Principal Component Analysis Proof: Left Singular Vector is the First Principal Component

©Barry Van Veen 2019

Let $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_M \end{bmatrix}$ be an N-by-M $(N \geq M)$ matrix with columns \mathbf{a}_i . The expression $\mathbf{f}^T \mathbf{A} \mathbf{A}^T \mathbf{f}$ represents the sum of squares of the elements of the vector $\mathbf{A}^T \mathbf{f}$, whose elements are the inner product between \mathbf{f} and each column of \mathbf{A} . The solution to the problem

$$\max_{||m{f}||_2^2=1} \sum_{i=1}^M |m{f}^Tm{a}_i|^2 = \max_{||m{f}||_2^2=1} m{f}^Tm{A}m{A}^Tm{f}$$

gives the direction f containing the maximum variability or variance across the columns of A, that is, the direction that best fits the set of vectors $a_i, i = 1, 2, ..., M$. The vector f is called the first principal component of the data $a_i, i = 1, 2, ..., M$. Let the A have singular value decomposition $U\Sigma V^T$ where U, V are square matrices, that is, the full singular value decomposition.

Theorem:

$$\max_{||\boldsymbol{f}||_2^2=1} \boldsymbol{f}^T \boldsymbol{A} \boldsymbol{A}^T \boldsymbol{f} = \sigma_1^2$$

is obtained by setting $\mathbf{f} = \mathbf{u}_1$, the left singular vector corresponding to the largest singular value.

Proof: Substitute the singular value decomposition for $A = U\Sigma V^T$ to write

$$f^T A A^T f = f^T U \Sigma V^T V \Sigma U^T f = f^T U \Sigma^2 U^T f$$

where the second equality follows from the orthonormality of the columns of $V: V^T V = I$. Now let $z = U^T f$ and note that $||z||_2^2 = f^T U U^T f = f^T f = ||f||_2^2$ because the right singular vectors in U are orthonormal. That is, $UU^T = U^T U = I$. Hence we may rewrite the maximization problem as

$$\max_{||oldsymbol{z}||_2=1} oldsymbol{z}^T oldsymbol{\Sigma}^2 oldsymbol{z} = \max_{\sum_{i=1}^M z_i^2=1} \sum_{j=1}^M \sigma_i^2 z_i^2$$

where z_i is the i^{th} element of \boldsymbol{z} .

The unit norm constraint on z implies that an increase in the magnitude of any one element z_k must be offset by a decrease in the magnitudes of the other elements of z. Since $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p > 0$, the best strategy is to allocate all of the unit energy in z to z_1 . To see this, consider the case where M = 2 and $\sigma_1 > \sigma_2$. In this case we require $z_2^2 = 1 - z_1^2$ and

$$\sum_{i=1}^{M} \sigma_i^2 z_i^2 = \sigma_1^2 z_1^2 + \sigma_2^2 (1 - z_1^2) = z_1^2 (\sigma_1^2 - \sigma_2^2) + \sigma_2^2$$

Since $\sigma_1^2 - \sigma_2^2 > 0$, this quantity is maximized by choosing z_1^2 to be as large or possible, that is, $z_1^2 = 1$. Any energy allocated to z_2 is multiplied by σ_2^2 , which results in a lower value than had that same energy been allocated to z_1 because $\sigma_1 > \sigma_2$. A similar argument applies to the case M > 2. The strategy that maximizes $\sum_{i=1}^p \sigma_i^2 z_i^2$ allocates all of the unit energy in z to z_1 , so $z = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$. The orthonormality of the columns of U thus imply that $f = U^T z$ or $f = u_1$ where u_1 is the first column of U, the first left singular vector of A.