

THE KARNAUGH MAP

Digital logic design

Iqra Chaudhary(Lecturer CS dept. NUML)

Karnaugh Map

- Simplification of Boolean Expressions:
- 1. Boolean algebra rules
 - Doesn't guarantee simplest form of expression
 - Terms are not obvious
 - Skills of applying rules and laws
- 2. K-map provides a systematic method
 - An array of cells
 - Used for simplifying 2, 3, 4 and 5 variable expressions

Karnaugh Maps (K-map)

- A K-map is a collection of squares
 - Each square represents a minterm
 - The collection of squares is a graphical representation of a Boolean function
 - Adjacent squares differ in the value of one variable

- The K-map can be viewed as
 - A reorganized version of the truth table

K-Map Format

- Each minterm in a truth table corresponds to a cell in the K-Map.
- K-Map cells are labeled so that both horizontal and vertical movement differ only in one variable.
- Once a K-Map is filled (0's & 1's) the SOP expression for the function can be obtained by OR-ing together the cells that contain 1's.
- Since the adjacent cells differ by only one variable, they can be grouped to create simpler terms in the sum-of-product expression.

The Karnaugh Map

- A two-variable map will require 4 cells. A threevariable map will require 8 cells and fourvariable map will require 16 cells.
- The three different K-maps are shown:

K-Map Simplification of SOP Expressions

- Each group must contain either 1, 2, 4, 8 or 16 cells.
- Always include the largest possible number of 1s in a group in accordance with rule 1
- Each 1 on the map must be included in at least one group. The 1s already in a group can be included in another group as long as the overlapping groups include non-common 1s

Goal: MAXIMIZE THE SIZE OF THE GROUPS & MINIMIZE THE NUMBER OF GROUPS

Two Variable Maps

■ A 2-variable Karnaugh Map:

- Note that minterm m0 and minterm m1 are "adjacent" and differ in the value of the variable y
- Similarly, minterm m0 and
 minterm m2 differ in the x variable.
- Also, m1 and m3 differ in the x variable as well.
- Finally, m2 and m3 differ in the value of the variable y

	y = 0	y = 1
x = 0	$\frac{m_0}{x} =$	m ₁ = x y
x = 1	m ₂ = x y	m _{x³ y} =

K-Map and Truth Tables

- The K-Map is just a different form of the truth table.
- **■** Example Two variable function:
 - Simplification using Boolean algebra rules
 - F=X'Y'+X'Y+XY=X'+XY=(X'+Y) SOP form
 - Simplification using Boolean K-map
 Function Table

K-Map

Input	Function	
Values	Value	
(x,y)	F(x,y)	
0 0	1	
01	1	
10	0	
11	1	

$$y = 0$$
 $y = 1$
 $x = 0$ 1 1
 $x = 1$ 0 1

$$F=x'+y$$

2 Variable K-Map: Groups of One

Adjacent Cells

2 Variable K-Map: Groups of Two

2 Variable K-Map : Groups of four

NOTE: There is no group of three \overline{X} \overline{X} $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$

Example of 2 variable K-Map

Example:

■ By using k-map:

$$F(x,Y) = x$$

■ By using Boolean algebra rules:

$$F(X,Y) = X Y + X Y = X$$

F = x	Y= 0	Y = 1	
x = 0	0	0	
x = 1	1	1	×

Example of 2 variable K-Map (SOP)

- Truth Table for a function F
- From truth table the SOP expression is
 F = A'B' + A'B=m0+m1
- Reducing the expression by using k-map technique, we get
- F =A'

Α	В	F
0	0	1
0	1	1
1	0	0
1	1	0

Another Example of 2 variable K-Map

- Example: G(x,y) = x + y
- Truth table is as shown
- The Sum of minterm expression is

$$G(x,y)=xy'+x'y+xy$$

• The Sum of product term expression using k-map G(x,y)=x+y

X	y	G
0	0	0
0	1	1
1	0	1
1	1	1

For G(x,y), two pairs of adjacent cells containing 1's can be combined using the Minimization Theorem:

G = x+y	y = 0	y = 1
$\mathbf{x} = 0$	0	
x = 1	1	

Truth Table -to- K-Map:If we change the order of the variable

Thanks