2020 Al College

9장 추천 알고리즘

정민수 강사

Contents

- 01. 추천 시스템의 필요성
- 02. Content-based Recommendation
- 03. Collaborative Filtering
- 04. Latent Factor Model
- 05. 평가 방법

Target

추천 시스템의 필요성을 이해한다.

추천 시스템이 왜 필요하고 어떤 효과를 주는지 이해한다.

Content-based Recommendation을 이해한다.

Content-based Recommendation 기법을 이해한다.

Collaborative Filtering을 이해한다.

Collaborative Filtering 기법을 이해한다.

Latent Factor Model을 이해한다.

Latent Factor Model 기법을 이해한다.

추천 알고리즘의 필요성

Confidential all right reserved

◎ 추천 시스템 예제

Customer X

- Metallica CD 구매
- Megadeth CD 구매

Customer Y

- Metallica를 찾아봄
- 추천 시스템이 Customer X를 참고해서 Megadeth를 추천해줌

/* elice */

♥ 추천 시스템이란?

• 사용자가 검색하는 검색어에 따라 적절한 상품을 추천해주는 시스템

Offline과 Online 추천의 차이

- Offline 추천
 - Offline 매장에서는 인기 있는 상품을 추천함
- Online 추천
 - Online에서는 거의 cost 없이 상품에 대한 정보 추천이 가능
 - 인기가 없는 item에 대한 추천이 가능해짐
- 인기가 없더라도 사용자의 취향에 맞춰 상품을 추천한다면 매출을 높일 수 있음
 - Into Thin Air (1998)라는 책이 Touching the Void (1988)라는 책을 bestseller로 만든 유명한 사례가 있음

- ♥ 추천의 종류
- 1. Editorial and hand curated
- 여행에 필수적인 상품 리스트 등
- 2. 간단한 통계를 통한 추천
- Top 10, 인기 순 추천, 최근 출시된 상품 등
- 3. 사용자 맞춤 추천
- Youtube, Netflix 등의 사용자 맞춤 추천 시스템

Formal Model

- 이번 강의 내 사용할 추천 모델은 다음과 같이 정의된다.
- X: set of Customers
- S: set of Items
- Utility function $u: X \times S \rightarrow R$
- R: set of ratings
- R은 totally ordered set임을 가정
- Rating 예시 : 별점 (0 ~ 5), 0부터 1 사이의 실수값

O Utility Matrix 예시

	Avatar	Closer	Matrix	Terminator
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

/* elice */

Key Problems

- 1. Utility Matrix 구성을 위해 rating을 모으는 방법
- Utility Matrix 구성을 위해 rating data를 수집하는 방법이 필요함.
- 2. 모르는 rating을 다른 정보를 통해 추론하는 방법
- 사용자가 흥미로워 하는 아이템을 알기 위해 Utility Matrix 내 비어 있는 부분 중 높은 Rating이 어디에 있는지 알아야 함.
- 3. 추론한 rating에 대한 평가 방법
- 추천 방법이 성공했는지에 대한 평가가 필요함.
- 추론한 rating을 성공적으로 추론했는지를 평가할 방법이 필요함.

● 데이터 수집 (rating 수집 방법)

- Explicit
 - 영화 추천상품에 대한 rating을 사용자에게 직접 요청
 - 사용자 입장에서 귀찮기 때문에 제대로 수집이 안됨
- Implicit
 - 사용자의 action을 통해 rating을 추론
 - ex) 특정 상품을 구매를 했다는 것은 해당 상품에 대한 rating이 높은 것임
 - 하지만 상품을 구매하지 않는다고 해서 low rating인 것은 아님

♥ 모르는 rating 추론 방법

- 일반적으로 Utility Matrix는 sparse함
 - 대부분의 사람들이 상품에 대한 rating을 하지 않기 때문
- Cold Start Problem
 - 새로운 상품은 rating이 아예 없음
 - 새로운 사용자는 이용 기록이 아예 없음
- 아래 접근 방법들을 통해 모르는 rating에 대한 추론이 가능
 - Content-based
 - Collaborative
 - Latent Factor Model

❷ Content-based Recommendation이란?

- 핵심 idea
 - 사용자가 이전에 높게 rating한 상품과 유사한 상품을 추천함 (상품의 특성을 분석해서 유사 상품을 추천)
- 예시
 - 영화 추천
 - 같은 장르, 배우, 감독의 영화 추천
 - 웹사이트, 블로그, 뉴스 추천
 - 비슷한 내용의 사이트, 기사 추천

⊘ Content-based Recommendation 시스템

/* elice */

Item Profiles

- 각 item에 대해 item profile을 구성
- Profile은 feature의 set으로 구성됨
 - 예시
 - 영화: 배우, 제목, 감독
 - 텍스트: 문서 내 중요한 단어들의 set
- 중요한 feature 고르는 방법
 - 텍스트의 경우 TF-IDF 기법이 많이 사용됨

♥ (심화 자료) TF-IDF

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}} \ IDF_i = \log \frac{N}{n_i}$$

Note: we normalize TF to discount for "longer" documents

- f_{ii} = frequency of term (feature) i in doc (item) j
- n_i = number of docs that mention term i
- N = total number of docs
- TF-IDF score $w_{ij} = TF_{ij} \times IDF_i$
- Doc profile은 가장 높은 TF-IDF 스코어를 가진 단어들로 구성됨

User Profiles

- 각 사용자에 대한 User profile을 구성
- 사용자가 rating한 item들의 profile에 대한 weighted average로 계산

Prediction heuristic

• user profile x와 item profile i가 있을 때 예상되는 rating:

$$u(x, i) = \cos(x, i) = \frac{x \cdot i}{||x|| \cdot ||i||}$$

♥ 장점

- 다른 사용자의 profile이 필요 없음
 - cold start problem과 sparsity problem이 없음
- unique한 취향을 지닌 사용자에게 추천이 가능
- 유명하지 않은 새로운 item을 추천해줄 수 있음
 - first-rater problem이 없음
- 설명 가능함
 - 추천된 item이 어떤 이유로 추천되었는지 설명이 가능함

♥ 단점

- 적절한 feature를 찾기가 힘듦
- 새로운 사용자에 대한 추천이 불가능함
 - user profile 생성이 불가능
- Overspecialization 문제
 - 사용자의 content profile 외의 새로운 item을 추천해줄 수 없음
 - 추출된 feature 기준으로 유사하지 않을 수 있으나 무조건 사용자가 선호하지 않는다고 할 수 없음
 - 사용자는 가끔 아예 새로운 유형의 item을 추천 받기를 원함
 - 다른 사용자의 rating을 사용할 수 없음
 - item에 대한 다른 사용자의 rating에 따라 상품의 quality 평가가 가능하나 이를 활용할 수 없음

- User-user Collaborative Filtering
- 사용자 x가 있다고 할 때
- item들에 대한 rating 패턴이 사용자 x와 유사한 다른 N명의 사용자를 찾아보자
- N명의 유사한 사용자들의 rating을 기반으로 x가 rating하지 않은 item에 대한 rating을 추측한다.

◎ 유사 사용자 찾기

- r_x : user x의 각 item에 대한 rating vector
- Jaccard similarity measure
 - Problem: rating value가 반영되지 않음
- Cosine similarity measure

$$sim(x, y) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||}$$

- Problem: low rating에 대한 penalty가 작음
- Pearson correlation coefficient

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

- S_{xy} : user x와 y 모두에게 rating 된 item
- $\overline{r_\chi}$: average rating of r_χ

$$r_x = [*, _, _, *, *, ***]$$
 $r_y = [*, _, **, **, **]$

$$r_x$$
, r_y as sets:
 r_x = {1, 4, 5}
 r_y = {1, 3, 4}

$$r_x$$
, r_y as points:
 r_x = {1, 0, 0, 1, 3}
 r_y = {1, 0, 2, 2, 0}

Similarity Metric

- 목표: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- Cosine similarity: 0.38 > 0.322
 - Problem: low rating에 대한 penalty가 작음

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

/* elice */

Similarity Metric

- 목표: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- Cosine similarity: 0.38 > 0.322
 - Problem: low rating에 대한 penalty가 작음
 - Solution: 각 row의 평균을 뺀다

sim (A,B) vs. (A,C):
$$0.092 > -0.559$$

				TW	SW1	SW2	SW3	
\overline{A}	2/3	1/3		5/3	-7/3			
B	1/3	1/3	-2/3					
C		-		-5/3	1/3	4/3		
D		0		•	•		0	/* elice */

Rating Predictions

• item i에 대한 사용자 x의 r_x 계산 방법

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}} \quad s_{xy} = sim(x, y)$$

- r_x : user x의 각 item에 대한 rating vector
- N: x와 rating 패턴이 가장 비슷한 k명의 사용자 그룹
- 다른 계산법을 적용해도 된다.

Item-item Collaborative Filtering

- item i에 대해서 사용자 x에 의해 rating 된 item 중 다른 유사한 item들을 찾는다.
- 찾은 유사한 item에 대한 rating을 이용하여 사용자 x의 item i에 대한 rating을 추측
- User-user 모델에서 사용한 prediction function을 유사하게 적용

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

s_{ij}... similarity of items i and j
r_{xj}...rating of user x on item j
N(i;x)... set items rated by x similar to i

✓ Item-item CF 예시

• |N| = 2라고 가정

usei	'S
6	7

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- unknown rating

- rating between 1 to 5

✓ Item-item CF 예시

• |N| = 2라고 가정

	users												
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
0	2			5	4			4			2	1	3
	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

⁻ estimate rating of movie 1 by user 5

- ✓ Item-item CF 예시
- |N| = 2라고 가정

Similarity computation:

1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

sim(1,m)

1.00

-0.18

0.41

-0.10

-0.31

<u>0.59</u>

/* elice */

2) Compute cosine similarities between rows

users

		1	2	3	4	5	6	7	8	9	10	11	12	
	1	1		3		?	5			5		4		
"	2			5	4			4			2	1	3	
movies	<u>3</u>	2	4		1	2		3		4	3	5		
Ε	4		2	4		5			4			2		
to	5			4	3	4	2					2	5	
to - 5	<u>6</u>	1		3		3			2			4		

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

✓ Item-item CF 예시

• |N| = 2라고 가정

Compute similarity weights:

/* elice */

$$s_{1,3}$$
=0.41, $s_{1,6}$ =0.59

							use	rs						
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
"0	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ε	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

✓ Item-item CF 예시

• |N| = 2라고 가정

Predict by taking weighted average:

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

 $r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
(0	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ξ	4		2	4		5			4			2	
	5			4	ფ	4	2					2	5
	<u>6</u>	1		3		3			2			4	

/* elice */

Common Practice

• 일반적으로 rating을 추측하는 공식은 다음과 같음

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} S_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} S_{ij}}$$

$$baseline \ estimate \ for \ r_{xi}$$

$$b_x = rating \ deviation \ of \ user \ x$$

$$= (avg. \ rating \ deviation \ of \ movie \ i) - \mu$$

$$b_i = rating \ deviation \ of \ movie \ i) - \mu$$

Before:

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

- s_{ij} : item i와 j의 similarity
- N(i; x): k nearest neighbor
 - x에 의해서 rating된 item 중 item i와 가장 유사한 item들

- Item-item vs User-user
- 일반적으로 item-item이 user-user보다 성능이 좋다고 보고됨.
- user는 복잡하고 다양한 취향을 갖고 있으나 item은 그보다 단순하기 때문

03 Collaborative Filtering

Complexity

- k개의 Nearest neighbor를 찾는 과정이 가장 cost가 큼: O(|X|)
 - X:전체 사용자의 수 (item의 경우 item의 수)
- runtime에 사용하기엔 무거움
 - pre-compute할 필요가 있음
- computation cost를 줄이는 여러가지 방법들
 - Near neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction 후 찾기

03 Collaborative Filtering

❷ 장단점

- 장점
 - 어떤 종류의 item에 대해서도 동작
- 단점
 - Cold Start Problem
 - 충분한 user와 rating이 필요
 - Utility matrix가 어느정도 구성되지 전까지는 동작하기 힘듦
 - Sparsity
 - user/rating matrix(utility matrix)⁷ sparse
 - 같은 item에 대해 ratin한 사용자를 많이 찾기 힘듦
 - First rater
 - 이전에 rating이 없었던 신규 item 혹은 user에 대한 추천이 불가능
 - Popularity bias
 - 특이 취향이 있는 사용자에 대한 추천이 힘듦
 - 일반적으로 인기 있는 item들에 대한 추천이 주로 가능

03 Collaborative Filtering

Hybrid Methods

- 2개 이상의 다른 recommend system을 구성하고 예측을 결합
- content-based method에 collaborative filtering을 추가하여 사용
 - 서로의 단점을 보완할 수 있음
 - 신규 item에 대한 문제를 item profile을 통해 해결
 - 신규 user에 대한 문제는 일반적인 popular item을 추천해주는 방식으로 진행

Latent Factor Model

Latent Factor Model

SVD on Utility Matrix!

- Utility matrix R에 대해 Q와 P^{T} 의 곱으로 표현이 가능하다고 하자
- R이 missing entry들을 가지고 있지만 우선은 무시하고 생각

Latent Factor Model

• 어떻게 item i에 대한 user x의 missing rating을 추론할 수 있을까?

Latent Factor Model

• 어떻게 item i에 대한 user x의 missing rating을 추론할 수 있을까?

Latent Factor Model

• 어떻게 item i에 대한 user x의 missing rating을 추론할 수 있을까?

/* elice */

Latent Factor Model

/* elice */

Latent Factor Model

/* elice */

SVD에 적용

- SVD
 - A: 입력된 data matrix
 - U: Left singular vectors
 - V : Right singular vectors
 - **\Singular** values

- 우리의 경우 $R \approx QP^{T}$ 를 만족해야 함
- $A = R, Q = U, P^T = \Sigma V^T$

SVD에 적용

• SVD는 SSE(Sum of Squared Error)를 최소화하기 때문에 최소의 reconstruction error를 제공하여 적합

$$\min_{U,V,\Sigma} \sum_{ij\in A} \left(A_{ij} - [U\Sigma V^{\mathrm{T}}]_{ij} \right)^{2}$$

• SSE와 RMSE는 단조 비례함

$$RMSE = \frac{1}{c}\sqrt{SSE}$$

- 하지만 SVD는 missing data에 대한 고려가 없어 바로 적용하기엔 적합하지 않음!
 - error는 missing data를 0으로 가정하고 error를 계산함
 - Utility matrix R은 missing data를 많이 포함하고 있음

Matrix Factorization

- SVD는 missing data에 대한 고려가 전혀 되어있지 않음
- P와 Q를 찾기 위해 문제에 최적화된 기법을 사용

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2 \qquad \hat{r}_{xi} = q_i \cdot p_x$$

• 우리 문제에서는 P와 Q가 orthogonal하고 unit vector로 이루어질 필요가 없음

/* elice */

• P와 Q는 각각 user와 movie에 대한 latent space

	users													fa	ctor	S	_									
	1		3			5			5		4			.1	4	.2										
ems			5	4			4			2	1	3		5	.6	.5		users								
	2	4		1	2		3		4	3	5			2	.3	.5	1.1	2	.3	.5	-2	5	.8	4	.3	
		2	4		5			4			2		pprox	1.1	2.1	.3	8	.7	.5	1.4	.3	-1	1.4	2.9	7	L
Ξ				2		2					1	Е	S	- 7	2.1	-2	2.1	4	.6	1.7	2.4	.9	3	.4	.8	
			4	3	4	2					2	5	Ш	1	2.1									PT		
	1		3		3			2			4		te	-1	.7	.3	Q						•			

05 평가 방법

Confidential all right reserved

05 평가 방법

❷ Prediction 평가

- 이미 알고있는 rating을 기반으로 prediction을 평가
- 평가 Metric
- RMSE (Root Mean Square Error)

$$\sqrt{\sum_{xi} (r_{xi} - r_{xi}^*)^2} \qquad r_{xi} \text{ is predicted, } r_{xi}^* \text{ is the true rating of } x \text{ on } i$$

- Precision at top 10
 - prediction value가 가장 높은 top 10에 대한 error로 평가
- Rank Correlation
 - system와 user의 ranking에 대한 Spearman's correlation
 - Spearman's correlation?
 - 각 값들의 rank에 대한 correlation

05 평가 방법

❷ 평가에 대해 주의할 점

- 단순히 accuracy에만 집중하는 것은 조심할 필요가 있음
 - 모델이 어떤 부분에서 잘하고 못하는지를 분석해서 판단해야 함
- 추천에서는 high rating만을 추천해주기 때문에 high rating에 대한 정확도를 평가할 필요가 있음
 - RMSE는 high rating과 row rating에 대한 평가가 같은 중요도로 평가되기 때문에 목적에 맞지 않게 평가하게 될 수 있음

Credit

/* elice */

코스 매니저 이해솔

콘텐츠 제작자 정민수

강사 정민수

감수자 이해솔

디자인

Contact

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

