1. Tytuł Projektu

"Skrypt do predykcji danych demograficznych oparty o dane historyczne GUS"

2. Opis Projektu

- **Streszczenie**: Projekt zakłada przygotowanie prostego modelu przewidywania populacji Polski lub regionu w oparciu o dane historyczne i niezaawansowane metody statystyczne (przykładowo autoregresja). Korzyścią wyjściowych danych jest otrzymanie danych demograficznych przyszłych wielkościach zmiennych losowych w określonym przyszłym momencie.
- **Tło i uzasadnienie**: Projekt jest potrzebny ze względu na rosnące zainteresowanie analizą demograficzną oraz potrzebę prognozowania populacji w różnych kontekstach (np. planowanie rozwoju miast, polityka społeczna).

3. Cele Projektu

- **Główny cel**: Stworzenie modelu przewidującego populację Polski lub wybranego regionu.
- Cele szczegółowe:
 - o Zebranie i przetworzenie danych demograficznych z GUS.
 - o Wybór odpowiednich metod statystycznych do modelowania populacji.
 - o Implementacja modelu w języku Python z wykorzystaniem biblioteki Pandas.
 - o Wizualizacja danych za pomocą biblioteki Seaborn i Matplotlib.

4. Analiza Wymagań

- Wymagania funkcjonalne:
 - System powinien umożliwiać wczytywanie danych demograficznych.
 - o Model powinien przewidywać populację na podstawie dostępnych danych.
- Wymagania niefunkcjonalne:
 - o Wydajność: Model powinien działać w akceptowalnym czasie.
 - Bezpieczeństwo: Dane demograficzne powinny być przechowywane i przetwarzane w sposób bezpieczny.
 - o Interfejs użytkownika: Prezentacja wyników w czytelny sposób.

5. Zakres Funkcjonalności

- Lista funkcjonalności:
 - o Wczytywanie danych demograficznych z plików źródłowych.
 - o Przetwarzanie danych (czyszczenie, transformacja).
 - o Wybór i implementacja modelu statystycznego.
 - o Prezentacja wyników za pomocą Jupyter Notebook, tabel i wykresów

6. Architektura i Technologie

• Architektura systemu:

o Interaktywny skrypt w Jupyter Notebook

• Technologie:

- Python jako główny język programowania.
- o Biblioteka Pandas do przetwarzania danych.
- o Biblioteka Seaborn i Matplotlib do wizualizacji danych.
- o Biblioteka XGBoost do tworzenia modelu XGRegresor.
- o Biblioteka Sklearn do tworzenia i obsługi modelu drzew decyzyjnych.
- Notatniki Jupyter do prezentacji wyników.

7. Podział na Zadania i Harmonogram

• Lista zadań:

- o Wczytanie danych z GUS.
- o Przetworzenie danych (czyszczenie, transformacja).
- Wybór i implementacja modelu.
- Wizualizacja wyników w Jupyter Notebook.

Harmonogram:

- Etap 1: Wczytanie danych (tydzień 1)
- Etap 2: Przetwarzanie danych (tydzień 2-3).
- Etap 3: Implementacja modelu (tydzień 4-5).
- Etap 4: Wizualizacja danych stworzenie tabel i wykresów (tydzień 6-7)
- Etap 5: Redukcja danych
- Etap 6: Stworzenie korelogramów
- Etap 7: Rozpoczęcie pracy nad ewaluacją
- o Etap 8: Stworzenie wykresu ewaluacji
- o Etap 9: Dodanie interaktywności do skryptu
- Etap 10: Aktualizacja modelu i poprawa ewaluacji
- o Etap 11: Stworzenie modelu XGBoost
- o Etap 12: Poprawa interaktywności skryptu
- o Etap 13: Dodanie możliwości wyboru wyglądu wykresów
- Etap 14: Dodanie opisów i komentarzy
- Etap 15: Dodanie dokumentacji
- Etap 16: Poprawienie README

8. Przydział Zadań

• Tabela przydziału zadań:

Imię i nazwisko	Rola	Zakres czynności
Klaudia Kopeć	Dokumentalista, Analityk	Wczytanie danych z GUS i
	danych	przetworzenie danych
Dominik Moskal	Grafik, Analityk danych	Wizualizacja danych
		(stworzenie wykresów i
		tabel z wynikami)
Michał Żychowski	Programista, Analityk	Implementacja modelu
_	danych	

9. Ryzyka i Strategie Zarządzania Ryzykiem

• Identyfikacja ryzyk:

- o Brak dostępu do aktualnych danych demograficznych.
- o Trudności w implementacji modelu.
- Ograniczenia czasowe.

Strategie minimalizacji ryzyka:

- Regularne aktualizacje danych z GUS.
- o Wybór prostego modelu, który nie wymaga zaawansowanych technik.
- Realistyczne oszacowanie czasu potrzebnego na realizację projektu.

10. Dokumentacja i Raportowanie

- Zasady dokumentowania:
 - Postępy w projekcie będą dokumentowane w Jupyter Notebook.
 Wykorzystanie systemu kontroli wersji (Git + Github)