TD T4: Changements d'état MPSI2 - 2021/2022

T4: Changements d'état

Exercice 1: Isothermes d'Andrews

La figure ci-dessous représente un ensemble de courbes expérimentales appelées isothermes d'Andrews, représentant la pression P d'une mole de fluide en fonction du volume molaire, pour différentes températures.

- 1. Déterminer les coordonnées (P_c, V_c) du point critique.
- 2. Indiquer la courbe de rosée et la courbe d'ébullition.
- 3. Préciser l'état physique et calculer, s'ils sont définis, les titres massiques x_V et x_L de la vapeur et du liquide pour:
 - (a) V = 0.6 L et $T = 110 \,^{\circ} C$.
 - (b) $p = 110 \text{ bar et } T = 200 \,^{\circ} \text{ C}.$
 - (c) V = 0, 2 L et $T = 125 \,^{\circ} C$.
- 4. Que vaut le volume molaire de la vapeur saturante à la pression de 40 bar?

Exercice 2 : Calorimétrie

Dans un calorimètre parfaitement isolé de capacité thermique $C=150~\mathrm{J\cdot K^{-1}},$ on place $m=100~\mathrm{g}$ d'eau à la température $\theta = 18$ °C en équilibre thermique avec le vase intérieur et une masse $m_g = 25$ g de glace sèche à 0 °C. Calculer la température d'équilibre. $Données: c_{\rm eau} = 4185~{\rm J\cdot K}^{-1}\cdot {\rm kg}^{-1}~{\rm et}~\Delta h_{\rm fus} = 335~{\rm kJ\cdot kg}^{-1}.$

Exercice 3 : Cycle de Rankine

Un moteur fonctionne avec une masse m d'eau. Cette masse d'eau subit les transformations suivantes :

- AB: transformation isotherme (le point A étant du liquide saturant à la température T_1 et à la pression P_1 ; le point B à une pression P_2);
- BC : échauffement réversible isobare qui amène l'eau à la température T_2 ; le point C est constitué de liquide
- CD : vaporisation totale sous la pression P_2 et à la température T_2 ;
- DE : détente adiabatique réversible jusqu'à la température T_1 ;
- EA : liquéfaction totale à la température T_1 .

La capacité thermique massique de l'eau liquide vaut : $c_{\rm liq} = 4.18~{\rm kJ\cdot K^{-1}\cdot mol^{-1}}$. Dans le tableau suivant, on donne les caractéristiques des points se trouvant sur la courbe de saturation aux pressions P_1 et P_2 .

P	T	v_l	v_g	h_l	h_g
bar	K	$\mathrm{m}^3\cdot\mathrm{kg}^{-1}$	$\mathrm{m}^3\cdot\mathrm{kg}^{-1}$	$\mathrm{kJ}\cdot\mathrm{kg}^{-1}$	$kJ \cdot kg^{-1}$
$P_1 = 0.250$	338,15	$1,02 \times 10^{-3}$	6,202	272,02	2618,4
$P_2 = 1,208$	378,15	$1,05 \times 10^{-3}$	1,419	440,17	2683,7

TD T4 : Changements d'état MPSI2 – 2021/2022

La variation d'entropie massique d'un liquide pour une transformation d'une température T_A à une température T_B :

$$\Delta s_{AB} = s_B - s_A = c_{\text{liq}} \ln \left(\frac{T_B}{T_A} \right)$$

La variation d'entropie massique lors d'un changement d'état est :

$$\Delta s = \frac{\Delta h}{T}$$

où Δh est la variation d'enthalpie massique lors du changement d'état et T la température du changement d'état.

- 1. Tracer l'allure de deux isothermes d'Andrews dans le diagramme de Clapeyron. On fera apparaître la courbe de saturation. Dessiner l'allure du cycle sur ce même diagramme.
- 2. (a) Montrer que la varitation $s_{\rm B} s_{\rm A}$ est nulle.
 - (b) Exprimer $s_{\rm C} s_{\rm B}$ en fonction de $c_{\rm liq}$, T_1 et T_2 .
 - (c) Exprimer $s_{D} s_{C}$ en fonction de $h_{g}(T_{2})$, $h_{l}(T_{2})$ et T_{2} .
 - (d) Calculer $s_{\rm E} s_{\rm D}$.
- 3. Énoncer le théorème des moments.
- 4. Soit x la fraction massique de vapeur en E. On admet que l'on peut appliquer le théorème des moments pour l'entropie. Déterminer x littéralement puis numériquement.
- 5. Calculer les transferts thermiques massiques échangés lors des transformations BCD et EA.
- 6. Déterminer le rendement du cycle. Application numérique.

Exercice 4 : Calorimétrie

On utilise un calorimètre de capacité $C=246~\rm J\cdot K^{-1}$, préalablement vidé. On y place $m=100~\rm g$ d'eau à la température $\theta=18~\rm ^{\circ}C$ en équilibre thermique avec le vase intérieur et une masse $m_g=50~\rm g$ de glace sèche à 0 $\rm ^{\circ}C$. Calculer la température d'équilibre.

Exercice 5 : Résolution de problème : coca-cola

On sort une bouteille de coca-cola de la cave où il faisait 15 ° C. On sert un verre de 25 cL. Estimer le nombre de glaçons de 10 g qu'il faut ajouter pour que la température du coca descende à 5 ° C.

Exercice 6 : Résolution de problème : transpiration

Estimer la quantité d'eau que doit transpirer le corps humain s'il fait 37 $^{\circ}$ C.