FILE 'HOME' ENTERED AT 15:26:52 ON 08 JUL 2003

=> file reg COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 1.05 1.05

FULL ESTIMATED COST

FILE 'REGISTRY' ENTERED AT 15:29:50 ON 08 JUL 2003 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2003 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 7 JUL 2003 HIGHEST RN 544408-69-7 DICTIONARY FILE UPDATES: 7 JUL 2003 HIGHEST RN 544408-69-7

TSCA INFORMATION NOW CURRENT THROUGH JANUARY 6, 2003

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS Registry File, for complete details: http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf

=> s 1/Li and 0.01-0.99/Ni and 0.01-8.9/Co and 0.11-0.59/Mn and 2/O

85467 1/LI

17304 0.01-0.99/NI

307124 0.01-8.9/CO

7371 0.11-0.59/MN

4168836 2/0

L1 248 1/LI AND 0.01-0.99/NI AND 0.01-8.9/CO AND 0.11-0.59/MN AND 2/O

=> s 1-1.2/Li and 2/Mn and 4/0

85467 1-1.2/LI

10566 2/MN

3107120 4/0

L2 404 1-1.2/LI AND 2/MN AND 4/O

=> file caplus

COST IN U.S. DOLLARS

SINCE FILE

ENTRY SESSION

FULL ESTIMATED COST

35.36 36.41

TOTAL

FILE 'CAPLUS' ENTERED AT 15:32:29 ON 08 JUL 2003 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 8 Jul 2003 VOL 139 ISS 2 FILE LAST UPDATED: 7 Jul 2003 (20030707/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s l1

L3 87 L1

=> s 12

L4 2514 L2

=> s 13 and 14

L5 13 L3 AND L4

=> s 15 and (battery or cell)

100135 BATTERY 1666940 CELL

L6 13 L5 AND (BATTERY OR CELL)

=> d 16 1-13 ibib ab kwic

L6 ANSWER 1 OF 13 CAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2

2003:374005 CAPLUS 138:371736

DOCUMENT NUMBER: 138

TITLE: Active mass for **battery**, its manufacture and

the battery

INVENTOR(S): Cho, Jae Phil; Jung, Won Ll; Park, Yong Chul; Kim,

Geun Bae

PATENT ASSIGNEE(S): Samsung SDI Co., Ltd., S. Korea

SOURCE: Jpn. Kokai Tokkyo Koho, 23 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO. DATE
JP 2003142097	A2	20030516	JP 2002-260246 20020905
US 2003049529	A1	20030313	US 2002-91335 20020306
PRIORITY APPLN. INFO.	:		US 2001-316949P P 20010905
			US 2002-91335 A 20020306
			KB 2002-12570 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

- AB The active mass has a coating layer, contg. a mixt. of a conductor and a conductive polymeric dispersant, on a electrochem. oxidizable-reducible material; and is prepd. by coating the mixt. on the electrochem. oxidizable-reducible material. The battery has a separator between a cathode and an anode; where the cathode and/or the anode contains the above active mass on a current collector.
- TI Active mass for battery, its manufacture and the battery
- AB The active mass has a coating layer, contg. a mixt. of a conductor and a conductive polymeric dispersant, on a electrochem. oxidizable-reducible material; and is prepd. by coating the mixt. on the electrochem. oxidizable-reducible material. The battery has a separator between a cathode and an anode; where the cathode and/or the anode contains the above active mass on a current collector.
- ST battery electrode active material coating manuf; coating conductor polymer dispersant mixt
- IT Battery electrodes

(manuf. of active mass contg. mixts. of conductors and polymer dispersants coated on electrochem. oxidizable-reducible materials for

battery electrodes)

IT Gelatins, uses

RL: TEM (Technical or engineered material use); USES (Uses)
(manuf. of active mass contg. mixts. of conductors and polymer
dispersants coated on electrochem. oxidizable-reducible materials for
battery electrodes)

IT Dispersing agents

(oroton; manuf. of active mass contg. mixts. of conductors and polymer dispersants coated on electrochem. oxidizable-reducible materials for battery electrodes)

IT 7440-44-0, Super P, uses

RL: TEM (Technical or engineered material use); USES (Uses) (activated; manuf. of active mass contg. mixts. of conductors and polymer dispersants coated on electrochem. oxidizable-reducible materials for battery electrodes)

IT 1314-23-4, Zirconia, uses 7440-21-3, Silicon, uses 7782-42-5, Graphite, uses 7784-30-7, Aluminum phosphate (AlPO4) 9003-11-6, Ethylene oxide-propylene oxide copolymer 12057-17-9, Lithium manganese oxide (LiMn2O4) 12190-79-3, Cobalt lithium oxide (CoLiO2) 18282-10-5, Tin oxide (SnO2) 262857-75-0, Cobalt lithium nickel strontium oxide (Co0.1LiNi0.9Sr0.002O2) 499969-49-2, Aluminum cobalt lithium magnesium manganese nickel oxide (Al0.05Co0.1LiMg0.05Mn0.25Ni0.66O2)

RL: TEM (Technical or engineered material use); USES (Uses)
(manuf. of active mass contg. mixts. of conductors and polymer
dispersants coated on electrochem. oxidizable-reducible materials for
battery electrodes)

L6 ANSWER 2 OF 13 CAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2003:373988 CAPLUS

DOCUMENT NUMBER:

138:371722

TITLE:

Secondary lithium battery

INVENTOR(S):

Kato, Fumio; Oura, Takafumi; Takeno, Mitsuhiro;

Koshina, Shiqeru

PATENT ASSIGNEE(S):

Matsushita Electric Industrial Co., Ltd., Japan

APPLICATION NO. DATE

SOURCE:

Jpn. Kokai Tokkyo Koho, 24 pp. CODEN: JKXXAF

1

Patent

DOCUMENT TYPE:
LANGUAGE:

Japanese

KIND DATE

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.

JP 2003142075 A2 20030516 JP 2001-337634 20011102
PRIORITY APPLN. INFO.: JP 2001-337634 20011102
AB The battery has an anode contg. an active mass mixt., having d.
1.4-1.8 g/cm3, on a Cu foil, and a cathode contg. an active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mix having d 3.3-3.7 g/cm3 on an Al foil; where the anode active ma

1.4-1.8 g/cm3, on a Cu foil, and a cathode contg. an active mass mixt., having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mixt. contains graphite and a graphitization resistant carbonaceous material, and the cathode active mass mixt. is selected from a LiMn2O4-LiNiO2 mixt., LiMnxNi1-xO2, LiMn2O4-LiNiO2-LiCoO2 mixt., and LiMnyNinzCo1-y-zO2. Ni in LiNiO2 may be partially replaced by Co and/or Al ions.

TI Secondary lithium battery

AB The battery has an anode contg. an active mass mixt., having d. 1.4-1.8 g/cm3, on a Cu foil, and a cathode contg. an active mass mixt., having d 3.3-3.7 g/cm3 on an Al foil; where the anode active mass mixt. contains graphite and a graphitization resistant carbonaceous material, and the cathode active mass mixt. is selected from a LiMn2O4-LiNiO2 mixt., LiMnxNi1-xO2, LiMn2O4-LiNiO2-LiCoO2 mixt., and LiMnyNinzCo1-y-zO2. Ni in LiNiO2 may be partially replaced by Co and/or Al ions.

ST secondary lithium battery electrode active mass mixt

IT 12031-65-1, Lithium nickel oxide (LiNiO2) 12057-17-9, Lithium
manganese oxide (LiMn2O4) 12190-79-3, Cobalt lithium oxide (CoLiO2)

143623-51-2, Cobalt lithium nickel oxide (Co0.15LiNi0.8502) 179186-44-8, Lithium manganese nickel oxide (LiMn0.4Ni0.602) 190902-69-3, Aluminum

lithium nickel oxide (Al0.15LiNi0.8502) 193214-22-1, Aluminum cobalt

lithium nickel oxide (Al0.05Co0.1LiNi0.8502) 404904-11-6, Cobalt

lithium manganese nickel oxide (Co0.4LiMn0.3Ni0.3O2)

RL: DEV (Device component use); USES (Uses)

(compns. and controlled d. of cathode active mass mixts. for secondary lithium batteries)

L6 ANSWER 3 OF 13 CAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2003:355675 CAPLUS

DOCUMENT NUMBER: 138:371699

TITLE: Cathode active material for a rechargeable lithium

battery having structural stability and

improved cyclelife characteristics

INVENTOR(S): Cho, Jae-Phil; Park, Byung-Woo; Kim, Yong-Jeong; Kim,

Tae-Jun

PATENT ASSIGNEE(S): S. Korea

SOURCE: U.S. Pat. Appl. Publ., 13 pp.

CODEN: USXXCO

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE		APPLICATION NO	٠.	DATE
					-	
US 2003087155	A1	20030508	Ž.	US 2002-270811		20021015
JP 2003178759	A2	20030627	,	JP 2002-308368		20021023
PRIORITY APPLN. INFO.	:		KR	2001-65805	Α	20011024

- AB A pos. active material for a rechargeable lithium battery is provided. The pos. active material comprises a lithiated intercalation compd. and a coating layer formed on the lithiated intercalation compd. The coating layer comprises a solid-soln. compd. and an oxide compd. having at least two coating elements, the oxide compd. represented by the formula: MpM'qOr wherein M and M' are not the same and are each independently at least one element selected from the group consisting of Zr, Al, Na, K, Mg, Ca, Sr, Ni, Co, Ti, Sn, Mn, Cr, Fe, and V; 0<p<1; 0<q<1; and 1<r.ltoreq.2, where r is detd. based upon p and q. The solid-soln. compd. is prepd. by reacting the lithiated intercalation compd. with the oxide compd. The coating layer has a fracture toughness of at least 3.5 MPam1/2. A method of making the pos. active material is also provided.
- TI Cathode active material for a rechargeable lithium **battery** having structural stability and improved cyclelife characteristics
- AB A pos. active material for a rechargeable lithium battery is provided. The pos. active material comprises a lithiated intercalation compd. and a coating layer formed on the lithiated intercalation compd. The coating layer comprises a solid-soln. compd. and an oxide compd. having at least two coating elements, the oxide compd. represented by the formula: MpM'qOr wherein M and M' are not the same and are each independently at least one element selected from the group consisting of Zr, Al, Na, K, Mg, Ca, Sr, Ni, Co, Ti, Sn, Mn, Cr, Fe, and V; 0<p<1; 0<q<1; and 1<r.ltoreq.2, where r is detd. based upon p and q. The solid-soln. compd. is prepd. by reacting the lithiated intercalation compd. with the oxide compd. The coating layer has a fracture toughness of at least 3.5 MPam1/2. A method of making the pos. active material is also provided.
- ST lithium secondary battery cathode active material
- IT Battery cathodes

(cathode active material for rechargeable lithium **battery** having structural stability and improved cyclelife characteristics)

IT Secondary batteries

(lithium; cathode active material for rechargeable lithium

```
battery having structural stability and improved cyclelife
        characteristics)
     116327-69-6P, Cobalt lithium nickel oxide (Co0.1LiNi0.902)
IT
     RL: DEV (Device component use); RCT (Reactant); SPN (Synthetic
     preparation); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
        (aluminum cobalt lithium nickel zirconium oxide solid soln.-coated,
        substrate particles, strontium doped; cathode active material for
        rechargeable lithium battery having structural stability and
        improved cyclelife characteristics)
IT
     163596-49-4P, Lithium manganese nickel oxide (LiMn0.2Ni0.802)
     RL: DEV (Device component use); RCT (Reactant); SPN (Synthetic
     preparation); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
        (aluminum lithium manganese nickel zirconium oxide solid soln.-coated,
        substrate particles; cathode active material for rechargeable lithium
        battery having structural stability and improved cyclelife
        characteristics)
TI
     12057-17-9P, Lithium manganese oxide (LiMn2O4)
     RL: DEV (Device component use); RCT (Reactant); SPN (Synthetic
     preparation); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
        (aluminum lithium manganese zirconium oxide solid soln. - coated,
        substrate particles; cathode active material for rechargeable lithium
        battery having structural stability and improved cyclelife
        characteristics)
     67-63-0D, Isopropanol, aluminum and nickel complexes
TT
                                                            149-57-5D,
     2-Ethylhexanoic acid, aluminum and nickel complexes
                                                           7429-90-5D,
     Aluminum, mixed 2-ethylhexanoato and 2-propanolato complexes
                                                                     7440-02-0D,
     Nickel, mixed 2-ethylhexanoato and 2-propanolato complexes
                                                                  521980-95-0
     RL: RCT (Reactant); RACT (Reactant or reagent)
        (cathode active material for rechargeable lithium battery
        having structural stability and improved cyclelife characteristics)
ΙT
     521981-00-0P
     RL: DEV (Device component use); SPN (Synthetic preparation); PREP
     (Preparation); USES (Uses)
        (coatings, on aluminum cobalt lithium magnesium manganese nickel oxide
        particles; cathode active material for rechargeable lithium
        battery having structural stability and improved cyclelife
        characteristics)
     406939-73-9P, Aluminum cobalt lithium magnesium manganese nickel
IT
     oxide (Al0.07Co0.1Li1.03Mg0.07Mn0.19Ni0.6902
     RL: DEV (Device component use); RCT (Reactant); SPN (Synthetic
     preparation); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
        (coatings, on aluminum cobalt lithium magnesium manganese nickel
        zirconium oxide particles, substrate; cathode active material for
        rechargeable lithium battery having structural stability and
        improved cyclelife characteristics)
ŦΤ
     521980-97-2P, Aluminum lithium nickel zirconium oxide
     RL: DEV (Device component use); SPN (Synthetic preparation); PREP
     (Preparation); USES (Uses)
        (coatings, on cobalt lithium nickel oxide particles; cathode active
        material for rechargeable lithium battery having structural
        stability and improved cyclelife characteristics)
TT
     191025-46-4DP, Cobalt lithium nickel zirconium oxide, surface coated on
     cobalt lithium oxide particles
     RL: DEV (Device component use); SPN (Synthetic preparation); PREP
     (Preparation); USES (Uses)
        (coatings, on cobalt lithium oxide, substrate particles; cathode active
        material for rechargeable lithium battery having structural
        stability and improved cyclelife characteristics)
IT
     521980-99-4P
     RL: DEV (Device component use); SPN (Synthetic preparation); PREP
     (Preparation); USES (Uses)
        (coatings, on lithium manganese nickel oxide particles; cathode active
        material for rechargeable lithium battery having structural
        stability and improved cyclelife characteristics)
```

```
TT
     521980-98-3P
     RL: DEV (Device component use); SPN (Synthetic preparation); PREP
     (Preparation); USES (Uses)
        (coatings) on lithium manganese oxide particles; cathode active
        material for rechargeable lithium battery having structural
        stability and improved cyclelife characteristics)
IT
     RL: DEV (Device component use); SPN (Synthetic preparation); PREP
     (Preparation); USES (Uses)
        (coatings, on metal oxides, strontium doped and undoped; cathode active
        material for rechargeable lithium battery having structural
        stability and improved cyclelife characteristics)
     521980-93-8DP, Aluminum zirconium oxide (AlZrO4), solid solns. with
     aluminum cobalt lithium zirconium oxide 521980-94-9DP, Aluminum cobalt
     lithium zirconium oxide (Al0-0.2Co0.4-1LiZr0-0.2O2), solid solns. with
     aluminum zirconium oxide
     RL: DEV (Device component use); SPN (Synthetic preparation); PREP
     (Preparation); USES (Uses)
        (coatings, on metal oxides; cathode active material for rechargeable
        lithium battery having structural stability and improved
        cyclelife characteristics)
     12031-65-1P, Lithium nickel oxide (LiNiO2)
IT
     RL: DEV (Device component use); RCT (Reactant); SPN (Synthetic
     preparation); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
        (metal oxide-coated, substrate particles; cathode active material for
        rechargeable lithium battery having structural stability and
        improved cyclelife characteristics)
IT
     12190-79-3P, Cobalt lithium oxide (CoLiO2)
     RL: DEV (Device component use); SPN (Synthetic preparation); PREP
     (Preparation); USES (Uses)
        (mixed metal oxide solid soln.-coated, substrate particles; cathode
        active material for rechargeable lithium battery having
        structural stability and improved cyclelife characteristics)
    ANSWER 4 OF 13 CAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER:
                         2003:300503 CAPLUS
DOCUMENT NUMBER:
                         138:290458
                         Method for preparation of cathode active material for
TITLE:\
                         lithium secondary battery
INVENTOR(S):
                         Kweon, Ho-Jin; Suh, Jun-Won
PATENT ASSIGNEE(S):
                         Samsung SDI, Co., Ltd., S. Korea
SOURCE:
                         U.S. Pat. Appl. Publ., 22 pp.
                         CODEN: USXXCO
DOCUMENT TYPE:
                         Patent
                         English
LANGUAGE:
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
     PATENT NO.
                      KIND DATE
                                          APPLICATION NO. DATE
                     ----
                                           US 2002-269991 20021015
                      A1 20030417
     US 2003073004
                                                       A 20011017
                                       KR 2001-64095
PRIORITY APPLN. INFO.:
     A process of manufg. a pos. active material for a lithium secondary
     battery includes prepg. a coating-element-contg. org. suspension
     by adding a coating-element source to an org. solvent, adding water to the
     suspension to prep. a coating liq., coating a pos. active material with
     the coating liq., and drying the coated pos. active material.
TT
     Method for preparation of cathode active material for lithium secondary
     battery
AB
     A process of manufg. a pos. active material for a lithium secondary
     battery includes prepg. a coating-element-contg. org. suspension
     by adding a coating-element source to an org. solvent, adding water to the
```

suspension to prep. a coating liq., coating a pos. active material with

the coating liq., and drying the coated pos. active material.

```
lithium secondary battery cathode active material
ST
     Alkali metals, uses
IT
     Alkaline earth metals
     Group IIIA elements
     Group IVA elements
     Group VA elements
     Transition metals, uses
     RL: TEM (Technical or engineered material use); USES (Uses)
        (coating element; method for prepn. of cathode active material for
        lithium secondary battery)
IT
     Chalcogenides
     Oxides (inorganic), uses
     RL: DEV (Device component use); USES (Uses)
        (lithiated; method for prepn. of cathode active material for lithium
        secondary battery)
     Secondary batteries
TΤ
        (lithium; method for prepn. of cathode active material for lithium
        secondary battery)
     Battery cathodes
IT
     Coating materials
        (method for prepn. of cathode active material for lithium secondary
        battery)
     7429-90-5, Aluminum, uses 7439-95-4, Magnesium, uses
                                                              7440-09-7,
IT
     Potassium, uses 7440-21-3, Silicon, uses 7440-23-5, Sodium, uses
     7440-31-5, Tin, uses 7440-32-6, Titanium, uses 7440-38-2, Arsenic,
          7440-42-8, Boron, uses 7440-48-4, Cobalt, uses 7440-55-3,
                    7440-56-4, Germanium, uses 7440-62-2, Vanadium, uses
     Gallium, uses
     7440-67-7, Zirconium, uses \ 7440-70-2, Calcium, uses
     RL: TEM (Technical or engineered material use); USES (Uses)
        (coating element; method for prepn. of cathode active material for
        lithium secondary battery)
IT
     555-31-7, Aluminum isopropoxide
     RL: TEM (Technical or engineered material use); USES (Uses)
        (coating; method for prepn. of cathode active material for lithium
        secondary battery)
     12057-17-9, Lithium manganese oxide limn204
                                                   12190-79-3, Cobalt
IT
     lithium oxide colio2 262857-75-0, Cobalt lithium nickel strontium oxide
     Co0.1LiNi0.9Sr0.00202 406939-73-9, Aluminum cobalt lithium
     magnesium manganese nickel oxide Al0.07Co0.1Li1.03Mg0.07Mn0.19Ni0.6902
     RL: DEV (Device component use); USES (Uses)
        (method for prepn. of cathode active material for lithium secondary
       battery)
TT
     64-17-5, Ethanol, uses
     RL: TEM (Technical or engineered material use); USES (Uses)
        (method for prepn. of cathode active material for lithium secondary
        battery)
     ANSWER 5 OF 13 CAPLUS COPYRIGHT 2003 ACS
                         2003:222213 CAPLUS
ACCESSION NUMBER:
DOCUMENT NUMBER:
                         138:240689
                        Method for preparation of battery active
TITLE:
                        material with excellent electrochemical
                         characteristics and thermal stability
                         Kweon, Ho-Jin; Suh, Jun-Won; Yoon, Jang-Ho; Park,
INVENTOR(S):
                         Jung-Joon
                         Samsung SDI Co., Ltd., S. Korea
PATENT ASSIGNEE(S):
                         U.S. Pat. Appl. Publ., 25 pp.
SOURCE:
                         CODEN: USXXCO
DOCUMENT TYPE:
                         Patent
LANGUAGE:
                         English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
```

```
A1
                            20030320
                                           US 2002-189384 20020708
     US 2003054250
     CN 1399363
                      Α
                            20030226
                                           CN 2002-2126435 20020719
     JP 2003100296
                      A2
                            20030404
                                           JP 2002-210922
                                                            20020719
PRIORITY APPLN. INFO.:
                                        KR 2001-43554
                                                        A 20010719
     An active material for a battery has a surface treatment layer
     that includes a conductive agent and at least one coating-element-contg.
     compd. selected from the group consisting of a coating-element-contg.
     hydroxide, a coating-element-contg. oxyhydroxide, a coating-element-contg.
     oxycarbonate, a coating-element-contg. hydroxycarbonate, and a mixt.
     thereof.
     Method for preparation of battery active material with excellent
TI
     electrochemical characteristics and thermal stability
AB
     An active material for a battery has a surface treatment layer
     that includes a conductive agent and at least one coating-element-contg.
     compd. selected from the group consisting of a coating-element-contg.
     hydroxide, a coating-element-contg. oxyhydroxide, a coating-element-contg.
     oxycarbonate, a coating-element-contg. hydroxycarbonate, and a mixt.
     thereof.
ST
     battery electrode active material
IT
     Alkali metals, uses
     Alkaline earth metals
     Group IIIA elements
     Group IVA elements
     RL: TEM (Technical or engineered material use); USES (Uses)
        (coating; method for prepn. of battery active material with
        excellent electrochem. characteristics and thermal stability)
IT
     Chalcogenides
     Intercalation compounds
     Oxides (inorganic), uses
     RL: DEV (Device component use); USES (Uses)
        (lithiated; method for prepn. of battery active material with
        excellent electrochem. characteristics and thermal stability)
     Battery cathodes
IT
        (method for prepn. of battery active material with excellent
        electrochem. characteristics and thermal stability)
TT
     Carbonaceous materials (technological products)
     RL: DEV (Device component use); USES (Uses)
        (method for prepn. of battery active material with excellent
        electrochem. characteristics and thermal stability)
     Fluoropolymers, uses
IT
     RL: MOA (Modifier or additive use); USES (Uses)
        (method for prepn. of battery active material with excellent
        electrochem. characteristics and thermal stability)
TΤ
     Metals, uses
     RL: MOA (Modifier or additive use); USES (Uses)
        (method for prepn. of battery active material with excellent
        electrochem. characteristics and thermal stability)
IT
     116327-69-6, Cobalt lithium nickel oxide Co0.1LiNi0.902
     RL: DEV (Device component use); USES (Uses)
        (Sr-doped; method for prepn. of battery active material with
        excellent electrochem. characteristics and thermal stability)
     7429-90-5, Aluminum, uses 7439-95-4, Magnesium, uses
TΤ
                                                             7440-09-7,
     Potassium, uses 7440-21-3, Silicon, uses 7440-23-5, Sodium, uses
                           7440-32-6, Titanium, uses 7440-38-2, Arsenic,
     7440-31-5, Tin, uses
           7440-42-8, Boron, uses 7440-48-4, Cobalt, uses
                                                             7440-55-3,
                     7440-56-4, Germanium, uses
                                                  7440-62-2, Vanadium, uses
     Gallium, uses
     7440-67-7, Zirconium, uses 7440-70-2, Calcium, uses
     RL: TEM (Technical or engineered material use); USES (Uses)
        (coating; method for prepn. of battery active material with
        excellent electrochem. characteristics and thermal stability)
IT
     7440-24-6, Strontium, uses
     RL: MOA (Modifier or additive use); USES (Uses)
        (cobalt lithium nickel oxide doped with; method for prepn. of
```

battery active material with excellent electrochem. characteristics and thermal stability) 555-31-7, Aluminum isopropoxide 13780-71-7, Boronic acid RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process) (method for prepn. of battery active material with excellent electrochem. characteristics and thermal stability) 96-49-1, Ethylene carbonate 616-38-6, Dimethylcarbonate IT 12057-17-9, Lithium manganese oxide limn204 12190-79-3, Cobalt 18282-10-5, Tin dioxide 21324-40-3, Lithium lithium oxide colio2 hexafluorophosphate 24623-77-6, Aluminum hydroxide oxide alooh 501662-97-1 RL: DEV (Device component use); USES (Uses) (method for prepn. of battery active material with excellent electrochem. characteristics and thermal stability) IT 7440-44-0, Carbon, uses 7782-42-5, Graphite, uses RL: MOA (Modifier or additive use); USES (Uses) (method for prepn. of battery active material with excellent electrochem. characteristics and thermal stability) ANSWER 6 OF 13 CAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2003:203522 CAPLUS 138:207860 DOCUMENT NUMBER: TITLE: A method for preparation of active material for battery Cho, Jae-Phil; Jung, Won-ll; Park, Yong-Chul; Kim, INVENTOR(S): Geun-Bae PATENT ASSIGNEE(S): Samsung SDI Co., Ltd., S. Korea Eur. Pat. Appl., 31 pp. SOURCE: CODEN: EPXXDW DOCUMENT TYPE: Patent LANGUAGE: English FAMILY ACC. NUM. COUNT: PATENT INFORMATION: APPLICATION NO. DATE PATENT NO. KIND DATE _____ ----20030312 EP 2002-19772 20020904 EP 1291941 A2 AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK US 2002-91335 20030313 20020306 US 2003049529 Α1 PRIORITY APPLN. INFO.: US 2001-316949P P 20010905 US 2002-91335 A 20020306 An active material for a battery is provided with a coating AB layer including either a conductive agent, or a coating layer having a mixt. of a conductive agent, and a conductive polymeric dispersant. material comprises one of a metal, a Li-contg. alloy, a S-based compd., compds. that reversibly form Li-contg. compds. by a reaction with Li ions, and a lithiated intercalation compd. that reversibly intercalates/deintercalates the Li ions. A method for preparation of active material for battery ΤI An active material for a battery is provided with a coating AΒ layer including either a conductive agent, or a coating layer having a mixt. of a conductive agent, and a conductive polymeric dispersant. material comprises one of a metal, a Li-contg. alloy, a S-based compd., compds. that reversibly form Li-contg. compds. by a reaction with Li ions, and a lithiated intercalation compd. that reversibly intercalates/deintercalates the Li ions. ST battery electrode active material prepn IT Conducting polymers (dispersant; method for prepn. of active material for battery

IT

Polyoxyalkylenes, uses

RL: MOA (Modifier or additive use); USES (Uses)

```
(dispersant; method for prepn. of active material for battery
        )
     Carbonaceous materials (technological products)
IT
     Chalcogenides
     Oxides (inorganic), uses
     RL: DEV (Device component use); USES (Uses)
        (lithiated; method for prepn. of active material for battery)
IT
     Intercalation compounds
     RL: DEV (Device component use); USES (Uses)
        (lithium; method for prepn. of active material for battery)
IT
     Battery electrodes
     Coating materials
     Dispersing agents ·
        (method for prepn. of active material for battery)
     Gelatins, uses
     RL: MOA (Modifier or additive use); USES (Uses)
        (method for prepn. of active material for battery)
TT
     Polysulfides
     RL: DEV (Device component use); USES (Uses)
        (org.; method for prepn. of active material for battery)
     7784-30-7, Aluminum phosphate
IT
     RL: TEM (Technical or engineered material use); USES (Uses)
        (coating; method for prepn. of active material for battery)
     79-10-7D, Acrylic acid, esters, copolymers with acrylonitrile and styrene
IT
     100-42-5D, Styrene, copolymers with acrylonitrile and acrylate esters
     107-13-1D, Acrylonitrile, copolymers with styrene and acrylate esters
     108-32-7, Propylene carbonate 9002-86-2, Polyvinyl chloride
     Acrylonitrile-styrene copolymer 9003-56-9, Abs polymer
     Acrylonitrile-butadiene-methyl methacrylate-styrene copolymer
     25322-68-3, Peo 49717-87-5, 2-Propenoic acid, ion(1-) homopolymer, uses
     106392-12-5, Ethylene oxide-propylene oxide block copolymer
     RL: MOA (Modifier or additive use); USES (Uses)
        (dispersant; method for prepn. of active material for battery
IT
     7440-44-0, Carbon, uses
     RL: DEV (Device component use); USES (Uses)
        (lithiated; method for prepn. of active material for battery)
                           7440-21-3, Silicon, processes
TΤ
     1332-29-2, Tin oxide
                                                           22465-17-4,
     Titanium nitrate
     RL: CPS (Chemical process); PEP (Physical, engineering or chemical
     process); PROC (Process)
        (method for prepn. of active material for battery)
     1314-23-4, Zirconium oxide (ZrO2), uses 7704-34-9D, Sulfur, compd.
IT
     11102-77-5 12057-17-9, Lithium manganese oxide limn204
                                                            18282-10-5, Tin
     12190-79-3, Cobalt lithium oxide colio2
                                              12798-95-7
     dioxide 53680-59-4 . 74432-42-1, Lithium polysulfide
                                                              262857-75-0,
     Cobalt lithium nickel strontium oxide Co0.1LiNi0.9Sr0.00202
     499969-49-2
     RL: DEV (Device component use); USES (Uses)
        (method for prepn. of active material for battery)
IT
     329184-61-4, Degressal sd40
     RL: MOA (Modifier or additive use); USES (Uses)
        (method for prepn. of active material for battery)
IT
                              7440-31-5, Tin, uses 7440-32-6, Titanium,
     7439-93-2, Lithium, uses
     RL: TEM (Technical or engineered material use); USES (Uses)
        (method for prepn. of active material for battery)
    ANSWER 7 OF 13 CAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER:
                         2003:203260 CAPLUS
DOCUMENT NUMBER:
                         138:224222
                        Anode active material and nonaqueous electrolyte
TITLE:
                        batterv
INVENTOR(S):
                         Inagaki, Hiroki; Takami, Norio
```

PATENT ASSIGNEE(S): Japan

SOURCE: U.S. Pat. Appl. Publ., 30 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

APPLICATION NO. DATE PATENT NO. KIND DATE ----------US 2002-108435 20020329 JP 2002-97651 20020329 US 2003049541 A1 20030313 JP 2003086177 A2 20030320 JP 2001-95027 A 20010329 PRIORITY APPLN. INFO.: JP 2001-95029 A 20010329 JP 2001-198088 A 20010629

OTHER SOURCE(S): MARPAT 138:224222

- Disclosed is a nonaq. electrolyte battery, comprising a pos. electrode contg. a pos. electrode active material, a neg. electrode contg. a sulfide contq. Fe, and a nonaq. electrolyte including a nonaq. solvent and a solute dissolved in the nonag. solvent, the nonag. solvent contg. a first solvent contg. a cyclic carbonate and a second solvent contg. a chain carbonate, wherein the content of the first solvent in the nonaq. solvent falls within a range of 4.8-29% by vol. and the content of the second solvent in the nonag. solvent falls within a range of 71-95.2% by
- Anode active material and nonaqueous electrolyte battery TI
- AB Disclosed is a nonaq. electrolyte battery, comprising a pos. electrode contg. a pos. electrode active material, a neg. electrode contg. a sulfide contg. Fe, and a nonaq. electrolyte including a nonaq. solvent . and a solute dissolved in the nonaq. solvent, the nonaq. solvent contg. a first solvent contg. a cyclic carbonate and a second solvent contg. a chain carbonate, wherein the content of the first solvent in the nonag. solvent falls within a range of 4.8-29% by vol. and the content of the second solvent in the nonaq. solvent falls within a range of 71-95.2% by
- stanode active material nonaq electrolyte battery
- IT Battery anodes

Secondary batteries

(anode active material and nonaq. electrolyte battery) 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate ITPropylene carbonate 623-53-0, Ethyl methyl carbonate 7791-03-9, Lithium perchlorate 9011-17-0, Hexafluoropropylene-vinylidene fluoride copolymer 12057-17-9, Lithium manganese oxide limn204 12190-79-3, Cobalt lithium oxide colio2 14283-07-9, Lithium 21324-40-3, Lithium hexafluorophosphate tetrafluoroborate Lithium triflate 42821-47-6, Iron thiophosphate feps3 62974-69-0, Iron sulfide fe9s10 90076-65-6 191024-83-6, Cobalt lithium manganese nickel oxide Co0.4LiMn0.1Ni0.502 193214-25-4, Aluminum cobalt lithium nickel oxide Al0.05Co0.2LiNi0.7502 193214-37-8, Aluminum cobalt lithium nickel oxide Al0.1Co0.15LiNi0.7502 193215-05-3, Cobalt lithium manganese nickel oxide Co0.2LiMn0.2Ni0.602 223923-05-5, Cobalt lithium manganese nickel oxide Co0.3LiMn0.1Ni0.602 500756-34-3, Copper iron sulfide (Cu0.27Fe8.73S10) 500756-35-4, Iron nickel sulfide (Fe9.7Ni0.3S11) 500756-36-5 500756-37-6, Cobalt lithium nickel niobium

oxide (Co0.2LiNi0.75Nb0.0502)

RL: DEV (Device component use); USES (Uses)

(anode active material and nonaq. electrolyte battery)

ANSWER 8 OF 13 CAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2002:407243 CAPLUS

DOCUMENT NUMBER: 137:8603

Cathode active mass for secondary lithium TITLE:

battery and its manufacture

INVENTOR(S): Kwon, Ho Jin; Soo, Jun Won; Chung, Won Il PATENT ASSIGNEE(S): Samsung Sdi Co., Ltd., S. Korea SOURCE:

Jpn. Kokai Tokkyo Koho, 11 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE ______ ----JP 2002158011 A2 20020531 JP 2001-292095 20010925 CN 1346160 Α 20020424 CN 2001-137172 20010915 US 2001-964263 20010925 US 2002110736 A1 20020815 PRIORITY APPLN. INFO.: KR 2000-56246 A 20000925 A 20010626 KR 2001-36767

- The cathode active mass has a Li compd. contg. core of secondary AB particles, having av. diam. 1-10 .mu.m and contg. .gtoreq.1 primary particles having av. diam. 1-3 .mu.m, coated with a layer of oxide, hydroxide, oxyhydroxide, oxycarbonate, and/or hydroxy carbonate of a coating material. The Li compd. is selected from various Li transition metal oxides, which may contain F, S, and/or P. The active mass is prepd. by coating the secondary particles with an aq. or org. soln. of a compd. of the coating material, and heat treating the coated particles.
- ΤI Cathode active mass for secondary lithium battery and its manufacture
- ST secondary battery cathode lithium transition metal oxide particle coating
- Battery cathodes TT

(structure and manuf. of coated lithium transition metal oxide secondary particles for secondary lithium battery cathodes)

IT1344-28-1, Aluminum oxide, uses

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses) (structure and manuf. of alumina coated lithium cobaltate secondary particles for secondary lithium battery cathodes)

12057-17-9, Lithium manganese oxide (LiMn2O4) IT RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)

(structure and manuf. of alumina coated lithium manganese oxide secondary particles for secondary lithium battery cathodes)

IT 1303-86-2, Boron oxide, uses

> RL: DEV (Device component use), PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses) (structure and manuf. of boron oxide coated lithium cobaltate secondary

particles for secondary lithium battery cathodes)

IT 12190-79-3, Cobalt lithium oxide (CoLiO2)

> RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)

(structure and manuf. of coated lithium cobaltate secondary particles for secondary lithium battery cathodes)

116327-69-6, Cobalt lithium nickel oxide (Co0.1LiNi0.902) TΤ 406939-73-9

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses) (structure and manuf. of coated lithium transition metal oxide secondary particles for secondary lithium battery cathodes)

ANSWER 9 OF 13 CAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2002:372947 CAPLUS

DOCUMENT NUMBER:

137:297251

TITLE:

A comparison of the electrode/electrolyte reaction at

elevated temperatures for various Li-ion

battery cathodes

AUTHOR (S):

MacNeil, D. D.; Lu, Zhonghua; Chen, Zhaohui; Dahn, J.

CORPORATE SOURCE:

Department of Chemistry, Dalhousie University,

Halifax, NS, B3H 3J5, Can.

SOURCE:

Journal of Power Sources (2002), 108(1-2), 8-14

CODEN: JPSODZ; ISSN: 0378-7753

PUBLISHER:

Elsevier Science B.V.

DOCUMENT TYPE:

Journal LANGUAGE: English

AΒ Differential scanning calorimetry (DSC) was used to compare the thermal stability of charged cathodes in 1 M LiPF6 EC/DEC electrolyte. Seven possible cathode materials for lithium-ion batteries (LiCoO2, LiNiO2, LiNi0.8Co0.2O2, Li1+xMn2-xO4, LiNi0.7Co0.2Ti0.05Mg0.05O2, Li[Ni3/8Co1/4Mn3/8]O2, and LiFePO4) were tested under the same conditions. Welded stainless steel DSC sample tubes, that ensured no wt. loss during anal., were used for these measurements, making them reliable. A consideration of these DSC results and the known electrochem. properties of the cathodes may assist the selection of the most suitable lithium-ion cathode material for use in a particular application.

REFERENCE COUNT:

THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS 22 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

- A comparison of the electrode/electrolyte reaction at elevated TItemperatures for various Li-ion battery cathodes
- battery cathode selection electrode electrolyte reaction ST
- ITBattery cathodes

(comparison of the electrode/electrolyte reaction at elevated temps. for various Li-ion battery cathodes)

12031-65-1, Lithium nickel oxide LiNiO2 12057-17-9, Lithium TΥ manganese oxide (LiMn2O4) 12190-79-3, Cobalt lithium oxide LiCoO2 15365-14-7, Iron lithium phosphate LiFePO4 113066-89-0, Cobalt lithium nickel oxide (Co0.2LiNi0.802) 221689-64-1 468772-63-6, Cobalt lithium manganese nickel oxide (Co0.25LiMn0.38Ni0.38O2) RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); RCT (Reactant); PROC (Process); RACT (Reactant or reagent) (comparison of the electrode/electrolyte reaction at elevated temps. for various Li-ion battery cathodes)

ANSWER 10 OF 13 CAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2002:272907 CAPLUS

DOCUMENT NUMBER:

136:297393

TITLE:

Method of preparation of cathode active material for

rechargeable lithium battery Kweon, Ho-Jin; Suh, Joon-Won Samsung SDI Co. Ltd., S. Korea

PATENT ASSIGNEE(S):

INVENTOR(S):

Eur. Pat. Appl., 35 pp.

SOURCE:

CODEN: EPXXDW

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE ---- ------A2 20020410 EP 2001-117958 20010724 EP 1195825 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO US 2002071990 A1 20020613 US 2001-897445 20010703 A2 JP 2002124262 20020426 JP 2001-207684 20010709 CN 1348225 20020508 CN 2001-123264 20010725 Α KR 2000-59336 A 20001009 PRIORITY APPLN. INFO.: A 20010515 KR 2001-26468

Disclosed is a pos. active material for a rechargeable lithium battery. The pos. active material includes a core and a surface-treatment layer on the core. The core includes at least one lithiated compd. and the surface-treatment layer includes at least one coating material selected from the group consisting of coating element included-hydroxides, oxyhydroxides, oxycarbonates, hydroxycarbonates and any mixt. thereof.

TI Method of preparation of cathode active material for rechargeable lithium battery

Disclosed is a pos. active material for a rechargeable lithium battery. The pos. active material includes a core and a surface-treatment layer on the core. The core includes at least one lithiated compd. and the surface-treatment layer includes at least one coating material selected from the group consisting of coating element included-hydroxides, oxyhydroxides, oxycarbonates, hydroxycarbonates and any mixt. thereof.

ST cathode active material rechargeable lithium battery

IT Chalcogenides

RL: DEV (Device component use); USES (Uses)

(cobalt lithium; method of prepn. of cathode active material for rechargeable lithium battery)

IT Carbonates, uses

RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)

(hydroxycarbonates; method of prepn. of cathode active material for rechargeable lithium battery)

IT Secondary batteries

(lithium; method of prepn. of cathode active material for rechargeable lithium **battery**)

IT Battery cathodes

Coating materials

Coating process

Surface treatment

(method of prepn. of cathode active material for rechargeable lithium battery)

IT Hydroxides (inorganic)

RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)

(method of prepn. of cathode active material for rechargeable lithium battery)

IT Carbonates, uses

RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)

(oxycarbonates; method of prepn. of cathode active material for rechargeable lithium **battery**)

IT Hydroxides (inorganic)

RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)

(oxyhydroxides; method of prepn. of cathode active material for rechargeable lithium battery)

IT 150-46-9, Boron ethoxide 555-31-7, Aluminum isopropoxide 1303-86-2,
Boron oxide b2o3, processes 13473-90-0, Aluminum nitrate
RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)

(method of prepn. of cathode active material for rechargeable lithium battery)

IT 96-49-1, Ethylene carbonate 616-38-6, Dimethyl carbonate 12057-17-9, Lithium manganese oxide limn204 12190-79-3, Cobalt lithium oxide colio2 21324-40-3, Lithium hexafluorophosphate 262857-75-0, Cobalt lithium nickel strontium oxide Co0.1LiNi0.9Sr0.00202 406939-73-9

RL: DEV (Device component use); USES (Uses)
 (method of prepn. of cathode active material for rechargeable lithium
 battery)

IT 13780-71-7, Boronic acid 21645-51-2, Aluminum hydroxide, uses
24623-77-6, Aluminum hydroxide oxide
RL: DEV (Device component use); MOA (Modifier or additive use); USES
(Uses)

(method of prepn. of cathode active material for rechargeable lithium battery)

L6 ANSWER 11 OF 13 CAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2002:253367 CAPLUS DOCUMENT NUMBER: 136:281942 Secondary lithium battery TITLE: INVENTOR(S): Suhara, Manabu; Sunahara, Kazuo; Kimura, Takashi; Mihara, Takuya PATENT ASSIGNEE(S): Seimi Chemical Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp. CODEN: JKXXAF DOCUMENT TYPE: Patent LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. DATE --------------______ _____ JP 2002100358 A2 20020405 JP 2000-289767 20000925 PRIORITY APPLN. INFO.: JP 2000-289767 20000925 The battery uses a cathode active mass mixt. contq. LixNiyMn1-y-zMzO2 (M = Fe, Co, Cr, and/or Al; 0.9 .ltoreq.x .ltoreq.1.2; 0.40 .ltoreq.y .ltoreq.0.60; z .ltoreq.0.2) and LixpMn2O4 (1 .ltoreq.p .ltoreq.1.3) having Fd3m spinel type structure. TI Secondary lithium battery The battery uses a cathode active mass mixt. contg. LixNiyMnl-y-zMzO2 (M = Fe, Co, Cr, and/or Al; 0.9 .ltoreq.x .ltoreq.1.2; 0.40 .ltoreq.y .ltoreq.0.60; z .ltoreq.0.2) and LixpMn2O4 (1 .ltoreq.p .ltoreq.1.3) having Fd3m spinel type structure. secondary battery cathode lithium transition metal oxide mixt; ST nickel manganese lithium oxide cathode mixt battery ITBattery cathodes (cathodes contg. (substituted) lithium manganese nickel oxide and spinel type lithium manganese oxide for secondary lithium batteries) IT 128975-24-6, Lithium manganese nickel oxide (Li2MnNiO4) 179186-44-8, Lithium manganese nickel oxide (LiMn0.4Ni0.602) 287718-96-1, Lithium manganese nickel oxide (LiMn0.45Ni0.5502) 405890-05-3, Cobalt lithium manganese nickel oxide (Co0.1LiMn0.45Ni0.45O2) Chromium lithium manganese nickel oxide (Cr0.1LiMn0.45Ni0.45O2) 405890-07-5, Iron lithium manganese nickel oxide (Fe0.1LiMn0.45Ni0.45O2) 405890-08-6, Aluminum lithium manganese nickel oxide (Alo.1LiMn0.45Ni0.4502) RL: DEV (Device component use); USES (Uses) (cathodes contg. (substituted) lithium manganese nickel oxide and spinel type lithium manganese oxide for secondary lithium batteries) IT 130242-31-8, Lithium manganese oxide (Li1.05Mn2O4) RL: DEV (Device component use); PRP (Properties); USES (Uses) (cathodes contg. (substituted) lithium manganese nickel oxide and spinel type lithium manganese oxide for secondary lithium batteries) ANSWER 12 OF 13 CAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2002:253124 CAPLUS DOCUMENT NUMBER: 136:265824 TITLE: Nonaqueous electrolyte lithium secondary batteries INVENTOR(S): Satch, Kouichi; Nohma, Toshiyuki; Nakanishi, Naoya; Yonezu, Ikuo PATENT ASSIGNEE(S): Sanyo Electric Co. Ltd., Japan SOURCE: Eur. Pat. Appl., 14 pp. CODEN: EPXXDW DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

```
PATENT NO.
                     KIND DATE
                                         APPLICATION NO. DATE
                           -----
                                           _____
                      A2
                           20020403
                                          EP 2001-308352
                                                           20010928
    EP 1193782
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO
                                          JP 2000-300708
                                                           20000929
    JP 2002110253
                      A2
                           20020412
                                          US 2001-963463
                                                           20010927
    US 2002061443
                      A1
                            20020523
     CN 1345101
                      Α
                            20020417
                                          CN 2001-141055
                                                            20010929
                                       JP 2000-300708
                                                           20000929
PRIORITY APPLN. INFO.:
    Used as the pos. electrode active substance of a lithium ion secondary
    cell is a mixt. of a lithium-nickel-cobalt-manganese composite
    oxide represented by the formula LiNi(1-x-y)CoxMnyO2 wherein 0.5<x+y<1.0
     and 0.1<y<0.6 and a lithium-manganese composite oxide represented by the
     formula Li(1+z)Mn2O4 wherein 0 .ltoreq. z .ltoreq. 0.2. The substance
    used gives outstanding power characteristics to the cell.
    Used as the pos. electrode active substance of a lithium ion secondary
AB
    cell is a mixt. of a lithium-nickel-cobalt-manganese composite
     oxide represented by the formula LiNi(1-x-y)CoxMnyO2 wherein 0.5<x+y<1.0
     and 0.1<y<0.6 and a lithium-manganese composite oxide represented by the
     formula Li(1+z)Mn2O4 wherein 0 .ltoreq. z .ltoreq. 0.2. The substance
     used gives outstanding power characteristics to the cell.
     lithium secondary battery nonaq electrolyte; nickel lithium
ST
     cobalt manganese composite oxide cathode battery
IT
    Battery cathodes
        (nonag. electrolyte lithium secondary batteries)
     96-49-1, Ethylene carbonate 616-38-6, Dimethyl carbonate
                                                                  7782-42-5,
IT.
     Graphite, uses 12057-17-9, Lithium manganese oxide limn204
     21324-40-3, Lithium hexafluorophosphate
     RL: DEV (Device component use); USES (Uses)
        (nonaq. electrolyte lithium secondary batteries)
     110665-91-3P, Lithium manganese oxide Li1.2Mn2O4 130242-30-7P,
TΤ
     Lithium manganese oxide Lil.1Mn2O4 130242-31-8P, Lithium
     manganese oxide Lil.05Mn2O4 146956-42-5P, Cobalt lithium
     manganese nickel oxide Co0.4LiMn0.2Ni0.402
                                                  182442-95-1P, Cobalt lithium
     manganese nickel oxide 217309-43-8P, Cobalt lithium manganese
     nickel oxide Co0.3LiMn0.3Ni0.4O2
                                       217309-45-0P, Cobalt lithium manganese
     nickel oxide Co0.5LiMn0.1Ni0.402 252877-07-9P, Cobalt lithium
     manganese nickel oxide Co0.6LiMn0.3Ni0.102 404904-10-5P, Cobalt
     lithium manganese nickel oxide (Co0.5LiMn0.3Ni0.202) 404904-11-6P
      Cobalt lithium manganese nickel oxide (Co0.4LiMn0.3Ni0.3O2)
     RL: DEV (Device component use); SPN (Synthetic preparation); PREP
     (Preparation); USES (Uses)
        (nonaq. electrolyte lithium secondary batteries)
     ANSWER 13 OF 13 CAPLUS COPYRIGHT 2003 ACS
ACCESSION NUMBER:
                         2000:723269 CAPLUS
DOCUMENT NUMBER:
                         133:269461
                         Nonaqueous lithium electrolyte secondary
TITLE:
                         battery
                         Watanabe, Shoichiro; Iwamoto, Kazuya; Ueda, Atsushi;
INVENTOR(S):
                         Nunome, Jun; Koshina, Hizuru
                         Matsushita Electric Industrial Co., Ltd., Japan
PATENT ASSIGNEE(S):
SOURCE:
                         Eur. Pat. Appl., 9 pp.
                         CODEN: EPXXDW
DOCUMENT TYPE:
                         Patent
LANGUAGE:
                         English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
```

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
				
EP 10437,94	A2	20001011	EP 2000-102959	20000214
EP 1043794	A3	20021218		

```
AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO
                                           US 1999-289589
                                                            19990409
    US 6165647
                      Α
                            20001226
     CN 1270424
                       Α
                            20001018
                                           CN 2000-103653
                                                            20000229
                                        US 1999-289589
                                                       A 19990409
PRIORITY APPLN. INFO.:
OTHER SOURCE(S):
                        MARPAT 133:269461
    A battery (excellent in high temp. storage characteristics)
    comprises a pos. electrode having a pos. electrode active material contg.
    an transition metal complex oxide contg. lithium, a neg. electrode contg.
    a neg. electrode material capable of storing and releasing a lithium ion,
    and an electrolytic soln. contg. a nonag. solvent, an electrolyte, and an
    org. compd. expressed in formula I, where R1, R2, R3, R4, R5, and R6 have
     individually at least one of H and a group contg. a vinyl group, and the
    no. of H substituent is four or less.
    Nonaqueous lithium electrolyte secondary battery
TI
    A battery (excellent in high temp. storage characteristics)
AB
    comprises a pos. electrode having a pos. electrode active material contg.
    an transition metal complex oxide contq. lithium, a neq. electrode contq.
    a neq. electrode material capable of storing and releasing a lithium ion,
    and an electrolytic soln. contg. a nonaq. solvent, an electrolyte, and an
    org. compd. expressed in formula I, where R1, R2, R3, R4, R5, and R6 have
     individually at least one of H and a group contg. a vinyl group, and the
    no. of H substituent is four or less.
ST
    nonag electrolyte secondary battery
IT
    Fatty acids, uses
    RL: DEV (Device component use); USES (Uses)
        (esters, carbonates; nonaq. electrolyte lithium secondary
       battery)
IT
     Secondary batteries
        (lithium; nonaq. electrolyte lithium secondary battery)
IT
     Intermetallic compounds
    RL: DEV (Device component use); USES (Uses)
        (lithium; nonag. electrolyte lithium secondary battery)
IT
     Coordination compounds
     Inorganic compounds
    Organic compounds, uses
     RL: DEV (Device component use); USES (Uses)
        (nonag. electrolyte lithium secondary battery)
IT
    Battery electrolytes
        (nonag. electrolyte secondary battery)
IT
    Fluoropolymers, uses
     Styrene-butadiene rubber, uses
     RL: TEM (Technical or engineered material use); USES (Uses)
        (nonaq. electrolyte secondary battery)
IT
    Lithium alloy
    RL: DEV (Device component use); USES (Uses)
        (nonaq. electrolyte lithium secondary battery)
                               96-49-1, Ethylene carbonate
IT
     79-20-9, Methyl acetate
                                                             105-37-3, Ethyl
                 105-58-8, Diethyl carbonate 107-31-3, Methyl formate
    propionate
                                    554-12-1, Methyl propionate
     108-32-7, Propylene carbonate
                        623-53-0, Ethyl methyl carbonate
    Dimethyl carbonate
                                                             623-96-1, Dipropyl
                 872-36-6, 1,3-Dioxol-2-one
                                             4437-85-8, Butylene carbonate
     carbonate
     7439-93-2, Lithium, uses
                               7440-44-0, Carbon, uses
                                                          7782-42-5, Graphite,
           21324-40-3, Lithium hexafluorophosphate
                                                      174180-05-3, Cobalt
     lithium oxide CoLi0-1.202
                                 174180-06-4, Lithium nickel oxide Li0-1.2NiO2
     188405-67-6, Lithium manganese oxide Li0-1.2Mn2O4
                                                         296800-04-9,
     Lithium manganese oxide (Li0-1.2MnO2)
                                             296800-06-1, Cobalt lithium nickel
     oxide (Co0-0.9Li0-1.2Ni0.1-102)
                                       296800-0.8-3, Cobalt lithium vanadium
     oxide (Co0.9-0.98Li0-1.2V0.02-0.102)
                                            296800-10-7, Lithium nickel
     titanium oxide (Li0-1.2Ni0.1-1Ti0-0.902)
                                                296800-12-9, Lithium nickel
    vanadium oxide (Li0-1.2Ni0.1-1V0-0.902)
                                               296800-15-2, Lithium manganese
                                              296800-18-5, Iron lithium nickel
    nickel oxide (Li0-1.2Mn0-0.9Ni0.1-102)
     oxide (Fe0-0.9Li0-1.2Ni0.1-102)
                                       296800-20-9, Cobalt lithium nickel
     titanium oxide ((Co,Ni,Ti)Li0-1.202) 296800-21-0, Cobalt lithium
```

```
296800-22-1, Aluminum
    manganese nickel oxide ((Co,Mn,Ni)Li0-1.202)
    cobalt lithium nickel oxide ((Al,Co,Ni)Li0-1.202)
                                                         296800-23-2, Cobalt
     lithium magnesium nickel oxide ((Co,Mg,Ni)Li0-1.202)
                                                            296800-25-4, Cobalt
     iron lithium nickel oxide ((Co,Fe,Ni)Li0-1.202) 296800-27-6, Cobalt
     lithium nickel zirconium oxide ((Co, Ni, Zr) Li0-1.202) 296800-28-7
      Lithium manganese sodium oxide (Li0-1.2Mn1.1-2Na0-0.904)
    296800-30-1, Lithium magnesium manganese oxide
     (Li0-1.2Mg0-0.9Mn1.1-2O4) 296800-32-3, Lithium manganese
    scandium oxide (Li0-1.2Mn1.1-2Sc0-0.904) 296800-35-6, Lithium
    manganese yttrium oxide (Li0-1.2Mn1.1-2Y0-0.9O4) 296800-38-9,
     Iron lithium manganese oxide (Fe0-0.9Li0-1.2Mn1.1-2O4) 296800-40-3
      Cobalt lithium manganese oxide (Co0-0.9Li0-1.2Mn1.1-2O4)
     296800-43-6, Lithium manganese nickel oxide (Li0-1.2Mn1.1-2Ni0-
     0.904) 296800-45-8, Lithium manganese titanium oxide
     (Li0-1.2Mn1.1-2Ti0-0.904) 296800-47-0, Lithium manganese
     zirconium oxide (Li0-1.2Mnl.1-2Zr0-0.904) 296800-49-2, Copper
    lithium manganese oxide (Cu0-0.9Li0-1.2Mn1.1-2O4) 296800-51-6,
    Lithium manganese zinc oxide (Li0-1.2Mn1.1-2Zn0-0.9O4) 296800-52-7
      Aluminum lithium manganese oxide (Al0-0.9Li0-1.2Mn1.1-2O4)
    296800-54-9, Lead lithium manganese oxide (Pb0-0.9Li0-1.2Mn1.1-
    204) 296800-56-1, Antimony lithium manganese oxide
     (Sb0-0.9Li0-1.2Mn1.1-2O4)
    RL: DEV (Device component use); USES (Uses)
        (nonaq. electrolyte lithium secondary battery)
IT
    91-14-5
              105-06-6, p-Divinylbenzene
                                            108-57-6
                                                       3048-52-0,
    1,3,5-Trivinylbenzene
    RL: MOA (Modifier or additive use); USES (Uses)
        (nonaq. electrolyte lithium secondary battery)
IT
    9003-07-0, Polypropylene
    RL: DEV (Device component use); USES (Uses)
        (nonaq. electrolyte secondary battery)
IT
    9003-55-8
    RL: TEM (Technical or engineered material use); USES (Uses)
        (styrene-butadiene rubber, nonaq. electrolyte secondary battery
```

DERWENT-ACC-NO:

2000-270899

DERWENT-WEEK:

200248

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Nonaqueous electrolyte secondary cell

comprises a

lithium-manganese compound oxide and a

lithium-nickel

compound oxide

INVENTOR: KANBE, C; KOBAYASHI, A; NUMATA, T; SHIRAKATA, M; YONEZAWA, M

PATENT-ASSIGNEE: NEC CORP[NIDE] , NIPPON ELECTRIC CO[NIDE]

PRIORITY-DATA: 1998JP-0241918 (August 27, 1998), 1998JP-0241912 (August 27,

1998)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE
PAGES	MAIN-IPC	•
WO 200013250 A1	March 9, 2000	J
048	H01M 010/40	•
TW 461133 A	October 21, 20	01 N/A
000	H01M 004/58	
JP 3024636 B2	March 21, 2000	N/A
012	H01M 004/58	
JP 2000077071 A	March 14, 2000	N/A
014	H01M 004/58	
EP 1117145 A1	July 18, 2001	E
000	H01M 010/40	
KR 2001082179 A	9	1 N/A
000	H01M 010/40	•

DESIGNATED-STATES: CA KR US AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

1999WO-JP04608 WO 200013250A1 N/A August 26, 1999. 1999TW-0114881 TW 461133A N/A August 27, 1999 1998JP-0241918 JP 3024636B2 August 27, 1998 JP2000077071 Previous Publ. JP 3024636B2 N/A 1998JP-0241918 JP2000077071A August 27, 1998 1999EP-0940495 EP 1117145A1 N/A August 26, 1999 1999WO-JP04608 EP 1117145A1 August 26, 1999 WO 200013250 EP 1117145A1 Based on N/A2001KR-0702409 KR2001082179A N/AFebruary 26, 2001

INT-CL (IPC): H01M004/02, H01M004/36, H01M004/58, H01M010/40

RELATED-ACC-NO: 2000-118983

ABSTRACTED-PUB-NO: WO 200013250A

BASIC-ABSTRACT:

NOVELTY - The anode of a nonaqueous electrolyte secondary cell contains (A) a lithium-manganese compound oxide and (B) a lithium-nickel compound oxide having a specific surface area X of below 0.3 (m2/g) and consisting of at least one kind selected from among the group consisting of LiNiO2, LiNiO2, LiNi2O4, Li2Ni1-xMxO2 (0 less than or equal to x less than or equal to 0.5, and M represents at least one metallic element selected from among the group consisting of Co, Mn, Al, Fe, Cu and Sr).

USE - Nonaqueous electrolyte secondary cell.

ADVANTAGE - Such a nonaqueous electrolyte secondary cell is excellent in cell characteristics, and especially charging/discharging cycle

07/08/2003, EAST Version: 1.03.0002

characteristic, storage characteristic, and safety.

DESCRIPTION OF DRAWING(S) - The drawing shows the amount of Mn eluted versus mixing ratios of LiNi compound oxides.

CHOSEN-DRAWING: Dwg.1/7

TITLE-TERMS: ELECTROLYTIC SECONDARY CELL COMPRISE LITHIUM

MANGANESE COMPOUND

OXIDE LITHIUM NICKEL COMPOUND OXIDE

DERWENT-CLASS: L03 X16

CPI-CODES: L03-E01B; L03-E03;

EPI-CODES: X16-B01F; X16-E01C1;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C2000-082545 Non-CPI Secondary Accession Numbers: N2000-202930