Social Choice Theory II

COMP4418 Knowledge Representation and Reasoning

Patrick Lederer¹

¹School of Computer Science and Engineering, UNSW Australia

Randomized Social Choice

Randomized Social Choice

- Last week: Voters report preferences and we choose a single winner deterministically.
- Now: Voters report preferences and we may use chance to select a single winner.

Randomized Social Choice

Why should we randomize?

- Breaking ties between alternatives
 - The notion of a tie depends on the voting rule!
- Repeated decision-making
 - E.g.: Worker of the month, next song in a playlist
- Resource allocation: based on the voters' preferences, we assign a resource (e.g., money) to public projects.
- Better axiomatic properties.
 - We may be able to escape impossibility theorems by allowing for randomization.

Randomized Social Choice - The Formal Model

- Finite set of voters $N = \{1, \dots, n\}$.
- Finite set of alternatives $A = \{x_1, \dots, x_m\}$
- Every voter i ∈ N reports a preference relation, which is a strict total order ≻_i over A.
 - E.g.: $\succ_i = \mathsf{Harris} \succ_i \mathsf{Stein} \succ_i \mathsf{Trump}$
- A preference profile $R = (\succ_1, \dots, \succ_n)$ contains the preference relations of all voters $i \in N$.
- A lottery is a probability distribution over the alternatives.
 - Recall from Week 1: $\Delta(A)$ is the set of all lotteries over A.
- A randomized social choice function (RSCF) maps every preference profile to a lottery over the alternatives.

Randomized Social Choice Functions

- Every deterministic social choice function is an RSCF that always assigns probability 1 to some alternative.
 - E.g.: Plurality rule with tie-breaking
- Every social choice correspondence can be turned into an RSCF by, e.g., randomizing uniformly over the chosen alternatives.
 - E.g.: Randomize over the set of plurality winners
- Randomize proportional to some scores.
 - E.g.: Uniform random dictatorship, randomized Copeland
- Construct new RSCFs tailored for the use of randomization
 - E.g.: Maximal lotteries

The Random Dictatorship

Theorem

Strategyproof Social Choice

- Last week: When |A| ≥ 3, the only strategyproof and onto social choice functions are dictatorships.
- Can we circumvent this impossibility theorem by allowing for randomization?
- Yes! The uniform random dictatorship (select a voter uniformly at random and return his favorite alternative) is strategyproof.
 - If a voter is not chosen, he cannot influence the outcome.
 - If a voter is chosen, his favorite alternative is chosen and he cannot benefit by lying.

Strategyproofness for RSCFs

- How should we define strategyproofness in the presence of lotteries?
 - Voters only report ordinal preferences over the alternatives, but need to compare lotteries!
- We will assume that voters use vNM utility functions to compare lotteries by their expected utility!
- Recall from Week 1:
 - A vNM utility function u maps every alternative $x \in A$ to a numerical value $u(x) \in \mathbb{R}$.
 - The expected utility of a lottery p is $\mathbb{E}[u(p)] = \sum_{x \in A} p(x)u(x)$.
 - A vNM utility function u is consistent with a preference relation \succ if $x \succ y \iff u(x) > u(y)$ for all $x, y \in A$.

Strategyproofness for RSCFs

- A voter i prefers lottery p to lottery q, denoted by $p \succsim_i q$, if $\mathbb{E}[u(p)] \ge \mathbb{E}[u(q)]$ for all utility functions u that are consistent with \succ_i .
 - Voters' preferences between lotteries are incomplete, i.e., there are lotteries that we cannot compare!
 - E.g.: if $a \succ_i b \succ_i c$, the lottery p = [1:b] and q = [0.5:a,0.5:c] are incomparable.
 - If u(a) = 3, u(b) = 2, u(c) = 0, then $\mathbb{E}[u(p)] = 2 > 1.5 = \mathbb{E}[u(q)]$.
 - If u(a) = 3, u(b) = 1, u(c) = 0, then $\mathbb{E}[u(p)] = 1 < 1.5 = \mathbb{E}[u(q)]$.
- An RSCF f is strategyproof if $f(R) \succsim_i f(R')$ for all preference profiles R, R' such that $\succ_j = \succ_i'$ for all $j \in N \setminus \{i\}$.
 - Every voter prefers the lottery obtained when voting honestly to every lottery he could obtain by lying about his preferences.
 - Voters cannot increase their expected utility for every utility function that is consistent with their true preferences.
 - An RSCF is manipulable if it is not strategyproof.

Strategyproofness for RSCFs - Example

No manipulation! For every utility function u consistent with $a \succ b \succ c$: u(a) > u(b) implies that $\frac{1}{3}u(a) + \frac{1}{3}u(b) + \frac{1}{3}u(c) > \frac{2}{3}u(b) + \frac{1}{3}u(c)$

Manipulation! For the utility function u with u(a) = 3, u(b) = 2, u(c) = 0: $\frac{1}{3}u(a) + \frac{1}{3}u(b) + \frac{1}{3}u(c) = \frac{5}{3} < 2 = 1u(b)$

9

The Random Dictatorship Theorem

 An RSCF is unanimous if it selects an alternative with probability 1 whenever it is the favorite alternative of all voters.

- An RSCF f is a random dictatorship if there is a probability distribution $\alpha = (\alpha_1, \dots, \alpha_n)$ over the voters such that, for each profile, f draws a voter from α and returns his favorite alternative.
 - Let T_x(R) denote the set of voters who top-rank x in the profile R.
 The probability that a random dictatorship chooses x is ∑_{i∈T_x(R)} α_i.
 - If $\alpha_i = 1$, then the corresponding random dictatorship picks the top ranked alternative of voter i.
 - If $\alpha_i = \frac{1}{n}$, we have the uniform random dictatorship.

Theorem (Gibbard, 1977)

Assume $|A| \ge 3$. An RSCF is strategyproof and unanimous if and only if it is a random dictatorship.

Maximal Lotteries

Condorcet Paradox

- Recall from last week: a Condorcet winner is an alternative that beats every other alternative in a pairwise majority comparison.
- Condorcet's paradox shows that Condorcet winners may not exist.
 - Condorcet's paradox is often considered the reason for all important impossibility theorems in social choice theory.

 Can we circumvent Condorcet's paradox by allowing for randomization?

Randomized Condorcet Winners

- Let n_{xy}(R) = |{i ∈ N: x ≻_i y}| denote the number of voters who prefer x to y in R.
- An alternative x is a weak Condorcet winner in R if n_{xv}(R) ≥ n_{vx}(R) for all alternatives y ∈ A.
- Let $n_{pq}(R) = \sum_{x \in A} \sum_{y \in A} p(x)q(y)n_{xy}(R)$ denote the expected number of voters in R that prefer an alternative drawn from p to an alternative drawn from q.
- A lottery p is a randomized Condorcet winner in R if $n_{pq}(R) \ge n_{qp}(R)$ for all lotteries $q \in \Delta(A)$.

No weak Condorcet winner

The lottery p with $p(a) = p(b) = p(c) = \frac{1}{3}$ is the (unique) randomized Condorcet winner:

$$n_{pq}(R) - n_{qp}(R) = p(a)q(b) + p(b)q(c) + p(c)q(a) - p(a)q(c) - p(b)q(a) - p(c)q(b) = \frac{1}{3}(q(a) + q(b) + q(c)) - \frac{1}{3}(q(a) + q(b) + q(c)) = 0$$

Randomized Condorcet Winners

• Theorem (Fishburn, 1984): A randomized Condorcet winner is guaranteed to exist!

- Follows from the minimax theorem of von Neumann.
- Randomized Condorcet winners are also called maximal lotteries.
- We define by ML(R) the set of maximal lotteries/ randomized Condorcet winners in R.
 - ML(R) is always non-empty but not always a singleton.
 - There is a unique maximal lottery if the number of voters is odd.
- To check whether a lottery *p* is maximal, it suffices to compare it to degenerate lotteries:.
 - p is maximal iff $\sum_{x \in A} p(x)(n_{xy}(R) n_{yx}(R)) \ge 0$ for all $y \in A$.
 - Computing a maximal lottery can be done via linear programming.

Maximal Lotteries

- An RSCF f is called a maximal lottery rule if $f(R) \in ML(R)$ for all profiles R.
- Maximal lottery rules satisfy many desirable properties:
 - Condorcet-consistency: if a deterministic and strict Condorcet winner exists, they always choose this alternative.
 - Clone-consistency: Cloning some alternatives does not change the probabilities assigned to other alternatives.
 - Mild forms of strategyproofness and participation: risk-averse voters cannot benefit by lying about their preferences or by abstaining from the election.
 - Very little randomization as Condorcet winners often exist in practice.

Approval-based Committee

Elections

Approval-based Committee Elections

- Last week and before: we aim to choose a single winner.
- Now: we aim to choose a committee (i.e., a fixed-size set of alternatives).
 - Committee elections can be modeled as single-winner elections when voters report preferences over all committees.
 - Since this is impractical, we assume that voters only report approval ballots that indicate the alternatives they like.

Approval-based Committee Elections

Why should we study committee elections?

- Elections of parliaments, city councils, committees for various tasks in companies
- Short-listing of job applicants, competitors in some competition.
- Proof-of-Stake in blockchains
- Recommender systems (e.g., given your data, suggest the three next movies to watch).

Approval-based Committee Elections - The Model

- Finite set of voters $N = \{1, \dots, n\}$
- Finite set of alternatives $A = \{x_1, \dots, x_m\}$
- Each voter i reports an approval ballot A_i, which are formally non-empty subsets over A.
- An approval profile $\mathcal{A} = (A_1, \dots, A_n)$ contains the approval ballots of all voters.
- A size-k committee W is a subset of A with |W| = k.
- An approval-based committee (ABC) voting rule maps every profile \mathcal{A} and target committee size k to a (set of) size-k committee(s).

Multiwinner Approval Voting

- Multiwinner approval voting (AV) chooses the k-candidates that are approved by the most voters.
- Formally, $AV(\mathcal{A}, k) = \max_{W \subseteq A: |W| = k} \sum_{i \in N} |A_i \cap W|$.
- AV is unfair in the sense that a large group of voters can fully specify the outcome.

Fairness Axioms

- Idea: Large groups of voters with consistent preferences deserve some representation.
- A size-k committee W satisfies
 - justified representation (JR) for an approval profile \mathcal{A} if there is no group of voters $G \subseteq N$ such that $|\bigcap_{i \in G} A_i| \ge 1$, $|G| \ge \frac{|N|}{k}$, and $|W \cap \bigcup_{i \in G} A_i| = 0$.
 - proportional justified representation (PJR) for an approval profile \mathcal{A} if there is no group of voters $G\subseteq N$ and integer $\ell\in\mathbb{N}$ such that $|\bigcap_{i\in G}A_i|\geq \ell,\, |G|\geq \frac{\ell|N|}{k}$, and $|W\cap\bigcup_{i\in G}A_i|<\ell.$
 - extended justified representation (EJR) for an approval profile \mathcal{A} if there is no group of voters $G\subseteq N$ and integer $\ell\in\mathbb{N}$ such that $|\bigcap_{i\in G}A_i|\geq \ell, |G|\geq \frac{\ell|N|}{k}$, and $|W\cap A_i|<\ell$ for all $i\in G$.
- An ABC voting rule f satisfies JR/ PJR/ EJR if f(A, k) satisfies JR/ PJR/ EJR for all approval profiles A and all committee sizes k.

Fairness Axioms

- The committee $\{a_1, a_2, a_3, a_4, a_5\}$ fails JR (and thus PJR and EJR).
- The committee {a₁, a₂, a₃, a₄, b₅} satisfies JR but fails PJR (and EJR).
- The committee {a₁, a₂, a₃, b₄, b₅} satisfies EJR (and thus PJR and JR).
- The committee {a₁, a₂, b₃, b₄, b₅} satisfies EJR (and thus PJR and JR).

Thiele Rules

- Thiele rules are defined by a scoring function $s: \mathbb{N}_0 \to \mathbb{R}$ and return the size-k committee W that maximizes $\sum_{i \in N} s(|A_i \cap W|)$, i.e., $f(\mathcal{A}, k) = \max_{W \subset A: |W| = k} \sum_{i \in N} s(|A_i \cap W|)$.
 - Thiele rules are the equivalent of positional scoring rules for ABC elections.
- Multiwinner approval voting (AV): $s_{AV}(x) = x$.
 - Maximize the number of total approvals
 - "excellence-oriented"
- Chamberlin-Courant approval voting (CCAV): $s_{CCAV}(x) = 1$ for all x > 0 and $s_{CCAV}(0) = 0$.
 - Maximize the number of voters that approve an elected alternative
 - "diversity-oriented"
- Proportional approval voting (PAV): $s_{PAV}(x) = \sum_{y=1}^{x} \frac{1}{y}$ for all x > 0 and $s_{PAV}(0) = 0$.
 - Idea of diminishing returns
 - "proportionality-oriented"

Thiele Rules - Example

- $AV(A,4) = W_1 = \{a_1, a_2, a_3, a_4\}$
 - $\sum_{i \in N} s_{AV}(|A_i \cap W_1|) = 4 \cdot 4 + 4 \cdot 0 = 16$
 - ullet W_1 fails JR as the purple voters reporting deserve representation.
- $CCAV(A, 4) = W_2 = \{a_1, b, c, d\}$
 - $\sum_{i \in N} s_{CCAV}(|A_i \cap W_2|) = 8 \cdot 1 = 8.$
 - W₂ satisfies JR but fails PJR since the red voters deserve to be represented by two committee members.
- $PAV(A, 4) = W_3 = \{a_1, a_2, a_3, b\}$
 - $\sum_{i \in N} s_{PAV}(|A_i \cap W_2|) = 4 \cdot \sum_{y=1}^3 \frac{1}{y} + 2 \cdot 1 + 2 \cdot 0 = \frac{28}{3}$.
 - W₃ satisfies EJR.

Thiele Rules - Properties

- Theorem: *PAV* is the only Thiele rule satisfying EJR.
- CCAV satisfies JR, AV satisfies no fairness notion.
- All Thiele rules but AV
 - are NP-hard to compute
 - fail committee-monotonicity: increasing the target committee size by
 1 can completely change the outcome.
 - fail strategyproofness: voters can increase their number of approved committee members by lying about their approval ballot.
- A straightforward fix to the first two problems are sequential Thiele rules, which iteratively add the alternative to the committee that increases the score the most.
 - Let $W^0 = \emptyset$ and $W^{i+1} = \max_{x \in A \setminus W^i} \sum_{i \in N} s(|A_i \cap (W^i \cup \{x\})|)$ for $i \in \mathbb{N}$. The sequential Thiele rule f induced by s is defined by $f(A, k) = W^k$.
 - No sequential Thiele rule satisfies JR.

Phragmén's Rule

- Idea: Voters continuously earn money and buy alternatives once they can afford them.
 - The cost of each alternative is 1.
 - Each voter i has a budget $b_i(t)$ which is initially 0 and increases at unit rate (i.e., $b_i(t) = t$ unless agents spend their budget).
 - An alternative x is bought (and added to the winning committee) once ∑_{i∈N: x∈A_i} b_i(t) = 1. When we buy x, we set the budget of each voter approving x to 0.
 - We run this process until *k* alternatives have been bought.

Phragmén's Rule

- Assume k = 3. The initial budget vector is b(0) = (0,0,0,0,0,0,0,0).
- At $t = \frac{1}{5}$, $b(t) = (\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5})$. We select alternative c and the new budget vector is $b(t) = (0, 0, 0, 0, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5})$.
- At $t = \frac{1}{3} = \frac{1}{5} + \frac{2}{15}$, $b(t) = (\frac{2}{15}, \frac{2}{15}, \frac{2}{15}, \frac{2}{15}, \frac{2}{15}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. We select alternative b and the new budget vector is $b(t) = (\frac{2}{15}, \frac{2}{15}, \frac{2}{15}, \frac{2}{15}, \frac{2}{15}, 0, 0, 0)$.
- At $t = \frac{29}{60} = \frac{1}{3} + \frac{9}{60}$, $b(t) = (\frac{17}{60}, \frac{17}{60}, \frac{17}{60}, \frac{17}{60}, \frac{19}{60}, \frac{9}{60}, \frac{9}{60}, \frac{9}{60})$. We select alternative d and the new budget vector is $b(t) = (0, 0, 0, \frac{17}{60}, \frac{17}{60}, \frac{9}{60}, \frac{9}{60}, 0)$.
- The winning committee is $\{b, c, d\}$.

Phragmén's Rule

- Phragmén's rule satisfies PJR but not EJR.
- It is committee monotone: all candidates that are selected for the target committee size k are also selected for the target committee size k+1.
- It can be computed in polynomial time.
- It is not strategyproof.

Method of Equal Shares

- Recently suggested by Peters and Skowron (2020).
- Idea: similar as for Phragmén's rule, but now voters start with a budget.
 - The cost of each alternative is 1; the budget of each voter *i* initially is $b_i = \frac{k}{n}$.
 - Identify the alternative x that is not yet selected and that minimizes the value ρ such that $\sum_{i \in N: x \in A_i} \min(\rho, b_i) = 1$.
 - Add x to the winning committee, reduce the budget b_i of each voter i who approves x by $min(\rho, b_i)$.
 - Repeat until k alternatives are selected.
- The Method of Equal Shares (MES) may not be able to select k candidates. In this case, we complete the committee by running Phragmén's rule, where the remaining budget of MES are used as the starting budget of Phragmen.

Method of Equal Shares

- Assume k = 3. The initial budget vector is $b = (\frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8})$.
- Alternative *c* gets selected for $\rho = \frac{1}{5}$. The new budget vector is $b = (\frac{7}{40}, \frac{7}{40}, \frac{7}{40}, \frac{7}{40}, \frac{7}{40}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8})$.
- Alternative a gets selected at $\rho = \frac{13}{40}$. The purple voters pay $\frac{7}{40}$ and the green voters pay $\frac{13}{40}$. The new budget vector is $b = (\frac{7}{40}, \frac{7}{40}, \frac{7}{40}, 0, 0, 0, \frac{2}{40}, \frac{3}{40})$.
- No alternative is affordable. We start increasing the budgets of all voters uniformly and add the next affordable alternative. At $t=\frac{1}{40}$, d becomes affordable as $b=\left(\frac{8}{40},\frac{8}{40},\frac{8}{40},\frac{1}{40},\frac{1}{40},\frac{3}{40},\frac{3}{40},\frac{16}{40}\right)$.
- The winning committee is $\{a, c, d\}$.

Method of Equal Shares

- MES is the only known rule that satisfies EJR and that can be computed in polynomial time!
- It also satisfies further fairness notions such as priceability.
- MES does not satisfy committee-monotonicity.
- It is not strategyproof. No rule satisfying JR is strategyproof.
- The current literature often views MES as the best ABC voting rule regarding fairness.

Outlook: Participatory

Budgeting

Participatory Budgeting

- Participatory budgeting is a modern democratic decision-making process to decide how to spend a communal budget on various projects.
 - There is a maximum budget B and each project x comes with a cost c(x).
 - The voters cast approval ballots over the projects to indicate the projects the support.
 - The goal is to choose a set of projects W such that ∑_{x∈W} c(x) ≤ B that fairly represents the voters' preferences.
 - Participatory budgeting generalizes ABC elections by introducing cost to alternatives!

Participatory Budgeting

- In practice, the standard rule for participatory budgeting is a greedy rule: sort the projects by the number of approvals, go through that list and add a project to the winning set if it is still affordable.
 - Direct adaption of (sequential) multi-winner approval voting.
 - Outcomes tend to be highly unfair.
- The Method of Equal Shares can be extended to participatory budgeting while preserving its desirable properties.
 - This method has recently been used in some elections and results in much fairer results.
 - See https://equalshares.net for more information.

Further Reading

Reading

The following books and articles:

 F. Brandt. Rolling the Dice: Recent Results in Probabilistic Social Choice. In: Trends in Computational Social Choice. Al Access. 2017.

https://pub.dss.in.tum.de/brandt-research/psc_chapter.pdf

- M. Lackner and P. Skowron. Multi-Winner Voting with Approval Preferences. Springer. 2023.
 - https://library.oapen.org/bitstream/handle/20.500.12657/60149/978-3-031-09016-5.pdf?sequence=1&isAllowed=y
- S. Rey and J. Maly. The (Computational) Social Choice Take on Indivisible Participatory Budgeting. 2024. https://arxiv.org/abs/2303.00621

Image References

- Slide 3: https://www.shutterstock.com/image-vector/lottery-machine-balls-inside-lotto-260nw-458501299.jpg
- Slide 10: https://www3.nd.edu/~pweithma/Justice%20Seminar%20Images/gibbard.jpg
- Slide 13: https://cdn.lifestorynet.com/obituaries/01c/136161/136161-00-2x.jpg
- Slide 20: https://upload.wikimedia.org/wikipedia/commons/thumb/7/75/Thiele1.jpg/400px-Thiele1.jpg
- Slide 23: https://media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10107-023-01926-8/ MediaObjects/10107_2023_1926_Fig1_HTML.jpg
- Slide 30: https://equalshares.net/benefits/categories