ПОВЫШЕНИЕ ТОЧНОСТИ ЭКСТРАПОЛЯЦИИ РЕГРЕССИИ ПУТЕМ УЧЕТА ПОГРЕШНОСТИ ИЗМЕРЕНИЯ ПЕРЕМЕННЫХ

Постановка задачи

Имеется набор данных dataset_0, который содержит количественные предикторы A_1, A_2, A_3, A_4, A_5 и количественную целевую переменную b. Набор данных dataset_0 представляет собой точную зависимость целевой переменной b от предикторов.

Даны два набора данных dataset_1 и dataset_2, каждый из которых содержит количественные предикторы A_h_1, A_h_2, A_h_3, A_h_4, A_h_5 и количественную целевую переменную b_d. Наборы данных dataset_1 и dataset_2 моделируют результаты измерений b от предикторов и сгенерированы по данным dataset_0 путем случайных отклонений предикторов в пределах 1% и целевой переменной b в пределах 5% от соответствующих точных значений из dataset_0.

Необходимо по данным dataset_1 и dataset_2 спрогнозировать значение целевой переменной b_max при значениях предикторов (1800, 1500, 1800, 2000, 1500). Датасет dataset_0 использовать только для валидации обученных моделей.

РЕШЕНИЕ ЗАДАЧИ

1. Характеристика датасетов

Значения предикторов в каждом наборе данных являются положительными вещественными числами, максимальное значение которых не превышает 1269. Значения целевой переменной в каждом наборе данных также являются положительными вещественными числами, максимальное значение которых не превышает 115.

Для dataset_0 выявлена функциональная линейная зависимость целевой переменной от всех предикторов. При этом имеется практически абсолютная мультиколлинеарность всех предикторов.

Для dataset_1 и dataset_2 коэффициенты корреляции для всех предикторов между собой практически равны 1, а для целевой переменной с предикторами практически равны 0.99. Таким образом, для dataset_1 и dataset_2 также имеются практически функциональная линейная зависимость целевой переменной от предикторов и практически абсолютная мультиколлинеарность всех предикторов.

2. Обучение различных моделей

Данная задача относится к классу задач экстраполяции регрессии.

Обучение моделей выполнено на языке Python 3.

Обучение проводилось как при разбиении на обучающую и тестовую выборки (70/30), так и на полных наборах данных.

Модели строились на всех предикторах, которые масштабировались с помощью MaxAbsScaler.

Для обучения моделей применялись алгоритмы:

- 1) LinearRegression, Ridge, Lasso, ElasticNet, TheilSenRegressor из библиотеки Scikit-learn с подбором оптимальных значений их гиперпараметров по сетке с кросс-валидацией.
- 2) двухслойная нейронная сеть прямого распространения из библиотеки Кетаs с подбором оптимального числа нейронов на каждом слое.
- 3) регуляризация Тихонова с определением коэффициента регуляризации α методом обобщенной невязки [1].

Отличие алгоритма регуляризации Тихонова от модели Ridge из Scikit-learn состоит в том, что коэффициент регуляризации α определяется по условию оптимизации нестандартной метрики — обобщенной невязки, учитывающей информацию о погрешности измерения предикторов и целевой переменной.

Решение задачи регрессии – системы линейных уравнений Az = b для модели на основе алгоритма регуляризации Тихонова имеет следующий вид

$$z = (A^{T}A + \alpha E)^{-1}A^{T}b$$
 (1)

Уравнение обобщенной невязки для определения коэффициента регуляризации α имеет следующий вид

$$\|Az(\alpha) - b\|^2 - (h\|z(\alpha)\| + d)^2 = 0$$
(2)

$$h = \delta_{\mathbf{A}} \|\mathbf{A}\| \tag{3}$$

$$d = \delta_{\mathbf{b}} \|\mathbf{b}\| \tag{4}$$

где ||_|| – обозначение нормы матрицы или вектора;

 δ_{A} – относительная погрешность измерения элементов матрицы A;

 $\delta_{\rm b}$ – относительная погрешность измерения элементов вектора b.

По условию данной задачи $\delta_{\rm A} = 0.01, \, \delta_{\rm b} = 0.05.$

Метрики, результаты прогноза целевой переменной b_max и их осредненные значения Меап для различных моделей регрессоров Scikit-learn приведены в таблицах 1-7. Там же приведены результаты прогнозов для нейронной сети, для модели на основе алгоритма регуляризации Тихонова и **точный прогноз** Accurate.

Таблица 1 — Метрики и результаты прогноза целевой переменной для dataset_1 (random_state = 1937 для train_test_split)

	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	NeuralNetwork	Regularized	Accurate
R2 train	0.981	0.981	0.981	0.981	0.981	0.981	0.98	0.923	
R2 test	0.979	0.979	0.979	0.979	0.979	0.979	0.979	0.916	
b_max	373.321	353.358	340.636	348.531	377.779	358.725	[255.42]	262.794	242.5

Таблица 2 — Метрики и результаты прогноза целевой переменной для dataset_1 (random_state = 1941 для train_test_split)

	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	NeuralNetwork	Regularized	Accurate
R2 train	0.981	0.981	0.981	0.981	0.981	0.981	0.981	0.922	
R2 test	0.979	0.979	0.979	0.979	0.979	0.979	0.979	0.916	
b_max	277.869	276.078	280.392	277.265	276.307	277.582	[270.946]	262.513	242.5

Таблица 3 — Метрики и результаты прогноза целевой переменной для dataset_1 (обучение на полном наборе данных)

	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	NeuralNet_best	Regularized	Accurate
R2	0.981	0.981	0.980	0.981	0.981	0.981	0.98	0.921	
b_max	316.934	303.941	291.151	307.120	323.745	308.578	[283.8]	262.533	242.5

Таблица 4 — Метрики и результаты прогноза целевой переменной для dataset_2 (random state = 1968 для train test split)

	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	NeuralNetwork	Regularized	Accurate
R2 train	0.981	0.981	0.981	0.981	0.981	0.981	0.98	0.922	
R2 test	0.980	0.980	0.980	0.980	0.979	0.980	0.98	0.924	
b_max	114.390	149.757	208.054	215.942	119.067	161.442	[264.105]	262.611	242.5

Таблица 5 — Метрики и результаты прогноза целевой переменной для dataset_2 (random state = 1901 для train test split)

	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	NeuralNetwork	Regularized	Accurate
R2 train	0.980	0.980	0.980	0.980	0.980	0.980	0.979	0.921	
R2 test	0.982	0.982	0.981	0.981	0.981	0.981	0.979	0.911	
b_max	229.391	267.201	255.334	267.729	232.893	250.510	[261.918]	262.074	242.5

Таблица 6 — Метрики и результаты прогноза целевой переменной для dataset_2 (обучение на полном наборе данных)

	` '		-						
	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	NeuralNet_best	Regularized	Accurate
R2	0.981	0.981	0.981	0.981	0.981	0.981	0.979	0.923	
b_max	183.793	185.529	241.599	219.564	201.463	206.390	[277.5]	262.489	242.5

Таблица 7 — Метрики и результаты прогноза целевой переменной для dataset_0 (обучение на полном наборе данных)

	LinRegr	Ridge	TheilSen	Mean	NeuralNet_best	Regularized	Accurate
R2	1.0	1.0	1.0	1.0	1.0	1.0	
b_max	242.5	242.5	242.5	242.5	[269.4]	242.5	242.5

Примечание. dataset 0 сгенерирован при коэффициентах z = (0.04, 0.035, 0.03, 0.02, 0.016)

3. Анализ прогнозов различных моделей

Для dataset_1 диапазон осредненного прогноза Mean различных моделей регрессоров Scikit-learn составил от 277,6 до 358,7. Диапазон прогноза двухслойной нейронной сети составил от 255,4 до 283,8. Диапазон прогноза модели регуляризации Тихонова, учитывающей информацию о погрешности измерения предикторов и целевой переменной, составил от 262,5 до 262,8.

Для dataset_2 диапазон осредненного прогноза Mean различных моделей регрессоров Scikit-learn составил от 161,4 до 250,5. Диапазон прогноза двухслойной нейронной сети составил от 261,9 до 277,5. Диапазон прогноза модели регуляризации Тихонова, учитывающей информацию о погрешности измерения предикторов и целевой переменной, составил от 262,1 до 262,6.

Для dataset_0 значение прогнозов различных моделей регрессоров Scikit-learn составляет 242,5. Это же значение получается при вычислении **точного прогноза** по выражению $b_{\text{max}} = A_{\text{max}} \cdot z$, где $z = (0.04, 0.035, 0.03, 0.02, 0.016) - коэффициенты регрессии для генерации dataset_0. Значение прогноза регуляризованного решения с учетом того, что погрешности измерения переменных для dataset_0 равны нулю, также составило 242,5. Значение прогноза двухслойной нейронной сети составило 269,4.$

Таким образом, несмотря на отличные метрики всех моделей регрессоров из библиотеки Scikit-learn, результаты их прогнозов не только имеют неприемлемую точность, но и являются неустойчивыми — небольшие погрешности измерений данных приводят к недопустимым погрешностям прогноза целевой переменной (в терминологии ML это означает, что модели переобучаются). Разброс (variance) осредненного прогноза различных моделей регрессоров составил ±38% при смещении (bias) 7%.

При этом результаты прогнозов двухслойной нейронной сети прямого распространения являются достаточно устойчивыми и имеют приемлемую точность. Разброс (variance) прогноза составил $\pm 5\%$ при смещении (bias) 11%.

Наилучшие устойчивые прогнозы с приемлемой точностью выдает модель регуляризации Тихонова, учитывающая информацию о погрешности измерения предикторов и целевой переменной. Разброс (variance) прогноза модели регуляризации Тихонова составил $\pm 0.1\%$ при смещении (bias) 8%.

4. Выводы

- 1. Игнорирование даже незначительной погрешности измерения значений предикторов и целевой переменной может привести к крайне большой погрешности прогноза экстраполяции регрессии.
- 2. Модели регрессоров Scikit-learn, обученные на наборах данных с мультиколлинеарными предикторами по условию оптимизации стандартных метрик Scikit-learn, могут привести к неустойчивым прогнозам экстраполяции с недопустимой погрешностью.
- 3. Для наборов данных с мультиколлинеарными предикторами для получения устойчивого прогноза экстраполяции с допустимой погрешностью следует использовать модель регуляризации Тихонова, учитывающую информацию о погрешности измерения предикторов и целевой переменной.
- 4. При отсутствии информации о погрешности измерения предикторов и целевой переменной следует использовать модели нейронных сетей прямого распространения с подбором оптимального числа нейронов на каждом слое по условию оптимизации стандартных метрик Scikit-learn.

Список литературы

1. Тихонов А. Н., Гончарский А. В., Степанов В.В., Ягола А. Г. Регуляризирующие алгоритмы и априорная информация. – М.: Наука, 1983. – 200 с.