

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

General Solution To Find Objects

D3: Midterm Demonstration

September 11, 2022

Priya Chaudhary Ragini Mishra Sathwik Panchangam

Advisors Minh Nguyen Alex Mitrevski

Contents

- 1. Problem Statement
- 2. Project Goals
- 3. Minimum Viable Prototype
- 4. Project Progress
- 5. Future steps
- 6. Future Plans

Problem Statement

The problem being addressed is described as follows:-

- Navigate through multiple coordinates in knowledge base based on ontology to find specified object
- Perceive the required object
- Fetch the user specified object and navigate back to user

Project Goals

- Implement a general strategy to find object
 - Navigate through "storage locations"
 - Perceive scenes to look for specified object(s)
 - Move to next location if object not found
- Fetch object and bring back to original location

Minimum Viable Prototype

- Given a user specified choice(string), the software shall return all the default locations (strings) relative to the specified item based on the ontology structure.
- We have to interpret the default location in the knowledge base to the natural location in the ontology.
- After obtaining the co-ordinates of the respective locations the robot shall navigate through all of the respective returned locations.

Minimum Viable Prototype

Figure 1: Example structure

Project progress

- Given a user specified choice(string), the software returns all the natural locations relative to the specified item based on the ontology structure.
- Mapped home lab and created natural location points in the map
- Interpreted the default location in the knowledge base to the natural location in the ontology
- Integrated navigation to find object package and the robot moves to all possible locations when an object name is given.

Future steps

- Perceive the user specified object:
 - Integrate the perception with the find object package to perceive the objects present in the given scene.
 - Compare the perceived objects with learned objects using the embedding calculation.
 - Identify the specified object from the perceived objects.
 - In the desired location move around and check for the objects from multiple viewpoints.
 - Change the behaviour to turn around, move the robot, and open the drawer.
 - If object is not found in the perceived location, move to the next possible location in the knowledge base.

Future Steps

- Fetch object and bring back to original location:
 - Move the robot to adjust the configuration to different viewpoints.
 - Move the arm to the respective pose of the user specified object and pick up the object.
 - Move the robot back to the location of the user.
 - Hand over the object to the user.

Future Plans(Optional)

 Adding speech recognition to Lucy, so that it might be able to fetch object by identifying it from user's speech.

Thank You!

