Evaluation de cours

Quentin Canu

25 Mars 2024

Version 1

- 1. Remettre dans l'ordre la démonstration de la croissance de la fonction $f: x \mapsto x^2$ sur $[0; +\infty[$.
 - (a) On conclut que f est croissante sur $[0; +\infty[$

 - (b) Puisque x ≥ 0, y ≥ 0 et x ≤ y, on en déduit que 0 ≤ y² x².
 (c) On veut montrer que x² ≤ y², ou de manière équivalente que 0 ≤ y² x².
 - (d) Soient x et y positifs. On suppose $x \le y$. (e) Or, $y^2 x^2 = (y x)(y + x)$.
- 2. Soit f une fonction dont la courbe représentative \mathcal{C}_f est donnée ci-après. Tracer le tableau de variations de

Evaluation de cours

Quentin Canu

25 Mars 2024

Version 2

- 1. Remettre dans l'ordre la démonstration de la croissance de la fonction $f: x \mapsto \sqrt{x}$ sur $[0; +\infty[$.

 - (a) Soient x et y positifs. On suppose $x \le y$. (b) Or, $\sqrt{y} \sqrt{x} = \frac{y x}{\sqrt{y} + \sqrt{x}}$.
 - (c) Puisque $\sqrt{x} \ge 0, \sqrt{y} \ge 0$ et $x \le y,$ on en déduit que $0 \le \sqrt{y} \sqrt{x}.$
 - (d) On conclut que f est croissante sur $[0; +\infty[$
 - (e) On veut montrer que $\sqrt{x} \le \sqrt{y}$, ou de manière équivalente que $0 \le \sqrt{y} \sqrt{x}$.
- 2. Soit f une fonction dont la courbe représentative \mathcal{C}_f est donnée ci-après. Tracer le tableau de variations de f.

