Complex Analysis

Alec Zabel-Mena

 $\underline{\text{Text}}$

Complex Analysis (4^{th} edition) Serge Lang

May 4, 2023

Contents

1	Complex Numbers and Funtions	
		Complex Numbers
	1.2	Complex Valued Functions
		Complex Differentiation and Holomorphic Functions
2	Pow	ver Series
	2.1	Formal Power Series
	2.2	Convergent Power Series
	2.3	Properties on Power Series
	2.4	Analytic Functions
	2.5	Differentiation of Power Series

4 CONTENTS

Chapter 1

Complex Numbers and Funtions

1.1 Complex Numbers

1.2 Complex Valued Functions

Definition. We define a **complex valued function** to be a function $f: S \to \mathbb{C}$, where $S \subseteq \mathbb{C}$. Writing f(z) = f(x+iy) = u(x,y) + iv(x,y), where $u: U_1 \times U_1 \to \mathbb{R}$ and $v: V_1 \times V_2 \to \mathbb{R}$ are real valued functions (with U_1, U_2, V_1, V_2 open in \mathbb{R}), we define the **real part** of f to be Re f = u(x,y), and the **imaginary part** of f to be Im f = v(x,y).

Remark. It should be noted that the domain of a complex valued function f depends on the domain of its real and imaginary parts, and vice versa.

Example 1.1. (1) The real and imaginary parts of the complex valued function $f(z) = x^3y + i\sin(x+y)$ to be $u(x,y) = x^3y$ and $v(x,y) = \sin(x+y)$, respectively.

(2) Consider the complex valued function $f(z) = z^n$, for $n \in \mathbb{Z}^+$. Writing $z = re^{i\theta}$, we get $f(z) = r^n \cos n\theta + ir^n \sin n\theta$. The real part of f is then $u(x,y) = r^n \cos n\theta$, and the imaginary part of f to be $v(x,y) = r^n \sin n\theta$.

Lettinh $\overline{B^1} = \{z \in \mathbb{C} : |z| \leq 1\}$ the closed unit ballm notice if $z \in \overline{B^1}$, then $|z^n| = |z|^n \leq 1^n = 1$, so that $z^n \in \overline{B^1}$, and hence $f(\overline{B^1}) = \overline{B^1}$.

Definition. We call the solutions to the polynomial $z^n - 1$ over \mathbb{C} the complex n-th roots of unity.

Theorem 1.2.1. Let ξ be a complex n-th root of unity. Then $\xi = e^{\frac{2i\pi}{n}}$.

Corollory. If ξ is an n-th root of unity, then so is ξ^k for all $k \in \mathbb{Z}/n\mathbb{Z}$.

1.3 Complex Differentiation and Holomorphic Functions

Definition. Let U be an open set of \mathbb{C} , and let $w \in U$. We call a complex valued function $f: U \to \mathbb{C}$ complex differentiable at w if the limit

$$f'(w) = \lim_{h \to 0} \frac{f(w+h) - f(w)}{h} = \lim_{z \to w} \frac{f(z) - f(w)}{z - w}$$

exists. We call f'(w) the **complex derivative** of f at w.

Theorem 1.3.1. Let $f: U \to \mathbb{C}$ and $g: U \to \mathbb{C}$ be complex valued functions. If f and g are complex differentiable at a point $z \in U$, then following are true

(1) f + g is complex differentiable at z, with

$$(f+g)'(z) = f'(z) + g'(z)$$

(2) (fg)' is complex differentiable at z, with

$$(fg)'(z) = f'(z)g(z) + f(z)g'(z)$$

Corollory. The function $\frac{f}{g}$ is complex differentiable at z, provided $g(z) \neq 0$, with

$$\left(\frac{f}{g}\right)'(z) = \frac{g(z)f'(z) - f(z) - g'(z)}{(g(z))^2}$$

Example 1.2. For all $n \in \mathbb{Z}^+$, the function $f(z) = z^n$ is complex differentiable on all of \mathbb{C} , with $f'(z) = nz^{n-1}$. In fact, z^n is what we call a "holomorphic" function.

Theorem 1.3.2 (The Chain Rule). Let U and V be open sets of \mathbb{C} , and let $f: U \to \mathbb{C}$, and $g: V \to \mathbb{C}$ be complex valued functions, with $f(U) \subseteq V$. If f is complex differentiable at a point $z \in Z$, and g is complex differentiable at the point $f(z) \in f(U)$, then $g \circ f$ is complex differentiable at z with

$$(g \circ f)'(z) = (g' \circ f)(z)f'(z) = g'(f(z))f'(z)$$

Definition. We call a complex valued function $f:U\to\mathbb{C}$ holomorphic on U if it is complex differentiable at every point of U.

Remark. It is convention to simply say that f is "holomorphic" when it is holomorphic on all of \mathbb{C} .

Definition. Let $f: U \to \mathbb{C}$ a complex valued function with f(z) = u(x,y) + iv(x,y). We define the **vector field** of f to be the map $F: U \to V \to \mathbb{R} \times \mathbb{R}$ defined by

$$F(x,y) = (u(x,y), v(x,y))$$

Where U and V are open in \mathbb{R} .

Theorem 1.3.3. If f is holomorphic on its domain, then F is real differentiable on its domain (respectively to the domain of f) and has derivative

$$\operatorname{Jac} F = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

Where $\operatorname{Jac} F$ is the Jacobian of F.

Corollory. $f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y}$, and the we have the following of equations

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

Theorem 1.3.4. If $u : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, and $v : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are continuously real differentiable realvalued functions satisfying the equations

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

Then the function f(z)u(x,y) + iv(x,y) is holomorphic on its domain.

Definition. Let $u: U_1 \times U_2 \to \mathbb{R}$ and $v: V_1 \times V_2 \to \mathbb{R}$ be continuously real differentiable real valued functions. We define the **Cauchy-Riemann equations** to be the set of equations

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$$

Chapter 2

Power Series

2.1 Formal Power Series

Definition. Let F be a field, we define the set F[[x]] of all series of the form

$$f(x) = \sum_{n=0}^{\infty} a_0 x^n$$
, where $a_0, \dots, a_n, \dots \in F$

the set of formal power series over F. We call the elements of F[[x]] formal power series.

Definition. Let $f(x) = \sum_{n=0}^{\infty} a_0 x^n$ a formal power series over a field F. We define the **order** of f to be the smallest integer n for which $a_n \neq 0$, and write ord f = n. We call the term a_0 of f the **constant term** of f.

Lemma 2.1.1. Let F be a field, and define the operations + and \cdot on F by

$$f(x) + g(x) = \sum_{n=0}^{\infty} c_n x^n \text{ where } c_n = a_n + b_n$$
$$f(x)g(x) = \sum_{n=0}^{\infty} d_n x^n \text{ where } c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

Where $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$ are formal power series over F. Then F[[x]] forms a commutative ring under + and \cdot .

Corollory. Define the action $F \times F[[x]] \to F[[x]]$ by

$$\alpha f(x) = \sum_{n=0}^{\infty} (\alpha a_n) x^n$$

Then F[[x]] is an F-module under this action.

Lemma 2.1.2. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$ be formal power series over a field F. Then ord fg = ord f + ord g.

Definition. Let $f \in F[[x]]$ be a formal power series over a field F. We say that a formal power series $g \in F[[x]]$ is an **inverse** of f if fg = 1.

Lemma 2.1.3. If $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is a formal power series over a field F, with nonzero constant term, then there exists an inverse of f.

Proof. Consider the series $a_0^{-1}f(x)$ instead of f. Reacall also that the geometric series

$$\frac{1}{1-r} = 1 + r + r^2 + \dots$$

is a formal power series in r over F. Then $(1-r)(1+r+r^2+\ldots)=1$. Now, let f(x)=1-h(x), where $h(x)=-(a_1x+a_2x^2+\ldots)$ and consider $\phi(h)=1+h+h^2+\ldots$. Observbe that ord $h^n \geq n$ sicne $h^n=(-1)a_1^nx^n+\ldots$. Thus, if m>n, then h^m has all coefficients of order less than n equal to 0, and the n-th coefficient of ϕ is the n-th coefficient of the sum

$$1 + h + h^2 + \dots + h^n$$

Then, we get by the above geometric series that

$$(1 - h(x))\phi(h) = (1 - h(x))(1 + h + h(x)^2 + \dots) = 1 + \dots = 1$$

Example 2.1. Let $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$ By lemma 2.1.3, since $\cos x$ has nonzero constant term, it has an invers $g(x) = \frac{1}{\cos x}$. Notice that

$$\frac{1}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots} = 1 + (\frac{x^2}{2!} - \frac{x^4}{4!} + \dots) + (\frac{x^2}{2!} - \frac{x^4}{4!} + \dots)^2 + \dots$$

$$= 1 + \frac{x^2}{2!} - \frac{x^4}{4!} + \dots + \frac{x^4}{(2!)^2}$$

$$= 1 + \frac{x^2}{2!} + (-\frac{1}{24} + \frac{1}{4})x^2 + \dots$$

Which gives coefficients of g(x) up to order 4.

Definition. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ a power series over a field F, and let $h(x) = c_1 x + \dots$ a power series of order greater than 1. We define the **substitute** of h in f to be the power series

$$f \circ h(x) = a_0 + a_1 h(x) + a_2 h(x)^2 + \dots$$

Definition. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$ be power series over a field F. We call f congruent to g modulo x^n if $a_k = b_k$ for all $k \in \mathbb{Z}/n\mathbb{Z}$. That is, f and g have the same coefficients of terms of order up to n-1. We write $f \equiv g \mod x^2$.

Lemma 2.1.4. Congruence of power series modulo x^n defines an equivalence relation.

Lemma 2.1.5. If $f_1 \equiv f_2 \mod x^n$ and $g_1 \equiv g_2 \mod x^n$, then $f_1 + g_1 \equiv f_2 g_2 \mod x^n$ and $f_1 g_1 \equiv f_2 g_2 \mod x^n$. Moreover, if h_1 and h_2 are formal power series with zero constant term, and $h_1 \equiv h_2 \mod x^n$, then $f_1 \circ h_1 \equiv f_1 \circ h_2 \mod x^n$.

Proof. We prove for substitutions of h_1 in f_1 only. Let p_1 and p_2 polynomials of degree $\deg = n-1$ such that $f_1 \equiv p_1(x) \mod x^n$ and $f_2 \equiv p_2(x) \mod x^n$. By hypothesis, we get $p_1 \equiv p_2 \mod x^n$, and since $\deg p_1, \deg p_2 = n-1$, this makes $p_1 = p_2$. Then $f_1 \circ h \equiv p_1 \circ h = p_2 \circ h \equiv f_2 \circ h$. Now, let q(x) the polynomial of degree n-1 such that $h_1 \equiv h_2 \equiv q(x) \mod x^n$ Writing $p(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$. Then we get $p_1 \circ h_1 \equiv p_2 \circ h_2 \mod x^n$ and we are done.

Corollory. Two power series f and g are equal if, and only if $f \equiv g \mod x^n$ for all $n \in \mathbb{Z}^+$.

Corollory. $(f_1 + f_2) \circ h = (f_1 \circ h) + (f_2 \circ h)$, and $(f_1 f_2) \circ h = (f_1 \circ h)(f_2 \circ h)$. That is, composition of power series distributes over the addition and multiplication of power series.

Corollory. Provided that ord $f_2 = 0$, then

$$\left(\frac{f_1}{f_2}\right) \circ h = \frac{f_1 \circ h}{f_2 \circ h}$$

Example 2.2. Consider the power series for $\frac{1}{\sin x}$. We have by definition that

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = x(1 - \frac{x^2}{3!} + \frac{x^4}{5!})$$

so that

$$\frac{1}{\sin x} = \frac{1}{x(1 - \frac{x^2}{3!} + \frac{x^4}{5!})} = \frac{1}{x}(1 + \frac{x^2}{3!} - \frac{x^4}{5!} + \left(\frac{x^2}{3!}\right)^2 + \dots) = \frac{1}{x} + \frac{x}{3!} + \left(\frac{1}{(3!)^2} - \frac{1}{5!}\right)x^3 + \dots$$

2.2 Convergent Power Series

For the remainder of this chapter, we consider only formal power series if z over \mathbb{C} ; i.e. all power series in $\mathbb{C}[[z]]$.

Definition. Let $\{z_n\}_{n\in\mathbb{Z}^+}$ a sequence of complex numbers, and consider the series $\sum_{n=0}^{\infty} z_n$. We define the *n*-th partial sum to be

$$s_n = \sum_{k=1}^n z_k$$

and we say that the series **converges** if there exists a $w \in \mathbb{C}$ for which $\lim \{s_n\} = w$ as $n \to \infty$. We call w the **sum** of the series.

Lemma 2.2.1. Let $A = \sum \alpha_n$ and $B = \sum_n be$ convergent series with n-th partial sums s_n and t_n . Then the sum and product of A and B converge, with

$$A + B = \sum (\alpha_n + n)$$
 and $AB = \lim_{n \to \infty} \{s_n t_n\}$

Definition. Let $\sum \alpha_n$ a series of complex numbers. We say that $\sum \alpha_n$ converges absolutely if the series of real numbers $\sum |\alpha_n|$ converges.

Lemma 2.2.2. If $\sum \alpha_n$ is a series of complex numbers which converges absolutely, then it converges.

Proof. Let $s_n = \sum_{k=1}^n \alpha_k$, then for $m \le n$, notice that $s_n - s_m = \alpha + m_1 + \dots + \alpha_n$, hence $|s_n - s_m| \le \sum_{k=m+1}^n |\alpha_k|$. By absolute convergence, let $\varepsilon > 0$ then there exists an N > 0 such that $\sum |\alpha_k| < \varepsilon$ whenever $m, n \ge N$. Thus $|s_n - s_m| < \varepsilon$ which makes $\sum \alpha_n$ converge.

Lemma 2.2.3. Let $\sum c_n$ be a convergent series of real numbers greater than 0. If $\{\alpha_n\}$ is a sequence of complex numbers such that $|\alpha_n| < c_n$ for all $n \in \mathbb{Z}^+$, then $\sum \alpha_n$ converges absolutely.

Proof. Notice that the partial sums $\sum_{k=1}^{n} c_n$ are bounded, hence $\sum |\alpha_n| \leq \sum c_k$.

Lemma 2.2.4. Let $\{\alpha_n\}$ a sequence of complex numbers. Then the following are true

- (1) If $\sum \alpha_n$ is absolutely convergent, then the series obtained by permuting terms is absolutely convergent, with the same limit.
- (2) If $\sum_{n=1}^{\infty} (\sum_{m=1}^{n} \alpha_{mn})$ is absolutely convergent, then so is the series $\sum_{m=1}^{n} (\sum_{n=1}^{\infty} \alpha_{mn})$, and they converge to the same limit.

Definition. Let $S \subseteq \mathbb{C}$, and let f be a bounded complex valued function on S. We define the **sup norm** of f on S to be

$$||f||_S = \sup_{z \in S} \{|f(z)|\}$$

Lemma 2.2.5. Let $S \subseteq \mathbb{C}$. The sup norm of a complex valued function on S defines a metric on \mathbb{C} .

Definition. Let $\{f_n\}_{n\in\mathbb{Z}^+}$ a sequence of complex valued functions on a set $S\subseteq\mathbb{C}$. We say that the $\{f_n\}$ converges uniformly on S if there exists a bounded complex valued function f on S such that for all $\varepsilon > 0$, there is an N > 0 for which

$$||f_n - f||_S < \varepsilon$$
 whenever $n \ge N$

We call $\{f_n\}$ Cauchy if for every $\varepsilon > 0$ there is an N > 0 for which

$$||f_n - f_m||_S < \varepsilon$$
 whenever $n, m \ge N$

Theorem 2.2.6. Let $\{f_n\}$ be a sequence of complex valued functions on a set $S \subseteq \mathbb{C}$. If $\{f_n\}$ is Cauchy, then it converges uniformly.

Proof. We have for all $z \in S$, take $f(z) = \lim f_n(z)$ as $n \to \infty$. Then for $\varepsilon > 0$ there is an N > 0 for which $|f_n(z) - f_m(z)| < \varepsilon$ for al $z \in S$ and $m, n \ge N$. Now, for $n \ge N$, take $m(n) \ge N$ large enough so that $|f(z) - f_{m(n)}(z)| < \varepsilon$. Then we get that

$$|f(z) - f_n(z)| \le |f(z) - f_{m(n)}(z)| + |f_{m(n)}(z) - f_n(z)| < \varepsilon + ||f_{m(n)} - f_n|| < 2\varepsilon$$

Corollory. If $\{f_n\}$ is bounded for all $n \in \mathbb{Z}^+$, then so is f.

Definition. We say a series of complex valued functions on a domain $S \subseteq \mathbb{C}$, $\sum f_n$ converges uniformly if the sequence $\{s_n\}$ of *n*-th partial sums converges uniformly. We say that $\sum f_n$ converges absolutely if for all $z \in S$, $\sum |f_n(z)|$ converges.

Theorem 2.2.7 (The Comparison Test). Let $\{c_n\}$ be a sequence of real numbers greater than 0 such that $\sum c_n$ converges. Let $\{f_n\}$ a sequence of complex valued functions on a domain $S \subseteq \mathbb{C}$ such that $||f_n||_S \leq c_n$ for all $n \in \mathbb{Z}^+$. Then the series $\sum f_n$ converges uniformly, and converges absolutely.

Proof. Let $m \leq n$. Then $||s_n - s_m|| \leq \sum_{k=m+1}^n ||f_k||_S \leq \sum c_k$. Since $\sum c_k$ converges, the uniform and absolute convergnce of $\sum f_n$ follows.

Theorem 2.2.8. Let $S \subseteq \mathbb{C}$ and $\{f_n\}$ a sequence of continuous complex valued functions on S. If $\{f_n\}$ converges uniformly to a complex valued function f on S, then f is also continuous.

Proof. let $\alpha \in S$ and n be large enough such that $||f - f_n||_S < \varepsilon$ for some $\varepsilon > 0$. By the continuity of f_n at α , choose 0 such that $|f_n(z) - f_n(\alpha)| < \varepsilon$ whenever $|z - \alpha| < Thenobservethat |f(z) - f(\alpha)| \le |f(z) - f_n(z)| + |f_n(z) - f_n(\alpha)| + |f_n(\alpha) - f(\alpha)| < 2||f - f_n|| + \varepsilon < 3\varepsilon$

Theorem 2.2.9. Let $\{a_n\}$ a sequence of complex numbers, and let r > 0 such that $\sum |a_n| r^n$ converges. Then the power series $\sum a_n z^n$ converges absolutely and converges uniformly whenever $|z| \leq r$.

Example 2.3. (1) Let r > 0 and consider the series

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Then $\exp z$ converges absolutely and uniformly whenever $|z| \leq r$. Indeed, let $c_n = \frac{r^n}{n!}$, then

$$\frac{c_{n+1}}{c_n} = \frac{r}{n+1}$$

Taking $n \geq 2r$, notice that $\frac{c_{n+1}}{c_n} \leq \frac{1}{n}$ so that $c_{n+1} \leq \frac{1}{2}c_n$ for n large enough. Therefore there exists an n_0 such that

$$c_n \le \frac{C}{2^{n-n_0}}$$
 for some constant C

whenever $n \geq n_0$. Comparing this with the geometric series, we get absolute and uniform convergence as was required. Moreover, notice that the series $\exp z$ defines a continuous function on all of \mathbb{C} .

(2) Take the series $S(z) = \sum (-1)^n \frac{2^{2n+1}}{(2n+1)!}$ and $C(z) = \sum (-1)^n \frac{2^{2n}}{(2n)!}$. Both S(z) and C(z) converge absolutely and uniformly for all $|z| \leq r$. Moreover, they define continuous functions on all of \mathbb{C} .

Theorem 2.2.10. Let $\sum a_n z^n$ a power series. If it does not converge absolutely for all $z \in \mathbb{C}$, then there exists a real number r > 0 such that $a_n z^n$ converges absolutely whenever $|z| \leq r$.

Proof. Suppose that $\sum a_n z^n$ does not converge absolutely for all $z \in \mathbb{C}$. Let $r = \sup_{s \geq 0} \{s\}$ where $\sum a_n s^n$ converges. Then notice that $\sum |a_n||z|^n$ diverges wheneer |z| > r and converges when |z| < r, by the comparison test.

Definition. The radius of convergence of a power series $\sum a_n z^n$ is a number r > 0 for which the series converges absolutely whenever |z| < r, and diverges whenever |z| > r. $\sum a_n z^n$ converges absolutely for all $z \in \mathbb{C}$, then we write $r = \infty$. We call $\sum a_n z^n$ a convergent power series if $r \neq 0$, and we say that it converges on an open ball B(0, r).

Theorem 2.2.11. Let $\sum a_n z^n$ a convergent power series with radius of convergence r. Then

$$\frac{1}{r} = \limsup \sqrt[n]{|a_n|}$$

If r = 0, then the sequence of points $\{\sqrt[n]{a_n}\}$ is not bounded.

Proof. Let $t = \limsup \sqrt[n]{|a_n|}$, suppose first that $t \neq 0$ and that $t \neq \infty$. Given $\varepsilon > 0$, there is a finite number of points $n \in \mathbb{Z}^+$ for which $\sqrt[n]{|a_n|} \geq t + \varepsilon$. Thus, for all but finitely many n, we get $|a_n| < (t+\varepsilon)^n$, and $\sum a_n z^n$ converges if $|z| < \frac{1}{t+\varepsilon}$. By comparison with the geometric series, we conclude that $r \geq \frac{1}{t+\varepsilon}$ for all $\varepsilon > 0$; that is

$$r \ge \frac{1}{t}$$

Conversely, given $\varepsilon > 0$, there exist infinitely many $n \in \mathbb{Z}^+$ such that $\sqrt{|a_n|} \ge t - \varepsilon$, and hence $|a_n| \ge (t - \varepsilon)^n$. So we get that $\sum a_n z^n$ does not converge if $r = \frac{1}{t - \varepsilon}$, and its radius of convergence satisfies $r \le \frac{1}{t - \varepsilon}$ for all $\varepsilon > 0$. That is

$$r \le \frac{1}{t}$$

and equality is established.

Corollory. If $\lim \sqrt[n]{|a_n|} = t$ exists, then $r = \frac{1}{t}$.

Corollory. If $\sum a_n z^n$ has radius of convergence r > 0, then there exists a C > 0 such that if $A > \frac{1}{r}$, then $|a_n| \leq CA^n$ for all n.

Example 2.4. (1) The radius of convergence of the series $\sum n!z^n$ is r=0, since $\sqrt[n]{n!}$ is unbounded as $n\to\infty$.

- (2) The radius of convergence for the series $\exp z = \sum \frac{z^n}{n!}$ is $r = \infty$, as $\sqrt[n]{\frac{1}{n!}} \to 0$ as $n \to \infty$. That is, the series $\exp z$ converges on all of \mathbb{C} .
- (3) The radius of convergence of $\sum \frac{n!}{n^n} z^n$ is r = e, where e is Euler's constant. Observe that $\lim \frac{n!}{n^n} = \frac{1}{e}$.

Theorem 2.2.12 (The Ratio Test). If $\{a_n\}$ is a sequence of positive real numbers, for which $\lim \frac{a_{n+1}}{a_n} = A$ exists, then $\lim \sqrt[n]{a_n} = A$.

Proof. Suppose that A > 0, given $\varepsilon > 0$, take n_0 such that $A - \varepsilon \leq \frac{a_{n+1}}{a_n} \leq A + \varepsilon$, for all $n \geq n_0$. Without loss of generality, suppose that $\varepsilon < A$, so that $A - \varepsilon > 0$. Then

$$a_n = a_1 \prod_{k=1}^{n_0 - 1} \frac{a_k + 1}{a_k} \prod_{k=n_0}^n \frac{a_k + 1}{a_k}$$

By induction, there exists constants $C_1(\varepsilon)$ and $C_2(\varepsilon)$ suc that

$$C_1(\varepsilon)(A-\varepsilon)^{n-n_0} \le a_n \le C_2(\varepsilon)(A+\varepsilon)^{n-n_0}$$

Put $C_1'(\varepsilon) = C_1(\varepsilon)(A-\varepsilon)^{-n_0}$ nad $C_2'(\varepsilon) = C_2(\varepsilon)(A+\varepsilon)^{-n_0}$, then

$$(A-\varepsilon)\sqrt[n]{C_1'(\varepsilon)} \le \sqrt[n]{a_n} \le (A+\varepsilon)\sqrt[n]{C_2'(\varepsilon)}$$

Then, there exists $N \ge n_0$ such that $\sqrt[n]{C_1'(\varepsilon)} = 1 + 1(n)$, with $|1(n)| \le \frac{\varepsilon}{A-\varepsilon}$ and $\sqrt[n]{C_2'(\varepsilon)} = 1 + 2(n)$ and $|2(n)| \le \frac{\varepsilon}{A+\varepsilon}$ for all $n \ge N$. Then

$$A - \varepsilon + 1(n)(A - \varepsilon) \le \sqrt[n]{a_n} \le A + \varepsilon + 2(n)(A + \varepsilon)$$

which shows that

$$|\sqrt[n]{a_n} - A| < 2\varepsilon$$

For the case that A = 0, it is easy.

Example 2.5. Let $a \neq 0$ a complex number. We define the **binomial coefficient** of α **choose** n, where $n \in \mathbb{Z}^+$ to be

$$\binom{\alpha}{n} = \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!}$$

and we define the binomial sereies

$$(1+z)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} z$$
 where ${\alpha \choose 0} = 1$

By the ratio test, we get that r=1 if α is not an integer greater than 0.

2.3 Properties on Power Series

Theorem 2.3.1. Let f(z) and g(z) be formal power series which converge absolutely on the open ball B(0,r), r > 0. Then f + g, fg, and αf , where $\alpha \in \mathbb{C}$, also converge on B(0,r). Moreover, we have

(1)
$$(f+g)(z) = f(z) + g(z)$$

$$(2) (fg)(z) = f(z)g(z)$$

(3)
$$(\alpha f)(z) = \alpha f(z)$$

Proof. Let $f(z) = \sum a_n z^n$ and let $g(z) = \sum b_n z^n$. Then $fg(z) = \sum c_n z^n$, where $c_n = \sum_{k=0}^n a_k b_{n-k}$. Now, let 0 < r < s, then there exists a C > 0 such that for all $n \in \mathbb{Z}^+$, $|a_n| \leq \frac{C}{s^n}$, and $|b_n| \leq \frac{C}{s^n}$. So we have

$$|c_n| \le \sum |a_k b_{n-k}| \le (n+1) \frac{C^2}{n}$$

notice that

$$\lim \sqrt[n]{(n+1)C} - 1$$

so that $\limsup \sqrt[n]{|c_n|} = \frac{1}{s}$ for all s < r. Thus we have

$$\limsup \sqrt[n]{|c_n|} \le \frac{1}{r}$$

and so fg converges absolutely on B(0,r). Notice also that $\sum |a_k| |b_{n-k}| |z|^n$ also converges as well.

Now, let $f_N(z) = a_0 + a_1 z + \cdots + a_N z^N$ and $g_N(z) = b_0 + b_1 z + \cdots + b_N z^N$ be polynomials in z over \mathbb{C} of degree N (i.e. the terms of f and g of order less than N). Then we get $f(z) = \lim_{N \to \infty} f_N(z)$ and $g(z) = \lim_{N \to \infty} g_N(z)$ as $N \to \infty$, moreover

$$|(fg)_N(z) - f_N(z)g_N(z)| \le \sum_{n=N+1}^{\infty} \sum_{k=0}^{n} |a_k| |b_{n-k}| |z|^n$$

which converges, that is, $(fg)(z) = \lim_{n \to \infty} f_n g_n = f(z)g(z)$.

Theorem 2.3.2. Let $f(z) = \sum a_n z^n$ and $g(z) = b_n z^n$. Then the following are true

- (1) If f is nonconstant and convergent with radius of convergence r > 0 and f(0) = 0, then there exists an s > 0 for which $f(z) \neq 0$ whenever $|z| \leq s$, provided $z \neq 0$.
- (2) If f and g converge, with f(x) = g(x) for all x in an infinite set having 0 as a limit point, then f(z) = g(z) for all z; i.e. $a_n = b_n$ for all $n \in \mathbb{Z}^+$.

Proof. Write $f(z) = amz^m + A = a_mz^m(1 + b_1z + b_2z^2 + \dots) = a_mz^m(1 + h(z))$ where $a_m \neq 0$, and $h(z) = b_1z + b_2z^2 + \dots$ a power series having radius of convergence r > 0 and 0 constant term. Then for |z| small, |h(z)| is small, and hnece $1 + h(z) \neq 0$. Now, if $z \neq 0$, then $a_mz^m \neq 0$ and we are done with the first assertion.

Now, let $h(t) = f(t) - g(t) = \sum (a_n - b_n)t^n$. Let S have an infinite set having 0 as a limit point. Then for every $x \in S$, h(x) = 0, by above, we get that $h(z) = 0(z) = 0 + 0z + 0z^2 + \dots$; i.e. $a_n - b_n = 0$ for all $n \in \mathbb{Z}^+$, and we are done with the second assertion.

Example 2.6. (1) There exists at most one convergent power series $f(z) = \sum a_n z^n$ for which $f(x) = e^x$ for all $x \in [-\varepsilon, \varepsilon]$, given some $\varepsilon > 0$. Then any extension of e^x to \mathbb{C} is unique, moreover, the series $\exp z = \sum \frac{z^n}{n!}$ coincides with that extension, i.e. $\exp z = e^z$.

Moreover, we have that

$$\exp iz = \sum \frac{(iz)^n}{n!}$$

so that $\exp iz = C(z) + iS(z)$, where S(z) and C(z) were defined in example 2.3. It can also be shown that C(z) and S(z) coincide with expanding cos and sin to \mathbb{C} ; i.e. $C(z) = \cos z$ and $S(z) = \sin z$.

In fact, if f(z) and g(z) are power series, with constant term 0, then $(\exp f(z))(\exp g(z)) = \exp(f(z) + g(z))$. Indded, by defition, we have that

$$\exp(f(z) + g(z)) = \sum \frac{(f(z) + g(z))^n}{n!}$$

On the other hand, we get

$$(\exp f(z))(\exp g(z)) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{f(z)^n g(z)^{n-k}}{k!(n-k)!} = \sum \frac{(f(z) + g(z))^n}{n!}$$

Taking f(z) = z and g(w) = w (i.e. the constant series $0 + 1z + 0z^2 + \ldots$ and $0 + 1w + w^2 + \ldots$). We get $(\exp z)(\exp w) = \exp(z + w)$; and we get the familiar properties for e^x extended to the complex function $\exp z = e^z$.

- (2) Let C(z) and S(z) the power series for which $\exp z = C(z) + iS(z)$. Notice that the series $S(z)^2 + C(z)^2$ has radius of convergence 1, indeed, $S(z)^2 + C(z)^2 = 1$, since there exists at most one series with this property, the series $1 + 0z + 0z^2 + \ldots$ Thus $\sin z$ and $\cos z$ have the property that $\sin^2 z + \cos^2 z = 1$.
- (3) Consider the binomial series $B(z) = \sum_{n=0}^{\infty} {n \choose n} z^n$, for $\alpha = \frac{1}{m}$, $m \in \mathbb{Z}^+$. Then B(z) has radius of convergence r = 1. Moreover, by some elementary calculus, it can be shown that

$$B(z)^m = z + x$$
 for all $x \in \mathbb{R}$ small enough

Thus $B(z)^m = 1 + z$, and so the series $(1+z)^{\frac{1}{m}}$ converges whenever |z| < 1.

Definition. Let $f(z) = \sum a_n z^n$ be a formal power series, and let $\phi(z) = \sum c_n z^n$ a formal power series with nonnegative real coefficients. We say that f is **dominated** by ϕ if $|a_n| \leq c_n$ for al $n \in \mathbb{Z}^+$. We write $f = O(\phi)$, or $f \leq \phi$.

Lemma 2.3.3. If ϕ and ψ are power series with nonnegative real coefficients, and let f(z) and g(z) be formal power series. Then if $f \leq \phi$ an $g \leq \psi$, then

$$f + g \leq \phi + \psi$$
 and $fg \leq \phi \psi$

Theorem 2.3.4. Let f(z) be a convergent power series with radius of convergence r > 0 and nonzero constant term. Let g be the inverse of f. Then g is also convergent with nonzero radius of convergence.

Proof. Without loss of generality, suppose that the constant term of f is 1. That is

$$f(z) = 1 + a_1 z + a_2 z^2 + \dots = 1 - h(z)$$

where h(z) is a power series with constant term 0. Then there exists an A > 0 such that $|a_n| \le A$ for all $n \ge 1$. Choosing A large enough, choose C = 1. Then

$$\frac{1}{f(z)} = \frac{1}{1 - h(z)} = 1 + h(z) + h(z)^2 + \dots$$

But h(z) is dominated by the series $\sum A^n z^n = \frac{Az}{1-Az}$. SO that $\frac{1}{f(z)} = g(z)$ satisfies

$$g(z) \leq 1 + \frac{Az}{1 - Az} + (\frac{Az}{1 - Az})^2 + \dots = \frac{1}{1 - \frac{Az}{1 - Az}} = (1 - Az)(1 + 2Az + (2Az)^2 + \dots)$$

and

$$\frac{1}{1 - \frac{Az}{1 - Az}} = (1 - Az)(1 + 2Az + (2Az)^2 + \dots) \le (1 + Az)(1 + 2Az + (2Az)^2 + \dots)$$

That is, g(z) is dominated by a convergent power series; hence g converges and has nonzero radius of convergence.

Theorem 2.3.5. Let $f(z) = \sum a_n z^n$ and $h(z) = \sum b_n z^n$ be convergent power series where the constant term of h is 0. If f is absolutely convergent whenever $|z| \leq r$, given r > 0, and there is an s > 0 for which

$$\sum |b_n| s^n \le r$$

then the formal power series $f \circ h(z) = \sum a_n (\sum b_k z^k)^n$ converges absolutely whenever $|z| \leq s$.

Proof. Let $g(z) = \sum c_n z^n$. Then

$$g(z) \leq \sum |a_n| (\sum |b_k|)^n$$

by hypothesis, we have that $\sum |a_n|(\sum |b_k|)^n$ converges absolutely whenever $|z| \leq s$, so that g does as well.

Now, let $f_N(z) = a_0 + a_1 z + \cdots + a_{N-1} z^{N-1}$ a polynomial of degree N-1. Observe then that

$$f \circ h(z) - f_N \circ h(z) \preceq \sum |a_n| (\sum |b_k|)^n$$

so that $f \circ h(z) = g(z)$. By absolute convergence, given $\varepsilon > 0$, there is an $N_0 > 0$ such that

$$|g(z) - f_N \circ h(z)| < \varepsilon$$
 whenever $N \ge N_0$ and $|z| \le s$

Since $f_N \to f$ as $N \to \infty$ on the open ball B(0,r), choose N_0 large enough so that $|f_N \circ h(z) - f \circ h(z)| < \varepsilon$ for all $N \ge N$; i.e. $|g(z) - f \circ h(z)| < 2\varepsilon$.

- **Example 2.7.** (1) Let $m \in \mathbb{Z}^+$ and h(z) a convergent power series with constant term 0. We take the m-th root $\sqrt[m]{1+h(z)}$ using the binomial series with $\alpha = \frac{1}{m}$. Thus $B \circ h(z) = B(h(z))$ converges.
 - (2) Define $f(w) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{w^n}{n}$. Define $\log z$ for all |z-1| < 1 by $\log z = f(z-1)$. It can be shown that $\exp(\log z) = z$.

2.4 Analytic Functions

Definition. We say a complex valued function $f: U \to \mathbb{C}$ on an open domain U of \mathbb{C} is **analytic** at a point $z_0 \in U$ if there exists a convergent power series $\sum a_n(z-z_0)^n$ with radius of convergence r > 0 for which

$$f(z) = \sum a_n (z - z_0)^n$$

and we call $\sum a_n(z-z_0)^n$ the **power series expansion** of f at z_0 . We say that f is **analytic** on U if it is analytic at every point of U. If $S \subseteq \mathbb{C}$, we say that f is **analytic** on S if f is the restriction of an analytic function on some open set containing S. If $a_0 = 0$ in the power series, we call z_0 a **zero** of f if $f(z_0) = 0$.

Theorem 2.4.1. Let f and g be analytic functions on an open domain U of \mathbb{C} . Then f+g, and fg are analytic on U.

Proof. Let $f(z) = \sum a_n(z-z_0)$, $g(z) = \sum b_n(z-z_0)^n$ for any $z_0 \in U$. Then $(f+g)(z) = \sum (a_n + b_n)(z - z_0)^n$ and $(fg)(z) = \sum c_n(z - z_0)^n$. Since the power series expansions of f and g at z_0 are convergent, the power series expansions of f+g and fg at z_0 are also convergent by theorem 2.3.1. Therefore f+g and fg are analytic.

Corollory. $\frac{f}{g}$ is analytic on U provided that $g(z) \neq 0$ for all $z \in U$.

Theorem 2.4.2. Let U, V be open sets in \mathbb{C} . If $g: U \to \mathbb{C}$ and $f: V \to \mathbb{C}$ are analytic functions on U and V, respectively, and $g(U) \subseteq V$, then $f \circ g: U \to \mathbb{C}$ is analytic on U.

Proof. Since compositions of convergent power series are convergent, this makes $f \circ g$ convergent.

Theorem 2.4.3. Let $f(z) = \sum a_n z^n$ be a convergent power series with radius of convergence r > 0. Then f is analytic on the open ball B(0,r) as a complex valued function.

Proof. Choose $z_0 \in B(0,r)$ so that $|z_0| < r$ and let s > 0 such that $|z_0| + s < r$. Then f can be represented as a power series at z_0 which converges absolutely on an open ball $B(z_0, s)$ (see figure 2.1). Writing $z = z_0 + (z_0 - z_0)$ so that $z^n = (z_0 + (z_0 - z_0))^n$, we have that

$$f(z) = \sum_{n=0}^{\infty} a_n \sum_{k=0}^{n} \binom{n}{k} z_0^{n-k} (z - z_0)^k$$

Now, if $|z - z_0| < s$, then $|z_0| + |z - z_0| < r$ and the series

$$\sum_{n=0}^{\infty} |a_n|(|z_0| + |z - z_0|)^n$$

converges. Interchanging the order of summation gives us the required result.

Figure 2.1:

Example 2.8. (1) Consider $f(z) = \frac{z^2}{z+2}$ and $z_0 = 1$. Writing z = 1 + (z-1), and z+2=3+(z-1), then $z^2=1+2(z-1)+(z-1)^2$, $z+2=3(1+\frac{1}{3}(z-1))$, and

$$\frac{1}{z+2} = \frac{1}{3}(1 - \frac{1}{3}(z-1) + \frac{1}{3^2}(z-1)^2) - \frac{1}{3^3}(z-1)^3 + \dots$$

Thus, we get the power series expansion of f at $z_0 = 1$ to be

$$\frac{z^2}{z+2} = (1+2(z-1)+(z-1)^2+\dots)(\frac{1}{3}(1-\frac{1}{3}(z-1)+\frac{1}{3^2}(z-1)^2)-\frac{1}{3^3}(z-1)^3+\dots)$$
$$=\frac{1}{3}(1+\frac{5}{3}(z-1)+(\frac{1}{3}+\frac{1}{3^2})(z-1)^2)+(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3})(z-1)^3+\dots$$

2.5 Differentiation of Power Series

Definition. Let B(0,r) be an open ball in \mathbb{C} with r>0. A function f on B(0,r) for which there exists a convergent power series $\sum a_n z^n$ or radius of convergence greater than or equal r for which

$$f(z) = \sum a_n z^n$$

is said to admit a power series expansion on B(0,r). We define the formal derived series of $\sum a_n z^n$ to be the series

$$\sum na_n z^{n-1}$$

Theorem 2.5.1. Of f(z) is a complex valued function admitting a power series expansion of radius of convergence r > 0. Then the following are true.

- (1) The formal derived series of the power series expansion of f is convergent, with the same radius of convergence.
- (2) If f is holomorphic on B(0,r), then the complex derivative of f on B(0,r) admits as power series expansion, the formal derived series of the power series expansion of f; that is if $f(z) = \sum a_n z^n$, then

$$f'(z) = \sum nz_n z^n$$

Proof. Observe that we have $\limsup \sqrt[n]{|a_n|} = \frac{1}{r}$, but that $\limsup \sqrt[n]{|na_n|} = \limsup \sqrt[n]{n} \sqrt[n]{|a_n|}$. Then the sequences $\{\sqrt[n]{|a_n|}\}$ and $\{\sqrt[n]{|na_n|}\}$ have the same limit superior; so that $\limsup \sqrt[n]{|na_n|} = \frac{1}{r}$. Now, since the power series expansion of f converges, and has the same radius of convergence as its formal derived series, then the formal derived series

$$\sum na_n z^{n-1}$$

also converges on the same radius.

Now, let |z| < r and \dot{z}_{0} , such that $|z| + \dot{r}_{1}r$. Cisider $h \in \mathbb{C}$ such that $|h| < \dot{r}_{1}$, then we have $f(z+h) = \sum a_{n}(z+h) = \sum a_{n$

$$p_n(z,h) = \sum_{k=2}^{n} \binom{n}{k} z^{n-k} h^{k-2}$$

Then we have the estimate

$$|p_n(z,h)| = \sum_{k=2}^n \binom{n}{k} k - 2|z|^{n-k} = p(|z|,)$$

Subtracting f(z), we get

$$f(z+h) - f(z) - \sum na_n z^{n-1}h = h^2 \sum a_n p_n(z,h)$$

The series are absolutely convergent so that

$$\frac{f(z+h) - f(z)}{h} - \sum na_n z^{n-1} = h \sum a_n p_n(z,h)$$

Then for |h| <, $we have |\sum a_n p_n(z,h)| \le \sum |a_n||P_n(z,h)|) \le \sum |a_n|p_n(|z|,)$ Multiplying by h, and as $h \to 0$ we get $\lim |h \sum a_n p_n(z,h)| = 0$. Therefore

$$f'(z) = \sum na_n z^{n-1}$$

Corollory. If f is holomorphic in its domain, then the coefficients of the power series expansion of f, at some point z_0 in the domain of f are given by

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

Definition. Let $f: U \to \mathbb{C}$ a complex function on an open domain U of \mathbb{C} . If g is an holomorphic function such that g' = f, then we call g a **primitive** of f.

Example 2.9. the function $\frac{1}{z}$ is analytic on the domain $\mathbb{C}\setminus\{0\}$; the punctured complex plane. Indeed, for $z_0 \neq 0$, we get the power series expansion of $\frac{1}{z}$ at z_0 to be

$$\frac{1}{z} = \frac{1}{z_0} (1 - \frac{1}{z_0} (z - z_0) +)$$

which converges on the open ball B(0,r). Hence $\frac{1}{z}$ has a primitive on $B(z_0,r)$, which we may denote as $\log z$.

Bibliography

- [1] W. R. Wade, An introduction to analysis. Upper Saddle River, NJ: Pearson Education, 2004.
- [2] W. Rudin, Principles of mathematical analysis. New York: McGraw-Hill, 1976.