内建 PWM 之 10 位恒流 LED 驱动器

特色

- 16 个恒流输出通道
- 10位PWM灰阶控制
- 恒流输出范围值: 2~45mA 在3.3伏特操作电压: 2~30mA 在5.0伏特操作电压: 2~45mA
- 极为精确的电流输出值: 通道间一般差异值: <±1.5% 芯片间一般差异值: <±3.0%
- 输出通道间的交错时间迟滞,可避免突波电流
- 高达 30MHz 时钟频率
- 具Schmitt trigger输入设备
- 操作电压: 3.0~5.5 伏特
- 封装湿度敏感等级:3
- 包装与MBI5026/MBI5042相容

Shrink SOP GP: SSOP24L-150-0.64

产品说明

MBIA043是专为LED全彩显示面板应用所设计的驱动IC,支持系统10位灰阶控制的脉波宽度调变功能。MBIA043内建10位位移缓存器,可以将串行的输入资料转换成每个输出信道的灰阶像数。MBIA043的16个恒流输出通道输出的电流值不受输出端负载电压影响而提供一致并且恒定的输出电流,使用者可以经由选用不同阻值的外接电阻来调整MBIA043各输出级的电流大小。

功能方块图

脚位图

GND	1	24	VDD
SDI	2 🗀	23	R-EXT
DCLK	3	22	SDO
LE	4	21	GCLK
OUT 0	5	20	OUT 15
OUT 1	6	19	OUT 14
OUT 2	7	18	OUT 13
OUT 3	8	17	OUT 12
OUT4	9	16	OUT 11
OUT5	10	15	OUT 10
OUT 6	11	14	OUT 9
OUT 7	12	13	8 TUO

MBIA043GP

脚位说明

Pin 脚名称	功能
GND	控制逻辑及驱动电流之接地端。
SDI	输入至位移缓存器之串行数据输入端。
DCLK	数据时钟讯号之输入端;资料位移会发生在时钟上升缘; LE 启动时,可输入控制指令。
LE	数据闪控(data strobe)输入端;配合 DCLK 可下达控制指令。
OUT0∼OUT15	恒流输出端。
GCLK	灰阶时钟讯号输入端;灰阶显示是藉由灰阶时钟与输入数据的比较来达到波宽调变的功能。
SDO	串行数据输出端;可接至下一个驱动器之 SDI 端。
R-EXT	连接外接电阻之输入端;此外接电阻可设定所有输出通道之输出电流。
VDD	3.3V/5V 电源供应端。

输入及输出等效电路

GCLK, DCLK, SDI 输入端

SDO 输出端

最大限定范围

特性		代表符号	最大工作范围	单位
电源电压		V_{DD}	7	V
输入端电压(SDI,GCLK,DCLK,LE)	V _{IN}	-0.4~V _{DD} +0.4	V
输出端电流		I _{OUT}	+50	mA
输出端耐受电压		V _{DS}	-0.5~17	V
接地端电流		I _{GND}	+810	mA
消耗功率 (在四层印刷电路板上,25°C时)	GP包装	P _D	1.79	W
热阻值 (在四层印刷电路板上,25°C时)	GP 包装	R _{th(j-a)}	70	°C/W
IC工作时的环境温度		T _{opr}	-40~+85	°C
IC储存时的环境温度		T _{stg}	-55~+150	°C

直流特性(V_{DD}= 5.0V)

特性		代表符号	量测	 条件	最小值	一般值	最大值	单位
电源电压		V_{DD}		-	4.5	5.0	5.5	V
输出端耐受电压		V_{DS}	OUT0∼OUT15		-	-	17.0	V
		I _{OUT}	参考直流特性的	测试电路	2	-	45	mA
输出端电流		I _{OH}	SDO		-	-	-1.0	mA
		I _{OL}	SDO		-	-	1.0	mA
输入端电压	高电位位准	V_{IH}	Ta=-40~85°C		$0.7xV_{DD}$	-	V_{DD}	V
	低电位位准	V_{IL}	Ta=-40~85°C		GND	-	$0.3xV_{DD}$	V
输出端漏电流		I _{OH}	V _{DS} =17.0V		-	-	0.5	μΑ
松山神古匠	000	V_{OL}	I _{OL} =+1.0mA		-	-	0.4	V
输出端电压	SDO	V_{OH}	I _{OH} =-1.0mA		4.6	-	-	V
山 次 伯 ね 目 ハネ 学	I_{OUT} =3.1mA V_{DS} =1.0V R_{ext} =6K Ω		R _{ext} =6KΩ	-	±1.5	±2.5	%	
电流偏移量(通道	則)	$\begin{array}{c c} dI_{OUT1} & \hline I_{OUT}=20\text{mA} \\ V_{DS}=1.0V & R_{ext}=930\Omega \end{array}$		R _{ext} =930Ω	-	±1.5	±2	%
L >> /> 1/2 74 E / ++ 11 >-1 >		مار	I _{OUT} =3.1mA V _{DS} =1.0V	R _{ext} =6KΩ	-	±1.5	±3.0	%
电流偏移量(芯片	則)	dl _{OUT2}	I _{OUT} =20mA V _{DS} =1.0V	R _{ext} =930Ω	-	±1.5	±3.0	%
电流偏移量vs.输	出电压*	%/dV _{DS}	输出电压=1.0~3 R _{ext} =930Ω@20n		-	±0.1	±0.5	% / V
电流偏移量vs.电流	原电压*	$\%/dV_{DD}$	电源电压=4.5~5	.5V,	-	-	±1.0	% / V
Pull-down 电阻		R _{IN} (down)	LE		250	500	1000	ΚΩ
		I _{DD} (off) 1	R _{ext} =未接, ŌŪ¯	T0 ~ OUT15 = Off	-	2.0	5.0	
	"OFF"	I _{DD} (off) 2	$R_{\text{ext}} = 6K\Omega, \overline{OUT}$	= Off	-	4.0	8.0	
电压元输出电流	I _{DD} (off)	I _{DD} (off) 3	$R_{\text{ext}} = 930\Omega, \overline{OU}$	T0 ~ OUT15 = Off	-	6.5	10.0	mA
	"ON!"	I _{DD} (on) 1	$R_{\text{ext}} = 6K\Omega, \overline{OUT}$	0 ~ OUT15 = Off	-	5.2	8.0	
	"ON"	I _{DD} (on) 2	$R_{\text{ext}} = 930\Omega, \overline{OU}$	T0 ~ OUT15 = Off	-	6.5	10.0	

^{*}一个通道开启时

特性		代表符号	量测	条件	最小值	一般值	最大值	单位
电源电压		V_{DD}		-	3.0	3.3	3.6	V
输出端耐受电压		V_{DS}	OUT0 ~ OUT1	5	-	-	17.0	٧
		I _{OUT}	参考直流特性的流	测试电路	2	-	30	mA
输出端电流		I _{OH}	SDO		-	-	-1.0	mA
		I_{OL}	SDO		-	-	1.0	mA
烩)禮由匡	高电位位准	V_{IH}	Ta=-40~85°C		$0.7xV_{DD}$	-	V_{DD}	V
输入端电压	低电位位准	V_{IL}	Ta=-40~85°C		GND	-	$0.3xV_{DD}$	V
输出端漏电流		I _{OH}	V _{DS} = 17.0V		-	-	0.5	μΑ
於 山禮由臣	200	V_{OL}	I _{OL} =+1.0mA		-	-	0.4	V
输出端电压	SDO	V_{OH}	I _{OH} =-1.0mA		2.9	-	-	V
4. 次的40目 / 3. 光恒 /		ما	I_{OUT} =3.1mA V_{DS} =1.0V R_{ext} =6K Ω		-	±1.5	±2.5	%
电流偏移量(通道	FJ)	dl _{OUT1}	I_{OUT} =20mA V_{DS} =1.0V R_{ext} =930 Ω		-	±1.5	±2.0	%
	>>		I_{OUT} =3.1mA V_{DS} =1.0V R_{ext} =6K Ω		-	±1.5	±3.0	%
电流偏移量(芯片	月)	dl _{OUT2}	I_{OUT} =20mA V_{DS} =1.0V R_{ext} =930 Ω		-	±1.5	±3.0	%
电流偏移量 vs.	输出电压	%/dV _{DS}	输出电压 = 1.0~ R _{ext} =930Ω@20n		-	±0.1	±0.5	% / V
电流偏移量 vs.	电源电压	%/dV _{DD}	电源电压 = 3.0V~3.6V, R _{ext} =930Ω@20mA		-	-	±1.0	% / V
Pull-down 电阻		R _{IN} (down)	LE		250	500	1000	ΚΩ
		I _{DD} (off) 1	R _{ext} =未接,		-	1.7	5.0	
	"OFF"	I _{DD} (off) 2	$R_{\text{ext}} = 6K\Omega, \overline{OUT}$	OUT15 = Off	-	3.9	8.0	
电压源输出电流		I _{DD} (off) 3	$R_{\text{ext}} = 930\Omega, \overline{OU}$	T0 ~ OUT15 = Off	-	6.0	10.0	mA
		I _{DD} (on) 1	$R_{\text{ext}} = 6K\Omega, \overline{OUT}$		-	3.9	8.0	
	"ON"	I _{DD} (on) 2		T0 ~ OUT15 = Off	-	6.3	10.0	

直流特性的测试电路

动态特性(V_{DD}= 5.0V)

(测试条件: Ta=25°C)

特性		代表符号	量测条件	最小值	一般值	最大值	单位
	SDI-DCLK↑	t _{SU0}		7.5	-	-	ns
设定时间	LE↑-DCLK↑	t _{SU1}		7.5	_	-	ns
以是时间	LE ↓ -DCLK ↑	t _{SU2}		7.5			ns
	LE ↓ -GCLK ↑ ***	t _{su3}		27			ns
	DCLK↑-SDI	t _{HO}		7.5	29	-	ns
保持时间	DCLK ↑ -LE ↓	t _{H1}	V _{DD} =5.0V	7.5			ns
	GCLK ↑ -LE ↓ ***	t _{H2}	$V_{IH}=V_{DD}$	7.5			ns
	DCLK-SDO	t _{PD0}	V_{IL} =GND R_{ext} =930 Ω	-	13	18	ns
延迟时间	GCLK-OUT2n	t _{PD1}	V _{DS} =1V	-	25	-	ns
	LE-SDO*	t _{PD2}	R_L =200 Ω C_L =10pF	-	18	23	ns
输出通道间的交错迟滞时间	OUT2n+1	t _{DL1}	C ₁ =100nF C ₂ =10µF	-	5	-	ns
	LE	$t_{w(L)}$	C _{SDO} =10pF	15	-	-	ns
脉波宽度	DCLK	t _{w(DCLK)}		15	-	-	ns
	GCLK	t _{w(GCLK)}		15	-	-	ns
电流输出埠的电位爬升时间		t _{OR}		-	15	25	ns
电流输出埠的电位下降时间		t _{OF}		-	15	25	ns
数据时钟频率		F _{DCLK}		-	-	33	MHz
灰阶时钟频率**		F _{GCLK}		-	-	33	MHz

^{*}在"读取状态缓存器"的时序图中, 下一个DCLK上升缘应该为LE下降缘后的tpp2。

^{**}均匀的输出端电流。

^{***}此时间限制只对整体栓锁有效。

动态特性(VDD= 3.3V)

(测试条件: Ta=25°C)

特性		代表符号	量测条件	最小值	一般值	最大值	单位
	SDI-DCLK †	t _{SU0}		7.5	-	-	ns
设定时间	LE↑-DCLK↑	t _{SU1}		7.5	-	-	ns
CACITIVE TO THE PARTY OF THE PA	LE ↓ -DCLK ↑	t _{SU2}		7.5	-	-	ns
	LE ↓ -GCLK ↑ ***	t _{SU3}		27	29		ns
	DCLK↑-SDI	t _{H0}		7.5		-	ns
保持时间	DCLK ↑ -LE ↓	t _{H1}	V _{DD} =3.3V	7.5	ı	-	ns
	GCLK ↑ -LE ↓ ***	t _{H2}	$V_{IH}=V_{DD}$	7.5			ns
	DCLK-SDO	t _{PD0}	V_{IL} =GND R _{ext} =930 Ω	-	18	26	ns
延迟时间	GCLK-OUT2n	t _{PD1}	V_{DS} =1 V R_L =200 Ω	_	35	-	ns
	LE-SDO*	t _{PD2}	$C_L=10pF$	-	23	31	ns
输出通道间的交错迟滞时间	OUT2n+1	t _{DL1}	C_1 =100nF C_2 =10µF	-	8	-	ns
	LE	$t_{w(L)}$	C _{SDO} =10pF	15	-	-	ns
脉波宽度	DCLK	t _{w(DCLK)}		20	-	-	ns
	GCLK	$t_{w(GCLK)}$		25	-	-	ns
电流输出埠的电位爬升时间		t _{OR}		-	20	35	-
电流输出埠的电位下降时间		t _{OF}		-	30	45	
数据时钟频率		F _{DCLK}		_	-	25	MHz
灰阶时钟频率**		F _{GCLK}		-	-	20	MHz

^{*}在"读取状态缓存器"的时序图中,下一个DCLK上升缘应该为LE下降缘后的t_{PD2}。

动态特性的测试电路

^{**}均匀的输出端电流。

^{***}此时间限制只对整体栓锁有效。

时序的波形图

(1)

读取状态缓存器的时序图

数据栓锁/整体栓锁/写入状态缓存器的时序图

(2)

输出通道间的交错迟滞时间时序图

操作原理 控制指令

114 A A A	讯号组合		
指令名称	LE	LE 包含多少个 DCLK 上升缘	说明 (在 LE 下降缘后的动作)
资料栓锁	High	1	将序列数据传入缓冲存储器
整体栓锁	High	2	将缓冲存储器的数据传入比较器,重设 PWM 计数器

设定像素的灰阶

MBIA043 使用 S-PWM 的控制算法来达到每个输出端点的灰阶设定,所有的输出通道可以表现出 1,024 阶的灰阶显示。

设定「整体栓锁」指令的方式如下:

10 位的位移缓存器可依序的藉由"数据栓锁"指令输入将前 16 次的灰阶显示数据到每一个缓冲存储器,然后在第 16 笔灰阶数据时输入一次"整体栓锁",依照输出端 15 到输出端 0, MSB(最重要位)到 LSB(最不重要位)的顺序,将数据依序加载。

PWM 计数同步

不管前笔影像数据的计数状态为何,MBIA043 将立即更新影像数据到输出端的缓冲存储器。在这模式之下,系统控制器需要在 MBIA043 的外部影像数据与 GCLK 同步。否则,前笔与下笔影像数据之间的冲突将导致数据遗失。

应用讯息

恒流

当客户将 MBIA043 应用于 LED 面板设计上时,信道间与信道间,甚至芯片与芯片间的电流,差异极小。此源自于 MBIA043 的优异特性:

- 1) 通道间的一般电流差异小于±1.5%,而芯片间的一般电流差异小于±3.0%。
- 2) 具有不受负载端电压影响的电流输出特性,如下图所示。输出电流的稳定性将不受 LED 顺向电压(V_F)变化而影响。

调整输出电流

如下图所示,藉由外接一个电阻 Rext 调整输出电流(I_{OUT})。

套用下列公式可计算出输出电流值,

 V_{R-EXT} =1.23Volt; I_{OUT} =(V_{R-EXT}/R_{ext})x15

公式中的 V_{R-EXT} 是指 R-EXT 端的电压值, R_{ext} 是指外接至 R-EXT 端的电阻值。举例来说,当 R_{ext} =7KΩ 时输出端的电流为 2mA; 当 R_{ext} =560Ω,输出端电流为 25mA。

输出端的交错延迟时间

MBIA043 内建延迟电路机制。这 16 组电流输出端被区分成二个群组- OUT2n 和 OUT2n+1,每个群组依照 5ns 的延迟时间依序输出电流。

"Pb-Free & Green"封装之焊接制程*

聚积科技所生产的" Pb-Free & Green"的半导体产品遵循欧洲 RoHS 标准,封装选用 100%之纯锡以兼容于目前锡铅 (SnPb)焊接制程,且支持需较高温之无铅制程。纯锡目前已被欧美及亚洲区的电子产品客户与供货商广泛采用,成为取代含锡铅材料的最佳替代品。100%纯锡可生产于含锡铅(SnPb)锡炉制程,锡炉温度请参考 JEDEC J-STD-020C 标准规定。但若客户使用完全无铅锡膏和材料,则锡炉温度须达 J-STD-020C 标准之 245℃至 260°C (参阅下图),。

Temperature (℃)

*附注 1: 详情请参阅聚积科技之"Policy on Pb-free & Green Package"。

封装体散热功率 (PD)

對裝体的最大散热功率,是由公式 $P_D(max)=(Tj-Ta)/R_{th(j-a)}$ 来决定。16 个通道同时打开时,真正的功率为 $P_D(act)=(I_{DD}xV_{DD})+(I_{OUT}xDutyxV_{DS}x16)$ 。为保持 $P_D(act)\le P_D(max)$,可输出的最大电流与 duty cycle 间的关系为: $I_{OUT}=\{[(Tj-Ta)/R_{th(j-a)})-(I_{DD}xV_{DD})\}/V_{DS}/Duty/16$,其中 Tj=150°C。

Device Type	$R_{th(j-a)}(^{\circ}C/W)$	P _D (W)
GP	70.09	1.79

依据 P_D (max)=(Tj-Ta)/ $R_{th(j-a)}$,被允许的最大散热功率会随环境温度增加而降低。

负载端供应电压(V_{LED})

为使封装体散热能力达到优化,建议输出端电压(V_{DS})的最佳操作范围是 0.4V~1.0V(I_{OUT} =2~45mA)。如果 V_{DS} = V_{LED} - V_F 且 V_{LED} =5V 时,此时过高的输出端电压(V_{DS})可能会导致 P_D (act)> P_D (max);在此状况,建议尽可能使用较低的 V_{LED} 电压供应,也可用外串电阻或 Zener diode 当做 V_{DROP} 。此可导致 V_{DS} =(V_{LED} - V_F)- V_{DROP} ,达到降低输出端电压(V_{DS})之效果。外串电阻或 Zener 的应用图可参阅下图。

减低动态噪声

LED 驱动器常被使用在动态模式的运用,并且动态噪声的是来自于印刷电路板上的寄生电感。消除动态噪声的方法请参考应用说明书 "8 位与 16 位 LED 驱动 IC 应用说明书-对电压突波解决方案"。

外观轮廓图示

MBIA043GP 外观轮廓图

IC 正印信息

产品更新记录

文件版次	IC 版别码
V1.01	A

产品订购信息

产品编号	无铅环保包装	重量 (g)
MBIA043GP	SSOP24-150-0.64	0.11

使用权声明

聚积科技对于产品、文件以及服务保有一切变更、修正、修改、改善、以及终止的权利。客户在进行产品购买前,建议与聚积科技业务代表联络以取得最新的产品信息。

聚积科技的产品,除非经过聚积合法授权,否则不应使用于医疗或军事行为上,若使用者因此导致任何身体伤害或生命威胁甚至死亡,聚积科技将不负任何损害赔偿责任。

此份文件上所有的文字内容、图片、及商标为聚积科技所属之智慧财产。除非是先经过聚积合法授权,任何人不得径自使用、修改、重制、公开、改作、散布、发行、公开发表。如有违反,您应对聚积科技股份有限公司负责损害赔偿责任及其它法律责任。