Exercises in PDE and Functional Analysis

Exercise Sheet 2

Jendrik Stelzner

Exercise 1

(i)

If the sequence $(x^{(k)})_k$ would converge in ℓ_2 then it would be a Cauchy sequence. But it holds for all l>k that

$$||x^{(l)} - x^{(k)}||_2 = \sqrt{2}$$
,

which shows that this is not the case.

(ii)

It holds for all $l \geq k$ that

$$||x^{(l)} - x^{(k)}||_2 = \left(\sum_{i=k+1}^l \frac{1}{i^2}\right)^{1/2} \le \left(\sum_{i=k+1}^\infty \frac{1}{i^2}\right)^{1/2} \longrightarrow 0$$

as $k \to \infty$ because the sum $\sum_{i=1}^{\infty} \frac{1}{i^2}$ converges. This shows that the sequence $(x^{(k)})_k$ is a Cauchy sequence. It follows from the completeness of ℓ_2 the sequence converges.

(iii)

It holds for all l > k that

$$||x^{(l)} - x^{(k)}||_2 = \left(\sum_{i=k}^{l-1} \frac{1}{i} + \sum_{i=2^k+1}^{2^l} \frac{1}{i}\right)^{1/2} \ge \left(\sum_{i=2^k+1}^{2^l} \frac{1}{i}\right)^{1/2} \ge \left(\sum_{i=2^k+1}^{2^{(k+1)}} \frac{1}{i}\right)^{1/2}$$

$$\ge \left(2^k \cdot \frac{1}{2^{(k+1)}}\right)^{1/2} = \frac{1}{2},$$

which shows that the sequence $(x^{(k)})_k$ is not a Cauchy sequence. It is therefore not convergent.

Exercise 2

(i)

If (X,d) is complete then every Cauchy sequence $(x_n)_n \subseteq X$ converges in X; this holds then in particular for every Cauchy sequence $(x_n)_n \subseteq A$.

Suppose that every Cauchy sequence $(x_n)_n \subseteq A$ converges in X, and let $(y_n)_n \subseteq X$ be a Cauchy sequence. To show that $(y_n)_n$ converges in X we may replace $(y_n)_n$ by any of its subsequences and therefore assume that $d(y_l, y_k) \ge 1/k$ for all $l \ge k$. There exists for every n some $x_n \in A$ with $d(x_n, y_n) < 1/n$. The sequence $(x_n)_n$ is again a Cauchy sequence because it holds for all $l \ge k$ that

$$d(x_l, x_k) = d(x_l, y_l) + d(y_l, y_k) + d(y_k, x_k) < \frac{1}{l} + \frac{1}{l} + \frac{1}{k} < \frac{3}{k}.$$

It follows by assumption that the sequence $(x_n)_n$ converges in X to some $y \in X$. It follows that

$$d(y_n, y) = d(y_n, x_n) + d(x_n, y) \le \frac{1}{n} + d(x_n, y) \longrightarrow 0$$

as $n \to \infty$, which shows that $(y_n)_n$ converges in X.

(ii)

Lemma 1. Let A and Y be metric spaces and let $f: A \to Y$ be a uniformly continuous map. Let $(a_n)_n \subseteq X$ be a sequence.

- 1) If $(a_n)_n$ is a Cauchy sequence then the sequence $(f(a_n))_n \subseteq Y$ is again a Cauchy sequence.
- 2) Suppose that $f(a_n) \to y$ for some $y \in Y$. Let $(a'_n)_n \subseteq A$ be another sequence, for which $d(a'_n, a_n) \to 0$. Then also $f(a'_n) \to y$.

Proof.

- 1) For every $\varepsilon > 0$ there exists some $\delta > 0$ with $d(f(a), f(a')) < \varepsilon$ for all $a, a' \in X$ with $d(a, a') < \delta$. There exists some k with $d(a_l, a_{l'}) < \delta$ for all $l, l' \geq k$, and hence $d(f(a_l), f(a_{l'})) < \varepsilon$ for all $l, l' \geq k$.
- 2) There exists for every $\varepsilon > 0$ some $\delta > 0$ with $d(f(a), f(a')) < \varepsilon/2$ for all $a, a' \in A$ with $d(a, a') < \delta$. There exists some N with $d(a_n, a'_n) < \delta$ and $d(f(a_n), y) < \varepsilon/2$ for all $n \ge N$. It follows that

$$d(f(a'_n), y) = d(f(a'_n), f(a_n)) + d(f(a_n), y) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

for all $n \geq N$, and hence $f(a'_n) \rightarrow y$.

For $x \in X$ there exist a sequence $(a_n)_n \subseteq A$ with $a_n \to x$. It follows from Lemma 1 that the sequence $(f(a_n)_n)_n$ is again a Cauchy sequence, hence converges by the completeness of Y. Let $\tilde{f}(x) := \lim_{n \to \infty} f(a_n)$.

If $(a'_n)_n \subseteq A$ is another sequence with $x'_n \to x$ then

$$d(a_n, a'_n) \le d(a_n, x) + d(x, a'_n) \to 0$$

as $n \to \infty$ and therefore $f(a'_n) \to \tilde{f}(x)$ by Lemma 1. This shows that $\tilde{f}(x)$ is independent of the choice of sequence $(a_n)_n$. (We wont't actually need this independence, but the author thinks that it is nevertheless important enough to warrant a proof.)

To show that \tilde{f} is continuous we show that \tilde{f} is uniformly continuous: So let $\varepsilon > 0$ and let $\delta > 0$ with

 $d(f(a), f(a')) < \frac{\varepsilon}{3}$

for all $a, a' \in A$ with $d(a, a') < 3\delta$. For $x, x' \in X$ with $d(x, x') < \delta$ we show that $\tilde{f}(x, x') < \varepsilon$: We choose sequences $(a_n)_n, (a'_n)_n \subseteq A$ with $a_n \to x$ and $a'_n \to x'$. It then holds that $f(a_n) \to x$ and $f(a'_n) \to x'$ as seen above. Let n be large enough so that

$$d(a_n, x), d(a'_n, x) < \delta$$
 and $d(f(a_n), \tilde{f}(x)), d(f(a'_n), \tilde{f}(x)) < \frac{\varepsilon}{3}$.

It then follows from the inequalities $d(a_n, x), d(x, x'), d(x', a'_n) < \delta$ that $d(a_n, a'_n) < 3\delta$, and hence

 $d(f(a_n), f'(a_n)) < \frac{\varepsilon}{3}$

by choice of δ . We altogether find that

$$d(\tilde{f}(x), \tilde{f}(x')) \le d(\tilde{f}(x), f(a_n)) + d(f(a_n), f(a'_n)) + d(f(a'_n), \tilde{f}(x'))$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

This shows that \tilde{f} is indeed uniformly continuous.

We also note that the continuous extension \tilde{f} is unique because A is dense in X.

(iii)

The isometry f extends by part (ii) (uniquely) to a continuous map $\tilde{f}: X \to Y$. For all $x, x' \in X$ there exist sequences $(a_n)_n, (a'_n)_n \subseteq A$ with $a_n \to x$ and $a'_n \to x'$. It then follows from the continuity of \tilde{f} and the continuity of the metrics $d_X: X \times X \to \mathbb{R}$ and $d_Y: Y \times Y \to \mathbb{R}$ (with respect to the product topologies on both $X \times X$ and $Y \times Y$)

that

$$\begin{aligned} d_Y(\tilde{f}(x), \tilde{f}(x')) &= d_Y \left(\lim_{n \to \infty} (\tilde{f}(a_n), \tilde{f}(a'_n)) \right) \\ &= \lim_{n \to \infty} d_Y(\tilde{f}(a_n), \tilde{f}(a'_n)) \\ &= \lim_{n \to \infty} d_Y(f(a_n), f(a'_n)) \\ &= \lim_{n \to \infty} d_A(a_n, a'_n) \\ &= \lim_{n \to \infty} d_X(a_n, a'_n) \\ &= d_X \left(\lim_{n \to \infty} (a_n, a'_n) \right) \\ &= d_X(x, x') \,. \end{aligned}$$

This shows that \tilde{f} is again an isometry.

It follows that when we restrict \tilde{f} to a map into its image, then \tilde{f} become a bijective isometry.¹ This shows that the subspace $\tilde{f}(X) \subseteq Y$ is complete, and thus closed. But the image $\tilde{f}(X)$ is dense in Y because it contains $\tilde{f}(A) = f(A)$, which is dense in Y. It follows that already $\tilde{f}(X) = Y$. This shows altogether \tilde{f} is a bijective isometry.

Exercise 3

We consider only the case that Ω is nonempty.

(i)

It follows from $\alpha < \beta$ and the boundedness of Ω that

$$C \coloneqq \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{1}{\|x - y\|^{\alpha - \beta}} = \sup_{\substack{x,y \in \Omega \\ x \neq y}} \|x - y\|^{\beta - \alpha} < \infty$$

with C > 0. It therefore holds for every function $f : \Omega \to \mathbb{R}^m$ that

$$\begin{split} [f]_{\alpha} &= \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{\|f(x) - f(y)\|}{\|x - y\|^{\alpha}} = \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{1}{\|x - y\|^{\alpha - \beta}} \frac{\|f(x) - f(y)\|}{\|x - y\|^{\beta}} \\ &\leq \sup_{\substack{x,y \in \Omega \\ x \neq y}} C \frac{\|f(x) - f(y)\|}{\|x - y\|^{\beta}} = C \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{\|f(x) - f(y)\|}{\|x - y\|^{\beta}} = C[f]_{\beta} \end{split}$$

We may replace the constant C by C+1 to ensure that $C \geq 1$, while still maintaining that $[f]_{\alpha} \leq C[f]_{\beta}$ for every $f \colon \Omega \to \mathbb{R}^m$. It then further follows that

$$\|f\|_{0,\alpha} = \|f\|_{\infty} + [f]_{\alpha} \le C\|f\|_{\infty} + C[f]_{\beta} = C\|f\|_{0,\beta}.$$

It follows in particular for $f \in C^{0,\beta}$ that $[f]_{\alpha} \leq C[f]_{\beta} < \infty$ and hence $f \in C^{0,\alpha}$.

 $^{^1\}mathrm{We}$ haven't explicitely shown that \tilde{f} is injective, but isometries are always injective.

(ii)

Lemma 2. If $0 \le \alpha \le 1$ then the map $[0,\infty) \to \mathbb{R}$, $x \mapsto x^{\alpha}$ is subadditive, i.e. it holds that

$$(x+y)^{\alpha} \le x^{\alpha} + y^{\alpha}$$

for all $x, y \in [0, \infty)$.

Proof. We fix $x \in [0, \infty)$. If x = 0 then the claimed inequality holds, so we may assume that x > 0. We then consider the two maps

$$f: [0, \infty) \to \mathbb{R}, \quad y \mapsto (x+y)^{\alpha}$$

and

$$g: [0, \infty) \to \mathbb{R}, \quad y \mapsto x^{\alpha} + y^{\alpha}.$$

It holds that f(0) = g(0) and and both maps are differentiable. It holds for every $x \in [0, \infty)$ that

$$f'(x) = \alpha(x+y)^{\alpha-1} \le \alpha y^{\alpha-1} = g'(x)$$

where we use that $0 \le \alpha \le 1$. It therefore follows from f(0) = g(0) that $f(x) \le g(x)$ for all $x \ge 0$.

Corollary 3. It holds for all $0 \le \alpha < 1$ and all $x, y \ge 0$ that

$$|x^{\alpha} - y^{\alpha}| \le |x - y|^{\alpha}.$$

Proof. We may assume that $x \geq y$. Then

$$x^{\alpha} = ((x-y) + y)^{\alpha} \le (x-y)^{\alpha} + y^{\alpha}$$

by Lemma 2 and therefore

$$|x^{\alpha} - y^{\alpha}| = x^{\alpha} - y^{\alpha} \le (x - y)^{\alpha} = |x - y|^{\alpha},$$

as desired.

We first consider the case m=1. Fix a base point $z\in\Omega$ and consider the continuous function

$$f: \Omega \to \mathbb{R}, \quad x \mapsto ||x - z||^{\alpha}.$$

It holds for all $x, y \in \Omega$ by Corollary 3 and the reverse triangle inequality for $\|\cdot\|$ that

$$||f(x) - f(y)|| = ||x - z||^{\alpha} - ||y - z||^{\alpha} |$$

$$\leq ||x - z|| - ||y - z|| |^{\alpha}$$

$$\leq ||(x - z) - (y - z)|| |^{\alpha}$$

$$\leq ||x - y||^{\alpha} .$$

It then follows that $f \in C^{0,\alpha}(\Omega)$ because

$$[f]_{\alpha} = \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{\|f(x) - f(y)\|}{\|x - y\|^{\alpha}} \le \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{\|x - y\|^{\alpha}}{\|x - y\|^{\alpha}} = 1.$$

But $f \notin C^{0,\beta}(\Omega)$ because

$$[f]_{\beta} = \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{\|f(x) - f(y)\|}{\|x - y\|^{\beta}} \ge \sup_{\substack{y = z \\ x \neq z}} \frac{\|f(x) - f(z)\|}{\|x - z\|^{\beta}} = \sup_{\substack{x \in \Omega \\ x \neq z}} \frac{\|x - z\|^{\alpha}}{\|x - z\|^{\beta}}$$
$$= \sup_{\substack{x \in \Omega \\ x \neq z}} \frac{1}{\|x - z\|^{\beta - \alpha}} = \infty,$$

where we have used that Ω is open and thus contains points arbitrarily close to z (but distinct to z).

For $m \geq 1$ we can replace f by the function

$$\Omega \to \mathbb{R}^m, \quad x \mapsto \begin{pmatrix} \|x - z\|^{\alpha} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

and all of the above calculations stay true.

(iii)

Every Hölder-continuous function is uniformly continuous, so it sufficies to construct a continuous function $f \colon \Omega \to \mathbb{R}^n$ which is not uniformly continuous. If $z \in \partial \Omega$ is a boundary point of Ω then the function

$$f\colon \Omega\to \mathbb{R}\,,\quad z\mapsto \frac{1}{\|x-z\|}$$

should do the trick, but I currently don't have the time to work out the details.

Exercise 4

(i)

Suppose there exists a countable dense subset $D \subseteq X$. Then there exists for every $a \in A$ some $x_a \in D$ with $d(x_a, a) < \delta/2$. It follows from D being countable but A being uncountable that there exist $a_1, a_2 \in A$ with $a_1 \neq a_2$ but $x_{a_1} = x_{a_2} =: x$. It follows that

$$d(a_1, a_2) \le d(a_1, x) + d(x, a_2) < \frac{\delta}{2} + \frac{\delta}{2} = \delta$$

which contradicts the choice of A.

For every subset $S \subseteq \mathbb{Z}$ there exists a continuous bounded function $f_S \colon \mathbb{R} \to \mathbb{R}$ with

$$f_S(n) = \begin{cases} 1 & \text{if } n \in S, \\ 0 & \text{otherwise.} \end{cases}$$

(One can take for every $n \in S$ a small hat of height 1 with peak at the point n and support in [n-1/2,n+1/2], and then connects these hats by the zero function.) It then holds for any two distinct subsets $S,T\subseteq\mathbb{Z}$ that some $n\in\mathbb{Z}$ is contained in precisely one of the sets S and T; it then follows that $|f_S(n)-f_T(n)|=1$. This shows that $||f_S-f_T||\ge 1$ for all $S,T\subseteq\mathcal{P}(\mathbb{Z})$ with $S\neq T$ (where $\mathcal{P}(\mathbb{Z})$ denotes the power set of \mathbb{Z}). It follows from the uncountability of the power set $\mathcal{P}(\mathbb{Z})$ and part (i) of the exercise that $C_b^0(\mathbb{R})$ is not seperable.

(iii)

If $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ are functions for which the limits $\lim_{x \to \infty} f_1(x)$ and $\lim_{x \to \infty} f_2(x)$ exist, then it holds for every $\alpha \in \mathbb{R}$ that the limit $\lim_{x \to \infty} (\alpha f_1 + f_2)(x)$ also exists, and is given by

$$\lim_{x \to \infty} (\alpha f_1 + f_2)(x) = \alpha \left(\lim_{x \to \infty} f_1(x) \right) + \left(\lim_{x \to \infty} f_2(x) \right).$$

The analogous statement for $x \to -\infty$ also holds. It follows that for all functions $f_1, f_2 \colon \mathbb{R} \to \mathbb{R}$ with $\lim_{|x| \to \infty} f(x) = 0$ and all $\alpha \in \mathbb{R}$, the function $\alpha f_1 + f_2$ again satisfies $\lim_{|x| \to \infty} (\alpha f_1 + f_2)(x) = 0$. It also holds that $0 \in C_0^0(\mathbb{R})$. This shows altogether that $C_0^0(\mathbb{R})$ is a linear subspace of $C_b^0(\mathbb{R})$.

Let $f \in C_b^0(\mathbb{R})$ be in the closure of $C_0^0(\mathbb{R})$. Then there exist for every $\varepsilon > 0$ some $g \in C_0^0(\mathbb{R})$ with $||f - g|| < \varepsilon$, and hence

$$|f(x)| \le |g(x)| + |f(x) - g(x)| \le |g(x)| + \varepsilon$$

for every $x \in \mathbb{R}$. It follows that

$$\limsup_{x \to \infty} |f(x)| \le \varepsilon.$$

This shows that $\limsup_{x\to\infty}|f(x)|=0$, which in turn shows that $\lim_{x\to\infty}f(x)=0$. It can be shown in the same way that $\lim_{x\to-\infty}f(x)=0$. This shows together that $\lim_{|x|\to\infty}f(x)=0$, and hence that $\mathrm{C}_b^0(\mathbb{R})$ is closed in $\mathrm{C}_b^0(\mathbb{R})$.

It remains to show that $C_0^0(\mathbb{R})$ is separable. We know from the lecture that $C_0^0([-n,n])$ is separable for every $n \in \mathbb{N}$ (see Theorem 2.5 in the lecture notes). Let $B_n \subseteq C^0([-n,n])$ be a countable dense subset. We extend every $g \in B_n$ to a function $\hat{g} \in C_0^0(\mathbb{R})$ by letting \hat{g} tend linearly to 0 on the intervals [-n-1,-n] and [n,n+1] and setting $\hat{g} \equiv 0$

outside of [-n-1, n+1]. This means explicitly that

$$\hat{g}(x) = \begin{cases} 0 & \text{if } x \le -n - 1, \\ g(-n) \cdot (x + n + 1) & \text{if } -n - 1 \le x \le -n, \\ g(x) & \text{if } -n \le x \le n, \\ g(n) \cdot (n + 1 - x) & \text{if } n \le x \le n + 1, \\ 0 & \text{if } x \ge n + 1. \end{cases}$$

Let $\hat{B}_n := \{\hat{g} \mid g \in B_n\}$ and set $\hat{B} := \bigcup_{n \geq 0} \hat{B}_n$. Then \hat{B} is a countable subset of $C_0^0(\mathbb{R})$, and we claim that it is dense:

Let $f \in C_0^0(\mathbb{R})$ and let $\varepsilon > 0$. There exist some $n \in \mathbb{N}$ with $|f(x)| \leq \varepsilon$ whenever $|x| \geq n$. It holds in particular that

$$|f(n)|, |f(-n)| \le \varepsilon \tag{1}$$

There exist by choice of B_n some $g \in B_n$ with $||f - g||_{C^0([-n,n])} \le \varepsilon$. It follows in particular that $|f(x) - g(x)| \le \varepsilon$ for x = n, -n, and hence

$$|g(n)|, |g(-n)| \le 2\varepsilon$$

by (1). It then follows from the construction of the extension \hat{g} that $|g(x)| \leq 2\varepsilon$ for all $|x| \geq n$. It follow from the triangle inequality that

$$|f(x) - g(x)| \le |f(x)| + |g(x)| \le 2\varepsilon + \varepsilon = 3\varepsilon$$

for all $|x| \geq n$. Together with $||f - g||_{\mathrm{C}^0([-n,n])} \leq \varepsilon$ this shows that $||f - g||_{\mathrm{C}^0_0(\mathbb{R})} \leq 3\varepsilon$.