

Moving beyond simple regression

- dealing with multiple predictors
- model comparison
- coding categorical predictors

Dealing with multiple predictors

Multiple regression

General model for single-level data with m predictors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_m X_{mi} + e_i$$

individual Xs can be any combination of continuous and categorical predictors (and their interactions)

Each eta_j is the partial effect of X_j holding all other Xs constant

Example

Are lecture attendance and engagement with online materials associated with higher grades in statistics?

Does this relationship hold after controlling for overall GPA?

Import

grades.csv

```
grades <- read csv("data/grades.csv", col types = "ddii")</pre>
grades
\# A tibble: 100 \times 4
  grade GPA lecture nclicks
  <dbl> <dbl> <int> <int>
1 2.40 1.13
                           88
2 3.67 0.971
                        96
 3 2.85 3.34
                       123
4 1.36 2.76
                         99
 5 2.31 1.02
                        66
 6 2.58 0.841
                           99
 7 2.69 4
                           86
8 3.05 2.29
                          118
  3.21 3.39
                         98
10 2.24 3.27
                          115
                   10
# i 90 more rows
```

Correlations

3 lecture .24 .44

4 nclicks .16 .30 .36

```
library("corrr")

grades %>%
  correlate() %>%
  shave() %>%
  fashion()

  term grade GPA lecture nclicks
1  grade
2  GPA .25
```

Visualization

pairs (grades)

Estimation

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_m X_{mi} + e_i$$

$$lm(Y \sim X1 + X2 + ... + Xm, data)$$

```
my_model <- lm(grade ~ lecture + nclicks, grades)</pre>
```

Output

```
summary(my model)
Call:
lm(formula = grade ~ lecture + nclicks, data = grades)
Residuals:
    Min 10 Median 30 Max
-2.21653 -0.40603 0.02267 0.60720 1.38558
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.462037 0.571124 2.560 0.0120 *
lecture 0.091501 0.045766 1.999 0.0484 *
nclicks 0.005052 0.006051 0.835 0.4058
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Standardized coefficients

Standardized coefficients

Model comparison

Model comparison

Is engagement (as measured by lecture attendance and downloads) positively associated with final course grade *above* and beyond student ability (as measured by GPA)?

Strategy

Compare "base" model with control vars to a "bigger" model with control plus focal vars

$$F(2,96) = 1.31, p = .275$$

If $p < \alpha$, bigger model is better.

update()

1 98 73.528

Model 2: grade ~ GPA + lecture + nclicks

Res.Df RSS Df Sum of Sq F Pr(>F)

2 96 71.578 2 1.9499 1.3076 0.2752

```
base_model <- lm(grade ~ GPA, grades)
big_model <- update(base_model, . ~ . +lecture +nclicks)
anova(base_model, big_model)
Analysis of Variance Table

Model 1: grade ~ GPA</pre>
```

Categorical predictors

Dummy coding binary variables

k = 2

Arbitrarily assign one levels to 0; assign the other to 1.

```
dat |>
  mutate(dummy = if_else(predictor == "targetlevel", 1, 0))
```

See dplyr::if_else()

Factors with k>2

1.

9

Arbitrarily choose one level as "baseline" level. Need k-1 predictors, each contrasting a target level with baseline.

1. 1

$\kappa = 3$			$\kappa=4$			
	A2v1	A3v1		A2v1	A3v1	A4v1
A_1	0	0	$\overline{A_1}$	0	0	0
A_2	1	0	A_2	1	0	0
A_3	0	1	A_3	0	1	0
			$\overline{A_4}$	0	0	1

Bodyweight over the seasons

```
season bodyweight_kg
  <chr>
        <dbl>
1 winter 96.9
2 winter 102.
3 winter
       101.
       107.
4 winter
5 winter
       106.
6 spring
        109.
7 spring
         103.
8 spring
        99.9
            98.5
9 spring
10 spring
       103.
```

11 summer 108. 12 summer 104.

Coding the predictor

```
## baseline value is 'winter'
season wt2 <- season wt %>%
  mutate(spring v winter = if else(season == "spring", 1, 0),
         summer v winter = if else(season == "summer", 1, 0),
         fall v winter = if else(season == "fall", 1, 0))
## ALWAYS double check using 'distinct'
season_wt2 |>
  distinct(season, spring_v_winter, summer_v_winter, fall_v_winter)
\# A tibble: 4 \times 4
  season spring_v_winter summer_v_winter fall_v_winter
 <chr>
          <db1>
                                   <dbl>
                                                 <db1>
1 winter
2 spring
3 summer
4 fall
```

Fitting the model

```
mod <- lm(bodyweight kg ~ spring v winter +
           summer v winter + fall v winter,
         season wt2)
summary (mod)
Call:
lm(formula = bodyweight_kg ~ spring_v_winter + summer_v_winter +
   fall v winter, data = season wt2)
Residuals:
   Min 10 Median 30
                                Max
-5.7058 -2.1083 -0.5378 1.2883 7.5928
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 102.57645 1.71619 59.770 <2e-16 ***
spring_v_winter -0.03665 2.42705 -0.015 0.988
summer_v_winter 1.02200 2.42705 0.421 0.679
               -0.98818 2.42705 -0.407 0.689
fall v winter
```

Main effect of season?

```
mod_base <- lm(bodyweight_kg ~ 1, season_wt2)
anova(mod_base, mod)
Analysis of Variance Table

Model 1: bodyweight_kg ~ 1
Model 2: bodyweight_kg ~ spring_v_winter + summer_v_winter + fall_v_winter
   Res.Df   RSS Df Sum of Sq   F Pr(>F)
1    19 245.74
2   16 235.62 3   10.112 0.2289 0.8749
```

One-way Analysis of Variance

Residuals 16 235.62 14.726