Solutions of exercises in Chapter 6

 $\overline{\text{E6.1}}$ A subset X of a structure \overline{M} is definable iff there is a formula $\varphi(x)$ with only x free such that $X = \{a \in M : \overline{M} \models \varphi[a]\}$. Similarly, for any positive integer m, a subset X of m is definable iff there is a formula $\varphi(\overline{x})$ with \overline{x} a sequence of m distinct variables including all variables occurring free in φ , such that $X = \{a \in mM : \overline{M} \models \varphi[a]\}$.

For the language with no nonlogical symbols and for any structure \overline{M} in that language, determine all the definable subsets and m-ary relations over \overline{M} . Hint: use Theorem 6.1.

Let \overline{M} be any \mathscr{L} -structure. Thus \overline{M} is essentially just a set. Its definable subsets are \emptyset and M, which are clearly defined by $x \neq x$ and x = x respectively. Suppose that $A \subseteq M$ is definable by $\varphi(x)$, with $\emptyset \neq A \neq M$. Let $a \in A$ and $b \in M \setminus A$. Let f be the bijection of M which interchanges a and b. Then $\overline{M} \models \varphi[a]$ but $\overline{M} \not\models \varphi[f(a)]$, contradicting Theorem 6.1.

Now suppose that m > 1. For each equivalence relation \equiv on m let

$$R_{\equiv} = \{ a \in {}^{m}M : \forall i, j < m | a_i = a_j \text{ iff } i \equiv j \}.$$

We claim that the definable m-are relations over \overline{M} are just \emptyset and unions of these relations R_{\equiv} . To show that these are definable, for \emptyset take $\bigwedge_{i < m} x_i \neq x_j$; and for a nonempty set E of equivalence relations, take the formula

$$\bigvee_{\Xi \in E} \left(\bigwedge_{i \equiv j} (x_i = x_j) \wedge \bigwedge_{i \neq j} (x_i \neq x_j) \right),$$

which we denote by φ_E . Now suppose that K is a nonempty definable m-ary relation on M; say $K = \{a \in {}^m M : \overline{M} \models \psi[a]\}$. For each $a \in K$ let $\equiv_a = \{(i, j) \in m \times m : a_i = a_j\}$, and let $E = \{\equiv_a : a \in K\}$. If $a \in K$, then $\equiv_a \in E$, and hence $\overline{M} \models \varphi_E[a]$. So $K \subseteq \{a \in {}^m M : \overline{M} \models \varphi_E[a]\}$. Now suppose that $\overline{M} \models \varphi_E[a]$ but $a \notin K$. Choose $b \in K$ such that

$$\overline{M} \models \left(\bigwedge_{i \equiv_b j} (x_i = x_j) \land \bigwedge_{i \not\equiv_b j} (x_i \not= x_j) \right) [a].$$

Then there is a bijection f of M onto M such that $f(b_i) = a_i$ for all i < m. Now $\overline{M} \models \psi[b]$ but $\overline{M} \not\models \psi[a]$, contradiction.

E6.2 Let Γ be the set of all sentences holding in the structure $(\omega, S, 0)$, where S(n) = n+1 for all $n \in \omega$. Prove an elimination of quantifiers theorem for Γ.

By the general procedure at the beginning of this chapter it suffices to eliminate the quantifier in a formula of the form $\exists x \varphi$, where φ is a conjunction of atomic formulas and their negations, where x actually occurs in each conjunct. Moreover, for any natural numbers m, n we have $\Gamma \models S^m x = S^n x$ if m = n, and $\Gamma \models S^m x \neq S^n x$ if $m \neq n$. So we may assume that the atomic and negated atomic formulas have the form $S^m x = S^n u$ and $S^m x \neq S^n u$, where u is 0 or a variable different from x. Now $\Gamma \models S^m x = S^n u \leftrightarrow S^n u$

 $S^{m+1}x = S^{n+1}u$, so we may assume that m does not depend on any particular conjunct. If a conjunct $S^mx = S^nu$ actually appears, then

$$\Gamma \models \exists x \varphi \leftrightarrow \exists x (S^m x = S^n u) \land \psi,$$

where ψ is obtained from φ by replacing $S^m x$ by $S^n u$. Now if $m \leq n$, then $\Gamma \models S^m x = S^n u \leftrightarrow x = S^{n-m} u$, and so

$$\Gamma \models \exists x \varphi \leftrightarrow \exists x (S^m x = S^n u) \leftrightarrow 0 = 0,$$

eliminating the quantifier. If n < m, then

$$\Gamma \models \exists x \varphi \leftrightarrow \exists x (S^m x = S^n u) \leftrightarrow u \neq 0 \land u \neq S0 \land \dots \land u \neq S^{m-n} 0,$$

again eliminating the quantifier.

Hence we may assume that no conjunct $S^m x = S^n u$ actually appears in φ . Thus φ has the form

$$S^m x \neq S^{n(0)} u_0 \wedge \ldots \wedge S^m x \neq S^{n(k)} u_k$$

where each u_i is a variable not equal to x, or is the individual constant 0. Then we claim that $\Gamma \models \exists x \varphi \leftrightarrow 0 = 0$, i.e, $\Gamma \models \exists x \varphi$. For, suppose that $a \in {}^{\omega}\omega$. Say x is v_j . Choose $v \in \omega$ such that $S^m v \neq S^{n(0)} u_0(a), \ldots, S^m v \neq S^{n(k)} u_k(a)$. Thus $(\omega, S, 0) \models \varphi[a_v^i]$, as desired.

E6.3 Let T be the theory of an infinite equivalence relation each of whose equivalence classes has exactly two elements. Use an Ehrenfeucht game to show that T is complete.

To be precise, let T consist of the following sentences:

 $\forall x[xEx]$

E is symmetric and transitive

there are infinitely many elements in the model

 $\forall v_0$ there are exactly two elements equivalent to v_0 .

Now assume that \overline{A} and \overline{B} are models of Γ and m is a positive integer. The strategy of ISO is as follows. Suppose that we are at the i-th turn and NON-ISO chooses 0 and an element $a \in A$. The move of ISO depends on the following possibilities. If the turns so far have not produced a partial isomorphism, then ISO selects any element of B. Suppose that the turns so far have produced a partial isomorphism f.

Case 1. No element of A equivalent to a has been selected yet. Then ISO picks an element of B not equivalent to any element selected so far.

Case 2. There is an element $a' \in A$ which has already been selected which is equivalent to a, while a itself has not been previously selected. Then ISO picks an element of B equivalent to f(a') which has not yet been selected.

Case 3. a has already been selected. Then ISO picks f(a).

If NON-ISO chooses 1 and an element of B, ISO does a similar thing, interchanging the roles of A and B.

Clearly this produces a partial isomorphism.

 $\fbox{E6.4}$ Let T be any theory. Show that the class of all substructures of models of T is the class of all models of a set of universal sentences, i.e., sentences of the form $\forall \overline{x} \varphi$ with φ quantifier free and \overline{x} a finite string of variables containing all variables free in φ .

Let $\Gamma = \{ \forall \overline{x} \varphi : \overline{x} \text{ is a finite string of variables containing all variables free in } \varphi, \text{ and } T \models \forall \overline{x} \varphi \}.$

Suppose that $\overline{A} \leq \overline{B} \models T$. Clearly then $\overline{A} \models \Gamma$.

Conversely, suppose that $\overline{A} \models \Gamma$. Then in order to show that \overline{A} can be embedded in a model of T it suffices to show that $T \cup \operatorname{Diag}(\overline{A})$ has a model. Suppose not. Then $T \cup \operatorname{Diag}(\overline{A}) \models \exists x (x \neq x)$. Hence by Lemma 6.29 there is an existential sentence ψ such that $T \models \psi \to \exists x (x \neq x)$; so $T \models \neg \psi$. Hence $\neg \psi \in \Gamma$. But also by Lemma 6.29, $\overline{A} \models \psi$, contradicting $\overline{A} \models \Gamma$.

E6.5 Suppose that $\Gamma \cup \{\varphi\}$ is a set of sentences in a language \mathscr{L} . Suppose that Γ and φ have the same models. Prove that there is a finite subset Δ of Γ with the same models as Γ .

Applying Lemma 6.28 with Γ, Δ, φ replaced by $\emptyset, \Gamma, \varphi$ respectively, we get a finite conjunction ψ of members of Γ such that $\models \psi \to \varphi$. On the other hand, obviously $\models \varphi \to \psi$. Thus the collection of conjuncts of ψ has the same models as Γ .

E6.6 Suppose that T and T' are theories in a language \mathcal{L} . Show that the following conditions are equivalent:

- (i) Every model of T' can be embedded in a model of T.
- (ii) Every universal sentence which holds in all models of T also holds in all models of T'.
- (i) \Rightarrow (ii): Assume (i), suppose that φ is a universal sentence holding in all models of T, and suppose that \overline{A} is a model of T'. By (i), choose $\overline{B} \models T$ such that $\overline{A} \leq \overline{B}$. Clearly $\overline{A} \models \varphi$, as desired.
- (ii) \Rightarrow (i): Assume (ii), and suppose that \overline{C} is a model of T'. Let Γ be a set of universal sentences as given in exercise E6.4:

$$\{\overline{A}:\overline{A}\models\Gamma\}=\{\overline{A}:\exists\overline{B}\models T(\overline{A}\leq\overline{B})\}.$$

Clearly then $T \models \Gamma$, so $\overline{C} \models \Gamma$ by (ii), and hence (i) holds.

 $\fbox{E6.7}$ Let T be a theory in a language \mathscr{L} . Let \mathbf{K} be the class of all models of T. Show that the following conditions are equivalent:

- (i) SK = K.
- (ii) There is a collection Γ of universal sentences such that ${\bf K}$ is the class of all models of Γ .

This is immediate from exercise E6.4.

E6.8 Suppose that $\overline{A} \leq \overline{B}$. Prove that $\overline{A} \leq \overline{B}$ iff $(\overline{A}, a)_{a \in A} \equiv (\overline{B}, a)_{a \in A}$.

 \Rightarrow : Suppose that $\overline{A} \leq \overline{B}$ and $\overline{A}, a)_{a \in A} \models \varphi$. Thus $\varphi \in \operatorname{Eldiag}(\overline{A})$, so by Theorem 6.15, $(\overline{B}, a)_{a \in A} \models \varphi$. The converse follows by applying this argument to $\neg \varphi$.

 \Leftarrow . Assume that $(\overline{A}, a)_{a \in A} \equiv (\overline{B}, a)_{a \in A}$. In particular, $(\overline{B}, a)a \in A$ is a model of Eldiag (\overline{A}) , so by Theorem 6.15, $\overline{A} \leq \overline{B}$.

E6.9 Suppose that m is a positive integer, $\varphi(\overline{x})$ is a formula with free variables \overline{x} of length m, and \overline{M} is a structure. Define $\varphi(\overline{M}) = \{a \in {}^mM : \overline{M} \models \varphi[a]\}$. Show that the following conditions are equivalent:

(i) $\varphi(\overline{M})$ is finite.

$$(ii) \varphi(\overline{M}) = \varphi(\overline{N}) \text{ whenever } \overline{M} \preceq \overline{N}.$$

Assume (i), and suppose that $\overline{M} \leq \overline{N}$. Say $|\varphi(\overline{M})| = n$. Since $\overline{M} \leq \overline{N}$, the *m*-tuples from M that satisfy φ in \overline{M} also satisfy φ in \overline{N} . The statement (i) can be expressed by a sentence (with fixed m), and it holds in \overline{M} , hence in \overline{N} . so (ii) follows.

Now assume that (i) fails; we show that (ii) fails. To the language \mathcal{L}_A adjoin new constants \overline{d} for i < m, of length m. We consider the following set of sentences:

Eldiag(
$$\overline{M}$$
) $\cup \left\{ \bigvee_{i < m} c_{b(i)} \neq d_i : \overline{M} \models \varphi[b(0), \dots, b(m-1)] \right\}.$

By (i) failing and the compactness theorem this set has a model, and this gives an elementary extension \overline{N} of \overline{M} in which $\varphi(\overline{M}) \subset \varphi(\overline{N})$.

 $\fbox{E6.10}$ Prove that if K is a set of models of a complete theory T then there is a structure \overline{M} such that every member of K can be elementarily embedded in \overline{M} .

Let κ be an infinite cardinal greater than the size of all members of K, and let \overline{A} be a κ^+ -saturated model of T. Then \overline{A} is as desired, by Theorem 6.24.

E6.11 Suppose that \overline{A} and \overline{B} are elementarily equivalent, κ -saturated, and both of size κ . Show that they are isomorphic.

Write $A = \{a_{\alpha} : a < \kappa\}$ and $B = \{b_{\alpha} : \alpha < \kappa\}$. We now define $\langle c_{\alpha} : \alpha < \kappa \rangle$ and $\langle d_{\alpha} : \alpha < \kappa \rangle$ by recursion. Suppose they have been defined for all $\beta < \alpha$ so that $(\overline{A}, c_{\beta})_{\beta < \alpha} \equiv (\overline{B}, d_{\beta})_{\beta < \alpha}$. We now define $c_{\alpha}, d_{\alpha}, d_{\alpha+1}, c_{\alpha+1}$. Let $c_{\alpha} = a_{\gamma}$, with γ minimum such that $a_{\gamma} \notin \{c_{\beta} < \beta < \alpha\}$. Let Γ be the set of all formulas $\varphi(x)$ in $\mathcal{L}_{\langle c_{\beta} : \beta < \alpha \rangle}$ such that $(\overline{A}, c_{\beta})_{\beta < \alpha} \models \varphi[c_{\alpha}]$. Then $(\overline{A}, c_{\beta})_{\beta < \alpha} \models \exists x \Delta$ for every conjunction D of finitely many elements of Γ , so also $(\overline{B}, d_{\beta})_{\beta < \alpha} \models \exists x \Delta$. Hence since \overline{B} is κ -saturated we get an element d_{α} of B such that $(\overline{B}, d_{\beta})_{\beta < \alpha} \models \exists \varphi[d_{\alpha}]$ for every $\varphi \in \Gamma$. It follows that $(\overline{A}, c_{\beta})_{\beta \leq \alpha} \equiv (\overline{B}, d_{\beta})_{\beta < \alpha}$. We define $d_{\alpha+1}$ and $c_{\alpha+1}$ analogously.

After this construction we have $A = \{c_{\alpha} : \alpha < \kappa\}$, $B = \{d_{\alpha} : \alpha < \kappa\}$, and $(\overline{A}, c_{\alpha})_{\alpha < \kappa} \equiv (\overline{B}, d_{\alpha})_{\alpha < \kappa}$. Hence $\{(c_{\alpha}, d_{\alpha}) : \alpha < \kappa\}$ is the desired isomorphism.

E6.12 For any natural number n and any structure \overline{M} , an n-type of \overline{M} is a collection Γ of formulas in \mathcal{L}_M with free variables among \overline{x} , a sequence of distinct variables of length n, such that $\overline{M}_M \models \exists \overline{x} \varphi$ for every conjunction of finitely many members of Γ. Prove that if Γ is a collection of formulas in \mathcal{L}_M with free variables among \overline{x} , then Γ is an n-type

over \overline{M} iff there is an elementary extension \overline{N} of \overline{M} which has a sequence \overline{a} of elements such that $\overline{N} \models \varphi[\overline{a}]$ for every $\varphi \in \Gamma$.

 \Rightarrow : Expand \mathscr{L}_M with new individual constants \overline{d} of length n. Every finite subset of

$$\operatorname{Eldiag}(\overline{M}) \cup \{\varphi(\overline{d}) : \varphi \in \Gamma\}$$

has a model by hypothesis, so the compactness theorem yields the required \overline{N} . $\Leftarrow: \overline{N} \models \exists \overline{x} \varphi$ for every finite subset of Γ , so \overline{M} models this too, as desired.

E6.13 If \overline{M} is a structure, $A \subseteq M$, and $n \in \omega$, then an n-type over A of \overline{M} is an n-type of \overline{M} all of whose additional constants come from A. Given an n-tupe \overline{a} of elements of M, the n-type over A of \overline{a} in \overline{M} , denoted by $\operatorname{tp}^{\overline{M}}(\overline{a})/A$), is the set $\{\varphi(\overline{x}) : \varphi \text{ is a formula with free variables among } \overline{x}, \overline{x} \text{ has length } n, \text{ and } \overline{M}_A \models \varphi[\overline{a}]\}$. An n-type S over A is complete iff $\varphi \in S$ or $\neg \varphi \in S$ for every formula in the language \mathscr{L}_A with free variables among \overline{x} .

Prove that S is a complete n-type over A in \overline{M} iff there is an elementary extension \overline{N} of \overline{M} which has a sequence \overline{a} of elements such that $S = \operatorname{tp}^{\overline{N}}(\overline{a}/A)$.

 \Rightarrow : Assume that S is complete. By Exercise E6.12, there is an elementary extension \overline{N} of \overline{M} which has a sequence \overline{a} of elements such that $S \subseteq \operatorname{tp}^{\overline{N}}(\overline{a}/A)$. Clearly equality holds since S is complete.

 \Leftarrow : clear.

E6.14 Let t be an n-type over A of \overline{M} . We say that t is isolated iff there is a formula $\varphi(\overline{x})$ in \mathcal{L}_A such that $\overline{M}_A \models \exists \overline{x} \varphi$ and $\overline{M}_A \models \forall \overline{x} (\varphi \to \psi)$ for every $\psi \in t$. We then say that φ isolates t.

Prove that if φ isolates $\operatorname{tp}^{\overline{M}}(\overline{a}/A)$, then $\varphi \in \operatorname{tp}^{\overline{M}}(\overline{a}/A)$.

Assume the hypothesis. Choose \overline{b} such that $\overline{M}_A \models \varphi[\overline{b}]$. If $\psi \in \operatorname{tp}^{\overline{M}}(\overline{a}/A)$, then $\overline{M}_A \models \varphi(\overline{b}) \to \psi(\overline{b})$. Hence $\operatorname{tp}^{\overline{M}}(\overline{a}/A) \subseteq \operatorname{tp}^{\overline{M}}(\overline{b}/A)$, so $\operatorname{tp}^{\overline{M}}(\overline{a}/A) = \operatorname{tp}^{\overline{M}}(\overline{b}/A)$. Hence $\varphi \in \operatorname{tp}^{\overline{M}}(\overline{a}/A)$.

E6.15 Show that $\operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$ is isolated iff both $\operatorname{tp}^{\overline{M}}(\overline{a}/A \cup \operatorname{rng}(\overline{b}))$ and $\operatorname{tp}^{\overline{M}}(\overline{b}/A)$ are isolated.

 \Rightarrow : Suppose that $\operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$ is isolated. Let $\varphi(\overline{x}, \overline{y})$ be such that $\overline{M}_A \models \exists \overline{x} \exists \overline{y} \varphi$ and $\overline{M}_A \models \forall \overline{x} \forall \overline{y} [\varphi \to \psi]$ for every $\psi \in \operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$. We claim that $\varphi(\overline{x}, \overline{b})$ isolates $\operatorname{tp}^{\overline{M}}(\overline{a}/A \cup \operatorname{rng}(\overline{b}))$ and $\exists \overline{x} \varphi$ isolates $\operatorname{tp}^{\overline{M}}(\overline{b}/A)$.

By Exercise E6.14 we have $\overline{M}_A \models \varphi[\overline{a}, \overline{b}]$. Hence $\overline{M}_{A \cup \operatorname{rng}(\overline{b})} \models \exists \overline{x} \varphi(\overline{x}, \overline{b})$. Now suppose that $\psi(\overline{x}) \in \operatorname{tp}^{\overline{M}}(\overline{a}/A \cup \operatorname{rng}(\overline{b}))$. Then we can write $\psi(\overline{x}) = \psi(\overline{x}, \overline{b})$, and $\psi(\overline{x}, \overline{y}) \in \operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$. Hence $\overline{M}_A \models \forall \overline{x} \forall \overline{y} [\varphi \to \psi]$. Hence $\overline{M}_{A \cup \operatorname{rng}(\overline{b})} \models \forall \overline{x} [\varphi(\overline{x}, \overline{b}) \to \psi(\overline{x})]$. This proves that $\varphi(\overline{x}, \overline{b})$ isolates $\operatorname{tp}^{\overline{M}}(\overline{a}/A \cup \operatorname{rng}(\overline{b}))$.

For the second type, clearly $\overline{M}_A \models \exists \overline{y} \exists \overline{x} \varphi$. Now suppose that $\psi(\overline{y}) \in \operatorname{tp}^{\overline{M}}(\overline{b}/A)$. Then also $\psi(\overline{y}) \in \operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$. Hence $\overline{M}_A \models \forall \overline{x} \forall \overline{y} [\varphi \to \psi]$. So $\overline{M}_A \models \forall \overline{y} [\exists \overline{x} \varphi \to \psi]$. This proves that $\exists \overline{x} \varphi$ isolates $\operatorname{tp}^{\overline{M}}(\overline{b}/A)$. \Leftarrow : Assume that $\operatorname{tp}^{\overline{M}}(\overline{a}/A \cup \operatorname{rng}(\overline{b}))$ and $\operatorname{tp}^{\overline{M}}(\overline{b}/A)$ are isolated. Let $\psi(\overline{x}, \overline{b})$ isolate the type $\operatorname{tp}^{\overline{M}}(\overline{a}/A \cup \operatorname{rng}(\overline{b}))$ and $\varphi(\overline{y})$ isolate $\operatorname{tp}^{\overline{M}}(\overline{b}/A)$. We claim that $\theta \stackrel{\text{def}}{=} \psi(\overline{x}, \overline{y}) \wedge \varphi(\overline{y})$ isolates $\operatorname{tp}^{\overline{M}}(\overline{a} \cap \overline{b}/A)$.

By exercise E6.14 we have $\varphi \in \operatorname{tp}^{\overline{M}}(\overline{b}/A)$, so $\overline{M}_A \models \varphi[\overline{b}]$. Now $\overline{M}_A \models \exists \overline{x} \psi(\overline{x}, \overline{b})$, so $\overline{M} \models \exists \overline{x} \exists \overline{y} (\psi \land \varphi)$.

Now suppose that $\chi \in \operatorname{tp}^{\overline{M}}(\overline{a} \, \overline{b}/A)$; we want to show that $\overline{M}_A \models \forall \overline{x} \forall \overline{y} [\theta \to \chi]$. Now $\overline{M}_A \models \forall \overline{x} [\psi(\overline{x}, \overline{b}) \to \chi(\overline{x}, \overline{b})]$.

Hence

$$\overline{M}_A \models \varphi(\overline{d}) \to \forall \overline{x} [\psi(\overline{x}, \overline{d}) \to \chi(\overline{x}, \overline{d})],$$

SO

$$\overline{M}_A \models \varphi(\overline{d}) \to [\psi(\overline{c}, \overline{d}) \to \chi(\overline{c}, \overline{d})],$$

hence

$$\overline{M}_A \models \theta(\overline{c}, \overline{d}) \to \chi(\overline{c}, \overline{d})],$$

as desired.

E6.16 Let T be a complete theory with a model. A formula $\varphi(\overline{x})$ is complete in T iff $T \cup \{\exists \overline{x}\varphi\}$ has a model, and for every formula $\psi(\overline{x})$, either $T \models \varphi \to \psi$ or $T \models \varphi \to \neg \psi$. Here \overline{x} is a sequence of variables containing all variables free in φ or ψ .

A formula $\theta(\overline{x})$ is completable in T iff there is a complete formula $\varphi(\overline{x})$ such that $T \models \varphi \rightarrow \theta$.

A structure \overline{M} is atomic iff every tuple \overline{a} of elements of M satisfies a complete formula in the theory of \overline{M} .

A theory T is atomic iff for every formula $\theta(\overline{x})$ such that $T \cup \{\exists \overline{x}\theta(\overline{x})\}$ has a model, θ is completable in T.

Show that if T is a complete theory in a countable language, then T has a countable atomic model iff T is atomic. Hint: in the direction \Leftarrow , for each $n \in \omega$ let t_n be the set of all negations of complete formulas with free variables among v_0, \ldots, v_{n-1} , and apply the omitting types theorem.

 \Rightarrow : Assume that T has an atomic model \overline{M} , and suppose that $\theta(\overline{x})$ is a formula such that $T \cup \{\exists \overline{x}\theta(\overline{x})\}$ has a model. Since T is complete, we have $T \models \exists \overline{x}\theta(\overline{x})$, and so $\overline{M} \models \exists \overline{x}\theta(\overline{x})$. Choose \overline{a} in M such that $\overline{M} \models \theta[\overline{a}]$. Since \overline{M} is atomic, there is a complete formula $\varphi(\overline{x})$ such that $\overline{M} \models \varphi[\overline{a}]$. Since $\varphi(\overline{x})$ is complete, it follows that $T \models \varphi \to \theta$. Thus θ is competable. This proves that T is atomic.

 \Leftarrow : Assume that T is atomic. For each $n \in \omega$ let t_n be the set of all negations of complete formulas with free variables among v_0, \ldots, v_{n-1} . Then t_n is not isolated. For suppose it is, and let $\varphi(\overline{v})$ be a formula such that $T \cup \{\exists \overline{v} \varphi(\overline{v}) \text{ has a model, and } T \models \varphi \to \psi$ for every $\psi \in t_n$. Now T is atomic, so φ is completable. Let χ be a complete formula such that $T \models \chi \to \varphi$. But $\neg \chi \in t_n$, so $T \models \varphi \to \neg \chi$. Hence $T \models \chi \to \neg \chi$, contradicting the fact that $T \cup \{\exists \overline{v}\chi\}$ has a model.

Now by the omitting types theorem, let \overline{M} be a countable model of T which omits each type t_n . Thus for each \overline{a} in M, say of length m, there is a φ in t_m such that $\overline{M} \models \neg \varphi[\overline{a}]$. Since $\neg \varphi$ is complete, this shows that \overline{M} is atomic.