Contents

1	202	3년도 전기주임기술자 1종 이론 : 전자기학	3
	1.1	평행판 축전기에 작용하는 힘 : 문제 1. 2023.08.19. 1종	4
	1.2	포인팅 벡터 : 문제 2. 2023.08.19. 1종	10

전자기학 덴켄 기출 문제집

Chapter 1

2023년도 전기주임기술자 1종 이론 : 전자기학

1.1 평행판 축전기에 작용하는 힘 : 문제 1. 2023.08.19. 1종

다음 글은 평행판 콘덴서의 전극에 작용하는 힘에 관한 기술이다. 본문 중의 빈칸에 들어갈 가장 적절한 것을 답안군에서 선택하시오.

평행판 콘덴서의 두 전극 사이의 거리가 x일 때, 정전 용량은 C라고 하자. 이때 가상 변위법을 사용하여, 전극 사이 거리를 dx만큼 미소하게 넓힘으로써 전극에 작용하는 힘 F를 구하는 것을 생각한다. 단, C, F는 x의 함수이다.

먼저, 전극 사이 거리를 dx만큼 넓히기 위해 콘덴서가 한 역학적 일은 Fdx로 나타낼 수 있다. 이에 따라 콘덴서에 저장된 전계 에너지 W_E 가 dW_E 만큼 증가한다고 하자. 여기서 다음의 두 가지 경우를 생각한다.

(a) 정전하의 경우

두 전극에 각각 +Q, -Q (Q>0)의 전하를 주고, 전극을 전원에 연결하지 않는다고 하자. 에너지 보존 법칙에 의해, $dW_E=Fdx$ 와의 관계에서 $dW_E+Fdx=0$ 이 성립한다. W_E 를 C, Q로 나타내면 (1) 이고, 따라서 $F=-\frac{dW_E}{dx}$ 를 계산하면 힘 F는 (2)로 구할 수 있다.

(b) 정전압의 경우

두 전극을 전압 V (V>0)의 정전압 전원에 연결한다고 하자. 전극 간 거리를 dx만큼 넓힘으로써 정전 용량의 변화를 dC라고 하면, 전극에 존재하는 전하의 크기 변화는 dQ=VdC가된다. 또한, 콘덴서에서 전원으로 흘러간 에너지는 $dW_S=-VdQ=-V^2dC$ 가된다.

한편, 콘덴서에 저장된 전계 에너지를 C,V로 나타내면 $W_E=\frac{CV^2}{2}$ 이고, 그 변화량 dW_E 는 (3)이다. 에너지 보존 법칙에 의해, dW_E , dW_S 와 Fdx 사이에는 $dW_E+dW_S+Fdx=0$ 의 관계가 성립한다. 따라서, 힘 F는 (4)로 구할 수 있다.

여기서, 전극 간 거리가 x일 때 (a)의 전하 Q와 (b)의 전압 V 사이에 $V = \frac{Q}{C}$ 가 성립하는 경우, (a)와 (b)에서 각각 구한 힘 F를 비교하면, (5)임을 알 수 있다.

[問1の解答群]

$$(\checkmark) \frac{V^2}{3} dC \qquad (\triangledown) \frac{Q^2}{C^2} \frac{dC}{dx} \qquad (\nearrow) \frac{Q^2}{2C}$$

$$(=) \frac{Q^2}{C} \qquad (\Rightarrow) \frac{V^2}{2} dC \qquad (\curvearrowright) V^2 \frac{dC}{dx}$$

$$(\gt) \frac{Q^2}{2C^2} \frac{dC}{dx} \qquad (\r) \frac{Q^2}{3C^2} \frac{dC}{dx} \qquad (\r) \frac{V^2}{2} \frac{dC}{dx}$$

$$(=) \frac{Q^2}{C} \qquad (\dagger) \frac{V^2}{2} dC \qquad (\sim) V^2 \frac{dC}{dx}$$

$$(+) \frac{Q^2}{2C^2} \frac{dC}{dx} \quad (\neq) \frac{Q^2}{3C^2} \frac{dC}{dx} \quad (\exists) \frac{V^2}{2} \frac{dC}{dx}$$

$$\left(\, \mathbb{Z} \, \right) \, V^2 dC \qquad \left(\, \mathcal{V} \right) \, \frac{V^2}{3} \, \frac{dC}{dx} \qquad \left(\, \mathbb{Z} \, \right) \, \frac{Q^2}{3C}$$

- (ワ) 정전압원에 연결되어 있는 쪽이 더 강한 힘이 작용한다
- (カ) 정전압원에 연결되어 있지 않은 쪽이 더 강한 힘이 작용한다
- (ョ) 정전압원에 연결되어 있는지 여부와 관계없이 동일한 힘이 작용한다

정답	D 1	(1)	(2)	(3)	(4)	(5)
ÓН	문1	`	}	#	IJ	Ħ

Solution.

(1) 축전기(=콘덴서)의 두 전극에 전하량이 각각 +Q, -Q까지 충전될 때까지 전기장에 저장된 에너지 W_E 는

$$W_E = \int dW_E = \int V dQ = \int_0^Q \frac{Q}{C} dQ = \frac{Q^2}{2C}$$

(2) 두 전극(축전기의 평행판)에 전하량이 각각 +Q, -Q까지 충전된 이후, 한 전극에 힘 F를 주어 dx만큼의 변위가 일어나는 상황을 가정하자. 축전기 전극을 전원에 연결하지 않으므로 전기적으로 고립되어 있다. 따라서 축전기에 힘을 가하여 dx만큼 변위하더라도, 두 전극의 전하량은 +Q, -Q로 일정하고 정전용량과 축전기에 걸린 전압만 두 전극 사이의 거리 x의 함수로 변화한다(C=C(x), V=V(x)).

에너지 보존 법칙에 의해 전기적으로 고립된 축전기를 계로 하는 시스템의 전체 에너지 E_{tot} 는 일정하므로,

$$dE_{tot} = dW_E + Fdx = 0$$

따라서 힘 F는 (1)에서 구한 식을 이용해 다음과 같이 축전기에 충전된 전하량 Q와 두 전극사이의 거리가 x일 때의 정전용량 C로 표현할 수 있다.

$$F = -\frac{dW_E}{dx} = -\frac{d}{dx} \left(\frac{Q^2}{2C}\right) = -\frac{Q^2}{2} \frac{d}{dx} \left(\frac{1}{C(x)}\right) = -\frac{Q^2}{2} \left(-\frac{1}{C(x)^2} \frac{dC}{dx}\right) = \frac{Q^2}{2C^2} \frac{dC}{dx}$$

(3), (4) 다음으로 두 전극이 전압의 크기가 V로 일정한 정전압 전원에 연결되었다고 하자. 이 경우 축전기의 전극에 힘 F를 가하여 전극 사이의 거리가 dx만큼 변위하더라도 전압은 일정한 대신 정전 용량이 dC, 전극에 존재하는 전하량이 dQ = VdC만큼 변화한다.

정전압 전원과 여기에 연결된 충전기를 계로 하는 시스템의 전체 에너지 변화는 다음과 같이 세 가지로 구성된다:

- a. 축전기의 전극을 dx만큼 변위하는 데 투입된 일의 양 : Fdx
- b. 축전기의 전기장에 저장된 에너지 변화량 : $dW_E=d\left(\frac{CV^2}{2}\right)=\frac{V^2}{2}dC$ ··· (3)의 정답
- c. 축전기에서 정전압원으로 흘러간 에너지 : $dW_S = -VdQ = -V^2dC$

따라서 에너지보존법칙에 의하여

$$dE_{tot} = dW_E + dW_S + Fdx = 0$$

이로부터 힘 F를 구하면

$$F = -\frac{dW_E}{dx} - \frac{dW_S}{dx} = -\frac{V^2}{2}\frac{dC}{dx} - \left(-V^2\frac{dC}{dx}\right) = \frac{V^2}{2}\frac{dC}{dx} \quad \cdots (4)$$
의 정답

(5) (2)에서 축전기가 전원 연결없이 전기적으로 고립된 경우에 구한 힘의 표현식을 F_1 , (4)에서 정전압 전원에 연결된 경우에 구한 힘의 표현식을 F_2 라 하면,

$$F_1 = \frac{Q^2}{2C^2} \frac{dC}{dx}, \qquad F_2 = \frac{V^2}{2} \frac{dC}{dx}$$

축전기에서는 Q=CV가 성립함을 이용하면 $F_1=\frac{Q^2}{2C^2}\frac{dC}{dx}=\frac{V^2}{2}\frac{dC}{dx}=F_2$ 가 성립한다. 즉 정전압원에 연결되어 있는지 여부와 관계없이 동일한 힘이 작용한다.

일본어	ひらがな	한글 독음	의미
平行平板コンデン	へいこうへいばん	헤이코우 헤이반	평행판 콘덴서
サ	こんでんさ	콘덴사	
電極	でんきょく	덴쿄쿠	전극
<	はたらく	하타라쿠	작용하다
カ	ちから	치카라	힌
記述	きじゅつ	기주쓰	기술, 서술
文中	ぶんちゅう	분츄우	문장 중
適切	てきせつ	테키세츠	적절함
解答群	かいとうぐん	카이토군	답안군, 선택지
距離	きょり	쿄리	거리
電容量	せいでんようりょ	세이덴요우료우	정전 용량
	ð		
想位法	かそうへんいほう	카소우 헨이호우	가상 변위법
微小	びしょう	비쇼우	미소(아주 작음)
げる	ひろげる	히로게루	넓히다
エネルギ	えねるぎ	에네루기	에너지
保存則	ほぞんそく	호존소쿠	보존 법칙
成り立つ	なりたつ	나리타츠	성립하다
表す	あらわす	아라와스	나타내다
計算する	けいさんする	케이산 스루	계산하다
電	でんあつ	덴아츠	전압
接する	せつぞくする	세츠조쿠 스루	접속하다, 연결하다

일본어	ひらがな	한글 독음	의미
化	へんか	헨카	변화
存在する	そんざいする	손자이 스루	존재하다
流れ入る	ながれはいる	나가레 하이루	흘러 들어가다
一方	いっぽう	입포우	한편
蓄えられる	たくわえられる	타쿠와에라레루	저장되다, 축적되다
化量	へんかりょう	헨카료우	변화량
場合	ばあい	바아이	경우
定電荷	ていでんか	테이덴카	정전하
定電	ていでんあつ	테이덴아츠	정전압
電源	でんげん	덴겐	전원
える	あたえる	아타에루	주다 -
係	かんけい	칸케이	관계
成る	なる	나루	되다, 이루어지다
負荷	ふか	후카	부하
保持する	ほじする	호지 스루	유지하다
位	へんい	헨이	변위
作業	さぎょう	사교우	작업

포인팅 벡터 : 문제 2. 2023.08.19. 1종

다음 글은 포인팅 벡터에 관한 기술이다. 본문 중의 빈칸에 들어갈 가장 적절한 것을 답안군 에서 선택하시오.

유전율, 투자율 및 도전율이 각각 ε , μ , σ 로 일정한 미소 영역 V를 가정한다. V 내에서 전계와 자계는 균일하며, 시각 t에서 전계 벡터가 $ec{E}$, 자계 벡터가 $ec{H}$ 일 때, V 내 단위 체적당 전자기적 에너지 u는 (1) 로 나타낼 수 있다.

여기서 $\sigma=0$ 일 때, u의 단위 시간당 변화량 $\frac{\partial u}{\partial t}$ 는 단위 면적당 에너지 흐름 \vec{S} 를 사용하여 $\frac{\partial u}{\partial t}=$ $\boxed{(2)}$ 로 표현된다. \vec{S} 는 포인팅 벡터라 불리며, $\vec{S}=$ $\boxed{(3)}$ 로 주어진다.

 \vec{E} 와 \vec{H} 가 직교 좌표계 (x,y,z)에서 각각 $\vec{E}=(E_x,0,0),\ \vec{H}=(0,H_y,0)$ 로 표현될 때, \vec{S} 는 (4) 축과 평행하다.

또한, $\sigma \neq 0$ 일 경우에는 $\frac{\partial u}{\partial t} = \boxed{(2)} - \boxed{(5)}$ 로 나타낼 수 있다.

[問2の解答群]

$$(\land) \vec{E} \cdot \vec{H}$$

$$\left(\begin{array}{cccc} (\, \boldsymbol{\varLambda} \,) \; \vec{E} \cdot \vec{H} & & \\ \end{array} \right. \left. (\, \boldsymbol{\sqcap} \,) \; \vec{H} \times \vec{E} \quad (\, \boldsymbol{ \wedge} \,) \; \boldsymbol{\sigma} \left| \vec{E} \right|^2$$

$$(=) - \nabla \cdot \vec{S}$$

$$(=) -\nabla \cdot \vec{S} \qquad (\pi) \; \vec{E} \times \vec{H} \quad (\sim) \; x$$

$$(\ \ \)\ \sigma \vec{E}\cdot \vec{H}$$

$$(+) \sigma \vec{E} \cdot \vec{H} \qquad (\not -) \nabla \cdot \vec{S} \qquad (1)) \frac{1}{2} \sigma \left| \vec{E} \right|^2 + \frac{1}{2} \mu \left| \vec{H} \right|^2$$

$$\left(\, \mathbb{Z} \, \right) \, \tfrac{1}{2} \varepsilon \left| \vec{E} \right|^2 + \tfrac{1}{2} \mu \left| \vec{H} \right|^2 \quad \left(\, \mathcal{V} \right) \, \tfrac{1}{2} \vec{E} \cdot \vec{H} \quad \left(\, \mathbb{Z} \, \right) \, y$$

$$(\mathcal{N}) \ \frac{1}{2} \vec{E} \cdot \vec{H} \quad (\mathcal{F}) \ \mathcal{E}$$

$$(\, \mathcal{7} \,) \, \, \nabla \times \vec{S}$$

$$(\mathcal{P}) \nabla \times \vec{S} \qquad \qquad (\mathcal{B}) \sigma \left| \vec{E} \right| \qquad (\exists) z$$

정답

問2	(1)	(2)	(3)	(4)	(5)
[p] <i>Z</i>	ヌ	11	ホ	Э	ハ

Solution.

(1) 전자기적 에너지 밀도는

$$u = \frac{1}{2} \left(\epsilon |\vec{E}|^2 + \mu |\vec{H}|^2 \right)$$

(2) 전하 밀도 ho와 전류 밀도 $ec{J}$ 에 관한 Continuity equation의 미분형

$$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$

과 마찬가지로, 전자기적 에너지 밀도 u와 단위 면적당 에너지 흐름 \vec{S} (Poynting vector)에도 다음의 continutiy equation이 성립한다. (단, 도전율이 $\sigma=0$ 일 때.)

$$\nabla \cdot \vec{S} = -\frac{\partial u}{\partial t}$$

(3) Poynting vector는 다음과 같이 정의된다.

$$\vec{S} = \vec{E} \times \vec{H}$$

(4) \vec{E} 와 \vec{H} 가 직교 좌표계 (x,y,z)에서 각각 $\vec{E}=(E_x,0,0), \ \vec{H}=(0,H_y,0)$ 로 표현될 때, Poynting vector는

$$\vec{S} = \vec{E} \times \vec{H} = E_x \hat{x} \times H_y \hat{y} = E_x H_y \hat{z}$$

따라서 Poynting vector는 z축과 평행하다.

(5) 도전율이 $\sigma \neq 0$ 일 때 에너지 밀도의 변화는 Poynting vector로 인한 에너지 누설뿐만 아니라 전도전류 $\vec{J} = \sigma \vec{E}$ 로 인한 에너지 누설까지 포함해야 한다.

$$\frac{\partial u}{\partial t} = -\nabla \cdot \vec{S} - \vec{J} \cdot \vec{E} = -\nabla \cdot \vec{S} - \sigma |\vec{E}|^2$$

일본어	ひらがな	한글 독음	의미
ポインティングベ	ぽいんてぃんぐべ	포인팅구 베쿠토	포인팅 벡터
クトル	くとる	루	
記述	きじゅつ	기주쓰	기술, 서술
文中	ぶんちゅう	보 <u>추</u> 우	문장 중
適切	てきせつ	테키세츠	적절함
解答群	かいとうぐん	카이토군	답안군, 선택지
誘電率	ゆうでんりつ	유덴리쓰	유전율
透磁率	とうじりつ	토지리쓰	투자율
導電率	どうでんりつ	도우덴리쓰	도전율
_	いちよう	이치요우	일정함, 균일함
微小領域	びしょうりょうい	비쇼우 료우이키	미소 영역
	き		
電界	でんかい	덴카이	전계
磁界	じかい	지카이	자계, 자기장
時刻	じこく	지코쿠	시각
電界ベクトル	でんかいべくとる	덴카이 베쿠토루	전계 벡터
磁界ベクトル	じかいべくとる	지카이 베쿠토루	자계 벡터
位積	たんいたいせき	탄이타이세키	단위 체적
電磁界エネルギ	でんじかいえねる	덴지카이에네루	전자기계 에너지
	ぎ	기	
表される	あらわされる	아라와사레루	나타내어지다

일본어	ひらがな	한글 독음	의미
位時間	たんいじかん	탄이지칸	단위 시간
化量	へんかりょう	헨카료우	변화량
位面積	たんいめんせき	탄이미멘세키	단위 면적
エネルギの流れ	えねるぎのながれ	에네루기 노 나가	에너지의 흐름
		레	
直交座標系	ちょっこうざひょ	쵸콧코우 자효케	직교 좌표계
	うけい	०	
それぞれ	それぞれ	소레조레	각각
軸	じく	지쿠	축
平行	へいこう	헤이코우	평행
場合	ばあい	바아이	경우