1 Билет 7. Элементы вариационного исчисления

1.1 Основные понятия

Определение 1.1. Пусть M - множество функций y(x), а \mathcal{J} - отображение M в \mathbb{R} такое, что $\mathcal{J} = \{\mathcal{J}(y(x)) \in \mathbb{R} : \forall y(x) \in M\}$. Такое отображение называется функцианалом, а - область его определения.

$$\forall y(x) \in C^1_{[a;b]}$$
 рассмотрим функционал $\mathcal{J}(y(x)) = \int\limits_a^b F(x,y(x),y'(x))dx$

Будем считать, что F(x,y(x),y'(x)) как функцию трех независимых переменных $x_1=x,\ x_2=y(x),\ x_3=y'(x),$ непрерывна вместе с $\frac{\partial F}{\partial x_i},\ \frac{\partial^2 F}{\partial x_i\partial x_j},\ i,j=\overline{1,3}$

Постановка вариационной задачи

Вариационная задача состоит в том, чтобы среди функций $y(x) \in D \subset C^1_{[a;b]}$ (в случае наличия дополнительного условия) найти такую функцию $y_0(x)$, что $\mathcal{J}(y_0(x))$ принимает минимальное (максимальное) значение. Будет рассматривать $y(x) \in C^1_{[a;b]}$.

Определение 1.2. Множество функций D, которые удовлетворяет свойствам, которые мы наложим, называется **множеством варьируемых функций**.

Определение 1.3. $y_0(x)$ такое что $\mathcal{J}(y_0(x)) \leq \mathcal{J}(y(x))[\mathcal{J}(y_0(x)) \geq \mathcal{J}(y(x))] \, \forall y(x) \in D$ называется абсолютным экстремумом \mathcal{J} .

Введём норму на $C^1_{[a;b]}$ для определения типа экстремумов: $\|y(x)\| = \max_{x \in [a;b]} |y(x)| + \max_{x \in [a;b]} |y'(x)|$ - все свойства нормы выполнены.

Определение 1.4. Пусть $y(x) \in D$. Функцию $\delta y(x) \in C^1_{[a;b]}$ будем называть **допустимый вариацией** y(x), если $\forall y \colon y + \delta y \in D$

Определение 1.5. Множество функций $V_{\varepsilon}(y_0(x)) = \{y(x) \in C^1_{[a;b]} : \|y(x) - y_0(x)\| \le \varepsilon\}$ будем называть ε -окрестностью $\mathbf{y_0}(\mathbf{x})$

Основной принцип

Пусть $y_0(x) \in D$ фиксирована, а $\delta y(x)$ какая-либо фиксированная допустимая вариация такая, что $\forall t \in [-1;1] \mapsto y_0(x) + t \delta y(x) \in D \Rightarrow$

$$\mathcal{J}(y(x)) = \mathcal{J}(y_0(x) + t\delta y(x)) = \int_a^b F(x, y_0(x) + t\delta y(x), y_0'(x) + t(\delta y(x))') dx = \mathcal{J}(t)$$

В силу определения F, у него существуют 1 и 2 непрерывные производные по t, т.е $\mathcal{J}(t)$ - дважды непрерывно дифференцируемая по t функция. Следовательно из формулы Тейлора:

$$\mathcal{J}(y_0 + t\delta y(x)) = \mathcal{J}(0) + \frac{d\mathcal{J}}{dt}(0) + \frac{1}{2}\frac{d^2\mathcal{J}}{dt^2}(0) \cdot t^2 + o(t^2) = [$$
 обозначим $(\delta y(x))' = \delta y'$] =

$$\frac{d\mathcal{J}}{dt}(t) = \int_{a}^{b} \left[\frac{\partial F}{\partial y}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y + \frac{\partial F}{\partial y'}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y' \right] dx$$

$$\frac{d\mathcal{J}}{dt}(0) = \int_{a}^{b} \left[\frac{\partial F}{\partial y}(x, y_0, y_0') \delta y + \frac{\partial F}{\partial y'}(x, y_0, y_0') \delta y' \right] dx = \delta \mathcal{J}$$
- первая вариация (1)

$$\frac{d^2 \mathcal{J}}{dt^2}(t) = \int_a^b \left[\frac{\partial^2 F}{\partial y^2}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y^2 + \frac{\partial^2 F}{\partial y \partial y'}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y\delta y' + \frac{\partial^2 F}{\partial y'^2}(x, y_0 + t\delta y, y_0' + t\delta y')\delta y'^2 \right] dx$$

$$\frac{d^2 \mathcal{J}}{dt^2}(0) = \int_a^b \left[\frac{\partial^2 F}{\partial y^2}(x, y_0, y_0') \delta y^2 + \frac{\partial^2 F}{\partial y \partial y'}(x, y_0, y_0') \delta y \delta y' + \frac{\partial^2 F}{\partial y'^2}(x, y_0, y_0') \delta y'^2 \right] dx = \delta^2 \mathcal{J} \quad (2)$$

 $\delta^2 \mathcal{J}$ - вторая вариация

$$\boxed{ } \boxed{ } \mathcal{J}(y_0) + \delta \mathcal{J} \cdot t + \delta^2 \mathcal{J} \cdot t^2 + o(t^2)$$

Определение 1.6. Функция $y_0(x) \in D$ называется слабым экстремумом функцианала \mathcal{J} , если $\exists \varepsilon > 0 : \mathcal{J}(y_0(x)) \leq \mathcal{J}(y(x)) [\mathcal{J}(y_0(x)) \geq \mathcal{J}(y(x))] \, \forall y(x) \in V_{\varepsilon}(y_0(x)), m.e. \, \forall y(x) : \|y(x) - y_0(x)\| \leq \varepsilon$

Теорема 1.1 (Основная теорема). Пусть $y_0(x) \in D \subset C^1_{[a;b]}$ является слабым экстремумом функцианала $\mathcal{J}(y(x))$. Тогда первая вариация $\delta \mathcal{J}(y_0, \delta y) = 0$ $\forall \partial onycmumoŭ \delta y$

Доказательство. Не нарушая общности рассуждений докажем для минимума.

При $\delta y = 0$ из (1) следует, что $\delta \mathcal{J}(y_0, \delta y) = 0$. Пусть какая-либо допустимая $\delta y \neq 0$. Т.к. $y_0(x)$ - слабый экстремум \mathcal{J} , то $\exists \varepsilon > 0 : \forall y(x) = y_0(x) + t \delta y(x) : \|y(x) - y_0(x)\| < \varepsilon \mapsto \mathcal{J}(y_0) \leq \mathcal{J}(y)$. Зафиксируем $\delta y \neq 0$. Т.к. $\|y(x) - y_0(x)\| = \|y_0 + t \delta y(x) - y_0(x)\| < \varepsilon$, то $\|t \cdot \delta y\| < \varepsilon$. Таким образом $t \in \left(-\frac{\varepsilon}{\|\delta y(x)\|}; \frac{\varepsilon}{\|\delta y(x)\|}\right)$

Т.к
$$y_0(x)$$
 - локальный минимум, то $\mathcal{J}(y_0) \leq \mathcal{J}(y)$ или $\mathcal{J}(0) \leq \mathcal{J}(t) \ \forall t \in \left[-\frac{\varepsilon}{\|\delta y(x)\|}; \frac{\varepsilon}{\|\delta y(x)\|} \right]$

Таким образом $\mathcal{J}(t)$ является непрерывно дифференцируемой функцией t, достигающий минимум при t=0. Следовательно по теореме Ферма $\frac{d\mathcal{J}}{dt}(0)=0=\delta\mathcal{J}$

Ввиду произвольности δy теорема доказана.

Лемма 1.1 (Основная лемма вариационного исчисления). Пусть $f(x) \in C^1_{[a;b]}$ $u \int\limits_a^b f(x) \cdot h(x) dx = 0 \ \forall h \in C^1_{[a;b]}$ u такой, что h(a) = h(b) = 0. Тогда $f(x) = 0 \ \forall x \in [a;b]$

Доказательство. От противного: пусть $\exists x_0 \in [a;b]: f(x_0) \neq 0$. Тогда в силу непрерывности функции $f(x) \exists \delta > 0$ такое, что $\forall x \in (x_0 - \delta; x_0 + \delta) \mapsto f(x) \neq 0$. Для определенности рассмотрим $f(x) > 0 \, \forall x \in (x_0 - \delta; x_0 + \delta)$. Если так случилось, что $(x_0 - \delta; x_0 + \delta) \not\subset [a;b]$, то уменьшим δ , не нарушив при этом это условие: f(x) > 0 на отрезке ненулевой длины.

Обозначим $I_{\delta} = (x_0 - \delta; x_0 + \delta)$ и рассмотрим

$$h_{\delta}(x) = \begin{cases} \left[(x - x_0 + \delta)(x - x_0 - \delta) \right]^2 & x \in I_{\delta} \\ 0 & x \notin I_{\delta} \end{cases}$$
 (3)

Т.к. $h_{\delta}(x) > 0 \, \forall x \in I_{\delta}$, то $\int_{a}^{b} f(x) \cdot h_{\delta}(x) dx = \int_{x_{0} - \delta}^{x_{0} + \delta} f(x) \cdot h_{\delta}(x) dx > 0$ - противоречие с условием $\int_{a}^{b} f(x) \cdot h(x) dx = 0 \Rightarrow \nexists x_{0} \in [a;b] : f(x_{0}) \neq 0$

Примечание. Лемма остаётся в силе, если в условии лемми $\int_a^b f(x) \cdot h(x) dx = 0 \, \forall h \in C^n_{[a;b]} \, u \, h^{(i)}(a) = h^{(i)}(b) = 0, \, i = \overline{0,n-1}. \, B \, (4) \, \, docmamoчно \, взять$

$$h_{\delta}(x) = \begin{cases} \left[(x - x_0 + \delta)(x - x_0 - \delta) \right]^{2n} & x \in I_{\delta} \\ 0 & x \notin I_{\delta} \end{cases}$$
 (Модифицированная лемма) (4)

1.2 Простейшие задачи вариационного исчисления

1.2.1 Задача с закрепленными концами

Требуется найти экстремум функционала $\mathcal{J}(y)=\int\limits_a^bF(x,y(x),y'(x))dx$ среди функций $y(x)\in C^1_{[a;b]}$ таких, что y(a)=A, y(b)=B, а где A и B являются заданными константами. Таким образом экстремум ищется на множестве D=y(x):y(a)=A, $y(b)=B\subset C^1_{[a;b]}.$ Пусть $y_0(x)$ - экстремум нашего функционала. Через $H_\delta(y_0)$ обозначим $\delta y(x)\in C^1_{[a;b]}:\delta y(a)=\delta y(b)=0$ Покажем, что $H_\delta(y_0)$ является множеством допустимых вариаций: $\forall \delta y(x)\in H_\delta(y_0)$ для $y(x)=y_0(x)+\delta y(x)\mapsto y(a)=A,$ $y(b)=B\Rightarrow y_0(x)+\delta y\in D$

Теорема 1.2. Пусть $y_0(x) \in C^2_{[a;b]}$ является слабым экстремумом функцианала \mathcal{J} на D. Тогда $y_0(x)$ удовлетворяет уравнению Эйлера-Лагранжа.

$$\frac{\partial F}{\partial y}(x, y_0(x), y_0'(x)) - \frac{d}{dx} \frac{\partial F}{\partial y'}(x, y_0(x), y_0'(x)) = 0$$
Обозначение:
$$\frac{\partial F}{\partial y}(x, y_0(x), y_0'(x)) = \frac{\partial F}{\partial y}; \frac{\partial F}{\partial y'}(x, y_0(x), y_0'(x)) = \frac{\partial F}{\partial y'}$$
(5)

Доказательство. Т.к. $y_0(x)$ является слабым экстремумом, то $\forall \delta y(x) \in H_\delta(y_0) \mapsto$

$$\delta \mathcal{J} = \int\limits_a^b \left(\frac{\partial F}{\partial y} \delta y + \underbrace{\frac{\partial F}{\partial y'} \delta y'}_{\text{проинтегрируем по частям}} \right) dx = 0$$
 (по основной теореме)

Концы закреплены:

$$\int_{a}^{b} \frac{\partial F}{\partial y'} \delta y' dx = \frac{\partial F}{\partial y'} \delta y \Big|_{a}^{b} - \int_{a}^{b} \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \delta y dx = - \int_{a}^{b} \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \delta y dx$$
$$\delta \mathcal{J} = \int_{a}^{b} \left(\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \right) dx = 0 \quad \forall \delta y \in H_{\delta}(y_{0})$$

Заметим, что $\forall \delta y \in H_{\delta}(y_0)$ и $\delta \mathcal{J}$ удовлетворяют уловиям основной леммы \Rightarrow

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0$$

Примечание. Требование $y_0(x) \in C^2_{[a;b]}$ является естественным, т.к. (5) для $y_0(x)$ является ДУ второго порядка: $\frac{d}{dx} \frac{\partial F}{\partial v'}(x, y_0(x), y_0'(x)) = \frac{\partial^2 F}{\partial x \partial v'} + \frac{\partial^2 F}{\partial u \partial v'} y' + \frac{\partial^2 F}{\partial v'^2} y''$

Определение 1.7. Функцию $y_0(x)$, удовлетворяющую уравнению Эйлера и условиям множества D будем называть **допустимой экстремалью**.

1.2.2 Функционалы, зависящие от вектор-функции

Рассмотрим

$$\mathcal{J}(\vec{y}) = \int_{a}^{b} F(x, y_1(x), y_2(x), ..., y_n(x), y_1'(x), y_2'(x), ..., y_n'(x)) dx = \int_{a}^{b} F(x, \vec{y}(x), \vec{y}'(x)) dx, \quad (6)$$

где $\vec{y}(x) = ||y_1, ..., y_n||, \ \vec{y}'(x) = ||y_1', ..., y_n'||$

Рассмотрим задачу с закрепленными концами:

$$\vec{y}(a) = \vec{A} = ||y_1(a), ..., y_n(a)|| = ||A_1, ..., A_n||, \vec{y}(b) = \vec{B} = ||y_1(b), ..., y_n(b)|| = ||B_1, ..., B_n||$$
 (7)

Считаем, что $F(x,y_1,...,y_n,z_1,...,z_n)$ - дважды непрерывно дифференцированна по совокупности переменных $a \leq x \leq b, -\infty < y_1,...,y_n,z_1,...,z_n < +\infty$. Минимум $(6) \wedge (7),$ без нарушения общности будем искать в классе $y_i(x) \in C^1_{[a;b]}, \ i = \overline{1,n}$. Введём $|\vec{y}| = \sqrt{\sum_{k=1}^n y_k^2}$ и $||\vec{y}|| = \max_{x \in [a;b]} |\vec{y}| + \max_{x \in [a;b]} ||\vec{y}'||$

Множество допустимых вариаций $H_{\delta}(\vec{y}_0) = \delta \vec{y}(x) = ||\delta y_1(x), ..., \delta y_n(x)|| : \delta \vec{y}(a) = \delta \vec{y}(b) = 0$ Пусть $\vec{y}_0(x) \in C^1_{[a;b]}$ - слабый минимум ($\Rightarrow \delta \mathcal{J} = 0$), (6) \land (7). При условии (7) получаем:

$$\mathcal{J}(\vec{y}_{0}(x) + t\delta\vec{y}(x)) = \int_{a}^{b} F(x, \vec{y}_{0}(x) + t\delta\vec{y}(x), \vec{y}_{0}'(x) + t(\delta\vec{y}(x))') dx = \mathcal{J}(t) = \mathcal{J}(0) + t \cdot \delta\mathcal{J} + o(t) =$$

$$= \mathcal{J}(0) + \int_{a}^{b} \left(\sum_{k=1}^{n} \frac{\partial F}{\partial y_{k}} \delta y_{k} + \sum_{k=1}^{n} \frac{\partial F}{\partial y_{k}'} (\delta y_{k})' \right) dx + o(t) = \mathcal{J}(0) + \int_{a}^{b} \left(\sum_{k=1}^{n} \left(\frac{\partial F}{\partial y_{k}} - \frac{d}{dx} \frac{\partial F}{\delta y_{k}'} \right) \delta y_{k} \right) dx +$$

$$+ \sum_{k=1}^{n} \left(\frac{\partial F}{\partial y_{k}'} (b) \underbrace{(\delta y_{k}(b))}_{=0} \right) - \sum_{k=1}^{n} \left(\frac{\partial F}{\partial y_{k}'} (a) \underbrace{(\delta y_{k}(a))}_{=0} \right) + o(t)$$

$$\delta \mathcal{J} = \int_{b}^{b} \left(\sum_{k=1}^{n} \left(\frac{\partial F}{\partial y_{k}} - \frac{d}{dx} \frac{\partial F}{\partial y_{k}'} \right) \delta y_{k} \right) dx = 0 \quad \forall \delta \vec{y}(x) \in H_{\delta}(\vec{y}_{0})$$

Итак, $\delta J=0$ $\forall \delta \vec{y}(x) \in H_{\delta}(\vec{y}_0)$, тогда в силу произвольности выбора $\delta \vec{y}(x)$: пусть $\delta y_1=\delta y_2=...=\delta y_{k-1}=0,\ \delta y_k=((x-a)(x-b))^2, \delta y_{k+1}=...=\delta y_n=0.$ Тогда

$$\delta J = 0 + \int_{-\infty}^{b} \sum_{k=1}^{n} \left(\frac{\partial F}{\partial y_k} - \frac{d}{dx} \frac{\partial F}{\partial y_k'} \right) \delta y_k dx + 0 = 0$$

 \Rightarrow Основная лемма \Rightarrow проходим все $k=\overline{1,n}$

$$\frac{\partial F}{\partial y_k} - \frac{d}{dx} \frac{\partial F}{\partial y_k'} = 0, \ k = \overline{1,n}$$
 (Система уравнений Эйлера-Лагранжа)

1.2.3 Задача со свободными концами

Рассмотрим нахождение экстремума функцианала $\mathcal{J}(y)=\int\limits_a^bF(x,y(x),y'(x))dx$ среди $y(x)\in C^1_{[a,b]}.$ В этом случае $D=C^1_{[a;b]},$ $H_\delta(y_0)=\delta y(x)\in C^n_{[a;b]},$ т.е на $\delta y(x)$ не наложено условий. На F наложены обычные условия: дважды непрерывной дифференцируемости всех пере-

Пусть $y_0(x) \in C^2_{[a;b]}$ является минимум функционала. $y=y_0+t\cdot\delta y$

$$\delta \mathcal{J} = \int_{a}^{b} \left(\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} (\delta y)' \right) dx = \int_{a}^{b} \left(\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\delta y'} \right) \delta y dx + \frac{\partial F}{\partial y'} (y_0(b)) \delta y(b) - \frac{\partial F}{\partial y'} (y_0(a)) \delta y(a) = 0$$

По основной теореме $\forall \delta y(x) \in C^1_{[a;b]}$ В силу произвольности δy :

менных в совокупности.

$$\begin{cases}
\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0, & (1) \\
\frac{\partial F}{\partial y'} (b; y_0(b); y'_0(b)) = 0, & (2) \\
\frac{\partial F}{\partial y'} (b; y_0(a); y'_0(a)) = 0, & (3)
\end{cases}$$

Таким образом, если $y_0(x) \in C^2_{[a;b]}$ является слабым экстремумом функцианала со свободными концами, то $y_0(x)$ удовлетворяет уравнению Эйлера (1) с граничными условиями (2 и 3)