Álgebra Linear e Aplicações - Lista 6

Entregar dia 27 de Junho

1. (5 pts) Encontra a reflexão de Householder $H = I - 2zz^T$ tal que HAH^{-1} é tridiagonal, com

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & 0 \\ 4 & 0 & 0 \end{bmatrix}.$$

2. Considera a matriz

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix},$$

e o vetor $v = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$.

- (a) (3 pts) Calcula uma iteração do método das potências começando em \boldsymbol{v}
- (b) (3 pts) Calcula uma iteração do método das potências inversas começando em v.
- (c) (10 pts) Qual é o fator de convergência de cada um dos métodos?
- 3. Considera a norma $||A||_{op} = \max_{x \neq 0} \frac{||Ax||}{||x||}$.
 - (a) (8 pts) Mostra que para quaisquer matriz $A \in \mathbb{R}^{m \times n}$ e vetor $x \in \mathbb{R}^n$, $||Ax||_{op} \le ||A||_{op} ||x||_{op}$.
 - (b) (8 pts) Mostra que $||A||_{op} = \sigma_1(A)$, onde $\sigma_1(A) \ge \cdots \ge \sigma_n(A)$ são os valores singulares de A.
 - (c) (4 pts) Mostra que $||A||_{op} = ||A^T||_{op}$.
 - (d) (8 pts) Mostra que para quaisquer matrizes $A, B \in \mathbb{R}^{m \times n}$, $||A + B||_{op} \le ||A||_{op} + ||B||_{op}$.
 - (e) (8 pts) Mostra que para quaisquer matrizes $A \in \mathbb{R}^{m \times n}$ e $B \in \mathbb{R}^{n \times p}$, $||AB||_{op} \le ||A||_{op} ||B||_{op}$.
 - (f) (12 pts) Mostra que se A é quadrada, então $||A||_{op} \ge \max_k |\lambda_k(A)|$.
- 4. (4 pts) Prova que o número de condição $||A||_{op}||A^{-1}||_{op}$ é maior ou igual a 1.
- 5. Considera as iterações $x_{k+1} = S^{-1}(Tx_k + b)$, onde S e T são matrizes $n \times n$, e define $x_* = (S-T)^{-1}b$, e os vectores de erro $e_k = x_k x_*$.
 - (a) (2 pts) Mostra que $e_{k+1} = S^{-1}Te_k$
 - (b) (5 pts) Mostra que $||e_k|| \le ||S^{-1}T||_{op}^k ||e_0||$ e que as iterações $x_{k+1} = S^{-1}(Tx_k+b)$ convergem para x_* qualquer que seja o ponto inicial x_0 se $||S^{-1}T||_{op} < 1$.

- (c) (8 pts) Para uma matriz quadrada M, define $\rho(M) = \max_k |\lambda_k(M)|$. Dá um exemplo duma matriz quadrada M tal que $\rho(M) < 1 < ||M||_{op}$, e de um vetor e_0 tal que $||Me_0|| > ||e_0||$. (Isto implica que existem S e T e e_0 tais que $\rho(S^{-1}T) < 1$ mas $||e_1|| \nleq ||e_0||$)
- (d) (12 pts) Mostra que se $S^{-1}T$ é diagonalizável, existe uma constante c, que depende só de $S^{-1}T$, tal que

$$||e_k|| \le c\rho(S^{-1}T)^k ||e_0||$$

Mostra também que as iterações convergem se $\rho(S^{-1}T) < 1$.

(*) (opcional) Mostra que se $\rho(S^{-1}T) < 1$ então as iterações convergem (envolve a forma de Jordan no caso geral). Qual é o fator de convergência nesse caso?