GLIF: A Framework for Prototyping Symbolic Natural Language Understanding

Jan Frederik Schaefer

FAU Erlangen-Nürnberg

Prospects of Formal Mathematics – Bridging between informal and formal Hausdorff Research Institute for Mathematics

Bonn

July 9, 2024

How do we get from messy language to formal logic?

Montague [Mon70]: Look at a "nice" subset and map into logic.

How do we get from messy language to formal logic?

Montague [Mon70]: Look at a "nice" subset and map into logic.

"Ahmed paints and Berta is quiet."

"Ahmed doesn't paint."

$$p(a) \wedge q(b)$$

$$\neg p(a)$$

"Every student paints and is quiet."

"Nobody paints."

$$\forall x.s(x) \Rightarrow (p(x) \land q(x))$$
$$\neg \exists x.p(x)$$

"Ahmed isn't allowed to paint."

"Ahmed and Berta must paint."

$$\neg \Diamond p(a)$$

$$(\Box p(a)) \wedge \Box p(b)$$

Hand-waving is problematic:

"Ahmed paints. He is quiet." $\stackrel{?}{\leadsto}$ $p(a) \land q(a)$

Montague: Specify

grammar,

target logic,

semantics construction.

fixes NL subset

maps parse trees to logic

Example from [Mon74]

- T11. If $\phi, \psi \in P_t$ and ϕ, ψ translate into ϕ', ψ' respectively, then ϕ and ψ translates into $[\phi \land \psi], \phi$ or ψ translates into $[\phi \lor \psi]$.
- T12. If $\gamma, \delta \in P_{IV}$ and γ, δ translate into γ', δ' respectively, then γ and δ translates into $\hat{x}[\gamma'(x) \wedge \delta'(x)], \gamma$ or δ translates into $\hat{x}[\gamma'(x) \vee \delta'(x)]$.
- T13. If $\alpha, \beta \in P_T$ and α, β translate into α', β' respectively, then α or β translates into $\widehat{P}[\alpha'(P) \vee \beta'(P)]$.

Claim: That doesn't scale well → We need prototyping!

NLU Prototyping

```
> my-translate "Every student paints and is quiet." \forall x.s(x) \Rightarrow (p(x) \land q(x)) > my-answer "Every student is quiet. John is a student. Is John quiet?" \forall x.s(x) \Rightarrow q(x), s(j) \vdash^{?} q(j) yes
```

- Traditionally done in Prolog/Haskell
 - → requires a lot of work
- A dedicated framework might be better
 - \rightarrow only partial solutions exist
- Can we combine existing partial solutions?
 - → GLIF

Components of GLIF: GF

Components of GLIF: GF

Components of GLIF: Grammatical Framework [GF]

- Specialized for developing natural language grammars
- Separates abstract and concrete syntax
 make_S : NP -> VP -> S;
 abstract
 make_S np vp = np.s ++ vp.s!np.n; concrete
- Abstract syntax based on LF
- Comes with large library ≥ 36 languages

- Modular logic development and knowledge repr.
- Not specialized in one logical framework we use LF
- We will use MMT to:
 - 1 represent abstract syntax
 - 2 specify target logic and discourse domain theory
 - 3 specify semantics construction

- Modular logic development and knowledge repr.
- Not specialized in one logical framework we use LF
- We will use MMT to:
 - 1 represent abstract syntax
 - 2 specify target logic and discourse domain theory
 - 3 specify semantics construction

- Modular logic development and knowledge repr.
- Not specialized in one logical framework we use LF
- We will use MMT to:
 - 1 represent abstract syntax
 - 2 specify target logic and discourse domain theory
 - 3 specify semantics construction

Logic Syntax

Discourse Domain

idea: $\forall f$ or $\forall \lambda x. f(x)$ instead of $\forall x. f(x)$

- Modular logic development and knowledge repr.
- Not specialized in one logical framework we use LF
- We will use MMT to:
 - 1 represent abstract syntax
 - 2 specify target logic and discourse domain theory
 - 3 specify semantics construction

Semantics Construction

map symbols in abstract syntax to terms in logic/domain theory

Simple setting

More advanced

S	\mapsto	0
NP	\mapsto	ι
VP	\mapsto	$\iota \rightarrow \circ$
make_S	\mapsto	λn.λv.v n
ahmed	\mapsto	ahmed
l		

Example: Parsing + Semantics Construction

"Ahmed and Berta paint"

 \downarrow parsing

make_S (andNP ahmed berta) paint

↓semantics construction

 $(\lambda n. \lambda v. n\ v)\ ((\lambda a. \lambda b. \lambda p. a\ p\ \wedge\ b\ p)\ (\lambda p. p\ ahmed)\ (\lambda p. p\ berta))\ pair$

 \downarrow_{β} -reduction

paint ahmed ∧ paint berta

Example: Input Language for SageMath

• Can we make a natural input language for SageMath?

WolframAlpha-like

```
sage: g = AlternatingGroup(5)
sage: g.cardinality()
60
```

"Let G be the alternating group on 5 symbols. What is the cardinality of G?"

Example: Input Language for SageMath

Example: Input Language for SageMath

```
> Let G be the alternating group on 5 symbols.
# G = AlternatingGroup(5)
> Let |H| be a notation for the cardinality of H.
# def bars(H): return H.cardinality()
> What is |G|?
# print(bars(G))
60
> Let A_N be a notation for the alternating group on N symbols.
# def A(N): return AlternatingGroup(N)
> What are the cardinalities of A_4 and A_5?
# print(A(4).cardinality()); print(A(5).cardinality())
12
60
```

Levels of inference

- **1** Test: Does "Ahmed and Berta paint." $\models_{\mathcal{T}}$ "Berta paints."?
- **2** Model prediction: Yes, because $p(a) \land p(b) \vdash_{\mathcal{C}} p(b)$.
- 3 Correct result: Ask people.

Natural deduction in MMT: "Judgments as types"

```
\vdash : o \rightarrow type

s1 : \vdash p(a)\landp(b)

conjEr : {A:o} \rightarrow {B:o} \rightarrow \vdashA\landB \rightarrow \vdashB

s2 : \vdash p(b)

= conjEr p(a) p(b) s1
```

 \llbracket "Ahmed and Berta paint" $\rrbracket \vdash_{\mathcal{ND}} \llbracket$ "Berta paints" \rrbracket

\llbracket "Ahmed and Berta paint" $\rrbracket \vdash_{\mathcal{ND}} \llbracket$ "Berta paints" \rrbracket

Mini summary

- Parsing with GF
- Logic syntax in MMT
- Semantics construction in MMT
- (Manual) inference in MMT

"Bring your own logic"

Components of GLIF: ELPI

Components of GLIF: ELPI

• Implementation and extension of $\lambda Prolog$

 \approx Prolog + HOAS

- MMT can generate logic signatures
- Generic inference/reasoning step after semantics construction

MMT ELPI

"the ball has a mass of 5kg" \rightarrow AST \longrightarrow mass(theball, quant(5, kilo gram))

"the ball has a mass of 5kg" \longrightarrow AST \longrightarrow mass(theball, quant(5, kilo gram))

AST₁ $\longrightarrow \lambda x. E_{kin}(x, quant(12, milli Newton))$ "a kinetic energy of 12mN"

AST₂ $\longrightarrow \lambda x. E_{kin}(x, quant(12, meter Newton))$

"the ball has a mass of 5kg" \rightarrow AST \longrightarrow mass(theball, quant(5, kilo gram))

AST₁ $\longrightarrow \lambda x. E_{kin}(x, quant(12, milli Newton))$ "a kinetic energy of 12mN"

AST₂ $\longrightarrow \lambda x. E_{kin}(x, quant(12, meter \cdot Newton))$

```
In [20]: 

| parse "the ball has a mass of 5 k g and a kinetic energy of 12 m N" |
| (mass theball (quant 5 kilo gram)) ∧ (ekin theball (quant 12 milli Newton))
| (mass theball (quant 5 kilo gram)) ∧ (ekin theball (quant 12 meter·Newton))

In [21]: 
| parse "the ball has a mass of 5 k g and a kinetic energy of 12 m N" |
| construct | filter -predicate=filter_pred
| (mass theball (quant 5 kilo gram)) ∧ (ekin theball (quant 12 meter·Newton))
```

Example: ForTheL

```
parse -cat=DefinitionStatement "a subset of S is a set T such that every element of T belongs to S"

V[V_T:\tau](subset V_T V_S) \( \phi(set V_T) \( \text{NV} \) \( \text{NV
```

Example: "pairwise disjoint"

```
"A, B and C are pairwise disjoint" disjoint(A, B) \land disjoint(A, C) \land disjoint(B, C)
```

Approach 1

Semantics construction with lots of λ s: disjoint(A, B) \wedge disjoint(A, C) $\wedge \top \wedge$ disjoint(B, C) $\wedge \top \wedge \top \wedge \top$ Simplify with ELPI: disjoint(A, B) \wedge disjoint(A, C) \wedge disjoint(B, C)

22 / 24

difficult!

Example: "pairwise disjoint"

```
"A, B and C are pairwise disjoint" disjoint(A, B) \land disjoint(A, C) \land disjoint(B, C)
```

Approach 1

Semantics construction with lots of λ s:

difficult!

Simplify with ELPI:

 $disjoint(A, B) \wedge disjoint(A, C) \wedge disjoint(B, C)$

Approach 2

Semantics construction creates preliminary expression:

```
relNT disjoint (cons A (cons B (cons C nil)))
```

 $\mathsf{disjoint}(A,B) \land \mathsf{disjoint}(A,C) \land \top \land \mathsf{disjoint}(B,C) \land \top \land \top \land \top$

Convert with ELPI:

easier

 $\mathsf{disjoint}(A,B) \land \mathsf{disjoint}(A,C) \land \mathsf{disjoint}(B,C)$

Example: Epistemic Q&A

```
John knows that Mary or Eve knows that Ping has a dog. (S_1) Mary doesn't know if Ping has a dog. (S_2) Does Eve know if Ping has a dog? (Q)
```

$$egin{aligned} S_1 &= \Box_{john}(\Box_{mary}hd(ping) \lor \Box_{eve}hd(ping)) \ S_2 &= \neg(\Box_{mary}hd(ping) \lor \Box_{mary}\neg hd(ping)) \ Q &= \Box_{eve}hd(ping) \lor \Box_{eve}\neg hd(ping) \end{aligned}$$

Conclusion

Summary:

- GLIF = GF + MMT + ELPI
- Prototyping natural language understanding
- We use it for teaching

Examples:

- 1 "What is the cardinality of G?"
- 2 "a kinetic energy of 12mN"
- 3 "A, B and C are pairwise disjoint"
- 4 "John knows that Eve has a dog"

Pipeline Specification

Example: Tableaux Machine [KohKol:ramgpm03]

- Can use tableaux for model generation
- Tableau machine: pick "best" branch as model and continue there with next sentence
 like a human?

Example: Tableaux Machine [KohKol:ramgpm03]

- Can use tableaux for model generation
- Tableau machine: pick "best" branch as model and continue there with next sentence like a human?

Example: Tableaux Machine [KohKol:ramgpm03]

- Can use tableaux for model generation
- Tableau machine: pick "best" branch as model and continue there with next sentence like a human?

${\sf Background}\ {\sf Knowledge}$

```
"John talks to Mary."

talkto(j, m)

"Sasha is sad."

sad(s)
```


Example: Translation

- Two German words for "cousin", depending on the gender
- Two entries in abstract syntax: cousin_female and cousin_male
- Use inference to discard ASTs

Example: Translation

- Two German words for "cousin", depending on the gender
- Two entries in abstract syntax: cousin_female and cousin_male
- Use inference to discard ASTs

Example: Translation

- Two German words for "cousin", depending on the gender
- Two entries in abstract syntax: cousin_female and cousin_male
- Use inference to discard ASTs

Natural Deduction in MMT/LF

$$\frac{A \wedge B}{A} \wedge EI$$

$$\frac{A \vee B}{C} \wedge EI$$

$$\frac{A \vee B}{C}$$

Generating Provers in ELPI

LF rule $\wedge E1 : \Pi_{A:o}\Pi_{B:o} \vdash A \wedge B \rightarrow \vdash A$

ELPI equivalent

direct: $pi A \setminus pi B \setminus ded (and A B) \Rightarrow ded A$.

syn. sugar: ded A := ded (and A B).

Generating Provers in ELPI

LF rule $\wedge E1 : \Pi_{A:o}\Pi_{B:o} \vdash A \wedge B \rightarrow \vdash A$

ELPI equivalent

```
direct: pi A \setminus pi B \setminus ded (and A B) => ded A.

syn. sugar: ded A := ded (and A B).
```

Example: Or-Elimination

 $\mathsf{LF}\colon\quad \forall \mathsf{E}\ :\ \Pi_{\mathsf{A}:\mathsf{o}}\Pi_{\mathsf{B}:\mathsf{o}}\Pi_{\mathsf{C}:\mathsf{o}}\ \vdash \mathsf{A} \lor \mathsf{B}\ \to\ (\vdash \mathsf{A}\ \to\ \vdash \mathsf{C})\ \to\ (\vdash \mathsf{B}\ \to\ \vdash \mathsf{C})\ \to\ \vdash \mathsf{C}$

ELPI: ded C:- ded (or A B), ded A => ded C, ded B => ded C.

Example: Forall-Introduction

 $\mathsf{LF} \colon \quad \forall \mathsf{I} \; : \; \mathbf{\Pi}_{\mathsf{P} : \mathsf{t} \; \to \; \mathsf{o}} \; \left(\mathbf{\Pi}_{\mathsf{x} : \mathsf{t}} \; \vdash \mathsf{P} \; \mathsf{x} \right) \; \to \; \vdash \forall \mathsf{P}$

ELPI: ded (forall P) :- pi x \ ded (P x).

Controlling the Proof Search

- Problem: Search diverges
 searching harder than checking
- Solution: Control search with helper predicates:

inspired by ProofCert project by Miller et al.

- Intuition: Decide whether to apply rule
- Do not affect correctness
- Extra argument tracks aspects of proof state

```
Before: ded A := ded (and A B).
```

Now: ded X A := help/andEl X A B X1, ded X1 (and A B).

Helper Predicates

Name	Predicate	Argument
Iter. deepening	checks depth	remaining depth
Proof term	generates term	proof term
Product	calls other predicates	arguments for other predicates
Backchaining	Prolog's backchaining (\approx forward reasoning from axioms via \Rightarrow/\forall elimination rules)	pattern of formula to be proven (e.g. a conjunction)

Example helper: Iterative deepening

help/andEl (idcert N) _ _ (idcert N1) :- N > 0, N1 is N - 1.

Tableau Provers

LF:
$$\wedge^F: \Pi_{A:o}\Pi_{B:o} A \wedge B^F \rightarrow (A^F \rightarrow \bot) \rightarrow (B^F \rightarrow \bot) \rightarrow \bot$$

ELPI: closed X :- help/andF X A B X1 X2 X3, f X1 (and A B),
f/hyp A => closed X2, f/hyp B => closed X3.

With iterative deepening we get a working prover!

ightarrow Other helpers result in more efficient provers

References I

- [GF] GF Grammatical Framework. URL: http://www.grammaticalframework.org (visited on 09/27/2017).
- [Mon70] R. Montague. "English as a Formal Language". In: Reprinted in [Thomason:fp74], 188–221. Edizioni di Communita, Milan, 1970, pp. 189–224.
- [Mon74] Richard Montague. "The Proper Treatment of Quantification in Ordinary English". In: Formal Philosophy. Selected Papers. Ed. by R. Thomason. New Haven: Yale University Press, 1974.