

77GHz 呼吸心跳检测雷达模块 R77BHM1 数据手册(V0.4)

Iotrda Technology (Shenzhen) Co., LTD

www.iotrda.com

产品特点

- 77GHz 雷达传感器;
- 2 发 4 收的 MIMO 天线;
- 基于 FMCW 调频连续波信号实现雷达探测;
- 实现对人体呼吸频率及心律的同步感知;
- 呼吸心跳观测距离为 0.1-2 米
- 不受温度、湿度、噪声、气流、尘埃、光照等环境的影响;
- 输出功率小,对人体构不成危害;

a)雷达正视图

b)雷达后视图

图 1 77GHz 呼吸心跳雷达前后观测图

产品应用

- ◆ 人体健康监测;
- ◆ 康养监护;
- ◇ 婴幼儿监护

- ◇ 老人看护;
- ◇ 病床监护;
- ◆ 重点/高位人员生理监测;

产品封装

♣ 体积: ≤60mm*45mm*5mm

目 录

1.	概述	3
2.	主要参数	3
3.	模块尺寸及引脚说明	4
	3.1. 模块尺寸	4
	3.2. 接口说明	4
4.	模块工作模式	5
	4.1. 雷达模块工作范围	5
	4.2. 雷达连接方式	5
	4.2 雷达安装方式	6
5.	模块接口协议	8
	5.1. 接口介绍	8
	5. 2 输出数据帧定义	8
6.	注意事项	10
	6.1. 启动时间	10
	6.2. 心跳测量限制	10
	6.3. 雷达生物探测性能	10
	6.4. 电源	10
7.	免责声明	11
8.	版权说明	11

1. 概述

呼吸心跳检测雷达工作于 77GHz 毫米波频段, 实现人体呼吸频率及心律实时 感知测量的雷达探测模块。本模块通过 FMCW 雷达体制,探测由于人体肌体表面 反射雷达回波,通过对单位时间内目标点距离信息及肌体表面微动信息变化的计 算,实现对人体的心电信号(ECG)的检测。

本模块具有如下工作特点:

- ◆ 本模块可以观测人体到雷达的距离信息;
- ◆ 本模块可以对人体的呼吸频率(PR)和心律(RESP)实时探测;
- ◆ 本模块输出功率小,对人体不构成危害;
- ◆ 本模块不受温度、光照、粉尘等环境因素影响,灵敏度高。

2. 主要参数

参数	最小值	典型值	最大值	单位		
工作性能						
探测距离 (胸腔)	0.1		2	m		
探测距离(背部)	0.05		0.5	m		
呼吸测量精度		90		%		
心跳测量精度		90		%		
刷新时间	1		60	S		
观测建立时间		20		S		
工作参数						
工作电压 (VCC)	4.6	5	6	V		
工作电流(I _{cc})		250	300	mA		
工作温度(T _{OP})	-20		60	$^{\circ}$ C		
存储温度(T _{ST})	-40		80	$^{\circ}$ C		
发射参数						
工作频率(fx)		77	78	GHz		
发射功率 (Pout)	8	10	12	dBm		
天线参数						
天线增益 (G _{ANT})		12		dBi		
水平波束 (-3dB)	-40		40	0		
垂直波束(-3dB)	-20		20	0		

3. 模块尺寸及引脚说明

3.1. 模块尺寸

图 1 77GHz 呼吸心跳雷达尺寸图

3.2. 接口说明

本雷达模块对外设置 20PIN 的接口,接口插针为 PH2.0mm、2*10 插针,接口示意如下图所示,部分接口为雷达配置或其它产品预留端口。

NRST	TDI
тск	TDO
TMS	GND
CR	СТ
GND	GND
BD	MD
CANL	CANH
воот	+5 V
V 33	+5 V
GND	GND

图 2 77GHz 呼吸心跳雷达管脚示意图

针对本型号产品,产品的接口定义如下表所示:

	引脚	说明	备注
1	CRX	配置发送端口	该端口为上位机对雷达控制端口,可不连
2	CTX	配置接收端口	接,雷达按缺省参数工作。
3	MD	输出数据端口	雷达输出数据端口。
4	+5V	输入+5.0 电源	雷达电源输入端,雷达工作电流≥600mA
5	V33	输出+3.3V	对外供电端口,电流≤150mA

4. 模块工作模式

4.1. 雷达模块工作范围

图 3 77GHz 呼吸心跳雷达探测范围

雷达工作时,雷达工作面需要尽可能正对被测人员胸腔或背部,人体距离雷 达面需要≤2米。

4.2. 雷达连接方式

雷达与外设上位机间连接示意图如下图所示。雷达与外设间包括 3 种接口,即数据端口、控制端口及模式选择端口。

◆ 数据端口

该端口为雷达检测数据输出端口,具体参数模型参见第5节模块接口协议。该端口为雷达必接端口。

控制端口

上位机可以通过控制端口对雷达进一步操作,比如查询设备 ID、设备状态控 制、设备工作模式控制等。

一般情况下,该端口选择不连接,雷达直接按照缺省参数运行。 该端口数据协议参见产品协议规范。

▶ 模式选择端口

本端口通过一种更直接的雷达控制模式,即对 CANL 端口高电平时,雷达正 常工作; 当 CANL 端口为低电平时, 雷达处于待机工作状态。

图 4 雷达与上位机连接示意图

4.2 雷达安装方式

由于雷达工作时主要基于呼吸心律引起大肌体表面起伏运动,人体胸腔及背 部起伏会比较明显,因此本雷达安装时需要需要正对待测人体胸腔或背部位置。

基于雷达作用方式,雷达安装主要考虑以下安装方式:

(1) 置顶安装

对应于卧床人群或睡眠需求,采用置顶安装方式(如图5所示),雷达波束 垂直向下正对于人体,雷达波束中心位置对应于人体胸腔位置。

该安装方式模式下,雷达与待测人体距离要求≤2米。

图 6 倾斜安装示意图

(2) 倾斜安装

采用倾斜安装,雷达固定于墙壁或床旁,雷达倾斜安装(如图6所示),雷 达波束倾斜照射人体, 雷达波束中心位置对应于人体胸腔位置。

该安装方式模式下,雷达与待测人体径向距离要求≤2米。

(3) 水平安装

雷达水平放置(如图7所示),雷达固定于墙壁或放置于桌面,雷达波束正 向照射人体, 雷达波束中心位置对应于人体胸腔位置。

该安装方式模式下,雷达与待测人体距离要求≤2米。

图 7 水平安装示意图

图 8 后背安装示意图

(4) 后背安装

雷达安装于座椅、床垫等相应位置,与人体间隔非金属介质(如图8所示)。 该安装模式下, 雷达主要通过探测人体背部肌体表面运动, 实现呼吸与心律 测量。

该模式下, 雷达与待测人体有效测量距离为 5cm-50cm。

5. 模块接口协议

5.1. 接口介绍

雷达模块与上位机采用串口通信模式,串口通信定义如下:

- ◆ 接口电平: CMOS
- ♦ 波特率: 115200bps
- ◆ 停止位: 1
- ♦ 数据位:8

输出数据采用小端模式进行输出。

5.2 输出数据帧定义

数据帧指的是雷达向应用端传输数据帧,其帧结构如图 8 所示。

图 9 上行帧数据结构

上行帧包括3部分组成,即帧头、参数字段、校验字段。 下面对三个帧数据分别定义:

A. 帧头 (Header)

总长度: 12Byte

	符号	定义	长度 (B)	说明	备注
1	SYNC	前导字符	4	固定为"0x53 0x59 0x54 0x43"	设为 SYTC
2	Length	数据长度	1	整个数据帧长度指示;	按 Byte 计数
3	Mode	工作模式	1	0x00-待机模式; 0x01-前向宽域探测模式; 0x02-背部探测模式; 0x03-前向窄域模式; 0x04-前向跟踪模式; 0x06-双人监测模式;	
4	Time	工作时长	2	雷达设备开机工作时间," <mark>分钟"</mark>	
5	NumTLV	TLV 个数	1	雷达探测到呼吸心率人数	
6	WorkCon	工作状态	1	当前雷达工作状态 1-正常工作 2-待机 3-异常	
7	Reserve	保留	2	保留字段	

B. 参数字段

长度: 46Byte

	符号	定义	长度 (B)	说明
1		TLV 标识	1	TLV 子帧标识: "0x01", "0x02"分别代表第一个位置和第二个位置
2		目标距离	1	整型,0.1米精度,0-25.6米
3		目标方位	1	整型,1°精度,-127°~128°
4		当前状态	1	0x01-正常状态; 0x02-目标异常状态;
5		呼吸值	1	整型
6		心率值	1	整型
7		呼吸曲线	20	8bit 整型
8		心率曲线	20	8bit 整型

说明: 当存在多个目标时,按照距离顺序前后排列目标参数。

C. 校验字段

	符号	定义	长度	说明
1	CRC	CRC	2B	CRC16
2	ZW	帧尾标识	2B	"OxEE OxEE"

6. 注意事项

6.1. 启动时间

由于本模块在初始上电开始工作时,需要对模块内部电路完全复位,并对环境噪声进行充分评估,才能保证模块正常工作。因此模块初始上电工作时,需要开机稳定时间≥30s,才能保证后续输出参数的有效性。

6.2. 心跳测量限制

由于本模块为呼吸心跳探测雷达,探测距离不宜过远,合适距离为 0.1m-2m。 当被测量目标周围存在比被测目标更强反射率的物体时,雷达工作时可能会 跟踪到强反射目标,此时雷达检测参数异常,需要调整雷达位置。

目前本雷达模块只能对单个目标进行测量,暂时无法进行多目标测量,所以 当多人位于雷达探测区域时,检测参数存在紊乱现象,需要注意。

6.3. 雷达生物探测性能

由于人体生物特征属于超低频、弱反射特征信号,雷达处理中需要相对长时间累积处理,在累积过程中,可能诸多因素影响雷达参数,因此偶发性的探测失效是正常现象。

6.4. 电源

雷达模块对电源品质的要求,高于常规低频电路。在对模块供电时,要求电源无门限毛刺或纹波现象,且有效屏蔽附件设备所带来的电源噪声。

雷达模块需良好的接地,由于其他电路带来的地噪声,也可能引起雷达模块性能下降甚至工作异常,最常见的是导致探测距离变近或误报率增加。

为了保证模块内部 VCO 电路的正常工作,对本模块供电要求为+5V-+9V 供电,特别是电源电压不能低于 5V。

外部电源必须提供足够的电流输出能力和瞬态响应能力。

7. 免责声明

我公司认为,在出版时尽量做到文档描述的准确无误。考虑到产品的技术复杂性及工作环境的差异性,但仍难以排除个别不准确或不完备之描述,故本文档仅作用户参考之用。我公司保留在不通知用户的情况下对产品作出更改的权利,我公司不做任何法律意义上的承诺和担保。鼓励客户对产品和支持工具最近的更新提出意见。

8. 版权说明

本文档所提及的元件及器件,皆为对其版权持有公司所公布的资料之引用, 其修改和发布的权利均属于其版权持有公司,请在应用时通过适当的渠道确认资 料的更新情况以及勘误信息,我公司不对这些文档具有任何权利和义务。