Segmentation of Medical Image Data-Comparing deep learning models and how accurately they segment kidney scans

- 1. Title
- 2. Motivation
- 3. Dataset
- 4. Analysis Plan
- 5. Tricky Analysis Decision
- 6. Bias and Uncertainty
- 7. Results
- 8. Next Steps

Group 4: Hudson Noyes, **Ali Nilforoush**, Akan Ndem DS 4002, 4/21/2025

Background

Deep Learning, specifically CNNs, can enhance and automate medical imaging

To learn more about the structural differences of DL models, will compare two CNN models' performance

We predict that a more complex model will learn more effectively

How well do different CNN UNet models perform kidney tumor and organ-at-risk segmentation?

Automating tumor segmentation alleviates physician burden and standardizes treatment

Models

2-Layer UNet

DeepLabV3+

Dataset

Field Name	Data Type	Description
case_#	folder	The patient # in the dataset
instances	folder	The manual contours made - follows a naming convention based on kidney or tumor, left or right kidney, and iteration #
segmentation	NIfTI	Ground truth segmentation mask
imaging	NIfTI	Patient CT scan
nii.gz	filetype	Neuroimaging Informatics Technology Initiative, used to store medical images (i.e., MRI, CT); stored as zip files in gz, unzipped with nibabel package in python

- CT scan and labels datasets from the 2023 Kidney & Kidney Tumor Segmentation Challenge
 - 590 cases, of which 110 cases are used
 - 492x396 resolution
- Preprocessing: reorganized, split (64/16/20), and sliced (NIfTI -> NPY)

Analysis Plan

Metrics

Tricky Analysis Decision

Selecting the best models to test

- There are many models and approaches that could be tested
- We chose two well-known models to analyze and compare that are also computationally inexpensive to train

Bias and Uncertainty

- Issue: Difficulty working with large patient volumes and determining amount of data to use
- We decided to use an arbitrary amount of the dataset (110), but plan to use a larger amount for training in the future to improve the results
- We also chose to train the models slice-by-slice on Rivanna to reduce training time

Results and Conclusions

Next Steps

- Verify testing pipeline with field experts
- Run hyperparameter sweeps to optimize parameters
- Train models with more training data and more complex cancer segmentation tasks (i.e., cervical, prostate)

References

- [1] KiTS, "2023 Kidney and Kidney Tumor Segmentation Challenge," KiTS Challenge, 2023. [Online]. Available: https://kits-challenge.org/kits23/
- [2] MIC-DKFZ, "nnU-Net: Self-adapting framework for U-Net-based medical image segmentation," GitHub, 2025. [Online]. Available: https://github.com/MIC-DKFZ/nnUNet
- [3] S. R. Gupta, "kits21_spatial_channel_attention," GitHub, 2025. [Online]. Available: https://github.com/srg9000/kits21_spatial_channel_attention
- [4] The Guardian, "Coeliac disease diagnosis: Al tool," The Guardian, Mar. 27, 2025. [Online]. Available: https://www.theguardian.com/science/2025/mar/27/coeliac-disease-diagnosis-ai-tool
- [5] The Courier Mail, "Charles Darwin University lend hand in developing new Al model to detect endometrial cancer with 99.26% accuracy," The Courier Mail, 2025. [Online]. Available:
- https://www.couriermail.com.au/news/charles-darwin-university-lend-hand-in-developing-new-ai-model-to-detect-endometrial-cancer-with-9926-per-cent-accuracy/news-story/70d9 68a2fb57beae1d295cec417df8c1
- [6] MONAI, "MONAI: AI Toolkit for Healthcare Imaging," 2025. [Online]. Available: https://monai.io/

Thank You!

