

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Laboratorium problemowe II

Magnetyczna lewitacja

Autorzy:
Piotr Pałucki
Filip Kubicz

10 X 2016 - 12 XII 2016

1 Model matematyczny stanowiska MagLev

Lewitacja magnetyczna to zjawisko występujące, kiedy ferromagnetyczny obiekt znajdzie się w polu magnetycznym skierowanym pionowo w górę, na tyle silnym, że wytworzona siła zrównoważy działającą na przedmiot grawitację. Zjawisko to stosuje się obecnie w łożyskach magnetycznych w pociągach, rozwijanych głównie w Japonii (MLX01) i w Niemczech (TR-08).

W laboratorium Katedry Automatyki EAIiIB AGH znajduje się stanowisko przeznaczone do badania magnetycznej lewitacji. Obiektem unoszącym się jest metalowa sfera. Pole magnetyczne jest wytwarzane przez cewkę umieszczoną ponad sferą. Dzięki pracom [?], [?] i [?] wiemy w jaki sposób modelować zachowanie układu, a także identyfikować jego parametry fizyczne.

Rysunek 1: Schemat stanowiska służący do wyznaczania równań, źródło [?]

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = \frac{1}{2m} \frac{dL(x_1)}{dx_1} x_3^2(t) + 10^{-3} g \\ \dot{x}_3 = -\frac{1}{T} x_3(t) + \frac{k}{T} (u(t) + u_c) \end{cases}$$
 (1)

Gdzie:

 \boldsymbol{x}_1 - położenie sfery [m]

 x_2 - prędkość sfery [m/s]

 x_3 - prąd w cewce [A]

1.1 Analiza modelu

Zmienne stanu i sterowanie spełniają warunki:

$$\begin{cases} x_{1}(t) \in [0, x_{max}] \\ x_{2}(t) \in R \\ x_{3}(t) \in [ku_{c}, k(u_{c} + u_{max})] \\ u(t) \in [0, u_{max}] \end{cases}$$
(2)

2 Identyfikacja

2.1 Identyfikacja charakterystyki czujnika położenia

Pomiar położenia sfery w układzie magnetycznej lewitacji jest dokonywany optycznie. Z jednej strony znajduje się źródło światła, a po przeciwnej stronie fotodioda z przetwornikiem A/C, która podaje pewne napięcie u_x . Podczas identyfikacji poszukujemy zależności tego napięcia od położenia sfery:

$$u_x = g(x_1) \tag{3}$$

Poszukujemy charakterystyki statycznej $g(x_1)$, którą otrzymamy przykręcając sferę do śruby i podnosząc ją co ustalony skok 0,7 mm. Za każdym razem dokonujemy pomiaru napięcia podanego przez detektor światła.

Do pracy z modelem potrzebna jest znajomość położenia sfery, dlatego na rysunku 2 charakterystyka odwrotną do zależności 3.

[trzeba przeskalować napięcie jeszcze, można zrobić wykres od -ux]

Rysunek 2: Charakterystyka statyczna optycznego czujnika położenia

W pracy [?] autor dokonał aproksymacji otrzymanej charakterystyki odwrotnej sumą funkcji wykładniczych metodą prób i błędów. Nie będziemy dokonywać takiej aproksymacji, ponieważ podczas pracy z modelem w laboratorium użyjemy bloku *LUT z interpolacją* oferowanego przez Simulink.

2.2 Identyfikacja parametrów cewki k, T, u_c

Aby wiedzieć, jak zmienia się prąd cewki w zależności od użytego sterowania, czyli przyłożonego napięcia u, należy wyznaczyć parametry k,T oraz u_c .

2.2.1 Pomiary w stanie ustalonym cewki

Zależność prądu od napięcia jest liniowa

$$i = k(u + u_c) \tag{4}$$

Parametry k i u_c (wzmocnienie oraz stałe napięcie na cewce) wyznaczymy mierząc prąd w stanie ustalonym dla różnych wartości napięcia sterującego.

Rysunek 3: Identyfikacja parametrów statycznych cewki

2.2.2 Pomiary stanów przejściowych cewki

Stałą czasową cewki T można wyznaczyć obserwując odpowiedź skokową prądu. Zwalniamy PWM, zapinamy sterowanie (wypelnienie) na 50 procent i dzięki temu mamy skoki typowo napięciowe. Preskaler 4096.

Rysunek 4: Identyfikacja parametrów statycznych cewki

Rysunek 5: Identyfikacja parametrów statycznych cewki

Korzystając z metody najmniejszych kwadratów wyznaczono parametry, których wartości umieszczono w tabeli 2.

2.3 Identyfikacja indukcyjności cewki $L(x_1)$

W celu identyfikacji zależności indukcyjności cewki od położenia w układzie otwartym należy wykonać serię pomiarów napięcia i prądu dla różnych położeń sfery. Zmierzona rezystancja

cewki wynosi $R=4,7\Omega$. Indukcyjność obliczymy ze wzoru

$$L = \frac{1}{\omega} \sqrt{\frac{U^2}{I^2} - R^2} \tag{5}$$

gdzie ω - częstość napięcia zasilającego ($\omega=314~{\rm rad/s}$)

U - napięcie skuteczne na cewce [V]

I - prąd płynący przez cewkę [A]

R - rezystancja cewki

Poszukujemy funkcji postaci

$$L(x_1) = L_0 + 2 \cdot 10^{-3} \frac{mg}{a^2 x + ab} \tag{6}$$

Ze względu na bardzo małe zmiany indukcyjności podczas pomiarów w pętli otwartej, postanowiliśmy użyć regulatora stabilizującego i znaleźć pochodną indukcyjności korzystając z równania drugiego modelu 1. Z pomocą prowadzącego dobrane zostały nastawy pozwalające uzyskać efekt stabilizacji z wystarczającą dokładnością. Przedstawia je tabela 1.

człon	wartość
Р	50
I	5
D	2.5
Offset	0.52

Tablica 1: Parametry użytego regulatora PID

Dysponując możliwością ustawiania pozycji sfery mogliśmy przejść do próby wyznaczenia pochodnej indukcyjności. Poszukiwana postać pochodnej funkcji L:

$$L'(x) = -2 \cdot 10^{-3} \frac{mg}{(ax+b)^2} \tag{7}$$

W stanie ustalonym zachodzi liniowa zależność prądu w stanie ustalonym od położenia:

$$I(x) = ax + b = k(u + u_c)$$
(8)

Przypuszczenia te potwierdza rysunek 6, przedstawiający dane zebrane podczas identyfikacji obiektu.

Rysunek 6: Identyfikacja prądu cewki w funkcji położenia

Dzięki identyfikacji możliwe było wyznaczenie parametrów prostej wspominanej we wzorze 8, które niezbędne są do wyznaczenia wzoru na pochodną indukcyjności (wzór 7).

Rysunek 7: Identyfikacja pochodnej indukcyjności cewki w funkcji położenia

Wszystkie wyznaczone parametry przedstawia tabela 2.

parametr	wartość
k	
T_{up}	0.0245s
T_{down}	0.023s
u_c	
a	0.0928
b	0.0214
kolejny parametr	2.5
kolejny parametr	0.52

Tablica 2: Parametry wyznaczone w identyfikacji obiektu

2.4 Weryfikacja modelu

Porównanie obiektu i modelu [wykres stabilizacji PID obiektu] [wykres porównania obiektu i modelu pod kontrolą PID]

3 Regulator liniowo-kwadratowy

Po weryfikacji modelu, równania zostały zlinearyzowane. Przyjęto kilka punktów równowagi: 12mm, 14mm, 16mm i 18mm, aby móc przełączać otrzymany później regulator podczas pracy układu i stabilizować go w różnych punktach pracy.

3.1 Linearyzacja

Linearyzacji modelu nieliniowego dokonuje się w otoczeniu punktu równowagi, zastępując nieliniowe równania stanu

$$\dot{x} = f(x) \tag{9}$$

liniowymi równaniami, które można przedstawić w postaci macierzowej

$$\dot{x} = Ax + Bu \tag{10}$$

Aby otrzymać macierz stanu A, należy wyznaczyć macierz Jacobiego pierwszych pochodnych

$$J = \frac{\partial f}{\partial x}(x) \tag{11}$$

a następnie obliczyć jej wartości dla poszczególnych punktów stacjonarnych x*

$$A = J(x*) = \frac{\partial f}{\partial x}(x*) \tag{12}$$

Dla równań magnetycznej lewitacji (1) zlinearyzowana macierz ma postać

$$A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{2 \cdot 10^{-3} a g x_3^2}{(ax_1 + b)^3} & 0 & \frac{-2 \cdot 10^{-3} g x_3}{(ax_1 + b)^2} \\ 0 & 0 & -\frac{1}{T} \end{bmatrix}$$

W punkcie równowagi $x_{0_{14}} = \begin{bmatrix} 0,014\\0\\0,024 \end{bmatrix}$ macierz stanu i wektor sterowań przyjmują wartości

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0,0897 & 0 & -0,9139 \\ 0 & 0 & -41,6667 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 0 \\ 10,8625 \end{bmatrix}$$

3.2 Synteza regulatora LQ

Regulator liniowo-kwadratowy dla nieskończonego horyzontu czasowego to liniowy regulator od całego stanu, który sterowaniem

$$u = -Kx \tag{13}$$

Sprowadza zlinearyzowany układ do zerowego punktu równowagi. Minimalizuje przy tym funkcję celu

$$J = \frac{1}{2} \int_0^\infty x^T Q x + u^T R u \, dt \tag{14}$$

Macierz K jest dana wzorem

$$K = R^{-1}B^TP (15)$$

gdzie P to rozwiązanie algebraicznego równania Riccatiego

$$A^{T}P + PA - PBR^{-1}B^{T}P + Q = 0 (16)$$

Dla macierzy wag

$$Q = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} 1 \end{bmatrix}$$

Macierz regulatora optymalnego LQ została obliczona jako:

$$K = \begin{bmatrix} -2,4362 \\ -4,7518 \\ 0,2278 \end{bmatrix}$$

Powstały układ zamknięty charakteryzuje się wartościami własnymi

$$E = eig(A - BK) \begin{bmatrix} -43,058 \\ -0,5413 + 0,4204i \\ -0,5413 - 0,4204i \end{bmatrix}$$

Jak wspomniano na początku rozdziału, chcemy stabilizować układ w niezerowych punktach równowagi, gdzie sterowanie ma pewną ustaloną, niezerową wartość. W tym celu używamy prawa sterowania zaczerpniętego z pracy [?]

$$u = -K_x x - K_r r \tag{17}$$

gdzie r jest wartością zadaną, a K_r macierzą wag sprzężenia w przód (feed-forward) od wartości zadanej. Wartość macierzy K_r wyznacza się rozwiązując zmodyfikowane równanie Riccatiego[?].

Stabilizacja modelu z regulatorem LQR dla linearyzacji w punkcie równowagi $x_{0_{14}} = \begin{bmatrix} 0,014\\0\\0,024 \end{bmatrix}$ została przedstawiona na wykresie 8.

Rysunek 8: Model nieliniowy z regulatorem LQ dostosowanym do stabilizacji w niezerowych punktach równowagi

Rysunek 9: Stabilizacja modelu nieliniowego Mag
Lev regulatorem LQ dla modelu zlinearyzowanego wokół stanu ustalonego
14 mm $\,$