Linear differential equations

Definition L. inear Differential equation. Homogeneous if b = 0, inho $mogeneous\ otherwise.$

 $y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$

Theorem 2.2.3. ... y is k-times differentiable ...

For the homogeneous equation, given a choice of x_0 and $(y_0,...,y_{k-1})$ there's a unique solution $f \in \mathcal{S}$ such that

 $f(x_0) = y_0, \ f'(x_0) = y_1, \dots, \ f^{(k-1)}(x_0) = y_{k-1}$ For the inhomogeneous equation with a b continous on the interval, the set of solutions S_b is the set of functions $f+f_0$ where $f \in S$. Again, for any x_0 and $(y_0, ..., y_{k-1})$ there's a unique solution such that ((1)). If $b \neq 0$ then S_b is not a vector space.

Proposition 2.3.1. Any solution of y' + ay = 0 is in the form f(x) = $ze^{-A(x)},$ where A is a primitive of a and $z \in \mathbb{C}$. Unique solution is $f(x) = y_0 e^{A(x_0) - A(x)}$

To solve the inhomogeneous equation y' + ay = b, the prev solution is used. Using Variation of the constant we replace z with z(x) and then $y' + ay = b \Leftrightarrow z'(x) = b(x) e^{A(x)}$ and $f_0(x) = C(x)e^{-A(x)}$, where C(x)is a primitive of z'(x).

1.1 Constant coefficients

Definition L. et $a_0, ..., a_{k-1} \in \mathbb{C}$. Linear differentian equation $y^{(k)}$ + $a_{k-1}y^{(k-1)} + ... + a_1y' + a_0y = b$. Homogeneous solution is in the form $f(x) = e^{\alpha x}, \ \alpha \in \mathbb{C}.$ We have $f^{(j)}(x) = \alpha^j e^{\alpha x}$ for all $j \geq 0$ and x.

Conclusion: f(x) is a solution iff $P(\alpha) = 0$, where $P(X) = X^k + 1$ $a_{k-1}X^{k-1} + \dots + a_1X + a_0.$

This polynomial of degree k has k roots (counted with multiplicity). There exist complex numbers $\alpha_1, ..., \alpha_k$ such that $P(X) = (X - \alpha_1)...(X - \alpha_k)$ α_k). This is the companion or characteristic polynomial of the homogeneous diff. equation.

- No multiple roots When $\alpha_i \neq \alpha_j$ for all i, j.
 - Solution of the homogeneous equation (b=0): form $f(x)=z_1e^{\alpha_1x}+\ldots+z_ke^{\alpha_kx}$. Unique solution with $f(x_0)=y_0,\ldots,f^{(k-1)}(x_0)=y_{k-1}$ can be obtained by viewing z_i as unknowns. Substitute $x = x_0$ in the formula for f and solve for $z_1,...,z_k$ (linear system).
- ullet Multiple roots Assume α is a multiple root of order j of the polynomial mial P, with $2 \le j \le k$. Then

 $f_{\alpha,0}(x) = e^{\alpha x}, \ f_{\alpha,1}(x) = xe^{\alpha x}, \ ..., \ f_{\alpha,j-1}(x) = x^{j-1}e^{\alpha x}$ are linearly independent and are solutions of the h.l.d.e.

Example S. uppose $P(X) = X(X-4)^3(X-(1+i))(X-(1-i)),$ then the solutions are $f_0(x) = 1$ (sol. for X = 0), $f_1(x) = e^{4x}$, $f_2(x) = xe^{4x}$, $f_3(x) = x^2e^{4x}$, $f_4(x) = e^{(1+i)x}$, $f_5(x) = e^{(1-i)x}$

Now the inhomogeneous equation $(b \neq 0)$:

Should avoid variation of the constants. Can use special cases:

- 1. $b(x) = x^d e^{\beta x}$ for some integer d = ge0 and an item β which is NOT a root of P, then the solution is of the form $f(x) = Q(x)e^{\beta x}$, where Q is a polynomial of degree d.
- 2. $b(x) = x^d \cos(\beta x)$ or $b(x) = x^d \sin(\beta x)$ for some integer $d \ge 0$ and β is NOT a root of P, then one can transform it to a combination of complex exponentials or look for a solution of the form f(x) $Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x), Q_1, Q_2$ have degree d.
- 3. b(x) is in the form of the previous two but IS a root of multiplicity j, then one looks for $f(x) = Q(x)e^{\beta x}$, with Q of degree q + j.
- 4. Special case $\beta = 0$ of the previous 3 (b polynomial of degree $d \geq 0$): if 0 is NOT a root, look for a solution f (polynomial) of deg d, or degree d + j if 0 IS a root, where j is the multiplicity of 0.

1.2 Variation of the constants for degree ge 2

Does not require the coefficients to be constants, but it makes it easier. Inhomogeneous equation

 $y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$ Solutions $f_1, ..., f_k$ for the homogeneous equations must be found first.

We then search for a solution of the form $f(x) = z_1(x)f_1(x) + ... +$ $z_k(x)f_k(x)$, such that we have (for all x):

$$\begin{cases} z'_1(x)f_1(x) + \dots + z'_k(x)f_k(x) = 0 \\ z'_1(x)f'_1(x) + \dots + z'_k(x)f'_k(x) = 0 \\ \dots \\ z'_1(x)f_1^{(k-2)}(x) + \dots + z'_k(x)f_k^{(k-2)}(x) = 0 \end{cases}$$

Example C. as k = 2: Write again $f = z_1 f_1 + z_2 f_2$ and the constraint $z_1'f_1 + z_2'f_2 = 0.$

Differential in \mathbb{R}^n

Definition 3.3.5. $f: X \mapsto \mathbb{R}$ has a partial derivative with respect to the *i-th variable if the function*

 $g(t) = f(x_{0,1}, ..., x_{0,i-1}, t, x_{0,i+1}, ..., x_{0,n})$ is differentiable for all $x_0 \in X$ on the $\{t \in \mathbb{R} \mid (x_{0,1},...,x_{0,i-1},t,x_{0,i+1},...,x_{0,n}) \in X\}.$

Its derivative $g'(x_{0,i})$ is denoted

$$\frac{\partial f}{\partial x_i}(x_0), \ \partial_{x_i}(x_0), \ \partial_{i}(x_0)$$

Proposition 3.3.7. $x \in \mathbb{R}^n$ open, f, g functions from X to \mathbb{R}^m . Let $1 \leq 1 \leq n.$

- 1. if f, g have partial derivatives of i-th coordinate on X, then f + galso does. $\partial_{x_i}(f+g) = \partial_{x_i}(f) + \partial_{x_i}(g)$
- 2. if the previous is true and m=1, then fg also does and $\partial_{x_i}(fg)=$ $\partial_{x_i}(f) \cdot g + f \cdot \partial_{x_i}(g)$
- 3. If the previous is true and $g(x) \neq 0$ for all $x \in X$, then f/g has a partial derivative $\partial_{x_i}(f/g) = (\partial_{x_i}(f)g - f\partial_{x_i}(g))/g^2$

Definition 3.3.9. $f: X \mapsto \mathbb{R}^m$ has partial derivatives on X. Write $f(x) = (f_1(x), f_2(x), ..., f_m(x)).$

For any $x \in X$, the **Jacobi Matrix** (m rows, n columns) of f at x is defined as

$$J_f(x) = (\partial_{x_i} f_i(x))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Definition 3.3.11. 1. If all partial derivatives of $f: X \mapsto \mathbb{R}$ exist at $x_0 \in X$, then the column vector

$$\nabla f(x_0) = \begin{pmatrix} \partial_{x_1} f(x_0) \\ \dots \\ \partial_{x_n} f(x_0) \end{pmatrix}$$

is called the **gradient** of f at x_0

2. Let $f = (f_1, f_2, ..., f_n) : X \mapsto \mathbb{R}^n$ and all partial derivatives of all coordinates f_i of f exist at $x_0 \in X$. Then

$$Tr(J_f(x_0)) = \sum_{i=1}^n \partial_{x_i} f_i(x_0)$$

 $Tr(J_f(x_0))=\sum_{i=1}^n\partial_{x_i}f_i(x_0)$ is the trace of the Jacobi Matrix and is called the **divergence** of f at x_0 , also $div(f)(x_0)$

Definition 3.4.2. Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}^m$ be a function. Let u be a linear map $\mathbb{R}^n \mapsto \mathbb{R}^{\hat{m}}$ and $x_0 \in X$. We say that f is differentiable at x_0 with differential u if

at
$$x_0$$
 with differential u if
$$\lim_{\substack{x \to x_0 \\ x \neq 0}} \frac{1}{\|x - x_0\|} (f(x) - f(x_0) - u(x - x_0)) = 0$$

We then denote $df(x_0) = u$. If it is differentiable at every $x_0 \in X$, then it is differentiable on X.

Then, close to x_0 , we can approximate f(x) by $g(x) = f(x_0) + u(x-x_0)$

Proposition 3.4.4. Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}^m$ be a function $differentiable \ on \ X. \ Then$

- 1. f is continuous on X.
- 2. f admits partial derivatives on X with respect to each variable.
- 3. Assume that m = 1. Let $x_0 \in X$ and $u(x_1, ..., x_n) = a_1x_1 + ... + a_nx_n$ be the differential of f at x_0 . We then have $\partial_{x_i} f(x_0) = a_i$ for $1 \leq i \leq n$

Proposition 3.4.6. $X \subset \mathbb{R}^n$ open, $f: x \mapsto \mathbb{R}^m$, $g: X \mapsto \mathbb{R}^m$ differentiable functions on X.

1. f + g is differentiable on X with differential d(f + g) = df + df.

2. If m = 1, then fg is differentiable. If we also have $g(x) \neq 0$ for all $x \in X$, then f/g is differentiable.

Proposition 3.4.7. If f has all partial derivatives on X and they are all continuous on X, then f is differentiable on X. The matrix of the differential $df(x_0)$ is the Jacobi Matrix of f at x_0 .

Proposition 3.4.9 (Chain Rule). Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be open. Let $f: X \mapsto Y$ and $g: Y \mapsto R^p$ be differentiable functions. Then $g \circ f: X \mapsto \mathbb{R}^p$ is differentiable on X, and for any $x \in X$, its differential is given by

$$d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$$

The Jacobi Matrix satisfies

$$J_{g \circ f}(x_0) = J_g(f(x_0))J_f(x_0)$$
 (matrix product)

Definition L. et $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}^m$ differentiable. Let $x_0 \in X$ and $u = df(x_0)$ be the differential of f at x_0 . The graph of the $affine\ linear\ approximation$

$$g(x) = f(x_0) + u(x - x_0)$$

from \mathbb{R}^n to \mathbb{R}^m , or in other words the set

$$\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m \mid y = f(x_0) + u(x - x_0)\}$$

is called the **tangent space** at x_0 to the graph of f.

Definition 3.4.13 (Directional Derivative). Let $X \subset \mathbb{R}^n$ be open, $f: X \mapsto \mathbb{R}^m$ a function.

Let $v \in \mathbb{R}^n$ be a non-zero vector and $x_0 \in X$.

We say that f has directional derivative $w \in \mathbb{R}^m$ in the direction v if the function g defined on the set I has a derivative at t = 0 and this is equal to w.

$$g(t) = f(x_0 + tv), \quad I = \{t \in \mathbb{R} \mid x_0 + tv \in R\}$$

Other words: limit is equal to w

$$\lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f(x_0 + tv) - f(x_0)}{t}$$

Proposition 3.4.15. X open, f differentiable. Then for any $x_0 \in X$ and non-zero v, the function has a directional derivative at x_0 in the direction v, equal to $df(x_0)(v)$

Definition 3.5.1. Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}^m$. We say that f is of class:

- ullet C^1 is differentiable on X and all partial derivatives are continuous.
- C^k if differentiable on X and all partial derivatives $\partial_{x_i} f: X \mapsto \mathbb{R}^m$ are of class C^{k-1} .
- C^{∞} if $f \in C^k(X; \mathbb{R}^m)$ for all $k \geq 1$

Set of functions of class C^k from X to \mathbb{R}^m is denoted $C^k(X;\mathbb{R}^m)$

Proposition 3.5.4 (Mixed derivatives commute). $X \subset \mathbb{R}^n$ open and $f: X \mapsto \mathbb{R}^m$ of class C^k . Then the partial derivatives of order k are independent of the order in which the partial derivatives are taken: for any variables $x_1, x_2, ..., x_n$ we have

$$\partial_{x_1,x_2,...,x_n} f = \partial_{x_2,x_1,...,x_n} f = ...$$
 (all combinations)

Definition 3.5.9 (Hessian). Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}$ a C^2 function. For $x \in X$, the **Hessian matrix** of f at x is the **symmetrix** square matrix

$$H_f(x) = \operatorname{Hess}_f(x) = (\partial_{x_i, x_j} f)_{1 \le i, j \le n}$$

Example (Change of variable). Idea: create h, which is f on a different coordinate system.

Open set $U \subset \mathbb{R}^n$ containing the new variables $(y_1, ..., y_n)$ and a change of variable $g: U \mapsto X$ that expresses $(x_1, ..., x_n)$ in terms of $(y_1, ..., y_n)$.

Consider $x_1 = g_1(y_0, ..., y_n), \quad x_n = g_n(y_1, ..., y_n)$ Composite $h = f \circ g : U \mapsto \mathbb{R}$ is the function f expressed in terms of the new variables y.

Polar coordinates: Map $g : G = r \text{ is } \theta$, $g : G = r \text{ is } \theta$, $g : f \text{ by } h : h(r,\theta) = f(r\cos\theta, r\sin\theta)$. $J_g(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}$ Polar coordinates: Map $g: U \mapsto \mathbb{R}^2$, $g(r,\theta) = (r\cos\theta, r\sin\theta)$. Replace

$$J_g(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}$$

Taylor Polynomials

Definition 3.7.1 (Taylor polynomials). Let $k \geq 1$ be an integer, $f: X \mapsto \mathbb{R}$ a function of class C^k on X, and fix $x_0 \in X$. The k-th Taylor polynomial of f at point x_0 is the poly in n variables of degree $\leq k$ given

$$T_k f(y; x_0) = f(x_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_0) y_i + \dots$$

$$+ \sum_{m_1 + \dots + m_n = k} \frac{1}{m_1! \dots m_n!} \frac{\partial^k f}{\partial x_1^{m_1} \dots \partial x_n^{m_n}}(x_0) y_1^{m_1} \dots y_n^{m_n}$$

where the last sum ranges over the tuples of n positive integers such that

the sum is k. Case n = 1 (one variable):

$$T_k f(y; x_0) = f(x_0) + f'(x_0)y + \frac{f''(x_0)}{2}y^2 + \dots + \frac{f^{(k)}(x_0)}{k!}y^k$$

Proposition 3.7.3 (Taylor Approximation). $k \geq 1, X \subset \mathbb{R}^n$ open, $f: X \mapsto \mathbb{R}$ a C^k function. For x_0 in X, we define $E_k f(x; x_0)$ by $f(x) = T_k f(x - x_0; x_0) + E_k f(x; x_0)$

then we have

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{e_k f(x; x_0)}{\|x - x_0\|^k} = 0$$

Critical Points

Proposition 3.8.1. Let $X \subset \mathbb{R}^n$ be open and $f: X \mapsto \mathbb{R}$ be differentiable. If $x_0 \in X$ is a local maximum or a local minimum, then we have (equivalent) for $1 \le i \le n$:

$$df(x_0) = 0, \ \nabla f(x_0) = 0, \ \frac{\partial f}{\partial x_i}(x_0) = 0$$

Definition 3.8.2 (Critical Point). Let X be open and f be differentiable. A point x_0 is called a **critical point** of f if $\nabla f(x_0) = 0$.

Definition 3.8.6 (Non-degenerate critical point). f of class C^2 . Acritical point x_0 is non-degenerate if the Hessian matrix has non-zero determinant.

Corollary 3.8.7. X open and $f: X \mapsto \mathbb{R}$ of class C^2 . Let x_0 be a non-degenerate critical point of f. Let p,q be the number of positive and negative eigenvalues of $Hess_f(x_0)$

- 1. if p = n, equivalently if q = 0, the function f has a local minimum
- 2. if q = n, equivalently if p = 0, f has a local maximum at x_0 .
- 3. Otherwise, the function f does not have a local extremum at x_0 , equivalently it has a saddle point at x_0 .

2.3 Lagrange multipliers

Proposition 3.9.2 (Lagrange Multiplier). Let $X \subset \mathbb{R}^n$ be open and $f,g:X\mapsto\mathbb{R}$ be class C^1 . If $x_0\in X$ is a local extremum of f restricted to the set $Y = \{x \in X \mid g(x) = 0\}$ ($\nabla f(x_0)$ can be non-zero!), then either $\nabla g(x_0) = 0$ or there exist λ such that

$$\begin{cases} \nabla f(x_0) = \lambda \nabla g(x_0) \\ g(x_0) = 0 \end{cases}$$

In other words, (x_0, λ) is a critical point of $h(x, \lambda) = f(x) - \lambda g(x)$. Value λ is the Lagrange Multiplier at x_0 .

The inverse and implicit functions theorems

Definition 3.10.1 (Change of variable).

Theorem 3.10.2 (Inverse function theorem). $X \subset \mathbb{R}^n$ open and $f: X \mapsto \mathbb{R}^n$ differentiable. If the jacobian matrix of f at $x_0 \in X$ is invertible $(det(J_f(x_0)) \neq 0)$ then f is a change of variable around x_0 .

Moreover, $J_g(f(x_0)) = J_f(x_0)^{-1}$. In addition, if f is of class C^k , then g is also of class C^k .

Theorem 3.10.4 (Implicit function theorem). Let $X \subset \mathbb{R}^{n+1}$ be open, $g: X \mapsto \mathbb{R}$ be of class C^k with $k \geq 1$. Let $(x_0, y_0) \in \mathbb{R}^n \times \mathbb{R}$ such that $g(x_0, y_0) = 0$.

Assume that $\partial_y g(x_0, y_0) \neq 0$.

Then there exists an open set $U \subset \mathbb{R}^n$ containing x_0 , an open interval $I \subset \mathbb{R}$ containing y_0 , and a function $f: u \mapsto \mathbb{R}$ of class C^k such that the system of equations

$$\begin{cases} g(x,y) = 0 \\ x \in U, \ y \in I \end{cases}$$

is equivalent with y = f(x). In particular, $f(x_0) = y_0$. Moreover, the

gradient of
$$f$$
 at x_0 is
$$\nabla f(x_0) = -\frac{1}{(\partial_y g)(x_0, y_0)} \nabla_x g(x_0, y_0)$$
 where $\nabla_x g = (\partial_{x_1} g, ..., \partial_{x_n} g)$

Integration in \mathbb{R}^n

3.1 Line integrals

Definition 4.1.1. Uses scalar product in \mathbb{R}^n .

1. Let I = [a,b] be a closed and bounded interval in \mathbb{R} . Let f(t) = $(f_1(t), f_2(t), ..., f_n(t))$ be continuous $(f_i \text{ is continuous})$. Then we

$$\int_{a}^{b} f(t)dt = \left(\int_{a}^{b} f_1(t)dt, \dots, \int_{a}^{b} f_n(t)dt\right)$$

2. A parametrized curve in \mathbb{R}^n is a continuous map $\gamma: [a,b] \mapsto \mathbb{R}^n$ that is piecewise C^1 , i.e, there's $k \geq 1$ and a partition

$$a = t_0 < t_1 < \dots < t_{k-1} < t_k = b$$

such that the restriction of f to $]t_{j-1}, t_j[$ is C^1 for $1 \leq j \leq k$. Then we say that γ is a parametrized curve, or pathx, between $\gamma(a)$ and $\gamma(b)$.

3. Let gamma: $[a,b] \mapsto \mathbb{R}^n$ be a parametrized curve. Let $X \subset \mathbb{R}^n$ be a subset containing the image of γ . Let $g: X \mapsto \mathbb{R}^n$ be a continuous function. Then the integral

$$\int_{a}^{b} g(\gamma(t))\gamma'(t)dt \in \mathbb{R}$$
 is called the **line integral** of g along γ . Denoted
$$\int_{\gamma} g(s) \cdot ds \quad or \quad \int_{\gamma} g(s) \cdot d\vec{s}$$

When working with line integrals, we say that $f: X \mapsto \mathbb{R}^n$ is a **vector**

Proposition idk. This integral of continuous functions $I \mapsto \mathbb{R}^n$ (one variable) satisfies

$$\int_{a}^{b} (f(t) + g(t))dt = \int_{a}^{b} f(t)dt + \int_{a}^{b} g(t)dt$$

and

$$\int_{a}^{b} f(t)dt = -\int_{b}^{a} f(t)dt$$

Definition 4.1.4. Let gamma : $[a,b] \mapsto \mathbb{R}^n$ be a parametrized curve. An oriented reparametrization of γ is a parametrized curve $\sigma:[c,d]\mapsto\mathbb{R}^n$ such that $\sigma = \gamma \circ \varphi$, differentiable on]a,b[, strictly increasing and satisfies $\varphi(a) = c, \varphi(b) = d$, where $\varphi : [c, d] \mapsto [a, b]$ is a continuous map.

Proposition 4.1.5. Let γ be a parametrized curve in \mathbb{R}^n , σ an oriented reparametrization of γ . Let X be a set containing the image of γ (or, equivalently, the image of σ), and $f: X \mapsto \mathbb{R}^n$ a continuous function.

Then the line integrals are the same:

$$\int_{\gamma} f(s) \cdot d\vec{s} = \int_{\sigma} f(s) \cdot d\vec{s}$$

Definition 4.1.8. Let $X \subset \mathbb{R}^n$ and $f: X \mapsto \mathbb{R}^n$ a continuous vector

If for any $x_1, x_2 \in X$ the line integral is independent of the choice of γ in X from x_1 to x_2 , then we say that the vector field is **conservative**.

Remark 4.1.9. Equivalently, f is conservative iff

$$\int_{S} f(s) \cdot d\vec{s} = 0$$

for any closed parametrized curve γ in X. A curve is closed if $\gamma(a) =$

Theorem Hidden in the page (gratient vector conservative). If X is open, then any vector field of the form $f = \nabla g$, where g is of class C^1 on X, is conservative.

Theorem 4.1.10. Let X be open and f a conservative vector field. Then there exist a C^1 function g on X such that $f = \nabla g$.

If any two points on X can be joined by a parametrized curve, then q is unique up to addition of a constant: if $\nabla g_1 = f$, then $g - g_1$ is constant on X.

Remark 4.1.11. To say that Any two points of X can be joined by a parametrized curve means that, for all $x,y \in X$, there exist a p.c. $\gamma: [a,b] \mapsto X$ such that $\gamma(a) = x, \gamma(b) = y$. When this is true, we say that X is path-connected.

(it is true whenever X is convex)

If f is a conservative vector field on X, then a function g such that $\nabla g = f$ is called a **potential** for f. Note that g is not unique and can differ of at least a constant.

Proposition 4.1.13. Let $X \subset \mathbb{R}^n$ be an open set, $f: X \mapsto \mathbb{R}^n$ a vector field of class C^1 . Write

If f is conservative, then we have, for any integers with $1 \le i \ne j \le n$: $\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$

$$\frac{\partial J_i}{\partial x_j} = \frac{\partial J_j}{\partial x_i}$$

Example 4.1.14. Consider $f(x, y, z) = (y^2, xz, 1)$. Clearly, $\partial_y(y^2) =$ $2y \neq z = \partial_x(xz)$ Then f can't be conservative.

Definition 4.1.15. A subset $X \subset \mathbb{R}^n$ is star shaped if there exists $x_0 \in X$ so that for all $x \in X$, the line connecting the two is contained in

Then X is star-shaped around x_0 .

Theorem 4.1.17. Let $X \subset \mathbb{R}^n$ be star shaped and f be a C^1 vector field such that on X, for any $1 \le i \ne j \le n$: $\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$

$$\frac{\partial f_i}{\partial x_i} = \frac{\partial f_j}{\partial x_i} \tag{2}$$

Then f is conservative

Definition 4.1.20. Let $X \subset \mathbb{R}^3$ be an open set and $f: X \mapsto \mathbb{R}^3$ a C^1 vector field. Then the curl of f, curl(f), is the continuous vector field on

$$curl(f) = \begin{pmatrix} \partial_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix}$$

Where $f(x, y, z) = (f_1(x, y, z), f_2(x, y, z), f_3(x, y, z))$

If curl(f) = 0, then condition (2) holds!

Remark 4.1.21 (remember the definition with determinant). With (e_1, e_2, e_3) being the canonical basis of \mathbb{R}^3 and expanding with $\partial_x \cdot f_i = f_i \partial_x = \partial_x f_i$:

$$curl(f) = \begin{vmatrix} e_1 & e_2 & e_3 \\ \partial_x & \partial_y & \partial_z \\ f_1 & f_2 & f_3 \end{vmatrix}$$

The Riemann integral in \mathbb{R}^n

For any bounded closed $X \subset \mathbb{R}^n$ and continuous function $f: X \mapsto \mathbb{R}$, one can define the integral of f over X, denoted

The integral satisfies the properties:
$$\int_X f(x) dx \quad \in \mathbb{R}$$

1. (Compatibility) if n = 1 and X = [a, b] is an interval $(a \le b)$, then the integral of f over X is the Riemann integral of f:

$$\int_{[a,b]} f(x)dx = \int_{a}^{b} f(x)dx$$

2. (Linearity) if f, g are continuous on X and $a, b \in \mathbb{R}$, then

$$\int_{X} (af_1(x) + bf_2(x))dx = a \int_{X} f_1(x)dx + b \int_{X} f_2(x)dx$$

3. (Positivity) if $f \leq g$, then

$$\int_{X} f(x)dx \le \int_{X} g(x)dx$$

$$\int_{X} f(x)dx \ge 0$$

and especially, if $f \geq g$, then $\int_X f(x)dx \leq \int_X g(x)dx$ and especially, if $f \geq 0$, then $\int_X f(x)dx \geq 0$ Moreover, if $Y \subset X$ is compact and $f \geq 0$, then $\int_Y f(x)dx \leq \int_X f(x)dx$

4. (Upper bound and triangle inequality) Since $-|f| \le f \le |f|$,

$$\begin{split} \Big| \int_X f(x) dx \Big| &\leq \int_X \Big| f(x) \Big| dx \\ \text{and since } |f+g| &\leq |f| + |g| \\ \Big| \int_X (f(x) + g(x)) dx \Big| &\leq \int_X \Big| f(x) \Big| dx + \int_X \Big| g(x) \Big| dx \end{split}$$

5. (Volume) if f = 1, then the integral of f is the "volume" in \mathbb{R}^n of the set X. If $f \geq 0$ in general, the integral of f is the volume of the

$$\{(x,y) \in X \times \mathbb{R} \mid 0 \le y \le f(x)\} \subset \mathbb{R}^{n+1}$$

In particular, if X is a bounded "rectangle", say $X = [a_1,b_1] \times ... \times [a_n,b_n] \subset \mathbb{R}^n$

and f = 1, then

$$\int_X dx = (b_n - a_n) \cdot \dots \cdot (b_1 - a_1)$$
 We write $Vol(X)$ or $Vol_n(X)$ for the volume of X .

6. (Multiple Integral, or Fubini's Theorem) If $n_1, n_2 \geq 1$ are integers such that $n=n_1+n_2$, then for $x_1 \in \mathbb{R}^{n_1}$, let $Y_{x_1} = \{x_2 \in \mathbb{R}^{n_2} \mid (x_1, x_2) \in X\} \subset \mathbb{R}^{n_2}$

Let X_1 be the set of x_1 such that Y_{x_1} is not empty. Then X_1 is compact in \mathbb{R}^{n_1} and Y_{x_1} is compact in \mathbb{R}^{n^2} for all $x_1 \in X_1$. If the

$$g(x_1) = \int_{Y_{x_1}} f(x_1, x_2) dx_2$$

on X_1 is continuous, then

$$\int_X f(x_1,x_2)dx = \int_{X_1} g(x_1)dx_1 = \int_{X_1} \left(\int_{Y_{x_1}} f(x_1,x_2)dx_2\right)dx_1$$
 Similarly, exchanging the role of x_1 and x_2 , we have

$$\int_X f(x_1,x_2)dx = \int_{X_2} \left(\int_{Z_{x_2}} f(x_1,x_2)dx_1\right)dx_2$$
 Where $Z_{x_2} = \{x_1 \mid (x_1,x_2) \in X\}$, if the integral over x_1 is a contin-

7. (Domain additivity) if X_1 and X_2 are compact subsets of \mathbb{R}^n and f is continuous on $X_1 \cup X_2$, then

$$\int_{X_1 \cup X_2} f(x) dx + \int_{X_1 \cap X_2} f(x) dx = \int_{X_1} f(x) dx + \int_{X_2} f(x) dx$$

Notice that $X_1 \cap X_2$ is also compact, so all integrals exist. If $X_1 \cap X_2$ is empty, then the integral over it is equal to 0, shortening the formula to a more convenient form. This is also true if the intersection is negligible (Def 4.2.3).

1. Let $1 \le m \le n$. A parametrized m-set in \mathbb{R}^n is $a\ continuous\ map$

$$f: [a_1, b_1] \times ... \times [a_m, b_m] \mapsto \mathbb{R}^n$$

which is C^1 on

$$]a_1,b_1[\times...\times]a_m,b_m[$$

2. A subset $B \subset \mathbb{R}^n$ is negligible if there exist an integer $k \geq 0$ and parametrized m_i -sets $f_i: X_i \to \mathbb{R}^n$ with $1 \le n \le k$ and $m_i < n$ such

$$X \subset f_1(X_1) \cup ... \cup f_k(X_k)$$

Example 4.2.4. Any subset of the real axis $\mathbb{R} \times \{0\}$ is negligible in \mathbb{R}^2 . More generally, if $H \subset \mathbb{R}^n$ is an affine subspace of dimension m < n, then any subset of \mathbb{R}^n that is contained in H is negligible.

Proposition 4.2.5. Let $X \subset \mathbb{R}^n$ be a compact set. Assume that X is negligible. Then for any continuous function on X we have

$$\int_X f(x)dx = 0$$

Improper integrals

Some basic definitions on \mathbb{R}^2 .

Let $I \subset \mathbb{R}$ be a bounded interval, $J = [a, +\infty[$ for some $a \in \mathbb{R}$. Let f be a continuous function on $X = J \times I$. We say that f is **Riemannintegrable** on X if the following limit exists

$$\lim_{x\to +\infty}\int_{[a,x]\times I}f(x,y)dxdy=\lim_{x\to +\infty}\int_{I}\left(\int_{a}^{x}f(x,y)dx\right)dy$$
 The equality is a case of Fubini's Theorem. We denote this limit with

$$\int_{J\times I} f(x,y) dx dy$$

Similarly, let f be continuous on \mathbb{R}^2 . Assume that $f \geq 0$. We say that f is Riemann-integrable on \mathbb{R}^2 if the following limit exists

$$\lim_{R \to +\infty} \int_{[-R,R]^2} f(x,y) dx dy$$

 $\lim_{R\to +\infty} \int_{[-R,R]^2} f(x,y) dx dy$ This limit is called the **integral of** f **over** \mathbb{R}^2 and denoted

$$\int_{\mathbb{R}^2} f(x, y) dx dy$$

Fubini formula for this:

$$\int_{\mathbb{R}^2}^{+\infty} f(x, y) dx dy = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x, y) dx \right) dy$$

Remark 4.3.1. In all these cases we also often say that "the integral converges" to indicate that a function is Riemann-integrable on an un-

If $|f| \leq g$ and the integral of g is Riemann-integrable on an unbounded set, then f also does.

3.4 The change of variable formula

Analogue of the one for one-variable calculus

$$\left(\int f(g(x))g'(x)dx = \int f(y)dy\right)$$

 $\left(\int f(g(x))g'(x)dx=\int f(y)dy\right)$ Let $\bar{X},\bar{Y}\subset\mathbb{R}^n$ be compact subsets. Let $\varphi:\bar{X}\mapsto\bar{Y}$ be a continuous

We assume that we can write $\bar{X} = X \cup B$ and $\bar{Y} = Y \cup C$ where

- the sets X, Y are open.
- The sets B, C are negligible (Def ??def:4.2.3)
- the restriction of φ to the open set X is a C^1 bijective map from X to Y.

Then $J_{\varphi}(x)$ is invertible at all $x \in X$. We assume that we can find a continuous function on \bar{X} that restricts to $\det(J_{\varphi}(x))$ on X (we have a formula for the Jacobian, so this is obvious in most cases). Abuse notation and write it even if $x \in B$.

Remark 4.4.1. There is no assumption concerning the image of B. Sometimes φ is the restriction of a C^1 map $\mathbb{R}^n \to \mathbb{R}^n$, in which case the last issue doesn't require any argument.

Theorem 4.4.2 (Change of variable formula). In the situation described above, for any continuous function f on \bar{Y} , we have

$$\int_{\bar{X}} f(\varphi(x)) |\det(J_{\varphi}(x))| dx = \int_{\bar{Y}} f(y) dy$$

To remember, when $y = \varphi(x)$, then $dy = |\det(J_{\varphi}(x))| dx$. Special cases:

1. When $\varphi(x) = x + x_0$ (translation): φ is affine-linear and $J_{\varphi}(x) = 1_n$ (identity matrix). The change of variable formula becomes, for any compact subset \bar{X} and any continuous function f on $x_0 + \bar{X}$: $\int_{\bar{X}} f(x+x_0) dx = \int_{x_0 + \bar{X}} f(x) dx$

$$\int_{\bar{X}} f(x+x_0)dx = \int_{x_0+\bar{X}} f(x)dx$$

2. When φ is a restriction of a bijective linear map, namely $\varphi(x) = Ax$, where A is an invertible matrix of size n. Then $J_{\varphi}(x) = A$ for all $x \in \mathbb{R}^n$ with constant_determinant $\det(A)$. Let $\bar{X} = X \cup B$ be compact as above and $\bar{Y} = \varphi(\bar{X})$. Then $\varphi(\bar{X}) = \varphi(X) \cup \varphi(B)$. The change of variable formula becomes (for any continuous f on \bar{Y}) $\int_{\bar{X}} f(\varphi(x)) dx = \frac{1}{|\det(A)|} \int_{\bar{Y}} f(y) dy$

$$\int_{\bar{X}} f(\varphi(x))dx = \frac{1}{|\det(A)|} \int_{\bar{Y}} f(y)dy$$

Example (Standard examples). 1. Polar coordinates (r, θ) are useful for integrating over a disc in \mathbb{R}^2 centered at 0, or more generally over a disk sector $\delta = \delta(a, b, R)$ defined

$$0 \le r \le R$$
, $-\pi < a \le \theta \le b < \pi$

We compute the Jacobian det. and obtain
$$\int_{\delta} f(x,y) dx dy = \int_{0}^{R} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r \ dr \ d\theta$$

2. Spherical Coordinates (r, θ, φ) in \mathbb{R}^3 , integrate on balls centered at 0. Jacobian determinant is $-r^2\sin(\varphi)$. To integrate a function fover a ball of radius R we use

$$\int_B f(x,y,z) dx dy dz = \int_0^R \int_0^{2\pi} \int_0^\pi f(\bar x,\bar y,\bar z) r^2 \sin(\varphi) \ dr \ d\theta \ d\varphi$$
 With $\bar x = r \cos(\theta) \sin(\varphi)$, $\bar y = r \sin(\theta) \sin(\varphi)$, $\bar z = r \cos(\varphi)$.

3.5 Geometric applications of integrals

Welp, applications that can actually be useful

1. (Center of mass) Let X be a compact subset of \mathbb{R}^n of positive volume. The center of mass (or barycenter) of X is the point $\bar{x} \in \mathbb{R}^n$ such that $\bar{x} = (\bar{x}_1, ..., \bar{x}_n)$ with

$$\bar{x}_1 = \frac{1}{VolX} \int_X x_i dx$$

 $\bar{x}_1 = \frac{1}{VolX} \int_X x_i dx$ Intuitively, x_i is the average over X of the i-th coordinate and \bar{x} is the point where X is "perfectly balanced" (could be outside of X!).

2. (Surface area) Consider a function $f:[a,b]\times[c,d]\mapsto\mathbb{R}$ which is C^1 on the open interval. Let

 $\Gamma = \left\{ (x,y,z) \in \mathbb{R}^3 \mid (x,y) \in [a,b] \times [c,d], \ z = f(x,y) \right\} \subset \mathbb{R}^3$ be the graph of f. Intuitively, this is a surface and it has area $\int_a^b \int_c^d \sqrt{1 + (\partial_x f(x,y))^2 + (\partial_y f(x,y))^2} dxdy$

Analogue for a function
$$f:[a,b] \mapsto \mathbb{R}$$
 (length):
$$\int_a^b \sqrt{1+f'(x)^2} dx$$

The Green formula

Definition 4.6.1. A simple closed parametrized curve $\gamma:[a,b]\mapsto \mathbb{R}^2$ is a closed $(\gamma(a) = \gamma(b))$ parametrized curve such that $\gamma(t) \neq \gamma(s)$ unless t = s or they are a, b, and such that $\gamma'(t) \neq 0$ for a < t < b (if γ is only piecewise C^1 , this condition only applies where $\gamma'(t)$ exists).

Theorem 4.6.3 (Green's formula). Let $X \subset \mathbb{R}^2$ be a compact set with a boundary ∂X that is the union of finitely many simple closed parametrized curves $\gamma_1,...,\gamma_k$. Assume that

$$\gamma_i: [a_i, b_i] \mapsto \mathbb{R}^2$$

has the property that X lies always "to the left" of the tangent vector $\gamma'(t)$ based at $\gamma_i(t)$.

Let $f = (f_1, f_2)$ be a vector field of class C^1 defined on some open set containing X. Then we have

$$\int_X \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dx dy = \sum_{i=1}^k \int_{\gamma_i} f \cdot d\vec{s}$$

If the orientation is not met, the curve can be "reversed", e.g., replaced with $\tilde{\gamma} = \gamma(1-t)$, which reverses the orientation of the tangent vector.

Corollary 4.6.5. Let $X \subset \mathbb{R}^2$ compact set with boundary ∂X that is the union of finitely many s.c.p.c $\gamma_1, ..., \gamma_k$. Assume that

$$\gamma_i = (\gamma_{i,1}, \gamma_{i,2}) : [a_i, b_i] \mapsto \mathbb{R}^2$$

 $\gamma_i = (\gamma_{i,1}, \gamma_{i,2}) : [a_i, b_i] \mapsto \mathbb{R}^2$ has the property that X always lies "left" of the tangent vector. Then we

$$Vol(X) = \sum_{i=1}^{k} \int_{\gamma_i} x \cdot d\vec{s} = \sum_{i=1}^{k} \int_{a_i}^{b_i} \gamma_{i,1}(t) \gamma'_{i,2}(t) dt$$

The Gauss-Ostrogradski formula

Analogue of the Green formula in \mathbb{R}^3 .

Definition 4.7.1. A parametrized surface $\Sigma : [a,b] \times [c,d] \mapsto \mathbb{R}^3$ is a 2-set in \mathbb{R}^3 such that the rank of the J. matrix is 2 at all $(s,t) \in]a,b[\times]c,d[$ Note that 2 is the max rank (there are two variables).

Definition 4.7.3 (vector product). Let x, y be two linearly independent vectors in \mathbb{R}^3 . The vector product (or cross product) $z = x \times y$ is the unique vector such that (x, y, z) is a basis of \mathbb{R}^3 (z perpendicular to the plane generated by x, y, also pairwise lin. indep.) with $det(x, y, z) \geq 0$

$$||z|| = ||x|| \cdot ||y|| \cdot \sin(\theta)$$

Where $\theta = \angle(x, y)$

If x, y are not lin. indep., then we define $x \times y = 0$, the zero vector.

Ez formula for canonical base only (remember the oral exam back in $the \ day!)$:

the day!):
$$x \times y = \begin{pmatrix} x_2y_3 - x_3y_2 \\ x_3y_1 - x_1y_3 \\ x_1y_2 - x_2y_1 \end{pmatrix} = \det \begin{vmatrix} e_1 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$
 Also $y \times x = -x \times y$.

Theorem 4.7.6 (Gauss-Ostrogradski formula). Let $X \subset \mathbb{R}^3$ be a compact set with a boundary ∂X that is a parametrized surface $\Sigma:[a,b]\times$ $[c,d]\mapsto \mathbb{R}^3$.

Assume that Σ is injective in the open interval, and that the normal vector of Σ points away from the surface at all points.

Let $\vec{u} = \frac{\vec{n}}{\|\vec{n}\|}$ be the unit exterior normal vector.

Let $f = (f_1, f_2, f_3)$ be a C^1 vector field defined on some open set containing X. Then we have

 $\int_X div(f) dx dy dz = \int_\Sigma (f \cdot \vec{u}) d\sigma$ Clarify: $\div(f)$ is the divergence of the vector field f, $div(f) = \partial_x f + \partial_y f + \partial_z f$.

 $(f \pm g)' = f'(x) \pm g'(x)$

Limit Cheat Sheet

$x\in\mathbb{I}$	$\mathbb{R}, a, b \in \mathbb{R}^+, n \in \mathbb{N}$
$\lim_{n \to \infty} a^n = +\infty \text{ if } a > 1$	$\lim_{n \to \infty} a^n = 0 \text{ if } 0 < a < 1$
$\lim_{n \to \infty} \sqrt[n]{n} = 1$	$\lim_{n \to \infty} \sqrt[n]{a} \text{ if } a > 0$
$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$	
$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{\tan x}{x} = 1$
$\lim_{x \to \infty} \frac{\ln^b(x)}{x^a} = 0$	$\lim_{x \to 0} x^a \ln^b(x) = 0$
$\lim_{x \to \infty} \frac{e^{ax}}{x^b} = +\infty$	$\lim_{x \to \infty} \frac{x^b}{e^{ax}} = 0$

Derivative Cheat Sheet

(cf)' = cf'(x)

Properties

$$(fg)' = f'g + fg' \qquad (\frac{f}{g})' = \frac{f'g - fg'}{g^2}$$

$$\frac{d}{dx}(c) = 0 \qquad \frac{d}{dx}\left(g(f(x))\right) = g'(f(x))f'(x)$$

$$f(x) \qquad f(x)$$

$$x \qquad 1$$

$$x^n \qquad nx^{n-1}$$

$$e^x \qquad e^x$$

$$a^x \qquad 1n \qquad a$$

$$\sqrt{x} \qquad \frac{1}{2\sqrt{x}}, \quad x \neq 0$$

$$\frac{1}{x} \qquad x > 0 \implies 1, \text{ or } x < 0 \implies -1, x \neq 0$$

$$\ln(x) \qquad \frac{1}{x}$$

$$|x| \qquad x > 0 \implies 1, \text{ or } x < 0 \implies -1, x \neq 0$$

$$\ln(x) \qquad \frac{1}{x}$$

$$\cos(x) \qquad -\sin(x)$$

$$\cos(x) \qquad -\sin(x)$$

$$\tan(x) \qquad \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$

$$\cot(x) \qquad -\frac{1}{\sin^2(x)} = -1 - \cot^2(x)$$

$$\arcsin x \qquad \frac{1}{\sqrt{1 - x^2}}$$

$$\arccos x \qquad -\frac{1}{\sqrt{1 - x^2}}$$

$$\arccos x \qquad -\frac{1}{1 + x^2}$$

$$\arccos x \qquad \frac{1}{1 + x^2}$$

$$\arccos(x) \qquad -\frac{1}{1 + x^2}$$

$$\arcsin(x) \qquad \cosh(x)$$

$$\cosh(x) \qquad \sinh(x)$$

$$\tanh(x) \qquad \frac{1}{\cos^2(x)} = 1 - \tanh^2(x)$$

$$\coth(x) \qquad -\frac{1}{\sin^2(x)} = 1 - \coth^2(x)$$

$$\sinh(x) \qquad \frac{1}{\sqrt{x^2 + 1}}$$

$$\arcsin(x) \qquad \frac{1}{\sqrt{x^2 - 1}}$$

$$\tanh(x) \qquad \frac{1}{\sqrt{x^2 - 1}}$$

Integral Cheat Sheet

$$\int f(x)dx = F(x) + C$$

Per parti	$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$
Per sostituzione immediata	$\int g(f(x))f'(x)dx = G(f(x)) + C$
Per sostituzione (cambiamento di variabile)	$\int g(x)dx = \int g(f(t))f'(t)dt$
	with $x = f(t)$
Integrale logarit- mico	$\int \frac{f'(x)}{f(x)} dx = \ln \left f(x) \right + C$

f(x)	F(X)(without + C)
a	$ax \\ x^{n+1}$
x^n	$\frac{x^{n+1}}{n+1}$
1	$\frac{n+1}{\ln x }$
$\frac{\overline{x}}{x}$	
\sqrt{x}	$\frac{2}{3}x\sqrt{x}$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$
\sqrt{x}	
(x-a)(x-b)	$\frac{1}{a-b}\ln\left \frac{x-a}{x-b}\right $
ax+b	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $
$\overline{cx+d}$	$\frac{-}{c} - \frac{-}{c^2} \frac{\ln cx + a }{c}$
$\frac{1}{r^2 \perp a^2}$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right)$
	$\begin{bmatrix} 1 & x - a \\ 1 & x - a \end{bmatrix}$
$ \frac{x^2 + a^2}{1} $ $ \frac{1}{x^2 - a^2} $ $ e^x $	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $ e^{x}
$\ln(x)$	e^{ω} $r(\ln(r) - 1)$
a^x	$x(\ln(x) - 1)$ a^x
	$x(\log_a(x) - \log_a(e))$
$\log_a(x)$	$x(\log_a(x) - \log_a(e))$
xe^{ax}	$\frac{1}{a^2}(ax-1)e^{ax}$
$x \ln(ax)$	$\frac{1}{a^{2}}(ax-1)e^{ax}$ $\frac{x^{2}}{4}(2\ln(ax)-1)$
$\sin(x)$	$-\cos(x)$
$\arcsin(x)$	$x \arcsin(x) + \sqrt{1-x^2}$
$\cos(x)$	$ \frac{\sin(x)}{x\arccos(x) - \sqrt{1 - x^2}} $
arccos(x) tan(x)	$-\ln \cos(x) - \sqrt{1 - x^2}$
$\arctan(x)$	$x \arctan(x) - \frac{1}{2} \ln(1+x^2)$
$\cot(x)$	$\frac{1}{\ln \sin(x) }$
$\operatorname{arccot}(x)$	$x \operatorname{arccot}(x) + \frac{1}{2} \ln(1+x^2)$
$\sin^2(x)$	$\frac{1}{2}(x-\sin(x)\cos(x))$
$\cos^2(x)$	$\frac{1}{2}(x+\sin(x)\cos(x))$
$\tan^2(x)$	$\tan(x) - x$
$\sqrt{x^2+a}$	$\frac{1}{2}x\sqrt{x^2+a} + \frac{a}{2}\ln\left x + \sqrt{x^2+a}\right $
$\frac{1}{\sqrt{x^2 + a}}$	$\ln\left x + \sqrt{x^2 + a}\right $
$\sqrt{r^2-x^2}$	$\frac{1}{2}x\sqrt{r^2-x^2} + \frac{r^2}{2}\arcsin\left(\frac{x}{r}\right)$
$\frac{1}{\sqrt{r^2 - x^2}}$	$\arcsin\left(\frac{x}{r}\right)$
$\sqrt{r^2-x^2}$	\ r /

More?