A one phase interior point method (IPM) for non-convex optimization

Oliver Hinder, Yinyu Ye

ohinder@stanford.edu

July 15, 2016

Outline

- Introduction
 - Current non-convex IPMs
 - Local infeasibility certificates
 - Algorithm outline
- 2 Theory
 - Global convergence
 - Local convergence
 - How to return L1 minimizer of constraint violation
- Practice
 - Implementation details
 - Preliminary empirical results with CUTEst

Problem we wish to solve:

$$\min f(x)$$
$$a(x) \le 0$$

Assume:

- The constraints and objective are C^2
- ② The set $a(x) \leq \theta$ is bounded for any $\theta \in \mathbb{R}^m$

One phase IPMs for convex optimization

Either declare problem infeasible (primal or dual) or optimal in one phase:

- 1 Infeasible start IPM (Mehortra, 1992)
- 4 Homogenous algorithm (Anderson and Ye, 1998, 1999)

State of the art for convex optimization

Why one phase non-convex IPM do not exist (yet)

- Some infeasible start algorithms have been tested, but no theoretical guarantees (i.e. LOQO)
- Ideally our algorithm would either find a local optimum or a local minimizer the violation of the constraints
- Infeasible start IPMs may fail this criterion (Wachter and Biegler in 2000).

Solutions in literature to this problem

- Two phases (IPOPT)
 - Each phase has a different variables
 - 2 Awkward convergence assumptions
 - Operation of the second of
- 2 Compute two directions (KNITRO)
- Penalty (or big-M) method (Curtis, 2012)

Solutions in literature to this problem

- Two phases (IPOPT)
 - Each phase has a different variables
 - 2 Awkward convergence assumptions
 - Operation of the second of
- 2 Compute two directions (KNITRO)
- Penalty (or big-M) method (Curtis, 2012)

Current non-convex IPMs Local infeasibility certificate Algorithm outline

It doesn't need to be this complicated!

Local infeasibility certificates

Farkas certificate, there exists $y \ge 0$ such that x^* is a stationary point of:

$$\min y^T a(x)$$

With
$$y^{T}a(x^{*}) > 0$$
.

L1 constraint violation, x^* is a stationary point of:

$$\min e^{T}(a(x))^{+}$$

With
$$e^{T}(a(x^{*}))^{+} > 0$$
.

One phase barrier problem

Original problem:

$$\min f(x)$$
$$a(x) \le 0$$

Barrier problem:

$$\min f(x) - (1 - \eta^k)\mu^k \sum_i \log s_i$$

$$a(x) + s = (1 - \eta^k)(a(x^k) + s^k)$$

$$s \ge 0$$

Primal-dual direction computation

$$H^{k} d_{x} + (A^{k})^{T} d_{y} = -(\nabla f(x) + y^{T} \nabla a(x))$$

$$A^{k} d_{x} + d_{s} = -\eta^{k} (a(x^{k}) + s^{k})$$

$$S^{k} d_{y} + Y^{k} d_{s} = (1 - \eta^{k}) \mu^{k} e - Y^{k} s^{k}$$

$$H^{k} = \nabla_{x}^{2} L(x^{k}, y^{k}) + \delta^{k} I$$
$$A^{k} = \nabla a(x^{k})$$

One phase non-convex algorithm

for
$$k \leftarrow 1, \ldots, \infty$$
 do

Factor newton system using IPOPT strategy to compute δ^k

if
$$\|\nabla f(x^k) + (y^k)^T \nabla a(x^k)\| < \mu^k$$
 then

Aggressive step:

Compute direction with $\eta^k \in (0,1]$

Take largest step while maintaining complementary

else

Stabilization step:

Compute direction with $\eta^k = 0$

Backtracking line search on direction using merit function end if

end for

Iterate update

Backtrack on α and update iterates:

$$\begin{aligned} x^{k+1} &= x^k + \alpha^k d_x^k \\ y^{k+1} &= y^k + \alpha^k d_y^k \\ s^{k+1} &= (1 - \alpha^k \eta^k) (a(x^k) + s^k) - a(x^{k+1}) \\ \mu^{k+1} &= (1 - \eta^k \alpha^k) \mu^k \end{aligned}$$

Only accept iterates that approximately satisfy complementary:

$$\beta \mu^{k+1} \le s_i^{k+1} y_i^{k+1} - \mu^{k+1} \le \frac{1}{\beta} \mu^{k+1}$$

Merit function line search

Backtrack on α until armijo rule is satisfied for the merit function:

$$\psi^{k}(x) = f(x) - \mu^{k} \sum_{i} \log (a_{i}(x^{k}) + s_{i}^{k} - a_{i}(x))$$

Termination criterion

Declare problem first-order ϵ -locally optimal if:

$$\left\| \nabla f(x) + y^T \nabla a(x) \right\| + \|a(x) + s\| + \mu < \epsilon_{opt}$$

Declare problem first-order ϵ -locally (farkas) infeasible if:

$$\frac{\mu + \|y^T \nabla a(x)\|}{y^T (a(x) + s)} < \epsilon_{inf}$$

Global convergence

If δ^k and η^k are judiciously chosen then it possible to show the following result:

Theorem

For any $\epsilon > 0$, after a finite number of steps the algorithm has found either a first-order ϵ -local optimum or a first-order ϵ -local (farkas) infeasibility certificate.

Local convergence

Assume:

- Converging towards a KKT solution that satisfies strict complementary.
- The sufficient conditions for local optimality are satisfied at the KKT solution.

If η^k is judiciously chosen then it is possible to show:

Theorem

If (1-2) hold, the algorithm converges Q-quadratically to a local optimality certificate.

How to return L1 minimizer of constraint violation

We wish to solve:

$$\min f(x)$$

$$a(x) \leq 0$$

This problem is trivially equivalent to:

$$\min f(x)$$

$$a(x) \leq z$$

$$e^T z \leq 0$$

$$z \ge 0$$

The local Farkas infeasibility certificate to this problem is an certificate of L1 minimization of the constraint violation.

Implementation details

- ① Use fraction to boundary rule i.e. $y^{k+1} \ge 0.05y^k$ and $s^{k+1} > 0.05s^k$
- f 2 Choose η^k on aggressive steps using predictor-corrector technique
- Search on negative eigenvector to guarantee second-order necessary conditions are satisfied

Scaled KKT merit function

Scaled KKT residuals is an alternate merit function:

$$\frac{\|\nabla f(x) + y^T \nabla a(x)\|}{\|y\|}$$

Accept step that makes progress on either:

- Classic merit function
- Scaled KKT residuals

Using a filter to prevent cycling

Empirical results

Table: Results on 30 selected CUTEst problems, number of variables between 100 and 1000

	One phase	IPOPT (2004)	KNITRO (2004)
Median	71 (59)	41	53
SEGFAULTS	4	0	0
MAXIT	3	3	3

Summary

- Introduction
 - Current non-convex IPMs
 - Local infeasibility certificates
 - Algorithm outline
- 2 Theory
 - Global convergence
 - Local convergence
 - How to return L1 minimizer of constraint violation
- Practice
 - Implementation details
 - Preliminary empirical results with CUTEst

The End

References

Itai Ashlagi, Mark Braverman, and Avinatan Hassidim (2014) Stability in Large Matching Markets with Complementarities *Operations Research* 62:4, 713-732.

Conjectures

Conjecture

Assume (x^*, s^*) is a limit point of the algorithm and there exists finite dual multipliers at (x^*, s^*) then for some subsequence of the dual multipliers $y^{\pi(k)} \to y^*$.

Conjecture

After a polynomial number of steps a simple variant of the algorithm has found either a first-order ϵ -local optimum or a first-order ϵ -local infeasibility certificate.