Statistiques inférentielles 4 - Tests de comparaison d'échantillons

A. BOURHATTAS

CY-Tech ING2-GSI

Année universitaire 2023-2024

- 1 Comparaison de deux échantillons
 - Test d'égalité des moyennes
 - Test d'égalité de variances

- 2 Comparaison de plusieurs échantillons
 - ANOVA
 - Un exemple

Comparaison de deux échantillons

Section 1

Comparaison de deux échantillons

Introduction:

- Nous partons de 2 échantillons indépendants $X_1, X_2, ..., X_{n_x}$ et $Y_1, Y_2, ..., Y_{n_y}$, représentant les v.a. X et Y.
- $E(X) = \mu_X$ et $Var(X) = \sigma_X^2$. $E(Y) = \mu_Y$ et $Var(Y) = \sigma_Y^2$.
- Nous calculons les moyennes empiriques \overline{X} et \overline{Y} . Ainsi que les variances empiriques corrigées S_x^{*2} et S_v^{*2} .
- Nous nous demandons : Est ce que ces deux échantillons sont issus de la même population ? Ont-ils les mêmes caractéristiques ?
- Nous nous limterons aux tests d'égalité des moyennes, et d'égalité des variances.

Cas des grands échantillons 1 :

- Dans ce cas, $n_x > 30$ et $n_y > 30$.
- Les hypothèses à tester sont :

$$\begin{cases} (H_0) & \mu_x = \mu_y \\ (H_1) & \mu_x \neq \mu_y \end{cases} \iff \begin{cases} (H_0) & \mu_x - \mu_y = 0 \\ (H_1) & \mu_x - \mu_y \neq 0 \end{cases}.$$

- La variable de décision est $D = \overline{X} \overline{Y}$. Sa variance est $\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y} \simeq \frac{s_x^{*2}}{n_x} + \frac{s_y^{*2}}{n_y}$.
- La statistique utile est la suivante : sous (H_0) , $Z = \frac{\overline{X} \overline{Y}}{\sqrt{\frac{S_x^{*2}}{A_{ov}} + \frac{S_y^{*2}}{A_{ov}}}} \sim \mathcal{N}(0, 1).$

Cas des grands échantillons 2 :

•
$$D = \overline{X} - \overline{Y}$$
, et sous (H_0) , $Z = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_X^{*2}}{N_X} + \frac{S_Y^{*2}}{N_Y}}} \sim \mathcal{N}(0, 1)$

- La région critique est donc de la forme $W = \{|D| > C\} = \{|Z| > k\}$
- La table de la loi $\mathcal{N}(0,1)$ donnera $k=z_{1-\frac{\alpha}{2}}$, c à d $F_Z(k)=1-rac{lpha}{2}.$
- On en déduit $C = k\sqrt{\frac{s_x^{*2}}{n_x} + \frac{s_y^{*2}}{n_y}}$, et les règles de décision :
- Si |D| < C, on valide (H_0) , les moyennes sont égales.
- Si |D| > C, on valide (H_1) , les moyennes sont différentes

Petits échantillons gaussiens, même variance 1 :

- $X \sim \mathcal{N}(\mu_{x}, \sigma^{2})$ et $Y \sim \mathcal{N}(\mu_{y}, \sigma^{2})$ On teste toujours $\begin{cases} (H_{0}) & \mu_{x} \mu_{y} = 0 \\ (H_{1}) & \mu_{x} \mu_{y} \neq 0 \end{cases}$
- La variable de décision est toujours : $D = \overline{X} \overline{Y}$
- On introduit la quantité $S^2 = \frac{(n_x 1)s_x^{*2} + (n_y 1)s_y^{*2}}{n_x + n_y 2}$ meilleure estimation de σ^2 .
- La statistique utile est : $T = \frac{X Y}{S_{\Lambda} / \frac{1}{2} + \frac{1}{2}}$ qui suit la loi de Student à $(n_x + n_y - 2)$ d.d.l.

Petits échantillons gaussiens, même variance 2 :

- L'obtention de la région critique, et les règles de décision s'obtiennent de la même manière que précédemment à partir de la table de la loi de Student.
- $C = k \ s \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}$, avec k tel que : $F_T(k) = 1 \frac{\alpha}{2}$.
- Si |D| < C, on valide (H_0) , les moyennes sont égales.
- Si |D| > C, on valide (H_1) , les moyennes sont différentes.

Test d'égalité de proportions 1 :

- Dans ce cas-ci, on a deux Bernouilli : $X \sim \mathcal{B}(p_x)$ et $Y \sim \mathcal{B}(p_y)$
- $n_x > 30$ et $n_y > 30$.
- On a les deux fréquences empiriques F_x et F_y .
- On teste $\begin{cases} (H_0) & p_x p_y = 0 \\ (H_1) & p_x p_y \neq 0 \end{cases}$
- La variable de décision est : $D = F_x F_y$
- On introduit la quantité $f_0 = \frac{n_x f_x + n_y f_y}{n_x + n_y}$ meilleure estimation de p.
- La statistique utile est :

$$Z = \frac{F_x - F_y}{\sqrt{f_0(1 - f_0)\left(\frac{1}{n_x} + \frac{1}{n_y}\right)}} \sim \mathcal{N}(0, 1).$$

Test d'égalité de proportions 2 :

- L'obtention de la région critique, et les règles de décision s'obtiennent de la même manière à partir de la table de la loi normale.
- C=k $\sqrt{f_0(1-f_0)\left(rac{1}{n_x}+rac{1}{n_y}
 ight)}$, avec k tel que : $F_Z(k)=1-rac{lpha}{2}$.
- Si |D| < C, on valide (H_0) , les proportions sont égales.
- Si |D| > C, on valide (H_1) , les proportions sont différentes.

Egalité de moyennes, échantillons appariés 1 :

- Il s'agit dans ce cas de deux mesures ou deux expériences faites sur les mêmes individus.
- Les deux échantillons ne sont pas indépendants.

• On définit
$$D_i = X_i - Y_i$$
, $\overline{D} = \frac{1}{n} \sum_{i=1}^n D_i$ e

$$S_d^2 = \frac{1}{n-1} \sum_{i=1}^n (D_i - \overline{D})^2$$

- La variable de décision est : \overline{D}
- La statistique utile est : $T=\frac{\overline{D}}{S_d}\sqrt{n}$ qui suit la loi de Student à (n-1) d.d.l.

Egalité de moyennes, échantillons appariés 2 :

- L'obtention de la région critique, et les règles de décision s'obtiennent de la même manière à partir de la table de la loi de Student.
- $C = k \frac{S_d}{\sqrt{n}}$, avec k tel que : $F_T(k) = 1 \frac{\alpha}{2}$.
- Si $|\overline{D}| < C$, on valide (H_0) , les moyennes sont égales.
- Si $|\overline{D}| > C$, on valide (H_1) , les moyennes sont différentes.

Test d'égalité de variances 1 :

- ullet $X \sim \mathcal{N}(\mu_{\scriptscriptstyle X}, \sigma_{\scriptscriptstyle X}^2)$ et $Y \sim \mathcal{N}(\mu_{\scriptscriptstyle Y}, \sigma_{\scriptscriptstyle Y}^2)$
- On teste $\begin{cases} (H_0) & \sigma_x \sigma_y = 0 \\ (H_1) & \sigma_x \sigma_y \neq 0 \end{cases}$
- La variable de décision est : $K = \frac{S_x^{*2}}{S_v^{*2}}$.
- Elle suit la loi de Fisher-Snedecor à $(n_x 1)$ et $(n_y 1)$ dégrés de liberté.
- La table correspondant à $\alpha = 5$ % ressemble à :

Loi de Fisher F

$$P(F_{\nu_1,\nu_2} < f_{\nu_1,\nu_2,\alpha}) = \alpha$$

Test d'égalité de variances 2 :

- Il s'agit, normalement, d'un test bilatéral. Mais si on choisit de mettre au numérateur la plus grande des variances empiriques, on a une région critique de la forme W = {K > C}.
- C est obtenu par la table de la loi de Fisher avec la relation : $F_K(C) = 1 \frac{\alpha}{2}$.
- Si K < C, on valide (H_0) , les variances sont égales.
- Si K > C, on valide (H_1) , les variances sont différentes.

Comparaison de plusieurs échantillons

Cadre général :

• Nous partons de $k \ge 3$ échantillons indépendants.

- Hypothèses à tester :
 - $\begin{cases} (H_0) & \text{Les } k \text{ \'echantillons sont issus de la même population} \\ (H_1) & \text{II y a au moins un \'echantillon diff\'erent des autres} \end{cases}$
- Dans le cas où les échantillons sont gaussiens de même variance, nous utiliserons le test d'analyse de variance ANOVA.

Principe de l'ANOVA:

- On a k échantillons de taille n_1, \ldots, n_k .
- j-ème échantillon $(X_1^{(j)},\ldots,X_{n_j}^{(j)})$ associé à la v.a. $X^{(j)}$.
- Echantillons gaussiens, indépendants et de même variance : $X^{(j)} \sim \mathcal{N}(\mu_i, \sigma^2)$ pour tout j.
- On va donc tester : $\begin{cases} (H_0) & \mu_1 = \mu_2 = \dots = \mu_k \\ (H_1) & \exists (i,j) & \mu_i \neq \mu_j \end{cases}$
- Ce sont les différentes mesures de variance qui vont nous permettre de décider.

Quelques définitions :

On note:

- $\overline{X}^{(j)} = \frac{1}{n_j} \sum_{i=1}^{n_j} X_i^{(j)}$: moyenne empirique de $X^{(j)}$,
- $V^{(j)}=rac{1}{n_j}\sum_{i=1}^{n_j}(X_i^{(j)}-\overline{X^{(j)}})^2$: var empirique de $X^{(j)}$,
- \overline{X} : la moyenne de l'échantillon global,

Quelques définitions :

• $V_{intra} = \sum_{j=1}^{\kappa} \frac{n_j}{n} V^{(j)}$: Variance intra-classes, ou résiduelle,

• $V_{inter} = \sum_{j=1}^{k} \frac{n_j}{n} (\overline{X}^{(j)} - \overline{X})^2$: Variance inter-classes, entre échantillons.

Résultat principal :

Propriété:

- La var totale est égale à la somme des var inter et intra : $V_{tot} = V_{inter} + V_{intra}$.
- 2 La variable de décision est : $D = \frac{\frac{V_{inter}}{k-1}}{\frac{V_{intra}}{n-k}}$
- 3 Sous l'hypothèse (H_0) , d'égalité des moyennes, D suit la loi de Fisher à (k-1) et (n-k) degrés de liberté.

$$D \sim \mathcal{F}(k-1, n-k)$$

Test ANOVA:

La région critique est de la forme : $W = \{D > C\}$ avec C = fractile d'ordre $1 - \alpha$ pour $\mathcal{F}(k-1, n-k)$ La règle de décision est donc :

- Si D < C, on valide (H_0) , les moyennes sont égales. Les échantillons sont issus de la même population.
- Si D > C, on valide (H_1) . If y a au moins un échantillon différent des autres.

Exemple 1:

On veut savoir si la quantité de nitrates, prélevées le long d'une rivière, varie d'une station à l'autre. Une différence significative pourrait indiquer des déversements de nitrates entre ces stations.

Pour cela, on dispose des résultats de 10 prélévements effectués dans 3 stations différentes (k = 3).

Exemple 2:

Station 1	Station 2	Station 3	
50,00	162,00	120,00	
52,00	350,00	120,00	
123,00	125,00	122,00	
100,00	320,00	221,00	
200,00	112,00	253,00	
250,00	200,00	141,00	
220,00	40,00	182,00	
220,00	162,00	175,00	
300,00	160,00	160,00	
220,00	250,00	214,00	

Exemple 3:

 Le test ANOVA, effectué à l'aide de Libre Office ou excel donne :

ANOVA - facteur unique						
Alpha	0,05					
Groupes	Compter	Somme	Movenne	Variance		
1 colonne	10	1735	173,5	7445,6111		
2 colonne	10	1881	188,1	9048,9889		
3 colonne	10	1708	170,8	2203,7333		
Source de la variation	SS	df	MS	F	Valeur P	Critique F
Entre les groupes	1732,4667	2	866,2333	0,1390	0,8709	3,3541
À travers les groupes	168285,0000	27	6232,7778			
Total	170017,4667	29				

- D = F = 0.139, et le seuil est C = Critique F = 3.3541.
- D < C, on valide (H_0) . il n'y a pas de différence significative entre échantillons.
- Ou bien : La p-valeur, Valeur P= 0.87 est très supérieure à α .

Remarque:

- Le test de comparaison d'échantillons que l'on vient de voir, peut être vu comme un test d'indépendance entre la variable X concernant tous les échantillons et une variable qualitative dont les modalités sont associées à chaque échantillon.
- On associe à chaque échantillon une modalité A_j d'une variable qualitative A.
- L'hypothèse (H₀) devient : les échantillons sont identiques, donc A n'a pas d'effet sur X : variables indépendantes.
- L'hypothèse (H_1) devient : il y a un échantillon différent des autres, les modalités de A ont un effet sur X : variables liées.

Cas d'échantillons compliqués :

- Lorsque l'hypothèse de normalité n'est pas possible,
- ou lorsque les échantillons contiennent des valeurs extrêmes (aberrantes),
 - on fait appel à des tests non paramétriques :
- test de Wilcoxon-Mann-Whitney, dans le cas de 2 échantillons, ou
- test de Kruskal-Wallis dans le cas de plus de 3 échantillons.