第2周阅读资料

The Proof of Theory 2.4.

We will show that a subset P of \mathbb{R}^n is a polytope if and only if it is a bounded polyhedron. This might be intuitively clear, but a strictly mathematical proof requires some work.

We first give a definition. Let P be a convex set. A point $z \in P$ is called a vertex of P if z is not a convex combination of two other points in P. That is, there do not exist points x, y in P and a λ with $0 < \lambda < 1$ such that $x \neq z, y \neq z$ and $z = \lambda x + (1 - \lambda)y$.

To characterize vertices we introduce the following notation. Let $P = \{x \mid Ax \leq b\}$ be a polyhedron and let $z \in P$. Then A_z is the submatrix of A consisting of those rows a_i of A for which $a_iz = b_i$.

Then we can show:

Theorem 2.2. Let $P = \{x \mid Ax \leq b\}$ be a polyhedron in \mathbb{R}^n and let $z \in P$. Then z is a vertex of P if and only if $rank(A_z) = n$.

Proof. Necessity. Let z be a vertex of P and suppose $\operatorname{rank}(A_z) < n$. Then there exists a vector $c \neq 0$ such that $A_z c = 0$. Since $a_i z < b_i$ for every a_i that does not occur in A_z , there exists a $\delta > 0$ such that:

(12)
$$a_i(z + \delta c) \le b_i \text{ and } a_i(z - \delta c) \le b_i$$

for every row a_i of A not occurring in A_z . Since $A_z c = 0$ and $Az \le b$ it follows that

(13)
$$A(z + \delta c) \le b$$
 and $A(z - \delta c) \le b$.

So $z+\delta c$ and $z-\delta c$ belong to P. Since z is a convex combination of these two vectors, this contradicts the fact that z is a vertex of P.

Sufficiency. Suppose rank $(A_z) = n$ while z is not a vertex of P. Then there exist points x and y in P such that $x \neq z \neq y$ and $z = \frac{1}{2}(x + y)$. Then for every row a_i of A_z :

(14)
$$a_i x \le b_i = a_i z \implies a_i (x - z) \le 0$$
, and $a_i y \le b_i = a_i z \implies a_i (y - z) \le 0$.

Since y - z = -(x - z), this implies that $a_i(x - z) = 0$. Hence $A_z(x - z) = 0$. Since $x - z \neq 0$, this contradicts the fact that $rank(A_z) = n$.

Theorem 2.2 implies that a polyhedron has only a finite number of vertices: For each two different vertices z and z' one has $A_z \neq A_{z'}$, since $A_z x = b_z$ has only one solution, namely x = z (where b_z denotes the part of b corresponding to A_z). Since there exist at most 2^m collections of subrows of A, P has at most 2^m vertices.

From Theorem 2.2 we derive:

Theorem 2.3. Let P be a bounded polyhedron, with vertices $x_1, ..., x_t$. Then $P = \text{conv.hull}\{x_1, ..., x_t\}$.

Proof. Clearly

(15) conv.hull $\{x_1, ..., x_t\} \subseteq P$,

since $x_1, ..., x_t$ belong to P and since P is convex.

The reverse inclusion amounts to:

(16) if
$$z \in P$$
 then $z \in \text{conv.hull}\{x_1, ..., x_t\}$.

We show (16) by induction on $n - \text{rank}(A_z)$.

If $n - \text{rank}(A_z) = 0$, then $\text{rank}(A_z) = n$, and hence, by Theorem 2.2, z itself is a vertex of P. So $z \in \text{conv.hull}\{x_1, \dots, x_t\}$.

If $n - \text{rank}(A_z) > 0$, then there exists a vector $c \neq 0$ such that $A_z c = 0$. Define

(17)
$$\mu_0 := \max\{\mu \mid z + \mu c \in P\},\$$

 $\nu_0 := \max\{\nu \mid z - \nu c \in P\}.$

These numbers exist since P is compact. Let $x := z + \mu_0 c$ and $y := z - \nu_0 c$. Now

(18)
$$\mu_0 = \min \{ \frac{b_i - a_i z}{a_i c} \mid a_i \text{ is a row of } A; a_i c > 0 \}.$$

This follows from the fact that μ_0 is the largest μ such that $a_i(z + \mu c) \leq b_i$ for each i = 1, ..., m. That is, it is the largest μ such that

(19)
$$\mu \leq \frac{b_i - a_i z}{a_i c}$$

for every i with $a_i c > 0$.

Let the minimum (18) be attained by i_0 . So for i_0 we have equality in (18). Therefore

(20) (i)
$$A_z x = A_z z + \mu_0 A_z c = A_z z$$
,
(ii) $a_{in} x = a_{in} (z + \mu_0 c) = b_{in}$.

So A_x contains all rows in A_z , and moreover it contains row a_{i_0} . Now $A_z c = 0$ while $a_{i_0} c \neq 0$. This implies rank $(A_x) > \text{rank}(A_z)$. So by our induction hypothesis, x belongs to conv.hull $\{x_1, \ldots, x_t\}$. Similarly, y belongs to conv.hull $\{x_1, \ldots, x_t\}$. Therefore, as z is a convex combination of x and y, z belongs to conv.hull $\{x_1, \ldots, x_t\}$.

As a direct consequence we have:

Corollary 2.3a. Each bounded polyhedron is a polytope.

Proof. Directly from Theorem 2.3.

Conversely:

Theorem 2.4. Each polytope is a bounded polyhedron.

Proof. Let P be a polytope in \mathbb{R}^n , say

$$(21) P = \text{conv.hull}\{x_1, \dots, x_t\}.$$

We may assume that $t \ge 1$. We prove the theorem by induction on n. Clearly, P is bounded.

If P is contained in some affine hyperplane, the theorem follows from the induction hypothesis.

So we may assume that P is not contained in any affine hyperplane. It implies that the vectors $x_2 - x_1, \ldots, x_t - x_1$ span \mathbb{R}^n . It follows that there exist a vector x_0 in P and a real r > 0 such that the ball $B(x_0, r)$ is contained in P.

Without loss of generality, $x_0 = 0$. Define P^* by

(22)
$$P^* := \{y \in \mathbb{R}^n \mid x^T y \le 1 \text{ for each } x \in P\}.$$

Then P^* is a polyhedron, as

(23)
$$P^* = \{y \in \mathbb{R}^n \mid x_i^T y \le 1 \text{ for } j = 1, ..., t\}.$$

This follows from the fact that if y belongs to the right hand set in (23) and $x \in P$ then $x = \lambda_1 x_1 + \cdots + \lambda_t x_t$ for certain $\lambda_1, \dots, \lambda_t \ge 0$ with $\lambda_1 + \cdots + \lambda_t = 1$, implying

(24)
$$x^{T}y = \sum_{j=1}^{t} \lambda_{j}x_{j}^{T}y \leq \sum_{j=1}^{t} \lambda_{j} = 1.$$

So y belongs to P^* .

Moreover, P^* is bounded, since for each $y \neq 0$ in P^* one has that $x := r \cdot ||y||^{-1} \cdot y$ belongs to B(0, r) and hence to P. Therefore, $x^T y \leq 1$, and hence

(25)
$$||y|| = (x^T y)/r \le 1/r$$
.

So
$$P^* \subseteq B(0, 1/r)$$
.

This proves that P^* is a bounded polyhedron. By Corollary 2.3a, P^* is a polytope. So there exist vectors y_1, \dots, y_s in \mathbb{R}^n such that

(26)
$$P^* = \text{conv.hull}\{y_1, ..., y_s\}.$$

We show:

(27)
$$P = \{x \in \mathbb{R}^n \mid y_j^T x \le 1 \text{ for all } j = 1, ..., s\}.$$

This implies that P is a polyhedron.

To see the inclusion \subseteq in (27), it suffices to show that each of the vectors x_i belongs to the right hand side in (27). This follows directly from the fact that for each j = 1, ..., s, $y_i^T x_i = x_i^T y_i \le 1$, since y_i belongs to P^* .

each $j=1,\ldots,s,\ y_j^Tx_i=x_i^Ty_j\leq 1$, since y_j belongs to P^* . To see the inclusion \supseteq in (25), let $x\in\mathbb{R}^n$ be such that $y_j^Tx\leq 1$ for all $j=1,\ldots,s$. Suppose $x\not\in P$. Then there exists a hyperplane separating x and P. That is, there exist a vector $c\neq 0$ in \mathbb{R}^n and a $\delta\in\mathbb{R}$ such that $c^Tx'<\delta$ for each $x'\in P$, while $c^Tx>\delta$. As $0\in P,\ \delta>0$. So we may assume $\delta=1$. Hence $c\in P^*$. So there exist $\mu_1,\ldots,\mu_s\geq 0$ such that $c=\mu_1y_1+\cdots\mu_sy_s$ and $\mu_1+\cdots+\mu_s=1$. This gives the contradiction:

(28)
$$1 < c^T x = \sum_{j=1}^{s} \mu_j y_j^T x \le \sum_{j=1}^{s} \mu_j = 1.$$