Test 3 Solutions

Sounder, Procenter 28, 2021

(1)
$$T(9\overline{v}_{1}^{2} - 3\overline{v}_{2}^{2}) = -4\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$$
 $T(-3\overline{v}_{1}^{2} + 2\overline{v}_{2}^{2}) = -4\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $T(-3\overline{v}_{1}^{2} + 2\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} - 5\overline{v}_{2}^{2}$
 $-3\overline{v}_{1}(\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} - 5\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2} + 2\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} - 5\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2} + 2\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 4\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 2\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}(\overline{v}_{2}^{2}) = -2\overline{v}_{1}^{2} + 2\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}^{2} + 2\overline{v}_{2}^{2} + 2\overline{v}_{2}^{2} + 2\overline{v}_{2}^{2}$
 $2 + (\overline{v}_{1}^{2}) + 2\overline{v}_{2}^{2} + 2\overline{v}_{2}^{2} + 2\overline{v}_{2}^{2} + 2\overline{v}_{2}^{2} + 2\overline{v}_{$

rank(A) = 1

null(A) = 3-1=2

dim(
$$\text{Im}(A)$$
) = 2
dim($\text{Im}(A)$) = 1
(5) $A = \begin{bmatrix} -1 & -10 \\ a & a \end{bmatrix}$ $\lambda I - A = \begin{bmatrix} \lambda + 7 & 10 \\ -a & \lambda - 2 \end{bmatrix}$
ly points $\begin{bmatrix} -10 & \lambda - 2 \\ a & a \end{bmatrix}$ det $\begin{bmatrix} \lambda I - A \\ a & \lambda - 2 \end{bmatrix}$
apoints $\begin{bmatrix} -10 & \lambda - 2 \\ a & \lambda - 2 \end{bmatrix}$
 $\begin{bmatrix} -10 & \lambda - 2 \\ a & \lambda - 2 \end{bmatrix}$
 $\begin{bmatrix} -10 & \lambda - 2 \\ a & \lambda - 2 \end{bmatrix}$

 $= (\lambda + 3)(\lambda + 2) = \lambda - 3(\lambda = -3)$

also
$$\overline{V}_1 = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$
 $\lambda_1 = 3$
 $\lambda_2 = 3$
 $\lambda_2 = 3$
 $\lambda_3 = 3$
 $\lambda_4 = 3$
 $\lambda_5 = 3$

Char(A) = det (A-
$$\lambda$$
I) = (+S- λ)(3- λ)(- λ) +20 +0)
= (-15+2 λ + λ ²)(- λ) +20 - (25+5 λ)
= - λ ³ - 2 λ ² + 15 λ +20 - 25 - 5 λ
= - λ ³ - 2 λ ² + 10 λ -5
also λ ³ +2 λ ² - 10 λ +5

8 points b)
$$YS = 0.3$$

8 points b) $YS = 0.3$
C) $5+3 > 8$
d) $-5.5 = -25$
8 tr(A) = $\sum_{i=1}^{K} \lambda_i$ (sum of all eigenvalues) Typoint 4 point 4 all eigenvalues)

3×3 matrix, 3 eigenvalures 2, 1, 2, 13

=> h, th, th3 =-2 => 2/1+h3 =-2

 $\lambda_1 \lambda_1 \lambda_3 = -a4$ $\lambda_1^2 \lambda_3 = -a4$

 $= \frac{\lambda_3 = -2 - 2\lambda_1}{2} + \frac{2\lambda_1^2}{2} - 2\lambda_1^3 = 24$

 $\lambda_1^2(-2-a\lambda_1) = -24$ $\Rightarrow \lambda_1^3 + \lambda_1^2 - 12 = 0$

2 distincts eigenvolves: WLOG assume $\lambda_1 = \lambda_2$

tr (A) == 2 => 21+22+23 =-2

det (A) = -24 =>> 2/1 2/3 = -24

Ans: $d_{1} = 2 + 2 = 2 + 3 = -6$

 $\lambda = 2$: multipliaity = 2 $\lambda = -6$: multipliaity = 1

Spants

Spanes

2-2 -2(2) =-6

 $\lambda_1 = \lambda \Rightarrow \lambda_3 = -2 - 2\lambda_1$

Spoints

$$A - 3I = \begin{bmatrix} -4 & -10 \\ a & 5 \end{bmatrix} - 3 \begin{bmatrix} 5/a \\ 0 & 0 \end{bmatrix}$$

$$A - 2I = \begin{bmatrix} -5 & -10 \\ a & 4 \end{bmatrix} - 3 \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} = 3 \begin{bmatrix} 5/a \\ 2 \end{bmatrix}$$

$$A - 2I = \begin{bmatrix} -5 & -10 \\ a & 4 \end{bmatrix} - 3 \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} = 3 \begin{bmatrix} 5/a \\ 2 \end{bmatrix}$$

$$A - 2I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$

$$A - 3I = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$$