Physics Extra Sheet

In His Name

SY: 2022/2023

E₂

Document-1

Al-Mahdi Schools - Shahed

Ch 13 Diffraction

Grade (section): G 12 LS 1 1 Date: Name:

Arbitrary questions:

1. We want to observe on the screen the broadest possible pattern. Suggest 3 methods to achieve this.

2. Microwaves of wavelength 3 cm falls normally on a slit of width 5 cm. Determine the angles of diffraction of the centers of the first dark fringes.

Exercise 1: Determination of the wavelength of a laser light (2001-I)

The monochromatic light emitted by a laser source, of wavelength λ , illuminates, under normal incidence, a very narrow slit F_1 of width $a_1 = 0.1$ mm cut in an opaque screen (E_1) . The phenomenon of diffraction is observed on a screen (E₂) parallel to (E₁), found at a distance D = 4 m from it (Document-1).

The central bright fringe on (E_2) has a linear width = 5cm.

- **1.** Describe the diffraction pattern observed on (E_2) .
- 2. The phenomenon of diffraction shows evidence of a certain aspect of light. What is it?
- 3. Calculate the angular width of the central bright fringe.
- **4.** Calculate the value of λ .

Exercise 2: Diffraction and interference of light (GS-2012-II modified)

A laser source emits a monochromatic cylindrical beam of light of wavelength $\lambda = 640$ nm in air.

This beam falls normally on a vertical screen (P) having a horizontal slit F₁ of width a. The phenomenon of diffraction is observed on a screen (E) parallel to (P) and situated at a distance D = 4 m from (P).

Consider on (E) a point M so that M coincides with the second dark fringe counted from O, the center of the central bright fringe. OIM = θ $(\theta \text{ is very small})$ is the angle of diffraction corresponding to the second dark fringe (Document-2).

(E) (P) Х D Document-2

- 1. What does a monochromatic light mean?
- **2.** Write the expression of θ in terms of a and λ .
- 3. Determine the expression of OM = x in terms of a, D and λ .
- **4.** Determine the value of a if OM = 1.28 cm.
- 5. We replace the slit F_1 by another slit F_1' of width 100 times larger than that of F_1 . What do we observe on the screen (E)?
- **6.** The whole set up of Document 2 is immersed in water of index of refraction n.
 - **6.1.** The value of the wavelength λ of a luminous radiation changes when it passes from a transparent medium into another. Why?
 - **6.2.** Deduce whether the pattern becomes wider or narrower.

Exercise 3: (From Everest-modified)

A white light falls normally on a slit of width a=0.3 mm. The slit is at a distance D=1 m from a vertical screen. A point B belongs to the obtained diffraction pattern and has a position $x_B=6$ mm relative to the origin O of the x-axis. (SO) is horizontal (Document-3). The angular width and the size of the central bright fringe are α and L respectively. The range of wavelength of light in vacuum is: λ : (400 nm \rightarrow 800 nm). ($\lambda_{violet} \rightarrow \lambda_{red}$).

The angles of diffraction of the fringes in the following questions are small.

- 1. The color at the point O is white. Justify.
- 2. N is a point on the screen which has an abscissa x (x = ON). N is the center of a dark fringe of order n of the red color ($\lambda = 800 \text{ nm}$). Also, N is the center of a dark fringe of order (n +1) of a color of wavelength $\lambda' = 640 \text{ nm}$. Determine n and x.
- 3. Determine the wavelengths of the missing radiations (dark fringes) at the point B.
- **4.** For $\lambda = 600 \, nm$,
 - **4.1.** determine the order of the dark fringe of point B.
 - **4.2.** Deduce the distance x_F of first bright fringes.
 - **4.3.**The screen (E) is approached from the plane of the slit so that the point B becomes the center of **4**th **dark** fringe on the positive side of O.
 - **4.3.1.** Specify whether the pattern of fringes become wider (broader) or narrower.
 - **4.3.2.** Determine the distance displaced by the screen.
 - **4.4.** The slit is replaced by another one of width a' so that the distance separating the centers of the 2nddark fringe and the 4th dark fringe on opposite sides of the central bright fringe is 10 mm. Determine a'.

