IUT du Littoral Côte d'Opale Département informatique

Semestre 1

TD3 M1103 Année 2020– 2021

Objectif: Savoir définir et manipuler les enregistrements

Objectifs

Savoir définir des structures de type enregistrement

Savoir exploiter le contenu d'une structure de type enregistrement

Compétences	Niveau
Savoir déclarer une structure de type enregistrement	1
Savoir déclarer une variable de type enregistrement	1
Savoir « remplir » une variable de type enregistrement	2
Savoir «lire» le contenu d'une variable de type enregistrement	2
Savoir copier le contenu d'une variable de type enregistrement dans une autre	2
Savoir déclarer des paramètres formels de type enregistrement	3
Savoir déclarer un tableau d'enregistrements	2
Savoir déterminer le contenu d'une structure enregistrement	3
Savoir déclarer des paramètres formels de type tableau	3
Savoir appeler une procédure/fonction avec des paramètres effectifs de type enregistrement	3

Exercice 1. Entraînement

I – La voiture

Définir la structure de données **une_voiture** sachant que les caractéristiques d'une voiture sont : la catégorie de la voiture (citadine, berline, break, monospace, coupé, cross-over, cabriolet, pick-up), marque, modèle, année, carburant (essence, diesel), nombre de portes (2/5), boite de vitesse (automatique, mécanique), puissance fiscale (4cv, 5cv, 6cv, 7cv, 8cv, 9cv). Déclarer une variable de type **une_voiture.**

II – Les disques

- 1. Définir la structure de données **un_disque** sachant qu'un disque possède un titre, un interprète, un nombre de morceaux, une durée et une année de parution. Déclarer une variable de type **un_disque**.
- **2.** On désire modéliser le disque souvent appelé « album blanc » interprété par les « Beatles » et qui, en réalité a pour titre « The Beatles », possède 30 morceaux, dure 93 minutes 45 et est paru en 1968.
- **3.** En réalité, il y a 4 interprètes officiels dans les Beatles (le groupe est composé de John Lennon, Paul McCartney, George Harrison et Ringo Starr).
 - Modifier la structure de données pour qu'elle intègre la possibilité de représenter jusque 10 interprètes sur un disque.
 - Existe-t-il une instruction simple qui permet de copier le contenu des informations d'un disque sur un autre ?
 - Réaliser la copie de ce disque.
 - Modifier cette copie pour créer le « disque bleu» paru en 1973 d'une durée de 99 minutes 34 et comptant 28 chansons.
- **4.** On peut enregistrer au plus 30 morceaux sur un disque. Chaque morceau a sa propre durée. Modifier la structure de données **un_disque** précédente afin de prendre en compte la durée de chacun des N morceaux (N <= 30).

Exercice 2. Points, segments, droite.

On considère le plan orthonormé. Dans ce plan, un point est défini par ses coordonnées (abscisse, ordonnée).

- 1. Définir la structure de données point qui représente un point du plan.
- **2.** Écrire la procédure *Affiche_Coordonnées* qui affiche les coordonnées du point passé en paramètre.
- **3.** Écrire la procédure *Saisie_Coordonnées* qui saisit les coordonnées d'un point au clavier.

Un segment est une portion de droite comprise entre deux points.

- **4.** Définir la structure de données segment qui représente un segment.
- **5.** Écrire la fonction *Longueur_Segment* qui calcule la longueur d'un segment S.

L'équation d'une droite affine s'écrit sous la forme : y = ax + b.

- **6.** Définir la structure de données **droite_affine** qui représente l'équation d'une droite affine.
- 7. Écrire la fonction booléenne *Point_de_la_droite* qui teste si un point M appartient à une droite affine.

Exercice 3. Chronomètres.

On veut enregistrer les performances des coureurs d'un marathon.

- 1. Définir un type **chrono** sachant que :
- Le temps s'exprime en heures, minutes, secondes
- La valeur minimale des heures, minutes, secondes est 0
- La valeur maximale des heures est 23, celle des minutes et des secondes est 59.
- 2. Écrire la fonction *comparaison_chrono* qui compare les performances de deux concurrents. Cette fonction retourne un entier qui vaut :

0 si les deux concurrents sont arrivés en même temps

- 1 si le concurrent 1 est arrivé avant le concurrent 2
- 2 si le concurrent 2 est arrivé avant le concurrent 1
- 3. Écrire la procédure *plus_une_seconde* qui ajoute une seconde à une variable de type **chrono**.

Remarque: Quand

- Instant = 2h 30mn 46s, le résultat est 2h 30mn 47s
- Instant = 2h 30mn 59s, le résultat est 2h 31mn 0s
- Instant = 2h 59mn 59s, le résultat est 3h 0mn 0s
- Instant = 23h 59mn 59s, le résultat est 0h 0mn 0s
- 4. Écrire la procédure *différence_chrono* qui effectue la différence entre deux variables de type chrono <u>sans effectuer aucune conversion</u>.

Questions supplémentaires. Marathon.

1500 concurrents participent au marathon. Chaque concurrent a un nom, un prénom, un numéro de dossard et réalise une performance (en heures, minutes, secondes). Il n'y a pas d'homonyme.

5. Proposer la structure de données **un_participant** qui représente un participant du marathon.

6. Définir la structure de données **un_marathon** qui représente les **1500** participants du marathon.