

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
lu circuit?		fpj
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	_f _p _j

Variables: n est un nombre entier naturel Variables: a est un nombre réèl n prend la valeur 0;
Variables: a est un nombre réèl
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
n prend la valeur;
6 Fin
Sortie : Afficher n ;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à par de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem

+1/4/57+

~ / /	/
+2/1	756+

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
du circuit?		☐f ☐p ☐j
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	f p j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
\mathbf{n} prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
n prend la valeur;
6 Fin
Sortie : Afficher n ;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$. Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier terme et la raison. f p j

BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$

Question 8

+2/4/53+

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du volu	ıme total d'eau
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	fj

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Oti A Mti Iit- (v.)tit(it
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

+3/4/49+

+4/1	//0 :
T4/I	/ 4OT

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
du circuit?		$\square f \square p \square j$
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	_f _p _j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
\mathbf{n} prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
n prend la valeur;
6 Fin
Sortie : Afficher n;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
du circuit?		$\square f \square p \square j$
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	_f _p _j

+5/4/41+

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du volu	ıme total d'eau
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	fj

Variables: n est un nombre entier naturel Variables: a est un nombre réèl 1 n prend la valeur 0;
Variables: a est un nombre réèl
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
n prend la valeur;
6 Fin
Sortie : Afficher n ;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à par de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le prem

+6/4/37+

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
lu circuit?		_f _p _j
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	_f _p _j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0 ;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
Softie : America n,
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à part de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de ce
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$. Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premieterme et la raison.

_		
+87	11.	/32+

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1 du circuit?	Par quelle relation entre a_n et b_n traduit-on la conservation du volu	ıme total d'eau
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	fj

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
n prend la valeur;
6 Fin
Sortie : Afficher n ;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

+8/4/29+