Assignment 4.5 + Smoothing 1(SNLP Tutorial 5)

Vilém Zouhar, Awantee Deshpande, Julius Steuer

25th, 27th May 2021

Assignment 4

- Exercise 1: Huffman encoding
- Exercise 2: Conditional entropy of DNA
- Bonus: Huffman encoding adaptations

Corpus

- Train set:
- Test set:

Corpus

- Train set:
- Test set:

Accumulate counts

- • 6 ≥ 5 **** 3 2

Corpus

- Train set:
- Test set:

Accumulate counts

- 6
 5
 3
 2
 4
 2
 2
 2

OOV words

What about \$\frac{1}{2}\$ and \$\frac{1}{2}\$?

Corpus

- Train set:
- Test set:

Accumulate counts

- 6
 5
 3
 2
 4
 2
 2
 2

- What about * and *?
- OOV rate?

Corpus

- Train set:
- Test set:

Accumulate counts

- 6
 5
 3
 2
 4
 2
 2
 2

- What about * and *?
- OOV rate?
- \bullet 3/12 = 25%

Corpus

- Train set:
- Test set:

Accumulate counts

- 6
 5
 3
 2
 4
 2
 2
 2

- What about * and *?
- OOV rate?
- \bullet 3/12 = 25%
- Solutions?

Corpus

- Train set:
- Test set:

Accumulate counts

- 6
 5
 3
 2
 4
 2
 2
 2

- What about * and *?
- OOV rate?
- \bullet 3/12 = 25%
- Solutions?

Corpus

- Train set:
- Test set:
- **♦ ♦ @** ≥ ♦ **♦ ** ≥ ≥ **3 0 ♦**

Accumulate counts

6
 5
 3
 2
 4
 2
 2
 2

OOV words

- What about * and *?
- OOV rate?
- \bullet 3/12 = 25%
- Solutions?

OOV words

 How do we even know this will be an issue?

Solution to OOV words: go lower

• Characters: $V = \{a, b, c, \dots, \underline{\hspace{1em}}\}$

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, \underline{\hspace{0.1cm}}\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, \underline{\hspace{0.1cm}}\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, \underline{\hspace{0.1cm}}\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece
- Start with the alphabet, merge and add frequent character-level n-grams

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece
- Start with the alphabet, merge and add frequent character-level n-grams

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece
- Start with the alphabet, merge and add frequent character-level n-grams
- lackbox E.g. bedclothes became white ightarrow bed @cloth @es be @came @white

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece
- Start with the alphabet, merge and add frequent character-level n-grams
- lackbox E.g. bedclothes became white ightarrow bed @cloth @es be @came @white

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece
- Start with the alphabet, merge and add frequent character-level n-grams
- ullet E.g. bedclothes became white o bed @cloth @es be @came @white
- Used heavily in any modern NLP (MT, LM, QA, ...)

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece
- Start with the alphabet, merge and add frequent character-level n-grams
- ullet E.g. bedclothes became white o bed @cloth @es be @came @white
- Used heavily in any modern NLP (MT, LM, QA, ...)

Questions

• Can we still get an unknown "word"?

Solution to OOV words: go lower

- Characters: $V = \{a, b, c, \dots, _\}$
- Syllables: $V = \{bo, ve, r, how, \dots, _\}$
- Data-driven units (subwords): $V = \{smi, les, es, clo, \dots, _\}$
- Byte Pair Encoding, Word Piece, Sentence Piece
- Start with the alphabet, merge and add frequent character-level n-grams
- ullet E.g. bedclothes became white o bed @cloth @es be @came @white
- Used heavily in any modern NLP (MT, LM, QA, ...)

- Can we still get an unknown "word"?
- How do we define perplexity for subword language models?

Smoothing

- Words present in vocabulary, but have ~0 probabilities
- Words present in vocabulary, but have unseen context

Solution: Assign probability mass from frequent events to infrequent events (Smoothing/Discounting)

• Will cover different smoothing methods over the next few tutorials

Additive smoothing (add- α -smoothing)

Distribution

- Add zero counts to frequency table
- $6 \ge 5 \ge 3 \ge 2 \ge 0$
- Increase all counts by $\alpha=1$
- 6+1 > 5+1 3+1 2+1
 - Divide by N = 22
 - 0.32 0.27 0.18 0.13 0.05 0.05

Perplexity

- Relative frequencies on test corpus:

- 0.33 > 0.17 = 0.17
- 0.17

Additive smoothing (add- α -smoothing)

Distribution

- Add zero counts to frequency table
- 0 6 2 5 3 2 9 0
- Increase all counts by $\alpha=1$
- - Divide by N = 22

Perplexity

- Relative frequencies on test corpus:

- 0.33 > 0.17 0.17 0.17 0.08

- **%** 0. 08
- $PP = 2^{(0.33 \cdot 0.32 + 0.27 \cdot 0.17 + 0.18 \cdot 0.17 + 0.13 \cdot 0.17 + 2 \cdot (0.05 \cdot 0.08))} 1 \Delta$
- What would be PP with unsmoothed model?

Recall the additive smoothing formula for unigrams:

$$C^*(w_i) = C(w_i) + \alpha \tag{1}$$

$$N^* = \sum_{w_i \in V} C^*(w_i) = N + \alpha |V|$$
 (2)

Recall the additive smoothing formula for unigrams:

$$C^*(w_i) = C(w_i) + \alpha \tag{1}$$

$$N^* = \sum_{w_i \in V} C^*(w_i) = N + \alpha |V|$$
 (2)

$$p^*(w_i) = \frac{C(w_i) + \alpha}{N^*} = \frac{C(w_i) + \alpha}{N + \alpha|V|}$$
(3)

Recall the additive smoothing formula for unigrams:

$$C^*(w_i) = C(w_i) + \alpha \tag{1}$$

$$N^* = \sum_{w \in V} C^*(w_i) = N + \alpha |V| \tag{2}$$

$$p^*(w_i) = \frac{C(w_i) + \alpha}{N^*} = \frac{C(w_i) + \alpha}{N + \alpha |V|}$$
(3)

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})} \tag{4}$$

Recall the additive smoothing formula for unigrams:

$$C^*(w_i) = C(w_i) + \alpha \tag{1}$$

$$N^* = \sum_{w \in V} C^*(w_i) = N + \alpha |V| \tag{2}$$

$$p^*(w_i) = \frac{C(w_i) + \alpha}{N^*} = \frac{C(w_i) + \alpha}{N + \alpha |V|}$$
(3)

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$
(4)

Smoothen the bigram count: $C(w_{i-1}, w_i) \rightarrow C(w_{i-1}, w_i) + \alpha$

Additive smoothing: Bigrams: bigram counts

• Collect bigram counts & condtional probabilities for history A

Bigram	$C(A, w_i)$	C(A)	$\frac{C(A,w_i)}{CA)}$
AE	3	6	1/2
AA	2	6	1/3
AB	1	6	1/6

Additive smoothing: Bigrams: add alpha

• We encounter an unknown bigram AF

Bigram	$C_{\alpha}(A, w_i)$	C(A)	$\frac{C_{\alpha}(A,w_i)}{C(A)}$
AE	3 + 1	6	4/6
AA	2 + 1	6	3/6
AB	$1{+}1$	6	2/6
$\rightarrow AF$	0+1	6	1/6

Additive smoothing: Bigrams: add alpha

• We encounter an unknown bigram AF

Bigram	$C_{\alpha}(A, w_i)$	C(A)	$\frac{C_{\alpha}(A,w_i)}{C(A)}$
AE	3+1	6	4/6
AA	2 + 1	6	3/6
AB	$1{+}1$	6	2/6
$\rightarrow AF$	0+1	6	1/6

Not a probability distribution!

Additive smoothing: Bigrams: add alpha

• We encounter an unknown bigram AF

Bigram	$C_{\alpha}(A, w_i)$	C(A)	$\frac{C_{\alpha}(A,w_i)}{C(A)}$
AE	3+1	6	4/6
AA	2 + 1	6	3/6
AB	$1{+}1$	6	2/6
$\rightarrow AF$	0+1	6	1/6

- Not a probability distribution!
- Solution: We need to adjust the divisor a tiny bit. But how tiny?

Additive smoothing: Bigrams: normalization

- Add $\alpha \cdot 4$ to history count
- Pretend that we have seen the history |V| = 4 times more.

- Add α · 4 to history count
- Pretend that we have seen the history |V| = 4 times more.

Bigram	$C_{\alpha}(A) + \alpha V $	$\frac{C_{\alpha}(A,w_i)}{C(A)+\alpha V }$
AE	6 + 4	4/10
AA	6 + 4	3/10
AB	6 + 4	2/10
\rightarrow AF	6 + 4	1/10

- Add $\alpha \cdot 4$ to history count
- Pretend that we have seen the history |V| = 4 times more.

Bigram	$C_{\alpha}(A) + \alpha V $	$rac{C_{lpha}(A,w_i)}{C(A)+lpha V }$
AE	6 + 4	4/10
AA	6 + 4	3/10
AB	6 + 4	2/10
\rightarrow AF	6 + 4	1/10

• Now the probabilities sum up to 1: 4/10 + 3/10 + 2/10 + 1/10 = 1

- We encounter another n-gram AD
- What is |V| now?

- We encounter another n-gram AD
- What is |V| now?

Bigram	$C_{\alpha}(A) + \alpha V $	$rac{C_{lpha}(A,w_i)}{C(A)+lpha V }$
AE	6 + 5	4/11
AA	6 + 5	3/11
AB	6 + 5	2/11
ightarrow AF	6 + 5	1/11
\rightarrow AD	6 + 5	1/11

- We encounter another n-gram AD
- What is |V| now?

Bigram	$C_{\alpha}(A) + \alpha V $	$rac{C_{lpha}(A,w_i)}{C(A)+lpha V }$
AE	6 + 5	4/11
AA	6 + 5	3/11
AB	6 + 5	2/11
ightarrow AF	6 + 5	1/11
ightarrow AD	6 + 5	1/11

- *C*(*A*) is constant, unsmoothed count
- Probabilities sum up to 1: 4/11 + 3/11 + 2/11 + 1/11 + 1/11 = 1

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(5)

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(5)

• What is V?

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(5)

- What is V?
- |V| = Number of bigram types starting with w_{i-1}

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(5)

- What is V?
- |V| = Number of bigram types starting with w_{i-1}

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V_{(w_{i-1}, \bullet)}|}$$
(6)

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(5)

- What is V?
- |V| = Number of bigram types starting with w_{i-1}

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V_{(w_{i-1}, \bullet)}|}$$
(6)

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(7)

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(8)

ullet We already know the shared (train + test) vocabulary V

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(8)

- ullet We already know the shared (train + test) vocabulary V
- $V_{(A,\bullet)}$ is then $AA, AB, AC, AD, AE, AF \Rightarrow |V_{(A,\bullet)}| = 6 = |V|$

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(8)

- ullet We already know the shared (train + test) vocabulary V
- $V_{(A,\bullet)}$ is then $AA, AB, AC, AD, AE, AF \Rightarrow |V_{(A,\bullet)}| = 6 = |V|$
- We find that the formula we found is identical to the one on the lecture slides!

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha|V|}$$
(9)

Backing-off

MARY HAD A LITTLE LAMB

- Consider the bigram (LITTLE MARY)
- Consider the trigram (HAD A LAMB)

For a trigram $p(w_3|w_2, w_1)$, use probability of bigram $P(w_3|w_2)$, else back-off to unigram probability $P(w_3)$.

$$0.5 \cdot p(w_3|w_2, w_1) + 0.25 \cdot p(w_3|w_2) + 0.25 \cdot p(w_3)$$
$$0.5 \cdot p(|amb|a, had) + 0.25 \cdot p(|amb|a) + 0.25 \cdot p(|amb|a)$$

Will be covered in more detail in further tutorials.

Count Trees

Assignment 5

- Exercise 1: OOV Words
- Exercise 2: Additive smoothing
- Exercise 3: Perplexity, infinite smoothing, interpolation
- Bonus: Other language models

Resources

- UdS SNLP Class: https://teaching.lsv.uni-saarland.de/snlp/
- Additive smoothing: https://en.wikipedia.org/wiki/Additive_smoothing
- on-gram count trees: http://ssli.ee.washington.edu/WS07/notes/ngrams.pdf
- $@ n-gram models: \ https://web.stanford.edu/\sim jurafsky/slp3/3.pdf \\$
- Ocunt-trees figure: https://www.w3.org/TR/ngram-spec/