WHAT IS CLAIMED IS:

1	1. An apparatus comprising:
2	a first system of microfabricated components including at least a reservoir and a
3	channel; and
4	a second system of detection components including at least a lens, said lens being
5	focused on a region (hereinafter "sensing platform") of said first system,
6	said region being coupled to said reservoir by said channel.
1	2. The apparatus as set forth in claim 1, wherein the second system includes a
2	fluorescence detection system.
1	3. The apparatus as set forth in claim 1, wherein the second system includes a
2	laser, said laser being positioned to illuminate a sample in the sensing platform.
1	4. The apparatus as set forth in claim 1, wherein the first system further
2	comprises a pump.
1	5. The apparatus as set forth in claim 4, wherein the pump is electro-magnetically
2	actuated.
1	6. The apparatus as set forth in claim 4, wherein the pump is piezoelectrically
2	actuated.
1	7. The apparatus as set forth in claim 1, wherein the first system further
2	comprises a valve.
1	8. The apparatus as set forth in claim 1, further comprising a thermoelectric
2	cooler positioned to control the temperature of at least one of the microfabricated
3	components.
1	9. The apparatus as set forth in claim 1, further comprising at least one driver

unit coupled to provide control signals to at least one of the microfabricated components.

1	10. The apparatus as set forth in claim 1, wherein the first system is disposable.
1	11. The apparatus as set forth in claim 1, wherein the first system further
2	comprises a mixer.
1	12. The apparatus as set forth in claim 11, wherein the mixer includes a nozzle
2	positioned to inject a first substance into a chamber containing a second substance.
1	13. The apparatus as set forth in claim 1, wherein the first system further
2	comprises a filter.
1	14. The apparatus as set forth in claim 1, wherein at least a portion of the
2	microfabricated components are etched in a silicon substrate.
1	15. The apparatus as set forth in claim 1, wherein at least a portion of the
2	microfabricated components are formed in a polymer substrate.
2	interolabileated components are formed in a polymer substrate.
1	16. A biosensor system for processing a sample and detecting one or more targe
2	substances in the sample, comprising:
3	a data processing and control unit;
4	a microfluidic system coupled to communicate with the data processing and
5	control unit, wherein the microfluidic system includes microfabricated
6	components;
7	a detection system coupled to receive a processed sample from the microfluidic
8	system and transmit signals regarding the target substances to the data
9	processing and control unit; and
10	a handheld housing including the data processing and control unit, the
11	microfluidic system, and the detection system.
1	17. The system as set forth in claim 16, further comprising a user interface
2	coupled to receive input from a user and provide output to the user, the user interface
3	being further coupled to provide the input from the user to the data processing and
4	control unit.
-	· · · · · · · · · · · · · · · · · · ·

2

1

1

2

1

2

- 1 18. The system as set forth in claim 17, wherein the output to the user includes 2 information regarding the target substances.
- 1 19. The system as set forth in claim 17, wherein the input from the user includes 2 information regarding the processing to be performed on the sample.
- 1 20. The system as set forth in claim 16, wherein the data processing and control 2 unit processes information from the detection system.
- 1 21. The system as set forth in claim 16, wherein the data processing and control 2 unit includes one or more driver units coupled to control operation of the components in 3 the microfluidic system.
- 1 22. The system as set forth in claim 16, wherein the data processing and control 2 unit includes one or more driver units coupled to control operation of the detection 3 system.
 - 23. The system as set forth in claim 16, further comprising a thermo-electric cooler for heating and cooling the sample during processing.
- 24. The system as set forth in claim 16, wherein the microfabricated components 2 include one or more pumps.
 - 25. The system as set forth in claim 24, wherein at least one of the pumps is electro-magnetically actuated.
 - 26. The system as set forth in claim 24, wherein at least one of the pumps is piezoelectrically actuated.
- 1 27. The system as set forth in claim 16, wherein the microfabricated components include one or more mixers. 2

1

2

- 1 28. The system as set forth in claim 27, wherein the one or more mixers include a nozzle for injecting a first substance into a chamber containing the sample.
- 29. The system as set forth in claim 16, wherein the microfabricated components include one or more filters.
 - 30. The system as set forth in claim 16, wherein the microfabricated components include one or more valves.
- 31. A method for purifying and detecting one or more target substances in a sample using a handheld biosensor system, the method comprising:
- processing the sample using microfabricated components in the biosensor system; transferring the processed sample to a sensing platform in the biosensor system; and
- detecting the one or more target substances on the sensing platform using a

 detection system in the biosensor system.
 - 32. The method as set forth in claim 31, wherein the processing includes concentrating the sample.
- 1 33. The method as set forth in claim 31, wherein the processing includes filtering 2 the sample.
- 1 34. The method as set forth in claim 27, wherein the processing includes heating 2 the sample.
 - 35. The method as set forth in claim 31, wherein the processing includes pumping the sample into a reservoir and mixing the sample with a reagent.
- 36. The method as set forth in claim 31, wherein the processing includes washing the sample.

1 2

- 37. The method as set forth in claim 31, wherein the processing includes generating driver signals for controlling the microfabricated components.
- 38. The method as set forth in claim 31, wherein the processing includes processing the sample for detecting a toxin.
- 39. The method as set forth in claim 31, wherein the processing includes processing the sample for detecting bacteria.
- 40. The method as set forth in claim 31, wherein the processing includes processing the sample for detecting a virus.
 - 41. The method as set forth in claim 31, wherein the processing includes processing the sample for detecting genetic characteristics.
- 1 42. The method as set forth in claim 31, wherein the detecting includes 2 illuminating the sample using a laser light source.
 - 43. The method as set forth in claim 31, wherein the detecting includes illuminating the sample using a laser light source.
- 1 44. The method as set forth in claim 31, wherein the detecting includes detecting 2 fluorescence of the processed sample.
- 45. The method as set forth in claim 31, further comprising:
 communicating detection information to a data processing system within the
 biosensor device.
- 1 46. A device for sensing a target substance in a sample comprising means for 2 implementing the method of claim 31.