Introduction to HCI

DR. FARMAN MARWAT

Definition of HCI

• Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them.

- ACM SIGCHI Curricula for HCI (Hewett et al. 1992)
- http://sigchi.org/cdg/cdg2.html

What fields does HCI cover?

- Computer Science
- Psychology
- Communication
- Education
- Anthropology
- Design (e.g. graphic and industrial)

Outline

- Design
 - What is design?
 - How can we have a higher likelihood of good design?
 - How do we design for different user groups?
- Implementation
- Evaluation

Norman Doors

How do you open this door?

From: http://farm1.static.flickr.com/59/175678013_ed6a5028bc.jpg

Why we care about HCI

• Why do we care about interfaces?

- We see this all the time.
 - What's good about the design of this error box?
 - The user knows there is an error
 - What's poor about the design of this error box?
 - Discouraging (who gets the blame?)
 - Not enough information
 - No way to *resolve* the problem (instructions or contact info)
 - Whose fault is this?

HCI Design

• What's possible

http://www.techlivez.com/wp-content/uploads/2008/10/apple-new-macbook-trackpad.jpg http://0.tqn.com/d/cars/1/0/P/I/1/ag_08e320_pwrseat.jpg

What do you feel about...

What makes developing good interfaces challenging?

Commercial Example: Phones

comScore US Smartphone Platform Share

source: comScore.com, Raymond James research

Bad Interfaces

- Encumbering
- Confusing
- Slow
- Trust (ex. windows crashing)

- What's wrong with each?
 - Type of error
 - Who is affected
 - Impact
- What's a redesign solution?

Coke freestyle

http://www.creativecrash.com/system/photos/000/106/144/106144/big/Freestyle_th007.jpg?1285438080

https://www.youtube.com/watch?v=btMzicBpSK0

Importance of Design

http://www.masternewmedia.org/news/2005/04/17/bad user interface design can.htm

So how do you avoid bad design?

• Example:

Design the ultimate fast food hamburger drive through

Image from: http://pigjockey.com/wp-content/uploads/2009/10/mcdonalds-6.jpg

User persona

user: https://xtensio.com/user-persona/ to create a persona for A. the person you were considering when you developed your interface

B. someone differenet that your first user persona

Did your design support?

- A customer who can't read English?
- A customer who is hearing impaired?
- A customer who has never eaten a hamburger before?
- A customer who is health conscious?
- A customer who has an IQ of less than 8o?
- A customer who is over 7' tall
- Did you design an interface for you?
- Is not that what someone already did?

Reflection

- Brainstorm a list of different perspectives.
- I am thinking of ... A drive-through interface... From the point of view of ... the viewpoint you've chosen
- I think ... describe the drive-through interface from your viewpoint. Be an actor take on the character of your viewpoint
- A question I have from this viewpoint is ... ask a question from this viewpoint
- Wrap up: What new ideas do you have about the drive-through that you didn't have before? What new questions do you have?

Good HCI

You can't create one just by sitting around and dreaming one up

- What do you rely on?
 - Known design solutions
 - Research
 - User feedback
- When in the development process should HCI be considered?
 - Throughout the development process (Lean UX)

Cultural and International Diversity

- Language
- Date / Time conventions
 - 1/4/15
- Weights and Measures
- Reading: left-to-right, up-and-down
- Telephone #s and addresses
- Names, titles, salutations
- SSN, ID, passport
- Icons, buttons, colors
- Etiquette, tone, formality
- Real world case: creating a simulation for nursing students. Standards of care vary by area.

Elderly

- How are elderly users different than 18-65 year old users?
- How would design for elderly users?
- Reduced
 - Motor skills
 - Perception
 - Vision, hearing, touch, mobility
 - Speed
 - Memory
- Other needs
 - Technology experience is varied (How many grandmothers use email? mothers?)
 - Uninformed on how technology could help
 - Practice skills (hand-eye, problem solving)
- Touch screens, larger fonts, louder sounds

Children

- How are children different than 18-65 year old users?
 How would design for children?
- Technology familiarity
- Age changes:
 - Physical dexterity
 - (double-clicking, click and drag, and small targets)
 - Attention span
- Varied backgrounds (socio-economic)
- Goals
 - Educational acceleration
 - Socialization with peers
 - Psychological improve self-image, self-confidence
 - Creativity art, music, etc. exploration

Children

- Teenagers are a special group
 - Next generation
 - Beta test new interfaces, trends
 - Cell phones, text messages, simulations, fantasy games, virtual worlds
- Requires Safety
- They
 - Like exploring (easy to reset state)
 - Don't mind making mistakes
 - Like familiar characters and repetition
 - Don't like patronizing comments, inappropriate humor
- Design: Focus groups

Users with Disabilities

- How would design for users with vision limitations?
- 1998 Amendment to Rehabilitation Act
- Federal law to ensure access to IT, including computers and web sites
- Vision (text-to-speech)
 - Blind (bill-reader)
 - Low-vision
 - Color-blind
- Hearing (conversion of tones to visual signals)
 - Deaf
 - Limited hearing
- Mobility (eye-gaze control, head-mounted optical mice)
- Learning
 - Dyslexia
 - Attention deficient, hemisphere specific, etc.
- Keyboard, mouse, color alternatives

Universal Usability

- Does not mean 'dumbing down'
 - Ex. Helping disabled has helped others (parents w/ strollers, elderly)
 - Ex. Door handles
- Goal: Address the needs of more users unlike yourself!
- Everyone is often not at full faculties at all times

Universal Usability

- Interface should handle diversity of users
 - Backgrounds
 - Abilities
 - Motivation
 - Personalities
 - Cultures
 - Technical capacity (e.g. Shadow Health and Alcorn state example)

Physical Variation

- Field of anthropometry
 - Basic data about human dimensions
 - Is no 'average' user
 - Measures of what is 5-95% for weight, height, gender, culture, etc.
 - Large variance reminds us there is great 'variety'
 - Name some devices that this would affect...

Outline

- Course Information and motivation for HCI
- Design
- Implementation
 - How can we implement a good interface?
- Evaluation

Requirements Analysis

- 1. In designing a building I want inhabitants to move between floors
 - 1. (who are the users) Ascertain users' needs
 - 2. (how often do they move) Ensure proper reliability
 - 3. (what approaches are likely users familiar with) Promote appropriate standardization, integration, consistency, and portability

Ascertain User's Needs

- Develop use cases
 - Actors (who)
 - Goals (what)
 - Scope (for which situations)
 - Environment (where)
 - Minimal Guarantee (minimum to deliver)
 - Satisfaction (when are you done)
 - Equipment (with what)
- Let's look at a use case for project 1

Standardization, Integration, Consistency, Portability

- **Standardization** common user-interface features across multiple applications
 - Apple
 - Web
 - Windows
 - Smart phones
- **Integration** across application packages
 - file formats
- **Consistency** common action sequences, terms, units, layouts, color, typography within an application
- **Portability** convert data and interfaces across multiple hardware and software environments
 - Word/HTML/PDF/ASCII/Flash

Outline

- Course Information and motivation for HCI
- Design
- Implementation
- Evaluation
 - How do you measure a good interface

Usability Measures

- How can we measure the 'goodness' of an interface?
- What are good metrics?
- ISO 9241
 - Effectiveness
 - Efficiency
 - Satisfaction
- Schneiderman
 - Time to learn
 - Speed of performance
 - Rate of errors
 - Retention over time
 - Subjective satisfaction

Usability Motivations

- Time to learn
- Speed of performance
- Rate of errors
- Retention over time
- Subjective satisfaction

- Life-Critical systems
 - Applications: air traffic, nuclear reactors, military, emergency dispatch
 - **Requirements**: reliability and effective (even under stress)
 - Not as important: cost, long training, satisfaction, retention
- Industrial and Commercial Use
 - **Applications**: banking, insurance, inventory, reservations
 - **Requirements**: short training, ease of use/learning, multiple languages, adapt to local cultures, multiplatform, speed
- Office, Home, and Entertainment
 - **Applications**: E-mail, ATMs, games, education, search engines, cell phones/PDA
 - **Requirements**: Ease of learning/use/retention, error rates, satisfaction
 - **Difficulties**: cost, size

Usability Motivations

- Time to learn
- Speed of performance
- Rate of errors
- •Retention over time
- Subjective satisfaction

- Exploratory, Creative, Collaborative
 - **Applications**: Web browsing, search engines, simulations, scientific visualization, CAD, computer graphics, music composition/artist, photo arranger (email photos)
 - **Requirements**: remove the 'computer' from the experience,
 - **Difficulties**: user tech savvy-ness (apply this to application examples)
- Socio-technical systems
 - **Applications**: health care, voting, police
 - **Requirements**: Trust, security, accuracy, veracity, error handling, user tech-savy-ness

Reliability

- Actions function as specified
- Data displayed must be correct
- Updates done correctly
- Leads to trust! (software, hardware, information) – case:
 1994 Pentium FDIV bug
 - Cost to Intel: \$475 million
- Privacy, security, access, data destruction, tampering

No More Norman Doors!

From: http://lcc3710.comprss.com/?p=140

Changing Behavior with Good Design

Piano Stairs – TheFunTheory.com

Images from: http://www.goodexperience.com/broken/i/04/02/america-fitness-s.jpg http://failblog.files.wordpress.com/2009/08/fail-owned-lazy-escalator-fail.jpg?w=500&h=375