Esame del 29.01.2024

Algoritmi e Laboratorio

Parte B

Esercizio 1. Si consideri l'equazione di ricorrenza

$$T(n) = aT\left(\frac{n}{4}\right) + 3\sqrt{n}. (1)$$

- **A**. Si risolva l'equazione (1) al variare del parametro reale $a \geq 1$, utilizzando il metodo Master.
- **B**. Si stabilisca per quali valori di b la soluzione T(n) all'equazione (1) soddisfa le seguenti condizioni

(i.)
$$T(n) = \Theta(n)$$
 (ii.) $T(n) = \mathcal{O}(n^2)$ (iii.) $T(n) = o(\sqrt{n}\log(n))$.

C. Si disegni uno sketch dell'albero di ricorrenza associato all'equazione (1) per a=2.

Esercizio 2. In un grafo non pesato, la lunghezza di un cammino tra due vertici è definita come il numero di archi che compongono il cammino. Si consideri il problema UNWEIGHTED SHORTEST PATH, in cui l'input è un grafo G = (V, E) orientato e non pesato, e due vertici distinti $u, v \in V$.

L'obiettivo del problema è trovare un cammino di lunghezza minima.

Si dimostri che Unweighted Shortest Path ha la proprietà di sottostruttura ottima.

Soluzioni

Esercizio 1. A. La funzione driving e la funzione watershed sono $f(n) = 3\sqrt{n}$ e $w(n) = n^{\log_4 a}$, rispettivamente.

Caso $1 \le a < 2$: $\log_4 a < \frac{1}{2}$ e quindi per $0 < \varepsilon < \frac{1}{2} - \log_4 a$ si ha che $f(n) = \Omega\left(n^{\log_4 a + \varepsilon}\right)$. Inoltre, è soddisfatta la condizione di regolarità; infatti, per $\frac{a}{2} \le c < 1$ si ha $a \cdot 3\sqrt{\frac{n}{4}} < c \cdot 3\sqrt{n}$, e per mostrare che un tale c esiste basta osservare che $\frac{a}{2} < 1$. Allora, per il Teorema Master, $T(n) = \Theta(\sqrt{n})$.

Caso a = 2: $\log_4 a = \frac{1}{2}$ e quindi per k = 0 si ha che $f(n) = \Theta\left(\sqrt{n}\right) = \Theta\left(n^{\log_4 a} \log^k n\right)$. Allora, per il Teorema Master, $T(n) = \Theta(\sqrt{n} \log n)$.

<u>Caso a > 2:</u> $\log_4 a > \frac{1}{2}$ e quindi per $0 < \varepsilon < \log_4 a - \frac{1}{2}$ si ha che $f(n) = \mathcal{O}\left(n^{\log_4 a - \varepsilon}\right)$. Allora, per il Teorema Master, $T(n) = \Theta(n^{\log_4 a})$.

- **B**. (i) $T(n) = \Theta(n)$ si verifica solo nel caso in cui $\log_4 a = 1$, ovvero per a = 4.
 - (ii) Per $1 \le a < 2$ e per a = 2 si ha $T(n) = \mathcal{O}(n^2)$, poiché entrambi gli ordini di grandezza $\Theta(\sqrt{n})$ e $\Theta(\sqrt{n} \log n)$ sono inferiori a $\mathcal{O}(n^2)$. Se a > 2, allora $T(n) = \mathcal{O}(n^2)$ solo se $\log_4 a < 2$, ovvero per $1 \le a < 16$.
 - (iii) $T(n) = o(\sqrt{n}\log n)$ per $1 \le a < 2$; infatti, $\lim_{n\to\infty} \frac{\sqrt{n}}{\sqrt{n}\log n} = 0$. Per a = 2, si ha $\lim_{n\to\infty} \frac{\sqrt{n}\log n}{\sqrt{n}\log n} = 1$, e per a > 2, si ha $\lim_{n\to\infty} \frac{n^{\log_4 a}}{\sqrt{n}\log n} = \lim_{n\to\infty} \frac{n^{\log_4 a}-\frac{1}{2}}{\log n} = \infty$.

Esercizio 2. Siano $u \neq v$ (altrimenti il problema è banale). Sia p una soluzione ottima, i.e., un cammino di lunghezza minima da u a v. Esiste un vertice intermedio w in p (può accadere che w = u oppure che w = v, ma non entrambe le cose). Allora, possiamo decomporre p in due cammini p_1 e p_2 , da u a w e da w a v, rispettivamente. La lunghezza di p è allora tale che $\ell(p) = \ell(p_1) + \ell(p_2)$. Allora, p_1 è il cammino più breve tra u e w e p_2 è il cammino più breve tra w e v. Dimostriamolo per p_1 , la dimostrazione per p_2 è analoga. Supponiamo, per assurdo, che esista un cammino p'_1 da p_2 0 a p_2 1 si ha allora che p_2 2 e p_2 3 si ha allora che p_2 4 e p_2 5 e p_2 6 e p_2 6 e p_2 7 si ha allora che p_2 8 e p_2 9 e p_2 9

cammino di lunghezza minima.