Week 5-1

Introduction to Electronic Memories

Moore's Law

Source: H. S. P. Wong, HotChips 2019

see https://www.youtube.com/watch?v=O5UQ5OGOsnM

The Memory Wall

On-chip memory (cache) that is smaller in capacity than off-chip memory but a lot closer in performance and speed to the processor helps to reduce number of slow off-chip memory accesses

AMD Zen x86-64 Microprocessor

Source: wikichip.org

AMD Zen x86-64 Microprocessor

FPU: Floating-point unit BPU: Branch prediction unit LSU: Load-store unit Schdlr: Instruction scheduler Decode: Instruction decoder MS ROM: Microcode store ROM L1\$, L2\$: Level 1 and 2 cache

Memory can occupy as much as > 80% of the die area in modern digital processors!

Tackling design issues in memory (especially standby power consumption)

is crucial in advancing processor technology

Source: wikichip.org

The Memory Hierarchy

Logical vs Physical Memory – I

Logical View of Memory

Physical View of Memory

The bitcell array is tall and narrow if it is organized into *N* rows by *M* columns, with *N* and *M* corresponding to logical address and width of data word, respectively)

- × Long vertical wires have large parasitics (bad delay)
- **×** Placement with other circuitry
- × Yield issues in bitcell array and R/W circuitry

Logical vs Physical Memory – II

Logical View of Memory

Physical View of Memory

The bitcell array is organized into *N* rows by *M* columns, with *N* and *M* corresponding to logical address and multiple (usually 8) times the width of data word, respectively

- Bit-interleaved to guard against errors using error-correcting codes (ECC)

Physical Organization of Memory

Memory Subsystem

Single Subarray

Memory subsystem is stitched together from many subarrays in a tree like fashion to tradeoff between memory capacity, bandwidth, complexity of control circuitry, power consumption and speed

Parts of the Subarray (Macro)

Memory design covers topics ranging from device physics, many areas of circuit design and computer architecture, to information theory, data analytics and statistics (improving yield)

Tradeoffs in Memory Design

Addressing all challenges in memory design requires understanding of interactions across all levels of design abstraction from devices, circuits, architectures, software to applications

MOS Memory Classification

Week 5-2

Introduction to the 6-Transistor Static RAM (6T SRAM)

MOS Memory Classification

Bitcell Structure of the 6-Transistor Static RAM (6T SRAM)

Array of 6T SRAM Bitcells (Bitcell Array)

Bitcell Structure of the 6-Transistor Static RAM (6T SRAM)

- The bitcell is accessed to read from or write into the bitcell
- Otherwise, bitcell is in hold or hold mode and retains its stored data

Week 5-3

SRAM Read and Write Operations

Bitcell Structure of the 6T SRAM

The Bistability Principle

The Bistability Principle

The Bistability Principle

Writing Data into the 6T SRAM

Writing Data into the 6T SRAM – Put data on BL & BLB

Writing Data into the 6T SRAM – Turn On WL

Writing Data into the 6T SRAM – Turn On WL

Writing Data into the 6T SRAM – Turn Off WL

Writing Data into the 6T SRAM – Disconnect BL & BLB

Reading Data from the 6T SRAM

Reading Data from the 6T SRAM – Precharge BL & BLB

Reading Data from the 6T SRAM – Precharge BL & BLB

Reading Data from the 6T SRAM – Turn On WL

Reading Data from the 6T SRAM – Discharge BL/BLB

Reading Data from the 6T SRAM – Sense BL & BLB

Reading Data from the 6T SRAM – Turn Off WL

Week 5-4

Sizing Transistors in SRAM Bit-cell

Writing Data into the 6T SRAM

Writing Data into the 6T SRAM

Writing Data into the 6T SRAM – Half-cell Analysis

Writing Data into the 6T SRAM – Half-cell Analysis

Pull-up Ratio [(W_2/L_2) / (W_6/L_6)] determines if V_{QB} will fall below V_M of inverter (lower is better)

Impact of Pull-up Ratio on Write Operation of 6T SRAM

$$k_{n,M6} \left((V_{DD} - V_{TN}) V_{QB} - \frac{V_{QB}^2}{2} \right) = k_{p,M2} \left((V_{TP} - V_{DD}) V_{DS,SATp} - \frac{V_{DS,SATp}^2}{2} \right)$$

$$\begin{split} V_{QB} &= V_{DD} - V_{TN} \\ &- \sqrt{(V_{DD} - V_{TN})^2 - 2\frac{\mu_p}{\mu_n} \bigg((V_{TP} - V_{DD}) V_{DS,SATp} - \frac{V_{DS,SATp}^2}{2} \bigg) PR} \end{split}$$

$$PR = \frac{W_2/L_2}{W_6/L_6}$$

PR < 1.8 to ensure write of "0" (otherwise, M3 stays on and we cannot write "0" into QB)

Want smaller aspect ratio for *M1* & *M2* Want larger aspect ratio for *M5* & *M6*

Reading Data from the 6T SRAM

Reading Data from the 6T SRAM

Reading Data from the 6T SRAM – Half-cell Analysis

Cell Ratio [(W_4/L_4) / (W_6/L_6)] determines + ΔV on V_{QB} (larger is better)

Impact of Cell Ratio on Read Operation of 6T SRAM

$$k_{n,M6}\left((V_{DD} - \Delta V - V_{TN})V_{DS,SATn} - \frac{V_{DS,SATn}^2}{2}\right) = k_{n,M6}\left((V_{DD} - V_{TN})\Delta V - \frac{\Delta V^2}{2}\right)$$

$$\Delta V = \frac{V_{DS,SATn}}{CR} + CR(V_{DD} - V_{TN})$$

$$-\frac{\sqrt{V_{DS,SATn}^2(1 + CR) + CR^2(V_{DD} - V_{TN})^2}}{CR}$$

$$CR = \frac{W_4/L_4}{W_6/L_6}$$

CR > 1.2 to ensure read stability (otherwise, bit flip occurs while read operation)

Want larger aspect ratio for M3 & M4 Want smaller aspect ratio for M5 & M6

Week 5-5

Introduction to the 1-Transistor Dynamic RAM (1T DRAM)

The 1-Transistor Dynamic RAM (1T DRAM) Bitcell

- Unlike SRAM
 - The 1T DRAM cell has only one transistor and one capacitor
 - Single-ended
- Simple structure and compact in size (good for density)
- Data is stored as the amount of charge in the storage capacitor
- Node Q is in high-Z state when $V_{WL} = GND$
 - Stored charge will leak due to transistor leakage
 - Requires dynamic refresh of charge stored to retain data (hence, *dynamic* RAM)

Array of 1T DRAM Bitcells (Bitcell Array)

The 1T DRAM Bitcell Structure

- The bitcell is accessed to read data from or write data into the bitcell
 - Electrically connect BL to storage node Q
- Otherwise, bitcell is in hold or hold mode and retains its stored data
 - Affected by leakage
 - Higher C_S allows more charge to be stored
 - Longer data retention

Week 5-6

DRAM Read and Write Operations

CG2027 Sem I AY21/22 Transsitor-level Digital Circuits 51

The 1T DRAM

- Unlike SRAM
 - The 1T DRAM cell has only one transistor and one capacitor
 - Single-ended
- Simple structure and compact in size (good for density)
- Data is stored as the amount of charge in the storage capacitor
- Node Q is in high-Z state when $V_{WL} = GND$
 - Stored charge will leak due to transistor leakage
 - Requires dynamic refresh of charge stored to retain data (hence, *dynamic* RAM)

Writing Data into the 1T DRAM – Put data on BL

Writing Data into the 1T DRAM – Turn on WL

Writing Data into the 1T DRAM – Turn on WL

Writing Data into the 1T DRAM – Turn on WL

Writing Data into the 1T DRAM – Turn off WL

Writing Data into the 1T DRAM – Disconnect BL

Reading Data from the 1T DRAM – Precharge BL

Reading Data from the 1T DRAM – Precharge BL

Reading Data from the 1T DRAM – Turn on WL

- M1 electrically shorts $C_{\rm BL}$ and $C_{\rm S}$ together
 - Charge sharing between C_{BL} and C_{S}
 - ΔV_Q and ΔV_{BL} depends on size of $C_{\rm BL}$ relative $C_{\rm S}$, and whether M1 gets turned off or not

CG2027 Sem I AY21/22 Transsitor-level Digital Circuits 61

Reading Data from the 1T DRAM – Turn on WL

- M1 electrically shorts $C_{\rm BL}$ and $C_{\rm S}$ together
 - Charge sharing between $C_{\rm BL}$ and $C_{\rm S}$
 - ΔV_Q and ΔV_{BL} depends on size of C_{BL} relative C_S , and whether M1 gets turned off or not

Reading Data from the 1T DRAM – Sense BL

- Use inverter chain to sense logic value on bit-line
 - NMOS pass gate prevents writing back during sensing

Reading Data from the 1T DRAM – Writeback into Cell

- Use inverter chain to sense logic value on bit-line
 - NMOS pass gate prevents writing back during sensing
 - Pass gate activates after sensing to write sensed data back into the cell

Reading Data from the 1T DRAM – Turn off WL

- Use inverter chain to sense logic value on bit-line
 - NMOS pass gate prevents writing back during sensing
 - Pass gate activates after sensing to write sensed data back into the cell

Reading Data from the 1T DRAM – Turn off Pass Gate

- Use inverter chain to sense logic value on bit-line
 - NMOS pass gate prevents writing back during sensing
 - Pass gate activates after sensing to write sensed data back into the cell

Week 5-7

Introduction to Flash Memory

MOS Memory Classification

The Floating Gate Field-effect Transistor (FET)

The Floating Gate Field-effect Transistor (FET)

Flash Memory Based on Floating Gate FET

Flash Memory Based on Floating Gate FET

Architecture of NAND Flash

BL: Bit Line

SL: Select Line

WL: Word Line

Flash Memory Based on Floating Gate FET

Architecture of NAND Flash

Architecture of NOR Flash

BL: Bit Line

SL: Select Line

WL: Word Line

BL: Bit Line

SL: Select Line

WL: Word Line

Step #1: Charge BL to voltage $V_{\rm BL}$

BL: Bit Line

SL: Select Line

WL: Word Line

Step #1: Charge BL to voltage $V_{\rm BL}$

Step #2: Apply voltage $V_{\rm WL}$ to all WLs except the WL being connected to the selected bitcell

- FETs with high V_{TH} are ON
- State of selected FET depends on V_{TH} due to stored charge

BL: Bit Line

SL: Select Line

WL: Word Line

Step #1: Charge BL to voltage $V_{\rm BL}$

Step #2: Apply voltage $V_{\rm WL}$ to all WLs except the WL being connected to the selected bitcell

- FETs with high V_{TH} are ON
- State of selected FET depends on V_{TH} due to stored charge

Step #3: Apply voltage, V_{SL} , to SL

- Allow possible path to discharge
 C_{BI} through the NAND string
- Depends on whether selected FET is ON or OFF
 - ON: $V_{\rm BL} \rightarrow {\rm GND}$

BL: Bit Line

SL: Select Line

WL: Word Line

Step #1: Charge BL to voltage $V_{\rm BL}$

Step #2: Apply voltage $V_{\rm WL}$ to all WLs except the WL being connected to the selected bitcell

- FETs with high V_{TH} are ON
- State of selected FET depends on $V_{\rm TH}$ due to stored charge

Step #3: Apply voltage, V_{SL} , to SL

- Allow possible path to discharge
 C_{BI} through the NAND string
- Depends on whether selected FET is ON or OFF

• ON: $V_{\rm BL} \rightarrow {\rm GND}$

Step #4: Ground all WLs and SLs

BL: Bit Line

SL: Select Line

WL: Word Line

Step #1: Charge BL to voltage $V_{\rm BL}$

Step #2: Apply voltage $V_{\rm WL}$ to all WLs except the WL being connected to the selected bitcell

- FETs with high V_{TH} are ON
- State of selected FET depends on $V_{\rm TH}$ due to stored charge

Step #3: Apply voltage, V_{SL} , to SL

- Allow possible path to discharge
 C_{BI} through the NAND string
- Depends on whether selected FET is ON or OFF

• ON: $V_{\rm BL} \rightarrow {\rm GND}$

Step #4: Ground all WLs and SLs

Step #5: Sense voltage of BL

Shared **GND** substrate/body BL: Bit Line **GND** SL: Select Line WL: Word Line **GND** GND -High resistance path between CG to substrate through the FG due to insulating oxide Large electric field can force <u>tunneling</u> **GND** current to flow by Fowler-Nordheim (FN) tunneling mechanism

Main idea: drive current between CG and substrate for a short period of time. Charges get trapped on the FG when current is abruptly turned off

Shared

substrate/body

BL: Bit Line

SL: Select Line

WL: Word Line

High resistance path between CG to substrate through the FG due to insulating oxide

Large electric field can force <u>tunneling</u>
<u>current</u> to flow by Fowler-Nordheim
(FN) tunneling mechanism

Constraint: no negative voltage allowed (difficult to generate)

Main idea: drive current between CG and substrate for a short period of time. Charges get trapped on the FG when current is abruptly turned off

BL: Bit Line

SL: Select Line

WL: Word Line

Selected bitcell

High resistance path between CG to substrate through the FG due to insulating oxide

Large electric field can force <u>tunneling</u> <u>current</u> to flow by Fowler-Nordheim (FN) tunneling mechanism

Constraint: no negative voltage allowed (difficult to generate)

Main idea: drive current between CG and substrate for a short period of time. Charges get trapped on the FG when current is abruptly turned off

- Set voltage of substrate voltage to GND
- Apply programming voltage (V_{PRG}) to selected bitcell to drive current, I_{PRG}

BL: Bit Line

SL: Select Line WL: Word Line

High resistance path between CG to substrate through the FG due to insulating oxide

Large electric field can force <u>tunneling</u> <u>current</u> to flow by Fowler-Nordheim (FN) tunneling mechanism

Constraint: no negative voltage allowed (difficult to generate)

Main idea: drive current between CG and substrate for a short period of time. Charges get trapped on the FG when current is abruptly turned off

- Set voltage of substrate voltage to GND
- Apply programming voltage (V_{PRG}) to selected bitcell to drive current, I_{PRG}
 (block) ERASE operation:
- Set all WL voltages to GND
- Apply erase voltage (V_{ERS}) to common substrate to drive current, I_{ERS}, through all bitcells in the NAND string

BL: Bit Line

SL: Select Line

WL: Word Line

Step #1: Charge BL to voltage $V_{\rm BL}$

BL: Bit Line

SL: Select Line

WL: Word Line

Step #1: Charge BL to voltage $V_{\rm BL}$

Step #2: Apply voltage $V_{\rm WL}$ the WL being connected to the selected bitcell

- Selected FETs with low V_{TH} are ON
- Allow possible path to discharge
 C_{BL} through the selected bitcell
- Whether selected FET is ON or OFF depends on stored charge
 - ON: $V_{\rm BL} \rightarrow {\rm GND}$

BL: Bit Line

SL: Select Line

WL: Word Line

Step #1: Charge BL to voltage $V_{\rm BL}$

Step #2: Apply voltage $V_{\rm WL}$ the WL being connected to the selected bitcell

- Selected FETs with low V_{TH} are ON
- Allow possible path to discharge
 C_{BL} through the selected bitcell
- Whether selected FET is ON or OFF depends on stored charge

• ON: $V_{\rm BL} \rightarrow {\rm GND}$

Step #3: Ground all WLs

BL: Bit Line

SL: Select Line

WL: Word Line

Step #1: Charge BL to voltage $V_{\rm BL}$

Step #2: Apply voltage $V_{\rm WL}$ the WL being connected to the selected bitcell

- Selected FETs with low V_{TH} are ON
- Allow possible path to discharge $C_{\rm BL}$ through the selected bitcell
- Whether selected FET is ON or OFF depends on stored charge

• ON: $V_{\rm BL} \rightarrow {\rm GND}$

Step #3: Ground all WLs

Step #4: Sense voltage of BL

substrate/body

Shared

BL: Bit Line

SL: Select Line WL: Word Line

High resistance path between CG to substrate through the FG due to insulating oxide

Large electric field can force <u>tunneling</u>
<u>current</u> to flow by Fowler-Nordheim
(FN) tunneling mechanism

Main idea is the same as in NAND Flash: drive current between CG and substrate for a short period of time. Charges get trapped on the FG when current is abruptly turned off

- Set voltage of BL and substrate to GND
- Apply V_{PRG} to WL of selected bitcell

BL: Bit Line SL: Select Line WL: Word Line

High resistance path between CG to substrate through the FG due to insulating oxide

Shared

substrate/body

Large electric field can force tunneling current to flow by Fowler-Nordheim (FN) tunneling mechanism

Main idea is the same as in NAND Flash: drive current between CG and substrate for a short period of time. Charges get trapped on the FG when current is abruptly turned off

- Set voltage of BL and substrate to **GND**
- Apply V_{PRG} to WL of selected bitcell

Shared substrate/body

BL: Bit Line

SL: Select Line WL: Word Line

High resistance path between CG to substrate through the FG due to insulating oxide

Large electric field can force <u>tunneling</u>
<u>current</u> to flow by Fowler-Nordheim
(FN) tunneling mechanism

Main idea is the same as in NAND Flash: drive current between CG and substrate for a short period of time. Charges get trapped on the FG when current is abruptly turned off

- Set voltage of BL and substrate to GND
- Apply V_{PRG} to WL of selected bitcell (block) ERASE operation:
- Set voltage of all WLs to GND
- Apply V_{ERS} to BL, substrate, and virtual GND

Main idea is the same as in NAND Flash: drive current between CG and substrate for a short period of time. Charges get trapped on the FG when current is abruptly turned off

- Set voltage of BL and substrate to GND
- Apply V_{PRG} to WL of selected bitcell (block) ERASE operation:
- Set voltage of all WLs to GND
- Apply V_{ERS} to BL, substrate, and virtual GND

BL: Bit Line

SL: Select Line WL: Word Line

High resistance path between CG to substrate through the FG due to insulating oxide

Large electric field can force <u>tunneling</u> <u>current</u> to flow by Fowler-Nordheim (FN) tunneling mechanism

Virtual GND node

Main idea is the same as in NAND Flash: drive current between CG and substrate for a short period of time. Charges get trapped on the FG when current is abruptly turned off

- Set voltage of BL and substrate to GND
- Apply V_{PRG} to WL of selected bitcell (block) ERASE operation:
- Set voltage of all WLs to GND
- Apply V_{ERS} to BL, substrate, and virtual GND
 - BL and virtual GND voltage cannot be GND or the pnjunctions with substrate will conduct leakage current

CG2027 Sem I AY21/22 Transsitor-level Digital Circuits

Characteristics of Flash Memory

NOR Flash

NAND Flash

	NAND	NOR
Speed	X	0
Density	0	X
Program	Cell	
Erase	Block	

Memory management needed to:

- Map memory addresses to physical blocks of memory
 - Redundant blocks are needed
 - When erase operation is needed for a cell, entire block is marked as 'dirty' and copied to a 'clean' block
- Wear-leveling
 - Each cell can only support < ~106 PROGRAM and ERASE ops.