Hendrix Programming Team Reference

April 5, 2023

Contents

1	Nev	vcomers' Guide	7
2	Pyt	hon Reference	9
	2.1	Template	9
	2.2	Math	9
	2.3	Lists/Tuples	10
	2.4	Strings	11
	2.5	Loops	11
	2.6	Stack	12
	2.7	Queue/deque	12
	2.8	Priority queue	12
	2.9	Set	12
_	_		
3		a Reference	13
	3.1	Template	13
	3.2	Scanner	13
	3.3	Math	13
	3.4	String	14
	3.5	StringBuilder	14
	3.6	Character	15
	3.7	Arrays	15
	3.8	ArrayList	15
	3.9	Stack	16
		Queue/ArrayDeque	16
	3.11	Comparator	16
	3.12	Priority Queue	17
	3.13	Set	17
	3.14	Map	18
	3.15	BigInteger	19
	3.16	Sorting	19
	3.17	Fast I/O	20
4	Lim	, dite	21
4	171111	11 15	21
5		a Structures	23
	5.1	Pair	23
	5.2	Bag/multiset	23
	5.3	Union-find	23
	5.4	Tries	24
	5.5	Adjustable priority queue	24
	5.6	Segment trees and Fenwick trees	24
	5.7	Splay trees and/or treaps	24

CONTENTS

6	Enumeration and search 25						
	6.1	Complete search	25				
	6.2	Binary search	25				
	6.3	Ternary search	26				
7	Gra	nhe e	29				
•	7.1	±	29 29				
	7.2		$\frac{29}{29}$				
	7.3	1 1	$\frac{25}{29}$				
	7.4		31				
	7.5		32				
	7.6		33				
	7.7	1 0 0	33				
	7.8		35				
	7.9	<u> </u>	36				
		· • • · · · · · · · · · · · · · · · · ·	37				
		1	37				
	•		37				
		1 01	$\frac{38}{38}$				
			$\frac{38}{38}$				
			-				
8	Tree	es	39				
9	Dyn	namic Programming	41				
10	Q		40				
10		9	43				
			43 44				
			$\frac{44}{44}$				
		8	44 44				
	10.4	Sum arrays	11				
11	Mat	chematics 4	4 5				
			45				
			45				
			46				
			47				
		11.4.1 Trial division	47				
		11.4.2 Sieving	48				
	11.5	Divisors and Euler's Totient Function	48				
	11.6	Factorial	48				
	11.7	Combinatorics	49				
		11.7.1 Subsets and permutations	49				
		11.7.2 Binomial and multinomial coefficients	49				
	11.8	Probability	50				
	11.9	Game Theory	50				
12	Bit	Tricks	51				
13	Geo	metry 5	55				
-0		·	55				
			55				
			56				
			56				
			56				
			57				

CONTENTS

	13.7 Convex Hull	
14	Miscellaneous	61
	14.1 2D grids	61
	14.2 Hexagonal grids	62
	0 1	62
		62
	14.3.2 Kadane's Algorithm	63
	14.3.3 2D prefix scan	63
	14.3.4 Doubling windows (no inverse; $O(1)$ queries; no updates)	63
	14.3.5 Fenwick trees (inverse required; $O(\lg n)$ queries; $O(\lg n)$ updates)	63
	14.3.6 Segment trees (no inverse required; $O(\lg n)$ queries; $O(\lg n)$ updates)	64
	14.4 Cycle finding	64
15	Formulas	65
16	Advanced topics	67
A	Reference	69
	A.1 Primes	69
	A.2 Pascal's Triangle	69
\mathbf{B}	Resources	71

CONTENTS

Newcomers' Guide

How To Get Good at Competitive Programming in XXX Easy Steps:

- 1. Visit http://open.kattis.com, sign up for a free account, and solve lots of low-difficulty (1.x rating) problems. (Click on "Problems" and sort by difficulty ascending order.)
- 2. No seriously, lots of them. You should aim to solve at least 50.
- 3. Start reading through this guide, one small section at a time. Don't be afraid to just skim past things that are confusing at first. Try solving some of the problems linked from each section.
- 4. Listen to more experienced team members coding/explaining solutions to more difficult problems. Then see if you can recreate the solutions on your own.
- 5...
- 6. profit!

Python Reference

Python's built-in support for arbitrary-size integers (using BigInteger in Java is a pain!) and built-in dictionaries with lightweight syntax make it attractive for certain kinds of problems.

2.1 Template

Below is a basic template showing how to read typical contest problem input in Python 3:

```
n = int(input())  # Read an int on a line by itself
for _ in range(n):  # Do something n times

# Read all the ints on a line into a list
xs = map(int, input().split())

# Read a known number of ints into variables
p, q, r, y = map(int, input().split())
```

2.2 Math

The standard math class contains useful standard mathematical constants and operations. Typically we write

import math

and then access functions by prefixing them with math.

- XXX basic math and comparison operators
- π is math.pi, and e is math.e. Also, math.exp(x) computes e^x .
- abs finds the absolute value.
- min and max find the min or max of multiple values, or a list of values.
- math.comb(n,k) is the number of ways to choose k items out of n (i.e. a binomial coefficient $\binom{n}{k}$).
- math.factorial(n) is $n! = 1 \cdot 2 \cdot \cdots \cdot n$.
- math.floor, math.ceiling, and round round values down, up, or to the nearest integer respectively. round(n,d) rounds n to d decimal places.

- math.sin, math.cos, math.tan, math.asin, math.acos, math.atan compute standard trig functions, and all expect arguments in radians. math.atan2(y,x) computes the angle to the point (x,y).
- math.degrees converts from radians to degrees, and math.radians does the opposite.
- math.log(x) computes the natural log of x; math.log(x,b) computes $\log_b x$.
- math.dist(p,q) computes the Euclidean distance between the points p and q in n dimensions, represented by tuples or lists of length n.
- math.hypot(x,y,\dots) computes the Euclidean distance from the origin to the *n*-dimensional point (x,y,\ldots) .
- math.sqrt(x) is \sqrt{x} .
- math.pow(x,y) computes x^y .

2.3 Lists/Tuples

- Python lists are written using square brackets and commas: [1,2,3,4,5].
- Python tuples are written using commas and no square brackets: 1,2,3,4,5.
- Lists are *mutable* (they can be appended to, popped from, modified ...) and tuples are *immutable* (so they can be used as dictionary keys).
- You can assign multiple elements of XXX
- Indexing (with negative indices)
- slices [lo,hi)
- append O(1)
- pop() from end is O(1)
- Split up a string using split
- Convert with list
- Sorting, .sort() vs sorted (sort with reverse = true, sort by custom key)

XXX write about list comprehensions

XXX how to make 2D lists, avoid gotcha with references

item in 1st tests whether item is an element of the list 1st, but takes O(n) since it uses a linear search. If you want to be able to quickly check whether an item is an element of a collection, use a set instead of a list.

pop(0) is O(n)! Use a deque if you want a queue.

2.4 Strings

Values of type str represent sequences of characters. Strings in Python are sequences, so in some ways they are similar to lists, e.g. strings can be concatenated with +, indexed, sliced, and iterated through using a for loop.

Python does not have a separate character type; there are only one-character strings. Strings can be compared lexicographically (dictionary order) using standard comparison operators.

- The split splits a string into a list of strings:
 - s.split(), with no arguments, splits s on whitespace. It is very common to use this while reading a line of input, to split it into individual words/tokens.
 - s.split(p) splits s at every occurrence of p. For example, s.split(',') would split on commas.
- As in Java, Python strings are immutable. If you need to mutate individual characters of a string, first convert the string into a list of characters using list(s).
- d.join(lst) joins the list of strings lst into a single string, placing d in between each. For example, ';'.join(['hi', 'there', 'world']) == 'hi;there;world'. Turn a list of characters back into a string using ''.join(chars).
- s in t tests whether the string s occurs as a substring of t.

Since strings are immutable, adding to the end of a string, as in s + |Q|, takes O(n) time. Building an entire string by adding characters to the end one at a time thus takes $O(n^2)$ time! Instead, append each character to a list of characters, and then use ''.join(chars) to turn the list into a string at the end.

2.5 Loops

- for loops can be used to iterate through the elements of a collection (such as a list, set, or deque), the characters of a string, the keys of a dictionary.
- enumerate can be used to loop through the elements of a collection and their indices at the same time. For example:

```
for i,e in enumerate("ABC"):
   print(f'Element {e} was at index {i}.')
```

Notice that the index comes first, then the element.

• range(n) generates the sequence of integers from 0 through n-1. For example,

```
for i in range(6):
   print(i)
```

prints the numbers 0 through 5. Sometimes range can be used if you just want to repeat an action a certain number of times. For example:

```
n = int(input())
for _ in range(n):
   print("hey")
```

• reversed iterates through the elements of a collection in reverse order, for example:

```
for x in reversed("ABC"):
   print(x)
```

2.6 Stack

```
backspace, delimitersoup, islands, pairingsocks, reservoir, restaurant, symmetricorder,
throwns, zagrade
```

Python does not have any special built-in class for stacks; you can simply use a list as a stack, with the end of the list corresponding to the top of the stack. Use the append method for pushing and the pop method for popping, both of which take O(1) time. See the below example solution code for backspace.

2.7 Queue/deque

```
eenymeeny, coconut, ferryloading4, integerlists, shuffling
```

XXX use deque

2.8 Priority queue

2.9 Set

The built-in set type stores a collection of values where each item occurs at most once, where we also do not care about the order. set uses a hash table so supports O(1) add, remove, and membership testing.

- Use len(s) to get the size of a set in O(1).
- Use in to test whether a value is contained in a set (O(1)).
- Use pop() to remove and return one arbitrary element from the set.

To continue iterating until a set becomes empty, you can write

Java Reference

3.1 Template

3.2 Scanner

Scanner is relatively slow but should usually be sufficient for most purposes. If the input or output is relatively large (> 1MB) and you suspect the time taken to read or write it may be a hindrance, you can use Fast I/O (§3.17, page 20).

Be sure to read the warning in the comment below about calling nextLine() after nextInt() and the like!

3.3 Math

The standard Math class contains useful standard mathematical constants and operations. All are static, so they can be accessed by prefixing their names with Math., i.e. Math.cos.

- Constants E and PI represent (floating-point approximations of) e and π .
- abs finds the absolute value.
- min and max find the min or max of two values. A common trick for saving a bit of typing is to use something like

```
m = Math.max(m, val);
```

if you need m to accumulate the maximum of a set of values.

• round rounds a floating-point number to the nearest integer. ceil and floor round up and down, respectively. Note that whereas round returns a long when given a double, for some reason ceil and floor both return double, so you may need to cast the results:

```
double x = ...
long n = (long)Math.floor(x);
```

- $\exp(x)$ computes e^x . $\log(x)$ computes $\ln x$.
- sqrt computes the square root. hypot(x,y) computes $\sqrt{x^2+y^2}$.
- pow(a, b) computes a^b .

- sin, cos, tan, acos, asin, atan do what you would expect. Note also atan2(y,x) which returns an angle θ such that it converts rectangular coordinates (x,y) into polar coordinates (r,θ) . This is almost like atan(y/x) except that it avoids division by zero and handles all four quadrants properly.
- toDegrees and toRadians convert angles from radians to degrees and degrees to radians, respectively.

3.4 String

```
& battlesimulation, bing, connectthedots, itsasecret, shiritori, suffixarrayreconstruction
```

The String type can be used in Java to represent sequences of characters. Some useful String methods include:

- concatenation (+)
- substring(i) yields the substring starting at index i up to the end of the string
- substring(i,j) yields the substring starting at i (inclusive) and ending *just before* j (same as Python slices).
- charAt(i) yields the char at index i.
- toCharArray() converts to a char[], which can be convenient if you need to do a lot of indexing ([i] instead of charAt(i)).
- split(String) splits a string into a String[] of pieces between occurrences of the splitting string.
- endsWith(String), startsWith(String), indexOf(String), and replace(...) can occasionally be useful.

Below is shown a solution to ③ sumoftheothers, which uses split followed by Integer.parseInt to read the integers on each line (necessary in this case because the input does not specify how many integers will be on each line, although this is atypical).

Strings are immutable, which means in particular that concatenation has to allocate an entirely new String and copy both arguments. Hence repeatedly appending individual characters to the end of a String takes $O(n^2)$ time, since the entire string must be copied with each append operation. In this situation, either pre-allocate a sufficiently large char[], or use the S StringBuilder class.

3.5 StringBuilder

```
itsasecret, joinstrings
```

StringBuilder is a *mutable* string class which supports efficient append and modification operations. If you need to build up a long string by incrementally appending text bit by bit, you should use StringBuilder instead of using String directly. StringBuilder also supports a reverse() method (unlike String).

As a simple example, the below code prints 0291817161514131211101987654321.

```
StringBuilder sb = new StringBuilder();
for (int i = 1; i <= 20; i++) {
    sb.append("" + i);
}
System.out.println(sb.reverse());</pre>
```

3.6 Character

ummcode, softpasswords

[TODO: Useful Character class methods like isDigit, isAlphabetic, etc.]

3.7 Arrays

falcondive, freefood, traveltheskies

The basic syntax for creating a primitive array in Java is, for example,

```
int[] array = new int[500];
```

Some tips and tricks:

- Array indexing starts at 0; however, problems sometimes index things from $1 \dots n$. In such a situation it is usually a good idea to simply create an array with one extra slot and leave index 0 unused. The alternative (fiddling with indices by subtracting and adding 1 in the right places) is quite error-prone.
- You can initialize an entire array to a given value using Arrays.fill(array, value).
- If you only want to initialize part of an array, use Arrays.fill(array, fromIndex, toIndex, value) to fill the array from fromIndex (inclusive) up to toIndex (exclusive).
- You can sort the contents of an array in-place using Arrays.sort; see Sorting (§3.16, page 19).
- You can use Arrays.binarySearch(array, key) to look for key within a sorted array. Read the documentation to make sure you understand how to interpret the return value. See also Binary search ($\S6.2$, page 25).
- Other methods from the Arrays class may also occasionally be useful.
- To iterate over the items in an array, you can use foreach syntax:

```
for (int item : array) {
  // do something with i
```

3.8 ArrayList

SurrayList represents a standard dynamically-extensible array, doubling the underlying storage when it runs out of space so that appending takes O(1) amortized time. The add, get, set, size, and is Empty methods are useful, in addition to the ability to iterate over the elements in order. Avoid methods such as contains, indexOf, remove, and the version of add that takes an index, all of which take linear time. (If you think you want any of these methods, it's probably a sign that you ought to be using a different data structure.)

If you need to store a list/array and you know in advance exactly how much storage space you will need, then prefer using a primitive array which has less overhead as well as more concise syntax. On the other hand, if you want to be able to dynamically extend a list by appending new elements to the end, use ArrayList. (If you want to be able to dynamically extend a list on both ends, use an ArrayDeque ($\S3.10$, page 16).)

3.9 Stack

 \leq Stack provides a generic stack implementation with O(1) operations. Standard methods include is Empty, push, pop, peek, and size. The code below shows a sample solution to \leq backspace using \leq Stack (and \leq StringBuilder).

Stacks are often used in implementing DFS (§7.4, page 31) as well as dealing with parentheses, or nesting more generally (③ pairingsocks, ⑤ islands, ⑥ reservoir).

3.10 Queue/ArrayDeque

```
eenymeeny, coconut, ferryloading4, integerlists, shuffling
```

Queue, unlike \leq Stack, is not a class but an interface. There are several classes implementing the Queue interface, but the best in the context of competitive programming is probably \leq ArrayDeque, which in fact implements a double-ended queue or deque, providing O(1) amortized addition and removal from both ends.

The add and remove methods implement enqueueing and dequeueing. To access both ends, use addFirst, addLast, removeFirst, and removeLast, all of which run in O(1) amortized time. (add is the same as addLast and remove is the same as removeFirst.)

Queues are very commonly used in implementing Breadth-First Search (§7.3, page 29) and in simulations of various sorts (for examples of the latter, see the selection of problems above).

As a simple example of the syntax for creating and using a queue, the below code puts the numbers 1 through 10 in a queue and then extracts them to print them out in the same order.

```
Queue<Integer> q = new ArrayDeque<>();
for (int i = 1; i <= 10; i++) {
   q.add(i);
}
while (!q.isEmpty()) {
   System.out.println(q.remove());
}</pre>
```

3.11 Comparator

A © Comparator is used to specify a custom ordering on some type, potentially different than its "natural" ordering. Typically a Comparator can be passed as an optional argument to things that require an ordering. For example, given an ArrayList<Integer> arr, one can use Collections.sort(arr) to sort it in

increasing numeric order. If a different order is wanted, one can pass a Comparator as the second argument to sort, as in

```
Collections.sort(arr, Collections.reverseOrder());
to sort in descending order, or
Collections.sort(arr, (i,j) -> q[i] - q[j]);
```

to sort a list of *indices* by the corresponding value in an array q. A Comparator can also be used as an extra argument to the constructor when creating a data structure that depends on ordering, such as a PriorityQueue, TreeSet, or TreeMap.

[TODO: Constructing Comparators via lambda; constructing via things like comparing, thenComparing. Collections.reverseOrder().]

3.12 PriorityQueue

```
\delta bank, ferryloading3, guessthedatastructure, knigsoftheforest, vegetables
```

A PriorityQueue allows adding new elements (add) and removing the **minimum** element (remove), both in $O(\lg n)$ time. peek can also be used to get the minimum in O(1) without removing it. Priority queues are commonly used in Dijkstra's algorithm (§7.7, page 33), event-based simulations (ferryloading3), and generally any situation where we need to do an "online sort", that is, we need to get items in order from smallest to biggest, but more items may continue to arrive/be generated as we go.

Methods you should generally not use with PriorityQueue include remove(Object) and contains(Object), which take linear time.

The default constructor makes an empty min-PQ. If you want to use a different ordering, there is another constructor which takes a Comparator.

• For example, if you want a **max** priority queue, where **remove()** yields the largest element, write something like

```
PriorityQueue<Integer> pq = new PriorityQueue<>(Collections.reverseOrder());
```

• If you want some other ordering, you can also use a lambda to construct a Comparator on the fly, for example:

```
PriorityQueue<Integer> pq = new PriorityQueue<>((a,b) -> dist[a] - dist[b]);
```

Code like the above is used in Dijkstra's algorithm where we want to compare vertices by their best recorded distance from the start vertex.

Traditional presentations of priority queues often have a decrease key operation which can decrease the priority of an item (or an adjust key operation which can arbitrarily change the priority) and reestablish the data structure invariants in $O(\lg n)$ time; this operation is used, for example, in implementing Dijkstra's algorithm efficiently (§7.7, page 33). However, the Java PriorityQueue class has no such method. One workaround is to simply call remove and then add so the item gets re-added with the new priority. However, remove takes linear time, so this is not ideal, although in many cases it is still good enough. For those (relatively rare) cases when an $O(\lg n)$ decrease key operation is truly essential, see Adjustable priority queue (§5.5, page 24).

3.13 Set

🚱 boatparts, bookingaroom, engineeringenglish, whatdoesthefoxsay, securedoors, bard, control

The Set interface represents a collection of items where each item occurs at most once. Operations supported by all Sets include add, remove, contains, size/isEmpty.

There are two main classes implementing Set:

- \leq HashSet is implemented using a dynamically expanding hash table. It features O(1) add, remove, and contains.
- \(\frac{1}{2} \) TreeSet is implemented using a balanced binary tree (a red-black tree, in fact), and supports add, remove, and contains in guaranteed $O(\lg n)$ time. Of course this is slower than HashSet; however, TreeSet has several other advantages:
 - Since the elements are stored in order in the tree, iterating over a TreeSet is guaranteed to yield the items in order from smallest to biggest, whereas iterating over a HashSet yields the items in an arbitrary order. For example, if you want to remove duplicates from a set of items and then print them out in order, you might as well just throw them all into a TreeSet instead of putting them in a HashSet and then sorting (crowdcontrol). (And either one is probably going to be faster than sorting and then removing duplicates.)
 - If you need to put objects of a custom class into a set, it is sometimes easier to implement Comparable for your class and use a TreeSet than it is to override hashCode and use a HashSet. The $O(\lg n)$ difference is rarely, if ever, going to be the difference between AC and TLE, so you should use whichever approach will be easier to code.
 - TreeSet also supports the 2 OrderedSet and 2 NavigableSet interfaces, which provide additional methods like first and last (return the smallest or largest element in the set), headSet and tailSet (return the subset of all items less or greater than a specified element), and floor, ceiling, lower, and higher (find the first item in the set less/greater than a specified value). This last set of methods can be especially useful for some types of problems.

Closestsums, platforme, baloni, excellentengineers

There is also a LinkedHashSet class which in addition to providing all the same features as a HashSet, also remembers the order in which the items were added; iterating over the set is guaranteed to yield the items in this order. This is a bit more sophisticated than simply keeping an ArrayList and a HashSet side-by-side, in particular because a LinkedHashSet still supports O(1) removal. We currently do not know of any example problems which can be solved most easily using a LinkedHashSet, but it never hurts to be prepared!

3.14Map

🙆 awkwardparty, administrativeproblems, snowflakes, pizzahawaii, snowflakes

The Map interface represents a dictionary data structure associating keys to values. Supported operations include get(K), put(K,V), containsKey(K), remove(K), and size/isEmpty.

As with Set, there are two main classes implementing Map:

- \leq HashMap is implemented using a hash table, and allows O(1) get, put, remove, and containsKey.
- \(\begin{aligned}
 \text{ TreeMap}\) is implemented using a balanced binary tree. Many of the same comments apply as for TreeSet:
 - All operations run in worst-case $O(\lg n)$ time.

- Iterating over the keys in the map is guaranteed to return them in order from smallest to biggest.
- TreeMap also implements the SortedMap interface (allowing one e.g. to access the first or last key or to get a submap of all the key/value pairs which lie in between certain keys) and NavigableMap interface (which lets you find the closest keys and values which are smaller/bigger than a given query key).

For the purposes of programming contests, TreeMap and HashMap are basically interchangeable. HashMap is faster in theory but a factor of $\lg n$ is not that much, and HashMap has its own overhead costs.

• To iterate over the keys of a map, use keySet:

```
for (K key : map.keySet()) {
   ...
}
```

• To iterate over the values, use values:

```
for (V val : map.values()) {
   ...
}
```

• You can also iterate over both at once:

```
for (Map.Entry<K,V> e : map.entrySet()) {
   ... e.getKey() ... e.getValue() ...
}
```

3.15 BigInteger

```
basicremains
```

BigInteger represents arbitrarily large integer values, though it's not actually needed all that often. You can import it as java.math.BigInteger. For combinatorics problems where the answer is going to be a big number, consider using Python instead.

- To turn an int or long into a BigInteger, use BigInteger.valueOf.
- BigInteger also provides the constants BigInteger.ZERO, .ONE, .TWO, and .TEN.
- To do arithmetic, use methods such as add, subtract, and multiply, which all return their result as a new BigInteger:

```
BigInteger a = ...
BigInteger b = ...
BigInteger c = a.add(b.multiply(BigInteger.TEN)); // c = a + b*10
```

• BigInteger can occasionally be useful in scenarios other than representing large numbers, because of its useful utility methods such as gcd and its ability to convert between different bases.

3.16 Sorting

- You can sort an array using Arrays.sort(array).
- You can sort a list-like collection (such as an ArrayList) using Collections.sort(list).
- These sort methods also take an optional Comparator (§3.11, page 16).

Figure 3.1: Fast I/O

You should rarely, if ever, have to code your own sorting algorithms; the exception is when you need to *enhance* a sorting algorithm to keep track of some extra information while sorting (for example, look up the divide-and-conquer algorithm for counting inversions).

It is relatively common that one needs to sort according to some key, but carry along additional information with the keys. The easiest way to do this is to make a small class to contain all the relevant information, then implement the Comparable interface.

```
class Person implements Comparable<Person> {
   int age; String name;
   public Person(int _age, String _name) { age = _age; name = _name; }
   int compareTo(Person p) { return age - p.age; }
}
ArrayList<Person> people = ...
Collections.sort(people); // sort by age, carrying names along too
```

Occasionally, you need to sort an array of items, but also keep track of the original index of each item (keepitcool). To do this, you can use a technique like the above, where each object stores an item as well as its index in the original list, and sorts according to the item. Then sorting the objects will sort the items, but each item carries along its original index.

3.17 Fast I/O

```
avoidland, cd, grandpabernie, minspantree, ozljeda
```

Typically ACM ICPC problems are designed so Scanner and System.out.println are fast enough to read and write the required input and output within the time limits. However, these are relatively slow since they are unbuffered (every single read and write happens immediately). Occasionally it can be useful to have faster I/O; indeed, a few problems on Kattis cannot be solved in Java without using this. See Figure 3.1 for a faster drop-in replacement for Scanner, adapted from the Kattio class provided by Kattis.

Limits

As a rule of thumb, you should assume about 10^8 (= 100 million) operations per second. If you can think of a straightforward brute force solution to a problem, you should check whether it is likely to fit within the time limit; if so, go for it! Some problems are explicitly written to see if you will recognize this. If a brute force solution won't fit, the input size can help guide you to search for the right algorithm running time.

Example: suppose a problem requires you to find the length of a shortest path in a weighted graph.

- If the graph has |V| = 400 vertices, you should use Floyd-Warshall (§7.8, page 35): it is the easiest to code and takes $O(V^3)$ time which should be good enough.
- If the graph has |V| = 4000 vertices, especially if it doesn't have all possible edges, you can use Dijkstra's algorithm (§7.7, page 33), which is $O(E \log V)$.
- If the graph has $|V| = 10^5$ vertices, you should look for some special property of the graph which allows you to solve the problem in O(V) or $O(V \log V)$ time—for example, perhaps the graph is a tree (§7.1, page 29), so you can run a BFS/DFS (§7.4, page 31) to find the unique path and then add up the weights. An input size of 10^5 is a common sign that you are expected to use an $O(n \lg n)$ or O(n) algorithm—it's big enough to make $O(n^2)$ too slow but not so big that the time to do I/O makes a big difference.

\overline{n}	Worst viable running time	Example
11	O(n!)	Generating all permutations (§11.7, page 49)
25	$O(2^n)$	Generating all subsets (§12, page 51)
100	$O(n^4)$	Some brute force algorithms
400	$O(n^3)$	Floyd-Warshall (§7.8, page 35)
10^{4}	$O(n^2)$	Testing all pairs
10^{6}	$O(n \lg n)$	BFS/DFS; sort + greedy

- 👶 bing, transportationplanning, dancerecital, prozor, rectanglesurrounding, weakvertices
- $2^{10} = 1024 \approx 10^3$
- One int is 32 bits = 4 bytes. So e.g. an array of 10⁶ ints requires < 4 MB—no big deal since the typical memory limit is 1 GB. Don't be afraid to make arrays with millions of elements!
- int holds 32 bits; the largest int value is Integer.MAX_VALUE = $2^{31} 1$, a bit more than $2 \cdot 10^9$.
- long holds 64 bits; the largest long value is Long.MAX_VALUE = $2^{63} 1$, a bit more than $9 \cdot 10^{18}$. To write literal long values you can add an L suffix, as in long x = 1234567890123L;

 \bullet If you need larger values, use BigInteger ($\S3.15$, page 19) or just use Python ($\S2$, page 9); see also Combinatorics ($\S11.7$, page 49).

different

Data Structures

5.1 Pair

Java has a Pair class in javafx.util.Pair, but one can't necessarily assume that this will be available in a contest environment. The following simple class suffices to store pairs of values, which is especially useful in representing e.g. coordinates in a 2D grid. Note in a competitive programming context we don't bother adding getter and setter methods; the a and b fields are public so we can just access them directly.

Below is a variant which implements the Comparable interface. CPair objects sort in lexicographic order: first by the first component, and then ties in the first component are broken by the second component.

Bag/multiset 5.2

6 cookieselection, kattissquest

A baq, aka multiset, is a collection of elements where order does not matter (like a set) but multiplicity does matter, i.e. there can be duplicates and we need to keep track of how many duplicates there are of each item. Bags are not needed often but can occasionally be useful. It is not too hard to build a bag as a map from items to integer counts, but there are a few corner cases so it's worth copying a well-tested implementation instead of writing one from scratch.

The implementation below is based on a \(\frac{1}{2}\) TreeMap (\(\xi_3.14\), page 18), and hence supports operations like first() and last(). If desired one could easily change the TreeMap to a HashMap and remove the methods which are no longer supported, although the factor of $O(\lg n)$ is unlikely to make a practical difference.

Union-find 5.3

🙆 firetrucksarered, forestfires, kastenlauf, ladice, numbersetseasy, unionfind, virtualfriends, watersheds, wheresmyinternet

A union-find structure can be used to keep track of a collection of disjoint sets, with the ability to quickly test whether two items are in the same set, and to quickly union two given sets into one. It is used in Kruskal's Minimum Spanning Tree algorithm (§7.9, page 36), and can also be useful on its own (see the above Kattis problems for examples). find and union both take essentially constant amortized time.

The above code can easily be enhanced to keep track of the number of sets (initialize to n; subtract one every time union hits the ru! = rv case), or to keep track of the actual size of each set instead of just the rank/height (keep a size for each index; initialize all to 1; add sizes appropriately when doing union).

5.4 Tries

6 boggle, heritage, herkabe, phonelist

The code below is a very simple implementation of a trie—there are many other methods that could be added, and it is not very efficient since it repeatedly uses the O(n) substring operation as it recurses down the trie, but it is sufficient for some problems.

[TODO: More efficient/full-featured Trie class]

Tries are intimately connected with MSD radix sort, which can be thought of as equivalent to building a trie and then traversing it in order. However, no implementation of radix sort actually builds an intermediate trie. Sometimes it can be helpful to think about a problem in terms of a trie, but never actually implement/materialize the trie at all (herkabe): just do a modified radix sort, first grouping strings by their first character, then recursing on each group, keeping track of needed auxiliary information (e.g. depth) along the way.

5.5 Adjustable priority queue

flowerytrails, shopping

As discussed in PriorityQueue (§3.12, page 17), Java's PriorityQueue class has no way to efficiently alter the priority of an item already stored in the queue; simply removing and re-adding the item does the trick but takes O(n) time. The efficiency of this operation really does make a difference in the asymptotic performance of Dijkstra's algorithm (§7.7, page 33), and occasionally it really needs to be $O(\lg n)$ in order to meet the time limits (e.g. \mathfrak{S} flowery trails). A suitable implementation of a priority queue with $O(\lg n)$ priority adjustment is shown below. The key idea is to keep a hash table on the side which can be used to quickly find the index of any item stored in the priority queue; of course, the hash table has to be kept suitably updated whenever items are shuffled in the heap. The adjust(e) method is used to inform the priority queue that the priority of item e has changed, so that the queue has an opportunity to move the item if necessary to reestablish the heap invariants.

5.6Segment trees and Fenwick trees

See Range queries (§14.3, page 62).

Splay trees and/or treaps 5.7

[TODO: Write about these?]

Enumeration and search

6.1Complete search

👶 bing, classpicture, coloring, cycleseasy, dancerecital, lektira, freefood, gepetto, kastenlauf, mjehuric, paintings, prozor, rectanglesurrounding, reducedidnumbers, reseto, sheldon, shuffling, weakvertices, wheels, transportationplanning

See CP3 for a fuller discussion of complete search, aka brute force, and a list of relevant techniques (nested loops, recursive backtracking, etc.). Just remember that there's no need to code anything more sophisticated if a back-of-the-envelope analysis shows that a simple complete search will finish under the time limit. (Although some kinds of complete search can themselves be rather sophisticated. For example, see Bit Tricks (§12, page 51). Some of the above problems are much harder than others!)

Sometimes complete search isn't in and of itself the full solution to a problem, but the problem is set up so that a subpart can be done via complete search, to keep the solution complexity from getting out of hand and allowing you to focus your efforts on the more "interesting" part of the problem.

[TODO: Generating all k-subsets with nested loops; generating all subsets with bit vectors; generating all permutations (Heap's algorithm, recursive backtracking)]

6.2Binary search

If you need to do a traditional binary search—that is, finding the index where a given element occurs in a sorted array—you should just use the standard Arrays.binarySearch method. However, the underlying idea of binary search applies in many more contexts.

Binary search on a real interval

🔥 bottles, cheese, fencebowling, speed, suspensionbridges, tetration, queenspatio

This is probably the most common form of binary search in competitive programming. Given a function fwhich is monotonic (i.e. always increasing, or always decreasing) on a given interval of the real line [a, b], find $a \le x \le b$ such that f(x) is equal to some target value. This can be accomplished by straightforward binary search: keep track of a current subinterval $[x_L, x_H]$; at each step, evaluate f at the midpoint $m = (x_L + x_H)/2$ of the interval, and update x_L or x_H to m depending on whether the value of f is too small or too big, respectively. Iterate until $x_H - x_L$ is within an appropriate tolerance (or simply iterate a fixed number of times—50 should be plenty), and return $(x_L + x_H)/2$. This is actually easier than traditional binary search since one doesn't have to worry about indexing, off-by-one errors, and the like.

The main trick is to realize when this technique is applicable. Sometimes the function f is plainly stated in the problem description, but sometimes the thing being searched for is more subtle. Whenever a problem asks for a floating-point number as the answer, it's worth considering whether you can binary search for it.

Binary search on an integer interval

🙆 outofsorts, guess, eko, freeweights, inversefactorial, reservoir, pullingtheirweight

Suppose we again have a monotonic function f and want to find a value n such that f(n) is equal to some target value t—except that f is defined on the *integers* instead of the real numbers. We can again use binary search, but we have to be much more careful about potential off-by-one errors.

- Remember that to do binary search in a sorted array a, that is, find the index i such that a[i] is equal to some target value, one can just use Arrays.binarySearch.
- In the basic version, we simply want to find n such that f(n) = t, or report that no such n exists. In this case it works well to use a half-open interval, that is, we maintain the invariant that possible values of n lie in the interval [lo, hi), including lo but **excluding** hi. This has the advantage that the size of the remaining interval can be computed as simply hi - lo, and an appropriate condition for the loop is hi - lo > 0.

The midpoint of [lo, hi) can be computed as mid = (lo + hi)/2; mid always lies within the interval, even if hi - lo = 1 (the rounding behavior of integer division plays a crucial role).

If mid does not hold the target, one must then either update hi to mid, or lo to mid + 1 (not mid!) depending on whether the item at mid is larger or smaller than the target, respectively.

[TODO: Example code]

• A slightly more sophisticated variant is where we need to find the largest n such that $f(n) \leq t$, or the smallest such that $f(n) \geq t$, or something similar. This requires even more care. In this situation it tends to be better to use a closed interval [lo, hi], and using great care to update lo and hi appropriately (to mid - 1, mid, or mid + 1) depending on the desired properties of the value being searched for.

In this scenario, when there can be duplicate values of f(n), it's not possible to stop the search early, since any given n for which f(n) = t may not be the optimal one. One must continue searching until the interval has reached size 1, and then return the sole remaining value.

[TODO: Talk about how to find midpoint based on whether we want greatest or least] [TODO: Example code TODO: if we want biggest value satisfying something, need to set mid to CEILING of (lo+hi)/2?

Unbounded binary search

queenspatio

Consider the following problem: given an increasing function f and a target value t, find the smallest positive value of x such that $f(x) \ge t$. (The domain of f can be either the reals or the integers.)

The idea is to start by finding an appropriate upper bound using repeated doubling: starting at u=1, evaluate f(u); if it is less than t, double u and repeat. Keep doubling u until finding the first such value of u (that is, the first power of two) such that f(u) > t. Then do a traditional binary search on the range [1, u].

[TODO: Find some example Kattis problems that need an initial unbounded search?]

6.3 Ternary search

🙆 brocard, euclideantsp, infiniteslides, janitortroubles, dailydivision

Ternary search can be used to find the minimum or maximum of a function which is concave or convex on a given interval (that is, the function only decreases until the minimum and then only increases, or vice versa). Binary search does not apply in this case, since just by looking at the value of the function at the

¹Or mid = lo + (hi - lo)/2, if you are worried about lo + hi overflowing, but this is unlikely to ever be an issue in a competitive programming context.

midpoint of the interval, it is impossible to know whether we should recurse on the left or right half of the interval.

Suppose we are currently considering the interval [L, R] and looking for the minimum of a function f on the interval. We compute the two points 1/3 and 2/3 of the way through the interval, namely $m_L = (2L + R)/3$ and $m_R = (L + 2R)/3$.

- If $m_L < m_R$, then we know the minimum can't be to the right of m_R (because then it would increase from m_L to m_R and then decrease—but we assume the function decreases until the minimum and then only increases after that). Hence, we can recurse on the interval $[L, m_R]$.
- If $m_L > m_R$, we can likewise recurse on $[m_L, R]$.
- If $m_L = m_R$, we can recurse on $[m_L, m_R]$ (though lumping this case in with either of the above two cases works fine and requires writing less code).

In any case, we decrease the size of the interval by at least 1/3 with each iteration, so we need only a logarithmic number of iterations relative to the ratio between the starting interval size and the desired accuracy.

[TODO: Example code]

Integer ternary search

When ternary searching over an interval of *integers*, much of the same advice applies as for binary search (see the previous section). However, care must be taken with the stopping conditions; depending on exactly how the recursion works it is possible to end up in a scenario where it loops infinitely on an interval of size 1 or 2. Even if it is possible to come up with an elegant design that does not require any special cases, it may be easiest to simply stop the loop when the interval has size 2 or smaller, and then simply check the few remaining items manually.

Graphs

7.1 Graph basics

- Every edge in a *directed* graph has an orientation, *i.e.* a "from" vertex and a "to" vertex. Edges in an *undirected* graph have no orientation.
- Simple graphs have at most one edge between any two vertices, and no self-loops. Most graph problems feature simple graphs. Sometimes, however, there can be loop edges from a vertex back to itself and/or multiple edges between the same two vertices.

[TODO: Directed, undirected, weighted, unweighted, self loops, multiple edges] [TODO: characterization of trees] [TODO: New virtual source/sink node trick]

7.2 Graph representation

[TODO: Adjacency matrix, adjacency maps. Edge objects. Implicit graphs.]

Figure 7.1 has a sample solution for **6** horrorlist which builds an adjacency map representation of an undirected graph.

[TODO: State space search with complex states: make a class, implement Comparable, use TreeMap]

7.3 Breadth-First Search

6 ballsandneedles, brexit, buttonbashing, collapse, erdosnumbers, grapevine, horrorlist, mazemakers, hogwarts2

Breadth-first search (BFS) can be used to find single-source shortest paths (*i.e.* shortest paths from a particular starting vertex to all other vertices) in an unweighted graph. BFS comes up often in many different guises, so it's worth being very familiar with BFS and its variants. Below is pseudocode showing a generic BFS implementation. Important invariants:

- Every vertex in Q has already been marked visited. (This is important since it prevents vertices from being added to Q multiple times.)
- Q only contains vertices from at most two (consecutive) levels at a time.

Figure 7.1: Sample solution for horrorlist (Adjacency set representation; BFS with level labelling)

```
Algorithm BFS
 1: s \leftarrow \text{starting vertex}
 2: Mark s visited
 3: Q \leftarrow new queue containing only s
 4: level[s] \leftarrow 0
    while Q not empty do
        u \leftarrow Q.remove
 6:
        for each neighbor v of u do
 7:
            if v is not visited then
 8:
                level[v] \leftarrow level[u] + 1
                                                                         ▷ Optionally mark level
 9:
                Add v to Q
10:
                Mark v visited
11:
                parent[v] \leftarrow u
                                                                     ▷ Optionally record parent
12:
```

Some options/variants:

• The level array shown above is optional, and can be omitted if not needed. Sometimes it makes sense to have the level array do double-duty to also track visited vertices: if the level of every vertex is initialized to some nonsensical value such as -1 or ∞ , then a vertex is visited iff its level is not equal to the initial value.

Figure 7.1 shows a sample solution for horrorlist, exhibiting a BFS with level labelling.

- The parent map is also optional, and can be used to reconstruct an actual shortest path from s to any vertex, by starting with the end vertex and iteratively following parents backwards until reaching s.
- If you want to compute shortest paths from any of a set of starting vertices, simply replace the initialization of s with the desired set (i.e. mark them all visited, add them all to Q, and set their level to 0 before starting the loop; the loop itself does not change) (zoning).
- Replacing Q with a stack results in a depth-first rather than breadth-first search (although often it makes more sense to implement a DFS recursively; see (§7.4, page 31)).

[TODO: Applications of BFS: identify reachable vertices; identify (weakly) connected components; identify bipartite graphs/odd cycles (detect cross-edges with map of level sets)]

CHAPTER 7. GRAPHS 7.4. DFS

Figure 7.2: Depth First Search

Figure 7.3: Articulation Points via DFS

7.4DFS

caveexploration, birthday

[TODO: How to decide on start/finish labelling, recursive vs stack]

Depth First Search (DFS) is very similar to BFS, but with the change that we fully explore one child before we move on to the next instead of interleaving them. Note that while this means we can't use it to calculate a sense of 'depth' at each vertex, we can use it to split the graphs into 'chunks' that are reachable from each child.

Articulation points are defined as the vertices which are a chokepoint for all paths between two (or more) parts of the graph. That is, if they were removed then parts of the graph that were previously connected would be disconnected. Similarly, bridges are edges that would split the graph into more components if they are removed. Both of these can be detected with a slightly modified version of DFS to split the graph into bi-connected components (regions with two entirely different paths between vertices).

7.5. SCCS AND 2-SAT CHAPTER 7. GRAPHS

Figure 7.4: O(V + E) Kosaraju's Algorithm

7.5SCCs and 2-SAT

🙆 loopycabdrivers, cantinaofbabel, pieceittogether, cleaningpipes

[TODO: Finding explicit 2-SAT solutions] Strongly Connected Components are components of a graph in which all pairs of vertices can reach each other in either direction. The vital thing to recognize is that if we think of entire SCCs as vertices in a larger DAG (because if the condensed graph had cycles then it must have a way to return to where you started).

A problem which is solvable with SCCs is looking for a simultaneous solution to a group of 'or' questions on a set of boolean values. The core idea is to construct a graph with two nodes for each boolean (representing it being provably true or provably false). If we have a constraint $a_1 \vee a_2$ this is equivalent to saying 'if a_1 is false then a_2 must be true' and 'if a_2 is false then a_1 must be true'. Because of that we add two edges between $\neg a_1$ and a_2 and $\neg a_2$ and a_1 . The SCCs in this graph represent values which each imply each other if any of them are true. Thus, if there is any variable which is in the same SCC as its negation there is a contradiction in the constraints and no solution exists.

7.6 Topological sorting

```
6 builddeps, easyascab, eatingeverything, excavatorexpedition, mravi, promotions, reactivity, runningmom, succession
```

A topological sort of a directed graph G is a list of vertices such that whenever there is an edge from u to v, u comes before v in the list; G has a topological sort if and only if it is acyclic. Topological sorting can thus be used to detect the presence of cycles. It is also often used in conjunction with dynamic programming eating excavator expedition, mravi): if we need to compute some value of each vertex such that the value can be computed once we already know the values for all the outgoing (or incoming) neighbors, topological sort gives us the right order for computing the values.

There are two main methods to do a topological sort. Method 1 (Kahn's Algorithm) is to repeatedly remove nodes with no incoming edges (or dually, nodes with no outgoing edges). Empirically this seems to be faster than Method 2, but is perhaps a bit more code. Pseudocode is as follows:

```
Algorithm TopSort(G)
Require: Directed graph G = (V, E).
 1: T \leftarrow \text{empty list (to store topsort)}
 2: Z \leftarrow empty queue (to store nodes with 0 indegree)
 3: in \leftarrow dictionary mapping all vertices to their indegree
 4: Put all vertices with indegree 0 into Z
   while Z is not empty do
       v \leftarrow Z.dequeue
 6:
       append v to T
 7:
       for each u adjacent to v do
 8:
           decrement in[u]
 9:
           if in[u] = 0 then
10:
               add u to Z
11:
```

If the queue becomes empty before all vertices have been added to the topsort, then a cycle exists.

For a sample implementation of this algorithm, see the solution to succession at https://github.com/Hendrix-CS/programming-team/blob/master/solved/Succession.java.

The second method is to do a recursive DFS: simply add each vertex to a list just *after* recursively processing all its neighbors; this yields a topsort in reverse order.

```
Algorithm Topological sort via DFS
 1: function TopSort-DFS(G)
       T \leftarrow \text{empty list/stack to hold topsort}
 2:
       for all v \in V do
 3:
           if v is not visited then DFS(v, T)
 4:
       return T
 5:
 6:
 7: function DFS(x, T)
       Mark x visited
 8:
       for all (x, y) \in E do
 9:
           if y is not visited then DFS(y, T)
10:
       Add x to T
11:
```

7.7 Single-source shortest paths (Dijkstra)

Figure 7.5: O(VE) Dijkstra's algorithm

6 bigtruck, blockcrusher, coffeedate, detour, george, getshorty, kitchen, rainbowroadrace, shortestpath1, shortestpath2, showroom, walkway

Dijkstra's algorithm is the standard algorithm for solving the *single-source shortest path* problem in weighted, directed graphs. That is, given a graph with (possibly) directed edges and a weight on each edge, Dijkstra's algorithm can find the shortest directed path from a single chosen start vertex to every other vertex in the graph (where the length of a path is the sum of the weights on the edges). If you want to find the shortest path in a weighted, undirected graph, just make a directed graph with edges going both directions between each pair of vertices. Figure 7.5 has a basic implementation.

Since Java's PriorityQueue class does not have a "decrease key" method, on line 28 we have to instead do a remove followed by an add; but remove is O(n), making the whole algorithm O(VE). If you really need $O(E \lg V)$ performance (Inflowerytrails), you can use an Adjustable priority queue (§5.5, page 24). In some situations you can also simply call add without calling remove; see the discussion below.

[TODO: using adjust, you have to decide whether to 'add' or 'adjust']

There are many possible variants of this basic template; here are a few.

- The given code explores the *entire* graph. However, if you have a particular target vertex in mind you can stop early once you find it: just break out of the loop if removing the next node from the priority queue yields the target node, since at that point we are guaranteed that we know the shortest path from the start node to the target node.
- If the vertices of your graph are not naturally represented as integers in the range $0 \dots n-1$, one could modify the algorithm to use Maps in place of the parent and dist arrays. Alternatively, it may be easier to deal with this outside of Dijkstra's algorithm: just arbitrarily assign indices to vertices and use a Map or two to keep track of the assignment. Then run Dijkstra using the assigned vertex indices and translate the result back to the original vertices.
- If the priority queue contains objects whose priority never changes once they are put in the priority queue (note that the example code in Figure 7.5 does not have this property, since Integers in the PQ are compared by the value stored in the external array dist, which can change) then it can be an optimization to simply call pq.add(next) without calling pq.remove(next) first. The priority queue will end up with multiple copies of the same node, each with a different priority, but this is not a problem; when removing the next node from the PQ just ignore it if it has already been visited. (③ nikola)
- Dijkstra's algorithm uses addition to combine the weights of consecutive edges and min to pick the shortest path among parallel options. However, there are other pairs of operations one can use with the same basic algorithm template.¹
 - Using min/max in place of +/min yields an algorithm which finds the path with the maximum possible minimum weight (vuk, crowdcontrol, muddyhike). For example, if the edge weights are thought of as capacities, and the capacity of a path is equal to the minimum capacity of any of its edges (i.e. the bottleneck) then this corresponds to finding maximum-capacity paths. One must be careful to:
 - * update the comparison operation for the priority queue to use min instead of max (e.g. by switching to dist[v] dist[u] instead of dist[u] dist[v]),

¹The details of which properties of the operations are needed for this to work are too far outside the scope of this document; see [TODO: XXX]

- * initialize all the entries of dist to an appropriate identity value for max such as 0, -1, or -INF instead of INF,
- * change the definition of nextDist to use min instead of +, and
- * change the comparison of nextDist and dist[next] to use > instead of <.
- If we have a directed graph with edge weights corresponding to probabilities, where the probability of a path is defined as the product of the probabilities of its edges, then Dijkstra's algorithm with */max finds highest-probability paths. Similar modifications have to be made as in the previous example.
- One can modify the basic algorithm to keep track of extra information, such as the *number* of shortest paths from the start to any given node: add to the count when finding a new path equal in weight to the previous best-known path; reset the count when finding a shorter path than previously known (substituting the previously known path).
- Dijkstra can also deal with edges whose weight depends on the time they are reached (think of e.g. bus routes, where you may have to wait a while for the next bus to come depending on what time you reach the stop). (coffeedate)

7.8 All-pairs shortest paths (Floyd-Warshall)

<u></u>

crosscountry, allpairspath, shoppingmalls, transportationplanning, units

The all-pairs shortest path problem is to find the shortest path in a (directed, weighted) graph between any pair of vertices. Typically the idea is to precompute some table(s) and then be able to quickly look up any pair of vertices to find the distance between them. This could be done by running e.g. Dijkstra's algorithm once from every vertex, but that takes at least $O(VE \log V)$ (which is $O(V^3 \log V)$ for a dense graph) and doesn't work if there are negative edge weights. The Floyd-Warshall algorithm runs in $O(V^3)$ no matter how many edges there, can handle negative edge weights, and is just a few lines of code.

Note this only works when |V| is small enough for a cubic algorithm to fit in the time limits, typically something like $|V| \le 400$, though I have seen examples with |V| even up to 1000 that work. Each individual loop of Floyd-Warshall is only a few operations so the constant factor is very small.

Assume the vertices in G are labelled $\{0, \ldots, n-1\}$. Create a 2D matrix of distances d and initialize it like so:

$$d[i][j] = \begin{cases} 0 & \text{if } i = j \\ w_{ij} & \text{if there is an edge } i \to j \\ \infty & \text{otherwise} \end{cases}$$

If there can be multiple edges from i to j, be sure to set d[i][j] to the minimum of all the edge weights. In practice, for ∞ , just use a value that is much larger than any other values that could occur in the problem.

Then the Floyd-Warshall algorithm is as follows. We iterate k from 0 to n-1; k represents the intermediate vertex we will consider. Then for every possible pair of vertices u and v, we check if there is a way to get from u to k and a way to get from k to v, and the sum of these distances is less than the current shortest distance from u to v. If so, we update it.

```
for (int k = 0; k < n; k++)
  for (int u = 0; u < n; u++)
  for (int v = 0; v < n; v++)
    if (d[u][k] < INF && d[k][v] < INF)
    d[u][v] = Math.min(d[u][v], d[u][k] + d[k][v]);</pre>
```

After running the above loops, d[i][j] will contain the length of the shortest path from i to j. If there is no path from i to j then the length will be ∞ . Analyzing the running time of this algorithm is a Data Structures student's dream: there are literally three nested loops which each iterate exactly |V| times, so the running time is $O(V^3)$.

Variants:

- If you want to detect the presence of negative cycles, you can use the fact that after running the main algorithm, d[i][i] < 0 if and only if vertex i is contained in some negative cycle. Hence if there are no negative numbers along the diagonal of the matrix, the graph is negative-cycle-free. However, if there are negative cycles then the distances found may not be valid (if there is a negative cycle along a path from u to v then one could travel around the cycle any number of times before finally going to v).
- If you actually want to distinguish negative-cycle-free paths (for which the computed minimum distance is valid) from others (allpairspath), you can run the following additional code, which propagates information about negative cycles:

```
for (int u = 0; u < n; u++)
  for (int v = 0; v < n; v++)
   for (int k = 0; d[u][v] != -INF && k < n; k++)
      if (d[u][k] < INF && d[k][k] < 0 && d[k][v] < INF)
      d[u][v] = -INF;</pre>
```

For each pair of vertices u, v, we check all possible intermediate nodes k. If there is a path $u \to k$ and a path $k \to v$, and k is part of some negative cycle, then we set the distance from u to v to $-\infty$ to signify that the length of a path from u to v can be arbitrarily small.

• Sometimes you want to know not only the length of the shortest path, but the actual shortest path itself. This can be accomplished by keeping a 2D array next such that next[i][j] stores the next vertex along the shortest path from i to j. Initialize next[i][j] to j whenever there is an edge from i to j (it does not matter what value it has otherwise). Then update the if statement in the inner loop as follows:

```
if (d[u][k] < INF && d[k][v] < INF && d[u][k] + d[k][v] < d[u][v]) {
  d[u][v] = d[u][k] + d[k][v];
  next[u][v] = next[u][k];
}</pre>
```

Now after running the algorithm, the shortest path from u to v can be recovered by looking up $u_2 = next[u][v]$, then $u_3 = next[u][v]$, and so on, until v is reached.

7.9 Min spanning trees (Kruskal)

```
drivingrange, islandhopping, jurassicjigsaw, lostmap, minspantree, treehouses
```

Kruskal's algorithm is the go-to algorithm for computing a minimum spanning tree (MST). It is relatively straightforward to code, given an implementation of a Union-find (§5.3, page 23) data structure.

- Create an initial union-find structure uf with one entry corresponding to each vertex.
- Sort the edges of the graph by weight. Typically, one makes a small class to store an edge (it may store *e.g.* the two endpoints of the edge and its weight), which implements Comparable in such a way that compareTo compares the weights. Then one can simply make an ArrayList of edge objects and call Collections.sort on it.
- Iterate through the edges from smallest to largest weight.
- For each edge, check whether its endpoints are already connected (uf.find(x) == uf.find(y)). If not, connect them (uf.union(x,y)) and add the edge to the MST. (If so, discard the edge and move on to the next.)
- Stop as soon as the number of chosen edges is one less than the number of vertices.

Given an efficient union-find implementation, the running time is dominated by the time to sort the edges, $O(E \lg E)$.

An example solution for **3** minspantree is shown in Figure 7.6.

Figure 7.6: Sample solution for minspantree

7.10Eulerian paths

🚳 railroad2, eulerianpath, catenyms

An Eulerian path is one which traverses every edge exactly once (but may visit vertices multiple times). An Eulerian circuit is an Eulerian path which starts and ends at the same vertex.

Checking whether an Eulerian path/circuit exists (@ railroad2) is relatively simple:

- An undirected graph has an Eulerian path if and only if it is connected, and exactly zero or two vertices have odd degree, and all the rest have even degree. If all vertices have even degree then it the Eulerian path is actually a cycle.
- A directed graph has an Eulerian path if and only if it is strongly connected, and every vertex has equal in- and out-degrees, except possibly two, one of which must have one more incoming edge than outgoing, and the other has one more outgoing edge than incoming. If all vertices have equal in- and out-degree then the Eulerian path is actually a cycle.

TODO: This is not correct. Need to check if it's weakly connected from start vertex if we want a path not a cycle. TODO: Include sample code for eulerianpath? In other words, first check whether the graph is connected using DFS (§7.4, page 31) or Breadth-First Search (§7.3, page 29). Then compute the (in/out) degrees of every vertex and check how many are even/odd (for undirected graphs) or how many have matching in/out degrees (for directed).

To find an Eulerian path, use Hierholzer's Algorithm. In an undirected graph, start at a vertex with odd degree, (or at any vertex if there are no odd-degree vertices); in a directed graph, start at the vertex whose outdegree is one greater than the indegree (or any vertex if all have equal in/out-degree). [TODO: Explain, example code.

Max flow/min cut 7.11

🔥 copsandrobbers, escapeplan, gopher2, guardianofdecency, marblestree, maxflow, mincut, paintball, pianolessons, waif

A flow network is a directed, weighted graph where the edge weights (typically integers) are thought of as representing capacities (e.g. imagine pipes of varying sizes). The max flow problem is to determine, given a flow network, the maximum possible amount of flow which can move through the network between given source and sink vertices, subject to the constraints that the flow on any edge is no greater than the capacity, and the sum of incoming flows equals the sum of outgoing flows at every vertex other than the source or sink.

7.11.1Flow network problem types

- Certain types of problems about optimally assigning items or resources subject to some constraints can be solved by finding a maximum flow in an appropriate flow network (escapeplan, gopher 2, pianolessons, waif).
- Maximum matchings in a bipartite graph can be found by creating two new virtual nodes, a source node with a connection to every vertex in the left-hand set and a sink node with a connection from every vertex in the right-hand set. Set all edge capacities to 1; then a maximum flow corresponds to a maximum matching in the graph (guardian of decency, paintball)

• A famous theorem asserts that the maximum flow on a network corresponds exactly to the *minimum cut*, which is the minimum "bottleneck", *i.e.* the minimum possible sum of capacities of a set of edges that splits the graph into two halves (mincut, copsandrobbers).

7.11.2 Flow network variants

- Flow networks must have a single source node and a single sink node. You can model multiple sources/sinks simply by adding a new virtual source and/or sink node and connecting it to all the source/sink nodes with infinite capacity edges.
- To model networks where the *vertices* have capacities, just split each vertex into two vertices with an edge in between them having the given vertex capacity. All the incoming edges connect to the first new vertex and all the outgoing edges emanate from the second new vertex.
- [TODO: Minimum-cost max flow: use Edmonds-Karp with Dijkstra?]

7.11.3 Dinitz' Algorithm

Dinitz' Algorithm² is probably the best all-around algorithm to use for solving max flow problems in competitive programming. It takes $O(V^2E)$ in theory (although is often much faster in practice). In the special case where we are modelling a bipartite matching problem, Dinitz' Algorithm reduces to the Hopcroft-Karp algorithm which runs in $O(E\sqrt{V})$.

Some general guidelines for using the max flow code below:

- Be very careful to decide which edges should be directed and which should be undirected; this makes a big difference, and the code given below requires calling addDirEdge or addEdge appropriately (calling addEdge is not the same as calling addDirEdge once in each direction!).
- The vertices of the graph must be labelled $0 \dots n-1$. Typically they have some other labels which are specified as part of the problem. You must carefully keep track of which entities in the problem map to which vertex indices, either via some formulas or using some lookup tables.

[TODO: Include a sample solution using a flow network]

²You may also see it spelled "Dinic's Algorithm" but this is not the preferred spelling of its inventor, Yefim Dinitz.

Trees

[TODO: Special facts about tree graphs] [TODO: Reading and storing trees, orienting/rooting trees] [TODO: Problems that can be solved more easily on trees] [TODO: LCA queries] [TODO: Prüfer codes]

Dynamic Programming

🚳 balanceddiet, drivinglanes, justpassingthrough, ticketpricing, walkforest, ninepacks

[TODO: subset sum] [TODO: knapsack, longest common subsequence] [TODO: longest increasing subsequence $(O(n^2) \text{ and } O(n \lg n))$, see https://stackoverflow.com/questions/2631726/how-to-determine-the-longest-increasing subsequence] [TODO: DP with 3 (or more?) parameters (justpassingthrough)]

Sequences and strings

10.1 Longest Increasing Subsequence (LIS)

```
increasingsubsequence, longincsubseq, manhattanmornings, signals
```

A subsequence of a sequence is a subset of the elements, taken in order, but not necessarily contiguous. (By contrast, a contiguous subset of elements is often referred to as a *subinterval*.) For example, [1,3,4,7] is a subsequence of [1,2,3,4,5,6,7,8]. Given a sequence of integers (or any elements which can be ordered), the *longest increasing subsequence* (LIS) problem is to find the longest subsequence which is in strictly increasing order. For example, given the sequence [9,2,8,10,5,4,20,16,7,1], one increasing subsequence is [2,5,16], but it is not the longest. There are several increasing subsequences of length 4, such as [2,8,10,16], and it turns out that this is the longest possible.

Conceptually, to compute the LIS of a sequence, we first build a downravel, a set of nonincreasing subsequences which partition the original sequence. We keep these subsequences as a list of stacks, and maintain the invariant that their top elements are always sorted from smallest to biggest. We iterate through the elements of S and push each onto the leftmost possible stack whose top is \geq the element being added.

```
Algorithm Building a downravel of a sequence S
 1: function Downravel(S)
        D \leftarrow \text{empty list of stacks}
 2:
        for all x \in S do
 3:
            k \leftarrow \text{first stack in } D \text{ whose top is } \geq x
 4:
            if no such k exists then
 5:
                Add a new singleton stack containing x to the end of D
 6.
 7:
            else
                Push x onto k
 8:
 9:
        return D
```

[TODO: add some pictures?]

The length of the LIS is the same as the length of the downravel D. Naïvely, this runs in $O(n^2)$ time, since for each of the the n elements in S, we have to search through up to O(n) stacks in D to find the right one to push. However, there are several possible optimizations.

- First, although the stacks are conceptually helpful, we do not actually need to store them. It's enough to simply store the current top element of each stack. So instead of having a list of stacks we just have a list of elements.
- Second, since this list will always be sorted from smallest to biggest, we can use a binary search to find the proper place to push each new element. This brings the running time down to a very respectable $O(n \lg n)$.

Of course, we might want not just the *length* of the LIS but an actual LIS itself.

- \bullet First of all, we need to modify D so it stores not the elements themselves but their indices in S. This requires a bit of extra indirection while doing a binary search for the correct place to put each new element.
- We keep an extra array back such that back i stores the index of an element that could come before S[i] in a LIS up to and including S[i]. Every time we put a new element S[i] into D, we set back[i]to the previous value in D—that is, the index of the element currently on top of the previous stack in the list.
- After running the algorithm we start with the item represented by the last entry in D, and then keep following back links to get each previous item. This yields a LIS in reverse order.

[TODO: include some examples and pictures]

LCS via LIS 10.2

inflagrantedelicto, princeandprincess

Given two sequences, the longest common subsequence (LCS) problem is to find the longest sequence which is a subsequence of both. This comes up in quite a few real-world applications including DNA processing and diffing (i.e. what Github does when it shows you which lines have changed).

Most generally, the LCS of two sequences with lengths m and n can be computed via Dynamic Programming (§9, page 41) in O(mn) time. However, in the special case that the sequences do not have too many repeated elements, it is possible to solve it more quickly, as follows.

Suppose the sequences are called A and B.

- Construct all pairs of indices (i,j) such that A[i] = B[j], that is, all pairs of locations where A and B agree.
- Sort these pairs lexicographically, that is, sort them first by i and break ties by j.
- Now make an array consisting of just the j values from these sorted pairs.
- A longest increasing subsequence in this array of j values gives the length of a LCS of A and B. (Exercise for the reader: why does this work?)

10.3Z-algorithm

10.4 Suffix arrays

Mathematics

GCD/Euclidean Algorithm 11.1

The Euclidean algorithm can be used to compute the greatest common divisor of two **nonnegative** integers. (If you need it to work for negative numbers as well, just take absolute values first.) It runs in logarithmic time. The extended Euclidean algorithm not only finds the GCD g of a and b, but also finds integers x and y such that ax + by = g.

🙆 fairwarning, jughard, kutevi, candydistribution, diagonalcut

11.2 Rational numbers

👶 bikegears, jointattack, prosjek, prsteni, rationalarithmetic, wheels, zipfsong

Occasional problems may require dealing with explicit rational values rather than using floating-point approximations. If a problem involves non-integer values but requires being able to test values for equality exactly, then likely rational numbers are required. The below code for a Rational class is not difficult but it's nice to have it as a reference. Of course in a real contest situation you may not need all the methods.

Modular arithmetic 11.3

🚱 crackingrsa, modulararithmetic, pseudoprime, reducedidnumbers

Is Java's mod operator % behaves strangely on negative numbers. In many other languages (e.g. Python, Haskell) a % b always returns a result between 0 and b-1; however, in Java (as in C/C++), if a is negative then a % b will also be negative. Try adding b first if you need a nonnegative result.

For example, suppose i is an index into an array of length n and you need to shift by an offset o, wrapping around in case the index goes off the end of the array. The obvious way to write this would be

```
i = (i + o) \% n;
```

however, this is incorrect if o could be negative! If we assume that o will never be larger in absolute value than n, then we could write this correctly as

```
i = (i + o + n) \% n;
```

If o could be arbitrarily large then we could write

```
i = (((i + o) \% n) + n) \% n;
```

(the first mod operation reduces it to lie between $-n \dots n$; adding n ensures it is positive; and the final mod reduces it to the range [0, n).

Modular exponentiation and modular inverses

Sometimes one needs to compute the modular exponentiation $b^e \mod m$ for some base b, exponent e, and modulus m. Using repeated squaring, it is possible to do this efficiently even for very large exponents e. Relatedly, if b is relatively prime to m, it is possible to compute $b^{-1} \mod m$, the modular inverse of b, that is, the unique number 0 < b' < m such that $bb' \equiv 1 \pmod{m}$.

In Java, probably the easiest way to compute these is using the modPow method from the BigInteger class (§3.15, page 19). If b, e, and m are BigIntegers, then b.modPow(e, m) is a BigInteger that represents $b^e \mod m$. The exponent e can also be negative; in particular, if e is -1 then b.modPow(e,m) will compute the inverse of b modulo m.

It is also useful to know how to compute modular exponentiation and inverses manually, in case you need some sort of variant version, or if BigInteger is not fast enough.

Modular exponentiation can be computed by repeated squaring. The basic idea is to compute b^e by splitting up e into a sum of powers of two (according to its binary expansion), raising b to each power of two and taking the product. This can be done efficiently since we can get from b^{2^k} to $b^{2^{k+1}}$ just by squaring.

Even if you need the answer modulo an int value such as $10^9 + 7$, it is important to use long in the method below: the product of two int values does not necessarily fit in an int, even if the very next step will reduce it modulo m back into the range of an int.

```
public static long modexp(long b, long e, long m) {
    long res = 1;
    while (e > 0) {
        if ((e & 1) == 1) res = (res * b) % m; // include current power of b?
       b = (b * b) \% m;
                                                // square to get next power of b
        e >>= 1;
                                                // shift out rightmost bit of e
    }
   return res;
}
```

Note this correctly computes $0^0 = 1$. It would be possible to add a special case for when b = 0 and $e \neq 1$, to avoid multiplying 0 by itself a bunch of times, but it's hardly worth it.

Modular inverses can be computed using the extended Euclidean algorithm (§11.1, page 45). In particular, suppose a and b are relatively prime, that is, their GCD is 1. In that case the egcd algorithm will compute numbers x and y such that ax + by = 1. Taking this equation (mod b) yields

$$ax + by \equiv ax \equiv 1 \pmod{b}$$
,

and so x is the modular inverse of a modulo b (in practice one may want to reduce x mod b so x is between 0 and b-1).

Alternatively, for a prime p, Fermat's Little Theorem says that

$$a^{p-1} \equiv 1 \pmod{p}$$

and hence a^{p-2} is the modular inverse of a modulo p, which can be computed using modular exponentiation.

11.4 Primes and factorization

Methods for primality testing and prime factorization that may show up in a contest can be put in two main classes. First, methods based on *trial division* are relatively simple to code and work well for testing just one or a few numbers. *Sieve* based methods construct a whole table of primes or factors all at once, and are often more efficient when many numbers need to be factored or tested for primality.

11.4.1 Trial division

```
almostperfect, candydivision, crypto, enlarginghashtables, flowergarden, goldbach2, happyprime, iks, listgame, olderbrother, pascal, primalrepresentation
```

To test whether a single number is prime, you can use the following function which performs (somewhat optimized) trial division. Note that although there are faster primality testing methods (e.g. Miller-Rabin, Baille-PSW), it is highly unlikely that a contest would ever require anything more sophisticated than divisibility testing: Miller-Rabin is not hard to code but it is probabilistic, so a program using it may give different results on subsequent runs, hardly suitable for a competitive programming environment; Baille-PSW is known to be deterministic for numbers up to 2^{64} , but is much more complex to code.

Note that isPrime has runtime $O(\sqrt{n})$ and is hence appropriate for numbers up to the maximum size of an int ($\approx 2 \cdot 10^9$); running it on inputs up to the maximum size of a long is likely to be too slow.

```
public static boolean isPrime(int n) {
    if (n < 2) return false;
    if (n < 4) return true;
    if (n % 2 == 0 || n % 3 == 0) return false;
    if (n < 25) return true;
    for (int i = 5; i*i <= n; i += 6) // O(\sqrt{n})
        if (n % i == 0 || n % (i + 2) == 0) return false;
    return true;
}
```

The following method takes $O(\sqrt{n})$ to factor a number into its prime factorization, also using trial division. The returned prime factors will be sorted from smallest to biggest.

```
public static ArrayList<Integer> factor(int n) {

ArrayList<Integer> factors = new ArrayList<>();

while ((n & 1) == 0) { factors.add(2); n >>= 1; } // get factors of 2 int d = 3; // get odd factors

while (d*d <= n) { // O(\sqrt{n})
```

```
if (n \% d == 0) {
                     factors.add(d);
                                         // found a factor
10
                     n /= d;
1.1
                 } else {
                                          // try next odd divisor
                     d += 2;
13
                 }
            }
15
            if (n != 1) factors.add(n); // don't forget final prime
            return factors;
17
        }
```

11.4.2 Sieving

```
🚳 industrialspy, nonprimefactors, primereduction, primesieve, reseto
```

The term sieve comes from the ancient Sieve of Eratosthenes, a very effective method for generating all the primes up to a certain bound. The basic idea is to make a table of all the numbers from 1 up to some upper bound n and iterate through the table. Each time we discover a prime p we "cross out" all the multiples of p in the table; we know a number is prime if it hasn't yet been crossed out by the time we get to. This takes time $O(n \log \log n)$ (essentially linear time) to construct a table for $1 \dots n$. The code below uses a BitSet which uses less memory than an array of booleans. Constructing a PrimeSieve of size 10^8 should take about a second and use only about 12 MB of memory; constructing smaller prime sieves should be quite fast. Even a PrimeSieve of size Integer.MAX_VALUE, i.e. $\approx 2 \cdot 10^9$, will fit quite easily in memory, although constructing it will probably take too long for most contest problems. (However, there may be occasional problems that require building a sieve of this size in order to precompute some data offline—i.e. writing a program that runs for a few minutes in order to precompute some kind of set or lookup table to be included in the submitted solution.)

Instead of simply storing a boolean indicating whether each number is prime or not, we could also store the smallest prime factor. We can still use this to test whether a given number is prime, by checking whether smallest[n] == n. But we can also use it to quickly factor any composite n: simply divide n by smallest[n] and repeat. We can construct the smallest factor array using a sieving method similar to PrimeSieve. The tradeoff is that this uses much more memory: instead of one bit per number, we use an entire int, that is, 32 bits. A FactorSieve of size 10^8 will take up around 380 MB.

The FactorSieve class below includes a trivial isPrime method as well as a factor method, which is carefully written to work even for int values which are bigger than the lookup table.

11.5 Divisors and Euler's Totient Function

```
farey, relatives
```

[TODO: Number of divisors. Euler's φ function: computing directly and by sieving.]

11.6 Factorial

```
eulersnumber, factstone, howmanydigits, lastfactorialdigit, inversefactorial, loworderzeros, factovisors
```

 $n! = 1 \cdot 2 \cdots n$ is the number of ways of arranging n things in a sequence. Computing n! is straightforward with a loop, although note that

- 12! = 479001600 is the largest factorial that fits in a 32-bit int, and
- 20! = 2432902008176640000 is the largest factorial that fits in a 64-bit long.

Note that $\log(n!) = \log(1 \cdot 2 \cdot \dots n) = \log 1 + \log 2 + \dots + \log n$ which is occasionally handy. For example, the number of base-10 digits needed to represent a number n is $\lfloor \log_{10} n \rfloor$, so by summing logs instead of computing a factorial and then taking the log, you can figure out how many digits are in very large factorials even when the numbers themselves would not fit in a long (howmanydigits).

Combinatorics 11.7

🔥 insert, anagramcounting, nine, secretsanta, kingscolors, howmanyzeros, thedealoftheday

Some basic principles of combinatorics:

- If two sets of choices are completely disjoint, add their sizes to get the total number of choices. For example, the number of subsets of $\{1,\ldots,n\}$ is equal to the number of subsets that do contain 3 plus the number that don't.
- If two sets of choices are independent, multiply their sizes to get the total number of combinations. For example, if we can pick one of five different shirts and independently pick one of seven different hats, we have 35 possible outfit choices.
- Often, the answer to a combinatorics problem will be very large, so the problem asks for the answer modulo $10^9 + 7$ (the smallest prime bigger than 10^9), which fits in a 32-bit int. Since taking remainders commutes with addition and multiplication, just reduce via mod at every step to make sure that the intermediate values never overflow.

Although the sum of two values under $10^9 + 7$ will fit in a 32-bit int, their product will not. If you need an answer modulo $10^9 + 7$ but computing the answer involves multiplication, you must use 64-bit (long) values to make sure the intermediate steps do not overflow.

For example, to compute $n! \pmod{10^9 + 7}$, make a long accumulator initialized to 1, and then loop from 1 to n, on each step multiplying by the current index and then taking the remainder mod $10^9 + 7$.

Subsets and permutations

TODO: Number of subsets of set of size n is 2^n . Number of permutations is n!. Explain how these follow from principle of multiplication. To actually generate all of them, see complete search section, bit tricks, etc.

11.7.2Binomial and multinomial coefficients

The binomial coefficient

$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!}$$

counts the number of ways to choose a set of k things out of n possibilities; it is the kth entry in the nth row (both counting from 0) of Pascal's Triangle (§A.2, page 69). $\binom{n}{k}$ can be computed using the following code, which works up to n = 60 (higher values of n will cause overflow):

```
public static long choose(int n, int k) {
            if (n < 0 | | k < 0 | | k > n) return 0;
            k = Math.min(k,n-k);
            long res = 1;
            for (int i = 1; i <= k; i++) {
                res = res * (n-i+1) / i;
            }
            return res;
11
       }
```

Some useful identities:

- $\binom{n}{0} = \binom{n}{n} = 1$ (there is only one way to choose none of the items, or all of the items).
- $\bullet \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$

The multinomial coefficient

$$\binom{n}{k_1 \ k_2 \ \dots \ k_l} = \frac{n!}{k_1! k_2! \cdots k_l!},$$

where $n = k_1 + k_2 + \cdots + k_l$, represents the number of ways of partitioning a set of n things into distinguished groups of sizes k_1, k_2, \ldots, k_l . Note that the usual binomial coefficient $\binom{n}{k}$ can be thought of as the multinomial coefficient $\binom{n}{k} \binom{n}{(n-k)}$, or more symmetrically, as $\binom{n}{ab}$ where a + b = n.

[TODO: Computing multinomial coefficients.]

[TODO: Large binomial coefficients modulo a prime (modular inverse factorial tables, Lucas's theorem).]

[TODO: PIE]

11.8 Probability

[TODO: Write me]

11.9 Game Theory

[TODO: Write me]

Bit Tricks

6 bits, classpicture, data, flipfive, font, gepetto, hypercube, mazemakers, pagelayout, pebblesolitaire, safepassage, satisfiability, turningtrominos

int values are represented as a sequence of 32 bits; long values are 64 bits. Sometimes it is useful to think about/work with such values directly as a sequence of bits rather than as a number. We typically think of the bits as indexed from 0 starting at the rightmost (least significant) bit. For example,

$$974_{10} = \frac{11110011110}{{}_{9876543210}}$$

In general, a 1 bit at index i has value 2^{i} .

One frequently useful point of view is to think of a value of type int/long as representing a particular subset of a given set of up to 32/64 items. The bit at index i indicates whether item i is included in the subset or not.

Java has built-in operators to manipulate values at the bit level:

• & represents bitwise logical AND. That is, the index-i bit of the result is the logical AND of the index-i bits of the inputs; each bit index is considered separately. It is often useful to think of & as a "masking" operation: given values v and mask, evaluating v & mask will only "let through" the bits of v which correspond to 1 bits in mask; all other bits will be "turned off". For example, if you want to extract only the last three bits of a value v, you can compute v & 7 (since bitwise AND with 7 = 111₂ will turn off all bits except the last three).

If values are thought of as representing subsets, then & corresponds to set intersection.

- | represents bitwise logical OR. This can be used to "turn on" certain bits: v & on will result in a value which is the same as v except that the bits which are set to 1 in on will be turned on.
 - If values are thought of as representing subsets, then | corresponds to set union.
- ^ represents bitwise logical XOR. This can be used to "toggle" bits: v ^ toggle will result in a value which is the same as v except that the bits in positions corresponding to the 1 bits in toggle have been flipped.
 - If values are thought of as representing subsets, then ^ corresponds to symmetric difference: a ^ b represents the set of elements which are in a or b but not both.
- n >> k shifts n right by k bits, chopping off the rightmost k bits. This corresponds to (integer) division by 2^k . n << k shifts n left by k bits, adding k zeros on the right; this corresponds to multiplying by 2^k .

Note that right shifting uses something called *sign extension* so that it fills in bits on the left according to whatever the leftmost bit was initially: a value starting with a zero bit (*i.e.* a positive value) will have zeros filled in on the left, but a (negative) value beginning with a one bit will have ones filled in

on the left. If you don't want this (it rarely matters!) you can use n >>> k which does a right shift by k bits without sign extension, that is, it always fills in zero bits on the left regardless of the initial bit of n.

Here is a list of some non-obvious but sometimes useful things that can be done with bitmasks:

• To iterate through all possible subsets of an *n*-element set (represented by an *n*-bit mask), just use a counter:

```
for (int S = 0; S < (1 << n); S++) {
    // process subset S
}</pre>
```

As the value of S progresses from 0 through $2^{n}-1$, it will take on every possible pattern of n bits.

• To check whether a particular bit is turned on, mask out everything except that particular bit and check whether the result is 0. For example, to check whether bit j is set to 1 in S:

```
if ((S & (1 << j)) != 0) ...
```

Be careful: the precedence of & is actually lower than that of !=, so you need a bunch of parentheses.

• The least significant bit (LSB) of a value S can be extracted using the expression S & (-S). The result is a value with only a single bit set, corresponding to the LSB of S. For example, if S = 10001011000, then S & (-S) will be 00000001000. It's worth taking a minute to convince yourself that this works, keeping in mind that to negate a value in 2's complement representation, you invert all the bits and then add one.

One way this can be used is when iterating over all subsets of a set: for each subset, instead of iterating over all elements and checking whether each one is in the subset, one can quickly iterate through only the elements which are actually in the subset. In some cases this can yield a big constant-factor speedup.

Another place this technique is used is in the implementation of Fenwick trees (§14.3.5, page 63).

- The least significant zero (LSZ) can be computed by first inverting all the bits, then finding the LSB.
- There is no quick way to compute the *most significant bit* (MSB), which amounts to finding the logarithm base 2 (rounded down). The simplest is to keep shifting right until reaching 1, keeping a count of the number of shifts required.
- The *popcount* operation counts the number of 1 bits in a number, and sometimes comes in useful (bits, iboard, enviousexponents, pebblesolitaire). It can be accessed via the Long.bitCount(...) or Integer.bitCount(...) functions. Note that processors typically have a special popcount instruction, so this should be very fast—certainly much faster than manually looping through the bits of a number and counting how many are set to 1.
- Iterating through all the sub-subsets of a subset https://cp-algorithms.com/algebra/all-submasks.html

 $[TODO: iterating through sub-subsets] \ https://cp-algorithms.com/algebra/all-submasks.html \\ [TODO: BitSet instead of array of booleans.]$

ith

Geometry

all different directions, convex polygonarea, cookiecutter, counting triangles, cranes, glyphrecognition, hitting targets, hurricaned anger, jabuke, janitor troubles, polygonarea, rafting

[TODO: Keep building above list—grep for geom. Next to look at is robot protection.]

See also list of formulas.

[TODO: Points, angles. Degrees/radians. atan2. Rotation. Vector magnitude, norm (squared), normalize. Perpendicular (generate, test).]

13.1 Vectors

Vectors are one of the most basic units required in many geometrical programming problems. Vectors are very similar to line or line segments, but the key difference is that a vector will have a certain direction in which it is pointing and a point that exists on the vector. The direction of a vector is given by a coordinate pair (x_d, y_d) . This coordinate pair does not indicate the position of the vector, but it does indicate the direction of the vector. Vectors are also described by a given point (x_p, y_p) that the vector passes through. For example if we are given a vector with direction (1,2) and point (3,4), then we know that the vector will extend to the point $(x_p + x_d, y_p + y_d) = (4,6)$ IF the point is included in the vector's magnitude (length). Sometimes you're given an origin point for the vector and the point of the tip of that vector. In this case you need to calculate the direction of the vector yourself. The information about the vector that you need to use depends on the context of the problem. Calculating the dot product of two vectors requires finding their lengths and the angle between them. Calculating the cross product of two vectors requires vectors represented by points that have a common origin.

13.2 Dot Product

The Dot Product of two vectors can be thought of as a measurement of how similar their directions are. The dot product of the length of two vectors a and b is defined as $a \cdot b = |a| \times |b| \times \cos \theta$. Let θ be defined as the amplitude of the angle between vectors a and b and |a| and |b| be defined as the lengths of the two vectors. The more similar the vectors' direction are to each other, the greater their dot product will be. If $\theta = \frac{\pi}{2}$, then the dot product of a and b or $a \cdot b$ equals 0. Therefore, if the vectors are perpendicular, then the dot product will be 0. If the angle between the vectors is acute, then the dot product will be positive. If the angle between the vectors is obtuse, then the dot product will be negative. The dot product can also be considered as the projection p of a onto b.

With this visualization, where p is defined as the dot product of a and b, it becomes evident why the dot product of two vectors is 0 when they are perpendicular. The dot product is often used in problems to test if two vectors are perpendicular. In practice if you are given two vectors (v_x, v_y) and (u_x, u_y) , the calculation for dot product is simply $v_x \times u_x + v_y \times u_y$.

13.3 Shortest Distance from Point to Line

Calculating the shortest distance from a point to a line can be made relatively easy by using dot product. Let l be the line and let a be the point. Let's imagine that on the line l there exists a point x. Let the distance from a to x be the shortest distance from a to l. If the vector ax is perpendicular to l, then the length of ax represents the shortest distance from l to a. If we treat l like a vector l_v then $l_v \cdot ax = 0$.

Let $l_v = (p_x, p_y) + t \times (v_x, v_y)$. This is a simple equation for representing vectors. (p_x, p_y) represents a point on the vector (usually the origin of the vector, but if you're specifically dealing with a line as we are, then the origin of the vector is irrelevant to the problem). The coordinate pair (v_x, v_y) describe the direction of the vector (in many cases this corresponds to the slope of the line. See the section on vectors for more information). Let's have t represent a coefficient. Lets say we want to find a point on l_v . Simple: $(p_x + t \times v_x, p_y + t \times v_y)$ where t is a real number (if l was really a vector, which it is not, then it would matter to us if t was positive or negative. If t was negative and t was truly a vector with origin at (p_x, p_y) then t would be behind t, and, since vectors only go one direction, the closest point on the vector to t would be t be t

Now we have direction vectors of both l_v and ax. We can now use the dot product on these two vectors to solve for t, and, once we have t, we can calculate the position of x and use the vector distance formula to find the length of ax. By the definition of the dot product, we know that $l_v \cdot ax = v_x \times (p_x + t \times v_x - x_a) + v_y \times (p_y + t \times v_y - y_a) = 0$. Solving for t leaves us with $t = \frac{-v_x \times (x_a - p_x) + v_y \times (y_a - p_y)}{v_x^2 v_y^2}$. Now use the vector distance formula to find the shortest distance from a to l. Distance $d = \sqrt{(p_x + t \times v_x - x_a)^2 + (p_y + t \times v_y - y_a)^2}$.

TLDR; If you're in a rush and just need a quick formula, then the distance d from a point (x_0, y_0) to the line in standard form ax + by + c = 0 is $d = \frac{|a(x_0) + b(y_0) + c|}{\sqrt{a^2 + b^2}}$.

13.4 Heron's Formula

There is an easy way to calculate the area of a triangle from only its sidelengths a, b, c. We define the semi-perimeter $s = \frac{a+b+c}{2}$. The area is $\sqrt{s(s-a)(s-b)(s-c)}$. This is also useful for finding the area of quadrilaterals, if you can find the length of a diagonal and split it into two triangles.

13.5 Cross Product

Given two vectors u, v, the Cross Product $u \times v$ is the signed area of the parallelogram with points at the origin and the tips of u and v. It is defined as $u \times v = u_x v_y - v_x u_y$.

Note that this really requires 3D vectors in the definitions a typical Linear Algebra class uses, but when both input vectors are on the same plane the output can be described by a real number. Also, by 'signed', We mean that the result is positive if v is counter-clockwise relative to u and negative if clockwise.

We can calculate the area of a triangle from its three corners by shifting them all such that one of the points is at origin, and then taking half the absolute value of the cross product of the vectors corresponding to the other two points.

13.6 Polygon Area

Given that we have the way to calculate the area of a triangle from its corners, calculating the area of a polygon is mostly a matter of cutting it into triangles. The easiest way to do this is to take each adjacent pair and a third point inside the polygon to define the corners. However, we can simplify this. Our third point can be the origin (0,0) no matter where the polygon is, meaning we can eliminate the step of shifting all the points. But to make this work we have to make sure to consider the pairs of adjacent corners in counter-clockwise order and calculate the signed area of each triangle. This is called the Shoelace Formula, and works because the far side of the polygon will have positive sign while the close side will have negative sign and thus be cancelled out.

For the exact same reason, considering the points in clockwise order will give the correct answer but negative. The only restriction that we have is that the edges must not self intersect, in which case the polygon is 'simple'. This is typically true in programming competitions, but it is good to check for. Note that we also have to account for the connection between the last and first point (here outside of the loop).

```
static double cross(double[] u, double[] v) {
    return u[0] * v[1] - v[0] * u[1];
}
static double polyArea(double[][] points) {
    double result = 0.0;
    for (int i = 1; i < points.length; i++) {</pre>
```

```
result += cross(points[i - 1], points[i]);
}
result += cross(points[points.length - 1], points[0]);
return result / 2.0;
}
[TODO: Lines/rays (point + vector). Line intersection. Segment intersection.] [TODO: law of cosines.]
```

13.7 Convex Hull

k--;

The Convex Hull problem asks for the smallest Convex polygon which contains a specific set of points. The (easiest) algorithm to handle this is Andrew's Monotone Chain, which breaks the answer into two chains (representing the top and bottom halves of the answer). We first sort the points lexicographically (by x coordinates, breaking ties with y coordinates). If at any point the last 3 vertices in the chain make a clockwise turn that means that the 2nd is inside the hull, and the 1st and 3rd are the only ones required. We can construct the partial convex hull of the points with lower x value than points[i] by ensuring that it only consists of Counter-Clockwise turns. We then add the next point by eliminating vertices which are now inside considering our added point. Going through all the points results in the lower half of the chain, and we can then go in the reverse direction (right to left) to get the upper chain.


```
static double[] sub(double[] v, double[] u) {
    return new double[] {
        v[0] - u[0], v[1] - u[1]
    };
}
static boolean ccw(double[] o, double[] u, double[] v) {
   return cross(sub(u, o), sub(v, o)) > 0.0;
}
//Note: This code will probably need to be changed for edge cases like where only 1 or 2 points are giv
static double[][] convexHull(double[][] points) {
    int n = points.length;
    int k = 0;
    double[][] H = new double[n * 2][2]; //chain could contain each point twice
    Arrays.sort(points, Comparator.comparingDouble((double[] point) - > point[0])
        .thenComparing(Comparator.comparingDouble((double[] point) - > point[1])));
   for (int i = 0; i < n; ++i) {
        while (k \ge 2 \&\& !ccw(H[k - 2], H[k - 1], points[i]))
```

```
H[k++] = points[i];
}
for (int i = n - 2, t = k + 1; i >= 0; i--) {
    while (k >= t && !ccw(H[k - 2], H[k - 1], points[i]))
        k--;
    H[k++] = points[i];
}
//In most cases our chain will not contain every point, so we need to trim
//also, the final point is a duplicate of the first to represent the 'wrap around'
return Arrays.copyOfRange(H, 0, k - 1);
}
```

[TODO: Inside/outside testing.]

13.8 Geometry References

https://codeforces.com/blog/entry/48868 https://vlecomte.github.io/cp-geo.pdf

Miscellaneous

14.1 2D grids

2D grids/arrays (of characters, numbers, booleans...) are a popular feature of many competitive programming problems.

• There is a trick for reading in a grid of characters which can save a bit of coding effort. The "traditional" way to read a grid of characters would be something like:

```
char[][] grid = new char[R][C];
for (int r = 0; r < R; r++) {
    String line = in.nextLine();
    for (int c = 0; c < C; c++) {
        grid[r][c] = line.charAt(c);
    }
}</pre>
```

However, it is possible to assign each row of the 2D array all at once, like so:

```
char[][] grid = new char[R][C];
for (int r = 0; r < R; r++)
   grid[r] = in.nextLine().toCharArray();</pre>
```

- In many cases the grid should be thought of as a graph where each cell is a vertex which is connected by edges to its neighbors. Note that in these cases one rarely wants to explicitly construct a different representation of the graph, but simply use the grid itself as an (implicit) graph representation.
- It is often useful to be able to assign a unique number to each cell in the grid, so we can store ID numbers of cells in data structures rather than making some class to represent a pair of a row and column index. The easiest method is to number the first row from 0 to C-1 (where C is the number of columns), then the second row C to 2C-1, and so on.

0	1	2	 C-1
C	C+1	C+2	 2C-1
2C	2C+1	2C+2	 3C-1
:	:		:
(R-1)C	(R-1)C+1	(R-1)C+2	 RC-1

• Using this scheme, to convert between (r,c) pairs and ID numbers n, one can use the formulas

$$(r,c) \mapsto r \cdot C + c$$
 $n \mapsto (n/C, n\%C)$

• To list the four neighbors of a given cell (r,c) to the north, east, south, and west, one can of course simply list the four cases manually, but sometimes this is tedious and error-prone, especially if there is a lot of code to handle each neighbor that needs to be copied four times.

Instead, one can use the following template. The idea is that (dr, dc) specifies the offset from the current cell (r,c) to one of its neighbors; each time through the loop we rotate it counterclockwise by 1/4 turn using the mapping $(dr, dc) \mapsto (-dc, dr)$ (see Geometry (§13, page 55)).

14.2Hexagonal grids

beehouseperimeter, honey, settlers2, beeproblem, honeyheist

Occasionally a problem will involve a 2D grid of tiled hexagons instead of a grid of squares. (Typically such problems involve a story about bees.) They are often not too hard (e.g. some kind of straightforward application of Breadth-First Search (§7.3, page 29)) other than the fact that dealing with hexagonal grids can be annoying, unless you know a few tricks for working with them elegantly.

[TODO: Write about hexagonal grids, storage, coordinate systems, etc.] Reference: https://www. redblobgames.com/grids/hexagons/

Range queries 14.3

Suppose we have a 1-indexed array A[1...n] containing some values, and there is some operation \oplus which takes two values and combines them to produce a new value. Given indices i and j, we want to quickly find the value that results from combining all the values in the range $A[i \dots j]$, i.e. $A[i] \oplus A[i+1] \oplus \dots \oplus A[j]$.

For example, A could be an array of integers, and \oplus could be max, that is, we want to find the maximum value in the range A[i...j]. Likewise \oplus could be sum, or product, or GCD. Or A could be an array of booleans, and we want to find the AND, OR, or XOR of the range $A[i \dots j]$.

- For this to make sense, the combining operation must typically be associative, i.e. $a \oplus (b \oplus c) = (a \oplus b) \oplus c$. (This is called a *semigroup*.)
- Sometimes there is also an inverse operation ⊖ which "cancels out" the effects of the combining operation, that is, $(a \oplus b) \ominus b = a$ (this is called a group). For example, subtraction cancels out addition. On the other hand, there is no operation that can cancel out the effect of taking a maximum.
- If we only need to find the value of combining a single range A[i...j], then ignore everything in this section and simply iterate through the interval, combining all the values in O(n) time.
- More typically, we need to do many queries, and O(n) per query is not fast enough. The idea is to preprocess the array into a data structure which allows us to answer queries more quickly, i.e. in O(1)or $O(\lg n)$.
- Sometimes we also need to be able to *update* the array in between queries; in this case we need a more sophisticated query data structure that can be quickly updated.

Each of the below subsections outlines one approach to solving this problem; for quick reference, each subsection title says whether an inverse operation is required, how fast queries are, and whether the technique can handle updates.

Prefix scan (inverse required; O(1) queries; no updates)

In a situation where we have an inverse operation and we do not need to update the array, there is a very simple solution. First, make a prefix scan array P[0...n] such that P[i] stores the value that results from combining A[1...i]. (P[0] stores the unique "identity" value $a \ominus a$, e.g. zero if the combining operation is sum.) P can be computed in linear time by scanning from left to right; each $P[i] = P[i-1] \oplus A[i]$. Now the value of A[i...j] can be computed in O(1) time as $P[j] \ominus P[i-1]$. That is, P[j] gives us the value of $A[1] \oplus \cdots \oplus A[j]$, and then we cancel $P[i-1] = A[1] \oplus \cdots \oplus A[i-1]$ to leave just $A[i] \oplus \cdots \oplus A[j]$ as desired.

Note that having P[0] store the identity value is not strictly necessary, but it removes the need for a special case. If A is already 0-indexed instead of 1-indexed, then it's probably easier to just put in a special case for looking up the value of A[0...j] as P[j], without the need for an inverse operation.

For example, suppose we are given an array of 10^5 integers, along with 10^5 pairs (i, j) for which we must output the sum of $A[i \dots j]$. Simply adding up the values in each range would be too slow. We could solve this with the following code:

More commonly, a prefix scan is a necessary first step in a more complex solution.

divisible, dvoniz, srednji, subseqhard

14.3.2Kadane's Algorithm

As an aside, suppose we want to find the subsequence A[i...j] with the biggest sum. A brute-force approach is $O(n^3)$: iterate through all (i,j) pairs and find the sum of each subsequence. Using the prefix scan approach, we can cut this down to $O(n^2)$, since we can compute the sums of the $O(n^2)$ possible subsequences in O(1)time each. However, there is an even better O(n) algorithm which is worth knowing, known as Kadane's Algorithm.

The basic idea is simple: scan through the array, keeping a running sum in an accumulator, and also keeping track of the biggest total seen. Whenever the running sum drops below zero, reset it to zero. Below is a sample solution to 🚱 commercials. Note that subtracting P from each input is specific to the problem, but the rest is purely Kadane's Algorithm.

14.3.32D prefix scan

[TODO: make pictures]

It is possible to extend the prefix scan idea to two dimensions. Given a 2D array A, we create a parallel 2D array P such that P[i][j] is the result of combining all the entries of A in the rectangle from the upper-left corner to (i, j) inclusive. The simplest way to do this is to compute

$$P[i][j] = A[i][j] + P[i-1][j] + P[i][j-1] - P[i-1][j-1]$$

Including P[i-1][j] and P[i][j-1] double counts all the entries in the rectangle from the upper left to (i-1, j-1) so we have to subtract them.

Given P, to compute the combination of the elements in some rectangle from (a,b) to (c,d), we can compute

$$P[c][d] - P[a-1][d] - P[c][b-1] + P[a-1][b-1]$$

B prozor can be solved by brute force, but it's a nice exercise to solve it using the above approach.

Doubling windows (no inverse; O(1) queries; no updates)

[TODO: Include link to discussion in CP3]

Fenwick trees (inverse required; $O(\lg n)$ queries; $O(\lg n)$ updates) 14.3.5

🙆 fenwick, supercomputer, turbo, moviecollection, dailydivision

We can use a Fenwick tree to query the range A[i..j] (i.e. get the combination of all the values in the range $A[i] \dots A[j]$ according to the combining operation \oplus) in $O(\lg n)$ time. We can also dynamically update any entry in the array in $O(\lg n)$ time. If dynamic updates are required and we have an invertible combining operation, a Fenwick tree should definitely be the first choice because the code is quite short. (Segment trees (§14.3.6, page 64) can also handle dynamic updates, and work for any combining operation, even with no inverse, but the required code is a bit longer.)

The code shown here stores int values and uses addition as the combining operation, so range queries return the *sum* of all values in the range; but it can be easily modified for any other type of values and any other invertible combining operation: change the type of the array, change the + operation in the prefix and add methods, change the subtraction in the range method, and change the assignment s = 0 in prefix to the identity element instead of zero.

Note that this FenwickTree code assumes the underlying array is 1-indexed!

- The constructor creates a FenwickTree over an array of all zeros.
- To create a FenwickTree over a given 1-indexed array A, simply create a default tree and then loop through the array, calling ft.add(i, A[i]) for each i. This takes $O(n \lg n)$.
- ft.add(i, delta) can be used to update the value at a particular index by adding delta to it.
- If you want to simply replace the value at index *i* instead of adding something to it, you could use ft.add(i, newValue ft.range(i,i)).
- ft.range(i,j) returns the sum $A[i] + \cdots + A[j]$.

[TODO: Discuss CP3 presentation of Fenwick trees; explain how Fenwick trees work]

14.3.6 Segment trees (no inverse required; $O(\lg n)$ queries; $O(\lg n)$ updates)

[TODO: Segment trees.]

14.4 Cycle finding

[TODO: Floyd's algorithm, Brent's algorithm]

Formulas

• Ceiling division (soylent, wordcloud, amultiplication game). If p and q are positive values of type int or long, then p/q computes $\lfloor p/q \rfloor$, the quotient (rounded down). If you want the quotient rounded up, that is, $\lceil p/q \rceil$, compute

$$(p + q - 1) / q.$$

Note that -((-p)/q) does not work in Java since Java truncates the result of integer division towards zero, instead of always taking the floor.

• **Derangements** (secretsanta). The number of permutations of n objects such that no object is left in its original place is

$$!n = n \cdot !(n-1) + (-1)^n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = \left[\frac{n!}{e}\right],$$

where !1 = 0, and [x] denotes the closest integer to x. The first few values of !n are

$$0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961.$$

• Heron's Formula. The area of a triangle with side lengths a, b, c is

$$\sqrt{s(s-a)(s-b)(s-c)}$$
 where $s=(a+b+c)/2$.

• Brahmagupta's Formula (janitortroubles). The area of a quadrilateral with side lengths a, b, c, and d, with all vertices lying on a common circle, is

$$\sqrt{s(s-a)(s-b)(s-c)(s-d)}$$
 where $s=(a+b+c+d)/2$.

This is also the maximum possible area of a quadrilateral with the given side lengths.

• Euler's formula (dontfencemein). In a planar graph with V vertices, E edges, F faces (a "face" is a maximal connected region of the plane, separated from other faces by one or more edges), and C connected components,

$$V - E + F = C + 1.$$

Advanced topics

This is a list of advanced topics that may eventually be included in this document, but for now you can go read up on them if you are interested! (And then of course write up what you have learned for inclusion in this document.)

- Chinese Remainder Theorem (heliocentric, generalchineseremainder, dvdscreensaver)
- Divisors of n! (factovisors)
- Gauss-Jordan elimination (i.e. row reduction i.e. solving linear systems) (primonimo)
- Exact Set Cover with Algorithm X/dancing links (programming teams election)
- Matrix powers
 - diceandladders, driving, linearrecurrence, mortgage, overlappingmaps, squawk, timing
- Markov chains
 - lostinthewoods, gruesomecave
- Min cost max flow
- Max flow with minimum and maximum capacities
- Discrete logarithms with baby step/giant step (discretelogging)
- Faster primality testing with Miller-Rabin (e.g. testing with a = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 makes it deterministic).
- Divide & conquer algorithm for counting inversions.
 - 🚱 excursion, froshweek, ultraquicksort
- 2-SAT
- SAT solving with DPLL
- LCA queries: Tarjan's OLCA; via RMQ; binary lifting (tourists)
- Convolutions with FFT/NTT (tiles, aplusb, kinversions)
- Testing DFA equivalence with Hopcroft-Karp union-find algorithm (outsourcing)

Appendix A

Reference

A.1 Primes

All primes up to 1000:

A.2 Pascal's Triangle

Appendix B

Resources

Some good resources for further learning/reference:

- Problems/online judges
 - Of course, Open Kattis has a collection of over 1000 great problems ranging from trivial to very difficult.
 - The UVa Online Judge has been around much longer than Kattis and also has a huge collection of problems, mostly disjoint from those on Kattis.
 - The CP3 website has a Methods to Solve page with a huge annotated list of problems from Kattis and UVa, grouped by topic (corresponding to sections in CP3) with small hints for each one.

• Books

- Competitive Programming, 3rd edition (aka CP3) by Steven and Felix Halim is amazing. Anyone serious about competitive programming should get a copy.
- Programming Challenges by Skiena and Revilla is also good.

• Reference

- [TODO: Geeksforgeeks]
- [TODO: Topcoder]
- [TODO: Codeforces]
- [TODO: cp-algorithms.com]