	Académie :	Session:
	Examen:	Série :
3	Spécialité/option :	Repère de l'épreuve :
ADI	Epreuve/sous épreuve :	
CE CADRE	NOM:	
9	(en majuscule, suivi s'il y a lieu, du nom d	l'épouse)
DANS	Prénoms :	N° du candidat
Q	Né(e) le :	(le numéro est celui qui figure sur la convocation ou liste d'appel)
E RIEN ÉCRIRE	Note:	Appréciation du correcteur
Ž		

Il est interdit aux candidats de signer leur composition ou d'y mettre un signe quelconque pouvant indiquer sa provenance.

MINISTERE DE L'EDUCATION NATIONALE

BACCALAUREAT PROFESSIONNEL CONSTRUCTION DES CARROSSERIES

Session : 2013

E.1- EPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve E11 <u>UNITE CERTIFICATIVE U11</u>

Analyse d'un système technique

Durée : 3h Coef. : 2

DOSSIER REPONSES

Ce dossier REPONSES comprend 14 pages numérotées 1/14 à 14/14

BACCALAUREAT PROFESSIONNEL Construction des carrosseries	Code : 1306 CCR ST 11	Session 2013	DOSSIER REPONSES
E1 - EPREUVE SCIENTIFIQUE ET TECHNIQUE	Durée : 3 h	Coefficient : 2	Page 1 / 14

Partie 1: Analyse

6/points

1. compléter l'actigramme du hayon élévateur ci-dessous (voir DT 2/7):

3. Compléter le FAST ci-dessous en complétant les solutions technologiques manquantes (voir DT 2/7 et DT 7/7).

Partie 2 : Schéma cinématique

6/points

Classe d'équivalence cinématique	Nom et repère de la pièce principale	Classe d'équivalence cinématique	Nom et repère de la pièce principale
S1	Bâti (1)	S6	Bras vertical (9)
S2	Corps de vérin (7)	S 7	Plateau (14)
S3	Tige du vérin (8)	S8	Tube de butée (10)
S4	Bras coudé (6)	S9	Tige de butée (11)
S 5	Bras supérieur (5)		st pas représenté sur le nématique

On demande, sur le schéma cinématique ci-dessous, de :

- 4. Compléter, à partir du tableau ci-dessus, le repère manquant des classes d'équivalence cinématique.
- 5. Compléter le tableau des mouvements relatifs des liaisons concernées.
- 6. Noter le nom de la liaison.

Pa	artie 3 : Etude de la fonction technique FT22	3/points
	7. Donner le nom des phases de fonctionnement du hayon élévateur (voir DT 2/7) :	
	8. Donner le nom des deux pièces permettant le repliage du plateau (voir DT 7/7) :	
	9. Lors du repliage du plateau, que devient la liaison entre ces deux pièces (voir DT	7/7) ?
	artie 4 : Etude de la fonction technique FT12	7/points
	ude de la liaison encastrement entre l'axe du plateau (13) et le bras vertica ur la vue éclatée en page suivante, on demande :	<u>l (09)</u>
	10. Colorier en vert, sur l'axe du plateau (13) et le bras vertical (09), les surfaces per position (MIP).	mettant la mise er
	11. Colorier en bleu les surfaces et les pièces permettant le maintient en position (MA12. Donner le nom de la solution technique pour le maintient en position :	ιP).
	12. Definer to from de la colation technique pour le maintient en position :	
	13. Quel est la fonction de la pièce 16 :	

Etude de la fonction technique FT12

L'ensemble du mécanisme a été schématisé ci-dessous en position basse.

- 14. Tracer en trait interrompu (----), sur la figure ci-dessous, le reste du mécanisme lorsque le point E se déplace en E₂.
- 15. Comparer les deux positions du plateau (13) :

16. Indiquer la nature du mouvement du plateau (13) par rapport au bâti :

Partie 5 : Vérification du débit fourni par la pompe

12/points

A partir de la vitesse maximale de déplacement du plateau, une étude menée par l'outil informatique a permis de déterminer $\overline{V_{F \in S5/S1}}$, vitesse du point F appartenant au bras supérieur par rapport au bâti. Celle-ci est tracée sur le dessin en page 8.

17. Justifier la relation :	

18. Indiquer la nature du mouvement entre la tige du vérin (S3) et le corps du vérin (S2) lors du fonctionnement du vérin :

- 19. Tracer en vert, sur le dessin en page 8, la direction du vecteur $\overline{V_{F \in S3/S2}}$.
- 20. Ecrire la relation de composition des vecteurs vitesses au point F avec $\overrightarrow{V_{F \in S3/S2}}$ et $\overrightarrow{V_{F \in S2/S1}}$:

$$\overrightarrow{V_{F \in S3/S1}} = \overrightarrow{V_{F \in S5/S1}} = \dots$$

21. Tracer, sur le dessin en page 8, $\overline{V_{F \in S3/S2}}$ et déterminer sa norme :

$$\left\| \overrightarrow{V_{F \in S3/S2}} \right\| = \dots$$

Pour les questions suivantes, vous prendrez comme vitesse maximale de sortie de la tige du vérin :
$\left\ \overrightarrow{\mathbf{V}_{tigeS3/v\acute{e}rinS2}} \right\ = 20 \text{ mm/s}.$
22. Calculer la surface d Echelle des vitesses : 1 cm = 5mm/s
23. Calculer le débit nécessaire à fournir au vérin (on rappelle que la tige du vérin sort).
Rappel: Q = V × S
Avec $Q = d\acute{e}bit en m^3/s$
V = vitesse en m/s
S = surface du piston en m ²
24. Comparer le débit calculé à celui du cahier des charges (voir DT 3/7) et conclure.

Partie 6 : Vérification de la course du vérin

5/points

Le dessin ci-dessous indique l'inclinaison de l'axe du vérin pour trois positions du plateau : basse, haute et repliée.

- 25. Tracer le point F₃ correspondant à l'extrémité de la tige du vérin lorsque le plateau est en position repliée.
- 26. Calculer la course nécessaire au vérin pour passer de la position basse à la position repliée.

 27. Comparer la course calculée à celle du vérin (voir DT 4/7) et conclure.

Partie 7 : Vérification de la masse maximale soulevée par le plateau

8/points

Hypothèses:

- Masse maximale soulevée par le plateau : **Ms = 300 kg**.
- Masse du plateau : Mp = 30 kg.
- On néglige le poids des autres pièces devant les actions mises en jeu.
- On néglige l'action mécanique de l'ensemble S9 (tige de butée) sur l'ensemble S7 (plateau).
- On considère $g = 9.81 \text{ m/s}^2$.
- On considère les mouvements suffisamment lents pour permettre une étude de statique.

Etude de l'équilibre du bras coudé S4

28. Fair	e l'inventaire des	actions mécaniqu	es agissant sur	S4		
29. Trad	cer le support de c	ces actions mécar	niques sur le des	ssin de S4 ci-dess	ous :	

Etude de l'équilibre de l'ensemble {S6+S7}.

On choisit de modéliser l'action mécanique créée par la masse du plateau et celle de la charge par un seul et même vecteur poids au centre de gravité G (voir dessin p12).

30. Faire l'inventaire des actions mécaniques agissant sur l'ensemble isolé {S6-	⊦S7}.

31. Tracer sur le dessin l'ensemble {S6+S7} ci-dessous, le support de ces actions mécaniques.

L'étude de l'équilibre du bras supérieur S5 par l'outil informatique à permis de déterminer la norme et le sens de l'action mécanique en E dans le cas d'une poussée maximale du vérin :

$$\left\| \overrightarrow{\mathsf{E}}_{\mathsf{S5}\to\mathsf{S6}} \right\| = 12600 \, \mathsf{N}$$
 Sens :

32. A l'aide d'un dynamique des forces, déterminer graphiquement l'ensemble des forces agissant sur {S6+S7}.

Echelle: 1 cm: 1000 N

Origine du dynamique

33. Quelle masse maximale peut donc être soulevée par le plateau ?

.....

34. Conclure:

Partie 8 : Vérification de la résistance mécanique de l'axe (2)

8/points

Le vérin (1) exerce une poussée maximale de 3150 daN lors du soulèvement du plateau.

Cet effort fait subir à l'axe (2) une sollicitation mécanique.

<u>Données</u>: | Diamètre de l'axe (2): 25mm

Matière : Acier C22 (Re = 300 Mpa)

Coefficient de sécurité : k = 4Rpg : 0,5 Rp

35. A quelle sollicitation mécanique est soumis l'axe par le vérin ?

Déformée exagérée de l'axe sollicité par le vérin

36. Si la valeur de la cote « a » devient nulle, à quelle sollicitation est alors soumis l'axe ?

.....

Pour les questions suivantes, le bâti est modifié afin d'obtenir une cote « a » nulle. Le DT 4/4 peut être utile pour les questions suivantes.

	37. En lisant attentivement le problème posé donner la valeur de l'effort tranchant (T) appliquée à l'axe (exprimer cette valeur en Newton).
	38. Indiquer en trait vert sur l'axe (coupe A-A, page prédédante) les sections cisaillées (rappel : a=0).
	39. Calculer l'aire totale des sections soumises au cisaillement.
	40. Calculer la résistance pratique au cisaillement Rpg.
•••	41. Calculer la contrainte de cisaillement τ.
•••	42. L'axe choisi par le constructeur convient-il ? Justifier votre réponse.