

Praktikum Ingenieursmäßige Softwareentwicklung

Implementierung von neuroevolutionären KI-Verfahren für das Erlernen von Atari-Spielen – Nico Peter

SOFTWARE-ENTWURF UND -QUALITÄT, INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION, KIT-FAKULTÄT FÜR INFORMATIK

Inhalt

- Motivation
- Grundlagen
 - Evolutionäre Algorithmen
 - Neuroevolution of Augmenting Topologies (NEAT)
 - OpenAl Gym
- Implementierungen von NEAT
- Ergebnisse
- Zusammenfassung

Motivation – Aufgabenstellung

1) Implementierung von neuroevolutionären KI-Verfahren für das Erlernen von Atari-Spielen (1-2 Studierende)

- Neuroevolutionäre Verfahren wie HyperNEAT können (im Gegensatz zu vielen anderen Deep Learning Algorithmen) neben den Parametergewichten auch die Netztopologie evolvieren
- Atari-Spiele haben sich für die Evaluation der Leistungsfähigkeit von ML-Verfahren etabliert

Aufgabe: Entwickeln Sie in Python eine KI für das Erlernen von Atari-Spielen unter Nutzung von HyperNEAT

- Verwenden Sie das OpenAl Gym Framework, welches eine Vielzahl von Atari-Spielen enthält
- Nutzung eines bestehenden HyperNEAT Frameworks

17.10.2019

Prof. Ralf H. Reussner: Vorbesprechung Praktikum "Ingenieursmäßige Software-Entwicklung" Wintersemester 2019/20

Institut für Programmstrukturen und Datenorganisation

Motivation

Grundlagen

Für das Erlernen von Atari-Spielen

Implementierungen

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

Ergebnisse

Motivation - Schritte und Schwierigkeiten

- Schritte:
 - Einarbeitung in NEAT, OpenAI Gym und Tools
 - Installation der Entwicklungsumgebung für Tools
 - Trainieren der Netze via Robotik-Umgebungen
 - Hyperparameter konfigurieren
- Schwierigkeiten:
 - Relativ wenig Codebeispiele

Grundlagen

Implementierungen

Ergebnisse

Grundlagen – Evolutionäre Algorithmen

Orientierung an Natur

- Genotyp, Phenotyp
- Operationen

Initialisierung

Motivation

Grundlagen

Für das Erlernen von Atari-Spielen

Implementierungen

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

Ergebnisse

Grundlagen – NEAT

- Initialisierung: Feed Forward Netze
- Selektion: Die besten n Netze gemäß Fitness-Werten
- Rekombination: Homologie durch Innovations-Marker
- Mutation: Neuron/Verbindung wird hinzugefügt/gelöscht
- Artbildung: Splittung in Gruppen ähnlicher Topologie/Verbindungen

Grundlagen

Für das Erlernen von Atari-Spielen

Implementierungen

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

Ergebnisse

Grundlagen – NEAT

Repräsentation:

Motivation

Grundlagen

Für das Erlernen von Atari-Spielen

Implementierungen

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

Ergebnisse

Grundlagen – NEAT

Rekombination:

Motivation

Grundlagen

Für das Erlernen von Atari-Spielen

Implementierungen

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

Ergebnisse

Grundlagen - OpenAl Gym

- OpenAl
 - Forschungslabor, 2015
- OpenAl Gym
 - Python-Bibliothek, 2016
- Gym-Umgebung besitzt
 - Aktionsraum,
 - Beobachtungsraum,
 - Debugging Infos,
 - Boolesche Variable "Fertig"


```
import gym
env = gym.make("CartPole-v1")
observation = env.reset()
for _ in range(1000):
    env.render()
    action = env.action_space.sample() # your agent here
    observation, reward, done, info = env.step(action)

if done:
    observation = env.reset()
env.close()
```


Implementierungen

Ergebnisse

Grundlagen – OpenAl Gym

- Bestenliste
 - Wer (Github-Account)
 - Punktzahl
 - Link zu Repository/Paper
 - Video des trainierten Modells

Walker2d-v1 and Walker 2d-v2

Make a two-dimensional bipedal robot walk forward as fast as possible.

- Walker2d-v1 is an unsolved environment, which means it does not have a specified reward threshold at which it's considered solved.
- The robot model is based on work by Erez, Tassa, and Todorov [Erez11].

User	100-Episode Average Score	Write-up	Video
zlw21gxy	7197.15	writeup	
pat-coady	7167.24	link	video

Motivation

Grundlagen

Implementierungen

Ergebnisse

Implementierungen – Tools

- NEAT-Python
 - 2008, BSD-3-Clause, Installation des Pakets über Pip
- MultiNEAT
 - 2012, LGPL, einfache Installation mit Anaconda
- PyTorch NEAT
 - 2018, Apache License 2.0, benötigt neat-python und torch

Grundlagen

Implementierungen

Ergebnisse

Implementierungen – Konfiguration

- Konfigurationsmöglichkeiten (Beispiele)
 - Schwellwert für Erfolg
 - Anzahl Genome pro Population
 - Aufhören nach Aussterben aller Spezies?
 - Gibt es Elite?
 - Wahrscheinlichkeit für neue Knoten bei Mutation
 - Aktivierungsfunktion
 - Anteil direkt verbundener Neuronen zu Beginn

Grundlagen

Implementierungen

Ergebnisse

Ergebnisse - Ansatz

- Laden der Konfiguration
- Erzeugen der Population (+ Reporter)
- Für jeden Arbeiter:
 - Erstelle Umgebung
 - Erstelle Netz
 - Trainingsschleife bis "done"
 - Gebe erreichte Fitness zurück
- Speichere Gewinner
- Statistik anzeigen und speichern

Grundlagen

Implementierungen

Ergebnisse

InvertedPendulum-v2 (Film)

Implementierungen Motivation Grundlagen **Ergebnisse** Zusammenfassung

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

Für das Erlernen von Atari-Spielen

Swimmer-v2

Hopper-v2 (Film)

HalfCheetah-v2 (Film)

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

Für das Erlernen von Atari-Spielen

17

Ant-v2 (Film)

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

Für das Erlernen von Atari-Spielen

Zusammenfassung

- NEAT-Python
- Robotik-Umgebungen aus Gym
 - Liefert Netzeingabe, Vereinfacht Vergleiche
- Ergebnisse
 - NEAT eher ungeeignet für Robotik-Probleme
- Empfehlung / Ausblick
 - Verwendung anderer Alorithmen wie HyperNEAT

Grundlagen

Für das Erlernen von Atari-Spielen

Implementierungen

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

Ergebnisse

Quellen

- Evolutionäre Algorithmen:
 - https://towardsdatascience.com/introduction-to-evolutionary-algorithmsa8594b484ac
- NEAT
 - Stanley, Kenneth O., and Risto Miikkulainen. "Evolving neural networks through augmenting topologies." Evolutionary computation 10.2 (2002): 99-127.
- Open Al Gym
 - https://towardsdatascience.com/reinforcement-learning-with-openaid445c2c687d2

Nico Peter – Implementierung von neuroevolutionären KI-Verfahren

https://openai.com/about/

Für das Erlernen von Atari-Spielen

20

Danke für Ihre Aufmerksamkeit!