Total in School = $(15 \times 30) + 150 = 600$ random sample of $\frac{30}{600} \times 40$ (Use of $\frac{40}{their} = 600$) = 2 from each of the 15 classes random sample of $\frac{150}{600} \times 40$ Either = $\frac{10}{10}$ from sixth form; Label the boys in each class from 1 – 15 and the girls from 1 – 15. use random numbers to select 1 girl and 1 boy Label the boys in the sixth form from 1 – 75 and the girls from 1 – 75. use random numbers to select $\frac{5}{100} = \frac{10}{100} = \frac$

Question Number	Scheme						
2. (a)	E(R) = 20 + 10 = 30		B1	(1)			
(b)	Var(R) = 4 + 0.84, = 4.84		M1, A1				
(c)	R ~ N(30, 4.84)	(Use of normal with their (a),(b))	B1ft	(2)			
l	$P(28.9 < R < 32.64) = P(R < 32.64) - P(R < 28.9)$ $= P\left(Z < \frac{32.64 - 30}{2.2}\right) - P\left(Z < \frac{28.9 - 30}{2.2}\right)$	Stand their σ and μ	M1				
	= P(Z < 1.2) - P(Z < - 0.5)		A1, A1				
	= 0.8849 - (1 - 0.6915)	Correct area	M1				
	= 0.8849 - 0. 3085 = 0.5764	(accept AWRT 0.576)	A1	(6)			
				9			
l							

3. (a)	$\widehat{\mu} = \frac{82 + 98 + 140 + 110 + 90 + 125 + 150 + 130 + 70 + 110}{10}$	M1
	$\mu = \frac{10}{10}$	A1
	$\hat{\sigma}^2 = \frac{1}{9} \left(128153 - 10 \times 110.5^2 \right)$ 128153	B1
	9 (AWRT 672)	M1 A1
	- 072.20 (AWKT 072)	(5)
(b)	95% confidence limits are (condone use of 5 instead of 25) (for 1.96)	M1 B1
	110.5 $\pm 1.96 \times \frac{25}{\sqrt{10}}$	A1√
	95% conf. lim. = AWRT(95, 126)	A1 A1 (5)
	95	
(c)	Number of intervals = $\frac{95}{100} \times 15$ = 14.25 (Allow 14 or 14.3 if method is clear)	M1 A1
	(wow it of the mouneaute deal)	(2)
		12

	Accept	Not accept	Total		
Males	170 (180)	110 (100)	280		M1 A
Females	280 (270)	140 (150)	420	Expected	IVII
Totals	450	250	700	Values	
170 110 280		E 180 100 270	$ \frac{(O-E)^2}{E} \\ 0.5556 \\ 1.0000 \\ 0.3704 $		
140		150	0.6667		
$\sum \frac{(O-E)}{E}$	$\frac{y^2}{2} = 2.59$ (Y)	ates' 2.34)		(Condone use of Yates')	M1 A
v = 1; (5%)					B1; I
3.841 > 2.59. There is insufficient evidence to There is no association between a persons gen of a flu jab.)					M1 A1√
	0.)				
	o.)				

5. (a)	μ_b = mean mark of boys, μ_g = mean mark of girls.			
	$H_0: \mu_b = \mu_g$	both	B1	
	$H_1: \mu_b \neq \mu_g$			
	$z = \frac{53 - 50}{\sqrt{\frac{144}{80} + \frac{144}{80}}}$		M1	
	$\sqrt{\frac{111}{80} + \frac{111}{80}}$		A1	
	= 1.58 Critical region $z \ge 1.96$		A1 B1	
	1.58 < 1.96 insufficient evidence to reject Ho.		M1	
	No diff. between mean scores of boys and girls.		A1	(7)
				(1)
(b)	$H_0: \mu_b = \mu_g$			
	$\mathrm{H_1}:\mu_b<\mu_g$		B1	
	$z = \frac{62 - 59}{\sqrt{1 - 1000}}$			
	$z = \frac{62 - 59}{\sqrt{\frac{36}{80} + \frac{36}{80}}}$		M1	
	= 3.16		A1	
	Critical region $z \ge 1.6449$ (accept 1.645)		B1	
	$3.16 > 1.6449$ sufficient evidence to reject H_0 . the mean mark for boys is less than the mean mark of the girls.		A1	
				(5)
(c)	Girls have improved more than boys or girls performed better than boys after 1 year		B1	
				(1)
				13

6. (a)	r = 27.07, s = 18.04,	M1 A1 B1	
	t = 0.11 using tables or 0.12 using totals	B1 ft	(4)
(b)	Ho : A Poisson model Po(2) is a suitable model. both H_1 : A Poisson model Po(2) is not a suitable model.	B1	
	Amalgamate data	M1	
	$\sum \frac{(O-E)^2}{E} = 3.28 \text{ (awrt)}$	M1 A1	
	v = 6 - 1 = 5	B1	
		DAG	
	$\chi_5^2(5\%)$ = 11.070 (follow through their degrees of freedom)	B1ft	
	3.25 < 11.070 There is insufficient evidence to reject H₀, Po(2) is a suitable model.	A1ft	(7)
(c)	The expected values, and hence $\sum \frac{(O-E)^2}{E}$ would be different,	B1	(0)
	and the degrees of freedom would be 1 less.	B1	(2)
			13

7. (a)	The variables cannot be assumed to be normally distributed							B1	(1)	
(b)	Donk	20-29	30-39	40-49	50-59	60-69	70+]	M1 A1	
	Rank <i>x</i> Rank <i>y</i>	5 6	6 5	4	3	3	2	-	IVIIAI	
	$\frac{d}{d}$	1	1	0	2	2	0	-		
	$\frac{d}{d^2}$	1	1	0	4	4	0	-	dM1 (dep	
	и	<u> </u>	1 .		1 .	1 .	1 "		on ranking attempt)	g
	$\sum d^2 = 10$ (follow through their rankings) $r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{60}{210} = 0.714$ (follow through their rankings)							A1 ft		
	$r_s = 1 - \frac{6}{n(1)}$	$\frac{\sum d^2}{n^2-1} =$	$1 - \frac{60}{210} =$	0.714			$\left(\frac{5}{7} \text{ or a}\right)$	ewrt 0.714)	M1 A1	(6)
(c)	$H_0: \rho = 0$ $H_1: \rho \neq 0$ (0	ır ρ > 0)							B1 B1	
	$n = 6 \Rightarrow 5\%$		lue = 0.885	57 (or 0 828	(6)				B1√	
				(0. 0.020	,				M1	
	0.714 < 0.8857 No evidence to reject H _o ; No evidence of correlation between deaths from pneumoconiosis and lung cancer.							A1		
	No evidence	of correla	ition betwee	en deaths ti	rom pneum	oconiosis ai	nd lung cand	cer.	Λ1	(5)
										40
										12