CS 2601 Linear and Convex Optimization 2. Math review

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

• First-order conditions for unconstrained local min

Second-order conditions for unconstrained local min

x is an interior point of $X \subset \mathbb{R}^n$ if there exists $\epsilon > 0$ s.t. $B(x, \epsilon) \subset X$.

The interior of X, denoted by int X, is the set of interior points of X.

A function $f: X \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x_0 \in \operatorname{int} X$, if there exists a matrix $A \in \mathbb{R}^{m \times n}$ s.t.

$$\lim_{\Delta x \to \mathbf{0}} \frac{f(x_0 + \Delta x) - f(x_0) - A \Delta x}{\|\Delta x\|} = \mathbf{0}$$

i.e.

$$\Delta f := f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\|\Delta x\|)$$

The affine function $f(x_0) + A(x - x_0)$ is the first-order approximation of f at x_0 ,

$$f(x) = f(x_0) + A(x - x_0) + o(||x - x_0||)$$

 $^{^{1}}$ More precisely, a linear transformation represented by matrix A

The matrix A is called the derivative of f at x_0 , and we write

$$f'(x_0) = Df(x_0) = A$$

The derivative is given by the Jacobian matrix of $f = (f_1, \dots, f_m)^T$

$$f'(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x}_0)}{\partial x_1} & \frac{\partial f_1(\mathbf{x}_0)}{\partial x_2} & \cdots & \frac{\partial f_1(\mathbf{x}_0)}{\partial x_n} \\ \frac{\partial f_2(\mathbf{x}_0)}{\partial x_1} & \frac{\partial f_2(\mathbf{x}_0)}{\partial x_2} & \cdots & \frac{\partial f_2(\mathbf{x}_0)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(\mathbf{x}_0)}{\partial x_1} & \frac{\partial f_m(\mathbf{x}_0)}{\partial x_2} & \cdots & \frac{\partial f_m(\mathbf{x}_0)}{\partial x_n} \end{bmatrix}$$

i.e.

$$[\mathbf{f}'(\mathbf{x}_0)]_{ij} = \frac{\partial f_i(\mathbf{x}_0)}{\partial x_i}, \quad i = 1, \dots, m; j = 1, \dots, n$$

Note

$$f_i(\mathbf{x}_0 + \Delta \mathbf{x}) = f_i(\mathbf{x}_0) + \sum_{j=1}^n \frac{\partial f_i(\mathbf{x}_0)}{\partial x_j} \Delta x_j + o(\|\Delta \mathbf{x}\|), \quad i = 1, 2, \dots, m$$

Example. An affine function f(x) = Ax + b from \mathbb{R}^n to \mathbb{R}^m has derivative f'(x) = A at all x. In particular, when m = 1, $f(x) = a^Tx + b$ has derivative $f'(x) = a^T$, which is a $1 \times n$ matrix, i.e. a row vector.

Proof. In component form,

$$f_i(\mathbf{x}) = \sum_{k=1}^n A_{ik} x_k + b_i = A_{i1} x_1 + A_{i2} x_2 + \dots + A_{in} x_n + b_i$$

SO

$$\frac{\partial f_i(\boldsymbol{x}_0)}{\partial x_j} = A_{ij} \implies \boldsymbol{f}'(\boldsymbol{x}_0) = \boldsymbol{A}$$

Alternative proof.

$$f(x_0 + \Delta x) - f(x_0) = A \Delta x \implies f'(x_0) = A$$

4

Example. For symmetric $A, f(x) = x^T A x = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$ has derivative

$$f'(\mathbf{x}) = 2\mathbf{x}^T \mathbf{A}$$

Proof.

$$\frac{\partial f}{\partial x_k} = \sum_{i=1}^n \sum_{j=1}^n A_{ij} \left(x_j \frac{\partial x_i}{\partial x_k} + x_i \frac{\partial x_j}{\partial x_k} \right) = \sum_{j=1}^n A_{kj} x_j + \sum_{i=1}^n A_{ik} x_i = 2 \sum_{i=1}^n x_i A_{ik}$$

Alternatively,

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) - f(\mathbf{x}_0) = \mathbf{x}_0^T (\mathbf{A} + \mathbf{A}^T) \Delta \mathbf{x} + \underbrace{\Delta \mathbf{x}^T \mathbf{A} \Delta \mathbf{x}}_{=o(\|\Delta \mathbf{x}\|)}$$

Note. For general A, $f'(x) = x^T(A + A^T)$. This can also be obtained by noting $x^TAx = x^T\tilde{A}x$ and $f'(x) = 2x^T\tilde{A}$, where $\tilde{A} = \frac{1}{2}(A + A^T)$.

Review: Gradient

For a real-valued function $f: \mathbb{R}^n \to \mathbb{R}$, the gradient of f at x, denoted by $\nabla f(x)$, is the transpose of f'(x),

$$\nabla f(\mathbf{x}) = [f'(\mathbf{x})]^T, \quad [\nabla f(\mathbf{x})]_i = \frac{\partial f(\mathbf{x})}{\partial x_i}, \quad i = 1, \dots, n$$

 $\nabla f(x)$ is a column vector and satisfies

$$f'(\mathbf{x})\Delta\mathbf{x} = \langle \nabla f(\mathbf{x}), \Delta \mathbf{x} \rangle = \nabla f(\mathbf{x})^T \Delta \mathbf{x}$$

The first-order approximation of f at x_0 is

$$f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0)$$

Example. For symmetric *A*, the gradient of $f(x) = x^T A x + b^T x + c$ is

$$\nabla f(\mathbf{x}) = 2A\mathbf{x} + \mathbf{b}$$

Review: Gradient

 $\nabla f(x)$ is the direction of fastest rate of increase of f at x,

$$f(\mathbf{x} + \mathbf{d}) - f(\mathbf{x}) \approx \nabla f(\mathbf{x})^T \mathbf{d} \le ||\nabla f(\mathbf{x})|| \cdot ||\mathbf{d}||$$

where equality holds in the last step iff $d = \alpha \nabla f(x)$ for some $\alpha \geq 0$.

Review: Chain rule

If $f:X\subset\mathbb{R}^n\to\mathbb{R}^m$ is differentiable at $x_0\in X,g:Y\subset\mathbb{R}^m\to\mathbb{R}^p$ is differentiable at $y_0=f(x_0)$, then the composition of f and g defined by h(x)=g(f(x)) is differentiable at x_0 , and

$$h'(x_0) = g'(y_0)f'(x_0) = g'(f(x_0))f'(x_0)$$

Note. The order is important since $g'(y_0) \in \mathbb{R}^{p \times m}$ and $f'(x_0) \in \mathbb{R}^{m \times n}$ are matrices. In general $f'(x_0)g'(y_0)$ is undefined.

$$\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m} \xrightarrow{g} \mathbb{R}^{p}$$

$$x_{0} \mapsto y_{0} = f(x_{0}) \mapsto z_{0} = h(x_{0}) = g(y_{0})$$

$$\Delta x \xrightarrow{f'} \Delta y \approx f'(x_{0}) \Delta x \xrightarrow{g'} \Delta z \approx g'(y_{0}) \Delta y \approx g'(y_{0}) f'(x_{0}) \Delta x$$

In component form,

$$[\boldsymbol{h}'(\boldsymbol{x}_0)]_{ij} = \frac{\partial h_i(\boldsymbol{x}_0)}{\partial x_j} = \sum_{k=1}^m \frac{\partial g_i(\boldsymbol{y}_0)}{\partial y_k} \cdot \frac{\partial f_k(\boldsymbol{x}_0)}{\partial x_j} = \sum_{k=1}^m [\boldsymbol{g}'(\boldsymbol{y}_0)]_{ik} [\boldsymbol{f}'(\boldsymbol{x}_0)]_{kj}$$

Review: Chain rule

Example. h(x) = f(Ax + b) has derivative $h'(x_0) = f'(Ax_0 + b)A$. If f is real-valued,

$$\nabla h(\mathbf{x}_0) = \mathbf{A}^T [f'(\mathbf{A}\mathbf{x}_0 + \mathbf{b})]^T = \mathbf{A}^T \nabla f(\mathbf{A}\mathbf{x}_0 + \mathbf{b})$$

Example. Given $f: \mathbb{R}^n \to \mathbb{R}$ and $x, d \in \mathbb{R}^n$, define

$$g(t) = f(\boldsymbol{x} + t\boldsymbol{d})$$

Then

$$g'(t) = f'(\mathbf{x} + t\mathbf{d})\mathbf{d} = \nabla f(\mathbf{x} + t\mathbf{d})^T\mathbf{d} = \mathbf{d}^T \nabla f(\mathbf{x} + t\mathbf{d})$$

Note. g is the restriction of f to the straight line through x with direction d. We can often get useful information about f by looking at g, which is usually easier to deal with.

First-order necessary condition

Consider unconstrained optimization problem, i.e. $X = \mathbb{R}^n$.

Theorem. If x^* is a local minimum of f and f is differentiable at x^* , then its gradient at x^* vanishes, i.e.

$$\nabla f(\mathbf{x}^*) = \left(\frac{\partial f(\mathbf{x}^*)}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x}^*)}{\partial x_n}\right)^T = \mathbf{0}.$$

Proof. Let $d \in \mathbb{R}^n$. Define $g(t) = f(x^* + td)$.

- Since x^* is a local minimum, $g(t) \ge g(0)$
- For t > 0,

$$\frac{g(t) - g(0)}{t} \ge 0 \implies g'(0) = \lim_{t \downarrow 0} \frac{g(t) - g(0)}{t} \ge 0$$

- By chain rule, $g'(0) = \sum_{i=1}^n d_i \frac{\partial f(\mathbf{x}^*)}{\partial x_i} = \mathbf{d}^T \nabla f(\mathbf{x}^*) \ge 0$
- Setting $d = -\nabla f(x^*) \implies ||\nabla f(x^*)||^2 \le 0 \implies \nabla f(x^*) = \mathbf{0}$

First-order Necessary Condition (cont'd)

First-order Necessary Condition (cont'd)

A point x^* with $\nabla f(x^*) = \mathbf{0}$ is called a stationary point of f.

Note. Will see stationarity is sufficient for convex optimization.

First-order Necessary Condition (cont'd)

For constrained optimization problem, i.e. $X \neq \mathbb{R}^n$,

- if x^* is in the interior of X, i.e. $B(x^*, \epsilon) \subset X$ for some $\epsilon > 0$, then the proof still works, so $\nabla f(x^*) = \mathbf{0}$
- otherwise, the proof shows $d^T \nabla f(x^*) \ge 0$ for any feasible direction d at x^*
 - ▶ d is a feasible direction at $x \in X$ if $x + \alpha d \in X$ for all sufficiently small $\alpha > 0$
- will revisit later

Example. X = [a, b]

- $f'(x_1) = 0$
- $d_1f'(a) \geq 0 \implies f'(a) \geq 0$
- $d_2f'(b) \ge 0 \implies f'(b) \le 0$

Outline

• First-order conditions for unconstrained local min

Second-order conditions for unconstrained local min

Review: Second derivative

The second-order partial derivatives of $f: X \subset \mathbb{R}^n \to \mathbb{R}$ at $x_0 \in \operatorname{int} X$ are

$$\frac{\partial^2 f(\mathbf{x}_0)}{\partial x_i \partial x_i}$$
, $i, j = 1, 2, \dots, n$

The Hessian (matrix) of f at x_0 , denoted by $\nabla^2 f(x_0)$, is given by

$$[\nabla^2 f(\mathbf{x}_0)]_{ij} = \frac{\partial^2 f(\mathbf{x}_0)}{\partial x_i \partial x_j}, \quad i, j = 1, 2, \dots, n$$

Note. Do not confuse with Jacobian matrix of vector-valued function.

If $\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_i}$ exist in a neighborhood of \mathbf{x}_0 and are continuous at \mathbf{x}_0 , then

$$\frac{\partial^2 f(\mathbf{x}_0)}{\partial x_i \partial x_i} = \frac{\partial^2 f(\mathbf{x}_0)}{\partial x_i \partial x_i}$$

so $\nabla^2 f(x_0)$ is symmetric.

Will assume twice continuous differentiability when considering $\nabla^2 f$. 15

Review: Second derivative

Example. For an affine function $f(x) = b^T x + c$

$$\nabla f^2(\mathbf{x}) = \mathbf{0}$$

Example. For a quadratic function $f(x) = x^T A x$ with a symmetric A,

$$\nabla^2 f(\mathbf{x}) = 2\mathbf{A}$$

Proof. Recall $f'(x) = 2x^T A$, i.e.

$$\frac{\partial f(\mathbf{x})}{\partial x_j} = 2\sum_{k=1}^n x_k A_{kj}$$

so

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} = 2 \sum_{k=1}^n \frac{\partial x_k}{\partial x_i} A_{kj} = 2A_{ij}$$

Review: Chain rule for second derivative

The composition with affine function g(x) = f(Ax + b) has Hessian

$$\nabla^2 g(\mathbf{x}) = \mathbf{A}^T \nabla^2 f(\mathbf{A}\mathbf{x} + \mathbf{b}) \mathbf{A}$$

Proof. Let y = Ax + b, i.e. $y_k = \sum_i A_{ki} x_i$. Recall $\nabla g(x) = A^T \nabla f(y)$, i.e.

$$\frac{\partial g(\mathbf{x})}{\partial x_j} = \sum_{k} \frac{\partial f(\mathbf{y})}{\partial y_k} \frac{\partial y_k}{\partial x_j} = \sum_{k} \frac{\partial f(\mathbf{y})}{\partial y_k} A_{kj}$$

$$\frac{\partial^2 g(\mathbf{x})}{\partial x_i \partial x_j} = \sum_k \frac{\partial}{\partial x_i} \frac{\partial f(\mathbf{y})}{\partial y_k} A_{kj} = \sum_k \sum_{\ell} \frac{\partial^2 f(\mathbf{y})}{\partial y_\ell \partial y_k} A_{\ell i} A_{kj} = [\mathbf{A}^T \nabla^2 f(\mathbf{y}) \mathbf{A}]_{ij}$$

Special case. For g(t) = f(x + td),

$$g''(t) = \mathbf{d}^T \nabla^2 f(\mathbf{x} + t\mathbf{d}) \mathbf{d}$$

Proof. Set $A \leftarrow d$, $x \leftarrow t$, $b \leftarrow x$ in the general formula above.

Review: Second-order Taylor expansion

The second-order Taylor expansion for $g: \mathbb{R} \to \mathbb{R}$ takes the form

$$g(a+t) = g(a) + g'(a)t + \frac{1}{2}g''(a)t^2 + o(|t|^2)$$
 (T1)

The second-order Taylor expansion for $f: \mathbb{R}^n \to \mathbb{R}$ takes the form

$$f(\mathbf{x} + \mathbf{d}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \nabla^2 f(\mathbf{x}) \mathbf{d} + o(\|\mathbf{d}\|^2)$$
 (T2)

i.e.

$$f(\mathbf{x} + \mathbf{d}) = f(\mathbf{x}) + \sum_{i=1}^{n} \frac{\partial f(\mathbf{x})}{\partial x_i} d_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} d_i d_j + o(\|\mathbf{d}\|^2)$$

Note. (T2) can be obtained by applying (T1) to $g(t) = f(x + t\hat{d})$ at a = 0 and t = ||d||, where \hat{d} is the unit vector in the direction d, i.e. $d = ||d||\hat{d}$,

$$g(\|\mathbf{d}\|) = g(0) + g'(0)\|\mathbf{d}\| + \frac{1}{2}g''(0)\|\mathbf{d}\|^2 + o(\|\mathbf{d}\|^2)$$

By the chain rule, $g'(0) = \nabla f(x)^T \hat{d}$, $g''(0) = \hat{d}^T \nabla^2 f(x) \hat{d}$

Review: Second-order Taylor expansion

For a quadratic function $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$, the second-order Taylor expansion is exact with no $o(\|\mathbf{d}\|^2)$ term, i.e.

$$f(\boldsymbol{x} + \boldsymbol{d}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \nabla^2 f(\boldsymbol{x}) \boldsymbol{d}$$

Note. This can be used to find the expressions for ∇f and $\nabla^2 f$.

Assume A is symmetric; otherwise, replace A by $\tilde{A} = \frac{1}{2}(A + A^T)$.

$$f(\mathbf{x} + \mathbf{d}) = (\mathbf{x} + \mathbf{d})^T \mathbf{A} (\mathbf{x} + \mathbf{d}) + \mathbf{b}^T (\mathbf{x} + \mathbf{d}) + c$$

$$= \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{d}^T \mathbf{A} \mathbf{x} + \mathbf{x}^T \mathbf{A} \mathbf{d} + \mathbf{d}^T \mathbf{A} \mathbf{d} + \mathbf{b}^T \mathbf{x} + \mathbf{b}^T \mathbf{d} + c$$

$$= f(\mathbf{x}) + (2\mathbf{A}\mathbf{x} + \mathbf{b})^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T (2\mathbf{A}) \mathbf{d}$$

Comparison with the Taylor expansion shows that

$$\nabla f(\mathbf{x}) = 2\mathbf{A}\mathbf{x} + \mathbf{b}, \quad \nabla^2 f(\mathbf{x}) = 2\mathbf{A}.$$

Review: Definite matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite, denoted by $A \succeq \mathbf{0}$, if

- 1. it is symmetric, i.e. $A = A^T$
- 2. $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0, \forall \mathbf{x} \in \mathbb{R}^n$

It is positive definite, denoted by A > 0, if condition 2 is replaced by

2'. $x^T A x > 0$, $\forall x \in \mathbb{R}^n$ and $x \neq 0$.

Note. For a quadratic form $x^T A x$, can always assume A is symmetric, since

$$\mathbf{x}^{T} \mathbf{A} \mathbf{x} = \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{x} = \mathbf{x}^{T} \left(\frac{\mathbf{A} + \mathbf{A}^{T}}{2} \right) \mathbf{x}$$

A is negative (semi)definite if -A is positive (semi)definite.

A is indefinite if it is neither positive semidefinite nor negative semidefinite, i.e. there exists $x_1, x_2 \in \mathbb{R}^n$ s.t.

$$\boldsymbol{x}_1^T \boldsymbol{A} \boldsymbol{x}_1 > 0 > \boldsymbol{x}_2^T \boldsymbol{A} \boldsymbol{x}_2$$

A vector ${\bf x}$ is an eigenvector of a matrix ${\bf A}$ with associated eigenvalue λ if

$$Ax = \lambda x$$

We can find all eigenvalues by solving $\det(\lambda \mathbf{I} - \mathbf{A}) = 0$.

Theorem. Let A be a symmetric matrix.

- $A \succ 0$ iff all its eigenvalues $\lambda > 0$.
- $A \succeq \mathbf{0}$ iff all its eigenvalues $\lambda \geq 0$.

Exmaple.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
 is positive definite.

$$\det(\lambda I - A) = (\lambda - 1)(\lambda - 5) - 4 = 0 \implies \lambda = 3 \pm 2\sqrt{2} > 0$$

Exmaple.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 is positive semidefinite.

$$\det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda - 1)(\lambda - 4) - 4 = 0 \implies \lambda_1 = 0, \lambda_2 = 5$$

Given matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, a $k \times k$ principal submatrix of A consists of k rows and k columns with the same indices $I = \{i_1 < i_2 < \cdots < i_k\}$,

$$A_I = egin{pmatrix} a_{i_1i_1} & \cdots & a_{i_1i_k} \ dots & \ddots & dots \ a_{i_ki_1} & \cdots & a_{i_ki_k} \end{pmatrix}$$

A principal minor of order k of A is $\det A_I$ for some I with |I| = k.

If $I = \{1, 2, ..., k\}$, $D_k(A) \triangleq \det A_I$ is called the leading principal minor of order k.

Theorem (Sylvester). Let A be a symmetric matrix.

- $A \succ O$ iff $D_k(A) > 0$ for k = 1, 2, ..., n.
- $A \succeq \mathbf{0}$ iff $\det A_I \geq 0$ for all $I \subset \{1, 2, \dots, n\}$

Note. For positive semidefiniteness, we need to check all principal minors, not just the leading principal minors.

Exmaple.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
 is positive definite.

$$D_1(A) = \det(1) = 1 > 0, \quad D_2(A) = \det A = 1 > 0$$

Example.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 is positive semidefinite.

$$D_1(A) = \det(1) = 1, \ \det A_{\{2\}} = \det(4) = 4, \ D_2(A) = \det A = 0$$

Note. It is not enough to check $D_k(A) \ge 0$ for all k!

Example.
$$A = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$$
 is negative semidefinite,

$$D_1(A) = \det(0) = 0, \quad D_2(A) = \det A = 0,$$

but

$$\det \mathbf{A}_{\{2\}} = \det(-2) = -2 < 0$$

Exmaple.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
 is positive definite.

· Use definition,

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = x_1^2 + 4x_1 x_2 + 5x_2^2 = (x_1 + 2x_2)^2 + x_2^2 \ge 0, \quad \forall \mathbf{x} \in \mathbb{R}^2$$
 with equality $\iff \begin{cases} x_1 + 2x_2 = 0 \\ x_2 = 0 \end{cases} \iff \mathbf{x} = 0$

• Find eigenvalues by solving $det(\lambda I - A) = 0$

$$\det \begin{pmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 5 \end{pmatrix} = (\lambda - 1)(\lambda - 5) - 4 = 0 \implies \lambda = 3 \pm 2\sqrt{2} > 0$$

Check leading principal minors

$$D_1(A) = \det(1) = 1 > 0, \quad D_2(A) = \det A = 1 > 0$$

Exmaple.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 8 \\ 1 & 8 & 1 \end{pmatrix}$$
 is not positive definite.

Check leading principal minors

$$D_1(A) = \det(1) = 1 > 0, \quad D_2(A) = \det\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = 1 > 0$$

$$D_3(\mathbf{A}) = \det \mathbf{A} = 1 \times \begin{vmatrix} 5 & 8 \\ 8 & 1 \end{vmatrix} - 2 \times \begin{vmatrix} 2 & 8 \\ 1 & 1 \end{vmatrix} + 1 \times \begin{vmatrix} 2 & 5 \\ 1 & 8 \end{vmatrix} = -36 < 0$$

Can also check eigenvalues, e.g. using numpy.linalg.eig,

$$\lambda_1 = 11.69585173, \quad \lambda_2 = 0.58307572, \quad \lambda_3 = -5.27892745$$

Review: Eigendecomposition

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ has the following eigendecomposition

$$A = \mathbf{Q}\Lambda\mathbf{Q}^T = \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^T$$

where $\Lambda = \text{diag}\{\lambda_1, \dots, \lambda_n\}$, $Q = (v_1, \dots, v_n)$ is an orthogonal matrix, i.e. $Q^T Q = Q Q^T = I$, and $A v_i = \lambda_i v_i$.

Example. $A=\frac{1}{4}\begin{pmatrix}3&-1\\-1&3\end{pmatrix}$ has eigenvalues $\lambda_1=\frac{1}{2}$ and $\lambda_2=1$, with corresponding eigenvectors $\mathbf{v}_1=\frac{1}{\sqrt{2}}(1,1)^T$ and $\mathbf{v}_2=\frac{1}{\sqrt{2}}(-1,1)^T$. The eigendecomposition is

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}^T + \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}^T$$

Review: Eigendecomposition

Consider the linear transformation $x \mapsto y = Ax$.

Recall v_1, \ldots, v_n form an orthonormal basis of \mathbb{R}^n , so

$$x = Q\tilde{x} = \sum_{i=1}^{n} \tilde{x}_{i}v_{i}, \quad y = Q\tilde{y} = \sum_{i=1}^{n} \tilde{y}_{i}v_{i}$$

where

$$\tilde{\mathbf{x}} = \mathbf{Q}^T \mathbf{x}, \quad \tilde{\mathbf{y}} = \mathbf{Q}^T \mathbf{y},$$

Thus

$$y = Ax \iff Q^T y = Q^T A Q \tilde{x} \iff \tilde{y} = \Lambda \tilde{x}$$

In components,

$$\tilde{x}_i = \mathbf{v}_i^T \mathbf{x}, \quad \tilde{y}_i = \mathbf{v}_i^T \mathbf{y}$$

SO

$$\mathbf{y} = A\mathbf{x} = \sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T} \mathbf{x} = \sum_{i=1}^{n} (\lambda_{i} \tilde{\mathbf{x}}_{i}) \mathbf{v}_{i} \iff \tilde{\mathbf{y}}_{i} = \lambda_{i} \tilde{\mathbf{x}}_{i}$$

Review: Eigendecomposition

Review: Geometry of quadratic forms

Quadratic form $f(x) = x^T A x$ in \mathbb{R}^2

 $A = diag\{1, 1\}$ positive definite

 $A = diag\{0, 1\}$ positive semidefinite

 $A = diag\{1, -1\}$ indefinite

 $A = diag\{-1, -1\}$ negative definite

 $A = diag\{-1, 0\}$ negative semidefinite

Review: Geometry of quadratic forms

Quadratic form $f(x) = x^T A x$ in \mathbb{R}^2

$$A = diag\{1, 1\}$$

$$\boldsymbol{A} = \mathsf{diag}\{\tfrac{1}{2},1\}$$

$$\mathbf{A} = \frac{1}{4} \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$$

Review: Bounds on quadratic forms

Proposition. For a symmetric matrix $A \in \mathbb{R}^{n \times n}$,

$$\lambda_{\min} \|\mathbf{x}\|_2^2 \le \mathbf{x}^T \mathbf{A} \mathbf{x} \le \lambda_{\max} \|\mathbf{x}\|_2^2, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

where λ_{\max} and λ_{\min} are the largest and the smallest eigenvalues of A, respectively.

Proof. Recall that A can be orthogonally diagonalized, i.e. $A = Q\Lambda Q^T$, where $\Lambda = \text{diag}\{\lambda_1, \dots, \lambda_n\}$ and $Q^TQ = I$. Let $x = Q\tilde{x}$.

$$\boldsymbol{x}^T A \boldsymbol{x} = \tilde{\boldsymbol{x}}^T (\boldsymbol{Q}^T A \boldsymbol{Q}) \tilde{\boldsymbol{x}} = \tilde{\boldsymbol{x}}^T \Lambda \tilde{\boldsymbol{x}} = \sum_{i=1}^n \lambda_i \tilde{\boldsymbol{x}}_i^2 \le \sum_{i=1}^n \lambda_{\max} \tilde{\boldsymbol{x}}_i^2 = \lambda_{\max} \|\tilde{\boldsymbol{x}}\|_2^2$$

Then use the fact that orthogonal transformations preserve 2-norm, i.e.

$$\|\boldsymbol{x}\|_{2}^{2} = \boldsymbol{x}^{T}\boldsymbol{x} = (\boldsymbol{Q}\tilde{\boldsymbol{x}})^{T}(\boldsymbol{Q}\tilde{\boldsymbol{x}}) = \tilde{\boldsymbol{x}}^{T}(\boldsymbol{Q}^{T}\boldsymbol{Q})\tilde{\boldsymbol{x}} = \tilde{\boldsymbol{x}}^{T}\tilde{\boldsymbol{x}} = \|\tilde{\boldsymbol{x}}\|_{2}^{2}.$$

Similarly for $x^T A x \ge \lambda_{\min} ||x||_2^2$.

Second-order necessary condition

Theorem. If $f: \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable and x^* is a local minimum of f, then its Hessian matrix $\nabla^2 f(x^*)$ is positive semidefinite, i.e.

$$\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} \ge 0, \quad \forall \mathbf{d} \in \mathbb{R}^n$$

Proof. Fix $d \in \mathbb{R}^n$. By the first-order necessary condition, $\nabla f(x^*) = \mathbf{0}$. By the second-order Taylor expansion, for any t > 0,

$$f(\mathbf{x}^* + t\mathbf{d}) = f(\mathbf{x}^*) + \frac{t^2}{2}\mathbf{d}^T \nabla^2 f(\mathbf{x})\mathbf{d} + o(t^2 ||\mathbf{d}||^2) \ge f(\mathbf{x}^*)$$

So

$$\frac{1}{2}\boldsymbol{d}^T \nabla^2 f(\boldsymbol{x}) \boldsymbol{d} + o(\|\boldsymbol{d}\|^2) \ge 0$$

Taking the limit $t \to 0$ yields $d^T \nabla f(x^*) d^T \ge 0$.

Note. Can apply the same argument to $g(t) = f(\mathbf{x}^* + t\mathbf{d})$ with local minimum $t^* = 0$ and use chain rule to obtain $g''(0) = \mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} \ge 0$.

Second-order sufficient condition

Theorem. Suppose f is twice continuously differentiable. If

- $1. \nabla f(\mathbf{x}^*) = 0$
- 2. $\nabla^2 f(\mathbf{x}^*)$ is positive definite, i.e.

$$\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} > 0, \quad \forall \mathbf{d} \neq \mathbf{0}$$

then x^* is a local minimum.

Proof. Use second-order Tayler expansion.

Note. In condition 2, positive definiteness cannot be replaced by positive semidefiniteness.

Second-order sufficient condition (cont'd)

 $\nabla f(\mathbf{0}) = \mathbf{0}$ and $\nabla^2 f(\mathbf{0}) = \mathbf{0}$ for all examples below.

