Notes and exercises from Abstract Algebra

John Peloquin

Introduction

This document contains notes and exercises from [1].

Chapter I

Section 4

In addition to Propositions 4.9 and 4.10, the following is useful (see for example the proof of Theorem II.9.12):

Proposition. Let G be a group, $N \subseteq G$ and $N \subseteq H, K \subseteq G$. Then H and K are conjugate in G if and only if H/N and K/N are conjugate in G/N.

Chapter II

Section 5

The argument used in the proof of Proposition 5.10 is essentially Frattini's:

Proposition (Frattini). *Let* G *be a finite group,* $H \subseteq G$, and P a Sylow p-subgroup of H. Then $G = HN_G(P)$.

Proof. If $g \in G$, then $gPg^{-1} \subseteq gHg^{-1} = H$ since $P \subseteq H \subseteq G$. But gPg^{-1} is also a Sylow p-subgroup of H, and all Sylow p-subgroups of H are conjugate in H (Theorem 5.7), so there is $h \in H$ with

$$hgP(hg)^{-1} = h(gPg^{-1})h^{-1} = P$$

Therefore $hg \in N_G(P)$, $g \in HN_G(P)$, and $G = HN_G(P)$.

The key observation is that since all conjugates of P in G are contained in H, they are also conjugate in H. Proposition 5.10 follows as a corollary:

Corollary. Let G be a finite group, P a Sylow p-subgroup of G, and $N_G(P) \subseteq H \subseteq G$. Then $N_G(H) = H$.

Proof. Note $N_G(H)$ is finite, $H \subseteq N_G(H)$, and P is a Sylow p-subgroup of H, so $N_G(H) = HN_{N_G(H)}(P) \subseteq HN_G(P) \subseteq HH = H$ by Frattini.

Section 9

Remark. In the proof of Lemma 9.11, $G = N \times A = N \times B$ (Proposition 11.2). In particular, each $b \in B$ can be expressed uniquely in $N \times A$ in the form b = ua with $u \in N$ and $a \in A$. Then $u = u_a$ in Grillet's notation, and $u_{aa'} = u_a(au_{a'}a^{-1})$ follows from the multiplication rule in $N \times A$. In this way, N acts as a "bridge" between A and B.

Section 10

Commutator subgroups satisfy the following universal mapping property:

Proposition. Let G be a group, $H \subseteq G$, and K = [G, H] the subgroup of G generated by commutator elements $[x, y] = xyx^{-1}y^{-1}$ with $x \in G$ and $y \in H$. Then $K \subseteq G$. If $\pi : G \to G/K$ is the canonical projection, then $\pi(H) \subseteq Z(\pi(G))$, and if $\varphi : G \to L$ is a homomorphism with $\varphi(H) \subseteq Z(\varphi(G))$, then φ factors uniquely through π ; that is, there exists $\psi : G/K \to L$ unique such that $\varphi = \psi \circ \pi$:

Proof. By the universal mapping property for quotient groups (Theorem I.5.1), since $K \subseteq \ker \varphi$.

This is a generalization of the universal mapping property noted in Section 9, where H = G (see Proposition 9.1 and Exercise 9.7). It is implicit in the proofs of Propositions 10.1 and 10.3.

Chapter IV

Section 5

Remark. In Proposition 5.1(2), if *K* is finite then m = 0 and *q* is separable.

Section 6

We sketch an alternative approach to purely inseparable extensions starting with polynomials having only one distinct root:

Definition. A nonconstant polynomial $f(X) \in K[X]$ is *purely inseparable* if

$$f(X) = a(X - \alpha)^m \in \overline{K}[X]$$

where $a \in K$, $\alpha \in \overline{K}$, and m > 0.

Note f is both separable and purely inseparable if and only if f is linear.

Proposition. Let $f(X) = a(X - \alpha)^m \in K[X]$ be purely inseparable as above.

- 1. If K has characteristic 0, then $\alpha \in K$.
- 2. If K has characteristic $p \neq 0$, then $\alpha^{p^k} \in K$ for some $k \geq 0$ with

$$f(X) = a(X^{p^k} - \alpha^{p^k})^{m/p^k}$$

Proof. By the binomial theorem,

$$f(X) = a(X - \alpha)^m = aX^m - am\alpha X^{m-1} + \dots \in K[X]$$

so $am\alpha \in K$ and $m\alpha \in K$ since $a \neq 0$. If K has characteristic 0, then $m \neq 0$ in K and $\alpha \in K$. If K has characteristic $p \neq 0$, then either $\alpha \in K$ or else $p \mid m$ and

$$f(X) = a((X - \alpha)^p)^{m/p} = a(X^p - \alpha^p)^{m/p}$$

Repeating this argument with α^p in place of α , we must eventually find $k \ge 0$ with $\alpha^{p^k} \in K$ and f(X) as claimed.

Proposition. Let $q(X) \in K[X]$ be monic irreducible and purely inseparable. If K has characteristic 0, then q(X) = X - a for some $a \in K$. If K has characteristic $p \neq 0$, then $q(X) = X^{p^k} - a$ for some $a \in K$ and $k \geq 0$.

Proof. By Proposition 5.1 and the above. In the case of characteristic $p \neq 0$, $q(X) = s(X^{p^k})$ for s separable and purely inseparable, hence linear.

Definition. An element α is *purely inseparable over K* when α is algebraic over *K* and $Irr(\alpha : K)$ is purely inseparable.

Definition. An algebraic extension E of K is *purely inseparable over* K when every element of E is purely inseparable over K.

These definitions are compatible with those in the text. In particular:

Corollary. An extension E of K is both separable and purely inseparable over K if and only if E = K. In particular if K has characteristic 0 or K is finite, then K is the only purely inseparable extension of K.

Corollary. If K has characteristic $p \neq 0$ and E is a purely inseparable extension of K in \overline{K} , then

$$E \subseteq K^{1/p^{\infty}} = \left\{ \alpha \in \overline{K} \mid \alpha^{p^k} \in K \text{ for some } k \ge 0 \right\}$$

References

[1] Grillet, Pierre A. Abstract Algebra, 2nd ed. Springer, 2007.