Colle 25 Séries numériques

- ► Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mardi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Exercice 25.1

1. Déterminer $a, b \in \mathbb{R}$ tels que la série

$$\sum_{n\geqslant 1} \Bigl(\ln(n) + a \ln(n+1) + b \ln(n+2) \Bigr)$$

converge.

2. Calculer dans ce cas sa somme.

Exercice 25.3

Justifier l'existence et calculer

$$\lim_{a\to+\infty}\sum_{n=1}^{+\infty}\frac{a}{a^2+n^2}.$$

Exercice 25.4

Montrer que

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \underset{\alpha \to 1^{+}}{\sim} \frac{1}{\alpha - 1}.$$

Exercice 25.2

Soit $(a_n)_n$ une suite de réels positifs. On considère les assertions suivantes :

- (i) $\sum_{n=1}^{\infty} a_n$ converge; (ii) $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ converge.
- **1.** A-t-on (i) \Longrightarrow (ii)?
- **2.** A-t-on (ii) \Longrightarrow (i)?

Exercice 25.5

Déterminer un équivalent de $\sum_{i=1}^{n} \frac{1}{\sqrt{k}}$.

Exercice 25.6

Pour $n \in \mathbb{N}^*$, on pose $H_n := \sum_{k=1}^n \frac{1}{k}$. Montrer que

$$H_n = \ln(n) + \gamma + \mathcal{O}\left(\frac{1}{n}\right).$$

Exercice 25.7

Soit $p \in \mathbb{N}^*$.

Montrer que $\sum_{n=1}^{\infty} \frac{1}{(pn)!}$ converge et calculer sa somme.

Exercice 25.8

On admet que
$$\sum_{n\geqslant 1}\frac{1}{n^2}$$
 converge et que $\sum_{n\geqslant 1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$.

Montrer que la série $\sum_{n\geqslant 1}\frac{1}{n^2(n+1)^2}$ converge et calculer sa somme.

Exercice 25.9

Soit $\alpha \in \mathbb{R}$. Soit $f : [0,1] \longrightarrow \mathbb{R}$ continue, telle que $f(0) \neq 0$.

- $\textbf{1.} \ \ \mathsf{Montrer} \ \mathsf{que} \ \int_0^{\frac{1}{n}} f(t^n) \, \mathsf{d} t \sim \frac{f(0)}{n}.$
- **2.** En déduire la nature de la série $\sum_{n>1} \frac{1}{n^{\alpha}} \int_0^{\frac{1}{n}} f(t^n) dt.$

Exercice 25.10 Suite décroissante sommable.

Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+)^{\mathbb{N}}$ une suite décroissante.

- **1.** On suppose que $\sum u_n$ converge.
 - (a) Montrer que

$$\forall n \in \mathbb{N}^*, \quad nu_n \leqslant 2 \sum_{k=\lfloor n/2 \rfloor+1}^n u_k.$$

(b) En déduire que

$$u_n = \mathcal{O}\left(\frac{1}{n}\right)$$

2. On pose, pour $n \in \mathbb{N}$, $v_n \coloneqq \frac{1}{1+n^2u_n}$. Montrer que

$$\sum v_n$$
 converge $\implies \sum u_n$ diverge.