

IOS: Inter-Operator Scheduler for CNN Acceleration

Yaoyao Ding¹ Ligeng Zhu² Zhihao Jia³ Gennady Pekhimenko¹ Song Han² University of Toronto, Massachusetts Institute of Technology, Carnegie Mellon University

We provide scripts to reproduce results in every figure and table!

Overview

- Existing frameworks (PyTorch, TensorFlow) focus on intra-operator parallelization.
- Only utilizing intra-operator parallelism suffers from device under-utilization problem, especially for small op & power GPU.
- Therefore, we propose IOS a dynamic programming algorithm scheduling interoperator parallelization of CNN models.

Intra-operator Parallelization

GPU

Kernel

b

c d

Inter-Operator Scheduler

The time complexity of the dynamic programming is: $O((\frac{n}{d}+1)^{2d})$

n : number of operators d: maximum number of concurrent operators

S': Last stage S": **NOT** Last S: ops to be scheduled stage candidate

Explore More Schedules is Important

Thread

Sequential Schedule: the default choice for most frameworks, but leads to insufficient utilization as only one operator at a stage.

- Wavefront Schedule: a greedy method that execute all available operators stage by stage. It is sub-optimal due to unbalanced schedule.
- IOS Schedule (ours): explores schedule space exhaustively, balances the computation in each stage, and best utilizes the hardware.

S' can be a last stage of $S \iff$ There is no edge from S' to S - S'

IOS Accelerates Inference

IOS-Merge IOS-Parallel 1.0 8.0 0.6 0.4 0.2 0.0 Inception V3 SqueezeNet GeoMean RandWire NasNet

Comparison of Different Schedules

More Active Warps

IOS Schedule has More Active Warps per ms

Large Batch Size

Consistent Improvement for Larger Batch Sizes (Inception V3 is used as benchmark)

IOS v.s. AutoTVM

AutoTVM and IOS are orthogonal and can be combined to further boost the performance

Schedule Specialization

Specialization for Different		Optimized for		
Batch Sizes		1	32	128
Execute	1	4.03	4.50	4.63
	32	29.21	27.44	27.93
	128	105.98	103.74	103.29

Speciali for Diff		Optimized for	
Devid		K80	V100
Execute	K80	13.87	14.65
on	V100	4.49	4.03

Specialization for Batch Sizes

Specialization for Devices

Specialized Schedules achieves the best performance