

Présenté par Kilian Alliot

10/08/2023

Plan

Présentation

Je suis Data Scientist au sein d'une société financière, nommée "Prêt à dépenser", qui propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt.

Objectifs

L'entreprise souhaite mettre en œuvre un outil de "scoring crédit" pour calculer la probabilité qu'un client rembourse son crédit, puis classifie la demande en crédit accordé ou refusé. Elle souhaite donc développer un algorithme de classification en s'appuyant sur des sources de données variées (données comportementales, données provenant d'autres institutions financières, etc.).

De plus, les chargés de relation client ont fait remonter le fait que les clients sont de plus en plus demandeurs de transparence vis-à-vis des décisions d'octroi de crédit. Cette demande de transparence des clients va tout à fait dans le sens des valeurs que l'entreprise veut incarner.

Prêt à dépenser décide donc de développer un dashboard interactif pour que les chargés de relation client puissent à la fois expliquer de façon la plus transparente possible les décisions d'octroi de crédit, mais également permettre à leurs clients de disposer de leurs informations personnelles et de les explorer facilement.

Training Data Shape: (307511, 122) Testing Data Shape: (48744, 121)

App_train: 307k lignes et122 colonnes App_test: 49kk lignes et121 colonnes

Tous les autres fichiers csv sont complémentaires avec app_train. Ils apportent des informations supplémentaires sur le client. Par exemple, les précédents crédits contractés et l'historique de leurs remboursements.

Probabilité que le client puisse rembourser le prêt (noté 0)

Probabilité que le client soit en défaut de paiement et ne puisse pas rembourser le prêt (noté 1)

Your selected dataframe has 122 columns. There are 67 columns that have missing values.			
	Missing Values	% of Total Values	
COMMONAREA_MEDI	214865	69.9	
COMMONAREA_AVG	214865	69.9	
COMMONAREA_MODE	214865	69.9	
NONLIVINGAPARTMENTS_MEDI	213514	69.4	
NONLIVINGAPARTMENTS_MODE	213514	69.4	

De nombreuses colonnes de notre jeu de données étaient peu remplies et peu pertinentes, elles ont été supprimées.

Pour le traitement des valeurs manquantes, la stratégie générale utilisée a été l'imputation par la médiane.

Les variables catégorielles ont été one hot encodées.

```
# one-hot encoding of categorical variables
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)

print('Training Features shape: ', app_train.shape)
print('Testing Features shape: ', app_test.shape)

Training Features shape: (307511, 217)
Testing Features shape: (48744, 213)
```


Les anomalies constatées au niveau de la variable 'DAYS_EMPLOYED' ont été traitées comme des valeurs manquantes.

Corrélations

Most Positive Correlations:	
OCCUPATION_TYPE_Laborers	0.043019
FLAG_DOCUMENT_3	0.044346
REG_CITY_NOT_LIVE_CITY	0.044395
FLAG_EMP_PHONE	0.045982
NAME_EDUCATION_TYPE_Secondary / secondary special	0.049824
REG_CITY_NOT_WORK_CITY	0.050994
DAYS_ID_PUBLISH	0.051457
CODE_GENDER_M	0.054713
DAYS_LAST_PHONE_CHANGE	0.055218
NAME_INCOME_TYPE_Working	0.057481
REGION_RATING_CLIENT	0.058899
REGION_RATING_CLIENT_W_CITY	0.060893
DAYS_EMPLOYED	0.074958
DAYS_BIRTH	0.078239
TARGET	1.000000
Name: TARGET, dtype: float64	

Most Negative Correlations:	
EXT_SOURCE_3	-0.178919
EXT_SOURCE_2	-0.160472
EXT_SOURCE_1	-0.155317
NAME_EDUCATION_TYPE_Higher education	-0.056593
CODE_GENDER_F	-0.054704
NAME_INCOME_TYPE_Pensioner	-0.046209
DAYS_EMPLOYED_ANOM	-0.045987
ORGANIZATION_TYPE_XNA	-0.045987
FLOORSMAX_AVG	-0.044003
FLOORSMAX_MEDI	-0.043768
FLOORSMAX_MODE	-0.043226
EMERGENCYSTATE_MODE_No	-0.042201
HOUSETYPE_MODE_block of flats	-0.040594
AMT_G00DS_PRICE	-0.039645
REGION_POPULATION_RELATIVE	-0.037227
Name: TARGET, dtype: float64	

Au niveau du 'Feature Engineering', trois stratégies ont été abodées :

- Utilisation du Dataset en l'état
- Polynomial features: création de plusieurs features polynomiales à partir des features les plus importantes (celles qui ont une corrélation importante avec la variable cible)
- Domain knowledge features : création de quatre features liées au domaine fonctionnel.

Training data with polynomial features shape: (307511, 249) Testing data with polynomial features shape: (48744, 249)

Domain Knowledge Features

- CREDIT_INCOME_PERCENT: the percentage of the credit amount relative to a client's income.
- ANNUITY_INCOME_PERCENT: the percentage of the loan annuity relative to a client's income.
- CREDIT_TERM: the length of the payment in months (since the annuity is the monthly amount due)
- DAYS_EMPLOYED_PERCENT: the percentage of the days employed relative to the client's age


```
# logistic reg cross validate
{'fit time': array([26.64608026, 26.87596512, 12.91484284, 20.69194603, 25.04282022]),
 'score time': array([0.75971341, 0.20326853, 0.21254563, 0.20427799, 0.21911764]),
 'test score': array([0.63045007, 0.64654634, 0.6513145 , 0.65986953, 0.60752373]),
 'train_score': array([0.75662333, 0.75818348, 0.73804827, 0.75032474, 0.75789132])}
# lgbm cross validate avec std scaler
{'fit time': array([5.12360835, 2.37041664, 2.41124582, 2.05963945, 1.90335631]),
 'score time': array([0.20288706, 0.60501051, 0.2047143 , 0.19802332, 0.19889545]),
 'test score': array([0.76164244, 0.68518519, 0.70971522, 0.72366108, 0.66385406]),
 'train_score': array([1., 1., 1., 1., 1.])}
# rfc cross validate avec std scaler
{'fit time': array([1.70818114, 1.21364379, 1.19071674, 1.20064211, 1.18891668]),
 'score time': array([0.21861148, 0.21948099, 0.20915508, 0.20816493, 0.20764995]),
 'test score': array([0.74281138, 0.69882013, 0.67410836, 0.73157155, 0.69891402]),
 'train score': array([1., 1., 1., 1., 1.])}
```

Pour la modélisation, j'ai créé une pipeline comprenant un column transformer, un scaler et un classifier. Dataset est composé le 80k individus, 60k de classe 0 et 20k de classe 1. Le test size est de 0.2 (64k-16k). Ces 3 modèles ont été testés avec un StandardScaler et quelques hyperparamètres différents afin d'avoir rapidement des résultats. LGBM étant rapide et prometteur, j'ai choisi de continuer avec lui.

Continuons donc avec LGBM.

Dans le cadre du projet, j'ai utilisé le paramètre class_weigh qui attribue des poids différents aux individus afin de rééquilibrer cette différence de population lors de l'entraînement.

Le choix du meilleurs modèle a été effectué en retenant le modèle ayant obtenu le meilleurs score sur le jeu de validation.

Dans le cadre du projet, on peut supposer, par exemple, que le coût d'un FN est dix fois supérieur au coût d'un FP. C'est pourquoi j'ai mis en place un score «métier» approprié,

appelé f10_score. Ce score reprend le f_beta_score avec un facteur 10.

En effet, on cherche à limiter le nombre de False Negative car cela est une perte financière pour l'entreprise, et on cherche aussi à limiter le nombre de FP car ça représente une perte de chiffre d'affaire pour l'entreprise.

Le scoring a optimisé est à deux composantes : scoring = {"AUC": "roc_auc", "my_f10_score": f10_score}


```
Params {'classifier_class_weight': 'balanced', 'classifier_learning_rate': 0.01, 'classifier_max_depth': -1, 'classifier_n_estimators': 100, 'classifier_num_leaves': 30, 'preprocessor_num_scaler': MinMaxScaler()}
mean_train_AUC 0.7670808066199835
mean_test_AUC 0.7479241313403103
mean_train_my_flo_score 0.6985285728698163
mean_train_my_flo_score 0.6772122514563985

Params {'classifier_class_weight': 'balanced', 'classifier_learning_rate': 0.01, 'classifier_max_depth': -1, 'classifier_n_estimators': 100, 'classifier_num_leaves': 30, 'preprocessor_num_scaler': RobustScaler()}
mean_train_AUC 0.7677268540653813
mean_test_AUC 0.7677268540653813
mean_test_BUC 0.74837840479494822
mean_train_my_flo_score 0.6974640425363751
mean_test_my_flo_score 0.6780425962908948

Params {'classifier_class_weight': 'balanced', 'classifier_learning_rate': 0.01, 'classifier_max_depth': -1, 'classifier_n_estimators': 100, 'classifier_num_leaves': 50, 'preprocessor_num_scaler': StandardScaler()}
mean_test_my_flo_score 0.6780425962908948

Params {'classifier_class_weight': 'balanced', 'classifier_learning_rate': 0.01, 'classifier_max_depth': -1, 'classifier_n_estimators': 100, 'classifier_num_leaves': 50, 'preprocessor_num_scaler': StandardScaler()}
mean_test_my_flo_score 0.6752751143078016
mean_train_MUC 0.7844090077679163
mean_test_my_flo_score 0.67503186774859403
```

▼ LGBMClassifier LGBMClassifier(class_weight='balanced', learning_rate=0.01, n_estimators=1000, num_leaves=30)

Tableau de synthèse de la modélisation

	AUC_train_set	f_10_score_train_set	AUC_validation_set	f_10_score_validation_set	AUC_test_set	f_10_score_test_set
LGBMClassifier	1	1	0.78	0.68	0.71	0.69

	Feature_importances_score	Col_name
0	962	APPS_ANNUITY_CREDIT_RATIO
1	890	APPS_EXT_SOURCE_MEAN
2	727	DAYS_BIRTH
3	569	AMT_ANNUITY
4	555	APPS_GOODS_CREDIT_RATIO
5	468	EXT_SOURCE_1
6	464	EXT_SOURCE_2
7	442	INS_D365SK_DPD_MAX
8	433	POS_M20CNT_INSTALMENT_FUTURE_MEAN
9	406	DAYS_ID_PUBLISH

Déploiement

Cliquez sur l'cône pour accéder au projet

Déploiement

J'utilise git qui est un outil de versionning de code. Le code de mon projet est envoyé sur mon GitHub avec la commande git push. Lorsque du code nouveau est envoyé sur la branche main (remote), une pipeline GitHub action est actionnée. Des tests unitaires sont lancés et lorsque tout est vérifié et fonctionne:

- le code à jour est ajouté à la branche main
- le repository hébergé sur Pythonanywhere exécute la commande git pull afin de récupérer le code à jour

Déploiement

build succeeded 14 minutes ago in 1m 14s	Q Search logs	S &
> Set up job		2s
> Oheckout code		3s
> Set up Python 3.9		0s
> 🕢 Install dependencies		43s
✓ ✓ Run unit tests		3s
<pre>PRun pytest -vdisable-warnings platform linux Python 3.9.17, pytest-7.3.2, pluggy-1.2.0 /opt/hostedtoolcache/Python/3.9.17/x64/bin/python cachedir: .pytest_cache rootdir: /home/runner/work/OC-Projet-7/OC-Projet-7 collecting collected 4 items</pre>		
tests/test_class.py::TestClass::test_add_numbers PASSED [25%] tests/test_class.py::TestClass::test_model_leaves PASSED [50%] tests/test_class.py::TestClass::test_predict_class PASSED [75%] tests/test_class.py::TestClass::test_expected_value_from_explainer PASSED [100%] ==================================		
> Opeloy to PythonAnywhere		20s
> Post Set up Python 3.9		0s
> OPOST Checkout code		0s
> Complete job		0s

Data Drift

On utilise la librairie Evidently pour détecter un éventuel data drift.
On compare ici app_train et app_test.
Aucun datadrift significatif n'est détecté.

Dataset Drift			
Dataset Drift is NOT detected. Dataset drift detection threshold is 0.5			
17	1	0.0588	
Columns	Drifted Columns	Share of Drifted Columns	

Démonstration

pythonanywhere

Cliquez sur l'image pour accéder au dashboard

Merci de votre attention

