MATH 60604A Statistical modelling § 4b - Logistic regression

Léo Belzile

HEC Montréal Department of Decision Sciences

Generalized linear model for binary variables

• In the case of a binary response variable, assume Y_i follows a Bernoulli distribution with parameter π_i , $Y_i \sim \text{Bin}(\pi_i)$, where

$$\pi_i = P(Y_i = 1 \mid \mathbf{X}_i) = E(Y_i \mid \mathbf{X}_i).$$

An appropriate link function for binary responses is the logit function

$$g(z) := \operatorname{logit}(z) = \operatorname{ln}\left(\frac{z}{1-z}\right).$$

The logistic regression model is

$$g(\pi_i) = \ln\left(\frac{\pi_i}{1 - \pi_i}\right) = \eta_i := \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}.$$

 The logit function g is the quantile function of the logistic distribution and links E (Y_i | X_i) = π_i(X_i) and η_i.

Logistic regression: logit function

The logistic model is

$$\eta_i = \ln\left(\frac{\pi_i}{1 - \pi_i}\right) = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}.$$

 This model can also be written on the mean scale by using the inverse-logit (expit) function,

$$\mathsf{E}\left(Y_{i} \mid \mathbf{X}_{i}\right) = \pi_{i} = \frac{\exp\left(\beta_{0} + \beta_{1}\mathsf{X}_{i1} + \dots + \beta_{p}\mathsf{X}_{ip}\right)}{1 + \exp\left(\beta_{0} + \beta_{1}\mathsf{X}_{i1} + \dots + \beta_{p}\mathsf{X}_{ip}\right)}.$$

- We have an expression for the mean $\pi_i = E(Y_i \mid \mathbf{X}_i)$ as a function of the explanatory variables \mathbf{X}_i , but...
 - what does this function look like?
 - what does this tell us about the relationship between π_i and η_i (and thus X_i)?

Logistic distribution function

- Notice π is an increasing function of $\eta = \beta_0 + \sum_{j=1}^p \beta_j X_j$.
 - If β_i is positive and X_i increases, P(Y=1) also increases.
 - If β_j is negative and X_j increases, P(Y = 1) decreases.
- We also see that the relationship between P (Y = 1) and η (and thus each X_j) is non-linear.

Parameter interpretations in terms of odds

- Quantifying the effect sizes in logistic regression is not easy because it's a nonlinear model.
- The coefficients can be interpreted in terms of odds and odds ratios.
- Let $\pi = P(Y = 1 \mid X_1, ..., X_p)$, the logistic regression model is

$$\ln\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p.$$

By exponentiating both sides, we obtain

$$\operatorname{odds}(Y \mid \mathbf{X}) = \frac{\pi(\mathbf{X})}{1 - \pi(\mathbf{X})} = \exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p),$$

where $\pi(\mathbf{X})/\{1-\pi(\mathbf{X})\}$ are the odds of P ($Y=1\mid\mathbf{X}$) relative to P ($Y=0\mid\mathbf{X}$).

Odds

- The logit function corresponds to modelling the log-odds.
- The odds for binary Y are the quotient

$$\operatorname{odds}(\pi) = \frac{\pi}{1 - \pi} = \frac{\operatorname{P}(Y = 1)}{\operatorname{P}(Y = 0)}.$$

- For example, an odds of 4 means that the probability that Y=1 is four times higher than the probability that Y=0.
- An odds of 0.25 means the probability that Y=1 is only a quarter times the probability that Y=0, or equivalently, the probability that Y=0 is four times higher than the probability that Y=1.

P(Y=1)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Odds	0.11	0.25	0.43	0.67	1	1.5	2.33	4	9
Odds (frac.)	$\frac{1}{9}$	$\frac{1}{4}$	$\frac{3}{7}$	$\frac{2}{3}$	1	$\frac{3}{2}$	$\frac{7}{3}$	4	9

Interpretation of the intercept in terms of the odds

• When $X_1 = \cdots = X_p = 0$, it is clear that

$$\operatorname{odds}(Y \mid \mathbf{X} = \mathbf{0}_p) = \exp(\beta_0)$$

and

$$P(Y = 1 | X_1 = 0, ... X_p = 0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$

which represents the probability that Y=1 when $\mathbf{X}=\mathbf{0}_{
ho}.$

• As for linear regression, $X_1 = \cdots = X_p = 0$ might not be physically possible, in which case there is no sensible interpretation for β_0 .

Parameter interpretation in terms of the odds ratio

Consider for simplicity a logistic model of the form

$$logit(\pi) = \beta_0 + \beta_1 x.$$

The factor $exp(\beta_1)$ is the change in odds when X increases by one unit,

$$\operatorname{odds}(Y \mid X = x + 1) = \exp(\beta_1) \times \operatorname{odds}(Y \mid X = x).$$

- If $\beta_1=0$ then the odds ratio is unity, meaning that the variable X is not associated with the odds of Y
- If β_1 is positive, then the odds ratio $\exp(\beta_1)$ is larger than one, meaning that, as X increases, the odds of Y increases.
- If β_1 is negative, the odds ratio $\exp(\beta_1)$ is smaller than one, meaning that, as X increases, the odds of Y decreases.

Note that, when there are several explanatory variables in the model, the interpretation of β_1 is when all other variables in the model are held constant.

Interpretation of β_k in terms of odds ratio

For the logistic model, the odds ratio when $X_k = x_k + 1$ versus $X_k = x_k$ when $X_j = x_j$ $(j = 1, ..., p, j \neq k)$ is

$$\frac{\operatorname{odds}(Y \mid X_k = x_k + 1, X_j = x_j, j \neq k)}{\operatorname{odds}(Y \mid X_k = x_k, X_j = x_j, j \neq k)} = \frac{\exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j + \beta_k\right)}{\exp\left(\beta_0 + \sum_{j=1}^p \beta_j x_j\right)}$$
$$= \exp(\beta_k).$$

When X_k increases by one unit and all the other covariates are held constant, the odds of Y changes by a factor $\exp(\beta_k)$.

- The odds increase if $\exp(\beta_k) > 1$, i.e., if $\beta_k > 0$.
- The odds decrease if $\exp(\beta_k) < 1$, i.e., if $\beta_k < 0$.

The effect of β_k is larger when π is near 0.5 than near endpoints of (0,1).