Towards Turn-Key Differential Privacy

Adventures in Function Approximation, Empirical Process Theory and Open-Source Software

Ben Rubinstein

joint with Francesco Aldà

July 25, 2017

School of Computing & Information Systems The University of Melbourne

One More Time With Feeling: Why Protect Privacy?

Regulatory & ethical obligations; customer confidence; ...profits!!

DP Successes (If Privacy Doesn't Inspire You)

Recent deployments

- Google: RAPPOR, Google Chrome
- Apple: iOS 10.x
- Uber: SQL Elastic Sensitivity
- U.S. Census Bureau: OnTheMap
- Transport for NSW:
 Opal Data Release
- etc.

Active world-leading groups: Harvard, Stanford, Berkeley, CMU, Weizmann, UCL, Oxford, USC, UCSD, UPenn, Caltech, Cornell, Duke, Disney Research, Google Research, Microsoft Research, etc.

Talk Outline

1. Intro to differential privacy

2. The Bernstein mechanism: Private function release

3. The sensitivity sampler: Automating privatisation

4. The diffpriv package

Introduction to Differential Privacy

What's DP For?

Release aggregate information on a dataset, but protect individuals.

What's DP For?

Release aggregate information on a dataset, but protect individuals.

Parties: Trusted data curator; **Untrusted receipient** Variations exist e.g., decentralised curator

Example target analyses to privatise

- A function of data: A statistic!
- Probabilistic model fitting with MLE: Estimation procedure
- Deep neural network training: A learner
- KD tree construction: Spatial data analysis

What's DP For?

Release aggregate information on a dataset, but protect individuals.

Parties: Trusted data curator; **Untrusted receipient** Variations exist e.g., decentralised curator

Example target analyses to privatise

- A function of data: A statistic!
- Probabilistic model fitting with MLE: Estimation procedure
- Deep neural network training: A learner
- KD tree construction: Spatial data analysis

In general, privacy/utility must be in tension. Lower bounds later.

Records, Databases, Target Functions, Mechanisms

A database D is a sequence of n records from domain set \mathcal{D} .

A target function for privatisation $f: \mathcal{D}^n \to \mathcal{B}$ a response set

Example: Sample Mean

Consider releasing the average of scalars, e.g., test scores

$$\mathcal{D} = \mathcal{B} = \mathbb{R}$$
 and $f(D) = \frac{1}{n} \sum_{i=1}^{n} D_i$

- > D <- rnorm(1000) # 1000 standard normal samples
- > f <- mean
- > f(D)
- [1] 0.03339015

Records, Databases, Target Functions, Mechanisms (cont.)

A mechanism \mathcal{M} maps D to a random response in \mathcal{B} . Response distribution: $\Pr(\mathcal{M}(D) \in B)$ for $B \subset \mathcal{B}$.

Records, Databases, Target Functions, Mechanisms (cont.)

A mechanism \mathcal{M} maps D to a random response in \mathcal{B} .

Response distribution: $\Pr(\mathcal{M}(D) \in B)$ for $B \subset \mathcal{B}$.

Example: Blood Type

Everyone in D have same blood type? $f(D) = 1[D_1 = \ldots = D_n]$.

$$\mathcal{M}(D) \sim \textit{Bernoulli}(0.5) \quad \mathcal{M}(D) = egin{cases} f(D) \;, & \textit{w.p.} \; 0.9 \;, \ 1 - f(D) & \textit{w.p.} \; 0.1 \end{cases}$$

Utility measures (high probability) proximity of $\mathcal{M}(D)$, f(D)

Defining Differential Privacy

Intuition: Response indistinguishable on changing any one record

Databases D,D^\prime are called neighbouring if they differ on one record

Defining Differential Privacy

Intuition: Response indistinguishable on changing any one record

Databases D, D' are called neighbouring if they differ on one record

${\mathcal M}$ is $\epsilon\text{-Differentially Private}$

If for all neighbouring $D, D' \in \mathcal{D}^n$, for all $B \subset \mathcal{B}$, we have that $\Pr\left(\mathcal{M}(D) \in B\right) \leq \exp(\epsilon) \cdot \Pr\left(\mathcal{M}(D') \in B\right)$. Where $\epsilon > 0$.

That is $\log\left(\frac{\Pr(\mathcal{M}(D) \in B)}{\Pr(\mathcal{M}(D') \in B)}\right) \le \epsilon$: Smaller $\epsilon > 0$, more privacy.

Semantic privacy with strong threat model; worst-case on DBs.

Example: Numeric Releases with the Laplace Mechanism

Consider target $f: \mathcal{D} \to \mathbb{R}^d$ e.g., a covariance matrix, regression coefficients, classifier weights Smooth the target by adding zero-mean Laplace noise to output.

Laplace Mechanism

Given parameters $\Delta, \epsilon > 0$, release $\mathcal{M}(D) \sim f(D) + Lap(\Delta/\epsilon)$.

Example: Hello World – Sample Mean of $D_i \in [0, 1]$

Global Sensitivity

Many generic mechanisms like Laplace operate by smoothing f. Less smoothing needed for already-smooth f; How to measure?

Consider target $f: \mathcal{D} \to \mathcal{B}$ with normed response space \mathcal{B} .

Global Sensitivity

Many generic mechanisms like Laplace operate by smoothing f. Less smoothing needed for already-smooth f; How to measure?

Consider target $f: \mathcal{D} \to \mathcal{B}$ with normed response space \mathcal{B} .

Global sensitivity

$$\Delta(f) = \max_{D,D'} \|f(D) - f(D')\|_{\mathcal{B}} \text{ over neighbouring DBs in } \mathcal{D}^n.$$

A type of Lipschitz condition. (Weakest form of smoothness.)

Example: Sample Mean

Take $f(D) = \frac{1}{n} \sum_{i=1}^{n} D_i$ in $\mathcal{B} = \mathbb{R}$, with absolute as norm. If $D_i \in [0,1]$ then $\Delta(f) = 1/n$.

Privacy of the Laplace Mechanism

Recall

- $\Delta(f) = \max_{D,D'} \|f(D) f(D')\|_{\mathcal{B}}$ over neighbouring DBs.
- $\mathcal{M}(D) \sim f(D) + Lap(\Delta/\epsilon)$.

Theorem: Laplace Mechanism Privacy

If Δ is L_1 -gobal sensitivity of f, then \mathcal{M} is ϵ -DP.

Why L_1 ? multivariate Laplace has density exponential in L_1 .

Privacy of the Laplace Mechanism

Recall

- $\Delta(f) = \max_{D,D'} \|f(D) f(D')\|_{\mathcal{B}}$ over neighbouring DBs.
- $\mathcal{M}(D) \sim f(D) + Lap(\Delta/\epsilon)$.

Theorem: Laplace Mechanism Privacy

If Δ is L_1 -gobal sensitivity of f, then \mathcal{M} is ϵ -DP.

Why L_1 ? multivariate Laplace has density exponential in L_1 .

More privacy (smaller ϵ), the more noise needed, lower utility. The smoother the target (low Δ), the less smoothing needed.

Notes

- Generic mechanisms like Laplace have driven DP's ascent
- Another driver: A calculus of composition
- Many applications explored in telecom, health, web, etc.
- Utility bounds exist for simpler mechanisms: Guide choices
- Empirical investigations: some mechanisms work, some don't
- Lower bounds illustrate impossibility results

The Bernstein Mechanism:

Private Function Release – AAAI'17

The Demstein Mechanish

Bernstein vs. Laplace Mechanisms

Problem: What about releasing a function? A trained classifier?

	Laplace Mechanism	Bernstein Mechanism
Operation		
Response space ${\cal B}$	\mathbb{R}^d	functions: $[0,1]^d o \mathbb{R}$
Perturbation	output	output
Privacy		
Requires access to	$f(D)$, $\Delta(f)$	$f(D)$, $\Delta(f)$
Sensitivity norm	L_1	L_1 of $f(\cdot)$ evaluated on lattice
Privacy guarantee	$\epsilon ext{-}DP$	$\epsilon ext{-}DP$
Utility		
Conditions	-	Smooth $f(\cdot)$

Goal: Privately release function g returned by $f: \mathcal{D}^n \to \mathbb{R}^{[0,1]^d}$

Parameters: degree k, sensitivity Δ , privacy $\epsilon > 0$

Goal: Privately release function g returned by $f: \mathcal{D}^n \to \mathbb{R}^{[0,1]^d}$

Parameters: degree k, sensitivity Δ , privacy $\epsilon > 0$

1. Function $g \leftarrow \text{Evaluate } f(D)$

Goal: Privately release function g returned by $f: \mathcal{D}^n \to \mathbb{R}^{[0,1]^d}$ **Parameters**: degree k, sensitivity Δ , privacy $\epsilon > 0$

- 1. Function $g \leftarrow \text{Evaluate } f(D)$
- 2. Coefficients $\mathbf{c} \leftarrow \mathsf{Approximate}\ g$ on a grid over $[0,1]^d$

Goal: Privately release function g returned by $f: \mathcal{D}^n \to \mathbb{R}^{[0,1]^d}$ **Parameters**: degree k, sensitivity Δ , privacy $\epsilon > 0$

- 1. Function $g \leftarrow \text{Evaluate } f(D)$
- 2. Coefficients $\mathbf{c} \leftarrow \mathsf{Approximate}\ g$ on a grid over $[0,1]^d$
- 3. Coefficients $\tilde{\mathbf{c}} \longleftarrow \mathsf{perturb} \; \mathbf{c}$ by Laplace mechanism

Goal: Privately release function g returned by $f: \mathcal{D}^n \to \mathbb{R}^{[0,1]^d}$ **Parameters**: degree k, sensitivity Δ , privacy $\epsilon > 0$

- 1. Function $g \leftarrow \text{Evaluate } f(D)$
- 2. Coefficients $\mathbf{c} \leftarrow \mathsf{Approximate}\ g$ on a grid over $[0,1]^d$
- 3. Coefficients $\tilde{\mathbf{c}} \longleftarrow \mathsf{perturb} \; \mathbf{c}$ by Laplace mechanism
- 4. Release coefficients $\tilde{\mathbf{c}}$

Goal: Privately release function g returned by $f: \mathcal{D}^n \to \mathbb{R}^{[0,1]^d}$ **Parameters**: degree k, sensitivity Δ , privacy $\epsilon > 0$

- 1. Function $g \leftarrow$ Evaluate f(D)
- 2. Coefficients $\mathbf{c} \leftarrow \mathsf{Approximate}\ g$ on a grid over $[0,1]^d$
- 3. Coefficients $\tilde{\mathbf{c}} \longleftarrow \mathsf{perturb} \; \mathbf{c}$ by Laplace mechanism
- 4. Release coefficients $\tilde{\mathbf{c}}$

Reconstruct release function

4. $\tilde{g} \leftarrow$ perturbed coefficients $\tilde{\mathbf{c}}$, dot, public basis functions

Goal: Approximate $g:[0,1] \to \mathbb{R}$ by smooth polynomial

Goal: Approximate $g:[0,1] \to \mathbb{R}$ by smooth polynomial

Degree-k basis $b_{\nu,k}(x) = {k \choose \nu} x^{\nu} (1-x)^{k-\nu}$ for $\nu \in \{0,\ldots,k\}$

Goal: Approximate $g:[0,1] \to \mathbb{R}$ by smooth polynomial

Degree-
$$k$$
 basis $b_{\nu,k}(x) = \binom{k}{\nu} x^{\nu} (1-x)^{k-\nu}$ for $\nu \in \{0,\ldots,k\}$

Coefficients **c**: evaluations on grid $g(0/k), g(1/k), \ldots, g(k/k)$

Goal: Approximate $g:[0,1] \to \mathbb{R}$ by smooth polynomial

Degree-
$$k$$
 basis $b_{\nu,k}(x) = \binom{k}{\nu} x^{\nu} (1-x)^{k-\nu}$ for $\nu \in \{0,\ldots,k\}$

Coefficients c: evaluations on grid $g(0/k), g(1/k), \dots, g(k/k)$

Bernstein operator: $g(x) \approx \sum_{\nu=0}^{k} g(\nu/k) b_{\nu,k}(x)$

Bernstein Utility

Utility: $\leq \alpha$ error whp $\geq 1 - \beta$

1. (2h, T)-smooth target:

$$\alpha = O\left(\frac{\Delta}{\epsilon} \log \frac{1}{\beta}\right)^{\frac{h}{d+h}}$$

2. (γ, L) -Hölder continuous:

$$\alpha = O\left(\frac{\Delta}{\epsilon}\log\frac{1}{\beta}\right)^{\frac{\gamma}{2d+\gamma}}$$

3. Linear target: $\alpha = O\left(\frac{\Delta}{\epsilon} \log \frac{1}{\beta}\right)$

Bernstein Utility

Utility: $\leq \alpha$ error whp $\geq 1 - \beta$

1. (2h, T)-smooth target:

$$\alpha = O\left(\frac{\Delta}{\epsilon} \log \frac{1}{\beta}\right)^{\frac{h}{d+h}}$$

2. (γ, L) -Hölder continuous:

$$\alpha = O\left(\frac{\Delta}{\epsilon} \log \frac{1}{\beta}\right)^{\frac{\gamma}{2d+\gamma}}$$

3. Linear target: $\alpha = O\left(\frac{\Delta}{\epsilon}\log\frac{1}{\beta}\right)$

Proschan'65: Concentration of convex comb of iid log-concave rv Weierstrass Theorem: uniform approximation

Bernstein Utility

Utility: $\leq \alpha$ error whp $\geq 1 - \beta$

1. (2h, T)-smooth target:

$$\alpha = O\left(\frac{\Delta}{\epsilon} \log \frac{1}{\beta}\right)^{\frac{h}{d+h}}$$

2. (γ, L) -Hölder continuous:

$$\alpha = O\left(\frac{\Delta}{\epsilon} \log \frac{1}{\beta}\right)^{\frac{\gamma}{2d+\gamma}}$$

3. Linear target: $\alpha = O\left(\frac{\Delta}{\epsilon}\log\frac{1}{\beta}\right)$

Proschan'65: Concentration of convex comb of iid log-concave rv Weierstrass Theorem: uniform approximation

Lower bound: There exists a target s.t. all ϵ -DP mechanisms introduce $\geq \Omega(\Delta/\epsilon)$ error with probability going to 1

The Sensitivity Sampler:

Automating Privatisation – ICML'17

"Just bound sensitivity" he said, "It will be great" he said.

"Just bound sensitivity" he said, "It will be great" he said.

Bound sensitivity for releasing SVM classifier (Rubinstein et al. 12)


```
the subdifferential \partial_{\phi}\ell(y, \dot{y}):
                               n(\partial_{\mathbf{w}}R_{\text{simp}}(\mathbf{w}_D, D) - \partial_{\mathbf{w}}R_{\text{simp}}(\mathbf{w}_{D'}, D'), \mathbf{w}_D - \mathbf{w}_{D'})
                       = \sum \langle \partial_{\mathbf{w}} \ell \left( y_i, f_{\mathbf{w}_D}(\mathbf{x}_i) \right) - \partial_{\mathbf{w}} \ell \left( y_i', f_{\mathbf{w}_{D'}}(\mathbf{x}_i') \right), \mathbf{w}_D - \mathbf{w}_{D'} \rangle
                       = \sum \left(\ell'\left(y_{i}, f_{\mathbf{w}_{D}}(\mathbf{x}_{i})\right) - \ell'\left(y_{i}, f_{\mathbf{w}_{D'}}(\mathbf{x}_{i})\right)\right) \left(f_{\mathbf{w}_{D}}(\mathbf{x}_{i}) - f_{\mathbf{w}_{D'}}(\mathbf{x}_{i})\right)
                                   + \ell'(\mathbf{x}_n, f_{\mathbf{w}_n}(\mathbf{x}_n)) (f_{\mathbf{w}_n}(\mathbf{x}_n) - f_{\mathbf{w}_n}(\mathbf{x}_n))
                                   -\ell'\left(y_n', f_{\mathbf{w}_{pr}}(\mathbf{x}_n')\right)\left(f_{\mathbf{w}_D}(\mathbf{x}_n') - f_{\mathbf{w}_{pr}}(\mathbf{x}_n')\right)
                     \geq \ell'(y_n, f_{\mathbf{w}_{il}}(\mathbf{x}_n)) (f_{\mathbf{w}_{il}}(\mathbf{x}_n) - f_{\mathbf{w}_{il}}(\mathbf{x}_n))
                                  -\ell'\left(y'_n, f_{\mathbf{W}_{(i)}}(\mathbf{x}'_n)\right)\left(f_{\mathbf{W}_{(i)}}(\mathbf{x}'_n) - f_{\mathbf{W}_{(i)}}(\mathbf{x}'_n)\right)
Here the second equality follows from \partial_{\mathbf{w}} \ell(y, f_{\mathbf{w}}(\mathbf{x})) = \ell'(y, f_{\mathbf{w}}(\mathbf{x})) \phi(\mathbf{x}), and \mathbf{x}'_i = \mathbf{x}_i
and y'_i = y_i for each i \in [n-1]. The inequality follows from the convexity of \ell in its
second argument.<sup>4</sup> Combined with the existence of non-positive r \in \hat{R}(\mathbf{w}_D) this yields
                                          g \in \ell'(y'_n, f_{\mathbf{w}_{\mathcal{O}}}(\mathbf{x}'_n)) (f_{\mathbf{w}_{\mathcal{O}}}(\mathbf{x}'_n) - f_{\mathbf{w}_{\mathcal{O}}}(\mathbf{x}'_n))
                                                         -\ell'(y_n, f_{w_n}(\mathbf{x}_n)) (f_{w_n}(\mathbf{x}_n) - f_{w_{nl}}(\mathbf{x}_n))
                                                             \geq g + \frac{n}{1 - n} ||\mathbf{w}_D - \mathbf{w}_{D^c}||_2^2
And since |g| \le 2L \|f_{\mathbf{w}_B} - f_{\mathbf{w}_{B^c}}\|_{\infty} by the Lipschitz continuity of \ell, this in turn implies
                                         \frac{n}{n\sigma} \|\mathbf{w}_D - \mathbf{w}_D\|_2^2 \le 2L \|f_{\mathbf{w}_D} - f_{\mathbf{w}_{CL}}\|_{\infty}
Now by the reproducing property and Cauchy-Schwartz inequality we can upper bound
the classifier difference's infinity norm by the Euclidean norm on the weight vectors: for
                                   |f_{\mathbf{w}_D}(\mathbf{x}) - f_{\mathbf{w}_{D'}}(\mathbf{x})| = |\langle \phi(\mathbf{x}), \mathbf{w}_D - \mathbf{w}_{D'} \rangle|
                                                                              < Id(x)II, Iwo - world
                                                                               = \sqrt{k(\mathbf{x}, \mathbf{x})} \|\mathbf{w}_D - \mathbf{w}_{D^c}\|_{\alpha}
                                                                               \leq \kappa \|\mathbf{w}_D - \mathbf{w}_{D'}\|_2
Combining this with Inequality (4) yields \|\mathbf{w}_D - \mathbf{w}_{D'}\|_2 \le 4LC\kappa/n as claimed. The
L_1-based sensitivity then follows from \|\mathbf{w}\|_1 \le \sqrt{F} \|\mathbf{w}\|_2 for all \mathbf{w} \in \mathbb{R}^F.
```

"Just bound sensitivity" he said, "It will be great" he said.

Bound sensitivity for releasing SVM classifier (Rubinstein et al. 12)

```
for all \mathbf{x} \in \mathbb{R}^d. For each database S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n, define
                                                                                                                                                                                                                                                                            the subdifferential \partial_{\phi}\ell(y, \dot{y}):
                                                                                                                                                                                                                                                                                                          n(\partial_{\mathbf{w}}R_{\text{simp}}(\mathbf{w}_D, D) - \partial_{\mathbf{w}}R_{\text{simp}}(\mathbf{w}_{D'}, D'), \mathbf{w}_D - \mathbf{w}_{D'})
                                  \mathbf{w}_S \in \arg\min_{i} \frac{C}{T} \sum_{i=1}^{n} \ell(y_i, f_{\mathbf{w}}(\mathbf{x}_i)) + \frac{1}{2} ||\mathbf{w}||_2^2
                                                                                                                                                                                                                                                                                                  = \sum \langle \partial_{\mathbf{w}} \ell \left( y_i, f_{\mathbf{w}_D}(\mathbf{x}_i) \right) - \partial_{\mathbf{w}} \ell \left( y_i', f_{\mathbf{w}_{D'}}(\mathbf{x}_i') \right), \mathbf{w}_D - \mathbf{w}_{D'} \rangle
Then for every pair of neighboring databases D, D' of n entries, we have \|\mathbf{w}_D - \mathbf{w}_{D'}\|_2 \le
4LC\kappa/n, and \|\mathbf{w}_D - \mathbf{w}_{D'}\|_1 \le 4LC\kappa\sqrt{F}/n.
                                                                                                                                                                                                                                                                                                  = \sum \left(\ell'\left(y_{i}, f_{\mathbf{w}_{D}}(\mathbf{x}_{i})\right) - \ell'\left(y_{i}, f_{\mathbf{w}_{D'}}(\mathbf{x}_{i})\right)\right) \left(f_{\mathbf{w}_{D}}(\mathbf{x}_{i}) - f_{\mathbf{w}_{D'}}(\mathbf{x}_{i})\right)
                                                                                                                                                                                                                                                                                                             + \ell'(\mathbf{x}_n, f_{\mathbf{w}_n}(\mathbf{x}_n)) (f_{\mathbf{w}_n}(\mathbf{x}_n) - f_{\mathbf{w}_n}(\mathbf{x}_n))
     Proof. The argument closely follows the proof of the SVM's uniform stability (Schölkopf
                                                                                                                                                                                                                                                                                                             -\ell'\left(y_n', f_{\mathbf{w}_{pr}}(\mathbf{x}_n')\right)\left(f_{\mathbf{w}_D}(\mathbf{x}_n') - f_{\mathbf{w}_{pr}}(\mathbf{x}_n')\right)
and Smola, 2001, Theorem 12.4). For convenience we define for any training set S
                                                                                                                                                                                                                                                                                                  \geq \ell'(y_n, f_{\mathbf{w}_D}(\mathbf{x}_n)) \left(f_{\mathbf{w}_D}(\mathbf{x}_n) - f_{\mathbf{w}_D}(\mathbf{x}_n)\right)
                                                                                                                                                                                                                                                                                                            -\ell'\left(y'_n, f_{\mathbf{W}_{(i)}}(\mathbf{x}'_n)\right)\left(f_{\mathbf{W}_{(i)}}(\mathbf{x}'_n) - f_{\mathbf{W}_{(i)}}(\mathbf{x}'_n)\right)
                                     R_{tog}(\mathbf{w}, S) = \frac{C}{\pi} \sum_{i}^{n} \ell(y_i, f_{\mathbf{w}}(\mathbf{x}_i)) + \frac{1}{2} ||\mathbf{w}||_2^2
                                                                                                                                                                                                                                                                            Here the second equality follows from \partial_{\mathbf{w}} \ell(y, f_{\mathbf{w}}(\mathbf{x})) = \ell'(y, f_{\mathbf{w}}(\mathbf{x})) \phi(\mathbf{x}), and \mathbf{x}'_i = \mathbf{x}_i
                                    R_{\text{emp}}(\mathbf{w}, S) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\mathbf{w}}(\mathbf{x}_i)).
                                                                                                                                                                                                                                                                            and y'_i = y_i for each i \in [n-1]. The inequality follows from the convexity of \ell in its
                                                                                                                                                                                                                                                                            second argument.<sup>4</sup> Combined with the existence of non-positive r \in \hat{R}(\mathbf{w}_D) this yields
      Then the first-order necessary KKT conditions imply
                                                                                                                                                                                                                                                                                                                    g \in \ell'(y'_n, f_{\mathbf{w}_{\mathcal{O}}}(\mathbf{x}'_n)) (f_{\mathbf{w}_{\mathcal{O}}}(\mathbf{x}'_n) - f_{\mathbf{w}_{\mathcal{O}}}(\mathbf{x}'_n))
                                                                                                                                                                                                                                                                                                                                  -\ell'(y_n, f_{w_n}(\mathbf{x}_n)) (f_{w_n}(\mathbf{x}_n) - f_{w_{nl}}(\mathbf{x}_n))
                             0 \in \partial_{\mathbf{w}} R_{\text{nor}}(\mathbf{w}_D, D) = C \partial_{\mathbf{w}} R_{\text{non}}(\mathbf{w}_D, D) + \mathbf{w}_D
                             0 \in \partial_{\mathbf{w}} R_{\text{nor}}(\mathbf{w}_{D'}, D') = C \partial_{\mathbf{w}} R_{\text{sum}}(\mathbf{w}_{D'}, D') + \mathbf{w}_{D'}
where \partial_w is the subdifferential operator wrt w. Define the auxiliary risk function
                                                                                                                                                                                                                                                                                                                                      \geq g + \frac{n}{1 - n} ||\mathbf{w}_D - \mathbf{w}_{D^c}||_2^2
     \hat{R}(\mathbf{w}) = C(\partial_{\mathbf{w}}R_{\text{ems}}(\mathbf{w}_D, D) - \partial_{\mathbf{w}}R_{\text{ems}}(\mathbf{w}_{D'}, D'), \mathbf{w} - \mathbf{w}_{D'}) + \frac{1}{2}||\mathbf{w} - \mathbf{w}_{D'}||_2^2
                                                                                                                                                                                                                                                                            And since |g| \le 2L \|f_{\mathbf{w}_B} - f_{\mathbf{w}_{B^c}}\|_{\infty} by the Lipschitz continuity of \ell, this in turn implies
Note that \tilde{R}(\cdot) maps to sets of reals. It is easy to see that \tilde{R}(\mathbf{w}) is strictly convex in \mathbf{w}.
                                                                                                                                                                                                                                                                                                                   \frac{n}{n\sigma} \|\mathbf{w}_D - \mathbf{w}_D\|_2^2 \le 2L \|f_{\mathbf{w}_D} - f_{\mathbf{w}_{CL}}\|_{\infty}
Substituting way into R(w) yields
                                                                                                                                                                                                                                                                            Now by the reproducing property and Cauchy-Schwartz inequality we can upper bound
                  \tilde{R}(\mathbf{w}_{D'}) = C \left(\partial_{\mathbf{w}} R_{emp} \left(\mathbf{w}_{D}, D\right) - \partial_{\mathbf{w}} R_{emp} \left(\mathbf{w}_{D'}, D'\right), 0\right) + \frac{1}{2} \|0\|_{2}^{2}
                                                                                                                                                                                                                                                                            the classifier difference's infinity norm by the Euclidean norm on the weight vectors: for
                                  - (0)
                                                                                                                                                                                                                                                                                                             |f_{\mathbf{w}_D}(\mathbf{x}) - f_{\mathbf{w}_{D'}}(\mathbf{x})| = |\langle \phi(\mathbf{x}), \mathbf{w}_D - \mathbf{w}_{D'} \rangle|
And by Equation (3)
                                                                                                                                                                                                                                                                                                                                                     < Id(x)II, Iwo - world
   C\partial_{\mathbf{w}}R_{\mathrm{emp}}(\mathbf{w}_D, D) + \mathbf{w} \in C\partial_{\mathbf{w}}R_{\mathrm{emp}}(\mathbf{w}_D, D) - C\partial_{\mathbf{w}}R_{\mathrm{emp}}(\mathbf{w}_D, D') + \mathbf{w} - \mathbf{w}_D
                                                                                                                                                                                                                                                                                                                                                     = \sqrt{k(\mathbf{x}, \mathbf{x})} \|\mathbf{w}_D - \mathbf{w}_{D'}\|_2
                                                  = \partial_{\mathbf{w}} \tilde{R}(\mathbf{w}).
                                                                                                                                                                                                                                                                            Combining this with Inequality (4) yields \|\mathbf{w}_D - \mathbf{w}_{D'}\|_2 \le 4LC\kappa/n as claimed. The
which combined with Equation (2) implies 0 \in \partial_w \hat{R}(wp), so that \hat{R}(w) is minimized
                                                                                                                                                                                                                                                                            L_1-based sensitivity then follows from \|\mathbf{w}\|_1 \le \sqrt{F} \|\mathbf{w}\|_2 for all \mathbf{w} \in \mathbb{R}^F.
at \mathbf{w}_D. Thus there exists some non-positive r \in \hat{R}(\mathbf{w}_D). Next simplify the first term of
                                                                                                                                                                                                                                                                            \tilde{R}(\mathbf{w}_D), scaled by n/C for notational convenience. In what follows we denote by \ell'(y, \hat{y})
```

Simple? Subdifferentials, algorithmic stability, convex auxiliary risk

"Laws of Mathematics are Very Commendable but..."

"Laws of Mathematics are Very Commendable but..."

Apply generic mechanisms without bounding sensitivity?

Existing work: Restrict targets until sensitivity can be 'composed' *e.g.*, recent Uber/Berkeley Elastic Sensitivity system.

This work: Permit *any* target, but won't bound target sensitivity over all DB pairs. Instead sensitivity over all reasonable DBs.

Key ideas

- High-prob bound on sensitivity ⇒ Mechanisms probably DP
- Sampling, Emp process theory ⇒ High-prob sensitivity bound

Idea 1: Sensitivity-Induced Privacy

Mechanism \mathcal{M} (on target f) is sensitivity-induced private

If for neighbouring D, D': $||f(D) - f(D')||_{\mathcal{B}} \leq \Delta$ implies $\forall B \subset \mathcal{B}, \Pr(\mathcal{M}_{\Delta}(D) \in B) \leq \exp(\epsilon) \cdot \Pr(\mathcal{M}_{\Delta}(D') \in B)$

Many mechanisms! Laplace, Gaussian, exponential, Bernstein Connecting the dots:

- ullet Choose a 'natural' distribution P on ${\mathcal D}$
- $\Pr\left(\mathcal{M}_{\Delta} \text{ being } \epsilon\text{-DP on } D, D'\right) \ge \Pr\left(\|f(D) f(D')\|_{\mathcal{B}} \le \Delta\right)$
- (γ, ϵ) -random DP (Hall et al. 2012): $\Pr\left(\mathcal{M}_{\Delta} \text{ being } \epsilon\text{-DP on } D, D'\right) \geq 1 - \gamma$ Intuition: DP on most databases, ignore the pathological.

Idea 2: Sample and Estimate $Pr(||f(D) - f(D')||_{\mathcal{B}} \leq \Delta)$

Define $G = ||f(D) - f(D')||_{\mathcal{B}}$ from neighbouring $D, D' \sim P^n$

- CDF of G is $Pr(||f(D) f(D')||_{\mathcal{B}} \leq \Delta)$
- Idea 1: \mathcal{M}_{Δ} is RDP with confidence $1 \gamma = CDF(\Delta)$
- Compute then invert $\Delta = CDF^{-1}(1-\gamma)$? ...groan

Idea 2: Sample and Estimate $Pr(||f(D) - f(D')||_{\mathcal{B}} \leq \Delta)$

Define $G = ||f(D) - f(D')||_{\mathcal{B}}$ from neighbouring $D, D' \sim P^n$

- CDF of G is $Pr(||f(D) f(D')||_{\mathcal{B}} \leq \Delta)$
- Idea 1: \mathcal{M}_{Δ} is RDP with confidence $1 \gamma = CDF(\Delta)$
- Compute then invert $\Delta = CDF^{-1}(1-\gamma)$? ...groan

Algorithm: Sensitivity-sampler

- 1. Sample target: $G_1, \ldots, G_m \sim G$
- 2. Empirical CDF: $\frac{1}{m} \sum_{i=1}^{m} 1[G_i \leq \Delta]$
- 3. Dvoretsky-Kiefer-Wolfowitz: ECDF ρ' close to CDF, whp $1-\rho$
- 4. $\Delta = ECDF^{-1}(1 \gamma + \rho + \rho')$

Example: Priestly-Chao Kernel Regression

Density Estimation: Utility vs Privacy

Synthetic n = 5000 (1000 repeats); Bernstein with k = 10, h = 3

Notes

When resource constrained, can strike 'optimal' trade-offs:

Table 1. Optimal ρ operating points for budgeted resources— γ or m—minimising m, γ or k; proved in (Rubinstein & Aldà, 2017).

Budgeted	Optimise	ρ	γ	m	k
$\gamma \in (0,1)$	m	$\exp\left(W_{-1}\left(-\frac{\gamma}{2\sqrt{e}}\right) + \frac{1}{2}\right)$	•	$\frac{\log(\frac{1}{\rho})}{2(\gamma-\rho)^2}$	$\left[m\left(1-\gamma+\rho+\sqrt{\frac{\log\left(\frac{1}{\rho}\right)}{2m}}\right)\right]$
$m\in\mathbb{N},\gamma$	k	$\exp\left(\frac{1}{2}W_{-1}\left(-\frac{1}{4m}\right)\right)$	$\geq ho + \sqrt{rac{\log\left(rac{1}{ ho} ight)}{2m}}$	•	$m\left(1-\gamma+\rho+\sqrt{\frac{\log(\frac{1}{\rho})}{2m}}\right)$
$m\in \mathbb{N}$	γ	$\exp\left(\frac{1}{2}W_{-1}\left(-\frac{1}{4m}\right)\right)$	$\rho + \sqrt{\frac{\log(\frac{1}{\rho})}{2m}}$	•	m

Estimate sensitivity offline & in parallel

 \bullet $\it m$ up, then RDP confidence $1-\gamma$ up

Distribution P on records:

- Non-informative e.g., uniform, Gaussian
- A (public) Bayesian prior
- Density fit privately to data

The diffpriv Package

diffpriv on CRAN and GitHub

Open-source R

'Official' on CRAN with rigorous submission process

roxygen2 docs

Tutorial vignettes

98% Codecov

Travis CI

install.packages("diffpriv")

Architecture Highlights

DPMech: VIRTUAL S4 class for sensitivity-induced mechanisms

- 1. Slot target: The non-private target function f
- 2. Slot sensitivity: Sensitivity of f to calibrate mechanism
- 3. releaseResponse(): Sample from response distribution
- 4. sensitivityNorm(): $\Delta_f(D_1, D_2) = \|f(D_1) f(D_2)\|_{\mathcal{B}}$
- 5. sensitivitySampler(): Probes #4 to fill #2

Architecture Highlights

DPMech: VIRTUAL S4 class for sensitivity-induced mechanisms

- 1. Slot target: The non-private target function f
- 2. Slot sensitivity: Sensitivity of f to calibrate mechanism
- 3. releaseResponse(): Sample from response distribution
- 4. sensitivityNorm(): $\Delta_f(D_1, D_2) = \|f(D_1) f(D_2)\|_{\mathcal{B}}$
- 5. sensitivitySampler(): Probes #4 to fill #2

Included generic mechanisms, all subclass DPMech

- DPMechLaplace, DPMechGaussian: numeric release
- DPMechExponential: private optimisation
- DPMechBernstein: function release

Conclusions

Differential privacy

- Semantic privacy; practical in many ways; complements cryto
- Many deep connections between TCS, Stats/Learning, S&P

AAAI'17 Bernstein mechanism for private function release

ICML'17 Sensitivity sampler for automated RDP privatisation

diffpriv open-source R package implements these and more

Thankyou!

http://bipr.net

Narayanan & Shmatikov (2008) on k-Anonymity

"Sanitization techniques from *k*-anonymity literature... do not provide meaningful privacy guarantees"

"A popular approach to micro-data privacy is *k*-anonymity... This does not guarantee any privacy, because the values of sensitive attributes associated with a given quasi-identifier may not be sufficiently diverse [20, 21] or the adversary may know more than just the quasi-identifiers [20]. Furthermore... completely fails on high-dimensional datasets [2], such as the Netflix Prize dataset..."

Iterated Bernstein Operator

Order h, degree k

Bernstein operator:

$$B_k(g; x) = \sum_{\nu=0}^k g(\nu/k) b_{\nu,k}(x)$$

Iterated Bernstein operator:

$$B_k^{(h)} = \sum_{i=1}^h (-1)^{i-1} B_k^i$$
 where $B_k^i = B_k \circ B_k^{i-1}$

Multivariate:

Evaluate g over lattice, Basis polynomials become products

Comparing DP Relaxations

ϵ -differential privacy

• Worst case on databases, Worst case on responses

(ϵ, δ) -differential privacy

• Worst case on databases, Protection for likely responses

(ϵ, γ) -random differential privacy

• Protection for likely databases, Worst case on responses