Strategies

Divide and Conquer

Solve a subproblems of size $\frac{n}{h}$ and recombine them in time $O(n^d)$

$$T(n) \le aT\left(\frac{n}{b}\right) + O(n^d) \implies T(n) = \begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \log n) & \text{if } a = b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

How to Recognize

• Problem is easily broken into substantially smaller subproblems

How to Prove

• Induction

Tips and Tricks

• It may be easier to solve a more general problem (instead of finding median, find kth smallest)

Greedy Algorithms

Build a solution piece by piece by choosing whatever is optimal in the moment

How to Prove

• Swapping Arguments

Dynamic Programming

Identify a collection of subproblems and tackle them one by one, using smaller problems to solve larger ones.

How to Recognize

Input	Subproblem	Function	Number of subproblems
$x_1, x_2,, x_n$	$x_1, x_2,, x_i$	F(i)	O(n)
$(x_1, x_2,, x_n)$ $(y_1, y_2,, y_m)$	$(x_1, x_2,, x_i)$ $(y_1, y_2,, y_j)$	F(i,j)	O(mn)
$x_1, x_2,, x_n$	$x_i, x_{i+1},, x_j$	F(i,j)	$O(n^2)$

How to Prove

- 1. Define a base case
- 2. Define Recurrence Relation
- 3. Prove recurrence accurately solves the problem via induction.

Approximation

Find an algorithm which can approximate a solution to an NP-Complete problem

How to Prove

- Find a Greedy Algorithm which provides a lower bound on the optimal solution
- Find a different structure which can provide a lower bound on optimal (e.g a matching for set cover, a MST for TSP)

P vs NP

Definitions

- $A \to B$ means a subroutine solving B can be used to solve Q
- Search Problem: A problem with an algorithm that checks if solution S to instance I is valid in polynomial time.
- \bullet NP: The class of all search problems
- P: The class of all search problems solvable in polynomial time
- NP Complete: NP-Hard and all other search problems reduce to it
- NP Hard: $\forall B \in NP, B \rightarrow A$

Properties

- $A \to B$ means B is at least as hard as A
- \bullet If A is NP-Complete, then B is NP-Complete if it is NP-Hard and $A \to B$

NP-Complete Problems

Problem	Inputs	Objective
Traveling Salesman	- n vertices - $\frac{n(n-1)}{2}$ distances - Budget b	Find a cycle which uses each vertex exactly once with cost $\leq b$
Rudrata/Hamiltonian Cycle	Graph $G = (V, E)$	Find a cycle which visits each vertex exactly once
Balanced Cut	- n vertices - Budget b	Partition vertices into T and S such that $ S , T >\frac{n}{3}$ with at most b edges connecting S and T
3D Matching	n boys, girls, and pets	Find n disjoint triples which follow edge preferences
Independent Set	- Graph $G = (V, E)$ - Goal g	Find g vertices where no two have an edge between them
Vertex Cover	- Graph $G = (V, E)$ - Budget b	Find b vertices which touch every edge
Set Cover	- Universe E - $S_1,,S_m\subseteq E$ - Budget b	Select b subsets whose union is E
Clique	- Graph $G = (V, E)$ - Goal g	Find g vertices with all possible edges between them
Longest Path	- Graph $G = (V, E)$ - Goal g - Vertices s, t	Find a path between s and t of weight $\geq g$
Knapsack	- Weights $w_1,, w_n$ - Values $v_1,, v_n$ - Capacity W - Goal g	Find a subset of weights with total weight $\leq W$ and total value at least g
Subset Sum	- Integers $s_1,, s_n$ - Goal S	Find a subset of integers which add up to S
k-Cluster	Points $x_1,, x_n$ distance metric $d(x, y)$ integer k	Find k clusters of points which minimizes the diameter of the clusters $\max_j \max_{x_a, x_b \in C_j} d(x_a, x_b)$

Graphs

Definitions

- Tree Edge: DFS traversed edge \rightarrow [u, v, v, u]
- \bullet Forward Edge: Connects a vertex with a descendent $\rightarrow [u,\,v,\,v,\,u]$
- Cross Edge: Connects unrelated vertices \rightarrow [u, u, v, v]
- \bullet Back Edge: Connects a vertex to an ancestor \to [v, u, u, v]

Properties

- In a DAG, each edge leads to a lower post number
- In a Dag, there is always at least one source and one sink
- Two vertices are part of the same strongly connected component \Leftrightarrow There is a cycle in the Graph \Leftrightarrow There is a backedge in DFS
- Every Directed Graph is a DAG of Strongly Connected Components
- The highest post number vertex returns by DFS is in a source SCC
- If c and c' are strongly connected components and there exists an edge from c to c', then the highest post in c is higher than the highest post in c'
- $(u, v) \in E \implies post(u) > post(v)$
- When explore terminates, all reachable vertices are visited
- \bullet Running Bellman Ford |V| times can detect negative cycles
- Deleting a cycle edge can never disconnect the graph
- Cut Property: Let e be the lightest edge across any partition of the graph. Then e belongs to an MST
- Cycle Property of MSTs: Let $C \subseteq G$ be a cycle and e be the heaviest edge in c. Then e cannot be part of any MST
- Dijkstra's Invariant: Computed distance values are always either correct or overestimated

Algorithms

Algorithm	Runtime	Objective
Depth First Search	O(V + E)	What parts of the graph are reachable from a given vertex
Strongly Connected Components:	O(V + E)	Finds the strongly connected component that each vertex belongs to
Topological Sort:	O(V + E)	Returns vertices in a DAG in decreasing post order
Breadth First Search:	O(V + E)	Process vertices according to distance from start vertex
Dijkstra's Algorithm:	$O((V + E)\log V)$	Find shortest paths tree from start vertex. Only works with non-negative edges
Bellman Ford:	O(V E)	Finds shortest paths from s in a graph with no negative cycles
Kruskals Algorithm	$O(E \log E)$	Finds an MST of the graph

Linear Programming

Primal	Dual
$\min \vec{c}^T \vec{x}$	$\max ec{b}^T ec{y}$
$A\vec{x} \geq \vec{b}$	$A^T \vec{y} \leq \vec{c}$
$\vec{x} \ge 0$	$\vec{y} \ge 0$

Theorems

- Weak Duality: Any feasible solution of the primal upper bounds any feasible solution to the dual
- Strong Duality: The optimum of the primal is equal to the optimum of the dual

LP Conversions

- Max to Min: Multiply coefficients in objective by -1
- Inequality to Equality: $\sum_{i=1}^{n} a_i x_i \leq b \Leftrightarrow s + \sum_{i=1}^{n} a_i x_i = b, s \geq 0$
- Equality to Inequality $ax = b \Leftrightarrow ax \leq b$ and $ax \geq b$
- Unrestricted Sign Create $x^+, x^- \ge 0$ and replace x with $(x^+ x^-)$

Max Flow

Given a directed graph G = (V, E) with edge capacities c_e , a source vertex s, and a sink vertex t, find the maximum flow from s to t

Definitions

- Flow: a numeric assignment to each edge such that $\forall e \in E, 0 \le f_e \le c_e$ and $\forall u \ne s, t, \sum f_{uw} = \sum f_{uw}$
- Flow Size: Total flow leaving $s \sum f_{su}$
- ST Cut: A partition of the vertices with S on one side and T on the other.
- Residual Graph: A graph whose edges have capacity

$$\begin{cases} c_{uv} - f_{uv} & \text{if } (u, v) \in E \text{ and } f_{uv} \le c_{uv} \\ f_{vu} & \text{if } f_{vu} \notin E \text{ and } f_{uv} > 0 \end{cases}$$

• Cut Capacity: The total capacity of the edges leaving S and entering T

Properties

• The size of the maximum flow equals the capacity of the smallest s-t cut

Multiplicative Weights

At time t = 1, 2, ..., choose from n choices to produce vector $x^{(t)} = (x_1^{(t)}, x_2^{(t)}, ..., x_n^{(t)})$ such that $x_i^{(t)} \geq 0, \sum_{i=1}^n x_i^{(t)} = 1$ After choosing $x^{(t)}$, we see losses $l^{(t)} = (l_1^{(t)}, l_2^{(t)}, ..., l_n^{(t)})$. Maintain weights $w^{(t)} = (w_1^{(t)}, w_2^{(t)}, ..., w_n^{(t)})$ where $w_i^{(t)} = 0$ and $w_i^{(t)} = w_i^{(t)}(1 - \epsilon)^{l_i^{(t)}}$. Choose $x^{(t)}$ by letting $x_i^{(t)} = \frac{w_i^{(t)}}{\sum w_j^{(t)}}$

Definitions

- Player's Loss at t: $\sum x_i^{(t)} l_i^{(t)}$
- Regret after T steps: $R = \sum x_i^{(t)} l_i^{(t)} \min_i \sum l_i^{(t)}$

Properties

- $R_T \le \epsilon T + \frac{\ln n}{\epsilon}$, so if $T > 4 \ln n$, $\epsilon = \sqrt{\frac{\ln n}{T}}$, then $R_T \le 2\sqrt{T \ln n}$
- Strategies producing high losses in the pst will have small weight, Strategies with low losses in the passt will have high weights

Computation Models

Comparison Model

How many comparisons does an algorithm perform?

Circuit Complexity

n bits of input are fed into a circuit of AND, OR, and NOT gates.

- **Depth:** The longest path from an input to the output
- Size: The number of wires in the circuit

Total number of circuits is $s = 2^{O(s \log s)}$

Cell Probe

Memory M using S words of space. Each word is w bits. Count the number of memory reads and writes

Word RAM

Same idea as Cell Probe, but now any machine operation (+, -, etc) also adds to the cost

Branching Program

Model a function $f:0,1^n \to Y$. It is a DAG with one source and several sinks. Each sink corresponds to an output in Y. Each non-sink node is labeled 1...n and has a 0 edge and a 1 edge, so input $x \in 0,1^n$ defines a path. L is the length of the program, a.k.a the maximum number of edges from source to sink.

Communication Complexity

The player Alice has $x \in X$ and player Bob has $y \in Y$. They want to compute f(x, y). They communicate with each other, and the complexity is how many bits they send.

Math

Probability

- $\forall \lambda > 0, \mathbb{P}[Z > \lambda] < \frac{E[Z]}{\lambda}$
- $\forall \lambda > 0, \mathbb{P}[|Z \mathbb{E}[Z]| > \lambda] < \frac{Var[Z]}{\lambda^2}$
- $\mathbb{P}[U_i X_i] \leq \sum \mathbb{P}[X_i]$

Polynomials

$$A(x) = \sum_{i=0}^d a_i x^i$$
 and $B(x) = \sum_{i=0}^d b_i x^i$, then $C(x) = A(x)B(x) = \sum_{i=0}^{2d} c_i x^i$ such that $c_k = \sum_{i=0}^k a_i b_{k-i}$

$$A(x) = A_e(x^2) + xA_o(x^2) \Rightarrow \begin{cases} A(x_i) = A_e(x_i^2) + x^i A_o(x_i^2) \\ A(-x_i) = A_e(x_i^2) - x^i A_o(x_i^2) \end{cases}$$

Let $\omega_n = e^{i\frac{2\pi}{n}}$, then $\omega_n^{\frac{n}{2}+j} = -\omega^j$ and $\omega_n^2 = \omega_{\frac{n}{2}}$

Bounds

$$n! \approx \sqrt{\pi (2n + \frac{1}{3})} * n^n e^- n \implies \log(n!) = \Theta(n \log n)$$
$$1 - x \le e^{-x}$$
$$(1 - \epsilon)^z \le 1 - \epsilon z \text{ for } 0 \le z \le 1, 0 \le \epsilon \le 1$$
$$-z - z^2 \le \ln 1 - z \le -z \qquad \forall 0 \le z \le \frac{1}{2}$$
$$\sum_{t=1}^n \frac{1}{t} \le \ln n$$