

HCC/HCF40100B

32-STAGE STATIC LEFT/RIGHT SHIFT REGISTER

- FULLY STATIC OPERATION
- SHIFT LEFT/SHIFT RIGHT CAPABILITY
- MULTIPLE PACKAGE CASCADING
- RECIRCULATE CAPABILITY
- LIFO OR FIFO CAPABILITY
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED AT 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TENTATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC40100B** (extended temperature range) and HCF40100B (intermediate temperature range) are monolithic integrated circuits, available in 16lead dual in-line plastic or ceramic package and plastic micro package. The HCC/HCF40100B is a 32-stage shift register containing 32 D-type masterslave flip-flops. The data present at the SHIFT-RIGHT INPUT is transferred into the first register stage synchronously with the positive CLOCK edge, provided the LEFT/RIGHT CONTROL is at a low level, the RECIRCULATE CONTROL is at a high level, and the CLOCK INHIBIT is low. If the LEFT/RIGHT CONTROL is at a high level and the RECIRCULATE CONTROL is also high, data at the SHIFT-LEFT INPUT is transferred into the 32nd register stage synchronously with the positive CLOCK transition, provided the CLOCK INHIBIT is low. The state of the LEFT/RIGHT CONTROL, RECIRCU-LATE CONTROL, and CLOCK INHIBIT should not be changed when the CLOCK is high. Data is shifted one stage left or one stage right depending on the state of the LEFT/RIGHT CONTROL, synchronously with the positive CLOCK edge. Data clocked into the first or 32nd register states is available at the SHIFT-LEFT or SHIFT-RIGHT OUTPUT respectively, on the next negative CLOCK transition (see Data Transfer Table). No shifting occurs on the positive CLOCK edge if the CLOCK INHIBIT line is at a high level. With the RECIRCULATE CONTROL low,

data in the 32nd stage is shifted into the first stage when the LEFT/RIGHT CONTROL is low and from the 1st stage to the 32nd stage when the LEFT/RIGHT CONTROL is high.

June 1989 1/13

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V
Vi	Input Voltage	-0.5 to $V_{DD} + 0.5$	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T_{op} = Full Package-temperature Range	200	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C ℃
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to + 18	V
	HCF Types	3 to + 15	V
Vı	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types	- 55 to + 125	°C
	HCF Types	- 40 to + 85	°C

LOGIC DIAGRAM

TRUTH TABLES

CONTROL

Left/Right Control	Clock Inhibit	Recirculate Control	Action	Input Bit Origin
1	0	1	Shift Left	Shift Left Input
1	0	0	Shift Left	Stage 1
0	0	1	Shift Right	Shift Right Input
0	0	0	Shift Right	Stage 32
Х	1	Х	No Shift	-

DATA TRANSFER

	Initial State		Clock	Resulting State		
Data Input	Clock Inhibit	Internal Stage	Level Change	Internal Stage Q	Output	
0	0	Х	\int	0	NC	
Х	0	0	_	NC	0	
1	0	Х	$ \mathcal{L} $	1	NC	
Х	0	1	_	NC	1	
Х	1	1	Х	NC	NC	

^{0 =} Low level* For Shift-Right Mode

1 = High level

Data Input = SHIFT-RIGHT INPUT (Pin 11)

Internal Stage = Stage 1 (Q1)
Output = SHIFT-LEFT OUTPUT (Pin 4).

X= Don't Care.

NC = No change.

For Shift-left Mode

Data input = SHIFT LEFT INPUT (Pin 6) Internal Stage = Stage 32 (Q32)
Output = SHIFT-RIGHT OUTPUT (Pin 12).

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			T	est Con	dition	s				Value				
Symbol	ol Parameter		Vı	۷o	I ₀	V_{DD}	T _{Low} *			25°C		T High*		Unit
			(V)	(V)	(μΑ)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	HCC	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		1 9 000	0/15			15		80		0.04	80		600	
V _{OH}	Output High	า	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5 V min. with $V_{DD} = 15V$.

STATIC ELECTRICAL CHARACTERISTICS (continued)

			Т	est Con	dition	s				Value				
Symbol	Parame	ter	٧ı	۷o	I ₀	V_{DD}	TL	ow*		25°C		T Hi	gh [*]	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		1117 (
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	1) poo	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
			0/ 5	0.4		5	0.52		0.44	1		0.36		ША
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		1) рос	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	nut	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	^
	Current	HCF Types	0/15	Ally III	pui	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΑ
Cı	Input Capa	citance		Any In	put					5	7.5			pF

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall time = 20ns)

Symbol	Parameter	Test Conditions				Unit	
Syllibol	raidilletei		V_{DD} (V)	Min.	Тур.	Max.	Oiiit
t _{PLH} ,	Propagation Delay Time		5		360	720	
t _{PHL}	Clock to Shift Left/Right Output		10		165	330	ns
			15		115	230	
t _{THL} ,	Transition Time		5		100	200	
t _{TLH}			10		50	100	ns
			15		40	80	

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5 V min. with $V_{DD} = 15V$.

DYNAMIC ELECTRICAL CHARACTERISTICS (continued)

Cumbal	Doromotor	Test Conditions			Value		Unit
Symbol	Parameter		V_{DD} (V)	Min.	Тур.	Max.	Unit
t _{setup}	Data Setup Time		5	100	50		
			10	20	10		ns
			15	10	5		
t _{hold}	Data Hold Time		5	275	170		
			10	100	75		ns
			15	75	50		
t _W	Clock Input Pulse Width Low		5	450	225		
	Level		10	230	115		ns
			15	190	95		
t _W	Clock Input Pulse Width High		5	280	140		
	Level		10	150	75		ns
			15	140	70		
f _{CL}	Maximum Clock Input Frequency		5	1	2		
			10	2.5	5		MHz
			15	3	6		

WAVEFORMS

Output Low (sink) Current Characteristics.

Typical Propagation Delay Time (clock to shift left right) vs. Load Capacitance.

Typical Dynamic Power Dissipation vs. Clock Frequency .

Output High (source) Current Characteristics.

Typical Transition Time vs. Load Capacitance.

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

