### Limitations on Quantum Key Repeaters

Stefan Bäuml, Matthias Christandl, Karol Horodecki, Andreas Winter

14. January 2015

arXiv:1402.5927











### Outline

- Background
  - Bound Entanglement
  - Quantum Key Distribution
  - Entanglement Swapping
- Quantum Key Repeaters
  - Key Swapping and Distinguishability
  - Main Result
  - Example
  - Second Result
  - Improvable?
- 3 Summary and Open Questions

### **Bound Entanglement**

Maximally entangled state

$$|\Psi\rangle_{AB} = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |ii\rangle_{AB}.$$

Two ways of quantifying entanglement of mixed state  $\rho$ :

- $E_C(\rho)$ : Amount of maximal entanglement necessary to create  $\rho$  by LOCC.
- $E_D(\rho)$ : Amount of maximal entanglement obtainable from  $\rho$  by LOCC.
- Bound entanglement:  $E_C(\rho) > 0$  and  $E_D(\rho) = 0$ .
- PPT entangled ⇒ bound entangled.

### Quantum Key Distribution

- Goal: Secure communication between Alice and Bob in presence of Eve.
- Requiring secret key, i.e. classical state completely correlated between Alice and Bob but completely uncorrelated to Eve.
   Eve assumed to have quantum memory:

$$ho_{ABE}^{\mathsf{key}} = rac{1}{d} \sum_{i=0}^{d-1} |ii
angle \langle ii|_{AB} \otimes 
ho_E$$

- Obtainable by measuring  $|\Psi\rangle\langle\Psi|_{AB}$  in computational basis.
- Maximal entanglement necessary? What about bound entanglement?

### Quantum Key Distribution

 Horodecki et al. 2005: Security iff Alice and Bob have private state (or pdit):

$$\begin{split} \gamma_{AA'BB'}^d &= U^{\text{twist}} |\Psi\rangle\langle\Psi|_{AB} \otimes \sigma_{A'B'} U^{\text{twist}^\dagger} \\ &= \frac{1}{d} \sum_{ij=0}^{d-1} \underbrace{|ii\rangle\langle jj|_{AB}}_{\text{measure!}} \otimes \underbrace{U^{(i)}\sigma_{A'B'} U^{(j)^\dagger}}_{\text{keep away from Eve!}}, \end{split}$$

where  $U^{\text{twist}} = \mathbf{1}_A \otimes \sum_i |i\rangle \langle i|_B \otimes U^{(i)}$ . Worst case scenario: Eve allowed to have purification.

Measure of key

$$K_D(\rho) = \lim_{\epsilon \to 0} \lim_{n \to \infty} \sup_{\Lambda_n \text{ LOCC}, \gamma^d \text{pdit}} \left\{ \frac{\log d}{n} : \|\Lambda_n(\rho^{\otimes n}) - \gamma^d\|_1 \le \epsilon \right\}$$

•  $K_D \gg E_D = 0$  possible.  $\exists$  PPT states arbitrarily close to pdits.

### Quantum Key Distribution

### Example (Horodecki et al. 2005):

• Quantum data hiding:  $\sigma_{AB}^+$  and  $\sigma_{AB}^-$  indistinguishable by LOCC operations, distinguishable by global operations:

$$\rho_{bAB} = \frac{1}{2} |0\rangle\langle 0|_b \otimes \sigma_{AB}^+ + \frac{1}{2} |1\rangle\langle 1|_b \otimes \sigma_{AB}^-$$

Hide the entanglement

$$\rho_{ABA'B'}^{\mathrm{flag}} = \frac{1}{2} |\Phi^{+}\rangle \langle \Phi^{+}|_{AB} \otimes \sigma_{A'B'}^{+} + \frac{1}{2} |\Phi^{-}\rangle \langle \Phi^{-}|_{AB} \otimes \sigma_{A'B'}^{-}$$

•  $K_D \approx 1$ ,  $E_D \approx 0$ . For separable  $\sigma^{\pm}$ ,  $\rho^{\mathsf{flag}}$  obtainable from  $|\Phi^+\rangle\langle\Phi^+|$  by LOCC, hence  $E_{\mathcal{C}}(\rho^{\mathsf{flag}}) \leq 1$ .

# **Entanglement Swapping**



- Application: Distribution of maximally entangled states over long absorptive channels.
- Absorption scaling exponentially with the length of the channel. Divide channel into segments, distribute entanglement between nodes and connect by swapping.

# Quantum Key Swapping?



- Arbitrary states  $\rho$  and  $\tilde{\rho}$  between the nodes. For example private states.
- General LOCC protocol performed by Alice, Charlie and Bob.
- Resulting state  $\tau$  useful for QKD?

## Key Swapping and Distinguishability

- Private states  $\gamma$  almost indistinguishable from separable states  $\sigma$  and  $\tilde{\sigma}$  by LOCC.
- Alice and Bob sharing lab.



## Many Copies: Quantum Key Repeater



- n copies of  $\rho$  and  $\tilde{\rho}$  between the nodes.
- Resulting in k states  $\tau$  close to private bit.
- Repeatable Key:  $K_{A\leftrightarrow C\leftrightarrow B}(\rho_{AC_1}\otimes \tilde{\rho}_{C_2B})\approx \frac{k}{n}$ : Key rate achievable by LOCC operation.

#### Main Result

• Upper bound on  $K_{A\leftrightarrow C\leftrightarrow B}$  using entanglement measures.

#### Theorem

Let  $\rho$  and  $\tilde{\rho}$  be PPT. Then

$$\begin{split} \mathcal{K}_{A \leftrightarrow C \leftrightarrow B}(\rho \otimes \tilde{\rho}) &\leq \min \left\{ \mathcal{K}_{D}(\rho^{\Gamma}), \mathcal{K}_{D}(\tilde{\rho}^{\Gamma}) \right\} \\ &\leq \min \left\{ \mathcal{E}_{R}^{\infty}(\rho^{\Gamma}), \mathcal{E}_{R}^{\infty}(\tilde{\rho}^{\Gamma}), \mathcal{E}_{sq}(\rho^{\Gamma}), \mathcal{E}_{sq}(\tilde{\rho}^{\Gamma}) \right\}, \end{split}$$

where the transpose is taken w.r.t. Charlie's subsystems.

• Proof using PT invariance of  $K_{A\leftrightarrow C\leftrightarrow B}$ , LOCC monotonicity of the key as well as fact that  $E_R^{\infty}$  and  $E_{sq}$  upper bound key.

## Example: PPT state close to p-bit

- PPT state with high key and transpose close to separable state.
- Idea: Mix private state with separable state to get PPT state.

$$ho_d = rac{1}{2} \left[ egin{array}{cccc} (1-
ho)\sqrt{XX^\dagger} & 0 & 0 & (1-
ho)X \ 0 & 
ho\sqrt{YY^\dagger} & 0 & 0 \ 0 & 0 & 
ho\sqrt{Y^\dagger Y} & 0 \ (1-
ho)X^\dagger & 0 & 0 & (1-
ho)\sqrt{X^\dagger X} \ \end{array} 
ight]$$

with 
$$p=rac{1}{\sqrt{d}+1}$$
,  $X=rac{1}{d\sqrt{d}}\sum_{i,j=1}^d u_{ij}|ij\rangle\langle ji|$  and  $Y=\sqrt{d}X^\Gamma$ .

$$\rho_d^{\Gamma} = \frac{1}{2} \left[ \begin{array}{cccc} (1-\rho)\sqrt{XX^{\dagger}} & 0 & 0 & 0 \\ 0 & \rho\sqrt{YY^{\dagger}} & \rho Y & 0 \\ 0 & \rho Y^{\dagger} & \rho\sqrt{Y^{\dagger}Y} & 0 \\ 0 & 0 & 0 & (1-\rho)\sqrt{X^{\dagger}X} \end{array} \right] \geq 0,$$

since  $\sqrt{XX^{\dagger}} \ge 0$  and  $\sqrt{X^{\dagger}X} \ge 0$  and middle block private bit.

### Example: PPT state close to p-bit

Dephase first qubit of Alice's system ⇒ separable state.

$$\sigma_d = rac{1}{2} \left[ egin{array}{cccc} (1-
ho)\sqrt{XX^\dagger} & 0 & 0 & 0 \ 0 & 
ho\sqrt{YY^\dagger} & 0 & 0 \ 0 & 0 & 
ho\sqrt{Y^\dagger Y} & 0 \ 0 & 0 & 0 & (1-
ho)\sqrt{X^\dagger X} \end{array} 
ight],$$

$$\|\rho_d^{\mathsf{\Gamma}} - \sigma_d\|_1 = \frac{1}{\sqrt{d} + 1}.$$

Hence,

$$1 \approx K_D(\rho) > K_{A \leftrightarrow C \leftrightarrow B}(\rho \otimes \rho) \approx 0.$$

• Demonstrated experimentally with X = SWAP and d = 2 (Dobek et al, PRL 106, 030501).

### Second Result



#### Theorem

For input states  $\rho_{AC_1}$  and  $\tilde{\rho}_{C_2B}$  it holds

$$K_{A \leftarrow C \leftrightarrow B}(\rho_{AC_1} \otimes \tilde{\rho}_{C_2B}) \leq \frac{1}{2} E_D(\tilde{\rho}_{C_2B}) + \frac{1}{2} E_C(\rho_{AC_1}).$$

### Second Result



#### Theorem

For input states  $\rho_{AC_1}$  and  $\tilde{\rho}_{C_2B}$  it holds

$$K_{A \leftarrow C \rightarrow B}(\rho_{AC_1} \otimes \tilde{\rho}_{C_2B}) \leq \frac{1}{2} E_D^{C_2 \rightarrow B}(\tilde{\rho}_{C_2B}) + \frac{1}{2} E_C(\rho_{AC_1}).$$

### Second Result

#### $\mathsf{Theorem}$

For input states  $\rho_{AC_1}$  and  $\tilde{\rho}_{C_2B}$  it holds

$$\begin{split} & K_{A \leftarrow C \leftrightarrow B} \big( \rho_{AC_1} \otimes \tilde{\rho}_{C_2 B} \big) \leq \frac{1}{2} E_D \big( \tilde{\rho}_{C_2 B} \big) + \frac{1}{2} E_C \big( \rho_{AC_1} \big), \\ & K_{A \leftarrow C \rightarrow B} \big( \rho_{AC_1} \otimes \tilde{\rho}_{C_2 B} \big) \leq \frac{1}{2} E_D^{C_2 \rightarrow B} \big( \tilde{\rho}_{C_2 B} \big) + \frac{1}{2} E_C \big( \rho_{AC_1} \big). \end{split}$$

- Nontrivial bound if  $\tilde{\rho}$  bound entangled.
- For  $\rho = \tilde{\rho} = \rho^{\text{flag}}$ ,  $E_D \approx 0$  and  $E_C \leq 1 \Rightarrow K_D$  reduced significantly by swapping.
- Also applicable for NPT states, e.g. possible NPT bound entanglement.
- Nontrivial results for PPT invariant entangled states, where first result does not work.
- Proof idea: First show result for  $E_{sq} \geq K_D$  and  $E_F$ .

## Improvable?



### Improvable?

- Can we get a better bound?
- Assume  $K_D(\tau) \leq E(\tau) \leq p_1 E_D(\tilde{\rho}) + p_2 E(\rho)$



### Counterexample for $E_C$ and $E_F$

- Maximally correlated states  $\rho_{AB} = \sum_{ik=0}^{d-1} a_{ik} |ii\rangle \langle kk|$ .
- Purification  $|\Psi\rangle_{ABE} = \frac{1}{\sqrt{d}} \sum_{i} |ii\rangle \otimes |u_i\rangle$ .
- $E_D(\rho_{AB}) = E_R(\rho_{AB}) = S(A)_\rho S(AB)_\rho$ .
- $E_C(\rho_{AB}) = E_F(\rho_{AB}) = S(A)_\rho I_{acc}\left(\left\{\frac{1}{d}, |u_i\rangle\right\}\right)$ , where  $I_{acc}\left(\left\{\frac{1}{d}, |u_i\rangle\right\}\right) = \sup_{\{A_i\} \text{ POVM } I(i:j)}$ .
- $\rho$  and  $\tilde{\rho}$  maximally correlated  $\Rightarrow \tau$  maximally correlated for standard swapping protocol.
- For every outcome  $\mu$ , resulting state purified by state with ensemble  $\left\{\frac{1}{d}, |u_i^{(1)}\rangle \otimes |u_{i+\mu}^{(2)}\rangle\right\}$ .
- $E_F(\tau) \le pE_D(\rho^2) + (1-p)E_F(\rho^1)$  implies

$$rac{1}{d}\sum_{\mu}I_{\mathsf{acc}}\left(\left\{rac{1}{d},\ket{u_i^{(1)}}\otimes\ket{u_{i+\mu}^{(2)}}
ight\}
ight)\geq p\mathcal{S}( ilde{
ho}).$$

• Counterexample by random construction.

## Summary

- Limitations on the entanglement of the output state of a quantum key repeater protocol.
- Upper bounds on the key rate achievable from the output.
   Depend on entanglement measures of input states or their transpose.
- Examples of bound entangled or nearly bound entangled input states where key is lost or significantly reduced in the repeater protocol.
- Support of the PPT<sup>2</sup> Conjecture:  $\Sigma^{PPT} \circ \Sigma^{PPT} = \Sigma^{EB}$ .

## The PPT<sup>2</sup> Conjecture

Different interpretation of PPT entanglement swapping for locally maximally mixed states using Jamiolkowski isomorphism:



### The PPT<sup>2</sup> Conjecture

Different interpretation of PPT entanglement swapping for locally maximally mixed states using Jamiolkowski isomorphism:



# The PPT<sup>2</sup> Conjecture

Teleport  $C_1$ -part of  $\rho_{AC_1}$  to B via  $|\Psi\rangle\langle\Psi|_{C_2B}$ :



If Conjecture true, PPT entanglement useless in repeater.

## Open Problems

- Only distillable entanglement preserved in a quantum repeater?
- Other inequalities between entanglement measures of in- and output states (c.f. results by Gour, Sanders and Lee)?
- $E(\tau) \leq p_1 E_D(\rho) + p_2 E(\tilde{\rho})$  for entanglement measure E other than  $E_C$  or  $E_F$ ?
- Results for smaller shield dimensions as realised in experiments?
- Possibility of different kind of quantum key repeater protocols beyond distillation?

Thank you for your attention!

arXiv:1402.5927