PyTelTools: Python scripts and GUI to automate Telemac post-processing tasks

Luc Duron. Yishu Wang

Compagnie Nationale du Rhône (CNR)

XXIVth TELEMAC-MASCARET User Conference Graz. Austria. 17-20 October. 2017

PyTelTools

Table of Contents

- Context
- Post-processing tasks
 - Categorization
- Workflow
 - Principle and notions
 - Mono view
 - Multi view
- Conclusion

2/14

Project initiation

Compagnie Nationale du Rhône (CNR)

- 1st producer of exclusively renewable energy in France
- 18 hydroelectric facilities on the Rhône River (3000 MW)
- CNR Engineering Departement (for CNR and third party)

Project initiation

Compagnie Nationale du Rhône (CNR)

- 1st producer of exclusively renewable energy in France
- 18 hydroelectric facilities on the Rhône River (3000 MW)
- CNR Engineering Departement (for CNR and third party)

Needs and purpose

- Develop non-existing features, customize it for modeller needs
- Automate and chain Telemac post-processing tasks
- Do not substitute for common post-processing graphical softwares

Python Telemac Tools

Developement Guidelines

- extensible
- customizable
- accessible, easy to use
- robustness
- open-source

Python Telemac Tools

Developement Guidelines

- extensible
- customizable
- accessible, easy to use
- robustness
- open-source

Implementation overview

- core
 - parsers, base classes, ...
 - mathematical and spatial calculations
- Command Line Interface (CLI)
 - multiple arguments
 - easily adapted, snippets (being implemented)
- Graphical User Interface (GUI)
 - classic interface
 - Workflow: automate, chain and monitor tasks

4 / 14

Documentation and installation

Installation

- Prerequisites: Python3
- Packages: see requirements.txt (numpy, matplotlib, PyQt5, ...)
- Installation procedure:

```
# user install
pip install -e git://github.com/CNR-Engineering/PyTelTools.git#egg=PyTelTools --user
# default install (needs to be root)
pip install -e git://github.com/CNR-Engineering/PyTelTools.git#egg=PyTelTools
```

Documentations

- User: https://github.com/CNR-Engineering/PyTelTools/wiki
- Developper: https://cnr-engineering.github.io/PyTelTools

Classification of post-processing tasks

• File conversions (shp, vtk, ...)

- File conversions (shp, vtk, ...)
- Compute variables

	1 U 2 V				Unit M/S M/S	
	3	S	SURFACE LIBRE	Μ	1	
	4	В	FOND	Μ	1	
	5	W	FROTTEMENT			
ID			Name		Unit	
1	Н		HAUTEUR D'EAU		М	
2	Μ		VITESSE SCALAIRE		M/S	
3	I		DEBIT SUIVANT X		M2/S	
4	J		DEBIT SUIVANT Y		M2/S	
5	Q		DEBIT SCALAIRE		M2/S	
6	C		CELERITE		M/S	
7	F		FROUDE			
8	US	5	VITESSE DE FROT.		M/S	
9	TA	\U	CONTRAINTE		PASCA	٩L
10	DI	MAX	DIAMETRE		MM	

- File conversions (shp, vtk, ...)
- Compute variables
- Mesh transformation

- File conversions (shp, vtk, ...)
- Compute variables
- Mesh transformation
- Visualization (temporal, longitunal, cross-section, ...)

- File conversions (shp, vtk, ...)
- Compute variables
- Mesh transformation
- Visualization (temporal, longitunal, cross-section, ...)
- Temporal analysis

- File conversions (shp, vtk, ...)
- Compute variables
- Mesh transformation
- Visualization (temporal, longitunal, cross-section, ...)
- Temporal analysis
- Vertical aggregation: depth-averaging, specific layer selection

- File conversions (shp, vtk, ...)
- Compute variables
- Mesh transformation
- Visualization (temporal, longitunal, cross-section, ...)
- Temporal analysis
- Vertical aggregation: depth-averaging, specific layer selection
- Interpolate on points, along lines (and project)

- File conversions (shp, vtk, ...)
- Compute variables
- Mesh transformation
- Visualization (temporal, longitunal, cross-section, ...)
- Temporal analysis
- Vertical aggregation: depth-averaging, specific layer selection
- Interpolate on points, along lines (and project)
- Compute volume, flux

- File conversions (shp, vtk, ...)
- Compute variables
- Mesh transformation
- Visualization (temporal, longitunal, cross-section, ...)
- Temporal analysis
- Vertical aggregation: depth-averaging, specific layer selection
- Interpolate on points, along lines (and project)
- Compute volume, flux
- Others: comparison criteria
 (MAD BSS)

Philosophy and practice

Applications

- sensitivity analysis, calibration processes, ...
- write similar post-processing files (slf, CSV)
- export plots, produce maps in mass

Philosophy and practice

Applications

- sensitivity analysis, calibration processes, ...
- write similar post-processing files (slf, CSV)
- export plots, produce maps in mass

Main workflow features

- easy-to-use graphical interface to build pipelines
- visualize progress in real time
- ability to re-use and share pipelines

Philosophy and practice

Applications

- sensitivity analysis, calibration processes, ...
- write similar post-processing files (slf, CSV)
- export plots, produce maps in mass

Main workflow features

- easy-to-use graphical interface to build pipelines
- visualize progress in real time
- ability to re-use and share pipelines

Two levels of automation

- Mono: configure and chain tasks to be run on a single simulation
- Multi: run over a set of simulations

Conceptual model

- Each unitary tool:
 - State (Not configured, Ready, Sucess)
 - Options (configure)
 - Input(s)/Output

Conceptual model

- Each unitary tool:
 - State (Not configured, Ready, Sucess)
 - Options (configure)
 - Input(s)/Output
- Combine them in a Directed Acyclic Graph (DAG)
 - data-type correctness
 - junction
 - data flows downward
 - filters
 - commutativity is sometimes possible (flexibility)

8/14

Conceptual model

• Each unitary tool:

- State (Not configured, Ready, Sucess)
- Options (configure)
- Input(s)/Output

Combine them in a Directed Acyclic Graph (DAG)

- data-type correctness
- junction
- data flows downward
 - filters
- commutativity is sometimes possible (flexibility)
- reproductability (project file)
- reentrancy (intermediate files)

Demo on Mono view

PyTelTools

Repeat over multiple simulation

- Prerequisites
 - the graph is already configured
 - input data are mostly identical and follows a naming convention
- repeat over this serie of simulations
- parallelize on multiple CPU
- monitoring: status table, log events

Demo on Multi view

PyTelTools

Conclusion

- Python scripts developed from scratch for Telemac post-processing
- accessible through a GUI
- open-source, modest contribution
- different levels of automation (workflow)
- Some improvements:
 - compare to measurements, implementation, ...
 - Unify more Mono and Multi implementation
- Coming new features depends on needs (mostly new plots)

Thank you

```
try:
    PyTelTools.presentation()
    print('Thank your for your attention!')
except QuestionException:
    print('I will do it now!')
print('My work is done')
```

References

Luc Duron and Yishu Wang.

Equations integrated in PyTelTools.

August 2017.

URL: https://github.com/CNR-Engineering/PyTelTools_media/raw/
master/latex/equations.pdf.

Luc Duron and Yishu Wang.

Mathematical definitions for PyTelTools.

August 2017.

URL: https://github.com/CNR-Engineering/PyTelTools_media/raw/
master/latex/mathematical_definitions.pdf.

Yishu Wang.

PyTelTools: workflow for water flow, August 2017.

