Вступительный экзамен в Школу анализа данных

20 мая 2017

- 1. Верно ли, что если матрица $A \in \mathrm{Mat}_n(\mathbb{R})$ симметрична и положительно определена, то квадратичная форма $q(X) = \mathrm{tr}\left(X^T A X\right)$ на пространстве $\mathrm{Mat}_n(\mathbb{R})$ будет положительно определённой?
- 2. Известно, что $a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \ldots + \frac{a_n}{n+1} = 0$. Докажите, что многочлен $a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ имеет хотя бы один корень.
- 3. Пусть X_1, \ldots, X_n независимые одинаково распределённые случайные величины с математическим ожиданием a и дисперсией σ^2 , принимающие положительные значения. Пусть также m < n. Найдите математическое ожидание отношения

$$\frac{X_1 + \ldots + X_m}{X_1 + \ldots + X_n}$$

- 4. Чёрный куб покрасили снаружи белой краской, затем разрезали на 27 одинаковых маленьких кубиков и как попало сложили из них большой куб. С какой вероятностью все грани этого куба будут белыми?
- 5. Придумайте структуру для хранения действительных чисел, которая могла бы выполнять запросы "добавить элемент", "удалить элемент", "удалить максимальный элемент" и "удалить минимальный элемент", причём последние два выполняла бы за время O(1). Постарайтесь также минимизировать время выполнение первых двух запросов. Можно ли сделать так, чтобы и они тоже выполнялись за время O(1)?
- 6. Последовательность a_n задана условиями $a_1 = 1$, $a_{n+1} = \sin(a_n)$. Сходится ли ряд $\sum_{i=1}^{\infty} a_i$?
- 7. Назовём матрицу вращательной, если при повороте на 90° вокруг центра она не меняется.
 - (a) Докажите, что для любого набора чисел $\lambda_1, \dots, \lambda_k \in \mathbb{R}$ найдётся $n \in \mathbb{N}$ и вращательная матрица $n \times n$, для которой $\lambda_1, \dots, \lambda_k$ являются собственными значениями.
 - (б) Докажите, что у вращательной матрицы с действительными коэффициентами все собственные векторы v с отличными от нуля действительными собственными значениями симметричны (то есть $v_i = v_{n-i+1}$).
- 8. В неориентированном графе без петель и кратных рёбер 2n вершин и n^2+1 ребро. Треугольником в графе называется фигура, состоящая из трёх вершин и трёх соединяющих их рёбер. Докажите, что в этом графе найдутся два треугольника с общим ребром.