DUAL 2 TO 4 LINE DECODER 3 TO 8 LINE DECODER

- HIGH SPEED
 - $t_{PD} = 12 \text{ ns} (TYP.) AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } T_A = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | I_{OH} | = I_{OL} = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS

 tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS155

DESCRIPTION

The M54/74HC155 is a high speed CMOS DUAL 2-TO-4 LINE DECODER fabricated in silicon gate C²MOS technology.

It has the same high speed performance of LSTTL combined with true CMOS low power consumption. It features dual 1-TO-4 line demultiplexers with individual strobe inputs (1G and 2G), individual data inputs (1C and $\overline{2C}$) and common binary address inputs (A and B).

When both decoders are enabled by the strobes, the inverted output of 1C data and non-inverted output of $\overline{2C}$ data will be brought to the select output pins of each sections. A 1-TO-8 line demultiplexer can also be easily built up by providing a data signal to both 1C and $\overline{2C}$ inputs; the output order from the msb is 1Y3, 1Y2, 1Y1, 1Y0, 2Y3, 2Y2, 2Y1, 2Y0. This device can be used as a 2-to-4 line decoder or a 3-to-8 line decoder when 1C is held high and $\overline{2C}$ is held low.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

December 1992 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 15	1C, 2C	Data Inputs
2, 14	1G, 2G	Strobe Inputs
3, 13	B, A	Common Data Inputs
7, 6, 5, 4	$\overline{1}\overline{1}$ to $\overline{1}\overline{1}$	Outputs
9, 10, 11, 12	$\overline{2}\overline{Y0}$ to $\overline{2}\overline{Y3}$	Outputs
8	GND	Ground (0V)
16	V_{CC}	Positive Supply Voltage

TRUTH TABLE

	INP	UTS		OUTPUTS				
В	Α	1G	1C	1Y0	1Y1	1Y2	1 <u>Y</u> 3	
Χ	Χ	Н	Χ	Н	Η	Η	Н	
L	L	L	Н	L	Н	Н	Н	
L	Н	L	Н	Н	L	Η	Н	
Н	L	L	Н	Н	Н	L	Н	
Н	Н	L	Н	Н	Н	Н	L	
Х	Χ	Χ	L	Н	Н	Н	Н	

IEC LOGIC SYMBOL

TRUTH TABLE

	INP	UTS		OUTPUTS				
В	Α	2G	2C	2Y0	2Y1	2Y2	2Y3	
Χ	Χ	Н	Χ	Н	Н	Н	Н	
L	L	L	L	L	Н	Н	Н	
L	Η	L	L	Н	L	Н	Н	
Н	L	L	L	Н	Н	L	Н	
Н	Н	L	L	Н	Н	Н	L	
Х	Χ	Х	Н	Н	Н	Н	Н	

LOGIC CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
V_{I}	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
Io	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: ≅ 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
Vcc	Supply Voltage	2 to 6	V	
V_{I}	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
Тор	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	ပ <mark>ိ</mark> ဂိ
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 2 V$	0 to 1000	ns
		$V_{CC} = 4.5 \text{ V}$	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Te	est Co	nditions	Value							
Symbol	Parameter	V _{CC} (V)			$T_A = 25$ °C 54HC and 74HC			-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(۷)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
	6.0					1.8		1.8		1.8		
V_{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
Output Voltage	4.5	VI –	I _O =-20 μA	4.4	4.5		4.4		4.4		.,	
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	VIL	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	V _{IL}	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	√cc or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Те	st Conditions	Value							
Symbol Param	Parameter	Vcc		T _A = 25 °C 54HC and 74HC			-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0			30	75		95		110	
t_{THL}	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH}	Propagation	2.0			45	130		165		195	
t_{PHL}	Delay Time	4.5			15	26		33		39	ns
		6.0			13	22		28		33	
C _{IN}	Input Capacitance				5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance				53						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. I_{CC}(opr) = C_{PD} • V_{CC} • f_{IN} + I_{CC}

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST WAVEFORM Icc (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

