Comparing approaches in modelling 2020 overall mortality by sex and age

Carlo Giovanni Camarda Tim Riffe Enrique Acosta

TAG Working Group I

October 1st, 2021

Data and aim

- Death and exposures by
 - five years age-group: 0-4, 5-9, ..., 85+
 - females and males separately
- 2019 data source (baseline):
 - Mortality and Global Health Estimates (GHE)
 - Data available for all 194 populations
- 2020 data sources:
 - ???
 - Data available for only 60 populations
- Information provided by William et al.
 - Overall excess deaths in 2020 for all populations
 - 8 clusters for all populations, based on external information

AIM

Estimate 2020 mortality by age and sex for pop. with no data

The two approaches

- William's approach:
 - empirical ratio between mortality in 2019 and 2020 for population with both information
 - group of these ratios based on mentioned clusters
 - g creation of a smooth cluster-specific distribution of ratios
 - extract random ratio and apply it to 2019 mortality for population with no information in 2020
- Spin-off (our) approach:
 - \bigcirc for a given population with both information within a cluster k:

$$\eta^{2020}(x) = \eta^{2019}(x) + c + \delta^k(x)$$

- with $\eta(x)$ and $\delta^k(x)$ assumed to be smooth and $\sum \delta^k(x) = 0$
- ② apply cluster-specific age-factor $\delta^k(x)$ to population with no information in 2020
- (uncertainty still to be included)
- Final common step: redistribution of estimated 2020 deaths to match "known" overall excess mortality deaths

Clusters

Clusters

Cluster	pop w/ data	# pop w/ data	# pop w/o data	$\frac{\# \text{ w/o data}}{\# \text{ w/data}}$
1	CYP,DNK,EST,FIN,ISL, JPN,KOR,LUX,NOR	9	4	0.44
2	ALB,AND,BEL,BGR,CZE, ESP,ITA,LTU,MDA,POL,ROU, RUS,SRB,SVN,USA	15	4	0.27
3	BRA,IRQ,ZAF,COL	4	65	16.25
4	AUT,CHE,CHL,FRA,GBR, GEO,HRV,HUN,MNE,NLD, PRT,SVK,SWE,UKR	14	0	0.00
5	CAN,DEU,GRC,LVA,MLT	5	1	0.20
6	CRI,ISR,PRY,TUN	4	51	12.75
7	AUS,IRL,MUS,NZL,URY	5	7	1.40
8	ARM,ECU,MEX,PER	4	2	0.50
Totals		60	134	2.23

Cluster-specific $\delta(x)$

A schematic illustration: model Saturated

Fitted log-mortality from Stratified model

Parameters from Stratified model

Parameters from Common model

Parameters from Common and Saturated model

Actual data illustration 2: Peru (middle-age hump)

Fitted log-mortality and parameters from Saturated model

Actual data illustration 2: Peru (middle-age hump)

Fitted log-mortality and parameters from Saturated model. $\delta(x)$ and c parameters from the Common are plotted along

Actual data illustration 2: Peru (middle-age hump)

 $\delta(x)$ from Saturated model by sex

Sex-specific age-dependent component $e^{\delta(x)}$

Sex age-factor s(x)

