Высшая математика

Лисид Лаконский

March 2023

Содержание

1	Вы	ісшая математика - 15.03.2023	4
	1.1	Задание на дом	4
	1.2	Несобственные интегралы	4
		1.2.1 Первого рода (с бесконечными пределами)	4
		1.2.2 Второго рода (от бесконечных функций)	4
	1.3	Вычисление значения определенного интеграла	
		1.3.1 Первый способ, тривиальный	
		1.3.2 Второй способ, если мы желаем чуть усложнить себе жизнь, но увеличить точность	
	1.4	Знакоположительные числовые ряды	
		1.4.1 Необходимый признак сходимости	2
		1.4.2 Достаточные признаки сходимости	4

1 Высшая математика - 15.03.2023

1.1 Задание на дом

Кардиоида, астроида, локон Аньези, спираль Архимеда, циклода, леминската, двух-, трех-, четырех- лепестковые розы. Записать уравнения во всех возможных видах: в декартовых, полярных, параметрических координатах, сделать картинки.

1.2 Несобственные интегралы

1.2.1 Первого рода (с бесконечными пределами)

Пусть функция f(x) определена при x от a до ∞ . Если существует конечный предел $\lim_a^b f(x) \, \mathrm{d} x$ при $b \to +\infty$, то определен и сходится несобственный интеграл $\int_a^{+\infty} f(x) \, \mathrm{d} x$.

Если же предел не существует или равен бесконечности, то говорят, что этот интеграл расходится.

$$\int\limits_{-\infty}^{a}f(x)\,\mathrm{d}x=\lim\limits_{b\to-\infty}\int\limits_{b}^{a}f(x)\,\mathrm{d}x$$

$$\int\limits_{-\infty}^{\infty}f(x)\,\mathrm{d}x=\int\limits_{-\infty}^{a}+\int\limits_{a}^{+\infty}=\lim\limits_{b_1\to-\infty}\int\limits_{b_1}^{a}f(x)\,\mathrm{d}x+\lim\limits_{b_2\to+\infty}\int\limits_{a}^{b_2}f(x)\,\mathrm{d}x-$$
если хоть один интеграл расходится, то весь интеграл тоже расходящийся

Теорема 1 Если для всех $x \geq a$ выполняется $0 \leq f(x) \leq g(x)$, f(x), g(x) — непрерывные функции, то из сходимости $\int\limits_a^{+\infty} g(x) \, \mathrm{d}x$ следует сходимость $\int\limits_a^{+\infty} f(x) \, \mathrm{d}x$

 $\stackrel{a}{A}$ из расходимости $\int\limits_a^{+\infty} f(x) \,\mathrm{d}x$ следует расходимость $\int\limits_a^{+\infty} g(x) \,\mathrm{d}x$

Допустим,
$$y = \frac{1}{x^2}$$
, $\int\limits_1^{+\infty} \frac{\mathrm{d}x}{x^2} = \lim_{b \to +\infty} \int\limits_1^b \frac{\mathrm{d}x}{x^2} = -\lim_{b \to +\infty} (\frac{1}{b} - 1) = 1 - \text{сходящийся интеграл}$

И хотим проверить, является ли сходящимся $\int\limits_{1}^{+\infty} \frac{|\sin x| \, \mathrm{d}x}{x^2}$, уверенно заявляем, что $\frac{|\sin x|}{x^2} \leq \frac{1}{x^2}$, следовательно интеграл от этой функции тоже является сходящимся

Рассмотрим
$$\int_{a}^{+\infty} \frac{\mathrm{d}x}{x^{p}}, a > 1$$

- 1. p > 1 сходящийся
- 2. $p \le 1$ расходящийся

Теорема 2 Если сходится интеграл от $\int\limits_a^{+\infty} |f(x)| \, \mathrm{d}x$, то $\int\limits_a^{+\infty} f(x) \, \mathrm{d}x$ тоже сходится, при этом называется абсолютно сходящимся

1.2.2 Второго рода (от бесконечных функций)

 $\int\limits_a^b f(x) \, \mathrm{d}x = \lim\limits_{\epsilon \to 0} \int\limits_{a+\epsilon}^b f(x) \, \mathrm{d}x, \text{ где } a - \text{ «плохая точка», } \lim\limits_a^b f(x) \, \mathrm{d}x = \lim\limits_{\epsilon \to 0} \int\limits_a^{b-\epsilon} f(x) \, \mathrm{d}x, \text{ если } b - \text{ «плохая точка»}$

Если плохая точка находится между a и b, то интеграл необходимо разбить b c b $c-\epsilon_1$ b

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} + \int_{c}^{b} = \lim_{\epsilon_1 \to 0} \int_{a}^{c-\epsilon_1} f(x) dx + \lim_{\epsilon_2 \to 0} \int_{c+\epsilon_2}^{b} f(x) dx$$

Если обе точки плохие, то $\int\limits_0^{+\infty} f(x) \, \mathrm{d}x = \int\limits_{0+\epsilon}^a + \int\limits_a^{+\infty} -$ первый интеграл — второго рода, второй — первого рода

$$\int\limits_{a}^{c} rac{\mathrm{d}x}{(c-x)^{p}},$$
 где c — плохая точка

- 1. p < 1 сходящийся интеграл
- 2. $p \ge 1$ расходящийся интеграл

$$\int\limits_{0}^{+\infty} \frac{\mathrm{d}x}{x\sqrt[3]{x}} = \int\limits_{0}^{1} + \int\limits_{1}^{+\infty} = \lim\limits_{\epsilon \to 0} \int\limits_{\epsilon}^{1} \frac{\mathrm{d}x}{x^{\frac{4}{3}}} + \lim\limits_{b \to +\infty} \int\limits_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{4}{3}}} - \text{первый интеграл сходится, второй расходится} - \text{интеграл расходящийся}$$

1.3 Вычисление значения определенного интеграла

1.3.1 Первый способ, тривиальный

$$\Delta x_i = \frac{b-a}{n}, y_0 = f(x_0), y_1 = f(x_1), y_2 = f(x_2)$$

$$\sum_{i=1}^{n} f(x_i) * \Delta x_i$$

1.3.2 Второй способ, если мы желаем чуть усложнить себе жизнь, но увеличить точность

$$S = \frac{y_{i-1} + y_i}{2} \Delta x_i$$
$$\sum_{i=1}^{n} \frac{f(x_i - 1) + f(x_i)}{2} * \frac{b - a}{n}$$

1.4 Знакоположительные числовые ряды

Нам знакомы числовые последовательности $a_1, a_2, a_3, ..., a_n$ $a_1 + a_2 + a_3 + a_4 + \cdots + a_n$ — есть числовой ряд. Сумма первых n членов S_n называется частичной суммой ряда Если существует конечный предел $\lim_{n \to \infty} S_n = S$ — сумма ряда

$$b_1 = 1, \ q = \frac{1}{3}$$

$$1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} + \dots, \ S_n = b_1 \frac{1 - q^n}{1 - q} = \frac{1 - \frac{1}{3^n}}{1 - \frac{1}{3}}$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - \frac{1}{3^n}}{\frac{2}{3^n}} = \frac{3}{2}$$

$$\sum_{n=1}^{\infty}\frac{1}{n(n+1)}=\frac{1}{1*2}+\frac{1}{2*3}+\frac{1}{3*4}+\dots+\frac{1}{(n-1)n}+\frac{1}{n(n+1)}+\dots$$

$$S_n=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots+\frac{1}{n-1}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}=\frac{n}{n+1}-$$
формула n -ой частичной суммы
$$\lim_{n\to\infty}S_n=\lim_{n\to\infty}\frac{n}{n+1}=1=S$$

Иногда нам нет необходимости находить сумму ряда, а нужно лишь определить, является ряд сходящимся или расходящимся.

Теорема 3 Если сходится ряд, получившийся из данного отбрасыванием нескольких его членов (то есть, конечного числа его членов), то будет сходиться и данный ряд

Верное и обратное, что если данный ряд сходится, то будет сходиться и ряд, полученный отбрасыванием нескольких его членов

Теорема 4 Если некий ряд $a_1 + a_2 + a_3 + \dots$ сходится и его сумма равняется S, то будет сходиться и ряд $ka_1 + ka_2 + ka_3 + \dots$, и его сумма будет равна kS

Теорема 5 Если есть два сходящихся ряда $a_1 + a_2 + a_3 + \cdots = S_1$ и $b_1 + b_2 + b_3 + \cdots = S_2$, то будут сходиться и ряды, полученные почленным сложением или вычитанием этих двух рядов:

1.
$$(a_1 \pm b_1) + (a_2 \pm b_2) + (a_3 \pm b_3) = S_1 \pm S_2$$

1.4.1 Необходимый признак сходимости

Если ряд сходится, то $\lim_{n\to\infty} a_n = 0$, если $\lim_{n\to\infty} a_n \neq 0$, то ряд точно расходится

$$a_1 + a_2 + a_3 + \dots, \lim_{n \to \infty} S_n = S, \lim_{n \to \infty} S_{n-1} = S$$
$$\lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = \lim_{n \to \infty} a_n = 0$$

Как следствие, если n—ый член не стремится к нулю, то ряд точно будет расходящимся. Но мы не должны делать вывод, если n—ый член стремится к нулю, что ряд будет точно сходящимся. Мы должны дальше исследовать его на сходимость

1.4.2 Достаточные признаки сходимости

Теорема 6 (Признак сравнения) Пусть $u_1 + u_2 + u + 3 + \dots$, $v_1 + v_2 + v_3 + \dots$ — знакоположительные числовые ряды, при этом $u_i \le v_i$

Тогда из сходимости более большого ряда следует сходимость более маленького ряда А из расходимости более маленького ряда следует расходимость более большого ряда

Теорема 7 (Предельный признак сравнения) Пусть $u_1+u_2+u+3+\ldots,\ v_1+v_2+v_3+\ldots-$ знакоположительные числовые ряды, при этом $u_i \leq v_i$ Если $\lim_{n\to\infty} \frac{u_n}{v_n} = C \neq 0 \neq \pm \infty$

То данные ряды ведут себя одинаково: или сходятся, или расходятся одновременно