TAREA 1 Algebra Superior II

- 1. Con la contrucción de $\mathbb Z$ que se vio en clase demuestra que:
 - (a) La suma es asociativa
 - (b) La suma es conmutativa
 - (c) El producto es conmutativo
 - (d) $1 = \overline{(1,0)}$ y $-1 = \overline{(0,1)}$ son los únicos enteros que tienen inverso multiplicativo.
 - (e) Las leyes de los signos.
 - (f) \leq es un orden total.
 - (g) Si $a \le b$ y $c \le 0$ entonces $ac \ge bc$
- 2. Demuestra que las siguientes afirmaciones para enteros a y b son equivalentes
 - (a) a|b
 - (b) -a|b
 - (c) -a|-b
 - (d) a|-b
- 3. Para enteros a,b,c prueba las siguientes afirmaciones.
 - (a) $a|b \ y \ b \neq 0$ entonces $|a| \leq |b|$
 - (b) Si c|a y c|b entonces c divide a cualquier combinación entera de a y b
- 4. Muestra que para cada $n \in \mathbb{N}$ existen n números consecutivos ninguno de ellos primos (esto nos da una idea de la distribución irregular de los números primos) [Hint: considera los números (n+1)! + 2, (n+1)! + 3, ..., (n+1)! + (n+1)].
- 5. Halla el máximo común divisor de las siguientes parejas de números y exprésalo como una combinación de tales números
 - (-120; 176), (160; 186), (256; -54), (1014; 666)

- 6. Te encuentras en el centro de un enorme cuarto oscuro que posee puertas numeradas del 1 al 100, todas ellas inicialmente cerradas. Un mago que se encuentra a tu lado comienza a pronunciar lentamente los números del 1 al 100, en orden ascendente. Cada vez que pronuncia el número i, las puertas que son múltiplos de i cambian magicamente de estado (se cierran si estaban abiertas, y se abren si estaban cerradas). Cuando el mago haya terminado de pronunciar el número 100, ¿Qué puertas habrán quedado abiertas?
- 7. Hallar el menor múltiplo de 945 que sea un cuadrado
- 8. Demuestra que el único conjunto de tres impares positivos consecutivos y primos es {3, 5, 7}
- 9. Demostrar que si 2^n-1 es primo, entonces n es impar o n es 2 .
- 10. Demostrar que si $2^n 1$ es primo, entonces n es primo.
- 11. Demostrar que si $n \geq 2$, existe un primo p tal que n
- 12. $2^{2^n} + 1 = F_n$ se le llama el n ésimo número de Fermat.
 - (a) Demuestra que $(F_n; F_m) = 1$ si $n \neq m$
 - (b) Usa lo anterior para deducir que existe una infinidad de primos.
- 13. Muestra que dos enteros consecutivos son primos relativos.
- 14. Prueba que si (a;b)=1 entonces $(a^n;b^m)=1$ para toda $n,m\in\mathbb{Z}$
- 15. Si (n; m) = 1 y $nm = a^k$ con k > 0 entonces existen enteros x, y tales que $n = x^k$ y $m = y^k$.
- 16. Demuestra que para un conjunto no vacío ser ideal en \mathbb{Z} es equivalente a ser cerrado bajo la resta.