Introduktion til Statistik

Forelæsning 13: Et overblik over kursets indhold

Peder Bacher

DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby – Danmark e-mail: pbac@dtu.dk

Forår 2017

Overview

- Mapitel 1: Simple plots og deskriptiv statistik
- Kapitel 2: Diskrete fordelinger
- Kapitel 2: Kontinuerte fordelinger
- 4 Kapitel 3: Konfidensintervaller for én gruppe/stikprøve
- 5 Kapitel 3: Hypotesetests for én gruppe/stikprøve
- 6 Kapitel 3: Statistik for to grupper/stikprøver
- Kapitel 4: Statistik ved simulation
- 🔞 Kapitel 5: Simpel lineær regressions analyse
- Mapitel 6: Multipel lineær regressions analyse
- Mapitel 8: Envejs variansanalyse (envejs ANOVA)
- 📵 Kapitel 8: Tovejs variansanalyse (ANOVA)
- Kapitel 7: Inferens for andele

Kapitel 1: Simple plots og deskriptiv statistik

Teknikker til at "se" på data! (deskriptiv statistik)

Opsummerende størrelser for stikprøve

- Gennemsnittet (\bar{x})
- Standard afvigelse (s)
- Empirisk varians (s^2)
- Fraktiler og percentiler (f.eks. 15% af data ligger under 0.15 fraktil)
- Median, øvre- og nedre kvartiler
- Empririsk korrelation (r) (mellem to stikprøver)

Simple plots

- Scatter plot (xy plot)
- Histogram (empirisk tæthed)
- Kumulativ fordeling (empirisk fordeling)
- Boxplots, søjlediagram, cirkeldiagram (lagkagediagram)

Kapitel 2: Diskrete fordelinger

Grundlæggende koncepter:

- Stokastisk variabel (værdi afhængig af udfald af endnu ikke udført eksperiment)
- Tæthedsfunktion: f(x) = P(X = x) (pdf)
- Fordelingsfunktion: $F(x) = P(X \le x)$ (cdf)
- Middelværdi: $\mu = E(X)$
- ullet Standard afvigelse: σ
- Varians: σ^2

Specifikke distributioner:

- Binomial (terningekast)
- Hypergeometrisk (trækning uden tilbagelægning)
- Poisson (antal hændelser i interval)

Kapitel 2: Kontinuerte fordelinger

Grundlæggende koncepter:

- Tæthedsfunktion: f(x) (pdf)
- Fordelingsfunktion: $F(x) = P(X \le x)$ (cdf)
- Middelværdi (μ) og varians (σ^2)
- Regneregler for stokastiske variabler

Specifikke fordelinger:

- Normal
- Log-Normal
- Uniform
- Eksponential
- t
- χ^2 (Chi-i-anden)
- F

Kapitel 3: Konfidensintervaller for én gruppe/stikprøve

Grundlæggende koncepter

- Population og tilfældig stikprøve
- Estimation (f.eks. $\hat{\mu}$ er estimat af μ)
- ullet Signifikansniveau lpha
- Konfidensintervaller (fanger rigtige prm. 1α af gangene)
- Stikprøvefordelinger (stikprøvegennemsnit (t) og empirisk varians (χ^2))
- Centrale grænseværdisætning

Specifikke metoder, én gruppe/stikprøve

- Konfidensinterval for middelværdi (t-fordeling)
- Konfidensinterval for varians (χ^2 -fordeling)

Kapitel 3: Hypotesetests for én gruppe/stikprøve

Grundlæggende koncepter:

- Hypoteser $(H_0 \text{ vs. } H_1)$
- p-værdi (Sandsynlighed for observeret eller mere ekstrem værdi af teststørrelsen, hvis H_0 er sand, e.g. $P(T > t_{\rm obs})$)
- Type I fejl (I virkeligheden ingen effekt, men H_0 afvises)
 - $P(\mathsf{Type}\ \mathsf{I}) = \alpha\ (\mathsf{Sandsynligheden}\ \mathsf{for}\ \mathsf{at}\ \mathsf{begå}\ \mathsf{type}\ \mathsf{I}\ \mathsf{fejl})$
- Type II fejl (I virkeligheden effekt, men H_0 afvises ikke)
 - $P(\mathsf{Type}\;\mathsf{II}) = \beta\;$ (Sandsynligheden for type II fejl)
- Modelkontrol

Specifikke metoder, én gruppe:

- t-test for middelværdiniveau
- Modelkontrol med normal qq-plot

Kapitel 3: Statistik for to populationer (2 stikprøver)

Specifikke metoder, to populationer:

- Konfidensinterval for forskel i middelværdi
- Test for forskel i middelværdi (t-test)
- To PARREDE grupper: "Tag differencen" ⇒ "Én gruppe"

Grundlæggende koncepter for forsøgsplanlægning:

ullet Testens styrke er 1-eta (hvor eta er sandsynligheden for at begå Type II fejl)

Specifikke metoder, forsøgsplanlægning:

- ullet Stikprøvestørrelse n for ønsket præcision af konfidensintervaller
- ullet Stikprøvestørrelse n for ønsket styrke af tests

Kapitel 4: Statistik ved simulering

Simulering:

- Træk tilfældige værdier og beregn statistik mange gange
- Fejlforplantning (error propagation rules)
 - (F.eks. igennem ikke-lineær funktion)
- Bootstrapping af konfidensintervaller:
 - Parametrisk (Simuler mange udfald af stokastisk var.)
 - Ikke-parametrisk (Træk direkte fra data)

Specifikke setups: (4 versioner af konfidensintervaller)

- Èn gruppe/stikprøve og to grupper/stikprøver data
- Parametrisk vs. ikke-parametrisk

Kapitel 5: Simpel lineær regressions analyse

To variable: $x \circ y$

Beregn mindstekvadraters estimat af ret linje

Inferens med simpel lineær regressionsmodel

- Statistisk model: $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- ullet Estimation, konfidensintervaller og tests for eta_0 og eta_1
- $1-\alpha$ konfidensinterval for linjen (Stor sikkerhed for den rigtige linje ligger indenfor)
- $1-\alpha$ prædiktionsinterval for punkter (Stor sikkerhed for at nye punkter er indenfor)

ρ , R og R^2

- ρ er korrelationen $(= sign_{\beta_1} R)$ er graden af lineær sammenhæng mellem x og y
- \bullet R^2 er andelen af den totale variation som er forklaret af modellen
- Afvises $H_0: \beta_1 = 0$ så afvises også $H_0: \rho = 0$

Kapitel 6: Multipel lineær regressions analyse

Multipel lineær regressionsmodel

- Flere variabler: Y, x₁, x₂, ...
 (y afhængig/respons var. og x'er er forklarende/uafhængige var.)
- Mindstekvadraters rette plan (et plan da der er >2 dimensioner)

Inferens for en multipel lineær regressionmodel

- Statistisk model: $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \ldots + \beta_2 x_{p,i} + \varepsilon_i$
- Estimation af konfidensintervaller og tests for β 'er
- Konfidensintervaller for modellen (for det forventede plan)
- Prædiktionsintervaller for nye punkter
- \bullet R^2 er andelen af den totale variationen som er forklaret af modellen

Model validering ved residual analyse

- Normalfordeling? q-q plots af residualer
- ullet Uafhængighed? Plot residualer mod prædikterede værdier \hat{y} og inputs $x_i(i,j)$

Kapitel 8: Envejs variansanalyse (envejs ANOVA)

k UAFHÆNGIGE grupper

- Test om middelværdi for mindst en gruppe er forskellig fra de andre gruppers middelværdi
- Model $Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$

Specifikke metoder, envejs variansanalyse:

- ANOVA-tabel: SST = SS(Tr) + SSE
- F-test
- Post hoc test(s): Parvise t-test med poolet varians estimat
 - Hvis planlagt på forhånd, så uden Bonferroni korrektion
 - Hvis alle sammenligninger udføres, så med Bonferroni korrektion

Kapitel 8: Tovejs variansanalyse (tovejs ANOVA)

k UAFHÆNGIGE grupper og blokdesign der giver to faktorer

- Test om middelværdi for om mindst en gruppe er forskellig de andre andres
- Model $Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$

Specifikke metoder, tovejs variansanalyse:

- ANOVA-tabel: SST = SS(Tr) + SS(Bl) + SSE
 - SST, SS(Tr) og SS(Bl) beregnes som ved envejs ANOVA
 - SSE = SST SS(Tr) SS(Bl)
- F-test
- Post hoc test(s): Parvise t-test med poolet varians estimat
 - Hvis planlagt på forhånd, så uden Bonferroni korrektion
 - Hvis alle sammenligninger udføres, så med Bonferroni korrektion

Kapitel 7: Inferens for andele

Statistik for andele:

- Andel: $p = \frac{x}{n}$ (x successer ud af n observationer)
- Specifikke metoder, én, to og k > 2 grupper
 - Binær/kategorisk respons

Specifikke metoder:

- Estimation og konfidensintervaller for andele
 - Metoder til store stikprøver vs. til små stikprøver
- Hypoteser for to andele
- Analyse af antalstabeller (χ^2 -test) (Alle forventede antal > 5)

Chapter 1: Simple Graphics and Summary Statistics

Look at data as it is! (descriptive statistics)

Summary statistics

- Sample mean: \bar{x}
- Sample standard deviation: s
- Sample variance: s²
- Quantiles and percentiles (e.g. 15% of data is below 0.15 quantile)
- Median, upper- and lower quartiles
- Sample correlation (r) (between two samples)

Simple graphics

- Scatter plot (xy plot)
- Histogram (empirical density)
- Cumulative distribution (empirical distribution)
- Boxplots, Bar charts, Pie charts

Chapter 2: Discrete Distributions

General concepts:

- Random variable (value is outcome of yet not carried out experiment)
- Density function: f(x) = P(X = x) (pdf)
- Distribution function: $F(x) = P(X \le x)$ (cdf)
- Mean: $\mu = E(X)$
- Standard deviation: σ
- Variance: σ^2

Specific distributions:

- The binomial distribution (dice roll)
- The hypergeometric distribution (draw without replacement)
- The Poisson distribution (number of events in interval)

Chapter 2: Continuous Distributions

General concepts:

- Density function: f(x) (pdf)
- Distribution: $F(x) = P(X \le x)$ (cdf)
- Mean (μ) and variance (σ^2)
- Calculation rules for random variables

Specific distributions:

- Normal
- Log-Normal
- Uniform
- Exponential
- t
- χ^2 (Chi-square)
- F

Chapter 3: One sample confidence intervals

General concepts

- Population and a random sample
- Estimation (e.g. $\hat{\mu}$ is estimate of μ)
- Significance level α
- Confidence intervals (Catches true value 1α times)
- Sampling distributions (sample mean (t) and sample valance (χ^2))
- Central Limit Theorem

Specific methods, one sample

- Confidence interval for the mean (t-distribution)
- Confidence interval for the variance (χ^2 -distribution)

Chapter 3: One sample hypothesis testing

General concepts:

- Hypotheses (H₀ vs. H₁)
- *p*-value (Probability for observing the test value or more extreme, if H_0 is true, e.g. $P(T > t_{obs})$)
- Type I error (No effect in reality, but H_0 is rejected)
 - $P(\mathsf{Type}\ \mathsf{I}) = \alpha$ (The probability for a Type I error)
- Type II error: (In reality an effect, but H_0 is not rejected)
 - $P(\mathsf{Type}\;\mathsf{II}) = \beta$ (The probability for a Type II error)
- Model validation

Specific methods, one sample:

- t-test for the mean
- Model validation with normal q-q plot

Chapter 3: Two Samples

Specific methods, two samples:

- Confidence interval for the mean difference
- Test for the mean difference (t-test)
- Two PAIRED samples: "Take difference" ⇒ "One sample"

General concepts for design of experiments:

ullet Power of a test is 1-eta (where eta is the probability of making a Type II error)

Specific methods, design of experiments:

- Sample size n for wanted precision of confidence intervals
- Sample size n for wanted power of tests

Chapter 4: Statistics by simulation

Simulation:

- Draw random values and calculate the statistic many times
- Error propagation rules

```
(e.g. through a non-linear function)
```

- Bootstrapping of confidence intervals:
 - Parametric (Simulate many outcomes of random var.)
 - Non-parametric (Draw values directly from data)

Specific situations: (4 versions of confidence intervals)

- One-sample and Two-sample data
- Parametric vs. non-parametric

Chapter 5: Simple linear Regression Analysis

Two quantitative variables: x and y

Calculate the least squares line

Inferences for a simple linear regression model

- Statistical model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- Estimation, confidence intervals and tests for β_0 and β_1 .
- $1-\alpha$ confidence interval for the line (high certainty that the real line will be inside)
- $1-\alpha$ prediction interval for punkter (high certainty that new points will be inside)

ρ , R and R^2

- ρ is the correlation $(= sign_{\beta_1}R)$ is the strength of linear relation between x and y
- R² is the fraction of the total variation explained by the model
- If $H_0: \beta_1 = 0$ is rejected, then $H_0: \rho = 0$ is also rejected

Chapter 6: Multiple linear Regression Analysis

Multipel lineær regressionsmodel

- Many quantitative variables: y, x_1 , x_2 , ... (y is the dependent/response var. and x's are explanatory/independent var.)
- Calculating least squares surface (a plane surface since there are >2 dimensions)

Inferences for a the multiple linear regression model

- Statistical model: $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \ldots + \beta_2 x_{p,i} + \varepsilon_i$
- ullet Confidence interval estimation and test for the eta's
- Confidence interval for the expected fit (fitted line)
- Prediction interval for new points
- \bullet R^2 expresses the proportion of the total variation explained by the linear fit

Chapter 8: One-way Analysis of Variance

k INDEPENDENT samples (groups)

- Test if the mean of at least one of the groups is different from the mean of the other groups
- Model $Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$

Specific methods, one-way analysis of variance:

- ANOVA-table: SST = SS(Tr) + SSE
- F-test
- Post hoc test(s): pairwise t-test with pooled variance estimate
 - If planned on beforehand, then without Bonferroni correction
 - If all samples are compared, then with Bonferroni correction

Chapter 8: Two-way Analysis of Variance

k INDEPENDENT treatments and block design give two factors

- Test if mean for at least one group is different from the others
- Model $Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$

Specific methods, two-way analysis of variance:

- ANOVA-table: SST = SS(Tr) + SS(Bl) + SSE
 - SST, SS(Tr) and SS(Bl) calculated as in one-way ANOVA
 - SSE = SST SS(Tr) SS(Bl)
- F-test
- Post hoc test(s): pairwise *t*-test with pooled variance estimate
 - If planned on beforehand, then without Bonferroni correction
 - If all samples are compared, then with Bonferroni correction

Chapter 7: Inferences for Proportions

Statistics for proportions:

- Proportion: $p = \frac{x}{n}$ (x successes out of n observations)
- Specific methods: one, two and k > 2 samples:
 - Binary/categorical response

Specific methods:

- Estimation and confidence interval of proportions:
 - Large sample vs. small sample methods
- Hypotheses for one proportion
- Hypotheses for two proportions
- Analysis of contingency tables (χ^2 -test) (All expected > 5)