Final exam n°1

 ${\bf Duration: three\ hours}$

Documents and calculators not allowed

Name :	First Name :	Class:
	tapled ones provided for answers shall be corrected. pencils shall not be corrected.	
Exercise 1 (4 poin	ts)	
1. Using the ratio test (D	'Alembert's test), determine the nature of the series $\sum u_n$	where, for all $n \in \mathbb{N}^*$, $u_n = \frac{10^n}{n \cdot 4^{2n+1}}$.
2. Using the root test (Ca	uchy's test), determine the nature of the series $\sum v_n$ where	e, for all $n \geqslant 2$, $v_n = \frac{n}{\left(\ln(n)\right)^n}$.

Exercise 2 (4 points)

$$\text{Let } A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 1 \end{array} \right) \text{ and } B = \left(\begin{array}{ccc} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{array} \right).$$

Are A and B diagonalizable in $\mathcal{M}_3(\mathbb{R})$? If so, determine D et P.

N.B.: The bases of the eigenspaces must be deduced from clear reasoning, and not by randomly picking particular values.

[This frame continues on next page]

•			
			/

Exercise 3 (3.5 points)

Let
$$a \in \mathbb{R}$$
 and $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2-a & a-2 & a \end{pmatrix}$.

1. Determine the characteristic polynomial of A, denoted P_A , by choosing as first transformation:

 $C_1 \longleftarrow C_1 + C_2$.

2. Study the diagonalizability of A in $\mathcal{M}_3(\mathbb{R})$ depending on the value of a.

N.B.: when A is diagonalizable, the diagonalization is not required.

[This frame continues on next page]

Exercise 4 (3.5 points)

We want to study the following linear differential system : $\left\{ \begin{array}{l} x'(t) = x(t) + 8y(t) \\ y'(t) = x(t) + 3y(t) \end{array} \right.$

Let's denote $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

1. Determine $A \in \mathcal{M}_2(\mathbb{R})$ such that X'(t) = AX(t).

2. Diagonalize A, by exhibiting D and P. The matrix D will be of the form $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, where a and b are to be determined.

3. [Please check that you have chosen a < b in the matrix D obtained in the previous question]. From the previous questions, deduce x(t) and y(t) as functions of t.

Exercise 5 (4 points)

1. Let $A=\left(\begin{array}{cc} -1 & 2 \\ 1 & 0 \end{array}\right)$ and $f:\left\{\begin{array}{cc} \mathscr{M}_2(\mathbb{R}) & \longrightarrow \mathscr{M}_2(\mathbb{R}) \\ M & \longmapsto AM \end{array}\right.$. Determine the matrix of f with respect to the standard basis

$$\mathscr{B} = \left(E_{11} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), E_{12} = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), E_{21} = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), E_{22} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)\right) \text{ of } \mathscr{M}_2(\mathbb{R}).$$

2. Let $\Delta: \left\{ \begin{array}{ccc} \mathscr{M}_2(\mathbb{R}) & \longrightarrow & \mathbb{R}_2[X] \\ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) & \longmapsto & (a+d)X^2 + (b+c)X + d - c \end{array} \right.$

Determine the matrix of Δ with respect to the standard bases of $\mathcal{M}_2(\mathbb{R})$ and $\mathbb{R}_2[X]$.

Exercise 6 (2 points)

Let $(a_1, ..., a_n) \in \mathbb{R}^n$. Express the following determinant (over factorized form), indicating the transformations: