Project

```
# Load libraries
library(ggplot2)
library(dplyr)
library(lubridate)
library(tidyr)
# Read the data from CSV
data <- read.csv("data.csv")</pre>
# Convert Date to Date format
data$Date <- as.Date(data$Date)</pre>
# Extract month and year for time-based analysis
data$Year <- year(data$Date)</pre>
data$Month <- month(data$Date)</pre>
data$Season <- case_when(</pre>
 data$Month %in% 3:5 ~ "Spring",
 data$Month %in% 6:8 ~ "Summer",
 data$Month %in% 9:11 ~ "Autumn",
 TRUE
                      ~ "Winter"
# For temperature, you may need to clean/remove the "C" symbol and convert them to numeric values
data$Day.Temp <- as.numeric(gsub("C", "", data$Day.Temp))</pre>
data$Night.Temp <- as.numeric(gsub("C", "", data$Night.Temp))</pre>
data <- data %>%
  filter(Day.Weather != "" & Day.Weather != "-") %>%
 filter(Night.Weather != "" & Night.Weather != "-") %>%
 filter(Day.Wind.Force != "Unknown" & Night.Wind.Force != "Unknown")
# Function to categorize wind force levels
categorize_wind_force <- function(force) {</pre>
  if (force == "Unknown") {
   return("0")
 } else if (grepl("3 |3 |1-2", force)) {
    return("0-3")
  } else if (grepl("3-4 |4 |4-5 |5-6 |5 |6 ", force)) {
   return("3-6")
  } else if (grepl("6-7 |8-9 |7-8 ", force)) {
    return("6-9")
  } else if (grepl("9-10 | 10-11 | 11-12 ", force)) {
    return("9-12")
 } else {
    return(NA)
```

```
}
}
# Apply the function to both Day_Wind_Force and Night_Wind_Force columns
data <- data %>%
  mutate(
    Day_Wind_Force_Category = sapply(Day.Wind.Force, categorize_wind_force),
    Night Wind Force Category = sapply(Night.Wind.Force, categorize wind force)
  )
# View the updated dataframe
print(head(data))
##
                    City Weather.Condition Temperature
## 1 2011-01-01 beijing
                                              0.0/-8.0
## 2 2011-01-02 beijing
                                           -2°C/-7°C
## 3 2011-01-03 beijing
                                              1.0/-8.0
## 4 2011-01-04 beijing
                                            -1°C/-11°C
                                             -1.0/-8.0
## 5 2011-01-05 beijing
## 6 2011-01-06 beijing
                                             0.0/-10.0
          Wind.Force.and.Direction Day.Weather Night.Weather Day.Temp Night.Temp
## 1
        3 /
                                                0
                                                           -9
## 2
        3 /
                                              -2
                                                         -7
              3
           3-4 /
## 3
                   3
                                                                -8
                                                      1
## 4
        3 /
              3
                                                -1
                                                          -11
## 5
                 4-5 / 3-4
                                                          -1
                                                                     -8
## 6
                                                0
                                                          -10
##
     Day.Wind.Direction Night.Wind.Direction Day.Wind.Force Night.Wind.Force Year
## 1
                                           3
                                                          3 2011
## 2
                                           3
                                                          3 2011
## 3
                                                               3 2011
                                              3 - 4
## 4
                                           3
                                                          3 2011
## 5
                                                  4-5
                                                                  3-4 2011
                                                          3 2011
## 6
                                          3
     Month Season Day Wind Force Category Night Wind Force Category
## 1
         1 Winter
                                        0-3
                                                                   0 - 3
## 2
         1 Winter
                                        0 - 3
                                                                   0 - 3
## 3
         1 Winter
                                        3-6
                                                                   0-3
## 4
         1 Winter
                                        0-3
                                                                   0-3
## 5
         1 Winter
                                        3-6
                                                                   3-6
## 6
         1 Winter
                                        0-3
                                                                   0-3
# Summary statistics for temperature (Day and Night)
summary_stats <- data %>%
  group_by(City) %>%
  summarise(
    Day_Temperature_Mean = mean(Day.Temp, na.rm = TRUE),
    Night_Temperature_Mean = mean(Night.Temp, na.rm = TRUE),
    Day_Temperature_Median = median(Day.Temp, na.rm = TRUE),
    Night_Temperature_Median = median(Night.Temp, na.rm = TRUE),
    Day_Temperature_Min = min(Day.Temp, na.rm = TRUE),
    Night Temperature Min = min(Night.Temp, na.rm = TRUE),
    Day_Temperature_Max = max(Day.Temp, na.rm = TRUE),
```

```
Night_Temperature_Max = max(Night.Temp, na.rm = TRUE)
  )
print(summary_stats)
## # A tibble: 4 x 9
##
              Day_Temperature_Mean Night_Temperature_Mean Day_Temperature_Median
    City
##
     <chr>
                             <dbl>
                                                     <dbl>
                              18.9
                                                      8.55
                                                                               20
## 1 beijing
## 2 haikou
                              28.6
                                                     22.2
                                                                               30
## 3 lasa
                              17.1
                                                      3.43
                                                                               17
## 4 shanghai
                              21.2
                                                     14.9
                                                                               22
## # i 5 more variables: Night_Temperature_Median <dbl>,
       Day_Temperature_Min <dbl>, Night_Temperature_Min <dbl>,
       Day_Temperature_Max <dbl>, Night_Temperature_Max <dbl>
# Combine both Day and Night wind force categories into one column for analysis
df_long <- data %>%
  gather(key = "Time_of_Day", value = "Wind_Force_Category", Day_Wind_Force_Category, Night_Wind_Force_
# Summary statistics: count of wind force categories per city
summary_stats <- df_long %>%
  group_by(City, Wind_Force_Category) %>%
  summarise(Count = n()) %>%
  arrange(City, Wind_Force_Category)
# Print summary statistics
print(summary_stats)
## # A tibble: 13 x 3
               City [4]
## # Groups:
               Wind_Force_Category Count
##
      City
##
      <chr>
               <chr>>
                                   <int>
## 1 beijing 0-3
                                    5634
## 2 beijing 3-6
                                    1622
## 3 beijing 6-9
                                       2
## 4 haikou
               0-3
                                    2571
## 5 haikou
               3-6
                                    4671
## 6 haikou
               6-9
                                      36
## 7 haikou
                                      14
               9-12
## 8 lasa
               0-3
                                    6136
                                     621
## 9 lasa
               3-6
## 10 lasa
               6-9
                                       1
## 11 shanghai 0-3
                                    2994
## 12 shanghai 3-6
                                    4273
                                      21
## 13 shanghai 6-9
# Wind force summary statistics
wind_stats <- data %>%
  group_by(City) %>%
  summarise(
    Day Wind Force Mean = mean(Day.Wind.Force, na.rm = TRUE),
    Night_Wind_Force_Mean = mean(Night.Wind.Force, na.rm = TRUE),
```

```
Day_Wind_Force_Max = max(Day.Wind.Force, na.rm = TRUE),
   Night Wind Force Max = max(Night.Wind.Force, na.rm = TRUE)
print(wind_stats)
## # A tibble: 4 x 5
    City
             Day_Wind_Force_Mean Night_Wind_Force_Mean Day_Wind_Force_Max
     <chr>
##
                            <dbl>
                                                  <dbl> <chr>
## 1 beijing
                               NA
                                                     NA 6
                                                     NA 9-10
## 2 haikou
                               NA
## 3 lasa
                               NA
                                                     NA 6
## 4 shanghai
                               NA
                                                     NA 8-9
## # i 1 more variable: Night_Wind_Force_Max <chr>
temperature_by_month <- data %>%
  group_by(City, Month) %>%
  summarise(
   Average_Day_Temperature = mean(Day.Temp, na.rm = TRUE),
   Average_Night_Temperature = mean(Night.Temp, na.rm = TRUE)
  ) %>%
  mutate(Day_Night_Temp_Difference = Average_Day_Temperature - Average_Night_Temperature)
# Calculate yearly averages and temperature difference
temperature_by_year <- data %>%
  group_by(City, Year) %>%
  summarise(
   Average_Day_Temperature = mean(Day.Temp, na.rm = TRUE),
   Average_Night_Temperature = mean(Night.Temp, na.rm = TRUE)
  ) %>%
  mutate(Day_Night_Temp_Difference = Average_Day_Temperature - Average_Night_Temperature)
# Reshape temperature_by_month for plotting
temperature long city <- temperature by month %>%
 pivot longer(
    cols = c(Average_Day_Temperature, Average_Night_Temperature, Day_Night_Temp_Difference),
   names_to = "Temperature_Type",
   values_to = "Temperature"
  )
# Boxplots for Day, Night, and Difference by City
ggplot(temperature_long_city, aes(x = City, y = Temperature, fill = Temperature_Type)) +
  geom_boxplot(alpha = 0.7, outlier.size = 1) +
  facet_wrap(~ Temperature_Type, scales = "free_y", nrow = 3,
             labeller = labeller(Temperature_Type = c(
               "Average_Day_Temperature" = "Day Temperature",
               "Average_Night_Temperature" = "Night Temperature",
               "Day_Night_Temp_Difference" = "Day-Night Difference"
             ))) +
  labs(
   title = "Temperature Distribution by City",
   x = "City",
   y = "Temperature (°C)"
```

```
theme_minimal() +
theme(
  legend.position = "none",
  strip.text = element_text(size = 12, face = "bold"),
  axis.text.x = element_text(angle = 45, hjust = 1)
)
```

Temperature Distribution by City


```
# Plot Day and Night Temperature by Month
ggplot(temperature_by_month) +
  geom_line(aes(x = Month, y = Average_Day_Temperature, color = City), linetype = "solid", size = 1) +
  geom_line(aes(x = Month, y = Average_Night_Temperature, color = City), linetype = "dotted", size = 1)
  labs(
    title = "Day and Night Temperature by Month for Each City",
    x = "Month",
    y = "Temperature ("C")",
    color = "City"
  ) +
  theme_minimal()
```



```
# Plot Day-Night Temperature Difference by Month
ggplot(temperature_by_month, aes(x = Month, y = Day_Night_Temp_Difference, color = City)) +
geom_line(size = 1) +
labs(
    title = "Day-Night Temperature Difference by Month for Each City",
    x = "Month",
    y = "Temperature Difference ('C)",
    color = "City"
) +
theme_minimal()
```



```
# Plot Day and Night Temperature by Year
ggplot(temperature_by_year) +
  geom_line(aes(x = Year, y = Average_Day_Temperature, color = City), linetype = "solid", size = 1) +
  geom_line(aes(x = Year, y = Average_Night_Temperature, color = City), linetype = "dotted", size = 1)
  labs(
    title = "Day and Night Temperature by Year for Each City",
    x = "Year",
    y = "Temperature ('C)",
    color = "City"
  ) +
  theme_minimal()
```



```
# Plot Day-Night Temperature Difference by Year
ggplot(temperature_by_year, aes(x = Year, y = Day_Night_Temp_Difference, color = City)) +
geom_line(size = 1) +
labs(
    title = "Day-Night Temperature Difference by Year for Each City",
    x = "Year",
    y = "Temperature Difference ("C")",
    color = "City"
) +
theme_minimal()
```



```
day_weather_counts <- data %>%
  group_by(City, Day.Weather) %>%
  tally() %>%
  ungroup()
night_weather_counts <- data %>%
  group by(City, Night.Weather) %>%
  tally() %>%
  ungroup()
# Function to plot pie chart for weather conditions by city
plot_pie_chart <- function(data, city, weather_column, title) {</pre>
  city_data <- data %>% filter(City == city)
 p <- ggplot(city_data, aes(x = "", y = n, fill = !!sym(weather_column))) +
    geom_bar(stat = "identity", width = 1) +
    coord_polar(theta = "y") +
    labs(title = paste(title, "for", city), fill = weather_column) +
    theme_void()
  return(p)
# Example: Plot pie chart for the first city in the dataset (you can loop for all cities)
cities <- unique(data$City)</pre>
# Create a list of plots for all cities
```

```
plots <- list()

# Loop through cities to plot pie charts for Day and Night weather conditions

for (city in cities) {
    # Day Weather Pie Chart
    day_plot <- plot_pie_chart(day_weather_counts, city, "Day.Weather", "Day Weather Condition")
    print(day_plot)

# Night Weather Pie Chart
    night_plot <- plot_pie_chart(night_weather_counts, city, "Night.Weather", "Night Weather Condition")
    print(night_plot)
}</pre>
```

Day Weather Condition for beijing

Night Weather Condition for beijing

Night Weather Condition for shanghai

Day Weather Condition for lasa

Night Weather Condition for lasa

Day Weather Condition for haikou

Night Weather Condition for haikou


```
# Count the occurrences of each weather condition (Day and Night) by city
weather_condition_day <- data %>%
group_by(City, Day.Weather) %>%
summarise(Count = n())

weather_condition_night <- data %>%
group_by(City, Night.Weather) %>%
summarise(Count = n())

# Plot weather condition occurrences (day)
ggplot(weather_condition_day, aes(x = Day.Weather, y = Count, fill = City)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Weather Condition Occurrences During Day for Each City", x = "Weather Condition", y = "theme_minimal()+
theme(
    axis.text.x = element_text(angle = 45, hjust = 1, size = 10) # Rotate labels by 45 degrees
)
```



```
ggplot(weather_condition_night, aes(x = Night.Weather, y = Count, fill = City)) +
   geom_bar(stat = "identity", position = "dodge") +
   labs(title = "Weather Condition Occurrences During Night for Each City", x = "Weather Condition", y =
   theme_minimal() +
   theme(
        axis.text.x = element_text(angle = 45, hjust = 1, size = 10) # Rotate labels by 45 degrees
   )
```

Weather Condition Occurrences During Night for Each City


```
day_weather_counts <- data %>%
  group_by(City, Season, Day.Weather) %>%
  tally() %>%
  ungroup()
night_weather_counts <- data %>%
  group by (City, Season, Night. Weather) %>%
  tally() %>%
  ungroup()
# Function to plot pie chart for weather conditions by city and season
plot_pie_chart <- function(data, city, season, weather_column, title) {</pre>
  city season data <- data %>% filter(City == city & Season == season)
  p <- ggplot(city_season_data, aes(x = "", y = n, fill = !!sym(weather_column))) +</pre>
    geom_bar(stat = "identity", width = 1) +
    coord_polar(theta = "y") +
    labs(title = paste(title, "for", city, "-", season), fill = weather_column) +
    theme_void() +
    theme(legend.position = "right", # Move legend outside the plot
          legend.title = element_text(size = 10), # Adjust the legend title size
          legend.text = element_text(size = 8)) # Adjust the legend text size
  return(p)
}
# Loop through cities and seasons to plot pie charts for Day and Night weather conditions
cities <- unique(data$City)</pre>
```

```
seasons <- unique(data$Season)

for (city in cities) {
   for (season in seasons) {
      # Day Weather Pie Chart
      day_plot <- plot_pie_chart(day_weather_counts, city, season, "Day.Weather", "Day Weather Condition"
      print(day_plot)

      # Night Weather Pie Chart
      night_plot <- plot_pie_chart(night_weather_counts, city, season, "Night.Weather", "Night Weather Condition"
      print(night_plot)
    }
}</pre>
```

Day Weather Condition for beijing - Winter

Night Weather Condition for beijing – Winter

Day Weather Condition for beijing - Spring

Night Weather Condition for beijing – Spring

Day Weather Condition for beijing - Summer

Night Weather Condition for beijing – Summer

Day Weather Condition for beijing – Autumn

Night Weather Condition for beijing – Autumn

Day Weather Condition for shanghai – Winter

Night Weather Condition for shanghai - Winter

Day Weather Condition for shanghai - Spring

Night Weather Condition for shanghai - Spring

Day Weather Condition for shanghai – Summer

Night Weather Condition for shanghai - Summer

Day Weather Condition for shanghai - Autumn

Night Weather Condition for shanghai – Autumn

Day Weather Condition for lasa – Winter

Night Weather Condition for lasa – Winter

Day Weather Condition for lasa - Spring

Night Weather Condition for lasa – Spring

Day Weather Condition for lasa – Summer

Night Weather Condition for lasa – Summer

Day Weather Condition for lasa – Autumn

Night Weather Condition for Iasa – Autumn

Day Weather Condition for haikou - Winter

Night Weather Condition for haikou - Winter

Day Weather Condition for haikou - Spring

Night Weather Condition for haikou - Spring

Day Weather Condition for haikou - Summer

Night Weather Condition for haikou – Summer

Day Weather Condition for haikou – Autumn

Night Weather Condition for haikou – Autumn


```
# Count the occurrences of wind force by City and Season
day_wind_force_counts <- data %>%
  group_by(City, Season, Day_Wind_Force_Category) %>%
  tally() %>%
  ungroup()
night_wind_force_counts <- data %>%
  group_by(City, Season, Night_Wind_Force_Category) %>%
  tally() %>%
  ungroup()
# Function to plot pie chart for weather conditions or wind force by city and season
plot_pie_chart <- function(data, city, season, weather_column, title) {</pre>
  city_season_data <- data %>% filter(City == city & Season == season)
  p <- ggplot(city_season_data, aes(x = "", y = n, fill = !!sym(weather_column))) +</pre>
    geom_bar(stat = "identity", width = 1) +
    coord_polar(theta = "y") +
    labs(title = paste(title, "for", city, "-", season), fill = weather_column) +
    theme_void() +
    theme(legend.position = "right", # Move legend outside the plot
          legend.title = element_text(size = 10), # Adjust the legend title size
          legend.text = element_text(size = 8))  # Adjust the legend text size
  return(p)
}
# Loop through cities and seasons to plot pie charts for Day and Night weather conditions and wind forc
```

```
cities <- unique(data$City)
seasons <- unique(data$Season)

for (city in cities) {
    for (season in seasons) {
        # Day Wind Force Pie Chart
        day_wind_plot <- plot_pie_chart(day_wind_force_counts, city, season, "Day_Wind_Force_Category", "Day_print(day_wind_plot)

    # Night Wind Force Pie Chart
        night_wind_plot <- plot_pie_chart(night_wind_force_counts, city, season, "Night_Wind_Force_Category print(night_wind_plot)
    }
}</pre>
```

Day Wind Force for beijing – Winter

Night Wind Force for beijing – Winter

Day Wind Force for beijing - Spring

Night Wind Force for beijing – Spring

Day Wind Force for beijing – Summer

Night Wind Force for beijing – Summer

Day Wind Force for beijing – Autumn

Night Wind Force for beijing – Autumn

Day Wind Force for shanghai – Winter

Night Wind Force for shanghai – Winter

Day Wind Force for shanghai - Spring

Night Wind Force for shanghai – Spring

Day Wind Force for shanghai – Summer

Night Wind Force for shanghai - Summer

Day Wind Force for shanghai - Autumn

Night Wind Force for shanghai – Autumn

Day Wind Force for lasa – Winter

Night Wind Force for lasa – Winter

Day Wind Force for lasa - Spring

Night Wind Force for lasa - Spring

Day Wind Force for lasa – Summer

Night Wind Force for lasa – Summer

Day Wind Force for lasa – Autumn

Night Wind Force for lasa – Autumn

Day Wind Force for haikou - Winter

Night Wind Force for haikou – Winter

Day Wind Force for haikou - Spring

Night Wind Force for haikou – Spring

Day Wind Force for haikou – Summer

Night Wind Force for haikou – Summer

Day Wind Force for haikou – Autumn

Night Wind Force for haikou – Autumn

