# TASK 3- CUSTOMER CHURN PREDICTION DATASET



# **Objective**

 The objective is to develop a model to predict customer churn. For this I will be using 11 Supervised machine learning algorithms.

### Machine learning models applied

- Logistic Regression
- · Decision Tree
- · K Nearest Neighbors
- Bagging (or Bootstrap aggregating)
- Random Forest
- · Naive Bayes
- Support vector machines (SVMs)
- · Adaptive boosting or AdaBoost
- · Gradient boosting
- XGBoost
- · Voting classifier

#### Dataset source & brief

• The dataset has been sourced from kaggle and it contains details of a bank's customers and the target variable is a binary variable reflecting the fact whether the customer left the bank (closed his account) or he continues to be a customer.

### **Project outline**

- Importing Libraries & Dataset.
- · Data Preprocessing
- Exploratory Data Analysis (EDA)
- · Data splitting into dependent & independent variable
- · Feature scaling
- · Handling imbalance data
- · Splitting Data for Model Training
- · Model Creation, Training and Evaluation
- · Confusion Matrix Analysis
- · Cross validation of selected models
- · Model Training and Tuning

### Import the basic libraries

# In [1]:

```
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

#### Load & Read the dataset

### In [2]:

```
df=pd.read_csv(r"C:\Users\manme\Documents\Priya\Codsoft\3. Churn_Modelling.csv")
df.head()
```

### Out[2]:

|   | RowNumber | CustomerId | Surname  | CreditScore | Geography | Gender | Age | Tenure | Bala  |
|---|-----------|------------|----------|-------------|-----------|--------|-----|--------|-------|
| 0 | 1         | 15634602   | Hargrave | 619         | France    | Female | 42  | 2      |       |
| 1 | 2         | 15647311   | Hill     | 608         | Spain     | Female | 41  | 1      | 8380  |
| 2 | 3         | 15619304   | Onio     | 502         | France    | Female | 42  | 8      | 15966 |
| 3 | 4         | 15701354   | Boni     | 699         | France    | Female | 39  | 1      |       |
| 4 | 5         | 15737888   | Mitchell | 850         | Spain     | Female | 43  | 2      | 12551 |
| 4 |           |            |          |             |           |        |     |        | •     |

#### Basic info about the dataset

```
In [3]:
```

```
df.shape #check shape
```

### Out[3]:

(10000, 14)

Dataset has 100000 rows and 14 columns

# In [4]:

```
df.columns #check column names
```

### Out[4]:

# In [5]:

```
df.duplicated().sum() #check duplicates
```

### Out[5]:

0

· No duplicates present

### In [6]:

```
df.isnull().sum() #check null values
```

### Out[6]:

```
RowNumber
                    0
CustomerId
                    0
Surname
                    0
CreditScore
                    0
Geography
                    0
Gender
                    0
Age
                    0
Tenure
Balance
                    0
NumOfProducts
                    0
HasCrCard
                    0
IsActiveMember
                    0
                    0
EstimatedSalary
Exited
                    0
dtype: int64
```

· No null values present

# In [7]:

```
df.info()
```

| #                                                  | Column          | Non-Null Count | υτype   |  |  |
|----------------------------------------------------|-----------------|----------------|---------|--|--|
|                                                    |                 |                |         |  |  |
| 0                                                  | RowNumber       | 10000 non-null | int64   |  |  |
| 1                                                  | CustomerId      | 10000 non-null | int64   |  |  |
| 2                                                  | Surname         | 10000 non-null | object  |  |  |
| 3                                                  | CreditScore     | 10000 non-null | int64   |  |  |
| 4                                                  | Geography       | 10000 non-null | object  |  |  |
| 5                                                  | Gender          | 10000 non-null | object  |  |  |
| 6                                                  | Age             | 10000 non-null | int64   |  |  |
| 7                                                  | Tenure          | 10000 non-null | int64   |  |  |
| 8                                                  | Balance         | 10000 non-null | float64 |  |  |
| 9                                                  | NumOfProducts   | 10000 non-null | int64   |  |  |
| 10                                                 | HasCrCard       | 10000 non-null | int64   |  |  |
| 11                                                 | IsActiveMember  | 10000 non-null | int64   |  |  |
| 12                                                 | EstimatedSalary | 10000 non-null | float64 |  |  |
| 13                                                 | Exited          | 10000 non-null | int64   |  |  |
| <pre>dtypes: float64(2), int64(9), object(3)</pre> |                 |                |         |  |  |
|                                                    |                 |                |         |  |  |

• All are numerical columns except Surname, Geography & Gender

# In [8]:

memory usage: 1.1+ MB

df.describe().T.style.background\_gradient(cmap='Blues') #Statistical Analysis on Numer

### Out[8]:

|                 | count        | mean            | std          | min             |             |
|-----------------|--------------|-----------------|--------------|-----------------|-------------|
| RowNumber       | 10000.000000 | 5000.500000     | 2886.895680  | 1.000000        | 2500.75     |
| CustomerId      | 10000.000000 | 15690940.569400 | 71936.186123 | 15565701.000000 | 15628528.25 |
| CreditScore     | 10000.000000 | 650.528800      | 96.653299    | 350.000000      | 584.00      |
| Age             | 10000.000000 | 38.921800       | 10.487806    | 18.000000       | 32.00       |
| Tenure          | 10000.000000 | 5.012800        | 2.892174     | 0.000000        | 3.00        |
| Balance         | 10000.000000 | 76485.889288    | 62397.405202 | 0.000000        | 0.00        |
| NumOfProducts   | 10000.000000 | 1.530200        | 0.581654     | 1.000000        | 1.00        |
| HasCrCard       | 10000.000000 | 0.705500        | 0.455840     | 0.000000        | 0.00        |
| IsActiveMember  | 10000.000000 | 0.515100        | 0.499797     | 0.000000        | 0.00        |
| EstimatedSalary | 10000.000000 | 100090.239881   | 57510.492818 | 11.580000       | 51002.11    |
| Exited          | 10000.000000 | 0.203700        | 0.402769     | 0.000000        | 0.00        |
| 4               |              |                 |              |                 | •           |

### In [9]:

```
df.describe(include='object').T # Analysis on Categorical Columns
```

### Out[9]:

|           | count | unique | top    | freq |
|-----------|-------|--------|--------|------|
| Surname   | 10000 | 2932   | Smith  | 32   |
| Geography | 10000 | 3      | France | 5014 |
| Gender    | 10000 | 2      | Male   | 5457 |

# **Dropping non significant variables**

# In [10]:

```
df.drop(['RowNumber','CustomerId','Surname'],axis=1, inplace=True)
```

# In [11]:

```
df.shape
```

### Out[11]:

(10000, 11)

# Segregation of Numerical and Categorical Variables/Columns

# In [12]:

```
categorical_col = df.select_dtypes(include = ['object']).columns
numerical_col = df.select_dtypes(exclude = ['object']).columns
```

# **Checking for Outliers**

### In [13]:

```
def boxplots(col):
    plt.figure(figsize=(5,4))
    sns.boxplot(df,x=col,palette='husl')
    plt.show()

for i in list(df.select_dtypes(exclude=['object']).columns)[0:]:
    boxplots(i)
```



### **Exploratory Data Analysis**

### In [14]:

```
from dataprep.eda import create_report
report = create_report(df, title='Data Report')
report
```

0%| | 0/1519 [00:00<...

### Out[14]:

# Data Report

**Data Report Overview** 

Variables ≡

<u>CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard</u>

IsActiveMember EstimatedSalary Exited

Interactions Correlations Missing Values

# **Overview**

### **Dataset Statistics**

Number of Variables 11

Number of Rows 10000

# In [15]:

# Exited variable distribution



# In [16]:

```
plt.figure(figsize=(8,6))
sns.countplot(x='Exited',data=df, palette="husl")
plt.xlabel("Count of each Exited class")
plt.ylabel("Exited class")
plt.title('Exited variable distribution')
plt.show()
```



# In [17]:

```
sns.histplot(x='Age',hue='Exited', data=df, palette='husl')
plt.title('Age distribution')
plt.show()
```



# In [18]:

```
sns.countplot(x='Tenure',hue='Exited', data=df, palette='husl')
plt.title('Tenure vs Exited')
plt.show()
```



# In [83]:

```
plt.figure(figsize=(8,6))
sns.boxplot(x='Gender',y='Tenure',hue='Exited',data=df ,palette='husl')
plt.title('Exited vs Gender & Age')
plt.show()
```



### In [84]:

```
sns.scatterplot(data=df, x='Tenure', y='Age', hue = 'Exited', palette= 'viridis')
plt.title('Exited vs Age & Tenure')
plt.show()
```



# In [88]:

```
plt.figure(figsize=(8,6))
sns.swarmplot(data=df, x='Gender', y='Age', hue = 'Exited', palette='husl')
plt.title('Exited vs Gender')
plt.show()
```





# In [93]:

```
sns.countplot(x='Geography',hue='Exited', data=df,palette='husl')
plt.title('Exited geographically')
plt.show()
```



# In [104]:

```
sns.countplot(x='NumOfProducts',hue='Exited', data=df,palette='husl')
plt.title('Number of bank products')
plt.show()
```



# In [108]:

```
sns.barplot(y='HasCrCard',x='IsActiveMember',hue='Exited',data=df, palette='husl')
plt.title('Active membership & Credit Card access')
plt.show()
```





# In [111]:

```
plt.figure(figsize=[8,4])
sns.histplot(df.EstimatedSalary, color='r', bins=30, kde=True)
plt.title('Estimated Salary Distribution')
plt.show()
```



# In [115]:

```
plt.figure(figsize=[8,4])
sns.histplot(df.Balance, color='r', bins=30, kde=True)
plt.title('Balance Distribution')
plt.show()
```



# In [116]:

```
sns.scatterplot(data=df, x='EstimatedSalary', y='Balance', hue = 'Exited', palette= 'hus
plt.title('Exited vs Salary & Balance')
plt.show()
```



# In [98]:

```
df.hist(bins=10, figsize=(10,8),color='pink', edgecolor='red')
plt.show()
```



# In [121]:

```
sns.pairplot(data=df, hue='Exited')
plt.title('Pair Plot')
plt.show()
```



### In [120]:

```
mask = np.zeros_like(df.corr(), dtype=float)
mask[np.triu_indices_from(mask)]=True
plt.figure(figsize=(8,6))
sns.heatmap(df.corr(),annot=True,cmap='viridis', annot_kws={'size':10}, mask=mask)
plt.title('Correlation matrix')
plt.show()
```



# **Encoding**

• One hot encoder for Geography variable to convert it from categorical variable to numerical variable.

### In [15]:

```
df['Geography'].value_counts()
```

# Out[15]:

France 5014 Germany 2509 Spain 2477

Name: Geography, dtype: int64

```
In [16]:
```

```
df=pd.get_dummies(df,columns=['Geography'])
```

### In [17]:

```
df.head(2)
```

### Out[17]:

|   | CreditScore | Gender | Age | Tenure | Balance  | NumOfProducts | HasCrCard | IsActiveMember |
|---|-------------|--------|-----|--------|----------|---------------|-----------|----------------|
| 0 | 619         | Female | 42  | 2      | 0.00     | 1             | 1         | 1              |
| 1 | 608         | Female | 41  | 1      | 83807.86 | 1             | 0         | 1              |
| 4 |             |        |     |        |          |               |           | <b>&gt;</b>    |

Drop dummy variable Geography\_France

### In [18]:

```
df=df.drop(['Geography_France'],axis=1)
```

• Label encoder for Gender variable to convert it from categorical variable to numerical variable.

### In [19]:

```
df['Gender'].value_counts()

Out[19]:

Male    5457
Female    4543
Name: Gender, dtype: int64
```

### In [20]:

```
df['Gender']=df['Gender'].astype('category')
df['Gender']=df['Gender'].cat.codes
```

# Split the data into Independent (x) & Dependent( y) variables

```
In [21]:
```

```
x= df.drop(['Exited'],axis=1)
y= df[['Exited']]
```

### In [22]:

```
x.head(2)
```

### Out[22]:

|   | CreditScore | Gender | Age | Tenure | Balance  | NumOfProducts | HasCrCard | IsActiveMember |
|---|-------------|--------|-----|--------|----------|---------------|-----------|----------------|
| 0 | 619         | 0      | 42  | 2      | 0.00     | 1             | 1         | 1              |
| 1 | 608         | 0      | 41  | 1      | 83807.86 | 1             | 0         | 1              |
| 4 |             |        |     |        |          |               |           | <b>•</b>       |

# In [23]:

```
y.head(2)
```

# Out[23]:

|   | Exited |
|---|--------|
| 0 | 1      |
| 1 | 0      |

### **Feature Scaling**

# In [25]:

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x1=sc.fit_transform(x)
pd.DataFrame(x1).head()
```

### Out[25]:

|   | 0         | 1         | 2        | 3         | 4         | 5         | 6         | 7         |       |
|---|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-------|
| 0 | -0.326221 | -1.095988 | 0.293517 | -1.041760 | -1.225848 | -0.911583 | 0.646092  | 0.970243  | 0.02  |
| 1 | -0.440036 | -1.095988 | 0.198164 | -1.387538 | 0.117350  | -0.911583 | -1.547768 | 0.970243  | 0.21  |
| 2 | -1.536794 | -1.095988 | 0.293517 | 1.032908  | 1.333053  | 2.527057  | 0.646092  | -1.030670 | 0.24  |
| 3 | 0.501521  | -1.095988 | 0.007457 | -1.387538 | -1.225848 | 0.807737  | -1.547768 | -1.030670 | -0.10 |
| 4 | 2.063884  | -1.095988 | 0.388871 | -1.041760 | 0.785728  | -0.911583 | 0.646092  | 0.970243  | -0.36 |
| 4 |           |           |          |           |           |           |           |           | •     |

# **Check Target variable data balance**

# In [26]:

```
y.value_counts() # target variable data is imbalance
```

# Out[26]:

### Exited

0 7963 1 2037 dtype: int64

#### Handle imbalance data

# In [27]:

```
from imblearn.over_sampling import RandomOverSampler
ros=RandomOverSampler()
x_sam,y_sam=ros.fit_resample(x1,y)
print(x_sam.shape,y_sam.shape,y.shape)
```

```
(15926, 11) (15926, 1) (10000, 1)
```

# In [28]:

```
y_sam.value_counts()
```

### Out[28]:

### Exited

0 7963
1 7963
dtype: int64

#### Split the data into train and test data

### In [29]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x_sam,y_sam,test_size=0.25,random_state=1
```

### **Model Building**

# Model No. 1 - Logistic Regression

• It is a supervised machine learning algorithm mainly used for classification tasks where the goal is to predict the probability that an instance of belonging to a given class.

### In [31]:

```
# Model building
from sklearn.linear_model import LogisticRegression
logit = LogisticRegression(random_state=100)
log=logit.fit(x_train, y_train)
# Predict
y_pred_train_log = logit.predict(x_train)
y_pred_test_log = logit.predict(x_test)
# Evaluate
from sklearn.metrics import confusion_matrix,classification_report, accuracy_score
accuracy_log_test=accuracy_score(y_test,y_pred_test_log)
accuracy_log_train=accuracy_score(y_train,y_pred_train_log)
print('Logistic regression Train accuracy:', accuracy_score(y_train, y_pred_train_log))
print('-----'*10)
print('Logistic regression Test accuracy:', accuracy_score(y_test, y_pred_test_log))
```

### **Confusion matrix-Logistic Regression**

### In [32]:



### Model No. 2 - Decision Tree

#### In [33]:

```
# Model building
from sklearn.tree import DecisionTreeClassifier,plot_tree
dtree= DecisionTreeClassifier()
dtree.fit(x_train,y_train)
#Predict
y_pred_train_dtree=dtree.predict(x_train)
y_pred_test_dtree=dtree.predict(x_test)
#Evaluate
accuracy_dtree_test=accuracy_score(y_test,y_pred_test_dtree)
accuracy_dtree_train=accuracy_score(y_train,y_pred_train_dtree)
print('Decision Tree - Train accuracy:', accuracy_score(y_train, y_pred_train_dtree))
print('----'*10)
print('Decision Tree - Test accuracy:', accuracy_score(y_test, y_pred_test_dtree))
Decision Tree - Train accuracy: 1.0
-----
Decision Tree - Test accuracy: 0.9138623807132095
```

### In [34]:



### Model No. 3 - K Nearest Neighbors (KNN)

 The k-nearest neighbors algorithm, also known as KNN or k-NN, is a non-parametric, supervised learning classifier, which uses proximity to make classifications or predictions about the grouping of an individual data point.

# In [35]:

```
# Model building with K point as 3
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(x_train, y_train)
# Predict
y_pred_train_knn = knn.predict(x_train)
y_pred_test_knn = knn.predict(x_test)
#Evaluate
accuracy_knn_test=accuracy_score(y_test,y_pred_test_knn)
accuracy_knn_train=accuracy_score(y_train,y_pred_train_knn)
print('K nearest neighbor - Train accuracy:', accuracy_score(y_train, y_pred_test_knn))
print('-----'*10)
print('K nearest neighbor - Test accuracy:', accuracy_score(y_test, y_pred_test_knn))
K nearest neighbor - Train accuracy: 0.9260716677829873
```

```
K nearest neighbor - Train accuracy: 0.9260716677829873
------
K nearest neighbor - Test accuracy: 0.8515821195379206
```

### In [36]:



### Model No. 4 - Bagging model

 Bagging (or Bootstrap aggregating) is a type of ensemble learning in which multiple base models are trained independently in parallel on different subsets of the training data.

### In [37]:

```
# Model building
from sklearn.ensemble import BaggingClassifier
bagging=BaggingClassifier()
bagging.fit(x_train,y_train)# Predict
#Predict
y_pred_train_bag=bagging.predict(x_train)
y_pred_test_bag=bagging.predict(x_test)
# Evaluate
accuracy_bag_test=accuracy_score(y_test,y_pred_test_bag)
accuracy_bag_train=accuracy_score(y_train,y_pred_train_bag)
print('Bagging - Train accuracy:', accuracy_score(y_train, y_pred_train_bag))
print('-----'*10)
print('Bagging - Test accuracy:', accuracy_score(y_test, y_pred_test_bag))
```

```
Bagging - Train accuracy: 0.9960649698593436
-----Bagging - Test accuracy: 0.9316926167754898
```

### In [38]:



### Model No. 5 - Random Forest

• A random forest is a machine learning technique that utilizes ensemble learning - which is a technique that combines many classifiers to provide solutions to complex problems. It establishes the outcome based on the predictions of the decision trees and employs the bagging method to generate the required prediction. It eradicates the biggest limitation of decision tree - overfitting of dataset and increases precision. The main difference between the decision tree algorithm and the random forest algorithm is that establishing root nodes and segregating nodes is done randomly in the latter

# In [33]:

```
# Model building
from sklearn.ensemble import RandomForestClassifier
rf=RandomForestClassifier(n_estimators=200,oob_score=False)
rf.fit(x_train,y_train)
# Predict
y_pred_train_rf=rf.predict(x_train)
y_pred_test_rf=rf.predict(x_test)
# Evaluate
accuracy_rf_test=accuracy_score(y_test,y_pred_test_rf)
accuracy_rf_train=accuracy_score(y_train,y_pred_train_rf)
print('Random Forest - Train accuracy:', accuracy_score(y_train, y_pred_train_rf))
print('-----'*10)
print('Random Forest - Test accuracy:', accuracy_score(y_test, y_pred_test_rf))
```

### In [34]:



#### Model No. 6 - Naives Bayes

• The Naive Bayes algorithm is comprised of Naive and Bayes. It is called Naive because it assumes that the occurrence of a certain feature is independent of the occurrence of other features and it is called Bayes because it depends on the principle of Bayes' Theorem.

### In [41]:

```
# Model building
from sklearn.naive_bayes import GaussianNB
nb = GaussianNB()
nb.fit(x_train, y_train)
# Predict the model
y_pred_train_nb = nb.predict(x_train)
y_pred_test_nb = nb.predict(x_test)
# Evaluate
accuracy_nb_test=accuracy_score(y_test,y_pred_test_nb)
accuracy_nb_train=accuracy_score(y_train,y_pred_train_nb)
print('Naive Bayes -Train accuracy:', accuracy_score(y_train, y_pred_train_nb))
print('-----'*10)
print('Naive Bayes -Test accuracy:', accuracy_score(y_test, y_pred_test_nb))
```

```
Naive Bayes -Train accuracy: 0.7145847287340924
------
Naive Bayes -Test accuracy: 0.7119537920642893
```

### In [42]:



### Model No. 7 - Support Vector Machine Model

Support vector machines (SVMs) are powerful yet flexible supervised machine learning algorithms
which are used both for classification and regression. They are extremely popular because of their ability
to handle multiple continuous and categorical variables. The objective of the support vector machine
algorithm is to find a maximum marginal hyperplane.

### In [43]:

```
# Radial Basis Function Kernel (RBF) - (Defaut SVM) Model building
from sklearn.svm import SVC
svm_rbf = SVC(kernel='rbf')
svm_rbf.fit(x_train, y_train)
#Predict
y_pred_train_rbf = svm_rbf.predict(x_train)
y_pred_test_rbf = svm_rbf.predict(x_test)
#Evaluate
accuracy_rbf_test=accuracy_score(y_test,y_pred_test_rbf)
accuracy_rbf_train=accuracy_score(y_train,y_pred_train_rbf)
print('Rbf - SVM - Train accuracy:', accuracy_score(y_train, y_pred_test_rbf))
print('-----'*10)
print('Rbf - SVM - Test accuracy:', accuracy_score(y_test, y_pred_test_rbf))
```

### In [47]:



### Model No. 8 - Adaptive boosting or AdaBoost

Yoav Freund and Robert Schapire are credited with the creation of the AdaBoost algorithm. This
method operates iteratively, identifying misclassified data points and adjusting their weights to minimize
the training error. The model continues optimize in a sequential fashion until it yields the strongest
predictor.

# In [48]:

```
# Model building
from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier()
ad=ada.fit(x_train, y_train)
# Predict
y_pred_ad = ada.predict(x_test)
y_pred_ad_train = ada.predict(x_train)
# Evaluate
from sklearn.metrics import confusion_matrix,classification_report, accuracy_score
accuracy_ad_test=accuracy_score(y_test,y_pred_ad)
accuracy_ad_train=accuracy_score(y_train,y_pred_ad_train)
print('AdaBoost Train accuracy:', accuracy_score(y_train, y_pred_ad_train))
print('-----'*5)
print('AdaBoost Test accuracy:', accuracy_score(y_test, y_pred_ad))
```

### In [49]:



# Model No. 9 - Gradient Boosting

Jerome H. Friedman developed gradient boosting, which works by sequentially adding predictors to an
ensemble with each one. However, instead of changing weights of data points like AdaBoost, the
gradient boosting trains on the residual errors of the previous predictor. The name, gradient boosting, is
used since it combines the gradient descent algorithm and boosting method.

### In [50]:

```
# Model building
from sklearn.ensemble import GradientBoostingClassifier
gdb = GradientBoostingClassifier()
gd=gdb.fit(x_train, y_train)
# Predict
y_pred_gd = gdb.predict(x_test)
y_pred_gd_train = gdb.predict(x_train)
# Evaluate
accuracy_gd_test=accuracy_score(y_test,y_pred_gd)
accuracy_gd_train=accuracy_score(y_train,y_pred_gd_train)
print('GradientBoosting Train accuracy:', accuracy_score(y_train, y_pred_gd_train))
print('-----'*5)
print('GradientBoosting Test accuracy:', accuracy_score(y_test, y_pred_gd))
```

```
GradientBoosting Train accuracy: 0.8132953784326858
------GradientBoosting Test accuracy: 0.7980914113510799
```

# In [51]:



### Model No. 10 - Extreme Gradient Boosting or XGBoost¶

• XGBoost is an implementation of gradient boosting that's designed for computational speed and scale. It leverages multiple cores on the CPU, allowing for learning to occur in parallel during training

### In [52]:

```
# Model building
from xgboost import XGBClassifier
xgb = XGBClassifier()
xg=xgb.fit(x_train, y_train)
# Predict
y_pred_xg = xgb.predict(x_test)
y_pred_xg_train = xgb.predict(x_train)
# Evaluate
accuracy_xg_test=accuracy_score(y_test,y_pred_xg)
accuracy_xg_train=accuracy_score(y_train,y_pred_xg_train)
print('XGBoost Train accuracy:', accuracy_score(y_train, y_pred_xg_train))
print('-----'*5)
print('XGBoost Test accuracy:', accuracy_score(y_test, y_pred_xg))
```

### In [53]:



### Model No. 11 Voting ensemble¶

• Voting is an ensemble method that combines the performances of multiple models to make predictions.

#### In [54]:

Voting ensemble train accuracy: 0.9120897521768252

Voting ensemble train accuracy: 0.8681567051732798

# In [55]:



### Combining all models in Tabular format for better understanding

### In [56]:

# In [57]:

|    | Model name        | Train Accuracy | Test Accuracy |
|----|-------------------|----------------|---------------|
| 0  | Logistic          | 0.703784       | 0.694626      |
| 1  | Decision_tree     | 1.000000       | 0.913862      |
| 2  | KNN               | 0.926072       | 0.851582      |
| 3  | Bagging           | 0.996065       | 0.931693      |
| 4  | Random_forest     | 1.000000       | 0.948518      |
| 5  | Naive_bayes       | 0.714585       | 0.711954      |
| 6  | SVM               | 0.811956       | 0.795831      |
| 7  | Adaboost          | 0.778048       | 0.769965      |
| 8  | GradientBoosting  | 0.813295       | 0.798091      |
| 9  | XGboost           | 0.960733       | 0.901557      |
| 10 | Voting_Classifier | 0.912090       | 0.868157      |

### **Accuracy visualization**

### In [58]:

```
sns.barplot(x='Model name',y='Train Accuracy',data=Combined_accuracy)
plt.xticks(rotation=45)
plt.title('Train accuracy- Model wise')
plt.show()
```



### In [59]:

```
sns.barplot(x='Model name',y='Test Accuracy',data=Combined_accuracy)
plt.xticks(rotation=45)
plt.title('Test accuracy- Model wise')
plt.show()
```



# Cross validation of Top 3 highest accuracy score

- · Decision Tree Classifier
- · Bagging Classifier
- · Random Forest Classifier

### In [36]:

from sklearn.model\_selection import cross\_val\_score

### In [61]:

```
train_accuracy_dtree = cross_val_score(dtree,x_train, y_train, cv=10)
crossval_train_dtree=train_accuracy_dtree.mean()
test_accuracy_dtree = cross_val_score(dtree,x_test, y_test, cv=10)
crossval_test_dtree=test_accuracy_dtree.mean()
print('Decision Tree Train accuracy after Cross validation:', crossval_train_dtree)
print('-----'*10)
print('Decision Tree Test accuracy after Cross validation:', crossval_test_dtree)
```

Decision Tree Train accuracy after Cross validation: 0.8981901838340937
-----Decision Tree Test accuracy after Cross validation: 0.7980938527222579

### In [62]:

```
train_accuracy_bag = cross_val_score(bagging,x_train, y_train, cv=10)
crossval_train_bag=train_accuracy_bag.mean()
test_accuracy_bag = cross_val_score(bagging,x_test, y_test, cv=10)
crossval_test_bag=test_accuracy_bag.mean()
print('Bagging after Cross validation Train accuracy:', crossval_train_bag)
print('-----'*5)
print('Bagging after Cross validation Test accuracy:', crossval_test_bag)
```

```
Bagging after Cross validation Train accuracy: 0.9232237197143318
------
-
Bagging after Cross validation Test accuracy: 0.833003362678052
```

### In [37]:

```
train_accuracy_rf = cross_val_score(rf,x_train, y_train, cv=10)
crossval_train_rf=train_accuracy_rf.mean()
test_accuracy_rf = cross_val_score(rf,x_test, y_test, cv=10)
crossval_test_rf=test_accuracy_rf.mean()
print('Random forest after Cross validation Train accuracy:', crossval_train_rf)
print('-----'*10)
print('Random forest after Cross validation Test accuracy:', crossval_test_rf)
```

### Conclusion

- I used various Supervised machine learning models to solve the classification problem performed on 10,000 observations of the churn dataset. The objective was to predict customer churn.
- For Evaluation I used accuracy score & confusion matrix.
- Three highest accuracy models were Random Forest Classifier, Bagging Classifier & Decision Tree Classifier with both Train & Test data accuracy crossing over 90%.
- Random Forest classifier with Train accuracy at 100% and Test accuracy at 94% gives the highest accuracy amongst all the models but it has overfitting issue.
- So after cross validation to deal with overfitting issue of Random Forest model train accuracy is 94% and Test accuracy is 85% making it the best model to solve the classification problem for this dataset.
- Bagging follows next in accuracy with train accuracy of 99% and Test accuracy of 93%.
- Logistic Regression performed the worst with 71% accuracy for Train data & 70% for Test data.

In [ ]: