

DISPONSORI OLEH:

DIDUKUNG OLEH:

OUTLINE

Survival Analysis RFM Segmentation

Archie Citra Muhammad | archiecm09@gmail.com

TTL: Sragen, 22 Sept 1994

No. Hp : 08112165945

Address : Sragen Tengah, Sragen , Jawa

Tengah

Social Media : @archiecm

Nur Amilah | nuramilah @gmail.com

TTL: Tangerang, 16 May 2001

No. Hp : 08159887509

Address : Kp. Pagedangan, Kab. Tangerang,

Banten.

Social Media : @nuramilah_16

Natalia Dinda Sartika Putri | nata.dsptr@gmail.com

TTL: Tangerang, 09 June 2000

No. Hp : 085771768020

Address : Jl. Raya Mauk No.45, Jatiwaringin, Tangerang

Regency, Banten.

Social Media : @nata.dsptr_

FOREWORD

Digital Economy?

(Brynjolfsson & McAfee, 2014)

Business Optimization?

(Apte, 2010)

Machine Learning?

(Al-Sahaf et al., 2019)

Customer Churn?

(Masarifoglu & Buyuklu, 2019)

Cashback Amount?

(Pinem et al., 2020)

PROBLEM STATEMENT

China Internet Network Information Center (CNNIC)

The E-commerce customer churn rate is up to **80%** compared with traditional business customer management (Wu & Meng, 2016)

Business Metrics

Churn Rate = $\frac{\text{CUSTOMER CHURN}}{\text{TOTAL CUSTOMERS}}$

Lost Opportunity

Goals

Predict customer churn rate and provide recommendations to the business team so the company can implement a customer retention strategy.

Objective

Form a machine learning model with the smallest false negative, identify predictors/factors that influence churn rate and lost opportunity customer churn, and predict customers who have the potential to churn with machine learning models. As well as providing insights & recommendations to identify predictors/factors that influence the churn rate and tenure.

Exploratory Data Analysis Using Correlation Matrix, Bivariate and Multivariate

DATA OVERVIEW

#	Column	Non-Null Count	Dtype
0	CustomerID	5630 non-null	int64
1	Churn	5630 non-null	int64
2	Tenure	5366 non-null	float64
3	PreferredLoginDevice	5630 non-null	object
4	CityTier	5630 non-null	int64
5	WarehouseToHome	5379 non-null	float64
6	PreferredPaymentMode	5630 non-null	object
7	Gender	5630 non-null	object
8	HourSpendOnApp	5375 non-null	float64
9	NumberOfDeviceRegistered	5630 non-null	int64
10	PreferedOrderCat	5630 non-null	object
11	SatisfactionScore	5630 non-null	int64
12	MaritalStatus	5630 non-null	object
13	NumberOfAddress	5630 non-null	int64
14	Complain	5630 non-null	int64
15	OrderAmountHikeFromlastYear	5365 non-null	float64
16	CouponUsed	5374 non-null	float64
17	OrderCount	5372 non-null	float64
18	DaySinceLastOrder	5323 non-null	float64
19	CashbackAmount	5630 non-null	float64
dtyp	es: float64(8), int64(7), obj	ect(5)	

 $\textbf{Source:} \ \underline{https://www.kaggle.com/ankitverma2010/ecommerce-customer-churn-analysis-and-prediction}$

Target Variable:

Churn (Classification Model)
Tenure (Regression Model)

variabel input, 2 var.target)

EXPLORATORY DATA ANALYSIS

Column	Correlation_ratio
Tenure	0.40
Complain	0.25
Cashbackamount	0.17
Daysincelastorder	0.19
Numberofdeviceregistered	0.10
Satisfactionscore	0.10
Citytier	0.09
Warehousetohome	0.08
Numberofaddress	0.03
Ordercount	0.03
Hourspendonapp	0.02
Couponused	0.02
Orderamounthikefromlastyear	0.02

	Correlation Matrix														
CustomerID -		0.02	0.05	0.00	0.09	0.60	0.47	0.02	0.22	0.01	0.14	0.40	0.40	0.15	0.31
Churn -			0.40	0.09	0.08	0.02	0.10	0.10	0.03	0.25	0.02	0.02	0.03	0.19	0.17
Tenure -				0.06		0.00	0.01	0.02	0.29	0.04		0.12	0.17	0.20	0.45
CityTier -			i		0.01	0.01	0.02	0.01	0.03	0.00		0.02		0.01	
WarehouseToHome -			l I	l I		0.08	0.02	0.03	0.02	0.04	0.04	0.02	0.02	0.02	0.02
HourSpendOnApp -			 	 			0.36		0.18	0.01		0.32	0.30	0.11	0.20
NumberOfDeviceRegistered -										0.00	0.10	0.26	0.26	0.04	0.21
SatisfactionScore -				 							0.02	0.01	0.01	0.02	0.01
NumberOfAddress -			l I	 						0.02					0.26
Complain -			 								0.02	0.01	0.01	0.04	0.00
OrderAmountHikeFromlastYear -														0.00	0.04
CouponUsed -			į	l I									0.73	0.32	0.34
OrderCount -			l I	l I										0.47	0.40
DaySinceLastOrder -			l l	! !											0.38
CashbackAmount -			 	 											
	CustomeriD -	- Whum -	Fuure -	CityTier -	WarehouseToHome -	HourSpendOnApp -	erOfDeviceRegistered -	SatisfactionScore -	NumberOfAddress -	Complain -	ountHikeFromlastYear -	CouponUsed -	OrderCount -	DaySinceLastOrder -	CashbackAmount -

INSIGHTS (Churn and Not Churn)

The longer tenure, the lower number of churns. And not churn has a steeper trend compared to Churn.

INSIGHTS (Comparison Complain to Churn and Not Churn)

- 1. Customers with the **highest churn** of **9.0%** are on **customer complaints**.
- 2. Customers with the **lowest churn** of **7.8%** are **non-complaining customers**.

The more customer complaints increase, the higher the churn rate.

INSIGHTS (Distribution of Cashback Customers)

Increase Cashback Amount
has trend Positive in Not
Churn On the contrary
Increase Cashback Amount
has trend Negative in Churn

INSIGHTS (Prefered Order Categories Customer)

Customer who ordered
Laptop and Accessory has a
significant number of Not
Churn compared same order
category with Churn.

INSIGHTS (Distribution of Complain & Order Categories vs Ratio Churn)

Customers with complaints have a ratio churn increase in all order categories.

INSIGHTS (Distribution of Complain & Order Categories vs Ratio Churn)

More City Tier increase, more ratio churn increase in Fashion and Mobile Phones

INSIGHTS (Distribution of Complain & Order Categories vs Ratio Churn)

66

More Number Of Device Registered increased and more ratio churn increased in Fashion, laptops & accessories, and Mobile Phones.

INSIGHTS (External Data)

85% of customer churn because of **poor service** that could have been prevented.

Source: https://www.slideshare.net/ekolsky/cx-forexecutives **82%** of customers have stopped doing business with e-commerce because of **bad customer service**.

Source: https://www.zendesk.com/blog/whycompanies-should-invest-in-the-customer-experience/

67% of customer churn could be avoided if resolved the customer's issue during their first interaction.

Source: https://www.getfeedback.com/resources/cx/40-stats-churn-customersatisfaction/#:~:text=67%25%20of%20customer%20churn%20could,(Kolsky)

Data Pre-Processing

Data Cleaning

Check Irrelevant Data
Check Missing Data
Check Duplicate
Check Outlier

Feature Encoding

One Hot Encoder
Simple Imputer
Iterative Imputer

Transforming

80 : 20 Train : Test

Feature Encoding

Standard Scaler

Robust Scaler

Predict Churn Selection Models & Cross Validation, Handling Imbalance, Hyperparameter Tuning, Feature Importance with SHAP

Model Selection & Cross-Validation

Models	Recall	Cross Validation	Standar Deviasi
Decision Tree	0.863095	0.803951	0.038707
Catboost	0.809524	0.780246	0.047106
Random Forest	0.797619	0.760799	0.048173
Xgboost	0.553571	0.609570	0.066454
Logistic Regression	0.476190	0.530575	0.051384

NB: Due to an imbalance dataset

Handling Imbalance Target

NB: Due to imbalance dataset

DECISION TREE

	CatBoost							
	Without Undersampling Oversampling							
Train Recall	0.953360	0.996913	0.999826					
Test Recall	0.784038	0.928990	0.915144					

	Without	Undersampling	Oversampling
Train Recall	1.000000	1.000000	1.000000
Test Recall	0.836538	0.881202	0.819519

Catboost have best fit in undersampling and oversampling. But we choose undersampling because it has gap (train-test) smaller than other.

CatBoost Classifier + Undersampling

cla	ssification_r	eport befo	re tuning:	
	precision	recall	f1-score	support
C	0.99	0.91	0.95	800
1	0.68	0.94	0.79	162
accuracy	7		0.91	962
macro avo		0.93	0.87	962
weighted avo	0.94	0.91	0.92	962

Recall; How many customers did we correctly predict to take an interest with our product compared to all customers which are truly churn? 94%

CatBoost Classifier + Undersampling + Tuning

n_estimators = [1000]
learning_rate = [float(x) for x in np.linspace(0.001, 0.1, 20)]

	class	sification_rep	ort afte	er tuning:	
		precision	recall	f1-score	support
	0	1.00	0.91	0.95	800
	1	0.70	0.98	0.82	162
accur	racy			0.93	962
macro	avg	0.85	0.95	0.88	962
veighted	avg	0.95	0.93	0.93	962

Recall 0.9814814814814815

Recall 98%

Feature Importance with SHAP

Survival Analyst Using Kaplan-Meier (KM) and COx Proportional Hazard (CPH) Model

Kaplan-Meier(KM) Survival Curve

Cox Proportional Hazard (CPH) Model

lifelines.CoxPHFitter Model 'Tenure' **Duration col** 'Churn' **Event col Baseline estimation** breslow 5073 Number of observations **Number of events** 841 observed Partial log-likelihood -6296.226 2022-11-19 08:47:34 UTC Time fit was run Model base model 0.829 Concordance 12640.452 **Partial AIC** log-likelihood ratio test 1223.310 on 24 df -log2(p) of II-ratio test 805.834

The Brier Score of our CPH Model is 0.11 at the end of 60 months

AUC-ROC logistic

regression.

Predictions from the **model up to 60 months** are still **close to true values.**

CPH Model Visualization

Recommendation Business

https://www.zendesk.com/blog/why-companies-should-invest-in-the-customer-experience/

Complain

Create Customer Experience, can Fast Handling Complain, ask for customer feedback at regular intervals

Marital Status

Targeting campaigns, products and services fit with status Married or Family Package

Preferred Payment Mode

up payments either through a debit card or credit card

Preferred Order Cat

Encourage customers to preferred **order category grocery**

predict_survival_function

Censored Customer with Tenure 60 months

https://lifelines.readthedocs.io/en/latest/fitters/regression/CoxPHFitter.html#lifelines.fitters.coxph_fitter.SemiParametricPHFitter.predict_survival_function

Calculate Expected Loss Table

CustomerID	Cashback Amount	Exp_Churn_Month	Exp_Loss	Baseline	
50046	130.58	[11.00]	1,436.38	11.00	
50048	120.88	19.00	2,296.72	19.00	
50177	112.00	15.00	1,680.00	15.00	
50194	124.78	14.00	1,746.92	14.00	
50230	147.36	14.00	2,063.04	14.00	

CustomerID 50046:

Churn at month 11

Expected Loss of \$14,363

Estimated Revenue Uplift Table

OrderCat_Grocery_Uplift	PaymentMode_Credit Card_Uplift	PaymentMode_Debit Card_Uplift
16.00	14.00	15.00
20.00	19.00	20.00
20.00	15.00	20.00
19.00	17.00	14.00
17.00	16.00	17.00

Estimated Revenue Uplift

Order Category **Grocery \$ 160**

Payment Debit Card \$ 150

Payment Credit Card \$ 140

Segmentation of Customer

Using RFM Segmentation, K-Means, and Gaussian

RFM Segmentation

RFM Segmentation

The RFM segment is based on scores from the Recency, Frequency, and Monetary distribution

RFM Segmentation

K-Means

K-Means

Lost

Loyal

Big Spender

New Comer

• New Come

Medium Spender

Gaussian

Gaussian

Summary RFM Segmentation

The **RFM Segmentation model** is a model that has the **highest interpretation** compared to other models & this model is

RFM Segment	Segment Mean Recency Mear		Mean monetary	Most payment type	most product buy
Best	2.625000	8.357955	230.968920	Debit Card	Fashion
Loyal	4.846307	4.842315	158.280918	Debit Card	Laptop & Acc
Big Spender	3.200843	2.567416	244.787219	Debit Card	Fashion
New	1.010135	1.000000	138.116137	Debit Card	Mobile Phone
Promising	2.079341	2.006737	153.928451	Debit Card	Mobile Phone
Lost Potential	8.461999	4.210054	195.301556	Debit Card	Laptop & Acc
Lost	6.132948	1.000000	141.281647	Credit Card	Laptop & Acc

RFM SEGMENT

Best

Customers who made transactions recently made frequent transactions and had the highest total transactions.

Loyal

Customers who make the most frequent transactions.

Big Spender

Customers who have the highest total transactions.

New

Customers who recently made a transaction and only made one transaction.

Promising

Customers who recently made transactions, as well as the frequency and total transactions above the average of other customers.

Lost Potential

Customers who have **not made transactions for a long time**, but the **frequency** and **total transactions** are **above the average** of other customers.

Lost

Customers who haven't made transactions for a long time only made one transaction, and the total number of transactions was small.

STRATEGY

Loyalty program/reward points, new product recommendations, and exclusive item offers (Cross / Up Selling Strategy).

Loyalty program/reward point and exclusive item offers (Cross / Up Selling Strategy).

Exclusive product recommendations, partnership/membership (B2B) offers, and wholesale price purchase offers (Cross / Up Selling Strategy).

Welcome email for relationship building, loyalty program/reward point offers, and discount vouchers (Cross / Up Selling Strategy).

Regular limited offers, discount vouchers and cashback via e-mail (Retention Strategy).

Regular limited offers, discount vouchers and cashback via e-mail (Retention & Reactivate Strategies)

Campaign via e-mail and ask for feedback. (Reactivation Strategy)

Summary RFM Segmentation

Customer Churn Treatment

Censored Customer Treatment

RFM Segment	RFM Segment Score	n cust	mean recency	mean freq	mean monetary	most payment type	avg review score	most product buy
Loyal	6	5	3.00000	3.000	153.3800	Cash on Delivery	3.80000	Mobile Phone
New	4	19	1.10526	1.000	125.2715	Credit Card	3.89473	Mobile Phone
Promising	3	23	2.30434 2.347 141.9330 Cash on Delivery 3.6956		3.69565	Mobile Phone		
Lost Potential	2	2	8.50000	5.500	12.50000	E wallet	2.00000	Mobile Phone

Recommendation Business

Loyal Customer

Loyalty program/reward point and exclusive item offers (Cross / Up Selling Strategy)

Regular **limited offers**, **discount** vouchers and **cashback** via email (Retention Strategy).

New Customer

"Welcome email" to build relationships, offer loyalty programs/reward points, and discount vouchers (Cross / Up Selling Strategy).

Lost Potential

Regular **limited offers**, **discount** vouchers, and **cashback** via e-mail (Retention & Reactivate Strategies).

-

Estimated Loss & Revenue Uplift

\$910, Total Expected Loss

RFM Segment	RFM Segment Score	n cust	sum Exp Loss	sum Grocer Uplift	sum Credit Card Uplift	sum Debit Card Uplift
Loyal	6	5	9740.67	600.41	1221.61	463.76
New	4	19	32903.0	1372.46	3987.19	3389.94
Promising	3	23	48200.0	2271.93	3944.68	3975.56
Lost Potential	2	2	225.00	0.00	25.00	25.00

Estimated Revenue Uplift:

Order category grocery \$42,448

Payment Credit Card \$91,785

Payment Debit Card \$78,543

SUMMARY

- From the data visualization, it is obtained that the churn ratio has a correlation with tenure, complaints, cashback Amount, & preferred order cat.
- The results of predicting churn are strongly influenced by the level of Tenure, Complaint, Number of Addresses, and cashback Amount.
- The results of the Survival Analysis, the customer has the greatest survival chance in No Complain, Marital Status Married, Payment Mode Credit Card, Order Category Grocery.

SUMMARY

RFM Segmentation results show priority customer treatment in the Loyal, New, Promising and Lost Potential segments.

Total Expected Loss of \$ 910,687

Estimated Revenue Uplift
Order category Grocery \$42,448
Payment Credit Card \$ 91,785
Payment Debit Card \$ 78,543

SUMMARY

- From the data visualization, it is obtained that the churn ratio has a correlation with tenure, complaints, cashback Amount, & preferred order cat.
- The results of predicting churn are strongly influenced by the level of Tenure, Complaint, Number of Addresses, and cashback Amount.
- The results of the Survival Analysis, the customer has the greatest survival chance in No Complain, Marital Status Maryld, Payment Mode Credit Card, Ordo Category Grocery.

SUMMARY

- RFM Segmentation results show priority customer treatment in the Loyal, New, Promising, and Lost Potential segments.
- Total Expected Loss of \$ 910,687
- Estimated Revenue Uplift
 - Order category Grocery \$42,448
 - Payment Credit Card \$ 91,785
 - Payment Debit Card \$ 78,543

Business Analytics Dashboard

BUSINESS OPTIMIZATION in PREDICTING CUSTOMER CHURN

Link: https://app.powerbi.com/groups/06be1cdf-3422-46e2-b0c1-6605fed8dfe5/reports/dcf2e131-7f8b-4661-b764-d7891b4840cb/ReportSectionc04ef661493e23894037

Bibliography

- Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: the simple economics of artificial intelligence. Harvard Business Press.
- Al-Sahaf, H., Bi, Y., Chen, Q., Lensen, A., Mei, Y., Sun, Y., Tran, B., Xue, B., & Zhang, M. (2019). A survey on evolutionary machine learning. Journal of the Royal Society of New Zealand, 49(2), 205–228. https://doi.org/10.1080/03036758.2019.1609052
- Apte, C. (2010). Invited Applications Paper: The Role of Machine Learning in Business Optimization. *Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010.*
- Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & Company.
- Masarifoglu, M., & Buyuklu, A. H. (2019). *Applying Survival Analysis to Telecom Churn Data* (pp. 261–275). American Journal of Theoretical and Applied Statistics.
- Pinem, R. J., Afrizal, T., & Saputra, J. (2020). The Relationship of Cashback, Discount, and Voucher toward Decision to Use Digital Payment in Indonesia. *Talent Development & Excellent*, 12(3s), 2766–2774.
- Wu, X., & Meng, S. (2016). E-commerce Customer Churn Prediction Based on. 2016 13th International Conference on Service Systems and Service Management (ICSSSM), 1–5.
- https://www.kaggle.com/ankitverma2010/ecommerce-customer-churn-analysis-and-prediction

TERIMA KASIH

Koordinator TSDN 2022:

