Přírodovědecká fakulta Masarykovy univerzity

PRAKTIKUM Z FYZIKY PLAZMATU

Studium rozpadu plazmatu mikrovlnnou metodou

Zpracovali: Radek Horňák, Lukáš Vrána **Naměřeno:** 15. 3. 2022

1 Teorie

1.1 Difuze a rekombinace v plazmatu

Důležitou charakteristikou plazmatu jakožto ionizovaného plynu je koncentrace elektronů a iontů. Pokud přestaneme dodávat energii, plazma se začne rozpadat, což se projeví postupným poklesem koncentrace nabitých částic. Tento pokles je způsoben buď difúzí a následnou rekombinací na stěnách nebo objemovou rekombinací.

Rešením rovnice kontinuity pro koncentraci elektronů

$$\frac{\partial n}{\partial t} + \operatorname{div} \overrightarrow{\Phi} = 0 \tag{1}$$

za předpokladu, že máme výbojku válcového tvaru s délkou větší než poloměrem, dostáváme koncentraci elektronů v jedné dimenzi jako

$$n(x,t) = n_0(x) e^{\left(-\frac{Dt}{\Lambda^2}\right)}$$
(2)

kde n_0 je koncentrace elektronů v počátku $x=0,\,D$ je difúzní koeficient, t je čas a Λ je difuzní délka. Radiální profil koncentrace je v tomto případě

$$n_0(x) = \text{konst. } J_0\left(\frac{x}{\Lambda}\right)$$
 (3)

kde J_0 je Besselova funkce prvního druhu. Difuzní délku lze vyjádřit jako

$$\Lambda \approx \frac{r_0}{2,405} \tag{4}$$

kde r_0 je poloměr výbojky a 2,405 je první kořen funkce J_0 . Objemovou rekombinaci můžeme napsat jako časovou změnu koncentrace, tedy

$$\frac{\mathrm{d}n}{\mathrm{d}t} = -\alpha n^2 \tag{5}$$

kde α je koeficient rekombinace. Obecně platí, že rekombinační ztráty se více projevují při vysokém tlaku. Difuzní ztráty jsou naopak dominantní při nízkém tlaku a jsou charakterizovány časovou závislostí

$$n(t) = n_0 e^{\left(-\frac{Dt}{\Lambda^2}\right)} \tag{6}$$

a tedy funkce $\ln n = f(t)$ je lineární, ze směrnice přímky lze určit D. V případě rekombinace platí

$$\frac{1}{n(t)} = \frac{1}{n_0} + \alpha t \tag{7}$$

a závislost 1/n = f(t) je lineární, ze směrnice určíme α . Pokud tímto způsobem určujeme jeden z koeficientů, tedy D nebo α , děláme to za předpokladu zanedbání druhého procesu. Nabízí se tedy vyjádřit n(t) se zahrnutím obou koeficientů pomocí zpřesněné rovnice

$$n(t) = \frac{1}{c e^{\frac{tD}{\Lambda^2}} - \frac{\alpha \Lambda^2}{D}}$$
 (8)

1.2 Rezonátorová metoda stanovení koncentrace elektronů

Pokud v rezonátoru zapálíme plazma, změní se jeho rezonanční frekvence ω i kvalita rezonátoru Q. Pro střední koncentraci elektronů n ve výbojce o průměru R' platí závislost na čase

$$\overrightarrow{n}(t) = \frac{0,271R^2 \Delta f(t) 8\pi^2 \epsilon_0 m f_0}{0,64R'^2 e^2}$$
(9)

kde R je poloměr rezonátoru, $\Delta f(t)$ je rozdíl frekvencí zdroje f' a rezonanční frekvence prázdného rezonátoru f_0 , ϵ_0 je permitivita vakua, m je hmotnost elektronu, R' je poloměr výbojky a e je elementární náboj.

2 Měření a výsledky

Měřící aparatura obsahuje vysokofrekvenční laditelný zdroj, který dodává energii do rezonátoru o poloměru $R=40\,\mathrm{mm}$, jehož osou prochází výbojka o poloměru $R'=9\,\mathrm{mm}$. Prošlý signál je na vstupu do osciloskopu usměrněný diodou. Proud měříme ampérmetrem, napětí osciloskopem. Výbojka je čerpána rotační olejovou a difuzní vývěvou, tlak měříme Piraniho manometrem. Ve výbojce máme helium jehož tlak lze měnit.

Rezonanční frekvence prázdného rezonátoru f_0 se po zapálení výboje zvýší na f_1 . Po vypnutí přívodu energie se plazma začne rozpadat a rezonanční frekvence opět klesá až na původní hodnotu f_0 . Tento periodický proces lze zachytit osciloskopem. Při měření měníme frekvenci zdroje f' a z oscilogramu určujeme čas t', za který dojde k rezonanci. Také si zaznamenáváme f_0 , abychom následně mohli vypočítat koncentraci elektronů ze vztahu (9). Následně můžeme graficky vynést závislosti 1/n = f(t) a $\ln n = f(t)$, určit z nich α , D a rozhodnout, zda je převládajícím procesem difúze nebo rekombinace. α a D včetně n_0 také určíme proložením funkcí podle rovnice (8) a výsledky porovnáme.

Závislosti 1/n = f(t) a $\ln n = f(t)$ včetně proložení podle exponenciální rovnice (8) jsou vyneseny v grafech na obrázcích 1–7. Koeficienty α a D určené z proložených lineárních a exponenciálních funkcí jsou uvedeny v tab. 1. Vidíme, že exponenciální fit podle rovnice 8 je nejpřesnější, při našich podmínkách měření tedy probíhala rekombinace i difuze zároveň. Výsledné koeficienty se z lineárních fitů oproti exponenciálnímu fitu liší v některých případech i více než dvojnásobně. Pro tlaky v rozmezí 50–200 Pa jsou závislosti $\ln n = f(t)$ téměř lineární, převládá zde tedy difuze nad rekombinací. Pro vyšší tlak 450 Pa je lineárnější závislost 1/n = f(t), dominantní je rekombinace v objemu. Toto pozorování je v souladu s teorií. Pro tlaky 5–20 Pa není ani jedna ze závislostí lineární, nelze tak určit dominantní proces.

Obrázek 1: Časová závislost koncentrace elektronů pro tlak 5 Pa.

Obrázek 2: Časová závislost koncentrace elektronů pro tlak 10 Pa.

Obrázek 3: Časová závislost koncentrace elektronů pro tlak 20 Pa.

Obrázek 4: Časová závislost koncentrace elektronů pro tlak 50 Pa.

Obrázek 5: Časová závislost koncentrace elektronů pro tlak 100 Pa.

Obrázek 6: Časová závislost koncentrace elektronů pro tlak 200 Pa.

Obrázek 7: Časová závislost koncentrace elektronů pro tlak 450 Pa.

Tabulka 1: Hodnoty koeficientu rekombinace α a difuzního koeficientu D určené ze závislostí 1/n = f(t), $\ln n = f(t)$ a kombinované dle rovnice (8).

Tlak	1/n = f(t)	$ \ln n = f(t) $	Obě rekombinace	
[Pa]	$\alpha \left[s^{-1} \right] \cdot 10^{-3}$	$D [\mathrm{m^2 s^{-1}}] \cdot 10^{-3}$	$\alpha [\mathrm{s}^{-1}] \cdot 10^{-3}$	$D [\mathrm{m^2 s^{-1}}] \cdot 10^{-3}$
5	2.01 ± 0.11	57.3 ± 2.8	0.7734 ± 0.0004	28.4 ± 0.4
10	1.21 ± 0.05	50.7 ± 3.3	0.576 ± 0.006	21.8 ± 1.5
20	1.00 ± 0.06	56.9 ± 2.7	0.436 ± 0.003	25.2 ± 1.3
50	0.82 ± 0.07	52.7 ± 1.0	0.180 ± 0.003	37.1 ± 2.2
100	0.30 ± 0.02	36.1 ± 0.5	0.0292 ± 0.0002	31.6 ± 0.8
200	0.27 ± 0.02	23.2 ± 0.6	0.0590 ± 0.0004	16.8 ± 0.7
450	0.21 ± 0.01	15.5 ± 0.8	0.118 ± 0.003	5.6 ± 0.7

3 Závěr

V této úloze jsme se zabývali rozpadem plazmatu a popsali jsme procesy, jakým k němu dochází. Naším úkolem bylo určit koncentraci elektronů v závislosti na čase, za který dojde k rezonanci. Z těchto závislostí, které jsme naměřili pro tlaky v rozmezí 5–450 Pa, jsme fitováním třemi různými funkcemi určili koeficienty rekombinace a difuzní koeficienty. Naše výsledky se pro oblast 50–450 Pa shodují s teorií. Při nízkém tlaku do 200 Pa je dominantním procesem difuze, při 450 Pa je to naopak rekombinace. Pro tlaky 5–20 Pa jsme z našich dat převládající proces určit nedokázali.