www.ti.com.cn

MSP430F5638, MSP430F5637, MSP430F5636 MSP430F5635, MSP430F5634, MSP430F5633 MSP430F5632, MSP430F5631, MSP430F5630

ZHCS410D - JUNE 2010 - REVISED AUGUST 2013

混合信号微控制器

查询样

品: MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635, MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630

特性

- 低电源电压范围: 1.8V 至 3.6V
- 超低功耗
 - 激活模式 (AM):
 所有系统时钟激活:
 在 8MHz, 3.0V 时为 270μA/MHz, 闪存程序执行(典型值)
 - 待机模式 (LPM3):
 带有晶振的看门狗且电源监控器可用、完全
 RAM 保持、快速唤醒:
 2.2V 时为 1.8μA, 3.0V 时为 2.1μA (典型值)
 - 关断 RTC 模式 (LPM 3.5):
 关断模式,带有晶振的有源实时时钟:
 3.0V 时为 1.1μA (典型值)
 - 关断模式 (LPM4.5):3.0V 时为 0.3μA (典型值)
- 在 3 µs 内从待机模式唤醒(典型值)
- 16 位精简指令集 (RISC) 架构、扩展内存、高达 20MHz 的系统时钟
- 灵活的电源管理系统
 - 具有可编程经稳压内核电源电压的完全集成低压 降稳压器 (LDO)
 - 电源电压监控、监视、和临时限电
- 统一时钟系统
 - 针对频率稳定的锁频环路 (FLL) 控制环路
 - 低功耗低频内部时钟源 (VLO)
 - 低频修整内部参照源 (REFO)
 - 32kHz 晶体 (XT1)
 - 高达 32MHz 的高频晶振 (XT2)

- 四个配有3,5或者7个捕捉/比较寄存器的16位 寄存器
- 2个通用串行通信接口
 - USCI A0 和 USCI A1 每个都支持:
 - 增强型 UART 支持自动波特率检测
 - IrDA 编码器和解码器
 - 同步 SPI
 - USCI B0 和 USCI B1每个支持:
 - I²C
 - 同步串行外设接口 (SPI)
- 全速通用串行总线 (USB)
 - 集成的 USB 物理层 (PHY)
 - 集成 3.3V 和 1.8V USB 电源系统
 - 集成 USB- 锁相环 (PLL)
 - 8输入和8输出端点
- 具有内部共用基准、采样保持、和自动扫描功能的 12 位模数转换器 (ADC)
- 具有同步功能的双通道 12 位数模转换器 (DAC)
- 电压比较器
- 支持 32 位运算的硬件乘法器
- 串行板上编程,无需外部编程电压
- 6 通道内部直接内存访问 (DMA)
- 具有电源电压后备开关的实时时钟模块
- 系列成员汇总于表 1
- 要获得完整的模块说明,请参阅《MSP430x5xx 和 MSP430x6xx 系列产品用户指南》(文献 号: SLAU208)

应用范围

- 模拟和数字传感器系统
- 数字电机控制
- 遥控
- 恒温器
- 数字定时器
- 手持仪表

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MSP430, Code Composer Studio are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

ZHCS410D - JUNE 2010 - REVISED AUGUST 2013

表 1总结了可用的产品成员。

www.ti.com.cn

说明

德州仪器 (TI) MSP430™ 系列超低功率微控制器包含几个器件,这些器件特有针对多种应用的多种外设集。 这种架构与 5 种低功耗模式相组合,专为在便携式测量应用中延长电池使用寿命而优化。 该器件具有一个强大的 16 位 RISC CPU,16 位寄存器和有助于获得最大编码效率的常数发生器。 此数控振荡器 (DCO) 可在 3 μs (典型值) 内实现从低功率模式唤醒至激活模式。

MSP430F563x 系列是配置有一个高性能 12 位模数转换器 (ADC),比较器,两个通用串行通信接口 (USCI),USB 2.0,一个硬件乘法器,DMA,四个 16 位定时器,一个带有报警功能的实时时钟和多达 74 个 I/O 引脚的微控制器。

这个器件的典型应用包括模拟和数字传感器系统、数字电机控制、遥控、恒温器、数字定时器、手持仪表。

表 1. 系列产品(1)(2)

					US	CI					
器件	闪存 (KB)	SRAM (KB) ⁽³⁾	Timer_A ⁽⁴⁾	Timer_B ⁽⁵⁾	通道 A: UART,IrD A,SPI	通道 B: SPI,I ² C	ADC12_A (Ch)	DAC12_A (Ch)	Comp_B (Ch)	I/O	封装类型
MSP430F5638	256	16+2	5, 3, 3	7	2	2	12 个外部 通道,4 个 内部通道	2	12	74	100 PZ, 113 ZQW
MSP430F5637	192	16+2	5, 3, 3	7	2	2	12 个外部 通道,4 个 内部通道	2	12	74	100 PZ, 113 ZQW
MSP430F5636	128	16+2	5, 3, 3	7	2	2	12 个外部 通道,4 个 内部通道	2	12	74	100 PZ, 113 ZQW
MSP430F5635	256	16+2	5, 3, 3	7	2	2	12 个外部 通道,4 个 内部通道	-	12	74	100 PZ, 113 ZQW
MSP430F5634	192	16+2	5, 3, 3	7	2	2	12 个外部 通道,4 个 内部通道	-	12	74	100 PZ, 113 ZQW
MSP430F5633	128	16+2	5, 3, 3	7	2	2	12 个外部 通道,4 个 内部通道	-	12	74	100 PZ, 113 ZQW
MSP430F5632	256	16+2	5, 3, 3	7	2	2	-	-	12	74	100 PZ, 113 ZQW
MSP430F5631	192	16+2	5, 3, 3	7	2	2	-	-	12	74	100 PZ, 113 ZQW
MSP430F5630	128	16+2	5, 3, 3	7	2	2	-	-	12	74	100 PZ, 113 ZQW

- (1) 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者浏览 Tl 网站 www.ti.com进行查询。
- (2) 封装图示,标准包装数量,散热数据,符号以及印刷电路板 (PCB)设计指南可从www.ti.com/packaging中获得。
- (3) 列出的额外 2KB USB SRAM 在 USB 未使用时可被用作通用 SRAM。
- (4) 序列中的每个数代表 Timer_A 的一个例示,并反映出其可使用的捕获/比较寄存器及脉宽调制 (PWM) 输出发生器的相关数量。例如:一个(3,5)数列将代表 Timer_A 的两个例示,第一个例示和第二个例示分别具有 3 个和 5 个捕获/比较寄存器和 PWM 输出发生器。 (5) 序列中的每个数代表 Timer_B 的一个例示,并反映出其可使用的捕获/比较寄存器及 PWM 输出发生器的相关数量。例如:一个(3,5)数
- (5) 序列中的每个数代表 Timer_B 的一个例示,并反映出其可使用的捕获/比较寄存器及 PWM 输出发生器的相关数量。例如:一个 (3,5) 数 列将代表 Timer_B 的两个例示,第一个例示和第二个例示分别具有 3 个和 5 个捕获/比较寄存器和 PWM 输出发生器。

Functional Block Diagram, MSP430F5638, MSP430F5637, MSP430F5636

Functional Block Diagram, MSP430F5635, MSP430F5634, MSP430F5633

Functional Block Diagram, MSP430F5632, MSP430F5631, MSP430F5630

Pin Designation, MSP430F5638IPZ, MSP430F5637IPZ, MSP430F5636IPZ

NOTE: DNC = Do not connect

Pin Designation, MSP430F5635IPZ, MSP430F5634IPZ, MSP430F5633IPZ

NOTE: DNC = Do not connect

Pin Designation, MSP430F5632IPZ, MSP430F5631IPZ, MSP430F5630IPZ

NOTE: DNC = Do not connect

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

www.ti.com.cn

Pin Designation, MSP430F5638IZQW, MSP430F5637IZQW, MSP430F5636IZQW, MSP430F5635IZQW, MSP430F5634IZQW, MSP430F5633IZQW, MSP430F5630IZQW, MSP430F5630IZQW

ZQW PACKAGE (TOP VIEW)

NOTE: For terminal assignments, see Table 2

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Table 2. Terminal Functions

TERMINAL					
NAME		0.	I/O ⁽¹⁾	DESCRIPTION	
P6.4/CB4/A4	1	A1	I/O	General-purpose digital I/O Comparator_B input CB4 Analog input A4 – ADC(not available on F5632, F5631, F5630 devices)	
P6.5/CB5/A5	2	B2	I/O	General-purpose digital I/O Comparator_B input CB5 Analog input A5 – ADC(not available on F5632, F5631, F5630 devices)	
P6.6/CB6/A6/DAC0	3	B1	I/O	General-purpose digital I/O Comparator_B input CB6 Analog input A6 – ADC (not available on F5632, F5631, F5630 devices) DAC12.0 output (not available on F5635, F5634, F5633, F5632, F5631, F5630 devices)	
P6.7/CB7/A7/DAC1	4	C2	I/O	General-purpose digital I/O Comparator_B input CB7 Analog input A7 – ADC (not available on F5632, F5631, F5630 devices) DAC12.1 output (not available on F5635, F5634, F5633, F5632, F5631, F5630 devices)	
P7.4/CB8/A12	5	C1	I/O	General-purpose digital I/O Comparator_B input CB8 Analog input A12 –ADC (not available on F5632, F5631, F5630 devices)	
P7.5/CB9/A13	6	C3	I/O	General-purpose digital I/O Comparator_B input CB9 Analog input A13 – ADC (not available on F5632, F5631, F5630 devices)	
P7.6/CB10/A14/DAC0	7	D2	I/O	General-purpose digital I/O Comparator_B input CB10 Analog input A14 – ADC (not available on F5632, F5631, F5630 devices) DAC12.0 output (not available on F5635, F5634, F5633, F5632, F5631, F5630 devices)	
P7.7/CB11/A15/DAC1	8	D1	I/O	General-purpose digital I/O Comparator_B input CB11 Analog input A15 – ADC (not available on F5632, F5631, F5630 devices) DAC12.1 output (not available on F5635, F5634, F5633, F5632, F5631, F5630 devices)	
P5.0/VREF+/VeREF+	9	D4	I/O	General-purpose digital I/O Output of reference voltage to the ADC Input for an external reference voltage to the ADC	
P5.1/VREF-/VeREF-	10	E4	I/O	General-purpose digital I/O Negative terminal for the ADC's reference voltage for both sources, the internal reference voltage, or an external applied reference voltage	
AVCC1	11	E1, E2		Analog power supply	
AVSS1	12	F2		Analog ground supply	
XIN	13	F1	ı	Input terminal for crystal oscillator XT1	
XOUT	14	G1	0	Output terminal of crystal oscillator XT1	
AVSS2	15	G2		Analog ground supply	

TERMINAL							
NAME			I/O ⁽¹⁾	DESCRIPTION			
IVAIVIL	PZ	ZQW					
P5.6/ADC12CLK/DMAE0	16	H1	I/O	General-purpose digital I/O Conversion clock output ADC (not available on F5632, F5631, F5630 devices) DMA external trigger input			
P2.0/P2MAP0	17	G4	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output			
P2.1/P2MAP1	18	H2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I2C data			
P2.2/P2MAP2	19	J1	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I2C clock			
P2.3/P2MAP3	20	H4	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable			
P2.4/P2MAP4	21	J2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/master out			
P2.5/P2MAP5	22	K1	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/master in			
P2.6/P2MAP6	23	K2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: no secondary function			
P2.7/P2MAP7	24	L2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: no secondary function			
DVCC1	25	L1		Digital power supply			
DVSS1	26	M1		Digital ground supply			
VCORE ⁽²⁾	27	M2		Regulated core power supply (internal use only, no external current loading)			
P5.2	28	L3	I/O	General-purpose digital I/O			
DVSS	29	М3		Digital ground supply			
DNC	30	J4		Do not connect. It is strongly recommended to leave this terminal open.			
P5.3	31	L4	I/O	General-purpose digital I/O			
P5.4	32	M4	I/O	General-purpose digital I/O			
P5.5	33	J5	I/O	General-purpose digital I/O			
P1.0/TA0CLK/ACLK	34	L5	I/O	General-purpose digital I/O with port interrupt Timer TA0 clock signal TACLK input ACLK output (divided by 1, 2, 4, 8, 16, or 32)			
P1.1/TA0.0	35	M5	I/O	General-purpose digital I/O with port interrupt Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output BSL transmit output			
P1.2/TA0.1	36	J6	I/O	General-purpose digital I/O with port interrupt Timer TA0 CCR1 capture: CCl1A input, compare: Out1 output BSL receive input			
P1.3/TA0.2	37	H6	I/O	General-purpose digital I/O with port interrupt Timer TA0 CCR2 capture: CCl2A input, compare: Out2 output			
P1.4/TA0.3	38	M6	I/O	General-purpose digital I/O with port interrupt Timer TA0 CCR3 capture: CCl3A input compare: Out3 output			

VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, C_{VCORE}.

ZHCS410D – JUNE 2010 – REVISED AUGUST 2013

TERMINAL					
NAME			I/O ⁽¹⁾	DESCRIPTION	
P1.5/TA0.4	PZ 39	L6	I/O	General-purpose digital I/O with port interrupt Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output	
P1.6/TA0.1	40	J7	I/O	General-purpose digital I/O with port interrupt Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output	
P1.7/TA0.2	41	M7	I/O	General-purpose digital I/O with port interrupt Timer TA0 CCR2 capture: CCl2B input, compare: Out2 output	
P3.0/TA1CLK/CBOUT	42	L7	I/O	General-purpose digital I/O with port interrupt Timer TA1 clock input Comparator_B output	
P3.1/TA1.0	43	H7	I/O	General-purpose digital I/O with port interrupt Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output	
P3.2/TA1.1	44	M8	I/O	General-purpose digital I/O with port interrupt Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output	
P3.3/TA1.2	45	L8	I/O	General-purpose digital I/O with port interrupt Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output	
P3.4/TA2CLK/SMCLK	46	J8	I/O	General-purpose digital I/O with port interrupt Timer TA2 clock input SMCLK output	
P3.5/TA2.0	47	M9	I/O	General-purpose digital I/O with port interrupt Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output	
P3.6/TA2.1	48	L9	I/O	General-purpose digital I/O with port interrupt Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output	
P3.7/TA2.2	49	M10	I/O	General-purpose digital I/O with port interrupt Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output	
P4.0/TB0.0	50	J9	I/O	General-purpose digital I/O with port interrupt Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output	
P4.1/TB0.1	51	M11	I/O	General-purpose digital I/O with port interrupt Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output	
P4.2/TB0.2	52	L10	I/O	General-purpose digital I/O with port interrupt Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output	
P4.3/TB0.3	53	M12	I/O	General-purpose digital I/O with port interrupt Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output	
P4.4/TB0.4	54	L12	I/O	General-purpose digital I/O with port interrupt Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output	
P4.5/TB0.5	55	L11	I/O	General-purpose digital I/O with port interrupt Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output	
P4.6/TB0.6	56	K11	I/O	General-purpose digital I/O with port interrupt Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output	
P4.7/TB0OUTH/SVMOUT	57	K12	I/O	General-purpose digital I/O with port interrupt Timer TB0: Switch all PWM outputs high impedance SVM output	
P8.0/TB0CLK	58	J11	I/O	General-purpose digital I/O Timer TB0 clock input	

TERMINAL						
NAME	NO.		I/O ⁽¹⁾	DESCRIPTION		
NAME	PZ	ZQW				
P8.1/UCB1STE/UCA1CLK	59	J12	I/O	General-purpose digital I/O USCI_B1 SPI slave transmit enable; USCI_A1 clock input/output		
P8.2/UCA1TXD/UCA1SIMO	60	H11	I/O	General-purpose digital I/O USCI_A1 UART transmit data; USCI_A1 SPI slave in/master out		
P8.3/UCA1RXD/UCA1SOMI	61	H12	I/O	General-purpose digital I/O USCI_A1 UART receive data; USCI_A1 SPI slave out/master in		
P8.4/UCB1CLK/UCA1STE	62	G11	I/O	General-purpose digital I/O USCI_B1 clock input/output; USCI_A1 SPI slave transmit enable		
DVSS2	63	G12		Digital ground supply		
DVCC2	64	F12		Digital power supply		
P8.5/UCB1SIMO/UCB1SDA	65	F11	I/O	General-purpose digital I/O USCI_B1 SPI slave in/master out; USCI_B1 I2C data		
P8.6/UCB1SOMI/UCB1SCL	66	G9	I/O	General-purpose digital I/O USCI_B1 SPI slave out/master in; USCI_B1 I2C clock		
P8.7	67	E12	I/O	General-purpose digital I/O		
P9.0	68	E11	I/O	General-purpose digital I/O		
P9.1	69	F9	I/O	General-purpose digital I/O		
P9.2	70	D12	I/O	General-purpose digital I/O		
P9.3	71	D11	I/O	General-purpose digital I/O		
P9.4	72	E9	I/O	General-purpose digital I/O		
P9.5	73	C12	I/O	General-purpose digital I/O		
P9.6	74	C11	I/O	General-purpose digital I/O		
P9.7	75	D9	I/O	General-purpose digital I/O		
VSSU	76	B11 and B12	0	USB PHY ground supply		
PU.0/DP	77	A12	I/O	General-purpose digital I/O - controlled by USB control register USB data terminal DP		
PUR	78	B10	I/O	USB pullup resistor pin (open drain). The voltage level at the PUR pin is used to invoke the default USB BSL. Recommended 1-M Ω resistor to ground. See USB BSL for more information.		
PU.1/DM	79	A11	I/O	General-purpose digital I/O - controlled by USB control register USB data terminal DM		
VBUS	80	A10		USB LDO input (connect to USB power source)		
VUSB	81	A9		USB LDO output		
V18	82	B9		USB regulated power (internal use only, no external current loading)		
AVSS3	83	A8		Analog ground supply		
P7.2/XT2IN	84	B8	I/O	General-purpose digital I/O Input terminal for crystal oscillator XT2		
P7.3/XT2OUT	85	B7	I/O	General-purpose digital I/O Output terminal of crystal oscillator XT2		
VBAK	86	A7		Capacitor for backup subsystem. Do not load this pin externally. For capacitor values, see C_{BAK} in Recommended Operating Conditions.		

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

TERMINAL						
NAME		0.	I/O ⁽¹⁾	DESCRIPTION		
VBAT	PZ 87	ZQW D8		Backup or secondary supply voltage. If backup voltage is not supplied, connect to DVCC externally.		
P5.7/RTCCLK	88	D7	I/O	General-purpose digital I/O RTCCLK output		
DVCC3	89	A6		Digital power supply		
DVSS3	90	A5		Digital ground supply		
TEST/SBWTCK	91	B6	I	Test mode pin; selects digital I/O on JTAG pins Spy-bi-wire input clock		
PJ.0/TDO	92	B5	I/O	General-purpose digital I/O Test data output port		
PJ.1/TDI/TCLK	93	A4	I/O	General-purpose digital I/O Test data input or test clock input		
PJ.2/TMS	94	E7	I/O	General-purpose digital I/O Test mode select		
PJ.3/TCK	95	D6	I/O	General-purpose digital I/O Test clock		
RST/NMI/SBWTDIO	96	А3	I/O	Reset input (active low) ⁽³⁾ Non-maskable interrupt input Spy-bi-wire data input/output		
P6.0/CB0/A0	97	B4	I/O	General-purpose digital I/O Comparator_B input CB0 Analog input A0 – ADC (not available on F5632, F5631, F5630 devices)		
P6.1/CB1/A1	98	В3	I/O	General-purpose digital I/O Comparator_B input CB1 Analog input A1 – ADC (not available on F5632, F5631, F5630 devices)		
P6.2/CB2/A2	99	A2	I/O	General-purpose digital I/O Comparator_B input CB2 Analog input A2 – ADC (not available on F5632, F5631, F5630 devices)		
P6.3/CB3/A3	100	D5	I/O	General-purpose digital I/O Comparator_B input CB3 Analog input A3 – ADC (not available on F5632, F5631, F5630 devices)		
Reserved	N/A	E5, E6, E8, F4, F5, G5, G8, H5, H8,		Reserved. It is recommended to connect to ground (DVSS, AVSS).		

⁽³⁾ When this pin is configured as reset, the intermal pullup resistor is enabled by default.

ZHCS410D - JUNE 2010 - REVISED AUGUST 2013

www.ti.com.cn

Development Tools Support

All MSP430[™] microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.

Hardware Features

See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.

MSP430 Architecture	4-Wire JTAG	2-Wire JTAG	Break- points (N)	Range Break- points	Clock Control	State Sequencer	Trace Buffer	LPMx.5 Debugging Support
MSP430Xv2	Yes	Yes	8	Yes	Yes	Yes	Yes	No

Recommended Hardware Options

Target Socket Boards

The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages.

Package	Target Board and Programmer Bundle	Target Board Only
100-pin LQFP (PZ)	MSP-FET430U100USB	MSP-TS430PZ100USB

Experimenter Boards

Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details.

Debugging and Programming Tools

Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools.

Production Programmers

The production programmers expedite loading firmware to devices by programming several devices simultaneously.

Part Number	PC Port	Features	Provider
MSP-GANG	Serial and USB	Program up to eight devices at a time. Works with PC or standalone.	Texas Instruments

Recommended Software Options

Integrated Development Environments

Software development tools are available from TI or from third parties. Open source solutions are also available.

This device is supported by Code Composer Studio™ IDE (CCS).

MSP430Ware

MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware also includes a high-level API called MSP430 Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware is available as a component of CCS or as a standalone package.

www.ti.com.cn

TI-RTOS

TI-RTOS is a complete real-time operating system for the MSP430 microcontrollers. It combines a real-time multitasking kernel SYS/BIOS with additional middleware components. TI-RTOS is available free of charge and provided with full source code.

MSP430 USB Developer's Package

MSP430 USB Developer's Package is an easy-to-use USB stack implementation for the MSP430 microcontrollers.

Command-Line Programmer

MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 Flash without the need for an IDE.

Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

Device and Development Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430[™] MCU devices and support tools. Each MSP430[™] MCU commercial family member has one of two prefixes: MSP or XMS (for example, MSP430F5259). Texas Instruments recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools).

Device development evolutionary flow:

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP - Fully qualified production device

Support tool development evolutionary flow:

MSPX - Development-support product that has not yet completed Texas Instruments internal qualification testing.

MSP - Fully-qualified development-support product

XMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. Tl's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 1 provides a legend for reading the complete device name for any family member.

-						
Processor Family	CC = Embedded RF Radio MSP = Mixed Signal Processor XMS = Experimental Silicon					
430 MCU Platform	TI's Low Power Microcontroller Platform					
Device Type	Memory Type C = ROM F = Flash FR = FRAM G = Flash (Value Line) L = No Nonvolatile Memory	Specialized Application AFE = Analog Front End BT = Preprogrammed with Bluetooth BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter				
Series	1 Series = Up to 8 MHz 2 Series = Up to 16 MHz 3 Series = Legacy 4 Series = Up to 16 MHz w/ LCD	5 Series = Up to 25 MHz 6 Series = Up to 25 MHz w/ LCD 0 = Low Voltage Series				
Feature Set	Various Levels of Integration With	in a Series				
Optional: A = Revision	N/A					
Optional: Temperature Range	S = 0°C to 50°C C = 0°C to 70°C I = -40°C to 85°C T = -40°C to 105°C					
Packaging	www.ti.com/packaging					
Optional: Tape and Reel	T = Small Reel (7 inch) R = Large Reel (11 inch) No Markings = Tube or Tray					
Optional: Additional Features	*-EP = Enhanced Product (-40°C *-HT = Extreme Temperature Part					

Figure 1. Device Nomenclature

Short-Form Description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

Instruction Set

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 3 shows examples of the three types of instruction formats; Table 4 shows the address modes.

Program Counter	PC/R0
Stack Pointer	SP/R1
Status Register	SR/CG1/R2
Constant Generator	CG2/R3
General-Purpose Register	R4
General-Purpose Register	R5
General-Purpose Register	R6
General-Purpose Register	R7
General-Purpose Register	R8
General-Purpose Register	R9
General-Purpose Register	R10
General-Purpose Register	R11
General-Purpose Register	R12
General-Purpose Register	R13
General-Purpose Register	R14
General-Purpose Register	R15

Table 3. Instruction Word Formats

INSTRUCTION WORD FORMAT	EXAMPLE	OPERATION
Dual operands, source-destination	ADD R4,R5	R4 + R5 → R5
Single operands, destination only	CALL R8	$PC \rightarrow (TOS), R8 \rightarrow PC$
Relative jump, un/conditional	JNE	Jump-on-equal bit = 0

Table 4. Address Mode Descriptions

ADDRESS MODE	S ⁽¹⁾	D ⁽¹⁾	SYNTAX	EXAMPLE	OPERATION
Register	+	+	MOV Rs,Rd	MOV R10,R11	R10 → R11
Indexed	+	+	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5) → M(6+R6)
Symbolic (PC relative)	+	+	MOV EDE,TONI		$M(EDE) \rightarrow M(TONI)$
Absolute	+	+	MOV &MEM, &TCDAT		$M(MEM) \rightarrow M(TCDAT)$
Indirect	+		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10) → M(Tab+R6)
Indirect auto-increment	+		MOV @Rn+,Rm	MOV @R10+,R11	$\begin{array}{c} M(R10) \rightarrow R11 \\ R10 + 2 \rightarrow R10 \end{array}$
Immediate	+		MOV #X,TONI	MOV #45,TONI	#45 → M(TONI)

(1) S = source, D = destination

ZHCS410D - JUNE 2010 - REVISED AUGUST 2013

www.ti.com.cn

Operating Modes

The MSP430 has one active mode and seven software selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following seven operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - FLL loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL loop control is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DCO's dc generator remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DCO's dc generator is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DCO's dc generator is disabled
 - Crystal oscillator is stopped
 - Complete data retention
- Low-power mode 3.5 (LPM3.5)
 - Internal regulator disabled
 - No data retention
 - RTC enabled and clocked by low-frequency oscillator
 - Wakeup from RST/NMI, RTC B, P1, P2, P3, and P4
- Low-power mode 4.5 (LPM4.5)
 - Internal regulator disabled
 - No data retention
 - Wakeup from RST/NMI, RTC_B, P1, P2, P3, and P4

Interrupt Vector Addresses

The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 5. Interrupt Sources, Flags, and Vectors of MSP430F563x Configurations

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up, External Reset Watchdog Timeout, Key Violation Flash Memory Key Violation	WDTIFG, KEYV (SYSRSTIV) ⁽¹⁾⁽²⁾	Reset	0FFFEh	63, highest
System NMI PMM Vacant Memory Access JTAG Mailbox	SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) ⁽¹⁾	(Non)maskable	0FFFCh	62
User NMI NMI Oscillator Fault Flash Memory Access Violation	NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV) ⁽¹⁾⁽²⁾	(Non)maskable	0FFFAh	61
Comp_B	Comparator B interrupt flags (CBIV) ⁽¹⁾⁽³⁾ Maskable		0FFF8h	60
Timer TB0	TB0CCR0 CCIFG0 ⁽³⁾ Maskable		0FFF6h	59
Timer TB0	TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6, TB0IFG (TBIV) ⁽¹⁾ (3)	Maskable	0FFF4h	58
Watchdog Interval Timer Mode	WDTIFG	Maskable	0FFF2h	57
USCI_A0 Receive or Transmit	UCA0RXIFG, UCA0TXIFG (UCA0IV)(1)(3)	Maskable	0FFF0h	56
USCI_B0 Receive or Transmit	UCB0RXIFG, UCB0TXIFG (UCB0IV)(1)(3)	Maskable	0FFEEh	55
ADC12_A ⁽⁴⁾	ADC12IFG0 to ADC12IFG15 (ADC12IV)(1)(3)	Maskable	0FFECh	54
Timer TA0	TA0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFEAh	53
Timer TA0	TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV) ⁽¹⁾⁽³⁾	Maskable	0FFE8h	52
USB_UBM	USB interrupts (USBIV) ⁽¹⁾⁽³⁾	Maskable	0FFE6h	51
DMA	DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG, DMA4IFG, DMA5IFG (DMAIV)(1)(3)	Maskable	0FFE4h	50
Timer TA1	TA1CCR0 CCIFG0 ⁽³⁾	Maskable	0FFE2h	49
Timer TA1	TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) ⁽¹⁾⁽³⁾	Maskable	0FFE0h	48
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ⁽¹⁾ (3)	Maskable	0FFDEh	47
USCI_A1 Receive or Transmit	UCA1RXIFG, UCA1TXIFG (UCA1IV)(1)(3)	Maskable	0FFDCh	46
USCI_B1 Receive or Transmit	UCB1RXIFG, UCB1TXIFG (UCB1IV)(1)(3)	Maskable	0FFDAh	45
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) ^{(1) (3)}	Maskable	0FFD8h	44
Reserved	Reserved	Maskable	0FFD6h	43
RTC_B	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) (1)(3)	Maskable	0FFD4h	42
DAC12_A ⁽⁵⁾	DAC12_0IFG, DAC12_1IFG ⁽¹⁾⁽³⁾	Maskable	0FFD2h	41
Timer TA2	TA2CCR0 CCIFG0 ⁽³⁾	Maskable	0FFD0h	40
Timer TA2	TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2, TA2IFG (TA2IV) ⁽¹⁾⁽³⁾	Maskable	0FFCEh	39
I/O Port P3	P3IFG.0 to P3IFG.7 (P3IV) ⁽¹⁾⁽³⁾	Maskable	0FFCCh	38
I/O Port P4	P4IFG.0 to P4IFG.7 (P4IV) ⁽¹⁾⁽³⁾	Maskable	0FFCAh	37

⁽¹⁾ Multiple source flags

⁽²⁾ A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.

(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

⁽³⁾ Interrupt flags are located in the module.

⁴⁾ Only on devices with peripheral module ADC12_A, otherwise reserved.

⁽⁵⁾ Only on devices with peripheral module DAC12_A, otherwise reserved.

Table 5. Interrupt Sources, Flags, and Vectors of MSP430F563x Configurations (continued)

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
		0FFC8h 36		36
Reserved	Reserved ⁽⁶⁾		:	Ē
			0FF80h	0, lowest

⁽⁶⁾ Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatability with other devices, it is recommended to reserve these locations.

Memory Organization

Table 6. Memory Organization (1)(2)

		MSP430F5636 MSP430F5633 MSP430F5630	MSP430F5637 MSP430F5634 MSP430F5631	MSP430F5638 MSP430F5635 MSP430F5632
Memory (flash) Main: interrupt vector	Total Size	128KB 00FFFFh–00FF80h	192KB 00FFFFh-00FF80h	256KB 00FFFFh-00FF80h
	Bank 3	N/A	N/A	64 KB 047FFF-038000h
Main, and a mamon,	Bank 2	N/A	64 KB 037FFF-028000h	64 KB 037FFF-028000h
Main: code memory	Bank 1	64 KB 027FFF-018000h	64 KB 027FFF-018000h	64 KB 027FFF-018000h
	Bank 0	64 KB 017FFF-008000h	64 KB 017FFF-008000h	64 KB 017FFF-008000h
	Sector 3	4 KB 0063FFh–005400h	4 KB 0063FFh-005400h	4 KB 0063FFh-005400h
RAM	Sector 2	4 KB 0053FFh–004400h	4 KB 0053FFh–004400h	4 KB 0053FFh-004400h
	Sector 1	4 KB 0043FFh–003400h	4 KB 0043FFh-003400h	4 KB 0043FFh–003400h
	Sector 0	4 KB 0033FFh–002400h	4 KB 0033FFh-002400h	4 KB 0033FFh-002400h
USB RAM ⁽³⁾	Size RAM	2KB 0023FFh-001C00h	2KB 0023FFh-001C00h	2KB 0023FFh-001C00h
	Info A	128 B 0019FFh–001980h	128 B 0019FFh–001980h	128 B 0019FFh–001980h
Information memory	Info B	128 B 00197Fh–001900h	128 B 00197Fh–001900h	128 B 00197Fh–001900h
(flash)	Info C	128 B 0018FFh–001880h	128 B 0018FFh–001880h	128 B 0018FFh–001880h
	Total Size	128 B 00187Fh–001800h		
	BSL 3	_		512 B 0017FFh–001600h
Bootstrap loader (BSL)	BSL 2			512 B 0015FFh–001400h
memory (flash)	BSL 1	_		512 B 0013FFh–001200h
	BSL 0			512 B 0011FFh–001000h
Peripherals	Size			4KB 000FFFh-000000h

¹⁾ N/A = Not available.

⁽²⁾ Backup RAM is accessed via the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.

³⁾ USB RAM can be used as general purpose RAM when not used for USB operation.

Bootstrap Loader (BSL)

The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the device memory via the BSL is protected by an user-defined password. For complete description of the features of the BSL and its implementation, see *MSP430 Programming Via the Bootstrap Loader (BSL)* (SLAU319).

USB BSL

All devices come pre-programmed with the USB BSL. Use of the USB BSL requires external access to the six pins shown in Table 7. In addition to these pins, the application must support external components necessary for normal USB operation; for example, the proper crystal on XT2IN and XT2OUT or proper decoupling.

Table 7. USB BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
PU.0/DP	USB data terminal DP
PU.1/DM	USB data terminal DM
PUR	USB pullup resistor terminal
VBUS	USB bus power supply
VSSU	USB ground supply

NOTE

The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If it is pulled high externally, then the BSL is invoked. Therefore, unless the application is invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. Applying a 1-M Ω resistor to ground is recommended.

UART BSL

A UART BSL is also available that can be programmed by the user into the BSL memory by replacing the preprogrammed, factory supplied, USB BSL. Use of the UART BSL requires external access to the six pins shown in Table 8.

Table 8. UART BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
TEST/SBWTCK	Entry sequence signal
P1.1	Data transmit
P1.2	Data receive
VCC	Power supply
VSS	Ground supply

JTAG Operation

JTAG Standard Interface

The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are shown in Table 9. For further details on interfacing to development tools and device programmers, see the MSP430(tm) Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).

Table 9. JTAG Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION
PJ.3/TCK	IN	JTAG clock input
PJ.2/TMS	IN	JTAG state control
PJ.1/TDI/TCLK	IN	JTAG data input, TCLK input
PJ.0/TDO	OUT	JTAG data output
TEST/SBWTCK	IN	Enable JTAG pins
RST/NMI/SBWTDIO	IN	External reset
VCC		Power supply
VSS		Ground supply

Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 10. For further details on interfacing to development tools and device programmers, see the MSP430(tm) Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).

Table 10. Spy-Bi-Wire Pin Requirements and Functions

DEVICE SIGNAL	DIRECTION	FUNCTION	
TEST/SBWTCK	IN	Spy-Bi-Wire clock input	
RST/NMI/SBWTDIO	IN, OUT	Spy-Bi-Wire data input/output	
VCC		Power supply	
VSS		Ground supply	

Flash Memory (Link to User's Guide)

The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory.
- Segment A can be locked separately.

RAM Memory (Link to User's Guide)

The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage, however all data is lost. Features of the RAM memory include:

- RAM memory has n sectors. The size of a sector can be found in Memory Organization.
- Each sector 0 to n can be complete disabled, however data retention is lost.
- Each sector 0 to n automatically enters low power retention mode when possible.
- For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required.

Backup RAM Memory

The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during operation from a backup supply if the Battery Backup System module is implemented.

There are 8 bytes of Backup RAM available on MSP430F563x. It can be wordwise accessed via the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.

Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

Digital I/O (Link to User's Guide)

There are up to nine 8-bit I/O ports implemented: P1 through P6, P8, and P9 are complete, P7 contains six individual I/O ports, and PJ contains four individual I/O ports.

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- · Programmable pullup or pulldown on all ports.
- · Programmable drive strength on all ports.
- Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4.
- · Read/write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD).

Port Mapping Controller (Link to User's Guide)

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2.

Table 11. Port Mapping, Mnemonics and Functions

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION		
0	PM_NONE	None	DV _{SS}		
4	PM_CBOUT	-	Comparator_B output		
1	PM_TB0CLK	Timer TB0 clock input	-		
2	PM_ADC12CLK	-	ADC12CLK		
2	PM_DMAE0	DMAE0 Input	-		
	PM_SVMOUT	-	SVM output		
3	PM_TB0OUTH	Timer TB0 high impedance input TB0OUTH	-		
4	PM_TB0CCR0B	Timer TB0 CCR0 capture input CCI0B	Timer TB0: TB0.0 compare output Out0		
5	PM_TB0CCR1B	Timer TB0 CCR1 capture input CCI1B	Timer TB0: TB0.1 compare output Out1		
6	PM_TB0CCR2B	Timer TB0 CCR2 capture input CCI2B	Timer TB0: TB0.2 compare output Out2		
7	PM_TB0CCR3B	Timer TB0 CCR3 capture input CCl3B	Timer TB0: TB0.3 compare output Out3		
8	PM_TB0CCR4B	Timer TB0 CCR4 capture input CCI4B	Timer TB0: TB0.4 compare output Out4		
9	PM_TB0CCR5B	Timer TB0 CCR5 capture input CCI5B	Timer TB0: TB0.5 compare output Out5		
10	PM_TB0CCR6B	Timer TB0 CCR6 capture input CCI6B	Timer TB0: TB0.6 compare output Out6		
11	PM_UCA0RXD	USCI_A0 UART RXD (Direction controlled by USCI - input)			
11	PM_UCA0SOMI	USCI_A0 SPI slave out mast	ter in (direction controlled by USCI)		
12	PM_UCA0TXD	USCI_A0 UART TXD (Dire	ction controlled by USCI - output)		
12	PM_UCA0SIMO	USCI_A0 SPI slave in maste	r out (direction controlled by USCI)		
13	PM_UCA0CLK	USCI_A0 clock input/outp	ut (direction controlled by USCI)		
13	PM_UCB0STE	USCI_B0 SPI slave transmit enab	ole (direction controlled by USCI - input)		
14	PM_UCB0SOMI	USCI_B0 SPI slave out mast	ter in (direction controlled by USCI)		
14	PM_UCB0SCL	USCI_B0 I2C clock (open dra	in and direction controlled by USCI)		
15	PM_UCB0SIMO	USCI_B0 SPI slave in maste	r out (direction controlled by USCI)		
15	PM_UCB0SDA	USCI_B0 I2C data (open drain and direction controlled by USCI)			
16	PM_UCB0CLK	USCI_B0 clock input/outp	ut (direction controlled by USCI)		
10	PM_UCA0STE	USCI_A0 SPI slave transmit enab	ole (direction controlled by USCI - input)		
17	PM_MCLK	-	MCLK		
18	Reserved	Reserved for test purpo	oses. Do not use this setting.		

ZHCS410D - JUNE 2010 - REVISED AUGUST 2013

www.ti.com.cn

Table 11. Port Mapping, Mnemonics and Functions (continued)

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION
19	Reserved	Reserved for test purposes. Do not use this setting.	
20-30	Reserved	None	DVSS
31 (0FFh) ⁽¹⁾	PM_ANALOG	Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals.	

⁽¹⁾ The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored, which results in a read out value of 31.

Table 12. Default Mapping

PIN	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION	
P2.0/P2MAP0	PM_UCB0STE, PM_UCA0CLK	USCI_B0 SPI slave transmit enable (direction controlled by USCI - input), USCI_A0 clock input/output (direction controlled by USCI)		
P2.1/P2MAP1	PM_UCB0SIMO, PM_UCB0SDA		ut (direction controlled by USCI), and direction controlled by USCI)	
P2.2/P2MAP2	PM_UCB0SOMI, PM_UCB0SCL	USCI_B0 SPI slave out master in (direction controlled by USCI), USCI_B0 I2C clock (open drain and direction controlled by USCI)		
P2.3/P2MAP3	PM_UCB0CLK, PM_UCA0STE	USCI_B0 clock input/output (direction controlled by USCI), USCI_A0 SPI slave transmit enable (direction controlled by USCI - input)		
P2.4/P2MAP4	PM_UCA0TXD, PM_UCA0SIMO	USCI_A0 UART TXD (direction controlled by USCI - output), USCI_A0 SPI slave in master out (direction controlled by USCI)		
P2.5/P2MAP5	PM_UCA0RXD, PM_UCA0SOMI	USCI_A0 UART RXD (direction controlled by USCI - input), USCI_A0 SPI slave out master in (direction controlled by USCI)		
P2.6/P2MAP6	PM_NONE	- DVSS		
P2.7/P2MAP7	PM_NONE	- DVSS		

Oscillator and System Clock (Link to User's Guide)

The clock system in the MSP430F563x family of devices is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the
 internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitallycontrolled oscillator DCO.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources available to ACLK.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.

Power Management Module (PMM) (Link to User's Guide)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Hardware Multiplier (MPY) (Link to User's Guide)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations.

Real-Time Clock (RTC B) (Link to User's Guide)

The RTC B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes, hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC B also supports flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in LPM3.5 mode and operation from a backup supply.

Watchdog Timer (WDT_A) (Link to User's Guide)

The primary function of the watchdog timer (WDT A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

System Module (SYS) (Link to User's Guide)

The SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap loader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism via JTAG called a JTAG mailbox that can be used in the application.

Table 13. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	INTERRUPT EVENT	WORD ADDRESS	OFFSET	PRIORITY
	No interrupt pending		00h	
	Brownout (BOR)		02h	Highest
	RST/NMI (BOR)		04h	
	DoBOR (BOR)		06h	
	LPM3.5 or LPM4.5 wakeup (BOR)		08h	
	Security violation (BOR)		0Ah	
	SVSL (POR)		0Ch	
	SVSH (POR)		0Eh	
OVODOTIV O OLOGO DO OLO	SVML_OVP (POR)	04051	10h	
SYSRSTIV, System Reset	SVMH_OVP (POR)	019Eh	12h	
	DoPOR (POR)		14h	
	WDT timeout (PUC)	WDT timeout (PUC)		
	WDT key violation (PUC)		18h	
	KEYV flash key violation (PUC)		1Ah	
	Reserved		1Ch	
	Peripheral area fetch (PUC)		1Eh	
	PMM key violation (PUC)		20h	
	Reserved		22h to 3Eh	Lowest

ZHCS410D – JUNE 2010 – REVISED AUGUST 2013

www.ti.com.cn

Table 13. System Module Interrupt Vector Registers (continued)

INTERRUPT VECTOR REGISTER	INTERRUPT EVENT	WORD ADDRESS	OFFSET	PRIORITY
	No interrupt pending		00h	
	SVMLIFG		02h	Highest
	SVMHIFG		04h	
	DLYLIFG		06h	
	DLYHIFG		08h	
SYSSNIV, System NMI	VMAIFG	019Ch	0Ah	
	JMBINIFG		0Ch	
	JMBOUTIFG		0Eh	
	SVMLVLRIFG		10h	
	SVMHVLRIFG		12h	
	Reserved		14h to 1Eh	Lowest
	No interrupt pending		00h	
	NMIFG		02h	Highest
OVOLININA LIE EE NIMI	OFIFG	04041	04h	
SYSUNIV, User NMI	ACCVIFG	019Ah	06h	
	BUSIFG		08h	
	Reserved		0Ah to 1Eh	Lowest
	No interrupt pending		00h	
SYSBERRIV, Bus Error	USB wait state timeout	0198h	02h	Highest
	Reserved		04h to 1Eh	Lowest

ZHCS410D – JUNE 2010 – REVISED AUGUST 2013

DMA Controller (Link to User's Guide)

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral.

The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments described in Table 14.

Table 14. DMA Trigger Assignments⁽¹⁾

	Channel						
Trigger	0	1	2	3	4	5	
0			DM	IAREQ	l		
1			TA0CC	R0 CCIFG			
2			TA0CC	R2 CCIFG			
3			TA1CC	R0 CCIFG			
4			TA1CC	R2 CCIFG			
5			TA2CC	R0 CCIFG			
6			TA2CC	R2 CCIFG			
7			TBCC	R0 CCIFG			
8			TBCC	R2 CCIFG			
9			Re	served			
10			Re	served			
11			Re	served			
12			Re	served			
13			Re	served			
14			Re	served			
15			Re	served			
16			UCA	.0RXIFG			
17			UCA	0TXIFG			
18			UCB	0RXIFG			
19			UCB	0TXIFG			
20			UCA	1RXIFG			
21			UCA	1TXIFG			
22			UCB	1RXIFG			
23		UCB1TXIFG					
24		ADC12IFGx ⁽²⁾					
25	DAC12_0IFG ⁽³⁾						
26	DAC12_1IFG ⁽³⁾						
27	USB FNRXD						
28		USB ready					
29		MPY ready					
30	DMA5IFG	DMA0IFG	DMA1IFG	DMA2IFG	DMA3IFG	DMA4IFG	
31			DI	MAE0			

Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not cause any DMA trigger event when selected.

⁽²⁾ Only on devices with peripheral module ADC12_A. Reserved on devices without ADC.

⁽³⁾ Only on devices with peripheral module DAC12_A. Reserved on devices without DAC.

Universal Serial Communication Interface (USCI) (Links to User's Guide: UART Mode, SPI Mode, I2C Mode)

The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions, A and B.

The USCI An module provides support for SPI (3 or 4 pin), UART, enhanced UART, or IrDA.

The USCI_Bn module provides support for SPI (3 or 4 pin) or I2C.

The MSP430F563x series includes two complete USCI modules (n = 0 to 1).

Timer TA0 (Link to User's Guide)

Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. It can support multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 15. Timer TA0 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT P	IN NUMBER							
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW							
34-P1.0	L5-P1.0	TA0CLK	TACLK												
		ACLK	ACLK	T '	N.10	N 10									
		SMCLK	SMCLK	Timer	NA	NA									
34-P1.0	L5-P1.0	TA0CLK	TACLK												
35-P1.1	M5-P1.1	TA0.0	CCI0A				35-P1.1	M5-P1.1							
		DV _{SS}	CCI0B	CCR0	TA0	TAO 0									
		DV _{SS}	GND	CCRU	TA0	TA0.0									
		DV _{CC}	V _{CC}												
36-P1.2	J6-P1.2	TA0.1	CCI1A			TA1								36-P1.2	J6-P1.2
40-P1.6	J7-P1.6	TA0.1	CCI1B	CCR1 TA1	CCR1 TA1			40-P1.6	J7-P1.6						
		DV _{SS}	GND				TA0.1		(internal) ⁽¹⁾ HSx = {1}						
		DV _{CC}	V _{CC}												
37-P1.3	H6-P1.3	TA0.2	CCI2A	- CCR2	TAO			37-P1.3	H6-P1.3						
41-P1.7	M7-P1.7	TA0.2	CCI2B			T400	41-P1.7	M7-P1.7							
		DV _{SS}	GND	CCR2	TA2	TA0.2									
		DV _{CC}	V _{CC}												
38-P1.4	M6-P1.4	TA0.3	CCI3A				38-P1.4	M6-P1.4							
		DV _{SS}	CCI3B	0000	TA0	T400									
		DV _{SS}	GND	CCR3	TA3	TA0.3									
		DV _{CC}	V _{CC}												
39-P1.5	L6-P1.5	TA0.4	CCI4A				39-P1.5	L6-P1.5							
		DV _{SS}	CCI4B	CCD4		TAG 4									
		DV _{SS}	GND	CCR4	TA4	TA0.4									
		DV _{CC}	V _{cc}												

⁽¹⁾ Only on devices with peripheral module ADC12_A.

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Timer TA1 (Link to User's Guide)

Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. It supports multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 16. Timer TA1 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT P	IN NUMBER					
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW					
42-P3.0	L7-P3.0	TA1CLK	TACLK										
		ACLK	ACLK	Timor	NIA	NA							
		SMCLK	SMCLK	Timer	NA	INA							
42-P3.0	L7-P3.0	TA1CLK	TACLK										
43-P3.1	H7-P3.1	TA1.0	CCI0A				43-P3.1	H7-P3.1					
		DV _{SS}	CCI0B	CCR0	TA0	TA4.0							
		DV _{SS}	GND	CCRU	TA0	TA1.0							
		DV _{CC}	V _{CC}										
44-P3.2	M8-P3.2	TA1.1	CCI1A	CCR1								44-P3.2	M8-P3.2
		CBOUT (internal)	CCI1B		TA1	TA1.1	DAC12_0	I2_A ⁽¹⁾ , DAC12_1 ernal)					
		DV _{SS}	GND										
		DV _{CC}	V _{cc}										
45-P3.3	L8-P3.3	TA1.2	CCI2A				45-P3.3	L8-P3.3					
		ACLK (internal)	CCI2B	CCR2	TA2	TA1.2							
		DV _{SS}	GND										
		DV _{CC}	V _{CC}										

⁽¹⁾ Only on devices with peripheral module DAC12_A.

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

www.ti.com.cn

Timer TA2 (Link to User's Guide)

Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. It supports multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 17. Timer TA2 Signal Connections

INPUT PII	N NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT P	IN NUMBER
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
46-P3.4	J8-P3.4	TA2CLK	TACLK					
		ACLK	ACLK	Timor	NA	NIA		
		SMCLK	SMCLK	Timer	INA	NA		
46-P3.4	J8-P3.4	TA2CLK	TACLK					
47-P3.5	M9-P3.5	TA2.0	CCI0A				47-P3.5	M9-P3.5
		DV _{SS}	CCI0B	CCDO	TA0	TAO 0		
		DV _{SS}	GND	CCR0	TA0	TA2.0		
		DV _{CC}	V _{CC}					
48-P3.6	L9-P3.6	TA2.1	CCI1A				48-P3.6	L9-P3.6
		CBOUT (internal)	CCI1B	CCR1	TA1	TA2.1		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
49-P3.7	M10-P3.7	TA2.2	CCI2A				49-P3.7	M10-P3.7
		ACLK (internal)	CCI2B	CCR2	TA2	TA2.2		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					

Timer TB0 (Link to User's Guide)

Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. It supports multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 18. Timer TB0 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PI	N NUMBER	
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW	
58-P8.0 P2MAPx ⁽¹⁾	J11-P8.0 P2MAPx ⁽¹⁾	TB0CLK	TB0CLK						
		ACLK	ACLK	Timer	NA	NA			
		SMCLK	SMCLK	rimer	INA	INA			
58-P8.0 P2MAPx ⁽¹⁾	J11-P8.0 P2MAPx ⁽¹⁾	TB0CLK	TB0CLK						
50-P4.0	J9-P4.0	TB0.0	CCI0A				50-P4.0	J9-P4.0	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.0	CCI0B				P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_SS	GND	CCR0	TB0	TB0.0		nternal) ⁽²⁾ HSx = {2}	
		DV_CC	V _{CC}						
51-P4.1	M11-P4.1	TB0.1	CCI1A				51-P4.1	M11-P4.1	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.1	CCI1B				P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_SS	GND	CCR1 TB1	CCR1	TB1	TB0.1	ADC12 (ii ADC12S	nternal) ⁽²⁾ HSx = {3}
		DV_CC	V _{CC}						
52-P4.2	L10-P4.2	TB0.2	CCI2A					52-P4.2	L10-P4.2
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.2	CCI2B				P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_SS	GND	CCR2	TB2	TB0.2	DAC12_0,	2_A ⁽³⁾ DAC12_1 rnal)	
		DV _{CC}	V _{CC}						
53-P4.3	M12-P4.3	TB0.3	CCI3A				53-P4.3	M12-P4.3	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.3	CCI3B	CCR3	TB3	TB0.3	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV _{SS}	GND	CCR3	183	180.3			
		DV_CC	V _{CC}						
54-P4.4	L12-P4.4	TB0.4	CCI4A				54-P4.4	L12-P4.4	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.4	CCI4B	CCR4	TB4	TB0.4	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_SS	GND	CCR4	104	160.4			
		DV_CC	V _{CC}						
55-P4.5	L11-P4.5	TB0.5	CCI5A				55-P4.5	L11-P4.5	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.5	CCI5B	CCR5	TB5	TPO F	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_SS	GND	CCR5	100	TB0.5			
		DV_CC	V _{CC}						
56-P4.6	K11-P4.6	TB0.6	CCI6A				56-P4.6	K11-P4.6	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.6	CCI6B	CCR6	TB6	TB0.6	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV _{SS}	GND	CORD	001	1 DU.0			
		DV_CC	V _{CC}						

⁽¹⁾ Timer functions selectable via the port mapping controller.

⁽²⁾ Only on devices with peripheral module ADC12_A.

⁽³⁾ Only on devices with peripheral module DAC12_A.

ZHCS410D - JUNE 2010 - REVISED AUGUST 2013

www.ti.com.cn

Comparator B (Link to User's Guide)

The primary function of the Comparator B module is to support precision slope analog-to-digital conversions. battery voltage supervision, and monitoring of external analog signals.

ADC12 A (Link to User's Guide)

The ADC12 A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversionand-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.

DAC12 A (Link to User's Guide)

The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12-bit mode, and may be used in conjunction with the DMA controller. When multiple DAC12_A modules are present, they may be grouped together for synchronous operation.

CRC16 (Link to User's Guide)

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

REF Voltage Reference (Link to User's Guide)

The reference module (REF) is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device.

USB Universal Serial Bus (Link to User's Guide)

The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO, PHY, and PLL. The PLL is highly flexible and can support a wide range of input clock frequencies. USB RAM, when not used for USB communication, can be used by the system.

Embedded Emulation Module (EEM) (Link to User's Guide)

The Embedded Emulation Module (EEM) supports real-time in-system debugging. The L version of the EEM implemented on these devices has the following features:

- Eight hardware triggers or breakpoints on memory access
- Two hardware triggers or breakpoints on CPU register write access
- Up to ten hardware triggers can be combined to form complex triggers or breakpoints
- Two cycle counters
- Sequencer
- State storage
- Clock control on module level

Peripheral File Map

Table 19. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE ⁽¹⁾
Special Functions (see Table 20)	0100h	000h-01Fh
PMM (see Table 21)	0120h	000h-010h
Flash Control (see Table 22)	0140h	000h-00Fh
CRC16 (see Table 23)	0150h	000h-007h
RAM Control (see Table 24)	0158h	000h-001h
Watchdog (see Table 25)	015Ch	000h-001h
UCS (see Table 26)	0160h	000h-01Fh
SYS (see Table 27)	0180h	000h-01Fh
Shared Reference (see Table 28)	01B0h	000h-001h
Port Mapping Control (see Table 29)	01C0h	000h-003h
Port Mapping Port P2 (see Table 29)	01D0h	000h-007h
Port P1/P2 (see Table 30)	0200h	000h-01Fh
Port P3/P4 (see Table 31)	0220h	000h-01Fh
Port P5/P6 (see Table 32)	0240h	000h-00Bh
Port P7/P8 (see Table 33)	0260h	000h-00Bh
Port P9 (see Table 34)	0280h	000h-00Bh
Port PJ (see Table 35)	0320h	000h-01Fh
Timer TA0 (see Table 36)	0340h	000h-02Eh
Timer TA1 (see Table 37)	0380h	000h-02Eh
Timer TB0 (see Table 38)	03C0h	000h-02Eh
Timer TA2 (see Table 39)	0400h	000h-02Eh
Battery Backup (see Table 40)	0480h	000h-01Fh
RTC_B (see Table 41)	04A0h	000h-01Fh
32-bit Hardware Multiplier (see Table 42)	04C0h	000h-02Fh
DMA General Control (see Table 43)	0500h	000h-00Fh
DMA Channel 0 (see Table 43)	0510h	000h-00Ah
DMA Channel 1 (see Table 43)	0520h	000h-00Ah
DMA Channel 2 (see Table 43)	0530h	000h-00Ah
DMA Channel 3 (see Table 43)	0540h	000h-00Ah
DMA Channel 4 (see Table 43)	0550h	000h-00Ah
DMA Channel 5 (see Table 43)	0560h	000h-00Ah
USCI_A0 (see Table 44)	05C0h	000h-01Fh
USCI_B0 (see Table 45)	05E0h	000h-01Fh
USCI_A1 (see Table 46)	0600h	000h-01Fh
USCI_B1 (see Table 47)	0620h	000h-01Fh
ADC12_A (see Table 48)	0700h	000h-03Fh
DAC12_A (see Table 49)	0780h	000h-01Fh
Comparator_B (see Table 50)	08C0h	000h-00Fh
USB configuration (see Table 51)	0900h	000h-014h
USB control (see Table 52)	0920h	000h-01Fh

⁽¹⁾ For a detailed description of the individual control register offset addresses, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

Table 20. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 21. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM Control 0	PMMCTL0	00h
PMM control 1	PMMCTL1	02h
SVS high side control	SVSMHCTL	04h
SVS low side control	SVSMLCTL	06h
PMM interrupt flags	PMMIFG	0Ch
PMM interrupt enable	PMMIE	0Eh
PMM power mode 5 control	PM5CTL0	10h

Table 22. Flash Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Flash control 1	FCTL1	00h
Flash control 3	FCTL3	04h
Flash control 4	FCTL4	06h

Table 23. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC result	CRC16INIRES	04h

Table 24. RAM Control Registers (Base Address: 0158h)

REGISTER DESCRIPTION	REGISTER	OFFSET	
RAM control 0	RCCTL0	00h	

Table 25. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 26. UCS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
UCS control 0	UCSCTL0	00h
UCS control 1	UCSCTL1	02h
UCS control 2	UCSCTL2	04h
UCS control 3	UCSCTL3	06h
UCS control 4	UCSCTL4	08h
UCS control 5	UCSCTL5	0Ah
UCS control 6	UCSCTL6	0Ch
UCS control 7	UCSCTL7	0Eh
UCS control 8	UCSCTL8	10h

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Table 27. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
Bootstrap loader configuration area	SYSBSLC	02h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
Bus Error vector generator	SYSBERRIV	18h
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 28. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 29. Port Mapping Registers (Base Address of Port Mapping Control: 01C0h, Port P2: 01D0h)

(= шестини сестини ррину сентен сестини де сентен сентен де сентен сенте		
REGISTER DESCRIPTION	REGISTER	OFFSET
Port mapping password register	PMAPPWD	00h
Port mapping control register	PMAPCTL	02h
Port P2.0 mapping register	P2MAP0	00h
Port P2.1 mapping register	P2MAP1	01h
Port P2.2 mapping register	P2MAP2	02h
Port P2.3 mapping register	P2MAP3	03h
Port P2.4 mapping register	P2MAP4	04h
Port P2.5 mapping register	P2MAP5	05h
Port P2.6 mapping register	P2MAP6	06h
Port P2.7 mapping register	P2MAP7	07h

Table 30. Port P1/P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pullup/pulldown enable	P1REN	06h
Port P1 drive strength	P1DS	08h
Port P1 selection	P1SEL	0Ah
Port P1 interrupt vector word	P1IV	0Eh
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pullup/pulldown enable	P2REN	07h
Port P2 drive strength	P2DS	09h

Table 30. Port P1/P2 Registers (Base Address: 0200h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P2 selection	P2SEL	0Bh
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 31. Port P3/P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 pullup/pulldown enable	P3REN	06h
Port P3 drive strength	P3DS	08h
Port P3 selection	P3SEL	0Ah
Port P3 interrupt vector word	P3IV	0Eh
Port P3 interrupt edge select	P3IES	18h
Port P3 interrupt enable	P3IE	1Ah
Port P3 interrupt flag	P3IFG	1Ch
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 pullup/pulldown enable	P4REN	07h
Port P4 drive strength	P4DS	09h
Port P4 selection	P4SEL	0Bh
Port P4 interrupt vector word	P4IV	1Eh
Port P4 interrupt edge select	P4IES	19h
Port P4 interrupt enable	P4IE	1Bh
Port P4 interrupt flag	P4IFG	1Dh

Table 32. Port P5/P6 Registers (Base Address: 0240h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P5 input	P5IN	00h
Port P5 output	P5OUT	02h
Port P5 direction	P5DIR	04h
Port P5 pullup/pulldown enable	P5REN	06h
Port P5 drive strength	P5DS	08h
Port P5 selection	P5SEL	0Ah
Port P6 input	P6IN	01h
Port P6 output	P6OUT	03h
Port P6 direction	P6DIR	05h
Port P6 pullup/pulldown enable	P6REN	07h
Port P6 drive strength	P6DS	09h
Port P6 selection	P6SEL	0Bh

Table 33. Port P7/P8 Registers (Base Address: 0260h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P7 input	P7IN	00h
Port P7 output	P7OUT	02h
Port P7 direction	P7DIR	04h
Port P7 pullup/pulldown enable	P7REN	06h
Port P7 drive strength	P7DS	08h
Port P7 selection	P7SEL	0Ah
Port P8 input	P8IN	01h
Port P8 output	P8OUT	03h
Port P8 direction	P8DIR	05h
Port P8 pullup/pulldown enable	P8REN	07h
Port P8 drive strength	P8DS	09h
Port P8 selection	P8SEL	0Bh

Table 34. Port P9 Register (Base Address: 0280h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P9 input	P9IN	00h
Port P9 output	P9OUT	02h
Port P9 direction	P9DIR	04h
Port P9 pullup/pulldown enable	P9REN	06h
Port P9 drive strength	P9DS	08h
Port P9 selection	P9SEL	0Ah

Table 35. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ pullup/pulldown enable	PJREN	06h
Port PJ drive strength	PJDS	08h

Table 36. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter register	TAOR	10h
Capture/compare register 0	TA0CCR0	12h
Capture/compare register 1	TA0CCR1	14h
Capture/compare register 2	TA0CCR2	16h
Capture/compare register 3	TA0CCR3	18h
Capture/compare register 4	TA0CCR4	1Ah
TA0 expansion register 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 37. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter register	TA1R	10h
Capture/compare register 0	TA1CCR0	12h
Capture/compare register 1	TA1CCR1	14h
Capture/compare register 2	TA1CCR2	16h
TA1 expansion register 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 38. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
Capture/compare control 3	TB0CCTL3	08h
Capture/compare control 4	TB0CCTL4	0Ah
Capture/compare control 5	TB0CCTL5	0Ch
Capture/compare control 6	TB0CCTL6	0Eh
TB0 register	TB0R	10h
Capture/compare register 0	TB0CCR0	12h
Capture/compare register 1	TB0CCR1	14h
Capture/compare register 2	TB0CCR2	16h
Capture/compare register 3	TB0CCR3	18h
Capture/compare register 4	TB0CCR4	1Ah
Capture/compare register 5	TB0CCR5	1Ch
Capture/compare register 6	TB0CCR6	1Eh
TB0 expansion register 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 39. TA2 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA2 control	TA2CTL	00h
Capture/compare control 0	TA2CCTL0	02h
Capture/compare control 1	TA2CCTL1	04h
Capture/compare control 2	TA2CCTL2	06h
TA2 counter register	TA2R	10h
Capture/compare register 0	TA2CCR0	12h
Capture/compare register 1	TA2CCR1	14h
Capture/compare register 2	TA2CCR2	16h
TA2 expansion register 0	TA2EX0	20h
TA2 interrupt vector	TA2IV	2Eh

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Table 40. Battery Backup Registers (Base Address: 0480h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Battery Backup Memory 0	BAKMEM0	00h
Battery Backup Memory 1	BAKMEM1	02h
Battery Backup Memory 2	BAKMEM2	04h
Battery Backup Memory 3	BAKMEM3	06h
Battery Backup Control	BAKCTL	1Ch
Battery Charger Control	BAKCHCTL	1Eh

Table 41. Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control register 0	RTCCTL0	00h
RTC control register 1	RTCCTL1	01h
RTC control register 2	RTCCTL2	02h
RTC control register 3	RTCCTL3	03h
RTC prescaler 0 control register	RTCPS0CTL	08h
RTC prescaler 1 control register	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds	RTCSEC	10h
RTC minutes	RTCMIN	11h
RTC hours	RTCHOUR	12h
RTC day of week	RTCDOW	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh
Binary-to-BCD conversion register	BIN2BCD	1Ch
BCD-to-binary conversion register	BCD2BIN	1Eh

Table 42. 32-bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch
16 x 16 sum extension register	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h

ZHCS410D - JUNE 2010 - REVISED AUGUST 2013

NSTRUMENTS

www.ti.com.cn

Table 42. 32-bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 x 32 result 0 – least significant word	RES0	24h
32 x 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 x 32 result 3 – most significant word	RES3	2Ah
MPY32 control register 0	MPY32CTL0	2Ch

Table 43. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA General Control: DMA module control 0	DMACTL0	00h
DMA General Control: DMA module control 1	DMACTL1	02h
DMA General Control: DMA module control 2	DMACTL2	04h
DMA General Control: DMA module control 3	DMACTL3	06h
DMA General Control: DMA module control 4	DMACTL4	08h
DMA General Control: DMA interrupt vector	DMAIV	0Ah
DMA Channel 0 control	DMA0CTL	00h
DMA Channel 0 source address low	DMA0SAL	02h
DMA Channel 0 source address high	DMA0SAH	04h
DMA Channel 0 destination address low	DMA0DAL	06h
DMA Channel 0 destination address high	DMA0DAH	08h
DMA Channel 0 transfer size	DMA0SZ	0Ah
DMA Channel 1 control	DMA1CTL	00h
DMA Channel 1 source address low	DMA1SAL	02h
DMA Channel 1 source address high	DMA1SAH	04h
DMA Channel 1 destination address low	DMA1DAL	06h
DMA Channel 1 destination address high	DMA1DAH	08h
DMA Channel 1 transfer size	DMA1SZ	0Ah
DMA Channel 2 control	DMA2CTL	00h
DMA Channel 2 source address low	DMA2SAL	02h
DMA Channel 2 source address high	DMA2SAH	04h
DMA Channel 2 destination address low	DMA2DAL	06h
DMA Channel 2 destination address high	DMA2DAH	08h
DMA Channel 2 transfer size	DMA2SZ	0Ah
DMA Channel 3 control	DMA3CTL	00h
DMA Channel 3 source address low	DMA3SAL	02h
DMA Channel 3 source address high	DMA3SAH	04h
DMA Channel 3 destination address low	DMA3DAL	06h
DMA Channel 3 destination address high	DMA3DAH	08h
DMA Channel 3 transfer size	DMA3SZ	0Ah
DMA Channel 4 control	DMA4CTL	00h
DMA Channel 4 source address low	DMA4SAL	02h

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Table 43. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA Channel 4 source address high	DMA4SAH	04h
DMA Channel 4 destination address low	DMA4DAL	06h
DMA Channel 4 destination address high	DMA4DAH	08h
DMA Channel 4 transfer size	DMA4SZ	0Ah
DMA Channel 5 control	DMA5CTL	00h
DMA Channel 5 source address low	DMA5SAL	02h
DMA Channel 5 source address high	DMA5SAH	04h
DMA Channel 5 destination address low	DMA5DAL	06h
DMA Channel 5 destination address high	DMA5DAH	08h
DMA Channel 5 transfer size	DMA5SZ	0Ah

Table 44. USCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA0CTL0	00h
USCI control 1	UCA0CTL1	01h
USCI baud rate 0	UCA0BR0	06h
USCI baud rate 1	UCA0BR1	07h
USCI modulation control	UCAOMCTL	08h
USCI status	UCA0STAT	0Ah
USCI receive buffer	UCA0RXBUF	0Ch
USCI transmit buffer	UCA0TXBUF	0Eh
USCI LIN control	UCA0ABCTL	10h
USCI IrDA transmit control	UCA0IRTCTL	12h
USCI IrDA receive control	UCA0IRRCTL	13h
USCI interrupt enable	UCA0IE	1Ch
USCI interrupt flags	UCA0IFG	1Dh
USCI interrupt vector word	UCA0IV	1Eh

Table 45. USCI_B0 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB0CTL0	00h
USCI synchronous control 1	UCB0CTL1	01h
USCI synchronous bit rate 0	UCB0BR0	06h
USCI synchronous bit rate 1	UCB0BR1	07h
USCI synchronous status	UCB0STAT	0Ah
USCI synchronous receive buffer	UCB0RXBUF	0Ch
USCI synchronous transmit buffer	UCB0TXBUF	0Eh
USCI I2C own address	UCB0I2COA	10h
USCI I2C slave address	UCB0I2CSA	12h
USCI interrupt enable	UCB0IE	1Ch
USCI interrupt flags	UCB0IFG	1Dh
USCI interrupt vector word	UCB0IV	1Eh

ZHCS410D – JUNE 2010 – REVISED AUGUST 2013

NSTRUMENTS

www.ti.com.cn

Table 46. USCI_A1 Registers (Base Address: 0600h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA1CTL0	00h
USCI control 1	UCA1CTL1	01h
USCI baud rate 0	UCA1BR0	06h
USCI baud rate 1	UCA1BR1	07h
USCI modulation control	UCA1MCTL	08h
USCI status	UCA1STAT	0Ah
USCI receive buffer	UCA1RXBUF	0Ch
USCI transmit buffer	UCA1TXBUF	0Eh
USCI LIN control	UCA1ABCTL	10h
USCI IrDA transmit control	UCA1IRTCTL	12h
USCI IrDA receive control	UCA1IRRCTL	13h
USCI interrupt enable	UCA1IE	1Ch
USCI interrupt flags	UCA1IFG	1Dh
USCI interrupt vector word	UCA1IV	1Eh

Table 47. USCI_B1 Registers (Base Address: 0620h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB1CTL0	00h
USCI synchronous control 1	UCB1CTL1	01h
USCI synchronous bit rate 0	UCB1BR0	06h
USCI synchronous bit rate 1	UCB1BR1	07h
USCI synchronous status	UCB1STAT	0Ah
USCI synchronous receive buffer	UCB1RXBUF	0Ch
USCI synchronous transmit buffer	UCB1TXBUF	0Eh
USCI I2C own address	UCB1I2COA	10h
USCI I2C slave address	UCB1I2CSA	12h
USCI interrupt enable	UCB1IE	1Ch
USCI interrupt flags	UCB1IFG	1Dh
USCI interrupt vector word	UCB1IV	1Eh

Table 48. ADC12_A Registers (Base Address: 0700h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Control register 0	ADC12CTL0	00h
Control register 1	ADC12CTL1	02h
Control register 2	ADC12CTL2	04h
Interrupt-flag register	ADC12IFG	0Ah
Interrupt-enable register	ADC12IE	0Ch
Interrupt-vector-word register	ADC12IV	0Eh
ADC memory-control register 0	ADC12MCTL0	10h
ADC memory-control register 1	ADC12MCTL1	11h
ADC memory-control register 2	ADC12MCTL2	12h
ADC memory-control register 3	ADC12MCTL3	13h
ADC memory-control register 4	ADC12MCTL4	14h
ADC memory-control register 5	ADC12MCTL5	15h
ADC memory-control register 6	ADC12MCTL6	16h
ADC memory-control register 7	ADC12MCTL7	17h
ADC memory-control register 8	ADC12MCTL8	18h

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

STRUMENTS

Table 48. ADC12_A Registers (Base Address: 0700h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC memory-control register 9	ADC12MCTL9	19h
ADC memory-control register 10	ADC12MCTL10	1Ah
ADC memory-control register 11	ADC12MCTL11	1Bh
ADC memory-control register 12	ADC12MCTL12	1Ch
ADC memory-control register 13	ADC12MCTL13	1Dh
ADC memory-control register 14	ADC12MCTL14	1Eh
ADC memory-control register 15	ADC12MCTL15	1Fh
Conversion memory 0	ADC12MEM0	20h
Conversion memory 1	ADC12MEM1	22h
Conversion memory 2	ADC12MEM2	24h
Conversion memory 3	ADC12MEM3	26h
Conversion memory 4	ADC12MEM4	28h
Conversion memory 5	ADC12MEM5	2Ah
Conversion memory 6	ADC12MEM6	2Ch
Conversion memory 7	ADC12MEM7	2Eh
Conversion memory 8	ADC12MEM8	30h
Conversion memory 9	ADC12MEM9	32h
Conversion memory 10	ADC12MEM10	34h
Conversion memory 11	ADC12MEM11	36h
Conversion memory 12	ADC12MEM12	38h
Conversion memory 13	ADC12MEM13	3Ah
Conversion memory 14	ADC12MEM14	3Ch
Conversion memory 15	ADC12MEM15	3Eh

Table 49. DAC12_A Registers (Base Address: 0780h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DAC12_A channel 0 control register 0	DAC12_0CTL0	00h
DAC12_A channel 0 control register 1	DAC12_0CTL1	02h
DAC12_A channel 0 data register	DAC12_0DAT	04h
DAC12_A channel 0 calibration control register	DAC12_0CALCTL	06h
DAC12_A channel 0 calibration data register	DAC12_0CALDAT	08h
DAC12_A channel 1 control register 0	DAC12_1CTL0	10h
DAC12_A channel 1 control register 1	DAC12_1CTL1	12h
DAC12_A channel 1 data register	DAC12_1DAT	14h
DAC12_A channel 1 calibration control register	DAC12_1CALCTL	16h
DAC12_A channel 1 calibration data register	DAC12_1CALDAT	18h
DAC12_A interrupt vector word	DAC12IV	1Eh

Table 50. Comparator_B Registers (Base Address: 08C0h)

- mail our companies 110 9 .00010 (0		
REGISTER DESCRIPTION	REGISTER	OFFSET
Comp_B control register 0	CBCTL0	00h
Comp_B control register 1	CBCTL1	02h
Comp_B control register 2	CBCTL2	04h
Comp_B control register 3	CBCTL3	06h
Comp_B interrupt register	CBINT	0Ch
Comp_B interrupt vector word	CBIV	0Eh

ZHCS410D – JUNE 2010 – REVISED AUGUST 2013

www.ti.com.cn

Table 51. USB Configuration Registers (Base Address: 0900h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USB key/ID	USBKEYID	00h
USB module configuration	USBCNF	02h
USB PHY control	USBPHYCTL	04h
USB power control	USBPWRCTL	08h
USB power voltage setting	USBPWRVSR	0Ah
USB PLL control	USBPLLCTL	10h
USB PLL divider	USBPLLDIV	12h
USB PLL interrupts	USBPLLIR	14h

Table 52. USB Control Registers (Base Address: 0920h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Input endpoint#0 configuration	IEPCNF_0	00h
Input endpoint #0 byte count	IEPCNT_0	01h
Output endpoint#0 configuration	OEPCNF_0	02h
Output endpoint #0 byte count	OEPCNT_0	03h
Input endpoint interrupt enables	IEPIE	0Eh
Output endpoint interrupt enables	OEPIE	0Fh
Input endpoint interrupt flags	IEPIFG	10h
Output endpoint interrupt flags	OEPIFG	11h
USB interrupt vector	USBIV	12h
USB maintenance	MAINT	16h
Time stamp	TSREG	18h
USB frame number	USBFN	1Ah
USB control	USBCTL	1Ch
USB interrupt enables	USBIE	1Dh
USB interrupt flags	USBIFG	1Eh
Function address	FUNADR	1Fh

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

1 0 1 0 1	
Voltage applied at V_{CC} to V_{SS}	-0.3 V to 4.1 V
Voltage applied to any pin (excluding VCORE, VBUS, V18) (2)	-0.3 V to V _{CC} + 0.3 V
Diode current at any device pin	±2 mA
Storage temperature range, T _{stg} ⁽³⁾	−55°C to 150°C
Maximum junction temperature, T _J	95°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages referenced to V_{SS}. VCORE is for internal device use only. No external dc loading or voltage should be applied.
- (3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

Thermal Packaging Characteristics

	PARAMETER		VALUE	UNIT
0	lunation to ambient thermal registeres atill air(1)	QFP (PZ)	122	°C/M
θ_{JA}	Junction-to-ambient thermal resistance, still air ⁽¹⁾	BGA (ZQW)	108	°C/W
0	lunation to cook (ton) thermal registeres (2)	QFP (PZ)	83	°C/W
$\theta_{\text{JC(TOP)}}$	Junction-to-case (top) thermal resistance (2)	BGA (ZQW)	72	*C/VV
0	Junction-to-board thermal resistance (3)	QFP (PZ)	98	00/14/
θ_{JB}	Junction-to-board thermal resistance (*)	BGA (ZQW)	76	°C/W

- (1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- (2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
		PMMCOREVx = 0	1.8		3.6	
M	Supply voltage during program execution and flash programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 =	PMMCOREVx = 0, 1	2.0		3.6	V
V _{CC}	$DV_{CC} = V_{CC})^{(1)(2)}$	PMMCOREVx = 0, 1, 2	2.2		3.6	V
		PMMCOREVx = 0, 1, 2, 3	2.4		3.6	
		PMMCOREVx = 0	1.8		3.6	
	Supply voltage during USB operation, USB PLL disabled	PMMCOREVx = 0, 1	2.0		3.6	
\/	$(USB_EN = 1, UPLLEN = 0)$	PMMCOREVx = 0, 1, 2	2.2		3.6	V
$V_{CC,USB}$		PMMCOREVx = 0, 1, 2, 3	2.4		3.6	V
	Supply voltage during USB operation, USB PLL enabled (3)	PMMCOREVx = 2	2.2		3.6	
	(USB_EN = 1, UPLLEN = 1)	PMMCOREVx = 2, 3	2.4		3.6	
V _{SS}	Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = V_{SS})			0		٧
V	Dealers complexial to a with DTC energianal	$T_A = 0$ °C to 85°C	1.55		3.6	V
$V_{BAT,RTC}$	Backup-supply voltage with RTC operational	$T_A = -40$ °C to 85°C	1.70		3.6	V
$V_{BAT,MEM}$	Backup-supply voltage with backup memory retained.	$T_A = -40$ °C to 85°C	1.20		3.6	V
T _A	Operating free-air temperature	I version	-40		85	°C
TJ	Operating junction temperature	I version	-40		85	°C
C _{BAK}	Capacitance at pin VBAK		1	4.7	10	nF

⁽¹⁾ It is recommended to power AV_{CC} and DV_{CC} from the same source. A maximum difference of 0.3 V between AV_{CC} and DV_{CC} can be tolerated during power up and operation.

⁽²⁾ The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the PMM, SVS High Side threshold parameters for the exact values and further details.

³⁾ USB operation with USB PLL enabled requires PMMCOREVx ≥ 2 for proper operation.

Recommended Operating Conditions (continued)

			MIN	NOM	MAX	UNIT
C _{VCORE}	Capacitor at VCORE			470		nF
C _{DVCC} / C _{VCORE}	Capacitor ratio of DVCC to VCORE		10			
		PMMCOREVx = 0, $1.8 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}$ (default condition)	0		8.0	
f _{SYSTEM}	Processor frequency (maximum MCLK frequency) (4)(5)	PMMCOREVx = 1, 2 V \leq V _{CC} \leq 3.6 V	0		12.0	MHz
0.0.2	(see Figure 2)	PMMCOREVx = 2, 2.2 V ≤ V _{CC} ≤ 3.6 V	0		16.0	
		PMMCOREVx = 3, 2.4 V \leq V _{CC} \leq 3.6 V	0		20.0	
f _{SYSTEM_USB}	Minimum processor frequency for USB operation		1.5			MHz
USB_wait	Wait state cycles during USB operation			16		cycles

⁽⁴⁾ The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency.

⁽⁵⁾ Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

The numbers within the fields denote the supported PMMCOREVx settings.

Figure 2. Frequency vs Supply Voltage

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Electrical Characteristics

Active Mode Supply Current Into V_{CC} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted) (1)(2)(3)

					FF	REQUEN	CY (f _{DC}	= f _{MCLK}	= f _{SMCL}	к)		
PARAMETER	EXECUTION MEMORY	V _{CC}	PMMCOREV x	1 M	lHz	8 M	lHz	12 N	ИHz	20 N	ИHz	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
			0	0.32	0.36	2.1	2.4					
	Floor	2.1/	1	0.36		2.4		3.6	4.0			
I _{AM} , Flash	Flash	3 V	2	0.37		2.5		3.8				mA
			3	0.39		2.7		4.0		6.6		Ī
			0	0.18	0.21	1.0	1.2					
	DAM	2.1/	1	0.20		1.2		1.7	1.9			
I _{AM} , RAM	RAM	3 V	2	0.22		1.3		2.0				mA
			3	0.23		1.4		2.1		3.6]

All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.

Characterized with program executing typical data processing. USB disabled (VUSBEN = 0, SLDOEN = 0). f_{ACLK} = 32786 Hz, f_{DCO} = f_{MCLK} = f_{SMCLK} at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.

Low-Power Mode Supply Currents (Into V_{cc}) Excluding External Current

	DADAMETED		DMMCODEV.	-40	°C	25	°C	60	°C	85	O.	UNIT
	PARAMETER	V _{CC}	PMMCOREVx	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNII
	Low-power mode 0 ⁽³⁾⁽⁴⁾	2.2 V	0	71		75	87	81		85	99	
LPM0,1MHz	Low-power mode o	3 V	3	78		83	98	89		94	108	μA
1	Low-power mode 2 ⁽⁵⁾⁽⁴⁾	2.2 V	0	6.3		6.7	9.9	9.0		11	16	
I _{LPM2}	Low-power mode 2	3 V	3	6.6		7.0	11	10		12	18	μΑ
			0	1.6		1.8	2.4	4.7		6.5	10.5	
		2.2 V	1	1.6		1.9		4.8		6.6		
			2	1.7		2.0		4.9		6.7		
I _{LPM3,XT1LF}	Low-power mode 3, crystal mode (6)(4)		0	1.9		2.1	2.7	5.0		6.8	10.8	μΑ
	oryotal modo	3 V	1	1.9		2.1		5.1		7.0		
		3 V	2	2.0		2.2		5.2		7.1		
			3	2.0		2.2	2.9	5.4		7.3	12.6	
			0	0.9		1.2	1.9	4.0		5.9	10.3	
I _{LPM3} .	Low-power mode 3,	3 V	1	0.9		1.2		4.1		6.0		
VLO,WDT	VLO mode, Watchdog enabled (7)(4)	3 V	2	1.0		1.3		4.2		6.1		μA
			3	1.0		1.3	2.2	4.3		6.3	11.3	
			0	0.9		1.1	1.8	3.9		5.8	10	
	Low-power mode 4 ⁽⁸⁾⁽⁴⁾	3 V	1	0.9		1.1		4.0		5.9		^
I _{LPM4}	Low-power mode 4 (5) (7)	3 V	2	1.0		1.2		4.1		6.1		μA
			3	1.0		1.2	2.1	4.2		6.2	11	
I _{LPM3.5,} RTC,VCC	Low-power mode 3.5 (LPM3.5) current with active RTC into primary supply pin DV _{CC} ⁽⁹⁾	3 V				0.5				0.8	1.4	μΑ
I _{LPM3.5,} RTC,VBAT	Low-power mode 3.5 (LPM3.5) current with active RTC into backup supply pin VBAT ⁽¹⁰⁾	3 V				0.6				0.8	1.4	μΑ
I _{LPM3.5} , RTC,TOT	Total low-power mode 3.5 (LPM3.5) current with active RTC ⁽¹¹⁾	3 V		1.0		1.1		1.3		1.6	2.8	μA

- (1) All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
- (2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- (3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 1 MHz USB disabled (VUSBEN = 0, SLDOEN = 0).
- (4) Current for brownout included. Low side supervisor and monitors disabled (SVS_L, SVM_L). High side supervisor and monitor disabled (SVS_H, SVM_H). RAM retention enabled.
- (5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
 CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 0 MHz; DCO setting = 1 MHz operation, DCO bias generator enabled.
 USB disabled (VUSBEN = 0, SLDOEN = 0).
- (6) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
 CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0).
- (7) Current for watchdog timer clocked by VLO included. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); f_{ACLK} = f_{MCLK} = f_{DCO} = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0).
- (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); $f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0$ MHz USB disabled (VUSBEN = 0, SLDOEN = 0).
- (9) $V_{VBAT} = V_{CC} 0.2 \text{ V}$, $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$, $f_{ACLK} = 32768 \text{ Hz}$, PMMREGOFF = 1, RTC in backup domain active
- (10) $V_{VBAT} = V_{CC} 0.2 \text{ V}$, $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$, $f_{ACLK} = 32768 \text{ Hz}$, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK
- (11) f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 MHz, f_{ACLK} = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK

Low-Power Mode Supply Currents (Into V_{cc}) Excluding External Current (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)

PARAMETER		V	PMMCOREVx	-40)°C	25	°C	60	°C	85	°C	UNIT
	PARAMETER	V _{CC}	PIVINICOREVX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNII
I _{LPM4.5}	Low-power mode 4.5 (LPM4.5) ⁽¹²⁾	3 V		0.2		0.3	0.6	0.7		0.9	1.4	μA

⁽¹²⁾ Internal regulator disabled. No data retention.

CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5); f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 MHz

Schmitt-Trigger Inputs - General Purpose I/O(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
\/	Positive-going input threshold voltage		1.8 V	0.80		1.40	V
V _{IT+}	Positive-going input tilleshold voltage		3 V	1.50		2.10	V
\/	Negative going input threshold voltage		1.8 V	0.45		1.00	V
V _{IT}	Negative-going input threshold voltage		3 V	0.75		1.65	V
V.	Input voltage hysteresis (V _{IT+} – V _{IT-})		1.8 V	0.3		0.8	V
V _{hys}	input voitage hysteresis (v T+ - v T-)		3 V	0.4		1.0	V
R _{Pull}	Pullup or pulldown resistor	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$		20	35	50	kΩ
C _I	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

⁽¹⁾ Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).

Inputs – Ports P1, P2, P3, and P4⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
t _(int)	External interrupt timing ⁽²⁾	Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse duration to set interrupt flag	2.2 V, 3 V	20		ns

⁽¹⁾ Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.

Leakage Current - General Purpose I/O

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN MAX	UNIT
I _{lkg(Px.x)}	High-impedance leakage current	(1)(2)	1.8 V, 3 V	±50	nA

⁽¹⁾ The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.

Outputs - General Purpose I/O (Full Drive Strength)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		$I_{(OHmax)} = -3 \text{ mA}^{(1)}$	1.8 V	V _{CC} - 0.25	V_{CC}	
.,	Lligh lovel output valtage	$I_{(OHmax)} = -10 \text{ mA}^{(2)}$	1.6 V	V _{CC} - 0.60	V_{CC}	\/
V _{OH}	High-level output voltage	$I_{(OHmax)} = -5 \text{ mA}^{(1)}$	3 V	V _{CC} - 0.25	V_{CC}	V
		$I_{(OHmax)} = -15 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.60	V _{CC}	

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽²⁾ An external signal sets the interrupt flag every time the minimum interrupt pulse duration t_(int) is met. It may be set by trigger signals shorter than t_(int).

⁽²⁾ The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.

ZHCS410D - JUNE 2010 - REVISED AUGUST 2013

www.ti.com.cn

ISTRUMENTS

Outputs – General Purpose I/O (Full Drive Strength) (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
		$I_{(OLmax)} = 3 \text{ mA}^{(1)}$	1.8 V	V_{SS}	$V_{SS} + 0.25$	
\/		$I_{(OLmax)} = 10 \text{ mA}^{(2)}$	1.6 V	V_{SS}	$V_{SS} + 0.60$	
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 5 \text{ mA}^{(1)}$	2.1/	V _{SS}	V _{SS} + 0.25	V
		$I_{(OLmax)} = 15 \text{ mA}^{(2)}$	3 V	V _{SS}	V _{SS} + 0.60	

Outputs - General Purpose I/O (Reduced Drive Strength)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(2)}$	1.8 V	V _{CC} - 0.25	V_{CC}	
\/	High-level output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(3)}$	1.0 V	V _{CC} - 0.60	V_{CC}	V
V _{OH}	nigri-level output voltage	$I_{(OHmax)} = -2 \text{ mA}^{(2)}$	2.1/	V _{CC} - 0.25	V_{CC}	V
		$I_{(OHmax)} = -6 \text{ mA}^{(3)}$	3 V	V _{CC} - 0.60	V _{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(2)}$	1.8 V	V _{SS}	$V_{SS} + 0.25$	
\/	Low-level output voltage	$I_{(OLmax)} = 3 \text{ mA}^{(3)}$	1.0 V	V _{SS}	$V_{SS} + 0.60$	V
V _{OL}		$I_{(OLmax)} = 2 \text{ mA}^{(2)}$	3 V	V_{SS}	$V_{SS} + 0.25$	V
		$I_{(OLmax)} = 6 \text{ mA}^{(3)}$	3 V	V _{SS}	$V_{SS} + 0.60$	

⁽¹⁾ Selecting reduced drive strength may reduce EMI.

Output Frequency - Ports P1, P2, and P3

	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
f _{Px.y}	Port output frequency	P3.4/TA2CLK/SMCLK/S27	$V_{CC} = 1.8 \text{ V}$ PMMCOREVx = 0		8	MHz
	(with load)	$C_L = 20 \text{ pF}, R_L = 1 \text{ k}\Omega^{(1)} \text{ or } 3.2 \text{ k}\Omega^{(2)(3)}$	$V_{CC} = 3 V$ PMMCOREVx = 3		20	IVITIZ
	Clask output fraguency	P1.0/TA0CLK/ACLK/S39 P3.4/TA2CLK/SMCLK/S27	V _{CC} = 1.8 V PMMCOREVx = 0	8	MHz	
† _{Port_} CLK	Clock output frequency	$P2.0/P2MAP0 (P2MAP0 = PM_MCLK)$ $C_L = 20 pF^{(3)}$	$V_{CC} = 3 V$ PMMCOREVx = 3		20	IVI⊓Z

⁽¹⁾ Full drive strength of port: A resistive divider with 2 x 0.5 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽³⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.

⁽²⁾ Reduced drive strength of port: A resistive divider with 2 x 1.6 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

⁽³⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

Typical Characteristics - Outputs, Reduced Drive Strength (PxDS.y = 0)

Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

Figure 8.

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 V_{cc} = 3.0 V-5.0 P3.2

Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, T_A = 25°C			0.075		
$\Delta I_{DVCC,LF}$	Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode	$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, } XTS = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 2, \\ &T_A = 25^{\circ}C \end{aligned} $	3 V		0.170		μΑ
		$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, } XTS = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 3, \\ &T_A = 25^{\circ}C \end{aligned} $			0.290		
f _{XT1,LF0}	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0			32768		Hz
f _{XT1,LF,SW}	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 ⁽²⁾ (3)		10	32.768	50	kHz
OA _{LF}	Oscillation allowance for LF crystals ⁽⁴⁾	$ \begin{array}{lll} XTS = 0, \\ XT1BYPASS &= 0, XT1DRIVEx &= 0, \\ f_{XT1,LF} &= 32768 \; Hz, C_{L,eff} &= 6 \; pF \end{array} $			210		kΩ
OALF		$ \begin{array}{lll} \text{XTS} = 0, \\ \text{XT1BYPASS} &= 0, \text{XT1DRIVEx} &= 1, \\ f_{\text{XT1,LF}} &= 32768 \text{ Hz, } C_{\text{L,eff}} &= 12 \text{ pF} \end{array} $			300		1/22
		$XTS = 0$, $XCAPx = 0^{(6)}$			2		
C _{L.eff}	Integrated effective load	XTS = 0, $XCAPx = 1$			5.5		pF
OL,eff	capacitance, LF mode ⁽⁵⁾	XTS = 0, $XCAPx = 2$			8.5		рі
		XTS = 0, $XCAPx = 3$			12.0		
	Duty cycle, LF mode	XTS = 0, Measured at ACLK, $f_{XT1,LF} = 32768 \text{ Hz}$		30		70	%
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽⁷⁾	$XTS = 0^{(8)}$		10		10000	Hz
	Startup time, LF mode	$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, } XTS = 0, \\ &XT1BYPASS = 0, XT1DRIVEx = 0, \\ &T_A = 25^{\circ}C, \\ &C_{L,eff} = 6 \text{ pF} \end{aligned} $	- 3 V		1000		mo
t _{START,LF}		$\begin{aligned} &f_{OSC} = 32768 \text{ Hz, } XTS = 0,\\ &XT1BYPASS = 0, XT1DRIVEx = 3,\\ &T_A = 25^{\circ}C,\\ &C_{L,eff} = 12 \text{ pF} \end{aligned}$	3 V		500		ms

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - (a) Keep the trace between the device and the crystal as short as possible.
 - (b) Design a good ground plane around the oscillator pins.
 - (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
 - (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
- (2) When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:
 - (a) For XT1DRIVEx = 0, $C_{L,eff} \le 6 pF$.
 - (b) For XT1DRIVEx = 1, 6 pF \leq C_{L,eff} \leq 9 pF. (c) For XT1DRIVEx = 2, 6 pF \leq C_{L,eff} \leq 10 pF.
- (d) For XT1DRIVEx = 3, C_{Leff} ≥ 6 pF.
 (5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.

Crystal Oscillator, XT2

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		f_{OSC} = 4 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 0, T_A = 25°C			200		
1	XT2 oscillator crystal current consumption	$\begin{aligned} &f_{OSC} = 12 \text{ MHz, } XT2OFF = 0, \\ &XT2BYPASS = 0, XT2DRIVEx = 1, \\ &T_A = 25^{\circ}C \end{aligned}$	3 V		260		
I _{DVCC,XT2}		$\label{eq:fosc} \begin{array}{l} f_{OSC} = 20 \text{ MHz, } \text{XT2OFF} = 0, \\ \text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 2, \\ T_{A} = 25^{\circ}\text{C} \end{array}$	3 V		325		μA
		$\label{eq:fosc} \begin{array}{l} f_{OSC} = 32 \text{ MHz, } \text{XT2OFF} = 0, \\ \text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 3, \\ T_{A} = 25^{\circ}\text{C} \end{array}$			450		
f _{XT2,HF0}	XT2 oscillator crystal frequency, mode 0	XT2DRIVEx = 0, $XT2BYPASS = 0$ ⁽³⁾		4		8	MHz
f _{XT2,HF1}	XT2 oscillator crystal frequency, mode 1	XT2DRIVEx = 1, XT2BYPASS = 0 ⁽³⁾		8		16	MHz
f _{XT2,HF2}	XT2 oscillator crystal frequency, mode 2	XT2DRIVEx = 2, XT2BYPASS = 0 ⁽³⁾		16		24	MHz
f _{XT2,HF3}	XT2 oscillator crystal frequency, mode 3	XT2DRIVEx = 3, XT2BYPASS = 0 ⁽³⁾		24		32	MHz
f _{XT2,HF,SW}	XT2 oscillator logic-level square- wave input frequency	XT2BYPASS = 1 (4) (3)		0.7		32	MHz
		$XT2DRIVEx = 0$, $XT2BYPASS = 0$, $f_{XT2,HF0} = 6$ MHz, $C_{L,eff} = 15$ pF			450		
04	Oscillation allowance for	XT2DRIVEx = 1, XT2BYPASS = 0, $f_{XT2,HF1} = 12 MHz, C_{L,eff} = 15 pF$			320		0
OA _{HF}	HF crystals ⁽⁵⁾	$XT2DRIVEx = 2$, $XT2BYPASS = 0$, $f_{XT2,HF2} = 20$ MHz, $C_{L,eff} = 15$ pF			200		Ω
		$XT2DRIVEx = 3$, $XT2BYPASS = 0$, $f_{XT2,HF3} = 32$ MHz, $C_{L,eff} = 15$ pF			200		
	Chartup time	$ \begin{aligned} &f_{OSC} = 6 \text{ MHz} \\ &\text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 0, \\ &T_A = 25^{\circ}\text{C}, \text{ C}_{L,\text{eff}} = 15 \text{ pF} \end{aligned} $	3 V		0.5		
t _{START,} HF	Startup time	f_{OSC} = 20 MHz XT2BYPASS = 0, XT2DRIVEx = 3, T_A = 25°C, $C_{L,eff}$ = 15 pF	3 V		0.3		ms
$C_{L,eff}$	Integrated effective load capacitance, HF mode (6) (1)				1		pF
	Duty cycle	Measured at ACLK, f _{XT2,HF2} = 20 MHz		40	50	60	%
f _{Fault,HF}	Oscillator fault frequency ⁽⁷⁾	XT2BYPASS = 1 (8)		30		300	kHz

- 1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- (2) To improve EMI on the XT2 oscillator the following guidelines should be observed.
 - (a) Keep the traces between the device and the crystal as short as possible.
 - (b) Design a good ground plane around the oscillator pins.
 - (c) Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
 - (d) Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
 - (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
 - (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) When XT2BYPASS is set, the XT2 circuit is automatically powered down.
- (5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.
- (6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- (8) Measured with logic-level input frequency but also applies to operation with crystals.

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	Measured at ACLK	1.8 V to 3.6 V	6	9.4	14	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.5		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		4		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40	50	60	%

⁽¹⁾ Calculated using the box method: $(MAX(-40 \text{ to } 85^{\circ}C) - MIN(-40 \text{ to } 85^{\circ}C)) / MIN(-40 \text{ to } 85^{\circ}C) / (85^{\circ}C - (-40^{\circ}C))$

Internal Reference, Low-Frequency Oscillator (REFO)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	1.8 V to 3.6 V	3		μA
	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V	32768		Hz
f _{REFO}	REFO absolute tolerance calibrated	Full temperature range	1.8 V to 3.6 V		±3.5	%
		$T_A = 25$ °C	3 V		±1.5	%
df_{REFO}/d_{T}	REFO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V	0.01		%/°C
df _{REFO} /dV _{CC}	REFO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V	1.0		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40 50	60	%
t _{START}	REFO startup time	40%/60% duty cycle	1.8 V to 3.6 V	25		μs

⁽¹⁾ Calculated using the box method: (MAX(-40 to 85°C) - MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C - (-40°C))

⁽²⁾ Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V)

⁽²⁾ Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V)

DCO Frequency

	PARAMETER	TEST CONDITIONS	MIN	TYP M	ΑX	UNIT
f _{DCO(0,0)}	DCO frequency (0, 0)	DCORSELx = 0, $DCOx = 0$, $MODx = 0$	0.07	0.	20	MHz
f _{DCO(0,31)}	DCO frequency (0, 31)	DCORSELx = 0, $DCOx = 31$, $MODx = 0$	0.70	1.	70	MHz
f _{DCO(1,0)}	DCO frequency (1, 0)	DCORSELx = 1, $DCOx = 0$, $MODx = 0$	0.15	0.	36	MHz
f _{DCO(1,31)}	DCO frequency (1, 31)	DCORSELx = 1, DCOx = 31, MODx = 0	1.47	3.	45	MHz
f _{DCO(2,0)}	DCO frequency (2, 0)	DCORSELx = 2, $DCOx = 0$, $MODx = 0$	0.32	0.	75	MHz
f _{DCO(2,31)}	DCO frequency (2, 31)	DCORSELx = 2, $DCOx = 31$, $MODx = 0$	3.17	7.	38	MHz
f _{DCO(3,0)}	DCO frequency (3, 0)	DCORSELx = 3, $DCOx = 0$, $MODx = 0$	0.64	1.	51	MHz
f _{DCO(3,31)}	DCO frequency (3, 31)	DCORSELx = 3, DCOx = 31, MODx = 0	6.07	14	1.0	MHz
f _{DCO(4,0)}	DCO frequency (4, 0)	DCORSELx = 4, $DCOx = 0$, $MODx = 0$	1.3	;	3.2	MHz
f _{DCO(4,31)}	DCO frequency (4, 31)	DCORSELx = 4, DCOx = 31, MODx = 0	12.3	28	3.2	MHz
f _{DCO(5,0)}	DCO frequency (5, 0)	DCORSELx = 5, DCOx = 0, MODx = 0	2.5	(6.0	MHz
f _{DCO(5,31)}	DCO frequency (5, 31)	DCORSELx = 5, DCOx = 31, MODx = 0	23.7	54	1.1	MHz
f _{DCO(6,0)}	DCO frequency (6, 0)	DCORSELx = 6, $DCOx = 0$, $MODx = 0$	4.6	10	0.7	MHz
f _{DCO(6,31)}	DCO frequency (6, 31)	DCORSELx = 6, DCOx = 31, MODx = 0	39.0	88	3.0	MHz
f _{DCO(7,0)}	DCO frequency (7, 0)	DCORSELx = 7, $DCOx = 0$, $MODx = 0$	8.5	19	9.6	MHz
f _{DCO(7,31)}	DCO frequency (7, 31)	DCORSELx = 7, DCOx = 31, MODx = 0	60	1	35	MHz
S _{DCORSEL}	Frequency step between range DCORSEL and DCORSEL + 1	$S_{RSEL} = f_{DCO(DCORSEL+1,DCO)}/f_{DCO(DCORSEL,DCO)}$	1.2	2	2.3	ratio
S _{DCO}	Frequency step between tap DCO and DCO + 1	$S_{DCO} = f_{DCO(DCORSEL,DCO+1)}/f_{DCO(DCORSEL,DCO)}$	1.02	1.	12	ratio
	Duty cycle	Measured at SMCLK	40	50	60	%
df _{DCO} /dT	DCO frequency temperature drift	f _{DCO} = 1 MHz,		0.1		%/°C
df _{DCO} /dV _{CC}	DCO frequency voltage drift	f _{DCO} = 1 MHz		1.9		%/V

Figure 11. Typical DCO frequency

PMM, Brown-Out Reset (BOR)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V(DV _{CC} _BOR_IT-)	BOR _H on voltage, DV _{CC} falling level	dDV _{CC} /d _t < 3 V/s			1.45	٧
V(DV _{CC} _BOR_IT+)	BOR _H off voltage, DV _{CC} rising level	dDV _{CC} /d _t < 3 V/s	0.80	1.30	1.50	٧
V(DV _{CC} _BOR_hys)	BOR _H hysteresis		60		250	mV
t _{RESET}	Pulse length required at RST/NMI pin to accept a reset		2			μs

PMM, Core Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

l	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
V _{CORE3} (AM)	Core voltage, active mode, PMMCOREV = 3	2.4 V ≤ DV _{CC} ≤ 3.6 V, 0 mA ≤ I(V _{CORE}) ≤ 21 mA	1.90	V
V _{CORE2} (AM)	Core voltage, active mode, PMMCOREV = 2	$2.2 \text{ V} \le \text{DV}_{\text{CC}} \le 3.6 \text{ V}, 0 \text{ mA} \le \text{I}(\text{V}_{\text{CORE}}) \le 21 \text{ mA}$	1.80	V
V _{CORE1} (AM)	Core voltage, active mode, PMMCOREV = 1	$2 \text{ V} \le \text{DV}_{CC} \le 3.6 \text{ V}, 0 \text{ mA} \le \text{I}(\text{V}_{CORE}) \le 17 \text{ mA}$	1.60	V
V _{CORE0} (AM)	Core voltage, active mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V, 0 mA ≤ I(V _{CORE}) ≤ 13 mA	1.40	V
V _{CORE3} (LPM)	Core voltage, low-current mode, PMMCOREV = 3	$2.4 \text{ V} \le \text{DV}_{CC} \le 3.6 \text{ V}, 0 \text{ μA} \le \text{I}(\text{V}_{CORE}) \le 30 \text{ μA}$	1.94	V
V _{CORE2} (LPM)	Core voltage, low-current mode, PMMCOREV = 2	2.2 V ≤ DV _{CC} ≤ 3.6 V, 0 μA ≤ I(V _{CORE}) ≤ 30 μA	1.84	V
V _{CORE1} (LPM)	Core voltage, low-current mode, PMMCOREV = 1	2 V ≤ DV _{CC} ≤ 3.6 V, 0 μA ≤ I(V _{CORE}) ≤ 30 μA	1.64	V
V _{CORE0} (LPM)	Core voltage, low-current mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V, 0 μA ≤ I(V _{CORE}) ≤ 30 μA	1.44	V

PMM, SVS High Side

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVSHE = 0, DV _{CC} = 3.6 V		0		nA
I _(SVSH)	SVS current consumption	SVSHE = 1, DV_{CC} = 3.6 V, $SVSHFP = 0$		200		nA
		SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 1		2.0		μΑ
		SVSHE = 1, SVSHRVL = 0	1.59	1.64	1.69	
$V_{(SVSH_IT-)}$	0) (0)	SVSHE = 1, SVSHRVL = 1	1.79	1.84	1.91	
	SVS _H on voltage level ⁽¹⁾	SVSHE = 1, SVSHRVL = 2	1.98	2.04	2.11	V
		SVSHE = 1, SVSHRVL = 3	2.10	2.16	2.23	
		SVSHE = 1, SVSMHRRL = 0	1.62	1.74	1.81	
		SVSHE = 1, SVSMHRRL = 1	1.88	1.94	2.01	
		SVSHE = 1, SVSMHRRL = 2	2.07	2.14	2.21	
\	0)(0) = (()()()(1)	SVSHE = 1, SVSMHRRL = 3	2.20	2.26	2.33	
$V_{(SVSH_IT+)}$	SVS _H off voltage level ⁽¹⁾	SVSHE = 1, SVSMHRRL = 4	2.32	2.40	2.48	
		SVSHE = 1, SVSMHRRL = 5	2.56	2.70	2.84	
		SVSHE = 1, SVSMHRRL = 6	2.85	3.00	3.15	
		SVSHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	

⁽¹⁾ The SVS_H settings available depend on the VCORE (PMMCOREVx) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208) on recommended settings and usage.

PMM, SVS High Side (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{pd(SVSH)}	CVC proposition dolor	SVSHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVSHFP = 1	2.5			
	SVS _H propagation delay	SVSHE = 1, dV _{DVCC} /dt = 1 mV/µs, SVSHFP = 0		20		μs
	C)/C ===/=# d=l=== time=	SVSHE = 0→1, SVSHFP = 1		12.5		
t(SVSH)	SVS _H on/off delay time	SVSHE = 0→1, SVSHFP = 0	100		μs	
dV _{DVCC} /dt	DV _{CC} rise time		0		1000	V/s

PMM, SVM High Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVMHE = 0, DVCC = 3.6 V		0		nA
I _(SVMH)	SVM _H current consumption	SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0		200		nA
		SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1		2.0		μΑ
		SVMHE = 1, SVSMHRRL = 0	1.65	1.74	1.86	
		SVMHE = 1, SVSMHRRL = 1	1.85	1.94	2.02	Ì
		SVMHE = 1, SVSMHRRL = 2	2.02	2.14	2.22	Ì
		SVMHE = 1, SVSMHRRL = 3	2.18	2.26	2.35	Ì
$V_{(SVMH)}$	SVM _H on or off voltage level ⁽¹⁾	SVMHE = 1, SVSMHRRL = 4	2.32	2.40	2.48	V
		SVMHE = 1, SVSMHRRL = 5	2.56	2.70	2.84	Ì
		SVMHE = 1, SVSMHRRL = 6	2.85	3.00	3.15	Ì
		SVMHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	Ì
		SVMHE = 1, SVMHOVPE = 1		3.75		Ì
	CVM managetica delet	SVMHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVMHFP = 1		2.5		μs
t _{pd(SVMH)}	SVM _H propagation delay	SVMHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVMHFP = 0		20		μs
	CVM on or off dolov time	SVMHE = 0→1, SVSMFP = 1		12.5		μs
t _(SVMH)	SVM _H on or off delay time	SVMHE = 0→1, SVMHFP = 0		100		μs

⁽¹⁾ The SVM_H settings available depend on the VCORE (PMMCOREVx) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208) on recommended settings and usage.

PMM, SVS Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVSLE = 0, PMMCOREV = 2		0		nA
I _(SVSL)	SVS _L current consumption	otion SVSLE = 1, PMMCOREV = 2, SVSLFP = 0		200		nA
		SVSLE = 1, PMMCOREV = 2, SVSLFP = 1		2.0		μA
	CVC propagation dolor	SVSLE = 1, $dV_{CORE}/dt = 10 \text{ mV/}\mu\text{s}$, SVSLFP = 1		2.5		
t _{pd} (SVSL)	SVS _L propagation delay	SVSLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVSLFP = 0		20		μs
	SVS on/off doloy time	SVSLE = 0→1, SVSLFP = 1		12.5		
t(SVSL)	SVS _L on/off delay time	SVSLE = 0→1, SVSLFP = 0		100		μs

PMM, SVM Low Side

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVMLE = 0, PMMCOREV = 2		0		nA
I _(SVML)	SVM _L current consumption	SVMLE = 1, PMMCOREV = 2, SVMLFP = 0		200		nA
		SVMLE = 1, PMMCOREV = 2, SVMLFP = 1		2.0		μA

PMM, SVM Low Side (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
	OVAA anna anatina dalam	SVMLE = 1, dV _{CORE} /dt = 10 mV/µs, SVMLFP = 1		2.5		
t _{pd(SVML)}	SVM _L propagation delay	SVMLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu \text{s}$, $SVMLFP = 0$		20		μs
	CVAA and left delevations	SVMLE = 0→1, SVMLFP = 1		12.5		
t(SVML)	SVM _L on/off delay time	SVMLE = 0→1, SVMLFP = 0		100		μs

Wake-Up From Low-Power Modes and Reset

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITION	NS	MIN	TYP	MAX	UNIT
	Wake-up time from LPM2,	PMMCOREV = SVSMLRRL = n	f _{MCLK} ≥ 4 MHz		3	6.5	
t _{WAKE-UP-FAST}	LPM3, or LPM4 to active mode ⁽¹⁾	(where n = 0, 1, 2, or 3), SVSLFP = 1	1 MHz < f _{MCLK} < 4 MHz		4	8.0	μs
twake-up-slow	Wake-up time from LPM2, LPM3 or LPM4 to active mode ⁽²⁾	PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0			150	165	μs
t _{WAKE-UP-LPM5}	Wake-up time from LPM3.5 or LPM4.5 to active mode (3)				2	3	ms
t _{WAKE-UP-RESET}	Wake-up time from RST or BOR event to active mode (3)				2	3	ms

- (1) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low-side supervisor (SVS_L) and low side monitor (SVM_L). Fastest wakeup times are possible with SVS_Land SVM_L in full performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVS_Land SVM_L while operating in LPM2, LPM3, and LPM4. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx* and *MSP430x6xx Family User's Guide* (SLAU208).
- (2) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low-side supervisor (SVS_L) and low side monitor (SVM_L). In this case, the SVS_Land SVM_L are in normal mode (low current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVS_Land SVM_L while operating in LPM2, LPM3, and LPM4. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208).
- (3) This value represents the time from the wakeup event to the reset vector execution.

Timer A, Timers TA0, TA1, and TA2

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f_{TA}	Timer_A input clock frequency	Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ± 10%	1.8 V, 3 V			20	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3 V	20			ns

Timer B, Timer TB0

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f_{TB}	Timer_B input clock frequency	Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ± 10%	1.8 V, 3 V			20	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3 V	20			ns

Battery Backup

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	V _{cc}	MIN	TYP	MAX	UNIT
			T _A = -40°C			0.43		
		VBAT = 1.7 V,	$T_A = 25^{\circ}C$			0.52		
		DVCC not connected, RTC running	T _A = 60°C			0.58		μA
		Ŭ	T _A = 85°C			0.64		•
			T _A = -40°C			0.50		
	Current into VBAT terminal in	VBAT = 2.2 V,	T _A = 25°C			0.59		
I _{VBAT}	case no primary battery is connected.	DVCC not connected, RTC running	T _A = 60°C			0.64		μA
		Ŭ	T _A = 85°C			0.71		•
			T _A = -40°C			0.68		
		VBAT = 3 V,	T _A = 25°C			0.75		
		DVCC not connected, RTC running	T _A = 60°C			0.79		μA
		Ŭ	T _A = 85°C			0.86		
			General			V _{SVSH_IT} -		
			SVSHRL = 0		1.59		1.69	•
V_{SWITCH}	Switch-over level (V _{CC} to VBAT)	$C_{VCC} = 4.7 \mu F$	SVSHRL = 1		1.79		1.91	V
	VB/(I)		SVSHRL = 2		1.98		2.11	
			SVSHRL = 3		2.10		2.23	
R _{ON_VBAT}	On-resistance of switch between VBAT and VBAK	V _{BAT} = 1.8 V		0 V		0.35	1	kΩ
	VBAT to ADC input channel			1.8 V		0.6	±5%	
V_{BAT3}	12: V _{BAT} divide,			3 V		1.0	±5%	V
	V _{BAT3} ≠ V _{BAT} /3			3.6 V		1.2	±5%	•
t _{Sample,VBA}	VBAT to ADC: Sampling time required if VBAT3 selected	ADC12ON = 1, Error of conversion resul	t ≤ 1 LSB		1000			ns
V _{CHVx}	Charger end voltage	CHVx = 2			2.65	2.7	2.9	V
			CHCx = 1				5	
R _{CHARGE}	Charge limiting resistor		CHCx = 2				10	kΩ
		CHCx = 3					20	

USCI (UART Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
fusci	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%			f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)				1	MHz
	LIART receive de clitale time (1)		2.2 V	50	600	
L _T	UART receive deglitch time ⁽¹⁾		3 V	50	600	ns

⁽¹⁾ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time.

USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 12 and)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, ACLK, Duty cycle = 50% ± 10%				f _{SYSTEM}	MHz
		PMMCOREV = 0	1.8 V	55			
	SOMI input data actua tima	PIVIVICOREV = 0	3 V	38			ns
t _{SU,MI}	SOMI input data setup time	DMMCODEV 2	2.4 V	30			20
		PMMCOREV = 3	3 V	25			ns
		DMM400DEV 0	1.8 V	0			
	SOMI input data hold time	PMMCOREV = 0	3 V	0			ns
t _{HD,MI}		DMM400DEV 0	2.4 V	0			
		PMMCOREV = 3	3 V	0			ns
		UCLK edge to SIMO valid, C _L = 20 pF, PMMCOREV = 0	1.8 V			20	
t _{VALID.MO}	SIMO output data valid time ⁽²⁾		3 V			18	ns
VALID,MO	Chivio datpat data valla timo	UCLK edge to SIMO valid,	2.4 V			16	
		C _L = 20 pF, PMMCOREV = 3	3 V			15	ns
		0 00 = F PMMOOREY 0	1.8 V	-10			
	CIMO autout data hald time (3)	$C_L = 20 \text{ pF}, PMMCOREV = 0$	3 V	-8			ns
t _{HD,MO}	SIMO output data hold time ⁽³⁾	C 20 TE DIMACOREY C	2.4 V	-10			
		$C_L = 20 \text{ pF}, PMMCOREV = 3$	3 V	-8			ns

- $$\begin{split} &f_{UCXCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \geq max(t_{VALID,MO(USCI)} + t_{SU,SI(Slave)}, t_{SU,MI(USCI)} + t_{VALID,SO(Slave)}). \\ &\text{For the slave's parameters } t_{SU,SI(Slave)} \text{ and } t_{VALID,SO(Slave)}, \text{ see the SPI parameters of the attached slave}. \\ &\text{Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams} \end{split}$$
- Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 12 and.

Figure 12. SPI Master Mode, CKPH = 0

Figure 13. SPI Master Mode, CKPH = 1

USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 14 and Figure 15)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		DIMIOODEI/ 0	1.8 V	11			
	OTEL III OTEL II I	PMMCOREV = 0	3 V	8			ns
t _{STE,LEAD}	STE lead time, STE low to clock	D. W. 100 D. E. 1	2.4 V	7			
		PMMCOREV = 3	3 V	6			ns
		DIMIOODEI/ 0	1.8 V	3			
		PMMCOREV = 0	3 V	3			ns
t _{STE,LAG}	STE lag time, Last clock to STE high	DIMIOODEI/ 0	2.4 V	3			
		PMMCOREV = 3	3 V	3			ns
		DIMIOODEI/ 0	1.8 V			66	
	0.75	PMMCOREV = 0	3 V			50	ns
t _{STE,ACC}	STE access time, STE low to SOMI data out	D. W. 100 D. E. 1	2.4 V			36	
		PMMCOREV = 3	3 V			30	ns
		DIMIOODEI/ 0	1.8 V			30	
	STE disable time, STE high to SOMI high	PMMCOREV = 0	3 V			23	ns
t _{STE,DIS}	impedance	DMMCODEV 2	2.4 V			16	
		PMMCOREV = 3	3 V			13	ns
		D. W. 100 D. E. 1	1.8 V	5			
		PMMCOREV = 0	3 V	5			ns
t _{SU,SI}	SIMO input data setup time	DIMIOODEI/ O	2.4 V	2			
		PMMCOREV = 3	3 V	2			ns
		D. W. CO. D. T. C.	1.8 V	5			
	0110	PMMCOREV = 0	3 V	5			ns
t _{HD,SI}	SIMO input data hold time	DIMIOODEI/ 0	2.4 V	5			
		PMMCOREV = 3	3 V	5			ns
		UCLK edge to SOMI valid,	1.8 V			76	
+	SOMI output data valid time (2)	$C_L = 20 \text{ pF},$ PMMCOREV = 0	3 V			60	ns
t _{VALID,SO}	SOM output data valid time V	UCLK edge to SOMI valid,	2.4 V			44	
		C _L = 20 pF, PMMCOREV = 3	3 V			40	ns
		C _L = 20 pF,	1.8 V	18			200
	SOMI output data hold time ⁽³⁾	PMMCOREV = 0	3 V	12			ns
t _{HD,SO}	Sowii output data noid time.	C _L = 20 pF,	2.4 V	10			nc
		PMMCOREV = 3	3 V	8			ns

 $f_{UCXCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \geq max(t_{VALID,MO(Master)} + t_{SU,SI(USCI)}, t_{SU,MI(Master)} + t_{VALID,SO(USCI)}).$ For the master's parameters $t_{SU,MI(Master)}$ and $t_{VALID,MO(Master)}$, see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams (1)

in Figure 14 and Figure 15.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 14 and Figure 15.

Figure 14. SPI Slave Mode, CKPH = 0

Figure 15. SPI Slave Mode, CKPH = 1

USCI (I2C Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 16)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP I	ΛAΝ	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%			f _{SYs}	STEM	MHz
f _{SCL}	SCL clock frequency		2.2 V, 3 V	0		400	kHz
	Hold time (repeated) START	f _{SCL} ≤ 100 kHz	2.2 V, 3 V	4.0			0
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3 V	2 V, 3 V 0.6			μs
	Catura time for a reposted CTART	f _{SCL} ≤ 100 kHz	2.2 V, 3 V	4.7			
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6			μs
t _{HD,DAT}	Data hold time		2.2 V, 3 V	0			ns
t _{SU,DAT}	Data setup time		2.2 V, 3 V	250			ns
	Cotum time for CTOD	f _{SCL} ≤ 100 kHz	221/21/	4.0			
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6			μs
	Dulan width of anilyse suppressed by input filter		2.2 V	50		600	
t _{SP}	Pulse width of spikes suppressed by input filter		3 V	50		600	ns

Figure 16. I2C Mode Timing

12-Bit ADC, Power Supply and Input Range Conditions

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
AV _{CC}	Analog supply voltage	AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V		2.2		3.6	V
V _(Ax)	Analog input voltage range ⁽²⁾	All ADC12 analog input pins Ax		0		AV_{CC}	V
	Operating supply current into	f	2.2 V		150	200	^
I _{ADC12_A}	AV _{CC} terminal ⁽³⁾	$f_{ADC12CLK} = 5 \text{ MHz}^{(4)}$	3 V		150	250	μA
Cı	Input capacitance	Only one terminal Ax can be selected at one time	2.2 V		20	25	pF
R _I	Input MUX ON resistance	0 V ≤ VIN ≤ V(AVCC)		10	200	1900	Ω

⁽¹⁾ The leakage current is specified by the digital I/O input leakage.

⁽²⁾ The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results. If the reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are required. See REF, External Reference and REF, Built-In Reference.

⁽³⁾ The internal reference supply current is not included in current consumption parameter I_{ADC12}.

⁽⁴⁾ ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0

12-Bit ADC, Timing Parameters

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		For specified performance of ADC12 linearity parameters using an external reference voltage or AVCC as reference ⁽¹⁾		0.45	4.8	5.0	
f _{ADC12CLK}	ADC conversion clock	For specified performance of ADC12 linearity parameters using the internal reference (2)		2.4	4.0	MHz	
		For specified performance of ADC12 linearity parameters using the internal reference ⁽³⁾		0.45	2.4	2.7	
f _{ADC12OSC}	Internal ADC12 oscillator (4)	ADC12DIV = 0, f _{ADC12CLK} = f _{ADC12OSC}	2.2 V, 3 V	4.2	4.8	5.4	MHz
	Communication times	REFON = 0, Internal oscillator, ADC12OSC used for ADC conversion clock	2.2 V, 3 V	2.4		3.1	
tCONVERT	Conversion time	External $f_{ADC12CLK}$ from ACLK, MCLK or SMCLK, ADC12SSEL $\neq 0$			(5)		μs
t _{Sample}	Sampling time	$R_S = 400 \Omega$, $R_1 = 200 \Omega$, $C_1 = 20 pF$, $T = [R_S + R_1] \times C_1^{(6)}$	2.2 V, 3 V	1000			ns

- (1) REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0, SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the specified performance of the ADC12 linearity is ensured with f_{ADC12CLK} maximum of 5 MHz.
- (2) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1
- (3) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC divided by 2.
- (4) The ADC12OSC is sourced directly from MODOSC inside the UCS.
- (5) $13 \times ADC12DIV \times 1/f_{ADC12CLK}$
- (6) Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:
 t_{Sample} = ln(2ⁿ⁺¹) x (R_S + R_I) x C_I + 800 ns, where n = ADC resolution = 12, R_S = external source resistance

12-Bit ADC, Linearity Parameters Using an External Reference Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
г	Integral	1.4 V ≤ dVREF ≤ 1.6 V ⁽²⁾	2.2 V, 3 V		±2	LSB
E _I	linearity error ⁽¹⁾	1.6 V < dVREF ⁽²⁾	2.2 V, 3 V		±1.7	LSB
E _D	Differential linearity error ⁽¹⁾	(2)	2.2 V, 3 V		±1	LSB
г	Offset error ⁽³⁾	dVREF ≤ 2.2 V ⁽²⁾	2.2 V, 3 V	±3	±5.6	LSB
Eo	Offset effort ^e	$dVREF > 2.2 V^{(2)}$	2.2 V, 3 V	±1.5	±3.5	LSB
E_G	Gain error ⁽³⁾	(2)	2.2 V, 3 V	±1	±2.5	LSB
г	Total unadjusted	dVREF ≤ 2.2 V ⁽²⁾	2.2 V, 3 V	±3.5	±7.1	LSB
E _T	error	$dVREF > 2.2 V^{(2)}$	2.2 V, 3 V	±2	±5	LOD

⁽¹⁾ Parameters are derived using the histogram method.

12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
E _I	Integral linearity error ⁽¹⁾	See (2)	2.2 V, 3 V			±1.7	LSB
E_D	Differential linearity error ⁽¹⁾	See (2)	2.2 V, 3 V			±1	LSB

⁽¹⁾ Parameters are derived using the histogram method.

⁽²⁾ The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = V_{R+} - V_{R-}. V_{R+} < AVCC. V_{R-} > AVSS. Unless otherwise mentioned, dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω, and two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF+/VREF- to decouple the dynamic current. See also the MSP430F5xx and MSP430F6xx Family User's Guide (SLAU208).</p>

⁽³⁾ Parameters are derived using a best fit curve.

⁽²⁾ AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0.

12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
Eo	Offset error ⁽³⁾	See (2)	2.2 V, 3 V		±1	±2	LSB
E_G	Gain error ⁽³⁾	See (2)	2.2 V, 3 V		±2	±4	LSB
E _T	Total unadjusted error	See (2)	2.2 V, 3 V		±2	±5	LSB

⁽³⁾ Parameters are derived using a best fit curve.

12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITI	ONS ⁽¹⁾	V _{CC}	MIN	TYP	MAX	UNIT
_	Integral	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V			±1.7	LSB
Eı	linearity error ⁽²⁾	ADC12SR = 0, REFOUT = 0	$f_{ADC12CLK} \le 2.7 \text{ MHz}$	2.2 V, 3 V			±2.5	LOD
		ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz		-1		+1.5	
E_D	Differential linearity error ⁽²⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1	LSB
	imodify offer	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz		-1		+2.5	
_	Offset error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V		±2	±4	LSB
Eo	Oliset ellor	ADC12SR = 0, REFOUT = 0	$f_{ADC12CLK} \le 2.7 \text{ MHz}$	2.2 V, 3 V		±2	±4	LOD
_	Gain error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V. 3 V		±1	±2.5	LSB
E _G	Gain endix	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1% ⁽⁴⁾	VREF
_	Total unadjusted	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V. 3 V		±2	±5	LSB
E _T	error	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1% ⁽⁴⁾	VREF

The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. dVREF = V_{R-1} - V_{R-1}

12-Bit ADC, Temperature Sensor and Built-In V_{MID}

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V	See ⁽¹⁾	ADC12ON = 1, INCH = 0Ah,	2.2 V		680		mV
V _{SENSOR}	See V	$T_A = 0$ °C	3 V		680		IIIV
TO		ADC12ON 1 INCL OAR	2.2 V		2.25		mV/°C
TC _{SENSOR}		ADC12ON = 1, INCH = 0Ah	3 V		2.25		mv/ C
	Sample time required if	ADC12ON = 1, INCH = 0Ah,	2.2 V	100			
^T SENSOR(sample)	channel 10 is selected (2)(3)	Error of conversion result ≤ 1 LSB	3 V	100			μs
V	AV divider et channel 11	ADC12ON = 1, INCH = 0Bh,	2.2 V	1.06	1.1	1.14	V
V _{MID}	AV _{CC} divider at channel 11	V_{MID} is approximately 0.5 × V_{AVCC}	3 V	1.46	1.5	1.54	
t _{VMID(sample)}	Sample time required if channel 11 is selected (4)	ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB	2.2 V, 3 V	1000			ns

⁽¹⁾ The temperature sensor is provided by the REF module. See the REF module parametric, I_{REF+}, regarding the current consumption of the temperature sensor.

²⁾ Parameters are derived using the histogram method.

⁽³⁾ Parameters are derived using a best fit curve.

⁽⁴⁾ The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In this mode the reference voltage used by the ADC12_A is not available on a pin.

⁽²⁾ The temperature sensor offset can be significant. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. The TLV structure contains calibration values for 30°C ± 3°C and 85°C ± 3°C for each of the available reference voltage levels. The sensor voltage can be computed as V_{SENSE} = TC_{SENSOR} × (Temperature, °C) + V_{SENSOR}, where TC_{SENSOR} and V_{SENSOR} can be computed from the calibration values for higher accuracy. See also the *MSP430F5xx and MSP430F6xx Family User's Guide* (SLAU208).

⁽³⁾ The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time t_{SENSOR(on)}.

⁽⁴⁾ The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.

Figure 17. Typical Temperature Sensor Voltage

REF, External Reference

F	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
V _{eREF+}	Positive external reference voltage input	$V_{\text{eREF+}} > V_{\text{REF-}}/V_{\text{eREF-}}$ (2)		1.4	AV_{CC}	V
V _{REF} _/V _{eREF} _	Negative external reference voltage input	$V_{eREF+} > V_{REF-}/V_{eREF-}$ (3)		0	1.2	V
V _{eREF+} - V _{REF-} /V _{eREF-}	Differential external reference voltage input	V _{eREF+} > V _{REF} _/V _{eREF} _ ⁽⁴⁾		1.4	AV _{CC}	V
I _{VeREF+} ,	Static input current F-	1.4 $V \le V_{eREF+} \le V_{AVCC}$, $V_{eREF-} = 0 V$, $f_{ADC12CLK} = 5 MHz$, ADC12SHTx = 1h, Conversion rate 200 ksps	2.2 V, 3 V	-26	26	μΑ
I _{VeREF+} , I _{VREF-/VeREF-}		$\begin{array}{l} 1.4~\text{V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}} \text{, V}_{\text{eREF-}} = 0~\text{V}, \\ \text{f}_{\text{ADC12CLK}} = 5~\text{MHZ, ADC12SHTx} = 8\text{h}, \\ \text{Conversion rate 20 ksps} \end{array}$	2.2 V, 3 V	-1.2	+1.2	μΑ
C _{VREF+/-}	Capacitance at V _{REF+/-} terminal ⁽⁵⁾			10		μF

⁽¹⁾ The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_i, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.

⁽²⁾ The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.

⁽³⁾ The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.

⁽⁴⁾ The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

⁽⁵⁾ Two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

REF, Built-In Reference

	PARAMETER	TEST CONDITION	NS	V _{cc}	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V, REFON = REFOUT = 1 , I _{VREF+} = 0 A		3 V		2.5	±1%	
V_{REF+}	Positive built-in reference voltage output	REFVSEL = {1} for 2 V, REFON = REFOUT = 1, I _{VREF+} = 0 A		3 V		2.0	±1%	V
		REFVSEL = {0} for 1.5 V, REFON = REFOUT = 1, I _{VREF+} = 0 A		2.2 V, 3 V		1.5	±1%	
	AV _{CC} minimum voltage,	REFVSEL = {0} for 1.5 V			2.2			
$AV_{CC(min)}$	Positive built-in reference	REFVSEL = {1} for 2 V			2.3			V
	active	REFVSEL = {2} for 2.5 V			2.8			
		ADC12SR = $1^{(4)}$, REFON = 1, RE REFBURST = 0	FOUT = 0,	3 V		70	100	μA
I _{REF+}	Operating supply current into AV _{CC} terminal ⁽²⁾ ⁽³⁾	ADC12SR = 1 ⁽⁴⁾ , REFON = 1, RE REFBURST = 0	FOUT = 1,	3 V		0.45	0.75	mA
		ADC12SR = $0^{(4)}$, REFON = 1, RE REFBURST = 0	FOUT = 0,	3 V		210	310	μA
		ADC12SR = $0^{(4)}$, REFON = 1, RE REFBURST = 0	FOUT = 1,	3 V		0.95		mA
I _{L(VREF+)}	Load-current regulation, V _{REF+} terminal ⁽⁵⁾	$\label{eq:REFVSEL} \begin{split} &\text{REFVSEL} = \{0,1,2\} \\ &\text{$I_{VREF+} = +10 \ \mu\text{A} \ / \ -1000 \ \mu\text{A}$} \\ &\text{$AV_{CC} = AV_{CC(min)}$ for each reference REFVSEL = \{0,1,2\}, \text{REFON} = R^{-1}\} \end{split}$	ce level, EFOUT = 1			1500	2500	μV/mA
C _{VREF+}	Capacitance at V _{REF+} terminal	REFON = REFOUT = 1, $^{(6)}$ 0 mA \leq $I_{VREF+} \leq$ I_{VREF+} (max)		2.2 V, 3 V	20		100	pF
TC _{REF+}	Temperature coefficient of built-in reference (7)	I _{VREF+} is a constant in the range of 0 mA ≤ I _{VREF+} ≤ −1 mA	REFOUT = 0	2.2 V, 3 V		20		ppm/ °C
TC _{REF+}	Temperature coefficient of built-in reference (7)	I _{VREF+} is a constant in the range of 0 mA ≤ I _{VREF+} ≤ −1 mA	REFOUT = 1	2.2 V, 3 V		20	50	ppm/ °C
PSRR_DC	Power supply rejection ratio (dc)	$\begin{aligned} &AV_{CC} = AV_{CC(min)} \text{-} AV_{CC(max)}, \\ &T_{A} = 25^{\circ}C, REFVSEL = \{0,1,2\}, F \\ &REFOUT = 0 or 1 \end{aligned}$	REFON = 1,			120	300	μV/V
PSRR_AC	Power supply rejection ratio (ac)		REFON = 1,			1		mV/V

⁽¹⁾ The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one smaller and one larger for driving the V_{REF+} terminal. When REFOUT = 1, the reference is available at the V_{REF+} terminal, as well as, used as the reference for the conversion and utilizes the larger buffer. When REFOUT = 0, the reference is only used as the reference for the conversion and utilizes the smaller buffer.

⁽²⁾ The internal reference current is supplied via terminal AV_{CC}. Consumption is independent of the ADC12ON control bit, unless a conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current contribution of the larger buffer without external load.

⁽³⁾ The temperature sensor is provided by the REF module. Its current is supplied via terminal AVCC and is equivalent to I_{REF+} with REFON = 1 and REFOUT = 0.

⁽⁴⁾ For devices without the ADC12, the parametric with ADC12SR = 0 are applicable.

⁽⁵⁾ Contribution only due to the reference and buffer including package. This does not include resistance due to PCB traces or other external factors.

⁽⁶⁾ Two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

⁽⁷⁾ Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C – (-40°C)).

ZHCS410D - JUNE 2010 - REVISED AUGUST 2013

www.ti.com.cn

REF, Built-In Reference (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
t _{SETTLE}	Settling time of reference voltage ⁽⁸⁾	$\begin{array}{l} AV_{CC} = AV_{CC(min)} \cdot AV_{CC(max)}, \\ REFVSEL = \{0, 1, 2\}, REFOUT = 0, \\ REFON = 0 \rightarrow 1 \end{array}$			75		
		$\begin{array}{l} AV_{CC} = AV_{CC(min)} \cdot AV_{CC(max)}, \\ C_{VREF} = C_{VREF}(max), \\ REFVSEL = \{0, 1, 2\}, REFOUT = 1, \\ REFON = 0 \rightarrow 1 \end{array}$			75		μs

The condition is that the error in a conversion started after t_{REFON} is less than ± 0.5 LSB. The settling time depends on the external capacitive load when REFOUT = 1.

12-Bit DAC, Supply Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
AV_{CC}	Analog supply voltage	$AV_{CC} = DV_{CC}$, $AV_{SS} = DV_{SS} = 0 V$		2.20		3.60	V
I _{DD}	Supply current, single DAC channel ⁽¹⁾ (2)	DAC12AMPx = 2, DAC12IR = 0, DAC12OG = 1, DAC12_XDAT = 0800h, VeREF+ = VREF+ = 1.5 V	3 V		65	110	
		DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AV _{CC}			125	165	μA
		DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AV _{CC}	2.2 V, 3 V		250	350	·
		DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AV _{CC}			750	1100	
		DAC12_xDAT = 800h, VeREF+ = 1.5 V, Δ AV _{CC} = 100 mV	2.2 V		70		
PSRR	Power supply rejection ratio (3) (4)	DAC12_xDAT = 800h, VeREF+ = 1.5 V or 2.5 V, ΔΑV _{CC} = 100 mV	3 V		70		dB

- (1) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.
- Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications.
- PSRR = 20 log ($\Delta AV_{CC} / \Delta V_{DAC12_xOUT}$) The internal reference is not used.

12-Bit DAC, Linearity Specifications

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	Resolution	12-bit monotonic		12			bits
INII	Integral	VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V		±2	±4 ⁽²⁾	LSB
INL	nonlinearity (1)	VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	3 V		±2	±4	LSB
DNII	Differential	VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V		±0.4	±1 ⁽²⁾	LSB
DNL	nonlinearity ⁽¹⁾	VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	3 V		±0.4	±1	LOD

⁽¹⁾ Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + bx. $V_{DAC12_xOUT} = E_0 + (1 + E_G) \times (VeREF+/4095) \times DAC12_xDAT$, DAC12IR = 1.

This parameter is not production tested.

12-Bit DAC, Linearity Specifications (continued)

	PARAMETER	TEST CON	DITIONS	V _{cc}	MIN TY	P MAX	UNIT
		Wish and polithopsing (1) (3)	VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V		±21 ⁽²⁾	
F	Officet voltege	Without calibration ⁽¹⁾ (3)	VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	3 V		±21	mV
E _O	Offset voltage	With calibration ⁽¹⁾ (3)	VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V		±1.5 ⁽²⁾	IIIV
		with calibration (7)	VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	3 V	±1.5		
d _{E(O)} /d _T	Offset error temperature coefficient ⁽¹⁾	With calibration		2.2 V, 3 V	±1	0	μV/°C
_	Coin arror	VeREF+ = 1.5 V		2.2 V		±2.5	%FSR
E _G	Gain error	VeREF+ = 2.5 V		3 V		±2.5	%FSK
$d_{E(G)}/d_{T}$	Gain temperature coefficient ⁽¹⁾			2.2 V, 3 V	1	0	ppm of FSR/ °C
		DAC12AMPx = 2				165	
t _{Offset_Cal}	Time for offset calibration (4)	DAC12AMPx = 3, 5		2.2 V, 3 V		66	ms
		DAC12AMPx = 4, 6, 7				16.5	

- (3) The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON
- (4) The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may effect accuracy and is not recommended.

Figure 18. Linearity Test Load Conditions and Gain/Offset Definition

12-Bit DAC, Output Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PAI	RAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		No load, VeREF+ = AV _{CC} , DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7		0		0.005	
V	Output voltage range ⁽¹⁾ (see	No load, VeREF+ = AV _{CC} , DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7	2.2 V, 3 V	AV _{CC} - 0.05		AV _{CC}	V
Vo	Figure 19)	$R_{Load} = 3 k\Omega$, $VeREF+ = AV_{CC}$, $DAC12_xDAT = 0h$, $DAC12IR = 1$, $DAC12AMPx = 7$	2.2 V, 3 V	0		0.1	V
		$R_{Load} = 3 k\Omega$, $VeREF+ = AV_{CC}$, $DAC12_xDAT = 0FFFh$, $DAC12IR = 1$, $DAC12AMPx = 7$		AV _{CC} - 0.13		AV _{CC}	
C _{L(DAC12)}	Maximum DAC12 load capacitance		2.2 V, 3 V			100	pF
L	Maximum DAC12	$\begin{aligned} &DAC12AMPx = 2,\ DAC12xDAT = 0FFFh, \\ &V_{O/P(DAC12)} > AV_{CC} - 0.3 \end{aligned}$	2.2 V, 3 V	-1			mA
I _{L(DAC12)}	load current	$\begin{aligned} &DAC12AMPx = 2, DAC12xDAT = 0h, \\ &V_{O/P(DAC12)} < 0.3 V \end{aligned}$	2.2 V, 3 V			1	ША
		R_{Load} = 3 k Ω , VO/P(DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h			150	250	
R _{O/P(DAC12)}	Output resistance (see Figure 19)	$\begin{aligned} R_{Load} &= 3 \text{ k}\Omega, \text{ V}_{O/P(DAC12)} > \text{AV}_{CC} - 0.3 \text{ V}, \\ DAC12_xDAT &= 0 \text{FFFh} \end{aligned}$	2.2 V, 3 V		150	250	Ω
		$R_{Load} = 3 \text{ k}\Omega,$ $0.3 \text{ V} \le V_{O/P(DAC12)} \le AV_{CC} - 0.3 \text{ V}$				6	

(1) Data is valid after the offset calibration of the output amplifier.

Figure 19. DAC12_x Output Resistance Tests

12-Bit DAC, Reference Input Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
VeREF+	Reference input voltage	DAC12IR = 0 ⁽¹⁾ (2)	221/21/		AV _{CC} /3	AV _{CC} + 0.2	V
		DAC12IR = 1 ⁽³⁾ (4)	2.2 V, 3 V		AV_{CC}	AV _{CC} + 0.2	
	Reference input resistance (5)	DAC12_0 IR = DAC12_1 IR = 0		20			МΩ
D:		DAC12_0 IR = 1, DAC12_1 IR = 0			48		
Ri _(VREF+) , Ri _(VeREF+)		DAC12_0 IR = 0, DAC12_1 IR = 1	2.2 V, 3 V		48		kΩ
(VOICE 1)		DAC12_0 IR = DAC12_1 IR = 1, DAC12_0 SREFx = DAC12_1 SREFx ⁽⁶⁾			24		11.32

- (1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
- (2) The maximum voltage applied at reference input voltage terminal VeREF+ = [AV_{CC} − V_{E(O)}] / [3 x (1 + E_G)].
- (3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).
- (4) The maximum voltage applied at reference input voltage terminal VeREF+ = $[AV_{CC} V_{E(O)}] / (1 + E_G)$.
- (5) This impedance depends on tradeoff in power savings. Current devices have 48 kΩ for each channel when divide is enabled. Can be increased if performance can be maintained.
- (6) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance.

12-Bit DAC, Dynamic Specifications

 $V_{REF} = V_{CC}$, DAC12IR = 1 (see Figure 20 and Figure 21), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		DAC12_xDAT = 800h,	DAC12AMPx = $0 \rightarrow \{2, 3, 4\}$			60	120	
t _{ON}	DAC12 on time	$Error_{V(O)} < \pm 0.5 LSB^{(1)}$	$DAC12AMPx = 0 \to \{5, 6\}$	2.2 V, 3 V		15	30	μs
		(see Figure 20)	$DAC12AMPx = 0 \to 7$			6	12	Ÿ
			DAC12AMPx = 2			100	200	
t _{S(FS)}	S(FS) Settling time, full scale	DAC12_xDAT = $80h \rightarrow F7Fh \rightarrow 80h$	DAC12AMPx = 3, 5	2.2 V, 3 V		40	80	μs
		0011 -> 1 71 11 -> 0011	DAC12AMPx = 4, 6, 7			15	30	
		DAC12 xDAT =	DAC12AMPx = 2	2.2 V, 3 V		5		
t _{S(C-C)}	Settling time, code to code	$3F8h \rightarrow 408h \rightarrow 3F8h$,	DAC12AMPx = 3, 5		2.2 V, 3 V		2	
	0000	BF8h → C08h → BF8h	DAC12AMPx = 4, 6, 7			1		Ÿ
			DAC12AMPx = 2		0.05	0.35		
SR	Slew rate	DAC12_xDAT = $80h \rightarrow F7Fh \rightarrow 80h^{(2)}$	DAC12AMPx = 3, 5	2.2 V, 3 V	0.35	1.10		V/µs
		0011 → 1 /1 11 → 0011 · ·	DAC12AMPx = 4, 6, 7		1.50	5.20		
	Glitch energy	DAC12_xDAT = 800h → 7FFh → 800h	DAC12AMPx = 7	2.2 V, 3 V		35		nV-s

- (1) R_{Load} and C_{Load} connected to AV_{SS} (not $AV_{CC}/2$) in Figure 20.
- (2) Slew rate applies to output voltage steps ≥ 200 mV.

Figure 20. Settling Time and Glitch Energy Testing

Figure 21. Slew Rate Testing

12-Bit DAC, Dynamic Specifications (Continued)

over recommended ranges of supply voltage and T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
	3-dB bandwidth.	DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h		40			
$BW_{-3dB} \qquad \begin{array}{c} V_{DC} = 1.5 \text{ V}, \\ V_{AC} = 0.1 \text{ V}_{PP} \\ \text{(see Figure 22)} \end{array}$	DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h	2.2 V, 3 V	180			kHz	
	(see Figure 22)	DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h		550			
	Channel-to-channel crosstalk ⁽¹⁾ (see	DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h \leftrightarrow F7Fh, R _{Load} = 3 k Ω , f _{DAC12_0OUT} = 10 kHz at 50/50 duty cycle	2.2 V. 3 V		-80		dB
	Figure 23)	DAC12_0DAT = 80h \leftrightarrow F7Fh, R _{Load} = 3 k Ω , DAC12_1DAT = 800h, No load, f _{DAC12_0OUT} = 10 kHz at 50/50 duty cycle	2.2 V, 3 V		-80		uБ

(1) $R_{Load} = 3 k\Omega$, $C_{Load} = 100 pF$

Figure 22. Test Conditions for 3-dB Bandwidth Specification

Figure 23. Crosstalk Test Conditions

www.ti.com.cn

Comparator_B

INSTRUMENTS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage			1.8		3.6	V
			1.8 V			40	
	Comparator operating supply	CBPWRMD = 00	2.2 V		30	50	
I _{AVCC_COMP}	current into AVCC terminal, Excludes reference resistor		3 V		40	65	μΑ
	ladder	CBPWRMD = 01	2.2 V, 3 V		10	30	
		CBPWRMD = 10	2.2 V, 3 V		0.1	0.5	
I _{AVCC_REF}	Quiescent current of local reference voltage amplifier into AVCC terminal	CBREFACC = 1, CBREFLx = 01				22	μA
V _{IC}	Common mode input range			0		V _{CC} - 1	V
V	land offert college	CBPWRMD = 00				±20	mV
V _{OFFSET}	Input offset voltage	CBPWRMD = 01, 10				±10	mv
C _{IN}	Input capacitance				5		pF
R _{SIN} Series input resistance	ON - switch closed			3	4	kΩ	
	Series input resistance	OFF - switch opened		50			МΩ
	Propagation delay, response time	CBPWRMD = 00, CBF = 0				450	ns
t _{PD}		CBPWRMD = 01, CBF = 0				600	ns
		CBPWRMD = 10, CBF = 0				50	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00		0.35	0.6	1.0	μs
	Propagation delay with filter	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01		0.6	1.0	1.8	μs
^t PD,filter	active	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10		1.0	1.8	3.4	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11		1.8	3.4	6.5	μs
t _{EN_CMP}	Comparator enable time, settling time	CBON = 0 to CBON = 1 CBPWRMD = 00, 01, 10			1	2	μs
t _{EN_REF}	Resistor reference enable time	CBON = 0 to CBON = 1			0.3	1.5	μs
V _{CB_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31		VIN x (n+0.5) / 32	VIN x (n+1) / 32	VIN × (n+1.5) / 32	V

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

ISTRUMENTS

www.ti.com.cn

Ports PU.0 and PU.1

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$V_{USB} = 3.3 \text{ V} \pm 10\%, I_{OH} = -25 \text{ mA}$		2.4			V
V_{OL}	Low-level output voltage	$V_{USB} = 3.3 \text{ V} \pm 10\%, I_{OL} = 25 \text{ mA}$				0.4	V
V_{IH}	High-level input voltage	V _{USB} = 3.3 V ± 10%		2.0			V
V_{IL}	Low-level input voltage	V _{USB} = 3.3 V ± 10%				0.8	V

USB Output Ports DP and DM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V_{OH}	D+, D- single ended	USB 2.0 load conditions	2.8	3.6	V
V_{OL}	D+, D- single ended	USB 2.0 load conditions	0	0.3	V
$Z_{(DRV)}$	D+, D- impedance	Including external series resistor of 27 Ω	28	44	Ω
t _{RISE}	Rise time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns
t _{FALL}	Fall time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns

USB Input Ports DP and DM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _(CM)	Differential input common mode range		0.8	2.5	V
Z _(IN)	Input impedance		300		kΩ
V_{CRS}	Crossover voltage		1.3	2.0	V
V _{IL}	Static SE input logic low level			0.8	V
V _{IH}	Static SE input logic high level		2.0		V
VDI	Differential input voltage			0.2	V

USB-PWR (USB Power System)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{LAUNCH}	V _{BUS} detection threshold				3.75	V
V _{BUS}	USB bus voltage	Normal operation	3.76		5.5	V
V _{USB}	USB LDO output voltage			3.3	±9%	V
V ₁₈	Internal USB voltage ⁽¹⁾			1.8		V
I _{USB_EXT}	Maximum external current from VUSB terminal (2)	USB LDO is on			12	mA
I _{DET}	USB LDO current overload detection (3)		60		100	mA
I _{SUSPEND}	Operating supply current into VBUS terminal. (4)	USB LDO is on, USB PLL disabled			250	μΑ
C _{BUS}	VBUS terminal recommended capacitance			4.7		μF
C _{USB}	VUSB terminal recommended capacitance			220		nF
C ₁₈	V18 terminal recommended capacitance			220		nF
t _{ENABLE}	Settling time V _{USB} and V ₁₈	Within 2%, recommended capacitances			2	ms
R _{PUR}	Pullup resistance of PUR terminal		70	110	150	Ω

This voltage is for internal use only. No external dc loading should be applied.

⁽²⁾ This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB operation.

⁽³⁾ A current overload is detected when the total current supplied from the USB LDO, including I_{USB_EXT}, exceeds this value.

⁽⁴⁾ Does not include current contribution of Rpu and Rpd as outlined in the USB specification.

USB-PLL (USB Phase-Locked Loop)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I _{PLL}	Operating supply current					7	mA
f_{PLL}	PLL frequency				48		MHz
f _{UPD}	PLL reference frequency			1.5		3	MHz
t _{LOCK}	PLL lock time					2	ms
t _{Jitter}	PLL jitter				1000		ps

Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DV _{CC(PGM/ERASE)}	Program and erase supply voltage		1.8		3.6	٧
I _{PGM}	Average supply current from DVCC during program			3	5	mA
I _{ERASE}	Average supply current from DVCC during erase			6	11	mA
I _{MERASE} , I _{BANK}	Average supply current from DVCC during mass erase or bank erase			6	11	mA
t _{CPT}	Cumulative program time	See (1)			16	ms
	Program and erase endurance		10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	T _J = 25°C	100			years
t _{Word}	Word or byte program time	See (2)	64		85	μs
t _{Block, 0}	Block program time for first byte or word	See (2)	49		65	μs
t _{Block} , 1-(N-1)	Block program time for each additional byte or word, except for last byte or word	See (2)	37		49	μs
t _{Block, N}	Block program time for last byte or word	See (2)	55		73	μs
t _{Seg Erase}	Erase time for segment, mass erase, and bank erase when available	See (2)	23		32	ms
f _{MCLK,MGR}	MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)		0		1	MHz

⁽¹⁾ The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes.

JTAG and Spy-Bi-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)	2.2 V, 3 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		15		100	μs
ı	TOK input fraguency (4 wire ITAC)(2)	2.2 V	0		5	MHz
†TCK	TCK input frequency (4-wire JTAG) ⁽²⁾	3 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3 V	45	60	80	kΩ

Tools that access the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ These values are hardwired into the flash controller's state machine.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

INPUT/OUTPUT SCHEMATICS

Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger

Table 53. Port P1 (P1.0 to P1.7) Pin Functions

DINI NIAME (D4)		FUNCTION	CONTROL BI	TS/SIGNALS
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL.x
P1.0/TA0CLK/ACLK	0	P1.0 (I/O)	I: 0; O: 1	0
		Timer TA0.TA0CLK	0	1
		ACLK	1	1
P1.1/TA0.0	1	P1.1 (I/O)	l: 0; O: 1	0
		Timer TA0.CCI0A capture input	0	1
		Timer TA0.0 output	1	1
P1.2/TA0.1	2	P1.2 (I/O)	l: 0; O: 1	0
		Timer TA0.CCI1A capture input	0	1
		Timer TA0.1 output	1	1
P1.3/TA0.2	3	P1.3 (I/O)	l: 0; O: 1	0
		Timer TA0.CCI2A capture input	0	1
		Timer TA0.2 output	1	1
P1.4/TA0.3	4	P1.4 (I/O)	l: 0; O: 1	0
		Timer TA0.CCI3A capture input	0	1
		Timer TA0.3 output	1	1
P1.5/TA0.4	5	P1.5 (I/O)	l: 0; O: 1	0
		Timer TA0.CCI4A capture input	0	1
		Timer TA0.4 output	1	1
P1.6/TA0.1	6	P1.6 (I/O)	l: 0; O: 1	0
		Timer TA0.CCI1B capture input	0	1
		Timer TA0.1 output	1	1
P1.7/TA0.2	7	P1.7 (I/O)	l: 0; O: 1	0
		Timer TA0.CCI2B capture input	0	1
		Timer TA0.2 output	1	1

Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger

INSTRUMENTS

ZHCS410D – JUNE 2010 – REVISED AUGUST 2013

Table 54. Port P2 (P2.0 to P2.7) Pin Functions

DINI NIAME (DO)	x FUNCTION		CONT	CONTROL BITS/SIGNALS ⁽¹⁾		
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL.x	P2MAPx	
P2.0/P2MAP0	0	P2.0 (I/O)	I: 0; O: 1	0		
		Mapped secondary digital function	Х	1	≤ 19	
P2.1/P2MAP1	1	P2.1 (I/O)	I: 0; O: 1	0		
		Mapped secondary digital function	Х	1	≤ 19	
P2.2/P2MAP2	2	P2.2 (I/O)	I: 0; O: 1	0		
		Mapped secondary digital function	Х	1	≤ 19	
P2.3/P2MAP3	3	P2.3 (I/O)	I: 0; O: 1	0		
		Mapped secondary digital function	Х	1	≤ 19	
P2.4/P2MAP4	4	P2.4 (I/O)	I: 0; O: 1	0		
		Mapped secondary digital function	Х	1	≤ 19	
P2.5/P2MAP5	5	P2.5 (I/O	I: 0; O: 1	0		
		Mapped secondary digital function	Х	1	≤ 19	
P2.6/P2MAP6	6	P2.6 (I/O)	I: 0; O: 1	0		
		Mapped secondary digital function	Х	1	≤ 19	
P2.7/P2MAP7	7	P2.7 (I/O)	I: 0; O: 1	0		
		Mapped secondary digital function	X	1	≤ 19	

⁽¹⁾ X = Don't care

Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger

ZHCS410D – JUNE 2010 – REVISED AUGUST 2013

Table 55. Port P3 (P3.0 to P3.7) Pin Functions

DINI NIAME (DO)		FUNCTION	CONTROL BIT	CONTROL BITS/SIGNALS		
PIN NAME (P3.x) x		FUNCTION	P3DIR.x	P3SEL.x		
P3.0/TA1CLK/CBOUT	0	P3.0 (I/O)	I: 0; O: 1	0		
		Timer TA1.TA1CLK	0	1		
		CBOUT	1	1		
P3.1/TA1.0	1	P3.1 (I/O)	I: 0; O: 1	0		
		Timer TA1.CCI0A capture input	0	1		
		Timer TA1.0 output	1	1		
P3.2/TA1.1	2	P3.2 (I/O)	I: 0; O: 1	0		
		Timer TA1.CCI1A capture input	0	1		
		Timer TA1.1 output	1	1		
P3.3/TA1.2	3	P3.3 (I/O)	I: 0; O: 1	0		
		Timer TA1.CCI2A capture input	0	1		
		Timer TA1.2 output	1	1		
P3.4/TA2CLK/SMCLK	4	P3.4 (I/O)	I: 0; O: 1	0		
		Timer TA2.TA2CLK	0	1		
		SMCLK	1	1		
P3.5/TA2.0	5	P3.5 (I/O)	I: 0; O: 1	0		
		Timer TA2.CCI0A capture input	0	1		
		Timer TA2.0 output	1	1		
P3.6/TA2.1	6	P3.6 (I/O)	I: 0; O: 1	0		
		Timer TA2.CCI1A capture input	0	1		
		Timer TA2.1 output	1	1		
P3.7/TA2.2	7	P3.7 (I/O)	I: 0; O: 1	0		
		Timer TA2.CCI2A capture input	0	1		
		Timer TA2.2 output	1	1		

Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger

Table 56. Port P4 (P4.0 to P4.7) Pin Functions

	FUNCTION	CONTROL BI	CONTROL BITS/SIGNALS		
X	FUNCTION	P4DIR.x	P4SEL.x		
0	P4.0 (I/O)	I: 0; O: 1	0		
	Timer TB0.CCI0A capture input	0	1		
	Timer TB0.0 output ⁽¹⁾	1	1		
1	P4.1 (I/O)	I: 0; O: 1	0		
	Timer TB0.CCI1A capture input	0	1		
	Timer TB0.1 output ⁽¹⁾	1	1		
2	P4.2 (I/O)	I: 0; O: 1	0		
	Timer TB0.CCI2A capture input	0	1		
	Timer TB0.2 output ⁽¹⁾	1	1		
3	P4.3 (I/O)	I: 0; O: 1	0		
	Timer TB0.CCI3A capture input	0	1		
	Timer TB0.3 output ⁽¹⁾	1	1		
4	P4.4 (I/O)	I: 0; O: 1	0		
	Timer TB0.CCI4A capture input	0	1		
	Timer TB0.4 output ⁽¹⁾	1	1		
5	P4.5 (I/O)	I: 0; O: 1	0		
	Timer TB0.CCI5A capture input	0	1		
	Timer TB0.5 output ⁽¹⁾	1	1		
6	P4.6 (I/O)	I: 0; O: 1	0		
	Timer TB0.CCI6A capture input	0	1		
	Timer TB0.6 output ⁽¹⁾	1	1		
7	P4.7 (I/O)	I: 0; O: 1	0		
	Timer TB0.TB0OUTH	0	1		
	SVMOUT	1	1		
	1 2 3 4 5 6	0 P4.0 (I/O) Timer TB0.CCI0A capture input Timer TB0.0 output ⁽¹⁾ 1 P4.1 (I/O) Timer TB0.CCI1A capture input Timer TB0.1 output ⁽¹⁾ 2 P4.2 (I/O) Timer TB0.CCI2A capture input Timer TB0.2 output ⁽¹⁾ 3 P4.3 (I/O) Timer TB0.CCI3A capture input Timer TB0.3 output ⁽¹⁾ 4 P4.4 (I/O) Timer TB0.CCI4A capture input Timer TB0.4 output ⁽¹⁾ 5 P4.5 (I/O) Timer TB0.CCI5A capture input Timer TB0.5 output ⁽¹⁾ 6 P4.6 (I/O) Timer TB0.CCI6A capture input Timer TB0.6 output ⁽¹⁾ 7 P4.7 (I/O) Timer TB0.TB0.OUTH	X		

⁽¹⁾ Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.

Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger

Table 57. Port P5 (P5.0 and P5.1) Pin Functions

DINI NAME (DE v)	.,	FUNCTION	CONT	ALS ⁽¹⁾	
PIN NAME (P5.x)	X	FUNCTION	P5DIR.x	P5SEL.x	REFOUT
P5.0/VREF+/VeREF+	0	P5.0 (I/O) ⁽²⁾	I: 0; O: 1	0	Х
		VeREF+ ⁽³⁾	Х	1	0
		VREF+ ⁽⁴⁾	Х	1	1
P5.1/VREF-/VeREF-	1	P5.1 (I/O) ⁽²⁾	I: 0; O: 1	0	X
		VeREF-(5)	Х	1	0
		VREF-(6)	Х	1	1

- (1) X = Don't care
- (2) Default condition
- (3) Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or DAC12_A.
- (4) Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF+ reference is available at the pin.
- (5) Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or DAC12_A.
- (6) Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF- reference is available at the pin.

Port P5, P5.2 to P5.7, Input/Output With Schmitt Trigger

Table 58. Port P5 (P5.2 to P5.7) Pin Functions

DINI NAME (DE)		FUNCTION	CONTROL BITS/SIG	
PIN NAME (P5.x)	X	FUNCTION	P5DIR.x	P5SEL.x
P5.2	2	P5.2 (I/O)	I: 0; O: 1	0
P5.3	3	P5.3 (I/O)	I: 0; O: 1	0
P5.4	4	P5.4 (I/O)	I: 0; O: 1	0
P5.5	5	P5.5 (I/O)	I: 0; O: 1	0
P5.6/ADC12CLK/DMAE0	6	P5.6 (I/O)	I: 0; O: 1	0
		ADC12CLK	1	1
		DMAE0	0	1
P5.7/RTCCLK	7	P5.7 (I/O)	I: 0; O: 1	0
		RTCCLK	1	1

Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Table 59. Port P6 (P6.0 to P6.7) Pin Functions

DIN 11445 (Do)		FUNCTION	CONTROL BITS/SIGNALS ⁽¹⁾				
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P6SEL.x	CBPD.x	DAC12OPS	DAC12AMPx
P6.0/CB0/A0	0	P6.0 (I/O)	I: 0; O: 1	0	0	n/a	n/a
		CB0	Х	Х	1	n/a	n/a
		A0 ⁽²⁾ (3)	Х	1	Х	n/a	n/a
P6.1/CB1/A1	1	P6.1 (I/O)	I: 0; O: 1	0	0	n/a	n/a
		CB1	Х	Х	1	n/a	n/a
		A1 ⁽²⁾ (3)	X	1	Х	n/a	n/a
P6.2/CB2/A2	2	P6.2 (I/O)	I: 0; O: 1	0	0	n/a	n/a
		CB2	Х	Х	1	n/a	n/a
		A2 ⁽²⁾ (3)	Х	1	Х	n/a	n/a
P6.3/CB3/A3	3	P6.3 (I/O)	I: 0; O: 1	0	0	n/a	n/a
		CB3	Х	Х	1	n/a	n/a
		A3 ^{(2) (3)}	Х	1	Х	n/a	n/a
P6.4/CB4/A4	4	P6.4 (I/O)	I: 0; O: 1	0	0	n/a	n/a
		CB4	X	Х	1	n/a	n/a
		A4 ⁽²⁾ (3)	X	1	Х	n/a	n/a
P6.5/CB5/A5	5	P6.5 (I/O)	I: 0; O: 1	0	0	n/a	n/a
		CB5	Х	Х	1	n/a	n/a
		A5 ⁽⁴⁾ (2) (3)	X	1	Х	n/a	n/a
P6.6/CB6/A6/DAC0	6	P6.6 (I/O)	I: 0; O: 1	0	0	Х	0
		CB6	X	Х	1	Х	0
		A6 ^{(2) (3)}	Х	1	Х	Х	0
		DAC0	Х	Х	Х	0	>1
P6.7/CB7/A7/DAC1	7	P6.7 (I/O)	I: 0; O: 1	0	0	Х	0
		CB7	Х	Х	1	Х	0
		A7 ⁽²⁾ (3)	Х	1	Х	Х	0
		DAC1	Х	Х	Х	0	>1

⁽¹⁾ X = Don't care

⁽²⁾ Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC12_A channel Ax is connected internally to AV_{SS} if not selected via the respective INCHx bits.

⁽⁴⁾ X = Don't care

Port P7, P7.2, Input/Output With Schmitt Trigger

Port P7, P7.3, Input/Output With Schmitt Trigger

Table 60. Port P7 (P7.2 and P7.3) Pin Functions

DIN NAME (DE)		FUNCTION	CONTROL BITS/SIGNALS ⁽¹⁾					
PIN NAME (P5.x)	X	FUNCTION	P7DIR.x	P7SEL.2	P7SEL.3	XT2BYPASS		
P7.2/XT2IN	2	P7.2 (I/O)	I: 0; O: 1	0	Х	Х		
		XT2IN crystal mode ⁽²⁾	Х	1	Х	0		
		XT2IN bypass mode ⁽²⁾	X	1	Х	1		
P7.3/XT2OUT	3	P7.3 (I/O)	I: 0; O: 1	0	Х	Х		
		XT2OUT crystal mode (3)	X	1	Х	0		
		P7.3 (I/O) ⁽³⁾	Х	1	Х	1		

⁽¹⁾ X = Don't care

⁽²⁾ Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal mode or bypass mode.

⁽³⁾ Setting PTSEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as general-purpose I/O.

Port P7, P7.4 to P7.7, Input/Output With Schmitt Trigger

Table 61. Port P7 (P7.4 to P7.7) Pin Functions

DIN MARIE (DT.)		FUNCTION		CON	TROL BITS/S	SIGNALS ⁽¹⁾	
PIN NAME (P7.x)	х	FUNCTION	P7DIR.x	P7SEL.x	CBPD.x	DAC12OPS	DAC12AMPx
P7.4/CB8/A12	4	P7.4 (I/O)	I: 0; O: 1	0	0	n/a	n/a
		Comparator_B input CB8	Х	Х	1	n/a	n/a
		A12 ^{(2) (3)}	Х	1	Х	n/a	n/a
P7.5/CB9/A13	5	P7.5 (I/O)	I: 0; O: 1	0	0	n/a	n/a
		Comparator_B input CB9	X	Х	1	n/a	n/a
		A13 ^{(2) (3)}	Х	1	Х	n/a	n/a
P7.6/CB10/A14/DAC0	6	P7.6 (I/O)	I: 0; O: 1	0	0	Х	0
		Comparator_B input CB10	X	Х	1	Х	0
		A14 ⁽²⁾ (3)	X	1	Х	Х	0
		DAC12_A output DAC0	X	Х	Х	1	>1
P7.7/CB11/A15/DAC1	7	P7.7 (I/O)	I: 0; O: 1	0	0	Х	0
		Comparator_B input CB11	Х	Х	1	Х	0
		A15 ⁽²⁾ (3)	Х	1	Х	Х	0
		DAC12_A output DAC1	Х	Х	Х	1	>1

⁽¹⁾ X = Don't care

⁽²⁾ Setting the P7SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC12_A channel Ax is connected internally to AVSS if not selected via the respective INCHx bits.

Port P8, P8.0 to P8.7, Input/Output With Schmitt Trigger

Table 62. Port P8 (P8.0 to P8.7) Pin Functions

DIN NAME (DO :-)		FUNCTION	CONTROL BIT	CONTROL BITS/SIGNALS ⁽¹⁾		
PIN NAME (P9.x)	X	FUNCTION	P8DIR.x	P8SEL.x		
P8.0/TB0CLK	0	P8.0 (I/O)	I: 0; O: 1	0		
		Timer TB0.TB0CLK clock input	0	1		
P8.1/UCB1STE/UCA1CLK	1	P8.1 (I/O)	I: 0; O: 1	0		
		UCB1STE/UCA1CLK	X	1		
P8.2/UCA1TXD/UCA1SIMO	2	P8.2 (I/O)	I: 0; O: 1	0		
		UCA1TXD/UCA1SIMO	X	1		
P8.3/UCA1RXD/UCA1SOMI	3	P8.3 (I/O)	I: 0; O: 1	0		
		UCA1RXD/UCA1SOMI	X	1		
P8.4/UCB1CLK/UCA1STE	4	P8.4 (I/O)	I: 0; O: 1	0		
		UCB1CLK/UCA1STE	X	1		
P8.5/UCB1SIMO/UCB1SDA	5	P8.5 (I/O)	I: 0; O: 1	0		
		UCB1SIMO/UCB1SDA	X	1		
P8.6/UCB1SOMI/UCB1SCL	6	P8.6 (I/O)	I: 0; O: 1	0		
		UCB1SOMI/UCB1SCL	X	1		
P8.7	7	P8.7 (I/O)	I: 0; O: 1	0		

⁽¹⁾ X = Don't care

Port P9, P9.0 to P9.7, Input/Output With Schmitt Trigger

Table 63. Port P9 (P9.0 to P9.7) Pin Functions

DIN NAME (DO)	FUNCTION		CONTROL BITS/SIGNALS		
PIN NAME (P9.x)	X	FUNCTION	P9DIR.x	P9SEL.x	
P9.0	0	P9.0 (I/O)	I: 0; O: 1	0	
P9.1	1	P9.1 (I/O)	I: 0; O: 1	0	
P9.2	2	P9.2 (I/O)	I: 0; O: 1	0	
P9.3	3	P9.3 (I/O)	I: 0; O: 1	0	
P9.4	4	P9.4 (I/O)	I: 0; O: 1	0	
P9.5	5	P9.5 (I/O)	I: 0; O: 1	0	
P9.6	6	P9.6 (I/O)	I: 0; O: 1	0	
P9.7	7	P9.7 (I/O)	I: 0; O: 1	0	

Port PU.0/DP, PU.1/DM, PUR USB Ports

Table 64. Port PU.0/DP, PU.1/DM Output Functions

					-	
	CONTR	OL BITS		PIN I	NAME	FUNCTION
PUSEL	PUDIR	PUOUT1	PUOUT0	PU.1/DM	PU.0/DP	FUNCTION
0	0	Х	Х	Hi-Z	Hi-Z	Outputs off
0	1	0	0	0	0	Outputs enabled
0	1	0	1	0	1	Outputs enabled
0	1	1	0	1	0	Outputs enabled
0	1	1	1	1	1	Outputs enabled
1	Х	Х	Х	DM	DP	Direction set by USB module

Table 65. Port PUR Input Functions

CONTR	OL BITS	FUNCTION			
PUSEL	PUREN	FUNCTION			
0	0	Input disabled Pullup disabled			

ZHCS410D – JUNE 2010 – REVISED AUGUST 2013

Table 65. Port PUR Input Functions (continued)

CONTR	OL BITS	FUNCTION
PUSEL	PUREN	FUNCTION
0	1	Input disabled Pullup enabled
1	0	Input enabled Pullup disabled
1	1	Input enabled Pullup enabled

Port J, J.0 JTAG pin TDO, Input/Output With Schmitt Trigger or Output

Port J, J.1 to J.3 JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

Table 66. Port PJ (PJ.0 to PJ.3) Pin Functions

PIN NAME (PJ.x)	x	FUNCTION	CONTROL BITS/ SIGNALS ⁽¹⁾
, ,			PJDIR.x
PJ.0/TDO	0	PJ.0 (I/O) ⁽²⁾	I: 0; O: 1
		TDO ⁽³⁾	X
PJ.1/TDI/TCLK	1	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1
		TDI/TCLK ⁽³⁾ (4)	X
PJ.2/TMS	2	PJ.2 (I/O) ⁽²⁾	I: 0; O: 1
		TMS ^{(3) (4)}	X
PJ.3/TCK	3	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1
		TCK ⁽³⁾ (4)	X

X = Don't care

Default condition

The pin direction is controlled by the JTAG module.
In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.

DEVICE DESCRIPTORS

Table 67 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type.

Table 67. MSP430F563x Device Descriptor Table (1)

	Description	Address	Size	F5638	F5637	F5636	F5635	F5634	F5633	F5632	F5631	F5630
	Description	Address	bytes	Value								
Info Block	Info length	01A00h	1	06h								
	CRC length	01A01h	1	06h								
	CRC value	01A02h	2	per unit								
	Device ID	01A04h	2	8014h	8012h	8010h	800Eh	8044h	8042h	8040h	803Eh	803Ch
	Hardware revision	01A06h	1	per unit								
	Firmware revision	01A07h	1	per unit								
Die Record	Die Record Tag	01A08h	1	08h								
	Die Record length	01A09h	1	0Ah								
	Lot/Wafer ID	01A0Ah	4	per unit								
	Die X position	01A0Eh	2	per unit								
	Die Y position	01A10h	2	per unit								
	Test results	01A12h	2	per unit								
ADC12 Calibration	ADC12 Calibration Tag	01A14h	1	11h								
	ADC12 Calibration length	01A15h	1	10h								
	ADC Gain Factor	01A16h	2	per unit								
	ADC Offset	01A18h	2	per unit								
	ADC 1.5-V Reference Temp. Sensor 30°C	01A1Ah	2	per unit								
	ADC 1.5-V Reference Temp. Sensor 85°C	01A1Ch	2	per unit								
	ADC 2.0-V Reference Temp. Sensor 30°C	01A1Eh	2	per unit								
	ADC 2.0-V Reference Temp. Sensor 85°C	01A20h	2	per unit								
	ADC 2.5-V Reference Temp. Sensor 30°C	01A22h	2	per unit								
	ADC 2.5-V Reference Temp. Sensor 85°C	01A24h	2	per unit								

⁽¹⁾ NA = Not applicable

ZHCS410D -JUNE 2010-REVISED AUGUST 2013

REVISION HISTORY

REVISION	COMMENTS
SLAS650	Product Preview release
SLAS650A	Updated Product Preview including electrical specifications
SLAS650B	Production Data release
SLAS650C	Changed description of ACLK and PUR in Terminal Functions. Changed typos to Interrupt Flag names on Timer TA2 rows in Table 5. Changed SYSRSTIV, System Reset offset 1Ch to Reserved in Table 13. Corrected names of SVMLVLRIFG and SVMHVLRIFG bits in Table 13. Corrected right-most column in Table 6. Added note regarding evaluation of PUR in USB BSL. Changed notes on REF, Built-In Reference. Changed t _{SENSOR(sample)} MIN to 100 µs in 12-Bit ADC, Temperature Sensor and Built-In VMID. Changed note (2) in 12-Bit ADC, Temperature Sensor and Built-In VMID. Editorial changes throughout.
SLAS650D	Table 2, Added note regarding pullup resistor to RST/NMI/SBWTDIO pin. Added 应用范围, Development Tools Support, and Device and Development Tool Nomenclature. Digital I/O (Link to User's Guide), Changed the description of the number of I/Os in each port. Table 21, Added PM5CTL0 register. 12-Bit DAC, Supply Specifications, Fixed typo in I _{DD} Test Conditions (changed from DAC12IOG to DAC12OG). USB Input Ports DP and DM, Corrected V _{IL} and V _{IH} limits. Flash Memory, Changed I _{ERASE} and I _{MERASE} , I _{BANK} limits.

28-Aug-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
MSP430F5630IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5630	Samples
MSP430F5630IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5630	Samples
MSP430F5630IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5630	Samples
MSP430F5630IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5630	Samples
MSP430F5631IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5631	Samples
MSP430F5631IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5631	Samples
MSP430F5631IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5631	Samples
MSP430F5631IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5631	Samples
MSP430F5632IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5632	Samples
MSP430F5632IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5632	Samples
MSP430F5632IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5632	Samples
MSP430F5632IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5632	Samples
MSP430F5633IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5633	Samples
MSP430F5633IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5633	Samples

28-Aug-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
MSP430F5633IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5633	Sample
MSP430F5633IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5633	Sample
MSP430F5634IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5634	Sample
MSP430F5634IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5634	Sample
MSP430F5634IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5634	Sample
MSP430F5634IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5634	Sample
MSP430F5635IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5635	Sample
MSP430F5635IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5635	Sample
MSP430F5635IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5635	Sample
MSP430F5635IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5635	Sample
MSP430F5636IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5636	Sample
MSP430F5636IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5636	Sample
MSP430F5636IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5636	Sample
MSP430F5636IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5636	Sample

www.ti.com 28-Aug-2013

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430F5637IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5637	Samples
MSP430F5637IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5637	Samples
MSP430F5637IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5637	Samples
MSP430F5637IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5637	Samples
MSP430F5638IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5638	Samples
MSP430F5638IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR		M430F5638	Samples
MSP430F5638IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5638	Samples
MSP430F5638IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR		M430F5638	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

28-Aug-2013

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

www.ti.com 20-Feb-2014

TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F5630IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F5630IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5630IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5631IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F5631IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5631IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5632IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F5632IZQWR	BGA MI CROSTA R JUNI	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

www.ti.com 20-Feb-2014

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F5632IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5633IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F5633IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5633IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5634IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5634IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5635IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F5635IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5635IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5636IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5636IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5637IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F5637IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5637IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5638IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F5638IZQWT	BGA MI CROSTA	ZQW	113	250	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

www.ti.com 20-Feb-2014

Device		Package Drawing		Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	R JUNI OR										

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F5630IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F5630IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F5630IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	336.6	336.6	28.6
MSP430F5631IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F5631IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F5631IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	336.6	336.6	28.6
MSP430F5632IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F5632IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F5632IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	336.6	336.6	28.6
MSP430F5633IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F5633IZQWR	BGA MICROSTAR	ZQW	113	2500	336.6	336.6	28.6

www.ti.com 20-Feb-2014

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	JUNIOR						
MSP430F5633IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	336.6	336.6	28.6
MSP430F5634IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F5634IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	336.6	336.6	28.6
MSP430F5635IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F5635IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F5635IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	336.6	336.6	28.6
MSP430F5636IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F5636IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	336.6	336.6	28.6
MSP430F5637IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F5637IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F5637IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	336.6	336.6	28.6
MSP430F5638IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F5638IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	336.6	336.6	28.6

ZQW (S-PBGA-N113)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This is a Pb-free solder ball design.

MicroStar Junior is a trademark of Texas Instruments.

PZ (S-PQFP-G100)

PLASTIC QUAD FLATPACK

1

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2014, 德州仪器半导体技术(上海)有限公司