MIT OpenCourseWare http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Bill Thies, 6.189 Multicore Programming Primer, January (IAP) 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 8

The StreamIt Language

Languages Have Not Kept Up

Modern architecture

• Two choices:

- Develop cool architecture with complicated, ad-hoc language
- Bend over backwards to support old languages like C/C++

Images by MIT OpenCourseWare.

Why a New Language?

Why a New Language?

Why a New Language?

Common Machine Languages

Uniprocessors:

Common Properties

Single flow of control

Single memory image

Differences:

Register File

ISA

Functional Units

von-Neumann languages represent the common properties and abstract away the differences

Multicores:

Common Properties

Multiple flows of control

Multiple local memories

Differences:

Number and capabilities of cores

Communication Model

Synchronization Model

Need common machine language(s) for multicores

Streaming as a Common Machine Language

For programs based on streams of data

 Audio, video, DSP, networking, and cryptographic processing kernels

- Examples: HDTV editing, radar tracking, microphone arrays, cell phone base stations, graphics
- Several attractive properties
 - Regular and repeating computation
 - Independent filterswith explicit communication
 - Task, data, and pipeline parallelism

Streaming Models of Computation

- Many different ways to represent streaming
 - Do senders/receivers block?
 - How much buffering is allowed on channels?
 - Is computation deterministic?
 - Can you avoid deadlock?
- Three common models:
 - 1. Kahn Process Networks
 - 2. Synchronous Dataflow
 - 3. Communicating Sequential Processes

Streaming Models of Computation

	Communication Pattern	Buffering	Notes
Kahn process networks (KPN)	Data-dependent, but deterministic	Conceptually unbounded	- UNIX pipes - Ambric (startup)
Synchronous dataflow (SDF)	Static	Fixed by compiler	Static schedulingDeadlock freedom
Communicating Sequential Processes (CSP)	Data-dependent, allows non-determinism	None (Rendesvouz)	Rich synchronization primitivesOccam language

space of program behaviors

The StreamIt Language

- A high-level, architecture-independent language for streaming applications
 - Improves programmer productivity (vs. Java, C)
 - Offers scalable performance on multicores
- Based on synchronous dataflow, with dynamic extensions
 - Compiler determines execution order of filters
 - Many aggressive optimizations possible

The StreamIt Project

Applications

- DES and Serpent [PLDI 05]
- MPEG-2 [IPDPS 06]
- SAR, DSP benchmarks, JPEG, ...

Programmability

- StreamIt Language (CC 02)
- Teleport Messaging (PPOPP 05)
- Programming Environment in Eclipse (P-PHEC 05)

Domain Specific Optimizations

- Linear Analysis and Optimization (PLDI 03)
- Optimizations for bit streaming (PLDI 05)
- Linear State Space Analysis (CASES 05)

Architecture Specific Optimizations

- Compiling for Communication-Exposed Architectures (ASPLOS 02)
- Phased Scheduling (LCTES 03)
- Cache Aware Optimization (LCTES 05)
- Load-Balanced Rendering (Graphics Hardware 05)

Example: A Simple Counter

```
void->void pipeline Counter() {
   add IntSource();
   add IntPrinter();
void->int filter IntSource() {
   int x;
   init \{ x = 0; \}
   work push 1 { push (x++); }
int->void filter IntPrinter() {
   work pop 1 { print(pop()); }
```



```
% strc Counter.str -o counter
% ./counter -i 4
0
1
```

Representing Streams

- Conventional wisdom: streams are graphs
 - Graphs have no simple textual representation
 - Graphs are difficult to analyze and optimize
- Insight: stream programs have structure

Structured Streams

- Each structure is singleinput, single-output
- Hierarchical and composable

feedback loop

Filter Example: Low Pass Filter

```
float->float filter LowPassFilter (int N, float freq) {
  float[N] weights;
  init {
     weights = calcWeights(freq);
  work peek N push 1 pop 1 {
     float result = 0;
     for (int i=0; i<weights.length; i++) {</pre>
        result += weights[i] * peek(i);
     push(result);
     pop();
```


Low Pass Filter in C

```
    FIR functionality obscured by

void FIR(
  int* src,
                                buffer management details
  int* dest,
  int* srcIndex,

    Programmer must commit to a

  int* destIndex,
  int srcBufferSize,
                                particular buffer implementation
  int destBufferSize.
  int N) {
                               strategy
  float result = 0.0;
  for (int i = 0; i < N; i++) {
   result += weights[i] * src[(*srcIndex + i) % srcBufferSize];
  dest[*destIndex] = result;
  *srcIndex = (*srcIndex + 1) % srcBufferSize;
  *destIndex = (*destIndex + 1) % destBufferSize;
```

Pipeline Example: Band Pass Filter

```
float → float pipeline BandPassFilter (int N, float low, float high) {

add LowPassFilter(N, low);

add HighPassFilter(N, high);

}
```

SplitJoin Example: Equalizer

```
float→float pipeline Equalizer (int N,
                                float lo,
                                float hi) {
   add splitjoin {
     split duplicate;
     for (int i=0; i<N; i++)
        add BandPassFilter(64, lo + i*(hi - lo)/N);
     join roundrobin(1);
  add Adder(N);
```


Building Larger Programs: FMRadio

```
void->void pipeline FMRadio(int N, float lo, float hi) {
                                                                            AtoD
   add AtoD();
   add FMDemod();
                                                                         FMDemod
   add splitjoin {
    split duplicate;
                                                                          Duplicate
    for (int i=0; i<N; i++) {
        add pipeline {
           add LowPassFilter(lo + i*(hi - lo)/N);
                                                                  LPF<sub>1</sub>
                                                                            LPF<sub>2</sub>
                                                                                       LPF<sub>3</sub>
                                                                                      HPF<sub>3</sub>
           add HighPassFilter(lo + i*(hi - lo)/N);
                                                                  HPF<sub>1</sub>
                                                                            HPF<sub>2</sub>
                                                                        RoundRobin
     join roundrobin();
   add Adder();
                                                                            Adder
   add Speaker();
                                                                           Speaker
      Bill Thies, MIT.
                                              19
                                                                         6.189 IAP 2007 MIT
```

The Beauty of Streaming

"Some programs are elegant, some are exquisite, some are sparkling. My claim is that it is possible to write *grand* programs, *noble* programs, truly *magnificient* ones!"

Don Knuth, ACM Turing Award Lecture

Image removed due to copyright restrictions.

split duplicate

split roundrobin(N)

split duplicate

split roundrobin(1)

split duplicate

split roundrobin(2)

split duplicate

Bill Thies, MIT.

- Many FFT algorithms require a bit-reversal stage
- If item is at index n (with binary digits $b_0 b_1 \dots b_k$), then it is transferred to reversed index $b_k \dots b_1 b_0$
- For 3-digit binary numbers:

- Many FFT algorithms require a bit-reversal stage
- If item is at index n (with binary digits $b_0 b_1 \dots b_k$), then it is transferred to reversed index $b_k \dots b_1 b_0$
- For 3-digit binary numbers:

- Many FFT algorithms require a bit-reversal stage
- If item is at index n (with binary digits $b_0 b_1 \dots b_k$), then it is transferred to reversed index $b_k \dots b_1 b_0$
- For 3-digit binary numbers:


```
complex->complex pipeline BitReverse (int N) {
  if (N==2) {
     add Identity<complex>;
  } else {
     add splitjoin {
        split roundrobin(1);
        add BitReverse(N/2);
        add BitReverse(N/2);
       join roundrobin(N/2);
```

N-Element Merge Sort

```
int->int pipeline MergeSort (int N) {
  if (N==2) {
     add Sort(N);
  } else {
     add splitjoin {
        split roundrobin(N/2);
        add MergeSort(N/2);
        add MergeSort(N/2);
       join roundrobin(N/2);
  add Merge(N);
```


N-Element Merge Sort (3-level)

Bitonic Sort

Courtesy of William Thies. Used with permission.

6.189 IAP 2007 MIT

Block Matrix Multiply

Courtesy of William Thies. Used with permission.

6.189 IAP 2007 MIT

Filterbank

FM Radio with Equalizer

Radar-Array Front End

MP3 Decoder

Courtesy of William Thies. Used with permission.

Case Study: MPEG-2 Decoder in Streamlt

MPEG-2 Decoder in StreamIt

Teleport Messaging in MPEG-2

Messaging Equivalent in C

MPEG-2 Implementation

- Fully-functional MPEG-2 decoder and encoder
- Developed by 1 programmer in 8 weeks
- 2257 lines of code
 - Vs. 3477 lines of C code in MPEG-2 reference

48 static streams, 643 instantiated filters

Conclusions

- StreamIt language preserves program structure
 - Natural for programmers
- Parallelism and communication naturally exposed
 - Compiler managed buffers, and portable parallelization technology
- StreamIt increases programmer productivity, enables parallel performance