Protocols

- Protocols are formal rules of behaviour and specify the "HOW"
- The Tasks of a Protocol are:
 - Addressing of Communication Endpoints
 - Management of Data Flow
 - Provision of a secure Data Transmission Service
- Example: PPP (Point-to-Point Protocol, Data Access via Modem)

-> Serial/Parallel Communication

Services

- Services are Groups of Operations and specify the "WHAT"
- Can be connectionless (e.g., like "snail mail")
- Can be connection-oriented (e.g., like a phone call)
- Example: WWW (World Wide Web)

Layer Model

© Prof. Dr. Holger D. Hofmann, - 21

Layer Data

© Prof. Dr. Holger D. Hofmann, - 22 -

Layer-based Inter-Computer Communication

OSI Reference Model

- The OSI Reference Model is a "reference guide" for understanding network functionality.
- Each of the 7 layers (numbered from bottom to top) represents one step in the process of sending data packets from a source to a destination.

The Postal Analogy

How would the OSI compare to the regular Post Office

Application

A- Write a 20 page letter to a foreign country.

Presentation

P- Translate the letter so the receiver can read it.

S- Insure the intended recipient can receive letter.

Session

■ **T-** Separate and number pages. Like registered mail, tracks delivery and requests another package if one is "lost" or "damaged" in the mail.

Transport

N- Postal Center sorting letters by zip code to route them closer to destination.

Network

■ **D-** Local Post Office determining which vehicles to deliver letters.

Data-Link

■ P- Physical Trucks, Planes, Rail, autos, etc which carry letter between stations.

Physical

"All People Seem To Need Data Processing"

Internet Protocol Suite

- 5. Application Layer
 - DHCP · DNS · FTP · Gopher · HTTP · IMAP4 · IRC · NNTP · POP3 · SIP · SMTP · SNMP · SSH · TELNET · RPC · SOAP · NTP · ...
- 4. Transport Layer
 - TCP · UDP · ...
- 3. Network/Internet Layer
 - IP (IPv4 IPv6) IPsec ARP RARP ...
- 2. Data Link Layer
 - 802.11 (WLAN) (Wi-Fi) WiMAX ATM Token ring EthernetFDDI GPRS PPP ISDN ...
- 1. Physical Layer
 - Ethernet physical layer Modems Optical fiber Coaxial cable Twisted pair · ...

WiFi is secure, but...

Is Wifi still secure?

WiFi is no longer a viable secure connection?

tinyurl.com/4sq5fn

- Wifi (WPA, WPA2) is said to be "secure"
- Max. Password Length: 63

Characters	
A-Z	26
a-z	26
0-9	10
äüö/\?!-&%\$"()=+#ß	18
Sum:	80

- Can only be attacked by "brute-force" attacks
- Russian Company ELMSOFT announces in 2008 "to break Wi-Fi encryption up to 100 times faster than by using CPU only" (tinyurl.com/4585wv)

Should be all return to cable-based networks?

The Approach of Wifi Hacking

- Logging of Network Traffic (esp. Authentication)
- Offline Brute-Force Attack (pot. dictionary-based)
- Max. Password Length: 63, Number of Characters: 80
 - -> 80^n permutations for a password of length n
- Dictionaries can speed-up the hacking... however
 - language-specific dictionaries are required ("Vogel", "Bird", "Uccello")
 - what about combination of words and numbers/spec. characters like
 - "Vogel0815", "Bird;!\$%&", ...

How long does it actually take?

-								
	Passwort Length	Permutations	100 PWs/sec (years)	1000 PWs/sec (years)	100.000 PWs/sec (years)	1 Mio. PWs/sec (years)	10 Mio. PWs/sec (years)	100 Mio. PWs/sec (years)
	1	80	 					
	2	6400	,	 	•		·	2,02943E-12
	3	512000	· '	 		1,62354E-08	•	,
	4	40960000	0,012988331	0,001298833	1,29883E-05	1,29883E-06	1,29883E-07	1,29883E-08
	5					0,000103907	1,03907E-05	1,03907E-06
	6	2,62144E+11	83,1253171	8,31253171	0,083125317	0,008312532	0,000831253	8,31253E-05
	7	2,09715E+13	6650,025368	665,0025368	6,650025368	0,665002537	0,066500254	0,006650025
	8	1,67772E+15	532002,0294	53200,20294	532,0020294	53,20020294	5,320020294	0,532002029
انـ	9	1,34218E+17	42560162,35	4256016,235	42560,16235	4256,016235	425,6016235	42,56016235
- 31	10	1,07374E+19	3404812988	340481298,8	3404812,988	340481,2988	34048,12988	3404,812988
inn,	20	1,15292E+38	3,65589E+28	3,65589E+27	3,65589E+25	3,65589E+24	3,65589E+23	3,65589E+22
Hofmann	30	1,23794E+57	3,92548E+47	3,92548E+46	3,92548E+44	3,92548E+43	3,92548E+42	3,92548E+41
	40		4,21495E+66				4,21495E+61	4,21495E+60
Dr. Holger D.	50	1,42725E+95	4,52577E+85	4,52577E+84	4,52577E+82	4,52577E+81	4,52577E+80	4,52577E+79
olge	60	1,5325E+114	4,8595E+104	4,8595E+103	4,8595E+101	4,8595E+100	4,8595E+99	4,85951E+98
Ĭ	63	7,8464E+119	•		2,4881E+107	2,4881E+106	2,4881E+105	2,4881E+104
\Box				Coro2 Duoi	1 000 PWc	1000		

Core2 Duo: ~1.000 PWs/sec.

-> 100 times faster: 100.000 PWs/sec.

-> 100 PCs: 10 Mio. PWs/sec

Exercise 1.2

© Prof. Dr. Holger D. Hofmann, - 3

IP Addressing

- Goal: Unambiguous addressing of hosts
- Addressing (within the 4 layers) via:
 - Network Address (e.g., Ethernet Address)
 - Internet Address
 - Transport Protocol Address
 - Port Number
- Example: 192.168.1.5:8080

IP Address

Port Number

IP Addresses

- Numerical Address associated with a network device
- Can be 32-bit number ("original TCP/IP adressing", IPv4) or 128-bit number (IPv6, RFC 1883)
 - IPv4: 2³² addresses = 4.294.967.296
 - IPv6: 2^{128} addresses = 3,4 * 10^{38}

An IPv4 address (dotted-decimal notation)

Classful Networks

Introduced in 1981 with IP protocol

Range of first octet

0 - 127

128 - 191

192 - 223

First Byte (octet) defines network number, rest defines hosts

Network ID Host ID

a.b

la.b.c

b.c.d

c.d

Possible number of networks	Possible number of hosts
$128 = 2^7$	$16,777,214 = (2^{24} - 2)$
$16,384 = 2^{14}$	$65,534 = (2^{16} - 2)$

Source: en.wikipedia.org

254 = (28 - 2)

However, classful networks turned out to be not flexible enough for the Internet

 $2,097,152 = 2^{21}$

Class

Α

В

First octet in binary

0XXXXXX

10XXXXXX

110XXXXX

Classless Inter-Domain Routing

- Classless Inter-Domain Routing (CIDR)
- Published in 1993 by IETF (RFC 1518, RFC 1519) to cope with problems of classful networks
- Introduced variable-length subnet masking (VLSM)
 - Address is specified with the number of bits indicating network number, e.g., 192.168.1.253/16

Private Internets

- Internet Assigned Numbers Authority (IANA) reserved three blocks for "private Internets" [RFC 1918]:
 - 10.0.0.0 10.255.255.255 (10/8 prefix)
 - 172.16.0.0 172.31.255.255 (172.16/12 prefix)
 - 192.168.0.0 192.168.255.255(192.168/16 prefix)
- Hint: Have a look at your Windows TCP/IP Settings

gemein	
P-Einstellungen können automatisch zu letzwerk diese Funktion unterstützt. W en Netzwerkadministrator, um die geei eziehen.	enden Sie sich andernfalls an
◯ I <u>P</u> -Adresse automatisch beziehen	
● Folgende IP-Adresse verwenden:	
<u>I</u> P-Adresse:	192 . 168 . 1 . 250
S <u>u</u> bnetzmaske:	255 . 255 . 255 . 0
Standardgateway:	192 . 168 . 1 . 253
 DNS-Serveradresse automatisch b Folgende DNS-Serveradressen ve Bevorzugter DNS-Server: Alternativer DNS-Server:	
Ajternativer DNO-Server.	

How to get an IP Address

- Bootstrap Protocol (Bootp)
 - used by diskless devices
 - IP Adresses are statically assigned to hosts
- Dynamic Host Configuration Protocol (DHCP)
 - "dynamic bootp"
 - dynamic assignment of IP address range to hosts
 - Time-based assignment ("lease time")

What are Ports?

- Ports are conceptual "points of entry" into a host computer.
- They do not correspond with real hardware.
- Usually a service is associated with a port (e.g. http on port 80).
- Servers "listen on a port" for connection attempts.
- Ports provide one level of Internet security.
- Generally, low level ports are reserved for special services.

-> Firewall

TCP Ports

- Adressing of Applications
- Defined Port Numbers:

<u>ftp</u>	21/tcp File Transfer [Control]
telnet	23/tcp Telnet
<u>smtp</u>	25/tcp Simple Mail Transfer
<u>smtp</u>	24/tcp any private mail system
<u>time</u>	37/tcp Time
<u>time</u>	37/udp Time
<u>rap</u>	38/tcp Route Access Protocol
rap	38/udp Route Access Protocol
nicname	43/tcp Who Is
<u>login</u>	49/tcp Login Host Protocol
xns-time	52/tcp XNS Time Protocol
<u>dns</u>	53/tcp Domain Name Server
sql*net	66/tcp Oracle SQL*NET
bootpc 6	88/udp Bootstrap Protocol Client
tftp 6	69/udp Trivial File Transfer
gopher	70/tcp Gopher

```
80/tcp World Wide Web HTTP
http
          110/tcp Mail abholen
pop
          119/tcp Network News
nntp
          Transfer Protocol
          143/tcp Interactive Mail
imap2
          Access Protocol v2
          443/tcp https MCom
https
microsoft-ds 445/udp Microsoft-DS
login 513/tcp remote login a la telnet
     6665-6669/tcp chatting
irc
```

Exercise 1.3