

LT900_{SERIES}

1xN Multi-Channel Switch Operation Manual

For RS-232 Control with 16-pin Connector

LT900 Operation Manual

Table of Contents

General Information	1
General Specifications	2
Interface Connectors	3
RS232 Communication Parameters and Pin Assignments	4
RS-232 Commands & Messages	5
Operating Instructions	6
Housing Drawing	7

General Information

The LT900 Series 1xN optical switch module utilizes a high precision stepping motor to create a small multi-channel switch with low insertion loss and excellent repeatability. All LIGHTech switches feature our patented reflective optics technology, offering excellent optical performance and reliability from 0 to 50 °C.

Features

- Low insertion loss < 1.0 dB
- Repeatability of $< \pm 0.02 \text{ dB}$
- Available with 16-pin TTL, 26-pin TTL, or RS-232 control
- Co-positioning of all fibers and control connections on same end of module facilitate fiber management and maximize flexibility in board placement

Applications

- Wavelength monitoring
- Optical system monitoring
- Optical test access
- OEM network test systems
- Network monitoring
- Network restoration
- Protection
- Optical Signal Switching

LT900 Operation Manual

General Specifications

Parameter	Typical	Maximum
Insertion Loss 1, 2	0.6 dB	1.0 dB
Back Reflection	< -60 dB	< -55 dB
Polarization Dependent Loss	< 0.06 dB	< 0.08 dB
Repeatability	±0.01 dB	±0.02 dB
Crosstalk	< -80 dB	<-70 dB
Input Power		300mW
Switching Speed		65ms + 10ms / channel
Operating Temperature	0 to +50 °C	
Storage Temperature	-40 to +70 °C	
Operating Voltage	$5.0 \text{ VDC} \pm 0.25 \text{ VDC}$ 6.0 VD	
Number of Channels		26
Housing Dimension (HxWxL)	$27.3 \times 79 \times 140 \text{ mm}$	
Housing Weight	470 g	500 g
Power consumption	1.0 W	3.5 W
Control Interface	16-pin TTL	
(All I/O pins are ESD protected)	26-pin TTL	
	RS-232	

Note:

All specifications referenced without connectors

All optical measurements taken after temperature has been stabilized at 23 \pm 3 $^{\circ}$ C

All specifications applied for bi-directional transmission

- 1. Add 0.7 dB for two connectors
- 2. Over the operating wavelength range. Add $0.3\ dB$ typical for variations over temperature.

Interface Connectors

16 pin connector

A 16 pin, 0.1" spacing dual row connector serves as the interface to all the electrical connections to the LT900 switch. The connector is attached to the switch through a 16 wire ribbon cable.

This section is for the custom design RS-232 serial interface control with 16-pin connector.

RS232 Communication Parameters and Pin Assignments

RS232 communication parameters

Baud Rate	9600
Word Length	8
Stop Bits	1
Parity	N
Termination	0xD

RS-232 Pin Assignments For 16-pin Connector

Pin No.	Definitions	
1	No connection	
2	Connect to pin 7	
3	Transmit data	
4	CTS	
5	Receive data	
6	RTS	
7	Connect to pin 2	
8	No connection	
9	Signal ground	
10	Power ground	
11	Power ground	
12	Power ground	
13	Power ground	
14	+5VDC	
15	+5VDC	
16	+5VDC	

This section is for the custom design RS-232 serial interface control with 16-pin connector.

RS-232 Commands & Messages

Command		Exa	ample	
Format	Description	Command	Response	Note
*IDN?←	Instrument identification query Response: M Vx← M: model name x: firmware version	*IDN?←	LT900 V1.0.0←	Model Name: LT900 Firmware Version: 1.0.0
MAX#?←	Maximum optical channels query. Response: n← n: 1 ~ N	MAX#?←	17←	Maximum # of optical channels is 17
*RST←	Reset system command. Switches input to the off (reset) position and executes internal test. Response: 0,0K← internal test passed ERR3← internal test fail	*RST←	0,0K←	Internal test passed
SWITCH:0←	Switches input to the off (reset) position Response: 00, OK←	SWITCH:0←	00,OK ←	
SWITCH:n←	Switches input to optical channel n Response: $n, OK \leftarrow n$: $00 \sim N$ ERR2 $\leftarrow n > N$	SWITCH:6←	06,OK ←	Switch input to optical channel 6
SWITCH?←	Queries what optical channel number the LT900 switch is currently at Response: n n: 1 ~ N	SWITCH?←	12←	Switch is currently at optical channel number 12

←: ASCII character 13 (hex D)
N: maximum # of optical channels

Error Message	Description	Cause
ERR1 ←	Command format not recognized	Misspelled / unrecognized command
ERR2 ←	Switch channel beyond range	Using the SWITCH: <i>n</i> command with an optical channel number <i>n</i> greater than the maximum number of optical channels for the switch
ERR3 ←	Internal error	Misconnection, product failure

←: ASCII character 13 (hex D)

Operating Instructions

RS-232 Operating Instructions

Initialization:

- 1. Use an RS-232 cable to connect the LT900 switch to an RS-232 port
- 2. Configure the serial port as follows:

Baud Rate	9600
Word Length	8
Stop Bits	1
Parity	N
Termination	+

←: ASCII character 13 (hex D)

<u>Note:</u> The initial optical channel after power-up of the LT900 switch is the off (reset) position, optical channel 0.

To change an optical channel:

- 1. "SWITCH: $n \leftarrow$ " where n is the optical channel number to switch to.
- 2. Read the response from the RS-232 port. If the command executed successfully, the response will be "n,OK \leftarrow " where n is the optical channel number specified in (1).

<u>NOTE:</u> If *n* is greater than the maximum optical channels for the switch the response will be "ERR2".

To reset or turn off (optically) the switch:

- 1. "SWITCH:0←" *or* "*RST←"
- 2. Read the response from the RS-232 port. Successful command execution results in a response of "00,OK←" for the SWITCH:0 command and "0,OK" for the *RST command.

To verify switch position:

Soft verification

- 1. "SWITCH?**←**"
- 2. Read optical channel response from the RS-232 port. The data format will be " $n \leftarrow$ " where n is the current optical channel number.

Hard verification

- 1. Note current optical channel number
- 2. "*RST**←**"
- 3. Verify response of "0,OK"
- 4. "SWITCH: $n \leftarrow$ " where n is the optical channel number in (1)
- 5. Verify response of "n,OK"
- 6. "SWITCH?**←**"
- 7. Read optical channel response from the RS-232 port. The data format will be " $n \leftarrow$ " where n is the current optical channel number.

Housing Drawing

LT900 SERIES

LT900 Operation Manual

