2 Secondary Physics

Definition of Electricity:

• Electricity is the flow of electrical charges (electrons or ions).

Types of Electric Charges:

- Positive charge (+)
- Negative charge (-)
- Like charges repel, unlike charges attract.
- Electric charge is measured in **coulombs** (C).

Materials Based on Charge Conductivity:

Type Definition

Conductors Materials that allow charge to move freely (e.g., copper).

Insulators Materials that restrict charge movement (e.g., plastic).

Coulomb's Law (Force Between Charges):

- F= Electric force (Newtons)
- K = Coulomb's constant $9*10^9N.m^2/C^2$
- q1,q2= Magnitude of charges (Coulombs)
- r= Distance between charges (meters)

Dangers of Static Electricity:

Caused by charge buildup in clouds, potentially damaging buildings or

harming people.

Damage to electronic

devices

Static charges can destroy sensitive components (ex: computer parts).

Flammable gas ignition Sparks from static electricity can ignite gasoline vapors at fuel stations.

Attracting dust and germs May cause contamination of medical equipment.

Uses of Static Electricity:

• Laser printing: Uses electrostatic attraction to apply toner.

• Electrostatic precipitators: Remove pollutants from the air.

• **Spray painting**: Ensures even distribution of paint on surfaces.

Coulomb's Law

• The force (F) between two charges:

o **Inversely proportional** to the square of the distance:

o **Directly proportional** to the product of the charges:

o Formula:

$$F=Krac{q_1q_2}{d^2}$$

Electric Field (E)

• Space around a charge where forces are felt.

• **SI unit:** Newton per Coulomb (N/C).

• **Direction:** Away from **positive** charges, toward **negative** charges.

Applications:

- 1. **Photocopiers & Printers** Use electrostatic charges to transfer ink.
- 2. **Pollution Control** Electrostatic precipitators remove pollutants.
- 3. **Spray Painting** Charged droplets ensure even coating.
- 4. **Lightning Rods** Safely discharge static electricity.

Types of Electric Charge:

- Negative charge: Found on a plastic rod rubbed with fur.
- **Positive charge**: Found on a glass rod rubbed with silk.

Electric Attraction & Repulsion:

- **Like charges repel** (both positive or both negative).
- **Opposite charges attract** (one positive, one negative).

Definition of Electric Fields:

- An **electric field** is the area around a charge where its effect can be felt.
- It is a **vector quantity** (has both magnitude and direction)

Electric Field Generation:

- 1. By a stationary charge:
 - o **Positive charge:** Field lines point **outward**.
 - o **Negative charge:** Field lines point **inward**.
- 2. By a changing magnetic field.

Electric Field Lines:

- Like charges repel (field lines push away).
- Opposite charges attract (field lines pull together).

Formula for Electric Field Intensity (E):

$$E=rac{F}{q}=Krac{q}{d^2}$$

- E = Electric field intensity (N/C)
- F = Force (N)
- q= Charge (C)
- d = Distance from the charge (m)
- K = Coulomb's constant
 - Measured using an **Electrometer**.
 - The field strength **decreases with distance** (inverse square law).
 - Force in an electric field depends on charge amount and distance.

By: Arwa Ghandour