Optimization notes

Ying-Jia Lin

National Cheng Kung University

May 3rd, 2021

Directional derivative

From a starting point \underline{x}_0 and a given direction \underline{u} :

- $\underline{x}(\lambda) = \underline{x}_0 + \lambda \underline{u}$
 - λ is a scalar.
- $d\underline{x} = \underline{u}d\lambda$
 - For a small change in λ .
- $F(\lambda) = f(\underline{x}_0 + \lambda \underline{u})$

$$dF = df = (\nabla f(\underline{x}))^{\top} d\underline{x}$$
$$= (\nabla f(\underline{x}))^{\top} \underline{u} d\lambda = \nabla^{\top} f \underline{u} \lambda$$

- $\frac{df}{d\lambda} = \nabla^{\top} f \underline{u}$
 - If f is minimized at $\underline{x}^* = \underline{x}_0 + \lambda \underline{u}$, then:
 - $\nabla f(\underline{x}^*))^{\top} f \underline{u} = 0$
 - gradient f evaluated at the minimum point is orthogonalto \underline{u} .

Weierstrass Theorem

If $f(\underline{x})$ is continuous on a nonempty feasible set that is cloased and bounded, then $f(\underline{x})$ has a global minimum in this set.

- ▶ A set *S* is bounded if for any point \underline{x} in *S*, we have $\underline{x}^{\top}\underline{x} < c$
 - c is a finite positive number.

Single-variable unconstrained optimization

- Necessary condition
 - If a function f(x) has a local minimum at $x = x^*$, and f'(x) exists as a finite number at $x = x^*$, then $f'(x^*) = 0$.
 - x^* at $f'(x^*) = 0$ is called stationary point.
- Sufficient condition
 - Suppose $f'(x^*) = f''(x^*) = \cdots = f^{(m-1)}(x^*) = 0$, but $f^{(m)}(x^*) \neq 0$, then $f(x^*)$ is:
 - 1. a local minimum if $f^{(m-1)}(x^*) > 0$ and m is even.
 - 2. a local maximum if $f^{(m-1)}(x^*) < 0$ and m is even.
 - 3. neither a maximum nor a minimum if *m* is odd.

Multi-variable unconstrained optimization (1)

Definition of r^{th} differential of function f:

$$d^{r}f(\underline{x}^{*}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \cdots \sum_{k=1}^{n} h_{i}h_{j} \dots h_{k} \frac{\partial^{r}f(\underline{x}^{*})}{\partial x_{i}\partial x_{j} \dots \partial x_{k}}$$

Example

When (order) r = 2 and (number of variables) n = 3, we have:

$$d^{2}f(\underline{x}^{*}) = d^{2}f(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}) = \sum_{i=1}^{3} \sum_{j=1}^{3} h_{i}h_{j} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{i}\partial x_{j}}$$

$$= h_{1}^{2} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{1}^{2}} + h_{2}^{2} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{2}^{2}} + h_{3}^{2} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{3}^{2}}$$

$$+ 2h_{1}h_{2} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{1}\partial x_{2}} + 2h_{2}h_{3} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{2}\partial x_{3}} + 2h_{1}h_{3} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{1}\partial x_{3}}$$

Multi-variable unconstrained optimization (2)

Necessary condition

$$\frac{\partial f(\underline{x}^*)}{\partial x_1} = \frac{\partial f(\underline{x}^*)}{\partial x_2} = \dots = \frac{\partial f(\underline{x}^*)}{\partial x_n} = 0$$

- In vector form, $\nabla f(\underline{x}^* = 0)$.
- \underline{x}^* at $\nabla f(\underline{x}^* = 0)$ is called stationary point.
- Sufficient condition
 - For a stationary point at $\underline{x} = \underline{x}^*$:
 - if the Hessian matrix of $f(\underline{x})$ evaluated at $\underline{x} = \underline{x}^*$ is positive definite, then x^* is a local minimum.
 - if the Hessian matrix of $f(\underline{x})$ evaluated at $\underline{x} = \underline{x}^*$ is negative definite, then \underline{x}^* is a local maximum.

Hessian Matrix

•
$$(H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_n}$$

• In matrix form: $H_f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$

Definiteness

- A matrix is positive definite if all its eigenvalues are positive.
 - If some of the eigenvalues are positive and some are zero, then the matrix is positive semidefinite.
- Checking the sign of the determinants is an alternative way to determine the definiteness of a matrix.
- A twice differentiable function is convex if and only if its Hessian matrix is positive semi-definite.
 - The function is strictly convex if the Hessian matrix is positive definite.

Multivariable optimization with equality constraints

Lagrange Multiplier Theorem

- Suppose the point \underline{x}^* minimizes $f(\underline{x})$ and satisfies the equality constraints: $h_i(\underline{x}^*) = 0$, for j = 1, 2, ..., m
- Assume that the constraint gradients $\nabla h_j(\underline{x}^*)$ are linealy independent.
- Then there exists a unique set λ_j^* $(j=1,2,\ldots,m)$ satisfying:

$$\frac{\partial L}{\partial x_i} = \frac{\partial f}{\partial x_i} + \sum_{j=1}^m \lambda_j^* \frac{\partial h_j}{\partial x_i} = 0$$

where i = 1, 2, ..., n.

Simplex method: Introduction

Definition of Simplex

The geometric figure formed by a set of n+1 points in an n-dimensional space is called a simplex.

- When the points are equidistant, the simplex is said to be regular.
- In two dimensions the simplex is a triangle, and in three dimensions, it is a tetrahedron.
- The simplex method was originally given by Spendley et al. and was developed later by Nelder and Mead.

Simplex method: Steps

Choose a reflection coefficient $\alpha>0$, an expansion coefficient $\gamma>1$, and a contraction coefficient $0<\beta<1$.

- 1. Identify \underline{x}_{\min} and \underline{x}_{\max} amoung $\{\underline{x}_1,\underline{x}_2,\dots,\underline{x}_{n+1}\}$
 - such that $f(\underline{x}_{\min})$ is the minimum and $f(\underline{x}_{\max})$ is the maximum of all the $f(\underline{x}_i)$, for $i=1,2,\ldots,n+1$.
 - If $|\underline{x}_{\max} \underline{x}_{\min}| < \epsilon$, stop. The minimum is at \underline{x}_{\min} .
 - Otherwise, let \underline{x}_a be the averaged position of $\{x_1, x_2, \dots, x_{n+1}\}$, **excluding** \underline{x}_{max} , and go to step 2.
- 2. Let the reflection point $\underline{x}_r = \underline{x}_a + \alpha(\underline{x}_a \underline{x}_{max})$.
 - If $f(\underline{x}_{min}) > f(\underline{x}_r)$, let the expansion point $\underline{x}_e = \underline{x}_a + \gamma(\underline{x}_r \underline{x}_a)$, and go to step 3.
 - Otherwise, go to step 4.

Simplex method: Steps

- 3. If $f(\underline{x}_r) > f(\underline{x}_e)$, the point \underline{x}_{max} is replaced by \underline{x}_e .
 - Otherwise, \underline{x}_{max} is replaced by \underline{x}_r . A new set of n+1 points is formed. Then go to step 1.
- 4. If the second largest $f(\underline{x}_i) > f(\underline{x}_r)$, then \underline{x}_{max} is replaced by \underline{x}_r to form a new set of n+1 points, and go to step 1.
 - Otherwise, go to step 5.
- 5. Let \underline{x}_p be defined such that $f(\underline{x}_p) = \min\{f(\underline{x}_r), f(\underline{x}_{\text{max}})\}$ and let the contraction point $\underline{x}_c = \underline{x}_a + \beta(\underline{x}_p \underline{x}_a)$.
 - If $f(\underline{x}_c) > f(\underline{x}_p)$, replace \underline{x}_j by $\underline{x}_j + (\underline{x}_{\min} \underline{x}_j)/2$, for $j = 1, 2, \dots, n+1$, and go to step 1.
 - Otherwise, \underline{x}_c replaces \underline{x}_{max} to form a new set of n+1 points, and go to step 1.

Transformation techniques

It may be possible to convert a constrained optimization problem into an unconstrained one by making a change of variables. If lower and upper bounds on x_i are specified as:

$$I_i \leq x_i \leq u_i$$

which can be satisfied by transforming the variable x_i as:

$$x_i = l_i + (u_i - l_i)\sin^2 y_i$$

where y_i is the new variable, which can take any value.

▶ If x_i is restricted to lie in the interval (0,1), $x_i = \sin^2 y$

Transformation techniques

- **1** The constraints $g_i(X)$ must be very simple.
- 2 For certain constraints, it may not be possible to find the necessary transformation.
- 3 If it is not possible to eliminate all the constraints by making a change of variables.
 - It may be better not to use the transformation at all.
 - However, the partial transformation may sometimes produce a distorted objective function which might be harder to minimize than the original function.

Penalty function method

Find X which minimizes f(X) is converted into an unconstrained minimization problem by constructing a function of the form:

$$\phi_k = \phi(X, r_k) = f(X) + r_k \sum_{j=1}^m G_j[g_j(X)]$$

- g_j : inequality constraints
- G_j : some function of the constraint g_j
- r_k : penalty parameter (a positive constant)
- $r_k \sum_{j=1}^m G_j[g_j(X)]$ is the penalty term.

Interior and exterior penalty function method

• Interior method:

$$G_j = -\frac{1}{g_j(X)}$$

or

$$G_j = -\log[-g_j(X)]$$

Exterior method:

$$G_j = \max[0, g(X)]$$

or

$$\textit{G}_{j} = \{ \max[0, g(X)] \}^{2}$$