Network Delays

17CS52 - CN: L05/L06

Dr. Ram P Rustagi Sem V (2019-H2) Dept of CSE, KSIT rprustagi@ksit.edu.in

https://www.youtube.com/watch?v=kD90aHoQfFc
https://www.youtube.com/watch?v=_xznsLcMEPw

Resources

- http://wps.pearsoned.com/ ecs_kurose_compnetw_6/216/55463/14198700.cw/index.html
- https://acc.digital/experiential-learning-of-networking-technologies-understanding-network-delays/
- https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/ content/interactiveanimations/transmission-vs-propagation-delay/ transmission-propagation-delay-chl/index.html
- Computer Networking: A Top Down Approach
 - Kurose, Ross
 - Pearson publications

Transmission vs Propagation Delay

Classroom 2

- Consider that a class of 50 students are asked to go (walk) to another classroom which is 100 meters away. The students exit the class room at the rate of 1 student per second and starts walking, at the speed of 3km/hr i.e 50m/minute.
- Q:What is the total time taken by the class to move from class room 1 to class room 2?
- Ans: 2 minutes and 50 seconds.
- Note: When last student exits the class, the first student is still on the way, and have travelled 50*5/6=41.66 meters.

Transmission vs Propagation Delay

- Analogy of students moving from one classroom to another.
 - Entire class: one packet
 - Student: 1 bit (of the packet)
 - Rate at which students exit classroom: Link Bandwidth
 - 1bit/second
 - Distance between two classrooms: link length (distance)
 - 100 meters
 - Time taken by one student to walk from classroom 1 to classroom
 - 2: Propagation delay
 - 2 minutes
 - Time taken by all students to exit the classroom: Transmission delay
 - 50 seconds
 - Total delay = propagation delay + transmission delay
 - = 2minutes and 50seconds

Packet-switching: store-and-forward

- Transmission vs propagation delay
 - https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/transmission-vs-propagation-delay/transmission-propagation-delay-chl/index.html

Length 100 km ≎	Rate 1 Mbps \$ Packet size 500 Byte	es 🗘 Start Reset
	4 400 ma	
Sender	4.490 ms	Receiver

Propagation speed: 2.8 x 10⁸ m/sec

Params	Case 1	Case	Case
Pkt Size (bytes)	100	100	100
Trans rate (Mbps)	1	10	100
Distance (Km)	10	10	100
Trans. Delay (ms)		<u></u>	'
Prop. Delay (ms)		_	
Tot delay (ms)			

Caravan analogy

- •cars "propagate" at 100 km/hr
- •toll booth takes 12 sec to service a car (bit transmission time)
- Analogy:
 - car~bit;
 - caravan ~ packet

- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both:
 100km/(100km/hr)
 = 1 hr
- Q: How long until caravan is lined up before 2nd toll booth?
- A: 62 minutes

Packet-switching: store-and-forward

- Takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- Store and forward: entire packet must arrive at router before it can be transmitted on next link
- end-end delay = 2L/R (assuming zero propagation delay)

one-hop numerical example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- one-hop transmission delay = 5 sec
- Q: with N routers and P Packets?

Case Study 01

N hops and **P** Packets example:

- Src sends P packets each of size L bits
- Transmission rate of each link is R bps
- There are N routers between source and destination
- What the total transmission delay i.e. time interval between first bit is transmitted at source and last bit is received at destination (ignore propagation delay).
- Ans:
- N=1, P=1, delay = 2L/R
- N=n, P=1, delay = (n+1)L/R
- N=1, P=p, delay = (p+1) L/R, pipelining happens
- N=n, P=p, delay = (P+n)L/R, pipelining happens for n packets

Case Study 02

Consider the following figure. Find the end-to-end delay (including the **transmission** delays, and **propagation** delay, but ignoring the *processing* delays and *queuing* delays) from when the left host begins transmitting the first bit of a packet to the time when the last bit of last packet is received at the server at the right. The host on left sends 1 packet of 1500 Bytes. Take signal traversal speed as $2*10^5$ km/s

Transmission rate: 1 Mbps

Link Length: 500 Km

Case Study 02 - Answer

- Propagation delay on link 1:
 - = 2*1000*1000/(2x10**8)=0.01ms
- Transmission delay for one pkt (1500 bytes=12000 bits) on link 1:
 - $= 12000/(1000 \times 10 \times 6) = 12 \mu s = 0.012 ms$
- Switch 1 will start transmission at = 0.01+0.012 = 0.022ms
- Propagation delay on link 2:
 - = 500*1000*1000(2x10**8) = 2.5ms
- Transmission delay on one pkt on link 2:
 - = 12000/(1x10**6) = 12000us = 12ms
- Switch 2 will start transmission at = 0.022+2.5+12 = 14.522ms
- Propagation delay on link 3:
 - = 1*1000*1000/(2x10**8) = 0.005ms
- Transmission delay on one pkt on link 3 :
 - = 12000/(10x10**6) = 1200us = 1.2ms.
- Switch 3 will reeceive pkt at = 14.522+0.005+1.2=15.727ms
- Total propagation delay = 15.727ms

Case Study 03

• Use the link below and under the Interactive exercises, use the 3rd option under Chapter I: Introduction

```
http://wps.pearsoned.com/
ecs_kurose_compnetw_6/216/55463/14198700.cw/index.html
```

 Carry out at least 3 exercises and verify your answers as given on the website and help consoliate your understanding.

How do loss and delay occur?

Packets queue in router buffers

- Packet arrival rate (temporarily) exceeds output link capacity
- Packets queue, wait for turn

Four sources of packet delay

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < microsec

d_{aueue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router
 - Determined by packets coming on other links.

Four sources of packet delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{trans} : transmission delay:

- *L*: packet length (bits)
- R: link bandwidth (bps)

d_{prop} : propagation delay:

- d: length of physical link
- s: propagation speed in medium (~2×108 m/sec)

Caravan analogy (more)

- suppose cars now "propagate" at 1000 km/hr
- and suppose toll booth now takes one min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at first booth?
- Yes/No?
- A:Yes! after 7 min, 1st car arrives at second booth; three cars still at 1st booth

Queueing delay (revisited)

- 4 components of delay
 - Processing delay
 - Queuing delay
 - Transmission delay
 - Propagation delay
- Which of these delays is unpredictable and depends on traffic pattern
 - Periodically: one packet per L/R seconds
 - In bursts but periodically
 - N packets arrive in burst in N(L/R) seconds
 - In general, packets arrival is random
 - Packets are spaced random amount of time

Queueing delay (revisited)

- R: link bandwidth (bps)
- L: packet length (bits)
- a: average packet arrival rate

- •La/R ~ 0: avg. queueing delay small
- •La/R -> 1: avg. queueing delay large
- La/R > 1: more "work" arriving
- than can be serviced, average delay infinite!

* Check out the Java applet for an interactive animation on queuing and loss

La/R -> 1

End to End Delay

- Total delay at all routers from src to dstn
 - -Assume N-1 routers (N links)
 - Assume queuing delay to be zero
 - In real life it may not be zero
 - The end to end delay is given by

$$d_{\text{end-end}} = N * (d_{\text{proc}} + d_{\text{trans}} + d_{\text{prop}})$$

"Real" Internet delays and routes

- what do "real" Internet delay & loss look like?
- traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - sender times interval between transmission and reply.

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput (more)

• $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet scenario

- per-connection end-end throughput: min(R_c,R_s,R/10)
- in practice:
 - $-R_c$ or R_s is often bottleneck
- Example:
 - R_s=2Mbps
 - $-R_c=1Mbps$
 - -R = 5Mbps
 - Thruput for each server= ?

500Kbps

10 connections (fairly) share backbone bottleneck link R bits/sec

Bandwidth Delay product

- Transmission Rate: R
- Propagation delay: dprop
- Bandwidth-delay product = $R*d_{prop}$
- Implies number of bits on the link
 - -When transmission is not complete

Case Study 01

Consider the following figure. Find the end-to-end delay (including the **transmission** delays, **propagation** and **queuing** delays, but ignoring the processing delays) from when the left host begins transmitting the first bit of a packet to the time when the last bit of last packet is received at the server at the right. The host on left sends 3 packets each of 1500 Bytes.

Transmission rate: 1 Mbps

Link Length: 500 Km

Cast Study - Answer

Propagation delay on link 1: 2*1000*1000/(2x10**8)=0.01ms

Propagation delay on link 2: 500*1000*1000(2x10**8)=2.5ms

Propagation delay on link 3: 1*1000*1000/(2x10**8)=0.005ms

Total propagation delay = 0.01 + 2.5 + 0.005 = 2.515ms

Trans. delay for 1 pkt on link 1: 12000/(1000x10**6) = 0.012ms

Trans. delay for 1 pkt on link 2: 12000/(1x10**6) = 12ms

Trans. delay for 1 pkt on link 3: 12000/(10x10**6) = 1.2ms.

Switch 1 will start transmission of first packet after 0.022ms,

2nd packet after 12.022ms, and

3rd packet after 24.022ms

Similarly, compute trans. start time on 2nd and 3rd switch for each packet.

Adding the transmission delay to last packet on 3rd switch will provide end to end delay

Summary

- End to end delay
 - Propgation delay
 - Transmission delay
 - Queueing delay
 - Processing delay
- Queueing delay is unpredictable
 - Depending on traffic from other sources