Implement detail

- Q: Implementation of Discretization B issue 114 issue10
 - 。 代码中没有用 $ar{B}_t=(\Delta A)^{-1}(exp(\Delta A)-I)\cdot \Delta B$ 而是用了简化版的 ΔB (没有用原文中扯到的 ZOH)

It makes the implementation slightly simpler without affecting empirical performance. One can think of it as a mix of ZOH for A and Euler discretization for B.

- Throughput related
 - o cg=True matters issue90, to reduce CPU/IO
- Parameters

- 一个mamba block的参数量 (D: model_size, N: dstate, e: expand_factor, K: conv1d_kernel_size)
 - $2eD^2 + eD(K+1) + eD(D/16+2N) + eD(D/16+1) + eDN + eD + eD^2$
 - 取e=2. 总参数量: $6.25D^2 + 5DN + 4D + 2D(K+1)$
 - 取N=16, K=4, 总参数量: $6.25D^2 + 94D$
 - In detail
 - Conv block:

$$\#params = (kernel_size \times |\tfrac{in_channel}{groups}| + 1) \times |out_channels|$$

o 双向mamba

Vision Mamba Encoder

- $6D^2 + 2(2D(K+1) + 0.25D^2 + 5DN + 4D)$
- 取N=16, K=4, 总参数量: $6.5D^2 + 188D$
- \circ For reference: each transformer layer: $12D^2$

Train detail

1. language modeling - scaling law (补充信息来自<u>issue144</u>)

Table 12: (Scaling Law Model Sizes.) Our model sizes and hyperparameters for scaling experiments. (Model dimension and number of heads applies only to Transformer models.)

1	Params	n_layers	d_model	n_heads / d_head	Training steps	Learning Rate	Batch Size	Tokens
1,	125M	12	768	12 / 64	4800	6e-4	0.5M tokens	2.5B
	350M	24	1024	16 / 64	13500	3e-4	0.5M tokens	7B
	760M	24	1536	16 / 96	29000	2.5e-4	0.5M tokens	15B
	1.3B	24	2048	32 / 64	50000	2e-4	0.5M tokens	26B

注意这里的lr是base, 实际会x5

- 2.8B model lr = 3xGPT3(1.6x1e-4) = 4.8x1e-4
- 2. 原文Train recipes中写道

gradient clip = 1.0; weight decay = 0.1; no dropout; linear lr warmup + cosine decay (decay to 1e-5, peak value set $5 \times$ GPT3 value)

■ 参考GPT-3的scaling设定

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1 M	$2.0 imes 10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

no bias term: RMSNorm (instead of LayerNorm) AdamW $\beta = (0.9, 0.95)$

Install Micromamba

```
# py39 torch211+cu118: /cto_labas/AIDD/mamba/vllm.yaml
 3
   # 1. create new env [Name: prot]
 4
   1.9.0 prot python==3.9
 5
   # 2. install pytorch related
 6
   ## pytorch version: 2.1.1+cul18
   pip3 install torch==2.1.1+cu118 torchvision==0.16.1+cu118 -f
    https://download.pytorch.org/whl/torch_stable.html
 9
   ## pytorch verison: 1.13.1+cu116
10
   pip3 install torch==1.13.1+cul16 torchvision==0.14.1+cul16 -f
11
    https://download.pytorch.org/whl/torch_stable.html
```