Evaluación continua No. 5

Víctor Noriega

03 de octubre de 2018

Un problema de búsqueda simple

- 1. 4
- 2. $\sum_{i=1}^{k-n} (n-i) + \frac{n(n+1)}{2}$ cuando k > n, de lo contrario, $\frac{k(k+1)}{2}$
- 3. $\sum_{i=2}^{d+1} 4^i$ donde d es la profundidad donde se encontró el óptimo.
- 4. $n \times n$
- 5. 4m donde m es el máximo nivel de profundidad.
- 6. $n \times n$
- 7. Sí.
- 8. $h(n) \times 3 + 4$
- 9. Sí.
- 10. No.

Un puzzle un poco diferente

- 1. $X = \{(D_0, D_1, D_2, ..., D_{15})\}$, donde cada D_i representa un elemento por renglón.
- 2. $L_0, L_1, L_2, L_3, R_0, R_1, R_2, R_3, T_0, T_1, T_2, T_3, B_0, B_1, B_2, B_3$, donde cada cuarteto de acciones representan los desplazamientos en los sentidos de izquierda, derecha, arriba y abajo, respectivamente; todas estas acciones son legales en cualquier estado.

- 3. Para un elemento D_k dada una acción L_k : $(D_k+1+(k\times 4+1)\times (((k+1)\times 4)/D_k))$ mod $((k+1)\times 4+1)$. Para R_k si $D_k=1+k\times 4$ entonces el sucesor es $D_k=D_k+3$; sino, $D_k=D_k-1$. Para T_k , si $D_k>12$, entonces el sucesor es $D_k=D_k-12$; sino, $D_k=D_k+4$. Para B_k , si $D_k=k+1$, entonces el sucesor es $D_k=13+k$; sino, $D_k=D_k-4$.
- 4. Cualquier acción en cualquier estado tiene un costo k.
- 5. 16!
- 6. Ambas sí.
- 7. $h_1(n) = \text{Manhatan}(n) + \text{conflictos}$, donde conflictos equivale las piezas que se interponen en el camino de meta entre una pieza y otra y viceversa. $h_2(n) = \text{número}$ de fichas que no estén formando un patrón de éxito con al menos otra ficha.