1 part

1.1 part-sec

A typical linear least squares problem involves fitting a curve to some data given in the form of a set of $m \in \mathbb{N}$ ordered pairs

$$D := \{ (x_i, y_i) \in \mathbb{R}^2 \mid i = 1, 2, \dots, m \}.$$
 (1)

If the independent and dependent variables x and y, respectively, are known (or suspected) to be related like

$$y = \sum_{j=1}^{n} \alpha_j \varphi_j(x), \tag{2}$$

where the φ_j , $j=1,2,\ldots,n$, are $n\in\mathbb{N}$ known functions, the problem lies in the determination of the n constants $\alpha_1,\alpha_2,\ldots,\alpha_n\in\mathbb{R}$, where the number m of data points is greater than the number n of unknown parameters α_1,\ldots,α_n .

Defining column vectors

$$\mathbf{y} := \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}^{m \times 1}, \quad \boldsymbol{\alpha} := \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^{n \times 1}, \tag{3}$$

and the matrix

$$\Phi := \begin{bmatrix} \varphi_1(x_i) & \varphi_2(x_1) & \cdots & \varphi_n(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(x_m) & \varphi_2(x_m) & \cdots & \varphi_n(x_m) \end{bmatrix} \in \mathbb{R}^{m \times n}, \tag{4}$$

the system

$$\forall i \in \{1, \dots, m\} : y_i = \sum_{j=1}^n \alpha_j \varphi_j(x_i)$$
 (5)

can be expressed in matrix form as

$$\Phi \alpha = \mathbf{y}.\tag{6}$$

The matrix Φ can be uniquely associated with a linear transformation $T_{\Phi}: \mathbb{R}^n \to \mathbb{R}^m: \mathbf{x} \mapsto \Phi \mathbf{x}$, where the range $T_{\Phi}(\mathbb{R}^n) \subset \mathbb{R}^m$ of T_{Φ} is just the column space

$$\operatorname{col}(\mathbf{\Phi}) := \{ \mathbf{v} \in \mathbb{R}^{m \times 1} \, | \, \exists \mathbf{x} \in \mathbb{R}^{n \times 1} : \mathbf{v} = \mathbf{\Phi} \mathbf{x} \}$$

of the matrix Φ . Interpreting $\operatorname{col}(\Phi)$ as the space spanned by the columns of Φ , which are to be thought of as column vectors in $\mathbb{R}^{m\times 1}$, if Φ has rank n then $\dim(\operatorname{col}(\Phi)) = n$, hence $T_{\Phi}(\mathbb{R}^n)$ is an n-dimensional subspace of \mathbb{R}^m . This means that, fixing $\mathbf{y} \in \mathbb{R}^{m\times 1}$, the equation (??) is unlikely to have a solution $\alpha \in \mathbb{R}^{n\times 1}$. In most cases, the best that can be done is to find that

 α which minimizes the magnitude of the residual vector $\mathbf{y} - \mathbf{\Phi} \alpha$, so that $\mathbf{\Phi} \alpha$ is as close as possible to \mathbf{y} .

Geometrically, this corresponds to the problem of solving the matrix equation

$$\Phi \alpha = \operatorname{proj}_{T_{\Phi}(\mathbb{R}^n)}(\mathbf{y}), \qquad (7)$$

where $\operatorname{proj}_{T_{\Phi}(\mathbb{R}^n)}(\cdot): \mathbb{R}^m \to T_{\Phi}(\mathbb{R}^n)$ is the orthogonal projection operator onto the subspace $T_{\Phi}(\mathbb{R}^n) \subset \mathbb{R}^m$. It is well known that this projection operator is uniquely associated with the projection matrix $\mathbf{P}_{\Phi} \in \mathbb{R}^{n \times m}$ so that

$$\forall \mathbf{y} \in \mathbb{R}^m : \operatorname{proj}_{T_{\Phi}(\mathbb{R}^n)}(\mathbf{y}) = \mathbf{P}_{\Phi}\mathbf{y},$$

where

$$\mathbf{P}_{\Phi} := \mathbf{\Phi} \left(\mathbf{\Phi}^T \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^T, \tag{8}$$

and so the problem becomes finding a solution to the matrix equation

$$\mathbf{\Phi}\alpha = \mathbf{\Phi} \left(\mathbf{\Phi}^T \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^T \mathbf{y}. \tag{9}$$

Multiplying both sides of equation (9) by Φ^T and carrying out the appropriate simplifications yields the so-called *normal equations*

$$\mathbf{\Phi}^T \mathbf{\Phi} \boldsymbol{\alpha} = \mathbf{\Phi}^T \mathbf{y}. \tag{10}$$

References