Algorithm Autumn 2011, Midterm Exam, November 10 9:20-12:05am

- 1. (20 %) Please explain the following terms:
 - a. Lower median
 - b. Priority queue
 - c. Recurrence
 - d. Decision tree
 - e. Min-heap property
- 2. (20 %) Please describe briefly the following sorting algorithms along with their time complexities. Which of them are stable sorting algorithms? Which of them are in-place sorting algorithms?
 - a. Counting sort
 - b. Radix sort
 - c. Bucket sort
 - d. Merge sort
 - e. Insertion sort
- 3. (20 %)
 - a. What are the two major concerns in algorithm design?
 - b. Describe the "divide and conquer method" in algorithm design.
 - c. Describe the three types of arguments in mathematical proofs.
 - d. Show that $n^2 + 2n = \Theta(n^2)$.
 - e. Show that if $f(n) = a_n n^m + ... + a_1 n + a_0$, then $f(n) = O(n^m)$.
- 4. (15 %) Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 3T(n/3) + n. Use the substitution method to verify your answer.
- 5. (10 %) Use the master method to give tight asymptotic bounds for the following recurrences.
 - a. $T(n) = 8T(n/2) + n^3$.
 - b. $T(n) = 8T(n/2) + n^4$.
 - c. $T(n) = 8T(n/2) + n^5$.
- 6. (15 %) Show that any decision tree that sorts n elements has height $\Omega(n \lg n)$.

7. (15 %) Analysis the time complexity of the RANDOMIZED-QUICKSORT algorithm. Illustrate the operation of Partition on the following array.

RANDOMIZED-QUICKSORT(A, p, r)RANDOMIZED-PARTITION(A, p, r)1. $i \leftarrow RANDOM(p, r)$ if p < r2. then $q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)$ exchange $A[r] \leftrightarrow A[i]$ 2. 3. RANDOMIZED-QUICKSORT(A, p, q-1) return PARTITION(A, p, r)4. 3. RANDOMIZED-QUICKSORT(A, q + 1, r) PARTITION(A, p, r) $x \leftarrow A[r]$ $i \leftarrow p-1$ 2. 尊重自己就是尊重別人 for $j \leftarrow p$ to r - 13. do if $A[j] \le x$ 4. then $i \leftarrow i + 1$ 5. exchange $A[i] \leftrightarrow A[j]$ 6. exchange $A[i+1] \leftrightarrow A[r]$ 7. return i + 18.