Stefan Gerhold

May 16, 2006

ightharpoonup A function f(z) is holonomic if it satisfies an LODE

$$p_0(z)f^{(0)}(z) + \cdots + p_d(z)f^{(d)}(z) = 0$$

with polynomial coefficients.

 \blacktriangleright A function f(z) is holonomic if it satisfies an LODE

$$p_0(z)f^{(0)}(z) + \cdots + p_d(z)f^{(d)}(z) = 0$$

with polynomial coefficients.

 \triangleright A sequence (a_n) is holonomic if it satisfies an LORE

$$p_0(n)a_n+\cdots+p_d(n)a_{n+d}=0$$

with polynomial coefficients.

 \blacktriangleright A function f(z) is holonomic if it satisfies an LODE

$$p_0(z)f^{(0)}(z) + \cdots + p_d(z)f^{(d)}(z) = 0$$

with polynomial coefficients.

▶ A sequence (a_n) is holonomic if it satisfies an LORE

$$p_0(n)a_n+\cdots+p_d(n)a_{n+d}=0$$

with polynomial coefficients.

 Rather general way to specify concrete functions/sequences in finite terms

 \blacktriangleright A function f(z) is holonomic if it satisfies an LODE

$$p_0(z)f^{(0)}(z) + \cdots + p_d(z)f^{(d)}(z) = 0$$

with polynomial coefficients.

▶ A sequence (a_n) is holonomic if it satisfies an LORE

$$p_0(n)a_n+\cdots+p_d(n)a_{n+d}=0$$

with polynomial coefficients.

- Rather general way to specify concrete functions/sequences in finite terms
- Several algorithms are available for the symbolic manipulation of holonomic functions and sequences.

► Examples of holonomic functions: rational functions, exp, sin, cos, Bessel, etc.

- ► Examples of holonomic functions: rational functions, exp, sin, cos, Bessel, etc.
- ► Examples of holonomic sequences: α^n , n!, $\sum_{k=1}^n 1/k$, \sharp (involutions), etc.

- Examples of holonomic functions: rational functions, exp, sin, cos, Bessel, etc.
- Examples of holonomic sequences: α^n , n!, $\sum_{k=1}^n 1/k$, \sharp (involutions), etc.
- Sum and Product of two holonomic sequences (functions) are holonomic

- Examples of holonomic functions: rational functions, exp, sin, cos, Bessel, etc.
- Examples of holonomic sequences: α^n , n!, $\sum_{k=1}^n 1/k$, \sharp (involutions), etc.
- Sum and Product of two holonomic sequences (functions) are holonomic
- ▶ a_n is holonomic iff $\sum_{n>0} a_n z^n$ is holonomic

- Examples of holonomic functions: rational functions, exp, sin, cos, Bessel, etc.
- Examples of holonomic sequences: α^n , n!, $\sum_{k=1}^n 1/k$, \sharp (involutions), etc.
- Sum and Product of two holonomic sequences (functions) are holonomic
- ▶ a_n is holonomic iff $\sum_{n\geq 0} a_n z^n$ is holonomic
- ▶ Definition can be extended to several variables $(n_1, ..., n_r, z_1, ..., z_s)$

Proving Non-Holonomicity

- ▶ Holonomic sequences \approx algebraic numbers
- Annihilated by operators instead of polynomials

Proving Non-Holonomicity

- ▶ Holonomic sequences \approx algebraic numbers
- Annihilated by operators instead of polynomials
- ▶ If a sequence (function) is not obviously holonomic, it is usually not holonomic

Proving Non-Holonomicity

- ▶ Holonomic sequences \approx algebraic numbers
- Annihilated by operators instead of polynomials
- ▶ If a sequence (function) is not obviously holonomic, it is usually not holonomic
- ▶ But how to come up with a rigorous proof?

Why?

► Lower bound on the algorithmic complexity of a sequence (function)

Why?

- ► Lower bound on the algorithmic complexity of a sequence (function)
- Relations to many areas of mathematics:
- Analytic combinatorics, complex analysis, algebraic geometry, number theory

Why?

- ► Lower bound on the algorithmic complexity of a sequence (function)
- Relations to many areas of mathematics:
- Analytic combinatorics, complex analysis, algebraic geometry, number theory
- ▶ Many ways to define sequences (functions) ⇒ ample opportunities for research

▶ For each holonomic sequence a_n there is α such that $a_n = O(n!^{\alpha})$

- ► For each holonomic sequence a_n there is α such that $a_n = O(n!^{\alpha})$
- ▶ Hence 2^{2^n} and 2^{n^2} are not holonomic (What about n^n ?).

- For each holonomic sequence a_n there is α such that $a_n = O(n!^{\alpha})$
- ▶ Hence 2^{2^n} and 2^{n^2} are not holonomic (What about n^n ?).
- ▶ Other argument: Singularities of a holonomic function f(z) are roots of $p_d(z)$.

- For each holonomic sequence a_n there is α such that $a_n = O(n!^{\alpha})$
- ▶ Hence 2^{2^n} and 2^{n^2} are not holonomic (What about n^n ?).
- ▶ Other argument: Singularities of a holonomic function f(z) are roots of $p_d(z)$.
- ▶ Hence $\tan z$, $z/(e^z-1)$, and $\prod (1-z^n)^{-1}$ are not holonomic.

▶ We show that the sequence $(\zeta(n))_{n\geq 2}$ of values of the Riemann zeta function is not holonomic.

▶ We show that the sequence $(\zeta(n))_{n\geq 2}$ of values of the Riemann zeta function is not holonomic.

$$f_{\mathrm{even}}(z) := \sum_{n \geq 1} \zeta(2n) z^n, \qquad f_{\mathrm{odd}}(z) := \sum_{n \geq 1} \zeta(2n+1) z^n$$

▶ We show that the sequence $(\zeta(n))_{n\geq 2}$ of values of the Riemann zeta function is not holonomic.

$$f_{\mathrm{even}}(z) := \sum_{n \geq 1} \zeta(2n)z^n, \qquad f_{\mathrm{odd}}(z) := \sum_{n \geq 1} \zeta(2n+1)z^n$$

Euler:

$$f_{\text{even}}(z) = \frac{1}{2} - \frac{\pi}{2}z \cot \pi z$$

▶ We show that the sequence $(\zeta(n))_{n\geq 2}$ of values of the Riemann zeta function is not holonomic.

$$f_{\mathrm{even}}(z) := \sum_{n \geq 1} \zeta(2n)z^n, \qquad f_{\mathrm{odd}}(z) := \sum_{n \geq 1} \zeta(2n+1)z^n$$

Euler:

$$f_{\text{even}}(z) = \frac{1}{2} - \frac{\pi}{2}z \cot \pi z$$

Molteni (2001):

$$f_{\text{even}}(z)/z - f_{\text{odd}}(z) = \gamma - \psi(1+z),$$

where $\psi(z) = \Gamma'(z)/\Gamma(z)$ is the digamma function.

▶ Harris, Sibuya (1985): The reciprocal 1/f of a holonomic function is holonomic iff f'/f is algebraic.

- ▶ Harris, Sibuya (1985): The reciprocal 1/f of a holonomic function is holonomic iff f'/f is algebraic.
- Singer (1986): Similar results about exponentiation and composition

- ▶ Harris, Sibuya (1985): The reciprocal 1/f of a holonomic function is holonomic iff f'/f is algebraic.
- Singer (1986): Similar results about exponentiation and composition
- ▶ Van der Put, Singer (1997): The reciprocal $1/a_n$ of a holonomic sequence is holonomic iff a_n is an interlacement of hypergeometric sequences.

- ▶ Harris, Sibuya (1985): The reciprocal 1/f of a holonomic function is holonomic iff f'/f is algebraic.
- Singer (1986): Similar results about exponentiation and composition
- ▶ Van der Put, Singer (1997): The reciprocal $1/a_n$ of a holonomic sequence is holonomic iff a_n is an interlacement of hypergeometric sequences.
- ▶ Pólya-Carlson (1921): If f(z) has integer coefficients and radius of convergence 1, then f(z) is rational or has the unit circle for its natural boundary.

Proofs by Number Theory (SG, 2004)

▶ W.l.o.g. the polynomials $p_k(n)$ have coefficients in $\mathbb{Q}(a_j: j \geq 0)$.

Proofs by Number Theory (SG, 2004)

- ▶ W.l.o.g. the polynomials $p_k(n)$ have coefficients in $\mathbb{Q}(a_j: j \geq 0)$.
- $a_n = \sqrt{n}$ does not satisfy a recurrence

$$p_0(n)a_n+\cdots+p_d(n)a_{n+d}=0$$

with coefficients in $\mathbb{Q}(\sqrt{j}:j\geq 0)[n]$, since

$$[\mathbb{Q}(\sqrt{\rho_1},\ldots,\sqrt{\rho_s}):\mathbb{Q}]=2^s$$

for distinct primes ρ_1, \ldots, ρ_s .

Proofs by Number Theory (SG, 2004)

- ▶ W.l.o.g. the polynomials $p_k(n)$ have coefficients in $\mathbb{Q}(a_j: j \geq 0)$.
- $a_n = \sqrt{n}$ does not satisfy a recurrence

$$p_0(n)a_n+\cdots+p_d(n)a_{n+d}=0$$

with coefficients in $\mathbb{Q}(\sqrt{j}:j\geq 0)[n]$, since

$$[\mathbb{Q}(\sqrt{\rho_1},\ldots,\sqrt{\rho_s}):\mathbb{Q}]=2^s$$

for distinct primes ρ_1, \ldots, ρ_s .

▶ Other argument: transcendence of e implies non-holonomicity of n^n .

Proofs by Asymptotics (P. Flajolet, SG, B. Salvy, 2005)

▶ Fuchs-Frobenius theory: Asymptotic expansion of holonomic functions as $|z| \to \infty$ must be linear combination of series of the form

$$e^{P(z^{1/r})}z^{\alpha}\sum_{j>0}Q_{j}(\log z)z^{-js},$$

where P and Q_j are polynomials, the Q_j have bounded degree, $r \in \mathbb{N}$, $\alpha \in \mathbb{C}$, $0 < s \in \mathbb{Q}$.

Proofs by Asymptotics (P. Flajolet, SG, B. Salvy, 2005)

▶ Fuchs-Frobenius theory: Asymptotic expansion of holonomic functions as $|z| \to \infty$ must be linear combination of series of the form

$$e^{P(z^{1/r})}z^{\alpha}\sum_{j>0}Q_{j}(\log z)z^{-js},$$

where P and Q_j are polynomials, the Q_j have bounded degree, $r \in \mathbb{N}$, $\alpha \in \mathbb{C}$, $0 < s \in \mathbb{Q}$.

▶ Hence $\log \log z$, e^{e^z-1} , and Lambert W are not holonomic.

Proofs by Asymptotics

Basic Abelian theorem. Let $\phi(x)$ be any of the functions

$$x^{\alpha}(\log x)^{\beta}(\log\log x)^{\gamma}, \qquad \alpha \ge 0, \quad \beta, \gamma \in \mathbb{C}.$$
 (1)

Let (a_n) be a sequence that satisfies the asymptotic estimate

$$a_n \underset{n\to\infty}{\sim} \phi(n).$$

Then the generating function $f(z) := \sum_{n \ge 0} a_n z^n$ satisfies the asymptotic estimate

$$f(z) \underset{z \to 1-}{\sim} \Gamma(\alpha+1) \frac{1}{(1-z)} \phi\left(\frac{1}{1-z}\right).$$
 (2)

Proofs by Asymptotics

▶ The sequence of prime numbers:

n-th prime =
$$n \log n + n \log \log n + O(n)$$
,

hence

$$(n\text{-th prime})/n - H_n \sim \log \log n.$$

Proofs by Asymptotics

▶ The sequence of prime numbers:

$$n$$
-th prime = $n \log n + n \log \log n + O(n)$,

hence

$$(n$$
-th prime $)/n - H_n \sim \log \log n$.

▶ The sequences of powers $(\alpha \in \mathbb{C} \setminus \mathbb{Z})$:

$$\sum_{k=1}^{n} \binom{n}{k} (-1)^k k^{\alpha} \sim \frac{(\log n)^{-\alpha}}{\Gamma(1-\alpha)}.$$

► Lindelöf integral representation

$$\sum_{n>1} e^{1/n} (-z)^n = -\frac{1}{2i} \int_{1/2 - i\infty}^{1/2 + i\infty} \frac{z^s e^{1/s}}{\sin \pi s} ds$$

Lindelöf integral representation

$$\sum_{n>1} e^{1/n} (-z)^n = -\frac{1}{2i} \int_{1/2 - i\infty}^{1/2 + i\infty} \frac{z^s e^{1/s}}{\sin \pi s} ds$$

Asymptotics (saddle point method)

$$\sum_{n\geq 1} \mathrm{e}^{1/n} (-z)^n \sim -\frac{\mathrm{e}^{2\sqrt{\log z}}}{2\sqrt{\pi} (\log z)^{1/4}} \quad \text{as} \quad |z| \to \infty.$$

Lindelöf integral representation

$$\sum_{n\geq 1} e^{1/n} (-z)^n = -\frac{1}{2i} \int_{1/2 - i\infty}^{1/2 + i\infty} \frac{z^s e^{1/s}}{\sin \pi s} ds$$

Asymptotics (saddle point method)

$$\sum_{n\geq 1} \mathrm{e}^{1/n} (-z)^n \sim -\frac{\mathrm{e}^{2\sqrt{\log z}}}{2\sqrt{\pi} (\log z)^{1/4}} \qquad \text{as} \quad |z| \to \infty.$$

▶ Hence $e^{1/n}$ is not holonomic.

Lindelöf integral representation

$$\sum_{n\geq 1} e^{1/n} (-z)^n = -\frac{1}{2i} \int_{1/2 - i\infty}^{1/2 + i\infty} \frac{z^s e^{1/s}}{\sin \pi s} ds$$

Asymptotics (saddle point method)

$$\sum_{n\geq 1} \mathrm{e}^{1/n} (-z)^n \sim -\frac{\mathrm{e}^{2\sqrt{\log z}}}{2\sqrt{\pi} (\log z)^{1/4}} \qquad \text{as} \quad |z| \to \infty.$$

- ▶ Hence $e^{1/n}$ is not holonomic.
- Work in progress: generalize asymptotics to $\alpha^{n^{\beta}}$.

Closed-Form Sequences (J.P. Bell, SG, M. Klazar, F. Luca, 2006)

- ► For sequences like n^{α} , $e^{1/n}$, there is a more direct way to exploit the additional structure
- $ightharpoonup a_n = f(n)$ for a smooth function f

Closed-Form Sequences (J.P. Bell, SG, M. Klazar, F. Luca, 2006)

- ► For sequences like n^{α} , $e^{1/n}$, there is a more direct way to exploit the additional structure
- $ightharpoonup a_n = f(n)$ for a smooth function f
- The recurrence means that

$$F(z; p_0, \ldots, p_d) := \sum_{k=0}^d p_k(z) f(z+k)$$

vanishes at $z = 0, 1, 2, \ldots$

Closed-Form Sequences (J.P. Bell, SG, M. Klazar, F. Luca, 2006)

- ► For sequences like n^{α} , $e^{1/n}$, there is a more direct way to exploit the additional structure
- $ightharpoonup a_n = f(n)$ for a smooth function f
- The recurrence means that

$$F(z; p_0, ..., p_d) := \sum_{k=0}^d p_k(z) f(z+k)$$

vanishes at $z = 0, 1, 2, \ldots$

▶ Example: $f(z) = z^{\alpha}$. If F vanishes identically, the left hand side of

$$f(z) = -\frac{1}{p_0(z)} \sum_{k=1}^d p_k(z) f(z+k)$$

is meromorphic at z = 0, hence $\alpha \in \mathbb{Z}$.

▶ Carlson's theorem (1921). The function $\sin \pi z$ is the "smallest" function analytic for $\Re(z) \ge 0$ that vanishes at $z = 0, 1, 2, \ldots$

- ► Carlson's theorem (1921). The function $\sin \pi z$ is the "smallest" function analytic for $\Re(z) \geq 0$ that vanishes at $z = 0, 1, 2, \ldots$
- ▶ Shows non-holonomicity of n^{α} , log n, $e^{1/n}$, . . .

- ▶ Carlson's theorem (1921). The function $\sin \pi z$ is the "smallest" function analytic for $\Re(z) \geq 0$ that vanishes at $z = 0, 1, 2, \ldots$
- ▶ Shows non-holonomicity of n^{α} , log n, $e^{1/n}$, . . .
- Khovanskii investigates the geometry of the zero set of elementary functions in his book "Fewnomials".
- ▶ **Definition.** Elementary functions are built by composing rational functions, $\exp(x)$, $\log(x)$, $\sin(x)$, $\cos(x)$, $\tan x$, $\arcsin(x)$, $\arccos(x)$, and $\arctan(x)$. The domain of definition must be such that arguments of sin and cos are bounded.

- ▶ Carlson's theorem (1921). The function $\sin \pi z$ is the "smallest" function analytic for $\Re(z) \ge 0$ that vanishes at $z = 0, 1, 2, \ldots$
- ▶ Shows non-holonomicity of n^{α} , log n, $e^{1/n}$, . . .
- Khovanskii investigates the geometry of the zero set of elementary functions in his book "Fewnomials".
- ▶ **Definition.** Elementary functions are built by composing rational functions, $\exp(x)$, $\log(x)$, $\sin(x)$, $\cos(x)$, $\tan x$, $\arcsin(x)$, $\arccos(x)$, and $\arctan(x)$. The domain of definition must be such that arguments of sin and cos are bounded.
- ► **Theorem** (Khovanskiĭ). An elementary function has only finitely many simple zeros in its domain of definition.

Results proved using Carlson or Khovanskii

► For distinct complex u_1, \ldots, u_s , the sequence $\Gamma(n-u_1)^{\alpha_1} \ldots \Gamma(n-u_s)^{\alpha_s}$ is holonomic if and only if $\alpha_1, \ldots, \alpha_s$ are integers.

Results proved using Carlson or Khovanskii

- ► For distinct complex u_1, \ldots, u_s , the sequence $\Gamma(n-u_1)^{\alpha_1} \ldots \Gamma(n-u_s)^{\alpha_s}$ is holonomic if and only if $\alpha_1, \ldots, \alpha_s$ are integers.
- ▶ If a sequence from $\mathbb{R}(n, e^n)$ is holonomic, then the denominator has just one summand.

Results proved using Carlson or Khovanskii

- ► For distinct complex u_1, \ldots, u_s , the sequence $\Gamma(n-u_1)^{\alpha_1} \ldots \Gamma(n-u_s)^{\alpha_s}$ is holonomic if and only if $\alpha_1, \ldots, \alpha_s$ are integers.
- ▶ If a sequence from $\mathbb{R}(n, e^n)$ is holonomic, then the denominator has just one summand.
- ▶ If $(f(n))_{n\geq 1}$ is holonomic for an algebraic function $f:]1, \infty] \to \mathbb{R}$, then f is a rational function.

Conclusion

"Negative" results, but "positive" ones obtained along the way

Conclusion

- "Negative" results, but "positive" ones obtained along the way
- Opportunity to apply methods and results from various areas

Conclusion

- "Negative" results, but "positive" ones obtained along the way
- Opportunity to apply methods and results from various areas
- ▶ There is a good chance that holonomicity of a sequence can be decided if it has (i) a closed form representation or (ii) a known asymptotic expansion.