Amendments

Amendments to the Claims

The present listing replaces all previous listings.

1. (Currently Amended) A proton-exchange membrane having a structure of mesogen-containing organic molecular chains and a proton-donating group-containing group covalent-bonding to a silicon-oxygen three-dimensional crosslinked matrix, in which at least a part of the organic molecular chains are oriented to form an aggregate thereof, and a sulfonic acid sol is used, the sulfonic acid sol being obtained through oxidization of a solution that contains an organosilicon compound of the following formula (IV), and an organosilicon compound of the following formula (VI) and/or (VII):

wherein A₃ represents the following formula (XIII):

$$-\left[Q_{1\overline{1}}-Y_{1\overline{1}}-Q_{12}\right]_{m9} - (XIII)$$

wherein Q_{11} and Q_{12} each represent a divalent linking group or a single bond; Y_{11} is a divalent, 4- to 7-membered ring residue, or a condensed ring residue composed of such rings; and m9 indicates an integer of from 1 to 3; R_4 represents an alkyl group, an aryl group or a heterocyclic group; R_5 represents a hydrogen atom, an alkyl group, an aryl group or a silyl group; Y represents a polymerizing group capable of forming a carbon-carbon bond or a carbon-oxygen bond through polymerization; m_{41} indicates an integer of from 1 to 3; n_{41} indicates 1 or 2; n_{42} indicates 0 or 1; when m_{41} is 2 or more, R_5 may be the same or different,

USSN 10/807,689 Response to April 27, 2007 Office Action

HS—
$$B_2$$
— $\begin{bmatrix} (R_8)_{3-m6} \\ \\ \\ \\ \end{bmatrix} n_6$ (VI)

$$\left\{ S - B_3 - \left[\begin{array}{c} (R_{10})_{3-m7} \\ \\ -S_1 - (O - R_{11})_{m7} \end{array} \right]_{n_7} \right\}_{2}$$
(VII)

wherein B₂ and B₃ each represent a linking group that contains an aliphatic group and/or an aromatic group; R₈ and R₁₀ each represent an alkyl group or an aryl group; m6 and m7 each indicate a integer of from 1 to 3; n6 and n7 each indicate an integer from 1 to 4; R₉ and R₁₁ each represent a hydrogen atom, an alkyl group, an aryl group or a silyl group; when m6 or m7 is 2 or more, R₉ or R₁₁ may be the same or different.

2. (Withdrawn) The proton-exchange membrane of claim 1, which contains a partial structure of the following formula (I):

wherein A_{11} represents a mesogen-containing organic atomic group; R_1 represents an alkyl group, an aryl group or a heterocyclic group; m11 indicates an integer of from 1 to 3; n_{11} indicates an integer of from 1 to 8; n_{12} indicates an integer of from 0 to 4; * indicates the position at which the structure bonds to a silicon atom; and ** indicates the position at which the structure bonds to an organic polymer chain.

3. (Withdrawn) The proton-exchange membrane of claim 1, wherein the proton-donating group covalent-bonds to the silicon-oxygen three-dimensional crosslinked matrix via a structure of the following formula (III):

$$E_{1} - B_{1} - \begin{bmatrix} (R_{3})_{3-m3} \\ | \\ Si - (O - *)_{m3} \end{bmatrix}_{n_{3}}$$
 (III)

wherein B₁ represents a linking group that contains an aliphatic group and/or an aromatic group; R₃ represents an alkyl group or an aryl group; E₁ represents a proton-donating group; m3 indicates an integer of from 1 to 3; n₃ indicates an integer of from 1 to 4; and * indicates the position at which the structure bonds to a silicon atom.

4. (Withdrawn) The proton-exchange membrane of claim 1, which is obtained through sol-gel reaction of a precursor, organosilicon compound of the following formula (IV):

$$(Y)_{n_{42}} A_3 - \begin{bmatrix} (R_4)_{3-m_{41}} \\ | \\ -(O-R_5)_{m41} \end{bmatrix}_{n_{41}}$$
 (IV)

wherein A_3 represents a mesogen-containing organic atomic group; R_4 represents an alkyl group, an aryl group or a heterocyclic group; R_5 represents a hydrogen atom, an alkyl group, an aryl group or a silyl group; Y represents a polymerizing group capable of forming a carbon-carbon bond or a carbon-oxygen bond through polymerization; m41 indicates an integer of from 1 to 3; n^{41} indicates an integer of from 1 to 8; n^{42} indicates an integer of from 0 to 4; when m41 is 2 or more, R_5 's may be the same or different.

5. (Canceled)

6. (Withdrawn) The proton-exchange membrane of claim 1, which is obtained through sol-gel reaction of a compound of the following formula (IV) with from 1 mol % to 50 mol % of a compound of the following formula (VIII):

wherein A_3 represents a mesogen-containing organic atomic group; R_4 represents an alkyl group, an aryl group or a heterocyclic group; R_5 represents a hydrogen atom, an alkyl group, an aryl group or a silyl group; Y represents a polymerizing group capable of forming a carbon-carbon bond or a carbon-oxygen bond through polymerization; m41 indicates an integer of from 1 to 3; n_{41} indicates an integer of from 1 to 8; n_{42} indicates an integer of from 0 to 4; when m41 is 2 or more, R_5 's may be the same or different,

$$(Y_2)_{n_{82}} A_5 - (Z_1)_{n_{81}}$$
 (VIII)

wherein A_5 represents a mesogen-containing organic atomic group; Z_1 represents a substituent not changing in sol-gel reaction, or a hydrogen atom; n_{81} indicates an integer of from 1 to 8; n_{82} indicates an integer of from 0 to 4; Y_2 represents a polymerizing group capable of forming a carbon-carbon bond or a carbon-oxygen bond through polymerization; when n_{81} is 2 or more, Z_1 's may be the same or different.

7. (Currently Amended) The proton-exchange membrane of claim 1, in which is used a sel the organosilicon compound of formula (IV) and/or (VI) is obtained through hydrolysis and polycondensation of a precursor of the following formula (XX) in the presence of water and an oxidizing agent:

USSN 10/807,689 Response to April 27, 2007 Office Action

$$OH$$
 HO_3S —— L_4 —— Si —— OH (XX)
 OH

wherein L₄ represents a divalent linking group.

8. (Withdrawn) The proton-exchange membrane of claim 1, in which is used a sol obtained through hydrolysis and polycondensation of a precursor of the following formula (X) and/or (XI) in the presence of water and an oxidizing agent:

$$(R_{15})_{3-n9}$$

 $(R_{14}O)_{\overline{n9}}$ Si —— $L_{\overline{1}}$ (SH)_p (X)

wherein L_1 represents a (p+1)-valent linking group; R_{14} and R_{15} each represent an alkyl group or an aryl group; n9 indicates 2 or 3; at least one R_{14} is an alkyl or aryl group having at least 3 carbon atoms; R_{14} 's may be the same or different; and p indicates an integer of from 1 to 3,

$$(R_{17})_{3-n10}$$
 $(R_{18})_{3-n11}$ (XI) $(R_{16}O)_{\overline{n10}}$ Si $--- (S)_{\overline{q}}$ $--- -- -- -- (OR_{19})_{n11}$

wherein L_2 and L_3 each represent a divalent linking group, R_{16} to R_{19} each represent an alkyl group or an aryl group; n10 and n11 each indicate 2 or 3; at least one R_{16} and at least one R19 each are an alkyl or aryl group having at least 3 carbon atoms; R_{16} 's and R_{19} 's each may be the same or different; and q indicates an integer of from 2 to 4.

9. (Original) A membrane electrode assembly comprising the proton-exchange membrane of claim 1.

- 10. (Original) A fuel cell comprising the proton-exchange membrane of claim 1.
- 11. (Withdrawn) A silica sol composition obtained through hydrolysis and polycondensation of at least one precursor of the following formulae (X) and (XI) in the presence of water and an oxidizing agent:

$$(R_{15})_{3-n9}$$
 $(R_{14}O)_{\overline{n9}}$ Si — L_{1} — $(SH)_{p}$ (X)

wherein L_1 represents a (p+1)-valent linking group; R_{14} and R_{15} each represent an alkyl group or an aryl group; n9 indicates 2 or 3; at least one R_{14} is an alkyl or aryl group having at least 3 carbon atoms; R_{14} 's may be the same or different; and p indicates an integer of from 1 to 3,

$$(R_{17})_{3-n10} \qquad (R_{18})_{3-n11} \\ (R_{16}O)_{\overline{n10}} Si \longrightarrow L_2 \longrightarrow (S)_{\overline{q}} \longrightarrow L_3 \longrightarrow Si \longrightarrow (OR_{19})_{n11}$$
 (XI)

wherein L_2 and L_3 each represent a divalent linking group, R_{16} to R_{19} each represent an alkyl group or an aryl group; n10 and n11 each indicate 2 or 3; at least one R_{16} and at least one R_{19} each are an alkyl or aryl group having at least 3 carbon atoms; and q indicates an integer of from 2 to 4.

12. (New) The proton-exchange membrane according to Claim 1, wherein Q_{11} and Q_{12} each represent -CH=CH-, -CH=N-, -N=N-, -N(O)=N-, -COO-, -COS-, -CONH-, -COCH₂-, -CH₂CH₂-, -OCH₂-, -CH₂NH-, -CH₂-, -CO-, -O-, -S-, -NH-, -(CH₂)_(1 to 3)-, -CH=CH-COO-, -CH=CH-CO-, -(C \equiv C)_(1 to 3)-, or their combination, more preferably -CH₂-, -CO-, -O-, -CH=CH-, -CH=N-, -N=N-, or their combination.

- 13. (New) The proton-exchange membrane according to Claim 1, wherein Y₁₁ represent a 6-membered aromatic group, a 4- to 6-membered saturated or unsaturated aliphatic group, a 5- or 6-membered heterocyclic group, or their condensed ring.
- 14. (New) The proton-exchange membrane according to Claim 1, wherein B_2 and B_3 each represent -CH=CH-, -CH=N-, -N=N-, -N(O)=N-, -COO-, -COS-, -CONH-, -COCH₂-, -CH₂CH₂-, -OCH₂-, -CH₂NH-, -CH₂-, -CO-, -O-, -S-, -NH-, -(CH₂)_(1 to 3)-, -CH=CH-COO-, -CH=CH-CO-, -(C=C)_(1 to 3)-, or their combination.
- 15. (New) The proton-exchange membrane of claim 1, which is obtained through solgel reaction of the compound of formula (IV) with from 1 mol % to 50 mol % of a compound of the following formula (VIII):

$$(Y_2)_{n_{82}} A_5 - (Z_1)_{n_{81}}$$
 (VIII)

wherein A_5 represents a mesogen-containing organic atomic group; Z_1 represents a substituent not changing in sol-gel reaction, or a hydrogen atom; n_{81} indicates an integer of from 1 to 8; n_{82} indicates an integer of from 0 to 4; Y_2 represents a polymerizing group capable of forming a carbon-carbon bond or a carbon-oxygen bond through polymerization; when n_{81} is 2 or more, Z_1 may be the same or different.

16. (New) The proton-exchange membrane of claim 1, in which is used a sol the organosilicon compound of formula (VI) and/or (VII) is obtained through hydrolysis and polycondensation of a precursor of the following formula (X) and/or (XI) in the presence of water and an oxidizing agent:

$$(R_{15})_{3-n9}$$
 $(R_{14}O)_{\overline{n9}}$ Si — L_{1} — $(SH)_{p}$ (X)

USSN 10/807,689 Response to April 27, 2007 Office Action

wherein L_1 represents a (p+1)-valent linking group; R_{14} and R_{15} each represent an alkyl group or an aryl group; n9 indicates 2 or 3; at least one R_{14} is an alkyl or aryl group having at least 3 carbon atoms; R_{14} 's may be the same or different; and p indicates an integer of from 1 to 3,

$$(R_{17})_{3-n10}$$
 $(R_{18})_{3-n11}$ (XI) $(R_{16}O)_{\overline{n10}}$ Si $--- (S)_{\overline{q}}$ $-- -- -- -- (OR_{19})_{n11}$

wherein L_2 and L_3 each represent a divalent linking group, R_{16} to R_{19} each represent an alkyl group or an aryl group; n10 and n11 each indicate 2 or 3; at least one R_{16} and at least one R19 each are an alkyl or aryl group having at least 3 carbon atoms; R_{16} and R_{19} each may be the same or different; and q indicates an integer of from 2 to 4.