Parity violation in atomic and molecular physics

Pierre Bataille and David Rey under the supervision of Benoît Darquié February 6, 2018

M2 LuMI 2017-2018

Table of contents

- 1. Introduction
- 2. The weak interaction: the interaction which violates parity
- 3. Measuring parity non-conservation in neutral atoms
- 4. Motivations
- 5. Measurement of parity non-conservation and an anapole moment in cesium

Introduction

 \bullet Conservation of energy \Leftrightarrow Invariance with respect to time

- Conservation of energy ⇔ Invariance with respect to time
- \bullet Conservation of momentum \Leftrightarrow Invariance by translation

- Conservation of energy ⇔ Invariance with respect to time
- Conservation of momentum ⇔ Invariance by translation
- ullet Conservation of angular momentum \Leftrightarrow Invariance by rotation

- Conservation of energy ⇔ Invariance with respect to time
- Conservation of momentum

 ⇔ Invariance by translation
- Conservation of angular momentum ⇔ Invariance by rotation
- Conservation of parity (P) ⇔ Symmetry of reflexion

- Conservation of energy ⇔ Invariance with respect to time
- Conservation of momentum ⇔ Invariance by translation
- Conservation of angular momentum ⇔ Invariance by rotation
- Conservation of parity (P) ⇔ Symmetry of reflexion
- Conservation of charge conjugaison (C)
 ⇔ Change from particle to antiparticle

- Conservation of energy ⇔ Invariance with respect to time
- Conservation of momentum ⇔ Invariance by translation
- Conservation of angular momentum ⇔ Invariance by rotation
- Conservation of parity (P) ⇔ Symmetry of reflexion
- Conservation of charge conjugaison (C)
 ⇔ Change from particle to antiparticle
- Conservation by time reversal $(T) \Leftrightarrow$ Change of the time t by -t

The weak interaction: the

interaction which violates parity

Parity non-conservation

Parity violation in the β -decay of the cobalt 60

$$Co^{60} \to Ni^{60} + e^- + \nu + \bar{\nu}$$
 (1)

Intermediate vector bosons

- W^+ : charge +e
- W^- : charge -e
- Z^0 : neutral particle

We will focus on **neutral current weak interactions**, mediated by Z^0 .

atoms

Measuring parity

non-conservation in neutral

Optical activity of an atomic gas

PNC stems from:

• the coupling between nucleons and electrons

PNC stems from:

- the coupling between nucleons and electrons
- the coupling between electrons

PNC stems from:

- the coupling between nucleons and electrons
- the coupling between electrons

PNC stems from:

- ullet the coupling between nucleons and electrons $\propto Z^3$
- the coupling between electrons

The anapole moment

Figure 2: The fields generated by the current around a toroid

Motivations

Explaining biological homochirality

Testing the standard model

non-conservation and an anapole moment in cesium

Measurement of parity

Figure 3: The energy level diagram of cesium

Principle

Experiment