Foundations of Machine Learning — Homework Assignment 3

Anirudhan J Rajagopalan N18824115 ajr619

December 09, 2015

A. Boosting-type Algorithm

1. Bound of $1_{u<0}$ Proof of convexity and differentiability

Given: $\phi_p(u) = \max((1+u)^p, 0)$

To prove: 1. Function $\phi_p(u)$ is convex and differentiable And 2. $\forall u \in \mathbb{R}$ and $p > 1, 1_{u \le 0} \le \phi_p(-u)$

Proof of $\forall u \in \mathbb{R}$ and $p > 1, 1_{u \le 0} \le \phi_p(-u)$ There are three cases here:

When u = 0

$$1_{u \le 0} = 1$$

$$\phi_p(-u) = \max((1-0)^p, 0) = 1 = 1_{u \le 0}$$

When u < 0

$$\begin{aligned} 1_{u \leq 0} &= 1 \\ \phi_p(-u) &= \max((1-u)^p, 0) \\ &= \max((1+u)^p, 0) \text{Since u is negative, -u is positive} \\ &> 1 \\ &> 1_{u \leq 0} \end{aligned}$$

When u > 0

$$1_{u \le 0} = 0$$

$$\phi_p(-u) = \max((1 - u)^p, 0)$$

$$= \begin{cases} 0, & \text{if p is odd} \\ (1 - u)^p, & \text{if p is positive} \end{cases}$$

$$\ge 0 \quad \forall \quad \mathbb{R} \ge 1_{u \le 0}$$

Hence proved

Proof of Convexity and Differentiability: The function can be written as a piecewise function based on the value of p:

When p is even (2 and more)

$$\phi_p\left(x\right) = \left(1 + u\right)^p$$

When p is odd (1 and more) the

$$\phi_p(x) = \begin{cases} 0, & \text{if } u \le -1\\ (1+u)^p, & \text{otherwise} \end{cases}$$

C. Randomized Halving

1. Psuedo code

Algorithm 1 Randomized Halving

```
1: H_1 \leftarrow H
 2: for t \leftarrow 1 to T do
              RECEIVE(x_t)
             r_t \leftarrow \frac{\sum_{i:y_{t,i}=1} 1}{|H_t|} \\ p_t \leftarrow 1
 5:
             if r_t \leq \frac{3}{4} then
 6:
                  p_t \leftarrow \left[\frac{1}{2}\log_2\frac{1}{1-r_*}\right]
 7:
              \hat{y_t} \leftarrow GetRandomNumberWithProbability([1, 0], [p_t, 1 - p_t])
              RECEIVE(y_t)
 9:
             if \hat{y_t} \neq y_t then
10:
       \begin{array}{c} H_{t+1} \leftarrow \{c \in H_t : c(x_t) = y_t\} \\ \mathbf{return} \ \ H_{T+1} \end{array}
11:
```

2. Prove $\forall t \geq 1, E[\mu] \leq \frac{\phi_t - \phi_{t+1}}{2}$

Given: Potential function: $\phi_t = \log_2 | H_t |$ and $\mu_t = 1_{y_t \neq \hat{y_t}}$

Proof:

We are only considering the case when the predicted value \hat{y}_t is not equal to the received value y_t . The value of expectation can be written as

$$E[\mu_t] = p_t * 1 + (1 - p_t) * 0$$
$$= p_t * 1$$

The probability of predicting 1 by the randomized algorithm is the probability of making a mistake since we are only considering the cases in which we make mistakes $(\mu_t = 1_{y_t \neq \hat{y_t}})$

Therefore,

$$\begin{split} E[\mu_t] = & p_t \\ = & [\frac{1}{2} \log_2 \frac{1}{1 - r_t}] \mathbf{1}_{r_t \le \frac{3}{4}} + \mathbf{1}_{r_t > \frac{3}{4}} \\ \leq & [\frac{1}{2} \log_2 \frac{1}{1 - r_t}] \end{split}$$

Since, the Expectation will be 1 when $r_t > \frac{3}{4}$ which corresponds to the maximum expectation here, we can upper bound the expectation by using $r_t \leq \frac{3}{4}$ as $\left[\frac{1}{2}\log_2\frac{1}{1-r_t}\right]$ equals 1 when $r_t = \frac{3}{4}$

Let E_1, E_0, E_t denote the number of experts predicting 1, 0 and the total number of experts in a round t.

$$\begin{split} E[\mu_t] \leq & [\frac{1}{2} \log_2 \frac{1}{1 - r_t}] \\ = & [\frac{\log_2 \frac{1}{1 - r_t}}{2}] \\ = & [\frac{\log_2 \frac{1}{1 - r_t}}{2}] \\ = & [\frac{\log_2 \frac{1}{1 - \frac{|E_1|}{|H_t|}}}{2}] \\ = & [\frac{\log_2 \frac{|H_t|}{|H_t| - |E_1|}}{2}] \\ = & [\frac{\log_2 \frac{|H_t|}{|E_0|}}{2}] \\ = & [\frac{\log_2 |H_t| - \log_2 |E_0|}{2}] \\ = & [\frac{\log_2 |H_t| - \log_2 |H_{t+1}|}{2}] \\ = & [\frac{\phi_t - \phi_{t+1}}{2}] \\ \therefore E[\mu_t] \leq & \frac{\phi_t - \phi_{t+1}}{2} \end{split}$$

3. Expected number of mistakes.

Given: N be the total number of experts at the beginning of the iterations (denoted by H_1). Since we are considering a relizable scenario at the end of the algorithm the number of experts should be at least one. So $H_T = 1$.

To Prove: The expected number of mistakes made by Randomized Halving is at most $\frac{1}{2}\log_2 N$

Proof:

Lets consider the total expectation of mistakes of the Randomized Halving

algorithm over T iterations.

$$E[\mu_T] \leq \sum_{t=1}^{T} \frac{\phi_t - \phi_{t+1}}{2}$$

$$\leq \frac{(\phi_{H_1} - \phi_{H_2}) + (\phi_{H_2} - \phi_{H_3}) \cdots (\phi_{H_{T-2}} - \phi_{H_{T-1}}) + (\phi_{H_{T-1}} - \phi_{H_T})}{2}$$

$$\leq \frac{\phi_{H_1} - \phi_{H_T}}{2}$$

$$\leq \frac{\phi_N - \phi_T}{2}$$

$$\leq \frac{\phi_N}{2}$$

$$\leq \frac{1}{2} \log_2 N$$

Hence proved.

Here $\phi_T = 0$ because the number of experts at line T is 1. Therefore, log of T will be zero.

4. [Bonus Question]

As we have seen in the previous answer, the mistakes made by the randomized algorithm is bounded by $\frac{1}{2}\log_2 N$. This upper bound is dependent only on the number of initial experts, N. Therefore any randomized algorithm that is dependent on the opinion of the experts to generate its predictions will have similar upper bound of $\lfloor \frac{1}{2}\log_2 N \rfloor$. The floor function is used as mistakes are natural numbers.