Counter

20191646 정원우 20211547 신지원

문까 회로 분객 및 갤계

1. 현재 상태, 입력, 다음 상태를 기록

현재 상태		입	입력		다음 상태	
Α	В	E	x	Α	В	
0	0	0	0	0	0	
0	0	0	1	0	0	
0	0	1	0	1	1	
0	0	1	1	0	1	
0	1	0	0	0	1	
0	1	0	1	0	1	
0	1	1	0	0	1	
0	1	1	1	0	0	
1	0	0	0	1	0	
1	0	0	1	1	0	
1	0	1	0	1	0	
1	0	1	1	0	1	
1	1	0	0	1	1	
1	1	0	1	1	1	
1	1	1	0	1	0	
1	1	1	1	0	0	

문까 회로 분씩 및 갤궤

2. 1을 바탕으로 여기표 작성

J	К	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

3. 여기표를 토대로 1 수정

현재	상태	입	력	다음	상태		플립플.	롭 입력	
Α	В	E	x	Α	В	JA	KA	JB	Кв
0	0	0	0	0	0	0	X	0	X
0	0	0	1	0	0	0	X	0	X
0	0	1	0	1	1	1	X	1	X
0	0	1	1	0	1	0	X	1	X
0	1	0	0	0	1	0	X	Х	0
0	1	0	1	0	1	0	X	Х	0
0	1	1	0	0	1	0	X	X	1
0	1	1	1	0	0	1	X	X	1
1	0	0	0	1	0	Х	0	0	X
1	0	0	1	1	0	Х	0	0	X
1	0	1	0	1	0	Х	1	1	X
1	0	1	1	0	1	X	0	1	Х
1	1	0	0	1	1	Х	0	Х	0
1	1	0	1	1	1	Х	0	X	0
1	1	1	0	1	0	Х	0	X	1
1	1	1	1	0	0	X	1	X	1

문까 회로 갤계 및 분객

4. 카르노맵과 논리식 작성

AB Ex	00	01	11	10
00	X	Х	х	×
01	X	Х	×	х
11	0	0	1	0
10	0	0	0	1

AB Ex	00	01	11	10
00	0	0	1	1
01	X	X	×	×
11	Х	Х	×	×
10	0	0	1	1

AB Ex	00	01	11	10
00	0	0	0	1
01	0	0	1	0
11	Х	Х	X	Х
10	х	х	х	X

AB Ex	00	01	11	10
00	X	x	×	×
01	0	0	1	1
11	0	0	1	1
10	X	Х	×	X

5. 논리회로 설계

군까 회로 분씩 및 갤걔

Syncronous vs asynchronous

입력펄스와 클럭펄스에 따라 달라짐

기억요소와 클럭을 필수며, 클럭이 없다면 출력에 변화 없음

명확한 시간 간격이 필요함

Ex) 플립플롭, 동기 카운터 등

입력펄스와 입력 데이터의 시컨스에만 의존

클럭과 동기화가 필요하지 않음

시간과 관계없이 영향 받을 수 있으며 오히려 전파지연에 방해를 받음

Ex) 비동기 카운터 등

군까 회로 분씩 및 갤걔

Syncronous vs asynchronous

모든 F/F이 동시에 동작

모든 F/F의 clk 단자에 같은 clock 신호가 입력됨

설계가 비교적 쉬움

모든 F/F이 동시에 동작하지 않음

모든 F/F의 clk 단자에 같은 clock 신호가 입력되지 않음

설계가 비교적 어려움

군까 회로 분씩 및 갤계

Syncronous vs asynchronous

State Diagram

Status

State

Memory-less

State machine

FSM(Finite State Machine)

State diagram

BPNM

State Diagram

Status

State

Memory-less

State machine

FSM(Finite State Machine)

State diagram

BPNM

FSM(Finite State Machine)

현재 상태	입력	다음 주	출력
ストフリ	동전	잠금 해제	고객이 통과할 수 있도록 개찰구를 잠금 해제합니다.
잠긴	밀어	잠긴	없음
자그 웨데	동전	잠금 해제	없음
잠금 해제	밀어	잠긴	고객이 밀어붙였을 때, 개찰구를 잠근다.

Counter

2-bit Binary Ripple Counter

Decade Counter

Input Pulses	D	С	В	А
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
0	0	0	0	0 (resets)

Decade Counter

Decade Counter

4bit decade Counter

Present	next state			
state	input .x = 0	input .x = 1		
0000	0000	0001		
0001	0001	0010		
0010	0010	0011		
0011	0011	0100		
0100	0100	0101		
0101	0101	0110		
0110	0110	0111		
0111	0111	1000		
1000	1000	1001		
1001	1001	0000		

4bit 2421 decade Counter

Present	next state			
state	input $x = 0$	input .x = 1		
0000	0000	0001		
0001	0001	0010		
0010	0010	0011		
0011	0011	0100		
0100	0100	1011		
1011	1011	1100		
1100	1100	1101		
1101	1101	1110		
1110	1110	1111		
1111	1111	0000		

32-bit counter (四화)

술꺼 및 기여도

- <a href="https://www.coursehero.com/tutors-problems/Electrical-Engineering/13269221-Build-a-2-bit-binary-counter-with-JK-FFs-The-2-bit-binary-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange.com/questions/152443/realisation-of-asynchronous-decade-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.stackexchange-counter-wil/https://electronics.st
- https://circuitdigest.com/tutorial/asynchronous-counter
- https://www.semanticscholar.org/paper/Compact-%2C-Loadable-16-and-32-bit-Binary-Counters/0d840f6850fdca52c9e33ceca676991247739e62/figure/0
- https://en.wikipedia.org/wiki/State_diagram
- http://www.ktword.co.kr/test/view/view.php?m_temp1=5979
- https://en.wikipedia.org/wiki/Finite-state_machine

20191646 정원우 50% 20211547 신지원 50%