Machine Learning

Logistic Regression

Maximise Likelihood: $L = \prod P^{y_i} * (1-P)^{(1-y_i)}$

©

Linear Regression and Logistic Regression

- Logistic regression uses Sigmoid function to make probabilistic prediction. Probability P that a data point belongs to a class for a given value of x
- Probability value is between 0 and 1

Linear Regression and Logistic Regression

- As X increases, the probability value increases. As x tends to infinity, the probability becomes 1
- As value of X decreases, the probability decreases. As x tends to negative infinity, the probability becomes 0

Optimization function for Logistic Regression

Maximise Likelihood:
$$L = \Pi P^{y_i} * (1-P)^{(1-y_i)}$$

Maximise Likelihood => Maximize Log(Likelihood)

Log(Likelihood) =
$$\sum (y_i \log(P) + (1-y_i) \log(1-P))$$

EXTRA SLIDE... Log Likelihood

 $Log(Likelihood) = \sum (y_i log(P) + (1-y_i) log(1-P))$

р	Ln(p) Change	
0.000001	-16.1181	Smaller
0.001	-6.9078	
0.1	-2.3026	
0.2	-1.6094	
0.3	-1.2040	
0.4	-0.9163	
0.5	-0.6931	
0.6	-0.5108	
0.7	-0.3567	
0.8	-0.2231	
0.9	-0.1054	
0.999	-0.0010	
0.9999999	-1E-07	Larger

	y _i	p _i	LOG(pi)	y _i * log(p _i)	1-y _i	1-p _i	LOG(1-pi)	(1-yi) *LOG(1-pi)	Log Likelihood
Case 1	1	Near 1	Larger	Larger	0	Near 0		0	Larger
Case 2	1	Near 0	Smaller	Smaller	0	Near 1		0	Smaller
Case 3	0	Near 0		0	1	Near 1	Larger	Larger	Larger
Case 4	0	Near 1		0	1	Near 0	Smaller	Smaller	Smaller

$$\frac{?}{1-?} = e^{Z}$$
 $\frac{?}{1-?} = 0.8$
 $\frac{?}{1-?} = \frac{4}{1} = 4 = 4.1$

$$b \log \frac{P}{1-P} = \log (ODD_{x}) = Z = b_{0} + b_{1} + b_{1} + b_{2} + \cdots + b_{n} + b_{n}$$

©

EXTRA SLIDE...Odds

$$P = \frac{1}{1 + e^{-(z)}}$$

$$1 - P = \frac{1}{1 + e^z}$$

$$\frac{P}{1-P} = e^Z$$

$$Odds = \frac{P}{1 - P} = e^{Z} \qquad P = \frac{Odds}{1 + Odds}$$

$$Log(Odds) = z = (b_0 + b_1 * x_1 + ...)$$

EXTRA SLIDE... Log(Odds)

Another way to interpret logistic regression

$$\log \frac{p(x)}{1 - p(x)} = \beta_0 + x \cdot \beta$$

Odds of p
9:1
4:1
1.5:1
1:1
0.67:1
0.25:1
0.11:1

EXTRA SLIDE... Odds Ratio

Odds_{x1} =
$$e^{(b_0 + b_1 * x_1 + ...)}$$

Odds_{x1+1} =
$$e^{(b_0 + b_1 * (x_1 + 1) +)}$$

Odds ratio =
$$\frac{\text{Odds}_{x_1+1}}{\text{Odds}_{x_1}} = e^{b_1}$$

If b1 = 1.5, then for every unit increase in x1 (having all other Xs unchanged), the odds will increase $e^{1.5}$ times

What will be the case when b1 is negative?

Logistic Regression

Advantages -

- · Efficient algorithm, does not require too many computational resources
 - Fast in training
 - Very fast in classifying unknown records
- Probabilistic view used in the method is easy to understand
- No assumptions about distributions of variables are made
- Extended to multiple classes
- Good accuracy for many simple data sets
- Resistant to overfitting

Disadvantages -

Underperforms where there are more complex relationships requiring non-linear haundaries

boundaries

Confusion Matrix

		Predicted			
		Α	В	С	
Actual	А	15	0	0	
	В	0	19	2	
	С	0	0	17	

- Classification accuracy = correct predictions / total predictions
- Precision is the proportion of the predicted positive cases that were correct.
 - Precision of C = 17 / (17+2)
- Recall is the proportion of positive cases that were correctly identified
 - Recall for B = 19 / (19+2)
- F1 Score = 2*(Recall * Precision) / (Recall + Precision)

Confusion Matrix

		Predicted		
		Negative	Positive	
tual	Negative	TN	FP	
Act	Positive	FN	TP	

		Predicted		
		Positive	Negative	
Actual	Positive	TP	FN	
	Negative	FP	TN	

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

$$Recall = \frac{TP}{TP + FN}$$
 $Precision = \frac{TP}{TP + FP}$

- True Positive (TP): Observation is positive, and is predicted to be positive.
- False Negative (FN): Observation is positive, but is predicted negative.
- True Negative (TN): Observation is negative, and is predicted to be negative.
- False Positive (FP): Observation is negative, but is predicted positive.
- Note that in binary classification, recall of the positive class is also known as "sensitivity"; and recall of the negative class is "specificity".
- High recall, low precision: This means that most of the positive examples are correctly recognized (low FN) but there are a lot of false positives.
- Low recall, high precision: This shows that we miss a lot of positive examples (high FN) but those we predict as positive are indeed positive (low FP)