一九八七年考研数学试卷三解答

- 一、填空题(本题满分10分,每小题2分)
- **1.** 设 $y = \ln(1 + ax)$, 其中 a 为非零常数,则 $y' = _____$, $y'' = _____$.

M.
$$y' = \frac{a}{1+ax}$$
, $y'' = -\frac{a^2}{(1+ax)^2}$.

- **2.** 曲线 $y = \arctan x$ 在横坐标为 1 点处的切线方程是 ______; 法线方程是 ______.
- **解.** 切线方程是 $y = \frac{1}{2}x + \frac{\pi 2}{4}$; 法线方程是 $y = -2x + \frac{\pi + 8}{4}$.
- **3**. 积分中值定理的条件是 _______,结论是 _______.
- **解.** f(x) 在闭区间 [a,b] 上连续;存在 $\xi \in [a,b]$,使得 $\int_a^b f(x) dx = f(\xi)(b-a)$.
- $4. \lim_{n\to\infty} \left(\frac{n-2}{n+1}\right)^n = \underline{\qquad}.$
- 解. 极限等于 e⁻³.
- **5.** $\int f'(x) dx = \underline{\qquad}$; $\int_a^b f'(2x) dx = \underline{\qquad}$.
- **M**. f(x)+C; $\frac{1}{2}f(2b)-\frac{1}{2}f(2a)$.
- 二、(本题满分 6 分) 求极限 $\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$.
- **解**. 由洛必达法则和等价无穷小量代换,求得极限等于 $\frac{1}{2}$.

AP.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin t}{1 - \cos t}$$
; $\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -\frac{1}{5(1 - \cos t)^2}$.

四、(本题满分 8 分) 计算定积分 $\int_0^1 x \arcsin x \, dx$. 解. 由分部积分法和换元积分法, 求得

$$\int_0^1 x \arcsin x \, dx = \frac{\pi}{4} - \frac{1}{2} \int_0^1 \frac{x^2}{\sqrt{1 - x^2}} \, dx = \frac{\pi}{4} - \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{8}.$$

五、(本题满分8分)

设 D 是曲线 $y = \sin x + 1$ 与三条直线 x = 0, $x = \pi$, y = 0 围成的曲边梯形. 求 D 绕 x 轴旋转一周所生成的旋转体的体积 V.

Proof.
$$V = \pi \int_0^{\pi} (\sin x + 1)^2 dx = \frac{\pi}{4} + \frac{3\pi^2}{2}.$$

六、证明题(本题满分10分,每小题5分)

- **1.** 若 f(x) 在 (a,b) 内可导, 且导数 f'(x) 恒大于零, 证明 f(x) 在 (a,b) 内单调增加.
- **解**. 任取 $x_1, x_2 \in (a, b)$, $x_2 > x_1$, 则由拉格朗日中值定理,存在 $\xi \in (x_1, x_2) \subset (a, b)$, 使得 $f(x_2) f(x_1) = f'(\xi)(x_2 x_1) > 0$. 从而 $f(x_2) > f(x_1)$, 即 f(x) 在 (a, b) 内单调增加.
- **2.** 若 g(x) 在 x = c 处二阶导数存在,且 g'(c) = 0, g''(c) < 0. 证明 g(c) 为 g(x) 的一个极大值.
- 解. 由导数的定义, 我们有

$$g''(c) = \lim_{x \to c} \frac{g'(x) - g'(c)}{x - c} = \lim_{x \to c} \frac{g'(x)}{x - c} < 0.$$

由极限的局部保号性,存在 c 的某个去心邻域,使得 $\frac{g'(x)}{x-c} < 0$. 则当 x < c 时 g'(x) > 0,函数单调增加;当 x > c 时,g'(x) < 0.函数单调减少.因此 g(c) 为 g(x) 的一个极大值.

七、(本题满分10分)

计算不定积分
$$\int \frac{\mathrm{d}x}{a^2 \sin^2 x + b^2 \cos^2 x}$$
 (其中 a, b 为不全为零的非负数).

解. 令 $u = \tan x$,则原式 = $\int \frac{\mathrm{d}u}{a^2u^2 + b^2}$. 下面分情形讨论:

(I) 当
$$ab \neq 0$$
 时,原式 = $\frac{1}{ab} \arctan(\frac{a}{b}x) + C$.

(II)
$$\stackrel{.}{=} a = 0, b \neq 0$$
 时,原式 = $\frac{1}{h^2} \tan x + C$.

(III)
$$\stackrel{.}{=} a \neq 0$$
, $b = 0$ 时,原式 $= -\frac{1}{a^2} \cot x + C$.

八、计算题(本题满分 15 分)

1. (本题满分7分) 求微分方程 $x \frac{dy}{dx} = x - y$ 满足条件 $y |_{x=\sqrt{2}} = 0$ 的解.

解. 通解为 $y = \frac{1}{r} \left(\frac{1}{2} x^2 + C \right)$, 满足初始条件的特解为 $y = \frac{x}{2} - \frac{1}{r}$.

2. (本题满分8分) 求微分方程 $v'' + 2v' + v = xe^x$ 的通解.

解. 原方程的通解为 $y = (C_1 + C_2 x)e^{-2x} + \frac{1}{4}(x-1)e^x$.

九、选择题(本题满分16分,每小题4分)

- **1.** $f(x) = |x \sin x| e^{\cos x}, -\infty < x < +\infty$ $\not\equiv \cdots$
- (A) 有界函数. (B) 单调函数. (C) 周期函数. (D) 偶函数.

解. 应选 (D).

- - (A) 当 $x \to \infty$ 时为无穷大. (B) 当 $x \to \infty$ 时有极限.

 - (C) 在 $(-\infty, +\infty)$ 内有界. (D) 在 $(-\infty, +\infty)$ 内无界.

解. 应选 (D).

- 解. 应选 (B).
- 4. 同试卷一第五[2]题.
- 十、(本题满分10分)

在第一象限内,求曲线 $y = -x^2 + 1$ 上的一点,使该点处切线与所给曲线及两 坐标轴围成的面积为最小, 并求此最小面积.

解. 设切点的坐标为 $(a,1-a^2)$,则切线方程为 $y=-2ax+a^2+1$,所围成的面积

$$S(a) = \frac{1}{2}(a^2 + 1)\frac{a^2 + 1}{2a} - \int_0^1 (-x^2 + 1) dx = \frac{a^3}{4} + \frac{a}{2} + \frac{1}{4a} - \frac{2}{3}.$$

令 S'(a)=0,得驻点 $a=\frac{\sqrt{3}}{3}$. 由于 $S''\left(\frac{\sqrt{3}}{3}\right)>0$,故所求点的坐标为 $\left(\frac{\sqrt{3}}{3},\frac{2}{3}\right)$,面 积的最小值为 $\frac{4}{9}\sqrt{3}-\frac{2}{3}$.

一九八八年考研数学试卷三解答

一、填空题(本题满分20分,每小题4分)

1. 若
$$f(x) = \begin{cases} e^2(\sin x + \cos x), & x > 0 \\ 2x + a, & x \le 0 \end{cases}$$
 是 $(-\infty, +\infty)$ 上的连续函数,则 $a =$ _____.

解. a=1.

- 2. 同试卷一第二[1]题.
- 3. 同试卷一第二[3]题.

4.
$$\lim_{x \to +0} \left(\frac{1}{\sqrt{x}} \right)^{\tan x} = \underline{\hspace{1cm}}.$$

解. 应填 1.

5.
$$\int_0^4 e^{\sqrt{x}} dx =$$
_____.

解. 应填 2(e²+1).

二、选择题(本题满分20分,每小题4分)

1. $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 + 6x + 1$ 的图形在点 (0,1) 处切线与 x 轴交点的坐标是 · · · () (B) (-1,0). (C) $(\frac{1}{6},0)$. (A) $\left(-\frac{1}{6}, 0\right)$. (D) (1,0).

解. 应选 (A).

- **2.** 若 f(x) 与 g(x) 在 $(-\infty, +\infty)$ 上皆可导,且 f(x) < g(x),则必有 · · · · · · · () (B) f'(x) < g'(x). (A) f(-x) > g(-x). (D) $\int_{a}^{x} f(t) dt < \int_{a}^{x} g(t) dt.$
 - (C) $\lim_{x \to x_0} f(x) < \lim_{x \to x_0} g(x)$.

解. 可导必定连续, 从而选(C).

- 3. 同试卷一第三[1]题.
- **4.** 曲线 $y = \sin^{3/2} x$ $(0 \le x \le \pi)$ 与 x 轴围成的图形绕 x 轴旋转所形成的旋转体体 (B) $\frac{4}{3}\pi$. (C) $\frac{2}{3}\pi^2$. (D) $\frac{2}{3}\pi$. (A) $\frac{4}{3}$.

解. 应选 (B).

5. 同试卷一第三[5]题.

三、计算题(本题满分15分,每小题5分)

- 1. 同试卷一第一[2]题.
- **2.** 已知 $y = 1 + xe^{xy}$, 求 $y'|_{x=0}$ 及 $y''|_{x=0}$.

M.
$$y'|_{x=0} = 1$$
, $y''|_{x=0} = 2$.

3. 求微分方程 $y' + \frac{1}{x}y = \frac{1}{x(x^2+1)}$ 的通解(一般解).

解. 通解为
$$y = \frac{1}{x}(\arctan x + C)$$
.

四、(本题满分12分)

作函数 $y = \frac{6}{x^2 - 2x + 4}$ 的图形,并填写下表.

单调增区间	
单调减区间	
极值点	
极值	
凹 (U) 区间	
凸(∩)区间	
拐点	
渐近线	

解. 所得数据如下表:

单调增区间	$(-\infty,1)$
单调减区间	$(1,+\infty)$
极值点	1
极值	2
凹 (U) 区间	$(-\infty,0)$ 及 $(2,+\infty)$
凸(∩)区间	(0,2)
拐点	$\left(0,\frac{3}{2}\right)$ 及 $\left(2,\frac{3}{2}\right)$
渐近线	y = 0

其图形如下:

五、(本题满分8分)

将长为a的铁丝切成两段,一段围成正方形,另一段围成圆形。问这两段铁丝各长为多少时,正方形与圆形的面积之和为最小?

解. 当圆的周长为 $x = \frac{\pi a}{4+\pi}$,正方形的周长为 $a-x = \frac{4a}{4+\pi}$ 时,面积之和最小...

六、(本题满分10分) 同试卷一第五题.

七、(本题满分 6 分) 设 $x \ge -1$, 求 $\int_{-1}^{x} (1-|t|) dt$.

解. 当 $-1 \le x < 0$ 时,积分等于 $\frac{1}{2}(1+x)^2$. 当 $x \ge 0$ 时,积分等于 $1 - \frac{1}{2}(1-x)^2$.

八、(本题满分6分)

设 f(x) 在 $(-\infty + \infty)$ 上有连续导数,且 $m \le f(x) \le M$.

(1)
$$\vec{x} \lim_{a \to +0} \frac{1}{4a^2} \int_{-a}^{a} [f(t+a) - f(t-a)] dt$$
.

(II) 证明
$$\left| \frac{1}{2a} \int_{-a}^{a} f(t) dt - f(x) \right| \leq M - m \quad (a > 0).$$

解.(I)可以用积分中值定理和微分中值定理.这里用洛必达法则直接计算:

原式 =
$$\lim_{a \to +0} \frac{1}{4a^2} \left[\int_0^{2a} f(u) du - \int_{-2a}^0 f(u) du \right]$$

= $\lim_{a \to +0} \frac{1}{8a} \left[2f(2a) - 2f(-2a) \right] = \lim_{a \to +0} \frac{1}{4a} \left[f(2a) - f(-2a) \right]$
= $\lim_{a \to +0} \frac{1}{4} \left[2f'(2a) + 2f'(-2a) \right] = f'(0)$.

(II) 可以分别估计两项. 这里利用积分的绝对值不等式来估计:

$$\left| \frac{1}{2a} \int_{-a}^{a} f(t) dt - f(x) \right| = \left| \frac{1}{2a} \int_{-a}^{a} [f(t) - f(x)] dt \right|$$

$$\leq \frac{1}{2a} \int_{-a}^{a} |f(t) - f(x)| dt \leq \frac{1}{2a} \int_{-a}^{a} (M - m) dt = M - m$$

一九八九年考研数学试卷三解答

- 一、填空题(本题满分15分,每小题3分)
- 1. $\lim_{x\to 0} x \cot 2x =$ _____.

解. 应填 $\frac{1}{2}$.

2.
$$\int_0^{\pi} t \sin t \, dt =$$
_____.

 \mathbf{M} . 应填 π .

- **3.** 曲线 $y = \int_0^x (t-1)(t-2) dt$ 在点 (0,0) 处的切线方程是_____.
- 解. 应填 y=2x.
- **解**. 用导数的定义计算,得到 f'(0) = n!.
- 5. 同试卷一第一[2]题.
- **6.** 设 $f(x) = \begin{cases} a + bx^2, x \le 0 \\ \frac{\sin bx}{x}, x > 0 \end{cases}$ 在 x = 0处连续,则常数 a = b 应满足的关系是______.
- **解.** 应填 a = b.
- **7.** 设 $\tan y = x + y$,则 $dy = _____$.
- 解. 应填 cot² y dx.
- 二、计算题(本题满分20分,每小题4分)
- **1.** 已知 $y = \arcsin e^{-\sqrt{x}}$, 求 y'.

$$\mathbf{\widetilde{H}}.\ \frac{-\mathrm{e}^{-\sqrt{x}}}{2\sqrt{x\left(1-\mathrm{e}^{-2\sqrt{x}}\right)}}.$$

2. 求
$$\int \frac{\mathrm{d}x}{x \ln^2 x}$$
.

解.
$$-\frac{1}{\ln x} + C$$
.

3. $\Re \lim_{x\to 0} (2\sin x + \cos x)^{\frac{1}{x}}$.		
解 . e ² .		
4. 已知 $\begin{cases} x = \ln(1+t^2), \\ y = \arctan t, \end{cases} $		
AP . $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2t}$, $\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -\frac{1+t^2}{4t^3}$.		
5. $\Box \exists f(2) = \frac{1}{2}, f'(2) = 0 \not \supset \int_0^2 f(x) dx = 1$	$, \vec{\mathcal{R}} \int_0^1 x^2 f''(2x) \mathrm{d}x$	
解 . 作换元 $t = 2x$,再由分部积分法,得到 $\int_0^1 x^2 f''(2x) dx = \frac{1}{8} \int_0^2 t^2 f''(t) dt = \frac{1}{8} \left[\left[t^2 f'(t) \right]_0^2 - \left[2t \right] \right]_0^2$,
三、选择题(本题满分18分,每小题3分	})	
1. 同试卷一第二[1]题.		
 2. 若 3a²-5b < 0,则方程 x⁵+2ax³+3b (A) 无实根. (C) 有三个不同实根. 	$x + 4c = 0 \cdots$ (B) 有唯一实根. (D) 有五个不同实相	
解. 应选 (B).		
3. 曲线 $y = \cos x$ $\left(-\frac{\pi}{2} \le x \le \frac{\pi}{2}\right)$ 与 x 轴的转体的体积为···································	f围成的图形,绕 <i>x</i> :	轴旋转一周所成的旋
转体的体积为···································	(C) $\frac{\pi^2}{2}$.	(D) π^2 .
解. 应选 (C).		
4. 设两函数 f(x) 及 g(x) 都在 x = a 处取得处		
(C) 不可能取极值.	(D) 是否取极值不能	上确定.
解 . 应选 (D).		
5. 微分方程 $y'' - y = e^x + 1$ 的一个特解应 (A) $ae^x + b$. (B) $axe^x + b$.		

解. 应选 (B).

- **6.** 设 f(x) 在 x = a 的某个邻域内有定义,则 f(x) 在 x = a 可导的一个充分条件
 - $(A) \lim_{h \to +\infty} h[f(a+\frac{1}{h})-f(a)] 存在. \qquad (B) \lim_{h \to 0} \frac{f(a+h)-f(a+h)}{h} 存在.$
 - (C) $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$ 存在. (D) $\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$ 存在.

解. 应选 (D).

- 四、(本题满分6分) 求微分方程 $xy' + (1-x)y = e^{2x}(0 < x < +\infty)$ 满足 y(1) = 0 的解.
- **解.** 原方程即 $y' + \frac{1-x}{x}y = \frac{e^{2x}}{x}$. $v(x) = \exp\left(\int \frac{1-x}{x} dx\right) = \frac{x}{e^x}$, 所以通解为 $y = \frac{1}{v(x)} \left(\int \frac{e^{2x}}{x} v(x) dx + C \right) = \frac{e^x}{x} \left(\int \frac{e^{2x}}{x} \frac{x}{e^x} dx + C \right) = \frac{e^x (e^x + C)}{x}.$ 代入初始条件, 得 C = -e, 因此特解为 $y = \frac{e^x(e^x - e)}{r}$.
- 五、(本题满分7分) 同试卷一第五题.
- 六、(本题满分7分) 同试卷一第六题.
- 七、(本题满分11分) 对函数 $y = \frac{x+1}{r^2}$, 填写下表:

单调减少区间	
单调增加区间	
极值点	
极值	
凹(U)区间	
凸(⋂)区间	
拐点	
渐近线	

解. 结果如下表:

单调减少区间	$(-\infty, -2), (0, +\infty)$
单调增加区间	(-2,0)
极值点	-2
极值	-1/4
凹(U)区间	$(-3,0), (0,+\infty)$
凸(∩)区间	$(-\infty, -3)$
拐点	(-3, -2/9)
渐近线	x = 0, y = 0

八、(本题满分10分)

设抛物线 $y = ax^2 + bx + c$ 过原点,当 $0 \le x \le 1$ 时 $y \ge 0$,又已知该抛物线与 x 轴及直线 x = 1 所围图形的面积为 $\frac{1}{3}$,试确定 a,b,c 使此图形绕 x 旋转一周 而成的旋转体的体积 V 最小.

M.
$$a = -\frac{5}{4}$$
, $b = \frac{3}{2}$, $c = 0$.

一九九〇年考研数学试卷三解答

一、填空题(本题满分15分,每小题3分)

1. 曲线
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$$
 上对应于点 $t = \frac{\pi}{6}$ 点处的法线方程是_____.

解. 应填 $y = \sqrt{3}x - 1$.

解. 应填
$$-\frac{1}{x^2}e^{\tan\frac{1}{x}}\left(\sec^2\frac{1}{x}\sin\frac{1}{x}+\cos\frac{1}{x}\right)$$
.

3.
$$\int_0^1 x \sqrt{1-x} \, dx = \underline{\hspace{1cm}}$$

解. 应填 $\frac{4}{15}$.

4. 下列两个积分的大小关系是:
$$\int_{-2}^{-1} e^{-x^3} dx$$
_____ $\int_{-2}^{-1} e^{x^3} dx$.

解. 应填 >.

- 5. 同试卷一第一[3] 题.
- 二、选择题(本题满分15分,每小题3分)

1. 已知
$$\lim_{x\to\infty} \left(\frac{x^2}{x+1} - ax - b\right) = 0$$
, 其中 a, b 是常数,则 · · · · · · · · · · · · ()

(A)
$$a = 1, b = 1$$
.

(B)
$$a = -1$$
 $h = 1$

(C)
$$a = 1, b = -1$$
.

(D)
$$a = -1, b = -1$$
.

解. 应选 (C).

解. 应选 (B).

- 3. 同试卷一第二[2]题.
- 4. 同试卷一第二[1]题.

(A) 连续点.

(B) 第一类间断点,

(C) 第二类间断点.

(D) 连续点或间断点不能由此确定.

解. 应选(B).

- 三、计算题(本题满分25分,每小题5分)
- **1.** 已知 $\lim_{x\to\infty} \left(\frac{x+a}{x-a}\right)^x = 9$,求常数 a.

解. $a = \ln 3$.

2. 求由方程 $2y-x=(x-y)\ln(x-y)$ 所确定的函数 y=y(x) 的微分 dy.

\mathbf{R}. $\mathbf{d}y = \frac{x}{2x - y} \, \mathbf{d}x$.

3. 求曲线 $y = \frac{1}{1+r^2}$ (x > 0) 的拐点.

解. $\left(\frac{1}{\sqrt{3}}, \frac{3}{4}\right)$.

4. 计算 $\int \frac{\ln x}{(1-x)^2} dx$.

解. 原式 = $\frac{\ln x}{1-x} + \ln \frac{|1-x|}{x} + C$.

- 5. 同试卷二第四[2]题.
- 四、(本题满分9分)

在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的第一象限部分上求一点 P,使该点处的切线、椭圆及两坐标轴所围图形面积为最小(其中 a > 0, b > 0).

M. $P\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$.

五、(本题满分9分)

证明: 当 x > 0 时,有不等式 $\arctan x + \frac{1}{x} > \frac{\pi}{2}$.

解. 令 $f(x) = \arctan x + \frac{1}{x} - \frac{\pi}{2}$,则当 x > 0 时 $f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} < 0$. 又 $\lim_{x \to +\infty} f(x) = 0$,故结论成立.

六、(本题满分9分)

设
$$f(x) = \int_1^x \frac{\ln t}{1+t} dt$$
, 其中 $x > 0$, 求 $f(x) + f\left(\frac{1}{x}\right)$.

AP.
$$f(x) + f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\ln t}{1+t} dt + \int_{1}^{x} \frac{\ln t}{t(1+t)} dt = \int_{1}^{x} \frac{\ln t}{t} dt = \frac{1}{2} \ln^{2} x.$$

七、(本题满分9分)

同试卷二第四[3]题.

八、(本题满分8分)

求微分方程 $y'' + 4y' + 4y = e^{ax}$ 之通解, 其中 a 为实数.

解.
$$a \neq -2$$
 时, $y = (C_1 + C_2 x)e^{-2x} + \frac{1}{(a+2)^2}e^{ax}$.

$$a = -2 \, \text{Fr}, \quad y = (C_1 + C_2 x) e^{-2x} + \frac{1}{2} x^2 e^{-2x}.$$

一九九一年考研数学试卷三解答

- 一、填空题(本题满分 15 分,每小题 3 分)
- **解**. 应填 $-\frac{\ln 3}{3x+1}$ dx.
- **2.** 曲线 $y = e^{-x^2}$ 的上凸区间是 .
- **解**. 应填 $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
- $\mathbf{3.} \int_{1}^{+\infty} \frac{\ln x}{x^2} \, \mathrm{d}x = \underline{\qquad}.$
- **解**. 不定积分等于 $-\frac{\ln x}{r} \frac{1}{r}$,故定积分等于 1.
- **4.** 质点以速度 $t \sin(t^2)$ 米/秒作直线运动,则从时刻 $t_1 = \sqrt{\frac{\pi}{2}}$ 秒到 $t_2 = \sqrt{\pi}$ 秒质点 所经过的路程等于米 .
- **解.** 应填 $\frac{1}{2}$.
- 5. $\lim_{x \to 0^+} \frac{1 e^{\frac{1}{x}}}{x + e^{\frac{1}{x}}} = \underline{\hspace{1cm}}$
- 解. 应填 -1.
- 二、选择题(本题满分 15 分,每小题 3 分)
- **1.** 若曲线 $y = x^2 + ax + b$ 和 $2y = -1 + xy^3$ 在点 (1,-1) 处相切,其中 a,b 是常数,
 - (A) a = 0, b = -2.

(B) a = 1, b = -3.

(C) a = -3, b = 1.

(D) a = -1, b = -1.

解. 应选 (D).

2. 设函数
$$f(x) = \begin{cases} x^2, & 0 \le x \le 1, \\ 2-x, & 1 < x \le 2. \end{cases}$$
 记 $F(x) = \int_0^x f(t) \, dt, 0 \le x \le 2, \quad \text{则} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ (A) $F(x) = \begin{cases} \frac{x^3}{3}, & 0 \le x \le 1; \\ \frac{1}{3} + 2x - \frac{x^2}{3}, & 1 < x \le 2. \end{cases}$ (B) $F(x) = \begin{cases} \frac{x^3}{3}, & 0 \le x \le 1; \\ -\frac{7}{6} + 2x - \frac{x^2}{2}, & 1 < x \le 2. \end{cases}$ (C) $F(x) = \begin{cases} \frac{x^3}{3}, & 0 \le x \le 1; \\ \frac{x^2}{3} + 2x - \frac{x^2}{2}, & 1 < x \le 2. \end{cases}$ (D) $F(x) = \begin{cases} \frac{x^3}{3}, & 0 \le x \le 1; \\ 2x - \frac{x^2}{2}, & 1 < x \le 2. \end{cases}$

(C)
$$F(x) = \begin{cases} \frac{x^3}{3}, & 0 \le x \le 1; \\ \frac{x^2}{3} + 2x - \frac{x^2}{2}, & 1 < x \le 2. \end{cases}$$
 (D) $F(x) = \begin{cases} \frac{x^3}{3}, & 0 \le x \le 1; \\ 2x - \frac{x^2}{2}, & 1 < x \le 2. \end{cases}$

解. 应选 (B).

3. 设函数 f(x) 在 $(-\infty, +\infty)$ 内有定义, $x_0 \neq 0$ 是函数 f(x) 的极大值点,则 \cdot ()

(A) x_0 必是 f(x) 的驻点

(B) $-x_0$ 必是 -f(-x) 的极小值点

 $(C) -x_0$ 必是 -f(x) 的极小值点

(D) 对一切 x 都有 $f(x) ≤ f(x_0)$

解. 应选(B).

4. 同试卷一第二[1]题.

5. 如图, x 轴上有一线密度为常数 μ , 长度为 l 的细杆, 有一质量为 m 的质点到杆右端的距离为 a, 已知引力系数为 k, 则质点和细杆之间引力的大小为 ()

(A)
$$\int_{-1}^{0} \frac{km\mu}{(a-x)^2} \,\mathrm{d}x.$$

(B)
$$\int_0^l \frac{km\mu}{(a-x)^2} \, \mathrm{d}x$$

(C)
$$2\int_{-\frac{l}{2}}^{0} \frac{km\mu}{(a-x)^2} dx$$
.

(D)
$$2\int_{0}^{\frac{l}{2}} \frac{km\mu}{(a-x)^2} dx$$
.

解. 应选 (A).

三、计算题(本题满分25分,每小题5分)

1. 误
$$\begin{cases} x = t \cos t \\ y = t \sin t \end{cases}$$
, 求
$$\frac{d^2 y}{dx^2}$$
.

PR.
$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{2 + t^2}{(\cos t - t \sin t)^3}.$$

$$2. 计算 \int_1^4 \frac{\mathrm{d}x}{x(1+\sqrt{x})}.$$

解.
$$2\ln\frac{4}{3}$$
.

3.
$$x \lim_{x \to 0} \frac{x - \sin x}{x^2(e^x - 1)}$$
.

解.
$$\frac{1}{6}$$
.

4. 求
$$\int x \sin^2 x \, \mathrm{d}x$$
.

M.
$$\frac{1}{4}x^2 - \frac{1}{4}x\sin 2x - \frac{1}{8}\cos 2x + C$$
.

5. 求微分方程 $xy' + y = xe^x$ 满足 y(1) = 1 的特解.

M.
$$y = \frac{x-1}{x}e^x + \frac{1}{x}$$
.

四、(本题满分9分)

利用导数证明: 当x > 1 时,有不等式 $\frac{\ln(1+x)}{\ln x} > \frac{x}{1+x}$.

解. 令 $f(x) = (1+x)\ln(1+x) - x\ln x$,则 $f'(x) = \ln\left(1+\frac{1}{x}\right) > 0$. 因此当 x > 1 时有 $f(x) > f(1) = 2\ln 2 > 0$.

五、(本题满分9分)

求微分方程 $y'' + y = x + \cos x$ 的通解.

解. $y = C_1 \cos x + C_2 \sin x + x + \frac{1}{2} x \sin x$, 其中 C_1 和 C_2 为任意常数.

六、(本题满分9分)

曲线 y = (x-1)(x-2) 和 x 轴围成一平面图形,求此平面图形绕 y 轴旋转一周所成的旋转体的体积.

M.
$$V = \int_{1}^{2} 2\pi x |y| dx = \frac{\pi}{2}$$
.

七、(本题满分9分)

如图, $A \cap D$ 分别是曲线 $y = e^x \cap Y = e^{-2x}$ 上的点, $AB \cap DC$ 均垂直 X 轴, 且 |AB|:|DC|=2:1,|AB|<1, 求点 $B \cap C$ 的横坐标, 使梯形 ABCD 的面积 最大.

解. 当点 *B* 的横坐标为 $\frac{1}{3}\ln 2-1$,点 *C* 的横坐标为 $\frac{1}{2}+\frac{1}{3}\ln 2$ 时,梯形面积最大.

八、(本题满分8分)

设函数 f(x) 在 $(-\infty, +\infty)$ 内满足 $f(x) = f(x-\pi) + \sin x$,且 f(x) = x, $x \in [0, \pi)$,计算 $\int_{\pi}^{3\pi} f(x) dx$.

 \mathbf{M} . $\pi^2 - 2$.

一九九二年考研数学试卷三解答

一、填空题(本题共5小题,每小题3分,满分15分)

1. 设
$$\begin{cases} x = f(t) - \pi, \\ y = f(e^{3t} - 1), \end{cases}$$
 其中 f 可导,且 $f'(0) \neq 0$,则 $\frac{dy}{dx} \Big|_{t=0} = \underline{\hspace{1cm}}$.

解. 应填 3.

2. 函数 $y = x + 2\cos x$ 在 $\left[0, \frac{\pi}{2}\right]$ 上的最大值为 ______.

解. 应填 $\sqrt{3} + \frac{\pi}{6}$.

3.
$$\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{e^x-\cos x} = \underline{\hspace{1cm}}$$
.

解. 应填 0.

4.
$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x(x^2+1)} = \underline{\hspace{1cm}}$$

解. 应填 $\frac{1}{2}$ ln 2.

5. 由曲线 $y = xe^x$ 与直线 y = ex 所围成的图形的面积 S = .

解. 应填 $\frac{e}{2}-1$.

二、选择题(本题共5小题,每小题3分,满分15分)

- **1.** 当 $x \to 0$ 时, $x \sin x$ 是 x^2 的·······
 - (A) 低阶无穷小.

(B) 高阶无穷小.

(C) 等价无穷小.

(D) 同阶但非等价的无穷小.

解. 应选 (B).

(A)
$$f(-x) = \begin{cases} -x^2, & x \le 0, \\ -(x^2 + x), & x > 0. \end{cases}$$
 (B) $f(-x) = \begin{cases} -(x^2 + x), & x < 0, \\ -x^2, & x \ge 0. \end{cases}$ (C) $f(-x) = \begin{cases} x^2, & x \le 0, \\ x^2 - x, & x > 0. \end{cases}$ (D) $f(-x) = \begin{cases} x^2 - x, & x < 0, \\ x^2, & x \ge 0. \end{cases}$

(B)
$$f(-x) = \begin{cases} -(x^2 + x), & x < 0, \\ -x^2, & x \ge 0. \end{cases}$$

(C)
$$f(-x) = \begin{cases} x^2, & x \le 0, \\ x^2 - x, & x > 0. \end{cases}$$

(D)
$$f(-x) = \begin{cases} x^2 - x, & x < 0, \\ x^2, & x \ge 0. \end{cases}$$

解. 应选 (D).

- 3. 同试卷一第二[1]题.

解. 应选 (C).

- 解. 应选(B).
- 三、计算题(本题共5小题,每小题5分,满分25分)
- **1.** $x \lim_{x \to \infty} \left(\frac{3+x}{6+x} \right)^{\frac{x-1}{2}}$.

解. 极限等于 e^{-3/2}.

- **2.** 设函数 y = y(x) 由方程 $y xe^y = 1$ 所确定,求 $\frac{d^2y}{dx^2}\Big|_{x=0}$ 的值.
- 解. 导数等于 2e².
- 3. $x \int \frac{x^3}{\sqrt{1+x^2}} dx$.

M.
$$\frac{1}{3}(1+x^2)^{3/2}-(1+x^2)^{1/2}+C$$
.

- **4.** 求 $\int_0^{\pi} \sqrt{1-\sin x} \, \mathrm{d}x.$
- **解.** $4(\sqrt{2}-1)$.
- **5.** 求微分方程 $(y-x^3) dx 2x dy = 0$ 的通解.
- **解**. 当 x > 0 时 $y = C\sqrt{x} \frac{1}{5}x^3$, 当 x < 0 时 $y = C\sqrt{-x} \frac{1}{5}x^3$.
- 四、(本题满分9分) 同试卷一第三[3]题.
- 五、(本题满分 9 分) 求微分方程 $y''-3y'+2y=xe^x$ 的通解

M.
$$y = C_1 e^x + C_2 e^{2x} - \left(\frac{1}{2}x^2 + x\right)e^x$$
.

六、(本题满分 9 分) 计算曲线 $y = \ln(1-x^2)$ 上相对于 $0 \le x \le \frac{1}{2}$ 的一段弧的长度.

解. $\ln 3 - \frac{1}{2}$.

- 七、(本题满分 6 分) 求曲线 $y = \sqrt{x}$ 的一条切线 l,使该曲线与切线 l 及直线 x = 0, x = 2 所围成的 平面图形面积最小.
- **解**. 设切点为 (t, \sqrt{t}) . 则当 t=1 时面积最小,此时切线方程为 $y=\frac{x}{2}+\frac{1}{2}$.
- 八、(本题满分8分) 同试卷一第六题.

一九九三年考研数学试卷三解答

- 一、填空题(本题共5小题,每小题3分,满分15分)
- 1. $\lim_{x \to 0^+} x \ln x = \underline{\hspace{1cm}}$
- 解. 由洛必达法则, 求得极限等于 0.
- **2.** 函数 y = y(x) 由方程 $\sin(x^2 + y^2) + e^x xy^2 = 0$ 所确定,则 $\frac{dy}{dx} =$ _____.
- **P**. $\frac{y^2-2x\cos(x^2+y^2)-e^x}{2y\cos(x^2+y^2)-2xy}$.
- 3. 同试卷一第一[1]题.
- $\mathbf{4.} \int \frac{\tan x}{\sqrt{\cos x}} \, \mathrm{d}x = \underline{\qquad}.$
- 解. $\frac{2}{\sqrt{\cos x}} + C$.
- **5.** 已知曲线 y = f(x) 过点 $\left(0, -\frac{1}{2}\right)$, 且其上任一点 (x, y) 处的切线斜率为 $x \ln(1+x^2)$, 则 f(x) =______.
- **M**. $\frac{1}{2}(1+x^2)[\ln(1+x^2)-1]$.
- 二、选择题(本题共5小题,每小题3分,满分15分)
- **1.** 当 $x \to 0$ 时,变量 $\frac{1}{x^2} \sin \frac{1}{x}$ 是······· ()
 - (A) 无穷小.

- (B) 无穷大.
- (C) 有界的,但不是无穷小.
- (D) 有界的, 但不是无穷大.

- 解. 应选 (D).
- - (A) 不连续.

- (B) 连续, 但不可导.
- (C) 可导,但导数不连续.
- (D) 可导, 且导数连续.

解. 应选 (A).

3. 已知 $f(x) = \begin{cases} x^2, & 0 \le x < 1, \\ 1, & 1 \le x \le 2, \end{cases}$ 设 $F(x) = \int_1^x f(t) dt \quad (0 \le x \le 2), \quad \text{则 } F(x) \, \text{为} \cdot ($

(A)
$$\begin{cases} \frac{1}{3}x^3, & 0 \le x < 1; \\ x, & 1 \le x \le 2. \end{cases}$$

(B)
$$\begin{cases} \frac{1}{3}x^3 - \frac{1}{3}, & 0 \le x < 1; \\ x, & 1 \le x \le 2. \end{cases}$$
(D)
$$\begin{cases} \frac{1}{3}x^3 - \frac{1}{3}, & 0 \le x < 1; \\ x - 1, & 1 \le x \le 2. \end{cases}$$

(A)
$$\begin{cases} \frac{1}{3}x^3, & 0 \le x < 1; \\ x, & 1 \le x \le 2. \end{cases}$$
(C)
$$\begin{cases} \frac{1}{3}x^3, & 0 \le x < 1; \\ x - 1, & 1 \le x \le 2. \end{cases}$$

(D)
$$\begin{cases} \frac{1}{3}x^3 - \frac{1}{3}, & 0 \le x < 1\\ x - 1, & 1 \le x \le 2 \end{cases}$$

解. 应选 (D).

4. 设常数 k > 0,函数 $f(x) = \ln x - \frac{x}{e} + k$ 在 $(0, +\infty)$ 内的零点个数为 · · · · · · · () (A) 3. (B) 2. (C) 1. (D) 0.

解. 应选 (B).

(A)
$$f'(x) < 0$$
, $f''(x) < 0$.

(B)
$$f'(x) < 0, f''(x) > 0$$
.

(C)
$$f'(x) > 0$$
, $f''(x) < 0$.

(D)
$$f'(x) > 0$$
, $f''(x) > 0$.

解. 应选 (C).

三、计算题(本题共5小题,每小题5分,满分25分)

1. 设 $y = \sin[f(x^2)]$, 其中 f 具有二阶导数, 求 $\frac{d^2y}{dx^2}$.

M. $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2f'(x^2)\cos[f(x^2)] + 4x^2\{f''(x^2)\cos[f(x^2)] - [f'(x^2)]^2\sin[f(x^2)]\}.$

2. $\Re \lim_{x \to -\infty} x(\sqrt{x^2 + 100 + x}).$

解. -50.

3. 求 $\int_{0}^{\frac{\pi}{4}} \frac{x}{1+\cos 2x} dx$.

M. $\frac{\pi}{8} - \frac{1}{4} \ln 2$.

4. $\Re \int_{0}^{+\infty} \frac{x}{(1+x)^3} dx$.

解. $\frac{1}{2}$.

5. 求微分方程 (x^2-1) d $y+(2xy-\cos x)$ dx=0 满足初始条件 $y|_{x=0}=0$ 的特解.

M.
$$y = \frac{\sin x - 1}{x^2 - 1}$$
.

四、(本题满分9分)

设二阶常系数线性微分方程 $y'' + \alpha y' + \beta y = \gamma e^x$ 的一个特解为 $y = e^{2x} + (1 + x)e^x$, 试确定常数 α , β , γ , 并求该方程的通解.

Proof.
$$y = C_1 e^x + C_2 e^{2x} + x e^x$$
.

五、(本题满分9分)

设平面图形 A 由 $x^2 + y^2 \le 2x$ 与 $y \ge x$ 所确定,求图形 A 绕 x = 2 旋转一周所得旋转体的体积.

M.
$$V = \int_0^1 2\pi \left[\sqrt{1 - y^2} - (1 - y)^2 \right] dy = \frac{\pi}{2} - \frac{2}{3}\pi$$
.

六、(本题满分9分)

作半径为 r 的球的外切正圆锥,问此圆锥的高 h 为何值时,其体积 V 最小,并求出该最小值.

解. 当 h = 4r 时, V 取最小值 $V(4r) = \frac{8\pi r^3}{3}$.

七、(本题满分9分)

设 x > 0, 常数 a > e, 证明: $(a + x)^a < a^{a+x}$.

解. 令 $f(x) = (a+x)\ln a - a\ln(a+x)$,则当 x > 0 时 $f'(x) = \ln a - \frac{a}{a+x} > 0$,所以 f(x) 在 $[0,+\infty]$ 上单调增加,从而 f(x) > f(0) = 0. 即结论成立.

八、(本题满分9分)

设 f'(x) 在 [0,a] 上连续,且 f(0)=0,证明:

$$\left| \int_0^a f(x) \, \mathrm{d}x \right| \leqslant \frac{Ma^2}{2},$$

其中 $M = \max_{0 \le x \le a} |f'(x)|$.

解. 证法一: 任取 $x \in (0, a]$, 由微分中值定理有

$$f(x) = f(x) - f(0) = f'(\xi)x, \quad \xi \in (0, x).$$

再由定积分的绝对值不等式有

$$\left| \int_0^a f(x) \, \mathrm{d}x \right| = \left| \int_0^a f'(\xi) x \, \mathrm{d}x \right| \le \int_0^a \left| f'(\xi) \right| x \, \mathrm{d}x \le M \int_0^a x \, \mathrm{d}x = \frac{Ma^2}{2}.$$

证法二: 由微积分基本公式及定积分的绝对值不等式有

$$|f(x)| = |f(x) - f(0)| = \left| \int_0^x f'(t) dt \right| \le \int_0^x |f'(t)| dt \le \int_0^x M dt = Mx.$$

从而由积分的保号性有

$$\left| \int_0^a f(x) \, \mathrm{d}x \right| \le \int_0^a |f(x)| \, \mathrm{d}x \le \int_0^a Mx \, \mathrm{d}x = \frac{Ma^2}{2}.$$

一九九四年考研数学试卷三解答

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分)

1. 若
$$f(x) = \begin{cases} \frac{\sin 2x + e^{2ax} - 1}{x}, & x \neq 0, \\ a, & x = 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 上连续,则 $a = \underline{\qquad}$.

解. 应填 -2.

2. 设函数
$$y = y(x)$$
 由参数方程 $\begin{cases} x = t - \ln(1+t), & \text{ 所确定, } y = \frac{d^2y}{dx^2} = \underline{\qquad}. \end{cases}$

解. 应填 $\frac{1}{t}(6t+5)(t+1)$.

3.
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\int_0^{\cos 3x} f(t) \, \mathrm{d}t \right] = \underline{\qquad}.$$

解. 应填 $-3f(\cos 3x)\sin 3x$.

4.
$$\int x^3 e^{x^2} dx = \underline{\qquad}.$$

解. 应填
$$\frac{1}{2}(x^2-1)e^{x^2}+C$$
.

5. 微分方程 $y dx + (x^2 - 4x) dy = 0$ 的通解为 _____.

解. 应填
$$y^4 = \frac{Cx}{4-x}$$
.

二、选择题(本题共5小题,每小题3分,满分15分)

解. 应选 (A).

(A) 左、右导数都存在,

- (B) 左导数存在, 但右导数不存在.
- (C) 左导数不存在, 但右导数存在. (D) 左、右导数都不存在.

解. 应选 (B).

- **3.** 设 y = f(x) 是满足微分方程 $y'' + y' e^{\sin x} = 0$ 的解, 且 $f'(x_0) = 0$, 则 f(x) 在(
 - (A) x_0 的某个邻域内单调增加.
- (B) x_0 的某个邻域内单调减少.
 - (C) x₀ 处取得极小值.

(D) x₀ 处取得极大值.

解. 应选 (C).

- **4.** 曲线 $y = e^{\frac{1}{x^2}} \arctan \frac{x^2 + x + 1}{(x+1)(x-2)}$ 的渐近线有······() (A) 1 条. (B) 2 条. (C) 3 条. (D) 4 条.
- 解. 应选 (B). 由于

$$\lim_{x \to \infty} e^{\frac{1}{x^2}} \arctan \frac{x^2 + x + 1}{(x+1)(x-2)} = \frac{\pi}{4},$$

故 $y = \frac{\pi}{4}$ 为该曲线的一条水平渐近线. 又

$$\lim_{x \to 0} e^{\frac{1}{x^2}} \arctan \frac{x^2 + x + 1}{(x+1)(x-2)} = \infty,$$

故 x=0 为该曲线的一条垂直渐近线. 所以该曲线的渐近线有两条.

- 5. 同试卷一第二[1]题.
- 三、解答题(本题共5小题,每小题5分,满分25分)
- **1.** 设 y = f(x + y), 其中 f 具有二阶导数,且其一阶导数不等于 1,求 $\frac{d^2y}{dx^2}$.

**$$\mathbf{H}$$
.** $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{f''}{(1-f')^3}$.

2. 计算
$$\int_0^1 x(1-x^4)^{\frac{3}{2}} dx$$
.

解. 令 $x^2 = \sin t$,可求得积分等于 $\frac{3}{32}\pi$.

3. 计算 $\lim_{n\to\infty} \tan^n \left(\frac{\pi}{4} + \frac{2}{n}\right)$.

解. e⁴.

- 4. 同试卷一第三[3]题.
- **5**. 如图,设曲线方程为 $y = x^2 + \frac{1}{2}$,梯形 OABC 的面积为 D,曲边梯形 OABC 的面积为 D_1 ,点 A 的坐标为 (a,0) (a>0).证明: $\frac{D}{D_1} < \frac{3}{2}$.

解.
$$D_1 = \frac{(2a^2+3)a}{6}$$
, $D = \frac{(a^2+1)a}{2}$, 所以 $\frac{D}{D_1} < \frac{3}{2}$.

四、(本题满分9分)

设当 x > 0 时,方程 $kx + \frac{1}{x^2} = 1$ 有且仅有一个解,求 k 的取值范围.

解. 当 $k = \frac{2}{9}\sqrt{3}$ 及 $k \le 0$ 时,方程有且仅有一个解.

五、(本题满分9分)

设
$$y = \frac{x^3 + 4}{x^2}$$
,

- (I) 求函数的增减区间及极值;
- (II) 求函数图像的凹凸区间及拐点;
- (III) 求其渐近线;
- (IV)作出其图形.
- **解.** (I) $(-\infty,0)$ 和 $(2,+\infty)$ 为增区间,(0,2) 为减区间,极小值点为 x=2,极小值为 y=3;
 - $(II)(-\infty,0)$ 和 $(0,+\infty)$ 均为凹区间,无拐点;
 - (III) x = 0 为铅直渐近线,y = x 为斜渐近线;
 - (IV) 其图形如下图:

六、(本题满分9分)

求微分方程 $y'' + a^2y = \sin x$ 的通解, 其中常数 a > 0.

解. 当 $a \ne 1$ 时,原方程的通解为 $y = C_1 \cos ax + C_2 \sin ax + \frac{1}{a^2 - 1} \sin x$; 当 a = 1 时,原方程的通解为 $y = C_1 \cos x + C_2 \sin x + -\frac{1}{2} x \cos x$.

七、(本题满分9分)

设 f(x) 在 [0,1] 上连续且递减,证明: 当 $0 < \lambda < 1$ 时, $\int_0^{\lambda} f(x) dx \ge \lambda \int_0^1 f(x) dx$.

解. 由积分中值定理以及函数的单调性可得

$$\int_0^{\lambda} f(x) dx - \lambda \int_0^1 f(x) dx = (1 - \lambda) \int_0^{\lambda} f(x) dx - \lambda \int_{\lambda}^1 f(x) dx$$
$$= (1 - \lambda) \cdot \lambda f(\xi_1) - \lambda \cdot (1 - \lambda) f(\xi_2)$$
$$= \lambda (1 - \lambda) [f(\xi_1) - f(\xi_2)] \ge 0.$$

八、(本题满分8分)

求曲线 $y=3-|x^2-1|$ 与 x 轴围成的封闭图形绕直线 y=3 旋转所得的旋转体体积.

解. $V = \frac{448}{15}\pi$.

一九九五年考研数学试卷三解答

一、填空题(本题共5小题,每小题3分,满分15分)

解. 应填
$$-2x\sin(x^2)\sin^2\frac{1}{x} - \frac{1}{x^2}\sin\frac{2}{x}\cos(x^2)$$
.

- **2.** 微分方程 y'' + y = -2x 的通解为 . .
- **解.** 应填 $C_1 \cos x + C_2 \sin x 2x$.
- **3.** 曲线 $\begin{cases} x = 1 + t^2 \\ y = t^3 \end{cases}$ 在 t = -2 处的切线方程为 _____.

解. 应填 3x-y-7=0.

4.
$$\lim_{n\to\infty} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \dots + \frac{n}{n^2+n+n} \right) = \underline{\hspace{1cm}}$$

解. 应填 $\frac{1}{2}$.

5. 由曲线 $y = x^2 e^{-x^2}$ 的渐近线方程为 . .

解. 应填 y = 0.

- 二、选择题(本题共5小题,每小题3分,满分15分)
- - (A) $\phi[f(x)]$ 必有间断点.
- (B) $[\phi(x)]^2$ 必有间断点.
- (C) $f[\phi(x)]$ 必有间断点.
- (D) $\frac{\phi(x)}{f(x)}$ 必有间断点.

解. 应选 (D).

(A)
$$-\int_0^2 x(x-1)(2-x) dx$$
.

(B)
$$\int_0^1 x(x-1)(2-x) dx - \int_1^2 x(x-1)(2-x) dx$$
.

(C)
$$-\int_0^1 x(x-1)(2-x) dx + \int_1^2 x(x-1)(2-x) dx$$
.

(D)
$$\int_0^2 x(x-1)(2-x) dx$$
.

解. 应选 (C).

- - (A) 对任意 x, f'(x) > 0.
- (B) 对任意 x, f'(-x) ≤ 0.
- (C) 函数 f(-x) 单调增加.
- (D) 函数-f(-x)单调增加.

解. 应选 (D).

- 4. 同试卷一第二[2]题.
- **5.** 设 f(x) 可导, $F(x) = f(x)(1 + |\sin x|)$,若 F(x) 在 x = 0 处可导,则必有 · · ()
 - (A) f(0) = 0.

(B) f'(0) = 0.

(C) f(0) + f'(0) = 0.

- (D) f(0) f'(0) = 0.
- **解.** 应选 (A). 设 F(x) 在 x = 0 处可导,则 $f(x) \cdot |\sin x|$ 在 x = 0 处可导,由可导的 充要条件知

$$\lim_{x \to 0^{-}} \frac{f(x) \cdot |\sin x|}{x} = \lim_{x \to 0^{+}} \frac{f(x) \cdot |\sin x|}{x}.$$

根据重要极限 $\lim_{x\to 0} \frac{\sin x}{x} = 1$,可得

$$\lim_{x \to 0^{-}} \frac{|\sin x|}{x} = -\lim_{x \to 0^{-}} \frac{\sin x}{x} = -1, \quad \lim_{x \to 0^{+}} \frac{|\sin x|}{x} = \lim_{x \to 0^{+}} \frac{\sin x}{x} = 1.$$

因此我们有 f(0) = -f(0),故 f(0) = 0.

- 三、解答题(本题共6小题,每小题5分,满分30分)
- 1. $\vec{x} \lim_{x \to 0^+} \frac{1 \sqrt{\cos x}}{x(1 \cos \sqrt{x})}$

解. $\frac{1}{2}$.

2. 设函数 y = y(x) 由方程 $xe^{f(y)} = e^y$ 确定,其中 f 具有二阶导数,且 $f' \neq 1$,求 $\frac{d^2y}{dx^2}$.

M.
$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{f''(y) - [1 - f'(y)]^2}{x^2 [1 - f'(y)]^3}.$$

- 3. 设 $f(x^2-1) = \ln \frac{x^2}{x^2-2}$,且 $f[\phi(x)] = \ln x$,求 $\int \phi(x) dx$.
- **M**. $2\ln|x-1|+x+C$.
- **4.** 设 $f(x) = \begin{cases} x \arctan \frac{1}{x^2}, & x \neq 0, \\ 0, & x = 0, \end{cases}$ 试讨论 f'(x) 在 x = 0 处的连续性.

解. f'(x) 在 x=0 处是连续的.

5. 求摆线
$$\begin{cases} x = 1 - \cos t \\ y = t - \sin t \end{cases}$$
 一拱 $(0 \le t \le 2\pi)$ 的弧长.

解. 弧长 s=8.

- **6.** 设单位质点在水平面内作直线运动,初速度 $v|_{t=0} = v_0$,已知阻力与速度成正比(比例常数为 1),问 t 为多少时此质点的速度为 $\frac{v_0}{3}$? 并求到此时刻该质点所经过的路程.
- **解.** $t = \ln 3$ 时此质点的速度为 $\frac{v_0}{3}$,到此时刻该质点所经过的路程 $s = \frac{2}{3}v_o$.
- 四、(本题满分8分)

求函数
$$f(x) = \int_0^{x^2} (2-t)e^{-t} dt$$
 的最大值和最小值.

- **解**. 最大值为 $f(\pm\sqrt{2})=1+e^{-2}$; 最小值为 f(0)=0.
- 五、(本题满分8分)

设 $y = e^x$ 是微分方程 xy' + p(x)y = x 的一个解,求此微分方程满足条件 $y\big|_{x=\ln 2} = 0$ 的特解.

- **解.** 所求特解为 $y = e^x e^{x + e^{-x} \frac{1}{2}}$.
- 六、(本题满分8分)

如图,设曲线 L 的方程为 y=f(x),且 y''>0,又 MT, MP 分别为该曲线在点 $M(x_0,y_0)$ 处的切线和法线,已知线段 MP 的长度为 $\frac{\left(1+(y_0')^2\right)^{\frac{3}{2}}}{y_0''}$ (其中 $y_0'=y'(x_0)$, $y_0''=y''(x_0)$),试推导出点 $P(\xi,\eta)$ 的坐标表达式.

Proof.
$$\xi = x_0 - \frac{y_0' \left(1 + (y_0')^2\right)}{y_0''}, \quad \eta = y_0 + \frac{1 + (y_0')^2}{y_0''}.$$

七、(本题满分8分)

设
$$f(x) = \int_0^x \frac{\sin t}{\pi - t} dt$$
,求 $\int_0^\pi f(x) dx$.

M.
$$\int_0^{\pi} f(x) dx = 2.$$

八、(本题满分8分)

设
$$\lim_{x\to 0} \frac{f(x)}{x} = 1$$
, 且 $f''(x) > 0$, 证明 $f(x) \ge x$.

解. 因为 f(x) 连续且具有一阶导数,所以由 $\lim_{x\to 0} \frac{f(x)}{x} = 1$ 知 f(0) = 0. 从而有

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 1.$$

令 F(x) = f(x) - x,则 F(0) = 0,F'(0) = 0.又由 F''(x) = f''(x) > 0 知 F(0) 是 F(x) 的极小值和 F'(x) 单调.故 F(x) 只有一个驻点,从而 F(0) 是 F(x) 的最小值.因此 $F(x) \geqslant F(0) = 0$,即 $f(x) \geqslant x$.

一九九六年考研数学试卷三解答

7676774597数于风仓—胜台
一、填空题(本题共5小题,每小题3分,满分15分)
1.
解. 应填 $\frac{1}{3}$.
2. $\int_{-1}^{1} \left(x + \sqrt{1 - x^2} \right)^2 dx = \underline{\qquad}.$
解. 应填 2.
3. 微分方程的 $y'' + 2y' + 5y = 0$ 通解为
解. 应填 $y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x)$,其中 C_1 , C_2 为任意常数.
4. $\lim_{x \to \infty} x \left[\sin \ln \left(1 + \frac{3}{x} \right) - \sin \ln \left(1 + \frac{1}{x} \right) \right] = \underline{\qquad}.$
解. 应填 2.
5. 由曲线 $y = x + \frac{1}{x}$, $x = 2$ 及 $y = 2$ 所围图形的面积 $S =$.
解. 应填 $\ln 2 - \frac{1}{2}$.
二、选择题(本题共5小题,每小题3分,满分15分)
1. 设 $x \to 0$ 时 $e^x - (ax^2 + bx + 1)$ 是比 x^2 高阶的无穷小,则 · · · · · · · · · (A) $a = \frac{1}{2}, b = 1$. (B) $a = 1, b = 1$. (C) $a = -\frac{1}{2}, b = -1$. (D) $a = -1, b = 1$.
解. 应选 (A).
2. 设函数 $f(x)$ 在区间 $(-\delta, \delta)$ 内有定义,若当 $x \in (-\delta, \delta)$ 时,恒有 $ f(x) \le x^2$,则 $x = 0$ 必是 $f(x)$ 的 · · · · · · · · · · · · · · · · · ·
解. 应选 (C).
3. 设 $f(x)$ 处处可导,则····································

(D) 当 $\lim_{x \to +\infty} f'(x) = +\infty$ 时,必有 $\lim_{x \to +\infty} f(x) = +\infty$.

解. 应选 (D). 取反例 f(x) = x,可排除选项 (A) 和 (C);另取反例 $f(x) = x^2$,可排除选项 (B);因而只能选 (D).

事实上,由 $\lim_{x\to+\infty} f'(x) = +\infty$ 知,对任意正数 M,存在 N,使得当 x>N 时有 f'(x)>M. 故由拉格朗日中值定理,当 x>N 时有

$$f(x) - f(N) = f'(x)(x - N) > M(x - N),$$

即 $x \to +\infty$ 时 $f(x) > f(N) + M(x-N) \to +\infty$.

- - (A) 无实根.

- (B) 有且仅有一个实根.
- (C) 有且仅有两个实根.
- (D) 有无穷多个实根.

解. 应选 (C).

- - (A) $\int_a^b \pi [2m f(x) + g(x)][f(x) g(x)] dx$.

(B)
$$\int_a^b \pi [2m - f(x) - g(x)][f(x) - g(x)] dx$$
.

(C)
$$\int_{a}^{b} \pi [m - f(x) + g(x)][f(x) - g(x)] dx$$
.

(D)
$$\int_{a}^{b} \pi [m - f(x) - g(x)][f(x) - g(x)] dx$$
.

解. 应选 (B).

- 三、计算题(本题共6小题,每小题5分,满分30分)
- **1.** 计算 $\int_0^{\ln 2} \sqrt{1 e^{-2x}} dx$.

M.
$$\ln(2+\sqrt{3})-\frac{\sqrt{3}}{2}$$
.

2.
$$\vec{x} \int \frac{\mathrm{d}x}{1+\sin x}$$
.

M. $\tan x - \sec x + C$.

3. 设
$$\begin{cases} x = \int_0^t f(u^2) du, & \text{其中 } f(u) \text{ 具有二阶导数,且 } f(u) \neq 0, \text{ 求 } \frac{d^2 y}{dx^2}. \\ y = [f(t^2)]^2, & \end{cases}$$

PR.
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{4[f'(t^2) + 2t^2 f''(t^2)]}{f(t^2)}.$$

4. 求函数 $f(x) = \frac{1-x}{1+x}$ 在 x = 0 点处带拉格朗日型余项的 n 阶泰勒展开式.

$$\mathbf{pr}$$. $f(x) = 1 - 2x + 2x^2 + \dots + (-1)^n 2x^n + (-1)^{n+1} \frac{2x^{n+1}}{(1+\theta x)^{n+2}}, \quad 0 < \theta < 1.$

5. 求微分方程 $y'' + y' = x^2$ 的通解.

M.
$$y = \frac{1}{3}x^3 - x^2 + 2x + C_1 + C_2e^{-x}$$
.

6. 设有一正椭圆柱体,其底面的长、短轴分别为 2a,2b,用过此柱体底面的短轴与底面成 α 角($0 < \alpha < \frac{\pi}{2}$)的平面截此柱体,得一锲形体(如图),求此锲形体的体积 V.

M.
$$V = \frac{2a^2b}{3} \tan \alpha$$
.

四、(本题满分 8 分) 计算不定积分 $\int \frac{\arctan x}{x^2(1+x^2)} dx$.

M.
$$-\frac{\arctan x}{x} - \frac{1}{2}(\arctan x)^2 + \frac{1}{2}\ln\frac{x^2}{1+x^2} + C$$
.

五、(本题满分8分)

设函数
$$f(x) = \begin{cases} 1-2x^2, & x < -1, \\ x^3, & -1 \le x \le 2, \\ 12x - 16, & x > 2. \end{cases}$$

- (I) 写出 f(x) 的反函数 g(x) 的表达式;
- (II) g(x) 是否有间断点、不可导点,若有,指出这些点.

$$\mathbf{PR.} (I) g(x) = \begin{cases} -\sqrt{\frac{1-x}{2}}, & x < -1, \\ \sqrt[3]{x}, & -1 \le x \le 8, \\ \frac{x+16}{12}, & x > 8. \end{cases}$$

(II) g(x) 在 $(-\infty, +\infty)$ 处处连续,没有间断点. g(x) 的不可导点是 x = 0 和 x = -1.

六、(本题满分8分)

设函数 y = y(x) 由方程 $2y^3 - 2y^2 + 2xy - x^2 = 1$ 所确定,试求 y = y(x) 的驻点,并判别它是否为极值点.

解. 唯一驻点是 x=1,也是函数的极小值点.

七、(本题满分8分)

设 f(x) 在区间 [a,b] 上具有二阶导数,且 f(a) = f(b) = 0,f'(a)f'(b) > 0. 试证明: 存在 $\xi \in (a,b)$, $\eta \in (a,b)$,使 $f(\xi) = 0$ 及 $f''(\eta) = 0$.

解. 不妨设 f'(a) > 0, f'(b) > 0. 则有

$$\lim_{x \to a^{+}} \frac{f(x)}{x - a} > 0, \qquad \lim_{x \to b^{-}} \frac{f(x)}{x - b} > 0.$$

由此知在 a 的右邻域中有 x_1 使得 $f(x_1) > 0$, 在 b 的左邻域中有 x_2 使得 $f(x_2) < 0$. 由零值定理,存在 $\xi \in (x_1, x_2) \subset (a, b)$ 使得 $f(\xi) = 0$.

另外,由罗尔定理,存在 $\eta_1 \in (a,\xi)$ 和 $\eta_2 \in (\xi,b)$,使得 $f'(\eta_1) = f'(\eta_2) = 0$. 再 用一次罗尔定理,存在 $\eta \in (\eta_1,\eta_2) \subset (a,b)$ 使得 $f''(\eta) = 0$.

八、(本题满分8分)

设f(x)为连续函数

- (I) 求初值问题 $\begin{cases} y' + ay = f(x), \\ y|_{x=0} = 0 \end{cases}$ 的解 y(x), 其中 a 是正常数.
- (II) 若 $|f(x)| \le k$ (k 为常数), 证明: 当 $x \ge 0$ 时, 有 $|y(x)| \le \frac{k}{a}(1 e^{-ax})$.

解. (I) 解为
$$y(x) = e^{-ax} \int_0^x f(t)e^{at} dt$$
.

(I)
$$||y(x)|| \le e^{-ax} \int_0^x |f(t)|e^{at} dt$$
.
(II) $||y(x)|| \le e^{-ax} \int_0^x |f(t)|e^{at} dt \le ke^{-ax} \int_0^x e^{at} dt = \frac{k}{a}e^{-ax}(e^{ax} - 1) = \frac{k}{a}(1 - e^{-ax})$.

一九九七年考研数学试卷二解答

一、填空题(本题共5小题,每小题3分,满分15分)

1. 已知
$$f(x) = \begin{cases} (\cos x)^{x^{-2}}, & x \neq 0, \\ a, & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a = \underline{\qquad}$.

解. 应填 e^{-1/2}.

解. 应填 $-\frac{3}{2}$.

$$3. \int \frac{\mathrm{d}x}{\sqrt{x(4-x)}} = \underline{\hspace{1cm}}.$$

解. 应填 $\arcsin \frac{x-2}{2} + C$.

4.
$$\int_{0}^{+\infty} \frac{\mathrm{d}x}{x^2 + 4x + 8} = \underline{\hspace{1cm}}.$$

 \mathbf{M} . 应填 $\frac{\pi}{8}$.

5. 已知向量组 $\alpha_1 = (1,2,-1,1)$, $\alpha_{,2} = (2,0,t,0)$, $\alpha_3 = (0,-4,5,-2)$ 的秩为 2,则 t=

解. 应填3.

二、选择题(本题共5小题,每小题3分,满分15分)

解. 应选 (C).

2. 同试卷一第二[2]题.

- - (A) $f(x_0)$ 是 f(x) 的极大值.
 - (B) $f(x_0)$ 是 f(x) 的极小值.
 - (C) $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点.
 - (D) $f(x_0)$ 不是 f(x) 的极小值, $(x_0, f(x_0))$ 也不是曲线 y = f(x) 的拐点.

解. 应选 (B).

4. 同试卷一第二[3]题.

解. 应选 (D).

三、计算题(本题共6小题,每小题5分,满分30分)

1. 求极限
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + x - 1} + x + 1}{\sqrt{x^2 + \sin x}}$$
.

解. 极限等于1.

2. 设
$$y = y(x)$$
 由
$$\begin{cases} x = \arctan t \\ 2y - ty^2 + e^t = 5 \end{cases}$$
 所确定,求 $\frac{dy}{dx}$.

M.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(y^2 - \mathrm{e}^t)(1 + t^2)}{2(1 - ty)}$$
.

3. 计算
$$\int e^{2x} (\tan x + 1)^2 dx.$$

解.
$$e^{2x} \tan x + C$$
.

4. 求微分方程
$$(3x^2 + 2xy - y^2)$$
 d $x + (x^2 - 2xy)$ d $y = 0$ 的通解.

解. 通解为
$$xy^2 - x^2y - x^3 = C$$
.

5. 已知 $y_1 = xe^x + e^{2x}$, $y_2 = xe^x + e^{-x}$, $y_3 = xe^x + e^{2x} - e^{-x}$ 是某二阶线性非齐次微分方程的三个解,求此微分方程.

M.
$$y'' - y' - 2y = e^x - 2xe^x$$
.

6. 已知
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$
,且 $A^2 - AB = E$,其中 E 是三阶单位矩阵,求矩阵 B .

$$\mathbf{R}. \ B = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

四、(本题满分8分)

λ取何值时,方程组 $\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1\\ \lambda x_1 - x_2 + x_3 = 2 \end{cases}$ 无解,有唯一解或由无穷多解?并 $4x_1 + 5x_2 - 5x_3 = -1$

在有无穷多解时写出方程组的通解.

 \mathbf{R} . 当 $\lambda = -\frac{4}{5}$ 时,原方程组无解.

当 $\lambda \neq 1$ 且 $\lambda \neq -\frac{4}{5}$ 时,方程组有唯一解.

当λ=1时,原方程组有无穷多解,其通解为

$$(x_1, x_2, x_3)^T = (1, -1, 0)^T + k(0, 1, 1)^T,$$

其中k为任意常数.

五、(本题满分8分)

设曲线 L 的极坐标方程为 $r = r(\theta)$, $M(r,\theta)$ 为 L 上的任一点, $M_0(2,0)$ 为 L 上一定点,若极径 OM_0 ,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M_0 ,M 两点间弧长值的一半,求曲线 L 的方程.

解. 直线方程为 $x \mp \sqrt{3}y = 2$.

六、(本题满分8分)

设函数 f(x) 在闭区间 [0,1] 上连续,在开区间 (0,1) 内大于零,并满足 $xf'(x) = f(x) + \frac{3a}{2}x^2$ (a 为常数),又曲线 y = f(x) 与 x = 1, y = 0 所围成的图形 S 的面积值为 2,求函数 y = f(x),并问 a 为何值时,图形 S 绕 x 轴旋转一周所得的旋转体的体积最小。

解. $f(x) = \frac{3}{2}ax^2 + (4-a)x$. 故 a = -5 时,旋转体体积 V(a) 最小.

七、(本题满分8分)

已知函数 f(x) 连续,且 $\lim_{x\to 0} \frac{f(x)}{x} = 2$,设 $\varphi(x) = \int_0^1 f(xt) dt$,求 $\varphi'(x)$ 并讨论 $\varphi'(x)$ 在 x = 0 处的连续性.

解. 由题设 $\lim_{x\to 0} \frac{f(x)}{x} = 2$ 知 f(0) = 0, f'(0) = 2, 且有 $\varphi(0) = 0$. 当 $x \neq 0$ 时有

$$\varphi(x) = \int_0^1 f(xt) dt = \frac{\int_0^x f(u) du}{x} \quad \Rightarrow \quad \varphi'(x) = \frac{x f(x) - \int_0^x f(u) du}{x^2},$$

当 x=0 时有

$$\varphi'(0) = \lim_{x \to 0} \frac{\varphi(x) - \varphi(0)}{x} = \lim_{x \to 0} \frac{\int_0^x f(u) du}{x^2} = \lim_{x \to 0} \frac{f(x)}{2x} = 1.$$

从而

$$\lim_{x \to 0} \varphi'(x) = \lim_{x \to 0} \frac{x f(x) - \int_0^x f(u) du}{x^2} = \lim_{x \to 0} \frac{f(x)}{x} - \lim_{x \to 0} \frac{\int_0^x f(u) du}{x^2}$$
$$= 2 - 1 = 1 = \varphi'(0),$$

即 $\varphi'(x)$ 在 x = 0 处连续.

八、(本题满分8分)

就 k 的不同取值情况,确定方程 $x-\frac{\pi}{2}\sin x=k$ 在开区间 $\left(0,\frac{\pi}{2}\right)$ 内根的个数,并证明你的结论.

解. 设 $f(x) = x - \frac{\pi}{2} \sin x$, $x \in [0, \frac{\pi}{2}]$. 则 f(x) 在 $x_0 = \arccos \frac{2}{\pi}$ 处有最小值 y_0 . 因此:

- (I) 当 $k \notin [y_0, 0]$ 时,原方程在 $\left(0, \frac{\pi}{2}\right)$ 内没有根;
- (II) 当 $k = y_0$ 时,原方程在 $\left(0, \frac{\pi}{2}\right)$ 内有唯一根 x_0 ;
- (III) 当 $k \notin (y_0, 0)$ 时,原方程在 $\left(0, \frac{\pi}{2}\right)$ 内恰有两个不同的根.

一九九八年考研数学试卷二解答

- 一、填空题(本题共5小题,每小题3分,满分15分)
- 1. 同试卷一第一[1]题.
- **2**. 曲线 $y = -x^3 + x^2 + 2x$ 与 x 轴所围成的图形的面积 $A = _____$.
- **解**. 应填 $\frac{37}{12}$. 易见 $y = -x^3 + x^2 + 2x$ 的零点为 -1, 0, 2, 且当 $x \in (-1,0)$ 时 y < 0; 当 $x \in (0,2)$ 时 y > 0. 于是有

$$A = \int_{-1}^{0} -(-x^3 + x^2 + 2x) dx + \int_{0}^{2} (-x^3 + x^2 + 2x) dx = \frac{37}{12}.$$

- $3. \int \frac{\ln(\sin x)}{\sin^2 x} \, \mathrm{d}x = \underline{\qquad}.$
- 解. 应填 $-\cot x \cdot \ln \sin x \cot x x + C$. 用分部积分法,有 $\int \frac{\ln \sin x}{\sin^2 x} dx = -\int \ln \sin x d(\cot x) = -\cot x \cdot \ln \sin x + \int \cot^2 x dx$ $= -\cot x \cdot \ln \sin x + \int (\csc^2 x 1) dx$ $= -\cot x \cdot \ln \sin x \cot x x + C.$
- **4.** 设 f(x) 连续,则 $\frac{d}{dx} \int_0^x t f(x^2 t^2) dt = ____.$
- **解**. 应填 $x f(x^2)$. 作变量代换 $u = x^2 t^2$, 则有

$$\int_0^x t f(x^2 - t^2) dt = \int_{x^2}^0 -\frac{1}{2} f(u) du = \frac{1}{2} \int_0^{x^2} f(u) du,$$

从而导函数为

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^x t f(x^2 - t^2) \, \mathrm{d}t = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} \int_0^{x^2} f(u) \, \mathrm{d}u = \frac{1}{2} f(x^2) \cdot (x^2)' = x f(x^2).$$

- **5**. 曲线 $y = x \ln(e + \frac{1}{x})$ (x > 0) 的渐进线方程为 _____.
- **解**. 应填 $y = x + \frac{1}{e}$.
- 二、选择题(本题共5小题,每小题3分,满分15分)
- **1.** 设数列 x_n 与 y_n 满足 $\lim_{r\to\infty} x_n y_n = 0$,则下列断言正确的是 · · · · · · · · · · ()
 - (A) 若 x_n 发散,则 y_n 必发散.
 - (B) 若 x_n 无界,则 y_n 必有界.
 - (C) 若 x_n 有界,则 y_n 必为无穷小.
 - (D) 若 $\frac{1}{x_n}$ 为无穷小,则 y_n 必为无穷小.

解. 应选 (D).

- 2. 同试卷一第二[2]题.
- 3. 同试卷一第二[3]题.
- **4.** 设函数 f(x) 在 x = a 的某个邻域内连续,且 f(a) 为其极大值,则存在 $\delta > 0$,当
 - (A) $(x-a)[f(x)-f(a)] \ge 0$.

(B)
$$(x-a)[f(x)-f(a)] \le 0$$
.

(C)
$$\lim_{t \to a} \frac{f(t) - f(x)}{(t - x)^2} \ge 0 \ (x \ne a).$$

(C)
$$\lim_{t \to a} \frac{f(t) - f(x)}{(t - x)^2} \ge 0 \ (x \ne a).$$
 (D) $\lim_{t \to a} \frac{f(t) - f(x)}{(t - x)^2} \le 0 \ (x \ne a).$

解. 应选 (C).

- **5**. 设 A 是任一 n ($n \ge 3$) 阶方程, A^* 是其伴随矩阵, 又 k 为常数, 且 $k \ne 0, \pm 1$, 则 必有 $(kA)^* = \cdots$ () (B) $k^{n-1}A^*$. (C) k^nA^* . (D) $k^{-1}A^*$. (A) kA^* .
- 解. 应选 (B).
- 三、(本题满分5分) 求函数 $f(x) = (1+x)^{\frac{x}{\tan(x-\pi/4)}}$. 在区间 $(0,2\pi)$ 内的间断点,并判断其类型.
- **解**. f(x) 在区间 $(0,2\pi)$ 内有第二类间断点 $\frac{\pi}{4}$ 和 $\frac{5\pi}{4}$,第一类(可去)间断点 $\frac{3\pi}{4}$ 和 $\frac{7\pi}{4}$.
- 四、(本题满分5分) 确定常数 a, b, c 的值,使 $\lim_{x\to 0} \frac{ax - \sin x}{\int_{t}^{x} \frac{\ln(1+t^3)}{t} dt} = c$ $(c \neq 0)$.

M.
$$a=1$$
, $b=0$, $c=\frac{1}{2}$.

五、(本题满分5分)

利用代换 $y = \frac{u}{\cos x}$ 将方程 $y'' \cos x - 2y' \sin x + 3y \cos x = e^x$ 化简, 并求出原方 程的通解.

- **解**. 原方程化简为 $u'' + 4u = e^x$, 其通解为 $y = C_1 \frac{\cos 2x}{\cos x} + C_2 \sin x + \frac{e^x}{5\cos x}$.
- 六、(本题满分6分)

计算积分
$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{\mathrm{d}x}{\sqrt{|x-x^2|}}.$$

M.
$$\frac{\pi}{2} + \ln(2 + \sqrt{3})$$
.

- 七、(本题满分6分) 同试卷一第五题.
- 八、(本题满分8分) 同试卷一第九题.
- 九、(本题满分8分)

设有曲线 $y = \sqrt{x-1}$,过原点作其切线,求由此曲线、切线及 x 轴围成的平面图形绕 x 轴旋转一周所得到的旋转体的表面积.

解. $\frac{\pi}{6}(11\sqrt{5}-1)$.

十、(本题满分8分)

设 y = y(x) 是一向上凸的连续曲线,其上任意一点 (x, y) 处的曲率为 $\frac{1}{\sqrt{1+y'^2}}$, 且此曲线上点 (0,1) 处的切线方程为 y = x+1,求该曲线的方程,并求函数 y = y(x) 的极值.

- **解**. 曲线的方程为 $y = \ln \left| \cos \left(\frac{\pi}{4} x \right) \right| + 1 + \frac{1}{2} \ln 2$. 当 $x = \frac{\pi}{4}$ 时,函数有极大值 $y = 1 + \frac{1}{2} \ln 2$.
- 十一、(本题满分6分)

设 $x \in (0,1)$, 证明: (I) $(1+x)\ln^2(1+x) < x^2$; (II) $\frac{1}{\ln 2} - 1 < \frac{1}{\ln(1+x)} - \frac{1}{x} < \frac{1}{2}$.

解. (I) 令 $\varphi(x) = (1+x)\ln^2(1+x) - x^2$, 则有

$$\varphi'(x) = \ln^2(1+x) + 2\ln(1+x) - 2x$$

$$\varphi''(x) = \frac{2}{1+x} [\ln(1+x) - x].$$

当 $x \in (0,1)$ 时,由 $\varphi''(x) < 0$ 可得 $\varphi'(x) < \varphi'(0) = 0$,从而 $\varphi(x) < \varphi(0) = 0$,即有 $(1+x)\ln^2(1+x) < x^2$.

(II) $f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x}$, $(1+x)\ln^2(1+x) < x^2$. 则有

$$f'(x) = \frac{(1+x)\ln^2(1+x) - x^2}{x^2(1+x)\ln^2(1+x)}.$$

由 (I) 知, 当 $x \in (0,1)$ 时, f(x) < 0, 于是 f(x) 单调减少. 又 f(x) 在区间 [0,1] 上连续, 故当 $x \in (0,1)$ 时,

$$f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x} > f(1) = \frac{1}{\ln 2} - 1.$$

第42页 共174页

又因为

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0} \frac{x - \ln(1+x)}{x^2} = \lim_{x \to 0} \frac{x}{2x(1+x)} = \frac{1}{2},$$

故当 $x \in (0,1)$ 时,

$$f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x} < \frac{1}{2}.$$

十二、(本题满分5分)

设 $(2E-C^{-1}B)A^T=C^{-1}$, 其中 E 是 4 阶单位矩阵, A^T 是 4 阶矩阵 A 的转置矩

阵,
$$B = \begin{pmatrix} 1 & 2 & -3 & -2 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, $C = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, 求 A .

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix}.$$

十三、(本题满分8分)

已知 $\alpha_1 = (1,4,0,2)^T$, $\alpha_2 = (2,7,1,3)^T$, $\alpha_3 = (0,1,-1,a)^T$, $\beta = (3,10,b,4)^T$. 问:

- (I) a, b 取何值时, β 不能由 α_1 , α_2 , α_3 线性表示?
- (II) a, b 取何值时, β 可由 α_1 , α_2 , α_3 线性表示?并写出表达式.
- **解.** (I) 当 $b \neq 2$ 时,线性方程组 $(\alpha_1, \alpha_2, \alpha_3)x = \beta$ 无解,此时 β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.
 - (II) 当 $b = 2, a \neq 1$ 时,线性方程组 $(\alpha_1, \alpha_2, \alpha_3)x = \beta$ 有唯一解:

$$x = (x_1, x_2, x_3)^T = (-1, 2, 0)^T,$$

于是 β 可唯一表示为 $\beta = -\alpha_1 + 2\alpha_2$.

当 b=2, a=1 时,线性方程组 $(\alpha_1, \alpha_2, \alpha_3)x=\beta$ 有无穷多个解:

$$x = (x_1, x_2, x_3)^T = k(-2, 1, 1)^T + (-1, 2, 0)^T$$
 (k为任意常数).

这时 β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示:

$$\beta = -(2k+1)\alpha_1 + (k+2)\alpha_2 + k\alpha_3$$
 (k为任意常数).

一九九九年考研数学试卷二解答

- 一、填空题(本题共5小题,每小题3分,满分15分)
- **1.** 曲线 $\begin{cases} x = e^t \sin 2t \\ y = e^t \cos t \end{cases}$ 在点 (0,1) 处的法线方程为 _____.
- **解.** 应填 y + 2x 1 = 0. 曲线的切线斜率为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\mathrm{e}^t \cos t - \mathrm{e}^t \sin t}{\mathrm{e}^t \sin 2t + 2\mathrm{e}^t \cos 2t} = \frac{\cos t - \sin t}{\sin 2t + 2\cos 2t}.$$

点 (0,1) 对应 t=0, 把 t=0 代入得 $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{2}$, 所以该点处法线斜率为 -2, 故所 求法线方程为 y+2x-1=0.

- **2.** 设函数 y = y(x) 由方程 $\ln(x^2 + y) = x^3 y + \sin x$ 确定,则 $\frac{dy}{dx}\Big|_{x=0} =$ _____.
- **解**. 应填 1. y(x) 由方程 $\ln(x^2 + y) = x^3 y + \sin x$ 所确定,所以当 x = 0 时 y = 1. 在 方程 $\ln(x^2 + y) = x^3 y + \sin x$ 两边分别对 x 求导得

$$\frac{2x+y'}{x^2+y} = 3x^2y + x^3y' + \cos x.$$

把 x = 0 和 y = 1 代入得 $y'(0) = \frac{dy}{dx}\Big|_{x=0} = 1$.

3.
$$\int \frac{x+5}{x^2-6x+13} \, \mathrm{d}x = \underline{\hspace{1cm}}.$$

解. 应填 $\frac{1}{2}\ln(x^2-6x+13)+4\arctan\frac{x-3}{2}+C$. 事实上, $\int \frac{x+5}{x^2-6x+13} \, \mathrm{d}x = \int \frac{x-3}{x^2-6x+13} \, \mathrm{d}x + \int \frac{8}{x^2-6x+13} \, \mathrm{d}x$ $= \frac{1}{2} \int \frac{\mathrm{d}(x^2-6x+13)}{x^2-6x+13} + \int \frac{8}{(x-3)^2+4} \, \mathrm{d}x$ $= \frac{1}{2}\ln(x^2-6x+13)+4 \int \frac{\mathrm{d}\left(\frac{x-3}{2}\right)}{\left(\frac{x-3}{2}\right)^2+1}$ $= \frac{1}{2}\ln(x^2-6x+13)+4\arctan\frac{x-3}{2}+C.$

4. 函数
$$y = \frac{x^2}{\sqrt{-x^2}}$$
 在区间 $\left[\frac{1}{2}, \frac{\sqrt{3}}{2}\right]$ 上的平均值为 _____.

解. 应填 $\frac{\sqrt{3}+1}{12}\pi$. 令 $x = \sin t$,可得所求平均值为

$$\overline{y} = \frac{1}{\frac{\sqrt{3}}{2} - \frac{1}{2}} \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1 - x^2}} dx = \frac{2}{\sqrt{3} - 1} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2 t dt$$

$$=(\sqrt{3}+1)\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\frac{1}{2}-\frac{1}{2}\cos 2t\right) dt = (\sqrt{3}+1)\left[\frac{1}{2}t-\frac{1}{2}\sin 2t\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\sqrt{3}+1}{12}\pi.$$

- 5. 同试卷一第一[3]题.
- 二、选择题(本题共5小题,每小题3分,满分15分)
- 1. 同试卷一第二[2]题.
- - (A) 高阶无穷小.

- (B) 低阶无穷小.
- (C) 同阶但不等价的无穷小.
- (D) 等价无穷小.
- **解**. 应选 (C). 当 $x \rightarrow 0$ 时有

$$\lim_{x \to 0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to 0} \frac{\int_0^{5x} \frac{\sin t}{t} dt}{\int_0^{\sin x} (1+t)^{1/t} dt} = \lim_{x \to 0} \frac{\frac{\sin 5x}{5x} \cdot 5}{(1+\sin x)^{1/\sin x} \cdot \cos x}$$
$$= 5 \lim_{x \to 0} \frac{\sin 5x}{5x} \cdot \frac{1}{\lim_{\sin x \to 0} (1+\sin x)^{1/\sin x} \cdot \lim_{x \to 0} \cos x} = 5 \times 1 \times \frac{1}{e \times 1} = \frac{5}{e},$$

所以当 $x \to 0$ 时 $\alpha(x)$ 是 $\beta(x)$ 同阶但不等价的无穷小.

- 3. 同试卷一第二[1]题.
- - (A) 充分条件但非必要条件.
- (B) 必要条件但非充分条件.

(C) 充分必要条件.

- (D) 既非充分条件又非必要条件.
- **解**. 应选 (C). "必要性":数列极限的定义 "对于任意给定的 $\varepsilon_1 > 0$,存在 $N_1 > 0$,使得当 $n > N_1$ 时恒有 $|x_n a| < \varepsilon_1$ ".由该定义可以直接推出题中所述,即必要性. "充分性":对于任意给定的 $\varepsilon_1 > 0$,取 $\varepsilon = \min\left\{\frac{\varepsilon_1}{3}, \frac{1}{3}\right\}$,这时 $\varepsilon \in (0,1)$,由已知,对于此 ε 存在 N > 0,使得当 n > N 时,恒有 $|x_n a| < 2\varepsilon$,现取 $N_1 = N 1$,于是有当 $n > N > N_1$ 时,恒有 $|x_n a| < \frac{2}{3}\varepsilon_1 < \varepsilon_1$.这证明了数列 $\{x_n\}$ 收敛于 a.

解. 应选 (B). 利用行列式性质计算 f(x) 得到

$$f(x) = \begin{vmatrix} x-2 & x-1 & x-2 & x-3 \\ 2x-2 & 2x-1 & 2x-2 & 2x-3 \\ 3x-3 & 3x-2 & 4x-5 & 3x-5 \\ 4x & 4x-3 & 5x-7 & 4x-3 \end{vmatrix} = \begin{vmatrix} x-2 & 1 & 0 & -1 \\ 2x-2 & 1 & 0 & -1 \\ 3x-3 & 1 & x-2 & -2 \\ 4x & -3 & x-7 & -3 \end{vmatrix}$$
$$= \begin{vmatrix} x-2 & 1 & 0 & 0 \\ 2x-2 & 1 & 0 & 0 \\ 2x-2 & 1 & 0 & 0 \\ 3x-3 & 1 & x-2 & -1 \\ 4x & -3 & x-7 & -6 \end{vmatrix} = \begin{vmatrix} x-2 & 1 \\ 2x-2 & 1 \end{vmatrix} \cdot \begin{vmatrix} x-2 & -1 \\ x-7 & -6 \end{vmatrix}$$
$$= (-x) \times (-5x+5) = 5x \cdot (x-1),$$

故 $f(x) = x \cdot (5x - 5) = 0$ 有两个根 $x_1 = 0, x_2 = 1$,故应选 (B).

三、(本题满分 5 分)
求
$$\lim_{x\to 0} \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x \ln(1+x) - x^2}$$
.

解. 先作恒等变形, 再利用等价无穷小量代换和洛必达法则:

$$\lim_{x \to 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 + \sin x}}{x \ln(1 + x) - x^2} = \lim_{x \to 0} \frac{(\sqrt{1 + \tan x} - \sqrt{1 + \sin x})(\sqrt{1 + \tan x} + \sqrt{1 + \sin x})}{(x \ln(1 + x) - x^2)(\sqrt{1 + \tan x} + \sqrt{1 + \sin x})}$$

$$= \lim_{x \to 0} \frac{\tan x - \sin x}{x(\ln(1 + x) - x) \cdot 2} = \lim_{x \to 0} \frac{\tan x(1 - \cos x)}{2x(\ln(1 + x) - x)}$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{1 - \cos x}{\ln(1 + x) - x} = \frac{1}{2} \lim_{x \to 0} \frac{x^2/2}{\ln(1 + x) - x}$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{x}{-x/(1 + x)} = \frac{1}{2} \lim_{x \to 0} \frac{-1}{1 + x} = -\frac{1}{2}.$$

四、(本题满分 6 分)
计算
$$\int_{1}^{+\infty} \frac{\arctan x}{x^2} dx.$$

解. 利用分部积分法, 得到

$$\int_{1}^{+\infty} \frac{\arctan x}{x^{2}} dx = -\int_{1}^{+\infty} \arctan x d\left(\frac{1}{x}\right) = \left[-\frac{1}{x}\arctan x\right]_{1}^{+\infty} + \int_{1}^{+\infty} \frac{1}{x} \cdot \frac{1}{1+x^{2}} dx$$

$$= \frac{\pi}{4} + \int_{1}^{+\infty} \left(\frac{1}{x} - \frac{x}{1+x^{2}}\right) dx = \frac{\pi}{4} + \left[\ln x - \frac{1}{2}\ln(1+x^{2})\right]_{1}^{+\infty}$$

$$= \frac{\pi}{4} + \left[\ln \frac{x}{\sqrt{1+x^{2}}}\right]_{1}^{+\infty} = \frac{\pi}{4} + \frac{1}{2}\ln 2.$$

五、(本题满分7分)

求初值问题
$$\begin{cases} (y + \sqrt{x^2 + y^2}) dx - x dy = 0 \ (x > 0) \\ y \Big|_{x=1} = 0 \end{cases}$$
的解.

解. 将原方程变形得

$$\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x} = \frac{y}{x} + \sqrt{1 + (\frac{y}{x})^2}.$$

$$u + x \frac{\mathrm{d}u}{\mathrm{d}x} = u + \sqrt{1 + u^2} \quad \Rightarrow \quad \frac{\mathrm{d}u}{\sqrt{1 + u^2}} = \frac{\mathrm{d}x}{x}.$$

积分得 $\ln(u+\sqrt{1+u^2})=\ln(Cx)$,其中 C 是常数. 由 x>0 得 C>0,去掉根号

$$u + \sqrt{1 + u^2} = Cx$$
 \Rightarrow $\frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2} = Cx$.

把 $y|_{x=1} = 0$ 代入并化简得 $y = \frac{1}{2}x^2 - \frac{1}{2}$ (x > 0).

六、(本题满分7分)

同试卷一第七题.

七、(本题满分8分)

已知函数
$$y = \frac{x^3}{(x-1)^2}$$
,求

- (I) 函数的增减区间及极值;
- (II) 函数图形的凹凸区间及拐点;
- (III) 函数图形的渐近线.

解. 函数的定义域为 $(-\infty,1)\cup(1,+\infty)$, 对函数求导, 得

$$y' = \frac{x^2(x-3)}{(x-1)^3}$$
, $y'' = \frac{6x}{(x-1)^4}$.

令 y'=0 得驻点 x=0, x=3; 令 y''=0 得 x=0. 列表讨论如下:

x	$(-\infty,0)$	0	(0,1)	(1,3)	3	$(3,+\infty)$
<i>y</i> "	_	0	+	+	+	+
y'	+	0	+	_	0	+
у	凸,增	拐点	凹,增	凹,减	极小值	凹,增

由此可知,

- (I) 函数的单调增区间为 $(-\infty,1) \cup (3,+\infty)$,单调减区间为 (1,3),极小值为 $y\big|_{x=3} = \frac{27}{4}$.
- (II) 函数图形在区间 $(-\infty,0)$ 内是向上凸的,在区间 $(0,1),(1,+\infty)$ 内是向上凹的,拐点为 (0,0) 点.

(III) 由
$$\lim_{x\to 1} \frac{x^3}{(x-1)^2} = +\infty$$
,可知 $x=1$ 是函数图形的铅直渐近线.又因为

$$\lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{x^3}{x(x-1)^2} = 1,$$

$$\lim_{x \to \infty} (y - x) = \lim_{x \to \infty} \left(\frac{x^3}{(x - 1)^2} - x \right) = \lim_{x \to \infty} \left[\frac{x^3 - x(x - 1)^2}{(x - 1)^2} \right] = \lim_{x \to \infty} \left[\frac{2x^2 - x}{(x - 1)^2} \right] = 2,$$

第47页 共174页

故 v = x + 2 是函数的斜渐近线.

八、(本题满分8分)

设函数 f(x) 在闭区间 [-1,1] 上具有三阶连续导数,且 f(-1) = 0, f(1) = 1, f'(0) = 0,证明: 在开区间 (-1,1) 内至少存在一点 ξ ,使 $f'''(\xi) = 3$.

解. 方法 1: 由麦克劳林公式得

$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^2 + \frac{1}{3!}f'''(\eta)x^3$$

其中 η 介于0与x之间, $x \in [-1,1]$. 分别令x = -1和x = 1,结合已知条件得

$$f(-1) = f(0) + \frac{1}{2}f''(0) - \frac{1}{6}f'''(\eta_1) = 0, \quad -1 < \eta_1 < 0;$$

$$f(1) = f(0) + \frac{1}{2}f''(0) + \frac{1}{6}f'''(\eta_2) = 1, \quad 0 < \eta_2 < 1.$$

两式相减,得 $f'''(\eta_2) + f'''(\eta_1) = 6$. 由 f'''(x) 的连续性,知 f'''(x) 在区间 $[\eta_1, \eta_2]$ 上有最大值和最小值,设它们分别为 M 和 m,则有

$$m \le \frac{1}{2} [f'''(\eta_2) + f'''(\eta_1)] \le M.$$

再由连续函数的介值定理知,至少存在一点 $\xi \in [\eta_1, \eta_2] \subset (-1,1)$,使

$$f'''(\xi) = \frac{1}{2} [f'''(\eta_2) + f'''(\eta_1)] = 3.$$

方法 **2**: 构造函数 $\varphi(x)$,使得 $x \in [-1,1]$ 时 $\varphi'(x)$ 有三个零点,再用罗尔定理证明 ξ 的存在性.设具有三阶连续导数的 $\varphi(x) = f(x) + ax^3 + bx^2 + cx + d$,令

$$\begin{cases} \varphi(-1) = -a + b - c + d = 0, \\ \varphi(0) = f(0) + d = 0, \\ \varphi(1) = 1 + a + b + c + d = 0, \\ \varphi'(0) = c = 0, \end{cases} \Rightarrow \begin{cases} a = -\frac{1}{2}, \\ b = f(0) - \frac{1}{2}, \\ c = 0, \\ d = -f(0). \end{cases}$$

代入 $\varphi(x)$ 得

$$\varphi(x) = f(x) - \frac{1}{2}x^3 + \left(f(0) - \frac{1}{2}\right)x^2 - f(0).$$

由罗尔定理可知,存在 $\eta_1 \in (-1,0)$, $\eta_2 \in (0,1)$,使 $\varphi'(\eta_1) = 0$, $\varphi'(\eta_2) = 0$. 又因为 $\varphi'(0) = 0$,再由罗尔定理可知,存在 $\xi_1 \in (\eta_1,0)$, $\xi_2 \in (0,\eta_2)$,使得 $\varphi''(\xi_1) = 0$, $\varphi''(\xi_2) = 0$. 再由罗尔定理可知,存在 $\xi \in (\xi_1,\xi_2) \subset (\eta_1,\eta_2) \subset (-1,1)$,使得 $\varphi'''(\xi) = f'''(\xi) - 3 = 0$,即 $f'''(\xi) = 3$.

九、(本题满分9分)

同试卷一第五题.

十、(本题满分6分)

设 f(x) 是区间 $[0,+\infty)$ 上单调减少且非负的连续函数,

$$a_n = \sum_{i=1}^n f(k) - \int_1^n f(x) dx$$
 $(n = 1, 2, \dots),$

证明数列 $\{a_n\}$ 的极限存在.

解. 利用单调有界必有极限的准则来证明. 因为

$$a_n = \sum_{i=1}^{n-1} f(k) + f(n) - \sum_{k=1}^{n-1} \int_k^{k+1} f(x) dx = \sum_{k=1}^{n-1} \int_k^{k+1} [f(k) - f(x)] dx + f(n),$$

而且 f(x) 单调减少且非负, $k \le x \le k+1$, 所以 $a_n \ge 0$. 又因为

$$a_{n+1} - a_n = \left[\sum_{i=1}^{n+1} f(k) - \int_1^{n+1} f(x) dx \right] - \left[\sum_{i=1}^n f(k) - \int_1^n f(x) dx \right]$$
$$= f(n+1) - \int_n^{n+1} f(x) dx = \int_n^{n+1} [f(n+1) - f(x)] dx \le 0,$$

所以 $\{a_n\}$ 单调减少. 因为单调有界必有极限, 所以 $\lim_{n\to\infty} a_n$ 存在.

十一、(本题满分8分)

设矩阵 $A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$,矩阵 X 满足 $A^*X = A^{-1} + 2X$,其中 A^* 是 A 的伴随

矩阵, 求矩阵 X.

解. 由题设条件 $A*X = A^{-1} + 2X$,两端左乘 A 得

$$|A|X = E + 2AX$$
 \Rightarrow $(|A|E - 2A)X = E$ \Rightarrow $X = (|A|E - 2A)^{-1}$.

又因为

$$|A| = \begin{vmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 4 \implies |A|E - 2A = 2 \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix},$$

所以

$$X = (|A|E - 2A)^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

十二、(本题满分5分)

设向量组

$$\alpha_1 = (1,1,1,3)^T, \alpha_2 = (-1,-3,5,1)^T, \alpha_3 = (3,2,-1,p+2)^T, \alpha_4 = (-2,-6,10,p)^T.$$

- (I) p 为何值时,该向量组线性无关? 并在此时将向量 $\alpha = (4,1,6,10)^T$ 用 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示;
- (II) p 为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
- **解.** 对方程组 $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = \alpha$ 的增广矩阵作初等行变换:

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha) = \begin{pmatrix} 1 & -1 & 3 & -2 & \vdots & 4 \\ 1 & -3 & 2 & -6 & \vdots & 1 \\ 1 & 5 & -1 & 10 & \vdots & 6 \\ 3 & 1 & p+2 & p & \vdots & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 3 & -2 & \vdots & 4 \\ 0 & -2 & -1 & -4 & \vdots & -3 \\ 0 & 0 & p-9 & p-2 & \vdots & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 3 & -2 & \vdots & 4 \\ 0 & -2 & -1 & -4 & \vdots & -3 \\ 0 & 0 & 1 & 0 & \vdots & 1 \\ 0 & 0 & p-9 & p-2 & \vdots & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 3 & -2 & \vdots & 4 \\ 0 & -2 & -1 & -4 & \vdots & -3 \\ 0 & 0 & 1 & 0 & \vdots & 1 \\ 0 & 0 & 0 & p-2 & \vdots & 1-p \end{pmatrix}.$$

(I) 当 $p \neq 2$ 时, $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha) = 4$,故 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无 关,且方程组 $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = \alpha$ 有唯一解,解得

$$x_1 = 2$$
, $x_2 = \frac{3p-4}{p-2}$, $x_3 = 1$, $x_4 = \frac{1-p}{p-2}$.

即 α 可由 α_1 , α_2 , α_3 , α_4 线性表示,且表达式为

$$\alpha = 2\alpha_1 + \frac{3p-4}{n-2}\alpha_2 + \alpha_3 + \frac{1-p}{n-2}\alpha_4$$

(II) 当 p = 2 时, $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 3$, $\alpha_1, \alpha_2, \alpha_3$ (或 $\alpha_1, \alpha_3, \alpha_4$)线性无关,是其极大线性无关组.

二〇〇〇年考研数学试卷二解答

- 一、填空题(本题共5小题,每小题3分,满分15分)
- 1. $\lim_{x\to 0} \frac{\arctan x x}{\ln(1 + 2x^3)} = \underline{\hspace{1cm}}$
- \mathbf{p} . 应填 $-\frac{1}{6}$. 事实上,由等价无穷小量代换和洛必达法则可得

$$\lim_{x \to 0} \frac{\arctan x - x}{\ln(1 + 2x^3)} = \lim_{x \to 0} \frac{\arctan x - x}{2x^3} = \lim_{x \to 0} \frac{\frac{1}{1 + x^2} - 1}{6x^2} = \lim_{x \to 0} \frac{-x^2}{6x^2(1 + x^2)} = -\frac{1}{6}.$$

- **2.** 设函数 y = y(x) 由方程 $2^{xy} = x + y$ 所确定,则 $dy|_{x=0} = _____.$
- **解.** 应填 $(\ln 2 1) dx$. 对方程 $2^{xy} = x + y$ 两边求微分得

$$2^{xy}\ln 2 \cdot (x\,dy + y\,dx) = dx + dy.$$

由所给方程知, 当 x = 0 时 y = 1. 将 x = 0, y = 1 代入上式, 有 $\ln 2 \cdot dx = dx + dy$. 所以, $dy \big|_{x=0} = (\ln 2 - 1) dx$.

- 3. $\int_{2}^{+\infty} \frac{\mathrm{d}x}{(x+7)\sqrt{x-2}} = \underline{\hspace{1cm}}$.
- **解.** 应填 $\frac{\pi}{3}$. 令 $\sqrt{x-2} = t$, 则 $x-2 = t^2$, dx = 2t dt. 从而

$$\int_{2}^{+\infty} \frac{\mathrm{d}x}{(x+7)\sqrt{x-2}} = \int_{0}^{+\infty} \frac{2t}{(t^2+9)t} \, \mathrm{d}t = 2 \cdot \frac{1}{3} \arctan \frac{t}{3} \Big|_{0}^{+\infty} = \frac{2}{3} \cdot \frac{\pi}{2} = \frac{\pi}{3}.$$

- **4.** 曲线 $y = (2x-1)e^{1/x}$ 的斜渐近线方程为 _____.
- **解**. 应填 y = 2x + 1. 因为

$$k = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \left(2 - \frac{1}{x} \right) e^{1/x} = 2,$$

$$b = \lim_{x \to \infty} (y - 2x) = \lim_{x \to \infty} \left[(2x - 1)e^{1/x} - 2x \right] = \lim_{u \to 0} \left(\frac{2e^{u} - 2}{u} - e^{u} \right) = 2 - 1 = 1.$$

所以, 曲线有斜渐近线 y = 2x + 1.

5. 设 $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -4 & 5 & 0 \\ 0 & 0 & -6 & 7 \end{pmatrix}$, $E 为 4 阶单位矩阵,而且 <math>B = (E + A)^{-1}(E - A)$,则

解. 应填
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & -2 & 3 & 0 \\ 0 & 0 & -3 & 4 \end{pmatrix}. \quad 由于 B = (E+A)^{-1}(E-A), 所以$$

$$(E+B)^{-1} = \begin{bmatrix} E + (E+A)^{-1}(E-A) \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} (E+A)^{-1}(E+A) + (E+A)^{-1}(E-A) \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 2(E+A)^{-1} \end{bmatrix}^{-1} = \frac{1}{2}(E+A)$$

$$= \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 0 \\ -2 & 4 & 0 & 0 \\ 0 & -4 & 6 & 0 \\ 0 & 0 & -6 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & -2 & 3 & 0 \\ 0 & 0 & -3 & 4 \end{pmatrix}.$$

- 二、选择题(本题共5小题,每小题3分,共15分)
- **解.** 应选 (D). 排除法: 如果 a < 0,则在 $(-\infty, +\infty)$ 内 f(x) 的分母 $a + e^{bx}$ 必有零点 x_0 ,从而 f(x) 在 $x = x_0$ 处不连续,与题设不符.若 b > 0,则无论 a = 0 还是 $a \neq 0$ 均有 $\lim_{x \to -\infty} f(x) = \infty$,与题设 $\lim_{x \to -\infty} f(x) = 0$ 矛盾.故选 (D).
- **2.** 设函数 f(x) 满足关系式 $f''(x)+[f'(x)]^2=x$,且 f'(0)=0,则 · · · · · · · · · () (A) f(0) 是 f(x) 的极大值.
 - (B) f(0) 是 f(x) 的极小值.
 - (C) 点 (0, f(0)) 是曲线 y = f(x) 的拐点.
 - (D) f(0) 不是 f(x) 的极值, 点 (0, f(0)) 也不是曲线 y = f(x) 的拐点.
- **解.** 应选 (C). 令等式 $f''(x)+[f'(x)]^2=x$ 中 x=0, 得 $f''(0)=0-[f'(0)]^2=0$. 再求导数 (因为下式右边存在,所以左边也存在):

$$f'''(x) = (x - [f'(x)]^2)' = 1 - 2f'(x)f''(x)$$

以 x = 0 代入, 有 f'''(0) = 1, 所以

$$f'''(0) = \lim_{x \to 0} \frac{f''(x) - f''(0)}{x - 0} = \lim_{x \to 0} \frac{f''(x)}{x} = 1.$$

从而存在 x = 0 的去心邻域,在此去心邻域内,f''(x) 与 x 同号.于是在此去心邻域内,当 x < 0 时曲线 y = f(x) 是凸的,当 x > 0 时曲线 y = f(x) 是凹的,即点 (0, f(0)) 是曲线 y = f(x) 的拐点,故选 (C).

3. 同试卷一第二[1]题.

解. 应选 (C). 凑成已知极限得

$$\lim_{x \to 0} \frac{6+f(x)}{x^2} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = \lim_{x \to 0} \frac{6x - \sin 6x + \sin 6x + xf(x)}{x^3}$$

$$= \lim_{x \to 0} \frac{6x + \sin 6x}{x^3} + \lim_{x \to 0} \frac{\sin 6x + xf(x)}{x^3}$$

$$= \lim_{x \to 0} \frac{6(1 - \cos 6x)}{3x^2} + 0 = \lim_{x \to 0} \frac{2 \cdot \frac{1}{2}(6x)^2}{x^2} = 36.$$

- **5.** 具有特解 $y_1 = e^{-x}$, $y_2 = 2xe^{-x}$, $y_3 = 3e^x$ 的 3 阶常系数齐次线性微分方程是…(
 - (A) y''' y'' y' + y = 0.

(B)
$$v''' + v'' - v' - v = 0$$
.

(C)
$$y''' - 6y'' + 11y' - 6y = 0$$
.

(D)
$$y''' - 2y'' - y' + 2y = 0$$
.

解. 应选 (B). 由特解 $y_1 = e^{-x}$, $y_2 = 2xe^{-x}$, 对照常系数线性齐次微分方程的特征方程、特征根与解的对应关系知道, $r_2 = -1$ 为特征方程的二重根; 由 $y_3 = 3e^x$ 可知 $r_1 = 1$ 为特征方程的单根, 因此特征方程为

$$(r-1)(r+1)^2 = r^3 + r^2 - r - 1 = 0$$

由常系数齐次线性微分方程与特征方程的关系, 得该微分方程为

$$y''' + y'' - y' - y = 0.$$

三、(本题满分5分)

设
$$f(\ln x) = \frac{\ln(1+x)}{x}$$
, 计算 $\int f(x) dx$.

解. 作积分变量替换,令 $x = \ln t$,则有

$$\int f(x) dx = \int f(\ln t) \cdot \frac{1}{t} dt = \int \frac{\ln(1+t)}{t^2} dt = -\int \ln(1+t) d\left(\frac{1}{t}\right)$$

$$= -\left[\frac{\ln(1+t)}{t} - \int \frac{1}{t(1+t)} dt\right] = -\frac{\ln(1+t)}{t} + \int \left(\frac{1}{t} - \frac{1}{1+t}\right) dt$$

$$= -\frac{\ln(1+t)}{t} + \int \frac{1}{t} dt - \int \frac{1}{1+t} d(1+t) = -\frac{\ln(1+t)}{t} + \ln t - \ln(1-t) + C$$

$$= -e^{-x} \ln(1+e^x) + x - \ln(1+e^x) + C.$$

四、(本题满分5分)

设 xOy 平面上有正方形 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$ 及直线 l: x+y=t $(t \ge 0)$. 若 S(t) 表示正方形 D 位于直线 l 左下方部分的面积,试求 $\int_0^x S(t) dt$ $(x \ge 0)$.

解. 先写出面积 S(t) 的分段表达式. 当 0 < t < 1 时,图形为三角形,利用三角形的面积公式: $S(t) = \frac{1}{2}t^2$; 当 1 < t < 2 时,图形面积可由正方形面积减去小三角形面积:

$$S(t) = 1 - \frac{1}{2}(2-t)^2 = 1 - \frac{1}{2}(t^2 - 4t + 4) = -\frac{1}{2}t^2 + 2t - 1;$$

当 t > 2 时,图形面积就是正方形的面积: S(t) = 1,则有

$$S(t) = \begin{cases} \frac{1}{2}t^2, 0 \le t \le 1, \\ 1 - \frac{1}{2}(2 - t)^2, 1 < t \le 2, \\ 1, 2 < t. \end{cases}$$

所以, 当 $0 \le x \le 1$ 时,

$$\int_0^x S(t) dt = \int_0^x \frac{1}{2} t^2 dt = \left(\frac{1}{2} \cdot \frac{t^3}{3}\right) \Big|_0^x = \frac{x^3}{6};$$

当 1 < x ≤ 2 时,

$$\int_0^x S(t) dt = \int_0^1 S(t) dt + \int_1^x S(t) dt = \int_0^1 \frac{1}{2} t^2 dt + \int_1^x \left[1 - \frac{1}{2} (t - 2)^2\right] dt$$
$$= \frac{1}{6} + (x - 1) - \frac{1}{6} (x - 2)^3 - \frac{1}{6} = -\frac{x^3}{6} + x^2 - x + \frac{1}{3}.$$

当 x > 2 时,

$$\int_0^x S(t) dt = \int_0^2 S(t) dt + \int_2^x S(t) dt = 1 + \int_2^x 1 dt = x - 1.$$

因此

$$\int_0^x S(t) dt = \begin{cases} \frac{1}{6}x^3 & 0 \le x \le 1\\ -\frac{1}{6}x^3 + x^2 - x + \frac{1}{3} & 1 < x \le 2\\ x - 1 & x > 2 \end{cases}$$

五、(本题满分5分)

求函数 $f(x) = x^2 \ln(1+x)$ 在 x = 0 处的 n 阶导数 $f^n(0)$ $(n \ge 3)$.

解. 由麦克劳林公式,

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^{n-2}}{n-2} + o(x^{n-2}),$$

所以

$$x^{2}\ln(1+x) = x^{3} - \frac{x^{4}}{2} + \frac{x^{5}}{3} + \dots + (-1)^{n-1} \frac{x^{n-2}}{n-2} + o(x^{n}).$$

对照麦克劳林公式

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n),$$

可以得到
$$\frac{f^{(n)}(0)}{n!} = \frac{(-1)^{n-1}}{n-2}$$
,从而 $f^{(n)}(0) = \frac{(-1)^{n-1}n!}{n-2}$, $n = 3, 4, \cdots$

六、(本题满分6分)

设函数 $S(x) = \int_0^x |\cos t| dt$,

- (I) 当 n 为正整数,且 $n\pi \le x \le (n+1)\pi$ 时,证明 $2n \le S(x) < 2(n+1)$;
- (II) $\not \exists \lim_{x \to +\infty} \frac{S(x)}{x}$.
- \mathbf{p} . (I) 因为 $|\cos x| \ge 0$,且 $n\pi \le x < (n+1)\pi$,所以

$$\int_0^{n\pi} |\cos x| \, \mathrm{d}x \le \int_0^x |\cos x| \, \mathrm{d}x < \int_0^{(n+1)\pi} |\cos x| \, \mathrm{d}x.$$

又因为 $|\cos x|$ 具有周期 π ,在长度为 π 的积分区间上的积分均相等,所以

$$\int_0^{n\pi} |\cos x| \, \mathrm{d}x = n \int_0^{\pi} |\cos x| \, \mathrm{d}x = 2n, \quad \int_0^{(n+1)\pi} |\cos x| \, \mathrm{d}x = 2(n+1).$$

所以当 $n\pi \le x < (n+1)\pi$ 时 $2n \le \int_0^x |\cos x| \, \mathrm{d}x < 2(n+1)$,即 $2n \le S(x) < 2(n+1)$.

(II) 由 (1) 有, 当
$$n\pi \le x \le (n+1)\pi$$
 时, $\frac{2n}{(n+1)\pi} < \frac{S(x)}{x} < \frac{2(n+1)}{n\pi}$. 而

$$\lim_{n \to \infty} \frac{2n}{(n+1)\pi} = \lim_{n \to \infty} \frac{2}{(1+\frac{1}{n})\pi} = \frac{2}{\pi}, \quad \lim_{n \to \infty} \frac{2(n+1)}{n\pi} = \lim_{n \to \infty} \frac{2(1+\frac{1}{n})}{\pi} = \frac{2}{\pi},$$

由极限存在准则 1,得到 $\lim_{x\to\infty} \frac{S(x)}{x} = \frac{2}{\pi}$.

七、(本题满分7分)

某湖泊的水量为 V,每年排入湖泊内含污染物 A 的污水量为 $\frac{V}{6}$,流入湖泊内不含 A 的水量为 $\frac{V}{6}$,流出湖泊的水量为 $\frac{V}{3}$,已知 1999 年底湖中 A 的含量为 $5m_0$,超过国家规定指标. 为了治理污染,从 2000 年初起,限定排入湖泊中含 A 污水的浓度不超过 $\frac{m_0}{V}$. 问至多需要经过多少年,湖泊中污染物 A 的含量降至 m_0 以内?(注:设湖水中 A 的浓度是均匀的.)

解. 设从 2000 年初(相应 t=0)开始,第 t 年湖泊中污染物 A 的总量为 m,浓度为 $\frac{m}{V}$,则在时间间隔 $[t,t+\mathrm{d}t]$ 内,排入湖泊中 A 的量为

$$\frac{m_0}{V} \cdot \frac{V}{6} (t + \mathrm{d}t - \mathrm{d}t) = \frac{m_0}{6} \, \mathrm{d}t,$$

流出湖泊的水中A的量为

$$\frac{m}{V} \cdot \frac{V}{3} \, \mathrm{d}t = \frac{m}{3} \, \mathrm{d}t.$$

因而时间从 t 到 t+dt 相应地湖泊中污染物 A 的改变量为

$$dm = \left(\frac{m_0}{6} - \frac{m}{3}\right) dt$$
.

由分离变量法,可解得 $m = \frac{m_0}{2} - C \cdot e^{-\frac{t}{3}}$. 代入初始条件 $m(0) = 5m_0$, 得 $C = -\frac{9}{2}m_0$.

于是 $m = \frac{m_0}{2}(1 + 9e^{-\frac{t}{3}})$. 令 $m = m_0$,得 $t = 6\ln 3$. 即至多需经过 $6\ln 3$ 年,湖泊中 A 的含量将降至 m_0 以内.

八、(本题满分6分) 同试卷一第九题.

九、(本题满分7分)

已知 f(x) 是周期为 5 的连续函数、它在 x=0 的某个邻域内满足关系式

$$f(1+\sin x)-3f(1-\sin x)=8x+\alpha(x),$$

其中 $\alpha(x)$ 是当 $x \to 0$ 时比 x 高阶的无穷小,且 f(x) 在 x = 1 处可导,求曲线 y = f(x) 在点 (6, f(6)) 处的切线方程.

解. 将 $f(1+\sin x)-3f(1-\sin x)=8x+\alpha(x)$ 两边令 $x\to 0$ 取极限,由 f 的连续性得 $f(1)-3f(1)=\lim_{x\to 0}(8x+\alpha(x))=0 \quad \Rightarrow \quad f(6)=f(1)=0.$

又由原设 f(x) 在 x = 1 处可导,两边同除 $\sin x$,

$$\lim_{x \to 0} \frac{f(1+\sin x) - f(1)}{\sin x} + 3\lim_{x \to 0} \frac{f(1-\sin x) - f(1)}{-\sin x} = \lim_{x \to 0} \frac{8x}{\sin x} + \lim_{x \to 0} \frac{\alpha(x)}{\sin x}.$$

根据导数的定义,得

$$f'(1) + 3f'(1) = \lim_{x \to 0} \frac{8x}{x} \cdot \frac{x}{\sin x} + \lim_{x \to 0} \frac{\alpha(x)}{x} \cdot \frac{x}{\sin x} = 8 \implies f'(1) = 2.$$

所以 f'(6) = f'(1) = 2,从而切线方程为

$$(y-f(6)) = f'(6)(x-6) \Rightarrow 2x-y-12 = 0.$$

十、(本题满分8分)

设曲线 $y = ax^2$ (a > 0, $x \ge 0$) 与 $y = 1 - x^2$ 交于点 A, 过坐标原点 O 和点 A 的 直线与曲线 $y = ax^2$ 围成一平面图形. 问 a 为何值时, 该图形绕 x 轴旋转一周 所得的旋转体体积最大? 最大体积是多少?

解. 当 $x \ge 0$ 时,直线与曲线的交点为 $(x,y) = \left(\frac{1}{\sqrt{1+a}}, \frac{a}{1+a}\right)$. 故直线 OA 的方程为 $y = \frac{ax}{\sqrt{1+a}}$. 从而旋转体体积

$$V = \int_0^{\frac{1}{\sqrt{a+1}}} \pi \left(\frac{ax}{\sqrt{1+a}}\right)^2 dx - \int_0^{\frac{1}{\sqrt{a+1}}} \pi \left(ax^2\right)^2 dx = \int_0^{\frac{1}{\sqrt{a+1}}} \pi \left(\frac{a^2x^2}{1+a} - a^2x^4\right) dx$$
$$= \pi \left(\frac{a^2x^3}{3(1+a)} - \frac{a^2x^5}{5}\right) \Big|_0^{\frac{1}{\sqrt{a+1}}} = \frac{2\pi a^2}{15(1+a)^{5/2}}.$$

函数对a 求导得

$$\frac{\mathrm{d}V}{\mathrm{d}a} = \frac{2\pi}{15} \cdot \frac{2a \cdot (1+a)^{5/2} - a^2 \cdot \frac{5}{2} (1+a)^{3/2}}{(1+a)^5} = \frac{\pi}{15} \cdot \frac{[4a-a^2]}{(1+a)^{7/2}}, \quad (a > 0).$$

第56页 共174页

令 $\frac{\mathrm{d}V}{\mathrm{d}a} = 0$, 得唯一驻点 a = 4, 所以 a = 4 也是 V 的最大值点,最大体积为 $V|_{a=4} = \frac{32\sqrt{5}}{1875}\pi$.

十一、(本题满分8分)

函数 f(x) 在 $[0,+\infty)$ 上可导, f(0)=1 且满足等式

$$f'(x)+f(x)-\frac{1}{x+1}\int_0^x f(t)dt=0,$$

- (I) 求导数 f'(x);
- (II) 证明: 当 $x \ge 0$ 时,不等式 $e^{-x} \le f(x) \le 1$ 成立.
- \mathbf{p} . (I) 在已知等式两边同乘 (x+1),得到

$$(x+1)f'(x)+(x+1)f(x)-\int_0^x f(t)dt=0,$$

两边对 x 求导,整理得

$$(x+1)f''(x)+(x+2)f'(x)=0$$

令 u = f'(x), 化为 (x+1)u' + (x+2)u = 0, 即

$$\frac{\mathrm{d}u}{u} = -\frac{(x+2)}{(x+1)}\,\mathrm{d}x.$$

两边求积分,解得 $f'(x) = u = \frac{Ce^{-x}}{x+1}$. 已知 f(0) = 1,再以 x = 0 代入原方程得 f'(0) = -1. 于是 C = -1, $f'(x) = -\frac{e^{-x}}{x+1}$.

(II) 因 f(0) = 1, f'(x) < 0, 即 f(x) 单调递减,所以当 $x \ge 0$ 时 $f(x) \le 1$. 令 $\varphi(x) = f(x) - e^{-x}$,则 $\varphi(0) = 1 - 1 = 0$,且 $x \ge 0$ 时

$$\varphi'(x) = f'(x) + e^{-x} \ge f'(x) + \frac{e^{-x}}{x+1} = 0.$$

所以,当 $x \ge 0$ 时 $\varphi(x) \ge 0$,即 $f(x) \ge e^{-x}$.结合两个不等式可得,当 $x \ge 0$ 时 $e^{-x} \le f(x) \le 1$.

十二、(本题满分6分)

设
$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 0 \end{pmatrix}$, $\gamma = \begin{pmatrix} 0 \\ 0 \\ 8 \end{pmatrix}$, $A = \alpha \beta^T$, $B = \beta^T \alpha$. 其中 β^T 是 β 的转置,求解

方程 $2B^2A^2x = A^4x + B^4x + \gamma$.

解. 由题设得

$$A = \alpha \beta^{T} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 2 & 1 & 0 \\ 1 & \frac{1}{2} & 0 \end{pmatrix}, \quad B = \beta^{T} \alpha = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 2 & 1 & 0 \\ 1 & \frac{1}{2} & 0 \end{pmatrix}, \quad B = \beta^{T} \alpha = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 1 & \frac{1}{2} & 0 \end{pmatrix}$$

第57页 共174页

所以 $A^2 = \alpha \beta^T \alpha \beta^T = \alpha (\alpha \beta^T) \beta = 2A$, $A^4 = 8A$; $B^2 = 4$, $B^2 = 16$. 代入原方程得 $16Ax = 8Ax + 16x + \gamma$, 即 $8(A - 2E)x = \gamma$, 其中 E 是三阶单位矩阵. 令 $x = (x_1, x_2, x_3)^T$,代入上式,得线性非齐次方程组.

$$\begin{cases}
-x_1 + \frac{1}{2}x_2 = 0 \\
2x_1 - x_2 = 0 \\
x_1 + \frac{1}{2}x_2 - 2x_3 = 1
\end{cases}$$

方程组通解为
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} k \\ 2k \\ k - \frac{1}{2} \end{pmatrix} = k \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -\frac{1}{2} \end{pmatrix}, \quad (k \text{ 为任意常数}).$$

十三、(本题满分7分)

已知向量组
$$\beta_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
, $\beta_2 = \begin{pmatrix} a \\ 2 \\ 1 \end{pmatrix}$, $\beta_3 = \begin{pmatrix} b \\ 1 \\ 0 \end{pmatrix}$ 与向量组 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} a \\ 0 \\ 1 \end{pmatrix}$

 $\begin{pmatrix} 9 \\ 6 \\ -7 \end{pmatrix}$ 具有相同的秩,且 β_3 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,求 a, b 的值.

 \mathbf{M} . 对矩阵 $(\alpha_1, \alpha_2, \alpha_3)$ 作初等行变换得

$$(\alpha_1,\alpha_2,\alpha_3) = \begin{pmatrix} 1 & 3 & 9 \\ 2 & 0 & 6 \\ -3 & 1 & -7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 9 \\ 0 & -6 & -12 \\ 0 & 10 & 20 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 9 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

可以看出 α_1 , α_2 线性无关, 且 $\alpha_3 = 3\alpha_1 + 2\alpha_2$, 故 $r(\alpha_1, \alpha_2, \alpha_3) = 2$, α_1 , α_2 是 α_1 , α_2 , α_3 的极大线性无关组. 又 $r(\beta_1, \beta_2, \beta_3) = r(\alpha_1, \alpha_2, \alpha_3) = 2$, $\beta_1, \beta_2, \beta_3$ 线性相关, 从而得

$$|\beta_1, \beta_2, \beta_3| = \begin{vmatrix} 0 & a & b \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & a & b \\ 1 & 3 & 1 \\ -1 & 0 & 0 \end{vmatrix} = 0.$$

计算三阶行列式得 -a+3b=0,得 a=3b. 又 β_3 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,即可由 α_1,α_2 线性表示, $\alpha_1,\alpha_2\beta_3$ 线性相关,从而有

$$\left| \alpha_1, \alpha_2, \beta_3 \right| = \begin{vmatrix} 1 & 3 & b \\ 2 & 0 & 1 \\ -3 & 1 & 0 \end{vmatrix} = 0.$$

解得 b=5,从而 a=3b=15.

二〇〇一年考研数学试卷二解答

一、填空题(本题共5小题,每小题3分,满分15分)

1.
$$\lim_{x \to 1} \frac{\sqrt{3-x} - \sqrt{1+x}}{x^2 + x - 2} = \underline{\hspace{1cm}}$$
.

解. 应填 $-\frac{\sqrt{2}}{6}$. 事实上,

$$\lim_{x \to 1} \frac{\sqrt{3-x} - \sqrt{1+x}}{x^2 + x - 2} = \lim_{x \to 1} \frac{2(1-x)}{(x^2 + x - 2)(\sqrt{3-x} + \sqrt{1+x})}$$

$$= \lim_{x \to 1} \frac{-2}{(x+2)(\sqrt{3-x} + \sqrt{1+x})} = -\frac{1}{3\sqrt{2}} = -\frac{\sqrt{2}}{6}.$$

- **2.** 设函数 y = f(x) 由方程 $e^{2x+y} \cos(xy) = e-1$ 所确定,则曲线 y = f(x) 在点 (0,1) 处的法线方程为 _____.
- 解. 应填 x-2y+2=0. 在等式 $e^{2x+y}-\cos(xy)=e-1$ 两边对 x 求导得 $e^{2x+y}\cdot(2+y')+\sin(xy)\cdot(y+xy')=0.$ 将 x=0, y=1 代入上式解得 y'(0)=-2. 故所求法线方程斜率 $k=\frac{1}{2}$, 从而法线方程为 $y-1=\frac{1}{2}x$,即 x-2y+2=0.

3.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 + \sin^2 x) \cos^2 x \, dx = \underline{\qquad}.$$

解. 应填 $\frac{\pi}{8}$. 由定积分的对称性及倍角公式可得

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 + \sin^2 x) \cos^2 x \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^3 \cos^2 x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin^2 2x \, dx$$

$$= \frac{1}{4} \int_{0}^{\frac{\pi}{2}} (1 - \cos 4x) \, dx = \left[\frac{1}{4} \cdot x - \frac{1}{16} \sin 4x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{8}.$$

- **4.** 过点 $\left(\frac{1}{2},0\right)$ 且满足关系式 $y' \arcsin x + \frac{y}{\sqrt{1-x^2}} = 1$ 的曲线方程为 ______.
- **解.** 应填 y arcsin $x=x-\frac{1}{2}$. 这是因为已知关系式可改写为 $\left(y \arcsin x\right)'=1$,从而 y arcsin x=x+c. 将 $x=\frac{1}{2}$, y=0 代入上式,解得 $c=-\frac{1}{2}$. 故所求曲线方程为 y arcsin $x=x-\frac{1}{2}$.

5. 设方程
$$\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$
 有无穷多个解,则 $a =$ _____.

解. 应填 -2. 利用初等行变换化增广矩阵为阶梯形, 可得

$$\overline{A} = \begin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & a & -2 \\ 0 & a-1 & 1-a & 3 \\ 0 & 0 & (1-a)(a+2) & 2(2+a) \end{pmatrix}$$

可见,只有当 a=-2 时才有秩 $r(\overline{A})=r(A)=2<3$,对应方程组有无穷多个解.

- 二、选择题(本题共5小题,每小题3分,共15分)

(C)
$$\begin{cases} 1, & |x| \le 1, \\ 0, & |x| > 1. \end{cases}$$
 (D)
$$f(x) = \begin{cases} 0, & |x| \le 1, \\ 1, & |x| > 1. \end{cases}$$

- **解.** 应选 (B). 因为 $f(x) = \begin{cases} 1, & |x| \leq 1 \\ 0, & |x| > 1 \end{cases}$, 所以在整个定义域内 f(x) = 0 或 f(x) = 1, 所以 $|f(x)| \leq 1$, 于是 f[f(x)] = 1, 从而 $f\{f[f(x)]\} = f(1) = 1$.
- **2.** 设当 $x \to 0$ 时, $(1 \cos x)\ln(1 + x^2)$ 是比 $x \sin x^n$ 高阶的无穷小, $x \sin x^n$ 是比 $(e^{x^2} 1)$ 高阶的无穷小,则正整数 n 等于·······() (A) 1. (B) 2. (C) 3. (D) 4.
- 解. 应选 (B). 由题设可得

$$0 = \lim_{x \to 0} \frac{(1 - \cos x)\ln(1 + x^{2})}{x \sin x^{n}} = \lim_{x \to 0} \frac{\frac{1}{2}x^{2} \cdot x^{2}}{x \cdot x^{n}} = \lim_{x \to 0} \frac{1}{2}x^{3-n} \quad \Rightarrow \quad n \le 2;$$

$$0 = \lim_{x \to 0} \frac{x \sin x^{n}}{e^{x^{2}} - 1} = \lim_{x \to 0} \frac{x \cdot x^{n}}{x^{2}} = \lim_{x \to 0} x^{n-1} \quad \Rightarrow \quad n \ge 2.$$

综上可得正整数 n=2, 故选 (B).

- 3. 曲线 $y = (x-1)^2(x-3)^2$ 的拐点个数为······() (A) 0. (B) 1. (C) 2. (D) 3.
- **解**. 应选 (C). 由 $y = (x-1)^2(x-3)^2$ 可得

$$y' = 4(x-1)(x-2)(x-3), \quad y'' = 4(3x^2-12x+11), \quad y''' = 24(x-2).$$

令 y''=0,得 $3x^2-12x+11=0$. 故 y''=0 有两个不相等的实根,且在使 y''=0 这两点处,三阶导数 $y''' \neq 0$,因此曲线有两个拐点,故选 (C).

- - (A) 在 $(1-\delta,1)$ 和 $(1,1+\delta)$ 内均有 f(x) < x.
 - (B) 在 $(1-\delta,1)$ 和 $(1,1+\delta)$ 内均有 f(x) > x.
 - (C) 在 $(1-\delta,1)$ 内 f(x) < x,在 $(1,1+\delta)$ 内 f(x) > x.
 - (D) 在 $(1-\delta,1)$ 内 f(x) > x,在 $(1,1+\delta)$ 内 f(x) < x.
- **解.** 应选 (A). 令 F(x) = f(x) x,则 F'(x) = f'(x) 1 = f'(x) f'(1). 由于 f'(x) 严格 单调减少,因此当 $x \in (1 \delta, 1)$ 时,F'(x) = f'(x) f'(1) > 0;当 $x \in (1, 1 + \delta)$ 时,f'(x) < f'(1),则 F'(x) = f'(x) f'(1) < 0,且在 x = 1 处 F'(1) = f'(1) f'(1) = 0. 从而 知 F(x) 在 x = 1 处取极大值,即在在 $(1 \delta, 1)$ 和 $(1, 1 + \delta)$ 内均有 F(x) < F(1) = 0,也即 f(x) < x. 故选 (A).
- 5. 同试卷一第二[1]题.
- 三、(本题满分 6 分) 求 $\int \frac{\mathrm{d}x}{(2x^2+1)\sqrt{x^2+1}}.$
- **解**. 令 $x = \tan u$, 则 $dx = \sec^2 u \, du$, 从而

$$\int \frac{dx}{(2x^2+1)\sqrt{x^2+1}} = \int \frac{du}{(2\tan^2 u + 1)\cos u} = \int \frac{\cos u \, du}{2\sin^2 u + \cos^2 u}$$
$$= \int \frac{d(\sin u)}{\sin^2 u + 1} = \arctan(\sin u) + C = \arctan\left(\frac{x}{\sqrt{1+x^2}}\right) + C.$$

四、(本题满分7分)

求极限 $\lim_{t\to x} \left(\frac{\sin t}{\sin x}\right)^{\frac{x}{\sin t-\sin x}}$,记此极限为 f(x),求函数 f(x) 的间断点并指出其类型.

解. 由于
$$f(x) = \exp\left(\lim_{t \to x} \frac{x}{\sin t - \sin x} \ln\left(\frac{\sin t}{\sin x}\right)\right)$$
,而
$$\lim_{t \to x} \frac{x}{\sin t - \sin x} \ln\left(\frac{\sin t}{\sin x}\right) = \lim_{t \to x} \frac{x}{\sin t - \sin x} \ln\left(1 + \frac{\sin t}{\sin x} - 1\right)$$

$$= \lim_{t \to x} \frac{x}{\sin t - \sin x} \ln\left(1 + \frac{\sin t - \sin x}{\sin x}\right)$$

$$= \lim_{t \to x} \frac{x}{\sin t - \sin x} \left(\frac{\sin t - \sin x}{\sin x}\right) = \lim_{t \to x} \frac{x}{\sin x} = \frac{x}{\sin x}$$

所以 $f(x) == \exp\left(\frac{x}{\sin x}\right)$. 它的间断点为 $x \neq k\pi, k = 0, \pm 1, \pm 2, \cdots$ 当 $x \to 0$ 时, $\lim_{x \to 0} f(x) = e$, 所以 x = 0 为 f(x) 的第一类(或可去)间断点;对于非零整数 k, 当 k 为奇数时 $\lim_{x \to k\pi^-} f(x) = +\infty$,当 k 为偶数时 $\lim_{x \to k\pi^+} f(x) = +\infty$.故 $x = k\pi, k = \pm 1, \pm 2, \cdots$ 为 f(x) 的第二类(或无穷)间断点.

五、(本题满分7分)

设 $\rho = \rho(x)$ 是抛物线 $y = \sqrt{x}$ 上任一点 M(x,y) $(x \ge 1)$ 处的曲率半径,s = s(x) 是该抛物线上介于点 A(1,1) 与 M 之间的弧长,计算 $3\rho \frac{\mathrm{d}^2 \rho}{\mathrm{d}s^2} - \left(\frac{\mathrm{d}\rho}{\mathrm{d}s}\right)^2$ 的值(在直角坐标系下曲率公式为 $K = \frac{|y''|}{(1+y'^2)^{3/2}}$).

解. 由 $y = \sqrt{x}$,有 $y' = \frac{1}{2\sqrt{x}}$, $y'' = -\frac{1}{4\sqrt{x^3}}$,抛物线在点 M(x,y) 处的曲率半径 $\rho = \rho(x) = \frac{1}{K} = \frac{(1+y'^2)^{3/2}}{|y''|} = \frac{1}{2}(4x+1)^{\frac{3}{2}}.$

抛物线上的弧长

$$s = s(x) = \int_{1}^{x} \sqrt{1 + y'^2} \, dx = \int_{1}^{x} \sqrt{1 + \frac{1}{4x}} \, dx.$$

从而

$$\frac{d\rho}{ds} = \frac{\frac{d\rho}{dx}}{\frac{ds}{dx}} = \frac{\frac{1}{2} \cdot \frac{3}{2} (4x+1)^{\frac{1}{2} \cdot 4}}{\sqrt{1+\frac{1}{4x}}} = 6\sqrt{x},$$

$$\frac{d^{2}\rho}{ds^{2}} = \frac{d}{dx} \left(\frac{d\rho}{ds}\right) \cdot \frac{1}{\frac{ds}{dx}} = \frac{6}{2\sqrt{x}} \cdot \frac{1}{\sqrt{1+\frac{1}{4x}}} = \frac{6}{\sqrt{1+4x}}.$$

于是

$$3\rho \frac{d^{2}\rho}{ds^{2}} - \left(\frac{d\rho}{ds}\right)^{2} = 3 \cdot \frac{1}{2} (1 + 4x)^{\frac{3}{2}} \cdot \frac{6}{\sqrt{1 + 4x}} - \left(6\sqrt{x}\right)^{2} = 9.$$

六、(本题满分7分)

设函数 f(x) 在 $[0,+\infty)$ 上可导, f(0)=0, 且其反函数为 g(x). 若

$$\int_0^{f(x)} g(t) dt = x^2 e^x,$$

求 f(x).

解. 根据反函数的性质有 g(f(x)) = x, 已知等式两边对 x 求导可得

$$g[f(x)]f'(x) = x^2 e^x + 2x e^x \quad \Rightarrow \quad xf'(x) = x^2 e^x + 2x e^x$$
$$\Rightarrow \quad f'(x) = (x+2)e^x, \qquad x \in (0, +\infty).$$

两边积分得

$$f(x) = \int (x+2)e^x dx = (x+1)e^x + C.$$

由题设 f(x) 在 $[0,+\infty)$ 上可导,所以在 x=0 处连续,故有

$$f(0) = \lim_{x \to 0^+} f(x) = 1 + C = 0.$$

所以C=-1,于是

$$f(x) = (x+1)e^x - 1, \quad x \in [0, +\infty).$$

第62页 共174页

七、(本题满分7分)

设函数 f(x), g(x) 満足 $f'(x) = g(x), g'(x) = 2e^x - f(x)$, 且 f(0) = 0, g(0) = 2, 求 $\int_0^\pi \left[\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right] dx.$

解. 由已知条件,可得 f(x) 满足

$$f''(x)+f(x)=2e^x$$
, $f(0)=0$, $f'(0)=2$.

此为二阶常系数线性非齐次方程、解得

$$f(x) = C_1 \cos x + C_2 \sin x + e^x.$$

从而所求的积分可以计算如下:

$$\int_0^{\pi} \left[\frac{g(x)}{1+x} - \frac{f(x)}{(1+x)^2} \right] dx = \int_0^{\pi} \frac{g(x)(1+x) - f(x)}{(1+x)^2} dx$$

$$= \int_0^{\pi} \frac{f'(x)(1+x) - f(x)}{(1+x)^2} dx = \int_0^{\pi} d\left(\frac{f(x)}{1+x}\right)$$

$$= \left[\frac{f(x)}{1+x} \right]_0^{\pi} = \frac{f(\pi)}{1+\pi} - \frac{f(0)}{1+0} = \frac{1+e^{\pi}}{1+\pi}.$$

八、(本题满分9分)

设 L 是一条平面曲线,其上任意一点 P(x,y) (x>0) 到坐标原点的距离恒等于该点处的切线在 y 轴上的的截距,且 L 经过点 $\left(\frac{1}{2},0\right)$.

- (I) 试求曲线 L 的方程.
- (II) 求 L 位于第一象限部分的一条切线,使该切线与 L 以及两坐标轴所围图形面积最小.
- **解.** (I) 设曲线 L 过点 P(x,y) 的切线方程为 Y-y=y'(X-x),令 X=0,则有 Y=-xy'+y,即它在 y 轴上的截距为 -xy'+y.由题设可得

$$-xy' + y = \sqrt{x^2 + y^2}, \quad (x > 0).$$

此为一阶齐次微分方程, 求得通解为

$$\frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2} = \frac{C}{x} \implies y + \sqrt{x^2 + y^2} = C.$$

由题设曲线经过点 $\left(\frac{1}{2},0\right)$,代入通解得 $C=\frac{1}{2}$,故所求方程为

$$y + \sqrt{x^2 + y^2} = \frac{1}{2}$$
 \Rightarrow $y = \frac{1}{4} - x^2$.

(II) 由 (1) 知 $y = \frac{1}{4} - x^2$,则 y' = -2x,设过曲线上点 P(x, y) 的切线方程为

$$Y - \left(\frac{1}{4} - x^2\right) = -2x(X - x).$$

它在 x 轴, y 轴上的截距分别为 $\frac{x}{2} + \frac{1}{8x}$ 和 $x^2 + \frac{1}{4}$. 此切线与两坐标轴围成的三角形面积为:

$$A(x) = \frac{1}{2} \left(\frac{x}{2} + \frac{1}{8x} \right) \left(x^2 + \frac{1}{4} \right) = \frac{1}{64x} \left(4x^2 + 1 \right)^2, \quad x > 0.$$

第63页 共174页

由于该曲线在第一象限中与两坐标轴所围成的面积为定值,记为 S_0 ,于是题中所要求的面积为

$$S(x) = A(x) - S_0 = \frac{1}{64x} (4x^2 + 1)^2 - S_0.$$

对 S(x) 求导得

$$S'(x) = \frac{(4x^2+1)(12x^2-1)}{64x^2}.$$

令 S'(x) = 0 得 $x = \frac{1}{\sqrt{12}} = \frac{\sqrt{3}}{6}$, 当 $0 < x < \frac{\sqrt{3}}{6}$ 时, S'(x) < 0; 当 $x > \frac{\sqrt{3}}{6}$ 时, S'(x) > 0, 从而知 $x = \frac{\sqrt{3}}{6}$ 是 S(x) 在 x > 0 处的唯一极小值点,即最小值点.于是所求切线方程为:

$$Y - \left(\frac{1}{4} - \left(\frac{\sqrt{3}}{6}\right)^2\right) = -\frac{2\sqrt{3}}{6}\left(X - \frac{\sqrt{3}}{6}\right) \quad \Rightarrow \quad Y = -\frac{\sqrt{3}}{3}X + \frac{1}{3}.$$

九、(本题满分7分)

一个半球体状的雪堆,其体积融化的速率与半球面面积 S 成正比,比例常数 K>0. 假设在融化过程中雪堆始终保持半球体状,已知半径为 r_0 的雪堆在开始融化的 3 小时内,融化了其体积的 $\frac{7}{8}$,问雪堆全部融化需要多少小时?

解. 设半球形雪堆在时刻 t 时的半径为 r,则半球的体积 $V = \frac{2}{3}\pi r^3$,侧面积 $S = 2\pi r^2$. 由题设体积融化的速率与半球面面积 S 成正比,则有

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -kS \quad \Rightarrow \quad \frac{\mathrm{d}V}{\mathrm{d}r} \cdot \frac{\mathrm{d}r}{\mathrm{d}t} = -kS \quad \Rightarrow \quad \frac{\mathrm{d}r}{\mathrm{d}t} = -k.$$

积分得 r = -kt + c,把 $r|_{t=0} = r_0$ 代入得 $c = r_0$,所以 $r = -kt + r_0$. 又半径为 r_0 的雪堆在开始融化的 3 小时内,融化了其体积的 $\frac{7}{8}$,即 $V|_{t=3} = \frac{1}{8} V|_{t=0}$. 以 V 的公式代入上式,得到

$$\frac{2}{3}\pi(-3k+r_0)^3 = \frac{1}{8}\cdot\frac{2}{3}\pi r_0^3 \quad \Rightarrow \quad k = \frac{1}{6}r_0,$$

于是 $r = -kt + r_0 = r_0 \left(1 - \frac{t}{6}\right)$. 当 t = 6 时 r = 0, 雪堆全部融化需 6 小时.

十、(本题满分8分)

设 f(x) 在区间 [-a,a] (a>0) 上具有二阶连续导数, f(0)=0.

(I) 写出 f(x) 的带拉格朗日余项的一阶麦克劳林公式;

(II) 证明在
$$[-a,a]$$
 上至少存在一点 η ,使 $a^3 f''(\eta) = 3 \int_{-a}^a f(x) dx$.

解. (I) f(x) 的拉格朗日余项一阶麦克劳林公式为:

$$f(x) = f(0) + f'(0)x + \frac{1}{2}f''(\xi)x^2 = f'(0)x + \frac{f''(\xi)}{2}x^2,$$

其中 ξ 位于 0 和 x 为端点的开区间内, $x \in [-a,a]$.

(II) 将 f(x) 的麦克劳林公式从 -a 到 a 积分, 得到

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{a} f'(0)x dx + \frac{1}{2} \int_{-a}^{a} f''(\xi)x^{2} dx = \frac{1}{2} \int_{-a}^{a} f''(\xi)x^{2} dx.$$

因为 f''(x) 在 [-a,a] 上连续,所以 f''(x) 在 [-a,a] 上存在最大值 M 和最小值 m,因此

$$\frac{1}{3}ma^3 = \frac{1}{2}m\int_{-a}^a x^2 \, \mathrm{d}x \le \frac{1}{2}\int_{-a}^a f''(\xi)x^2 \, \mathrm{d}x \le \frac{1}{2}M\int_{-a}^a x^2 \, \mathrm{d}x = \frac{Ma^3}{3},$$

从而 $m \le \frac{3}{a^3} \int_{-a}^{a} f(x) dx \le M$. 由连续函数介值定理知,存在 $\eta \in [-a, a]$,使

$$f''(\eta) = \frac{3}{a^3} \int_{-a}^{a} f(x) dx \quad \Longleftrightarrow \quad a^3 f''(\eta) = 3 \int_{-a}^{a} f(x) dx.$$

十一、(本题满分6分)

已知矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. 且矩阵 X 满足

$$AXA + BXB = AXB + BXA + E$$

其中E是3阶单位矩阵,求X.

解. 由题设的关系式可得 (A-B)X(A-B)=E. 其中

$$A - B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

因为 $|A-B|=1\neq 0$,故知矩阵A-B可逆,求其逆矩阵得

$$(A-B)^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

于是,在等式(A-B)X(A-B)=E两边左乘和右乘 $(A-B)^{-1}$ 可得

$$X = \left[(A - B)^{-1} \right]^2 = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

十二、(本题满分6分)

设 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 为线性方程组AX=0的一个基础解系,

$$\beta_1 = \alpha_1 + t \alpha_2, \beta_2 = \alpha_2 + t \alpha_3, \beta_3 = \alpha_3 + t \alpha_4, \beta_4 = \alpha_4 + t \alpha_1.$$

试问实数 t 满足什么关系时, $\beta_1, \beta_2, \beta_3, \beta_4$ 也为 AX = 0 的一个基础解系.

解. 由题设知, β_1 , β_2 , β_3 , β_4 均为 α_1 , α_2 , α_3 , α_4 的线性组合,所以 β_1 , β_2 , β_3 , β_4 均为 Ax = 0 的解.下面证明 β_1 , β_2 , β_3 , β_4 线性无关.设

$$k_1\beta_1 + k_2\beta_2 + k_3\beta_3 + k_4\beta_4 = 0$$
,

代入整理得

$$(t k_4 + k_1)\alpha_1 + (t k_1 + k_2)\alpha_2 + (t k_2 + k_3)\alpha_3 + (t k_3 + k_4)\alpha_4 = 0$$

由 α_1 , α_2 , α_3 , α_4 为线性方程组 Ax = 0 的基础解系,知 α_1 , α_2 , α_3 , α_4 线性无关,即

$$\begin{cases} t k_4 + k_1 = 0, \\ t k_1 + k_2 = 0, \\ t k_2 + k_3 = 0, \\ t k_3 + k_4 = 0. \end{cases}$$

其系数行列式

$$\begin{vmatrix} 1 & 0 & 0 & t \\ t & 1 & 0 & 0 \\ 0 & t & 1 & 0 \\ 0 & 0 & t & 1 \end{vmatrix} = 1 - t^4.$$

由齐次线性方程组只有零解得充要条件可得: 当 $t \neq \pm 1$ 时,上述方程组只有零解 $k_1 = k_2 = k_3 = k_s = 0$,因此向量组 $\beta_1, \beta_2, \beta_3, \beta_4$ 线性无关,此时 $\beta_1, \beta_2, \beta_3, \beta_4$ 也是方程组 Ax = 0 的基础解系.

二〇〇二年考研数学试卷二解答

一、填空题(本题共5小题,每小题3分,满分15分)

1. 设函数
$$f(x) = \begin{cases} \frac{1 - e^{\tan x}}{\arcsin \frac{x}{2}}, & x > 0 \\ ae^{2x}, & x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ _____.

解. 应填 -2. 事实上,

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{1 - e^{\tan x}}{\arcsin \frac{x}{2}} = \lim_{x \to 0^{+}} \frac{-\tan x}{\frac{x}{2}} = \lim_{x \to 0^{+}} \frac{-x}{\frac{x}{2}} = -2;$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} a e^{2x} = a = f(0).$$

如果 f(x) 在 x = 0 处连续,必有 $f(0^+) = f(0^-) = f(0)$,即 a = -2.

- **2.** 位于曲线 $y = xe^{-x}$ (0 ≤ $x < +\infty$) 下方,x 轴上方的无界图形的面积是 _____.
- 解. 应填 1. 事实上, 所求面积即为

$$S = \int_0^{+\infty} x e^{-x} dx = -\int_0^{+\infty} x d(e^{-x}) = -\left[x e^{-x}\right]_0^{+\infty} + \int_0^{+\infty} e^{-x} dx = 0 + 1 = 1.$$

3. 同试卷一第一[3]题.

4.
$$\lim_{n \to \infty} \frac{1}{n} \left[\sqrt{1 + \cos \frac{\pi}{n}} + \sqrt{1 + \cos \frac{2\pi}{n}} + \dots + \sqrt{1 + \cos \frac{n\pi}{n}} \right] = \underline{\hspace{1cm}}$$

解. 应填
$$\frac{2\sqrt{2}}{\pi}$$
. 令 $f(x) = \sqrt{1 + \cos x}$, $\Delta x_i = \frac{\pi}{n}$ $(i = 1, 2, \dots, n)$, 由定积分的定义有
$$\lim_{n \to \infty} \frac{1}{n} \left[\sqrt{1 + \cos \frac{\pi}{n}} + \sqrt{1 + \cos \frac{2\pi}{n}} + \dots + \sqrt{1 + \cos \frac{n\pi}{n}} \right]$$
$$= \lim_{n \to \infty} \frac{1}{\pi} \sum_{i=1}^{n} \sqrt{1 + \cos \frac{\pi}{n}} i \cdot \frac{\pi}{n} = \frac{1}{\pi} \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{i\pi}{n}\right) \Delta x_i$$
$$= \frac{1}{\pi} \int_{0}^{\pi} \sqrt{1 + \cos x} \, \mathrm{d}x = \frac{\sqrt{2}}{\pi} \int_{0}^{\pi} \cos \frac{x}{2} \, \mathrm{d}x = \frac{2\sqrt{2}}{\pi}.$$

5. 矩阵
$$\begin{pmatrix} 0 & -2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 2 \end{pmatrix}$$
 的非零特征值是 _____.

解. 应填 4. 记
$$A = \begin{pmatrix} 0 & -2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 2 \end{pmatrix}$$
,则
$$|\lambda E - A| = \begin{vmatrix} \lambda & 2 & 2 \\ -2 & \lambda - 2 & 2 \\ 2 & 2 & \lambda - 2 \end{vmatrix} = \begin{vmatrix} \lambda & 2 & 2 \\ 0 & \lambda & \lambda \\ 2 & 2 & \lambda - 2 \end{vmatrix} = \lambda \begin{vmatrix} \lambda & 2 & 2 \\ 0 & 1 & 1 \\ 2 & 2 & \lambda - 2 \end{vmatrix}$$

$$= \lambda \begin{vmatrix} \lambda & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 2 & \lambda - 2 \end{vmatrix} = \lambda \cdot \lambda \cdot (-1)^{1+1} \begin{vmatrix} 1 & 1 \\ 2 & \lambda - 2 \end{vmatrix} = \lambda^{2} (\lambda - 4).$$

令 $|\lambda E - A| = 0$,解得 $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = 4$,故 $\lambda = 4$ 是矩阵的非零特征值.

- 二、选择题(本题共5小题,每小题3分,共15分)
- **1.** 设函数 f(u) 可导, $y = f(x^2)$ 当自变量 x 在 x = -1 处取得增量 $\Delta x = -0.1$ 时,相应的函数增量 Δy 的线性主部为 0.1,则 $f'(1) = \cdots$ (C) 1. (D) 0.5.
- **解**. 应选 (D). 在可导条件下, Δy 的线性主部即为微分 dy. 由于 dy = $f'(x^2)2x\Delta x$, 以 x = -1, $\Delta x = -0.1$ 代入得 $0.1 = f'(1) \times 0.2$, 于是 f'(1) = 0.5, 从而选 (D).
- **2.** 设函数 f(x) 连续,则下列函数中,必为偶函数的是············()
 - (A) $\int_0^x f(t^2) dt$.

- (B) $\int_0^x f^2(t) dt$.
- (C) $\int_0^x t[f(t)-f(-t)] dt.$
- (D) $\int_{0}^{x} t[f(t) + f(-t)] dt$.
- 解. 应选 (D). 对于 (D), 令 $F(x) = \int_0^x t[f(t) + f(-t)] dt$, 则 $F(-x) = \int_0^{-x} t[f(t) + f(-t)] dt = \int_0^x (-u)[f(-u) + f(u)] d(-u)$ $= \int_0^x u[f(-u) + f(u)] du = F(x),$

所以 (D) 为偶函数. 同理证得 (A) 和 (C) 为奇函数, 而 (B) 不确定, 如 f(t) = 1 + t. 故应选 (D).

- 解. 应选 (C). 由 $y'' + py' + qy = e^{3x}$ 和 y(0) = y'(0) = 0 得 y''(0) = 1. 由洛必达法则 $\lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x \to 0} \frac{x^2}{y(x)} = \lim_{x \to 0} \frac{2x}{y'(x)} = \lim_{x \to 0} \frac{2}{y''(x)} = \frac{2}{1} = 2.$

本题也可利用泰勒公式求解.

4. 同试卷一第二[3]题.

- **5.** 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,向量 β_1 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,而向量 β_2 不能 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,则对于任意常数 k,必有 · · · · · · · · · · · · · · · · · · ()
 - (A) α_1 , α_2 , α_3 , $k\beta_1 + \beta_2$ 线性无关.
- (B) $\alpha_1, \alpha_2, \alpha_3, k\beta_1 + \beta_2$ 线性相关.
- (C) α_1 , α_2 , α_3 , $\beta_1 + k\beta_2$ 线性无关.
- (D) $\alpha_1, \alpha_2, \alpha_3, \beta_1 + k\beta_2$ 线性相关.
- **解**. 应选 (A). 取 k=0,则显然能排除 (B) 和 (C);而取 k=1,则由反证法不难排除 (D). 故仅有 (A) 是正确的. 用反证法,若 $\alpha_1,\alpha_2,\alpha_3,k\beta_1+\beta_2$ 线性相关,因已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,故 $k\beta_1+\beta_2$ 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示. 即存在常数 $\lambda_1,\lambda_2,\lambda_3$,使得

$$k\beta_1 + \beta_2 = \lambda_1\alpha_1 + \lambda_2\alpha_2 + \lambda_3\alpha_3.$$

又已知 β_1 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,即存在常数 l_1, l_2, l_3 、使得

$$\beta_1 = l_1 \alpha_1 + l_2 \alpha_2 + l_3 \alpha_3.$$

由上述两式得

$$\beta_2 = (\lambda_1 - k l_1)\alpha_1 + (\lambda_2 - k l_2)\alpha_2 + (\lambda_3 - k l_3)\alpha_3.$$

这与 β_2 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示矛盾. 故向量组 $\alpha_1, \alpha_2, \alpha_3, k\beta_1 + \beta_2$ 线性无关.

三、(本题满分6分)

已知曲线的极坐标方程是 $r = 1 - \cos \theta$,求该曲线上对应于 $\theta = \frac{\pi}{6}$ 处的切线与法线的直角坐标方程.

解. 由极坐标到直角坐标的变换公式 $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$, 得参数方程为

$$\begin{cases} x = (1 - \cos \theta) \cos \theta, \\ y = (1 - \cos \theta) \sin \theta, \end{cases} \Rightarrow \begin{cases} x = \cos \theta - \cos^2 \theta, \\ y = \sin \theta - \cos \theta \sin \theta. \end{cases}$$

曲线上 $\theta = \frac{\pi}{6}$ 的点对应的直角坐标为 $\left(\frac{\sqrt{3}}{2} - \frac{3}{4}, \frac{1}{2} - \frac{\sqrt{3}}{4}\right)$,切线斜率为

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{\theta=\frac{\pi}{6}} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}\Big|_{\theta=\frac{\pi}{6}} = \frac{\cos\theta + \sin^2\theta - \cos^2\theta}{-\sin\theta + 2\cos\theta\sin\theta}\Big|_{\theta=\frac{\pi}{6}} = 1.$$

于是切线的直角坐标方程为

$$y-\left(\frac{1}{2}-\frac{\sqrt{3}}{4}\right)=x-\left(\frac{\sqrt{3}}{2}-\frac{3}{4}\right)\quad \Rightarrow \quad x-y-\frac{3}{4}\sqrt{3}+\frac{5}{4}=0.$$

法线的直角坐标方程为

$$y - \left(\frac{1}{2} - \frac{\sqrt{3}}{4}\right) = -\frac{1}{1}\left(x - \left(\frac{\sqrt{3}}{2} - \frac{3}{4}\right)\right) \implies x + y - \frac{\sqrt{3}}{4} + \frac{1}{4} = 0.$$

四、(本题满分7分)

设
$$f(x) = \begin{cases} 2x + \frac{3}{2}x^2, & -1 \le x < 0; \\ \frac{xe^x}{(e^x + 1)^2}, & 0 \le x \le 1. \end{cases}$$
 求函数 $F(x) = \int_{-1}^x f(t) dt$ 的表达式.

解. 当 $-1 \le x < 0$ 时,

$$F(x) = \int_{-1}^{x} f(t) dt = \int_{-1}^{x} (2t + \frac{3}{2}t^{2}) dt = \left[t^{2} + \frac{1}{2}t^{3}\right]_{-1}^{x} = \frac{1}{2}x^{3} + x^{2} - \frac{1}{2}.$$

当 $0 \le x < 1$ 时,

$$F(x) = \int_{-1}^{x} f(t) dt = \int_{-1}^{0} f(t) dt + \int_{0}^{x} f(t) dt = \left[t^{2} + \frac{1}{2} t^{3} \right]_{-1}^{0} + \int_{0}^{x} \frac{t e^{t}}{(e^{t} + 1)^{2}} dt$$

$$= -\frac{1}{2} - \int_{0}^{x} t d\left(\frac{1}{e^{t} + 1} \right) = -\frac{1}{2} - \left[\frac{t}{e^{t} + 1} \right]_{0}^{x} + \int_{0}^{x} \frac{dt}{e^{t} + 1}$$

$$= -\frac{1}{2} - \frac{x}{e^{x} + 1} - \int_{0}^{x} \frac{d(e^{-t})}{1 + e^{-t}} = -\frac{1}{2} - \frac{x}{e^{x} + 1} - \left[\ln(1 + e^{-t}) \right]_{0}^{x}$$

$$= -\frac{1}{2} - \frac{x}{e^{x} + 1} + \ln \frac{e^{x}}{e^{x} + 1} + \ln 2.$$

所以

$$F(x) = \begin{cases} \frac{1}{2}x^3 + x^2 - \frac{1}{2}, & -1 \le x < 0; \\ \ln \frac{e^x}{e^x + 1} - \frac{x}{e^x + 1} + \ln 2 - \frac{1}{2}, & 0 \le x < 1. \end{cases}$$

五、(本题满分7分)

已知函数 f(x) 在 $(0,+\infty)$ 内可导 f(x) > 0, $\lim_{x \to +\infty} f(x) = 1$, 且满足

$$\lim_{h\to 0} \left(\frac{f(x+hx)}{f(x)}\right)^{\frac{1}{h}} = e^{\frac{1}{x}},$$

求 f(x).

解. 当 $x \neq 0$ 时,

$$\lim_{h \to 0} \frac{1}{h} \ln \left(\frac{f(x+hx)}{f(x)} \right) = \lim_{h \to 0} \frac{1}{h} (\ln f(x+hx) - \ln f(x))$$

$$= x \lim_{h \to 0} \frac{\ln f(x+hx) - \ln f(x)}{hx} = x [\ln f(x)]' = \frac{xf'(x)}{f(x)},$$

从而得到

$$e^{\frac{1}{x}} = \lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = \exp\left(\lim_{h \to 0} \frac{1}{h} \ln\left(\frac{f(x+hx)}{f(x)}\right)\right) = \exp\left(\frac{xf'(x)}{f(x)}\right).$$

于是推得

$$\frac{xf'(x)}{f(x)} = x[\ln f(x)]' = \frac{1}{x} \quad \Rightarrow \quad [\ln f(x)]' = \frac{1}{x^2}.$$

解此微分方程,得到 $\ln f(x) = -\frac{1}{x} + C_1$. 整理得 $f(x) = Ce^{-\frac{1}{x}}$. 再利用条件 $\lim_{x \to +\infty} f(x) = C = 1$,求得 $f(x) = e^{-\frac{1}{x}}$.

六、(本题满分8分)

求微分方程 x dy + (x - 2y) dx = 0 的一个解 y = y(x),使得由曲线 y = y(x) 与 直线 x = 1,x = 2 以及 x 轴所围成的平面图形绕 x 轴旋转一周的旋转体体积最小.

解. 这是一阶线性微分方程 $y' - \frac{2}{r}y = -1$,由通解公式有

$$y = e^{\int \frac{2}{x} dx} \left[-\int e^{-\int \frac{2}{x} dx} dx + C \right] = x^2 \left[-\int \frac{1}{x^2} dx + C \right] = x^2 \left(\frac{1}{x} + C \right) = x + C x^2.$$

由曲线 $y = x + Cx^2$ 与 x = 1, x = 2 及 x 轴围成的图形绕 x 轴旋转一周的旋转体的体积为

$$V = \pi \int_{1}^{2} (x + Cx^{2})^{2} dx = \pi \left(\frac{31}{5}C^{2} + \frac{15}{2}C + \frac{7}{3}\right).$$

求导并令导数为零,得到

$$\frac{\mathrm{d}V}{\mathrm{d}C} = \pi \left(\frac{62}{5}C + \frac{15}{2} \right) = 0.$$

解得 $C = -\frac{75}{124}$. 又 V''(C) > 0,故 $C = -\frac{75}{124}$ 为 V 的惟一极小值点,也是最小值点,于是所求曲线为 $y = x - \frac{75}{124}x^2$.

七、(本题满分7分)

某闸门的形状与大小如图所示,其中直线 l 为对称轴,闸门的上部为矩形 ABCD,下部由二次抛物线与线段 AB 所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为 5:4,闸门矩形部分的高 h 应为多少 m(*)?

解. 建立坐标系如下图:

设底部抛物线为 $y = px^2 + q$,由坐标轴的建立知此抛物线过 (0,0),(1,1) 点,代入抛物线的方程,解得 q = 0,p = 1. 即底部抛物线是 $y = x^2$ $(-1 \le x \le 1)$. 已知压力 = 压强 × 面积. 设 ρ 为水的密度,g 为重力加速度,则平板 ABCD 上

所受的总压力为

$$P_1 = \int_1^{1+h} 2\rho g(1+h-y) \, \mathrm{d}y = \rho g h^2,$$

抛物板 AOB 上所受的总压力为

$$P_2 = \int_0^1 2\rho \, g(1+h-y) \sqrt{y} \, dy = 4\rho \, g\left(\frac{1}{3}h + \frac{2}{15}\right).$$

由题意得

$$P_1: P_2 = 5: 4 \implies \frac{h^2}{4\left(\frac{1}{3}h + \frac{2}{15}\right)} = \frac{5}{4}.$$

解之得 $h = -\frac{1}{3}$ (舍去) 或 h = 2(*),即闸门矩形部分的高应为 2m.

八、(本题满分8分)

设 $0 < x_1 < 3$, $x_{n+1} = \sqrt{x_n(3-x_n)}$ $(n = 1, 2, \dots)$, 证明数列 $\{x_n\}$ 的极限存在,并求此极限.

解. 先说明有界性: 由 $0 < x_1 < 3$ 知 x_1 及 $3 - x_1$ 均为正数, 故

$$0 < x_2 = \sqrt{x_1(3 - x_1)} \le \frac{1}{2}(x_1 + 3 - x_1) = \frac{3}{2}.$$

假设 $0 < x_k \le \frac{3}{2} \ (k \ge 2)$,则有

$$x_{k+1} = \sqrt{x_k(3-x_k)} \le \frac{1}{2}(x_k+3-x_k) = \frac{3}{2}.$$

由数学归纳法知,对任意正整数 $n \ge 2$ 有 $0 < x_n \le \frac{3}{2}$,即数列有界. 再说明单调性: 因为

$$x_{n+1} - x_n = \sqrt{x_n(3 - x_n)} - x_n \le \frac{x_n(3 - x_n) - x_n^2}{\sqrt{x_n(3 - x_n)} + x_n} = \frac{x_n(3 - 2x_n)}{\sqrt{x_n(3 - x_n)} + x_n} \ge 0,$$

所以 $\{x_n\}$ 单调增加.数列 $\{x_n\}$ 单调增加且有上界,所以 $\lim_{n\to\infty} x_n$ 存在,记为 a.由 $x_{n+1} = \sqrt{x_n(3-x_n)}$ 两边取极限得 $a = \sqrt{a(3-a)}$,即 $2a^2-3a=0$.解得 $a=\frac{3}{2}$ 或 a=0,但因 $x_1>0$ 且单调增加,故 $a\neq 0$,所以 $\lim_{n\to\infty} x_n=\frac{3}{2}$.

九、(本题满分8分)

设
$$0 < a < b$$
, 证明不等式 $\frac{2a}{a^2 + b^2} < \frac{\ln b - \ln a}{b - a} < \frac{1}{\sqrt{ab}}$.

解. (I) 先证左边不等式. 由拉格朗日中值定理. 存在 $\xi \in (a,b)$, 使得

$$\frac{\ln b - \ln a}{b - a} = (\ln x)' \Big|_{x = \xi} = \frac{1}{\xi}.$$

而 $\frac{1}{\varepsilon} > \frac{1}{b} > \frac{2a}{a^2 + b^2}$,所以左边不等式成立.

(II) 再证右边不等式. 令

$$\psi(x) = \ln x - \ln a - \frac{1}{\sqrt{ax}}(x - a),$$

第72页 共174页

则有 $\psi(a)=0$,及

$$\psi'(x) = \frac{1}{x} - \frac{1}{\sqrt{a}} \left(\frac{1}{2\sqrt{x}} + \frac{a}{2x\sqrt{x}} \right) = -\frac{(\sqrt{x} - \sqrt{a})^2}{2x\sqrt{ax}} < 0.$$

所以当 x > a > 0 时, $\psi(x) < 0$,再以 x = b 代入,得

$$\ln b - \ln a < \frac{1}{\sqrt{ab}}(b-a) \quad \Rightarrow \quad \frac{\ln b - \ln a}{b-a} < \frac{1}{\sqrt{ab}}.$$

从而右边不等式成立.

十、(本题满分8分)

设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0$, $f'(0) \neq 0$, $f''(0) \neq 0$. 证明:存在惟一的一组实数 $\lambda_1, \lambda_2, \lambda_3$,使得当 $h \to 0$ 时,

$$\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)$$

是比 h^2 高阶的无穷小.

 \mathbf{p} . 要证存在唯一的一组 $\lambda_1, \lambda_2, \lambda_3$,使得

$$L = \lim_{h \to 0} \frac{\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)}{h^2} = 0.$$

由极限的四则运算法则知,分子极限应为0.即

$$\lim_{h\to 0} \left[\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) \right] = f(0)$$

由
$$f(0) \neq 0$$
,求得 $\lambda_1 + \lambda_2 + \lambda_3 = 1$. 再由洛必达法则得
$$L = \lim_{h \to 0} \frac{\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)}{h^2}$$
$$= \lim_{h \to 0} \frac{\lambda_1 f'(h) + 2\lambda_2 f'(2h) + 3\lambda_3 f'(3h)}{2h}.$$

由极限的四则运算法则知分子的极限应是 0. 即

$$\lim_{h\to 0} (\lambda_1 f'(h) + 2\lambda_2 f'(2h) + 3\lambda_3 f'(3h)) = 0.$$

由 $f'(0) \neq 0$,求得 $\lambda_1 + 2\lambda_2 + 3\lambda_3 = 0$. 继续用洛必达法则,由 f''(x) 在 x = 0 连 续可得

$$L = \lim_{h \to 0} \frac{\lambda_1 f''(h) + 4\lambda_2 f''(2h) + 9\lambda_3 f''(3h)}{2} = \frac{1}{2} (\lambda_1 + 4\lambda_2 + 9\lambda_3) f''(0) = 0.$$

由 $f''(0) \neq 0$,求得 $\lambda_1 + 4\lambda_2 + 9\lambda_3 = 0$. 所以 $\lambda_1, \lambda_2, \lambda_3$ 应满足

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1, \\ \lambda_1 + 2\lambda_2 + 3\lambda_3 = 0, \\ \lambda_1 + 4\lambda_2 + 9\lambda_3 = 0. \end{cases}$$

由于系数行列式 $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = 2 \neq 0$,由克莱姆法则知,存在唯一的一组解满足题

设要求, 证毕.

注记: 也可由泰勒公式求得 $\lambda_1, \lambda_2, \lambda_3$ 应满足的方程组.

十一、(本题满分6分)

已知 A, B 为 3 阶矩阵, 且满足 $2A^{-1}B = B - 4E$, 其中 E 是 3 阶单位矩阵. (I) 证

明: 矩阵
$$A-2E$$
 可逆; (II) 若 $B = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, 求矩阵 A .

解. (I) 由题设条件 $2A^{-1}B = B - 4E$, 两边左乘 A, 整理得 AB - 2B - 4A = 0. 所以 $(A - 2E)(B - 4E) = 8E \quad \Rightarrow \quad (A - 2E) \cdot \frac{1}{8}(B - 4E) = E.$

根据可逆矩阵的定义知 A-2E 可逆,且 $(A-2E)^{-1}=\frac{1}{8}(B-4E)$.

(II) 由 (I) 结果知 $A = 8(B-4E)^{-1} + 2E$. 而

$$B-4E = \begin{pmatrix} -3 & -2 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} \implies (B-4E)^{-1} = \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} & 0 \\ -\frac{1}{8} & -\frac{3}{8} & 0 \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}.$$

代入 $A = 8(B-4E)^{-1} + 2E$ 可得

$$A = 8(B - 4E)^{-1} + 2E = \begin{pmatrix} 0 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

十二、(本题满分6分)

同试卷一第九题.

二〇〇三年考研数学试卷二解答

- 一、填空题(本题共6小题,每小题4分,满分24分)
- **1.** 若 $x \to 0$ 时, $(1-ax^2)^{\frac{1}{4}}-1$ 与 $x \sin x$ 是等价无穷小,则 a =_____.
- 解. 应填 -4. 由等价无穷小量代换可得

$$1 = \lim_{x \to 0} \frac{(1 - ax^2)^{\frac{1}{4}}}{x \sin x} = \lim_{x \to 0} \frac{-\frac{1}{4}ax^2}{x^2} = -\frac{1}{4}a,$$

从而 a = -4.

- **2.** 设函数 y = f(x) 由方程 $xy + 2\ln x = y^4$ 所确定,则曲线 y = f(x) 在点 (1,1) 处的 切线方程是 .
- **解**. 应填 x-y=0. 对所给方程两边对 x 求导数得

$$y + xy' + \frac{2}{x} = 4y^3y'$$
.

将 x = 1, y = 1 代入上式, 得 y'(1) = 1. 故曲线在点 (1,1) 处的切线方程为

$$y-1=1\cdot(x-1)$$
 \Rightarrow $x-y=0$.

- **3.** $y = 2^x$ 的麦克劳林公式中 x^n 项的系数是 ______
- **解**. 应填 $\frac{(\ln 2)^n}{n!}$. 因为 $y^{(n)} = 2^x (\ln 2)^n$,所以 $y^{(n)}(0) = (\ln 2)^n$,从而所求系数为

$$\frac{y^{(n)}(0)}{n!} = \frac{(\ln 2)^n}{n!}.$$

- **4.** 设曲线的极坐标方程为 $\rho = e^{a\theta}$ (a > 0),则该曲线上相应于 θ 从 0 变到 2π 的一段弧与极轴所围成的图形的面积为 ______.
- 解. 应填 $\frac{1}{4a}(e^{4\pi a}-1)$. 由极坐标下平面图形的面积公式得

$$S = \frac{1}{2} \int_0^{2\pi} \rho^2(\theta) d\theta = \frac{1}{2} \int_0^{2\pi} e^{2a\theta} d\theta = \left[\frac{1}{4a} e^{2a\theta} \right]_0^{2\pi} = \frac{1}{4a} (e^{4\pi a} - 1).$$

- **5.** 设 α 为 3 维列向量, α^T 是 α 的转置.若 $\alpha\alpha^T = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$,则 $\alpha^T\alpha = \underline{\qquad}$
- 解. 应填3. 若矩阵的秩为1,则可把它其分解为一列乘一行的形式. 因为

$$A = \alpha \alpha^{T} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} (1 \ -1 \ 1),$$

第75页 共174页

所以
$$\alpha = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
,于是 $\alpha^T \alpha = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 3$.

- **6.** 设三阶方阵 A, B 满足 $A^2B-A-B=E$, 其中 E 为三阶单位矩阵, 若 $A=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -2 & 0 & 1 \end{pmatrix}$, 则 |B|= ______.
- **解**. 应填 $\frac{1}{2}$. 由 $A^2B A B = E$,知 (A + E)(A E)B = A + E. 易知矩阵 A + E 可逆,于是有 (A E)B = E. 两边取行列式得 $|A E| \cdot |B| = 1$,所以

$$|B| = |A - E|^{-1} = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -2 & 0 & 0 \end{vmatrix}^{-1} = \frac{1}{2}.$$

- 二、选择题(本题共6小题,每小题4分,满分24分)
- 1. 同试卷一第二[2]题.
- 2. 设 $a_n = \frac{3}{2} \int_0^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} \, dx$,则极限 $\lim_{n \to \infty} n a_n$ 等于······()

 (A) $(1+e)^{\frac{3}{2}}+1$. (B) $(1+e^{-1})^{\frac{3}{2}}-1$. (C) $(1+e^{-1})^{\frac{3}{2}}+1$. (D) $(1+e)^{\frac{3}{2}}-1$.
- 解. 应选 (B). 由换元积分法得

$$a_n = \frac{3}{2} \int_0^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} \, \mathrm{d}x = \frac{3}{2n} \int_0^{\frac{n}{n+1}} \sqrt{1+x^n} d(1+x^n)$$
$$= \left[\frac{1}{n} (1+x^n)^{\frac{3}{2}} \right]_0^{\frac{n}{n+1}} = \frac{1}{n} \left(1 + \left(\frac{n}{n+1} \right)^n \right)^{\frac{3}{2}} - \frac{1}{n}.$$

由重要极限之二可得

$$\lim_{n \to \infty} n a_n = \lim_{n \to \infty} \left[\left(1 + \left(\frac{n}{n+1} \right)^n \right)^{\frac{3}{2}} - 1 \right] = (1 + e^{-1})^{\frac{3}{2}} - 1.$$

- 3. 已知 $y = \frac{x}{\ln x}$ 是微分方程 $y' = \frac{y}{x} + \phi\left(\frac{x}{y}\right)$ 的解,则 $\phi\left(\frac{x}{y}\right)$ 的表达式为 · · · · · () (A) $-\frac{y^2}{x^2}$. (B) $\frac{y^2}{x^2}$. (C) $-\frac{x^2}{y^2}$. (D) $\frac{x^2}{y^2}$.
- **解**. 应选 (A). 由 $y = \frac{x}{\ln x}$ 得 $y' = \frac{\ln x 1}{\ln^2 x}$. 代入微分方程得

$$\frac{\ln x - 1}{\ln^2 x} = \frac{1}{\ln x} + \phi(\ln x) \quad \Rightarrow \quad \phi(\ln x) = -\frac{1}{\ln^2 x} \quad \Rightarrow \quad \phi\left(\frac{x}{y}\right) = -\frac{y^2}{x^2}.$$

4. 同试卷一第二[1]题.

解. 应选 (B). 当 $x \in (0, \frac{\pi}{4})$ 时 $\tan x > x > 0$, $\frac{\tan x}{x} > 1$, $\frac{x}{\tan x} < 1$. 从而有

$$I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} \, \mathrm{d}x > \frac{\pi}{4} > \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} \, \mathrm{d}x = I_2.$$

利用 $I_1 > I_2$ 且 $I_2 < \frac{\pi}{4}$,可以排除选项 (A), (C), (D). 也可以利用 $\frac{\tan x}{x}$ 在 $\left(0, \frac{\pi}{4}\right)$ 上单调增加直接得到 $I_1 < 1$.

- 6. 同试卷一第二[4]题.
- 三、(本题满分10分)

设函数
$$f(x) = \begin{cases} \frac{\ln(1+ax^3)}{x-\arcsin x}, & x < 0; \\ 6, & x = 0; & \text{问 } a \text{ 为何值时, } f(x) \text{ 在 } x = 0 \text{ 处连续;} \\ \frac{e^{ax}+x^2-ax-1}{x\sin\frac{x}{4}}, & x > 0. \end{cases}$$

a 为何值时, x=0 是 f(x) 的可去间断点?

解. 因为 f(0)=6,而单侧极限为

$$f(0^{-}) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\ln(1 + ax^{3})}{x - \arcsin x} = \lim_{x \to 0^{-}} \frac{ax^{3}}{x - \arcsin x}$$

$$= \lim_{x \to 0^{-}} \frac{3ax^{2}}{1 - \frac{1}{\sqrt{1 - x^{2}}}} = \lim_{x \to 0^{-}} \frac{3ax^{2}}{\sqrt{1 - x^{2}} - 1} \cdot \lim_{x \to 0^{-}} \sqrt{1 - x^{2}} = \lim_{x \to 0^{-}} \frac{3ax^{2}}{-\frac{1}{2}x^{2}} = -6a,$$

$$f(0^{+}) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{e^{ax} + x^{2} - ax - 1}{x \sin \frac{x}{4}} = \lim_{x \to 0^{+}} \frac{e^{ax} + x^{2} - ax - 1}{\frac{x^{2}}{4}}$$

$$= 4 \lim_{x \to 0^{+}} \frac{e^{ax} + x^{2} - ax - 1}{x^{2}} = 4 \lim_{x \to 0^{+}} \frac{ae^{ax} + 2x - a}{2x}$$

$$= 4 \lim_{x \to 0^{+}} \frac{a^{2}e^{ax} + 2}{2} = 2 \lim_{x \to 0^{+}} (a^{2}e^{ax} + 2) = 2a^{2} + 4.$$

所以,x = 0 为 f(x) 的连续点当且仅当 $-6a = 6 = 2a^2 + 4$,即 a = -1;x = 0 为 f(x) 的可去间断点当且仅当 $-6a = 2a^2 + 4 \neq 6$,即 $2a^2 + 6a + 4 = 0$ 但 $a \neq -1$,即 a = -2.

四、(本题满分9分)

设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = 1 + 2t^2, \\ y = \int_1^{1+2\ln t} \frac{\mathrm{e}^u}{u} \, \mathrm{d}u \end{cases} (t > 1) \text{ 所确定, } x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \Big|_{x=9}.$$

解. 设
$$x = \varphi(t) = 1 + 2t^2, y = \psi(t) = \int_1^{1+2\ln t} \frac{e^u}{u} du$$
, 则
$$\frac{dx}{dt} = \varphi'(t) = 4t, \quad \frac{dy}{dt} = \psi'(t) = \frac{e^{1+2\ln t}}{1+2\ln t} \cdot \frac{2}{t} = \frac{e \cdot t^2}{1+2\ln t} \cdot \frac{2}{t} = \frac{2et}{1+2\ln t}.$$

所以

$$\begin{split} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\frac{2\mathrm{e}t}{1+2\ln t}}{4t} = \frac{\mathrm{e}}{2(1+2\ln t)},\\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\psi'(t)}{\varphi'(t)}\right) \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \left(\frac{\mathrm{e}}{2(1+2\ln t)}\right)' \cdot \frac{1}{4t} \\ &= \frac{-4\mathrm{e}\frac{1}{t}}{4(1+2\ln t)^2} \cdot \frac{1}{4t} = -\frac{\mathrm{e}}{4t^2(1+2\ln t)^2}. \end{split}$$

当 x = 9 时,由 $x = 1 + 2t^2$ 及 t > 1 得 t = 2.故有

$$\left. \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} \right|_{x=9} = -\frac{\mathrm{e}}{4 t^2 (1 + 2 \ln t)^2} \bigg|_{t=2} = -\frac{\mathrm{e}}{16 (1 + 2 \ln 2)^2}.$$

- 五、(本题满分 9 分) 计算不定积分 $\int \frac{xe^{\arctan x}}{(1+x^2)^{3/2}} dx$.
- **解.** 作积分换元 $x = \tan t \ (-\frac{\pi}{2} < x < \frac{\pi}{2})$,得到

$$\int \frac{x e^{\arctan x}}{(1+x^2)^{3/2}} dx = \int \frac{e^t \tan t}{(1+\tan^2 t)^{3/2}} \sec^2 t dt = \int e^t \frac{\tan t}{\sec t} dt = \int e^t \sin t dt.$$

又由分部积分法得到

$$\int e^{t} \sin t \, dt = -\int e^{t} \, d(\cos t) = -e^{t} \cos t + \int e^{t} \cos t \, dt$$
$$= -e^{t} \cos t + \int e^{t} \, d(\sin t) = -e^{t} \cos t + e^{t} \sin t - \int e^{t} \sin t \, dt.$$

从而有

$$\int e^t \sin t \, dt = \frac{1}{2} e^t (\sin t - \cos t) + C.$$

因此

$$\int \frac{x e^{\arctan x}}{(1+x^2)^{3/2}} dx = \frac{1}{2} e^{\arctan x} \left(\frac{x}{\sqrt{1+x^2}} - \frac{1}{\sqrt{1+x^2}} \right) + C = \frac{(x-1)e^{\arctan x}}{2\sqrt{1+x^2}} + C.$$

- 六、(本题满分12分) 同试卷一第七题.
- 七、(本题满分 12 分) 讨论曲线 $y = 4 \ln x + k = y = 4x + \ln^4 x$ 的交点个数.

解. 问题等价于讨论 $\phi(x) = \ln^4 x - 4 \ln x + 4x - k$ 在区间 $(0, +\infty)$ 内的零点个数,对 $\phi(x)$ 求导得

$$\phi'(x) = \frac{4\ln^3 x}{x} - \frac{4}{x} + 4 = \frac{4}{x}(\ln^3 x - 1 + x).$$

可以看出 x = 1 是 $\phi(x)$ 的驻点,而且当 0 < x < 1 时, $\phi'(x) < 0$,即 $\phi(x)$ 单调减少;当 x > 1 时, $\phi'(x) > 0$,即 $\phi(x)$ 单调增加,故 $\phi(1) = 4 - k$ 为函数 $\phi(x)$ 的惟一极小值即最小值.

- (I) 当 $\phi(1) = 4 k > 0$, 即当 k < 4 时, $\phi(x) \ge \phi(1) > 0$, $\phi(x)$ 无零点.
- (II) 当 $\phi(1) = 4 k = 0$, 即当 k = 4 时, $\phi(x) \ge \phi(1) = 0$, $\phi(x)$ 有且仅有一个零点.
- (III) 当 $\phi(1) = 4 k < 0$,即当 k > 4 时,由于

$$\lim_{x \to 0^+} \phi(x) = \lim_{x \to 0^+} [\ln x (\ln^3 x - 4) + 4x - k] = +\infty,$$

$$\lim_{x \to +\infty} \phi(x) = \lim_{x \to +\infty} [\ln x (\ln^3 x - 4) + 4x - k] = +\infty.$$

由连续函数的介值定理和函数的单调性, $\phi(x)$ 有且仅有两个零点,分别位于区间 (0,1) 与 $(1,+\infty)$ 内.

综上所述, 当 k < 4 时, 两曲线没有交点; 当 k = 4 时, 两曲线仅有一个交点; 当 k > 4 时, 两曲线有两个交点.

八、(本题满分12分)

设位于第一象限的曲线 y = f(x) 过点 $\left(\frac{\sqrt{2}}{2}, \frac{1}{2}\right)$, 其上任一点 P(x, y) 处的法线与 y 轴的交点为 Q,且线段 PQ 被 x 轴平分.

- (I) 求曲线 y = f(x) 的方程;
- (II) 已知曲线 $y = \sin x$ 在 $[0, \pi]$ 上的弧长为 l,试用 l 表示曲线 y = f(x) 的弧长 s.
- **解.** (I) 曲线 y = f(x) 在点 P(x,y) 处的法线方程为

$$Y - y = -\frac{1}{y'}(X - x).$$

令 X=0,则它与 y 轴的交点为 $Q\left(0,y+\frac{x}{y'}\right)$. 由题设,线段 PQ 被 x 轴平分,从而

$$\frac{1}{2}(y+y+\frac{x}{y'})=0 \implies 2y \, dy + x \, dx = 0.$$

积分得 $\frac{x^2}{2} + y^2 = C$ (C 为任意常数),代入初始条件 $y \Big|_{x = \frac{\sqrt{2}}{2}} = \frac{1}{2}$ 得 $C = \frac{1}{2}$,

故曲线 y = f(x) 的方程为 $\frac{x^2}{2} + y^2 = \frac{1}{2}$, 即 $x^2 + 2y^2 = 1$.

(II) 曲线 $y = \sin x$ 在 $[0, \pi]$ 上的弧长为

$$l = \int_0^{\pi} \sqrt{1 + y'^2} \, dx = \int_0^{\pi} \sqrt{1 + \cos^2 x} \, dx$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 + \cos^2 t} \, dt = 2 \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos^2 t} \, dt.$$

另一方面, 曲线 y = f(x) 的参数方程为

$$\begin{cases} x = \cos t, \\ y = \frac{\sqrt{2}}{2} \sin t, \end{cases} \quad \left(0 \le t \le \frac{\pi}{2}\right).$$

于是该曲线的弧长为(其中换元 $u = \frac{\pi}{2} - t$)

$$s = \int_0^{\frac{\pi}{2}} \sqrt{(x_t')^2 + (y_t')^2} \, dt = \int_0^{\frac{\pi}{2}} \sqrt{\sin^2 t + \frac{1}{2} \cos^2 t} \, dt = \frac{1}{\sqrt{2}} \int_0^{\frac{\pi}{2}} \sqrt{1 + \sin^2 t} \, dt$$
$$= \frac{1}{\sqrt{2}} \int_{\frac{\pi}{2}}^0 \sqrt{1 + \cos^2 u} (-du) = \frac{1}{\sqrt{2}} \int_0^{\frac{\pi}{2}} \sqrt{1 + \cos^2 u} \, du$$

所以
$$s = \frac{\sqrt{2}}{4}l$$
.

九、(本题满分10分)

有一平底容器,其内侧壁是由曲线 $x = \phi(y)$ ($y \ge 0$) 绕 y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为 2m. 根据设计要求,当以 $3m^3$ /min 的速率向容器内注入液体时,液面的面积将以 πm^2 /min 的速率均匀扩大(假设注入液体前,容器内无液体).

- (I) 根据 t 时刻液面的面积,写出 t 与 $\phi(y)$ 之间的关系式;
- (II) 求曲线 $x = \phi(y)$ 的方程.

(注: m 表示长度单位米, min 表示时间单位分.)

- **解.** (I) 设在 t 时刻液面的高度为 y,则此时液面的面积为 $\pi \phi^2(y) = 4\pi + \pi t$,从而 $t = \phi^2(y) 4$.
 - (II) 液面的高度为 v 时, 液体的体积

$$\pi \int_0^y \phi^2(u) du = 3t = 3\phi^2(y) - 12.$$

上式两边对 y 求导得

$$\pi \phi^2(y) = 6\phi(y)\phi'(y) \quad \Rightarrow \quad \frac{d\phi(y)}{dy} = \frac{\pi}{6}\phi(y).$$

解此微分方程,得 $\phi(y) = Ce^{\frac{\pi}{6}y}$,其中 C 为任意常数. 由 $\phi(0) = 2$ 知 C = 2,故所求曲线方程为 $x = 2e^{\frac{\pi}{6}y}$.

十、(本题满分10分)

设函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,且 f'(x)>0.若极限 $\lim_{x\to a^+} \frac{f(2x-a)}{x-a}$ 存在,证明:

- (I) 在 (a,b)内 f(x)>0;
- (II) 在 (a,b) 内存在点 ξ ,使 $\frac{b^2-a^2}{\int_a^b f(x) dx} = \frac{2\xi}{f(\xi)}$;
- (III) 在 (a,b) 内存在与 (2) 中 ξ 相异的点 η ,使 $f'(\eta)(b^2 a^2) = \frac{2\xi}{\xi a} \int_a^b f(x) dx$.
- **解.** (I) 因为 $\lim_{x\to a^+} \frac{f(2x-a)}{x-a}$ 存在,且 $\lim_{x\to a^+} (x-a)=0$,故 $\lim_{x\to a^+} f(2x-a)=0$.又 f(x) 在 [a,b] 上连续,从而 $\lim_{x\to a^+} f(2x-a)=f(a)$,则 f(a)=0.由于 f'(x)>0,则 f(x) 在 (a,b) 内严格单调增加,所以 f(x) 在 x=a 处取最小值,即 f(x)>f(a)=0, $x\in (a,b)$.
 - (II) 取 $F(x) = x^2$, $g(x) = \int_a^x f(t) dt$ ($a \le x \le b$), 则 g'(x) = f(x) > 0, 则 F(x), g(x) 满足柯西中值定理的条件,于是在 (a,b) 内存在点 ξ ,使

$$\frac{F(b)-F(a)}{g(b)-g(a)} = \frac{b^2-a^2}{\int_a^b f(t) \mathrm{d}t - \int_a^a f(t) \mathrm{d}t} = \frac{2\xi}{f(\xi)} \quad \Rightarrow \quad \frac{b^2-a^2}{\int_a^b f(x) \mathrm{d}x} = \frac{2\xi}{f(\xi)}.$$

(III) 在区间 $[a,\xi]$ 上应用拉格朗日中值定理,得在 (a,ξ) 内存在一点 η ,使

$$f(\xi) - f(a) = f'(\eta)(\xi - a).$$

因 f(a)=0, 上式即 $f(\xi)=f'(\eta)(\xi-a)$, 代入 (II) 的结论得

$$\frac{b^2 - a^2}{\int_a^b f(x) dx} = \frac{2\xi}{f'(\eta)(\xi - a)} \quad \Rightarrow \quad f'(\eta)(b^2 - a^2) = \frac{2\xi}{\xi - a} \int_a^b f(x) dx.$$

十一、(本题满分10分)

若矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{pmatrix}$$
 相似于对角阵 Λ,试确定常数 a 的值;并求可逆矩阵 P 使 $P^{-1}AP = \Lambda$.

\mathbf{M} . 矩阵 A 的特征多项式为

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -2 & 0 \\ -8 & \lambda - 2 & -a \\ 0 & 0 & \lambda - 6 \end{vmatrix} = (\lambda - 6)[(\lambda - 2)^2 - 16] = (\lambda - 6)^2(\lambda + 2).$$

故 A 的特征值为 $\lambda_1 = \lambda_2 = 6$, $\lambda_3 = -2$. 由于 A 相似于对角矩阵 Λ ,故对应 $\lambda_1 = \lambda_2 = 6$ 应有两个线性无关的特征向量,因此 r(6E - A) = 1. 从而由

$$6E - A = \begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & -a \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 0 \\ 0 & 0 & -a \\ 0 & 0 & 0 \end{pmatrix}$$

知 a=0. 于是对应于 $\lambda_1=\lambda_2=6$ 的两个线性无关的特征向量可取为

$$\xi_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \qquad \xi_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

当 $\lambda_3 = -2$ 时,

$$-2E - A = \begin{pmatrix} -4 & -2 & 0 \\ -8 & -4 & 0 \\ 0 & 0 & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

解方程组 $\begin{cases} 2x_1 + x_2 = 0, \\ x_3 = 0, \end{cases}$ 得对应于 $\lambda_3 = -2$ 的特征向量

$$\xi_3 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}.$$

十二、(本题满分8分) 同试卷一第十题.

二〇〇四年考研数学试卷二解答

- 一、填空题(1~6小题,每小题4分,共24分)
- **1.** 设 $f(x) = \lim_{n \to \infty} \frac{(n-1)x}{nx^2+1}$, 则 f(x) 的间断点为 x =_____.
- **解**. 应填 0. 当 x = 0 时, f(x) = 0; 而当 $x \neq 0$ 时,

$$f(x) = \lim_{n \to \infty} \frac{(n-1)x}{nx^2 + 1} = \frac{x}{x^2} = \frac{1}{x}$$

故 x = 0 为 f(x) 的间断点.

- **2.** 设函数 y(x) 由参数方程 $\begin{cases} x = t^3 + 3t + 1 \\ y = t^3 3t + 1 \end{cases}$ 确定,则曲线 y = y(x) 向上凸的 x 取 值范围为 ______.
- \mathbf{m} . 应填($-\infty$,1]. 由参数方程可得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{3t^2 - 3}{3t^2 + 3} = \frac{t^2 - 1}{t^2 + 1} = 1 - \frac{2}{t^2 + 1},$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{\mathrm{d} y}{\mathrm{d} x} \right) \frac{\mathrm{d} t}{\mathrm{d} x} = \left(1 - \frac{2}{t^2 + 1} \right)' \cdot \frac{1}{3(t^2 + 1)} = \frac{4t}{(t^2 + 1)^2} \cdot \frac{1}{3(t^2 + 1)} = \frac{4t}{3(t^2 + 1)^3}.$$

令 $\frac{d^2y}{dx^2} < 0$, t < 0. 又 $x'(t) = 3t^2 + 3 > 0$, 所以 x(t) 单调增. 当 t = 0 时, x = 1, 当 $t \to -\infty$ 时, $x \to -\infty$. 从而 $x \in (-\infty, 1]$ 时, 曲线是向上凸的.

3.
$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{x^2-1}} = \underline{\hspace{1cm}}$$

解. 应填 $\frac{\pi}{2}$. 令 $x = \sec t$, 则有

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{x^2 - 1}} = \int_{0}^{\frac{\pi}{2}} \frac{\sec t \cdot \tan t}{\sec t \cdot \tan t} \, \mathrm{d}t = \int_{0}^{\frac{\pi}{2}} \mathrm{d}t = \frac{\pi}{2}.$$

- **4.** 设函数 z = z(x, y) 由方程 $z = e^{2x-3z} + 2y$ 确定,则 $3\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$.
- **解**. 应填 2. 令 $F(x, y, z) = e^{2x-3z} + 2y z = 0$, 则有

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} = -\frac{e^{2x-3z} \cdot 2}{-(1+3e^{2x-3z})} = \frac{2e^{2x-3z}}{1+3e^{2x-3z}},$$

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{2}{-(1+3e^{2x-3z})} = \frac{2}{1+3e^{2x-3z}}.$$

从而
$$3\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 2$$
.

- **5.** 微分方程 $(y+x^3)$ dx-2x dy=0 满足 $y\big|_{x=1}=\frac{6}{5}$ 的特解为 _____.
- **解**. 应填 $y = \frac{1}{5}x^3 + \sqrt{x}$. 原方程变形为 $\frac{\mathrm{d}y}{\mathrm{d}x} \frac{1}{2x}y = \frac{1}{2}x^2$,则由一阶线性微分方程的通解公式,可得(由初始条件可设 x > 0)

$$y = e^{\int \frac{1}{2x} dx} \left[\int \frac{1}{2} x^2 e^{-\int \frac{1}{2x} dx} dx + C \right] = e^{\frac{1}{2} \ln x} \left[\int \frac{1}{2} x^2 e^{-\frac{1}{2} \ln x} dx + C \right]$$
$$= \sqrt{x} \left[\int \frac{1}{2} x^{\frac{3}{2}} dx + C \right] = \sqrt{x} \left[\frac{1}{5} x^{\frac{5}{2}} + C \right].$$

再由 $y(1) = \frac{6}{5}$ 得 C = 1,从而特解为 $y = \frac{1}{5}x^3 + \sqrt{x}$.

- 6. 同试卷一第一[5] 题.
- 二、选择题(7~14小题,每小题4分,共32分)
- 7. 同试卷一第二[7]题.
- - (A) x = 0 是 f(x) 的极值点,但 (0,0) 不是曲线 y = f(x) 的拐点.
 - (B) x = 0 不是 f(x) 的极值点,但 (0,0) 是曲线 y = f(x) 的拐点.
 - (C) x = 0 是 f(x) 的极值点,且 (0,0) 是曲线 y = f(x) 的拐点.
 - (D) x = 0 不是 f(x) 的极值点, (0,0) 也不是曲线 y = f(x) 的拐点.
- **解.** 应选 (C). 由于 $f(x) = |x(1-x)| \ge 0 = f(0)$, 所以 x = 0 为极小值点.又

$$f(x) = \begin{cases} -x(1-x), & -1 < x \le 0; \\ x(1-x), & 0 < x < 1. \end{cases} \Rightarrow f''(x) = \begin{cases} 2, & -1 < x < 0; \\ -2, & 0 < x < 1. \end{cases}$$

于是(0,0)为拐点.

- 9. $\lim_{n\to\infty} \ln \sqrt[n]{\left(1+\frac{1}{n}\right)^2 \left(1+\frac{2}{n}\right)^2 \cdots \left(1+\frac{n}{n}\right)^2}$ \(\frac{\mathref{\frac{n}{n}}}{\mathref{\frac{n}{n}}}\)
 - (A) $\int_{1}^{2} \ln^2 x \, \mathrm{d}x.$

(B) $2\int_{1}^{2} \ln x \, \mathrm{d}x$.

(C) $2\int_{1}^{2} \ln(1+x) dx$.

- (D) $\int_{1}^{2} \ln^{2}(1+x) dx$.
- 解. 应选 (B). 由对数性质和定积分的定义可得

$$\lim_{n \to \infty} \ln \sqrt[n]{\left(1 + \frac{1}{n}\right)^2 \left(1 + \frac{2}{n}\right)^2 \cdots \left(1 + \frac{n}{n}\right)^2}$$

$$= \lim_{n \to \infty} \frac{2}{n} \left[\ln \left(1 + \frac{1}{n}\right) + \ln \left(1 + \frac{2}{n}\right) + \cdots + \ln \left(1 + \frac{n}{n}\right) \right]$$

$$= \lim_{n \to \infty} 2 \sum_{i=1}^n \ln \left(1 + \frac{i}{n}\right) \frac{1}{n} = 2 \int_0^1 \ln (1 + x) \, dx = 2 \int_1^2 \ln t \, dt = 2 \int_1^2 \ln x \, dx.$$

- 10. 同试卷一第二[8]题.
- - (A) $y^* = ax^2 + bx + c + x(A\sin x + B\cos x)$.
 - (B) $y^* = x(ax^2 + bx + c + A\sin x + B\cos x)$.
 - (C) $v^* = a x^2 + b x + c + A \sin x$.
 - (D) $v^* = ax^2 + bx + c + A\cos x$.
- **解.** 应选 (A). 原方程对应的齐次方程 y'' + y = 0 的特征方程为 $\lambda^2 + 1 = 0$, 则特 征根为 $\lambda = \pm i$. 对 $y'' + y = x^2 + 1$, 其特解形式可设为 $y_1^* = ax^2 + bx + c$; 对 $y'' + y = \sin x$, 其特解形式可设为 $y_2^* = x(A\sin x + B\cos x)$. 由叠加原理, 方程 $y'' + y = x^2 + 1 + \sin x$ 的特解形式可设为

$$y^* = y_1^* + y_2^* = ax^2 + bx + c + x(A\sin x + B\cos x).$$

- **12.** 设函数 f(u)连续, 区域 $D = \{(x,y)|x^2+y^2 \le 2y\}$, 则 $\iint_D f(xy) dx dy$ 等于(

- (A) $\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(xy) dy.$ (B) $2 \int_{0}^{2} dy \int_{0}^{\sqrt{2y-y^2}} f(xy) dx.$ (C) $\int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} f(r^2\sin\theta\cos\theta) dr.$ (D) $\int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} f(r^2\sin\theta\cos\theta) r dr.$
- **解.** 应选 (D). 由 $D = \{(x,y) | x^2 + y^2 \le 2y\}$,则积分区域是以 (0,1)为圆心,1为半 径的圆及其内部,积分区域见图.

在直角坐标系下,先 x 后 y,则有

$$\iint_D f(xy) \, dx \, dy = \int_0^2 dy \int_{-\sqrt{2y-y^2}}^{\sqrt{2y-y^2}} f(xy) \, dx.$$

先 ν 后x,则有

$$\iint_D f(xy) dx dy = \int_{-1}^1 dx \int_{1-\sqrt{1-x^2}}^{1+\sqrt{1-x^2}} f(xy) dy.$$

在极坐标系下,则有

$$\iint_D f(xy) dx dy = \int_0^{\pi} d\theta \int_0^{2\sin\theta} f(r^2 \sin\theta \cos\theta) r dr.$$

- 13. 同试卷一第二[11]题.
- 14. 同试卷一第二[12]题.
- 三、解答题(15~23 小题, 共 94 分)
- **15.** (本题满分 10 分) 求极限 $\lim_{x\to 0} \frac{1}{x^3} \left[\left(\frac{2+\cos x}{3} \right)^x 1 \right]$.

解. 由等价无穷小量代换可得

原式 =
$$\lim_{x \to 0} \frac{e^{x \ln\left(\frac{2+\cos x}{3}\right)} - 1}{x^3} = \lim_{x \to 0} \frac{\ln\left(\frac{2+\cos x}{3}\right)}{x^2} = \lim_{x \to 0} \frac{\ln\left(1 + \frac{\cos x - 1}{3}\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{\cos x - 1}{3x^2} = -\lim_{x \to 0} \frac{1 - \cos x}{3x^2} = -\lim_{x \to 0} \frac{\frac{x^2}{3}}{3x^2} = -\frac{1}{6}.$$

16. (本题满分10分)

设函数 f(x) 在 $(-\infty, +\infty)$ 上有定义,在区间 [0,2] 上, $f(x) = x(x^2 - 4)$,若对任意的 x 都满足 f(x) = kf(x+2),其中 k 为常数.

- (I) 写出 f(x) 在 [-2,0] 上的表达式;
- (II) 问 k 为何值时, f(x) 在 x = 0 处可导.
- **解**. (I) 当 $-2 \le x < 0$, 即 $0 \le x + 2 < 2$ 时,

$$f(x) = k f(x+2) = k(x+2)[(x+2)^2 - 4] = k x(x+2)(x+4).$$

(II) 由题设 f(0) = 0,

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{x(x^{2} - 4) - 0}{x} = -4,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{kx(x + 2)(x + 4) - 0}{x} = 8k.$$

令 $f'_{-}(0) = f'_{+}(0)$, 得 $k = -\frac{1}{2}$. 即当 $k = -\frac{1}{2}$ 时, f(x) 在 x = 0 处可导.

17. (本题满分11分)

设
$$f(x) = \int_{x}^{x+\frac{\pi}{2}} |\sin t| dt$$
.

(I) 证明 f(x) 是以 π 为周期的周期函数; (II) 求 f(x) 的值域.

 \mathbf{H} . (I) 令 $t = u + \pi$. 则有

$$f(x+\pi) = \int_{x+\pi}^{x+\frac{3\pi}{2}} |\sin t| \, dt = \int_{x}^{x+\frac{\pi}{2}} |\sin(u+\pi)| \, d(u+\pi)$$
$$= \int_{x}^{x+\frac{\pi}{2}} |\sin u| \, du = f(x)$$

故 f(x) 是以 π 为周期的周期函数.

(II) 因为 f(x) 是以 π 为周期的周期函数,故只需在 $[0,\pi]$ 上讨论其值域. 令

$$f'(x) = \left| \sin(x + \frac{\pi}{2}) \right| - \left| \sin x \right| = \left| \cos x \right| - \left| \sin x \right| = 0,$$

在区间 $[0,\pi]$ 内求得驻点 $x_1 = \frac{\pi}{4}$, $x_2 = \frac{3\pi}{4}$. 计算

$$f\left(\frac{\pi}{4}\right) = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} |\sin t| \, \mathrm{d}t = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin t \, \mathrm{d}t = \sqrt{2},$$

$$f\left(\frac{3\pi}{4}\right) = \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} |\sin t| \, \mathrm{d}t = \int_{\frac{3\pi}{4}}^{\pi} \sin t \, \mathrm{d}t - \int_{\pi}^{\frac{5\pi}{4}} \sin t \, \mathrm{d}t = 2 - \sqrt{2},$$

$$f(0) = \int_{0}^{\frac{\pi}{2}} |\sin t| \, \mathrm{d}t = \int_{0}^{\frac{\pi}{2}} \sin t \, \mathrm{d}t = 1,$$

$$f(\pi) = \int_{\pi}^{\frac{3\pi}{2}} |\sin t| \, \mathrm{d}t = \int_{\pi}^{\frac{3\pi}{2}} (-\sin t) \, \mathrm{d}t = 1.$$

因此 f(x) 的最小值是 $2-\sqrt{2}$,最大值是 $\sqrt{2}$.故 f(x) 的值域是 $[2-\sqrt{2},\sqrt{2}]$.

18. (本题满分12分)

曲线 $y = \frac{e^x + e^{-x}}{2}$ 与直线 x = 0, x = t (t > 0) 及 y = 0 围成一曲边梯形. 该曲边梯形绕 x 轴旋转一周得一旋转体,其体积为 V(t),侧面积为 S(t),在 x = t 处的底面积为 F(t).

(I) 求
$$\frac{S(t)}{V(t)}$$
 的值;(II) 计算极限 $\lim_{t \to +\infty} \frac{S(t)}{F(t)}$.

解.(I)旋转体体积

$$V(t) = \pi \int_0^t y^2 dx = \pi \int_0^t \left(\frac{e^x + e^{-x}}{2}\right)^2 dx$$

旋转体的侧面积

$$S(t) = \int_0^t 2\pi y \sqrt{1 + y'^2} \, \mathrm{d}x = 2\pi \int_0^t \left(\frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2}\right) \sqrt{1 + \left(\frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2}\right)^2} \, \mathrm{d}x$$
$$= 2\pi \int_0^t \left(\frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2}\right) \sqrt{\left(\frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2}\right)^2} \, \mathrm{d}x = 2\pi \int_0^t \left(\frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2}\right)^2 \, \mathrm{d}x,$$

所以 $\frac{S(t)}{V(t)} = 2$.

(II) 在 x = t 处旋转体的底面积为

$$F(t) = \pi y^2 \Big|_{x=t} = \pi \left(\frac{e^t + e^{-t}}{2}\right)^2$$

第87页 共174页

所以由洛必达法则有

$$\lim_{t \to +\infty} \frac{S(t)}{F(t)} = \lim_{t \to +\infty} \frac{2\pi \int_0^t \left(\frac{e^x + e^{-x}}{2}\right)^2 dx}{\pi \left(\frac{e^t + e^{-t}}{2}\right)^2} = \lim_{t \to +\infty} \frac{2\left(\frac{e^t + e^{-t}}{2}\right)^2}{2\left(\frac{e^t + e^{-t}}{2}\right)\left(\frac{e^t - e^{-t}}{2}\right)}$$
$$= \lim_{t \to +\infty} \frac{e^t + e^{-t}}{e^t - e^{-t}} = \lim_{t \to +\infty} \frac{1 + e^{-2t}}{1 - e^{-2t}} = 1.$$

- 19. 同试卷一第三[15]题.
- 20. 同试卷一第三[16]题.
- **21.** (本题满分 10 分) 设 $z = f(x^2 y^2, e^{xy})$, 其中 f 具有连续二阶偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$.

解. 令
$$u = x^2 - y^2$$
, $v = e^{xy}$, 则 $z = f(x^2 - y^2, e^{xy}) = f(u, v)$, 所以
$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} = 2x f_1' + y e^{xy} f_2',$$

$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y} = -2y f_1' + x e^{xy} f_2'.$$

从而二阶偏导数

$$\frac{\partial^{2}z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial}{\partial x} \left(-2yf_{1}' + xe^{xy}f_{2}' \right)
= -2y \left(f_{11}'' \frac{\partial u}{\partial x} + f_{12}'' \frac{\partial v}{\partial x} \right) + e^{xy}f_{2}' + xye^{xy}f_{2}' + xe^{xy} \left(f_{21}'' \frac{\partial u}{\partial x} + f_{22}'' \frac{\partial v}{\partial x} \right)
= -2y \left(2xf_{11}'' + ye^{xy}f_{12}'' \right) + e^{xy}f_{2}' + xye^{xy}f_{2}' + xe^{xy} \left(2xf_{21}'' + ye^{xy}f_{22}'' \right)
= -4xyf_{11}'' + 2(x^{2} - y^{2})e^{xy}f_{12}'' + xye^{2xy}f_{22}'' + e^{xy}(1 + xy)f_{2}'.$$

22. (本题满分9分)

设有齐次线性方程组

$$\begin{cases} (1+a)x_1 + x_2 + x_3 + x_4 = 0, \\ 2x_1 + (2+a)x_2 + 2x_3 + 2x_4 = 0, \\ 3x_1 + 3x_2 + (3+a)x_3 + 3x_4 = 0, \\ 4x_1 + 4x_2 + 4x_3 + (4+a)x_4 = 0. \end{cases}$$

试问 a 取何值时,该方程组有非零解,并求出其通解.

解. 对方程组的系数矩阵 A 作初等行变换,有

$$A = \begin{pmatrix} 1+a & 1 & 1 & 1 \\ 2 & 2+a & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4+a \end{pmatrix} \rightarrow \begin{pmatrix} 1+a & 1 & 1 & 1 \\ -2a & a & 0 & 0 \\ -3a & 0 & a & 0 \\ -4a & 0 & 0 & a \end{pmatrix} = B.$$

当 a=0 时, r(A)=1<4, 故次方程组有非零解. 其同解方程组为

$$x_1 + x_2 + x_3 + x_4 = 0$$
,

由此得基础解系为

$$\eta_1 = (-1, 1, 0, 0)^T$$
, $\eta_2 = (-1, 0, 1, 0)^T$, $\eta_3 = (-1, 0, 0, 1)^T$.

于是方程组的通解为 $x = k_1\eta_1 + k_2\eta_2 + k_3\eta_3$, 其中 k_1, k_2, k_3 为任意常数. 当 $a \neq 0$ 时,对矩阵 B 作初等行变换,有

$$B \to \begin{pmatrix} 1+a & 1 & 1 & 1 \\ -2 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ -4 & 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} a+10 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ -4 & 0 & 0 & 1 \end{pmatrix},$$

可知 a=-10 时,r(A)=3<4,故此方程组也有非零解. 其同解方程组为

$$\begin{cases}
-2x_1 + x_2 = 0, \\
-3x_1 + x_3 = 0, \\
-4x_1 + x_4 = 0,
\end{cases}$$

由此得基础解系为 $\eta = (1,2,3,4)^T$,于是方程组的通解为 $x = k\eta$,其中 k 为任意 常数.

23. 同试卷一第三[21]题.

二〇〇五年考研数学试卷二解答

一、填空题(1~6小题,每小题4分,共24分)

解. 应填 $-\pi$ dx. 两边取对数得 ln $y = x \ln(1 + \sin x)$. 对 x 求导得

$$\frac{1}{y} \cdot y' = \ln(1 + \sin x) + \frac{x \cos x}{1 + \sin x},$$

于是导函数

$$y' = (1 + \sin x)^{x} \cdot \left[\ln(1 + \sin x) + x \cdot \frac{\cos x}{1 + \sin x} \right].$$

故 $\mathrm{d}y\big|_{x=\pi} = y'(\pi)\mathrm{d}x = -\pi\mathrm{d}x.$

- **2.** 曲线 $y = \frac{(1+x)^{3/2}}{\sqrt{x}}$ 的斜渐近线方程为 ______.
- **解.** 应填 $y = x + \frac{3}{2}$. 由求斜渐近线公式得:

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{(1+x)^{3/2}}{x\sqrt{x}} = 1,$$

$$b = \lim_{x \to +\infty} \left[f(x) - kx \right] = \lim_{x \to +\infty} \frac{(1+x)^{3/2} - x^{3/2}}{\sqrt{x}} = \frac{3}{2},$$

于是所求斜渐近线方程为 $y = x + \frac{3}{2}$.

3.
$$\int_0^1 \frac{x \, dx}{(2-x^2)\sqrt{1-x^2}} = \underline{\hspace{1cm}}.$$

解. 应填 $\frac{\pi}{4}$. 令 $\sqrt{1-x^2}=t$, 有 $x^2=1-t^2$, $x\,\mathrm{d}x=-t\,\mathrm{d}t$. 从而

$$\int_0^1 \frac{x \, dx}{(2-x^2)\sqrt{1-x^2}} = \int_0^1 \frac{dt}{1+t^2} = [\arctan t]_0^1 = \frac{\pi}{4}.$$

- 4. 同试卷一第一[2]题.
- **5.** 当 $x \to 0$ 时, $\alpha(x) = kx^2$ 与 $\beta(x) = \sqrt{1 + x \arcsin x} \sqrt{\cos x}$ 是等价无穷小,则 k = x

解. 应填 $\frac{3}{4}$. 由题设,

$$\begin{split} 1 &= \lim_{x \to 0} \frac{\sqrt{1 + x \arcsin x} - \sqrt{\cos x}}{k x^2} = \lim_{x \to 0} \frac{x \arcsin x + 1 - \cos x}{k x^2 (\sqrt{1 + x \arcsin x} + \sqrt{\cos x})} \\ &= \frac{1}{2k} \lim_{x \to 0} \frac{x \arcsin x + 1 - \cos x}{x^2} = \frac{1}{2k} \left[\lim_{x \to 0} \frac{\arcsin x}{x} + \lim_{x \to 0} \frac{1 - \cos x}{x^2} \right] \\ &= \frac{1}{2k} \left(1 + \frac{1}{2} \right) = \frac{3}{4k}, \end{split}$$

所以 $k = \frac{3}{4}$.

- 6. 同试卷一第一[5]题.
- 二、选择题(7~14小题,每小题4分,共32分)
- 7. 同试卷一第二[7]题.
- 8. 同试卷一第二[8]题.
- **解.** 应选 (A). 当 x = 3 时,有 $t^2 + 2t = 3$,得 t = -3(舍去)或 t = 1. 曲线 y = y(x) 的导数为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\frac{1}{1+t}}{2t+2} = \frac{1}{2(t+1)^2},$$

所以曲线 y = y(x) 在 x = 3 (即 t = 1)处的切线斜率为 $\frac{1}{8}$. 于是在该处的法线的斜率为 -8,所以过点 $(3, \ln 2)$ 的法线方程为

$$y - \ln 2 = -8(x - 3)$$
.

令 y = 0,得其与 x 轴交点的横坐标为 $\frac{1}{8} \ln 2 + 3$.

- **10.** 设区域 $D = \{(x,y) | x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, f(x) 为 D 上的正值连续函数, a,b 为常数, 则 $\iint_D \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma = \cdots$ (C) $(a+b)\pi$. (D) $\frac{a+b}{2}\pi$.
- **解**. 应选 (D). 由于积分区域 D 是关于 y = x 对称的,所以 x 与 y 互换后积分值不变,所以有

$$\begin{split} \iint_D \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} \, \mathrm{d}\sigma &= \iint_D \frac{a\sqrt{f(y)} + b\sqrt{f(x)}}{\sqrt{f(y)} + \sqrt{f(x)}} \, \mathrm{d}\sigma \\ &= \frac{1}{2} \iint_D \left[\frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} + \frac{a\sqrt{f(y)} + b\sqrt{f(x)}}{\sqrt{f(y)} + \sqrt{f(x)}} \right] \mathrm{d}\sigma \\ &= \frac{a+b}{2} \iint_D \mathrm{d}\sigma = \frac{a+b}{2} \cdot \frac{1}{4} \cdot \pi \cdot 2^2 = \frac{a+b}{2}\pi. \end{split}$$

11. 同试卷一第二[9]题.

- (A) x = 0, x = 1 都是 f(x) 的第一类间断点.
- (B) x = 0, x = 1 都是 f(x) 的第二类间断点.
- (C) x = 0 是 f(x) 的第一类间断点, x = 1 是 f(x) 的第二类间断点.
- (D) x = 0 是 f(x) 的第二类间断点, x = 1 是 f(x) 的第一类间断点.
- **解**. 应选 (D). 由于函数 f(x) 在 x = 0 和 x = 1 点处无定义,因此它们是间断点. 因为 $\lim_{x \to 0} f(x) = \infty$,所以 x = 0 为第二类间断点;因为 $\lim_{x \to 1^+} f(x) = 0$, $\lim_{x \to 1^-} f(x) = -1$,所以 x = 1 为第一类间断点.
- 13. 同试卷一第二[11]题.
- 14. 同试卷一第二[12]题.
- 三、解答题(15~23小题, 共94分)
- 15. (本题满分11分)

设函数 f(x) 连续,且 $f(0) \neq 0$,求极限 $\lim_{x \to 0} \frac{\int_0^x (x-t)f(t)dt}{x \int_0^x f(x-t)dt}$.

解. 作积分变量代换,令 x-t=u,则

$$\int_{0}^{x} f(x-t) dt = \int_{x}^{0} f(u)(-du) = \int_{0}^{x} f(u) du.$$

于是由洛必达法则和微分中值定理,存在 ξ 介于0和x之间,使得

$$\lim_{x \to 0} \frac{\int_{0}^{x} (x-t)f(t)dt}{x \int_{0}^{x} f(x-t)dt} = \lim_{x \to 0} \frac{x \int_{0}^{x} f(t)dt - \int_{0}^{x} tf(t)dt}{x \int_{0}^{x} f(u)du}$$

$$= \lim_{x \to 0} \frac{\int_{0}^{x} f(t)dt + xf(x) - xf(x)}{\int_{0}^{x} f(u)du + xf(x)} = \lim_{x \to 0} \frac{\int_{0}^{x} f(t)dt}{\int_{0}^{x} f(u)du + xf(x)}$$

$$= \lim_{x \to 0} \frac{xf(\xi)}{xf(\xi) + xf(x)} = \lim_{x \to 0} \frac{f(\xi)}{f(\xi) + f(x)} = \frac{f(0)}{f(0) + f(0)} = \frac{1}{2}.$$

16. (本题满分11分)

如图, C_1 和 C_2 分别是 $y = \frac{1}{2}(1 + e^x)$ 和 $y = e^x$ 的图象,过点 (0,1) 的曲线 C_3 是一单调增函数的图象.过 C_2 上任一点 M(x,y) 分别作垂直于 x 轴和 y 轴的直线 l_x 和 l_y .记 C_1 , C_2 与 l_x 所围图形的面积为 $S_1(x)$; C_2 , C_3 与 l_y 所围图形的面积为 $S_2(y)$.如果总有 $S_1(x) = S_2(y)$,求曲线 C_3 的方程 $x = \phi(y)$.

 \mathbf{p} . 由题设图形知, C_3 在 C_1 的左侧,根据平面图形的面积公式得,

$$S_1(x) = \int_0^x \left[e^t - \frac{1}{2} (1 + e^t) \right] dt = \frac{1}{2} (e^x - x - 1),$$

$$S_2(y) = \int_1^y (\ln t - \phi(t)) dt.$$

由 $S_1(x) = S_2(y)$ 得

$$\frac{1}{2}(e^x - x - 1) = \int_1^y (\ln t - \phi(t)) dt.$$

注意到 M(x,y) 是 $y = e^x$ 的点,于是

$$\frac{1}{2}(y - \ln y - 1) = \int_{1}^{y} (\ln t - \phi(t)) dt.$$

两边对 y 求导得

$$\frac{1}{2}\left(1-\frac{1}{y}\right) = \ln y - \phi(y).$$

整理得曲线 C_3 的方程为: $x = \phi(y) = \ln y - \frac{y-1}{2y}$.

- 17. 同试卷一第三[17]题.
- 18. (本题满分12分)

用变量代换 $x = \cos t$ $(0 < t < \pi)$ 化简微分方程 $(1 - x^2)y'' - xy' + y = 0$,并求 其满足 $y\big|_{x=0} = 1$, $y'\big|_{x=0} = 2$ 的特解.

解. 由复合函数求导的链式法则得

$$\begin{split} y' &= \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{1}{\sin t} \frac{\mathrm{d}y}{\mathrm{d}t}, \\ y'' &= \frac{\mathrm{d}y'}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \left(\frac{\cos t}{\sin^2 t} \frac{\mathrm{d}y}{\mathrm{d}t} - \frac{1}{\sin t} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}\right) \cdot \left(-\frac{1}{\sin t}\right). \end{split}$$

代入原方程得

$$(1-\cos^2 t)\left(\frac{\cos t}{\sin^2 t}\frac{\mathrm{d}y}{\mathrm{d}t} - \frac{1}{\sin t}\frac{\mathrm{d}^2y}{\mathrm{d}t^2}\right) \cdot \left(-\frac{1}{\sin t}\right) - \cos t\left(-\frac{1}{\sin t}\frac{\mathrm{d}y}{\mathrm{d}t}\right) + y = 0.$$

化简得 $\frac{d^2y}{dt^2} + y = 0$, 其特征方程为 $r^2 + 1 = 0$, 特征根 $r_{1,2} = \pm i$, 通解为 $y = C_1 \cos t + C_2 \sin t$. 所以

$$y = C_1 \cos t + C_2 \sin t = C_1 x + C_2 \sqrt{1 - x^2},$$

$$y' = C_1 x' + C_2 \left(\sqrt{1 - x^2}\right)' = C_1 + \frac{2x}{2\sqrt{1 - x^2}}.$$

将初始条件 $y\big|_{x=0} = 1$, $y'\big|_{x=0} = 2$ 代入,解得 $C_1 = 2$, $C_2 = 1$. 故所求特解为 $y = 2x + \sqrt{1-x^2}$, -1 < x < 1.

- 19. 同试卷一第三[18]题.
- 20. (本题满分10分)

已知函数 z = f(x, y) 的全微分 dz = 2x dx - 2y dy,并且 f(1,1) = 2.求 f(x, y) 在椭圆域 $D = \left\{ (x, y) \middle| x^2 + \frac{y^2}{4} \le 1 \right\}$ 上的最大值和最小值.

解. (I) 由 dz = 2x dx - 2y dy 知 $\frac{\partial z}{\partial x}$ = 2x, $\frac{\partial z}{\partial y}$ = -2y. 对 $\frac{\partial z}{\partial x}$ = 2x 两边积分得 $z = f(x, y) = x^2 + c(y)$.

将 $z(x,y) = x^2 + c(y)$ 代入 $\frac{\partial z}{\partial y} = -2y$ 得 c'(y) = 2y. 所以 $c(y) = y^2 + c$. 所以 $z = x^2 - y^2 + c$.

再由 x=1, y=1 时 z=2 知 c=2. 于是所讨论的函数为

$$z = x^2 - y^2 + 2$$
.

(II) 先求 z 在 D 的内部 $x^2 + \frac{y^2}{4} < 1$ 中的驻点: 由 $\frac{\partial z}{\partial x} = 2x$, $\frac{\partial z}{\partial y} = -2y$ 得驻点 (0,0),对应的 z = f(0,0) = 2. 再求 $z = x^2 - y^2 + 2$ 在 D 的边界 $x^2 + \frac{y^2}{4} = 1$ 上的最值: 把 $y^2 = 4(1-x^2)$ 代入 z 的表达式有

$$z = x^2 - y^2 + 2 = 5x^2 - 2$$
, $-1 \le x \le 1$.

令 $z'_x = 10x = 0$ 解得 x = 0,对应的 $y = \pm 2$, $z\big|_{x=0,y=\pm 2} = -2$. 还要考虑 $-1 \le x \le 1$ 的端点 $x = \pm 1$,对应的 y = 0, $z\big|_{x=\pm 1,y=0} = 3$. 由 z = 2,z = -2,z = 3 比较大小,故 z = f(x,y) 在椭圆域 D 的最小值为 -2 (对应于 x = 0, $y = \pm 2$),最大值为 3 (对应于 x = 0, $y = \pm 2$).

21. (本题满分 9 分)

计算二重积分 $\iint_D |x^2 + y^2 - 1| d\sigma$, 其中 $D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}$

解. 如图,将 D 划分为 D_1 与 D_2 两部分:

则有

$$\iint_{D} |x^{2} + y^{2} - 1| d\sigma = \iint_{D_{1}} (1 - x^{2} - y^{2}) dx dy + \iint_{D_{2}} (x^{2} + y^{2} - 1) dx dy.$$

前一个积分用极坐标计算:

$$\iint_{D_1} (1 - x^2 - y^2) dx dy = \int_0^{\frac{\pi}{2}} d\theta \int_0^1 (1 - r^2) r dr = \int_0^{\frac{\pi}{2}} \left(\frac{1}{2} - \frac{1}{4}\right) d\theta = \frac{\pi}{8}.$$

后一个积分用直角坐标计算:

$$\iint_{D_2} (x^2 + y^2 - 1) \, \mathrm{d}x \, \mathrm{d}y = \int_0^1 \, \mathrm{d}x \int_{\sqrt{1 - x^2}}^1 (x^2 + y^2 - 1) \, \mathrm{d}y$$

$$= \int_0^1 \left[\left(x^2 - \frac{2}{3} \right) + \frac{2}{3} \left(1 - x^2 \right)^{\frac{3}{2}} \right] \, \mathrm{d}x = \int_0^1 \left(x^2 - \frac{2}{3} \right) \, \mathrm{d}x + \frac{2}{3} \int_0^1 \left(1 - x^2 \right)^{\frac{3}{2}} \, \mathrm{d}x$$

$$= -\frac{1}{3} + \frac{2}{3} \int_0^{\frac{\pi}{2}} \cos^4 t \, \mathrm{d}t = -\frac{1}{3} + \frac{2}{3} \left(\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \right) = -\frac{1}{3} + \frac{\pi}{8}.$$

所以原积分

$$\iint_D |x^2 + y^2 - 1| d\sigma = \frac{\pi}{8} - \frac{1}{3} + \frac{\pi}{8} = \frac{\pi}{4} - \frac{1}{3}.$$

22. (本题满分9分)

确定常数 a,使向量组 $\alpha_1 = (1,1,a)^T$, $\alpha_2 = (1,a,1)^T$, $\alpha_3 = (a,1,1)^T$ 可由向量组 $\beta_1 = (1,1,a)^T$, $\beta_2 = (-2,a,4)^T$, $\beta_3 = (-2,a,a)^T$ 线性表示,但向量组 β_1 , β_2 , β_3 不能由向量组 α_1 , α_2 , α_3 线性表示.

解. 记 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\beta_1, \beta_2, \beta_3)$. 由于 $\beta_1, \beta_2, \beta_3$ 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,故 r(A) < 3(若 r(A) = 3,则任何三维向量都可以由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示). 从而

$$|A| = \begin{vmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{vmatrix} = -(2+a)(a-1)^2 = 0,$$

从而得 a = 1 或 a = -2. 当 a = 1 时, $\alpha_1 = \alpha_2 = \alpha_3 = \beta_1 = (1,1,1)^T$,则 $\alpha_1 = \alpha_2 = \alpha_3 = \beta_1 + 0 \cdot \beta_2 + 0 \cdot \beta_3$,故 $\alpha_1, \alpha_2, \alpha_3$ 可由 $\beta_1, \beta_2, \beta_3$ 线性表示,但 $\beta_2 = (-2,1,4)^T$ 不

能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,故 a=1 符合题意. 当 a=-2 时,作初等行变换

$$(B:A) = \begin{pmatrix} 1 & -2 & -2 & \vdots & 1 & 1 & -2 \\ 1 & -2 & -2 & \vdots & 1 & -2 & 1 \\ -2 & 4 & -2 & \vdots & -2 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -2 & \vdots & 1 & 1 & -2 \\ 0 & 0 & -6 & \vdots & 0 & 3 & -3 \\ 0 & 0 & 0 & \vdots & 0 & -3 & 3 \end{pmatrix}$$

因 $r(B) = 2 \neq r(B:\alpha_2) = 3$,系数矩阵的秩和增广矩阵的秩不相等,故方程组 $BX = \alpha_2$ 无解,即 α_2 不能由 $\beta_1, \beta_2, \beta_3$ 线性表示,与题设矛盾.所以 $\alpha = -2$ 不合题意.

23. 同试卷一第三[21]题.

二〇〇六年考研数学试卷二解答

- 一、填空题(1~6小题,每小题4分,共24分)
- **1.** 曲线 $y = \frac{x + 4\sin x}{5x 2\cos x}$ 的水平渐近线方程为 ______.
- **解**. 应填 $y = \frac{1}{5}$. 由无穷小量的性质可知

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{x + 4\sin x}{5x - 2\cos x} = \lim_{x \to \infty} \frac{1 + \frac{4\sin x}{x}}{5 - \frac{2\cos x}{x}} = \lim_{x \to \infty} \frac{1 + 0}{5 - 0} = \frac{1}{5},$$

故 $y = \frac{1}{5}$ 是水平渐近线.

- **2.** 设函数 $f(x) = \begin{cases} \frac{1}{x^3} \int_0^x \sin t^2 dt, & x \neq 0 \\ a, & x = 0 \end{cases}$ 在 x = 0 处连续,则 a =_____.
- **解.** 应填 $\frac{1}{3}$. 按连续性定义和洛必达法则,有 $a = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin(x^2)}{3x^2} = \frac{1}{3}$.
- **3.** 广义积分 $\int_0^{+\infty} \frac{x \, dx}{(1+x^2)^2} = \underline{\hspace{1cm}}$.
- **解.** 应填 $\frac{1}{2}$. 因为 $\int_0^{+\infty} \frac{x \, \mathrm{d}x}{(1+x^2)^2} = \frac{1}{2} \int_0^{+\infty} \frac{\mathrm{d}(1+x^2)}{(1+x^2)^2} = -\frac{1}{2} \cdot \left[\frac{1}{1+x^2} \right]_0^{+\infty} = \frac{1}{2}$.
- 4. 同试卷一第一[2]题.
- **5**. 设函数 y = y(x) 由方程 $y = 1 xe^y$ 确定,则 $\frac{dy}{dx}\Big|_{x=0} =$ _____.
- **解**. 应填 -e. 在原方程中令 x = 0,得 y = 1. 方程两边对 x 求导得 $y' = -e^y xe^y y'$,令 x = 0 得 y'(0) = -e.
- 6. 同试卷一第一[5]题.
- 二、选择题(7~14小题,每小题4分,共32分)
- 7. 同试卷一第二[7]题.
- - (A) 连续的奇函数.

- (B) 连续的偶函数.
- (C) 在 x=0 间断的奇函数.
- (D) 在 x=0 间断的偶函数.

解. 应选 (B). 由题设知 f(x) 在任意区间 [a,b] 上都可积,故 $F(x) = \int_0^x f(t) dt$ 处处连续. 又

$$F(-x) = \int_0^{-x} f(t) dt = -\int_0^{-x} f(-t) dt = \int_0^x f(s) ds = F(x),$$

则 F(x) 为偶函数.

- **9.** 设函数 g(x) 可微, $h(x) = e^{1+g(x)}$, h'(1) = 1, g'(1) = 2, 则 g(1) 等于 · · · · · · () (A) $\ln 3 1$. (B) $-\ln 3 1$. (C) $-\ln 2 1$. (D) $\ln 2 1$.
- **解**. 应选 (C). 由复合函数求导法则有 $h'(x) = g'(x)e^{1+g(x)}$. 将 x = 1 代入上式得 $1 = 2e^{1+g(1)}$. 解得 $g(1) = \ln \frac{1}{2} 1 = -\ln 2 1$.

(A)
$$y'' - y' - 2y = 3xe^x$$
.

(B)
$$y'' - y' - 2y = 3e^x$$
.

(C)
$$y'' + y' - 2y = 3xe^x$$
.

(D)
$$y'' + y' - 2y = 3e^x$$
.

- **解.** 应选 (D). 依题意,微分方程对应的齐次方程的特征根为 1 和 -2,于是特征方程为 $\lambda^2 + \lambda 2 = 0$,对应的齐次微分方程为 y'' + y' 2y = 0. 又 $\alpha = 1$ 是特征方程的单根,故非齐次项为 $f(x) = Ae^x$,所以选 (D).
- 11. 同试卷一第二[8]题.
- 12. 同试卷一第二[10]题.
- 13. 同试卷一第二[11]题.
- **14.** 同试卷一第二 [12] 题.
- 三、解答题(15~23小题, 共94分)
- 15. (本题满分10分)

试确定常数 A, B, C 的值,使得 $e^x(1 + Bx + Cx^2) = 1 + Ax + o(x^3)$,其中 $o(x^3)$ 是当 $x \to 0$ 时比 x^3 高阶的无穷小.

解. 用泰勒公式,将 $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$ 代入题设等式整理得

$$1 + (B+1)x + \left(C + B + \frac{1}{2}\right)x^2 + \left(\frac{B}{2} + C + \frac{1}{6}\right) + o(x^3) = 1 + Ax + o(x^3).$$

比较两边同次幂函数得

$$\begin{cases} B+1 = A, \\ C+B+\frac{1}{2} = 0, \\ \frac{B}{2}+C+\frac{1}{6} = 0. \end{cases}$$

由此可解得 $A = \frac{1}{3}$, $B = -\frac{2}{3}$, $C = \frac{1}{6}$.

$$\Re \int \frac{\arcsin e^x}{e^x} \, \mathrm{d}x.$$

解. 由换元积分法和分部积分法, 可得

$$\int \frac{\arcsin e^{x}}{e^{x}} dx = \int \frac{\arcsin e^{x}}{e^{2x}} d(e^{x}) = \int \frac{\arcsin t}{t^{2}} dt = -\int \arcsin t d\left(\frac{1}{t}\right)$$

$$= -\frac{\arcsin t}{t} + \int \frac{dt}{t\sqrt{1-t^{2}}} = -\frac{\arcsin t}{t} + \int \frac{t dt}{t^{2}\sqrt{1-t^{2}}}$$

$$= -\frac{\arcsin t}{t} + \frac{1}{2} \int \frac{d(1-t^{2})}{(1-t^{2})\sqrt{1-t^{2}} - \sqrt{1-t^{2}}} = -\frac{\arcsin t}{t} + \frac{1}{2} \int \frac{d(u^{2})}{u^{3} - u}$$

$$= -\frac{\arcsin t}{t} + \int \frac{du}{u^{2} - 1} = -\frac{\arcsin t}{t} + \frac{1}{2} \ln\left|\frac{u - 1}{u + 1}\right| + C$$

$$= -\frac{\arcsin e^{x}}{e^{x}} + \frac{1}{2} \ln\left|\frac{\sqrt{1 - e^{2x}} - 1}{\sqrt{1 - e^{2x}} + 1}\right| + C.$$

- 17. 同试卷一第三[15]题.
- 18. 同试卷一第三[16] 题.
- 19. (本题满分10分)

证明: $0 < a < b < \pi$ 时, $b \sin b + 2 \cos b + \pi b > a \sin a + 2 \cos a + \pi a$.

解. 令 $f(x) = x \sin x + 2 \cos x + \pi x$, 则有

$$f'(x) = \sin x + x \cos x - 2 \sin x + \pi = x \cos x - \sin x + \pi$$

$$f''(x) = \cos x - x \sin x - \cos x = -x \sin x < 0,$$

所以 f'(x) 严格单调减少. 又 $f'(\pi) = \pi \cos \pi + \pi = 0$, 故 $0 < x < \pi$ 时 f'(x) > 0. 从而 f(x) 严格单调增加,由 b > a 可得 f(b) > f(a).

- 20. 同试卷一第三[18]题.
- 21. (本题满分12分)

已知曲线 *L* 的方程
$$\begin{cases} x = t^2 + 1, \\ y = 4t - t^2, \end{cases} (t \ge 0).$$

- (I) 讨论 L 的凹凸性;
- (II) 过点 (-1,0) 引 L 的切线, 求切点 (x_0, y_0) , 并写出切线的方程;
- (III) 求此切线与 L (对应 $x \le x_0$ 的部分) 及 x 轴所围成的平面图形的面积.
- 解.(I)计算该参数方程的各阶导数得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{4-2t}{2t} = \frac{2}{t} - 1, \quad \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{d\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\mathrm{d}t} \cdot \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \left(-\frac{2}{t^2}\right) \cdot \frac{1}{2t} = -\frac{1}{t^3}.$$

因为 t>0 时二阶导数小于零,所以曲线 L 在 t>0 处是凸的.

- (II) 切线方程为 $y-0=\left(\frac{2}{t}-1\right)(x+1)$,设 $x_0=t_0^2+1$, $y_0=4t_0-t_0^2$,代入方程解得 $t_0=1$. 所以切点为 (2,3),切线方程为 y=x+1.
- (III) 设 L 的方程 x = g(y), 则 $S = \int_0^3 \left[\left(g(y) (y-1) \right) \right] dy$. 由 $y = 4t t^2$ 解得 $t = 2 \pm \sqrt{4-y}$,从而 $x = \left(2 \pm \sqrt{4-y} \right)^2 + 1$. 由于点 (2,3) 在 L 上,可知 $x = \left(2 \sqrt{4-y} \right)^2 + 1 = g(y)$. 所以

$$S = \int_0^3 \left[\left(9 - y - 4\sqrt{4 - y} \right) - (y - 1) \right] dy$$
$$= \int_0^3 (10 - 2y) dy - 4 \int_0^3 \sqrt{4 - y} dy = 21 - \frac{56}{3} = \frac{7}{3}.$$

- 22. 同试卷一第三 [20] 题.
- 23. 同试卷一第三 [21] 题.

二〇〇七年考研数学试卷二解答

- 一、选择题(1~10小题,每小题4分,共40分)
- 1. 同试卷一第一[1]题.
- 2. 函数 $f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} e)}$ 在 $[-\pi, \pi]$ 上的第一类间断点是 $x = \cdots$ (C) $-\frac{\pi}{2}$. (D) $\frac{\pi}{2}$.
- **解**. 应选 (A). f(x) 的不连续点为 0、1、 $\pm \frac{\pi}{2}$. 由于

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} - e)} = \lim_{x \to 0^+} \frac{e^{\frac{1}{x}} + e}{e^{\frac{1}{x}} - e} = \lim_{x \to 0^+} \frac{e(1 + e^{1 - \frac{1}{x}})}{e(1 - e^{1 - \frac{1}{x}})} = 1,$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} - e)} = \lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}} + e}{e^{\frac{1}{x}} - e} = \frac{\lim_{x \to 0^{-}} \left(e^{\frac{1}{x}} + e\right)}{\lim_{x \to 0^{-}} \left(e^{\frac{1}{x}} - e\right)} = \frac{e}{-e} = -1,$$

即 f(x) 在 x = 0 存在左右极限,且 $\lim_{x \to 0^+} f(x) \neq \lim_{x \to 0^-} f(x)$,所以 x = 0 是 f(x) 的第一类间断点;同样,可验证其余选项是第二类间断点:

$$\lim_{x \to 1} f(x) = \infty, \quad \lim_{x \to \frac{\pi}{2}} f(x) = \infty, \quad \lim_{x \to -\frac{\pi}{2}} f(x) = \infty.$$

- 3. 同试卷一第一[3]题.
- 4. 同试卷一第一[4] 题.
- 5. 同试卷一第一[2]题.
- 6. 同试卷一第一[5]题.

(A)
$$\lim_{(x,y)\to(0,0)} [f(x,y)-f(0,0)] = 0.$$

(B)
$$\lim_{x\to 0} \frac{\left[f(x,0)-f(0,0)\right]}{x} = 0 \perp \lim_{y\to 0} \frac{\left[f(0,y)-f(0,0)\right]}{y} = 0.$$

(C)
$$\lim_{(x,y)\to(0,0)} \frac{[f(x,y)-f(0,0)]}{\sqrt{x^2+y^2}} = 0.$$

(D)
$$\lim_{x\to 0} [f_x'(x,0) - f_x'(0,0)] = 0 \ \text{I.} \lim_{y\to 0} [f_y'(0,y) - f_y'(0,0)] = 0.$$

解. 应选 (C). 由
$$\lim_{(x,y)\to(0,0)} \frac{\left[f(x,y)-f(0,0)\right]}{\sqrt{x^2+y^2}} = 0$$
推知
$$f(x,y)-f(0,0) = \alpha\sqrt{x^2+y^2} = 0 \cdot x + 0 \cdot y + o(\rho),$$

其中
$$\rho = \sqrt{x^2 + y^2}$$
, $\lim_{\rho \to 0} \frac{o(\rho)}{\rho} = \lim_{\rho \to 0} \alpha = 0$. 对照全微分定义,相当于 $x_0 = 0, y_0 = 0, \Delta x = x, \Delta y = y, A = 0, B = 0$.

可见 f(x,y) 在 (0,0) 点可微, 故选择 (C). 选项 (A) 相当于已知 f(x,y) 在点 (0,0)处连续; 选项 (B) 相当于已知两个一阶偏导数 $f'_{x}(0,0)$, $f'_{y}(0,0)$ 存在, (A) 和 (B) 均不能保证 f(x,y) 在点 (0,0) 处可微. 选项 (D) 相当于已知两个一元导函数 $f'_x(x,0)$, $f'_y(0,y)$ 分别在 x=0 和 y=0 处连续,但不能推出两个一阶偏导函数 $f'_x(x,y)$, $f'_y(x,y)$ 在点 (0,0) 处连续,因此也不能保证 f(x,y) 在点 (0,0) 处可微.

8. 设函数 f(x,y) 连续,则二次积分 $\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x,y) dy$ 等于 · · · · · · · · · ()

(A)
$$\int_{0}^{1} dy \int_{\pi+\arcsin y}^{\pi} f(x,y) dx$$
. (B) $\int_{0}^{1} dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx$. (C) $\int_{0}^{1} dy \int_{\frac{\pi}{2}}^{\pi+\arcsin y} f(x,y) dx$. (D) $\int_{0}^{1} dy \int_{\frac{\pi}{2}}^{\pi-\arcsin y} f(x,y) dx$.

(B)
$$\int_0^1 dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx.$$

(C)
$$\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi + \arcsin y} f(x, y) dx$$

(D)
$$\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi-\arcsin y} f(x,y) dx.$$

解. 应选 (B). 该二次积分所对应的积分区域 $D: \frac{\pi}{2} \le x \le \pi$, $\sin x \le y \le 1$. 交换为先 x后 y,则积分区域可化为: $0 \le y \le 1, \pi - \arcsin y \le x \le \pi$.所以

$$\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x, y) dy = \int_{0}^{1} dy \int_{\pi-\arcsin y}^{\pi} f(x, y) dx.$$

- 9. 同试卷一第一[7]题.
- 10. 同试卷一第一[8] 题.
- 二、填空题(11~16小题,每小题4分,共24分)

11.
$$\lim_{x\to 0} \frac{\arctan x - \sin x}{x^3} = \underline{\hspace{1cm}}$$
.

解. 应填 $-\frac{1}{6}$. 由洛必达法则,

$$\lim_{x \to 0} \frac{\arctan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\frac{1}{1+x^2} - \cos x}{3x^2} = \lim_{x \to 0} \frac{1 - (1+x^2)\cos x}{3x^2(1+x^2)}$$

$$= \lim_{x \to 0} \frac{1}{3(1+x^2)} \cdot \lim_{x \to 0} \left(\frac{1 - \cos x}{x^2} - \cos x\right)$$

$$= \frac{1}{3} \left(\lim_{x \to 0} \frac{x^2/2}{x^2} - 1\right) = -\frac{1}{6}.$$

12. 曲线 $\begin{cases} x = \cos t + \cos^2 t \\ y = 1 + \sin t \end{cases}$ 上对应于 $t = \frac{\pi}{4}$ 的点处的法线斜率为 ______.

解. 应填 $1+\sqrt{2}$. 由参数方程的导数公式.

$$\begin{split} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{(1+\sin t)'}{(\cos t + \cos^2 t)'} = \frac{\cos t}{-\sin t - 2\sin t\cos t}. \end{split}$$
 把 $t = \frac{\pi}{4}$ 代入得 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=\frac{\pi}{4}} = -\frac{1}{1+\sqrt{2}}.$ 所以法线斜率为 $1+\sqrt{2}$.

- **13.** 设函数 $y = \frac{1}{2x+3}$,则 $y^{(n)}(0) = \underline{\hspace{1cm}}$.
- **解**. 应填 $\frac{(-1)^n 2^n n!}{3^{n+1}}$. 由数学归纳法可知 $y^{(n)} = (-1)^n 2^n n! (2x+3)^{-n-1}$. 把 x = 0 代入 得 $y^{(n)}(0) = \frac{(-1)^n 2^n n!}{3^{n+1}}$.
- 14. 同试卷一第二[13]题.
- **15.** 设 f(u,v) 是二元可微函数, $z = f\left(\frac{y}{x}, \frac{x}{y}\right)$,则 $x\frac{\partial z}{\partial x} y\frac{\partial z}{\partial y} = \underline{\qquad}$
- **解.** 应填 $2\left(-\frac{y}{x}f_1' + \frac{x}{y}f_2'\right)$. 由复合函数导数公式,

$$\frac{\partial z}{\partial x} = f_1' \cdot \frac{\partial \left(\frac{y}{x}\right)}{\partial x} + f_2' \cdot \frac{\partial \left(\frac{x}{y}\right)}{\partial x} = f_1' \cdot \left(-\frac{y}{x^2}\right) + f_2' \cdot \frac{1}{y},$$

$$\frac{\partial z}{\partial y} = f_1' \cdot \frac{\partial \left(\frac{y}{x}\right)}{\partial y} + f_2' \cdot \frac{\partial \left(\frac{x}{y}\right)}{\partial y} = f_1' \cdot \frac{1}{x} + f_2' \cdot \left(-\frac{x}{y^2}\right).$$

所以

$$\begin{split} x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} &= x\cdot \left[f_1'\cdot \left(-\frac{y}{x^2}\right) + f_2'\cdot \frac{1}{y}\right] - y\left[f_1'\cdot \frac{1}{x} + f_2'\cdot \left(-\frac{x}{y^2}\right)\right] \\ &= \left(-\frac{y}{x}\right)\cdot f_1' + f_2'\cdot \frac{x}{y} - f_1'\cdot \frac{y}{x} + f_2'\cdot \frac{x}{y} = 2\left(-\frac{y}{x}f_1' + \frac{x}{y}f_2'\right). \end{split}$$

- 16. 同试卷一第二[15]题.
- 三、解答题(17~24小题, 共86分)
- 17. (本题满分 10 分)

设 f(x) 是区间 $\left[0,\frac{\pi}{4}\right]$ 上的单调、可导函数,且满足

$$\int_0^{f(x)} f^{-1}(t) dt = \int_0^x t \frac{\cos t - \sin t}{\sin t + \cos t} dt,$$

其中 f^{-1} 是 f 的反函数,求 f(x).

解. 方程两边对 x 求导得

$$f^{-1}[f(x)] \cdot f'(x) = x \frac{\cos x - \sin x}{\sin x + \cos x} \quad \Rightarrow \quad x f'(x) = x \frac{\cos x - \sin x}{\sin x + \cos x}.$$

当 $x \neq 0$ 时,对上式两边同时除以 x,得 $f'(x) = \frac{\cos x - \sin x}{\sin x + \cos x}$,所以

$$f(x) = \int \frac{\cos x - \sin x}{\sin x + \cos x} dx = \int \frac{d(\sin x + \cos x)}{\sin x + \cos x} = \ln|\sin x + \cos x| + C.$$

在已知等式中令 x=0,得 $\int_0^{f(0)} f^{-1}(t) dt = 0$. 因 f(x) 是 $\left[0, \frac{\pi}{4}\right]$ 上的单调可导函数, $f^{-1}(t)$ 的值域为 $\left[0, \frac{\pi}{4}\right]$,它是单调非负的,故必有 f(0)=0,从而两边对上式取 $x \to 0^+$ 极限 $\lim_{x \to 0^+} f(x) = f(0) = C = 0$. 于是 $f(x) = \ln(\sin x + \cos x)$, $x \in \left[0, \frac{\pi}{4}\right]$.

18. (本题满分11分)

设 D 是位于曲线 $y = \sqrt{x} a^{-\frac{x}{2a}} (a > 1, 0 \le x < +\infty)$ 下方、x 轴上方的无界区域.

- (I) 求区域 D 绕 x 轴旋转一周所成旋转体的体积 V(a);
- (II) 当 a 为何值时, V(a) 最小? 并求出最小值.

解.(I)由旋转体的体积公式,

$$V(a) = \pi \int_0^\infty x a^{-\frac{x}{a}} dx = -\frac{a}{\ln a} \pi \int_0^\infty x d\left(a^{-\frac{x}{a}}\right)$$
$$= -\frac{a}{\ln a} \pi \left[x a^{-\frac{x}{a}}\right]_0^{+\infty} + \frac{a}{\ln a} \pi \int_0^\infty a^{-\frac{x}{a}} dx = \pi \left(\frac{a}{\ln a}\right)^2.$$

(II) 对 V(a) 求导得到

$$V'(a) = \left[\pi \left(\frac{a}{\ln a}\right)^{2}\right]' = \pi \cdot \frac{2a \ln^{2} a - a^{2} \cdot 2\ln a \cdot \frac{1}{a}}{\ln^{4} a}$$
$$= \pi \cdot \frac{2a \ln a - 2a}{\ln^{3} a} = 2\pi \left(\frac{a (\ln a - 1)}{\ln^{3} a}\right).$$

令 V'(a)=0,得 $\ln a=1$,从而 a=e. 当 1 < a < e 时, V'(a) < 0, V(a) 单调减少;当 a > e 时, V'(a) > 0, V(a) 单调增加.所以 a=e 时 V 最小,最小体积为 $V_{\min}(a)=\pi e^2$.

19. (本题满分11分)

求微分方程 $v''(x+v'^2)=v'$ 满足初始条件 v(1)=v'(1)=1 的特解.

解. 令 y' = p, 则 y'' = p', 原方程化为 $p'(x + p^2) = p$. 即

$$\frac{\mathrm{d}x}{\mathrm{d}p} - \frac{x}{p} = p.$$

由一阶线性微分方程求解公式、得

$$x = e^{\int \frac{1}{p} dp} \left(\int p e^{\int -\frac{1}{p} dp} dp + C_1 \right) = p \left(\int dp + C_1 \right) = p(p + C_1).$$

代入初始条件得 $C_1=0$,于是 $p^2=x$. 由 y'(1)=1 知 $p=\sqrt{x}$,即

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{x} \quad \Rightarrow \quad y = \frac{2}{3}x^{\frac{3}{2}} + C_2.$$

代入初始条件得 $C_2 = \frac{1}{3}$, 所以特解为

$$y = \frac{2}{3}x^{\frac{3}{2}} + \frac{1}{3}.$$

第104页 共174页

20. (本题满分10分)

已知函数 f(u) 具有二阶导数,且 f'(0)=1,函数 y=y(x) 由方程 $y-xe^{y-1}=1$ 所确定. 设 $z=f(\ln y-\sin x)$,求 $\frac{\mathrm{d}z}{\mathrm{d}x}\Big|_{x=0}$, $\frac{\mathrm{d}^2z}{\mathrm{d}x^2}\Big|_{x=0}$.

解. 在
$$y-xe^{y-1}=1$$
 中,令 $x=0$,得 $y=1$. $y-xe^{y-1}=1$ 两边对 x 求导,得 $y'-e^{y-1}-xe^{y-1}y'=0 \Rightarrow (2-y)y'-e^{y-1}=0$.

由 x = 0, y = 1 得 $y'|_{x=0} = 1$. 对上式两边求导,得

$$(2-y)y''-y'^2-e^{y-1}y'=0.$$

令 x = 0,由 x = 0 时 y = 1,y' = 1,得 $y'' \Big|_{x=0} = 2$.因为 $z = f(\ln y - \sin x)$,所以 $\frac{\mathrm{d}z}{\mathrm{d}x} = f'(\ln y - \sin x) \Big(\frac{y'}{y} - \cos x\Big).$

把
$$x = 0, y = 1, y' = 1$$
 代入,得 $\frac{dz}{dx}\Big|_{x=0} = 0$. 对上式再次求导,得
$$\frac{d^2z}{dx^2} = f''(\ln y - \sin x)\Big(\frac{y'}{y} - \cos x\Big)^2 + f'(\ln y - \sin x)\Big[-\frac{y'^2}{y^2} + \frac{y''}{y} + \sin x\Big].$$

把 x = 0, y = 1, y' = 1, y'' = 2 代入上式,得 $\frac{d^2z}{dx^2} = f'(0)(2-1) = 1$.

- 21. 同试卷一第三[19]题.
- 22. (本题满分11分)

设二元函数
$$f(x,y) = \begin{cases} x^2, & |x|+|y| \leq 1, \\ \frac{1}{\sqrt{x^2+y^2}}, & 1 < |x|+|y| \leq 2, \end{cases}$$
 计算二重积分 $\iint_D f(x,y) d\sigma$, 其中 $D = \{(x,y) \big| |x|+|y| \leq 2\}$.

解.
$$\Box D_1 = \{(x,y) | |x| + |y| \le 1 \}, \quad D_2 = \{(x,y) | 1 < |x| + |y| \le 2 \}.$$
 则
$$\iint_D f(x,y) d\sigma = \iint_{D_1} f(x,y) d\sigma + \iint_{D_2} f(x,y) d\sigma$$

$$= \iint_{D_1} x^2 d\sigma + \iint_{D_2} \frac{1}{\sqrt{x^2 + y^2}} d\sigma.$$

再记 $\sigma_1 = \{(x,y) | 0 \le x + y \le 1, x \ge 0, y \ge 0 \}, \sigma_2 = \{(x,y) | 1 \le x + y \le 2, x \ge 0, y \ge 0 \}.$ 由于 $D_1 = D_2$ 都与x轴对称,也都与y轴对称,函数 $x^2 = \frac{1}{\sqrt{x^2 + y^2}}$ 都是x的偶函数,也都是y的偶函数,所以由区域对称性和被积函数的奇偶性有

$$\iint_{D_1} x^2 d\sigma = 4 \iint_{\sigma_1} x^2 d\sigma = 4 \int_0^1 dx \int_0^{1-x} x^2 dy$$

$$= 4 \int_0^1 x^2 (1-x) dx = 4 \int_0^1 (x^2 - x^3) dx = \frac{1}{3},$$

$$\iint_{D_2} \frac{1}{\sqrt{x^2 + y^2}} d\sigma = 4 \iint_{\sigma_2} \frac{1}{\sqrt{x^2 + y^2}} d\sigma.$$

对第二个积分采用极坐标,令 $x = r\cos\theta$, $y = r\sin\theta$, $0 < \theta < \frac{\pi}{2}$. 则 x + y = 1 化 为 $r = \frac{1}{\cos\theta + \sin\theta}$, x + y = 2 化为 $r = \frac{2}{\cos\theta + \sin\theta}$, $\sqrt{x^2 + y^2} = r$,于是 $\iint_{D_2} \frac{1}{\sqrt{x^2 + y^2}} d\sigma = 4 \int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^{\frac{2}{\cos\theta + \sin\theta}} dr = 4 \int_0^{\frac{\pi}{2}} \frac{1}{\cos\theta + \sin\theta} d\theta$ $= 4 \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{2}\cos(\theta - \frac{\pi}{4})} d\theta = 2\sqrt{2} \int_0^{\frac{\pi}{2}} \sec(\theta - \frac{\pi}{4}) d\theta$ $= 2\sqrt{2} \ln\left[\sec(\theta - \frac{\pi}{4}) + \tan(\theta - \frac{\pi}{4})\right]_0^{\frac{\pi}{2}}$ $= 2\sqrt{2} \ln\left(\ln\left|\frac{2}{\sqrt{2}} + 1\right| - \ln\left|\frac{2}{\sqrt{2}} - 1\right|\right)$ $= 2\sqrt{2} \ln\frac{2 + \sqrt{2}}{2 - \sqrt{2}} = 2\sqrt{2} \ln(3 + 2\sqrt{2}).$

所以

$$\iint_{D} f(x,y) d\sigma = \iint_{D_{1}} f(x,y) d\sigma + \iint_{D_{2}} f(x,y) d\sigma = \frac{1}{3} + 2\sqrt{2} \ln(3 + 2\sqrt{2}).$$

- 23. 同试卷一第三 [21] 题.
- 24. 同试卷一第三 [22] 题.

二〇〇八年考研数学试卷二解答

- 一、选择题(1~8 小题,每小题 4 分,共 32 分)
- **1.** 设 $f(x) = x^2(x-1)(x-2)$,求 f'(x) 的零点个数为······() (A) 0.(B) 1. (C) 2.(D) 3.
- **解.** 应选 (D). 因为 f(0) = f(1) = f(2) = 0,由罗尔定理知至少有 $\xi_1 \in (0,1)$, $\xi_2 \in (1,2)$ 使 $f'(\xi_1) = f'(\xi_2) = 0$, 所以 f'(x) 至少有两个零点. 又由于三次方程 f'(x) = 0 的 实根不是三个就是一个, 故 f'(x) 的零点个数为 3.
- **2.** 如图,曲线段方程为 y = f(x),函数在区间 [0,a] 上有连续导数,则定积分 $\int_{a}^{u} x f'(x) dx$ 等于······()

- (A) 曲边梯形 ABOD 面积.
- (B) 梯形 ABOD 面积.
- (C) 曲边三角形 ACD 面积.
- (D) 三角形 ACD 面积.
- 解. 应选 (C). 由分部积分法可得

$$\int_0^a x f'(x) dx = \int_0^a x d(f(x)) = [x f(x)]_0^a - \int_0^a f(x) dx = a f(a) - \int_0^a f(x) dx.$$

因为 af(a) 是矩形 ABOC 面积, $\int_0^a f(x) dx$ 为曲边梯形 ABOD 的面积,所以 $\int_{0}^{a} x f'(x) dx$ 为曲边三角形的面积.

- 3. 同试卷一第一[3]题.
- - (A) 1 个可去间断点, 1 个跳跃间断点. (B) 1 个可去间断点, 1 个无穷间断点.

(C) 2 个无穷间断点.

- (D) 2 个跳跃间断点.
- **解**. 应选 (A). 易知 x = 0 和 x = 1 是函数 f(x) 的间断点. 因为

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \ln|x| \cdot \sin x = \lim_{x \to 0} x \ln|x|$$

$$= \lim_{x \to 0} \frac{\ln|x|}{1/x} = \lim_{x \to 0} \frac{1/x}{-1/x^2} = \lim_{x \to 0} (-x) = 0,$$

所以x=0是可去间断点.又因为

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{\ln x}{x - 1} \cdot \lim_{x \to 1^+} \sin x = \left(\lim_{x \to 1^+} \frac{x - 1}{x - 1}\right) \sin 1 = \sin 1,$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{\ln x}{1 - x} \cdot \lim_{x \to 1^{+}} \sin x = -\sin 1,$$

所以 x=1 是跳跃间断点.

- 5. 同试卷一第一[4]题.
- **6.** 设函数 f 连续. 若 $F(u,v) = \iint_{D_{uv}} \frac{f(x^2 + y^2)}{\sqrt{x^2 + y^2}} dx dy$,其中区域 D_{uv} 为图中阴影部 分,则 $\frac{\partial F}{\partial u} = \cdots$

(A) $v f\left(u^2\right)$. (B) $\frac{v}{u} f\left(u^2\right)$.

(C) v f(u).

(D) $\frac{v}{u}f(u)$.

解. 应选 (A). 化为极坐标得到

$$F(u,v) = \iint_{D_{uv}} \frac{f(x^2 + y^2)}{\sqrt{x^2 + y^2}} \, \mathrm{d}x \, \mathrm{d}y = \int_0^v \mathrm{d}\theta \int_1^u \frac{f(r^2)}{r} r \, \mathrm{d}r = v \int_1^u f(r^2) \, \mathrm{d}r,$$

$$\text{Ff } \bigcup_{v \in \mathcal{V}} \frac{\partial F}{\partial u} = v f(u^2).$$

- 7. 同试卷一第一[5]题.

 $(A)\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}. \qquad (B)\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}. \qquad (C)\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}. \qquad (D)\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}.$

解. 应选 (D). 记 $D = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$, 则可求得 A 和 D 有相同的特征值 3 和 -1,从而 A和 D 有相同的正负惯性指数,所以 A 和 D 合同.

- 二、填空题(9~14小题,每小题4分,共24分)
- **9.** 已知 f(x) 连续,且 $\lim_{x\to 0} \frac{1-\cos[xf(x)]}{(e^{x^2}-1)f(x)} = 1$,则 f(0) =_____.
- 解. 应填2. 因为

$$1 = \lim_{x \to 0} \frac{1 - \cos[xf(x)]}{(e^{x^2} - 1)f(x)} = \lim_{x \to 0} \frac{\frac{1}{2}[xf(x)]^2}{x^2 f(x)} = \frac{1}{2} \lim_{x \to 0} f(x) = \frac{1}{2} f(0),$$

所以f(0)=2.

- **10.** 微分方程 $(y + x^2e^{-x})dx x dy = 0$ 的通解是 $y = x + x^2e^{-x}$.
- **解**. 应填 $x(-e^{-x} + C)$. 原微分方程可变形为 $\frac{dy}{dx} \frac{y}{x} = xe^{-x}$, 所以其通解为 $y = e^{\int \frac{1}{x} dx} \left[\int x e^{-x} e^{-\int \frac{1}{x} dx} dx + C \right] = x \left(\int x e^{-x} \cdot \frac{1}{x} dx + C \right) = x(-e^{-x} + C).$
- 11. 同试卷一第二[10]题.
- **12.** 求函数 $f(x) = (x-5)x^{2/3}$ 的拐点坐标为 _____.
- **解.** 应填 (-1,-6). 由 $y = x^{5/3} 5x^{2/3}$ 得

$$y' = \frac{5}{3}x^{2/3} - \frac{10}{3}x^{-1/3} = \frac{10(x+2)}{3x^{1/3}},$$
$$y'' = \frac{10}{9}x^{-1/3} + \frac{10}{9}x^{-4/3} = \frac{10(x+1)}{9x^{4/3}}.$$

当 x = 0 时 y'' 不存在,但是在 x = 0 左右邻域 y'' > 0,因此 x = 0 不是拐点. 当 x = -1 时 y'' = 0,而且在 x = -1 左右邻域 y'' 异号,f(-1) = -6,因此曲线的拐点为 (-1,-6).

- **13.** 已知 $z = \left(\frac{y}{x}\right)^{\frac{x}{y}}$,则 $\left.\frac{\partial z}{\partial x}\right|_{(1,2)} = \underline{\hspace{1cm}}$
- **解.** 应填 $\frac{\sqrt{2}}{2}(\ln 2 1)$. 设 $u = \frac{y}{x}, v = \frac{x}{y}$, 则 $z = u^{v}$, 所以 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = v u^{v-1} \left(-\frac{y}{x^{2}} \right) + u^{v} \ln u \cdot \frac{1}{y}$ $= u^{v} \left(-\frac{v y}{u x^{2}} + \frac{\ln u}{y} \right) = \left(\frac{y}{x} \right)^{x/y} \cdot \frac{1}{y} \left(-1 + \ln \frac{y}{x} \right),$

所以 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \frac{\sqrt{2}}{2}(\ln 2 - 1).$

- **14.** 设 3 阶矩阵 *A* 的特征值是 2,3, λ , 若行列式 |2A| = -48, 则 $\lambda =$
- **解.** 应填 -1. 因为 $|A| = 2 \times 3 \times \lambda = 6\lambda$,所以 $-48 = |2A| = 2^3 |A| = 48\lambda$,故 $\lambda = -1$.

- 三、解答题(15~23小题, 共94分)
- 15. 同试卷一第三[15]题.
- 16. (本题满分10分)

设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = x(t), \\ y = \int_0^{t^2} \ln(1+u) du \end{cases}$$
 确定,其中 $x(t)$ 是初值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0, \\ x|_{t=0} = 0 \end{cases}$$
 的解,求 $\frac{d^2y}{dx^2}$.

解. 由 $\frac{dx}{dt} - 2te^{-x} = 0$ 得 $e^x dx = 2t dt$,两边同时积分,并由初始条件得 $e^x = 1 + t^2$,即 $x = \ln(1 + t^2)$,所以

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\ln(1+t^2)\cdot 2t}{\frac{2t}{1+t^2}} = (1+t^2)\ln(1+t^2) = e^x x,$$

从而
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \mathrm{e}^x(x+1)$$
.

17. (本题满分9分)

计算
$$\int_0^1 \frac{x^2 \arcsin x}{\sqrt{1-x^2}} dx$$
.

解. 令 $\arcsin x = t$, 则 $x = \sin t$, $t \in [0, \pi/2)$, 从而

$$\int_{0}^{1} \frac{x^{2} \arcsin x}{\sqrt{1 - x^{2}}} \, \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \frac{t \sin^{2} t}{\cos t} \cos t \, \mathrm{d}t = \int_{0}^{\frac{\pi}{2}} t \sin^{2} t \, \mathrm{d}t = \int_{0}^{\frac{\pi}{2}} \left(\frac{t}{2} - \frac{t \cos 2t}{2}\right) \, \mathrm{d}t$$
$$= \left[\frac{t^{2}}{4}\right]_{0}^{\frac{\pi}{2}} - \frac{1}{4} \int_{0}^{\frac{\pi}{2}} t \, \mathrm{d}(\sin 2t) = \frac{\pi^{2}}{16} - \left[\frac{t \sin 2t}{4}\right]_{0}^{\frac{\pi}{2}} + \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin 2t \, \mathrm{d}t$$
$$= \frac{\pi^{2}}{16} + \left[-\frac{1}{8} \cos 2t\right]_{0}^{\frac{\pi}{2}} = \frac{\pi^{2}}{16} + \frac{1}{4}.$$

18. (本题满分11分)

计算
$$\iint_D \max\{xy,1\} dx dy$$
, 其中 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 2\}$.

解. 曲线 xy = 1 将区域分成三个区域 D_1, D_2, D_3 :

从而所求的积分

$$\iint_{D} \max(x y, 1) dx dy = \iint_{D_{1}} x y dx dy + \iint_{D_{2}} dx dy + \iint_{D_{3}} dx dy$$

$$= \int_{0}^{\frac{1}{2}} dx \int_{0}^{2} 1 dy + \int_{\frac{1}{2}}^{2} dx \int_{0}^{\frac{1}{x}} 1 dy + \int_{\frac{1}{2}}^{2} dx \int_{\frac{1}{x}}^{2} x y dy$$

$$= 1 + 2 \ln 2 + \frac{15}{4} - \ln 2 = \frac{19}{4} + \ln 2.$$

19. (本题满分11分)

设 f(x) 是区间 $[0,+\infty)$ 上具有连续导数的单调增加函数,且 f(0)=1. 对于任意的 $t \in [0,+\infty)$,直线 x=0,x=t,曲线 y=f(x) 以及 x 轴所围成曲边梯形绕 x 轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的 2 倍,求函数 f(x) 的表达式.

解. 因为旋转体的体积 $V = \pi \int_0^t f^2(x) dx$,侧面积 $S = 2\pi \int_0^t f(x) \sqrt{1 + f'^2(x)} dx$,所以由题设有

$$\int_0^t f^2(x) dx = \int_0^t f(x) \sqrt{1 + f'^2(x)} dx.$$

上式两端对 t 求导得 $f^2(t) = f(t)\sqrt{1+f'^2(t)}$,即 $y' = \sqrt{y^2-1}$.由分离变量法解得 $\ln(y+\sqrt{y^2-1})=t+C_1$,即 $y+\sqrt{y^2-1}=Ce^t$.将 y(0)=1 代入知 C=1,故 $y+\sqrt{y^2-1}=e^t$,即 $y=\frac{1}{2}(e^t+e^{-t})$.于是所求函数为 $y=f(x)=\frac{1}{2}(e^t+e^{-t})$.

20. (本题满分11分)

- (I) 证明积分中值定理: 若函数 f(x) 在闭区间 [a,b] 上连续,则至少存在一点 $\eta \in [a,b]$,使得 $\int_a^b f(x) dx = f(\eta)(b-a)$.
- (II) 若函数 $\varphi(x)$ 具有二阶导数,且满足 $\varphi(2) > \varphi(1)$, $\varphi(2) > \int_{2}^{3} \varphi(x) dx$,则至少存在一点 $\xi \in (1,3)$,使得 $\varphi''(\xi) < 0$.

解. (I) 设 M 与 m 是连续函数 f(x) 在 [a,b] 上的最大值与最小值,即 $m \le f(x) \le M$, $x \in [a,b]$.

由定积分性质有

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a), \quad \Rightarrow \quad m \le \frac{\int_a^b f(x) dx}{b-a} \le M.$$

由连续函数介值定理,至少存在一点 $\eta \in [a,b]$,使得

$$f(\eta) = \frac{\int_a^b f(x) dx}{b-a} \quad \Rightarrow \quad \int_a^b f(x) dx = f(\eta)(b-a).$$

(II) 由 (I) 的结论可知至少存在一点 $\eta \in [2,3]$,使

$$\int_{2}^{3} \varphi(x) dx = \varphi(\eta)(3-2) = \varphi(\eta).$$

又由 $\varphi(2) > \int_{2}^{3} \varphi(x) dx = \varphi(\eta)$,知 $2 < \eta \le 3$.对 $\varphi(x)$ 在 [1,2] 和 $[2,\eta]$ 上分别 应用拉格朗日中值定理,并注意到 $\varphi(1) < \varphi(2)$, $\varphi(\eta) < \varphi(2)$,得

$$\varphi'(\xi_1) = \frac{\varphi(2) - \varphi(1)}{2 - 1} > 0, \quad 1 < \xi_1 < 2;$$

$$\varphi'(\xi_2) = \frac{\varphi(\eta) - \varphi(2)}{\eta - 2} < 0, \quad 2 < \xi_1 < \eta \le 3.$$

在 $[\xi_1, \xi_2]$ 上对 $\varphi'(x)$ 应用拉格朗日中值定理,有 $\xi \in (\xi_1, \xi_2) \subset (1,3)$,使得

$$\varphi''(\xi) = \frac{\varphi'(\xi_2) - \varphi'(\xi_1)}{\xi_2 - \xi_1} < 0.$$

21. (本题满分 11 分)

求函数 $u = x^2 + y^2 + z^2$ 在约束条件 $z = x^2 + y^2$ 和 x + y + z = 4 下的最大和最小值.

解. 作拉格朗日函数

$$F(x, y, z, \lambda, \mu) = x^2 + y^2 + z^2 + \lambda(x^2 + y^2 - z) + \mu(x + y + z - 4),$$

今各个偏导数为零得

$$\begin{cases} F_x' = 2x + 2\lambda x + \mu = 0, \\ F_y' = 2y + 2\lambda y + \mu = 0, \\ F_z' = 2z - \lambda + \mu = 0, \\ F_\lambda' = x^2 + y^2 - z = 0, \\ F_\mu' = x + y + z - 4 = 0. \end{cases}$$

解方程组得 $(x_1, y_1, z_1) = (1, 1, 2)$, $(x_2, y_2, z_2) = (-2, -2, 8)$. 故所求的最大值为 72,最小值为 6.

22. 同试卷一第三[21]题.

23. (本题满分10分)

设 A 为 3 阶矩阵, α_1 , α_2 为 A 的分别属于特征值 -1, 1 的特征向量,向量 α_3 满足 $A\alpha_3 = \alpha_2 + \alpha_3$.

(I) 证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关; (II) 令 $P = (\alpha_1, \alpha_2, \alpha_3)$, 求 $P^{-1}AP$.

解. (I) 设存在数 k_1, k_2, k_3 ,使得

$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0.$$

用 A 左乘上式的两边, 并由 $A\alpha_1 = -\alpha_1$, $A\alpha_2 = \alpha_2$ 得

$$-k_1\alpha_1 + (k_2 + k_3)\alpha_2 + k_3\alpha_3 = 0.$$

上面两式相减得 $2k_1\alpha_1 - k_3\alpha_2 = 0$. 因为 α_1, α_2 是 A 的属于不同特征值的特征向量,所以 α_1, α_2 线性无关,从而 $k_1 = k_3 = 0$,代入第一式得 $k_2\alpha_2 = 0$,又由于 $\alpha_2 \neq 0$,所以 $k_2 = 0$,故 $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

(II) 若 $P = (\alpha_1, \alpha_2, \alpha_3)$,则 P 可逆,而且

$$AP = A(\alpha_1, \alpha_2, \alpha_3) = (A\alpha_1, A\alpha_2, A\alpha_3) = (-\alpha_1, \alpha_2, \alpha_2 + \alpha_3)$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = P \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

所以
$$P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

二〇〇九年考研数学试卷二解答

- 一、选择题(1~8 小题,每小题 4 分,共 32 分)
- **1.** 函数 $f(x) = \frac{x x^3}{\sin nx}$ 的可去间断点的个数为······() (D) 无穷多个. (A) 1. (B) 2.
- **解**. 应选 (C). 显然 f(x) 的间断点为所有整数,但可去间断点为极限存在的点,故 应是 $x-x^3=0$ 的解 x=0 或 x=-1 或 x=1. 因为

$$\lim_{x \to 0} \frac{x - x^3}{\sin \pi x} = \lim_{x \to 0} \frac{1 - 3x^2}{\pi \cos \pi x} = \frac{1}{\pi},$$

$$\lim_{x \to 1} \frac{x - x^3}{\sin \pi x} = \lim_{x \to 1} \frac{1 - 3x^2}{\pi \cos \pi x} = \frac{2}{\pi},$$

$$\lim_{x \to -1} \frac{x - x^3}{\sin \pi x} = \lim_{x \to -1} \frac{1 - 3x^2}{\pi \cos \pi x} = \frac{2}{\pi},$$

所以可去间断点为3个.

- 2. 同试卷一第一[1]题.
- **3.** 设函数 z = f(x, y) 的全微分为 dz = x dx + y dy, 则点 $(0,0) \cdots (0,0) \cdots (0,0)$
 - (A) 不是 f(x,y) 的连续点.
- (B) 不是 f(x, y) 的极值点.
- (C) 是 f(x,y) 的极大值点.
- (D) 是 f(x,y) 的极小值点.
- **解.** 应选 (D). 因 dz = x dx + y dy 可得 $\frac{\partial z}{\partial x} = x$, $\frac{\partial z}{\partial y} = y$, 从而

$$A = \frac{\partial^2 z}{\partial x^2} = 1,$$
 $B = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = 0,$ $C = \frac{\partial^2 z}{\partial y^2} = 1.$

又在 (0,0) 处, $\frac{\partial z}{\partial x} = 0$, $\frac{\partial z}{\partial y} = 0$, $AC - B^2 = 1 > 0$, 故 (0,0) 为函数 z = f(x,y) 的一 个极小值点.

- **4.** 设函数 f(x,y) 连续,则 $\int_{1}^{2} dx \int_{x}^{2} f(x,y) dy + \int_{1}^{2} dy \int_{y}^{4-y} f(x,y) dx = \cdots$ ()
 - (A) $\int_{-1}^{2} dx \int_{-1}^{4-x} f(x,y) dy.$
- (B) $\int_{1}^{2} \mathrm{d}x \int_{1}^{4-x} f(x,y) \mathrm{d}y.$
 - (C) $\int_{1}^{2} dy \int_{1}^{4-y} f(x,y) dx.$ (D) $\int_{1}^{2} dy \int_{x}^{2} f(x,y) dx.$
- **解.** 应选 (C). $\int_1^2 dx \int_1^2 f(x,y) dy + \int_1^2 dy \int_1^2 f(x,y) dx$ 的积分区域为两部分:

$$D_1 = \{(x, y) | 1 \le x \le 2, x \le y \le 2\}, \quad D_2 = \{(x, y) | 1 \le y \le 2, y \le x \le 4 - y\}.$$

将两部分合并得到 $D = \{(x,y) | 1 \le y \le 2, 1 \le x \le 4-y \}$. 故二重积分可以表示为 $\int_{1}^{2} dy \int_{1}^{4-y} f(x,y) dx.$

- **5.** 若 f''(x) 不变号,且曲线 y = f(x) 在点 (1,1) 上的曲率圆为 $x^2 + y^2 = 2$,则 f(x)在区间 (1,2) 内
 - (A) 有极值点, 无零点.

- (B) 无极值点, 有零点.
- (C) 有极值点, 有零点.
- (D) 无极值点, 无零点.
- **解**. 应选 (B). 由题意可知, f(1)=1, f'(1)=-1, 且由 f(x) 在点 (1,1) 处的曲率

$$\rho = \frac{|y''|}{(1+(y')^2)^{\frac{3}{2}}} = \frac{1}{\sqrt{2}},$$

可得 f''(1) = -2. 因为 f''(x) 不变号,所以 f''(x) < 0. 在 [1,2] 上,

$$f'(x) \le f'(1) = -1 < 0$$
,

即 f(x) 单调减少,没有极值点.由拉格朗日中值定理,

$$f(2) - f(1) = f'(\zeta) < -1, \quad \zeta \in (1, 2).$$

所以 f(2) < 0. 而 f(1) = 1 > 0,由零点定理知, f(x) 在 [1,2] 上有零点.

- 6. 同试卷一第一[3]题.
- 7. 同试卷一第一[6] 题.
- 8. 设 A,P 均为 3 阶矩阵, P^T 为 P 的转置矩阵,且 $P^TAP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,若 $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,若 $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

 $(\alpha_1,\alpha_2,\alpha_3)$, $Q=(\alpha_1+\alpha_2,\alpha_2,\alpha_3)$, 则 Q^TAQ 为·····

(A)
$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
. (B) $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. (C) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. (D) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

$$(B) \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$(C) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

$$(D) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

解. 应选 (A). 记 $E_{12}(1) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 则有 $Q = PE_{12}(1)$. 从而

$$Q^{T}AQ = [PE_{12}(1)]^{T}A[PE_{12}(1)] = E_{12}^{T}(1)[P^{T}AP]E_{12}(1)$$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

- 二、填空题(9~14小题,每小题4分,共24分)
- **9.** 曲线 $\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2-t^2) \end{cases}$ 在 (0,0) 处的切线方程为 _____.

解. 应填 y=2x. 因为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t}\Big|_{t=1} = \frac{2t\ln(2-t^2) - t^2 \cdot \frac{2t}{2-t^2}}{\mathrm{e}^{-(1-t)^2} \cdot (-1)}\Big|_{t=1} = \frac{-2}{-1} = 2,$$

所以切线方程为 y=2x.

10. 已知
$$\int_{-\infty}^{+\infty} e^{k|x|} dx = 1$$
,则 $k =$ _____.

 \mathbf{H} . 应填 -2. 显然有 k < 0. 所以

$$1 = \int_{-\infty}^{+\infty} e^{k|x|} dx = 2 \int_{0}^{+\infty} e^{kx} dx = \left[\frac{1}{k} e^{kx} \right]_{0}^{+\infty} = 0 - \frac{2}{k} = -\frac{2}{k},$$

从而 k=-2.

11.
$$\lim_{n \to \infty} \int_0^1 e^{-x} \sin nx \, dx = \underline{\qquad}$$

解. 应填 0. 由分部积分法有

$$I_n = \int e^{-x} \sin nx \, dx = -e^{-x} \sin nx + n \int e^{-x} \cos nx \, dx$$
$$= -e^{-x} \sin nx - ne^{-x} \cos nx - n^2 I_n,$$

所以
$$I_n = -\frac{n\cos nx + \sin nx}{n^2 + 1} e^{-x} + C$$
,即
$$\lim_{n \to \infty} \int_0^1 e^{-x} \sin nx \, dx = \lim_{n \to \infty} \left[-\frac{n\cos nx + \sin nx}{n^2 + 1} e^{-x} \right]_0^1$$

$$= \lim_{n \to \infty} \left(-\frac{n\cos n + \sin n}{n^2 + 1} e^{-1} + \frac{n}{n^2 + 1} \right) = 0.$$

- **12.** 设 y = y(x) 是由方程 $xy + e^y = x + 1$ 确定的隐函数,则 $\frac{\partial^2 y}{\partial x^2}\Big|_{x=0} =$ _____.
- **解**. 应填 -3. 对方程 $xy + e^y = x + 1$ 两边关于 x 求导有

$$y + x y' + y'e^{y} = 1 \implies y' = \frac{1 - y}{x + e^{y}}$$

对 $y + xy' + y'e^y = 1$ 再次求导可得

$$2y' + xy'' + y''e^y + (y')^2e^y = 0, \Rightarrow y'' = -\frac{2y' + (y')^2e^y}{x + e^y}.$$

当 x=0 时, y=0, y'(0)=1, 代入上式得 y''(0)=-3.

- **13**. 函数 $y = x^{2x}$ 在区间 (0,1] 上的最小值为 _____.
- **解**. 应填 $e^{-\frac{2}{e}}$. 因为 $y' = x^{2x}(2\ln x + 2)$, 令 y' = 0 得驻点为 $x = \frac{1}{e}$. 又 $y'' = x^{2x}(2\ln x + 2)^2 + x^{2x} \cdot \frac{2}{r} \Rightarrow y''\left(\frac{1}{e}\right) = 2e^{-\frac{2}{e}+1} > 0.$

故 $x = \frac{1}{e}$ 为 $y = x^{2x}$ 的极小值点,此时 $y = e^{-\frac{2}{e}}$. 又当 $x \in \left(0, \frac{1}{e}\right)$ 时,y'(x) < 0; $x \in \left(\frac{1}{e}, 1\right]$ 时,y'(x) > 0,故 y 在 $\left(0, \frac{1}{e}\right)$ 上递减,在 $\left(\frac{1}{e}, 1\right)$ 上递增.而 y(1) = 1, $y_{+}(0) = \lim_{x \to 0^{+}} x^{2x} = \lim_{x \to 0^{+}} e^{2x \ln x} = 1$,

所以 $y = x^{2x}$ 在区间 (0,1] 上的最小值为 $y(\frac{1}{e}) = e^{-\frac{2}{e}}$.

- **14.** 设 α , β 为 3 维列向量, β^T 为 β 的转置, 若矩阵 $\alpha\beta^T$ 相似于 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $\beta^T\alpha =$
- **解**. 应填 2. 因为 $\alpha \beta^T$ 相似于 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 根据相似矩阵有相同的特征值,得到 $\alpha \beta^T$ 的特征值是 2,0,0. 而 $\beta^T \alpha$ 是一个常数,是矩阵 $\alpha \beta^T$ 的对角元素之和,则 $\beta^T \alpha = 2 + 0 + 0 = 2$.
- 三、解答题(15~23 小题, 共94分)
- **15.** (本题满分 9 分) 求极限 $\lim_{x\to 0} \frac{(1-\cos x)[x-\ln(1+\tan x)]}{\sin^4 x}$.
- 解. 由等价无穷小量代换和洛必达法则,可得

$$\lim_{x \to 0} \frac{(1 - \cos x)[x - \ln(1 + \tan x)]}{\sin^4 x} = \lim_{x \to 0} \frac{\frac{1}{2}x^2[x - \ln(1 + \tan x)]}{x^4}$$

$$= \lim_{x \to 0} \frac{x - \ln(1 + \tan x)}{2x^2} = \lim_{x \to 0} \frac{1 - \frac{\sec^2 x}{1 + \tan x}}{4x} = \lim_{x \to 0} \frac{1 + \tan x - \sec^2 x}{4x}$$

$$= \lim_{x \to 0} \frac{\sec^2 x - 2\sec^2 x \tan x}{4} = \frac{1}{4}.$$

解. 令
$$\sqrt{\frac{1+x}{x}} = t$$
,则 $x = \frac{1}{t^2 - 1}$, $dx = \frac{-2t \, dt}{(t^2 - 1)^2}$,从而
$$\int \ln\left(1 + \sqrt{\frac{1+x}{x}}\right) dx = \int \ln(1+t) \, d\left(\frac{1}{t^2 - 1}\right) = \frac{\ln(1+t)}{t^2 - 1} - \int \frac{1}{t^2 - 1} \frac{1}{t + 1} \, dt$$

$$= \frac{\ln(1+t)}{t^2 - 1} - \frac{1}{4} \int \left(\frac{1}{t - 1} - \frac{1}{t + 1} - \frac{2}{(t + 1)^2}\right) dt$$

$$= \frac{\ln(1+t)}{t^2 - 1} - \frac{1}{4} \ln(t - 1) + \frac{1}{4} \ln(t + 1) - \frac{1}{2(t + 1)} + C$$

$$\begin{split} &= \frac{\ln(1+t)}{t^2-1} + \frac{1}{4}\ln\frac{t+1}{t-1} - \frac{1}{2(t+1)} + C \\ &= x\ln\left(1+\sqrt{\frac{1+x}{x}}\right) + \frac{1}{2}\ln(\sqrt{1+x}+\sqrt{x}) - \frac{1}{2}\frac{\sqrt{x}}{\sqrt{1+x}+\sqrt{x}} + C \\ &= x\ln\left(1+\sqrt{\frac{1+x}{x}}\right) + \frac{1}{2}\ln(\sqrt{1+x}+\sqrt{x}) + \frac{1}{2}x - \frac{1}{2}\sqrt{x+x^2} + C. \end{split}$$

17. (本题满分10分)

设 z = f(x + y, x - y, xy), 其中 f 具有 2 阶连续偏导数, 求 dz 与 $\frac{\partial^2 z}{\partial x \partial y}$.

解. 因为
$$\frac{\partial z}{\partial x} = f_1' + f_2' + y f_3', \quad \frac{\partial z}{\partial y} = f_1' - f_2' + x f_3', \quad$$
所以
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = (f_1' + f_2' + y f_3') dx + (f_1' - f_2' + x f_3') dy,$$

$$\frac{\partial^2 z}{\partial x \partial y} = f_{11}'' - f_{12}'' + f_{13}'' \cdot x + f_{21}'' - f_{22}'' + f_{23}'' \cdot x + f_3' + y \left[f_{31}'' - f_{32}'' \cdot + f_{33}'' \cdot x \right]$$

$$= f_3' + f_{11}'' - f_{22}'' + x y f_{33}'' + (x + y) f_{13}'' + (x - y) f_{23}''.$$

18. (本题满分10分)

设非负函数 y = y(x) ($x \ge 0$) 满足微分方程 xy'' - y' + 2 = 0, 当曲线 y = y(x) 过原点时,其与直线 x = 1 及 y = 0 围成平面区域 D 的面积为 2,求 D 绕 y 轴 旋转所得旋转体体积.

解. 令 p = y',代入微分方程得 $p' - \frac{1}{x}p = -\frac{2}{x}$,解得 $p = 2 + C_1 x$,即 $y' = 2 + C_1 x$. 因此通解为 $y = C_2 + 2x + \frac{C_1}{2}x^2$,其中 C_1 , C_2 为任意常数.由题设, y(0) = 0 即 $C_2 = 0$,而且

$$2 = \int_0^1 y(x) dx = \int_0^1 (2x + \frac{C_1}{2}x^2) dx = \left[x^2 + \frac{C_1}{6}x^3\right]_0^1 = 1 + \frac{C_1}{6},$$

从而 $C_1 = 6$,于是所求非负函数为 $y = 2x + 3x^2$ ($x \ge 0$). 所求体积为

$$V = 2\pi \int_0^1 x y(x) dx = 2\pi \int_0^1 (2x^2 + 3x^3) dx = \frac{17}{6}\pi.$$

19. (本题满分 10 分)

计算二重积分
$$\iint_D (x-y) dx dy$$
, 其中 $D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}$.

解. 由 $(x-1)^2 + (y-1)^2 \le 2$ 得极坐标表示 $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$, $0 \le r \le 2(\sin \theta + \cos \theta)$.

第118页 共174页

故由二重积分的极坐标公式可得

$$\begin{split} & \iint_D (x-y) \, \mathrm{d}x \, \mathrm{d}y = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \, \mathrm{d}\theta \int_0^{2(\sin\theta+\cos\theta)} (r\cos\theta-r\sin\theta) r \, \mathrm{d}r \\ & = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \left[\frac{1}{3} (\cos\theta-\sin\theta) \cdot r^3 \right]_0^{2(\sin\theta+\cos\theta)} \, \mathrm{d}\theta = \frac{8}{3} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} (\cos\theta-\sin\theta) (\sin\theta+\cos\theta)^3 \, \mathrm{d}\theta \\ & = \frac{8}{3} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} (\sin\theta+\cos\theta)^3 \, \mathrm{d}(\sin\theta+\cos\theta) = \frac{8}{3} \times \frac{1}{4} \left[(\sin\theta+\cos\theta)^4 \right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} = -\frac{8}{3}. \end{split}$$

20. (本题满分12分)

设 y = y(x) 是区间 $(-\pi, \pi)$ 内过点 $\left(-\frac{\pi}{\sqrt{2}}, \frac{\pi}{\sqrt{2}}\right)$ 的光滑曲线,当 $-\pi < x < 0$ 时,曲线上任一点处的法线都过原点,当 $0 \le x < \pi$ 时,函数 y(x) 满足 y'' + y + x = 0. 求 y(x) 的表达式.

解. 由题意,当 $-\pi < x < 0$ 时, $y = -\frac{x}{y'}$,即 $y \, dy = -x \, dx$,得 $y^2 = -x^2 + C$,又曲 线过点 $\left(-\frac{\pi}{\sqrt{2}}, \frac{\pi}{\sqrt{2}}\right)$,故 $C = \pi^2$,从而有 $y = \sqrt{\pi^2 - x^2}$.

当 $0 \le x < \pi$ 时,y(x) 满足 y'' + y + x = 0. 它对应的齐次方程的通解为 $y^* = c_1 \cos x + c_2 \sin x$; 设它有特解 $y^* = ax + b$,解得 a = -1, b = 0,故 $y^* = -x$. 因此当 $0 \le x < \pi$ 时 $y = C_1 \cos x + C_2 \sin x - x$.

由于 y = y(x) 是 $(-\pi, \pi)$ 内的光滑曲线,故它在 x = 0 处连续且可导,于是由 $y(0^-) = \pi = y(0^+) = C_1$,得 $C_1 = \pi$;由 $y'_-(0) = 0 = y'_+(0) = C_2 - 1$,得 $C_2 = 1$.所以 y(x) 的表达式为

$$y = \begin{cases} \sqrt{\pi^2 - x^2}, & -\pi < x < 0; \\ \pi \cos x + \sin x - x, & 0 \le x < \pi. \end{cases}$$

- 21. 同试卷一第三[18]题.
- 22. 同试卷一第三 [20] 题.
- 23. 同试卷一第三[21]题.

二〇一〇年考研数学试卷二解答

一、选择题(1~8小题,每小题4分,共32分)

1. 函数
$$f(x) = \frac{x^2 - x}{x^2 - 1} \sqrt{1 + \frac{1}{x^2}}$$
 的无穷间断点的个数为······() (A) 0. (B) 1. (C) 2. (D) 3.

解. 应选 (B). 易知 f(x) 有间断点 $x = 0, \pm 1$. 因为

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x(x-1)}{(x+1)(x-1)} \sqrt{1 + \frac{1}{x^2}} = \lim_{x \to 0^+} x \sqrt{1 + \frac{1}{x^2}} = 1,$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{x(x-1)}{(x+1)(x-1)} \sqrt{1 + \frac{1}{x^{2}}} = \lim_{x \to 0^{-}} x \sqrt{1 + \frac{1}{x^{2}}} = -1,$$

所以x=0为跳跃间断点. 因为

$$\lim_{x \to 1} f(x) = \frac{1}{2} \sqrt{1+1} = \frac{\sqrt{2}}{2},$$

所以x=1为可去间断点点. 因为

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x(x-1)}{(x+1)(x-1)} \sqrt{1 + \frac{1}{x^2}} = \infty,$$

所以 x = -1 为无穷间断点. 总之, 无穷间断点仅有一个.

- **2.** 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解,若常数 λ, μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 \mu y_2$ 是该方程对应的齐次方程的解,则 · () (A) $\lambda = \frac{1}{2}, \mu = \frac{1}{2}$. (B) $\lambda = -\frac{1}{2}, \mu = -\frac{1}{2}$. (C) $\lambda = \frac{2}{3}, \mu = \frac{1}{3}$. (D) $\lambda = \frac{2}{3}, \mu = \frac{2}{3}$.
- **解.** 应选 (A). 因为 $\lambda y_1 + \mu y_2$ 是非齐次微分方程 y' + p(x)y = q(x) 的解,代入方程解 得 $\lambda + \mu = 1$;又因为 $\lambda y_1 \mu y_2$ 是 y' + p(x)y = 0 的解,代入方程求得 $\lambda \mu = 0$. 由此可求得 $\lambda = \mu = \frac{1}{2}$.
- 3. 曲线 $y = x^2$ 与曲线 $y = a \ln x$ $(a \neq 0)$ 相切,则 $a = \cdots$ (C) 2e. (D) e.
- **解**. 应选 (C). 设 $y = x^2$ 与 $y = a \ln x$ 的公切点为 (x_0, y_0) ,则有

$$y_0 = x_0^2$$
, $y_0 = a \ln x_0$, $2x_0 = \frac{a}{x_0}$.

从而解得 a=2e.

- 4. 同试卷一第一[3] 题.
- 5. 同试卷一第一[2]题.
- 6. 同试卷一第一[4]题.

- 7. 设向量组 $I: \alpha_1, \alpha_2, \cdots, \alpha_r$ 可由向量组 $II: \beta_1, \beta_2, \cdots, \beta_s$ 线性表示,下列命题正确

 - (A) 若向量组 I 线性无关,则 $r \le s$. (B) 若向量组 I 线性相关,则 r > s.
 - (C) 若向量组 II 线性无关,则 r ≤ s. (D) 若向量组 II 线性相关,则 r > s.
- 解. 应选 (A). 由于向量组 I 能由向量组 II 线性表示、所以

$$r(\alpha_1, \dots, \alpha_r) \leq r(\beta_1, \dots, \beta_s) \leq s$$
.

若向量组 I 线性无关,则 $r(\alpha_1,\dots,\alpha_r)=r$,所以

$$r = r(\alpha_1, \dots, \alpha_r) \leq r(\beta_1, \dots, \beta_s) \leq s$$

即有 $r \leq s$.

- 8. 同试卷一第一[6]题.
- 二、填空题(9~14 小题,每小题 4 分,共 24 分)
- **9.** 3 阶常系数线性齐次微分方程 y''' 2y'' + y' 2y = 0 的通解为 y = y = 0.
- \mathbf{p} . 应填 $C_1 e^{2x} + C_2 \cos x + C_3 \sin x$. 该常系数线性齐次微分方程的特征方程为 $\lambda^3 C_3 \sin x$ $2\lambda^2 + \lambda - 2 = 0$,解得特征根为 $\lambda = 2, \lambda = \pm i$,所以通解为

$$y = C_1 e^{2x} + C_2 \cos x + C_3 \sin x.$$

- **10.** 曲线 $y = \frac{2x^3}{x^2+1}$ 的渐近线方程为 _____.
- **解**. 应填 y=2x. 易知曲线没有铅直和水平渐近线. 因为 $k=\lim_{x\to\infty}\frac{y}{x}=2\neq 0$,所以 曲线有斜渐近线. 又因为 $b = \lim_{x \to \infty} (y - kx) = 0$, 所以斜渐近线方程为 y = 2x.
- **11.** 函数 $y = \ln(1-2x)$ 在 x = 0 处的 n 阶导数 $y^{(n)}(0) =$ _____.
- **解**. 应填 $-2^n(n-1)!$. 由高阶导数公式可知 $\ln^{(n)}(1+x)=(-1)^{n-1}\frac{(n-1)!}{(1+x)^n}$,所以

$$\ln^{(n)}(1-2x) = (-1)^{n-1} \frac{(n-1)!}{(1-2x)^n} \cdot (-2)^n = -2^n \frac{(n-1)!}{(1-2x)^n},$$

从前
$$y^{(n)}(0) = -2^n \frac{(n-1)!}{(1-2\cdot 0)^n} = -2^n (n-1)!.$$

- **12.** 当 $0 \le \theta \le \pi$ 时,对数螺线 $r = e^{\theta}$ 的弧长为 .
- **解**. 应填 $\sqrt{2}(e^{\pi}-1)$. 由极坐标弧长公式可得

$$s = \int_0^{\pi} \sqrt{(e^{\theta})^2 + (e^{\theta})^2} d\theta = \int_0^{\pi} \sqrt{2}e^{\theta} d\theta = \sqrt{2}(e^{\pi} - 1).$$

- **13.** 已知一个长方形的长 l 以 2cm/s 的速率增加,宽 w 以 3cm/s 的速率增加.则 当 l=12cm,w=5cm 时,它的对角线增加的速率为_____.
- **解.** 应填 3cm/s. 设 l = x(t), w = y(t), 由题意知, 在 $t = t_0$ 时刻 $x(t_0) = 12$, $y(t_0) = 5$, 且 $x'(t_0) = 2$, $y'(t_0) = 3$. 设该对角线长为 S(t), 则

$$S(t) = \sqrt{x^2(t) + y^2(t)} \quad \Rightarrow \quad S'(t) = \frac{x(t)x'(t) + y(t)y'(t)}{\sqrt{x^2(t) + y^2(t)}}.$$

代入易知数据可得

$$S'(t_0) = \frac{x(t_0)x'(t_0) + y(t_0)y'(t_0)}{\sqrt{x^2(t_0) + y^2(t_0)}} = \frac{12 \cdot 2 + 5 \cdot 3}{\sqrt{12^2 + 5^2}} = 3.$$

- **14.** 设 A, B 为 3 阶矩阵,且 |A| = 3, |B| = 2, $|A^{-1} + B| = 2$,则 $|A + B^{-1}| = _____$.
- **解.** 应填 3. 由于 $A(A^{-1}+B)B^{-1} = (E+AB)B^{-1} = B^{-1}+A$,所以 $\left|A+B^{-1}\right| = \left|A(A^{-1}+B)B^{-1}\right| = |A|\left|A^{-1}+B\right|\left|B^{-1}\right| = 3 \times 2 \times \frac{1}{2} = 3.$
- 三、解答题(15~23 小题, 共94 分)
- 15. 同试卷一第三[16] 题.
- 16. 同试卷一第三[17]题.
- **17.** (本题满分 10 分)

设函数 y = f(x) 由参数方程 $\begin{cases} x = 2t + t^2 \\ y = \psi(t) \end{cases}$ (t > -1) 所确定,其中 $\psi(t)$ 具有 2 阶 导数,且 $\psi(1) = \frac{5}{2}$, $\psi'(1) = 6$. 已知 $\frac{d^2 y}{dx^2} = \frac{3}{4(1+t)}$,求函数 $\psi(t)$.

解. 根据题意, 求导得

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\psi'(t)}{2t+2},$$

$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{\psi'(t)}{2t+2}\right) \cdot \frac{1}{dx/dt} = \frac{\psi''(t)(2t+2) - 2\psi'(t)}{(2t+2)^2} \cdot \frac{1}{2t+2} = \frac{3}{4(1+t)}.$$

整理得 $\psi''(t)(t+1)-\psi'(t)=3(t+1)^2$. 令 $y=\psi'(t)$, 则有

$$y' - \frac{1}{1+t}y = 3(1+t) \implies y = (1+t)(3t+C_1).$$

因为 $y(1) = \psi'(1) = 6$,所以 $C_1 = 0$,故 y = 3t(t+1),即 $\psi'(t) = 3t(t+1)$.故 $\psi(t) = \int 3t(t+1) dt = \frac{3}{2}t^2 + t^3 + C_2.$

又由 $\psi(1) = \frac{5}{2}$ 得 $C_2 = 0$, 故 $\psi(t) = \frac{3}{2}t^2 + t^3$.

18. (本题满分10分)

一个高为 l 的柱体形贮油罐,底面是长轴为 2a,短轴为 2b 的椭圆. 现将贮油罐平放,当油罐中油面高度为 $\frac{3}{2}b$ 时(如图),计算油的质量.

(长度单位为 m,质量单位为 kg,油的密度为常数 $\rho kg/m^3$)

解. 如图建立坐标系,则油罐底面的椭圆方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

阴影部分的面积(其中用到 $y = b \sin t$ 换元)

$$S = \int_{-b}^{\frac{b}{2}} 2x \, dy = \frac{2a}{b} \int_{-b}^{\frac{b}{2}} \sqrt{b^2 - y^2} \, dy = 2ab \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} \cos^2 t \, dt$$
$$= 2ab \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} \left(\frac{1}{2} + \frac{1}{2}\cos 2t\right) dt = \left(\frac{2}{3}\pi + \frac{\sqrt{3}}{4}\right) ab.$$

所以油的质量 $m = \left(\frac{2}{3}\pi + \frac{\sqrt{3}}{4}\right)abl\rho$.

19. (本题满分11分)

设函数 u = f(x, y) 具有二阶连续偏导数,且满足等式 $4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$. 确定 a,b 的值,使等式在变换 $\xi = x + ay, \eta = x + by$ 下化简为 $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$.

解. 由复合函数链式法则得

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta},$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y} = a \frac{\partial u}{\partial \xi} + b \frac{\partial u}{\partial \eta},$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial^{2} u}{\partial \xi^{2}} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial^{2} u}{\partial \xi \partial \eta} \cdot \frac{\partial \eta}{\partial x} + \frac{\partial^{2} u}{\partial \eta^{2}} \cdot \frac{\partial \eta}{\partial x} + \frac{\partial^{2} u}{\partial \xi \partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial^{2} u}{\partial \xi^{2}} + \frac{\partial^{2} u}{\partial \eta^{2}} + 2\frac{\partial^{2} u}{\partial \xi \partial \eta},$$

$$\frac{\partial^{2} u}{\partial x \partial y} = \frac{\partial^{2} u}{\partial \xi^{2}} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial^{2} u}{\partial \xi \partial \eta} \cdot \frac{\partial \eta}{\partial y} + \frac{\partial^{2} u}{\partial \eta^{2}} \cdot \frac{\partial \eta}{\partial y} + \frac{\partial^{2} u}{\partial \xi \partial \eta} \cdot \frac{\partial \eta}{\partial y} = a\frac{\partial^{2} u}{\partial \xi^{2}} + b\frac{\partial^{2} u}{\partial \eta^{2}} + (a+b)\frac{\partial^{2} u}{\partial \xi \partial \eta},$$

$$\frac{\partial^{2} u}{\partial y^{2}} = a\left(a\frac{\partial^{2} u}{\partial \xi^{2}} + b\frac{\partial^{2} u}{\partial \xi \partial \eta}\right) + b\left(a\frac{\partial^{2} u}{\partial \eta^{2}} + a\frac{\partial^{2} u}{\partial \xi \partial \eta}\right) = a^{2}\frac{\partial^{2} u}{\partial \xi^{2}} + b^{2}\frac{\partial^{2} u}{\partial \eta^{2}} + 2ab\frac{\partial^{2} u}{\partial \xi \partial \eta}.$$

因此
$$4\frac{\partial^{2} u}{\partial x^{2}} + 12\frac{\partial^{2} u}{\partial x \partial y} + 5\frac{\partial^{2} u}{\partial y^{2}} = 0$$
更换为
$$(5a^{2} + 12a + 4)\frac{\partial^{2} u}{\partial \xi^{2}} + (5b^{2} + 12b + 4)\frac{\partial^{2} u}{\partial \eta^{2}} + [12(a+b) + 10ab + 8]\frac{\partial^{2} u}{\partial \xi \partial \eta} = 0.$$

所以由题设有

$$\begin{cases} 5a^2 + 12a + 4 = 0, \\ 5b^2 + 12b + 4 = 0, \\ 12(a+b) + 10ab + 8 \neq 0. \end{cases}$$

由前两式可解得 $a = -\frac{2}{5}$ 或 -2, $b = -\frac{2}{5}$ 或 -2. 又因为当 (a,b) 为 (-2,-2), $\left(-\frac{2}{5},-\frac{2}{5}\right)$ 时不满足第三式,所以当 (a,b) 为 $\left(-\frac{2}{5},-2\right)$, $\left(-2,-\frac{2}{5}\right)$ 时满足题意.

20. (本题满分10分)

计算二重积分

$$I = \iiint_D r^2 \sin \theta \sqrt{1 - r^2 \cos 2\theta} \, dr \, d\theta,$$

其中 $D = \{(r, \theta) | 0 \le r \le \sec \theta, 0 \le \theta \le \frac{\pi}{4} \}.$

解. 将积分区域用直角坐标表示得 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le x\}$. 所以 $I = \iint_D r \sin\theta \sqrt{1 - r^2 (\cos^2\theta - \sin^2\theta)} \cdot r \, dr \, d\theta = \iint_D y \sqrt{1 - x^2 + y^2} \, dx \, dy$ $= \int_0^1 dx \int_0^x y \sqrt{1 - x^2 + y^2} \, dy = \int_0^1 \frac{1}{3} \left[1 - (1 - x^2)^{\frac{3}{2}} \right] dx$ $= \int_0^1 \frac{1}{3} dx - \frac{1}{3} \int_0^1 (1 - x^2)^{\frac{3}{2}} \, dx = \frac{1}{3} - \int_0^{\frac{\pi}{2}} \cos^4 t \, dt = \frac{1}{3} - \frac{3}{16} \pi.$

21. (本题满分10分)

设函数 f(x) 在闭区间 [0,1] 上连续,在开区间 (0,1) 内可导,且 f(0)=0, $f(1)=\frac{1}{3}$. 证明: 存在 $\xi \in \left(0,\frac{1}{2}\right), \eta \in \left(\frac{1}{2},1\right)$,使得 $f'(\xi)+f'(\eta)=\xi^2+\eta^2$.

解. 令 $F(x) = f(x) - \frac{1}{3}x^3$. 对于 F(x) 分别在 $\left[0, \frac{1}{2}\right]$ 和 $\left[\frac{1}{2}, 1\right]$ 上应用拉格朗日中值定理,得存在 $\xi \in \left(0, \frac{1}{2}\right)$, $\eta \in \left(\frac{1}{2}, 1\right)$,使得

$$F\left(\frac{1}{2}\right) - F(0) = \frac{1}{2}F'(\xi), \quad F(1) - F\left(\frac{1}{2}\right) = \frac{1}{2}F'(\eta).$$

两式相加,整理得 $f'(\xi) + f'(\eta) = \xi^2 + \eta^2$.

- 22. 同试卷一第三[20]题.
- 23. (本题满分11分)

设
$$A = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$$
, 正交矩阵 Q 使得 Q^TAQ 为对角矩阵,若 Q 的第 1 列为
$$\frac{1}{\sqrt{6}}(1,2,1)^T, \ \ \vec{x}\ a,Q.$$

解. 由题设,*A* 对应于 $λ_1$ 的特征向量为 $ξ_1 = \frac{1}{\sqrt{6}}(1,2,1)^T$. 从而有

$$\begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix},$$

由此可得 $a=-1,\lambda_1=2$. 故有

$$A = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{pmatrix} \Rightarrow |\lambda E - A| = \begin{vmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & 1 \\ -4 & 1 & \lambda \end{vmatrix} = (\lambda + 4)(\lambda - 2)(\lambda - 5).$$

由此可得 A 的特征值为 $\lambda_1 = 2$, $\lambda_2 = -4$, $\lambda_3 = 5$. 由 $(\lambda_2 E - A)x = 0$,可解得对应于 $\lambda_2 = -4$ 的线性无关的特征向量为 $\xi_2 = (-1,0,1)^T$. 由 $(\lambda_3 E - A)x = 0$,可解得对应于 $\lambda_3 = 5$ 的特征向量为 $\xi_3 = (1,-1,1)^T$. 将 ξ_1, ξ_2, ξ_3 单位化,得到

$$\eta_1 = \frac{\xi_1}{\|\xi_1\|} = \frac{1}{\sqrt{6}}(1,2,1)^T, \quad \eta_2 = \frac{\xi_2}{\|\xi_2\|} = \frac{1}{\sqrt{2}}(-1,0,1)^T, \quad \eta_3 = \frac{\xi_3}{\|\xi_3\|} = \frac{1}{\sqrt{3}}(1,-1,1)^T.$$

二〇一一年考研数学试卷二解答

- 一、选择题(1~8小题,每小题4分,共32分)
- **1.** 已知当 $x \to 0$ 时, $f(x) = 3\sin x \sin 3x$ 与 cx^k 是等价无穷小,则 · · · · · · () (A) k = 1, c = 4. (B) k = 1, c = -4. (C) k = 3, c = 4. (D) k = 3, c = -4.

解. 应选 (C). 由三倍角公式和等价无穷小量代换得

$$\begin{split} 1 &= \lim_{x \to 0} \frac{3 \sin x - \sin 3x}{c \, x^k} = \lim_{x \to 0} \frac{3 \sin x - (3 \sin x - 4 \sin^3 x)}{c \, x^k} \\ &= \lim_{x \to 0} \frac{4 \sin^3 x}{c \, x^k} = \lim_{x \to 0} \frac{4 x^3}{c \, x^k}. \end{split}$$

所以 c = 4, k = 3.

- 2. 已知 f(x) 在 x = 0 处可导,且 f(0) = 0,则 $\lim_{x \to 0} \frac{x^2 f(x) 2f(x^3)}{x^3} = \cdots$ (A) -2f'(0). (B) -f'(0). (C) f'(0). (D) 0.
- 解. 应选 (B). 由导数的定义可得

$$\lim_{x \to 0} \frac{x^2 f(x) - 2f(x^3)}{x^3} = \lim_{x \to 0} \frac{x^2 f(x) - x^2 f(0) - 2f(x^3) + 2f(0)}{x^3}$$

$$= \lim_{x \to 0} \left[\frac{f(x) - f(0)}{x} - 2 \frac{f(x^3) - f(0)}{x^3} \right]$$

$$= f'(0) - 2f'(0) = -f'(0).$$

- 3. 函数 $f(x) = \ln|(x-1)(x-2)(x-3)|$ 的驻点个数为······() (A) 0. (B) 1. (C) 2. (D) 3.
- **解.** 应选 (C). 由 $f(x) = \ln|x-1| + \ln|x-2| + \ln|x-3|$ 得

$$f'(x) = \frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3} = \frac{3x^2 - 12x + 11}{(x-1)(x-2)(x-3)}.$$

令 f'(x) = 0, 得 $x_{1,2} = \frac{6 \pm \sqrt{3}}{3}$, 故 f(x) 有两个不同的驻点.

- **4.** 微分方程 $y'' \lambda^2 y = e^{\lambda x} + e^{-\lambda x}$ ($\lambda > 0$) 的特解形式为 · · · · · · · · · · · · ()
 - (A) $a(e^{\lambda x} + e^{-\lambda x})$.

(B) $ax(e^{\lambda x} + e^{-\lambda x})$.

(C) $x(ae^{\lambda x} + be^{-\lambda x})$.

- (D) $x^2(ae^{\lambda x} + be^{-\lambda x})$.
- **解.** 应选 (C). 微分方程对应的齐次方程的特征方程为 $r^2 \lambda^2 = 0$,解得特征根 $r_1 = \lambda, r_2 = -\lambda$. 所以非齐次方程 $y'' \lambda^2 y = e^{\lambda x}$ 有特解 $y_1 = x \cdot a \cdot e^{\lambda x}$,非齐次方程 $y'' \lambda^2 y = e^{-\lambda x}$ 有特解 $y_2 = x \cdot b \cdot e^{-\lambda x}$. 故由叠加原理可知非齐次方程 $y'' \lambda^2 y = e^{\lambda x} + e^{-\lambda x}$ 的特解形式为 $y = x(ae^{\lambda x} + be^{-\lambda x})$.
- 5. 同试卷一第一[3] 题.

- 6. 同试卷一第一[4] 题.
- 7. 同试卷一第一[5]题.
- 8. 同试卷一第一[6]题.
- 二、填空题(9~14小题,每小题4分,共24分)

9.
$$\lim_{x\to 0} \left(\frac{1+2^x}{2}\right)^{\frac{1}{x}} = \underline{\qquad}$$

解. 应填 $\sqrt{2}$. 由等价无穷小量代换得

$$\lim_{x \to 0} \left(\frac{1+2^x}{2} \right)^{\frac{1}{x}} = \exp\left(\lim_{x \to 0} \left(\frac{1+2^x}{2} - 1 \right) \frac{1}{x} \right) = \exp\left(\lim_{x \to 0} \frac{2^x - 1}{2x} \right)$$
$$= \exp\left(\lim_{x \to 0} \frac{x \ln 2}{2x} \right) = \exp\left(\frac{1}{2} \ln 2 \right) = \sqrt{2}.$$

- 10. 同试卷一第二[10]题.
- 11. 同试卷一第二[9]题.

12. 设函数
$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \leq 0, \end{cases}$$
 $\lambda > 0$, 则 $\int_{-\infty}^{+\infty} x f(x) dx = \underline{\qquad}$.

解. 应填 $\frac{1}{\lambda}$. 由分部积分法可得

$$\int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx = -\int_{0}^{+\infty} x d\left(e^{-\lambda x}\right)$$
$$= -\left[x e^{-\lambda x}\right]_{0}^{+\infty} + \int_{0}^{+\infty} e^{-\lambda x} dx = 0 + \left[-\frac{1}{\lambda} e^{-\lambda x}\right]_{0}^{+\infty} = \frac{1}{\lambda}.$$

- **13.** 设平面区域 D 由直线 y = x,圆 $x^2 + y^2 = 2y$ 及 y 轴围成,则二重积分 $\iint_D xy \, d\sigma =$
- **解.** 应填 $\frac{7}{12}$. 由二重积分的极坐标公式得

$$\iint_{D} x y \, d\sigma = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\sin\theta} r \cos\theta \cdot r \sin\theta \, r \, dr = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos\theta \cdot \sin\theta \, d\theta \int_{0}^{2\sin\theta} r^{3} \, dr$$
$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin\theta \cdot \cos\theta \cdot \frac{1}{4} \cdot 16 \sin^{4}\theta \, d\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 4 \cos\theta \cdot \sin^{5}\theta \, d\theta$$
$$= 4 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^{5}\theta \, d(\sin\theta) = \frac{2}{3} \left[\sin^{6}\theta \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \frac{7}{12}.$$

- **14.** 二次型 $f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$,则 f 的正惯性指数为 ______.
- 解. 应填 2. 因为

$$f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$
$$= (x_1 + x_2 + x_3)^2 + 2x_2^2 = y_1^2 + 2y_2^2,$$

所以 f 的正惯性指数为 2.

- 三、解答题(15~23小题, 共94分)
- 15. (本题满分10分)

已知函数
$$F(x) = \frac{\int_0^x \ln(1+t^2) dt}{x^a}$$
,设 $\lim_{x \to +\infty} F(x) = \lim_{x \to 0^+} F(x) = 0$,试求 a 的取值范围.

解. 若 $a \leq 0$,则有

$$\lim_{x \to +\infty} \frac{\int_0^x \ln(1+t^2) dt}{x^a} = \lim_{x \to +\infty} x^{-a} \cdot \int_0^x \ln(1+t^2) dt = +\infty,$$

与题设矛盾, 故应有 a > 0. 当 a > 0 时, 由

$$0 = \lim_{x \to 0^+} \frac{\int_0^x \ln(1+t^2) dt}{x^a} = \lim_{x \to 0^+} \frac{\ln(1+x^2)}{ax^{a-1}} = \lim_{x \to 0^+} \frac{x^2}{ax^{a-1}} = \lim_{x \to 0^+} \frac{1}{a} \cdot x^{3-a},$$

可得 3-a>0 即 a<3. 又由

$$0 = \lim_{x \to +\infty} \frac{\int_0^x \ln(1+t^2) \, \mathrm{d}t}{x^a} = \lim_{x \to +\infty} \frac{\ln(1+x^2)}{a x^{a-1}} = \lim_{x \to +\infty} \frac{\frac{2x}{1+x^2}}{a(a-1)x^{a-2}} = \frac{2}{a(a-1)} \lim_{x \to +\infty} \frac{x^{3-a}}{1+x^2},$$
 可得 $3-a < 2$ 即 $a > 1$. 综上所述有 $1 < a < 3$.

16. (本题满分11分)

设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = \frac{1}{3}t^3 + t + \frac{1}{3}, \\ y = \frac{1}{3}t^3 - t + \frac{1}{3}, \end{cases}$$
 确定,求 $y = y(x)$ 的极值和曲线
$$y = y(x)$$
 的凹凸区间及拐点.

解. 首先由参数方程的导数公式有

$$y'(x) = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{t^2 - 1}{t^2 + 1},$$

$$y''(x) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{t^2 - 1}{t^2 + 1}\right) \cdot \frac{1}{\mathrm{d}x/\mathrm{d}t} = \frac{2t(t^2 + 1) - (t^2 - 1) \cdot 2t}{(t^2 + 1)^2} \cdot \frac{1}{t^2 + 1} = \frac{4t}{(t^2 + 1)^3}.$$

令 y'(x)=0 得 $t=\pm 1$. 当 t=1 时, $x=\frac{5}{3}$, $y=-\frac{1}{3}$,此时 y''>0,所以 $y=-\frac{1}{3}$ 为极小值. 当 t=-1 时, x=-1, y=1,此时 y''<0,所以 y=1 为极大值. 令 y''(x)=0 得 t=0, $x=y=\frac{1}{3}$. 当 t<0 时, $x<\frac{1}{3}$,此时 y''<0;当 t>0 时,

 $x>\frac{1}{3}$,此时 y''>0. 所以曲线的凸区间为 $\left(-\infty,\frac{1}{3}\right)$,凹区间为 $\left(\frac{1}{3},+\infty\right)$,拐点为 $\left(\frac{1}{3},\frac{1}{3}\right)$.

- 17. 同试卷一第三[16]题.
- 18. (本题满分10分)

设函数 y(x) 具有二阶导数,且曲线 l: y = y(x) 与直线 y = x 相切于原点,记 α 为曲线 l 在点 (x,y) 处切线的倾角,若 $\frac{d\alpha}{dx} = \frac{dy}{dx}$,求 y(x) 的表达式.

解. 由题意可知当 x = 0 时, y = 0, y'(0) = 1. 由导数的几何意义得 $y' = \tan \alpha$,即 $\alpha = \arctan y'$,由题意

$$\frac{d}{dx}(\arctan y') = \frac{dy}{dx} \implies \frac{y''}{1 + (y')^2} = y'.$$
令 $y' = p$, $y'' = p'$, 则 $\frac{p'}{1 + p^2} = p$, 分离变量得 $\frac{dp}{p(p^2 + 1)} = dx$, 积分得
$$\frac{1}{2} \ln \frac{p^2}{p^2 + 1} = x + C_0 \implies p^2 = \frac{1}{Ce^{-2x} - 1}.$$
当 $x = 0$, $p = 1$, 代入得 $C = 2$, 所以 $y' = \frac{1}{\sqrt{2e^{-2x} - 1}}$. 积分得
$$y(x) = y(0) + \int_0^x \frac{dt}{\sqrt{2e^{-2t} - 1}} = \int_0^x \frac{e^t dt}{\sqrt{2 - e^{2t}}}$$

$$= \int_0^x \frac{d\left(\frac{e^t}{\sqrt{2}}\right)}{\sqrt{1 - \left(\frac{e^t}{\sqrt{2}}\right)^2}} = \left[\arcsin\frac{e^t}{\sqrt{2}}\right]_0^x = \arcsin\frac{e^x}{\sqrt{2}} - \frac{\pi}{4}.$$

- 19. 同试卷一第三[18]题.
- 20. (本题满分11分)

一容器的内侧是由图中曲线绕 y 轴旋转一周而成的曲面, 该曲线由 $x^2+y^2=2y$ $(y\geqslant \frac{1}{2})$ 与 $x^2+y^2=1$ $(y\leqslant \frac{1}{2})$ 连接而成.

第129页 共174页

- (I) 求容器的容积;
- (II) 若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功? (长度单位: m, 重力加速度为 gm/s², 水的密度为 10³kg/m³.)
- 解. (I) 由对称性, 所求的容积为

$$V = V_1 + V_2 = 2 \int_{-1}^{\frac{1}{2}} \pi x^2 dy = 2\pi \int_{-1}^{\frac{1}{2}} (1 - y^2) dy = \frac{9}{4}\pi.$$

(II) 所做的功为

$$\begin{split} W &= \pi \rho g \int_{-1}^{\frac{1}{2}} (2 - y)(1 - y^2) \, \mathrm{d}y + \pi \rho g \int_{\frac{1}{2}}^{2} (2 - y)(2y - y^2) \, \mathrm{d}y \\ &= \pi \rho g \left(\int_{-1}^{\frac{1}{2}} (y^3 - 2y^2 - y + 2) \, \mathrm{d}y + \int_{\frac{1}{2}}^{2} (y^3 - 4y^2 + 4y) \, \mathrm{d}y \right) \\ &= \frac{27 \times 10^3}{8} \pi g = 3375 g \pi. \end{split}$$

- 21. 同试卷一第三[19]题.
- 22. 同试卷一第三[20]题.
- 23. 同试卷一第三[21]题.

二〇一二年考研数学试卷二解答

- 一、选择题(1~8小题,每小题4分,共32分)
- 1. 同试卷一第一[1]题.
- 2. 同试卷一第一[2]题.
- - (A) 充分必要条件.

(B) 充分非必要条件.

(C) 必要非充分条件.

(D) 即非充分也非必要条件.

解. 应选 (B).

- 4. 同试卷一第一[4]题.
- **5.** 设函数 f(x,y) 可微,且对任意 x,y 都有 $\frac{\partial f(x,y)}{\partial x} > 0$, $\frac{\partial f(x,y)}{\partial y} < 0$. 则使不等式 $f(x_1,y_1) < f(x_2,y_2)$ 成立的一个充分条件是
 - (A) $x_1 > x_2$, $y_1 < y_2$.

(B) $x_1 > x_2, y_1 > y_1$.

(C) $x_1 < x_2, y_1 < y_2$.

- (D) $x_1 < x_2, y_1 > y_2$.
- **解.** 应选 (D). $\frac{\partial f(x,y)}{\partial x} > 0$, $\frac{\partial f(x,y)}{\partial y} < 0$ 表示函数 f(x,y) 关于变量 x 是单调递增的, 关于变量 y 是单调递减的. 因此,当 $x_1 < x_2, y_1 > y_2$ 必有 $f(x_1, y_1) < f(x_2, y_2)$.
- **6.** 设区域 D 由曲线 $y = \sin x, x = \pm \frac{\pi}{2}, y = 1$ 围成,则 $\iint_D (x^5y 1) dx dy = \cdots$ (O) $-\pi$.
- 解. 应选 (D). 由二重积分的奇偶对称性,

$$\iint_{D} (x^{5}y - 1) dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx \int_{\sin x}^{1} (x^{5}y - 1) dy$$
$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1}{2}x^{5} - \frac{1}{2}x^{5}\sin x - 1 + \sin x\right) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (-1) dx = -\pi$$

- 7. 同试卷一第一[5]题.
- 8. 同试卷一第一[6] 题.
- 二、填空题(9~14 小题,每小题 4 分,共 24 分)
- **9.** 设 y = y(x) 是由方程 $x^2 y + 1 = e^y$ 所确定的隐函数,则 $\frac{d^2y}{dx^2}\Big|_{x=0} = \underline{\qquad}$.

解. 应填 1. 将
$$x = 0$$
 代入方程,可得 $y = 0$. 求导得 $\frac{dy}{dx}\Big|_{x=0} = 0$, $\frac{d^2y}{dx^2}\Big|_{x=0} = 1$.

10. 计算
$$\lim_{x\to\infty} n\left(\frac{1}{1+n^2} + \frac{1}{2^2+n^2} + \dots + \frac{1}{n^2+n^2}\right) = \underline{\hspace{1cm}}$$
.

解. 应填
$$\frac{\pi}{4}$$
. 原式 = $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{i}{n}\right)^2} = \int_0^1 \frac{\mathrm{d}x}{1 + x^2} = \left[\arctan x\right]_0^1 = \frac{\pi}{4}$.

11. 设
$$z = f\left(\ln x + \frac{1}{y}\right)$$
, 其中函数 $f(u)$ 可微,则 $x\frac{\partial z}{\partial x} + y^2\frac{\partial z}{\partial y} = \underline{\qquad}$.

解. 应填 0. 因为
$$\frac{\partial z}{\partial x} = f' \cdot \frac{1}{x}$$
, $\frac{\partial z}{\partial y} = f' \cdot \left(-\frac{1}{y^2}\right)$, 所以 $x \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = 0$.

12. 微分方程
$$y dx + (x-3y^2) dy = 0$$
 满足初始条件 $y|_{x=1}=1$ 的解为 $y = _____.$

解. 应填 \sqrt{x} . 微分方程整理得 $\frac{dx}{dy} + \frac{1}{y}x = 3y$. 这是一阶线性微分方程,

$$x = e^{-\int \frac{1}{y} dy} \left[\int 3y \cdot e^{\int \frac{1}{y} dy} dy + C \right] = \frac{1}{y} \left[\int 3y^2 dy + C \right] = (y^3 + C) \frac{1}{y}.$$

又因为 x=1 时 y=1, 解得 C=0, 故 $x=y^2$, 由初始条件得到 $y=\sqrt{x}$.

13. 曲线
$$y = x^2 + x$$
 ($x < 0$) 上曲率为 $\frac{\sqrt{2}}{2}$ 的点的坐标是 _____.

解. 应填(-1,0). 将代入曲率计算公式,有

$$K = \frac{|y''|}{(1+y'^2)^{3/2}} = \frac{2}{[1+(2x+1)^2]^{\frac{3}{2}}} = \frac{\sqrt{2}}{2}$$

整理得 $(2x+1)^2=1$,解得x=0(舍去)或x=-1. 此时y=0,故该点坐标为(-1,0).

- **14.** 设 A 为 3 阶矩阵,|A|=3, A^* 为 A 的伴随矩阵,若交换 A 的第一行与第二行得到矩阵 B,则 $|BA^*|=$ ______.
- **解.** 应填 -27. 由于 $B = E_{12}A$,故 $BA^* = E_{12}A \cdot A^* = |A|E_{12} = 3E_{12}$,所以 $|BA^*| = |3E_{12}| = 3^3|E_{12}| = 27 \times (-1) = -27$.
- 三、解答题(15~23小题, 共94分)
- 15. (本题满分10分)

已知函数 $f(x) = \frac{1+x}{\sin x} - \frac{1}{x}$, 记 $a = \lim_{x \to 0} f(x)$.

(I) 求 a 的值; (II) 若当 $x \to 0$ 时, f(x) - a 是 x^k 的同阶无穷小, 求 k.

ME. (I)
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} + 1\right) = \lim_{x\to 0} \frac{x - \sin x}{x^2} + 1 = 1$$
, $\mathbb{P}[a = 1]$.

(II) 当
$$x \to 0$$
 时,由 $f(x) - a = f(x) - 1 = \frac{1}{\sin x} - \frac{1}{x} = \frac{x - \sin x}{x \sin x}$. 又因为当 $x \to 0$ 时, $x - \sin x$ 与 $\frac{1}{6}x^3$ 等价,故 $f(x) - a \sim \frac{1}{6}x$,即 $k = 1$.

- 16. 同试卷一第三[16] 题.
- 17. (本题满分10分)

过(0,1)点作曲线 $L: y = \ln x$ 的切线,切点为 A,又 L 与 x 轴交于 B 点,区域 D 由 L 与直线 AB 围成,求区域 D 的面积及 D 绕 x 轴旋转一周所得旋转体的体积.

解. 设切点坐标为 $A(x_0, \ln x_0)$,斜率为 $\frac{1}{x_0}$,切线方程为

$$y - \ln x_0 = \frac{1}{x_0}(x - x_0)$$

又因为该切线过 (0,1),所以 $x_0 = e^2$,故切点为 $A(e^2,2)$. 而 L 与 x 轴的交点为 B(1,0). 从而区域 D 的面积

$$S = \int_{1}^{e^{2}} \ln x \, dx - \frac{1}{2} (e^{2} - 1) \cdot 2 = [x \ln x - x]_{1}^{e^{2}} - (e^{2} - 1)$$
$$= (e^{2} + 1) - (e^{2} - 1) = 2.$$

D 绕 x 轴旋转一周所得旋转体的体积

$$V = \pi \int_{1}^{e^{2}} \ln^{2} x \, dx - \frac{1}{3} \pi \cdot 2^{2} \cdot (e^{2} - 1) = \pi \left[x \ln^{2} x - 2x \ln x + 2x \right]_{1}^{e^{2}}$$
$$= (2e^{2} - 2) - \frac{4}{3} \pi (e^{2} - 1) = \frac{2}{3} \pi \left(e^{2} - 1 \right).$$

18. (本题满分 10 分)

计算二重积分
$$\iint_D xy d\sigma$$
,其中区域 D 为曲线 $r = 1 + \cos\theta \ (0 \le \theta \le \pi)$

与极轴围成.

解, 由极坐标的面积公式, 有

$$\iint_{D} x y \, d\sigma = \int_{0}^{\pi} d\theta \int_{0}^{1+\cos\theta} r \cos\theta \cdot r \sin\theta \cdot r \, dr$$

$$= \frac{1}{4} \int_{0}^{\pi} \sin\theta \cdot \cos\theta \cdot (1+\cos\theta)^{4} \, d\theta$$

$$= \frac{1}{4} \int_{-1}^{1} t (1+t)^{4} \, dt = \frac{1}{4} \int_{0}^{2} (u-1)u^{4} \, du = \frac{1}{4} \cdot \frac{64}{15} = \frac{16}{15}.$$

19. (本题满分11分)

设函数 f(x) 满足方程 f''(x)+f'(x)-2f(x)=0 及 $f'(x)+f(x)=2e^x$. (I) 求表达式 f(x);

- (II) 求曲线的拐点 $y = f(x^2) \int_0^x f(-t^2) dt$.
- **解.** (I) 解微分方程 f''(x)+f'(x)-2f(x)=0,得到通解为 $f(x)=C_1e^x+C_2e^{-2x}$. 再由 $f'(x)+f(x)=2e^x$ 得 $2C_1e^x-C_2e^{-2x}=2e^x$,可知 $C_1=1$, $C_2=0$.故 $f(x)=e^x$.
 - (II) 曲线方程为 $y = e^{x^2} \int_0^x e^{-t^2} dt$,则

$$y' = 1 + 2xe^{x^2} \int_0^x e^{-t^2} dt$$
, $y'' = 2x + 2(1 + 2x^2)e^{x^2} \int_0^x e^{-t^2} dt$.

当 x = 0 时 y'' = 0; 当 x > 0 时, y'' > 0; 当 x < 0 时, y'' < 0. 因此 (0,0) 点就是曲线 $y = f(x^2) \int_0^x f(-t^2) dt$ 唯一的拐点.

- 20. 同试卷一第三[15]题.
- 21. (本题满分11分)
 - (I) 证明方程 $x^n + x^{n-1} + \dots + x = 1$ (n 为大于 1 的整数) 在区间 $\left(\frac{1}{2}, 1\right)$ 内有且仅有一个实根;
 - (II) 记 (I) 中的实根为 x_n , 证明 $\lim_{n\to\infty} x_n$ 存在, 并求此极限.
- **解**. (I) 令 $f_n(x) = x^n + x^{n-1} + \dots + x 1$, 则 $f_n(1) = n 1 > 0$, 而 $f_n\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^n < 0$, 由零点定理得 $f_n(x) = 0$ 在 $\left(\frac{1}{2}, 1\right)$ 肯定有实根. 又因为 $f'_n(x) = nx^{n-1} + (n-1)x^{n-2} + \dots + 1 > 1 > 0$

所以方程只有唯一的实根.

(II) 设该实根为 x_n ,则有 $f_n(x_n)=0$. 因为 $f_n'(x)>1$,由拉格朗日中值定理得

$$\left| x_n - \frac{1}{2} \right| < \left| f_n'(\xi) \left(x_n - \frac{1}{2} \right) \right| = \left| f_n(x_n) - f_n \left(\frac{1}{2} \right) \right| = \left| 0 - \left(-\frac{1}{2^n} \right) \right| = \frac{1}{2^n}$$

则由迫敛准则可知 $\lim_{n\to\infty} \left(x_n - \frac{1}{2}\right) = 0$,从而 $\lim_{n\to\infty} x_n = \frac{1}{2}$.

- 22. 同试卷一第三 [20] 题.
- 23. 同试卷一第三 [21] 题.

二〇一三年考研数学试卷二解答

- 一、选择题(1~8 小题,每小题 4 分,共 32 分)
- **1.** 设 $\cos x 1 = x \sin \alpha(x)$, 其中 $|\alpha(x)| < \frac{\pi}{2}$, 则当 $x \to 0$ 时, $\alpha(x)$ 是 · · · · · · · ()
 - (A) 比 x 高阶的无穷小.

- (B) 比 x 低阶的无穷小.
- (C) 与 x 同阶但不等价的无穷小.
- (D) 与 x 等价的无穷小.
- **解.** 应选 (C). 因为 $|\alpha(x)| < \frac{\pi}{2}$,所以

$$\lim_{x \to 0} \sin \alpha(x) = \lim_{x \to 0} \frac{\cos x - 1}{x} = \lim_{x \to 0} \frac{-\frac{1}{2}x^2}{x} = 0 \quad \Rightarrow \quad \lim_{x \to 0} \alpha(x) = 0.$$

从而当 $x \to 0$ 时 $\alpha(x) \sim \sin \alpha(x) = \frac{\cos x - 1}{x} \sim -\frac{1}{2}x$,即 $\alpha(x)$ 与 x 同阶但不等价.

- 2. 设函数 y = f(x) 由方程 $\cos(xy) + \ln y x = 1$ 确定,则 $\lim_{n \to \infty} n \left[f\left(\frac{2}{n}\right) 1 \right] = ($) (C) -1.(A) 2.(B) 1.
- **解**. 应选 (A). 首先 f(0)=1, 方程两边对 x 求导得

$$-(y + xy')\sin(xy) + \frac{y'}{y} - 1 = 0 \implies f'(0) = 1.$$

所以由导数的定义可得

$$\lim_{n \to \infty} n \left[f\left(\frac{2}{n}\right) - 1 \right] = 2 \lim_{n \to \infty} \frac{f\left(\frac{2}{n}\right) - f(0)}{\frac{2}{n} - 0} = 2f'(0) = 2.$$

- - (A) $x = \pi$ 是函数 F(x) 的跳跃间断点.
- (B) $x = \pi$ 是函数 F(x) 的可去间断点.
- (C) F(x) 在 $x = \pi$ 处连续但不可导. (D) F(x) 在 $x = \pi$ 处可导.

解. 应选 (C). 依题意有

$$F(x) = \int_0^x f(t) dt = \begin{cases} \int_0^x \sin t \, dt = 1 - \cos x, & 0 \le x < \pi, \\ \int_0^{\pi} \sin t \, dt + \int_{\pi}^x 2 \, dt = 2 + 2x - 2\pi, & \pi \le x \le 2\pi. \end{cases}$$

由于 $F(\pi^{-}) = F(\pi^{+}) = F(\pi) = 2$, F(x) 在 $x = \pi$ 处连续. 又因为

$$\lim_{x \to \pi^{-}} \frac{F(x) - F(\pi)}{x - \pi} = \lim_{x \to \pi^{+}} \frac{-1 - \cos x}{x - \pi} = 0, \quad \lim_{x \to \pi^{+}} \frac{F(x) - F(\pi)}{x - \pi} = \lim_{x \to \pi^{+}} \frac{2(x - \pi)}{x - \pi} = 2,$$

所以 F(x) 在 $x = \pi$ 处不可导.

4. 设函数
$$f(x) = \begin{cases} \frac{1}{(x-1)^{\alpha-1}}, & 1 < x < e, \\ \frac{1}{x \ln^{\alpha+1} x}, & x \ge e, \end{cases}$$
 若反常积分 $\int_{1}^{+\infty} f(x) dx$ 收敛,则 · · () (A) $\alpha < -2$. (B) $\alpha > 2$. (C) $-2 < \alpha < 0$. (D) $0 < \alpha < 2$.

- **解.** 应选 (D). 因为积分 $\int_{1}^{e} \frac{1}{(x-1)^{\alpha-1}} dx$ 收敛当且仅当 $\alpha-1 < 1$,即 $\alpha < 2$. 积分 $\int_{e}^{+\infty} \frac{1}{x \ln^{\alpha+1} x} dx = \int_{e}^{+\infty} \frac{d(\ln x)}{\ln^{\alpha+1} x}$ 收敛当且仅当 $\alpha+1 > 1$,即 $\alpha > 0$,所以反常积分 $\int_{1}^{+\infty} f(x) dx = \int_{1}^{e} f(x) dx + \int_{e}^{+\infty} f(x) dx = \int_{1}^{e} \frac{1}{(x-1)^{\alpha-1}} dx + \int_{e}^{+\infty} \frac{1}{x \ln^{\alpha+1} x} dx$ 收敛当且仅当 $0 < \alpha < 2$.
- **5.** 设 $z = \frac{y}{x} f(xy)$, 其中函数 f 可微,则 $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \cdots$ (D) $\frac{2}{x} f(xy)$.
- 解. 应选 (A). 已知 $z = \frac{y}{x} f(xy)$,所以 $\frac{\partial z}{\partial x} = -\frac{y}{x^2} f(xy) + \frac{y^2}{x} f'(xy), \quad \Rightarrow \quad \frac{\partial z}{\partial y} = \frac{1}{x} f(xy) + y f'(xy).$ 所以 $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 2y f'(xy).$
- **解.** 应选 (B). 因为在 D_2 内部 y-x>0,故由二重积分的保号性可得 $I_2>0$.
- 7. 同试卷一第一[5]题.
- 8. 同试卷一第一[6] 题.
- 二、填空题(9~14小题,每小题4分,共24分)
- **9.** $\lim_{x\to 0} \left(2 \frac{\ln(1+x)}{x}\right)^{\frac{1}{x}} = \underline{\qquad}$
- \mathbf{p} . 应填 $\mathbf{e}^{\frac{1}{2}}$. 取对数后求极限得

$$\lim_{x \to 0} \frac{\ln\left(1 + 1 - \frac{\ln(1 + x)}{x}\right)}{x} = \lim_{x \to 0} \frac{1 - \frac{\ln(1 + x)}{x}}{x} = \lim_{x \to 0} \frac{1 - \left(1 - \frac{1}{2}x + o(x)\right)}{x} = \frac{1}{2},$$

因此原式 = $e^{\frac{1}{2}}$.

- **10.** 设函数 $f(x) = \int_{-1}^{x} \sqrt{1 e^t} dt$,则 y = f(x) 的反函数 $x = f^{-1}(y)$ 在 y = 0 处的导数 $\frac{dx}{dy}\Big|_{y=0} = _____.$
- **解.** 应填 $\frac{1}{\sqrt{1-e^{-1}}}$. 因为 $\frac{dy}{dx} = \sqrt{1-e^x}$,所以 $\frac{dx}{dy} = \frac{1}{\sqrt{1-e^x}}$,从而 $\frac{dx}{dy}\Big|_{y=0} = \frac{1}{\sqrt{1-e^x}}\Big|_{x=-1} = \frac{1}{\sqrt{1-e^{-1}}}$.
- **11.** 设封闭曲线 L 的极坐标方程为 $r = \cos 3\theta$ $\left(-\frac{\pi}{6} \le \theta \le \frac{\pi}{6}\right)$,则 L 所围成的平面图形的面积为 ______.
- **解.** 应填 $\frac{\pi}{12}$. 由极坐标的面积公式可得

$$S = \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \cos^2 3\theta \, d\theta = \int_{0}^{\frac{\pi}{6}} \frac{1 + \cos 6\theta}{2} \, d\theta = \frac{\pi}{12}.$$

- **12.** 曲线 $\begin{cases} x = \arctan t, \\ y = \ln \sqrt{1 + t^2} \end{cases}$ 上对应于 t = 1 的点处的法线方程为 _____.
- **解.** 应填 $y + x \frac{\pi}{4} \ln \sqrt{2} = 0$. 由参数方程的导数公式得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\frac{1}{\sqrt{1+t^2}} \cdot \frac{t}{\sqrt{1+t^2}}}{\frac{1}{1+t^2}} = t \quad \Rightarrow \quad \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=1} = 1.$$

当 t=1 时, $x=\frac{\pi}{4}$, $y=\ln\sqrt{2}$,故法线方程为 $y+x-\frac{\pi}{4}-\ln\sqrt{2}=0$.

- **13.** 已知 $y_1 = e^{3x} xe^{2x}$, $y_2 = e^x xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解,该方程满足条件 $y\big|_{x=0} = 0$, $y'\big|_{x=0} = 1$ 的解为 $y = \underline{\hspace{1cm}}$.
- **解.** 应填 $e^{3x} e^x xe^{2x}$. 根据线性微分方程解的性质, e^{3x} 和 e^x 是对应齐次方程的解, $-xe^{2x}$ 是非齐次方程的解,故非齐次通解为 $y = C_1e^{3x} + C_2e^x xe^{2x}$. 由初始条件求得 $C_1 = 1$, $C_2 = -1$,故满足条件的解为 $y = e^{3x} e^x xe^{2x}$.
- 14. 同试卷一第二[13]题.
- 三、解答题(15~23小题, 共94分)

解. 由 $\cos x$ 的麦克劳林公式有: 当 $x \to 0$ 时,

$$\cos x = 1 - \frac{1}{2}x^2 + o(x^2)$$
, $\cos 2x = 1 - 2x^2 + o(x^2)$, $\cos 3x = 1 - \frac{9}{2}x^2 + o(x^2)$.

故由
$$1-\cos x \cdot \cos 2x \cdot \cos 3x = ax^n$$
 为等价无穷小可得
$$1 = \lim_{x \to 0} \frac{1-\cos x \cdot \cos 2x \cdot \cos 3x}{ax^n}$$

$$= \lim_{x \to 0} \frac{1-\left[1-\frac{1}{2}x^2+o(x^2)\right]\left[1-2x^2+o(x^2)\right]\left[1-\frac{9}{2}x^2+o(x^2)\right]}{ax^n}$$

$$= \lim_{x \to 0} \frac{1-\left[1-7x^2+o(x^2)\right]}{ax^n} = \lim_{x \to 0} \frac{7x^2+o(x^2)}{ax^n}.$$

所以 n=2 且 a=7.

16. (本题满分 10 分)

设 D 是由曲线 $y=x^{\frac{1}{3}}$,直线 x=a (a>0) 及 x 轴所围成的平面图形, V_x , V_y 分别是 D 绕 x 轴,y 轴旋转一周所得旋转体的体积,若 $V_y = 10V_x$,求 a 的值.

解. 依题意可得

$$V_x = \pi \int_0^a (x^{\frac{1}{3}})^2 dx = \frac{3}{5} \pi a^{\frac{5}{3}}, \quad V_y = 2\pi \int_0^a x \cdot x^{\frac{1}{3}} dx = \frac{6\pi}{7} a^{\frac{7}{3}}.$$

由 $V_{\nu} = 10V_{x}$ 可得 $\frac{6\pi}{7}a^{\frac{7}{3}} = 10 \cdot \frac{3}{5}\pi a^{\frac{5}{3}}$,解得 $a = 7\sqrt{7}$.

17. (本题满分 10 分)

设平面内区域 D 由直线 x = 3y, y = 3x 及 x + y = 8 围成,计算 $\iint_{D} x^{2} dx dy$.

M.
$$\iint_D x^2 \, \mathrm{d}x \, \mathrm{d}y = \int_0^2 x^2 \, \mathrm{d}x \int_{\frac{x}{3}}^{3x} \, \mathrm{d}y + \int_2^6 x^2 \, \mathrm{d}x \int_{\frac{x}{3}}^{8-x} \, \mathrm{d}y = \frac{416}{3}.$$

- 18. 同试卷一第三[18]题.
- 19. (本题满分11分)

求曲线 $x^3 - xy + y^3 = 1$ $(x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短 距离.

解. 平面上点 (x, y) 到坐标原点的距离为 $d(x, y) = \sqrt{x^2 + y^2}$. 构造拉格朗日函数

$$L(x, y, \lambda) = x^2 + y^2 + \lambda(x^3 - xy + y^3 - 1).$$

则由 $x \ge 0$, $y \ge 0$ 以及

$$\begin{cases} \frac{\partial L}{\partial x} = 2x + 3\lambda x^2 - \lambda y = 0, \\ \frac{\partial L}{\partial y} = 2y + 3\lambda y^2 - \lambda x = 0, \\ \frac{\partial L}{\partial \lambda} = x^3 - xy + y^3 - 1 = 0, \end{cases}$$

可求得唯一条件极值点 x = 1, y = 1. 由于 $d(1,1) = \sqrt{2}, d(0,1) = d(1,0) = \sqrt{2},$ 故所求的最长距离为√2, 最短距离为1.

20. (本题满分11分)

设函数 $f(x) = \ln x + \frac{1}{x}$.

- (I) 求 f(x) 的最小值;
- (II) 设数列 $\{x_n\}$ 满足 $\ln x_n + \frac{1}{x_{n+1}} < 1$,证明 $\lim_{n \to \infty} x_n$ 存在,并求此极限.
- **解.** (I) 求导得 $f'(x) = \frac{1}{x} \frac{1}{x^2} = \frac{x-1}{x^2}$, $f''(x) = -\frac{1}{x^2} + \frac{2}{x^3} = \frac{2-x}{x^3}$. 则 f(x) 有唯一驻点 x = 1, 且 f''(1) = 1 > 0, 从而 f(x) 有极小值和最小值 f(1) = 1.
 - (II) 由 (I) 知 $\ln x_n + \frac{1}{x_n} \ge 1$,故由 $\ln x_n + \frac{1}{x_{n+1}} < 1$ 得 $\frac{1}{x_{n+1}} < \frac{1}{x_n}$,即 $x_{n+1} > x_n$,故 $\{x_n\}$ 单调递增.又由 $\ln x_n < \ln x_n + \frac{1}{x_{n+1}} < 1$ 得 $x_n < e$,故 x_n 有上界.从而由 单调有界收敛定理可知 $\lim_{n \to \infty} x_n$ 存在.令 $\lim_{n \to \infty} x_n = a$,则由 $\ln x_n + \frac{1}{x_{n+1}} < 1$ 得 $\ln a + \frac{1}{a} \le 1$.又由 (I) 有 $\ln a + \frac{1}{a} \ge 1$,故 a = 1.

21. (本题满分11分)

设曲线 *L* 的方程为 $y = \frac{1}{4}x^2 - \frac{1}{2}\ln x$ $(1 \le x \le e)$.

- (I) 求 L 的弧长;
- (II) 设 D 是由曲线 L, 直线 x = 1, x = e 及 x 轴所围平面图形, 求 D 的形心的横坐标.

解. (I) L 的弧长为

$$s = \int_{1}^{e} \sqrt{1 + (y')^{2}} \, dx = \int_{1}^{e} \sqrt{1 + (\frac{x}{2} - \frac{1}{2x})^{2}} \, dx$$
$$= \int_{1}^{e} \sqrt{1 + \frac{x^{2}}{4} + \frac{1}{4x} - \frac{1}{2}} \, dx = \int_{1}^{e} (\frac{x}{2} + \frac{1}{2x}) \, dx = \frac{e^{2} + 1}{4}.$$

(II) D 的形心的横坐标为

$$\overline{x} = \frac{\int_{1}^{e} x \left(\frac{1}{4}x^{2} - \frac{1}{2}\ln x\right) dx}{\int_{1}^{e} \left(\frac{1}{4}x^{2} - \frac{1}{2}\ln x\right) dx} = \frac{3(e^{4} - 2e^{2} - 3)}{4(e^{3} - 7)}.$$

- 22. 同试卷一第三 [20] 题.
- 23. 同试卷一第三 [21] 题.

二〇一四年考研数学试卷二解答

- 一、选择题(1~8小题. 每小题4分, 共32分)
- **解.** 应选 (B). $\ln^{\alpha}(1+2x) \sim 2^{\alpha}x^{\alpha}$,是 α 阶无穷小, $(1-\cos x)^{\frac{1}{\alpha}} \sim \frac{1}{2^{\frac{1}{\alpha}}}x^{\frac{2}{\alpha}}$ 是 $\frac{2}{\alpha}$ 阶无穷小,由题意可知 $\alpha > 1$ 且 $\frac{2}{\alpha} > 1$,所以 α 的可能取值范围是 (1,2).
- 2. 同试卷一第一[1]题.
- 3. 同试卷一第一[2]题.
- **4.** 曲线 $\begin{cases} x = t^2 + 7, \\ y = t^2 + 4t + 1 \end{cases}$ 上对应于 t = 1 的点处的曲率半径是······() (A) $\frac{\sqrt{10}}{50}$. (B) $\frac{\sqrt{10}}{100}$. (C) $10\sqrt{10}$. (D) $5\sqrt{10}$.
- 解. 应选 (C). 由曲线的参数方程,可得

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 2t + 4, \quad \Rightarrow \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2t + 4}{2t} = 1 + \frac{2}{t}, \ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{-\frac{2}{t^2}}{2t} = -\frac{1}{t^3}.$$
对应于 $t = 1$ 的点处 $y' = 3, y'' = -1$, 所以
$$K = \frac{|y''|}{\sqrt{(1 + (y')^2)^3}} = \frac{1}{10\sqrt{10}} \quad \Rightarrow \quad R = \frac{1}{K} = 10\sqrt{10}.$$

- 5. 设函数 $f(x) = \arctan x$,若 $f(x) = x f'(\xi)$,则 $\lim_{x \to 0} \frac{\xi^2}{x^2} = \cdots$ (D) $\frac{1}{3}$.
- **解.** 应选 (D). 因为 $f'(x) = \frac{1}{1+x^2}$,所以由题设可得

$$\frac{1}{1+\xi^2} = f'(\xi) = \frac{f(x)}{x} = \frac{\arctan x}{x} \quad \Rightarrow \quad \xi^2 = \frac{x - \arctan x}{(\arctan x)^2}.$$

由泰勒公式可得

$$\lim_{x \to 0} \frac{\xi^2}{x^2} = \lim_{x \to 0} \frac{x - \arctan x}{x(\arctan x)^2} = \lim_{x \to 0} \frac{x - \left(x - \frac{1}{3}x^3\right) + o(x^3)}{x^3} = \frac{1}{3}.$$

- (A) u(x,y) 的最大值点和最小值点必定都在区域 D 的边界上.
- (B) u(x, y) 的最大值点和最小值点必定都在区域 D 的内部.
- (C) u(x,y) 的最大值点在区域 D 的内部,最小值点在区域 D 的边界上.
- (D) u(x, y) 的最小值点在区域 D 的内部,最大值点在区域 D 的边界上.
- **解**. 应选 (A). u(x,y) 在平面有界闭区域 D 上连续,故 u(x,y) 在 D 内必有最大值和最小值. 如果在内部存在驻点 (x_0,y_0) ,即 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial v} = 0$,在此处

$$A = \frac{\partial^2 u}{\partial x^2}, \quad C = \frac{\partial^2 u}{\partial y^2}, \quad B = \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}.$$

由条件,显然 $AC - B^2 < 0$,从而 u(x,y) 不是极值点,当然也不是最值点. 所以 u(x,y) 的最大值点和最小值点必定都在区域 D 的边界上.

- 7. 同试卷一第一[5]题.
- 8. 同试卷一第一[6]题.
- 二、填空题 (9~14 小题, 每小题 4 分, 共 24 分)

9.
$$\int_{-\infty}^{1} \frac{1}{x^2 + 2x + 5} \, \mathrm{d}x = \underline{\qquad}.$$

解. 应填 $\frac{3\pi}{8}$. 这是因为

$$\int_{-\infty}^{1} \frac{1}{x^2 + 2x + 5} dx = \int_{-\infty}^{1} \frac{dx}{(x+1)^2 + 4}$$
$$= \frac{1}{2} \left[\arctan \frac{x+1}{2} \right]_{-\infty}^{1} = \frac{1}{2} \left(\frac{\pi}{4} - \left(-\frac{\pi}{2} \right) \right) = \frac{3\pi}{8}.$$

- 10. 同试卷一第二[10]题.
- **11.** 设 z = z(x, y) 是由方程 $e^{2yz} + x + y^2 + z = \frac{7}{4}$ 确定的函数,则 $dz \Big|_{\left(\frac{1}{2}, \frac{1}{2}\right)} = \underline{\qquad}$
- **解.** 应填 $-\frac{1}{2}$ dx $-\frac{1}{2}$ dy. 设 $F(x,y,z) = e^{2yz} + x + y^2 + z \frac{7}{4}$, 则有 $F_x = 1$, $F_y = 2ze^{2yz} + 2y$, $F_z = 2ye^{2yz} + 1$.

当
$$x = y = \frac{1}{2}$$
 时, $z = 0$, 从而
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{1}{2}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{1}{2} \quad \Rightarrow \quad \mathrm{d}z \Big|_{\left(\frac{1}{2}, \frac{1}{2}\right)} = -\frac{1}{2} \,\mathrm{d}x - \frac{1}{2} \,\mathrm{d}y.$$

12. 曲线 L 的极坐标方程为 $r = \theta$,则 L 在点 $(r, \theta) = \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ 处的切线方程为 ______.

解. 应填 $y = -\frac{2}{\pi}x + \frac{\pi}{2}$. 先把曲线方程化为参数方程

$$\begin{cases} x = r(\theta)\cos\theta = \theta\cos\theta, \\ y = r(\theta)\sin\theta = \theta\sin\theta. \end{cases}$$

于是在 $\theta = \frac{\pi}{2}$ 处, x = 0, $y = \frac{\pi}{2}$, 从而

$$\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{\frac{\pi}{2}} = \frac{\sin\theta + \theta\cos\theta}{\cos\theta - \theta\sin\theta}\bigg|_{\frac{\pi}{2}} = -\frac{2}{\pi}.$$

则 L 在点 $(r,\theta) = \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ 处的切线方程为 $y - \frac{\pi}{2} = -\frac{2}{\pi}(x-0)$, 即 $y = -\frac{2}{\pi}x + \frac{\pi}{2}$.

- **13.** 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上,若其线密度 $\rho(x) = -x^2 + 2x + 1$,则该细棒的质心坐标 $\overline{x} =$.
- **解.** 应填 $\frac{11}{20}$. 由质心坐标的公式得

$$\overline{x} = \frac{\int_0^1 x \rho(x) dx}{\int_0^1 \rho(x) dx} = \frac{\int_0^1 (-x^3 + 2x^2 + x) dx}{\int_0^1 (-x^2 + 2x + 1) dx} = \frac{\frac{11}{12}}{\frac{5}{3}} = \frac{11}{20}.$$

- 14. 同试卷一第二[13]题.
- 三、解答题(15~23 小题, 共 94 分)
- 15. 同试卷一第三[15]题.
- 16. (本题满分10分)

已知函数 y = y(x) 满足微分方程 $x^2 + y^2y' = 1 - y'$,且 y(2) = 0,求 y(x) 的极大值和极小值.

解. 将微分方程分离变量得 $(1+y^2)$ d $y = (1-x^2)$ dx, 两边分别积分得通解为

$$\frac{1}{3}y^3 + y = x - \frac{1}{3}x^3 + C.$$

由 y(2) = 0 得 $C = \frac{2}{3}$,即

$$\frac{1}{3}y^3 + y = x - \frac{1}{3}x^3 + \frac{2}{3}.$$

令 $\frac{dy}{dx} = \frac{1-x^2}{1+y^2} = 0$,得 $x = \pm 1$,且有

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{-2x(1+y^2)^2 - 2y(1-x^2)^2}{(1+y^2)^3}.$$

当 x=1 时,可解得 y=1, y''=-1<0,函数取得极大值 y=1;当 x=-1 时,可解得 y=0, y''=2>0,函数取得极小值 y=0.

17. (本题满分10分)

设平面区域 $D = \{(x, y) | 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$. 计算

$$\iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} \, \mathrm{d}x \, \mathrm{d}y.$$

解. 积分区域关于直线 y = x 对称, 所以

$$\iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} \, dx \, dy = \iint_D \frac{y \sin(\pi \sqrt{x^2 + y^2})}{x + y} \, dx \, dy.$$

从而所求积分

$$I = \iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} dx dy = \frac{1}{2} \iint_D \frac{(x + y)\sin(\pi \sqrt{x^2 + y^2})}{x + y} dx dy$$
$$= \frac{1}{2} \iint_D \sin(\pi \sqrt{x^2 + y^2}) dx dy = \frac{1}{2} \int_0^{\frac{\pi}{2}} d\theta \int_1^2 r \sin \pi r dr = -\frac{3}{4}.$$

- 18. 同试卷一第三[17]题.
- 19. (本题满分10分)

设函数 f(x),g(x) 在区间 [a.b] 上连续,且 f(x) 单调增加, $0 \le g(x) \le 1$,证明:

(1)
$$0 \le \int_{a}^{x} g(t) dt \le x - a, x \in [a, b];$$

(II)
$$\int_{a}^{a+\int_{a}^{b}g(t)dt} f(x)dx \le \int_{a}^{b} f(x)g(x)dx.$$

解. (I) 因为 $0 \le g(x) \le 1$,所以当 $x \in [a, b]$ 时有

$$\int_{a}^{x} 0 \, \mathrm{d}x \le \int_{a}^{x} g(t) \, \mathrm{d}t \le \int_{a}^{x} 1 \, \mathrm{d}t \quad \Rightarrow \quad 0 \le \int_{a}^{x} g(t) \, \mathrm{d}t \le x - a.$$

(II) 令
$$F(x) = \int_a^x f(u)g(u)du - \int_a^{a+\int_a^x g(t)dt} f(u)du$$
, 则可知 $F(a) = 0$, 且

$$F'(x) = f(x)g(x) - g(x)f\left(a + \int_a^x g(t)dt\right).$$

因为 $0 \le \int_a^x g(t) dt \le x - a$,且 f(x) 单调增加,所以

$$f\left(a+\int_{a}^{x}g(t)dt\right) \leq f(a+x-a)=f(x),$$

从而当 $x \in [a,b]$ 时有

$$F'(x) \ge f(x)g(x) - g(x)f(x) = 0.$$

也是 F(x) 在 [a,b] 单调增加,则 $F(b) \ge F(a) = 0$,即得到

$$\int_{a}^{a+\int_{a}^{b}g(t)dt}f(x)dx \le \int_{a}^{b}f(x)g(x)dx.$$

20. (本题满分11分)

设函数 $f(x) = \frac{x}{1+x}, x \in [0,1]$. 定义函数列

$$f_1(x) = f(x), \quad f_2(x) = f(f_1(x)), \quad \cdots, \quad f_n(x) = f(f_{n-1}(x)), \cdots$$

设 S_n 是曲线 $y = f_n(x)$, 直线 x = 1, y = 0 所围平面图形的面积. 求极限 $\lim_{n \to \infty} nS_n$.

解. 依次计算得到

$$f_1(x) = \frac{x}{1+x}$$
, $f_2(x) = \frac{f_1(x)}{1+f_1(x)} = \frac{\frac{x}{1+x}}{1+\frac{x}{1+x}} = \frac{x}{1+2x}$, $f_3(x) = \frac{x}{1+3x}$, ...

利用数学归纳法可得 $f_n(x) = \frac{x}{1+nx}$. 所以

$$S_n = \int_0^1 f_n(x) dx = \int_0^1 \frac{x}{1+nx} dx = \frac{1}{n} \int_0^1 \left(1 - \frac{1}{1+nx} \right) dx = \frac{1}{n} \left(1 - \frac{\ln(1+n)}{n} \right).$$

从而所求极限

$$\lim_{n\to\infty} nS_n = \lim_{n\to\infty} \left(1 - \frac{\ln(1+n)}{n}\right) = 1.$$

21. (本题满分11分)

已知函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$,且 $f(y,y) = (y+1)^2 - (2-y) \ln y$,求曲线 f(x,y) = 0 所围成的图形绕直线 y = -1 旋转所成的旋转体的体积.

解. 由于函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$,所以

$$f(x,y) = y^2 + 2y + C(x),$$

其中 C(x) 为待定的连续函数. 又因为

$$f(y,y) = (y+1)^2 - (2-y) \ln y$$

从而可知 $C(y) = 1 - (2 - y) \ln y$, 即

$$f(x, y) = y^2 + 2y + 1 - (2 - x) \ln x$$
.

令 f(x,y)=0,可得 $(y+1)^2=(2-x)\ln x$. 且当 y=-1 时, $x_1=1,x_2=2$. 曲线 f(x,y)=0 所成的图形绕直线 y=-1 旋转所成的旋转体的体积为

$$V = \pi \int_{1}^{2} (y+1)^{2} dx = \pi \int_{1}^{2} (2-x) \ln x dx = \left(2 \ln 2 - \frac{5}{4}\right) \pi.$$

- 22. 同试卷一第三[20]题.
- 23. 同试卷一第三[21]题.

二〇一五年考研数学试卷二解答

- 一、选择题(1~8小题,每小题4分,共32分)

(A)
$$\int_{2}^{+\infty} \frac{1}{\sqrt{x}} dx$$

(B)
$$\int_{2}^{+\infty} \frac{\ln x}{x} \, \mathrm{d}x$$

(C)
$$\int_2^{+\infty} \frac{1}{x \ln x} dx$$
. (D) $\int_2^{+\infty}$

解. 应选 (D). 这是因为

$$\int_{2}^{+\infty} \frac{x}{e^{x}} dx = \left[-(x+1)e^{-x} \right]_{2}^{+\infty} = 3e^{-2} - \lim_{x \to +\infty} (x+1)e^{-x} = 3e^{-2}.$$

- - (A) 连续.

(B) 有可去间断点.

(C) 有跳跃间断点.

- (D) 有无穷间断点.
- **解**. 应选 (B). 因为当 $x \neq 0$ 时有

$$f(x) = \lim_{t \to 0} \left(1 + \frac{\sin t}{x} \right)^{\frac{x^2}{t}} = \exp\left(\lim_{t \to 0} \frac{\sin t}{x} \frac{x^2}{t} \right) = e^x,$$

所以 f(x) 有可去间断点 x = 0.

- **3.** 设函数 $f(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x^{\beta}}, & x > 0 \\ 0, & x < 0 \end{cases}$ (\$\alpha > 0, \beta > 0\), 若 f'(x) 在 x = 0 处连续, 则(\$\text{)} (A) $\alpha - \beta > 1$. (B) $0 < \alpha - \beta \le 1$. (C) $\alpha - \beta > 2$. (D) $0 < \alpha - \beta \le 2$.

- **解**. 应选 (A). f'(x) 在 x = 0 处连续, 故 f'(0) 存在, 从而有

$$0 = f'_{-}(0) = f'_{+}(0) = \lim_{x \to 0^{+}} \frac{x^{\alpha} \cos \frac{1}{x^{\beta}} - 0}{x} = \lim_{x \to 0^{+}} x^{\alpha - 1} \cos \frac{1}{x^{\beta}}.$$

从而得到 $\alpha - 1 > 0$. 当 x < 0 时 f'(x) = 0. 当 x > 0 时,

$$f'(x) = \alpha x^{\alpha - 1} \cos \frac{1}{x^{\beta}} + (-1)x^{\alpha} \sin \frac{1}{x^{\beta}} \left(-\beta\right) \frac{1}{x^{\beta + 1}}$$
$$= \alpha x^{\alpha - 1} \cos \frac{1}{x^{\beta}} + \beta x^{\alpha - \beta - 1} \sin \frac{1}{x^{\beta}}.$$

由 f'(x) 在 x=0 处连续得

$$0 = f'(0^{-}) = f'(0^{+}) = \lim_{x \to 0^{+}} \left(\alpha x^{\alpha - 1} \cos \frac{1}{x^{\beta}} + \beta x^{\alpha - \beta - 1} \sin \frac{1}{x^{\beta}} \right).$$

由此得到 $\alpha - \beta - 1 > 0$.

- 4. 同试卷一第一[1]题.
- **5.** 设函数 f(u,v) 满足 $f\left(x+y,\frac{y}{x}\right)=x^2-y^2$,则 $\frac{\partial f}{\partial u}\Big|_{\substack{u=1\\ v=1}}$ 与 $\frac{\partial f}{\partial v}\Big|_{\substack{u=1\\ u=1}}$ 依次是 · · · ()
 - (A) $\frac{1}{2}$, 0.

- (B) $0, \frac{1}{2}$. (C) $-\frac{1}{2}$, 0. (D) $0, -\frac{1}{2}$

解. 应选 (D). 令
$$u = x + y, v = \frac{y}{x}$$
,则 $x = \frac{u}{1+v}, y = \frac{uv}{1+v}$,从而得到

$$f(u, v) = \left(\frac{u}{1+v}\right)^2 - \left(\frac{uv}{1+v}\right)^2 = \frac{u^2(1-v)}{1+v}.$$

求偏导得 $\frac{\partial f}{\partial u} = \frac{2u(1-v)}{1+v}$, $\frac{\partial f}{\partial v} = -\frac{2u^2}{(1+v)^2}$. 因而 $\frac{\partial f}{\partial u}\Big|_{\substack{u=1\\v=1}} = 0$, $\frac{\partial f}{\partial v}\Big|_{\substack{u=1\\v=1}} = -\frac{1}{2}$.

- 6. 同试卷一第一[4] 题.
- 7. 同试卷一第一[5]题.
- 8. 同试卷一第一[6]题.
- 二、填空题(9~14小题,每小题4分,共24分)

9. 设
$$\left\{ x = \arctan t, \text{ 贝 } \frac{d^2 y}{dx^2} \right|_{t=1} = \underline{\hspace{1cm}}.$$

解. 应填 48. 由参数方程的求导公式得

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3+3t^2}{\frac{1}{1+t^2}} = 3(1+t^2)^2,$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left[3(1+t^2)^2 \right] = \frac{\frac{\mathrm{d}[3(1+t^2)^2]}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{12t(1+t^2)}{\frac{1}{1+t^2}} = 12t(1+t^2)^2.$$

因此 $\frac{d^2y}{dx^2}\Big|_{t=1} = 48.$

- **10.** 函数 $f(x) = x^2 \cdot 2^x$ 在 x = 0 处的 n 阶导数 $f^{(n)}(0) =$
- **解**. 应填 $n(n-1)(\ln 2)^{n-2}$. 由莱布尼茨公式得

$$f^{(n)}(x) = x^2 \cdot 2^x (\ln 2)^n + C_n^1 \cdot (2x) \cdot 2^x (\ln 2)^{n-1} + C_n^2 \cdot 2 \cdot 2^x (\ln 2)^{n-2}.$$

因此在 x=0 处的 n 阶导数为

$$f^{(n)}(0) = \frac{n(n-1)}{2} 2(\ln 2)^{n-2} = n(n-1)(\ln 2)^{n-2}.$$

11. 设
$$f(x)$$
 连续, $\varphi(x) = \int_0^{x^2} x f(t) dt$, 若 $\varphi(1) = 1$, $\varphi'(1) = 5$,则 $f(1) = \underline{\hspace{1cm}}$

解. 应填 2. 对
$$\varphi(x) = x \int_0^{x^2} f(t) dt$$
 求导得 $\varphi'(x) = \int_0^{x^2} f(t) dt + 2x^2 f(x^2)$, 故有

$$\varphi(1) = \int_0^1 f(t) dt = 1, \quad \varphi'(1) = 1 + 2f(1) = 5.$$

从而 f(1)=2.

- **12.** 设函数 y = y(x) 是微分方程 y'' + y' 2y = 0 的解,且在 x = 0 处 y(x) 取得极值 3,则 $y(x) = _____$.
- **解.** 应填 $e^{-2x} + 2e^x$. 由特征方程 $\lambda^2 + \lambda 2 = 0$ 解得 $\lambda_1 = 1, \lambda_2 = -2$,所以微分方程 的通解为 $y = C_1 e^x + C_2 e^{-2x}$. 依题意得 y(0) = 3,y'(0) = 0. 代入通解求得 $C_1 = 2$, $C_2 = 1$. 即 $y = 2e^x + e^{-2x}$.
- **13.** 若函数 z = z(x, y) 由方程 $e^{x+2y+3z} + xyz = 1$ 确定,则 $dz|_{(0,0)} =$ _____.
- **解**. 应填 $-\frac{1}{3}(dx+2dy)$. 对方程两边求偏导得

$$(3e^{x+2y+3z} + xy)\frac{\partial z}{\partial x} = -yz - e^{x+2y+3z}, \quad (3e^{x+2y+3z} + xy)\frac{\partial z}{\partial y} = -xz - 2e^{x+2y+3z}.$$

当 x=0, y=0 时 z=0,将该点代入可求得

$$\frac{\partial z}{\partial x}\Big|_{(0,0)} = -\frac{1}{3}, \quad \frac{\partial z}{\partial y}\Big|_{(0,0)} = -\frac{2}{3}.$$

故有 $dz|_{(0,0)} = -\frac{1}{3} dx - \frac{2}{3} dy = -\frac{1}{3} (dx + 2 dy).$

- **14.** 若 3 阶矩阵 *A* 的特征值为 2,-2,1, $B = A^2 A + E$, 其中 E 为 3 阶单位阵,则行列式 $|B| = _____$.
- **解**. 应填 21. 因为 A 的所有特征值为 2,-2,1,所以 B 的所有特征值为 3,7,1,从而 $|B|=3\times7\times1=21$.
- 三、解答题(15~23题, 共94分)
- **15.** 同试卷一第三 [15] 题.
- 16. (本题满分10分)

设 A > 0, D 是由曲线段 $y = A \sin x$ $(0 \le x \le \frac{\pi}{2})$ 及直线 y = 0, $x = \frac{\pi}{2}$ 所围成的 平面区域, V_1 , V_2 分别表示 D 绕 x 轴与绕 y 轴旋转成旋转体的体积,若 $V_1 = V_2$,求 A 的值.

解. 由旋转体的体积公式, 得

$$V_{1} = \int_{0}^{\frac{\pi}{2}} \pi f^{2}(x) dx = \int_{0}^{\frac{\pi}{2}} \pi (A \sin x)^{2} dx = \pi A^{2} \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} dx = \frac{\pi^{2} A^{2}}{4},$$

$$V_{2} = \int_{0}^{\frac{\pi}{2}} 2\pi x f(x) dx = -2\pi A \int_{0}^{\frac{\pi}{2}} x d(\cos x) = 2\pi A.$$

由题设 $V_1 = V_2$,因此可求得 $A = \frac{8}{\pi}$.

17. (本题满分11分)

已知函数 f(x, y) 满足

$$f_{xy}''(x,y) = 2(y+1)e^x$$
, $f_x'(x,0) = (x+1)e^x$, $f(0,y) = y^2 + 2y$. 求 $f(x,y)$ 的极值.

解. 在 $f''_{xy}(x,y) = 2(y+1)e^x$ 两边对 y 积分得

$$f'_x(x, y) = (y^2 + 2y)e^x + \phi(x).$$

故由 $f'_x(x,0) = \phi(x) = (x+1)e^x$,可求得 $\phi(x) = e^x(x+1)$,即有

$$f'_x(x, y) = (y^2 + 2y)e^x + e^x(1 + x).$$

在上式两边对 x 积分得

$$f(x,y) = (y^2 + 2y)e^x + xe^x + C$$

故由 $f(0,y) = y^2 + 2y + C = y^2 + 2y$, 可求得 C = 0, 即有

$$f(x,y) = (y^2 + 2y)e^x + xe^x$$
.

对上式求偏导数并令它们等于零得

$$f'_x = (y^2 + 2y)e^x + (x+1)e^x = 0, \quad f'_y = (2y+2)e^x = 0.$$

因此得到驻点(0,-1). 又

$$f_{xx}'' = (y^2 + 2y)e^x + (x+2)e^x$$
, $f_{xy}'' = 2(y+1)e^x$, $f_{yy}'' = 2e^x$,

故在驻点 (0,-1) 处 $AC-B^2>0$,所以 f(0,-1)=-1 为极小值.

18. (本题满分10分)

计算二重积分
$$\iint_D x(x+y) dx dy$$
, 其中 $D = \{(x,y) | x^2 + y^2 \le 2, y \ge x^2 \}$.

解. 由二重积分的奇偶对称性和换元积分法有

$$\iint_{D} x(x+y) dx dy = \iint_{D} x^{2} dx dy = 2 \int_{0}^{1} dx \int_{x^{2}}^{\sqrt{2-x^{2}}} x^{2} dy$$

$$= 2 \int_{0}^{1} x^{2} (\sqrt{2-x^{2}} - x^{2}) dx = 2 \int_{0}^{1} x^{2} \sqrt{2-x^{2}} dx - \frac{2}{5}$$

$$= 2 \int_{0}^{\frac{\pi}{4}} 2 \sin^{2} t \cdot 2 \cos^{2} t dt - \frac{2}{5} = 2 \int_{0}^{\frac{\pi}{4}} \sin^{2} 2t dt - \frac{2}{5}$$

$$= \int_{0}^{\frac{\pi}{2}} \sin^{2} u du - \frac{2}{5} = \frac{\pi}{4} - \frac{2}{5}.$$

19. (本题满分11分)

已知函数
$$f(x) = \int_{x}^{1} \sqrt{1+t^2} dt + \int_{1}^{x^2} \sqrt{1+t} dt$$
, 求 $f(x)$ 的零点个数.

解. 对 f(x) 求导得

$$f'(x) = -\sqrt{1+x^2} + 2x\sqrt{1+x^2} = \sqrt{1+x^2}(2x-1).$$

令 f'(x)=0,得驻点为 $x=\frac{1}{2}$. 因为在 $\left(-\infty,\frac{1}{2}\right)$ 内 f(x) 单调递减;在 $\left(\frac{1}{2},+\infty\right)$ 内 f(x) 单调递增,所以 $f\left(\frac{1}{2}\right)$ 为唯一的极小值,也是最小值. 因为 f(1)=0,所以函数在 $\left(\frac{1}{2},+\infty\right)$ 内存在唯一的零点. 又因为

$$f\left(\frac{1}{2}\right) < f(1) = 0, \quad f(-1) = \int_{-1}^{1} \sqrt{1+t^2} \, dt > 0,$$

所以函数在 $\left(-\infty, \frac{1}{2}\right)$ 内存在唯一的零点. 综上所述, f(x)的零点个数为 2.

20. (本题满分10分)

已知高温物体置于低温介质中,任一时刻该物体温度对时间的变化率与该时刻物体和介质的温差成正比,现将一初始温度为 $120^{\circ}C$ 的物体在 $20^{\circ}C$ 的恒温介质中冷却, $30\min$ 后该物体降至 $30^{\circ}C$,若要将该物体的温度继续降至 $21^{\circ}C$,还需冷却多长时间?

解. 设 t 时刻物体温度为 x(t), 比例常数为 k > 0, 则有

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -k(x-20) \quad \Rightarrow \quad x(t) = C e^{-kt} + 20.$$

由 x(0) = 120 得 C = 100,即有 $x(t) = 100e^{-kt} + 20$. 又由 x(30) = 30 得 $k = \frac{\ln 10}{30}$,即有 $x(t) = 100 \exp\left(-\frac{\ln 10}{30}t\right) + 20$. 当 x = 21 时,t = 60,所以还需要冷却 60 - 30 = 30min.

21. (本题满分 10 分)

已知函数 f(x) 在区间 $[a,+\infty)$ 上具有 2 阶导数,f(a)=0,f'(x)>0,f''(x)>0. 设 b>a,曲线 y=f(x) 在点 (b,f(b)) 处的切线与 x 轴的交点是 $(x_0,0)$,证明 $a< x_0 < b$.

解. 曲线在点 (b, f(b)) 处的切线方程为 y - f(b) = f'(b)(x - b). 令 y = 0,得交点 $x_0 = b - \frac{f(b)}{f'(b)}$. 因为 f'(x) > 0,所以 f(x) 单调递增,从而 f(b) > f(a) = 0. 又因为 f'(b) > 0,所以 $x_0 = b - \frac{f(b)}{f'(b)} < b$. 在区间 [a, b] 上应用拉格朗日中值定理,存在 $\xi \in (a, b)$ 使得

$$\frac{f(b)-f(a)}{b-a} = f'(\xi) \quad \Rightarrow \quad f(b) = f'(\xi)(b-a).$$

从而得到

$$x_0 - a = b - a - \frac{f(b)}{f'(b)} = \frac{f'(b)(b-a) - f'(\xi)(b-a)}{f'(b)} = \frac{[f'(b) - f'(\xi)](b-a)}{f'(b)}.$$

因为 f''(x) > 0,所以 f'(x) 单调递增,所以 $f'(b) > f'(\xi)$,从而 $x_0 - a > 0$,即 $x_0 > a$. 综上所述, $a < x_0 < b$.

22. (本题满分11分)

设矩阵
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$
且 $A^3 = O$.

- (I) 求 a 的值;
- (II) 若矩阵 X 满足 $X-XA^2-AX+AXA^2=E$, E 为 3 阶单位阵, 求 X.

解. (I) 因为 $A^3 = O$, 所以

$$|A| = 0$$
 \Rightarrow $\begin{vmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 1 - a^2 & a & -1 \\ -a & 1 & a \end{vmatrix} = a^3 = 0 \Rightarrow a = 0.$

(II) 由
$$X - XA^2 - AX + AXA^2 = E$$
 得 $(E - A)X(E - A^2) = E$,从而
$$X = (E - A)^{-1}(E - A^2)^{-1} = [(E - A^2)(E - A)]^{-1} = (E - A^2 - A)^{-1}$$

$$= \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 1 & -2 \\ 1 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix}.$$

23. 同试卷一第三 [21] 题.

二〇一六年考研数学试卷二解答

- 一、选择题(1~8 小题,每小题 4 分,共 32 分)
- 3个无穷小量按照从低阶到高阶的排序是……………()
 - (A) a_1, a_2, a_3 .
- (B) a_2, a_3, a_1 .
- (C) a_2, a_1, a_3 . (D) a_3, a_2, a_1 .
- **解.** 应选 (B). 这是因为当 $x \to 0^+$ 时有

$$a_1 = x(\cos\sqrt{x} - 1) \sim -\frac{1}{2}x^2$$
, $a_2 = \sqrt{x}\ln(1 + \sqrt[3]{x}) \sim x^{5/6}$, $a_3 = \sqrt[3]{x + 1} - 1 \sim \frac{1}{3}x$.

- 2. 同试卷一第一[2]题.
- - (A) ①收敛, ②收敛.

(B) ①收敛, ②发散.

(C) ①发散, ②收敛.

(D) ①发散, ②发散.

解. 应选 (B). 这是因为

$$\int_{-\infty}^{0} \frac{1}{x^{2}} e^{\frac{1}{x}} dx = \left[-e^{\frac{1}{x}} \right]_{-\infty}^{0^{-}} = 0 - (-1) = 1,$$

$$\int_{0}^{+\infty} \frac{1}{x^{2}} e^{\frac{1}{x}} dx = \left[-e^{\frac{1}{x}} \right]_{0^{+}}^{+\infty} = -1 - (-\infty) = +\infty.$$

4. 设函数 f(x) 在 $(-\infty, +\infty)$ 内连续,其导函数的图形如图所示,则······()

- (A) 函数 f(x) 有 2 个极值点, 曲线 y = f(x) 有 2 个拐点.
- (B) 函数 f(x) 有 2 个极值点, 曲线 y = f(x) 有 3 个拐点.
- (C) 函数 f(x) 有 3 个极值点,曲线 y = f(x) 有 1 个拐点.
- (D) 函数 f(x) 有 3 个极值点, 曲线 y = f(x) 有 2 个拐点.
- 解. 应选 (B). 由图像易知, 函数在前面 2 个驻点左右两侧导数符号相反, 故有 2 个 极值点; 拐点是导函数单调性发生改变的点, 故有3个拐点.

- **5**. 设函数 $f_i(x)$ (i=1,2) 具有二阶连续导数,且 $f_i(x_0) < 0$ (i=1,2),若两条曲线 $y = f_i(x)$ (i = 1,2) 在点 (x_0, y_0) 处具有公切线 y = g(x), 且在该点处曲线 $y = f_1(x)$ 的曲率大于曲线 $y = f_2(x)$ 的曲率,则在 x_0 的某个邻域内,有 · · · · · · · · · ()
 - (A) $f_1(x) \le f_2(x) \le g(x)$.

(B) $f_2(x) \le f_1(x) \le g(x)$.

(C) $f_1(x) \le g(x) \le f_2(x)$.

(D) $f_2(x) \le g(x) \le f_1(x)$.

解. 应选 (A). 由切线, 凹凸性和曲率的几何意义, 画图观察可得.

- (A) $f'_x - f'_y = 0$. (B) $f'_x + f'_y = 0$. (C) $f'_x - f'_y = f$. (D) $f'_x + f'_y = f$.

- **解.** 应选 (D). $f'_x = \frac{e^x(x-y-1)}{(x-y)^2}$, $f'_y = \frac{e^x}{(x-y)^2}$, 所以 $f'_x + f'_y = f$.
- 7. 同试卷一第一[5]题.
- **8.** 设二次型 $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$ 的正负惯性指数分
 - (A) a > 1.

(B) a < -2.

(C) -2 < a < 1.

- (D) a = 1 或 a = -2.
- **解**. 应选 (C). 当 a = 0 时, $f(x_1, x_2, x_3) = 2x_1x_2 + 2x_2x_3 + 2x_1x_3$,其矩阵为 $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, 由此得特征值为 2,-1,-1,满足题目条件,故 a=0 成立,因此 (C)为正确选项.
- 二、填空题(9~14 小题,每小题 4 分,共 24 分)
- **9.** 曲线 $y = \frac{x^3}{1+x^2} + \arctan(1+x^2)$ 的斜渐近线方程为 _____.
- **解**. 应填 $y = x + \frac{\pi}{2}$. 这是因为

$$k = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \left[\frac{x^2}{1 + x^2} + \frac{\arctan(1 + x^2)}{x} \right] = 1,$$

$$k = \lim_{x \to \infty} (y - kx) = \lim_{x \to \infty} \left[\frac{-x}{1 + x^2} + \arctan(1 + x^2) \right] = \frac{\pi}{1 + \arctan(1 + x^2)}$$

$$b = \lim_{x \to \infty} (y - kx) = \lim_{x \to \infty} \left[\frac{-x}{1 + x^2} + \arctan(1 + x^2) \right] = \frac{\pi}{2}.$$

- **10.** 极限 $\lim_{n\to\infty} \frac{1}{n^2} \left(\sin \frac{1}{n} + 2 \sin \frac{2}{n} + \dots + n \sin \frac{n}{n} \right) = \underline{\qquad}$
- 解. 应填 sin 1 cos 1.由定积分的定义

$$\lim_{n \to \infty} \frac{1}{n^2} \left(\sin \frac{1}{n} + 2 \sin \frac{2}{n} + \dots + n \sin \frac{n}{n} \right) = \lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{n} \sin \frac{1}{n} + \frac{2}{n} \sin \frac{2}{n} + \dots + \frac{n}{n} \sin \frac{n}{n} \right)$$
$$= \int_0^1 x \sin x \, dx = \sin 1 - \cos 1.$$

- **11**. 以 $y = x^2 e^x$ 和 $y = x^2$ 为特解的一阶非齐次线性微分方程为 ______.
- 解. 应填 $y'-y=2x-x^2$. 设微分方程为 y'+p(x)y=q(x), 代入两个特解得到

$$\begin{cases} 2x + p(x)x^2 = q(x), \\ (2x - e^x) + p(x)(x^2 - e^x) = q(x). \end{cases}$$

解得 p(x)=-1, $q(x)=2x-x^2$. 所以微分方程为 $y'-y=2x-x^2$.

- **12.** 已知函数 f(x) 在 $(-\infty, +\infty)$ 上连续,且 $f(x) = (x+1)^2 + 2 \int_0^x f(t) dt$,则当 $n \ge 2$ 时, $f^{(n)}(0) = ______$.
- **解.** 应填 $2^{n-1} \cdot 5$. 易知 f(0) = 1,对已知等式两边依次求导得

$$f'(x) = 2(x+1) + 2f(x) \implies f'(0) = 4,$$

$$f''(x) = 2 + 2f'(x) \implies f''(0) = 2 \cdot 5,$$

$$f'''(x) = 2f''(x) \implies f'''(0) = 2^{2} \cdot 5,$$

$$f^{(n)}(x) = 2f^{(n-2)}(x) \implies f^{(n)}(0) = 2^{n-1} \cdot 5.$$

- **13.** 已知动点 P 在曲线 $y = x^3$ 上运动,记坐标原点与点 P 间的距离为 l. 若点 P 的横坐标对时间的变化率为常数 v_0 ,则当点 P 运动到点 (1,1) 时, l 对时间的变化率是
- **解**. 应填 $2\sqrt{2}v_0$. 首先求得 $l = \sqrt{x^2 + x^6}$, 从而

$$\frac{\mathrm{d}l}{\mathrm{d}t} = \frac{\mathrm{d}l}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2x + 6x^5}{2\sqrt{x^2 + x^6}} v_0 \quad \Rightarrow \quad \frac{\mathrm{d}l}{\mathrm{d}t} \bigg|_{x=1} = 2\sqrt{2} v_0.$$

- **14.** 设矩阵 $\begin{pmatrix} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \end{pmatrix}$ 与 $\begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ 等价,则 $a = \underline{\qquad}$.
- **解**. 应填2.设 $A = \begin{pmatrix} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, 则由两者等价可得 r(A) = r(B) = 2. 因此 |A| = 0,解得 a = 2 或 a = -1. 当 a = -1 时 r(A) = 1 不满足条件,故有 a = 2.
- 三、解答题(15~23小题, 共94分)
- **15.** (本题满分 10 分) 求极限 $\lim_{x\to 0} (\cos 2x + 2x \sin x)^{\frac{1}{x^4}}$.

解. 由泰勒公式可得

$$\cos 2x + 2x \sin x - 1 = 1 - \frac{4x^2}{2} + \frac{2^4x^4}{4!} + 2x\left(x - \frac{x^3}{3!}\right) - 1 + o(x^4) = \frac{1}{3}x^4 + o(x^4),$$

因此所求极限

$$\lim_{x \to 0} (\cos 2x + 2x \sin x)^{\frac{1}{x^4}} = \lim_{x \to 0} \exp\left(\frac{\cos 2x + 2x \sin x - 1}{x^4}\right) = e^{\frac{1}{3}}.$$

16. (本题满分10分)

设函数 $f(x) = \int_0^1 |t^2 - x^2| dt$ (x > 0), 求 f'(x) 并求 f(x) 的最小值.

解. 当
$$x \ge 1$$
 时, $f(x) = \int_0^1 (x^2 - t^2) dt = x^2 - \frac{1}{3}$; 当 $0 < x < 1$ 时,
$$f(x) = \int_0^x (x^2 - t^2) dt + \int_x^1 (t^2 - x^2) dt = \frac{4}{3}x^3 - x^2 + \frac{1}{3}.$$

所以

$$f(x) = \begin{cases} \frac{4}{3}x^3 - x^2 + \frac{1}{3}, & 0 \le x < 1, \\ x^2, & x \ge 1; \end{cases} \Rightarrow f'(x) = \begin{cases} 4x^2 - 2x, & 0 < x < 1, \\ 2x, & x > 1. \end{cases}$$

令 f'(x) = 0,得到唯一的驻点 $x = \frac{1}{2}$. 又因为 $f''\left(\frac{1}{2}\right) = 2 > 0$,所以 f(x) 的最小值为 $f\left(\frac{1}{2}\right) = \frac{1}{4}$.

17. (本题满分10分)

已知函数 z = z(x, y) 由方程 $(x^2 + y^2)z + \ln z + 2(x + y + 1) = 0$ 确定, 求 z = z(x, y) 的极值.

解. 对方程两边分别对 x 和 y 求偏导数得

$$\begin{cases} 2xz + (x^2 + y^2)z'_x + \frac{z'_x}{z} + 2 = 0, \\ 2yz + (x^2 + y^2)z'_y + \frac{z'_y}{z} + 2 = 0. \end{cases}$$

令 $z'_x = z'_y = 0$,解得 (-1,-1) 是函数 z = z(x,y) 的惟一驻点. 对上面两个方程 再求偏导数得

$$\begin{cases} 2z + 2xz'_x + 2xz'_x + (x^2 + y^2)z''_{xx} + \frac{1}{z}z''_{xx} - \frac{1}{z^2}(z'_x)^2 = 0, \\ 2xz'_y + 2yz'_x + (x^2 + y^2)z''_{xy} - \frac{1}{z^2}z'_xz'_y + \frac{1}{z}z''_{xy} = 0, \\ 2z + 2yz'_y + 2yz'_y + (x^2 + y^2)z''_{yy} + \frac{1}{z}z''_{yy} - \frac{1}{z^2}(z'_y)^2 = 0. \end{cases}$$

代入 z(-1,-1)=1 和 $z'_x(-1,-1)=z'_y(-1,-1)=0$,解得

$$A = z_{xx}''(-1, -1) = -\frac{2}{3}, \quad B = z_{xy}''(-1, -1) = 0, \quad C = z_{yy}''(-1, -1) = -\frac{2}{3}$$

由 $AC - B^2 > 0$ 和 A < 0 可得, z(-1,-1) = 1 是 z = z(x,y) 的极大值.

18. (本题满分10分)

设 D 是由直线 y = 1, y = x, y = -x 围成的有界区域, 计算二重积分 $\iint_D \frac{x^2 - xy - y^2}{x^2 + y^2} dx dy$.

解. 利用二重积分的对称性, 可得

$$I = \iint_{D} \frac{x^{2} - xy - y^{2}}{x^{2} + y^{2}} dx dy = \iint_{D} \frac{x^{2} - y^{2}}{x^{2} + y^{2}} dx dy$$
$$= \iint_{\frac{\pi}{4}} \frac{3\pi}{4} d\theta \int_{0}^{\frac{1}{\sin \theta}} \frac{r^{2}(\cos^{2}\theta - \sin^{2}\theta)}{r^{2}} r dr = 1 - \frac{\pi}{2}.$$

19. (本题满分10分)

已知 $y_1(x) = e^x$, $y_2(x) = u(x)e^x$ 是二阶微分方程 $(2x-1)y^n - (2x+1)y' + 2y = 0$ 的解,若 u(-1) = e, u(0) = -1, 求 u(x), 并写出该微分方程的通解.

解. 将 $v_2(x) = u(x)e^x$ 代入微分方程,整理得

$$(2x-1)u''(x)+(2x-3)u'(x)=0.$$

这是可降阶微分方程,解得 $u(x) = -(2x+1)e^{-x}$.所以原微分方程的通解为

$$y = k_1 y_1(x) + k_2 y_2(x) = k_1 e^x - k_2 (2x + 1),$$

其中 k_1 , k_2 为任意常数.

20. (本题满分11分)

设 D 是由曲线 $y = \sqrt{1-x^2}$ $(0 \le x \le 1)$ 与 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ $(0 \le t \le \frac{\pi}{2})$ 围成的平面 区域,求 D 绕 x 轴旋转一周所得旋转体的体积和表面积.

解. 旋转体的体积

$$V = V_1 - V_2 = \pi \int_0^1 (1 - x^2) dx - \int_{\frac{\pi}{2}}^0 \sin^6 t \cdot 3\cos^2 t (-\sin t) dt$$
$$= \frac{2\pi}{3} - \frac{16\pi}{105} = \frac{18\pi}{35}.$$

旋转体的表面积

$$S = S_1 + S_2 = 2\pi + 2\pi \int_0^{\frac{\pi}{2}} \sin^3 t \sqrt{(3\cos^2 t \sin t)^2 + (3\sin^2 t \cos t)^2} \, dt$$
$$= 2\pi + \frac{6\pi}{5} = \frac{16\pi}{5}.$$

21. (本题满分11分)

已知 f(x) 在 $\left[0, \frac{3\pi}{2}\right]$ 上连续,在 $\left(0, \frac{3\pi}{2}\right)$ 内是函数 $\frac{\cos x}{2x-3\pi}$ 的一个原函数 f(0)=0.

(I) 求 f(x) 在区间 $\left[0, \frac{3\pi}{2}\right]$ 上的平均值;

(II) 证明 f(x) 在区间 $\left(0, \frac{3\pi}{2}\right)$ 内存在唯一零点.

解. (I) 由题意,
$$f(x) = \int_0^x \frac{\cos t}{2t - 3\pi} dt$$
. 所以 $f(x)$ 在区间 $\left[0, \frac{3\pi}{2}\right]$ 上的平均值为
$$\bar{f} = \frac{2}{3\pi} \int_0^{\frac{3\pi}{2}} f(x) dx = \frac{2}{3\pi} \int_0^{\frac{3\pi}{2}} dx \int_0^x \frac{\cos t}{2t - 3\pi} dt$$
$$= \frac{2}{3\pi} \int_0^{\frac{3\pi}{2}} dt \int_t^{\frac{3\pi}{2}} \frac{\cos t}{2t - 3\pi} dx = \frac{1}{3\pi}.$$

- (II) 由 $f'(x) = \frac{\cos x}{2x 3\pi}$,可得 f(x) 在区间 $\left(0, \frac{3\pi}{2}\right)$ 内存在唯一驻点 $x = \frac{\pi}{2}$. 而且当 $0 < x < \frac{\pi}{2}$ 时 f'(x) < 0,当 $\frac{\pi}{2} < x < \frac{3\pi}{2}$ 时 f'(x) > 0. 因为 f(0) = 0,由单调性,当 $0 < x < \frac{\pi}{2}$ 时 f(x) 无零点. 因为 $f\left(\frac{\pi}{2}\right) < 0$ 且 $f\left(\frac{3\pi}{2}\right) > 0$,由零值定理和单调性,当 $\frac{\pi}{2} < x < \frac{3\pi}{2}$ 时 f(x) 有唯一零点. 综上所述,f(x) 在区间 $\left(0, \frac{3\pi}{2}\right)$ 内存在唯一零点.
- 22. (本题满分11分)

设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1-a \\ 1 & 0 & a \\ a+1 & 1 & a+1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 0 \\ 1 \\ 2a-2 \end{pmatrix}, \quad 且方程组 \ Ax = \beta \ 无解.$$

- (I) 求 a 的值; (II) 求方程组 $A^TAx = A^T\beta$ 的通解.
- 解.(I)对增广矩阵作初等行变换得

$$(A,\beta) = \begin{pmatrix} 1 & 1 & 1-a & 0 \\ 1 & 0 & a & 1 \\ a+1 & 1 & a+1 & 2a-2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1-a & 0 \\ 0 & -1 & 2a-1 & 1 \\ 0 & 0 & -a^2+2a & a-2 \end{pmatrix}.$$

由方程组 $Ax = \beta$ 无解,可知 $r(A) < r(A, \beta)$,故 a = 0

(II) 当 a=0 时,

$$A^{T}A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}, \quad A^{T}\beta = \begin{pmatrix} -1 \\ -2 \\ -2 \end{pmatrix}.$$

故由初等行变换有

$$(A^T A, A^T \beta) = \begin{pmatrix} 3 & 2 & 2 & -1 \\ 2 & 2 & 2 & -2 \\ 2 & 2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

因此方程组 $A^TAx = A^T\beta$ 的通解为 $x = k \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$, 其中 k 为任意实数.

23. 同试卷一第三 [21] 题.

二〇一七年考研数学试卷二解答

- 一、选择题(1~8小题,每小题4分,共32分)
- 1. 同试卷一第一[1]题.
- **2.** 设二阶可导函数 f(x) 满足 f(1) = f(-1) = 1, f(0) = -1, 且 f''(x) > 0, 则 · · ()

(A)
$$\int_{-1}^{1} f(x) dx > 0$$
.

(B)
$$\int_{-1}^{1} f(x) dx < 0.$$

(C)
$$\int_{-1}^{0} f(x) dx > \int_{0}^{1} f(x) dx$$
.

(D)
$$\int_{-1}^{0} f(x) dx < \int_{0}^{1} f(x) dx$$
.

解. 应选 (B). 由 f''(x) < 0 知 f(x) 的图像在其任意两点连线的曲线下方,故有 $f(x) \le f(0) + [f(1) - f(0)]x = 2x - 1$, $x \in (0,1)$;

$$f(x) \le f(0) + [f(0) - f(-1)]x = -2x - 1, \quad x \in (-1, 0).$$

因此由定积分的保号性得到

$$\int_0^1 f(x) dx < \int_0^1 (2x - 1) dx = 0, \quad \int_{-1}^0 f(x) dx < \int_{-1}^0 (-2x - 1) dx = 0.$$

从而有

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx < 0.$$

- **3.** 设数列 $\{x_n\}$ 收敛,则······()
 - (A) $\stackrel{\text{def}}{=} \lim_{n \to \infty} \sin x_n = 0$ 时, $\lim_{n \to \infty} x_n = 0$.
 - (B) $\stackrel{\text{dis}}{=} \lim_{n \to \infty} (x_n + \sqrt{|x_n|}) = 0$ 时, $\lim_{n \to \infty} x_n = 0$.
 - (C) $\stackrel{\text{def}}{=} \lim_{n \to \infty} (x_n + x_n^2) = 0$ $\stackrel{\text{def}}{=} 1$, $\lim_{n \to \infty} x_n = 0$.
 - (D) $\stackrel{\text{def}}{=} \lim_{n \to \infty} (x_n + \sin x_n) = 0$ $\stackrel{\text{he}}{=} \lim_{n \to \infty} x_n = 0$.
- 解. 应选 (D). 设 $\lim_{n\to\infty} x_n = a$,则 $\lim_{n\to\infty} \sin x_n = \sin a$,可知当 $\sin a = 0$,也即 $a = k\pi$, $(k = 0, \pm 1, \pm 2, \cdots)$ 时,都有 $\lim_{n\to\infty} \sin x_n = 0$,故 (A) 错误. $\lim_{n\to\infty} (x_n + \sqrt{|x_n|}) = a + \sqrt{|a|}$,可知当 $a + \sqrt{|a|} = 0$,也即 a = 0 或者 a = -1 时,都有 $\lim_{n\to\infty} (x_n + \sqrt{|x_n|}) = 0$,故 (B) 错误. $\lim_{n\to\infty} (x_n + x_n^2) = a + a^2$,可知当 $a + a^2 = 0$,也即 a = 0 或者 a = -1 时,都有 $\lim_{n\to\infty} (x_n + x_n^2) = 0$,故 (C) 错误. $\lim_{n\to\infty} (x_n + \sin x_n) = a + \sin a$,而要使 $a + \sin a = 0$ 只有 a = 0,故 (D) 正确.
- **4.** 微分方程 $y'' 4y' + 8y = e^{2x}(1 + \cos 2x)$ 的特解可设为 $y^* = \cdots$ ()
 - (A) $Ae^{2x} + e^{2x} (B\cos 2x + C\sin 2x)$.
 - (B) $Axe^{2x} + e^{2x} (B\cos 2x + C\sin 2x)$.
 - (C) $Ae^{2x} + xe^{2x} (B\cos 2x + C\sin 2x)$.
 - (D) $Axe^{2x} + xe^{2x} (B\cos 2x + C\sin 2x)$.

解. 应选 (C). 齐次方程的特征方程为 $\lambda^2-4\lambda+8=0$,特征根为 $\lambda=2\pm 2i$. 将非齐次方程拆分为: ① $y''-4y'+8y=e^{2x}$ 与② $y''-4y'+8y=e^{2x}\cos 2x$. 方程①和②的特解可以分别设为

$$y_1^* = Ae^{2x}$$
, $y_2^* = xe^{2x}(B\cos 2x + C\sin 2x)$.

由解的叠加原理可知,原方程的特解可以设为

$$y_2^* = Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x).$$

- **5.** 设 f(x,y) 具有一阶偏导数,且对任意的 (x,y),都有 $\frac{\partial f(x,y)}{\partial x} > 0$, $\frac{\partial f(x,y)}{\partial y} < 0$,则.....()
 - (A) f(0,0) > f(1,1).

(B) f(0,0) < f(1,1).

(C) f(0,1) > f(1,0).

- (D) f(0,1) < f(1,0).
- **解.** 应选 (D). 由于 $\frac{\partial f(x,y)}{\partial x} > 0$,可知 f(x,y) 关于 x 单调递增,故有 f(0,1) < f(1,1). 又由于 $\frac{\partial f(x,y)}{\partial y} < 0$,可知 f(x,y) 关于 y 单调递减,故有 f(1,1) < f(1,0),从而 f(0,1) < f(1,0).
- 6. 同试卷一第一[4] 题.
- 7. 设 A 为 3 阶矩阵, $P = (\alpha_1, \alpha_2, \alpha_3)$ 为可逆矩阵,使得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,则 $A(\alpha_1 + \alpha_2 + \alpha_3) = \cdots$ (B) $\alpha_2 + 2\alpha_3$. (C) $\alpha_2 + \alpha_3$. (D) $\alpha_1 + 2\alpha_2$.
- 解. 应选 (B). 这是因为

$$A(\alpha_{1} + \alpha_{2} + \alpha_{3}) = A(\alpha_{1}, \alpha_{2}, \alpha_{3}) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= (\alpha_{1}, \alpha_{2}, \alpha_{3})(\alpha_{1}, \alpha_{2}, \alpha_{3})^{-1} A(\alpha_{1}, \alpha_{2}, \alpha_{3}) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= (\alpha_{1}, \alpha_{2}, \alpha_{3}) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = (\alpha_{1}, \alpha_{2}, \alpha_{3}) \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \alpha_{2} + 2\alpha_{3}.$$

8. 同试卷一第一[6]题.

- 二、填空题(9~14小题,每小题4分,共24分)
- **9.** 曲线 $y = x \left(1 + \arcsin \frac{2}{x}\right)$ 的斜渐近线方程为 ______.
- **解**. 应填 y = x + 2. 因为

$$k = \lim_{x \to \infty} \frac{x \left(1 + \arcsin \frac{2}{x}\right)}{x} = 1, \quad b = \lim_{x \to \infty} x \left(1 + \arcsin \frac{2}{x}\right) - x = 2,$$

所以斜渐近线方程为 y = x + 2.

- **10.** 设函数 y = y(x) 由参数方程 $\begin{cases} x = t + e^t \\ y = \sin t \end{cases}$ 确定,则 $\frac{d^2 y}{dx^2} \Big|_{t=0} =$ ______.
- 解. 应填 $-\frac{1}{8}$. 因为 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y'(t)}{x'(t)} = \frac{\cos t}{1 + \mathrm{e}^t},$ $\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\left(\frac{\cos t}{1 + \mathrm{e}^t}\right)'}{1 + \mathrm{e}^t} = \frac{\frac{-\sin t(1 + \mathrm{e}^t) \mathrm{e}^t \cos t}{(1 + \mathrm{e}^t)^2}}{1 + \mathrm{e}^t} = \frac{-\sin t \mathrm{e}^t \sin t \mathrm{e}^t \cos t}{(1 + \mathrm{e}^t)^3},$ 所以 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\Big|_{t=0} = -\frac{1}{8}.$
- 11. $\int_0^{+\infty} \frac{\ln(1+x)}{(1+x)^2} \, \mathrm{d}x = \underline{\qquad}.$
- 解. 应填 1. 由分部积分法可得

$$\int_0^{+\infty} \frac{\ln(1+x)}{(1+x)^2} dx = \int_0^{+\infty} \ln(1+x) d\left(-\frac{1}{1+x}\right)$$

$$= -\frac{1}{1+x} \ln(1+x) \Big|_0^{+\infty} + \int_0^{+\infty} \left(\frac{1}{1+x}\right)^2 dx$$

$$= -\frac{1}{1+x} \ln(1+x) \Big|_0^{+\infty} - \frac{1}{1+x} \Big|_0^{+\infty} = 0 + 1 = 1.$$

- **12.** 设函数 f(x,y) 具有一阶连续偏导数,且 $df(x,y) = ye^y dx + x(1+y)e^y dy$, f(0,0)=0,则 f(x,y)=______.
- 解. 应填 xye^y . 由题可知, $f'_x = ye^y$, $f'_y = x(1+y)e^y$,从而 $f(x,y) = \int ye^y dx = xye^y + c(y),$

 $f'_y = xe^y + xye^y + c'(y) = xe^y + xye^y.$

即 c'(y)=0,即 c(y)=c,由 f(0,0)=0 得 c=0,从而 $f(x,y)=xye^y$.

13.
$$\int_0^1 dy \int_y^1 \frac{\tan x}{x} dx = \underline{\qquad}.$$

解. 应填-ln(cos1). 交换积分次序可得

$$\int_0^1 dy \int_y^1 \frac{\tan x}{x} dx = \int_0^1 dx \int_0^x \frac{\tan x}{x} dy = \int_0^1 \tan x dx = -[\ln|\cos x|]_0^1 = -\ln\cos 1.$$

14. 设矩阵
$$A = \begin{pmatrix} 4 & 1 & -2 \\ 1 & 2 & a \\ 3 & 1 & -1 \end{pmatrix}$$
的一个特征向量为 $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, 则 $a =$ ______.

解. 应填
$$-1$$
. 因为 $A \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3+2a \\ 2 \end{pmatrix}$, 即 $3+2a=1$, 可得 $a=-1$.

- 三、解答题(15~23小题, 共94分)
- 15. (本题满分10分)

求极限
$$\lim_{x\to 0^+} \frac{\int_0^x \sqrt{x-t} e^t dt}{\sqrt{x^3}}$$
.

解. 先对变上限积分 $\int_0^x \sqrt{x-t} e^t dt$ 作变量代换 u=x-t,得

$$\int_0^x \sqrt{x-t} e^t dt = \int_x^0 \sqrt{u} e^{x-u} (-du) = e^x \int_0^x \sqrt{u} e^{-u} du.$$

则由洛必达法则可知

$$\lim_{x \to 0^{+}} \frac{\int_{0}^{x} \sqrt{x - t} e^{t} dt}{\sqrt{x^{3}}} = \lim_{x \to 0^{+}} \frac{e^{x} \int_{0}^{x} \sqrt{u} e^{-u} du + \sqrt{x}}{\frac{3}{2} \sqrt{x}}$$

$$= \frac{2}{3} \lim_{x \to 0^{+}} \frac{\int_{0}^{x} \sqrt{u} e^{-u} du}{\sqrt{x} e^{-x}} + \frac{2}{3} = \frac{2}{3} \lim_{x \to 0^{+}} \frac{\sqrt{x} e^{-x}}{-\sqrt{x} e^{-x} + \frac{1}{2\sqrt{x}} e^{-x}} + \frac{2}{3}$$

$$= \frac{2}{3} \lim_{x \to 0^{+}} \frac{x e^{-x}}{-x e^{-x} + \frac{1}{2} e^{-x}} + \frac{2}{3} = \frac{2}{3}.$$

- **16.** 同试卷一第三[15] 题.
- 17. 同试卷一第三[16]题.
- **18**. 同试卷一第三[17]题.
- **19**. 同试卷一第三 [18] 题.
- 20. (本题满分11分)

已知平面区域
$$D = \{(x,y)|x^2+y^2 \le 2y\}$$
, 计算二重积分 $\iint_D (x+1)^2 dx dy$.

 \mathbf{p} . 因为积分区域关于 γ 轴对称,所以

$$\iint_{D} (x+1)^{2} dx dy = \iint_{D} x^{2} dx dy + \iint_{D} 1 dx dy$$
$$= \int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} \rho^{3} \cos^{2}\theta d\rho + \pi = \frac{\pi}{4} + \pi = \frac{5\pi}{4}.$$

21. (本题满分11分)

设 y(x) 是区间 $\left(0, \frac{3}{2}\right)$ 内的可导函数,且 y(1) = 0. 点 P 是曲线 L: y = y(x) 上的任意一点. L 在 P 处的切线与 y 轴相交于点 $\left(0, Y_p\right)$,法线与 x 轴相交于点 $\left(X_p, 0\right)$,若 $X_p = Y_p$,求 L 上点的坐标 $\left(x, y\right)$ 满足的方程.

解. 曲线上点 P(x, y) 的切线为

$$Y - y(x) = y'(x)(X - x);$$
令 $X = 0$ 得, $Y_p = y(x) - y'(x)x$. 法线为
$$Y - y(x) = -\frac{1}{y'(x)}(X - x);$$
令 $Y = 0$ 得, $X_p = x + y(x)y'(x)$. 由 $Y_p = X_p$ 得
$$y - xy'(x) = x + yy'(x), \quad \Rightarrow \quad \left(\frac{y}{x} + 1\right)y'(x) = \frac{y}{x} - 1.$$
令 $\frac{y}{x} = u$, 则 $y = ux$, $\frac{dy}{dx} = x\frac{du}{dx} + u$, 从而得到
$$(u+1)\left(x\frac{du}{dx} + u\right) = (u-1) \quad \Rightarrow \quad \int \frac{u+1}{u^2+1} du = -\int \frac{dx}{x}.$$

当 x > 0 时解得

$$\frac{1}{2}\ln(u^2+1) + \arctan u = -\ln x + C.$$

代入初始条件 y(1)=0 得到 C=0,从而

$$\ln(x^2 + y^2) + 2\arctan\frac{y}{x} = 0.$$

- 22. 同试卷一第三 [20] 题.
- 23. 同试卷一第三[21]题.

二〇一八年考研数学试卷二解答

一、选择题(1~8 小题,每小题 4 分,共 32 分)

(A)
$$a = \frac{1}{2}$$
, $b = -1$.

(B)
$$a = -\frac{1}{2}$$
, $b = -1$.

(C)
$$a = \frac{1}{2}$$
, $b = 1$.

(D)
$$a = -\frac{1}{2}$$
, $b = 1$.

解. 应选 (B). 由题设有

$$1 = \lim_{x \to 0} (e^x + ax^2 + bx)^{\frac{1}{x^2}} = \exp\left(\lim_{x \to 0} \frac{1}{x^2} \ln(e^x + ax^2 + bx)\right).$$

所以由泰勒公式有

$$0 = \lim_{x \to 0} \frac{e^x + ax^2 + bx - 1}{x^2} = \lim_{x \to 0} \frac{(1+b)x + \left(\frac{1}{2} + a\right)x^2 + o(x^2)}{x^2}$$

由此可得

$$\begin{cases} 1+b=0, \\ \frac{1}{2}+a=0. \end{cases} \Rightarrow \begin{cases} a=-\frac{1}{2}, \\ b=-1. \end{cases}$$

2. 同试卷一第一[1]题.

(A)
$$a = 3$$
, $b = 1$.

(B)
$$a = 3$$
, $b = 2$.

(C)
$$a = -3$$
, $b = 1$.

(D)
$$a = -3$$
, $b = 2$.

解. 应选 (D). 由题设可得

$$f(x)+g(x) = \begin{cases} 1-ax, & x \le -1, \\ -1+x, & -1 < x < 0, \\ 1+x-b, & x \ge 0. \end{cases}$$

由 f(x)+g(x) 连续可得

$$\lim_{x \to -1^{-}} (f(x) + g(x)) = 1 + a, \quad \lim_{x \to -1^{+}} (f(x) + g(x)) = -2, \quad \Rightarrow \quad a = -3;$$

$$\lim_{x \to 0^{-}} (f(x) + g(x)) = -1, \quad \lim_{x \to 0^{+}} (f(x) + g(x)) = 1 - b, \quad \Rightarrow \quad b = 2.$$

4. 设函数
$$f(x)$$
 在 $[0,1]$ 上二阶可导,且 $\int_0^1 f(x) dx = 0$,则 \cdots ()

(A)
$$\stackrel{\text{def}}{=} f'(x) < 0$$
 时, $f(\frac{1}{2}) < 0$

(B)
$$\stackrel{\text{def}}{=} f''(x) < 0$$
 $\stackrel{\text{def}}{=} f(\frac{1}{2}) < 0$.

(C)
$$\stackrel{.}{=} f'(x) > 0$$
 $\stackrel{.}{=} f\left(\frac{1}{2}\right) < 0$.

(A)
$$\stackrel{.}{=} f'(x) < 0$$
 $\stackrel{.}{=} f\left(\frac{1}{2}\right) < 0$. (B) $\stackrel{.}{=} f''(x) < 0$ $\stackrel{.}{=} f\left(\frac{1}{2}\right) < 0$. (C) $\stackrel{.}{=} f'(x) > 0$ $\stackrel{.}{=} f\left(\frac{1}{2}\right) < 0$. (D) $\stackrel{.}{=} f''(x) > 0$ $\stackrel{.}{=} f\left(\frac{1}{2}\right) < 0$.

解. 应选 (D). 对于选项 (A),取 $f(x) = -x + \frac{1}{2}$ 可以排除. 对于选项 (B),取 $f(x) = -\left(x - \frac{1}{2}\right)^2 + 1$ 可以排除. 对于选项 (C),取 $f(x) = -x - \frac{1}{2}$ 可以排除. 对于选项 (D),由泰勒公式可得

$$f(x) = f\left(\frac{1}{2}\right) + f'\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \frac{f''(\xi)}{2}\left(x - \frac{1}{2}\right)^2;$$

两边在[0,1]上积分可知它是正确的.

5. 同试卷一第一[4]题.

6.
$$\int_{-1}^{0} dx \int_{-x}^{2-x^{2}} (1-xy) dy + \int_{0}^{1} dx \int_{x}^{2-x^{2}} (1-xy) dy = \cdots$$
(A) $\frac{5}{3}$. (B) $\frac{5}{6}$. (C) $\frac{7}{3}$. (D) $\frac{7}{6}$.

 \mathbf{M} . 应选 (C). 因为积分区域 D 关于 γ 轴对称, 所以

原式 =
$$\iint_D (1-xy) dx dy = \iint_D dx dy = 2 \iint_{D_1} dx dy$$

= $2 \int_0^1 dx \int_x^{2-x^2} dy = 2 \int_0^1 (2-x^2-x) dx = 2\left(2-\frac{1}{3}-\frac{1}{2}\right) = \frac{7}{3}$.

- 7. 同试卷一第一[5]题.
- 8. 同试卷一第一[6] 题.
- 二、填空题 (9~14 小题, 每小题 4 分, 共 24 分)
- 9. $\lim_{x \to +\infty} x^2 [\arctan(x+1) \arctan x] = \underline{\qquad}$
- 解. 应填 1. 由拉格朗日中值定理得

$$\arctan(x+1) - \arctan x = \frac{1}{1+\xi^2}, \quad \xi \in (x, x+1).$$

所以有

$$\frac{x^2}{1 + (x+1)^2} < x^2 [\arctan(x+1) - \arctan x] < \frac{x^2}{1 + x^2},$$

从而 $\lim_{x \to +\infty} x^2 [\arctan(x+1) - \arctan x] = 1$.

- **10.** 曲线 $y = x^2 + 2 \ln x$ 在其拐点处的切线方程是 _____.
- **解**. 应填 y = 4x 3. 对函数求导得

$$y' = 2x + \frac{2}{x}$$
, $y'' = 2 + \frac{-2}{x^2}$.

令 y''=0,得 x=1. 故拐点为 (1,1). 在此处的斜率 k=y'(1)=4,从而切线方程为 y=4x-3.

11.
$$\int_{5}^{+\infty} \frac{1}{x^2 - 4x + 3} \, \mathrm{d}x = \underline{\qquad}.$$

解. 应填 $\frac{\ln 2}{2}$. 事实上,

$$\int_{5}^{+\infty} \frac{1}{x^2 - 4x + 3} \, \mathrm{d}x = \int_{5}^{+\infty} \frac{1}{(x - 1)(x - 3)} \, \mathrm{d}x$$
$$= \frac{1}{2} \int_{5}^{+\infty} \left(\frac{1}{x - 3} - \frac{1}{x - 1} \right) \mathrm{d}x = \frac{1}{2} \left[\ln \left| \frac{x - 3}{x - 1} \right| \right]_{5}^{+\infty} = \frac{\ln 2}{2}.$$

- **12.** 曲线 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ 在 $t = \frac{\pi}{4}$ 对应点的曲率为 ______.
- \mathbf{M} . 应填 $\frac{2}{3}$. 先求导数和二阶导数,得到

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = -\tan t, \quad \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \frac{1}{\mathrm{d}x/\mathrm{d}t} = \frac{-\sec^2 t}{-3\cos^2 t \sin t}.$$

因此在
$$t = \frac{\pi}{4}$$
处, $\frac{\mathrm{d}y}{\mathrm{d}x} = -1$, $\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{8}{3\sqrt{2}}$. 从而 $K = \frac{|y''|}{\left(1 + y'^2\right)^{\frac{3}{2}}} = \frac{2}{3}$.

- **13.** 设函数 z = z(x, y) 由方程 $\ln z + e^{z-1} = xy$ 确定,则 $\frac{\partial z}{\partial x}\Big|_{\left(2, \frac{1}{2}\right)} = \underline{\qquad}$
- **解.** 应填 $\frac{1}{4}$. 由 $\ln z + \mathrm{e}^{z-1} = xy$ 知,当 $x = 2, y = \frac{1}{2}$ 时 z = 1. 方程两边对 x 求偏导得 $\frac{1}{z} \cdot \frac{\partial z}{\partial x} + \mathrm{e}^{z-1} \cdot \frac{\partial z}{\partial x} = y.$ 将 $x = 2, y = \frac{1}{2}, z = 1$ 代入得 $\frac{\partial z}{\partial x} \Big|_{(2,\frac{1}{2})} = \frac{1}{4}$.
- **14.** 设 A 为 3 阶矩阵, α_1 , α_2 , α_3 为线性无关的向量组,若 $A\alpha_1 = 2\alpha_1 + \alpha_2 + \alpha_3$, $A\alpha_2 = \alpha_2 + 2\alpha_3$, $A\alpha_3 = -\alpha_2 + \alpha_3$,则 A 的实特征值为 ______.
- 解. 应填 2. 由题设可得

$$A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix}.$$

因为 $(\alpha_1,\alpha_2,\alpha_3)$ 可逆,所以 $A \sim B = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix}$,从而A和B的特征值相等.由

$$|\lambda E - B| = \begin{vmatrix} \lambda - 2 & 0 & 0 \\ -1 & \lambda - 1 & 1 \\ -1 & -2 & \lambda - 1 \end{vmatrix} = (\lambda - 2)[(\lambda - 1)^2 + 2] = 0,$$

可知 A 的实特征值为 2.

- 三、解答题(15~23 小题, 共 94 分)
- 15. 同试卷一第三[15]题.
- 16. (本题满分10分)

已知连续函数 f(x) 满足 $\int_0^x f(t) dt + \int_0^x t f(x-t) dt = ax^2$.

- (I) 求 f(x);
- (II) 若 f(x) 在区间 [0,1] 上的平均值为 1, 求 a 的值.
- **解.** (I) 令 u = x t 则 t = x u, dt = -du, 从而

$$\int_0^x t f(x-t) dt = \int_x^0 (x-u) f(u) (-du) = x \int_0^x f(u) du - \int_0^x u f(u) du.$$

原方程可化为

$$\int_{0}^{x} f(t) dt + x \int_{0}^{x} f(u) du - \int_{0}^{x} u f(u) du = a x^{2}.$$

两边对 x 求导,整理得

$$f(x) + \int_0^x f(u) du = 2ax.$$

所以
$$f(0) = 0$$
. 设 $F(x) = \int_0^x f(u) du$ 则 $F'(x) = f(x)$, 且有
$$F'(x) + F(x) = 2ax.$$

解这个微分方程,得

$$F(x) = e^{-\int 1 dx} \left[C + \int e^{-\int 1 dx} 2ax dx \right] = e^{-x} \left[C + \int 2ax e^{x} dx \right]$$
$$= e^{-x} \left[C + 2a(x-1)e^{x} \right].$$

将 F(0)=0 代入得 C=2a. 所以

$$F(x) = 2ae^{-x} + 2a(x-1) \implies f(x) = -2ae^{-x} + 2a.$$

(II) 由题设可得

$$1 = \frac{\int_0^1 f(x) dx}{1} = \int_0^1 (-2ae^{-x} + 2a) dx = \left[2ae^{-x}\right]_0^1 + 2a = 2ae^{-1}.$$

解得 $a = \frac{e}{2}$.

17. (本题满分 10 分)

设平面区域
$$D$$
 由曲线
$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases} \quad (0 \le t \le 2\pi) = x \text{ 轴围成, 计算二重积分}$$

$$\iint_{D} (x + 2y) dx dy.$$

 \mathbf{p} . 曲线为摆线的一拱,将积分区域视为 \mathbf{x} 型区域,可得

$$I = \iiint_D (x+2y) dx dy = \int_0^{2\pi} dx \int_0^{y(x)} (x+2y) dy$$
$$= \int_0^{2\pi} [xy + y^2]_0^{y(x)} dx = \int_0^{2\pi} [xy(x) + y^2(x)] dx.$$

利用参数方程 $x = t - \sin t$, $y(x) = 1 - \cos t$, 可得

$$I = \int_0^{2\pi} [(t - \sin t)(1 - \cos t) + (1 - \cos t)^2] d(t - \sin t)$$
$$= \int_0^{2\pi} [(t - \sin t)(1 - \cos t)^2 + (1 - \cos t)^3] dt.$$

作换元 $t = u + \pi$, 并利用定积分的奇偶性, 可得

$$I = \int_{-\pi}^{\pi} [(u + \pi + \sin t)(1 + \cos u)^{2} + (1 + \cos u)^{3}] du$$
$$= 2 \int_{0}^{\pi} [\pi (1 + \cos u)^{2} + (1 + \cos u)^{3}] du.$$

再作换元 $u = v + \frac{\pi}{2}$, 并利用定积分的奇偶性, 可得

$$\begin{split} I &= 2 \int_{-\pi/2}^{\pi/2} [\pi (1 - \sin \nu)^2 + (1 - \sin \nu)^3] \, \mathrm{d}\nu \\ &= 4 \int_0^{\pi/2} [(\pi + 1) + (\pi + 3) \sin^2 \nu] \, \mathrm{d}\nu \\ &= 4 \left[(\pi + 1) \frac{\pi}{2} + (\pi + 3) \left[\frac{\nu}{2} + \frac{\sin 2\nu}{4} \right]_0^{\pi/2} \right] = 3\pi^2 + 5\pi. \end{split}$$

18. (本题满分10分)

已知常数 $k \ge \ln 2 - 1$, 证明: $(x-1)(x-\ln^2 x + 2k \ln x - 1) \ge 0$.

- **解**. (I) 当 x = 1 时,易知不等式成立.
 - (II) 当 0 < x < 1 时,只需证 $x \ln^2 x + 2k \ln x 1 \le 0$. 设

$$f(x) = x - \ln^2 x + 2k \ln x - 1 \implies f'(x) = \frac{x - 2\ln x + 2k}{x}$$

设 $g(x) = x - 2\ln x + 2k$ (0 < x < 1),则 $g'(x) = 1 - \frac{2}{x}$ < 0,所以 g(x) 单调递减,从而有

$$g(x) > g(1) = 1 + 2k \ge 1 + 2(\ln 2 - 1) = 2\ln 2 - 1 > 0.$$

因此 f'(x) > 0, f(x) 单调递增, 故 $f(x) \le f(1) = 0$, 结论成立.

(III) 当 x > 1 时,只需证 $x - \ln^2 x + 2k \ln x - 1 \ge 0$. 设

$$f(x) = x - \ln^2 x + 2k \ln x - 1 \implies f'(x) = \frac{x - 2\ln x + 2k}{x}$$

设 $g(x) = x - 2\ln x + 2k$ (x > 1), 则 $g'(x) = 1 - \frac{2}{x}$. 当 1 < x < 2 时 g'(x) < 0 g(x) 递减;当 x > 2 时 g'(x) > 0, g(x) 递增.从而有

$$g(x) \ge g(2) = 2 + 2k - 2\ln 2 \ge 2 + 2(\ln 2 - 1) - 2\ln 2 = 0.$$

因此 f'(x) > 0, f(x) 单调增加, 故 $f(x) \ge f(1) = 0$, 结论成立.

- 19. 同试卷一第三[16]题.
- 20. (本题满分11分)

已知曲线 $L: y = \frac{4}{9}x^2 (x \ge 0)$,点 O(0,0),点 A(0,1). 设 $P \ne L$ 上的动点, $S \ne 1$ 直线 OA 与直线 AP 及曲线 L 所围图形的面积.若 P 运动到 (3,4) 时沿 x 轴正向的速度是 A,求此时 A 关于时间 A 的变化率.

解. 依题意, 所围图形的面积

$$S = \frac{1}{2}(1+y)x - \int_0^x y(x) dx = \frac{1}{2}\left(1 + \frac{4}{9}x^2\right)x - \int_0^x \frac{4}{9}x^2 dx = \frac{x}{2} + \frac{2x^3}{27}.$$

所以P运动到(3,4)时S关于时间t的变化率

$$\frac{dS}{dt}\Big|_{x=3} = \frac{dS}{dx} \frac{dx}{dt}\Big|_{x=3} = 4\left(\frac{1}{2} + \frac{2}{9}x^2\right)\Big|_{x=3} = 10.$$

- 21. 同试卷一第三[19]题.
- 22. 同试卷一第三[20]题.
- 23. 同试卷一第三[21]题.

二〇一九年考研数学试卷二解答

- 一、选择题(1~8小题,每小题4分,共32分)
- 1. 同试卷一第一[1]题.
- 解. 应选 (C). 由 $y = x \sin x + 2 \cos x$; 得

$$y' = x \cos x - \sin x, \quad y'' = -x \sin x.$$

令 y'' = 0 得 $x_1 = 0$, $x_2 = \pi$. 当 $-\frac{\pi}{2} < x < 0$ 或 $0 < x < \pi$ 时, y'' < 0; 当 $\pi < x < \frac{3\pi}{2}$ 时, y'' > 0. 所以 $(\pi, -2)$ 是曲线的唯一拐点.

- **3.** 下列反常积分发散的是.....()
 - (A) $\int_0^{+\infty} x e^{-x} dx.$

(B) $\int_{0}^{+\infty} x e^{-x^2} dx.$

(C) $\int_0^{+\infty} \frac{\arctan x}{1+x^2} dx.$

(D) $\int_0^{+\infty} \frac{x}{1+x^2} \, \mathrm{d}x.$

解. 应选 (D). 因为

$$\int_0^{+\infty} \frac{x}{1+x^2} dx = \left[\frac{1}{2}\ln(x^2+1)\right]_0^{+\infty} = +\infty,$$
 所以反常积分
$$\int_0^{+\infty} \frac{x}{1+x^2} dx$$
 发散.

- - (A) 1, 0, 1.
- (B) 1,0,2.
- (C) 2, 1, 3.
- (D) 2, 1, 4
- **解**. 应选 (D). 由通解的结构可看出 $r_1 = r_2 = -1$ 是特征方程 $r^2 + ar + b = 0$ 的实根, 从而 a = 2, b = 1. 又 $y^* = e^x$ 是非齐次方程的特解,代入原方程得 c = 4.
- **解**. 应选 (A). 在区域 D 内部有 $0 \le x^2 + y^2 \le \left(\frac{\pi}{2}\right)^2$, 因此 $\sin \sqrt{x^2 + y^2} \le \sqrt{x^2 + y^2}$, 所以 $I_2 < I_1$. 令 $u = \sqrt{x^2 + y^2}$, $f(u) = 1 \cos u \sin u$ $(0 \le u \le \frac{\pi}{2})$, 则 $f'(u) = \sin u \cos u$, $f''(u) = \sin u + \cos u$.

令 f'(u) = 0,得唯一驻点 $u = \frac{\pi}{4}$,且 $f''\left(\frac{\pi}{4}\right) > 0$. 因此 f(u) 在 $u = \frac{\pi}{4}$ 处取得极小值 $f\left(\frac{\pi}{4}\right) < 0$,在 u = 0 和 $u = \frac{\pi}{2}$ 处取得最大值 $f(0) = f\left(\frac{\pi}{2}\right) = 0$,从而当 $u \in \left(0, \frac{\pi}{2}\right)$ 时, $1 - \cos u < \sin u$,也就得到了 $I_3 < I_2$.

- - (A) 充分不必要条件.

(B) 充分必要条件.

(C) 必要不充分条件.

(D) 既不充分也不必要条件.

解. 应选 (A). 令 h(x) = f(x) - g(x), 则由 $\lim_{x \to a} \frac{h(x)}{(x-a)^2} = 0$ 得 $h(x) = o((x-a)^2)(x \to a)$. 而由泰勒公式有

$$h(x) = h(0) + h'(0)(x-a) + \frac{h''(0)}{2}(x-a)^2 + o((x-a)^2).$$

因此有 h(0) = h'(0) = h''(0) = 0, 即

$$f(a) = g(a), \quad f'(a) = g'(a), \quad f''(a) = g''(a).$$

由曲率公式 $k = \frac{|y''|}{\sqrt{(1+y'^2)^3}}$ 可知,两条曲线在 x = a 对应的点处曲率相等.反过来;由相切及曲率相等可得

$$f(a) = g(a), \quad f'(a) = g'(a), \quad |f''(a)| = |g''(a)|.$$

当 f''(a) = -g''(a) 时,无法得出 $\lim_{x \to a} \frac{f(x) - g(x)}{(x - a)^2} = 0$. 比如 $f(x) = x^2$, $g(x) = -x^2$. a = 0.

- **7.** 设 A 是四阶矩阵, A^* 为其伴随矩阵,若线性方程组 Ax = 0 的基础解系中只有两个向量,则 $r(A^*) = \cdots$ (C) 2. (D) 3.
- **解**. 应选 (A). Ax = 0 基础解系中只有两个向量,故有 4-r(A) = 2,从而有 r(A) = 2 < n-1 = 3,因此 $r(A^*) = 0$.
- 8. 同试卷一第一[5]题.
- 二、填空题(9~14小题,每小题4分,共24分)
- **9.** $\lim_{x\to 0} (x+2^x)^{\frac{2}{x}} = \underline{\hspace{1cm}}$.
- 解. 应填 4e². 取对数并由等价无穷小量代换可得

$$\lim_{x \to 0} \frac{2\ln(x+2^x)}{x} = \lim_{x \to 0} \frac{2\ln(1+x+2^x-1)}{x} = \lim_{x \to 0} \frac{2(x+2^x-1)}{x}$$
$$= 2 + 2\lim_{x \to 0} \frac{2^x-1}{x} = 2 + 2\ln 2.$$

所以原极限等于 $\exp(2+2\ln 2)=4e^2$.

- **10.** 曲线 $\begin{cases} x = t \sin t \\ y = 1 \cos t \end{cases}$ 在 $t = \frac{3\pi}{2}$ 对应点处的切线在 y 轴的截距为 _____.
- **解.** 应填 $2+\frac{3\pi}{2}$. 在 $t=\frac{3\pi}{2}$ 对应点处的斜率为

$$\frac{dy}{dx}\Big|_{t=\frac{3\pi}{2}} = \frac{\sin t}{1-\cos t}\Big|_{t=\frac{3\pi}{2}} = -1.$$

所以在该点的切线方程为

$$y-1=-\left(x-\frac{3\pi}{2}-1\right)$$
 \Rightarrow $y=-x+\frac{3\pi}{2}+2$.

它在 y 轴的截距为 $2+\frac{3\pi}{2}$.

- **11.** 设函数 f(u) 可导, $z = yf\left(\frac{y^2}{x}\right)$,则 $2x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$
- **解.** 应填 $yf\left(\frac{y^2}{x}\right)$. 直接计算得

$$\frac{\partial z}{\partial x} = -\frac{y^3}{x^2} f'\left(\frac{y^2}{x}\right), \frac{\partial z}{\partial y} = f\left(\frac{y^2}{x}\right) + \frac{2y^2}{x} f'\left(\frac{y^2}{x}\right). \quad \Rightarrow \quad 2x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = y f\left(\frac{y^2}{x}\right).$$

- **12.** 曲线 $y = \ln \cos x$ $(0 \le x \le \frac{\pi}{6})$ 的弧长为_____.
- **解.** 应填 $\frac{1}{2}\ln 3$. 因为 $\sqrt{1+(y')^2} = \sqrt{1+\tan^2 x} = \sec x$,所以弧长 $s = \int_0^{\frac{\pi}{6}} \sqrt{1+(y')^2} \, \mathrm{d}x = \int_0^{\frac{\pi}{6}} \sec x \, \mathrm{d}x = \left[\ln(\sec x + \tan x)\right]_0^{\frac{\pi}{6}} = \frac{1}{2}\ln 3.$
- **13.** 已知函数 $f(x) = x \int_{1}^{x} \frac{\sin t^{2}}{t} dt$,则 $\int_{0}^{1} f(x) dx =$ ______.
- **解.** 应填 $\frac{1}{4}(\cos 1 1)$. 交换二重积分的积分次序得

$$\int_0^1 f(x) dx = -\int_0^1 x dx \int_x^1 \frac{\sin t^2}{t} dt = -\int_0^1 \frac{\sin t^2}{t} dt \int_0^t x dx$$
$$= -\frac{1}{2} \int_0^1 t \sin t^2 dt = \frac{1}{4} (\cos 1 - 1).$$

14. 已知矩阵 $A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -2 & 1 & -1 & 1 \\ 3 & -2 & 2 & -1 \\ 0 & 0 & 3 & 4 \end{pmatrix}$, A_{ij} 表示 |A| 中元 (i,j) 元的的代数余子式,则 $A_{11} - A_{12} =$ ______.

解. 应填-4. 直接计算得

$$A_{11} - A_{12} = \begin{vmatrix} 1 & -1 & 1 \\ -2 & 2 & -1 \\ 0 & 3 & 4 \end{vmatrix} + \begin{vmatrix} -2 & -1 & 1 \\ 3 & 2 & -1 \\ 0 & 3 & 4 \end{vmatrix} = -4.$$

- 三、解答题(15~23题, 共94分)
- 15. (本题满分10分)

已知函数 $f(x) = \begin{cases} x^{2x}, & x > 0, \\ xe^x + 1, & x \le 0. \end{cases}$ 求 f'(x),并求函数 f(x) 的极值.

解. 当 x > 0 时, $f'(x) = 2x^{2x}(\ln x + 1)$; 当 x < 0 时, $f'(x) = (x + 1)e^x$. 在 x = 0 处,

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{x^{2x} - 1}{x} = \lim_{x \to 0^{+}} \frac{2x^{2x}(\ln x - 1)}{1} = -\infty,$$

因此 f(x) 在 x = 0 处不可导. 于是

$$f'(x) = \begin{cases} 2x^{2x}(\ln x + 1), & x > 0; \\ (x+1)e^x, & x < 0. \end{cases}$$

令 f'(x) = 0 得到 $x_1 = -1$, $x_2 = \frac{1}{e}$. 当 x < -1 时, f'(x) < 0, 当 -1 < x < 0 时, f'(x) > 0, 当 $0 < x < \frac{1}{e}$ 时, f'(x) < 0, 当 $x > \frac{1}{e}$ 时, f'(x) > 0. 因此函数有极小值 $f(-1) = 1 - e^{-1}$, 极大值 f(0) = 1, 极小值 $f\left(\frac{1}{e}\right) = e^{-\frac{2}{e}}$.

16. (本题满分 10 分)

求不定积分
$$\int \frac{3x+6}{(x-1)^2(x^2+x+1)} dx$$
.

解. 将有理分式拆分成部分分式得

$$\int \frac{3x+6}{(x-1)^2(x^2+x+1)} \, \mathrm{d}x = \int \left(-\frac{2}{x-1} + \frac{3}{(x-1)^2} + \frac{2x+1}{x^2+x+1} \right) \mathrm{d}x$$

$$= -2\ln|x-1| - \frac{3}{x-1} + \int \frac{\mathrm{d}(x^2+x+1)}{x^2+x+1}$$

$$= -2\ln|x-1| - \frac{3}{x-1} + \ln(x^2+x+1) + C$$

17. (本题满分10分)

设函数 y(x) 是微分方程 $y'-xy=\frac{1}{2\sqrt{x}}e^{\frac{x^2}{2}}$ 满足条件 $y(1)=\sqrt{e}$ 的特解.

- (I) 求 y(x) 的表达式;
- (II) 设平面区域 $D = \{(x, y) | 1 \le x \le 2, 0 \le y \le y(x)\}$,求 D 绕 x 轴旋转一周所形成的旋转体的体积.
- **解.** (I) 由一阶线性微分方程的通解公式,求得 $y = (\sqrt{x} + C)e^{\frac{x^2}{2}}$,再由初始条件 $y(1) = \sqrt{e}$ 得 C = 0,所以特解为 $y(x) = \sqrt{x}e^{\frac{x^2}{2}}$.

(II) 由旋转体的体积公式得

$$V = \pi \int_{1}^{2} y(x)^{2} dx = \pi \int_{1}^{2} x e^{x^{2}} dx = \frac{\pi}{2} (e^{4} - e).$$

18. (本题满分10分)

设平面区域 $D = \{(x,y) | |x| \le y, (x^2 + y^2)^3 \le y^4\}$, 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} \, \mathrm{d}x \, \mathrm{d}y.$$

解. 由二重积分的对称性, 并用极坐标计算, 得到

$$\iint_{D} \frac{x+y}{\sqrt{x^{2}+y^{2}}} \, dx \, dy = \iint_{D} \frac{y}{\sqrt{x^{2}+y^{2}}} \, dx \, dy$$
$$= \int_{\frac{\pi}{4}}^{\frac{3}{4}\pi} d\theta \int_{0}^{\sin^{2}\theta} r \sin\theta \, dr = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin^{5}\theta \, d\theta = \frac{43\sqrt{2}}{120}.$$

19. (本题满分10分)

设 n 是正整数,记 S_n 为曲线 $y = e^{-x} \sin x$ $(0 \le x \le n\pi)$ 与 x 轴所围成图形的面积,求 S_n ,并求 $\lim_{n \to \infty} S_n$.

解. 由不定积分 $\int e^{-x} \sin x \, dx = -\frac{1}{2} e^{-x} (\sin x + \cos x) + C$ 可得 $S_n = \int_0^{n\pi} \left| e^{-x} \sin x \right| dx = \sum_{k=0}^{n-1} \int_{k\pi}^{(k+1)\pi} e^{-x} |\sin x| \, dx = \sum_{k=0}^{n-1} \int_0^{\pi} e^{-(t+k\pi)} |\sin(t+k\pi)| \, dt$ $= \int_0^{\pi} e^{-t} \sin t \, dt \sum_{k=0}^{n-1} e^{-k\pi} = \frac{e^{-\pi}+1}{2} \cdot \frac{1-e^{-n\pi}}{1-e^{-\pi}} = \frac{e^{\pi}+1}{2(e^{\pi}-1)} (1-e^{-n\pi}).$ 所以 $\lim_{n \to \infty} S_n = \frac{e^{\pi}+1}{2(e^{\pi}-1)}.$

20. (本题满分11分)

已知函数 u(x,y) 满足关系式 $2\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial y^2} + 3\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} = 0$. 求 a,b 的值,使得在变换 $u(x,y) = v(x,y)e^{ax+by}$ 之下,上述等式可化为函数 v(x,y) 的不含一阶偏导数的等式.

解. 由变换 $u(x,y) = v(x,y)e^{ax+by}$ 可得 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}e^{ax+by} + av(x,y)e^{ax+by}, \quad \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}e^{ax+by} + bv(x,y)e^{ax+by},$ $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x^2}e^{ax+by} + 2a\frac{\partial v}{\partial x}e^{ax+by} + a^2v(x,y)e^{ax+by},$ $\frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial y^2}e^{ax+by} + 2b\frac{\partial v}{\partial y}e^{ax+by} + b^2v(x,y)e^{ax+by}.$

代入等式, 整理得

$$2\frac{\partial^2 v}{\partial x^2} - 2\frac{\partial^2 v}{\partial y^2} + (4a+3)\frac{\partial v}{\partial x} + (3-4b)\frac{\partial v}{\partial y} + (2a^2-2b^2+3a+3b)v(x,y) = 0.$$

依题意, 当 a=0, $b=\frac{3}{4}$ 时, 可化为 v(x,y) 的不含一阶偏导数的等式.

21. (本题满分11分)

已知函数 f(x) 在 [0,1] 上具有二阶导数,且

$$f(0) = 0$$
, $f(1) = 1$, $\int_0^1 f(x) dx = 1$.

证明: (I) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$; (II) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$.

解. (I) 由积分中值定理,存在 $\xi_1 \in (0,1)$,使得

$$f(1) = 1 = \int_0^1 f(x) dx = f(\xi_1).$$

对 f(x) 在 $(\xi_1,1)$ 上用罗尔定理,则存在 $\xi \in (\xi_1,1) \subset (0,1)$,使得 $f'(\xi) = 0$.

(II) 令 $g(x) = f(x) + x^2$, 则 g(0) = 0, g(1) = 2, $g(\xi_1) = 1 + \xi_1^2$. 对 g(x) 分别在 $[0,\xi_1]$, $[\xi_1,1]$ 上用拉格朗日中值定理,则存在 $\eta_1 \in (0,\xi_1)$, $\eta_2 \in (\xi_1,1)$,使得

$$g'(\eta_1) = \frac{g(\xi_1) - g(0)}{\xi_1 - 0} = \frac{1 + \xi_1^2}{\xi_1}, \quad g'(\eta_2) = \frac{g(\xi_1) - g(1)}{\xi_1 - 1} = 1 + \xi_1.$$

对 g'(x) = f'(x) - 2x 在 $[\eta_1, \eta_2]$ 上用拉格朗日中值定理,则存在 $\eta \in (\eta_1, \eta_2) \subset (0,1)$,使得

$$g''(\eta) = \frac{g'(\eta_2) - g'(\eta_1)}{\eta_2 - \eta_1} = \frac{1 - \frac{1}{\xi_1}}{\eta_2 - \eta_1} < 0,$$

即 $f''(\eta) < -2$.

22. (本题满分11分)

已知向量组
$$I: \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 2 \\ a^2 + 3 \end{pmatrix}; 向量组 $II: \beta_1 = \begin{pmatrix} 1 \\ 1 \\ a + 3 \end{pmatrix},$$$

$$\beta_2 = \begin{pmatrix} 0 \\ 2 \\ 1-a \end{pmatrix}, \beta_3 = \begin{pmatrix} 1 \\ 3 \\ a^2+3 \end{pmatrix}.$$
 若向量组 I 和向量组 II 等价,求常数 a 的值,并

将 β_3 用 α_1 , α_2 , α_3 线性表示.

解. 记 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\beta_1, \beta_2, \beta_3)$, 向量组 I 和向量组 II 等价的充分必要条件是 r(A) = r(B) = r(A, B).

对矩阵 (A, B) 作初等行变换得

$$(A,B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 2 & 1 & 2 & 3 \\ 4 & 4 & a^2 + 3 & a + 3 & 1 - a & a^2 + 3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 & 2 & 2 \\ 0 & 0 & a^2 - 1 & a - 1 & 1 - a & a^2 - 1 \end{pmatrix}$$

第173页 共174页

当 a=1 时, r(A)=r(B)=r(A,B)=2, 两个向量组等价. 此时

$$(A, \beta_3) \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

从而 $\beta_3 = (-2k+3)\alpha_1 + (k-2)\alpha_2 + k\alpha_3$,其中 k 为任意常数. 当 $a \neq 1$ 时,继续作初等行变换得到

$$(A,B) \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 & 2 & 2 \\ 0 & 0 & a^2 - 1 & a - 1 & 1 - a & a^2 - 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 & 2 & 2 \\ 0 & 0 & a + 1 & 1 & -1 & a + 1 \end{pmatrix}$$

因此当 a=-1 时 $r(A)=2\neq r(A,B)=3$,两个向量组不等价. 当 $a\neq 1$ 且 $a\neq -1$ 时,r(A)=r(B)=r(A,B)=3,两个向量组等价. 此时

$$(A, \beta_3) \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & a+1 & a+1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

从而 $\beta_3 = \alpha_1 - \alpha_2 + \alpha_3$.

23. 同试卷一第三[21]题.