Code Figures!

Sept 2016 T. Hales.

Some figures that help to document the computer code.

Some calculations that were too minor to include in the article.

Notation up dutes

$$m_{+} = m_{1}$$
 $m_{-} = m_{2}$ $m_{+} = n_{1}$ $n_{-} = n_{2}$.

onean = areta.

$$\hat{l} = l$$

$$K = c = P$$

Area of Delauncy trangle in a double luttice.

$$K = P = \cos \pi 75 = 6.809...$$

 $T = e = \sin \pi 75. = 0.587785...$

area =
$$\frac{1}{2}(1+p)(3pe)$$

= 1.29036....

density =
$$\frac{5pe/2}{(1+p)(3pe)/2}$$

$$=\frac{5}{3(1+\rho)}$$

A:

$$=\frac{1}{8}(5-\sqrt{5}).=0.921311...$$

Note:
$$\sin 2\pi / 5 = e^2 / f \implies f = \frac{e}{2\rho} = 0.3632$$

$$f = \frac{e}{2\rho} = 0.618...e$$

$$f = (\sqrt{5} - 1)e.$$

ocamb cole for iloc.

SAVE code document for pent iloc, ilor functions

b-obtuse.

anci); baca; baca, coson c's

ca: 1 ba coson c's

a surteur sign.

B C

ab-acute.

ch: an ba wiel

ocaml cole for iarc.

67: 07 63 C7

b c

a 7 8 4 6 4 c 7.

laubeta \times a b = β < $\pi/2$.

Pentagons in contact.

ell-function.

h, y given

OSTE OSYST. h positive or regulive

$$\cos\theta = h/r$$

$$d_{AB} = loc | r (6+4)$$

= $l(h,4)$

symmetry.

$$\psi \rightarrow \psi' = \pi - \psi$$

$$g \rightarrow \theta' = \pi - \xi$$

$$dAB = loc | r'(\theta'+\psi')$$

$$= loc | r (\theta+\psi')$$

$$dAB = loc | r (\theta + \psi)$$

$$= loc | r (\theta + \psi)$$

ella function.

elly
$$(x_a, x) = l(x_2 - \sigma, \frac{7\pi}{10} - \beta x) = l(\pi - x_1, \frac{3\pi}{10} + x_2)$$

Sign of 0.6'

invariant OCAB+ arcc+ BCBA=0 mod 2 1/5.

When part of a Delaunay triangle, the angles

BACB, &CAB etc. are positive when VA, Vc etc. are outside the Delaunay triangle.

in this example

FACB > 0 DCAB > 0

BBCA CO BAC CO.

When using coordinates (xd, v) to calculate (dAB, E, B'),

\$\footnote is the angle \((C_B, C_A, V_B),\)

\$\footnote \footnote \((C_B, C_A, V_B),\)

\$\footnote \((C_B, C_A, V_B),\)

\$

5 is the angle $\angle (c_A, c_B, v_A)$ \$ < 0 here because v_A is in the opposite halfplane...

Lamma 8+8' = & mod 2175.

(pantagons need not touch)

8,8' in any order.

Proof Rotate at P
$$\alpha + \frac{3\pi}{10} - 6 - \theta' - \frac{3\pi}{10} = 0.$$

1x, 0x, 0x coordinates

h=
$$xd - f \ge 0$$

 $r := \sqrt{h^2 + k^2}$
 $Sin\phi' := h/r$ $\phi' \ge 0$. (see below for $\phi' \ge 0$)
 $S := 60\pi - d - \phi' \cdot - (\frac{\pi}{2} - \phi') + (\frac{3\pi}{5} - \lambda) + \frac{3\pi}{70}$
(3 dot comples)
 $lx := loc r 1 S$
 $ly := loc r (26) (3 - 3\pi/0)$
 $ly := 2\pi/s - loc 1 lx ly)$
 $d' := 2\pi/s - loc 1 lx ly)$
 $d' := d mod (2\pi/s -)$.

h:= x2- 5 60. Sinq'=h/r 4180. Same formulas halt.

Standard conventions

- . We use 18/15/101. So &1 is the pointer wertex.
- . The wone over a opens into the + side (for 191)

Reversing Coordinates 1,0! Given Light find dixx., & (27/5-8') Note 8'co inhquie. 1x = 1. [24,2] Start hue. ly ly = lx2 +12 - 2lx cos. € CK.1] A (r, 1, 20, 1, Ly, 2x) =0 + k (2 choires) both can occur two solutions. use both. XX 6 [0, 26] two choices of h. * q' (2cho.les)
dependigonh. (or co have) sing/ = h/r $\delta > \pi \Leftrightarrow \theta' \neq 0$ $\begin{cases} l_{x} = l_{x} \leq r + 1 & s = 1 \end{cases}$ $\begin{cases} l_{y} = l_{x} \leq r + (2\sigma) \left(s - \frac{3\pi}{10}\right) \begin{cases} l_{y} \approx l + r. & s \approx \pi. \end{cases}$ d ∈ [0,2175] 8 = 6 = a-4' (0'<0 here). 6+0'= d mod (27/5-)

in figure.

two_content-coorl-Oll-theta!

N

29-8!

From (0,1) to coordinates 191 20 case) (0' pointer) Two solutions. \$ 6 00 Renomalize DE [0,2772]. two solutions Q, R-q. Use both. $\frac{\cancel{L}-\cancel{x}}{\sin \varphi} = \frac{1}{\sin (\theta + \frac{3\pi}{10})}$ $\sin \varphi = (l-x)\sin l\Theta + \frac{3\pi}{10}$. $\varphi = \alpha' + \frac{3\pi}{10}$. $\varphi = \alpha' + \frac{3\pi}{10}$. **@** $6' + \varphi + (0 + \frac{3\pi}{3}) = \pi.$ Then continue with (1.0') case. $4 + \varphi = 0' + \varphi + \theta = \frac{3\pi}{3} \text{ with } \frac{3\pi}{3} = \frac{3\pi}{3} \text{ with } \frac{3\pi}{3} = \frac{3\pi}{3} \text{ with } \frac{3\pi}{3} = \frac{3\pi}{3} =$ **(b) (2)** φ obhuce> デーマッゴ () まりから かきま. X = l neurs CB viside pertegon +!? 50 x 5l. 7l-x≥0. 75inq 30 0 430. -78 6 B 5 T/5. TE 8+35 6 E 50 ×30.

(8)

Of code 29-XX

o'Eo case.

b' = pointer.

Two Salutions

(x) . Los
$$\frac{\chi}{\sin(\frac{3\pi}{10})} = \frac{1}{\sin(\frac{3\pi}{10} + -\theta)}$$

q and n-4 two solution

$$(\sqrt[4]{\theta}) + (\sqrt[7\pi]{10} - 0) + (-\theta') = \sqrt[4]{\pi}.$$

$$(\sqrt[7\pi]{10} - 0) + (-\theta') = \sqrt[4]{\pi}.$$
Then continue with θ' .

all equations itenticul to b' 20 case.

3C coordinates

" " shared variables. " input order $\overline{\alpha}$, $\overline{\beta}$, $\overline{\chi}_{\overline{\beta}}$

nonsharel:

pinuheel edge $\alpha \beta \times \beta$ pintedge-extended $\alpha \beta \times \alpha$ deltajedge $\alpha \beta \times \alpha$ ljedge $\alpha \beta \times \alpha$ tjedge $\alpha \beta \times \alpha$

Shared systems (dip,xp)

A -> C

Peturn dBC, dAC, dAB.

B (w")

Delta junction inequality.

06x = 20 - 0/K

L-junction coordinates.

or Bry = 275 or

$$\frac{52 = 2r - 5}{\frac{3}{1-5}} \text{ (input)}$$

$$\frac{52}{275} \times 8$$

$$\bar{l}(x_{\alpha,\alpha})$$
 $\bar{l}(x_{\beta,\beta})$
 $\bar{l}(x_{\gamma,\gamma})$.
 $X_{\beta} = b_1 - b_2$.

LJ, - coordinates. (8hared)

L J₂

Shared. ","

output dec, dec, des

dec dec de de des

(a,xa) B

(if de < 95.

(75 ≤ d+β => β =0

LJ₃

LJ3.

shared a B. Xx

LJ3-coords.

X. a X8

nonshand a A Xx

Drop : 3 bars

Input & B

20-5, (input) #1

51

8' 8' a, 295 xp (input)

C a, 192

 $X_{g} = C$ X_{g} (input) $X_{d} = a_{2}$

J'has stability combainte 0.7. lone-ljx-constant)
β

#2. $\frac{5_2 = 2\sigma - 5_1 \text{ (input)}}{\pi - 8'}$ $\frac{4_2}{\pi} = \frac{6_2}{4_2}$

 $2\sigma + t_1 - t_2$ $2\sigma - (t_2 - t_1) = t_3$ (in part.). $t_3 + t_2 - t_1 = 2\sigma$

(input)

input 0, 3, x 8

«, b, 8 6 [1 5, 2 1 / 8]

«+ 3+8 = T.

 $x_{\alpha} = 9z - 93$ $x_{\beta} = 6$ $x_{\gamma} = (input)$

extended xx xp

non-share d

injust a p xp

β...≥1 (one-tjx-courtruit)

TJ, -coordinates

tj.edge
Shared Same
pentugen labels.

\$\overline{g} = \overline{g}.

#1 2/1/5 (input)

#2 arms

#3 mid.

25-51
(input)

27-81

(input)

$$X_{X} = \alpha_{1} + \alpha_{3} - \alpha_{2}$$

$$X_{B} \quad (input)$$

$$X_{X} = C_{A} - C_{2}$$

TJz

Shared & B XB

C

R

C

R

C

1/2 mileder out net

extended × " ×"

Shared at 31 xp

sharedty 3edge R-> C

nonshared & Bxg

 $\frac{\# 3}{52^{n} 2\sigma - 5_{1}(\text{input})} \underset{\text{Si}}{\# 2}$ $\frac{\$'}{5} \underset{\text{CC}}{\# 5'} a_{3} \qquad \alpha_{1} \underset{\text{295}}{\cancel{5}} \times \beta \text{ (input)}$

(2) $X_{g} = cc - c_{2}$ $X_{g} = cirret$ $X_{g} = cirret$ $X_{g} = a_{2} + a_{3} - a_{1}$ $X_{g} = a_{2} + a_{3} - a_{1}$

(input) $\frac{c_2}{2\sqrt{c_2}}$ $\frac{c_2}{a_2}$

near ice vary nonshared $\alpha \approx \pi \pi \epsilon$. $\beta' \approx 0$ $\beta \approx 2\pi \epsilon \epsilon$. $3 = \alpha + \beta$, $\pi + \beta' = \infty$ So if $\beta' > 0$ then $\alpha > \pi \epsilon$. $\pi + \beta' = \infty$ So if $\beta' > 0$ then $\alpha > \pi \epsilon$. $\pi + \alpha \neq \beta$ if $\alpha > 0$ then $\beta > \pi \epsilon$.

Shared pinwheel

nonshared. a, B, xx

out de l'dacidas

shared of 3 x B =

prinudrul x B = dAB, dBC, dAC.

prinudrul x B = dAB, dBC, dAC.

Shared Pin-T coordinates

Shared pin-T.

$$3\pi/5 + \beta + 3\pi + \frac{\pi}{5} \approx 2\pi$$
.
 $\beta \sim \approx (20 - 5 - 6 - 6)\pi \approx \frac{3\pi}{10}$

hon share d(x 3 xa.)

out dBe, dAC, dAB

= dAC, dBC, dAB

X . 0.0605.

Lemm: 0605.

$$\frac{1}{10} = \frac{20 - 12 - 5}{10} \approx \frac{37}{10}$$

The path P to T] elove to ice-vay: pinushed, LJ1, LJ2, TJ3. auto abb

auto all			•	
top Bo < 75.	İ	β <u>03 785</u>	bottom. Bo'	. M5.
Lal topA Rots, do-5	do >0	rigid [X	
indeed tops 30+5 do 20	αυτο.		Bo-5 00-5	(do 70).
Bove NS topB βors ασ=0		turst. chim.ljL	χ β ₀ -5 α ₀ -5.	bottoma
do - 5	00 = 0.	βo, αo-s.	Bo-5 00 =0	bettomB.
LJZ Bots X	(0,00 10.00	twist-chaim-1j2:	β0-5 00-S	bottong
7 J ₃ .		rigid. [β0-5 00 ±0 Note \$1	bottoms.
	(o-E,015)	1 - 2		

down. $(\sigma-\epsilon, \sigma+\epsilon]$ $(\sigma-\epsilon, \sigma+\epsilon)$ $(\sigma-\epsilon, \sigma+\epsilon$

[1.63 | emma |

area (1.8, 1.8, 1.63) > a crit + 2 E pc

area (1.8, 1.8, 1.63)

A contact.

CB on
$$\lambda$$
 when $\delta = 0$ and slider contact.

So :5/h(x+3T) = 1.63-K.

dimer code (ID condition)

The fest for 4D in the dimer code is

AD > AC + 0.03 and AD > 1.8. (*)

The dimer code disregards configurations that satisfy (*).

If (*) holds, then longert edge of To is AD. or DC

so it is a FD, and it is disregarding it is

justified

PET Peut Existence Test.

Question Given interval bounds LEL, GEI, O'EI' aveo there exist (l, t, b') & L*IXI' such that a pentagon

anangement existe?

Assumptions

LC [2p, 2.1]

I, I' & [-775, 776]

WARNING & Porter. as of 3/2016

Initial setup and prep.

- · Subdivide I, I' as needed so that they have fixed signs
- . whog take l=lmax.
- wlog by symmetry take 0 ≤ , ≤ 11 1. (if IIIn III) + ø, # break into two subcases according to which variable 101 or 1011 is larger).
- o reset I so that that Emax = 1 1 max
- or reset I'so that 10 min > 9 min
- Test 1 if loc (1, lmax, 0 max) >1, then yes it exists (because VA is the closet point to CA')
 - if loc(1, lmax, b) < p, then no it doesn't exist. (because locli, lmax, 6) 5 loc (1, lmax, 9max) <p, 50 VH is definitely overlapping pentagon B).

acute

· wlog, take & = b'mox.

We rotate VA away from VA1. Direction of rotation depends on of 150. The configuration exists (=> & it exists for 6=0min or 6=0mox

Test if loc(l, 1, 6min) > r or loc(l, 1, 0 mox) > r then yes else no.

Figure 2

x: loc & 1 6" 3: law beta 6 x 13 r: P/r = cos(p+(1/4-0)) Test Must have \$50 lelse 0<0' %) acute

aretar n dr n dr

 $\theta = \operatorname{arc}(\eta_{i}\eta_{i}, d_{i}) \pm \operatorname{arc}(\eta_{i}\eta_{i}d_{2})_{i}$ $d_{3} = \operatorname{loc} \eta \eta \theta' \quad \text{"max.}$ $\operatorname{test} \theta = \operatorname{arc}(\eta_{i}\eta_{i}d_{i}) + \operatorname{arc}(\eta_{i}\eta_{i}2x)$ $\operatorname{test} \theta \geqslant \pi \quad \text{or} \quad d_{k} < 2\eta \operatorname{sim}(\theta/2)$

Case 1 - Obtuse. Assme f.a.c. that

Docarulara, Domindialli. do not occur.

. More If frist (fixing the diagonal) until. de, de bounds are met.

OR. n/T,)=2. and dz met.
[Note T, sturp offuse]

+

More to v next

until . d3 de bonds are net.

on To a right triangle of stadiagonal. at an appele at stadiagonal. and d3 bound is met.

Chain d'3 not hypothnuse Else d3 > KJ8 > 2 > d3 -X.

So we can nove & fixing |u-v| decreasing xy, making To acute again. (Note Xy when right.

we move to v until of 3, dy bounds are met.

not cocircular. We get d2d3, d4 met, and n(T1)=2.

Casil-obhise.

カイト)コン

Can assure of XI the shrink. I more.

(i.e. anc(z,t,d) < Ti72.).

\$ anc(2,2,d3) + anc(2,2,dy) take Have

€ ane(2,2,1,72).2 ≈ 1.77 < T.

this does not exist.

So me always reduce to C or 2

Obtuse - Case 1 - concavity.

Obtuse concainty.

isosales trapezoid.

who a' $\geq a$ so $\theta \leq \frac{\pi}{2}$. for r, θ . Let $\alpha' = \alpha'(\theta)$

 $A(\theta) = area_{\theta} = arsin\theta + (rcos\theta)(rsin\theta)$ $= arsin\theta + (rcos\theta)(rsin\theta)$

 $-\arcsin\theta - 2r^{2}\sin2\theta \leq 0 \quad \text{for } \theta \in [0, \pi/2]$ Pest

So min area is at an endpoint.

2/2016.

> 2ax+480. (*).

By = 3 arc (2,2,2k)

Oz = 2 arc (2,2,2k)

aren 12x, 2x, 2sin [02/2]) + cuea (2x, 42, 2sin (03/2)).

26= (2K)2 y 2ak.

cocrularis isosules. Use former from concausing calc.

n'= 1.

2 + 2k = 1.72. 2 +

2K(1.72) > Zak+ 360.

h' = 4.

1.722 > 2ax+480.

包

2K

OBTUSE

Final reading Case to obtuse theorem.

1.72 7 1.72 1.72 1.72 co civula, 30 oh.

9/2016 V Calcs.ml Obtuse - casel-d4. 06 tuse. 23.