Question 1. Let X be a vector space, Y be a subspace of X, and $n \in \mathbb{N}$. The following are equivalent:

- (a) Y is of codimension n.
- (b) There exists a linearly independent subset A of X with n elements such that $\langle A \rangle$ and Y form a linear decomposition of X.

Question 2. Let X be a vector space and Y and Z be subspaces of X. Assume that for some $n \in \mathbb{N}_0$, $\operatorname{codim}(Y) = \dim(Z) = n$ and $Y \subset Z$, show that Y = Z.

Question 3. Let X be a vector space and Y be a subspace of X. Let $Q: X \to X/Y$ denote the quotient map. Prove that there exists a subspace Z of X that satisfies both following properties:

- (a) Y and Z is a linear decomposition of X.
- (b) $Q|_Z: Z \to X/Y$ is an algebraic isomorphism.

If X is finite-dimensional, deduce that

$$\dim(X) = \dim(Y) + \dim(X/Y) = \dim(Y) + \operatorname{codim}(Y)$$

Question 4 (Rank-Nullity Theorem). Let X and Y be vector spaces and $T: X \to Y$ be a linear operator. Show that

$$\dim(\ker(T)) = \dim(\operatorname{Im}(T)) = \dim(X)$$

Question 5. Give an example of a vector space X, and linear functionals $g, f_1, f_2, ...$ on X such that $\bigcap_{n=1}^{\infty} \ker(f_n) \subset \ker(g)$ and $g \notin \langle \{f_1, f_2, ...\} \rangle$

Question 6. Let X be a vector space. For every subspace F of $X^{\#}$, define $F_0 = \bigcap_{f \in F} \ker(f)$, which is a subspace of X, called the pre-annihilator of F.

- (i) Let $n \in \mathbb{N}$, F be an n-dimensional subspace of X^{\sharp} , and $(f_i)_{i=1}^n$ be a Hamel basis of F.
 - (a) Show that $F_0 = \bigcap_{i=1}^n \ker(f_i)$.
 - (b) Show that F_0 is of codimension n.
- (ii) Let

$$\mathcal{FD}(X^{\#}) = \{F \text{ is a finite-dimensional subspace of } X^{\#}\}\$$

 $\mathcal{FC}(X) = \{Y \text{ is a finite-codimensional subspace of } X\}$

Show that $F \mapsto F_0$ is a bijection between $\mathcal{FD}(X^{\#})$ and $\mathcal{FC}(X)$.

Question 7. Let X and Y be vector spaces and $T: X \to Y$ be a linear operator.

- (i) If A is a convex subset of X, show that T[A] is a convex subset of Y.
- (ii) If B is a convex subset of Y, show that $T^{-1}[B]$ is a convex subset of X.