ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ И ИНФОРМАТИКИ

БАКАЛАВРСКАЯ РАБОТА

Нейросетевой синтез текстур с трендами

	Выполнил студент
	435 группы:
	Будакян Я. С.
	Научный руководитель:
	к.т.н., доц. Грачев Е. А.
Допущена к защите	
Зав. кафедрой	

Москва

Содержание

B	ВЕДЕНИЕ	2
1	Постановка задачи	3
2	Нейронные сети 2.1 Общие сведения об ИНС 2.2 Метод обратного распространения ошибки	
3	Сверточные нейронные сети 3.1 Сверточная арифметика	
4	Генеративные состязательные сети 4.1 Общая структура 4.2 Обучение GAN 4.3 Различные модификации 4.3.1 ріх2ріх GAN	5
5	Синтез текстур	8
6	6 Метод стохастической оптимизации Adam	
7	Оценка качества синтеза	8
8	Результаты 8.1 Данные 8.2 GAN 8.3 Синтез текстур	6
3	ЗАКЛЮЧЕНИЕ	
\mathbf{C}	ПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	ē
П	РИЛОЖЕНИЕ	10

ВВЕДЕНИЕ

Здесь, по идее, должно быть общее описание задачи, актуальность и все такое.

1 Постановка задачи

Математически сформулировать поставленную задачу можно с помощью так называемой вероятностной постановки задачи обучения [1, 10]. Рассмотрим многомерное пространство X, содержащее множество всех изображений x: $X = \{x\}$. Тогда обучающая выборка изображений с трендами $D = \{x_i\}$ задает в этом пространстве вероятностное распределение $P_X : X \longrightarrow [0,1]$, устроенное таким образом, что точки, соответствующие изображениям из выборки, имеют высокую вероятность, а остальные - низкую. Тогда с математической точки зрения задача синтеза текстуры с трендом сводится к синтезу случайного изображения x', принадлежащего распределению, близкому к задаваемому обучающей выборкой:

$$P_{X'} \approx P_X, \quad x' \sim X'$$

"Классический"статистический подход к решению подобного рода задач заключается в рассмотрении параметризированного семейства распределений вероятности и его подстройке на имеющихся данных:

- Вводится параметризированное семейство распределений вероятности $P_{\theta}(x)$
- \bullet Параметры θ находятся из обучающей выборки:

$$\mathcal{L}_{\theta}(D) = \prod_{x \in D} P_{\theta}(x)$$

$$\theta^* = \arg\max_{\theta} \mathcal{L}_{\theta}(D)$$

• Генерируется объект (изображение) из распределения P_{θ^*}

Этот подход приводит к проблемам:

- \bullet Пространство параметров θ может быть огромной размерности
- Известной параметрической модели распределения может вообще не существовать

Простой пример объекта со сложным пространством параметров - человеческое лицо. Задачу генерации изображения реалистичного человеческого лица долгое время не могли решить с удовлетворительным качеством. Однако последние достижения в области искуственных нейронных сетей привели к существенному повышению качества генеративных моделей самого разнообразного типа. Собственно, наличие впечатляющих работ последних лет в этой области ***тут цитаты*** и мотивирует попытаться применить современные нейросетевые подходы в поставленной задаче.

- 2 Нейронные сети
- 2.1 Общие сведения об ИНС
- 2.2 Метод обратного распространения ошибки
- 3 Сверточные нейронные сети
- 3.1 Сверточная арифметика
- 3.2 Сверточные слои

4 Генеративные состязательные сети

Архитектура нейронной сети, получившая название генеративной состязательной сети (generative adversarial network - GAN), впервые была описана в 2014 году [10]. В последние 2 года сети такого типа добились больших успехов в задачах синтеза объектов из сложных распределений (например, лиц) [3], переноса стиля [2] и подобных. Этим объясняется мотивация попытки применения данной архитектуры для решения поставленной задачи.

4.1 Общая структура

Переформулируем изначальную задачу нахождения такой процеруды генерирования X', чтобы $P_{X'} \approx P_X$:

$$\rho(P_{X'}, P_X) \longrightarrow \min_{P_{X'}}$$

Введем параметризированную процедуру генерации:

$$X' = g_{\theta}(\cdot)$$

Переформулируем:

$$\rho(P_{X'}, P_X) \longrightarrow \min_{P_{X'}}$$

$$\rho(g_{\theta}(\cdot), P_X) \longrightarrow \min_{g_{\theta}(\cdot)}$$

$$\rho(g_{\theta}(V), P_X) \longrightarrow \min_{g_{\theta}(\cdot)}$$

Возникает вопрос: что использовать в качестве метрики похожести двух распределений ρ , где одно из распределений задано обучающей выборкой. В качестве такой метрики можно использовать функцию потерь обученного классификатора, потому что естественно предположить, что чем чаще ошибается обученный классификатор, тем больше одно распределение похоже на другое. Тогда задача примет вид:

$$\rho(P_{X'}, P_X) \longrightarrow \min \Leftrightarrow L \longrightarrow \max$$

где L - функция потерь обученного классификатора. Соответственно, можно ввести две нейросети:

- $d_{\mathcal{C}}(x)$ классификатор для измерения расстояния, 'дискриминатор'
- $g_{\theta}(x)$ сеть, трансформирующая шум в X', 'генератор'

Суть использования двух сетей состоит в том, что они обучаются совместно, конкурируя друг с другом: генератор пытается имитировать целевое распределение, а дискриминатор пытается классифицировать поступающие от генератора и из обучающей выборки изображения на 2 класса: реальные (из изначального распределения P_X) и ложные (из $P_{X'}$, т.е. произведенные генератором). Для дальнейшего рассмотрения введем функцию потерь дискриминатора(например, logloss):

$$l_1 = l(d_\zeta(x),1) \text{ - ошибка 1 рода}$$

$$l_2 = l(d_\zeta(x'),0) \text{ - ошибка 2 рода}$$

$$L(X,X') = \frac{1}{2}\mathbb{E}_X l_1 + \frac{1}{2}\mathbb{E}_{X'} l_2 = -\frac{1}{2}(\mathbb{E}_X \log d_\zeta(x) + \mathbb{E}_{X'} \log(1-d_\zeta(x'))) =$$

$$= -\frac{1}{2}(\mathbb{E}_X \log d_\zeta(x) + \mathbb{E}_V \log(1-d_\zeta(g_\theta(v)))) = L(\zeta,\theta).$$

Функция потерь обученного классификатора:

$$L^*(\theta) = \min_{\zeta} L(\zeta, \theta)$$

Соответственно,

$$\min_{\zeta} L(\zeta, \theta) \longrightarrow \max_{\theta}$$

$$\theta^* = \arg\max_{\theta} \left[\min_{\zeta} L(\zeta, \theta) \right]$$

Определим оптимальный дискриминатор:

$$d_{\theta}^* = d_{\zeta^*(\theta)}$$
$$\zeta^*(\theta) = \underset{\zeta}{\operatorname{arg\,min}} L(\zeta, \theta)$$

4.2 Обучение GAN

Итак, задача обучения GAN свелась к нахождению

$$\theta^* = \arg\max_{\theta} \left[\min_{\zeta} L(\zeta, \theta) \right]$$

Решить ее можно, например, методом стохастического градиентного спуска:

$$\Delta \theta \sim \nabla L(\zeta^*(\theta), \theta)$$

Для малых изменений $\Delta\theta$:

$$\nabla L(\zeta^*(\theta), \theta) \approx \nabla L(\zeta^*(\theta), \theta + \Delta \theta)$$

В итоге, процесс обучения принимает следующий вид:

- Обучаем дискриминатор при фиксированном генераторе
- Обучаем генератор при фиксированном дискриминаторе
- Повторяем до сходимости параметров обеих моделей

Рис. 1: Схематическое изображение процесса обучения GAN.

Рис. 2: Схематическое устройство сети pix2pix GAN.

Рис. 3: Вход и желаемый выход нейросети-генератора.

4.3 Различные модификации

4.3.1 pix2pix GAN

Для решения задачи было попробовано применить модификацию GAN-сети под названием "pix2pix GAN"[5]. Ее отличие от схемы GAN, введенной выше, состоит в том, что вместо шума на вход генератору приходят другие изображения, на которых он основывается при синтезе. Схематически ее устройство изображено на (Рис. 2). Для ріх2ріх сети общий функционал потерь выглядит следующим образом:

$$L(G, D) = L_{adv}(G, D) + \eta \mathbb{E}_{p_{data}(s_1, s_2, r)} (\parallel r - G(s_1, s_2) \parallel_1)$$
$$L_{adv}(G, D) = \mathbb{E}_{p_{data}(s_1, s_2, r)} \log D(s_1, s_2, r) + \mathbb{E}_{p_{data}(s_1, s_2)} \log(1 - D(s_1, s_2, G(s_1, s_2)))$$

где G, D - генератор и дискриминатор, (s_1, s_2, r) - тройка изображений (интенсивность слева, справа и реальное изображение с трендом), $\mathbb{E}_{p_{data}(s_1, s_2, r)}$ - мат. ожидание логарифмического правдоподобия того, что тройка изображений (s_1, s_2, r) принадлежит вероятностному распределению реальных троек $p_{data}(s_1, s_2, r)$, а $p_{data}(s_1, s_2)$ соответствует распределению реальных изображений s_1, s_2 .

Рис. 4: Схематическое изображение нейросети-генератора.

- 5 Синтез текстур
- 6 Метод стохастической оптимизации Adam
- 7 Оценка качества синтеза

После обучения сети, необходимо проверить, что сгенерированные ей изображения действительно имеют искомые характеристики. Для этого нужно ввести специальную метрику, которая будет учитывать наличие в изображении тренда интенсивности частиц. Было решено использовать среднюю плотность черных пикселей в некотором окне, и проходить этим окном по изображению (Рис. 5):

Рис. 5: Прохождение окном, W, H - размеры изображения, w - ширина окна.

$$\xi_k = \frac{1}{Hw} \sum_{i=k}^{k+w} \sum_{j=0}^{H} \left| \frac{x(i,j) - 255}{255} \right|,$$
$$k = \overline{1, W - w + 1}$$

Построив график $\xi(k)$, можно увидеть, как меняется плотность пикселей и прослеживается ли тренд. В качестве метрики можно взять среднеквадратичную ошибку:

$$\xi = \frac{1}{W - w} \sum_{k=1}^{W - w + 1} (\xi_k - \xi_{0k})^2,$$

где ξ_{0k} - это ξ_k , усредненное по примерам из обучающей выборки. Соответственно, чем меньше значение метрики, тем лучше тренд, присутствующий на сгенерированном изображении, приближает искомый.

8 Результаты

Описанные подходы были реализованы в виде компьютерных программ на языке Python с помощью фреймворка для построения искуственных нейронных сетей Keras [13] и библиотеки для вычислений Tensorflow [14].

8.1 Данные

Обучение проводилось на синтетических данных.

8.2 GAN

8.3 Синтез текстур

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[1] Воронцов К. В., "Математические методы обучения по прецедентам (теория обучения машин)".

- [2] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, "A Neural Algorithm of Artistic Style"// arXiv: 1508.06576v2 [cs.CV], 2015.
- [3] Jon Gauthier, "Conditional generative adversarial nets for convolutional face generation Tech. rep., 2015.
- [4] Mehdi Mirza, Simon Osindero, "Conditional Generative Adversarial Nets"// arXiv: 1411.1784v1 [cs.LG], 2014.
- [5] Pedro Costa, Adrian Galdran, Maria Inês Meyer, Michael David Abràmoff, Meindert Niemeijer, Ana Maria Mendonça, Aurélio Campilho, "Towards Adversarial Retinal Image Synthesis"// arXiv: 1701.08974 [cs.CV], 2017.
- [6] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, Koray Kavukcuoglu, "Conditional Image Generation with PixelCNN Decoders"// arXiv: 1606.05328v2 [cs.CV], 2016.
- [7] Augustus Odena, Christopher Olah, Jonathon Shlens, "Conditional Image Synthesis with Auxiliary Classifier GANs"// arXiv: 1610.09585v1 [stat.ML], 2016.
- [8] Tejas D. Kulkarni, Will Whitney, Pushmeet Kohli, Joshua B. Tenenbaum, "Deep Convolutional Inverse Graphics Network"// arXiv: 1503.03167v4 [cs.CV], 2015.
- [9] Junbo Zhao, Michael Mathien, Yann LeCun, "Energy-based Generative Adversarial Networks"// arXiv: 1609.03126v3 [cs.LG], 2016.
- [10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bign Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, "Generative Adversarial Nets"// arXiv: 1406.2661v1 [stat.ML], 2014.
- [11] Chuan Li, Michael Wand, "Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis"// arXiv: 1601.04589v1 [cs.CV], 2016.
- [12] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, Victor Lempitsky, "Texture Networks: Feed-forward Synthesis of Textures and Stylized Images"// arXiv: 1603.03417v1 [cs.CV], 2016.
- [13] François Chollet, Keras, 2015. Software available from github.com/fchollet/keras.
- [14] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

ПРИЛОЖЕНИЕ