

Training set of housing prices (Portland, OR)

Size in feet ² (x)	Price (\$) in 1000)'s(<u>(v)</u>)
-> (2104)	460	*
1416	232	m=47
 1534	315	
852	178	
)

Notation:

$$\chi^{(1)} = 2104$$

 $\chi^{(2)} = 1416$
 $y^{(1)} = 460$

How do we represent h?

$$h_{\mathbf{e}}(x) = \Theta_0 + \Theta_1 x$$

Shorthand: $h(x)$

Linear regression with one variable. Univariate linear regression.

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460 7
1416	232 m= 47
1534	315
852	178
	·)

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose $\underline{\theta_0}, \underline{\theta_1}$ so that $\underline{h_{\theta}(x)}$ is close to \underline{y} for our training examples (x,y)

Miximize
$$J(00,01)$$

Oo, 01 Cost function

well error faction

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \underbrace{\theta_{1}}_{0} x$$

$$\theta_{1}$$

$$J(\theta_{1}) = \underbrace{\frac{1}{2m}}_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}$$

$$\min_{\theta_{1}} \text{minimize } J(\theta_{1})$$

$h_{\theta}(x)$ $J(\theta_1)$ (function of the parameter θ_1) (for fixed θ_1 , this is a function of x) $h_{\theta}(x)$ 2.5

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$$

$h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x) 500 x_x x × 400 Price (\$) 300 in 1000's 200 6.:50 100 01 = 0.66 3000 1000 2000 Size in feet2 (x)

Have some function
$$J(\theta_0,\theta_1)$$
 $J(\theta_0,\theta_1)$ $J(\theta_0,\theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\theta_0 = 0, \theta_1 = 0$)
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum Activate Wi

Gradient descent algorithm

Hissignment Truth as:
$$a = b$$

$$a = b$$

$$a = a+1$$

$$a = a+1$$

Activate

repeat until convergence
$$\{\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \}$$

(for
$$j = 0$$
 and $j = 1$)

Simultaneously update

Correct: Simultaneous update

$$\rightarrow$$
 temp $0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

$$\rightarrow$$
 temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\rightarrow \theta_0 := \text{temp}0$$

$$\rightarrow \theta_1 := \text{temp1}$$

Incorrect:

0,0,

$$\rightarrow \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\rightarrow (\theta_0) := \text{temp} 0$$

$$\rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\rightarrow \theta_1 := \text{temp1}$$

Gradient descent algorithm

$$\theta_1 := \theta_1 - \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$

(for
$$j = 1$$
 and $j = 0$)

}

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{30_{J}} \frac{1}{2m} \sum_{i=1}^{\infty} \left(\frac{h_{0}(x^{(i)}) - y^{(i)}}{h_{0}(x^{(i)}) - y^{(i)}} \right)^{2}$$

$$= \frac{2}{30_{J}} \frac{1}{2m} \sum_{i=1}^{\infty} \left(\frac{h_{0}(x^{(i)}) - y^{(i)}}{h_{0}(x^{(i)}) - y^{(i)}} \right)^{2}$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{Possible}}{\underset{\text{form}}{\text{possible}}} (h_{\bullet}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})$$
 $j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{Possible}}{\underset{\text{form}}{\text{possible}}} (h_{\bullet}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \cdot \mathbf{x}^{(i)}$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

Multiple features (variables).

Size (feet ²)	Price (\$1000)		
$\rightarrow x$	$y \leftarrow$		
2104	460		
1416	232		
1534	315		
852	178		
***	****		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
*1	×s	×3	*4	3
2104	5	1	45	460
1416	3	2	40	232 - M= 47
1534	3	2	30	315
852	2	1	36	178
•••		•••		
Notation:	*	*	1	(2) = 14167
<i>→ n</i> = nu	mber of fea	atures	n=4	× 2 <
9. 9			aining exampl	
$\rightarrow x^{(i)} = va$	lue of featu	ire i in i^{th}	training exami	ple. $\chi_2 = 2$

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
. [O₀ O₁ ··· O_n]

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1} \qquad 0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$h_0(x) = \underbrace{0}_0 x_0 + \underbrace{0}_1 x_1 + \cdots + \underbrace{0}_n x_n$$

$$= \underbrace{0}_1 x_1 + \cdots + \underbrace{0}_n x_n$$

Multivariate linear regression.

Hypothesis:
$$h_{\theta}(x)=\theta^Tx=\theta_0x_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_nx_n$$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

J(
$$\theta_0, \theta_1, \dots, \theta_n$$
) = $\frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ **(simultaneously update for every** $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\left[\frac{\partial}{\partial heta_0} \stackrel{
m Y}{J}(heta)
ight]$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

(simultaneously update $\hat{ heta}_0, heta_1$)

}

7 New algorithm $(n \ge 1)$: Repeat { (simultaneously update $heta_j$ for $j=0,\ldots,n$

Feature Scaling

Idea: Make sure features are on a similar scale.

Feature Scaling

Get every feature into approximately a

Mean normalization

Replace $\underline{x_i}$ with $\underline{x_i - \mu_i}$ to make features have approximately zero mean (Do not apply to $\underline{x_0 = 1}$).

E.g.
$$x_1=\frac{size-1000}{2000}$$

$$x_2=\frac{\#bedrooms-2}{5}$$

$$-0.5\leq x_1\leq 0.5$$

$$-0.5\leq x_2\leq 0.5$$
 Activate Wir Go to PC setting

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge. Activate W

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try

$$\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.03, 1, \dots$$