Ten de dominio:
$$(x_1, y_1)$$
, ----, (x_n, y_n)

$$\hat{p}_{i} \propto \epsilon R^{d}$$
 et $y \in \{0,1\}^{3}$.

$$\frac{1}{Y_{=1}} \frac{1}{X_{=x}}$$

$$\mathbb{P}\left[Y=1 \mid X=X\right] =$$

$$\Re \left[Y = 1 \mid X = X \right] = \Im \left[\frac{9}{1 + e^3} \right]$$

$$\Re \left[Y = 1 \mid X = X \right] = \frac{e^3}{1 + e^3}$$

On peut voir
$$2 = (1, 2, ---, 2p)^T$$
.
et moler $\beta_0 + \beta_1 + \beta_2 + \cdots + \beta_p$
 $= \beta^T \gamma$ On $\beta =$

ser
$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_7 x_7$$

 $= \beta^T x$ on $\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$

n partécine danc:

$$P(Y=y \mid X=x) = g(p^Tx) \times (1-g(p^Tx))$$

$$\left(\chi = x\right) = g\left(\beta^{T}x\right) \times \left(1 - g\left(\beta^{T}x\right)\right)$$

donc, 4i on moti
$$2i = (2, 2i_1, ---, 2i_p)$$
le perte du ium individu du fau de donnée est donnée per $l(y_i, g(p^Tx_i)) = -y_i \ln (g(p^Tx_i)) - (1-y_i) \ln (1-g(p^Tx_i))$

pour un jeu de données de taille on je la la perte est données par $L(\beta) = \frac{1}{n} \sum_{i=1}^{n} l(y_i, g(\beta^T x_i))$.

pour en jeu de dennes sur man de dennes sur la son de la son faite, calculer
$$\beta = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n}$$

$$\beta \in \mathbb{R}^{p+1}$$

données
$$L(\beta) =$$

On m calcular

$$\nabla_{\beta} L(\beta) = \begin{cases} \frac{\partial}{\partial \beta} L(\beta) \end{cases}$$
 be gradient

 $\frac{\partial}{\partial \beta} L(\beta) = \frac{\partial}{\partial \beta} L(\beta)$
 $\frac{\partial}{\partial \beta} L(\beta) = \frac{\partial}{\partial \beta} L(\beta)$
 $\frac{\partial}{\partial \beta} L(\beta) = \frac{\partial}{\partial \beta} L(\beta)$
 $\frac{\partial}{\partial \beta} L(\beta) = \frac{\partial}{\partial \beta} L(\beta)$

$$\frac{\partial}{\partial p_{j}} L(p) = \frac{\partial}{\partial p_{j}} \left(\frac{1}{n} \sum_{i=2}^{n} L(y_{i}, g(p^{T}x_{i})) \right)$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial p_{j}} \left(y_{i}, \ln(g(p^{T}x_{i})) + (1 - y_{i}) \ln(1 - g(p^{T}x_{i})) \right)$$

 $\frac{\partial}{\partial g_{i}} \left(y_{i} \ln \left(g \left(\beta^{T} x_{i} \right) \right) + \left(1 - y_{i} \right) \ln \left(1 - g \left(\beta^{T} x_{i} \right) \right) \right)$

$$\frac{dnu}{\partial \beta} : \frac{\partial}{\partial \beta} \left(g(\beta^T x_i) \right) = g(\beta^T x_i) \left(1 - g(\beta^T x_i) \right) \times ij$$

$$\frac{\partial n}{\partial \beta} \left(y_i \ln \left(g(\beta^T x_i) \right) + \left(1 - y_i \right) \ln \left(1 - g(\beta^T x_i) \right) \right)$$

$$= \left(\frac{y_i}{g(\beta^T x_i)} - \frac{\left(1 - y_i \right)}{1 - g(\beta^T x_i)} \right) \frac{\partial}{\partial \beta} \left(g(\beta^T x_i) \right)$$

 $= \frac{g(\beta^{T}z_{i})}{g(\beta^{T}z_{i})} \frac{1-g(\beta^{T}z_{i})}{g(\beta^{T}z_{i})} \frac{g(\beta^{T}z_{i})}{g(\beta^{T}z_{i})} \times g(\beta^{T}z_{i}) \frac{1-g(\beta^{T}z_{i})}{g(\beta^{T}z_{i})} \frac{1-g(\beta^{T}z_{i})}{g(\beta^{T}z_{i})}$

on déduit
$$g^{\mu e}$$
:

$$\frac{\partial L(\beta)}{\partial \beta_{i}} = -\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial \beta_{i}} \left(y_{i} \ln (g(\beta_{x_{i}})) + (1-y_{i}) \ln (1-g(\beta_{x_{i}})) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(g(\beta_{x_{i}}) - y_{i} \right) \chi_{ij}$$

Descente du grandient:

 $\beta \leftarrow \beta - \eta \frac{1}{n} \sum_{i=2}^{m} (g(\beta^{T}x_{i}) - y_{i})x_{j}$

 $= (y_i - g(\beta^T x_i)) x_{ij} = -(g(\beta^T x_i) - y_{i}) x_{ij}$