M 362K Post-Class Homework 9

Xiaohui Chen EID: xc2388

February 23, 2015

3-39

Let L be the random variable that represents the amount of loss

The probability distribution given the loss is greater than 0 is shown below:

l	500	1,000	10,000	50,000	100,000
Pr(L=l L>0)	0.6	0.3	0.08	0.01	0.01

$$E[L|L>0] = 500*0.6 + 1000*0.3 + 10000*0.08 + 50000*0.01 + 100000*0.01 = 2900$$

The expected amount of loss is 2900

3-40

(a)

Let
$$x = Pr(D = 5000)$$
 and $y = Pr(D = 10000)$

Then
$$x + y = 1 - 0.82 - 0.1 = 0.08$$
 and $5000x + 10000y = 600 - 1000 * 0.1$

By solving the above two equations, we get x = 0.06 and y = 0.02

$$\therefore Pr(D = 5000) = 0.06 \text{ and } Pr(D = 10000) = 0.02$$

(b)

$$E[D^2] = 0 * 0.82 + 1000^2 * 0.1 + 5000^2 * 0.06 + 10000^2 * 0.02 = 360000$$

$$Var[D] = E[D^2] - (E[D])^2 = 0$$

$$\sigma_D = \sqrt{Var[D]} = 0$$

(c)

The probability distribution given that D > 0 is shown below:

d	1000	5000	10000
Pr(D=d D>0)	$\frac{1}{9}$	<u>6</u> 9	$\frac{2}{9}$

$$\therefore E[D|D>0] = 1000 * \frac{1}{9} + 5000 * \frac{6}{9} + 10000 * \frac{2}{9} = \frac{17000}{3} \approx 5666.67$$

(d)

$$E[D^2|D>0] = 1000^2 * \frac{1}{9} + 5000^2 * \frac{6}{9} + 10000^2 * \frac{2}{9} = 39000000$$

$$Var[D] = E[D^2|D>0] - (E[D|D>0])^2 = 39000000 - \left(\frac{17000}{3}\right)^2 = \frac{62000000}{9} \approx 6.88889 * 10^6$$

3-41

(a)

The probability distribution of X and Y are shown below:

_			
X	0	1	
Pr(X=x)	0.5	0.5	
У	0	1	2
Pr(Y=y)	0.25	0.5	0.25

$$E[X] = 0 * 0.5 + 1 * 0.5 = 0.5$$

$$E[X^2] = 0 * 0.5 + 1^2 * 0.5 = 0.5$$

$$Var[X] = E[X^2] - (E[X])^2 = 0.25$$

(b)

$$E[Y] = 0 * 0.25 + 1 * 0.5 + 2 * 0.25 = 1$$

$$E[Y^2] = 0^2 * 0.25 + 1^2 * 0.5 + 2^2 * 0.25 = 1.5$$

$$Var[Y] = E[Y^2] - (E[Y])^2 = 0.5$$

(c)

The probability distribution of X + Y is shown below

X+Y	0	1	2	3
Pr(X+Y)	0.25	0.25	0.25	0.25

$$E[X + Y] = 0 * 0.25 + 1 * 0.25 + 2 * 0.25 + 3 * 0.25 = 1.5$$

$$E[(X+Y)^2] = 0^2 * 0.25 + 1^2 * 0.25 + 2^2 * 0.25 + 3^2 * 0.25 = 3.5$$

$$Var[X + Y] = E[(X + Y)^{2}] - (E[X + Y])^{2} = 1.25$$

(d)

$$Var[X] + Var[Y] = 0.25 + 0.5 = 0.75 \neq 1.25 = Var[X + Y]$$

3-43

(a)

The probability distribution of X is shown below:

X	0	1	2
Pr(X=x)	0.25	0.5	0.25

$$E[X] = 0 * 0.25 + 1 * 0.5 + 2 * 0.25 = 1$$

$$E[X^2] = 0^2 * 0.25 + 1^2 * 0.5 + 2^2 * 0.25 = 1.5$$

$$Var[X] = E[X^2] - (E[X])^2 = 0.5$$

(b)

The probability distribution of Y is shown below:

У	0	1	2
Pr(Y=y)	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$

$$E[Y] = 0 * \frac{4}{9} + 1 * \frac{4}{9} + 2 * \frac{1}{9} = \frac{2}{3}$$

$$E[Y^2] = 0 * \frac{4}{9} + 1^2 * \frac{4}{9} + 2^2 * \frac{1}{9} = \frac{8}{9}$$

$$Var[Y] = E[Y^2] - (E[Y])^2 = \frac{8}{9} - (\frac{2}{3})^2 = \frac{4}{9}$$

(c)

The probability distribution of X+Y is shown below:

X+Y	0	1	2	3	4
Pr(X+Y)	$\frac{4}{36}$	$\frac{12}{36}$	$\frac{13}{36}$	$\frac{6}{36}$	$\frac{1}{36}$

$$E[X+Y] = 0 * \frac{4}{36} + 1 * \frac{12}{36} + 2 * \frac{13}{36} + 3 * \frac{6}{36} + 4 * \frac{1}{36} = \frac{5}{3}$$

$$E[(X+Y)^2] = 0^2 * \frac{4}{36} + 1^2 * \frac{12}{36} + 2^2 * \frac{13}{36} + 3^2 * \frac{6}{36} + 4^2 * \frac{1}{36} = \frac{67}{18}$$

$$Var[X+Y] = E[(X+Y)^2] - (E[X+Y])^2 = \frac{67}{18} - (\frac{5}{3})^2 = \frac{17}{18}$$

(d)

$$Var[X] + Var[Y] = 0.5 + \frac{4}{9} = \frac{17}{18} = Var[X + Y]$$

It is equal because the outcomes of X and Y are independent

3-44

(a)

Let B represents a boy is born and G represents a girl is borned

Therefore the outcome is shown below:

Therefore the outcome is shown below.							
Outcome	X_1	X_2	X_3	$X_1 + X_2 + X_3$	Probability		
BBB	0	0	0	0	0.125		
BBG	0	0	1	1	0.125		
BGB	0	1	0	1	0.125		
GBB	1	0	0	1	0.125		
GGB	1	1	0	2	0.125		
GBG	1	0	1	2	0.125		
BGG	0	1	1	2	0.125		
GGG	1	1	1	3	0.125		

The probability distribution of X is shown below:

X	0	1	2	3
Pr(X)	0.125	0.375	0.375	0.125

Therefore $X = X_1 + X_2 + X_3$

(b)

$$E[X_i] = 0 * 0.5 + 1 * 0.5 = 0.5$$

$$E[X_i^2] = 0^2 * 0.5 + 1^2 * 0.5 = 0.5$$

$$Var[X_i] = E[X_i^2] - (E[X_i])^2 = 0.25$$

(c)

$$E[X] = E[X_1] + E[X_2] + E[X_3] = 1.5$$

$$Var[X] = Var[X_1] + Var[X_2] + Var[X_3] = 0.75$$

The results are consistent

Sample Exam 3

(a)

Let X be the value of the datapoint

$$9 + 8 + 7 + 9 + 0 + 3) = 6.5$$

$$median = \frac{7+7}{2} = 7$$

mode = 9

$$midrange = \frac{0+10}{2} = 5$$

(b)

min = 0 and max = 10

(c)

Let i be the rank of the 80th percentile number

$$i = 0.8 * (24 + 1) = 20$$

Therefore the 80th percentile number is 9

(d)

$$E[X^2] = \frac{1}{24} * (7^2 + 8^2 + 4^2 + 6^2 + 9^2 + 10^2 + 2^2 + 7^2 + 8^2 + 9^2 + 3^2 + 6^2 + 9^2 + 8^2 + 4^2 + 9^2 + 10^2 + 1$$

$$6^2 + 5^2 + 9^2 + 8^2 + 7^2 + 9^2 + 0^2 + 3^2) = 49$$

$$Var = E[X^2] - (E[X])^2 = \frac{162}{23}$$

Let σ denotes the standard deviation

$$\sigma = \sqrt{Var} = 9\sqrt{\frac{2}{23}} \approx 2.65396$$

(e)

Let COV denotes coefficient of variance

$$COV = \frac{100*\sigma}{mean}\% \approx 40.8301\%$$

(f)

Let z denote the z-score

$$z = \frac{11 - mean}{\sigma} \approx 1.69558$$