- 1. let $f: R_+ \to [-5, \infty)$ be defined as $f(x) = 9x^2 + 6x 5$ where R_+ is the set of all non-negative real numbers, then f is:
 - (a) one-one
 - (b) onto
 - (c) bijective
 - (d) neither one-one nor onto
- 2. The number of points of discontinuity of $f(x) = \begin{cases} |x| + 3, & if x \le -3 \\ -2x, & if -3 < x < 3 \\ 6x + 2, & if x \ge 3 \end{cases}$

is:

- (a) 0
- (b) 1
- (c) 2
- (d) infinite
- 3. The function $f(x) = x^3 3x^2 + 12x 18$ is:
 - (a) strictly decreasing on R
 - (b) strictly increasing on R
 - (c) neither strictly increasing nor strictly decreasing on R
 - (d) strictly decreasing on $(-\infty, 0)$
- 4. Find the domain of the function $f(x) = \sin^{-1}(x^2 4)$. Also, find its range.
- 5. If $f(x) = |\tan 2x|$, then find the value of f'(x) at $x = \frac{\pi}{3}$.
- 6. If M and m denote the local maximum and local minimum values of the function $f(x) = x + \frac{1}{x}(x \neq 0)$ respectively, find the value of (M m).
- 7. Show that $f(x) = e^x e^{-x} + x \tan^{-1} x$ is strictly increasing in its domain.
- 8. Show that a function $f: R \to R$ defined by $f(x) = \frac{2x}{1+x^2}$ is neither one-one nor onto. Further, find set A so that the given function $f: R \to A$ becomes an onto function.
- 9. A relation R is defined on $N\times N$ (where N is the set f natural numbers) as: $(a,b)R(c,d)\leftrightarrow a-c=b-d$

Show that R is an equivalence relation.

10. The month of September is celebrtaed as the Rashtriya Poshan Maah across the country. Following a healthy and well-balanced diet is crucial in order to supply the body with the proper nutrients it needs. A balanced diet also keeps us mentally fit and promotes improved level of energy.

A dietician wishes to minimize the cost of a diet involving two types

Figure 1: 1

of foods, food X(xkg) and fodd Y(ykg) which are available at the rate of |16/kg| and |20/kg| respectively. The feasible region satisfying the constraints is shown in the graph.

On the basis of the above information, answer the following questions:

- (i) Identify and write all the constraints which determine the given feasible region in the above graph.
- (ii) If the objective is to minimize cost Z = 16x + 20y, find the values of x and y at which cost is minimum. Also, find minimum cost assuming that minimum cost is possible for the given unbounded region.