Final Project 黃詩瑜

我先將 HW10 的 ViT model 套用在 midterm 針對 cifar100 的 code 上試跑,參數使用:

layer	embed dim	patch size	head	epoch
8	64	6	4	100

結果 accuracy 只有 50% 左右,parameter size 則是 1.56M,加大整個 model 至 layer 12 層 / embed dimension 768 後,accuracy 依舊在50~60% 左右。後來想到 ViT 主要是因為有使用 很大的 dataset 做 pretrain,才能達到高的 accuracy。我便將我的 ViT model 設定成 *An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale* 中 ViT-Base 的 標準架構,再 load pretrain data 後,cifar100 的 accuracy 來到了 81%。

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base ViT-Large	12 24	768 1024	3072 4096	12 16	86M 307M
ViT-Large ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

這次評分標準跟 model 的 parameter size 有關,確定 ViT 在 cifar100 能運作成功後,我想試著使用其他 model 看看成果,便以 Image Classification - CIFAR-100 Benchmark 網站中,選擇幾個 accuracy 排名前 20 的 Transformer-based model,紀錄它們的 Top-1 accuracy 和 model size,計算哪些 model 會讓這次的 final 總分數較高。

發現 CCT 這個 model 的 parameter size 都很小,它源自於 *Escaping the Big Data Paradigm with Compact Transformers*,這篇 paper 提出 了ViT-Lite / CVT / CCT 這 3 個model,算是從 ViT 遞進式依序的演化出來的。

Vision Transformer (ViT)

Compact Vision Transformer (CVT)

Compact Convolutional Transformer (CCT)

但 ViT-Lite 在 cifar100 的 accuracy 只有 40~69%,這次作業 accuracy 最少要 70% 才有分,因此主要選擇 CVT 和 CCT 跟 ViT 的 model 做比較如下:

pre-trained on Imag	eNet-21k				
	ViT-S	ViT-B	ViT-B	ViT-L	
cifar100 acc	89.7	91.67	91.97	93.44	
model size(M)	22.2	86	86	307	
score	88.739	25.198	25.547	7.635	
	CvT-7/4	CvT-6/4			
cifar100 acc	73.01	72.25			
model size(M)	3.717	3.19			
score	80.979	70.533			
	CCT 4/3x2	CCT 6/3x1	CCT 6/3x2	CCT-7/3x1	CCT-7/3x2
cifar100 acc	70.46	76.71	74.47	77.05	74.92
model size(M)	0.482	3.168	3.327	3.76	3.853
score	95.436	211.806	134.355	187.500	127.693

CCT: L/PxC where L is the number of transformer layers, P is the patch/convolution size, and C is the number of convolutional layers.

可看到在 CCT 的分數是比較高的,所以我選擇 CCT 為主要拿來調整的 model。針對 transformer layer,雖然 layer 數越多 accuracy 越高,但 model size 也變多了,反而會造成總分數比較低,因此 transformer layers 我選擇使用 6 層。而 convolutional layer 的部分,這邊有一個小插曲是我原本以為 model size 指的是 'Estimated Total Size'

SIZE	CCT 6/3x1	CCT 6/3x2
Total params	3,191,397	3,333,669
Trainable params	3,191,397	3,333,669
Non-trainable params	0	0
Input size (MB)	0.01	0.01
Forward/backward pass size (MB)	69.50	16.25
Params size (MB)	12.17	12.72
Estimated Total Size (MB)	81.69	28.98

而 Estimated Total Size 除了 parameter size 之外會加上 Forward / backward pass size 等,看以下的源代碼得知 Forward / backward pass size 就是所有 layer 的 output 的大小。

```
1
      for layer in summary:
2
3
         total_output += np.prod(summary[layer]["output_shape"])
4
5
         # assume 4 bytes/number (float on cuda).
6
         total_output_size = abs(2. * total_output * 4. /
7
                                  (1024 ** 2.)) # x2 for gradients
8
9
         summary_str += "Forward/backward pass size (MB): %0.2f"
                                     % total_output_size + "\n"
10
11
```

CCT 6/3x1 的 Forward / backward pass size 比 CCT 6/3x2 還要大非常多是因為在前面的 convolution layer,CCT 6/3x1 只有一層,做完經過 flatten 後,之後好幾層 layer 的 output shape 會維持在 [-1, 256, 256]。

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 256, 32, 32]	6,912
Dalli 2		•
ReLU-2	[-1, 256, 32, 32]	0
MaxPool2d-3	[-1, 256, 16, 16]	0
Flatten-4	[-1, 256, 256]	0
Tokenizer-5	[-1, 256, 256]	0

而 CCT 6/3x2 有兩層 conv layer, 做完經過 flatten 後,後面的 layer 的 output shape 維持在 [-1, 64, 256]。

Param #	Output Shape	Layer (type)
1,728	[-1, 64, 32, 32]	Conv2d-1
0	[-1, 64, 32, 32]	ReLU-2
0	[-1, 64, 16, 16]	MaxPool2d-3
147,456	[-1, 256, 16, 16]	Conv2d-4
0	[-1, 256, 16, 16]	ReLU-5
0	[-1, 256, 8, 8]	MaxPool2d-6
0	[-1, 256, 64]	Flatten-7
0	[-1, 64, 256]	Tokenizer-8

所以 CCT 6/3x1 的 Estimated Total Size 比 CCT 6/3x2 還要大非常多。但若是單看 Total params 的話,則是 convolution layer 較少的比較佔優勢,所以我選擇 CCT 6/3x1 為主要 model。

Improve the Accuracy

選定 model 架構後,選擇使用與調整以下的一些方法來去優化 model 與提高 accuracy。

- 1. Dataset Normalization
- 2. Data Augmentation
- 3. Drop Out
- 4. Drop Path
- 5. Learning Rate Scheduling
- 6. Optimizer Selection
- 7. Criterion

Dataset Normalization

Torchvision package 中提供了常見的數據預處理操作,封裝在transforms 中,transforms 涵蓋了大量對 Tensor 和對 PIL Image 的處理操作,其中包含了進行歸一化的 transforms.normalize() 函數。

CLASS torchvision.transforms.Normalize(mean, std, inplace=False)

[SOURCE]

Normalize a tensor image with mean and standard deviation. This transform does not support PIL Image. Given mean:

(mean[1],...,mean[n]) and std: (std[1],..,std[n]) for n channels, this transform will normalize each channel of the input torch.*Tensor i.e., output[channel] = (input[channel] - mean[channel]) / std[channel]

給予 cifar100 計算出的 mean、std , Normalize() 函數可以對每個channel 的圖像進行標準化,均值變為 0,標準差為 1,將數據轉換為標準高斯分佈,優點是可以加快模型的收斂與提高 model 的精準度。

```
1  mean = {
2  'cifar100': (0.5071, 0.4867, 0.4408),
3  }
4  
5  std = {
6  'cifar100': (0.2675, 0.2565, 0.2761),
7  }
```

Data Augmentation

Data Augmentation 是對現有數據的一些修改來增加數據量,可以補足因為數據量太少而對 training dataset 產生 over-fitting 的現象。我使用的修改方法除了之前常見的 RandomHorizontalFlip() 對圖片做水平翻轉之外,還用到了 AutoAugment,就是在各種資料集上搜尋出能夠最佳化其 validation Set 準確率的 Data Augmentation 演算法,AutoAugment 目前只有在 CIFAR-10、SVHN 和 ImageNet 上搜尋出來,所以 CIFAR-100 使用的會是 CIFAR-10的 AutoAugment。

AutoAugment: Learning Augmentation Policies from Data 這篇 paper 中實測 cifar100 不同 model 使用 AutoAugment 的結果,Test set error rates 可以下降 1~3% 左右。

Model	Baseline	Cutout [25]	AutoAugment
Wide-ResNet-28-10 [56]	18.80	18.41	17.09
Shake-Shake (26 2x96d) [58]	17.05	16.00	14.28
PyramidNet+ShakeDrop [59]	13.99	12.19	10.67

下方 Transforms.Compose 中的 CIFAR10Policy() 會隨機選取 CIFAR10 中 25 個 Sub-policies 的其中 1 個來做使用。每一個 Sub-Policies 帶有兩種 Augment 和一個在每個 mini-batch 被使用的 Possibility 以及 Magnitudes。在每次 training step 會選到一種 Sub-Policy,其中的兩個 Augment 各有一個機率去決定是否要被應用在這個 mini-batch 上,如果要使用就會利用當初設定好的 Magnitudes。

全部用到的 Augment 有:

shearX: Apply affine shear on the x-axis

shearY: Apply affine shear on the y-axis

translateX: Apply affine translation on the x-axis translateY: Apply affine translation on the y-axis

rotate: Apply affine rotation on the y-axis

color: Color enhancer instance

posterize: Reduce the number of bits for each color channel

solarize: Invert all pixel values above a threshold

contrast : Adjust image contrast sharpness : Adjust image sharpness brightness : Adjust image brightness

autocontrast: Maximize (normalize) image contrast

equalize: Equalize the image histogram

invert: Invert (negate) the image

Drop Out

使用 torch.nn package 中 的 Dropout ,是個可以避免 model 過於 overfitting 的方法,在訓練時每個 epoch 會以一定的機率丟棄 hidden layer 的神經元,避免神經元之間過度依賴,而測試時不會丟棄神經元。如果在訓練時以機率 p 丟棄神經元,而測試時不會丟棄神經元,會造成測試的結果比訓練大 1/(1-p) 倍,所以在訓練時 outputs 會乘以1/(1-p) 倍。

CLASS torch.nn.Dropout(p=0.5, inplace=False)

[SOURCE]

During training, randomly zeroes some of the elements of the input tensor with probability p using samples from a Bernoulli distribution. Each channel will be zeroed out independently on every forward call.

This has proven to be an effective technique for regularization and preventing the co-adaptation of neurons as described in the paper Improving neural networks by preventing co-adaptation of feature detectors .

Furthermore, the outputs are scaled by a factor of $\frac{1}{1-p}$ during training. This means that during evaluation the module simply computes an identity function.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting 這篇 paper 中對於 cifar100 測試,使用 drop out 對於 error rates 是有優化的。

Method	CIFAR-10	CIFAR-100
Conv Net + max pooling (hand tuned)	15.60	43.48
Conv Net + stochastic pooling (Zeiler and Fergus, 2013)	15.13	42.51
Conv Net + max pooling (Snoek et al., 2012)	14.98	-
Conv Net + max pooling + dropout fully connected layers	14.32	41.26
Conv Net $+$ max pooling $+$ dropout in all layers	12.61	37.20
Conv Net + maxout (Goodfellow et al., 2013)	11.68	38.57

Drop Path

在 CCT 的 transformer encoder 那個 block 使用到了 drop path,類似 drop out ,但它是將網路裡面的分支結構隨機刪除,在訓練過程中,隨機去掉很多層,使用較淺的深度,在測試時再使用完整的網絡,也就是較深的深度,而去掉中間幾層訓練對最終的結果也沒什麼影響,不會影響到收斂性,但可使用較少訓練時間,提高訓練性能。 它源自於 Deep Networks with Stochastic Depth,其中針對 cifar100 使用 ResNet 加上 Drop Path,測試結果可看出 Test error rates 可以下降 3 % 左右。

Learning Rate Scheduling

Learning rate 的設定是使用 cosine annealing 加上前 10% epoch 的 warm up。若設定總 epoch 數為 50,我的 learning rate 會呈現如下圖的趨勢。

這個 learning rate 設定在之前 midterm 中就有想要使用,但那時沒實現出來。

Warm up:

在訓練的一開始, weight 的初始值為隨機生成的,對於訓練資料分布的理解度為零,這樣就容易讓學習一開始就往第一筆資料的分佈方向修正,可能導致針對此筆資料的 overfitting,後續要靠多次訓練才能將資料分布拉回來。而 Gradual warm up 這個方法是一開始用小一點的 learning rate,model 不會更新太多,每個 epoch 增加一些 learning rate ,等達到原先設定 warmup 的 epoch 數量後,warm up 結束,learning rate 變回正常值。優點是能達到更佳的收 斂點,也可以使學習更加穩定。

Cosine annealing:

Cosine learning rate 是 learning rate decay 的一種,現在似乎蠻普遍使用。當訓練經過的 epoch 越多時,通常會越接近 loss 的低點,這時 step 應該要小一點,也就是 learning rate 要 越來越小。而 cosine learning rate 就是利用 cosine 函數來降低 learning rate,隨著 epoch 的增加,cosine 值首先緩慢下降,然後加速下降,再次緩慢下降。這種下降模式能和 learning rate 配合。

Optimizer Selection

Optimizer 是使用 AdamW,雖然不確定結果是否真的比使用 Adam 還要好。Adam 算是一個蠻主流的 adaptive learning rate,有快速收斂與調整參數容易的優點,但有些論文提出說 Adam 在 testing 時的誤差會比 training 差上許多,且有一些收斂的問題。後來在 Fixing Weight Decay Regularization in Adam 這篇 paper 說 Adam optimizer 中實現的 weight decay 的方法似乎是錯誤的,並提出了新的 AdamW 這個 optimizer 來解決,調整了計算 regularization term 的位置,讓 Adam 的 weight decay 與 SGD 這類 optimizer 的行為一致。

```
optimizer = torch.optim.AdamW(model.parameters(), lr=lr,
weight_decay=weight_decay)
```

Criterion

我之前作業針對分類的 dataset 所使用的 criterion 都是 cross entropy,而這次 model 使用的是 label smoothing cross entropy。一般的 cross entropy loss 在訓練過程中 model 會往正確標籤和錯誤標籤差值最大化的方向學習,在訓練數據量較小的情況下,會導致過於擬合。Label smoothing 可以解決這個問題,提升圖像分類的準確率,通過軟化傳統的 one-hot 類型標籤,它讓所有的標籤都能參與到 loss 函數的計算過程中而不只有正確的標籤,有效避免過於overfitting 的現象。

criterion = LabelSmoothingCrossEntropy()

Model Size

======================================	======= [-1, 256	=======		
	L 1, 200	32 321	======	====== 6,912
		, 32, 32]		0,312
MaxPool2d-3	=	, 16, 16]		0
Flatten-4	=	256, 256]		0
Tokenizer-5	•	256, 256]		0
Dropout-6		256, 256]		0
LayerNorm-7		-		
-		256, 256]		512
Linear-8		256, 768]		196,608
Dropout-9		256, 256]		0
Linear-10		256, 256]		65,792
Dropout-11		256, 256]		0
Attention-12		256, 256]		0
Identity-13		256, 256]		0
LayerNorm-14		256, 256]		512
Linear-15		256, 512]		131,584
Dropout-16		256, 512]		0
Linear-17		256, 256]		131,328
Dropout–18	[-1,	256 , 256]		0
Identity-19	[-1,	256, 256]		0
ansformerEncoderLayer-20		[-1, 256,	256]	
LayerNorm-21	[-1,	256, 256]		512
Linear-22	[-1,	256, 768]		196,608
Dropout-23	[-1, 4,	256, 256]		0
Linear-24	[-1,	256, 256]		65,792
Dropout-25	[-1,	256, 256]		0
Attention-26	[-1,	256, 256]		0
DropPath-27	[-1,	256, 256]		0
LayerNorm-28		256, 256]		512
Linear-29		256, 512]		131,584
Dropout-30		256, 512]		. 0
Linear-31		256, 256]		131,328
Dropout-32		256, 256]		0
DropPath-33		256, 256]		0
ansformerEncoderLayer-34	,	[-1, 256,	2561	3
LayerNorm-35	[_1	256, 256]	2501	512
Linear-36	•	256, 768]		196,608
Dropout-37		256, 766] 256, 256]		190,000
Linear-38		256, 256]		65,792
Dropout-39		256, 256]		03,792
·	-	•		
Attention-40		256, 256]		0
DropPath-41		256, 256]		0
LayerNorm-42		256, 256]		512
Linear-43		256, 512]		131,584
Dropout-44		256, 512]		0
Linear-45		256, 256]		131,328
Dropout-46	-	256, 256]		0
DropPath-47	[-1,	256, 256]		0
ansformerEncoderLayer-48	_	[-1, 256,	256]	
LayerNorm-49		256, 256]		512
Linear-50		256, 768]		196,608
Dropout-51	[-1, 4,	256, 256]		0

Linear-52	[-1, 256, 256]	65,792	
Dropout-53	[-1, 256, 256]	0	
Attention-54	[-1, 256, 256]	0	
DropPath-55	[-1, 256, 256]	0	
LayerNorm-56	[-1, 256, 256]	512	
Linear-57	[-1, 256, 512]	131,584	
Dropout-58	[-1, 256, 512]	0	
Linear-59	[-1, 256, 256]	131,328	
Dropout-60	[-1, 256, 256]	0	
DropPath-61	[-1, 256, 256]	0	
TransformerEncoderLayer-62	[-1, 256, 256]		0
LayerNorm-63	[-1, 256, 256]	512	
Linear-64	[-1, 256, 768]	196,608	
Dropout-65	[-1, 4, 256, 256]	0	
Linear-66	[-1, 256, 256]	65,792	
Dropout-67	[-1, 256, 256]	0	
Attention-68	[-1, 256, 256]	0	
DropPath-69	[-1, 256, 256]	0	
LayerNorm-70	[-1, 256, 256]	512	
Linear-71	[-1, 256, 512]	131,584	
Dropout-72	[-1, 256, 512]	0	
Linear-73	[-1, 256, 256]	131,328	
Dropout-74	[-1, 256, 256]	0	
DropPath-75	[-1, 256, 256]	0	
TransformerEncoderLayer-76	[-1, 256, 256]		0
LayerNorm-77	[-1, 256, 256]	512	
Linear-78	[-1, 256, 768]	196,608	
Dropout-79	[-1, 4, 256, 256]	0	
Linear-80	[-1, 256, 256]	65 , 792	
Dropout-81	[-1, 256, 256]	0	
Attention-82	[-1, 256, 256]	0	
DropPath-83	[-1, 256, 256]	0	
LayerNorm-84	[-1, 256, 256]	512	
Linear-85	[-1, 256, 512]	131,584	
Dropout-86	[-1, 256, 512]	0	
Linear-87	[-1, 256, 256]	131,328	
Dropout-88	[-1, 256, 256]	0	
DropPath-89	[-1, 256, 256]	0	
TransformerEncoderLayer-90	[-1, 256, 256]		0
LayerNorm-91	[-1, 256, 256]	512	
Linear-92	[-1, 256, 1]	257	
Linear-93	[-1, 100]	25,700	
TransformerClassifier-94	[-1, 100]		0
		=======	
Total params: 3,191,397			

Total params: 3,191,397 Trainable params: 3,191,397 Non-trainable params: 0

Input size (MB): 0.01

Forward/backward pass size (MB): 69.50

Params size (MB): 12.17

Estimated Total Size (MB): 81.69

從下方的 loss 可看出當 training 的 epoch 數量越多時, train loss 和 validation loss 會越來越小,代表漸漸的接近 loss 的低點。但在 epoch 數 50 之前,train loss 比 validation loss 還要大,我認為可能是 data augmentation 導致這樣的現象,因為 data augmentation 的目的就是把訓練集變得豐富,製造數據的多樣性和學習的困難來讓network 更 robust,但是在 validation 的時候是不對數據進行太多的 data augmentation,所以 loss 反而較小。也有可能是 drop out 和 drop path 的影響,因為在 training 時 drop out 和 drop path 會隨機屏蔽掉一些神經元與分支,等 validation 的時候在全部一起用上,loss 就會更小了。大概過了 70 個 epoch 後,train loss 小於 validation loss,且差距越來越大,這是因為產生 overfitting 的現象。

Final Result

CCT model 不需要 pretrain data, 這是我對 cifar100 訓練 200 個 epoch 後的結果。

cifar100 acc(%)	Model Size(M)
75.145	3.191397