Lecture 18: Learning Theory

COSC 480 Data Science, Spring 2017 Michael Hay

Logistics

- Lab "6" (Project work) due tonight
 - Be sure to update weekly status
- Lab 7 out
 - Please read before lab tomorrow

Related experiment

- Consider a "bin" with red and green marbles
 - P(picking a red marble) = μ
 - P(picking a green marble) = 1μ
- Value of μ is <u>unknown</u> to us
- We pick n marbles* independently
- Fraction of red marbles in sample = v

Does v say anything about μ ?

What v says about µ

- In a big sample (large n), is "likely" to be "close" to
- Formally,

"close" you can choose what ε is... 0.1, 0.01, 0.001, etc.

$$P(|\nu - \mu| > \epsilon) \le 2\exp(-2\epsilon^2 n)$$

This is Hoeffding's inequality

"likely" this gets very small as n grows

$$P(|\nu - \mu| > \epsilon) \le 2\exp(-2\epsilon^2 n)$$

- Valid for all n and ε
- Bound does not depend on μ , ν
- Only assumption: samples are <u>independent</u>
- Tradeoff: n, ε, and probability bound

Connection to learning

- Bin: the unknown is a number μ
- Learning: the unknown is a function *f*
- Each marble is an input x
 - Green marble: hypothesis got it right: h(x) = f(x)
 - Red marble: hypothesis got it wrong: $h(x) \neq f(x)$

Learning diagram

Bin analogy:

- Each training data point x_i is a sample from from a "bin" of possible x's
- But what about y_i?
 - Each y_i is generated by applying f, as in $y_i = f(x_i)$
 - Small detail: this assumes f is deterministic; story not that different for noisy f

What we have so far

- Our training data is sampled from unknown distribution over X
- We apply hypothesis h on training data and observe low error: v ≈ 0
- Are we done? Have we learned a good hypothesis?

In other words, is it likely that $\mu \approx 0$?

Are we done?

- Not so fast!
- Previous analysis treats hypothesis h is fixed.
- What's missing?
 - Learning! We start with H and choose a single hypothesis out of many.

Multiple bins

Extending the bin analogy to more than one hypothesis

$$I[s] = \begin{cases} 1 & \text{if } s \text{ is "true"} \\ 0 & \text{if } s \text{ is "false"} \end{cases}$$

Notation

- Both v and μ depend on which hypothesis h
 - ν is "in sample" error, denoted

$$E_{in}(h) = \frac{1}{n} \sum_{i=1}^{n} I[h(x_i) \neq y_i]$$

μ is "out of sample" error, denoted

$$E_{out}(h) = \sum_{x \in \mathcal{X}} P(x)I[h(x) \neq f(x)]$$

$$P(|E_{in}(h) - E_{out}(h)| > \epsilon) \le 2\exp(-2\epsilon^2 n)$$

Notation with multiple bins

Extending the bin analogy to more than one hypothesis

Now are we done?

 Not so fast! Hoeffding bound does not apply to multiple hypotheses.

Question

Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

Where *could* we apply the Hoeffding bound? Hint: usually when we do ML we divide our data into a training dataset and a test dataset.

Question

Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

Probability review

- 1. Given a fair coin, what is probability that you will get 10 heads? (Write a math expression.)
- 2. Given 1000 fair coins, what is probability that some coin will get 10 heads? (Write a math expression.)

Coin analogy

- Question: given a fair coin, what is probability that you will get 10 heads?
- Answer: ≈ 0.1%
- Question: given 1000 fair coins, what is probability that some coin will get 10 heads?
- Answer: ≈ 63%

Key point: if we try 1000 mediocre hypotheses, one could look good simply by chance.

This is very similar to the multiple hypothesis testing issue that arises in statistics ("p hacking")

Solution

- Use a union bound (from probability lecture)
- Let g be the hypothesis we choose from ${\mathcal H}$
- Let M be number of hypotheses in $\mathcal H$
- End result (details on board):

$$P(|E_{in}(\mathbf{g}) - E_{out}(\mathbf{g})| > \epsilon) \le \sum_{j=1}^{M} P(|E_{in}(h_j) - E_{out}(h_j)| > \epsilon)$$
$$\le \sum_{j=1}^{M} 2 \exp(-2\epsilon^2 n)$$
$$= 2M \exp(-2\epsilon^2 n)$$

Another perspective

• (Shown on board) With probability at least 1 - δ , we have

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2n}} \ln\left(\frac{2M}{\delta}\right)$$

- In words, the "true" error of g will be close to the error on training data.
- We can get closer...
 - with larger n (more training data)
 - with smaller *M* (smaller hypothesis set)
- Note: δ is generally "fixed" to something small, say 1/1000

Tradeoffs

- We want to find a hypothesis that looks good to us (Ein is low)
 - This is more likely if hypothesis set is large
- We want to ensure that hypothesis we find will be good on future inputs (E_{out} is close to E_{in})
 - This is less likely if hypothesis set is small

Question

Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

Suppose we use a perceptron learning algorithm to find a hypothesis that performs well on a spam training dataset. The training dataset was hand-crafted from the personal email of an ML researcher in 2003. The error on the training data is 0.05%.

Can we apply this bound to confidently assert that error on future emails will also be low?

If not, why not?

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2n}} \ln\left(\frac{2M}{\delta}\right)$$