EP3260: Machine Learning Over Networks Homework 2

Stefanos Antaris*1, Amaru Cuba Gyllensten^{†1,2}, Martin Isaksson^{‡1,2,3}, Sarit Khirirat^{§1}, and Klas Segeljakt^{¶1,2}

> ¹KTH Royal Institute of Technology ²RISE AI ³Ericsson Research

> > February, 2019

Contents

1	Hon	nework assignment	1
	1.1	Human Activity Recognition Using Smartphones	1
	1.2	find α and β	4
	1.3	Theorem 5	4

1 Homework assignment

1.1 Human Activity Recognition Using Smartphones

Problem 1.1.1. Consider logistic ridge regression:

$$\underset{\boldsymbol{w}}{\text{minimize}} f(\boldsymbol{w}) = \frac{1}{N} \sum_{i \in [N]} f_i(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2,$$
 (1)

where

$$f_i(\boldsymbol{w}) = \log(1 + \exp\{-y_i \boldsymbol{w}^\mathsf{T} \boldsymbol{x}_i\})$$
 (2)

^{*}antaris@kth.se

[†]amaru.cuba.gyllensten@ri.se

 $^{^{\}ddagger}$ martisak@kth.se

[§]sarit@kth.se

[¶]klasseg@kth.se

- 1. Is f Lipschitz continuous? If so, find a small B?
- 2. Is f_i smooth? If so, find a small L for f_i ? What about f?
- 3. Is f strongly convex? If so, find a high μ ?

Proof. Statement 1.

Lipschitz continuity (bounded gradients)

$$\|\boldsymbol{w}\|_{2} \leq D \Rightarrow \|\nabla f(\boldsymbol{w})\|_{2} \leq B$$
$$\|\boldsymbol{w}_{1}\|_{2}, \|\boldsymbol{w}_{2}\|_{2} \leq D \Rightarrow |f(\boldsymbol{w}_{2}) - f(\boldsymbol{w}_{1})| \leq B\|\boldsymbol{w}_{2} - \boldsymbol{w}_{1}\|_{2}$$

Let $\sigma(a)$ be the Sigmoid function

$$\sigma(a) := \frac{1}{1 + \exp(-a)} = \frac{\exp(a)}{\exp(a) + 1} \tag{3}$$

Since

$$\nabla f_i(\boldsymbol{w}) = -y_i \boldsymbol{x}_i / (1 + \exp(y_i \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i)),$$

= $-\sigma(y_i \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i) y_i \boldsymbol{x}_i$

ok

$$\nabla f(\boldsymbol{w}) = 2\lambda \boldsymbol{w} - \frac{1}{N} \sum_{i \in [N]} \frac{1}{1 + e^{y_i \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i}} y_i \boldsymbol{x}_i.$$

By the triangle inequality,

$$\|\nabla f(w)\|_2 \le 2\lambda \|w\|_2 + \frac{1}{N} \sum_{i \in [N]} \frac{1}{|1 + e^{y_i \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i}|} \|y_i \boldsymbol{x}_i\|_2.$$

Assume that $y_i \leq C < \infty$ and $||y_i x_i|| \leq \tilde{C} < \infty$. Then,

$$\|\nabla f(w)\|_2 \le 2\lambda D + \tilde{C}.$$

Using the dataset Human Activity Recognition Using Smartphones and finding a w that minimizes f(w) we find that $||f(w)|| \lesssim 410$

Proof. Statement 2. The Hessian information of f_i is

$$\nabla^2 f_i(w) = \frac{\exp(y_i w^T x_i)}{(1 + \exp(y_i w^T x_i))^2} x_i x_i^T \le \frac{1}{4} x_i x_i^T$$
 ok

Therefore, the matrix norm of $\nabla^2 f_i(w)$ is

$$\|\nabla^2 f_i(w)\| \le L,$$

where

$$L \leq \sigma_{\max}\left(\frac{1}{4}x_ix_i^T\right)$$
. It can be proved that $\mathbf{xx'} \leftarrow \mathbf{xx'} \leftarrow \mathbf$

Here, $\sigma_{\max}(A)$ is the largest eigenvalue of a positive semidefinite matrix A.

Next, we can easily compute the Hessian information of f as follows:

$$\nabla^2 f(w) = \frac{1}{N} \sum_{i=1}^N \frac{\exp(y_i w^T x_i)}{(1 + \exp(y_i w^T x_i))^2} x_i x_i^T + 2\lambda I \le \frac{1}{4N} \sum_{i=1}^N x_i x_i^T + 2\lambda I.$$

From the definition of the matrix norm, and by the triangle inequality,

$$\|\nabla^2 f(w)\| \le L$$

where

$$L \le \sigma_{\max} \left(\frac{1}{4N} \sum_{i=1}^{N} x_i x_i^T + 2\lambda I \right).$$

Similarly, we know that f is {sum(x'x)/4N+2lambda}-smooth

Proof. Statement 3.

Define any $v \in \mathbb{R}^d$. Then, it is obvious that

$$v^{\mathsf{T}} x_i x_i^{\mathsf{T}} v = (x_i^{\mathsf{T}} v)^{\mathsf{T}} (x_i^{\mathsf{T}} v) = ||x_i^{\mathsf{T}} v||^2 \ge 0,$$

for each $x_i \in \mathbb{R}^d$ and $i \in [N]$. This implies that $x_i x_i^{\mathsf{T}}$ is a positive semi-definite matrix. Therefore,

$$\frac{1}{N} \sum_{i=1}^{N} v^{\mathsf{T}} x_i x_i^{\mathsf{T}} v = \frac{1}{N} \sum_{i=1}^{N} \|x_i^{\mathsf{T}} v\|^2 \ge 0.$$

Since $\exp(-x)/(1 + \exp(-x))$ is always a positive number, and $(1/N) \sum_{i=1}^{N} x_i x_i^{\mathsf{T}}$ is the positive-semidefinite matrix, the Hessian information on the form

$$\nabla^2 f(w) = \frac{1}{N} \sum_{i=1}^{N} \frac{\exp(y_i w^{\mathsf{T}} x_i)}{(1 + \exp(y_i w^{\mathsf{T}} x_i))^2} x_i x_i^{\mathsf{T}} + 2\lambda I$$

implies

$$v^T \nabla^2 f(w) v = \frac{1}{N} \sum_{i=1}^N \frac{\exp(y_i w^\mathsf{T} x_i)}{(1 + \exp(y_i w^\mathsf{T} x_i))^2} v^\mathsf{T} x_i x_i^T v + 2\lambda v^T v$$
$$\geq v^\mathsf{T} (2\lambda \cdot I) v.$$

ok

Thus, $\nabla^2 f(w)$ has the smallest eigenvalue with 2λ , i.e. $\nabla^2 f(w) \ge \mu I$ with $\mu = 2\lambda$. This means that f is strongly convex with $\mu = 2\lambda$.

1.2 find α and β

Problem 1.2.1.

$$\mathbb{E}_{\zeta_k} \left[\left\| g(\boldsymbol{w}_k; \zeta_k) \right\|_2^2 \right] \le \alpha + \beta \left\| \nabla f(\boldsymbol{w}_k) \right\|_2^2$$
(4)

Proof. Notice that $\mathbb{E}_{\zeta_k} g(\boldsymbol{w}_k; \zeta_k) = \nabla f(w_k)$ and from the definition of the Euclidean norm,

$$\mathbb{E}_{\zeta_{k}} \left[\left\| g(\boldsymbol{w}_{k}; \zeta_{k}) \right\|_{2}^{2} \right] = \mathbb{E}_{\zeta_{k}} \left[\left\| g(\boldsymbol{w}_{k}; \zeta_{k}) - \nabla f(\boldsymbol{w}_{k}) + \nabla f(\boldsymbol{w}_{k}) \right\|_{2}^{2} \right] \\
= \mathbb{E}_{\zeta_{k}} \left\| g(\boldsymbol{w}_{k}; \zeta_{k}) - \nabla f(\boldsymbol{w}_{k}) \right\|^{2} - \left\| \nabla f(\boldsymbol{w}_{k}) \right\|^{2} \\
+ 2 \mathbb{E}_{\zeta_{k}} \left\langle g(\boldsymbol{w}_{k}; \zeta_{k}), \nabla f(\boldsymbol{w}_{k}) \right\rangle \\
\leq \mathbb{E}_{\zeta_{k}} \left\| g(\boldsymbol{w}_{k}; \zeta_{k}) - \nabla f(\boldsymbol{w}_{k}) \right\|^{2} - \left\| \nabla f(\boldsymbol{w}_{k}) \right\|^{2} \\
+ 2 \left\| \mathbb{E}_{\zeta_{k}} g(\boldsymbol{w}_{k}; \zeta_{k}) \right\| \left\| \nabla f(\boldsymbol{w}_{k}) \right\|.$$

Since

$$\mathbb{E}_{\zeta_k} \|g(\boldsymbol{w}_k; \zeta_k) - \nabla f(w_k)\|^2 - \|\nabla f(w_k)\|^2 = \operatorname{Var}_{\zeta_k} g(w_k; \zeta_k) \leq M + M_V \|\nabla f(w_k)\|^2$$

$$\mathbb{E}_{\zeta_k} \|g(w_k; \zeta_k)\| \leq c_0 \|\nabla f(w_k)\|$$

we have:

$$\mathbb{E}_{\zeta_{k}} \left[\|g(\boldsymbol{w}_{k}; \zeta_{k})\|_{2}^{2} \right] \leq M + (M_{V} - 1 + 2c_{0}) \|\nabla f(w_{k})\|^{2}.$$

Since $c_0 = 1$, we have: $\alpha = M$ and $\beta = M_V + 1$.

1.3 Theorem 5

Theorem 1.3.1. With square summable but not summable step-size, we have for any $K \in \mathbb{N}$

$$\mathbb{E}\left[\sum_{k\in[K]}\alpha_k \|\nabla f(\boldsymbol{w}_k\|_2^2\right] < \infty \tag{5}$$

and therefore

$$\lim_{K \to \infty} \mathbb{E}\left[\frac{1}{\sum_{k \in [K]} \alpha_k} \sum_{k \in [K]} \alpha_k \|\nabla f(\boldsymbol{w}_k\|_2^2)\right] = 0$$
 (6)

The expected gradient norm cannot stay bounded away from zero.

Proof. Since $\sum_{k \in [K]} \alpha_k^2 < \infty$ and $\sum_{k \in [K]} \alpha_k = \infty$, we have:

$$\mathbb{E}\left[\frac{1}{\sum_{k \in [K]} \alpha_k} \sum_{k \in [K]} \alpha_k \|\nabla f(\boldsymbol{w}_k\|_2^2\right] = \frac{1}{\sum_{k \in [K]} \alpha_k} \mathbb{E}\left[\sum_{k \in [K]} \alpha_k \|\nabla f(\boldsymbol{w}_k\|_2^2\right].$$

Since $\sum_{k \in [K]} \alpha_k = \infty$ and $\mathbb{E}\left[\sum_{k \in [K]} \alpha_k \left\| \nabla f(\boldsymbol{w}_k \right\|_2^2 \right] = C < \infty$ for a finite constant C, Why? Prove that

$$\lim_{K \to \infty} \mathbb{E}\left[\frac{1}{\sum_{k \in [K]} \alpha_k} \sum_{k \in [K]} \alpha_k \|\nabla f(\boldsymbol{w}_k\|_2^2\right] = \lim_{K \to \infty} \frac{1}{\sum_{k \in [K]} \alpha_k} \mathbb{E}\left[\sum_{k \in [K]} \alpha_k \|\nabla f(\boldsymbol{w}_k\|_2^2\right] = C \lim_{K \to \infty} \frac{1}{\sum_{k \in [K]} \alpha_k} = 0.$$

5