Zusammenfassung

v204 - Wärmeleitung

 $\label{eq:max_rademacher} \begin{aligned} & \text{Max Rademacher} \\ & \text{max.rademacher@tu-dortmund.de} \end{aligned}$

24.06.2024

TU Dortmund – Fakultät Physik

1 Ziel

Untersuchung der Wärmeleitung von Aluminium, Messing, Edelstahl

2 Theorie

- bei Temperaturungleichgewicht kommt es zu Wärmetransport (Konvektion, Wärmestrahlung, Wärmeleitung)
- Wärmetransport über frei bewegliche Elektronen und Phononen \to Transport stehts in Richtung des Temperaturgefälles
- bei Wärmeungleichgewicht tritt Wärmemenge

$$\mathrm{d}Q = -\kappa A \frac{\partial T}{\partial x} \mathrm{d}t$$

über (κ : Wärmeleitfähigkeit, A: Querschnitt, T: Wärmewellenfunktion)

• Wärmestromdichte

$$j_w = -\kappa \frac{\partial T}{\partial x}$$

• Wärmeleitungsgleichung

$$\frac{\partial T}{\partial t} = \sigma_T \frac{\partial^2 T}{\partial x^2}, c:$$
spezifische Wärme, $\rho:$ Dichte

mit $\sigma_T = \frac{\kappa}{\rho c} \rightarrow$ "Schnelligkeit" des Temperaturausgleichs

- Bei periodischem Erhitzen und Kühlen von einem Stab mit Periode $T \to \text{W\"{a}rme-wellen}$:

$$T(x,t) = T_{\max} \cdot \exp\left(-\sqrt{\frac{\omega \rho c}{2\kappa}}\right) \cos\left(\omega t - \sqrt{\frac{\omega \rho c}{2\kappa}}x\right)$$

• Phasengeschwindigkeit

$$v = \frac{\omega}{k} = \sqrt{\frac{2\kappa\omega}{\rho c}}, \omega = \frac{2\pi}{T}$$

• Berechnung der Wärmeleitfähigkeit κ nach

$$\kappa = \frac{\rho c (\Delta x)^2}{2 \Delta t \ln(A_{\rm nah}/A_{\rm fern})}$$

Aluminium			Edelstahl		
$ ho [{ m kg/m^3}]$	$c[\mathrm{J/(kgK)}]$	$\kappa[\mathrm{W}/(\mathrm{mK})]$	$\rho [\mathrm{kg/m^3}]$	$c[\mathrm{J/(kgK)}]$	$\kappa [\mathrm{W/(m K)}]$
2800	830	237	8000	400	15

Tabelle 2: Die Dichte ρ , die spezifische Wärmec und die Wärmeleitfähigkeit κ von Messing und Wasser.

Messing			Wasser		
$\rho [\mathrm{kg/m^3}]$	$c[\mathrm{J/(kgK)}]$	$\kappa [\mathrm{W/(mK)}]$	$\rho [\mathrm{kg/m^3}]$	$c[\mathrm{J/(kgK)}]$	$\kappa [\mathrm{W/(mK)}]$
8520	385	120	1000	4183	0,6

Abbildung 1: Werte der Metalle und von Wasser.

2.1 Wärmeleitfähigkeit und Dichte

2.2 Wärmetransport durch Phononen

- transportieren Wärme, Schall und Weiteres
- Hauptträger von Wärme in Nichtmetallen \rightarrow Wechselwirkung zwischen Phononen und Atomen
- elektromagnetische Teilchen, die sowohl Teilchen-/Welleneigenschaften haben

3 Durchführung/Auswertung

3.1 Aufbau

- Grundplatte mit vier Probenstäben (Aluminium, 2 mal Messing, Edelstahl)
- Kühlung und Heizung durch Peltierelement
- Messung der Temperaturen an jeweils zwei Stellen (siehe Abbildung), Speicherung mithilfe von Datenlogger nach konfigurierbarer Zeit
- Betriebsspannung 5 V für statische Methode, 8 V für dynamische Methode
- Wärmeisolator wird bei Durchführung auf Stäbe gelegt, entfernen bei Kühlung der Stäbe nach Messungen

Abbildung 2: Versuchsaufbau.

3.2 statische Methode

3.2.1 Durchführung

- Berechnung der Wärmeleitfähigkeit durch Vermessen des Temperaturverlaufs einer Probe an zwei verschiedenen Stellen
- Spannung auf 5 V stellen, Messung der Temperaturen in 10 s-Intervallen, bis das fordere Temperaturelement T7 von Edelstahl 45 °C angibt
 - anschließender Vergleich der Temperaturverläufe von (T1, T4) und (T5,T8)

3.2.2 Auswertung

Abbildung 3: Wärmeverlauf von breitem (T1) und schmalem (T4) Messing

- exponentielle Verläufe gegen Sättigungswert
- sichtbar ist, dass das breite Messingstück über die Zeit die Wärme besser transportieren kann, als das schmale Messingstück

Abbildung 4: Wärmeverlauf von Edelstahl (T5) und Aluminium (T8)

- im zweiten Plot ist erkennbar, dass Aluminium besser die Wärme transportiert, als Edelstahl
- Insgesamt transportiert Aluminium am effektivsten die Wärme
- Wärmestrom vom Aluminium bezeugt beste Wärmeleitfähigkeit, da schneller Abfall der Wärmeströme über die Zeit \to effektivste Wärmeleitung

	Me	essing	Messing (schmal)		
$t[\mathrm{s}]$	$\overline{T_2 - T_1 [\mathrm{K}]}$	$\Delta Q_{21}/\Delta t [\mathrm{W/s}]$	$\overline{T_3 - T_4 [\mathrm{K}]}$	$\Delta Q_{34}/\Delta t [\mathrm{W/s}]$	
100	3,77	-0,71	2,63	-0,29	
300	2,58	$-0,\!48$	2,38	$-0,\!26$	
600	2,15	$-0,\!40$	2,17	$-0,\!24$	
900	2,10	-0,39	2,15	-0,24	
1200	2,11	$-0,\!40$	2,15	$-0,\!24$	

Tabelle 6: Wärmestrom von Aluminium und Edelstahl.

	Aluminium		Edelstahl		
$t[\mathrm{s}]$	$\overline{T_6 - T_5 [\mathrm{K}]}$	$\Delta Q_{65}/\Delta t [\mathrm{W/s}]$	$T_7 - T_8 [K]$	$\Delta Q_{78}/\Delta t [\mathrm{W/s}]$	
100	1,49	-0,55	6,17	-0,14	
300	0,39	-0,14	8,23	-0,19	
600	0,14	-0,05	7,50	-0,18	
900	0,09	-0,03	7,30	$-0,\!17$	
1200	0,09	-0,03	7,23	$-0,\!17$	

Abbildung 5: Wärmeströme der Metalle

• Temperaturdifferenzen von breitem Messing und Edelstahl

- Temperaturdifferenzen zwischen Thermoelementen von Edelstahl größer als von Messing
- \implies Messing transportiert Wärme besser und schneller als Edelstahl

Abbildung 6: Temperaturdifferenzen Edelstahl und Messing

3.3 dynamische Methode (Ånströmmethode)

3.3.1 Durchführung

- $\bullet\,$ periodisches Heizen des Probenstabs \to Ermittlung der Wärmeleitfähigkeit aus der Ausbreitungsgeschwindigkeit der Temperaturwelle
- Abtastrate auf 2s einstellen und Heizspannung auf $8\,\mathrm{V} \to \mathrm{periodisches}$ Heizen des Stabs in $80\,\mathrm{s-Intervallen}$ ($40\,\mathrm{s}$ heizen, $40\,\mathrm{s}$ kühlen)
- grafische Darstellung der Temperaturverläufe von T1 und T2 \rightarrow Ermittlung der Temperaturwellen
- nun periodisches Heizen in 200 s-Intervallen, bis ein Thermoelement 80 °C anzeigt \to Ermittlung der Wärmeleitfähigkeit von Edelstahl durch Phasendifferenz Δt aus Temperaturverlaufgrafik

3.3.2 Auswertung

Abbildung 7: Temperaturwellen von breitem Messing

- Wärmekapazität von Messing aus Temperaturwellen: $\kappa_{\rm Messing}\approx 100\,{\rm W/(m\,K)}$ mäßige Abweichung von Theorie ($\approx 120\,{\rm W/(m\,K)}$)
- Wärmekapazität von Aluminium (ohne Grafik): $\kappa_{\rm Aluminium} \approx 200\,{\rm W/(m\,K)}$ geringe Abweichung von Theorie ($\approx 230\,{\rm W/(m\,K)}$)

Abbildung 8: Temperaturwellen von Edelstahl

• Wärmekapazität von Edelstahl aus Temperaturwellen $\kappa_{\rm Edelstahl} \approx 10\,{\rm W/(m\,K)}$ mäßige Abweichung von Theorie (15 W/(m K))

3.4 Allgemeines zur Diskussion

• allgemein eine gute Abschätzung der Wärmeleitfähigkeit der Metalle

- Isolator kann nicht perfekt Temperatur isolieren \rightarrow möglicher Grund für Abweichungen
- Durch lange Betriebsdauer sind Fluktuationen in Strom und Spannung möglich, die Auswirkungen auf die Temperaturen haben
- alter des Versuchsaufbaus kann Ursache für Abweichungen sein