ΦΥΣ 331 - Φυσική Στοιχειωδών Σωματιδίων

Εργασία 4η

Επιστροφή: Παρασκευή 14.10.22

- 1. Εξηγήστε γιατί η διάσπαση $n \to p + e^-$ είναι απαγορευμένη ακόμα και αν αγνοήσουμε παραβίαση του λεπτονικού αριθμού.
- 2. Σχεδιάστε τα διαγράμματα Feynman των παρακάτω διεργασιών:

$$(\alpha)\,\varOmega^-\to \varLambda^0K^- \quad (\beta)\,\varOmega^-\to \varXi^-\pi^+\pi^- \quad (\gamma)\,\eta_c\to K^+K^-\pi^+\pi^- \quad (\delta)\,\eta_c\to K^+K^-\pi^+\pi^-\pi^0$$

Μπορείτε να βρείτε το περιεχόμενο σε quarks των σωματιδίων αυτών από το particle data group website που χρησιμοποιήσατε στην 1^{η} κατ΄οίκον.

3. Εξηγήστε γιατί δεν είναι επιτρεπτές οι παρακάτω αλληλεπιδράσεις:

$$(α) μ^- \to e^+ e^- e^ (β) ν_τ + p \to μ^- + n$$
 $(γ) ν_τ + p \to τ^+ + n$ $(δ) π^+ + π^- \to n + π^0$

- **4.** Θεωρώντας ότι το π^0 είναι δέσμια κατάσταση $u\bar{u}$ σχεδιάστε τα διαγράμματα Feynman των παρακάτω διεργασιών: (α) $\pi^0 \to \gamma\gamma$ (β) $\pi^0 \to \gamma e^+e^-$ (γ) $\pi^0 \to e^+e^-e^+e^-$ (δ) $\pi^0 \to e^+e^-$
- **5.** Θεωρήστε ότι το π⁻ έχει spin 0 και αρνητική parity. Αν εγκλωβίζεται από τον πυρήνα ενός δευτερίου ενώ βρίσκεται σε *p*-τροχιά μέσω της διάσπασης:

$$\pi^- + d \rightarrow n + n$$

Δείξτε ότι τα δύο νετρόνια πρέπει να βρίσκονται σε singlet κατάσταση. Το δευτέριο έχει spin-parity τιμές 1^+ .

- **6.** Το Σ^{*+} είναι ένα ασταθές βαρυόνιο με μάζα 1385 MeV και εύρος $\Gamma=35MeV$. Το ποσοστό διακλάδωσης για την διάσπαση $\Sigma^{*+}\to\pi^+\Lambda^0$ ισούται με 88%. Μπορεί να παραχθεί μέσω της σκέδασης $K^-p\to p^-\Sigma^{*+}$. Ωστόσο η σκέδαση $K^+p\to p^+\Sigma^{*+}$ δεν παρατηρείται.
 - (α) Ποια είναι η τιμή της παραδοξότητας (strangeness) του Σ^{*+} ; Εξηγήστε με βάση τις διεργασίες που σας δίνονται.
 - (β) Τι είδους αλληλεπίδραση περιγράφει την διάσπαση του Σ^{*+} ; Ασθενής ή ισχυρή; Εξηγήστε.
 - (γ) Ποιο είναι το isospin του Σ^{*+} ; Εξηγήστε με βάση την πληροφορία που δίνεται παραπάνω.
- 7. Το ουδέτερο βαρυόνιο Σ^0 (1915) (η μάζα του είναι 1915 MeV/c^2) έχει isospin I=1 , $I_3=0$. Θεωρήστε Γ_{K^-p} , $\Gamma_{\overline{K}^0n}$, Γ_{π^-p} και $\Gamma_{\pi^+\pi^-}$, τα μερικά πλάτη διάσπασης των διεργασιών $\Sigma^0 \to K^-p$, $\Sigma^0 \to \overline{K}^0n$, $\Sigma^0 \to \pi^-p$ και $\Sigma^0 \to \pi^+\pi^-$ αντίστοιχα. Υπολογίστε τους λόγους:

$$\frac{\Gamma_{\overline{K}^0 n}}{\Gamma_{K^- p}}$$
, $\frac{\Gamma_{\pi^- p}}{\Gamma_{K^- p}}$, $\frac{\Gamma_{\pi^+ \pi^-}}{\Gamma_{K^- p}}$

Οι μάζες όλων των σωματιδίων είναι τέτοιες ώστε οι διασπάσεις να είναι κινηματικά επιτρεπτές.

8. Θεωρήστε τις αδρονικές διασπάσεις:

$$\Lambda^0 \to p\pi^-$$
 και $\Lambda^0 \to n\pi^0$

$$\Sigma^-
ightarrow n \pi^- \quad \Sigma^+
ightarrow p \pi^0 \ \ \mathrm{kal} \ \ \Sigma^+
ightarrow n \pi^+$$

$$\mathcal{Z}^- \to \varLambda^0 \pi^-$$
και $\mathcal{Z}^0 \to \varLambda^0 \pi^0$

Στις παραπάνω ασθενείς διεργασίες έχουμε αλλαγή της παραδοξότητας κατά 1 μονάδα ($\Delta S=1$) και ικανοποιούν τον κανόνα αλλαγής του isospin $\Delta I=1/2$ και είναι επιτρεπτές. Υπολογίστε τις τιμές των x,y, και z που ορίζονται παρακάτω:

$$x = \frac{A(\Lambda^0 \to p\pi^-)}{A(\Lambda^0 \to n\pi^0)}$$

$$y = \frac{A(\Sigma^+ \to \pi^+ n) - A(\Sigma^- \to \pi^- n)}{A(\Sigma^+ \to \pi^0 p)}$$

$$z = \frac{A(\Xi^0 \to \Lambda^0 \pi^0)}{A(\Xi^- \to \Lambda^0 \pi^-)}$$

όπου A είναι το πλάτος μετάβασης για τη διεργασία.