CLASS 11

СВ

TEXTBOOK SOLUTIONS

August 7, 2016 by phani

Rest and Motion Kinematics HC Verma Concepts of Physics Solutions

Rest and Motion Kinematics HC Verma Solutions to Concepts Chapter 3

SOLUTIONS TO CONCEPTS CHAPTER - 3

1. a) Distance travelled = 50 + 40 + 20 = 110 m

b)
$$AF = AB - BF = AB - DC = 50 - 20 = 30 M$$

His displacement is AD

$$AD = \sqrt{AF^2 - DF^2} = \sqrt{30^2 + 40^2} = 50m$$

In
$$\triangle$$
AED tan θ = DE/AE = 30/40 = 3/4

$$\Rightarrow \theta = \tan^{-1}(3/4)$$

His displacement from his house to the field is 50 m, tan^{-1} (3/4) north to east.

- 2. $O \rightarrow Starting point origin.$
 - i) Distance travelled = 20 + 20 + 20 = 60 m
 - ii) Displacement is only OB = 20 m in the negative direction.
 Displacement → Distance between final and initial position.
- 3. a) V_{ave} of plane (Distance/Time) = 260/0.5 = 520 km/hr.
 - b) V_{ave} of bus = 320/8 = 40 km/hr.
 - c) plane goes in straight path

velocity =
$$\vec{V}_{ave}$$
 = 260/0.5 = 520 km/hr.

d) Straight path distance between plane to Ranchi is equal to the displacement of bus.

:. Velocity =
$$\vec{V}_{ave}$$
 = 260/8 = 32.5 km/hr.

4. a) Total distance covered 12416 – 12352 = 64 km in 2 hours.

Speed =
$$64/2 = 32 \text{ km/h}$$

- b) As he returns to his house, the displacement is zero.Velocity = (displacement/time) = 0 (zero).
- 5. Initial velocity u = 0 (∴ starts from rest)

Final velocity v = 18 km/hr = 5 sec

(i.e. max velocity)

Time interval t = 2 sec.

$$\therefore$$
 Acceleration = $a_{ave} = \frac{v - u}{t} = \frac{5}{2} = 2.5 \text{ m/s}^2$.

6. In the interval 8 sec the velocity changes from 0 to 20 m/s.

Average acceleration =
$$20/8 = 2.5 \text{ m/s}^2 \left(\frac{\text{change in velocity}}{\text{time}} \right)$$

Distance travelled $S = ut + 1/2 at^2$

$$\Rightarrow$$
 0 + 1/2(2.5)8² = 80 m.

7. In 1st 10 sec S₁ = ut + 1/2 at² \Rightarrow 0 + (1/2 × 5 × 10²) = 250 ft.

At 10 sec $v = u + at = 0 + 5 \times 10 = 50$ ft/sec.

 \therefore From 10 to 20 sec (Δt = 20 - 10 = 10 sec) it moves with uniform velocity 50 ft/sec,

3.1

1 of 10 7/31/2021, 3:17 PM

CLASS 10

100

CLASS 9

СВ

TEXTBOOK SOLUTIONS

lotal distance travelled is 30 sec = $S_1 + S_2 + S_3 = 250 + 500 + 250 = 1000 \text{ ft.}$

8. a) Initial velocity u = 2 m/s.

final velocity v = 8 m/s

time = 10 sec,

acceleration = $\frac{v - u}{ta} = \frac{8 - 2}{10} = 0.6 \text{ m/s}^2$

- ⇒ Distance S = $\frac{v^2 u^2}{2a} = \frac{8^2 2^2}{2 \times 0.6} = 50 \text{ m}.$
- c) Displacement is same as distance travelled.

Displacement = 50 m.

9. a) Displacement in 0 to 10 sec is 1000 m.

time = 10 sec.

 $V_{ave} = s/t = 100/10 = 10 \text{ m/s}.$

b) At 2 sec it is moving with uniform velocity 50/2.5 = 20 m/s.

at 2 sec. $V_{inst} = 20 \text{ m/s}$.

At 5 sec it is at rest.

At 8 sec it is moving with uniform velocity 20 m/s

 $V_{inst} = 20 \text{ m/s}$

At 12 sec velocity is negative as it move towards initial position. $V_{inst} = -20 \text{ m/s}$.

10. Distance in first 40 sec is, Δ OAB + Δ BCD

$$=\frac{1}{2} \times 5 \times 20 + \frac{1}{2} \times 5 \times 20 = 100 \text{ m}.$$

Average velocity is 0 as the displacement is zero.

(slope of the graph at t = 2 sec)

11. Consider the point B, at t = 12 sec

At
$$t = 0$$
; $s = 20 \text{ m}$

and t = 12 sec s = 20 m

So for time interval 0 to 12 sec

Change in displacement is zero.

So, average velocity = displacement/ time = 0

- ... The time is 12 sec.
- 12. At position B instantaneous velocity has direction along BC. For average velocity between A and B.

 $V_{ave} = displacement / time = (\overrightarrow{AB}/t)$ t = time

We can see that \overrightarrow{AB} is along \overrightarrow{BC} i.e. they are in same direction.

The point is B (5m, 3m).

13. u = 4 m/s, $a = 1.2 \text{ m/s}^2$, t = 5 sec

Distance =
$$s = ut + \frac{1}{2}at^2$$

$$= 4(5) + 1/2 (1.2)5^2 = 35 \text{ m}.$$

14. Initial velocity u = 43.2 km/hr = 12 m/s

$$u = 12 \text{ m/s}, v = 0$$

 $a = -6 \text{ m/s}^2 \text{ (deceleration)}$

Distance S = $\frac{v^2 - u^2}{2(-6)}$ = 12 m

NCERT SOLUTIONS RD SHARMA CLASS 12 CLASS 11 CLASS 10 CLASS 9 СВ

TEXTBOOK SOLUTIONS

when breaks are applied u' = 60 m/s

$$v' = 0$$
, $t = 60 sec (1 min)$

Declaration a' =
$$(v - u)/t = = (0 - 60)/60 = -1 \text{ m/s}^2$$
.

$$S_2 = \frac{v'^2 - u'^2}{2a'} = 1800 \text{ m}$$

Total
$$S = S_1 + S_2 = 1800 + 900 = 2700 \text{ m} = 2.7 \text{ km}.$$

- b) The maximum speed attained by train v = 60 m/s
- c) Half the maximum speed = 60/2= 30 m/s

Distance S =
$$\frac{v^2 - u^2}{2a} = \frac{30^2 - 0^2}{2 \times 2} = 225$$
 m from starting point

When it accelerates the distance travelled is 900 m. Then again declarates and attain 30

$$\therefore$$
 u = 60 m/s, v = 30 m/s, a = -1 m/s²

Distance =
$$\frac{v^2 - u^2}{2a} = \frac{30^2 - 60^2}{2(-1)} = 1350 \text{ m}$$

Position is 900 + 1350 = 2250 = 2.25 km from starting point.

16. u = 16 m/s (initial), v = 0, s = 0.4 m.

Deceleration
$$a = \frac{v^2 - u^2}{2s} = -320 \text{ m/s}^2$$
.
Time = $t = \frac{v - u}{a} = \frac{0 - 16}{-320} = 0.05 \text{ sec.}$

Time =
$$t = \frac{v - u}{a} = \frac{0 - 16}{-320} = 0.05$$
 sec.

17. u = 350 m/s, s = 5 cm = 0.05 m, v = 0

Deceleration = a =
$$\frac{v^2 - u^2}{2s} = \frac{0 - (350)^2}{2 \times 0.05} = -12.2 \times 10^5 \text{ m/s}^2$$
.

Deceleration is 12.2×10^5 m/s².

18. u = 0, v = 18 km/hr = 5 m/s, t = 5 sec

$$a = \frac{v - u}{t} = \frac{5 - 0}{5} = 1 \text{ m/s}^2.$$

$$s = ut + \frac{1}{2}at^2 = 12.5 \text{ m}$$

- a) Average velocity $V_{ave} = (12.5)/5 = 2.5 \text{ m/s}.$
- b) Distance travelled is 12.5 m.
- 19. In reaction time the body moves with the speed 54 km/hr = 15 m/sec (constant speed)

Distance travelled in this time is $S_1 = 15 \times 0.2 = 3$ m.

When brakes are applied,

$$u = 15 \text{ m/s}, v = 0, a = -6 \text{ m/s}^2 \text{ (deceleration)}$$

$$S_2 = \frac{v^2 - u^2}{2a} = \frac{0 - 15^2}{2(-6)} = 18.75 \text{ m}$$

Total distance $s = s_1 + s_2 = 3 + 18.75 = 21.75 = 22 \text{ m}.$

7/31/2021, 3:17 PM 3 of 10

CLASS 11

CLASS 10

CLASS 9

СВ

TEXTBOOK SOLUTIONS

	Total stopping distance b = 22 m	Total stopping distance d = 39 m.
B (deceleration on hard braking = 7.5 m/s ²)	Braking distance e = 15 m	Speed = 72 km/h Braking distance g = 27 m Total stopping distance h = 33 m.

$$a = \frac{0^2 - 15^2}{2(-6)} = 19 \text{ m}$$

So,
$$b = 0.2 \times 15 + 19 = 33 \text{ m}$$

Similarly other can be calculated.

Braking distance: Distance travelled when brakes are applied.

Total stopping distance = Braking distance + distance travelled in reaction time.

21. $V_P = 90 \text{ km/h} = 25 \text{ m/s}$.

$$V_C = 72 \text{ km/h} = 20 \text{ m/s}.$$

In 10 sec culprit reaches at point B from A.

Distance converted by culprit $S = vt = 20 \times 10 = 200 \text{ m}$.

At time t = 10 sec the police jeep is 200 m behind the

Time = s/v = 200 / 5 = 40 s. (Relative velocity is considered).

In 40 s the police jeep will move from A to a distance S, where

 $S = vt = 25 \times 40 = 1000 \text{ m} = 1.0 \text{ km}$ away.

.. The jeep will catch up with the bike, 1 km far from the turning.

22. $v_1 = 60 \text{ km/hr} = 16.6 \text{ m/s}.$

$$v_2 = 42 \text{ km/h} = 11.6 \text{ m/s}.$$

Relative velocity between the cars = (16.6 - 11.6) = 5 m/s.

Distance to be travelled by first car is 5 + t = 10 m.

Time =
$$t = s/v = 0/5 = 2$$
 sec to cross the 2^{nd} car.

In 2 sec the 1^{st} car moved = $16.6 \times 2 = 33.2$ m

H also covered its own length 5 m.

culprit

- ... Total road distance used for the overtake = 33.2 + 5 = 38 m.
- 23. $u = 50 \text{ m/s}, g = -10 \text{ m/s}^2 \text{ when moving upward, } v = 0 \text{ (at highest point)}.$

a)
$$S = \frac{v^2 - u^2}{2a} = \frac{0 - 50^2}{2(-10)} = 125 \text{ m}$$

maximum height reached = 125 m

b)
$$t = (v - u)/a = (0 - 50)/-10 = 5 sec$$

c)
$$s' = 125/2 = 62.5 \text{ m}, u = 50 \text{ m/s}, a = -10 \text{ m/s}^2,$$

$$v^2 - u^2 = 2as$$

$$\Rightarrow$$
 v = $\sqrt{(u^2 + 2as)} = \sqrt{50^2 + 2(-10)(62.5)} = 35 \text{ m/s}.$

24. Initially the ball is going upward

$$u = -7 \text{ m/s}, s = 60 \text{ m}, a = g = 10 \text{ m/s}^2$$

$$s = ut + \frac{1}{2}at^2 \Rightarrow 60 = -7t + 1/2 \cdot 10t^2$$

$$\Rightarrow$$
 5t² - 7t - 60 = 0

$$t = \frac{7 \pm \sqrt{49 - 4.5(-60)}}{3.15} = \frac{7 \pm 35.34}{40}$$

taking positive sign t =
$$\frac{7+35.34}{10}$$
 = 4.2 sec (\therefore t \neq -ve)

Therefore, the ball will take 4.2 sec to reach the ground.

25. $u = 28 \text{ m/s}, v = 0, a = -g = -9.8 \text{ m/s}^2$

a)
$$S = \frac{v^2 - u^2}{2a} = \frac{0^2 - 28^2}{2(9.8)} = 40 \text{ m}$$

b) time t =
$$\frac{v - u}{a} = \frac{0 - 28}{-9.8} = 2.85$$

$$t' = 2.85 - 1 = 1.85$$

$$v' = u + at' = 28 - (9.8) (1.85) = 9.87 \text{ m/s}.$$

... The velocity is 9.87 m/s.

c) No it will not change. As after one second velocity becomes zero for any initial velocity and deceleration is g = 9.8 m/s² remains same. Fro initial velocity more than 28 m/s max height increases.

4 of 10 7/31/2021, 3:17 PM **TEXTBOOK SOLUTIONS**

For 4" ball, t = 2 sec

$$S_2 = 0 + 1/2 \text{ gt}^2 = 1/2 (9.8)2^2 = 19.6 \text{ m}$$
 below the top (u = 0)

$$S_3 = ut + 1/2 at^2 = 0 + 1/2 (9.8)t^2 = 4.98 m$$
 below the top.

For kid initial velocity u = 0

Acceleration = 9.8 m/s²

Distance
$$S = 11.8 - 1.8 = 10 \text{ m}$$

$$S = ut + \frac{1}{2}at^2 \Rightarrow 10 = 0 + 1/2 (9.8)t^2$$

$$\Rightarrow$$
 t² = 2.04 \Rightarrow t = 1.42.

In this time the man has to reach at the bottom of the building.

Velocity
$$s/t = 7/1.42 = 4.9 \text{ m/s}.$$

Acceleration a = 9.8 m/s²

Distance
$$S = 12/1 \text{ m}$$

$$\therefore S = ut + \frac{1}{2}at^2$$

$$\Rightarrow$$
 12.1 = 0 + 1/2 (9.8) × t^2

$$\Rightarrow$$
 t² = $\frac{12.1}{4.9}$ = 2.46 \Rightarrow t = 1.57 sec

For cadet velocity = 6 km/hr = 1.66 m/sec

Distance = vt =
$$1.57 \times 1.66 = 2.6 \text{ m}$$
.

The cadet, 2.6 m away from tree will receive the berry on his uniform.

$$t = 0.2 \text{ sec}, a = g = 9.8 \text{ m/s}^2$$

$$S = ut + \frac{1}{2}at^2 \Rightarrow 6 = u(0.2) + 4.9 \times 0.04$$

$$\Rightarrow$$
 u = 5.8/0.2 = 29 m/s.

For distance x, u = 0, v = 29 m/s, a = g = 9.8 m/s²

$$S = \frac{v^2 - u^2}{2a} = \frac{29^2 - 0^2}{2 \times 9.8} = 42.05 \text{ m}$$

Total distance = 42.05 + 6 = 48.05 = 48 m.

 $B \rightarrow just$ above the sand (just to penetrate)

$$u = 0$$
, $a = 9.8 \text{ m/s}^2$, $s = 5 \text{ m}$

$$S = ut + \frac{1}{2}at^2$$

$$\Rightarrow$$
 5 = 0 + 1/2 (9.8)t²

$$\Rightarrow$$
 t² = 5/4.9 = 1.02 \Rightarrow t = 1.01.

: velocity at B, $v = u + at = 9.8 \times 1.01 (u = 0) = 9.89 \text{ m/s}$.

From motion of ball in sand

$$u_1 = 9.89 \text{ m/s}, v_1 = 0, a = ?, s = 10 \text{ cm} = 0.1 \text{ m}.$$

$$a = \frac{v_1^2 - u_1^2}{2s} = \frac{0 - (9.89)^2}{2 \times 0.1} = -490 \text{ m/s}^2$$

The retardation in sand is 490 m/s².

31. For elevator and coin u = 0

As the elevator descends downward with acceleration a' (say)

The coin has to move more distance than 1.8 m to strike the floor. Time taken t = 1 sec.

$$S_c = ut + \frac{1}{2}a't^2 = 0 + 1/2 g(1)^2 = 1/2 g$$

$$S_e = ut + \frac{1}{2}at^2 = u + 1/2 a(1)^2 = 1/2 a$$

Total distance covered by coin is given by = 1.8 + 1/2 a = 1/2 g

$$\Rightarrow$$
 1.8 +a/2 = 9.8/2 = 4.9

$$\Rightarrow$$
 a = 6.2 m/s² = 6.2 × 3.28 = 20.34 ft/s².

32. It is a case of projectile fired horizontally from a height.

NCERT SOLUTIONS RD SHARMA CLASS 12 CLASS 11 CLASS 10 CLASS 9 СВ

TEXTBOOK SOLUTIONS

c) Horizontal velocity remains constant through out the motion.

At A,
$$V = 20 \text{ m/s}$$

$$A V_v = u + at = 0 + 9.8 \times 4.5 = 44.1 \text{ m/s}.$$

Resultant velocity $V_r = \sqrt{(44.1)^2 + 20^2} = 48.42 \text{ m/s}.$

Tan
$$\beta = \frac{V_y}{V_x} = \frac{44.1}{20} = 2.205$$

$$\Rightarrow \beta = \tan^{-1} (2.205) = 60^{\circ}.$$

The ball strikes the ground with a velocity 48.42 m/s at an angle 66° with horizontal.

33. u = 40 m/s, $a = g = 9.8 \text{ m/s}^2$, $\theta = 60^\circ$ Angle of projection.

a) Maximum height h =
$$\frac{u^2 \sin^2 \theta}{2g} = \frac{40^2 (\sin 60^\circ)^2}{2 \times 10} = 60 \text{ m}$$

b) Horizontal range X = $(u^2 \sin 2\theta) / g = (40^2 \sin 2(60^\circ)) / 10 = 80\sqrt{3} \text{ m}.$

HC Verma Concepts of Physics

More Resources For Class 11

CBSE Sample Papers For Class 11

RD Sharma Class 11 Solutions

CBSE Class 11 Maths NCERT Solutions

CBSE Class 11 Physics NCERT Solutions

CBSE Class 11 Chemistry NCERT Solutions

CBSE Class 11 Biology NCERT Solutions

CBSE Class 11 Business studies NCERT Solutions

CBSE Class 11 Accountancy NCERT Solutions

CBSE Class 11 English NCERT Solutions

Filed Under: CBSE, HC Verma Solutions

Tagged With: HC Verma Part 1 PDF, HC Verma Part 1 Solutions, hc verma part 2 solutions, hc verma solutions, hc verma solutions download, hc verma solutions ebook

LearnCBSE.in Sample Papers 🔼

7/31/2021, 3:17 PM 6 of 10