

Name:

- 1. (30 points) Consider the data points $\{(0,1),(1,1),(2,5)\}$. Then:
 - (a) (10 points) Find the **piecewise linear** interpolating function for the data.
 - (b) (10 points) Find the quadratic interpolating polynomial.
 - (c) (10 points) Find the **natural cubic spline** that interpolates the data.
- 2. (20 points) Is the following function a cubic spline on the interval $0 \le x \le 2$?

$$s(x) = \begin{cases} (x-1)^3, & x \in [0,1], \\ 2(x-1)^3, & x \in [1,2]. \end{cases}$$

- 3. (30 points) Consider the function $f(x) = \sin(x)$ of Question 1 of HW4.
 - (a) (15 points) Interpolate the function f(x) at 5 Chebyshev points over the interval $[0, \pi/2]$ and compare your results with those of Question 1 of HW4, i.e., evaluate the interpolation error magnitude $|p(1.2) \sin(1.2)|$. Also, plot your data points and the underlying interpolating polynomial for $x \in [0, \pi/2]$ in the same figure.
 - (b) (15 points) Repeat the interpolation, although use 5 Chebyshev points over the interval $[0, \pi]$ this time. Plot f(x) at the Chebyshev points as well as the interpolant for $x \in [0, \pi]$. What are your conclusions?

Hints:

• Recall the definition of Chebyshev points! Also there exists a transformation, mapping $x \in [-1, 1]$ onto $\widetilde{x} \in [a, b]$ according to

$$\widetilde{x} = \frac{a+b}{2} + \frac{b-a}{2}x.$$

- Use the m-files divdif.m and evalnewt.m to construct the interpolant.
- 4. (20 points) Find the **linear** least squares approximation to $f(x) = e^x$ on [-1, 1].

Date: February 12, 2020

Mathematics Department, California Polytechnic State University, San Luis Obispo, CA 93407-0403, USA

 $\label{lemail:eq:email$

Copyright © 2020 by Efstathios Charalampidis. All rights reserved.