3.- DISEÑO AUXILIADO CON DECODIFICADORES.

Para entender como nos ayuda el uso de **Decodificadores** en el diseño con **Cartas ASM**, utilizaremos el ejemplo del Controlador de Tráfico de un cruce de 4 direcciones.

En este ejemplo tenemos:

CARTA ASM

CONTENIDO DE LA ROM (TABLA DE TRANSICION)

DIRECCION	DATOS						
A3 A2 A1 A0	B9 B8 B7 B6	B 5	В4	Вз	B2	B1	Во
(Y3,Y2,Y1,Y0)t	(Y3,Y2,Y1,Y0)t+1	HEOV	HEOA	HEOR	HNSV	HNSA	HNSR
0 0 0 0	0 0 0 1	0	0	1	1	0	0
0 0 0 1	0 0 1 0	0	0	1	1	0	0
0 0 1 0	0 0 1 1	0	0	1	1	0	0
0 0 1 1	0 1 0 0	0	0	1	1	0	0
0 1 0 0	0 1 0 1	0	0	1	0	1	0
0 1 0 1	0 1 1 0	1	0	0	0	0	1
0 1 1 0	0 1 1 1	1	0	0	0	0	1
0 1 1 1	1000	1	0	0	0	0	1
1000	1001	1	0	0	0	0	1
1001	0000	0 0 0 0 0 1 0 0 0				0	1

IMPLEMENTACION

En la implementación con **ROM** pudimos observar que se requiere una **ROM** de 16 X 10, que no existe en el mercado, recordemos que la **ROM** comercial es de 256 X 8, 512 X 8, 1K X 8, 2K X 8, etc., y aunque por el número de palabras de la ROM estamos sobrados, el tamaño de la palabra de la **ROM** comercial solo es de 8 bits, lo que implica que si queremos implementar el Controlador de tráfico necesitaríamos 2 ROM's con el siguiente arreglo:

Y tener una ROM 2 X 8, PERO (siempre hay un PERO):

Con este arreglo, no solo estaríamos desperdiciando **2 -16** palabras de la nueva ROM, sino además de la segunda ROM estaríamos desperdiciando 6 bits de cada palabra.

Una forma de optimizar la implementación es utilizar **DECODIFICADORES** en el manejo de las salidas, cuando éstas son **MUTUAMENTE EXCLUYENTES**, es decir, que solo se puede dar una a la vez. Para el caso del controlador solo se puede dar el VERDE o el **AMARILLO** o el ROJO a la vez, pero no dos o tres de ellos.

EJEMPLO: DISEÑAR UN CONTROLADOR DE TRAFICO DE UN CRUCE DE 4 DIRECCIONES, EN DONDE EL SIGA DURA 20 SEGUNDOS Y LA PREVENTIVA 5 SEGUNDOS. EL CONTROL ES EN LA DIRECCION NORTE-SUR Y EN LA DIRECCION ESTE-OESTE. DISEÑAR UTILIZANDO DECODIFICADORES PARA EL MANEJO DE LAS SALIDAS.

PRIMER PASO (DETERMINAR LA CONFIGURACION DEL DECODIFICADOR)

Para ello:

1º.-¿Cuántos grupos de variables
Mutuamente excluyentes tengo?
2 (un grupo para NORTE-SUR y otro para ESTE-OESTE)

2º.-¿Cuántas variables Mutuamente Excluyentes tengo por grupo?

3 (VERDE, AMARILLO y ROJO)

3º.-¿De qué tamaño es el DECODIFICADOR?

DEC 2 X 4

4º.-Determinar el Código de las Variables Mutuamente excluyentes

TERCER PASO (CONTENIDO DE LA ROM O TABLA DE TRANSICION)

SEGUNDO PASO (CARTA ASM)

DIRECCION	DATOS				
A3 A2 A1 A0	B7 B6 B5 B4	Вз	B ₂	B ₁	B ₀
(Y3,Y2,Y1,Y0)t	(Y3,Y2,Y1,Y0)t+1	D21	D20	D11	D10
0 0 0 0	0001	1	1	0	1
0001	0 0 1 0	1	1	0	1
0 0 1 0	0 0 1 1	1	1	0	1
0 0 1 1	0 1 0 0	1	1	0	1
0 1 0 0	0 1 0 1	1	0	0	1
0 1 0 1	0 1 1 0	0	1	1	1
0 1 1 0	0 1 1 1	0	1	1	1
0 1 1 1	1000	0	1	1	1
1000	1001	0	1	1	1
1001	0000	0	1	1	0

ROM 16 X 8

PROF: ING. ROBERTO FEDERICO MANDUJANO WILD

CUARTO PASO (IMPLEMENTACION)

EN FORMA GENERAL EL DISEÑO AUXILIADO CON DECODIFICADORES CON CARTAS ASM SERIA DE LA SIGUIENTE FORMA:

4.- DISEÑO AUXILIADO CON MULTIPLEXORES.

Como mencionamos anteriormente los **Decodificadores** en el diseño con **Cartas ASM**, nos son útiles en el manejo de las salidas cuando éstas son mutuamente excluyentes, así los **MULTIPLEXORES** nos auxilian en el diseño con **Cartas ASM** en el manejo de las **Entradas** cuando éstas son **MUTUAMENTE EXCLUYENTES**.

Para ejemplificar el uso de MULTIPLEXORES en el diseño con Cartas ASM, tenemos el siguiente:

EJEMPLO: DISEÑAR EL CONTROLADOR DE UN SISTEMA DEL METRO DE 3 ESTACIONES, QUE INDIQUE CUANDO EL CONVOY LLEGA A CADA ESTACION, EN CADA ESTACION SE DETIENE 10 SEGUNDOS Y EL OPERADOR TIENE UN BOTON PARA DETENER EL CONVOY EN LA ESTACION SI ES NECESARIO MIENTRAS ESTE APRETADO EL BOTON. EL SISTEMA ES DE UNA SOLA VIA Y EL CONVOY PUEDE IR HACIA ADELANTE Y HACIA ATRÁS.

PRIMER PASO (DETERMINAR LA CONFIGURACION DEL MULTIPLEXOR)

Para ello:

1º.-¿Cuántos grupos de variables de entrada Mutuamente excluyentes tengo?

1

2º.-¿Cuántas variables Mutuamente Excluyentes tengo por grupo?
4 (YA, YB,YC y YBOTON)

3º.-¿De qué tamaño es el MULTIPLEXOR?

MUX 4 X 1

4º.-Determinar el Código de las Variables Mutuamente excluyentes

CODIGO	
S1 S0	VARIABLE
0 0	Α
0 1	YB
1 0	YC
1 1	YBOTON

SEGUNDO PASO (CARTA ASM)

TERCER PASO (CONTENIDO DE LA ROM O TABLA DE TRANSICION)

NO LA VAMOS A DESARROLLAR COMPLETA, ¿PERO DE QUE TAMAÑO SERIA LA TABLA Y LA ROM?

1º.- Si no usara MUX para el manejo de las entradas:

SI TENEMOS 4 ENTRADAS (YA, YB, YC y YBOTON) Y 6 BITS DE ESTADO Y 3 SALIDAS (HADEL, HALTO y HATRAS), TENDREMOS UNA TABLA DE 1024 RENGLONES PORQUE TENEMOS 10 COLUMNAS DE ESTADO PRESENTE (6) Y ENTRADAS (4) Y 9 COLUMNAS DE ESTADO SIGUIENTE (6) Y SALIDAS (3). POR LO QUE NECESITAMOS UNA ROM 1K X 9

OJO: EL TAMAÑO DE LA ROM ESTA DADO POR ROM MXN

(núm. de Ent + núm. de variables de estado) DONDE M=2

N=núm. De Sal + núm. de variables de estado

DIRECC	CION		DATOS			
A9 A8 A7 A6 A5 A4	A3 A2 A1	A0	B8 B7 B6 B5 B4 B3	B2	B1	В0
(Y5,Y4,Y3,Y2,Y1,Y0)t	YA YA	YBOTON	(Y5,Y4,Y3,Y2,Y1,Y0)t+1	HADEL	HALTO	HATRAS
0 0 0 0 0 0	* 0 *	*	0 0 0 0 0	1	0	0
000000	* 1 *	*	0 0 0 0 0 1	1	0	0
0 0 0 0 0 1	* * *	*	0 0 0 0 1 0	0	1	0
0 0 0 0 1 0	* * *	*	0 0 0 0 1 1	0	1	0
0 0 0 0 1 1	* * *	*	0 0 0 1 0 0	0	1	0
0 0 0 1 0 0	* * *	*	0 0 0 1 0 1	0	1	0
0 0 0 1 0 1	* * *	*	0 0 0 1 1 0	0	1	0
0 0 0 1 1 0	* * *	*	0 0 0 1 1 1	0	1	0
0 0 0 1 1 1	* * *	*	0 0 1 0 0 0	0	1	0
0 0 1 0 0 0	* * *	*	0 0 1 0 0 1	0	1	0
0 0 1 0 0 1	* * *	*	0 0 1 0 1 0	0	1	0
0 0 1 0 1 0	* * *	0	0 0 1 0 1 1	0	1	0
0 0 1 0 1 0	* * *	1	0 0 1 0 1 0	0	1	0
0 0 1 0 1 1	* * 0	*	0 0 1 0 1 1	1	0	0
0 0 1 0 1 1	* * 1	*	0 0 1 1 0 0	1	0	0
	•		•			
	•					
	•		•			

TERCER PASO (CONTENIDO DE LA ROM O TABLA DE TRANSICION)

NO LA VAMOS A DESARROLLAR COMPLETA, ¿PERO DE QUE TAMAÑO SERIA LA TABLA Y LA ROM?

2º.- Si se usara MUX para el manejo de las entradas: SI TENEMOS 4 ENTRADAS (YA, YB, YC y YBOTON) PERO USAMOS UN MUX 4X1 PARA EL MANEJO DE LAS ENTRADAS, SOLO TENEMOS LA ENTRADA A LA ROM DE YX Y 6 BITS DE ESTADO Y 3 SALIDAS (HADEL, HALTO y HATRAS), PERO ADEMAS LAS LINEAS DE SELECCIÓN DEL MUX S1 y S2, TENDREMOS UNA TABLA DE 128 RENGLONES Y 7 COLUMNAS DE ESTADO PRESENTE (6) Y ENTRADA YX Y 11 COLUMNAS DE ESTADO SIGUIENTE (6) Y SALIDAS (3). Y 2 BITS DE SELECCION DE LA VARIABLE A PROBAR Y NECESITAMOS UNA ROM 128 X 11

OJO: EL TAMAÑO DE LA ROM ESTA DADO POR ROM MXN

(núm. de Ent + núm. de variables de estado)

DONDE M=2

N=núm. De Sal + núm. de variables de estado + bits de selección de la variable a probar

. IIIO. ROBEI		LDLINGO WI	11100	707 ti 1 0
DIRECCION		DATOS		
A6 A5 A4 A3 A2 A1	A0	B10 B9 B8 B7 B6 B5	B4 B3	B2 B1 B0
(Y5,Y4,Y3,Y2,Y1,Y0)t	Yx	(Y5,Y4,Y3,Y2,Y1,Y0)t+1	НАБЕГ	HATRAS
0 0 0 0 0	0	0 0 0 0 0	1 0	0 01
0 0 0 0 0	1	0 0 0 0 0 1	1 0	0 01
0 0 0 0 0 1	*	0 0 0 0 1 0	0 1	0 * *
0 0 0 0 1 0	*	0 0 0 0 1 1	0 1	0 * *
0 0 0 0 1 1	*	0 0 0 1 0 0	0 1	0 * *
0 0 0 1 0 0	*	0 0 0 1 0 1	0 1	0 * *
0 0 0 1 0 1	*	0 0 0 1 1 0	0 1	0 * *
0 0 0 1 1 0	*	0 0 0 1 1 1	0 1	0 * *
0 0 0 1 1 1	*	0 0 1 0 0 0	0 1	0 * *
0 0 1 0 0 0	*	0 0 1 0 0 1	0 1	0 * *
0 0 1 0 0 1	*	0 0 1 0 1 0	0 1	0 11
0 0 1 0 1 0	0	0 0 1 0 1 1	0 1	0 10
0 0 1 0 1 0	1	0 0 1 0 1 0	0 1	0 11
0 0 1 0 1 1	0	0 0 1 0 1 1	1 0	0 1 0
0 0 1 0 1 1	1	0 0 1 1 0 0	1 0	0 10
·			•	
			-	

	10	5 4	2	1	0
CONTENIDO	SIG. EDO.	ς ΔΙΙΝΔς	Т	S ₁	So
DE LA ROM	JIG. LDO.	JALIDAJ		J 1	J 0

CUARTO PASO (IMPLEMENTACION)	Ì

DIRECCION		DATOS				
A6 A5 A4 A3 A2 A1	A0	B10 B9 B8 B7 B6 B5	B4	В3	B2	B1 B0
(Y5,Y4,Y3,Y2,Y1,Y0)t	Yx	(Y5,Y4,Y3,Y2,Y1,Y0)t+1	HADEL	HALTO	HATRAS	S1 S0
0 0 0 0 0	0	0 0 0 0 0	1	0	0	0 1
0 0 0 0 0	1	0 0 0 0 0 1	1	0	0	0 1
0 0 0 0 0 1	*	0 0 0 0 1 0	0	1	0	* *
0 0 0 0 1 0	*	0 0 0 0 1 1	0	1	0	* *
0 0 0 0 1 1	*	0 0 0 1 0 0	0	1	0	* *
0 0 0 1 0 0	*	0 0 0 1 0 1	0	1	0	* *
0 0 0 1 0 1	*	0 0 0 1 1 0	0	1	0	* *
0 0 0 1 1 0	*	0 0 0 1 1 1	0	1	0	* *
0 0 0 1 1 1	*	0 0 1 0 0 0	0	1	0	* *
0 0 1 0 0 0	*	0 0 1 0 0 1	0	1	0	* *
0 0 1 0 0 1	*	0 0 1 0 1 0	0	1	0	1 1
0 0 1 0 1 0	0	0 0 1 0 1 1	0	1	0	1 0
0 0 1 0 1 0	1	0 0 1 0 1 0	0	1	0	1 1
0 0 1 0 1 1	0	0 0 1 0 1 1	1	0	0	1 0
0 0 1 0 1 1	1	0 0 1 1 0 0	1	0	0	1 0
			•			
			•			

CONTENIDO DE LA ROM SIG. EDO. SALIDAS S1 S0

EN FORMA GENERAL EL DISEÑO AUXILIADO CON MULTIPLEXORES CON CARTAS ASM SERIA DE LA SIGUIENTE FORMA:

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.