Problem 1. DPV Problem 4.2.

Your table depends on what order you iterate through the edges, but after the last iteration you should have:

Vertex S A B C D E F G H I
Dist 0 7 11 5 7 6 4 8 7 7
Prev - S A A F S E H B G

The tree of shortest paths is made up of the thick edges in the following.

Problem 2. PG Problem 434. Consider how the set S is built. In step 1, we add the start node to S and our subgraph of paths has no edges. In each set after the first, we add a new node to S and our subgraph of paths gets an edge to this new node. The algorithm stops when we have S = V. Notice that we have put exactly |V| - 1 edges into our subgraph of paths. Hence, this subgraph must be a tree which spans the original graph.

Problem 3. *DPV Problem 4.13.*

- (a) Remove all edges of length > L from the graph and then do a DFS from s and see if t is reachable. This takes O(|V| + |E|) time.
- **(b)** Let $e_1 < e_2 < \cdots < e_k$ be the lengths of the edges of E sorted into increasing order; also let $e_0 = 0$. Put e_0, \ldots, e_k in array **edgeLen**[0..k]. Use part (a) and **edgeLen** to do a binary search to find an i such that: the trip is feasible if $L = e_i$, but not feasible if $L = e_{i-1}$. Note that $k \le |E| \le |V|^2$, so $\log k \le \log |E| \le 2\log |V|$. So the total cost of this algorithm if $O(|V| + |E|) * O(\log k)$ which is $O((|V| + |E|) \log |V|)$.

Problem 4. DPV Problem 4.21.

(a) The key idea is to use * and max in place of + and min in Bellman-Ford. **procedure** exchange(G, r, s, t)

for each
$$u \in V$$
 do { $rate[u] \leftarrow 0$; $prev[u] \leftarrow nil$ } $rate[s] \leftarrow 1$;

repeat
$$|V|-1$$
 many times
for each $(u,v) \in E$ **do**
if $rate[v] < rate[u] * r[u,v]$
then $\{ rate[v] \leftarrow rate[u] * r[u,v]; prev[v] \leftarrow u \}$
return $(rate, prev)$

(b) The anomaly is analogous to a negative weight cyclce. So we just run the algorithm one more iteration and see if there is any change in the *rate* array—just like in the original Bellman-Ford algorithm.

Problem 5. *DPV Problem 5.2(a).*

Set S	A	В	C	D	Е	F	G	Н
Ø	0/nil	∞/nil						
A		1/A	∞/nil	∞/nil	4/A	8/A	∞/nil	∞/nil
A,B			2/B	∞/nil	4/A	6/B	6/B	∞/nil
A,B,C				3/C	4/A	6/B	2/C	∞/nil
A,B,C,G				1/G	4/A	1/G		1/G
A,B,C,D,G					4/A	1/G		1/G
A,B,C,D,F,G					4/A			1/G
A,B,C,D,F,G,H					4/A			

Problem 6. DPV Problem 5.9(a,b,c,d).

- **(b) True (Correction!).** Suppose by way of contradiction we had a minimal spanning tree. T, that includes an edge (u,v) that is the unique heaviest edge of some cycle. Remove (u,v) from T and let S be the connected component of u in $T \{(u,v)\}$. Since (u,v) is the heaviest edge on a cycle, there must be a lighter edge crossing the S and V S partition, that this results in a MST with a cost less than that of T, contradiction. So there cannot be any such MST T.
- (c) **True.** Suppose T is a MST that does not include e. Then $T \cup \{e\}$ must include a cycle. Let e' be an edge on this cycle which is $\neq e$ and let $T' = (T \cup \{e\}) \{e'\}$. Then T' also must be a spanning tree and $cost(T') \leq cost(T)$. So T' is a MST that includes e.
- (d) **True.** Suppose by way of contradiction that T is a MST that does not include e. Then $T \cup \{e\}$ must include a cycle. Let e' be an edge on this cycle which is $\neq e$ and let $T' = (T \cup \{e\}) \{e'\}$. Then T' also must be a spanning tree. Since e is the smallest length edge, it follows that cost(T') < cost(T), a contradiction since T is supposed be of minimal cost.