1	/1	3
	, ,	

FBI pH 5.5	Clone	Α̈́	Vmax	Vmax/Km	Vmax/Km X improved	AP1 pH 5.5	Clone	Æ	Vmax	Vmax/Km	X improved	
50-225 uM [S]	4F13 G12	62	15	0.242	7.1	50-225 uM [S]	4F13 G12	365	44.2	0.121	6.1	
	4F15 A11	28	13.6	0.234	6.9		4F15 A11	438	46	0.105	5.3	
	4F15 C3	39	თ	0.231	6.8		4F15 C3	563	27.6	0.049	2.5	
	4F6 A11 4F3 B5	191 101.8	28.3 16.4	0.148	4.4		4F6 A11 4F3 B5	288 378	28.3 25.3	0.098	9.4 9.5	
·	4F2 G10 4F19 F2 4F21 C8 4F22 B2	41.2 235 113 161	9.4 59.5 22 21.5	0.228 0.253 0.195 0.134	6.7 7.4 5.7 3.9		4F2 G10 4 4F19 F2 4 4F21 C8 4F22 B2	2209 652 305.5 444	61.3 18 55.9 64.5	0.028 0.028 0.183 0.145	1.4 1.4 9.2 7.3	
	4F28 G1	172	23.9	0.139	1.1		4F28 G1	9	8	N	ND	
W' 22 hits (>3X Improved)	WT nproved)	349	11.8	0.034		W 11 hits (>3X Improved)	WT nproved)	450	6.2	0.02	-	
					Ĺ							

<u>Н</u>

Results: Kinetic parameters of pH-optimized candidates

H1 and B12 compared to wild type APAO

2/13

Fold Impr kcat /km 0.0 AP1, pH 5.5 430.0 544.0 280.0 km 662.0240.0 200.0 kcat 7.4 26.1 Fold Impr 40.0 7.3 kcat /km FB1, pH 5.5 70.0 98.0 62.0 Km 2800.0 150.0 701.0 kcat Variant B12

Fig. 2

3/13

Several H1 & B12 mutations map to a putative substrate binding region of APAO

Maize Polyamine Oxidase (MPAO) 30 A crystal structure (Binda et al. 1999. Structure 7:265) Substrate "tunnel" shown in wire form.

APAO (truncated, amino acids 142 -600) 3-D Model after Binda et al. Putative substrate "tunnel" shown in center right.

Mutations: B12 $\triangle \lozenge$ H1 $\triangle \lozenge$ Both \blacktriangle

Fig. 4

5/13

H1 retains its high substrate specificity for fumonisins

Fig. 6

8/13

Fig. 8A

	riwmitvug (prior to preincubatio	n) %activity (after preincubat
· h1	1325	0.21
<u>q6</u>	1804	0.59
1b6	1612	0.55
1h8	1804	0.35
3e7	1558	0.71

Fig. 8B

	km	kcat
h1	259.12	2164.50
g6	154.19	1612.90

Fig. 8C

Fig. 8D

10/13

11/13

12/13

% Conversion (minus bckgd)

Fig. 13