Chapitre 4 : Produit d'espaces mesurés.

Prof. ZEROUKI Ibtissem

February 13, 2021

Contents

1	Produit d'espaces mesurés		
	1.1	Tribu produit	2
	1.2	Mesure produit	5
	1.3	Théorèmes de Fubini	6

1. Produit d'espaces mesurés

Dans ce chapitre on considère des intégrales sur des **espaces produits**, définissant ainsi des **intégrales multiples**. Pour intégrer sur un espace produit, il est nécessaire de définir une tribu sur cet espace, la plus naturelle est la **tribu produit**. Sur cette tribu on introduit la **mesure produit**. Les intégrales sur des espaces produit se ramènent à des intégrales simples grâce aux **Théorèmes de Fubini**.

1.1. Tribu produit.

Définition 1.1.1. Le produit cartésiens de deux ensembles A et B, noté $A \times B$, est l'ensemble des couples (a,b) avec $a \in A$ et $b \in B$, i.e.

$$A \times B = \{(a, b) : a \in A \text{ et } b \in B\}.$$

Définition 1.1.2. (*Tribu produit*). Soient (X, A) et (Y, B) deux espaces mesurables. La σ -algèbre produit $A \otimes B$ sur $X \times Y$ est la tribu engendrée par l'ensemble des pavés, c'est-à-dire

$$\mathcal{A} \otimes \mathcal{B} = \sigma(\mathcal{P}) = \sigma(\{A \times B : A \in \mathcal{A} \text{ et } B \in \mathcal{B}\}).$$

Remarque 1.1.3. \blacklozenge Le produit de la tribu borélienne sur \mathbb{R} par elle même donne la tribu borélienne sur \mathbb{R}^2 . En effet $\mathcal{B}(\mathbb{R}^2)$ est engendrée par les produits d'intervalles ouverts $]a,b[\times]c,d[$, qui engendrent aussi le produit $\mathcal{B}(\mathbb{R})\otimes\mathcal{B}(\mathbb{R})$ On a donc $\mathcal{B}(\mathbb{R}^2)=\mathcal{B}(\mathbb{R})\otimes\mathcal{B}(\mathbb{R})$.

- ♦ Plus généralement on a $\mathcal{B}(\mathbb{R}^n) = \underbrace{\mathcal{B}(\mathbb{R}) \otimes \cdots \otimes \mathcal{B}(\mathbb{R})}_{n \text{ fois}}$. ♦ Les ensembles mesurables de **bases** de $X \times Y$ sont donc les pavés $A \times B$ de
- lackloss Les ensembles mesurables de **bases** de $X \times Y$ sont donc les pavés $A \times B$ de mesurables de X et Y. Cependant, il y a des parties mesurables dans $\mathcal{A} \otimes \mathcal{B}$, qui ne peuvent se voir comme des produit de mesurables de X et Y, par exemple le disque unité

$$D(0,1) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\},$$

il est un élément de $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$, puisqu'on peut l'écrire comme image réciproque de l'intervalle [0,1], par la fonction mesurable $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ telle que $f(x,y) = x^2 + y^2$, ce qui nous permet d'écrire que $D(0,1) = f^{-1}([0,1])$.

Définition 1.1.4. (Sections) Soient $G \subset X \times Y$, $f : X \times Y \longrightarrow Z$ une applications, $x \in X$ et $y \in Y$. On définit les sections de G par

$$G_x = \{ y \in Y \text{ tel que } (x, y) \in G \} \text{ et } G^y = \{ x \in X \text{ tel que } (x, y) \in G \}.$$

Les sections de f sont définie par

$$f_x: (Y, \mathcal{B}) \longrightarrow Z$$
 et $f^y: (X, \mathcal{A}) \longrightarrow Z$
 $y \longmapsto f(x, y)$ et $f^y: (X, \mathcal{A}) \longrightarrow Z$

Exemple 1.1.5. Pour $X = Y = \mathbb{R}$ on a $A \otimes B$ et

$$([1,3] \times [-4,-2])_{x=2} = [-4,-2]$$
 et $([1,3] \times [-4,-2])_{x=5} = \emptyset$.

$$([1,3] \times [-4,-2])^{y=-3} = [1,3] et ([1,3] \times [-4,-2])^{y=0} = \emptyset.$$

Plus généralement, on a pour tout $A \in \mathcal{A}$ et $B \in \mathcal{B}$

$$(A \times B)_x = \begin{cases} B : \text{si } x \in A \\ \varnothing : \text{sinon} \end{cases}$$
 et $(A \times B)^y = \begin{cases} A : \text{si } y \in B \\ \varnothing : \text{sinon.} \end{cases}$

Proposition 1.1.6. Soient $G \in \mathcal{A} \otimes \mathcal{B}$ et $f: (X \times Y, \mathcal{A} \otimes \mathcal{B}) \longrightarrow (Z, \mathcal{C})$ une fonction mesurable, alors

- 1) Les sections de G, vérifient $G_x \in \mathcal{B}$ et $G^y \in \mathcal{A}$, pour tout $x \in X$ et $y \in Y$.
- 2) Les sections de f, $f_x:(Y,\mathcal{B}) \longrightarrow (Z,\mathcal{C})$ et $f^y:(X,\mathcal{A}) \longrightarrow (Z,\mathcal{C})$ sont mesurables.

Démonstration. 1) Montrant que $\mathcal{F} = \{C \in \mathcal{A} \otimes \mathcal{B} : G_x \in \mathcal{B}\}$ est une tribu sur $E \times F$, pour tout $x \in E$. En effet, on a

- $(X \times Y)_x = Y \in \mathcal{B}$, alors $X \times Y \in \mathcal{F}$.
- Soit $C \in \mathcal{F}$, alors $C_x \in \mathcal{B}$. Donc

$$(C^c)_x = \{ y \in Y : (x, y) \in C^c \} = F \setminus \{ y \in Y : (x, y) \in C \}$$

= $Y \setminus C_x = (C_x)^c \in \mathcal{B}$.

D'où $C^c \in \mathcal{F}$.

• Soit $\{C_i\}_{i\in I} \subset \mathcal{F}$, où I est un ensemble d'indice au plus dénombrable, alors $(C_i)_x \in \mathcal{B}$, pour tout $i \in I$.

$$\left(\bigcup_{i\in I} C_i\right)_x = \left\{y\in Y : (x,y)\in \bigcup_{i\in I} C_i\right\} = \left\{y\in Y : \exists i\in I \text{ où } (x,y)\in C_i\right\}$$
$$= \bigcup_{i\in I} \left\{y\in Y : (x,y)\in C_i\right\} = \bigcup_{i\in I} \left(C_i\right)_x\in \mathcal{B}.$$

Par conséquent $\bigcup_{i \in I} C_i \in \mathcal{F}$.

Pour tout $A \in \mathcal{A}$ et $B \in \mathcal{B}$, on a

$$(A \times B)_x = \{ y \in Y : (x, y) \in A \times B \}$$

$$= \begin{cases} B \in \mathcal{B} : \text{si } x \in A \\ \varnothing \in \mathcal{B} : \text{sinon,} \end{cases}$$

alors $A \times B \in \mathcal{F}$. D'où $\mathcal{A} \times \mathcal{B} \subset \mathcal{F} \Longrightarrow \mathcal{A} \otimes \mathcal{B} = \sigma \left(\mathcal{A} \times \mathcal{B} \right) \subset \mathcal{F}$.

Par conséquent, on a pour tout $x \in X$, $G \in \mathcal{A} \otimes \mathcal{B} \Longrightarrow G_x \in \mathcal{B}$.

En montrant que l'ensemble $\{C \in \mathcal{A} \otimes \mathcal{B} : G^y \in \mathcal{A}\}$ est une tribu sur $X \times Y$ contenant $\mathcal{A} \otimes \mathcal{B}, \forall y \in Y$, nous pouvons avoir le résultat suivant: si $G \in \mathcal{A} \otimes \mathcal{B} \Longrightarrow G^y \in \mathcal{A}$.

2) Soit $C \in \mathcal{C}$, on a

$$(f_x)^{-1}(C) = \{y \in Y : f(x,y) \in C\}$$

= $\{y \in Y : (x,y) \in f^{-1}(C)\} = (f^{-1}(C))_x$.

Comme f est une fontion mesurable, on a

$$f^{-1}(C) \in \mathcal{A} \otimes \mathcal{B} \Longrightarrow (f^{-1}(C))_x \in \mathcal{B} \Longrightarrow (f_x)^{-1}(C) \in \mathcal{B}.$$

Par conséquent la fonction f_x est mesurable.

De même pour f^y , pour $y \in F$, en écrivant $(f^y)^{-1}(C) = (f^{-1}(C))^y \in \mathcal{A}$

1.2. Mesure produit.

Rappel : La notion de la mesure σ -finie est essentielle dans ce chapitre. On rappelle qu'une mesure μ sur un espace mesuré (X, \mathcal{A}) est σ -finie, s'il existe une suite $\{X_n\}_{n\geq 0}\subset \mathcal{A}$ tel que $X=\bigcup_{n\geq 0}X_n$ et $\mu(X_n)<+\infty$, pour tout $n\in\mathbb{N}$.

On considère dans la suite (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés, avec μ et ν des mesures σ -finies.

Proposition 1.2.1. Soit $E \in A \otimes B$, alors les applications

$$(X, \mathcal{A}) \longrightarrow \overline{\mathbb{R}}_+$$
 $et \quad (Y, \mathcal{B}) \longrightarrow \overline{\mathbb{R}}_+$ $x \longmapsto \nu(E_x) \quad et \quad y \longmapsto \mu(E^y)$

sont mesurables.

Proposition 1.2.2. Ils existe une seule mesure, dite mesure produit, notée $\mu \otimes \nu$ sur $\mathcal{A} \otimes \mathcal{B}$, telle que

$$(\mu \otimes \nu)(A \times B) = \mu(A) \cdot \nu(B)$$
, pour tout $A \in \mathcal{A}$ et $B \in \mathcal{B}$.

De plus, pour tout $E \in \mathcal{A} \otimes \mathcal{B}$, on a

$$(\mu \otimes \nu)(E) = \int_{Y} \nu(E_x) d\mu = \int_{Y} \mu(E^y) d\nu.$$

Exemple 1.2.3. (Mesure de Lebesgue sur \mathbb{R}^n) Comme

$$\mathcal{B}\left(\mathbb{R}^{n}\right) = \underbrace{\mathcal{B}\left(\mathbb{R}\right) \otimes \cdots \otimes \mathcal{B}\left(\mathbb{R}\right)}_{n \ fois} := \mathcal{B}\left(\mathbb{R}\right)^{\otimes n},$$

on peut munir $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ par la mesure produit $\underbrace{\lambda \otimes \cdots \otimes \lambda}_{n \text{ fois}} := \lambda^{\otimes n}$. Il s'agit de la mesure de Lebesgue sur \mathbb{R}^n , notée λ_n . Elle est invariante par translation et on a $\lambda_n \left(\prod_{i=1}^n [a_i, b_i] \right) = \prod_{i=1}^n (b_i - a_i)$.

1.3. Théorèmes de Fubini.

Sous de bonnes conditions, le **Théoème de Fubini** permet de permuter les intégrations dans les intégrales multiples. Ainsi les intégrales multiples se ramènet à des intégrales simples **emboitées**.

Théorème 1.3.1. (Théorème de Fubini – Tonelli)

Soit $f: (X \times Y, \mathcal{A} \otimes \mathcal{B}) \longrightarrow \mathbb{R}_+$ une fonction mesurable, avec μ et ν sont des mesures σ -fnies sur (X, \mathcal{A}) et (Y, \mathcal{B}) respectivement, alors on a

(i) La fonction
$$x \longmapsto \int_{Y} f_x d\nu$$
 est \mathcal{A} -mesurable et la fonction $y \longmapsto \int_{X} f^y d\mu$ est

 \mathcal{B} -mesurable.

(ii) On a

$$\int_{X\times Y} fd\left(\mu\otimes\nu\right) = \int_X \left[\int_Y f_x d\nu\right] d\mu = \int_Y \left[\int_X f^y d\mu\right] d\nu.$$

Démonstration. • Pour $f = \mathbb{I}_E$ pour $E \in \mathcal{A} \otimes \mathcal{B}$, on a lim

$$\int_{Y} f_x d\nu = \int_{Y} (\mathbb{I}_E)_x d\nu = \int_{Y} \mathbb{I}_{E_x} d\nu = \nu (E_x)$$
 (*)

et

$$\int_{X} f^{y} d\mu = \int_{X} (\mathbb{I}_{E})^{y} d\mu = \int_{X} \mathbb{I}_{E^{y}} d\mu = \mu (E^{y}). \tag{**}$$

D'après la **Proposition 4.2.1**, ces deux fonctions sont mesurables, d'où (i).

$$\int_{X\times Y} fd(\mu \otimes \nu) = \int_{X\times Y} \mathbb{I}_{E} d(\mu \otimes \nu) = (\mu \otimes \nu)(E)$$
(Proposition 4.2.2)
$$= \int_{X} \nu(E_{x}) d\mu = \int_{Y} \mu(E^{y}) d\nu$$

$$= \int_{X} \left[\int_{Y} f_{x} d\nu \right] d\mu = \int_{Y} \left[\int_{Y} f^{y} d\mu \right] d\nu.$$

D'où (ii).

- \bullet Pour f étagée, on obtient (i) et (ii) par linéarité grâce au cas procédent.
- Pour f mesurable quelconque, il existe une suite croissante de fonctions mesurables étagées positives $\{f_n\}_n$ qui converge vers f, alors la suite $\{(f_n)_x\}_n$ est une suite croissante de fonctions mesurables positives, qui converge vers f_x . Donc d'après le T.C.M. on a

$$\int_{V} f_x d\nu = \lim_{n \to +\infty} \int_{V} (f_n)_x d\nu,$$

alors la fonction $x \longmapsto \int_{Y} f_x d\nu$ est mesurable.

En utilisant le même raisonnement on a

$$\int_{X} f^{y} d\mu = \lim_{n \to +\infty} \int_{X} (f_{n})^{y} d\mu,$$

d'où la mesurabilité de la fonction $y \longmapsto \int\limits_{Y} f^y d\mu.$

Pour montrer (ii), on applique le T.C.M. sur $\mathcal{A} \otimes \mathcal{B}$, qui nous permet d'écrire

$$\int_{X\times Y} fd(\mu \otimes \nu) = \lim_{n \to +\infty} \int_{X\times Y} f_n d(\mu \otimes \nu) = \lim_{n \to +\infty} \int_X \left[\int_Y (f_n)_x d\nu \right] d\mu$$
$$= \lim_{n \to +\infty} \int_Y \left[\int_X (f_n)^y d\mu \right] d\nu.$$

Mais

$$\lim_{n \to +\infty} \int_{X} \left[\int_{Y} (f_{n})_{x} d\nu \right] d\mu = \int_{X} \lim_{n \to +\infty} \left[\int_{Y} (f_{n})_{x} d\nu \right] d\mu \text{ (T.C.M. sur } (X, \mathcal{A}, \mu))$$

$$= \int_{X} \left[\int_{Y} \lim_{n \to +\infty} (f_{n})_{x} d\nu \right] d\mu \text{ (T.C.M. sur } (Y, \mathcal{B}, \nu))$$

$$= \int_{X} \left[\int_{Y} f_{x} d\nu \right] d\mu.$$

De même on a

$$\lim_{n \to +\infty} \int_{Y} \left[\int_{X} (f_{n})^{y} d\mu \right] d\nu = \int_{Y} \lim_{n \to +\infty} \left[\int_{X} (f_{n})^{y} d\mu \right] d\nu \text{ (T.C.M. sur } (Y, \mathcal{B}, \nu))$$

$$= \int_{Y} \left[\int_{X} \lim_{n \to +\infty} (f_{n})^{y} d\mu \right] d\nu \text{ (T.C.M. sur } (X, \mathcal{A}, \mu))$$

$$= \int_{Y} \left[\int_{X} f^{y} d\mu \right] d\nu.$$

D'où le résultat voulu.

Théorème 1.3.2. (Théorème de Fubini) Soient (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés σ -fnies et $f: (X \times Y, \mathcal{A} \otimes \mathcal{B}) \longrightarrow \overline{\mathbb{R}}$ ou \mathbb{C} une fonction intégrable. Alors 1) Pour μ -presque chaque $x \in X$, la fonction f_x est ν -intégrable et pour v-presque chaque $y \in Y$, la fonction f^y est μ -intégrable.

- 2) Les fonctions $I(x) = \int_{Y} f_x d\nu$ et $J(y) = \int_{X} f^y d\mu$ sont intégrables sur X et Y respectivement.
- 3) On a la relation

$$\int_{X\times Y} fd(\mu \otimes \nu) = \int_{X} I(x) d\mu = \int_{Y} J(y) d\nu.$$

En écrivant les variables d'intégration, on obtient

$$\int_{X\times Y} f(x,y) d(\mu \otimes \nu) (x,y) = \int_{X} \left[\int_{Y} f_{x}(x,y) d\nu (y) \right] d\mu (x)$$

$$= \int_{Y} \left[\int_{X} f^{y}(x,y) d\mu (x) \right] d\nu (y).$$

Démonstration. 1) En appliquant le **Théorème de Fubini–Tonelli** à |f|, qui est une fonction mesurable et positive et intégrable, on peut écrire

$$\int\limits_{X\times Y}\left|f\right|d\left(\mu\otimes\nu\right)=\int\limits_{X}\left[\int\limits_{Y}\left|f\right|_{x}d\nu\right]d\mu=\int\limits_{Y}\left[\int\limits_{X}\left|f\right|^{y}d\mu\right]d\nu<+\infty.$$

On en déduit que la fonction $x \longmapsto \int\limits_V |f|_x \, d\nu$ est finie μ -p.p. et la fonction

 $y \longmapsto \int\limits_X |f|^y d\mu$ est finie ν -p.p., car ces fonctions sont positives et d'intégrales finies. Cela justifie le point (1).

2) En écrivant $f = (u^+ - u^-) + i(v^+ - v^-)$, où u = Re(f) et v = Im(f), on obtient

$$I(x) = \int_{Y} f_x d\nu = \int_{Y} u_x^+ d\nu - \int_{Y} u_x^- d\nu + i \left(\int_{Y} v_x^+ d\nu - \int_{Y} v_x^- d\nu \right).$$

D'après le **Théorème de Fubini–Tonelli**, les quatres intégrales sont des fonctions mesurables, donc l'est aussi et on a en plus $|I(x)| \leq \int\limits_{Y} |f|_x d\nu$, ce qui nous permet de dire que I est intégrable sur X.

En utilisant le même raisonnement, on obtient le résultat similaire pour la fonction J.

3) Comme $f = (u^+ - u^-) + i(v^+ - v^-)$, alors d'après la linéarité et le **Théorème** de Fubini–Tonelli pour les intégrales de u^+, u^-, v^+ et v^- , on obtient la relation voulue.