Rudin Chatper 1: The Complex Numbers

Alex L.

May 25, 2025

Definition: (Complex Numbers)

Complex numbers are ordered pairs (a,b) (ordered meaning $(a,b) \neq (b,a)$) where a,b are real numbers.

We say that complex numbers x = (a, b) and y = (c, d) are equal, x = y if a = c and b = d.

We define addition of complex numbers and multiplication of complex numbers as follows:

- 1. x + y = (a + c, b + d)
- 2. $x \cdot y = (ac bd, ad + bc)$

Theorem:

The operations defined above turn the complex numbers into a field with (0,0) as the additive identity and (1,0) as the multiplicative identity.

Proof:

Closure under addition is pretty obvious, if we have complex numbers x = (a, b) and y = (c, d) then x + y = (a + c, b + d). Since a + c and b + d are both reals (due to closure under the reals), the sum will also be a complex number.

Addition is commutative because x + y = (a + c, b + d) = (c + a, d + b) = y + x.

Addition is associative because x + (y+z) = (a+b) + (c+e,d+f) = (a+c+e,b+d+f) = (a+c,b+d) + (e,f) = (x+y) + z(0,0) is the additive identity since x + (0,0) = (a+0,b+0) = (a,b) = x for all x in the complex numbers.

For any complex number x = (a, b), we let -x, the additive inverse of x, be (-a, -b). Then, x+(-x) = (a+(-a), b+(-b)) = (0, 0) and (0, 0) is the additive identity.

There is closure under multiplication because $x \cdot y = (ac - bd, ad + bc)$ and since both ac - bd and ad + bc are real numbers, the resulting product is a complex number.

Multiplication is commutative beacuse $x \cdot y = (ac - bd, ad + bc) = (ca - db, da + cb) = y \cdot x$

Multiplication is associative beacuse $x \cdot (y \cdot z) = (a, b) \cdot (ce - df, cf + de) = (ace - adf - bcf - bde, acf + ade + bce - bdf) = (ac - bd, ad + bc) \cdot (e, f) = (x \cdot y) \cdot z$

(1,0) is the multiplicative identity since x * (1,0) = (a,b) * (1,0) = (a*1-b*0,b*1+a*0) = (a,b)

For any complex number x = (a, b), we choose $x^{-1} = (\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2})$, and this is an inverse since $x \cdot x^{-1} = (\frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}, \frac{ab}{a^2 + b^2} - \frac{ab}{a^2 + b^2}) = (1, 0)$

Distributive law holds because x * (y + z) = (a, b) * (c + e, d + f) = (ac + ae - bd - bf, ad + af + bc + be) = x * y + x * z

Theorem:

For any real numbers a, b we have (a, 0) + (b, 0) = (a + b, 0) and $(a, 0) \cdot (b, 0) = (a * b, 0)$

Proof:

$$(a,0) + (b,0) = (a+b,0+0) = (a+b,0)$$

$$(a,0) \cdot (b,0) = (ab - 0 * 0, a * 0 + b * 0) = (ab,0)$$

Definition: (i)

$$i = (0, 1)$$

Note: (a, 0) = a

Theorem:

$$i^2 = -1$$

Proof:

$$i^2 = i \cdot i = (0,1) \cdot (0,1) = (0*0-1*1,0*1+0*1) = (-1,0) = -1$$

Theorem:

If a and b are real, then (a, b) = a + bi.

Proof:

$$a + bi = (a, 0) + (b, 0) \cdot (0, 1) = (a, 0) + (b * 0 - 0 * 1, b * 1 + 0 * 0) = (a, 0) + (0, b) = (a, b)$$

Definition: (Conjugate)

If z = a + bi then the **complex conjugate** of z, $\bar{z} = a - bi$.

Also, Re(z) = a and Im(z) = b

Theorem:

Let z and w be complex numbers. Then,

- 1. $z + \bar{w} = \bar{z} + \bar{w}$
- 2. $z \cdot w = \bar{z} \cdot \bar{w}$
- 3. $z + \overline{z} = 2\text{Re}(z)$ and $z \overline{z} = 2i\text{Im}(z)$
- 4. $z \cdot \bar{z}$ is real and positive, except when z = 0

Proof:

Let z = a + bi and w = c + di.

1.
$$\bar{z} + \bar{w} = a - bi + c - di = (a + c) - (bd)i = z + \bar{w}$$

2.
$$\bar{z} \cdot \bar{w} = (a - bi) * (c - di) = ac - bd - (ad + bc)i = z \cdot \bar{w}$$

3.
$$z + \bar{z} = a + bi + a - bi = 2a = 2\text{Re}(z)$$
 and $z - \bar{z} = a + bi - a + bi = 2bi = 2i\text{Im}(z)$

4.
$$z \cdot \bar{z} = (a+bi) * (a-bi) = a * a - b^2i^2 + abi - abi = a^2 + b^2$$

Definition: (Absolute Value of a Complex Number)

The absolute value of a complex number $|z| = (z \cdot \bar{z})^{\frac{1}{2}}$

Theorem:

1. |z| > 0 unless z = 0, then |z| = 0

2. $|\bar{z}| = |z|$

 $3. |z \cdot w| = |z||w|$

 $4. |\operatorname{Re}(z)| \le |z|$

5. $|z+w| \le |z| + |w|$

Proof:

1. Since $z \cdot \bar{z}$ is always non-negative, the square root of it will also be non-negative.

2. $|\bar{z}| = (\bar{z} \cdot \bar{z})^{\frac{1}{2}} = (\bar{z} \cdot z)^{\frac{1}{2}} = (z \cdot \bar{z})^{\frac{1}{2}} = |z|$

3. $|z \cdot w| = ((z \cdot \overline{w}) \cdot (z \cdot \overline{w}))^{\frac{1}{2}} = (z \cdot \overline{z})^{\frac{1}{2}} * (w \cdot \overline{w})^{\frac{1}{2}} = |z||w|$

4. $|z|=(a^2+b^2)^{\frac{1}{2}},$ and this is always larger than $|\mathrm{Re}(z)|=(a^2)^{\frac{1}{2}}=a$

5. $|z+w|=((a+c)^2+(b+d)^2)^{\frac{1}{2}}$, and this is always smaller than $|z|+|w|=(a^2+b^2)^{\frac{1}{2}}+(c^2+d^2)^{\frac{1}{2}}$

Theorem:

If we have complex numbers $a_1, ... a_n$ and $b_1, ... b_n$, then $|\sum_{j=1}^n a_j b_j|^2 \le |\sum_{j=1}^n |a_j|^2 \sum_{j=1}^n |b_j|^2$

Proof:

Let $A = \sum |a_j|^2$, $B = \sum |b_j|^2$ and $C = \sum a_j b_j$

Then, start with

$$\sum |Ba_J - Cb_j|^2 = \sum (Ba_j - Cb_j)(B\bar{a}_j - C\bar{b}_j)$$

by the property that $z \cdot \bar{z} = |z|^2$

Then, we can multiply to get

$$|B^2 \sum |a_j|^2 - B\bar{C} \sum a_j \bar{b}_j - BC \sum \bar{a}_j b_j + |C|^2 \sum |b_j|^2$$

We cancel the two BC terms (we can for some reason), to get

$$B^{2}A - B|C|^{2}$$

$$B(AB-|C|^2)$$

Since we know all the terms in the initial sum are nonnegative, our result can't be negative either. Since B is postitive, this implies that $AB \ge |C|^2$ which is what we want.