Started on	Tuesday, 18 October 2022, 5:05 PM
State	Finished
Completed on	Tuesday, 18 October 2022, 5:13 PM
Time taken	7 mins 58 secs
Marks	23.00/29.00
Grade	7.93 out of 10.00 (79 %)

Correct

Mark 1.00 out of 1.00

If a, b and c are integers, which of the following statements is/are TRUE?

Note that a | b means b is multiple of a, that is, there is an integer k such that b = ka

- (i) If a | bc, then a | b.
- (ii) If ab | c, then b | c.
- a. Both (i) and (ii)
- b. (i) only
- oc. (ii) only
- d. Neither (i) nor (ii)

Correct

Mark 1.00 out of 1.00

Find the least integer k such that f(n) is $O(n^k)$

if f(n) = $7n^3 + n^3 \log n$

- a. 2
- b. 3
- oc. 1
- d. 4

Your answer is correct.

 $f(n) = 7n^3 + n^3 \log n$ is $O(n^3 \log n)$

==> k = 4

Question 3	
Incorrect	
Mark 0.00 out of 1.00	

Suppose that a computer has only the memory locations 0, 1, 2, ..., 29. Use the hashing function h where $h(x) = (x + 5) \mod 30$ to determine the memory locations in which 97, 32, and 16 are stored.

- a. 12, 2, 16
- b. 12, 7, 16
- o. None of the others
- od. 7, 2, 16
- e. 12, 7, 21

Question 4

Correct

Mark 1.00 out of 1.00

Which of the following statements is/are TRUE?

- (i) The bubble sort has $O(n^2)$ time complexity.
- (ii) The merge sort has O(nlogn) time complexity.
- a. (ii) only
- b. (i) only
- c. Neither (i) nor (ii)
- d. Both (i) and (ii)

Correct

Mark 1.00 out of 1.00

```
Determine the big-oh time complexity of the following algorithm:
 procedure tt(a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>: integers)
          count := 0
          v := a_1
          for i := 2 to n do
                   if a_i = v then
                            count := count + 1
                            a_i := a_i + i
          return (count)
a. O ( n)
b. O(1)
c. O(logn)
```

Question 6	
Correct	
Mark 1.00 out of 1.00	
Give as good a big-O estimate as possible for (nlogn + n^2)(n^3 + 1).	
 a. o(n²logn) 	
	~
○ c. O(n⁴logn)	
○ d. None of these	
\bigcirc e. $O(n^3)$	
Your answer is correct.	
Question 7	
Correct	
Mark 1.00 out of 1.00	
Give the "best" big-oh notation to describe the complexity of the algorithm that prints all bit strings of length n.	
	~
○ b. O(n)	-
\bigcirc c. $O(n^2)$	
○ d. O(nlogn)	

Correct

Mark 1.00 out of 1.00

Convert (43)₅ to its decimal expansion.

- a. 35
- b. 130
- o. 103
- o d. 23
- e. None of the others

4*5 + 3 = 23

Question 9	
Incorrect	
Mark 0.00 out of 1.00	

Which of the following statements is/are TRUE?

- (i) 2^n is $O(n^2)$
- (ii) 2^n is $O(n^3)$
- a. Both (i) and (ii)
- b. (i) only
- c. (ii) only
- d. Neither (i) nor (ii)

Correct

Mark 1.00 out of 1.00

Find 17 **mod** 5 and -17 **mod** 5.

- a. None of the others
- b. 3 and -3
- c. 2 and 3
- d. 3 and 2
- e. 2 and -2

17 = 5.3 **+ 2** ==> 17 mod 5 = 2

-17 = 5(-4) **+ 3** ==> -17 mod 5 = 3

Incorrect

Mark 0.00 out of 1.00

Find gcd(2³⁰, 8¹¹).

- a. 8
- b. None of the others
- \circ c. 8^{11}
- \circ d. 2^{30}
- e. 2³⁰⋅8¹¹

×

Correct

Mark 1.00 out of 1.00

Give a big-O estimate for the number of additions used in the following algorithm: procedure sum(n: positive integer)

- a. O(2n)
- b. $O(n^2)$
- o. O(n)
- d. O(logn)

Correct

Mark 1.00 out of 1.00

If f(x) = (2x + 3) **mod** 26 is a good coding function.

- \odot a. No. f(0) = f(13), and hence f is not a bijection (no inverse function for decryption)
- b. Yes. f(x) is a bijection and therefore it is a good coding function

×

Your answer is correct.

Question 14

Incorrect

Mark 0.00 out of 1.00

If $a = -37 \mod 7$ and $b = 37 \mod 7$, what is the value of a + b?

- a. 4
- b. 0
- o. 7
- od. None of the others
- e. 2

Correct

Mark 1.00 out of 1.00

Give a big-O estimate for $(x^2 + x \log x) \cdot (2x + 3)$.

- a. $O(x^3)$
- b. None of the others
- \bigcirc c. $O(x^2)$
- d. O(xlogx)
- \circ e. $O(x^2 log x)$

Question 16

Correct

Mark 1.00 out of 1.00

Encrypt the message VA using the function $f(p) = (p + 7) \mod 26$.

- a. AL
- b. None of the others
- ⊚ c. CH
- od. DM
- e. BK

Correct

Mark 1.00 out of 1.00

Given the bubble sort algorithm.

ALGORITHM 4 The Bubble Sort.

procedure $bubblesort(a_1, ..., a_n : real numbers with <math>n \ge 2$) **for** i := 1 **to** n - 1**for** j := 1 **to** n - i

if $a_j > a_{j+1}$ then interchange a_j and a_{j+1} $\{a_1, \ldots, a_n \text{ is in increasing order}\}$

Use the bubble sort to put 3, 2, 4, 1, 5 into increasing order.

Showing the lists obtained after the second pass (i = 2).

- a. 3, 1, 2, 4, 5
- b. 1, 2, 3, 4, 5
- o. 2, 1, 3, 5, 4
- d. 2, 1, 3, 4, 5
- e. None of these

•

Your answer is correct.

Correct

Mark 1.00 out of 1.00

The password for a quiz was encrypted using the function $f(p) = (p + 5) \mod 26$. If the result is "GZ", find the quiz password.

- a. TV
- ob. BT
- c. None of the others
- d. CV
- ⊚ e. BU

Correct

Mark 1.00 out of 1.00

Find the best big-oh function for the function

$$f(n) = 1 + 4 + 7 + \dots + (3n + 1).$$

- a. O(n)
- b. $O(n^2)$
- \circ c. $O(n^3)$
- d. O(1)

Your answer is correct.

Incorrect

Mark 0.00 out of 1.00

Give the best big-oh estimate for the function

f(n) =
$$1^2 + 2^2 + 3^2 + ... + n^2$$

- \bigcirc a. O(n³)
- b. O(n²logn)
- c. None of these
- \bigcirc d. $O(n^4)$
- e. O(n²)

Your answer is incorrect.

×

Correct

Mark 1.00 out of 1.00

How many positive integers less than 5 are **relatively prime** to 5?

- o a. 1
- o b. 3
- oc. 2
- od. 5
- e. 4

V

Question 22

Correct

Mark 1.00 out of 1.00

A sequence of pseudo-random numbers are generated using $x_{n+1} = (3x_n + 5) \mod 31$ with seed $x_0 = 2$.

Find x_1 , x_2 , and x_3 .

- \bigcirc a. $x_1 = 11, x_2 = 7, x_3 = 13$
- b. None of the others
- o. $x_1 = 8, x_2 = 29, x_3 = 30$
- od. $x_1 = 11, x_2 = 1, x_3 = 8$
- e. $x_1 = 11, x_2 = 7, x_3 = 26$

Correct

Mark 1.00 out of 1.00

A pseudorandom sequence $\{x_n\}$ is generated by:

 $x_0 = 1$, $x_{n+1} = (3x_n + 5) \text{ mod } 17 \text{ if } n \ge 0$. Find x_0, x_1, x_2, x_3 .

- a. 1, 8, 12, 7
- b. None of the others
- c. 1, 8, 10, 12
- d. 8, 12, 7, 9
- e. 12, 7, 9, 15

Correct

Mark 1.00 out of 1.00

Find the integer x such that $5x \equiv 1 \pmod{13}$ and $0 \le x \le 12$.

- o a. 3
- b. None of the others
- oc. 5
- od. 7
- e. 8

Question 25

Correct

Mark 1.00 out of 1.00

Which of the following statements is/are TRUE:

- (i) $9n^2 + 9n + 99$ is $O(n^2)$
- (ii) nlogn is O(n)
- a. (i) only
- b. Both (i) and (ii)
- c. (ii) only
- od. Neither (i) nor (ii)

Question 26	
Correct	
Mark 1.00 out of 1.00	

Convert 19 to a base 3 expansion.

a. (61)₃
b. (21)₃
c. (201)₃
d. None of the others
e. (102)₃

Question 27
Correct
Mark 1.00 out of 1.00

Given the Euclidean algorithm. ALGORITHM 1 The Euclidean Algorithm. **procedure** gcd(a, b): positive integers) x := ay := bwhile $y \neq 0$ $r := x \bmod y$ x := yy := r**return** $x\{\gcd(a,b) \text{ is } x\}$ Use the Euclidean algorithm to find gcd(28, 8). How many **divisions** are required? a. 2 b. 3 o. 5 od. 4 e. None of these

Your answer is correct.

$$\begin{array}{c|c}
x \\
-28 & 9 \\
\Gamma = 4 & -4 \\
8 & 4 \\
\Gamma = 0 & 2
\end{array}$$

Incorrect

Mark 0.00 out of 1.00

Find the best big-O function for $\sum_{j=1}^{n} (j^3 + j)$

- \bigcirc a. $O(n^4)$
- b. O(n)
- \bigcirc c. $O(n^3)$
- \bigcirc d. $O(n^2)$

Your answer is incorrect.

Question 29	
Correct	
Mark 1.00 out of 1.00	
If a and b are two distinct primes, the ab ² has positive divisors.	
a. 6	~
○ b. 5	
○ c. 2	
○ d. 4	
○ e. 3	
«	>>