

SE - A - 14

Software Engineering

Students: Shay Hahiashvili | Maxim Subotin

Advisor: Ms. Alona Kutsyy

Anomaly Based Detection

We developed two SVM models designed to classify network cyberattacks in real time. The first model targets the detection of Port Scanning and DoS attacks, while the second identifies DNS Tunneling. In our approach we applied a unique traffic segmentation method and robust feature selection, along with K-Fold cross-validation to ensure model reliability and generalization. This enabled both models to achieve real-time detection capabilities with a remarkable 100% accuracy.

Signature Based Detection

We developed a unique algorithm capable of detecting ARP Spoofing attacks in real time across multiple subnets. The algorithm incorporates an authentication mechanism for each IP-MAC address pair within every subnet, enabling accurate identification of both IP-to-MAC and MAC-to-IP anomalies. Furthermore, it intelligently adapts to legitimate network changes, such as DHCP lease renewals for dynamic IP addresses. As a result, our algorithm delivers real-time detection with high accuracy and is resistant to false positives.

NetSpect

Hybrid Intrusion Detection System

Collection Methods

- Collected network traffic from home networks and the SCE campus.
- Simulated DNS traffic using custom scripts.
- Generated attack datasets from small samples via feature correlation and randomization.
- Applied Round-Robin segmentation to organize packets into flows.
- Flows: (src_ip, src_mac, dst_ip, dst_mac, protocol)

Main Features

Real Time Detection, Data Collection, Download Reports, Filter Previous Alerts by Year, Visual Analytics, Tray Icon Notifications, Light/Dark Modes, Integrated Logger, etc.

Datasets

Software Engineering

Students: Shay Hahiashvili | Maxim Subotin

Advisor: Ms. Alona Kutsyy

Port Scan & DoS Results

Train Accu	racy: 1.0	99999					
Validation	Accuracy	: 1.0000	30				
Test Accura	acy: 1.00	9999					
Confusion (Matrix:						
[[38004	0 6						
[0 9		91					
Metrics for	r each cl	lass:					
Class 0 ->	TP: 3806	94. FP: (a. FN: 0.	. TN: 20954			
Class 1 ->							
Class 2 -> TP: 11929, FP: 0, FN: 0, TN: 47029							
Classificat	tion Repo	ort:					
	preci	ision	recall	f1-score	support		
		1.00	1.00	1.00	38004		
		1.00	1.00	1.00	9025		
		1.00	1.00	1.00	11929		
accura	cv			1.00	58958		
	ve.	1.00	1.00	1.00	58958		

Port Sca	Port Scanning - DoS SVM Model K-Fold Cross Validation :						
Fold	Train Accuracy	Validation Accuracy	Precision	Recall	F1-Score	Samples	
1	1.0000	1.0000	1.00	1.00	1.00	25,436	
2	1.0000	1.0000	1.00	1.00	1.00	25,436	
3	1.0000	1.0000	1.00	1.00	1.00	25,436	
4	1.0000	1.0000	1.00	1.00	1.00	25,436	
5	1.0000	1.0000	1.00	1.00	1.00	25,436	
6	1.0000	1.0000	1.00	1.00	1.00	25,436	
7	1.0000	1.0000	1.00	1.00	1.00	25,435	
8	1.0000	1.0000	1.00	1.00	1.00	25,435	
9	1.0000	1.0000	1.00	1.00	1.00	25,435	
10	1.0000	1.0000	1.00	1.00	1.00	25,435	

DNS Tunneling Results Linear SVM: Feature Importance (Icoefl) Flow Duration MX Record Cour TXT Record Coun Min Sub Domain Name Length CName Record Coun Total Number of Packets DF Flag Count Min Domain Name Length AAAA Record Count Row Counts for Each Label Type (Benign: 260746, Others: 100000) Max Packet Length Number of Sub Domian Name: Total Length of Fwd Packet Total Length of Bwd Packet Average Packet Length Average Sub Domain Name Length Average Response Data Length A Record Count IAT Mean Min Packet Lengtl Max Response Data Lengti Max Domain Name Length Label Type Min Response Data Length Average Domain Name Length 0.4 Absolute Coefficient Value

Validation Accuracy: Test Accuracy: 1	acy: 1.00	000			_
Confusion Matrix					ַ
[[39246 0]					Ш
[0 14866]]					ΙT
					Ιħ
Metrics for each	class:				ΙH
Class 0 -> TP:	9246, FP:	0, FN: 0	, TN: 14866		I⊢
Class 1 -> TP: 1	4866, FP:		, TN: 39246		ᄔ
					۱L
Classification F					Ш
pr	ecision	recall	f1-score	support	۱ħ
					۱H
Ø	1.00	1.00		39246	l ⊩
1	1.00	1.00	1.00	14866	١L
					ΙГ
accuracy			1.00	54112	-
macro avg	1.00	1.00	1.00	54112	ĺ

DNS SVM Model K-Fold Cross Validation :						
Fold	Train Accuracy	Validation Accuracy	Precision	Recall	F1-Score	Samples
1	1.0000	1.0000	1.00	1.00	1.00	25,253
2	1.0000	1.0000	1.00	1.00	1.00	25,253
3	1.0000	1.0000	1.00	1.00	1.00	25,252
4	1.0000	1.0000	1.00	1.00	1.00	25,252
5	1.0000	1.0000	1.00	1.00	1.00	25,252
6	1.0000	1.0000	1.00	1.00	1.00	25,252
7	1.0000	1.0000	1.00	1.00	1.00	25,252
8	1.0000	1.0000	1.00	1.00	1.00	25,252
9	1.0000	1.0000	1.00	1.00	1.00	25,252
10	1.0000	1.0000	1.00	1.00	1.00	25,252

Conclusions

In conclusion, our project successfully delivered a real-time IDS capable of accurately identifying four critical types of network cyber attacks: Port Scanning, DoS, ARP Spoofing, and DNS Tunneling through an optimized, multi-threaded solution integrating detection algorithms and machine learning models. By addressing the limitations of existing datasets through manual data collection, the system achieves high accuracy with minimal false positives, offering a reliable and user-friendly solution for modern network security challenges.