Overview

This tutorial will focus on Logistic Regression

We will include some additional topics, including:

- Handling categorical attributes
- Logistic regression
- Training for maximum likelihood
- Evaluation of classification models

The lecture relies on the the following proficiencies and tools:

- Python programming
- Vector computations via the numpy module
- Data handling using the pandas module
- Plotting using <u>matplotlib</u>
- Training and using Machine Learning model via scikit-learn

You will need them only if you plan to handle these tasks yourself

Categorical Attributes

Let's switch to a different dataset (a toy one)

- We want to train a model to choose whether to go out and play
- ...Based on weather conditions

Loading the Data

The dataset is in the weather.csv file from the data folder

```
In [2]: !1s data
         lr test.txt lr train.txt real estate.csv weather.csv
In [3]: import pandas as pd
         data = pd.read csv('data/weather.csv', sep=',')
         data.head()
Out[3]:
            outlook temperature humidity windy play
                    85
                               85
                                        False
          0 sunny
                                            no
                               90
                    80
                                       True
          1 sunny
                                             no
                                       False yes
          2 overcast 83
                               86
          3 rainy
                    70
                               96
                                       False
                                             yes
          4 rainy
                    68
                               80
                                       False yes
```

- Several attributes do not have a numeric value
- Instead, their value is discrete with no clear ordering, i.e. categorical

We need a numeric encoding to handle this data with linear models

Encoding Binary Attributes

Binary attributes can be encoded with the values 0 and 1

This is the case for the columns "windy" and "play"

■ First, we tell pandas that the columns have a categorical type

- Categorical data is still displayed as a string
- ...But internally it is encoded as an integer

Encoding Binary Attributes

Next, we replace the values with their integer code

We will store the results in a copy of the original table

```
In [5]: data2 = data.copy() # We prepare a cop for the numeric encodings
         data2['windy'] = windy.cat.codes
         data2['play'] = play.cat.codes
         data2.head()
Out[5]:
            outlook temperature humidity windy play
          0 sunny
                    85
                               85
                                       0
                               90
          1 sunny
                    80
          2 overcast 83
                                      0
                               86
          3 rainy
                    70
                               96
                                      0
                    68
                                       0
          4 rainy
                               80
```

■ Now it is apparent that "windy" and "play" have become numbers

Encoding Discrete Attributes

We could use the same approach for discrete attribute in general

E.g. for the attribute "outlook" in our table

- That would yield a numeric integer encoding
- ...Which implies an ordering among the values (e.g. rainy < overcast < sunny)
- When no such ranking exists, this is a bad idea

In these cases, it is better to adopt a one-hot encoding

- lacksquare We introduce a column for each value v_k of the attribute xj
- lacksquare The column contains a 1 iff $x_j = v_k$, and 0 otherwise

For example, "sunny | sunny | overcast" becomes:

rainy	overcast	sunny
0	0	1
0	0	1
0	1	0

Encoding Discrete Attributes

We can obtain a one-hot encoding in pandas via the get_dummies method

- The method by default processes all columns with categorical or object type
- strings in csv files are often parsed as "object" columns
- In truth, get_dummies can also handle the special case of binary variables
- ...But I wanted to show you how to obtain an integer encoding, too :-)

Logistic Regression

Our goal is to predict the value of "play", i.e. a categorical attribute

We say that we are dealing with a classification problem and:

■ We compute the output of the linear model as usual:

$$g(x; w) = \sum_{j=1}^{\infty} w_j x_j + w_0$$

■ ...But then we feed it to a logistic function:

$$f(x; w) = \frac{1}{1 + e^{-g(x;w)}}$$

Logistic Regression

The logistic function is a type of sigmoid function

```
In [7]: import numpy as np
         from matplotlib import pyplot as plt
         x = np.linspace(-10, 10, 100)
        plt.figure(figsize=(9, 3))
         plt.plot(x, 1 / (1 + np.exp(-x)))
         plt.grid(':')
          1.0
          0.8
          0.6
          0.4
          0.2
             -10.0
                   -7.5
                        -5.0
                                        2.5
                                              5.0
```

■ Due to its use, this approach is known as logistic regression

Logistic Regression

Why using the logistic function?

- We can view the model output as a probability distribution
- Specifically, as the probability of the class being "1"

With this convention, the target can also be interpreted as a probability

We view:

- $y_i = 0$ as "the probability of the class being 1 is equal to 0"
- $y_i = 1$ as "the probability of the class being 1 is equal to 1"

Likelihood Function

We now pretend that our model f(x; w) is the source of our data

E.g. if f(x; w) = 0.7

- We will generate a 1 with 70% chance
- We will generate a 0 with 30% chance

Why is this interesting?

Now we can measure the chance that the model makes the right guess:

- When we have $y_i = 1$, i.e. the label is 1
 - We will guess right with a f(x; w) probability, wrong with 1 f(x; w)
- When we have $y_i = 0$, i.e. the label is 0
 - We will guess right with a 1 f(x; w) probability, wrong with f(x; w)

Likelihood Function

In summary

- When we have $y_i = 1$, we want f(x; w) to be high
- When we have $y_i = 0$, we want f(x; w) to be low

If we repeat for all examples (assuming statistical independence)...

We get the the probability of generating our data.

Likelihood Function

We both classes, we take yet another product

$$L(w) = \prod_{y_i=1} f(x_i; w) \prod_{y_i=0} (1 - f(x_i; w))$$

- The is sort of a probability, but is associated to our model, not to the data itself
- \blacksquare ...And it also depends on the parameters w

To make the distinction clearer, we call it a likelihood function

We want to train a model that is a likely source for our data

This means that we can choose the weights by solving:

$$\operatorname{argmax}_{w} \log L(w)$$

- I.e. to maximize the likelihood of the data
- This often done via Gradient Descent

Maximum Likelihood Estimation

MLE is very important in many Machine Learning approaches

- It provides a mathematical foundation for the training process
- It applies to linear regression, too!
- ...Since the MSE can be interpreted in terms of likelihood

It even works when targets/labels are absent

■ I.e. for unsupervised learning scenarios

Using Logistic Regression

Using Logistic Regression in scikit-learn is actually easy

We begin by splitting input/output data as usual:

```
In [9]: cols_in = [c for c in data2.columns if c != 'play']

X = data2[cols_in]
y = data2['play']
y.head() # We have a table here, but a vector would also work

Out[9]: 0      0
1      0
2      1
3      1
4      1
Name: play, dtype: int8
```

Then the training and test set:

```
In [10]: from sklearn.model_selection import train_test_split
X_tr, X_ts, y_tr, y_ts = train_test_split(X, y, test_size=0.34, random_state=0)
```

Using Logistic Regression

Then, we build a LogisticRegression model

```
In [11]: from sklearn.linear_model import LogisticRegression

m = LogisticRegression()
```

...And we call the fit method as usual:

```
In [12]: m.fit(X_tr, y_tr);
```

Finally, we can obtain out predictions:

```
In [13]: y_pred_tr = m.predict(X_tr)
y_pred_ts = m.predict(X_ts)
```

A Better Look at the Predictions

By default, the prediction is the class with the largest probability

```
In [14]: y_pred_tr
Out[14]: array([0, 1, 0, 0, 1, 0, 0, 1, 1], dtype=int8)
```

- If we are interested in the raw probability values...
- ...We can call the predict proba method:

- Scikit-learn gives us the predicted probability of both classes
- Hence, we get two separate columns

We can evaluate the results using metrics

There are four basic metrics for binary classification:

- Number of True Positives, i.e. $TP = \sum_{y_i=1} \tilde{f}(x_i; w)$
- Number of True Negatives, i.e. $TN = \sum_{y_i=0} (1 \tilde{f}(x_i; w))$
- Number of False Positives, i.e. $FP = \sum_{y_i=0} \tilde{f}(x_i; w)$
- Number of False Negatives, i.e. $FN = \sum_{y_i=1} (1 \tilde{f}(x_i; w))$

In all cases $ilde{f}(x_i;w)$ is the most probable class for the example x_i

From these we can derive a few more complex metrics

The model (binary) accuracy is defined as:

$$ACC = \frac{TP + TN}{m}$$

- I.e. the fraction of examples that is correctly classified
- \blacksquare The accuracy ranges over the interval [0, 1]

...Or we can plot all basic metrics via a confusion matrix

Here's the one for the training set:

```
In [17]: from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(m, X_tr, y_tr, display_labels=play.cat.categories, cmap='Blues');
```

...Or we can plot all basic metrics via a confusion matrix

...And here for the test set:

Conclusions and Take-Home Messages