Study the $e^+e^- o K_S K_L \pi^0$ process with the CMD-3 detector

Reporter: A.Semenov Supervisor: PhD. B.Shwartz

BINP

Novosibirsk, 2017

Outline

- Objective and motivation
- VEPP-2000 project
- List of the selection constraints
- Results
- Conclusion and future plans

Objective and motivation

The main goal of the current work is to measure the $e^+e^- \to K_S K_L \pi^0$ process cross-section up to 2 GeV in the mass center system.

- Study the light quarks interaction
- Non-perturbative QCD
- Contribution of this process into the processes with two K and one π equals 12%.
- Anomalous magnetic moment $(g-2)_{\mu}$.

VEPP-2000 project

Data of 2011-2012 seasons Integrated luminosity is 33.18 pb⁻¹

Preliminary event selection

The next decay modes are used:

•
$$K_S \to \pi^+\pi^-$$
 (69%)

•
$$\pi_0 \rightarrow \gamma \gamma$$
 (99%)

Preliminary selection cuts:

- Number of tracks, $N_{tr} = 2$
- Number of photons, $N_{ph} \ge 2$
- One vertex of a K_S meson, $N_{K_S} = 1$

Event selection

- Ionization losses $(\frac{dE}{dx})_{\pi}$
- The cosine of the angle between the momentum and the position vector of the K_S vertex in the XY plane is more than 0.8
- The solid angle between tracks is more than theoretical mean $\psi>\psi_{\it min}$
- The energy release of the photon signal in the LXe or in BGO-calorimeters is more than threshold energy
- The solid angle between signal photons is more than theoretical mean
- The polar angles of tracks are in the range $(0.9, \pi-0.9)$

Ionization losses

The beams energy is 840 MeV

Present/images/tdedx.png

•
$$N_{tr} = 2$$

•
$$N_{ph} \ge 2$$

•
$$N_{K_S} = 1$$

Ionization losses

$$\xi_{tr} = \frac{(dE/dx)_{exp}}{(dE/dx)_{aprx}}$$

The selection criterion is $\xi_{tr} < 1.6$ Simulation Experiment (840 MeV, ISR on) (840 MeV, ISR on)

Present/images/xiSim.png | Present/images/xiExp.png

$$N_{tr} = 2$$
, $N_{ph} \ge 2$, $N_{K_S} = 1$

The cosine between the momentum and the radius-vector of the K_S

The selection criterion is $cos_{Ks} > 0.8$

- $N_{tr} = 2$
- N_{ph} ≥ 2
- $N_{K_S} = 1$
- $\xi_{tr} < 1.6$
- $E_{phlxe} > 15$ $E_{phbgo} > 15$

Page 9 / 1

A.Semenov

Novosibirsk, 2017

The minimal angle between the tracks

$$\psi_{min} = 2 \operatorname{arctg} \left(\sqrt{M^2 - 4m^2} / P \right)$$

$$N_{tr}=2$$
, $N_{ph}\geq 2$, $N_{K_S}=1$, $\xi<1.6$, $cos(\vec{r}_{K_S},\vec{P})>0.8$, $E_{phlxe}>15$ or $E_{phbgo}>15$

The condition of the pion's turn π , $P_{K_S} > 768$ MeV (E = 915 MeV)

The minimal angle between the signal photons

$$\alpha_{min} = 2 \operatorname{arctg}(m/P)$$

Present/images/pi0dpsiSim.ppgesent/images/pi0dpsiEx

$$N_{tr}=2$$
, $N_{ph}\geq 2$, $N_{K_S}=1$, $\xi<1.6$, $cos(\vec{r}_{Ks},\vec{P})>0.8$, $E_{phlxe}>15$ or $E_{phbgo}>15$

A.Semenov Novosibirsk, 2017 Page 11 / 1

Polar angles of the tracks

The selection criterion is $\theta_{tr} \in (0.9; \pi - 0.9)$

Present/images/tthSim.png

•
$$N_{tr} = 2$$

•
$$N_{ph} \ge 2$$

•
$$N_{K_S} = 1$$

•
$$\xi_{tr} < 1.6$$

•
$$E_{phlxe} > 15$$
 or $E_{phbgo} > 15$

Results (840 MeV)

Simulation (840 MeV, ISR on) Experiment (840 MeV)

Present/images/ks:piSim.pmgresent/images/ks:piExp.pn

Dependence of the K_S meson mass on the π^0 meson mass

Effiency

$$\epsilon = \frac{N_{det}}{N},$$
 where $N=10^5.$ 2011 $-$ 1.0 T, 2012 $-$ 1.3 T

Present/images/effiency.png

Calculation of the cross section

Present/images/fitksminv.png

- $S(x) = N*(\alpha*\mathit{gausn}(x,\bar{x}_1,\sigma_1) + \beta*\mathit{gausn}(x,\bar{x}_2,\sigma_2) + (1-\alpha-\beta)*\mathit{gausn}(x,\bar{x}_3,\sigma_3))) \mathsf{signal}$
- $\Phi(x) = k * (x b) \text{background}$
- S(x) + Φ(x) total.

Preliminary cross-section

 $\sigma = \frac{N}{\epsilon L}$, where N — number of the good events, ϵ — efficiency and L — integrated luminosity.

Present/images/cross.png

Conclusion and future plans

Conclusion:

- The optimal criteria for selecting the events of the process have been developed.
- The efficiency of registration by means of Monte-Carlo simulation have been determined.
- The total cross-section of the process $e^+ e^- \to K_s K_L \pi^0$ in the energy range from 1.1 GeV to 2 GeV have been measured.

Future plans:

- Detailed background study
- Publication

Thank you for your attention!