526750	192.168.1.34	192.168.3.5	NBNS	92 Name query NBSTAT *<00><00><00><00><00><00><00><00><00><00
L	132 67.527655	192.168.3.5	192.168.1.34	NBNS	253 Name query response NBSTAT

设置过滤器为ip.addr==192.168.3.5,也就是我们直接来看最终的目标主机对pc1的ping命令有没有进行回复,也就是是否ping通,通过wireshark抓包可以发现,192.168.3.5向192.168.1.34发送了ping的reply,有了双向的交互,说明连通性完好

Internet Protocol Version 4, Src: 192.168.3.5, Dst: 192.168.1.34

0100 = Version: 4

.... 0101 = Header Length: 20 bytes (5)

> Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)

Total Length: 92

Identification: 0x689c (26780)

> Flags: 0x00

...0 0000 0000 0000 = Fragment Offset: 0

Time to Live: 62 Protocol: ICMP (1)

Header Checksum: 0x8e8d [validation disabled]

[Header checksum status: Unverified]

Source Address: 192.168.3.5

Destination Address: 192.168.1.34

具体看一次返回报文,也就是通过ICMP协议发过来的,是一个ping reply操作

00 11 1303002	27212001212	222120012121	20111	xo i tame en xare enocenca fixme en xare enecenca xii eranoxe)
61 47.509451	192.168.1.34	192.168.1.1	NBNS	92 Name query NBSTAT *<00><00><00><00><00><00><00><00><00><00
64 47.509845	192.168.1.1	192.168.1.34	ICMP	120 Destination unreachable (Port unreachable)
66 47.778840	192.168.1.1	192.168.1.34	ICMP	90 Destination unreachable (Network unreachable)
72 48.824641	192.168.1.1	192.168.1.34	ICMP	304 Destination unreachable (Network unreachable)
74 48.986141	192.168.1.1	192.168.1.34	ICMP	90 Destination unreachable (Network unreachable)
76 49.327209	192.168.1.1	192.168.1.34	ICMP	304 Destination unreachable (Network unreachable)
78 49.829504	192.168.1.1	192.168.1.34	ICMP	94 Destination unreachable (Network unreachable)
80 50.030189	192.168.1.1	192.168.1.34	ICMP	192 Destination unreachable (Network unreachable)
81 50.508773	192.168.1.34	192.168.1.1	NBNS	92 Name query NBSTAT *<00><00><00><00><00><00><00><00><00><00
82 50.509626	192.168.1.1	192.168.1.34	ICMP	120 Destination unreachable (Port unreachable)
84 50.532908	192.168.1.1	192.168.1.34	ICMP	192 Destination unreachable (Network unreachable)
86 51.136037	192.168.1.1	192.168.1.34	ICMP	192 Destination unreachable (Network unreachable)
88 51.638559	192.168.1.1	192.168.1.34	ICMP	94 Destination unreachable (Network unreachable)
91 52.829786	192.168.1.1	192.168.1.34	ICMP	94 Destination unreachable (Network unreachable)
92 53.509565	192.168.1.34	192.168.1.1	NBNS	92 Name query NBSTAT *<00><00><00><00><00><00><00><00><00><00

从路径上的路由器也可以看出,主机192.168.1.34向R1路由器发送了三次ping的数据包,也是遵从我们 所设计的路线来进行的

(4) 在计算机命令窗口执行route print 命令,此时的路由表信息与之前相同吗

```
\Users\Administrator>route print
第口列表
  4...00 Od Oa 4b Of 71 ......Ralink RT61 Turbo Wireless LAN Card
 5...00 88 99 00 01 41 .....Realtek PCIe GBE Family Controller #2 1.....Software Loopback Interface 1
IPv4 路由表
          0.0.0.0
                            0.0.0.0
                                          192. 168. 1.
                                                            192. 168. 1. 34
                                                                   127. 0. 0.
        127.0.0.0
                          255.0.0.0
                                                                    127. 0. 0. 1
        127.0.0.1
                                                                    127. 0. 0.
      192. 168. 1. 0
                                                                192. 168. 1. 34
        224.0.0.0
     255. 255. 255
255. 255. 255
                                                                    127. 0. 0. 1
                                                                 192. 168. 1. 34
                     网络掩码 网关地址 跃点数
                            Ŏ. O. Ŏ. Ŏ
          0.0.0.0
                                           192. 168. 1. 1
IPv6 路由表
 动路由:
姜口跃点数网络目标
1 331::1/128
5 291:680::/64
       291 fe80::7d2f:6eef:84ab:acfa/12
      331 ff00::/8
291 ff00::/8
 〈久路由:
```

这是配置后pc1的route print命令,可以看到此时网络目标中出现了192.168.1.1的,也就是我们第一个路由器的网关,表明此时pc1已经和R1连通

三、实验思考

(1) 实验中如果步骤5时ping不通,试分析一下可能的原因

这也是我们实验中犯的一些操作

- 1、R1或R2的端口ip地址配置错误
- 2、R1或R2的静态路由配置错误,很大可能是把R1和R2中的静态路由地址和本地地址混淆了导致
- 3、接线错误,因为配置ip地址的端口之间都有互相的对应,比如对0/0或者0/1配置等,需要辨别
- 4、没有关闭防火墙即屏蔽校园网,只在试验网环境下进行

(2) show命令

1、查看R1快速以太网端口0/1的具体信息

show interfaces fastEthernet 0/1

2、找出R2所有端口上关于IP地址配置的有关信息,并指出哪一个路由条目是静态路由

show ip interface brief

```
Show ip route

Codes: C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

C 192.168.1.0/24 is directly connected, FastEthernet 0/0

C 192.168.1.1/32 is local host.

C 192.168.2.0/24 is directly connected, FastEthernet 0/1

C 192.168.2.1/32 is local host.

S 192.168.3.0/24 [1/0] via 192.168.2.2
```

图中S项为静态路由

3、查看R1的路由表,并指出那一个路由条目是静态路由

```
show ip route
```

(3)每个路由条目包含哪几项,分别有什么含义?

```
show ip route

Codes: C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

C 192.168.1.0/24 is directly connected, FastEthernet 0/0

C 192.168.1.1/32 is local host.

C 192.168.2.0/24 is directly connected, FastEthernet 0/1

C 192.168.3.0/24 [1/0] via 192.168.2.2
```

以上述路由表为例,

第一项的目标地址为192.168.1.0,即主机地址,是通过之间网线进行连接,下一跳直接到达,保持为 connect状态

第二项的目标地址为192.168.1.1,是配置的R1端口地址,即local host 本地地址

第三项的目标地址为192.168.2.0,即静态路由的中间地址,下一跳也可以到达,保持connect

第四项的目标地址为192.168.2.1,是配置的R1端口地址,即local host 本地地址

最后一项是静态路由,即告诉路由器这个目标网络应该通过什么方式过去,下一跳地址为 多少

(4) 路由器中如果同时存在去往同一个网段的静态路由和动态路由信息,路由器会采用哪一个进行转发

路由器会优先选择静态路由;因为静态路由更易于监管,更容易到达;管理距离值更低,更可信;