

SEQUENCE LISTING

<110> Knutzon, Debbie

<120> POLYUNSATURATED FATTY ACIDS IN PLANTS

<130> MOCO.156.00US

<140> 09/330,235

<141> 1999-06-10

<150> 60/089,043

<151> 1998-06-12

<160> 22

<170> PatentIn version 3.0

<210> 1

<211> 1391

<212> DNA

<213> Caenorhabditis elegans

<400> 1

caagttttag gtatggtcgc tcattcctca gaagggttat ccggcacggc tccggtcacc 60

ggcgaggatg ttctgggtga tgctcgtgca tctcttgaag aaaaggagggc tccacgtgat 120

gtgaatgcaa acactaaaca ggcaccact gaagagccac gcattcaatt accaactgtg 180

gatgctttcc gtcgtgcaat tccagcacac tgttcgaaa gagatcttgt taaatcaatc 240

agatatttgg tgcaagactt tgccgcactc acaattctct actttgctct tccagcttt 300

gagtaacttg gattgttgg ttacttgggt tggaacattt ttatggagt ttttggattc 360

gcgttggcg tcgttgaca cgattgtctt catggatcat tctctgataa tcagaatctc 420

aatgatttca ttggacatat cgcccttctca ccactttct ctccatactt cccatggcag 480

aaaagtcaca agcttcacca tgcttcacc aaccacattg acaaagatca tggacacgtg 540

tggattcagg ataaggattt ggaagcaatg ccatcatgga aaagatggtt caatccaatt 600

ccattctctg gatggcttaa atggttccca gtgtacactt tattcggttt ctgtgatgga 660

tctcacttct ggccataactc ttcactttt gttcgttaact ctgaccgtgt tcaatgtgta 720

atctctggaa tctgttgctg tgtgtgtgca tatattgctc taacaattgc tggatcatat 780

tccaatttgt tctggtacta ttgggttcca ctttcttct tcggattgat gctcgtcatt 840

gttacctatt tgcaacatgt cgatgatgtc gctgaggtgt acgaggctga tgaatggagc 900

ttcgtccgtg gacaaaccca aaccatcgat cgttactatg gactcggatt ggacacaacg 960

atgcaccata tcacagacgg acacgttgcc catcaattct tcaacaaaat cccacattac 1020

RECEIVED
JUN 11 2001
TECH CENTER 1600/2900

catctcatcg	aagcaaccga	aggtgtcaaa	aaggcttgg	agccgttgc	cgacacccaa	1080
tacgggtaca	aatctcaagt	gaactacgat	ttcttgccc	gttcctgtg	gttcaactac	1140
aagctcgact	atctcggtca	caagaccgccc	ggaatcatgc	aattccgaac	aactctcgag	1200
gagaaggcaa	aggccaagta	aaagaatatac	ccgtgccgtt	ctagagtaca	acaacaactt	1260
ctgcgttttc	accgggttttgc	ctctaattgc	aatttttctt	tgttctatat	atatttttt	1320
gcttttaat	tttattctct	ctaaaaaaact	tctacttttc	agtgcgttga	atgcataaaag	1380
ccataactct	t					1391

<210> 2

<211> 402

<212> PRT

<213> Caenorhabditis elegans

<400> 2

Met	Val	Ala	His	Ser	Ser	Glu	Gly	Leu	Ser	Ala	Thr	Ala	Pro	Val	Thr
1				5				10					15		

Gly	Gly	Asp	Val	Leu	Val	Asp	Ala	Arg	Ala	Ser	Leu	Glu	Glu	Lys	Glu
			20					25				30			

Ala	Pro	Arg	Asp	Val	Asn	Ala	Asn	Thr	Lys	Gln	Ala	Thr	Thr	Glu	Glu
	35				40						45				

Pro	Arg	Ile	Gln	Leu	Pro	Thr	Val	Asp	Ala	Phe	Arg	Arg	Ala	Ile	Pro
	50				55					60					

Ala	His	Cys	Phe	Glu	Arg	Asp	Leu	Val	Lys	Ser	Ile	Arg	Tyr	Leu	Val
	65				70				75				80		

Gln	Asp	Phe	Ala	Ala	Leu	Thr	Ile	Leu	Tyr	Phe	Ala	Leu	Pro	Ala	Phe
			85					90				95			

Glu	Tyr	Phe	Gly	Leu	Phe	Gly	Tyr	Leu	Val	Trp	Asn	Ile	Phe	Met	Gly
			100				105				110				

Val	Phe	Gly	Phe	Ala	Leu	Phe	Val	Val	Gly	His	Asp	Cys	Leu	His	Gly
	115				120					125					

Ser	Phe	Ser	Asp	Asn	Gln	Asn	Leu	Asn	Asp	Phe	Ile	Gly	His	Ile	Ala
	130				135					140					

Phe	Ser	Pro	Leu	Phe	Ser	Pro	Tyr	Phe	Pro	Trp	Gln	Lys	Ser	His	Lys
	145				150				155			160			

Leu	His	His	Ala	Phe	Thr	Asn	His	Ile	Asp	Lys	Asp	His	Gly	His	Val
			165					170				175			

Trp	Ile	Gln	Asp	Lys	Asp	Trp	Glu	Ala	Met	Pro	Ser	Trp	Lys	Arg	Trp
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

180	185	190
Phe Asn Pro Ile Pro Phe Ser Gly Trp Leu Lys Trp Phe Pro Val Tyr		
195	200	205
Thr Leu Phe Gly Phe Cys Asp Gly Ser His Phe Trp Pro Tyr Ser Ser		
210	215	220
Leu Phe Val Arg Asn Ser Asp Arg Val Gln Cys Val Ile Ser Gly Ile		
225	230	240
Cys Cys Cys Val Cys Ala Tyr Ile Ala Leu Thr Ile Ala Gly Ser Tyr		
245	250	255
Ser Asn Trp Phe Trp Tyr Trp Val Pro Leu Ser Phe Phe Gly Leu		
260	265	270
Met Leu Val Ile Val Thr Tyr Leu Gln His Val Asp Asp Val Ala Glu		
275	280	285
Val Tyr Glu Ala Asp Glu Trp Ser Phe Val Arg Gly Gln Thr Gln Thr		
290	295	300
Ile Asp Arg Tyr Tyr Gly Leu Gly Leu Asp Thr Thr Met His His Ile		
305	310	320
Thr Asp Gly His Val Ala His His Phe Phe Asn Lys Ile Pro His Tyr		
325	330	335
His Leu Ile Glu Ala Thr Glu Gly Val Lys Lys Val Leu Glu Pro Leu		
340	345	350
Ser Asp Thr Gln Tyr Gly Tyr Lys Ser Gln Val Asn Tyr Asp Phe Phe		
355	360	365
Ala Arg Phe Leu Trp Phe Asn Tyr Lys Leu Asp Tyr Leu Val His Lys		
370	375	380
Thr Ala Gly Ile Met Gln Phe Arg Thr Thr Leu Glu Glu Lys Ala Lys		
385	390	400
Ala Lys		

<210> 3
 <211> 41
 <212> DNA
 <213> synthetic primer

<400> 3
 cuacuacuac uactgcagac aatggtcgct cattcctcag a

41

<210> 4
 <211> 38
 <212> DNA
 <213> synthetic primer

<400> 4		
caucaucauc augcggccgc ttacttggcc tttgcctt		38
<210> 5		
<211> 32		
<212> DNA		
<213> synthetic polylinker		
<400> 5		
tcgacctgca ggaagcttgc ggcgcggat cc		32
<210> 6		
<211> 32		
<212> DNA		
<213> synthetic polylinker		
<400> 6		
tcgaggatcc gcggccgcaa gcttcctgca gg		32
<210> 7		
<211> 1353		
<212> DNA		
<213> Brassica napus		
<400> 7		
aatccatcaa acctttattc accacatttc actgaaaggc cacacatcta gagagagaaa		60
cttcgtccaa atctctctct ccagcgatgg ttgttgctat ggaccagcgc agcaatgtta		120
acggagattc cggtgcccg aaggaagaag ggttgatcc aagcgcacaa ccaccgtta		180
agatcggaga tataaggcg gcgattccta agcattgctg ggtgaagagt cctttgagat		240
ctatgagcta cgtcaccaga gacatttcg ccgtcgccgc tctggccatg gccgccgtgt		300
attttgatag ctggttcctc tggccactct actgggttgc ccaaggaacc cttttctggg		360
ccatcttcgt tcttggccac gactgtggac atggagttt ctcagacatt cctctgctga		420
acagtgtggc tggtcacatt cttcattcat tcatttcgt tccttaccat ggttggagaa		480
taagccatcg gacacaccac cagaaccatg gccatgtga aaacgacgag tcttgggttc		540
cgttgccaga aaagttgtac aagaacttgc cccatagtagc tcggatgctc agatacactg		600
tccctctgcc catgctcgct tacccgatct atctgtggta cagaagtctt ggaaaagaag		660
ggtcacattt taacccatac agtagtttat ttgctccaag cgagaggaag cttattgcaa		720
cttcaactac ttgctgggcc ataatgttgg ccactcttgt ttatctatcg ttcctcggtt		780
atccagtcac agttctcaaa gtctatggcg ttccttacat tatctttgtg atgtggttgg		840

acgctgtcac	gtacttgcac	catcatggtc	acgatgagaa	gttgccttgg	tacaggcca	900
aggaatggag	ttatttacgt	ggaggattaa	caactattga	tagagattac	ggaatcttca	960
acaacatcca	tcacgacatt	ggaactcacg	tgatccatca	tctttccca	caaatccctc	1020
actatcactt	ggtcgatgcc	acgagagcag	ctaaacatgt	gttaggaaga	tactacagag	1080
agccgaagac	gtcaggagca	ataccgattc	acttggtgga	gagttggtc	gcaagtatta	1140
aaaaagatca	ttacgtcagt	gacactggtg	atattgtctt	ctacgagaca	gatccagatc	1200
tctacgttta	tgcttctgac	aaatctaaaa	tcaattaact	tttcttccta	gctctattag	1260
gaataaacac	tccttctctt	ttacttattt	gtttctgctt	taagttaaa	atgtactcgt	1320
gaaacctttt	ttttatataat	gtatttacgt	tac			1353

<210> 8
<211> 383
<212> PRT
<213> Brassica napus

<400> 8

Met	Val	Val	Ala	Met	Asp	Gln	Arg	Ser	Asn	Val	Asn	Gly	Asp	Ser	Gly
1				5					10						15

Ala	Arg	Lys	Glu	Glu	Gly	Phe	Asp	Pro	Ser	Ala	Gln	Pro	Pro	Phe	Lys
		20					25							30	

Ile	Gly	Asp	Ile	Arg	Ala	Ala	Ile	Pro	Lys	His	Cys	Trp	Val	Lys	Ser
	35						40							45	

Pro	Leu	Arg	Ser	Met	Ser	Tyr	Val	Thr	Arg	Asp	Ile	Phe	Ala	Val	Ala
	50						55							60	

Ala	Leu	Ala	Met	Ala	Ala	Val	Tyr	Phe	Asp	Ser	Trp	Phe	Leu	Trp	Pro
	65					70				75				80	

Leu	Tyr	Trp	Val	Ala	Gln	Gly	Thr	Leu	Phe	Trp	Ala	Ile	Phe	Val	Leu
			85					90						95	

Gly	His	Asp	Cys	Gly	His	Gly	Ser	Phe	Ser	Asp	Ile	Pro	Leu	Leu	Asn
			100				105							110	

Ser	Val	Val	Gly	His	Ile	Leu	His	Ser	Phe	Ile	Leu	Val	Pro	Tyr	His
	115					120							125		

Gly	Trp	Arg	Ile	Ser	His	Arg	Thr	His	His	Gln	Asn	His	Gly	His	Val
	130					135							140		

Glu	Asn	Asp	Glu	Ser	Trp	Val	Pro	Leu	Pro	Glu	Lys	Leu	Tyr	Lys	Asn
	145					150				155				160	

Leu Pro His Ser Thr Arg Met Leu Arg Tyr Thr Val Pro Leu Pro Met

165	170	175
Leu Ala Tyr Pro Ile Tyr Leu Trp Tyr Arg Ser Pro Gly Lys Glu Gly		
180	185	190
Ser His Phe Asn Pro Tyr Ser Ser Leu Phe Ala Pro Ser Glu Arg Lys		
195	200	205
Leu Ile Ala Thr Ser Thr Thr Cys Trp Ser Ile Met Leu Ala Thr Leu		
210	215	220
Val Tyr Leu Ser Phe Leu Val Asp Pro Val Thr Val Leu Lys Val Tyr		
225	230	235
Gly Val Pro Tyr Ile Ile Phe Val Met Trp Leu Asp Ala Val Thr Tyr		
245	250	255
Leu His His His Gly His Asp Glu Lys Leu Pro Trp Tyr Arg Gly Lys		
260	265	270
Glu Trp Ser Tyr Leu Arg Gly Gly Leu Thr Thr Ile Asp Arg Asp Tyr		
275	280	285
Gly Ile Phe Asn Asn Ile His His Asp Ile Gly Thr His Val Ile His		
290	295	300
His Leu Phe Pro Gln Ile Pro His Tyr His Leu Val Asp Ala Thr Arg		
305	310	315
Ala Ala Lys His Val Leu Gly Arg Tyr Tyr Arg Glu Pro Lys Thr Ser		
325	330	335
Gly Ala Ile Pro Ile His Leu Val Glu Ser Leu Val Ala Ser Ile Lys		
340	345	350
Lys Asp His Tyr Val Ser Asp Thr Gly Asp Ile Val Phe Tyr Glu Thr		
355	360	365
Asp Pro Asp Leu Tyr Val Tyr Ala Ser Asp Lys Ser Lys Ile Asn		
370	375	380

<210> 9
<211> 40
<212> DNA
<213> synthetic primer

<400> 9
cuacuacuac uagagctcag cgatggttgt tgcttatggac

40

<210> 10
<211> 37
<212> DNA
<213> synthetic primer

<400> 10
caucaucauc augaattctt aattgatttt agatttg

37

<210> 11
 <211> 1482
 <212> DNA
 <213> Mortierella alpina

<400> 11	
gcttcctcca gttcatcctc catttcgcca cctgcattct ttacgaccgt taagcaagat	60
gggaacggac caaggaaaaa ccttcacctg ggaagagctg gcggccata acaccaagga	120
cgacctactc ttggccatcc gcggcagggt gtacgatgtc acaaagtct tgagccgcca	180
tcctggtgg a gtggacactc tcctgctcg agctggccga gatgttactc cggtcttga	240
gatgtatcac gcgtttgggg ctgcagatgc cattatgaag aagtactatg tcggtacact	300
ggtctcgaaat gagctgccc tcttcccgga gccaaacggtg ttccacaaaa ccatcaagac	360
gagagtcgag ggctacttta cgatcgaa cattgatccc aagaatagac cagagatctg	420
gggacgatac gctcttatct ttggatcctt gatcgcttcc tactacgcgc agctcttgt	480
gccttcgtt gtcgaacgca catggctca ggtgggttt gcaatcatca tgggatttgc	540
gtgcgcacaa gtcggactca accctttca tcatgcgtct cacttttag tgacccacaa	600
ccccactgtc tggaaagattc tggagccac gcacgacttt ttcaacggag catcgatct	660
ggtgtggatg taccaacata tgctcgccca tcaccctac accaacattg ctggagcaga	720
tcccgacgtg tcgacgtctg agcccgatgt tcgtcgatc aagcccaacc aaaagtggtt	780
tgtcaaccac atcaaccagc acatgtttgt tccttcctg tacggactgc tggcgttcaa	840
ggtgccatt caggacatca acatggta ctttgtcaag accaatgacg ctattcgat	900
caatccatc tcgacatggc acactgtgat gttctgggc ggcaaggctt tcttgtctg	960
gtatcgctg attgtcccc tgcagtatct gcccctggc aaggtgctgc tcttgttac	1020
ggtcgcggac atgggtcgat ctactggct ggcgctgacc ttccaggcga accacgttgt	1080
tgaggaagtt cagtgccgt tgcctgacga gaacgggatc atccaaaagg actggcagc	1140
tatcgaggc gagactacgc aggattacgc acacgattcg cacctctgga ccagcatcac	1200
tggcagctt aactaccagg ctgtgcacca tctgtcccc aacgtgtcgc agcaccatta	1260
tcccgatatt ctggccatca tcaagaacac ctgcagcgag tacaagggttc cataccttgt	1320
caaggatacg ttttggcaag catttgcttc acattggag cacttgcgtg ttcttgact	1380
ccgtcccaag gaagagtaga agaaaaaaaaag cgccgaatga agtattgccc ctttttctc	1440
caagaatggc aaaaggagat caagtggaca ttctctatga ag	1482

<210> 12
<211> 446
<212> PRT
<213> Mortierella alpina

<400> 12

Met Gly Thr Asp Gln Gly Lys Thr Phe Thr Trp Glu Glu Leu Ala Ala
1 5 10 15

His Asn Thr Lys Asp Asp Leu Leu Leu Ala Ile Arg Gly Arg Val Tyr
20 25 30

Asp Val Thr Lys Phe Leu Ser Arg His Pro Gly Gly Val Asp Thr Leu
35 40 45

Leu Leu Gly Ala Gly Arg Asp Val Thr Pro Val Phe Glu Met Tyr His
50 55 60

Ala Phe Gly Ala Ala Asp Ala Ile Met Lys Lys Tyr Tyr Val Gly Thr
65 70 75 80

Leu Val Ser Asn Glu Leu Pro Ile Phe Pro Glu Pro Thr Val Phe His
85 90 95

Lys Thr Ile Lys Thr Arg Val Glu Gly Tyr Phe Thr Asp Arg Asn Ile
100 105 110

Asp Pro Lys Asn Arg Pro Glu Ile Trp Gly Arg Tyr Ala Leu Ile Phe
115 120 125

Gly Ser Leu Ile Ala Ser Tyr Tyr Ala Gln Leu Phe Val Pro Phe Val
130 135 140

Val Glu Arg Thr Trp Leu Gln Val Val Phe Ala Ile Ile Met Gly Phe
145 150 155 160

Ala Cys Ala Gln Val Gly Leu Asn Pro Leu His Asp Ala Ser His Phe
165 170 175

Ser Val Thr His Asn Pro Thr Val Trp Lys Ile Leu Gly Ala Thr His
180 185 190

Asp Phe Phe Asn Gly Ala Ser Tyr Leu Val Trp Met Tyr Gln His Met
195 200 205

Leu Gly His His Pro Tyr Thr Asn Ile Ala Gly Ala Asp Pro Asp Val
210 215 220

Ser Thr Ser Glu Pro Asp Val Arg Arg Ile Lys Pro Asn Gln Lys Trp
225 230 235 240

Phe Val Asn His Ile Asn Gln His Met Phe Val Pro Phe Leu Tyr Gly
245 250 255

Leu Leu Ala Phe Lys Val Arg Ile Gln Asp Ile Asn Ile Leu Tyr Phe
260 265 270

Val Lys Thr Asn Asp Ala Ile Arg Val Asn Pro Ile Ser Thr Trp His
275 280 285

Thr Val Met Phe Trp Gly Gly Lys Ala Phe Phe Val Trp Tyr Arg Leu
290 295 300

Ile Val Pro Leu Gln Tyr Leu Pro Leu Gly Lys Val Leu Leu Phe
305 310 315 320

Thr Val Ala Asp Met Val Ser Ser Tyr Trp Leu Ala Leu Thr Phe Gln
325 330 335

Ala Asn His Val Val Glu Val Gln Trp Pro Leu Pro Asp Glu Asn
340 345 350

Gly Ile Ile Gln Lys Asp Trp Ala Ala Met Gln Val Glu Thr Thr Gln
355 360 365

Asp Tyr Ala His Asp Ser His Leu Trp Thr Ser Ile Thr Gly Ser Leu
370 375 380

Asn Tyr Gln Ala Val His His Leu Phe Pro Asn Val Ser Gln His His
385 390 395 400

Tyr Pro Asp Ile Leu Ala Ile Ile Lys Asn Thr Cys Ser Glu Tyr Lys
405 410 415

Val Pro Tyr Leu Val Lys Asp Thr Phe Trp Gln Ala Phe Ala Ser His
420 425 430

Leu Glu His Leu Arg Val Leu Gly Leu Arg Pro Lys Glu Glu
435 440 445

<210> 13
<211> 39
<212> DNA
<213> synthetic primer

<400> 13
cuacuacuac uactcgagca agatggaaac ggaccaaagg 39

<210> 14
<211> 39
<212> DNA
<213> synthetic primer

<400> 14
caucaucauc auctcgagct actcttcctt gggacggag 39

<210> 15
<211> 47
<212> DNA

<213> synthetic primer

<400> 15 cuacuacuac uatctagact cgagaccatg gctgctgctc cagtgtg 47

```
<210> 16
<211> 40
<212> DNA
<213> synthetic primer
```

<400> 16 caucaucauc auaggcctcq aqttactqcg ccttacccat 40

```
<210> 17
<211> 1617
<212> DNA
<213> Mortierella alpina
```

<400> 17
cgacactcct tccttcttct caccgcgtcct agtccccttc aaccggccctc tttgacaaaag 60
acaacaaacc atggctgctg ctcccagtgt gaggacgtt actcggggccg aggttttga 120
tgccgaggct ctgaatgagg gcaagaagga tgccgaggca cccttcttga tgatcatcga 180
caacaaggtg tacgatgtcc gcgagttcgt ccctgatcat cccgtggaa gtgtgattct 240
cacgcacgtt ggcaaggacg gcactgacgt cttgacact tttcaccccg aggctgcttg 300
ggagactctt gccaactttt acgttgttga tattgacgag agcgaccgcg atatcaagaa 360
tcatgacttt gccccggagg tccgcaagct gcgtacaccttgc ttccagtctc ttggttacta 420
cgattttcc aaggcatact acgccttcaa ggtctcgttc aacctctgca tctggggttt 480
gtcgacggtc atttgtggcca agtggggcca gacctcgacc ctcgccaacg tgctctcgcc 540
tgcgttttgc ggtctgttct ggcagcagtg cggatggttg gtcacgact ttttgcata 600
ccaggtcttc caggaccgtt tctgggtga tctttcggc gccttcttgg gaggtgtctg 660
ccagggcttc tcgtcctcggt ggtggaaagga caagcacaac actcaccacg ccgcccccaa 720
cgtccacggc gaggatcccg acattgacac ccaccctctg ttgacctggaa gtgagcatgc 780
gttggagatg ttctcgatg tcccatgtga ggagctgacc cgcatgtggt cgcgtttcat 840
ggtcctgaac cagacctggt tttacttccc cattctctcg tttgccccgtc tctcttggtg 900
cctccagtcattcttttgc tgctgcctaa cggtcaggcc cacaaggccct cgggcgcgcg 960
tgtgccccatc tcgttgttgc agcagctgtc gcttgcgtatc cactggacct ggtacctcg 1020
caccatgttc ctgttcatca aggatcccgta caacatgttg gtgtactttt tgggtgtcgca 1080

ggcggtgtgc ggaaacttgt	tggcgatcgt gttctcgctc	aaccacaacg gtatgcctgt	1140
gatctcgaaag gaggaggcgg	tcgatatgga tttcttcacg	aagcagatca tcacgggtcg	1200
tgtatgtccac ccgggtctat	ttgccaactg gttcacgggt	ggattgaact atcagatcga	1260
gcaccacttg ttcccattcga	tgcctcgcca caactttca	aagatccagc ctgctgtcga	1320
gaccctgtgc aaaaagtaca	atgtccgata ccacaccacc	ggtatgatcg agggactgc	1380
agaggtctt agccgtctga	acgaggtctc caaggctgcc	tccaagatgg gtaaggcgca	1440
gtaaaaaaaaaa aaacaaggac	gtttttttc gccagtgcct	gtgcctgtgc ctgcttccct	1500
tgtcaagtgc agcgttctg	gaaaggatcg ttcagtgcag	tatcatcatt ctcctttac	1560
cccccgctca tatctcattc	atttctctta ttaaacaact	tgttcccccc ttcacccg	1617

<210> 18

<211> 457

<212> PRT

<213> Mortierella alpina

<400> 18

Met Ala Ala Ala Pro Ser Val Arg Thr Phe Thr Arg Ala Glu Val Leu			
1	5	10	15

Asn Ala Glu Ala Leu Asn Glu Gly Lys Lys Asp Ala Glu Ala Pro Phe		
20	25	30

Leu Met Ile Ile Asp Asn Lys Val Tyr Asp Val Arg Glu Phe Val Pro		
35	40	45

Asp His Pro Gly Gly Ser Val Ile Leu Thr His Val Gly Lys Asp Gly		
50	55	60

Thr Asp Val Phe Asp Thr Phe His Pro Glu Ala Ala Trp Glu Thr Leu			
65	70	75	80

Ala Asn Phe Tyr Val Gly Asp Ile Asp Glu Ser Asp Arg Asp Ile Lys		
85	90	95

Asn Asp Asp Phe Ala Ala Glu Val Arg Lys Leu Arg Thr Leu Phe Gln		
100	105	110

Ser Leu Gly Tyr Tyr Asp Ser Ser Lys Ala Tyr Tyr Ala Phe Lys Val		
115	120	125

Ser Phe Asn Leu Cys Ile Trp Gly Leu Ser Thr Val Ile Val Ala Lys		
130	135	140

Trp Gly Gln Thr Ser Thr Leu Ala Asn Val Leu Ser Ala Ala Leu Leu			
145	150	155	160

Gly Leu Phe Trp Gln Gln Cys Gly Trp Leu Ala His Asp Phe Leu His

165	170	175
His Gln Val Phe Gln Asp Arg Phe Trp Gly Asp Leu Phe Gly Ala Phe		
180	185	190
Leu Gly Gly Val Cys Gln Gly Phe Ser Ser Ser Trp Trp Lys Asp Lys		
195	200	205
His Asn Thr His His Ala Ala Pro Asn Val His Gly Glu Asp Pro Asp		
210	215	220
Ile Asp Thr His Pro Leu Leu Thr Trp Ser Glu His Ala Leu Glu Met		
225	230	235
Phe Ser Asp Val Pro Asp Glu Glu Leu Thr Arg Met Trp Ser Arg Phe		
245	250	255
Met Val Leu Asn Gln Thr Trp Phe Tyr Phe Pro Ile Leu Ser Phe Ala		
260	265	270
Arg Leu Ser Trp Cys Leu Gln Ser Ile Leu Phe Val Leu Pro Asn Gly		
275	280	285
Gln Ala His Lys Pro Ser Gly Ala Arg Val Pro Ile Ser Leu Val Glu		
290	295	300
Gln Leu Ser Leu Ala Met His Trp Thr Trp Tyr Leu Ala Thr Met Phe		
305	310	315
Leu Phe Ile Lys Asp Pro Val Asn Met Leu Val Tyr Phe Leu Val Ser		
325	330	335
Gln Ala Val Cys Gly Asn Leu Leu Ala Ile Val Phe Ser Leu Asn His		
340	345	350
Asn Gly Met Pro Val Ile Ser Lys Glu Glu Ala Val Asp Met Asp Phe		
355	360	365
Phe Thr Lys Gln Ile Ile Thr Gly Arg Asp Val His Pro Gly Leu Phe		
370	375	380
Ala Asn Trp Phe Thr Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu		
385	390	395
Phe Pro Ser Met Pro Arg His Asn Phe Ser Lys Ile Gln Pro Ala Val		
405	410	415
Glu Thr Leu Cys Lys Lys Tyr Asn Val Arg Tyr His Thr Thr Gly Met		
420	425	430
Ile Glu Gly Thr Ala Glu Val Phe Ser Arg Leu Asn Glu Val Ser Lys		
435	440	445
Ala Ala Ser Lys Met Gly Lys Ala Gln		
450	455	

<211> 1488
<212> DNA
<213> Mortierella alpina

<400> 19
gtccccgtgc gctgtcgcca caccccatcc tccctcgctc cctctgcgtt tgtccttggc 60
ccaccgtctc tcctccaccc tccgagacga ctgcaactgt aatcaggaac cgacaaatac 120
acgatttctt tttactcagc accaactcaa aatcctcaac cgcaaccctt tttcaggatg 180
gcacacctcca acactatcga tgccggtttg acccagcgtc atatcagcac ctcggcccc 240
aactcggcca agcctgcctt cgagcgcaac taccagctcc ccgagttcac catcaaggag 300
atccgagagt gcatccctgc ccactgctt gagcgctcg gtctccgtgg tctctgccac 360
gttgcacatcg atctgacttg gggtcgctc ttgttcctgg ctgcgaccga gatcgacaag 420
tttgagaatc ctttgatccg ctatggcc tggcctgttt actggatcat gcagggtatt 480
gtctgcacccg gtgtctgggt gctggctcac gagtggtgc atcagtcctt ctcgacctcc 540
aagaccctca acaacacagt tggttggatc ttgcactcga tgctcttggt cccctaccac 600
tcctggagaa tctcgactc gaagcaccac aaggccactg gccatatgac caaggaccag 660
gtctttgtgc ccaagacccg ctcccaggtt gggttcgtc ccaaggagaa cgctgctgct 720
gccgttcagg aggaggacat gtccgtgcac ctggatgagg aggctccat tgtgactttg 780
ttctggatgg tgatccagtt ctgttcgga tggcccggt acctgattat gaacgcctct 840
ggccaagact acggccgctg gacctcgac ttccacacgt actcgcccat ctttgagccc 900
cgcaacttt tcgacattat tatctcggac ctcggtgtgt tggctgccct cggtgccctg 960
atctatgcct ccatgcagtt gtcgtcttg accgtcacca agtactatac tgtcccctac 1020
ctctttgtca acttttggtt ggtcctgatc accttcttgc agcacaccga tcccaagctg 1080
ccccattacc gcgagggtgc ctgaaatttc cagcgtggag ctcttgcac cggtgaccgc 1140
tcgtttggca agttcttggatccatgttc cacggcatttgc tccacaccca tgtggcccat 1200
cacttggatcg cgttgcgttgc gttctaccat gctgaggaag ctacctatca tctcaagaaaa 1260
ctgctggagat agtactatgt gtacgacccca tccccatcg tcgttgcgtt ctggaggtcg 1320
ttccgtgagt gccgattcgt ggaggatcag ggagacgtgg tcttttcaa gaagtaaaaa 1380
aaaagacaat ggaccacaca caacctgtc tctacagacc tacgtatcat gtagccatac 1440
cacttcataa aagaacatga gctctagagg cgtgtcattc gcgcctcc 1488

<210> 20

<211> 399
<212> PRT
<213> Mortierella alpina

<400> 20

Met Ala Pro Pro Asn Thr Ile Asp Ala Gly Leu Thr Gln Arg His Ile
1 5 10 15

Ser Thr Ser Ala Pro Asn Ser Ala Lys Pro Ala Phe Glu Arg Asn Tyr
20 25 30

Gln Leu Pro Glu Phe Thr Ile Lys Glu Ile Arg Glu Cys Ile Pro Ala
35 40 45

His Cys Phe Glu Arg Ser Gly Leu Arg Gly Leu Cys His Val Ala Ile
50 55 60

Asp Leu Thr Trp Ala Ser Leu Leu Phe Leu Ala Ala Thr Gln Ile Asp
65 70 75 80

Lys Phe Glu Asn Pro Leu Ile Arg Tyr Leu Ala Trp Pro Val Tyr Trp
85 90 95

Ile Met Gln Gly Ile Val Cys Thr Gly Val Trp Val Leu Ala His Glu
100 105 110

Cys Gly His Gln Ser Phe Ser Thr Ser Lys Thr Leu Asn Asn Thr Val
115 120 125

Gly Trp Ile Leu His Ser Met Leu Leu Val Pro Tyr His Ser Trp Arg
130 135 140

Ile Ser His Ser Lys His His Lys Ala Thr Gly His Met Thr Lys Asp
145 150 155 160

Gln Val Phe Val Pro Lys Thr Arg Ser Gln Val Gly Leu Pro Pro Lys
165 170 175

Glu Asn Ala Ala Ala Val Gln Glu Glu Asp Met Ser Val His Leu
180 185 190

Asp Glu Glu Ala Pro Ile Val Thr Leu Phe Trp Met Val Ile Gln Phe
195 200 205

Leu Phe Gly Trp Pro Ala Tyr Leu Ile Met Asn Ala Ser Gly Gln Asp
210 215 220

Tyr Gly Arg Trp Thr Ser His Phe His Thr Tyr Ser Pro Ile Phe Glu
225 230 235 240

Pro Arg Asn Phe Phe Asp Ile Ile Ser Asp Leu Gly Val Leu Ala
245 250 255

Ala Leu Gly Ala Leu Ile Tyr Ala Ser Met Gln Leu Ser Leu Leu Thr
260 265 270

Val Thr Lys Tyr Tyr Ile Val Pro Tyr Leu Phe Val Asn Phe Trp Leu
275 280 285

Val Leu Ile Thr Phe Leu Gln His Thr Asp Pro Lys Leu Pro His Tyr
290 295 300

Arg Glu Gly Ala Trp Asn Phe Gln Arg Gly Ala Leu Cys Thr Val Asp
305 310 315 320

Arg Ser Phe Gly Lys Phe Leu Asp His Met Phe His Gly Ile Val His
325 330 335

Thr His Val Ala His His Leu Phe Ser Gln Met Pro Phe Tyr His Ala
340 345 350

Glu Glu Ala Thr Tyr His Leu Lys Lys Leu Leu Gly Glu Tyr Tyr Val
355 360 365

Tyr Asp Pro Ser Pro Ile Val Val Ala Val Trp Arg Ser Phe Arg Glu
370 375 380

Cys Arg Phe Val Glu Asp Gln Gly Asp Val Val Phe Phe Lys Lys
385 390 395

<210> 21
<211> 36
<212> DNA
<213> synthetic primer

<400> 21
cuacuacuac uaggatccat ggcacctccc aacact 36

<210> 22
<211> 41
<212> DNA
<213> synthetic primer

<400> 22
caucaucauc auggtacctc gagttacttc ttgaaaaaga c 41