Vuoden 2000 pohjoismaisen kilpailun ratkaisut

1. Olkoon x kolmen eri yhteenlaskettavan summien lukumäärä ja y kahden eri yhteenlaskettavan summien lukumäärä. Tarkastellaan riviä, jossa on 3999 numeroitua laatikkoa ja jokaisessa paritonnumeroisessa laatikossa on punainen pallo. Jokainen tapa sijoittaa kaksi sinistä palloa parillisnumeroisiin laatikkoihin tuottaa 2000:n jaon kolmeksi yhteenlaskettavaksi. Tapoja sijoittaa siniset pallot on $\binom{1999}{2} = 999 \cdot 1999$. Mutta on 3! = 6 eri

sijoittelua, jotka tuottavat saman 2000:n jaon kolmeksi eri yhteenlaskettavaksi ja $\frac{3!}{2} = 3$ eri jakoa, jotka tuottavat saman 2000 jaon, jossa eri suuria yhteenlaskettavia on kaksi. Koska 2000 ei ole jaollinen kolmella, kaikki sijoittelut antavat joko kolme tai kaksi eri suurta yhteenlaskettavaa. Siis $6x + 3y = 1999 \cdot 999$. Mutta y = 999, koska summassa kaksi kertaa esiintyvän yhteenlaskettavan arvo voi olla mikä hyvänsä luvuista 1, 2, ... 999. Ratkaisemalla edellinen yhtälö saadaan $x = 998 \cdot 333$, joten $x + y = 1001 \cdot 333 = 333333$.

- 3. Tarkastellaan kolmioita AOE ja AOD. Niissä on kaksi keskenään yhtä suurta sivuparia ja toista vastinsivuparia vastassa olevat kulmat ovat yhtä suuret. Tällöin joko AOE ja AOD ovat yhteneviä tai $\angle AEO = 180^{\circ} \angle ADO$. Edellisessä tapauksessa $\angle BEO = \angle CDO$, joten kolmiot EBO ja DCO ovat yhteneviä. Tällöin siis AB = AC. Jälkimmäisessä tapauksessa merkitään kolmion ABC kulmia 2α :lla, 2β :lla, ja 2γ :lla ja kulmaa AEO δ :lla. Kolmion kulman vieruskulmaa koskevan lauseen nojalla saadaan $\angle BOE = \angle DOC = \beta + \gamma$, $\delta = 2\beta + \gamma$ ja $180^{\circ} \delta = \beta + 2\gamma$. Kun nämä yhtälöt lasketaan puolittain yhteen, saadaan $3(\beta + \gamma) = 180^{\circ}$ eli $\beta + \gamma = 60^{\circ}$. Kun tämä yhdistetään yhtälöön $2(\alpha + \beta + \gamma) = 180^{\circ}$, saadaan $2\alpha = 60^{\circ}$.
- 4. Merkitään $f\left(\frac{1}{3}\right)=a$ ja $f\left(\frac{2}{3}\right)=b$. Soveltamalla tehtävän epäyhtälöä arvoilla $x=\frac{1}{3},\,y=\frac{2}{3}$ ja z=1 sekä $x=0,\,y=\frac{1}{3},\,z=\frac{2}{3}$ saadaan $\frac{1}{2}\leq \frac{1-b}{b-a}\leq 2,\qquad \frac{1}{2}\leq \frac{b-a}{a}\leq 2.$

Jos olisi a < 0, olisi b - a < 0 ja siis b < 0. Lisäksi olisi 1 - b < 0 eli b > 1. Samanlaiseen ristiriitaan johtaisi oletus b - a < 0. Siis a > 0 ja b - a > 0, joten

$$\frac{1}{3}\left(\frac{2}{3}a + \frac{1}{3}\right) \le a \le \frac{2}{3}\left(\frac{1}{3}a + \frac{2}{3}\right)$$

eli $a \leq 2b-2a$, $b-a \leq 2a$, $b-a \leq 2-2b$ ja $1-b \leq 2b-2a$. Näistä yhtälöistä 1. ja 3. antavat $3a \leq 2b$ ja $3b \leq 2+a$, joista eliminoimalla b saadaan $3a \leq \frac{4}{3}+\frac{2a}{3}$, $a \leq \frac{4}{7}$. Yhtälöistä 4. ja 2. antavat vastaavasti $1+2a \leq 3b$ ja $b \leq 3a$, joista $1 \leq 7a$, $\frac{1}{7} \leq a$. [Rajoja voidaan parantaa – tarkat ala- ja ylärajat olisivat $\frac{4}{27}$ ja $\frac{76}{135}$.]