Vertex of the Quadratic

Given a quadratic r(n)=an² + bn + c compute its value at $n_1 = -\frac{b}{2a}$ namely $r(n_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{n}_{1^+}\mathsf{h}$, namely $r(n_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = r(n_1 + h) - r(n_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1. $r(n) = 3 n^2 + 12 n + 62$

