ENCRYPTION-THEN-COMPRESSION SYSTEMS USING GRAYSCALE-BASED IMAGE ENCRYPTION FOR JPEG IMAGES

Team: B6

Members: 陳宏彥、劉正仁、劉玟慶

Outline

- Introduction
- Methodology
- Security comparison
- Compression comparison
- Demonstration
- Conclusion

Introduction

Introduction

■ Encrypt then Compress (EtC) system

The encryption and decryption algorithm is the main part of the paper

Conventional block scrambling-based image encryption

Conventional block scrambling-based image encryption

■ Conventional block scrambling-based image encryption

■ Conventional block scrambling-based image encryption-Dividing Into 16*16 Blocks

■ Conventional block scrambling-based image encryption-Block Scrambling

■ Conventional block scrambling-based image encryption-Block Rotation And Block Inversion

Conventional block scrambling-based image encryption-Negative-Positive Transformation

every block has a key3 to determine Negative-Positive Transformation

Negative-Positive Transformation

$$p' = \begin{cases} p & \text{if } K3(i) = 0 \\ p \oplus (2^L - 1) & \text{if } K3(i) = 1 \end{cases}$$

$$p' = \text{new pixel value} \\ p = \text{original pixel value} \\ L = \text{how many bits in one pixel} \\ K3(i) = \text{i th block key3} \end{cases}$$

K3(i) = i th block key3

Key 3 11

■ Conventional block scrambling-based image encryption-Negative-Positive Transformation

every block has a key3 to determine Negative-Positive Transformation

Negative-Positive Transformation

					25	36	48	23
				K3(i) = 0	65	89	102	186
25	36	48	23	No(t)	65	6	69	86
65	89	102	186		0	1	174	169
65	6	69	86		230	219	207	232
0	1	174	169		190	166	153	69
				K3(i) = 1	190	249	186	169
					255	254	81	86

255 – pixel value

■ Conventional block scrambling-based image encryption-Color Component Shuffle

every block has a key4 to determine Color Component Shuffle

Color Component Shuffle

Conventional block scrambling-based image encryption

■ Proposed grayscale-based image encryption-RGB To YCbCr and Combine YCbCr

$$Y = 0.299 * R + 0.587 * G + 0.114 * B$$
 $Cb = -0.1687 * R - 0.3313 * G + 0.5 * B + 128$
 $Cr = 0.5 * R - 0.4187 * G - 0.0813 * B + 128$

RGB To YCbCr and Combine YCbCr

Conventional block scrambling-based image encryption

Conventional block scrambling-based image encryption

■ Brute-force Attack in Conventional block scrambling-based image encryption

If an image with $X \times Y$ pixels is divided into blocks with $Bx \times By$ pixels, the number of blocks n is given by

$$n = \frac{X}{B_x} \times \frac{Y}{B_y}$$

The key space of the block scrambling (Step 1) $N_s(n)$ will be

$$N_s(n) = n!$$

The key space of the Block Rotation and Block Inversion (Step 2) $N_{R\&I}(n)$ will be

$$N_R(n) = 4^n$$
, $N_I(n) = 4^n$, $N_{R\&I}(n) = 8^n$

■ Brute-force Attack in Conventional block scrambling-based image encryption

The key space of the Negative-Positive Transformation (Step 3) $N_N(n)$ will be

$$N_N(\mathsf{n}) = 2^n$$

The key space of the Color Component Shuffle (Step 4) $N_C(n)$ will be

$$N_C(n) = 6^n$$

The key space of total $N_A(n)$ will be

$$N_A(n) = n! \times 8^n \times 2^n \times 6^n$$

Conventional block scrambling-based image encryption

■ Brute-force Attack in Proposed grayscale-based image encryption

If an image with $X \times Y$ pixels is divided into blocks with $Bx \times By$ pixels, the number of blocks n is given by

$$n = \frac{X}{B_x} \times \frac{Y}{B_y}$$

The key space of the block scrambling (Step 1) $N_s(n)$ will be

$$N_{S}(n) = 3n!$$

The key space of the Block Rotation and Block Inversion (Step 2) $N_{R\&I}(n)$ will be

$$N_R(n) = 4^{3n}$$
, $N_I(n) = 4^{3n}$, $N_{R\&I}(n) = 8^{3n}$

■ Brute-force Attack in Proposed grayscale-based image encryption

The key space of the Negative-Positive Transformation (Step 3) $N_N(n)$ will be

$$N_N(n) = 2^{3n}$$

The key space of total $N_B(n)$ will be

$$N_B(n) = 3n! \times 8^{3n} \times 2^{3n}$$

■ Brute-force Attack in comparison

The key space of conventional $N_A(n)$ is

$$N_A(n) = n! \times 8^n \times 2^n \times 6^n$$

= $n! \times 2^{4n} \times 6^n$

The key space of proposed $N_B(n)$ is

$$N_B(n) = 3n! \times 8^{3n} \times 2^{3n}$$

= $3n! \times 2^{9n} \times 9^n$

$$3n! \times 2^{9n} \times 9^n \gg n! \times 2^{4n} \times 6^n$$

proposed $N_B(n) \gg$ conventional $N_A(n)$

Compression comparison

lacktriangleright PSNR values of non-encrypted and decrypted images after uploading and downloading from Facebook. Boldface indicates highest score per Q_{fu} .

	Uploade	Q_{fu}			
	Sub-sampling ratio	Quantization table	90	95	100
Non appropriated	4:2:0	Luminance	32.1	32.4	32.4
Non-encrypted	4:4:4	Chrominance	32.2	32.3	32.5
Conventional scheme	4:2:0	Luminance	31.0	31.0	31.0
Conventional Scheme	4:4:4	Chrominance	31.6	31.6	31.7
Dranged coheme	(Crovocalo)	Luminance Chrominance	33.7	33.8	33.8
Proposed scheme	(Grayscale)		32.6	33.4	33.8

Demonstration

Demonstration

Conclusion

- This paper proposed a novel block-scrambling image encryption scheme that enhances the security of EtC systems for JPEG images.
- the proposed scheme enables us to use Bx = By = 8 as a block size, which enhances robustness against ciphertext-only attacks.
- The proposed scheme makes it possible to avoid the effect of the interpolation on social media due to the use of grayscale-based images.
- the proposed scheme has a better performance than the conventional one in terms of the image quality