EECS 101 Gaurav Venkatesh 28826069

Homework1

1.

$$X = 0.5, Y = -1 + t, z = -t$$

Perspective Image:

Xprime = (f/z) * x = -(1/2t)

Yprime = (f/z) * y = (-1+t)/(-t)

Orthographic Image:

Xprime = x = 0.5

Yprime = y = -1+t

Range of t:

Perpective: (0.125,infinity)

Orthographic:(-3,5)

2.1

$$X = .5, Y = -1, Z -1, -2, -3$$

$$X1 = -.5$$
, $y2 = -1$

Perspective Image:

Xprime = fx/z

Yprime = fy/z

X1prime = fx1/z

Y1prime = fy1/z

Z value = -1

Z value = -2

Zvalue = -3

Orthographic Image:

Xprime = x

X1prime = x1

Yprime = y

Y1prime = y1

Z value = -1

Z value = -2

Zvalue = -3

Magnification is basically f/z and we can see from the formula that they are the same for both the images so they are parallel (as shown above).

If z is a small constant value, then it will be a good approximation.

If u make f = z, then basically x1 = x as f/z = 1 which makes perspective = orthographic image.

Perspective:

Xprime =
$$fx/z = -1/((1,-1)t)$$

Yprime = $fy/z = (-1+(0,1,-1)t)/((1,-1)t)$

X1prime = fx1/z = 1/((1,-1)t)

Case 1: b =0, c = 1

Case 2: b = 1, c = 1

Case 3: b = -1, c = 1

Case 4: b =0, c =-1

Case 5: b =1, c =-1

Case 6: b =-1, c =-1

Orthographic:

Xprime = x

X1prime = x1

Yprime = y

Case 1: b =0, c =1

Case 2: b = 1, c = 1

Case 3: b = -1, c = 1

Case 4: b =0, c =-1

Case 5: b = 1, c = -1

Case 6: b =-1, c =-1

Magnification = f/z

But z value varies with t value (ranges from 0.01 to 10000)

Perspective : It should intersect eventually

Orthographic: no Z involved so it would remain parallel.

The pictures match the description

And no Orthographic is not approximation of Perspective in this picture.

Bonus Question:

In this assignment we are trying to replicate a pinhole system. We are simply taking in a raw file and make it an Rar file.

Main function: Declare variables and run a for loop which does computations and fills a 2 day matrix with the values accordingly.

It also opens and writes into the new image files based on the above values and closes it.

Clear function: Resets the value of the image matrix to 0s

Header function: The header function literally sets the header. We need a header to know what kind of file it is.