(3) Given that
$$y:[0,\infty) \to \mathbb{C}$$
 is a bounded continuous function, prove that

$$H_2 := \int_0^\infty \frac{y(t)}{t^2 + 3} dt$$

defines a holomorphic function on $\mathbb{C} \setminus \{g \in \mathbb{R}: g \in \mathcal{G}\}$.

Since y is bounded, $\exists M \neq 0: \text{Sup} |y| \neq M$.

$$I \to \mathbb{C} \quad \text{be arbitrary.}$$

2 \tau \tau \mathbb{C} \tau \mathbb{R}, \tau_{i.e.}, \tau_{max} \tau \mathbb{C}. \text{Chaose} \text{S} \in \mathbb{R}:

$$0 < \mathbb{S} < \min_{1} \int_{1}^\infty \frac{3M}{2}, \, \mathbb{E}\left(\int_0^\infty \frac{3M}{1+^2 + a|^2 \cdot 1 Imal} dt\right)^{-1} \right\}.$$

Note that
$$\int_0^\infty \frac{1}{H^2 + a|^2} dt \quad \text{is convergent and nargero}$$

Nonce $a \in \mathbb{C} \setminus \{g \in \mathbb{R}: g \in \mathcal{G}\}$.

For $g \in \mathbb{C}: |g = a| < \mathbb{S}$, then

For $z \in C$: $|z-a| < \delta$, then $\left| \frac{H(z) - H(a)}{z - a} + \int_{0}^{\infty} \frac{\varphi(t)}{(t^{2} + a)^{2}} dt \right| = \left| \int_{0}^{\infty} \frac{\varphi(t)(z-a)}{(t^{2} + a)^{2}} dt \right|$ $= \int_{0}^{\infty} \frac{M \cdot |z-a|}{|t^{2} + a|^{2} \cdot |t+z|} dt$

Dince $0 < \delta < \frac{|Im a|}{2}$ and $|g-a| < \delta$, then $|f+g|^{7} |Im |f+g|^{2} |Im g|^{7} \frac{|Im a|}{3}$

Mence,
$$\left| \frac{H(3)-H(a)}{3-a} + \int_{0}^{\infty} \frac{\varphi(t)}{(t^2+a)^2} dt \right| \leq \varepsilon$$

Now if a is real and positive choose
$$\delta \in \mathbb{R}$$
:
$$0 < \delta < \min \left\{ \frac{a}{2}, 2 \left(\int_{a}^{\infty} \frac{3m}{a(t^2 + a)^2} dt \right)^{-1} \right\}.$$

For
$$3 \in \mathbb{C}$$
: $13 - a1 < 8$, we have

$$\left| \frac{H(3) - H(a)}{3 - a} + \int_{0}^{\infty} \frac{\varphi(t)}{[t^{2} + a]^{2}} 2t \right| = \int_{0}^{\infty} \frac{M \cdot [3 - t]}{[t^{2} + a]^{2} \cdot [t^{2} + 3]} dt.$$

Again we see that
$$|+^2+3| = 7$$
, $|\text{Re}(+^2+3)| = 9 = 9/3$, so that $\int_0^\infty \frac{M \cdot |3-t|}{(+^2+a)^2 \cdot |+^2+3|} dt = \int_0^\infty \frac{3M \cdot 8}{a(+^2+a)^2} dt = 2$.