







## Comissão de Exames de Admissão EXAME DE FÍSICA - 2022

- 1. A prova tem a duração de **120 minutos** e contempla 30 questões;
- 2. Confira o seu código de candidatura;
- 3. Para cada questão assinale apenas a alternativa correcta;
- 4. Não é permitido o uso de qualquer dispositivo electrónico (máquina de calcular, telemóveis, etc.).

## I. Cinemática

1. Um homem caminha com velocidade- de v<sub>H</sub> = 3,6 km/h, uma ave, com velocidade v<sub>A</sub> = 30 m/min, e um insecto, com v<sub>I</sub> = 60 cm/s. Essas velocidades satisfazem a relação:

A. 
$$V_1 > V_H > V_A$$

B. 
$$V_A > V_I > V_H$$

$$C. V_H > V_A > V_I$$

D. 
$$V_H > V_I > V_A$$

2. Um carro mantém uma velocidade escalar constante de 72,0 km/h. Em uma hora e dez minutos ele percorre, em quilómetros, a distância de:

3. O gráfico representa a posição de uma partícula em função do tempo. Qual é a velocidade média da partícula, em metros por segundo, entre os instantes t = 2,0 min e t = 6,0 min?





4. Uma criança montada num velocípede desloca-se em trajectória rectilínea, com velocidade constante em relação ao chão. A roda de frente descreve uma volta completa em um segundo. O raio da roda de frente tem 24 cm e o das traseiras 16 cm. Podemos afirmar que as rodas traseiras do velocípede completam uma volta em, aproximadamente:

A. 
$$\frac{1}{2}$$
 s

B. 
$$\frac{2}{3}$$
 s

C. 
$$\frac{3}{2}$$
 s

#### II. Estática

5. Uma tábua homogénea e uniforme de 3 kg tem uma de suas extremidades sobre um apoio e a outra é sustentada por um fio ligado a uma mola, conforme a figura. Sobre a tábua encontra-se uma massa m = 2 kg. Considerando a aceleração da gravidade g = 10 m/s², podemos afirmar que, com relação à força F, a mola exerce: A. F = 50 N B. F = 25 N C. F > 25 N D. F < 25 N</p>



**6.** Um garoto deseja mover uma pedra de massa m = 500 kg. Ele dispõe de uma barra com 3 m de comprimento, sendo que apoiou a mesma conforme a figura ao lado. Aproximadamente, que força F terá que fazer para mexer a pedra se ele apoiar a barra a 0,5 m da pedra?



A. 
$$F = 1000 N$$

C. 
$$F = 3000 N$$



- 7. Querendo-se arrancar um prego com um martelo, conforme mostra a figura ao lado, qual das forças indicadas (todas elas de mesma intensidade) será mais eficiente?
  - A. A
  - B. B
  - C. C
  - D. D



- **8.** O corpo *M* representado na figura pesa 80 N e é mantido em equilíbrio por meio da corda AB e pela acção da força horizontal F de módulo 60 N. Considerando g = 10 m/s², a intensidade da tracção na corda AB, suposta ideal, em *N*, é:
  - A. 60
  - B. 80
  - C. 100
  - D. 140



## III. Dinâmica

- 9. Duas forças de módulos F<sub>1</sub> = 8 N e F<sub>2</sub> = 9 N formam entre si um ângulo de 60°. Sendo cos 60° = 0,5 e sen 60° = 0,87, o módulo da força resultante, emnewtons, é, aproximadamente:
  - A. 8,2

B. 9,4

C. 11,4

- D. 14,7
- **10.** A figura abaixo mostra a força em função da aceleração para três força (N) diferentes corpos 1, 2 e 3. Sobre esses corpos é correcto afirmar:
  - A. O corpo 1 tem a menor inércia.
  - B. O corpo 3 tem a maior inércia.
  - C. O corpo 2 tem a menor inércia.
  - D. O corpo 1 tem a maior inércia.



- 11. O conjunto abaixo, constituído de fio e polia ideais, é abandonado do repouso no instante t = 0 e a velocidade do corpo A varia em função do tempo segundo o diagrama dado. Desprezando o atrito e admitindo g = 10 m/s², a relação entre as massas de A (m<sub>A</sub>) e de B (m<sub>B</sub>) é:
  - A.  $m_B = 1,5 m_A$
  - B.  $m_A = 1.5 m_B$
  - C.  $m_A = 0.5 m_B$
  - D.  $m_B = 0.5 m_A$



12. Na figura  $m_1$  = 100 kg,  $m_2$  = 76 kg, a roldana é ideal e o coeficiente de atrito entre o bloco de massa  $m_1$  e o plano inclinado é  $\mu$  = 0,3. O bloco de massa  $m_1$  se mover-se-á:

Dados:  $sen 30^{\circ} = 0.50 cos 30^{\circ} = 0.86$ 

- A. Para baixo, acelerado
- B. Para cima, com velocidade constante
- C. Para cima, acelerado
- D. Para baixo, com velocidade constante.



# IV. Trabalho e Energia

**13.** Um corpo de 4 kg move-se sobre uma superfície plana e horizontal com atrito. As ÚNICAS forças que actuam no corpo (a força F e a força de atrito cinético) estão representadas no gráfico.



Considere as afirmações.

- I-O trabalho realizado pela força F, deslocando o corpo de 0 a 2 m,  $\acute{e}$  igual a 40 joules.
- II Otrabalho realizado pela força de atrito cinético, deslocando o corpo de 0 a 4 m, é negativo.
- III De 0 a 2 m, o corpo desloca-se com aceleração constante.
- IV O trabalho total realizado pelas forças que actuam no corpo, deslocando-o de 0 a 4 m, é igual a 40 joules. É certo concluir que:
  - A. apenas a I e a II estão correctas

C. apenas a I, a III e a IV estão correctas

B. apenas a I, a II e a III estão correctas

- D. apenas a II, a III e a IV estão correctas
- **14.** Uma partícula de massa 50 g realiza um movimento circular uniforme quando presa a um fio ideal de comprimento 30 cm. O trabalho total realizado pela tracção no fio, sobre a partícula, durante o percurso de uma volta e meia, é:
  - A. 0

B. 2p J

C. 4p J

- D. 6p J
- **15.** Uma empilhadora transporta do chão até uma prateleira, a 6 m do chão, um pacote de 120 kg. O gráfico ilustra a altura do pacote em função do tempo. A potência aplicada ao corpo pela empilhadora é:



- A. 120 W
- B. 360 W
- C. 720 W
- D. 1200 W

## V. Electromagnetismo

**16.** Considere o campo magnético nos pontos P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>, P<sub>4</sub> e P<sub>5</sub> nas proximidades de um íman em barra, conforme representado na figura. A intensidade do campo magnético é menor no ponto:



- A. P<sub>1</sub>
- $B. \quad P_2$
- C. P<sub>3</sub>
- D. P<sub>4</sub>
- 17. Uma partícula electrizada com carga eléctrica q = 2 · 10<sup>-6</sup> C é lançada com velocidade v = 5 · 10<sup>4</sup> m/s em uma região onde existe um campo magnético uniforme de intensidade 8 T. Sabendo-se que o ângulo entre a velocidade e o campo magnético é de 30<sup>0</sup>, pode-se afirmar que a intensidade, em newtons (N), da força magnética sofrida pela partícula é:
  - A. 0,2

B. 0,4

C. 0,6

- D. 0,8
- **18.** As companhias de distribuição de energia eléctrica utilizam transformadores nas linhas de transmissão. Um determinado transformador é utilizado para baixar a diferença de potencial de 3 800 V (rede urbana) para 115 V (uso residencial). Neste transformador:
  - I. O NÚMERo de espiras no primário é maior que no secundário.
  - II. A corrente eléctrica no primário é menor que no secundário.
  - III. A diferença de potencial no secundário é contínua.
  - Das afirmações acima:

- A. Somente I é correcta.
- B. Somente II é correcta.
- C. Somente I e II são correctas.
- D. Somente I e III são correctas.

### Física Nuclear

**19.** Um electrão da camada K é capturado pelo núcleo de berílio  ${}^{7}_{4}Be$  obtendo-se:

A. <sup>7</sup><sub>3</sub>Li

B.  ${}^{7}_{2}Be$ 

C. <sup>6</sup><sub>3</sub>Li

D. 8Be

20. A equação da reacção de desintegração beta-menos do iodo 131 é:

A.  $^{131}_{52}I + ^{0}_{-1}e \rightarrow ^{131}_{52}Te$  B.  $^{131}_{52}I + ^{0}_{-1}e \rightarrow ^{131}_{52}Xe$  C.  $^{131}_{54}Xe + ^{0}_{-1}e$  D.  $^{131}_{52}I \rightarrow ^{131}_{52}Te + ^{0}_{1}e$ 

#### Mecânica dos Fluidos VII.

21. Estudando a pressão emfluidos, vê-se que a variação da pressão nas águas do mar é proporcional à profundidade h. No entanto, a variação da pressão atmosférica quando se sobe a montanhas elevadas, não é exactamente proporcional à altura. Isto deve-se ao seguinte facto:

A. A aceleração gravitacional varia mais na água que no ar.

C. O ar possui baixa densidade.

B. A aceleração gravitacional varia mais no ar que na água.

D. O ar é compressível

22. Uma prancha de isopor, de densidade 0,20 g/cm3, tem 10 cm de espessura. Um menino de massa 50 kg equilibra-se de pé sobre a prancha colocada numa piscina, de tal modo que a superfície superior da prancha fique aflorando à linha d'água. Adoptando a densidade da água = 1,0 g/cm3 e g = 10 m/s2, a área da base da prancha é, em metros quadrados, de aproximadamente:

A. 0,4

B. 0.6

C. 0,8

D. 1,2

23. A água de massa específica  $\rho = 10^3 kg/m^3$ , escoa através de um tubo horizontal representado na figura ao lado. No ponto 1, a pressão vale 4 KPa e a velocidade é de 2 m/s. Qual é, em KPa, a pressão no ponto 2, onde a velocidade é 3 m/s?



A. 1,5

B. 2,5

C. 3,5

VIII. Gases. Termodinâmica

24. Uma caixa de filme fotográfico traz a tabela apresentada abaixo, para o tempo de revelação do filme, em função da temperatura dessa revelação.

| Temperatura           | 65 °F<br>(18 °C) | 68 °F<br>(20 °C) |   | 72 °F<br>(22 °C) | 75 °F<br>(24 °C) |
|-----------------------|------------------|------------------|---|------------------|------------------|
| Tempo<br>(em minutos) | 10,5             | 9                | 8 | 7                | 6                |

A temperatura em <sup>0</sup>F corresponde exactamente ao seuvalorna escala Celsius, apenas para o tempo de revelação, em min, de:

A. 10.5

9 B.

C. 8

25. Numa determinada região, registou-se certo dia a temperatura de X °C. Se a escala utilizada tivesse sido a Fahrenheit, a leitura seria 72 unidades mais alta. Determine o valor dessa temperatura.

A.

50 °C

B. 72 °C C. 83,33 ℃ D. 150 °C

26. Qual é a quantidade de calor necessária para produzir o vapor que aquece o leite?

A.

21 600 cal

24 800 cal

C. 3 600 cal D. 19 200 cal

27. Uma máquina térmica de Carnot é operada entre duas fontes de calor a temperaturas de 400 K e 300 K. Se, em cada ciclo, o motor recebe 1 200 calorias da fonte quente, o calor rejeitado por ciclo à fonte fria, em calorias, vale:

A. 450

B. 600

C. 750

D. 900

#### IX. Oscilações Mecânicas

- **28.** Observando os quatro pêndulos da figura, podemos afirmar:
  - A. O pêndulo A oscila mais devagar que o pêndulo B.
  - B. O pêndulo A oscila mais devagar que o pêndulo C.
  - C. O pêndulo Be o pêndulo D possuem mesma frequência de oscilação.
  - D. O pêndulo B oscila mais devagar que o pêndulo D.



29. A figura 01 abaixo representa uma esfera da massa m, em repouso, suspensa por um fio inextensível de massa desprezível. A figura 02 representa o mesmo conjunto oscilando como um pêndulo, no instante em que a esfera passa pelo ponto mais baixo de sua trajectória. A respeito da tensão no fio e do peso da esfera, respectivamente, no caso da Figura 01 (T<sub>1</sub> e P<sub>1</sub>) e no caso da Figura 02 (T<sub>2</sub> e P<sub>2</sub>), podemos dizer que:



- A.  $T_1 = T_2 e P_1 = P_2$
- B.  $T_1 = T_2 e P_1 < P_2$  C.  $T_1 < T_2 e P_1 > P_2$

- D.  $T_1 < T_2 e P_1 = P_2$
- 30. Regulamos num dia frio e ao nível do mar um relógio de pêndulo de cobre. Este mesmo relógio, e no mesmo local, num dia quente deverá:
  - A. não sofrer alteração no seu funcionamento
- C. atrasar

B. adiantar

D. aumentar a frequência de suas oscilações

FIM