Lezione 16

Calcolo limiti funzioni elementori Tip: basta ricordare il grafico della funzione per capire il limite di essa:

$$\lim_{X-D+\infty} 2^{X} = +\infty$$

$$\lim_{x \to -\infty} x^{x} = 0$$

$$\lim_{x\to 0+\infty} \log x = +\infty$$

 $\lim_{x\to 0} \log x = -\infty$

Es:
$$y = \arctan x$$

$$\lim_{x\to 0\pm\infty} \operatorname{arcton} x = \pm \frac{\pi L}{2}$$

Operazioni con i limiti

Il limite della somma, prodotto, quoziente di due funzioni e uguale alla somma, prodotto, quoziente dei limiti della funzioni, a meno che non si presentino della forme indeterminate.

Limiti Notevoli

•
$$\lim_{x\to 00} \frac{\sin x}{x} = 1$$
 • $\lim_{x\to 10} \left(1 + \frac{1}{x}\right)^{x} = e$

•
$$\lim_{x\to 0} x^{d} \log_{\theta} x \equiv \lim_{x\to 0} \frac{\log x}{\frac{1}{x^{d}}} = \frac{\log x^{-D-2}}{\left(\frac{1}{x}\right)^{d} + D + 20} x^{d} >> \log x = D - D = 0$$

Da cui otteniamo...

$$\frac{\lim_{\chi \to 0} \frac{1 - \cos \chi}{\chi^{2}}}{\chi^{2}} = \frac{(1 - \cos \chi) \cdot (1 + \cos \chi)}{\chi^{2} (1 + \cos \chi)} = \frac{1 + \cos \chi - \cos \chi - \cos^{2} \chi}{\chi^{2} (1 + \cos \chi)} = \frac{1 - \cos^{2} \chi}{\chi^{2}} \cdot \frac{1}{1 + \cos \chi}$$

$$= \frac{\sin^{2} \chi}{\chi^{2}} \frac{1}{1 + \cos^{2} \chi} = \frac{1}{2}$$

•
$$\lim_{x\to 0} \frac{\tan x}{x} = \frac{\sin x}{\cos x \cdot x} = \frac{\sin x}{x} \cdot \frac{1}{\cos x} = 1$$

Teoreme sui limiti di

Usiamo due funzioni:

Consideriamo

Quindi se il Dominio di f e uquale o contenuto nel codominio di g(x), si puo considerare la funzione composta, che si denota come

 $q(x) = y_0$ owero x_0 .

$$f \circ g : x \in X \xrightarrow{g} g(x) = y \in Y \xrightarrow{f} f(y) = f(g(x)) \in \mathbb{Z}$$

Q to $\exists \int >0 / g(x) \neq y_0 \forall x \in (x_0 - J, x_0 + J) \in x \neq x_0$. Overo: esiste un intorno

di 20 all interno del quale, Esiste solo un punto dove <u>Praticomente</u> quando coal colo g(x), l'immagine q(x)= yo ovvero xo. e diversa da yo e diversa da yo

00:27 Quinoli

Il $\lim_{x\to\infty} f(g(x)) = \ell$

Es:
$$\lim_{\chi \to +\infty} \frac{\sin\left(\frac{1}{\chi}\right)}{\frac{1}{\chi}}$$

Sin $\left(\frac{1}{\chi}\right)$: $x \to \frac{9}{1} \to \frac{1}{\chi}$

Sin $\left(\frac{1}{\chi}\right)$

Sin

ES:
$$\lim_{N \to 0} \frac{e^{N} - L}{N}$$
 $e^{N} = \frac{e^{N} - L}{1 + \gamma}$ $x = \log 1 + \gamma$ $x \to 0 = 0 \ \gamma = 0$
riscrivi omo: $\lim_{N \to 0} \frac{y}{\log(1 + y)} = \lim_{N \to 0} \frac{1}{\log(1 + y)} = 1$

ES:
$$\frac{(1+x)^2-1}{x}=d$$

1:38

Infinitesimi

 $f(x) e^{-1} un$ infinitesimo in xo se $\lim_{x\to\infty} f(x) = 0$

Supponionno che feg siono due inf. in x_0 , direno che feg sono inf. dello stesso ordine se $\lim_{x\to 0} \frac{f(x)}{g(x)} = e$, con $\ell \neq 0$ e finito.

f e un inf di ordine inferiore a g se $\lim_{x\to x_0} \frac{f}{a} = \infty$ f << g

f e un inf di ordine superiore a g se $\lim_{x\to x_0} \frac{f}{g} = 0$ f >> g , f = o(g)

ES: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ =D Sin x e x sono infin. dello stesso ordine.

ES: $\lim_{x\to 0} \frac{1-\cos x}{\sqrt{2}} = \frac{1}{2}$ = 0 1-cosx e x² sono infin. dello stesso ordine.

 $\lim_{x\to 0} \frac{\log(1+x)}{x} = 1 = 0 \log(1) = x \text{ sono infin. dello stesso ordine.}$

Si dice che se $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$ = D fe g sono asintotiche: $f \sim g$

Se pero' $\lim_{x\to\infty} \frac{f(x)}{g(x)} \neq 1$, "si puo' fore qual cosa lo stesso":

ES: $\lim_{x\to 0} \frac{1-\cos x}{x^2}$ lo scrivionno come $\lim_{x\to 0} \frac{1-\cos x}{\frac{1}{2}x^2} = 1 = 0$ $\int \sqrt{\frac{1}{2}}g = 0$ $\int -\cos x \sqrt{\frac{1}{2}}x^2$ ES $\lim_{x\to 0} \frac{\log(1+x^3)}{x^2}$ 1) $\log(1+x^3) \frac{x^3}{x^3} = \text{ovvero}$ $\frac{\log(1+x)}{x}$

2) $e^{\sin x} - 1$ $\frac{\sin x}{\sin x}$ owero $\frac{e^{x} - 1}{x} = 1$

quindi possiomo dire che:

 $\frac{\log (1+x^3)}{e^{\sin x}-1} \sim \frac{x^3}{\sin^x} \sim \frac{x^3}{x} = 0 \quad \lim_{x\to 0} \frac{x^3}{x} = 0$

ES: $\lim_{x\to 0} \frac{1-\cos x^{2}}{\tan^{2}x_{2}}$ 1) $\left(1-\cos x\cdot\frac{1}{x^{2}}\right)x^{2}$ 2) $\tan^{2}x \sim x^{2}$ 1- COSX -D 1/2

 $= D \frac{1 - \cos x}{\tan^2 x} \sim \frac{\frac{1}{2} x^2}{x^2} = \frac{1}{2}$

ES: (1+x)2-1 ~ dx

Limiti notevoli

funzioni goniometriche			
$\lim_{x \to 0} \frac{senx}{x} = 1$	$\lim_{x \to 0} \frac{tgx}{x} = 1$		
$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$	$\lim_{x \to 0} \frac{arcsenx}{x} = 1$		
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{arctgx}{x} = 1$		

funzioni esponenziali e logaritmiche				
$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$	$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e$			
$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$	$\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$			
$ \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a $	$\lim_{x\to 0^+} x^{\alpha} \ln x = 0 \; ; \lim_{x\to +\infty} \frac{\ln x}{x^{\alpha}} = 0 \qquad \alpha > 0$			
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to +\infty} \frac{x^{\alpha}}{a^{x}} = 0 \; ; \qquad \lim_{x \to +\infty} \frac{\ln x}{a^{x}} = 0 a > 1$			
$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha$	$[f(x)]^{g(x)} = e^{g(x) \cdot ln}[f(x)]$ I' uguaglianza a sinistra può essere utile per risolvere alcuni limiti che si presentano nelle forme indeterminate 0^{0} $1^{\pm \infty}$ $+\infty^{0}$			

ad ogni limite notevole si possono applicare le seguenti proprietà che lasciano invariato il risultato					
limite iniziale	se il testo del limite è invertito anche il risultato sarà invertito	se nel limite al posto di x c'è nx il risultato del limite resta lo stesso	se il testo del limite è invertito anche il risultato sarà invertito		
$\lim_{x\to 0}\frac{senx}{x}=1$	$ \lim_{x \to 0} \frac{x}{senx} = 1 $	$\lim_{x\to 0} \frac{sennx}{nx} = 1$	$\lim_{x \to 0} \frac{nx}{sen nx} = 1$		

frazioni equivalenti					
per il calcolo dei limiti notevoli può essere utile ricordare alcune delle possibili operazioni con le frazioni:					
scomporre la frazione iniziale in due frazioni	dividere ogni monomio del nu- meratore e del denominatore per la stessa quantità n	moltiplicare e dividere la fra- zione per la stessa quantità n	moltiplicare e dividere il numeratore per $oldsymbol{n}$ e/o moltiplicare e dividere il denominatore per $oldsymbol{m}$		
$\frac{a}{b} = a \cdot \frac{1}{b}$	$\frac{a}{b} = \frac{\frac{a}{n}}{\frac{b}{n}}$	$\frac{a}{b} = \frac{a}{b} \cdot \frac{n}{n}$	$\frac{a}{b} = \frac{\frac{a}{n} \cdot n}{\frac{b}{m} \cdot m}$		
$\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{c} \cdot \boldsymbol{d}} = \frac{a}{c} \cdot \frac{b}{d}$	$\frac{a \cdot b}{c \cdot d} = \frac{\frac{a \cdot b}{n}}{\frac{d \cdot c}{n}}$	$\frac{a \cdot b}{c \cdot d} = \frac{a \cdot b}{c \cdot d} \cdot \frac{n}{n}$	$\frac{a \cdot b}{c \cdot d} = \frac{\frac{a \cdot b}{n}}{\frac{d \cdot c}{n}}$		
$\frac{a+b}{c+d} = \frac{a}{c+d} + \frac{b}{c+d}$	$\frac{a+b}{c+d} = \frac{\frac{a}{n} + \frac{b}{n}}{\frac{c}{n} + \frac{d}{n}}$	$\frac{a+b}{c+d} = \frac{(a+b)}{(c+d)} \cdot \frac{n}{n}$	$\frac{a+b}{c+d} = \frac{\frac{a}{n} + \frac{b}{n}}{\frac{c}{n} + \frac{d}{n}}$		
$\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{c} + \boldsymbol{d}} = \boldsymbol{a} \cdot \frac{\boldsymbol{b}}{\boldsymbol{c} + \boldsymbol{d}}$	$\frac{a \cdot b}{c + d} = \frac{\frac{a \cdot b}{n}}{\frac{c}{n} + \frac{d}{n}}$	$\frac{a \cdot b}{c + d} = \frac{a \cdot b}{(c + d)} \cdot \frac{n}{n}$	$\frac{a \cdot b}{c + d} = \frac{\frac{a \cdot b}{n}}{\frac{c}{n} + \frac{d}{n}}$		

Teorema Principio di Sostituzione degli infinitesimi Siono f_1 ed f_2 infinitesimi in x_0 / f_1 = $O(f_2)$ (f_1 tende piu' velocemente a O di f_2) Abbiono onche g_1 e g_2 infinitesime in x_0 / g_1 = $O(g_2)$.

Allora $\lim_{x\to\infty} \frac{f_2(x) + f_2(x)}{g_1(x) + g_2(x)} = \lim_{x\to\infty} \frac{f_2}{g_2}$ In poche parole: possiomo sostituire (eliminare) degli infinitesimi di ordine Superiore.

Dim: $\lim_{g_1+g_2} \frac{f_1+f_2}{g_{1+g_2}} = \lim_{grado superiore} \frac{f_2(\frac{f_2}{f_2}+1)}{g_2(\frac{g_1}{g_2}+1)} = \lim_{x\to \infty} \frac{f_2}{g_2}$ Stessa cosa dei limiti "normali"

ES: $\lim_{x\to 0} \frac{f_3}{g_3} + \sin x + 1 - \cos x +$

= Posso ignorare quelli di ordine superiore = $\lim_{x\to 0^+} \frac{\sin x}{\log^4(z+x)} \sim \frac{x}{x^4} = \frac{1}{x^3} \rightarrow \infty$

Ordine di un infinitesimo Si confronte un infinitesimo con l'infinitesimo campione x^d in $x_0=0$ (ovveroune f che in x_0 tende a 0). Nei casi genevali l'inf. compione $e^ (x-x_0)^d$ in x_0

Definizione: f e un infinitesimo eli erdine d se $\lim_{x\to 0} \frac{f(x)}{x^d} = \ell$ con $\ell \neq 0$ e f inito, ovvero se f(x) ha lo stesso ordine eli x^d ES: $tg^3(x)$: $\lim_{x\to 0} \frac{tg^3x}{x^3} = 1$

ES: $(1-\cos x)^8$ $\lim_{x\to 0} \frac{(1-\cos x)^8}{(x^2)^8} = \frac{1}{2^8}$ perchi $\frac{1-\cos x}{x^2} = \frac{1}{2}$