Outline

- More Operators for Binary Coded GA
 - Selection Operators
 - Crossover Operators //
 - Mutation Operators
- Simulation and Application
 - Rosenbrock Function
 - Himmelblau Function
 - Rastrigin Function
 - Ackley Function
- 3 Closure +

Recap

- Binary-coded genetic algorithm
 - Generalized framework
 - Solution representation
 - Working principles through an example
 - * selection operator,
 - * crossover and mutation operators,
 - * survivor operator
 - ► Graphical example

Selection Operators

- The purpose is to identify good (usually above-average) solutions in the population.
- In this process, we eliminate bad solutions in the population.
- We make multiple copies of good solutions.
- Selection can be used either before or after search/variation operators.
 - When selection is used before search/variation operators, it is called as <u>reproduction</u> or selection.
 - After search/variation operators: The process of choosing the next generation population from parent and off-spring populations is referred to as <u>survivor</u> or <u>elimination</u>. It is also being referred to as <u>environmental selection</u>.
- Common selection methods are
 - Fitness proportionate selection /
 - ► Tournament selection/
 - ► Ranking selection

• **Probability** of selecting individual i from population P of size N is:

$$p_i = \frac{f_i}{\sum_{i=1}^N f_i},\tag{1}$$

where f_i is the fitness of individual i.

- It is suitable for maximization problem.
- It is also known as roulette wheel selection method.

Ladaa	£/\		
Index	$f(x_1,x_2)$	p_i	(P_i)
1	210.445	0.0041	0.0041
2	7536.407	0.1471	0.1512
3	14041.882	0.2740	0.4252
4	1546.603	0.0302	0.4554
5	189.732	0.0037	0.4591
6	671.924	0.0131	0.4122
7	7252.209	0.1415	0.6137
8	19793.183	0.3863	1.0000
sum	51242.386		

- Let us calculate probability of solution '1'.
 - Sum of all fitness values $= \sum_{j=1}^{N} f_j = 51242.386$
 - Probability, $p_1 = \frac{210.445}{51242.386} = 0.0041$
- Similarly, we can calculate probability of solution '2'.
 - ▶ Probability, $p_2 = \frac{7536.407}{51242.386} = 0.1471$
- We then calculate probability of other solutions.
- P_i is the cumulative probability.

- The figure is drawn using the cumulative probability.
- r_i is the random number between 0 to 1.

Index	$f(x_1, x_2)$	p_i	P_i
1	210.445	0.0041	0.0041
2	7536.407	0.1471	0.1512
3	14041.882	0.2740	0.4252
4	1546.603	0.0302	0.4554
5	189.732	0.0037	0.4591
6	671.924	0.0131	0.4722
7	7252.209	0.1415	0.6137
8	19793.183	0.3863	1.0000

- Let the first random number is $r_1 = 0.07218$. As per the cumulative probability, solution 2 is selected.
- The second number random number is $r_2 = 0.68799$. Solution 8 is selected. +

Index	$f(x_1, x_2)$	p_i	P_i
1	210.445	0.0041	0.0041
2	7536.407	0.1471	0.1512
3	14041.882	0.2740	0.4252
4	1546.603	0.0302	0.4554
5	189.732	0.0037	0.4591
6	671.924	0.0131	0.4722
7	7252.209	0.1415	0.6137
8	19793.183	0.3863	1.0

• The rest of the random numbers are

$$r_3 = 0.49976, r_4 = 0.31172,$$
 $r_5 = 0.51961, r_6 = 0.48610,$
 $r_7 = 0.87648, r_8 = 0.99177.$

• Selected solutions are '7', '3', '7', 7', '8',

Index	$f(x_1, x_2)$	p_i	P_i
1	210.445	0.0041	0.0041
2	7536.407	0.1471	0.1512
3	14041.882	0.2740	0.4252
4	1546.603	0.0302	0.4554
5	189.732	0.0037	0.4591
6	671.924	0.0131	0.4722
7	7252.209	0.1415	0.6137
8	19793.183	0.3863	1.0

- The rest of the random numbers are
 - ▶ $r_3 = 0.49976$, $r_4 = 0.31172$, $r_5 = 0.51961$, $r_6 = 0.48610$, $r_7 = 0.87648$, $r_8 = 0.99177$.
- Selected solutions are '7', '3', '7', 7', '8',
 '8'.

 Solution 2 gets 1 copy, solution 3 gets 1 copy, solution 7 gets 3 copies and solution 8 gets 3 copies.

Index	$f(x_1,x_2)$
2	7536.407
3	14041.882
(7	7252.209
7	7252.209
7	7252.209
(8	19793.183
8	19793.183
8	19793.183

• Two solutions become 'super-solution' in the population.

カタウ き くきょくきょくしょ

Stochastic Remainder Roulette-Wheel Selection Operator

- We calculate probability of each solution using the formula used with fitness proportionate selection operator.
- We then multiply the population size (N) with the probability of each solution.

Index	$f(x_1,x_2)$	p_i	Np_i
1	210.445	0.0041	0.0329
2	7536.407	0.1471	1.1766
3	14041.882	0.2740	2.1922
4	1546.603	0.0302	0.2415
5	189.732	0.0037	0.0296
6	671.924	0.0131	0.1049
7	7252.209	0.1415	1.1322
8	19793.183	0.3863	3.0901

- We assign a number of copies to the solution based on the integer value of product Np_i .
- For example, $Np_1 = 0.0329$ for solution '1', we do not assign any copy to it.
- For solution '2', $Np_2 = 1.17$. Therefore, we assign 1 copy of it.
- Similarly, solution '3' gets 2 copies, solution '7' gets 1 copy and solution '8' gets 3 copies.
- The total number of solutions selected is 7.
- We have to choose 1 more solution to keep the population size fixed, that is, N=8.

Stochastic Remainder Roulette-Wheel Selection Operator

 We then use the fitness proportionate selection operator using only the decimal values.

Index	Np_i	Decimals	P_i
1	0.0329	0.0329	0.00329
2	1.1766	0.1766	0.2094
3	21922	0.1922	0.4017
4	0.2415	0.2415	0.6431
5	0.0296	0.0296	0.6728
6	0.1049	0.1049	0.7777
7	1.1322	0.1322	0.9099
8 +	3.0901	0.0901	1.0000
	sum	1	

- Let the random number is $r_i = 0.76335$. We now select solution 6.
- We can see that the first part of stochastic remainder roulette-wheel selection operator is deterministic because the number of copies is decided using the integer value.
- It is considered less noisy than fitness proportionate selection operator in the sense of introducing less variance in its realization.

Stochastic Universal Sampling (SUS)

Index	$f(x_1, x_2)$	p_i	P_i
1	210.445	0.0041	0.0041
2	7536.407	0.1471	0.1512
3	14041.882	0.2740	0.4252
4	1546.603	0.0302	0.4554
5	189.732	0.0037	0.4591
6	671.924	0.0131	0.4722
7	7252.209	0.1415	0.6137
8	10703 183	0.3863	1.0000

- ullet Only one random number r is required for selecting solutions.
- ullet Since N different solutions have to be chosen, a set of N equi-spaced number is created.

- - $R = \{r, r + 1/N, r + 2/N, \dots, r + (N-1)/N\} \mod 1.$
 - Let r=0.40416 and 1/N=0.125. Here, the population size is N=8.
 - Solution '3' is selected first using r.
 - The second solution is selected using r+1/N=0.40416+0.125=0.52916, that is, solution '7'.
 - The series of numbers for selecting solutions is 0.65416, 0.77916, 0.90416, 0.02916, 0.15416, 0.27916.
 - The following solutions are then selected:

Fitness Proportionate Selection

Limitations

- Domination of "super solution" in early generations
 - ▶ Suppose, the fitness (maximization) of five solutions in the population is given as $f_1 = 10, f_2 = 5, f_3 = 70, f_4 = 7, f_5 = 8.$
 - Because of the fitness proportional selection, solution '3' will get more copies and will become a "super-solution".
- Slower convergence in later generations
 - ▶ Suppose, the fitness of five solutions in the population is given as $f_1 = 19$, $f_2 = 21$, $f_3 = 22$, $f_4 = 18$, $f_5 = 20$.
 - Every solution will get a copy. It means that selection operator has no role in selecting solutions and thus, it becomes dummy.

Possible remedies:

- Fitness scaling
- Use ranking selection to avoid fitness scaling
- Tournament selection: It does not have any scaling problem

Tournament Selection Operator

Tournament selection with tournament size 'k'

Randomly, we sample a subset \hat{P} of k solutions from the population P. Select solution in \hat{P} with the best fitness.

- Suppose k = 4, we choose four solutions randomly, say, $\{2, 6, 3, 9\}$ and their fitness values are $f_2 = 10, f_6 = 5.9, f_3 = 16.7, f_9 = 9.4.$
- For maximization problem, who will win the tournament?
 Solution 3
- For minimization problem, who will win the tournament?

 Solution 6
- Often, tournament size k = 2 is used, which is known as binary tournament selection operator.

Operators for Survivor or Elimination

$(\mu + \lambda)$ selection scheme

- Let the size of parent population is μ .
- ullet Let λ number of offspring solutions are generated after variation operator.
- The next population is filled by choosing the μ best number of solutions from the combined populations of parent and offspring solutions.

(μ, λ) selection scheme where $(\lambda > \mu)$

- Let the size of parent population is μ .
- Let λ number of offspring solutions are generated after variation operator. Note that $(\lambda > \mu)$.
- The next population is filled by choosing the μ best number of solutions from the offspring population only.

Crossover Operators for Binary Variables

- Crossover operator creates offspring/new solutions from more than one parent.
- Crossover probability (p_c)
 - ▶ $100p_c\%$ strings are used in the crossover operator.
 - ▶ $100(1-p_c)\%$ of the population are simply copied to the new population.
- Single-point crossover operator
 - Choose a random site on the two parents
 - Split parents at this crossover site
 - Create children by exchanging tails

parent 1:	1010111010
parent 2:	0 1 0 1 0 0 1 1 1 1 0
offspring 1:	101011 1110
offspring 2:	0 1 0 1 0 0 1 0 1 0

Crossover Operators for Binary Variables

- *n*-point crossover:
 - Choose n random crossover sites
 - Split along those sites
 - ► Glue parts, alternating between parents
- 2- point crossover operator

parent 1:	1 0 1 0 1 1 1 0 1 0
parent 2:	0 1 0 1 0 0 1 1 1 0
offspring 1:	101/100/1010
offspring 2:	0 1 0 0 1 1 1 1 1 0

Crossover Operators for Binary Variables

- Uniform crossover
 - Select a bit-string z of length n uniformly at random.
 - \blacktriangleright for all i in 1 to n
 - * if $z_i = 1$ then bit i in offspring-1 is x_i else y_i .
 - * if $z_i = 1$ then bit i in offspring -2 is y_i else x_i .

```
parent 1: 1010111010
parent 2: 0101001110
z = 1010001110
offspring 1: 11110010
```

Mutation Operator for Binary String

The mutation operator introduces small, random changes to a solution's chromosome.

Local Mutation

- One randomly chosen bit is flipped.
- 1010111010
 1011111010

Global Mutation

- Each bit flipped independently with a given probability p_m ,
- It is also called the per bit mutation rate, which is often =1/n, where n is the chromosome length.
- 10101010
- 1000111110
 $\Pr[k \text{ bits flipped}] = \binom{n}{k}.p_m^k.(1-p_m)^{n-k}$

Simulation and Application

Rosenbrock Function

Minimize $f(x_1,\ldots,x_N) = \sum_{i=1}^{N-1} (100(x_{i+1}-x_i^2)^2 + (1-x_i)^2)$, bounds $-5 \le x_i \le 5$ and $i = 1, \dots, N$.

Total Services

BGA Parameters

- Number of variables: N=2
- Population size: 40
- No. of generations: 200
- Binary string length of x_1 is $l_1 = 5$
- Binary string length of x_2 is $l_2 = 5$
- Total length of binary string is

$$l = l_1 + l_2 = 10$$

- Probability of crossover: $p_c = 1.0$
- Probability of mutation; $p_m = 1/N = 0.5$
- Binary tournament selection operator
- Single-point crossover operator
- Bit-wise mutation operator

• $(\mu + \lambda)$ -strategy

- Simulation
- Progress Link

A 040

BGA Parameters

- Number of variables: N=2
- Population size: 40
- No. of generations: 200
- Binary string length of x_1 is $l_1 = 10$
- Binary string length of x_2 is $l_2 = 10$
- Total length of binary string is

$$l = l_1 + l_2 = 20$$

- Probability of crossover: $p_c = 1.0$
- Probability of mutation; $p_m = 1/N = 0.5$
- Binary tournament selection operator
- Single-point crossover operator
- Bit-wise mutation operator

- Simulation Link
- Progress Link

-

BGA Parameters

- Number of variables: N=2
- Population size: 40
- No. of generations: 200
- Binary string length of x_1 is $l_1 = 20$
- Binary string length of x_2 is $l_2 = 20$
- Total length of binary string is

$$l = l_1 + l_2 = 40$$

- Probability of crossover: $p_c = 1.0$
- Probability of mutation; $p_m = 1/N = 0.5$
- Binary tournament selection operator
- Single-point crossover operator
- Bit-wise mutation operator

- Simulation Link
- Progress Link

BGA Parameters

- Number of variables: N=4
- Population size: 40
- No. of generations: 200
- Binary string length of x_1 is $l_1 = 20$
- Binary string length of x_2 is $l_2 = 20$
- Total length of binary string is

$$l = l_1 + l_2 = 40$$

- Probability of crossover: $p_c = 1.0$
- Probability of mutation; $p_m = 1/N = 0.5$
- Binary tournament selection operator
- Single-point crossover operator
- Bit-wise mutation operator

Progress

Himmelblau Function

Himmelblau Function

Minimize $f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$, bounds $-5 \le x_1 \le 5$ and $-5 \le x_2 \le 5$.

- Multi-modal function: it has 4 minimum points
- First optimal solution is $x^* = (3, 2)^T$
- Second optimal solution is $x^* = (-2.805, 3.131)^T$ and f(x) = 0
- Third optimal solution is $x^* = (-3.779, -3.283)^T$ and f(x) = 0
- Fourth optimal solution is $x^* = (3.584, -1.848)^T$ and f(x) = 0

and f(x) = 0

Himmelblau Function

4 04

BGA Parameters

- Population size: 60
- No. of generations: 200
- Binary string length of x_1 is $l_1 = 20$
- Binary string length of x_2 is $l_2 = 20$
- Total length of binary string is $l = l_1 + l_2 = 40$
- Probability of crossover: $p_c = 1.0$
- Probability of mutation; $p_m = 1/N = 0.5$
- Binary tournament selection operator
- Single-point crossover operator
- Bit-wise mutation operator
- \bullet $(\mu + \lambda)$ -strategy

- Simulation Link
- Progress Link

Rastrigin Function

00000

Rastrigin Function

Minimize $f(x_1, ..., x_N) = 10N + \sum_{i=1}^{N} (x_i^2 - 10\cos(2*\pi x_i)),$ bounds $-5.12 \le x_i \le 5.12$

 \bullet Optimal solution is $x^* = (0, \dots, 0)^T$ and f(x) = 0

BGA Parameters

- Number of variable: N=2
- Population size: 60
- No. of generations: 200
- Binary string length of x_1 is $l_1 = 20$
- Binary string length of x_2 is $l_2 = 20$
- Total length of binary string is

$$l = l_1 + l_2 = 40$$

- Probability of crossover: $p_c = 1.0$
- Probability of mutation; $p_m = 1/N = 0.5$
- Binary tournament selection operator
- Single-point crossover operator
- Bit-wise mutation operator

• $(\mu + \lambda)$ -strategy

BGA Parameters

- Number of variable: N=4
- Population size: 60
- No. of generations: 200
- Binary string length of x_1 is $l_1 = 20$
- Binary string length of x_2 is $l_2 = 20$
- Total length of binary string is

$$l = l_1 + l_2 = 40$$

- Probability of crossover: $p_c = 1.0$
- Probability of mutation; $p_m = 1/N = 0.5$
- Binary tournament selection operator
- Single-point crossover operator
- Bit-wise mutation operator

 \bullet $(\mu + \lambda)$ -strategy

Progress Link

Ackley Function

-

Ackley Function

Minimize
$$f(x_1, x_2) = -20 \exp\left(-0.2\sqrt{(0.5(x_1^2 + x_2^2))}\right)$$

 $-\exp\left(0.5(\cos(2\pi x_1) + \cos(2\pi x_2))\right) + \exp(1) + 20,$
bounds $-5 \le x_1 \le 5$ and $-5 \le x_2 \le 5.$

• Optimal solution is $x^* = (0,0)^T$ and f(x) = 0

Ackley Function

100

BGA Parameters

- Population size: 60
- No. of generations: 200
- Binary string length of x_1 is $l_1 = 20$
- Binary string length of x_2 is $l_2 = 20$
- Total length of binary string is $l = l_1 + l_2 = 40$
- Probability of crossover: $p_c = 1.0$
- Probability of mutation; $p_m = 1/N = 0.5$
- Binary tournament selection operator
- Single-point crossover operator
- Bit-wise mutation operator
- $\bullet (\mu + \lambda)$ -strategy

- Simulation Link
- Progress Link

De

Closure

NO.

- Binary-coded genetic algorithm
 - Solution representation
 - Working principles through an example: selection operator, crossover and mutation operators, survivor operator
 - Graphical example
- More operators
 - selection operator, crossover and mutation operators, survivor operator
- Simulation and application of BGA on four mathematical problems