In the Claims

The status of claims in the case is as follows:

1	 [Currently amended] Method for evaluating a network by
2	deriving its discrete utilization and streaming utilization
3	from observations of work performed on packets by a system
4	including said network, comprising the steps of:
5	transmitting into said network a plurality of bursts of
6	packets;
7	responsive to said bursts of packets, determining a
8	streaming utilization of said network;
9	transmitting into said network a plurality of packets
10	in isolation and of different lengths;
11	responsive to said plurality of packets, measuring
12	average message delay through said network;
13	determining a standard deviation of said message delay;

and

- calculating a discrete utilization of said network as a ratio of said average message delay to said standard deviation.
 - 1 2. [Original] The method of claim 1, further comprising
 2 the steps of:
 - factoring instances of dropped messages as full

 utilization in calculating said discrete utilization.
 - 3. [Previously presented] Method for evaluating a
 network, comprising the steps of:
 - communicating of a plurality of long packets and short
 packets through said network;
 - 5 determining a best time of said long packets;
 - 6 determining a best time of said short packets;

- 7 responsive to a length of said long and short packets
- and their respective best times, determining Network
- 9 Queue Wait Time (Tw) and a standard deviation of
- Network Queue Wait Time, (σTw) ;
- 11 responsive to said Tw and σ Tw, calculating a discrete
- 12 utilization (p) of said network.
 - 1 4. [Original] The method of claim 3, wherein said Tw, σ Tw
- and p are related by the expression:
- 3
- 4
- 5 $\text{Tw } / \sigma \text{Tw} = p / \sqrt{(p * (2 p))}$.
- 1 5. [Canceled]
- 1 6. [Canceled]
- 7. [Currently amended] The method of claim 6, further

2	comprising the steps of: Method for evaluating a network,
3	comprising the steps of:
4	sending test packets across said network;
5	based upon number of test packets transmitted, number
6	of bytes per test packet, send and receive time stamps
7	of each test packet, and number of test packets lost in
8	transmission, deducing a capacity of said network, its
9	latency, and a current utilization of said capacity;
10	calculating network hop count as a measure of a minimum
11	number of hops of network bottleneck hop speed that
12	could be in said network;
13	responsive to said network hop count, determining a
14	minimum network discrete utilization;
15	responsive to said test packets, determining as a
16	maximum network discrete utilization a number of
17	messages queued per network hop count; and
18	responsive to said minimum network discrete utilization

- and said maximum network discrete utilization,
- determining a best approximation of end to end discrete
- 21 utilization.
- 22 8. [Original] The method of claim 7, further comprising
- the step of:
- 24 adjusting said end to end discrete utilization for
- 25 dropped test packets.
 - 9. [Previously presented] The method of claim 7, said
 - 2 best approximation of end to end discrete utilization being
 - an average of said minimum network discrete utilization and
 - 4 said maximum network discrete utilization.
 - 1 10. [Original] The method of claim 7, further comprising
 - 2 the step of:
 - adjusting said best approximation of end to end
 - 4 discrete utilization by selectively weighting said
 - 5 minimum network discrete utilization or said maximum
 - 6 network discrete utilization responsive to network
 - 7 streaming utilization.

1	11. [Canceled]
1	12. [Currently amended] The method of claim 11, further
2	comprising the step of A method for evaluating network
3	characteristics from observations of work performed on
4	packets by a system including said network, comprising the
5	steps of
6	determining a minimum network discrete utilization;
7	determining as a maximum network discrete utilization a
8	number of messages queued per network hop count; and
9	responsive to said minimum network discrete utilization
10	and said maximum network discrete utilization,
11	determining a best approximation of end to end discrete

- determining average message service time;
- 14 <u>calculating a standard deviation of network queue wait</u>

utilization;

12

15	time (σTw) = square root of (utilization * (2-
16	utilization)) * (average message service time / (1 -
17	<pre>utilization); and</pre>
18	determining Tw determining network queue wait time (Tw)
19	= utilization * average message service time / (1 -
20	utilization).
1	13. [Currently amended] A method for evaluating a discrete
2	utilization of a network, comprising the steps of
3	transmitting probative samples of at least two sizes
4	through said network;
5	time stamping said probative samples; [[and]]
6	responsive to said <u>probative</u> samples, calculating the
7	average an average wait time delay and a standard
8	deviation of said average delay of said network;
9	responsive to said probative samples, determining a
10	minimum network discrete utilization and a maximum

- network discrete utilization as respective functions of
- 12 ratios of said average delay of said network to a
- standard deviation of said average delay; and
- 14 responsive to said minimum network discrete utilization
- and said maximum network discrete utilization,
- determining a best approximation of end to end discrete
- 17 <u>utilization</u>.
 - 1 14. [Original] The method of claim 13, said samples
 - 2 comprising one way echo packets.
 - 1 15. [Original] The method of claim 13, said samples
 - 2 comprising two way echo packets.
 - 1 16. [Canceled]
 - 1 17. [Currently amended] The method of claim 16 claim 13,
 - 2 further comprising the steps of:
 - fine tuning said discrete utilization by averaging

4	dropped instances of said samples with successful
5	transmissions of said samples to derive a measure of
6	discrete utilization based upon a total set of said
7	probative samples.

1 18. [Canceled]

5

6

7

8

10

- 1 19. [Currently amended] The program storage device of

 2 claim 18, A program storage device readable by a machine,

 3 tangibly embodying a program of instructions executable by a

 4 machine for evaluating a network, comprising:
 - an apparent network speed analysis application module

 for measuring average message delay through said

 network, determining a standard deviation of said

 message delay, and calculating a discrete utilization

 of said network as a ratio of said average message

 delay to said standard deviation;
- a service level and capacity planning routine module

 for tuning said network; said service level and

 capacity planning routine module further comprising

14	routines for calculating change in network traffic
15	before network response time service level is
16	compromised, determining additional file load capacity
17	of the network of said network and adjusting window
18	size for file transfer to fill remaining capacity.
1	20. [Currently amended] A program storage device readable
2	by a machine, tangibly embodying a program of instructions
3	executable by a machine for evaluating a network from
4	observations of work performed on packets by a system
5	including said network, comprising:
6	a first program module for transmitting into said
7	network a plurality of packets in isolation and of
8	different lengths for measuring average message delay
9	through said network;
10	a second program module for determining a standard
11	deviation of said message delay; and

12

13

a third program module for calculating a discrete

utilization of said network as a <u>function of the</u> ratio

14	or said average message deray to said standard
15	deviation.
1	21. [Currently amended] A program storage device readable
2	by a machine, tangibly embodying a program of instructions
3	executable by a machine to perform method steps for
4	evaluating a network from observations of work performed on
5	packets by a system including said network, said method
6	steps comprising:
7	transmitting into said network a plurality of packets
8	in isolation and of different lengths;
9	measuring average message delay through said network;
10	determining a standard deviation of said message delay
11	[[and]]
12	calculating a discrete utilization of said network as
13	function of the ratio of said average message delay to
14	said standard deviation: and

15		determining a best approximation of end to end discrete
16		utilization from minimum network discrete utilization
17		and maximum network discrete utilization determined
18		from said observations.
1	22.	[Canceled]
1	23.	[Canceled]
_		
1	24.	[Currently amended] The method of claim 23, further A
2	prog	ram storage device readable by a machine, tangibly
3	<u>embo</u>	dying a program of instructions executable by a machine
4	to p	erform method steps for evaluating a discrete
5	<u>util</u>	ization of a network from observations of work performed
6	on p	robative samples by a system including said network,
7	comp	rising the steps of:
8		transmitting probative samples through said network;
9		time stamping said probative samples;
10		responsive to said samples, calculating the average

11	wait time and a standard deviation of average delay of
12	<pre>said network;</pre>
13	deriving said discrete utilization as a function of a
14	ratio of a wait time of said network to a standard
15	deviation of the average wait time;
16	determining a minimum network discrete utilization;
17	determining as a maximum network discrete utilization a
18	number of messages queued per network hop count;
19	responsive to said minimum network discrete utilization
20	and said maximum network discrete utilization,
21	determining a best approximation of end to end discrete
22	utilization; and
23	fine tuning said discrete utilization by averaging
24	dropped instances of said samples with successful
25	transmissions of said samples to derive a measure of
26	discrete utilization based upon a total set of said
27	probative samples.

- 1 25. [Previously presented] The program storage device of
- 2 claim 21, said steps further comprising:
- factoring instances of dropped messages as full
- 4 utilization in calculating said discrete utilization.
- 1 26. [Currently amended] A program storage device readable
- by a machine, tangibly embodying a program of instructions
- 3 executable by a machine to perform operations for evaluating
- 4 a network, said operations comprising:
- 5 communicating of a plurality of long packets and short
- 6 packets through said network;
- 7 determining a best time of said long packets;
- 8 determining a best time of said short packets;
- 9 responsive to of said to said long and short packets
- and their respective best times, determining Network
- 11 Queue Wait Time (Tw) and a standard deviation of
- 12 Network Queue Wait Time, (σTw) ;

- responsive to said Tw and σ Tw, calculating a discrete utilization (p) of said network.
 - 27. [Currently amended] The program storage device of
 claim 3 claim 26 wherein said Tw, σTw and p are related by
 - 3 the expression:

4

6

- 5 $Tw / \sigma Tw = p / \sqrt{(p * (2 p))}$.
- 1 28. [Canceled]
- 1 29. [Canceled]
- 30. [Currently amended] The program storage device of

 claim 29, said operations further comprising: A program

 storage device readable by a machine, tangibly embodying a

 program of instructions executable by a machine to perform

 operations for evaluating a network, said operations

comprising:

8	based upon number of test packets transmitted, number
9	of bytes per test packet, send and receive timestamps
10	of each test packet, and number of test packets lost in
11	transmission, deducing a capacity of said network, its
12	latency, and a current utilization of said capacity;
13	calculating network hop count as a measure a minimum
14	number of hops of network bottleneck hop speed that
15	could be in the network;
16	responsive to said network hop count, determining the
17	minimum network discrete utilization;
18	responsive to said test packets, determining as a
19	maximum network discrete utilization a number of
20	messages queued per network hop count; and
21	responsive to said minimum network discrete utilization
22	and said maximum network discrete utilization,
23	determining a best approximation of end to end discrete
24	utilization.

- 1 31. [Previously presented] The program storage device of
- 2 claim 30, said operations further comprising:
- adjusting said end to end discrete utilization for
- 4 dropped test packets.
- 1 32. [Previously presented] The program storage device of
- 2 claim 30, said best approximation of end to end discrete
- 3 utilization being an average of said minimum network
- 4 discrete utilization and said maximum network discrete
- 5 utilization.
- 1 33. [Previously presented] The program storage device of
- 2 claim 30, said operations further comprising:
- adjusting said best approximation of end to end
- 4 discrete utilization by selectively weighting said
- 5 minimum network discrete utilization or said maximum
- 6 network discrete utilization responsive to network
- 7 streaming utilization.

- 1 34. [Canceled]
- 1 35. [Canceled]