Nombres réels

Partie entière

QCOP REEL. 1

Soit $x \in \mathbb{R}$.

- \blacksquare (a) Définir le nombre |x|.
 - **(b)** Donner un encadrement de x par $\lfloor x \rfloor$.
 - (c) En déduire que

$$x-1<|x|\leqslant x.$$

 \bullet Soit $n \in \mathbb{N}^*$. Montrer que

$$\lfloor 3^n x \rfloor - 3 \left| 3^{n-1} x \right| \in \{0, 1, 2\}.$$

QCOP REEL.2

Soient $x, y \in \mathbb{R}$.

- \blacksquare Donner un encadrement de x par $\lfloor x \rfloor$.
- (a) On suppose que $\lfloor x \rfloor > \lfloor y \rfloor$. Montrer que

$$x \geqslant |x| \geqslant |y| + 1 > y.$$

- (b) En raisonnant par contraposée, en déduire que $|\cdot|$ est croissante sur \mathbb{R} .
- Montrer que $\lfloor \cdot \rfloor$ n'est pas strictement croissante.
- **2** On suppose que $y \in \mathbb{Z}$ et x < y. Comparer |x| et |y|.

Densité

QCOP REEL.3

- Soit $x \in \mathbb{R}$. Soit $n \in \mathbb{N}$. Qu'est-ce qu'une approximation décimale de x à 10^{-n} près?
- \blacksquare Soit $A \subset \mathbb{R}$. Définir « A est dense dans \mathbb{R} ».
- (a) Montrer que

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N}: \ 10^{-N_{\varepsilon}} \leqslant \varepsilon.$$

- **(b)** Montrer que \mathbb{D} est dense dans \mathbb{R} .
- \aleph Montrer que \mathbb{Q} est dense dans \mathbb{R} .

QCOP REEL.4

- \blacksquare Soit $A \subset \mathbb{R}$. Définir « A est dense dans \mathbb{R} ».
- Soit $A \subset \mathbb{R}$. Montrer que les assertions suivantes sont équivalentes :
 - (i) A est dense dans \mathbb{R} ;
 - (ii) $\forall x, y \in \mathbb{R}, x < y$ $\implies \exists a \in A : x \leqslant a \leqslant y;$
 - (iii) $\forall x, y \in \mathbb{R}, x < y$ $\implies \exists a \in A : x < a < y.$
- **%** (a) Soit $a \in \mathbb{Q}$. Soit $b \notin \mathbb{Q}$. Que dire de a + b?
 - **(b)** Montrer que $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .