

Regulari zation

$$\frac{\int d_1 = 30}{\text{fit} \left(d = 30 \right)}$$

tour acc 7 mge vod acc 3 gap

Coeff of the imp. degrees -> Significant valves
Coeff of the non-imp. Degrees -> close to zero

data - o dyree 5 Algree 0 to 5 -> significant value, Myrce 6 to 30 -> close to zero values Regulari Entin -> Ridge / Tekhonor -> Lamo $\sum_{i=1}^{N} \left(y_i - \sum_{j=1}^{N} w_j x_{ij} \right)^2 + \lambda_i$ no regularization (22)

Normal LR

h $\frac{D}{D} = \frac{D}{D} = \frac{D}$ Lamo RE = 0 =) no LI Reg

close to 0 but out
exactly o

21 reg: some
coeff will be

$$\frac{dy}{dx} = |x|$$

$$= +1, \quad x > 0$$

$$= -1, \quad x < 0$$

$$= 0, \quad x = 0$$

$$U_{3} = 0.5, \ \mathcal{N} = 0.1$$
 $V_{3} = 0.5, \ \mathcal{N} = 0.1$
 $V_{4} = 0.5, \ \mathcal{N} = 0.1$
 $V_{5} = 0.5, \ \mathcal{N} = 0.1$
 $V_{5} = 0.45$
 $V_{6} =$

Wj=0.5, n=0.1 10.5- 11× 0.1=0.4 10.4- 1×0.18 8.3 10.3-1×0.1=0.2 1 9.5 - 1 × 0.1 = 0.)

L) featre selection ! harmful for

when we whoely have huge rumber of features len monter of

Serve data (d>>n)

2) Outlieur -> Semitire to outlieur -> 22 robust to outlier >> L1

want my neights to be uniform on L2

disappear (o coeff) [Elastic Net] Combination of 212(2 How do ne choose λ , λ λ_2 a) How did we chouse optimum degree 2 for polynomial regrenien? We used validation det) We will use validation det vulidation det -> optimum d, λ_1 , λ_2 $\lambda = [0, 1, 2, \dots]$ Range
of

Logistic Regrenin Overview

Linear Regrenia — Linear Model for

Regrenian Tanh

(osistic Regrenian) Linear Model for

Clarification Tank

2 clarification

y = [No + N, x] — Linear

Regrenian

o-tant

Z= No + W, X

Signaid (2) = [2]

Prob of folling into clan 1

y = sgmd (n) -> 0 nhen 11-2 + 2 y = sgmd(n) - 1 when x->+2 It, y >, 0.5, 0/P=1 Thruh (Th) = 0.5 < y < 0.5, 0/P = 0 Synd (n) $Symd(n) = p \left(y = 1 \mid x \right)$ P(y=0|x)= 1-P(4=1)x) =)- Sqml (21) -> Multi-Clan Logistic Regrenien -) Multi-Normal Logistic Regression $Clam = 0 \qquad W_0 = \left(W_{01}, W_{02}\right)$ Zo = Wolf Woz. X c[m =] $W_1 = \left(W_{11}, W_{12}\right)$ Z, = W1, + W, 2. 2

$$Clm = 2, \qquad W_2 = (W_{21}, W_{22})$$

$$E_2 = W_{21} + W_{22} \cdot X$$

$$P(Y=0|X) = e^{\frac{2}{50}} + e^{\frac{2}{51}} + e^{\frac{2}{52}}$$

$$P(Y=1|X) = e^{\frac{2}{50}} + e$$

$$W = \frac{N/0 \text{ Reg}}{N-3 \text{ Les}}$$
 $V = \frac{3L}{3L} - \frac{1}{3} - \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$
 $V = \frac{3L}{3L} - \frac{1}{3} - \frac{1}{3} = \frac{1}{3$

4 = Wo AW, N, Fr2 N2 F... W. 810 (11XI) $\times^{7} \times \omega = \times^{7} \times \times^{7} \times$ $\begin{pmatrix} \times^{T} \times \\ \times^$ $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \frac{1}{2$ Closed form Solverion of W

