

Exame Final Nacional de Matemática A Prova 635 | 1.ª Fase | Ensino Secundário | 2023

12.º Ano de Escolaridade

Decreto-Lei n.º 55/2018, de 6 de julho | Decreto-Lei n.º 22/2023, de 3 de abril

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 8 Páginas

A prova inclui 12 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 6 itens da prova, apenas contribuem para a classificação final os 3 itens cujas respostas obtenham melhor pontuação.

Para cada resposta, identifique o item.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

A prova inclui um formulário.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperimetro × Apótema

Área de um sector circular:

 $\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3 \ (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho e^{i\theta}} = \sqrt[n]{\rho} e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \ \mathbf{e} \ n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

- *** 1.** Qual é o limite da sucessão de termo geral $\left(1 + \frac{1}{n}\right)^{2n}$?
 - **(A)** 1

- **(B)** 2*e*
- (C) e^2
- (D) $+\infty$
- 2. A Figura 1 representa uma linha poligonal simples que começou a ser construída a partir do segmento de reta [AB]. O segundo segmento de reta, com uma das extremidades em B, foi construído com mais $2\ \mathrm{cm}$ do que o primeiro, o terceiro segmento foi construído com mais $2\ \mathrm{cm}$ do que o segundo, e assim sucessivamente, tendo cada segmento de reta sempre mais $2\ \mathrm{cm}$ do que o anterior.

Continuando a construção da linha poligonal, do modo acima descrito, até ao $100.^{\circ}$ segmento de reta, obtém-se uma linha poligonal com o comprimento total de 104 metros.

Determine o comprimento do segmento de reta [AB].

Apresente o valor pedido em centímetros.

Figura 1

* 3. Resolva este item sem recorrer à calculadora.

Seja f uma função diferenciável, de domínio \mathbb{R} , cuja derivada, f', é dada por

$$f'(x) = -2xe^{1-x^2}$$

Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f, caso este(s) exista(m).
- **4.** Considere a função g, de domínio \mathbb{R} , definida por

$$g(x) = \begin{cases} \frac{4x - 4}{e^{x - 1} - 1} & \text{se } x < 1\\ 7 \times 3^{x - 1} - 3 & \text{se } x \ge 1 \end{cases}$$

Resolva os itens 4.1. e 4.2. sem recorrer à calculadora.

- *** 4.1.** Averigue se a função g é contínua em x = 1.
 - **4.2.** Resolva, no intervalo $[1, +\infty[$, a equação $\log_3(g(x)) = x + \log_3 2$.

- 5. Um grupo de jovens inscreveu-se num campo de férias que oferece as modalidades de surf e de skate.
- * 5.1. Dez dos jovens do grupo vão deslocar-se em fila, pela praia, para uma aula de surf.

A Ana, o Diogo e o Francisco são três desses jovens.

De quantas formas diferentes se podem dispor os jovens na fila, ficando a Ana, o Diogo e o Francisco juntos?

- **(A)** 483 840
- **(B)** 241 920
- **(C)** 60 480
- **(D)** 30 240
- **5.2.** No ato da inscrição, todos os jovens do grupo responderam a um questionário sobre a prática das modalidades de *surf* e de *skate*.

De acordo com as respostas ao questionário:

- 65% praticavam *surf*;
- 20% praticavam *skate* e não praticavam *surf* ;
- quatro em cada cinco dos que praticavam surf também praticavam skate.

Selecionou-se, ao acaso, um jovem que, no questionário, tinha respondido que não praticava skate.

Determine a probabilidade de esse jovem, no questionário, também ter respondido que praticava surf.

Apresente o resultado na forma de fração irredutível.

5.3. Considere que, no grupo, há 70 jovens com 13 ou 14 anos de idade, sendo o número de jovens com 14 anos maior do que o número de jovens com 13 anos.

Para realizar uma determinada tarefa, vão ser selecionados, aleatoriamente, dois desses jovens.

Sabe-se que a probabilidade de selecionar dois desses jovens com idades distintas é $\frac{16}{35}$.

Determine o número de jovens com 13 anos que há no grupo.

6. Na Figura 2, está representado, em referencial o.n. Oxyz, o prisma triangular reto [OABCDE], de bases [ABC] e [OED].

Sabe-se que:

• as bases do prisma estão inscritas em semicircunferências, respetivamente, de diâmetros [AB] e [OE];

Figura 2

•
$$\overline{OE} = 12.5$$
;

- a reta AC é definida pela equação vetorial $(x, y, z) = (10, 0, 0) + k(0, 4, 3), k \in \mathbb{R}$.
- **★ 6.1.** Qual das seguintes equações vetoriais define a reta OD?

(A)
$$(x, y, z) = (0, 6, 8) + k(0, 2, \frac{3}{2}), k \in \mathbb{R}$$

(B)
$$(x, y, z) = (0, -4, -3) + k(0, 2, \frac{3}{2}), k \in \mathbb{R}$$

(C)
$$(x, y, z) = (0, -4, -3) + k(0, 3, -4), k \in \mathbb{R}$$

(D)
$$(x, y, z) = (0, 6, 8) + k(0, 3, -4), k \in \mathbb{R}$$

* 6.2. Resolva este item sem recorrer à calculadora.

Determine as coordenadas do ponto C.

7. Na Figura 3, estão representados, em referencial o.n. Oxy, uma circunferência de centro na origem e os pontos A, P e Q, que pertencem à circunferência.

Sabe-se que:

- o ponto A tem coordenadas (2,0);
- o ângulo orientado AOQ tem amplitude $\alpha \in \left]\pi, \frac{3\pi}{2}\right[$;
- os pontos P e Q têm a mesma abcissa;
- $\overrightarrow{OP} \cdot \overrightarrow{OQ} = 3$.

Determine o valor de $\cos(2\alpha)$.

Figura 3

* 8. Uma empresa está a desenvolver um programa de testes para melhorar a propulsão de foguetes.

Os foguetes utilizados partem do solo e seguem uma trajetória vertical.

Em relação a um dos modelos de foguete utilizados, admita que, após o lançamento e até se esgotar o combustível, a sua distância ao solo, a, em metros, é dada, a cada instante t, em segundos, por

$$a(t) = 100 \left[t + (10 - t) \ln \left(1 - \frac{t}{10} \right) \right] - 4.9t^2$$
, com $t \in [0, 8]$

Determine, utilizando a calculadora gráfica, o instante a partir do qual, durante 3 segundos, esse foguete percorre 25 metros.

Apresente o resultado em segundos, arredondado às décimas.

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- represente, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora e assinale o(s) ponto(s) relevante(s), que lhe permitem resolver a equação.
- **9.** Sejam f e g funções duas vezes diferenciáveis, de domínios \mathbb{R} e $]0, +\infty[$, respetivamente, e seja r a reta de equação v=2x-1 .

Sabe-se que:

- a reta r é tangente ao gráfico de g no ponto de abcissa 1;
- $\lim_{x \to +\infty} \left(f(x) 2x + 1 \right) = 0 ;$
- ullet nos respetivos domínios, o gráfico de f tem concavidade voltada para cima e o gráfico de g tem concavidade voltada para baixo.

Considere as proposições seguintes.

- **I.** O gráfico da função f admite uma assíntota horizontal quando x tende para $+\infty$.
- II. $\lim_{x \to 1} g(x) = 2$.
- III. $f''(x) < g''(x), \forall x \in]0, +\infty[$.

Justifique que as proposições I, II e III são falsas.

Na sua resposta, apresente, para cada uma das proposições, uma razão que justifique a sua falsidade.

10. Na Figura 4, estão representados, no plano complexo, os pontos $A \in B$.

O ponto O é a origem do referencial.

O ponto A é o afixo de um número complexo z tal que $\operatorname{Im}(z) = \operatorname{Re}(z) \in \operatorname{Re}(z) > 0$.

O ponto $\,B\,$ é o afixo de um número complexo $\,w\,$ tal que o ângulo convexo AOB tem amplitude $\frac{5\pi}{8}$ radianos.

Qual dos valores seguintes é um argumento de $w \times z$?

(B)
$$\frac{5\pi}{8}$$

(C)
$$\frac{9\pi}{8}$$

(D)
$$\frac{11\pi}{8}$$

Figura 4

11. Resolva este item sem recorrer à calculadora.

Considere, em $\mathbb C$, conjunto dos números complexos, o número $w=\frac{e^{i\frac{5\pi}{6}}-i^{17}}{:}$.

Determine, em \mathbb{C} , as soluções da equação $z^2 = w$.

Apresente os valores pedidos na forma a+bi, com $a,b \in \mathbb{R}$.

- **12.** Seja f a função, de domínio $[0,\pi]$, definida por f(x) = sen(2x) + x, e seja r a reta de equação y = -x + 2.
- *** 12.1.** Qual das expressões seguintes pode definir a função derivada de f?

(A)
$$2 - 2\cos^2 x$$

(A)
$$2-2\cos^2 x$$
 (B) $2-2\sin^2 x$ (C) $3-4\cos^2 x$ (D) $3-4\sin^2 x$

(C)
$$3 - 4\cos^2 x$$

(D)
$$3 - 4 \sin^2 x$$

12.2. Resolva este item sem recorrer à calculadora, exceto em eventuais cálculos numéricos.

Mostre, recorrendo ao teorema de Bolzano-Cauchy, que o gráfico da função f intersecta a reta rem, pelo menos, um ponto de abcissa pertencente ao intervalo $\left| \frac{\pi}{6}, \frac{\pi}{3} \right|$.

13. Sejam $a \in b$ números reais, não nulos, tais que a reta de equação y = ax + b é tangente ao gráfico da função f, de domínio \mathbb{R} , definida por $f(x) = ax^2 + bx$.

Determine as coordenadas do ponto de tangência.

COTAÇÕES

As pontuações obtidas nas respostas a estes 12 itens da prova contribuem obrigatoriamente para a classificação final.	1.	3.	4.1.	5.1.	5.3.	6.1.	6.2.	8.	9.	10.	12.1.	13.	Subtotal
Cotação (em pontos)	12	14	14	12	14	12	14	14	14	12	12	14	158
Destes 6 itens, contribuem para a classificação final da prova os 3 itens cujas respostas obtenham melhor pontuação.	2.		4.2.		5.2.		7.		11.		12.2.		Subtotal
Cotação (em pontos)	3 × 14 pontos												42
TOTAL													200