初代星·初代銀河研究会2023 @ 北海道大学

星団形成における星風の影響

福島肇

(筑波大学 計算科学研究センター)

筑波大学

計算科学研究センター Center for Computational Sciences 共同研究者: 矢島秀伸 (筑波大学)

窒素が豊富な銀河の発見 (Harikaneさんのレビュー)

窒素が豊富なhigh-z 銀河が見つかりつつある

(e.g., Bunker+23, Cameron+23, Senchyna+23)

球状星団との関連

大質量($\gtrsim 10^5~M_\odot$) 古い星団($\gtrsim 10~{\rm Gyr}$) 高密度($\gtrsim 10^3~M_\odot {\rm pc}^{-3}$)

形成シナリオはまだ確立 していない

[N/O]は球状星団に類似している?

球状星団との関連

星質量と化学分布の異なる星質量の割合

星団質量増で、第二世代の星質量割合も増 2Gyr以下の若いものでは第二世代は発見されていない

窒素の起源 (Isobe+23)

3つのシナリオ

① Wolf-Rayet星

2 Tidal disruption event

(Cameron+23, Watanabe+23)

③ 超大質量星

 $M_* > 1000 M_{\odot}$ (Charbonnel+23)

窒素の起源 (Isobe+23) 3つのシナリオ

① Wolf-Rayet星 (Hubble Legacy Archive, NASA, ESA)

2 Tidal disruption event

③ 超大質量星

Wolf-Rayet星からの星風による効果を考慮する。

窒素の起源 Walf-Rayet モデル

酸素は超新星爆発により主に供給される。

もしある程度大質量な星(図では $>25~M_{\odot}$)が超新星爆発を起こさない場合、N-richな環境となる可能性がある。 (Limongi & Chieffi 2018)

星団形成における星風による金属供給

条件1: 大質量・高密度星団が誕生する

雲面密度: $\Sigma_{cl} = (雲質量)/(\pi半径^2)$

$$\Sigma_{\rm cl} > \Sigma_{\rm thr} = 750 \,\mathrm{M}_{\odot} \mathrm{pc}^{-2} \left(\frac{\epsilon_{\rm ff}}{0.03}\right)^{2/5} \left(\frac{M_{\rm cl}}{10^6 \,\mathrm{M}_{\odot}}\right)^{-1/5} \\ \times \left(\frac{T_{\rm i}}{2.5 \times 10^4 \,\mathrm{K}}\right)^{28/25} \left(\frac{s_*}{1.1 \times 10^{47} \,\mathrm{M}_{\odot}^{-1} s^{-1}}\right)^{2/5}.$$

 M_{cl} : 雲質量, T_i : 電離ガス温度, s_* : 電離光子放出率

(HF & Yajima 21, 23)

条件2: 星形成継続時間(t_{dur})内にWR星状態となる

条件3: 星形成継続時間(t_{dur})内に超新星爆発が起こらない(?)

高密度星団かつ星風による 金属汚染の影響を受ける

 $t_{\rm ff}$: 自由落下時間

twr: Walf-Rayet星への進化時間 (3Myr)

 $t_{
m SNe}$: 超新星爆発の時間スケール (10Myr)

 Σ_{thr} : 高密度星団形成に関する雲面密度の閾値

高密度星団かつ星風による 金属汚染の影響を受ける

tff: 自由落下時間

twr: Walf-Rayet星への進化時間 (3Myr)

 $t_{
m SNe}$: 超新星爆発の時間スケール (10Myr)

Σ_{thr}: 高密度星団形成に関する雲面密度 の閾値

実際にシミュレーションで調べる。

数値計算 (星風+超新星爆発入り)

Self-gravitational AMR (M)HD + Sink particles

(Matsumoto 2007, 2015)

格子構造

Non-Equilibrium chemistry

H, H₂, H⁺, H⁻, H₂⁺, e, CII, OI, OII, OIII, CO

Heating & Cooling

Photoionization & photodissociation heating Line cooling (CII, CO, OI, OII, OIII), dust cooling Chemical heating & cooling

Stellar evolution

Metal yield from SNe & stellar wind (He, N, C, O)

Stellar wind & SNe feedback

Direct collapse ($> 25 M_{\odot}$) (Limongi & Chieffi 2018)

星団粒子を使用

(Sugimura et al. 2020, CO network: Nelson & Langer 1997)

Radiation transfer with moment method (M1-closure, reduced speed of light)

EUV photons

FUV photons (H₂, CO photodissociation)

Dust thermal emission

(Rosdahl+13, HF&Yajima 21)

星団モデル(雲質量 $10^7~M_\odot$, 金属量 $10^{-2}Z_\odot$):

(2) 半径: 63 pc (800M_☉pc⁻²)

星質量: $2 \times 10^6 M_{\odot}$

星団モデル(雲質量 $10^7~M_\odot$, 金属量 $10^{-2}Z_\odot$):

(3) 半径: 89 pc (400M_Opc⁻²)

星質量: $7 \times 10^5 M_{\odot}$

[N/O] 分布など

(2) $\Sigma_{\rm cl} = 800 \ M_{\odot} {\rm pc}^{-2}$ (半径: 63 pc)

[N/O] 分布など

(2) $\Sigma_{\rm cl} = 800 \ M_{\odot} {\rm pc}^{-2}$ (半径: 63 pc)

[N/O]~0.5程度の Nが豊富なガス

[N/O] 分布

(1) $\Sigma_{\rm cl} = 1500 \ M_{\odot} {\rm pc}^{-2}$ (半径: 46 pc)

(3) $\Sigma_{\rm cl} = 400 \ M_{\odot} {\rm pc}^{-2}$ (半径: 89 pc)

星の化学分布について

(2) $\Sigma_{\rm cl} = 800~M_{\odot} {
m pc}^{-2}$ (半径: 63 pc)の場合

星の化学分布について

(2) $\Sigma_{\rm cl} = 800~M_{\odot} {
m pc}^{-2}$ (半径: 63 pc)の場合

[N/O]が高い星も誕生

星の化学分布について

(2) $\Sigma_{\rm cl} = 800~M_{\odot} {\rm pc}^{-2}$ (半径: 63 pc)の場合

[N/O]が高い星も誕生, ただし質量割合は小さい...

高密度星団かつ星風による 金属汚染の影響を受ける

 $t_{\rm ff}$: 自由落下時間

twr: Walf-Rayet星への進化時間 (3Myr)

 $t_{
m SNe}$: 超新星爆発の時間スケール (10Myr)

 Σ_{thr} : 高密度星団形成に関する雲面密度の閾値

銀河円盤シミュレーションも実施中

ハロー質量: $10^9\,M_\odot$, 赤方偏移: 10, ディスク質量: $7.6\times10^7\,M_\odot$, 金属量: $10^{-2}Z_\odot$, NFW profileを仮定

まとめ

星風の影響をうける星団は、 $10^6\,M_\odot$ 以上の大質量である必要がありそうただし、球状星団の第2世代の星と直結するかは不明

今後はよりパラメータを広げた探査と、星団形成以外の外的な要因についても考慮したい