CompGC: Efficient Offline/Online Semi-honest Two-party Computation

Alex Ledger Arkady Yerukhimovich, Adam Groce, Alex Malozemoff

Overview

- 1. Two Party Secure Computation (2PC)
- 2. Garbled Circuits
- 3. Component-based Garbled Circuits
- 4. Experiments and Results

The Millionaire Problem

- Alice and Bob want to determine who is wealthier [6].
- ▶ They do not want to disclose their wealth to each other.
 - ▶ Alice has \$x, Bob has \$y.
 - ▶ Alice should not learn anything about *y*.
 - ▶ Bob should not learn anything about *x*.

$$f(x,y) = \begin{cases} Alice, & y \le x; \\ Bob, & y > x. \end{cases}$$
 (1)

Security Properties

- Confidentiality of Inputs
 - ▶ Alice and Bob do not learn anything about the other's input.
 - Except for info that is inferable from their input and output.
 - ▶ Bob should not learn that $1,000,000 < x \le 2,000,000$.
 - ▶ But if y < x and y = 2,000, then he learns x < 2,000.
- Correctness
 - ▶ Alice and Bob receive f(x, y).
- Semi-honest
 - We assume that each party obeys the protocol, but attemps to learn extra information from its interactions.

Security

A secure computation protocol is secure if Alice and Bob learn the same information in the real world as they would in ideal world.

Boolean Circuits

- ▶ We encode a function f into a circuit C.
- Circuit C is made of AND, XOR and NOT gates.
- AND and XOR gates have two input wires and a single output wire
- ▶ A NOT gate has one input wire and one output wire

Boolean Circuits

- Any function can be encoded into a circuit.
- ▶ Here is the less than circuit.

Dual-key Encryption

- Our protocol will use symmetric dual-key encryption.
 - $\blacktriangleright \text{ Let } ct = \mathsf{Enc}_{k_0,k_1}(pt).$
 - $And pt = Dec_{k_0,k_1}(ct).$
 - ▶ Can be instantiated with $\operatorname{Enc}_{k_0,k_1}(pt) = \operatorname{Enc}_{k_0}(\operatorname{Enc}_{k_1}(pt))$.
- ► We also assume that you can tell if a decryption *succeeds* or *fails*.

Oblivious Transfer (OT)

- ▶ Alice potentially sends either m_0 or m_1 to Bob.
- ▶ Bob, without seeing m_0 or m_1 , decides that he wants m_b .
- ▶ Bob receives m_b .
- Property 1: Alice does not know which message Bob recieved.
- ▶ Property 2: Bob doesn't anything about m_{1-b} .

Roadmap of Garbled Circuits

- 1. Alice (generator) garbles the circuit.
- 2. Alice sends the *garbled tables* of each gate and some keys to Bob.
- 3. Bob (evaluator) evaluates the gate.

Step 1. Alice assigns wire labels to each wire.

- For each wire in the circuit, assign two random labels to each wire
- ▶ Wire A has two wire labels A_0 and A_1 .
- ▶ We say A₀ semantically represents 0, and A₁ semantically represents 1.
- ▶ And A_0 and A_1 are sampled uniformly at random from $\{0,1\}^k$.

Step 2. Alice constructs garbled table.

- ▶ Encrypt wire labels of C, C_0 and C_1 , using the wire labels of A and B.
- ► Randomly permute table

Α	В	Encryption
A_0	B_0	$Enc_{A_0,B_0}(C_0)$
A_1	B_0	$Enc_{A_1,B_0}(C_0)$
A_0	B_1	$Enc_{A_0,B_1}(C_0)$
A_1	B_1	$Enc_{A_1,B_1}(C_1)$

Step 3. Send garbled table to Bob.

 $\begin{aligned} &\mathsf{Enc}_{A_0,B_0}(C_0) \\ &\mathsf{Enc}_{A_1,B_0}(C_0) \\ &\mathsf{Enc}_{A_0,B_1}(C_0) \\ &\mathsf{Enc}_{A_1,B_1}(C_1) \end{aligned}$

Step 4. Alice sends input wire labels to Bob.

- ▶ Suppose $x \in \{0,1\}$ is Alice's input, and $y \in \{0,1\}$ is Bob's input.
- ▶ Alice sends *A*_× to Bob.
- ▶ Alice sends B_v to Bob via Oblivious Transfer
 - ▶ The wire labels corresponding to her inputs.
- Bob has:

Garbled Table
$Enc_{A_0,B_0}(C_0)$
$Enc_{A_1,B_0}(C_0)$
$Enc_{A_0,B_1}(C_0)$
$Enc_{A_1,B_1}(\mathit{C}_1)$

Input Labels	
A_{\times}	
B_{y}	

Step 5. Bob evaluates the circuit

- ▶ Bob has the garbled table, A_x and B_y .
- ▶ Bob trial decrypts each row of the garbled table, until an encrytion succeeds.
- ▶ Bob acquires $C_{x \wedge y}$.
- Bob has:

Garbled Table
$Enc_{A_0,B_0}(C_0)$
$Enc_{A_1,B_0}(\mathit{C}_0)$
$Enc_{A_0,B_1}(C_0)$
$Enc_{A_1,B_1}(\mathit{C}_1)$

Step 6. Bob gets a final answer.

- ▶ Alice sends $Enc_{C_0}(0)$ and $Enc_{C_1}(1)$ to Bob.
- ▶ Bob trial decrypts these with $C_{x \wedge v}$.
- ▶ One will succeed, and Bob will acquire $z = x \land y$.
- ► So Bob knows z, but not x!

Garbled Table
$Enc_{A_0,B_0}(C_0)$
$\operatorname{Enc}_{A_1,B_0}(C_0)$
$\operatorname{Enc}_{A_0,B_1}(C_0)$
$Enc_{A_1,B_1}(C_1)$

Input Labels
$A_{\scriptscriptstyle X}$
B_y

Output Map
$Enc_{C_0}(0)$
$Enc_{C_1}(1)$

Security Considerations

- Think about what Alice acquires:
 - Alice generates objects and sends them to Bob
 - ► So she doesn't have many opportunities to learn about Bob's input.
 - ▶ The only place she can learn anything is during OT.
- ▶ Think about what Bob acquires:
 - 1. Garbled table
 - 2. Input wire labels: A_a and B_b
 - 3. Encryptions of output: $Enc_{C_0}(0)$ and $Enc_{C_1}(1)$
- Can Bob learn anything about x?
 - If he could decrypt another row of the garbled table, then we would learn something.
 - ▶ But he can't, because he doesn't have the keys.
 - ► So he doesn't learn anything because everything is encrypted and he doesn't have keys to decrypt anything else.

Extending a garbled gate into a garbled circuit

- ► To operate on a more complex function, the operation is recursed.
- ► The output wires of the first gates are used as inputs to subsequent gates.
- Alice only sends output maps for the final gates.

The Garbled Circuit Protocol

The cost of garbled circuits

- Alice sends 4 ciphertexts per gate, since the garbled table has 4 rows, to Bob.
- Based on empirical work, bandwidth is the biggest bottleneck in garbled circuits.
- ▶ So reducing the size of the garbled table is of utmost priority.

Reducing the size of the garbled table with Free XOR

- ▶ Let $\Delta \leftarrow \{0,1\}^n$ be fixed globally in a circuit [5].
- ► For each input wire A, sample a single ciphertext; call it A.
 - ▶ The zeroith wire label is A.
 - ▶ The *first* wire label is $A \oplus \Delta$.
- ▶ Set output wire C of a gate to be $A \oplus B$ (the xor of its input wires).
- Bob evaluates an XOR gate by XORing the two input labels.

$$(A \oplus a\Delta) \oplus (B \oplus b\Delta) = A \oplus B \oplus (a \oplus b)\Delta$$

So XOR gates do not require a garbled table, aka they're free.

Offline/Online

- Imagine two banks use secure computation during their daily operations.
- ► At night the offline phase they exchange garbled circuits (the garbled tables)
- During the day the online phase they exchange input wire labels and evaluate the pre-exchanged garbled circuits.
- ▶ The computation is fast!
- Problems:
 - Functions are decided at night no room for flexibility
 - ▶ Input size is fixed at night

ATM Transaction Transfer Funds Statistical Operation

Component-based Garbled Circuits

- Goal: Add flexibility to offline/online garbled circuits [3].
- Key observation: many useful functions in the real world are composed of small, standard components.
 - ▶ E.g. addition, subtraction, matrix operations
 - Leveshtein distance algorithm a dynamic algorithm
 - Encryption is a common component
- Idea: chain garbled circuits together
 - Take the output of one garbled circuit and plug it into another garbled circuit

How to chain garbled circuits

- ▶ Suppose that we are chaining a garbled circuit with output wire *A* to garbled circuit with input wire *X*.
- ▶ We want $A \to X$ and $A \oplus \Delta \to X \oplus \Delta$.
- Straightforward:
 - ▶ Alice sends Bob $L_{AX} = A \oplus X$
 - ▶ Bob sets $X_* \leftarrow A_* \oplus L_{AX}$

AES with 10 Components

AES with 10 Components

Are component-based garbled circuits secure?

Setup for Our Experiments

- Offline phase:
 - Generator generates, garbles and sends component-circuits to evaluator.
 - 2. Generator and evaluator complete OT preprocessing
- Online phase:
 - 1. Generator sends wire labels for their inputs
 - 2. Generator and garbler complete OT
 - 3. Generator sends link labels
 - 4. Evaluator links and evaluates components

General Experiments

- AES: 10 AES Rounds
- ► CBC: 100 AES Rounds and 10 XOR for 10-block CBC
- Levenshtein 30: 900 Levenshtein Components
- ► Levenshtein 60: 3600 Levenshtein Components

AES with 10 Components

Leveshtein Component

Figure from [4]

General Results

	Time (sir	nulated)	\mathbf{Co}	mm.
	Naive	CompGC	Naive	CompGC
AES	62.7 ± 0.1	40.8 ± 0.1	1.9	0.4
CBC mode	414.7 ± 0.6	127.2 ± 0.6	18.9	4.3
Leven. (30)	827.7 ± 0.8	114.8 ± 0.7	39.1	3.6
Leven. (60)	3903.0 ± 2.2	408.4 ± 4.1	191.2	15.7

- ▶ Times in milliseconds. Communication in Megabits.
- ▶ Naive is normal garbled circuits with optimizations and preprocessed OT.
- ► Times are over network with 50Mbit/s bandwidth and 20ms latency
- ▶ All timings are online time of evaluator averaged over 100 trials.
- Experiments done on a laptop.

Machine Learning Experiments

- Private classification: Suppose that a machine learning model exists, and a party wants to privately classify their data with the model.
- ▶ We implement functions to query ML models using basic components [2]:
 - Less than
 - Inner product
 - Argmax
 - Addition
 - Select
- ML classifications:
 - Decision Tree
 - Naive Bayes
 - Linear (Hyperplane) Classification
- ▶ We use real data UCI Machine Learning repository [1].

Decision Tree Node

Figure 2: Decision tree

Figure on left from [2]

Naive Bayes

- ▶ Select(arr, idx) $\rightarrow arr[idx]$.
- $Add(x,y) \to x + y.$
- ▶ Argmax(a, b, c, ...) → index of largest of input.

Linear Classifier

Bigger Linear Classifier

Results

- ► Times in milliseconds. Communication in Megabits.
- Naive is normal garbled circuits with optimizations and preprocessed OT.
- ► Times in parentheses are over network with bounded bandwidth: 50Mbit/s bandwidth and 20ms latency
- ► All timings are online time of evaluator averaged over 100 trials.
- Rnds is the number of roundtrips between parties.

Results

		Naive	2	Com	CompGC		Bost et al. [?]		
Data Set	Size	Time	Comm.	Time	Comm.	Time	Comm.	Rnds	
Cancer Credit	30 47	172 (987) 256 (1,679)	47 82	56 (56) 65 (72)	$0.7 \\ 1.1$	$\frac{204}{217}$	$0.3 \\ 0.3$	3.5 3.5	

(a) Hyperplane decision classifier. "Size" is the length of the model vector w.

Specs.		Naive	Naive		CompGC		Bost et al. [?]		
Data Set	C	F	Time	Comm.	Time	Comm.	Time	Comm.	Rnds
Cancer Nursery	2 5	9 9	215 (961) 391 (2,832)	46 138	97 (485) 169 (1,444)	22 68	479 1415	0.6 1.2	7 21

(b) Naive Bayes classifier. "C" is the number of classes and "F" is the number of features.

	Specs. Naive		Com	npGC	В	Bost et al. [?]			
Data Set	N	D	Time	Comm.	Time	Comm.	Time	Comm.	Rnds
Nursery ECG	4 6	4	40 (40) 40 (40)	$0.2 \\ 0.4$	40 (40) 40 (41)	0.0 0.1	2085 8816	21.6 29.1	15 22

(c) Decision tree classifier. "N" is the number of internal nodes in the tree and "D" is its depth.

Conclusion

- Communicating the garbled circuit is the bottleneck the garbled circuit protocol.
- Many functions can be constructed from a small set of components.
- Component-based garbled circuits substantially reduce bandwidth and improve online running time over standard garbled circuits.

Bibliography

Raphael Bost et al. "Machine Learning Classification over Encrypted Data." In: NDSS. 2015.

Adam Groce et al. "CompGC: Efficient Offline/Online Semi-honest Two-party Computation." In: *IACR Cryptology ePrint Archive* 2016 (2016), p. 458.

Yan Huang et al. "Faster Secure Two-Party Computation Using Garbled Circuits." In: USENIX Security Symposium. Vol. 201. 1. 2011.

Vladimir Kolesnikov and Thomas Schneider. "Improved garbled circuit: Free XOR gates and applications". In: *Automata, Languages and Programming*. Springer, 2008, pp. 486–498.

Andrew Yao. "How to generate and exchange secrets". In: Foundations of Computer Science 1986. IEEE. 1986, pp. 162–167.