ADATSZERKEZETEK ÉS ALGORITMUSOK

Tömbök – ADT

- Definíció
 - Az E alaptípusú k ($k \ge 1$) dimenziós T tömbtípus
 - Legyen $I = I_1 \times I_2 \times \cdots \times I_k$ egy indexhalmaz, ahol $\forall j \in [1, k]: I_j = [1, n_j]$ a kezdőérték lehetne m_j is.
 - Az $A \in T$ tömbnek $N = n_1 * n_2 * \cdots * n_k$ eleme van $\{a_1, a_2, \dots, a_N\}$
- Mindig van egy $f: I \to \{a_1, a_2, ..., a_N\}$ egy-egy értelmű leképezés
- Jelölés
 - $A[i_1, i_2, ..., i_k]$ a tömbnek az $i_1, i_2, ..., i_k$ indexek által azonosított eleme

Tömbök – ADT

- Invariáns is adható speciális megszorítás
 - Példa: szimmetrikus, alsó ⊿, ritka, stb.
- Műveletek
 - Indexelés: az $i_1, i_2, ..., i_k$ indexhez tartozó $A[i_1, i_2, ..., i_k]$ elem kiválasztása
 - Elemmódosítás értékadás: $A[i_1, i_2, ..., i_k] \coloneqq a$
 - Értékadás A := B
- Elnevezés
 - Vektor: k=1
 - Mátrix: k=2

Tömbök – ADS

- Nem kötelező szerkezetet (rákövetkezést) definiálni az elemek között
- Elfogadott a köv $_j$ reláció bevezetése: $\forall j \in [1, k]$ -ra
 - $k\"ov_j(A[i_1,\ldots,i_j,\ldots,i_k]) = A[i_1,\ldots,i_j+1,\ldots,i_k],$ ha $i_i < n_i$, egyébként $k\"ov_i$ nem definiált.
 - Egy belső elemnek minden dimenzióban van rákövetkezője

Tömbök – ADS

- A legalább 2 dimenziós tömböt ortogonális adatszerkezetnek nevezik.
- k = 2-re a gráf:

- Tömbök aritmetikai ábrázolása:
- Egy k dimenziós tömböt szeretnénk elhelyezni egy alkalmas méretű egydimenziós tömbben (vektorban), és megadjuk a leképezés címfüggvényét.
- Az elhelyezés általában
 - sorfolytonos (SF)
 - oszlopfolytonos (OF)

- Aritmetikai ábrázolás
 - Tömb

Mátrix elhelyezése vektorban

- Indexfüggvény: $\forall i \in [1, n_1], \forall j \in [1, n_2]$
 - SF: $\operatorname{ind}(A[i,j]) = (i-1) * n_2 + j$
 - OF: $ind(A[i,j]) = (j-1) * n_1 + i$
- Címfüggvény: $\forall i \in [1, n_1], \forall j \in [1, n_2]$
 - SF: $cim(A[i,j]) = cim(A) + (i-1) * n_2 * h + (j-1) * h$
 - OF: $cim(A[i,j]) = cim(A) + (j-1) * n_1 * h + (i-1) * h$

egy elem hossza

Szokták úgy is tekinteni, hogy a mátrixnak m sora és n oszlopa van

- Indexfüggvény: $\forall i \in [1, m], \forall j \in [1, n]$
 - SF: ind(A[i,j]) = (i-1) * n + j
 - OF: ind(A[i,j]) = (j-1) * m + i
- Címfüggvény: $\forall i \in [1, m], \forall j \in [1, n]$
 - SF: cim(A[i,j]) = cim(A) + (i-1) * n * h + (j-1) * h
 - OF: cim(A[i,j]) = cim(A) + (j-1) * m * h + (i-1) * h

egy elem hossza

Reprezentáció – példa

Adott egy mátrix

a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}	a _{1,6}	 $a_{1,m}$
a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}	a _{2,6}	 $a_{2,m}$
						$a_{\scriptscriptstyle 3,m}$
a _{4,1}	a _{4,2}	a _{4,3}	a _{4,4}	a _{4,5}	a _{4,6}	 $a_{4,m}$
a _{5,1}	a _{5,2}	a _{5,3}	a _{5,4}	a _{5,5}	a _{5,6}	 a _{5,m}
						$a_{n,m}$

Reprezentáció – példa

Adott egy mátrix – tömbben sorfolytonos reprezentálás esetén

a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}	a _{1,5}	a _{1,6}	a _{1,m}
a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}	a _{2,6}	$a_{2,m}$
a _{3,1}	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}	a _{3,6}	a _{3,m}
a _{4,1}	a _{4,2}	a _{4,3}	a _{4,4}	a _{4,5}	a _{4,6}	a _{4,m}
a _{5,1}	a _{5,2}	a _{5,3}	a _{5,4}	a _{5,5}	a _{5,6}	a _{5,m}

Reprezentáció – példa

Adott egy mátrix – tömbben sorfolytonos reprezentálás esetén

A példa kevesebb elem felhasználásával kerül bemutatásra ...

- Az R invariáns leggyakrabban a tömb alakját módosítja
 - Például megadja a 0 elemek helyét, és a nem-nulla elemek határozzák meg a tömb speciális alakját.
- Konvenció
 - a gyakran szereplő elemeket (ez általában a 0) is tároljuk egy példányban az egy dimenziós tömbben, és az erre vonatkozó hivatkozást beépítjük a címfüggvénybe

Tridiagonális mátrix

$a_{1,1}$	$a_{1,2}$	0	0	(0	0									
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	0	(0	0									
0	$a_{3,2}$	$a_{3,3}$	$a_{3,3}$	4 ()	0									
0	0	$a_{4,3}$	$a_{4,.}$	a_4	4,5	0									
0	0	0	$a_{5,.}$	a_{1}	5,5	$a_{5,6}$									
$a_{1,1}$	$a_{1,2}$	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$		

Tridiagonális mátrix – "0" elem tárolásával

$a_{1,1}$	$a_{1,2}$	0	0	0	0		
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	0	0	0		
0	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	0	0		
0	0	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	0		
0	0	0	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$		

• Ha $|i-j| \le 1$, akkor:

•
$$\operatorname{ind}(A[i,j]) = (i-1) * 3 - 1 + \begin{cases} 1, \text{ha } i > j \\ 2, \text{ha } i = j \\ 3, \text{ha } i < j \end{cases}$$

Ha a "0" elemet is tároljuk, a vektor elején

• ind(
$$A[i,j]$$
) =
$$\begin{cases} (i-1)*3+1, \text{ha } i = j+1\\ (i-1)*3+2, \text{ha } i = j\\ i*3, \text{ha } i+1=j\\ 1, \text{k\"{u}l\"{o}nben} \end{cases}$$

Alsó háromszög mátrix

$a_{1,1}$	0	0	0	0			
$a_{2,1}$	$a_{2,2}$	0	0	0			
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	0	0			
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	0			
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$			
						•	

• Elemeinek száma $m = n * \frac{(n+1)}{2} + 1$

•
$$\operatorname{ind}(A[i,j]) = \begin{cases} i * \frac{(i-1)}{2} + j, \text{ ha } i \ge j \\ n * \frac{(n+1)}{2} + 1, \text{ ha } i < j \end{cases}$$

19

Hézagosan kitöltött mátrixok

1	2	0	0	0	6
0	4	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	2
0	0	0	0	0	0

Egy elem ábrázolása:

- Mikor előnyös?
 - a mátrix legyen m * n -es
 - a nem nulla elemek száma k
 - legyen egy érték helyfoglalása h byte
 - egy mutató helyfoglalása p byte
 - egy index helyfoglalása i byte
- A számítás
 - (h + (2 * i) + (2 * p)) * k + (m + n) * p << m * n * h

Feladatok

- Gyakorlásnak gondolkodásra
 - Írjuk meg azt az eljárást (függvényt), ami visszaadja A[i,j] értékét
 - Írjuk meg azt az eljárást, ami módosítja A[i,j] értékét! (nulláról nem nullára, nem nulláról nullára)
 - Adjunk össze két ritka mátrixot!
 - Adjuk meg a szimmetrikus mátrix aritmetikai ábrázolását!

Szekvenciális adatszerkezetek

Következő téma