Advanced Microeconomics I Note 3: Consumer preference and utility

Xiang Han (SUFE)

Fall 2023

Properties of a consumer's preference relation

- ullet The consumer has a preference relation \succeq defined on $X=\mathbb{R}^L_+$.
- \succeq is rational iff it is complete and transitive.
- \succeq is **monotone** if for any $x, y \in X$, $x \gg y$ implies $x \succ y$.
- \succeq is **strongly monotone** if for any $x, y \in X$, $x \ge y$ and $x \ne y$ imply $x \succ y$.
- \succeq is **locally nonsatiated** if for any $x \in X$ and $\epsilon > 0$, there exists $y \in X$ such that $||y x|| < \epsilon$ and $y \succ x$.

Proposition. Strong monotonicity \mapsto monotonicity \mapsto local nonsatiation

- Given $x \in X$,
 - ▶ the *indifference set* of x: $\{y \in X : y \sim x\}$
 - ▶ the *upper contour set* of x: $\{y \in X : y \succeq x\}$
 - ▶ the *lower contour set* of x: $\{y \in X : x \succeq y\}$
- The preference relation \succeq is **convex** if for any $x \in X$, the upper contour set of x, $\{y \in X : y \succeq x\}$, is convex.
 - "diminishing marginal rate of substitution"
- \succeq is **strictly convex** if for any $x, y, z \in X$ with $y \succeq x$, $z \succeq x$, and $y \neq z$, we have $\alpha y + (1 \alpha)z \succ x$ for all $\alpha \in (0, 1)$.

3/9

Existence of utility function

 $u: X \to \mathbb{R}$ is a **utility function representing** \succeq on X if for any $x, y \in X$ we have: $x \succeq y$ if and only if $u(x) \ge u(y)$.

Proposition. If \succeq can be represented by a utility function, then \succeq is rational.

Can a rational preference relation always be represented by a utility function?

Consider the *lexicographic preference relation*: assume $X = R_+^2$; for any $x, y \in X$, let $x \succeq y$ if $x_1 > y_1$, or, $x_1 = y_1$ and $x_2 \ge y_2$.

Proposition. The lexicographic preference relation \succeq on $X=R_+^2$ is rational, strongly monotone and strictly convex. However, there does not exist a utility function representing \succeq .

- Some mathematical facts used in the proof of non-existence:
 - ▶ A set *S* is *countable* if there exists a one-to-one function $f: S \to \mathbb{N}$.
 - $ightharpoonup \mathbb{R}$ is not countable (in particular, \mathbb{R}_+ is not countable).
 - ▶ The set of rational numbers \mathbb{Q} is countable.
 - ▶ Between any two different real numbers, there exists a rational number.

- It turns out that a *continuity* condition on preferences is essential for the existence of a utility function.
- The preference relation \succeq on X is **continuous** if for any sequence $\{x^n\} \subseteq X$ with $x^n \to x$, and $y \in X$ we have (1) $x^n \succeq y$ for all n implies $x \succeq y$ (2) $y \succeq x^n$ for all n implies $y \succeq x$.
- It can be easily seen that \succeq is continuous if and only if for each $x \in X$, its upper contour set and lower contour set are closed.
- The lexicographic preference relation is not continuous.

Proposition. Suppose that \succeq on $X = R_+^L$ is rational, continuous and monotone. Then there exists a utility function that represents \succeq .

- In the proof, we need a concept of **weak monotonicity**: for any $x, y \in X$, $x \ge y$ implies $x \succeq y$.
- While strong monotonicity implies weak monotonicity (when

 is reflexive),
 there is on logical relation between monotonicity and weak monotonicity.
- When ≥ is continuous, monotonicity implies weak monotonicity.
 - ▶ Proof: Consider any $x, y \in X$ with $x \ge y$. Let $x^n = \left\{x + \frac{1}{n}e\right\}$, where e is a vector of 1; then $x^n \gg y$ for all n, hence $x^n \succ y$ for all n by monotonicity; since $x^n \to x$, by continuity we have $x \succeq y$.

Fall 2023

Proof. We prove this result by explicitly constructing a utility function that represents the rational, continuous and monotone preference relation \succ on R^{\perp}_{\perp} . Let $e = (1, 1, ..., 1)^T \in \mathbb{R}_+^L$ be a vector of one. Consider any $x \in \mathbb{R}_+^L$ and the following two sets of nonnegative real numbers

$$B = \{\alpha \ge 0 : \alpha e \succeq x\}$$

$$W = \{\alpha \ge 0 : x \succeq \alpha e\}$$

Since x > 0, by weak monotonicity $x \succ 0$. Hence $0 \in W \neq \phi$. It is obvious that there must exist some $\bar{\alpha} > 0$ such that $\bar{\alpha}e \gg x$. Then $\bar{\alpha}e \succ x$ by monotonicity. Hence $\bar{\alpha} \in B \neq \phi$. By transitivity, $\bar{\alpha}e \succ \alpha e$ for all $\alpha \in W$. Then by monotonicity $\bar{\alpha} > \alpha$ for all $\alpha \in W$. In sum, we know that both B and W are non-empty, B has a lower bound, 0, and W has an upper bound, $\bar{\alpha}$. Therefore, inf $(B) \in \mathbb{R}$ and $\sup (W) \in \mathbb{R}$.

Consider any convergent sequence $\{\alpha^n\}$ in B, with $\alpha^n \to \alpha$. Then $\alpha^n e \succeq x$ for all *n* and $\alpha^n e \to \alpha e$. By the continuity of \succ , $\alpha e \succ x$. Hence $\alpha \in B$ and B is closed. By a similar argument, W is also closed. So inf $(B) \in B$ and sup $(W) \in W$.

For any $\alpha_1 \in B$ and $\alpha_2 \in W$, by transitivity $\alpha_1 e \succ \alpha_2 e$. Then by monotonicity we must have $\alpha_1 > \alpha_2$. Hence inf (B) > sup (W). If the inequality is strict, then there exists some α with inf $(B) > \alpha > \sup(W)$. This implies that $\alpha e \not\succeq x$ and $x \not\succeq \alpha e$, contradicting to completeness. Therefore, inf $(B) = \sup (W)$. Let this common number be u(x). ←□ → ←□ → ← □ → ← □ →

Notice that, since $u(x) \in B$ and $u(x) \in W$, $u(x)e \sim x$.

We have constructed a function $u(\cdot)$ and it remains to show that it represents \succeq . Consider any $x, y \in \mathbb{R}^L_+$ with $x \succeq y$. $u(x)e \sim x \succeq y \sim u(y)e$, so by transitivity, $u(x)e \succeq u(y)e$. Then by monotonicity we must have $u(x) \ge u(y)$. On the other hand, consider any $x, y \in \mathbb{R}^L_+$ with $u(x) \ge u(y)$. Then by weak monotonicity, $u(x)e \succeq u(y)e$. Since $u(x)e \sim x$ and $u(y)e \sim y$, by transitivity we have $x \succeq y$.

8/9

Properties of a utility function

- More generally, it can be shown that if the preference relation is rational and continuous, then it can be represented by a *continuous* utility function.
 - If \succeq is not continuous, then it may also be represented by a utility function.
 - ▶ If \succeq can be represented by a continuous utility function, then \succeq is continuous.
 - If ≥ is continuous, it may also be represented by a utility function that is not continuous.
- Properties of preferences translate into properties of utility functions.
 - ► (Strong or weak) monotonicity, local nonsatiation
 - ▶ **Proposition.** Let u represent \succeq . u is (strictly) quasiconcave if and only if \succeq is (strictly) convex.
- Many properties of preferences or utility functions can be seen from the shape of *indifference curves*. An *indifference curve*, corresponding to a utility level u_0 , is the set $\{x \in X : u(x) = u_0\}$.
- Utility representation is not unique: if u represents \succeq , then any strictly increasing transformation of u still represents \succeq .
 - Ordinal properties of utility functions: invariant for any strictly increasing transformation
 - Cardinal properties of utility functions: not preserved under strictly increasing transformations

Fall 2023