Espacios Vectoriales 3

Álgebra II - 2020 - 1er cuatrimestre

En este archivo definiremos las nociones de vectores linealmente independientes y bases.

Estas diapositivas estan basadas en el capítulo 2 de las *Notas de Álgebra II* de Agustín Garcia y Alejandro Tiraboschi, siguiendo la misma numeración. Allí se pueden encontrar más detalles y el sustento teórico de todas nuestras afirmaciones.

Como venimos haciendo hasta aquí sólo trabajaremos sobre \mathbb{R} . Así que donde diga "un cuerpo \mathbb{K} " leeremos " \mathbb{R} ".

- Objetivos
- 2 Subespacios con generadores en \mathbb{R}^n
- Independencia lineal
 - ullet Vectores LI en \mathbb{R}^n
- A Bases
 - Bases del conjunto de soluciones de un sistema homogéneo
 - Bases del subespacio generado

En el archivo anterior definimos generadores, combinaciones lineales y subespacio generado.

Repasaremos estas nociones en el siguiente problema.

Consideremos los siguientes vectores en \mathbb{R}^4

$$v_1 = (0, 1, 2, 4), \quad v_2 = (-3, 1, -2, -16),$$

 $v_3 = (0, 2, 4, 8), \quad v_4 = (9, -3, 6, 48)$

Pregunta

Sea
$$b = (b_1, b_2, b_3, b_4) \in \mathbb{R}^4$$
. $\xi b \in \langle v_1, v_2, v_3, v_4 \rangle$?

En otras palabras

Pregunta

Sea $b=(b_1,b_2,b_3,b_4)\in\mathbb{R}^4$. ¿b es una combinación lineal de v_1 , v_2 , v_3 , v_4 ?

Más explicitamente

Pregunta

Sea $b=(b_1,b_2,b_3,b_4)\in\mathbb{R}^4$. ¿Existen $\lambda_1\lambda_2,\lambda_3\lambda_4\in\mathbb{R}$ tales que $b=\lambda_1v_1+\lambda_2v_2+\lambda_3v_3+\lambda_4v_4$?

Escribamos más explicitamente la combinación lineal de la última pregunta

$$\lambda_1 \begin{pmatrix} 0 \\ 1 \\ 2 \\ 4 \end{pmatrix} + \lambda_2 \begin{pmatrix} -3 \\ 1 \\ -2 \\ -16 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 \\ 2 \\ 4 \\ 8 \end{pmatrix} + \lambda_4 \begin{pmatrix} 9 \\ -3 \\ 6 \\ 48 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

Esta se puede escribir como producto de matrices

$$\begin{pmatrix} 0 & -3 & 0 & 9 \\ 1 & 1 & 2 & -3 \\ 2 & -2 & 4 & 6 \\ 4 & -16 & 8 & 48 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

Entonces nuestra pregunta es equivalente a la siguiente

Pregunta

Sea A la matriz 4×4 de arriba ¿Tiene solución el sistema AX = b?

Este es exactamente el Ejercicio 1b del Primer Trabajo Práctico!

El sistema AX = b tienen solución si y sólo si

$$(E) \begin{cases} -3b_3 + 6b_2 + 4b_1 = 0\\ \frac{1}{5}b_4 - \frac{4}{5}b_2 + 4b_1 = 0 \end{cases}$$

Independencia lineal

Por ejemplo,

- $b = (1, 0, \frac{4}{3}, -20) \in \langle v_1, v_2, v_3, v_4 \rangle$ porque verifica las igualdades y entonces el sistema tiene solución
- $b = (1, 1, \frac{4}{3}, -20) \notin \langle v_1, v_2, v_3, v_4 \rangle$ porque no verifica las igualdades y entonces el sistema tiene solución

Más aún, el "si y sólo si" nos dice que

el subespacio $\langle v_1, v_2, v_3, v_4 \rangle$ es igual al conjunto de soluciones del sistema homogéneo (E)

En conclusión, la respuesta a nuestra pregunta es la siguiente.

Pregunta

Sea $b = (b_1, b_2, b_3, b_4) \in \mathbb{R}^4$. $b \in \langle v_1, v_2, v_3, v_4 \rangle$?

Respuesta

 $b \in \langle v_1, v_2, v_3, v_4 \rangle$ si y sólo si

$$\begin{cases}
-3b_3 + 6b_2 + 4b_1 = 0 \\
\frac{1}{5}b_4 - \frac{4}{5}b_2 + 4b_1 = 0
\end{cases}$$

Notemos que podemos repetir todo el razonamiento anterior para cualesquiera vectores $v_1,...,v_k$ en cualquier \mathbb{R}^n y cualquier $b\in\mathbb{R}^n$ y deducir lo siguiente.

Sólo hay que convencerse de que multiplicar una matriz por un vector columna es lo mismo que hacer una combinación lineal de las columnas de A usando las coordenadas del vector.

Es decir, si
$$A=\left(\begin{array}{ccc|c} |&|&&|\\ v_1&v_2&\cdots&v_k\\ |&|&&|\end{array}\right)$$
 entonces
$$A\left(\begin{array}{ccc|c} \lambda_1\\ \vdots\\ \end{array}\right)=\lambda_1v_1+\cdots+\lambda_kv_k$$

Conclusión

Sean $v_1,...,v_k\in\mathbb{R}^n$ y $A\in\mathbb{R}^{n imes k}$ la matriz cuyas columnas son los

Independencia lineal

vectores
$$v_1, ..., v_k$$
, es decir $A = \left(\begin{array}{cccc} | & | & & | \\ v_1 & v_2 & \cdots & v_k \\ | & | & & | \end{array} \right)$.

Entonces

- El subespacio vectorial $\langle v_1, ..., v_k \rangle$ es igual al conjunto de los $b \in \mathbb{R}^n$ para los cuales el sistema AX = b tiene solución.
- Más aún, $\langle v_1, ..., v_k \rangle$ es el conjunto de soluciones de un sistema homogéneo dado por las ecuaciones que debe satisfacer b para que el sistema AX = b tenga solución.
- Las ecuaciones vienen dadas por las filas nulas de la MERF equivalente a A. En particular, $\langle v_1,...,v_k\rangle=\mathbb{R}^n$ si no tiene filas nulas porque el sistema AX = b siempre tiene solución

Observación

Una estrategia similar se puede seguir para estudiar los subespacios generados por polinomios o matrices puesto que en esos casos los polinomios y matrices son identificados por sus coeficientes y entradas, respectivamente.

Algo de esto van a tener que hacer en los ejercicios de la guía 7.

- Objetivos
- 2 Subespacios con generadores en \mathbb{R}^n
- Independencia lineal
 - ullet Vectores LI en \mathbb{R}^n
- 4 Bases
 - Bases del conjunto de soluciones de un sistema homogéneo
 - Bases del subespacio generado

Sea V un espacio vectorial. Un subconjunto $S\subset V$ se dice linealmente dependiente o LD si existen vectores $v_1,...,v_n\in S$ y escalares $\lambda_1,...,\lambda_n\in\mathbb{R}$ no todos nulos tales que

$$\lambda_1 v_1 + \dots + \lambda_n v_n = 0$$

Ejemplo

 $S = \{(1,1),(2,2),(1,0)\} \subset \mathbb{R}^2$ es linealmente dependiente pues

$$-(1,1) + \frac{1}{2}(2,2) + 0(1,0) = 0$$

Sea V un espacio vectorial. Un subconjunto $S\subset V$ se dice linealmente dependiente o LD si existen vectores $v_1,...,v_n\in S$ y escalares $\lambda_1,...,\lambda_n\in\mathbb{R}$ no todos nulos tales que

$$\lambda_1 v_1 + \dots + \lambda_n v_n = 0$$

Ejemplo

 $S = \{1, \sin^2(x), \cos^2(x)\}$ es linealmente dependiente en el espacio de funciones $F(\mathbb{R})$ pues

$$1 - \sin^2(x) - \cos^2(x) = 0$$

Sea V un espacio vectorial. Un subconjunto $S \subset V$ se dice linealmente dependiente o LD si existen vectores $v_1,...,v_n \in S$ y escalares $\lambda_1,...,\lambda_n \in \mathbb{R}$ no todos nulos tales que

$$\lambda_1 v_1 + \dots + \lambda_n v_n = 0$$

Observaciones

- Se dice que $v_1, ..., v_n$ son linealmente dependientes o LD.
- Que $v_1,...,v_n$ sean LD es lo mismo que decir que alguno de ellos es combinación lineal de los otros. Por ejemplo, si $\lambda_1 \neq 0$ entonces

$$v_1 = -\frac{\lambda_2}{\lambda_1}v_2 - \dots - \frac{\lambda_n}{\lambda_1}v_n$$

• Si $0 \in S$, entonces S es LD porque $1 \cdot 0 = 0$ satisface la definición.

Sea V un espacio vectorial. Un subconjunto $S\subset V$ que no es linealmente dependiente se dice linealmente independiente o Ll

Los vectores LI son muy importante en espacios vectoriales.

Como la definición de LI es por la negación de otra, suele ser confuso como verificar si un subconjunto es LI o no.

A continuación damos unas observaciones (o definiciones equivalentes) que son las que tenemos que usar para verificar si un subconjunto es LI o no.

vectores LI

Sea V un espacio vectorial. Un subconjunto $S \subset V$ que no es linealmente dependiente se dice linealmente independiente o Ll

Observación 2.3.1

S es LI si para cualesquiera $v_1,...,v_n\in S$ y $\lambda_1,...,\lambda_n\in \mathbb{R}$ con algún $\lambda_i\neq 0$, vale que

$$\lambda_1 v_1 + \dots + \lambda_n v_n \neq 0$$

Observación 2.3.1

S es LI si dados $v_1,...,v_n\in S$ y $\lambda_1,...,\lambda_n\in \mathbb{R}$ tales que

$$\lambda_1 v_1 + \dots + \lambda_n v_n = 0$$

entonces $\lambda_1 = \cdots = \lambda_n = 0$

Ejemplo

 $\{(1,0),(0,1)\}$ es LI pues para cualesquiera $x,y\in\mathbb{R}$, con alguno no nulo,

$$x(1,0) + y(0,1) = (x,y) \neq 0$$

Ejemplo

El conjunto de polinomios $\{x^i \mid i \in \mathbb{N}\}$ es LI en el espacio $\mathbb{R}[x].$ En efecto, si

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

entonces todos los coeficientes tienen que ser nulos $a_n = a_{n-1} = \cdots = a_1 = a_0 = 0$.

- 1 Objetivos
- 2 Subespacios con generadores en \mathbb{R}^n
- Independencia lineal
 - ullet Vectores LI en \mathbb{R}^n
- 4 Bases
 - Bases del conjunto de soluciones de un sistema homogéneo
 - Bases del subespacio generado

Observación 2.3.2

Sean $v_1,...,v_k\in\mathbb{R}^n$ y $A\in\mathbb{R}^{n imes k}$ la matriz cuyas columnas son los

vectores
$$v_1,...,v_k$$
, es decir $A=\left(\begin{array}{ccc|c} |&|&&|\\ v_1&v_2&\cdots&v_k\\ |&|&&|\end{array}\right)$.

- Si el sistema AX = 0 tiene soluciones no triviales, entonces los vectores $v_1, ..., v_k$ son LD.
- ② Si 0 es la única solución de AX = 0, entonces los vectores $v_1, ..., v_k$ son LI.

Demostración: Si $(\lambda_1,...,\lambda_k)$ es una solución no trivial entonces algún $\lambda_i \neq 0$ y vale que

$$0 = A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix} = \lambda_1 v_1 + \dots + \lambda_k v_k$$

Por lo tanto los vectores son LD.

En cambio, si la única solución es la trivial quiere decir que

$$0 \neq A \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_k \end{pmatrix} = \mu_1 v_1 + \dots + \mu_k v_k$$

para cualesquiera escalares $\mu_1,...,\mu_k \in \mathbb{R}$, alguno no nulo, y por lo tanto los vectores son LI.

Observación

Una estrategia similar se puede seguir para ver si un conjunto dado de polinomios o matrices son LD o LI puesto que en esos casos los polinomios y matrices son identificados por sus coeficientes y entradas, respectivamente.

Algo de esto van a tener que hacer en los ejercicios de la guía 7.

- Objetivos
- 2 Subespacios con generadores en \mathbb{R}^n
- Independencia lineal Vectores LI en \mathbb{R}^n
- Bases
 - Bases del conjunto de soluciones de un sistema homogéneo
 - Bases del subespacio generado

Sea V un espacio vectorial. Una base de V es un subconjunto $\mathcal{B} \subset V$ que satisface las siguientes condiciones

- $\ \, \textbf{0} \ \, \mathcal{B} \, \, \text{genera a} \, \, V \\$
- $oldsymbol{2}$ \mathcal{B} es LI

Ejemplo 2.3.3

Dado $i \in \{1,...,n\}$, se denota e_i al vector de \mathbb{R}^n cuyas coordenadas son todas ceros excepto la coordenada i que es un 1

$$e_i = (0, ..., 1, ..., 0)$$

El conjunto $C = \{e_1, ..., e_n\}$ es una base de \mathbb{R}^n y se llama base canónica.

Ejemplo

En \mathbb{R}^3 los vectores son $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$

Ejemplo 2.3.3

Dado $i \in \{1,...,n\}$, se denota e_i al vector de \mathbb{R}^n cuyas coordenadas son todas ceros excepto la coordenada i que es un 1

$$e_i = (0, ..., 1, ..., 0)$$

El conjunto $C = \{e_1, ..., e_n\}$ es una base de \mathbb{R}^n y se llama base canónica.

Veamos que efectivamente es una base. Es decir, verifiquemos que ${\cal C}$ satisface las condiciones de la definición de base

① \mathcal{C} genera a \mathbb{R}^n : si $(x_1,...,x_n) \in \mathbb{R}^n$ entonces

$$(x_1, ..., x_n) = x_1 e_1 + \cdots + x_n e_n$$

② \mathcal{C} es LI: sean $x_1,...,x_n \in \mathbb{R}$ tales que

$$x_1e_1 + \cdots + x_ne_n = (x_1, ..., x_n) = 0$$

entonces $x_1 = \cdots = x_n = 0$

Sea $P \in \mathbb{R}^{n \times n}$ inversible. Entonces las columnas de P forman una base de \mathbb{R}^n .

Independencia lineal

Demostración: Por ser P inversible vale lo siguiente

- El sistema PX = b tiene solución para todo $b \in \mathbb{R}^n$. Entonces las columnas generan a \mathbb{R}^n por una conclusión de la primera sección.
- columnas son LI por la Observación 2.3.2

El conjunto $\mathcal{B} = \{x^i \mid i \in \mathbb{N}\}$ es una base del espacio de polinomios $\mathbb{R}[x]$.

Demostración:

 \bigcirc B genera: por definición todo polinomios es de la forma

$$a_n x^n + \cdots + a_1 x + a_0$$

Independencia lineal

donde $a_n, ..., a_0 \in \mathbb{R}$

 $\circled{\mathcal{B}}$ es LI: un polinomio como el anterior es nulo si y sólo si todos sus coeficiente son 0

Ejemplo 2.3.6

La base canónica del espacio de matrices $\mathbb{R}^{m \times n}$ es el conjunto $\{E_{ij} \mid 1 \leq i, j \leq j\}$ donde E_{ij} es la matriz con todas sus entradas nulas excepto la entrada i,j que es 1

La demostración de que es base es igual a la de la base canónica de \mathbb{R}^n

Ejemplo

Las matrices de la base canónica de $\mathbb{R}^{2\times 2}$ son

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$
$$E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- Objetivos
- 2 Subespacios con generadores en \mathbb{R}^n
- 3 Independencia lineal
 - Vectores LI en \mathbb{R}^n
- Bases
 - Bases del conjunto de soluciones de un sistema homogéneo
 - Bases del subespacio generado

Aquí explicaremos como calcular una base del conjunto de soluciones de un sistema homogéneo.

Empezemos por ver un ejemplo.

Sea A la matriz del Ejercicio 1 del Primer Trabajo Práctico y V el conjunto de soluciones del sistema homogéneo AX=0.

En el archivo anterior vimos V es generado por el conjunto

$$\mathcal{B} = \{(-2, 0, 1, 0), (0, 3, 0, 1)\}$$

Veamos que este conjunto también es LI. Sean $s,t\in\mathbb{R}$ tales que

$$0 = s(-2,0,1,0) + t(0,3,0,1) = (-2s,3t,s,t).$$

Observando las últimas dos coordenadas deducimos que $s=t=0.\$ Lo cual demuestra que es LI.

Por lo tanto \mathcal{B} es base de V.

Lo anterior es algo que vale en general.

Podemos reescribir la conclusión del archivo pasado para decir que

Conclusión

Sea A una matriz. La descripición explícita del conjunto de soluciones del sistema homogéneo AX=0 nos da una base del mismo.

Es decir, para calcular una base del conjunto de soluciones ${\cal A}{\cal X}=0$ hacemos lo siguiente

- Damos una descripición explícita del conjunto de soluciones usando la MERF equivalenta a A.
- Encontramos los generadores del conjunto.
- 3 Verificamos que el conjunto de generadores es Ll.

(Hagan esto en los ejercicios de la guía 7 y se convenceran)

- Objetivos
- 2 Subespacios con generadores en \mathbb{R}^n
- Independencia lineal
 - Vectores LI en \mathbb{R}^n
- Bases
 - Bases del conjunto de soluciones de un sistema homogéneo
 - Bases del subespacio generado

Sea
$$v_1, ..., v_k \in \mathbb{R}^n$$
.

Aquí explicaremos como calcular una base del subespacio generado por estos vectores (los cuales no son necesariamente LI).

Una primera opción es usar que $\langle v_1,...,v_k\rangle$ es el conjunto de soluciones de cierto sistema homogéno (por lo que dijimos al principio del archivo) y entonces usar lo que hicimos en la subsección anterior.

Otra opción es usar el siguiente corolario

Corolario 2.5.2

Sea $v_1,...,v_k\in\mathbb{R}^n$ y $A\in\mathbb{R}^{k\times n}$ la matriz cuyas filas son los

vectores
$$v_1,...,v_k$$
, es decir $A=\left(egin{array}{c} -v_1-\\-v_2-\\ dots\\-v_k- \end{array}
ight)$. Sea R la MERF

equivalente por filas A.

Entonces las filas no nulas de R forman una base del subespacio $\langle v_1,...,v_k \rangle$

Demostración: Sean $r_1, ..., r_\ell$ las filas no nulas de R.

Las filas de R pertencen a $\langle v_1,...,v_k \rangle$ porque se obtienen como combinaciones lineales de las filas de A, que son los vectores $v_1,...,v_k$. Entonces

$$\langle r_1, ..., r_\ell \rangle \subseteq \langle v_1, ..., v_k \rangle$$

porque el subespacio generado esta contenido en todo subespacio que contenga a los vectores $r_1,...,r_\ell$ por el Teorema 2.2.4

Más aún, como podemos "volver para atrás" las operaciones por fila, los vectores $v_1,...,v_k$ son combinaciones lineales de las filas de R y entonces, también por el Teorema 2.2.4, vale que

$$\langle v_1, ..., v_k \rangle \subseteq \langle r_1, ..., r_\ell \rangle$$

Ambas contenciones nos dicen que

$$\langle v_1, ..., v_k \rangle = \langle r_1, ..., r_\ell \rangle$$

Es decir, las filas no nulas de R generan a $\langle v_1,...,v_k\rangle$. Veamos ahora que las filas no nulas de R son LI.

Consideremos una combinación lineal de estas que de cero

$$0 = \lambda_1 r_1 + \dots + \lambda_\ell r_\ell.$$

Notemos que en la coordenada donde una fila tiene un 1 principal las otras filas tienen un 0. Entonces si observamos cada una de esas coordenadas en la igualdad anterior deducimos que

$$\lambda_1 = \cdots = \lambda_\ell = 0$$

Por lo tanto $r_1, ..., r_\ell$ son LI

El siguiente teorema nos da una base del espacio generado usando algunos de los vectores iniciales.

Teorema 2.5.4

Sea
$$v_1,...,v_k\in\mathbb{R}^n$$
 y $A\in\mathbb{R}^{k\times n}$ la matriz cuyas filas son los vectores $v_1,...,v_k$, es decir $A=\begin{pmatrix} -v_1-\\-v_2-\\ \vdots\\-v_k-\end{pmatrix}$. Sea R una MRF

(como una MERF pero sin poner las filas nulas al final) equivalente por filas a A que se obtiene sin permutar filas .

Si $r_{i_1},...,r_{i_\ell}$ son las filas no nulas de R, entonces los vectores $v_{i_1},...,v_{i_\ell}$ forman una base de $\langle v_1,...,v_k\rangle$