Équations différentielles (GM3)

Hasnaa Zidani

LMI - INSA Rouen

2022/2023 - CM5

H. Zidani ()

Équations différentielles

CM5 - Mercredi 15 mars 2023

4/45

Sensibilité par rapport aux conditions initiales

Problème de Cauchy: (EDO)

$$y'(t) = f(y(t)) \quad \forall t \in I_{\nu},$$

 $y(t_0) = \nu$

- ightharpoonup Où $v \in \mathbb{R}^n$ et $0 \in I_v$ l'intervalle associé à la solution maximale (I_v, y_v) ;
- ightharpoonup La fonction $f:U\to\mathbb{R}^n$ est C^1 , avec $U\subset\mathbb{R}^n$ un ouvert non vide.

Rappel

- le système ci-dessus est autonome^a
- Pour un système générale de la forme

$$z'(t) = g(t, z(t)) \quad \forall t \in J \subset I, \qquad z(0) = z_0,$$

on peut toujours se ramener à une forme autonome, il suffit de poser

$$y = \begin{pmatrix} t \\ z \end{pmatrix}, \qquad f(y) = \begin{pmatrix} 1 \\ g(t,z) \end{pmatrix}, \qquad v = \begin{pmatrix} 0 \\ z_0 \end{pmatrix}.$$

ac'est à dire que la dynamique f ne dépend pas explicitement de la variable t

H. Zidani () Équations différentielles CM5 - Mercredi 15 mars 2023 2/15

Notion de flot

Définition

On appelle *flot* du champ de vecteurs *f*, l'application

$$\Phi:(t,v)\longmapsto y_v(t)$$

où (I_v, y_v) est la solution maximale de l'EDO avec $y_v(0) = v$.

H. Zidani ()

Équations différentielles

CM5 - Mercredi 15 mars 2023

3/15

Sensibilité par rapport aux conditions initiales

Notion de Flot

Remarque

➤ Lorsqu'on fixe $v \in \mathbb{R}^n$, l'application $t \longmapsto \Phi(t, v)$ coïncide avec y_v . Donc, on a:

$$\frac{\partial}{\partial t}\Phi(t,v)=f(\Phi(t,v))\quad\forall t\in I_v,$$

$$\Phi(0,v)=v.$$

H. Zidani () Équations différentielles CM5 - Mercredi 15 mars 2023 4/15

➤ Pour une étude qualitative de l'EDO, il est aussi important d'analyser, à *t* fixé, l'application

$$\Phi_t: \mathbf{V} \longmapsto \Phi(t, \mathbf{V}) = \mathbf{y}_{\mathbf{V}}(t).$$

➤ Deux points de vue différents:

$$\left\{egin{array}{ll} ext{solutions (ou orbites):} & t\longmapsto y_{v}(t) \ \end{array}
ight.$$

H. Zidani ()

Équations différentielles

CM5 - Mercredi 15 mars 2023

5/15

Sensibilité par rapport aux conditions initiales

Orbites

Propriétés des orbites

Définition

On appelle *orbite* d'un point $v \in U$ (ou trajectoire passant pas v) la courbe

$$\mathcal{O}_{v} := \{\Phi_{v}(t) \mid t \in I_{v}\}.$$

Théorème

Soient $v, w \in U$, on a:

$$w \in \mathcal{O}_{v} \Longrightarrow v \in \mathcal{O}_{w}$$
.

Et par conséquent, deux orbites différentes ne se croisent pas.

H. Zidani () Équations différentielles CM5 - Mercredi 15 mars 2023 6/15

- ➤ II y a trois sortes d'orbites
 - **Points équilibre**: $\mathcal{O}_{v} = \{v\}$ et donc $y_{v} \equiv v$;
 - Courbe fermée: $\exists w_0 \in U \text{ et } \exists T > 0$, t.q. $\Phi_T(w_0) = w_0$ On parle alors de courbe T-périodique.
 - Courbe ouverte: $t \neq s \Longrightarrow \Phi_t(v) \neq \Phi_s(v)$.

H. Zidani ()

Équations différentielles

CM5 - Mercredi 15 mars 2023

7/15

Sensibilité par rapport aux conditions initiales

Orbites

Exemple 1 - (1/2)

Considérons le système

$$\begin{cases} x'(t) = 2y(t), \\ y'(t) = -3x^{2}(t) - 12x(t) \end{cases}$$

→ Points déquilibre:

$$O = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad A = \begin{pmatrix} -4 \\ 0 \end{pmatrix}.$$

→ Les trajectoires vérifient

$$x^{3}(t) + 6x^{2}(t) + y^{2}(t) = c, \qquad c \in \mathbb{R}.$$

H. Zidani () CM5 - Mercredi 15 mars 2023 8/15

Exemple 1 - (2/2)

→ Les trajectoires vérifient

$$x^{3}(t) + 6x^{2}(t) + y^{2}(t) = c,$$
 $c \in \mathbb{R}.$

H. Zidani ()

Équations différentielles

CM5 - Mercredi 15 mars 2023

9/15

Sensibilité par rapport aux conditions initiales

Propriétés du flot

Proposition - Propriétés du flot

Soit $v \in U$. Si $t_1 \in I_V$ et $t_2 \in I_{\Phi_{t_1}(v)}$, alors $t_1 + t_2 \in I_V$, et on a:

$$\Phi_{t_1+t_2}(v) = \Phi_{t_2}(\Phi_{t_1}(v)).$$

En particulier, si $t \in I_v$, alors

$$\Phi_{-t}(\Phi_t(v))=v.$$

Exemple

Dans le cas d'un système linéaire f(y) = Ay, le flot est une fonction linéaire

$$\Phi_t = e^{tA}$$
.

H. Zidani () CM5 - Mercredi 15 mars 2023 10 / 15

Domaine de définition du flot

➤ Si le problème (EDO) admet une solution globale pour tout $v \in U$. Alors le domaine de Φ est $\mathcal{D} = \mathbb{R} \times U$. Dans ce cas, pour tout $t \in \mathbb{R}$, on a:

$$\Phi_t \circ \Phi_s = \Phi_{t+s}; \qquad \Phi_{-t} \circ \Phi_t = Id;$$

 $\Phi_0 = Id.$

De plus, $\Phi_t(\cdot)$ est **continue**

> En général le domaine de Φ est

$$\mathcal{D} = \{(t, v) \in \mathbb{R} \times U \mid t \in I_v.\}$$

Avant d'étudier la continuité du flot, il faut d'abord s'assurer que le domaine \mathcal{D} est bien un ouvert !

H. Zidani ()

Équations différentielles

CM5 - Mercredi 15 mars 2023

11/15

Sensibilité par rapport aux conditions initiales

Propriétés du flot

Théorème

Soit $x_0 \in U$, et soit (I_{x_0}, y) une solution maximale^a sur $I_{x_0} =]t_-, t_+[$ vérifiant $y(0) = x_0$.

Il existe un voisinage $\mathcal{V} \subset U$ de x_0 tel que pour tout $v \in \mathcal{V}$, l'équation (EDO) admet une unique solution y_v définie sur $]t_-, t_+[$ et vérifiant $y_v(0) = v$.

De plus, l'application $v \mapsto y_v(\cdot)$ est de classe C^1 sur V et sa différentielle en x_0 est l'application qui à $w \in U$ associe la solution du système:

$$\begin{cases} z'(t) = Df(y(t))z(t) & t \in]t_-, t_+[, \\ z(0) = w. \end{cases}$$

 $^aI_{x_0}=]t_-\,,\,t_+[$ un intervalle maximal contenant 0 et sur lequel est définie la solution y de (ED0) vérifiant $y(0)=x_0.$

H. Zidani () Équations différentielles CM5 - Mercredi 15 mars 2023 12/15

Idée de la preuve

On applique le théorème de fonction implicite à la fonction

$$\Psi: U \times C^1([t_-, t_+]) \longrightarrow C^1([t_-, t_+])$$

Théorème (Fonctions implicites)

 $-J:\Omega\subset\mathbb{E}\longrightarrow\mathbb{F}$ de classe C^k

Si $-(a,b) \in \Omega$ tel que J(a,b) = 0

- La Jacobienne (partielle) $[D_y J(a, b)]$ est bijective

Alors, il existe $\delta_1, \delta_2 > 0$ et $\varphi : \mathbb{B}(a, \delta_1) \longrightarrow \mathbb{B}(b, \delta_2)$ de classe C^k tels que

$$\left[x \in \mathbb{B}(a, \delta_1), \ y \in \mathbb{B}(b, \delta_2), \ J(x, y) = 0\right] \iff \left[x \in \mathbb{B}(a, \delta_1), y = \varphi(x)\right]$$

De plus, pour tout $x \in \mathbb{B}(a, \delta_1)$, on a:

$$D\varphi(x) = -(D_{Y}J(x,\varphi(x)))^{-1} \circ D_{X}J(x,\varphi(x)).$$

H. Zidani ()

Équations différentielles

CM5 - Mercredi 15 mars 2023

13/15

14/15

Stabilité des équilibres

Problème de Cauchy: (EDO)

$$y'(t) = f(y(t)) \quad \forall t \in I_v,$$

 $y(0) = v$

Définition

Soit $\bar{x} \in U$. On dit que \bar{x} est un **équilibre** si $f(\bar{x}) \equiv 0$.

Définition

* \bar{x} est **stable** ssi $\forall \epsilon > 0$, $\exists \delta > 0$ tel que

$$\|v - \bar{x}\| \le \delta \Longrightarrow \|y_v(t) - \bar{x}\| < \epsilon \qquad \forall t \ge 0.$$

 \star \bar{x} est **asymptotiquement stable** ssi \bar{x} est stable et il existe $\mathcal V$ un voisinage de \bar{x} tel que

$$v \in \mathcal{V} \Longrightarrow y_{v}(t) \longrightarrow \bar{x}$$
 quand $\to +\infty$.

H. Zidani ()

Équations différentielles

CM5 - Mercredi 15 mars 2023

15/15

Stabilité des équilibres

Points discutés au tableau

- * Stabilité par linéarisation d'un système non-linéaire autour d'un point d'équilibre
- * Stabilité par fonctions de Lyapounov.

H. Zidani () Équations différentielles CM5 - Mercredi 15 mars 2023 16/15