# Enhancement of TMS in PCM charged heat exchanger

-Atul Pandey 19ME02044 School of Mechanical Sciences

## **Objective**

To estimate the performance capability of heat exchanger, charged with PCM (gallium) material in the shell region, with and without fin.





# Meshing



# Meshing



# Meshing quality and inflation

| - | Quality            |                 |  |
|---|--------------------|-----------------|--|
|   | Check Mesh Quality | Yes, Errors     |  |
|   | ☐ Target Skewness  | Default (0.9)   |  |
|   | Smoothing          | Medium          |  |
|   | Mesh Metric        | Element Quality |  |
|   | Min                | 0.10598         |  |
|   | Max                | 1.              |  |
|   | Average            | 0.63723         |  |

## Mesh independent study

#### Mesh Study



## Setup

- Transient
- Viscous(Laminar) model (movement of gallium in melting region is laminar)
- Gravity (-9.81m/s^2) in y direction
- Boussinesq approximation for density
- PCM material is gallium
- Melting point of gallium = 29.2 C

# **Boundary Condition**



# **Calculation settings**

| Run Calculation          |   |                    |
|--------------------------|---|--------------------|
| Check Case               |   | Preview Mesh Mo    |
| Time Advancement         |   |                    |
| Туре                     |   | Method             |
| Fixed                    | • | User-Specified     |
| Parameters               |   |                    |
| Number of Time Steps     |   | Time Step Size [s] |
| 7500                     | * | 0.08               |
| Max Iterations/Time Step |   | Reporting Interval |
| 20                       | - | 1                  |
| Profile Update Interval  |   |                    |
| 1                        | - |                    |
|                          |   |                    |

## **Courant number for previous step size**



## **Validation**



Ref - S. Rana, M. Zunaid, R. Kumar Case Studies in Thermal Engineering 33 (2022) 101921

Time taken for liquid fraction to reach 1

- Without fin = 719s
- With hex fin = 481s



Average temperature hex finned pipe



Average temperature without fin





#### Reference

• Ref - S. Rana, M. Zunaid, R. Kumar Case Studies in Thermal Engineering 33 (2022) 101921