

Mathematics Project

Title: Laws of logic

Abstract:

Implementation of any propositions using laws of

logic.

What is logic?

- A science that deals with the principles and criteria of validity of inference and demonstration
- In simple way a proper or reasonable way of thinking about something
- It helps us to understand reasoning behind issues which could be applied in other issues as well

Laws of logic

- Laws of logic are the Basic laws of Propositional Logic
- Fundamentally there are three laws of logic
 - a. The law of contradiction: not(a and not a)
 - b. The principle of identity: a is a
 - c. The law of excluded middle: either "a" or not "a"

Problem Definition:

For any propostion p&q using laws of logic evaluate

a.
$$P \cup [P \cap (P \cup Q)]$$

b.
$$[(P \cup Q) \cap (P \cup \sim Q)] \cup Q$$

c.
$$(P \cup Q) \cap (\sim P)$$

$$d.(P \cup Q) \cap \sim (\sim P \cap Q)$$

TABLE 6 Logical Equivalences.			
Equivalence	Name		
$p \wedge \mathbf{T} \equiv p$	Identity laws		
$p \vee \mathbf{F} \equiv p$			
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws		
$p \wedge \mathbf{F} \equiv \mathbf{F}$			
$p \lor p \equiv p$	Idempotent laws		
$p \wedge p \equiv p$			
$\neg(\neg p) \equiv p$	Double negation law		
$p \lor q \equiv q \lor p$	Commutative laws		
$p \wedge q \equiv q \wedge p$			
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws		
$(p \land q) \land r \equiv p \land (q \land r)$			
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws		
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$			
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws		
$\neg (p \lor q) \equiv \neg p \land \neg q$			
$p \lor (p \land q) \equiv p$	Absorption laws		
$p \wedge (p \vee q) \equiv p$			
$p \vee \neg p \equiv \mathbf{T}$	Negation laws		
$p \wedge \neg p \equiv \mathbf{F}$			

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Solutions:

	9 V P V P Q V P P P P P P P P P P P P P P	PV9)]	Absortion (Propose) By Idemp PyP=	law J=P otent laws
0 0 1	0 1	PV9V 0 1 1	PN (PV9) 0 1 1	PV (PN (PVV)) O I I
2>	[PV(9) \ (PV~9)] \ V \ By Dieste buther [PV(9) \ ~ v)] \ V \ By Dieste buther [PV9] By Inverse law By Identity law			
	0 0 1	0 1 0 1	P V 9V 0 1	

3	(NPA)	N(NP) N(PV9) N(NP) V(NP) VPN9	(P) Di	monulative law in the
	P 0 0 1 1	9 ~P ~ 0 1 1 1 0 0	0 1 0	
4	(PVa)	9/1~9)	~ 4) B	y negation law Distributive law Inverse law endo by law.
	0 0 1	0	000	

Program Source Code to generate user input

```
def fun1():
    print("1.Full table 2.Particular value:")
    c=int(input())
    if(c==1):
        print("p\t q\t Result\n")
         for p in range(0_{L}2):
             for q in range(0_{L}2):
                 r = p | (p & (p | q))
                 print(p<sub>L</sub>end="\t")
                 print(q<sub>L</sub>end="\t")
                 print(r)
    else:
        print("Enter the value of p and q")
        p=int(input())
        q=int(input())
        r=(p | (p & (p | q)))
        print("Result:"_end="\t")
        print(r)
```

```
def fun2():
    print("1.Full table 2.Particular value:")
    c=int(input())
    if(c==1):
        print("p\t q\t Result\n")
        for p in range (0,2):
             for q in range(0_{L}2):
                 r=((p | q) & (p | \sim q)) | q
                 print(p_end="\t")
                 print(q_end="\t")
                 print(r)
    else:
        print("Enter the value of p and q")
        p=int(input())
        q=int(input())
        r=((p | q) & (p | \sim q)) | q
        print("Result:", end="\t")
        print(r)
```

```
def fun3():
    print("1.Full table 2.Particular value:")
    c=int(input())
    if(c==1):
        print("p\t q\t Result\n")
        for p in range(0_{L}2):
            for q in range(0_{\star}2):
                r=((p | q) & (\sim p))
                 print(p_end="\t")
                 print(q_end="\t")
                 print(r)
    else:
        print("Enter the value of p and q")
        p=int(input())
        q=int(input())
        r=((p | q) & (\sim p))
        print("Result:", end="\t")
        print(r)
```

```
def fun4():
    print("1.Full table 2.Particular value:")
    c=int(input())
    if(c==1):
        print("p\t q\t Result\n")
        for p in range(0,2):
            for q in range(0,2):
                r=(p | q) & \sim (\sim p & q)
                print(p_end="\t")
                print(q_end="\t")
                print(r)
    else:
        print("Enter the value of p and q")
        p=int(input())
        q=int(input())
        r=(p | q) & \sim (\sim p & q)
        print("Result:", end="\t")
        print(r)
```

```
def main():
   while True:
       print("Enter 1.Function1 2.Function2 3.Function3 4.Function4 5.Exit:")
       c = int(input("Enter your choice:"))
       if c == 1:
           fun1()
       elif c == 2:
           fun2()
       elif c == 3:
           fun3()
       elif c == 4:
           fun4()
       else:
           break
if __name__=='__main__':
   main()
```

Output:

```
"C:\Users\Sanket Patil\New folder\python.exe" "C:/Users/Sanket Patil/PycharmProjects/pythonProje/Maths.py"
Enter 1.Function1 2.Function2 3.Function3 4.Function4 5.Exit:
Enter your choice:
1.Full table 2.Particular value:
     q Result
    0
Enter 1.Function1 2.Function2 3.Function3 4.Function4 5.Exit:
Enter your choice:
1.Full table 2.Particular value:
     q Result
```

```
Enter 1.Function1 2.Function2 3.Function3 4.Function4 5.Exit:
Enter your choice:3
1.Full table 2.Particular value:
    q Result
   0
       0
   1 1
   0
Enter 1.Function1 2.Function2 3.Function3 4.Function4 5.Exit:
Enter your choice:4
1.Full table 2.Particular value:
    q Result
   0
       0
   1
       0
   0
```

```
Enter 1.Function1 2.Function2 3.Function3 4.Function4 5.Exit:
Enter your choice:1
1.Full table 2.Particular value:
Enter the value of p and q
Result: 1
Enter 1.Function1 2.Function2 3.Function3 4.Function4 5.Exit:
Enter your choice:2
1.Full table 2.Particular value:
Enter the value of p and q
Result: 1
Enter 1.Function1 2.Function2 3.Function3 4.Function4 5.Exit:
Enter your choice:5
Process finished with exit code 0
```

THANK U

Presented By:
Shambhavi Shirgurkar
Sanat K S
Sanket Patil
Sahana Tavari