EECS 16A Designing Information Devices and Systems I Fall 2018 Discussion 3B

1. Commutativity of Operations

You've learned about matrices as transformations, and so a question that we might have is: Does the *order* in which you apply operations matter? We'll be working with a unit square as an object we're going to transform. Follow your TA to obtain the answers to the following questions!

- (a) Let's see what happens to the unit square when we rotate the square by 60° and then reflect it along the y-axis.
- (b) Now, let's see what happens to the unit square when we first reflect the square along the y-axis and then rotate it by 60° .
- (c) Try to do steps (a) and (b) by multiplying the reflection and rotation matrices together (in the correct order for each case). What does this tell you?
- (d) If you reflected the unit square twice (along any pair of axes), do you think the order in which you applied the reflections would matter? Why/why not?

2. Span Proofs

Given some set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, show the following:

(a) $\operatorname{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} = \operatorname{span}\{\alpha \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}, \text{ where } \alpha \text{ is a non-zero scalar}$

In other words, we can scale our spanning vectors and not change their span.

(b) $\operatorname{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} = \operatorname{span}\{\vec{v}_2, \vec{v}_1, \dots, \vec{v}_n\}$

In other words, we can swap the order of our spanning vectors and not change their span.

(c) [Practice Problem]:

$$span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} = span\{\vec{v}_1 + \vec{v}_2, \vec{v}_2, ..., \vec{v}_n\}$$

In other words, we can replace one vector with the sum of itself and another vector and not change their span.

3. Proofs

- (a) [Practice Problem]: Suppose for some non-zero vector \vec{x} , $A\vec{x} = \vec{0}$. Prove that the columns of **A** are linearly dependent.
- (b) [Practice Problem]: Suppose there exist two unique vectors \vec{x}_1 and \vec{x}_2 that both satisfy $\mathbf{A}\vec{x} = \vec{b}$, that is, $\mathbf{A}\vec{x}_1 = \vec{b}$ and $\mathbf{A}\vec{x}_2 = \vec{b}$. Prove that the columns of \mathbf{A} are linearly dependent.
- (c) Suppose there exists a matrix **A** whose columns are linearly dependent. Prove that if there exists a solution to $\mathbf{A}\vec{x} = \vec{b}$, then there are infinitely many solutions.

Reference Definitions

Vector spaces: A *vector space V* is a set of elements that is 'closed' under vector addition and scalar multiplication and contains a zero vector. What does closed mean?

That is, if you add two vectors in V, your resulting vector will still be in V. If you multiply a vector in V by a scalar, your resulting vector will still be in V.

More formally, a *vector space* (V, F) is a set of vectors V, a set of scalars F, and two operators that satisfy the following properties:

- · Vector Addition
 - Associative: $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$ for any $\vec{v}, \vec{u}, \vec{w} \in V$.
 - Commutative: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ for any $\vec{v}, \vec{u} \in V$.
 - Additive Identity: There exists an additive identity $\vec{0} \in V$ such that $\vec{v} + \vec{0} = \vec{v}$ for any $\vec{v} \in V$.
 - Additive Inverse: For any $\vec{v} \in V$, there exists $-\vec{v} \in V$ such that $\vec{v} + (-\vec{v}) = \vec{0}$. We call $-\vec{v}$ the additive inverse of \vec{v} .
- Scalar Multiplication
 - Associative: $\alpha(\beta \vec{v}) = (\alpha \beta) \vec{v}$ for any $\vec{v} \in V$, $\alpha, \beta \in F$.
 - Multiplicative Identity: There exists $1 \in F$ where $1 \cdot \vec{v} = \vec{v}$ for any $\vec{v} \in F$. We call 1 the multiplicative identity.
 - Distributive in vector addition: $\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$ for any $\alpha \in F$ and $\vec{u}, \vec{v} \in V$.
 - Distributive in scalar addition: $(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$ for any $\alpha, \beta \in F$ and $\vec{v} \in V$.

Subspaces: A subset W of a vector space V is a subspace of V if the above conditions (closure under vector addition and scalar multiplication and existence of a zero vector) hold for the elements in the subspace W.

The vector spaces we will work with most commonly are \mathbb{R}^n and \mathbb{C}^n as well as their subspaces.

4. Identifying a Subspace: Proof

Is the set

$$V = \left\{ ec{v} \middle| ec{v} = c egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + d egin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ where } c, d \in \mathbb{R}
ight\}$$

a subspace of \mathbb{R}^3 ? Why/why not?