

日本国特許庁
JAPAN PATENT OFFICE

15.12.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2002年11月21日

出願番号
Application Number: 特願2002-338366

[ST. 10/C]: [JP 2002-338366]

出願人
Applicant(s): 日本精工株式会社

RECEIVED
06 FEB 2004
WIPO PCT

BEST AVAILABLE COPY

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 1月22日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 NSP02094
【提出日】 平成14年11月21日
【あて先】 特許庁長官殿
【国際特許分類】 G01L 5/00
F16C 41/00
【発明の名称】 車輪ユニット、転がり軸受ユニット、車両及び車両の制御方法
【請求項の数】 7
【発明者】
【住所又は居所】 神奈川県藤沢市鵠沼神明一丁目 5番 50号 日本精工株式会社内
【氏名】 石川 寛朗
【特許出願人】
【識別番号】 000004204
【氏名又は名称】 日本精工株式会社
【代表者】 朝香 聖一
【代理人】
【識別番号】 100107272
【弁理士】
【氏名又は名称】 田村 敬二郎
【選任した代理人】
【識別番号】 100109140
【弁理士】
【氏名又は名称】 小林 研一
【先の出願に基づく優先権主張】
【出願番号】 特願2002-334105
【出願日】 平成14年11月18日

【手数料の表示】

【予納台帳番号】 052526

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9700184

【包括委任状番号】 9700957

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 車輪ユニット、転がり軸受ユニット、車両及び車両の制御方法

【特許請求の範囲】

【請求項1】 車輪ユニットにおいて、

静止部材と、

前記静止部材に対して回転自在となっている回転部材と、

前記回転部材に取り付けられたセンサロータと、

前記センサロータに対向するようにして前記静止部材に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、

前記静止部材に取り付けられて、前記車輪ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有することを特徴とする車輪ユニット。

【請求項2】 車輪を制動する制動ユニットと、

車輪ユニットと、をそれぞれ複数有する車両であって、

前記車輪ユニットが、静止部材と、前記静止部材に対して回転自在となっている回転部材と、前記回転部材に取り付けられたセンサロータと、前記センサロータに対向するようにして前記静止部材に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、前記静止部材に取り付けられて、前記車輪ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有することを特徴とする車輪ユニット。

【請求項3】 転がり軸受ユニットにおいて、

静止輪と、

回転輪と、

前記静止輪と前記回転輪との間に配置された複数個の転動体と、

前記回転輪に取り付けられたセンサロータと、

前記センサロータに対向するようにして前記静止輪に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、

前記静止輪に取り付けられて、前記転がり軸受ユニットの進行方向の加速度に

応じた加速度信号を出力する加速度センサと、を有することを特徴とする転がり軸受ユニット。

【請求項4】 静止部材と、前記静止部材に対して回転自在となっている回転部材と、前記回転部材に取り付けられたセンサロータと、前記センサロータに対向するようにして前記静止部材に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、前記静止部材に取り付けられて、前記車輪ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有する車輪ユニットと、

車両の制動に応じてトリガー信号を発生するトリガー信号発生装置と、

前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶する記憶装置と、

前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求める積分装置と、

前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算する演算装置と、

得られたスリップ率を基に制動を制御する制動制御装置と、を有することを特徴とする車両。

【請求項5】 車輪を制動する制動ユニットと、

車輪ユニットと、をそれぞれ複数有する車両であって、

前記車輪ユニットが、静止部材と、前記静止部材に対して回転自在となっている回転部材と、前記回転部材に取り付けられたセンサロータと、前記センサロータに対向するようにして前記静止部材に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、前記静止部材に取り付けられて、前記車輪ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有し、

更に、車両の制動に応じてトリガー信号を発生するトリガー信号発生装置と、

前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶する記憶装置と、

前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度

を積分し、追加分の車軸速度を求める積分装置と、

前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算する演算装置と、

得られたスリップ率を基に制動を制御する制動制御装置と、を有することを特徴とする車両。

【請求項6】 静止輪と、回転輪と、前記静止輪と前記回転輪との間に配置された複数個の転動体と、前記回転輪に取り付けられたセンサロータと、前記センサロータに対向するようにして前記静止輪に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、前記静止輪に取り付けられて、前記転がり軸受ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有する転がり軸受ユニットと、

車両の制動に応じてトリガー信号を発生するトリガー信号発生装置と、

前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶する記憶装置と、

前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求める積分装置と、

前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算する演算装置と、

得られたスリップ率を基に制動を制御する制動制御装置と、を有することを特徴とする車両。

【請求項7】 車両の制動に応じてトリガー信号を発生するステップと、

前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶するステップと、

前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求めるステップと、

前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算するステップと、

得られたスリップ率を基に制動を制御するステップと、を有することを特徴とする車両の制御方法。

【発明の詳細な説明】**【0001】****【発明の属する技術分野】**

本発明は、車両の安定した走行を確保できる車両制御技術に関する。

【0002】**【従来の技術】**

一般的に、車両の車輪は、懸架装置に対して転がり軸受ユニットを介して回転自在に支持されている。ここで、近年においては、車両の安定走行を確保するために、アンチロックブレーキシステム（A B S）やトラクションコントロールシステム（T C S）が採用されるようになってきており、これらを確実に動作させる為には、上記車輪の回転速度を精度良く検出する必要がある。この為、上記転がり軸受ユニットに回転速度検出装置を組み込み、対応する車輪の回転速度を検出する事が、近年広く行なわれる様になっている。

【0003】

図9は、この様な目的で使用される従来構造の1例として、以下の特許文献1に記載された回転速度検出装置付の車輪支持用転がり軸受ユニットを示す図である。この回転速度検出装置付の車輪支持用転がり軸受ユニットは、車体に対して懸架装置を介して支持された状態で使用時にも回転しない静止部材又は静止輪に相当する外輪1の内径側に、車輪を固定した状態で使用時に回転する回転部材又は回転輪に相当するハブ2を支持している。このハブ2の一部に固定したセンサロータ3の回転速度を、外輪1に固定したカバー4に支持した回転速度検出センサユニット5により検出自在としている。図示の例では、この回転速度検出センサユニット5として、センサロータ3と全周に亘って対向する、円環状のものを使用している。又、ハブ2を回転自在に支持する為に、外輪1の内周面に、静止側軌道輪に相当する複列の外輪軌道6、6を設けている。又、ハブ2の外周面、及びこのハブ2に外嵌しナット7によりこのハブ2に対し結合固定した状態でハブ2と共に回転側軌道輪を構成する内輪8の外周面に、回転側軌道輪に相当する内輪軌道9、9を設けている。そして、これら各内輪軌道9、9と各外輪軌道6、6との間にそれぞれ複数個ずつの転動体10、10を、それぞれ保持器11、

11により保持した状態で転動自在に設け、外輪1の内側にハブ2及び内輪8を、回転自在に支持している。

【特許文献1】

特開2001-21577号公報

【0004】

又、ハブ2の外端部（車両への組み付け状態で幅方向外側となる端部を言い、図9の左端部）で外輪1の外端部から軸方向外方に突出した部分に、車輪を取り付ける為のフランジ12を設けている。又、外輪1の内端部（車両への組み付け状態で幅方向中央側となる端部を言い、図9の右端部）に、この外輪1を懸架装置に取り付ける為の取付部13を設けている。又、外輪1の外端開口部とハブ2の中間部外周面との間の隙間は、シールリング14により塞いでいる。尚、重量の嵩む車両用の転がり軸受ユニットの場合には、複数個の転動体10、10として、図示の様な玉に代えて、テーパころを使用する場合もある。

【0005】

上述の様な転がり軸受ユニットに回転速度検出装置を組み込むべく、内輪8の内端部で内輪軌道9から外れた部分の外周面には、センサロータ3を外嵌固定している。このセンサロータ3は、軟鋼板等の磁性金属板に塑性加工を施す事により、全体を円環状に形成したもので、互いに同心の被検出用円筒部15と支持用円筒部16とを備え、このうちの支持用円筒部16を内輪8の内端部に締まり嵌めで外嵌する事により、この内輪8の内端部に固定している。又、被検出用円筒部15には、それぞれがこの被検出用円筒部15の軸方向に長いスリット状の透孔17、17を多数、円周方向に関して等間隔で形成する事により、被検出用円筒部15の磁気特性を、円周方向に亘って交互に且つ等間隔に変化させている。

【0006】

更に、外輪1の内端開口部には前記カバー4を、センサロータ3の被検出用円筒部15を覆う状態で鉄合固定して、外輪1の内端開口部を塞いでいる。金属板を塑性加工して成るカバー4は、外輪1の内端開口部に内嵌固定自在な嵌合筒部18と、この内端開口部を塞ぐ塞ぎ板部19とを有する。そして、この塞ぎ板部19内に、前記回転速度検出センサユニット5を保持固定している。又、この塞

ぎ板部19の外周寄り部分には通孔20を形成し、この通孔20を通じて回転速度検出センサユニット5の出力を取り出す為のコネクタ21を、カバー4外に取り出している。この様に回転速度検出センサユニット5をカバー4内に保持固定した状態で、この回転速度検出センサユニット5の外周面に設けた検知部は、センサロータ3を構成する被検出用円筒部15の内周面に、微小隙間を介して対向する。

【0007】

上述の様な回転速度検出装置付の車輪支持用転がり軸受ユニットの使用時には、外輪1の外周面に固設した取付部13を懸架装置に対して、図示しないボルトにより結合固定すると共に、前記ハブ2の外周面に固設したフランジ12に図示しない車輪を、このフランジ12に設けたスタッド22により固定する事で、不図示の懸架装置に対して車輪を回転自在に支持する。この状態で車輪が回転すると、回転速度検出センサユニット5の検知部の端面近傍を、被検出用円筒部15に形成した透孔17、17と、円周方向に隣り合う透孔17、17同士の間に存在する柱部(不図示)とが交互に通過する。この結果、回転速度検出センサユニット5内を流れる磁束の密度が変化し、この回転速度検出センサユニット5の出力が変化する。この様にして回転速度検出センサユニット5の出力が変化する周波数は、車輪の回転数に比例する。従って、回転速度検出センサユニット5の出力を制御器60に送れば、ABSやTCSを適切に制御できる。

【0008】

即ち、回転速度検出センサユニット5の出力と、別途車体側に設けた加速度センサの出力とを比較して、これら両センサの出力に整合性がない場合に、タイヤの外周面と路面との当接部に滑りが発生していると判断して、ABSやTCSを制御する。即ち、制動時に加速度センサが検出する車両の減速度に比べて回転速度検出センサユニット5の出力に基づいて求められる車輪の減速度が大きい場合には、滑りが発生していると判断して、ブレーキ装置のホイルシリンダ部分の油圧を制御し、車両が停止する以前に車輪の回転が止まる事を防止して、車両の走行姿勢の安定性確保を図る。又、加速時には、回転速度検出センサユニット5の出力に基づいて求められる車輪の加速度に比べて、加速度センサにより求められ

る車両の加速度が小さい場合（或は、従動輪の加速度に比べて駆動輪の加速度が大きい場合）には、滑りが発生していると判断して、車輪に制動を加えたり、或はエンジンの出力を絞る（低下させる）事により、タイヤの外周面と路面との滑りを防止して、車両の走行姿勢の安定化を図る。

【0009】

上述した様な従来から広く知られている回転速度検出装置付の車輪支持用軸がり軸受ユニットによれば、制動時や加速時に於ける車両の走行姿勢の安定性確保を図れるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。これに対して、従来の回転速度検出装置付軸がり軸受ユニットを利用したA B SやT C Sの場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている。この為、これらブレーキやエンジンの制御が一瞬とは言え遅れる為、厳しい条件下での性能向上の面からは改良が望まれる。即ち、従来構造の場合には、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。更には、トラック等で、積載状態が不良である事に基づいて走行安定性が不良になるのを防止する事もできない。

【0010】

この様な事情に鑑みて、上記特許文献1には、図10に示す様な、軸がり軸受ユニットに加わる荷重を測定自在とした構造が記載されている。この従来構造の第2例の場合には、外輪1の軸方向中間部で1対の外輪軌道6、6同士の間部分に、この外輪1を直徑方向に貫通する取付孔23を、この外輪1の上端部にほぼ鉛直方向に形成している。そして、この取付孔23内に、円柱状（棒状）の変位センサ28を装着している。この変位センサ28の先端面（下端面）に設けた検出面は、ハブ2の軸方向中間部に外嵌固定したセンサリング25の外周面に近接対向させている。そして、変位センサ28は、検出面とセンサリング25の外周面との距離が変化した場合に、その変化量に対応した信号を出力する。

【0011】

上述の様に構成する従来構造の第2例の場合には、変位センサ28の検出信号に基づいて、この変位センサ28を組み込んだ車輪支持用転がり軸受ユニットに加わる荷重を求める事ができる。即ち、車両の懸架装置に支持した外輪1は、この車両の重量により下方に押されるのに対して、車輪を支持固定したハブ2は、そのままの位置に止まろうとする。この為、重量が嵩む程、外輪1やハブ2、並びに転動体10、10の弾性変形に基づいて、これら外輪1の中心とハブ2の中心とのずれが大きくなる。そして、この外輪1の上端部に設けた、変位センサ28の検出面とセンサリング25の外周面との距離は、重量が嵩む程短くなる。そこで、変位センサ28の検出信号を制御器60に送れば、予め実験等により求めた関係式等から、当該変位センサ28を組み込んだ車輪支持用転がり軸受ユニットに加わる荷重を求める事ができる。この様にして求めた、各車輪支持用転がり軸受ユニットに加わる荷重に基づいて、ABSを適正に制御する他、積載状態の不良を運転者に知らせることができる。

【0012】

図10に示した従来構造の第2例の場合、車両の重量に基づいて鉛直方向に加わる荷重を測定できるが、例えば旋回走行時に遠心力等に基づいて加わるモーメント荷重を測定する事はできない。この為、車両のあらゆる走行状態に応じて、安定走行の為に適切な制御を行なう為の信号を得る面からは改良が望まれる。この様な場合に使用可能な構造として、以下の特許文献2に記載された構造が知られている。この公報に記載された構造によれば、上記モーメント荷重を含め、車両の走行時に車輪に加わる各方向の荷重を測定できる。

【特許文献2】

特開平10-73501号公報

【0013】

【発明が解決しようとする課題】

ところで、TCS、ABSなどの制御精度を高める上で重要な課題がある。TCS、ABSなどの制御精度を高めるためには、車輪のスリップ率を精度良く測定する必要がある。ところが、車輪のスリップ率は、車輪の回転速度と、車体の路面に対する速度（車体の速度という）の双方より求まるものであり、車輪の回

転速度は精度良く検出できるが、車体の速度を直接求めることができないため、例えばスリップ率は4輪の回転速度から総合的に推定する他なかった。

【0014】

又、例えばABSにおいて、車輪の回転速度を検出し、その微分値を求めて、それに基づきブレーキパッドの押し付け力を調整しているものもあるが、実際の路面状況によっては、必ずしも押し付け力の制御が最適といえないと場合もある（特許文献3参照）。

【特許文献3】

特開平10-6965号公報

【0015】

本発明は、かかる従来技術の問題点に鑑みて成されたものであって、車輪のスリップ率を精度良く求めることができ、それにより制動力をより適切に制御できるようにする車輪ユニット、転がり軸受ユニット、車両及び車両の制御方法を提供することを目的とする。

【0016】

【課題を解決するための手段】

第1の本発明の車輪ユニットは、

静止部材と、

前記静止部材に対して回転自在となっている回転部材と、

前記回転部材に取り付けられたセンサロータと、

前記センサロータに対向するようにして前記静止部材に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、

前記静止部材に取り付けられて、前記車輪ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有することを特徴とする。

【0017】

第1の本発明の車輪ユニットによれば、以上の構成を有するので、例えば車両の制動に応じてトリガー信号が発生すると、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記検出時より、前記加速度センサから出力される加速度信

号に基づく加速度を積分し、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができるこ^トから、車両の制動をより高精度に行うことができる。

【0018】

第2の本発明の車両は、

車輪を制動する制動ユニットと、

車輪ユニットと、をそれぞれ複数有する車両であって、

前記車輪ユニットが、静止部材と、前記静止部材に対して回転自在となつてゐる回転部材と、前記回転部材に取り付けられたセンサロータと、前記センサロータに対向するようにして前記静止部材に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、前記静止部材に取り付けられて、前記車輪ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有することを特徴とする。

【0019】

第2の本発明の車両によれば、以上の構成を有するので、例えば車両の制動に応じてトリガー信号が発生すると、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0020】

第3の本発明の転がりユニットは、

静止輪と、

回転輪と、

前記静止輪と前記回転輪との間に配置された複数個の転動体と、
前記回転輪に取り付けられたセンサロータと、
前記センサロータに対向するようにして前記静止輪に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、
前記静止輪に取り付けられて、前記転がり軸受ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有することを特徴とする。

【0021】

第3の本発明の転がりユニットによれば、以上の構成を有するので、例えば車両の制動に応じてトリガー信号が発生すると、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0022】

第4の本発明の車両は、

静止部材と、前記静止部材に対して回転自在となっている回転部材と、前記回転部材に取り付けられたセンサロータと、前記センサロータに対向するようにして前記静止部材に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、前記静止部材に取り付けられて、前記車輪ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有する車輪ユニットと、

車両の制動に応じてトリガー信号を発生するトリガー信号発生装置と、
前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶する記憶装置と、
前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求める積分装置と、

前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算する演算装置と、

得られたスリップ率を基に制動を制御する制動制御装置と、を有することを特徴とする。

【0023】

第4の本発明の車両によれば、以上の構成を有するので、前記トリガー信号発生装置が、車両の制動に応じてトリガー信号が発生すると、前記記憶装置が、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記積分装置が、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、前記演算装置が、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、前記制動制御装置が、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0024】

第5の本発明の車両は、

車輪を制動する制動ユニットと、

車輪ユニットと、をそれぞれ複数有する車両であって、

前記車輪ユニットが、静止部材と、前記静止部材に対して回転自在となっている回転部材と、前記回転部材に取り付けられたセンサロータと、前記センサロータに対向するようにして前記静止部材に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、前記静止部材に取り付けられて、前記車輪ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有し、

更に、車両の制動に応じてトリガー信号を発生するトリガー信号発生装置と、

前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶する記憶装置と、

前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度

を積分し、追加分の車軸速度を求める積分装置と、

前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算する演算装置と、

得られたスリップ率を基に制動を制御する制動制御装置と、を有することを特徴とする。

【0025】

第5の本発明の車両によれば、以上の構成を有するので、前記トリガー信号発生装置が、車両の制動に応じてトリガー信号が発生すると、前記記憶装置が、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記積分装置が、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、前記演算装置が、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、前記制動制御装置が、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0026】

第6の本発明の車両は、

静止輪と、回転輪と、前記静止輪と前記回転輪との間に配置された複数個の転動体と、前記回転輪に取り付けられたセンサロータと、前記センサロータに対向するようにして前記静止輪に取り付けられ、前記センサロータの回転速度に応じた回転速度信号を出力する回転速度センサと、前記静止輪に取り付けられて、前記転がり軸受ユニットの進行方向の加速度に応じた加速度信号を出力する加速度センサと、を有する転がり軸受ユニットと、

車両の制動に応じてトリガー信号を発生するトリガー信号発生装置と、

前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶する記憶装置と、

前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求める積分装置と、

前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算する演算装置と、

得られたスリップ率を基に制動を制御する制動制御装置と、を有することを特徴とする。

【0027】

第6の本発明の車両によれば、以上の構成を有するので、前記トリガー信号発生装置が、車両の制動に応じてトリガー信号が発生すると、前記記憶装置が、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記積分装置が、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、前記演算装置が、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、前記制動制御装置が、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0028】

第7の本発明の車両の制御方法は、

車両の制動に応じてトリガー信号を発生するステップと、

前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶するステップと、

前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求めるステップと、

前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算するステップと、

得られたスリップ率を基に制動を制御するステップと、を有することを特徴とする。

【0029】

第7の本発明の車両の制御方法によれば、以上の構成を有するので、例えば車両の制動に応じてトリガー信号が発生すると、前記トリガー信号の発生時又はそ

の前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができる事から、車両の制動をより高精度に行うことができる。

【0030】

【発明の実施の形態】

以下、本発明の実施の形態を図面を参照して以下に詳細に説明する。図1は、本発明の実施の形態にかかる車輪支持用転がり軸受ユニットの断面図であり、かかる車輪支持用転がり軸受ユニットと制御器とで車両の制御装置を構成し、これらは車両に搭載されてその一部となる。図2は、図1の構成をII-II線で切断して矢印方向に見た図であり、図3は、図1の構成の矢印IIIで示す部位の拡大図である。

【0031】

本実施の形態の特徴的な構成は、図1で、ハブ2に固定した車輪（図示省略）に加わる荷重の方向及び大きさを求めて、ABSやTCSを適正に制御できること、及び加速度センサを内蔵することで、ABSやTCSを適正に制御できることにある。この為に本例の場合には、上記ハブ2に加わる荷重だけでなく、このハブ2の回転速度を及び加速度を検出自在としている。但し、この回転速度を検出する部分の構造及び作用に就いては、前述の図9～10に示した従来構造と同様であるから、同等部分には同一符号を付して重複する説明は省略し、以下、本発明の特徴部分を中心に説明する。

【0032】

本例の場合は、ラジアル方向並びにスラスト方向の変位を検出する為の各変位測定素子（回転速度センサ）27a、27b（周方向に等間隔にそれぞれ4つ配置されている）のうちの、ラジアル方向の変位を検出する変位測定素子27aにより、このラジアル方向の変位と共に回転速度も検出自在としている。即ち、本

例の場合は、被検出用円筒部（センサロータ）50の一部で上記ラジアル方向の変位を検出する変位測定素子27aに近接対向する部分に、除肉部として機能する多数の透孔51、51を、円周方向に関して等間隔に形成している。これら各透孔51、51は、軸方向に長いスリット状である。又、円周方向に隣り合うこれら各透孔51、51同士の間部分は、充実部として機能する柱部としている。

【0033】

この様な透孔51、51を有する上記被検出用円筒部50が回転すると、上記変位測定素子27aの（波形成形処理後の）出力は、図4の実線 α に示す様に変化する。即ち、上記被検出用円筒部50の各透孔51、51と上記変位測定素子27aとが対向する際に、この変位測定素子27aの出力が低下し、同じく上記各透孔51、51同士の間部分である各柱部と対向する際に、上記変位測定素子27aの出力が増大する。この様な変位測定素子27aの出力が変化する周波数は、車輪の回転速度に比例する為、出力信号をハーネスを通じて制御器60に入力すれば、上記車輪の回転速度を求める事ができる。又、上記ラジアル方向の変位を検出する変位測定素子27aと上記被検出用円筒部50の内周面との距離は、上記被検出用円筒部50のうちの上記各透孔51、51同士の間部分である各柱部と上記変位測定素子27aとが対向した際の、この変位測定素子27aの出力の大きさから求める事ができる。

【0034】

本例の荷重測定装置付車輪支持用転がり軸受ユニットの場合には、変位測定素子27a、27b毎に出力される合計8種類の検出信号は、それぞれ制御器60に入力されている。そして、この制御器60が、上記変位測定素子27a、27bから送り込まれる検出信号に基づき、車輪支持用転がり軸受ユニットに加わる、各方向の荷重を求める。

【0035】

例えば、上記各車輪支持用転がり軸受ユニットに、車重等に基づく鉛直方向の荷重が加わった場合には、鉛直方向に存在する2個の変位測定素子27a、27aのうち、上側の変位測定素子27aで、上記ラジアル検出部を構成する変位測定出素子27aと、上記ラジアル被検出面である上記被検出用円筒部50の外周

面との距離が狭まり、下側の変位測定素子27aでこの距離が広がる。この際の距離の変化量は、上記荷重が大きくなる程大きくなる。水平方向に存在する2個の変位測定素子27a、27aに関しては、この距離は変化しない。

【0036】

これに対して、何らかの原因で水平方向（前後方向）の荷重が加わった場合には、水平方向に存在する2個の変位測定素子27a、27aのうち、荷重の作用方向前側の変位測定素子27aで、上記ラジアル検出部を構成する変位測定素子27aと、上記ラジアル被検出面である上記被検出用円筒部50の外周面との距離が広がり、作用方向後側の変位測定素子27aでこの距離が狭まる。この際の距離の変化量も、上記荷重が大きくなる程大きくなる。鉛直方向に存在する2個の変位測定素子27a、27aに関しては、この距離は変化しない。斜め方向の荷重によっては、総てのセンサユニット27a、27aに関して、上記距離が変化する。従って、円周方向に関して等間隔に配置された4個の変位測定素子27a、27aの検出信号を比較すれば、ラジアル荷重の作用する方向とその大きさとを知る事ができる。尚、上記各部の距離の変化量とラジアル荷重の大きさとは、予め実験、或はコンピュータ解析により求めておく。

【0037】

次に、旋回走行等により前記ハブ2にモーメント荷重が加わり、このハブ2の中心軸と前記外輪1の中心軸とが不一致になった場合に就いて説明する。この場合には、スラスト検出部を構成する前記変位測定素子27b、27bの検出信号に基づいて、上記モーメント荷重の方向及びその大きさを求める。例えば、旋回時に（旋回円の径方向に関して）外側の車輪を支持したハブ2には、遠心力により大きなモーメント荷重Mが、図1の矢印方向（時計回り）に加わる。この結果、上記ハブ2の中心軸が、上記外輪1の中心軸に対し傾斜する。

【0038】

この状態では、鉛直方向に配置された1対の変位測定素子27b、27bのうち、一方の変位測定素子27bに関するスラスト検出部とスラスト被検出面との距離が縮まり、他方の変位測定素子27bに関するスラスト検出部とスラスト被検出面との距離が広がる。例えば図示の例の場合には、上側のスラスト検出部を

構成する変位測定素子27bと、スラスト被検出面である前記被検出用円筒部50の内側面50aとの距離が縮まる。これに対して、下側の変位測定素子27bと上記内側面50aとの距離が広がる。この場合に、各変位測定素子27b、27bと内側面50aとの距離が変化する量は、上記モーメント荷重Mが大きくなる程大きくなる。従って、円周方向に関して等間隔に配置された4個のスラスト検出部を構成する上記各変位測定素子27b、27bの検出信号を比較すれば、モーメント荷重の作用する方向とその大きさとを知る事ができる。

【0039】

又、モーメント荷重が水平方向に加わった場合には、水平方向に配置した2個の変位測定素子27b、27bの検出信号に基づいて、上記モーメント荷重の方向と大きさとを求める。更に、モーメント荷重が斜め方向に加わった場合には、総て（4個）の変位測定素子27b、27bの検出信号に基づいて、上記モーメント荷重の方向と大きさとを求める。尚、上記各部の距離の変化量とモーメント荷重の大きさとの関係、更には各変位測定素子27b、27bの検出信号の差とモーメント荷重の作用方向との関係に関しても、予め実験、或はコンピュータ解析により求めておく。

【0040】

更に、何らかの原因で前記ハブ2にスラスト荷重が加わった場合には、総ての変位測定素子27b、27bに関して、上記内側面50aとの距離が変化する。そして、この変化の方向（広がるか縮まるか）により上記スラスト荷重の方向が分かり、変化量でその大きさが分かる。

【0041】

尚、実際の走行時には、上記ハブ2に対して純ラジアル荷重、純モーメント荷重、或は純スラスト荷重が加わる事は稀であり、これら各荷重が混ざり合った状態で、上記ハブ2に加わる。従って制御器60は、上記各変位測定素子27a、27bから送り込まれる、合計8種類の検出信号に基づいて、上記ハブ2に加わる荷重の種類、方向、大きさを求める。この様に、8種類の検出信号から荷重の種類、方向、大きさを求めるプログラムは、予め多数の実験、或はコンピュータシミュレーションにより決定して、上記制御器を構成するマイクロコンピュータ

中にインストールしておく。

【0042】

図5は、本実施の形態の制御器60にて行われる車両の制御方法を実行するためのフローチャート図である。尚、制御器60は、トリガー信号発生装置60aと、記憶装置60bと、積分装置60cと、演算装置60dと、制動制御装置60eとを有する。

【0043】

図5を参照して、本実施の形態の別な動作について説明する。図5のステップS101で、制御器60は、車両の制動に応じて出力される信号をリアルタイムで受信し、ステップS102で、いずれの出力信号が閾値（実験等により予め定められ記憶された値）を超えたか否か監視する。例えば本実施の形態の車輪支持用転がり軸受ユニットを搭載した車両において、ブレーキ装置Bを作動させたような場合、Y方向の加速度を検出する加速度センサ63からの出力信号が閾値を超えるので、制御器60のトリガー信号発生装置60aは、制動する車両に所定の姿勢変化が生じたと判断して、ステップS103でトリガー信号を発生する。但し、運転者がブレーキペダルを踏んだとき、それに連動して出力されブレーキランプを点灯させるブレーキ信号を、直接トリガー信号として用いても良い。

【0044】

制御器60の記憶装置60bは、変位測定素子27aから出力された信号に基づき決定される現在の車輪回転速度を繰り返し記憶している。制御器60は、トリガー信号の発生に応じて、トリガー信号発生時またはその直前（制動基準時）における変位測定素子27aから出力された信号に基づき決定される車輪回転速度 $V_{\omega 0}$ より、車輪軸の速度を求め、記憶装置60bは、これを基準車軸速度 V_{t0} として記憶する（ステップS104）。

【0045】

減速が持続している間、加速度センサ63は、進行方向における減速Gを検出し続けるため、制御器60の積分装置60cが、その出力信号を積分して積分値（追加分の車軸速度） A_t を得、演算装置60dが、記憶された基準車軸速度 V_{t0} から追加分の車軸速度 A_t を差し引くことで、現在の車軸速度（対地速度）

V_t を演算する（ステップS105）。そして、変位測定素子27aから出力された信号に基づきリアルタイムで決定される車輪回転速度から求まる現在の周速 V_ω とを用いて、演算装置60dが、以下の式でスリップ率 λ を計算する（ステップS106）。

$$\lambda = (V_t - V_\omega) / V_t$$

【0046】

更に、制御器60の制動制御装置60eが、ブレーキ装置Bを制御して、ブレーキパッドに適切な押圧力を付与することで、スリップ率Sが、0.1～0.2になるように、各車輪を制動制御する（ステップS107）。以上のスリップ率の演算は、ステップS108で、車両制動制御が不要と判断される（たとえば減速の場合、車軸速度がゼロ又はその近傍となる）まで実行される。その後、ステップS109で、内蔵メモリに記憶された基準速度はリセットされる。

【0047】

加速度の検出は、各車輪毎に行なうことが好ましい。一般的な加速度センサは、少しでも傾斜していると重力の影響を受け、従って取り付け方向や位置の影響を受けやすく、それに対応する信号を出力してしまうので、走行時や制動直前の加速度センサの出力特性を、車輪の回転速度を元に補正して、制御器60のメモリに予め記憶しておくと好ましい。更に、走行する路面が前後左右に傾斜している場合、制動時に前方に車体が傾斜する場合、コーナリング時に左右に車体が傾斜する場合と、加速度センサはそれぞれ影響を受けるので、かかる傾斜の変化量を、各車輪と車体4隅の垂直加速度から求め、それに基づいて加速度センサや回転速度センサの出力信号を補正する必要がある。これらの補正によって、トリガー信号が出力された時点から、正しい車体速度を求めることができる。以上の制御において加速度の検出は、進行方向と垂直方向の2方向検出で足りるが、これに左右方向を加えて3方向検出とすれば、左右方向の加速度を積分することで、車輪の横方向のズレ速度が分かり、このズレ速度をできるだけ小さくするようにブレーキパッドの押し付け力を調整すれば、コーナリング・フォースの制御ができる。

【0048】

このように、車両の発進・制動時にトリガー信号を発生させ、前後方向加速度を積分すれば、正確な車体（車軸）速度を演算することができ、正確なスリップ率の演算も実現する。すなわち、トリガー信号の発生前は、車輪速度＝車体速度となるので、トリガー信号の発生直前の車輪速度を基準車体速度として、トリガー信号発生後に積分した前後方向加速度を基準車体速度より差し引くことで、正確な車軸速度 V_t を求めることができる。

【0049】

また、車両のコーナリング時には、各車輪の方向や速度が異なるので、各車輪のより正確なスリップ率を求める必要が出てくる。そのためには、各軸受ユニットに加速度センサを内蔵すると良い。そうすれば、上記単なる車軸速度 (V_t) ではなく、各車輪の正確な基準車輪速度 (V_T) が求まり、各車輪のスリップ率 λ_T を以下の式で求めることができる。

$$\lambda_T = (V_T - V_W) / V_T$$

【0050】

図6は、第2の実施の形態にかかる車輪支持用転がり軸受ユニットの断面図である。本実施の形態において、図1の実施の形態に対し、異なる部分を主として説明し、同様な構成に関しては同じ符号を付することで説明を省略する。外輪1の図6で右端には、カバー部材104が変位測定素子27aから出力された信号に基づき決定される現在の車輪回転速度取り付けられている。又、ハブ2の図6で右端には、周方向に等間隔に開口を設けた円盤状のセンサロータ129bが取り付けられている。

【0051】

カバー部材104には、センサロータ129bの開口に対向するようにして、回転速度センサ127aが取り付けられている。又、カバー部材104には、加速度センサ163が取り付けられている。車輪の回転速度を検出しそれに応じた信号を出力する回転速度センサ127aと、車両の進行方向の加速度を検出しそれに応じた信号を出力する加速度センサ163は、図6では不図示の制御器に接続されている。

【0052】

本実施の形態に車輪支持用転がり軸受ユニットを用いることで、不図示の制御器にて、図5に示す制御動作が実行される。

【0053】

図7は、図1、6に示す車輪支持用転がり軸受ユニットを用いて制御器で実行される車両の制御方法を実行するためのフローチャート図である。図7のステップS201で、制御器60は、車両の制動に応じて出力される信号をリアルタイムで受信し、ステップS202で、いずれの出力信号が閾値（実験等により予め定められ記憶された値）を超えたか否か監視する。例えば本実施の形態の車輪支持用転がり軸受ユニットを搭載した車両において、ブレーキ装置Bを作動させたような場合、進行方向の加速度を検出する加速度センサ63（163）からの出力信号が閾値を超えるので、制御器60は、制動する車両に所定の姿勢変化が生じたと判断して、ステップS203でトリガー信号を発生する。

【0054】

制御器60は、トリガー信号発生時又はその直前から、変位測定素子27aから出力された信号に基づき決定される現在の車輪速度と、車輪の半径とから決定される車軸速度 $V\omega$ を微分しつづけ、微分値 $A\omega$ をえる（ステップS204）。更に加速度センサ63（163）からの出力信号から、車軸の加速度 A_t を決定し（ステップS205）、微分値 $A\omega$ を加速度 A_t とを元に各車輪の制動制御を実現する（ステップS206）。

【0055】

このようにして、ABSやTCSの制御をより高精度に行うことができる。以上のスリップ率の演算は、ステップS207で、車両制動制御が不要と判断される（たとえば減速の場合、車両速度がゼロとなる）まで実行される。その後、ステップS208で、内蔵メモリに記憶された基準速度はリセットされる。

【0056】

図8は、第3の実施の形態にかかるナックルユニット及び車輪ユニットの断面図である。本実施の形態においては、図1の実施の形態にかかる軸受ユニットを含んでなるので、それに対して異なる部分を主として説明し、同様な構成に関しては同じ符号を付することで説明を省略する。

【0057】

図8において、転がり軸受ユニット100のハブ2の左方には、スタッド22を介して車輪のホイール102が取り付けられ、ホイールナット101を用いて締結されている。転がり軸受ユニット100の外輪1は、ナックル部材103と共に静止部材を構成し、不図示の車体に対して取り付けられた不図示の懸架装置を支持するナックル部材103の内周面に嵌合されている。ナックル部材103に、車両の進行方向及び車両の上下左右方向の加速度を検出する加速度センサ163と、回転速度センサ129bが取り付けられている。回転速度センサ129bは、転がり軸受ユニット100のハブ2に嵌合する内輪2A（ハブ2と内輪2Aとで回転部材を構成）に取り付けられたセンサロータ129bに対向し、ハブ2すなわち車輪の回転数を検出するようになっている。尚、回転速度センサ129bを有する転がり軸受ユニット100、加速度センサ163を有するナックル部材（すなわちナックルユニット）103、及び車輪により車輪ユニット110を構成する。

【0058】

本実施の形態のナックル部材163及び車輪ユニット110を用いることで、図5、7に示す車両の制御方法を実行できる。

【0059】

以上、本発明を実施例を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。加速度センサは、車体に取り付けても良い。

【0060】**【発明の効果】**

第1の本発明の車輪ユニットによれば、以上の構成を有するので、例えば車両の制動に応じてトリガー信号が発生すると、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、得られたスリップ率

を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができるこ^トから、車両の制動をより高精度に行うことができる。

【0061】

第2の本発明の車両によれば、以上の構成を有するので、例えば車両の制動に応じてトリガー信号が発生すると、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0062】

第3の本発明の転がりユニットによれば、以上の構成を有するので、例えば車両の制動に応じてトリガー信号が発生すると、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0063】

第4の本発明の車両によれば、以上の構成を有するので、前記トリガー信号発生装置が、車両の制動に応じてトリガー信号が発生すると、前記記憶装置が、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記積分装置が、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、

前記演算装置が、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、前記制動制御装置が、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0064】

第5の本発明の車両によれば、以上の構成を有するので、前記トリガー信号発生装置が、車両の制動に応じてトリガー信号が発生すると、前記記憶装置が、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記積分装置が、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、前記演算装置が、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、前記制動制御装置が、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0065】

第6の本発明の車両によれば、以上の構成を有するので、前記トリガー信号発生装置が、車両の制動に応じてトリガー信号が発生すると、前記記憶装置が、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記積分装置が、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、前記演算装置が、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、前記制動制御装置が、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができることから、車両の制動をより高精度に行うことができる。

【0066】

第7の本発明の車両の制御方法によれば、以上の構成を有するので、例えば車

両の制動に応じてトリガー信号が発生すると、前記トリガー信号の発生時又はその前に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を車軸の速度として記憶し、前記検出時より、前記加速度センサから出力される加速度信号に基づく加速度を積分し、追加分の車軸速度を求め、前記追加分の車軸速度と、新たに検出された車輪の周速とからスリップ率を演算し、得られたスリップ率を基に制動を制御することができるため、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができるところから、車両の制動をより高精度に行うことができる。 第1の本発明の転がりユニットによれば、車両の制動に応じて発生するトリガー信号の発生時又はその直前或いはその直後である制動基準時に検出した前記回転速度センサからの信号に応じて、前記車輪の周速を記憶し、且つ前記制動基準時より前記加速度センサより出力される加速度信号に基づく加速度を積分し、前記積分した加速度と、記憶した前記車輪の周速とを比較して、前記車輪のスリップ率を求めることを可能とするので、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率を求めることができるため、車両の制動をより高精度に行うことができる。

【図面の簡単な説明】

【図1】

第1の実施の形態にかかる車輪支持用転がり軸受ユニットの断面図である。

【図2】

図1の構成をII-II線で切断して矢印方向に見た図である。

【図3】

図1の構成の矢印IIIで示す部位の拡大図である。

【図4】

変位測定素子の出力変化を示す図である。

【図5】

本実施の形態の制御器60にて行われる車両の制御方法を実行するためのフローチャート図である。

【図6】

第2の実施の形態にかかる車輪支持用転がり軸受ユニットの断面図である。

【図7】

本実施の形態の制御器60にて行われる別な車両の制御方法を実行するためのフローチャート図である。

【図8】

第3の実施の形態にかかるナックルユニット及び車輪ユニットの断面図である。

【図9】

従来技術にかかる車輪支持用軸受ユニットの断面図である。

【図10】

従来技術にかかる車輪支持用軸受ユニットの断面図である。

【符号の説明】

- 1 外輪
- 2 ハブ
- 4、104 カバー
- 5 回転速度検出センサユニット
- 6 外輪軌道
- 7 ナット
- 8 内輪
- 9 内輪軌道
- 10 転動体
- 11 保持器
- 12 フランジ
- 13 取付部
- 14 シールリング
- 15、51 被検出用円筒部
- 16 支持用円筒部
- 17 透孔
- 18 嵌合筒部

- 19 塞ぎ板部
- 20 通孔
- 21 コネクタ
- 22 スタッド
- 23 取付孔
- 24 変位センサ
- 25 センサリング
- 26 変位センサユニット
- 27 a、27 b 変位測定素子
- 28 ホルダ
- 29 被検出リング
- 30 円筒部
- 31 折れ曲がり部
- 32 ハーネス
- 60 制御器
- 61、62、63、163 加速度センサ

【書類名】

図面

【図1】

【図 2】

【図 3】

【図4】

【図5】

【図6】

【図7】

【図 8】

【図9】

【図10】

【書類名】 要約書

【要約】

【課題】

車輪のスリップ率を精度良く求めることができる転がり軸受ユニット、ナックルユニット、車輪ユニット、車両及び車両の制御方法を提供する。

【解決手段】

車両の制動に応じて発生するトリガー信号の発生時又はその直前或いはその直後である制動基準時に検出した回転速度センサ27aからの信号に応じて、車輪の周速を記憶し、且つ制動基準時より加速度センサ63より出力される加速度信号に基づく加速度を積分し、積分した加速度と、記憶した車輪の周速とを比較して、車輪のスリップ率を求め、車両のブレーキ装置Bを制御するので、車輪の回転速度のみからスリップ率を推定していた従来技術に比べ、より高精度にスリップ率求めることができるため、車両の制動をより高精度に行うことができる。

【選択図】 図1

特願 2002-338366

出願人履歴情報

識別番号

[000004204]

1. 変更年月日

[変更理由]

1990年 8月29日

新規登録

住 所

東京都品川区大崎1丁目6番3号

氏 名

日本精工株式会社

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.