Návrh analogových integrovaných obvodů Ústav mikroelektroniky FEKT VUT v Brně			Jméno Tomáš	Vavrinec	ID 240893
			Ročník	Obor MET	Skupina
Spolupracoval –	Měřeno dne –	Odevzdáno d	lne –	Hodnocen	í
Název zadání Extrakce parametrů tranzistorů MOSFET ze SPICE modelu					Č. úlohy 1

ZADÁNÍ ÚLOHY

Simulacemi zjistěte tyto parametry tranzistorů NMOS a PMOS:

- 1. Transkonduktační parametr KP
 - Při ID = 10 μA
- 2. Prahového napětí UTH0 pro dvě různé řady rozměrů tranzistorů.
 - (a) konstantní poměr W/L = 5, kdy L = 0.18u, 0.3u, 0.5u, 0.8u, 1u, 2u, 3u, 5u, 10u; potom: <math>W = 0.9u, 1.5u, 2.5u, 4u, 5u, 10u, 15u, 25u, 50u.
 - (b) různé rozměry: W/L = 0.22u/0.18u; 1u/0.5u; 2u/0.5u; 2u/1u; 5u/1u; 5u/2u; 10u/5u; 10u/10u
- 3. Závislost prahového napětí UTH na USB/UBS (bulk efekt)
 - Simulací získejte hodnoty prahového napětí UTH pro napětí UBS (NMOS) resp. USB (PMOS) v rozsahu 0V až 1V s krokem 100mV. $W/L = (5/1)\mu m$
- 4. Závislost parametru modulace délky kanálu (λ) na délce kanálu (L)
 - Simulací získejte hodnoty parametru λ pro L v rozmezí 200nm až $10\mu m$. W/L=5.

Výstupem do elearningu bude soubor pdf s přehledně zpracovatelnými parametry v tabulkách.

1 Vypracování

1.1 Transkonduktační parametr KP

Obr. 1: Zapojení pro určení U_{TH0} pro tranzistor NMOS a PMOS

Obr. 2: Závislost proudu tranzistorem NMOS i PMOS na napětí V_{GS}

Z uvedených kurzoru přímo vidímě strmost g_m , 140.8 μS pro NMOS a 73.2 μS pro PMOS. Mužeme tedy spočítat transkonduktanční parametr KP jako:

$$KP = \frac{g_m^2 \cdot L}{2 \cdot |I_D| \cdot W}$$

Tedy pro NMOS:

$$KP_N = \frac{g_{m-N}^2 \cdot L}{2 \cdot |I_{D-N}| \cdot W} = \frac{(140.8\mu)^2 \cdot 1\mu}{2 \cdot 10\mu \cdot 5\mu} = 198.2\mu AV^{-2} \cong 200\mu AV^{-2}$$

A PMOS:

$$KP_P = \frac{g_{m-P}^2 \cdot L}{2 \cdot |I_{D-P}| \cdot W} = \frac{(73.2\mu)^2 \cdot 1\mu}{2 \cdot 10\mu \cdot 5\mu} = 53.6\mu AV^{-2} \cong 50\mu AV^{-2}$$

1.2 Prahové napětí U_{TH0}

1.2.1 Prahové napětí U_{TH} při konstantním poměru W/L=5

```
.lib modely/cmos018.txt
.STEP param ltab ltab 0.18u, 0.3u, 0.5u, 0.8u, 1u, 2u, 3u, 5u, 10u
.param wtab = 5*ltab
.DC VGS 0.1 0.6 1m
.MEAS DC UTH FIND V(VG) WHEN Id(M1)=1e-7*{Wtab/Ltab} ; Pro NMOS
.MEAS DC UTH FIND '1.8-V(VG)' WHEN Is(M1)=1e-7*{Wtab/Ltab}; Pro PMOS
```

Listing 1: Použitý kod simulace při konstantním poměru W/L=5 pro NMOS

$L[\mu m]$	$U_{TH}[V]$
0.18	0.387049
0.3	0.41657
0.5	0.407158
0.8	0.387258
1	0.379089
2	0.363292
3	0.35885
5	0.355575
10	0.352901

0.18	0.450782
0.3	0.449915
0.5	0.446555
0.8	0.439249
1	0.435497
2	0.426509
3	0.423538
5	0.421494
10	0.420673

 $\overline{U_{TH}}$

 $L[\mu m]$

Obr. 3: (NMOS)

Obr. 4: (PMOS)

Obr. 5: Simulované U_{TH} při konstantním poměru W/L=5 pro NMOS i PMOS

1.2.2 Prahové napětí U_{TH} při různém poměru W/L

```
lib modely/cmos018.txt
.param Wtab=table(n, 1,0.22u, 2,1u, 3,2u, 4,2u, 5,5u, 6,5u, 7,10u, 8,10u, 9,40u)
.param Ltab=table(n, 1,0.18u, 2,0.5u, 3,0.5u, 4,1u, 5,1u, 6,2u, 7,5u, 8,10u, 9,10u)
.step param n 1 9 1
.meas DC UTH FIND V(VG) WHEN Id(M1)=1e-7*Wtab/Ltab ; Pro NMOS .meas DC UTH FIND '1.5-V(VG)' WHEN Is(M1)=1e-7*Wtab/Ltab; Pro PMOS .dc VGS 0 1 1m
```

Listing 2: Použitý kod simulace při různém poměru W/L pro NMOS

$L[\mu m]$	$W[\mu m]$	$U_{TH}[V]$
0.18	0.22	0.397662
0.5	1	0.435475
0.5	2	0.406836
1	2	0.409012
1	5	0.369573
2	5	0.383619
5	10	0.385731
10	10	0.414982
10	40	0.352903

$L[\mu m]$	$W[\mu m]$	$U_{TH}[V]$
0.18	0.22	0.450451
0.5	1	0.478466
0.5	2	0.445964
1	2	0.471502
1	5	0.424565
2	5	0.451127
5	10	0.458776
10	10	0.50177
10	40	0.420697

Obr. 6: (NMOS)

Obr. 7: (PMOS)

Obr. 8: Simulované U_{TH} při při promněnném poměru W/L pro NMOS i PMOS

1.3 Závislost prahového napětí U_{TH} na napětí bulku

Obr. 9: Zapojení pro určení závislosti U_{TH} na napětí bulku pro tranzistor NMOS a PMOS

```
.lib modely/cmos018.txt
.STEP VSB 0 1 10m
.DC VGS 0 1 1m
.MEAS DC UTH FIND 'V(VG)-V(SB)' WHEN Id(M1)=500n ; Pro NMOS
.MEAS DC UTH FIND '1.8-V(VG)' WHEN Is(M1)=500n ; Pro PMOS
```

Listing 3: Kod simulace pro určení závislosti U_{TH} na napětí bulku, pro NMOS

Obr. 10: Závislost proudu tranzistorem NMOS i PMOS na napětí V_{GS} Z grafu je patrné, že U_{TH} je na napětí U_{SB} závislé zhruba lineárně.

$V_{SB}[V]$	0.2	0.25	0.3	0.4	0.5
NMOS[V]	0.441924	0.455382	0.468576	0.49423	0.518991
PMOS[V]	0.492198	0.506443	0.520438	0.547734	0.574181

Tabulka 1: U_{TH} pro různá napětí bulku

1.4 Závislost modulace délky kanálu (λ) na délce kanálu (L)

Obr. 11: Zapojení pro určení závislosti modulace delky kanálu λ na delce kanálu L

```
lib cmos018.txt

step param lset 0.1u 10u 0.02u

param wset=5*lset

meas DC ID1 FIND Id(M1) WHEN V(VD)=0.5

meas DC ID2 FIND Id(M1) WHEN V(VD)=1.3

meas DC ID0 FIND Id(M1) WHEN V(VD)=0.9

meas rout param (1.3-0.5)/(ID2-ID1)

meas lambda param 1/(ID0*rout)

dc UDS 0.5 1.3 10m
```

Listing 4: Kod simulace použítí pro získání závislosti modulované délky kanálu λ na délce kanálu L

Obr. 12: Závislost parametru λ na délce kanálu L při poměru W/L=5

$L[\mu m]$	0.5	0.8	1	1.2	2	5
NMOS $\lambda[V^{-1}]$	0.122001	0.0879154	0.0754561	0.0662601	0.0441692	0.018685
PMOS $\lambda[V^{-1}]$	0.0722841	0.0537329	0.0470051	0.0421748	0.0307284	0.0144616

Tabulka 2: λ pro různé délky kanálu L

2 Závěr

$L[\mu m]$	$U_{TH0}[V]$	$L[\mu n]$
		L,
0.18	0.387049	0.18
0.3	0.41657	0.3
0.5	0.407158	0.5
0.8	0.387258	0.8
1	0.379089	1
2	0.363292	2
3	0.35885	3
5	0.355575	5
10	0.352901	10

Tabulka 1: Výsledky simulace při konstantním poměru W/L=5

$L[\mu m]$	$W[\mu m]$	$U_{TH0}[V]$
0.18	0.22	0.397662
0.5	1	0.435475
0.5	2	0.406836
1	2	0.409012
1	5	0.369573
2	5	0.383619
5	10	0.385731
10	10	0.414982
10	40	0.352903

(NMOS)

$L[\mu m]$	$W[\mu m]$	$U_{TH0}[V]$
0.18	0.22	0.450451
0.5	1	0.478466
0.5	2	0.445964
1	2	0.471502
1	5	0.424565
2	5	0.451127
5	10	0.458776
10	10	0.50177
10	40	0.420697

(PMOS)

 $\begin{array}{c} U_{TH0}[V] \\ 0.450782 \\ 0.449915 \\ 0.446555 \\ 0.439249 \\ 0.426509 \\ 0.423538 \\ 0.421494 \\ 0.420673 \end{array}$

(NMOS) (PMOS)

Tabulka 2: Výsledky simulace při různém poměru $W/L=5\,$

$V_{SB}[V]$	0.2	0.25	0.3	0.4	0.5
NMOS[V]	0.441924	0.455382	0.468576	0.49423	0.518991
PMOS[V]	0.492198	0.506443	0.520438	0.547734	0.574181

Tabulka 3: U_{TH} pro různá napětí bulku

$L[\mu m]$	0.5	0.8	1	1.2	2	5
NMOS $\lambda[V^{-1}]$	0.122001	0.0879154	0.0754561	0.0662601	0.0441692	0.018685
PMOS $\lambda[V^{-1}]$	0.0722841	0.0537329	0.0470051	0.0421748	0.0307284	0.0144616

Tabulka 4: λ pro různé délky kanálu L