Goal: feature studies of jet tagging samples

One of the most difficult challenges at the LHC is to identify and classify hadronic decays of highly Lorentz-boosted W/Z bosons and top quarks from quark and gluons. A jet is a group of collimated particles, which can be used as a proxy of a fundamental particle, e.g. up quark, down quark, strange quark, gluon, W boson, Z boson or top quark.

A light quark (q) jet or gluon (g) jet is usually composed of one subjet. The light quark is either up quark, down quark or strange quark. W-jet and Z-jet are composed of two subjects because hadronic decay of W or Z bosin is quark and ant-quark final state. A top jet is composed of three subjets because of the intrinsic decay structure (top -> W b -> qq' b). The figure below (link) shows an example of a top jet. The blue lego bricks represent the Calorimeter clusters; while purple, red, yellow lines represent charged Tracks. Calorimeter clusters and/or Charged Tracks can be used as consistent to reconstruct Jets.

Samples:

processed-pythia82-lhc13-all-pt1-50k-r1 h022 e0175 t220 nonu withPars truth.z

This sample allows developers to explore modern Machine Learning methods. The samples are used in the JEDI-net paper (1908.05318). We will follow this JEDI-net paper closely for the whole exercise. The detailed description of the features can be found in arXiv:2004.08262.

Task1: Count number of jets in each truth jet label.

Create a counting table:

Label	Number of jets	Description
Total		Total statistics
q		Light (up, down, strange)-quark jet
g		Gluon jet
w		W-boson jet
z		Z-boson jet
t		Top-quark jet
undef		Undefined jet

Task2: Study High Level features

These high level features (convention: j_*) are computed from the constituents of each jet. Let's plot 1D distribution of each high level feature and compare distributions among different truth labels. Let's focus on a few selected variables after the Modified Mass Drop Tagger (mmdt).

Jet kinematics

'j_mass_mmdt', 'j_pt', 'j_eta'

Jet substructures:

'j_zlogz', 'j_multiplicity'

Energy-correlation functions

- 'j_c1_b0_mmdt', 'j_c1_b1_mmdt', 'j_c1_b2_mmdt', 'j_c2_b1_mmdt', 'j_c2_b2_mmdt',
- 'j_d2_b1_mmdt','j_d2_b2_mmdt', 'j_d2_a1_b1_mmdt', 'j_d2_a1_b2_mmdt',
- 'j_m2_b1_mmdt', 'j_m2_b2_mmdt',
- 'j_n2_b1_mmdt', 'j_n2_b2_mmdt',

Example results:

What is Energy-Correlation Function (1901.10342)?

Energy-correlation functions (ECFs) achieve essentially the same objective than N-subjettiness without requiring the selection of N reference axes.

$${}_{k}e_{N}^{(\beta)} = \sum_{i_{1} < \dots < i_{N} \in \text{jet}} \left(\prod_{j=1}^{N} z_{i_{j}} \right) \left(\prod_{\ell=1}^{k} \min_{u < v \in \{i_{1}, \dots, i_{N}\}} \Delta R_{uv}^{\beta} \right), \tag{5.23}$$

where min denotes the ℓ -th smallest number.

with $z_i = p_{t,i} / Sum(p_{t,i})$.

Two-prong taggers:

$$C_{2}^{(\beta)} = \frac{{}_{3}e_{3}^{(\beta)}}{\left({}_{1}e_{2}^{(\beta)}\right)^{2}} \equiv \frac{e_{3}^{(\beta)}}{\left(e_{2}^{(\beta)}\right)^{2}}, \qquad D_{2}^{(\beta)} = \frac{e_{3}^{(\beta)}}{\left(e_{2}^{(\beta)}\right)^{3}}, \qquad (5.24)$$

$$N_{2}^{(\beta)} = \frac{{}_{2}e_{3}^{(\beta)}}{\left(e_{2}^{(\beta)}\right)^{2}}, \qquad M_{2}^{(\beta)} = \frac{{}_{1}e_{3}^{(\beta)}}{e_{2}^{(\beta)}},$$

Task3: Study Low Level features

The low level features (convention: j1_*) are constituents of each jet.

- Draw 1D distributions
 Loop each constituent of each jet and categorize in each label
 'j1_px', 'j1_py', 'j1_pz', 'j1_e', 'j1_pdgid', 'j1_erel', 'j1_pt', 'j1_ptrel', 'j1_eta', 'j1_etarel',
 'j1_etarot', 'j1_phir, 'j1_phirel', 'j1_phirot', 'j1_deltaR', 'j1_costheta', 'j1_costhetarel',
 'j1_e1mcosthetarel'
- 2. Draw 2D weighted distributions

- a. (jet_etarot, j1_phirot) weighted by j1_ptrel
- b. (jet_eta, j1_phi) weighted by j1_ptrel

Example plot:

a. 1D distributions

b. 2D temperate maps

