Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 10: TDLAS Applications to Energy Conversion

- 1. Introduction
- 2. Fuel in IC engines fuel and T
 - Absorption cross section vs gasoline blend
- 3. H₂O and T in slagging coal gasifier
- 4. H₂O in transfer coal gasifier
- 5. NO and CO in coal-fired boiler exhaust
- 6. Future trends energy conversion

Transport coal gasifier at the National Carbon Capture Center Wilsonville, AL

1. Introduction: TDLAS is Practical in Harsh Environments

- Utilizes economical, robust and portable TDL light.sources and fiber optics
- Can yield multiple properties: species, T, P, V, & m in real-time over wide conditions
 - T to 8000K, P to 50 atm, V to 15km/sec, multiphase flows, overcoming strong emission, scattering, vibration, and electrical interference
- Demonstrated in harsh environments and large-scale systems:
 - Aero-engine inlets, scramjets, pulse detonation engines, IC engines, arcjets, gas turbines, shock tunnels, coal-fired combustors, rocket motors, furnaces....
- Potential use in control of practical energy systems

Coal-fired Utility Boiler

Chao, Proc Comb Inst, 2011

IC-Engines @ Nissan

Jeffries, SAE J. Eng, 2010

Coal Gasifier @ U of Utah

Jeffries, Pittsburgh Coal Conf, 2011

2. Fuel and T Sensing in IC Engines w/ TDLAS

Nissan North America 2007, Fuel & T

Nissan/PSI/SU Sensor @UC Berkeley, 2005 T & H₂O

CRF Sandia, 2006 T & H₂O

uires cross section data

2. Fuel and T Sensing in IC Engines w/ TDLAS Gasoline has Unstructured Absorption & Many Blends

- Absorption spectrum measured with FTIR
- Strongest absorption in region of C-H stretching vibration

2. Fuel and T Sensing in IC Engines w/ TDLAS **Gasoline Absorption Varies with Temperature**

- Absorption cross section versus temperature measured with FTIR
- Strongest absorption in region of C-H stretching vibration
- Pick one laser frequency (v_1) with large T dependence
- Pick one laser frequency (v_2) with small T dependence
 - Determine temperature from absorption ratio of selected frequencies 5

2. Fuel and T Sensing in IC Engines w/ TDLAS Gasoline Absorption Varies with Blend

 Measured (FTIR) absorption cross section varies with blend but cross-section model can be assembled with knowledge of gasoline composition

2. Fuel and T Sensing in IC Engines w/ TDLAS Stanford Model of Gasoline Absorption Cross Section

$$\overline{\sigma}_{\text{model}}(\lambda, T) = \sum_{j=1}^{5} X_{j} \sigma_{j}(\lambda, T)$$

- Gasoline absorption cross section model:
 - Determine composition of gasoline blend by hydrocarbon class
 - Fractions of paraffin, olefin, aromatics, and oxygenate from standard tests (ASTM D1319 & ASTM D4815)
 - Assume oxygenates are ethanol
 - Normal- and iso-paraffin fraction based on fuel grade
 - Determine absorption cross section $\sigma_i(\lambda, T)$ for hydrocarbon class
 - Empirical database (see Klingbeil et al., Fuel 87(2008)3600)
 - Weighted sum of σ_i by mole fraction X_i of each hydrocarbon class
- Absolute measurements without calibration using this cross section

2. Fuel and T Sensing in IC Engines w/ TDLAS Cross Section Model Validation Experiments

- 21 Gasoline samples measured (sample collection augmented by Chevron)
 - Sample pool covers expected range of gasoline compositions
 - Composition variation in cross section larger than x2 at target v₁ & v₂
- FTIR measured cross sections in good agreement with model predictions

2. Fuel and T Sensing in IC Engines w/ TDLAS Gasoline Sensor Needs 3-Color Laser

Three color laser system

- Difference frequency of two near-IR lasers for mid-IR outputs
 - Third near-IR laser provides two mid-IR outputs
- Two Mid-IR colors for simultaneous fuel and T
- NIR color can be used to exclude effects of fuel droplets

2. Fuel and T Sensing in IC Engines w/ TDLAS Optical Access Key to In-cylinder Fuel Measurements

SU, Nissan, PSI collaborative project (2003-2008)

Measure fuel vs time (CA) close to spark ignition

2. Fuel and T Sensing in IC Engines w/ TDLAS Crank-Angle-Resolved Gasoline Absorption

Single-cycle data from production engine

Nissan North America (2007)

- High-quality, low-noise data for entire cycle
- Sensor provides cycle-by-cycle statistics of F/A ratio
 - Critical for understanding/controlling UHC emissions

2. Fuel and T Sensing in IC Engines w/ TDLAS Cold Start Fluctuations Critical for Emissions Control

Peak fuel at ignition for 400 cold start cycles

- High-resolution data quantifies changes in fuel loading
- Provides new tool to optimize MPI & DIG engines

Next: Sensors to optimize coal gasification

3. H₂O & T in Slagging Coal Gasifier @ Utah Vision for TDLAS Sensing in IGCC

Vision: Sensor for control signals to optimize gasifier output and gas turbine input

- Two flow parameters considered: gas temperature and syngas energy
 - Gas temperature determined by ratio of H₂O measurements
 - For O₂ blown systems CO, CH₄, CO₂, and H₂O provide syngas energy
 - Where H₂ can be determined by gas balance
- Four measurement stations considered: spanning reactor core to products

3. H₂O & T in Slagging Coal Gasifier @ Utah

Entrained flow gasifier @ Utah

Sensor locations

- 1: Reactor Core
 - T: 1300K-1700K
- 2: Quench
 - T: 600K-1000K
- 3: Post-quench
 - T: 330K-400K

Pressure range investigated: 50psig to 200psig

- Measurement locations 1 and 2 provide opportunity for control
 - Temperature sensing by ratio of H₂O absorption lines
- Measurement location 3 monitors syngas heating value
 - Monitor CO, H₂O, CO₂, CH₄, and assume balance H₂

3. H₂O & T in Slagging Coal Gasifier @ Utah Challenge: Absorption Broadened by Pressure

Practical combustion devices often operate at elevated pressures

- Pressure broadening
 - Blends nearby transitions
 - Eliminates the baseline between transitions
- Particulate in the synthesis gas attenuates laser transmission
- Solution: 1f-normalized WMS: accounts for varying transmission

3. H₂O & T in Slagging Coal Gasifier @ Utah Transmission loss by particulate scattering

Transmission of laser light at non-absorbing wavelength vs reactor pressure at syngas output

- Reactor loading, throughput, and efficiency increase with pressure
- Particulate loading also increases with pressure
- Scattering losses severely reduce laser transmission

Solution: 1f-normalized wavelength-modulation spectroscopy (WMS 2f/1f)

3. H₂O & T in Slagging Coal Gasifier @ Utah TDLAS Temperature in Reactor Core

Two H₂O transitions: 7426cm^{-1} , E"~ 1300cm^{-1} , f = 13 kHz 7466cm^{-1} , E"~ 2660cm^{-1} , f = 10 kHz

Laser beam alignment @Utahno access during experiments

- Normalization scheme successful with low transmission (< 0.02%)
- Fluctuations in T reveal unsteadiness in reactor core

3. H₂O & T in Slagging Coal Gasifier @ Utah CO and CO₂ vs Time in Syngas Output

- Monitor composition of syngas output at location 3
 - Simultaneous measurements of CO, CH₄, CO₂, and H₂O
- Coal/O₂ feed rates varied changes CO & CO₂ values during final 30 minutes
- GC data adjusted to account for ~4 min sampling/drying delay
 - TDL data in good agreement with GC

3. H₂O & T in Slagging Coal Gasifier @ Utah CH₄ and H₂O vs Time in Syngas Output

CH₄ measurements

TDL measurement GC measurement GC measurement 1 0 10 20 30 40 50 60 70 Time [min]

H₂O measurements

- Monitor composition of syngas output at location 3
 - Simultaneous measurements of CO, CH₄, CO₂, and H₂O
- CH₄ added to syngas to test sensor response during first 30 minutes
- GC data adjusted to account for ~4 min sampling/drying delay
 - TDL data in good agreement with GC

Part 4: Extend to industrial-scale gasifier

4. H₂O in Transfer Coal Gasifier @NCCC Large-Scale DoE Demonstration Facility

Instrumentation shelter

Note man-sized figure

NCCC transport gasifier based on a circulating fluidized bed concept
 Goal:

Laser absorption in situ measurements of moisture and temperature of syngas

4. H₂O in Transfer Coal Gasifier @NCCC TDL Sensor Located Downstream of PCD

Syngas output

- TDL sensor monitors syngas flow 99 feet downstream of the PCD
- Small (0.01%) transmission due to beam steering & scattering from ash

4. H₂O in Transfer Coal Gasifier @NCCC Laser Sensor Installed on Syngas Output Flow

- Safety a paramount element of engineering design
 - Redundant shut-off valves to isolate laser sensor
 - Redundant sapphire windows with P/T failure sensor
- Transmitter and receiver mounted on rail hung from process pipe to minimize thermal motion from process/weather

4. H₂O in Transfer Coal Gasifier @NCCC Laser Sensor Installed on Syngas Output Flow

Photo illustrates the large-scale of this commercial size system

Now let's look at sensor measurements during start-up

4. H₂O in Transfer Coal Gasifier @NCCC Time-Resolved TDLAS During Gasifier Start-up

- In situ measurements of syngas moisture content capture start-up events
 - Propane heater ignition (H₂O combustion products) and warm-up
 - TDLAS of H₂O captures pulsing of coal feeder to control warm-up rate of the rig
 - Transition to gasification
- TDL sensor captures a shut-down at 54 hours

4. H₂O in Transfer Coal Gasifier @NCCC Continuous Time-Resolved Unattended TDLAS

- Unattended operation yields continuous record of H₂O
- Valves closed 3 times during run due to reactor upset not related to TDL
- Light transmission stable over entire campaign (depends on P)
 - No degradation of window transmission or laser performance

4. H₂O in Transfer Coal Gasifier @NCCC TDL H₂O Compared to Liquid H₂O Samples

- Liquid H₂O samples taken from syngas every day or two
- TDLAS data in good agreement with samples

Can Sensor reveal real-time moisture fluctuations?

4. H₂O in Transfer Coal Gasifier @NCCC Syngas H₂O Fluctuations Capture Reactor Conditions

• H_2O fluctuation tracks the reactor thermocouple (note small ΔT)

Part 5: Measurements of NO and CO at exit of powerplant boiler

5. NO and CO in Coal-Fired Boiler Exhaust

Xing Chao, 2009/10

5. NO and CO in Coal-Fired Boiler Exhaust Emissions Sensing in Coal-Fired Powerplants

 In situ CO and NO measurements at economizer exit of pulverized coal boiler for characterization of SNCR

Measurement of other species must consider H₂O interference

- Several candidate CO lines found that are free of H₂O interference
- Two good candidate NO lines are found relatively free of interference
- Particulate in the flow (flyash, soot, etc) attenuates the beam,
 but Stanford's 2f/1f approach resolves the problem

5. NO and CO in Coal-Fired Boiler Exhaust

- Utilizes 5.2μm QC for NO and 2.3μm TDL for CO
- Dusty environment results in large scattering losses
 - 50-90% of incident light scattered

5. NO and CO in Coal-Fired Boiler Exhaust CO Sensing with 2.3 μm DFB Laser

Continuous monitoring of CO with varying excess air

- Correlates with excess air as expected
- Sensitive (ppm) time-resolved CO detection
- In situ sensor avoids delay/mixing of stack CEM

5. NO and CO in Coal-Fired Boiler Exhaust NO Sensing with 5.2 μm QC Laser

2010 Results at Economizer Exit of Pulverized Coal-Fired Plant

- Sensitive (ppm) time-resolved NO detection
- In situ sensor avoids delay/mixing of stack CEM
- Potential for control of individual boilers

6. TDLAS for Energy Conversion – Future Trends

- <u>Portable</u> TDL-based sensors useful for T, V, species and mass flux over wide range of conditions, industries
- Potential use as control variables for combustion emissions/efficiency
- Potential use for compliance monitoring of pollutant emissions
- Current and future topics:
 - Extension to UV and mid-IR to access new species
 - → CO, CO₂, HC's, radicals, NO, NO₂
 - Advanced energy utilization: bio-fuels, gasification, liquifying natural gas

Next Lecture

Shock tubes and applications to combustion kinetics