전자기학/초고주파 분야

박사과정 자격시험 (2017.5.26)

1. (20점) A spherical charge distribution is defined by

$$\rho_V = \begin{cases} kr^2 & (C/m^3) & r < a \\ 0 & (C/m^3) & r > a \end{cases}$$

Where k is a constant. Using Gauss's law, determine the electric field for

- (a) r < a
- (b) r > a
 - 2. **(15점)** The cylindrical conductor shown in the Figure below carries a current density of $J = J_o \rho a_z A/m^3$ where J_o is a constant. Use Ampere's law to determine
 - (a) the vector magnetic field inside the conductor (ρ <a).
 - (b) the vector magnetic field outside the conductor (ρ >a).

3. **(15점)** In linear circuits, we have learned that the same current I(t) flows through all the circuit elements. However we know this <u>cannot</u> be totally true – there is no way "real" current can flow across the plates of a capacitor!

Explain using plain words or mathematical expressions to justify how "real" current can flow through a capacitor.

- 4. (20 pts) A uniform plane wave with $\overrightarrow{E} = \hat{x}E_x$ propagates in a lossless simple medium ($\epsilon_r = 4$, $\mu_r = 1$, $\sigma = 0$) in the +z direction. Assume that E_x is a sinusoidal with a frequency 100 (MHz) and a maximum value of 10^{-4} (V/m) at t=0 and z=1/6 (m). (Use π instead of 3.141592...)
- a) (5 pts) Write the instantaneous expression for $\overrightarrow{E}(z,t)$.
- b) (5 pts) Write the instantaneous expression for H(z,t).
- c) (10 pts) Determine the locations where E_x is a positive maximum when $t = 10^{-8}$ (sec).
- 5. (10pts) Assume an infinitely long waveguide filled with an internal lossless medium (ϵ,μ) , and its internal time-harmonic field propagates in +z direction with propagation constant γ . Use time-harmonic Maxwell's equations in Cartesian coordinates in order to derive $E_x(x,y),\ E_y(x,y),\ H_x(x,y),\ H_y(x,y)$ expressions in terms of $E_z,\ H_z$ and $h^2=\gamma^2+k^2,$ where $k=\omega\,\sqrt{\mu\epsilon}$ is a wavenumber in the waveguide.
- 6. [20pts] Consider the following rectangular waveguide for a > b. (Use the results in prob. 5)

- (a) [10pts] Derive $H_z(x,y)$ for TE mode by solving the homogeneous vector Helmholtz equation and boundary conditions.
- (b) [10pts] Derive the wave impedance Z_{TE} of the propagating TE modes in terms of cutoff frequency f_c and η , where η is the intrinsic impedance of the unbounded medium (ϵ, μ) .