Problem Statement

Attention is not recurrent, it can only deal with fixed-length context Context fragment: 기존 모델의 fixed length는 long term dependency 해결 못함

Problem Statement

Transformer보다 긴 Longer dependency 해결

RNN 대비 80%, vanilla Transformer대비 450%

Article Generation으로 천 단어 정도의 토큰 생성을 가능

Related Work

- Truncated Back Propagation Through Time (Truncated BPTT)
 - RNN 기반의 모델
 - 이전 batch에서 hidden states를 가져와 현 batch에 넘겨준다
- Character Transformer Model
 - Transformer를 Char로 접근
 - 매우 깊은 (64 Layer)를 쌓았음.

Vanlia Transformer (Char Transformer)

*Al-Rhou et al 2018, Character-Level Language Modeling with Deeper Self-Attention 11

Valina Transformer: 정보가 segments 단위로 나눠져 전후 문맥을 볼 수가 없음

Segment Recurrence

- 기존 Transformer의 단점: 고정된 길이의 문맥 정보만 활용
 - -> 긴 컨텍스트를 보기 위해 세그먼트 리커런스라는 기법 제안

Relative Position Embedding

-> Segment Recurrence로 인핸 Absolute Position의 문제를 해결하고자 상대 길이 제안

XL의 문제 해결법: Segment Recurrence

장점

- 1. X9를 예측 할때, 정보가 없어 예측하기 힘든 것을 강화
- 2. 기존에 이슈가 되었던 Seg끼리 정보가 전파가 안되는 점을 해결
- 3. No Grad (모든 히든을 Cashe로 가지고 있음) -> 계산이 빠름

Stop Gradient 후 Cache화 + 현재와 Concat

$$\begin{split} \widetilde{\mathbf{h}}_{\tau+1}^{n-1} &= \left[\mathbf{SG}(\mathbf{h}_{\tau}^{n-1}) \circ \mathbf{h}_{\tau+1}^{n-1} \right], \\ \mathbf{q}_{\tau+1}^{n}, \mathbf{k}_{\tau+1}^{n}, \mathbf{v}_{\tau+1}^{n} &= \mathbf{h}_{\tau+1}^{n-1} \mathbf{W}_{q}^{\top}, \widetilde{\mathbf{h}}_{\tau+1}^{n-1} \mathbf{W}_{k}^{\top}, \widetilde{\mathbf{h}}_{\tau+1}^{n-1} \mathbf{W}_{v}^{\top}, \\ \mathbf{h}_{\tau+1}^{n} &= \mathbf{Transformer-Layer}\left(\mathbf{q}_{\tau+1}^{n}, \mathbf{k}_{\tau+1}^{n}, \mathbf{v}_{\tau+1}^{n}\right). \end{split}$$
 [Self-attention + FF]

일반

return new_mems

Code

```
def forward(self, w, r, r w bias, r r bias, attn mask=None, mems=None):
def _update_mems(self, hids, mems, glen, mlen):
                                                                        glen, rlen, bsz = w.size(0), r.size(0), w.size(1)
    # does not deal with None
                                                                       # W: [36, 4, 200]
    if mems is None: return None
                                                                       # r: [36, 1, 200] if mems is None else [72, 1, 200]
                                                                       # mems : [36, 4, 200]
    # mems is not None
    assert len(hids) == len(mems), 'len(hids) != len(mems)'
                                                                        if mems is not None: ____
                                                                           cat = torch.cat([mems, w], 0)
    # There are `mlen + qlen` steps that can be cached into mems
                                                                           # cat : [72, 4(batch_size), 200]
    # For the next step, the last `ext len` of the `glen` tokens
                                                                           if self.pre lnorm:
    # will be used as the extended context. Hence, we only cache
                                                                               w_heads = self.qkv_net(self.layer_norm(cat))
    # the tokens from `mlen + glen - self.ext len - self.mem len
                                                                           else:
    # to `mlen + glen - self.ext_len`.
                                                                               w_heads = self.qkv_net(cat)
                                                                           r_head_k = self_r_net(r)
   with torch no grad():
        new mems = []
                                                                           # w_heads : [72, 4, 12] L
        end_idx = mlen + max(0, qlen - 0 - self.ext_len)
                                                                           w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
        beg_idx = max(0, end_idx - self.mem_len)
                                                                           w_head_q = w_head_q[-qlen:]
        for i in range(len(hids)):
            cat = torch.cat([mems[i], hids[i]], dim=0)
            new_mems.append(cat[beg_idx:end_idx].detach())
```

Relative Position Embedding

기존 Positional Embedding으로는 해결이 되지 않음 (위치가

겹침)

[0,1,2,3] [0,1,2,3] [0,1,2,3]

Segment 1 Segment 2

Segment 3

상대적 위치를 계산하여 문제 해결! (key vector와 query vector (i - j)

$$\mathbf{A}_{i,j}^{\text{rel}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(b)}$$
$$+ \underbrace{\mathbf{u}^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{v}^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(d)}.$$

Relative Position Embedding

기존

개선

$$\mathbf{A}_{i,j}^{\text{abs}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(b)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(d)}.$$

$$\mathbf{A}_{i,j}^{\text{rel}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(b)}$$
$$+ \underbrace{\mathbf{u}^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{v}^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(d)}.$$

Relative Position Embedding

발 없는 말이 천리 간다 -> [발, 없는, 말, 이, 천리, 간다]

메모리 세그먼트: [발, 없는, 말]

현재 세그먼트: [이, 천리, 간다]

q0: 0|

q1: 천리

q2: 간다

Vanilla Prediction

기존은 포지션 당 1개의 예측만 가능 (Extremly Expensive)

TransformerXL Prediction

이전 segments에서 메모리를 사용하기 때문에, 한 segments에 대한 결과가 한꺼번에 연산 가능

TransformerXL Prediction

이전 segments에서 메모리를 사용하기 때문에, 한 segments에 대한 결과가 한꺼번에 가능

Dataset 및 결과

- WikiText-103*
 - Word-level dataset with long-term dependency
 - 103M training tokens from 28K articles, average length of 3.6K tokens per article
- enwiki-8
 - 100M bytes of unprocessed Wikipedia text
- text-8
 - 100M processed Wikipedia characters
- One Billion Word
 - Shuffled sentences (No long-term dependency)

평가방법

Perplexity (PPL)

$$PPL(W) = P(w_1 w_2 \dots w_N)^{-\frac{1}{N}}$$

Bit Per Character (bpc)

$$BPC = Average(-\log_2 P(x_{t+1} \mid y_t))$$

- Relative Effective Context Length (RECL)
 - Effective Context Length*: longest length to which increasing the context span would lead to a gain more than a threshold
 - RECL: relative improvement over the best short context model

평가 결과 (1)

Model	#Param	PPL	
Grave et al. (2016b) - LSTM	-	48.7	
Bai et al. (2018) - TCN	-	45.2	
Dauphin et al. (2016) - GCNN-8	-	44.9	
Grave et al. (2016b) - LSTM + Neural cache	-	40.8	
Dauphin et al. (2016) - GCNN-14	-	37.2	
Merity et al. (2018) - QRNN	151M	33.0	
Rae et al. (2018) - Hebbian + Cache	_	29.9	
Ours - Transformer-XL Standard	151M	24.0	
Baevski and Auli (2018) - Adaptive Input [⋄]	247M	20.5	
Ours - Transformer-XL Large	257M	18.3	

Table 1: Comparison with state-of-the-art results on WikiText-103. ♦ indicates contemporary work.

Model	#Param	bpc	
Ha et al. (2016) - LN HyperNetworks	27M	1.34	
Chung et al. (2016) - LN HM-LSTM	35M	1.32	
Zilly et al. (2016) - RHN	46M	1.27	
Mujika et al. (2017) - FS-LSTM-4	47M	1.25	
Krause et al. (2016) - Large mLSTM	46M	1.24	
Knol (2017) - cmix v13	-	1.23	
Al-Rfou et al. (2018) - 12L Transformer	44M	1.11	
Ours - 12L Transformer-XL	41M	1.06	
Al-Rfou et al. (2018) - 64L Transformer	235M	1.06	
Ours - 18L Transformer-XL	88M	1.03	
Ours - 24L Transformer-XL	277M	0.99	

Table 2: Comparison with state-of-the-art results on enwik8.

LM모델

Char-Level도 좋은 성능

Best

평가 결과 (2)

Model	#Param	bpc
Cooijmans et al. (2016) - BN-LSTM	-	1.36
Chung et al. (2016) - LN HM-LSTM	35M	1.29
Zilly et al. (2016) - RHN	45M	1.27
Krause et al. (2016) - Large mLSTM	45M	1.27
Al-Rfou et al. (2018) - 12L Transformer	44M	1.18
Al-Rfou et al. (2018) - 64L Transformer	235M	1.13
Ours - 24L Transformer-XL	277M	1.08

Table 3: Comparison with state-of-the-art results on text8.

Model	#Param PPI	
Shazeer et al. (2014) - Sparse Non-Negative	33B	52.9
Chelba et al. (2013) - RNN-1024 + 9 Gram	20B	51.3
Kuchaiev and Ginsburg (2017) - G-LSTM-2	-	36.0
Dauphin et al. (2016) - GCNN-14 bottleneck	-	31.9
Jozefowicz et al. (2016) - LSTM	1.8B	30.6
Jozefowicz et al. (2016) - LSTM + CNN Input	1.04B	30.0
Shazeer et al. (2017) - Low-Budget MoE	~5B	34.1
Shazeer et al. (2017) - High-Budget MoE	~5B	28.0
Shazeer et al. (2018) - Mesh Tensorflow	4.9B	24.0
Baevski and Auli (2018) - Adaptive Input [⋄]	0.46B	24.1
Baevski and Auli (2018) - Adaptive Input ^o	1.0B	23.7
Ours - Transformer-XL Base	0.46B	23.5
Ours - Transformer-XL Large	0.8B	21.8

Table 4: Comparison with state-of-the-art results on One Billion Word. $^{\circ}$ indicates contemporary work.

Char-level 모델

Long-term + Short-term 보다 좋음

Inference 속도의 차이 - 학습과 모델 크기의 한계는 있지만 Generation으로는 최적화 모델이

아닐까?

Model	r = 0.1	r = 0.5	r = 1.0
Transformer-XL 151M	900	800	700
QRNN	500	400	300
LSTM	400	300	200
Transformer-XL 128M	700	600	500
- use Shaw et al. (2018) encoding	400	400	300
- remove recurrence	300	300	300
Transformer	128	128	128

Table 8: Relative effective context length (RECL) comparison. See text for the definition of RECL and r. The first three models and the last four models are compared as two *model groups* when we calculate RECL (RECL is computed on a model group rather than a single model). Each group has the same parameter budget.

How Long

기존 Char-transformer

Attn Len	How much Al-Rfou et al. (2018) is slower
3,800	1,874x
2,800	1,409x
1,800	773x
800	363x

Table 9: Slowdown in terms of running time during evaluation. Evaluation is based on per-token time on one GPU.

How Fast

Limitation (Paper 거절 이유)

Better language 모델이지만, downstream task에서의 자료가 없음

Document 생성 잘 된다고 했는데 없음..

OpenGPT2가 관련 모델을 이겼음

XLNet