Inicio Introducción Notación Reglas

Problema del Rubik 2x2

Emanuel Naval O. / Victor Sicachá C. / Juan P. Sierra U.

Universidad del Rosario

20/05/2020

Inicio Introducción Notación Reglas

Contenido

- Objetivos
- Posible Solución
- Representación en lógica proposicional

Inicio Introducción Notación Reglas

Objetivos

 Representar el cubo rubik 2x2 por medio de lógica proposicional.

Objetivos

- Representar el cubo rubik 2x2 por medio de lógica proposicional.
- Lograr solucionar el cubo bajo condiciones iniciales aleatorias.

Objetivos

- Representar el cubo rubik 2x2 por medio de lógica proposicional.
- Lograr solucionar el cubo bajo condiciones iniciales aleatorias.
- Implementación gráfica apropiada para la solución paso a paso del problema planteado.

Posible Solución

Ordenar el cubo de tal forma que cada cara solo tenga un mismo color.

Posible Solución

Ordenar el cubo de tal forma que cada cara solo tenga un mismo color.

Posible Solución

Ordenar el cubo de tal forma que cada cara solo tenga un mismo color.

Letras Proposicionales

Cuadrados

$$x \in \textit{Cuadrados} = \left\{S_1, S_2, ..., S_{24}\right\}$$

Colores

$$y \in Colores = \{C_1, C_2, ..., C_6\}$$

Turnos

$$z \in Turnos = \{T_1, T_2, ..., T_n\}$$

Codificación:

Notación Beta

La siguiente notación está dada para realizar el cambio de color entre dos cuadros:

$$eta^i_j(n)$$
 es la abreviación de $[P(S_i,y,T_n) o P(S_j,y,T_{n+1})]$

Notación Upsilon

La siguiente notación está dada para establecer el estado ideal de una cara del cubo en el turno **m**:

Regla 1

Ningún cuadro puede tener más de un color.

Sea
$$T_n$$
 la representación de cualquier turno :
$$P(S_1, C_1, T_n) \rightarrow \neg (P(S_1, C_2, T_n) \lor ... \lor P(S_1, C_6, T_n)) \land ... \lor P(S_{24}, C_1, T_n) \rightarrow \neg (P(S_{24}, C_2, T_n) \lor ... \lor P(S_{24}, C_6, T_n))$$

Regla 2

Movimiento tipo U (Up).

$$\begin{array}{l} \mathsf{U}_{n} = \beta_{15}^{16}(n) \wedge \beta_{13}^{15}(n) \wedge \beta_{14}^{13}(n) \wedge \beta_{16}^{14}(n) \wedge \beta_{6}^{2}(n) \wedge \beta_{5}^{1}(n) \wedge \\ \beta_{2}^{10}(n) \wedge \beta_{1}^{9}(n) \wedge \beta_{10}^{24}(n) \wedge \beta_{9}^{23}(n) \wedge \beta_{24}^{6}(n) \wedge \beta_{23}^{5}(n) \wedge \\ \beta_{7}^{7}(n) \wedge \beta_{8}^{8}(n) \wedge \beta_{3}^{3}(n) \wedge \beta_{4}^{4}(n) \wedge \beta_{11}^{11}(n) \wedge \beta_{12}^{12}(n) \wedge \beta_{17}^{17}(n) \wedge \\ \beta_{18}^{18}(n) \wedge \beta_{19}^{19}(n) \wedge \beta_{20}^{20}(n) \wedge \beta_{21}^{21}(n) \wedge \beta_{22}^{22}(n) \end{array}$$

Regla 3

Movimiento tipo U' (Up Inverted).

$$\begin{array}{l} \mathsf{U}_n' = \beta_{16}^{15}(n) \wedge \beta_{15}^{13}(n) \wedge \beta_{13}^{14}(n) \wedge \beta_{14}^{16}(n) \wedge \beta_{2}^{6}(n) \wedge \beta_{1}^{5}(n) \wedge \\ \beta_{10}^{2}(n) \wedge \beta_{9}^{1}(n) \wedge \beta_{24}^{10}(n) \wedge \beta_{23}^{9}(n) \wedge \beta_{6}^{24}(n) \wedge \beta_{5}^{23}(n) \wedge \\ \beta_{7}^{7}(n) \wedge \beta_{8}^{8}(n) \wedge \beta_{3}^{3}(n) \wedge \beta_{4}^{4}(n) \wedge \beta_{11}^{11}(n) \wedge \beta_{12}^{12}(n) \wedge \beta_{17}^{17}(n) \wedge \\ \beta_{18}^{18}(n) \wedge \beta_{19}^{19}(n) \wedge \beta_{20}^{20}(n) \wedge \beta_{21}^{21}(n) \wedge \beta_{22}^{22}(n) \end{array}$$

Regla 4

Movimiento tipo F (Front).

$$F_{n} = \beta_{2}^{1}(n) \wedge \beta_{4}^{2}(n) \wedge \beta_{3}^{4}(n) \wedge \beta_{1}^{3}(n) \wedge \beta_{18}^{9}(n) \wedge \beta_{17}^{11}(n) \wedge \beta_{8}^{18}(n) \wedge \beta_{6}^{17}(n) \wedge \beta_{15}^{8}(n) \wedge \beta_{16}^{6}(n) \wedge \beta_{15}^{9}(n) \wedge \beta_{11}^{16}(n) \wedge \beta_{5}^{5}(n) \wedge \beta_{7}^{7}(n) \wedge \beta_{10}^{10}(n) \wedge \beta_{12}^{12}(n) \wedge \beta_{13}^{13}(n) \wedge \beta_{14}^{14}(n) \wedge \beta_{19}^{19}(n) \wedge \beta_{20}^{20}(n) \wedge \beta_{21}^{21}(n) \wedge \beta_{22}^{22}(n) \wedge \beta_{23}^{23}(n) \wedge \beta_{24}^{24}(n)$$

Regla 5

Movimiento tipo F' (Front Inverted).

$$\begin{aligned} \mathsf{F}'_n &= \beta_1^2(n) \wedge \beta_2^4(n) \wedge \beta_4^3(n) \wedge \beta_3^1(n) \wedge \beta_9^{18}(n) \wedge \beta_{11}^{17}(n) \wedge \\ \beta_{18}^8(n) \wedge \beta_{17}^6(n) \wedge \beta_{10}^{18}(n) \wedge \beta_{12}^{6}(n) \wedge \beta_{15}^9(n) \wedge \beta_{16}^{11}(n) \wedge \\ \beta_5^5(n) \wedge \beta_7^7(n) \wedge \beta_{10}^{10}(n) \wedge \beta_{12}^{12}(n) \wedge \beta_{13}^{13}(n) \wedge \beta_{14}^{14}(n) \wedge \\ \beta_{19}^{19}(n) \wedge \beta_{20}^{20}(n) \wedge \beta_{21}^{21}(n) \wedge \beta_{22}^{22}(n) \wedge \beta_{23}^{23}(n) \wedge \beta_{24}^{24}(n) \end{aligned}$$

Regla 6

Movimiento tipo D (Down).

$$\begin{array}{l} \mathsf{D}_{n} = \beta_{18}^{17}(n) \wedge \beta_{20}^{18}(n) \wedge \beta_{19}^{20}(n) \wedge \beta_{17}^{19}(n) \wedge \beta_{7}^{21}(n) \wedge \beta_{8}^{22}(n) \wedge \\ \beta_{3}^{7}(n) \wedge \beta_{4}^{8}(n) \wedge \beta_{11}^{3}(n) \wedge \beta_{12}^{4}(n) \wedge \beta_{21}^{11}(n) \wedge \beta_{22}^{22}(n) \wedge \beta_{1}^{1}(n) \wedge \\ \beta_{2}^{2}(n) \wedge \beta_{5}^{5}(n) \wedge \beta_{6}^{6}(n) \wedge \beta_{9}^{9}(n) \wedge \beta_{10}^{10}(n) \wedge \beta_{13}^{13}(n) \wedge \beta_{14}^{14}(n) \wedge \\ \beta_{15}^{15}(n) \wedge \beta_{16}^{16}(n) \wedge \beta_{23}^{23}(n) \wedge \beta_{24}^{24}(n) \end{array}$$

Regla 7

Movimiento tipo D' (Down Inverted).

$$\begin{array}{l} \mathsf{D}_n' = \beta_{17}^{18}(n) \wedge \beta_{18}^{20}(n) \wedge \beta_{20}^{19}(n) \wedge \beta_{19}^{17}(n) \wedge \beta_{21}^{7}(n) \wedge \beta_{22}^{8}(n) \wedge \\ \beta_{7}^{3}(n) \wedge \beta_{8}^{4}(n) \wedge \beta_{31}^{31}(n) \wedge \beta_{4}^{12}(n) \wedge \beta_{11}^{21}(n) \wedge \beta_{12}^{22}(n) \wedge \beta_{1}^{1}(n) \wedge \\ \beta_{2}^{2}(n) \wedge \beta_{5}^{5}(n) \wedge \beta_{6}^{6}(n) \wedge \beta_{9}^{9}(n) \wedge \beta_{10}^{10}(n) \wedge \beta_{13}^{13}(n) \wedge \beta_{14}^{14}(n) \wedge \\ \beta_{15}^{15}(n) \wedge \beta_{16}^{16}(n) \wedge \beta_{23}^{23}(n) \wedge \beta_{24}^{24}(n) \end{array}$$

Regla 8

Movimiento tipo B (Back).

$$\begin{array}{l} \mathsf{B}_{n} = \beta_{24}^{22}(n) \wedge \beta_{23}^{24}(n) \wedge \beta_{21}^{23}(n) \wedge \beta_{22}^{21}(n) \wedge \beta_{13}^{10}(n) \wedge \beta_{14}^{12}(n) \wedge \\ \beta_{7}^{13}(n) \wedge \beta_{5}^{14}(n) \wedge \beta_{19}^{5}(n) \wedge \beta_{20}^{7}(n) \wedge \beta_{12}^{19}(n) \wedge \beta_{10}^{20}(n) \wedge \\ \beta_{1}^{1}(n) \wedge \beta_{2}^{2}(n) \wedge \beta_{3}^{3}(n) \wedge \beta_{4}^{4}(n) \wedge \beta_{6}^{6}(n) \wedge \beta_{8}^{8}(n) \wedge \beta_{9}^{9}(n) \wedge \\ \beta_{11}^{11}(n) \wedge \beta_{15}^{15}(n) \wedge \beta_{16}^{16}(n) \wedge \beta_{17}^{17}(n) \wedge \beta_{18}^{18}(n) \end{array}$$

Regla 9

Movimiento tipo B' (Back Inverted).

$$\begin{split} \mathsf{B}_{n}' &= \beta_{22}^{24}(n) \wedge \beta_{24}^{23}(n) \wedge \beta_{23}^{21}(n) \wedge \beta_{21}^{22}(n) \wedge \beta_{10}^{13}(n) \wedge \beta_{12}^{14}(n) \wedge \\ \beta_{13}^{7}(n) \wedge \beta_{14}^{5}(n) \wedge \beta_{5}^{19}(n) \wedge \beta_{7}^{20}(n) \wedge \beta_{19}^{12}(n) \wedge \beta_{20}^{10}(n) \wedge \\ \beta_{1}^{1}(n) \wedge \beta_{2}^{2}(n) \wedge \beta_{3}^{3}(n) \wedge \beta_{4}^{4}(n) \wedge \beta_{6}^{6}(n) \wedge \beta_{8}^{8}(n) \wedge \beta_{9}^{9}(n) \wedge \\ \beta_{11}^{11}(n) \wedge \beta_{15}^{15}(n) \wedge \beta_{16}^{16}(n) \wedge \beta_{17}^{17}(n) \wedge \beta_{18}^{18}(n) \end{split}$$

Regla 10

Movimiento tipo R (Right).

$$\begin{array}{l} \mathsf{R}_{n} = \beta_{10}^{9}(n) \wedge \beta_{12}^{10}(n) \wedge \beta_{11}^{12}(n) \wedge \beta_{9}^{11}(n) \wedge \beta_{20}^{24}(n) \wedge \beta_{18}^{22}(n) \wedge \\ \beta_{4}^{20}(n) \wedge \beta_{2}^{18}(n) \wedge \beta_{16}^{4}(n) \wedge \beta_{14}^{2}(n) \wedge \beta_{24}^{16}(n) \wedge \beta_{22}^{14}(n) \wedge \\ \beta_{1}^{1}(n) \wedge \beta_{3}^{3}(n) \wedge \beta_{5}^{5}(n) \wedge \beta_{6}^{6}(n) \wedge \beta_{7}^{7}(n) \wedge \beta_{8}^{8}(n) \wedge \beta_{13}^{13}(n) \wedge \\ \beta_{15}^{15}(n) \wedge \beta_{17}^{17}(n) \wedge \beta_{19}^{19}(n) \wedge \beta_{21}^{21}(n) \wedge \beta_{23}^{23}(n) \end{array}$$

Regla 11

Movimiento tipo R' (Right Inverted).

$$\begin{array}{l} \mathsf{R}'_{n} = \beta_{9}^{10}(n) \wedge \beta_{10}^{12}(n) \wedge \beta_{12}^{11}(n) \wedge \beta_{11}^{9}(n) \wedge \beta_{24}^{20}(n) \wedge \beta_{22}^{18}(n) \wedge \\ \beta_{20}^{4}(n) \wedge \beta_{18}^{2}(n) \wedge \beta_{4}^{16}(n) \wedge \beta_{2}^{14}(n) \wedge \beta_{14}^{26}(n) \wedge \beta_{14}^{22}(n) \wedge \\ \beta_{1}^{1}(n) \wedge \beta_{3}^{3}(n) \wedge \beta_{5}^{5}(n) \wedge \beta_{6}^{6}(n) \wedge \beta_{7}^{7}(n) \wedge \beta_{8}^{8}(n) \wedge \beta_{13}^{13}(n) \wedge \\ \beta_{15}^{15}(n) \wedge \beta_{17}^{17}(n) \wedge \beta_{19}^{19}(n) \wedge \beta_{21}^{21}(n) \wedge \beta_{23}^{23}(n) \end{array}$$

Regla 12

Movimiento tipo L (Left).

$$\begin{array}{l} \mathsf{L}_{n} = \beta_{6}^{5}(n) \wedge \beta_{8}^{6}(n) \wedge \beta_{7}^{8}(n) \wedge \beta_{5}^{7}(n) \wedge \beta_{17}^{1}(n) \wedge \beta_{19}^{3}(n) \wedge \\ \beta_{21}^{17}(n) \wedge \beta_{23}^{19}(n) \wedge \beta_{13}^{21}(n) \wedge \beta_{15}^{23}(n) \wedge \beta_{15}^{13}(n) \wedge \beta_{35}^{15}(n) \wedge \\ \beta_{2}^{2}(n) \wedge \beta_{4}^{4}(n) \wedge \beta_{9}^{9}(n) \wedge \beta_{10}^{10}(n) \wedge \beta_{11}^{11}(n) \wedge \beta_{12}^{12}(n) \wedge \beta_{14}^{14}(n) \wedge \\ \beta_{16}^{16}(n) \wedge \beta_{18}^{18}(n) \wedge \beta_{20}^{20}(n) \wedge \beta_{22}^{22}(n) \wedge \beta_{24}^{24}(n) \end{array}$$

Regla 13

Movimiento tipo L' (Left Inverted).

$$\begin{array}{l} \mathsf{L}'_n = \beta_5^6(n) \wedge \beta_6^8(n) \wedge \beta_8^7(n) \wedge \beta_7^5(n) \wedge \beta_1^{17}(n) \wedge \beta_3^{19}(n) \wedge \\ \beta_{17}^{21}(n) \wedge \beta_{19}^{23}(n) \wedge \beta_{21}^{13}(n) \wedge \beta_{23}^{15}(n) \wedge \beta_{13}^{13}(n) \wedge \beta_{15}^{3}(n) \wedge \\ \beta_2^2(n) \wedge \beta_4^4(n) \wedge \beta_9^9(n) \wedge \beta_{10}^{10}(n) \wedge \beta_{11}^{11}(n) \wedge \beta_{12}^{12}(n) \wedge \beta_{14}^{14}(n) \wedge \\ \beta_{16}^{16}(n) \wedge \beta_{18}^{18}(n) \wedge \beta_{20}^{20}(n) \wedge \beta_{22}^{22}(n) \wedge \beta_{24}^{24}(n) \end{array}$$

Regla 14

Movimiento tipo N (Not move).

$$N_n = \beta_1^1(n) \wedge \beta_2^2(n) \wedge \beta_3^3(n) \wedge ... \wedge \beta_{22}^{22}(n) \wedge \beta_{23}^{23}(n) \wedge \beta_{24}^{24}(n)$$

Regla 15

Solo puede haber un movimiento por turno.

Regla 16

Cubo solucionado en el turno n.

$$\Upsilon_1^n \wedge \Upsilon_2^n \wedge \Upsilon_3^n \wedge \Upsilon_4^n \wedge \Upsilon_5^n \wedge \Upsilon_6^n$$

Regla 17

Integridad del cubo terminado.

$$\mathsf{N}_{n+1} \leftrightarrow \left(\Upsilon_1^n \wedge \Upsilon_2^n \wedge \Upsilon_3^n \wedge \Upsilon_4^n \wedge \Upsilon_5^n \wedge \Upsilon_6^n\right)$$