6.10. Analizadores sintácticos LR

La L representa la lectura de la entrada de izquierda a derecha, la R representa una derivación por la derecha en orden inverso, y el 1 es por utilizar un símbolo de entrada de anticipación en cada paso para tomar las decisiones de la acción en el análisis sintáctico.

6.10.1. Elemento LR(0)

Un elemento LR(0) de una gramática G es una producción de G con un punto en alguna posición del lado derecho.

Ejemplo:

$$G = (N, \Sigma, P, S)$$

$$A \rightarrow XYZ \in P$$

Observación:

$$A \to \varepsilon \Rightarrow A \to \bullet$$

6.10.2. Gramática aumentada

$$G = (N, \Sigma, P, S)$$

$$G' = (N', \Sigma, P', S')$$

$$N' = N \cup \{S'\}$$

$$P' = P \cup \{S' \rightarrow S\}$$

6.10.3. AFN-ε de elementos LR(0)

$$\begin{split} G &= (N, \Sigma, P, S) \text{ aumentada} \\ A &= (Q, N \cup \Sigma, \delta, q_0, Q) \\ Q &: \text{ conjunto de elementos LR}(0) \\ \delta &: \\ &\delta(A \to \alpha \bullet X\beta, X) = \{A \to \alpha X \bullet \beta \, / \, X \in (N \cup \Sigma)\} \\ &\delta(A \to \alpha \bullet B\beta, \epsilon) = \{B \to \bullet \gamma \, / \, B \to \gamma \in P\} \\ q_0 &: S' \to \bullet S \end{split}$$
 Ejemplo:
$$G &= (\{S, A\}, \{a, b\}, P, S)$$

$$P &= \{ S \to SA \mid A \\ A \to aSb \mid ab \} \end{split}$$

6.10.4. Analizador sintáctico SLR

Clausura

```
I: conjunto de elementos LR(0).
Algoritmo:
Clausura(I)
          J = I
          Repetir
                    \forall \ A \to \alpha \bullet B\beta \in J
                               \forall B \rightarrow \gamma \in P / B \rightarrow \bullet \gamma \notin J
                                         J = J \cup \{B \rightarrow \bullet \gamma\}
          Hasta que no se puedan agregar más elementos a J.
          Retornar(J)
}
Ir_a
I: conjunto de elementos LR(0).
Ir_a(I, X) = Clausura(\{A \to \alpha X \bullet \beta / A \to \alpha \bullet X\beta \in I\}) \qquad X \in (N \cup \Sigma)
Ejemplo:
G = (\{S, A\}, \{a, b\}, P, S)
P = {
          S \rightarrow SA \mid A
          A \rightarrow aSb \mid ab
```

6.10.4.1. Tabla del analizador sintáctico SLR

```
a) A \to \alpha \bullet \sigma\beta \in I_i \wedge Ir\_a(I_i, \sigma) = I_j \Rightarrow Acción[i, \sigma] = D_j \sigma \in \Sigma b) A \to \alpha \bullet \in I_i \Rightarrow Acción[i, \sigma] = R_{A \to \alpha} \forall \sigma \in S(A) c) S' \to S \bullet \in I_i \Rightarrow Acción[i, \$] = A d) Ir\_a(I_i, A) = I_j \Rightarrow Ir\_a[i, A] = j A \in N Ejemplo: G = (\{S, A\}, \{a, b\}, P, S) P = \{ S \to SA \mid A = A \to aSb \mid ab \}
```

G = $(\{E, T, F\}, \{+, *, (,), i\}, P, E)$ P = $\{E \rightarrow E + T \mid T$

 $T \to T * F | F$ $F \to (E) | i$

$$\omega = i * i + i$$

"Toda gramática SLR(1) es no ambigua, pero hay muchas gramáticas no ambiguas que no son SLR(1)" (Aho, 1990, p. 235).

Ejemplo:

$$G = \{(S, L, R\}, \{=, *, i\}, P, S)\}$$
 $P = \{\{S, L = R \mid R\}\}$
 $L \to *R \mid i\}$
 $R \to L$