PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

Sis Carrefour des Carreaux, Immeuble 3ème étage

Tél.: 696 16 46 86

E-mail.: prepas.internationales@yahoo.com Site: www.prepas-internationales.org

MECANIQUE DU POINT MATERIEL DEVOIR SURVEILLE DU 16-01-2021, Durée 1H Année académique 2020-2021

EXERCICE I (10 POINTS)

On veut étudier la réponse de l'oscillateur mécanique (masseressort), soumis à une excitation sinusoïdale (voir figure cicontre). L'équation différentielle régissant la dynamique de ce système est donnée par $\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = F_0 \cos \omega t$ (E) où λ , ω_0 , ω et F_0 sont des grandeurs positives. La grandeur $\lambda = \mu \omega_0$ représente le coefficient d'amortissement, où ω_0 est la pulsation propre du système.

1. Déterminer la solution générale de l'équation sans second membre (SGESSM) de l'équation différentielle (E) de ce système pour les valeurs de μ prises dans l'intervalle [0,1].... 2. Déterminer la solution particulière de l'équation complète et exprimer les constantes de cette solution particulière en fonction de ω_0 , ω , μ et F_0 . 3. Mettre la solution particulière sous la forme $Y_0 \cos(\omega t - \varphi)$ et déterminer $\tan \varphi$ en fonction de ω_0 , ω , μ ...2pts 4. Calculer l'incertitude relative sur μ en fonction de φ et $\Delta \varphi$ sachant que $\Delta \omega_0$ et $\Delta \omega$ sont négligeables.....4pts

EXERCICE II (10 POINTS)

Soient $\vec{\mathbf{V}}(x, y, z) = x(z^2 - y^2)\vec{\mathbf{i}} + y(x^2 - z^2)\vec{\mathbf{j}} + z(y^2 - x^2)\vec{\mathbf{k}}$, $\vec{\mathbf{U}}(x, y, z) = y(x^2z - z^3/3)\vec{\mathbf{i}} + x(y^2z - z^3/3)\vec{\mathbf{j}}$ et $\vec{\mathbf{W}}(x, y, z) = (x + z)\vec{\mathbf{i}} + y^2\vec{\mathbf{j}} + x\vec{\mathbf{k}}$ trois champs de vecteurs définis dans le repère cartésien $(O, \vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}})$. 1. Calculer la divergence du champ vectoriel $\vec{\mathbf{V}}$ et conclure. 2. Calculer le rotationnel des champs vectoriels $\vec{\mathbf{U}}$ et $\vec{\mathbf{W}}$ et conclure. 3. Déduire s'il existe, l'expression du potentiel dont dérive les champs vectoriels \vec{V} et \vec{W} . **4.** Calculer la circulation du champ vectoriel $\vec{\mathbf{W}}$ entre les positions A(R,0,0) et $B(R,0,2\pi a)$: **a.** Le long d'un arc d'équations paramétriques : $x = R\cos t$, $y = R\sin t$, z = at. **b.** Le long de la droite (AB), puis conclure. 1.5pt c. En utilisant si possible le potentiel dont dérive le vecteur $\bar{\mathbf{W}}$. 5. Faire un commentaire claire en s'appuyant sur les résultats obtenus aux questions 3 et 4