

Simple Stupid Rover

Robbe Elsermans, Adam Hejduk, Thomas Kramp

Adam Hejduk

- Environmental Sensing
- Energy harvesting
- Energy output management
- Soldering man

Robbe Elsermans

- Project Manager
- Energy Awareness
- BLE intercommunication
- Power Profiling

Thomas Kramp

- Gyroscope
- LineBot
- LoRa
- Dashboard

System Description

Seeed XIAO nRF52840

STM32L4 12KB

STM32L4 12KB Seeed XIAO nRF52840

Light LTR-329

Temperature & Humidity SHT40

Seeed XIAO nRF52840

Light LTR-329

Temperature & Humidity SHT40

Seeed XIAO nRF52840

LPPAN communication

BLE

Advertise -> IBeacon

iBeacon Data 30 bytes

Advertise -> IBeacon

BLE Communication system [2] ->

Advertise -> IBeacon


```
[0] -> Temperature MSB(yte)
      [1] -> Temperature LSB(yte)
              Humidity
      [3] -> Lux MSB(yte)
      [4] -> Lux LSB(yte)
      [5] -> Device Supercap Voltage MSB(yte)
      [6] -> Device Supercap Voltage LSB(yte)
      [7] -> gyro-x
      [8] -> gyro-y
Major N [9] -> gyro-z
  2 by [10] -> /0xFF
      [11] -> /0xFF
      [12] -> /0xFF
      [13] -> /0xFF
      [14] -> /0xFF
      [15] -> /0xFF
```


Advertise -> IBeacon

beacon.setMajorMinor((BEACON_SSR_ID << 8 |i2c_data.ssr_id), 0x0000);</pre>

Advertise -> IBeacon

beacon.setMajorMinor((BEACON_SSR_ID << 8 |i2c_data.ssr_id), 0x0000);</pre>

Advertise -> IBeacon

Orientation

Optimal Transmission

Optimal Transmission

LPWAN Communication

LoRa

LoRa Communication system

Data to dashboard

```
struct ssr_data
{
    uint16_t seq_number; // R
    int16_t env_temperature;
    uint8_t env_humidity; //
    uint16_t env_lux; // Rang
    uint16_t dev_voltage; //
    int8_t dev_gyro_x; // Ran
    int8_t dev_gyro_z; // Ran
    int8_t dev_gyro_z; // Ran
    int8_t ssr_data ssr_d
```


How it should have worked

Repeated transmissions

Active time during sleep

Reinitialize settings after long sleep

Demo

Sensing

Sensing (SHT40)

Sensing (LTR-329)

- STM communicates with Environmental sensors with I2C protocol.
- 0.01 lux 64k lux

1. Startup Sequence

Supply VDD to Sensor (Sensor in Standby Mode)

Wait at least 100 ms - initial startup time

I2C Command (Write)
To enable sensor to Active Mode

Wait at least 10 ms - wakeup time from standby

Sensor is Active and starts measurement

Sensing (PMU6050)

- STM communicates with gyroscope via I2C
- Temperature and acceleration sensors deactivated
- The gyroscope measurements are a difference measurement
- High sleep mode consumption (1.4mA)

Sensing (PMU6050)

Energy Harvesting

Energy Harvesting

- I2C _HAL_ libary
- PRogRaMinG

Energy harvesting so far and expectations

The goal

SHT40(1.08 - 3.6)V

BLE(1.7 - 3.3)V

LTR-329(2.4 - 3.6)V

STM(3 - 3.6)V

Do we even have enough power ??? ^^

	Configuration pins			Storage element threshold voltages			LDOs output voltages		Typical use
	CFG[2]	CFG[1]	CFG[0]	V _{ovch}	V _{CHRDY}	V _{OVDIS}	V_{HV}	V_{LV}	
	Н	Н	Н	4.12 V	3.67 V	3.60 V	3.3 V	1.8 V	Li-ion battery
	Н	Н	L	4.12 V	4.04 V	3.60 V	3.3 V	1.8 V	Solid state battery
	Н	L	Н	4.12 V	3.67 V	3.01 V	2.5 V	1.8 V	Li-ion/NiMH battery
	Н	L	L	2.70 V	2.30 V	2.20 V	1.8 V	1.2 V	Single-cell (super) capacitor
F	L	Н	Н	4.50 V	3.67 V	2.80 V	2.5 V	1.8 V	Dual-cell supercapacitor —
	L	Н	L	4.50 V	3.92 V	3.60 V	3.3 V	1.8 V	Dual-cell supercapacitor
_	L	L	Н	3.63 V	3.10 V	2.80 V	2.5 V	1.8 V	LiFePO4 battery
	L	L	L	Custom mod	e - see Section	2.3.1		1.8 V	

Energy harvesting so far and expectations

Table 5. External power sources

Input power name	Connector pin	Voltage range	Max current	Limitation						
VIN	CN4 pin 1	7 V to 12 V	800 mA	From 7 V to 12 V only and input current capability is linked to input voltage: 800 mA input current when VIN=7 V 450 mA input current when 7 V< VIN <9 V 300 mA input current when 10 V> VIN >9 V less than 300 mA input current when VIN>10 V						
+5 V	CN4 pin 4	4.75 V to 5.25 V	500 mA	ST-LINK not powered						
+3V3	CN4 pin 14	3 V to 3.6 V	-	ST-LINK not powered and SB14 and SB9 must be off.						

+3V3 power supply

Using the +3V3 (CN4 pin 14) directly as power input, can be interesting, for instance, in case the 3.3 V is provided by a shield board. In this case the ST-LINK is not powered, thus programming and debugging features are not available. When the board is powered by +3V3 (CN4 pin 14), the solder bridge SB14 and SB9 (NRST) must be off.

LD3 [Green] PB4 (... PH3-. PB6 PB5 PB7 VDD **SWCLK** RCC_OSC32_IN **SWDIO** CC_OSC32_OUT PA12 NRST ~~~~~ VDDA.. PA10 -----PA9 RCC_CK_IN STM32L412KBUx PA1 PA8 **₹ UFQFPN32** VCP_TX VDD PB0 /88 PA5 PA6 PA7 PB1 ADC1_IN8 GPIO_Output

Decision making

Voltage output measurement

Voltage output measurement

Voltage output measurement

The goal

SHT40(1.08 - 3.6)V

BLE(1.7 - 3.3)V

LTR-329(2.4 - 3.6)V

STM(3 - 3.6)V

Power Profile

Power Profiling STM32

Power Profiling nRF52

STM32L4 VS NRF52

NRF52 VS STM32L4

NRF52 better/ easier than STM32L4?

Power Profiling Sensor

Energy Awareness

Simulation PMIC

Optimal Task Schedule

Optimal Transmission

Challenges

Adam Hejduk

- I2C protocol with sensors, HAL library and programming in general
- This course has been a new experience!
- Feels like I literally learned how to solder here
- Reading

Robbe Elsermans

- (human) communication
- NRF SDK documentation
- Tools
- Defining propper objectives
- Reading the docs takes time

Thomas Kramp

- Applying I2C support
 - ☐ Linebot (GPIO)
 - □ LoRaWAN (UART)
- Keeping the LoRa module connected
- MPU6050 power measurents

Learns

For all

- mA is high current in LP environment
- STM32 has powerful processor catalogue
- STM32 has extensive examples
- (Personally) STM32 outperforms Nordic Semiconductor documentations
- Power Profiling is fun (with the right equipment)
- Set a stable development environment up before coding
- Have spares to test faults
- ...

Further Development

- Further optimize STM32 power usage
- Use nRF SDK directly
- Further optimize nRF52 power usage
- Reprogram SEEED LoRa module (is STM32 based)
 - Use its build-in EEPROM
- Orientation V2
- Optimal Transmission algorithm
- Find a replacement for the gyroscope measurements
- 4.5V to 5.7V custom E.H.M. configuration
- Supercap equal voltage distribution

Demo

Demo

https://www.youtube.com/watch?v=zGMOyNRa958&ab_channel=RobbeElsermans

Appendix

BLE Communication system

Orientation V2

Antenna relative placement

References

- https://www.istockphoto.com/fr/vectoriel/ic%C3%B4ne-noire-d%C3%A9nergie-solaire-gm1272457034-374723493
- https://www.flaticon.com/free-icon/antenna 7021857
- https://icon-icons.com/icon/potentiometer/4907
- https://www.alamy.com/mars-rover-isolated-on-white-background-elements-of-this-image-were-furnished-by-nasa-high-quality-photo-image425822621.html
- https://www.amazon.ca/Segment-Battery-Display-Indicator-Multi-Color/dp/B07S3NJCML
- https://www.digikey.be/en/products/detail/stmicroelectronics/NUCLEO-L412KB/9656229
- https://www.ram-center.com/blog/bluetooth-low-energy-interface-ble
- https://www.mouser.be/new/powerfilm/powerfilm-solar-dev-kit-e-peas-cap-xx/
- https://befr.rs-online.com/web/p/development-tool-accessories/2821454
- https://nodered.org/about/resources/
- https://www.thethingsnetwork.org/brand-assets/
- https://learn.sparkfun.com/tutorials/voltage-dividers/all
- https://www.vecteezy.com/free-vector/battery-icon
- https://en.m.wikipedia.org/wiki/File:Mars.png
- https://www.vecteezy.com/free-png/mars

BLE Communication system

Advertise -> IBeacon

- UUID
- MAJOR
- TX Power @ 1m

```
[0] -> Temperature MSB(yte)
[1] -> Temperature LSB(yte)
[2] -> Humidity
[3] -> Lux MSB(yte)
[4] -> Lux LSB(yte)
[5] -> Device Supercap Voltage MSB(yte)
[6] -> Device Supercap Voltage LSB(yte)
[7] -> gyro-x
[8] -> gyro-y
[9] -> gyro-z
[10] -> /0xFF
[11] -> /0xFF
[12] -> /0xFF
[13] -> /0xFF
[14] -> /0xFF
[15] -> /0xFF
```

beacon.setMajorMinor((BEACON_SSR_ID << 8 | i2c_data.ssr_id), 0x0000);

Power Profiling STM32

Current Usage

Pseudo code

```
init();
while(1)
{
    // Blinky blinky
    blink_led(1000);
    HAL_Delay(2000);

    // Change these accordingly to the mode we want
    // half_sleep(5000); // Stop Mode 2
    // deep_sleep(5000); // Standby Mode
    // HAL_Delay(5000); // Plain waiting
}
```

Power Profiling nRF52

Current Usage

Pseudo code

```
init();
while(1)
    digitalWrite(LED BUILTIN, LOW);
    delay(1000);
    digitalWrite(LED BUILTIN, HIGH);
    delay(1000);
    // Normal mode
    while(!digitalRead(2)) //Wait for pin change
        //normal
        //delay(1000); //normal modified
    // End normal mode
    // deep sleep mode
    // deep_sleep(); //Wake-up based on external pin change
    // End deep sleep mode
```


Power Profiling Sensor

Current Usage

Pseudo code

```
init();
while(1)
{
    // Normal mode
    while(1) //Wait for pin change
    {
        read_sensor();
        wait 10 sec
    }
}
```


BLE Communication system

Intercommunication

- Overlap needed
- 2ⁿ time differences
- Guaranteed delivery
- Test: 7% dropout (100)

MCU Pinout

Demonstration plan

- Powering the STM with reliable source but have a potentiometer to shift the voltage of the circuit to simulate power levels of solar harvesting...
- Depending on the levels of volatege available rover would/could do specific nubmer of tasks (task desicion making)

 Therefore we are optimising a solution to energy related decision making

Energy Harvesting Simulation

Simulation PMIC

