LTE 관련 정리

ICT 융합학부 이수진

1. 영상 처리

1) Scalable Coding 을 이용하여 드론에서 촬영하는 영상을 딜레이 없이 스트리밍하기

Scalable Coding을 이용하여 드론에서 촬영한 영상을 실시간으로 딜레이 없이 전송하기

> ICT 융합학부 이수진

영상 스트리밍 과정

영상 스트리밍 과정

영상 스트리밍 과정

Coder : 아날로그 신호 -> 디지털 신호

영상 스트리밍 과정

Nyquist 이론 최소한 최대 주파수의 2배만큼은 샘플링을 해야 수신 측에서 원래 신호 를 복원 할 수 있다 영상 스트리밍 과정

PAM 시그널 → 정수 레벨

영상 스트리밍 과정

양자화된 신호 → 디지털 영상 신호

"압축"

영상 전송 과정

영상 전송 과정

영상 전송 과정

인코딩: 아날로그 신호 -> 디지털 신호

영상 전송 과정

"압축" 🚍 예측 + 변환

양자화된 신호 → 디지털 영상 신호

"사용자에 의한 움직임"

움직임 보상 프레임 간 예측

드론이 사용자의 조종에 의해 움직이는 특성상 연속적인 장면이 나오게 됨

2. NB-IoT survey 및 Particle

1) Survey

NB-IoT

ICT 융합학부 이수진

NB-IoT

Narrowband - Internet of Things

협대역 사물 인터넷

Abstract

A Primer on 3GPP Narrowband Internet of Things

Y.-P. Eric Wang, Xingqin Lin, Ansuman Adhikary, Asnjorn Grovlen ···

Narrowband-Internet of Things (NB-IoT)

New cellular technology introduced in 3GPP Release 13

Overview of the air interface of NB-IoT

Introduction

NB-IoT aims to offer deployment flexibility, allowing an operator to introduce NB-IoT using a small portion of its existing available spectrum.

Introduction

State-of-the-art overview

of the air interface of NB-IoT with a focus

on the key aspects where NB-IoT deviates from LTE.

Transmission Schemes and Deployment Options

Downlink Transmission Scheme

Based on OFDMA(15kHz)

->LTE ensures good coexistence performance with LTE in the downlink

Transmission Schemes and Deployment Options

Uplink Transmission Scheme

Multi-tone trans. :: Based on single - carrier frequency-division multiple access using the same 15kHz subcarrier spacing and 0.5 ms slot at LTE. single-tone trans. :: Support two numerologies, 15kHz and 3.75kHz

Transmission Schemes and Deployment Options

Deployment Options

NB-IoT may be deployed as a standalone carrier.

Figure 1. Examples of NB-IoT stand-alone deployment and LTE in-band and

Physical Channels

Downlink

Unlike LTE, these NB-IoT physical channels and signals are primarily multiplexed in time.

Figure 2. Time multiplexing of NB-IoT downlink physical channels and signals.

Physical Channels

Uplink

NPRACH :: is a newly designed channel

Since the legacy LTE physical random access channel uses a bandwidth of 1.08MHz, more than NB-IoT uplink bandwidth.

NPUSCH :: has two formats

Format 1 is used for carrying uplink data and uses the same LTE turbo code for error collection.

Format 2 is used for signaling HARQ acknowledgment for NPDSCH, and uses a repetition code for error correction.

Cell Search and Initial Acquisition Procedure

UE needs to distinguish a particular cell on the basis of an NB-PCID NB-IoT provide extended coverage for UEs deployed in environments.

Despite this large CFO, a UE should also be able to perform accurate synchronization at very low SNR(Signal to noise ratio).

Synchronization process principles are similar to LTE .

Scheduling and HARQ operation

NB-IoT allows only one HARQ process in both downlink and uplink, and allows longer UE decoding time for both NPDCCH and NPDSCH.

rame).

Conclusion

signals is preserved by avoiding mapping NB-IoT

The orthogonality to LTE

Resource Mapping

signals to the resource elements already used by the

legacy LTE signals.

Random Access

In NB-IoT, random access is to achieve uplink synchronization.

NB-IoT allows flexible configuration of NPRACH resources in a timeOfrequency resource grid.

UE determines its coverage level by measuring downlink received signal $\label{eq:power} \mbox{power}.$

Performance

Peak Data Rates

Coverage

Device Complexity

Latency and battery lifetime

Capacity

In this article, a description of NB-IoT radio access is given.

NB-IoT ushers in ultra-low-cost devices and has enough capacity to support a massive number of these devices in a cell.

2) Particle 주문내역

Particle Industries, Inc. 126 Post St 4th Floor San Francisco CA 94108 United States

BillTo

Sujin Lee 55, Hanyangdaehak-ro, Sangnok-gu 601, ERICA center (Education Res... Ansan-si Gyeonggi-do 15588 Korea, Republic of

Ship To

Sujin Lee 55, Hanyangdaehak-ro, Sangnok-gu 601, ERICA center (Education Res... Ansan-si Gyeonggi-do 15588 Korea, Republic of

Sales Order

Date Order# 11/2/2018 SO20035

Terms
PO #
Ship Via
Subsidiary
Ship Date
Tracking #
Project

Due on receipt MP6186 FedEx International Pri... 100 - Particle Industrie... 11/5/2018

472661459505

Bern	Guardity	Units	Serial & at Nu mbers	Description	Unit Price	Options	Amount	hxR.	Herr.ID	Hern Disp
Adahuit OLED FeatherWin 8	'			Adelnut OLED Feeth erWing	14.95		1495		FWNG-OL	Address O.
Adahuit BIA219 FeatherWin 9	'			Addrul FIA210 Featherwing	7.95		7.95		FWNG-IN	Addruit I
Actabrail Ploseer Fleday Fleather-Win 9	'			Adalnat Power Felay FeatherWing	9.95		9.95		FWNG-P.	Address P.
AgonKit	1			Argon N2	15.00		15.00		ANGINIT	Argon Nit
Boron 20/30 Nt	1			Boron 2G0 GK8	49.00		49.00		BFW4010KI	Boron 20/
BoronLTE Kil	'			Boron LTE Nit	29.00		29.00		вгенови	Boron LTE
Pluriticio Classoic Adapter	'			Parti d e Classaic Adapter	5.00		5.00		ACC-ADPT	PartideCL.
Plarticle Debugger	'			Partide Debugger	20.00		20.00		ACC-DEB	PwtdeD
Plarticle Elfwrnet PeatherWin 9	'			Park de Eth erred FeatherWing	20.00		20.00		FWNGETH	ParideEt
Grove Starter Kit for Particle Mesh	'				29.00		29.00		snsn-an	Geve Sa.
Xenon Kit	1			Xenon Nt	9.00		9.00		XEMMIT	Xenon Kit
Shipping and Handling Fees	'				15.00		15.00		SAH	Shipping

Total

\$223.85

3. LTE survey

RSSI, RSRQ, RSRP

RSSI

Reference Signal Strength Indicator

RSSI는 단말에 수신되는 Power의 총 크기이다. (절대적인 값) 채널의 간섭. 열 잡음 등 모든 정보를 포함한다. RSSI는 N개의resource block에 대해서 측정한다. Reference Signal Received Power

RSRP

RSRP는 광대역/현대역에서 측정된 LTE Reference Signal의 수신 전력이다. (절대적인 값) 단말이 보고하는 RSPP 법위는 -44 ~ -140 dBm 이다. 용신 가능한 RSRP의 범위는 샐 중심부에서 ~ 75dBm 정도이고 셀 엣지 부분에서는 -120dBm 정도이다. RSRP의 범위는 -140dBm ~ 4ddBm으로 1dB 단위로 변경될 수 있다.

Reported value	Measured quantity value	Unit
RSRP_00	RSRP < -140	dBm
RSRP_01	-140 ≤ RSRP < -139	dBm
RSRP_02	-139 ≤ RSRP < -138	dBm
RSRP_95	-46 ≤ RSRP < -45	dBm
RSRP_96	-45 ≤ RSRP < -44	dBm
RSRP 97	-44 < RSRP	dBm

네트워크 품질 매핑 표

RSRQ

Reference Signal Received Quality

RSRO는 단말에 수십되는 Power 대비 Reference Signal Power의 비다. RSSI와 사용된 resource block의 수와 간섭등 다양한 정보를 고려한다. RSRO = (N • RSRP) / RSSI (N: RB의 수) 단말이 보고하는 RSRO의 범위는 -3dB~-19dB이다.

Reported value	Measured quantity value	Unit	
RSRQ_00	RSRQ < -19.5	dB	
RSRQ_01	-19.5 ≤ RSRQ < -19	dB	
RSRQ_02	-19 ≤ RSRQ < -18.5	dB	

RSRQ_32	-4 ≤ RSRQ < -3.5	dB	
RSRQ_33	-3.5 ≤ RSRQ < -3	dB	
RSRQ 34	-3 ≤ RSRQ	dB	

네트워크 품질 매핑 표

기지국 명령어

HARQ 최대 전송 가능 횟수 ITBS 값 고정

COI 값 고정

Resource Block 할당 최대치 조절

HARQ Max Tx Override

JL620(config-engineer)# set hyu harq downlink <1-4> HARO DL 최대 전송 가능 횟수를 지정. 기본값은 4일.

JL620(config-engineer)# set hyu harq uplink <1-4> HARQ UL 최대 전송 가능 횟수를 자정. 기본값은 4일. System-wide ITBS Override

JL620(config-engineer)# set hyu itbs-override downlink <0-100> Downlink ITBS 값을 임익로 고정.

JL620(config-engineer)# set hyu itbs-override uplink <0-100> Uplink ITBS 값을 임의로 고정.

UE-specific ITBS Override

JL620(config-engineer)# set hyu itbs-override downlink <0-100> crnti <1-200> Downlink ITBS 값을 특정 기기에 대해 고정

JL620(config-engineer)# set hyu itbs-override uplink <0-100> crnti <1-200> Uplink 대명3 값을 특정 기기에 대해 고정 System-wide CQI Override

JL620(config-engineer)# set hyu cqi-override downlink <0-15> 단말이 보고하는 Downlink CQI 값을 임익의 값으로 고정.

JL620(config-engineer)# set hyu cqi-override uplink <0-15> 단말이 보고하는 Uplink CQI 값을 임의의 값으로 고정.

*System Wide ITBS보다 우선순위가 높음

System-wide Max Resource Block Limits

JL620(config-engineer)# set hyu rb-override downlink <0-100>

20MHz 채널에서 최대 100개까지의 RB 할당 가능하나, 이 최대치를 임의로 조절.

JL620(config-engineer)# set hyu rb-override uplink <0-100> RB 사용량을 제한.

20MHz 채널에서 최대 100개까지의 RB 할당 가능하나, 이 최대치를 임의로 조절.

CellSignalStrengthLte

 ${\tt public final class CellSignalStrengthLte}\\$ extends CellSignalStrength implements Parcelable

java.lang.Object

L→ android.telephony.CellSignalStrength
L→ android.telephony.CellSignalStrengthLte

CellSignalStrengthLte

CellSignalStrengthLte

getAsuLevel()	Get the LTE signal level as an asu value between 097, 99 is unknown Asu is calculated based on 3GPP RSRP.				
getCqi()	Get channel quality indicator				
getDbm()	Get signal strength as dBm				
getLevel()	Get signal level as an int from 04				
getRsrp()	Get reference signal received power				
getRsrq()	Get reference signal received quality				
getRssnr()	Get reference signal signal-to-noise ratio				
getTimingAdvance()	Get the timing advance value for LTE, as a value in range of 01282.				

4. LTE 실험 진행

* 간섭에 따른 RSRP 값

간섭에 따라서 RSRP 값이 어떻게 변화하는지 알아야했다. 처음으로 한 것은 RSRP 값을 찍는 어플리케이션을 만드는 것이었다. 기지국의 HARQ 값은 4로 고정하고, CQI 값을 0 부터 15 까지 1 씩 증가시켰다. 각 CQI 값에 따라서 attenuator 값을 5 초에 10dB 씩 증가시키면서 실험을 진행했다. 그 결과 attenuator 로 인한 간섭이 클 수록 RSRP 값 이 낮아진다는 사실을 확인할 수 있었다.

1) 실험 결과 그래프

실험 결과

2) Shell script code


```
set hyu set cqi-override uplink 0
exit
exit
EOF
sleep $i
                     -----CQI = 1----
echo "---
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 1
set hyu set cqi-override uplink 1
exit
exit
EOF
sleep $i
echo "---
                    -----CQI = 2----
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 2
set hyu set cqi-override uplink 2
exit
exit
EOF
sleep $i
echo "-
                     -----CQI = 3-----
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 3
set hyu set cqi-override uplink 3
exit
exit
EOF
sleep $i
                      -----CQI = 4----
echo "-
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 4
set hyu set cqi-override uplink 4
exit
exit
EOF
sleep $i
echo "----
                     -----CQI = 5----
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 5
set hyu set cqi-override uplink 5
exit
exit
EOF
sleep $i
echo "-
                      -----CQI = 6--
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 6
set hyu set cgi-override uplink 6
```

```
exit
exit
EOF
sleep $i
echo "-
                        -----CQI = 7---
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 7
set hyu set cqi-override uplink 7
exit
EOF
sleep $i
                     ____CQI = 8___
echo "-
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 8
set hyu set cqi-override uplink 8
exit
exit
EOF
sleep $i
echo "-
                     -----CQI = 9----
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 9
set hyu set cqi-override uplink 9
exit
exit
EOF
sleep $i
                       -----CQI = 10----
echo "-
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 10
set hyu set cqi-override uplink 10
exit
exit
EOF
sleep $i
echo "----
                     -----CQI = 11---
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 11
set hyu set cqi-override uplink 11
exit
exit
EOF
sleep $i
echo "-
                       -----CQI = 12-
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 12
set hyu set cqi-override uplink 12
```

```
exit
exit
EOF
sleep $i
echo "
                              -CQI = 13-
sudo ilsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 13
set hyu set cqi-override uplink 13
exit
EOF
sleep $i
echo "-
                              -CQI = 14-
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 14
set hyu set cqi-override uplink 14
exit
EOF
sleep $i
echo "-
                              -CQI = 15-
sudo jlsh <<"EOF"
conf engineer
set hyu set cqi-override downlink 15
set hyu set cqi-override uplink 15
exit
exit
EOF
sleep $i
```

3) Attenuator

sc set 0 0 90 10 5000 10000 2 0 (type, start, end, step, interval, hold, counter, direction)

4) Application

어플리케이션은 총 두 개를 만들었다. 첫 번째는 signal strength 가 변화하면 RSRP 값이 기록이 되며 txt 파일에 저장이 된다. 버튼을 누르면 기록이 시작되며 기록 시작 시각과 sginal strength 가 변하면 경과한 시간, RSRP 값이 기록이 된다. 이는 PhoneStateListener 클래스를 이용하여 만들었으며 단말기의 API 값이 1 이상이면 사용할 수 있다. 두 번째는 AsuLevel, CQI, Dbm, signal level, RSRP, RSRQ, signal-to-noise ratio 그리고 timing advance value for LTE 값을 얻을 수 있다. 이는 API 26 부터 사용할수 있다.

5) 기록 예시

	Α	В	C	D	E	F	G	H	1	J
1		AsuLevel	CQI	dBm	level	RSRP	RSRQ	RSSNR	timing advanced	i
2	0	##########								
3	4758	42	2147483647	-98	3	-98	-6	20	8	
4	19680	45	2147483647	-95	3	-95	-5	26	8	
5	42754	40	2147483647	-100	3	-100	-6	11	8	
6	83721	41	2147483647	-99	3	-99	-8	20	8	
7	87546	41	2147483647	-99	3	-99	-6	11	8	
8	155381	42	2147483647	-98	3	-98	-6	22	8	
9	163065	41	2147483647	-99	3	-99	-5	21	8	
10	544509	41	2147483647	-99	3	-99	-7	23	8	
11	0	#########								
12	11168	41	2147483647	-99	3	-99	-6	23	8	
13	15350	41	2147483647	-99	3	-99	-7	21	8	
14	19188	44	2147483647	-96	3	-96	-7	26	8	
15	21741	46	2147483647	-94	3	-94	-7	26	8	
16	0	##########								
17	22783	42	2147483647	-98	3	-98	-7	15	8	
18	24441	42	2147483647	-98	3	-98	-7	15	8	
19	32155	42	2147483647	-98	3	-98	-6	14	8	
20	39820	43	2147483647	-97	3	-97	-7	14	8	
21	44956	43	2147483647	-97	3	-97	-5	13	8	
22	48795	43	2147483647	-97	3	-97	-7	14	8	
23	53915	43	2147483647	-97	3	-97	-5	22	8	

외부 파일로 저장

5. RTSP 서버 파일 전송 실험

1) 실험 환경

-'Cherry Music'

오픈소스를 바탕으로 라즈베리파이를 이용해 음악 스트리밍을 할 수 있는 RTSP 서버 구축

(166.104.185.64:8088)

-Attenuator: P1 90 P2 90 P3 0 P4 0

기지국이 가까워서 그런지 너무 error 가 적게 발생하여 실험 환경을 좋지 않게 설정함

-기지국: HARQ Max Tx Override

HARQ DL(dir=0) 및 UL(dir=1)의 최대 전송 가능 횟수를 0회, 1회, 2회, 3회로 변경하여 실험 진행

-음악: 비투비 - 그리워하다 (3m 56sec)

2) 실험

- HARQ Tx=1: 25.73 sec, 10.90% - HARQ Tx=2: 21.53 sec, 9.12% - HARQ Tx=3: 16.48 sec, 6.98% - HARQ Tx=4: 14.56 sec, 6.17%

3) 결론

-HARQ의 최대 재전송 횟수를 감소시킴에 따라서 error rate 이 높게 측정이 됨을 알 수 있음

-Attenuator 의 값을 90 으로 설정한 만큼 RSRP 값이 -100 정도로 측정되었다. 따라서 error rate 이 높게 측정되었음을 알 수 있다.

6. SK IoT survey

SK IoT Survey

ICT융합학특 이수진

IoT Module

LORA LOM102A

LORA LOM202A

LORA 이도링크

Cat.M1 Starter Kit

Cat.M1 Starter Kit

Cat.M1 Starter Kit

리넷	IoT Starter Kit 구성품		AM텔리	AM텔레콤 IoT Starter Kit 구성품			
72	##B	48	78	488	48		
1	WM-N400MSE CWM1	1	1	AMM992 CHMI	1		
2	Starter Kit Base Board	10	2	Starter Kit Base Board	- 1		
3	Interface Board	1	3	Interface Sound	- 3		
4	인데나 및 인데나 케이블	1	4	인데나 및 인데나 케이블	- 1		
5	Micro USB 1910 M	1	5	MooUSE PERM	1		
6	5V 전문 마단터	1:	6	5v 전쟁 마당티	- 1		
				Marco LERA Conf			

Cat.M1 AM telecom

TYPE	PCle M2
Size(mm)	30.0 x 42.0 x 2.3
Bands	LTE 83, 85
Data Speed	Dt. 2000/gs. / Ut. 3750bgs
	US8.20
Interface	UART
attirtace	USIM
	GPIO
	ors
Other Features	FOTA
Operreques	9/45
	ThingHug
Open SOK	×
Fower Consumption	780
Operating Temperature	-47°C ~ +85°C
Certification	KC 전镜증

Cat.M1 우리넷 (LGA)_WM-N400MS

Cat.M1 우리넷 (LGA)_WM-N400MSE

TYPE	Socket
Spe(mm)	4L8 x 30 x 4.7
Bands	176.81, 65
Data Speed	DL 3004bps / Ut. 5794bps
	HSC
	USB 2.0
Interface	UART
Intertice	USM
	585
	GNO
	Voice
	695
Other Features	FOTA
	DAS
	ThingPlug
Open SDK	Linux.
Power Consumption	190
Operating Temperature	-25°C = +60°C
Certification	KC 0189

Developer

LoRa / Cat.M1 전용 모듈 무상 대여

7. UDP 소켓 실험 진행

```
1) 코드
가) Server code
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#define MAXLINE
#define BLOCK
                  255
#define FILENAME "buf.txt"
int main(int argc, char *argv[]) {
   struct sockaddr in servaddr, cliaddr;
   int s, nbyte, addrlen = sizeof(struct sockaddr);
   char buf[MAXLINE+1];
      FILE *stream; //파일 입출력
   //파일명 포트번호
   if(argc != 2) {
      printf("usage: %s port\n", argv[0]);
      exit(0);
   }
   //소켓 생성
   if ((s = socket(PF INET, SOCK DGRAM, 0)) < 0) {
      perror("socket fail");
      exit(0);
   // 서버 구조
   memset(&cliaddr, 0, addrlen); //bzero((char *)&cliaddr, addrlen);
   memset(&servaddr, 0, addrlen); //bzero((char *)&servaddr,addrlen);
   servaddr.sin family = AF INET;
   servaddr.sin addr.s addr = htonl(INADDR ANY);
   servaddr.sin_port = htons(atoi(argv[1])); //argv[1]에서 port 번호 가지고 옴
   // 서버 로컬 주소로 bind()
   if(bind(s, (struct sockaddr *)&servaddr, addrlen) < 0) {</pre>
      perror("bind fail");
      exit(0);
   //저장용 파일 생성
      if((stream = fopen(FILENAME, "w")) == 0) {
      printf("Faile open error\n");
      exit(1);
   while (1)
   {
```

```
puts("Server : waiting request.");
       //전송 받은 메시지 nbyte 저장
      nbyte = recvfrom(s, buf, MAXLINE , 0, (struct sockaddr *)&cliaddr,
&addrlen);
      if(nbyte< 0) {
          perror("recvfrom fail");
          exit(1);
      buf[nbyte] = 0; // PNP 값에 0
      if(!strncmp(buf, "end of file", 10)) { //마지막 메시지가 end of file 이면
종료
          printf("file close");
          fclose(stream); //stream 닫기
          break; //while 문 빠져나가기
       } else {
            printf("%d byte recv: %s\n",nbyte, buf);
          fputs(buf, stream); //파일로 저장
      puts("sendto complete");
   }
      if((stream = fopen(FILENAME, "r")) == NULL) {
            printf("Read File Error");
            exit(1);
      }
      while(!feof(stream)) {
            buf[0] = ' \setminus 0';
             fgets(buf, BLOCK, stream);
            printf("Send : %s\n", buf);
      //메시지 전송
            if(sendto(s, buf, strlen(buf), 0, (struct sockaddr *)&cliaddr,
addrlen) < 0) {
                   perror("sendto fail");
                   exit(0);
             }
      fclose(stream);
   close(s);
      return 0;
}
나) Application code
package com.example.leesujin.udp socket;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;
//UDP 관련
```

```
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
public class MainActivity extends AppCompatActivity {
   //서버주소
   //public static final String sIP = "192.168.0.124";
   //사용할 통신 포트
   public static final int sPORT = 8088;
   //데이터 보낼 클랙스
   public SendData mSendData = null;
   //화면 표시용 TextView
   public TextView txtView = null;
   public TextView txtView2 = null;
   public int i=0;
   //보낼 문자열
   public String s msg = "(문자열 입력)";
   @Override
   protected void onCreate(Bundle savedInstanceState) {
      super.onCreate(savedInstanceState);
      setContentView(R.layout.activity main);
      //btnHello 버튼을 layout 의 버튼과 연결
      Button btnHello = (Button) findViewById(R.id.Hello);
      //txtView 를 layout 의 TextView 와 연결
      txtView = (TextView) findViewById(R.id.textView);
      txtView2 = (TextView) findViewById(R.id.textView2);
      //버튼이 눌렸다면
      btnHello.setOnClickListener(new View.OnClickListener() {
         @Override
         public void onClick(View v) {
             //SendData 클래스 생성
             mSendData = new SendData();
             //보내기 시작
             mSendData.start();
             i++;
         }
      });
   }
   //데이터 보내는 쓰레드 클래스
   class SendData extends Thread{
      public void run(){
         try{
             //UDP 통신용 소켓 생성
```

```
DatagramSocket socket = new DatagramSocket();
             //서버 주소 변수
             InetAddress serverAddr =
InetAddress.getByName("166.104.185.64");
             Log.i("information", serverAddr.toString());
             //보낼 데이터 생성
             byte[] buf = (s msg).getBytes();
             Log.i("process", buf.toString());
             //패킷으로 변경
             Log.i("process", "packet");
             DatagramPacket packet = new DatagramPacket(buf, buf.length,
serverAddr, sPORT);
             //패킷 전송!
             Log.i("process", "send");
             socket.send(packet);
             //데이터 수신 대기
             Log.i("process", "waiting");
             socket.receive(packet);
             //데이터 수신되었다면 문자열로 변환
             String msg = new String(packet.getData());
             //txtView에 표시
             Log.i("result", msg);
             txtView2.setText(i+" time try error rate : "+(100-
(msg.length()/s msg.length()*100))+"%");
             txtView.setText(msg);
          }catch (Exception e) {
         }
      }
   }
}
```

8. HARQ 에 따른 error rate 측정

LTE 실험

HARQ에 따른 Error rate 측정

ICT융합학부 이수진

실험 결과 · HARQ값에 따른 음악이 끊기는 시간에 따른 error rate

HARQ	4	3	2	1
90	0	13.05	41.6	50.51
80	0	8.3	8.35	60
70	0	5.51	5	28.98
60	0	3.43	8.4	14.65

실험

목적

• LTE의 재전송의 횟수가 감소하게 되면 error rate이 증가함을 알 수 있도록 함

환경

- VLC Media Player 활용
- RTSP 서버를 통해 음악 스트리밍 (rtsp://166.104.185.64:8088/pi)
- Attenuator 값(간섭하는 정도)을 60, 70, 80, 90으로 고정시킨 후, HARQ값(4,3,2,1)에 따른 error rate 측정
- 음악 : '비투비 그리워하다'의 앞에 1분을 재생

실험 결과 · HARQ값에 따른 음악이 끊기는 시간 · HARQ값이 낮을 수록 즉, 재전송 횟수가 적을수록 음악이 끊기는 시 간이 긴 것을 알 수 있다.

HARQ ATT	1	2	3	4
90	00:00	0:07:83	0:25:21	0:30:31
80	00:00	0:05:00	0:05:01	0:36:34
70	00:00	0:03:31	0:03:00	0:17:39
60	00:00	0:02:06	0:05:04	0:08:79

결론

- 실험 환경으로 인해 attenuator 값을 고정한 것과는 달리 RSRP 값이 지속적으로 변하여 attenuator 가 80일 때 90보다 error rate이 큰 경우 발생하였다.
- 하지만, 재전송 횟수를 줄일 수록 error rate이 증가한다는 것을 확인할 수 있다.