Математическая логика и теория алгоритмов

Сергей Григорян

6 ноября 2024 г.

Содержание

1	Лекция 8			
	1.1 Выр-ем задачи через вып-ть ф-л	. 3		
	1.1.1 Обобщаем. Метод резолюций	. 5		
2	Лекция 9	7		
	2.1 Языки 1-ого порядка	. 7		
	2.1.1 Интерпретация	. 8		
	Лекция 10			
	3.1 Напоминание	C		

1 Лекция 8

Ф-лы		
Выполнимые	Невыполнимые	

1.1 Выр-ем задачи через вып-ть ф-л

1) Раскраски:

Дан граф G=(V,E). Цель, построить 3-раскраску $V \to \{\,1,2,3\,\}: (v,u) \in E \Rightarrow col(u) \neq col(v)$

Вершина
$$u \mapsto (p_u, q_u)$$
 цвет знач перем не сущ 00 1 2 10 3 11

Усл-ие на ребро:

$$(v,u)\mapsto (p_u\neq p_v)\vee (q_u\neq q_v)$$

Итоговая ф-ла:

$$\bigcap_{(v,u)\in E} (p_u \neq p_v) \lor (q_u \neq q_v)$$

Вып-ма т. и т. т., когда граф раскрашен в 3 цвета.

2) Расстановка ферзей:

$$n \times n$$
: $p_{ij} = \begin{cases} 1, \text{ на клетке } (i,j) \text{ стоит ферзь} \\ 0, \text{ иначе} \end{cases}$ $(p_{i1} \vee \ldots \vee p_{in})$ - в і-ой строке > 1 Ф. $(\neg p_{ij} \vee \neg p_{ik})$ - в і-ой строке ≤ 1 Ф $(\neg p_{ik} \vee \neg p_{jk})$ - в і-ой вертикали ≤ 1 Ф $(\neg p_{ij} \vee \neg p_{i-k,j-k})$ на диагонали ≤ 1 Ф $(\neg p_{ij} \vee \neg p_{i-k,j-k})$ на побочной диагонали ≤ 1 Ф

Вся ф-ла - конкатенация всех условий.

3) 3-ча о клике:

Дан граф $G, q_{uv} = 1 \iff (u, v) \in E$ Вопрос: \exists ? клика из k вершин.

$$(v_1, v_2, \dots, v_k) \colon \forall i \neq j, (v_i, v_j) \in E$$

$$\bigvee_{(v_1, v_2, \dots, v_k)} \bigwedge_{i \neq j} q_{v_i, v_j} -$$
длина $\sim C_n^k =$
$$= \frac{n!}{k!(n-k)!} > \frac{(n-k)^k}{k!} > \left(\frac{n-k}{k}\right)^k \underset{k=\frac{n}{10}}{=} 9^{\frac{n}{10}}$$

Можно ли понимать v_1, v_2, \dots, v_k как перемен. и написать ф-лу:

$$\bigwedge_{i \neq j} (v_i \neq v_j \land q_{v_i, v_j})?$$

Это не булева ф-ла, т. к. перем. встреч. в индексе.

$$p_u = egin{cases} 1, \ ext{u в клике} \ 0, \ ext{иначе} \ (p_u \wedge p_v)
ightarrow q_{uv} \ p_1 + p_2 + \ldots + p_n \geq k \end{cases}$$

Или: $(u, v) \notin E \Rightarrow (\neg p_u \land \neg p_v)$. Будем делать так:

$$p_{iu}$$
 - вершина u - i -ая в клике

$$(p_{i1} \lor \ldots \lor p_{in})$$
 - под каждым номером есть вершина, $i \in \{1, \ldots, k\}$ $i \neq j \Rightarrow (\neg p_{iv} \lor \neg p_{jv})$ - у одной верш. не м. б. 2 номеров. $(u,v) \not\in E \Rightarrow (\neg p_{iu} \lor \neg p_{jv})$ - антиребро не м. б. внутри клики.

1.1.1 Обобщаем. Метод резолюций

Ф-ла - конъюнкция всех усл. - КНФ.

Пусть дана КНФ, будем рассм. её как набор дизъюнктов.

Правило Res:

$$A \lor x$$
 $B \lor \neg x$ $A \lor B$ - резольвента

Утверждение 1.1. Если на данном наборе вып. $A \lor x$ и $B \lor \neg x$, то вып-мо и $A \lor B$

Следствие. Если исх. ф-ла вып-ма, то и все резольвенты тоже.

Пустой дизъюинкт: \bot

$$\begin{array}{c|c}
x & \neg x \\
\hline
 & \bot \\
\hline
 & x \lor y & \neg x \lor \neg y \\
\hline
 & y \lor \neg y \\
\hline
 & p \lor x & p \lor r \lor \neg x \\
\hline
 & p \lor r
\end{array}$$

Метод резолюций: строим всё новые резольвенты, пока либо не будет выведен \perp , либо не прекратится появление новых дизъюнктов.

Теорема 1.1 (О корректности метода резол.). *Если исх. ф-ла вып., то* \perp *нельзя* вывести.

Доказательство. Если можно вывести, то \bot будет ист., но он $\equiv 0$

Пример. Φ ерзи 2 x 2

$$egin{array}{c|c} p & q \\ \hline r & s \\ \hline \end{array}$$

Усл-ие:

$$p \vee q$$
$$r \vee s$$

$$\neg p \lor \neg q$$

$$\neg r \lor \neg q$$

$$\neg p \lor \neg s$$

$$\neg q \lor \neg r$$

$$p \lor q \qquad \neg p \lor \neg s$$

$$q \lor \neg s$$

Picture

Теорема 1.2. (О полноте) Eсли \bot нельзя вывести, то ϕ -ла выполнима.

Доказательство. Все выводимые дизъюнкты разобъём на классы.

$$C_0 \subset C_1 \subset C_2 \subset \ldots \subset C_k$$

 C_i - дизъюнкты, зависящ. только от переменных p_1, \dots, p_i ($C_0 = \emptyset$, т. к. \bot - невыводим).

Будем док-ть по инд-ции, что одновр. вып. все дизъюнкты из C_i . ММИ:

- База: $C_0 = \emptyset \Rightarrow$ очев.
- Переход: пусть все ф-лы из C_{i-1} вып-ны на знач. $a_1, \ldots a_{i-1}$. Рассм. ф-лы из C_i , кот. ещё не выполнены за счёт этих значений. Предположим, что среди них есть ф-ла с p_i и ф-ла с $\neg p_i$:

$$p_i \vee D_0$$
 и $\neg p_i \vee D_1$

Раз эти ф-лы остались, то $D_0(a_1,\ldots,a_{i-1})=0$ и $D_1(a_1,\ldots,a_{i-1})=0$. Но $D_0\vee D_1$ явл-ся резольвентой: $(p_i\vee D_0), (\neg p_i\vee D_1)$. Тогда $D_0\vee D_1\in C_{i-1}$, и тогда должно быть: $D_0\vee D_1=1!!!$ Следовательно, все оставшиеся ф-лы либо с $p_i\Rightarrow p_i=1$, либо с $\neg p_i\Rightarrow p_i=0$

Как это связано с тафтологиями? А это уже совсем другая история.

2 Лекция 9

Использование резолюций для проверки тавтологий:

 ϕ - тавтология $\iff \neg \phi$ - противоречие $\iff \neg \phi$ невып.

 ϕ - тавтология \iff из нек-ой задачи о вып-ти КНФ, постр. по $\neg \phi$, можно вывести \bot (Пустой дизъюнкт)

Резольвента:

$$\begin{array}{c|c} A \lor x & B \lor \neg x \\ \hline A \lor B & \end{array}$$

Получение ⊥:

$$\frac{p}{}$$

К исх. дизъюнктам добавляем все возм. резольв.

 $\Rightarrow \phi$ невып. \iff можно вывести \bot

Как по ϕ построить КНФ, используемый в методе??? (Преобразование Цейтина)

Пример.

$$(p \land q) \lor (r \to \neg s)$$

Строим дерево.

Тут получили 3-КНФ: в каждой скобке ≤ 3 литерала.

На 2-КН Φ метод. резол. работает за O(n) шагов.

На 3-КНФ может быть экспоненциально долгим.

2.1 Языки 1-ого порядка

Алфавит:

- 1) Индивидные переменные. x, y, z
- 2) Функциональный символ. $f^{(1)}, g^{(2)}$ (С указанием числа арг-ов) В т. ч. константные символы. $(f^{(0)})$ ф-циональные символы валентности 0.

- 3) Предикатные символы. (С указ. валентности) $(P^{(1)}, Q^{(1)})$
- $4) \quad \neg, \land, \lor, \rightarrow$
- 5) Кванторы: ∀,∃
- 6) Служебные: "(") "

Замечание. Символы из пп. 2, 3. в совокупности наз-ся сигнатурой.

Определение 2.1. Термы - это:

- 1) x переменная $\Rightarrow x$ терма
- 2) c константный символ $\Rightarrow c$ терм.
- 3) t_1, \ldots, t_k термы, f ф-ция. символ вал-ти $k \Rightarrow f(t_1, \ldots, t_k)$ терм.

Определение 2.2. Формулы - это:

- 4) t_1, \ldots, t_k термы, P предикат. символ вал-ти $k \Rightarrow P(t_1, \ldots, t_k)$ ф-ла (атомарная).
- 5) ϕ ф-ла $\Rightarrow \neg \phi$ ф-ла
- 6) ϕ, ψ ф-лы $\Rightarrow (\phi \land \psi), (\phi \lor \psi), (\phi \to \psi)$ ф-лы
- 7) ϕ ф-ла, x перем. $\Rightarrow \exists x\phi, \forall x\phi$ ф-лы Не запрещается писать записи вида $\exists x \forall X P(x)$, или $\exists x P(y)$ Часто добавляют отдельный вид атомарных ф-л:

$$t_1 = t_2$$

2.1.1 Интерпретация

M - непустое мн-во - носитель интерпретации.

f - функциональный символ вал-ти $k > 0, [f]: M^k \to M$

c - конст. символ., $c \in M$

P - предикатный символ вал-ти k., $[P]: M^k \to \{0,1\}$

Var - мн-во переменных.

Оценка - $\pi \colon Var \to M$

Если заданы интерпретация и оценка, то определены значения всех термов и ф-л: $[t](\pi) \in M, [\phi](\pi) \in \{0,1\}$

1)
$$t = x \Rightarrow [t](\pi) = \pi(x)$$

2)
$$t = C \Rightarrow [t](\pi) = [C]$$

3)
$$t = f(t_1, \dots, t_k) \Rightarrow [t](\pi) = [f]([t_1](\pi), [t_2](\pi), \dots, [t_k](\pi_k))$$

4)
$$t = P(t_1, \dots, t_k) \Rightarrow [\phi](\pi) = [P]([t_1](\pi), \dots, [t_k](\pi))$$

5)
$$\phi = \neg \phi \Rightarrow [\phi](\pi) = neg([\phi](\pi))$$

6)
$$\phi = (\phi \wedge \eta) \Rightarrow and([\phi](\pi), [\eta](\pi))$$

7)

3 Лекция 10

3.1 Напоминание

 σ - сигнатура, сост. из функц. и пред. символов. и им соотв. валентности.

 $\mu=(M,I_M),I_M$ - соотв. символам σ функций и предикатов

$$\pi: Var \to M$$

$$[\phi]_M(\pi) - ?$$

Рекурсия по постр. ϕ :

1)
$$\phi = P(t_1, \dots, t_n)$$

$$[\phi]_M(\pi) = [P]_M([t_1]_M(\pi), \dots, [t_n]_M(\pi))$$

2)
$$\phi=(\psi_0(operation)\psi_1), \phi=\neg\psi\text{ - аналогично.}$$

$$[\phi]_M(\pi)=\underset{OR.IMPL}{AND}([\psi_0]_M(\pi),[\psi_1]_M(\pi))$$

$$\phi=\exists x,\psi$$

$$[\phi]_M(\pi)=1\iff \text{ найдётся }a\in M,\text{ т. ч. }[\phi]_M(\pi_{x\to a})=1$$

$$[\phi]_M(\pi)=\bigvee_{a\in M}[\phi]_M(\pi_{x\mapsto a})$$

$$\pi_{x\to a}(y)=\begin{cases}\pi(y),y\neq x\\a,y=x\end{cases}$$

4) Аналогично (3), но с ∧ вместо ∨

Определение 3.1. Параметры терма t:

1)
$$t = x \in Var \Rightarrow Par(t) = \{x\}$$

2)
$$t = c \text{ - константа из } \sigma \Rightarrow Par(t) = \emptyset$$

3)

$$t=f(t_1,\ldots,t_n), f$$
 - функциональный символ вал-ти $n\Rightarrow Par(t)=igcup_{i=1}^n Par(t_i)$

Определение 3.2. Параметры формулы ϕ :

1)
$$\phi = P(t_1, \dots, t_n) \Rightarrow Par(\phi) = \bigcup_{i=1}^n Par(t_i)$$

2)
$$\phi = \neg \psi \Rightarrow Par(\phi) = Par(\psi)$$

3)
$$\phi = (\psi_0(operation)\psi_1) \Rightarrow Par(\phi) = Par(\psi_0) \cup Par(\psi_1)$$

$$\uparrow \land \lor, \lor, \rightarrow$$

4)
$$\phi = (\exists/\forall)x, \psi \Rightarrow Par(\phi) = Par(\psi) \{x\}$$

Теорема 3.1. а) Если π, π' — оценки и для любой пер. $x \in Par(t), \pi(x) = \pi'(x), mo\ [t]_M(\pi) = [t]_M(\pi')$

b) Если π, π' - оценки, m. ч. для $\forall x \in Par(\phi), \pi(x) = \pi'(x)$ то $[\phi]_M(\pi) = [\phi]_M(\pi')$

Доказательство. a) Индукция по пост. t:

1)
$$t = x \Rightarrow [t]_M(\pi) = \pi(x) = \pi'(x) = [t]_M(\pi')$$

2)
$$t = c \Rightarrow [t]_M(\pi) = [c]_M = [t]_M(\pi')$$

3)

 $t=f(t_1,\dots,t_n), f$ — функциональный символ вал-ти n

$$Par(t_i) \subset Par(t)$$
$$[t]_M(\pi) = [f]_M([t_1]_M(\pi), \dots, [t_n]_M(\pi)) =$$
$$= [f]_M([t_1]_M(\pi'), \dots, [t_n]_M(\pi')) = [t]_M(\pi')$$

- b) Индукция по построению ϕ :
 - 1) $\phi = P(t_1, \dots, t_n) \Rightarrow [\phi]_M(\pi) =$ $= [P]_M([t_1]_M(\pi), \dots, [t_n]_M[\pi]) = [P]_M([t_1]_M(\pi'), \dots, [t_n]_M(\pi')) = [\phi]_M(\pi'))$
 - 2) $\phi = (\psi_0 \wedge \psi_1) \Rightarrow [\phi]_M[\pi] = AND([\psi_0]_M(\pi), [\psi_1]_M(\pi)]) = And([\psi_0]_M(\pi'), [\psi_1]_M(\pi')) = [\phi]_M(\pi')$ Аналогично для других операций и для отрицания.
 - 3) $\phi = \exists x, \psi$

$$Par(\phi) = Par(\psi) \setminus \{x\}$$

$$[\phi]_M(\psi) = \bigvee_{a \in M} [\phi]_M(\pi_{x \mapsto a}) = \bigvee_{a \in M} [\phi]_M(\pi'_{x \mapsto a}) = [\phi]_M(\pi')$$

4) $\phi = \forall x, \psi$ - аналогично 3)