Applications des flots

Mines à ciel ouvert

(Open-Pit Mining)

Mines d'or

- On divise un coupe du sol en blocks orthogonaux de taille égale.
- On connaît le coût de l'extrait d'un block entier et le revenu généré par un block d'or. Trouver l'exploitation de forme optimale.
- Les contraintes de forme imposent l'extraction des trois blocks (nous sommes ici en 2D ...) au-dessus de celui qu'on souhaite extraire.

Surface

Underground

Solution

- Pour extraire l'or dans le block (2,4), on doit extraire les blocks (1,3), (1,4), (1,5) et (2,4). Revenu = 500€, coût = 400€, profit = 100€. Donc il est intéressant d'extraire le block (2,4).
- Pour extraire le block (3,1), nous devons extraire les blocks (3,1), (2,1), (2,2), (1,1), (1,2) et (1,3). Revenu = 500€, coût = 500€*, profit = 0€. Donc il n'est pas intéressant d'extraire le block (3,1).
- * Supposant que le block (1,3) est déjà extrait.

Le piège

Nous ne trouvons aucun block intéressant à extraire, car chacun paraît non rentable (séparemment).

Par contre, il est très intéressant de les extraire tous ...

Formulation flot-max

- Chaque block est un nœud.
- La capacité des arcs de (i,j) vers (i-1,j-1), (i-1,j), (i-1,j+1) est infinie.
- On rajoute un nœud source s et un nœud puits t.

Formulation Flot-max

Formulation Flot-max

- $\mathbf{W}_{ij} = \mathbf{V}_{ij} \mathbf{C} =$
 - V_{ij} = valeur de l'or dans le block (i,j)
 - C = coût de l'extraction d'un block
- \blacksquare Si $W_{ij} < 0$
 - ajouter un arc de (i,j) vers t avec capacité –W_{ij}
 - block (i,j) a comme valeur 0 et coût W_{ij}
- Si Wij > 0
 - ajouter un arc de s vers (i,j) avec capacité W_{ij}
 - block (i,j) a comme valeur W_{ij} et coût 0

Formulation Flot-max

Solution optimale: v = 700

Coupe-min

Interprétation de la coupe-min

- **Estraire tous les blocks de S**
 - La coupe-min ne contient que des arcs de capacité finie.
 - Les blocks de S peuvent être extraits sans l'extraction des blocs de <u>S</u>.
- Arcs de la coupe (S,\underline{S})
 - Arcs de s vers des nœuds de T
 - Capacité = valeur de l'or des blocks de T
 - Arcs des nœuds de S vers t
 - Capacité = coût de l'extraction
- u[s,t] = valeur de T + coût de S

Exemple coup-min

Arcs de capacité c de chaque block à extraire (i,j) seront dans la coupe.

arcs de capacité ∞ ne peuvent pas être dans la coupe

Interprétation de la coupe-min

- cap[S,S] = 400 + 300 = 700
- Valeur de l'or dans \underline{S} : $V_{or}(\underline{S}) = 400$
- Coût de l'extraction de $S: C_{ex}(S) = 300$
- $cap[S,\underline{S}] = V_{or}(\underline{S}) + C_{ex}(S)$
- Min cap[S,\underline{S}] = Min ($V_{or}(\underline{S}) + C_{ex}(S)$)
- $\blacksquare \operatorname{Min} \left(V_{\operatorname{or}}(\underline{S}) + C_{\operatorname{ex}}(S) \right) = \operatorname{Max} \left(-V_{\operatorname{or}}(\underline{S}) C_{\operatorname{ex}}(S) \right)$

Profit max

La solution du problème de flot max nous donne $Max - V_{or}(\underline{S}) - C_{ex}(S)$

Soit G*= la valeur totale de l'or

G* est un constant

$$G^* + Max - V_{or}(\underline{S}) - C_{ex}(S) =$$

Max
$$G^*$$
 - $V_{or}(\underline{S})$ - $C_{ex}(S)$ =

$$\mathbf{Max} \ \mathbf{V_{or}}(\mathbf{S}) + \mathbf{V_{or}}(\underline{\mathbf{S}}) - \mathbf{V_{or}}(\underline{\mathbf{S}}) - \mathbf{C_{ex}}(\mathbf{S}) =$$

Max $V_{or}(S)$ - $C_{ex}(S)$ = profit de l'extraction des blocks de S

Un sujet très étudié ...

Un peu d'histoire

Année	Auteurs	Complexité
1951	Dantzig	O(n ² mF)
1956	Ford & Fulkerson	O(nmF)
1970	Dinitz et Edmonds & Karp	O(nm ²)
1970	Dinitz	O(n ² m)
1972	Dinitz et Edmonds & Karp	$O(m^2 log F)$
1973	Dinitz et Gabow	O(nmlogF)
1974	Karzanov	$O(n^3)$
1977	Cherkassy	$O(n^2m^{0.5})$
1980	Galil & Naamad	$O(nmlog^2n)$
1983	Sleator & Tarjan	O(nmlogn)

Un peu d'histoire (suite)

Année	Auteurs	Complexité
1986	Goldberg & Tarjan	$O(nmlog(n^2/m))$
1987	Ahuja & Orlin	$O(nm+n^2logF)$
1987	Ahuja & al.	$O(\text{nmlog}(\text{nlog}^{0.5}\text{F/m}))$
1989	Cheriyan & Hagerup	$O(nm+n^2\log^2n)$
1990	Cheriyan & al.	$O(n^3/logn)$
1990	Alon	$O(nm+n^{8/3}/logn)$
1992	King & al.	$O(nm+n^{2+\epsilon})$
1993	Phillips & Westbrook	$O(nm(log_{m/n}n + log^{2+\epsilon}n))$
1994	King & al.	$O(nmlog_{m/(nlogn)}n)$
1997	Goldberg & Rao	$O(\min(n^{2/3},m^{1/2}) \text{mlog}(n^2/m) \text{log}F)$

Le mètre pliant (enfin)

Rappel

Nom: MPC (mètre pliant du charpentier)

Données: une suite ordonnée de nombres naturels (des longueurs du mètre pliant) l_1, l_2, \ldots, l_n et un nombre naturel L (la longueur de l'étui).

Question: peut-on plier le mêtre de manière qu'il rentre dans l'étui?

MPC ∈ NP

En effet il suffit de générer de manière nondéterministe une prétendue solution et la vérifier. Une solution est une suite de *n* symbôles, d ou g (droite ou gauche).

Ensuite on vérifie : nous aurons trois variables

eg = extrémité gauche

ed = extrémité droite

ac = point actuel

MPC ∈ NP

```
Il suffit de les initialiser à 0, puis pour chaque l_i,
  i=1,\ldots,n:
Si d
  alors
      ac \leftarrow ac + l_i
       Si ed < ac alors ed \leftarrow ac
  sinon
      ac \leftarrow ac - l_i
      si eg > ac alors eg \leftarrow ac
Si L \ge ed - eg alors « c'est bon » sinon « non »
```

MPC est NP-difficile

On réduit PARTITION à MPC.

Soient a_i , i=1...n les valeurs de PARTITION.

Soit
$$S = \sum_{i=1...n} a_i$$

Les longueurs de MPC seront (dans l'ordre) :

$$4S, 2S, a_1, a_2, \ldots, a_n, 2S, 4S$$

Et L = 4S.

Il est facile de voir que MPC admet une solution SSI PARTITION en admet une.