A. Tujuan Praktikum

- 1. Memahami rangkaian pembias BJT.
- 2. Membandingkan kestabilan rangkaian pembias *BJT* dalam menyangga titik kerja tetap dalam daerah kerja aktif.

B. Dasar Teori

Karakteristik arus kolektor, I_C , terhadap tegangan V_{CE} ditunjukkan oleh Gambar 6.1. Pada saat sambungan PN pada Basis Emitor dibias maju dan sambungan PN antara Basis dan Kolektor dibias maju. Sehingga, semakin besar V_{CE} maka semakin besar pula arus kolektor, I_C . Dalam kondisi ini transistor dalam **mode ohmic atau saturasi.**

Gambar 6.1. Kurva karakteristik arus emitor, I_C , terhadap tegangan V_{CE} .

Pada saat sambungan PN pada Basis Emitor dibias maju dan sambungan PN antara Basis dan Kolektor dibias mundur, elektron dari Emitor yang telah berada di Basis, yang disebabkan Emitor - Basis dibias maju, akan menerobos menuju Kolektor menjadi arus Kolektor, I_C . Semakin besar V_{CE} tidak akan mempengaruhi banyaknya elektron yang menerobos sambungan PN pada Basis-Kolektor, atau dengan kata lain, besar arus kolektor konstan. Dalam kondidi ini transistor dalam **mode aktif.**

Untuk transistor bisa bekerja dengan baik pada suatu aplikasi tertentu, maka diperlukan suatu rengkaian pembias yang memposisikan titik kerja (*Q point*) dari transistor pada daerah atau mode

kerja yang diinginkan. Pada aplikasi digital, rangkaian biasanya didesain beroperasi pada daerah saturasi atau *cutoff*. Bias pada Basis merupakan rangkaian yang sederhana untuk itu. Pada rangkaian linier, misalnya untuk aplikasi transistor pada rangkaian penguat (*amplifier*), rangkaian pembias harus mampu untuk menyangga dengan stabil titik kerja transistor tetap pada daerah atau mode kerja aktif. Rangkaian Bias pada Emitor dan Bias Pembagi Tegangan (*Voltage Divider Bias*) sudah secara luas digunakan.

Gambar 6.2. Rangkaian pembias BJT

C. Alat dan Komponen

Tabel 6.1. Daftar Alat dan Komponen yang Dibutuhkan

No.	Komponen dan Alat	Spesifikasi	Jumlah
1.	Resistor	470 Ω	1
		$2~\mathrm{k}\Omega$	1
		$6.8~\mathrm{k}\Omega$	1
		$10~\mathrm{k}\Omega$	1
		$33 \text{ k}\Omega$	1
		$360~\mathrm{k}\Omega$	1
		1 ΜΩ	1

2.	Transistor NPN	2N3904	3
3.	LED	TIL221	1
4.	Project board		1
5.	Multimeter		1
6.	Catu Daya DC	12 V	1
7.	Kabel jumper		Secukupnya

D. Prosedur Praktikum

Percobaan 1 : Bias pada Basis

- 1. Spesifikasi pabrik dari *datasheet* transistor 2N3904 menunjukkan bahwa β_{dc} bervariasi antara 100 sampai 400. Hitung besar V_{RB} (tegangan pada R_B), V_{RC} (tegangan pada R_C), I_B , I_C dan V_C , dengan mengasumsikan harga $\beta_{dc} = 200$.
- 2. Tandai ketiga transistor dengan Q1, Q2, dan Q3.
- 3. Rangkai rangkaian seperti yang ditunjukkan oleh Gambar 6.3 pada *project board* menggunakan transistor Q1. Ukur besar V_{RB} (tegangan pada R_B), V_{RC} (tegangan pada R_C), I_B , I_C dan V_C .
- 4. Catat semua hasil pada Tabel 1 Lembar Laporan Sementara.
- 5. Ulangi untuk transistor Q2 dan Q3.
- 6. Analisis hasil anda dengan membandingkan hasil yang anda peroleh dengan hasil perhitungan anda.

Gambar 6.3. Rangkaian percobaan 1.

Percobaan 2: Bias Pembagi Tegangan (Voltage Divider Bias)

- 1. Hitung besar V_B , V_E , I_C , V_{RC} (tegangan pada R_C), dan V_C , dengan mengasumsikan harga $\beta_{dc}=200$.
- 2. Rangkai rangkaian seperti yang ditunjukkan oleh Gambar 6.4 pada *project board* menggunakan transistor Q1. Ukur V_B , V_E , I_C , V_{RC} (tegangan pada R_C), dan V_C .
- 3. Ulangi untuk transistor Q2 dan Q3.
- 4. Catat semua hasil pada Tabel 2 Lembar Laporan Sementara.
- 5. Analisis hasil anda dengan membandingkan hasil yang anda peroleh dengan hasil perhitungan anda.

Gambar 6.4. Rangkaian percobaan 2.

Percobaan 3: LED Driver

- 1. Hitung besar I_B , I_C dan V_C , dengan mengasumsikan harga $\beta_{dc}=200$.
- 2. Rangkai rangkaian seperti yang ditunjukkan oleh Gambar 6.5 pada *project board* menggunakan transistor Q1. Ukur besar I_B , I_C dan V_C . Amati juga apakah LED dalam keadaan menyala atau tidak.
- 3. Buka hambatan R_B . Ukur kembali besar I_B , I_C dan V_C .
- 4. Catat semua hasil pada Tabel 3 Lembar Laporan Sementara.

- 5. Ulangi untuk transistor Q2 dan Q3.
- 6. Analisis hasil anda dengan membandingkan hasil yang anda peroleh dengan hasil perhitungan anda.

Gambar 6.5. Rangkaian percobaan 3.

E. Daftar Pustaka

Malvino, Albert Paul. 1995. *Electronic Principles, Fifth Edition*, McGraw-Hill.USA Malvino, Albert Paul. 1995. *Experiments for Electronic Principles, Fifth Edition*, McGraw-Hill.USA

LAPORAN SEMENTARA

Bias pada BJT (Bipolar Junction Transistor)

Tabel 1. Hasil Percobaan 1 : Bias pada Basis

	Hasil	Hasil Pengukuran		
	Perhitungan	Q1	Q2	Q3
$V_{RB}(V \text{ pada } R_B)$				
I_B				
I_C				
$V_{RC}(V \text{ pada } R_C)$				
V_C				

Kesimpulan:	

Tabel 2. Hasil Percobaan 2 : Bias Pembagi Tegangan (Voltage Divider Bias)

	Hasil	Hasil Pengukuran		
	Perhitungan	Q1	Q2	Q3
V_B				
V_E				
$I_E \approx I_C$				
$V_{RC}(V \text{ pada } R_C)$				
V_C				

Kesimpulan:		

Tabel 3. Hasil Percobaan 3: LED *Driver*

	Hasil	Hasil Pengukuran		
	Perhitungan	Q1	Q2	Q3
R_B terhubung				
I_B				
$I_E \approx I_C$				
V_C				
LED menyala?				
R_B terbuka				
I_B				
$I_E \approx I_C$				
V_C				
LED menyala?				

esimpulan :	