1) Modular Circuit Buffer

"How to combine circuits"

Can we build a circuit that computes the following arithmetic? $V_x = \frac{1}{2}V_{in}$ $V_y = \frac{1}{3}V_x$

al Draw a voltage divider for each operation:

Note: While the ratio of resistor values within 1/2 and 1/3 circuits are fixed (R_1=R_2 and R_1=2R_2 respectively), there is no relation of these values between circuits. Thus they've been left as Rx and Ry in general.

b) Link the two circuits as initially stated.

Now that a load has been added to the 1/2 module, its behavior is altered by an alternate route for current!

$$R_{EQ} = \left(\frac{1}{R_x} + \frac{1}{2R_y + R_y}\right)^{-1} = \frac{3R_y R_x}{3R_y + R_x}$$

$$V_{x} = \left(\frac{1}{2 + \frac{R_{x}}{3R_{y}}}\right) V_{in} \neq \frac{1}{2} V_{in}$$

$$V_{y} = \frac{1}{3} \left(\frac{1}{2 + \frac{R_{x}}{3R_{y}}}\right) V_{in} \neq \frac{1}{6} V_{in}$$

$$V_{y} = \frac{1}{3} \left(\frac{1}{2 + \frac{R_{x}}{3R_{y}}}\right) V_{in} \neq \frac{1}{6} V_{in}$$
Since the latter V_{3} still has no load, $V_{y} = \frac{1}{3} V_{x}$.

$$V_{x} = \left(\frac{R_{EQ}}{R_{x} + R_{EQ}}\right) V_{in} = \left(\frac{3R_{x}R_{y}/(R_{x} + 3R_{y})}{R_{x} + 3R_{x}R_{y}/(R_{x} + 3R_{y})}\right) V_{in}$$

$$= \left(\frac{3R_{x}R_{y}}{R_{x}^{2} + 3R_{x}R_{y}} + 3R_{x}R_{y}\right) V_{in}$$

$$= \left(\frac{1}{\frac{R_{x}^{2}}{3R_{x}R_{y}} + 2}\right) V_{in} = \left(\frac{1}{2 + \frac{R_{x}}{3R_{y}}}\right) V_{in}$$

Oh no! I guess just slapping 2 voltage dividers together ... Notice though that for Ry>> Rx we find $V_x \approx \frac{1}{2} V_{in}$ and $V_y \approx \frac{1}{6} V_{in}$, but we want to be picky and have the circuits work exactly like in their isolated modules regardless of Rx, Ry. We need op-amps... This is because current goes into the 1/3 circuit and it to still "looks open" to the 1/2 circuit. effectively no

C) Try including an op-amp (in negative feedback) within the circuit to circumvent the loading issue!

Try inserting a unity gain op-amp circuit between them, so the output of 1/2 feeds to an op-amp input terminal:

Since the inputs to an op-amp act like open circuits, the 1/2 preserves its behavior!

Quick aside...

Review of unity gain op-amp circuit

Golden rule: I+=I=0

Gain:
$$V_b = A(u_+ - u_-)$$

where A is HUGE $(A \approx 10^6)$

Now $U_{+} = V_{a}$ and $U_{-} = V_{b}$ (since they're the same node), so we find:

$$V_b = A (V_a - V_b)$$
 (1+A) $V_b = A V_a$

$$V_b = \left(\frac{1}{1 + (\frac{1}{A})}\right) V_a \approx V_a$$

(2) Modular Op-Amp Circuits

Perform the following operations using op-amps:

(c)
$$V_{\text{out}} = V_1 + V_2$$

Can these circuits be combined while maintaing their function?

(a) We need a non-inverting amplifier: Vino +5

Given that 'Vin' leads into an op-amp input terminal (no current), we can safely connect this circuit to others without issue :

Since
$$\mathcal{U}_{-}=\mathcal{U}_{+}=0$$
, we know $I=\frac{V_{in}-0}{R_{1}}$ and so $V_{out}=V_{in}+IR_{2}$

$$=V_{in}\left(1+\frac{R_{2}}{R_{1}}\right)$$
Now we need $\left(1+R_{2}/R_{1}\right)=5$ R₂=4R₁

Given that 'Vin' does have a current connection to Vour, we would not be able to attach a voltage divider before this circuit without messing up that divider. However, the gain [-2] works regardless! I we'd need a buffer i

$$V_{OUT} = V_1 + V_2$$

$$U_{+} = \frac{1}{2}(V_1 + V_2)$$

$$V_{0UT}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{1}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7}$$