

Alvin Hsieh

Engineering Portfolio

UW-Madison: Engineering Mechanics and Aerospace

arhsieh@wisc.edu | (608) 304-4001

Wisconsin Racing FSAE: Accumulator Cooling

(Fall 2024 - Current)

- Introduced active air-cooled package into the HV Accumulator to keep cells under 45°C charging temperature limit due to the introduction of regenerative braking
- Identified chosen blower fan based on 1D thermal analysis and simulated heat transfer coefficient
- Design and tested inertial separator component to prevent water ingress into accumulator
- Led module thermal testing for characterization of air-cooled (11s3p) module temperatures vs SOC

Accumulator Cooling Design and Module Air Flow Path

Inertial Separator Testing

Module Thermal Testing

Wisconsin Racing FSAE: Monocoque Modal Tap Test

(Spring 2024)

- Conducted modal tap test for correlation of CFRP monocoque test modes to FEM modes
- Developed Python code for LabJack DAQ to record time domain data at 10 kHz, resolving frequencies up to 1 kHz
- Developed WR-TapTest, a Python package designed to post-process tap testing data
 - Trial run averaging
 - Take time domain forcing and response data to FRFs, storing in 3D tensor
 - Compare test modes to FEM modes with modal assurance criterion (MAC)
- Correlation of modes in 200 600 Hz range

Free-free Boundary Condition Test Set-up

Monocoque Finite Element Model

Recording Forcing and Response Time Histories

Comparing FEM Modes (left) to Test Modes (right)

Wisconsin Racing FSAE: End Plate Mass Optimization

(Spring 2024)

- Utilized Siemens NX and FEMAP as well as the NASTRAN finite element solver to optimize the mass of the rear wing endplates
- Plate meshed carbon fiber composites with PCOMP laminate card
- Mapped rear wing pressure loading from CFD simulation of the car's top speed to the finite element model
- Static design sweep resulted in 2.42 lbm decrease from original design
 - Global laminate: 2 ply [0, 45]
 - Global core density: 2.0 pcf
 - Chassis bolted connection core density: 6.0 pcf
 - Endcap bolted connection core density: 3.0 pcf
 - Positive margins for core shear and Tsai-Wu failure criterion

Geometry & Meshed Endplate under Symmetry BC

Pressure Mapping to FEM

Panel to Endcap RBE Connection

Driving Core Shear in End Cap Connection

Final Design Sweep Laminate and Core Specifications

224C Rear Wing

Wisconsin Racing FSAE: Cooling Loop Thermal Analysis

(Fall 2023 - Current)

- Introduced Conjugate Heat Transfer (CHT) CFD simulations to Wisconsin Racing to analyze heat transfer within the cooling loop
 - Updated cooling jacket pressure drop for 1D Simulink cooling loop model
 - Worked with cooling design team to present optimized flow rate for the pump
- Utilized high performance computing (HPC) clusters to run simulations
- Developed StarCCM+ Java macros, batch scripts, and Python scripts to improve parallel computing for sweeps and to decrease postprocessing time

Cooling Jacket Heat Transfer & Pressure Drop

Cold Plate Heat Transfer Simulation

Cold Plate Flow Rate Optimization Study

Wisconsin Racing FSAE: Other Analysis Projects

Custom Intake CFD Support

Brake Rotor Heat Transfer Coefficient Study

Front Wing Modal Tap Test Initial Correlation

Wisconsin Racing FSAE: Manufacturing & Testing

Monocoque Plug Gel Coat

Monocoque Mold Wet Lay

Radiator Wind Tunnel Testing

Front Wing Main Plane Element Infusion

Aerodynamics Package Wind Tunnel Testing

Carbon Fiber Monocoque Lay-Up, Bag, Cure, and De-Molding