

## Introduction to public key cryptography

Cryptography, Autumn 2021

Lecturers: J. Daemen, B. Mennink

November 9, 2021

Institute for Computing and Information Sciences Radboud University

#### **Outline**

Problems in key management

Public-key crypto: the idea

Modular arithmetic

Finite groups

Some elementary number theory

The discrete logarithm

Conclusions

## **Problems in key management**

## The blessings of crypto

Using (symmetric) crypto ...

- ► Alice can protect her private data
- ▶ Alice and Bob can build a communication channel offering security:
  - ensure confidentiality of content
  - ensure authenticity of messages
  - over any communication medium
  - with respect to any adversary Eve
  - ...that has access to communication medium
- Companies can protect their business
  - secure financial transactions
  - hide customer database from competitors
  - patch their products in the field for security/functionality
  - protect intellectual property in software, media, etc.
  - enforce their monopoly on games/accessories/etc.

## The curse of crypto

- ▶ Alice and Bob need to share a secret cryptographic key
- ▶ A company/bank/gov't needs to distribute many cryptographic keys (rolling them out)
- ▶ ...in a way such that Eve cannot get her hands on them
- ▶ The security is only as good as the secrecy of these keys

#### Important lesson:

- Cryptography does not fully solve problems, but only reduces them to ...
  - securely generating cryptographic keys
  - securely establishing or rolling out cryptographic keys
  - keeping the keys out of Eve's hands

## Key establishment

How do Alice and Bob establish a shared secret?

- ▶ When they physically meet:
  - exchange on a piece of paper or business card (unique pairs)
  - on a USB stick: requires trust in stick and PC/smartphone
  - but all cryptography requires trust in devices!
- ▶ When they don't meet, it is harder. Two cases:
  - there is a common and trusted friend: TTP
  - no such friend
- ► For companies key management is much harder
  - Eve is ubiquitous
  - keys must be protected in the field

#### Remote key establishment with trusted third parties (TTP)

Alice and Bob both trust a TTP and both share a secret key with it so they can communicate securely with that TTP

- ► They use TTP key distribution protocol for establishing K<sub>AB</sub>
- ▶ Think of how this could work, as an exercise
- ▶ Problem is now: TTP has K<sub>AB</sub> too

#### Alice and Bob trust multiple TTPs

- $\blacktriangleright$  Alice and Bob establish one common key  $K_i$  per TTP
- $\blacktriangleright$  Alice and Bob compute unique shared key  $K_{AB}$  as sum of all  $K_i$
- Remaining risks
  - conspiracy: if TTPs collaborate, they can still cheat
  - denial-of-service: misbehaving TTP can prevent key setup
    - ► identifying saboteur is not easy

## Remote key establishment w/o trusted third party

- ► Tamper-evident physically unclonable envelopes
  - tamper-evident: you cannot open it without leaving traces
  - unclonable: cannot fabricate one looking the same
- Sending by tamper-evident envelopes:
  - Alice sticks a 5 Euro banknote on the envelope with superglue
  - Alice writes down the serial number of the banknote
  - Alice sends a key K to Bob in the envelope
  - Upon receipt, Bob checks that the envelope was not opened
  - Bob checks whether the banknote is not counterfeit
  - Bob calls Alice and they check the banknote's serial number
  - Bob gets the key K from the envelope
  - The banknote makes the envelope hard-to-clone

#### Expensive and time-consuming, but could be worthwhile

- ▶ if you can keep your shared key secret, you only have to do this once
- ▶ the # people you need to communicate securely with is small

#### Two especially problematic use cases

Peer-to-peer networks with participants coming and going

- $\blacktriangleright$  Every new contact Alice-Bob requires setting up a key  $K_{A,B}$
- ► Can be done with central trusted third party (TTP)
- ► Each user shares a key with TTP, e.g., Bob has K<sub>TTP,B</sub>
- ▶ but in peer-to-peer we don't want a TTP!

#### One-to-many authentication

- ▶ Software patches of Microsoft, Apple, Philips, Samsung, ...
- ▶ Device shall authenticate patch with secret key, kept in SIM (or so)
- ► Can be dealt with in different ways, each with disadvantages
  - 1 key: MS can broadcast single message-and-tag but compromise of one key breaks complete system
  - Unique keys: MS must compute tag per device per message

#### It would be great to have methods for:

Establishing a key  $K_{A,B}$  without secret channel Authenticating a message where receiver needs no secret

## Key management challenges for companies/gov't

#### Some examples

- ▶ Bank: getting keys in all banking cards
- ▶ Microsoft or Apple: getting software verification key in all PCs
- ▶ Spotify or Netflix: getting keys in user PC/laptop/smartphones
- ▶ Government: getting keys in ID cards and travel passports
- ▶ More complex eco-systems
  - WWW: establishing keys between User PCs and internet sites
  - Public sector: keys in OV-Chipkaart and readers
  - Mobile phone: ensuring billing and confidentiality while roaming
- ▶ etc.

#### Public key cryptography to the rescue!

# Public-key crypto: the idea

## Public-key crypto wish list

It would be nice to:

- ▶ Set up a key remotely without the need for secret channel
- ▶ Authenticate an entity without having to share a secret key with it
- ▶ Authenticate documents without writer's secret key:
  - Cryptographic Signatures!
     AKA Digital Signatures
     AKA Electronic signatures

Public-key cryptography can do all that!

...and much more

## Public-key crypto functionality

Public-key crypto is counter-intuitive: requires a key pair per user

- private key PrK: never to be revealed to the outside world
- ▶ public key *PK*: to be published and distributed freely

There are different types of public-key cryptosystems. Most used:

- ► Signature schemes
  - Alice uses  $PrK_A$  for signing message: m,  $Sign_{PrK_A}(m)$
  - anyone can use  $PK_A$  for verifying Alice's signature
  - $PrK_A$  is also called signing key and  $PK_A$  verification key
- ▶ Key establishment: setting up of a shared secret
  - Key agreement (as in Diffie-Hellman)
    - ▶ Bob uses  $PrK_B$  and  $PK_A$  to compute secret  $K_{AB}$
    - $\blacktriangleright$  Alice uses  $PrK_A$  and  $PK_B$  to compute same secret  $K_{AB}$
  - Key transport
    - Alice uses  $PK_B$  to transfer secret  $K_{AB}$  to Bob, that uses  $PrK_B$

## The translation dictionary analogy

- ► Translation dictionaries English-Navajo (native Americans)
  - Private key PrK is Dictionary Navajo to English
  - Public key PK is Dictionary English to Navajo
- ► Say Alice keeps the last copy of the Dictionary Navajo to English
  - Encryption: translate to Navajo using PK
  - Decryption: translate from Navajo using PrK
- ▶ Private key *PrK* can be reconstructed from public key *PK*!
  - Not secure?
  - In pre-computer days this was a huge task!
- ► Same for actual public-key cryptography
  - PrK can in principle be computed from PK
  - this needs to be a hard (mathematical) problem
  - an important part of public-key crypto is coming up with such problems
  - note: you don't have this in symmetric crypto

## Public-key crypto: some history

- ▶ The idea of public-key crypto and first key-establishment scheme
  - R. Merkle, W. Diffie, M. Hellman in 1976
- ▶ The first public-key signature and *encryption scheme* 
  - R. Rivest, A. Shamir and L. Adleman (RSA) in 1978
- ▶ Elliptic-Curve Cryptography
  - published independently by N. Koblitz and V. Miller in 1985
  - Most public-key crypto in use today is of this type
- Nowadays literally thousands of public-key systems (but few actually used)

## Current hype: post-quantum crypto

- Quantum computer
  - can break all public-key crypto on the previous slide
  - very exotic: computes in superposition (kind of)
  - still hypothetical, though billions are spent on it
  - NSA/GCHQ, Google, IBM, etc. could possibly build one
- ➤ The need: public-key crypto resisting attackers with quantum computers
- (finalized) European project PQCRYPTO, see http://pqcrypto.eu.org/
- ► NIST contest for post-quantum crypto, currently ongoing see https://csrc.nist.gov/projects/post-quantum-cryptography
- ► Active involvement of Radboud colleagues

## Modular arithmetic

#### Some notation

- ▶  $\mathbb{Z}$ : the set of integers:  $\{...-3, -2, -1, 0, 1, 2, 3, ...\}$
- $ightharpoonup a \in A$ : this means that a is an element of a set A
  - $2 \in \mathbb{Z}$ : 2 is element of set of integers  $\mathbb{Z}$ , or just 2 is an integer
  - $4/5 \in \mathbb{Q}$ : 4/5 is a rational number
- ▶ ∀: for all or for every
  - $\forall a \in \mathbb{Z} : a+1 \in \mathbb{Z}$ : for every integer a, a+1 is also an integer
- ▶ ∃: there exists
  - $\forall a \in \mathbb{Z}, \exists b \in \mathbb{Z} : a + b = 0$  means: for every integer there exists an integer that when added to that integer gives 0
- $ightharpoonup C = A \setminus B$  (set minus): C contains elements of A that are not in B
- $\blacktriangleright$  #A: the cardinality of a set, the number of elements it has
  - #{January, February, . . . , December} = 12

#### Residue classes modulo n

- ▶ In cryptography we want to work with finite sets
- ▶ One such finite set is the set of integers  $\{0, 1, ..., n-1\}$
- ▶ We can do arithmetic on them, modulo n
- ▶ The underlying mathematics is the theory of *residue classes*

One writes  $\mathbb{Z}/n\mathbb{Z}$  for the set of residue classes modulo n:

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$$

with  $\overline{m} = \{k \mid k \mod n = m\}$ 

$$\#(\mathbb{Z}/n\mathbb{Z})=n$$

We represent  $\overline{m}$  of  $\mathbb{Z}/n\mathbb{Z}$  by its member in the interval [0,n-1]

#### Modular addition

- ightharpoons  $\mathbb{Z}/n\mathbb{Z}$  represented by positive integers smaller than n including zero
- ► Consider addition modulo *n* as an operation:
  - (1)  $c \leftarrow a + b$
  - (2) if  $c \ge n$ ,  $c \leftarrow c n$
- Notation:  $a + b \mod n$  or just a + b
- ▶ Interesting properties
  - the result of  $a + b \mod n$  is in  $\mathbb{Z}/n\mathbb{Z}$
  - $a + b \mod n = b + a \mod n$ : the order does not matter
  - $(a + b \mod n) + c \mod n = (a + (b + c) \mod n) \mod n$ : the order of execution does not matter
  - $a + 0 \mod n = a$ : adding 0 has no effect
  - $a + b \mod n = 0$  if b = n a. So for every a there is a value b so that their sum is 0

#### Modular multiplication

- $\triangleright$  Consider now multiplication modulo n as an operation
  - (1)  $c \leftarrow a \cdot b$
  - (2) do the result modulo  $n: c \leftarrow c \mod n$
- Notation:  $a \cdot b \mod n$  or  $a \times b$
- ▶ Interesting properties:
  - the result of  $a \cdot b \mod n$  is in  $\mathbb{Z}/n\mathbb{Z}$
  - $a \cdot b \mod n = b \cdot a \mod n$ : the order does not matter
  - $((a \cdot b) \mod n \cdot c) \mod n = (a \cdot (b \cdot c) \mod n) \mod n$ : the order of execution does not matter
  - $a \cdot 1 \mod n = a$ : multiplying by 1 has no effect
  - $a \cdot 0 \mod n = 0$ : multiplying by 0 always gives 0
  - $a \cdot b \mod n = 1$  if, ... well, hmm, let's keep that for later

# Finite groups

#### **Group definition**

- ▶ Couple  $(A, \star)$  of a set A and an operation  $\star$
- ▶ The binary operation must satisfy following properties:

```
closed: \forall a, b \in A: a \star b \in A
associative: \forall a, b, c \in A: (a \star b) \star c = a \star (b \star c)
neutral element: \exists e \in A, \forall a \in A: a \star e = e \star a = a
inverse element: \forall a \in A, \exists a' \in A: a \star a' = a' \star a = e
abelian (optional) \forall a, b \in A a \star b = b \star a
```

Notational conventions

additive: 
$$(A, +)$$
  $e = 0$   $a' = -a$  multiplicative:  $(A, \cdot)$   $e = 1$   $a' = a^{-1}$ 

► Groups can be finite or infinite, depending on *A* 

#### Terminology: Group order

Order of a finite group  $(A, \star)$ , denoted #A, is number of elements in A

## **Examples of groups and non-groups**

- ▶ Groups
  - $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$
  - $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C} \setminus \{0\}, \cdot)$
- ▶ Non-groups
  - $(\mathbb{N}, +)$ : no neutral element, no inverses
  - $(\mathbb{Z} \setminus \{0\}, \cdot)$ : elements without inverse
  - $(\mathbb{Q},\cdot)$ : zero has no inverse

## Addition modulo *n* is a group

- ▶ Notation:  $(\mathbb{Z}/n\mathbb{Z}, +)$ 
  - the set  $\mathbb{Z}/n\mathbb{Z}$  with operation modular addition +
  - if operation is clear from the context, denoted as  $\mathbb{Z}/n\mathbb{Z}$
- > satisfies all required group properties and is abelian
- $\blacktriangleright$   $(\mathbb{Z}/n\mathbb{Z},+)$  is a group of order n

## Multiplication modulo *n* is a group?

- ▶ Notation:  $(\mathbb{Z}/n\mathbb{Z}, \times)$
- ► Satisfies required group properties, minus one
- ▶ 0 has no inverse, so  $(\mathbb{Z}/n\mathbb{Z}, \times)$  is not a group
- ▶ maybe removing 0 may fix the problem?
- ▶ is  $(\mathbb{Z}/n\mathbb{Z} \setminus \{0\}, \times)$  a group? Let's see later . . .

Multiplication table, e.g., for n = 7:

| $\mathbb{Z}/7\mathbb{Z}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|--------------------------|---|---|---|---|---|---|---|
| 0                        | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1                        | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2                        | 0 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3                        | 0 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4                        | 0 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5                        | 0 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6                        | 0 | 6 | 5 | 4 | 3 | 2 | 1 |

#### Cyclic behaviour in finite groups

- ▶ Let  $a \in A$  with  $(A, \star)$  a group
- ► Consider the sequence:
  - i = 1 : a•  $i = 2 : a \star a$
  - $i = 3 : a \star a \star a$
  - ...
  - i = n : [n]a (additive) or  $a^n$  (multiplicative)
- ▶ In a finite group  $(A, \star)$ :
  - $\forall a \in A$  this sequence is periodic
  - period of this sequence: order of a, denoted ord(a)

#### Terminology: Order of a group element

The order of a group element a, denoted ord(a), is the smallest integer k > 0 such that  $a^k = 1$  (multiplicative) or [k]a = 0 (additive)

## Cyclic groups and generators

- ▶ Let  $g \in (A, \star)$
- ► Consider the set [0]g, [1]g, [2]g, ...
- ▶ This is a group, called a cyclic group, denoted:  $\langle g \rangle$ 
  - Composition law:  $[i]g + [j]g = [i + j \mod \operatorname{ord}(g)]g$
  - Neutral element [0]g
  - Inverse of [i]g:  $[\operatorname{ord}(g) i]g$
- ▶ g is called the generator of this cyclic group
- ▶ Example of cyclic group  $(\mathbb{Z}/n\mathbb{Z}, +)$ 
  - generator: g = 1
  - [i]g = i

#### **Subgroups**

A subset B of A that is also a group (under the same operation) is called a subgroup of A.

- ▶  $(B, \star)$  is a subgroup of  $(A, \star)$  if
  - B is a subset of A
  - e ∈ B
  - $\forall a, b \in B : a \star b \in B$
  - $\forall a \in B$ : the inverse of a is in B

#### Lagrange's Theorem

If  $(B, \star)$  is a subgroup of  $(A, \star)$ : #B divides #A

▶ Case of cyclic subgroup:  $\forall a \in A : \langle a \rangle$  is a subgroup of  $(A, \star)$ 

#### Corollary (for order of elements)

For any element  $a \in A$ : ord(a) divides #A

## **Example on orders:** $(\mathbb{Z}/21\mathbb{Z}, +)$

- ▶ Order of Z/21Z: 21
   ▶ Order of 0: 1
- ▶ Order of 1: 21
- ▶ Order of 2: 21
- ▶ Order of 3: 7
- **...**

Find the smallest i such that  $i \cdot x$  is a multiple of n

```
Fact: order of an element in (\mathbb{Z}/n\mathbb{Z}, +) ord(x) = n/\gcd(n, x) with \gcd(n, x): the greatest common divisor of x and n
```

# Some elementary number theory

#### Prime numbers and factorization

- ► A number is prime if it is divisible only by 1 and by itself Prime numbers are: 2, 3, 5, 7, 11, 13, ... (infinitely many)
- ► Each number can be written in a unique way as product of primes (possibly multiple times), as in:

$$30 = 2 \cdot 3 \cdot 5$$
  $100 = 2^2 \cdot 5^2$   $12345 = 3 \cdot 5 \cdot 823$ 

- ► Finding the prime number factorization is a computationally hard problem
- ▶ Easy for  $143 = 11 \cdot 13$  but already hard for  $2021 = 43 \cdot 47$
- ▶ Recently, factoring a 250-digit (829 bits) number  $n = p \cdot q$  took 2700 Intel Xeon Gold 6130 CPU core-years (2.1GHz)

One can base public-key cryptosystems on the hardness of factoring

#### Greatest common divisor

▶ Definition:

```
\gcd(n, m) = \text{greatest integer } k \text{ that divides both } n \text{ and } m
= \text{greatest } k \text{ with } n = k \cdot n' \text{ and } m = k \cdot m',
for some n', m'
```

▶ Examples:

$$\gcd(20,15) = 5$$
  $\gcd(78,12) = 6$   $\gcd(15,8) = 1$ 

- ▶ Properties:
  - gcd(n, m) = gcd(m, n)
  - gcd(n, m) = gcd(n, -m)
  - gcd(n, 0) = n

#### Terminology: relatively prime (or coprime)

If gcd(n, m) = 1, one calls n, m relatively prime or coprime

## **Euclidean Algorithm**

```
Property (assume n > m > 0):
```

```
  \gcd(n,m) = \gcd(m,n \bmod m)
```

This can be applied iteratively until one of arguments is 0

#### Example:

```
 \gcd(171,111) = \gcd(111,171 \mod 111) = \gcd(111,60) 
 = \gcd(60,111 \mod 60) = \gcd(60,51) 
 = \gcd(51,60 \mod 51) = \gcd(51,9) 
 = \gcd(9,51 \mod 9) = \gcd(9,6) 
 = \gcd(6,9 \mod 6) = \gcd(6,3) 
 = \gcd(3,6 \mod 3) = \gcd(3,0) = 3
```

#### Variant allowing negative numbers :

## $(\mathbb{Z}/n\mathbb{Z}, \times)$ : a group?

- X: Multiplication modulo n
- ▶ are group conditions satisfied?
  - closed: yes!
  - associative: yes!
  - neutral element: 1
  - inverse element: no, 0 has no inverse
- ▶ Let us exclude 0: so  $((\mathbb{Z}/n\mathbb{Z}) \setminus \{0\}, \times)$
- Check properties again with multiplication table
- ► Examples:
  - $((\mathbb{Z}/7\mathbb{Z})\setminus\{0\},\times)$ : OK!
  - $((\mathbb{Z}/21\mathbb{Z})\setminus\{0\},\times)$ : Not OK!

## **Extended Euclidean Algorithm**

The extended Euclidean algorithm returns a pair  $x, y \in \mathbb{Z}$  with  $m \cdot x + n \cdot y = \gcd(n, m)$ 

Our earlier example:

$$\begin{array}{rcl}
-51 & = & 171 - 2 \cdot 111 \\
9 & = & 111 + 2 \cdot (-51) \\
3 & = & (-51) + 6 \cdot 9 \\
0 & = & (-9) + 3 \cdot 3
\end{array}$$

And now backward substitution:

$$3 = (-51) + 6 \cdot 9$$

$$3 = (-51) + 6 \cdot (111 + 2 \cdot (-51))$$

$$3 = (-51) + 6 \cdot 111 + 12 \cdot (-51)$$

$$3 = 6 \cdot 111 + 13 \cdot (-51)$$

$$3 = 6 \cdot 111 + 13 \cdot (171 - 2 \cdot 111)$$

$$3 = 6 \cdot 111 + 13 \cdot 171 - 26 \cdot 111$$

$$3 = 13 \cdot 171 - 20 \cdot 111$$

### **Invertibility modulo** *n*

#### Invertibility criterion

m has multiplicative inverse modulo n (i.e., in  $\mathbb{Z}/n\mathbb{Z}$ ) iff gcd(m, n) = 1

#### **Proof**

(⇒) We have  $m \cdot x \equiv 1 \pmod{n}$  so there is an integer y such that  $m \cdot x = 1 + n \cdot y$  or equivalently  $m \cdot x - n \cdot y = 1$ . Now  $\gcd(m, n)$  divides both m and n, so it divides  $m \cdot x - n \cdot y = 1$ . But if  $\gcd(m, n)$  divides 1, it must be 1 itself.

( $\Leftarrow$ ) Extended Euclidean algorithm yields x, y with  $m \cdot x + n \cdot y = \gcd(m, n) = 1$ . Taking both sides modulo n gives  $m \cdot x \mod n = 1$ , or  $x = m^{-1}$ 

Note: you can compute inverse with extended Euclidean algorithm!

#### Corollary

For p a prime, every non-zero  $m \in \mathbb{Z}/p\mathbb{Z}$  has an inverse

# $((\mathbb{Z}/p\mathbb{Z})^*, \times)$ with prime p: a cyclic group

- ► Here  $(\mathbb{Z}/p\mathbb{Z})^*$  denotes  $\mathbb{Z}/p\mathbb{Z}$  with 0 removed
- ▶ As of now, presence of \* indicates operation ×, absence +
- ▶ Every element has an inverse so now we know it is a group!
- ▶ Order of the group is p-1
- ▶ It can be proven that this group is cyclic
- ▶ Inverse of an element x:
  - Lagrange: order of an element divides group order p-1
  - so  $x^{p-1} = 1$  (AKA Fermat's Little Theorem)
  - and  $x^{-1} = x^{(p-1)-1} = x^{p-2}$
  - downside: would cost p-3 multiplications (at first sight ...)

#### Multiplicative prime groups

 $(\mathbb{Z}/p\mathbb{Z})^*$  is a cyclic group of order p-1

# **Efficient exponentiation: Square-and-Multiply**

- ▶ Computing  $g^e \mod p$  in naive way takes e-1 multiplications
- $\blacktriangleright$  Infeasible if g, e and p are hundreds of decimals long
- ► More efficient method: square-and-multiply
- ▶ Example: computing  $g^{43}$  with g = 714, p = 1019

working it out:

11 
$$g^3 = g^2 \times g$$
  $g^3 = 411 = 296 \times 714$   
1011  $g^{11} = g^8 \times g^3$   $g^{11} = 694 = 324 \times 411$   
101011  $g^{43} = g^{32} \times g^{11}$   $g^{43} = 879 = 361 \times 694$ 

▶ Only 5 squarings and 3 multiplications instead of 42

## **Exponentiation by Square-and-Multiply (cont'd)**

Actual implementations use exponentiation algorithms like this one

▶ Computing  $g^{43}$  with *left-to-right* square-and-multiply

- ▶ Many variants exist, typical computation cost for  $g^e \mod p$ :
  - ullet |e|-1 squarings, with |e| the bitlength of e
  - ullet 1 to |e|-1 multiplications, depending on e and method
- ► Efficient: essential for a lot of public-key crypto to work

## Pseudocode for Square-and-Multiply, left-to-right variant

```
Input: base g \in \mathbb{Z}/p\mathbb{Z}, exponent a \in \mathbb{Z}/\operatorname{ord}(g)\mathbb{Z}

Output: A(=g^a) \in \mathbb{Z}/p\mathbb{Z}

Let a = a_0 + 2a_1 + 2^2a_2 + 2^3a_3 + \ldots + 2^{n-1}a_{n-1} and \forall i : a_i \in \mathbb{Z}/2\mathbb{Z}

t \leftarrow g

for i \leftarrow n-2 down to 0 do

t \leftarrow t^2

if a_i = 1 then t \leftarrow t \times g

end for

return A \leftarrow t
```

# The discrete logarithm

# Isomorphism between $(\mathbb{Z}/p\mathbb{Z})^*$ and $\mathbb{Z}/(p-1)\mathbb{Z}$ for p prime

#### Multiplicative prime groups

If p is prime,  $(\mathbb{Z}/p\mathbb{Z})^*$  is a cyclic group of order p-1

Alternative way of seeing it:

- ▶ Find a generator  $g \in (\mathbb{Z}/p\mathbb{Z})^*$
- $\blacktriangleright$  Write elements as powers of the generator:  $g^i$
- ▶ Multiplication: find c such that  $g^c = g^a \times g^b$
- ightharpoonup Clearly:  $g^a \times g^b = g^{a+b} = g^{a+b \mod p-1}$
- $\blacktriangleright \text{ So } c = a + b \bmod p 1$

 $(\mathbb{Z}/p\mathbb{Z})^*$  is just  $\mathbb{Z}/(p-1)\mathbb{Z}$  in disguise!

These groups are isomorphic

Example of two isomorphic groups:  $((\mathbb{Z}/23\mathbb{Z})^*, \times)$  and  $(\mathbb{Z}/22\mathbb{Z}, +)$ 

## Illustration with circle diagram: $(\mathbb{Z}/17\mathbb{Z})^*$ and $\mathbb{Z}/16\mathbb{Z}$



For each blue element  $3^i \in \langle 3 \rangle$  we have a purple element  $i \in \mathbb{Z}/16\mathbb{Z}$ 

- $ightharpoonup C = A \times B = A \cdot B \mod 17$  maps to  $c = a + b \mod 16$
- $ightharpoonup C = A^e \mod 17$  maps to  $c = a \cdot e \mod 16$

# More abstract: Isomorphism between $\langle g \rangle$ and $\mathbb{Z}/\operatorname{ord}(g)\mathbb{Z}$

- ► For any integer x:  $g^x = g^{x \mod \operatorname{ord}(g)}$
- $A \times B = g^a \times g^b = g^{a+b} = g^{a+b \bmod \operatorname{ord}(g)}$

## Correspondence between $\langle g \rangle$ and $\mathbb{Z}/\operatorname{ord}(g)\mathbb{Z}$

For every  $A \in \langle g \rangle$  there is a number  $a \in \mathbb{Z}/\operatorname{ord}(g)\mathbb{Z}$  such that  $A = g^a$ 

- ▶ We call *a* the exponent of *A*
- $\blacktriangleright$  we denote elements of  $\langle g \rangle$  as X and their exponents as x
- ▶ the correspondence is called a *group isomorphism*

## Illustration with a cyclic subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$



Here 
$$g=8\in(\mathbb{Z}/103\mathbb{Z})^*$$
 and  $\operatorname{ord}(g)=17$ 

For each  $i \in \mathbb{Z}/17\mathbb{Z}$  we have  $8^i \in (\mathbb{Z}/103\mathbb{Z})^*$ 

## Discrete log



- ▶ Given x, compute X such that  $X = 3^x \mod 17$ : exponentiation
- ▶ Given X, compute x such that  $X = 3^x \mod 17$ : discrete log
- $\blacktriangleright$  Exponentiation is easy but discrete log is hard for many groups  $\langle g \rangle$

# **Conclusions**

#### Conclusions

- Public-key crypto can do things symmetric crypto cannot
  - establish a secret key without the need for a confidential channel
  - signatures that can be verified without a secret
- Each participant has two keys
  - a private key that she must keep for herself
  - a public key that she can give to anyone
- ► The private key can be computed from the public key . . . but doing this would imply solving some well-know hard problem
- ► Two such hard problems:
  - factoring: PrK = (p, q),  $PK = n = p \cdot q$
  - discrete log over prime-order groups: PrK = a,  $PK = A = g^a \mod p$
- ▶ Note: In public-key crypto public keys need to be authenticated