

The University of Texas

INSTRUMENTATION AND MEASUREMENT SYSTEMS

FILE COPY

台

Graduate - Research Program

> This document has been approved for public release and sale; in distribution is unlimited.

PHYSICS DEPARTMENT AND

ELECTRICAL ENGINEERING DEPARTMENT

79 05 24 049

Atmospheric Transmittance Study with the Meteorological Satellite Technical Area at White Sands Missile Range. Part I. METHODS FOR THE CALCULATION OF ATMOSPHERIC TRANSMITTANCE OVER SPECTRAL BANDS. PART I 15) DAEA18-76-C-0019 CONTRACT 9) FINAL PLEPORT. 10/31/76 (14) PR4-76-DC-30-PT-1 (11) 31 oct 76/ Prepared for: United States Army Electronics Command Atmospheric Sciences Laboratory White Sands Missile Range New Mexico This document has been approved for public release and sale; its distribution is unlimited. Submitted by Physics Department

408 579

Death of Electrical Engineering, Department
The University of Texas at El Paso.

El Paso, Texas

Joseph H. Pierluissi Rufus E./Bruce

Project Directors

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

FOREWORD

entitled Atmospheric Transmittance Study with the Meteorological Satellite Technical Area at White Sands Missile Range. Part II contains the report on the study of the inversion of the radiative transfer equation for the temperature profile as well as for the absorber concentration in the 15 μ CO₂ band. Also included there is the method used in this study for the calculation of atmospheric transmittance using line spectral parameters. Part III deals with the study of the effects of clouds on the inversion techniques. Essentially, Part I deals with the study and development of band models for use in connection with techniques for the calculation of atmospheric transmittance along slant-paths.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER	2. GOVT ACCESSION NO.		
PR4-76-DC-30			
. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED	
Methods for the Calculation of	Atmospheric	Final Report Oct. 1, 1975	
Transmittance Over Spectral Ban		Part I Sept. 30, 197	
reassure over spectral bands		6. PERFORMING ORG, REPORT NUMBER	
. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(a)	
Joseph H. Pierluissi			
Rufus E. Bruce		DAEA18-76-C-0019	
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Physics and Electrical Engineering Depts.			
The University of Texas at El Pas	0		
El Paso, Texas 79968			
II. CONTROLLING OFFICE NAME AND ADDRESS		October 31, 1976	
United States Army Electronics C	ommand	13. NUMBER OF PAGES	
Atmospheric Sciences Laboratory		82	
White Sands Missile Range, New M	nt from Controlling Office)	15. SECURITY CLASS. (of this report)	
		Unclassified	
		15. DECLASSIFICATION DOWNGRADING	
17. DISTRIBUTION STATEMENT (of the abstract entered	i in Block 20, il dillerent fra	om Report)	
8. SUPPLEMENTARY NOTES		_	
Contracting Officer Technical Representative Richard B. Gomez Atmospheric Sciences Laboratory White Sands Missile Range New Mexico 88002			
9. KEY WORDS (Continue on reverse side if necessary a			
Atmospheric transmittance, band			
O. ABS CACT (Continue on reverse side if necessary an			
A study of transmittance modinfrared for use along inhomogen	dels for molecula	in connection with the	
vertical temperature profile ret	rieval efforts	In connection with the	
t and the second	V		

TABLE OF CONTENTS

			n
1.	INTR	ODUCTION	Page 1
2.	TRAN	SMITTANCE FOR HOMOGENEOUS MEDIA	2
	2.1	The Transmittance Function	2
	2,2	Polynomial in Weak-and Strong-line Functions	3
	2.3	Polynomial in Pressure, Temperature and Concentration	6
3.	TRAN	SMITTANCE FOR INHOMOGENEOUS MEDIA	8
	3.1	The Transmittance Function	8
	3.2	Method of Weinreb and Nuendorffer	9
	3.3	Method of Curtis and Godson	11
	3.4	Method of McMillin and Fleming	12
	3.5	Method of Transmittance Product	14
4.	BAND	MODEL DEVELOPMENT	15
	4.1	Spectral Parameters for Weak Line Function	15
	4.2	Spectral Parameters for Strong-Line Function	16
	4.3	Spectral Parameters for Polynomial in Weak-and Strong Line Functions	19
	4.4	Spectral Parameters for Polynomial in Pressure, Temperature and Concentration	21
5.	APPL	ICATION TO 15µm CO2: HOMOGENEOUS PATHS	26
	5.1	Transmittance Data	26
	5.2	Development of Model in Equation 4.13	26
	5.3	Development of Model in Equation 4.16	28
	5.4	Tabulation of Results	29
6.	APPL	ICATION TO 15 m CO2: INHOMOGENEOUS PATHS	40
	6.1	Transmittance Data	40

CONTENTS

	Page
6.2 Development of Curtis-Godson Method	40
6.3 Development of Transmittance - Product Method	43
7. DISCUSSION AND CONCLUSIONS	45
REFERENCES	48
APPENDIX A. PROGRAM EIKCIM	49
APPENDIX B. PROGRAM EIGGAM 2	60
APPENDIX C. PROGRAM EIGGAM	69
APPENDIX D. INPUT DATA FOR INHOMOGENEOUS PATHS	79

1. INTRODUCTION

The inversion of the radiative transfer equation for the temperature using satellite radiance measurements requires the use of a transmittance function for the atmospheric region. The transmittance function itself, however, if it is to represent accurately the effects of the gaseous absorbers it must be an explicit function of the temperature sought for in the inversion. This implies that the numerical procedures adopted must include the capability for iterating in the computation of the transmittance as close guesses are obtained for the temperature. This would be a relatively simple modification if it were not for the inaccessibility of appropriate transmittance functions.

The principal problems associated with the transmittance function are: long computational times, deviations from measured data, complex analytical representations, inaccurate computational results, and limitations of the conversion from inhomogeneous to homogeneous paths. In this report some of these factors are discussed in connection with the most recent methods and models available in the literature. Based on the work performed with line-by-line data, available from another part of this effort, it is recommended that a transmittance function in the form of a polynomial in the pressure, temperature and absorber amount be used as a homogeneous path model. The model, however, would be developed with the vertical transmittance for each layer in a horizontally stratified atmosphere. The transmittance to each level is then obtained through multiplication of the transmittance through previous layers.

TRANSMITTANCE FOR HOMOGENEOUS MEDIA

Infrared radiation passing through a nonscattering medium is absorbed by the molecules along the path in the process of rotational-vibrational energy transitions. The law governing the absorption mechanism is that due to Beer, and its application is dependent on line-broadening mechanisms of the Doppler or Lorentz type. In spite of the fact that the physical processes, as well as their mathematical representations are well known, it is still a challenge to arrive a a practical and accurate function for the transmittance through the atmospheric region. In this section a presentation is made of two band models of the polynomial type, which have been found to be of significance value in atmospheric work.

2.1 The transmittance Function

Spectral transmittance through an absorbing gas is given by the monochromatic form of Beer's Law, that is

$$-\int_{0}^{u} K_{v}(P,T) du'$$

$$\tau_{v}(P,T,u) = e$$
(2.1)

where ν is the frequency, P is the pressure, T is the temperature, u is the absorber amount and K_{ν} is the absorption coefficient. For homogeneous media P and T do not change along the path, such that (2.1) becomes

$$-K_{V}(P,T)u$$

$$\tau_{V}(P,T,u) = e$$
(2.2)

Over a spectral band $\Delta_{\nu} = \nu_2 - \nu_1$ use is commonly made of the average value of (2.2), which by the first mean-value theorem becomes

$$\tau_{\Delta \nu}(P,T,u) = \frac{1}{\Delta \nu} \int_{\nu_1}^{\nu_2} \tau_{\nu}(P,T,u) d\nu \qquad (2.3)$$

Since $\tau_{\Delta\nu}$ is the quantity dealt with in the work reported here, further reference will use the short notation

$$\tau_{Av}(P,T,u) \equiv \tau(P,T,u) \tag{2.4}$$

The absorption coefficient K, in (2.2) depends on the nature of the line-broadening mechanism, on the number and arrangement of the lines and on the type of molecule. Specification of the broadening as being due to either Doppler or Lorentz has allowed for the evaluation of (2.3), with resulting simple analytical expressions. However, the simplicity of the expressions is obtained at the cost of oversimplication of the physical processes involved. These results, or "band models", do not as a general rule represent the actual transmittance to a degree of accuracy high enough to justify their unbiassed use. However, use may be made of their form in the obtainment of more empirically satisfactory functions of the variables P, T and U.

2.2 Polynomial in Weak-and Strong-Line Functions

For the special case of statistically distributed Lorentzian lines over Δ_{V} with a Poisson intensity distribution function, Mayer [1] and Goody [2] evaluated (2.3) obtaining

$$\tau(P,T,u) = \exp \left\{-\frac{\beta \psi}{(1+2\psi)^{1/2}}\right\}$$
 (2.5)

where the variables β and ψ are

$$\beta = \frac{2\pi\alpha_o \alpha}{d} \qquad \psi = \frac{s_o Su}{2\pi\alpha_o \alpha}$$

and α is the mean half width normalized to α_0 , d is the mean line spacing, S is the mean line intensity normalized to S_0 , and α_0 , S_0 are their values at standard temperature T_0 and pressure P_0 . In the weak-line (i.e., $\psi <<1$) and strong-line (i.e., $\psi >>1$) limiting conditions, (2.5) results in the approximations

$$\tau_{\mathbf{w}} = \exp \left\{-\beta \psi\right\} \tag{2.6}$$

$$\tau_{s} = \exp \left(-\frac{\left(\frac{\beta^{2}\psi}{2}\right)^{1/2}}{2}\right) \tag{2.7}$$

in which τ_w and τ_s are called, respectively, the weak-and strong-line models. The pressure and temperature dependence is introduced in the last three equations through and S.

A re-arrangement of (2.5) leads to the geometrical form

$$\left(\frac{-1}{\ln \tau \, (P,T,u)}\right)^2 = \left(\frac{-1}{\ln \tau_w}\right)^2 + \left(\frac{-1}{\ln \tau_s}\right)^2 \tag{2.8}$$

which states that the inverse of the natural logarithm of the two approximations are in quadrature with the complete transmittance function. If this result is considered universal for transmittance, then (2.8) may be generalized with the choice of a τ_s which is valid also for regularly distributed lines. The choice of τ_w as in (2.6) is a valid selection for any type of line arrangements.

Of the strong-line models available the most adaptable to (2.8) is the one due to Kine [3], which represents a continuous distribution of Lorentzian lines from regular to random through the variation of a parameter. Accordingly,

$$\tau_s = 1 - G \left\{ n, \left[n \Gamma(n) \left(\frac{2}{\pi} \beta^2 \psi \right)^{1/2} \right]^{1/n} \right\}$$
 (2.9)

where G is the incomplete gamma function, Γ is the regular gamma function, and n is the parameter that specifies the type of line distribution (e.g. n = 0.5 for regular and n = 1.0 for random). The generalization of the Mayer-Goody model in this manner is due to Zachor [4,5].

In spite of the above-mentioned broad interpretations of such classical band models, their adaptation to measurements is always restricted by hidden factors affecting the measurements. The deviation from the idealism of the mathematical formulation of the physical process of absorption may be accounted for by the addition of terms in (2.8). Thus, a polynomial model may be proposed in the form [6].

$$\left(\frac{-1}{\ln \tau \ (P,T,u)}\right)^{2} = c_{1} x^{2} + c_{2} y^{2} + c_{3} xy + c_{4} x^{2}y + c_{5} xy^{2} + \dots (2.10)$$

$$x = \frac{-1}{\ln \tau_{\omega}}$$

$$y = \frac{-1}{\ln t_s}$$

and the C_i 's (i = 1,..., N) are determined from least-squares curve-fitting to measured data. The N-term polynomial in (2.10) is described by N + 3 spectral parameters, two of which arise from τ_s in (2.9) and one from τ_w in (2.6).

The dependence of τ on P,T and u may be explicitly made apparent with the use of the normalized Lorentzian half-width α in β and ψ , that is

$$\alpha = \left(\frac{P}{P_o}\right) \left(\frac{T_o}{T}\right)^{1/2} \tag{2.11}$$

Also, the model variables in (2.6) and (2.9) may be separated from their spectral dependence by expanding in the form

$$\beta \psi = k Su \tag{2.12}$$

$$\beta^2 \psi = C S\alpha u \tag{2.13}$$

where $k = S_0/d$ and $C = 2 d_0 S_0/d^2$ are spectral parameters. The complete set of spectral parameters describing an N-term expansion of the polynomial model in (2.10) consists of C_1 , C_2 , C_3 ,..., C_N , k, n and C. In the development of the model with transmittance data, k, n and C are determined first and, then, the C_1 's are determined simultaneously. Details of the process will be given in Section 4 of this report. Although the model has been derived for homogeneous paths, it may be used for inhomogeneous paths with the use of variables equivalent to Su and Sau. These may be called the weak-line and strong-line variables, respectively. Details on these equivalences will be discussed in Section 6.2.

2.3 Polynomial in Pressure, Temperature & Concentration

A totally different approach may be followed in the obtainment of a polynomial for T in terms of functions explicitly showing the dependence on the pressure, temperature and gas amount (or concentration). With the use of (2.12) and (2.13), the weak-and strong-line models in (2.6) and (2.7), respectively become

$$T_{W} = \exp \{-k Su\}$$
 (2.14)

$$\tau_{s} = \exp\left\{-k's^{1/2}\alpha^{1/2}u^{1/2}\right\}$$
 (2.15)

where $k' = \sqrt{C/2}$. An inspection of the powers associated with the variables in these two limiting equations for transmittance suggests the assumption of a general transmittance equation of the form

$$\tau (P, T, u) = \exp \left\{ -k^{-1} s^{a} a^{b} u^{c} \right\}$$
 (2.16)

where $k^{\prime\prime}$, a, b, and c are spectral constants. Replacing α with (2.11), using the approximation [7]

$$S = \left(\frac{T}{T_0}\right)^d \tag{2.17}$$

and taking the natural logarithm of (2.16) twice leads to

$$\ln \left\{ -\ln \tau \left(P, T, u \right) \right\} = a_1 + a_2 \ln u + a_3 \ln \left(P/P_0 \right) + a_4 \ln \left(T/T_0 \right)$$
 (2.18)

where d, a_1 , a_2 , a_3 , and a_4 are constants related simply to the earlier k^{-} , a, b and c.

The polynomial in (2.18) may be further expanded to allow for better flexibility in curve-fitting to experimental data. With the definitions

$$x = \ln u$$

$$y = \ln (P/P_0)$$

$$z = \ln (T/T_0)$$

(2.18) may be expanded into the form

$$\left\{-\ln \tau \left(P,T,u\right)\right\} = a_1 + a_2x + a_3y + a_4z + a_5xy + a_6yz + a_7zx + \dots \quad (2.19)$$
which is a form of the model proposed by Smith [8].

3. TRANSMITTANCE FOR INHOMOGENEOUS MEDIA

In the previous section a discussion was presented of two polynomial models for transmittance through homogeneous media. Since the atmosphere is an inhomogeneous media it is necessary to somehow modify the previous theory to make the results applicable. Only under very special and impracticable assumptions can a model be derived for the inhomogeneous case. Several procedures are discussed in this section for effecting the transition from inhomogeneous to homogeneous conditions.

3.1 The Transmittance Function

For paths through the Earth's atmosphere use is commonly made by the "hydrostatic approximation" to convert the integration in (2.1) to an integration over pressure. Such approximation is

$$du = \frac{M}{g} dP \tag{3.1}$$

where M is the mixing ratio of the absorber and g is the gravity acceleration. Beer's law for an inhomogeneous path from P_1 to P_2 then becomes

$$\tau_{v}(P,T,u) = e^{-\frac{1}{g}} \int_{P_{1}}^{P_{2}} K_{v}(P,T)M(P)dP$$
 (3.2)

which must also be averaged over a spectral band as in (2.3).

In view of essential difficulties in the exact evaluation of (3.2) for a path along which P_2 is significantly different from P_1 ,

use must be made of the knowledge gain from its evaluation for homogeneous paths.

3.2 Method of Weinreb and Neuendorffer

A given atmosphere may be described by a family of N curvesof-growth representing the transmittance along a vertical path. Each curve is for constant presure P_i and temperature T_i , where $i=1,\ldots,N$, as depicted qualitatively in Fig. 3.1. Since the transmittance along the path to a given pressure level i must be unique, then

$$\tau(P_{i}, T_{i}, u_{i-1}) = \tau(P_{i-1}, T_{i-1}, u_{i-1})$$
(3.3)

where u_{i-1} is the absorber amount contained between the atmospheric top and level i-1 at conditions of level i-1, and u_{i-1} is the same variable but at conditions of level i. The amount u_{i-1} is said to be "equivalent" to u_{i-1} in the sense of satisfying (3.3). According to the method proposed by Weinreb and Neuendorffer [9] a solution is first found for u_{i-1} from (3·3) with both a knowledge of $\tau(P_{i-1}, T_{i-1}, u_{i-1})$, and an available band model for homogeneous paths evaluated at P_i and T_i . It follows then that the transmittance to the next pressure level is obtained as

$$\tau(P_4, T_4, u_i) = \tau(P_4, T_i, u_{i-1}^* + \Delta u_i)$$
 (3.4)

where Δu_i is the incremental absorber amount contained in the path length ΔZ_i between the pressure levels. This incremental gas amount is computed with a knowledge of the absorber density ρ with the equation

Fig. 3.1. Representation of atmospheric transmittance by a family of transmittance curves-of-growth (after Weinreb and Neuendorffer)

$$\Delta u_{i} = \rho(T_{i}, P_{i}) \Delta Z_{i} \tag{3.5}$$

Although in principle (3.3) is exact for general transmittance, its application to actual cases involves the use of both an existing band model $\tau(P,T,u)$ for homogeneous paths, as well as of a solution for u_{i-1} at each level. In addition to introducting inaccuracies, these steps impose additional demands on the computational algorithm for transmittance.

3.3 Method of Curtis and Godson

A classical and widely used alternative to the above method is that which uses the Curtis-Godson [10,11] relations in the computation of the equivalent gas amount u_{i-1}' . This method establishes two equations for (3.3) which are exact only in the limiting conditions of weak-and strong-line transmittance. From these follow equivalent relations for the gas amount and as well as for the level pressure. That is

$$\tau(P_i, T_i, u_i) = \tau_{\omega}(T_i, u_{i-1})$$
 (3.6)

and

$$\tau(P_{i}, T_{i}, u_{i}) = \tau_{s}(P_{i}, T_{i}, u_{i-1})$$
(3.7)

which lead directly to a solution for u_{i-1} from (3.6), and to a solution for the equivalent level pressure P_i from (3.7). Such solutions are independent of the type of band model. They follow directly from the integral form of Beer's law (2.1) and the Lorentzian

half-width (2.11) as

$$u_{i-1} = \frac{1}{S_i} \qquad S(z)du(z)$$
(3.8)

$$\alpha_{i} = \frac{1}{S_{i}u_{i-1}} \qquad S(z)\alpha(z)du(z)$$
(3.9)

where the integration is carried over the path length, and

$$\alpha_{i} = \left(\frac{P_{i}}{P_{o}}\right) \left(\frac{T_{o}}{T_{i}}\right)^{1/2}$$
(3.10)

The transmittance to the next pressure level follows according to this method as

$$\tau(P_{i}, T_{i}, u_{i}) = \tau(P_{i}, T_{i}, u_{i-1} + \Delta u_{i})$$
 (3.11)

Briefly stated, (3.11) is based on the determination of an equivalent gas amount following a curve-of-growth at an equivalent pressure, but at the same temperature as that provided by the Weinreb-Neuendorffer method. A little more conceptual development may be used [12] to show that the methods are identical when $\tau(P_i, T_i, u_i)$ is of either purely weak or purely strong-line characteristics.

3.4 Method of McMillin and Fleming

A recent approach to the problem by McMillin and Fleming [13] led to the separation of (3.4) into a product of two functions, one of which is given by (3.3). The other is a four-parameter polynomial f expressed in terms of temperature differences within isothermal layers of uniformly-mixed gases. That is

$$\tau(P_{i}, T_{i}, u_{i}) = \tau(P_{i}, T_{i}, u_{i-1}) f(\Delta T_{i}, \Delta T_{i}, \Delta T_{i})$$
 (3.12)

$$= \tau(P_{i-1}, T_{i-1}, u_{i-1}) f(\Delta T_i, \Delta T_i, \Delta T_i)$$
(3.13)

where ΔT_i is the level temperature difference from a reference average temperature \overline{T}_i , while ΔT_i and ΔT_i are these same temperature differences but weighted by the level pressure and averaged over the entire atmospheric region above the level. Since they follow from the use of the equivalent mass concept, they may as well be called "equivalent temperature differences". Specifically,

$$\Delta T_{i} = T_{i} - \overline{T}_{i} \tag{3.14}$$

$$\Delta T_{i} = \frac{\int \Delta T(P) dP}{\int dP}$$
 (3.15)

$$\Delta T_{1}^{2} = \int \frac{P\Delta T(P)dP}{PdP}$$
(3.16)

where the integration is carried along the path ending at Pi.

The polynomial f in (3.13) is a function representing the transmittance through the layer, and is given for a layer as

$$f = b_1 + b_2 \Delta T + b_3 \Delta T^2 + b_4 \Delta T^2 + b_5 \Delta T^2$$
 (3.17)

where the b_j 's (j=1,...,5) are spectral parameters. In particular, b_1 represent the ratio of the transmittance to the bottom of the layer to

the value at the top for the reference temperature. The original intent in arriving at f was to allow for a convenient procedure for calculating the transmittance through a layer at any temperature \overline{T}_i , with a knowledge of the transmittance at a reference temperature T_i .

3.5 Method of Transmittance Product

The separation of (3.4) into the product form (3.12) suggests another separation in the form

$$\tau(P_{i}, T_{i}, u_{i}) = \tau(P_{i}, T_{i}, u_{i-1}) \Delta \tau(P_{i}, T_{i}, \Delta u_{i})$$
 (3.18)

$$= \tau(P_{i-1}, T_{i-1}, u_{i-1}) \Delta \tau(P_i, T_i, \Delta u_i)$$
 (3.19)

where $\Delta \tau$ is the transmittance through $\Delta u_{\hat{i}}$. Even though the approximations inherent in (3.19) are of the same magnitude as those in (3.12), the function $\Delta \tau$ is not restricted to temperature dependence alone, and may be used for nonuniformly-mixed gases as well.

Further attractiveness of (3.19) lies in the fact that Δt may be represented with any general band model, which shows the explicit dependence on pressure, temperature and gas amount. One set of spectral parameters describing such model could be developed for the entire atmosphere for each spectral band of interest. An examination of (3.19) shows, additionally, that it is exact for the monochromatic case and that it does not require the use of any equivalences in the variables involved.

4. BAND MODEL DEVELOPMENTS

By model development is usually meant the determination of the spectral parameters of the model using measured transmittance data. In the absence of a sufficient amount of data from experimental analyses use is mostly made of line-by-line calculations for theoretical paths resembling the actual atmospheric situations. By line-by-line calculations is meant the evaluation of Beer's law in the form of either (2.1) or (2.2) using the parameters of each significant line, and assuming some type of broadening function. This procedure is discussed in detail in the second part of the final report under this contract. In this section a least-squares technique is applied to the determination of the spectral parameters for the two polynomial models presented in Section 2.

4.1 Spectral Parameters for Weak-Line Function

The weak-line approximation for the Mayer-Goody model, as well as for most models, was given by (2.6). In terms of the variable in (2.12) it becomes

$$\tau_{\omega} = \exp\{-kSu\} \tag{4.1}$$

The curve fitting technique to be used in the determination of k consists of minimizing the difference function d as

$$d(k) = \sum_{i=1}^{N} W_{i} \left\{ \left(\frac{-1}{\ell n \tau_{i}} \right)^{2} - \left(\frac{-1}{\ell n \tau_{w,i}} \right)^{2} \right\}^{2}$$

$$(4.2)$$

where the summation is over all levels for which data exists on P_i , T_i and τ_i , and W_i is the weighting function [14]

$$W_{i}(\tau_{i}) = \tau_{i}^{2} (\ln \tau_{i})^{6}$$
 (4.3)

For convenience in the minimization process the change of constants

$$B = 1/k^2$$

may be introduced so that the least-squares derivative of (4.2) becomes

$$\frac{\partial d(B)}{\partial B} = 0$$

leading to

$$B = \frac{\sum_{i=1}^{N} W_{i} \left(\frac{-1}{\ell n \tau_{i}}\right)^{2} \left(\frac{1}{S_{i} u_{i}}\right)^{2}}{\sum_{i=1}^{N} W_{i} \left(\frac{1}{S_{i} u_{i}}\right)^{4}}$$

$$(4.4)$$

4.2 Spectral Parameter for Strong-Line Function

The strong-line approximation of greatest versatility is the one given by King and stated in (2.9). In terms of the variable in (2.13), it becomes

$$\tau_{s} = 1 - G \left\{ n, \left[n\Gamma(n) \left[\frac{2}{\pi} CS(P/P_{o}) (T_{o}/T)^{1/2} \right]^{1/2} \right]^{1/n} \right\}$$
 (4.5)

Since the spectral parameters n, and C appear within the function G in (4.5), their determination requires a non-linear curve-fitting procedure.

The quantity to be minimized is

$$d(n,C) = \sum_{i=1}^{N} W_{i} \left\{ \ln \alpha_{i} - \ln \alpha_{s,i} \right\}^{2}$$

$$(4.6)$$

where

$$W_{i} = 1$$

$$\alpha_{i} = 1 - \tau_{i}$$

$$\alpha_{s,i} = 1 - \tau_{s,i}$$

$$= G(n,C)$$

It is first assumed in (4.6) that an assumed point n°,C° is very close to the point which yields the computed minimum of d and, then, d_i is expanded in a two term Taylor series about the assumed point. That is, if

$$B = \ln C$$

$$d_{i}(n,B) = \ln \alpha_{i} - \ln \alpha_{s,i}$$
(4.7)

then

$$d_{i}(n,B) = d_{i}(n',B') + \frac{\partial d_{i}}{\partial n}\Big|_{n',B'}(n-n') + \frac{\partial d_{i}}{\partial B}\Big|_{n',B'}(B-B')$$

(4.8)

After substitution of (4.8) into (4.6), the minimum point is obtained through the derivatives

$$\frac{\partial d}{\partial n}(n,B) = 0$$

$$\frac{\partial d}{\partial B} (n, B) = 0$$

which yuild the linear set

$$\Delta B \sum_{i} x_{i}^{2} + \Delta n \sum_{i} x_{i} y_{i} = \sum_{i} x_{i} \left\{ \ln \alpha_{s,i} (n',B') - \ln \alpha_{i} \right\}$$
 (4.9)

$$\Delta B \sum_{i} x_{i} y_{i} + \Delta n \sum_{i} y_{i}^{2} = \sum_{i} y_{i} \left\{ \ln \alpha_{s,i} (n',B') - \ln \alpha_{i} \right\}$$
 (4.10)

In this set of equations, the following notation is used

$$x_i = \frac{\partial}{\partial n} \ln \alpha_{s,i}$$

$$y_i = \frac{\partial}{\partial n} \ln \alpha_{s,i}$$

|
| n', B'

$$\Delta n = n - n'$$

$$\Delta B = B - B$$

In matrix form (4.9) and (4.10) may be written conveniently as

$$[P \mid [A] = [D]$$
 (4.11)

with solution

$$[A] = [P^{-1}][D]$$
 (4.12)

where

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \Delta B \\ \Delta n \end{bmatrix}$$

$$[D] = \begin{bmatrix} \sum_{i} x_{i} & \{\ln \alpha_{s,i} & (n^{2}, B^{2}) - \ln \alpha_{i} \} \\ \sum_{i} y_{i} & \{\ln \alpha_{s,i} & (n^{2}, B^{2}) - \ln \alpha_{i} \} \end{bmatrix}$$

$$[P] = \begin{bmatrix} \sum_{i} x_{i}^{2} & \sum_{i} x_{i} y_{i} \\ \sum_{i} x_{i} & \sum_{i} y_{i} \end{bmatrix}$$

4.3 Spectral Parameters for Polynomial in Pressure, Temperature and Concentration

In a previous section a polynomial model was derived which expressed transmittance as a function of the weak-and strong-line approximations. Although the model as given by (2.10) allows for an expansion in products of functions of $\tau_{\rm w}$, $\tau_{\rm s}$, it is seldom advisable to include more than the first three terms. This premise is based on the fact that for purely weak-or purely strong-line data, the models for these limits normally curve-fit sufficiently well to the data. The problem lies in the region in between these limiting condition, since the available data τ is more than likely an inseparable mixture of weak-and strong-line transmittances. Any additional term beyond the third will tend to place undue weights on the limiting functions, decreasing the effect of the "interpolating" third term.

In a three-term expansion, (2.10) may be re-written in the form

$$\left(\frac{-1}{\ln \tau}\right)^2 = R_{\rm w} x^2 + B_{\rm s} y^2 + B_{\rm w,s} xy \tag{4.13}$$

which yields the least-squares relation

d (B_w, B_s, B_{w,s}) =
$$\sum_{i=1}^{N} W_{i} \left\{ \left(\frac{-1}{\ln \tau_{i}} \right)^{2} - \left(B_{w} x_{i}^{2} + B_{s} y_{i}^{2} + B_{w,s} x_{i} y_{i} \right) \right\}^{2}$$
 (4.14)

The minimization of (4.14) based on the partial derivatives

$$\frac{\partial}{\partial B_{(i)}} d(P_{\mathbf{w}}, B_{\mathbf{s}}, B_{\mathbf{w}, \mathbf{s}}) = 0$$

$$\frac{\partial}{\partial \mathbf{B}_{\mathbf{S}}} d(\mathbf{B}_{\mathbf{w}}, \mathbf{B}_{\mathbf{S}}, \mathbf{B}_{\mathbf{w}, \mathbf{S}}) = 0$$

$$\frac{\partial}{\partial B_{W,S}} d(B_{W}, B_{S}, B_{W,S}) = 0$$

results in the matrix formulation

$$[A] = \begin{bmatrix} B_{\mathbf{w}} \\ B_{\mathbf{s}} \\ B_{\mathbf{w},\mathbf{s}} \end{bmatrix}$$

$$[D] = \begin{bmatrix} \sum_{i}^{w_{i}} x_{i}^{2} & F_{i}^{2} \\ \sum_{i}^{w_{i}} y_{i}^{2} & F_{i}^{2} \\ \sum_{i}^{w_{i}} x_{i}^{2} & Y_{i}^{2} & F_{i}^{2} \end{bmatrix}$$

$$[P] = \begin{bmatrix} \sum_{i}^{W_{i}} x_{i}^{4} & \sum_{i}^{W_{i}} x_{i}^{2} y_{i}^{2} & \sum_{i}^{W_{i}} x_{i}^{3} y_{i} \\ \sum_{i}^{W_{i}} x_{i}^{2} y_{i}^{2} & \sum_{i}^{W_{i}} y_{i}^{4} & \sum_{i}^{W_{i}} x_{i}^{3} y_{i}^{3} \\ \sum_{i}^{W_{i}} x_{i}^{3} y_{i} & \sum_{i}^{W_{i}} x_{i}^{3} y_{i}^{3} & \sum_{i}^{X_{i}^{2}} y_{i}^{2} \end{bmatrix}$$

where

$$F_{i} = -\frac{1}{\ln \tau_{i}}$$

$$x_{i} = -\frac{1}{\ln \tau_{w,i}}$$

$$y_{i} = -\frac{1}{\ln \tau_{s,i}}$$

$$W_{i} = \tau_{i}^{2} (\ln \tau_{i})^{6}$$

As before, the solution follows as

$$[A] = [P^{-1}] [D]$$
 (4.15)

4.4 Spectral Parameters for Polynomial in Pressure, Temperature and Concentration

The model of Smith expresses transmittance as a Polynomial function of the gas amount, the pressure and the temperature. In its most useful form [9] the Polynomial is expanded into 14 terms as

$$\ln (-\ln \tau) = a_1 + a_2 x + a_3 y + a_4 z + a_5 xy + a_6 xz
+ a_7 x^2 + a_8 x^2 z + a_9 yz + a_{10} x^3 + a_{11} xz^2 + a_{12} z^2
+ a_{13} xyz + a_{14} yx^2$$
(4.16)

For a least-squares analysis of (4.16) a minimization is made of the difference

$$d(a_{j}, j=1,..., 14) = \sum_{i=1}^{N} \left\{ ln(-ln\tau) - g(a_{j}, j=1,..., 14) \right\}^{2}$$
 (4.17)

where g is the right-hand side of (4.16). Because of the difficulties in arriving at a weighting function of physical significance, no weighting function is used in (4.17). In view of the sizes of the matrices associated with a solution of (4.17), they are not presented in this section. They are included in the Appendix with the associated computer programs. The matrices follow the derivatives

$$\frac{\partial}{\partial a_j} d(a_j, j=1,..., 14) = 0$$
 (4.18)

Although the matrix solution (4.12) is applicable to the leastsquares set of equations obtainable from (4.17), a different approach
may be taken. For each pressure level an equation may be written
having the form

$$t_i = a_1 + a_2 x_i + a_3 y_i + \dots + a_{14} y_i x_i^2$$
 (4.19)

where

$$t_{i} = \ln(-\ln \tau_{i})$$

$$x_{i} = \ln u_{i}$$

$$y_{i} = \ln(P_{i}/P_{o})$$

$$z_{i} = \ln(T_{i}/T_{o})$$

Define

$$\begin{bmatrix} \mathbf{t}_{1} \\ \mathbf{t}_{2} \\ \vdots \\ \mathbf{t}_{N} \end{bmatrix} , \quad \begin{bmatrix} \mathbf{B} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{x}_{1} & \mathbf{y}_{1} & \dots & \mathbf{y}_{1} \mathbf{x}_{1}^{2} \\ 1 & \mathbf{x}_{2} & \mathbf{y}_{2} & \dots & \mathbf{y}_{2} \mathbf{x}_{2}^{2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \mathbf{x}_{N} & \mathbf{y}_{N} & \mathbf{y}_{N} \mathbf{x}_{N}^{2} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{14} \end{bmatrix}$$

so that we may write

$$[Y] = [B] [A]$$
 (4.20)

The application of (4.18) to (4.17) yields a set of 14 equations

of the form
$$\sum_{i} t_{i} = a_{1} \sum_{i} 1 + a_{2} \sum_{i} x_{i} + \dots + a_{14} \sum_{i} x_{i}^{2} y_{i}$$

$$\sum_{i} t_{i} x_{i} = a_{1} \sum_{i} x_{i} + a_{2} \sum_{i} x_{i}^{2} + \dots + a_{14} \sum_{i} x_{i}^{3} y_{i}$$
:
:

$$\sum_{i} t_{i} x_{i}^{2} y_{i} = a_{1} \sum_{i} x_{i}^{2} y_{i} + a_{2} \sum_{i} x_{i}^{4} y_{i} + \dots + a_{14} \sum_{i} x_{i}^{4} y_{i}^{2}$$

which using matrices may be written as

$$[S] = [U] [V]$$
 (4.21)

where

$$[S] = \begin{bmatrix} \sum_{i} t_{i} \\ \sum_{i} t_{i} x_{i} \\ \vdots \\ \sum_{i} t_{i} x_{i}^{2} y_{i} \end{bmatrix} , [V] = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{14} \end{bmatrix}$$

$$[U] = \begin{bmatrix} \sum_{i}^{1} & \sum_{i}^{x_{i}} & \cdots \sum_{i}^{x_{i}^{2}} y_{i} \\ \sum_{i}^{x_{i}} & \sum_{i}^{x_{i}^{2}} & \cdots \sum_{i}^{x_{i}^{3}} y_{i} \\ \vdots & \vdots & \vdots \\ \sum_{i}^{x_{i}^{2}} y_{i} & \sum_{i}^{x_{i}^{4}} y_{i} & \cdots \sum_{i}^{x_{i}^{4}} y_{i}^{2} \end{bmatrix}$$

The solution of (4.20) is

$$[v] = [v]^{-1} [s]$$

To find the solution for [V] by matrix operation on the previously defined matrices, note that

$$\{U\} = [B^T] [B]$$

$$\{S\} = \{B^T\} \{Y\}$$

so that

$$[V] = ([B^T] [B])^{-1} [B^T] [Y]$$
 (4.22)

5. APPLICATION TO 15µm CO2: HOMOGENEOUS PATHS

In order to evaluate the validity and usefulness of the formulation presented in the earlier sections of this report, several of the procedures and models were developed for computer solutions. In this section a discussion is presented of the equations, procedures and computer programs associated with the developments of the homogeneous-path case for the 15µm CO₂ spectral band.

5.1 Transmittance Data

The transmittance data used in the development of the band models for homogeneous paths consisted of 200 values in the ragnes from 0.005 to 0.5 and 0.5 to 50 atm. cm. at Standard Temperature and Pressure. The data were available for all six channels of the vertical temperature profile retrieval (VTPR) experiment in the 15µm CO₂ band. The center frequencies for these channels are approximately 667, 677, 694, 708, 725, and 747 cm⁻¹. Details of the line-by -line calculational methods used to arrive at these data are given in part two of this final report.

5.2 Development of Model in Eq. 4.13

The band models chosen for curve-fitting to the transmittance data were those of the polynomial-type as proposed by Pierluissi (Eq. 4.13) and Smith (Eq. 4.16). In particular, 4.13 had been proposed and developed some time prior to the period covered by this contract [15] and called the Five-Parameter model. The Theory of its development is repeated here for convenience and, at the same time, some beneficial changes to the original version are introduced. The innovations

are incorporated into the original program called IRABSMD, and the resulting program renamed EIKCIM.

In the earlier work the exponential limiting function for $\tau_{\rm w}$ had been substituted into the comple model, in such a way that its parameter K was part of the quadratic parameter B. This precluded the curve-fitting of weak-and strong-line models independently, followed by a curved-fitting to the general quadratic model. In principle, this latter procedure is more nearly correct or, at least, more consistent. Initially, only the strong-line model was curve-fitted individually. The following is a summary of the model version developed under the present effort.

The model forms developed following the procedures of Section 4 are:

Weak-Line (Determination of k)

$$\tau_{\mathbf{w}} = \exp\left\{-\mathbf{k} \, \mathbf{S} \, \mathbf{u}\right\} \tag{4.1}$$

Strong-Line (Determination of n and C)
$$\tau_{s} = 1-G \left\{ n, \left[n^{\Gamma} (n) \left[\frac{2}{\pi} CS (P/P_{o}) (T_{o}/T)^{1/2} \right] \right]^{1/2} \right\}$$
(4.5)

Complete Model (Determination of B_w , B_g , and B_{ws})

$$\left(\frac{-1}{\ln \tau}\right)^2 = B_w \left(\frac{-1}{\ln \tau_w}\right)^2 + B_s \left(\frac{-1}{\ln \tau_s}\right)^2 + B_{ws} \left(\frac{1}{\ln \tau_s \ln \tau_s}\right) (4.13)$$

Because of the presence of the incomplete gamma function the model has proven to be somewhat harder to develop than the other polynomial-type model discussed below. The problem arises in reaching convengence for the strong-line parameters n and C. This model is non-linear in M and C and had to be linearized for its present application. Thus, the determination of these spectral parameters need to be determined through iterations from an initial guess. This is a trouble-some and time-consuming process which is required every time that the data is changed and new parameters need to be developed. For this reason, the presentation of its development here is not intended for use by White Sands Missile Range in their VTPR experiment. For that purpose the model of Smith is recommended, together with some technique for inhomogeneous-to-homogeneous path conversion. The model was, however, developed and the results for channel 1 is included in Appendix A together with program EIKCIM. The results have not been optimized.

5.3 Development of Model in Eq. 4.16

The model of Smith, discussed in detail in Sections 3 and 4 of this report, was selected for development using the homogeneous-path data of Sub-section 5.1. This model is easier to use because it is simply a linear combination of logarithmic functions involving the variables u, P and T. Calculations using the developed model are equally fast and accurate since the process consists of the evaluation of a polynomial of the third power.

The form of the Smith's model used is given by 4.16 with the terms propsed by Weinreb and Neuendorffer [9], that is

$$n(-\ln t) = a_1 + a_2 x + a_3 y + a_4 z + a_5 xy + a_6 xz + a_7 x^2 + a_8 x^2 z$$

$$a_9 yz + a_{10} x^3 + a_{11} xz^2 + a_{12} z^2 + a_{13} xyz + a_{14} yx^2 \qquad (4.16)$$

where now

 $x = 0.1 \ln u$ $y = \ln p$

Equation 4.16 was used in program EIGGAM 2 for the determination of the spectral parameters \mathbf{a}_i ($i=1,\ldots,14$). A copy of the program is included in Appendix B together with a sample of the output. The results for the six VTPR channel and for all principal absorbers are presented in the next Sub-section.

5.4 Tabulation of Results

The transmittance data available for the development of the Smith's band model for CO_2 and $\mathrm{H}_2\mathrm{O}$ contained two ranges in the gas amounts, namely: 100 points for amounts from 0.005 to 0.5 atm. cm. and 100 points for amounts from 0.5 to 50 atm. This break down was selected in order to cover the entire portion of the curve-of-growth of interest with a high degree of accuracy. The region of the curve-of-growth was decided upon on the basis of available transmittance data for a Standard vertical profile from satellite to ground. The model developed for the latter range would be used in atmospheric transmittance calculations to a larger extent that the former. For O_3 the range from 0.005 to 0.5 atm. cm. in more than sufficient in order to be able to calculate the atmospheric transmittance for any reasonable O_3 profile.

Tables 5.1 through 5.5 contain the 14 Smith's polynomial parameters for all ranges, all channels and all gases. For calculations, these should be substituted in Eq. 4.16 with u in atm. cm., P in millibars and T in degrees Kelvin. For a given homogenoeus path at these conditions, the resultant transmittance will be the product of the individually calculated transmittances for CO_2 , $\mathrm{H}_2\mathrm{O}$ and O_3 .

Once determined, the spectral parameters of Tables 5.1 through 5.5 were used to recalculate the original transmittance data in order

to have some measure of their correctness. The mean of the absolute differences between the calculated and the original transmittances were evaluated and tabulated in Tables 5.6 through 5.11. Included in these tables are also the peak deviations obtained for all cases considered.

TABLE 5.1 SMITH POLYNOMIAL COEFFICIENTS AT STP FOR UTPR CHANNELS: CO2 IN THE RANGE 0.005 TO 0.5 ATM. CM.

SHITH POLYNOMIAL COEFFICIENTS

. 182-02	-137-01	.101.	7.0	707.	617 1937-01
10-491.	.392-01	C13	8.41	C13 367-0;	.331-91
.566-32	C12 395-02	344-61	C12 462-C1	276-01	. 131-01
.295-01	.420-01	762-01	296-01	195	10-551.
. 103-01	C10 133-02	C10 -450-02	.258-02	604-02	c10 533-03
205-01	C9 291-61	C9 .127.63	.117.62	342-01	. 639-01
.125-61	. 253-31	C8 161+30	83.1. 00.00	.333-01	918-01
10-855	C7 583-31	C7 •131•0n	.271*00	650-01	C7 702-01
.299-01	.310-02	.573+00	900+619•	.13%+00	486.00
-255400 -103401 -614-01 -201400327-01 -298-01 -125-01205-01 -103-01 -295-01 -566-32 -164-01 -482-02	C2 C3 C4 C5 C5 C4 C7 C6 C7 C6 C7	CHANNEL NO. 3 CHOCKEL NO. 3 CHANNEL NO. 3 CH	. 501°91 .434°01447°00617°00214°00 .619°00140°00 .119°09258°02298°01462°01117°00 .679°01	C1 C2 C3 C4 C4 C6 C7 C8 C7 C10 C11 C12 C13 C14 -828+00 -103+01133+00132+00 -137+00 -650-01333-01 -342-01604-02 -353-01276-01367-01 -704-02	51 C2 C3 C4 C4 C6 C7 C6 C7 C6 C7 C10 C11 C12 C13 C14 C15-C11 -533-C03 -155-C11 -1331-C11 -637-C11 -533-C03 -155-C11 -1331-C11
10-119.	. 752-91	423.00	63.	. 133.00	20,00
-103.01		C2 •587,01	.434.01	.103.01	.490.00
255,00	115.00	.313.01	.301.	. 424-00	10.511.

TABLE 5.2 SHITH POLYNOMIAL COEFFICIENTS AT STP FOR VTPR CHANNELS: CO2 IN THE RANGE 0.5 TO 50 ATM. CM.

	.333-01	10-9kg.	C1.*	10-751-	73-326:	C14 974-02
	.207-92	.234-02	19-11-	17-0-11	. 10-512.	C13 .284-01
	.325-02	CHANNEL NO. 2 C6 C7 C8 C8 C9 C10 C11 C12 C13 C14 C35+00483-01186+00447-01 -606-02488-02235-01203-01204-01	0 C11 C12 .4-02 .689-02109-01	213	10-346-	646-61
	.273-62	C10 C11 C12	689-02	.163-02	.263-52 263-52	
	C10 .496-02	C10 .448-02	C10 354-02	754-63	540-02	173-02
	724-62	60-909.	63	13-912.	19-041.	
5	.225-07	C. + + + 7 = 3 :	.227-01	. 837-03	C8 243-61	CB 794-C1
PALTHONIAL COEFFICIENTS	.240+63	10. 2 C7 186+00	.342-132	. c7 .729-01	0. S C7 -171+00	60.67
NONIAL CO	CHANNEL C6 .966-52	CHANNEL P	CHANNEL 06.	CHANNEL N C6 .932-01	CHANNEL N C6 326-01	CHANNEL C6
Pall	. cs 185-01		304-02	-307-01	34+60	
	.12, +63	.161.	-1142+00	C4 240+50	93+691.	673-52
	.162-01	10-186.	C3 326-02	63.	.533-01	C3 7.105.00
	C1 . C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C8 C7 C10 C11 C12 C13 C14 C5 C5 C7 C7 C10 C11 C12 C13 C14 C5 C5 C7 C7 C7 C10 C11 C12 C13 C14 C14 C14 C14 C15 C14 C15 C15 C15 C15 C15 C14 C14 C14 C15 C15 C15 C15 C15 C15 C15 C15 C14 C14 C14 C15 C15 C15 C15 C15 C15 C15 C15 C14 C14 C15	.394+gg23g-g1981-g1 .161+30	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 -478-01653+00324-02 -124-02 -124-00 -342-02 -222-01 -152-01 -354-02 -673-02129-01 -114-01172-01	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C5 C9 C10 C11 C12 C13 C14 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C1 -157-01	C1 C2 C3 C4 C5 C6 C9 C10 C11 C12 C13	C1 C2 C3 C4 C5 C6 C7 C8 C7 C10 C11 C12 C13 C14 C1668+00763-C3173-02764-U2646-U1 -284-C1774-C2
	145-02	.394.00	10-874.	C1 600-03	C1 269-07	DC+899
1		The state of the s	distance of the same		1	1 1

TABLE 5.3 SMITH POLYNOMIAL COEFFICIENTS AT STP FOR VIPR CHANNELS: H20 IN THE RANGE 0.005 TO 0.5 AIM. CM.

	.209-01	.304-01	290-01	10-101-		10-515
	CHANNEL NO. 1 C8 C9 C10 C11 C12 C13 C14 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C1609*01745.00177*01126.00 .132.00556-01117-01763-02 .514-01107-01362-02 .209-01	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 .747+00 -103+00 -195+00 -130+00 -115.00 -1736-01 -1282-01 .195-01 .299-02 .205-01 -167-01 .633-02 .304-01	C1 C2 C3 C4 C5 C6 C6 C7 C8 C9 C10 C11 C12 C13 C14 C10 C1 C10 C11 C12 C13 C14 C10 C1 C12 C13 C14 C10 C1 C12 C13 C14 C10 C10 C13 C14 C15 C15 C13 C14 C15 C15 C15 C13 C14 C15	C1 C2 C3 C4 C5 C6 C7 C8 C7 C10 C11 C12 C13 C14 565-01 167-01 -8840-01 -112,00 -131-00 -321-01 109-00 -137-01 .200-01 .735-02 -,298-01 -,854-02 -,324-01 -,101-01	C1 C2 C3 C4 C5 C6 C7 C8 C9 C9 C10 C11. C12 C13 C14195°01166°01 -152°00	C1 C2 C3 C3 C4 C6 C6 C7 C8 C9 C10 C11 C12 C13 C14 C14 C14 C14-01 -114-00 -118-02 -117-00 -259-01 -114-00 -515-01
	-107-01-	C12 167-01	.215-02	C12 854-02	-100-01	269-01
	113.	.205-01	.207-01	C111	.728-02	-1117-00
	712-02	.299-02	522-02	.735-02	C10 576-02	.138-02
	763-02	10-541.	-,337-01	.200-01	C9 291-01	004811.
	117-01	.282-01	10-514.	C8 137-01	0741-01	C8 120-00
FFICILNTS	67	0. 2 C7 736-01	0. 3 C7 226-01	.167.30	5 20 5 191+00	0. 6 C7 .286.00
POLYNOMIAL COEFFICIENTS	CHANNEL N	CHANNEL N C6 •115+00	CHANNEL N	CHANNEL N C6 .321-01	CHANNEL N C6 361+DD	CHANNEL N CA •370+00
POLYN	126.00	0000001130000	.510-01	00*161.	.322.00	c5 .675-01
	10-99.	C4 295,00	.224.00	-1112,00	. 442-01	
	10-7711-	.959-01	.107.00		.152*00	.358.00
	745.00	C2 103.00		.167.01		.608-01
Service of the last of the service o	10-609.	21,47.00		10_595.	10.5611.	.251.01

TABLE 5.4 SHITH POLYNOMIAL COEFFICIENTS AT STP FOR VTPR CHANNELS: H20 IN THE RANGE 0.5 TO 50 ATM. CH.

POLYNOHIAL COEFFICIENTS

•		•		•	
0000	17.00	03-01	00 - 1	15.00	
150-01	155-01	225.01	133.00	10.041.	.579.00
.,374-02	.372-01	. 398-01	.238-01	. 434*01	.,234-01
04111.	.371-01	.152+00	C4 **215*00	10-606.	10-602.
115.00	.187.00	. 289+00	CS -, 145+00	C5 • 788°01	.430-01
CHANNEL NO. 1 C4 C5 C4 C5 C6 C6 C6 C6 C7 C9 C10 C10 C11 C12 C13 C14 C14 C1 C12 C13 C14 C14 C12 C13 C14 C14 C14 C14 C14 C14 C14 C15 C14	C1 C2 C3 C4 C5 C6 C6 C6 C6 C6 C6 C10	C) C	CHANNEL NO. 4 CB CG C10 C10 C10 C13 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C14 C14 C15 C15 C15 C15 C17 C17 C18 C18 C19 C19 C19 C19 C19 C19	C1 C2 C3 C4 C5 C6 C9 C9 C10 C11 C12 C13 C1+	Ci C2 C3 C10 C12 C13 C14 C15 C4 C8 C9 C9 C10 C11 C12 C13 C14 C15 C14 C15 C14 C15 C14 C15 C14 C14 C15 C14
	. 459.00	6,845+00	.446+00	0° C7 •779-02	62 65.
.,333-01	-,239*01	.395-01	. 63-0;	C8 458-01	C. 177-01
.337-03	20-9111-	218-01	147-01	100001.	50 - 10 - 05
510	474-02	70.984.	658-02	406-02	229-02
973-02	533-02	218-04	500-02	60-584.	511
10-141-01		-168-02	612	379,01	213
.212-01	613	110-011	-, 103-02	233-01	C13
784-0,	777	10-11-5	627-01	337-61	21,2

TABLE 5.5 SHITH POLYNOHIAL COEFFICIENTS AT STP FOR VIPR CHANNELS: 03 IN THE RANGE 0.005 TO 0.5 AIM. CM.

POLTHOMIAL COEFFICITIES

10-271.	.251-51	10-01	10-112	602-51	C14 261-01
C13	C13	5.1		139-617	. 10-106
C1 C2 C3 C4 C6 C7 C8 C7 C9 C10 C11 C12 C13 C14	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 -130-01 -228+.01 -228+.03 -462+.09 -364-01 -58211 .668-01496-03150-01459-01772-01 .251-51	С1 С2 С3 С4 С5 С7 С8 С9 С10 С11 С12 С13 С14 С14 С15 С16 С11 С15 С19 С14 С14 С16 С16 С16 С16 С16 С17 С19 С14 С14 С16	C1 C2 C3 C4 C6 C7 C4 C9 C10 C11 C12 C14 C14 C15 C14 C14 C15 C14	71 (2 C3 C4 C5 C7 C8 C7 C10 C11 C12 C13 C141"2"01280"01 -107"00 -193"00 -752"01390"00 -155"01350"01350"01350"01355"01350"01502"51	CHANNEL NO. 6 CS C3 C4 C5 C6 CA C9 C7 C9 C10 C11 C2 C3 C4 C6 CA C9 C7 C9 C10 C11 C2 C3 C4 C6 CA C9 C7 C9 C10 C11 C12 C12 C12 C13 C14 C14 C15 C15 C15 C15 C16 C17 C17 C17 C17 C17 C17 C17
.823-31	1150-01	104.00	113-011	10-999	00.961
C10 379-03	C10 496-03	316-03	.300-03	0.10	203-03
205-01	60	6.5	63	525-01	60.101.
603-02	£8 -582-11	636.	C# 903-J1	.707-01	309-01
C7 1 896-01	.0. 2 .07 .147.00	. c7 . 247 • 00		6. 6 C7 • 155***01	,0. 6 C7 .352.00
CHANEL 1 C6 •514-01	CHANNEL C6	CHANNEL F	00°, /++.	CHANNEL N C6 340+00	CHANNEL D C6 278-01
207.00	366-01	.478+00	C5 274-00	. 752-01	.403+00
805-52	462-20	00,005	00.074	193+09	876-03
1.519-01		20°39	.306°C0	.107.90	-316.00
625.00	.284.01	.357-91	.312,01	.260-01	.612.01
10-151-	130.01	10.75	167761.	11,5,01	.5.

Table 5.6. Transmittance deviations for channel 1 at STP using Smith's polynomial model

		DEV	LATION		
GAS	ATM. CM	PEAK	MEAN		
co_2	0.005 - 0.5	0.00137	0.000530		
	0.5 - 50.0	0.00020	0.000020		
н,0	0.005 - 0.5	0.00022	0.000120		
•	0.5 - 50.0	0.00324	0.000310		
03	0.005 - 0.5	0.00001	<u>></u> 0.000005		

Table 5.7. Transmittance deviations for channel 2 at STP using Smith's polynomial model

		DEV	LATION
GAS	ATM.CM	PEAK	MEAN
co,	0.005 - 0.5	0.00003	0.00001
4	0.50 - 50.0	0.00040	0.00008
п ₂ 0	0.005 - 0.5	0.00059	0.00020
2	0.5 - 50.0	0.00066	0.00015
03	0.005 - 0.5	0.00229	0.00075

Table 5.8. Transmittance deviations for channel 3 at STP using Smith's polynomial model

		DEV	EVIATION		
GAS	ATM. CM	PEAK	MEAN		
co,	0.005 - 0.5	0.00002	<u>≥</u> 0.000005		
	0.5 - 50.0	0.00258	0.00022		
н,о	0.005 - 0.5	0.00034	0.00010		
4	0.5 - 50.0	0.00316	0.00042		
03	0.005 - 0.5	0.00084	0.00021		

Table 5.9. Transmittance deviations for channel 4 at STP using Smith's polynomial model

		DEV	IATION
GAS	ATM. CM	PEAK	MEAN
co,	0.005 - 0.5	0.00002	<u>≥</u> 0.000005
2	0.5 - 50.0	0.00018	0.00008
н,0	0.005 - 0.5	0.00020	0.00006
4	0.5 - 50.0	0.00205	0.00045
03	0.005 - 0.5	0.00010	0.00002

Table 5.10. Transmittance deviations for channel 5 at STP using Smith's polynomial model

		DEV	TATION
GAS	ATM.CM	PEAK	MEAN
co_2	0.005 - 0.5	0.00002	<u>≥</u> 0.000005
4	0.5 - 50.0	0.00159	0.00040
н ₂ о	0.005 - 0.5	0.00191	0.00060
-	0.5 - 50.0	0.00015	0.00009
03	0.005 - 0.5	0.00020	0.00005

Table 5.11. Transmittance deviations for channel 6 at STP using Smith's polynomial model

		DEV	VIATION
GAS	ATM. CM	PEAK	MEAN
co,	0.005 - 0.5	0.00001	≥0.000005
•	0.5 - 50.0	0.00236	0.00077
н ₂ о	0.005 - 0.5	0.00055	0.00018
2	0.5 - 50.0	0.00024	0.00012
03	0.005 - 0.5	0.00001	≥0.000005

Table 5.12 Absolute transmittance deviations of Smith model from original data using Transmittance-Product and Curtis-Godson methods.

Absolute Transmittance Deviations

co,		MEAN		PEAK
FREQUENCY (CM ⁻¹)	CURTIS- GODSON	TRANS- MITTANCE PRODUCT	CURT 1S-GODSON	TRANS- MITTANCE PRODUCT
667	0.0018	0.0016	0.0066	0.0069
677	0.0014	0.0012	0.0053	0.0045
694	0.0006	0.0002	0.0027	0.0009
708	0.0010	0.0003	0.0081	0.0014
725	0.0014	0.0006	0.0045	0.0010
747	0.0007	0.0002	0.0046	0.0010
AVERAGE DEVIATION	0.0011	0.0004	0.0053	0.0027

TABLE 5.13. SMITH POLYNOMIAL COEFFICIENT FOR SLANT-PATH CALCULATIONS USING THE TRANSMITTANCE PRODUCT METHOD

		2 3	,1111.ca	,3231401	.2520+31	.1785:02	. (339+01	7,7104401
		6 C C C C C C C C C C C C C C C C C C C	0.5929+01 0.5357+02 0.3818+00 -0.1489+03 0.4480+01 0.6840+02 0.1337+02 -0.8134+01 -0.2795+02 -0.1932+03 0.1979+02 0.2705+02 -0.2407+02 0.1110402	0.8413+01 0.1712+02 -0.1917+01 0.8154+02 -0.2162+01 -0.1493103 0.1190+03 -0.9235+03 0.2572+02 0.5619+02 -0.1030+03 -0.3094+02 0.6642+02 -0.3221+01	0.1164401 6.3646401 0.6791400 0.1275402 -0.6105401 -0.6750102 -0.1330401 -0.7453402 0.5239401 0.3042402 -0.3356401 0.5576401 0.4005 01 -0.2720401	0.1590402 0.5003:02 -0.3652401 0.3113400 -0.4635401 0.1594403 0.1372403 -0.1682403 -0.1622403 -0.9750402 -0.3953402 0.4074:02 0.1785:02	0,2600+01 -0.1951+01 0,9906+09 0,2684+02 0,4594+09 -0,4792+00 -0,6038+02 0,6458+01 0,7366+02 -0,7599+02 -0,1210+02 -0,1319+01	0.3996491 0.1312402 0.1027400 -0.3992402 0.1104401 0.1835403 0.2387402 0.7415401 -0.1408402 -0.9837402 -0.1625403 -0.2778402 -0.8143101 0.7104401
		o E	0.2765:02 -	-0,3094+02	0.9576401	-0.3957402	-0.4126.02 -	-0.2778+02 -
		្ព	0.1979402	-0.1030403	-0.3358401	-0.9750402	-0.7599402	-0.1025+03
		o g	-0.1932+03	0,5819+02	0.3042+02	-0.2486+03	0,7565+02	-0,9837+02
	168	0 •	-0.2795+92	0,2578+02	0,5239+01	-0,1622+01	9,6458401	-0.1403+02
	Spectral Polynomial Coefficients	. °	-0.8134+01	-0,9235+03	-0,7453+02	-0,7286+03	-0.6038402	0,7415+01
	1 Polynomia	۰,	0.1337+02	0,1190+03	-6,1330+01	0.1372+03	0.4792+00	0,2387-02
	Spectra	. .	0,6845+02	-0,1493103	-0.6750:02 -	0.1594-03	0,1189+63 -	0,1835+03
		۰۰	0,4480+01	-0.8162+01	-0.6105+01	-0.4635+01	0.4594400 -	0,1104+01
		o *	-0.1489+03	0,8154+02	0,1275+02	0.3113+90	0,2684+02	-0,3992+02
		o"	0.3818100	-0.1917401	0.6791+00	-0.3653+01	0.9906+00	0,1027+00
		۰,۳	0.5357+02	0.1712+02	6,3646401	0.5003:02	-9.1951+01	0,1312+02
		٠,	0,5929+01	0.8413+01	0.1164+01	0.1590+02	0,2600+01	0.5996+01
ຣ໌	TO COME CA	7 6	299	113	2630	202	255	147

6. APPLICATION TO 15 mm CO2: INHOMOGENEOUS PATHS

Previous sections have included discussions of homogeneous-path models for calculating the mean transmittance over a band. For the application of such models to the VTPR experiment it is necessary to have a means for conversion to the inhomogeneous-path cases. Section 3 covered the theory of such methods, and in this section some applications are discussed and evaluated.

6.1 Transmittance Data

The data used in connection with the development of models for inhomogeneous paths consisted of 100 transmittance values corresponding to line-by-line calculations for paths from the satellite height to 100 pressure levels. The U.S. American Standard Atmosphere was used in the calculations. The data was computed by NOAA and supplied by the Atmospheric Science Laboratory at White Sands Missile Range. Only the CO₂ absorber data for the six VTPR Channels were made available for model developments. The gas amounts were computed using equations which were suitable to the particular method applied in the conversion technique.

6.2 Development of Curtis-Godson Method

Band models for homogeneous paths may be used for slant-paths if the variables u, P, T are replaced with equivalent variables. One of those equivalence relations that are available is the one provided by the Curtis-Godson relations discussed in Section 3.3. The form of these equations that were used for the absorber amount is obtained from equations (3.2) and (3.8) as

$$u_{i-1} = \frac{1}{S_i} \int S(z) du(z)$$
 (3.8)

$$u_{i} = u_{i-1}^{2} + \Delta u_{i}$$
 (3.2)

which for a layered atmosphere become

$$u_{i} = \frac{1}{S_{i}} \sum_{n=1}^{i} S_{n}^{\Delta u} u_{n}$$
 (6.1)

For the equivalent pressure (3.9) and (3.10), that is

$$\alpha_{i}' = \frac{1}{S_{i} u_{i-1}'}$$
 $S(z) d(z) du(z)$ (3.9)

$$\alpha_{i} = \begin{pmatrix} P_{i} \\ P_{o} \end{pmatrix} \begin{pmatrix} T_{o} \\ T_{i} \end{pmatrix}^{1/2}$$
(3.10)

lead to

$$P_i = \frac{1}{S_i u_i} \sum_{n=1}^{i} S_n P_n T_n^{-1/2} \Delta u_n$$
 (6.2)

The band model of Smith was then developed using the slant path transmittances to the 100 levels, together with the equivalent-homogeneous variables $\mathbf{u_i}$, $\mathbf{P_i}$ and $\mathbf{T_i}$. The identity of the homogeneous-path and inhomogeneous-path transmittances was established in (3.11).

Program EIGGAM was written for the model development using (6.1) and (6.2). This program is essentially the earlier presented program EIGGAM 2, but modified to account for the calculation of the equivalent quantities required by the inhomogeneous-path transmittance data.

Both programs appear in the Appendix to this report. The results of the calculations are presented in Table 5.12. Appendix D contains the transmittance data used for the inhomogeneous-path model development.

6.3 Development of Transmittance-Product Method

In addition to the method of Curtis and Godson, three other methods were discussed in Section 3, namely: the methods of Weireb and Nuendorffer, of McMillin and Fleming and of transmittance product. For use in connection with band models of the polynomial type the method of Weinreb and Neuendorffer is difficult to apply. This is based on the requirement of the extraction of the gas amount from the avalytical expression for an existing homogeneous-path band model. In the case of polynomials, this involves the numerical solution for the root of a trancedental equation at each pressure level along the path. In addition to this limitation, the band model must be derived from homogeneous-path transmittance data for condition approximating those found along the inhomogeneous paths. That is, ling-by-line transmittances for the inhomogeneous paths are never used in the development of the band model. On the other hand, the method of McMillin and Fleming is restricted to uniformly-mixed absorbers and the homogeneous-path band model needs to be developed for each pressure level. This involves an enormous number of spectral parameters in order to cover the entire atmosphere for all absorbers and all channels.

The method of transmittance product was discussed in Sub-section 3.5 and consists of the development of a band model for the incremental transmittances through the layers. These transmittances are given by the ratios $\tau(P_i, T_i, u_i) / \tau(P_{i-1}, T_{i-1}, u_{i-1})$, as given by 3.19 in the form

$$\frac{\tau(P_{i}, T_{i}, u_{i})}{\tau(P_{i-1}, T_{i-1}, u_{i-1})} = \Delta\tau(P_{i}, T_{i}, \Delta u_{i})$$
(3.19)

For $\Delta\tau$ the model of Smith was used, with $\Delta\tau$ replacing the transmittance τ . Note that this method avoids the use of equivalent quantities, and uses the inhomogeneous-path transmittances in its development.

Program EIGGAM was modified to develop (3.17) and compare the results with those obtained from the use of the Curtis-Godson procedures. The mean and peak transmittance deviations are presented in Table 5.12 for the six VTPR channels. The model parameters are tabulated in Table 5.13.

7. DISCUSSION AND CONCLUSIONS

The principal goals of the portion of the contractual work reported here was to: a. analyze several types of promising band models for homogenous paths and select the one most useful for the application to the VTPR instrumentation, b. analyze several types of promising methods for applying the homogeneous-path model to inhomogeneous paths and select the most adaptable to part a. above.

Band models of the polynomial type were selected since it is possible to improve on their accuracy by the addition of terms, and they can be developed by linear least-squares procedures. The polynomials proposed by Pierluissi and by Smith were chosen for the analysis. Both of them were subjected to the same input conditions of data, computer methods and the same feasibility analysis. Since the polynomial of Pierluissi includes as special cases a wide variety of models, the conclusions derived in this section also apply to those ramifications.

The polynomial of Pierluissi from a conceptual point of view is broader in applicability and of greater physical validity than perhaps any other general band model in existence. It has been shown in the lierature [6] to apply to high resolution data with high accuracy. With the use of King's model [3] for strong-line absorptance it is applicable to gases having absorption lines with spectral distribution ranging from random to regular. With the proper selection of the spectral band parameters it may be used to generate most of the classical models as well as their limiting weak-and strong-line approxi-

mations. This model had been derived earlier, and rederived here with little change for the purpose of documentation as well as for incorporating computational modifications. The computer program to be used for the development of the model has been called EIKCIM and it appears in the Appendix. The developments presented in this report are limited and are incorporated only to help the user in understanding the model. From a practical point of view the model is restricted by the inclusion of the strong-line function which consists of an incomplete gamma function. This function is nonlinear in the spectral parameters and, consequently, the developmental procedures involve the linearization of the least-squares equation. It is necessary to iterate in these procedures to arrive at an optimal set of parameters from an original guess. In general, this part of the procedures is time consuming for the user and wasteful of computer time. A second limitation worthy of criticism is the fact that the model variables (i. e. absorber amount, presure and temperature) appear in the weak-and strong-line function rather than separated, as in Smith's model. This forces the user to go through three developmental procedures, namely: for the weak-line, strong-line and the complete model. It is possible to do away with the first, but not with the second. For these reasons above it was decided upon the recommendation and usage of the model of Smith.

The polynomial model of Smith was programmed as program EIGGAM (See Appendix) and was the model selected for the application to the inhomogeneous path case. The model was developed for ${\rm CO}_2$, ${\rm H}_2{\rm O}$ in two ranges of gas amounts, and for ${\rm O}_3$ in one range. The average transmit-

deviations obtained for the six VTPR channels over all the ranges for $^{\rm CO}_2$, $^{\rm H}_2$ 0 and $^{\rm O}_3$ are, respectively, 0.00036, 0.00047 and 0.00017. Details of these are tabulated in Tables 5.6 through 5.11.

With respect to the methods of conversion for homogeneous paths to actual inhomogeneous atmospheres, the results indicated that the method of transmittance product should be used. This method compared favorably when tested together with the method of Curtis and Godson. An average over all the six VTFR channels for the U.S. Standard 1962 atmospheric profile showed a mean transmittance deviation of 0.0004. This compares favorably with a corresponding value of 0.0011 obtained with the use of the Curtis-Godson equations. Other methods were analyzed in Section 5, but not implemented due both to the scarcity of time and to the fact that they are somewhat impractical or inaccurate. For instance, the method of equivalent mass is only a one-parameter approximation to the Curtis-Godson method. The method of McMillin and Fleming involves 9,000 spectral parameters in order to cover the six channels, the entire atmospheric and the three principal absorbers. Finally, the method of Weinreb and Neuendorffer involves the development of the Smith model for conditions close to those encountered in all the atmospheric layers, as well as the iterative solution for the gas amount at each pressure level. Although the results of the effort reported here include a band model for uniform paths, it was developed for STP conditions. In spite of that, the iterative solution for the absorber amount would be troublesome to obtain because the Smith polynomial is nonlinear in that variable.

REFERENCES

- H. Mayer, "Methods of Opacity Calculations", Los Alamos, LA-647 (1947).
- 2. R.M. Goody, Quant. J. Roy. Meteorol. Soc. 78, 165 (1952).
- 3. J.I. King, J. Quant. Spectrosc. Rodiat. Transfer 4, 705 (1964).
- 4. A.S. Zachor, J. Quant. Spectrosc. Rodiat. Transfer 8, 771 (1968).
- 5. A.S. Zachor, J. Quant. Spectrosc. Rodiat. Transfer 8, 1341 (1968).
- 6. J.H. Pierluissi, Appl. Opt. 12, 776 (1973).
- K. Ya. Kondratyev and Yu. M. Timofeyev, Atmos. and Ocena. Phys.,
 5, 378 (1969).
- 8. W.L. Smith, "A Polynomial Representation of Carbon Dioxide and Water Vapor Transmission", ESSA, NESC-47 (1969).
- 9. M.P. Weinreb and A.C. Neuendorffer, J. Atmos. Sci., 30, 667 (1973).
- 10. A.R. Curtis, Quant. J. Roy. Meteorol. Sci., 78, 638 (1952).
- 11. W.L. Godson, Quant. J. Roy. Meteorol. Sci. 79, 367 (1953).
- 12. J.H. Pierluissi and R.E. Bruce, J. Atmos. Sci., 32, 1497 (1975).
- 13. L.M. McMillin and H.E. Fleming, Appl. Opt. 15, 358 (1976)
- 14. G.A. Gibson and J.H. Pierluissi, Appl. Opt. 10, 1509 (1971).
- J.H. Pierluissi, "Atmospheric Modeling for Molecular Absorption Research Project", Univ. of Texas at El Paso PR2-74-AM-5, (1974).

APPENDIX A

PROGRAM EIKCIM

FIVE PARAMETER MODEL FOR HORIZONTAL-PATH TRANSMITTANCE CALCULATIONS

(Equation 4.13)

```
PROGRAM EIKCIM
      COMMON/DATA/CAB(19,10)
      DIMENSION UW(100) ,US(100) ,TO(100),U(100),
     1 TW(100), DTW(100), DTS(100), DTC(100), TS(100), TC(100), T(100)
     2, 5(100)
      REAL N, NT, M, K
      CALL DATAST
C
      INPUT INFORMATION
      M = (5.01E-4) \cdot 320./330.
      G=980.62
      RH0=1.962E-3
      T0=273.16
      PO=1.01325E+3
      PIP=3.14159265
      TL=2.30258509
      NF=6
      NU=100
      READ(5,1) (U(1),1=1,NU)
    1 FORMAT(10F7.5)
      WRITE(6,1) (U(I), I=1,NU)
      DO 2 1=1,NU
      P(I)=1.0
      T(1)=1.0
      S(1)=1.0
      UW(1)=U(1)
      US(1)=U(1)
    2 CONTINUE
C
      DO 23 L=1,NF
      READ(5,4) (TO(1) , I=1,NU)
      WRITE(6,4) (TO(1) ,1=1,NU)
    4 FORMAT (7F10.8)
C
     TRANSMITTANCE DATA SELECTION
C
      NI = 0
      DO 8 1=1,NU
      IF(TO(I) . LE. D. DODODO 1 . OR . TO(I) . GT . D . 9999999) GO TO 8
      TO(NI)=TO(I)
      UW(NI)=UW(I)
      US(NI)=US(I)
    8 CONTINUE
C
      STRONG LINE PARAMETERS N.C
      NX = 0
      B=-2.0
```

```
NT=0.0
   N = 0 . 1
  9 P11=0.0
    P12=0.0
    P22=0.0
    D1=0.0
    02=0.0
    MF=1
    NX = NX + 1
    IF (NX . LE . 50) GO TO 12
    GO TO 144
 10 IF (MF.LT.3) GO TO 11
    B=-2.0
    GO TO 144
 11 P11=0.0
   P12=0.0
   P22=0.0
   01=0.0
    02=0.0
    B=B-2.0
   MF=MF+1
 12 DO 13 I= 1,NI
    CALL ABF(N, B+ALOG(US(I) )/TL, PABLNF, PABLBF, AB)
    IF (AB.LE.O.0000001) GO TO 13
    X=PABLBF
    Y=PABLNF
    DIF=ALOG(1.-TO(1))/TL-ALOG(AB)/TL
    P11=P11+X++2
    P12=P12+X+Y
    P22=P22+Y**2
    DI=DI+X+DIF
    D2=D2+Y*DIF
 13 CONTINUE
    DET=P11*P22-P12**2
    IF (DET.LE.1.E-28) GO TO 10
    MF=1
    DB=(P22*D1-P12*D2)/DET
    DN=(P11*D2-P12*D1)/DET
   IF (ABS(DB) . LE . 0 . 001) GO TO 131
    GO TO 132
131 IF (A85(DN) . LE . 0 . 001) GO TO 143
    GO TO 132
132 DTB=ABS(ABS(DB)-ABS(BT))
    DTN=ABS(ABS(DN)-ABS(NT))
    IF (DTB.LE.D.CI.AND.DTN.LE.D.CI) GO TO 133
    GO TO 134
133 08=08/2.
    DN=DN/2.
134 IF (DB . GE . O . 3) GO TO 135
    GO TO 136
135 DB=0.3
    GO TO 138
136 IF (DB.LE.-0.3) GO TO 137
    GO TO 138
137 08=-0.3
138 IF (DN.GE.O.1) GO TO 139
```

C

```
GO TO 140
  139 DN=0.1
      GO TO 142
  140 IF (ON.LE. - 0.1) GO TO 141
      GO TO 142
  141 DN=-0.1
  142 B=B+DB
      N=N+DN
      BI=DB
      NT=DN
      GO TO 9
  143 B=B+DB
      N = N + DN
  144 IF (N.GE.D.2) GO TO 145
  145 IF (N.LE.3.5) GO TO 146
      N=3.5
  146 IC=0
      WRITE(6,1431) N.B
 1431 FORMAT(20X,3HN =,F10.5,5X,3HB =,F10.5)
      00 152 KK=1,50
  147 P11=0.0
      01=0.0
C
      00 148 I=1,NI
      CALL ABF (N, B+ALOG(US(I) )/TL, PABLNF, PABLBF, AB)
      X=PABLBF
      P11=P11+X**2 .
      IF (AB.LE. 0.0000001) GO TO 148
      DIF = ALOG(1.-TO(1))/TL-ALOG(AB)/TL
      D1=D1+X+DIF
  148 CONTINUE
      IF (P11.GT.0.0) GO TO 149
      8=8-1.0
      IC=IC+I
      IE ( IC . GT . 81 GO TO 41
      GO TO 147
  149 DB=D1/P11
      IF (DB . LE . 0 . 5) GO TO 150
      08=0.5
      GO TO 151
  150 IF (D8 . GE . - 0.5) GO TO 151
  151 B=B+DB
      IF (A85(08) . LT. 0.0005) GO TO 41
  152 CONTINUE
C
C
      WEAK-LINE PARAMETER. K
   41 P11=0.0
      01=0.0
      00 200 I=1.NI
```

```
W7=1.0
      X=1./UW(1)
      DIF=1 -/ (ALOG(TO(I) ) ** 2)
      P11=P11+WT+X++4
      DI=DI+WT+DIF *X * + 2
  200 CONTINUE
C
      DET=P11
      K=SQRT(DET/DI)
C
      QUADRATIC PARAMETERS BW, BS, BWS
C
C
   14 P11=0.0
      P12=0.0
      P13=0.0
      P22=0.0
      P23=0.0
      P33=0.0
      01 =0.0
      D2 =0.0
      03=0.0
      NN=0
C
      WRITE(6,1432)N,B,K
 1432 FORMAT(20X,3HN =,F10.5,5X,3HB =,F10.5,5X,3HK =,F10.5)
      00 16 I=1,NI
      CALL ABF(N, B+ALOG(US(I))/TL, PABLNF, PABLBF, AB)
      IF (AB . LE. 0.0000001. OR. AB . GE. 1.0000000) GO TO 16
      IF (K+UW(I). GE . 25 . D) GO TO 16
      X=-1 a ALOG(EXP(-K*UW(I) ))
      Y=-1 . / ALOG(1.0-AB)
      DIF=1 -/ (ALOG(TO(I) ) **2)
      P11=P11+WT
                    * ( X * * 4 )
                    *(X**2)*(Y**2)
      P12=P12+WT
      P13=P13+WT . * (X**3) *Y
      P22=P22+WT
                    a ( Y + + 4 )
      P23=P23+WT
                    * (Y**3) *X
      P33=P33+WT
                    *(X**2)*(Y**2)
      DI=DI+WT
                  *DIF *X ** 2
      D2=D2+WT
                  *DIF *Y ** 2
      03=03+WT
                *DIF *X *Y
   16 CONTINUE
C
      DET=P11*(P22*P33-P23*P23)-P12*(P12*P33-P23*P13)+P13*(P12*P23-P22*P
       8 W =
               (D1*(P22*P33=P23*P23)+D2*(P23*P13-P12*P33)+D3*(P12*P23-P22
     1 P1311/DET
               (D1*(P13*P23-P12*P33)+D2*(P11*P33-P13*P13)+D3*(P13*P12-P11
      1 - P2311/DET
               (D1*(P12*P23-P22*P13)+D2*(P12*P13-P11*P23)+D3*(P11*P22-P1
       BWS=
      12 0P1211/DET
      GO TO 173
  171 DET=P11*P22-P12*P12
      BW=(D1*P22-D2*P12)/DET
```

```
BS=(D2*P11-D1*P12)/DET
      BWS = 0 . 0
      NN=NN+1
      IF (NN . LT . 2) 60 TO 173
  172 DET=P11
      BW=D1/DET
      85=0.0
      BWS=0.0
C
C
      TRANSMITTANCE TABLE
C
  173 AVES=0.0
      AVEC=0.0
      AVEW=0.0
      PEAKS=0.0
      PEAKC=0.0
      PEAKW=0.0
      C=EXP(BeTL)
      DO 17 I=1, NU
      CALL ABF(N:6+ALOG(US(I))/TL.PABLNF,PABLBF,AB)
      IF(AB.LE.O.0000001) AB=0.0000001
      TS(1)=1.-AB
      TW(1)=EXP(-K*UW(1)
      X=1./(K*UW(I))
      Y=-1./ALOG(TS(I))
      EX=BW * X * * 2 + BS * Y * * 2 + BWS * X * Y
      IF(EX-LE.O.O) GO TO 171
      TC([) = EXP(-(1./SQRT(EX)))
      DTC(I)=TC(I)-TO(I)
      DTS(1)=TS(1)-TO(1)
      DTW(1)=TW(1)-TO(1)
      XNU=NI
      AVES=AVES+ABS(DTS(I))/XNU
      AVEC=AVEC+ABS(DTC(I))/XNU
      AVEW=AVEW+ABS(DTW(1))/XNU
      IF (ABS(DTS(I)).GE.PEAKS) PEAKS=ABS(DTS(I))
      IF (ABS(DTC(I)) . GE . PEAKC) PEAKC = ABS(DTC(I))
      IF (ABS(DTW(I)) . GE . PEAKW) PEAKW = ABS(DTW(I))
   17 CONTINUE
      PRINT 20,L
                     ,N,C,BW,BS,BWS,K
   20 FORMAT(1H1,34X,12HWAVENUMBER =,17 ,/,31X,16HTEMPERATURE = TO,/,10
     1x, 22HSTRONG LINE PARAMETERS, 12x, 20HQUADRATIC PARAMETERS, 25x. 19HWEA
     2K LINE PARAMETER, /, 11X, 3HN = .F8.5, 2x, 3HC = , E10.5, 2x, 4HBW = .E10.5,
     3 2x,4HBS =,E10.5,2x,5HBMS =,E10.5,2x,3HK =,E10.5,//,2x,5HLEVEL,5x,
     4 ISHMODEL VARIABLES, 18x, 39HCARBON DIOXIDE SATELLITE TRANSMITTANCES
     5,/,3x,3HNO.,3x,9HWEAK LINE,2x,11HSTRONG LINE,7x,8HORIGINAL,2x,11HS
     STRONG LINE, 2X, 9HDEVIATION, 2X, 10HCALCULATED, ZX, 9HDEVIATION, 2x, 9HWEA
     7K LINE, 2X, 9HDEVIATION, /)
      WRITE(8,21)(1,UW(1) , US(1) ,TO(1) ,TS(1),DTS(1),TC(1),
     1 DTC(1), TW(1), DTW(1), I=1, NU)
   21 FORMAT(3x,13,2x,F7.5,3x,F7.5,9x,F6.4,7x,F6.4,5x,F7.4,6x,F6.4,4x,F7
     1 . 4 , 6 X , F 6 . 4 , 4 X , F 7 . 4 )
      PRINT 22, PEAKC, PEAKS, PEAKW, AVEC, AVES, AVEW
   22 FORMAT(//,5x,10HPOLYNOMIAL,11X,11HSTRONG LINE,15X,9HWEAK LINE,/,5X
```

	the state of the s	The same taken a second and the same taken as th	33
20R,F8. 3AVE.AB	XIMUM ERROR, F8.4, 3X, 13HMA 4,/,5X, 13HAVE. ABS. ERROR, F8 5. ERROR, F8.4,//)		
23 CONTIN STOP	UE		
· END			
COMPILATION:	NO DIAGNOSTICS .	, ,	v
,			
			-
	<u> </u>	•	
	v		
		,	

```
SUBROUTINE ABF (N, X, PABLNF, PABLBF, AB)
    COMMON/DATA/CAB(19,10)
    REAL N
    IF (X.GE.2.0.AND.N.GE.2.00) 1=19
    IF (X.GE.2.0.AND.N.LT.2.00) I=18
    IF (X.LT.2.0.AND.N.GE.2.00) 1=17
    IF (X.LT.2.0.AND.N.LT.2.00) 1=16
    IF (X.LT.2.0.AND.N.LT.1.25) I=15
    IF (X.LT.1.5.AND.N.LT.1.25) I=14
    IF(X.LT.1.0.AND.N.GE.2.00) I=13
    IF(X.LT.1.0.AND.N.LT.2.00) I=12
    IF (X.LT.1.0.AND.N.LT.1.25) [=11
    IF (X.LT.0.5.AND.N.LT.1.25) 1=10
    IF (X.LT.0.0.AND.N.GE.2.00) 1=9
    IF (X.LT.0.0.AND.N.LT.2.00) I=8
    IF (X.LT.0.U.AND.N.LT.1.25) 1=7
    IF (X.LT.-1..AND.N.GE.2.00) 1=6
    IF (X.LT.-1..AND.N.LT.2.00) 1=5
    IF (X.LT.-1..AND.N.LT.1.25) I=4
    IF (X.LT.-2..AND.N.GE.2.00) 1=3
    1F(X.LT.-2..AND.N.LT.2.00) 1=2
    IF (X.LT.-2..AND.N.LT.1.25) 1=1
    TM1=2.*CAB(I,8)*N+2.*CAB(I,4)
    TM2=CAB(1,2)+CAB(1,5)*N+CAB(1,9)*N*N
    DIF=TM1 ** 2-12 . * CAB(1,7) * TM2
    IF (DIF.LT.0.0) GO TO 1
    XM1=(-TM1+SQRT(DIF))/(6.+CAB(1,7))
    XM2=(-TM1-SQRT(DIF))/(6.*CAB(I,7))
    GO TO 105
  1 XM1=-100.
    XM2= 100.0
105 X2=X*X
    ABLF=CAB(1,1)+(CAB(1,2)+(CAB(1,5)+CAB(1,9)+N)+N)+X+(CAB(1,4)+CAB(1
   1,7) *X) *X2+(CAB([,3)+CAB([,6)*X2) *N+(CAB([,6)+CAB([,10)*N)*N*N
    PABLNF=CAB(1,3)+(CAB(1,5)+CAB(1,8)+X)+X+(CAB(1,10)+1.5+N+CAB(1.6)+
   1CAB(1,9) • X) • N2
    X2=2. * X
    PABLBF=CAB(1,2)+(CAB(1,5)+CAB(1,9)*N)*N+(CAB(1,7)*1.5*X+CAB(1,4)+C
   1AB(I,8) *N) *X2
    IF (ABLF.GT.O.O.OR.X.GE.XM2) GO TO 206
    AB = 10. . . ABLF
    IF (AB.LE.0.00001) A8=0.00001
    IF (AB.GE.O.99999) AB=0.99999
    RETURN
206 AB=0.99999
    PABLNF = 0.0
    PABLBF = 0.0
    RETURN
    END
```

COMPILATION:

NO DIAGNOSTICS .

```
SUBROUTINE DATAST
 COMMON/DATA/CAB(19,10)
 DATA (CAB( 1,1),1=1,18)/-0.10049677, .49369689,-0.01667595,
=0.00572280, =0.03523860, =0.06165218, =0.00111350, =0.00829432,
e-D.01891186,-0.00991368/
 DATA (CAB( 2,1),1=1,10)/-0.09260559, .47695056,-0.07057190.
«-0.01700861,-0.06470795.-0.05897522,-0.00197060,-0.00580263,
*-0.00070225, .00574112/
DATA (CAB( 3,1), I=1,10)/-0.09001160, .44399718,-0.11988831,
*-0.02340413.-0.05279554.-0.02771187.-0.00157742,-0.00094148.
.00387880, .00313902/
DATA (CAB( 4.1), 1=1, 10)/-0.09447873, .48399989, -0.05485392,
*-0.02835365,-0.11644988,-0.11657858,-0.00674617,-0.02107077.
·-0.00463960, .02014971/
DATA (CAB( 5,1), I=1,10)/-0.08712006, .44202923, -0.12561798,
+-D.04489990,-D.09403446,-D.04566956,-D.00508810,-D.00083108,
*0.01405107, .00938129/
DATA (CAB( 6,1), I=1,10)/-0.08434296, .40194668,-0.15971947.
--0.04137856,-0.05049891,-0.01260090,-0.00265082, .00303097, .
- .00645553, .00201237/
DATA (CAS( 7,1),1=1,10)/-0.08602101, .43828721,-0.12986088,
--0.10501547,-0.17462121,-0.07202101,-0.02307045, .01511240,
.06046459, .02769244/
DATA (CAB( 8,1), [=1,10]/-0.08036613, .38655830,-0.17057037,
*-0.08319844,-0.07112410,-0.01244736,-0.00838463, .01664010,
.01697508, .00345602/
DATA (CAB( 9,1), [=1,10)/-0.07889557, .35503306,-0.18284225,
*-0.05886738,-0.02869178,-0.00037527,-0.00346908, :00846328,
· .00441822, .00033039/
DATA (CAB(10,1),1=1,10)/-0.06808838, .36149180,-0.19525874,
*-0.23168556,-0.00920814,-0.00002217,-0.02914264, .14841503,
·-0.02421525, .00330409/
 DATA (CAB(11,1),1=1,10)/-0.04126403, .25014116,-0.21722299,
·-0.27740297, ·29898705, -0.06900251, ·02916168, ·09296339.
              .05155590/
--0.15389161,
DATA (CAS(12,1),1=1,10)/-0.06826305, .29674162,-0.18988800,
*-0.13109579, .04119762,-0.00318336,-0.00720565, .04444968.
·-O.01730163,
              .00220847/
 DATA (CAB(13,1), I=1,101/-0.06970787, .29306393,-0.19207668,
*-0.07750695, .01708052, .00254536, -0.00361865, .01521470,
*-0.00381933,
               .0000040897
 DATA (CAB(14,1), I=1,10)/-0.00690082, .07486705,-0.12071805.
*-0.12648489,
              .31459381,-0.16937968. .04418599,-0.11582011.
.06688992.
               .00337738/
 DATA (CAB(15, I), I=1, 10)/-3.63675887, 6.84905041,-1.01103686,
*-4.17934132, .91541890, .19824550. .81422951,-0.11869798.
·-0.21756210.
              .04086180/
 DATA (CAB(16,1),1=1,10)/-0.03200769, .17605478,-0.17830563,
·-O.13592352, .18703743,-O.05448914.
                                       .01116831, .01081911.
·-0.03597160,
               .014998147
DATA (CAB(17,1),1=1,10)/-0.05673885, .22591937,-0.16091726,
*-0.09580447, .08087010,-0.01380110, .00039489, .01864993,
*-0.01552738, .00342301/
 DATA (CAB(18,1), 1-1, 10)/-0.02446064. .05156507, -0.04984835.
               » [2797485, -0.08574449]
                                       .00942583,-0.02514555.
                                        1129202261.0.13705414,
```

SAMPLE OUTPUT

1	7167. = W.	73179 C = .44554.01	9 × 2	32511+03 85	= .13453.01	345 =78535+00	K = .697	LINE PARAMETER 69787+01		
٦.	WODEL VAR	IABLES IRONS LINE	PERSTAN	CARBON DIOXIDE	SATELLITE	TRANSMITTANCES CALCULATED DEV	TATION-2	WEAK LINE-D	DEVIATION	
-	,00500	02500	.9187	.8341	0346		0000	1596	24,0	
	3	00010.	.8591	.8336	0205	.8632	.0041	. 3326	.0735	
•	E .	.01500	.8135			.8141	3	9006	.0271	
-		00500	71113		0000	1211.	1100.	1508.	1260.	
	.03300	. 23330	.7224		.0092	.7130	0034	. 8111	.0887	
1	.03500	03500	3001 .	-	.0120		.6036	.7833	. 6827	
	000%0	.24300	.6812		.0139	1113.	0035	. 7564	2570.	
+	00000	000 500	.6639		2010-	5093.	.0033	.7305	9990	
-	005500	Terror	1010	-	0010.	00400	.0031	. 1034	0,001	
	00000	15100	5201		9010	. 5177	0005	5189	.0373	
1	.05500	00530	. 6075		.0171	59055	.0020	6253	027	
	00070.	37330	.5957		.0171	. 5942	.0016	.6125	.0173	
-	- 00570.	. 07500	1986.		0110	.5834	.0012	.5325	007	-
	.08000	. 38330	.5742	.5310	0163	.5733	0003	.5722	200	
1.		005 20	- 5545	-	.0166	.5637	0000	9235	- 6217	
	00000	. 23.00	65549		.0163	. 5545	20005	.5336	20	
	000001	22552			20100	60400	2000-	.5153	36	
	00501	10000	1100	-		4765	5000	0/54	3 6	
	.11300	11300	.5209		7910	. 5219	.0013	.0041	3553	
1		.11500	.5133		.0143	.51/45	-0012	.4482		Marie Contains a contains
	.12000	.12303	.5062		.0138	. 5074	*100*	4328		
1	.12500	.12500	.4989		.0133		3100.	.4160		
	.13000	.13300	.4321		.0128	.4333	.0017	.4036	0385	
1	13500	113500	. 4855		.0123	4674	.0013	.3838	1500-	
	00541	50141	75/4.		.0118	.4812	.0023	4015.	1023	
	15300	15100	4571		1010.	1014.	.0021	12511	-1161	
	.15500	15500	.4513		.0101	.4635	.0022	.3350	-,1223	
	.15200	.16309	.4557		.0395	.4573	.0023	.3279	1283	
1	.16500	16500	.4502		0600	.4525	.0023	-2162	341	
	17220	17330	6444		. 0385		.0023	.3053	1395	
-	1,000	17500	4333		.0073		.0023	.2343	100	
	19700		2000		5750.		.0023	12841	1001-	
	19100	13110	4262		6360		.0022	0017	7.0	
	19500	1950	4205		3500		.0021	1332	13	
	.20000	.2000	.4160		.0051		.0020	.2477	(0)	
1		. 20500	-4116	-	5400		.0023	.2332	5	
	.21000	.21000	4073		0400		•00019	.2310	31	
		.21500	.4031		.0034		.0018	-52230	0	
	.22000	. 22550	.3330	,	.0028		1100	.2154	3	
	.22500	.22500	1950		.0034		.0028	.2080	-	58
5	.23000	.23000	.3311	6262.	.0023		.0027	.2003	100	
1	-23500	23500	21815		. 0023		.0025	0 134 0	-	
		-	100	2000						

				-		-		-		-						-							-				the state of the contract of the state of									-							-					
	2033	2062	2		212	-	22	-	N	.22	2217	222	~		2263	7	2275	2283	23	. 229	6270	- 2707	, 0	VN	2	2315	2	~	2316	NO	2312	0	-,2303	2	2	2	,,	22	220	227	.22	.226	,225	.22	2 22 2 2			
	80	62	5	-	ū	=	.1368	.1321	.1276	.1232	.1130	-11149	.1110	-1072	.1035	1000	5360.	.0932	.0300	6380.	0480	1000	2750	0730	5070	.0581	.0658	• 0635	0	5630	.0552	.0533	.0515	7640.	08 90	.0464	2 (. 0433	0000	0350	.0375	.0363	.0351	.0339	0327	0305		
١	•0023	.0019	5	5	.0015	5	01	5	00	00	1000.	00	*000°	.0003	1000.	0	00	20005	00	9	9 0	0000-	, .	0013	-	0013	00.	.001	0018	2 0	2 0		0	a	a	0023	700.	700) C	.002	002	.002	• 002	003	200	0		
	74	7.1	.3675	3	360	21	24	20	47	344	. 3414	.3384	. 3354	.3325	.3296	.2258	. 3240	.3213	. 3186	.3159	. 5155	2010	1000	. 3032	.3007	.2983	0362*	.2936	.2913	. 1687.	7 .2845	.2824	.2803	-2781	.2760	.2740	61/7.	25.29	2660	.2540	.2521	.2502	.2583	.2565	18636	2511		
	.0002	0003	9000	0013	0018	0052	0327	9	0336	0	0345	6400	35	500	8	3	900	200	5	000	***	000		7.000		0104	7010	0110		9110	0121	0124	0127	0129		0134				014	.014	.015	١.	0	30	0.16		
	.3729	.3639	.3650	.3612	.3574	.3537	.3501	.3456	. 3431	.7396	.3353	3330	.3237	5322.	.3233	2022.	.3172	.3142	. 3113	.2083	. 3055	2000	. 2972	.2345	.2918	.2332	. 2886	.2841	.2816	15/75	.2743	.2720	.2635	2673	.2651	25528	9097	2336	.7542	.2521	.2501	.2480	.2450	.2440	27471	.2382	WEAK LINE	
	-	265	3558					-	-	137	-	378	-		32	32		4 (4	7	.,	7	1116.	3	, 0	30	CI	03	.2351	23	20	2 6	23	2	CO	27	21	2775	- 1	20	25	25	w	10	.2534	3 6	W	745	
-	2	- 000	2533	2760	50	2366	20	2362	2350	3000	50	3100	3130	2	50	3366	3350	3400	2450	3	20	3550	27.5	100	3860	3353	3955	3950	3004	, .	1150	4200	4250	1324	2	200	200	47.00	23	46.51	4730	4750	0	. 43500	0.00	00	STROKE LI	2
1	25550	.250	10	.270	5	9	0	2	5	2	-	310	215	0	323	335	3.35	34	-	200	2 .	7 12	77	375	38	3.05	33	C1 1	0 0	7 .		42	15		13	7 :	- 1		40	25	1.	-	2	504	10	(3	YNCHIAL	
	15	25	-	3	10	10	27	200	53	23	13	52	53	53	us s	3 1	13	m (3 5	2;	12	11.	74	12	15	11	13	73		100	1 60	40	50	30	87	200	200	25	92	200	1,6	50	33	37	3 6	100		

APPENDIX B

PROGRAM EIGGAM 2 SMITH POLYNOMIAL FOR HORIZONTAL PATHS (Equation 4.16.)

```
C PRIGRAM EIGGAM 2

COMMON TO(100).PO.TO.NU
DIMENSION C(14).A(14.15).JC(14).IR(14).U(160)

PO=1.01325E+3

TO=273.16

NU=100
NF=6

C INPUT INFORMATION

C READ(5.1) (U(1).I=1.NU)

1 FORMAT(10F7.5)
WRITE(6.1) (U(1).I=1.NU)

C DO 23 J=1.NF
NEAD(5.4) (TO(1).I=1.NU)

ARITE(6.4) (TO(1).I=1.NU)

4 FORMAT(7F10.8)
```

```
PULYNOMIAL COEFFICIENTS
C
      CALL COEFS (U.A)
      WRITE(6,9) ((A(I,L),L=1,15), [=1,14)
    9 FORMAT (2X.15E8.1)
      CALL LSINEQ(A.14.1R.JC.14,1.0E-20.C.ERR)
      WRITE(6.10) ERR
   10 FORMAT (5X.15)
      WRITE(6.5) (J.(C(1).1=1.14))
    5 FORMAT(1H1.25X,29HSMITH POLYNOMIAL COEFFICIENTS.//.31X,11HCHANNEL
     1NO., 13./13X,2HC1,7X,2HC2,7X,2HC3,7X,2HC4,7X,2HC5,7X,2HC6,7X,2HC7,
     27x,2HCB,7x,2HC9,7x,3HC10,6X,3HC11,6X,3HC12,6X,3HC13,6X,3HC14,/,
     31489.31
C
C
             TRANSMITTANCE CALCULATIONS
C
      WRITE (6,6)J
    6 FORMAT (1H1.25x,32HTRANSMITTANCE FOR CARBON DIOXIDE./,36X,11HCHANNE
     1L NO., 14, /, 2x, 4HPATH, 3x, 6HAMOUNT, 3x, 8HPRESSURF, 3x, 11HTEMPERATURE,
     211x.13HTRANSMITTANCE./.3x.3HNO.3x.6HATM.CM.6X.2HMB. 9X.1HK.4X.8HOR
     3 IGINAL, 2X, 10HCALCULATED, 2X, 9HDEVIATION, /)
C
      SUM=0.0
      DO 8 1=1 NU
      X=4LOG (U(1))
      Y=ALOG(PO)
      Z=ALOG(TO)
      XP=C(1)+C(2)*X+C(3)*Y+C(4)*Z+C(5)*X*Y+C(6)*X*Z+C(7;*X*X+C(8)*X*X*Z
     1+c(9)+Y+Z+c(10)+X++3+c(11)+X+Z+Z+c(12)+Z+Z+c(13)+X+Y+Z+c(14)+X+X+Y
      PX=XP
      IF (XP.LE - 25.0) XP=-25.0
      IF (xP.GT.+25.0) XP=25.0
      XP=EXP(XP)
      1F(xP.LE .- 25.0) XP=-25.0
      IF (XP. GT . + 25.0) XP=25.0
      TC=EXP(-XP)
      IF(TC.LE.0.00001) TC=0.00000
      IF(TC.GT.0.99999) TC=1.00000
      DT=TC-TO(1)
      SUM=SUM+ABS(DT)
      WRITE(6,7) I.U(1).FG.TO.TO(1).TC.DT.PX
    7 FORMAT(3X.13. 1X.F9.4.1X.F8.2.2X.F8.2.3X.F7.5.2X.F7.5.2X.F8.5.
     1 5x.E15.51
    & CONTINUE
      AVEDT=SUM/100
      WRITE(6,11) AVEDT
   11 FORMAT(//. 8X.19HAVERAGE DEVIATION = .F8.5.//)
   23 CONTINUE
      STOP
      END
```

```
DIMENSION A(14.15).U(100)
 00 1 1=1.14
 00 1 J=1.15
1 A(1.J)=0.0
 DO 2 1=1.NU
 1F(TO(1) . LE . O . COCO1 . OR . TO(1) . GE . O . 99999) GO TO 2
 WT=1.0
 X=ALOG(U(I))
 YEALOG(PO)
 Z=ALOG(TO)
 D=ALOG(-ALOG(TO(I)))
 A(1.1)=A(1.1)+1.0+WT
 A(1.2)=A(1.2)+X+WT
 A(1.3)=A(1.3)+Y+WT
 A(1.4) = A(1.4) + Z + WT
 A(1.5)=A(1.5)+X+Y+WT
 A(1.6)=A(1.6)+X+Z+WT
 A(1.7)=A(1.7)+X+X+WT
 A(1.8)=A(1.8)+X+X+Z+WT
 A(1.9) = A(1.9) + Y + Z + WT
 A(1.10)=A(1.10)+X++3+WT
 A(1.11) = A(1.11) + X + Z + Z + WT
 A(1.12)=A(1.12)+Z+Z+WT
 A(1.13)=A(1.13)+X+Y+Z+WT
 A(1.14)=A(1.14)+X+X+Y+WT
 A(1.15)=A(1.15)+D+WT
 A(2.8)=A(2.8)+X++3+Z+WT
 A(2.10)=A(2.10)+X++4+WT
```

SUBROUTINE COEF3 (U.A)

C

TO(100) . PO . TO . NU

```
A(2.11)=A(2.11)+X*X*Z*Z*NT
A(2.13)=A(2.13)+X*X*Y*Z*WT
A(2,14)=A(2,14)+X**3*Y*WT
A(2.15)=A(2.15)+X*U*UT
A(3,3)=A(3,3)+Y*Y*WT
A(3.5)=A(3.5)+X+Y+Y+WT
A(3,9)=A(3,9)+Y*Y=Z*LT
A(3.11)=A(3.11)+X@Y@Z@Z@WT
A(3.12)=A(3.12)+Y*Z*Z*XT
A(3,13)=A(3,13)+X*Y*Y*Z*WT
A(3,14) = A(3,14) + X + X + Y + Y + WT
A(3.15)=A(3.15)+Y+D+WT
A(4,11)=A(4,11)+X+Z++3+WT
A(4.12)=A(4.12)+Z**3*WT
A(4,13)=A(4,13)+X+Y+Z+Z+WT
A(4.14)=A(4,14)+X*X*Y*Z*WT
A(4,15)=A(4.15)+ZeD+WY
A(5.8)=A(5.8)+X**3*Y*Z*WT
A(5.10)=A(5.10)+X**4*Y*/T
A(5.11)=A(5.11)+X+X+Y+Z+Z+WT
A(5,13)=A(5,13)+X+X+Y+Y+Z+WT
A(5.14)=A(5.14)+X**3*Y*Y*WT
A(5.15)=A(5.15)+X*Y*D*WY
A(6.8)=A(6.8)+X**3*Z*Z*WT
A(6,9)=A(6,9)+X+Y+Z+Z+WT
A(6.10)=A(6.10)+X++4*Z+WY
A(6,11)=A(6,11)+X*X*Z**3*WT
A(6,13)=A(6,13)+X+X+Y+Z*Z*WT
A(6.14)=A(6.14)+X**3*Y*Z*WT
A(6.15)=A(6.15)+X+Z+D+WT
A(7.10)=A(7.10)+X**5*WT
A(7.11)=A(7.11)+X++3+Z+Z+WT
A(7.14)=A(7.14)+X**4*Y*UT
A(7.15)=A(7.15)+X*X*D*WT
A(8,8)=A(8,8)+X**4*Z*Z*WT
A(8.10)=A(8.10)+X**5*Z*WT
A(8.11)=A(8.11)+X4*3*Z**3*WY
A(8.13) = A(8.13) + X + + 3 + Y + Z + Z + WT
A(8.14)=A(8.14)+X**4*Z*Y*WT
A(8.15)=A(8.15)+X+X+Z+D+WT
A(9,9)=A(9,9)+Y+Y+Z+Z+WT
A(9.11)=A(9.11)+X+Y+Z++3+WT
A(9.12)=A(9.12)+Y+Z++3+aT
A(9.13)=A(9.13)+XeY*Y*Z*Z*WT
A(9,14)=A(9,14)+X+X+Y+Y+Z+#T
A(9.15)=A(9.15)+Y+Z+D+WT
A(10.10)=A(10.10)+X**6*WT
A(10.11) = A(10.11) + X - 44 Z - Z - WT
A(10.14) = A(10.14) + X ** 5 * Y * WT
A(10.15) = A(10.15) + X ** 3 * D * NT
A(11.11) A(11.11) + X + X + Z + + 4 + WT
A(11.12)=A(11.12)+X*Z**4*WT
A(11.13)=A(11.13)+X*X*Y*Z**3*WT
A(11.14) = A(11.14) + X ** 3 * Y * Z * Z * WT
A(11.15)=A(11.15)+X+Z*Z*D*WT
A(12.121"A(12.12)+2004+UT
```

A(12.13) "A(12.13) + X • Y • Z • • 3 • WT

```
A(12,14) = A(12.14) + X * X * Y * Z * Z * NT
  A(12,15)=A(12,15)+Z@Z@D@NT
  A(13,13)=A(13,13)+X+X+Y+Y+Z+Z+NT
  A(13.14) = 4(13.14) + X = 3 = Y = Y + Z = WT
  A(13,15)=A(13.15)+X*Y*Z*D*WT
  A(14,14)=A(14,14)+X**4**Y*Y*WT
  A(14.151=A(14.15)+X+X+Y+D+WT
2 CONTINUE
  A(2.2)=A(1.7)
  A(2,3)=A(1,5)
  A(2.4)=A(1.6)
  A(2,5)=A(1,14)
  A(2.6)=A(1.8)
  A(2.7)=A(1.10)
  A(2.9)=A(1.13)
  A(2,12)=A(1,11)
  A(3.4)=A(1.9)
  A(3,6)=A(1.13)
  A(3.7)=A(1.14)
  A(3.8)=A(2.13)
  A(3.10)=A(2.14)
  A(4,4) = A(1,12)
  A(4.5)=A(1.13)
  A(4.6)=A(1.11)
  A(4.7)=A(1.8)
  A(4.8) = A(2.11)
  A(4.9)=A(3.12)
  A(4.10)=A(2.8)
  A(5.5)=A(3.14)
  A(5.6)=A(2.13)
  A(5.7)=A(2.14)
  A(5.9)=A(3,13)
  A(5,12)=A(4,13)
  A(6,6)=A(2,11)
  A(6.7)=A(2.8)
  A(6,12)=A(4.11)
  A(7.7)=A(2.10)
  A17.81=A(6.10)
  A(7.9)=A(2.13)
  A(7.12)=A(2.11)
  A(7.13)=A(5.8)
  A(8,9)=A(6,13)
  A(8.12)=A(6.11)
  A(9,10)=A(6,14)
  A(10,12)=A(7,11)
  A(10.13)=A(8.14)
  00 3 1=1:14
  00 3 J=1+14
3 ALJATITALLIJI
  RETURN
  END
```

TRANSMITTANCE FOR CARBON DIOXIDE

				CHANNEL NO	. 1	
PATH	AMOUNT	PRESSURE	TEMPERA	TURE	TRANSM	ITTANCE
NO.	ATM . CM	мв	K	ORIGINAL	CALCULATED	DEVIATION
1	.0050	1013-25	273.16	.91874	.91861	00013
2	.0100	1013.25	273-16	.85911		00066
3	.0150	1013.25	273.16	.81354	.81390	• 00036
4	•0200	1013-25	273 • 16	.77735	.77845	•00111
5	•0250	1013.25	273-16	.74760	.74897	•00137
6	•0300	1013.25	273-16	.72242	•72370	•00128
7	.0350	1013.25	273-16	.70057	.70157	.00100
8	.0400	1013.25	273.16	.68125	.68188	•00064
9	•0450	1013 - 25	273.16	.66386	.66414	.00026
10	•0500	1013-25	273.16	.64807		00009
11	• 0550	1013 • 25	273.16	.63354		00039
12	.0,00	1013.25	273.16	.62098		00043
13	.0650	1013.25	273.16	.60752		00083
14	•0700	1013-25	273.16	.59574		- 00097
15	• 3756	1013-25	273.16	•58465		00107
16	• 0800	1013 • 25	273.16	.57417		00113
17	• 0850	1013-25	273.16	.56422		00116
18	• 0900	1013.25	273 • 16	•55475		00116
19	• 0950	1013.25	273.16	.54573		00113
20	•1000	1013.25	273.16	.53711		00109
21	• 1050	1013 • 25	273.16	.52885		00103
22	•1100	1313 • 25	273.16	•52092		• 00097
23	.1150	1013.25	273.15	.51331		00089
24	•1200	1013-25	273 • 16	.50599		00081
25	1250	1013.25	273.16	49893		.00072
2.6	:1300	1013.25	273.16	.49212		• 00063
27	*1350	1013-25	273.16	• 48554		• 00054
28	.1400	1013.25	273 • 16	.47918		• 00045
29	•1450	1013 - 25	273.16	.47303	.47267	••00037
30	.1500	1013.25	273.16	46707	.46679	.00028
31	• 1550	1013.25	273 • 15	.46129		-•00019
32	. 1600	1013.25	273.16	• 45569	• 45557	• 00011
33	.1650	1013.25	273.16	.45024	•45021	• 000003
34	•1700	1013.25	273.16	. 44495	• 44499	·00004
35	.1750	1013.25	273.10	.43980	.43992	.00011
36	.1800	1013.25	273.16	. 43480	• 43498	•00018
37	• 1850	1013.25	273 16	.42992	•43016	• 00024
38	•1900	1013.25	273.16	.42517	• 42547	•00030
39	-1950	1013.25	273.16	.42054	.42090	•00035
40	.2000	1013.25	273.16	.41603	.41643	.00040
41	.2050	1013.25	273.16	.41162	•41207	• 00045
42	.2100	1013-25	273.16	.40732	.40781	• 00049
43	.2150	1013.25	273 • 16	.40311	.40364	• 00053
44	.2200	1013-25	273.16	.39901	• 39957	•00058
45	.2250	1013.25	273.18	.39499	.39558	.00059
46	•2300	1013-25	273 • 16	.39107	.39168	• 00061
47	• 2350	1013+25	273.16	.38722	.38786	•00063
48.	*2400	1013-25	273 • 15	.38346	.38411	.00065
49	• 2450	1013 - 25	273-16	*37978	.38044	• 00067
50	•2500	1013.25	273.16	.37617	.37685	.00048
51	• 2550	1013-25	273.16	.37263	.37332	•00063
52	. 2600	1013-25	273.16	.36917	.36985	.00069

53	• 2650	1013-25	273 • 16	.36577	.36646	• 00069
54	.2700	1013.25	273.16	.36243	.36312	.00069
55	• 2750	1013.25	273-16	.35916	.35984	.0006B
58	. 2800	1013.25	273.16	.35595	• 35663	•00068
57	.2850	1013-25	273.15	.35280	.35346	•00067
58	.2900	1013.25	273.16	.34970	•35035	•00065
5.9	.2950	1013.25	273.16	.34666	•34730	.0004
90	•3000	1013.25	273 - 16	.34367	.34429	• DUD6 2
61	.3050	1013.25	273.16	.34073	.34134	•00060
62	-3100	1013.25	273.16	.33734	.33843	• 00058
63	•3150	1913-25	273 • 16	.33500	.33557	·00056
64	•3200	1013.25	273.16	• 33221	• 33275	•00054
55	•3250	1013.25	273.16	.32946	.32998	.00051
66	.3300	1013.25	273.16	.32676	.32724	• 20049
67	•3350	1013.25	273-16	.32410	.32455	.00046
68	• 3400	1013.25	273.16	.32148	.32190	.00043
69	• 3450	1013.25	273 16	.31890	• 31929	•00040
70	•3500	1013.25	273.16	.31636	.31672	• 00036
71	•3550	1013.25	273.16	.31385	.31418	•00033
72	•3600	1013.25	273 • 16	.31139	.31168	•00035
73	•3650	1013.25	273.16	.30896	.30922	•00026
74	• 37 00	1013.25	273.16	• 30656	.3 579	.00022
75	•3750	1013-25	273.16	.30420	.30439	•00019
76	.3800	1013.25	273.16	.30188	.3,203	.00015
77	3850	1013-25	273.16	29958	. 29969	•00011
78	3900	1013 - 25	273.16	29732	. 29739	.00007
79	• 395 ₀	1013.25	273.16	• 29509	• 29512	
80	• 4000	1013 - 25	273.16	.29238	. 29287	*00003 -•00001
81	•4050	1013 • 25	273.16	.29071	. 29066	00005
82	.4100	1013.25	273.16	28857	.28848	00003
83	•4150	1013.25	273.15	.28645	.28632	00013
84	•4200	1013 • 25	273.16	. 28436	.28419	00018
85	• 4250	1013-25	273 • 16	. 28230	- 28208	00022
86	• 4300	1013.25	273.16	.28526	. 28000	- 00026
	.4350	1013.25	273.16	.27825	.27795	00031
87	.4400	1013.25	273.16	.27627	.27592	90035
89	• 4450	1013 - 25	273.16	. 27431	• 27391	00039
90	• 4500	1013-25	273.16	. 27237	.27193	00044
91	•4550	1013 • 25	273.16	.27045	. 26997	00048
92	.4,00	1013.25	273.16	.26856	.26804	00052
93	• 4650	1013 • 25	273.16	. 26669	. 26613	00057
94	• 4700	1013-25	273.16	. 26485	• 26424	00061
95	• 4750	1013 - 25	273.16	. 26302	. 26237	00066
96	.4800	1013-25	273.16	.26122	.26052	00070
97	.4850	1013.25	273.16	.25943	. 25869	00074
98	.4900	1013-25	273.16	• 25767	.25688	00079
99	•4950	1013.25	273-16	.25592	• 25509	00083
				.25420	• 25332	00088
.00	•5000	1013.25	273.16	• 25420	. 25332	-•00008

		T			RECH OLOXID	t.
PATH	AMOUNT	PRESSURE	TEMPERA	CHANNEL NO		ITTANCE
NO.	ATHICH	MB	I EWI FUY			DEVIATION
NO.	A	11.0		ONTOTMAL	CALCOLATED	06.11.15.
1	.5000	1013.25	273-16	.25420	.25445	.00025
2	1.0000	1013.25	273.16	.14222	.14157	00066
3	1.5000	1013.25	273-16	.08802		00007
4	2.000	1013-25	273 * 16	• 55746	• 05765	•00019
5	2.5000	1013.25	273.16	.03886	.03906	•00020
6	3.0000	1013.25	273.16	.02693	.02706	·00013
7	3,5000	1013.25	273.16	.01900	.01906	.00006
8	4.0000	1013.25	273.16	.01359	•01360	•00001
9	4.5000	1013.25	273-16	.00982		00001
10	5.0000	1013.25	273-16	.00715		00002
11	5.5000	1013.25	273.16	.00524		00003
1.2	6,0000	1013.25	273.16	,00386		06002
1.3	0.5000	1013.25	273-16	.00285		00002
14	7.0000	1013-25	273-16	.00212		00001
15	7.5000	1013.25	273.16	•00158		00001
16	8.0000	1013.25	273 • 16	.00118		00000
17	8.5000	1013-25	273-16	•00088		00000
18	9.0000	1013.25	273-16	•00066		00000
19	9.5000	1013.25	273-16	.00050	.00050	.00000
20	10.0000	1013.25	273-16	•00038	•00038	•00000
21	10.5000	1013.25	273·16 273·16	•00026	•00029 •00022	.00000
22 23	11.5000	1013.25	273.16	•00022 •00016	.00016	•00000 •00000
29	12.0000	1013.25	273.16	.00012	.00012	.00000
25	12.5000	1013.25	273.16	.00012	• 500009	•00000
26	13.0000	1013.25	273.16	•00007	•00007	•00000
27	13.5000	1013.25	273.16	•00005	•00006	• 00000
23	14.0000	1013.25	273-16	.00004	.00004	•00000
29	14.5000	1013.25	273.16	.00003	• 60003	• 60000
30	15.0000	1013.25	273 - 16	.00002		••00000
31	15.5000	1013.25	273-16	.00002		00000
32	16.0000	1013.25	273.16	.00001		••00000
3.3	16.5000	1013.25	273-16	.00001		••00000
34		1013-25	273-16	100001		••0uppi
35	17.5000	1013.25	273-10	.00001		.00001
36	18.0000	1013.25	273-16	.00001		100001
37	18.5000	1013.25	273-16	.00000		60000
3.8	19.0000	1013.25	273-16	.00000		00000
39	19.5000	1013.25	273-16	•00000		00000
40	20.0000	1013.25	273-16	•00000		••00000
41	20.5000	1013.25	273.16	.00000		00000
42	21.0000	1013-25	273 - 16	.00000		00000
43	21.5000	1013.25	273-16	•00000		••00000
44	22.0000	1013.25	273 - 16	.00000		••00000
45	22.5000	1013.25	273 • 16	.00000		00030
46	23,0000	1013.25	273-16	.00066		00000
46	24.0000	1013.25	273.16	• 00000		• 00000
49	24.5000	1013.25	273.10	.00000		00000
50	25.000	1013.25	273-16	.00000		••00000
51	25.5000	1013.25	273-16			••00000
52	26.0000	1013.25	273.16	•00000		.00000
24	20.000		5.3.10	•00000	.00000	-0000

		1013+25	273+16	,000000	*CB000	00000
	26.5000		273-16	.00000	.00000	
5.4	27 - 1000	1013.25	273+15	.00000	.00000	** D 0 C 0 O 0
55	27.5000	1013.25	273-16	.00000	•00000	00000
5.6	26 10000	1013-25		,00060	,00000	00000
5.7	28,5000	1013.25	273.16		.00000	00830
58	29.0000.	1013.25	273+16	.00000	.00000	**00000
59	29.60000	1013-25	273*16	*00000	.00000	00000
60	30 * 0000	1013.25	273-16	100000	.00000	→ 0 0 0 0 0 0
6.1	30.5000	1013.25	273.14	.00000	.00000	.00000
62	31,0000	1013,25	273-16	00000	.00000	*000000
63	31.5000	1013.25	273-16	.00000	.00000	.00000
64	32,0000	1010.25		100000	*00000	• 50000
6.5	32.5000	1013.25	273+16		.00000	• 000000
66	33.0000	1013.25	273*16	*00000	.00000	.00000
67	33.5000	1013.25	273916	000000	.00000	• 60000
68 -	39.0000	1613.25	873-16	*00000	.00000	.compo
69	34,5000	1013,25	173.10	.00000		.00000
70	35.0000	1013 - 25	273-16	*00000	.00000	. 50500
71	35.5000	1013.25	273*16	.00000	.00000	•00000
72	36.0000	1013.25	273*16	•00000	.00000	.00000
73	36.5000	1013-25	273*10	00000	.00000	•00000
74	37.0000	1013+25	273 16	.00000	.00000	•00000
75	37 - 5000	1013.25	273-16	.00000	.00000	•00000
76	38.0000	1013-25	273*16	.00000	.00000	
77	38.5000	1013-25	273*16	*00000	• 00000	• 60699
78	39.0000	1013.25	273 - 16	*00000	•00000	• 60000
79	39.5000	1013.25	273*10	• 00000	.00000	.00000
80	40.0000	1013.25	273+10	.00000	.00000	0.00030
81	40.5000	1013,25	273.16	.00000	.00000	.00000
82	41.0000	1013.25	273-16	*00000	.00000-	*00000
8.3	41.5000	1013+25	273*16	•000cc	*00000	.04030
84	42.0000	1013.25	273 - 16	00000	.80000	.00000
85	42.5000	1013.25	273 * 16	•00000	000000	.00000
86	43,0000	1010,25	273.10	.00000	.00000	.00000
37	43.5000	1013.25	273 * 16	.00000		• 00000
8.8	44.0000	1013 - 25	273*16	•00000	*00000	• 30000
89	44.5000	1013.25	273*16	.00000	.00000	.00000
90	45+0000	1013-25	273.10	.00000	.00000	.00000
91	45.5000	1013.25	273 * 16	.00000	• 00000	.00000
92	46.0000	1013.25	273*14	.00000	.00000	
	46.5000	1013.25	273*16	.00000	.00000	.00030
93	47.0000	1013.25	273*16	.00000	*00000	• 00000
95	47.5000	the second section	273*16	*60000	.00000	*00000
0.6	48.0000	1913-25	273*16	.00000	.00000	* Duppo
97	48.5000	the same of the same	273*10	.00000	.00000	*00000
98	49,0000		273.16	,00000	.00000	.00000
99	49.5080	1013.25	273*16	.00000	.00000	•06000
	50.0000		273.16	.00000	•00000	•00000
100	00.000					

APPENDIX C

PROGRAM EIGGAM

DEVELOPMENT OF SMITH POLYNOMIAL FOR INHOMOGENEOUS PATHS

PROGRAM EIGGAM
COMMON Y(100),Z(100),D(100),NT ,WT(100)
DIMENSION C(14),A(14,15),IR(14),JC(14),UM(100),US(100),U(100),
1 DU(100),SI(100),PI(100),TI(100),S(100),P(100),T(100),TO(100),
2 X(100)
REAL M
P0=1.01325E+3
T0=273.16
NU=100

```
NF=0
      M=4.86E-4
      6=980.62
      RH0=1.962E-3
CCC
             INPUT INFORMATION
      READ(5,1)(PI(I), I=1,NU)
    1 FORMAT (10F7.2)
      WRITE(6,1)(PI(I), I=1,NU)
      READ(5,2)(TI(I), I=1, NU)
      WRITE (6,2) (TI(I), I=1, NU)
    2 FORMAT (10F8.3)
C
      DO 25 J=1.NF
      WRITE (6, 222)
  222 FORMAT (1H1)
      READ(5,3)(W,(SI(I),I=1,6))
      WRITE(6.3)(W.(SI(I), I=1.6))
    3 FORMAT(F10.0,6E10.5)
      READ(5,4)(TO(1),1=1,NU)
      WRITE(6,4)(TO(I), I=1,NU)
    4 FORMAT (5F10.7)
0000
             ABSORBER AMOUNTS
C
      PUS=0.0
      PUTS=0.0
      DO 7 I=1.NU
      IF(I.GT.1) GO TO 5
      T(I)=((TI(I)+210.020)/(T0*2.))**-0.5
      P(I)=(PI(I)+3.07E-4)/(P0*2.)
      DU(I) = (M*(PI(I) - 3.07E-4)*1.E+3)/(G*RHO)
      GO TO 6
    5 T(I)=((TI(I)+TI(I-1))/(T0*2.))**-0.5
      P(I) = (PI(I) + PI(I-1))/(P0 * 2.)
      DU(I) = (M*(PI(I)-PI(I-1))*1.E+3)/(G*RHO)
    6 IF(TI(I).GE.287.5) S(I)=SI(1)
      IF(TI(I).GE.262.5.AND.TI(I).LT.287.5) S(I)=SI(2)
      IF(TI(I).GE.237.5.AND.TI(I).LT.262.5) S(I)=SI(3)
      IF(TI(I).GE.212.5.AND.TI(I).LT.237.5) S(I)=SI(4)
      1F(TI(I).GE.187.5.AND.TI(I).LT.212.5) S(I)=SI(5)
      IF(TI(I).LT.187.5) S(I)=SI(6)
      PUS=PUS+0U(I)*S(I)
      PUTS=PUTS+DU(I)*P(I)*T(I)*S(I)
      UW(I)=PUS/S(I)
      US(I) = PUTS/(S(I) * P(I) * T(I))
    7 CONTINUE
      WRITE (6,2) (P(I), I=1, NU)
      WRITE(6,2)(T(1), I=1, NU)
      WRITE(6,2)(S(I), I=1, NU)
      WRITE(6,8) (UW(I), I=1,NU)
      WRITE(6,8) (US(I), I=1,NU)
      WRITE(6,8) (DU(I), I=1,NU)
    8 FORMAT(10F10.5)
```

```
00000
                  TRANSMITTANCE DATA SELECTION
      NT=0
      DO 9 I=1.NU
      IF(TO(I).LT.0.0000001.OR.TO(I).GT.0.9999999) GO TO 9
      NT=NT+1
      UW(NT)=UW(I)
      US(NT)=US(I)
      DU(NT)=DU(I)
      TO(NT)=TO(I)
      WT (NT)=1.0
      Y(NT) = ALOG(P(I))
      Z(NT) = ALOG(T(I))
      D(NT)=ALOG(-ALOG(TO(NT)))
    9 CONTINUE
C
c
            POLYNOMIAL COEFFICIENTS BY WEAK-LINE
      DO 99 I=1.NT
      U(1)=UW(1)
   99 X(I)=ALOG(U(I))*0.1
      11=0
   10 CALL COEF (A.X)
      WRITE(6,11)((A(I,L),L=1,15),I=1,14)
   11 FORMAT(//,5X,15E8.2)
      CALL LSIMEQ(A,14, IR, JC, 14, 1.0E-20, C, ERR)
      WRITE (6,12) ERR
   12 FORMAT (5X, IS)
      WRITE (6, 13) (J, (C(I), I=1,14))
   13 FORMAT (///.25x.29HSMITH POLYNOMIAL COEFFICIENTS.//.31x.11HCHANNEL
     1NO., 13, /, 2X, 2HC1, 6X, 2HC2, 6X, 2HC3, 6X, 2HC4, 6X, 2HC5, 6X, 2HC6, 6X, 2HC7,
     26X+2HC8+6X+2HC9+6X+3HC10+6X+3HC11+6X+3HC12+6X+3HC13+6X+3HC14+/+
     314E9.4)
CC
           TRANSMITTANCE CALCULATIONS
      WRITE (6,14) J
   14 FORMAT(1H1,25X,32HTRANSMITTANCE FOR CARBON DIOXIDE,/,36X,11HCHANNE
     1L NO., 14,/,2X,4HPATH,3X,6HAMOUNT,3X,8HPRESSURE,3X,11HTEMPERATURE,
     211X,13HTRANSMITTANCE,/,3X,3HNO.,3X,6HATM.CM,6X,2HMB,9X,1HK,4X,8HOF
     3IGINAL, 2X, 10HCALCULATED, 2X, 9HDEVIATION, /)
C
      SUM=0.0
      DO 16 I=1.NT
      XP=C(1)+C(2)*X(I)+C(3)*Y(I)+C(4)*Z(I)+C(5)*X(I)*Y(I)+C(6)*X(I)*Z(I
     1)+C(7)*X(I)**2+C(8)*Z(I)*X(I)**2+C(9)*Y(I)*Z(I)+C(10)*X(I)**3+
     2C(11)*X(I)*Z(I)**2+C(12)*Z(I)**2+C(13)*X(I)*Y(I)*Z(I)+C(14)*Y(I)*
     3x(1)**2
      IF(XP.LE.-25.0) XP=-25.0
      IF(XP.GT.+25.0) XP=+25.0
      XP=EXP(XP)
      IF(XP.LE.-25.0) XP=-25.0
```

```
IF(XP.GT.+25.0) XP=+25.0
      TC=EXP(-XP)
      IF(TC.LE.0.00001) TC=0.00000
      IF(TC.GT.0.99999) TC=1.00000
      DT=TC-TO(I)
      SUM=SUM+ABS(DT)
      WRITE(6,15) I,U(I),P(I),T(I),TO(I),TC,DT
   15 FORMAT(3X, I3, 1X, F9, 4, 1X, F8, 2, 2X, F8, 2, 3X, F7, 5, 2X, F7, 5, 2X, F8, 5)
   16 CONTINUE
      AVEDT=SUM/FLOAT(NT)
      WRITE (6,17) AVEDT
   17 FORMAT(//.8X.19HAVERAGE DEVIATION =.F8.5.//)
      11=11+1
      IF(II.GT.1) GO TO 19
C
C
            POLYNOMIAL COEFFICIENTS BY STRONG LINE
C
      00 18 I=1.NT
      U(I)=US(I)
   18 \times (I) = ALOG(U(I)) *0.10
      GO TO 10
   19 CONTINUE
C
C
            POLYNOMIAL COEFFICIENTS BY TRANSMITTANCE PRODUCT
C
      00 21 I=1.NT
      U(I)=DU(I)
      X(I)=ALOG(U(I))*0.10
      IF(I.GT.1) GO TO 20
      D(I)=ALOG(-ALOG(TO(I)))
      GO TO 21
   20 D(I)=ALOG(-ALOG(TO(I)/TO(I-1)))
   21 CONTINUE
C
      CALL COEF (A.X)
      WRITE(6,11)((A(I,L),L=1,15),I=1,14)
      CALL LSIMEQ(A,14, IR, JC, 14, 1.0E-20, C, ERR)
      WRITE (6.12) ERR
      WRITE(6,13)(J,(C(I),I=1,14))
C
             TRANSMITTANCE CALCULATIONS
      WRITE (6,14) J
      SUM=0.0
      DO 24 I=1.NT
      XP=C(1)+C(2)*X(I)+C(3)*Y(I)+C(4)*Z(I)+C(5)*X(I)*Y(I)+C(6)*X(I)*Z(
     1)+C(7)*X(I)**2+C(8)*Z(I)*X(I)**2+C(9)*Y(I)*Z(I)+C(10)*X(I)**3+
     2C(11)*X(I)*Z(I)**2+C(12)*Z(I)**2+C(13)*X(I)*Y(I)*Z(I)+C(14)*Y(I)*
     3x(1)**2
      IF(XP.LE.-25.0) XP=-25.0
      IF(XP.GE.+25.0) XP=+25.0
      XP=EXP(XP)
      IF(XP.LE.-25.0) XP=-25.0
```

```
IF(XP.GE.+25.0) XP=+25.0
   IF(I.GT.1) GO TO 22
   TC=EXP(-XP)
   60 TO 23
22 TC=TC*EXP(-XP)
23 IF(TC.LE.0.00001) TC=0.00000
   IF(TC.GE.0.99999) TC=1.00000
   DT=TC-TO(I)
   SUM=SUM+ABS(DT)
   WRITE(6,15) I,U(I),P(I),T(I),TO(I),TC,DT
24 CONTINUE
   AVEDT=SUM/FLOAT(NT)
   WRITE (6,17) AVEDT
25 CONTINUE
   STOP
   END
```

COMPILATION:

C

NO DIAGNOSTICS.

```
DIMENSION A(14,15),X(100)
 DO 1 I=1,14
  DO 1 J=1.15
1 A(I.J)=0.0
 00 2 I=1.NT
  WT(I)=1.0
  A(1,1)=A(1,1)+1.0*WT(I)
  A(1,2)=A(1,2)+X(I)*WT(I)
  A(1,3)=A(1,3)+Y(I)*WT(I)
  A(1,4)=A(1,4)+Z(I)*WT(I)
  A(1,5)=A(1,5)+X(I)*Y(I)*WT(I)
  A(1,6)=A(1,6)+X(I)*Z(I)*WT(I)
  A(1,7)=A(1,7)+X(I)*X(I)*WT(I)
  A(1,8)=A(1,8)+X(I)*X(I)*Z(I)*WT(I)
  A(1,9)=A(1,9)+Y(1)*Z(1)*WT(1)
  A(1,10)=A(1,10)+X(I)**3*WT(I)
  A(1,11)=A(1,11)+X(1)*Z(1)*Z(1)*WT(1)
  A(1,12)=A(1,12)+Z(1)*Z(1)*WT(1)
  A(1,13)=A(1,13)+X(I)*Y(I)*Z(I)*WT(I)
  A(1,14)=A(1,14)+X(I)*X(I)*Y(I)*WT(I)
  A(1,15)=A(1,15)+D(I)*WT(I)
  A(2,8)=A(2,8)+X(1)**3*Z(1)*WT(1)
  A(2,10)=A(2,10)+X(I)**4*WT(I)
  A(2,11)=A(2,11)+X(I)*X(I)*Z(I)*Z(I)*WT(I)
  A(2,13)=A(2,13)+X(1)*X(1)*Y(1)*Z(1)*WT(1)
  A(2,14)=A(2,14)+X(1)**3*Y(1)*WT(1)
  A(2,15)=A(2,15)+X(I)*D(I)*WT(I)
  A(3,3)=A(3,3)+Y(1)*Y(1)*WT(1)
  A(3,5)=A(3,5)+X(1)*Y(1)*Y(1)*WT(1)
```

A(3,9)=A(3,9)+Y(1)*Y(1)*Z(1)*WT(1)

COMMON Y(100), Z(100), D(100), NT, WT(100)

SUBROUTINE COEF (A,X)

C

```
A(3,11)=A(3,11)+X(1)*Y(1)*Z(1)*Z(1)*WT(1)
A(3,12)=A(3,12)+Y(I)*Z(I)*Z(I)*WT(I)
A(3,13)=A(3,13)+X(I)*Y(I)*Y(I)*Z(I)*WT(I)
A(3,14)=A(3,14)+X(I)*X(I)*Y(I)*Y(I)*WT(I)
A(3,15)=A(3,15)+Y(I)*D(I)*WT(I)
A(4,11)=A(4,11)+X(I)*Z(I)**3*WT(I)
A(4,12)=A(4,12)+Z(I)**3*WT(I)
A(4,13)=A(4,13)+X(I)*Y(I)*Z(I)*Z(I)*WT(I)
A(4,14)=A(4,14)+X(I)*X(I)*Y(I)*Z(I)*WT(I)
A(4,15)=A(4,15)+Z(I)*D(I)*WT(I)
A(5,8)=A(5,8)+X(I)**3*Y(I)*Z(I)*WT(I)
A(5,10)=A(5,10)+X(I)**4*Y(I)*WT(I)
A(5,11)=A(5,11)+X(I)*X(I)*Y(I)*Z(I)*Z(I)*WT(I)
A(5,13)=A(5,13)+X(1)*X(1)*Y(1)*Y(1)*Z(1)*WT(1)
A(5,14)=A(5,14)+X(I)**3*Y(I)*Y(I)*WT(I)
A(5,15)=A(5,15)+X(I)*Y(I)*D(I)*WT(I)
A(6,8)=A(6,8)+X(I)**3*Z(I)*Z(I)*WT(I)
A(0,9)=A(6,9)+X(I)*Y(I)*Z(I)*Z(I)*WT(I)
A(0,10)=A(6,10)+X(I)**4*Z(I)*WT(I)
A(0,11)=A(6,11)+X(I)*X(I)*Z(I)**3*WT(I)
A(0,13)=A(0,13)+X(I)*X(I)*Y(I)*Z(I)*Z(I)*WT(I)
A(0,14)=A(0,14)+X(I)**3*Y(I)*Z(I)*WT(I)
A(6,15)=A(6,15)+X(I)*Z(I)*D(I)*WT(I)
A(7,10)=A(7,10)+X(I)**5*WT(I)
A(7,11)=A(7,11)+X(I)**3*Z(I)*Z(I)*WT(I)
A(7,14)=A(7,14)+X(I)**4*Y(I)*WT(I)
A(7,15)=A(7,15)+X(I)*X(I)*D(I)*WT(I)
A(8,8)=A(8,8)+X(I)**4*Z(I)*Z(I)*WT(I)
A(8,10)=A(8,10)+X(I)**5*Z(I)*WT(I)
A(8,11)=A(8,11)+X(I)**3*Z(I)**3*WT(I)
A(8,13)=A(8,13)+X(I)**3*Y(I)*Z(I)*Z(I)*WT(I)
A(0,14)=A(8,14)+X(I)**4*Z(I)*Y(I)*WT(I)
A(8,15)=A(8,15)+X(I)*X(I)*Z(I)*D(I)*WT(I)
A(9,9)=A(9,9)+Y(I)*Y(I)*Z(I)*Z(I)*WT(I)
A(9,11)=A(9,11)+X(I)*Y(I)*Z(I)**3*WT(I)
A(9,12)=A(9,12)+Y(I)*Z(I)**3*wT(I)
A(9,13)=A(9,13)+X(I)*Y(I)*Y(I)*Z(I)*Z(I)*WT(I)
A(9,14)=A(9,14)+X(I)*X(I)*Y(I)*Y(I)*Z(I)*WT(I)
A(9,15)=A(9,15)+Y(I)*Z(I)*D(I)*WT(I)
A(10,10)=A(10,10)+X(I)**6*WT(I)
A(10,11)=A(10,11)+X(I)**4*Z(I)*Z(I)*WT(I)
A(10,14)=A(10,14)+X(I)**5*Y(I)*WT(I)
A(10,15)=A(10,15)+X(I)**3*D(I)*WT(I)
A(11,11)=A(11,11)+X(I)*X(I)*Z(I)**4*WT(I)
A(11,12)=A(11,12)+X(I)*Z(I)**4*WT(I)
A(11,13)=A(11,13)+X(I)*X(I)*Y(I)*Z(I)**3*WT(I)
A(11,14)=A(11,14)+X(I)**3*Y(I)*Z(I)*Z(I)*WT(I)
A(11,15)=A(11,15)+X(I)*Z(I)*Z(I)*D(I)*WT(I)
A(12,12)=A(12,12)+Z(I)**4*WT(I)
A(12,13)=A(12,13)+X(I)*Y(I)*Z(I)**3*WT(I)
A(12,14)=A(12,14)+X(I)*X(I)*Y(I)*Z(I)*Z(I)*WT(I)
A(12,15)=A(12,15)+Z(I)*Z(I)*D(I)*WT(I)
A(13,13)=A(13,13)+X(I)*X(I)*Y(I)*Y(I)*Z(I)*Z(I)*X(I)*Y(I)
A(13,14)=A(13,14)+X(I)**3*Y(I)*Y(I)*Z(I)*WT(I)
A(13,15)=A(13,15)+X(I)*Y(I)*Z(I)*D(I)*WT(I)
A(14,14)=A(14,14)+X(I)**4*Y(I)*Y(I)*WT(I)
A(14,15)=A(14,15)+X(I)*X(I)*Y(I)*D(I)*WT(I)
```

```
2 CONTINUE
  A(2,2)=A(1,7)
  A(2,3)=A(1,5)
  A(2,4)=A(1,6)
  A(2.5)=A(1,14)
  A(2,6)=A(1,8)
  A(2,7)=A(1,10)
  A(2,9)=A(1,13)
  A(2,12)=A(1,11)
  A(3,4)=A(1,9)
  A(3,6)=A(1,13)
  A(3,7)=A(1,14)
  A(3,8)=A(2,13)
  A(3,10)=A(2,14)
  A(4,4)=A(1,12)
  A(4,5)=A(1,13)
  A(4,6)=A(1,11)
  A(4.7)=A(1.8)
  A(4.8) = A(2.11)
  A(4,9)=A(3,12)
  A(4,10)=A(2,8)
  A(5,5)=A(3,14)
  A(5,6)=A(2,13)
  A(5,7)=A(2,14)
  A(5,9)=A(3,13)
  A(5,12)=A(4,13)
  A(6,6)=A(2,11)
  A(6,7)=A(2,8)
  A(6,12)=A(4,11)
  A(7,7)=A(2,10)
  A(7.8)=A(6.10)
  A(7,9)=A(2,13)
  A(7,12) = A(2,11)
  A(7,13)=A(5,8)
  A(8,9)=A(6,13)
  A(8,12)=A(6,11)
  A(9,10)=A(6,14)
  A(10,12)=A(7,11)
  A(10,13)=A(8,14)
  DO 3 I=1.14
  DO 3 J=1,14
3 A(J,I)=A(I,J)
  RETURN
  END
```

COMPILATION:

NO DIAGNOSTICS.

TRANSMITTANCE FOR CARBON DIOXIDE

			MAN STATE	CHANNEL NO	. 1	
PATH	AMOUNT	PRESSURE	TEMPERA			ITTANCE
NO.	ATM.CM	MB	K	ORIGINAL	CALCULATED	
1	.0024	.00	1.18	.99125	.99126	.00000
2 .	.0051	.00	1.20	.98880	.98880	.00000
3	.0101	.00	1.16	.98553	.98555	.00003
4	.0206	.00	1.11	.98093		00012
5	.0315	.00	1.08	.97542		00010
6	.0492	.00	1.05	.96918	.96946	.00028
7	.0694	•00	1.03	.96178	.96197	.00019
8	.0994	.00	1.02	.95276	.95274	00001
9	.1348	.00	1.01	.94168	.94127	00041
10	.1777	.00	1.01	.92845	.92815	00030
11	2282	.00	1.00	.91306	.91328	.00022
12	.2914	.00	1.01	.89552	.89560	.00008
13	.3646	.00	1.01	.87594	.87555	00039
14	.4390	.00	1.02	.85461	.85425	00036
15	.5401	.00	1.03	.83190	.83160	00029
16	.6563	•00	1.04	.80828	.80830	.00002
17	.7876	.00	1.04	.78427	.78486	.00059
18	.9367	.00	1.05	.76025	.76150	.00125
19	1.1059	•00	1.06	.73650	.73818	.00168
20	1.2954	.00	1.07	.71314	.71501	.00188
21	1.4601	.01	1.07	.69007		00067
22	1.6950	.01	1.08	.66711	.66740	.00028
23	1.9552	.01	1.09	.64400	.64579	.00179
24	2.2406	.01	1.09	.62045	.62321	.00276
25	2.5539	.01	1.09	.59628	.59839	.00211
26	2.8949	.01	1.10	.57136	.57168	.00032
27	3.2687	.01	1.10	.54571		00168
28	3.6754	.01	1.10	.51939	.51596	00342
29	4.1149	.02	1.10	.49248	.48796	00452
30	4.5924	.02	1.10	.46512	.46003	00509
31	5.1077	.02	1.11	. 43745	.43208	00537
32	5,6609	.02	1.11	.40961	.40438	00522
33	6.2570	•02	1.11	.38177	.37710	00466
34	6.8936	.03	1.11	.35409		00380
35	7.5781	.03	1.11	.32676	.32411	00265
36	8.3056	.03	1.11	.29992	.29851	00141
37	9.0836	.03	1.12	.27374	.27378	.00004
38	9.9122	•04	1.12	.24836	.24999	.00163
39	10.7937	04	1.12	.22393	.22736	.00343
40	11.7284	•04	1.12	.20057	.20580	.00523
41	12.7186	• 05	1.12	.17838	.18492	.00654
42	13.7694	• 05	1.12	.15747	.16431	.00685
43	14.8783	• 06	1.12	.13788	.14407	.006194
44	16.0504	• 06	1.12	.11968	.12463	.00496
45	17,2856	•07	1.12	.10291	.10640	.00349
46	18,5890	.07	1.12	.08760	.08968	.00208
47	19,9581	.08	1.12	.07374	.07463	.00089
48	21.4005	.08	1.12	.06135		00001
49	22.9136	•09	1.12	.05039	.04978	00061
50	24,5024	•09	1.12	.04081	.03987	00093
51	26,1671	.10	1.12	.03256	.03150	00106
52	27,9126	•11	1.12	.02558	.02451	00107

53	29.7389	.11	1.12	.01975	.01877	00098
54	31.6485	.12	1.12	.01495	.01411	00084
55	33.6441	.13	1.12	.01110	.01040	00069
56	35.7281	.14	1.12	.00806	.00751	00055
57	37.9030	.14	1.12	.00572	.00531	00040
58	40.1688	.15	1.12	.00395	.00370	00025
59	42.5306	.16	1.12	.00265	.00255	00010
60	44.9910	.17	1.12	.00173	.00173	.00000
61	47.5498	.18	1.12	.00109	.00113	.00004
62	50,2123	.19	1.12	.00067	.00070	.00003
63	52.9782	.20	1.12	.00039	.00040	.00001
64	55.8503	.21	1.12	.00021	.00020	00000
65	58.8336	.22	1.12	.00009	.00009	00001
66	61.9279	.24	1.12	.00002	.00003	.00001

AVERAGE DEVIATION = .00156

STANDAADD ATMOSPHEDE (MOAA) FOR INHOMOGENEOUS PATHS 603 INPUT DATA

20.12 10.12 10.12 10.12 10.12 10.13 10.12 10.13 10

196.37C 212.083 227.731 242.456 254.873 261.553 264.272 256.27C 212.083 227.731 242.456 254.872 261.553 264.272 222.37C 212.083 253.793 256.156 256.837 261.353 264.076 222.331 221.667 221.66				and party			-	Continue
TEWDERATURE 196.37C 212.089 227.731 242.456 254.873 261.553 264.272 267.154 260.210 265.122 220.731 242.456 256.137 243.456 244.076 241.606 222.331 221.667 221.660 227.455 226.857 226.34 214.5131 224.394 216.356 216.735 216.661 216.635 216.637 216.549 216.656 216.658 216.636 216.735 216.661 216.655 216.637 216.649 216.656 216.658 216.629 217.377 218.815 226.199 221.947 227.078 226.130	27.0	230	217	21.4	216	228	248	240
254 873 261 553 264 272 256 873 264 272 226 636 226 314 218 743 216 637 216 649 215 655 226 131 216 655 226 131 216 251 251 251 251 251 251 251 251 251 251	267.154	241.696	219.151	216.658	216.554	225.180	246.344	786.947
196.370 212.083 227.731 242.456 254.873 261.553 250.210 265.122 283.793 254.456 224.873 261.553 222.331 221.667 221.660 220.457 219.880 210.314 216.895 216.735 216.661 216.635 216.637 216.637 216.636 216.632 216.661 216.635 216.637 216.649 215.629 217.357 217.777 218.815 220.199 221.943	254.272	244.076	218.743	216.456	216.655	223.078	244.827	264.633
196.370 212.083 227.731 242.456 254.873 250.210 265.120 263.735 242.466 254.873 222.331 221.667 221.660 220.457 219.880 216.836 216.735 216.661 216.635 216.637 216.636 216.735 216.661 216.635 216.637 216.629 217.357 217.777 218.815 220.199	561.563	248.456	210.314	216.649	216.697	221.943	242.615	262.593
196.37C 212.089 227.731 242.45 292.87E 231.315 228.593 264.45 222.331 221.667 221.666 226.45 216.835 216.735 216.661 216.63 216.629 217.35 216.61 216.63 216.629 217.35 216.61 216.63 232.729 234.731 235.815 216.81	254.873	252.171	219.880	216.637	216.601	950.199	240.812	789.787
196,370 212 089 227 731 252 122 253 731 252 125 253 731 251 667 251 666 125 251 666 125 251 665 125 25	75025BAT	256.156	220.457	216.636	216,662	218.816	236.817	299.702
200 270 200 200 200 200 200 200 200 200	227.731	260.093	221.666	216.661	216,639	217.777	236,815	066.956
20000000000000000000000000000000000000	212.083	265.122	221.667	214.735	216,632	217.057	161.25	254.954
0-10-10-40-4 0-10-10-40-4 0-0-4-10-10-10-10-10-10-10-10-10-10-10-10-10-	196.370	260.210	222,331	216.905	216.636	216.629	232.729	252.869
0 1 1 1 1 1 1 1 1	90.650	271-190	22.063	117.191	116,645	216.455	230.612	028.050

```
11101101
English
                                                                                      2000
               3657576
                                                                      0
                                                            -
                                                                      0.11111000E
      0.10958990
                                                                      0
                                                                   TPANSWITTANCE

0.0926178 0.9979771 0

0.0419014 0.9322697 0

0.8236457 0.9322697 0

0.8236457 0.9322697 0

0.9236457 0.9322697 0

0.9236457 0.932462 0

0.0000000 0.0000000 0

0.0000000 0.0000000 0
                                                      CM-1
             u
110
    1NTFNS1TY
0-10579000E
                                                          INTENSITY
0.10644990
(667.
                                                      DATA (577
             DATA
                                                          LVI
                                                      82
                                                          ١
*
      55
                                                            55
                                                      CHANNEL
     5000E
CHANNE
               2327990E
                                                                      11024
                                                            --
                0.09994253
0.09994253
0.09167254
0.0917094
0.0917094
0.0917094
0.090994
0.090994
0.090994
                                                            00
                                                            000
      000
      0.99567000E
                                                            0.9955700CE
```

0.1329700°F 01 0.84701039°F 00 0.657179000E 00 0.50659000E 00 0.35562000E 00 0.35562000E 00 0.22473000F 00 0.657179000E 00 0.50659000E 00 0.35562000E 00 0.22473000F 00 0.657179000E 00 0.50659000E 00 0.3562000E 00 0.22473000F 00 0.50630E 00 0.50659000E 00 0.356200CE 00 0.50620E 00 0		
13297001E 01	ו••••	2000 2000 2000 2000 2000 2000 2000 200
132970000 01 0.847010900 00 0.6571790000 00 0.506590000 00 355620000 01 0.847010900 00 0.571790000 00 0.571790000 00 0.57179000 00 0.57179000 00 0.57179000 00 0.57179000 00 0.57179000 00 0.5717900 00 0.571790 00 00 00 00 00 00 00 00 00 00 00 00 0	0	0000000000
1329700F 01 0.8470199JF 00 0.57179COLE 00 0.57179COLE 00 0.2747300CF 00 0.57179COLE 00 0.2747300CF 00 0.57179COLE 00 0.2747300CF 00 0.476877 0.77794 0.4737681 0.476877 0.77794 0.47687 0.4777687 0.4777687 0.4777687 0.477768 0.4777687 0.477768 0.477776 0.477768 0.477768 0.477776 0.477778 0.477778 0.477778 0.477778 0.477778 0.47	ta)	00000000000000000000000000000000000000
1329700° 01 0.8471099° 0 0.5717900° 0.5717900° 0.3562200° 0.5717900° 0.5717900° 0.5717900° 0.5717900° 0.5717900° 0.5717900° 0.5717900° 0.5717900° 0.5717900° 0.5717900° 0.5717900° 0.57179	00 00	00000000000000000000000000000000000000
132970005 01 0.847010995 00 01 0.35620005 01 0.22970005 00 0.2294730005 00 0.239620005 00 0.2294730005 00 0.23962005 00 0.22972398 0.3995397 0.0023305 0.0020244 0.3995397 0.0020224 0.3091213 0.0000277 0.309074 0.3091213 0.000077 0.309074 0.0000244	67179000E	00000000000000000000000000000000000000
132970005 01 0.8475109979562005 05.224730005 0950567 0.0047680 0.0373798 9795397 0.9747680 0.0373798 9795397 0.9747680 0.0373798 9469486 0.9283963 0.0373798 9469486 0.8735269 0.6496657 4926517 0.4651938 0.4374970 2783848 0.6735269 0.6496657 00033056 0.0023204 0.0118758	5 2 2 8	0.000000000000000000000000000000000000
13297000 01 35552000 05 000000 01 0000000 01 000000 01 000000 01 0000000 01 0000000 01 0000000 01 0000000 01 00000000 01 0000000 01 0000000 01 0000000 01 0000000 01 0000000 01 0000000 01 00000000	847019938 7.224730006	0.000000000000000000000000000000000000
132970 355200 935200 9355135 9355135 9455485 8455485 8455485 116233648 00033055 00033055	00	00000000000000000000000000000000000000
	35562300	00000000000000000000000000000000000000

	2234666		TO CONTRACTOR				
0	0.11428990F		34373000	•	0 • 359 31 990E	00	
		TOANS	TOANSWITTANCE				
2218006	0.9995949	1881656.0	0.9986458	0.9980549	0.9974198	0.0967394	
9262306	3.9944133	9.9935343	0.0000000	9.0016141	0.9905476	9.9893779	
4866604	0,9850912	0,9833726	0, 9814930	0.0794706	0.9772836	0,0749153	
1615096	9.9664537	0.9631294	0.9595366	0.0556663	0.0515090	0.0477564	
9372393	0.9318528	0.9261302	0.9200672	3,3136612	8406906.0	3.8997913	
5101 500	2,8760601	9.9672891	0.9500565	0.8483452	0.0301473	3.9274517	
. AC45603	0.732 3661	0.7795727	3.7564321	0.7527954	0.7786142	0.7230489	
.6932577	0,6772609	7,6508384	0.6439597	9.5256303	0.6089249	0,5904661	
.5518257	0.5314028	0.5102051	0.4932525	0.4655656	0.4421822	3.4182241	
. 3691747	7975447	0.3195086	0.2949835	0.2796982	9.2469157	3.2230133	
0.1803357	0.1502497	0,1413604	0.1237210	0.1073848	0.0924050	0.0789350	
0926550	0.0465459	0.0393345	0.0312560	0.0252249	0.0201514	0.0159399	
1617277	0.0075160	0.0057017					

CHANNEL #4 DATA (708. CM-1)

00122 00 00 00 00 00 00 00 00 00 00 00 00 0	58	0.80923990E	LINE	INTENSITY 0.60284600E	00 00	0.42107990E CO	00
000000000000000000000000000000000000000		30143670000	60			And the state of t	
				-		4	William Company to Appellant
9090900				0.9988530	9.9983511	0.0378250	0
457000	10000			0	3.9932790	0	0
0 001066		0.6476330		5	0.9422838	Ċ	00
0.9513736 0		0.9743933	0.0308721	10040000	0.0216497	0.9272898	0.9030070
.9185550 0		3,3002406		0	0.9942680	0	0
.9 5009778.		0.8657793		0	0.8453881	0	0
.8250023 0		0.8095956		0	0.7846021	C	C
.7569351 0		0.7362296		0	0.7013705	0	0
.6612142		3.6314870		0	0.5825945	O	0
.5289515 0		0,4938861		o	0.4311627	O	0.3901921
.3695175 0		3231552		0.2873	2672755	O	0
. 2007965 0.		0.1745051			and the state of the land of the land		
)			
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I			CONTRACTOR OF CONTRACTOR STREET, MANAGEMENT OF CONTRACTOR	Control of the Contro	10 00 00 00 00 00 00 00 00 00 00 00 00 0	A CONTRACTOR OF THE PERSON NAMED IN CONTRACTOR OF T	
			The state of the same of	The second secon	Spirit and the second s	Allen and the same	

c	0.00005550 0.00005550 0.00005100 0.00005100 0.00005050 0.00005050 0.00005050 0.00005050 0.00005050 0.00005050 0.000000 0.00000000
0.25615000E 00	00000000000000000000000000000000000000
	0.9996710.0.9994851 0.9945393 0.9946474 0.9798230 0.9946474 0.9798236 0.97835836 0.9778680 0.9403714 0.917156 0.9695897 0.8674645 0.85774687 0.774687 0.5254799 0.5511738
LINF INTENSITY 0.45428990F CC	0.9998131 0.9998131 0.9998131 0.9989935 0.9812751 0.9468503 0.9175160 0.9178180 0.651892
E 00 00	
0.72225930E 00	00000000000000000000000000000000000000
56	00000000000000000000000000000000000000
0.16580990	0.000000000000000000000000000000000000

CHANNEL #6 DATA (747. CM-1)