Pengertian Data, Jenis dan Tipe Data, Deskripsi Data, Data Preprocessing

Dr. Eng. Chastine Fatichah, S.Kom, M.Kom

Departemen Teknik Informatika

Institut Teknologi Sepuluh Nopember

chastine@if.its.ac.id

Jenis Data

- Record
 - Data matrix
 - Document data (document-term matrix)
 - Transaction data

	pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin
0	1	1	Allen, Miss. Elisabeth Walton	female	29.00	0	0	24160	211.3375	B5
1	1	1	Allison, Master. Hudson Trevor	male	0.92	1	2	113781	151.5500	C22 C26
2	1	0	Allison, Miss. Helen Loraine	female	2.00	1	2	113781	151.5500	C22 C26
3	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.00	1	2	113781	151.5500	C22 C26

TID	Items				
1	Bread, Coke, Milk				
2	Bread, Jam				
3	Coke, Milk, Chips				
4	Bread, Jam, Chip, Milk				
5	Coke, Jam, Chip, Milk				

Jenis Data

- Graph and network
 - World Wide Web
 - Social networks
 - Molecular Structures

Jenis Data

- Ordered
 - Video data
 - Spatio-Temporal data
 - Sequential Data
 - Genetic sequence data
- Spatial, image, and multimedia
 - Spatial data (maps)
 - Image data
 - Voice data
 - Video data

(AB) (D) (CE) (BD) (C) (E) (CD) (B) (AE)

Pengertian Data

- Data (Dataset) merupakan kumpulan dari data obyek yang merepresentasikan sebuah entitas (atribut)
- Data obyek disebut juga sebagai record, point, sample, instance
- Atribut merepresentasikan karakteristik sebuah data obyek
 - Misalnya: tinggi badan, berat badan, usia, jenis kelamin.
 - Atribut disebut juga sebagai variabel, fitur
- Contoh Dataset:
 - Penjualan: tanggal penjualan, nama pelanggan, nama barang, jumlah penjualan

Tipe Atribut

Nominal

 Berupa kategori, contoh: jenis kelamin, status perkawinan,...

Binary

Atribut nominal dengan hanya 2 nilai yaitu 0 dan 1

Ordinal

 Nilai yang merepresentasikan urutan, contoh: ukuran, nilai matakuliah, ...

Numeric

- Quantity (integer atau real-valued)
- Interval
 - Ukuran skala unit, contoh: suhu, tanggal
- Ratio
 - Panjang, harga, umur

Statistik Dasar untuk Deskripsi Data

- Agar dapat memahami data terkait pusat distribusi, variasi, dan sebaran data
- Pengukuran tendensi sentral: mean, median, mode

$$mean(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\operatorname{median}(x) = \left\{ \begin{array}{ll} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r+1 \\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{array} \right.$$

Statistik Dasar untuk Deskripsi Data

- Pengukuran sebaran data
 - Variance and Standard Deviation

variance
$$(x) = s_x^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \overline{x})^2$$

- Quartiles, outliers and boxplots
 - Quartiles: Q1 (25th percentile), Q3 (75th percentile)
 - Inter-quartile range: IQR = Q3 Q1
 - Boxplot
 - Outlier: nilai yang lebih tinggi/rendah dari 1.5 x IQR

Data Quality

- Accuracy: benar atau salah, akurat atau tidak
- Completeness: ada yang tidak tercatat, tidak tersedia, ...
- Consistency: tidak konsisten
- *Timeliness*: apakah terupdate?
- Believability: seberapa dipercaya data itu benar?
- Interpretability: seberapa mudah data dapat dipahami?

Data Quality

- Noise and outliers
- Missing values
- Duplicate data

Data Preprocessing

Data transformation and data

discretization

Normalisasi

Diskritasi data

- Data riil umumnya kotor dan potensi adanya incorrect data karena instrument faulty, human or computer error, dan transmission error
 - Incomplete (missing value)
 - Contoh: pekerjaan = ""
 - Noisy: berisi noise, error, atau outlier
 - Contoh: gaji = "-20" (error)
 - Inconsistent: ada perbedaan pada kode dan nama
 - Contoh: usia = "31", tanggal lahir = "24/02/2000"
 - Contoh: sebelumnya rating "1, 2, 3", sekarang rating "A, B, C"
 - Intentional
 - Jan. 1 default tanggal lahir

- Bagaimana menangani incomplete data (missing value)?
 - Eliminasi data object
 - Dibiarkan (*ignore*)
 - Imputasi nilai secara manual
 - Imputasi nilai secara otomatis menggunakan
 - Nilai mean, median, mode dari atribut yang ada missing value
 - Nilai mean, median, mode untuk semua sampel yang memiliki kelas yang sama
 - Nilai estimasi menggunakan metode Bayesian, Decision tree, Regresi, k-Nearest Neighbor, Expectation Maximization,...

- Bagaimana menangani noisy data?
 - Binning
 - Mengurutkan data dan membagi menjadi beberapa bins berdasarkan frequency (equalfrequency)
 - Kemudian melakukan *smooth by* bin means, smooth by bin median, smooth by bin boundaries, dsb.

- * Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

- Bagaimana menangani noisy data?
 - Regression
 - Melakukan smooth by fitting data ke fungsi regresi
 - Clustering
 - Mendeteksi dan menghapus outliers
 - Combined computer and human inspection
 - Mendeteksi nilai yang meragukan dan dicek secara manual

Data Integration

- Bagaimana menangani redundansi data ketika melakukan data intergasi dari multiple databases
 - Identifikasi: Atribut sama namun mempunya nama yang berbeda
 - Derivasi: Satu atribut bisa diderivasi dari atribut lain pada database lain, misalnya: total gaji setahun
- Redundansi attribut bisa dideteksi menggunakan analisis korelasi dan kovarian
 - Chi square test untuk tipe nominal
 - Pearson correlation untuk tipe numerik

Data Reduction

- Mengurangi representasi data menjadi lebih kecil
- Motivasi: Analisis data yang kompleks memerlukan waktu komputasi yang lama
- Strategi
 - Dimensionality reduction (menghapus atribut tidak penting)
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction (Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression

Data Transformation

- Proses yang mentransformasi nilai asli ke nilai baru
- Metode atau Pendekatan
 - *Smoothing*: menghapus noise
 - Attribute/feature construction
 - Membuat atribut baru dari atribut yang sudah ada
 - Aggregation
 - Normalization
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling

Sumber referensi

- Data Mining: Concepts and Techniques (3rd Edition), Jiawei Han, Micheline, Kamber, and Jian Pei, University of Illinois at Urbana-Champaign & Simon Fraser University, 2011
- Introduction to Data Mining, Tan, Steinbach, Kumar, 2004

Terimakasih