Bizonytalanságkezelés

Bizonytalanság forrásai

- Hiányzó adat mellett történő következtetés
 - Mi lehet a páciens betegsége?
- Bizonytalan adatra épülő következtetés

objektív

Pontatlan műszerek pontatlan leolvasása: $80\% \pm 2\%$

szubjektív

- Következmény bizonytalansága:
 - Mennyi az esélye, hogy egy sárga bőrű páciens hepatitiszes, ha ismerjük a *sárga bőrű hepatitiszesek / sárga bőrű betegek* arányát?
- Elmosódott jelentésű állítások:

A nadrág erősen szennyezett

szubjektív

objektív

Ellentmondó adatokból vagy ellentmondó következtetésekből származtatott következmény

Bizonytalanságkezelés alapkérdései

- Hogyan reprezentáljuk a bizonytalanságot?
 - Az ismeretekhez numerikus vagy szimbolikus értéket rendelünk
- □ Hogyan kombináljuk a bizonytalanságot?
 - A logikai műveletek mentén komponált összetett ismeret bizonytalanságát a komponensek bizonytalanságából számoljuk.
- □ Hogyan következtessünk bizonytalan információból?
 - Mennyire (milyen mértékben) bizonytalan az a következmény, amelyre bizonytalan ismeretekből indulva bizonytalan következtetési szabállyal következtetünk?

1. Klasszikus valószínűség számítás

- \square A központi kérdés az, hogy egy bizonytalan $B \longrightarrow A$ szabály alapján milyen bizonyossággal állítható az, hogy ha B igaz, akkor A is?
- □ Ugyanez másképpen is megfogalmazható: mi az *A* esemény bekövetkezésének valószínűsége, amikor a *B* esemény bekövetkezik.

Feltételes valószínűség:

$$p(A \mid B) = \frac{p(A \land B)}{p(B)}$$
 ha $p(B) > 0$

Állítás = esemény

- ☐ A továbbiakban az állítások mindig egy esemény bekövetkezéséről szólnak majd, így azokat (diszkrét) valószínűségi változók segítségével fogalmazhatjuk meg.
 - $X_i = x_i$ esemény esetén X_i a diszkrét valószínűségi változó, x_i a változó értéke.
- Speciális jelölés:
 - Amikor az X_i értéke csak igaz vagy hamis lehet, akkor használjuk

$$X_i = igaz$$
 helyett X_i , $X_i = hamis$ helyett $\neg X_i$

Megjegyzés

- Egy adott problémakör (eseményrendszer) összes feltételes valószínűségét az események együttes valószínűségi eloszlásának ismeretében könnyen kiszámolhatjuk.
- □ De a gyakorlatban az együttes valószínűségi eloszlás
 - többnyire nem ismert explicit módon
 - túl sok apriori adat tárolását igényelné (a memória igény exponenciálisan nő az elemi események számával növelésével)
- Ezért egy feltételes valószínűség közvetlen kiszámolásához különféle elkerülő technikákat alkalmazunk.

Bayes tétel különféle alakjai

a) Klasszikus

$$p(B \mid A) = \frac{p(A \mid B) \cdot p(B)}{p(A)}$$

b) Háttértudás (E) mellett

$$p(B \mid A, E) = \frac{p(A \mid B, E) \cdot p(B \mid E)}{p(A \mid E)}$$

c) Általánosított (B_1 , ..., B_n teljes és független)

$$p(B_i | A) = \frac{p(A | B_i) \cdot p(B_i)}{\sum_k p(A | B_k) \cdot p(B_k)}$$

Szuvas-e egy fog, ha lyukas és fáj? Russel-Norvig: AI

 \Box p(szuvas | lyukas, fáj) = ?

apriori ismeretek:

- p(szuvas) = 0.65
- $-p(f\acute{a}j \mid szuvas) = 0.5$
- $-p(f\acute{a}j \mid \neg szuvas) = 0.1$
- p(lyukas | szuvas) = 0.95
- $p(lyukas \mid \neg szuvas) = 0.01$

$$p(szuvas | lyukas, fáj) = ?$$

Példa folytatása (Bayes tételek alkalmazása)

 \square Ha a klasszikus Bayes tételt alkalmazzuk, akkor hamar elakadunk, mert csak a p(sz)-t ismerjük.

$$p(sz \mid ly, f) = \frac{p(f, ly \mid sz) \cdot p(sz)}{p(f, ly)}$$

- □ Keressünk más utat! (Bayes-i frissítés módszere)
 - Először a háttér tudás melletti Bayes tételt alkalmazzuk a fáj eseményre, mint háttértényre,
 - \circ És az ehhez szükséges p(sz|f)-re a közönséges Bayes tételt írjuk fel.

$$p(sz \mid ly, f) = \frac{p(ly \mid sz, f) \cdot p(sz \mid f)}{p(ly \mid f)} = \frac{p(ly \mid f, sz) \cdot p(f \mid sz) \cdot p(sz)}{p(ly \mid f) \cdot p(f)}$$

Feltételes függetlenség

- □ Közönséges függetlenség: $p(A,B) = p(A) \cdot p(B)$
- □ Az A és a B események feltételesen függetlenek az E eseményre nézve (nincs közöttük közvetlen függőségi kapcsolat, csak az E-n keresztül), ha

$$p(A,B \mid E) = p(A \mid E) \cdot p(B \mid E)$$

Az A és a B feltételesen függetlenek az E-re nézve, akkor $p(A \mid B, E) = p(A \mid E)$ illetve $p(B \mid A, E) = p(B \mid E)$

Feltételes függetlenség esetei

- \square Az A és a B feltételesen függetlenek az E-re nézve:
 - A is, B is függ az E-től, de más kapcsolat nincs köztük

• A-tól függ az E, és E-től függ a B, de más kapcsolat nincs köztük

$$A \rightarrow E \rightarrow B$$

• B-től függ az E, és E-től függ a A, de más kapcsolat nincs köztük

p(szuvas | lyukas, fáj) = ?

Példa folytatása (feltételes függetlenség kihasználása)

- A lyukas fogat és a fogfájást a szuvasodás kapcsolja össze, mindkettő következménye a szuvasodásnak, ettől eltekintve függetlenek: Az *ly* feltételesen független az *f*-től az *sz*-re nézve, azaz p(ly | f, sz) = p(ly | sz)
- Hozzáolvasva ezt az eddigiekhez:

$$p(sz \mid ly,f) = \frac{p(ly \mid sz) \cdot p(f \mid sz) \cdot p(sz)}{p(ly \mid f) \cdot p(f)}$$

■ Már csak a nevezőbeli valószínűségeket nem ismerjük. Az apriori tudásunk alapján a számlálóbeli valószínűségeket akkor is ismernénk, ha ott az sz helyére ¬sz-t írnánk. Ilyenkor alkalmazhatjuk a normalizálás technikáját.

Normalizálás

☐ Amikor egy eseménynek és az ellentetjének a valószínűségét ugyanazon, de ismeretlen együtthatóval számoljuk ki más valószínűségekből:

$$-p(A) = \alpha \cdot u$$
 és $p(\neg A) = \alpha \cdot v$

□ akkor az együttható könnyen meghatározható:

$$1 = p(A) + p(\neg A) = \alpha \cdot [u + v]$$

$$\alpha = 1 / [u + v]$$

$$p(szuvas | lyukas, fáj) = ?$$

Példa folytatása (normalizálás)

□ ugyanaz sz-re és ¬sz-re:

$$p(sz \mid ly,f) = \frac{p(ly \mid sz) \cdot p(f \mid sz) \cdot p(sz)}{p(ly \mid f) \cdot p(f)} = \alpha \cdot p(ly \mid sz) \cdot p(f \mid sz) \cdot p(sz)$$

$$p(\neg sz \mid ly, f) = \frac{p(ly \mid \neg sz) \cdot p(f \mid \neg sz) \cdot p(\neg sz)}{p(ly \mid f) \cdot p(f)} = \alpha \cdot p(ly \mid \neg sz) \cdot p(f \mid \neg sz) \cdot p(\neg sz)$$

□ összeg:

$$1 = \alpha \cdot [p(ly \mid sz) \cdot p(f \mid sz) \cdot p(sz) + p(ly \mid \neg sz) \cdot p(f \mid \neg sz) \cdot p(\neg sz)]$$

együttható:

$$\alpha = 1/[p(ly \mid sz) \cdot p(f \mid sz) \cdot p(sz) + p(ly \mid \neg sz) \cdot p(f \mid \neg sz) \cdot p(\neg sz)]$$

$$p(szuvas | lyukas, fáj) = ?$$

Példa befejezése

apriori ismeretek:

$$p(ly | sz) = 0.7$$
 $p(ly | \neg sz) = 0.01$
 $p(f | sz) = 0.5$ $p(f | \neg sz) = 0.1$
 $p(sz) = 0.65$

Bayes-i frissítés és a feltételes függetlenség felhasználása miatt:

$$p(sz \mid ly,f) = \alpha \cdot p(ly \mid sz) \cdot p(f \mid sz) \cdot p(sz) = \alpha \cdot 0.7 \cdot 0.5 \cdot 0.65$$

normalizálás:

$$\alpha = 1/[p(ly | sz) \cdot p(f | sz) \cdot p(sz) + p(ly | \neg sz) \cdot p(f | \neg sz) \cdot p(\neg sz)]$$

= 1/[0.7 \cdot 0.5 \cdot 0.65 + 0.01 \cdot 0.1 \cdot 0.35]= 4.38885

eredmény:

$$p(sz | ly, f) = 4.38885 \cdot 0.2275 = 0.99846$$

Bayes modell értékelése

- □ Az apriori valószínűségekhez nehéz hozzájutni.
- Még a bevetett trükkök ellenére is sok apriori valószínűséget kell beszerezni és tárolni hozzá.
- □ A következtetés túl ötletszerűnek tűnik, nehéz algoritmizálni.
- Matematikailag jól megalapozott, de igen számításigényes, és magyarázatadásra nem alkalmas.
- □ A modell új ismeretekkel nehezen bővíthető. Nem elég ugyanis egy új esemény és a vele kapcsolatos feltételes események valószínűségeit megadni, ilyenkor a korábbi valószínűségi értékeket is felül kell bírálni.

2. Bayes (valószínűségi) hálók

Az előző példa megoldásánál alkalmazott módszert általánosíthatnánk, ha a minimálisan szükséges apriori valószínűségeket úgy tárolnánk (tömör reprezentáció), hogy a feltételes függetlenségek felismerése egyértelmű és automatizálható legyen.

Reprezentáció Bayes hálóval

- □ Tekintsük a tárgyprobléma valószínűségi változóit.
- □ Feleltessük meg a változókat egy körmentes irányított gráf csúcsainak.
- Abrázoljuk az irányított élekkel a változók közötti közvetlen okokozati összefüggéseket (ez által implicit módon rögzítjük a feltételes függetlenségeket is).
- Adjuk meg az csúcsok feltételes valószínűségi tábláit (FVT): $p(X_i=x_i \mid sz \ddot{u} l \ddot{o}(X_i)=x_{i1}, \ldots, x_{ik})$ ahol a $sz \ddot{u} l \ddot{o}(X_i)$ az X_i változó csúcsának szülőcsúcsaihoz rendelt X_{i1}, \ldots, X_{ik} változók együttesét jelöli.

Feltételes függetlenség felismerése Bayes hálóban

- □ Legyenek *A*, *B* és *E* összetett (több csúcs) események.
- □ Az A és B feltételesen független az E-re nézve, ha minden A és B-beli csúcs közti irányítatlan útvonalra az alábbi 4 eset valamelyike teljesül:

Bayes háló kifejező ereje

□ Az együttes valószínűségi eloszlás (a lánc-szabály alapján)

$$p(X_1 = x_1, ..., X_n = x_n) =$$

$$= p(X_n = x_n \mid X_1 = x_1, ..., X_{n-1} = x_{n-1}) \cdot p(X_1 = x_1, ..., X_{n-1} = x_{n-1}) =$$

$$= ... = \mathbf{\Pi}_{i=1...n} p(X_i = x_i \mid X_1 = x_1, ..., X_{i-1} = x_{i-1})$$

Sorszámozzuk meg úgy a változókat, hogy ha i>j, akkor X_i -ből ne vezessen irányított út X_j -be: ekkor $\forall i$: $szülő(X_i)\subseteq \{X_1,...,X_{i-1}\}$, és ekkor a feltételes függetlenség miatt

$$p(X_i = x_i \mid X_1 = x_1, ..., X_{i-1} = x_{i-1}) = p(X_i \mid sz \ddot{u} l \ddot{o}(X_i) = x_{i1}, ..., x_{ik})$$

□ Az adott tárgykör együttes valószínűségi eloszlása tehát a Bayes háló FVT-iból közvetlenül megkapható.

$$p(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1...n} p(X_i = x_i \mid sz \ddot{u} l \ddot{o}(X_i) = x_{i1}, ..., x_{ik})$$

Bayes hálók tervezése

- Határozzuk meg a tárgytartományt leíró változók halmazát, majd meghatározott sorrendben dolgozzuk fel őket:
 - 1. Válasszunk ki olyat, amely kizárólag a már hálóhoz csatolt változóktól függ, és új csúcsként vegyük fel azt a hálóba
 - 2. A hálóbeli változóknak vegyük azt a minimális halmazát, amelyek közvetlenül hatnak az új változóra. Rajzoljuk be ezeket a függőségeket reprezentáló éleket.
 - 3. Töltsük ki az új csúcs FVT-jét.
 - 4. GOTO 1.

A szomszédunk telefonált, hogy szól a betörés-riasztónk a lakásunkban. Betörtek volna hozzánk? Russel-Norvig: AI

Következtetés Bayes hálókban

- □ Célja egy feltételes valószínűség meghatározása a Bayes módszerre alapuló számítással (Bayes tételek, normalizálás, felbontás teljes fgl. eseményrendszerre, lánc-szabály, feltételes fgl.)
- Egy feltételes valószínűség kiszámolására egy (rekurzív) algoritmus készíthető, amelynek számításigénye erősen függ a háló bonyolultságától.
- Egyszeresen kötött hálókra (fa-gráfokra), ahol az irányítást figyelmen kívül hagyva két csúcs között nincsenek alternatív irányítatlan útvonalak, van lineáris futási idejű algoritmus.
- □ Többszörösen kötött hálók esetén különféle redukáló módszereket alkalmazhatunk.

 $E\acute{E}=i$ 0.5

 $E\acute{E}=h$ 0.5

Esős évszak

Példa kétszeresen kötött Bayes hálóra

Russel-Norvig: AI

L=	i	h
$E\acute{E}=i$	0.0	1.0
$E\acute{E}=h$	0.9	0.1
	Locsoló	

	-
i	h
0.8	0.2
0.1	0.9
Esc	"

VP=	i	h	
L+E=ii	0.95	0.05	
L+E=ih	0.9	0.1	
L+E=hi	0.8	0.2	
L+E=hh	0.1	0.9	es pázsit

Gregorics Tibor

Mesterséges intelligencia

Következtetés többszörösen kötött hálókban

- □ Összevonásos eljárások
 - Változók (csúcsok) összevonásával fa-gráfot kapunk, amelyben meg kell határozni az összevont csúcsok FVT-it.
- Vágóhalmaz feltételezésen alapuló eljárások
 - Változók (csúcsok) elhagyásával annyi azonos szerkezetű fa-gráfot kapunk, ahányféleképpen az elhagyott változók értékét rögzíthetjük. Egy-egy fa-gráf súlya az a valószínűség, amely mellett az elhagyott változók a fa-gráfban rögzített értékeiket felveszik. A fa-gráfok FVT-it újra kell számolni. A válasz az egyes (esetleg csak a valószínűbb) fa-gráfokból kiszámolt eredmények súlyozott átlaga lesz.
- □ Sztochasztikus szimulációs eljárások
 - A háló valószínűségi értékekeit figyelembe véve példákat generálunk.
 A válasz a jó példáknak az összes példához vett relatív gyakorisága.

a)Összevonás

Esős évszak

L=	i	h
$E\acute{E}=i$	0.0	1.0
$E\acute{E}=h$	0.9	0.1

L+E=	ii	ih	hi	hh
$E\acute{E}=i$	0	0	0.8	0.2
<u>EÉ</u> =h	0.09	0.81	0.01	0.09

E=	i	h
$E\acute{E}=i$	0.8	0.2
$E\acute{E}=h$	0.1	0.9
	1	

VP=	i	h
$\overline{L+E=ii}$	0.95	0.05
L+E=ih	0.9	0.1
L+E=hi	0.8	0.2
L+E=hh	0.1	0.9

Vizes pázsit

Locsoló+Eső

b) Vágóhalmaz feltételezés

 $E\acute{E}=i$ 0.5

 $E\acute{E}=h$ 0.5

Esős évszak

nem

0.5

Esős évszak igen

L=i0.0 E=i0.8 0.5 L=h1.0 E=h0.2 L=i0.9

0.1 L=h

E=i0.1

E=h0.9

Locsoló

Eső

VP =

Locsoló

Eső

L+E=iiVizes pázsit

L+E=ih

L+E=hi

0.9

0.95

0.1

h

0.05

L=h $E\acute{E}=i$ 0.0 1.0 $E\acute{E}=h$

0.9

L+E=hh

0.8

0.1

0.2

0.9

Vizes pázsit

E= $E\acute{E}=i$ 0.8 0.2 $E\acute{E}=h$ 0.1 0.9

Gregorics Tibor

0.1

Mesterséges intelligencia

Adott pontosságú vágóhalmaz feltételezés

- □ Nem szükséges az összes fa-gráfra kiszámolni a keresett feltételes valószínűséget.
- □ Sokszor elég csak a legvalószínűbb hálókra súlyozott átlagot számolni, mert már ez is jól közelítheti a pontos választ.
 - A számolási hiba a ki nem értékelt hálók valószínűségeinek összege.

c)Sztochasztikus szimuláció

$$p(A \mid B) = \frac{p(A,B)}{p(B)} = \frac{J \acute{o} \ hasznos \ p\acute{e}ld\acute{a}k \ sz\acute{a}ma}{\ddot{O}sszes \ hasznos \ p\acute{e}lda \ sz\acute{a}ma}$$

- □ A példa hasznos, ha a feltételt (B) teljesíti
- □ Annak érdekében, hogy csak hasznos példát generáljunk, a feltételt (B) alkotó tényváltozók értékét rögzítjük, de az így generált példát azzal a valószínűséggel súlyozzuk, amely mellett ezek a tényváltozók a számukra kijelölt értékeket felveszik. A relatív gyakoriságot a példák így súlyozott darabszáma alapján számítjuk.

Egy hasznos példa előállítása a p(Vizes pázsit | Eső) számára

- $\Box E \acute{E} = Random(0.5) \quad \text{mert } p(E \acute{E}) = 0.5$
 - TF: EÉ=hamis.
- \blacksquare *L=Random*(0.9)

mert $p(L \mid \neg EE) = 0.9$

- TF: L=igaz.
- \blacksquare E tényváltozó, értéke igaz, és $p(E \mid \neg EE) = 0.2$
 - Ezért E=igaz(0.2)

Ez garantálja a példa hasznosságát

Ez a példa súlya

- \square VP = Random(0.95) mert $p(VP \mid E, L) = 0.95$
 - − TF: VP=igaz. ✓

Ez tehát egy jó hasznos példa

Bayes hálók tanulása

- □ Adott háló-struktúrában az FVT tanulása példákból nyert relatív gyakorisági értékek számolásával valósítható meg.
 - Probléma: ha a példák hiányosak, azaz nem ismerjük, hogy egy példában bizonyos változó milyen értéket vesz fel.
- □ A háló szerkezetének tanulása során metrikát definiálunk a feladat és az azt leíró háló "távolságára" és ez alapján keressük a legjobban illeszkedő struktúrát.

Bayes hálók értékelése

- □ Kevesebb a priori valószínűséget kell benne tárolni ahhoz képest, ha az együttes valószínűségi eloszlásfüggvényt akarnánk ábrázolni.
- Egyszerűen bővíthető anélkül, hogy eddigi valószínűségeket újra kellene gondolni.
- ☐ A következtetés felhasználható magyarázatadásra.
- Matematikailag jól megalapozott, de az erőfeszítéseink ellenére is igen számításigényes.

3. Heurisztikus technikák

- "Betörés-riasztó-szomszéd" probléma:
 - szabályok:

ha a szomszéd hallani véli a riasztót **akkor** szól a riasztónk $Sz \rightarrow R \ (0.9)$

ha szól a riasztónk **akkor** betörtek hozzánk $R \rightarrow B (0.95)$

- tény: a szomszéd telefonál, hogy hallja a riasztót
 Sz
- Betörtek-e hozzánk?
 - Sz, $Sz \rightarrow R \Rightarrow R$; R, $R \rightarrow B \Rightarrow B$
 - Új következtetési elv: T(p), $T \rightarrow K(q) \Rightarrow K(p \cdot q)$
 - $Sz(1) \Rightarrow R(0.9) \Rightarrow B(0.855)$

Ismert heurisztikus technológiák

- MYCIN bizonytalanság kezelési technikája
- Dempster-Shafer elmélet
- □ Fuzzy következtetés