DNA and RNA Damage Assay and Library Construction of New Ammonium Bisulfite Recipe for Ultramild BS-Seq Yushuai Liu 9/23/2024

Background

Since Tanner has been focusing on finishing UMBS work, I will do more optimizations for lower temperature. In this batch, we will test two different methods and different temperatures from 25 o 55 C while keeping the recipe the same. Method A is mixing protect buffer and sample first, then adding BS reagent to conducting BS treatment. Method B is mixing BS reagent and protect buffer first, then add sample DNA sample. To test the conversion efficiency under different treatment conditions, I will build UMBS-seq libraries using selected DNA and RNA samples with less damage.

Design

1. Treatment conditions:

Take 2 ng ligated lambda DNA each to do the following BS treatment:

Sample ID	Recipe	Temp	Time
		(C)	
ST	Denaturation but without		
	BS treatment		
1	BS China + protect buffer	55	60 mins
2	BS China + protect buffer	50	90 mins
3	BS China + protect buffer	50	120 mins
4	BS China + protect buffer	45	4 hrs
5	BS China + protect buffer	45	8 hrs
6	BS China + protect buffer	40	8 hrs
7	BS China + protect buffer	37	8 hrs
8	BS China + protect buffer	40	16 hrs
9	BS China + protect buffer	37	16 hrs
10	BS China + protect buffer	30	16 hrs
11	BS China + protect buffer	25	16 hrs

Materials

Lambda DNA	Tanner's Box in -20 C freezer, 90 ng/uL

Protection Buffer	Yushuai's Box in 4 C freezer	
Kit- EZ RNA Methylation Kit	Shelf above the bench	
Kit-EZ DNA Methylation-Gold kit	Shelf above the bench	
New Bisulfite reagent	In cabinet under fume hood	
NEBNext UltraShear	#E6655, Tanner's Box in -20 C freezer	
Zymo Methylated pUC19 DNA Set	D5017, Tanner's Box in -20 C freezer	
KAPA Evo Prep Kit	Tanner's Box in -20 C freezer	

Recipe Preparation

1. New Recipe

New BS reagent (37.5 uL) + protect buffer (7.5 uL)

How to make the recipe:

method A- Mix protect buffer and DNA sample first, then add BS reagent method B- Mix BS reagent and DNA protect buffer first, then add DNA sample

DNA Damage Assay – prepare ligated DNA (2 Samples)

Prepare 500 ng Lambda: Take $5.6 \mu l$ Lambda DNA ($90 \text{ ng/}\mu l$)

Prepare 10 ng PUC19 plasmid DNA: Take 10 μ l plasmid DNA (10 ng/ μ l)

1. Enzymatic Fragmentation - with NEBNext UltraShear (2 Samples)

For each sample, start with:

Component	Total Volume for	Volume per
	two samples (ul)	sample (ul)
Sterile Water	10.4	18.2
Methylated pUC19 plasmid (1 ng/ul →	10	5
10 ng, ~2%)		
Lambda (500 ng)	5.6	2.8
UltraShear Reaction Buffer (white)	14	14
NEBNext UltraShear (white)	4	4
Total volume	44	44

Assemble each fragmentation reaction **on ice** by adding the components in the above order, incubate in a thermocycler **with lid at 75C**

Step	Temp	Time
Fragmentation	37°C	30 min

^{*}Remove beads to warm them

Additional Incubation	65°C	15 min	
HOLD	4°C	∞	

Consolidate 2 samples into 1 samples of equal volume (88 µl)

2. AmPure Beads Clean-Up

a. Warm beads to RT before use!

- i) 1.0x beads ratio 88 µl for each sample (after combining!)
- ii) Elute with 36 μl water to get 35 μl

AmPure Beads Purification Procedure

- a. Vortex beads to resuspend
- b. Add X µl beads to sample (pipette up and down to mix)
- c. Incubate for up to 5 minutes at RT
- d. Place on magnet and discard supernatant once clear
- e. Add 200 μl of fresh 80% ethanol
- f. Incubate at RT for 30 seconds and remove and discard supernatant
- g. Wash again with 200 µl 80% EtOH
- h. Air dry the beads for 5 minutes (DO NOT OVER DRY)
- i. Elute with \boldsymbol{X} μl RNA H_2O by incubating at RT for 2 min
- j. Place on magnet and take \boldsymbol{X} μl of supernatant to next step

3. End Prep and A-Tailing

To 35 μl of fragmentated DNA (500 ng) and then add:

Reagent	Volume per sample (ul)
164bp 5mC dsDNA (1ng/ul-→ 5 ng,	5 ul-
~1.0%)	5 μι
KAPA End Repair and A-Tailing	25 ul
Ready Mix	25 μι

Sample final volume: 60 µl

Incubate at: Pre-cool the block to 4C, add sample, then incubate at 35 C for 30 min followed by 65 C for 30 min (Lid @ 80C)

4. Adaptor Ligation

a. To 60 µl of end repaired DNA (500 ng)

Reagent	Volume per sample
	(ul)
NEBNext Methylated Adaptor (No	5 μl
Dilution)	
- NOT the adaptor included in kit	

KAPA Ligation ReadyMix	10 μl

Sample final volume: **75 µl**

Incubate at: Pre-cool block to 4 C, add sample, then incubate at 20 C for

15 minutes with lid at 50 C

b. To **75 µL of sample**, add:

Reagent	Volume per sample (ul)
USER Enzyme	3.0

Sample final volume: 78

Incubate at: 37 °C for 15 mins with lid at 50 °C

5. AmPure Beads Purification

- a. Warm beads to RT before use! (~30 min)
 - i) 0.8x beads ratio 62.4 μ l. Elute with 251 μ l RNA water to collect 250 μ l (~2 ng/ μ l)

Take out 30 uL ligated DNA to do KOH denaturation for this batch of experiment, and store the rest in -80 C freezer. For example, add 5 uL 20 M KOH to 195 uL $\rm H_2O$, get 0.5 M KOH, then take out 45 uL 0.5 M KOH and mix with 15 uL sample and 15 uL $\rm H_2O$, that is 75 uL (final concentration of KOH is 0.3 M). Then 42 C for 20 mins, after the reaction is done, place on ice, take out 5 uL denatured DNA to do BS treatment.

BS Treatment - 22 Samples

Method A:

- 1. Transfer 7.5 ul protect buffer to the empty 200 ul PCR tube.
- 2. Add 5 ul denatured DNA to DNA protect buffer, pipette, vortex and quickly spin down.
- 3. Add 37.5 uL BS reagent to the mix in step 2, pipette, vortex and quickly spin down. The liquid is clear.
- 4. Incubate the reactions at different temperatures and times based on the table in the design part.
- 5. After the reaction is done, add 100 uL RNA H_2O required in desulphonation procedures and place on ice. Make sure there is no precipitation.

Method B:

1. Transfer 7.5 ul protect buffer to the empty 200 ul PCR tube.

- 2. Add 37.5 ul BS reagent to protect buffer, pipette, vortex and quickly spin down. The liquid is not clear now, like milk.
- 3. Add 5 uL denatured DNA to the mix in step 2, pipette, vortex and quickly spin down. The liquid is clear now.
- 4. Incubate the reactions at different temperatures and times based on the table in the design part.
- 5. After the reaction is done, add 100 uL RNA H_2O required in desulphonation procedures and place on ice. Make sure there is no precipitation.

Desulphonation (22 Samples) - EZ DNA Methylation Gold-Kit

- a. For each sample \rightarrow 50 ul, add 100 µL H₂O.
- a. M-Binding Buffer 600 $\mu L \rightarrow$ Centrifuge 16,000 xg for 30s
- b. M-Wash Buffer 100 μ L \rightarrow Centrifuge 16,000 xg for 30s
- b. M-Desulphonation Buffer 200 μL on column
- c. Incubate at Rm Temp for 15 mins \rightarrow Centrifuge 16,000 xg for 30s
- d. M-Wash Buffer 200 μ L \rightarrow Centrifuge 16,000 xg for 30s
- e. Repeat washing for another 3 times
- f. Discard \rightarrow Centrifuge 16,000 xg for 2 mins Elute with H₂O - 21 μ L \rightarrow Centrifuge 16,000 xg for 1min, get 20 uL in total.

qPCR - all 23 samples

To 1 ul of all 23 samples, add:

Reagent	Volume per sample (ul)	Volume per 23.8 samples (ul)
KAPA HiFi Hotstart Uracil+ 2X	10	238
Ready Mix	10	238
Universal primer	1	23.8
Mixed Index primer	1	23.8
H ₂ O	6	142.8
SYBR Green	1	23.8
Final volume	19	

Sample final volume: 20 ul →

Pre-incubation	95 C; 600 s
X40	95 C; 20 s
	60 C; 20 s
	72 C; 20 s
Melting curves	95 C; 10 s

Commented [QD1]: Make sure you use the desulphonation buffer in DNA kit here.

 $\label{lem:commented [YL2]: Hi Qing, I use 21 uL water to elute here, and take 1 uL to do qPCR. Also, to the no treatment sample (D-ST) is 1 uL ligated DNA + 19 uL water and take 1 uL to do qPCR, is it OK?}$

65 C; 60 s
97 C; 1 s

After you got qPCR data, let's discuss what libraries should proceed to PCR to build libraries for sequencing.

DNA Sample information and qPCR results

How to make the recipe:

method A- Mix DNA protect buffer and DNA first, then add BS reagent method B- Mix BS reagent and DNA protect buffer first, then add DNA

Sample ID	Recipe	Temp (C)	Time	How to make the	qPCR
				recipe	
ST	Denaturation but				8.5
	without BS treatment				
A-1	BS China + DNA protect	55	60 mins	Method A	12
	buffer				
A-2	BS China + DNA protect	50	90 mins	Method A	12
	buffer				
A-3	BS China + DNA protect	50	120 mins	Method A	12.5
	buffer				
A-4	BS China + DNA protect	45	4 hrs	Method A	12
	buffer				
A-5	BS China+ DNA protect	45	8 hrs	Method A	13.7
	buffer				
A-6	BS China + DNA protect	40	8 hrs	Method A	13
	buffer				
A-7	BS China+ DNA protect	37	8 hrs	Method A	12.6
	buffer				
A-8	BS China + DNA protect	40	16 hrs	Method A	13.7
	buffer				
A-9	BS China + DNA protect	37	16 hrs	Method A	13.8
	buffer				
A-10	BS China + DNA protect	30	16 hrs	Method A	12.8
	buffer				
A-11	BS China + DNA protect	25	16 hrs	Method A	12.1
	buffer				
B-1	BS China + DNA protect	55	60 mins	Method B	11.3
	buffer				

B-2	BS China + DNA protect buffer	50	90 mins	Method B	11.4
B-3	BS China + DNA protect buffer	50	120 mins	Method B	11.2
B-4	BS China + DNA protect buffer	45	4 hrs	Method B	12.3
B-5	BS China + DNA protect buffer	45	8 hrs	Method B	13
B-6	BS China + DNA protect buffer	40	8 hrs	Method B	13.4
B-7	BS China + DNA protect buffer	37	8 hrs	Method B	11.9
B-8	BS China + DNA protect buffer	40	16 hrs	Method B	13.2
B-9	BS China + DNA protect buffer	37	16 hrs	Method B	12.6
B-10	BS China + DNA protect buffer	30	16 hrs	Method B	12.2
B-11	BS China + DNA protect buffer	25	16 hrs	Method B	11.5

Based on the qPCR results, we chose ST, A-1, A-2, A-3, A-4, B-1, B-2, B-3, B-4, B-7, B-8, B-9, B-10 and B-11 to build UMBS-seq libraries since the Ct values are relatively smaller suggesting lower DNA damage.

PCR – 14 samples for DNA assay

To 9 uL sample, add:

Reagent	Volume per sample (ul)	Volume per 14.6 samples (ul)
KAPA Hifi U+ 2X Master Mix	12.5	
Universal primer	0.625	
Index primer	0.625	
H ₂ O	2.25	
Final volume	16	

Sample final total volume: 25 ul →

Sample imar total volume. 23 di					
	98 C; 45 s				
x cycles	98C; 15 s				
	60 C: 30 s				

(Calculate based on the	72 C; 30 s
qPCR Ct value)	
	72 C; 1 min
	4C

AmPure beads purification

- a. 0.6x beads ratio $-15 \mu L$
- **b.** Elute with $H_2O 12.5 \mu L$
 - 10 μL libraries
 - $\bullet \quad 1\,\mu L\,QC$
 - 1 μL Qubit

Library information – samples are from DNA damage assay (14 samples)

ID	Content	qPCR	PCR 9 uL sample	Index#	Kit	Qubit (ng/ul)	QC (ng/ul)	Dilution fold for QC	i7
ST	2 ng ligated DNA, Denaturation but without BS treatment	10.4	9	1	NEBNext Set # 1	5.02	1.43	5	ATCACG
A-1	2 ng ligated DNA, BS + protect buffer, 55C 60 mins, method A	12.1	12	2	and 2	7.46	1.91	5	CGATGT
A-2	2 ng ligated DNA, BS + protect buffer, 50C 90 mins, method A	15.1	12	4		8.58	2.12	5	TGACCA
A-3	2 ng ligated DNA, BS + protect buffer, 50C 120 mins, method A	8.6	13	5		8.34	2.18	5	ACAGTG
A-4	2 ng ligated DNA, BS + protect buffer, 45C 4 hrs, method A	12	12	6		8.26	2.18	5	GCCAAT
B-1	2 ng ligated DNA, BS + protect buffer, 55C 60 mins, method B	15.3	12	7		13.3	3.41	5	CAGATC
B-2	2 ng ligated DNA, BS + protect buffer, 50C 90 mins, method B	9	12	8		12.3	2.73	5	ACTTGA

B-3	2 ng ligated DNA, BS + protect buffer, 50C 120 mins, method B	12.2	12	9	14.7	3.83	5	GATCAG
B-4	2 ng ligated DNA, BS + protect buffer, 45C 4 hrs, method B	15.6	12	10	7.64	1.83	5	TAGCTT
B-7	2 ng ligated DNA, BS + protect buffer, 37C 8 hrs, method B	9.7	12	11	8.5	2.09	5	GGCTAC
B-8	2 ng ligated DNA, BS + protect buffer, 40C 16 hrs, method B	12	13	12	6.12	1.47	5	CTTGTA
B-9	2 ng ligated DNA, BS + protect buffer, 37C 16 hrs, method B	17	13	13	9.6	2.87	5	AGTCAA
B-10	2 ng ligated DNA, BS + protect buffer, 30C 16 hrs, method B	8.7	12	14	9.28	2.57	5	AGTTCC
B-11	2 ng ligated DNA, BS + protect buffer, 25C 16 hrs, method B	15.6	12	15	8.38	1.99	5	ATGTCA

Gel Image

Discussion

Based on the qPCR results, we confirmed the trend that lower temperature (from 55°C and 37°C to 25°C) and longer treatment time (from 1 hrs to 16hrs) can cause less DNA damage. To test the conversion efficiency under different treatment conditions, I built 14 UMBS-seq libraries using selected DNA samples with less damage. Now we are waiting for the sequencing data analysis.

Based on the QC results, 50 C for 90 min or 120 min gave the most library yields and the longest inserts, suggesting lower DNA damage.