Compiler: Note #1

ant-hengxin

0130

Big Picture:

we are used to expressing lexical rules in regular expressions, but we are writing the lexical analyzer through a DFA. That means that there exists some way to convert from regular expressions to DFA.

$$\mathtt{re} o \mathtt{DFA}$$

But this approach is overly complicated, and for simplicity's sake, let's do this thing in multiple steps:

$$\texttt{re} \xrightarrow[\textbf{Construction}]{\textbf{Thompson}} \texttt{NFA} \xrightarrow[\textbf{Construction}]{\textbf{Subset}} \xrightarrow[\textbf{DFA}]{\textbf{DFA}}$$

And we also want to know how to convert a DFA to a re.

Alphabet Σ : A set of finite symbols.

String **s** over alphabet Σ : A sequence of symbols from Σ . A special string ϵ is the empty string with the property $|\epsilon| = 0$.

String operation: concatenation: x = dog, $y = house \Rightarrow xy = doghouse$.

Language L over alphabet Σ : A countable set of strings over Σ .

Language operation:

Suppose L, M are languages, we can use set operations to construct new languages:

- 1. L \cup M:= { s | s \in L or s \in M }
- 2. LM:= { $s \in L$ and $s \in M$ }
- 3. L*:= $\bigcup_{i=0}^{\infty} L^i$ (Kleene closure)
- 4. L⁺:= $\bigcup_{i=1}^{\infty}$ Lⁱ (Positive closure)

After know what is language, let's consider the regular expression.

Regular expression:

A regular expression over alphabet Σ is defined as follows:

- 1. ϵ is a regular expression.
- 2. \forall **a** \in Σ , **a** is a regular expression.
- 3. If r is a regular expression, then (r) is also a regular expression.
- 4. If r, s are regular expressions, then r|s, rs, r* are also regular expressions.