A

WO 2005/072417

FIGURE 3

WO 2005/072417

*,p<0.05 versus 10µM DOX alone

†,p<0.05 versus equimolar VEGF 120

FIGURE 4

WO 2005/072417 PCT/US2005/002929

VEGF 205: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI VEGF 188: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI VEGF 164: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI VEGF 144: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI VEGF 120: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI VEGF 205: K F M D V Y Q R S Y C R P I E T L V D I F Q E Y P D E I E Y I F K P S C V P L M VEGF 188: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM VEGF 164: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM VEGF 144: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM VEGF 120: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM VEGF 205: R C A G C C N D E A L E C V P T S E S N I T M Q I M R I K P H Q S Q H I G E M S VEGF 188: R C A G C C N D É A L E C V P T S E S N I T M Q I M R I K P H Q S Q H I G E M S VEGF 164: R C A G C C N D E A L E C V P T S E S N I T M Q I M R I K P H Q S Q H I G E M S VEGF 120: R C A G C C N D E A L E C V P T S E S N I T M Q I M R I K P H Q S Q H I G E M S VEGF 205: FLQHSRCECRPKKDRTKPEKKSVRGKGKGQKRKRKKSRFK VEGF 188: FLQHSRCECRPKKDRTKPEKKSVRGKGKGQKRKRKKSRFK VEGF 164: FLQHSRCECRPKKDRTKPENTIGERCSERRKHUELVODROTTE VEGF 144: F L Q H S R C E C R P K K D R T K P E K K S V R G K G K G Q K R K R K K S R F K VEGF 120: FLQHSRCECRPKKDRTKPE k C 知 k P k k VEGF 205: SWSVYV@AAAV VEGF 188: S W S V HCEP & STERRICHE VO DROTICK & SCKNIT DISTRICK AIR OF VEGF 164: KGS CKNIT DISTRICK AIR OF FEBRUAR & CEDIK PRIR VEGF 144: S W S V

VEGF 188: ELNERTICRODK PRR

WO 2005/072417 PCT/US2005/002929

						AVEG	Me	्रा <u>स्त</u> ासुर	Giss	<u>ල</u> ෑල	TCP	TES	633	©.C	THE STATE	age.	eas.	CCI.	HDE	42
						M	N	P	L	L	S	W	v	H	W	T	L	A	L	14
GIG.	Che	DE	CIE:	6.6	OW.	ලලල		TES.		©:@	CCT.	GCA	CCC	ACG	ACA	GAA	GGA	GAG	CAG	102
L	L	Y	L	Н	Н	A	K	W	s	Q	A	A	P	T	T	E	G	E	Q	34
AAG K		CAT H	GAA E		ATC I		TTC F	ATG M									CGT R			
ĸ	5	п	ь.	٧	1		F	М	ט	٧	1	Q	R	3	Y		К	P	I.	54
		-						GAG	-									_		
E	Т	L	V	ט	1	r	Q	E	¥	P	ט	R	I	E	Y	I	P	K	P	74
								GCA										_		
S	C	V	P	L	м	R	C	A	G	С	С	N	D	R	A	P	В	С	v	94
								ATG												
P	T	S	E	s	N	I	Т	М	Q	I	М	R	1	K	P	н	Q	s	Q	114
								CAG												
Н	I	G	E	М	s	P	L	Q	н	s	R	С	E	С	R	P	K	K	D	134
AGA			-					GTT												462
R	T	ĸ	P	E	K	K	S	V	R	G	K	G	K	G	Q	K	R	K	Ŕ	154
AAG	AAA	TCC	CGG	TTT	AAA			AGC	_				GCC	GCT			TAA	TTC	CTT	522
ĸ	K	s	R	F	K	s	W	S	V	Y	V	G	A	A	A	V	*			174

FIGURE 8

FIGURE 9

% Wound Closure (based on Peak Area) 20hrs post wounding

- * Different from No VEGF (p < 0.05)

 ** Different from No VEGF (p < 0.01)

 *** Different from No VEGF (p < 0.001)
 †† Different from VEGF 120 (p < 0.05)
 †† Different from VEGF 120 (p < 0.01)

One-Way ANOVA with Newman Keuls multiple comparison test

% Wound Closure (based on Peak Area) 20hrs post wounding

- * Different from No VEGF (p < 0.05) *** Different from No VEGF (p < 0.001) †† Different from VEGF 120 (p < 0.01)

One-Way ANOVA with Newman Keuls multiple comparison test

% Wound Closure (based on Peak Height) 20 hrs post wounding

- Different from No VEGF (p < 0.05)
 Different from No VEGF (p < 0.01)
 Different from VEGF 120 (p < 0.01)

One-Way ANOVA with Newman Keuls multiple comparison test

% Wound Closure (based on Peak Height) 20 hrs post wounding

- Different from No VEGF (p < 0.01)
- †† Different from VEGF 120 (p < 0.01)

One-Way ANOVA with Newman Keuls multiple comparison test

WO 2005/072417

FIGURE 11

WO 2005/072417 PCT/US2005/002929

FIGURE 13