การทคลองที่ 9

วงจรบวกและวงจรลบเลขฐานสอง (Binary Adder and Subtractor)

วัตถุประสงค์

- 1. เข้าใจการทำงานของวงจรบวกเลขฐานสองแบบ Full Adder และแบบ Half Adder
- 2. เข้าใจการทำงานของวงจรลบเลขฐานสองแบบ Full Subtractor และแบบ Half Subtractor
- 3. เข้าใจหลักการบวกและลบเลขฐานสองขนาด 1 บิต

ทฤษฎี

การบวกและลบเลขฐานสองโดยวงจรลอจิกนั้น สามารถสร้างได้จากทฤษฎีการบวกและลบเลข โดยนำมาเขียนเป็น ตารางความจริง เพื่อนำมาสร้างเป็นวงจรลอจิกที่ต้องการ

วงจรบวกแบบ Half Adder มีตารางความจริงแสดงการทำงานดังรูปที่ 1 และสามารถสร้างวงจรบวกแบบ Half Adder ได้ดังรูปที่ 1

ตารางความจริง

อิน	พุต	เอาท์พุต		
A	В	Σ	C_{o}	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

รูปที่ 1 แสดงวงจรบวกแบบ Half Adder และตารางแสดงการทำงานของวงจร

วงจรบวกแบบ Full Adder ในการบวกเลขฐานสองนั้นมีตัวทดเกิดขึ้นจากการบวกเลขบิตที่ต่ำกว่ามาทดให้บิตถัดไป ดังนั้นจึงต้องศึกษาการทำงานของวงจรบวกแบบ Full Adder ซึ่งมีตารางการทำงานและวงจรภายในซึ่งสร้างได้จากวงจรบวก แบบ Half Adder ดังรูปที่ 2

ตารางความจริง

	อินพุต		เอาท์พุต		
C _{in}	A	В	Σ	C _o	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	
(Carry + B + A		SUM	Carry Out	

รูปที่ 2 แสดงวงจรแบบ Full Adder และตารางแสดงการทำงาน

วงจรลบแบบ Half Subtractor สามารถสร้างได้จากการนำกฎของการลบเลขฐานสองมาเขียนลงตารางความจริงและจะ ได้วงจรลบเลขแบบ Half Subtractor ดังรูปที่ 3

ตารางความจริง

อิน	พุต	เอาท์พุต		
A	В	D_{i}	\mathbf{B}_{o}	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	
A - B		Difference	Borrow out	

รูปที่ 3 แสดงวงจรลบแบบ Half Subtractor และตารางความจริงแสดงการทำงาน

วงจรลบแบบ Full Subtractor ในการลบเลขฐานสองกรณีที่ตัวตั้งน้อยกว่าตัวลบ จำเป็นต้องมีการยืมเลขมาจากบิตที่สูง กว่า ดังนั้นวงจรที่ทำหน้าที่ลบเลขจึงต้องมีอินพุตเพิ่มขึ้น คือ ตัวยืมเข้า B_{in} เมื่อนำการทำงานมาเขียนลงในตารางความจริงจะ สามารถสร้างวงจรลบแบบ Full Subtractor ได้ดังรูปที่ 4

ตารางความจริง

	อินพุต	เอาท์พุต		
A	В	B_{in}	\mathbf{D}_{i}	\mathbf{B}_{o}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1 1 1		1	1
	$A - B - B_{in}$		Difference	Borrow out

รูปที่ 4 แสดงวงจรลบแบบ Full Subtractor และตารางความจริงแสดงการทำงาน อุปกรณ์ที่ใช้ในการทดลอง

- วงจรรวมเบอร์ 7486 7408 7404 และ 7432
- 2. ชุคทคลองคิจิตอล

วงจรการทดลองที่ 1 วงจรบวกแบบ Half Adder

1.1 ทำการป้อนเลขฐานสอง 0 และ 1 เข้าที่อินพุต A และ B ตามตาราง ทำการทคลองและบันทึกผลการบวก และตัวทคที่เกิดขึ้น ลงในตารางบันทึกผลการทคลองที่ 1

ตารางบันทึกผลการทดลองที่ 1

อิ	ันพุต	เอาท์พุต		
A	В	Σ	C _o	
0	0			
0	1			
1	0			
1	1			

วงจรการทดลองที่ 2 วงจรบวกแบบ Full Adder

2.1 ทำการป้อนลอจิกอินพุดที่ตัวทดเข้า ตัวตั้ง และตัวบวก ($C_{\rm in}$ A B) ตามตารางบันทึกผล และบันทึกผลของตัวบวก (\sum) และตัว ทดออก ($C_{\rm o}$) ลงในตารางบันทึกผลการทดลองที่ 2

ตารางบันทึกผลการทดลองที่ 2

	เอาท์พุต			
A	В	C_{in}	Σ	C _o
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

วงจรการทคลองที่ 3 วงจรลบแบบ Half Subtractor

 $3.1\,$ ทำการทดลองโดยการป้อนเลขฐานสองที่ตัวตั้ง (A) และตัวยืม (B) ตามตารางบันทึกผลและบันทึกผลของผลต่าง (D_i) และตัวยืม (B_i) ลงในตารางบันทึกผลการทดลองที่ 3

ตารางบันทึกผลการทดลองที่ 3

อิเ	เพุต	เอาท์พุต		
A	В	D_{i}	\mathbf{B}_{o}	
0	0			
0	1			
1	0			
1	1			

วงจรการทดลองที่ 4 วงจรลบแบบ Full Subtractor

4.1 ป้อนเลขฐานสองลงในอินพุต Bin A B ตามตารางบันทึกผลการทดลองที่ 4 และบันทึกผลของผลลัพธ์ ตัวลบ (D_i) และตัวยืม

(B_o) ลงในตารางบันทึกผลการทดลองที่ 4

ตารางบันทึกผลการทดลองที่ 4

	อินพุต	เอาท์พุต		
A	В	B_{in}	D_{i}	B_{o}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

คำถามท้ายการทคลอง

1. จากตารางความเป็นจริงต่อไปนี้ จงเขียนสมการของ \sum และ $\mathrm{C_o}$ ในรูปเทอมผลบวกของผลคูณ (SOP)

	อินพุต	เอาา	ก์์พุต	
C_{in}	В	C_{in}	Σ	C_{o}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

2. จากสมการของ \sum และ C_{\circ} ในข้อ 1 ให้นำมาสร้างเป็นวงจรลอจิก และทดสอบการทำงานว่าวงจรที่สร้างได้ทำงาน เหมือนวงจรในการทดลองใดที่ผ่านมา

<u>า</u> บและวจารณผลการทดลอง

การทดลองที่ 10

วงจรทางคณิตศาสตร์ (Arithmatic Circuits)

วัตถุประสงค์

- 1. เข้าใจการทำงานของวงจรบวกเลขฐานสอง 4 บิต โดยใช้วงจรรวมเบอร์ 7483
- 2. เข้าใจการทำงานของวงจรบวก/ลบเลขฐานสอง 4 บิต โดยใช้วงจรรวมเบอร์ 7483
- รู้หลักการลบเลขฐานสองแบบวิธีกอมพลีเมนต์ที่ 1 และวิธีกอมพลีเมนต์ที่ 2

ทฤษฎี

วงจรบวกและลบเลขฐานสองหลายๆบิต สามารถสร้างได้อย่างง่ายโดยใช้วงจรรวมที่ทำหน้าที่คำนวณเลขฐานสอง เช่น วงจรรวมเบอร์ 7483 (4 Bit-Full Adder) ซึ่งสามารถบวกเลขฐานสองได้พร้อมกันครั้งละ 4 บิต และสามารถต่อเพิ่มเป็น 8 บิต หรือมากกว่า และยังสามารถนำมาสร้างวงจรลบเลขฐานสอง 4 บิตหรือ 8 บิตได้อีกด้วย โดยการใช้เทคนิคการลบ เลขฐานสองแบบคอมพลีเมนต์ที่ 1 และคอมพลีเมนต์ที่ 2 ลักษณะการจัดวางตำแหน่งขาต่างๆ เป็นดังนี้ 4 บิตตัวตั้งคือขา A_1 - A_4 4 บิตตัวบวกหรือตัวลบ คือขา B_1 - B_4 และ 4 บิตผลลัพธ์ คือขา $\sum_1 - \sum_4$ ดังแสดงในรูปที่ 1

รูปที่ 1 แสดงการจัดวางตำแหน่งขาของวงจรรวมเบอร์ 7483

۰ و	9	െ പ്രദ്
การทำงานของตัวบวกขนาด 4	บตเบอร 7483	แสดงในตารางรปท 2

		เอาท์พุต							
	อิน	พุต		When C _o =L			When $C_o = L$		
					Whe	en C ₁ =L		Who	en C ₂ =L
A_1	B_1	A_2	B_2	Σ_1	Σ_2	C ₂	Σ,	Γ_2	C ₂
A_3	B_3	A_4	B_4	Σ3	Σ_4	C ₄	Σ ₃	Σ_4	C ₄
L	L	L	L	L	L	L	Н	L	L
Н	L	L	L	Н	L	L	L	Н	L
L	Н	L	L	Н	L	L	L	Н	L
Н	Н	L	L	L	Н	L	Н	Н	L
L	L	Н	L	L	Н	L	Н	Н	L
Н	L	Н	L	Н	Н	L	L	L	Н
L	Н	Н	L	Н	Н	L	L	L	Н
Н	Н	Н	L	L	L	Н	Н	L	Н
L	L	L	Н	L	Н	L	Н	Н	L
Н	L	L	Н	Н	Н	L	L	L	Н
L	Н	L	Н	Н	Н	L	L	L	Н
Н	Н	L	Н	L	L	Н	Н	L	Н
L	L	Н	Н	L	L	Н	Н	L	Н
Н	L	Н	Н	Н	L	Н	L	Н	Н
L	Н	Н	Н	Н	L	Н	L	Н	Н
Н	Н	Н	Н	L	Н	Н	Н	Н	Н

รูปที่ 2 แสดงตารางการทำงานของวงจรรวมเบอร์ 7483

อุปกรณ์ที่ใช้ในการทดลอง

- 1. วงจรรวมเบอร์ 7483
- 2. ชุคทคลองคิจิตอล

วงจรการทดลองที่ 1 วงจรบวกเลขฐานสองขนาด 4 บิต โดยใช้วงจรรวมเบอร์ 7483

1.1 ต่อวงจรตามรูป และป้อนเลขฐานสอง 4 บิตที่ตัวตั้งและตัวบวกตามตารางบันทึกผลการทดลองที่ 1 และบันทึกผลการบวก เลขฐานสอง 4 บิต ลงในตารางบันทึกผลการทดลองที่ 1

ตารางบันทึกผลการทดลองที่ 1

				เอาท์พุต									
A_4	A_3	A_2	A_1	$\mathrm{B_4}$	B_3	B_{2}	\mathbf{B}_{1}	C_0	C ₄	Σ_4	Σ_{a}	Σ_2	Σ_1
0	0	0	0	0	0	0	0	0					
0	0	0	1	0	0	0	1	0					
0	0	1	0	0	0	1	0	0					
0	0	1	1	0	0	1	1	0					
0	1	0	0	0	1	0	0	0					
1	0	0	0	1	0	0	0	0					
1	0	0	1	1	0	0	1	0					
1	0	1	0	1	0	1	0	0					
1	0	1	1	1	0	1	1	0					
1	1	0	0	1	1	0	0	0					

วงจรการทคลองที่ 2 วงจรบวกและวงจรลบเลขฐานสองขนาค 4 บิต ด้วยวิธีคอมพลีเมนต์ที่ 1

2.1 ต่อวงจรตามรูป และทำการทดลองการบวกโดยให้สัญญาณลอจิกที่ขา Control Logic = "0" ทดลองป้อนเลขฐานสอง 4 บิต เข้าที่ตัวตั้งและที่ตัวบวกตามที่ตารางกำหนด และบันทึกผลการทดลองลงในตารางบันทึกผลการทดลองที่ 2

ตารางบันทึกผลการทดลองที่ 2

			เอาท์พุต								
A_4	A_3	A_2	A_1	B_{4}	B_{3}	\mathbf{B}_2	\mathbf{B}_{1}	Σ_4	Σ_3	Σ_2	Σ_1
0	0	0	0	0	0	0	0				
0	0	0	1	0	0	0	1				
0	0	1	0	0	0	1	0				
0	0	1	1	0	0	1	1				
0	1	0	0	0	1	0	0				
0	1	0	1	0	1	0	1				
0	1	1	0	0	1	1	0				
0	1	1	1	0	1	1	1				
1	0	0	0	1	0	0	0				
1	0	0	1	1	0	0	1				

2.2 ต่อวงจรตามรูปเดิม ให้ทำงานเป็นวงจรลบเลขฐานสองขนาด 4 บิต โดยการป้อนขา Control Logic ด้วยลอจิก "1" ทดลองป้อนเลขฐานสอง 4 บิตเข้าที่ตัวตั้ง และป้อนเลขฐานสอง 4 บิตเข้าที่ตัวลบตามลำดับในตาราง บันทึกผลการลบ ลงในตารางบันทึกผลการทดลองที่ 3

ગ લે વ	
- ตารางบนทกผลการทดลองท 3	٠

			เอาท์พุต								
A_4	A_3	A_2	A_1	B_{4}	B_3	B_{2}	\mathbf{B}_{1}	Σ_4	Σ_3	$\mathcal{oldsymbol{\Sigma}}_2$	Σ_1
0	0	0	0	0	0	0	0				
0	0	0	1	0	0	0	1				
0	0	1	0	0	0	1	0				
0	0	1	1	0	0	1	1				
0	1	0	0	0	1	0	0				
0	1	0	1	0	1	0	1				
0	1	1	0	0	1	1	0				
0	1	1	1	0	1	1	1				
1	0	0	0	1	0	0	0				
1	0	0	1	1	0	0	1				

วงจรการทคลองที่ 3 วงจรบวกและวงจรลบเลขฐานสองขนาค 4 บิต ด้วยวิธีคอมพลีแมนต์ที่ 2

3.1 ต่อวงจรตามรูป ควบคุมขา Control Logic ให้เป็น "0" วงจรจะทำงานเป็นวงจรบวกเลขฐานสอง 4 บิตแบบคอมพลีเมนต์ที่ 2 ทดลองโดยป้อนเลขฐานสอง 4 บิต ตัวตั้งและตัวบวกตามตารางที่ 4 และบันทึกผลการบวกลงในตารางที่ 4

ตารางบันทึกผลการทดลองที่ 4

			เอาท์พุต								
A_4	A_3	A_2	A_1	B_4	B_3	\mathbf{B}_2	\mathbf{B}_{1}	Σ_4	Σ_3	$\mathcal{oldsymbol{\Sigma}}_2$	Σ_1
0	0	0	0	0	0	0	0				
0	0	0	1	0	0	0	1				
0	0	1	0	0	0	1	0				
0	0	1	1	0	0	1	1				
0	1	0	0	0	1	0	0				
0	1	0	1	0	1	0	1				
0	1	1	0	0	1	1	0				
0	1	1	1	0	1	1	1				
1	0	0	0	1	0	0	0				
1	0	0	1	1	0	0	1				

3.2 ต่อวงจรตามรูปเดิม ให้ทำงานเป็นวงจรลบเลขฐานสองขนาด 4 บิตแบบคอมพลีเมนต์ที่ 2 โดยการป้อนขา Control Logic ด้วยลอจิก "I" ทดลองป้อนเลขฐานสอง 4 บิต เข้าที่ตัวตั้งและป้อนเลขฐานสอง 4 บิตเข้าที่ตัวลบตามลำดับในตาราง บันทึกผลลง ในตารางบันทึกผลการทดลองที่ 5

ตารางบันทึกผลการทดลองที่ *5*

			เอาท์พุต								
A_4	A_3	A_2	A_1	B_4	\mathbf{B}_3	B_2	\mathbf{B}_{1}	Σ_4	Σ_3	Σ_2	Σ_1
0	0	0	0	0	0	0	0				
0	0	0	1	0	0	0	1				
0	0	1	0	0	0	1	0				
0	0	1	1	0	0	1	1				
0	1	0	0	0	1	0	0				
0	1	0	1	0	1	0	1				
0	1	1	0	0	1	1	0				
0	1	1	1	0	1	1	1				
1	0	0	0	1	0	0	0				
1	0	0	1	1	0	0	1				

คำถามท้ายการทดลอง

- 1. จงใช้วงจรรวมเบอร์ 7483 จำนวน 2 ตัว สร้างเป็นวงจรบวกเลขฐานสองขนาด 8 บิต ให้วาคภาพวงจรและอธิบายการ ทำงานของวงจร
- 2. จงสร้างวงจรบวกและลบเลขฐานสิบอย่างง่าย ตามแผนภาพกรอบต่อไปนี้ให้ทำงานได้อย่างสมบูรณ์ และอธิบายการ ทำงานของส่วนต่างๆในวงจร

สรุปและวิจารเ	ณ์ผลการทคลอง			
	•••••	•••••	 	 •••••