Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 1

Consigna

Sea $A \in M_{m \times n}(\mathbb{R})$.

1. Probar que $Im(A)^{\perp} = Ker(A^t)$; es decir, que si S es el subespacio de \mathbb{R}^m generado por las columnas de A, entonces:

$$S^{\perp} = \{ X \in \mathbb{R}^m : A^t X = \vec{0} \}$$

2. Dado $Y\in\mathbb{R}^m$ y S=Im(A), probar que $s=P_S(Y)$ si y sólo si $s=AX_0$ con $X_0\in\mathbb{R}^n$ y

$$(A^t A) X_0 = A^t Y$$

3. Dado $Y \in \mathbb{R}^m$, concluir que el vector que minimiza $\|Y - AX\|$ es la solución del sistema:

$$(A^tA)X = A^tY$$

Resolución

Parte 1

La prueba de esta parte está hecha en la clase de teórico #15.

Parte 2

Sean $Y \in \mathbb{R}^m$ y S = Im(A), queremos probar que:

$$s = P_S(Y) \iff s = AX_0 \mod X_0 \in \mathbb{R}^n$$
y además $(A^tA)X_0 = A^tY$

 (\Rightarrow)

Para que $s=P_S(Y)$ se tienen que cumplir las siguientes afirmaciones. - Como $s\in S$, $s\in Im(A)$ pues S=Im(A). Entonces $s=AX_0$ para algún $X_0\in \mathbb{R}^n$ - Por propiedades del complemento ortogonal, tenemos que dados $Y\in \mathbb{R}^n, AX_0\in Im(A)$, se cumple que

```
Y-AX_0\in Im(A)^\perp=Ker(A^t) (usando la propiedad 1). - Como Y-AX_0\in Ker(A^t), tenemos que A^t(Y-AX_0)=\vec{0}, lo que equivale a decir que:
```

```
$$
\begin{aligned}
&A^tY-A^tAX_0=\vec{0}\\
&\iff\scriptstyle{(\text{despejando})}\\
&A^tY=A^tAX_0
\end{aligned}
$$
```

Esto prueba el implica a partir de asumir que $s = P_S(Y)$

 (\Leftarrow)

En esta parte asumimos que: - $s = AX_0$ con $X_0 \in \mathbb{R}^n$ - $(A^tA)X_0 = A^tY$

De la segunda igualdad derivamos fácilmente que $Y-AX_0\in Ker(A^t)=Im(A)^\perp,$ entonces $s=P_S(Y)$

Parte 3

También visto en el teórico, el concepto importante detrás de esto es que la proyección ortogonal en un conjunto S dado de un vector, es lo más cercano en distancia al mismo, dentro del conjunto S.