3.4:

- (a) 根据定义,可以将图像的像素值转换为 n-bit 的二进制表示,然后根据二进制表示得到不同比特平面。
 - (b) 原图的二进制表示为:

比特面如下所示, 从左到右依次是比特面 1, 比特面 2, 比特面 3, 比特面 4:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

3.5:

- (a) 具有不同灰度级的像素数量会减少,从而导致直方图中低灰度级范围的计数减少。由于像素数量不会改变,这会导致高灰度级范围的计数数量增加,从而导致高灰度级范围中的直方图峰值更高。这将使图像变亮。
- (b) 最明显的效果是图像明显变暗。例如,去掉最高位将限制 8 位图像中最亮的级别为 127。因为像素的数量将保持不变,一些直方图峰值的高度将增加。直方图的一般形状现在会变得更高,直方图的分量不会超过 127。

3.X:

r_k	n_k	p_r	\mathcal{C}_r	$G(z_q)$	p_s
0	3	0.12	0.12	1.08->1	0
1	2	0.08	0.2	1.8->2	0.12
2	4	0.16	0.36	3.24->3	0.08
3	4	0.16	0.52	4.68->5	0.16
4	1	0.04	0.56	5.04->5	0
5	1	0.04	0.6	5.4->5	0.24
6	4	0.16	0.76	6.84->7	0
7	1	0.04	8.0	7.2->7	0.2
8	2	0.08	0.88	7.92->8	0.08
9	3	0.12	1	9->9	0.12

灰度映射表:

$$\mathbf{0} o \mathbf{1}$$

$$\boldsymbol{1} \rightarrow \boldsymbol{2}$$

$$\mathbf{2} o \mathbf{3}$$

$$3,4,5\rightarrow 5$$

$$\textbf{6,7} \rightarrow \textbf{7}$$

$$\mathbf{8} o \mathbf{8}$$

$$9 \rightarrow 9$$

结果: