11-785: Deep Learning

HW #1: Backpropagation & Shape Learning

Nikolas Wolfe

September 29, 2015

Single-Layer Neural Network

Implement a single-hidden-layer multi-layer Perceptron with different hidden nodes (less than 8) to classify the example shapes including a circle, a diamond and a random shape (RShape).

Report the best accuracy you can get with the constrained networks.

Answer: Below are two graphs showing the sum of squared errors and overall accuracy on the testing set with different numbers of neurons in a single hidden layer.

Fig 1: Sum of Squared Errors With Single Hidden Layer

Fig 2: Accuracy With Single Hidden Layer

Circle Shape

Visualization of Truth Values for Testing Set

Visualization of Network Output with 6 Neurons

Diamond Shape

 ${\it Visualization~of~Truth~Values~for~Testing~Set}$

Visualization of Network Output with 5 Neurons

Random Shape

Visualization of Truth Values for Testing Set

 $Visualization\ of\ Network\ Output\ with\ 5\ Neurons$

Disconnected Random Shape

 $Visualization\ of\ Truth\ Values\ for\ Testing\ Set$

 $Visualization\ of\ Network\ Output\ with\ 5\ Neurons$

Multi-Layer Perceptron

Implement a multi-layer Perceptron to classify the random shape (RShape) and disconnected random shape (DRShape). Explore the network structure (depth and width) to achieve best testing accuracy you can get. Report the testing accuracy.

Answer: Below are two graphs showing the sum of squared errors and overall accuracy on the testing set with different numbers of neurons in two hidden layers.

Fig 1: Sum of Squared Errors With Two Hidden Layers

0.9 0.8 ACCURACY ON TEST DATA 8.0 0.0 9.0 4 9.0 3 0.2 0.1 NODES IN 2 HIDDEN LAYERS

Fig 2: Accuracy With Two Hidden Layers

Circle Shape

Visualization of Truth Values for Testing Set

 $Visualization\ of\ Network\ Output\ with\ Two\ 8-Neuron\ Layers$

Diamond Shape

 ${\it Visualization~of~Truth~Values~for~Testing~Set}$

Visualization of Network Output with Two 16-Neuron Layers

Random Shape

 $Visualization\ of\ Truth\ Values\ for\ Testing\ Set$

Visualization of Network Output with Two 16-Neuron Layers

Disconnected Random Shape

Visualization of Truth Values for Testing Set

 $Visualization\ of\ Network\ Output\ with\ Two\ 32\text{-}Neuron\ Layers$

 $Visualization\ of\ Network\ Output\ with\ Two\ 64-Neuron\ Layers$

 ${\it Visualization~of~Network~Output~with~Two~128~and~64~Neuron~Layers}$

Visualization of Network Output with Two 256-Neuron Layers

