Задачи по математической статистике

1. Построить оценки неизвестных параметров по методу моментов для следующих распределений: a) B_p , $0 ; б) <math>\Pi_{\lambda}$, $\lambda > 0$; в) G_p , $0 ; г) <math>U[0,\theta]$, $\theta > 0$; д) $U[\theta - 1, \theta + 1]$, $-\infty < \theta < \infty$; e) $U[-\theta, \theta]$, $\theta > 0$; ж) E_{α} , $\alpha > 0$; з) $\Phi_{\alpha,1}$, $-\infty < \alpha < \infty$; и) Φ_{0,σ^2} , $\sigma^2 > 0$.

Исследовать полученные оценки на несмещенность и состоятельность.

- **2.** Построить оценки максимального правдоподобия неизвестных параметров для следующих распределений: a) B_p , $0 ; б) <math>\Pi_{\lambda}$, $\lambda > 0$; в) $B_{m,p}$, $0 ; г) <math>U[0,\theta]$, $\theta > 0$; д) $U[-\theta,\theta]$, $\theta > 0$; e) E_{α} , $\alpha > 0$; ж) $\Phi_{\alpha,1}$, $-\infty < \alpha < \infty$; з) Φ_{0,σ^2} , $\sigma^2 > 0$. Исследовать полученные оценки на несмещенность и состоятельность.
- **3.** Построить оценки максимального правдоподобия параметра θ , если распределение выборки имеет плотность
 - а) $\theta y^{\theta-1}$ при $y\in [0,\theta]$, $\theta>0$;
 - б) $\frac{2y}{\theta^2}$ при $y \in [0,\theta]$, $\theta > 0$;
 - B) $\frac{1}{2}e^{-|y-\theta|}$, $y \in \mathbb{R}$, $-\infty < \theta < \infty$;
 - г) $\frac{\theta e^{-\theta^2/2y}}{\sqrt{2\pi y^3}}$ при $y \ge 0$, $\theta > 0$.
- **4.** Пусть X_1, \ldots, X_n выборка из смещённого показательного распределения с плотностью

$$f_{\beta}(y) = \left\{ egin{array}{ll} e^{eta-y} & \mbox{при} & y \geq eta, \\ 0 & \mbox{при} & y < eta. \end{array}
ight.$$

Для параметра $\beta \in \mathbb{R}$ построить а) оценку по методу моментов; б) оценку максимального правдоподобия. Исследовать полученные оценки на несмещенность и состоятельность.

- 5. Пусть X_1, \ldots, X_n выборка из равномерного распределения на отрезке $[0,\theta]$. С помощью неравенства Чебышева доказать состоятельность следующих оценок параметра $\theta>0$: а) $2\overline{X}$; б) $X_{(n)}$.
- **6.** Пусть X_1, \ldots, X_n выборка из некоторого распределения с конечной дисперсией. Доказать, что

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

является состоятельной оценкой параметра $\sigma^2 = \mathsf{D} X_1$. Является ли S^2 несмещённой оценкой дисперсии σ^2 ? Построить оценку, являющуюся одновременно состоятельной и несмещённой оценкой параметра σ^2 .

7. Пусть X_1, \ldots, X_n — выборка из распределения с конечным вторым моментом. Пусть значение $a = \mathsf{E} X_1$ известно. Проверить на несмещённость и состоятельность следующие оценки неизвестной дисперсии:

a)
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
; 6) $\overline{X^2} - a^2$; B) $\frac{1}{n} \sum_{i=1}^{n} (X_i - a)^2$; Γ) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - a)^2$.

- **8.** Пусть X_1 , . . . , X_n выборка из показательного распределения с параметром α . Будет ли оценка $\alpha_n^*=1/\overline{X}$ несмещённой? Если «нет», найти смещение. Является ли оценка состоятельной?
- **9.** Пусть θ^* оценка параметра θ со смещением $b(\theta) = 2\theta$. Построить несмещённую оценку параметра θ .
- 10. Пусть θ_n^* асимптотически несмещённая оценка для θ и $\mathrm{D}\theta_n^* \to 0$ при $n \to \infty$ для любого $\theta \in \Theta$. Доказать, что оценка θ_n^* состоятельна.
- 11. Пусть X_1 , . . . , X_n выборка из равномерного распределения на отрезке $[0,\theta]$. Сравнить оценки $2\overline{X}$, $X_{(n)}$ и $\frac{n+1}{n}X_{(n)}$ параметра θ в среднеквадратичном смысле.
- **12.** Пусть X_1, \ldots, X_n выборка из равномерного распределения на отрезке $[0,\theta]$. Сравнить оценки $\theta_{k,n}^* = \frac{n+k}{n} X_{(n)}$, k=0, 1, 2, . . . , параметра θ в среднеквадратичном смысле.
- **13.** Пусть X_1, \ldots, X_n выборка из смещённого показательного распределения с плотностью

$$f_{\beta}(y) = \left\{ \begin{array}{ll} e^{\beta - y} & \text{ при } y \geq \beta, \\ 0 & \text{ при } y < \beta. \end{array} \right.$$

Сравнить в среднеквадратичном смысле оценки $\overline{X}-1$, $X_{(1)}$ и $X_{(1)}-1/n$ параметра сдвига β .

- **14.** Пусть X_1 , . . . , X_n выборка из равномерного распределения на отрезке $[0,\theta]$, где $\theta \in (0,1]$. Используя неравенство Чебышева, построить доверительный интервал для θ с помощью а) оценки $2\overline{X}$; б) оценки $X_{(n)}$.
- **15.** Пусть X_1, \ldots, X_n выборка из равномерного распределения на отрезке $[0, \theta]$. С помощью статистики $X_{(n)}$ построить точный доверительный интервал уровня $1-\varepsilon$ для параметра θ .
- **16.** С помощью оценки $X_{(1)}$ по выборке объёма n из смещённого показательного распределения с параметром сдвига β построить точный доверительный интервал для параметра β .
- **17.** В результате проверки 400 электрических лампочек 40 штук оказалось бракованными. Найти доверительный интервал уровня 0,99 для вероятности брака.
- **18.** С помощью статистики \overline{X} построить асимптотический доверительный интервал уровня $1-\varepsilon$ для параметра λ распределения Пуассона.
- **19.** Пусть X_1, \ldots, X_n выборка из смещённого показательного распределения с параметром сдвига β . С помощью статистики \overline{X} построить асимптотический доверительный интервал для параметра β уровня $1-\varepsilon$. Сравнить его с точным доверительным интервалом из задачи **16**. Какой из интервалов следует предпочесть?
- **20.** Пусть X_1, \ldots, X_n выборка из нормального распределения со средним a и единичной дисперсией. Для проверки основной гипотезы a=0 против альтернативы a=1 используется следующий критерий: основная гипотеза принимается, если $X_{(n)} < 3$, и отвергается в противном случае. Найти вероятности ошибок первого и второго рода.

- **21.** Пусть X_1, \ldots, X_n выборка из нормального распределения со средним a и единичной дисперсией. Рассматриваются две простые гипотезы: основная a=-1 и альтернативная a=0. Предлагается следующий статистический критерий для проверки этих гипотез: основная гипотеза принимается, если $\overline{X}<-n^{\gamma}$; в противном случае принимается альтернативная гипотеза. Здесь γ заранее выбранное вещественное число. Определить все числа γ , при которых критерий является состоятельным.
- 22. Есть две гипотезы: основная состоит в том, что элементы выборки имеют нормальное распределение, а альтернатива в том, что элементы выборки имеют распределение Пуассона. Построить критерий, обладающий нулевыми вероятностями ошибок первого и второго рода.
- 23. Основная гипотеза состоит в том, что данный человек лишён телепатических способностей и угадывает мысли на расстоянии в каждом единичном эксперименте с вероятностью 1/2. Гипотеза же о наличии телепатических способностей у данного человека принимается, если в 100 независимых однотипных экспериментах по угадыванию мыслей на расстоянии не менее 70 заканчиваются успехом. Чему равна вероятность признать телепатом человека без телепатических способностей?
- **24.** При n=4040 бросаниях монеты Бюффон получил 2048 выпадений герба и 1992 выпадений решётки. Совместимо ли это с гипотезой о том, что существует постоянная вероятность p=1/2 выпадения герба?
- **25.** Используя конструкции доверительного интервала, построить критерий с (точной или асимптотической) ошибкой первого рода ε для проверки гипотезы $\theta=1$ по выборке из
 - а) нормального распределения со средним θ и дисперсией 1;
 - б) нормального распределения со средним 1 и дисперсией θ ;
 - в) показательного распределения с параметром θ ;
 - г) распределения Бернулли с параметром $\theta/2$;
 - д) распределения Пуассона с параметром θ .
- 26. По официальным данным в Швеции в 1935 г. родилось 88 273 ребенка, причем в январе родилось 7280 детей, в феврале 6957, марте 7883, апреле 7884, мае 7892, июне 7609, июле 7585, августе 7393, сентябре 7203, октябре 6903, ноябре 6552, декабре 7132 ребенка. Совместимы ли эти данные с гипотезой, что день рождения наудачу выбранного человека с равной вероятностью приходится на любой из 365 дней года?

Ответы

- 1. а) \overline{X} , несмещенная, состоятельная; б) \overline{X} , несмещенная, состоятельная; в) $1/\overline{X}$, смещенная, состоятельная; г) $2\overline{X}$, несмещенная, состоятельная; д) \overline{X} , несмещенная, состоятельная; з) \overline{X} , несмещенная, состоятельная; з) \overline{X} , несмещенная, состоятельная; и) \overline{X} , несмещенная, состоятельная.
- **2.** а) \overline{X} , несмещенная, состоятельная; б) \overline{X} , несмещенная, состоятельная; в) \overline{X}/m , несмещенная, состоятельная; г) $X_{(n)}$, смещенная, состоятельная; д) $\max\{-X_{(1)},X_{(n)}\}=\max\{|X_i|\}$, смещенная, состоятельная; е) $1/\overline{X}$, смещенная, состоятельная; ж) \overline{X} , несмещенная, состоятельная; з) \overline{X}^2 , несмещенная, состоятельная.
- 3. а) $-1/\overline{\ln X}$; б) $X_{(n)}$; в) $\theta^* = \begin{cases} X_{(m)}, & \text{если } n=2m-1 \text{ (нечётно)}, \\ \frac{X_{(m)}+X_{(m+1)}}{2}, & \text{если } n=2m \text{ (чётно)}; \end{cases}$ г) $1/\sqrt{\overline{X^{-1}}}$.
- **4.** а) $\overline{X}-1$, несмещенная, состоятельная; б) $X_{(1)}$, смещенная, состоятельная.
- **6.** Het; $S_0^2 = \frac{n}{n-1}S^2$.
- 7. а), б), в) несмещённая и состоятельная; г) смещённая и состоятельная.
- 8. нет, $\alpha/(n-1)$; да.
- **9.** $\theta^*/3$.
- **11.** Среднеквадратические отклонения: $\theta^2/12n$, $2\theta^2/(n+1)(n+2)$, $\theta^2/n(n+2)$.
- **12.** $\theta_{1,n}^*$ наилучшая; $\theta_{0,n}^*$ лучше, чем $\theta_{2,n}^*$; $\theta_{k,n}^*$ лучше, чем $\theta_{k+1,n}^*$ при $k \geq 2$.
- **13.** $\mathsf{E}(\overline{X}-1-\theta)^2=1/n$, $\mathsf{E}(X_{(1)}-\theta)^2=2/n^2$, $\mathsf{E}(X_{(1)}-1/n-\theta)^2=1/n^2$.
- **14.** a) $(2\overline{X} \sqrt{1/3n\varepsilon}, 2\overline{X} + \sqrt{1/3n\varepsilon})$; б) $(X_{(n)}, X_{(n)} + /(n+1)\varepsilon)$.
- **15.** $(X_{(n)}, X_{(n)} / \sqrt[n]{\varepsilon}).$
- **16.** $(X_{(1)} + (\ln \varepsilon)/n, X_{(1)}).$
- **17.** (0,061; 0,139).
- **18.** $(\overline{X}-t_{1-\varepsilon/2}\sqrt{\overline{X}}/\sqrt{n},\ \overline{X}+t_{1-\varepsilon/2}\sqrt{\overline{X}}/\sqrt{n})$, где $t_{1-\varepsilon/2}$ квантиль уровня $1-\varepsilon/2$ распределения $\Phi_{0,1}$.
- **19.** $(\overline{X}-1-t_{1-\varepsilon/2}/\sqrt{n},\ \overline{X}-1+t_{1-\varepsilon/2}/\sqrt{n})$, где $t_{1-\varepsilon/2}$ квантиль уровня $1-\varepsilon/2$ распределения $\Phi_{0,1}$. Предпочесть следует точный, так как его длина есть величина порядка 1/n, а не $1/\sqrt{n}$.
- **20.** $1 (1 \overline{\Phi}(3))^n = 1 0.99865^n$; $(1 \overline{\Phi}(2))^n = 0.977^n$.
- **21.** $\gamma > -1/2$.

- **22.** Основная гипотеза отвергается, если значение хотя бы одного элемента выборки целое.
- **23.** $\overline{\Phi}(4) = 0,00003167.$
- **24.** Вероятность получить такое же или еще большее число гербов (реально достигнутый уровень значимости) при верной основной гипотезе равна 0,189.
- **25.** Гипотеза принимается, если: а) $|\overline{X}-1| < t_{1-\varepsilon/2}/\sqrt{n}$, где $t_{1-\varepsilon/2}$ квантиль уровня $1-\varepsilon/2$ распределения $\Phi_{0,1}$; б) $t_{\varepsilon/2} < n\overline{(X-1)^2} < t_{1-\varepsilon/2}$, где t_{δ} квантиль уровня δ χ^2 -распределения с n степенями свободы; в) $X_{(1)} < -(\ln \varepsilon)/n$; г) $|2\overline{X}-1| < t_{1-\varepsilon/2}\sqrt{\overline{X}(2-\overline{X})}/\sqrt{n}$, где $t_{1-\varepsilon/2}$ квантиль уровня $1-\varepsilon/2$ распределения $\Phi_{0,1}$; д) $|\overline{X}-1| < t_{1-\varepsilon/2}\sqrt{\overline{X}}/\sqrt{n}$, где $t_{1-\varepsilon/2}$ квантиль уровня $1-\varepsilon/2$ распределения $\Phi_{0,1}$.
- **26.** нет; реально достигнутый уровень значимости равен $2.7 \cdot 10^{-49}$.