Université d'Évry Val d'Essonne 2011-2012

M54 algèbre et arithmétique 2

Feuille 6 — Idéaux premiers, maximaux

Exercice 1. Soit A un anneau; montrer de deux façons différentes que A est intègre si et seulement si (0) est un idéal premier et que A est un corps si et seulement si (0) est un idéal maximal.

Exercice 2. Soit $f: A \to B$ un morphisme d'anneaux.

- 1. Montrer que, si J est un idéal premier de B, alors son image réciproque $f^{-1}(J)$ est un idéal premier de A.
- 2. Montrer que la question précédente devient fausse en remplaçant « premier » par « maximal » (on pourra prendre $A = \mathbf{Z}$ et $B = \mathbf{Q}$).

Exercice 3. Soient A et B deux anneaux.

- 1. Soient I un idéal de A et J un idéal de B. Montrer que $I \times J$ est un idéal de $A \times B$.
- 2. Réciproquement, soit K un idéal de $A \times B$; montrer qu'il existe un idéal I de A et un idéal J de B tels que $K = I \times J$. (Indication : considérer les images directes de K par les applications les applications $p_1 \colon A \times B \to A$ et $p_2 \colon A \times B \to B$ de projection sur chaque facteur.)
- 3. Soit I un idéal de A, montrer que $(A \times B)/(I \times B) \approx A/I$.
- 4. En déduire que si I est un idéal premier (resp. maximal) de A, alors $I \times B$ est un idéal premier (resp. maximal) de $A \times B$.
- 5. Montrer que, si $I \neq A$ et $J \neq B$, alors $I \times J$ n'est pas premier.
- 6. En déduire que les idéaux premiers (resp. maximaux) de $A \times B$ sont les idéaux de la forme $I \times B$ ou $A \times J$ avec I ou J un idéal premier (resp. maximal) de A ou B.

Exercice 4. Soit A un anneau. On dit que I et J sont comaximaux si I + J = A.

- 1. Si $A = \mathbf{Z}$, montrer que deux idéaux sont comaximaux si et seulement si ils sont engendrés par des éléments premiers entre eux.
- 2. En général, montrer que I et J sont comaximaux si et seulement s'il existe une relation ax + by = 1 avec $x \in I$ et $y \in J$ (et $(a, b) \in A^2$).
- 3. En déduire que si I et J sont comaximaux, alors $I \cap J = I \cdot J$.
- 4. Considérons maintenant l'application

$$\phi \colon A \to (A/I) \times (A/J)$$
$$x \mapsto (cl_I(x), cl_J(x))$$

Montrer que $\ker \phi = I \cap J$.

5. En déduire que, si I et J sont comaximaux, alors A/IJ est isomorphe à $(A/I) \times (A/J)$. Expliquer pourquoi ce résultat est une généralisation du théorème chinois.