<u>2004 г</u> 9 класс.

Задание 1. «Автокран»

массы $M = 15 \,\text{T}$ Автокран с габаритами кузова $a \times 2a = 3.0$ m $\times 6.0$ m имеет легкую выдвижную телескопическую стрелу максимальной длиной $l = 30 \,\mathrm{M}$, которая крепится в центре задней половины крана. В положении стрела крана горизонтально вдоль его оси симметрии. Поворот башни крана от оси симметрии будем характеризовать углом φ , который измеряется в горизонтальной плоскости. Угловую высоту стрелы крана будем характеризовать углом α , образуемым стрелой с плоскостью горизонта.

в) Для увеличения грузоподъемности и безопасности автокрана применяются боковые упоры «на грунт», выдвигаемые на расстояние Δa с боковых сторон крана. При какой длине упора кран сможет поднять груз равный собственной массе, если $\alpha = 45\,^{\circ}$? При решении считайте, что массой выдвижной телескопической стрелы и упоров крана можно пренебречь. Центр масс крана находится на оси его симметрии.

Ускорение свободно падения считайте равным $g = 9.8 \frac{M}{c^2}$.

Задание 2. «Пробирка»

В длинной вертикальной цилиндрической трубе, заполненной водой, находится цилиндрическая пробирка, диаметр которой немного меньше внутреннего диаметра трубки. Толщина стенок пробирки пренебрежимо мала. Если пробирка пуста, то она равномерно поднимается со скоростью v_0 , если пробирку полностью заполнить водой, то она будет равномерно опускаться со скоростью v_1 .

2. Найдите зависимость скорости пробирки от степени ее наполнения η водой (под степенью наполнения следует понимать отношение высоты заполненной части пробирки h к ее длине l: $\eta = \frac{h}{l}$). Постройте график этой зависимости.

3. Пробирку заполняют жидкостью, плотность которой в n раз больше плотности воды. Найдите зависимость скорости пробирки от степени ее наполнения этой жидкостью. Постройте график этой зависимости.

<u>Задание 3.</u> «Платформа»

Горизонтальная платформа начинает подниматься с поверхности земли с постоянным ускорением a. Через время τ после начала движения с платформы вертикально вверх с начальной скоростью v_0 относительно платформы подбрасывают небольшой шарик.

1. Запишите законы движения платформы и шарика в системе отсчета, связанной с землей. Постройте примерные графики этих зависимостей.

Начало отсчета вертикальной оси и начало отсчета времени можете выбрать самостоятельно. Законом движения называется зависимость координат тела от времени.

2. Найдите путь и перемещение шарика за время свободного полета в системе отсчета, связанной с землей.

Рассмотрите возможные варианты движения шарика при различных значениях параметров задачи. Сопротивлением воздуха пренебречь.

Задание 4. «Тепловой нож»

Для промышленной «распилки» ледяного бруса используется тепловой нож, представляющий собой подвижный стальной вертикальный стержень AB радиуса $r=1,0\,\mathrm{Mm}$, подключенный к источнику постоянного напряжения $U=5\,\mathrm{B}$. Стержень в процессе работы достаточно медленно перемещают

перпендикулярно длинной стороне бруса.

1) за какое время t_1 нож «перепилит» неподвижный ледяной брус прямоугольного сечения $a \times b = 1,0 \,\mathrm{m} \times 0,50 \,\mathrm{m}$. С какой скоростью υ при этом необходимо двигать нож?

2) для разрезания бруса «под углом» одновременно с движением ножа брус продвигают в перпендикулярном направлении со скоростью $u=3,0\,\frac{\rm MM}{\rm c}$. Найдите время t_2 разреза в этом случае и угол α при вершине бруса выходе с конвейера.

Считайте, что длина стержня равна высоте бруса, и все количество теплоты, выделяемое в системе, идет только на плавление льда. Лед находится при температуре плавления. Удельная теплота плавления льда $\lambda = 3,3\cdot 10^5\, \frac{\text{Дж}}{\text{кг}}$, плотность

льда $\rho = 9.2 \cdot 10^2 \, \frac{\mathrm{K\Gamma}}{\mathrm{M}^3}$, удельное сопротивление стали $\rho^* = 9.8 \cdot 10^{-8} \, \mathrm{OM} \cdot \mathrm{M}$.