$\left[\frac{n(n+1)}{2}\right]^3$ An infinite Geometric series converges (X) WW FILM B. r=1|r| > 1 D. |r| < 1An event E is said to be sure if: (xi) $P(E) = \infty$ B. P(E) = 0C. P(E) = 1 D. P(E) = -1(xii) Numbers of terms in the expansion of $(a+b)^n$ is: A. n^2+1 B. n+10. n-1(xiii) The sum of odd coefficients in the expansion of $(1+x)^n$ is: 2^{n+1} A. B. n^2 2^n A_{n} -cot θ B. $tan \theta$ $C_{\cdot,\cdot}$ -tan θ D. coto (xv) If $cot\theta < 0$ and if $cot\theta > 0$, then the terminal arm of angle lies in quadrant: A. sin 3a $4\sin\alpha - 3\sin^3\alpha$ $4\cos^3\alpha - 3\cos\alpha$ $3\cos^3\alpha - 4\cos\alpha$ $3\sin\alpha - 4\sin^3\alpha$ (xvii) The period of 3sin3x is: 6π В. nassing through the vertices is called: Circum circle Escribed circle cipal cosine