# Tema 4. Lógica difusa y Sistemas Expertos difusos

Razonamiento y Representación del Conocimiento

#### Indice

- Lógica difusa
  - Conjuntos difusos
  - Variables lingüísticas
- Sistemas Expertos difusos
  - Reglas difusas
  - Inferencia difusa
  - Ejemplos

- Introducción
  - Recordemos: la lógica de primer órden (LPO) tiene
    - Gran capacidad para la representación de conocimiento
    - Herramientas para deducir lógicamente nuevo conocimiento
  - Sin embargo, la LPO no representa el conocimiento de forma "natural" → como lo hacemos los seres humanos

#### Introducción

 Pongamos un ejemplo: el ejemplo de "Ser humano" desde el punto de vista evolutivo

#### Con LPO:

 Si especie es más antigua de 315000 años entonces humano es falso



- Introducción
  - Pongamos un ejemplo: el ejemplo de "Ser humano" desde el punto de vista evolutivo

- Con LPO multivaluada:
  - Podemos definir varios intervalos, pero el concepto de pertenencia es binario: "todo o nada"



230000

40000

10000

actualidad

- Introducción
  - Pongamos un ejemplo: el ejemplo de "Ser humano" desde el punto de vista evolutivo

- Alternativa: lógica difusa
  - Representación del conocimiento de forma más natural



- Concepto de Conjuntos difusos
  - Función de pertenencia difusa: establece la pertenencia de una variable a un conjunto como una relación en el intervalo [0:1]
- B={ $(x, \mu_{B}(x)) / x \in X$ }

$$M_{B:}X \rightarrow [0, 1]$$

1

Millones de años



Paco

1,60

Conjuntos difusos. Ejemplo: altura



0

0,36

- Conjuntos difusos
  - Para diseñar un conjunto difuso podemos escoger la forma que nos interese: triangular, trapezoidal, sigmoidea, gaussiana, etc.
  - Especificaremos la función de pertenencia a cada conjunto difuso
- Ejercicio: Representar la temperatura del aula mediante los conjuntos difusos "Fría", "Templada" y "Cálida"
  - 23 grados, ¿es cálida o templada?

- Ejercicio: Representar la temperatura del aula mediante los conjuntos difusos "Fría", "Templada" y "Cálida"
  - 23 grados, ¿es cálida o templada?



- Ejercicio: Representar la temperatura del aula mediante los conjuntos difusos "Fría", "Templada" y "Cálida"
  - 23 grados, ¿es cálida o templada?



- Operaciones entre conjuntos difusos
  - Unión, intersección y negación o complemento







Operaciones entre conjuntos difusos:

Unión

- $\mu_{A \cup B}(x) = \perp [\mu_A(x), \mu_B(x)]$
- Axiomas
  - Elemento Neutro:  $\perp$ (a, 0) = a
  - Conmutatividad:  $\bot$ (a, b) =  $\bot$ (b, a)
  - Monotonicidad: Si  $a \le c$  y  $b \le d$  entonces  $\bot(a, b) \le \bot(c, d)$
  - Asociatividad:  $\bot(\bot(a, b), c) = \bot(a, \bot(b, c))$
- T-conormas más utilizadas:
  - Máximo:  $\perp$ (a, b) = max(a, b)
  - Producto:  $\bot$ (a, b) = (a + b) (a × b)
  - Suma limitada (o de Lukasiewick):  $\perp$ (a, b) = min(a + b, 1)



Operaciones entre conjuntos difusos:

Intersección

- μA∩B (x) = T [μA (x), μB (x)]
- Axiomas:
  - Elemento unidad: T (a, 1) = a
  - Conmutatividad: T (a, b) = T (b, a)
  - Monotonicidad: Si  $a \le c$  y  $b \le d$  entonces T  $(a, b) \le T$  (c, d)
  - Asociatividad: T (T (a, b), c) = T (a, T (b, c))
- T-normas más utilizadas
  - Mínimo: T (a, b) = min(a, b)
  - Producto algebraico: T (a, b) = ab
  - Diferencia limitada (o de Lukasiewick): T (a, b) = max(0, a + b − 1)



Operaciones entre conjuntos difusos:

Negación

- $\mu A(x) = 1 \mu A(x)$
- Axiomas:



- Condiciones límite o frontera: c(0) = 1 y c(1) = 0
- Monotonicidad: ∀a, b ∈ [0, 1] si a < b entonces c(a) ≥ c(b)</li>
- c es una función contínua
- c es involutiva  $\forall a \in [0, 1]$  tenemos c(c(a)) = a

- Variables lingüísticas
  - Palabras o sentencias que van a enmarcarse en un lenguaje predeterminado
  - Incluirá al menos: términos, dominio y conjuntos difusos
- Variable lingüística altura
  - Términos: Bajo, medio, Alto
  - Dominio o Universo de discurso: enteros [0, 220]
  - Conjuntos difusos:



· ¿Qué valor lingüístico tendrá una persona con una altura de 184 cm.?

- En las variables lingüísticas también podemos incluir modificadores lingüísticos
  - Modifican el significado de los conjuntos difusos



- Razonamiento aproximado
  - Con la lógica difusa podemos expresar proposiciones como "el coche es pequeño", "Tania es muy alta" o "el movimiento es lento"
  - Podemos componer expresiones con conectores:
    - El coche es pequeño y su movimiento es lento
    - Ó: C es P AND M<sub>c</sub> es L

- Reglas difusas
  - IF <proposición difusa> THEN <proposición difusa>
  - Ejemplo: IF altura IS alto THEN peso IS pesado



- El antecedente y el consecuente de una regla pueden tener múltiples partes:
  - IF A es X AND B es Y THEN C es Z

- Inferencia difusa (inferencia de Mamdani)
  - Proceso de obtener un valor de salida para un valor de entrada empleando la teoría de conjuntos difusos
    - 1. Fuzificación de las variables de entrada
    - 2. Evaluación de las reglas
    - 3. Agregación de las salidas de las reglas
    - 4. Defuzificación

- Ejemplo 1:
  - Variables lingüísticas:
    - x (financiación-del-proyecto)
    - y (plantilla-del-proyecto)
    - z (riesgo)
  - Conjuntos difusos definidos sobre los dominios de las variables:
    - X: A1, A2, A3 (inadecuado, marginal, adecuado)
    - Y: B1, B2 (pequeña, grande)
    - Z: C1, C2, C3 (bajo, normal, alto)

- Ejemplo 1. Paso 1: Fuzificación:
  - Tomar los valores de las entradas y determinar el grado de pertenencia a los conjuntos difusos
  - Pongamos que x=35%, y=60%



- Ejemplo 1. Paso 2: Evaluación de las reglas:
  - Los valores fuzificados se aplican a los antecedentes de TODAS las reglas de producción
  - En caso de antecedentes compuestos por conectivas se aplican las funciones vistas anteriormente (t-conorma y tnorma)
  - Finalmente, el resultado de la evaluación del antecedente se aplica al consecuente, aplicando un recorte o un escalado dependiendo del valor de verdad del antecedente





Ejemplo 1. Paso 2: Evaluación de las reglas:



- Ejemplo 1. Paso 3: Agregación de las salidas:
  - Unificar las salidas de todas las reglas
  - Combinando los consecuentes de todas las reglas una vez recortados o escalados



- Ejemplo 1. Paso 4: defuzificación:
  - El resultado final requiere un valor no-difuso
  - Habitualmente el resultado se calcula como el centroide del conjunto de salida agregado en el paso 3



- Ejemplo 2: ¿cuánta propina dejar?
  - Variables lingüísticas: servicio, comida, propina
  - Conjuntos difusos
    - Servicio → distribución gaussiana
      - Pobre m=0,  $\sigma$ =1,5
      - Bueno m=5,  $\sigma$ =1,5
      - Excelente m=10,  $\sigma$ =1,5
    - Comida
      - Rancia = (1/0, 1/1, 0/3)
      - Deliciosa = (0/7, 1/9, 1/10)
    - Propina
      - Tacaña = (0/0, 1/5, 0/10)
      - Promedio = (0/5, 1/15, 0/25)
      - Generosa = (0/20, 1/25, 0/30)

- Ejemplo 2: ¿cuánta propina dejar?
  - Sistema de reglas
    - R1: Si servicio es pobre O comida es rancia → propina es tacaña
    - R2: Si servicio es bueno → propina es promedio
    - R3: Si servicio es excelente o comida es deliciosa → propina es generosa
  - Calcular la propina que dejaríamos para un servicio valorado en 3 y una comida valorada en 8



#### Bibliografía recomendada

- Inteligencia Artificial. Un enfoque Moderno. Stuart Russell, Peter Noving. Ed. Prentice Hall. 2004
- Técnicas de inteligencia artificial. M.A Cazorla y otros. Ed. Publicaciones de la Universidad de Alicante. 1999