

Tema Nº 2

Química General

Estructura de la materia

Ing. Yanina Fernández – Ing. Pablo Rosito

Departamento de Biotecnología y Tecnología Alimentaria Facultad de Ingeniería y Ciencias Exactas Universidad Argentina de la Empresa

Estructura de la materia

Evolución de la teoría atómica

Química General

Estructura de la materia

Evolución de la teoría atómica

EL ÁTOMO

Siglo V a.C.
DEMÓCRITO
Filósofo Griego

Toda la materia está formada por ÁTOMOS

Evolución de la teoría atómica

EL ÁTOMO - DEFINICIÓN

1808 JOHN DALTON Científico Inglés

Define con más precisión a la partícula que forma la materia

Átomo: Unidad básica de un elemento que puede intervenir en una combinación química

Base para la química moderna

Química General

Evolución de la teoría atómica

•Los átomos de un mismo elemento son idénticos en

TAMAÑO

MASA

PROPIEDADES QUÍMICAS

MODELO ATÓMICO DE DALTON

- •Los átomos de un elemento son distintos a los de otro elemento
- •Los átomos se pueden combinar con átomos del mismo elemento dando sustancias simples o con átomos de otros elementos dando compuestos.
- •Los átomos permanecen indivisibles al combinarse químicamente.
- Los COMPUESTOS están formados por átomos de más de un elemento y la relación del número de átomos entre los elementos para esa sustancia es siempre un número entero o fracción sencilla. (Base en "La ley de las proporciones múltiples" de Proust − 1799)

Química General

Evolución de la teoría atómica

REACCIÓN QUÍMICA

Separación

Combinación

Reordenamiento

NUNCA SUPONE CREACIÓN O DESTRUCCIÓN

LEY DE CONSERVACIÓN DE LA MASA

Química General

Evolución de la teoría atómica

EL ELECTRÓN

1897 J. THOMPSON Científico Inglés

Descubrimiento del electrón

Química General

Evolución de la teoría atómica

Química General

Evolución de la teoría atómica

EL PROTÓN

1910
RUTHERFORD
Científico Inglés
Descubrimiento del Protón

Química General

Evolución de la teoría atómica

EL PROTÓN

1910 RUTHERFORD Científico Inglés

Descubrimiento del Protón

Química General

Evolución de la teoría atómica

Conclusiones

La mayor parte del átomo es vacío

Modelo atómico de Rutherford

Las cargas se concentran en el medio

Núcleo

Llama Protones a las partículas con carga + dentro del núcleo

Química General

Evolución de la teoría atómica

EL NEUTRÓN

1932
J. CHADWICK
Científico Inglés

Descubrimiento del Neutrón

Incidencia de rayos α (Alfa) a una lámina de Be (Berilio). El metal emite una radiación de alta energía similar a los rayos γ (Gamma)

Química General

Evolución de la teoría atómica

ELECTRÓN (e)

Partícula con carga NEGATIVA (- 1) J. J. Thomson (1897) y R. A.
 Millikan (1909)

masa 9,10 x 10⁻²⁸ g carga -1,6022 x 10⁻¹⁹ coulombs

PROTÓN (p)

Partícula con carga POSITIVA (+ 1)

• E. Rutherford, H. Geiger, 1910

masa 1,672 x 10⁻²⁴ g carga 1,6022 x 10⁻¹⁹ coulombs

NEUTRÓN (n)

Partícula eléctricamente NEUTRA (0)

• J. Chadwick, 1932

masa 1,674 x 10⁻²⁴ g

Estructura de la materia

Número atómico, número de masa e Isótopos

Número atómico (Z) = número de protones en el núcleo.

Número de masa (A) = número de protones + número de neutrones = número atómico (Z) + número de neutrones

Números enteros positivos

Número atómico \longrightarrow Z \longrightarrow A \longrightarrow Símbolo del elemento

Número de Neutrones ???

Estructura de la materia

Número atómico, número de masa e Isótopos

Isotópos son átomos del mismo elemento (X) con diferente número de neutrones en su núcleo.

El 99,985% no tiene neutrones y el 0,015% tiene 1 solo.

- 13 isótopos del Carbono
- 25 isótopos del uranio
- 3500 isótopos de los 114 elementos

Estructura de la materia

Número atómico, número de masa e Isótopos

Isotópos son átomos del mismo elemento (X) con diferente número de neutrones en su núcleo.

Utilizado en

reactores
nucleares y en ← 235
nucleares y en 92

bombas atómicas
- INESTABLE vida corta

Número atómico, número de masa e Isótopos

Los isótopos de un mismo elemento tienen prácticamente las mismas propiedades químicas, pero difieren en las físicas

•Algunos elementos existen en la Naturaleza en una sola forma isotópica (berilio, flúor, sodio).

- •La mayor parte de los elementos poseen más de un isótopo natural.
- •Algunos elementos tienen 30 isótopos

Los átomos de diferentes elementos que tienen el mismo **número de masa** se denominan <u>isóbaros</u>

Los átomos de elementos diferentes que poseen el mismo **número de neutrones**, que se conocen como **isótonos**

TABLA PERIÓDICA DE LOS ELEMENTOS

TABLA PERIÓDICA DE LOS ELEMENTOS

Se agrupan los elementos que tienen propiedades químicas y físicas semejantes:

- -Horizontal Períodos
- -Vertical Grupos

Moléculas e Iones

MOLÉCULA

Agregado de **por lo menos 2** átomos iguales o diferentes, unidos a través de enlaces químicos y con una disposición particular y proporciones fijas

Son <u>eléctricamente neutras</u>

Ej. Moléculas diatómicas

H₂ N₂ O₂ F₂ CO

Ej. Moléculas poliatómicas

O₃ H₂O NH₃ glucosa

IÓN Átomo o grupo de átomos que tienen <u>carga + ó –</u>

Se forman por **pérdida de electrones**

Catión: carga +

Anión: carga –

Átomo Na	Átomo Na +	Ej. lones monoatómicos
11 protones	11 protones	K ⁺ Mg ²⁺ Fe ³⁺ S ²⁻
11 electrones	10 electrones	J
Átomo Cl	Átomo Cl-	
	<i>E</i>	j. Iones poliatómicas
17 protones	17 protones	OH- NH ₄ +
17 electrones	18 electrones	3

Moléculas e Iones

Fórmula molecular

Indica el <u>n° exacto</u> de átomos de cada elemento que están presentes en la unidad más pequeña de una sustancia

Modelo de esferas

Hidrogeno

H₂

H-H

Agua

 H_2O

H - O - H

Amoniaco

NH.

Moléculas e Iones

Fórmula empírica

Indica <u>cuáles elementos</u> están presentes y la **proporción mínima,** en números enteros, entre sus átomos.

NO indica en n° real de átomos en la molécula

Fórmula molecular	Fórmula empírica
H_2O_2	НО
N_2H_4	NH_2
H_2O	H_2O
CO_2	CO_2

Compuestos iónicos

No están formados por unidades moleculares discretas, son neutros

fórmula molecular ~ fórmula empírica

Estructura de la materia

Masa atómica

- Las relaciones de masa entre los átomos y las moléculas ayudan a explicar la composición de los compuestos.
- Masa de un átomo es la suma de la masa de los electrones, los protones y los neutrones.
- La masa de un átomo es muy pequeña y existe un instrumento para medirla

Masa atómica es la masa de un átomo en unidades de masa atómica (uma).

Determinar la masa de un sólo átomo comparandola con la masa de otro átomo

Por definición:

1 átomo ¹²C "pesa" 12 uma

En esta escala

 $^{1}H = 1,008 \text{ uma}$

¹⁶O = 16,00 uma

Estructura de la materia

Masa atómica Promedio

Metaloides

No metales

Th

(231)

238.0

El litio natural es:

7,42% ⁶Li (6,015 uma)

92,58% ⁷Li (7,016 uma)

Masa atómica promedio del Li:

1A																	8
1 H	2				24 — Cr	— Ni	ímero a	tómico				13	14	15	16	17	1
1.008	2 2A	52.00 — Masa atómica								3A	4A	5A	6A	7A	4.		
3 Li 6.941◀	4 Be 9.012		Ma	sa at	tómi	ica p	rom	edic	6.5	941)		5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	1 20
11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	39
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	83
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	13
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	1 (2
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (257)	105 Ha (260)	106 Sg (263)	107 Ns (262)	108 Hs (265)	109 Mt (266)	110	111	112						

152.0

Estructura de la materia

Número de Avogadro

El *mol* es la cantidad de una sustancia que contiene tantas unidades elementales (átomos, moléculas, etc) como átomos hay exactamente en 12,00 gramos de ¹²C

1 mol = N_A = 6,0221367 x 10²³

Número de Avogadro (N_A)

Estructura de la materia

Masa Molar de un elemento

iones

Masa molar es la masa de 1 mol de moléculas en gramos

átomos

1 mol 12 C átomos = 6,022 x 10^{23} átomos = 12,00 g 1^{12} C átomo = 12,00 uma

1 mol 12 C átomos = 12,00 g 12 C

1 mol átomos de litio= 6,941 g de Li

Para cualquier elemento

masa atómica (uma) = masa molar (gramos/mol)

Estructura de la materia

Masa Molar de un elemento

 \mathcal{M} = masa molar en g/mol

 N_A = Número de Avogadro

Estructura de la materia

Masa Molecular

Masa molecular (o peso molecular) es la suma de las masas atómicas (en uma) en una molécula.

Para cualquier elemento

masa molecular (uma) = masa molar (gramos)

1 molécula
$$SO_2 = 64,07$$
 uma
1 mol $SO_2 = 64,07$ g SO_2

Estructura de la materia

Composición Porcentual

Composición porcentual de un elemento en un compuesto =

n x masa molar del elemento x 100% masa molar del compuesto

n es el número de moles del elemento en 1 mol del compuesto

%C =
$$\frac{2 \times (12,01 \text{ g})}{46,07 \text{ g}} \times 100\% = 52,14\%$$

%H = $\frac{6 \times (1,008 \text{ g})}{46,07 \text{ g}} \times 100\% = 13,13\%$
%O = $\frac{1 \times (16,00 \text{ g})}{46,07 \text{ g}} \times 100\% = 34,73\%$