Řešení cvičení 3: Posloupnosti

Výpočet z definice

Přímo pomocí definice spočtěte následující limity¹, nebo dokažte, že neexistují

(a) $\{1\}_{n=1}^{\infty}$,

(d) $\{n!\}_{n=1}^{\infty}$,

(b) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$,

(e) $\left\{\frac{1}{1+n}\right\}_{n=1}^{\infty}$,

(c) $\{\ln(n)\}_{n=1}^{\infty}$,

(f) $\left\{\frac{1}{1+n^2}\right\}_{n=1}^{\infty}$.

- (a) Limita je zjevně 1, protože pro libovolné a_n máme $a a_n = 0 < \epsilon$ pro všechna $\epsilon > 0$. Pro libovolné zadané ϵ nám tedy stačí zvolit $\tilde{n} = 1$, nebo libovolné jiné přirozené číslo.
- (b) Je vidět, že $\forall a_n: a_n>0$ a posloupnost je klesající. Limita ale nemůže být větší než 0, protože pro a>0 bychom mohli najít $a_n< a$. Zkusme tedy a=0. Potom pro zadané $\epsilon>0$ chceme najít \tilde{n} tak, aby $a_{\tilde{n}}=\frac{1}{\tilde{n}}<\epsilon$. To jistě jde udělat volbou $\tilde{n}=\left\lceil\frac{1}{\epsilon}\right\rceil+5$. Protože je poslounost klesající, bude nerovnost platit $\forall n:n>\tilde{n}$.
- (c) Spojitý logaritmus není shora omezen a tak se dá čekat, že jeho diskrétní podoba bude mít nevlastní limitu $+\infty$. Pro zadané $K \in \mathbb{R}$ chceme tedy najít \tilde{n} tak, že $a_{\tilde{n}} = \ln(\tilde{n}) > K$. Odtud tedy dostáváme, že stačí $\tilde{n} = \lceil e^{K+1} \rceil$. Z monotonie ln opět plyne zbytek.
- (d) Stačí použít triviální odhad n! > n a je vidět, že posloupnost bude mít nevlastní limitu $+\infty$. Pro zadané K lze volit $\tilde{n} = K$.
 - Za povšimnutí stojí, že v tomhle případě se s opravdu špatným odhadem pracuje dobře. Nejde nám o to odhadnout funkci přesně, když si můžeme pomoct, jde s odhadem "plýtvat". Jak špatný odhad n! > n je jsme viděli už ve cvičení 2, kdy se nám podařilo odhadnout $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$, neboli faktoriál roste rychleji než libovolný polynom (a ukáže se, že i než libovolná exponenciála).
- (e) Po přeznačení $n \leftarrow n+1$ dostáváme přesně příklad (b) až na první člen posloupnosti. Ten jde ale bez problémů odebrat, protože limita posloupnosti nezáleží na konečném počtu jejích členů. Jde tedy příslušně posunout vztah pro \tilde{n} určený výš.
- (f) Použijeme Větu o dvou policajtech s pomocnými posloupnostmi $\{0\}_{n=1}^{\infty}$ a $\left\{\frac{1}{1+n}\right\}_{n=1}^{\infty}$. Pro všechna n platí $0 \leq \frac{1}{1+n^2} \leq \frac{1}{1+n}$ a tedy jsou splněny předpoklady věty a i tato posloupnost jde k 0. K určení \tilde{n} použijeme stejný postup jako výše, tedy

$$\left|\frac{1}{1+n^2}-0\right|=\frac{1}{1+n^2}<\epsilon\Rightarrow n>\sqrt{\frac{1}{\epsilon}-1}\Rightarrow \tilde{n}=\lceil\frac{1}{\sqrt{\epsilon}}\rceil+1.$$

 $^{^1}$ Napište pravidla jak volit \tilde{n} pro libovolná zadaná $\epsilon,$ nebo K.

Typické příklady na triky

Následující příklady Vás mají naučit "trikům" pro počítání některých limit. Každý příklad se vztahuje k nějakému a nejsou nutně řazeny podle obtížnosti

(a)
$$\lim_{n\to\infty} \frac{\sin(n!)}{n}$$
,

(d)
$$\lim_{n\to\infty} n\left(\sqrt{1+\frac{1}{n}}-\sqrt{1-\frac{1}{n}}\right)$$
,

(b)
$$\lim_{n\to\infty} \frac{n!}{\sin(n^n)}$$
,

(e)
$$\lim_{n\to\infty} \frac{\log_2(n)}{n}$$
,

(c)
$$\lim_{n\to\infty} \frac{5\cdot 2^n + n^8}{5^n + 10n^2}$$
,

(f)
$$\lim_{n\to\infty} \sqrt[n]{n}$$
.

Následující příklady Vás mají naučit "trikům" pro počítání některých limit. Každý příklad se vztahuje k nějakému a nejsou nutně řazeny podle obtížnosti

- (a) Stačí použít odhad $-\frac{1}{n} \le \frac{\sin(n!)}{n} \le \frac{1}{n}$ a Větu o dvou policajtech (Uřitečné vztahy bod 5). Dostáváme $\lim_{n\to\infty} \frac{\sin(n!)}{n} = 0$.
- (b) Protože $\sin(x) \in [-1, 1]$, bude výsledek oscilovat a narůstat. Neboli $\lim_{n \to \infty} \frac{n!}{\sin(n^n)}$ neexistuje.
- (c) Jak jsme zjistili minule, exponenciála roste rychleji než polynom a tak stačí vhodně rozšířit výraz a dostaneme výraz typu $\frac{0}{1}$.

$$\lim_{n \to \infty} \frac{5 \cdot 2^n + n^8}{5^n + 10n^2} = \lim_{n \to \infty} \frac{5 \cdot \left(\frac{2}{5}\right)^n + \frac{n^8}{5^n}}{1^n + \frac{10n^2}{5^n}} = \frac{5 \cdot 0 + 0}{1 + 0} = 0.$$

(d) Jak je není výraz dobře definován. Musíme tedy udělat úpravu ve tvaru vhodného rozšíření, abychom odstranili problematické odečítání.

$$\lim_{n \to \infty} n \left(\sqrt{1 + \frac{1}{n}} - \sqrt{1 - \frac{1}{n}} \right) = \lim_{n \to \infty} n \frac{1 + \frac{1}{n} - 1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}} = \lim_{n \to \infty} \frac{2}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}} = 1.$$

(e) Použijeme vybranou podposloupnost $n=2^k$. Zjevně $n\to\infty\Leftrightarrow k\to\infty$. Odtud

$$\lim_{n\to\infty}\frac{\log_2(n)}{n}=\lim_{k\to\infty}\frac{\log_2(2^k)}{2^k}=\lim_{k\to\infty}\frac{k}{2^k}=0.$$

Všimneme si, že tohle tvrzení platí stejně pro jmenovatel typu n^m , $m \in \mathbb{N}$. Plyne z toho, že logaritmus roste pomaleji než polynom.

(f) Tahle limita je typu " 1^∞ ", na což používáme exponencializaci. Tedy

$$\lim_{n \to \infty} \sqrt[n]{n} = \lim_{n \to \infty} e^{\frac{1}{n} \ln(n)} = e^0 = 1.$$

Což jsme dostali z minulého příkladu.

Výpočet

Spočtěte limity následujících posloupností, nebo ukažte, že neexistují

(a)
$$\{\sqrt{n+1} - \sqrt{n}\}_{n=1}^{\infty}$$
,

(g)
$$\left\{\frac{2^n+10^n}{10^{n+1}}\right\}_{n=1}^{\infty}$$
,

(b)
$$\{(-1)^n\}_{n=1}^{\infty}$$
,

(h)
$$\left\{\cos\left(\frac{\pi n}{4}\right)\right\}_{n=1}^{\infty}$$
,

(c)
$$\{(-1)^{n!}\}_{n=1}^{\infty}$$
,

(i)
$$\left\{n\left(\sqrt{\frac{1}{n}+1}-1\right)\right\}_{n=1}^{\infty}$$
,

(d)
$$\left\{\frac{n!}{n^k}\right\}_{n=1}^{\infty}$$
, $k \in \mathbb{N}$,

(j)
$$\left\{\frac{1+2+\dots+n}{n^2}\right\}_{n=1}^{\infty}$$
,

(e)
$$\left\{\frac{q^n}{n^k}\right\}_{n=1}^{\infty}$$
, $q > 1$, $k \in \mathbb{N}$,

$$\begin{cases} 2^{10\pi n}, & n < 1 \end{cases}$$

(f)
$$\left\{\frac{\sin(n)}{n}\right\}_{n=1}^{\infty}$$
,

(k)
$$a_n = \begin{cases} 2^{10\pi n}, & n < 1000 \\ \frac{n^5}{n^6 + n!}, & \text{jinak} \end{cases}$$

(a) Stačí výraz rozšířit vhodným doplněním podle $a^2 - b^2 = (a - b)(a + b)$, neboli

$$\sqrt{n+1} - \sqrt{n} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}.$$

Čitatel je konstanta a jmenovat je neomezený a kladný, takže máme výraz typu " $+\frac{1}{\infty}$ ", takže poslounost jde do 0.

- (b) Limita této posloupnosti neexistuje. To je jasné z toho, že po sobě následující členy jsou vzdáleny 2. Tedy nepůjde najíc člen posloupnosti, od kterého jsou členy vzdáleny od nějakého čísla méně jak např.
- (c) Oproti předchozímu příkladu se situace mění, protože pro n>1 je n! sudé číslo. Proto $(-1)^{n!}=1$ pro n>1 a tedy až na první člen, který o limitním chování nerozhoduje dostáváme příklad 2(a) a limita zkoumané posloupnosti je 1.
- (d) Pokud si vzpomeneme na již zmiňovaný výsledek z cvičení 2, příklad 3.2 (c) $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$, tak jde udělat

$$\frac{n!}{n^k} \ge \frac{1}{n^k} \left(\frac{n}{2}\right)^{\frac{n}{2}} > n^{\frac{n}{2k}},$$

což diverguje a tedy diverguje i zkoumaná posloupnost. Poučení tedy zní "faktoriál roste rychleji než polynom libovolného řádu".

(e)

- (f) Sinus je funkce omezená a tedy jde členy posloupnosti odhadnout $|\frac{\sin(n)}{n}| < \frac{1}{n}$. S výhodou pak jde použít Větu o dvou policajtech na posloupnosti $\{\pm \frac{1}{n}\}_{n=1}^{\infty}$, které jsou obě k nule viz výše. Limita zkoumané posloupnosti je tak taky 0.
- (g) Po úpravě dostáváme

$$\frac{2^n + 10^n}{10^{n+1}} = \frac{1}{10} \frac{\left(\frac{2}{10}\right)^n + 1^n}{1^n} \stackrel{n \to \infty}{\to} \frac{1}{10}.$$

- (h) Limita opět neexistuje, což jde ukázat podobně jako v (b), protože pro sudá n dostáváme právě (b) (až na znaménko, což je jen posunutí).
- (i) Prostým zkoumáním limit samotných výrazů dostáváme

$$\underbrace{n}_{\to \infty} \left(\sqrt{\underbrace{\frac{1}{n}}_{\to 0} + 1 - 1}_{\to 0} \right).$$

Máme tedy neurčitý výraz typu " $\infty \cdot 0$ ". Řešení spočívá v úpravě, kterou jsme použili už v (a)

$$n\left(\sqrt{\frac{1}{n}+1}-1\right) = n\frac{\frac{1}{n}+1-1}{\sqrt{\frac{1}{n}+1}+1} = \frac{1}{\sqrt{\frac{1}{n}+1}+1} \overset{n\to\infty}{\to} \frac{1}{2}.$$

(j) Řadu v čítateli jde sečíst pomocí výsledků z minulých cvičení $\sum_{i=1}^n i = \frac{n(n+1)}{2}$. Odtud dostáváme

$$\frac{1+2+\dots+n}{n^2} = \frac{n(n+1)}{2n^2} = \frac{1+\frac{1}{n}}{2} \xrightarrow{n \to \infty} \frac{1}{2}.$$

(k) Protože konečný počet prvků nerozhoduje o limitním chování, můžeme prvních 1000 členů zahodit. Pro zbytek použijeme odhat

$$0 \stackrel{n \to \infty}{\leftarrow} 0 < \frac{n^5}{n^6 + n!} < \frac{n^5}{n!} \stackrel{n \to \infty}{\rightarrow} 0,$$

jak jsme již ukázali v (d).