GIẢI TÍCH (CƠ SỞ)

Chuyên ngành: Giải Tích, PPDH Toán

Phần 1. Không gian metric

§3. Ánh xạ liên tục

(Phiên bản đã chỉnh sửa)

PGS TS Nguyễn Bích Huy

Ngày 20 tháng 12 năm 2004

Tóm tắt lý thuyết

1 Định nghĩa

Cho các không gian metric $(X,d),\,(Y,\rho)$ và ánh xạ $f:X\to Y$

- Ta nói ánh xạ f liên tục tại điểm $x_0 \in X$ nếu $\forall \varepsilon > 0, \exists \delta > 0: \forall x \in X, d(x, x_0) < \delta \Longrightarrow \rho(f(x), f(x_0)) < \varepsilon$
- Ta nói f liên tục trên X nếu f liên tục tại mọi $x \in X$

2 Các tính chất

Cho các không gian metric (X, d), (Y, ρ) và ánh xạ $f: X \to Y$.

Định lí 1. Các mệnh đề sau tương đương

- 1. f liên tục tại $x_0 \in X$
- 2. $\forall \{x_n\} \subset X \quad (\lim x_n = x_0) \Longrightarrow \lim f(x_n) = f(x_0)$

Hệ quả. Nếu ánh xạ $f: X \to Y$ liên tục tại x_0 và ánh xạ $g: Y \to Z$ liên tục tại $y_0 = f(x_0)$ thì ánh xạ hợp $g \circ f: X \to Z$ liên tục tại x_0 .

Định lí 2. Các mệnh đề sau tương đương

- 1. f liên tục trên X
- 2. Với mọi tập mở $G \subset Y$ thì tập nghịch ảnh $f^{-1}(G)$ là tập mở trong X.
- 3. Với mọi tập đóng $F \subset Y$ thì tập $f^{-1}(F)$ là tập mở trong X.

3 Ánh xạ mở, ánh xạ đóng, ánh xạ đồng phôi

Cho các không gian metric X, Y và ánh xạ $f: X \to Y$.

- Ánh xạ f gọi là ánh xạ mở (đóng) nếu với mọi tập mở (đóng) $A \subset X$ thì ảnh f(A) là tập mở (đóng).
- Ánh xạ f gọi là ánh xạ đồng phôi nếu f là song ánh liên tục và ánh xạ ngược $f^{-1}:Y\to X$ liên tục.

4 Một số các hệ thức về ảnh và ảnh ngược

Cho các tập X, Y khác trống và ánh xạ $f: X \to Y$. Với các tập $A, A_i \subset X$ và $B, B_i \subset Y$, ta có

1.
$$f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i), \qquad f(\bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} f(A_i)$$

2.
$$f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i), \qquad f^{-1}(\bigcap_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i)$$

 $f^{-1}(B_1 \setminus B_2) = f^{-1}(B_1) \setminus f^{-1}(B_2)$

3.
$$f(f^{-1}(B)) \subset B$$
 ("=" nếu f là toàn ánh)
$$f^{-1}(f(A)) \supset A$$
 ("=" nếu f là đơn ánh)

Bài tập

Bài 1. Trong không gian $C_{[a,b]}$, ta xét metric $d(x,y) = \sup_{a \le t \le b} |x(t) - y(t)|$ và trong $\mathbb R$ ta xét metric thông thường. Chứng minh các ánh xạ sau đây liên tục từ $C_{[a,b]}$ vào $\mathbb R$.

1.
$$f_1(x) = \inf_{a < t < b} x(t)$$

2.
$$f_2(x) = \int_a^b x^2(t)dt$$

Giải. 1. Ta sẽ chứng minh $|f_1(x) - f_1(y)| \le d(x, y)$ (*)

Thật vậy

$$f_1(x) \le x(t) = y(t) + (x(t) - y(t)) \le y(t) + d(x, y) \qquad \forall t \in [a, b]$$

$$\implies f_1(x) - d(x, y) \le y(t), \qquad \forall t \in [a, b]$$

$$\implies f_1(x) - d(x, y) \le f_1(y) \quad \text{hay} \quad f_1(x) - f_1(y) \le d(x, y)$$

Tương tự, ta có $f_1(y) - f_1(x) \le d(x,y)$ nên (*) đúng. Từ đây, ta thấy

$$\forall \{x_n\}, \lim_{n \to \infty} x_n = x \Longrightarrow \lim_{n \to \infty} f_1(x_n) = f_1(x)$$

2. Xét tùy ý $x \in C_{[a,b]}$, $\{x_n\} \subset C_{[a,b]}$ mà $\lim x_n = x$, ta cần chứng minh $\lim f_2(x_n) = f_2(x)$ Ta có

$$|x_n^2(t) - x^2(t)| = |x_n(t) - x(t)| \cdot |x_n(t) - x(t) + 2x(t)|$$

$$\leq d(x_n, x) \cdot [d(x_n, x) + M] \qquad (M = \sup_{a \leq t \leq b} 2|x(t)|)$$

$$\implies |f_2(x_n) - f_2(x)| \leq \int_a^b |x_n^2(t) - x^2(t)| dt$$

$$\leq d(x_n, x) [d(x_n, x) + M](b - a)$$

Do $\lim d(x_n, x) = 0$ nên từ đây ta có $\lim f_2(x_n) = f_2(x)$ (đpcm)

Ghi chú. Ta có thể dùng các kết quả về ánh xạ liên tục để giải bài tập 3 (§2). Ví dụ, để chứng minh tập

$$M = \{x \in C_{[a,b]} : x(t) > x_0(t), \quad \forall t \in [a,b]\}$$
 $(x_0 \in C_{[a,b]} \text{ cho trước })$

là tập mở, ta có thể làm như sau. Xét ánh xạ

$$f: C_{[a,b]} \to \mathbb{R}, \quad f(x) = \inf_{a \le t \le b} (x(t) - x_0(t))$$

Ta có:

• f liên tục (lý luận như khi chứng minh f_1 liên tục)

• $M = \{x \in C_{[a,b]} : f(x) > 0\} = f^{-1}((0,+\infty)), (0,\infty)$ là tập mở trong \mathbb{R}

Bài 2. Cho các không gian metric X, Y và ánh xạ $f: X \to Y$. Các mệnh đề sau là tương đương

1. fliên tục trên \boldsymbol{X}

$$2. \ f^{-1}(\overline{B}) \supset \overline{f^{-1}(B)} \qquad \forall B \subset Y$$

3.
$$f(\overline{A}) \subset \overline{f(A)}$$
 $\forall A \subset X$

Giải. $1) \Rightarrow 2)$ Ta có

$$\left\{\begin{array}{ll} f^{-1}(\overline{B}) \text{ là tập đóng (do } f \text{ liên tục và } \overline{B} \subset Y \text{ là tập đóng)} \\ f^{-1}(\overline{B}) \supset f^{-1}(B) \end{array}\right.$$

 $\Longrightarrow f^{-1}(\overline{B})\supset \overline{f^{-1}(B)}$ (do tính chất "nhỏ nhất" của bao đóng)

2)
$$\Rightarrow$$
 3) Đặt $B = f(A)$ trong 2), ta có $f^{-1}(\overline{f(A)}) \supset \overline{f^{-1}(f(A))} \supset \overline{A}$
Do đó $f(f^{-1}(\overline{f(A)})) \supset f(\overline{A}) \Longrightarrow \overline{f(A)} \supset f(\overline{A})$

3) \Rightarrow 1) Xét tùy ý tập đóng $F \subset Y$, ta cần chứng minh $f^{-1}(F)$ là tập đóng.

Đặt
$$A = f^{-1}(F)$$
, ta có
$$f(\overline{A}) \subset \overline{f(A)} = \overline{f(f^{-1}(F))} \subset \overline{F} = F \quad \text{(do } F \text{ d\'ong)}$$
$$\Longrightarrow f^{-1}(f(\overline{A})) \subset f^{-1}(F)$$
$$\Longrightarrow \overline{A} \subset A$$

Vậy $\overline{A} = A$ nên A là tập đóng.

Bài 3. Trong $C_{[a,b]}$ ta xét metric $d(x,y) = \sup\{|x(t) - y(t)|, a \le t \le b\}$. Cho $\varphi : [a,b] \times \mathbb{R} \to \mathbb{R}$ là hàm liên tục. Chứng minh ánh xạ sau đây liên tục

$$F: C_{[a,b]} \to C_{[a,b]}, \qquad F(x)(t) = \varphi(t, x(t))$$

Giải. Cố định $x_0 \in C_{[a,b]}$, ta sẽ chứng minh F liên tục tại x_0 .

Đặt
$$M = 1 + \sup_{a \le t \le b} |x_0(t)|$$
. Cho $\varepsilon > 0$ tùy ý.

Hàm φ liên tục trên tập compact $D:=[a,b]\times [-M,M]$ nên liên tục đều trên D. Do đó, tồn tại số $\delta_1>0$ sao cho

$$\forall (t,s), (t',s') \in D, |t-t'| < \delta_1, |s-s'| < \delta_1 \Longrightarrow |\varphi(t,s) - \varphi(t',s')| < \varepsilon$$

Đặt
$$\delta = \min(\delta_1, 1)$$
. Với mỗi $x \in C_{[a,b]}, d(x, x_0) < \delta$, ta có
$$|x(t) - x_0(t)| < \delta \quad \forall t \in [a, b]$$

$$x(t) \in [-M, M] \quad \text{(do } |x(t) - x_0(t)| < 1, \ \forall t \in [a, b])$$
 Do đó,
$$|\varphi(t, x(t)) - \varphi(t, x_0(t))| < \varepsilon, \quad \forall t \in [a, b]$$

$$\Longrightarrow |F(x)(t) - F(x_0)(t)| < \varepsilon, \quad \forall t \in [a, b]$$

$$\Longrightarrow d(F(x), F(x_0)) < \varepsilon$$

Như vậy, ta đã chứng minh

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in C_{[a,b]}, d(x,x_0) < \delta \Rightarrow d(F(x),F(x_0)) < \varepsilon$$

hay F liên tục tại x_0 .

Bài 4. Cho các không gian metric X, Y và song ánh $f: X \to Y$. Chứng minh các mệnh đề sau tương đương

- 1. $f^{-1}: Y \to X$ liên tục
- 2. f là ánh xạ đóng

Giải. Ta có
$$(f^{-1}: Y \to X \text{ liên tục})$$

 $\iff (\forall A \subset X, A \text{ dóng } \Rightarrow (f^{-1})^{-1}(A) \text{ dóng trong } Y)$
 $\iff (\forall A \subset X, A \text{ dóng } \Rightarrow f(A) \text{ dóng})$
 $\iff (f: X \to Y \text{ là ánh xạ đóng})$

Bài 5. Cho không gian metric (X, d). Với $x \in X$, $\emptyset \neq A \subset X$, ta định nghĩa

$$d(x,A) = \inf_{y \in A} d(x,y)$$

Chứng minh các khẳng định sau đây

- 1. Ánh xạ $f: X \to \mathbb{R}$, f(x) = d(x, A) liên tục
- $2. \ x \in \overline{A} \Leftrightarrow d(x, A) = 0$
- 3. Nếu F_1 , F_2 là các tập đóng, khác \emptyset và $F_1 \cap F_2 = \emptyset$ thì tồn tại các tập mở G_1 , G_2 sao cho

$$F_1 \subset G_1$$
, $F_2 \subset G_2$, $G_1 \cap G_2 = \emptyset$

Giải. 1. Ta sẽ chứng minh $|f(x) - f(x')| \le d(x, x')$ (*) Thật vậy, ta có $d(x, y) \le d(x, x') + d(x', y)$ $\forall y \in A$

$$\implies \inf_{y \in A} d(x, y) \le d(x, x') + \inf_{y \in A} d(x', y)$$
$$\implies d(x, A) - d(x', A) < d(x, x')$$

2. Ta có

$$d(x,A) = 0 \iff (\exists \{x_n\} \subset A : \lim_{n \to \infty} d(x,x_n) = 0) \quad \text{(do tính chất của inf và } d(x,A) \ge 0)$$

$$\iff (\exists \{x_n\} \subset A : \lim x_n = x)$$

$$\iff x \in \overline{A}$$

3. Ta xét ánh xạ $g: X \to \mathbb{R}$, $g(x) = d(x, F_1) - d(x, F_2)$

Ta có g liên tục theo câu 1)

Đặt
$$G_1 = \{x \in X : g(x) < 0\}, G_2 = \{x \in X : g(x) > 0\},$$
 ta có

- $G_1 \cap G_2 = \emptyset$
- G_1 , G_2 là các tập mở (do $G_1 = g^{-1}((-\infty, 0))$, $G_2 = g^{-1}((0, +\infty))$, $(0, +\infty)$, $(-\infty, 0)$ là các tập mở và g liên tục).
- $F_1 \subset G_1$ vì $x \in F_1 \Rightarrow \begin{cases} d(x, F_1) = 0 \\ d(x, F_2) > 0 \end{cases}$ (do $x \notin F_2$ và kết quả câu 2)) $\Rightarrow g(x) < 0$

Tương tự, $F_2 \subset G_2$

Bài tập tự giải có hướng dẫn

Bài 6. Cho các không gian metric X, (Y_1, d_1) , (Y_2, d_2) . Trên $Y_1 \times Y_2$, ta xét metric

$$d((y_1, y_2), (y_1', y_2')) = d_1(y_1, y_1') + d_2(y_2, y_2')$$

Giả sử rằng $f_1: X \to Y_1, f_2: X \to Y_2$ là các ánh xạ liên tục. Chúng minh rằng ánh xạ $f: X \to Y_1 \times Y_2, f(x) = (f_1(x), f_2(x))$ liên tục.

Hướng dẫn

Sử dụng định lý 1 và điều kiện hội tụ trong không gian metric tích trong bài tập ở §1.

Bài 7. Cho các không gian metric X, Y và ánh xạ $f: X \to Y$. Chứng minh các mệnh đề sau tương đương:

- 1. f liên tục trên X
- 2. $f^{-1}(\operatorname{Int} B) \subset \operatorname{Int} f^{-1}(B) \quad \forall B \subset Y$

Hướng dẫn

- \bullet 1) \Rightarrow 2) Áp dụng định lý 2 và tính chất "lớn nhất" của phần trong.
- $\bullet \ 2) \Rightarrow 1)$ Áp dụng định lý 2 và tính chất $G = \operatorname{Int} G$ nếu G mở.

Bài 8. Cho các không gian metric $(X,d), (Y,\rho)$ và các ánh xạ liên tục $f,g:X\to Y.$ Ta định nghĩa ánh xạ

$$h: X \to \mathbb{R}, \quad h(x) = \rho(f(x), g(x)), x \in X$$

- 1. Chứng minh h liên tục
- 2. Suy ra rằng tập $A:=\{x\in X: f(x)=g(x)\}$ là tập đóng.

Hướng dẫn

- 1. Chứng minh rằng nếu $d_n \xrightarrow{d} x$ thì $h(x_n) \to h(x)$ trong \mathbb{R} , sử dụng tính chất $y_n \xrightarrow{\rho} y$, $z_n \xrightarrow{\rho} z$ thì $\rho(y_n, z_n) \to \rho(y, z)$
- 2. $A = h^{-1}(\{0\}), \{0\}$ là tập đóng trong $\mathbb R$

Bài 9. Cho không gian metric (X,d) và A,B là các tập đóng khác \emptyset , không giao nhau. Chứng minh rằng tồn tại ánh xạ liên tục $f:X\to\mathbb{R}$ sao cho

$$0 \le f(x) \le 1, \quad \forall x \in X,$$

 $f(x) = 0, \quad \forall x \in A,$
 $f(x) = 1, \quad \forall x \in B$

Hướng dẫn

Chứng minh hàm $f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}$ cần tìm.