PSAF- Feuille d'exercices 1

Exercice 1.

1) Soit E un ensemble et $(\mathcal{E}_i)_{i\in I}$ une famille de tribus de parties de E (l'ensemble d'indices I peut être fini, infini dénombrable ou même infini non dénombrable, et pour tout $i \in I$ le sous-ensemble \mathcal{E}_i de $\mathcal{P}(E)$ est une tribu).

Montrer que

$$\bigcap_{i\in I}\mathcal{E}_i$$

est une tribu.

2) Soit \mathcal{C} un sous-ensemble quelconque de $\mathcal{P}(E)$ (en particulier \mathcal{C} n'est pas nécessairement une tribu). Se servir de 1) pour montrer qu'il existe une plus petite tribu qui contient \mathcal{C} (celle qu'on a noté $\sigma(\mathcal{C})$ dans le cours, on est donc en train de justifier son existence).

Exercice 2. (mesure de Dirac)

Soit l'espace mesurable $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et $x_0 \in \mathbb{R}$. On définit l'application $\delta_{x_0} : \mathcal{B}(\mathbb{R}) \to \{0, 1\}$ par

$$\forall A \in \mathcal{B}(\mathbb{R}), \quad \delta_{x_0}(A) = \left\{ \begin{array}{ll} 1 & \mathrm{si} & x_0 \in A \\ 0 & \mathrm{si} & x_0 \notin A. \end{array} \right.$$

- 1) Montrer que δ_{x_0} est une mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Est-ce une mesure de probabilités?
- 2) Montrer que pour toute fonction $f: \mathbb{R} \to [0, +\infty]$ borélienne positive on a

$$\int_{\mathbb{R}} f d\delta_{x_0} = f(x_0).$$

Indication: on pourra s'aider du résultat suivant.

Lemme 1 Si $f: \mathbb{R} \to [0, +\infty]$ est borélienne elle est limite simple d'une suite croissante (f_n) de fonctions étagées à valeur dans $[0, \infty)$.

Exercice 3. Soit (E, \mathcal{E}, μ) un espace mesuré. Montrer que pour $f : E \to [0, +\infty]$ mesurable on a $\int_E f d\mu = 0$ si et seulement si f(x) = 0 p.p. (point 2) de la Proposition 1.2.1 du cours).

Indication: Pour la condition nécessaire on pourra utiliser le fait que

$${x \in E : f(x) > 0} = \bigcup_{n \in \mathbb{N}^*} {x \in E : f(x) \ge \frac{1}{n}}.$$

1