딥러닝팀

1팀

이수경 이승우 이은서 주혜인 홍현경

1 합성곱 신경망(CNN)

🎈 이미지 데이터의 특징

1 합성곱 신경망(CNN)

Convolution Layer

(1) 필터

필터 : DNN의 '가중치'에 해당

필터의 윈도우를 일정 간격으로 이동하며 입력 데이터에 필터 적용

Convolution Layer

(4) 패딩

0	0	0	0	0	0
0	1	2	3	0	0
0	0	1	2	3	0
0	3	0	1	2	0
0	2	3	0	1	0
0	0	0	0	0	0

raw size : 4×4 after padding : 6×6

Output size: 4X4

모서리 정보가 적게 반영되는 현상 완화

output featuremap의 크기 유지

Convolution Layer

(5) 스트라이드

스트라이드 = 2

stride = 보폭 필터가 한번에 이동하는 **간격**

1 합성곱 신경망(CNN)

Pooling Layer

풀링 Pooling

피쳐맵의 **크기**를 줄이는 연산 이미지의 크기를 줄여 특징을 잘 표현하는 값을 뽑아냄

2 RNN

RNN이란?

순환신경망 Recurrent Neural Network

RNN의 출력은 **이전의 모든 입력**에 영향을 받음

→ 순차적 데이터인 자연어의 시간적 특징 반영 가능

2 RNN

● RNN 모델 구조

RNN의 한계점

어제 어제 어제 어제 어제 아제

어제 주문했던 로제 떡볶이의 맵기는?

● RNN 모델 구조

RNN의 구조

2 RNN

RNN의 역전파

BPTT Back Propagation Through Time

매 시점마다 W_x 에 대해 역전파가 이루어짐 모든 시점의 역전파 값을 더하여 W_x 에 대한 역전파 값으로 사용

● LSTM의 구조

3 Inputs

3 Gates

3 Outputs

Gate – **Forget Gate**

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$0 \le f_t \le 1$$

 h_{t-1} 와 x_t 를 고려해 이전 시점까지의 <mark>장기적인 정보</mark> C_{t-1} 에서 어떤 정보가 쓸모가 없고 이를 <mark>얼마나 잊을 지</mark> 결정

Gate – Input Gate

장기적인 정보 (C_t) 에 <mark>새로운 정보 (\widetilde{C}_t) 를</mark> 얼마나 (i_t) 저장할지 결정하는 역할

Cell State

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

forget gate 만큼 정보를 잃고 input gate 만큼 새로운 정보를 갖도록 업데이트후 다음 time step으로 전달