B. Wróblewski

Proste równania pierwszego rzędu

Zadanie 1. Rozwiąż równania o rozdzielonych zmiennych:

a)
$$\sqrt{y^2 + 1} = tyy'$$
,

b)
$$ty' + y = y^2$$
,

c)
$$\sqrt{2y-1} = y'$$
.

Zadanie 2. Rozwiąż równania liniowe:

a)
$$y' + y \cos t = 0$$
,

c)
$$y' + t^2 y = t^2$$
,

e)
$$y' + y = te^t$$
.

b)
$$y' + t^2y = 1$$
,

d)
$$y' + \frac{2t}{1+t^2}y = \frac{1}{1+t^2}$$
,

Zadanie 3. Rozwiąż następujące zagadnienia początkowe:

a)
$$y' + \sqrt{1+t^2}y = 0$$
,
 $y(0) = \sqrt{5}$;
b) $y' + ty = 1 + t$,
 $y(3/2) = 0$.

b)
$$y' + ty = 1 + t$$
,
 $y(3/2) = 0$.

 Zadanie 4. Znajdź funkcję f=f(t) w równaniu $fy'+t^2+y=0$, jeżeli wiadomo, że ma ono czynnik całkujący postaci u(t) = t.

Zadanie 5. Pokaż, że zagadnienie $y' = 1 + y^2$, y(0) = 0 nie ma rozwiązania określonego na całej prostej.

Zadanie 6. Wyznacz wszystkie rozwiązania równania $y' = 2y^{1/2}$.

Zadanie 7. Udowodnij, że równanie $y'=f(y),\,y\in\mathbb{R}$, $f\in C^1$, nie może mieć rozwiązań okresowych różnych od stałych.

Zadanie 8. Pokaż, że równanie ty' + ay = f(t), gdzie a > 0, $\lim_{t \to 0} f(t) = b$, ma jedyne rozwiązanie ograniczone dla $t \to 0$. Zbadaj przypadek a < 0.

Zadanie 9. Zakładamy, że f jest funkcją ciągłą i ograniczoną na \mathbb{R} . Pokaż, że równanie y'+y=f(t) ma dokładnie jedno rozwiązanie y(t) ograniczone. Pokaż, że jeżeli założymy, że f jest funkcją okresową, to y też jest funkcją okresową.

Zadanie 10. Pokaż, że każda krzywa całkowa równania $x'=\sqrt[3]{\frac{x^2+1}{t^4+1}}$ ma poziome asymptoty.

Równania sprowadzalne do prostych równań

Zadanie 11. Równanie postaci $\frac{dy}{dt} = f(\frac{y}{t})$, gdzie f jest daną funkcją, nazywamy *równaniem* jednorodnym. Pokaż, że równanie tego typu sprowadza się przez zamianę zmiennych $v(t)=\frac{y(t)}{t}$ do równania zmiennych rozdzielonych $t(\frac{\mathrm{d}v}{\mathrm{d}t})+v=f(v)$. Znajdź rozwiązanie ogólne. Rozwiąż równania:

a)
$$2y + t - ty' = 0$$
,

b)
$$ty' = y - te^{y/t}$$
,

c)
$$ty' = y \cos(\log \frac{y}{t})$$
.

Zadanie 12. Równanie postaci $y' + a(t)y = b(t)x^m$, gdzie $m \in \mathbb{R}$, nazywamy *równaniem Berno*ulliego. Pokaż, że równanie tego typu sprowadza się przez zamianę zmiennych $z(t)=y(t)^{1-m}$ do równania liniowego. Znajdź rozwiązanie ogólne. Rozwiąż równania:

a)
$$ty' + y = y^2 \log t,$$

b)
$$y' = ty + t^3y^2$$
.

Zadanie 13. Równanie postaci $y' + a(t)y = b(t)y^2 + f(t)$, gdzie a, b, f są danymi funkcjami, nazywa się równaniem Riccatiego. Nie istnieje ogólny sposób całkowania tego równania. Udowodnij, że jeżeli znamy jedno rozwiązanie $y_1(t)$, to funkcja $u(t) = y(t) - y_1(t)$ spełnia równanie Bernoulliego. Znajdź rozwiązania szczególne następujących równań Riccatiego, zredukuj je do równań typu Bernoulliego i scałkuj:

a)
$$t^2y' + ty + t^2y^2 = 4$$

a)
$$t^2y' + ty + t^2y^2 = 4$$
, b) $y' + 2ye^t - y^2 = e^{2t} + e^t$.