1.

- a. $2*3 \mod 13 = 6 \mod 13$
- b. 2*8mod7 = 2mod7
- c. 5*1mod11 = 5mod11
- d. 4*4mod15 = 1mod15

2.

- a. $1*5^{-1}$ mod13 = 1*8mod13 = 8mod13
- b. $1*5^{-1}$ mod7 = 1*3mod7 = 3mod7
- c. $3*2*5^{-1}$ mod7 = 3*2*3mod7 = 4mod7

3.

a.

+	0	1	2	3	
0	0	1	2	3	
1	1	2	3	0	
2	2	3	0	1	
3	3	0	1	2	

h

х	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

С

+	0	1	2	3	4	х	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2	3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1

d.

+	0	1	2	3	4	5	x	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	2	3	4	5	0	1	0	1	2	3	4	5
2	2	3	4	5	0	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	3	4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

- e. In Z_4 , 0 and 2 did not have an inverse, while in Z_6 , 0, 2, 3 and 4 did not have one. All elements in Z_5 had an inverse because 5 is prime, so no nonzero number smaller than it can have a gcd other than 1.
- 4. 9 in Z_{11} , 5 in Z_{12} , 8 in Z_{13}

5.

- a. $3*3 \mod 13 = 9 \mod 13$
- b. $7*7 \mod 13 = 8 \mod 13$
- c. $3^{2*}3^{2*}3^{2*}3^{2*}3^{2} \mod 13 = 9^{9}9^{9}9^{9} \mod 13 = 3^{3*}9 \mod 13 = 3 \mod 13$
- d. $(7^2)^{50}$ mod 13 = 3^{50} mod 13 = $(3^{10})^{5}$ mod 13 = 3^{5} mod 13 = 81*3 mod 13 = 9 mod 13
- 6. x=5
- 7. m=4: (1, 3) $\phi=2$, m=5: (1, 2, 3, 4) $\phi=4$, m=9: (1, 2, 4, 5, 7, 8) $\phi=6$, m=26: (1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25) $\phi=12$
- 8. $a^{-1} = 15$. X = 15(y-22)

Pseudocode: convert char to int, put through decryption equation, convert back First the sentence and then the evidence said the queen