

Cell and Tissue Engineering
Basic Solid Mechanics

Breathing dilates and stretches cells in your lungs

Elementary solid mechanics...

Elastic deformation

$$\sigma = \frac{F}{A} = E \times \varepsilon = \frac{E \times \Delta L}{L}$$

Hooke's Law

= stress

= force

A = area E = elastic or Young's modulus

= strain

Young's modulus is a material property

$$\sigma = \frac{F}{A} = E \times \varepsilon = \frac{E \times \Delta L}{L}$$
Hooke's Law

E = Elastic/Young's modulus

Material	Modulus (MPa)
Long bone	15-30,000
Skull bone	6,500
cartilage	1-10
tendon	1-2,000
skin	0.1-2
brain	0.067
polystyrene	2,300-3,300
Stainless steel	210,000

Elastic materials behave as springs

$$\sigma = E\varepsilon$$
 $F = kx$

$$F = kx$$

$$\sigma = \frac{F}{A} = E \times \varepsilon = \frac{E \times \Delta L}{L}$$

Hooke's Law

$$\sigma$$
 = stress

$$\varepsilon = strair$$

$$F = force$$

Elastic materials behave as springs (cont.)

$$\sigma = E\varepsilon$$
 $F = kx$

$$\sigma = \frac{F}{A} = E \times \varepsilon = \frac{E \times \Delta L}{L}$$

Hooke's Law

Elastic materials behave as springs (cont.)

$$\sigma = E\varepsilon$$
 $F = kx$

$$F = kx$$

$$F = k \cdot \Delta x = \left(\frac{3}{4}\pi E \frac{r^4}{L^3}\right) \cdot \Delta x$$

Elastic materials behave as springs (cont.)

Strain Energy
$$\frac{F \cdot \Delta L}{2} = \frac{\sigma \cdot \varepsilon}{2}$$

Materials can be elastic and NOT obey Hooke's law!

$$\sigma = \frac{F}{A} = E \times \varepsilon = \frac{E \times \Delta L}{L}$$

Hooke's Law

Not all materials are elastic!

$$\sigma = \frac{F}{A} = E \times \varepsilon = \frac{E \times \Delta L}{L}$$
Hooke's Law

Compliant materials store the most energy

Strain Energy
$$\frac{F \cdot \Delta L}{2} = \frac{\sigma \cdot \varepsilon}{2}$$

Compliant materials store the most energy (cont.)

Materials elongate in the direction of force

Poisson's ratio tells us about deformation perpendicular to force application

Positive Poisson's ratio
$$v_{xy} = -\frac{\mathcal{E}_x}{\mathcal{E}_y}$$
 or z (transverse) (axial)

Poisson's ratio tells us about deformation perpendicular to force application (cont.)

Positive Poisson's ratio

Negative Poisson's ratio

$$V_{xy} = -\frac{\mathcal{E}_x}{\mathcal{E}_y}$$
 or z (transverse) (axial)

Positive Poisson's ratio

Poisson's ratio tells us about deformation perpendicular to force application (cont.)

$$v_{xy} = -\frac{\mathcal{E}_x}{\mathcal{E}_y}$$

Quantifying deformation in other geometries

Shear stress

Bending

Torsion

Review and rewind

Elastic solid mechanics

$$\sigma = \frac{F}{A} = E \times \varepsilon = \frac{E \times \Delta L}{L}$$

Hooke's Law

$$V_{xy} = -\frac{\mathcal{E}_x}{\mathcal{E}_y}$$

Poisson's ratio

