Ampliación de interpolación con Splines

Miguel Anguita Ruiz Pablo Baeyens Fernández Pablo David Medina Sánchez Ruben Morales Pérez Francisco Javier Morales Piqueras

${\bf \acute{I}ndice}$

1.	Spli	nes cuadráticos	2
	1.1.	Descripción del espacio de splines cuadráticos	2
	1.2.	Interpolación con splines cuadráticos	2
	1.3.	Error en los splines cuadráticos	2
	1.4.	Ejemplos	2
2.	Spli	nes cúbicos	3
	2.1.	Construcción a partir de los valores de $s''(x)$ en los nodos $\{x_i\}$	3
	2.2.	Propiedades de minimización	3
		2.2.1. Cota de error en los splines cúbicos	3
	2.3.	Ejemplos	3
3.	Implementación en ordenador: Octave		4
	3.1.	Spline Lineal	4
	3.2.	Splines cuadráticos	4
Α.	Defi	iniciones y notación	5

1. Splines cuadráticos

El espacio de splines de clase 2 se nota $S_2(x_1, x_2, ..., x_n)$. Una base sería $\{1, x, x^2, (x - x_1)_+, (x - x_2)_+, ..., (x - x_n)_+\}$

1.1. Descripción del espacio de splines cuadráticos

El espacio de splines de clase 2 con n nodos se denota $S_2(x_1, x_2, ..., x_n)$. Los splines de clase 2 están constituidos por parábolas, de forma que además de tener una función continua, su derivada también lo es. Por lo tanto, para i = 1, ..., n - 1 tenemos la siguiente condición:

$$s_i(x_i) = s_{i+1}(x_{i+1})$$

$$s'_i(x_i) = s'_{i+1}(x_{i+1})$$

Proposición. El conjunto $S_2(x_1, x_2, ..., x_n)$ satisface las propiedades siguienes:

1. Es un espacio vectorial con $\dim(S_2(x_1, x_2, ..., x_n))$

1.2. Interpolación con splines cuadráticos

1.3. Error en los splines cuadráticos

Teorema. Sean $f \in C^2([a,b])$, $\{x_i\}_{i=0...n} \in \mathscr{P}([a,b])$, $s \in S^1_2(\{x_i\}_{i=0...n})$ spline para f, $h = max\{x_i - x_{i-1}\}_{i=1...n}$, E = f - s. Además, sea M > 0 tal que:

$$M \ge Sup\{|f''(x) - f''(y)| : |x - y| \le h, x, y \in [a, b]\}$$

Entonces, se verifica, para todo $x \in [a,b]$:

$$E(x) \le \frac{h^2 M}{2} \tag{1}$$

La demostración, así como cotas para las derivadas y cotas más precisas en función de la localización de x puede encontrarse en *Quadratic Interpolatory Splines*, W. Kammerer, G. Reddien y R.S. Varga, (1973).

1.4. Ejemplos

2. Splines cúbicos

2.1. Construcción a partir de los valores de s''(x) en los nodos $\{x_i\}$

2.2. Propiedades de minimización

Comenzamos planteando un problema de minimización sobre $(C^2([a,b]),||\cdot||)$, con la norma definida de la forma usual:

$$||f|| = \sqrt{\int_a^b f(x)^2 dx} \tag{2}$$

El problema es aproximar una función de clase 2 con funciones que la interpolen en unos nodos y cuyas derivadas en los extremos coincidan:

Problema. Sea $f \in C^2([a,b]), P \in \mathcal{P}([a,b])$. Sea $H \subset C^2([a,b])$ definido por:

$$H = \{g \in C^2([a,b]) : \forall p \in P \ g(p) = f(p) \ y \ g'(a) = f'(a), \ g'(b) = f'(b)\}$$

Hallar $u \in H$ tal que ||f - u|| sea mínimo.

2.2.1. Cota de error en los splines cúbicos

Teorema. Sea $f \in C^4([a,b])$, $n \in \mathbb{N}$, $P = \{x_i\}_{i=0...n} \in \mathscr{P}([a,b])$ y $s \in S^1_3(P)$ spline para f. Además, sean $h = \max\{x_i - x_{i-1}\}_{i=1...n}$, M > 0 cota superior de $|f^{iv}|$ en [a,b] y E = f - s, $x \in [a,b]$. Se verifica:

$$|E(x)| \le \frac{5M}{384}h^4 \tag{3}$$

La demostración, así como cotas para las derivadas, puede consultarse en *Optimal Error Bounds for Cubic Spline Interpolation*, Charles Hall y Weston Meyer, (1976).

2.3. Ejemplos

3. Implementación en ordenador: Octave

Hemos implementado las siguientes funciones en Octave:

```
    SplineLineal: Calcula spline lineal. (Usado en los splines cúbicos)
    Spline31: Calcula spline de clase 1.
    SplineNat: Calcula spline natural.
    SplinePer: Calcula spline periódico.
    SplineSuj: Calcula spline sujeto.
    SplineCuad: Calcula spline cuadrático de clase 1.
```

3.1. Spline Lineal

La función que nos permite calcular un spline lineal es muy

```
function s = SplineLineal(x,y)
  p = diff(y)./diff(x);
  A = [p' y(1:end-1)'];
  s = mkpp(x,A);
end
```

3.2. Splines cuadráticos

Utilizando el sistema que vimos anteriormente, podemos definir fácilmente una función que calcule los coeficientes de un spline cuadrático de clase 1:

```
function s = coefsSplineCuad(x, y, d_k, k)
    # Número de intervalos
n = length(x) - 1;

# 1, x, x²
A(:,1) = [ones(n+1,1); 0];
A(:,2) = [x' ; 1];
A(:,3) = [x'.^2 ; 2.*x(k+1)];

# Potencias truncadas
for j = 4 : n + 2
    pot = @(t) (t > x(j-2)) .* (t - x(j-2));
    A(:,j) = [pot(x').^2; 2.*pot(x(k+1))];
end

# Resolución del sistema
s = A \ [y' ; d_k];
```

end

A. Definiciones y notación

Definición. Sea $I \subset \mathbb{R}$ un intervalo cerrado y acotado con extremos a, b:

- \blacksquare Una partición P de I es un subconjunto finito de I con $a,b\in P$.
- $\mathcal{P}(I)$ es el conjunto de todas las particiones de I.

Definición. Sea $a \in \mathbb{R}$, $n \in \mathbb{N}$. La **potencia truncada** en a de grado n, $(x-a)_+^n$ viene dada por:

$$(x-a)_+^n = \begin{cases} 0 & \text{si } x \le a \\ (x-a)^n & \text{si } x > a \end{cases}$$

Cualquier potencia truncada de grado n es de clase n-1, y su derivada de orden n presenta una discontinuidad en a. La derivada de $(x-a)^n_+$ en x es $n(x-a)^{n-1}_+$.

Su implementación en Octave es bastante sencilla: dados a y n, podemos definir la potencia truncada como función anónima de la siguiente forma:

$$pot = @(x) (x > a) * (x - a)^n$$

Como Octave tiene tipos dinámicos convertirá (x > a) a 1 si x > a y a 0 en otro caso.