Rachunek prawdopodobieństwa i statystyka

Lista 2.

- Zad.1. Rozważ rzut 2 rozróżnialnymi kostkami.
 - a) Podaj jawnie przestrzeń zdarzeń elementarnych Ω .
 - b) Określ rozkład prawdopodobieństwa na Ω , czyli ile wynosi $P(\omega)$ dla każdego zdarzenia elementarnego $\omega \in \Omega$.
 - c) Podaj jawnie postać zdarzeń: A na obu kostkach jest taka sama liczba oczek; B na obu kostkach jest taka sama parzysta liczba oczek; C na obu kostkach jest taka sama nieparzysta liczba oczek; D ilość oczek na jednej z kostek różni się o 2 od ilości oczek na drugiej kostce; E ilość oczek na jednej z kostek różni się o 3 od ilości oczek na drugiej kostce; F ilość oczek na jednej z kostek różni się o 5 od ilości oczek na drugiej kostce; F ilość oczek na jednej z kostek różni się o 6 od ilości oczek na drugiej kostce.
 - d) Ile wynosi P(A), P(B), P(C), P(D), P(E), P(F) i P(G)?
- Zad.2. Jakie jest prawdopodobieństwo wygrania głównej nagrody w Lotto? A jakie prawdopodobieństwa trafienia 5, 4 lub 3 oraz prawdopodobieństwo przegranej?
 - Wskazówka: Przeczytaj uważnie zad.22, §1.4, w Majsnerowskiej.
- Zad.3. Z urny zawierającej 5 kul białych, 3 pomarańczowe oraz 2 niebieskie losujemy 2 kule. Opisać przestrzeń zdarzeń elementarnych odpowiadającą temu doświadczeniu i obliczyć prawdopodobieństwo otrzymania zestawu bez kuli białej.
 - Wskazówka: zadanie z Majsnerowskiej.
- Zad.4. Rzucamy 5 razy symetryczną monetą. Jakie jest prawdopodobieństwo otrzymania odpowiednio: (a) samych reszek, (b) jednego orła, (c) 2 orłów, (d) 3 orłów, (e) więcej niż 3 orłów?

Literatura:

M. Majsnerowska, "Wprowadzenie do rachunku prawdopodobieństwa"

Dariusz Prorok