On the front of your bluebook, please write: a grading key, your name, and instructor's name (Chang or Rubio). This exam is worth 100 points and has 7 questions. Show all work! Simplify all answers. Answers with no justification will receive no points. Please begin each problem on a new page. No notes, calculators, or electronic devices are permitted.

1. (32 points) Evaluate the following expressions.

(a)
$$\frac{d}{dx} \int_{0}^{1/x} (2t^3 - t^2) dt$$

(b)
$$\int \frac{\cos x}{(1+2\sin x)^2} dx$$

(c)
$$\int_{-6}^{0} \sqrt{36 - x^2} \, dx$$

(d)
$$\int_{2}^{16} \frac{5}{3x} \, dx$$

- 2. (14 points) Let $p(x) = x^3 + 2x^2$.
 - (a) Estimate the area under the curve on the interval [0,2] using n evenly spaced subintervals and right endpoints. (Find R_n .) Leave your answer unsimplified.
 - (b) Find the exact area under the curve by evaluating the limit as $n \to \infty$ of the expression you found in part (a).
 - (c) Check your answer by calculating $\int_0^2 p(x) \, dx$ using the Evaluation Theorem.
- 3. (12 points) A particle is moving along a straight line with velocity $v(t) = t^2 t$ (in m/s).
 - (a) What is the total displacement of the particle over the interval $0 \le t \le 4$?
 - (b) What is the total distance traveled over the same interval?
- 4. (10 points) Use one iteration of Newton's Method to approximate $\sqrt[5]{3}$ starting with an initial guess of $x_1 = 1$.

5. (10 points) Given that
$$f(x)$$
 is odd, $\int_0^1 f(2x) dx = 1$, and $\int_7^2 f(x) dx = 14$, find $\int_{-7}^0 f(x) dx$.

- 6. (12 points) Let f be a differentiable, one-to-one function, shown at right.
 - (a) Copy the graph of f and add a sketch of the inverse function f^{-1} .

$$f(1) = -\frac{1}{8}$$
 $f'(2) = -\frac{3}{2}$ $f(2) = -1$ $(f^{-1})'(-\frac{1}{8}) = -\frac{8}{3}$

find the following values.

i.
$$f^{-1}(-1)$$

ii.
$$f(f^{-1}(8))$$

iii.
$$\left(f^{-1}\right)'(-1)$$

7. (10 points) Suppose that the function f(x) has a positive derivative for all x and that f(1) = 0. Let

$$g(x) = \int_0^x f(t) \, dt.$$

Answer TRUE (if always true) or FALSE (if not always true) for the following statements. No explanation is necessary.

- (a) g(1) is negative.
- (b) g is increasing on (0,1).
- (c) g has a local maximum at x = 1.
- (d) g has an inflection point at x = 1.
- (e) The average value of g on [0,1] is negative.