ICFP M2 - Statistical physics 2 - TD n° 6 The trap model - Solution

Grégory Schehr, Francesco Zamponi

1. The trap model is a Markov dynamics on the wells $E_{\alpha} \geq 0$, specified by the following transition probabilities $W(\alpha \to \gamma)$, from the well of depth E_{α} to the one of depth E_{γ} , within the time interval t and $t + \mathrm{d}t$

$$W(\alpha \to \alpha) = 1 - r(E_{\alpha})dt + \frac{1}{N}r(E_{\alpha})dt$$

$$W(\alpha \to \gamma) = \frac{1}{N}r(E_{\alpha})dt , \ \gamma \neq \alpha ,$$
(1)

with $r(E_{\alpha}) = e^{-\beta E_{\alpha}}$. The corresponding master equation satisfied by $\widehat{P}(\alpha, t)$, the probability to find the particle in the α -th well at time t reads

$$\widehat{P}(\alpha, t + \mathrm{d}t) = \widehat{P}(\alpha, t)W(\alpha \to \alpha) + \sum_{\gamma \neq \alpha} \widehat{P}(\gamma, t)W(\gamma \to \alpha) . \tag{2}$$

Using the expressions of the transition probabilities (1), one finds

$$\widehat{P}(\alpha, t + \mathrm{d}t) = \widehat{P}(\alpha, t)(1 - r(E_{\alpha})\mathrm{d}t) + \frac{1}{N} \sum_{\gamma=1}^{N} \widehat{P}(\gamma, t) r(E_{\gamma})\mathrm{d}t . \tag{3}$$

Taking the limit $dt \to 0$, one obtains the master equation

$$\frac{\partial \widehat{P}(\alpha, t)}{\partial t} = -r(E_{\alpha})\widehat{P}(\alpha, t) + \frac{1}{N} \sum_{\gamma=1}^{N} r(E_{\gamma})\widehat{P}(\gamma, t) . \tag{4}$$

Note that by summing the above equation over $\alpha=1,\cdots,N$ one easily checks that $\sum_{\alpha=1}^{N}\widehat{P}(\alpha,t)$ is conserved, as it should, since $\sum_{\alpha=1}^{N}\widehat{P}(\alpha,t)=1$ for all time $t\geq 0$.

2. Denoting the Gibbs-Boltzmann distribution $\hat{P}_{eq}(\alpha) = e^{\beta E_{\alpha}}/Z$ with $Z = \sum_{\alpha=1}^{N} e^{\beta E_{\alpha}}$, it is easy to check that

$$-r(E_{\alpha})\widehat{P}_{eq}(\alpha) + \frac{1}{N} \sum_{\gamma=1}^{N} r(E_{\gamma})\widehat{P}_{eq}(\gamma) = -\frac{1}{Z} + \frac{1}{Z} = 0.$$
 (5)

Note that from Eq. (1) one can check that the dynamics actually satisfies detailed balance, i.e., $W(\alpha \to \gamma) \widehat{P}_{eq}(\alpha) = W(\gamma \to \alpha) \widehat{P}_{eq}(\gamma) = 1/(NZ)$, for all α, γ .

3. The probability density P(E,t) to find the particle in a well of depth E at time t is given, in terms of the $\widehat{P}(\alpha,t)$, by

$$P(E,t) = \sum_{\alpha=1}^{N} \widehat{P}(\alpha,t) \, \delta(E - E_{\alpha}) . \tag{6}$$

Therefore, taking a time derivative of Eq. (6) and using the master equation (4), one gets

$$\frac{\partial P(E,t)}{\partial t} = \sum_{\alpha=1}^{N} \delta(E - E_{\alpha}) \left[-r(E_{\alpha}) \widehat{P}(\alpha,t) + \frac{1}{N} \sum_{\gamma=1}^{N} r(E_{\gamma}) \widehat{P}(\gamma,t) \right]$$

$$= \underbrace{-r(E) P(E,t)}_{\text{rate of exit from depth } E} + \underbrace{\left(\frac{1}{N} \sum_{\alpha=1}^{N} \delta(E - E_{\alpha}) \right)}_{\text{uniform choice of a well after an escape}} \underbrace{\left(\int_{0}^{\infty} r(E') P(E',t) \, dE' \right)}_{\text{total rate of escape}}, (8)$$

where in the last line we have used Eq. (6), together with the fact that, by convention, $E_{\alpha} \geq 0$ for all $\alpha = 1, \dots, N$.

4. We denote by $\tau(E)$ the time of first escape from a well of depth E. Let us compute first the cumulative probability $\mathbb{P}(\tau(E) \geq t)$. We divide the time interval [0,t] in $n = t/\mathrm{d}t$ infinitesimal intervals, each of size $\mathrm{d}t$. During each of these intervals, the probability to escape is thus $r(E)\mathrm{d}t$ (independently of what happens before). Therefore, the probability not to escape in any of these intervals is

$$\mathbb{P}\left[\tau(E) \ge t\right] = \left[1 - r(E)dt\right]^n = \left[1 - r(E)dt\right]^{\frac{t}{dt}} = e^{-r(E)t}.$$
 (9)

Hence the probability law of $\tau(E)$, which is minus the derivative of $\mathbb{P}[\tau(E) \geq t]$ with respect to t, is an exponential distribution with parameter r(E). Its expectation value $\overline{\tau}(E)$ is thus given by

$$\overline{\tau}(E) = \int_0^\infty e^{-r(E)t} \ r(E) t \, dt = \frac{1}{r(E)} = e^{\beta E} \ , \tag{10}$$

which has an Arrhenius form: the deeper the well, the longer the time spent (on average) in it.

5. We now consider that the depths E_{α} are i.i.d. random variables, which amounts to assume that at each escape a new well with depth E_{γ} is found, neglecting the possibility to visit twice, or more, the same well, which is justified in the limit $N \to \infty$. Moreover, in the limit $N \to \infty$, one has

$$\lim_{N \to \infty} \frac{1}{N} \sum_{\alpha=1}^{N} \delta(E - E_{\alpha}) = \rho(E) , \qquad (11)$$

from which it follows that Eq. (8) becomes, in the limit $N \to \infty$

$$\frac{\partial P(E,t)}{\partial t} = -r(E)P(E,t) + \rho(E)\left(\int_0^\infty r(E')P(E',t)\,\mathrm{d}E'\right). \tag{12}$$

6. If we set $P_{\rm st}(E) = \frac{\rho(E)}{r(E)}$ it is easy to check that

$$-r(E)P_{\rm st}(E) + \rho(E) \left(\int_0^\infty r(E')P_{\rm st}(E')dE' \right) = -\rho(E) + \rho(E) \int_0^\infty \rho(E')dE' = 0 , \qquad (13)$$

where we have used that $\int_0^\infty \rho(E') dE' = 1$, which follows straightforwardly from Eq. (11).

7. The correlation function $C(t_w + t, t_w)$ is defined by the following probability

$$C(t_{\rm w} + t, t_{\rm w}) = \mathbb{P}[\text{particle stays in the same trap in the time interval } [t_{\rm w}, t_{\rm w} + t]]$$
 (14)

which can be computed by integrating over energy depths E as

$$C(t_{\rm w} + t, t_{\rm w}) = \int_0^\infty \mathbb{P}[\text{part. stays in the same trap of depth in } [E, E + dE] \text{ within } [t_{\rm w}, t_{\rm w} + t]] dE$$

$$= \int_0^\infty P(E, t_{\rm w}) \mathbb{P}[\tau(E) \ge t] dE = \int_0^\infty P(E, t_{\rm w}) e^{-t e^{-\beta E}} dE, \qquad (15)$$

where we have used Eq. (9).

8. If one assumes that $\rho(E) = e^{-E}$ for $E \ge 0$ — and of course $\rho(E) = 0$ if E < 0 — the stationary distribution $P_{\rm st}(E)$ defined above in question 6 is given by

$$P_{\rm st}(E) = \frac{\rho(E)}{r(E)} = e^{-(1-\beta)E} , E \ge 0 .$$
 (16)

Hence, if $\beta < 1$ (i.e. at high temperature), $P_{\rm st}(E)$ can be normalized and $\widehat{P}_{\rm st}(E) = (1 - \beta)e^{-(1-\beta)E}$ is a well normalized stationary distribution. However, for $\beta \geq 1$ the integral $\int_0^\infty P_{\rm st}(E) dE$ diverges, which means that there is no stationary state in the low temperature phase $\beta \geq 1$, i.e. $T \leq T_c = 1$.

9. We recall that the average trapping time $\overline{\tau}(E)$ within a well of depth E is given by $\overline{\tau}(E) = e^{\beta E}$ (here the average has to be understood as an average over different realizations of the Markov dynamics defined by Eq. (1) for a fixed realisation of the depths E_{α}). The probability distribution of $\overline{\tau}$ can be simply obtained by writing $p(\overline{\tau})d\overline{\tau} = \rho(E)dE$ which leads to

$$p(\overline{\tau}) = \frac{1}{\beta} \frac{1}{\overline{\tau}^{1 + \frac{1}{\beta}}} , \ \overline{\tau} \in [1, +\infty) . \tag{17}$$

This distribution in Eq. (17) shows that at high temperature $\beta < 1$, $p(\overline{\tau})$ decays sufficiently fast such that at least the first moment of $p(\overline{\tau})$ exists (and possibly higher moments if β is sufficiently small). On the other hand, at low temperature $\beta \geq 1$ the distribution $p(\tau)$ has a very heavy tail such that the average trapping time is infinite, which means physically that the particle stays trapped in the same (deep) well for very long times.

10. For $\beta < 1$, in the limit $t_{\rm w} \to \infty$, $P(E, t_{\rm w}) \to \widehat{P}_{\rm st}(E) = (1 - \beta)e^{-(1-\beta)E}$. Hence, substituting $P(E, t_{\rm w})$ by its stationary value in Eq. (15) one obtains

$$\lim_{t_{\rm w} \to \infty} C(t_{\rm w} + t, t_{\rm w}) = C_{\rm st}(t) = \int_0^\infty (1 - \beta) e^{-(1 - \beta)E} e^{-t e^{-\beta E}} dE$$

$$= \frac{1 - \beta}{\beta} \frac{1}{t^{\frac{1}{\beta} - 1}} \int_0^t v^{\frac{1}{\beta} - 2} e^{-v} dv , \qquad (18)$$

where, in the last line, we have performed the change of variable $v = t e^{-\beta E}$. Note that the integral over v in Eq. (18) is well defined for $\beta < 1$ since the integrand behaves as $v^{\frac{1}{\beta}-2}$ as $v \to 0$, which is integrable for $v \to 0$. On the other hand, this integral over v is well defined as $t \to \infty$ (due to the exponential factor), which implies that $C_{\rm st}(t)$ decays to zero, for large t, as

$$C_{\rm st}(t) \underset{t \to \infty}{\sim} \Gamma(\beta) \frac{1}{t^{\frac{1}{\beta}-1}} ,$$
 (19)

where we have used $\int_0^\infty v^{1/\beta-2}e^{-v}dv = \Gamma(1/\beta-1)$ with $\Gamma(z)$ the gamma function, together with the functional identity $z\Gamma(z) = \Gamma(z+1)$.

11a. Let us denote by $\tau_1, \tau_2, \dots, \tau_n$ the times spent in the n wells visited by the particle up to time t, such that $\tau_1 + \tau_2 + \dots + \tau_n = t$. Since the τ_i 's are i.i.d. random variables drawn from the heavy tailed distribution in Eq. (17), $p(\bar{\tau}) \propto \bar{\tau}^{-1-\alpha}$ for $\bar{\tau} \geq 1$ with $\alpha = 1/\beta < 1$, from the first lecture and TD, we have

$$S_n = \tau_1 + \tau_2 + \dots + \tau_n = \mathcal{O}(n^{1/\alpha})$$
(20)

$$\tau_{\text{max}} = \max\{\tau_1, \tau_2, \cdots, \tau_n\} = \mathcal{O}(n^{1/\alpha}). \tag{21}$$

Hence, $\tau_{\text{max}} \sim n^{\beta} \sim t$ and if we define E_{max} such that $e^{\beta E_{\text{max}}} = \tau_{\text{max}}$ this means that

$$E_{\text{max}} \sim (\log t)/\beta \sim \log n ,$$
 (22)

which shows that, as time goes on, the particle finds deeper and deeper wells and that is why the dynamics never reaches a stationary state.

11b. Under the assumption that P(E,t) reaches a stationary solution in terms of the variable $e^{\beta E}/t$, it is natural to perform the change of variable $E \to u = e^{\beta E}/t_{\rm w}$ in Eq. (15) such that $P(E,t_{\rm w}){\rm d}E = \phi(u){\rm d}u$ – with $\phi(u)$ being independent of time. This yields, taking the limit $t,t_{\rm w}\to\infty$ but keeping the ratio $\theta=t/t_{\rm w}$ fixed

$$\lim_{t_{\rm w}\to\infty} C(t_{\rm w} + \theta t_{\rm w}, t_{\rm w}) = C_{\rm ag}(\theta) , \qquad C_{\rm ag}(\theta) = \int_0^\infty \phi(u) e^{-\frac{\theta}{u}} du .$$
 (23)

This dependence of the correlation function on $t/t_{\rm w}$ is characteristic of the aging regime – in contrast to the stationary regime where it depends only on t, see Eq. (18).