Breaking Credit Cards with Tamarin

Xenia Hofmeier

based on Slides by Jorge Toro Institute of Information Security ETH Zurich

Tamarin Prover Tutorial, Summerschool on real-world crypto and privacy, v.1 June 4, 2024

FMV standard

- ► EMV (or "Chip & PIN") is the protocol standard for smartcard payment
- Founded by Europay, Mastercard, and Visa, other payment networks joined too
- ▶ 12+ billion EMV cards in circulation worldwide
- EMV was advertised to offer the highest **security**

EMV security

Primary goal: protect cardholders

Low-value purchases do not require a PIN

High-value purchases should be protected by PIN

EMV security

Primary goal: protect cardholders

Low-value purchases do not require a PIN

High-value purchases should be protected by PIN

We'll show that they are not

Images from: https://pngtree.com/so/extend-a-finger https://pngtree.com/so/emoji-icons

Involved parties

. . .

1. **Initialization**: card and terminal agree on application to use and exchange card and transaction data

- Initialization: card and terminal agree on application to use and exchange card and transaction data
- Card Authenticates to the Terminal: terminal performs a PKI-based validation of the card. Multiple methods exist.

- Initialization: card and terminal agree on application to use and exchange card and transaction data
- Card Authenticates to the Terminal: terminal performs a PKI-based validation of the card. Multiple methods exist.
- Cardholder Verification: terminal checks that person presenting the card is the legitimate cardholder. Four (digital) methods:
 - Signature
 - No CVM
 - Plaintext PIN
 - Offline Enciphered PIN
 - Online PIN
 - Consumer Device CVM

- Initialization: card and terminal agree on application to use and exchange card and transaction data
- Card Authenticates to the Terminal: terminal performs a PKI-based validation of the card. Multiple methods exist.
- Cardholder Verification: terminal checks that person presenting the card is the legitimate cardholder. Four (digital) methods:
 - Signature
 - No CVM
 - Plaintext PIN
 - Offline Enciphered PIN
 - Online PIN
 - Consumer Device CVM
- Card Authenticates to the Bank: The card generates an MAC for the card. The card and Bank share a symmetric key.

Break, Fix, Verify

- ▶ Developed first comprehensive model of EMV (Used Tamarin to analyze 2,000+ pages of paper specification)
- Found both known and new security issues
- Proposed and machine-checked fixes (disclosed to relevant vendors)

Modelling the configurations

- ▶ Different Kernels, configurations in one model:
 - ► Allow for different configurations in parallel
 - Using branching

Analysing Configurations seperately

- Generate one model for each configuration
- ▶ The lemmas analyze only one configuration: Configuration models differ in the action facts for the lemmas
- Results in 24 Models for Contact and 17 for contactless
- Analyze each lemma for each configuration model
- ▶ We can identify secure and vulnerable configurations

Target Model	exec.	bank accepts	auth. to terminal	auth. to bank
Visa_EMV_Low	✓	✓	× ⁽¹⁾	× ⁽¹⁾
$Visa_EMV_High$	\checkmark	\checkmark	$\times^{(1)}$	× ⁽¹⁾
Visa_DDA_Low	\checkmark	× ⁽²⁾	× ⁽²⁾	\checkmark
Visa_DDA_High	\checkmark	\checkmark	\checkmark	\checkmark
Mastercard_SDA_OnlinePIN_Low	✓	× ⁽²⁾	× ⁽²⁾	✓
Mastercard_SDA_OnlinePIN_High	\checkmark	\checkmark	✓	\checkmark
$Mastercard_SDA_NoPIN_Low$	\checkmark	× ⁽²⁾	× ⁽²⁾	\checkmark
$Mastercard_SDA_NoPIN_High$	_(3)	-	-	-
$Mastercard_DDA_OnlinePIN_Low$	\checkmark	× ⁽²⁾	× ⁽²⁾	✓
Mastercard_DDA_OnlinePIN_High	\checkmark	\checkmark	✓	✓
Mastercard_DDA_NoPIN_Low	\checkmark	× ⁽²⁾	× ⁽²⁾	✓
$Mastercard_DDA_NoPIN_High$	_(3)	_	_	_
Mastercard_CDA_OnlinePIN_Low	\checkmark	\checkmark	✓	✓
Mastercard_CDA_OnlinePIN_High	\checkmark	\checkmark	✓	✓
Mastercard_CDA_NoPIN_Low	\checkmark	\checkmark	\checkmark	\checkmark
$Mastercard_CDA_NoPIN_High$	_(3)	_	-	-

Legend:

✓: property verified ×: property falsified -: not applicable

(1): disagrees with card on CVM $\,$ (2): disagrees with card on AC

(3): high-value transactions without CVM are not completed contactless **bold**: satisfies all 4 properties

Target Model	exec.	bank accepts	auth. to terminal	auth. to bank
Visa_EMV_Low	√	√	× ⁽¹⁾	$\times^{(1)}$
Visa_EMV_High				
Visa_DDA_Low				
Visa_DDA_High				
Mastercard_SDA_OnlinePIN_Low				
Mastercard_SDA_OnlinePIN_High				
Mastercard_SDA_NoPIN_Low				
Mastercard_SDA_NoPIN_High				
Mastercard_DDA_OnlinePIN_Low				
Mastercard_DDA_OnlinePIN_High				
Mastercard_DDA_NoPIN_Low				
Mastercard_DDA_NoPIN_High				
Mastercard_CDA_OnlinePIN_Low	✓	✓	\checkmark	✓
Mastercard_CDA_OnlinePIN_High	✓	✓	\checkmark	\checkmark
Mastercard_CDA_NoPIN_Low	✓	\checkmark	\checkmark	\checkmark
Mastercard_CDA_NoPIN_High				

 Common Mastercard transactions are secure

Legend:

- √: property verified
 X: property falsified
 -: not applicable
- (1): disagrees with card on CVM (2): disagrees with card on AC
- (3): high-value transactions without CVM are not completed contactless **bold**: satisfies all 4 properties

Target Model	exec.	bank accepts	auth. to terminal	auth. to bank
Visa_EMV_Low	✓	√	× ⁽¹⁾	× ⁽¹⁾
Visa_EMV_High	\checkmark	\checkmark	× ⁽¹⁾	× ⁽¹⁾
Visa_DDA_Low				
Visa_DDA_High				
Mastercard_SDA_OnlinePIN_Low				
Mastercard_SDA_OnlinePIN_High				
Mastercard_SDA_NoPIN_Low				
Mastercard_SDA_NoPIN_High				
Mastercard_DDA_OnlinePIN_Low				
Mastercard_DDA_OnlinePIN_High				
Mastercard_DDA_NoPIN_Low				
Mastercard_DDA_NoPIN_High				
Mastercard_CDA_OnlinePIN_Low				
Mastercard_CDA_OnlinePIN_High				
Mastercard_CDA_NoPIN_Low				
Mastercard_CDA_NoPIN_High				

Common Mastercard transactions are secure

 Common Visa transactions are not secure

Legend:

- √: property verified
 X: property falsified
 -: not applicable
- (1): disagrees with card on CVM (2): disagrees with card on AC
- (3): high-value transactions without CVM are not completed contactless **bold**: satisfies all 4 properties

► Card's choice for Cardholder Verification Method (CVM) is encoded in the Card Transaction Qualifiers (CTQ)

- Card's choice for Cardholder Verification Method (CVM) is encoded in the Card Transaction Qualifiers (CTQ)
- CTQ protected only by the Signed Dynamic Authentication Data (SDAD)

- Card's choice for Cardholder Verification Method (CVM) is encoded in the Card Transaction Qualifiers (CTQ)
- CTQ protected only by the Signed Dynamic Authentication Data (SDAD)
- Most Visa transactions don't use the SDAD

- Card's choice for Cardholder Verification Method (CVM) is encoded in the Card Transaction Qualifiers (CTQ)
- CTQ protected only by the Signed Dynamic Authentication Data (SDAD)
- Most Visa transactions don't use the SDAD
- Thus CTQ and CVM can be modified!

Machine-in-the-middle attack built on top of a relay attack architecture:

Machine-in-the-middle attack built on top of a relay attack architecture:

1. Terminal sends command indicating Cardholder Verification Required

Machine-in-the-middle attack built on top of a **relay attack** architecture:

- 1. Terminal sends command indicating Cardholder Verification Required
- 2. Card responds with CTQ indicating Online PIN Required

Machine-in-the-middle attack built on top of a **relay attack** architecture:

- 1. Terminal sends command indicating Cardholder Verification Required
- 2. Card responds with CTQ indicating Online PIN Required
- Attacker modifies CTQ to indicate that Online PIN is not Required and Consumer Device CVM was Performed

What about Mastercard?

- ▶ Before we said that common Mastercard **transactions** are **secure**
- ▶ Does this mean that Mastercard **cardholders** are **safe**?

What about Mastercard?

- ▶ Before we said that common Mastercard **transactions** are **secure**
- ▶ Does this mean that Mastercard cardholders are safe?
- ▶ NO: There is another attack!

PIN bypass attack targeting masteracard

Problem: lack of integrity protection for card data (AIDs) that determines the EMV protocol version (a.k.a. kernel) to use.

Attack idea: replace card's AIDs with the Visa AID to deceive the terminal into activating the Visa kernel.

PIN bypass attack targeting masteracard

Problem: lack of integrity protection for card data (AIDs) that determines the EMV protocol version (a.k.a. kernel) to use.

Attack idea: replace card's AIDs with the Visa AID to deceive the terminal into activating the Visa kernel

- ► Simultaneously perform a Visa transaction with the terminal and a Mastercard transaction with the card.
- ► For Visa transaction, apply previously described attack on Visa!

Target Model	exec.	bank accepts	auth. to terminal	auth. to bank
Visa_EMV_Low	√	√	× ⁽¹⁾	× ⁽¹⁾
$Visa_EMV_High$	\checkmark	\checkmark	$\times^{(1)}$	$\times^{(1)}$
Visa_DDA_Low	\checkmark	× ⁽²⁾	× ⁽²⁾	\checkmark
Visa_DDA_High	\checkmark	\checkmark	\checkmark	\checkmark
Mastercard_SDA_OnlinePIN_Low	√	× ⁽²⁾	× ⁽²⁾	✓
Mastercard_SDA_OnlinePIN_High	\checkmark	\checkmark	\checkmark	\checkmark
Mastercard_SDA_NoPIN_Low	\checkmark	× ⁽²⁾	× ⁽²⁾	\checkmark
Mastercard_SDA_NoPIN_High	_(3)	-	_	-
$Mastercard_DDA_OnlinePIN_Low$	\checkmark	× ⁽²⁾	× ⁽²⁾	\checkmark
Mastercard_DDA_OnlinePIN_High	\checkmark	\checkmark	✓	\checkmark
Mastercard_DDA_NoPIN_Low	\checkmark	× ⁽²⁾	× ⁽²⁾	\checkmark
Mastercard_DDA_NoPIN_High	_(3)	_	_	_
Mastercard_CDA_OnlinePIN_Low	\checkmark	\checkmark	✓	\checkmark
Mastercard_CDA_OnlinePIN_High	\checkmark	\checkmark	\checkmark	\checkmark
Mastercard_CDA_NoPIN_Low	\checkmark	\checkmark	\checkmark	\checkmark
$Mastercard_CDA_NoPIN_High$	_(3)	-	-	_

 Common Mastercard transactions are secure

Why did we not capture the Card Brand Mixup attack previously?

Legend:

√: property verified
×: property falsified
−: not applicable

- (1): disagrees with card on CVM $\,$ (2): disagrees with card on AC
- (3): high-value transactions without CVM are not completed contactless **bold**: satisfies all 4 properties

. . .

But what card data does the merchant use to determine the payment network?

But what card data does the merchant use to determine the payment network? The *Application Identifier* (AID) or the *Primary Account Number* (PAN)?

But what card data does the merchant use to determine the payment network?

The Application Identifier (AID) or the Primary Account Number (PAN)?

Previous model: AID, New model: PAN

Good News

Following our disclosure, Mastercard deployed countermeasures at network level!

Mastercard Cards are now secure

Right?...

Mastercard Cards are now secure

Right?...

Well....

Bypassing Cardholder Verification for Mastercard

- ► Card announces **supported CVMs** in the CVM List
- ► The card authenticates the CMV List to the terminal using its signature which is authenticated by the **card's certificate** (signed by the issuer)
- ▶ What if this authentication fails?

Certificate verification

- ► Terminal has a **list of root certificates**
- ► Root CAs provide certificate for card issuers
- Card issuers provide certificates stored on cards
- Card sends signature, certificates, and information on CA to Terminal
- ▶ Terminal looks up the root CA certificate in its database according to:
 - Registered Application Provider Identifier, which is derived from the Application Identifier (AID)
 - the CA Public Key Index

➤ On Page 255 of the Mastercard kernel, there are some suspicious lines:

IF [The CA Public Key Index (Card) is not present in the CA Public Key Database]

THEN

SET 'CDA failed' in Terminal Verification Results

ENDIF

➤ On Page 255 of the Mastercard kernel, there are some suspicious lines:

IF [The CA Public Key Index (Card) is not present in the CA Public Key Database]

THEN

SET 'CDA failed' in Terminal Verification Results

ENDIF

▶ We see the effect on page 435:

➤ On Page 255 of the Mastercard kernel, there are some suspicious lines:

IF [The CA Public Key Index (Card) is not present in the CA Public Key Database]

THEN

SET 'CDA failed' in Terminal Verification Results

ENDIF

- ▶ We see the effect on page 435:
- ► "Do not request CDA" ⇔ "No signature verificaiton is performed"

➤ On Page 255 of the Mastercard kernel, there are some suspicious lines:

IF [The CA Public Key Index (Card) is not present in the CA Public Key Database]

THEN

SET 'CDA failed' in Terminal Verification Results

ENDIF

- ▶ We see the effect on page 435:
- ► This can happen, because the CA Public Key Index is not cryptographically protected

Inducing Authentication Failure

Providing an **invalid CA Public Key Index** and some additional changes will result in the **terminal accepting** the transaction **without verifying the PIN** although the card would require it.

Role of Tamarin

- Previous models did not capture this attack as they abstracted the terminal's decision tree.
- ► Tamarin was used to verify proposed counter measures.

Conclusion

- ▶ If you are building critical infrastructure, you have to get it right!
- Formal automated verification is a necessity
 We (humans) cannot cover the full execution space that complex systems have
- ► Existing verification tools are up to the task

 Tamarin, ProVerif, etc... have been used to analyse TLS, 5G AKA, etc...
- ➤ Systems must be verified as a whole and not by parts separately Separate system parts may be secure but composition may be insecure
- ► Ambiguity and redundancy should be avoided in system specification Critical mechanisms (e.g. routing) of the system should be unambiguously specified

About this work

- ► The EMV Standard: Break, Fix, Verify, published at the 42nd IEEE Symposium on Security and Privacy (S&P 2021)
- ► Card Brand Mixup Attack: Bypassing the PIN in non-Visa cards by Using Them for Visa Transactions, published at the 30th USENIX Security Symposium (USENIX Security 21)
- ► Inducing Authentication Failures to Bypass Credit Card PINs, published at the 32nd USENIX Security Symposium (USENIX Security 23)
- ▶ Webpage: https://emvrace.github.io
- ► Team:

David Basin

Ralf Sasse

Jorge Toro

Patrick Schaller