Aula 15

Diferenciabilidade Complexa

<u>Definição</u>: Seja $f: D_f \subset \mathbb{C} \to \mathbb{C}$ e $z_0 \in \text{int}D_f$. Diz-se que f **é diferenciável, ou tem derivada, no sentido complexo em** z_0 se existe o limite

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}.$$

Quando este limite existe o seu valor designa-se por $f'(z_0)$ ou $\frac{df}{dz}(z_0)$.

Diz-se que f **é holomorfa, ou analítica num ponto** z_0 se f for diferenciável em todos os pontos duma bola centrada em z_0 .

Diz-se que f **é** inteira se $D_f = \mathbb{C}$ e se f é diferenciável em todos os pontos $z \in \mathbb{C}$.

Proposição (Regra de L'Hopital - Versão Simples): Sejam f,g funções diferenciáveis em z_0 tais que $f(z_0)=g(z_0)=0$ e $g'(z_0)\neq 0$. Então

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$

Conformalidade

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$$

$$\updownarrow$$

$$f(z) - f(z_0) = f'(z_0) \cdot (z - z_0) + o(|z - z_0|)$$

<u>Definição</u>: Diz-se que uma aplicação é **conforme** num ponto do seu domínio, se preserva ângulos e orientações entre vectores tangentes, nesse ponto.

<u>Teorema</u>: Seja $f: D_f \subset \mathbb{C} \to \mathbb{C}$ e $z_0 \in \text{int} D_f$. Então, se $f'(z_0) \neq 0$, f é conforme em z_0 .

Teorema (Função Inversa): Seja $\mathbf{f}:D_{\mathbf{f}}\subset\mathbb{R}^2\to\mathbb{R}^2$ uma função de classe C^1 numa vizinhança do ponto $(x_0,y_0)\in\mathrm{int}D_{\mathbf{f}}$. Então, se o jacobiano de \mathbf{f} em (x_0,y_0) for não nulo, $J\mathbf{f}(x_0,y_0)=\det D\mathbf{f}(x_0,y_0)\neq 0$, tem-se que

- existe uma vizinhança aberta $U_{(x_0,y_0)}$ de (x_0,y_0) e uma vizinhança aberta $V_{\mathbf{f}(x_0,y_0)}$ de $\mathbf{f}(x_0,y_0)$ tal que $\mathbf{f}:U_{(x_0,y_0)}\to V_{\mathbf{f}(x_0,y_0)}$ é uma bijecção
- a inversa $\mathbf{f}^{-1}:V_{\mathbf{f}(x_0,y_0)}\to U_{(x_0,y_0)}$ é diferenciável (no sentido de \mathbb{R}^2) em $\mathbf{f}(x_0,y_0)$
- a matriz jacobiana da inversa \mathbf{f}^{-1} em $\mathbf{f}(x_0, y_0)$ é dada pela inversa da matriz jacobiana de \mathbf{f} em (x_0, y_0)

$$D\mathbf{f}^{-1}(\mathbf{f}(x_0, y_0)) = \left(D\mathbf{f}(x_0, y_0)\right)^{-1}.$$

Teorema (Função Inversa Complexa): Seja $f: D_{\mathbf{f}} \subset \mathbb{C} \to \mathbb{C}$ uma função holomorfa no ponto $z_0 = x_0 + i \ y_0 \in \mathrm{int} D_f$. Então, se $f'(z_0) \neq 0$ tem-se

- ullet existe uma vizinhança aberta U_{z_0} de z_0 e uma vizinhança aberta V_{w_0} de $w_0=f(z_0)$ tal que $f:U_{z_0} o V_{w_0}$ é uma bijecção
- a inversa $f^{-1}: V_{w_0} \to U_{z_0}$ é diferenciável (no sentido complexo) em $w_0 = f(z_0)$
- ullet a derivada da inversa f^{-1} em $w_0=f(z_0)$ é dada pelo (número) inverso de $f'(z_0)$

$$(f^{-1})'(w_0) = (f^{-1})'(f(z_0)) = \frac{1}{f'(z_0)}.$$

Proposição: Qualquer ramo do logoritmo complexo $\log_{\mathbb{C}} z = \log_{\mathbb{R}} |z| + i \operatorname{Arg} z$, com $\operatorname{Arg} z \in [\theta_0, \theta_0 + 2\pi[$ é diferenciável complexo em $z \neq 0$ e $\operatorname{Arg} z \neq \theta$ com

$$\log' z = \frac{1}{z}.$$