Cognitive States: Belief State Inference via Deep Learning

Tyler Osborne CSOM & MCAS 2023 CSCI 4961 Honors Thesis 5 May 2023

Agenda

- Background: Who Cares?
- II. Language Understanding (LU) Corpus
- III. Factbank Corpus & Unified DB Model
- IV. Data Transformations
- V. LU Experiments, Results & Insights
- VI. Future Work

Part I: Who Cares? Why is this an important topic in NLP?

Who Cares?

- When we speak, we convey information, but not all of that information is objective
- Often, what we convey is wrapped up in a belief
 - "John said Mary is coming to dinner."
 - To what degree does John believe in the factuality of his utterance?

Who Cares?

"John said Mary is coming to dinner."

- To us, it is abundantly clear that John fully believes that his utterance is true; we want Al to have the same ability
- "John guessed that Mary might come to dinner."

Who Cares?

- This sort of analysis brings us closer to capturing the full *private state* or *cognitive* state of someone in a text
 - Set of sentiments & beliefs towards what they say
- For our purposes, the people are sources, the beliefs they express targets, and the degree to which the source believes in the factuality of their utterance, the label

Part II: Language Understanding (LU) Corpus

Language Understanding (LU) Corpus

Corpus: Collection of text

- LU is an <u>annotated</u> corpus
 - Humans have noted source-target pairs in the text and assigned each one a label
 - The author of a sentence itself is the default source
 - "Iraq <u>clears</u> visit by Ohio official."

LU Corpus

- LU's labels are:
 - CB for committed belief
 - "I am certain that..."
 - NCB for non-committed belief
 - "I am not sure but think that..."
 - "I hope that..."
 - NA for not applicable
 - No belief expressed

LU Corpus

"He <u>did not speak</u> to reporters in Jordan, but he <u>told</u> the Associated Press before leaving the United States that he hopes to '<u>separate</u> the <u>humanitarian work</u> from the <u>political issues</u>.'"

Issues with LU

LU is not a huge corpus (<7000 english words)

- Other corpora with source-target-label annotations exist, but combining them natively is next to impossible
 - Why?

Issues with LU

 However, if we could somehow port each individual corpus into a single, unified format, then we could combine them!

 Prof. Aviram and I developed such a representation, among other tasks we contributed to the project

Part III: Factbank & Unified Database Model

Factbank: A Natively Relational Corpus

- Factbank is another belief state annotation corpus falling under the source-target-label paradigm
 - Different label scheme

Table 1: Factuality values

VALUE	Descriptor	USE
		Committed Values
CT+	Certainly positive	According to the source, it is certainly the case that X.
PR+:	Probably positive	According to the source, it is probably the case that X.
PS+	Possibly positive	According to the source, it is possibly the case that X.
CT-	Certainly negative	According to the source, it is certainly not the case that X.
PR-	Probably negative	According to the source it is probably not the case that X.
PS-	possibly negative	According to the source it is possibly not the case that X.

Factbank: A Natively Relational Corpus

Sentence	Target Head	Source Text	Label
for an economy that many experts thought was once invincible.	invincible	Author	CT+
for an economy that many <i>experts</i> thought was once <u>invincible</u> .	invincible	experts_Author	CT+

LU vs. Factbank

IU

- Three labels
- Bona fide flat files (XML)
- Author-only annotations

Factbank

- Six labels
- Relational data stored as flat files
- Author & nested source annotations

Conclusion:

Factbank much more complex; impossible to (natively) combine!

Factbank: A Natively Relational Corpus

Unified Database Model: Entity-Relation Diagram

How can we unify data representations across corpora?

Unified DB Model: Data Transformations

- Goal: Preserve native data while inserting synthetic data where gaps appear
 - <u>Ex</u>: MPQA has a reported belief class,
 Factbank does not

Unified DB Model: Data Transformations

I. Unigram heads \leftrightarrow N-gram spans

A. Parse trees!

II. Additional Classes (Factbank: ROB, LU: O)

Quick Aside: Dependency Parse Trees

spaCy library in Python (displayCy)

Unigram Heads ↔ N-Gram Spans

- Goal: Extract embedded proposition containing the target (noun or verb phrase)
 - Parse trees contain noun/verb phrases

 Factbank target head words live inside one of these phrases or may head it

Additional Classes

- Factbank: Reported Belief (ROB)
 - Natively grouped with Uu

- LU: Other (O)
 - Natively unannotated

Using our shiny new dataset for deep learning

Experimental Methods

Task	Model(s)	Paradigm	Example Input	Example Output
End-to-End	Flan-T5	Extraction	John said Mary is coming to dinner.	(coming, CB)
End-to-End	Flan-T5	Annotation	John said Mary is coming to dinner.	John said Mary is [coming CB] to dinner.
Classification	Flan-T5,	N/A	Ex 1. coming John said Mary is coming to dinner.	 Ex 1. CB
i de la	BERT		Ex 2. to John said Mary is coming to dinner.	Ex 2. O

Experimental Methods

Five-fold cross validation

- Average of three runs
 - Random seeds 7, 21 & 42

Prediction Normalization (Zhang et al.)

• Python codebase (Zhang et al., Murzaku et al.)

End-to-End Extraction Paradigm on Flan-T5

Classifier	Metric	Value
Committed Belief	Macro-F1	0.706
Average of All Labels	Macro-F1	0.405

End-to-End Annotation Paradigm on Flan-T5

Classifier	Metric	Value	
Committed Belief	Macro-F1	0.730 (+0.024)	
Average of All Labels	Macro-F1	0.441 (+0.036)	

Classification on Flan-T5

Classifier	Metric	Value	
Committed Belief	Macro-F1	0.746	
Non-Committed Belief	Macro-F1	0.397	
Non-Applicable	Macro-F1	0.611	
Other	Macro-F1	0.967	
Average of all labels except other	Macro-F1	0.585	

Classification on BERT

Classifier	Metric	Value	
Committed Belief	Macro-F1	0.742	(-0.004)
Non-Committed Belief	Macro-F1	0.397	(+0.08)
Non-Applicable	Macro-F1	0.611	(+0.011)
Other	Macro-F1	0.967	(=)
Average of all labels except other	Macro-F1	0.585	(+0.021)

Part VI: Future Work

Future Work

- Improve minority-class performance by leveraging few-shot learning and/or synthesizing additional data via keyword substitutions (WordNet)
- II. Port additional corpora to unified format (MPQA, BEST)
- III. Investigate performance of LLMs on head ↔ span task versus spaCy or some other dependency parsing tool

Thank You!