CHAPITRE IV CINÉMATIQUE DE TRANSLATION : MOUVEMENT RECTILIGNE PROBLÈMES SUGGÉRÉS

Problème Nº 4.1

Un chariot propulsé par une fusée se déplace sur une voie rectiligne horizontale. On utilise ce système pour étudier les effets physiologiques des fortes accélérations sur le corps humain. Un tel chariot peut atteindre une vitesse de 1600 km/h en 1,8 seconde à partir du repos.

- a) Comparez cette accélération avec celle de la gravité $g = 9.8 \text{ m/s}^2$; (Supposez l'accélération du chariot constante).
- b) Quelle distance parcourt le chariot pendant 1,8 seconde?

Problème Nº 4.2

Une sonde spatiale se déplace en l'absence de tout champ de force avec une accélération constante de 9.8 m/s^2 .

- a) Si elle part du repos, quel temps lui sera nécessaire pour atteindre une vitesse égale à un dixième de la vitesse de la lumière ($c = 3 \times 10^8$ m/s)?
- b) Quelle distance aura-t-elle franchi pendant ce temps?

Problème Nº 4.3

Un avocat vient vous consulter sur un problème physique qu'entraîne une cause. Il s'agit de savoir si le conducteur d'un véhicule excédait la vitesse limite de 50 km/h au moment où il a freiné d'urgence. La longueur des traces laissées par le glissement des roues sur la route est de 5,85 m. L'agent de police, estimant que la décélération ne pouvait être supérieure à 10 m/s², a arrêté le conducteur pour excès de vitesse.

Le conducteur dépassait-il la vitesse permise ? Expliquez votre réponse.

Problème Nº 4.4

Deux trains, l'un voyageant à 100 km/h et l'autre à 130 km/h, se dirigent l'un vers l'autre sur une même voie rectiligne. À 3 km l'un de l'autre, les conducteurs s'aperçoivent et appliquent les freins.

Si les freins ralentissent chaque train au taux de 1 m/s², déterminez s'il y aura collision.

		6			69 xy	= 0+0(1,1	-0)4 1/4 au (1,8-0)2	leg = 1/2	1.246.9.1,8	2
Д.,	0. 0				-t;)a						
	(in a-ce					1600 = 0 ta	×(1,1-0)				
ty = 1,8s xy = ?		of the c	- NO TRAIN	·g = 017		1600 =	1,1 ar		$r = \frac{a_{\varphi}}{q_{i} r} =$	296,9 = 25,2 t	2
Jf=1600	Km/h					1600	= 48	ci,	95=246,4	pe/s +	
						48.24	10,714	c)	X = 400 m		
Α,	cu)	y = Vi+ = (1	'J-ti')	6)	λ ₄ = χ; +	-Vi (ty-t;)	+ 1/2 (t*	d			
	3×	101 = 0+9,	P (ty-0)								
<i>f</i> =		2 14 E - 4 PM						~			
3 010					M						
3069	-	4, t tx = 3,06/22	No 160/6	0/29		Ny= 9,591	P 7010 Him				
		1									
9, 4											
					k	j = %; +	vi (tj-ti)	+1/29/1/	- الراك		
truin A		train B	1×+ 1/4 = 30	, ?							
	l'' -										
	[1 ha = 0	1 - (100)2						
		azing		_		= 38S, 8m					
							∠3 tm				
$V_{dis}^{\lambda} = v_{i\lambda}^{\lambda}$	+ da (by-h)			1 xB = 02-	$\left(\frac{130}{16}\right)$			t chis			
100 = V	2-V2			کا	-() = (s Sdy O Mr					
	aa>										
4,5				lo,							
Powl	la.	par -1,2									
ti = o	4= ?=1918	t; 21/4	4. ?				3) ⁴		, ,,,		l'
N > a	×1=580m		nf=1100		= 1/2 (1/2) (1/2 :0 = 0,6 (1/2)2)×				=(17-30,24) +-0,6(ty-	
			<i>7</i> –	24	,0 cigj			Up = 36,33	V-11.1	-1 -101 -96 (1)	270°1J"
	7			911	e167 - 182			7 - 16,00	15,15	19 2521 - 9641 + 36	
	# = 1,85 Xf = ? Y = 1600 3 y 10 4. 4 # thomas the red thomas the red W = 1000 y = 100 To a = -100 Pour ti = 0 From ti = 0 Ti = 0	xf = ? y = 1600 km/n y = 3 = 10 3 = 10 3 = 10 4 + train A = 100 tm/n then B = 100 tm/n to use redifique then A 1; = 100 = 10 1; = 1	1	1	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Problème Nº 4.5

Une rame de métro part d'une station en accélérant au taux de 1,20 m/s² sur la moitié de la distance la séparant de la prochaine station. Elle ralentit ensuite au même taux sur la deuxième moitié du parcours. Si les stations sont distantes de 1100 m, déterminez :

- a) le temps de parcours entre les stations;
- b) la vitesse maximale de la rame de métro.

Problème Nº 4.6

Au moment où le feu de circulation passe au vert, un automobiliste démarre avec une accélération constante de 2 m/s². Au même instant, un camion vient doubler l'automobile à une vitesse constante de 10 m/s.

- a) Au bout de quelle distance l'automobiliste rattrapera-t-il le camion ?
- b) Quelle sera la vitesse de l'auto à cet instant?

N.B. Il est peut-être utile de tracer un graphique de la position x des 2 véhicules en fonction du temps.

Problème Nº 4.7

Une automobile, se déplaçant à 56 km/h, se trouve à 35 m d'un obstacle lorsque le conducteur décide d'appliquer les freins. Quatre secondes plus tard, la voiture heurte l'obstacle.

- a) Quelle était l'accélération de la voiture avant l'impact?
- b) Quelle était la vitesse instantanée du véhicule immédiatement avant la collision ?

Chute libre: on néglige la résistance de l'air.

Problème Nº 4.8

On lance une balle verticalement vers le haut pour qu'elle atteigne une hauteur de 15 mètres.

- a) À quelle vitesse devra-t-on la lancer?
- b) Ouel sera le temps de vol de la balle?

Problème Nº 4.9

Une montgolfière s'élève à une vitesse constante de 12 m/s; à une altitude de 80 mètres, on laisse tomber un paquet. Dans combien de temps le paquet atteindra-t-il le sol ?

	n)	= >i +vi (1/-;	#1+1/1 G 141-	1 V = 0	4 - Gt dil	4,7-									
4,6		= 0 + 0 (ty-0)			+ ca (ty -t;)	47									
auto				Vy>0+	2(10-0)	†i= 0		, <i>, ,</i> ,							
		1y 2 1/2 (d) (g)2		42	to m/s	pi = 0		= 35m	4=47+40	y-1.')					
U. T. C	<i>t</i> =	ky ~ 1(ff)}+	6.3 Com	,		Vi = Sótnylh-			Vy = 18,86 + -3	,403(400)					
4-2n/c2		A=.A.	h+-(o+				7), 94 m	36 5 Ch = 24m/4					
Cam		1	g2-(0t-0			a=)				= 2Am/4					
	V= 4+	t	f(tf-(1) =0			x4 = x:-	fui (19-3i)ty; a	n (tj-ti)a							
	Jr = ∪	ot xex	10-60			35=0	+ 15,56 (7-0) +15	a (4-0)2							
6 = 0 4 =	10 m	· f [4)ovi				15,5 6 (4/+1/ ₆ 4 (4)								
a= com/g+															
. 76						0	2 - 3,405 m/s								
			1 110												
• 1	temps de vole-	ous remain to				1	4.11	_							
poulte predilign y			1;=0	y =	?	04:	sustany fico	1 ty = 6	ss 4;	+/					
a recover g	V1 = V;	+2~(y/-yi)		7		a=3	4.0	5g = ?	9i = 8600						
	=?	+2(981)(15-0)	bi > 12 €	15 cy = 2) _x	^	U? ~ 0	Y=x	V: = 1300x1	\$ V4=0					
11=0 91 11=794 49.	, John		,	z= 9,81		V; - c) A=	dem/sh	a	7.1 m/s					
,	Vim E a	L(7,81)(1s)	g =	g; f v; (19-ti,) -14 g (サーカ)	2				υ	\$ = U! - 2g(4, - 9,)			
9=3=9,11,	n/5a 142=2	943					21 = 21	tui (1y-1;°) -	49(4·t)"						
	v, e. l	2,16 m/s		80+12(4)-0		1-0)		+0 (60-0) -	12 (20) (60-0)° o	= (12co)"-d	(-7x) (gf - 360))		
Va = vi +actg-			0	= 80+12(4)-	4,905 (18)*		ş =	-1/2 (20) (60)*			sy = 109	99m			
0 = 17,16 + 7,81 (1	\$-0)			i = - 4,90st/2.	thd +80			yj=3600m			,	D			
ty=1,73.2			-	7,554	y			v ·							
17=3,30				14- /-3			<i>(</i>)								
				1/= -3 S, 44	D D			dec =60s		1 ,					
Ullo								inde live		7) = (0	=3600+1200+1	91.811.ta,+	γ		
4.10										Δ t	-221,665				
* une colle	de plon 6						ty:		11 00/0 412						
to planger Jo	212							= y; +vi(ty+)		221	665+60				
- balle consen	a sa cite se els la st le fund clar lac . i fusició	lec					02	3600 + 1200 A+	- 29 8+x		37,74 []				
		p=? r=?						# pornohal		parachista					
′) MR4							3:20		t/= 1/2 51 = 1/2					
<u> </u>	<u> </u>								cy= 34,2 V	= 13 = 13 4 y= 3	m/s				
+; >0	ty =1s +1:	-lc +-	⊋ S _S					6.A=-8		9=-21/51==					
9:=0		,						11 libre = 13							
	y=sm 3;=	0-	44,24												
VI=0	Vy= 4 How Vi=	vy=						9, = 9; + v; (ty			= 1:-9 (ty-)	9)	· /ee (.) 1	c. ()a
a= 9,81m	ć							10=0+0 (Y-0) - 16 (-811) (ty.	·•) ² 3	= 3124-2.4:	1	3g = 9; +c	i (13-ti) - V	こましなか)^
			In - 415 113	()	41.61.11			So = -1/2 (-9,8	(4)ª	6+	= 21,21		L=0+3	,28.14,14 -	1/2 (-d) (14.14
	~8') - 1/2 8 (\$7-4)"			()gf = gi+u				ty = 3,19578.			- 0-				
S = 0+0 # -0;	-14 (-911) (ts-0)		-(-9;H)(1-0)	44,24 = Ny	(s-0) -1/4(-	781) (5-01 ²				,	t= 14,19 s		y =	442,299 -1	79,94
S = -1/2 (-9,4) (+8,)۾	49=	9,81(1)	44,84 = 1.	iy(s) + 4,9(s	ام		a= du a	- <u>e</u> -	1				84=243	36
		V1= 9	61 m/s							Trob = 3,19	+14,14 = 12,33 _S	0			
<u>s</u>				0 - Viz	(s) f 1 d & S —	4929		4v= 3.0+						242,36+8	
0=-9,8+12		y=5; + v̄			ig(t)+>8 مام			bu = 9,81. 3,19						292,30	U "I"
172 = 1,02		Jy = 0 + 9,8			= 15,1652 m/s			31,21m/s = vi							
y = 01,02		81 = 911/C	4)	013	. 1000 m/3										
g= 1s		9y = 39,20	ts												
			1												
		W= 649	1												

Problème Nº 4.10

Du haut d'un plongeoir de 5 mètres on laisse tomber une balle de plomb dans un lac. Elle frappe l'eau à une certaine vitesse et conserve cette vitesse jusqu'au fond du lac. Elle atteint le fond du lac 5 secondes après avoir été lâchée.

- a) Quelle est la profondeur du lac?
- b) Supposons que l'on vide le lac. On tire à nouveau la balle, du même plongeoir, et elle touche le fond du lac 5 secondes plus tard. Quelle est cette fois-ci la vitesse initiale de la balle ? (grandeur et sens).

Problème Nº 4.11

Une fusée est mise à feu verticalement, et monte avec une accélération constante de 20 m/s² pendant 1.0 minute. À ce moment, son carburant est épuisé et elle devient une particule en chute libre.

- a) Quelle hauteur maximale atteindra-t-elle?
- b) Quel sera le temps de vol de la fusée, depuis son décollage jusqu'à son retour au sol ?

Problème Nº 4.12

Un parachutiste tombe en chute libre sur une distance de 50 mètres. Lorsque son parachute s'ouvre, il décélère au taux de 2 m/s². Il se pose au sol avec une vitesse de 3 m/s.

- a) Combien de temps passe le parachutiste dans les airs ?
- b) De quelle hauteur a-t-il sauté?

CHAPITRE IV

CINÉMATIQUE DE TRANSLATION : MOUVEMENT RECTILIGNE

RÉPONSES DES PROBLÈMES SUGGÉRÉS

Problème Nº 4.1 : Rép. :

a)
$$a_x = 246.9 \text{ m/s}^2 \text{ et } \text{b) } \frac{a}{g} = 25.2$$

c)
$$x = 400 \text{ m}$$

Problème Nº 4.2: Rép.:

a)
$$\Delta t = 35,43$$
 jours

b)
$$\Delta x = 4.6 \times 10^{10} \text{ km}$$

Problème Nº 4.3: Rép.:

$$v_{i,x} = 38,94 \text{ km/h} \Rightarrow \begin{cases} \text{Non: selon l'éstimation de l'agent, la vitesse} \\ \text{du conducteur est plus petite que la vitesse} \\ \text{maximale de 50 km/h.} \end{cases}$$

Problème Nº 4.4: Rép.:

$$\begin{cases} \Delta x_{A} = 385,8 \text{ m} \\ \Delta x_{B} = 652,0 \text{ m} \end{cases} \Rightarrow \begin{cases} \text{Non: La distance de freinage des deux trains} \\ \text{est plus petite que 3 km} \end{cases}$$

Problème Nº 4.5: Rép.:

a)
$$\Delta t = 60,55 \text{ s}$$

b)
$$v_{max} = 36,33 \text{m/s}$$

Problème Nº 4.6: Rép.:

a)
$$d = 100$$
 et b) $t_f = 10 \text{ s}$

c)
$$v_{C, 10s} = 20 \text{ m/s}$$

Problème Nº 4.7: Rép.:

a)
$$a_{Ax} = -3,40 \text{ m/s}^2$$

b)
$$\begin{cases} v_{fA} = 1,944 \text{ m/s} \\ v_{fA} = 7 \text{ km/h} \end{cases}$$

Problème Nº 4.8: Rép.:

a)
$$v_{i,B} = 17,15 \text{ m/s}$$

b)
$$t = 3.50 \text{ s}$$

Problème N° 4.9 : Rép. :

$$t_f = 5,44 \text{ s}$$

Problème Nº 4.10: Rép.:

a)
$$p = 39,523 \text{ m}$$

b)
$$v_{iB,y} = 15,62 \text{ m/s}$$

Problème Nº 4.11: Rép.:

a)
$$h = 1.09 \times 10^5 \text{ m}$$

b)
$$t = 331,7 \text{ m/s}$$

Problème Nº 4.12 : Rép. :

a)
$$t_{CL} = 3,193 \text{ s}$$

 $t_{MA} = 14,161 \text{ s}$ $\Rightarrow t_{air} = 17,354 \text{ s}$

b)
$$h_{air} = 293 \text{ m}$$