IDENTIFYING ATTACK GOALS

Assets, Entry Points and Data Flow Analysis

Threat Modeling

Threat modeling is a process by which a system is methodically analyzed from an attacker's perspective, to identify attack goals, evaluate the risks they pose and mitigate their vulnerabilities.

DATA FLOW TOOL

VISIO FOR THREAT MODELS

The Microsoft Threat Modeling Tool helps engineers analyze the security of their systems to find and address design issues early in the software lifecycle.

THREATS COME FROM DATA

DATA FLOW DIAGRAMS

ELEMENTS

- Processes: Code (not an OS process)
- External Interactors: A source or sink of data that's outside your control (e.g., the client)
- Data Stores: Something that holds data—memory, a file, a database
- · Data Flow: The transfer of data from one element to another
- Trust Boundary: Border between two elements that do not trust each other

EASY MISTAKES

- · It's not a flowchart!
- · All data flows must begin or end at a process.
- A process that has input flows but no output flows is a black hole.
- · A process that has output but no input is a miracle.
- Make sure each process has all the data needed to create any output flows.

- Threats come from data, so we document what our data is, where it comes from, where it goes to and what we do with it.
- A DFD has five kinds of elements: processes, external interactors, data stores, data flows and trust boundaries.

LIVE DEMO

EVALUATING RISKS

Attack Trees

Threat Modeling

Threat modeling is a process by which a system is methodically analyzed from an attacker's perspective, to identify attack goals, evaluate the risks they pose and mitigate their vulnerabilities.

THREATS = STRIDE X DFD ELEMENTS

"STRIDE per Element"

S	T	R	I	D	Ε
					,

	S	T	R	I	D	Е
Processes	V	V		V	1	√

	S	T	R	I	D	Ε
Processes	V	V		V	V	\checkmark
External Interactors	V	95				

	S	T	R	I	D	Е
Processes				~	1	\checkmark
External Interactors	V					
Data Stores	V	1		√		

	S	T	R	I	D	Е
Processes				√	~	\checkmark
External Interactors	V					
Data Stores	V	V		√		
Data Flows		V	V	1	1	

PRIORITIZE AND NARROW SCOPE

- · Not Started: Haven't looked at it at all yet.
- Needs Investigation: Attack trees in progress.
- Not Applicable: Not a concern.
- · Mitigated: Attack tree complete and mitigated.

ATTACK TREE TOOL

satoss.uni.lu/members/piotr/adtool/

ADTool

SaToSS » Members » Piotr Kordy » ADTool

SaToSS home

- Home
- Contact
- Attack Trees
- ADTool

Description

The Attack-Defense Tree Tool (ADTool) allows users to model and analyze attack-defe and attack-defense terms. It supports the methodology developed within the ATREES p.

Main features of the tool include:

- Creation and editing of attack-defense trees.
- · Creation and editing of attack-defense terms.
- Quantitative bottom-up analysis of attack-defense scenarios.
- · Modular display of attack-defense trees, which allows modeling of large real-life sce

ATTACK TREES

- Answers the question "What has to be true for an attacker to successfully perform this attack?"
- Conceptually an if statement:
 bool success = X || (Y && (Z || W));
- · Shown in tree form to make it easier to follow.

FORMAT X | (Y && (Z | | W))

- Root node is the attack itself
- Siblings connected with an arc must all be true (AND)
- Siblings with no arc just need one to be true (OR)

as invitee

Attacker has Invitee's credentials

got credentials from authentication sequence

Attacker got credentials from Invitee's machine

- Take the DFD and list out all the possible intersections—STRIDE x Elements. Each of these is a "threat".
- Some threats are impossible or out of scope.
 For the rest, prioritize based on potential damage, then construct attack trees to find out whether they're mitigated or not.
- · Unmitigated threats are vulnerabilities.

LIVE DEMO

MITIGATING VULNERABILITIES

Risk vs. Effort

Threat Modeling

Threat modeling is a process by which a system is methodically analyzed from an attacker's perspective, to identify attack goals, evaluate the risks they pose and mitigate their vulnerabilities.

MITIGATE VULNERABILITY

PERFECT SECURITY IS IMPOSSIBLE

Certification path

Certification path

PERFECT SECURITY IS IMPOSSIBLE

RISK = LIKELIHOOD X COST

REAL

- Reward: What's it worth to the attacker?
- Effort: How little does the attacker have to work?
- Audience: How many people will be affected?
- Level of Skill: How many attackers have the skill required to carry out the attack.

Assign each a value from 1 to 10, multiply them all together and move the decimal two to the left, for a value from 0.01 to 100.0

THE GAME CENTER LEADERBOARD HACK

Reward: I

• Effort: 10

Audience: 3

Level of Skill: 9

Total rating:2.7

TAKE ACTION

- Define a "security bar", the risk rating above which you will act on a vulnerability.
- Vulnerabilities above this bar go in your bug database.
- · Vulnerabilities below this bar go in your backlog.

CREATING MITIGATIONS

I. Change the circumstances so that paths through the attack tree are closed off.

2. Change the risk variables so that the vulnerability falls below your security bar.

CHANGE THE RISK

- Reduce the reward!
- Increase the effort!
- Limit the audience!
- Raise the skill level!

SECURITY THROUGH GAME DESIGN

SECURITY THROUGH COMMUNITY MANAGEMENT

SECURITY THROUGH BUSINESS DEVELOPMENT

LATHER RINSE REPEAT

- Perfect security is impossible, but zero security is unacceptable. You have to strike a smart balance.
- · Risk is likelihood times cost.

- Making attacks impossible is best.
- Making attacks less likely or less costly might be just as good.

