Thevenin's Theorem

the Thevenin equivalent circuit; was developed in 1883 by M. Leon Thevenin (1857–1926),

a French telegraph engineer.

Thevenin's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source V_{Th} in series with a resistor R_{Th} , where V_{Th} is the open-circuit voltage at the terminals and R_{Th} is the input or equivalent resistance at the terminals when the independent sources are turned off.

RL-> boad rensfance
TL-> boad Current

To find equivalent vollage Source, Ris removed

$$V_{oc} = IR_3$$

$$= V_{s} \times R_3$$

$$R_{1} + R_3$$

R₁
R₂
+ Voc = V7H

+ Voc = V7H

To find internal terrsteme of the network

Leverin resistance or equivalent resistance RTH= R2 + R1R3
R1+R3 According to Therein therews

Steps to find Thevenin's equivalent circuit

- 1. Identify the load terminals.
- 2. Remove the load resistance from the circuit (if its is connected)
- 3. Find the equivalent resistance (RTh) across the load terminal by replacing independent voltage source by short circuit and independent current source by open circuit
- 4. Find the open circuit voltage (V_{Th}) using any of the circuit analysis techniques (mostly mesh/node methods)
- 5. Draw the Thevenin's equivalent circuit

Example

Find the Thevenin equivalent circuit of the circuit shown in Fig. to the left of the terminals a-b. Then find the current through $R_L = 6$, 16, and 36 Ω .

(a) finding R_{Th} ,

$$R_{\rm Th} = 4 \parallel 12 + 1 = \frac{4 \times 12}{16} + 1 = \underline{4 \Omega}$$

Applying mesh analysis to the two loops, we obtain

$$-32 + 4i_1 + 12(i_1 - i_2) = 0,$$

$$i_2 = -2 A$$

(b) finding V_{Th}.

Solving for i_1 , we get $i_1 = 0.5$ A. Thus,

$$V_{\text{Th}} = 12(i_1 - i_2) = 12(0.5 + 2.0) = 30 \text{ V}$$

At the top node, KCL

We ignore the 1- Ω resistor since no current flows through it.

$$\frac{32 - V_{\rm Th}}{4} + 2 = \frac{V_{\rm Th}}{12}$$

$$96 - 3V_{\text{Th}} + 24 = V_{\text{Th}} \quad \Rightarrow \quad V_{\text{Th}} = 30 \text{ V}$$

The Thevenin equivalent circuit

The current through R_L is

$$I_L = \frac{V_{\rm Th}}{R_{\rm Th} + R_I} = \frac{30}{4 + R_I}$$

When
$$R_L = 6$$
, $I_L = \frac{30}{10} = 3 \text{ A}$

When
$$R_L = 16$$
, $I_L = \frac{30}{20} = 1.5 \text{ A}$

When
$$R_L = 36$$
, $I_L = \frac{30}{40} = 0.75$ A

Norton's Theorem

In 1926, about 43 years after Thevenin published his theorem, E. L. Norton, an American engineer at Bell Telephone Laboratories, proposed a similar theorem.

Norton's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_N in parallel with a resistor R_N , where I_N is the short-circuit current through the terminals and R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

RTH

Steps to find Norton's equivalent circuit

- 1. Identify the load terminals.
- 2. Remove the load resistance from the circuit (if its is connected)
- 3. Find the equivalent resistance (R_N) across the load terminal by replacing independent voltage source by short circuit and independent current source by open circuit
- 4. Create a short circuit across the load terminals
- 5. Find the short circuit current (IN) using any of the circuit analysis techniques (mostly mesh/node methods)
- 6. Draw the Norton's equivalent circuit

Relationship between Thevenin's & Norton's Theorem

$$I_N = rac{V_{
m Th}}{R_{
m Th}}$$

$$R_N = R_{\mathrm{Th}}$$

Example

Find the Norton equivalent circuit of the circuit in Fig. terminals a-b.

DC Server

RN=RTH

$$R_N = 5 \| (8 + 4 + 8) = 5 \| 20 = \frac{20 \times 5}{25} = 4 \Omega$$

We ignore the 5- Ω resistor because it has been short-circuited. Applying mesh analysis, we obtain

Alternatively, we may determine I_N from V_{Th}/R_{Th} . We obtain V_{Th} as the open-circuit voltage across terminals a and b in

Hence,

$$I_N = \frac{V_{\rm Th}}{R_{\rm Th}} = \frac{4}{4} = 1 \text{ A}$$

 $v_{oc} = V_{Th} = 5i_4 = 4 \text{ V}$

Norton equivalent of the circuit

Maximum Power Transfer

Maximum power is transferred to the load when the load resistance equals the Thevenin resistance as seen from the load ($R_L = R_{Th}$).

$$p = i^2 R_L = \left(\frac{V_{\rm Th}}{R_{\rm Th} + R_L}\right)^2 R_L$$

$$\frac{dp}{dR_L} = V_{\text{Th}}^2 \left[\frac{(R_{\text{Th}} + R_L)^2 - 2R_L(R_{\text{Th}} + R_L)}{(R_{\text{Th}} + R_L)^4} \right]$$
$$= V_{\text{Th}}^2 \left[\frac{(R_{\text{Th}} + R_L - 2R_L)}{(R_{\text{Th}} + R_L)^3} \right] = 0$$

$$0 = (R_{\rm Th} + R_L - 2R_L) = (R_{\rm Th} - R_L)$$

$$R_L = R_{\mathrm{Th}}$$

$$p_{ ext{max}} = rac{V_{ ext{Th}}^2}{4R_{ ext{Th}}}$$

Example

Find the value of R_L for maximum power transfer in the circuit

$$R_{\text{Th}} = 2 + 3 + 6 \| 12 = 5 + \frac{6 \times 12}{18} = 9 \Omega$$

$$-12 + 18i_1 - 12i_2 = 0$$
, $i_2 = -2$ A
Solving for i_1 , we get $i_1 = -2/3$.

$$-12 + 6i_1 + 3i_2 + 2(0) + V_{Th} = 0 \implies V_{Th} = 22 \text{ V}$$

The second secon

$$R_L = R_{\rm Th} = 9 \Omega$$

$$p_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_L} = \frac{22^2}{4 \times 9} = 13.44 \text{ W}$$

10.6

Thevenin and Norton Equivalent Circuits Simusoidal Voltage Sources & Cultent.

(AC with constant omega or Sinusoidal)

Thevenin equivalent

Nortan equivalent

$$\mathbf{V}_{\mathrm{Th}} = \mathbf{Z}_{N}\mathbf{I}_{N}, \qquad \mathbf{Z}_{\mathrm{Th}} = \mathbf{Z}_{N}$$

V_{Th} → Thevenin voltage (open circuit voltage)

 $I_N \rightarrow Nortan current (short-circuit current)$

Z_{Th} → Thevenin equivalent impedance

 $\mathbb{Z}_N \rightarrow Nortan equivalent impedance$

Example 10.8

Obtain the Thevenin equivalent at terminals a-b of the circuit in Fig.

$$\mathbf{Z}_2 = 4 \parallel j12 = \frac{j12 \times 4}{4 + j12} = 3.6 + j1.2 \,\Omega$$

$$I_1 = 120 < 75^{\circ} A$$
 $8 - ib$

$$\frac{1}{2} = 120475^{\circ} A$$

Voltage applied between dxf is same as voltage applied between

The Thevenin impedance is the series combination of \mathbb{Z}_1 and \mathbb{Z}_2 ; that is,

$$\mathbf{Z}_{\text{Th}} = \mathbf{Z}_1 + \mathbf{Z}_2 = 6.48 - j2.64 \,\Omega$$

Using Fit in

$$V_{Th} - 4I_2 + (-j6)I_1 = 0$$

$$\mathbf{V}_{\text{Th}} = 4\mathbf{I}_{2} + j6\mathbf{I}_{1} = \frac{480\sqrt{75^{\circ}}}{4 + j12} + \frac{720\sqrt{75^{\circ} + 90^{\circ}}}{8 - j6}$$

$$= 37.95\sqrt{3.43^{\circ} + 72\sqrt{201.87^{\circ}}}$$

$$= -28.936 - j24.55 = 37.95\sqrt{220.31^{\circ}} \text{ V}$$

l

Example 10.9

Find the Thevenin equivalent of the circuit in Fig.

To find V_{Th} , we apply KCL at node 1 in Fig.

$$15 = \mathbf{I}_o + 0.5\mathbf{I}_o \qquad \Rightarrow \qquad \mathbf{I}_o = 10 \text{ A}$$

Applying KVL to the loop on the right-hand side in Fig.

$$-\mathbf{I}_{o}(2 - j4) + 0.5\mathbf{I}_{o}(4 + j3) + \mathbf{V}_{Th} = 0$$

$$\mathbf{V}_{Th} = 10(2 - j4) - 5(4 + j3) = -j55$$

$$\mathbf{V}_{Th} = 55 / -90^{\circ} \text{ V}$$

To obtain Z_{Th} , we remove the independent source.

• Due to the presence of the dependent current source, we connect a 3-A current source (3 is an arbitrary value chosen for convenience here, a number divisible by the sum of currents leaving the node) to terminals *a-b*

At the node, KCL gives

$$3 = \mathbf{I}_o + 0.5\mathbf{I}_o \implies \mathbf{I}_o = 2 \mathbf{A}$$

Applying KVL to the outer loop in Fig. 10.26(b) gives

$$\mathbf{V}_s = \mathbf{I}_o(4+j3+2-j4) = 2(6-j)$$

The Thevenin impedance is

$$\mathbf{Z}_{\text{Th}} = \frac{\mathbf{V}_{s}}{\mathbf{I}_{s}} = \frac{2(6-j)}{3} = 4 - j0.6667 \,\Omega$$

Drawthe frequency domain librant. and Calculate V(t) 2s(t)=10 crs (377+t+30)A W = 377 rad re-V(4)=9.99 (5 (327 t + 22.8) = 10 <38 (RZc)

R_ = 21

Example 10.10

Obtain current I_o in Fig. using Norton's theorem.

As evident from the figure, the (8 - j2) and (10 + j4) impedances are short-circuited, so that

$$Z_{T_{H}} = Z_{N} = \underline{5\Omega}$$

Notice that meshes 2 and 3 form a supermesh because of the current source linking them. For mesh 1,

$$-j40 + (18 + j2)\mathbf{I}_1 - (8 - j2)\mathbf{I}_2 - (10 + j4)\mathbf{I}_3 = 0$$

For the supermesh,

$$(13 - j2)\mathbf{I}_2 + (10 + j4)\mathbf{I}_3 - (18 + j2)\mathbf{I}_1 = 0$$

 \mathbf{I}_N

At node a, due to the current source between meshes 2 and 3,

$$I_3 = I_2 + 3$$

$$-j40 + 5\mathbf{I}_2 = 0 \Rightarrow \mathbf{I}_2 = j8$$

The Norton current is

$$I_N = I_3 = (3 + j8) A$$

The Norton equivalent circuit along with the impedance at terminals a-b.

$$\mathbf{I}_o = \frac{5}{5+20+j15} \mathbf{I}_N = \frac{3+j8}{5+j3} = 1.465 / 38.48^{\circ} \,\mathrm{A}$$