Lecture 1 (Math Review)

Avi Herman

9/9/2024

Table of Contents

- Symbols & Notation
- Exponents
- Scientific Notation & E Notation
- Units
- Numerical Precision
- Trigonometry
- Proportional Relationships
- Order-of-Magnitude Estimation
- Gravitational Law

Symbols & Notation

Symbol	Meaning
=	Equals
#	Not equal
\propto	Proportional to
E	Exponent value
• • •	Continued series

Exponents

Exponents (or powers) are shorthand for repeated multiplication. For instance:

- $a^2 = a \times a$ ("a squared")
- $a^3=a imes a imes a$ ("a cubed")
- $a^n = a \times a \times \cdots \times a$ ("n times")

Rules for exponents:

•
$$a^1 = a$$

•
$$a^0 = 1$$

•
$$a^{-n} = \frac{1}{a^n}$$

Example powers of 10:

•
$$10^6 = 1,000,000$$

•
$$10^{-3} = 0.001$$

Properties:

1.
$$a^m \times a^n = a^{m+n}$$

2.
$$\frac{a^m}{a^n} = a^{m-n}$$

3.
$$(a^m)^n = a^{m \times n}$$

Scientific Notation & E Notation

Scientific notation simplifies large/small numbers by expressing them as a small number multiplied by a power of 10. For example:

$$ullet$$
 $3.56 imes10^3$ becomes $3.56E+3$

$$\bullet$$
 $7.87 imes 10^{-4}$ becomes $7.87E-4$

Operations:

• Multiplication:
$$(2.5 \times 10^3) \times (4.3 \times 10^5) = (2.5 \times 4.3) \times 10^{3+5} = 10.75 \times 10^8 = 1.075 \times 10^9$$

• Division:
$$rac{4.3 imes10^5}{2.5 imes10^3}=rac{4.3}{2.5} imes10^{5-3}=1.72 imes10^2$$

Addition/Subtraction:

To add or subtract in scientific notation, first convert all numbers to the same power of 10:

$$ullet$$
 4.3 $imes$ 10⁵ $-$ 2.5 $imes$ 10³ $=$ 4.3 $imes$ 10⁵ $-$ 0.025 $imes$ 10⁵ $=$ (4.3 $-$ 0.025) $imes$ 10⁵ $=$ 4.275 $imes$ 10⁵

Units

Units are essential for expressing physical quantities, and errors in unit specification lead to significant issues. Common SI units:

$$ullet$$
 Length: $1\,km=10^3\,m$, $1\,cm=10^{-2}\,m$

$$\bullet \; {\rm Time:} \, 1 \, ns = 10^{-9} \, s$$

Conversion example:

To convert 1 cm to nanometers: $1\,cm=10^{-2}\,m=10^7\,nm$

Metric System Prefixes:

• Tera (T): $1\,T=10^{12}$

• Giga (G): $1\,G = 10^9$

• Mega (M): $1 M = 10^6$

• Kilo (k): $1\,k=10^3$

- Centi (c): $1\,c=10^{-2}$

• Milli (m): $1 m = 10^{-3}$

• Micro (\mu): $1 \, \mu = 10^{-6}$

• Nano (n): $1 n = 10^{-9}$

• Pico (p): $1 p = 10^{-12}$

Numerical Precision

Precision is critical when dealing with empirical data.

- Significant figures: Only write digits that are meaningful and supported by the measurement's precision.
- ullet Example: The dinosaurs were killed off **about** $6.5 imes10^7$ years ago, not exactly $6.50 imes10^7$ years.

To specify a number with an uncertainty:

ullet Example: 1.364 ± 0.003 implies the true value is between 1.361 and 1.367.

Trigonometry

For a right triangle:

• $\sin \phi = \frac{opposite}{hypotenuse}$ • $\cos \phi = \frac{adjacent}{hypotenuse}$ • $\tan \phi = \frac{opposite}{adjacent}$

Mnemonic: SOH-CAH-TOA

Example:

ullet If a=4 cm, b=3 cm, and c=5 cm, then $\sin\phi=rac{3}{5}=0.6$

Radians vs Degrees:

 $360^\circ=2\pi$ radians. Therefore, 1 radian = $rac{360^\circ}{2\pi}pprox 57.296^\circ$.

Proportional Relationships

Relationships between variables often take proportional forms:

- Direct Proportion: $a \propto b$
 - Example: The interest paid on a bank account is directly proportional to the balance.
- Inverse Proportion: $a \propto \frac{1}{b}$
 - o Example: If the length of a guitar string doubles, its frequency is halved.
- ullet Square Proportion: $a \propto b^2$
- ullet Inverse Square Proportion: $a \propto rac{1}{b^2}$

Proportionality can be written as an equation with a constant:

• Example: $f=\frac{C}{\ell}$, where f is frequency, ℓ is string length, and C is a constant depending on string tension and density.

Order-of-Magnitude Estimation

In physics, estimates are often good enough for practical purposes. The goal is to get the **order of magnitude** right, not exact values.

Example: Estimating the number of piano tuners in New York City.

- NYC population = 8 million.
- Estimate: 1 piano for every 100 people $\Rightarrow 80,000$ pianos.
- ullet Each tuner tunes 500 pianos per year $\Rightarrow 160$ tuners needed.

Gravitational Law

Newton's law of universal gravitation: $F = G rac{m_1 m_2}{d^2}$

Where:

- F is the gravitational force,
- ullet G is the gravitational constant,
- m_1 and m_2 are the masses of the two objects,
- ullet d is the distance between them.

Proportionality of Force:

- Proportional to mass: $F \propto m_1$, $F \propto m_2$.
- Inverse-square relation to distance: $F \propto \frac{1}{d^2}$.

Example:

• If the Earth-moon distance were halved, the gravitational force would increase by a factor of 4 due to the

Additional Exercises:

- 1. How many doctors are in the US?
- 2. How many subway cars does the NYC Transit Authority own?
- 3. How many humans have ever lived on Earth?

These questions invite you to apply proportional and order-of-magnitude reasoning to arrive at plausible estimates.