Vibrations des structures & acoustique TP1: modélisation

- modèles système
- problèmes directs et inverses

Etienne Balmès, ENSAM/PIMM, SDTools

Copie: X:\Enseignants\balmes\Mevib\Slides_cours.pdf

A few vibration problems

Squeal, automotive acoustics, damping for engine fatigue Seismic response

Track settling

A multi-industry application field

M2 DSMSC (dynamique des structures matériaux et systèmes couplés en commun avec l'ECP)

What is a system?

- Inputs u(t): hammer with force measurement
- Outputs y(t)
 - Test: acceleration on the testbed
 - Computation : stresses
- State x(t)
 - Displacement & velocity field as function of time

$$\{\dot{x}(t)\} = f(x(t), u(t), p, t)$$
 evolution

$${y(t)} = g(x(t), u(t), p, t)$$
 observation

- Environment variables p
 - Dimensions, test piece (design point)
 - Temperature (value of constitutive law or state of thermoviscoelastic)
- Feature: ex. modal frequency (function of output)

Simple example: modified Oberst test for 3D weaved composite test

System models: nature & objectives?

What is a model

- A function relating input and outputs
- For one or many parametric configurations

Model categories

- Behavior models (meta-models)
 - Test, constitutive laws, Neural networks
 - Difficulties: choice of parametrization, domain of validity
- Knowledge models
 - Physical principles, low level meta-models

Why do we need system models? Design

- Become predictive : understand, know limitations
- Perform sizing, optimize, deal with robustness
 Certify
- · Optimize tests: number, conditions
- Understand relation between real conditions and certification
- Account for variability

Maintain during life

- Design full life cycle (plan maintenance)
- Use data for conditional maintenance (SHM)

FEM model as a system

System models of structural dynamics

·Coupling ...

Model validation and verification

Course outline

- Introduction
- How are modes measured
 - Mode ≈ resonance ≈ 1 DOF (degree of freedom) system
 - Transfer (series of modal contributions)
- · How are modes predicted
 - Modes, inputs, outputs, damping
- · Test / analysis correlation
 - Identification
 - Topology correlation
 - MAC / Updating
- Vibration design / conclusion

Copie: X:\Enseignants\balmes\Mevib\xxx

How are modes measured?

Experimental modal analysis: measurements

Modal analysis: transfers

Bode plot: visualization of transfer function

Resonance (1 DOF oscillator)

Dynamic equation:

$$m\ddot{q}(t) + c\dot{q}(t) + kq(t) = F(t)$$

Harmonic excitation

$$F(t) = \operatorname{Re}\left(F(\omega)e^{i\omega t}\right)$$

Harmonic forced response $\operatorname{Re}\left(q(\omega)e^{i\omega t}\right)$

$$\operatorname{Re}\left(q(\omega)e^{i\omega t}\right)$$

Dynamic equation:

$$\operatorname{Re}\left(\left(-\omega^2 m + i\omega c + k\right)q(\omega)e^{i\omega t} - F(\omega)e^{i\omega t}\right) = 0$$

Tranfer function:

$$H(\omega) = \frac{q(\omega)}{F(\omega)} = \frac{1}{-\omega^2 m + i\omega c + k}$$

1 DOF (Bode plot)

Response at resonance $H(w_n)=1/i2\zeta\omega_n^2$

1 input, 1 output, many resonances

MDOF multiple degree of freedom SISO single input single output

Spectral decomposition

MDOF (multiple resonances)

$$[\alpha(s)] = \sum_{j \in \text{identified}} \left(\frac{[T_j]}{s^2 + 2\zeta_j \omega_j s + \omega_j^2} \right)$$

MDOF MIMO system

- Poles depend on the system (not the input/output)
- The shape is associated with the input/output locations

Identification

Optimization

Family of models

$$\sum_{j \in \text{identified}} \left(\frac{[T_j]}{s^2 + 2\zeta_j \omega_j s + \omega_j^2} \right)$$

Course outline

- Introduction
- · How are modes measured
 - Mode ≈ resonance ≈ 1 DOF (degree of freedom) system
 - Transfer (series of modal contributions)
- · How are modes predicted
 - Modes, inputs, outputs, damping
- · Test / analysis correlation
 - Identification
 - Topology correlation
 - MAC / Updating
- Vibration design / conclusion

Copie: X:\Enseignants\balmes\UEC\Ensam_Modal_S2.pdf

How are transfers predicted?

- Unbalance : harmonic at Ω
- Aerodynamic loads ($n\Omega$)
- Rotor/stator contact

Inputs (where)

- Point mass
- Distributed pressure
- Blade tip

Normal modes of elastic structure

· Nominal model (elastic + viscous damping)

$$[Ms^{2} + Cs + K] \{q(s)\} = [b] \{u(s)\}$$
$$\{y(s)\} = [c] \{q(s)\}$$

· Conservative eigenvalue problem

$$- [M] \{\phi_j\} \omega_j^2 + [K]_{N \times N} \{\phi_j\}_{N \times 1} = \{0\}_{N \times 1}$$

- M>0 & K \geq 0 \Rightarrow ϕ real
- Partial solvers exist

Normal modes of elastic structure

- Orthogonality
- Scaling conditions

 - Unit mass $\{\phi_j\}^T[M]\{\phi_j\}=1$ Unit amplitude $[c_s]\{\tilde{\phi}_j\}=1\quad \mu_j(c_s)=([c_i]\{\phi_j\})^{-2}$
- Principal coordinates

$$[\phi]^{T}[M][\phi] = [\ \mu_{j} \]$$
$$[\phi]^{T}[K][\phi] = [\ \mu_{j} \omega_{j}^{2} \]$$

$$\{\phi_i\}^T[M]\{\phi_i\} = 1$$

$$\left[[I]s^2 + \left[\Gamma]s + \left[\backslash \omega_j^2 \backslash\right]\right] \{p(s)\} = \left[\phi^T b\right] \{u(s)\}$$

$$\{y(s)\} = [c\phi]\{p(s)\}$$

Command and observation

$$[Ms^2 + Cs + K] \{q(s)\} = [b] \{u(s)\}$$
$$\{y(s)\} = [c] \{q(s)\}$$

- Loads decomposed as spatially unit loads and inputs
 {F(t)} = [b] {u(t)}
- {y} outputs are linearly related to DOFs {q} using an observation equation

$${y(t)} = [c] {q(t)}$$

• Simple case: extraction $\{w_2\}=[0\ 0\ 1\ 0]\{q\}$

 More general: intermediate points, reactions, strains, stresses, ...

Observability/controlability

Modal damping assumption

• Assume Γ diagonal

$$[\Gamma] = \left[\phi^T C \phi\right] = \left[^{\backslash} 2 \zeta_j \omega_{j_{\backslash}}\right]$$

Damping ratio ζ measured or design parameter Pure metal 0.05 %, assembled structure $\approx 1\%$ Full car \approx 2-4%, with soil radiation up to 10 %

Leads to second order spectral decomposition

$$H(s) = \sum_{j=1}^{N} \frac{[c]\{\phi_j\}\{\phi_j\}^T[b]}{s^2 + 2\zeta_j\omega_j s + \omega_j^2} = \sum_{j=1}^{N} \frac{[T_j]}{s^2 + 2\zeta_j\omega_j s + \omega_j^2}$$

Mode shape Participation factorResidue

- Rayleigh
 Physical domain
 Modal domain

$$C = \alpha[M] + \beta[K]$$

$$\zeta_j = \frac{\alpha}{2} \frac{1}{\omega_j} + \frac{\beta}{2} \omega_j$$

TP ultérieurs (éléments)

Acoustic finite elements

- Unknown pressure, gradient = particle velocity $\begin{cases} p,x \\ p,y \\ n,z \end{cases} = \begin{bmatrix} N,x \\ N,y \\ N,z \end{bmatrix} \{ p \}$

Mass and stiffness matrices

$$M_{ij} = \int_{\Omega} \frac{1}{\rho_0 C^2} \{N_i\} \{N_j\} \quad K_{ij} = \int_{\Omega} \frac{1}{\rho_0} \{N_{i,k}\} \{N_{j,k}\}$$

"Load" ≈ fluid source

$$B_i = \int_{\partial\Omega} \{N_i\} \{V_e\}$$

• Wall impedance $Z = \rho CR \approx \text{viscous damping}$

$$C_{ij} = \int_{\partial \Omega_Z^e} \frac{1}{Z} \{N_i\} \{N_j\}$$

Kundt tube experiment

- Identify impedance $Z = \rho CR$
- Verify sound velocity C

Micro (output p)

Foam (wall damping)

Elastic modes of closed tube

$$[K - \omega_j^2 M] \{\phi_j\} = 0$$

Forced response with wall impedance

 $\{p(\omega)\} = \left[-\omega_j^2 M + i\omega C_Z + K\right]^{-1} \{b\}$ View space View frequency

Beam vibration

- Transfer measurement
- · Find resonances, see influence of shape
- Analyze damping

Tuned mass dampers / vibration absorber

- Resonance splitting
 - ·Two lower resonances or
 - ·One anti-resonance

- Countless applications:
 helicopters, buildings, lamp posts, cars, ...
- Current trend: non-linear absorber (self tuning)

Sample dampers

Fluid sloshing: No moving parts

· Rings, cables, ...

Example: structural dynamics modification

Coincidence problem
Modification: mass,
stiffness or damping
modifications

Mode crossing

 High sensitivity for close modes associated with mode crossing

Plate /structural modification


```
mevib16('initmv') % Initialize
PNode: right click "cursor node" to find node
number
PM: Adjust mass value (kg)
```

```
mevib16('SetMv', ...
struct('PNode',9,'PM',.001,'PModes','do'));
```


Course outline

- Introduction
- · How are modes measured
 - Mode ≈ resonance ≈ 1 DOF (degree of freedom) system
 - Transfer (series of modal contributions)
- · How are modes predicted
 - Modes, inputs, outputs, damping
- Test / analysis correlation
 - Identification
 - Topology correlation
 - MAC / Updating
- Vibration design / conclusion

Copie: X:\Enseignants\balmes\Mevib\Ensam_Modal_S2.pdf

Comparing test & FEM

Identification known @ sensors

FEM known @ nodes

Topology correlation = observe FEM @ sensors

$${y(t)} =$$

Where is the error?

Topology errors

· sensor/act position

matching

Identification error

- Noisy measurements
- Identification bias
- NL, time varying, ...

FEM error

- · Geometry
- ·Material parameters
- Contact properties

Parametrization

Variable contact surface, contact, sliding

Chassis Brakes International Eurobrake 2014

Variable geometry

Plateau frein / filtre modal

MAC: comparing shapes

Shapes are compared through correlation coefficient (Modal Assurance Criterion)

$$MAC(U, V) = \frac{|\{U\}^{H} \{V\}|^{2}}{|\{U\}^{H} \{U\}||\{V\}^{H} \{V\}|}$$

16.39 Hz 1.23 %, 64.16 Hz 1.22 %

Next step: modal updating (recalage) = use correlation to correct model parameters

Course outline

- Introduction
- · How are modes measured
 - Mode ≈ resonance ≈ 1 DOF (degree of freedom) system
 - Transfer (series of modal contributions)
- · How are modes predicted
 - Modes, inputs, outputs, damping
- Test / analysis correlation
 - Identification
 - Topology correlation
 - MAC / Updating
- · TP ultérieurs

Copie: X:\Enseignants\balmes\Mevib