

Instructor Introduction

SEVERS OF THE SEVER OF THE SEVE

My Technical Background

- Wonsun Ahn
 - First name is pronounced one-sun (if you can manage)
 - Or you can just call me Dr. Ahn (rhymes with naan)
- PhD in CPU Design and Compilers
 - University of Illinois at Urbana Champaign
- Industry Experience
 - Software engineer, field engineer, technical lead, manager
 - Bluebird Corporation (70-person startup company)
 - ☐ Manufactures industrial hand-held devices from top to bottom
 - □ Me: Built software stack based on Windows Embedded
 - IBM Research (thousands of people)
 - ☐ Does next-gen stuff like carbon nanotubes, quantum computers
 - □ Me: Designed supercomputers for ease of parallel programming

THE CONTROL OF THE CO

My World View

- Everything is connected
 - Pandemic: If my neighbors catch the virus, so will I
 - Environment: If my neighbors pollute, I will feel the effects
 - Economy: Think of how the subprime mortgage crisis spread
- Zero-sum thinking (old way of thinking)
 - "If you get a larger slice of the pie, I get a smaller slice."
 - Therefore, if you lose, I win (and vice versa)
- Zero-sum thinking no longer works
 - If you catch the virus, do I become safer from the virus?
- Collaboration is replacing competition

Collaboration is Replacing Competition

- Is happening in all spheres of life
- Collaboration is also happening in the IT industry
 - The open source movement
 - Increasing importance of the software/hardware ecosystem
 - Increasing importance of the developer community
- Collaboration is also important for learning
 - During my undergrad years, what do I remember best?
 - Stuff that I explained to my classmates
 - Stuff that my classmates taught me

Supporting Collaborative Learning

- I do not grade on a curve
 - You will not be competing against your classmates
 - You are graded on your own work on an absolute scale
- You will be a member of a Team
 - You are already a member of the class on Microsoft Teams
 - I encourage you to be on Teams at most times (I will too)
 - ☐ You can install app on both laptop and cell phone
 - If you have a question, you can ask in the Team "Posts" tab
 - ☐ Either your classmate or your instructor will answer
 - You can chat with any individual on the Team
 - ☐ "Manage Team" item in the "..." Team context menu

Supporting Collaborative Learning

- You will be a member of a Group
 - On Teams, you will be part of a chat group of 8 members
 - Your instructor is also a member of each Group
 - It is a smaller support group where you can talk more freely
- You are allowed to discuss TopHat lecture questions
 - The goal is no-student-left-behind
 - Discuss answers on Teams even before submitting them
 - Form a basis of knowledge for doing homeworks and exams

Course Introduction

Structure of the Course

- (45% of grade) Two midterms
- (20% of grade) Two projects
 - Implementing a CPU simulator using C programming language
- (20% of grade) Four homeworks
- (15% of grade) Participation
 - Attendance, TopHat lecture questions, Teams participation
- Class resources:
 - Canvas: announcements, Zoom meetings, recorded lectures
 - GitHub: syllabus, lectures, homeworks, projects
 - Tophat: online lecture questions
 - GradeScope: homework / projects submission, grading and feedback
 - Microsoft Teams: all out-of-class communication

Textbook (You Probably Have it)

"Computer Organization and Design - The Hardware/Software Interface" by David Patterson and John Hennessy Fifth Edition - Morgan & Kaufmann.

RSITE THE TOTAL PROPERTY OF THE TOTAL PROPER

For More Details

- Please refer to the course info page: https://github.com/wonsunahn/CS1541_Spring2022 /blob/main/course-info.md
- Please follow the course syllabus schedule: https://github.com/wonsunahn/CS1541_Spring2022/ /blob/main/syllabus.md

What is Computer Architecture?

- At a high-level: how a computer is built
 - Computer here meaning the processor (CPU)
- You probably heard of a similar term before: ISA
 - ISA (Instruction Set Architecture)
- Review: what is defined by an ISA?
 - Set of instructions usable by the computer
 - Set of registers available in the computer
 - Other functional attributes
- What is not defined by an ISA?
 - Speed of computer
 - Energy efficiency of computer
 - Reliability of computer
 - Other performance attributes

Computer Architecture Defined

- Computer Architecture = ISA + Processor Organization
 - Processor organization is also called Microarchitecture
- Given an ISA, performance is decided by:
 - Processor organization (internal design of the processor)
 - Transistor implementation (semiconductor technology)

II THE TOTAL THE TABLE TO THE T

Scope of Class

Physical layer is beyond the scope of the class

- We will focus mostly on processor organization
 - And how performance goals are achieved

SET THE CANADA TO THE CANADA T

Scope of Class

Computer architecture is part of system architecture

Other components beside processor is beyond the scope

Two Forces on Computer Architecture

Application pull

Market forces pull architecture towards popular applications

2. Technology push

Advances in silicon technology push architecture to change

PRSITION OF THE PROPERTY OF TH

Application Pull

Different applications pull in different directions

- Real-time app (e.g. Game): Short latency
- Server app: High throughput
- Mobile app: High energy-efficiency (battery life)
- Mission critical app: High reliability
- An app typically has multiple goals that are important

STATE OF THE STATE

Application Pull

- Some goals can be incompatible
 - E.g. Speed and energy-efficiency are incompatible
 - ☐ Running is faster than walking but uses more energy
 - ☐ A Ferrari is faster than a Prius but has worse fuel efficiency
 - E.g. Reliability is incompatible with many other goals
 - ☐ If you use redundancy, you use twice the amount of energy
- Even when sharing a goal, apps have unique needs
 - Scientific apps need lots of floating point units to go fast
 - Database apps need lots of memory cache to go fast
- An architecture is a compromise among all the apps
 - When app achieves market critical mass, designs diverge (Mobile chips / Server chips / GPUs / TPUs diverged)
 - Sometimes even ISAs diverge (GPUs and TPUs)

Technology Push

Trends in technology pushes architecture too

- Trends can be advances in technology
- Trends can be constraints technology couldn't overcome
- * "Technology" in CPU design refers to the physical layer
 - Manufacturing technology used for transistor implementation