7.2 Zastosowania do obliczania pól obszarów płaskich i objętości brył obrotowych

Całka oznaczona ma następującą interpretację geometryczną. Jeżeli funkcja $f(x) \geq 0$ dla $x \in (a,b)$ to $\int_a^b f(x) \ dx$ jest równa polu powierzchni obszaru zawartego między osią Ox oraz wykresem funkcji f. Jeśli $f(x) \leq 0$ to $\int_a^b f(x) \ dx$ jest równa polu powierzchni obszaru zawartego między osią Ox oraz wykresem funkcji f ale ze znakiem minus.

Rysunek 7.1: Interpretacja geometryczna całki oznaczonej

Przykład 7.6. Obliczyć pole obszaru zawartego między wykresem funkcji sin x oraz osią Ox dla $x \in (0, \pi)$.

$$\int_0^{\pi} \sin x \, dx = -\cos x \Big|_0^{\pi} = -(-1 - 1) = 2$$

Przykład 7.7. Obliczymy całkę $\int_{-1}^{1} \sqrt{1-x^2} dx$.

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx$$

Rysunek 7.2: Interpretacja geometryczna całki oznaczonej – pole obszaru ograniczonego przez krzywe

Całkujemy przez podstawienie

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \begin{vmatrix} x = \sin t \\ dx = \cos t \, dt \\ x \in (-1, 1), t \in (-\pi/2, \pi/2) \end{vmatrix} = \int_{-\pi/2}^{\pi/2} \sqrt{1 - (\sin t)^2} \cos t \, dt =$$

$$= \int_{-\pi/2}^{\pi/2} |\cos t| \cos t \, dt = \int_{-\pi/2}^{\pi/2} \cos^2 t \, dt = \int_{-\pi/2}^{\pi/2} \frac{1 + \cos 2t}{2} \, dt =$$

$$= \frac{1}{2} t \Big|_{-\pi/2}^{\pi/2} + \frac{1}{4} \sin 2t \Big|_{-\pi/2}^{\pi/2} = \frac{1}{2} \left(\frac{\pi}{2} + \frac{\pi}{2}\right) + \frac{1}{4} (0 - 0) = \frac{\pi}{2}.$$

Powyższą całkę można obliczyć prościej jeśli zauważymy, że $\int_{-1}^{1} \sqrt{1-x^2} \ dx$ jest polem połowy koła o promieniu 1 tzn. $1/2\pi = \pi/2$.

Całki oznaczone możemy wykorzystać do obliczania pól obszarów zawartych między wykresami funkcji. Załóżmy, że mamy dane funkcje f(x), g(x) całkowalne w przedziale $\langle a,b\rangle$. Załóżmy ponadto, że $f(x)\geq g(x)$ dla $x\in\langle a,b\rangle$. Wówczas pole obszaru zawartego między wykresami funkcji f(x) i g(x) obliczamy ze wzoru

$$\int_a^b \left[f(x) - g(x) \right] dx$$

Dla funkcji całkowalnych w przedziale $\langle a,b\rangle$ definiuje się pojęcie wartości średniej funkcji w przedziale $\langle a,b\rangle$. Wartość taką definiujemy wzorem

$$\frac{1}{b-a} \int_{a}^{b} f(x) \ dx.$$

Przykład 7.8. Obliczyć wartość średnią funkcji $\sin(x)$ na przedziale $(0,\pi)$. Mamy

$$\frac{1}{\pi - 0} \int_0^{\pi} \sin x \, dx = \frac{1}{\pi} [-\cos x] \Big|_0^{\pi} = \frac{2}{\pi}.$$

Z punktu zastosowań w geometrii ważne są następujące wzory. Rozpatrzmy funkcję f(x) dla $x \in \langle a, b \rangle$. Objętość V oraz pole powierzchni bocznej S obszaru powstałego z obrotu funkcji f(x) dookoła osi Ox wyrażają się wzorami

$$V = \pi \int_a^b f^2(x) dx, \qquad P = 2\pi \int_a^b f(x) \sqrt{1 + (f'(x))^2} dx.$$

Przykład 7.9. Obliczyć objętość bryły powstałej z obrotu wykresu funkcji $\sin x$ dookoła osi Ox dla $x \in \langle 0, \pi \rangle$.

$$V = \pi \int_0^{\pi} \sin^2 x \, dx = \pi \int_0^{\pi} \frac{1 - \cos 2x}{2} \, dx = \pi \left(\frac{x}{2} \Big|_0^{\pi} - \frac{\sin 2x}{2} \Big|_0^{\pi} \right) = \frac{\pi^2}{2}.$$

Całki niewłaściwe pierwszego rodzaju

Niech f(x) będzie funkcją ciągłą dla $x \in \langle a, \infty \rangle$. Całkę niewłaściwą na przedziale $x \in \langle a, \infty \rangle$ definiujemy wzorem

$$\int_{a}^{\infty} f(x) \ dx = \lim_{T \to \infty} \int_{a}^{T} f(x) \ dx,\tag{7.1}$$

analogicznie definiujemy

$$\int_{-\infty}^{b} f(x) dx = \lim_{T \to -\infty} \int_{T}^{b} f(x) dx. \tag{7.2}$$

Mówimy, że całka niewłaściwa jest zbieżna jeżeli istnieją odpowiednie granice (7.1), (7.2).

Przykład 7.10.

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \lim_{T \to \infty} \int_{1}^{T} \frac{1}{\sqrt{x}} dx = \lim_{T \to \infty} 2\sqrt{x} \Big|_{1}^{T} = \lim_{T \to \infty} 2(\sqrt{T} - 1) = \infty$$

oznacza to, że całka $\int_1^\infty \frac{1}{\sqrt{x}} \; dx$ jest rozbieżna.

Przykład 7.11.

$$\int_{0}^{\infty} e^{-x} dx = \lim_{T \to \infty} \int_{0}^{T} e^{-x} dx = \lim_{T \to \infty} -e^{-x} \Big|_{0}^{T} = \lim_{T \to \infty} -e^{-T} + 1 = 1$$

oznacza to, że całka $\int_0^\infty e^{-x} \ dx$ jest zbieżna co ciekawe jej wartość jest równa polu kwadratu o boku 1.