Imperial College London

DANA: Dimension-Adaptive Neural Architecture for Multivariate Sensor Data

Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Haddadi

Presented by

Mohammad Malekzadeh
Research Associate at Imperial College London

2021UBİCOMP September 21 — 26

Problem

- 1. Not all the **sensors** might be **available** all the time!
- 2. Sensors' sampling rate might be variable.

Sensor Data of Variable Dimensions

Reasons:

- * hardware faults
- * power saving requirements
- * heterogeneous devices
- * privacy or user's control on data sharing

Non-Adaptive Architectures

- Deep neural network (DNN) for sensor data processing:
 - With applications in health & wellness, elderly monitoring, gaming, ...
- These works assume fixed data dimensions at inference time!

Basic Solutions (to "fix" the data)

- Data Imputation for Missing Data
 Re-Sampling
 - What data should be used?
 - Copy available sensor streams?
 - Use zeros or mean?

- Down- or Up-sampling?
- What fixed sampling rate?
 - 5Hz? 25Hz? 50Hz?

Our Contribution

We show that existing deep neural networks can be transformed and trained for adaptive and accurate performance on sensor data of variable dimensions at inference time.

Dimension Adaptive Pooling (DAP)

-

Dimension Adaptive Training (DAT)

=

Dimension-Adaptive Neural Architecture (DANA)

Dimension Adaptive Pooling (DAP)

Better accuracy than existing solutions
Capturing correlations among sensors
Working with both FNNs and LSTMs
Two customizable parameters *W* and *H*No change in the model's size/parameters

Dimension Adaptive Training (DAT)

More efficient than other potential training:

- Standard, weight averaging or meta-learning
- In terms of both accuracy and training time

Results (1)

DANA vs. Only DAP vs. Original Model

Results (2) Original_Mean: Only S1 Original_Copy: Only S1 DANA: Only S1 Original_Mean: Only S2 Original_Copy: Only S2 DANA: Only S2 Original_Mean: Both Sensors Original_Copy: Both Sensors DANA: Both Sensors Classification Accuracy (%) Low Correlation **High Correlation** 25 30 35 Sampling Rate (Hz) 25 30 35 Sampling Rate (Hz)

Capturing the Correlation

Thank you!

Take-away

Deep nets can be **transformed** and **trained** for **reliable** and **accurate** performance on sensor data of **variable dimensions** at inference time.

Code and Tutorials:

github.com/mmalekzadeh/dana

DANA: Dimension-Adaptive Neural Architecture

for Multivariate Sensor Data

Mohammad Malekzadeh, Richard G. Clegg, Andrea Cavallaro, and Hamed Haddadi