

앙상블 (Ensemble)

앙상블

기계학습에서의 앙상블

앙상블의 배경

No Free Lunch Theorem

- Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67-82.
- 특정한 문제에 최적화된 알고리즘은 다른 문제에서는 그렇지 않다는 것을 수학적으로 증명한 정리

■ 기계학습에 적용

- 어떤 알고리즘도 모든 상황에서 다른 알고리즘보다 우월하다는 결론을 내릴 수 없음
- 문제의 목적, 데이터 형태 등을 종합적으로 고려하여 최적의 알고리즘을 선택할 필요 가 있음

앙상블의 배경

■ 모든 데이터에 좋은 성능을 내는 모델은 없음

Relative Performance Examples: 5 Algorithms on 6 Datasets (John Elder, Elder Research & Stephen Lee, U. Idaho, 1997)

앙상블의 배경

■ 개별 모델을 조합하여 더 좋은 Performance 달성이 가능

Ensemble methods all improve performance

Bias-Variance Tradeoff

■ 실제 데이터는 항상 노이즈가 존재

$$y = F^*(\mathbf{x}) + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

- **F***(x) 는 우리가 학습하고 싶은 데이터 생성 함수
- 노이즈로 인하여 정확한 추정은 현실적으로 불가능
- 노이즈는 서로 독립적이고 일정한 분산을 갖는다고 가정

■ 모델 학습

• 주어진 하나의 샘플 집합으로부터 데이터 생성 함수를 추론하는 것

- 모델에 의한 오류는 **편향(Bias)**과 **분산(Variance)**로 구분될 수 있음
 - **편향(Bias)**: **추정 값의 평균**과 **참값들 간**의 차이
 - → 실제값과 예측값의 거리
 - **분산(Variance)**: **추정 값의 평균**과 **추정 값**들 간의 차이
 - → 추정값들의 흩어진 정도

$$Err(\mathbf{x}_0) = E \left[y - \hat{F}(\mathbf{x}) | \mathbf{x} = \mathbf{x}_0 \right]^2$$

$$= \left[\hat{F}^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0) \right]^2 + E \left[\bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0) \right]^2 + \sigma^2$$

$$= Bias^2 \left(\hat{F}(\mathbf{x}_0) \right) + Var(\hat{F}(\mathbf{x}_0)) + \sigma^2$$

이론적 배경 (optional)

The MSE for a particular data point

$$Err(\mathbf{x}_0) = E\left[y - \hat{F}(\mathbf{x})|\mathbf{x} = \mathbf{x}_0\right]^2 \qquad (y = F^*(\mathbf{x}) + \epsilon)$$

$$= E\left[\hat{F}^*(\mathbf{x}_0) + \epsilon - \hat{F}(\mathbf{x}_0)\right]^2$$

$$= E\left[\hat{F}^*(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0)\right]^2 + \sigma^2$$

$$= E\left[\hat{F}^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0) + \bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0)\right]^2 + \sigma^2$$

이론적 배경 (optional)

$$= E\left[\hat{F}^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0) + \bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0)\right]^2 + \sigma^2$$

By the properties of the expectation operator

$$= E\left[\hat{F}^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0)\right]^2 + E\left[\bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0)\right]^2 + \sigma^2$$

$$= \left[\hat{F}^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0)\right]^2 + E\left[\bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0)\right]^2 + \sigma^2$$

$$= Bias^{2}(\hat{F}(\mathbf{x}_{0})) + Var(\hat{F}(\mathbf{x}_{0})) + \sigma^{2}$$

■ 편향(Bias)과 분산(Variance)의 크기에 따른 모델의 구분

- 낮은 모델 복잡도: 높은 편향 & 낮은 분산
 Logistic regression, LDA, k-NN with large k.
- 높은 모델 복잡도: 낮은 편향 & 높은 분산 DT, ANN, SVM, k-NN with small k.

Train / Test data 관점

■ Train / Test data 관점

앙상블

앙상블의 목적

- 앙상블의 목적: 다수의 모델을 학습하여 오류의 감소를 추구
 - 분산의 감소에 의한 오류 감소: 배깅(Bagging) 랜덤 포레스트(Random Forest)
 - 편향의 감소에 의한 오류 감소: 부스팅(Boosting)
 - 분산과 편향의 동시 감소: Mixture of Experts

- 앙상블 구성의 두 가지 핵심 아이디어
 - 다양성(diversity)을 어떻게 확보할 것인가?
 - 최종 결과물을 어떻게 <mark>결합(combine, aggregate</mark>)할 것인가?

앙상블의 효과

- 이론적으로는 M개의 개별 모델을 결합한 앙상블의 경우
- M개의 개별 모델의 평균 오류의 1/M 수준으로 오류가 감소함 (가정: 각 모델은 서로 독립)

$$E_{Ensemble} = \frac{1}{M} E_{Avg}$$

- 위 가정은 현실세계에서 지켜지지 않는 경우가 많음
- 현실적으로는 M개의 개별 모델을 결합한 앙상블의 경우 개별 모델의 평균 오류 보다는 최소한 같거나 낮은 오류를 나타내는 것을 증명할 수 있음

$$\left[\sum_{m=1}^{M} \epsilon_m(\mathbf{x})\right]^2 \le M \sum_{m=1}^{M} \epsilon_m(\mathbf{x})^2 \Rightarrow \left[\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x})\right]^2 \le \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x})^2$$

$$E_{Ensemble} \leq E_{Avg}$$

 즉, 1등 모델보다 성능이 우수함을 입증할 수는 없으나 개별 모델들의 평균치보다 는 항상 우수하거나 같은 성능을 나타냄

앙상블의 효과

- 동일한 모델을 여러 개 사용하는 것은 효과가 없음
 - 개별 모델은 서로 적절하게 달라야 앙상블의 효과를 볼 수 있음
 - 개별적으로는 어느 정도 좋은 성능을 가지면서, 앙상블 내에서 **각각의 모델은 서로 다** 양한 형태를 나타내는 것이 가장 이상적

Diversity	Implicit	Explicit		
Description	Provide different random subset of the training data to each learner	Use some measurement ensuring it is substantially different from the other members		
Ensemble Algorithms	Instance: Bagging Variables: Random Subspaces, Rotation Forests Both: Random Forests	Boosting , Negative Correlation Learning		

앙상블의 다양성 확보 방법

Bagging (Bootstrap Aggregating)

Boosting

Bagging: Bootstrap Aggregating

- 앙상블의 각 멤버(모델)은 서로 다른 학습 데이터셋을 이용
- 각 데이터셋은 복원 추출(sampling with replacement)을 통해 원래 데이터의 수만큼의 크기를 갖도록 샘플링
- 개별 데이터셋을 붓스트랩(bootstrap)이라 부름

rio	าทวไ	I latacat
בו ו	mai	Dataset
O		

x ^l	уl
x ²	y ²
x^3	y ³
× ⁴	y ⁴
x ⁵	y ⁵
x ⁶	y ⁶
x ⁷	y ⁷
x ₈	y ₈
x ⁹	y ⁹
x ¹⁰	y 10

Bootstrap I

x ³	y ³
x ⁶	y ⁶
x ²	y ²
x ¹⁰	y 10
x ⁸	y 8
x ⁷	y ⁷
x ⁷	y ⁷
x^3	y ³
x ²	y ²
x ⁷	y ⁷

Bootstrap 2

x ⁷	y ⁷
χl	yΙ
× ¹⁰	y ¹⁰
χ ^l	yΙ
x ⁸	λ_8
x ⁶	y ⁶
x ²	y ²
x ⁶	y ⁶
x ⁴	y ⁴
x ⁹	y ⁹

Bootstrap B

x ⁹	y ⁹
x ⁵	y ⁵
x ²	y ²
x ⁴	y ⁴
x ⁷	y ⁷
x ²	y ²
x ⁵	y ⁵
x ¹⁰	y 10
x ⁸	y ₈
x^2	y ²

- Bagging: Bootstrap Aggregating
 - 이론적으로 한 관측치가 하나의 붓스트랩에 한번도 선택되지 않을 확률

$$p = \left(1 - \frac{1}{N}\right)^N \rightarrow \lim_{N \to \infty} \left(1 - \frac{1}{N}\right)^N = e^{-1} = 0.368$$

개별 모델의 분산은 높고 편향이 낮은 알고리즘에 적절함

Bagging with Decision Tree

Result Aggregating

- For classification problem
- Majority voting

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\sum_{j=1}^{n} \delta(\hat{y}_{j} = i), \quad i \in \{0,1\} \right)$$
 Training Accuracy Ensemble populatio test class label instance
$$0.80 \quad \text{Model 1} \quad 0.90 \quad 1 \quad \sum_{j=1}^{n} \delta(\hat{y}_{j} = 0) = 4$$

$$0.88 \quad \text{Model 3} \quad 0.87 \quad 1 \quad \sum_{j=1}^{n} \delta(\hat{y}_{j} = 0) = 4$$

$$0.91 \quad \text{Model 4} \quad 0.34 \quad 0 \quad \sum_{j=1}^{n} \delta(\hat{y}_{j} = 1) = 6$$

$$0.95 \quad \text{Model 6} \quad 0.84 \quad 1 \quad \sum_{j=1}^{n} \delta(\hat{y}_{j} = 1) = 6$$

$$0.82 \quad \text{Model 8} \quad 0.32 \quad 0 \quad \sum_{j=1}^{n} \delta(\hat{y}_{j} = 1) = 6$$

$$0.83 \quad \text{Model 10} \quad 0.57 \quad 1 \quad 0$$

Result Aggregating

0.83

• For classification problem

Model 10

Weighted voting (weight = training accuracy of individual models)

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{\sum_{j=1}^{n} (TrnAcc_{j}) \cdot \delta(\hat{y}_{j} = i)}{\sum_{j=1}^{n} (TrnAcc_{j})}, \quad i \in \{0, 1\} \right)$$

			J \perp	•	
Training Accuracy	Ensemble population	P(y=1) for a test instance		Predicted class label	
0.80	Model I	0.90		1	$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 0)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.424$
0.75	Model 2	0.92		I	$\frac{1}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.424$
0.88	Model 3	0.87		I	
0.91	Model 4	0.34		0	
0.77	Model 5	0.41		0	$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 1)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.576$
0.65	Model 6	0.84		I	$\frac{1}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.570$
0.95	Model 7	0.14		0	
0.82	Model 8	0.32		0	^ 1
0.78	Model 9	0.98		I	$\hat{y}_{Ensemble} = 1$

0.57

Result Aggregating

- For classification problem
- Weighted voting (weight = predicted probability for each class)

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{1}{n} \sum_{j=1}^{n} P(y=i), \quad i \in \{0, 1\} \right)$$

Ensemble
populatio
n
Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9
Model 10

P(y=1) for a	Predicted
test	class labe
instance	
0.90	1
0.92	1
0.87	1
0.34	0
0.41	0
0.84	1
0.14	0
0.32	0
0.98	1
0.57	1

$$\sum_{j=1}^{n} P(y=0) = 0.375$$

$$\sum_{j=1}^{n} P(y=1) = 0.625$$

$$\hat{y}_{Ensemble} = 1$$

Result Aggregating: Stacking

- Use another prediction model to aggregate the results
- Input: Predictions made by ensemble members

https://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/

Result Aggregating: Stacking

- Use another prediction model to aggregate the results
- Input: Predictions made by ensemble members

https://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/

Stacking (optional)

Stacking (optional)

- 다양한 형태의 stacking 방법이 존재
- 각 Node는 개별 모델로 구성되며, Node로 구성된 여러 층의 layer를 쌓는 형태

Bagging: Algorithm

Algorithm 1 Bagging

Input: Required ensemble size T

Input: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$

for t = 1 to T do

Build a dataset S_t , by sampling N items, randomly with replacement from S.

Train a model h_t using S_t , and add it to the ensemble.

end for

For a new testing point (x', y'),

If model outputs are continuous, combine them by averaging.

If model outputs are class labels, combine them by voting.

배깅의 효과

Bagging: Decision Boundary

배깅: 성능 평가

Out of bag error (OOB Error)

- 배깅을 사용할 경우, 학습/검증 집합을 사전에 나누지 않고 붓스트랩에 포함되지 않는 데이터들을 검증 집합으로 사용함
- 앙상블 모델의 성능을 간접적으로 확인

배깅의 성능

■ 단일 모델과의 비교

• 대부분의 경우, 단일 모델에 비해 배깅을 수행하면 모델의 성능이 향상됨을 알 수 있음

- 179 Classifiers
- 121 datasets in UCI
- Random Forest가 최고

Journal of Machine Learning Research 15 (2014) 3133-3181

Submitted 11/13; Revised 4/14; Published 10/14

Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?

Manuel Fernández-Delgado Eva Cernadas Senén Barro MANUEL.FERNANDEZ.DELGADO@USC.ES EVA.CERNADAS@USC.ES SENEN.BARRO@USC.ES

CITIUS: Centro de Investigación en Tecnoloxías da Información da USC University of Santiago de Compostela Campus Vida, 15872, Santiago de Compostela, Spain

Dinani Amorim

DINANIAMORIM@GMAIL.COM

Departamento de Tecnologia e Ciências Sociais- DTCS Universidade do Estado da Bahia

Av. Edgard Chastinet S/N - São Geraldo - Juazeiro-BA, CEP: 48.305-680, Brasil

- 의사결정나무 기반 앙상블의 특수한 형태
- 앙상블의 Diversity 확보를 위한 두 가지 장치
 - Bagging
 - Randomly chosen predictor variables (Random Subspace)

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select \overline{m} variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

Bagging

• 복원추출 기법으로 원래 학습데이터 개체 수 만큼을 샘플링

Random Subspace

- 의사결정나무의 분기점을 탐색할 때, 원래 변수의 수보다 적은 수의 변수를 임의로 선택하여 해당 변수들 만을 고려 대상으로 함
- 일반적으로 $\sqrt{\# of features}$ 개의 변수 사용

■ 일반화 오류

- 랜덤 포레스트의 개별 트리는 가지치기를 하지 않으므로 과적합의 위험이 있음
- 앙상블 구성모델의 수(population size)가 충분히 클 경우 랜덤 포레스트의 일반화 오류는 다음과 같은 상한을 가짐

Generalization Error
$$\leq \frac{\bar{\rho}(1-s^2)}{s^2}$$

 $ar{
ho}$: 개별 나무들의 예측 결과물 사이의 상관계수 평균

 s^2 : 마진 함수 (이범주 분류 문제의 경우 개별 트리의 [Accuracy-Error Rate]의 평균)

- 개별 나무들이 정확할 수록 마진함수가 커지며, 개별 나무들의 상관관계가 낮을수록 일반화 오류가 낮아짐
- 따라서 일반화 오류가 낮아짐

■ 변수의 중요도

- 랜덤 포레스트는 다중선형 회귀분석/로지스틱 회귀분석과는 달리 **개별 변수가 통계적** 으로 얼마나 유의한지에 대한 정보를 제공하지 않음
- 대신 랜덤 포레스트는 다음과 같은 간접적인 방식으로 변수의 중요도를 추정함
 - ❖ 1단계: 원래 데이터 집합에 대해서 OOB Error를 구함
 - ❖ 2단계: 특정 변수의 값을 임의로 뒤섞은(random permutation) 데이터 집합에 대해서 OOB Error를 구함
 - ❖ 3단계: 개별 변수의 중요도는 2단계와 1단계 OOB Error의 평균과 분산을 고려하여 추정

■ 변수의 중요도

■ 변수의 중요도

- 트리의 크기에 따른 분류 경계면의 변화
 - 단일 트리는 이진 경계면을 생성
 - 랜덤 포레스트는 예측값이 보다 연속형의 스코어에 가깝게 생성됨

EOD