

CEC

角度调制与解调 I

Angle(Frequency/Phase) Modulation & Demodulation I

2025年6月5日

Chapter 8 角度调制与解调

- ☞ §8.1 概述
- ☞ §8.2 调角波的性质
- **☞ §8.3 调频方法概述**
- ☞ §8.4 变容二极管调频
- ☞ §8.5 晶体振荡器直接调频
- ☞ §8.6 间接调频:由调相实现调频
- **№ §8.7 可变延时调频**
- ☞ §8.8 相位鉴频器
- ☞ §8.9 比例鉴频器
- ☞ §8.10 其他形式的鉴频器

▶1. 角度调制的概念

- 频率调制又称调频(FM)——模拟信号调制,使高频振荡信号的频率按调制信号的规律变化(瞬时频率变化的大小与调制信号成线性关系),而振幅保持恒定的一种调制方式。调频信号的解调称为鉴频或频率检波。
- -相位调制又称调相(PM) ——模拟信号调制,使高频振荡信号的相位按调制信号的规律变化,振幅保持不变。调相信号的解调称为鉴相或相位检波。
- -数字信号频率调制称为频率键控 (FSK), 数字信号相位调制称为相位键控 (PSK) (通信原理课程讲解)

▶2. 角度调制的波形

▶3. 角度调制的特点

- 调频波和调相波都表现为高频载波瞬时相位随调制信号的变化 而变化,只是变化的规律不同而已。
- 频率与相位间存在微分与积分的关系,调频必调相,调相必调频。
- 鉴频和鉴相也可相互利用,可用鉴频的方法实现鉴相,也可用 鉴相的方法实现鉴频。
- 模拟通信中调频比调相应用广泛,数字通信中调相比调频应用普遍。

▶4. 调幅与调频的比较和调频指标

- 频谱宽度、寄生调幅、抗干扰能力

		载波信号 的受控参量	解调方式	解调方式 的差别	特点	用途
幅度调制	调幅AM	振幅	相干解调或非相干解调	频谱线性搬 移频谱结构 无变化	频带窄 频带利 用率高	
角度调制	调频FM	频率	鉴频或 频率检波	频谱非线性 频谱结构发 生变化 属于非线性	频带宽 频带利 用不经 济、抗	广播 电通信 遥测
	调相PM			频率变换	干扰性 强	数字通信

- ▶5. 鉴频: 频率解调
 - 鉴频跨导、鉴频灵敏度、频带宽度、寄生调幅抑制、失真和稳定性

图 8.1.1 利用波形变换电路进行鉴频

Chapter 8 角度调制与解调

- ☞ §8.1 概述
- ☞ §8.2 调角波的性质
- **☞ §8.3 调频方法概述**
- ☞ §8.4 变容二极管调频
- ☞ §8.5 晶体振荡器直接调频
- ☞ §8.6 间接调频:由调相实现调频
- **№ §8.7 可变延时调频**
- ☞ §8.8 相位鉴频器
- ☞ §8.9 比例鉴频器
- ☞ §8.10 其他形式的鉴频器

▶1. 瞬时频率和瞬时相位

- **调频和调相都表现为高频振荡波的总瞬时相角受到调变**,故统称为角度调制(简称调角)。

瞬时频率
$$\omega(t) = \frac{\mathrm{d}}{\mathrm{d}t} \theta(t)$$
 瞬时相角
$$\theta(t) = \int_0^t \omega(t) \mathrm{d}t + \theta_0$$

瞬时相角θ(t)等于矢量在 t 时间内转过的角度与初始相角θ₀之和

▶1. 瞬时频率和瞬时相位

图 8.2.1 频率连续变化的简谐振荡

▶2. 调频波的数学表示

设: 调制信号: $v_{\Omega}(t)$ 载波信号: $a(t) = A_0 cos \theta(t)$

瞬时频率与调制信号呈线性关系, 瞬时频率为:

$$\omega(t) = \omega_0 + k_f v_{\Omega}(t)$$

 ω_0 是未调制时的载波中心频率;

 $k_{\mathbf{f}}v_{\Omega}(t)$ 是瞬时频率相对于 ω_{0} 的偏移,叫瞬时频率偏移,简称频移。

$$\Delta\omega(t) = k_f v_{\Omega}(t)$$

 $\Delta\omega(t)$ 的最大频移称为频偏,记为: $\Delta\omega_m=k_f|v_\Omega(t)|_{max}$

$$\theta(t) = \int_0^t \left[\omega_0 + k_f v_{\Omega}(t)\right] dt$$

调频波数学表达式:

$$a(t) = A_0 cos[\omega_0 t + k_f \int_0^t v_\Omega(t) dt]$$
 $(\theta_0 = 0)$

▶3. 调相波的数学表示

设: 调制信号: $v_{\Omega}(t)$ 载波信号: $a(t) = A_0 cos \theta(t)$

瞬时相位与调制信号呈线性关系,瞬时相位为:

$$\theta(t) = \omega_0 t + k_p v_{\Omega}(t)$$

瞬时相位偏移: $\Delta heta(t) = k_p v_{\Omega}(t)$

 $\Delta heta(t)$ 的最大值称为最大相移,称为调制指数,以 \mathbf{m}_{p} 表示

调制指数: $m_p = k_p |v_\Omega(t)|_{max}$

调相波数学表达式:

$$a(t) = A_0 cos[\omega_0 t + k_p v_{\Omega}(t)] \qquad (\theta_0 = 0)$$

>4. 调频波和调相波的比较

	FM波	PM波
数学表达式	$a(t) = A_0 cos[\omega_0 t + k_f \int_0^t v_{\Omega}(t) dt]$	$a(t) = A_0 cos[\omega_0 t + k_p v_{\Omega}(t)]$
瞬时频率	$\boldsymbol{\omega}(t) = \boldsymbol{\omega_0} + k_f v_{\Omega}(t)$	$\omega_0 + k_{\mathbf{p}} \frac{\mathbf{d} \nu_{\Omega}(t)}{\mathbf{d} t}$
瞬时相位	$\theta(t) = \int_0^t \left[\omega_0 + k_f v_{\Omega}(t)\right] dt$	$\omega_0 t + K_{\mathbf{p}} v_{\Omega}(t)$
最大频偏	$\Delta \omega_m = k_f v_{\Omega}(t) _{max}$	$\Delta \omega_{\mathbf{m}} = K_{\mathbf{p}} \left \frac{\mathbf{d} \upsilon_{\Omega}(t)}{\mathbf{d} t} \right _{\text{max}}$
调制指数	$m_f = k_f \int_0^t v_{\Omega}(t) dt _{max}$	$m_{\mathbf{p}} = K_{\mathbf{p}} \big \upsilon_{\Omega}(t) \big _{\text{max}}$

附:上述比较中的调制信号 $oldsymbol{v}_\Omega(t)$,载波 $A_0\cos(\omega_0 t)$

▶5. 单音信号调频

设: 调制信号:
$$v_{\Omega}(t) = V_{\Omega} cos \Omega t$$
 载波信号: $a(t) = A_{0} cos \theta(t)$

瞬时频率为:
$$\omega(t) = \omega_0 + k_f V_{\Omega} cos \Omega t$$

瞬时相位为:
$$heta(t) = \omega_0 t + rac{k_f V_\Omega}{\Omega} sin\Omega t + heta_0$$

调频波数学表达式:

$$a(t) = A_0 cos[\omega_0 t + \frac{k_f V_{\Omega}}{\Omega} sin\Omega t + \theta_0]$$

$$a(t) = A_0 cos[\omega_0 t + m_f sin\Omega t + \theta_0]$$

$$m_{\rm f} = \frac{k_{\rm f} V_{\Omega}}{\Omega} = \frac{\Delta \omega_{\rm f}}{\Omega}$$

▶6. 单音信号调相

设: 调制信号: $v_{\Omega}(t) = V_{\Omega} cos \Omega t$ 载波信号: $a(t) = A_{0} cos \theta(t)$

瞬时相位为: $\theta(t) = \omega_0 t + kpV_{\Omega} cos\Omega t + \theta_0$

瞬时频率为: $\omega(t) = \omega_0 - \Omega k_p V_{\Omega} sin \Omega t$

调相波数学表达式:

$$a(t) = A_0 cos[\omega_0 t + k_p V_{\Omega} cos\Omega t + \theta_0]$$

$$a(t) = A_0 cos[\omega_0 t + m_p cos\Omega t + \theta_0]$$

$$m_{\rm p} = k_{\rm p} V_{\Omega} = \frac{\Delta \omega_{\rm p}}{\Omega}$$

▶单音信号调频过程的数学描述

设:调制信号: $v_{\Omega}(t) = V_{\Omega} cos \Omega t$ 载波信号: $a(t) = A_0 cos \theta(t)$

瞬时频率为: $\omega(t) = \omega_0 + k_f V_{\Omega} cos \Omega t$

瞬时相位为:
$$\theta(t) = \omega_0 t + \frac{k_f V_{\Omega}}{\Omega} \sin \Omega t + \theta_0 \qquad (2\beta)$$

调频波数学表达式:

$$a(t) = A_0 cos \left[\omega_0 t + \frac{k_f V_{\Omega}}{\Omega} sin\Omega t + \theta_0\right]$$
 (2\(\phi\))

$$a(t) = A_0 \cos[\omega_0 t + m f \sin\Omega t + \theta_0] \tag{1}$$

▶单音信号调相过程的数学描述

设:调制信号: $v_{\Omega}(t) = V_{\Omega} cos \Omega t$ 载波信号: $a(t) = A_{0} cos \theta(t)$

瞬时相位为: $\theta(t) = \omega_0 t + kp V_{\Omega} cos \Omega t \qquad (24)$

瞬时频率为: $\omega(t) = \omega_0 - \Omega k_p V_{\Omega} sin\Omega t$

调相波数学表达式:

$$a(t) = A_0 \cos[\omega_0 t + k_p V_{\Omega} \cos\Omega t] \tag{24}$$

$$a(t) = A_0 \cos[\omega_0 t + m_p \cos\Omega t] \tag{14}$$

▶7. 调制指数与频宽

$$m_{\mathbf{f}} = \frac{k_{\mathbf{f}} V_{\Omega}}{\Omega} = \frac{\Delta \omega_{\mathbf{f}}}{\Omega}$$

$$\Delta \omega_f = k_f V_{\Omega}$$

调相:

$$m_{\mathbf{p}} = k_{\mathbf{p}} V_{\Omega} = \frac{\Delta \omega_{\mathbf{p}}}{\Omega}$$

调相波频偏

$$\Delta \omega_p = k_p \Omega V_{\Omega}$$

由频偏表达式可以看出调相信号带宽随调制信号频率的升高而增加, 而调频波则不变,也把调频制叫做恒定带宽调制。

▶8. 调频波与调相波的频谱

调制信号
$$v(t) = V_{\Omega} \cos \Omega t$$

已调频信号

$$a(t) = V_0 \cos(\omega_0 t + m_f \sin \Omega t)$$

$$= V_0 [\cos \omega_0 t \cos(m_f \sin \Omega t) - \sin \omega_0 t \sin(m_f \sin \Omega t)]$$

$$= \text{Re}[V_0 e^{j\omega_0 t} e^{jm_f \sin \Omega t}]$$

其中

$$\cos(m_{\mathbf{f}}\sin\Omega t) = J_0(m_{\mathbf{f}}) + 2\sum_{n=1}^{\infty} J_{2\mathbf{n}}(m_{\mathbf{f}})\cos 2n\Omega t$$

$$\sin(m_{\mathbf{f}}\sin\Omega t) = 2\sum_{n=0}^{\infty} J_{2\mathbf{n}+1}(m_{\mathbf{f}})\sin(2n+1)\Omega t$$

▶8. 调频波与调相波的频谱

已调频信号
$$a(t) = V_0 \cos(\omega_0 t + m_{\mathbf{f}} \sin \Omega t) = \text{Re}[V_0 e^{j\omega_0 t} e^{jm_f \sin \Omega t}]$$

 $e^{jm_f \sin \Omega t}$ 是周期为 $2\pi/\Omega$ 的周期性时间函数,可以将它展开为傅氏级数,其基波角频率为 Ω ,即

$$e^{jm_f\sin\Omega t} = \sum_{n=-\infty}^{\infty} J_n(m_f)e^{jn\Omega t}$$

式中 $J_n(m_f)$ 是宗数为 m_f 的n阶第一类贝塞尔函数,它可以用无穷级数进行计算:

$$J_n(m_f) = \sum_{m=0}^{\infty} \frac{(-1)^n (\frac{m_f}{2})^{n+2m}}{m!(n+m)!}$$

$$J_n(m_f) = J_{-n}(m_f)$$
 n为偶数 · $J_n(m_f) = -J_{-n}(m_f)$ n为奇数

▶8. 调频波与调相波的频谱

调制信号
$$v(t) = V_{\Omega} \cos \Omega t$$

已调频信号
$$a(t) = V_0 \cos(\omega_0 t + m_f \sin \Omega t)$$

$$a(t) = V_0 \operatorname{Re}\left[\sum_{n=-\infty}^{\infty} J_n(m_f) e^{j(\omega_0 t + n\Omega t)}\right]$$
$$= V_0 \sum_{n=-\infty}^{\infty} J_n(m_f) \cos(\omega_0 + n\Omega) t$$

$$a(t)=V_{\theta}\left[J_{\theta}(m_{f})\cos\omega_{\theta}t+J_{1}(m_{f})\cos(\omega_{\theta}+\Omega)t -J_{1}(m_{f})\cos(\omega_{\theta}-\Omega)t+J_{2}(m_{f})\cos(\omega_{\theta}+2\Omega)t +J_{2}(m_{f})\cos(\omega_{\theta}-2\Omega)t+J_{3}(m_{f})\cos(\omega_{\theta}+3\Omega)t -J_{3}(m_{f})\cos(\omega_{\theta}-3\Omega)t+...\right]$$

▶8. 调频波与调相波的频谱

$$v_{FM}(t) = \cos(\omega_0 t + M_F \sin \Omega t) = \sum_{n=-\infty}^{\infty} J_n(M_F) \cos(\omega_0 + n\Omega) t$$

■包含载波频率分量

其幅度小于1,与 调制指数有关

$$---J_0(M_F)$$

M_F=1时调频波各频率分量分布及幅度

> 理论上包含无穷多个旁频分量

- 各旁频分量之间的距离是调制信号频率: Ω, F
- 各频率分量的幅度由贝塞尔函数决定: J_n(M_F)
- 奇次旁频分量的相位相反: J_{-(2k+1)}(M_F) = -J_(2k+1)(M_F)

m _F	Jo	J ₁	J_2	J_3	J_4	J_5	J ₆	J ₇	J ₈	J ₉	J ₁₀	J ₁₁	J ₁₂	J ₁₃	J ₁₄
0.00	1														
0.25	0.98	0.12													
0.50	0.94	0.24	0.03												
1.00	0.77	0.44	0.11	0.02											
1.50	0.51	0.56	0.23	0.06	0.01										
2.00	0.22	0.58	0.35	0.13	0.03										
2.40	0.00	0.52	0.43	0.20	0.06	0.02									
2.50	05	0.50	0.45	0.22	0.07	0.02	0.01								
3.00	26	0.34	0.49	0.31	0.13	0.04	0.01								
4.00	40	07	0.36	0.43	0.28	0.13	0.05	0.02							
5.00	18	33	0.05	0.36	0.39	0.26	0.13	0.05	0.02						
5.45	0.00	34	12	0.26	0.40	0.32	0.19	0.09	0.03	0.01					
6.00	0.15	28	24	0.11	0.36	0.36	0.25	0.13	0.06	0.02					
7.00	0.30	0.00	30	17	0.16	0.35	0.34	0.23	0.13	0.06	0.02				

0.17

0.00

-.09

-.25

8.00

8.65

9.00

10.0

0.23

0.27

0.25

0.05

-.11

0.06

0.14

0.25

-.29

-.24

-.18

0.06

-.10

-.23

-.27

-.22

0.19

0.03

-.06

-.23

0.34

0.26

0.20

-.01

0.32

0.34

0.33

0.22

0.22

0.28

0.31

0.32

0.13

0.18

0.21

0.29

0.06

0.10

0.12

0.21

0.03

0.05

0.06

0.12

0.02

0.03

0.06

0.01

0.03

0.01

▶8. 调频波与调相波的频谱

$$a(t)=V_{\theta}\left[J_{\theta}(m_{f})\cos\omega_{\theta}t+J_{1}(m_{f})\cos(\omega_{\theta}+\Omega)t -J_{1}(m_{f})\cos(\omega_{\theta}-\Omega)t+J_{2}(m_{f})\cos(\omega_{\theta}+2\Omega)t +J_{2}(m_{f})\cos(\omega_{\theta}-2\Omega)t+J_{3}(m_{f})\cos(\omega_{\theta}+3\Omega)t -J_{3}(m_{f})\cos(\omega_{\theta}-3\Omega)t+...\right]$$

通常规定:凡是振幅小于未调制载波振幅的1%(或10%,根据不同要求而定)的边频分量均可忽略不计,保留下来的频谱分量就确定了调频波的频带宽度。

$$BW = 2(m_{\mathbf{f}} + 1)F$$

 $egin{aligned} &m_{
m f} < 1, 称为窄带调频, B_{
m FM} pprox 2F(与AM波频带相同) \ &m_{
m f} > 1, 称为宽带调频, B_{
m FM} = 2(m_{
m f} + 1)F \ &m_{
m f} > 10, B_{
m FM} pprox 2m_{
m f}F = 2\Delta f_{
m m}(\Delta f_{
m m}$ 为最大频偏)

▶9. 多频信号调制的调频波频谱

$$a(t) = V_0 \left[\cos \omega_0 t \cos(\sum_{n=1}^N m_{\mathbf{f}n} \sin \Omega_{\mathbf{n}} t) - \sin \omega_0 t \sin(\sum_{n=1}^N m_{\mathbf{f}n} \sin \Omega_{\mathbf{n}} t)\right]$$

以双频信号为例

$$a(t) = V_0 \left[\cos \omega_0 t \cos(m_{\mathbf{f}1} \sin \Omega_1 t + m_{\mathbf{f}2} \sin \Omega_2 t) - \sin \omega_0 t \sin(m_{\mathbf{f}1} \sin \Omega_1 t + m_{\mathbf{f}2} \sin \Omega_2 t)\right]$$

$$\cos(m_{\mathbf{f}}\sin\Omega t) = J_0(m_{\mathbf{f}}) + 2\sum_{n=1}^{\infty} J_{2\mathbf{n}}(m_{\mathbf{f}})\cos 2n\Omega t$$

$$\sin(m_{\mathbf{f}}\sin\Omega t) = 2\sum_{n=0}^{\infty} J_{2\mathbf{n}+1}(m_{\mathbf{f}})\sin(2n+1)\Omega t$$

此时增加了许多组合频率,使频谱组成大为复杂。因此, 调频与调相制属于非线性调制。

▶10. 调频与调相的关系

(1)如果把 $v_{\Omega}(t)$ 先积分后,再经过调相器,也可得到对 $v_{\Omega}(t)$

而言的调频波,也称为间接调频。 (indirect frequency modulation) 。

(2) 把 $v_{\Omega}(t)$ 先微分后再调频,可以得间接调相 (indirect PM)

本章小结

 掌握调频和调相的原理、基本概念以及二者异同点,掌握调频 波调制指数与带宽的关系,理解贝塞尔函数分析频谱的方法, 掌握调频和调相的关系。

Thank You!

- ▶5. 鉴频: 频率解调
 - 鉴频跨导、鉴频灵敏度、频带宽度、寄生调幅抑制、失真和稳定性

图 8.1.1 利用波形变换电路进行鉴频