CS102 COMPUTER PROGRAMMING FUNDAMENTALS

LECTURE 1: OVERVIEW OF COMPUTER AND PROBLEM SOLVING

Natsuda Kaothanthong

Dept. of Computer Sciences, Thammasat University

ภาพรวมเกี่ยวกับคอมพิวเตอร์ • คอมพิวเตอร์คืออะไร • คอมพิวเตอร์คืออุปกรณ์ที่สามารถเขียนโปรแกรมเพื่อทำการคำนวณเลขหรือ ทำงานตามคำสั่งได้โดยอัตโนมัติ • กระบวนการพื้นฐานของคอมพิวเตอร์ Input กระบวนการ Output พื้นที่เก็บ

หัวข้อในคาบนี้

- ภาพรวมเกี่ยวกับคอมพิวเตอร์
 - คอมพิวเตอร์คืออะไร
 - ส่วนประกอบสำคัญในคอมพิวเตอร์
 - รูปแบบดิจิตอล
- พื้นฐานการแก้ไขปัญหา
 - ประเภทของปัญหา
 - Conceptพื้นฐานในการแก้ไขปัญหา

Dept. of Computer Sciences, Thammasat University

ส่วนประกอบสำคัญในคอมพิวเตอร์

ข้อมูล (Data)

 ข้อมูล หมายถึง ข้อเท็จจริงในโลก ที่ถูกอุปกรณ์รับข้อมูลเข้า แปลงจากสภาพข้อมูล ธรรมชาติ (เช่น จำนวน, ตัวอักษร, ภาพ, เสียง, ภาพเคลื่อนไหว) เป็นข้อมูลดิจิทัล เพื่อส่งเข้าไปประมวลผลในคอมพิวเตอร์

ซอฟต์แวร์ (Software) หรือ โปรแกรม (Program)

- ชุดคำสั่งที่ควบคุมการทำงานของเครื่องคอมพิวเตอร์
- ระบบปฏิบัติการทำหน้าที่จัดสรรทรัพยากรภายในเครื่อง

Dept. of Computer Sciences, Thammasat University

2

ส่วนประกอบสำคัญในคอมพิวเตอร์ - ฮาร์ดแวร์ • ภายในคอมพิวเตอร์ต้องมีซีพียู (Central Processing Unit) อย่าง น้อย 1 ตัว • หน่วยความจำ: • แคช และ แรม (Random Access Memory) Arithmetic Logic Unit (ALU) Main Input/ Control Unit Memory Output (RAM) Cache CPU Dept. of Computer Sciences, Thammasat University

ส่วนประกอบสำคัญในคอมพิวเตอร์

ฮาร์ดแวร์ (Hardware)

 ชิ้นส่วนอุปกรณ์และองค์ประกอบที่จับต้องได้ ที่ประกอบกันขึ้นเป็นเครื่อง คอมพิวเตอร์

สารสนเทศ (Information)

 สารสนเทศ หมายถึงข้อมูลที่มีความหมาย มีประโยชน์ ส่วนใหญ่จะเป็น ผลลัพธ์จากการคำนวณด้วยซอฟต์แวร์ สามารถนำมาแสดงในรูปแบบที่ มนุษย์เข้าใจได้

Dept. of Computer Sciences, Thammasat University

THIS LECTURE

- ภาพรวมเกี่ยวกับคอมพิวเตอร์
 - คอมพิวเตอร์คืออะไร
 - ส่วนประกอบสำคัญในคอมพิวเตอร์
 - รูปแบบดิจิตอล
- พื้นฐานการแก้ไขปัญหา
 - ประเภทของปัญหา
 - Conceptพื้นฐานในการแก้ไขปัญหา

Dept. of Computer Sciences, Thammasat University

ประเภทของปัญหา

1. ปัญหาที่ต้องแก้ด้วยวิธีศึกษาดำนึก (Heuristic solutions)

• ปัญหาที่ไม่มีคำตอบที่ตรงไปตรงมา

• แนวทางตัดสินใจเพื่อแก้ปัญหานั้นมักจะใช้วิธีการลองผิดลองถูกไปเรื่อย จนกว่าจะได้ผลที่พอใจ

Finding the shortest path

Dept. of Computer Sciences, Thanmasat University

ประเภทของปัญหา

ปัญหาบางประเภทไม่มีคำตอบที่ตรงไปตรงมา และบางประเภทมี คำตอบที่ชัดเจน มีวิธีแก้ปัญหาที่เป็นขั้นตอน

ปัญหาจึงแบ่งเป็น **2** ประเภท

- 1. ปัญหาที่ต้องแก้ด้วยวิธีศึกษาสำนึก (Heuristic solutions)
- 2. ปัญหาที่แก้ได้ด้วยอัลกอริทึม (Algorithmic solutions)

Dept. of Computer Sciences, Thammasat University

ประเภทของปัญหา

2. ปัญหาที่แก้ได้ด้วยอัลกอริทึม (Algorithmic solutions)

• ปัญหาที่จะได้ผลลัพธ์ หากค่อย ๆ แก้ด้วยการทำตามวิธีการทีละ ขั้นตอน

6 2 10

Finding the largest value

http://learn.code.org/s/1/level/13

จงเขียนลำดับการทำงานของปัญหาต่อไปนี้ หาค่าเฉลี่ยของตัวเลข 5 ตัว ดังต่อไปนี้ 3 6 1 3 9 Input: Expected Output: Actions:

ทักษะในการแก้ปัญหา มี 3 ระดับ ระดับแรก แก้ปัญหาที่ใช้วิธีแก้ปัญหาแบบเดิมได้ • เมื่อพบบัญหาเดิม หรือบัญหาที่มีรูปแบบเดิม สามารถแก้บัญหาที่มีลักษณะเหมือนกับ บัญหาที่เคยแก้ไข่ได้แล้ว • หาค่าเฉลี่ยของตัวเลข 10 จำนวน ระดับที่สอง แก้ปัญหาใหม่ที่คล้ายใจทย์เดิมได้ • เมื่อพบบัญหาใหม่ที่มีลักษณะคล้ายกับบัญหาเดิมที่เคยแก้ไข่ได้แล้ว จะสามารถประยุกต์ วิธีการแก้ไขบัญหาแบบเดิมมาปรับใช้กับโจทย์ใหม่ได้ • หาค่าที่น้อยที่สุดใน 5 จำนวน • หาค่าที่มากที่สุดใน 5 จำนวน ระดับสุดท้าย แก้ปัญหาใหม่ด้วยการบูรณาการทักษะเดิม หรือด้วยการ ปรับวิธีเดิมมาใช้กับโดเมนใหม่

จงเขียนลำดับการทำงานของปัญหาต่อไปนี้ หาค่าที่มากที่สุดจากตัวเลข 5 ตัว ดังต่อไปนี้ • 3 6 1 3 9 Input: Expected Output: Actions:

สรป

ภาพรวมเกี่ยวกับคอมพิวเตอร์

- Basic concept
- ส่วนประกอบหลัก:
 - CPU, Software, Hardware, Data, and Information.
- รูปแบบดิจิตอล
- ขั้นตอนในการแก้ไขปัญหา
 - ೯೭೪ input, output, and a set of actions.
 - ประเภทของการแก้ไขบัญหา: Heuristic and Algorithmic solutions.
 - การวิเคราะห์ปัญหา
 - · Identifying input, expected output, and an algorithm.

Dept. of Computer Sciences, Thammasat University

2

Process of Problem Solving

วิวัฒนาการของคอมพิวเตอร์ในยุคแรก

ก่อนสงครามโลกครั้งที่สอง (ก่อน พ.ศ.2483)

มนุษย์ผลิตเครื่องช่วยคำนวณ เพื่อความแม่นยำ และความเร็ว

ยุคต้น: ประวัติศาสตร์ถึงต้นกรุงศรีอยุธยา

 กองหินส(ตนเฮนจ์ (stonehenge), ลูกคิด (abacus), เนเบียร์โบน (Napier's Bone), ไม้บรรทัดเลื่อน (Slide rule)

เครื่องคำนวณจักรกล - สมัยสมเด็จพระนารายณ์มหาราช

- ปี พ.ศ.2215 เครื่องบวกเลขของปาสคาล (Pascaline) ฝรั่งเศส
- ปี พ.ศ.2217 เครื่องคำนวณของไลปนิช (Leibnitz's Wheel) เยอรมัน

เครื่องจักรที่ควบคุมด้วยโปรแกรม – สมัยรัชกาลที่ 1

 พ.ศ.2344 เครื่องทอผ้าของแจ็คคาร์ด (Jacquard loom) ชาวฝรั่งเศส ใช้ บัตรเจาะรูเป็นแผ่นบันทึกลำดับการสอดเส้นด้ายลงในเครื่องทอผ้า เพื่อให้เกิดลวดลาย

Dept. of Computer Sciences, Thammasat University

HISTORY OF COMPUTER

(SELF STUDY)

Dept. of Computer Sciences, Thammasat Universit

٧

ิวิวัฒนาการของคอมพิวเตอร์ในยุคแรก

ก่อนสงครามโลกครั้งที่สอง (ก่อน พ.ศ.2483) เครื่องคำนวณจักรกล

เครื่องคำนวณสมการเชิงอนุพันธ์ ชื่อว่า ดิฟเฟอเรนต์เอ็นจิน (Different Engine) โดย ชาร์ล แบบแบ็จ (Charles Babbage)

ศาสตราจารย์นักคณิตศาสตร์ แห่งมหาวิทยาลัยเคมบริดจ์ เป็นบิดาแห่งคอมพิวเตอร์

อนาไลติคัลเอ็นจิน (Analytical Engine) มืองค์ประกอบ 4 ส่วนได้แก่

- มิล (mill) หรือ โรงงาน เป็นส่วนกลไทที่ใช้คำนวณหาผลลัพธ์ เทียบกับ หน่วยประมวลผล หรือ ขีพียู ของเครื่องปัจจุบัน
- สตอร์ (store) หรือ โกดังเป็นส่วนเก็บข้อมูลที่จะนำไปคำนวณ เทียบเท่ากับ หน่วความจำ
- โอเปอเรเตอร์ (operator) เป็นส่วนอ่านข้อมูลเข้ามาจากบัตรเจาะรู เทียบเท่ากับระบบรับข้อมูลเข้า และบัส
- หน่วยแสดงผล (Output unit) บันทึกผลลัพธ์ออกไปที่บัตรเจาะรู เทียบเท่ากับ ระบบแสดงผล ข้อมล

Dept. of Computer Sciences, Thammasat University

8

วิวัฒนาการของคอมพิวเตอร์ในปัจจุบัน

ช่วงสงครามโลกครั้งที่สอง (รัชกาลที่ 8 ถึงต้นรัชกาลที่ 9)

- เครื่องคำนวณด้วยไฟฟ้า
 - สร้างวงจรคำนวณจากหลอดสณญากาศ
 - ภายหลังสร้างวงจรคำนวณจากทรานซิสเตคร์
- เครื่องเอบีซี (ABC) เครื่องคำนวณด้วยไฟฟ้าเครื่องแรก
- เครื่องอินีแอค (ENIAC) คอมพิวเตอร์ใช้ไฟฟ้าเพื่อการสงคราม
- เครื่องแอดแวค (EDVAC) คอมพิวเตอร์ฐานสองเครื่องแรก
 - เครื่องในใจโปรแกรมเมอร์ตลอดกาล : วอนน์ นิวแมน แมซีน (Vonn Neuman's Machine)
- เครื่องเอ็ดแซ็ก (EDSAC) คอมพิวเตอร์แบบเก็บโปรแกรม
- ยูนิแว็ควัน (UNIVAC I) คอมพิวเตอร์เพื่อจำหน่ายเครื่องแรก

Dept. of Computer Sciences, Thammasat University

6

ภาพประกอบจาก

http://www.apple.com/

http://maps.nokia.com/

http://www.ferrari.com/English/GT_Sport%20Cars/CurrentRange/Ferrari_599 GTB/Pages/599GTB.aspx

http://www.interweb.in/attachments/playstation/26831d1244788678-playstation-4-playstation-4.jpg

http://www.standardchartered.co.th/services/automated-banking-lobby/en/ images/index clip image001.jpg

http://mrl.nyu.edu/~perlin/courses/spring2007/userinterfacesintro/abacus-1-AJHD.jpg

http://news.cnet.com/8301-17938 105-10468134-1.html

http://www.sphinxcomputers.co.uk/ekmps/shops/sphinx/images/computer-system-amd-x4-945-quad-core-king-tut-556-p.bmp

Dept. of Computer Sciences, Thammasat University

'n

ยุคของคอมพิวเตอร์

ยุคที่ 1 (1946-1957) ยุคหลอดสูญญากาศ (Vacuum tube)

ยุคที่ 2 (1958-1964) ยุคทรานซิสเตอร์ (Transistor)

- 1965 Small scale integration : บรรจุประมาณ 100 ทรานซิสเตอร์ใน ซิบ
- 1965 1971 Medium scale integration : บรรจุประมาณ 100-3.000 ทรานซิสเตอร์บนซิบหนึ่งตัว

ยุคที่ 3 (1971-1977) ยุคแอลเอสไอ (Large scale integration): บรรจุ ประมาณ 3,000 - 100,000 ทรานซิสเตอร์ในชิบหนึ่งตัว

ยุคที่ 4 (1978 -1991) ยุควีแอลเอสไอ (Very large scale integration) : บรรจุประมาณ 100,000 – 100 ล้าน ทรานซิสเตอร์ในชิบหนึ่งตัว

• 1991 - Ultra large scale integration จุได้มากกว่า 100 ล้าน

Dept. of Computer Sciences, Thammasat University

ยุคที่ 5: Nanotubes? Optical? Quantum?