Calculus - Chapter 43 - Infinite Series.

Notation: Sequence (Sn) has sum \(\Sn = S_1 + ... + S_n \), where $S_1, ..., S_n$ are the terms.

Converge: If S is such a number that I'm n>+00 Sn = S then Es, is said to converge and Sisthe sum.

Diverge: If there is no such number S, I Sn is said to diverge.

Geometric Sequence Larn-1) has sum $\sum ar^{n-1}$ with ration and first term a. Benes: It's nth partial sum Sn is:

 $S_n = \alpha + \alpha r + \alpha r^2 + \dots + \alpha r^{n-1}$

 $(xr) \quad (S_n = \alpha r + \alpha r^2 + \dots + \alpha r^n)$ $(1-r)S_n = \alpha (1-r^n)$

 $S_n = \alpha(1-r^n)$

1-1

If |r| < 1, $\lim_{n \to +\infty} r^n = 0$: $\lim_{n \to +\infty} 3n = \alpha/(1-r)$ If |r| > 1, $\lim_{n \to +\infty} +\infty = \infty$

Theorem: Given Zarn-1.

(a). If I < 1, the series converges and has sum a/(1-r)

(b). If |r|>1) and r = 0, the series diverges to a

Example: $\sum (1/2)^{n-1}$ with ratio r=1/2 and first term a=1 $\left(1+\frac{1}{2}+\frac{1}{4}+...\right)$

The series converges and has sum

 $\frac{1}{1 - \left(\frac{1}{2}\right)} = 2 \quad \therefore \quad \sum_{n=1}^{+\infty} (1/2)^{n-1} = 2$

Theorem: If $c\neq 0$ then $\mathcal{E}_{cS_{n}}$ converges iff $\mathcal{E}_{S_{n}}$ converges, e.g. $\mathcal{E}_{n=1}^{+\infty} cS_{n} = c\mathcal{E}_{n=1}^{+\infty} s_{n}$

To obtain result, dende Tn = c31+cs2+ ... + csn, tha Tn = csn

So lim notos To exists if limnotos So exists. limnotos To = climnotos So.

Theorem:

To prove: the nth portial sum Un of E (Snttn) is

3nt Tn = limn>too Un = limn>too Snt limn>too Tn.

Carollang:

Assume
$$\Xi s_n$$
 and Ξt_n both converge, then $\Xi_{n=1}^{+\infty}(S_n-t_n)$ also converges. $\Xi_{n=1}^{+\infty}(S_n-t_n)=\Xi_{n=1}^{+\infty}S_n-\Xi_{n=1}^{+\infty}t_n$.

Theorem:

If
$$\Sigma$$
 Sn converges, then $\limsup_{n \to +\infty} s_n = 0$ i.e $\limsup_{n \to +\infty} s_n = S$
To prove: assume $\sum_{n=1}^{+\infty} s_n = S$, which means $\limsup_{n \to +\infty} s_n = S$
we also have $\limsup_{n \to +\infty} s_{n-1} = S$.
but $s_n = S_n - S_{n-1}$
 $\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} s_n - \lim_{n \to +\infty} s_{n-1} = S - S = 0$

Divergence

Example:

Theorem:

Series
$$\frac{1}{3} + \frac{2}{5} + \frac{3}{7} + \dots$$
 diverges

Proof: $8n = \frac{1}{2n+1}$, and $8ln$ a $lim_{n} \rightarrow +\infty$ $\frac{n}{2n+1} = \frac{1}{2} \neq 0$