FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. Høsten 2015.

Veiledning: 31. august og 3. september. Innleveringsfrist: Fredag 4. september kl 16.

Øving 2

Oppgave 1

a) Volumutvidelseskoeffisienten α_V og den isoterme kompressibiliteten κ_T er ikke konstanter, men varierer med tilstanden (trykk, temperatur, volum). For å avgjøre hvordan de ulike koeffisientene varierer med tilstanden, må vi kjenne systemets tilstandsligning, men dette er ikke alltid nødvendig for å finne ut sammenhenger mellom hvordan ulike koeffisienter varierer. Vis at følgende sammenheng gjelder for variasjonene med tilstanden for α_V og κ_T :

$$\left(\frac{\partial \alpha_V}{\partial p}\right)_T = -\left(\frac{\partial \kappa_T}{\partial T}\right)_p.$$

b) Hvis du lager et sirkulært hull med diameter 10 cm i en stålplate utendørs i ti kuldegrader, hva er hullets diameter når platen har akklimatisert seg inne i stua? Stål har lineær utvidelseskoeffisient $\alpha_L = 13 \cdot 10^{-6}$ K⁻¹.

Oppgave 2

Sammenhenger mellom tilstandsvariable, såkalte tilstandsligninger, uttrykkes generelt på formen

$$f(p, V, T) = 0,$$

slik at de ulike tilstandsvariable kan oppfattes som funksjoner av de to andre, p = p(V, T) osv. Med andre ord, p, V og T opptrer som både tilstandsvariable og som tilstandsfunksjoner.

a) Da gjelder f.eks

$$\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial T}{\partial p}\right)_V^{-1}.$$

Vis dette eksplisitt for en ideell gass.

b) Utled den "sykliske regel",

$$\left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial T}{\partial V}\right)_{p} \left(\frac{\partial V}{\partial p}\right)_{T} = -1.$$

Tips: Ta utgangspunkt i (det totale) differensialet dp når p = p(T, V), sett dp = 0, divider ligningen med dT, og benytt sammenhengen gitt i punkt a) (her for $\partial V/\partial T$). Se også kapittel 1.6 i PCH.

c) En kobberblokk har trykket 1 atm (= $1.013 \cdot 10^5$ Pa) ved 0°C. Blokken holdes ved konstant volum mens den varmes opp. Hva blir økningen i trykket pr grad temperaturøkning når volumutvidelseskoeffisienten er $\alpha_V = 48.5 \cdot 10^{-6} \,\mathrm{K}^{-1}$ og isoterm kompressibilitet er $\kappa_T = 7.7 \cdot 10^{-12} \,\mathrm{Pa}^{-1}$? Tips: Benytt den sykliske regel fra b).

Oppgave 3

a) I et termodynamisk system foregår en tilstandsforandring fra a til b langs en vei acb (se figur). Under denne tilstandsforandringen opptar systemet 80 J varme samtidig som systemet utfører et arbeid på 30 J. Hvor stor varmemengde mottar systemet langs veien adb når det utførte arbeidet i dette tilfellet er 10 J?

b) Systemet går så tilbake fra tilstand b
 til utgangspunktet a langs den krumme banen på figuren. Under denne prosessen mottar systemet et arbeid på 20 J. Vil systemet motta eller avgi varme under denne prosessen, og i tilfelle hvor mye?

c) Finn de mottatte varmemengdene under prosessene ad og d
b når $U_a=0$ og $U_d=40$ J.

Oppgave 4

To mol av en ideell gass har temperaturen $300\,\mathrm{K}$. Gassen ekspanderer isotermt til to ganger sitt opprinnelige volum. Beregn arbeidet gassen gjør, nødvendig varme tilført og endring i gassens indre energi. (Et av svarene: $3.46~\mathrm{kJ}$.)

Oppgave 5

En ideell gass er innesluttet i en sylinder med et tettsluttende stempel. Trykket er p_1 og volumet er V_1 . Gassen varmes først ved konstant volum slik at temperaturen dobles. Deretter avkjøles den ved konstant trykk inntil den har fått sin opprinnelige temperatur. Tegn prosessen i et pV-diagram, og vis at arbeidet gjort på gassen er lik p_1V_1 .