Санкт-Петербургский государственный университет

ФАТТАХОВ Марат Русланович

Выпускная квалификационная работа

Численные методы решения дифференциальных уравнений с сильным вырождением

Уровень образования: бакалавриат Направление 02.03.01 «Математика и компьютерные науки» Основная образовательная программа СВ.5001.2021 «Математика и компьютерные науки»

Научный руководитель: профессор кафедры вычислительной математики, д.ф.-м.н. Б. И. Герасимовна

Содержание

1 Дифференциальные уравнения с сильным вырождением	3
2 Аппроксимация решения первой краевой задачи для вырождающи	ихся
одномерных дифференциальных уравнений второго порядка	3
2.1 Вид уравнения	3
2.2 Аппроксимация в пространстве \mathbb{W}^1_2	4
2.2.1 Основа вариацонно-сеточного метода	4
2.3 Одномерный случай	5
2.4 Порядок аппроксимации	6
2.5 Применение к конкретной задаче	7
3 Список литературы	

1 Дифференциальные уравнения с сильным вырождением

ДУ с сильным вырождением называют уравнения, в которых старшая производная умножается на функцию, которая может обращаться в ноль в области определения. Например, для второго порядка общий вид будет:

$$a(x,t)u_t = b(x,t)u_{xx} + c(x,t)u_x + d(x)u + f(x,t), \quad x,t \in \Omega \times T,$$

$$\exists x_0,t_0 \in \Omega \times T: b(x_0,t_0) = 0$$

$$(1)$$

Или в стационарном случае

$$a(x)u_{xx}+b(x)u_{x}+c(x)u=f(x),\quad x\in\Omega,$$

$$\exists x_{0}\in\Omega:a(x_{0})=0$$

$$(2)$$

Такие уравнения требуют особых численных методов решения, также возникают естественные граничные условия.

Они могут возникать в задачах теплопроводности, гидродинамики.

Для приложений требуется задавать некоторые граничные условия, которые задают начальные параметры системы. Случай, когда условие состоит в задании начальных значений искомой функции на границе, называется первой краевой задачей, или задачей Дирихле.

2 Аппроксимация решения первой краевой задачи для вырождающихся одномерных дифференциальных уравнений второго порядка

2.1 Вид уравнения

В данной главе работы будет рассмотрено уравнение следующего вида:

$$-\frac{d}{dx}\bigg[x^{\alpha}p(x)\frac{du}{dx}\bigg] + q(x)u = f(x), \quad 0 < x < 1, \quad f \in L_{2}(0,1),$$

$$q \text{ измерима, ограничена, неотрицательна на } [0,1]$$

$$\alpha = \text{const} > 0, \ p \in C^{1}[0,1], \ p(x) \geq p_{0} = \text{const} > 0$$

$$u \in \mathbb{W}^{1}_{2}(0,1)$$

$$(3)$$

2.2 Аппроксимация в пространстве \mathbb{W}^1_2

2.2.1 Основа вариацонно-сеточного метода

Пусть в гильбертовом пространстве H действует линейный положительно-определенный оператор A и требуется найти решение уравнения

$$Au = f, \quad f \in H \tag{4}$$

Принято вводить функционал энергии и энергетическую норму с энергетическим произведением:

$$\begin{split} [u,v]_A &:= (Au,v), \\ \|u\|_A^2 &:= [u,u]_A = (Au,u), \\ \mathcal{F}(u) &:= \frac{1}{2} [u,u]_A - (f,u) \end{split} \tag{5}$$

При положительной определенности оператора A функционал энергии является выпуклым, из чего следует, что ноль его производной является точкой минимума.

$$\begin{split} \mathcal{F}'(u)h &= [u,h]_A - (f,h) \\ \mathcal{F}'(u_0) &= 0 \Leftrightarrow \forall h \in H \quad \left[u_0,h\right]_A = (f,h) \Leftrightarrow Au_0 = f \end{split} \tag{6}$$

Если решение u_0 аппроксимируется в конечномерном пространстве H_n с энергетическим произведением $[\cdot,\cdot]_A$, то критерием минимальности функционала энергии в точке $u_n\in H_n$ будет следующая система линейных уравнений:

$$\begin{split} u_n &= \sum_{k=1}^n a_k \varphi_k, \text{ где Lin } \{\varphi_1,...,\varphi_n\} = H_n, \\ & \left(\mathcal{F}\mid_{H_n}\right)'(u_n) = 0 \Leftrightarrow \frac{\partial}{\partial a_k} \mathcal{F}(u_n) = 0, \ k = 1,...,n \\ & \frac{\partial}{\partial a_k} \mathcal{F}(u_n) = \frac{\partial}{\partial a_k} \left[\frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n a_i a_k [\varphi_i,\varphi_k]_A - \sum_{i=1}^n a_i (f,\varphi_i)\right] = \\ & = \sum_{i=1}^n a_i [\varphi_i,\varphi_k]_A - (f,\varphi_k) = 0, \ k = 1,...,n \end{split}$$

Приведенная схема называется методом Ритца.

Основой сеточного метода аппроксимации является выбор функций φ_i , которые связаны с координатной сеткой в области аппроксимации и задаются простыми формулами. Эти базисные функции φ_i мы будем называть координатными функциями. Выбор функций ограничен лишь условием полноты системы $\left\{\left\{\varphi_{n,i}\right\}_{i=1}^{k_n}\right\}_n$, где для каждого n задается подпространство H_n размерности k_n и функции $\varphi_{n,i}$ образуют базис в этом подпространстве, а полнота системы – это условие

$$\forall u \in H \ \lim_{n \to \infty} \inf_{v_n \in H_n} \left\| u - v_n \right\|_A = 0, \tag{8}$$

то есть любая функция u может быть аппроксимирована с любой точностью в энергетической норме.

В книге [1] показано, что если координатная система $\{\varphi_{n,i}\}$ полна в смысле описанном выше, то построенная при помощи системы (7) аппроксимация сходится в энергетической норме к решению исходного уравнения.

Р. Курантом в [2] было показано, что необязательно выбирать последовательность подпространств H_n , которые строго вложены друг в друга, как изначально предполагалось в методе Ритца, главное, чтобы система базисов этих пространств была полна.

2.3 Одномерный случай

Вернемся к поставленной задаче, в [3] описаны необходимые и достаточные условия для минимальной координатной системы в $\mathbb{W}_p^s(\Omega\subset\mathbb{R}^m)$ вида

$$\left\{\varphi_{q,j,h}(x) = \omega_q \left(\frac{x}{h} - j\right)\right\}_{j \in J_h, |q| = 0, \dots, s-1},\tag{9}$$

которая при помощи функции u_h аппроксимирует любую функцию $u\in C_0^s(\overline{\Omega})$ в метрике $\mathring{\mathbb{W}}_p^s(\Omega)$, а также эту же функцию u в метрике $C^{s-1}(K)$ для любого компакта $K\subset\Omega$ при $h\to 0$. Здесь h – шаг сетки, J_h – конечный набор целых мультииндексов размера m, такой что $\bigcup_{j\in J_h}\sup \varphi_{q,j,h}\supset\Omega\ \forall q$, а аппроксимирующая функция u_h определяется как

$$\sum_{|q|=0}^{s-1} \sum_{j \in J_h} h^q u^{(q)}((j+1)h) \omega_q \left(\frac{x}{h} - j\right) \tag{10}$$

В случае $\mathbb{W}^1_2(0,1)$ получается, что $q\equiv 0$, то есть необходимо найти одну базисную функцию $\omega(x):\mathbb{R}\to\mathbb{R}$, которая должна удовлетворять следующим условиям, описанным в [3]:

$$supp \ \omega = [0, 2], \ \omega \in C(\mathbb{R})
\omega(x+1) + \omega(x) = 1 \quad \forall x \in [0, 1],
\omega(x) = \begin{cases} \varphi(x) &, x \in [0, 1] \\ \psi(x-1), x \in [1, 2] &, \\ 0 &, x \in \mathbb{R} \setminus [0, 2] \end{cases}$$
(11)

 $arphi, \psi: [0,1] o \mathbb{R}$ - полиномы степени не выше 1

Что приводит к системе с четырьмя неизвестными:

$$\varphi(x) = ax + b, \ \psi(x) = cx + d,
\begin{cases}
0 = \omega(0) = \varphi(0) \\
1 = \omega(1) = \varphi(1) = \psi(0) \\
0 = \omega(2) = \psi(1) \\
1 = \omega(x) + \omega(x+1) = \varphi(x) + \psi(x)
\end{cases} (12)$$

Единственным решением системы является

$$\varphi(x) = x, \quad \psi(x) = 1 - x,$$

$$\omega(x) = \begin{cases} x & , \ x \in [0, 1] \\ 2 - x, \ x \in [1, 2] \\ 0 & , \ x \in \mathbb{R} \setminus [0, 2] \end{cases}$$
 (13)

2.4 Порядок аппроксимации

Вернемся к нашей задаче, одномерный случай, $s=1, \Omega=(0,1).$ Координатная система в этом случае имеет вид

$$\left\{\varphi_{j,h}(x) = \omega\left(\frac{x}{h} - j\right)\right\}_{j \in J_h} \tag{14}$$

А аппроксимирующая функция имеет вид

$$u_{h(x)} = \sum_{j \in J_h} u((j+1)h)\omega\left(\frac{x}{h} - j\right) \tag{15}$$

Для удобства введем обозначение $x_j \coloneqq jh$. Тогда на промежутке $\left[x_j,x_{j+1}\right]$ ненулевыми $\varphi_{\cdot,h}$ будут только $\varphi_{j,h}$ и $\varphi_{j-1,h}$.

Тогда на этом промежутке

$$u_h(x) = u(x_{j+1})\varphi_{j,h}(x) + u(x_j)\varphi_{j-1,h}(x), \tag{16}$$

но на каждом промежутке $\left[x_j,x_{j+1}\right]$ $\varphi_{\cdot,h}$ являются полиномами степени не выше 1, и верно $\varphi_{i-1,h}(x_i)=1$, то есть на самом деле мы имеем дело с линейной интерполяцией: вписываем ломаную в график функции u в точках x_i .

Для интерполяционного многочлена есть оценка оценка остатка:

$$x \in \left[x_j, x_{j+1}\right] \Rightarrow \\ |u(x) - u_h(x)| \leq \sup_{x \in (x_j, x_{j+1})} |u''(x)| \cdot \frac{1}{2!} \left| \left(x - x_j\right) \left(x - x_{j+1}\right) \right| \tag{17}$$

Несложно проверить, что $\left| (x-x_j)(x-x_{j+1}) \right| \leq \frac{1}{4}h^2$, тогда

$$||u - u_h||_{C(0,1)} \le \frac{1}{8} h^2 \sup_{x \in (0,1)} |u''(x)| \tag{18}$$

То есть мы ожидаем не лучше, чем квадратичную сходимость.

2.5 Применение к конкретной задаче

В качестве примера рассмотрим задачу

$$-\frac{d}{dx}\left(x^{\alpha}\frac{du}{dx}\right) + u = \frac{3^{3-\alpha} - 2(3-\alpha)x - 1}{3-\alpha},$$

$$0 < x < 1 \quad 1 \le \alpha \le 2$$
(19)

Тогда u(0)=0 и нужно ставить условие только на конце u(1). Пусть u(1)=0. Правая часть уравнения получалась подстановкой

$$u(x) = \frac{x^{3-\alpha} - 1}{3-\alpha},\tag{20}$$

то есть это точное решение задачи.

Возьмем натуральное n и по нему построим h=1/(n+1), тогда в координатной системе $\left\{ \varphi_{i,h} \right\}$ первая и последняя функции выглядят следующим образом:

Будем строить аппроксимирующую функцию вида $u_h = \sum_{k=-1}^n a_k \varphi_{k,h}$, заметим, что так как u(1)=0, то коэффициент при последнем члене $a_n=0$.

По предложенному в пункте 2.2 методу строим аппроксимирующую путем решения системы

$$\sum_{k=-1}^{n-1} a_k \left[\varphi_{k,h}, \varphi_{j,h} \right]_A = (f, \varphi_{j,h}), \quad j = -1, ..., n$$
 (21)

Тут

$$Au = -\frac{d}{dx} \left(x^{\alpha} \frac{du}{dx} \right) + u,$$

$$\left[\varphi_{k,h}, \varphi_{j,h} \right]_{A} = \left(A\varphi_{k,h}, \varphi_{j,h} \right) =$$

$$= \int_{0}^{1} \left\{ \left(-\frac{d}{dx} \left(x^{\alpha} \frac{d}{dx} \varphi_{k,h} \right) + \varphi_{k,h} \right) \cdot \varphi_{j,h} \right\} dx =$$

$$= \int_{0}^{1} \left\{ x^{\alpha} \left(\frac{d}{dx} \varphi_{k,h} \right) \left(\frac{d}{dx} \varphi_{j,h} \right) + \varphi_{k,h} \varphi_{j,h} \right\} dx - x^{\alpha} \left(\frac{d}{dx} \varphi_{k,h} \right) \varphi_{j,h} \Big|_{0}^{1}$$

$$= \int_{0}^{1} \left\{ x^{\alpha} \left(\frac{d}{dx} \varphi_{k,h} \right) \left(\frac{d}{dx} \varphi_{j,h} \right) + \varphi_{k,h} \varphi_{j,h} \right\} dx - x^{\alpha} \left(\frac{d}{dx} \varphi_{k,h} \right) \varphi_{j,h} \Big|_{0}^{1}$$

Видно, что подстановка $x^{\alpha} \left(\frac{d}{dx} \varphi_{k,h}\right) \varphi_{j,h} \Big|_0^1$ равна нулю в случае, если хотя бы один из k или j не равен n. Так как k=-1,...,n-1, то подстановка

всегда равна 0. Произведение в правой части – классическое скалярное произведение функций

$$\left(f,\varphi_{j,h}\right) = \int_0^1 f(x)\varphi_{j,h}(x) \tag{23}$$

Расчеты производились в системе математических вычислений с точностью 8 знаков после запятой.

Результаты вычислений приведены в виде таблиц абсолютных погрешностей

	h = 0.01	h = 0.001	h = 0.0001
0.0	4.90e-5	6.82e-7	5.09e-3
0.1	1.57e-5	1.57e-7	5.33e-3
0.2	1.11e-5	1.11e-7	4.92e-3
0.3	8.53e-6	8.53e-8	4.36e-3
0.4	6.72e-6	6.72e-8	3.74e-3
0.5	5.29e-6	5.29e-8	3.09e-3
0.6	4.06e-6	4.06e-8	2.43e-3
0.7	2.96e-6	2.96e-8	1.78e-3
0.8	1.94e-6	1.94e-8	1.15e-3
0.9	9.55e-7	9.55e-9	5.55e-4

Таблица 1. Абсолютные погрешности, $\alpha=1$

	h = 0.01	h = 0.001	_		h = 0.01	h = 0.001
0.0	2.34e-4	8.26e-6	-	0.0	4.07e-4	2.75e-5
0.1	1.79e-5	1.76e-7		0.1	1.13e-5	1.09e-7
0.2	1.04e-5	1.03e-7		0.2	5.85e-6	5.71e-8
0.3	7.18e-6	7.12e-8		0.3	3.80e-6	3.72e-8
0.4	5.26e-6	5.22e-8		0.4	2.66e-6	2.61e-8
0.5	3.91e-6	3.88e-8		0.5	1.91e-6	1.88e-8
0.6	2.86e-6	2.84e-8		0.6	1.36e-6	1.34e-8
0.7	2.00e-6	1.98e-8		0.7	9.25e-7	9.11e-9
0.8	1.26e-6	1.25e-8		0.8	5.68e-7	5.61e-9
0.9	5.98e-7	5.94e-9		0.9	2.65e-7	2.62e-9

Таблица 3. Абсолютные

погрешности, $\alpha = 1.8$

Таблица 2. Абсолютные

погрешности, $\alpha=1.5$

3 Список литературы

- [1] М. С. Г., Вариационные методы в математической физике, 2-е изд. "Наука", 1970.
- [2] К. Р., «Variational methods for the solution of problem of equilibrium and vibrations.», *Bulletin of the American Mathematical Society*, т. 49, вып. 1, 1942.
- [3] «Численные методы и автоматическое программирование», *Записки* научных семинаров ПОМИ, т. 48, сс. 32–188, 1974.