Formulario EYP1113 2024 - 02

Igualdades

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \, b^{n-k}; \qquad \sum_{k=x}^\infty \phi^k = \frac{\phi^x}{1-\phi} \quad \text{si } |\phi| < 1;$$

$$\sum_{k=0}^\infty \frac{\lambda^k}{k!} = \exp(\lambda); \qquad \sum_{x=0}^\infty \binom{x+k-1}{k-1} \phi^x = \frac{1}{(1-\phi)^k} \quad \text{si } 0 < \phi < 1 \text{ y } k \in \mathbb{N}, \quad \int_{-\infty}^\infty e^{-x^2/2} \, dx = \sqrt{2\pi}$$

Propiedades función $\Gamma(\cdot)$ y $B(\cdot, \cdot)$

$$(1) \quad \Gamma(k) = \int_0^\infty u^{k-1} \, e^{-u} \, du = \mathrm{gamma}(k); \quad (2) \quad \Gamma(a+1) = a \, \Gamma(a); \quad (3) \quad \Gamma(n+1) = n!, \quad \mathrm{si} \, n \in \mathbb{N}_0;$$

$$(4) \quad \Gamma(1/2) = \sqrt{\pi}; \quad (5) \qquad B(q,\,r) = \int_0^1 x^{q-1} \, (1-x)^{r-1} \, dx; \quad (6) \quad B(q,\,r) = \frac{\Gamma(q) \, \Gamma(r)}{\Gamma(q+r)} = \mathrm{beta}(q,r)$$

Distribución Gamma

(1) Si
$$T \sim \operatorname{Gamma}(k, \nu)$$
, con $k \in \mathbb{N} \longrightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu t)^x e^{-\nu t}}{x!}$

(2)
$$Gamma(1, \nu) = Exp(\nu)$$
 (3) $Gamma(\eta/2, 1/2) = \chi^2(\eta)$

Medidas descriptivas

$$\mu_X = \mathsf{E}(X), \quad \sigma_X^2 = \mathsf{E}\left[(X - \mu_X)^2\right], \quad \delta_X = \frac{\sigma_X}{\mu_X}, \quad \theta_X = \frac{\mathsf{E}\left[(X - \mu_X)^3\right]}{\sigma_X^3}, \quad K_X = \frac{\mathsf{E}\left[(X - \mu_X)^4\right]}{\sigma_X^4} - 3$$

$$M_X(t) = \mathsf{E}\left(e^{t\,X}\right), \quad \mathsf{E}[g(X)] = \begin{cases} \sum_{x \in \Theta_X} g(x) \cdot p_X(x) \\ \int_{-\infty}^\infty g(x) \cdot f_X(x) \, dx \end{cases}, \quad \mathsf{Rango} = \max - \min, \quad \mathsf{IQR} = x_{75\,\%} - x_{25\,\%}$$

$$\mathsf{Cov}(X,Y) = \mathsf{E}[(X - \mu_X) \cdot (Y - \mu_Y)] = \mathsf{E}(X \cdot Y) - \mathsf{E}(X) \cdot \mathsf{E}(Y) \quad , \quad \rho = \frac{\mathsf{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

Teorema de Probabilidades Totales

$$p_Y(y) = \sum_{x \in \Theta_X} p_{X,Y}(x,y); \qquad f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dy$$

$$p_X(x) = \int_{-\infty}^{+\infty} p_{X \mid Y = y}(x) \cdot f_Y(y) \, dy; \qquad f_Y(y) = \sum_{x \in \Theta_X} f_{Y \mid X = x}(y) \cdot p_X(x)$$

$$\mathsf{E}(X) = \int_{-\infty}^{+\infty} \mathsf{E}(X \mid Y = y) \cdot f_Y(y) \, dy \qquad \mathsf{E}(Y) = \sum_{x \in \Theta_X} \mathsf{E}(Y \mid X = x) \cdot p_X(x)$$

Teoremas de Esperanzas Iteradas

$$\mathsf{E}(Y) = \mathsf{E}[\mathsf{E}(Y \,|\, X)] \quad \mathsf{y} \quad \mathsf{Var}(Y) = \mathsf{Var}[\mathsf{E}(Y \,|\, X)] + \mathsf{E}[\mathsf{Var}(Y \,|\, X)]$$

Transformación

Sea Y=g(X) una función cualquiera, con k raíces:

$$f_Y(y) = \sum_{i=1}^k f_X\left(g_i^{-1}(y)\right) \cdot \left| \frac{d}{dy} g_i^{-1}(y) \right| \quad \text{o} \quad p_Y(y) = \sum_{i=1}^k p_X\left(g_i^{-1}(y)\right)$$

Sea Z=g(X,Y) una función cualquiera:

$$p_Z(z) = \sum_{q(x,y)=z} p_{X,Y}(x,y)$$

I

Sea Z = g(X, Y) una función invertible para X o Y fijo:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(g^{-1}, y) \left| \frac{\partial}{\partial z} g^{-1} \right| dy = \int_{-\infty}^{\infty} f_{X,Y}(x, g^{-1}) \left| \frac{\partial}{\partial z} g^{-1} \right| dx$$

Suma Normales Independientes

Consideremos X e Y variables aleatorias independientes con distribución Normal (μ_X, σ_X) y Normal (μ_Y, σ_Y) respectivamente. Si $Z = a + b \cdot X + c \cdot Y$, con a, b y c constantes, entonces

$$Z = a + b \cdot X + c \cdot Y \sim \mathsf{Normal}(\mu,\,\sigma), \quad \mu = a + b \cdot \mu_X + c \cdot \mu_Y \quad \mathsf{y} \quad \sigma = \sqrt{|b|^2 \cdot \sigma_X^2 + |c|^2 \cdot \sigma_Y^2}$$

Distribución Normal Bivariada

$$\begin{split} f_{X,Y}(x,y) &= \frac{1}{2\,\pi\,\sigma_X\,\sigma_Y\,\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\,\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right)\right]\right\} \\ & \qquad Y\,|\,X = x \sim \text{Normal}\left(\mu_Y + \frac{\rho\,\sigma_Y}{\sigma_X}\,(x-\mu_X),\,\sigma_Y\,\sqrt{(1-\rho^2)}\right) \\ & \qquad X \sim \text{Normal}(\mu_X,\,\sigma_X) \qquad \text{e} \qquad Y \sim \text{Normal}(\mu_Y,\,\sigma_Y) \end{split}$$

Teorema del Límite Central

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas, entonces

$$Z_n = \frac{\displaystyle\sum_{i=1}^n X_i - n \cdot \mu}{\sqrt{n} \, \sigma} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \longrightarrow Z \sim \mathsf{Normal}(0,1),$$

cuando $n \to \infty$, $\mathsf{E}(X_i) = \mu$ y $\mathsf{Var}(X_i) = \sigma^2$.

Mínimo y Máximo

Sean X_1, \ldots, X_n variables aleatorias continuas independientes con idéntica distribución (f_X y F_X), entonces para:

$$Y_1 = \min\{X_1, \dots, X_n\} \longrightarrow f_{Y_1} = n \ [1 - F_X(y)]^{n-1} \ f_X(y); \ Y_n = \max\{X_1, \dots, X_n\} \longrightarrow f_{Y_n} = n \ [F_X(y)]^{n-1} \ f_X(y)$$

Mientras que la distribución conjunta entre Y_1 e Y_n está dada por:

$$f_{Y_1,Y_n}(u,v) = n(n-1) \left[F_X(v) - F_X(u) \right]^{n-2} f_X(v) f_X(u), \quad u \le v$$

Función Generadora de Momentos

En el caso que $X_1,\ldots,\,X_n$ sean variables aleatorias independientes con funciones generadoras de momentos M_{X_1},\ldots,M_{X_n} respectivamente, se tiene si $Z=\sum_{i=1}^n X_i \to M_Z(t)=M_{X_1}(t)\times\cdots\times M_{X_n}(t).$

Propiedades Esperanza, Varianza y Covarianza

Sean $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ variables aleatorias y $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_m$ constantes conocidas.

$$\blacksquare \ \mathsf{E}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = a_0 + \sum_{i=1}^n a_i \cdot \mathsf{E}(X_i).$$

$$\blacksquare \ \, \mathsf{Cov}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i, \, b_0 + \sum_{j=1}^m b_j \cdot Y_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i \cdot b_j \cdot \mathsf{Cov}\left(X_i, Y_j\right).$$

$$\text{Var}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = \sum_{i=1}^n \sum_{j=1}^n a_i \cdot a_j \cdot \operatorname{Cov}\left(X_i, X_j\right).$$

$$\blacksquare \ \ \text{Si} \ X_1, \dots, X_n \ \text{son variables aleatorias independientes, entonces} \ \text{Var} \left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = \sum_{i=1}^n a_i^2 \cdot \text{Var} \left(X_i\right)$$

Aproximación de Momentos (Método Delta)

Sea X una variable aleatoria e Y=g(X), la aproximación de 4to orden está dada por

$$Y = g(X) \approx g(\mu_X) + \frac{(X - \mu_X)g'(\mu_X)}{1!} + \frac{(X - \mu_X)^2g''(\mu_X)}{2!} + \frac{(X - \mu_X)^3g'''(\mu_X)}{3!} + \frac{(X - \mu_X)^4g''''(\mu_X)}{4!}$$

Sean X_1, \ldots, X_n variables aleatorias con valores esperados $\mu_{X_1}, \ldots, \mu_{X_n}$ y varianzas $\sigma^2_{X_1}, \ldots, \sigma^2_{X_n}$ e $Y = g(X_1, \ldots, X_n)$, la aproximación de primer orden está dada por

$$\begin{split} Y &\approx g(\mu_{X_1}, \dots, \mu_{X_n}) + \sum_{i=1}^n \left(X_i - \mu_{X_i}\right) \frac{\partial}{\partial X_i} g(\mu_{X_1}, \dots, \mu_{X_n}) \\ & \mathsf{E}(Y) \approx g(\mu_{X_1}, \dots, \mu_{X_n}) \\ & \mathsf{Var}(Y) \approx \sum_{i=1}^n \sum_{j=1}^n \rho_{ij} \, \sigma_{X_i} \, \sigma_{X_j} \, \left[\frac{\partial}{\partial \, X_i} g(\mu_{X_1}, \dots, \mu_{X_n}) \cdot \frac{\partial}{\partial \, X_j} g(\mu_{X_1}, \dots, \mu_{X_n}) \right], \qquad \mathsf{con} \, \rho_{ij} = \mathsf{Corr}(X_i, \, X_j) \end{split}$$

Estimador de Momento

Sea X_1, \ldots, X_n una muestra aleatoria independiente e idénticamente distribuida con función de probabilidad p_X o de densidad f_X , determinada por el vector de parámetros $\theta = (\theta_1, \ldots, \theta_k)$. El método propone igualar los momentos teóricos no centrales de una variable aleatoria X denotados por μ_k , con los momentos empíricos, basados en los datos, m_k , y despejar los parámetros de interés:

$$\mu_k = E(X^k) \quad \text{y} \quad m_k = \frac{1}{n} \sum_{i=1}^n x_i^k$$
$$\Rightarrow \mu_k = m_k, \quad k = 1, 2, \dots$$

Estimador Máximo Verosímil

Sea X_1, \dots, X_n una muestra aleatoria independiente e idénticamente distribuida con función de probabilidad p_X o de densidad f_X , determinada por un parámetro θ . Si $\hat{\theta}$ es el estimador máximo verosímil del parámetro θ , entonces:

- $E(\hat{\theta}) \to \theta$, cuando $n \to \infty$.
- $\qquad \qquad \mathbf{Var}(\hat{\theta}) = \frac{1}{I_n(\theta)}, \, \mathsf{con} \, I_n(\theta) = -\mathsf{E} \left[\frac{\partial^2}{\partial \, \theta^2} \, \ln L(\theta) \right].$
- $\sqrt{I_n(\theta)}(\hat{\theta}-\theta) \sim \text{Normal}(0, 1)$, cuando $n \to \infty$.
- El estimador máximo verosímil de $g(\theta)$ es $g(\hat{\theta})$, cuya varianza está dada por: $\text{Var}[g(\hat{\theta})] = \frac{\left[g'(\theta)\right]^2}{I_{-}(\theta)}$.

Error Cuadrático Medio

El error cuadrático medio de un estimador $\hat{\theta}$ de θ se define como:

$$\mathsf{ECM}(\hat{\theta}) = \mathsf{E}\left[\left(\hat{\theta} - \theta\right)^2\right] = \mathsf{Var}(\hat{\theta}) + \mathsf{Sesgo}^2$$

Distribuciones Muestrales

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas Normal (μ, σ) , entonces

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim \text{Normal}(0,1), \quad \frac{\overline{X}_n - \mu}{s/\sqrt{n}} \sim \text{t-student}(n-1), \quad \frac{s^2 \, (n-1)}{\sigma^2} \sim \chi^2(n-1)$$

$$\operatorname{con} s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Potencia

Sean X_1, \dots, X_n variables aleatorias independientes e idénticamente distribuidas Normal (μ, σ) , entonces para $H_0: \mu = \mu_0$ y σ conocido:

$$1 - \Phi\left(k_{1-\alpha/2} - \Delta \frac{\sqrt{n}}{\sigma}\right) + \Phi\left(k_{\alpha/2} - \Delta \frac{\sqrt{n}}{\sigma}\right), \qquad 1 - \Phi\left(k_{1-\alpha} - \Delta \frac{\sqrt{n}}{\sigma}\right), \qquad \Phi\left(k_{\alpha} - \Delta \frac{\sqrt{n}}{\sigma}\right)$$

Comparación de Poblaciones

Sean X_1, \ldots, X_n e Y_1, \ldots, Y_m dos muestras aleatorias independientes con distribución Normal (μ_X, σ_X) y Normal (μ_Y, σ_Y) respectivamente. Con medias y varianzas muestrales dadas por:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \qquad \overline{Y}_m = \frac{1}{m} \sum_{j=1}^m Y_j$$

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 \qquad S_Y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_j - \overline{Y}_m)^2$$

Entonces

■ Si σ_X y σ_Y son conocidos:

$$\frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \text{Normal}(0, \ 1)$$

■ Si σ_X y σ_Y son desconocidos pero iguales:

$$\frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t - \mathsf{Student}(n + m - 2)$$

$$\operatorname{con} S_p^2 = \frac{(n-1) \, S_X^2 + (m-1) \, S_Y^2}{n+m-2}$$

■ Si σ_X v σ_Y son desconocidos

$$\frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}} \sim t - \mathsf{Student}(\nu)$$

con

$$\nu = \left[\frac{\left(S_X^2/n + S_Y^2/m\right)^2}{\frac{\left(S_X^2/n\right)^2}{n-1} + \frac{\left(S_Y^2/m\right)^2}{m-1}} \right]$$

■ Si μ_X y μ_Y son desconocidos:

$$\frac{\left[(n-1) \, S_X^2 / \sigma_X^2 \right] / (n-1)}{\left[(m-1) \, S_Y^2 / \sigma_Y^2 \right] / (m-1)} = \frac{S_X^2}{S_Y^2} \cdot \frac{\sigma_Y^2}{\sigma_X^2} \sim F(n-1, m-1)$$

Sean X_1, \ldots, X_n e Y_1, \ldots, Y_m dos muestras aleatorias independientes con distribución Bernoulli (p_X) y Bernoulli (p_Y) respectivamente, entonces

$$\frac{(\overline{X}_n - \overline{Y}_m) - (p_X - p_Y)}{\sqrt{\frac{p_X(1 - p_X)}{n} + \frac{p_Y(1 - p_Y)}{m}}} \overset{\mathsf{aprox}}{\sim} \mathsf{Normal}(0, \ 1) \qquad \mathsf{y} \qquad \frac{(\overline{X}_n - \overline{Y}_m) - (p_X - p_Y)}{\sqrt{\frac{\overline{X}_n(1 - \overline{X}_n)}{n} + \frac{\overline{Y}_m(1 - \overline{Y}_m)}{m}}} \overset{\mathsf{aprox}}{\sim} \mathsf{Normal}(0, \ 1)$$

Sean X_1, \ldots, X_n e Y_1, \ldots, Y_m dos muestras aleatorias independientes con distribución $\operatorname{Poisson}(\lambda_X)$ y $\operatorname{Poisson}(\lambda_Y)$ respectivamente, entonces

$$\frac{(\overline{X}_n - \overline{Y}_m) - (\lambda_X - \lambda_Y)}{\sqrt{\frac{\lambda_X}{n} + \frac{\lambda_Y}{m}}} \overset{\text{aprox}}{\sim} \mathsf{Normal}(0, \, 1) \qquad \mathsf{y} \qquad \frac{(\overline{X}_n - \overline{Y}_m) - (\lambda_X - \lambda_Y)}{\sqrt{\frac{\overline{X}_n}{n} + \frac{\overline{Y}_m}{m}}} \overset{\text{aprox}}{\sim} \mathsf{Normal}(0, \, 1)$$

Sean X_1, \ldots, X_n e Y_1, \ldots, Y_m dos muestras aleatorias independientes con distribución Exponencial (ν_X) y Exponencial (ν_Y) respectivamente, entonces

$$\frac{(\overline{X}_n - \overline{Y}_m) - \left(\frac{1}{\nu_X} - \frac{1}{\nu_Y}\right)}{\sqrt{\frac{1}{n}\frac{1}{\nu_X^2} + \frac{1}{m}\frac{1}{\nu_Y^2}}} \overset{\mathsf{aprox}}{\sim} \mathsf{Normal}(0, \, 1) \qquad \mathsf{y} \qquad \frac{(\overline{X}_n - \overline{Y}_m) - \left(\frac{1}{\nu_X} - \frac{1}{\nu_Y}\right)}{\sqrt{\frac{\overline{X}_n^2}{n} + \frac{\overline{Y}_m^2}{m}}} \overset{\mathsf{aprox}}{\sim} \mathsf{Normal}(0, \, 1)$$

Bondad de Ajuste

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim \chi^{2}(k - 1 - \nu)$$

con ν igual al número de estadísticos muestrales utilizados para estimar los parámetros del modelo ajustado.

Regresión Lineal Simple

Para el modelo de regresión lineal simple $y' = \hat{y} = \beta_0 + \beta_1 x$, se tiene que

$$\begin{split} \hat{\beta}_0 &= \overline{y} - \hat{\beta}_1 \, \overline{x}, \quad \hat{\beta}_1 = \frac{\displaystyle\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\displaystyle\sum_{i=1}^n (x_i - \overline{x})^2}, \quad r^2 = 1 - \frac{s_{Y|x}^2}{s_Y^2}, \qquad s_{Y|x}^2 = \frac{1}{n-2} \displaystyle\sum_{i=1}^n (y_i - y_i')^2 \\ \hat{\rho} &= \hat{\beta}_1 \, \frac{s_X}{s_Y}, \qquad \hat{\rho}^2 = 1 - \frac{(n-2)}{(n-1)} \, \frac{s_{Y|x}^2}{s_Y^2} \qquad , \\ \langle \mu_{Y|x_i} \rangle_{1-\alpha} &= \overline{y}_i \pm t_{(1-\alpha/2),\, n-2} \cdot s_{Y|x} \sqrt{\frac{1}{n} + \frac{(x_i - \overline{x})^2}{\displaystyle\sum_{j=1}^n (x_j - \overline{x})^2}} \\ T_{\hat{\beta}_j} &= \frac{\hat{\beta}_j - \beta_j}{s_{\hat{\beta}_j}} \sim \text{t-Student}(n-2), \qquad F = T_{\hat{\beta}_1}^2 \sim F(1,\, n-2) \\ s_{\hat{\beta}_0} &= \frac{s_{Y|x} \sqrt{\displaystyle\sum_{i=1}^n x_i^2}}{\sqrt{n \sum_{i=1}^n (x_i - \overline{x})^2}}, \qquad s_{\hat{\beta}_1} &= \frac{s_{Y|x}}{\sqrt{\displaystyle\sum_{i=1}^n (x_i - \overline{x})^2}} \end{split}$$

Regresión Lineal Múltiple

Para el modelo de regresión lineal $y' = \hat{y} = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$, se tiene que

$$SCT = SCR + SCE$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$s_{Y|x}^2 = \frac{1}{n-k-1} \sum_{i=1}^{n} (y_i - y_i')^2, \quad R^2 = \frac{SCR}{SCT} = 1 - \frac{SCE}{SCT} = 1 - \frac{(n-k-1)}{(n-1)} \frac{s_{Y|x}^2}{s_Y^2}, \qquad r^2 = 1 - \frac{(n-1)}{(n-k-1)} \frac{SCE}{SCT} = 1 - \frac{s_{Y|x}^2}{s_Y^2}$$

$$T_{\hat{\beta}_j} = \frac{\hat{\beta}_j - \beta_j}{s_{\hat{\beta}_j}} \sim \text{t-Student}(n-k-1), \qquad F = \frac{SCR/k}{SCE/(n-k-1)} \sim F(k, n-k-1)$$

con k regresores en el modelo, $\hat{\beta}_j$ estimador de β_j y $s_{\hat{\beta}_j} = \sqrt{\widehat{\mathrm{Var}(\hat{\beta}_j)}}$.

Comparación de modelos anidados en k regresores:

$$F = \frac{\left(SCE_1 - SCE_2\right)/r}{SCE_2/(n - (k+r) - 1)} \sim F(r, n - (k+r) - 1)$$

donde SCE_1 es la suma de errores al cuadrado del modelo base con k regresores y SCE_2 la suma de errores al cuadrado del modelo que contiene los k regresores base y r nuevos regreores.

Modelos de probabilidad en R:

En general para cierta distribución DISTR existen las siguientes funciones:

```
dDISTR(x,...) entrega P(X = x).
pDISTR(q,...) entrega P(X \leq q).
qDISTR(p,...) entrega el valor de x tal que P(X \le x) = p.
rDISTR(n,...) genera una muestra proveniente de un modelo de distribución.
    ■ Binomial: _binom(,size=n,prob=p)
    • Geométrica: _{geom}(x = x - 1, prob = p)
    ■ Binomial-Negativa: _{\tt nbinom}(x=x-r, size=r, prob=p)
    ■ Poisson: _pois(,lambda=\lambda)
    ■ Uniforme: _unif(,min=a,max=b)
    ■ Normal: _{norm}(,mean=\mu,sd=\sigma)
    ■ Log-Normal: _{1}norm(,_{meanlog}=\lambda,_{sdlog}=\zeta)
    ■ Exponencial: _exp(,rate=\(\nu\))
    ■ Gamma: _gamma(,shape=k, rate=v)

    Chi Cuadrado: _chisq(,df=η)

    t-Student: _t(,df=ν)
    • Fisher: _f(,df1=\eta,df2=\nu)
    ■ Hipergeométrica: _hyper(, m=m, n=N-m, k=n)
    • Weibull: _weibull(, shape=\beta, scale=\eta)
    ■ Logística: _logis(, location=\mu, scale=\sigma)
    ■ Log-Logística: plogis \left(\frac{\log(x) - \mu}{\sigma}, \text{location} = 0, \text{ scale} = 1\right), dlogis \left(\frac{\log(x) - \mu}{\sigma}, \text{location} = 0, \text{ scale} = 1\right) / (x\sigma)
```

Estadística descriptiva en R:

- Media: mean()
- Moda: mlv() del paquete "modeest"

■ Beta: pbeta $\left(\left(\frac{\mathbf{x}-a}{b-a}\right)$, shape1 = q, shape2 = r)

- Varianza: var()
- Desviación estándar: sd()
- Resumen de vector numérico: summary()
- Cuantiles: quantile()
- Mínimo: min()
- Máximo: max()
- Rango: max()-min()
- Rango intercuartil: IQR()
- Mediana: median()
- Coeficiente de variación: sd()/mean()
- Coeficiente de asimetría: skewness() del paquete "moments"
- Coeficiente de kurtosis: kurtosis()-3 del paquete "moments"

Estimación y Prueba de Hipótesis:

- Estimación de Momentos: fitdist(..., method = "mme", ...) de library(fitdistrplus)
- Estimación Máximo Verosímil: fitdistr() de library(MASS) y fitdist(..., method = "mle", ...) de library(fitdistrplus)
- Test para μ con σ conocido (bajo Normalidad): z.test(). (library(TeachingDemos))

- Test para μ con σ desconocido (bajo Normalidad): t.test().
- Test para σ con μ desconocido (bajo Normalidad): sigma.test(). (library(TeachingDemos))
- Test para comparación de varianzas: var.test().
- Test para comparación de medias: t.test().
- Test aproximado para θ (bajo cualquier distribución): z.test(). (library(TeachingDemos))
- Test aproximado para p (bajo Bernoulli): prop.test(..., correct = F).

Bondad de Ajuste:

- Test KS: ks.test().
- Test χ^2 : chisq.test().
- Test Shapiro (Normalidad): shapiro.test().

Regresión lineal:

- Regresión lineal: lm().
- Tabla ANOVA: aov().
- Tabla ANOVA: anova(). (equivalente a summary de aov)

Tablas de Percentiles \boldsymbol{p}

				Distrib	oución l	Normal E	stándar	k_p					Distribu	ción t-stud	dent $t_p($	$\nu)$
k_p	0,00	0,01	0,02			0,04	0,05	0,06	0,07	0,08	0,09	_ν	$t_{0,90}$	$t_{0,95}$	$t_{0,975}$	$t_{0,99}$
0,0	0,5000	0,5040	0,508			,	0,5199	0,5239	0,5279	0,5319	0,5359	1	3,078	6,314	12,706	31,821
0,1	0,5398	0,5438	0,547			*	0,5596	0,5636	0,5675	0,5714	0,5753	2	1,886	2,920	4,303	6,965
0,2	0,5793	0,5832	0,587	,		*	0,5987	0,6026	0,6064	0,6103	0,6141	3	1,638	2,353	3,182	4,541
0,3	0,6179	0,6217	0,625	,		*	0,6368	0,6406	0,6443	0,6480	0,6517	4	1,533	2,132	2,776	3,747
0,4	0,6554	0,6591	0,662	,		*	0,6736	0,6772	0,6808	0,6844	0,6879	5	1,476	2,015	2,571	3,365
0,5	0,6915	0,6950	0,698			*	0,7088	0,7123	0,7157	0,7190	0,7224	6	1,440	1,943	2,447	3,143
0,6	0,7257	0,7291	0,732	,		*	0,7422	0,7454	0,7486	0,7517	0,7549	7	1,415	1,895	2,365	2,998
0,7	0,7580	0,7611	0,764	,		*	0,7734	0,7764	0,7794	0,7823	0,7852	8	1,397	1,860	2,306	2,896
0,8	0,7881	0,7910	0,793	,		*	0,8023	0,8051	0,8078	0,8106	0,8133	9	1,383	1,833	2,262	2,821
0,9	0,8159	0,8186	0,821			*	0,8289	0,8315	0,8340	0,8365	0,8389	10	1,372	1,812	2,228	2,764
1,0	0,8413	0,8438	0,846	,		*	0,8531	0,8554	0,8577	0,8599	0,8621	11	1,363	1,796	2,201	2,718
1,1	0,8643	0,8665	0,868	,		*	0,8749	0,8770	0,8790	0,8810	0,8830	12	1,356	1,782	2,179	2,681
1,2	0,8849	0,8869	0,888	,		*	0,8944	0,8962	0,8980	0,8997	0,9015	13	1,350	1,771	2,160	2,650
1,3	0,9032	0,9049	0,906	,		*	0,9115	0,9131	0,9147	0,9162	0,9177	14	1,345	1,761	2,145	2,624
1,4	0,9192	0,9207	0,922			*	0,9265	0,9279	0,9292	0,9306	0,9319	15	1,341	1,753	2,131	2,602
1,5	0,9332	0,9345	0,935	,		*	0,9394	0,9406	0,9418	0,9429	0,9441	16	1,337	1,746	2,120	2,583
1,6	0,9452	0,9463	0,947	,		*	0,9505	0,9515	0,9525	0,9535	0,9545	17	1,333	1,740	2,110	2,567
1,7	0,9554	0,9564	0,957	,		*	0,9599	0,9608	0,9616	0,9625	0,9633	18	1,330	1,734	2,101	2,552
1,8	0,9641	0,9649	0,965			*	0,9678	0,9686	0,9693	0,9699	0,9706	19	1,328	1,729	2,093	2,539
1,9	0,9713	0,9719	0,972	,			0,9744	0,9750	0,9756	0,9761	0,9767	20	1,325	1,725	2,086	2,528
2,0	0,9772	0,9778	0,978	,		*	0,9798	0,9803	0,9808	0,9812	0,9817	21	1,323	1,721	2,080	2,518
2,1	0,9821	0,9826	0,983			*	0,9842	0,9846	0,9850	0,9854	0,9857	22	1,321	1,717	2,074	2,508
2,2	0,9861	0,9864	0,986			*	0,9878	0,9881	0,9884	0,9887	0,9890	23	1,319	1,714	2,069	2,500
2,3	0,9893	0,9896	0,989	,		*	0,9906	0,9909	0,9911	0,9913	0,9916	24	1,318	1,711	2,064	2,492
2,4	0,9918	0,9920	0,992	,		*	0,9929	0,9931	0,9932	0,9934	0,9936	25	1,316	1,708	2,060	2,485
2,5	0,9938	0,9940	0,994	,		*	0,9946	0,9948	0,9949	0,9951	0,9952	26	1,315	1,706	2,056	2,479
2,6	0,9953	0,9955	0,995			*	0,9960	0,9961	0,9962	0,9963	0,9964	27	1,314	1,703	2,052	2,473
2,7	0,9965	0,9966	0,996	,		*	0,9970	0,9971	0,9972	0,9973	0,9974	28	1,313	1,701	2,048	2,467
2,8	0,9974	0,9975	0,997	,		*	0,9978	0,9979	0,9979	0,9980	0,9981	29	1,311	1,699	2,045	2,462
2,9	0,9981	0,9982	0,998				0,9984	0,9985	0,9985	0,9986	0,9986	30	1,310	1,697	2,042	2,457
3,0	0,9987	0,9987	0,998	7 0,99	988 0	,9988	0,9989	0,9989	0,9989	0,9990	0,9990	∞	1,282	1,645	1,960	2,326
							Dis	stribución Chi-C	Cuadrado c_I	(ν)						
$\frac{\nu}{1}$	c _{0,005} 0,000	$c_{0,001} = 0,000$	$\frac{c_{0,025}}{0,001}$	$c_{0,05} = 0.004$	$c_{0,1} = 0.016$	$c_{0,2} = 0.064$	$c_{0,3} = 0.148$	$c_{0,4} = 0.275$	$c_{0,6} = 0.708$	$\frac{c_{0,7}}{1,074}$	$c_{0,8} = 1,642$	$c_{0,9}$ $2,706$	$c_{0,95}$ $3,841$	$c_{0,975} = 5,024$	c _{0,99} 6,635	c _{0,995} 7,879
2	0,010	0,002	0,051	0,103	0,211	0,446	0,713	1,022	1,833	2,408	3,219	4,605	5,991	7,378	9,210	10,597
3 4	$0,072 \\ 0,207$	$0,024 \\ 0,091$	$0,216 \\ 0,484$	$0,352 \\ 0,711$	0,584 $1,064$	$^{1,005}_{1,649}$	$^{1,424}_{2,195}$	1,869 2,753	$^{2,946}_{4,045}$	$\frac{3,665}{4,878}$	$4,642 \\ 5,989$	$6,251 \\ 7,779$	7,815 $9,488$	9,348 $11,143$	11,345 $13,277$	12,838 $14,860$
5 6	0,412 $0,676$	$0,210 \\ 0,381$	0,831 $1,237$	1,145 $1,635$	1,610 $2,204$	2,343 3,070	3,000 3,828	3,655 $4,570$	5,132 $6,211$	6,064 $7,231$	7,289 8,558	9,236 $10,645$	11,070 $12,592$	12,833 14,449	15,086 16,812	16,750 18,548
7	0,989	0,598	1,690	2,167	2,833	3,822	4,671	5,493	7,283	8,383	9,803	12,017	14,067	16,013	18,475	20,278
8 9	1,344 $1,735$	0,857 $1,152$	2,180 $2,700$	2,733 $3,325$	3,490 $4,168$	4,594 5,380	5,527 $6,393$	6,423 $7,357$	8,351 $9,414$	9,524 $10,656$	11,030 $12,242$	13,362 $14,684$	15,507 16,919	17,535 19,023	20,090 21,666	21,955 23,589
10	2,156	1,479	3,247	3,940	4,865	6,179	7,267	8,295	10,473	11,781	13,442	15,987	18,307	20,483	23,209	25,188
11 12	$^{2,603}_{3,074}$	$^{1,834}_{2,214}$	$3,816 \\ 4,404$	$^{4,575}_{5,226}$	5,578 $6,304$	6,989 $7,807$	8,148 $9,034$	9,237 $10,182$	11,530 $12,584$	12,899 $14,011$	14,631 $15,812$	17,275 $18,549$	19,675 $21,026$	21,920 $23,337$	24,725 $26,217$	28,300
13 14	3,565 4,075	2,617 $3,041$	5,009 5,629	5,892 $6,571$	$7,042 \\ 7,790$	8,634 9,467	9,926 10,821	11,129 $12,078$	13,636 14,685	15,119 $16,222$	16,985 18,151	19,812 $21,064$	22,362 23,685	24,736 26,119	27,688 29,141	29,819 31,319
15	4,601	3,483	6,262	7,261	8,547	10,307	11,721	13,030	15,733	17,322	19,311	22,307	24,996	27,488	30,578	32,801
16 17	5,142 $5,697$	3,942 $4,416$	6,908 $7,564$	7,962 $8,672$	9,312 $10,085$	11,152 $12,002$	12,624 $13,531$	13,983 $14,937$	16,780 $17,824$	18,418 19,511	20,465 $21,615$	23,542 $24,769$	26,296 27,587	28,845 30,191	32,000 33,409	34,267 $35,718$
18	6,265	4,905	8,231	9,390	10,865	12,857	14,440	15,893	18,868	20,601	22,760	25,989	28,869	31,526	34,805	37,156
19 20	6,844 $7,434$	5,407 $5,921$	8,907 9,591	10,117 $10,851$	11,651 $12,443$	13,716 $14,578$	15,352 16,266	16,850 17,809	19,910 $20,951$	21,689 $22,775$	23,900 25,038	27,204 $28,412$	30,144 31,410	32,852 34,170	36,191 37,566	38,582 39,997
21	8,034	6,447	10,283	11,591	13,240	15,445	17,182	18,768	21,991	23,858	26,171	29,615	32,671	35,479	38,932	41,401
22 23	8,643 $9,260$	7,529	10,982 11,689	12,338 $13,091$	$14,041 \\ 14,848$	16,314 $17,187$	18,101 $19,021$	19,729 $20,690$	23,031 $24,069$	24,939 $26,018$	27,301 $28,429$	30,813 $32,007$	33,924 $35,172$	36,781 38,076	40,289 41,638	42,796 $44,181$
24 25	9,886 $10,520$	8,085	12,401 13,120	13,848 14,611	15,659 $16,473$	18,062 18,940	19,943 20,867	21,652 $22,616$	25,106 $26,143$	27,096 $28,172$	29,553 30,675	$33,196 \\ 34,382$	36,415 37,652	39,364 40,646	42,980 44,314	45,559 $46,928$
26	11,160	9,222	13,844	15,379	17,292	19,820	21,792	23,579	27,179	29,246	31,795	35,563	38,885	41,923	45,642	48,290
27 28	11,808 $12,461$	9,803 $10,391$	14,573 15,308	16,151 $16,928$	18,114 $18,939$	20,703 21,588	22,719 $23,647$	24,544 $25,509$	28,214 $29,249$	30,319 31,391	32,912 $34,027$	36,741 $37,916$	40,113 41,337	43,195 44,461	46,963 48,278	49,645 $50,993$
29	13,121	10,986	16,047	17,708	19,768	22,475	24,577	26,475	30,283	32,461	35,139	39,087	42,557	45,722	49,588	52,336
30 40	13,787 $20,707$	11,588 17,916	16,791 $24,433$	18,493 $26,509$	20,599 $29,051$	23,364 $32,345$	25,508 $34,872$	27,442 $37,134$	31,316 $41,622$	33,530 $44,165$	36,250 $47,269$	40,256 $51,805$	43,773 55,758	46,979 59,342	50,892 63,691	53,672 66,766
50	27,991	24,674	32,357	34,764	37,689	41,449	44,313	46,864	51,892	54,723	58,164	63,167	67,505	71,420	76,154	79,490
60 70	35,534 $43,275$	39,036	40,482 $48,758$	43,188 $51,739$	46,459 $55,329$	50,641 $59,898$	53,809 $63,346$	56,620 $66,396$	62,135 $72,358$	65,227 $75,689$	68,972 $79,715$	74,397 $85,527$	79,082 $90,531$	83,298 95,023	88,379 $100,425$	91,952 $104,215$
80 90	51,172 59,196	46,520	57,153 65,647	60,391 69,126	64,278 $73,291$	69,207 78,558	72,915 $82,511$	76,188 85,993	82,566 92,761	86,120 96,524	90,405 $101,054$	96,578 107,565	101,879 113,145	106,629 118,136	112,329 124,116	116,321
100	67,328		74,222	77,929	82,358	87,945	92,129	95,808	102,946	106,906	111,667	118,498	124,342	129,561	135,807	

Percentiles p Distribución Fisher: $F_p(df_1, df_2)$

```
qf(p = 0.950, df1, df2):
         df2=1
                df2=2
                        df2=3
                                df2=4
                                        df2=5
                                                df2=6
                                                        df2=7
                                                                 df2=8
                                                                        df2=9 df2=10 df2=11 df2=12 df2=13 df2=14 df2=15
df1=1
                18.51
                        10.13
                                 7.71
                                         6.61
                                                  5.99
                                                         5.59
                                                                 5.32
                                                                         5.12
                                                                                 4.96
                                                                                         4.84
                                                                                                 4.75
                                                                                                         4.67
                                                                                                                 4.60
                                                                                                                         4.54
       161.45
                                  6.94
                                                                                          3.98
                                                                                                                 3.74
                                                                                                                         3.68
       199.50
                 19.00
                          9.55
                                         5.79
                                                  5.14
                                                          4.74
                                                                  4.46
                                                                          4.26
                                                                                  4.10
                                                                                                  3.89
                                                                                                         3.81
df1=2
df1=3
       215.71
                 19.16
                          9.28
                                  6.59
                                         5.41
                                                  4.76
                                                          4.35
                                                                  4.07
                                                                          3.86
                                                                                 3.71
                                                                                          3.59
                                                                                                  3.49
                                                                                                         3.41
                                                                                                                 3.34
                                                                                                                         3.29
                                  6.39
                                                                          3.63
                                                                                          3.36
                                                                                                  3.26
df1=4
       224.58
                 19.25
                          9.12
                                         5.19
                                                  4.53
                                                          4.12
                                                                  3.84
                                                                                 3.48
                                                                                                                         3.06
                                                                                                         3.18
                                                                                                                 3.11
df1=5
       230.16
                19.30
                          9.01
                                  6.26
                                         5.05
                                                  4.39
                                                          3.97
                                                                 3.69
                                                                          3.48
                                                                                 3.33
                                                                                          3.20
                                                                                                 3.11
                                                                                                         3.03
                                                                                                                 2.96
                                                                                                                         2.90
df1=6
        233.99
                 19.33
                          8.94
                                  6.16
                                          4.95
                                                  4.28
                                                          3.87
                                                                  3.58
                                                                          3.37
                                                                                  3.22
                                                                                          3.09
                                                                                                  3.00
                                                                                                         2.92
                                                                                                                 2.85
                                                                                                                         2.79
df1=7
                                          4.88
                                                          3.79
                                                                  3.50
                                                                                          3.01
                                                                                                 2.91
                                                                                                                  2.76
                                                                                                                         2.71
       236.77
                 19.35
                          8.89
                                  6.09
                                                  4.21
                                                                          3.29
                                                                                 3.14
                                                                                                         2.83
       238.88
                 19.37
                          8.85
                                  6.04
                                         4.82
                                                          3.73
                                                                 3.44
                                                                          3.23
                                                                                 3.07
                                                                                          2.95
                                                                                                 2.85
df1=8
                                                  4.15
                                                                                                         2.77
                                                                                                                 2.70
                                                                                                                         2.64
                                          4.77
df1=9
       240.54
                 19.38
                          8.81
                                  6.00
                                                  4.10
                                                         3.68
                                                                 3.39
                                                                          3.18
                                                                                 3.02
                                                                                          2.90
                                                                                                 2.80
                                                                                                         2.71
                                                                                                                 2.65
                                                                                                                         2.59
df1=10 241.88
                 19.40
                          8.79
                                  5.96
                                         4.74
                                                  4.06
                                                          3.64
                                                                 3.35
                                                                          3.14
                                                                                  2.98
                                                                                         2.85
                                                                                                 2.75
                                                                                                         2.67
                                                                                                                 2.60
                                                                                                                         2.54
df1=11 242.98
                 19.40
                          8.76
                                  5.94
                                          4.70
                                                  4.03
                                                          3.60
                                                                  3.31
                                                                          3.10
                                                                                  2.94
                                                                                          2.82
                                                                                                 2.72
                                                                                                         2.63
                                                                                                                 2.57
                                                                                                                          2.51
                                         4.68
                                                  4.00
df1=12 243.91
                 19.41
                          8.74
                                  5.91
                                                          3.57
                                                                 3.28
                                                                          3.07
                                                                                  2.91
                                                                                         2.79
                                                                                                 2.69
                                                                                                         2.60
                                                                                                                 2.53
                                                                                                                         2.48
df1=13 244.69
                 19.42
                          8.73
                                  5.89
                                         4.66
                                                  3.98
                                                         3.55
                                                                 3.26
                                                                          3.05
                                                                                 2.89
                                                                                          2.76
                                                                                                 2.66
                                                                                                         2.58
                                                                                                                 2.51
                                                                                                                         2.45
df1=14 245.36
                 19.42
                          8.71
                                  5.87
                                          4.64
                                                  3.96
                                                          3.53
                                                                 3.24
                                                                          3.03
                                                                                 2.86
                                                                                         2.74
                                                                                                 2.64
                                                                                                         2.55
                                                                                                                 2.48
                                                                                                                         2.42
df1=15 245.95
                 19.43
                          8.70
                                  5.86
                                         4.62
                                                  3.94
                                                          3.51
                                                                 3.22
                                                                          3.01
                                                                                  2.85
                                                                                          2.72
                                                                                                 2.62
                                                                                                         2.53
                                                                                                                 2.46
                                                                                                                         2.40
df1=16 246.46
                 19.43
                          8.69
                                  5.84
                                         4.60
                                                  3.92
                                                          3.49
                                                                 3.20
                                                                          2.99
                                                                                  2.83
                                                                                         2.70
                                                                                                 2.60
                                                                                                         2.51
                                                                                                                 2.44
                                                                                                                         2.38
df1=17 246.92
                 19.44
                          8.68
                                  5.83
                                          4.59
                                                  3.91
                                                          3.48
                                                                 3.19
                                                                          2.97
                                                                                  2.81
                                                                                         2.69
                                                                                                 2.58
                                                                                                         2.50
                                                                                                                 2.43
                                                                                                                         2.37
df1=18 247.32
                 19.44
                          8.67
                                  5.82
                                          4.58
                                                  3.90
                                                          3.47
                                                                 3.17
                                                                          2.96
                                                                                 2.80
                                                                                         2.67
                                                                                                 2.57
                                                                                                         2.48
                                                                                                                 2.41
                                                                                                                         2.35
df1=19 247.69
                 19.44
                          8.67
                                  5.81
                                          4.57
                                                  3.88
                                                          3.46
                                                                 3.16
                                                                          2.95
                                                                                 2.79
                                                                                         2.66
                                                                                                 2.56
                                                                                                         2.47
                                                                                                                 2.40
                                                                                                                         2.34
df1=20 248.01
                 19.45
                          8.66
                                  5.80
                                         4.56
                                                  3.87
                                                          3.44
                                                                 3.15
                                                                          2.94
                                                                                 2.77
                                                                                         2.65
                                                                                                 2.54
                                                                                                         2.46
                                                                                                                 2.39
                                                                                                                         2.33
df1=21 248.31
                 19.45
                          8.65
                                  5.79
                                         4.55
                                                  3.86
                                                         3.43
                                                                 3.14
                                                                          2.93
                                                                                 2.76
                                                                                         2.64
                                                                                                 2.53
                                                                                                         2.45
                                                                                                                 2.38
                                                                                                                         2.32
                                  5.79
df1=22 248.58
                 19.45
                          8.65
                                          4.54
                                                  3.86
                                                          3.43
                                                                 3.13
                                                                          2.92
                                                                                 2.75
                                                                                         2.63
                                                                                                 2.52
                                                                                                         2.44
                                                                                                                 2.37
                                                                                                                         2.31
df1=23 248.83
                 19.45
                          8.64
                                  5.78
                                          4.53
                                                  3.85
                                                          3.42
                                                                 3.12
                                                                          2.91
                                                                                 2.75
                                                                                         2.62
                                                                                                 2.51
                                                                                                         2.43
                                                                                                                 2.36
                                                                                                                         2.30
df1=24 249.05
                 19.45
                          8.64
                                  5.77
                                          4.53
                                                  3.84
                                                          3.41
                                                                 3.12
                                                                          2.90
                                                                                 2.74
                                                                                         2.61
                                                                                                 2.51
                                                                                                         2.42
                                                                                                                 2.35
                                                                                                                         2.29
df1=25 249.26
                 19.46
                          8.63
                                  5.77
                                          4.52
                                                  3.83
                                                                          2.89
                                                                                  2.73
                                                                                          2.60
                                                                                                 2.50
                                                                                                         2.41
                                                                                                                         2.28
                                                          3.40
                                                                 3.11
                                                          3.40
df1=26 249.45
                 19.46
                          8.63
                                  5.76
                                          4.52
                                                  3.83
                                                                 3.10
                                                                          2.89
                                                                                 2.72
                                                                                          2.59
                                                                                                 2.49
                                                                                                         2.41
                                                                                                                 2.33
                                                                                                                         2.27
df1=27 249.63
                 19.46
                          8.63
                                  5.76
                                                  3.82
                                                          3.39
                                                                  3.10
                                                                          2.88
                                                                                  2.72
                                                                                          2.59
                                                                                                  2.48
                                                                                                         2.40
                                                                                                                          2.27
                                          4.51
                                                                                                                 2.33
df1=28 249.80
                                  5.75
                                          4.50
                                                  3.82
                                                          3.39
                                                                          2.87
                                                                                  2.71
                                                                                          2.58
                                                                                                 2.48
                 19.46
                          8.62
                                                                  3.09
                                                                                                         2.39
                                                                                                                 2.32
                                                                                                                          2.26
df1=29 249.95
                 19.46
                                  5.75
                                          4.50
                                                  3.81
                                                                  3.08
                                                                          2.87
                                                                                 2.70
                                                                                          2.58
                                                                                                 2.47
                                                                                                         2.39
                                                                                                                 2.31
                                                                                                                          2.25
                          8.62
                                                          3.38
                                  5.75
                                                                                                 2.47
                                                                                                                         2.25
df1=30 250.10
                19.46
                          8.62
                                          4.50
                                                  3.81
                                                         3.38
                                                                 3.08
                                                                          2.86
                                                                                 2.70
                                                                                          2.57
                                                                                                         2.38
                               \mathtt{df2} = 19 \ \mathtt{df2} = 20 \ \mathtt{df2} = 21 \ \mathtt{df2} = 22 \ \mathtt{df2} = 23 \ \mathtt{df2} = 24 \ \mathtt{df2} = 25 \ \mathtt{df2} = 26 \ \mathtt{df2} = 27 \ \mathtt{df2} = 28
        df2=16 df2=17 df2=18
                                                                                                               df2=29
                                                                                                                       df2=30
df1=1
                 4.45
                                  4.38
                                         4.35
                                                  4.32
                                                          4.30
                                                                 4.28
                                                                          4.26
                                                                                         4.23
          4.49
                          4.41
                                                                                 4.24
                                                                                                 4.21
                                                                                                         4.20
                                                                                                                 4.18
df1=2
                                                                                 3.39
          3.63
                  3.59
                          3.55
                                  3.52
                                         3.49
                                                  3.47
                                                          3.44
                                                                  3.42
                                                                          3.40
                                                                                          3.37
                                                                                                 3.35
                                                                                                         3.34
                                                                                                                         3.32
df1=3
                          3.16
                                  3.13
                                         3.10
                                                  3.07
                                                          3.05
                                                                  3.03
                                                                          3.01
df1=4
          3.01
                          2.93
                                         2.87
                                                  2.84
                                                          2.82
                                                                          2.78
                                                                                  2.76
                                                                                          2.74
                                                                                                  2.73
                                                                                                                         2.69
df1=5
          2.85
                  2.81
                          2.77
                                  2.74
                                          2.71
                                                  2.68
                                                                  2.64
                                                                          2.62
                                                                                          2.59
df1=6
          2.74
                  2.70
                          2.66
                                  2.63
                                         2.60
                                                  2.57
                                                          2.55
                                                                 2.53
                                                                          2.51
                                                                                  2.49
                                                                                          2.47
                                                                                                 2.46
                                                                                                         2.45
          2.66
                  2.61
                          2.58
                                  2.54
                                          2.51
                                                  2.49
                                                                 2.44
                                                                          2.42
                                                                                  2.40
                                                                                          2.39
                                                                                                  2.37
                                                                                                         2.36
df1=8
          2.59
                  2.55
                          2.51
                                  2.48
                                          2.45
                                                  2.42
                                                          2.40
                                                                  2.37
                                                                          2.36
                                                                                  2.34
                                                                                          2.32
                                                                                                  2.31
                                                                                                                  2.28
          2.54
                          2.46
                                         2.39
                                                  2.37
                                                                                          2.27
df1=10
          2.49
                  2.45
                          2.41
                                  2.38
                                          2.35
                                                  2.32
                                                          2.30
                                                                  2.27
                                                                          2.25
                                                                                  2.24
                                                                                          2.22
                                                                                                  2.20
                                                                                                         2.19
                                                                                                                  2.18
                                                                                                                          2.16
df1=11
                          2.37
                                         2.31
                                                  2.28
                                                                                  2.20
                                                                                                 2.17
          2.46
                  2.41
                                  2.34
                                                          2.26
                                                                  2.24
                                                                          2.22
                                                                                          2.18
                                                                                                         2.15
                                                                                                                  2.14
                                                                                                                         2.13
          2.42
                          2.34
                                  2.31
                                         2.28
                                                  2.25
                                                          2.23
                                                                 2.20
                                                                                  2.16
                                                                                                 2.13
                                                                                                                         2.09
df1=12
                  2.38
                                                                          2.18
                                                                                         2.15
                                                                                                         2.12
                                                                                                                 2.10
df1=13
          2.40
                  2.35
                          2.31
                                  2.28
                                         2.25
                                                  2.22
                                                          2.20
                                                                  2.18
                                                                         2.15
                                                                                  2.14
                                                                                                  2.10
                                                                                                         2.09
                                                                                                                 2.08
                                                                                                                         2.06
                                                                                          2.12
df1=14
          2.37
                  2.33
                          2.29
                                  2.26
                                         2.22
                                                  2.20
                                                          2.17
                                                                  2.15
                                                                         2.13
                                                                                  2.11
                                                                                          2.09
                                                                                                  2.08
                                                                                                         2.06
                                                                                                                  2.05
                                                                                                                         2.04
df1=15
          2.35
                  2.31
                          2.27
                                  2.23
                                         2.20
                                                  2.18
                                                         2.15
                                                                 2.13
                                                                          2.11
                                                                                 2.09
                                                                                         2.07
                                                                                                 2.06
                                                                                                         2.04
                                                                                                                 2.03
                                                                                                                         2.01
                                                                                                                         1.99
df1=16
                                  2.21
                                         2.18
                                                                                  2.07
                                                                                          2.05
                                                                                                 2.04
          2.33
                  2.29
                          2.25
                                                  2.16
                                                          2.13
                                                                  2.11
                                                                          2.09
                                                                                                         2.02
                                                                                                                 2.01
                                         2.17
                                                                         2.07
                                                                                                 2.02
                  2.27
                                                  2.14
                                                                                         2.03
df1=17
          2.32
                          2.23
                                  2.20
                                                          2.11
                                                                  2.09
                                                                                  2.05
                                                                                                         2.00
                                                                                                                 1.99
                                                                                                                         1.98
                                                                                 2.04
                                                                                          2.02
                                                                                                  2.00
df1=18
          2.30
                  2.26
                          2.22
                                  2.18
                                         2.15
                                                  2.12
                                                          2.10
                                                                  2.08
                                                                          2.05
                                                                                                         1.99
                                                                                                                 1.97
                                                                                                                         1.96
df1=19
          2.29
                  2.24
                          2.20
                                  2.17
                                         2.14
                                                  2.11
                                                          2.08
                                                                  2.06
                                                                          2.04
                                                                                 2.02
                                                                                          2.00
                                                                                                 1.99
                                                                                                         1.97
                                                                                                                  1.96
                                                                                                                         1.95
                                                                                                 1.97
df1=20
          2.28
                                         2.12
                                                          2.07
                                                                  2.05
                                                                          2.03
                                                                                  2.01
                                                                                          1.99
                                                                                                                         1.93
                  2.23
                          2.19
                                  2.16
                                                  2.10
                                                                                                         1.96
                                                                                                                 1.94
df1=21
          2.26
                  2.22
                          2.18
                                  2.14
                                         2.11
                                                  2.08
                                                          2.06
                                                                  2.04
                                                                          2.01
                                                                                  2.00
                                                                                          1.98
                                                                                                 1.96
                                                                                                         1.95
                                                                                                                  1.93
                                                                                                                         1.92
                                                  2.07
df1=22
          2.25
                  2.21
                          2.17
                                  2.13
                                         2.10
                                                          2.05
                                                                 2.02
                                                                          2.00
                                                                                  1.98
                                                                                         1.97
                                                                                                 1.95
                                                                                                         1.93
                                                                                                                 1.92
                                                                                                                         1.91
df1=23
          2.24
                          2.16
                                  2.12
                                         2.09
                                                  2.06
                                                         2.04
                                                                 2.01
                                                                                 1.97
                                                                                          1.96
                                                                                                 1.94
                  2.20
                                                                          1.99
                                                                                                         1.92
                                                                                                                 1.91
                                                                                                                         1.90
df1=24
                                         2.08
                                                  2.05
                                                          2.03
                                                                          1.98
                                                                                 1.96
                                                                                          1.95
                                                                                                 1.93
                                                                                                                         1.89
          2.24
                  2.19
                          2.15
                                  2.11
                                                                 2.01
                                                                                                         1.91
                                                                                                                 1.90
                          2.14
                                         2.07
df1=25
          2.23
                  2.18
                                  2.11
                                                  2.05
                                                          2.02
                                                                  2.00
                                                                          1.97
                                                                                 1.96
                                                                                          1.94
                                                                                                 1.92
                                                                                                                  1.89
                                                                                                         1.91
                                                                                                                         1.88
df1=26
          2.22
                          2.13
                                         2.07
                                                  2.04
                                                          2.01
                                                                 1.99
                                                                          1.97
                                                                                 1.95
                                                                                          1.93
                                                                                                 1.91
                                                                                                                 1.88
                                                                                                                         1.87
                  2.17
                                  2.10
                                                                                                         1.90
                          2.13
                                                  2.03
df1=27
          2.21
                  2.17
                                  2.09
                                         2.06
                                                          2.00
                                                                 1.98
                                                                          1.96
                                                                                 1.94
                                                                                          1.92
                                                                                                 1.90
                                                                                                         1.89
                                                                                                                  1.88
                                                                                                                         1.86
df1=28
          2.21
                  2.16
                          2.12
                                  2.08
                                         2.05
                                                  2.02
                                                         2.00
                                                                 1.97
                                                                          1.95
                                                                                 1.93
                                                                                         1.91
                                                                                                 1.90
                                                                                                         1.88
                                                                                                                 1.87
                                                                                                                         1.85
df1=29
          2.20
                  2.15
                          2.11
                                  2.08
                                         2.05
                                                  2.02
                                                          1.99
                                                                 1.97
                                                                          1.95
                                                                                  1.93
                                                                                          1.91
                                                                                                 1.89
                                                                                                         1.88
                                                                                                                 1.86
                                                                                                                         1.85
df1=30
                          2.11
                                         2.04
                                                                 1.96
                                                                          1.94
                                  2.07
                                                  2.01
                                                          1.98
                                                                                 1.92
                                                                                          1.90
                                                                                                  1.88
                                                                                                         1.87
                                                                                                                 1.85
                                                                                                                         1.84
```

Propiedad:

Si
$$F \sim F(\mathsf{df}_1,\,\mathsf{df}_2)$$
, entonces $F_p(\mathsf{df}_1,\,\mathsf{df}_2) = \frac{1}{F_{1-p}(\mathsf{df}_2,\,\mathsf{df}_1)}$.

Distribución	Densidad de Probabilidad	× _A	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	u, , $0 = x$	n, p	$\mu_X = np$ $\sigma_X^2 = n p (1-p)$ $M(t) = [pe^t + (1-p)]^n, t \in \mathbb{R}$
Geométrica	$p (1-p)^{x-1}$	$x = 1, 2, \dots$	d	$M(t) = p e^{t} / [1 - (1 - p) e^{t}],$ $M(t) = p e^{t} / [1 - (1 - p) e^{t}], t < -\ln(1 - p)$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x=r,r+1,\dots$	r, p	$\begin{split} \mu X &= r/p \\ \sigma_X^2 &= r (1-p)/p^2 \\ M (t) &= \Big\{ p e^t / [1-(1-p) e^t] \Big\}^r, t < -\ln(1-p) \end{split}$
Poisson	$\frac{(\nu t)^m e^{-\nu} t}{x!}$	$x = 0, 1, \dots$	7	$\mu X = \nu t$ $\sigma_X^2 = \nu t$ $A(t) = \exp\left[\lambda \left(e^t - 1\right)\right], t \in \mathbb{R}$
Exponencial	ν e – ν s	0 \Lambda 8	7	$\mu_{X} = 1/\nu$ $\sigma_{X}^{2} = 1/\nu^{2}$ $M(t) = \nu/(\nu - t), t < \nu$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu} x$	0 \(\lambda\right) \(\text{8}\)	х, х	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $M(t) = [\nu/(\nu - t)]^k, t < \nu$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	8 V 8 V 8	μ, σ	$\mu_{X} = \mu$ $\sigma_{X}^{2} = \sigma^{2}$ $M(t) = \exp(\mu t + \sigma^{2} t^{2}/2), t \in \mathbb{R}$
Log-Normal	$\frac{1}{\sqrt{2\pi}(\zeta x)} \exp \left[-\frac{1}{2} \left(\frac{\ln x - \lambda}{\zeta} \right)^2 \right]$	0 ∧l 8	۸, ۶	$\begin{split} \mu_X &= \exp\left(\lambda + \frac{1}{2}\zeta^2\right) \\ \sigma_X^2 &= \mu_X^2\left(e^{\zeta^2} - 1\right) \\ E(X^r) &= e^{r\lambda}M_Z(r\zeta),\text{con}Z\sim\text{Normal}(0,1) \end{split}$
Uniforme	$\frac{1}{(b-a)}$	2 VI 8 VI 8	a, b	$\begin{split} \mu X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^t b^X \! - e^t a]/[t (b-a)], t \in \mathbb{R} \end{split}$
Beta	$\frac{1}{B(q, r)} \frac{(x - a)^{q-1} (b - x)^{r-1}}{(b - a)^{q+r-1}}$	a	a, r	$\mu_X = a + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{qr}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\binom{m}{x}\binom{N-m}{n-x}$	$\max\{0,n+m-N\} \leq x \leq \min\{n,m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

Otras distribuciones

■ Si $T \sim \text{Weibull}(\eta, \beta)$, se tiene que

$$F_T(t) = 1 - \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right] \quad f_T(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta - 1} \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right], \quad t > 0$$

Con $\beta>0$, es un parámetro de forma y $\eta>0$, es un parámetro de escala. Si t_p es el percentil $p\times 100\,\%$, entonces

$$\ln(t_p) = \ln(\eta) + rac{1}{eta} \cdot \Phi_{\mathsf{Weibull}}^{-1}(p), \quad \Phi_{\mathsf{Weibull}}^{-1}(p) = \ln[-\ln(1-p)]$$

Mientras que su m-ésimo momento está dado por

$$E(T^m) = \eta^m \Gamma(1 + m/\beta)$$

$$\mu_T = \eta \Gamma \left(1 + \frac{1}{\beta} \right), \quad \sigma_T^2 = \eta^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma^2 \left(1 + \frac{1}{\beta} \right) \right]$$

■ Si $Y \sim \text{Log}(\text{stica}(\mu, \sigma))$, se tiene que

$$F_Y(y) = \Phi_{\text{Logistica}}\left(\frac{y-\mu}{\sigma}\right); \qquad f_Y(y) = \frac{1}{\sigma}\,\phi_{\text{Logistica}}\left(\frac{y-\mu}{\sigma}\right), \quad -\infty < y < \infty$$

donde

$$\Phi_{\rm Logistica}(z) = \frac{\exp(z)}{[1+\exp(z)]} \quad {\rm y} \quad \phi_{\rm Logistica}(z) = \frac{\exp(z)}{[1+\exp(z)]^2}$$

son la función de probabilidad y de densidad de una Logística Estándar. $\mu \in \mathbb{R}$, es un parámetro de localización y $\sigma > 0$, es un parámetro de escala. Si y_p es el percentil $p \times 100 \%$, entonces

$$y_p = \mu + \sigma \, \Phi_{\mathsf{Log}(\mathsf{stica}}^{-1}(p) \quad \mathsf{con} \quad \Phi_{\mathsf{Log}(\mathsf{stica}}^{-1}(p) = \log \left(\frac{p}{1-p} \right)$$

Su esperanza y varianza están dadas por: $\mu_Y = \mu$ y $\sigma_Y^2 = \frac{\sigma^2 \, \pi^2}{3}$.

■ Si $T \sim \text{Log-Log}(\text{stica}(\mu, \sigma))$, se tiene que

$$F_T(t) = \Phi_{\text{Logistica}}\left(\frac{\ln(t) - \mu}{\sigma}\right); \quad f_T(t) = \frac{1}{\sigma\,t}\,\phi_{\text{Logistica}}\left(\frac{\ln(t) - \mu}{\sigma}\right) \quad t > 0$$

Donde $\exp(\mu)$, es un parámetro de escala y $\sigma>0$, es un parámetro de forma. Si t_p es el percentil $p\times 100\,\%$, entonces

$$\ln(t_p) = \mu + \sigma \, \Phi_{\text{Logística}}^{-1}(p)$$

Para un entero m>0 se tiene que

$$E(T^{m}) = \exp(m \mu) \Gamma(1 + m \sigma) \Gamma(1 - m \sigma)$$

El m-ésimo momento no es finito si $m \sigma \geq 1$.

Para
$$\sigma < 1$$
: $\mu_T = \exp(\mu) \Gamma(1 + \sigma) \Gamma(1 - \sigma)$

y para
$$\sigma < 1/2$$
: $\sigma_T^2 = \exp(2\,\mu)\,\left[\Gamma(1+2\,\sigma)\,\Gamma(1-2\,\sigma) - \Gamma^2(1+\sigma)\,\Gamma^2(1-\sigma)\right]$

• Un variable aleatoria T tiene distribución t-student (ν) si su función de densidad está dada por:

$$f_T(t) = \frac{\Gamma[(\nu+1)/2]}{\sqrt{\pi \nu} \Gamma(\nu/2)} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2}, \quad -\infty < t < \infty$$

- $\mu_T = 0$, para $\nu > 1$.
- $\sigma_T^2 = \frac{\nu}{\nu 2}$, para $\mu > 2$
- Si $T \sim \text{Fisher}(\eta, \nu)$, se tiene que

$$f_T(t) = \frac{\Gamma(\frac{\eta+\nu}{2})}{\Gamma(\eta/2)\Gamma(\nu/2)} \left(\frac{\eta}{\nu}\right)^{\frac{\eta}{2}} \frac{t^{\frac{\eta}{2}-1}}{\left(\frac{\eta}{\nu}+1\right)^{\frac{\eta+\nu}{2}}}, \quad t > 0$$

- $\mu_T = \frac{\nu}{\nu 2}$, para $\nu > 2$.
- $\sigma_T^2 = \frac{2\nu^2(\eta+\nu-2)}{\eta(\nu-2)^2(\nu-4)}$, para $\nu > 4$