ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Федеральное государственное бюджетное образовательное

учреждение высшего образования

«Санкт-Петербургский государственный университет телекоммуникаций

им. проф. М. А. Бонч-Бруевича»	
Дисциплина «Техническая электродинамика»	
Лабораторная работа № 1 Исследование электромагнитного поля элементарного электри	ческого излучателя
Выполнили:	ст. гр. ИКТЗ-83
	Миколаени М. С.
	Громов А. А.
Проверил: Гуреев А.Е.	

Цель работы

- 1. Экспериментальное исследование диаграмм направленности диполя Герца в Е- и H-плоскостях.
- 2. Экспериментальное исследование зависимости электромагнитного поля в волновой зоне от расстояния до точки наблюдения.

Теоретическая часть

Элементарный электрический излучатель является идеализированной излучающей системой, удобной для теоретического анализа. Элементарным электрическим излучателем называют элемент гармонического тока, длина которого много меньше длины волны создаваемого им поля, и в каждый момент времени амплитуда и фаза тока постоянны вдоль всего элемента. Реальная антенна, близкая по своим свойствам к ЭЭИ и называемая диполем Герца, представляет собой два коротких провода (плеча) с металлическими шарами на концах.

Поле ЭЭИ представляется в сферической системе координат (рис.1). В лабораторной работе исследуется поле ЭЭИ в волновой зоне, которая характеризуется такими расстояниями от излучателя до точки наблюдения, для которых kR>>1

Электромагнитное поле имеет всего две проекции, мгновенные значения которых определяется следующими выражениями:

$$H_{\varphi}(t) = A \sin \sin \theta \sin (\omega t - kR + \dot{\Psi})/R$$
; $E_{\theta}(t) = H_{\varphi}(t)Z_{c}$

Данные формулы определяют сферические электромагнитные волны, распространяющиеся с фазовой скоростью, равной скорости света в вакууме. По мере удаления от излучателя амплитуды этих волн уменьшаются по закону 1/R. Вектор Пойнтинга имеет только одну радиальную составляющую, мгновенные значения которой $\Pi_R \ge 0$. Поэтому вектор Пойнтинга всегда направлен в сторону движения волнового фронта излученной волны и характеризует переносимую ею мощность.

Напряженности поля излучения пропорциональны sin(θ), т.е. ЭЭИ обладает направленными свойствами. Его поле равно 0 вдоль оси излучения и максимально в плоскости, перпендикулярной этой оси.

Нормировка производится к максимальной амплитуде E_{max} и имеет вид:

$$F(\theta, \varphi) = \frac{E_{\theta m}(\theta, \varphi)}{E_{max}} = \sin \sin \theta$$

Углы θ и ϕ изменяются в следующих интервалах:

$$0^{\circ} \le \theta \le 180^{\circ}; 0^{\circ} \le \varphi \le 360^{\circ}$$

Нормированные функции направленности в плоскостях Е и Н определяются следующим выражениями:

$$F(\theta) = \frac{E_{\theta m}(\theta, \varphi = const)}{E_{max}} = \sin \sin \theta$$

$$F(\varphi) = \frac{E_{\theta m}(\varphi, \theta = \pi/2)}{E_{max}} = 1$$

Предварительные расчеты

 θ

1.
$$F(\theta) = \sin \theta$$
; $0^{\circ} \le \theta \le 180^{\circ}$

В полярной С.К:

В декартовой С.К:

 $F(\theta)$

 θ

2. $F(\varphi) = 1; 0^{\circ} \le \varphi \le 360^{\circ}$ В полярной С.К:

 $F(\varphi)$

Ø

В декартовой С.К:

Вывод:

В данной лабораторной работе мы узнали по теоретической части, что такое элементарный электрический излучатель и как выглядит его поле в сферической системе координат, а также выполнили предварительные расчеты зависимости $F(\theta)$ и $F(\phi)$. Данная лабораторная работа является теоретической, так как отсутствует возможность обеспечить требуемую точность для снятия данных и проведения необходимых расчетов.