

Date: 22/04/2025

Introduction

• Objectif du rapport

Analyser les différentes méthodes d'exploitation des données dans un outil de data visualisation afin de recommander la solution la plus adaptée aux besoins de Bottleneck.

• Contexte de l'analyse

À la suite de la refonte des bases de données de Bottleneck, l'entreprise souhaite mettre ses données à disposition via un tableau de bord interactif. Trois approches techniques sont envisagées : connexion directe à la base, extraction en CSV ou usage d'un ETL.

État des lieux et évaluation de la pertinence

2.1 Description de la situation actuelle

Les données sont désormais centralisées dans une base SQLite propre. L'objectif est de les rendre accessibles aux équipes via un outil de data visualisation.

2.2 Évaluation de la pertinence des données existantes

Les données couvrent un an d'activité (octobre 2022 à septembre 2023) et sont enrichies : ventes, promotions, prix d'achat, segments produits. Elles sont donc exploitables pour la création de KPI pertinents (marge, CA, etc.).

2.3 Identification des principaux problèmes ou enjeux

- Faciliter l'accès aux données pour des non-techniciens
- Mettre en place une solution maintenable et évolutive
- Assurer l'actualisation régulière des données dans le dashboard

Besoin d'outils

3.1 Identification des outils nécessaires pour collecter les données

Outil	Avantages	Inconvénients	Adapté pour
SQLite	Léger, portable, pas	Non supporté	Stockage local
	besoin de serveur,	nativement par	simple, PME, test et
	facile à manipuler	Power BI, nécessite	prototypage
		un connecteur	
		externe	
ODBC (Driver)	Permet la connexion	Pas de	Connexion directe
	directe à Power BI,	rafraîchissement	avec Power BI
	simple à configurer,	automatique dans	Desktop
	compatible	Power BI Service	
DB Browser for	Export manuel de	Manipulation	Export ponctuel par
SQLite	tables ou requêtes,	manuelle, pas	utilisateur non
	interface graphique	d'automatisation	technique
Python +	Très flexible,	Besoin de	Automatisation
sqlite3/pandas	automatisable,	compétences	avancée, script
	parfait pour exporter	techniques en	réutilisable
	en CSV	Python	

Autres solutions de collecte envisageables

Solution	Avantages	Inconvénients	Adapté pour
API REST	Accès distant sécurisé, données filtrables, automatisation possible	Nécessite un développement backend, dépend d'une infrastructure API	Montée en charge future, architecture web/cloud
Stockage partagé (cloud)	Facile à mettre en œuvre avec OneDrive / SharePoint / Google Drive, compatible avec Power BI	Gestion manuelle ou semi-auto, dépend de la rigueur de dépôt	Scénarios semi- automatisés sans base distante
Base distante (ex. PostgreSQL)	Compatible nativement avec Power BI, performant et scalable	Nécessite configuration	

3.2 Benchmark des outils de traitement de données

Outil	Avantages	Inconvénients	Adapté pour
PowerQuery	Intégré à Excel et	Limité à	Utilisateurs non
	Power BI, Interface	l'environnement	techniques, Projets
	simple et no-code,	Microsoft, Pas	intégrés à Power Bl
	Parfait pour des	adapté aux	
	traitements légers,	traitements	
	Pas besoin	complexes multi-	
	d'installation	sources	
Knime	ETL visuel très	Besoin d'installation	Besoins complexes
	puissant,	et configuration,	et automatisés,
	Compatible avec de	Courbe	Traitement
	nombreux formats et	d'apprentissage plus	indépendant de
	bases,	longue	Power BI
	Automatisation et		
	réutilisation de		
	workflows		
Python	Très puissant avec	Nécessite des	Analystes avancés,
	pandas, numpy,	compétences en	Automatisation
	etc., Très flexible	développement,	poussée et sur
	pour tout type de	Moins accessible	mesure
	traitement, Parfait	aux utilisateurs	
	pour automatiser ou	métier	
	industrialiser		
Talend	Open source,	Complexité,	Projets ETL
	puissant, très bon	interface moins	robustes à l'échelle
	pour flux complexes	moderne que Knime	entreprise
	et intégration API		
Apache Airflow	Orchestration de	Nécessite de coder	Architectures
Apache All now	pipelines très	(Python),	modernes,
	puissante, open	configuration	automatisation de
	source, excellent	technique initiale	flux complexes
	pour planifier des	importante	
	traitements		
Alteryx	Interface intuitive,	Coût élevé, version	Analystes métier
	flux visuels simples	gratuite très limitée	avec budget
	à maintenir		
RStudio	Excellente	Moins BI-friendly	Projets orientés
	bibliothèque	que Python,	stats / machine
	statistique, bon pour	nécessite des	learning
	modélisation	compétences	
	prédictive	statistiques	
Pentaho	Suite ETL complète	Interface un peu	Projets ETL
. 5.1.53.10	avec outils de	datée, courbe	structurés,
	reporting, bonne	d'apprentissage,	entreprises
	compatibilité avec	moins active en	cherchant une suite
	I hoooo COI of	open source	tout-en-un
	bases SQL et fichiers plats	open source	tout-en-un

3.3 Identification des outils nécessaires pour analyser les données

Outil	Avantages	Inconvénients	Recommandé pour
Power BI	Intégration MS, Moins intuitif que		PME, utilisateurs
	DAX, bon rapport	Tableau	Excel
	qualité/prix, filtres		
	puissants		
Tableau	UX très intuitive, très	Coût élevé, moins	Analystes, data viz
	bon pour storytelling	bon sur data model	avancée
Looker Studio	Gratuit, facile à	Limité sur les grands	Projets simples,
	utiliser, intégration	volumes, peu de	petits budgets
	Google	traitement complexe	•

Autres outils d'analyse envisageables (non retenus)

Outil	Avantages	Inconvénients	Recommandé pour
Qlik Sense	Moteur associatif très performant, très bon sur gros volumes, interface intuitive	Coût plus élevé, moins répandu dans les PME	Grandes entreprises, projets multi-sources
Metabase	Open source, interface simple, déploiement rapide	Moins puissant sur le plan analytique, visualisations limitées	Startups, reporting simple, budget limité
Excel (avec graphiques)	Facile à prendre en main, très répandu, déjà utilisé en interne	Peu adapté à l'exploration dynamique, pas scalable	Suivi ponctuel, utilisateurs Excel uniquement

Solutions d'extraction, de traitement et de visualisation

4.1 Solutions proposées pour l'extraction des données

Pourquoi la connexion directe via **ODBC** est le meilleur choix pour **Bottleneck** *Intégrée à Power BI*

- ✓ Permet une **connexion directe** à la base SQLite via un driver ODBC.
- ✓ Données **toujours à jour**, sans besoin d'export manuel.
- ✓ Compatible avec la stratégie de mise à jour continue du tableau de bord.

Facile à configurer

- ✓ Nécessite uniquement l'installation d'un driver ODBC (ex. : SQLite ODBC Driver).
- ✓ Une fois configurée dans Windows, la source est directement disponible dans Power Bl.

✓ Aucune compétence technique avancée requise pour l'utiliser au quotidien.

Limite les erreurs humaines

- ✓ Évite les manipulations de fichiers CSV, souvent sources de doublons ou d'incohérences.
- ✓ Diminue les risques d'oublis ou de décalage temporel dans les données analysées.

Adaptée à un usage local

- ✓ Solution idéale pour Power BI Desktop, utilisé dans un environnement local sans infrastructure complexe.
- ✓ Compatible avec un usage autonome et ponctuel des collaborateurs.

4.2 Solutions proposées pour le traitement des données

Pourquoi PowerQuery est le meilleur choix pour Bottleneck

Intégré à Power Bl

✓ Il s'utilise directement dans l'outil de visualisation choisi, sans outil supplémentaire à installer ou configurer.

Facile à prendre en main

✓ L'interface est graphique, intuitive, et bien connue des utilisateurs Excel. Elle permet aux chefs de produit ou managers de suivre ou modifier des flux simples.

Suffisant pour les besoins actuels

✓ Les transformations nécessaires (fusion de tables, suppression de doublons, normalisation) sont toutes réalisables avec PowerQuery.

Gain de temps et faible coût

✓ Pas de développement à maintenir ni de plateforme à héberger : parfait pour une PME sans équipe technique dédiée.

4.3 Solutions proposées pour la visualisation des données

Pourquoi Power BI est le meilleur choix pour Bottleneck

Compatible avec toutes les méthodes de connexion

✓ Power BI peut exploiter les données via connexion directe, fichiers CSV ou ETL (PowerQuery, Knime...), ce qui offre une grande flexibilité d'alimentation, quelle que soit l'architecture choisie.

Visualisations riches et interactives

✓ Il propose un large éventail de visuels, de filtres dynamiques et de fonctions DAX pour suivre efficacement les KPI (CA, marge, rotation des stocks...). Idéal pour des tableaux de bord métiers opérationnels.

Intégré à l'écosystème Microsoft

✓ Il s'intègre naturellement avec **Excel, OneDrive, SharePoint**, et permet aux équipes de **gagner du temps** dans le partage et la mise à jour des données.

Facile à déployer et à maintenir

✓ Une simple installation suffit pour démarrer. Il n'y a **pas besoin de serveur**, ce qui correspond parfaitement à une PME comme Bottleneck.

Adapté aux profils non techniques

✓ Les utilisateurs peuvent **naviguer facilement dans les rapports**, utiliser des filtres ou explorer les données sans connaissance technique.

4.4 Synthèse des outils choisis

Outil	Rôle dans le projet	Pourquoi retenu ?
Power BI	Visualisation et exploration	Intuitif, puissant, bien
	des données	intégré à l'environnement
		Microsoft
PowerQuery	Traitement léger,	Simple à utiliser, intégré à
	transformation, nettoyage	Power BI, rapide à mettre
		en œuvre
ODBC (Driver)	Connexion à la base SQLite	Permet de travailler
		directement sur les données
		sans export manuel

Cohérence des solutions avec le besoin

5.1 Explication détaillée de chaque solution proposée

- Connexion directe via ODBC: permet d'interroger les données en temps réel directement depuis Power Bl. Cette méthode réduit les erreurs manuelles et garantit des données actualisées.
- **Extraction en CSV :** méthode simple et rapide à mettre en œuvre, mais peu maintenable à long terme, et sujette aux erreurs humaines.
- ETL avec PowerQuery / Knime : offre un excellent compromis entre flexibilité, transformation automatisée, et contrôle sur la qualité des données.

5.2 Alignement des solutions avec les besoins identifiés

Besoin	Connexion directe	Extraction CSV	ETL (PowerQuery / Knime)
Simplicité pour utilisateurs métier			▲ (selon l'outil)
Données toujours à jour		×	✓ (si automatisé)
Évolutivité / maintenabilité	<u> </u>	×	
Fiabilité et réduction des erreurs		X	

Légende : **☑** = adapté | **⚠** = adapté sous conditions | **X** = peu adapté

5.3 Avantages et limites de chaque approche

Connexion directe

- Mise à jour en temps réel
- ▼ Dépend de la structure et de la disponibilité de la base

> Extraction CSV

- Facile à manipuler
- ▼ Maintenance manuelle, non automatisée

> ETL (PowerQuery / Knime)

- Traitement puissant, automatisation possible
- ▼ Mise en place plus technique au départ

Conclusion

Synthèse des principales conclusions de l'analyse

Les trois approches d'intégration des données (connexion directe, extraction CSV, ETL) ont été évaluées selon leur simplicité, fiabilité, et maintenabilité. L'utilisation d'un ETL tel que PowerQuery ou Knime offre une solution robuste pour la transformation et l'automatisation des données. Power BI est l'outil de visualisation le plus adapté pour ce projet grâce à sa compatibilité avec toutes les méthodes d'alimentation, ses visualisations interactives et sa puissance analytique.

Recommandations pour la mise en œuvre des solutions proposées

- Utiliser **Knime** pour automatiser les flux de données, ou **PowerQuery** si l'équipe est déjà familière avec l'écosystème Microsoft.
- Connecter **Power BI** à ces flux via fichiers plats ou base de données selon la fréquence de mise à jour souhaitée.
- Intégrer des règles de normalisation et de contrôle de qualité dans les flux pour garantir la cohérence.
- Prévoir une documentation d'usage du dashboard pour les utilisateurs finaux (chefs de produit, direction).

Annexes – Bibliographie / Sources utilisées

- Microsoft Documentation officielle Power BI : https://learn.microsoft.com/fr-fr/power-bi/
- Tableau Software Guide des bonnes pratiques de data visualisation : https://www.tableau.com/fr-fr
- Looker Studio Centre d'aide : https://support.google.com/looker-studio/
- SQLite ODBC Drivers:
 - o https://www.ch-werner.de/sqliteodbc/
 - o https://www.devart.com/odbc/sqlite/
- Knime Analytics Platform Documentation officielle: https://docs.knime.com/
- Towards Data Science "10 Best ETL Tools for Data Pipeline Management", https://towardsdatascience.com/best-etl-tools-data-pipeline-2023
- Apache Airflow: https://airflow.apache.org/
- Talend Open Studio: https://www.talend.com/products/talend-open-studio/
- Pentaho Data Integration : https://community.hitachivantara.com/s/article/what-is-pentaho-data-integration
- Alteryx : https://www.alteryx.com/fr
- RStudio: https://posit.co/download/rstudio-desktop/
- Qlik Sense : https://www.qlik.com/fr-fr/products/qlik-sense
- Metabase : https://www.metabase.com/
- Towards Data Science Knime vs Alteryx vs Power BI: https://towardsdatascience.com/
- Medium Comparatif Power BI vs Metabase : https://medium.com/

Annexe – Glossaire des termes techniques

Terme	Définition	
ETL (Extract Transform Load)	Processus d'extraction, de transformation et de chargement des données entre différentes sources et destinations, souvent automatisé.	
ODBC (Open Database Connectivity)	Interface permettant à des logiciels comme Power BI ou Excel de se connecter à divers types de bases de données.	
SQLite	Système de gestion de base de données léger et embarqué, fonctionnant dans un simple fichier.	
Driver ODBC	Programme qui fait l'interface entre un logiciel (comme Power BI) et une base de données pour établir une connexion fiable.	
CSV (Comma-Separated Values)	Format de fichier texte simple utilisé pour stocker des données tabulaires (souvent exporté depuis des bases de données).	
Python	Langage de programmation polyvalent largement utilisé en data science et en automatisation de traitement des données.	
Power BI	Outil de Microsoft permettant de visualiser et d'analyser les données à travers des tableaux de bord interactifs.	
PowerQuery	Langage et interface intégrés à Excel et Power BI permettant de transformer les données avant analyse, sans coder.	
Knime	Plateforme open source d'analyse de données et de machine learning basée sur des workflows visuels.	
Talend	Plateforme ETL open source permettant de construire des pipelines de traitement de données à grande échelle.	
Apache Airflow	Outil d'orchestration de flux de données open source permettant de planifier et exécuter des tâches automatisées.	
Alteryx	Logiciel de préparation de data et d'ETL no-code, utilisé pour automatiser et visualiser les workflows analytiques.	
RStudio	Environnement de développement pour le langage R, spécialisé en statistiques, data science et modélisation.	
Pentaho	Suite logicielle d'intégration de données (ETL) avec reporting et analyses intégrées.	
Tableau	Outil de data visualisation interactif utilisé pour le storytelling de données et l'analyse visuelle avancée.	
Looker Studio	Outil gratuit de Google pour créer des rapports dynamiques à partir de sources de données variées.	
Qlik Sense	Outil de BI basé sur un moteur associatif performant, adapté aux grands volumes de données.	
Metabase	Plateforme de visualisation open source légère, simple d'utilisation, souvent utilisée dans les startups.	