Departamento de Electrónica e Informática

SISTEMAS DE CONTROLO I

PROBLEMAS

<u>Licenciatura em:</u> Engenharia de Sistemas e Informática

> Ano lectivo de 2005-2006 (1º Semestre)

> Eng^o João Lima Prof. Dr. António Ruano

<u>ÍNDICE</u>

1.	TRANSFORMADAS DE LAPLACE	
2.	MODELOS MATEMÁTICOS DE SISTEMAS	
	CONTÍNUOS	7
3.	REPRESENTAÇÃO DE SISTEMAS	16
4.	ANÁLISE DE SISTEMAS NO DOMÌNIO DO TEMPO	21
5.	ANÁLISE DE SISTEMAS NO DOMÌNIO DA	
	FREQUÊNCIA FREQUÊNCIA	26
6.	COMPENSAÇÃO DE SISTEMAS	28

1. TRANSFORMADAS DE LAPLACE

1.1 Calcule as Transformadas de Laplace das seguintes funções, indicando em todos os casos a região de convergência - RC.

a)

b)
$$f(t) = e^{-at}u(t)$$
.

Sugestão: Determine primeiramente a Transformada de Fourier, e a partir desta obtenha a Transformada de Laplace.

c)
$$f(t) = -e^{-at}u(-t)$$

Compare com o resultado obtido na alínea anterior e conclua.

d)
$$f(t) = e^{-t}u(t) + e^{-2t}u(t)$$

e)
$$f(t) = \delta(t) - \frac{4}{3}e^{-t}u(t) + \frac{1}{3}e^{2t}u(t)$$
.

Conclua sobre a existência da Transformada de Fourier.

Sugestão: No cálculo da Transformada de Laplace, utilize o resultado da alínea anterior.

f)
$$x(t) = \begin{cases} e^{-at} & 0 < t < v \\ 0 & caso \ contrário \end{cases}$$

apresente o mapa de pólos-zeros.

g)
$$f(t) = e^{-b|t|}$$
 , $b \in \Re$

Sugestão: Estude a paridade da função, esboce-a graficamente, indique o tipo de RC que irá obter, decomponha-a na soma de uma função direita com uma função esquerda.

1.2 Seja X(s) a expressão analítica da Transformada de Laplace da função x(t).

$$X(s) = \frac{s-3}{(s+1)(s+2)}$$
. Represente no plano complexo as possíveis RCs. Para cada

representação, tire conclusões sobre o sinal x(t), e existência de Transformada de Fourier.

1.3 Para cada uma das Transformadas de Laplace X(s) apresentadas, determine o correspondente sinal no domínio do tempo x(t). Justifique o perfil do andamento de x(t) em termos da configuração da RC.

a)
$$X(s) = \frac{1}{s^2 + 3s + 2}$$
, Re $\{s\} > -1$

b)
$$X(s) = \frac{1}{s^2 + 3s + 2}$$
, Re $\{s\} < -2$ Utilize o resultado da alínea a).

c)
$$X(s) = \frac{1}{s^2 + 3s + 2}$$
, $-2 < \text{Re}\{s\} < -1$ Utilize o resultado da alínea a).

1.4 Utilizando as propriedades, determine a T.L. de cada um dos sinais.

a)
$$y(t) = te^{-at}u(t)$$

b)
$$x(t) = \frac{t^2}{2}e^{-at}u(t)$$

Sugestão: Exprima x(t) em termos de y(t).

c)
$$x(t) = \frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$$

Sugestão: Utilize os resultados das alíneas a) e b).

d)
$$x(t) = (t-1)e^{-2(t-1)}u(t-1)$$

1.5 Considere a seguinte função de transferência: $H(s) = \frac{s+1}{(s+2)(s-3)}$

- a) Indique as possíveis RCs que se podem associar.
- b) Para cada uma das possibilidades indicadas na alínea anterior, classifique o sistema em termos de causalidade e estabilidade.

- 1.6 Considere os *sistemas lineares e invariantes no tempo (SLITs)*, representáveis pela seguinte equação diferencial: $\frac{dy(t)}{dt} + 3y(t) = x(t)$. Determine:
 - a) A expressão analítica da função de transferência H(s), sabendo-se que:

- b) A resposta impulsiva h(t) para cada sistema, classificando-o em termos de causalidade e estabilidade.
- c) Confirme os resultados da alínea anterior, verificando se são ou não soluções da equação diferencial, quando a entrada $x(t) = \delta(t)$.
- 1.7 Considere o seguinte sinal: $x(t) = e^{-a(t+1)}u(t+1)$, $a \in \Re$
- a) Diga justificando se a Transformada de Laplace Bilateral é igual à Transformada de Laplace Unilateral.
 - b) Determine a Transformada de Laplace Bilateral.
 - c) Determine a Transformada de Laplace Unilateral.
- 1.8 Considere sistemas causais estáveis caracterizados por equações diferenciais. Determine a resposta y(t), para cada entrada x(t) em cada uma das seguintes situações:

a)
$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t),$$

y(0)=3 e y'(0)=-5
x(t)=2u(t).

b)
$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t) \text{ condições iniciais nulas}$$
$$x(t) = e^{-t}u(t).$$

1.9 Considere o seguinte SLIT:

$$H(s) = \frac{s}{s^2 + 2s + 5}.$$

Determine a resposta y(t) quando à entrada é respectivamente:

- a) $x_1(t) = u(t)$ (degrau unitário).
- b) $x_2(t) = tu(t)$ (rampa unitária).
- c) $x_3(t) = \frac{1}{2}t^2u(t)$ (parábola unitária).
- d) Verifique a relação entre as respostas obtidas em termos da relação entre as entradas.

2. MODELOS MATEMÁTICOS DE SISTEMAS CONTÍNUOS

2.1 Considere o seguinte circuito RL série:

Determine a função de transferência $H(s) = \frac{V_{L}(s)}{E(s)}$ utilizando os seguintes métodos:

- a) Lei das malhas.
- b) Lei dos nós.
- c) Divisão da tensão de entrada sobre as impedâncias.

2.2 Considere o seguinte circuito RLC série:

R=3
$$\Omega$$
, L=1H, C= $\frac{1}{2}F$

Com as seguintes condições iniciais:

$$\begin{vmatrix} v_o(0) = 1 \\ \frac{dv_o(t)}{dt} \Big|_{t=0} = 2 \end{vmatrix}$$

a) Determine a equação diferencial que relaciona $v_{i}\left(t\right)$ com $v_{o}\left(t\right)$.

b) Suponha que $v_i(t) = e^{-3t}u(t)$. Usando a T.L. unilateral, determine $v_o(t)$.

2.3 Considere o circuito eléctrico:

Estabeleça um sistema de equações matricial, que lhe permita determinar a função de transferência $\frac{V_o\left(s\right)}{E\left(s\right)}$, e determine-a.

2.4 Considere o seguinte sistema mecânico translaccional, e determine:

- a) A rede mecânica associada ao sistema.
- b) O sistema de equações diferenciais que descrevem o seu funcionamento.
- c) As funções de transferência para cada situação representada por cada linha da tabela seguinte:

	entrada	saída
1	f	Xa
2	Xa	X _b
3	f	X _b

2.5 Considere o seguinte sistema mecânico translaccional, e determine:

- a) A rede mecânica associada ao sistema.
- b) O sistema de equações diferenciais que descrevem o seu funcionamento.
- c) A função de transferência $\frac{x_b(s)}{F(s)}$
- d) O equivalente eléctrico.
- e) A função de transferência $\frac{V_b\left(s\right)}{V_a\left(s\right)}$ referente à rede obtida na alínea d).

Compare com o resultado da alínea c) e tire conclusões.

2.6 Para o sistema translaccional da figura abaixo, determine:

- a) A rede mecânica associada ao sistema.
- b) As equações diferenciais que descrevem o funcionamento do sistema.
- c) A função de transferência $\frac{X_a(s)}{F(s)}$.
- d) O seu equivalente eléctrico.

(teste 2/2/94)

2.7 Para o sistema mecânico da figura abaixo, determine:

- a) A rede mecânica associada ao sistema.
- b) As equações diferenciais que descrevem o funcionamento do sistema.
- c) A função de transferência $\frac{X_3(s)}{T(s)}$.
- d) O seu equivalente eléctrico.

(exame 4/3/94)

- 2.8 Considere um disco com momento de inércia J suspenso por um fio de elasticidade de torção K, e emerso num fluido. Suponha que será aplicado um binário T(t), provocando rotação sujeita a fricção de coeficiente B.
 - a) Apresente a rede mecânica associada ao sistema.
- b) Estabeleça a equação diferencial que relaciona o binário aplicado T(t) com o momento angular $\theta(t)$.
- c) Determine a função de transferência considerando T(t) a entrada e $\theta(t)$ a saída.
 - d) Determine o equivalente eléctrico.

2.9 Considere o seguinte sistema mecânico rotacional, e determine:

- a) A rede mecânica associada ao sistema.
- b) O sistema de equações diferenciais na forma matricial que descreve o seu funcionamento.
- c) O sistema de equações na forma matricial que permite determinar a função de transferência $\frac{\theta_3(s)}{T(s)}$.
 - d) O equivalente eléctrico.
- 2.10 Considere um termómetro de mercúrio com os seguintes parâmetros:

R_g - resistência térmica do vidro

R_m - resistência térmica do mercúrio

C_g - capacidade térmica do vidro

C_m - capacidade térmica do mercúrio

Em determinado instante, o termómetro é submetido a uma fonte de calor à temperatura θ_0 .

- a) Estabeleça a rede térmica associada ao sistema.
- b) Apresente o sistema de equações diferenciais que o caracterizam.
- c) Determine a função de transferência $\frac{\theta_m(s)}{\theta_g(s)}$.

2.11 Considere o sistema fluídico representado na figura:

em que se definem:

q_i, q₁, q₂ - fluxos; à entrada, na válvula 1, na válvula 2.

R₁, R₂ - resistências de fluxo; na válvula 1, na válvula 2.

h₁, h₂ - alturas dos níveis de fluido; no vaso 1, no vaso 2.

A₁, A₂ - áreas das superfícies transversais; do vaso 1, do vaso 2.

- a) Determine as equações diferenciais que caracterizam o sistema.
- b) Determine a rede eléctrica equivalente.
- c) Determine as equações diferenciais que caracterizam o sistema da alínea b) e compare com o resultado obtido em a).
 - d) Determine as funções de transferência $H_1(s)/Q_i(s)$ e $H_2(s)/Q_i(s)$.

2.12 Para o sistema de controlo da figura seguinte,

a força de atracção no solenóide é dada por $f_c = k_c i_c$

a voltagem aplicada ao gerador é dada por $e_f = k_x x$

Quando a voltagem aplicada à bobina da solenóide é zero, a mola está em repouso e x=0.

- a) Determine todas as equações necessárias relacionando as variáveis do sistema.
- b) Desenhe um diagrama de blocos para o sistema de controlo. O diagrama deve incluir blocos que indiquem especificamente as variáveis $I_c(s)$, X(s), $I_f(s)$, $E_g(s)$ e T(s).
- c) Determine a função de transferência W(s)/X(s).

(exame 23/1/95)

2.13 Para o sistema mecânico da fig. seguinte, determine:

- a) As equações diferenciais que descrevem o sistema.
- b) A função de transferência $\frac{X_1(s)}{F(s)}$
- c) O circuito eléctrico equivalente

(exame 13/2/95)

2.14 A fig. seguinte ilustra o diagrama esquemático de um motor DC. Considere que o motor é controlado pelo indutor.

- a) Determine as equações diferenciais que descrevem o sistema.
- b) Desenhe um diagrama de blocos para o sistema de controlo. O diagrama deve conter todas as variáveis de interesse.
- c) Determine a f.t. $\frac{\theta(s)}{V_f(s)}$

(exame 20/9/95)

2.15 Dado o sistema mecânico rotacional da fig., calcule:

- b) O sistema eléctrico análogo.
- 2.16 Para o sistema mecânico da fig. seguinte, determine:

- a) As equações diferenciais do sistema
- b) A função de transferência $\frac{\theta_1(s)}{T(s)}$
- c) Quais os valores da inércia e do atrito reflectidos na entrada

3. REPRESENTAÇÃO DE SISTEMAS

 $3.1\,$ Simplifique cada um dos diagramas de blocos das alíneas seguintes, de forma a obter cada função de transferência Y(s)/X(s).

a)

b)

c)

d)

e)

 $3.2\,$ Para o diagrama de blocos da figura seguinte, determine Y(s) em função de $R_1(s)$ e de $R_2(s).$

3.3 Para cada um dos diagramas de blocos apresentados, determine o diagrama de fluxo de sinal correspondente, e aplicando a fórmula de transmitância de Mason, determine a função de transferência C(s)/R(s):

(teste 2/2/94)

c)

b)

(exame 4/3/94)

3.4 Considere o seguinte diagrama de blocos:

Determine, utilizando a fórmula de transmitância de Mason, as funções de transferência:

$$X(s)/V_1(s)$$
 e $X(s)/V_2(s)$ (teste 23/1/95)

 $3.5\,$ Na figura seguinte está representado um diagrama de blocos de um regulador de nível de água numa caldeira. Determine, utilizando a regra de Mason, a função de transferência Y(s)/U(s).

(exame 13/2/95)

3.6 Na figura seguinte está representado um diagrama de fluxo de sinal de um sistema de controlo realimentado. Determine, utilizando a regra de Mason, a função de transferência C(s)/R(s).

(exame 20/9/95)

- 3.7 Dado o seguinte diagrama de fluxos, calcule:
- a) A função de transferência entre a perturbação P(s) e a saída C(s).
- b) A função de transferência entre o sinal de entrada X(s) e a saída C(s).

3.8 Considere o sistema descrito pelas seguintes equações diferenciais:

$$\begin{split} m\ddot{x}(t) + f\dot{x}(t) + kx(t) &= A_i p_i(t) - A_o p_o(t) - C_r q(t) \\ q(t) &= C_v x(t) \\ A_j p_o(t) &= ky(t) \\ q(t) &= A_j \dot{y}(t) \end{split}$$

- a) Construa um diagrama de blocos do sistema, sendo $P_i(s)$ a entrada do sistema, e $P_o(s)$ a saída do sistema.
- b) Determine o grafo de fluxo de sinal correspondente.

Aplicando a regra de Mason, determine a função de transferência $\frac{P_o(s)}{P_i(s)}$

4. ANÁLISE DE SISTEMAS NO DOMÍNIO DO TEMPO

4.1 Considere o seguinte mapa de pólos-zeros referente a um sistema de ganho estático unitário.

Admita que à entrada do sistema, é aplicado um degrau unitário, determine:

- a) A resposta do sistema.
- b) Período das oscilações amortecidas.
- c) Tempo de pico.
- d) Sobreelevação.
- e) Tempo de estabelecimento.

4.2 Considere o sistema:

- a) Determine a relação de amortecimento e a frequência natural não amortecida do sistema.
- b) Assumindo uma entrada em degrau, determine o tempo de estabelecimento, o tempo de pico e a percentegem de sobreelevação.

c) Se a entrada for uma rampa unitária, qual o erro em regime estacionário?

(teste 23/1/95)

4.3 Na figura seguinte está representado o diagrama de blocos de um sistema de controlo, onde foi aplicado um degrau unitário à entrada.

- a) Calcule o valor de k de modo a que a percentagem de sobreelevação seja de 37%.
- b) Calcule o instante em que ocorre o 1º pico.
- c) Esboce a curva de resposta do sistema a um degrau unitário

(exame 13/2/95)

4.4 Na figura seguinte está representado o diagrama de blocos de um sistema de controlo.

- a) Determine a relação de amortecimento , e a frequência natural não amortecida do sistema
- b) Assumindo uma entrada em degrau, determine o tempo de estabelecimento, o tempo de pico e a percentagem de sobreelevação
- c) Se a entrada for uma rampa de amplitude 2, qual o erro em regime estacionário?

(exame 20/9/95)

4.5 Utilizando o critério de Routh-Hurwitz, localize as raízes de D(s)=0, concluindo sobre a estabilidade dum sistema cuja função de transferência tem por denominador D(s), dado por:

a)
$$D(s) = s^5 + s^4 + 10s^3 + 72s^2 + 152s + 240$$

b)
$$D(s) = s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10$$

c)
$$D(s) = s^7 + 4s^6 + 5s^5 + 5s^4 + 6s^3 + 9s^2 + 8s + 2$$

d)
$$D(s) = s^4 + 2s^3 + 4s^2 + 8s + 9$$

4.6 Considere o sistema com função de transferência:

$$\frac{Y(s)}{R(s)} = \frac{1}{s^4 + 3s^3 + 6s^2 + 12s + 8}$$

Comente a estabilidade do sistema. Quais os pólos do sistema?

(teste 23/1/95)

4.7 Considere a seguinte função de transferência:

$$\frac{Y(s)}{X(s)} = \frac{s+3}{s^4 + 3s^3 + 6s^2 + 12s + 8}$$

- a) Comente a estabilidade do sistema
- b) Com base nos resultados da alínea anterior, determine as raízes da equação característica.
- 4.8 Considere a seguinte função de transferência:

$$\frac{Y(s)}{X(s)} = \frac{s+3}{s^4 + 3s^3 + 6s^2 + 12s + k}$$

- a) Comente a estabilidade do sistema
- b) Com base nos resultados da alínea anterior, determine as raízes da equação característica no limite da estabilidade.

(exame 20/9/95)

4.9 Considere o seguinte sistema realimentado:

Determine o lugar das raízes, assinalando os pontos mais relevantes quando:

a)
$$G(s) = \frac{4}{s(s+2)}$$
, $H(s) = \frac{s+3}{3}$

b)
$$G(s) = \frac{1}{s(s-1)(s+6)}$$
, $H(s) = s+1$

4.10 Para cada sistema G(s), pertencente ao respectivo sistema de controlo com realimentação unitária, negativa:

a)
$$G(s) = \frac{k}{s(s+3)(s+6)}$$

(teste 2/2/94)

b)
$$G(s) = \frac{k}{s(s+3)^2}$$

(exame 4/3/94)

- a) Esboce o lugar das raízes para k positivo, determinando o melhor possível os pontos de interesse.
- b) Admita que pretende um das raízes dominantes de 0.866. Determine, aproximadamente, o valor de k que satisfaz essa condição. Indique adicionalmente quais serão
 - a percentagem de sobreelevação,
 - o tempo de pico
 - o tempo de estabelecimento
 - o erro em regime estacionário

quando se aplica um degrau unitário ao sistema em malha fechada.

4.11 No sistema da fig., $\tau_m = 0.25$ e seleccionou-se Ak_m=10.

Trace o lugar das raízes em função da constante de tempo do amplificador, τ_a . Analise o efeito de τ_a na estabilidade do sistema. Qual o valor máximo de τ_a para o qual o sistema ainda é estável.

4.12 Para o sistema com f.t. em malha aberta:

$$GH(s) = \frac{A(s-1)}{s(s+2)^2}$$

- a) Esboce o lugar das raízes para A<0.
- b) Determine os valores de A para os quais o sistema é estável.
- c) Determine os pólos do sistema no limite da estabilidade.

4.13 Trace o lugar das raízes dos sistemas cuja f.t. em malha aberta é:

a)
$$GH(s) = \frac{k}{(s+1)(s+3)(s^2+3s+5)}$$

b)
$$GH(s) = \frac{k(s+1)(0.5s+1)}{s^3}$$

Determine adicionalmente os valores de k para os quais o sistema é instável.

4.14 Esboce o lugar das raízes ($\beta > 0$) para o sistema com f.t.

$$GH(s) = \frac{4s+2}{s(s+\beta)(s+3)}$$

5. ANÁLISE DE SISTEMAS NO DOMÍNIO DA FREQUÊNCIA

- **5.1** Represente o diagrama de Bode assintótico (amplitude e fase) para o seguinte sistemas $G(s) = \frac{s+10}{s+0.1}$
- 5.2 Construa os diagramas de Bode assintóticos para o sistema com f.t. em malha aberta:

$$GH(s) = \frac{k(s+1)}{s^2 - 1}$$

5.3 A figura representa o traçado assintótico do ganho da f.t. em malha aberta de um sistema, de fase mínima, com realimentação unitária.

- a) Esboce o traçado de fase
- b) calcule a f.t.
- c) Diga se o sistema é estável. Justifique.
- 5.4 Obtenha a f.t. G(s) para o diagrama da fig. seguinte. Considere o sistema de fase mínima.

5.5 A f.t. em malha aberta de um sistema é:

$$GH(s) = \frac{1}{s(1+0.5s)(1+2s)}$$

a) Construa os traçados assintóticos dos diagramas de Bode

- b) Determine os valores aproximados das margens de ganho e de fase.
- c) Se for colocada uma malha, com f.t. $\frac{1+3s}{1+5s}$, em série com o caminho para a frente, de quanto deverá ser aumentado o ganho para manter a margem de ganho calculada em a)?
- 5.6 Para cada sistema G(s) pertencente ao respectivo sistema de controlo com realimentação unitária, negativa:

i)
$$G(s) = \frac{1}{s(s+1)^2}$$
 (teste 2-2-94)

ii)
$$G(s) = \frac{1}{s(s+1)(s+2)}$$
 (exame 4-3-94)

- a) Esboce o diagrama de bode assintótico do sistema.
- b) Determine as suas margens de fase e de ganho.
- 5.7 Considere o sistema com função de transferência em malha aberta:

$$GH(s) = \frac{k_1(1+k_2s)}{s(s-1)}, k_1, k_2 > 0$$

Determine, utilizando o critério de estabilidade de Nyquist, para que valores de k₁, k₂ o sistema em malha fechada é estável. Justifique.

5.8 Para o sistema com f.t.. em malha aberta:

$$GH(s) = \frac{k(s+1)}{s^{2}(s^{2}+4s+8)}$$

- a) Utilizando o critério de estabilidade de Nyquist, determine para que valores de k o sistema é estável.
- b) Determine a margem de ganho, como função de k.
- 5.9 Considere o sistema com f.t. em malha aberta:

$$GHS(s) = \frac{k(s+1)(s+2)}{s^3}, \quad k > 0$$

Determine, utilizando o critério de estabilidade de Nyquist, para que valores de k o sistema em malha fechada é estável. Justifique.

6. COMPENSAÇÃO DE SISTEMAS

- 6.1 Considere um sistema de controlo com $G(s) = \frac{k}{s(s+2)}$. Usando técnicas de frequência, dimensione um compensador série do tipo $G_c(s) = \frac{1+aTs}{1+Ts}$, a < 1 tal que em malha fechada apresente as seguintes especificações:
- Erro estático na resposta à rampa $\leq 5\%$.
- Margem de fase > 45°.
- 6.2 Considere o sistema com realimentação unitária e função de transferência:

$$G(s) = \frac{k}{s(s+2)(s+4)}$$

- a) Esboce o lugar das raízes para k>0
- b) Desenhe um compensador avanço, em série com G(s), de tal modo que o sistema em malha fechada satisfaça as seguintes especificações:
 - i) as raízes dominantes tenham um w_n =3 e =0.5
 - ii) a constante de velocidade seja superior a 2.7

NOTA: se após a 1ª iteração não conseguir satisfazer ambas as especificações, escreva como proceder seguidamente.

6.3 Considere um sistema com realimentação unitária e função de transferência:

$$G(s) = \frac{k}{s(s+1)(5s+1)}$$

- a) Esboce o diagrama de Bode assintótico.
- b) Desenhe um compensador avanço de tal modo que o sistema em malha fechada satisfaça as seguintes especificações:
 - i) o erro em regime estacionário para uma entrada em rampa seja inferior a
 12.5% da amplitude da rampa de entrada
 - ii) margem de fase = 30°
- 6.4 Para um sistema com f.t. em malha aberta:

$$GH(s) = \frac{k}{s(s/3+1)}$$

- a) Determine o valor de k que minimiza o erro em regime estacionário, assegurando simultaneamente uma margem de fase de 45°
- b) Projecte uma malha de compensação capaz de reduzir para metade a constante de erro de velocidade do sistema, sem alterar significativamente a sua margem de fase.
- 6.5 Considere um sistema com realimentação unitária e f.t.

$$GH(s) = \frac{2}{s(s+1)}$$

- a) Esboce o diagrama de Bode assintótico
- b) Considere seguidamente um novo sistema, com f.t. para a frente:

$$G(s) = \frac{e^{-s\frac{\pi}{4}}}{s(s+1)}$$

Utilizando os resultados da alínea anterior, desenhe um compensador avanço de tal modo que o sistema em malha fechada tenha uma margem de fase = 30°.

6.6 Considere o sistema com realimentação unitária e função de transferência:

$$G(s) = \frac{1}{(s+1)(s+3)}$$

Dado que se pretende que o sistema siga sem erro em regime estacionário um degrau de entrada, um compensador PI (proporcional + integral), com f.t.

$$G_c(s) = \frac{k(s+a)}{s}$$

foi colocado em série com G(s). Determine, utilizando a técnica do lugar das raízes, os parâmetros k e a do compensador, de tal modo que o sistema em malha fechada satisfaça as seguintes especificações:

- i) o coeficiente de amortecimento das raízes dominantes seja 0.707
- ii) o tempo de estabelecimento (critério de 2%) do sistema seja inferior a 4 seg.

NOTA: se após a 1ª iteração não conseguir satisfazer ambas as especificações, escreva como proceder seguidamente.

- 6.7 Considere um sistema de controlo com realimentação unitária e com função de transferência para a frente $G(s)=\frac{k}{\left(s+2\right)\left(s+4\right)}$. Determine un controlador P, PI ou PID que obtenha um erro em regime estacionário nulo para uma entrada em degrau, e cujo tempo de establecimento a 2% $(t_s(2\%)=\frac{4}{\xi w_n})$ para uma entrada em degrau seja de 2/3 e cujo ξ seja de $1/\sqrt{2}$.
- 6.8 Considere um sistema de controlo com realimentação unitária e função de transferência para a frente $G(s) = \frac{20}{s\left(s+1\right)\left(s+2\right)}$. Projecte um compensador atraso, pelo método da resposta na frequência, de modo a que a constante de erro de velocidade permaneça inalterada e que a margem de fase seja de 45°.