Title

Stress analysis of a cable net structure

Description

A cable net structure is subjected to vertical loads applied at every interior node. Determine the displacements of the nodes and member forces.

Structural geometry and analysis model

MODEL

Analysis Type

3-D geometrical nonlinear analysis

Unit System

ft, kips

Dimension

Length 60 ft (Projected)

Element

Truss element

Material

Modulus of elasticity $E = 3.6 \times 10^6 \text{ ksf (kips/ft}^2)$ Poisson's ratio v = 0.0

Sectional Property

Area: 0.01 ft²

Boundary Condition

Node 1~4, 8, 9, 13, 14, 18, 19, 23~26: Constrain all DOFs

Load Case

A concentrated load, P = 13.608 kips is applied at every interior node in -Z direction.

Results

X-displacements (δ_X)

Y-displacements (δ_{Y})

Z-displacements (δ_z)

Member forces

Comparison of Results

Unit: ft, kips

Results	Node	Ref.1 & Ref.2	Ref.3	MIDAS/Civil	
Displacement (δ_X)	15	-0.0225	-0.0226	-0.0226	
	16	0.0000	0.0000	0.0000	
	20	-0.0235	-0.0236	-0.0236	
	21	0.0000	0.0000	0.0000	
Displacement (δ_Y)	15	0.0073	0.0073	0.0073	
	16	0.0096	0.0096	0.0097	
	20	0.0273	0.0273	0.0273	
	21	0.0366	0.0367	0.0368	
	15	-0.234	-0.234	-0.234	
Dianla coment (S.)	16	-0.239	-0.240	-0.240	
Displacement (δ_Z)	20	-0.340	-0.340	-0.340	
	21	-0.351	-0.352	-0.352	

				Membe	r forces					
Element	3	4	7	8	22	23	24	27	28	29
Ref.1 & Ref.2	82.5	83.6	78.5	80.0	58.9	58.0	57.9	44.4	43.8	43.8
Ref.3	82.4	83.5	78.5	80.0	58.9	58.0	57.8	44.4	43.9	43.8
MIDAS/Civil	82.4	83.5	78.5	80.0	58.8	58.0	57.9	44.4	43.8	43.7

References

John W. Leonard, "Tension Structures", McGraw Hill Book Company, pp. 115-117, 1988

Lo, A, "Nonlinear Dynamic Analysis of Cable and Membrane structures", Ph. D. Dissertation, Oregon State University, 1981

Baron, F. and M.S. Vendatesan, "*Nonlinear Analysis of Cable and Truss Structures*", Journal of the Structural Division, ASCE, Vol. 97 pp. 679-710, 1971