ТЕМА НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Несобственные интегралы 1го рода (с бесконечными пределами)

В случае, когда график функции у = f(x) находится выше оси Ох, определённый интеграл выражает площадь криволинейной трапеции, ограниченной кривой у = f(x), осью абсцисс и ординатами х = a, x = b.

Несобственный интеграл выражает площадь неограниченной (бесконечной) криволинейной трапеции, заключённой между линиями y = f(x) (на рисунке ниже - красного цвета), X = a и осью абсцисс.

Площадь бесконечной криволинейной трапеции может быть конечным числом и в этом случае несобственный интеграл называется сходящимся. Площадь может быть и бесконечной (например ,если $f(x) = x^2$) и в этом случае несобственный интеграл называется расходящимся.

• Для того , чтобы вычислить несобственный интеграл 1го рода ,мы записываем определенный интеграл $\int_a^B f(x) dx$ и устремляем верхний предел к бесконечности $\int_a^\infty f(x) dx = \lim_{B \to \infty} \int_a^B F(x) dx$

Вычислить несобственный интеграл (если он сходится).

$$1. \int_{1}^{\infty} \frac{dx}{x^{2}} = \lim_{B \to \infty} \int_{1}^{B} x^{-2} dx =$$

 $=\lim_{B o \infty} \left(-\frac{1}{x} \right)$ и не забываем подставить верхний и нижний пределы!!!

$$= \lim_{B \to \infty} \left(-\frac{1}{B} + \frac{1}{1} \right) = 1$$

$$2.\int_{1}^{\infty} rac{dx}{x} = \lim_{B o\infty} \int_{1}^{B} rac{dx}{x} = \lim_{B o\infty} (lnx)$$
 но если тут подставить верхний и нижний пределы , то $=\lim_{B o\infty} (lnB-ln1) = \infty$

Значит, этот интеграл расходится!!!

- Несобственные интегралы с бесконечным нижним пределом
- Аналогично определяется несобственный интеграл от непрерывной функции с **бесконечным нижним пределом** интегрирования, обозначаемый символом , а именно
- $\int_{-\infty}^{a} f(x)dx = \lim_{B \to -\infty} \int_{B}^{a} f(x)dx$
- Несобственные интегралы с двумя бесконечными пределами
- Несобственный интеграл с двумя бесконечными пределами интегрирования нужно предварительно представить в виде суммы двух несобственных интегралов, один из которых с конечным верхним пределом интегрирования, другой с конечным нижним пределом интегрирования, т.е.
- $\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx$
- По определению $= \lim_{B \to -\infty} \int_{B}^{a} f(x) dx + \lim_{C \to +\infty} \int_{a}^{C} f(x) dx$

- причём этот **несобственный интеграл считается сходящимся**, если оба предела существуют, когда *B* и *C* независимо друг от друга неограниченно возрастают по абсолютной величине.
- Вычислить $\int_{-\infty}^{+\infty} \frac{1}{x^2 + 2x + 2} dx$. Разобьем интервал точкой 0 на два и запишем $\lim_{B \to -\infty} \int_{B}^{0} \frac{1}{x^2 + 2x + 2} dx + \lim_{C \to +\infty} \int_{0}^{C} \frac{1}{x^2 + 2x + 2} dx$
- Чтобы найти первообразную $\int \frac{1}{x^2+2x+2} dx$ выделяем полный квадрат
- $\int \frac{1}{x^2 + 2x + 1 + 1} dx = \int \frac{1}{(x+1)^2 + 1} dx = arctg(x+1)$
- Если перейти к пределу у нас будет
- $arctg1 arctg(-\infty) + arctg(\infty) arctg1 = \pi$

ПРИЗНАКИ СХОДИМОСТИ несобственных интегралов 1го рода

- Теорема. Если
 подынтегральная функция
 непрерывна на [а; ∞) и
 является неограниченной
 при х → ∞,то
 несобственный интеграл
 1го рода расходится.
- Замечание. Если функция ограничена, то интеграл может как сходиться, так и расходиться!!

- ПРИЗНАК СРАВНЕНИЯ.
- Пусть две *неотрицательные* функции $f(x)u\ g(x)$ непрерывны на промежутке [a; ∞) , и для всех х из этого промежутка справедливо неравенство $f(x) \leq g(x)$. Тогда из сходимости интеграла $\int_{a}^{\infty} g(x)dx$ следует сходимость интеграла $\int_{a}^{\infty} f(x) dx$, а из расходимости $\int_{a}^{\infty} f(x) dx$ следует расходимость интеграла $\int_{a}^{\infty} g(x) dx$

ПРЕДЕЛЬНЫЙ ПРИЗНАК СХОДИМОСТИ.

Пусть две <u>неотрицательные</u> функции $f(x)u\ g(x)$ <u>непрерывны</u> на промежутке $[a;\infty)$, и существует конечный предел отношения $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = \mathbf{C} \neq \mathbf{0}$. Тогда интегралы $\int_a^\infty g(x) dx$ и $\int_a^\infty f(x) dx$ ведут себя одинаково (т.е. сходятся или расходятся одновременно)

• «ЭТАЛОННЫЕ ИНТЕГРАЛЫ»

- $\int_{a}^{+\infty} \frac{1}{x^{p}} dx$ сходятся при p> 1, расходятся при p≤ 1, a > 0
- $\int_a^{+\infty} \frac{1}{x l n^p x} dx$ сходятся при p > 1, расходятся при $p \le 1$, a > 1

Исследовать на сходимость $1.\int_1^{+\infty} \frac{sin^2xdx}{x^2}$ подынтегральн ая функция непрерывна и ограничена на промежутке интегрирования. $sin^2x \leq 1$ поэтому мы сравниваем подынтегральную функцию с $\frac{1}{x^p}$ p=2,а т.к. $\int_a^{+\infty} \frac{1}{x^p} dx$ при p > 1 сходится , то и наш интеграл будет сходиться.

Исследовать на сходимость (с помощью предельного признака)

Несобственные интегралы 2го рода (от разрывных функций)

- Теперь рассмотрим площадь такой криволинейной трапеции.
 Особенность в том, что функция f(x) в точке b терпит разрыв.
- $S = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x) dx =$ $= \int_{a}^{b} f(x) dx$ несобственный интеграл
 2го рода

Для интегралов 2 рода тоже есть признак сравнения:

Пусть две <u>неотрицательные</u> функции $f(x)u\ g(x)$ непрерывны на промежутке $[a; m{b})$, и для всех х из этого промежутка справедливо неравенство $f(x) \leq g(x)$. Тогда из сходимости интеграла $\int_a^\infty g(x) dx$ следует сходимость интеграла $\int_a^\infty f(x) dx$, а из расходимости $\int_a^\infty f(x) dx$ следует расходимость интеграла $\int_a^\infty g(x) dx$

• «эталонные интегралы»

- $\int_a^b \frac{1}{(x-a)^{\propto}} dx$ и $\int_a^b \frac{1}{(b-x)^{\propto}} dx$ сходятся при $\propto < 1$,
- расходятся при $\propto \geq 1$

Для несобственных интегралов 2 го рода тоже можно применять и предельный признак сравнения. НО: если в при х→ ∞ в подынтегральной функции наибольшее влияние оказывают более высокие степени х, то при малых х, наоборот , мы должны обращать внимание на самую низшую степень х.

- Рассмотрим интеграл $\int_0^1 \frac{dx}{5x^2 + \sqrt[4]{x}}$
- «Плохая» точка x=0,поэтому внимание обращаем на низшую степень x. То есть для сравнения берем интеграл $\int_0^1 \frac{dx}{\sqrt[4]{x}} \ ,$ который сходится , т.к. степень $\frac{1}{4} < 1$
- Но на самом деле мы сначала должны были вычислить предел $\lim_{\mathbf{x} \to 0} \frac{\frac{1}{5x^2 + \sqrt[4]{x}}}{\frac{1}{\sqrt[4]{x}}}$ и убедиться ,что это число, $\neq 0$

Бывают еще более замысловатые случаи . Например: чтобы исследовать сходимость интеграла $\int_0^1 \frac{\ln(1+x)dx}{\sqrt{x^3}}$ мы сначала должны заметить , что при малых $x - \ln(1+x) \sim x$ и наш интеграл эквивалентен $\int_0^1 \frac{xdx}{\sqrt{x^3}} = \int_0^1 \frac{dx}{\sqrt{x}}$ степень в знаменателе $\frac{1}{2} < 1$, значит интеграл сходится.

- Если же интервал интегрирования таков, что «плохими» оказываются, например, начальная и конечная точки, или-что еще хуже-точка внутри интервала-то придется его разбивать на два, и отдельно исследовать.
- А может случиться, что в интеграле $\int_{a}^{\infty} f(x) dx$ в точке а функция $\rightarrow \infty$ то есть у нас интеграл 2го рода. Опять придется разбить на 2 интеграла и исследовать. Если хотя бы один интеграл расходится, то исходный тоже расходится!

ЗАДАНИЕ НА ДОМ

- Составить по 3
 интеграла 1го и 2го
 рода, вычислить или
 исследовать на
 сходимость!
- Если интересно, поглядите на http://mathprofi.ru но не списывать один в один!!! Прислать мне.

