

xkcd.com/2054/

Text Mining and Information Retrieval: Part II

Laura Brown

Some slides adapted from P. Smyth; Han, Kamber, & Pei; Tan, Steinbach, & Kumar; C. Volinsky; R. Tibshirani; D. Kauchak and http://nlp.stanford.edu/IR-book/

Outline

- Ranked Retrieval
- Scoring documents
 - Jaccard coefficient
 - Bag-of-Words Model
- Vector space scoring

Ranked Retrieval

Introduction to Information Retrieval

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Ranked retrieval models

- In ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user

Premise: the ranking algorithm works

Scoring documents

Introduction to Information Retrieval

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Take 1: Jaccard coefficient

A common measure of overlap of two sets A and B

```
jaccard(A,B) = |A \cap B| / |A \cup B|

jaccard(A,A) = 1

jaccard(A,B) = 0 if A \cap B = 0
```

- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

 What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?

Query: ides of march

Document 1: caesar died in march

Document 2: the long march

$$jaccard(A,B) = |A \cap B| / |A \cup B|$$

```
jaccard(Q, doc1) = |\{ march \} | / | \{ ides of march Caesar died in \} = 1/6

jaccard(Q, doc2) = |\{ march \} | / | \{ ides of march the long \} = 1/5
```

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are often more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Bag-of-Words Model

Introduction to Information Retrieval

Recall: Term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Term-document count matrix

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in $\mathbb{N}^{|V|}$: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Note, that the term-document matrix, can be transposed for a document-term matrix; this format more closely matches the typical data form of [samples x variables]

16

Bag of words model

 Vector representation doesn't consider the ordering of words in a document

```
John is quicker than Mary and Mary is quicker than John have the same vectors
```

This is called the <u>bag of words</u> model.

Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
 - Note: Frequency means count in IR
- We want to use tf when computing querydocument match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

Log-frequency weighting

• The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} t f_{td} & \text{if } t f_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$$

- 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4, etc.
- Score for a document-query pair: sum over terms t in both q and d:

$$score = \sum_{t \in q \cap d} (1 + \log t f_{t,d})$$

 The score is 0 if none of the query terms is present in the document.

Rare terms are more informative

- Rare terms are more informative than frequent terms
 - Recall stop words

Consider a term in the query that is rare in the collection (e.g., arachnocentric)

- A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Bag-of-Words Model, continued

Introduction to Information Retrieval

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t by

$$idf_t = \log_{10} \frac{N}{df_t}$$

• We use $log(N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

idf example, suppose N = 1 million

term	df_t	idf_t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = \log_{10} \frac{N}{df_t}$$

There is one idf value for each term t in a collection

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$w_{t,d} = (\log(tf_{t,d}) + 1) * \log_{10}(\frac{N}{df_t})$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Score for a document given a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - **-** ...

Binary -> count -> weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Vector Representation

Introduction to Information Retrieval

Documents as vectors

- We have a |V|-dimensional vector space
 Terms are axes of the space
- Documents are points or vectors in this space
 - This is similar to how we discussed data in classification problems
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance

Formalizing vector space proximity

- First idea: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
 - ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean distance between $_{
m GOSSIP}$ q and d_2 is large even though the distribution of terms in the query q and the distribution of terms in the document d₂ are very similar.

Key idea: Rank documents according to angle with query.

Length normalization

 A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L₂ norm:

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
 - Long and short documents now have comparable weights

cosine(query, document)

$$\begin{array}{c}
 \text{Dot product} \\
 \text{cos}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}
\end{array}$$

 q_i is the weight of term i in the query d_i is the weight of term i in the document

 $\cos(\overrightarrow{q}, \overrightarrow{d})$ is the cosine similarity of \overrightarrow{q} and \overrightarrow{d} ... or, equivalently, the cosine of the angle between \overrightarrow{q} and \overrightarrow{d} .

cosine for length-normalized vectors

• For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized

cosine similarity illustrated

Example: Vector Representation

Introduction to Information Retrieval

Example: cosine similarity with 3 docs

How similar are the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

•	After	lengt	h
	norma	alizat	ion

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

 $cos(SaS,PaP) \approx 0.94$ $cos(SaS,WH) \approx 0.79$ $cos(PaP,WH) \approx 0.69$

tf-idf variants

Term frequency		Document frequency		Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{\textit{N}-\mathrm{d}\mathrm{f}_t}{\mathrm{d}\mathrm{f}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

Weighting may differ in queries vs. docs

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Document: logarithmic tf (I as first character), no idf and cosine normalization
- Query: logarithmic tf (l in leftmost column), idf (t in second column), cosine normalization ...

tf-idf example: Inc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term	Query					Document			Prod		
	tf- raw	tf- wt	df	idf	wt	n'lize	tf- raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

Vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Evaluation

Introduction to Information Retrieval

Evaluation

You have developed an IR system.

How do you tell if users are happy?

- Search returns products relevant to users
 - How do you assess this at scale?
- Search results get clicked a lot
 - Misleading information can cause a user to click
- Users buy after using the search engine
- Repeat visitors/buyers
- ...
- Most common proxy for user happiness?
 - Relevance of search results

Evaluating Text Retrieval: Unranked

• Precision: the percentage of retrieved documents that are in fact relevant to the query (i.e., "correct" responses)

 $precision = \frac{|\{Relevant\} \cap \{Retrieved\}|}{|\{Retrieved\}|}$

 Recall: the percentage of documents that are relevant to the query and were retrieved

$$recall = \frac{|\{Relevant\} \cap \{Retrieved\}|}{|\{Relevant\}|}$$

Precision vs. Recall

	Truth:Relevant	Truth:Not Relevant
Algorithm:Relevant	TP	FP
Algorithm: Not Relevant	FN	TN

We've been here before!

- Precision = TP / (TP+FP)
- Recall = TP / (TP+FN)
- Trade off:
 - If algorithm is "picky": precision high, recall low
 - If algorithm is "relaxed": precision low, recall high
- BUT: recall often hard if not impossible to calculate

Evaluation: Rank-based Measures

Introduction to Information Retrieval

Rank-based Measures

- Binary relevance
 - Precision@K (P@K)
 - Recall@K (R@K)
 - Mean Average Precision (MAP)
- Multiple levels of relevance
 - Normalized Discounted Cumulative Gain (NDCG)

Precision@K

- Set a rank threshold K
- Compute % relevant in top K

$$precision = \frac{|\{Relevant\} \cap \{Retrieved\}|}{|\{Retrieved\}|}$$

- Ignores documents ranked lower than K
- Ex:
 - Prec@3 of 2/3
 - Prec@4 of 2/4
 - Prec@5 of 3/5

In similar fashion we have Recall@K

Precision Recall Curve

 At different thresholds, we can plot a point for precision vs. recall

Mean Average Precision

- Consider rank position of each relevant doc
 - K₁, K₂, ... K_R
- Compute Precision@K for each K₁, K₂, ... K_R
- Average precision = average of P@K

has AvgPrec of
$$\frac{1}{3} \cdot \left(\frac{1}{1} + \frac{2}{3} + \frac{3}{5}\right) \approx 0.76$$

 MAP is Average Precision across multiple queries/rankings

Example: Average Precision

Ranking #1:
$$(1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78$$

Ranking #2:
$$(0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52$$

Example: MAP

average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53

Other Measures

- Discounted Cumulative Gain
- User Behavior
 - User Clicks
 - User Clicks sequence
- Eye-tracking User Study
 - Higher positions receive more user attention (eye fixation) and clicks than lower positions.
- A/B testing of web search

