Physics 303/573

Homework 8 due Monday, November 20.

- 1. Two particles are connected by an ideal spring with spring constant k and unstretched length $\ell=0$. They both slide along a frictionless ramp given by the equation $z=\alpha y$.
- a) Write down the Lagrangian for the system in terms of \vec{r}_1 and \vec{r}_2 , imposing constraints with Lagrange multipliers.
- b) Rewrite the Lagrangian in terms of \vec{r}_{cm} and $\vec{r} = \vec{r}_1 \vec{r}_2$.
- c) Eliminate the Lagrange multipliers and use the constraints to eliminate $z=z_1-z_2$ and z_{cm} .
- d) Find the Euler-Lagrange equations for the resulting system.
- e) Write down the most general solution for $\vec{r}_{cm}(t)$ and $\vec{r}(t)$.
- 2. Consider a Lagrangian

$$L = \frac{1}{2} \frac{m(\dot{x}^2 + \dot{y}^2)}{(1 + x^2 + y^2)^2}$$

- a) Show that this is invariant under rotations about the z-axis. Find the corresponding Noether charge.
- b) Rewrite L in planar polar coordinates r, θ . Show that the results of part a) are now obvious.
- c) A much less obvious symmetry is the following:

$$\delta r = \alpha (1 + r^2) \cos \theta$$
 , $\delta \theta = \alpha (r - \frac{1}{r}) \sin \theta$

Calculate the Noether charge of this symmetry assuming that $\delta L = 0$. For 20 points extra credit, prove that this is actually a symmetry.

3. A planet with angular momentum L_z and reduced mass μ is orbiting around a sun such that the total mass is M.

1

- a) Write down the effective potential U_{eff} .
- b) Sketch U_{eff} .
- c) What is the radius and energy of a circular orbit?
- d) What is the frequency of small oscillations around the circular orbit?
- 4. We found the orbit of a mass attracted by gravity to a central sun in polar coordinates:

$$r(\theta) = \frac{\alpha}{1 + \epsilon \cos \theta}$$

- a) Rewrite this in cartesian coordinates x, y.
- b) Show that when $0 \le \epsilon < 1$ it can be written in the form

$$\frac{(x-x_0)^2}{a^2} + \frac{y^2}{b^2} = 1$$

- c) Find x_0, a, b in terms of α, ϵ .
- d) What equation do you find in the limit as $\epsilon \to 1$?
- e) Can you find the correct equation for $\epsilon > 1$?
- 5. Problem 8.17 in the book.