								-											-	
		, ,	5'				5°	;		15;		5	4.			5 j	-		ر ع (6.1
	6	1	3	8	2	6	1	3	8	4	5	8	7	2	6	5	7	i	7	2
	1	1	1	1	1															
Reduction 2)	1	1	1	0	1	1	1-	1											
1 covers all of 3	0	0	0	0	0	0	0	0	0	1										
- 4	0	0	0	1	1-	0	Ö	0	l	Ö	i	./-	. /	1:						
5	1	0	0	0	0	1	0	0	0	၁	1	0	1	0	1	1	1			100
6	0	1	0	0	1	0	1	0	0	9	0	0	1	1	0	0	1	1	1	1
	2	4	5	5	7	2	4	5	5	8	3	5	6	7	2	3	6	4	6	7

TABLEAU associated walgarithm Selected candidates

Now go back to better p. 41

L-Sot of Soto

	<u></u>	00	101 dels
$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$	El	1	
3 4 5	E6 E9	EII	PARTIAL
7	E/2		Socials
10	E13 E2		DOM WANGE TESTS
12	E7 E3	EIO	114815
15	E8 E5		
18			
	11 12 13 14 15 16 17 18	10 E2 11 12 E7 13 E3 14 15 E8 16 E5 17 E4 18	E E E E E E E E E E

HARD CONSTRAINTS: We want. = Cantry wants

E9 = (1, 2)

E10=(1,2,3)

EII = (1, 2, 4)

E12 = (1,4,6)

E13 = (1, 2, 4, 5, 6)

E6 = (1,2,6)

E1 = (1,2,5)

E2 = (1,2,3,5)

E3 = (1,2,3,4,5)

E4 = (1,2,3,4,5,6)

E5 = (1,2,3,4,5,6)

E7 = (1,2,3,6)

E8 = (1,2,3,4,5,6)

Per SCP p.40, Step 3 V,=(6,1,3,8,2) V2=(6,1,3,8) V2 EV, - 50 for, so good P=2, g=1 = 1 can be del'd

		٠	\ \;	15;	53;			
	6	1	8	3	2	4	5	7
1	1	}	1	١	1		0	
2	1	1	1	1	0		3	
3	0	0	0	0	0	1		
4	0	0	1	0	1	0	1	1
5	1	0	0	0	0	0	1	i
6	0	1	0	0		0	0	1
,	2	4	5	5	7	8	3	6
							3	

An SCP w/ "no avercovering" restriction Table

		L
	2 3	E1
	2345678991	E3 E6
艺	7 8	E 8
	10	E2
	12 13 14	E4 E7
	15	E5

* Dominance test doesn't help in this problem.

because of harder constraint of not overlapping. Single branches us. branching at.

E8 = (1,4,6)

ascending order of elements/set

element (within # of set=)

1(5), 2(4), 3(1), 4(4), 5(3), 6(3) PEI ROCESSING

		sets	
new #		12345678	
1	3	00010000	
2	હ	00001110	
3	6	11000010	
4	2	10100101	
5	4	0 1 0 0 1 0 1 1	
6	1	11100101	v.
		47583265	

tableau

5	52	53	54	
4	65/	12	38	
/	, , ,			
0		, ,		
0	1			
0	100		0	
0		' '	14	
8	236	4 7	55	
	5 4 1 0 0 0 0 0 0 0 0 0 0	0 0 1 1	1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1	1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0

assending order of elements/sets from SPP restructured matrix

	5	6	5	,2		5	3	6	1	S 4	8	5	· 8	ร ^ร ์ 7	2	6	1	5	6	4		
1	/				Γ						-			<u> </u>								
2	0	1	1	1																		
3	0	0	0	1	1	- 1	1															
4	0	1	0	0	1	0	0	1	1	1	1											
5	0	0	1	1	0	1	1	0	Ó	0	1	1	1	1	1							
6	0000	1	0	0	1	0	1	1	ł	ı	1	0	1	0	1	1	1	1	1	1		
	8	l		Į			- 1															

