\* 57

ACTGTTAGCTAATTGG Refused

CAATCGAA - Probe from first probes

CAAGCGAA Corresponding probes

CAAGCGAA from second, third and

CAAGCGA from probe sets

Interrogation position

Fig. 1

Fig. 2



Fig. 3

ACTGTT AGCTAATTGG Reb. Seq.

WI lane TGAC GACA ACAA CAAT AATIG

Fig. 4

Fig. 5

|              |     |         |   |   |          |            |    |        |     |    | ^        | - | A   | A        | C | Reference Sequence |
|--------------|-----|---------|---|---|----------|------------|----|--------|-----|----|----------|---|-----|----------|---|--------------------|
| 7            | Α   | Α       | Α | G | 그        | A          | A  | G      | A.  | 9  | A        |   | _   | -        | ۲ | A-Lane             |
| THE STATE OF |     |         |   |   | 垣        |            |    |        |     |    |          | 3 | _   |          | _ |                    |
| ***          |     |         |   | 響 |          |            |    | : :- : |     |    |          |   |     |          |   | C-Lane             |
|              |     |         |   |   |          |            |    |        |     | 14 |          |   |     |          | 3 | G-Lane             |
|              |     |         | : |   |          | - <u>;</u> |    |        |     |    |          |   | نتج | - 25     |   | T-Lane             |
|              | ÷   | 兰       | = |   |          | لنت        | -  |        |     |    |          |   |     |          |   |                    |
|              |     |         |   |   |          | _          |    |        | _   |    |          | 1 |     | ĪΑ       | F | Reference Sequence |
| G            | G   | C       | + | G | A        | C          | G  | 1      | C   | 4  | G        | 2 | A   | A        |   | · ·                |
| _            |     |         | 9 |   |          |            |    | 3      |     |    |          |   |     | <u> </u> | * | A-Lane             |
| 75           | F   | -       | - | 灵 |          |            | :5 |        |     |    | 3        |   |     |          |   | C-Lane             |
| *            | **  | <u></u> | - | * | <u> </u> | 1,000      |    | -      |     | -  | -        | ÷ |     |          |   | G-Lane             |
|              |     | 劈       | L |   |          | 34         |    | ↓      | 7.7 | _  | ├        |   | -   | -        | - | T-Lane             |
|              |     |         |   |   | 쁡        |            |    | L      |     | #  | <u> </u> | L | 1   | =        | _ | 1 -Lane            |
|              | · · |         |   |   |          |            |    |        |     |    |          |   |     |          |   | ]                  |
| _            | _   | _       |   | _ |          | _          |    |        |     |    |          |   |     |          |   |                    |
|              |     |         |   |   |          | <b>A</b>   |    |        |     |    |          |   |     |          |   |                    |

FIG. 5: Tiled Array with Probes for the Detection of Point Mutations

3'-CCGACTACAGTCGTT

3'-CCGACTCCAGTCGTT

3'-CCGACTGCAGTCGTT

3'-CCGACTTCAGTCGTT

ACTGTTAGCTAATTGG Ref. Seq.

CAATCGA- Probe from first set

CAATCGA[T]-Deletion probe

CAATCGA[] Insertion

CAATCGGA]

CAATGCGGA]

CAATTCGA]

CAATTCGA]

Fig. 6

no no no corresponding nucleotides ACTGTTAGCTAATTGG Reb. Seq. CAATICGA Probe from first set Il Iz Iz Interrogation positions COATCGA Corresponding probes COGATCGA Corresponding probes from second, third and fowth probe sets I, CAAGCGA Corresponding prohos CAAGCGA From fitth, sixth and CAAGCGA Seventy probe sets CAAGCGA L CAATCOA Convesponding probes from CAATCOA CINA winth and tenth

Fig. 7

In Indevrogation positions

Fig. 8

ATTCCCGGGATC

AGGGCCAT — Probo from first probo
Set

AGGGCCAT

Corresponding probes from
Seconditive and fourth

Hagger Hobe set

luterreation

6:11-10

HV407A 130x140 15/8 7/9 

Fig. 10 Page 1 of 2

**9**757

HV 4074 (2)

|                                           | * * * * * * * * * * * * * * * * * * *   | 2                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ;                                         | 3 5 5 5 7 7 6 6<br>A A A A AAAAA        | -                                                                   | TO T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 2 25<br>1 1 25<br>1 1 1 25              | 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 5 TT 5 T 5 T 5 T 5 T 5 T 5 T 5 T 5 T 5                              | 7 77 787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 3 32<br>A A A A AAAA A A A <sup>3</sup> | T T T T G                               | 3 TT                                                                | TO THE CONTROL OF THE |
| 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5     | S S S S S C CC CCCC                     |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * * * * * * * * * * * * * * * * * * *     | 5 5 5 5 5 6 666<br>A A A A A            |                                                                     | T TO THE TOTAL TOTA |
| 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5     | = = = = = = = = = = = = = = = = = = = = | 5 5 5 5 600 To Tak                                                  | 200 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1007                                      | =                                       |                                                                     | T TT T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5   | 5 5 5 5 5 600 5 7 5 00<br>W. A. | XXX 2 2 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HORT TTTTT                                | : : : : : :                             | 5 5 5 5 600 5 000<br>A A A A A A A A A A A A A A A A A A            | 7 777 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

49/57:



MCO7060: = 407 water chip lybridized with fragmented pfol 19 RNA

Fig. 11

11/57

Figure 12 (Page 1 of 2)

SF2 target: S12 chip
Abovet: SF2 chip
4muri8 CHAPTER THE CONTROL OF THE CONTROL O Charles Transministratic Charles (Child Charles (Child Control Charles (Child Child 17072804.cq2 17072804.cq2 17072804.cq3 17072805.cq3 17072805.cq3 17072805.cq3 53656565 19072804.cq1 19072804.cq2 19072804.cq4 19072805.cq1 19072805.cq1 19072805.cq1 200000000 19072804.cq1 19072804.cq2 19072804.cq3 19072805.cq1 19072805.cq2 19072805.cq2 17072804 17072804 17072804 17072806 17072805 17072805 170/2804 170/2804 170/2804 170/2805 170/2805 170/2805

10:57

Figure 12 (Page 2 of 2)

|                                                                      | 188 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type                                                                 | TTOTATGATCTGACTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAACTGAAAATCAAAATGAAAAATGAAAAATGAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2804.cq1<br>2804.cq2<br>2804.cq4<br>2805.cq1<br>2805.cq1<br>2805.cq2 | EMM: A transfer of the control of    |
| J. 8 P. P.                                                           | AACATCAGABAGAACCTCCGTTGGGTGGGTTATGBACTCCTGATAAATGGGCGTATAATGCGTATAATGCTGCCTATAATGCTGCGTATAAAAGACAGGGGAGGGGAGGAGAGACAGGGAGAGACAGGAGAGACAGGAGAGACAGGAGAGACAGGAGAGACAGGAGAGACAGGAGAGACAGGAGAGACAGGAGAGACAGGAGAGACAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 804.001<br>804.002<br>804.003<br>805.004<br>805.001<br>805.003       | Secate de geasgeace en Mannanna de la gestagent autoministrat generatace gibilitation de la generation de la gentration de la generation de la generation de la generation de la |
| ii 1.4 Type                                                          | TOTICANTONGATACAGGAAAAA<br>TOTICANTONGATACAGGGGAAAAA<br>C. 810 820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 804.cq1<br>804.cq2<br>804.cq3<br>805.cq1<br>805.cq1<br>805.cq1       | tgtNNNgacatacagaagttagtggggaattgtcgtgggggaattgtcgggggggg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                      | 80-501-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| o rinoresce | esceln-AAAGAAAAAAAAAAAAAAAAAAAAAAAAA          | wildtvne |
|-------------|-----------------------------------------------|----------|
| PROBE 3'    | tttttt•tatcat                                 | 13mers   |
| PROBE 3'    | ctttttt•tatcata                               | 15mers   |
| PROBE 3'    | tcttttt•tatcataa                              | 17mers   |
| PROBE 3'    | ttctttttt•tatcataat                           | 19mers   |
| 5'Fluoresce | PSCPIN-DAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | _ mitort |

Fig. 13

PCT/US94/12305

4/57

Fig. 14



:

Genotyping of HIV-1 Protestone IV pre and post-ddI troated Patherts muleofido 207 CCCCLLAACÇLCCARAALAÇKILCALICLGICALGCLAAÇSLAKG 

Fig. 1.

# Array Design for the R553X Point Mutation

### Wild-Type Pattern

### **Position**



Wild-Type Sequence: 5'-AGGTCAACGAGCAA-3'

Mutant Sequence: 5'-AGGTCAATGAGCAA-3'

# Array Design for the R553X Point Mutation

# Heterozygote Pattern

### **Position**



Wild-Type Sequence: 5'-AGGTCAACGAGCAA-3'

Mutant Sequence: 5'-AGGTCAATGAGCAA-3'



Fig. 18



Fig. 19 Page 1 of 3



Fig. 19 Page 2 of 3



Fig. 19 Page 3 of 3



Fig. 20



Fig. 21 Page 1 of 3



Fig. 21 Page 2 of 3

25/57 .



Fig. 21 Page 3 of 3



Fig. 22



Fig. 23 Page 1 of 2



Fig. 23
Page 2 of 2

29/57.

A

В



Fig. 24

•

30.07

A



Fig. 25 Page 1 of 2

•

31/57

В



Fig. 25 Page 2 of 2



Fig. 26

PCT/US94/12305

Fig. 27

33/57

 $\vdash$ 

0

000

C

0000

0 0 0 0 0 0

**७** ७७७७७७७

**5** 000000000

**७** 0.000000000

<<<<<<<<<

000000000000

000000000000

0000000000

< < < < < < < < <

0000000

. . .

C

 $\mathcal{C}$ 

P53 EXON 6 CODON 192 REGION: 12MER PROBES

G

⋖

5

Fig. 28

34/57 -

(

C

 $\mathbf{C}$ 

5

 $\mathcal{O}$ 

C C C

0000

0000

**0** 000000

**0** 00000000

**0** 000000000

44444444

00000000000

00000000

00000000

-  $\circ$   $\circ$   $\circ$   $\circ$ 

< <

\_\_

P53 EXON 6 CODON 192 REGION: 10MER PROBES

35/57.

Figs. 29 and 31

# Detection of 12-mer One-Base Sustitution P53 Targets

Fig. 29

WT ("G" Substitution) Target 12-mer



"A Substitution 12-mer Target

"A" Substitution 12-mer 4:1 Mixture of WT and

**Targets** 

Fig. 31



"C"Substitution Target 12-mer "T" Substitution Target 12-mer





P53 EXON 6 CODON 192 REGION



Fig. 30

1'53 EXON 6 CODON 192 REGION



Fig. 32



Fig. 33

| • | ٠ | į | ١ |
|---|---|---|---|
| • | ì | • | 1 |
|   |   |   |   |
|   | t | 3 | ı |
| : | ٠ |   | • |
| Ĺ | 1 |   |   |

| Visto Section Section | -                    | 101          | I ILIK                                        |          | اللا        |                                              |              |            |
|-----------------------|----------------------|--------------|-----------------------------------------------|----------|-------------|----------------------------------------------|--------------|------------|
| OI I                  | -                    | 10           | -ie                                           |          | A           |                                              |              |            |
| <b>4</b> :            | IV                   | -            | 10                                            |          | 0           |                                              |              |            |
| <b>4</b> ! !          | 10:                  | [ <b>4</b> ] | : IO:                                         |          | <b> </b> <: |                                              |              |            |
| 01   1                | - ei                 | 0            |                                               |          | 101         |                                              |              | 44         |
| 0                     |                      | !  0         | 0                                             |          | -           | O                                            |              |            |
| 0 1                   | 10                   | 0            | 0                                             |          | 101         |                                              |              |            |
| H                     | 0 1                  | 0            | 0                                             |          | 101         |                                              |              |            |
| -                     | 0   :                | 101          |                                               |          | j-          | 0                                            |              |            |
|                       | -    O               | 0            | 0                                             |          | 10          |                                              |              |            |
| <u> </u>              | 0!                   | 1011         | -                                             |          | 10          |                                              |              |            |
| 0 1                   | -                    |              |                                               |          | 10          |                                              |              |            |
| FIT                   | 0 :                  | 1 01 1       | 1 101                                         |          | <u> 0 </u>  |                                              |              |            |
| 4111                  | 1 0 1 :              | 101          |                                               |          | <           |                                              |              |            |
| 0! 1 1                | <b>       </b>       | 0            | 0                                             |          | O           |                                              |              |            |
| 4                     | 10::                 | 0            | 1 101                                         |          | -           |                                              |              |            |
| 4 I                   | 10.1                 | 0            |                                               |          | 4           |                                              |              |            |
| OI I                  | -:                   | O            | 1 0                                           |          | O           |                                              |              |            |
| <1                    | 10.                  | <            |                                               |          | O           | <u>                                     </u> |              |            |
| VI I                  | -                    | 1 101 1      |                                               |          | 4           |                                              |              |            |
| 01   1                | 0                    | 0            | 1 10                                          |          | loi         | 1 ! !                                        |              |            |
| : 1                   | 1 10                 | 10           | -                                             |          | 10.         | 1 1 1                                        |              |            |
| O : i                 | I O                  | . 10. !      | 1 10                                          |          | : :0        |                                              |              |            |
| U:                    | 10                   | 10!          |                                               |          | 10          |                                              |              |            |
| O!                    | ; } <b>⊢</b> :       | 10           | 1   101                                       |          | : IO        | 1 1 1                                        |              |            |
| Ø: · '                | 10                   | :O           | 0                                             |          | 10          | ++++                                         |              |            |
| -                     | 10                   | ;O. :        | , ; I <b>∢</b> :                              | <u> </u> | 11-         |                                              | -            |            |
| O :                   | <                    | 10           | · . I∢·                                       |          | !0          |                                              |              | #1         |
| U. I                  | : 10                 | <u></u> Ο    | ; ¦ lOi                                       |          | 10:         |                                              |              | 111        |
| U i                   | : 14                 | !O!          | <u>                                      </u> |          | : 101       | - !                                          | 101          | 1 1        |
| U: .                  | :  <                 | 1:0          | i :                                           |          | : 10.       | - : !                                        | <u> </u>     | 10         |
| -                     | IO                   | .∢.          | · · !O:                                       |          | 10.         | :                                            | 1 <b>4</b> : |            |
| U .                   | . 0                  | .0           | ; ;                                           |          |             | · :                                          | 101          | <u>!U.</u> |
| ∢.                    | , <b>(</b> 0         | .∢.          | , (∢;                                         |          | 10:         | · ! :                                        | 101          | <u>!</u>   |
|                       | ; IO.                | ,O,          | 10.                                           |          |             | <u> 0 </u>                                   | 101          | <u> </u>   |
| 3                     | 0:- \frac{1}{2} < 10 | .0.          | iO:                                           |          | ;O!         |                                              | i <b>∢</b> i | :          |

# THE HUMAN MITOCHONDRIAL GENOME



Fig. 35

nt4



### mt5



HYBRIDIZATION

Fig. 37

## PREDICTED DIFFERENCE IMAGE



Fig. 38



Fig. 39

NORMALIZED INTENSITIES

45/57

-- mt2 mt5 mt3 mt1 12 Probe position in row 10 of array 9 · 10 <u>^</u> 4 mismatch position sample (mt1 -> 6) from 3' of probe probe position probe length base change 0.00 1.60 0.40 0.50 1.40 1.20 1.00 0.80 0.60 Normalized intensity

Fig. 40 Sheet 1 of 2

NORMALIZED INTENSITIES



Fig. 40 Sheet 2 of 2

| probe position   | 9      | 7      | ×       | 6     | 10               |         | 12     | 13       |
|------------------|--------|--------|---------|-------|------------------|---------|--------|----------|
|                  | )      |        | )       | ,     | >                | -       | 7 -    | <u>-</u> |
| probe length     | 13     | 12     | 12      | 13    | 14               | 13      | 12     | 12       |
| mt1 -> 6)        | 2      | 2, 5   | 2, 5, 6 | 3, 6  | 3, 4, 5, 2, 4, 5 | 2, 4, 5 | 2      | 2        |
| h position       | 13     | 9, 10  | 3, 4    | 11, 5 | 4, 11,           | 11, 3,  | 9      | 3        |
| from 3' of probe |        |        | 11      |       | double           | double  |        |          |
| base change      | c -> t | c -> t | 1 <- 0  | 1-> c | 2 <- 1           | g -> a  | g -> a | g -> a   |
|                  |        |        | 1 -> c  |       | double           | t -> c  | _      |          |
|                  |        |        |         |       |                  | double  |        |          |



Fig. 41

48/57



SEQUENCE

### 49/57

Fig. 43

<del>ن</del>  $C_{\mathcal{K}}$ C  $\Omega$  $\mathcal{O}$ D **D** 1 gtgtgt C Q b Ū ര C g ದ  $\mathcal{O}$ Q  $\mathcal{O}$ Ū Ū  $\alpha$  $\mathcal{O}$ CCC ttta C بد Q  $\omega$ g L  $\alpha$ لا ರ ಹ L U g  $\mathcal{O}$  $\Omega$ ىد Łg ta D  $\mathcal{O}$ g Q  $\circ$ O  $\Box$  $\Box$ D ىد لد g ಹ ಹ g Ca ಡ  $\boldsymbol{\omega}$ g Q  $\alpha$ IJ Ø H α L ಥ  $\omega$ Ď Q  $\Omega$ D 1) g O  $\alpha$ g Ø g  $\boldsymbol{\omega}$ ggT tc ب U g  $\iota$ g u g  $\mathcal{O}$  $\boldsymbol{\omega}$ ರ  $\mathcal{O}$ ىد Ü  $\mathcal{O}$ ب Q ند ب ದ D L T Ü  $\mathcal{O}$ ಥ  $\mathbf{C}$ b Ø  $\mathcal{O}$  $\Omega$  $\alpha$ Ø  $\alpha$  $\alpha$ C ಥ  $\Omega$ ದ  $\alpha$ g g  $\mathcal{O}$ α р atttcca g g ب Cල ට ct t ctccgtga  $\mathcal{O}$  $\mathcal{O}$  $\mathcal{O}$  $\alpha$ L catcTu ರ α Ø  $\alpha$ ند Ö ಹ cattacagicaaatcccttctcgtc cccata gacatc ctctcc tcctgc acagtacatagtaca g cga ata Ca ctact ď tg aCC g C ಹ  $\alpha$ Ø ب gg Ü ىد ď ď tgaactgtatccgacatctggttc D ب α Q ರ ga ىد ಹ  $\alpha$ g α ಥ Ø ಥ b gggtcccttgaccacca caggc ๙ ىد g  $\Omega$ ¥  $\alpha$ geneaagagigetactetetegetee ಹ ctcacgg cgatag gtcttt  $\alpha$  $\mathcal{O}$ Xetececegettetggecacagaatt Ø Q cata cacacgttcccctta agccActttccacagacatcata Ĺа ď cg gcagtatct gg ಹ tategeacetaegtteaatat ttaacca tacccaccett ticgtctggggggtatgca taattaattaatgettgta cta C tagca D gcaccctatgt ata CC S t U D gtctatca La ಹ D 5 ಡ cactea  $\sigma$ cgtac Xaaca ctaaa J ct:aa

50/57-

Fig. 44



HYBRIDIZATION

51/57

|           |         | A C C T |
|-----------|---------|---------|
| 344       | T->C    |         |
| 263       | A->G    |         |
| 152       | T->C    |         |
| 16519     | T->C    |         |
| Position: | Change: | Result: |

Fig. 45

Fig. 46

Light Directed Oligonucleotide Synthesis

Fig. 47



Nucleoside Combinatorials

Fig. 48



Solid Phase DNA Synthesis

55 57

Fig. 49

### Nucleoside Buildingblocks

Fig. 50

MeNPOC-CI

Fig. 51 fluorescence Intensity flow cell (temperature controlled) Laserbeam (488nm) Detection microscope objective aperture PMT derivatized slide dichroic

٠,

1