The Effect of Payment for Order Flow on Broker Order Routing

Saketh Aleti Advisor: Professor Bruce Mizrach

April 20, 2018

Research Question

How does payment for order flow affect broker order routing?

- Payment for Order Flow (POF)
 - Rebates given to brokers by market centers for order flow
 - Usually a bit less than \$0.03 per 100 shares

Motivation and Approach

- ▶ Does retail investor welfare suffer from the presence of POF?
- ► SEC renounces negative statements about POF's effect on order routing (Exchange Act of 1934 Rule 11Ac1-5)
- Basic idea: Study differences between POF brokers and Non-POF brokers
 - Suppose a market center improves its execution speeds
 - lacktriangle Non-POF brokers would reroute $\Delta\%$ of their orders to them
 - POF brokers would reroute less than Δ%, because they also consider rebates

Hypothesis

Introduction

- Brokers who accept POF are less reactive to changes in execution quality than brokers who do not
 - Execution quality: price improvement and execution speed
 - ► Theory ⇒ brokers cannot simultaneously consider rebates as an objective while maximizing execution quality 1
 - ► Empirics ⇒ broker order routing for *limit* orders was negatively impacted by payment for order flow 2

¹Dennert (1993), Duta and Madhavan (1997), Parlour and Rajan (2001), Cimon (2016), Maglaras, Moallemi, and Zheng (2015)

²Battalio, Shkilko, and Van Ness (2016), Battalio, Corwin, and Jennings (2016) 📃

606 Disclosures

- ▶ Broker reports of order routing data
- Market share: % of orders routed to a market center
- Most of the time, brokers disclose the influence of POF

Results

605 Disclosures

- Market Center reports of execution statistics
- **Execution quality** by stock, order type, and size

Descriptive Statistics - Price Improvement

Descriptive Statistics - Execution Speed

- $Y_{i,j,k,t} = \alpha_{i,j} + X_{j,k,t} \cdot \beta + (D_i \cdot X_{j,k,t}) \cdot \gamma + \varepsilon_{i,j,t}$
 - $Y_{i,j,k,t} = \%$ of Orders Routed by Broker i to Market Center j
 - ➤ X = Execution Quality
 - $D_i = Indicator for POF$
- Parametric Approach with Tobit and OLS
- Semiparametric Approach with SLS (Ichimura, 1993)
 - $Y_{i,j,k,t} = f(X_{j,k,t} \cdot \beta) + v_{i,j,t}$
 - Gaussian kernel

Table: Tobit Regression Results

	Dependent variable: Market Share			
	(1)	(2)	(3)	(4)
Percent of Shares Price Improved	-0.0536		-0.0461	
	(0.129)		(0.131)	
Percent of Shares Price Improved $ imes D_i$	-0.497**		-0.503**	
	(0.191)		(0.192)	
Avg Price Improvement	14.25***		14.18***	
	(2.895)		(2.875)	
Avg Price Improvement $ imes$ D $_i$	-6.677		-7.200	
	(4.279)		(4.256)	
Expected Price Improvement		14.75***		14.62***
		(3.206)		(3.190)
Expected Price Improvement $ imes$ D $_i$		-13.55**		-13.98**
		(4.600)		(4.578)
Avg Execution Time for Price-Improved	-0.117**	-Ò 116**		, ,
	(0.0400)	(0.0402)		
Avg Execution Time for Price-Improved $ imes$ D $_i$	0.0982*	0.102*		
	(0.0411)	(0.0413)		
Avg Execution Time for All Shares			-0.0586**	-0.0581**
			(0.0195)	(0.0198)
Avg Execution Time for All Shares $ imes$ D $_i$			0.0514*	0.0531**
			(0.0202)	(0.0205)
Observations	2982	2982	2982	2982
Wald Test	96.801***	38.828***	91.954***	35.462***

Parametric Results

- ► All signs on interaction term coefficients favored Non-POF brokers
 - All except average price improvement were significant
 - Differences in routing towards execution speed were fairly small
- Highlighted coefficients imply moderate welfare impacts
 - Market center improves its PrImp ExpAmt by \$0.01 per share
 - ► Some broker routes 100 million shares in volume per week
 - Counterfactual broker receiving POF would miss out on \$7 million in price improvement per year
 - ► Similar exercise with a 3% increase in PrImp Pct finds a loss in \$1.3 million per year

Table: SLS Regression Results (POF Brokers)

	Dependent variable:				
	(1)	(2)	(3)	(4)	
Panel A: POF Brokers					
Percent of Shares Price Improved	1		1		
Avg Price Improvement	1.020** (0.393)		1.061** (0.375)		
Expected Price Improvement		1		1	
Avg Execution Time for Price-Improved	0.000771 (0.00170)	-0.00995*** (0.00187)			
Avg Execution Time for All Shares			0.000962 (0.00167)	-0.00114*** (0.000153)	
Observations RMSE	1,494 0.30458	1,494 0.30916	1,494 0.30466	1,494 0.30937	

Table: SLS Regression Results (Non-POF Brokers)

	Dependent variable:				
	(1)	(2)	(3)	(4)	
Panel B: Non-POF Brokers					
Percent of Shares Price Improved	1		1		
Avg Price Improvement	-0.249 (0.365)		0.711 (0.524)		
Expected Price Improvement		1		1	
Avg Execution Time for Price-Improved	-0.143*** (0.00447)	-0.0462*** (0.00479)			
Avg Execution Time for All Shares			-0.00674*** (0.000693)	-0.0307*** (0.00537)	
Observations RMSE	1,488 0.24503	1,488 0.24399	1,488 0.24503	1,488 0.24264	

Semiparametric Results

- Significance of coefficients
 - Average Price Improvement was significant for POF brokers but not Non-POF

Results

00000

- Execution Speed was always significant for Non-POF brokers but only significant in half the regressions for POF brokers
- Logical signs for significant coefficients

- Solid Lines = (Non-POF Broker ME) (POF Broker ME)
- ▶ Dashed Lines = Difference in Average Marginal Effects

► As with percent of shares price-improved, Non-POF brokers relatively more responsive to bad market centers doing better

- Strongest support for the hypothesis
- ► Fit 1 was with PrImp AvgT while Fit 3 was with All AvgT

- ▶ Difference in marginal effects for execution speed were unexpectedly positive \implies POF brokers perform better
- ► Scale of effects too small to draw any conclusions

Semiparametric Results

- Marginal effects imply much smaller effects on welfare
 - ► Difference in average marginal effects for Expected Price Improvement was 4.14

- ▶ Increase in PrImp ExpAmt by $$0.01 \implies$ counterfactual broker receiving POF would miss out on \$2 million in price improvement per year
- ▶ Difference in average marginal effects for Percent Price Improved was 0.10
- ▶ 3% increase in PrImp Pct \implies POF broker would miss out on \$0.26 million per year in price improvement

Regressions

- ▶ Parametric approach ⇒ significant welfare impacts
- ▶ Semiparametric approach ⇒ much smaller effects
- Robustness (OLS vs. Tobit vs. SLS)
 - Differences in responses to expected price improvement were meaningful

- Weaker support for the average price improvement result
- Significance of execution speeds but small magnitudes

Policy Implications

- Minor issue for individual retail investors
 - Suppose a retail investor's volume was 1000 shares/year
 - A POF broker would net \$1.36 less in price improvement than a Non-POF broker

- ▶ Individuals should focus on minimizing commissions
- Major issue for SEC & FINRA
 - Welfare examples assumed 100 million weekly volume
 - Sum of broker trading volume likely more than 15 times larger

Conclusion

Future Research

▶ SEC Transaction Fee Pilot— Does POF harm market quality?

- ▶ Puts stocks into three groups of POF restrictions: none, limited unrestricted
- Exchanges produce public data on execution quality
- Repeating this study— Does POF harm broker routing?
 - Using proprietary FINRA data
 - Would offer more granular results

References 1

 Angel, J.J., Harris, L.E., & Spatt, C. S. (2011). Equity Trading in the 21st Century. Quarterly Journal Of Finance, 1(1), 1-53.

- [2] Battalio, R., S. Corwin, S., & Jennings, R. (2016). Can Brokers Have It All? On the Relation between Make-Take Fees and Limit Order Execution Quality. Journal Of Finance, 71(5), 2193-2238. doi:10.1111/jofi.12422
- [3] Battalio, R., Shkilko, A., & Van Ness, R. (2016). To Pay or Be Paid? The Impact of Taker Fees and Order Flow Inducements on Trading Costs in U.S. Options Markets. Journal Of Financial & Quantitative Analysis, 51(5), 1637. doi:10.1017/S0022109016000582
- [4] Battalio, R., & Holden, C. W. (2001). A simple model of payment for order flow, internalization, and total trading cost. Journal Of Financial Markets, 433-71. doi:10.1016/S1386-4181(00)00015-X
- [5] Chordia, T., & Subrahmanyam, A. (1995). Market Making, the Tick Size, and Payment-for-Order Flow: Theory and Evidence. The Journal Of Business, (4), 543.
- [6] Cimon, D. (2016). Broker routing decisions in limit order markets. Bank of Canada. http://www.bankofcanada.ca/wp-content/uploads/2016/11/swp2016-50.pdf
- [7] Dennert, J. (1993). Price Competition between Market Makers. The Review Of Economic Studies, (3), 735.
- [8] Dutta, P.K., & Madhavan, A. (1997). Competition and Collusion in Dealer Markets. The Journal Of Finance, (1), 245. doi:10.2307/2329563
- [9] Hardle, W., Hall, P., & Ichimura, H. (1993). Optimal Smoothing in Single-Index Models. The Annals of Statistics, 21(1), 157–178.

[10] Horowitz, J. (2014, March 14). Discount brokers' volumes rise as small investors pile into stocks. Reuters.

- [11] Ichimura, H. (1993). Semiparametric Least Squares (SLS) and Weighted SLS Estimation sof Single-Index Models, Journal Of Econometrics, 58(1-2), 71-120.
- [12] Kandel, E., & Marx, L.M. (1999). Payments for Order Flow on Nasdag. The Journal Of Finance. (1), 35,
- [13] Financial Industry Regulatory Authority, 2001. NASD Notice to Members 01-22. http://www.finra.org/industry/notices/01-22
- [14] O'Hara, M. & Ye, M. (2011) Is market fragmentation harming market quality? Journal of Financial Economics 100, 459-474
- [15] Maglaras, C., Moallemi, C., & Zheng, H. (2015), Optimal Execution in a Limit Order Book and an Associated Microstructure Market Impact Model. Columbia Business School Research Paper No. 15-60.
- [16] Parlour, C.A., & Rajan, U. (2003). Payment for order flow. Journal Of Financial Economics, 68379-411. doi:10.1016/S0304-405X(03)00071-0
- [17] Securities and Exchange Commision (2018). SEC Proposes Transaction Fee Pilot for NMS Stocks, https://www.sec.gov/news/press-release/2018-43
- [18] Securities and Exchange Commission, (2005). SEC adopts regulation NMS and provisions regarding Investment Advisers Act of 1940. https://www.sec.gov/news/press/2005-48.htm

