

Rapport de Stage de fin d'étude ACCOU Martin

Titre

Version 0.1 du 16 septembre 2024

Table des matières

1	Intr	roduction	1
In	trod	uction	1
	1.1	D3S, a leader in 3D CAD Analytics	1
	1.2	3D similarity model	2
2	Rel	ated work	5
	2.1	3D Understanding	5
	2.2	Contrastive learning	6
3	$\mathbf{U}\mathbf{n}$	chapitre	7
	3.1	Analyse aux limites	7
		3.1.1 Quelques détails sur cette méthode	8
		3.1.2 On n'est jamais très fort pour ce calcul	9
	3.2	Vérification par simulation numérique	9
C	onclu	sion	11
4	App	plications and perspectives	13
$\mathbf{A}_{]}$	pplic	ations and perspectives	13

Table des figures

1.1	D3S, Data Science Softwares & Services	1
1.2	Purpose of our similarity model	2
1.3	Pipeline for building the model	3
3.1	Exemple de courbe TikZ	8

Introduction

1.1 D3S, a leader in 3D CAD Analytics

D3S, which stands for Data Science Softwares & Services, specializes in delivering customized software solutions utilizing AI technologies. The company comprises a team of Data Scientists and Full Stack Developers with deep expertise in 3D CAD (Computer-Aided Design) Analytics and Natural Language Processing (NLP).

Its state-of-the-art technologies are built on open-source libraries and supported by internal R&D, enabling efficient data extraction through computer vision, Optical Character Recognition (OCR), and NLP. D3S also excels in deep learning applications such as 3D morpho analysis, metrics comparison, BoM (Bill of Materials) analytics, and time series processing.

The company's solutions are designed to provide scalable, adaptable, and secure business value for industries like aerospace and automotive.

I will be working with the 3D CAD Analytics team, where my focus will be on developing a 3D similarity model designed to compare CAD models solely based on their geometric properties.

FIGURE 1.1 – D3S, Data Science Softwares & Services

2 Introduction

FIGURE 1.2 – Purpose of our similarity model

1.2 3D similarity model

3D model designers spend a significant amount of time searching for relevant information during the product design process, even though much of their work could be done by modifying existing Computer-Aided Design (CAD) models. As a result, the retrieval and reuse of CAD models are crucial in CAD model management. However, large CAD model repositories often require extensive categorization or organization of engineering data, making design reuse challenging. Traditionally, the classification and retrieval of 3D CAD models involved a manual process of labeling, which is time-consuming, prone to errors, and inefficient. This issue becomes even more pronounced when models are generated in product development, as inconsistent labeling and tagging across different systems lead to the complex task of data harmonization. Additionally, the inherent complexity of 3D CAD model definitions makes it difficult to apply rigid, general classification rules, as model features and parameters vary depending on their origin. Therefore, an automated approach to classification and retrieval is needed to address these challenges.

The goal is to automatically associate a given piece to similar other pieces, as depicted in figure 1.2. This will make it possible to leverage the D3S dataset of industrial 3D models, in order to infer missing information, such as the name of a piece, its function, or its material.

In recent years, point cloud representations has become one of the research hotspots in the field of computer vision [12]. In our case, we can not directly train a powerful classifier, because of a lack of clean labeled data and of the variety of the possible 3D models. The most comprehensive dataset available consists of just 2,000 CAD models, with rather imprecise labeling. Examples of labels include coupling strap, shackle, and long beam. It is evident that there is a significant need for a more curated and accurate dataset in this area, which is really hard to obtain.

Given the recent success of self-supervised learning methods, more specifically contras-

FIGURE 1.3 – Pipeline for building the model

tive learning [5, 11, 3], an innovative and promising approach has been proposed to tackle this problem.

The goal is to learn a representation of data such that similar instances are close together in the representation space, while dissimilar instances are far apart. To do so, a triplet loss, popularized by the FaceNet model [6], will be used. Since we lack labeled data, we can't generate triplets directly as in [6]. Instead, a 'Tinder-like' application has been developed and used by the whole company to build our 'labeled' triplets database.

To summarize, the pipeline comprises the two main following steps:

- 1. **Triplets collection**: Offline 'unlabeled' triplets are generated. Triplets are then labeled by the users of the app and stored in the database.
- 2. **Model training**: An encoding model is trained on the labeled triplets. The model is then used to compute the similarity between two 3D models.

Related work

2.1 3D Understanding

3D data can be presented in various formats, and the selection of the format is critical and depends on the specific needs of the application. A CAD model is a 3D representation of a physical object. At a higher level, the Standard for the Exchange of Product model data (STEP format) is a widely adopted ISO standard for data exchange that can represent 3D objects in CAD and related information. In this format, a CAD model is defined by its topological components such as faces, edges, or vertices and the connections between them. At a lower level, the STL format is a file format that represents 3D objects as a collection of triangles (mesh). This format is commonly used in 3D printing and computer graphics. Additionally, the point cloud format consists of a set of points in a 3D space, with each point representing a single point on the surface of the object. This format can be easily derived from an STL file by sampling points on the mesh surface. Other formats worth mentioning include voxel and multi-view image formats [12].

The decision was made to explore both STL and point cloud formats. The choice of the STL format is driven by its widespread use in the industry and the ease of generating a point cloud from it. Notably, models based on the STEP format [4], while promising, were not considered because they limit the scope too much.

Following recent trends in the field, two main classes of models were investigated, graph-based models and transformer-based models.

Graph-based models

Graph neural networks (GNN) have been used recently in numerous applications [10, 2]. The flexible nature of a graph permits its usage from data sets concerning large social networks to smaller networks that describe the chemical bonds of a molecule. Graph neural

networks use the correspondences between elements instead of focusing on individual elements. These correspondences help create neighborhoods and local regions, which greatly enhance the predictive accuracy of the resulting features.

Given an input mesh, a natural candidate is a graph which nodes are the vertices of the mesh and where each vertex is connected to the vertices that share a face with it. This information is not available for the different GNNs that have been developed for 3D point cloud data [8, 9, 1]. These models are designed to work with point clouds. The main challenge is to define a graph structure that captures the local and global features of the point cloud. The most common approach is to define a graph where each point is a node and the edges are defined by the k-nearest neighbors of each point. The graph is then fed to a GNN to extract features from the point cloud.

Transformer-based models

Transformers have been widely used in natural language processing (NLP) tasks [7]. The transformer architecture is based on self-attention mechanisms that allow the model to focus on different parts of the input sequence.

2.2 Contrastive learning

Un chapitre

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa, scelerisque vitae, convallis sollicitudin purus. Praesent aliquam, enim at fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue. Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet. Encore une citation [?].

3.1 Analyse aux limites

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin portitor, orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros

FIGURE 3.1 – Exemple de courbe TikZ.

vitae ligula. Pellentesque rhoncus nunc et augue. Integer id felis. Curabitur aliquet pellentesque diam. Integer quis metus vitae elit lobortis egestas. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat. Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue. Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

3.1.1 Quelques détails sur cette méthode

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat. Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed leo placerat imperdiet. Aenean suscipit nulla in

justo. Suspendisse cursus rutrum augue. Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

3.1.2 On n'est jamais très fort pour ce calcul

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat. Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue. Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

$$H_{m,n,p,q} = \langle \check{g}_{p,q}, Hg_{m,n} \rangle \tag{3.1}$$

$$= \iint_{\mathbf{R}^2} S_{\mathbf{H}}(f,\tau) \langle \check{g}_{p,q}, \mathbf{U}_{f,\tau} g_{m,n} \rangle \, \mathrm{d}f \, \mathrm{d}\tau.$$
 (3.2)

3.2 Vérification par simulation numérique

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula. Pellentesque rhoncus nunc et augue. Integer id felis. Curabitur aliquet pellentesque diam. Integer quis metus vitae elit lobortis egestas. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien.

Integer tortor tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat. Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue. Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

Conclusion

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula. Pellentesque rhoncus nunc et augue. Integer id felis. Curabitur aliquet pellentesque diam. Integer quis metus vitae elit lobortis egestas. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat. Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue. Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

Applications and perspectives

Bibliographie

- [1] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet: Global Context Aware Local Features for Robust 3D Point Matching, March 2018.
- [2] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873):583–589, August 2021.
- [3] Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cai, Fatih Porikli, and Hao Su. OpenShape: Scaling Up 3D Shape Representation Towards Open-World Understanding, June 2023.
- [4] L. Mandelli and Stefano Berretti. CAD 3D Model Classification by Graph Neural Networks: A New Approach Based on STEP Format. October 2022.
- [5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision, February 2021.
- [6] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Unified Embedding for Face Recognition and Clustering, June 2015.
- [7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, August 2023.
- [8] Nitika Verma, Edmond Boyer, and Jakob Verbeek. FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis, March 2018.
- [9] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. Dynamic Graph CNN for Learning on Point Clouds, June 2019.
- [10] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A Comprehensive Survey on Graph Neural Networks. *IEEE Transactions*

16 Bibliographie

- on Neural Networks and Learning Systems, 32(1):4–24, January 2021.
- [11] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling, June 2022.
- [12] Huang Zhang, Changshuo Wang, Shengwei Tian, Baoli Lu, Liping Zhang, Xin Ning, and Xiao Bai. Deep Learning-based 3D Point Cloud Classification: A Systematic Survey and Outlook. *Displays*, 79:102456, September 2023.

Résumé — Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula. Pellentesque rhoncus nunc et augue. Integer id felis.

Mots clés : Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor.

ISAE 10, avenue Édouard Belin BP 54032 31055 Toulouse CEDEX 4