

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14137625
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JESUS EMMANUEL MORALES MENUIOLA		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=70\,\Omega,\,L=30\,\mathrm{mH},\,\mathrm{and}\,\,C=500\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14121732
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOEL GERARDO AGUERO LLANAS		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=30\,\Omega,\,L=30\,\mathrm{mH},\,\mathrm{and}\,\,C=700\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14124427
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JERSON CHAVEZ ORTIZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=20\,\Omega,\,L=80\,\mathrm{mH},\,\mathrm{and}\,\,C=600\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14156040
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LUIS ANTNONIO FERNENDEZ CARRASCO		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=70\,\Omega,\,L=40\,\mathrm{mH},\,\mathrm{and}\,\,C=400\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14156037
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	MICHAEL MURILLO MENDEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=50\,\Omega,\,L=90\,\mathrm{mH},\,\mathrm{and}\,\,C=900\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	11073892
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOSUE AMADOR SIFUENTES		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=70\,\Omega,\,L=30\,\mathrm{mH},\,\mathrm{and}\,\,C=500\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	11268436
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	EDUARDO ZALDIVAR MARTINEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=20\,\Omega,\,L=50\,\mathrm{mH},\,\mathrm{and}\,\,C=500\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14140390
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LUIS DAVID MARENTES REYES		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=20\,\Omega,\,L=90\,\mathrm{mH},\,\mathrm{and}\,\,C=600\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	12068799
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JESUS ANTONIO ROBLESREYES		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=80\,\Omega,\,L=30\,\mathrm{mH},\,\mathrm{and}\,\,C=500\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14150725
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LILIANA VERA GLZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=90\,\Omega,\,L=20\,\mathrm{mH},\,\mathrm{and}\,\,C=800\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14125016
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	DAVID OTHONIEL SALDIVAR PEREZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=40\,\Omega,\,L=80\,\mathrm{mH},\,\mathrm{and}\,\,C=500\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	1205596
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	ALBERTO VAZQUEZ MEDINA		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=60\,\Omega,\,L=90\,\mathrm{mH},\,\mathrm{and}\,\,C=900\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	12666518
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	SAMUEL ROSAS GONZALEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=30\,\Omega,\,L=80\,\mathrm{mH},\,\mathrm{and}\,\,C=500\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	12064655
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	EDSON ORLANDONAVARRO RAMIREZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=40\,\Omega,\,L=60\,\mathrm{mH},\,\mathrm{and}\,\,C=800\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	11126870
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JUAN GAEL GONZALEZ RODRIGUEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=40\,\Omega,\,L=70\,\mathrm{mH},\,\mathrm{and}\,\,C=400\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14155580
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LUIS ALEJANDRO URBINA GONZALEZ		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=90\,\Omega,\,L=50\,\mathrm{mH},\,\mathrm{and}\,\,C=500\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}$.
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Circuit analysis II	Group	5A
Degree	Electrical engineering	Date	25/11/2016
Exam / Homework	Final Exam (Max time: One hour)	Registration #	14629184
Professor's name	Dr. Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOSE WALDO QUINTANA ARANDA		

Instructions

1. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. In the following RLC series circuit, $R=70\,\Omega,\,L=80\,\mathrm{mH},\,\mathrm{and}\,\,C=400\,\mu\mathrm{F}.$ Calculate the resonant frequency for the circuit. (10 point)

Figure 1

- 2. A pure resistive heater of $500\,\mathrm{W}$ is connected to the mains of $120\,\mathrm{V}$ at $60\,\mathrm{Hz}.$
 - (a) Calculate the resistance of the heater. (2 points)
 - (b) If two heaters are connected in series, what is the power consumed by each heater? (2 points)
 - (c) If a heat equivalent to 750 W is required, what are the minimum numbers of heaters required to do the job? How are they connected? (2 points)
- 3. What is the root mean square value of a fully wave rectifier? Show all the work. (3 points)