专题练习 1

填空题:

- 1. 已知全集 $U = \{1, 2, 3, 4, 5\}$,集合 $M = \{1, 2\}, N = \{3, 4\}$,则 $\overline{M \cup N} = \{5\}$ 解析 根据并集的运算可知 $M \cup N = \{1, 2, 3, 4\}$, 故其补集 $\overline{M \cup N} = \{5\}$ 注: 看清楚运算符号!
- 2. 设集合 $A = \{1, 4, x\}, B = \{1, x^2\}, 且 A \cap B = B, 则 x = 0或 2或2$ 解析 首先对条件进行转换, $A \cap B = B$ 即 $B \subseteq A$, 根据集合中元素的无序性可知需要进行分类 讨论。
 - (1) $x^2 = x$ 此时对应于 x = 0或1, 但是经过检验发现 x = 1 使得集合中元素违背互异性。
 - (2) $x^2 = 4$ 此时对应于 x = 2或 -2,均不违背互异性。

综上, x = 0或 - 2或 2

3. 设集合 $A = \{1, 2, m\}$, 其中 m 为实数, 令 $B = \{a^2 | a \in A\}$, $C = A \cup B$ 。若 C 中所有元素之和为 6,则 C 中所有元素之积为 -8

解析 $B = \{1, 4, m^2\}$,则在**不违背互异性的前提下**有 $C = \{1, 2, 4, m, m^2\}$ 。根据 C 中元素和为 6, 而 1+2+4>6,又因为 $m^2+m>-1$ 恒成立,故应有 m<0 且 $m^2\in\{1,2,4\}$ 。故可知 m=-1, $C = \{1, 2, 4, -1\}$, 因此 C 中所有元素之积为-8.

4. 已知集合 $A = \{a | x = \frac{383a^2 + a}{2a + 1}, x \in \mathbf{Z}, a \in \mathbf{Z}\}, A$ 中最大的元素为___190___

解析 由于 $\frac{383a^2+a}{2a+1}$ 为二次比一次的形式,因此应考虑利用多项式除法来分离。为了方便运算,应考虑进行换元。

令 t=2a+1,因此 t 应为奇数, $a=\frac{t-1}{2}$ 。故 $\frac{383a^2+a}{2a+1}=\frac{383(\frac{t-1}{2})^2+(\frac{t-1}{2})}{t}=\frac{1}{4}[\frac{383(t-1)^2+2(t-1)}{t}]=\frac{1}{4}[\frac{383t^2-764t+381}{t}]=\frac{1}{4}[383t+\frac{381}{t}]-191$ 易知可以先检验 t=381,此时原式为整数,而当 t>381 易知原式不是整数,因此 t 最大值为 381, 此时对应于 a = 190

- 5. 若集合 $A = \{x | (a-1)x^2 + 3x 2 = 0\}$ 仅有一个真子集,实数 a = 1或 $-\frac{1}{6}$ 解析 由于只有一个真子集,故集合中只有一个元素。因为二次项系数有参数 a,所以需要分类讨 论
 - (1) a=1,此时方程退化回一次方程,只有一个实根,满足题意
 - (2) $a \neq 1$, 此时方程为二次方程, 若只有一个实根, 则判别式为 0, 即 9+8(a-1)=0, 得 $a=-\frac{1}{8}$
- 6. 已知集合 $A = \{y | x^2 + mx y + 2 = 0, x \in R\}, B = \{y | x + y + 1 = 0, 0 \le x \le 1\}, 苦 A \cap B \ne \emptyset,$ m 的取值范围是 $(-\infty, -2\sqrt{3}] \cup [2\sqrt{3}, +\infty)$.

解析 首先可以判断出来 $B = \begin{bmatrix} -2, -1 \end{bmatrix}$, 而 A 是函数 $y = x^2 + mx + 2$ 的函数值的取值范围。由 于函数 $y = x^2 + mx + 2$ 的开口向上, 欲使 $A \cap B \neq \emptyset$, 则应有其函数值最小值小于等于-1。即 $\frac{m^2}{4} - \frac{m^2}{2} + 2 \le -1$, 解得 $m \in (-\infty, -2\sqrt{3}] \cup [2\sqrt{3}, +\infty)$

1

7. 已知集合 $A = \{x|\frac{x-2}{x+1} < 0\}, \ x \in A$ 的一个必要条件是 $x \geqslant a$,则实数 a 的取值范围是 $\underline{a \leqslant -1}$ 解析 A = (-1,2),故 $a \leqslant -1$

注: 小范围可以推出大范围

- 8. 已知 $x \in \mathbb{R}$, " $(x-2)(x-3) \le 0$ "是"|x-2| + |x-3| = 1 成立"的<u>元要</u>条件. 解析 $(x-2)(x-3) \le 0$ 解集为 [2,3] |x-2| + |x-3| = 1 解集为 [2,3] (平底锅函数,三角不等式)
- 9. " $x + y \neq 3$ " 是 " $x \neq 1$ 或 $y \neq 2$ " 成立的<u>充分非必要</u>条件. 解析 " $x + y \neq 3$ " 对应了平面上除了直线 x + y = 3 的区域 " $x \neq 1$ 或 $y \neq 2$ " 对应了平面上除了点 (1,2) 的区域
- 10. " $x + y \neq 5$ " 是 " $x \neq 2 \exists y \neq 3$ " 成立的<u>既非充分也非必要</u>条件. 解析 " $x + y \neq 5$ " 对应了平面上除了直线 x + y = 5 的区域 " $x \neq 2 \exists y \neq 3$ " 对应了平面上除了直线 x = 2 和直线 y = 3 的区域
- 12. 不等式 $\frac{x+5}{x^2+2x+5} \ge 1$ 的解集为_[-1,0]

解析 因为 $x^2+2x+5>0$ 恒成立,因此可以转化为 $x+5\geqslant x^2+2x+5$,解集为 [-1,0] 注: 先判断分母是否恒正或者恒负,再考虑移项通分.

- 13. 不等式 $\frac{x^2(x+2)(x^2-x+1)}{x^2-5x+4} > 0$ 的解集为 $(-2,0) \cup (0,1) \cup (4,+\infty)$ 解析 注: 穿针引线法求解,奇穿偶回,**偶次方根绝对不能丢弃,且易出错**.
- 14. 定义区间 (c,d),[c,d),(c,d],[c,d] 的长度均为 d-c(d>c)。已知实数 a>b,则满足 $\frac{1}{x-a}+\frac{2}{x-b}\geqslant 3$ 的 x 构成的区间长度之和为____1

解析 首先通分有 $\frac{3x-2a-b}{(x-a)(x-b)} \geqslant 3$, 易知移项通分运算量很大。因此考虑分类讨论乘分母

- (1) x > a 或 x < b 此时不等式可以转化为 $3x 2a b \ge 3(x b)(x a)$
- (2) a > x > b此时不等式可以转化为 $3x - 2a - b \le 3(x - b)(x - a)$

绘制 y = 3(x-b)(x-a) 和 y = 3x-2a-b 的草图可知不等式的解集为 $(b,x_1) \cup (a,x_2)$,其中 x_1,x_2 是方程 3(x-b)(x-a) = 3x-2a-b 的两根。根据韦达定理可知解集的区间长度和为 $x_1+x_2-a-b=1$

注: 本题也可以通过绘制 $y = \frac{1}{x-a} + \frac{2}{x-b}$ 的草图,分析其单调区间,值域来解决。本质是一样的。

- 15. 若 a < b,且 $a < \frac{1}{x^2 3x + 2} < b$ 的解集为 Ø,则 b a 的最大值为____4

 解析 $\frac{1}{x^2 3x + 2} \in (-\infty, -4] \cup (0, +\infty)$,故 b a 取最大值的时候为 b = 0, a = -4
- 16. |x+1| < 3-2x 的解集是 $(-\infty, \frac{2}{3})$

解析 解集为 $(-\infty, \frac{2}{3})$

注: 1. |f(x)| > g(x) 的充要条件是 f(x) > g(x) 或 f(x) < -g(x) 2. |f(x)| < g(x) 的充要条件是

-g(x) < f(x) < g(x)

注: **此处绝对不能平方处理**,否则等价于 |x+1| < |3-2x| 会得到 $(-\infty, \frac{2}{3}) \cup (4, +\infty)$; 当不等式 两侧均含有绝对值时才适合平方去绝对值.

17. 若关于 x 的不等式 k|x| > |x-2| 恰有 4 个整数解,则实数 k 的取值范围是 $(\frac{3}{5}, \frac{2}{3}]$

解析 易知 x=0 不是不等式的解, 故 k|x|>|x-2| 进行参变分离, 同解变形 $k>|\frac{x-2}{x}|$, 即 $k>|1-\frac{2}{x}|$

由函数 $f(x) = |1 - \frac{2}{x}|$ 的图像可知整根的集合为 $\{2, 3, 4, 5\}$, 故 $f(5) < k \le f(6)$, 即 $k \in (\frac{3}{5}, \frac{2}{3}]$ 注: 解决整根问题的第一步往往是确认整根的集合

18. 已知关于 x 的不等式组 $\left\{ \begin{array}{ll} \frac{x-a}{x-1+a} < 0 \\ x+3a > 1 \end{array} \right.$ 的整数解恰有两个,则实数 a 的取值范围是___(1,2]___

解析 首先可以确定第一个不等式的解集为 (a,1-a) 或 (1-a,a), 因为 a 和 1-a 关于 $\frac{1}{2}$ 对称,因此 $\frac{1}{2}$ 必然在该不等式的解集中。而第二个不等式的解集为 $(1-3a,+\infty)$

- ① $\exists a \in [0,1]$, 则 (a,1-a) 或 (1-a,a) 没有整数解, 故整个不等式组的解集中也没有整数解.
- ② 若 a < 0, 则 a < 0 < 1 < 1 a < 1 3a, 则整个不等式组解集为空集.
- ③ 若 a > 1,则 1 3a < 1 a < 0 < 1 < a 整个不等式组的解集为 (1 a, a),此时解集中必有两个整数解 0, 1,故当 $a \in (1, 2]$ 时,满足要求.

综上, $a \in (1,2]$

注: 本题画数轴可以更方便分析, 本题判断出 a 和 1-a 关于 $\frac{1}{2}$ 对称后可以猜测到两个整根是 0 和 1.

19. 已知不等式组 $\left\{\begin{array}{ll} x^2-x+a-a^2<0\\ x+2a>1 \end{array}\right.$ 的整数解恰好有两个,a 的取值范围是___(1,2]__

解析 设函数 $f(x)=x^2-x$,则第一个不等式即 f(x)< f(a),根据函数的性质可知不等式即 $|x-\frac{1}{2}|<|a-\frac{1}{2}|$,故 $\frac{1}{2}-|a-\frac{1}{2}|< x<\frac{1}{2}+|a-\frac{1}{2}|$,故第一个不等式解集为 (1-a,a) 或 (a,1-a),第二个不等式解集为 $(1-2a,+\infty)$

- ① $a \in [0,1]$, 此时第一个不等式中不含有两个整数解,不符合要求.
- ② a < 0,第一个不等式解集为 (a, 1 a),而 1 a < 1 2a,故不等式组解集为空集,不符合要求.
- ③ a > 1, 第一个不等式解集为 (1 a, a), 故不等式解集为 (1 a, a), 当 $a \in (1, 2]$ 满足要求.
- 20. 若不等式 $x^2 + px > 4x + p 3$,当 $0 \le p \le 4$ 时恒成立,则 x 的取值范围是___($-\infty$, -1) \cup (3, $+\infty$) 解析
 - (1) 方法 1: 看做是关于 p 的一元一次不等式求解

不等式移项得到 $x^2 - 4x + 3 > (1 - x)p$ 。

因式分解有 (x-1)(x-3) > -p(x-1)

下面根据 x 的取值范围进行分类讨论:

- ① x > 1, 不等式转化为 x 3 > -p, 故 $x \in (3, +\infty)$
- ② x = 1,这种情况不成立
- ③ x < 1,不等式转化为 x 3 < -p,故 $x \in (-\infty, -1)$

综上, 当 $x \in (-\infty, -1) \cup (3, +\infty)$ 时不等式恒成立。

(2) 方法 2: 看做是关于 x 的一元二次不等式求解 不等式移项得到 $x^2 + (p-4)x + (3-p) > 0$ 。即 (x-(3-p))(x-1) > 0 因此根据两解可以写出不等式的解集为 $\begin{cases} (-\infty, 3-p) \cup (1, +\infty) & 4 \geqslant p \geqslant 2 \\ (-\infty, 1) \cup (3-p, +\infty) & 0 \leqslant p < 2 \end{cases}$ 要使得不等式在 p 取到 [0,4] 内任意值时成立,则应取所有 p 所对应的解集的交集,故当 $x \in (-\infty, -1) \cup (3, +\infty)$ 时不等式恒成立。

注: 通过对比可知以 p 为主元更容易理解和推广。

解答题:

1. 已知集合 $A = \{(x,y)|x^2 + mx - y + 2 = 0, x \in R\}$, $B = \{(x,y)|x + y + 1 = 0, 0 \le x \le 1\}$, 若 $A \cap B \ne \emptyset$, 求 m 的取值范围.

解析 根据题意,两集合交集非空代表两段函数的图像有交点,即方程 $x^2 + (m+1)x + 3 = 0$ 在 [0,1] 内有根,因为 x = 0 并非原方程的根,故可等价于方程 $-(m+1) = x + \frac{3}{x}$ 在 (0,1] 内有根 $y = x + \frac{3}{x}$ 在 (0,1] 内单调减,故 $-(m+1) \in [4,+\infty)$,故 $m \in (-\infty,-5]$

2. 集合 $A = \{x|x^2 - 8x + 12 = 0\}, B = \{x|ax + 1 = 0\}, 且 A \cup B = A, 求 a 的取值范围.$

解析 $A \cup B = A$ 即 $B \subseteq A$

① a=0, 此时 $B=\varnothing$, 满足要求.

② $a \neq 0$,此时 $B = \{-\frac{1}{a}\}$,因为 $A = \{2,6\}$,若 $B \subseteq A$,则 $-\frac{1}{a} \in A$,因此 $a = -\frac{1}{2}$ 或 $-\frac{1}{6}$ 综上 $a \in \{0,-\frac{1}{2},\frac{1}{a}\}$

3. 对任意实数 x,不等式 $2kx^2 + kx - 3 < 0$ 恒成立,求实数 k 的取值范围.

解析 当 k=0 时,不等式成立。

当 $k \neq 0$,从二次函数的角度看一元二次不等式,要使得不等式恒成立,则应有函数开口向下,即 k < 0,并且有 $\Delta = k^2 + 24k < 0$,因此 $k \in (-24,0)$ 。 综上, $k \in (-24,0]$

4. 若关于 x 的不等式 $ax + 6 + |x^2 - ax - 6| \ge 4$ 恒成立,求实数 a 的取值范围.

解析 原不等式转化为 $|x^2-ax-6| \ge -2-ax$ 恒成立, 即 $x^2-ax-6 \ge -2-ax$ 与 $x^2-ax-6 \le 2+ax$ 解集的并集为 \mathbf{R}

前者解集为 $(-\infty, -2] \cup [2, +\infty)$,后者解集为 $[a - \sqrt{a^2 + 8}, a + \sqrt{a^2 + 8}]$,故 $(-2, 2) \subseteq [a - \sqrt{a^2 + 8}, a + \sqrt{a^2 + 8}]$,因此 $a \in [-1, 1]$

5. 关于实数 x 的不等式 $\left|x - \frac{(a+1)^2}{2}\right| \le \frac{(a-1)^2}{2}$ 与 $|x - a - 1| \le a$ 的解集依次是 A, B,求使得 $A \subseteq B$ 的 a 的取值范围.

解析 $\left|x-\frac{(a+1)^2}{2}\right| \leqslant \frac{(a-1)^2}{2}$ 即 $-\frac{(a-1)^2}{2} \leqslant x-\frac{(a+1)^2}{2} \leqslant \frac{(a-1)^2}{2}$,即 $2a \leqslant x \leqslant a^2+1$ $|x-a-1| \leqslant a$ 即 $-a \leqslant x-a-1 \leqslant a$,即 $1 \leqslant x \leqslant 2a+1$ 由于 $a^2+1 \geqslant 2a$ 恒成立,所以 A 必不为空集,故 $A \subseteq B$ 即 $1 \leqslant 2a, a^2+1 \leqslant 2a+1$,解得 $a \in [\frac{1}{2}, 2]$

6. 已知函数 f(x) = |x-2| + |x-a|,若对于任意的 $x \in [1,2]$, $f(x) \ge |x-4|$ 恒成立,求实数 a 的范围.

解析 当 $x \in [1,2]$, $f(x) \ge |x-4|$ 即 $2-x+|x-a| \ge 4-x$, 整理得 $|x-a| \ge 2$, 由绝对值的几何意义可知 $a \in (-\infty,-1] \cup [4,+\infty)$

注: 有自变量的具体范围的时候,可以先看一下绝对值是否可以直接去掉.

- 7. 已知关于 x 的不等式 $x^2 + 9 + |x^2 3x| \ge kx$ (*)
 - (1) 若 (*) 在区间 [1,5] 上恒成立,求实数 k 的取值范围.
 - (2) 若 (*) 在区间 [1,5] 上有解, 求实数 k 的取值范围.

解析 当 $x \in [1,5]$ 时,原不等式可以转化为 $x + \frac{9}{x} + |x - 3| \ge k$

- (1) 不等式恒成立即 k 比左侧最小值小,而易知左侧最小值在 x=3 时取,故 $k \le 6$
- (2) 不等式有解即 k 比左侧最大值小,设 $f(x) = x + \frac{9}{x} + |x 3|$ 易知 f(x) 在 [1,5] 上先减后增,最大值在端点处取. $f(1) = 12, f(5) = \frac{45}{5}$ 故 $k \leq 12$

注: 区分有解问题和恒成立问题.

- 8. 已知不等式 $x^2 + (a-2)x + 3a > 0(*)$
 - (1) 若不等式 (*) 对任意的 $x \in [-1,1]$ 恒成立,求实数 a 的取值范围
 - (2) 若不等式 (*) 对任意的 $a \in [-1,1]$ 恒成立,求实数 x 的取值范围

解析

(1) ① 通解法

 $f(x) = x^2 + (a-2)x + 3a$ 的对称轴为 $x = 1 - \frac{a}{2}$

若 $1-\frac{a}{2}<-1$,即 a>4,此时 f(x) 在 [-1,1] 上单调递增,因此 f(-1)>0,即 1+2-a+3a>0,解得 $a>-\frac{3}{2}$,结合对称轴有 a>4

若 $1-\frac{a}{2}>1$, 即 a<0, 此时 f(x) 在 [-1,1] 上单调递减,因此 f(1)>0, 即 1+a-2+3a>0, 解得 $a>\frac{1}{4}$,此种情况无解

若 $1-\frac{a}{2}\in[-1,1]$,即 $a\in[0,4]$,此时 f(x) 在 [-1,1] 内最小值在顶点处取,即 $f(1-\frac{a}{2})>0$,整理有 $a^2-16a+4<0$,解得 $a\in(8-2\sqrt{15},8+2\sqrt{15})$,结合对称轴有 $a\in(8-2\sqrt{15},4]$ 综上, $a\in(8-2\sqrt{15},+\infty)$

② 参变分离

 $(x+3)a-2x+x^2>0$ 在 $x\in[-1,1]$ 恒成立,即 $a>\frac{2x-x^2}{x+3}$ 在 $x\in[-1,1]$ 恒成立.换元 t=x+3, $t\in[2,4]$,即 $a>\frac{-t^2+8t-15}{t}$ 在 [2,4] 恒成立.进一步变形有 $a>-(t+\frac{15}{t})+8$ 在 [2,4] 恒成立.根据对勾函数性质可知 $-(t+\frac{15}{t})+8\leqslant 8-2\sqrt{15}$ $(t=\sqrt{15}$,即 $x=\sqrt{15}-3$ 时取等号),故 $a\in(8-2\sqrt{15},+\infty)$

(2) 将 a 做为主元,即 $(x+3)a-2x+x^2>0$ 在 $a\in[-1,1]$ 恒成立,设 $f(a)=(x+3)a-2x+x^2$,故只需 f(1)>0,f(-1)>0 即可. 解得 $x\in(-\infty,\frac{3-\sqrt{21}}{2})\cup(\frac{3+\sqrt{21}}{2},+\infty)$

注: 恒成立问题, 首先考虑主元应该是谁, 然后考虑是否要参变分离.

- 9. 已知函数 $f(x) = |x + \frac{1}{x} 4|$, 若关于 x 的不等式 $f(x) \ge m^2 m + 2$
 - (1) 在区间 $\left[\frac{1}{6},3\right]$ 总有解,求实数 m 的取值范围.
 - (2) 在区间 $[\frac{1}{4}, 2]$ 总有解,求实数 m 的取值范围.

解析

(1) 首先要意识到不等式的右侧没有 x,因此可以将右侧当做一个整体,直接找 f(x) 在区间 $[\frac{1}{6},3]$ 上的最大值. 根据对勾函数的性质可知 f(x) 在 $[\frac{1}{6},1]$ 上先減后增,在 [1,3] 单调递减. 故最大值会在 $x=\frac{1}{6}$ 或 x=1 处取到. $f(\frac{1}{6})=\frac{13}{6}, f(1)=2$,故 f(x) 的最大值为 $\frac{13}{6}$ 问题转化为求解不等式 $\frac{13}{6} \geqslant m^2-m+2$,解集为 $[\frac{3-\sqrt{15}}{6},\frac{3+\sqrt{15}}{6}]$.

(2) 同理,需要找 f(x) 在区间 $[\frac{1}{4},2]$ 上的最大值。根据对勾函数的性质可知 f(x) 在 $[\frac{1}{4},1]$ 上先减后增,在 [1,2] 单调递减。故最大值会在 $x=\frac{1}{4}$ 或 x=1 处取到。 $f(\frac{1}{4})=\frac{1}{4},f(1)=2$,故 f(x) 的最大值为 2

问题转化为求解不等式 $2 \geqslant m^2 - m + 2$,解集为 [0,1].

专题练习 2

填空题:

1. " $ab \le 0$ " 是 "|a-b| = |a| + |b|"的<u>充要</u>条件.

解析 考察三角不等式的取等条件.

 $|a+b| \leq |a| + |b|$ 的取等条件是 $ab \geq 0$

 $|a-b| \leq |a| + |b|$ 的取等条件是 $ab \leq 0$

2. 若实数 a 使得不等式 $|x-2a|+|2x-a|\geqslant a^2$ 对任意的 x 恒成立,实数 a 的取值范围是 $\left[-\frac{3}{2},\frac{3}{2}\right]$ 解析

(1) 方法 1

首先将问题转化为左侧的最小值大于等于右侧,设函数 f(x) = |x - 2a| + |2x - a|,根据斜底锅函数的图象可知,其最低点必然位于系数绝对值最大的一项取零的位置,即 $x = \frac{a}{2}$,最小值为 $|\frac{3a}{2}|$,由此不等式可以转化为 $|\frac{3a}{2}| \ge a^2$,即 $|\frac{3}{2}| \ge |a|$,故 $a \in [-\frac{3}{2}, \frac{3}{2}]$

(2) 方法 2

通过设 $x = ka(k \in \mathbf{R})$ 来简化计算。

根据 $x = ka(k \in \mathbb{R})$,不等式可以化为 $|ka - 2a| + |2ka - a| \ge a^2$,

消去 |a|, 不等式变为 $|k-2|+|2k-1| \ge |a|$ 。

通过对 k 进行分类讨论,可以得到 |k-2|+|2k-1| 的取值范围为 $\left[\frac{3}{2},+\infty\right)$,故 $|a|\leqslant\frac{3}{2}$,即 $a\in\left[-\frac{3}{2},\frac{3}{2}\right]$

注: 斜底锅函数 f(x)=|ax+b|+|cx+d| $(|a|\neq|c|)$,若 |a|>|c| ,则取最小值时 $x=-\frac{b}{a}$,若 |a|<|c| ,则取最小值时 $x=-\frac{d}{c}$

3. 若 a > b > 0, 则 $a^2 + \frac{16}{b(a-b)}$ 的最小值是_____16_____.

解析 先考虑消元, $b(a-b) \leqslant \left(\frac{b+(a-b)}{2}\right)^2$, 取等条件为 a=2b. 故 $a^2 + \frac{16}{b(a-b)} \geqslant a^2 + \frac{64}{a^2} \geqslant 16$. 取等条件为 $a=2\sqrt{2}, b=\sqrt{2}$

4. 已知 a > 0, b > 0,且 ab = 1,则 $\frac{1}{2a} + \frac{1}{2b} + \frac{8}{a+b}$ 的最小值为 4.

解析

(1) 消元法

用 a 表示 b 有 $b=\frac{1}{a}$ 。原式可以化为 $\frac{a}{2}+\frac{1}{2a}+\frac{8}{\frac{1}{a}+a}=\frac{1+a^2}{2a}+\frac{8a}{1+a^2}\geqslant 2\sqrt{\frac{1+a^2}{2a}\cdot\frac{8a}{1+a^2}}=4$,当且、仅当 $a+b=a+\frac{1}{a}=4$ 时取等号。

(2) 乘常数

原式 = $(\frac{1}{2a} + \frac{1}{2b}) \times ab + \frac{8}{a+b} = \frac{a+b}{2} + \frac{8}{a+b} \geqslant 2\sqrt{\frac{a+b}{2} \cdot \frac{8}{a+b}} = 4$, 当且仅当 $\frac{a+b}{2} = \frac{8}{a+b}$, 即 a+b=4时取等号。

注: 容易出现的错解: 消元后分别利用均值不等式得到答案 5。**应用多次平均值不等式时应注意不** 等式方向是否相同,取等条件是否一致。

5. (1) 已知正实数 a, b 满足 a + b = 4,则 $\frac{1}{a+1} + \frac{1}{b+3}$ 的最小值是_____.

解析 $\frac{1}{a+1} + \frac{1}{b+3} = (\frac{1}{a+1} + \frac{1}{b+3}) \times (a+1+b+3) \times \frac{1}{8} = (2 + \frac{b+3}{a+1} + \frac{a+1}{b+3}) \times \frac{1}{8} \geqslant \frac{1}{2}$, 当且仅当 a=3,b=1 时取等号.

- (2) 已知正实数 a,b 满足 4a+3b=1,则 $\frac{1}{2a+b}+\frac{1}{a+b}$ 的最小值是 $\frac{3+2\sqrt{2}}{2}$. 解析 $\frac{1}{2a+b}+\frac{1}{a+b}=\frac{1}{2a+b}+\frac{2}{2a+2b}=(\frac{1}{2a+b}+\frac{2}{2a+2b})\times(2a+b+2a+2b)=1+2+\frac{2a+2b}{a+b}+\frac{2(2a+b)}{2a+2b}\geqslant 3+2\sqrt{2}$,当且仅当 $a=\frac{3\sqrt{2}}{2}-2,b=3-2\sqrt{2}$ 时取等号. 注: 体会"基"的思想:将分母看做一组"基",线性组合表示限制条件,根据系数对目标式进行变形.
- 6. 已知 a,b,c,d 满足 $a^2-ab+4=0,c^2+d^2=1$,则当 $(a-c)^2+(b-d)^2$ 取最小值的时候, $abcd=\underline{1+\sqrt{2}}$ 解析 $(a-c)^2+(b-d)^2$ 的几何意义为 A(a,b),B(c,d) 两点间距离的平方,A 在对勾函数 $y=x+\frac{4}{x}$ 上,B 在单位圆 $x^2+y^2=1$ 上。 $(a-c)^2+(b-d)^2$ 为 $|AB|^2$ 固定点 A 时,OAB 构成三角形 |AB|+1>|OB|,仅当 B 在 OA 上时此时 |AB|=|OB|-1 最小。 $|OA|^2=a^2+b^2=a^2+(a+\frac{4}{a})^2=2a^2+8+\frac{16}{a^2}\geqslant 8+2\sqrt{32}=8+8\sqrt{2}$ $(a=\sqrt[4]{8}$ 时取等) 此时 $ab=a^2+4=4+2\sqrt{2}$,此时根据相似三角形可知 $\frac{a}{c}=\frac{b}{d}=\frac{|OA|}{1}=\sqrt{8+8\sqrt{2}}$,故 $\frac{ab}{cd}=8+8\sqrt{2}$,因此 $cd=\frac{4+2\sqrt{2}}{8+8\sqrt{2}}$,故 $abcd=\frac{(4+2\sqrt{2})^2}{8+8\sqrt{2}}=\frac{24+16\sqrt{2}}{8+8\sqrt{2}}=\frac{3+2\sqrt{2}}{1+\sqrt{2}}=1+\sqrt{2}$
- 7. 已知 $f(x) = x + 2, x \in [1,4]$,则 $y = f(x^2) + f^2(x)$ 的最大值是______. 解析 先看定义域: f(x) 的定义域为 [1,4],因此 $f(x^2)$ 中 $x^2 \in [1,4]$,故 $f(x^2)$ 的定义域为 $x \in [-2,2]$. 而 $f^2(x)$ 的定义域与 f(x) 的定义域相同. 两者相加,定义域取交集,因此 $y = f(x^2) + f^2(x)$ 的定义域为 [1,2]于是 $y = x^2 + 2 + (x + 2)^2 = 2x^2 + 4x + 6 = 2(x + 1)^2 + 4 \in [12,22]$.
- 8. 已知 y = f(2x+1) 的定义域为 (1,3],则 y = f(x+1) 的定义域为 (2,6] . 解析 因为 y = f(2x+1) 的定义域为 (1,3],所以 y = f(x) 的定义域是 (3,7],故 y = f(x+1) 的定义域为 (2,6].
 - 注: 此类题目的桥梁是 f 括号内的取值范围是一致的.
- 9. 下列两组函数中表示同一函数的有______. (1) $y = \frac{\sqrt{1-x^2}}{|x+2|}$ 和 $y = \frac{\sqrt{1-x^2}}{x+2}$ (2) $y = \sqrt{x-1} \cdot \sqrt{x-2}$ 和 $y = \sqrt{x^2-3x+2}$ 解析 本质上还是在考察定义域.
- 10. 函数 $y = \sqrt{\log_{\frac{1}{3}} \left(\log_{\frac{1}{3}} \left(\log_{\frac{1}{3}} x\right)\right)}$ 的定义域是 $\left(\frac{1}{3}, \sqrt[3]{\frac{1}{3}}\right)$. 解析 $\log_{\frac{1}{3}} \left(\log_{\frac{1}{3}} \left(\log_{\frac{1}{3}} x\right)\right) \geqslant 0 \iff 0 < \log_{\frac{1}{3}} \left(\log_{\frac{1}{3}} x\right) \leqslant 1 \iff 1 > \log_{\frac{1}{3}} x \geqslant \frac{1}{3} \iff (\frac{1}{3})^1 < x \leqslant (\frac{1}{2})^{\frac{1}{3}}$.
- 11. 若函数 $f(x) = x^2 3x 4$ 的定义域为 [0, m], 值域为 $\left[-\frac{25}{4}, -4\right]$, 则实数 m 的取值范围是 $\left[\frac{3}{2}, 3\right]$. 解析 $f(x) = x^2 3x 4 = (x \frac{3}{2})^2 \frac{25}{4}$, 因此 $x = \frac{3}{2}$ 是函数值 $-\frac{25}{4}$ 对应的唯一自变量,必然 要在定义域内.又因为 f(0) = f(3) = -4,是 f(x) = -4 唯二的解.于是由二次函数的图像易得 $m \in \left[\frac{3}{2}, 3\right]$.
- 12. 若一系列函数的解析式相同, 值域相同, 但其定义域不同, 则称这些函数为"同族函数", 那么函数解析式为 $f(x) = x^2$, 值域为 $\{1,4\}$ 的"同族函数"共有____9___个. 解析 $1,-1,\pm 1 \to 1, 2,-2,\pm 2 \to 4$, 于是从值域的角度, x 的组合共有 $3 \times 3 = 9$ 种选择. 注: 关键是要清楚一个 y 对应几个 x.
- 13. 设函数 f(x) 满足 $f(x) = f(\frac{1}{1+x})$ 对任意 $x \in [0, +\infty)$ 都成立,其值域是 A_f ,已知对任何满足上述条件的 f(x) 都有 $\{y|y = f(x), 0 \le x \le a\} = A_f$,则 a 的取值范围为 $[\frac{\sqrt{5}-1}{2}, +\infty)$

解析 易知 y=x 与 $y=\frac{1}{1+x}$ 在 $x\in[0,+\infty)$ 只有一个交点 $(\frac{\sqrt{5}-1}{2},\frac{\sqrt{5}-1}{2})$

设 g(x) = x, 在 $(0, \frac{\sqrt{5}-1}{2})$ 的值域为 R_{g1} , 在 $(\frac{\sqrt{5}-1}{2}, +\infty)$ 内值域为 R_{g2} , 设 h(x) = x, 在 $(0, \frac{\sqrt{5}-1}{2})$ 的值域为 R_{h1} ,在 $(\frac{\sqrt{5}-1}{2}, +\infty)$ 内值域为 R_{h2} ,易知 $R_{g1}=R_{h2}, R_{g2}=R_{h1}$,

因此必有 f(x) 在 $(0, \frac{\sqrt{5}-1}{2})$ 的值域与在 $(\frac{\sqrt{5}-1}{2}, +\infty)$ 内值域相同. 而 f(0) = f(1). 所以 f(x) 在 $[0,\frac{\sqrt{5}-1}{2})$ 的值域 A_{f1} 与在 $(\frac{\sqrt{5}-1}{2},+\infty)$ 内值域 A_{f2} 相同. 但是 $f(\frac{\sqrt{5}-1}{2})$ 可以和其他任意的函数值 不相等。因此 $A_f = A_{f1} \cup \{f(\frac{\sqrt{5}-1}{2})\}$

故当 $a \geqslant \frac{\sqrt{5}-1}{2}$ 时满足 [0,a] 上 f(x) 的值域也是 A_f

选择题:

- (A) $x + 2\sqrt{x} + 5$ (B) $\frac{x^2 + 5}{\sqrt{x^2 + 1}}$ (C) $x^2 + 3 + \frac{4}{x^2 + 3}$ (D) $x + \frac{4}{x}$

解析 注意取等条件是否可以取到!

- 2. 已知不等式 $(x+y)\left(\frac{a}{x}+\frac{1}{y}\right)\geqslant 9$ 对任意正实数 x,y 恒成立, 则正实数 a 的最小值是 · · · · · (B)

- (C) 6

解析 首先求出 (x+y) $\left(\frac{a}{x}+\frac{1}{y}\right)$ 最小值 (2a), 然后令其大于等于 9, 得到 a 的取值范围, 从中

 $(x+y)\left(\frac{a}{x} + \frac{1}{y}\right) = a + 1 + \frac{ay}{x} + \frac{x}{y} \ge a + 1 + 2\sqrt{a} \ (x = \sqrt{a}y \text{ bl} \mathfrak{P})$

设 $f(a) = a + 1 + 2\sqrt{a}$, 显然 f(a) 单调递增, 且有 f(4) = 9. 故 $a \ge 4$ 时原始 ≥ 9 , 因此 a 最小 值为 4.

- 3. 若实数 a,b 满足 a>b>0,下列不等式中恒成立的是······(A)

- $\text{(A)} \ a+b>2\sqrt{ab} \qquad \qquad \text{(B)} \ a+b<2\sqrt{ab} \qquad \qquad \text{(C)} \ \frac{a}{2}+2b>2\sqrt{ab} \qquad \qquad \text{(D)} \ \frac{1}{2}+2b<2\sqrt{ab}$
- 4. 下列不等式恒成立的是·····
- (A) $a^2 + b^2 \leqslant 2ab$ (B) $a^2 + b^2 \geqslant -2ab$ (C) $a + b \geqslant -2\sqrt{|ab|}$ (D) $a + b \leqslant 2\sqrt{|ab|}$
- 5. 已知两两不同的 $x_1, y_1, x_2, y_2, x_3, y_3$ 满足 $x_1 + y_1 = x_2 + y_2 = x_3 + y_3$, 且 $x_1 < y_1, x_2 < y_2, x_3 < y_3$, $x_1y_1 + x_3y_3 = 2x_2y_2 > 0$,则下列选项中恒成立的是 · · · · · · · · · · · · · · · · (A)
- (B) $2x_2 > x_1 + x_3$ (C) $x_2^2 < x_1 x_3$ (D) $x_2^2 > x_1 x_3$

解析 设 $x_1+y_1=2m$,故可设 $\begin{cases} x_1=m-a, & y_1=m+a, & a>0\\ x_2=m-b, & y_2=m+b, & b>0\\ x_3=m-c, & y_3=m+c, & c>0\\ \text{由此,题目中的条件可以转化为}\ m^2-a^2+m^2-c^2=2(m^2-b^2),\ \mathbb{D}\ a^2+c^2=2b^2,\ \mathbb{D}\ f\ m^2-b^2>0. \end{cases}$

下面推导 a+c<2b

- (1) 方法 1: 利用平方差公式 原式移项后可以进一步可以转化为 (a+b)(a-b) + (c+b)(c-b) = 0。 (a+b)(a-b) + (c+b)(c-b) = 0 说明 a < b < c 或者 c < b < a, 不妨设 a < b < c (另一种情 况对称), 此时必有 (a+b)<(c+b), 因此有 |a-b|>|c-b|, 即 b-a>c-b, 故 a+c<2b
- (2) 方法 2: 利用平均值不等式

设 $d = \frac{a+c}{2}$, 根据 $a^2 + c^2 = 2b^2$, 可以转化为 $(2d)^2 - 2ac = 2b^2$ 根据平均值不等式有 $(2d)^2 - 2 \times (\frac{a+c}{2})^2 < 2b^2$, 即 $(2d)^2 - 2d^2 < 2b^2$ 。 故 d < b, 即 a + c < 2b

解答题:

1. 已知函数 f(x) = |x + m| + |x - 2m|, 若 $f(x) \ge 3$ 恒成立, 求 m 的取值范围.

解析 问题可以转化为 f(x) 的最小值大于等于 3 恒成立,而 f(x) 是一个平底锅函数,最小值可以通过三角不等式求得,即 $f(x)=|x+m|+|x-2m|\geqslant |3m|$,因此有 $|3m|\geqslant 3$,得到 $m\in (-\infty,-1]\cup [1,+\infty)$

注: 注意问题转化的逻辑; 注意两个绝对值的式子相加减, 想一下三角不等式

- 2. 已知关于 x 的不等式 |x-1|-|x-2| < a(*)
 - (1) 若 (*) 解集为 \mathbb{R} , 求实数 a 的取值范围.
 - (2) 若(*)有实数解,求实数 a 的取值范围.
 - (3) 若 (*) 的解集为 \varnothing , 求实数 a 的取值范围.

解析

- $(1) \ (1,+\infty)$
- $(2) (-1, +\infty)$
- $(3) (-\infty, -1)$
- 3. 已知 a, b 为常数,函数 $f(x) = x^2 bx + a$,当 a = 2b 1 时,若方程 f(x) = 0 在 (-2, 1) 上有解,求实数 b 的取值范围.

解析 $f(x) = x^2 - bx + 2b - 1$.

- ① 分对称轴位置讨论
 - f(x) 的对称轴为 $x = \frac{b}{2}$, f(-2) = 4b + 3, f(1) = b, $\Delta = b^2 4(2b 1) = b^2 8b + 4$
 - 1. 若 $\frac{b}{2} \le -2$,则 f(x) 在 (-2,1) 单调增,故 "方程 f(x) = 0 在 (-2,1) 上有解"即 f(-2) < 0,f(1) > 0,此种情况解集为 $(-\frac{3}{4},0]$.
 - 2. 若 $\frac{b}{2} \ge 1$, 则 f(x) 在 (-2,1) 单调减,故"方程 f(x) = 0 在 (-2,1) 上有解"即 f(-2) > 0, f(1) < 0,此种情况解集为空集.
 - 3. 若 $\frac{b}{2} \in (-2,1)$, 则 f(x) 在 (-2,1) 先減后增,故 "方程 f(x) = 0 在 (-2,1) 上有解"即 $\Delta \ge 0$ 且有 f(-2) > 0 或 f(1) > 0,此种情况解集为 $(0,4-2\sqrt{3}]$

综上, $b \in (-\frac{3}{4}, 4 - 2\sqrt{3}]$

② 参变分离

"方程 f(x) = 0 在 (-2,1) 上有解"即" $b = \frac{1-x^2}{2-x}$ 在 (-2,1) 上有解",即" $b = \frac{3}{x-2} + (x-2) + 4$ 在 (-2,1) 上有解"

因此 b 的取值范围即 $y=\frac{3}{x-2}+(x-2)+4$ 在 (-2,1) 上的值域. $y=\frac{3}{x-2}+(x-2)+4$ 在 $(-2,\sqrt{3}-2)$ 单调递增,在 $[2-\sqrt{3},1)$ 单调递减,值域为 $(-\frac{3}{4},4-2\sqrt{3}]$,故 $b\in(-\frac{3}{4},4-2\sqrt{3}]$

注:有解问题可以采用分对称轴位置讨论或参变分离解决,**小题推荐参变分离**,**大题可以分类讨论写步骤,参变分离检验**。分对称轴位置讨论时,对于对称轴在目标区间内的情况要注意其充要条件。参变分离会把方程有解问题转化成函数求值域问题。

- 4. 已知函数 $f(x) = x^2 + 2mx + 2m + 3$
 - (1) 若 f(x) 至少有一个零点在区间 (0,2) 内, 求实数 m 的取值范围.
 - (2) 若 f(x) 恰有一个零点在区间 (0,2) 内, 求实数 m 的取值范围.
 - (3) 若 f(x) 恰有一个零点在区间 $(0,+\infty)$ 内, 求实数 m 的取值范围.

解析

- (1) ① 分对称轴位置讨论
 - f(x) 对称轴为 x = -m, f(0) = 2m + 3, f(2) = 7 + 6m, $\Delta = 4m^2 8m 12$
 - 1. 若 $-m \le 0$,则 f(x) 在 (0,2) 单调增,故"f(x) 在 (0,2) 上有零点"即 f(0) < 0, f(2) > 0, 此种情况无解.
 - 2. $-m \ge 2$, 则 f(x) 在 (0,2) 单调减, 故 "f(x) 在 (0,2) 上有零点" 即 f(0) > 0, f(2) < 0, 此种情况无解.
 - 3. $-m \in (0,2)$,则 f(x) 在 (0,2) 先减后增,"f(x) 在 (0,2) 上有零点"即 $\Delta \geq 0$,且有 f(0) > 0 或 f(2) > 0,此种情况解得 $m \in (-\frac{3}{2}, -1]$

综上, $m \in (-\frac{3}{2}, -1]$

② 参变分离 f(x) 至少有一个零点在区间 (0,2) 内,即 f(x) = 0 在 (0,2) 内有根,即方程 $m = \frac{-3-x^2}{2x+2}$ 在 (0,2) 内有根,即方程 $m = \frac{1}{2} \cdot \frac{-3-(t-1)^2}{t}$ 在 $t \in (1,3)$ 内有根,即方程 $m = \frac{1}{2} \cdot [-(t+\frac{4}{t})+2]$ 在 $t \in (1,3)$ 内有根.

因此 m 的取值范围即 $y = \frac{1}{2} \cdot [-(t + \frac{4}{t}) + 2]$ 在 $t \in (1,3)$ 内的值域.

 $y = \frac{1}{2} \cdot [-(t + \frac{4}{t}) + 2]$ 在 (1,2) 单调增,在 (2,3) 单调减,因此值域为 $(-\frac{3}{2}, -1]$,故 $m \in (-\frac{3}{2}, -1]$

(2) ① 通解法

f(x) 对称轴为 x = -m, f(0) = 2m + 3, f(2) = 7 + 6m, $\Delta = 4m^2 - 8m - 12$

- 1. 符合函数零点存在定理,此时有 $f(0) \cdot f(2) < 0$,即 $m \in (-\frac{3}{2}, -\frac{7}{6})$
- 2. 二次函数与 x 轴相切在区间内, 此时有 $\Delta = 0$, 且 $-m \in (0,2)$ 即 m = -1
- 3. 左端点函数值为 0,此时有 $m = -\frac{3}{2}$,此时 f(2) < 0, f(x) 在 (0,2) 内先减后增,故不存在零点.
- 4. 右端点函数值为 0, 此时有 $m = -\frac{7}{6}$, 此时 f(0) > 0, f(x) 在 (0,2) 内先减后增,存在唯一零点.

综上, $m \in (-\frac{3}{2}, -\frac{7}{6}] \cup \{-1\}$

② 参变分离 f(x) 恰有一个零点在区间 (0,2) 内,即方程 $m=\frac{-3-x^2}{2x+2}$ 在 (0,2) 内有一根,即方程 $m=\frac{1}{2}\cdot\frac{-3-(t-1)^2}{t}$ 在 $t\in(1,3)$ 内有一根,即方程 $m=\frac{1}{2}\cdot[-(t+\frac{4}{t})+2]$ 在 $t\in(1,3)$ 内有一根,即函数 y=m 与函数 $y=\frac{1}{2}\cdot[-(t+\frac{4}{t})+2]$ 在 $t\in(1,3)$ 内只有一个交点. $y=\frac{1}{2}\cdot[-(t+\frac{4}{t})+2]$ 在 (1,2) 单调增,在 (2,3) 单调减,因此当 $m\in(-\frac{3}{2},-\frac{7}{6}]\cup\{-1\}$ 时满足要求.

注: 二次函数在区间内恰有一个零点的通解法对应着四种情况: 1. 符合函数零点存在定理

- $2. \Delta = 0$ 且对称轴在区间内 3. 左端点为函数的一个零点(应根据区间开闭情况单独检验)
- 4. 右端点为函数的一个零点(应根据区间开闭情况单独检验)

参变分离会将问题转化为动直线和定曲线只有唯一交点,要**注意相切的情况和端点情况**。 这种情况参变分离和通解法都没有明显优势.

(3) ① 通解法

f(x) 对称轴为 x = -m, f(0) = 2m + 3, $\Delta = 4m^2 - 8m - 12$

- 1. "符合函数零点存在定理", 此时有 f(0) < 0, 即 $m \in (-\infty, -\frac{3}{2})$
- 2. 二次函数与 x 轴相切在区间内, 此时有 $\Delta = 0$, 且 $-m \in (0, +\infty)$ 即 m = -1
- 3. 左端点函数值为 0,此时有 $m = -\frac{3}{2}$, f(x) 在 $(0, +\infty)$ 内先减后增,存在唯一零点. 综上, $m \in (-\infty, -\frac{3}{2}] \cup \{-1\}$
- ② 参变分离 f(x) 恰有一个零点在区间 $(0,+\infty)$ 内,即方程 $m=\frac{-3-x^2}{2x+2}$ 在 $(0,+\infty)$ 内有一根,即方程 $m=\frac{1}{2}\cdot\frac{-3-(t-1)^2}{t}$ 在 $t\in(1,+\infty)$ 内有一根,即方程 $m=\frac{1}{2}\cdot[-(t+\frac{4}{t})+2]$ 在 $t\in(1,+\infty)$ 内有一根,即函数 y=m 与函数 $y=\frac{1}{2}\cdot[-(t+\frac{4}{t})+2]$ 在 $t\in(1,+\infty)$ 内只有一个交点.

 $y=\frac{1}{2}\cdot [-(t+\frac{4}{t})+2]$ 在 (1,2) 单调增,在 $(2,+\infty)$ 单调减,因此当 $m\in (-\infty,-\frac{3}{2}]\cup \{-1\}$ 时满足要求.

注: 区间一侧为无穷的情况对于通解法可以根据开口方向将问题简化.

5. 已知 $g(x) = -x^2 + 2x$,若关于 x 的方程 g(x) = -mx - m 在 (0,2) 上恰有两个不等实根,求 m 的取值范围.

解析

① 通解法

"方程 g(x) = -mx - m 在 (0,2) 上恰有两个不等实根"即"方程 $-x^2 + (2+m)x + m = 0$ 在 (0,2) 上恰有两个不等实根",设 $h(x) = -x^2 + (2+m)x + m$,对称轴为 $x = \frac{2+m}{2}$, $\Delta = (2+m)^2 + 4m$,h(0) = m,h(2) = 3m

$$h(x)=0~在~(0,2)$$
 上恰有两个不等实根的充要条件是
$$\begin{cases} \Delta>0\\ \frac{2+m}{2}\in(0,2)\\ h(0)<0\\ h(2)<0 \end{cases}, 解得 ~m\in(2\sqrt{3}-4,0)$$

② 参变分离

"方程 g(x) = -mx - m 在 (0,2) 上恰有两个不等实根"即"方程 $m = \frac{x^2 - 2x}{x+1}$ 在 (0,2) 上恰有两个不等实根",即"函数 y = m 与函数 $y = t + \frac{3}{t} - 4$ 在 (1,3) 上恰有两个交点" $y = t + \frac{3}{t} - 4$ 在 $(1,\sqrt{3})$ 单调减,在 $[\sqrt{3},3)$ 上单调增,因此当 $m \in (2\sqrt{3} - 4,0)$ 时满足要求.

- 6. 已知一元二次函数 $f(x) = ax^2 + bx + c(a > 0, c > 0)$ 的图像与 x 轴有两个不同的公共点,其中一个公共点的坐标为 (c,0),且当 0 < x < c 时,恒有 f(x) > 0。
 - (1) 当 $a=1, c=\frac{1}{2}$ 时,求出不等式 f(x)<0 的解
 - (2) 求出不等式 f(x) < 0 的解(用 a, c 表示)
 - (3) 若以二次函数的图象与坐标轴的三个交点为顶点的三角形面积为 8, 求 a 的取值范围
 - (4) 若不等式 $m^2 2km + 1 + b + ac \ge 0$ 对所有 $k \in [-1, 1]$ 恒成立,求 m 的取值范围。

解析

- (1) 当 $a=1, c=\frac{1}{2}$ 时, $f(x)=x^2+bx+\frac{1}{2}$,因为过 $(\frac{1}{2},0)$,所以 $b=-\frac{3}{2}$,因此有 f(1)=0,因此 f(x)<0 的解集为 $(\frac{1}{2},1)$
- (2) 根据韦达定理可知 $f(\frac{1}{a}) = f(c) = 0$,因为当 0 < x < c 时,恒有 f(x) > 0,所以必有 $\frac{1}{a} > c$,因此 f(x) < 0 的解集为 $(c, \frac{1}{a})$
- $(3) \ \, 根据题意可知该三角形面积为 \, S = \frac{1}{2}(\frac{1}{a}-c) \times c = 8, \text{ 故 } \frac{1}{a} = c + \frac{16}{c} \in [8,+\infty), \, \text{因此 } a \in (0,\frac{1}{8}]$

- (4) 根据 f(c)=0 可知 1+b+ac=0,因此不等式变为 $m^2-2km\geqslant 0$,下面根据 m 的取值范围进行分类讨论
 - i. m > 0 此时不等式变为 $\frac{m}{2} \geqslant k$, 故 $m \geqslant 2$
 - ii. m=0 此时不等式恒成立
 - iii. m<0 此时不等式变为 $\frac{m}{2}\leqslant k$,故 $m\leqslant -2$ 综上: $m\in (-\infty,-2]\cup [2,+\infty)\cup \{0\}$
- 7. 已知正实数 x, y 满足 $xy^{2}(x + y) = 4$, 求 2x + y 的最小值.

解析 观察可知 $xy^2(x+y)=4$ 不能够将 x,y 分离,且 2x+y 为一次相加的形式。此时应考虑设 2x+y=k,代入 $xy^2(x+y)=4$ 中求 k 的最小值即可。因为 $xy^2(x+y)=4$ 中 x 为二次,y 为三次,因此考虑代换 x,即 $x=\frac{k-y}{2}$

 $\frac{k-y}{2}y^2(\frac{k+y}{2})=4$,即 $(k-y)y^2(k+y)=16$,进一步整理得 $k^2y^2-y^4=16$,参变分离得到 $k^2=\frac{16}{y^2}+y^2$,根据对勾函数性质知 k^2 最小值为 8,故 k 最小值为 $2\sqrt{2}$