Heapsort

Goal:

Sort an array using heap representations

Idea:

- "Discard" this last node by decreasing the heap size
- Call MAX-HEAPIFY on the new root
- Repeat this process until only one node remains

Alg: HEAPSORT(A)

BUILD-MAX-HEAP(A) O(n)
 for i ← length[A] downto 2
 do exchange A[1] ↔ A[i]
 MAX-HEAPIFY(A, 1, i - 1) O(lgn)

 Running time: O(nlgn) --- Can be shown to be Θ(nlgn)

Maintaining the Heap Property

Assumptions:

- Left and Right subtrees of i are max-heaps
- A[i] may be smaller than its children

Alg: MAX-HEAPIFY(A, i, n)

- 1. $I \leftarrow LEFT(i)$
- 2. $r \leftarrow RIGHT(i)$
- 3. if $l \le n$ and A[l] > A[i]
- then largest ←l
- 5. else largest ←i
- 6. if $r \le n$ and A[r] > A[largest]
- 7. then largest ←r
- 8. if largest \neq i
- 9. then exchange $A[i] \leftrightarrow A[largest]$
- 10. MAX-HEAPIFY(A, largest, n)

Building a Heap

- Convert an array A[1 ... n] into a max-heap (n = length[A])
- The elements in the subarray A[(\(\(\ln / 2 \) + 1 \) .. n] are leaves
- Apply MAX-HEAPIFY on elements between 1 and \[\frac{n}{2} \]

Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. do MAX-HEAPIFY(A, i, n)

A: 4 1 3 2 16 9 10 14 8 7

Running Time of BUILD MAX HEAP

Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- for i ← ⌊n/2⌋ downto 1
 do MAX-HEAPIFY(A, i, n)
 O(n)
- ⇒ Running time: O(nlgn)
- This is not an asymptotically tight upper bound