HIGHPLAN Computational Methodology

Dr. Scott Washburn University of Florida Transportation Research Center

For Version 7/19/2012

Two-Lane Methodology

Inputs

Project Properties

Roadway Information:

AreaType := 2

1 = Urbanized, 2 = Transitioning/Urban, 3 = Rural developed, 4 = Rural undeveloped

Highway Data

Roadway Variables:

NumberofLanes := 2	LeftTurnImpact := 0	0 = No, 1 = Yes
NumberorEanes .— 2	Dert i driffinpact .— 0	0 = 110, 1 = 100

Terrain := 2 Level = 1, Rolling = 2 Median := 0 0 = No, 1 = Yes

PostedSpeed := 50 mi/h PresencePassingLane := 0 0 = No, 1 = Yes

SegLength := 4 mi Spacing := 0 mi

%NPZ := 60

Traffic Variables:

 $AADT := 14410 \hspace{1.5cm} P_T := 4\% \hspace{1.5cm} Percent trucks$

K:= 0.096 BaseCapacity := 1700

D := 0.60 LocalAdjustmentFactor := 1.0

PHF := 0.91

LOS Computational Steps

1. Calculate Peak and Off-Peak Hour Volumes

 $PeakHrVol := AADT \cdot K \cdot D$ PeakHrVol = 830.0 veh/h

OffPeakHrVol := $AADT \cdot K \cdot (1 - D)$ OffPeakHrVol = 553.3

2. Determine adjustment for the presence of a median and/or left turn lanes

Left Turn Impact Adjustment (LTadj) = -0.2 for left turn lanes NOT present, LTadj = 0 otherwise.

Median Adjustment (MedAdj) = 0.05 for median present, MedAdj = 0 otherwise.

Left Turn Lane:

$$LTadj(LeftTurnImpact) = 0$$
 $LTadj:=LTadj(LeftTurnImpact)$ $LTadj = 0$

Median:

$$\begin{tabular}{ll} MedAdj(Median) := & out \leftarrow 0 & if Median = 0 \\ out \leftarrow 0.05 & if Median = 1 \\ out \\ \end{tabular}$$

$$MedAdj(Median) = 0$$
 $MedAdj:= MedAdj(Median)$ $MedAdj = 0$

Final Adjustment Value for Left Turn Lane and Median:

$$AdjMedLTL := 1 + LTadj + MedAdj$$
 $AdjMedLTL = 1$

3. Calculate Adjusted Volume (AdjVol)

Note: the PHF is assumed to be the same in the off-peak direction.

$$AdjPeakVol := \frac{PeakHrVol}{PHF \cdot AdjMedLTL} \qquad \qquad AdjPeakVol = 912 \quad veh/h$$

$$AdjOffPeakVol := \frac{OffPeakHrVol}{PHF \cdot AdjMedLTL} \qquad \qquad AdjOffPeakVol = 608 \quad veh/h$$

Calculations for Percent Time Spent Following (PTSF)

4. Determine E_T (Truck passenger car equivalency factor)

Note: '1' indicates analysis direction, '2' indicates opposing direction

 VolIndexLow := 900
 valueLow := 1.0
 From Exhibit 15-18

 VolIndexHigh := 1000
 valueHigh := 1.0
 HCM 2010

Interpolation:

$$E_{\mbox{T1_PTSF}} \coloneqq \mbox{valueLow} + (\mbox{valueHigh} - \mbox{valueLow}) \cdot \left(\frac{\mbox{AdjPeakVol} - \mbox{VolIndexLow}}{\mbox{VolIndexHigh} - \mbox{VolIndexLow}} \right)$$

$$E_{T1 PTSF} = 1.00$$

Interpolation:

$$\begin{split} E_{\text{T2_PTSF}} \coloneqq \text{valueLow} + (\text{valueHigh} - \text{valueLow}) \cdot \left(\frac{\text{AdjOffPeakVol} - \text{VolIndexLow}}{\text{VolIndexHigh} - \text{VolIndexLow}} \right) \\ E_{\text{T2_PTSF}} &= 1.18 \end{split}$$

5. Calculate heavy vehicle factor (f_{HV})

Note: All heavy vehicles are considered as trucks in HIGHPLAN

$$\begin{split} f_{HV1_PTSF} &\coloneqq \frac{1}{1 + P_{T} \cdot \left(E_{T1_PTSF} - 1\right)} & f_{HV1_PTSF} = 1.00 & \text{Equation 15-8} \\ f_{HV2_PTSF} &\coloneqq \frac{1}{1 + P_{T} \cdot \left(E_{T2_PTSF} - 1\right)} & f_{HV2_PTSF} = 0.99 \end{split}$$

6. Determine grade adjustment factor (f_G)

Interpolation:

$$f_{G1_PTSF} \coloneqq valueLow + (valueHigh - valueLow) \cdot \left(\frac{AdjPeakVol - VolIndexLow}{VolIndexHigh - VolIndexLow}\right)$$

$$f_{G1\ PTSF} = 1.00$$

Interpolation:

$$f_{G2_PTSF} \coloneqq valueLow + (valueHigh - valueLow) \cdot \left(\frac{AdjOffPeakVol - VolIndexLow}{VolIndexHigh - VolIndexLow} \right)$$

$$f_{G2\ PTSF} = 0.97$$

7. Calculate analysis and opposing direction volumes

Since the PHF was already accounted for in Step 5, the following equation is used:

Equation 15-7 HCM 2010

From Exhibit 15-20

HCM 2010

$$v_{d_PTSF} := \frac{AdjPeakVol}{f_{G1\ PTSF} \cdot f_{HV1\ PTSF}}$$
 $v_{d_PTSF} = 912.1$ pc/h

$$v_{o_PTSF} := \frac{AdjOffPeakVol}{f_{G2\ PTSF} \cdot f_{HV2\ PTSF}} \quad v_{o_PTSF} = 630.4 \quad pc/h$$

8. Determine values of coefficients 'a' and 'b' for HCM Equation 15-10

Note: This table uses opposing demand flow rate (pc/h)

Interpolation:

$$a := valueLow + (valueHigh - valueLow) \cdot \left(\frac{v_{o_PTSF} - VolIndexLow}{VolIndexHigh - VolIndexLow} \right)$$

$$a = -0.0035$$

Interpolation:

$$b := valueLow + (valueHigh - valueLow) \cdot \left(\frac{v_{o_PTSF} - VolIndexLow}{VolIndexHigh - VolIndexLow} \right)$$

$$b = 0.8644$$

9. Calculate base percent time spent following (BPTSF)

$$BPTSF_{d} := 100 \cdot \left(1 - e^{a \cdot v} d_{P}TSF^{b}\right)$$

$$BPTSF_{d} = 71.6$$
Equation 15-10
$$HCM 2010$$

10. Determine adjustment for % no-passing zones in analysis direction (f_{np}) for HCM Equation 20-16

$$v_{\text{TwoWay}} = v_{\text{d PTSF}} + v_{\text{o PTSF}}$$
 $v_{\text{TwoWay}} = 1542.5$

From Exhibit 15-21 HCM 2010

Interpolation:

$$\begin{aligned} f_{np} &\coloneqq valueLow + (valueHigh - valueLow) \cdot \left(\frac{v_{TwoWay} - VolIndexLow}{VolIndexHigh - VolIndexLow} \right) \\ f_{np} &= 23.17 \end{aligned}$$

11. Calculate percent time spent following (PTSF)

$$PTSF_{d} := BPTSF_{d} + f_{np} \cdot \left(\frac{v_{d_PTSF}}{v_{TwoWay}} \right)$$

$$PTSF_{d} = 85.3$$
Equation 15-9
HCM 2010

Calculations for Average Travel Speed (ATS)

12. Determine E_T (Truck passenger car equivalency factor)

Note: '1' indicates analysis direction, '2' indicates opposing direction

Interpolation:

$$E_{\hbox{$T1$_$ATS}} \coloneqq valueLow + (valueHigh - valueLow) \cdot \left(\frac{AdjPeakVol - VolIndexLow}{VolIndexHigh - VolIndexLow} \right)$$

$$\rm E_{T1_ATS} = 1.30$$

Interpolation:

$$\mathbf{E_{T2_ATS}} \coloneqq \text{valueLow} + (\text{valueHigh} - \text{valueLow}) \cdot \left(\frac{\text{AdjOffPeakVol} - \text{VolIndexLow}}{\text{VolIndexHigh} - \text{VolIndexLow}}\right)$$

$$E_{T2 \text{ ATS}} = 1.69$$

13. Calculate heavy vehicle factor (f_{HV})

Note: All heavy vehicles are considered as trucks in HIGHPLAN

$$\begin{split} f_{HV1_ATS} &\coloneqq \frac{1}{1 + P_{T} \cdot \left(E_{T1_ATS} - 1\right)} & f_{HV1_ATS} = 0.99 & \text{Equation 15-4} \\ f_{HV2_ATS} &\coloneqq \frac{1}{1 + P_{T} \cdot \left(E_{T2_ATS} - 1\right)} & f_{HV2_ATS} = 0.97 & \text{HCM 2010} \end{split}$$

14. Determine grade adjustment factor (f_G)

Interpolation:

$$f_{G1_ATS} := valueLow + (valueHigh - valueLow) \cdot \left(\frac{AdjPeakVol - VolIndexLow}{VolIndexHigh - VolIndexLow} \right)$$

$$f_{G1_ATS} = 1.00$$

$$VolIndexLow := 600$$

$$valueLow := 0.97$$

Interpolation:

$$\begin{split} f_{G2_ATS} \coloneqq valueLow + (valueHigh-valueLow) \cdot & \left(\frac{AdjOffPeakVol-VolIndexLow}{VolIndexHigh-VolIndexLow} \right) \\ f_{G2_ATS} = 0.97 \end{split}$$

15. Calculate analysis and opposing direction volumes

Since the PHF was already accounted for in Step 5, the following equation is used:

$$v_{d_ATS} := \frac{AdjPeakVol}{f_{G1_ATS} \cdot f_{HV1_ATS}}$$
 $v_{d_ATS} = 923.1$ pc/h

$$v_{o_ATS} := \frac{AdjOffPeakVol}{f_{G2_ATS} \cdot f_{HV2_ATS}}$$
 $v_{o_ATS} = 643.7$ pc/h

Equation 15-3

HCM 2010

16. Determine adjustment for % no-passing zones in analysis direction (f_{np}) for HCM Equation 15-6

$$FFS := PostedSpeed + 5 = 55$$

From Exhibit 15-15 HCM 2010

Interpolation:

$$f_{np} := valueLow + (valueHigh - valueLow) \cdot \left(\frac{v_{o_ATS} - VolIndexLow}{VolIndexHigh - VolIndexLow} \right)$$

$$f_{np} = 1.49$$

17. Calculate average travel speed (ATS)

$$ATS_d := FFS - 0.00776 \cdot \left(v_{d_ATS} + v_{o_ATS}\right) - f_{np}$$

$$ATS_d = 41.4$$
 mi/h

$$ATS_d = 41.4$$

Equation 15-6 HCM 2010

18. Calculate Percentage of Free-Flow Speed (%FFS)

$$\%FFS := \frac{ATS_d}{FFS} \cdot 100$$

$$%FFS = 75.2$$

19. Calculate Free-Flow Delay

$$FFDelay := \left(\frac{SegLength}{ATS_d} - \frac{SegLength}{FFS}\right) \cdot 3600$$

sec/veh

20. Calculate LOS Threshold Delay

LOSspeedthresh(AreaType) = 50

$$LOSDelay := \left(\frac{SegLength}{ATS_d} - \frac{SegLength}{LOSspeedthresh(AreaType)}\right) \cdot 3600$$

$$LOSDelay = 60.2$$

$$SegLength$$

$$LOSDelay = 60.2$$

21. Calculate v/c ratio

Use the higher volumes between PTSF and ATS, which is ATS in this case

Note: In the software, the v/c ratios are checked to make sure they are not greater than 1.0 before proceeding with the rest of the analysis. If one of the v/c ratios is greater than 1.0, the analysis stops and LOS is set to 'F'.

$$vcratioTwoWay := \frac{v_{d_ATS} + v_{o_ATS}}{BaseCapacity \cdot \left(\frac{3200}{1700}\right)}$$
 vcratioTwoWay = 0.49

$$vcratioOneWay := \frac{v_{d_ATS}}{BaseCapacity}$$

$$vcratioOneWay = 0.54$$

vcratio := max(vcratioTwoWay, vcratioOneWay)

veratio = 0.54

22. Determine Class

Class := ClassCalc(AreaType) Class = 3

23. Determine Level of Service

LosCalc(Class, PTSF, ATS, FFS) := if Class = 1 if Class = 1

out $_1 \leftarrow$ "A" if PTSF ≤ 35 out $_1 \leftarrow$ "B" if 35 < PTSF ≤ 50 out $_1 \leftarrow$ "C" if 50 < PTSF ≤ 65 out $_1 \leftarrow$ "D" if 65 < PTSF ≤ 80 out $_1 \leftarrow$ "E" if PTSF > 80out $_2 \leftarrow$ "A" if ATS > 55out $_2 \leftarrow$ "B" if 50 < ATS ≤ 55 out $_2 \leftarrow$ "C" if 45 < ATS ≤ 50 out $_2 \leftarrow$ "D" if 40 < ATS ≤ 45 out $_2 \leftarrow$ "E" if ATS ≤ 40 out \leftarrow $\begin{pmatrix} \text{out}_1 \\ \text{out}_2 \end{pmatrix}$ If Class = 1, the lower LOS governs From Exhibit 15-3 HCM 2010 if Class = 2out \leftarrow "A" if PTSF ≤ 40 out \leftarrow "B" if $40 < PTSF \le 55$ out \leftarrow "C" if $55 < PTSF \le 70$ out \leftarrow "D" if $70 < PTSF \le 85$ out \leftarrow "E" if PTSF > 80 out if Class = 3out \leftarrow "A" if $\frac{ATS}{FFS} > 0.917$ out \leftarrow "B" if $0.833 < \frac{ATS}{FFS} \le 0.917$ out \leftarrow "C" if $0.750 < \frac{ATS}{FFS} \le 0.833$ out \leftarrow "D" if $0.667 < \frac{ATS}{FFS} \le 0.750$ out \leftarrow "E" if $0.583 < \frac{ATS}{FFS} \le 0.667$ out \leftarrow "F" if $\frac{ATS}{FFS} \le 0.583$

 $LOS := \max(LosCalc(Class, PTSF_d, ATS_d, FFS))$

LOS = "C"

Service Volumes Check

From Exhibit 15-3 HCM 2000, for a Class III highway the percent free flow speed (%FFS) threshold for LOS C is 0.75.

Using the procedure documented above, the following results are obtained for the displayed 830 veh/h peak direction service volume.

InputAADT := Round
$$\left(\frac{830}{\text{K} \cdot \text{D}}, 10\right)$$
 = 14410
ATS_d = 41.351 mi/h
FFS = 55 mi/h

$$\frac{ATS_d}{FFS} = 0.752$$

Thus, the maximum service volume (AADT) for LOS C for the conditions in the example calculations file is \sim 14,410.

Passing Lane Improvement

If there is a passing lane in the analysis direction, the service volumes will be increased by the proportion of the length of the passing lane (assumed to be 1 mile) to the passing lane spacing, as illustrated below.

$$\frac{\text{PassingSV} = 1240}{\text{Veh/h}}$$

Note that the improvement to the service volumes cannot exceed capacity. In other words, the service volume for any level of service is capped at the LOS E service volume for the no-passing lane condition.