

THE HAGUE UNIVERSITY

> Megan Meezen Daan Boesten Brian de Keijzer Victor Gómez Victor García Pol de Visser

Forecasting residential gas consumption with machine learning algorithms on weather data

General introduction

Why?

- Insights in reducing gas consumption
- Grid balancing
- Little research has been done

Methodology

How?

- Several machine learning algorithms have been compared
- Use as less features as possible
- Combining the following datasets:
 Nine months of smart meter data, provided by OPSCHALER (1 hour resolution)
 Weather data provided by KNMI (15 minutes resolution)

Available data

Distribution of the data acquisition from all dwellings.

Г									-			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
								1				
Ĭ						3						
						7						
					1							
		2										
			1									
			4 26				1					
-					2							
			4									

Individual house data

Data selection

- O Parameter with highest Pearson correlation coefficient P with the target gasPower has been selected, which is the outside temperature T.
- \circ Other parameters that suffix |P| < 0.2 with T are used as additional features.

Parameter	Unit	Description		
DD	deg	Wind direction		
DR	s	Precipitation time		
FX m/s		Maximum gust of wind at 10 m]	
FF	m/s	Windspeed at 10 m		
N	okta	Cloud coverage		
Р	hPa Outside pressure W/m² Global radiation			
Q				
RG	mm/h Rain intensity		15 min	
SQ	min			
Т	°C	Temperature at 1,5 m (1 minute mean)	1	
T10	°C	Minimum temperature at 10 cm		
TD	°C	Dew point temperature		
U	-	- Relative humidity at 1,5 m m Horizontal sight		
VV	m			
ww	-	Weather- and station-code	1	
Timestamp	-	Timestamp of data telegram (set by smart meter) in local time		
eMeter	kWh	Meter reading electricity delivered to client, normal tariff]	
eMeterReturn	kWh	Meter reading electricity delivered by client, normal tariff.	10 s	
eMeterLow	kWh	Meter reading electricity delivered to client, low tariff	103	
eMeterLowReturn	kWh	Meter reading electricity delivered by client, low tariff		
ePower	kWh	Actual electricity power delivered to client		
ePowerReturn	kWh	Actual electricity power delivered by client	1	
gasTimestamp -		Timestamp of the gasMeter reading (set by smart meter) in local time		
gasMeter	m ³	Last hourly value (temperature converted), gas delivered to client]	
gasPower m³/h		Difference between current and previous gasMeter value *		
hour of day	-	Hour of day from the timestamp *]	
day of week	-	Day of week when sample has been acquired *		
season	-	Season of the year when sample has been acquired *	I	

Figure 14. The Pearson correlations of all the available parameters.

Used data

Selected features:

FF Windspeed (m/s)

RG Rain intensity (mm/h)

T Outside temperature (°C)

Hour of day Current hour of the day

Day of week Current day of the week

Season Current season

To predict the target:

Gaspower Gas consumption of that hour $[m^3/h]$

Note that everything is on a one hour resolution.

Train, validation & test dataset

O Train size - 50 %

O Validation size - 20%

○ **Test size** - 30 <u>%</u>

Figure 2. A visualization of the train, validation and test dataset distribution on a daily resolution.

Model evaluation

Loss function:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Other evaluation metrics used are:

MAPE =
$$\frac{100\%}{n} \sum_{i=1}^{n} \frac{|\widehat{Y}_i - Y_i|}{|Y_i|}$$

SMAPE =
$$\frac{100\%}{2n} \sum_{i=1}^{n} \frac{|Y_i - \widehat{Y}_i|}{|\widehat{Y}_i| + |\widehat{Y}_i|}$$

Optimizers

Adam & Nadam have been used with a cosine annealing learning rate, defined as:

$$\eta_t = \eta_{min}^i + \frac{1}{2}(\eta_{max}^i - \eta_{min}^i)(1 + \cos\left(\frac{T_{cur}}{T_i}\pi\right)$$

Where η_{max}^i and η_{min}^i are the ranges for the learning rate and T_{cur} is the number of epochs since the last restart, with T_i the total amount of epochs.

Optimizers

Thee epochs visualized:

Optimizers

The effect of a cosine annealing learning rate visualized in 2D

(Batch) normalization & one hot encoding

The features & weights after each layer, apart from the output layer, are normalized.

Hour of the day, day of the week and season are one hot encoded.

$$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Representing the features extracted from the timestamp this way allows the models to assign different weights to for example 07:00 AM on a Monday and 09:00 AM on a Saturday.

Architecture evaluations

Initial neural network setup

GPU: NVIDIA GeForce 960m

To minimize vanishing & exploding gradient:

Weight initialization: Truncated normal distribution

Batch normalization: After each layer (apart from the output)

Activation function: LeakyRelu

The used models OPSCHALER

Multivariate Linear Regression

$$y = b_0 + b_1 X_0 + b_2 X_1 + b_3 X_2 + \sum_{i=0}^{23} b_{4+i} X_{3+i} + \sum_{j=0}^{6} b_{28+j} X_{27+j} + \sum_{k=0}^{3} b_{34+k} X_{33+k}$$

Where X_0 ... X_{33+k} are all the used features

Deep neural network (DNN)

Input data

$$X_{train} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$y_{train} = \begin{bmatrix} 10\\20\\30 \end{bmatrix}$$

Validation

Epoch finished: repeat the process

Adjusting weights

Deep Neural Network

$$y_{predicted} = [25]$$

$$y_{predicted} = [32]$$

$$y_{predicted} = [32]$$

This is a **simplified** representation of the training process.

Deep neural network (DNN)

Figure 3. Where $\psi_1, \psi_2, \psi_3, \psi_4$ represent the number of nodes of respective layer and are equal to 64, 256, 64, 1024, 8 respectively. The \times 2 represents this layer configuration being repeated two times behind each other.

Sequential: Recurrent Neural Network (RNN)

Figure 4. Where ψ_1 , ..., ψ_6 represent the number of nodes of respective layer. For LSTM these are equal to 8, 0, 16, 128, 8, 16 and for GRU are equal to 16, 8, 4, 0, 8, 8 respectively.

Each layer configuration being repeated Ψ_i times behind each other is represented by $\times \Psi_i$, where i is the layer number. For LSTM Ψ_2, \ldots, Ψ_6 are equal to 0, 1, 3, 2, 1 and for GRU are equal to 1, 1, 0, 4, 1 respectively.

Sequential RNN: Input data

- Predicting one step ahead (this could made to predict more timesteps ahead)

$$X_{train} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \end{bmatrix}$$

$$y_{train} = \begin{bmatrix} 10\\20\\30\\40\\50\\60 \end{bmatrix}$$

Validation

Epoch finished: repeat the process
Adjusting weights

RNN

$$y_{predicted} = [43]$$

$$y_{predicted} = [55]$$

A closer look at the data

$$X_{train} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \\ \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \\ \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \\ \end{bmatrix} = y_{train}$$

What if we interpret these 3x3 matrices as 'images'?

A closer look at the data

Sequential: Convolutional Neural Network (CNN)

Sequential: Convolutional Neural Network (CNN)

Figure 5. Where α_1 is equal to 5, α_2 is equal to 8, $(\beta_{1,1} \times \beta_{1,2})$ equals (8 x 4) and $(\beta_{2,1} \times \beta_{2,2})$ equals (10 x 8). The final output of the CNN is flatted and fed into a DNN where $\psi_1 \dots \psi_3$ equals 64, 128, 256 and $\Psi_1 \dots \Psi_3$ are equal to 2, 2, 1 respectively.

Time distributed

Main input $(120, 9) \rightarrow (height, width)$ or (timesteps, features)

 $(5, 24, 9, 1) \rightarrow (N \text{ images, height, width, channels*})$

Reshape

CNN

Flatten

LSTM

DNN

Output

* 3 for RGB, 1 for greyscale images

CNN input: 5x an image of (24,9,1)

TimeDistributed output: 5x flattened CNN output

The idea is to make the RNN see a sequence of the CNN 'scanning' the original (120,9) image five times.

The dummy variables are no longer one hot encoded, this improved the model performance.

Figure 6. The forecasted gasPower consumption of the different models on a daily resolution.

Figure 7. The forecasted gasPower consumption of the different models on a weekly resolution.

					Architecture			
Madalfi	Decelution	MCL[]	MAPE	SMAPE	evaluations	time per	Franks []	
Model [-]	Resolution	MSE [-]	[%]	[%]	[-]	epoch [s]	Epochs [-]	
	Hour	0.62	78.3	19.3		n.a.	n.a.	
MVLR	Day	99.0	20.2	9.20	n.a.			
	Week	$2.44 \cdot 10^{3}$	17.0	7.80				
	Hour	0.67	50.1	16.6		$4.00 \cdot 10^{-6}$	$3.50 \cdot 10^4$	
DNN	Day	104	25.1	10.5	$1.00 \cdot 10^{3}$			
	Week	$2.96 \cdot 10^3$	20.1	8.70				
	Hour	1.00	139	33.9		$4.62 \cdot 10^{-3}$	4.00 · 10 ³	
LSTM	Day	206	99.7	30.1	50.0			
	Week	$7.06 \cdot 10^3$	95.0	31.1				
	Hour	1.19	78.6	30.5		0.11	4.00 · 10 ³	
GRU	Day	264	59.8	19.4	100			
	Week	$9.38 \cdot 10^{3}$	45.3	16.9				
	Hour	0.84	84.3	28.3		0.76	$8.00 \cdot 10^{3}$	
CNN	Day	115	33.3	13.5	50.0			
	Week	$3.51 \cdot 10^{3}$	32.3	13.6				
	Hour	0.91	74.0	26.8		2.88 · 10 ⁻³	$4.00\cdot10^3$	
Time Dist.	Day	184	42.7	16.4	100			
	Week	$5.93 \cdot 10^3$	41.5	16.3				

Conclusion

- DNN performs best on hourly predictions
- MVLR performs best on daily and weekly predictions

Recommendations

- o Full year (or more) data should improve accuracy
- Predict on individual homes
- Use electricity consumption as feature

Built environment facing climate change

REHUA 13th HUAC World Congress 26 - 29 May, Bucharest, Romania

