W I G N

# Kapitel 1: Einführung und Motivation

#### Wichtigste Quellen:

- Dirk Hoffmann: Einführung in die Informations- und Codierungstheorie bzw. der zugehörigen Vorlesung <a href="http://www.dirkwhoffmann.de/ICT/slides/MM">http://www.dirkwhoffmann.de/ICT/slides/MM</a> Einfuehrung.pdf
- Bildquelle: Nachrichtentechnische Sammlung der RWTH Aachen http://sammlung.ient.rwth-aachen.de/



## Kommunikationstechnik – Was ist das?



 Techniken zur effizienten und fehlerfreien Übertragung von Information von einer Quelle über einen gestörten (geteilten) Kommunikationskanal zu einer Senke



# DIE GESCHICHTE DER KOMMUNIKATION





# Historische Quellen und Senken







Quelle: Wikipedia





Quelle: Wikipedia



http://www.connected-earth.com



http://debyclark.blogspot.de/2013/02/the-heliograph-vintage-solar.html



# Frühe Verschlüsselungstechniken



Klaus Stuttmann, "Der Tagesspiegel"

# Codierung

Synchrontelegraf des Aineias



# Nachrichten

[Aineias] sagt, dass sich diejenigen, die wichtige Nachrichten mit Hilfe von Feuerzeichen austauschen wollen, tönerne Gefäße beschaffen sollen, deren Durchmesser und Höhe auf das Genaueste gleich sein sollen, [...]. Wenn dies geschehen ist, sollen beide Gefäße sorgfältig angebohrt werden, so dass kleine Ausflüsse entstehen, durch die [Wasser] gleich schnell abfließen kann.

http://manivoice.gr



# Codierungen



- Codierung von Zeichen (Buchstaben)
  - Zeile und Spalte durch Anzahl Fackeln

- Codierung von Zeichen (Buchstaben)
  - Drei "Telegraphisten" und Tafeln
  - Buchstabe auf Tafel durch
     Anzahl der Fackelbewegungen



Quelle: Nachrichtentechnische Sammlung, RWTH Aachen

# Codierung - Semaphoren-Telegraf in Frankreich (Claude Chappe)

# Codierung

erst über Wörterbücher, dann zeichenweise



Quelle: Dirk Hoffman, Einführung in die Informations- und Codierungstheorie

HT WI GN

# Codierung – Optischer Klappen-Telegraf in England (Lord Murray)



High Stoy with revised code. 1806.



Shutter Telegraph, showing 13 (fourth man is out of picture).

Above and below:

Illustration from a Cable and Wireless Advertisement.

# Four men, two glass men, two on ropes

http://www.alresford.org

HT WI GN

# Codierung – Optischer Klappen-Telegraf in England (Lord Murray)

• Codierung (6 Bits)





Quelle: Dirk Hoffman, Einführung in die Informations- und Codierungstheorie

# Codierung – Optischer Telegraf in Preußen

Der Telegraph.



Berlin am 15. Marz. "Eine Emeute ift ausgebrochen. In 24 Stunden wird ber Plebs zur Rube gebracht fein."





Berlin am 17. Marz. "Eine Deputa= tion des Colnischen Stadtrathes ift ein= getroffen, welche Forderungen überbringt, und im Weigerungsfall mit dem Abfall ber Rhein = Brobing brobt."

Berlin am 16. März. "Der Plebs will sich noch immer nicht in die Ord= nung fügen."

Quelle: wikipedia



# Codierung –Optischer Telegraf in Preußen







in Köln Fittard

Quelle: wikipedia

Quelle: Nachrichtentechnische Sammlung, RWTH Aachen

IT WI GN

# Elektrische Leitung – Volta und Soemmerring





Quelle: Nachrichtentechnische Sammlung, RWTH Aachen



Quelle: Dirk Hoffman, Einführung in die Informations- und Codierungstheorie



# Codierung – 5-Nadel-Telegraf (Cooke und Wheatstone)



Quelle: Nachrichtentechnische Sammlung, RWTH Aachen

# Codierung

- Ansteuerung von 5 magnetischen
   Nadeln
- Stellung der Nadeln codiert 20
   Buchstaben
  - 5 ternäre Symbole



# Codierung – Zeiger- und Nadeltelegrafen



Aachener Eisenbahntelegraf (Zeigertelegraf,1843)

Quelle: Nachrichtentechnische Sammlung, RWTH Aachen



#### **Doppelnadeltelegraf** (1844)



# Einnadeltelegraf (Wheatstone, 1845)



# Zeigertelegraf (Siemens, 1847)





# Codierung - Morse

- Samuel Finley Bresse Morse
  - Professor für Malerei
  - 1829 verlässt Morse die USA für eine dreijährige Arbeitsreise nach Europa
    - Chappe-Telegraf
  - 1832 erfolgt die Rückfahrt
    - Charles T. Jackson unterrichtet Morse über die neuesten Erkenntnisse auf dem Gebiet der Elektrizität
    - Morse hat die Idee zum elektrischen Telegrafen



Samuel F. B. Morse (1791 - 1872)

"If this be so, and the presence of electricity can be made visible in any desired part of the circuit, I see no reason why intelligence might not be instantaneously transmitted by electricity to any distance."



# Codierung - Morse-Telegraf

# Morse Telegraf (1837):

- automatisches Aufzeichnen der Nachricht auf Papier
- Dekodierung von Zahlen als Anzahl "Zacken"



Quelle: Nachrichtentechnische Sammlung, RWTH Aachen

#### Funktionsprinzip des Schreibtelegrafen von Morse



Übertragungssignal: kurze und lange Stromstöße Empfangszeichen: Kombinationen von kurzen u. langen Schriftzacken

Specimen of Telegraphic writing made by means of electricity at the distance of one third of a mile.





# Codierung – Morse

Morse Schreibtelegraf (1856)



Morse-Alphabet



Morse-Taste (Klopfer)



Quelle: Nachrichtentechnische Sammlung, RWTH Aachen

# Quellcodierung





# Kabel – Landkabel und Seekabel

- 1846: Guttapercha-Verfahren zur Isolierung von Kabeln (Siemens)
- 1847: Telegraphen Bau-Anstalt von Siemens & Halske

Landkabel



Seekabel



Quelle: Nachrichtentechnische Sammlung, RWTH Aachen

#### HT WI GN

### Kabel - Transatlantik

- Erste Mission 1857
  - nach 330 Seemeilen reist das Kabel
- Zweite Mission 1858
  - erfolgreiche Verlegung
  - Pleite in der Nutzung
    - "Repeat please"
- Dritte Mission 1865
  - Great Eastern
  - Kabel reißt
- Vierte Mission 1866
  - Erfolg
  - Kabel von 1865 geborgen
  - Europa und Amerika langfristig telegrafisch verbunden



Cyrus W. Field (1818 - 1892)



H.M.S. Agamemnon U.S.S. Niagara



**Great Eastern** 

Quelle: Dirk Hoffman, Einführung in die Informations- und Codierungstheorie



# Mehrfachnutzung - Bell

- Duplex-Telegraf
  - gleichzeitige Nutzung der Leitung in beide Richtungen
  - Patent: Joseph Stearns, 1872
- Quadruplex-Telegraf
  - Thomas Alva Edison
  - Zwei Morse-Datenströme pro Richtung
    - ein Datenstrom bewirkt die Änderung der Signalstärke
    - der andere die Richtung des Stromflusses
- Harmonischer Telegraf
  - Idee von Graham Bell:
    - parallele Übertragung von Morse-Datenströmen auf unterschiedlichen Frequenzen
    - über Stimmgabeln Wechselstromquellen mit unterschiedlicher Frequenz erzeugen und mit Morse-Datenströmen überlagern
    - nie realisiert



# Eine neue Quelle: Sprache - Telefon

#### Graham Bell

- macht bei der Forschung an einem harmonischen Telegrafen eine Entdeckung
  - Apparat ist für die Übertragung von primitiven Tönen ausgelegt
  - empfangen werden komplexe Tonsignale
- Bell erkennt, dass der Apparat zu mehr imstande ist

"If I can get a mechanism which will make a current of electricity vary in its intensity as the air varies in density when a sound is passing through it, I can telegraph any sound, even the sound of speech."

- Juni 1865: Ziel rückt in erreichbare Nähe
  - wiedererkennbare Übertragung von Geräuschen
  - "Gallows Telephone" (1876)
    - "Watson, come here"





Quelle: http://www.antiquetelephonehistory.com/



# Patentkrieg - 14. Februar 1876

- Elisha Gray
  - forscht auch am harmonischen Telegraphen
  - ähnlich Entdeckung wie Bell
- Zwei Patentanträge
  - "Electric Telegraph for Transmitting Musical Tones"
    - Beschreibung eines harmonischen Telegraphen
  - "Transmitting Vocal Sounds Telegraphically"

"To all whom it may concern: Be it known that I, Elisha Gray, of Chicago, in the County of Cook, and State of Illinois, have invented a new art of transmitting vocal sounds telegraphically, of which the following is a specification:

It is the object of my invention to transmit the tones of the human voice through a telegraphic circuit, and reproduce them at the receiving end of the line, so that actual conversations can be carried on by persons at long distances apart."

- Bell und Gray reichen Patente ein
  - Gray beschreibt einen funktionierendes Gerät
  - Bell hat noch kein funktionierendes Gerät, aber eine Idee
  - Bell ist zwei Stunden früher ...



# Übertragung - Funkwellen

#### James Clerk Maxwell

- formuliert 1865 Maxwell'sche Gleichungen
- postuliert Existenz elektromagnetischer Wellen





#### Heinrich Hertz

- gelingt 1886 der experimentelle Beweis
- an die Idee eines drahtlosen Telegrafen denkt zunächst niemand

# Guglielmo Marconi

- liest 1894 eine Biographie von Hertz
- erkennt das Potenzial seiner Erfindung für die Nachrichtentechnik
- meldet seine Erfindung 1896 zum Patent an
- 1901 gelang der erste transatlantische Funkempfang



(1874 - 1937)



## Informationstheorie – Die Geburtsstunde

#### Claude Shannon

- publiziert 1948 eine wegweisende Arbeit
  - A Mathematical Theory of Computation
- Allgemeines Kommunikationsmodell





Claude Shannon (1916 - 2001)

- das Bit wird zur Einheit von Information
  - Informationsbegriff wird mathematisch fassbar
    - nicht mehr an bestimmtes Übertragungsmedium gebunden
    - Erkenntnisse sind von universeller Natur

# Das Shannon'sche Kommunikationsmodell

#### A Mathematical Theory of Communication

By C. E. SHANNON

#### Introduction

THE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist¹ and Hartley² on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

Published in The Bell System Technical Journal Vol. 27, pp. 379-423, 623-656, July, October, 1948 Copyright 1948 by American Telephone and Telegraph Co. Printed in U. S. A.



Quelle: Dirk Hoffman, Einführung in die Informations- und Codierungstheorie

# Informationstheorie

# Fragestellungen

- Wie lässt sich der Informationsgehalt einer Nachricht messen?
  - Lassen sich Nachrichten beliebig verdichten?
  - Falls nein, wo befindet sich das theoretische Minimum?
- Wie lassen sich Nachrichten über rauschbehaftete (gestörte) Kanäle senden?
  - Lassen sich Nachrichten stets fehlerfrei übertragen?
  - Falls nein, wie weit lässt sich die Fehlerwahrscheinlichkeit senken?

#### Antworten von Shannon

- Quellencodierungstheorem (source coding theorem)
  - Informationsgehalt, Entropie
  - erlaubt Rückschlüsse auf die Grenzen der Datenkompression
- Kanalcodierungstheorem (noisy channel theorem)
  - Kanalkapazität



# Kommunikationstechnik – Was ist das?





# Quelle, Kanal, Senke – analog und digital

# Quelle/Senke:

- analog: Sprache, Messwerte, Steuersignale
- digital: Sprache, Multimedia, Daten, Nachrichten, Messwerte,
   Steuersignale
- Übertragung: analog, digital

#### Kanal:

- analog
- leitungsgebunden: elektrisch, optisch
- drahtlos: Funk, Infrarot, Visible Daylight



# Kommunikationstechnik – Was ist das?





# Arten der Codierung

#### Quellcodierung

- Information dicht packen
- Maximieren der Information pro Bit, Eliminieren von redundanter Information
- Beispiel: MP3, MPEG, ZIP
- Inhalt: Informationstheorie und einfache Codierungsalgorithmen

#### Kanalcodierung

- Fehlerfreie Übertragung von Information über einen fehlerbehafteten Kommunikationskanal
- Hinzufügen von nützlicher Redundanz
- Grundlage für Fehlererkennung und –korrektur
- Beispiele: Cyclic Redundancy Check (CRC), Faltungscodes, Turbo-Codes, ...
- Inhalt: Prinzip und Beispiele für Codes zur Fehlererkennung und –korrektur

#### Leitungscodierung

- Darstellen von binärer Information in Form von Signalen, die über den Kommunikationskanal übertragen werden können
- Inhalt: drahtgebundene (Bus) und drahtlose Übertragung

# Funkübertragung





# Digitale Modulation





# Wireless LAN (IEEE 802.11)



| Standard       | Release | Reichw. indoor | MIMO    | MU MIMO | Bänder      | Bandbreite   | Datenrate Brutto      |
|----------------|---------|----------------|---------|---------|-------------|--------------|-----------------------|
| 802.11a        | 1999    | ca. 25 Meter   | nein    | nein    | 2,4 & 5 GHz | bis 20 MHz   | bis 54 MBit           |
| 802.11b        | 1999    | ca. 38 Meter   | nein    | nein    | 2,4 GHz     | bis 20 MHz   | bis 11 MBit           |
| 802.11g        | 2003    | ca. 38 Meter   | nein    | nein    | 2,4 GHz     | bis 20 MHz   | bis 54 MBit           |
| 802.11n        | 2009    | ca. 70 Meter   | bis 4x4 | nein    | 2,4 & 5 GHz | bis 40 MHz   | bis 600 MBit          |
| 802.11ac*      | 2013    | ca. 50 Meter   | bis 8x8 | möglich | nur 5 GHz   | bis 80 MHz   | 300 MBit bis 3,4 GBit |
| 802.11ac Wave2 | 2012    | ca. 50 Meter   | bis 8x8 | möglich | nur 5 GHz   | bis 160 MHz  | 860 MBit bis 6,9 GBit |
| 802.11ad       | 2012    | bis 10 Meter   | nein    | nein    | 60 GHz      | bis 2000 MHz | bis 6,9 GBit          |

# Kommunikationstechnik – Was ist das?



Kapitel 5 (WLAN / IEEE 802.11)



# Vorläufiger Vorlesungsplan

| Woche | Kapitel                                                   | Unterkapitel                                                                                          |  |  |
|-------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| 1     | KAP 0: Organisatorisches KAP 1: Einführung und Motivation |                                                                                                       |  |  |
| 2     | KAP 2: Informationstheorie und                            | KAP 2.1: Informationstheorie<br>KAP 2.2: Verfahren zur Quellencodierung<br>KAP 2.3: Übertragungskanal |  |  |
| 3     | Quellencodierung                                          |                                                                                                       |  |  |
| 4     | KAP 3: Kanalcodierung                                     | KAP 3.1: Einführung<br>KAP 3.2: Block-Codes<br>KAP 3.3: Faltungscodes                                 |  |  |
| 5     |                                                           |                                                                                                       |  |  |
| 6     |                                                           |                                                                                                       |  |  |
| 7     | KAP 4: Leitungskodierung und                              | KAP 4.1: Leitungscodierung KAP 4.2: Übertragung über ein Kabel                                        |  |  |
| 8     | Modulation                                                |                                                                                                       |  |  |
| 9     |                                                           | KAP 4.3: Digitale Modulation                                                                          |  |  |
| 10    |                                                           | KAP 4.4: Funkübertragung                                                                              |  |  |
| 11    |                                                           | KAP 4.5: Pulsformung                                                                                  |  |  |
| 12    | KAP 5: WLAN                                               | KAP 5.1: OFDM                                                                                         |  |  |
| 13    |                                                           | KAP 5.2: CSMA-CA KAP 5.3: Soft-Decision Decoding und LDPC Codes                                       |  |  |
| 14    |                                                           |                                                                                                       |  |  |
| 15    |                                                           | KAP 5.4: Grundlagen von MIMO                                                                          |  |  |