Importing library

company

topping

variant

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme(color_codes=True)

df=pd.read_csv('/content/drive/MyDrive/Data sets/Pizza Price Prediction/pizza_v2.csv')
df.head()
```

	company	price_rupiah	diameter	topping	variant	size	extra_sauce	e:
0	А	Rp235,000	22 inch	chicken	double_signature	jumbo	yes	
1	Α	Rp198,000	20 inch	papperoni	double_signature	jumbo	yes	
2	Α	Rp120,000	16 inch	mushrooms	double_signature	reguler	yes	
3	Α	Rp155,000	14 inch	smoked_beef	double_signature	reguler	yes	
4	Α	Rp248,000	18 inch	mozzarella	double_signature	jumbo	yes	
4								•

```
df['price_rupiah']=df['price_rupiah'].str.replace('Rp','').str.replace(',','')

df['diameter']=df['diameter'].str.replace('inch',"").str.rstrip()

#df.astype({'price_rupiah':int,'diameter':int})

#changing data type

df['diameter']=pd.to_numeric(df['diameter'])

df['price_rupiah']=pd.to_numeric(df['price_rupiah'])

df.select_dtypes(include='object').nunique()
```

5

12

20

```
size
                         6
     extra sauce
     extra cheese
                         2
     extra mushrooms
     dtype: int64
df.select dtypes(include=int).nunique()
     price_rupiah
                     43
     dtype: int64
df.select_dtypes(include=float).nunique()
     diameter
                 11
     dtype: int64
df['variant'].unique()
     array(['double_signature', 'american_favorite', 'super_supreme',
            'meat lovers', 'double mix', 'classic', 'crunchy', 'new york',
            'double_decker', 'spicy_tuna', 'BBQ_meat_fiesta', 'BBQ_sausage',
            'extravaganza', 'meat eater', 'gournet greek', 'italian veggie',
            'thai veggie', 'american classic', 'neptune tuna', 'spicy tuna'],
           dtype=object)
from pandas.core.indexers.objects import VariableOffsetWindowIndexer
# define function to segment pizza names into types
def segment pizza(variant a):
  if 'veggie' in variant a:
    return 'Veg'
  elif 'BBQ' in variant a or 'meat' in variant a:
    return 'Non-veg'
  elif 'tuna' in variant a:
    return 'Seafood'
  else:
    return 'Other'
df['Pizza Seg']=df['variant'].apply(segment pizza)
df.loc[df['topping']=='chicken', 'Pizza Seg']='Non-veg'
```

Text(0.5, 1.0, 'Distribution of pizza segment')

cat_vars=list(df.select_dtypes(include='object').nunique().index)

```
cat_vars.remove('variant')
cat vars.remove('Pizza Seg')
# list of categorical variables to plot
cat vars
 「 'company',
      'topping',
      'size',
      'extra sauce',
      'extra cheese',
      'extra mushrooms']
from ast import If
fig,axs=plt.subplots(nrows=2,ncols=3,figsize=(20,10))
axs=axs.ravel()
# create barplot for each categorical variable
for i, var in enumerate(cat vars):
    ax=sns.barplot(x=var, y='price rupiah', data=df, ax=axs[i], estimator=np.mean)
    axs[i].set xticklabels(axs[i].get xticklabels(), rotation=90)
    if i!=1:
      for container in ax.containers:
        container.datavalues
        ax.bar_label(container,color='black',weight='normal',rotation=30,label_type='edge')
# adjust spacing between subplots
fig.tight_layout()
# show plot
plt.show()
```


sns.boxplot(data=df,x='diameter')

<Axes: xlabel='diameter'>

sns.violinplot(data=df,x='diameter')

<Axes: xlabel='diameter'>

sns.scatterplot(data=df,x='diameter',y='price_rupiah',hue='company')

df.describe().T

	count		mean std		min 25%		50% 75%		
	price_rupiah	129.0	87151.162791	44706.097732	23500.0	51000.0	78000.0	105000.0	2480
	diameter	129.0	12.976744	3.272674	8.0	12.0	12.0	14.0	:
4									>

df.corr()

<ipython-input-25-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in df.corr()

```
        price_rupiah
        diameter

        price_rupiah
        1.000000
        0.826977

        diameter
        0.826977
        1.000000
```

```
bins=np.arange(0,df['price_rupiah'].max()+50000,50000)
```

```
slot=['0-50000','50000-100000','100000-150000','150000-200000','200000 And above']
```

```
df['price_rupiah_range']=pd.cut(df['price_rupiah'],bins,labels=slot)
#bins
```

```
ax1=df['price_rupiah_range'].value_counts().plot(kind='bar')
for container1 in ax1.containers:
   ax1.bar_label(container1,color='white',label_type='center',rotation=30)
plt.title("Distribution of price_rupiaa_range",pad=10)
```

Text(0.5, 1.0, 'Distribution of price_rupiaa_range')

Distribution of price rupiaa range

✓ 0s completed at 9:44 PM