

UTAustinX: UT.7.20x Foundations of Data Analysis - Part 2

▶ Important Pre-Course Survey

- Contact Us
- How To Navigate the Course
- Discussion Board
- Office Hours
- Week 0: Introduction to Data (Optional Review)
- ▶ Week 1: Sampling
- Week 2: **Hypothesis** Testing (One **Group Means**)

Readings

Reading Check due May 03, 2016 at 17:00 UTC

Lecture Videos

Comprehension Check due May 03, 2016 at 17:00 UTC

R Tutorial Videos

Pre-Lab

Pre-Lab due May 03, 2016 at 17:00 UTC

Lab

Week 2: Hypothesis Testing (One Group Means) > Pre-Lab > Prepare for the Analysis

Analyze the Data

■ Bookmark

Primary Research Question

The average American adult man weighs 190 pounds. Do professional bull riders in the US weigh the same?

Breakdown Your Analysis

Let's break this analysis into its required steps:

- 1. Create a data frame for the US bull riders, and then calculate the sample mean and standard deviation for the weight of the bull-riders.
- 2. Create a histogram to visualize the distribution of bull-riders' weights.
- 3. Confirm the assumptions of a one-sample t-test
- 4. Run the t-test and interpret the results.

Here is the code you will use:

#Select bull riders from the US

USA <-bull[bull\$Country=="USA",]

Summarize the bull rider weights

mean(USA\$Weight)

sd(USA\$Weight)

Visualize the weight distribution

hist(USA\$Weight, main='Histogram of US Bull Rider Weights',xlab='Weight (lbs)')

Run the single sample t-test

t.test(USA\$Weight, mu=190)

Lab due May 03, 2016 at 17:00 UTC

Problem Set

Problem Set due May 03, 2016 at 17:00 UT 🗗

(1	/1 point)						
----	-----------	--	--	--	--	--	--

1. What type of **graph** are we going to use to visualize the weights of the

bull-riders?
histogram
scatterplot
o boxplot
You have used 1 of 1 submissions
(1/1 point)2. What portion of the code defines the value of the null hypothesis?
● mu=190 ✓
o mean(USA\$Weight)
O t.test
You have used 1 of 1 submissions
<pre>(1/1 point) 3. Which assumption can we confirm with the use of the following line of code: hist(USA\$Weight, main='Histogram of US Bull Rider Weights',xlab='Weight (lbs)')</pre>
o random sample
Normality
O linearity

independent observations

Click here for a video explanation of how to answer this question. You have used 1 of 1 submissions (1/1 point) 4. If you wanted to calculate the **standard error** for this sample of 37 riders, what additional line of code would you need to add? mean(USA\$Weight)/sqrt(37) sd(USA\$Weight)/sqrt(37) SE <- t.test(USA\$Weight)</p> Click here for a video explanation of how to answer this question. You have used 1 of 1 submissions (1/1 point) 5. What is the cause of the error in the code below? bull <- BullRiders hist(bull\$YearBorn, main = 'Histogram of Bull Rider Weights, xlab= 'Weight (lbs)') Error: unexpected symbol in "hist(bull\$YearBorn, main = 'Histogram of Bull Rider Weights, xlab= 'Weight" The "YearBorn" variable is spelled differently in our dataset. We cannot have parentheses around lbs in the histogram statement.

Prepare for the Analysis | Pre-Lab | UT.7.20x Courseware | edX We forgot to create a label for the y-axis. We used too few quotation marks in the histogram statement. Click here for a video explanation of how to answer this question.

You have used 1 of 1 submissions

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

