Computing Equilibria of Repeated And Dynamic Games

Şevin Yeltekin

Carnegie Mellon University

ZICE 2014

January 2014

Introduction

- Repeated and dynamic games have been used to model dynamic interactions in:
 - Industrial organization,
 - Principal-agent contracts,
 - Social insurance problems,
 - · Political economy games,
 - Macroeconomic policy-making.

Introduction

- These problems are difficult to analyze unless severe simplifying assumptions are made:
 - Equilibrium selection (symmetry, Markov)
 - Functional form (cost, technology, preferences)
 - Size of discounting

Goal

- Examine entire set of pure-strategy equilibrium values in repeated and dynamic games
- Propose a general algorithm for computation that can handle
 - · large state spaces,
 - flexible functional forms,
 - any discounting,
 - flexible informational assumptions.

Approach

- Computational method based on Abreu-Pearce-Stacchetti (APS) (1986,1990) set-valued techniques for repeated games.
- APS show that set of equilibrium payoffs a fixed point of an operator similar to Bellman operator in DP.
- APS method not directly implementable on a computer.
 Requires approximation of arbitrary sets.
- Our method allows for
 - parsimonious representation of sets/correspondences on a computer
 - preserves monotonicity of underlying operator.

Contributions

- Develop a general algorithm that
 - computes pure-strategy equilibrium value sets of repeated and dynamic games,
 - provides upper and lower bounds for equilibrium values and hence computational error bounds,
 - computes equilibrium strategies.
- Based on: Judd-Yeltekin-Conklin (2003), Sleet and Yeltekin(2003), Yeltekin-Cai-Judd (2013)

REPEATED GAMES

Stage Game

- A_i player i's action space, $i=1,\cdots,N$
- $A = \times_{i=1}^{N} A_i$ action profiles
- $\Pi_i(a)$ Player i payoff, $i=1,\cdots,N$
- Maximal and minimal payoffs

$$\underline{\Pi}_i \equiv \min_{a \in A} \ \Pi_i(a), \ \ \overline{\Pi}_i \equiv \max_{a \in A} \ \Pi_i(a)$$

Supergame G^{∞}

- Action space: A^{∞}
- h_t : t-period history: $\{a_s\}_{s=0}^{t-1}$ with $a_s \in A$
- ullet Set of t-period histories: H_t
- Preferences:

$$w_i(a^{\infty}) = \frac{1 - \delta}{\delta} E_0 \sum_{t=1}^{\infty} \delta^t \Pi_i(a_t).$$

- Strategies: $\{\sigma_{i,t}\}_{t=0}^{\infty}$ with $\sigma_{i,t}: H_t \to A_i$.
- Subgame Perfect Equilibrium Payoffs

$$V^* \subset \mathcal{W} = \times_{i=1}^N [\underline{\Pi}_i, \overline{\Pi}_i]$$

Example 1: Prisoner's Dilemma

• Static game: player 1 (2) chooses row (column)

	Left	Right			
Up	4, 4	0, 6			
Down	6, 0	2, 2			

- Static Nash equilibrium
 - (Down, Right) with payoff (2,2)
- Suppose δ is close to 1
- G^{∞} includes (Up, Left) forever with payoff (4,4)
 - Rational if all believe a deviation causes permanent reversion to (Down, Right)
 - This is just one of many equilibria.

Static Equilibrium

• Static game

b_{11}, c_{11}	b_{12}, c_{12}
b_{21}, c_{21}	b_{22}, c_{22}

 $b_{ij}\ (c_{ij})$ is player 1's (2's) return if player 1 (2) plays $i\ (j)$.

Recursive Formulation

- Each SPE payoff vector is supported by
 - profile of actions consistent with Nash today
 - continuation payoffs that are SPE payoffs
- Each stage of subgame perfect equilibrium of G^{∞} is a static equilibrium to some one-shot game A, augmented by values from δV^* :

$$\begin{array}{|c|c|c|c|c|c|}
\hline
\delta^*b_{11} + \delta u_{11}, \ \delta^*c_{11} + \delta w_{11} & \delta^*b_{12} + \delta u_{12}, \ \delta^*c_{12} + \delta w_{12} \\
\delta^*b_{21} + \delta u_{21}, \ \delta^*c_{21} + \delta w_{21} & \delta^*b_{22} + \delta u_{22}, \ \delta^*c_{22} + \delta w_{22}
\end{array}$$

$$\delta^* = 1 - \delta$$

Steps: Computing the Equilibrium Value Set

- Define an operator that maps today's equilibrium values to tomorrow's.
- Show operator is monotone and equilibrium payoff set is its largest fixed point. [Requires some work. We use Tarski's FP theorem.]
- 3 Define approximation for operator and sets that
 - · Represent sets parsimoniously on computer
 - Preserve monotonicity of operator
- Oefine appropriately chosen initial set, apply operator until convergence.

Step 1: Operator

$$B^*: \mathcal{P} \to \mathcal{P}$$
.

• Let $\mathcal{W} \in \mathcal{P}$.

$$B^*(\mathcal{W}) = \bigcup_{(a,w)} \{ (1-\delta)\Pi(a) + \delta w \}$$

subject to:

$$w \in \mathcal{W}$$

and for each $\forall i \in N, \, \forall \tilde{a} \in A_i$

$$(1 - \delta)\Pi_i(a) + \delta w_i \ge (1 - \delta)\Pi_i(\tilde{a}, a_{-i}) + \delta \underline{w}_i\}$$

where $\underline{w}_i = \min\{w_i | w \in \mathcal{W}\}.$

Step 2: Self-generation

A set ${\mathcal W}$ is self-generating if :

$$\mathcal{W} \subseteq B^*(\mathcal{W})$$

An extension of the arguments in APS establishes the following:

- Any self-generating set is contained within V^* ,
- V* itself is self-generating.

Step 2: Factorization

 $b \in B^*(\mathcal{W})$ if there is an action profile a and cont payoff $w \in \mathcal{W}$, s.t

- ullet b is value of playing a today and receiving cont value w ,
- for each i, player i will choose to play a_i
- punishment value drawn from set W.

Step 2: Properties of B^*

• Monotonicity: B^* is monotone in the set inclusion ordering:

If
$$W_1 \subseteq W_2$$
, then $B^*(W_1) \subseteq B^*(W_2)$

- Compactness: B^* preserves compactness.
- Implications:
 - 1) V^* is the maximal fixed point of the mapping B^* ;
 - 2) V^* can be obtained by repeatedly applying B^* to any set that contains V^* .

Step 3: Approximation

- ullet V^* is not necessarily a convex set
 - We need to approximate both V^{\ast} and the correspondence $B^{\ast}(W)$
 - As a first step, use public randomization to convexify the equilibrium value set.

Step 3: Public randomization

- Public lottery with support contained in \mathcal{W} .
- Public lottery specifies continuation values for the next period
 - Lottery determines Nash equilibrium for next period.
 - Strategies now condition on histories of actions and lottery outcomes.
- Modified operator:

$$B(W) = B(co(W)) = co(B^*(co(W))),$$

where
$$W = co(\mathcal{W})$$

- V equilibrium value set of supergame with public randomization.
- B is monotone and V is the largest fixed point of B.

Step B: Approximations

- ullet Modified operator B preserves monotonicity and compactness.
- Produces a sequence of convex sets that converge to equilibrium.
- Two approximations:
 - outer approximation
 - inner approximation

Piecewise-Linear Inner Approximation

- Suppose we have M points $Z = \{(x_1, y_1), ..., (x_M, y_M)\}$ on the boundary of a convex set W.
- The convex hull of Z, co(Z), is contained in W and has a piecewise linear boundary.
- Since $co(Z) \subseteq W$, we will call co(Z) the inner approximation to W generated by Z.

Inner approximation

Inner approximations

Piecewise-Linear Outer Approximation

- Suppose we have
 - M points $Z = \{(x_1, y_1), ..., (x_M, y_M)\}$ on the boundary of W, and
 - corresponding set of subgradients, $R = \{(s_1, t_1), ..., (s_M, t_M)\};$
- Therefore,
 - the plane $s_ix+t_iy=s_ix_i+t_iy_i$ is tangent to W at (x_i,y_i) , and
 - the vector (s_i, t_i) with base at (x_i, y_i) points away from W.

Outer approximation

A convex set and supporting hyperplanes

Key Properties of Approximations

Definition

Let $B^I(W)$ be an inner approximation of B(W) and $B^O(W)$ be an outer approximation of B(W); that is $B^I(W) \subseteq B(W) \subseteq B^O(W)$.

Lemma

Next, for any $B^I(W)$ and $B^O(W)$, (i) $W\subseteq W'$ implies $B^I(W)\subseteq B^I(W')$, and (ii) $W\subseteq W'$ implies $B^O(W)\subseteq B^O(W')$.

Step 4: Initial Guesses and Convergence

Proposition

Suppose $B^O(\cdot)$ is an outer monotone approximation of $B(\cdot)$. Then the maximal fixed point of B^O contains V. More precisely, if $W\supseteq B^O(W)\supseteq V$, then $B^O(W)\supseteq B^O(B^O(W))\supseteq\cdots\supseteq V$.

Lemma

$$W \supseteq B^O(W) \supseteq V$$
.

Step 4: Initial Guesses and Convergence

Proposition

Suppose $B^I(\cdot)$ is an inner monotone approximation of $B(\cdot)$. Then the maximal fixed point of B^I is contained in V. More precisely, if $W\subseteq B^I(W)\subseteq V$, then $B^I(W)\subseteq B^I(B^I(W))\subseteq\cdots\subseteq V$.

Lemma

$$W \subseteq B^I(W) \subseteq V$$
.

Fixed Point

These results together with the monotonicity of the ${\cal B}$ operator, implies the following theorem.

Theorem

Let V be the equilibrium value set. Then (i) if $W_0 \supseteq V$ then $B^O(W_0) \supseteq B^O(B^O(W_0)) \supseteq \cdots \supseteq V$, and (ii) if $W_0 \subset B^I(W_0)$ then $B^I(W_0) \subset B^I(B^I(W_0)) \subseteq \cdots \subseteq V$. Furthermore, any fixed point of B^I is contained in the maximal fixed point of B^O .

Monotone Inner Hyperplane Approximation

Input: Points $Z = \{z_1, \dots, z_M\}$ such that W = co(Z).

Step 1 Find extremal points of B(W):

For each search subgradient $h_{\ell} \in H, \ \ell = 1,..,L$.

(1) For each $a \in A$, solve the linear program

$$c_{\ell}(a) = \max_{w} h_{\ell} \cdot [(1 - \delta)\Pi(a) + \delta w]$$
(i) $w \in W$
(ii) $(1 - \delta)\Pi^{i}(a) + \delta w_{i} \geq (1 - \delta)\Pi^{*}_{i}(a_{-i}) + \delta \underline{w}_{i}, i = 1, .., N$
(1)

Let $w_{\ell}(a)$ be a w value which solves (1).

Monotone Inner Hyperplane Approximation cont'd

(2) Find best action profile $a \in A$ and continuation value:

$$\begin{array}{rcl} a_\ell^* &=& \arg\max\left\{c_\ell(a)|a\in A\right\} \\ z_\ell^+ &=& (1-\delta)\Pi(a_\ell^*) + \delta w_\ell(a_\ell^*) \end{array}$$

Step 2 Collect set of vertices
$$Z^+=\{z_\ell^+|\ell=1,...,L\}$$
, and define $W^+=co(Z^+)$.

The Outer Approximation, Hyperplane Algorithm

Outer approximation: Same as inner approximation except record normals and continuation values z_ℓ^+

Outer vs. Inner Approximations

- Any point within the inner approximation is an equilibrium
 - Can construct an equilibrium strategy from V.
 - There exist multiple such strategies

The Outer Approximation, Hyperplane Algorithm

- No point outside of outer approximation can be an equilibrium
 - Can demonstrate certain equilibrium payoffs and actions are not possible
 - E.g., can prove that joint profit maximization is not possible

Error Bounds

- Difference between inner and outer approximations is approximation error
- Computations actually constitute a proof that something is in or out of equilibrium payoff set - not just an approximation.
- Difference is small in many examples.

ErrorBounds

Convergence: Repeated Prisoner's Dilemma

Hyperplanes: Repeated Prisoner's Dilemma

Example 2: Repeated Cournot Duopoly

- Firm i sales: q_i
- Firm i unit cost: $c_i = 0.6$
- Demand: $p = \max\{6 q_1 q_2, 0\}$
- Profit: $\Pi_i(q_1, q_2) = q_i(p c_i)$
- Nash Eqm. Payoff of Stage Game: (3.24, 3.24)
- Shared Monopoly Payoff: (3.64, 3.64)

Repeated Cournot

Example 2: Repeated Cournot Duopoly

- Set of eqm payoffs quite large.
- Shared monopoly profits (+ and \star) are achievable (for $\delta=0.8$)
- When costs are positive, threats far worse than reversion to Nash.

Strategies: Repeated Cournot

Strategies: Repeated Cournot

Actions, promises, and threats on the boundary of V, c = 0.6

ℓ	$(v_1(\ell), v_2(\ell))$		$(w_1(\ell), w_2(\ell))$		(q_1,q_2)		$\Pi(q_1,q_2)$	
2	3.97	3.30	3.75	3.52	1.7	0.9	4.8	2.4
8	3.71	3.57	3.72	3.55	1.3	1.3	3.6	3.6
10	3.64	3.64	3.64	3.64	1.3	1.3	3.6	3.6
27	0.29	6.76	0.36	6.65	0.0	3.0	0.0	7.1
46	0.00	0.00	0.77	0.77	5.1	5.1	-3.0	-3.0
60	4.75	0.00	6.71	0.32	5.1	2.1	-3.0	-1.3

Example 2: Repeated Cournot Duopoly

- Unlike APS's imperfect monitoring example, eqm. paths are not bang-bang.
- Continuation of worst eqm is not worst. Movement towards cooperation?
- Shared Monopoly: Markov and stationary.
- Low profits today for Firm i are supported by higher continuation values.

Next Meeting

- Dynamic Games
- Using algorithm to find endogenous state spaces.
- Extensions to planner+continuum of agents.
- Examples from applications in IO , Macro.