Lecture 18: Diffusion Model II: Score-based Methods

Lan Xu SIST, ShanghaiTech Fall, 2023

Outline

- Diffusion: Denoising Diffusion Probabilistic Models
- Score-based Diffusion Models
- Accelerated Sampling
- Conditional Generation and Guidance

The Landscape of Generative Models

Diffusion: A Generative Learning Big Bang

- Denoising Diffusion Probabilistic Models
- Target: understand the training and sampling phases!

Algorithm 1 Training

```
1: repeat
```

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x₀

- Learning to generate by denoising
- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising

Reverse denoising process (generative)

Noise

Data

Forward Diffusion Process in T steps

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-eta_t}\mathbf{x}_{t-1}, eta_t\mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

$$x_t = \sqrt{1-eta_t} x_{t-1} + \sqrt{eta_t} \epsilon ~~ ext{where}~~\epsilon \sim \mathcal{N}(0,\,I)$$

Noise

Diffusion Kernel and Reparametrization Trick

$$\begin{array}{ll} \alpha_t = 1 - \beta_t & \bar{\alpha}_t = \prod_{i=1}^t \alpha_i \\ q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \mathcal{N}\left(\sqrt{1 - \beta_t}\mathbf{x}_{t-1}, \, \beta_t \mathbf{I}\right) \\ \mathbf{x}_t = \sqrt{1 - \beta_t}\mathbf{x}_{t-1} + \sqrt{\beta_t}\epsilon, & \epsilon \sim \mathcal{N}(0, \mathbf{I}) \\ = \sqrt{\alpha_t}\mathbf{x}_{t-1} + \sqrt{1 - \alpha_t}\epsilon \\ = \sqrt{\alpha_t}\alpha_{t-1}\mathbf{x}_{t-2} + \sqrt{1 - \alpha_t}\alpha_{t-1}\epsilon \\ = \dots \\ = \sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon \end{array} \qquad \begin{array}{l} q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}\left(\sqrt{\bar{\alpha}_t}\mathbf{x}_0, \, (1 - \bar{\alpha}_t)\mathbf{I}\right) \\ \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \, \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \, \epsilon \end{array}$$

$$\text{The noise schedule) is designed such that } \bar{\alpha}_T \to 0$$

- What happens to a distribution in the forward diffusion?
- The diffusion kernel $q(\mathbf{x}_t|\mathbf{x}_0)$ is **Gaussian convolution!**

• We can sample $\mathbf{x}_t \sim q(\mathbf{x}_t)$ by first sampling $\mathbf{x}_0 \sim q(\mathbf{x}_0)$, and then sampling $\mathbf{x}_t \sim q(\mathbf{x}_t|\mathbf{x}_0)$ (ancestral sampling).

Diffused Data Distributions

- Reverse: Generative Learning by Denoising
- Diffusion parameters are designed: $q(\mathbf{x}_T) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Generation:

Sample
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$$

Iteratively sample $\mathbf{x}_{t-1} \sim q(\mathbf{x}_{t-1}|\mathbf{x}_t)$

True Denoising Dist.

Reverse Denoising Process

lacksquare From $q(x_{t-1}|x_t)$ to $q(x_{t-1}|x_t,x_0)$

$$egin{aligned} q(x_{t-1}|x_t,x_0) &= rac{q(x_{t-1},x_t,x_0)}{q(x_t,x_0)} = rac{q(x_t|x_{t-1},x_0)\cdot q(x_{t-1},x_0)}{q(x_t,x_0)} &= rac{q(x_t|x_{t-1},x_0)\cdot q(x_{t-1}|x_0)}{q(x_t|x_0)} \ &= rac{q(x_t|x_{t-1})\cdot q(x_{t-1}|x_0)}{q(x_t|x_0)} \end{aligned}$$

Learning Denoising Model

$$rac{q(x_t|x_{t-1})\cdot q(x_{t-1}|x_0)}{q(x_t|x_0)}$$

$$q(x_{t-1}|x_t,x_0) = \mathcal{N}(x_{t-1}; ilde{\mu}(x_t,x_0), ilde{eta}_toldsymbol{I})$$

where
$$\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}\mathbf{x}_t$$
 and $\tilde{\beta}_t \coloneqq \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\beta_t$

- Since $x_0 = \frac{1}{\sqrt{\overline{\alpha}_t}}(x_t \sqrt{1-\overline{\alpha}_t}\overline{\epsilon}_t)$, thus: $\tilde{\mu}_t = \frac{1}{\sqrt{\overline{\alpha}_t}}(x_t \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}}\overline{\epsilon}_t)$
- Use NN to regress the noise:

$$\mu_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{1 - \beta_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \, \epsilon_{\theta}(\mathbf{x}_{t}, t) \right)$$

$$L = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), t \sim \mathcal{U}\{1, T\}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\lambda_t || \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \epsilon, t)||^2 \right]$$

The authors of DDPM say that it's fine to drop all that baggage in the front and instead just use

$$egin{aligned} L &= \mathbb{E}_{\mathbf{x}_0,\,\epsilon} \Big[\|\epsilon - \epsilon_{ heta}(\mathbf{x}_t,\,t)\|_2^2 \Big] \ &= \mathbb{E}_{\mathbf{x}_0,\,\epsilon} \Big[\Big\|\epsilon - \epsilon_{ heta} \Big(\sqrt{ar{lpha}}_t \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} \epsilon,\,t \Big) \Big\|_2^2 \Big] \end{aligned}$$

Note that this is not a variational lower bound on the log-likelihood anymore: in fact, you can view it as a reweighted version of ELBO that emphasizes reconstruction quality!

If we have the noise, sampling by using Gaussians:

$$q(x_{t-1}|x_t,x_0) = \mathcal{N}(x_{t-1}; ilde{\mu}(x_t,x_0), ilde{eta}_toldsymbol{I})$$

- \blacksquare 1) sampling z_t
- 2) sampling x_t-1, using the estimated noise

$$egin{aligned} x_{t-1} &= ilde{\mu}_t + ilde{eta}_t \cdot z_t = rac{1}{\sqrt{lpha_t}} (x_t - rac{1-lpha_t}{\sqrt{1-\overline{lpha}_t}} \overline{\epsilon}_t) + rac{1-\overline{lpha}_{t-1}}{1-\overline{lpha}_t} \cdot eta_t \cdot z_t \ x_{t-1} &= rac{1}{\sqrt{lpha_t}} (x_t - rac{1-lpha_t}{\sqrt{1-\overline{lpha}_t}} \epsilon_{ heta}(x_t,t)) + rac{1-\overline{lpha}_{t-1}}{1-\overline{lpha}_t} \cdot eta_t \cdot z_t \end{aligned}$$

Rethinking the Training and Sampling processes.....

Algorithm 1 Training

1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \mathrm{Uniform}(\{1,\ldots,T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t}\boldsymbol{\epsilon},t) \right\|^2$ 6: until converged

Algorithm 2 Sampling

```
1: \mathbf{x}_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})

2: for t = T, ..., 1 do

3: \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) if t > 1, else \mathbf{z} = \mathbf{0}

4: \mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}

5: end for

6: return \mathbf{x}_0
```

- During training, add noise from 0 to t, then estimate it
- During sampling, note that $\sigma_t = rac{1-\overline{lpha}_{t-1}}{1-\overline{lpha_t}}\cdoteta_t$
- As t increases, $\overline{\alpha}_t$ decreases, $\sqrt{1-\overline{\alpha}_t}$ increases
- Thus, $\epsilon_{\theta}(\mathbf{x}_t, t)$ works as denoise auto-encoder for various noise levels!

Forward/Reverse process for Image Generation

Forward process: converting the image distribution to pure noise

Reverse process: sampling from the image distribution, starting with pure noise

Implementation Considerations

UNet + Other Stuff

Diffusion models typically use a U-Net on steroids as the noise predictive model — you take the good ol' model that you are already familiar with and add:

- Positional Embeddings
- ResNet Blocks
- ConvNext Blocks
- Attention Modules
- Group Normalization
- Swish and GeLU

It's a massive kitchen sink of modern CV tricks

Implementation Considerations

 Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers

- Time representation: sinusoidal positional embeddings or random Fourier features.
- Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization layers.

- Diffusion: Denoising Diffusion Probabilistic Models
- Score-based Diffusion Models
- Accelerated Sampling
- Conditional Generation and Guidance

ODE and SDE

Ordinary Differential Equation (ODE):

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t) \text{ or } d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt$$

Analytical Solution:
$$\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \mathbf{f}(\mathbf{x}, \tau) d\tau$$

Iterative Numerical Solution:

$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t), t)\Delta t$$

Crash Course in Differential Equations

ODE and SDE

Ordinary Differential Equation (ODE):

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}, t) \text{ or } \mathrm{d}\mathbf{x} = \mathbf{f}(\mathbf{x}, t)\mathrm{d}t$$

Analytical Solution: $\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \mathbf{f}(\mathbf{x}, \tau) d\tau$

Iterative Numerical Solution:

$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t), t)\Delta t$$

- Forward Diffusion Process as Stochastic Differential Equation (continuous form)
- Consider the limit of many small steps:

Song et al., "Score-Based Generative Modeling through Stochastic Differential Equations", ICLR, 2021

 Forward Diffusion Process as Stochastic Differential Equation (continuous form)

Forward Diffusion SDE:

$$d\mathbf{x}_t = -\frac{1}{2}\beta(t)\mathbf{x}_t dt + \sqrt{\beta(t)} d\boldsymbol{\omega}_t$$
drift term diffusion term (pulls towards mode) (injects noise)

The Generative Reverse Stochastic Differential Equation

$$d\mathbf{x}_t = -\frac{1}{2}\beta(t)\mathbf{x}_t dt + \sqrt{\beta(t)} d\boldsymbol{\omega}_t$$

But what about the reverse direction, necessary for generation?

The Generative Reverse Stochastic Differential Equation

Forward Diffusion SDE:

$$d\mathbf{x}_t = -\frac{1}{2}\beta(t)\mathbf{x}_t dt + \sqrt{\beta(t)} d\boldsymbol{\omega}_t$$

Reverse Generative Diffusion SDE:

$$\mathrm{d}\mathbf{x}_t = \left[-\frac{1}{2}\beta(t)\mathbf{x}_t - \beta(t) \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t) \right] \mathrm{d}t + \sqrt{\beta(t)} \, \mathrm{d}\bar{\boldsymbol{\omega}}_t$$
 "Score Function"

Simulate reverse diffusion process: Data generation from random noise!

Score function example

- Probability density function (pdf)
 p(X)
- Score function $\nabla_{\mathbf{x}} \log p(\mathbf{X})$
- · e.g. Gaussian distribution

$$p_{ heta}(x) = rac{1}{\sqrt{2\pi\sigma}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$
 $\longrightarrow s_{ heta}(x) = -rac{x-\mu}{\sigma^2}$

Density function: Contours

Score function: Vector field

The Generative Reverse Stochastic Differential Equation

But how to get the score function $\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)$?

Forward Diffusion SDE:

$$d\mathbf{x}_t = -\frac{1}{2}\beta(t)\mathbf{x}_t dt + \sqrt{\beta(t)} d\omega_t$$

Reverse Generative Diffusion SDE:

$$\mathrm{d}\mathbf{x}_t = \begin{bmatrix} -\frac{1}{2}\beta(t)\mathbf{x}_t - \beta(t)\nabla_{\mathbf{x}_t}\log q_t(\mathbf{x}_t) \end{bmatrix} \mathrm{d}t + \sqrt{\beta(t)}\,\mathrm{d}\bar{\omega}_t$$
 "Score Function"

Simulate reverse diffusion process: Data generation from random noise!

Score Matching

Naïve idea, learn model for the score function by direct regression?

 \Rightarrow But $\nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)$ (score of the marginal diffused density $q_t(\mathbf{x}_t)$) is not tractable!

Instead, diffuse individual data points x_0

Diffused $q_t(\mathbf{x}_t|\mathbf{x}_0)$ is Trackable!

"Variance Preserving" SDE: $\mathrm{d}\mathbf{x}_t = -\frac{1}{2}\beta(t)\mathbf{x}_t\,\mathrm{d}t + \sqrt{\beta(t)}\,\mathrm{d}\boldsymbol{\omega}_t$ $q_t(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t;\gamma_t\mathbf{x}_0,\sigma_t^2\mathbf{I})$

Denoising Score Matching:

$$\min_{\pmb{\theta}} \mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\mathbf{x}_0 \sim q_0(\mathbf{x}_0)} \mathbb{E}_{\mathbf{x}_t \sim q_t(\mathbf{x}_t|\mathbf{x}_0)} ||\mathbf{s}_{\pmb{\theta}}(\mathbf{x}_t,t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t|\mathbf{x}_0)||_2^2$$

$$\text{diffusion data diffused data neural score of diffused time } t \quad \text{sample } \mathbf{x}_0 \quad \text{sample } \mathbf{x}_t \quad \text{network} \quad \text{data sample}$$

$$\implies \text{After expectations, } \mathbf{s}_{\pmb{\theta}}(\mathbf{x}_t,t) \approx \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t)!$$

30

Matching the score of a noise-perturbed distribution

$$\frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_{\sigma}} [\|\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}) - s_{\theta}(\tilde{\mathbf{x}})\|_{2}^{2}]$$

$$= \frac{1}{2} \int q_{\sigma}(\tilde{\mathbf{x}}) \|\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}) - s_{\theta}(\tilde{\mathbf{x}})\|_{2}^{2} d\tilde{\mathbf{x}}$$

$$= \frac{1}{2} \int q_{\sigma}(\tilde{\mathbf{x}}) \|\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})\|_{2}^{2} d\tilde{\mathbf{x}} + \frac{1}{2} \int q_{\sigma}(\tilde{\mathbf{x}}) \|s_{\theta}(\tilde{\mathbf{x}})\|_{2}^{2} d\tilde{\mathbf{x}}$$

$$- \int q_{\sigma}(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}}$$

$$= \text{const.} + \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_{\sigma}} [\|s_{\theta}(\tilde{\mathbf{x}})\|_{2}^{2}] - \int q_{\sigma}(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}}$$

Matching the score of a noise-perturbed distribution

$$-\int q_{\sigma}(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \, d\tilde{\mathbf{x}}$$

$$= -\int q_{\sigma}(\tilde{\mathbf{x}}) \frac{1}{q_{\sigma}(\tilde{\mathbf{x}})} \nabla_{\tilde{\mathbf{x}}} q_{\sigma}(\tilde{\mathbf{x}})^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \, d\tilde{\mathbf{x}}$$

$$= -\int \nabla_{\tilde{\mathbf{x}}} q_{\sigma}(\tilde{\mathbf{x}})^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \, d\tilde{\mathbf{x}}$$

$$= -\int \nabla_{\tilde{\mathbf{x}}} \left(\int p_{\text{data}}(\mathbf{x}) q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \, d\mathbf{x} \right)^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \, d\tilde{\mathbf{x}}$$

$$= -\int \left(\int p_{\text{data}}(\mathbf{x}) \nabla_{\tilde{\mathbf{x}}} q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \, d\mathbf{x} \right)^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \, d\tilde{\mathbf{x}}$$

$$= -\int \left(\int p_{\text{data}}(\mathbf{x}) q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \, d\mathbf{x} \right)^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \, d\tilde{\mathbf{x}}$$

$$= -\int \int p_{\text{data}}(\mathbf{x}) q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \, d\mathbf{x} \right)^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \, d\tilde{\mathbf{x}}$$

$$= -\int \int p_{\text{data}}(\mathbf{x}) q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \, d\mathbf{x} \, d\tilde{\mathbf{x}}$$

$$= -E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})} \left[\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \right]$$

Matching the score of a noise-perturbed distribution

$$\mathbf{X} \qquad p_{\text{data}}(\mathbf{x}) \qquad \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_{\sigma}} [\|\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}) - s_{\theta}(\tilde{\mathbf{x}})\|_{2}^{2}]$$

$$= \text{const.} + \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_{\sigma}} [\|s_{\theta}(\tilde{\mathbf{x}})\|_{2}^{2}] - \int q_{\sigma}(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}})^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}}) \, d\tilde{\mathbf{x}}$$

$$= \text{const.} + \frac{1}{2} E_{\tilde{\mathbf{x}} \sim q_{\sigma}} [\|s_{\theta}(\tilde{\mathbf{x}})\|_{2}^{2}] - E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})^{\mathsf{T}} s_{\theta}(\tilde{\mathbf{x}})]$$

$$= \text{const.} + \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\|s_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})\|_{2}^{2}]$$

$$- \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\|\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})\|_{2}^{2}]$$

$$= \text{const.} + \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\|s_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})\|_{2}^{2}] + \text{const.}$$

$$= \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\|s_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})\|_{2}^{2}] + \text{const.}$$

$$= \frac{1}{2} E_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x}), \tilde{\mathbf{x}} \sim q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})} [\|s_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})\|_{2}^{2}] + \text{const.}$$

Instead, diffuse individual data points x₀

"Variance Preserving" SDE: $\mathrm{d}\mathbf{x}_t = -\frac{1}{2}\beta(t)\mathbf{x}_t\,\mathrm{d}t + \sqrt{\beta(t)}\,\mathrm{d}\boldsymbol{\omega}_t$ $q_t(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t;\gamma_t\mathbf{x}_0,\sigma_t^2\mathbf{I})$

Denoising Score Matching:

$$\begin{split} \min_{\pmb{\theta}} \mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\mathbf{x}_0 \sim q_0(\mathbf{x}_0)} \mathbb{E}_{\mathbf{x}_t \sim q_t(\mathbf{x}_t|\mathbf{x}_0)} ||\mathbf{s}_{\pmb{\theta}}(\mathbf{x}_t,t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t|\mathbf{x}_0)||_2^2 \\ \text{diffusion} \quad \text{data} \quad \text{diffused data} \quad \text{neural} \quad \text{score of diffused} \\ \text{time } t \quad \text{sample } \mathbf{x}_0 \quad \text{sample } \mathbf{x}_t \quad \text{network} \quad \text{data sample} \end{split}$$

$$\Rightarrow \quad \min_{\pmb{\theta}} \mathbb{E}_{t \sim \mathcal{U}(0,T)} \mathbb{E}_{\mathbf{x}_0 \sim q_0(\mathbf{x}_0)} \mathbb{E}_{\pmb{\epsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{I})} \frac{1}{\sigma_t^2} ||\pmb{\epsilon} - \pmb{\epsilon}_{\pmb{\theta}}(\mathbf{x}_t,t)||_2^2 \end{split}$$

Synthesis with SDE vs. ODE

How to solve the generative SDE or ODE in practice?

Generative Diffusion SDE:

$$d\mathbf{x}_{t} = -\frac{1}{2}\beta(t) \left[\mathbf{x}_{t} + 2\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t)\right] dt + \sqrt{\beta(t)} d\bar{\boldsymbol{\omega}}_{t}$$

Euler-Maruyama:

$$\mathbf{x}_{t-1} = \mathbf{x}_t + \frac{1}{2}\beta(t)\left[\mathbf{x}_t + 2\mathbf{s}_{\theta}(\mathbf{x}_t, t)\right]\Delta t + \sqrt{\beta(t)\Delta t} \,\mathcal{N}(\mathbf{0}, \mathbf{I})$$

Ancestral Sampling (Part 1) is also a generative SDE sampler!

Probability Flow ODE:

$$d\mathbf{x}_t = -\frac{1}{2}\beta(t) \left[\mathbf{x}_t + \mathbf{s}_{\theta}(\mathbf{x}_t, t) \right] dt$$

➡ Euler's Method:

$$\mathbf{x}_{t-1} = \mathbf{x}_t + \frac{1}{2}\beta(t)\left[\mathbf{x}_t + \mathbf{s}_{\theta}(\mathbf{x}_t, t)\right]\Delta t$$

In practice: Higher-Order ODE solvers
 → (Runge-Kutta, linear multistep methods, exponential integrators, ...)

Synthesis with SDE vs. ODE

- How to solve the generative SDE or ODE in practice?
- Runge-Kutta adaptive step-size ODE solver
- Higher-Order adaptive step-size SDE solver
- Reparametrized, smoother ODE
- Higher-Order ODE solver with linear multistepping
- Exponential ODE Integrators
- Higher-order ODE solver with Heun's Method
- $\mathbf{x}_t + \frac{1}{2}\beta(t)\left[\mathbf{x}_t + 2\mathbf{s}_{\theta}(\mathbf{x}_t, t)\right]\Delta t + \sqrt{\beta(t)}\Delta t \,\mathcal{N}(\mathbf{0}, \mathbf{I})$
- Ancestral Sampling (Part 1) is also a generative SDE sampler!

- In practice: Higher-Order ODE solvers

 (Runge-Kutta, linear multistep method
 - exponential integrators, ...

Outline

- Diffusion: Denoising Diffusion Probabilistic Models
- Score-based Diffusion Models
- Accelerated Sampling
- Conditional Generation and Guidance

What makes a good generative model?

- The generative learning trilemma
- Tackle the trilemma by accelerating diffusion models

What makes a good generative model?

- The generative learning trilemma
- Tackle the trilemma by accelerating diffusion models

39

Accelerated Sampling

- Advanced ODE/SDE Solvers
- Distillation Techniques
- Low-dim Diffusion Processes
-

Generative ODEs

Solve ODEs with as little function evaluations as possible! $dx = \epsilon_{\theta}(x, t)dt$

Song et al., "Denoising Diffusion Implicit Models (DDIM)", ICLR 2021 https://arxiv.org/abs/2010.02502

Generative ODEs

Solve ODEs with as little function evaluations as possible! $dx = \epsilon_{\theta}(x, t)dt$

Generative ODEs

- Solve ODEs with as little function evaluations as possible! $dx = \epsilon_{\theta}(x, t)dt$
 - Runge-Kutta adaptive step-size ODE solver:

https://arxiv.org/abs/2011.13456

□ Higher-Order adaptive step-size SDE solver:

https://arxiv.org/abs/2105.14080

□ Reparametrized, smoother ODE: gDDIM

https://arxiv.org/abs/2206.05564

□ Higher-Order ODE solver with linear multistepping:

https://arxiv.org/abs/2202.09778

□ Exponential ODE Integrators: DPM, DPM-Solver++

https://arxiv.org/abs/2206.00927

☐ Higher-Order ODE solver with Heun's Method:

https://arxiv.org/abs/2206.00364

□ Many more: https://arxiv.org/abs/2305.19947

Distillation Techniques

ODE Distillation

Can we train a neural network to directly predict $\mathbf{x}_{t'}$ given $\mathbf{x}_{t'}$?

Progressive Distillation

- Distill a deterministic ODE sampler to the same model architecture
- At each stage, a "student" model is learned to distill two adjacent sampling steps of the "teacher" model to one sampling step.
- At next stage, the "student" model from previous stage will serve as the new "teacher" model.

Salimans & Ho, "Progressive distillation for fast sampling of diffusion models", ICLR 2022. https://arxiv.org/abs/2202.00512

Progressive Distillation in Latent Space

Meng et al., "On Distillation of Guided Diffusion Models", CVPR 2023 (Award Candidate). https://arxiv.org/abs/2210.03142

Points on the same trajectory should generated the same \mathbf{x}_0 Assume $f_{\theta}(\mathbf{x}_t,t)$ is the current estimation of \mathbf{x}_0 Basic idea:

- Find \mathbf{x}_t and $\mathbf{x}_{t'}$ on a trajectory by solving generative ODE in [t,t']
- Minimize: $\min_{\theta} \ ||f_{\rm EMA}(\mathbf{x}_t,t) f_{\theta}(\mathbf{x}_t',t')||_2^2$

Song et al., Consistency Models, ICML 2023, https://arxiv.org/abs/2303.01469

Distillation Techniques

SDE Distillation

Can we train a neural network to directly predict $\mathbf{x}_{t'}$ given $\mathbf{x}_{t'}$?

Approximation of Reverse Process

- Normal assumption in denoising distribution holds only for small step
- Denoising Process with Uni-modal Normal Distribution

Xiao et al., "Tackling the Generative Learning Trilemma with Denoising Diffusion GANs", ICLR 2022. Gao et al., "Learning energy-based models by diffusion recovery likelihood", ICLR 2021. https://arxiv.org/abs/2112.07804

Low-dim. Diffusion Processes

- Cascaded Generation
- Cascaded Diffusion Models outperform Big-GAN in FID and IS and VQ-VAE2 in Classification Accuracy Score.

Ho et al., "Cascaded Diffusion Models for High Fidelity Image Generation", 2021. https://arxiv.org/abs/2106.15282 Ramesh et al., "Hierarchical Text-Conditional Image Generation with CLIP Latents", 2022,

https://arxiv.org/abs/2204.06125

Saharia et al., "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", 2022, https://arxiv.org/abs/2205.11487

VAE + score-based prior

Variational Autoencoder

Denoising Diffusion Prior

Main Idea

Encoder maps the input data to an embedding space

Denoising diffusion models are applied in the latent space

Vahdat et al., "Score-based generative modeling in latent space", NeurIPS 2021. https://arxiv.org/abs/2106.05931

VAE + score-based prior

Variational Autoencoder

Denoising Diffusion Prior

Advantages:

- (1) The distribution of latent embeddings close to Normal distribution → Simpler denoising, Faster synthesis!
 - (2) Latent space → More expressivity and flexibility in design!
- (3) Tailored Autoencoders → More expressivity, Application to any data type (graphs, text, 3D data, etc.)!

Vahdat et al., "Score-based generative modeling in latent space", NeurIPS 2021. https://arxiv.org/abs/2106.05931

End-to-End Training objective

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{\psi}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}_0|\mathbf{x})} \left[-\log p_{\boldsymbol{\psi}}(\mathbf{x}|\mathbf{z}_0) \right] + \mathrm{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}_0|\mathbf{x})||p_{\boldsymbol{\theta}}(\mathbf{z}_0))$$

$$= \underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}_0|\mathbf{x})} \left[-\log p_{\boldsymbol{\psi}}(\mathbf{x}|\mathbf{z}_0) \right]}_{\text{reconstruction term}} + \underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}_0|\mathbf{x})} \left[\log q_{\boldsymbol{\phi}}(\mathbf{z}_0|\mathbf{x}) \right] + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}_0|\mathbf{x})} \left[-\log p_{\boldsymbol{\theta}}(\mathbf{z}_0) \right]}_{\text{reconstruction term}}$$

$$CE(q(\mathbf{z}_0|\mathbf{x})||p(\mathbf{z}_0)) = \mathbb{E}_{t \sim \mathcal{U}[0,1]} \left[\underbrace{\frac{g(t)^2}{2} \mathbb{E}_{q(\mathbf{z}_t,\mathbf{z}_0|\mathbf{x})} \left[||\nabla_{\mathbf{z}_t} \log q(\mathbf{z}_t|\mathbf{z}_0) - \nabla_{\mathbf{z}_t} \log p(\mathbf{z}_t)||_2^2 \right]}_{\text{time}} + \underbrace{\frac{D}{2} \log \left(2\pi e \sigma_0^2 \right)}_{\text{supplies}}$$

$$\frac{\text{time}}{\text{diffusion}} \quad \text{Trainable} \quad \text{Constant}$$

$$\frac{\text{constant}}{\text{diffusion}} \quad \text{Constant}$$

Vahdat et al., "Score-based generative modeling in latent space", NeurIPS 2021. https://arxiv.org/abs/2106.05931

Stable Diffusion: the efficiency and expressivity of LDM+ opensource access fueled a large body of work in the community

- Two stage training: train autoencoder first, then train the diffusion prior
- Focus on compression without of any loss in reconstruction quality
- Demonstrated the expressivity of latent diffusion models on many conditional problems

- Training models in the pixel space is excessively computationally expensive (can easily multiple days on a V100 GPU)
 - Even image synthesis is very slow compared to GANs
 - □ Images are high dimensional → more things to model
- Researchers observed that most "bits" of an image contribute to its perceptual characteristics since aggressively compressing it usually maintains its semantic and conceptual composition
 - In layman's terms, there are more bits for describing pixel-level details while less bits for describing "the meaning" within an image
 - Generative models should learn the latter
- Can we separate these two components?

Stable Diffusion model (CVPR2022)

High-Resolution Image Synthesis with Latent Diffusion Models

Robin Rombach^{1 *} Andreas Blattmann^{1 *} Dominik Lorenz¹ Patrick Esser Björn Ommer¹

Ludwig Maximilian University of Munich & IWR, Heidelberg University, Germany

BRunway ML

https://github.com/CompVis/latent-diffusion

Latent Diffusion Models can be divided into two stages:

- 1) Training perceptual compression models that strip away irrelevant highlevel details and learn a latent space that is semantically equivalent to the high level image pixel-space
 - a. The loss is a combination of a reconstruction loss, an adversarial loss (remember GANs?) that promotes high quality decoder reconstruction, and regularization terms

$$L_{\text{Autoencoder}} = \min_{\mathcal{E}, \mathcal{D}} \max_{\psi} \left(L_{rec}(x, \mathcal{D}(\mathcal{E}(x))) - L_{adv}(\mathcal{D}(\mathcal{E}(x))) + \log D_{\psi}(x) + L_{reg}(x; \mathcal{E}, \mathcal{D}) \right)$$

- 2) Performing a diffusion process *in this latent space*. There are several benefits to this:
 - The diffusion process is only focusing on the relevant semantic bits of the data
 - Performing diffusion in a low dimensional space is significantly more efficient

- Stable Diffusion model (CVPR2022)
- Long story between Stability AI, Runway ML and LAION-5B
- Al paradigm: data + algorithm + computing resource

Computer Vision & Learning Group Ludwig Maximilian University of Munich (LMU)

~4000 A100 from Stability AI

Huge text-image dataset from LAION

- The multi-modality framework is important
- The trend continues: big data, big modal
- Enjoy better text-encoder and suitable generator

Google: Parti Model, "Scaling
Autoregressive Models for ContentRich Text-to-Image Generation"

Stablity AI: DeepFloyd IF Model

T5-XXL as Text-encoder; pixel-level
Diffusion

- Enjoy cross-modality abilities
- Enjoy downstream conditioning abilities

Conditioning using ControlNet

Subject-Driven Generation using **DreamBooth**

Editing Instructions using InstructPix2Pix (based on GPT-3)

Use NeRF as inherent representation to bridge 2D-DM with 3D scene

More explicit disentanglement towards geometry, color,

lighting ...

3D Editing Instructions using InstructNeRF2NeRF

NVDIA Magic3D 18 Nov 2022

OpenAl **Point-E** 21 Dec 2022

Summary

- Preliminary theory of diffusion (don't worry if this is confusing!)
- Some tricks that modern diffusion models employ for image generation:
 - □ A U-Net architecture equipped with all kinds of modifications
 - Other architecture improvements
 - Several implementation tricks (different noise schedules, covariance parametrizations)
- Latent diffusion models for improving diffusion quality and efficiency