Домашняя работа

Котов Артем, МОиАД2020 13 октября 2020 г.

Содержание

Task 1	2
Task 3.6.1	2
Task 3.6.2	3

Замечание. Жирные буквы обозначают вектора, нежирные — скаляры, например, длина вектора $|\mathbf{x}| = x$. А скалярное произведение обозначает · между векторами.

Task 1

Условие: Найдите ортогональную проекцию вектора c=(0,2,1) на плоскость, определяемую векторами a=(1,1,1) и b=(2,1,2), и вычислите угол между вектором с и его проекцией.

Решение.

$$c = h + c_0 \Longrightarrow h = c - c_0 = c - \alpha a - \beta b$$

При этом $\boldsymbol{h}\cdot\boldsymbol{c}_0=0$. От сюда получаем, что

$$\begin{cases} (\boldsymbol{c} - \boldsymbol{c}_0) \cdot \boldsymbol{a} = 0 \\ (\boldsymbol{c} - \boldsymbol{c}_0) \cdot \boldsymbol{b} = 0 \end{cases} \implies \begin{cases} -3\alpha - 5\beta + 3 = 0 \\ -3\alpha - 7\beta = 0 \end{cases} \implies \alpha = \frac{21}{6}, \beta = -\frac{3}{2} \Longrightarrow \boldsymbol{c}_0 = \left(\frac{1}{2}, 2, \frac{1}{2}\right)$$

Угол между вектором c и плоскостью $\langle a,b \rangle$:

$$\cos(\boldsymbol{c}, \boldsymbol{c}_0) = \frac{\boldsymbol{c} \cdot \boldsymbol{c}_0}{cc_0} = \sqrt{0.9}$$

Task 3.6.1

Условие: Найдите расстояние и угол между вектором x и подпространством $U = \langle h, u \rangle$, пространства \mathbb{R}^4 , если: x = (6, 1, 4, 1), u = (2, 4, 1, 1), v = (1, 1, 0, 0)

Решение.

$$\mathbf{x} = \mathbf{h} + \mathbf{x}_0, \ \mathbf{x}_0 = \alpha \mathbf{u} + \beta \mathbf{v} \in U, \ \mathbf{h} \perp U$$

$$\begin{cases} \mathbf{h} \cdot \mathbf{u} = 0 \\ \mathbf{h} \cdot \mathbf{v} = 0 \end{cases} \implies \begin{cases} \mathbf{x} \cdot \mathbf{u} - \mathbf{x}_0 \cdot \mathbf{u} = 0 \\ \mathbf{x} \cdot \mathbf{v} - \mathbf{x}_0 \cdot \mathbf{v} = 0 \end{cases} \implies \begin{cases} 13 - 22\alpha - 6\beta = 0 \\ 5 - 6\alpha - 2\beta = 0 \end{cases} \implies \alpha = -\frac{1}{2}, \ \beta = 4$$

$$\mathbf{x}_0 = \left(3, 2, -\frac{1}{2}, -\frac{1}{2}\right) \implies \cos(\mathbf{x}, \mathbf{x}_0) = \frac{1}{2} \implies \angle(\mathbf{x}, \mathbf{x}_0) = \frac{\pi}{3}$$

Теперь расстояние $h = |\boldsymbol{h}|$:

$$\boldsymbol{h} = \boldsymbol{x} - \boldsymbol{x}_0 = \left(3, -3, \frac{9}{2}, \frac{3}{2}\right) \Longrightarrow h = \frac{9}{\sqrt{2}}$$

Task 3.6.2

Условие: В пространстве \mathbb{R}^3 со стандартным скалярным произведением примените ортогонализацию Грамма-Шмидта к базису \boldsymbol{f}_1 , \boldsymbol{f}_2 , \boldsymbol{f}_3 (в ответ запишите полученный базис): $\boldsymbol{f}_1=(1,0,4)$, $\boldsymbol{f}_2=(2,1,1)$, $\boldsymbol{f}_3=(1,1,2)$.

Решение.

$$egin{aligned} m{e}_1 &= m{f}_1 \ m{e}_2 &= m{f}_2 - rac{m{f}_2 \cdot m{e}_1}{e_1^2} m{e}_1 \ m{e}_3 &= m{f}_3 - rac{m{f}_3 \cdot m{e}_1}{e_1^2} m{e}_1 - rac{m{f}_3 \cdot m{e}_2}{e_2^2} m{e}_2 \end{aligned}$$

Насчитаем последовательно необходимые скалярные произведения:

$$\begin{cases}
 f_2 \cdot e_1 = -2 \\
 e_1 \cdot e_1 = 17
 \end{cases} \implies e_2 = \left(\frac{36}{17}, 1, -\frac{9}{17}\right)$$

$$f_3 \cdot e_1 = 7 \\
 f_3 \cdot e_2 = -\frac{37}{17} \\
 e_2 \cdot e_2 = \frac{98}{17}
 \end{cases} \implies e_3 = \left(-\frac{30}{49}, \frac{135}{98}, \frac{15}{98}\right)$$

Получили набор:

$$e_1 = (1,0,4), e_2 = \left(\frac{36}{17}, 1, -\frac{9}{17}\right), e_3 = \left(-\frac{30}{49}, \frac{135}{98}, \frac{15}{98}\right)$$

Проверим, что он ортогональный:

$$e_1 \cdot e_2 = \frac{36}{17} - \frac{36}{17} = 0$$

$$e_2 \cdot e_3 = -\frac{36}{17} \frac{30}{49} + \frac{135}{98} - \frac{9 * 15}{17 * 98} = 0$$

$$e_1 \cdot e_3 = -\frac{30}{49} + \frac{4 * 15}{98} = 0$$

Нормируем эти вектора:

$$e_{1} = \sqrt{17}, \ e_{2} = \frac{7\sqrt{2}}{\sqrt{17}}, \ e_{3} = \frac{15}{7\sqrt{2}}$$

$$\Downarrow$$

$$e_{1} = \frac{1}{\sqrt{17}}(1,0,4), \ e_{2} = \frac{\sqrt{17}}{7\sqrt{2}} \left(\frac{36}{17},1,-\frac{9}{17}\right), \ e_{3} = \frac{7\sqrt{2}}{15} \left(-\frac{30}{49},\frac{135}{98},\frac{15}{98}\right)$$