Binary Representation of Rational Numbers

If x is a rational number with $0 \le x \le 1$, then $x = 0.P\overline{R}$ where P and Q are binary integers. In the following, rem $= x - \lfloor x \rfloor$, so $x = \lfloor x \rfloor + \text{rem}$.

Example 1: x = 5/7

a/b	$\lfloor a/b \rfloor$	rem			
5/7	0	5/7			
decimal part					
10/7	1	3/7			
6/7	0	6/7			
12/7	1	5/7	repeat - go to $10/7$		

$$5/7 = 0.\overline{101}$$

Working backwards,

$$0.\overline{101} = 0.101101101\overline{101}$$

$$= 0.101 + 0.000101 + 0.000000101 + \dots$$

$$= 0.101 + \frac{1}{8}0.101 + \left(\frac{1}{8}\right)^2 0.101 + \dots$$

$$= \frac{5}{8} \left(1 + \frac{1}{8} + \left(\frac{1}{8}\right)^2 + \dots\right)$$

$$= \frac{5}{8} \left(\frac{1}{1 - \frac{1}{8}}\right)$$

$$= \frac{5}{8} \frac{8}{7}$$

$$= \frac{5}{7}$$

Example 2: x = 11/14

a/b	$\lfloor a/b \rfloor$	rem			
11/14	0	11/14			
decimal part					
11/7	1	4/7			
8/7	1	1/7			
2/7	0	2/7			
4/7	0	4/7	repeat - back to $8/7$		

$$11/14 = 0.1\overline{101}$$

Example 3: $x = 7/22 = \frac{1}{2}(7/11)$

a/b	$\lfloor a/b \rfloor$	rem				
7/22	0	7/22				
	decimal part					
7/11	0	7/11				
14/11	1	3/11				
6/11	0	6/11				
12/11	1	1/11				
2/11	0	2/11				
4/11	0	4/11				
8/11	0	8/11				
16/11	1	5/11				
10/11	0	10/11				
20/11	1	9/11				
18/11	1	7/11	repeat - back to $14/11$			

$$7/22 = 0.0\overline{1010001011}$$

Example 4: x = 72.1

$$72 = 1001000 (7 bits)$$

$$0.1 = 1/10$$

a/b	$\lfloor a/b \rfloor$	rem			
1/10	0	1/10			
decimal part					
1/5	0	1/5			
2/5	0	2/5			
4/5	0	4/5			
8/5	1	3/5			
6/5	1	1/5	repeat - back to $2/5$		

$$1/10 = 0.0\overline{0011}$$

$$72.1 = 1001000 + 0.0\overline{0011} = 10010000\overline{0011}$$

72.1 as a single number

reduce 72.1 to a 24 bit number:

$$72.1 = 1001000.0001100110011001100110011$$

Round off gives last digit as 1 and introduces an error term (-0.00000152587890625).

Use scientific notation (base 2) to write with a leading 1 followed by a decimal part:

$$72.1 = 1.0010000001100110011001100110011 \times 2^6$$

IEEE representation:

ans =

100001010010000001100110011

Dr Anthony Hughes

Converting a string representation of a positive integer into binary

Matlab Implementation

```
function y = int2bin(str, y)
% input: str is a string representing a positive integer N
% output: the binary representation of N

keySet = {'0','1','2','3', '4', '5','6','7','8', '9'};
valueSet = uint64(0:9);
M = containers.Map(keySet, valueSet) % lookup table

n = length(str);

y = M(str(1));

for i = 2:n
    a = bitshift(y, 1) + bitshift(y, 3);
    b = M(str(i));
    y = a + b;
end
end
```