

# UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FORESTALES



### **TAREA CUATRO**

**BOXPLOT E HISTOGRAMAS** 

**EMANUEL MOLINA MARCHAN** 

**MATRÍCULA** 

2134498

SEPTIEMBRE, 2022

## Tarea04\_EmanuelMolinaMarchan.R

#### **Emanuel**

#### 2022-09-05

```
# Problema 1 -----
set.seed(9875)
size <- 1000
x2 \leftarrow round(runif(n = size, min = 0, max = 10), 2)
x2
##
          0.45 8.62 9.59 7.64 5.93 0.34 5.08 3.30
                                                         0.10 1.94
      [1]
13
   2.47
                           6.22 9.39
                                                   6.96
##
          6.71 7.49
                      0.97
                                       7.95 6.64
                                                         5.08
                                                              4.26
     [13]
76
   2.40
##
                            6.52
                                 9.55
                                       1.01 9.45
     [25]
          7.31 0.58
                      8.78
                                                  7.27
                                                         8.97
                                                              8.34
                                                                    3.
62
   1.17
##
     [37]
          6.73 2.51
                      0.09
                            8.18
                                  6.14 5.13 2.32
                                                   3.86
                                                         3.66
                                                              3.86
23
   4.00
                            2.57
                                  3.57 8.21 2.01 0.93
##
     [49]
          1.22 8.73
                      9.52
                                                         2.50
01
   6.53
##
     [61]
          0.39
                0.37
                      6.94
                            1.54
                                 9.19 6.68
                                             4.03
                                                   5.26
                                                         3.86
                                                              1.92
78
   3.96
##
     [73]
          3.53 4.14
                      3.31
                            1.04
                                  9.08 6.58
                                             8.39
                                                   5.21
                                                         8.41
                                                               5.83
89
   0.69
##
          5.31 4.51
                      3.52
                            5.36
                                 7.00
                                       7.07
                                             1.28
                                                   9.07
                                                         9.68
     [85]
                                                               1.87
41
   2.44
##
     [97]
          3.68
               2.18
                      0.44
                            2.01
                                 0.79 9.42
                                             5.25
                                                   5.97
                                                         9.20
    3.01
83
                      3.80
                            2.57
                                 1.56
                                      7.58
                                             0.45
                                                   2.02
                                                        7.36
##
    [109]
          6.24 8.64
                                                              4.20
   3.47
72
##
          9.53 0.46
                      3.82
                           4.58
                                 1.08
                                       1.85
                                             5.49
                                                   7.86
                                                         1.17
                                                              6.19
                                                                    2.
   [121]
   8.13
02
##
                            2.40
                                  6.60
    [133]
          2.75 7.66
                     2.28
                                      7.38
                                            7.15
                                                   8.17
                                                         1.98
                                                              9.28
   2.00
63
                            4.03
                                 6.60 6.07
                                                   5.54
##
   [145]
          0.97 0.43
                      4.50
                                             9.08
                                                         0.23
22
   7.71
##
   [157]
          8.54 7.35
                      2.62
                            7.39
                                 3.59
                                       5.21 4.68
                                                   2.04
                                                         8.52
                                                               7.86
39
   0.57
                      4.76
                            9.08
                                 4.65 0.01
                                                   3.20
##
   [169]
          5.50 1.97
                                             1.65
                                                        6.35
                                                              2.92
                                                                    3.
39
   4.97
                                  6.95 4.83
##
   [181]
          6.64 0.10
                      4.73
                            1.04
                                             6.83
                                                   5.34
                                                         9.90
                                                              9.15
                                                                    2.
   9.02
86
                                  6.71 7.95 4.14
##
   [193]
          6.77 3.32
                      6.80
                            4.94
                                                   3.51
72
   1.85
   [205]
##
                            9.99
                                 1.65 6.38 7.57 7.10
          1.31 7.76
                      4.70
                                                        1.89
  6.22
60
```

| ##       | [217]         | 6.43 | 1.68 | 1.65  | 3.06 | 5.33 | 6.47  | 0.40 | 5.89 | 7.38 | 2.95              | 6. |
|----------|---------------|------|------|-------|------|------|-------|------|------|------|-------------------|----|
| 30<br>## | 1.37<br>[229] | 0.03 | 1.25 | 1.99  | 4.34 | 0.14 | 8.37  | 4.57 | 5.79 | 1.81 | 7.80              | 3. |
| 84       | 7.24          | 0.03 | 1,23 | 1.00  | 4.54 | 0.14 | 0.57  | 4.57 | 3.73 | 1.01 | 7.00              | ٠. |
| ##       | [241]         | 5.28 | 9.91 | 3.07  | 1.96 | 0.90 | 5.22  | 9.09 | 0.86 | 4.49 | 1.85              | 1. |
| 05       | 4.32          |      |      |       |      |      |       |      |      |      |                   |    |
| ##       | [253]         | 9.66 | 8.08 | 10.00 | 0.27 | 8.24 | 1.72  | 6.41 | 4.81 | 7.00 | 6.43              | 6. |
| 55<br>## | 6.23<br>[265] | 5.20 | 8.15 | 8.29  | 2.58 | 9.15 | 7.14  | 8.30 | 9.20 | 4.52 | 4.08              | 3. |
| 59       | 3.91          | 3.20 | 0.15 | 0.25  | 2.30 | J.13 | ,     | 0.50 | 3.20 | 4.52 | 4.00              | ٥. |
| ##       | [277]         | 4.92 | 0.33 | 8.60  | 8.14 | 3.68 | 2.89  | 6.23 | 0.54 | 6.75 | 2.19              | 7. |
| 91       | 5.46          |      |      |       |      |      |       |      |      |      |                   |    |
| ##       | [289]         | 7.70 | 3.53 | 7.15  | 1.45 | 8.94 | 8.82  | 4.05 | 6.95 | 1.09 | 8.69              | 7. |
| 40       | 1.19          | 0 00 | 3.04 | 4 40  | 0.94 | 1.13 | 6 66  | 7 50 | 1 00 | 2 50 | 2 40              | 7  |
| ##<br>76 | [301]<br>9.00 | 8.98 | 3.04 | 4.49  | 0.94 | 1.13 | 6.66  | 7.59 | 1.98 | 3.58 | 3.40              | 7. |
| ##       | [313]         | 2.66 | 8.47 | 6.02  | 0.99 | 9.56 | 8.30  | 6.33 | 4.94 | 4.95 | 8.19              | 3. |
| 73       | 1.78          |      |      |       |      |      |       |      |      |      |                   |    |
| ##       | [325]         | 2.81 | 1.29 | 0.50  | 1.96 | 1.01 | 8.47  | 2.24 | 0.50 | 4.08 | 6.12              | 4. |
| 24       | 5.57          |      |      |       |      |      |       |      |      |      |                   |    |
| ##       | [337]         | 7.73 | 1.67 | 0.09  | 0.64 | 4.46 | 7.83  | 0.70 | 5.41 | 9.76 | 2.67              | 6. |
| 71<br>## | 8.97<br>[349] | 4.26 | 4.84 | 9.11  | 9.25 | 2.22 | 2.90  | 4.68 | 1.51 | 9.08 | 7.20              | 3. |
| 67       | 3.08          | 4.20 | 4.04 | 9.11  | 9.23 | 2.22 | 2.90  | 4.00 | 1.71 | 9.00 | 7.20              | ٥. |
| ##       | [361]         | 4.00 | 1.83 | 9.26  | 6.98 | 9.37 | 8.59  | 1.37 | 8.54 | 9.08 | 6.93              | 1. |
| 41       | 9.60          |      |      |       |      |      |       |      |      |      |                   |    |
| ##       | [373]         | 4.31 | 2.30 | 3.41  | 7.09 | 3.80 | 2.89  | 2.87 | 0.63 | 8.73 | 3.76              | 4. |
| 71       | 0.00          | 2.06 | 0 00 | 0.26  | 0.05 | 0.20 | 6 30  | 6 20 | 1 22 | 4 17 | 0.00              | _  |
| ##<br>76 | [385]<br>6.13 | 3.86 | 8.03 | 0.26  | 0.95 | 8.39 | 6.39  | 6.29 | 1.23 | 4.17 | 0.88              | 5. |
| ##       | [397]         | 4.87 | 6.44 | 3.57  | 3.27 | 8.99 | 2.22  | 9.09 | 2.57 | 3.24 | 9.23              | 2. |
| 49       | 8.76          |      |      |       |      |      |       |      |      |      |                   |    |
| ##       | [409]         | 0.48 | 4.37 | 3.89  | 4.60 | 7.91 | 8.75  | 8.08 | 5.42 | 5.08 | 4.28              | 9. |
| 41       | 1.69          |      |      |       |      |      |       |      |      |      |                   |    |
| ##       | [421]         | 3.84 | 9.15 | 6.62  | 4.61 | 1.51 | 0.15  | 1.72 | 9.42 | 9.30 | 1.00              | 3. |
| 30<br>## | 2.76<br>[433] | 1 66 | 4 38 | 1.46  | 8 92 | 5.85 | 1.10  | 9.12 | 2.90 | 1.14 | 3.43              | 0. |
| 55       | 2.02          | 1.00 | 4.50 | 1.40  | 0.52 | 3.03 | 1.10  | J.12 | 2.50 | 1.14 | J. <del>4</del> J | 0. |
| ##       | [445]         | 1.56 | 4.72 | 9.77  | 6.55 | 7.15 | 9.25  | 0.96 | 7.12 | 7.24 | 9.20              | 1. |
| 21       | 9.61          |      |      |       |      |      |       |      |      |      |                   |    |
| ##       | [457]         | 6.07 | 4.71 | 1.31  | 4.65 | 0.46 | 1.13  | 5.03 | 5.20 | 0.32 | 3.30              | 9. |
| 48       | 8.60          | 0.04 | 2 27 | 4 00  |      | E 04 | 0.00  | 2 02 | 0.22 | 2 64 | <b>5</b> 40       | •  |
| ##<br>60 | [469]<br>1.79 | 9.94 | 2.8/ | 4.92  | 4.41 | 5.91 | 9.29  | 2.83 | 0.32 | 2.64 | 6.48              | 0. |
| ##       | [481]         | 3,12 | 0.57 | 3.85  | 3.97 | 1.15 | 9.87  | 1.33 | 4.47 | 7.85 | 8.08              | 7. |
| 10       | 0.03          | - ·  |      |       | _,_, |      | - , , |      |      |      | 2.30              | •  |
| ##       | [493]         | 1.34 | 1.61 | 7.61  | 5.19 | 2.24 | 0.11  | 9.44 | 7.92 | 6.83 | 5.67              | 0. |
| 32       | 1.04          | _    |      |       |      |      |       |      |      |      |                   |    |
| ##       | [505]         | 7.13 | 2.07 | 4.24  | 1.31 | 3.28 | 5.99  | 0.79 | 2.83 | 3.91 | 2.88              | 4. |
| 56       | 6.19          |      |      |       |      |      |       |      |      |      |                   |    |

| ##<br>44       | [517]<br>2.30          | 3.47         | 3.12 | 0.23         | 6.64         | 5.18                                | 9.79         | 1.54                                | 9.74         | 7.76         | 6.98                                | 2.                     |
|----------------|------------------------|--------------|------|--------------|--------------|-------------------------------------|--------------|-------------------------------------|--------------|--------------|-------------------------------------|------------------------|
| ##<br>49       | [529]<br>9.24          | 2.49         | 6.08 | 4.64         | 4.32         | 1.35                                | 1.75         | 9.45                                | 1.01         | 3.98         | 5.60                                | 7.                     |
| ##<br>49       | [541]<br>6.40          | 6.96         | 8.11 | 7.03         | 0.44         | 3.76                                | 5.37         | 9.34                                | 3.57         | 6.99         | 3.14                                | 9.                     |
| ##<br>92       | [553]<br>1.39          | 6.15         | 0.47 | 0.81         | 6.59         | 6.67                                | 5.98         | 5.20                                | 3.14         | 1.51         | 4.15                                | 6.                     |
| ##<br>56       | [565]<br>2.97          | 8.20         | 0.48 | 9.16         | 6.05         | 2.02                                | 5.32         | 1.01                                | 5.74         | 2.33         | 6.21                                | 4.                     |
| ##<br>34       | [577]<br>6.18          | 9.77         | 2.84 | 1.89         | 9.76         | 4.62                                | 1.89         | 8.10                                | 5.77         | 5.89         | 5.03                                | 5.                     |
| ##<br>32       | [589]<br>8.14          | 0.20         | 0.19 | 3.20         | 4.32         | 5.56                                | 6.33         | 0.65                                | 8.56         | 1.48         | 4.10                                | 0.                     |
| ##<br>40       | [601]<br>1.04          | 4.88         | 2.95 | 7.69         | 8.17         | 9.40                                | 0.32         | 9.50                                | 1.53         | 4.85         | 6.99                                | 7.                     |
| ##<br>41       | [613]<br>7.59          | 7.33         | 8.45 | 9.91         | 6.54         | 6.93                                | 0.82         | 7.84                                | 8.92         | 9.33         | 3.00                                | 3.                     |
| ##<br>22       | [625]<br>3.64          | 3.28         | 7.87 | 1.13         | 7.37         | 4.65                                | 6.78         | 4.28                                | 2.97         | 0.52         | 6.71                                | 3.                     |
| ##<br>31       | [637]<br>2.64          | 7.22         | 4.42 | 6.39         | 1.94         | 1.82                                | 1.56         | 9.54                                | 4.83         | 7.69         | 2.53                                | 5.                     |
| ##<br>15<br>## | [649]<br>0.40          | 5.79         | 2.88 | 2.05         | 6.41         | 7.62                                | 4.87         | 0.94                                | 1.02         | 3.16         | 9.73                                | 2.                     |
| ##<br>66<br>## | [661]<br>3.72<br>[673] | 6.62<br>0.68 | 6.27 | 3.18<br>6.22 | 3.73<br>3.29 | <ul><li>0.50</li><li>3.57</li></ul> | 1.06<br>1.95 | <ul><li>1.12</li><li>7.83</li></ul> | 1.26<br>6.80 | 8.16<br>2.74 | <ul><li>0.17</li><li>3.88</li></ul> | <ol> <li>7.</li> </ol> |
| 77<br>##       | 9.23<br>[685]          | 5.60         | 9.27 | 8.31         | 2.94         | 4.38                                | 1.50         | 6.14                                | 8.29         | 9.38         | 8.11                                | 6.                     |
| 66<br>##       | 2.56<br>[697]          | 4.55         | 1.16 | 9.80         | 1.40         | 9.97                                | 7.43         | 2.40                                | 6.41         | 0.94         | 4.56                                | 7.                     |
| 28<br>##       | 5.58<br>[709]          | 7.87         |      | 1.03         | 5.73         | 1.43                                | 2.64         | 2.19                                | 1.14         | 2.83         | 1.66                                | 2.                     |
| 82<br>##       | 4.85                   | 6.58         |      |              |              |                                     |              |                                     |              |              |                                     |                        |
| 07<br>##       | 0.43<br>[733]          |              | 8.24 |              |              |                                     |              |                                     |              |              | 3.25                                | 8.                     |
| 71<br>##       | 7.32<br>[745]          | 7.38         | 8.41 | 5.62         | 7.62         | 2.21                                | 1.47         | 9.04                                | 5.32         | 8.27         | 4.80                                | 5.                     |
| 29<br>##       | 2.07<br>[757]          | 4.86         | 2.88 | 7.73         | 5.79         | 5.86                                | 4.00         | 3.94                                | 3.91         | 6.40         | 7.73                                | 6.                     |
| 84<br>##       | 9.49<br>[769]          | 5.55         | 8.97 | 4.95         | 0.21         | 0.04                                | 4.98         | 1.56                                | 4.61         | 4.20         | 8.11                                | 8.                     |
| 92<br>##       | 2.31<br>[781]          | 6.57         | 7.93 | 0.36         | 5.23         | 8.74                                | 4.78         | 6.86                                | 1.53         | 2.73         | 4.02                                | 0.                     |
| 26<br>##       | 8.38<br>[793]          | 8.85         | 0.52 | 5.03         | 2.65         | 7.57                                | 1.45         | 1.86                                | 3.84         | 4.52         | 3.75                                | 3.                     |
| 00<br>##<br>27 | 9.84<br>[805]<br>2.05  | 0.81         | 2.26 | 6.60         | 5.23         | 0.20                                | 5.12         | 5.34                                | 2.45         | 4.29         | 0.60                                | 3.                     |
|                |                        |              |      |              |              |                                     |              |                                     |              |              |                                     |                        |

```
9.47 7.50 9.86 4.81 3.70 5.11 5.09 4.89 3.04 3.94
##
    [817]
                                                                       9.
43
    8.40
                             4.73
##
    [829]
           5.17 5.25
                       8.43
                                   2.11 6.62
                                               5.73
                                                      1.48
                                                           4.11
                                                                  9.35
62
    1.23
##
                       4.30
                             7.81
                                   6.08
                                         8.79
                                                5.01
                                                      5.37
                                                            3.10
    [841]
           8.24
                9.85
                                                                  3.04
52
    4.11
                             8.47 2.56 9.44
                                               5.83
                                                      3.74
##
                5.88
                       1.79
                                                            6.40
                                                                  9.73
                                                                        4.
    [853]
           5.41
99
    1.05
##
    [865]
                5.85
                       3.06
                             3.14
                                   4.24
                                         0.90
                                               1.68
                                                     1.34
                                                            5.77
                                                                  9.65
                                                                        2.
           6.12
    9.85
95
##
    [877]
           9.59 3.24
                       8.83
                             4.90
                                   1.13
                                         0.45
                                               2.76
                                                      0.61
                                                           8.28
                                                                  0.54
65
    8.51
##
    [889]
           1.57
                7.93
                       4.12
                             6.56
                                   8.56 6.29
                                               5.59
                                                      6.15
                                                            3.60
                                                                  7.97
23
    6.68
    [901]
                                   2.86
##
           4.44 5.57
                       4.77
                             9.35
                                        3.32
                                               8.56
                                                     1.73
                                                            3.56
                                                                  0.17
    6.33
85
##
    [913]
                 8.86
                       3.91
                             0.97
                                   9.07
                                         1.01
                                               8.41
                                                     7.36
                                                            0.08
                                                                  9.59
                                                                        7.
           2.50
31
    6.62
                 6.41
##
    [925]
           3.37
                       0.23
                             3.04
                                   5.89
                                         7.10
                                               4.74
                                                      4.01
                                                           8.29
                                                                  9.14
                                                                        2.
04
    7.67
                                         3.96
                                                      2.96
##
    [937]
           2.04
                 0.19
                       2.09
                             1.55
                                   5.57
                                               7.62
                                                            6.55
                                                                  5.79
                                                                        2.
42
    8.44
##
    [949]
           9.09
                 9.06
                       8.12
                             5.07
                                   4.14
                                         1.36
                                               4.40
                                                      3.43
                                                            1.39
                                                                  5.88
                                                                        3.
    3.11
24
##
    [961]
                 3.30
                       8.95
                             9.46
                                   3.04 8.69
                                               5.25
                                                      6.39
                                                           1.86
                                                                  5.48
                                                                        0.
           5.49
23
    6.47
##
    [973]
           4.33
                 1.49
                       8.98
                             8.74
                                   3.69
                                         0.23
                                               9.19
                                                      5.24
                                                            2.25
                                                                  7.49
                                                                        4.
01
    3.71
##
    [985]
           5.74 3.09
                       7.65
                             0.24 6.77 7.80 8.24 5.36 9.58
76
    1.09
##
    [997] 8.36 4.51 4.71
                            5.79
size_hist <- hist(x2, las= 1, col= "green")</pre>
```

## Histogram of x2



```
size_hist
## $breaks
   [1] 0 1 2 3 4 5 6 7 8
                                 9 10
##
## $counts
   [1] 99 119 95 106 103 95 110 85
                                      92 96
##
##
## $density
   [1] 0.099 0.119 0.095 0.106 0.103 0.095 0.110 0.085 0.092 0.096
##
##
## $mids
##
  [1] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
##
## $xname
## [1] "x2"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
size_hist$breaks
## [1] 0 1 2 3 4 5 6 7 8 9 10
size_hist$mids
```

## Histogram of x2



## Histogram of x2



```
ylab= "Frecuencias",
    main = "",
    las = 1,
    ylim = c(0,260))
axis(1, mags$mids)
```



```
#a. ¿Cómo describiría La forma de esta distribución de Las magnitudes de
Los terremotos?
    #Respuesta: sesgada hacia La derecha

#b. Mencione un intervalo donde ocurren tipicamente Las magnitudes.
    #Respuesta: ocurren en el intervalo de 4.5

#c. Determine el rango de Las magnitudes (Range = Max - Min).
    #Respuesta: Max= 6.4, Min= 4. Rnago= 2.4

max(quakes$mag)

## [1] 6.4

min(quakes$mag)

## [1] 4

range= (max(quakes$mag) - min(quakes$mag))
range
## [1] 2.4
```

```
#d. ¿Qué porcentaje de los terremotos ocurren con magnitud en la clase 5.
3 (5.1 : 5.4)?
 #Respuesta:
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
mag2 <- quakes%>%
  filter(mag =="5.3")
porcent_5.3 <- 100*(length(mag2$mag)/length(quakes$mag))</pre>
porcent_5.3
## [1] 2.1
#e. ¿Qué porcentaje de los terremotos tiene una magnitud igual o mayor a
5.0?
 #Respuesta:
mag3 <- quakes%>%
  filter(mag >="5")
porc_5 <- 100*(length(mag3$mag)/length(quakes$mag))</pre>
porc_5
## [1] 19.8
#f. ¿Qué porcentaje de los terremotos tienen una magnitud menor o igual a
4.6?#
 #Respuesta:
mag4 <- quakes%>%
  filter(mag <="4.6")
porc_4.6 <- 100*(length(mag4$mag)/length(quakes$mag))</pre>
porc_4.6
## [1] 58.5
# Problema 4 ------
# ¿Qué porcentaje de las observaciones en una distribución se encuentran
entre el primer y el tercer cuartil?
```

```
#Respuesta: b) 50 %
# Problema 5 -----
#a. ¿Cuál especie tiene el diámetro más pequeño? Respuesta: C
#b. ¿Cuál especie tiene el diámetro más grande? Respuesta: F
#c. ¿Cuál especie tiene el diámetro mínimo más alto? Respuesta: F
#d. ¿Cuál especie tiene la mediana de diámetro más pequeña? Respuesta: C
#e. ¿Cuál especie tiene la mediana de diámetro mas grande? Respuesta: H
#f. ¿Cuál especie tiene el menor rango de diámetro? Respuesta: F
#q. ¿Cuál especie tiene el rango intercuantil (Q3-Q1) mas grande? Respues
ta: C
#h. ¿Cuál especie tiene el rango intercuantil (Q3-Q1) mas pequeño? Respue
sta: F
#i. ¿Cuál especie tiene una distribución simétrica? Respuesta: H
#j. ¿Cuál especie tiene el sesgo positivo (ver Fig. 2) más marcado ? F
# Problema 6 -----
fires <- c(78, 44, 47, 105, 126, 181, 277, 210, 155)
fires
## [1] 78 44 47 105 126 181 277 210 155
```

```
min(fires)
## [1] 44
max(fires)
## [1] 277
range(fires)
## [1] 44 277
quantile(fires, c(0.25))
## 25%
## 78
quantile(fires, c(0.50))
## 50%
## 126
quantile(fires, c(0.75))
## 75%
## 181
mean(fires)
## [1] 135.8889
var(fires)
## [1] 6069.111
sd(fires)
## [1] 77.9045
boxplot(fires, col="green", horizontal= TRUE)
```



```
#Agregar intervalo de confianza al 95%
boxplot(fires, notch = TRUE, col="green", horizontal= TRUE, main = "Incen
dios forestales")
## Warning in (function (z, notch = FALSE, width = NULL, varwidth = FALSE
, : some
## notches went outside hinges ('box'): maybe set notch=FALSE
```

## Incendios forestales

