Net1	Net2	Net3
Train error: 0.4357	Train error: 0.4428	Train error: 0.4058
Validation error: 0.5167	Validation error: 0.5225	Validation error: 0.4960
Test set error: 0.5122	Test set error: 0.5217	Test set: 0.4952
epochs: 195	epochs: 165	epochs: 323

Table 1: Classification errors for three different networks. All networks have the same early stopping criteria. All networks are also updating by using log loss instead of mean-error squared. Network 1 and 3 has the same layer layout but network 3 also has added L2 regularization. Network 2 has addition hidden layer than the other two networks.

Theoretical: Early stopping is a method that helps networks from overfitting. The network will stop the training at an epoch when the validation performance starts performing worse than the training. Regularization is another technique for reducing overfitting by penalizing the parameters so they don't reach large enough values.

Experimental results: The investigation consisted of three different types of networks. Table 1 shows each of the networks reached an early stopping at different epochs. Network 2 stopped training at earlier epoch because it is a deeper network and hence more prone to overfit causing bad performance on the validation set. Network 3 stopped training at a much later epoch because of regularization, hence allowing the network to train at longer epochs reaching better generalization results.