Generalized linear model

Peter Smits

Review of Linear Regression

Definition of linear regression

... a method that summarizes how the average values of a numerical outcome variable vary over subpopulations defined by linear functions of predictors. [...] Regression can be used to predict an outcome given a lienar function of these predictors, and regression coefficients can be thought of as comparisons across predicted values or as comparisons among averages in the data.

Gelman and Hill, 2007, p.31

Compacy written form

$$y \sim \mathcal{N}(\mu, \sigma)$$
$$\mu = X\beta$$

$$y \in \mathbb{R}$$
, $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}^+$, $\beta_k \in \mathbb{R}$ for $k = 1, ..., K$.

y is a length N vector of observations. X is a $N \times K$ matrix of covariates (and a column of 1s). β is a length K vector of regression coefficients (including intercept).

Interpreting regression parameters

Coeffcient β is the expected difference in y between two observations that differ by 1 in a single predictor.

Fitting and inspecting a regression model