Question	A = =====		Moule
Number	Answer		Mark
17(a)	The hammer head is not in free fall Or Person is exerting a force on the hammer	(1)	
	Work is done on the hammer head by the person	(1)	
	So additional energy is transferred to kinetic energy (MP3 dependent on MP1 or MP2)	(1)	3
17(b)	Use of $\Delta W = F \Delta s$	(1)	
	Use of ε = (useful energy output) / (total energy input)	(1)	
	Use of $\Delta E_{\text{grav}} = m g \Delta h$		
	Use of $E_k = \frac{1}{2} m v^2$ and valid <i>suvat</i> method	(1)	
	$\Delta h = 1.9 \text{ m}$ $\mathbf{Or} F_{\text{req}} = 83 \text{ N}$		
	Or $E_{\text{req}} = 4.0 \text{ J}$ and $E_{\text{out}} = 2.8 \text{ J}$	(1)	
	Conclusion consistent with student's calculation	(1)	5
	e.g. The cylinder won't hit the bell because 1.9 m < 2.7 m Or		
	Force needed to hit bell = $83 \text{ N} > 53 \text{ N}$ so cylinder won't hit the bell Or		
	Useful output = 2.8 J but energy needed to hit bell is 4.0 J so cylinder won't hit the bell		
	Example of calculation energy of hammer head = $\Delta W = 58 \text{ N} \times 1.2 \text{ m} = 69.6 \text{ J}$		
	useful energy output = $0.04 \times 69.6 \text{ J} = 2.78 \text{ J}$ g.p.e. gained = $2.78 \text{ J} = 0.15 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times \Delta h$ $\Delta h = 2.78 \text{ J} \div 1.47 \text{ N} = 1.89 \text{ m}$ $1.9 < 2.7 \therefore$ no		
17(c)	$(E_k = \frac{1}{2}mv^2 \text{ so})$ kinetic energy is proportional to square of velocity $\mathbf{Or} (E_k = \frac{1}{2}mv^2 \text{ so})$ kinetic energy multiplies by four (if v doubles)	(1)	
	So cylinder could move through four times the distance	(1)	2
	Total for question 17		10