Introduction to R

February 9, 2018

Intro to R

R and RStudio

What R can do

3 / 31

What R can do

Everything. 1,2

- 1 Except think about your science
- 2 Occasionally in a non efficient way

What R can do

Everything. 1,2

- 1 Except think about your science
- 2 Occasionally in a non efficient way

What about RStudio?

- Makes your life easier
- Many handy tricks. So far we have seen:
 - Autocomplete suggestion (all alone or press tab)
 - Ctrl-Enter to send command to R
 - str() and View() objects in Environment

- 1 The mean
- 2 Data-frames
- Visualisation
- 4 T-test

Calculating a mean: Arithmetic and assignment

$$(2 + 3 + 5 + 1) / 4$$

[1] 2.75

Calculating a mean: Arithmetic and assignment

```
(2 + 3 + 5 + 1) / 4
[1] 2.75
```

```
a <- 2
b <- 3
c <- 5
d <- 1
(a + b + c + d) / 4
```

Calculating a mean: Arithmetic and assignment

```
(2 + 3 + 5 + 1) / 4
[1] 2.75
```

```
a <- 2
b <- 3
c <- 5
d <- 1
(a + b + c + d) / 4
```

```
a <- 45
(a + b + c + d) / 4
[1] 13.5
```

```
c(2,3,5,1) # c is for concatenate
[1] 2 3 5 1
```

```
c(2,3,5,1) # c is for concatenate
[1] 2 3 5 1
```

 $mydata \leftarrow c(2,3,5,1) \# save the vector$

```
c(2,3,5,1) # c is for concatenate
[1] 2 3 5 1
```

 $mydata \leftarrow c(2,3,5,1) \# save the vector$

```
mydata <- (2,3,5,1) # c is missing => error!
Error: <text>:1:14: unexpected ','
1: mydata <- (2,</pre>
```

```
c(2,3,5,1) # c is for concatenate
[1] 2 3 5 1
```

 $mydata \leftarrow c(2,3,5,1) \# save the vector$

mydata <- (2,3,5,1) # c is missing => error!

```
Error: <text>:1:14: unexpected ','
1: mydata <- (2,
```

Why bother with vectors?

```
mydata[2] <- 4
mydata
```

[1] 2 4 5 1

Intro to R February 9, 2018 6 / 31

Calculating a mean: using functions

How to use a function?

?mean

Calculating a mean: using functions

How to use a function?

```
?mean
```

```
mean(c(2,4,5,1))
[1] 3
mean(mydata)
[1] 3
mean(x = mydata)
[1] 3
```

- The mear
- 2 Data-frames
- Visualisation
- 4 T-test

8 / 31

Loading data

data("trees")

Loading data

```
data("trees")
```

```
str(trees)
'data.frame': 31 obs. of 3 variables:
$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...
$ Height: num 70 65 63 72 81 83 66 75 80 75 ...
$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 .
```

Try also summary, class, head, tail

Access

Bracket-syntax

- Row: dataframe[row,]
- Column: dataframe[, column]
- Element: dataframe[row, column]

Access

Bracket-syntax

- Row: dataframe[row,]
- Column: dataframe[, column]
- Element: dataframe[row, column]

```
trees[,1]
trees[1:8,]
trees[c(2,1,2), 3]
trees[, "Height"]
```

Dollar-syntax

- Column dataframe\$column_name
- Element dataframe\$column_name[row]

trees\$Height

Finally time to think a tiny bit!

Calculate the mean for all three variables in trees, excluding the last (31st) record.

Solution for one column

Calculate the mean for all three variables in trees, excluding the last (31st) record.

```
mean(trees$Girth[1:30])
mean(trees[1:30, "Girth"])
mean(trees$Girth[-31])
mean(trees[-31, "Girth"])
```

How to get the row means?

```
mean(trees[1,])
mean(trees[2,])
mean(trees[...,])
```

How to get the row means?

```
mean(trees[1,])
mean(trees[2,])
mean(trees[...,])
```


How to get the row means? For-loops

```
for (i in 1:N)
{
   something as a function of i
}
```

How to get the row means? For-loops

```
for (i in 1:N)
{
   something as a function of i
}
```

```
ResultMean <- vector() # we will store the results there
for (i in 1:31)
{
    ResultMean[i] <- mean(as.numeric(trees[i,]))
}</pre>
```

For-loops: your turn!

Load rock data.

data("rock")

Use a for loop to obtain column averages

Solution

Load rock data.

```
data("rock")
```

Use a for loop to obtain column averages

```
storage <- vector(length = ncol(rock))
for (i in 1:ncol(rock))
{
   storage[i] <- mean(rock[,i])
}</pre>
```

More concise alternative: apply functions

```
apply(X = dataframe, MARGIN = 1 (row) or 2 (col), FUN = function)
```

More concise alternative: apply functions

```
apply(X = dataframe, MARGIN = 1 (row) or 2 (col), FUN = function)
```

```
apply(X = rock, MARGIN = 1, FUN = mean)#by row (not meaningful)
apply(X = rock, MARGIN = 2, FUN = mean)#by column
```

Even better (worse)...

colMeans(rock)
rowMeans(rock)

Even better (worse)...

```
colMeans(rock)
rowMeans(rock)
```

Trade-off concision / flexibility

- colMeans shortest, but does only means
- apply very flexible, but does only array/matrix/data-frame
- for-loop looks complex, but infinitely flexible
- (NB: your computer does a for-loop whether you see it or not)

- The mear
- 2 Data-frames
- 3 Visualisation
- 4 T-test

plot(rock)

plot(rock\$peri)

plot(x = rock\$peri, y = rock\$area)

plot function: back to the mean

data("iris")

plot function: back to the mean

plot(iris\$Sepal.Length, col=iris\$Species)

boxplots

boxplot(iris\$Sepal.Length ~ iris\$Species)

- The mear
- 2 Data-frames
- 3 Visualisation
- 4 T-test

Student's T.test introduction

?t.test

Student's T.test introduction

5.5 13.5

```
?t.test
```

```
t.test(1:10, y = c(7:20))
Welch Two Sample t-test
data: 1:10 and c(7:20)
t = -5.4349, df = 21.982, p-value = 1.855e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -11.052802 -4.947198
sample estimates:
mean of x mean of y
```

T.test introduction

```
boxplot(c(1:10, 7:20) ~ c(rep(1,10), rep(2, 14)))
```


Are irises different?

Use t-tests to compare species in the iris dataset

Are irises different? Solution

Use t-tests to compare species in the iris dataset

Sorry, I was mean and forgot to tell about subsetting, which you needed here. Subset to the species *setosa*:

```
iris[iris$Species == "setosa", ]
```

One t-test for sepal length between setosa and versicolor: