## HOMEWORK 3

Prem Sagar S - AE14B021

November 7, 2016

## 1 Regression problem

| Pipe diameters | Cost per length |
|----------------|-----------------|
| 80             | 424             |
| 100            | 570             |
| 125            | 767             |
| 150            | 977             |
| 200            | 1431            |
| 250            | 1924            |
| 300            | 2451            |
| 350            | 3008            |
| 400            | 3591            |
| 450            | 4198            |
| 500            | 4828            |
| 600            | 6149            |
| 700            | 7545            |
| 750            | 8269            |

Table 1: Pipe cost

The costs per length of the pipe seems to be increasing almost linearly with the pipe diameter. Hence a least squared linear regression solution would give a near approximate correlation between them.

1. Let the error be **e** for between the actual costs  $y_i$  and the predicted cost  $y_p$  for corresponding diameters  $x_i$ . The following objective function is to be minimized. (n - number of diameters considered)

$$e^2 = \sum (Y - y_i)^2 \tag{1}$$

$$y_p = mx_i + b (2)$$

2. Combining (1.1) and (1.2),

$$e^{2} = \sum_{i} (y_{i} - mx_{i} - b)^{2} = \sum_{i} (m^{2}x_{i}^{2} + 2mbx_{i} - 2mx_{i}y_{i} + b^{2} - 2by_{i} + y_{i}^{2})$$

3. The error is a quadratic funtion of **m** and **b**. This convex function and has a least optimal solution when,

$$\frac{de^2}{dm} = 0 = 2m \sum_{i} x_i^2 + 2b \sum_{i} x_i - 2 \sum_{i} (x_i y_i)$$
 (3)

and

$$\frac{de^2}{db} = 0 = 2m\sum x_i + 2\sum b - 2\sum y_i$$
 (4)

4. Solving (1.3) & (1.4) for  $\mathbf{m}$  and  $\mathbf{b}$ ,

$$m = \frac{n(\sum x_i y_i) - (\sum x_i)(\sum y_i)}{n(\sum x_i^2) - (\sum x_i)(\sum x_i)}$$
(5)

$$b = \frac{\sum y_i - m \sum x_i}{n} \tag{6}$$

| Sl.no  | $x_i$ | $y_i$ | $x_iy_i$ | $x_i^2$ | $x_i^3$    | $x_i^4$      | $x_i^2 y_i$ |
|--------|-------|-------|----------|---------|------------|--------------|-------------|
| 1      | 80    | 424   | 33920    | 6400    | 512000     | 40960000     | 2713600     |
| 2      | 100   | 570   | 57000    | 10000   | 1000000    | 100000000    | 5700000     |
| 3      | 125   | 767   | 95875    | 15625   | 1953125    | 244140625    | 11984375    |
| 4      | 150   | 977   | 146550   | 22500   | 3375000    | 506250000    | 21982500    |
| 5      | 200   | 1431  | 286200   | 40000   | 8000000    | 1600000000   | 57240000    |
| 6      | 250   | 1924  | 481000   | 62500   | 15625000   | 3906250000   | 120250000   |
| 7      | 300   | 2451  | 735300   | 90000   | 27000000   | 8100000000   | 220590000   |
| 8      | 350   | 3008  | 1052800  | 122500  | 42875000   | 15006250000  | 368480000   |
| 9      | 400   | 3591  | 1436400  | 160000  | 64000000   | 256000000000 | 574560000   |
| 10     | 450   | 4198  | 1889100  | 202500  | 91125000   | 41006250000  | 850095000   |
| 11     | 500   | 4828  | 2414000  | 250000  | 125000000  | 625000000000 | 1207000000  |
| 12     | 600   | 6149  | 3689400  | 360000  | 216000000  | 129600000000 | 2213640000  |
| 13     | 700   | 7545  | 5281500  | 490000  | 343000000  | 240100000000 | 3697050000  |
| 14     | 750   | 8269  | 6201750  | 562500  | 421875000  | 316406250000 | 4651312500  |
| $\sum$ | 4955  | 46132 | 23800795 | 2394525 | 1361340125 | 844716350625 | 14835407975 |

Table 2: Calculations required for  $\mathbf{m}$  and  $\mathbf{b}$ , n = 14

$$\bullet \ m = \frac{14*23800795 - 46132*4955}{14*2394525 - 4955*4955} = 11.6624$$

• 
$$b = \frac{46132 - 11.6624 * 4955}{14} = -832.5093$$

• The approximate correlation between the pipe diamter  $\mathbf{x}$  and the cost per unit length  $\mathbf{y}$  is given by (2),





Figure 1: The regression equations verified on Libre office

## 2 Pipe optimization problem

Roll number AE14B021

Enter your roll number in the box below and press the button titled Click

Minimum pressure at node B =79.5 m Minimum pressure at node C=89.5 m Minimum pressure at node D=84.5m



Figure 2: Network from HW1

The optimum diameters obtained were:

|   | $D_1$ | $324.80\mathrm{mm}$  | $9m^3/min$  |
|---|-------|----------------------|-------------|
|   | $D_2$ | $225.27\mathrm{mm}$  | $3m^3/min$  |
| ĺ | $D_3$ | $162.69 \mathrm{mm}$ | $2 m^3/min$ |

From HW(1) the original cost function is,

$$C = 1.2654 \left[ 300 D_1^{1.327} + 500 D_2^{1.327} + 400 D_3^{1.327} \right]$$

Now in order to use the available diameters, each section of pipe is split such that the nearest available diameters are used. The length is kept the same

For AB,  $L^I=300=L_1^{II}+L_2^{I}$  & nearest diameters are 300mm and 350mm. For BC,  $L^{II}=500=L_1^{II}+L_2^{II}$  & nearest diameters are 200mm and 250mm. For BD,  $L^{III}=400=L_1^{III}+L_2^{III}$  & nearest diameters are 150mm and 200mm.

• The new cost function is given by

$$\begin{array}{lll} C'&=&1.2654\left[L_1^I(300)^{1.327}+L_2^I(350)^{1.327}+L_1^{II}(200)^{1.327}+L_2^{II}(250)^{1.327}+L_1^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}(150)^{1.327}+L_2^{III}$$

This is equivalent to maximizing the objective function:

$$C = 556.3656L_1^I + 493.2138L_1^{II} + 454.1669L_1^{III}$$
(8)

– Let X, Y & Z be the joints in AB, BC & BD connecting pipes of different diameters. For the minimum conditions,  $H_C=89.5m$  &  $H_D=84.5m$ . The condition on  $H_B$  is redundant and thus  $89.5 \le H_B < 100$ .

$$H_A - H_B = \Delta H_{AB} = 4.457 \times 10^8 L \frac{Q^{185}}{D^{4.87}}$$

This condition is redundant for  $0 < L_1^I < 300$ .