ĐỀ THI CUỐI KÌ MÔN GIẢI TÍCH 1 - Học kì 20153 Khóa: 60, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Tìm tập xác định của hàm số $y = \arcsin \frac{2x}{1+x}$.

Câu 2 (1đ). Xét tính liên tục của hàm số

$$f(x) = \begin{cases} \cos\frac{\pi x}{2}, & \text{n\'eu } |x| \le 1, \\ |x - 1|, & \text{n\'eu } |x| > 1. \end{cases}$$

Câu 3 (1đ). Xét sự hội tụ, phân kì của tích phân $\int_{1}^{\infty} \left(1 - \cos \frac{4}{x}\right) dx$.

Câu 4 (1đ). Tính các đạo hàm riêng cấp một của hàm số $u = \ln(x + \sqrt{x^2 + y^2 + z^2})$ tại M(0,3,4).

Câu 5 (1đ). Tìm cực trị của hàm số $z = x^2 + \frac{16}{x} + y + \frac{1}{y} + 3$.

Câu 6 (1đ). Tính độ dài của cung xác định bởi $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2^{\frac{2}{3}}$.

Câu 7 (1đ). Tính $\lim_{x \to +\infty} (\sqrt[3]{x^3 + 3x^2} - \sqrt{x^2 - 2x})$.

Câu 8 (1đ). Hàm số $f(x) = x^2 + 2x$ có thỏa mãn định lý Rolle trên $\left[-\frac{3}{2},1\right]$? Khi đó, kết luận của định lý Rolle có còn đúng? Tai sao?

Câu 9 (1đ). Tính thể tích vật thể giới hạn bởi các mặt $z = 9 - y^2$, x = 3, x = 0, z = 0.

Câu 10 (1đ). Cho các hàm số φ và ψ khả vi đến cấp hai. Bằng cách đạo hàm riêng liên tiếp, thiết lập hệ thức liên hệ giữa các đạo hàm riêng của z không phụ thuộc vào φ và ψ , biết $z = \varphi(xy) + \psi\left(\frac{x}{y}\right)$.

ĐỀ THI CUỐI KÌ MÔN GIẢI TÍCH 1 - Học kì 20153 Khóa: 60, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Tìm tập xác định của hàm số $y = \arcsin \frac{2x}{1+x}$.

Câu 2 (1đ). Xét tính liên tục của hàm số

ĐỀ 2

$$f(x) = \begin{cases} \cos\frac{\pi x}{2}, & \text{n\'eu } |x| \le 1, \\ |x - 1|, & \text{n\'eu } |x| > 1. \end{cases}$$

Câu 3 (1đ). Xét sự hội tụ, phân kì của tích phân $\int_{1}^{\infty} \left(1 - \cos \frac{4}{x}\right) dx$.

Câu 4 (1đ). Tính các đạo hàm riêng cấp một của hàm số $u = \ln(x + \sqrt{x^2 + y^2 + z^2})$ tại M(0,3,4).

Câu 5 (1đ). Tìm cực trị của hàm số $z = x^2 + \frac{16}{x} + y + \frac{1}{y} + 3$.

Câu 6 (1đ). Tính độ dài của cung xác định bởi $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2^{\frac{2}{3}}$.

Câu 7 (1đ). Tính $\lim_{x \to +\infty} (\sqrt[3]{x^3 + 3x^2} - \sqrt{x^2 - 2x})$.

Câu 8 (1đ). Hàm số $f(x) = x^2 + 2x$ có thỏa mãn định lý Rolle trên $\left[-\frac{3}{2},1\right]$? Khi đó, kết luận của định lý Rolle có còn đúng? Tại sao?

Câu 9 (1đ). Tính thể tích vật thể giới hạn bởi các mặt $z = 9 - y^2$, x = 3, x = 0, z = 0.

Câu 10 (1đ). Cho các hàm số φ và ψ khả vi đến cấp hai. Bằng cách đạo hàm riêng liên tiếp, thiết lập hệ thức liên hệ giữa các đạo hàm riêng của z không phụ thuộc vào φ và ψ , biết $z = \varphi(xy) + \psi\left(\frac{x}{y}\right)$.