METHODES DE CLUSTERING Méthode des kmeans

INTRODUCTION

Apprentissage supervisé / non supervisé

Les algorithmes prédictifs se classent en deux grandes catégories :

- supervisés

On dispose d'un échantillon de données du passé avec la valeur cible à prédire connue. On apprend à prédire les valeurs cibles des données futures

- non supervisés

On dispose d'un échantillon de données du passé sans valeur cible. On extrait des patterns (caractéristiques communes) que l'on cherchera à détecter sur les données futures

Exemples

Supervisé : un label en input

Non supervisé : pas de label en input

LA METHODE DES KMEANS

La méthode des kmeans

Méthode **d'apprentissage non supervisé** utilisée sur des **données non labellisés**

L'objectif est simple : regrouper des observations similaires ensemble dans un nombre (k) de clusters prédéfinis.

Autres algorithmes de clustering

Spectral clustering

DBSCAN

Cas d'usage

Segmentation client:

- Habitudes de consommation
- Comportement du conducteur/ du client

Détection d'anomalies :

- fraudes
- pannes

Objectif

Définir **k** groupes homogènes parmi les observations

L'algorithme des kmeans

Step 1:

On choisit k éléments aléatoires dans le plan – ce sont les « centres » des clusters

Step 2:

on affecte chaque individu à un cluster

Step 3:

Chaque groupe constitué permet de recalculer un élément « centre » (centre de gravité)

Step 4:

On réaffecte les indivdus aux nouveaux centres définis au step 3
On itère jusqu'à ce que les groupes d'individus soient stables (ie aucun

indivdu ne change plus de groupe)

En image

On choisit un nombre de clusters et l'algorithme fait le boulot

Le groupe le plus proche ?

L'algorithme s'appuie sur la mesure de la distance euclidienne d'un point à son centre le plus proche.

Calcul de la distance

Réponse?

Calcul de la distance

$$\sqrt{(xRed - xBlue)^2 + (yRed - yBlue)^2}$$
=15

Minimiser la variance intra

L'objectif d'affecter un individu à son « centre » le plus proche revient à minimiser la variance intra du centroïd.

Formule variance intra
$$\sum_{i=1}^p \sum_{j=1}^{n_i} (y_{ij} - \overline{y_i})^2$$

LE FLUX DE TRAITEMENT

APPROCHE STANDARD POUR UN CLUSTERING

PRE PROCESSING

Standardiser les données

 L'affectation des individus aux clusters repose sur la distance, il est donc important de comparer des variables de même ordre de grandeur

Avant scaling

Après scaling

Variables qualitatives

Possible d'utiliser des variables qualitatives en les recodant (dummy encoding)

Color		Red	Yellow	Green
Red				
Red		1	0	0
Yellow		1	0	0
Green		0	1	0
Yellow		0	0	1
	1			

ACP (facultatif)

- Dans le cas de dataset avec un nombre important de variables (featuresà, il peut être intéressant de procéder à une ACP pour réduire le nombre de dimensions.
- On réalisera le clustering sur les coordonnées des individus sur chaque composante principale retenue

CHOIX DE K ET PERFORMANCE DU CLUSTERING

Variance intra (total within SS)

Une mesure de la performance du modèle est la variance intra totale, *ie* la somme des variances intra de chaque cluster.

Plus cette variance est faible, plus les groupes sont compacts, meilleur est le modèle.

Variance intra

Le choix des clusters initiaux étant aléatoire, il faut procéder à plusieurs exécutions pour trouver le modèle qui minimise la variance intra (total within Sum of Squares)

Choix du nombre de classes k Le coude (elbow)

<u>Principe</u>: Une stratégie simple pour identifier le nombre de classes consiste à faire varier K et surveiller l'évolution de l'inertie intra-classes W. L'idée est de visualiser le « coude » où l'adjonction d'une classe ne correspond à rien dans la structuration des données.

Choix du nombre de classes k La silhouette

Permet de vérifier la pertinence de l'affectation d'un individu à une classe en calculant :

- sa distance moyenne aux individus de sa classe (C)
- sa distance moyenne aux individus de la classe la plus proche (N)

$$s(i) = \begin{cases} 1 - C(i)/N(i), & \text{if } C(i) < N(i) \\ 0, & \text{if } C(i) = N(i) \\ N(i)/C(i) - 1, & \text{if } C(i) > N(i) \end{cases}$$

Plus s est proche de 1, plus l'affectation est bonne

Si s est proche de 0, l'individu est à la frontière de deux clusters

Si s est <0, l'individu est mal classé

Choix du nombre de classes k La silhouette

Choix du nombre de classes k La silhouette

La moyenne des silhouettes des individus permet de définir une métrique de performance :

plus cette valeur est proche de 1 meilleur est le modèle

On peut ainsi calculer les silhouettes pour k:1...n clusters et choisir la valeur de k qui maximise la silhouette moyenne

DONNER DU SENS AU CLUSTERING

Analyser les caractéristiques des clusters

Pour chaque cluster

- √ sortir les statistiques descriptives
- √ étudier les différences entre les clusters

Analyser les caractéristiques des clusters

Identifier les variables marquantes de chaque cluster

Écart relatif de la moyenne du cluster à la moyenne de la population

CRITIQUE DE L'ALGORITHME

Inconvénients de l'algorithme

1. Le nombre de classe doit être fixé au départ

 Le résultat dépend du tirage aléatoire initial des centres des classes

3. Labels des classes pas stables d'une exécution à l'autre

PROGRAMMATION R

```
library(datasets)
library(ggplot2)

head(iris)
ggplot(iris, aes(Petal.Length, Petal.Width, color = Species)) + geom_point()
```

> head(1r1s)

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
         5.1
                    3.5
                                 1.4
                                             0.2 setosa
        4.9
                    3.0
                                 1.4
                                             0.2 setosa
                                 1.3
        4.7
                    3.2
                                             0.2 setosa
                    3.1
                                 1.5
        4.6
                                             0.2 setosa
        5.0
                    3.6
                                 1.4
                                             0.2 setosa
        5.4
                                 1.7
                    3.9
                                             0.4 setosa
```



```
set.seed(20)
irisCluster <- kmeans(iris[, 1:4], 3, nstart = 20)</pre>
     K-means clustering with 3 clusters of sizes 38, 62, 50
     Cluster means:
      Sepal.Length Sepal.Width Petal.Length Petal.Width
         6.850000
                3.073684 5.742105 2.071053
                2.748387
         5.901613
                        4.393548
                               1.433871
         5.006000
                3.428000
                        1.462000
                               0.246000
     Clustering vector:
      Levels: 1 2 3
     Within cluster sum of squares by cluster:
     [1] 23.87947 39.82097 15.15100
      (between_SS / total_SS = 88.4 %)
```

QUIZZ WWW.KAHOOT.IT

A VOTRE TOUR