Let us consider the following, reaction-diffusion, partial differential equation in 2 dimensions,

$$\frac{\partial \varphi}{\partial t} = D\nabla^2 \varphi + \rho - \kappa \varphi,$$

where φ indicates the concentration of some chemical, ρ denotes a source term (which depends on space), and κ is a positive constant, determining the degradation rate for that chemical, while D is the diffusion coefficient.

1. Write down a suitable finite difference algorithm to integrate the equation above subject to a suitable initial condition, and periodic boundary conditions in space.

[5]

[20]

[8]

[7]

[5]

[5]

2. Based on this algorithm, write a Python code to solve this equation equation on a 50×50 grid, subject to the initial condition that $\varphi = 0.5 + \eta$, with η a spatially dependent random noise uniformly distributed between -0.1 and 0.1. The source term ρ is given by

$$\rho = \exp\left(-\frac{\mathbf{r}^2}{\sigma^2}\right),\,$$

with σ a positive constant determining the size of the source term, and \mathbf{r} the position vector linking any point of the grid to the grid centre. It should be possible to set the values of κ and σ at run time. Your code should display the density field φ in real time, as it is running. Here and in what follows you can set D=1; you can further set the spatial discretisation $\Delta x=1$ (the time step Δt has then to be small enough for the algorithm to converge).

- 3. Use your code to study the behaviour of a system with $\sigma=10$, and $\kappa=0.01$. Show/sketch a few snapshots of the system over time, discussing the behaviour you see. Plot the value of the average value of φ over the simulation domain over time, estimating when the system reaches a steady state (i.e., when it stops changing over time).
- 4. For the same system, plot the value of φ as a function of $r = |\mathbf{r}|$ at steady state. You should determine whether this function is best fitted by a power law or an exponential, giving values of the parameters which provide the best fit.
- 5. Now consider the case whether the field is advected by a spatially dependent velocity \mathbf{v} ,

$$\frac{\partial \varphi}{\partial t} + \mathbf{v} \cdot \nabla \varphi = D \nabla^2 \varphi + \rho - \kappa \varphi,$$

where $\mathbf{v} = (v_x, 0)$, and v_x only depends on the y coordinate as follows,

$$v_x(y) = -v_0 \sin(2\pi y/N),$$

where y = 0, ..., N-1 (and N = 50). Modify your code so as to solve this equation by using a suitable finite difference algorithm.

6. Find the 2D solution for $v_0 = 0.01$, $v_0 = 0.1$ and $v_0 = 0.5$ in steady state. Discuss the physical meaning of the shape of the contour plots for φ you have found.