

本 国 特 許 JAPAN PATENT OFFICE Applinarihiro
Taharael
F 09/903, 694
Group 1714
703-205-8000
Doc 1 of 2

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。 #3~

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 7月14日

出 願 番 号 Application Number:

特願2000-214225

出 願 人 Applicant(s):

11

住友ゴム工業株式会社

2001年 6月 1日

特許庁長官 Commissioner, Japan Patent Office

特2000-214225

【書類名】

特許願

【整理番号】

JP-12137

【提出日】

平成12年 7月14日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

C08L 9/00

【発明の名称】

タイヤ用トレッドゴム組成物

【請求項の数】

3

【発明者】

【住所又は居所】 兵庫県神戸市中央区脇浜町3丁目6番9号 住友ゴムエ

業株式会社内

【氏名】

田原 尚洋

【特許出願人】

【識別番号】

000183233

【氏名又は名称】 住友ゴム工業株式会社

【代理人】

【識別番号】

100065226

【弁理士】

【氏名又は名称】

朝日奈 宗太

【電話番号】

06-6943-8922

【選任した代理人】

【識別番号】

100098257

【弁理士】

【氏名又は名称】 佐木 啓二

【手数料の表示】

【予納台帳番号】

001627

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書

【包括委任状番号】 9300185

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 タイヤ用トレッドゴム組成物

【特許請求の範囲】

【請求項1】 天然ゴムおよび/またはジエン系ゴムからなるゴム成分に対して、ガラス繊維、補強剤、さらに、ガラス繊維より柔らかく、平均粒子径が25μm未満である無機粉体を配合してなり、前記無機粉体の配合量がゴム成分100重量部に対して1~15重量部であるタイヤ用トレッドゴム組成物。

【請求項2】 無機粉体のモース硬度が6.5未満であり、平均粒子径が0.03μm以上である請求項1記載のゴム組成物。

【請求項3】 無機粉体が、クレー、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウムおよびマイカからなる群から選ばれた少なくとも1種の無機粉体である請求項1または2記載のゴム組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、タイヤト用レッドゴム組成物に関し、くわしくは、耐摩耗性能を維持しつつ、雪氷上性能を向上させ得るタイヤ用トレッドゴム組成物に関する。

[0002]

【従来の技術】

これまで、短繊維(合成繊維、天然繊維、ガラス繊維、炭素繊維など)をゴムに配合し、氷上性能および耐摩耗性能を向上させるといった特許が多くみられる

[0003]

さらに、これらの短繊維のなかでも、無機繊維、たとえばガラス繊維を配合すると、前記性能を向上させ得る。

[0004]

これは、ガラス繊維の硬度が氷よりも硬く、氷を引っ掻くことに起因する。

[0005]

逆に、有機繊維(パルプ、ポリエチレン、ポリエステル、ナイロンなど)は、

氷より柔らかく、引っ掻き効果は望めない。

[0006]

しかしながら、無機繊維は、素材自体が硬いため、配合量に比例してゴム自身 の硬度が硬くなる傾向がある。

[0007]

通常、硬度調整のためには、石油系軟化剤(アロマティックオイル、ナフテンオイル、パラフィンオイルなど)や低温可塑剤(ジオクチルフタレート(DOP)、ジブチルフタレート(DBP)など)などの液状成分を用いる。

[0008]

前記のような液状成分を増量すると、補強剤(カーボンブラック、シリカなど)の分散性低下が懸念される。補強剤の分散性が低下すると、設計どおりのゴム 物性が得られず、氷上性能、耐摩耗性能が落ちる。

[0009]

【発明が解決しようとする課題】

本発明の目的は、ゴム硬度を高めることなく、補強剤の分散性を維持して、氷上性能、耐摩耗性能を向上させうるタイヤ用トレッドゴム組成物を提供することにある。

[0010]

【課題を解決するための手段】

本発明は、天然ゴムおよび/またはジエン系ゴムからなるゴム成分に対して、ガラス繊維、補強剤、さらに、ガラス繊維より柔らかく、平均粒子径が25μm 未満である無機粉体を配合してなり、前記無機粉体の配合量がゴム成分100重量部に対して1~15重量部であるタイヤ用トレッドゴム組成物に関する。

[0011]

【発明の実施の形態】

本発明のゴム組成物は、天然ゴムおよび/またはジエン系ゴムからなるゴム成分にガラス繊維、補強剤、無機粉体を配合してなる。

[0012]

本発明で使用するジエン系ゴムとしては、たとえば、スチレンーブタジエンゴ

特2000-214225

ム、ブタジエンゴム、イソプレンゴム、エチレンープロピレンージエンゴム、クロロプレンゴム、アクリロニトリルーブタジエンゴムなどがあげられ、単独、または2種類以上を混合して用いることができる。

[0013]

本発明のゴム組成物によれば、タイヤトレッド厚さ方向にガラス繊維を配向させることにより、氷上性能および耐摩耗性能を向上させることができる。

[0014]

ガラス繊維のモース硬度 (Mohs hardness) は、通常、 $6 \sim 7$ 程度、ほぼ 6 . 5 である。

[0015]

配合するガラス繊維の径は、1~100μmが好ましく、3~50μmがより好ましい。ガラス繊維の径が1μmより小さい場合、ガラス繊維により氷路面を掘り起こし引っ掻く効果がみられない傾向がある。一方、100μmより大きい場合、ゴムの粘着摩擦、凝着摩擦が妨げられ、充分には粘着摩擦、凝着摩擦が得られない傾向がみられる。

[0016]

ガラス繊維の長さは、0.1~5mmが好ましく、0.1~3mmがより好ましい。ガラス繊維の長さが0.1mmより短い場合、走行によりガラス繊維がトレッド表面より脱落しやすくなる傾向がある。一方、5mmより長い場合、工程上ゴムの加工が難しくなる傾向がある。

[0017]

ガラス繊維の配合量は、ゴム成分100重量部に対して、2~28重量部であることが好ましい。2重量部未満ではトレッド表面に突出するガラス繊維の量が少なくなり、充分には掘り起こし、引っ掻き効果が得られない傾向があり、28重量部をこえるとトレッドブロック剛性が高くなりすぎてトレッド表面を氷雪路面に追随させることができない傾向がある。

[0018]

前記ガラス繊維は、ガラス繊維を含有するゴム組成物をカレンダーロールによって圧延加工し、得られたシートを繰り返し折りたたむことによって、タイヤト

レッド厚さ方向に配向させることができる。

[0019]

本発明のゴム組成物は、補強剤として、カーボンブラック、シリカなどを含む

[0020]

さらに、本発明のゴム組成物においては、無機繊維の硬度に着目し、無機繊維より柔らかい無機粉体を配合することによって、ゴム硬度と補強剤の分散性を維持することができる。

[0021]

無機繊維より柔らかい素材を用いるのは、ゴム硬度上昇を抑制するためである。具体的には、たとえば、モース硬度(Mohs hardness)が6.5以下、好ましくは4.5以下、より好ましくは3以下、通常は2以上の無機粉体を使用することができる。

[0022]

前記無機粉体としては、たとえば、クレー(珪酸アルミニウム、組成式SiO $2\cdot A \ 1_2 O_3 \cdot F \ e_2 O_3 \cdot T \ i \ O_2$ 、モース硬度 $2 \sim 2$. 5)、水酸化アルミニウム(組成式A 1 (OH) $_3$ 、モース硬度3)、水酸化マグネシウム(組成式M g (OH) $_2$ 、モース硬度 $2 \sim 3$)、珪酸カルシウム(組成式C $a \ S \ i \ O_3$ 、モース硬度4. 5)、マイカ(雲母、組成式A $_{1-x} B_{2 \sim 3} [$ (OH, F) $_2 X_4 O_{10}]: A$ = K、N a、C a、B a、N H_4 、 $H_3 O$ 、 \Box (空所); $B = A \ 1$ 、 $F \ e^{III}$ 、M g、 $F \ e^{II}$ 、 $M \ n^{II}$ 、 $L \ i$ 、 $Z \ n$ 、 V^{III} 、 $C \ r^{III}$ 、 $T \ i$; $X = S \ i$ 、 $A \ 1$ 、B e、 $F \ e^{III}$; $x = 0 \sim 0$. 5、モース硬度2. $5 \sim 3$)などがある。

[0023]

ここで用いているモース硬度 (Mohs hardness) とは、材料の機械的性質の一つで古くから鉱物関係で広く用いられている測定法である。

[0024]

これは、以下の10種類の鉱物で順次引っ掻いて傷つけばその鉱物よりも硬度が低いとする方法である。硬度の低い方から、1タルク(滑石)、2石膏、3方解石、4螢石、5アパタイト(リン灰石)、6正長石、7水晶、8トパーズ(黄

玉)、9コランダム、10ダイヤモンドが使用される。

[0025]

無機粉体としては、平均粒子径が25μm未満、好ましくは20μm以下の無機粉体を用いることができる。平均粒子径が大きすぎる無機粉体では耐摩耗性能が劣る傾向がある。

[0026]

補強剤より粒子径が大きい無機粉体を用いることによって、補強剤の分散性を向上させることができ、好ましくは、平均粒子径が 0.03μ m以上、より好ましくは 0.1μ m以上の無機粉体を使用する。

[0027]

前記無機粉体の配合量は、ゴム成分100重量部に対して1~15重量部が好ましく、2~12重量部がより好ましい。無機粉体の配合量が1重量部未満では補強剤の分散性を向上することができず、所望の物性が得られない傾向があり、15重量部をこえると耐久性が悪化する傾向がある。

[0028]

前記無機粉体は、ゴム配合に単に加えるだけでよく、工程上も非常に簡便である。

[0029]

本発明のゴム組成物には、前記成分に加えてタイヤ用トレッドゴム組成物の製造に一般に使用される成分、添加剤を必要に応じて通常使用される量、配合・添加してもよい。前記成分、添加剤の具体例としては、たとえばプロセスオイル(パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなど)、加硫剤(硫黄、塩化硫黄化合物、有機硫黄化合物など)、加硫促進剤(グアニジン系、アルデヒドーアミン系、アルデヒドーアンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンデート系の化合物など)、架橋剤(有機パーオキサイド化合物、アゾ化合物などのラジカル発生剤や、オキシム化合物、ニトロソ化合物、ポリアミン化合物など)、酸化防止剤ないし老化防止剤(ジフェニルアミン系、pーフェニレンジアミン系などのアミン誘導体、キノリン誘導体、ハイドロキノリン誘導体、モ

ノフェノール類、ジフェノール類、チオビスフェノール類、ヒンダードフェノール類、亜リン酸エステル類など)、ワックス、ステアリン酸、酸化亜鉛、軟化剤 、充填剤、可塑剤などがあげられる。

[0030]

【実施例】

以下に実施例にもとづいて本発明を詳細に説明するが、本発明はこれらのみに 制限されるものではない。

[0031]

実施例および比較例で使用した原料、および評価方法を以下にまとめて示す。 (原料)

天然ゴム (NR)

カーボンブラック:昭和キャボット (株) 製、 $(N_2SA:79\times10^3\text{m}^2/\text{k}$ g、DBP吸油量: $102\times10^{-5}\text{m}^3\text{m}1/\text{k}$ g、平均粒子径: $0.03\mu\text{m}$)

ガラス繊維:日本ガラス繊維(株)製、マイクログラス・チョップドストランド ハイジライトH43:昭和電工(株)製、平均粒子径0.6μm Suprex:ジェイ・エム・ハーバー(J. M. Huber)製、平均粒子径 0.3μm

ハイジライトΗ21:昭和電工(株)製、平均粒子径25μm

軟化剤

硫黄

加硫促進剤

[0032]

(測定項目)

①ゴム硬度

ゴム硬度はJIS-Aに準じて測定した。

[0033]

②カーボンブラックの分散性

ASTM D2663B法に準じて測定した。

6

加硫ゴムの試片(約3mm×8mm、厚さ約2mm)を採り、ミクロトームの試料台に貼りつけ、液体窒素またはドライアイスで冷却し硬化させた。ガラスナイフを装着したミクロトームで2μm前後の薄片を作製し、薄片をナフサに浸漬し膨潤させた。膨潤後の薄片を顕微鏡のプレパラートガラス上に広げ、接眼レンズに10×10μm、縦横100目(計10000目)の格子状スケールを置き、全倍率を75~100倍にし、1/2目以上のカーボンブラック未分散塊の数を数えた。分散式は次式より算出した。望ましくは分散度100%であるが、95%以上のとき、カーボンブラックの分散性は良好(〇)と判断し、95%未満のときを不良(×)と判断した。

[0034]

分散度(%)=100-S×U/L

S:カーボンブラック未分散塊の占める全格子数

U:測定試料の膨潤ファクター (膨潤後の面積/膨潤前の面積)

L:コンパウンド(加硫ゴム)中のカーボンブラック(CB)容積分率(%)

 $L = \{CB配合容積部数÷(CB配合容積部数+2×(ゴム配合容積部数+油(ナフサ)配合容積部数))\}×100$

[0035]

③ 氷上性能

タイヤサイズ/パターン 185/70R14 HS3のタイヤを試作し、氷上にて、時速20kmからの制動停止距離を求めた。比較例1のタイヤを基準として、下記式にて求めた指数によって評価した。指数が大きいほうが、氷上性能が良好である。

(比較例1の制動停止距離)÷(制動停止距離)×100

[0036]

④雪上性能

雪上での操縦安定性(制駆動、コーナリングのフィーリング)を、比較例1の タイヤを6として評価した。数値が大きいほうが、雪上性能が良好である。

[0037]

⑤耐摩耗性能

タイヤサイズ/パターン 185/70R14 HS3のタイヤを試作し、カムリにて実車摩耗テストを行なった。5000km走行後のタイヤトレッドの溝深さを測定し、タイヤ溝深さが1mm減るときの走行距離を算出し、比較例1を基準として下記式により指数化した。数値が大きいほうが、耐摩耗性能が良好である。

(溝深さが1mm減るときの走行距離) ÷

(比較例1のタイヤの溝深さが1mm減るときの走行距離)×100

[0038]

実施例1~3および比較例1~5

表1に示すゴム組成物をカレンダーロールにて厚さ1mm、幅1.5mmに圧延加工し得られたシートを繰り返し折りたたむことによって、ガラス繊維をタイヤトレッド厚さ方向に配向させたトレッドを得た。加硫は150℃で50分間行なった。

得られたタイヤを用いて、前記評価を行なった。結果を表1に示す。

[0039]

【表1】

			₩ T					
	実施例1	実施例2	実施例3	比較例1	比較例2	比較例3	比較例4	比較例5
Z Z	100	100	100	100	100	100	100	100
	09	55	55	09	09	09	09	09
	10	10	10	ı	10	10	10	10
	2	2		i		1	0.5	20
重 Suprex			2			•	1	ı
量 ハイジライトH21		1		I	ļ	5		İ
	28	28	28	25	28	28	28	28
- 第一	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
加硫促進剤	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
ガラス繊維のモース硬度	6.5	6.5	6.5		6.5	6.5	6.5	6.5
カーボンブラックの平均粒子径	0.03μ m	0.03 µ m	0.03 µ m	0.03 m m	0.03 µ m	0.03 µ m	0.03 m m	0.03 m
無機粉体のモース硬度	3	3	2~2.5			3	က	3
平均粒子径	0.6 µ m	0.6 m m	0.3 µ m	1		25 µ m	0.6 µ m	0.6 m
ゴム硬度	56	55	55	55	55	56	55	59
カーボンブラックの分散度	0	0	0	0	×	0	×	0
	%26	%96	%96	%26	%06	%26	%06	%86
状上性能	105	108	106	100	105	105	105	100
雪上性能	9	2	2	9	7	9	7	9
耐摩耗性能	0	0	0	0	×	×	×	×
	105	102	103	100	97	96	97	95

[0040]

比較例2のように、軟化剤で硬度調整を行なうと、カーボンブラック分散性が

低下し、耐摩耗性能が低下する。

[0041]

実施例1のように、ガラス繊維より柔らかく、かつカーボンブラックより大き い無機粉体を配合することで、硬度は若干上昇するものの、氷上性能を維持した まま、カーボンブラック分散性を向上させ、耐摩耗性能を確保できた。

[0042]

実施例2のように、カーボンブラックの一部を無機粉体と等量置換することで、硬度を維持したまま、カーボンブラック分散性を向上させることができ、氷上性能と耐摩耗性能を確保できた。

[0043]

実施例に3に示すように、モース硬度が若干柔らかく、平均粒子径が小さい無機粉体を用いても氷上性能と耐摩耗性能を確保できた。

[0044]

比較例3のように、粒子径が25μm以上の無機粉体を用いると、カーボンブラック分散性自体は向上するが、ゴム自体の補強性が劣り、耐摩耗性能が悪化する。

[0045]

比較例4のように、無機粉体の配合量が少ないと、カーボンブラック分散性に 対する効果がみられなかった。

[0046]

比較例5のように、無機粉体の配合量が多いと、カーボンブラック分散性は向上したが、ゴム自体の補強性が劣り、耐摩耗性能が低下した。

[0047]

総じて、無機粉体の粒子径は25μm以下が好ましく、配合量は0.5重量部より多く、20重量部より少ないことが好ましいと思われる。

[0048]

【発明の効果】

本発明によれば、ゴム硬度を高めることなく、補強剤の分散性を維持して、氷上性能、耐摩耗性能を向上させうるタイヤ用トレッドゴム組成物を提供すること

が可能となる。

【書類名】

要約書

【要約】

【課題】 ゴム硬度を高めることなく、補強剤の分散性を維持して、氷上性能、 耐摩耗性能に優れたタイヤ用ゴム組成物を提供する。

【解決手段】 天然ゴムおよび/またはジエン系ゴムからなるゴム成分100重量部に対して、ガラス繊維、補強剤、さらに、モース硬度が6.5以下、平均粒子径が0.03 μ m以上の無機粉体を配合してなり、前記無機粉体の配合量がゴム成分100重量部に対して $1\sim15$ 重量部であるタイヤ用トレッドゴム組成物

【選択図】

なし

出願人履歴情報

識別番号

[000183233]

1. 変更年月日 1994年 8月17日 [変更理由] 住所変更

住 所 兵庫県神戸市中央区脇浜町3丁目6番9号

氏 名 住友ゴム工業株式会社