Kawasaki Quantum Summer Camp 2025

量子ゲート基礎 IBM Quantum Composer

Jul 30, 2025

沼田祈史 Kifumi Numata IBM Quantum

どちらか

量子コンピューターの 量子ビット

) ₂ 1

両方

測定すると表か裏にバシッと決まる

いつも使っている コンピューターのビット

どちらか

量子コンピューターの 量子ビット

$$\alpha \times |0\rangle + \beta \times |1\rangle$$

0と1の「重ね合わせ」

量子コンピューターの計算方法

Xゲート

Hゲート

.

Hゲート

量子コンピューターの計算方法

ハンズオン: IBM Quantum Composer

(1) IBM Quantum にログインします。URL:

https://quantum.ibm.com/

(2) 中央下の方の「IBM Quantum Composer」を クリック。

(3) ポップアップウィンドウは「x」をクリックして、閉じます。

(4) この画面になったら準備完了です。

ハンズオン: IBM Quantum Composer

https://quantum.cloud.ibm.com/composer

短縮URL: ibm.biz/cmpsr25

ハンズオンの資料

URL: ibm.biz/kwskgit

「day2」フォルダー

1量子ビット回路

マウスでq[1]をクリックするとゴミ箱マークが出てくるので、 クリックして消します。

q[0]だけにして、1量子ビット回路の準備をします。

1量子ビット回路

右側には、Qiskitのコードが自動生成されます。

1. Xゲート(NOTゲート)

図の回路を作ってみてください。 下に表示される棒グラフの変化を確認しましょう。

1-3) q[0] + +

左下のグラフは青棒の 「Statevector」表示に してください。

初期状態は 0>

棒グラフ (Statevector 表示) は 量子ビットの状態

$$\alpha \times |0\rangle + \beta \times |1\rangle$$

の α, β (確率振幅)です。

$$|0>=1\times|0>+0\times|1>$$

$$|1> = 0 \times |0> + 1 \times |1>$$

量子コンピューターの計算方法

重ね合わせをつくる

置いたゲートを取り除く

File Edit View Left alignment Inspect (Ē 뀬 \gg ゲートを選んで RC3X 点線で囲み、 ゴミ箱マークを

2. Hゲート

図の回路を作ってみてください。下に表示される棒グラフの変化を確認しましょう。

2. Hゲート

図の回路を作ってみてください。下に表示される棒グラフの変化を確認しましょう。

量子コンピューターの計算方法

$$|0\rangle \leftarrow H \rightarrow \sqrt{\frac{1}{2}}|0\rangle + \sqrt{\frac{1}{2}}|1\rangle$$

$$|1\rangle \leftarrow H \rightarrow \sqrt{\frac{1}{2}}|0\rangle - \sqrt{\frac{1}{2}}|1\rangle$$

ブロッホ球

量子コンピューターの計算方法

3. Zゲート

図の回路を作ってみてください。下に表示される棒グラフの変化を確認しましょう。

量子コンピューターの計算方法

ブロッホ球

4. 量子重ね合わせ

q[0]をクリックして、さらに「+」マークをクリックして、2量子ビットの回路を 準備します。

図の回路を作ってみてください。下に表示される棒グラフの変化を確認しましょう。

4-1)

さらにq[1]をクリックして、さらに「+」マークをクリックして、3量子ビット、4量子ビット、5量子ビットの時の重ね合わせ状態を確認します。

量子ビット数(n)が増えるにつれて、量子状態が倍々に $(2^n$ 個に)増えていくことがわかります。

2量子ビット・2古典ビットの状態を作る

q[0]をクリックして、さらに「ゴミ箱」マークをクリック、を繰り返して、2量子ビットの回路を準備します。

次に、c4をクリックして、「-」マークをクリックするを2回繰り返して、2古典 ビットにします。

5. CNOTゲート(制御Xゲート)

制御ビットが|1>のときのみ、目標ビットを反転(NOT)するゲートです。

入力		出力	
目標 ビット	制御 ビット	目標 ビット	制御 ビット
0	0	0	0
1	0	1	0
0	1	1	1
1	1	0	1

量子重ね合わせ

量子もつれ (エンタングルメント)

CNOTゲートは、 エンタングルメントを作ります。

量子重ね合わせ

量子もつれ (エンタングルメント)

••• 25%

演習問題

2量子ビットのエンタングル状態を作ってみましょう。 答えは一つではないので、どんな作り方でもOKです。

(1)
$$rac{1}{\sqrt{2}}(\ket{00}-\ket{11})$$

(2)
$$rac{1}{\sqrt{2}}(\ket{01}+\ket{10})$$

(3)
$$\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$$

