IA et science des données

Cours 7 – mardi 8 mars 2022 Arbres de décision (suite)

Christophe Marsala Vincent Guigue

Sorbonne Université

LU3IN026 - 2021-2022

Plan du cours

Apprentissage par arbres de décision (suite)

frontière Classification et interprétabilité Conclusion

Méthodes d'ensembles

1 – Apprentissage par arbres de décision (suite) -

Exemple d'arbre de décision

Marsala & Guigue – 2022 LU3IN026 – cours 7 – 3

1 – Apprentissage par arbres de décision (suite) –

Critère d'arrêt de la construction de l'arbre

- Quelques exemples de critères d'arrêt
 - tous les exemples de la base d'apprentissage ont la même classe
 - utilisation d'une tolérance : la plupart des exemples ont la même classe
 - utilisation d'un seuil $\varepsilon \in [0,1]$
 - on calcule $H(\mathbf{Y}) = -\sum_k p(y_k) \log p(y_k)$ et on s'arrête si $H(\mathbf{Y}) < \varepsilon$
 - le gain d'information est nul ou négatif : $I_S(\mathbf{X}_j, \mathbf{Y}) \leq 0$
 - trop peu d'exemples dans l'ensemble traité
 - cas catégoriel : tous les attributs ont été utilisés une fois
- Création d'une feuille de l'arbre de décision
 - la classe majoritaire est utilisée pour étiqueter la feuille

1 – Apprentissage par arbres de décision (suite) -

Construction de l'arbre : algorithme classique (catégoriel)

- ightharpoonup Créer une pile $\mathcal P$ et y stocker la base d'apprentissage
- lacktriangle Tant que ${\mathcal P}$ n'est pas vide : prendre l'ensemble ${\mathcal E}$ en haut de ${\mathcal P}$
 - calculer $H(\mathbf{Y})$ pour \mathcal{E}
 - si le critère d'arrêt est atteint alors créer une feuille
 - ullet sinon, pour les exemples de ${\mathcal E}$
 - 1. calculer $H(\mathbf{Y}|\mathbf{X}_j)$ pour tous les attributs \mathbf{X}_j
 - 2. choisir l'attribut \mathbf{X}_j qui maximise $I_S(\mathbf{X}_j, \mathbf{Y})$
 - 3. créer un nœud dans l'arbre de décision avec X_i
 - 4. partitionner \mathcal{E} en sous-ensembles avec les valeurs de \mathbf{X}_i
 - 5. mettre les sous-ensembles obtenus dans ${\cal P}$

Marsala & Guigue – 2022 LU3IN026 – cours 7 – 4

1 – Apprentissage par arbres de décision (suite) –

Arbres de décision et données numériques

- lacktriangle Comment faire si l'attribut ${f X}_j$ est un attribut numérique?
- lacktriangle II faut discrétiser \mathbf{X}_j : le transformer en attribut catégoriel
 - version la plus simple : discrétiser en 2 valeurs catégorielles
- ▶ Idée : utilisation d'une valeur de coupure v_i pour \mathbf{X}_i
 - construction de 2 intervalles :] $-\infty, v_j[$ et $[v_j, +\infty[$
 - on note : $\{\mathbf{X}_j, v_j\}$ cette décomposition
- \blacktriangleright Déterminer la valeur v_j qui minimise $H(C|\{\mathbf{X}_j,v_j\})$
 - essayer toutes les valeurs possibles
- ► Modification de l'algorithme de construction d'arbre :
 - 1. phase de discrétisation de X_i
 - 2. traiter \mathbf{X}_j comme un attribut catégoriel : $\{\mathbf{X}_j, v_j\}$
- Deux possibilités
 - la discrétisation est faite avant la construction de l'arbre
 - la discrétisation est faite localement

Marsala & Guigue - 2022 LU3IN026 - cours 7 - 5 Marsala & Guigue - 2022 LU3IN026 - cours 7 - 6

Arbres de décision et données numériques (2)

Marsala & Guigue - 2022 LU3IN026 - cours 7 - 7

1 – Apprentissage par arbres de décision (suite) –

Arbres de décision et données numériques (4)

► Exemple un peu moins simple

Marsala & Guigue – 2022 LU3IN026 – cours 7 – 9

1 – Apprentissage par arbres de décision (suite) – frontière

Apprentissage supervisé : séparateur des classes

La frontière de décision entre les classes doit être trouvée

Arbres de décision et données numériques (3)

► Exemple simple

Marsala & Guigue – 2022 LU3IN026 – cours 7 – 8

 $\underline{1-\mathsf{Apprentissage}}\ \mathsf{par}\ \mathsf{arbres}\ \mathsf{de}\ \mathsf{d\acute{e}cision}\ \mathsf{(suite)}-\mathsf{fronti\grave{e}re}$

Représentation d'une base d'apprentissage

- ▶ Étant donné une base d'apprentissage
 - descriptions + classes

Marsala & Guigue – 2022 LU3IN026 – cours 7 – 10

1 – Apprentissage par arbres de décision (suite) – frontière

Frontières fournies par un arbre de décision

- Un arbre de décision définit un découpage par des frontières perpendiculaires aux axes
 - chaque frontière est définie par un test d'un nœud de l'arbre

Marsala & Guigue - 2022 LU3IN026 - cours 7 - 11 Marsala & Guigue - 2022 LU3IN026 - cours 7 - 12

Classification avec un arbre de décision

Plan du cours

Apprentissage par arbres de décision (suite)

Méthodes d'ensembles

2 – Méthodes d'ensembles

Biais et Variance (2)

- ▶ Objectif : faible biais & variance faible
 - très difficile d'atteindre les 2... il faut choisir!
- Nouvelle approche : réduire la variance
 - combiner plusieurs classifieurs
 - agréger leur résultats pour améliorer les performances
- Différentes façons de faire
 - on regarde avec les arbres (par exemple)
 - multiplier les arbres pour les combiner ensuite

Conclusion sur les arbres de décision

- Avantages
 - modèle d'apprentissage interprétable
 - mécanismes simples de construction
 - hiérarchie des attributs simple à comprendre
 - utilisation en classification
- Inconvénients
 - frontière construite par coupures perpendiculaires aux axes
 - pas de prise en compte de combinaisons d'attributs possibles
 - sous-apprentissage possible si le critère d'arrêt est trop lâche
 - sur-apprentissage si le critère d'arrêt est trop fort
 - lors de la construction
 - optimisation locale pour le choix d'un attribut

Marsala & Guigue - 2022

LU3IN026 - cours 7 - 14

2 – Méthodes d'ensembles -

Biais et Variance (1)

ightharpoonup Apprentissage : trouver f, fonction de prédiction, telle que :

$$y = f(\mathbf{x}) + \epsilon$$

avec $\epsilon \geq 0$ le plus petit possible

- idéalement : $\epsilon = 0$ (mais on n'y arrive jamais...)
- lacktriangle la "forme" de f est importante : elle utilise les variables de ${f x}$
 - linéaire, quadratique,...
 - arbre de décision
 - ...
- ► Modèle parcimonieux : nombre réduit de variables utilisées,...
 - idée : modèle parcimonieux \Longrightarrow faible variance
- ► Biais : complexité du modèle
- ► Variance : capacité du modèle à changer si la base d'apprentissage change

Marsala & Guigue – 2022 LU3IN026 – cours 7 – 16