Describing Data Part 2

Last time

Population Variability

Sums of squares

$$SS = \Sigma (X_i - \mu_x)^2$$

Variance

$$\sigma^2 = rac{\Sigma (X_i - \mu_x)^2}{N} = rac{SS}{N}$$

Standard devation

$$\sigma = \sqrt{rac{\Sigma (X_i - \mu_x)^2}{N}} = \sqrt{rac{SS}{N}} = \sqrt{\sigma^2}$$

Sample variability

Sums of squares

$$SS = \Sigma (X_i - \bar{X})^2$$

Variance

$$\sigma^2=rac{\Sigma(X_i-\mu_x)^2}{N}=rac{SS}{N} \qquad \quad s^2=rac{\Sigma(X_i-ar{X})^2}{N-1}=rac{SS}{N-1}$$

Standard devation

$$\sigma = \sqrt{rac{\Sigma(X_i - \mu_x)^2}{N}} = \sqrt{rac{SS}{N}} = \sqrt{\sigma^2} \qquad s = \sqrt{rac{\Sigma(X_i - ar{X})^2}{N-1}} = \sqrt{rac{SS}{N-1}} = \sqrt{s^2}$$

Bi-variate descriptives

Covariation

"Sum of the cross-products"

Population

$$SP_{XY} = \Sigma (X_i - \mu_X)(Y_i - \mu_Y)$$

Sample

$$SP_{XY} = \Sigma (X_i - \bar{X})(Y_i - \bar{Y})$$

Covariance

Sort of like the variance of two variables

Population

$$\sigma_{XY} = rac{\Sigma(X_i - \mu_X)(Y_i - \mu_Y)}{N}$$

Sample

$$s_{XY} = cov_{XY} = rac{\Sigma(X_i - ar{X})(Y_i - ar{Y})}{N-1}$$

Covariance table

$$\mathbf{K_{XX}} = egin{bmatrix} \sigma_X^2 & cov_{XY} & cov_{XZ} \ cov_{YX} & \sigma_Y^2 & cov_{YZ} \ cov_{ZX} & cov_{ZY} & \sigma_Z^2 \end{bmatrix}$$

$$cov_{xy} = cov_{yx}$$

Covariance table

$$egin{aligned} \mathbf{K_{XX}} &= egin{bmatrix} \sigma_X^2 & 126.5 & 5.2 \ 126.5 & \sigma_Y^2 & cov_{YZ} \ 5.2 & cov_{ZY} & \sigma_Z^2 \end{bmatrix} \end{aligned}$$

Which variable, Y or Z, does X have greater relationship with?

Can't know because you don't know what units they're measured in!

Correlation

- Measure of association
- How much two variables are linearly related
- -1 to 1
- Sign indicates direction of relationship
- Invariant to changes in mean or scaling

Correlation

Pearson product moment correlation

Population

$$ho_{XY} = rac{\Sigma z_X z_Y}{N} = rac{SP}{\sqrt{SS_X} \sqrt{SS_Y}} = rac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Sample

$$r_{XY} = rac{\Sigma z_X z_Y}{n-1} = rac{SP}{\sqrt{SS_X}\sqrt{SS_Y}} = rac{s_{XY}}{s_X s_Y}$$

data %>% ggplot(aes(x = x, y = y)) + geom_point(size = 3) + theme_bw()

What is the correlation between these two variables?

Correlation = 0.68

data %>% ggplot(aes(x = x, y = y)) + geom_point(size = 3) + theme_bw()

What is the correlation between these two variables?

Correlation = -0.41

data %>% ggplot(aes(x = x, y = y)) + geom_point(size = 3) + theme_bw()

What is the correlation between these two variables?

Correlation = 0

Effect size

- Recall that z-scores allow us to compare across units of measure; the products of standardized scores are themselves standardized.
- The correlation coefficient is a standardized effect size which can be used communicate the strength of a relationship.
- Correlations can be compared across studies, measures, constructs, time.
- Example: the correlation between age and height among children is r=.70. The correlation between self-and other-ratings of extraversion is r=.25.

What is a large correlation?

- Cohen (1988): .1 (small), .3 (medium), .5 (large)
 - Often forgot: Cohen said only to use them when you had nothing else to go on, and has since regretted even suggesting benchmarks to begin with.
- r^2 : Proportion of variance "explained"
 - as Ozer & Funder (2019) discuss, we're not really explaining anything and the change in scale can mess up our interpretations if we're not careful.

What are good benchmarks?

From Ozer & Funder (2019)

- Classic social psych studies: r=.36-.42
- ullet Scarcity increases the perceived alue of a commodity r=.12
- ullet People attribute failures to bad luck r=.10
- ullet Communicators perceived as more credible are more persuasive r=.10
- ullet People in a bad mood are more aggressive r=.41
- ullet Antihistamine and symptom relief r=.11
- ullet Ibuprofen and pain relief r=.14
- Height and weight r=.44

What are good benchmarks?

Implications

- Don't dismiss small effects
- Be skeptical of large effects

Recommendations

- Report effect sizes
- Use large samples -- remember bias?
- Report effect sizes in context
- Stop using empty terminology
- Revise guidelines

What affects correlations?

It's not enough to calculate a correlation between two variables. You should always look at a figure of the data to make sure the number accurately describes the relationship. Correlations can be easily fooled by qualities of your data, like:

- Skewed distributions
- Outliers
- Restriction of range
- Nonlinearity

Skewed distributions

```
p = data %>% ggplot(aes(x=x, y=y)) + geom_point()
ggMarginal(p, type = "density")
```


Outliers

```
data %>% ggplot(aes(x=x, y=y)) + geom_point()
```


Outliers

Restriction of range

Restriction of range

Nonlinearity

It's not always apparent

Sometimes issues that affect correlations won't appear in your graph, but you still need to know how to look for them.

- Low reliability
- Content overlap
- Multiple groups

Multiple groups

Multiple groups

Known as **Simpson's Paradox**

Special cases of the Pearson correlation

Spearman/Kendall correlation coefficient

- Applies when both X and Y are ranks (ordinal data) instead of continuous
- Spearman for larger samples, Kendall for smaller samples (or a lot of ties in rank ordering).

Point-biserial correlation coefficient

- Applies when Y is binary.
 - NOTE: This is not an appropriate statistic when you artificially dichotomize data.

• Phi (ϕ) coefficient

Both X and Y are dichotomous.

Do the special cases matter?

For Spearman, you'll get a different answer.

```
x = rnorm(n = 10); y = rnorm(n = 10) #randomly generate 10 numbers from
head(cbind(x,y))
                                     head(cbind(x,y, rank(x), rank(y)))
                               ## [1,] -0.6682733 -0.3940594 5 7
## [1,] -0.6682733 -0.3940594
                                  ## [2,] -1.7517951 0.9581278 2 9
## [2,] -1.7517951 0.9581278
                                 ## [3,] 0.6142317 0.8819954 10 8
## [3,] 0.6142317 0.8819954
## [4,] -0.9365643 -1.7716136
                              ## [4,] -0.9365643 -1.7716136 4 3
## [5,] -2.1505726 -1.4557637
                              ## [5,] -2.1505726 -1.4557637 1 4
## [6,] -0.3593537 -1.2175787
                                    ## [6,] -0.3593537 -1.2175787 7 6
cor(x,y, method = "pearson")
                                    cor(x,y, method = "spearman")
## [1] 0.2702894
                                    ## [1] 0.3454545
```

Do the special cases matter?

If your data are naturally binary, no difference between Pearson and point-biserial.

```
x = rnorm(n = 10); y = rbinom(n = 10, size = 1, prob = .3)
head(cbind(x,y))
##
                  X V
## [1,] -0.48974849 1
## [2,] -2.53667101 0
## [3,] 0.03521883 1
## [4,] 0.03043436 0
## [5,] -0.27043857 0
## [6,] -0.55228283 1
cor(x,y, method = "pearson")
                                        ltm::biserial.cor(x,y, level = 2)
## [1] 0.1079188
                                       ## [1] 0.1079188
```

Do the special cases matter?

If your data are artificially binary, there can be big differences.

```
x = rnorm(n = 10); y = rnorm(n = 10)
                                      d v = ifelse(y < median(y), 0, 1)
head(cbind(x,y))
                                      head(cbind(x,y, d_y))
##
                                                                 y d_y
## [1,] 1.27516603 -0.2012149
                                     ##
## [2,] -1.55729177 0.2925842
                                     ## [1,] 1.27516603 -0.2012149
## [3,] 0.09364959 0.0821713
                                     ## [2,] -1.55729177 0.2925842
## [4,] 0.87343693 0.1879078
                                     ## [3,] 0.09364959 0.0821713
## [5,] 0.74807054 0.3794815
                                     ## [4,] 0.87343693 0.1879078
                                     ## [5,] 0.74807054 0.3794815
## [6,] 0.02831971 -1.2940189
                                     ## [6,] 0.02831971 -1.2940189
                                                                      0
cor(x,y, method = "pearson")
                                      ltm::biserial.cor(x,d_y, level = 2
## [1] -0.1584301
                                     ## [1] -0.4079477
```

Next time...

Probability