Bazy danych 2024

20 lutego 2024

BD 2024 20 lutego 2024

Plan

- Po co nam bazy danych? Do czego? Jakie?
- Rodzaje baz danych
- Model relacyjny
- Relacja
- WięzyKlucze
 - lozulci dla madalu ralagginagg
 - Algebra relacji
 - Przykłady
 - Wnioski i uwagi:

• Pozwalają na abstrakcję (nieważne co w środku!) - logiczną/fizyczną,

- Pozwalają na abstrakcję (nieważne co w środku!) logiczną/fizyczną,
- Uwalniają twórcę systemu od implementowania warstwy danych w każdym projekcie,

BD 2024 20 lutego 2024

- Pozwalają na abstrakcję (nieważne co w środku!) logiczną/fizyczną,
- Uwalniają twórcę systemu od implementowania warstwy danych w każdym projekcie,
- Zapewniają integralność danych (ACID)

- Pozwalają na abstrakcję (nieważne co w środku!) logiczną/fizyczną,
- Uwalniają twórcę systemu od implementowania warstwy danych w każdym projekcie,
- Zapewniają integralność danych (ACID) atomowość (Atomicity), poprawność (Consistency), niezależność (Isolation), trwałość (Durability).

- Pozwalają na abstrakcję (nieważne co w środku!) logiczną/fizyczną,
- Uwalniają twórcę systemu od implementowania warstwy danych w każdym projekcie,
- Zapewniają integralność danych (ACID) atomowość (Atomicity), poprawność (Consistency), niezależność (Isolation), trwałość (Durability).
- Zapewniają security (kontrolę dostępu),

- Pozwalają na abstrakcję (nieważne co w środku!) logiczną/fizyczną,
- Uwalniają twórcę systemu od implementowania warstwy danych w każdym projekcie,
- Zapewniają integralność danych (ACID) atomowość (Atomicity), poprawność (Consistency), niezależność (Isolation), trwałość (Durability).
- Zapewniają security (kontrolę dostępu),
- Pozwalają na optymalizacje.

- Pozwalają na abstrakcję (nieważne co w środku!) logiczną/fizyczną,
- Uwalniają twórcę systemu od implementowania warstwy danych w każdym projekcie,
- Zapewniają integralność danych (ACID) atomowość (Atomicity), poprawność (Consistency), niezależność (Isolation), trwałość (Durability).
- Zapewniają security (kontrolę dostępu),
- Pozwalają na optymalizacje.

- Pozwalają na abstrakcję (nieważne co w środku!) logiczną/fizyczną,
- Uwalniają twórcę systemu od implementowania warstwy danych w każdym projekcie,
- Zapewniają integralność danych (ACID) atomowość (Atomicity), poprawność (Consistency), niezależność (Isolation), trwałość (Durability).
- Zapewniają security (kontrolę dostępu),
- Pozwalają na optymalizacje.

- OLTP (duża liczba małych transakcji, scale-independence),
- OLAP (analiza danych, zapytania przetwarzają duże dane, ML-in-database).

 pozwala na serializację i deserializację obiektów do bazy danych z poziomu języka programowania,

 pozwala na serializację i deserializację obiektów do bazy danych z poziomu języka programowania, magia!

- pozwala na serializację i deserializację obiektów do bazy danych z poziomu języka programowania, magia!
- wprowadza warstwę abstrakcji nie musisz martwić się pisaniem SQL tworzysz obiekty i już,

- pozwala na serializację i deserializację obiektów do bazy danych z poziomu języka programowania, magia!
- wprowadza warstwę abstrakcji nie musisz martwić się pisaniem SQL tworzysz obiekty i już,
- konwertuje niezgodne typy,

- pozwala na serializację i deserializację obiektów do bazy danych z poziomu języka programowania, magia!
- wprowadza warstwę abstrakcji nie musisz martwić się pisaniem SQL tworzysz obiekty i już,
- konwertuje niezgodne typy,
- zmniejsza ilość kodu, łatwiej go utrzymywać (separation of concerns)

- pozwala na serializację i deserializację obiektów do bazy danych z poziomu języka programowania, magia!
- wprowadza warstwę abstrakcji nie musisz martwić się pisaniem SQL tworzysz obiekty i już,
- konwertuje niezgodne typy,
- zmniejsza ilość kodu, łatwiej go utrzymywać (separation of concerns)
- database-agnostic możesz podmienić bazę na inną (a sam ORM możesz???),

 Rewelacyjny w typowych przypadkach - Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler

BD 2024 20 lutego 2024

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.

BD 2024 20 lutego 2024 4/49

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.
 - może być wolniejsze,

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.
 - może być wolniejsze,
 - każdy ORM jest inny,

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.
 - może być wolniejsze,
 - każdy ORM jest inny,
 - może nie obsługiwać tego co potrzebujesz (np. dane przestrzenne),

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.
 - może być wolniejsze,
 - każdy ORM jest inny,
 - może nie obsługiwać tego co potrzebujesz (np. dane przestrzenne),
 - trudniej debugować,

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.
 - może być wolniejsze,
 - każdy ORM jest inny,
 - może nie obsługiwać tego co potrzebujesz (np. dane przestrzenne),
 - trudniej debugować,
 - złe pokusy (historyjka o współbieżności).

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.
 - może być wolniejsze,
 - każdy ORM jest inny,
 - może nie obsługiwać tego co potrzebujesz (np. dane przestrzenne),
 - trudniej debugować,
 - złe pokusy (historyjka o współbieżności).

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.
 - może być wolniejsze,
 - każdy ORM jest inny,
 - może nie obsługiwać tego co potrzebujesz (np. dane przestrzenne),
 - trudniej debugować,
 - złe pokusy (historyjka o współbieżności).

```
employee = query_all();
for (emp in employee) {
    remuneration = query_rem(emp);
    // ...
```

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.
 - może być wolniejsze.
 - każdy ORM jest inny,
 - może nie obsługiwać tego co potrzebujesz (np. dane przestrzenne),
 - trudniei debugować.
 - złe pokusy (historyjka o współbieżności).

```
employee = query_all();
for (emp in employee) {
    remuneration = query_rem(emp);
   // ...
```

```
SELECT * FROM employee WHERE ...
SELECT * FROM rem WHERE empID = 1
SELECT * FROM rem WHERE empID = 2
SELECT * FROM rem WHERE empID = 3
SELECT * FROM rem WHERE empID = 4
. . .
```

4/49

20 lutego 2024

- Rewelacyjny w typowych przypadkach Essentially the ORM can handle about 80-90% of the mapping problems, but that last chunk always needs careful work by somebody who really understands how a relational database works. M.Fowler
- Problematyczny gdy aplikacja jest wymaga tuningu wydajnościowego albo zapytania są skomplikowane.
 - może być wolniejsze,
 - każdy ORM jest inny,
 - może nie obsługiwać tego co potrzebujesz (np. dane przestrzenne),
 - trudniej debugować,
 - złe pokusy (historyjka o współbieżności).

```
employee = query_all();
for (emp in employee) {
    remuneration = query_rem(emp);
    // ...
```

```
SELECT * FROM employee WHERE . . .
SELECT * FROM rem WHERE empID = 1
SELECT * FROM rem WHERE empID = 2
SELECT * FROM rem WHERE empID = 3
SELECT * FROM rem WHERE empID = 4
```

4/49

Linki dla zainteresowanych: n+1 select

ORM Hate

BD 2024 20 lutego 2024

• relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite),

• relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),
- dokumentowe (np. MongoDB),

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),
- dokumentowe (np. MongoDB),
- grafowe (np. Neo4j),

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),
- dokumentowe (np. MongoDB),
- grafowe (np. Neo4j),
- wyszukiwarki (full-text search, np. Elasticsearch, Splunk, SOLR),

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),
- dokumentowe (np. MongoDB),
- grafowe (np. Neo4j),
- wyszukiwarki (full-text search, np. Elasticsearch, Splunk, SOLR),
- szerokokolumnowe? (wide-column stores, np. Cassandra),

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),
- dokumentowe (np. MongoDB),
- grafowe (np. Neo4j),
- wyszukiwarki (full-text search, np. Elasticsearch, Splunk, SOLR),
- szerokokolumnowe? (wide-column stores, np. Cassandra),
- przestrzenne (spatial, np. PostGIS),

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),
- dokumentowe (np. MongoDB),
- grafowe (np. Neo4j),
- wyszukiwarki (full-text search, np. Elasticsearch, Splunk, SOLR),
- szerokokolumnowe? (wide-column stores, np. Cassandra),
- przestrzenne (spatial, np. PostGIS),
- wektorowe (np. Kdb, Pinecone)

Typy baz danych: SQL/NoSQL

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),
- dokumentowe (np. MongoDB),
- grafowe (np. Neo4j),
- wyszukiwarki (full-text search, np. Elasticsearch, Splunk, SOLR),
- szerokokolumnowe? (wide-column stores, np. Cassandra),
- przestrzenne (spatial, np. PostGIS),
- wektorowe (np. Kdb, Pinecone)
- szeregi czasowe (np. Influx)

Typy baz danych: SQL/NoSQL

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),
- dokumentowe (np. MongoDB),
- grafowe (np. Neo4j),
- wyszukiwarki (full-text search, np. Elasticsearch, Splunk, SOLR),
- szerokokolumnowe? (wide-column stores, np. Cassandra),
- przestrzenne (spatial, np. PostGIS),
- wektorowe (np. Kdb, Pinecone)
- szeregi czasowe (np. Influx)

Typy baz danych: SQL/NoSQL

- relacyjne (np. Oracle, MySQL, SQL Server, PostgreSQL, SQLite), multi-model
- klucz-wartość (np. Redis),
- dokumentowe (np. MongoDB),
- grafowe (np. Neo4j),
- wyszukiwarki (full-text search, np. Elasticsearch, Splunk, SOLR),
- szerokokolumnowe? (wide-column stores, np. Cassandra),
- przestrzenne (spatial, np. PostGIS),
- wektorowe (np. Kdb, Pinecone)
- szeregi czasowe (np. Influx)

(...) we are gearing up for a shift to **polyglot persistence** where any decent sized enterprise will have a variety of different data storage technologies for different kinds of data. There will still be large amounts of it managed in relational stores, but increasingly we'll be first asking how we want to manipulate the data and only then figuring out what technology is the best bet for it. Martin Fowler

Popularność: https://db-engines.com/en/ranking

Feb 2024	Jan 2024	Feb 2023	DBMS	Database Model	Feb 2024	Jan 2024	Feb 2023
1.	1.	1.	Oracle 😷	Relational, Multi-model 🔞	1241.45	-6.05	-6.08
2.	2.	2.	MySQL 🚻	Relational, Multi-model 🔞	1106.67	-16.79	-88.78
3.	3.	3.	Microsoft SQL Server 🖽	Relational, Multi-model 👔	853.57	-23.03	-75.52
4.	4.	4.	PostgreSQL 😷	Relational, Multi-model 🔞	629.41	-19.55	+12.90
5.	5.	5.	MongoDB 😷	Document, Multi-model 🔃	420.36	+2.88	-32.41
6.	6.	6.	Redis 😛	Key-value, Multi-model 👔	160.71	+1.33	-13.12
7.	7.	1 8.	Elasticsearch	Search engine, Multi-model 🚺	135.74	-0.33	-2.86
8.	8.	4 7.	IBM Db2	Relational, Multi-model 🔞	132.23	-0.18	-10.74
9.	9.	1 2.	Snowflake 😷	Relational	127.45	+1.53	+11.80
10.	1 11.	4 9.	SQLite	Relational	117.28	+2.08	-15.38
11.	↓ 10.	4 10.	Microsoft Access	Relational	113.17	-4.50	-17.86
12.	12.	4 11.	Cassandra 😛	Wide column, Multi-model 🔞	109.27	-1.77	-6.95
13.	13.	13.	MariaDB 🖽	Relational, Multi-model 🔃	97.23	-2.00	+0.42
14.	14.	14.	Splunk	Search engine	91.65	-1.07	+4.57
15.	1 6.	15.	Amazon DynamoDB 😷	Multi-model 🔞	82.90	+1.96	+3.21
16.	4 15.	16.	Microsoft Azure SQL Database	Relational, Multi-model 👔	79.56	-1.51	+0.81
17.	17.	1 9.	Databricks 😷	Multi-model 🔞	76.91	-3.62	+16.58
18.	18.	4 17.	Hive	Relational	65.81	-1.15	-6.31
19.	19.	1 22.	Google BigQuery 😷	Relational	63.63	+0.15	+11.17
20.	20.	4 18.	Teradata	Relational, Multi-model 🔞	51.24	-1.94	-11.79
21.	21.	21.	FileMaker	Relational	50.48	-1.56	-2.32
22.	22.	4 20.	Neo4j 🜐	Graph	46.61	-1.57	-8.82
23.	23.	23.	SAP HANA 🖽	Relational, Multi-model 🔞	45.22	-1.22	-4.45

BD 2024 20 lutego 2024

Trendy: https://db-engines.com/en/ranking_trend

Plan

- Rodzaje baz danych

- - Klucze
- - Algebra relacji
 - Przykłady
 - Wnioski i uwagi:

Relacyjne bazy danych

"n.id"	"n.screen_name"	"n.followers_count"	"n.friends_count"	"n.location"
2531159968	"traceyhappymom"	3696	3353	"Washington, DC"
100345056	"SCOTTGOHARD"	1053	1055	"still #Block%Corner#street"
247165706	"Beckster319"	650	896	"Chicago, IL"
249538861	"skatewake1994"	44	154	
449689677	"KadirovRussia"	94773	7	
471868887	"MargoSavazh"	23305	8021	"Санкт-Петербург, Россия"
1039581360	"darknally"	22	40	"Amerika"
1510488662	"lagonehoe"	3080	2369	"USA"
1513801268	"YouJustCtrlC"	2760	2700	"USA"
1517678892	"MrMoraan"	879	758	"Philadelphia, PA"
1518857420	"NoJonathonNo"	789	440	"USA"

"n.id"	"n.screen	name"	"n.followers_count"		"n.friends_count"		"n.location"		
2531159968	-traceyhap	pymom"	3696		3353		"Washington, DC"		
100345056	"SCOTTGOHARD"		1053		1055		still #Blo	ck∍Corner∣street'	
247165706	"Beckster%10"		65A		808		=Chicano T	1.5	
249538861	"skatewak	"n.twe	et_id"	"n.user_	key"	"n.create	d_str"	"text"	
449689677	"KadirovF	836227	891897651201	"kathiem	rr"	"2017-02-	27 14:54:00"	"ThingsDoneByMist	
471868887	"MargoSav	765198948239810561		"traceyhappymom"		"2016-08-15 14:50:20"		"T @mc_derpin: #T	
1039581360	"darknall	616002	306572746752	"evewebster373"		"2015-06-	30 21:56:09"	"T @dmataconis: F	
1510488662		776693	302926147584	"blackto	live"	"2016-09-1	16 08:04:48"	"men! #blacklives"	
1513801268		777594	547875059712	"jacquel	inisbest"	"2016-09-	18 19:46:25"	"T @NahBabyNah: T	
		718040061649031168		"judelambertusa"		"2016-04-07 11:37:45"		"T @mcicerol0: #B	
1517678892	"MrMoraar	785586729579196416		"carriethornthon"		"2016-10-	10 21:04:06"	"T @ItsJustJaynie	
1518857420	"NoJonath	664592113775022084		"johnbranchh"		"2015-11-	11 23:54:42"	"TodayCleveland '	
		782468	561389840384	"march_f	or_trump*	"2016-10-	02 02:35:35"	"NickTomaWBRE Hi,	
		811580	868573691904	"puredav	ie"	"2016-12-	21 14:35:32"	"hat. Is. A. Resc	
		800655	998335774720	"daileyj	adon"	"2016-11-	21 11:04:00"	"ifetime movie	
		822266	545728585728	"evagree	n69"	"2017-01-	20 02:16:36"	"T @Conservatexia	
		795661	161282891776	"cassiew	eltch"	"2016-11-	07 16:16:18"	"T @HillaryClinto	
		777859822679158784		"_nickluna_"		"2016-09-	19 13:20:08"	"T @leonpui_: Hil	

_										
"n.id"		"n.screen_	name"	"n.follower	rs_count"	"n.friends_count"		"n.location"		
2531159968 "traceyhapp		pymom"	3696		3353		"Washington, DC"			
100345056 SC0		*SCOTTGOHA	SCOTTGOHARD"		1053		1055		"still #Block%Corner#street	
247	247165706 "Beckster		10"	0" 658		apa		"Chicago T	1.0	
249538861 "ski		skatewak	"n.twee	t_id"	"n.user_	key"	"n.created_str"		"text"	
449689677		"KadirovF	8362278	91897651201	"kathiemrr"		"2017-02-27 14:54:00" "2016-08-15 14:50:20"			
47		_	765100040239810561							
-	"n.name"		"count	72746752			"2015-06-30 21:56:09" "2016-09-16 08:04:48"		"T @dmataconis: F	
10	"Trump "		8029	26147584					"men! #blacklives"	
15	"CNN "			75059712	, , ,		"2016-09-18 19:46:25"		"T @NahBabyNah: T-	
15	"GOP "			49831168			2816-84-	7 11:37:45"	5" "T @mcicerol0: #B-	
15	"FBI "		762	i — —	"carriethornthon"				"T @ItsJustJaynie-	
15	"TRUMP "		675	1						
	"Clinton	-	672	75022084	"johnbra	nchh"	"2015-11-	11 23:54:42"	"TodayCleveland '_	
	"ISIS "		541	89840384	"march_f	or_trump*	"2016-10-0	92 02:35:35"	"NickTomaWBRE Hi,	
	"MAGA "		479	73691904	"puredav	ie"	"2016-12-	21 14:35:32"	"hat. Is. A. Resc	
	"YouTube		411	35774720	"daileyj	adon"	"2016-11-	21 11:04:00"	"ifetime movie	
	"Twitter	-	403	28585728	"evagree	n69"	"2017-01-	20 02:16:36"	"T @Conservatexia	
"wikilea		ks " 377		82891776	"cassiew	eltch"	"2016-11-0	97 16:16:18"	"T @HillaryClinto	
	"Obana "		352	79158784	"_nicklu	na_"	"2016-09-	19 13:20:08"	"T @leonpui_: Hil	
	"HRC "		340	7						
	"America	-	335	7						
	"Wikilea	ks "	321							

"n.	n.id" "n.scree		me" "n.followers_count"			"n.friends_count"		"n.location"		
25311599(8 "traceyhapp		рутот" 3696			3353		"Washington, DC"			
100345056 SCOTTGO		ARD" 11853			1055		"still #Block%Corner#street"			
247165786 Becks		"Beckster	210" 1			208		"Chicago II"		
249538861 *ska		skatewak	"n.tweet_	io "n.user_l		key" "n.created		d_str"	"text"	
449689677		"KadirovF	836227891	1897651111	"kathierr"		"2017-02-27 14:54:00"		"ThingsDoneByMist	
47		<u> </u>	765100040	239810501	3105c1 "traceyha		"2016-08-	15 14:50:20"	"T @mc_derpin: #T	
-	"n.name"	n.name"		72746752 "evewebs		ter373"	"2015-06-30 21:56:09"		"T @dmataconis: F"	
10	"Trump "		8029	26147584	"blackto	live"	2016-09-16 08:04:48"		"men! #blacklives	
15	"CNN "		1263	75059712 "jacquel		inisbest"	2016-09-	18 19:46:25"	"T @NahBabyNah: T-	
15 "GOP "			914	49831168	"iudelambertusa"		"2016-04-07 11:37:45"		"T @mcicerol0: #F	
15	"FBI "		762		_				"T @ItsJustJaynie-	
15	"TRUMP "		675							
	"Clinton		672	75022084	"johnbra	nchh"	"2015-11-	11 23:54:42"	"TodayCleveland '	
	"ISIS "		541	89840384	"march_f	or_trump"	"2016-10-	02 02:35:35"	"NickTomaWBRE Hi,	
	"MAGA "		479	73691904	"puredav	ie"	"2016-12-	21 14:35:32"	"hat. Is. A. Resc	
	"YouTube	, -	411	35774720	"daileyj	adon"	"2016-11-	21 11:04:00"	"ifetime movie	
	"Twitter		403	28585728	28 "evagreen69"		"2017-01-20 02:16:36"		"T @Conservatexia	
	"wikilea	ıks "	377	82891776	"cassieweltch"		"2016-11-07 16:16:18"		"T @HillaryClinto	
	"Obana "		352	79158784	"_nicklu	na_"	"2016-09-	19 13:20:08"	"T @leonpui_: Hil	
	"HRC "		340							
	"America	-	335							
	"Wikilea	ıks "	321	1						

W jakich godzinach tweetują osoby z Washington, DC?

LDBC Benchmark

o prosty model, łatwy w użyciu,

- prosty model, łatwy w użyciu,
- dane tabelaryczne, nacisk na wartości danych (a nie np. topologię połączeń)

- prosty model, łatwy w użyciu,
- dane tabelaryczne, nacisk na wartości danych (a nie np. topologię połączeń)
- analiza danych, przegrupowania i agregacje,

- prosty model, łatwy w użyciu,
- dane tabelaryczne, nacisk na wartości danych (a nie np. topologię połączeń)
- analiza danych, przegrupowania i agregacje,
- normalizacja logiczna organizacja danych, brak redundacji i anomalii,

- prosty model, łatwy w użyciu,
- dane tabelaryczne, nacisk na wartości danych (a nie np. topologię połączeń)
- analiza danych, przegrupowania i agregacje,
- normalizacja logiczna organizacja danych, brak redundacji i anomalii,
- nie zawsze z góry wiadomo jaka powinna być struktura bazy, jakie dane dokładnie? takie same dla każdego obiektu?

- prosty model, łatwy w użyciu,
- dane tabelaryczne, nacisk na wartości danych (a nie np. topologię połączeń)
- analiza danych, przegrupowania i agregacje,
- normalizacja logiczna organizacja danych, brak redundacji i anomalii,
- nie zawsze z góry wiadomo jaka powinna być struktura bazy, jakie dane dokładnie? takie same dla każdego obiektu?
- normalizacja → wiele tabel, rozdrobnienie, dużo złączeń,

- prosty model, łatwy w użyciu,
- dane tabelaryczne, nacisk na wartości danych (a nie np. topologię połączeń)
- analiza danych, przegrupowania i agregacje,
- normalizacja logiczna organizacja danych, brak redundacji i anomalii,
- nie zawsze z góry wiadomo jaka powinna być struktura bazy, jakie dane dokładnie? takie same dla każdego obiektu?
- normalizacja → wiele tabel, rozdrobnienie, dużo złączeń,
- podejście zwinne częste zmiany schematu?

- prosty model, łatwy w użyciu,
- dane tabelaryczne, nacisk na wartości danych (a nie np. topologię połączeń)
- analiza danych, przegrupowania i agregacje,
- normalizacja logiczna organizacja danych, brak redundacji i anomalii,
- nie zawsze z góry wiadomo jaka powinna być struktura bazy, jakie dane dokładnie? takie same dla każdego obiektu?
- normalizacja → wiele tabel, rozdrobnienie, dużo złączeń,
- podejście zwinne częste zmiany schematu?
- migracje schematu gdy masz duże dane kosztowne,

- prosty model, łatwy w użyciu,
- dane tabelaryczne, nacisk na wartości danych (a nie np. topologię połączeń)
- analiza danych, przegrupowania i agregacje,
- normalizacja logiczna organizacja danych, brak redundacji i anomalii,
- nie zawsze z góry wiadomo jaka powinna być struktura bazy, jakie dane dokładnie? takie same dla każdego obiektu?
- normalizacja → wiele tabel, rozdrobnienie, dużo złączeń,
- podejście zwinne częste zmiany schematu?
- migracje schematu gdy masz duże dane kosztowne,
- skalowanie poziome (scale-up vs. scale-out), rozpraszanie, chmury, spójność & dostępność.

• brak schematu / elastyczny schemat,

- brak schematu / elastyczny schemat,
- brak normalizacji → redundancja, anomalie,

- brak schematu / elastyczny schemat,
- brak normalizacji → redundancja, anomalie,
- duża wydajność/skalowalność kosztem organizacji danych wg pojedynczego klucza (ale są indeksy),

BD 2024 20 lutego 2024

- brak schematu / elastyczny schemat,
- brak normalizacji → redundancja, anomalie,
- duża wydajność/skalowalność kosztem organizacji danych wg pojedynczego klucza (ale są indeksy),
- brak łatwej możliwości modelowania związków pomiędzy danymi (dodawanie id jednego dokumentu jako wartość w drugim...),

BD 2024 20 lutego 2024

- brak schematu / elastyczny schemat,
- brak normalizacji → redundancja, anomalie,
- duża wydajność/skalowalność kosztem organizacji danych wg pojedynczego klucza (ale są indeksy),
- brak łatwej możliwości modelowania związków pomiędzy danymi (dodawanie id jednego dokumentu jako wartość w drugim...),
- przegrupowanie danych, joiny → obliczenia po stronie aplikacji,

- brak schematu / elastyczny schemat,
- brak normalizacji → redundancja, anomalie,
- duża wydajność/skalowalność kosztem organizacji danych wg pojedynczego klucza (ale są indeksy),
- brak łatwej możliwości modelowania związków pomiędzy danymi (dodawanie id jednego dokumentu jako wartość w drugim...),
- przegrupowanie danych, joiny → obliczenia po stronie aplikacji,
- przechowywanie już zjoinowanych danych (join at write-time),

BD 2024 20 lutego 2024

- brak schematu / elastyczny schemat,
- brak normalizacji → redundancja, anomalie,
- duża wydajność/skalowalność kosztem organizacji danych wg pojedynczego klucza (ale są indeksy),
- brak łatwej możliwości modelowania związków pomiędzy danymi (dodawanie id jednego dokumentu jako wartość w drugim...),
- przegrupowanie danych, joiny → obliczenia po stronie aplikacji,
- przechowywanie już zjoinowanych danych (join at write-time), szybkość odczytu!

- brak schematu / elastyczny schemat,
- brak normalizacji → redundancja, anomalie,
- duża wydajność/skalowalność kosztem organizacji danych wg pojedynczego klucza (ale są indeksy),
- brak łatwej możliwości modelowania związków pomiędzy danymi (dodawanie id jednego dokumentu jako wartość w drugim...),
- przegrupowanie danych, joiny → obliczenia po stronie aplikacji,
- przechowywanie już zjoinowanych danych (join at write-time), szybkość odczytu!
- typowe zastosowania: profile użytkownika (web, gry, ...), koszyk zakupowy, rekomendacje, ogłoszenia, cache.

- brak schematu / elastyczny schemat,
- brak normalizacji → redundancja, anomalie,
- duża wydajność/skalowalność kosztem organizacji danych wg pojedynczego klucza (ale są indeksy),
- brak łatwej możliwości modelowania związków pomiędzy danymi (dodawanie id jednego dokumentu jako wartość w drugim...),
- przegrupowanie danych, joiny → obliczenia po stronie aplikacji,
- przechowywanie już zjoinowanych danych (join at write-time), szybkość odczytu!
- typowe zastosowania: profile użytkownika (web, gry, ...), koszyk zakupowy, rekomendacje, ogłoszenia, cache.

- brak schematu / elastyczny schemat,
- brak normalizacji → redundancja, anomalie,
- duża wydajność/skalowalność kosztem organizacji danych wg pojedynczego klucza (ale są indeksy),
- brak łatwej możliwości modelowania związków pomiędzy danymi (dodawanie id jednego dokumentu jako wartość w drugim...),
- przegrupowanie danych, joiny → obliczenia po stronie aplikacji,
- przechowywanie już zjoinowanych danych (join at write-time), szybkość odczytu!
- typowe zastosowania: profile użytkownika (web, gry, ...), koszyk zakupowy, rekomendacje, ogłoszenia, cache.

• organizacja danych wspiera chodzenie po krawędziach,

- organizacja danych wspiera chodzenie po krawędziach,
- o wiele prostszy, naturalny model danych,

- organizacja danych wspiera chodzenie po krawędziach,
- o wiele prostszy, naturalny model danych,
- property graphs,

- organizacja danych wspiera chodzenie po krawędziach,
- o wiele prostszy, naturalny model danych,
- property graphs,
- zapytania ścieżkowe (wyrażenia regularne),

Bazy grafowe

- organizacja danych wspiera chodzenie po krawędziach,
- o wiele prostszy, naturalny model danych,
- property graphs,
- zapytania ścieżkowe (wyrażenia regularne),
- typowe zastosowania: wyszukiwanie połączeń pomiędzy wierzchołkami, bazy wiedzy, dane o sieciach, rekomendacje, fraudy, paczki, farmacja, śledztwa dziennikarskie (np. Panama Papers), centralność (page-rank) znajdź bossa mafii. itp.

Bazy grafowe

- organizacja danych wspiera chodzenie po krawędziach,
- o wiele prostszy, naturalny model danych,
- property graphs,
- zapytania ścieżkowe (wyrażenia regularne),
- typowe zastosowania: wyszukiwanie połączeń pomiędzy wierzchołkami, bazy wiedzy, dane o sieciach, rekomendacje, fraudy, paczki, farmacja, śledztwa dziennikarskie (np. Panama Papers), centralność (page-rank) znajdź bossa mafii. itp.

Bazy grafowe

- organizacja danych wspiera chodzenie po krawędziach,
- o wiele prostszy, naturalny model danych,
- property graphs,
- zapytania ścieżkowe (wyrażenia regularne),
- typowe zastosowania: wyszukiwanie połączeń pomiędzy wierzchołkami, bazy wiedzy, dane o sieciach, rekomendacje, fraudy, paczki, farmacja, śledztwa dziennikarskie (np. Panama Papers), centralność (page-rank) znajdź bossa mafii. itp.

PostGIS

. How far is New York from Seattle? What are the units of the answer?

```
Note

New York = POINT(-74.0064 40.7142) and Seattle = POINT(-122.3331 47.6097)

SELECT ST_Distance(
   'POINT(-74.0064 40.7142)'::geography,
   'POINT(-122.3331 47.6097)'::geography);
```

3875538.57141352

. What is the total length of all streets in New York, calculated on the spheroid?

```
SELECT Sum(
ST_Length(Geography(
    ST_Transform(geom, 4326)
)))
FROM nyc_streets;
```

10421999.666

Bazy wektorowe (np. Kdb, Pinecone)

Vector Search engines provide the ability for developers to store vectors structured around certain algorithms (i.e. KNN), and an engine to compute similar vectors (like cosine distance) to determine which vectors are related.

(http://vectorsearch.dev/)

Plan wykładu

Będzie o:

- Model relacyjny teoretycznie: elementy składowe modelu, języki zapytań, zapytania koniunkcyjne, rekursja, postaci normalne (BCNF, 3NF, 4NF).
- Model relacyjny praktycznie: zapytania SQL, projektowanie baz danych oraz diagramy E-R i UML, jezyk definicji danych SQL.
- Systemy zarządzania relacyjnymi bazami danych: przetwarzanie zapytań, transakcje i wielodostęp, bezpieczeństwo danych.
- Inne modele dokumentowe i grafowe bazy danych (tylko troszke).

Będziemy się uczyć:

O modelu relacyjnym (algebra relacji i rachunki relacyjne, postaci normalne);

Będziemy się uczyć:

- O modelu relacyjnym (algebra relacji i rachunki relacyjne, postaci normalne);
- Jak korzystać z gotowej bazy danych wyszukiwać w niej informacje, odpowiedzi na interesujące nas pytania (jezyk SQL);

Będziemy się uczyć:

- O modelu relacyjnym (algebra relacji i rachunki relacyjne, postaci normalne);
- Jak korzystać z gotowej bazy danych wyszukiwać w niej informacje, odpowiedzi na interesujące nas pytania (jezyk SQL);
- Jak konstruować poprawne bazy danych dla zagadnień rzeczywistych projektować bazy (modelować) i na podstawie projektów definiować elementy baz danych;

Będziemy się uczyć:

- O modelu relacyjnym (algebra relacji i rachunki relacyjne, postaci normalne);
- Jak korzystać z gotowej bazy danych wyszukiwać w niej informacje, odpowiedzi na interesujące nas pytania (jezyk SQL);
- Jak konstruować poprawne bazy danych dla zagadnień rzeczywistych projektować bazy (modelować) i na podstawie projektów definiować elementy baz danych;
- Jak tworzyć aplikacje korzystające z bazy danych.

Będziemy się uczyć:

- O modelu relacyjnym (algebra relacji i rachunki relacyjne, postaci normalne);
- Jak korzystać z gotowej bazy danych wyszukiwać w niej informacje, odpowiedzi na interesujące nas pytania (jezyk SQL);
- Jak konstruować poprawne bazy danych dla zagadnień rzeczywistych projektować bazy (modelować) i na podstawie projektów definiować elementy baz danych;
- Jak tworzyć aplikacje korzystające z bazy danych.

Będziemy się uczyć:

- O modelu relacyjnym (algebra relacji i rachunki relacyjne, postaci normalne);
- Jak korzystać z gotowej bazy danych wyszukiwać w niej informacje, odpowiedzi na interesujące nas pytania (jezyk SQL);
- Jak konstruować poprawne bazy danych dla zagadnień rzeczywistych projektować bazy (modelować) i na podstawie projektów definiować elementy baz danych;
- Jak tworzyć aplikacje korzystające z bazy danych.

Materiały i informacje: https://skos.ii.uni.wroc.pl/course/view.php?id=647 — kurs Bazy Danych 2024.

Plan

- Po co nam bazy danych? Do czego? Jakie
- Rodzaje baz danych
- Model relacyjny
- Relacja
- 5 Więzy
 - Klucze
- Języki dla modelu relacyjnego
 - Algebra relacji
 - Przykłady
 - Wnioski i uwagi:

BD 2024 20 lutego 2024

Relacja (tabela) — jedyna struktura dla danych w modelu; ma ustaloną liczbę kolumn, w które można wpisywać wartości ustalonego typu i dowolną liczbę wierszy.

BD 2024 20 lutego 2024

Relacja (tabela) — jedyna struktura dla danych w modelu; ma ustaloną liczbę kolumn, w które można wpisywać wartości ustalonego typu i dowolną liczbę wierszy.

Więzy (warunki poprawności, warunki spójności) — dane wpisywane do tabel muszą spełniać zdefiniowane warunki: typ danych, zakres,...

BD 2024 20 lutego 2024

Relacja (tabela) — jedyna struktura dla danych w modelu; ma ustaloną liczbę kolumn, w które można wpisywać wartości ustalonego typu i dowolną liczbę wierszy.

Więzy (warunki poprawności, warunki spójności) — dane wpisywane do tabel muszą spełniać zdefiniowane warunki: typ danych, zakres,...

Baza danych — zbiór tabel z danymi spełniającymi nałożone na nie więzy.

BD 2024 20 lutego 2024

- Relacja (tabela) jedyna struktura dla danych w modelu; ma ustaloną liczbę kolumn, w które można wpisywać wartości ustalonego typu i dowolną liczbę wierszy.
- Więzy (warunki poprawności, warunki spójności) dane wpisywane do tabel muszą spełniać zdefiniowane warunki: typ danych, zakres,...
 - Baza danych zbiór tabel z danymi spełniającymi nałożone na nie więzy.
- Języki zapytań (*query language*) języki pozwalające wyszukać w relacjach określoną informacje.

BD 2024 20 lutego 2024

Plan

- Po co nam bazy danych? Do czego? Jakie
- Rodzaje baz danych
- Model relacyjny
- Relacja
- Więzy
 - Klucze
- Języki dla modelu relacyjnego
 - Algebra relacji
 - Przykłady
 - Wnioski i uwagi:

Osoba

Nazwisko	PESEL	dataUr
: varchar(20)	: char(11)	: date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	: varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie.Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
: varchar(20)	: char(11)	: date
Abacki	80121304455	'20-02-1980'

Mieszkanie

ı	PESEL	Adres	Metraż
	: char(11)	: varchar(50)	:real
	80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2
ı			

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	: char(11)	: date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	:varchar(50)	real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie.Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
: varchar(20)	: char(11)	: date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
: char(11)	: varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
: varchar(20)	: char(11)	: date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	: varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
: varchar(20)	: char(11)	: date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	: varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie.Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko : varchar(20)	PESEL : char(11)	dataUr : date
 Abacki	80121304455	'20-02-1980'
ADACKI	80121304433	20-02-1900

Mieszkanie

PESEL Adres Metraż : char (11) : varchar (50) : real 80121304455 Ełk, Kwiatowa 100 60,2 80121304455 Poznań, Szeroka 10/2 30,2 NULL Ełk, Kwiatowa 102 64,2			
80121304455 Ełk, Kwiatowa 100 60,2 80121304455 Poznań, Szeroka 10/2 30,2	PESEL	Adres	Metraż
80121304455 Poznań, Szeroka 10/2 30,2	: char(11)	:varchar(50)	:real
	80121304455	Poznań, Szeroka 10/2	30,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	: char(11)	: date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
: char(11)	:varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Notacja matematyczna

Dla atrybutów A_1, \dots, A_k i związanych z nimi dziedzin D_1, \dots, D_k relacja R ma:

schemat
$$R = A_1 \dots A_k$$
 lub $R(A_1, \dots, A_k)$,
arność k ,
stan $r \subseteq D_1 \times \dots \times D_k$,
krotki $(v_1, v_2, \dots, v_k) \in r$.

Relacyjna baza danych (schemat i stan) to zbiór relacji o różnych nazwach.

Notacja matematyczna

Dla atrybutów A_1,\ldots,A_k i związanych z nimi dziedzin D_1,\ldots,D_k relacja R ma:

```
schemat R = A_1 \dots A_k lub R(A_1, \dots, A_k),
arność k,
stan r \subseteq D_1 \times \dots \times D_k,
krotki (v_1, v_2, \dots, v_k) \in r.
```

Relacyjna baza danych (schemat i stan) to zbiór relacji o różnych nazwach.

W przykładzie:

- Osoba(Nazwisko,PESEL,dataUr),
- Mieszkanie(PESEL,Adres,Metraż)

Plan

- Po co nam bazy danych? Do czego? Jakie
- Rodzaje baz danych
- Model relacyjny
- Relacja
- 5 Więzy
 - Klucze
- Języki dla modelu relacyjnego
 - Algebra relacji
 - Przykłady
 - Wnioski i uwagi:

Klucze

Klucz relacji

Podzbiór atrybutów relacji, których wartości zawsze pozwalają jednoznacznie zidentyfikować krotke relacji. Oznacza, to że nie dopuszczamy, by w danych znalazły się dwie różne krotki o jednakowych wartościach klucza. Relacja może mieć kilka kluczy: Student(indeks, PESEL, Nazwisko,...)

Klucze

Klucz relacji

Podzbiór atrybutów relacji, których wartości zawsze pozwalają jednoznacznie zidentyfikować krotke relacji. Oznacza, to że nie dopuszczamy, by w danych znalazły się dwie różne krotki o jednakowych wartościach klucza. Relacja może mieć kilka kluczy: Student (indeks, PESEL, Nazwisko, ...)

Klucz ałówny

Jeden z kluczy relacji. Zazwyczaj wybieramy ten, według którego najczęściej będziemy wyszukiwać dane z relacji. Pozostałe klucze nazywamy kandydującymi lub alternatywnymi. Na przykład indeks może być kluczem głównym relacji Student, a PESEL — kluczem alternatywnym.

Klucze

Klucz relacji

Podzbiór atrybutów relacji, których wartości zawsze pozwalają jednoznacznie zidentyfikować krotke relacji. Oznacza, to że nie dopuszczamy, by w danych znalazły się dwie różne krotki o jednakowych wartościach klucza. Relacja może mieć kilka kluczy: Student (indeks, PESEL, Nazwisko, ...)

Klucz ałówny

Jeden z kluczy relacji. Zazwyczaj wybieramy ten, według którego najczęściej będziemy wyszukiwać dane z relacji. Pozostałe klucze nazywamy kandydującymi lub alternatywnymi. Na przykład indeks może być kluczem głównym relacji Student, a PESEL — kluczem alternatywnym.

Klucz z wielu atrybutów

Stosujemy takie rozwiązanie, gdy jeden atrybut nie wystarcza do zidentyfikowania krotki. Na przykład w relacji Zaliczenie (indeks, kod_przedmiotu, ocena, data).

Klucz obcy

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą klucze obce.

Zaliczonia:

Zanozenie.			
indeks	kod_przedm	ocena	
123456	BD2011	5.0	
123456	SK2011	4.5	
654321	BD2011	3.5	

Ctudont.

Student.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

Klucz obcy

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą klucze obce.

Zaliczenie:

Zanozonic	•	
indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Ctudont.

Otudent.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

 Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

Lanceonio	•	
indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Student:

Student.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

Zanozomo	•	
indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Student:

Student.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.
- W relacji Zaliczenie atrybut indeks może powtarzać się lub być pusty.

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą klucze obce.

Zaliczonia.

Zanczenie	•	
indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Ctudont.

Student.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.
- W relacji Zaliczenie atrybut indeks może powtarzać się lub być pusty.
- Jeśli indeks jest użyty w relacji Zaliczenie, to w relacji Student powinna występować osoba o tym indeksie (integralność referencyjna).

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

Zuliozoffic.		
kod_przedm	ocena	
BD2011	5.0	
SK2011	4.5	
BD2011	3.5	
BD2012	2.0	
	kod_przedm BD2011 SK2011 BD2011	

Student:

Otudent.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.
- W relacji Zaliczenie atrybut indeks może powtarzać się lub być pusty.
- Jeśli indeks jest użyty w relacji Zaliczenie, to w relacji Student powinna występować osoba o tym indeksie (integralność referencyjna).

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą klucze obce.

Zaliczonia.

Zanczenie	•	
indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Ctudont.

Student.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.
- W relacji Zaliczenie atrybut indeks może powtarzać się lub być pusty.
- Jeśli indeks jest użyty w relacji Zaliczenie, to w relacji Student powinna występować osoba o tym indeksie (integralność referencyjna).

Klucze

Więzy — podsumowanie

BD 2024

Więzy — podsumowanie

Więzy kolumnowe — nakładanie ograniczeń na wartość atrybutu: dziedzina, wartość nie pusta (NOT NULL), zakres;

> BD 2024 20 lutego 2024

Więzy — podsumowanie

Więzy kolumnowe — nakładanie ograniczeń na wartość atrybutu: dziedzina, wartość nie pusta (NOT NULL), zakres;

Więzy tabeli — własność klucza, unikalność w ramach tabeli;

Klucze

Więzy — podsumowanie

Więzy kolumnowe — nakładanie ograniczeń na wartość atrybutu: dziedzina, wartość nie pusta (NOT NULL), zakres;

Więzy tabeli — własność klucza, unikalność w ramach tabeli;

Więzy między tabelami — własność klucza obcego;

Więzy — podsumowanie

Więzy kolumnowe — nakładanie ograniczeń na wartość atrybutu: dziedzina, wartość nie pusta (NOT NULL), zakres;

Wiezy tabeli — własność klucza, unikalność w ramach tabeli;

Więzy między tabelami — własność klucza obcego;

Inne więzy ogólne — bardziej złożone warunki (np. maksymalnie dwa podejścia do przedmiotu w sesji, dostęp do wybranych przedmiotów dla studentów określonej sekcji, limit liczby osób zapisanych na zajęcia itp.)

> BD 2024 20 lutego 2024

Plan

- Po co nam bazy danych? Do czego? Jakie
- Rodzaje baz danych
- Model relacyjny
- Relacja
- WięzyKlucze
- Języki dla modelu relacyjnego
 - Algebra relacji
 - Przykłady
 - Wnioski i uwagi:

BD 2024 20 lutego 2024

Język definiowania danych

Musi pozwolić opisać schematy relacji oraz więzy (warunki poprawności) danych.

Język definiowania danych

Musi pozwolić opisać schematy relacji oraz więzy (warunki poprawności) danych.

Język manipulacji danymi

Pozwala dodawać/usuwać krotki z relacji.

Język definiowania danych

Musi pozwolić opisać schematy relacji oraz więzy (warunki poprawności) danych.

Język manipulacji danymi

Pozwala dodawać/usuwać krotki z relacji.

Języki zapytań

Mamy trzy propozycje:

algebra relacji — kilka operacji pozwalających działać na relacjach jako na zbiorach;

relacyjny rachunek dziedzin — język wykorzystujący formuły logiczne do opisu wartości, które należy znaleźć;

relacyjny rachunek krotek — język wykorzystujący formuły logiczne do opisu krotek, które należy znaleźć:

Język definiowania danych

Musi pozwolić opisać schematy relacji oraz więzy (warunki poprawności) danych.

Język manipulacji danymi

Pozwala dodawać/usuwać krotki z relacji.

Języki zapytań

Mamy trzy propozycje:

algebra relacji — kilka operacji pozwalających działać na relacjach jako na zbiorach;

relacyjny rachunek dziedzin — język wykorzystujący formuły logiczne do opisu wartości, które należy znaleźć;

relacyjny rachunek krotek — język wykorzystujący formuły logiczne do opisu krotek, które należy znaleźć;

Standard: SQL

BD 2024 20 lutego 2024

Argumentami są całe relacje (tabele), na których wykonujemy operacje.

Argumentami są całe relacje (tabele), na których wykonujemy operacje.

Zestaw operacji jest nieliczny: rzutowanie, selekcja, iloczyn kartezjański, suma, różnica i przemianowanie

BD 2024 20 lutego 2024

Argumentami są całe relacje (tabele), na których wykonujemy operacje.

Zestaw operacji jest nieliczny: rzutowanie, selekcja, iloczyn kartezjański, suma, różnica i przemianowanie

Zapytanie to poprawne wyrażenie algebry relacji, a odpowiedź, to wartość tego wyrażenia obliczona na podstawie aktualnego stanu bazy danych.

BD 2024 20 lutego 2024

BD 2024 20 lutego 2024

Rzut — $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$.

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Rzut $-\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty są eliminowane.

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Wynik rzutu na Nazwisko

Wyllik IZutt
Nazwisko
Abacka
Babacka
Cabacka
Abacka

Rzut — $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty są eliminowane.

Selekcja — $\sigma_F(R)$ zwraca krotki wybrane z relacji R spełniające warunek F. Na przykład $\sigma_{Adres='Koszalin'}(Student)$.

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Rzut — $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty są eliminowane.

Selekcja — $\sigma_F(R)$ zwraca krotki wybrane z relacji R spełniające warunek F. Na przykład $\sigma_{Adres='Koszalin'}(Student)$.

Warunki w selekcji - kombinacje boolowskie porównań używających operatorów $=, \neq, >, \geq, <, \leq$

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Wynik selekcji Adres='Koszalin'

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
765678	Cabacka	Koszalin

Rzut — $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty są eliminowane.

Selekcja — $\sigma_F(R)$ zwraca krotki wybrane z relacji R spełniające warunek F. Na przykład $\sigma_{Adres='Koszalin'}(Student)$.

Przemianowanie — $\rho_{S(B_1,...,B_k)}(R)$ zmienia nazwę relacji R na S i nazwy odpowiednich atrybutów R na $B_1,...B_k$. Na przykład $\rho_{Osoba(id,nazwisko,miasto)}(\pi_{indeks,nazwisko,adres}(Student)).$

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Rzut — $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty są eliminowane.

Selekcja — $\sigma_F(R)$ zwraca krotki wybrane z relacji R spełniające warunek F. Na przykład $\sigma_{Adres='Koszalin'}(Student)$.

Przemianowanie — $\rho_{S(B_1,\ldots,B_k)}(R)$ zmienia nazwę relacji R na S i nazwy odpowiednich atrybutów R na $B_1,\ldots B_k$. Na przykład

 ρ Osoba(id,nazwisko,miasto)(π indeks,nazwisko,adres(Student)).

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Tabela po przemianowaniu: Osoba

	•	
ld	Nazwisko	Miasto
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Suma (\cup), różnica (\setminus), przekrój (\cap) — zwykłe operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na **multizbiorach** (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

StudentIM

Ctaaciitiivi		
Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

neiacja wymkowa.		
Indeks	Nazwisko	Adres

Suma (\cup), różnica (\setminus), przekrój (\cap) — zwykłe operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na **multizbiorach** (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

Studentll

Ottauciitii		
Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

StudentIM

ſ	Indeks	Nazwisko	Adres
Ì	012345	Zetowski	Kielce
	654321	Babacka	Szczecin

riciacja wyriikowa.		
Indeks	Nazwisko	Adres

Suma (\cup), różnica (\setminus), przekrój (\cap) — zwykłe operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na **multizbiorach** (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

StudentIM

Studentilivi		
Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

neiacja wyriikowa.			
Indeks	Nazwisko	Adres	

Suma (∪), różnica (\), przekrój (∩) — zwykłe operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na multizbiorach (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

StudentIM

Studentilly		
Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

neiacja wynikowa.		
Indeks	Nazwisko	Adres

Suma (∪), różnica (\), przekrój (∩) — zwykłe operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na multizbiorach (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

StudentIM

Ctaacritiivi		
Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica
012345	Zetowski	Kielce
654321	Babacka	Szczecin

Suma (U), różnica (\), przekrój (\cap) — zwykłe operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na **multizbiorach** (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

StudentIM

Ottaderitiivi		
Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

neiacja wyllikowa.				
Indeks	Nazwisko	Adres		

Suma (∪), różnica (\), przekrój (∩) — zwykłe operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na multizbiorach (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Ota a Otto		
Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

StudentIM

Studentilli		
Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

nciacja wynikowa.				
Indeks	Nazwisko	Adres		

Suma (U), różnica (\), przekrój (\cap) — zwykłe operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na **multizbiorach** (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

StudentIM

Otaaciitiiii			
	Indeks	Nazwisko	Adres
	012345	Zetowski	Kielce
	654321	Babacka	Szczecin

Relacja wynikowa:

Indeks	Nazwisko	Adres		
123456	Abacka	Koszalin		
234565	Abacka	Legnica		

Suma (∪), różnica (\), przekrój (∩) — zwykłe operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na multizbiorach (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Ctaaciitii			
	Indeks	Nazwisko	Adres
	123456	Abacka	Koszalin
	654321	Babacka	Szczecin
	234565	Abacka	Legnica

StudentIM

-	Otaaciitiiii				
ſ	Indeks	Nazwisko	Adres		
Ì	012345	Zetowski	Kielce		
İ	654321	Babacka	Szczecin		

nciacja wynikowa.				
Indeks	Nazwisko	Adres		

Operacje teoriomnogościowe — suma, różnica, przekrój

Suma (∪), różnica (\), przekrój (∩) — zwykłe operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na multizbiorach (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres	
123456	Abacka	Koszalin	
654321	Babacka	Szczecin	
234565	Abacka	Legnica	

StudentIM

Studentilli				
Indeks	Nazwisko	Adres		
012345	Zetowski	Kielce		
654321	Babacka	Szczecin		

Relacja wynikowa:

neiacja wynikowa.					
Indeks	Nazwisko	Adres			

Operacje teoriomnogościowe — suma, różnica, przekrój

Suma (∪), różnica (\), przekrój (∩) — zwykłe operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogą być zastępowane operacjami na multizbiorach (dlaczego?).

Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

StudentIM

Otaaciitiiii				
Indeks	Nazwisko	Adres		
012345	Zetowski	Kielce		
654321	Babacka	Szczecin		

Relacja wynikowa:

riciaoja wyriikowa.					
	Indeks	Nazwisko	Adres		
	654321	Babacka	Szczecin		

Iloczyn kartezjański (\times) — dla relacji o rozłącznych schematach $(attr(R) \cap attr(S) = \emptyset) \ R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

BD 2024 20 lutego 2024

lloczyn kartezjański (×) — dla relacji o rozłącznych schematach ($attr(R) \cap attr(S) = \emptyset$) $R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres	
123456	Abacka	Koszalin	
654321	Babacka	Szczecin	
234565	Abacka	Legnica	

Przedmiot

_	rizeaiiiot				
	Kod Nazwa		Тур		
Г	BD	Bazy danych	podst		
	AM	Analiza mat.	obow		

lloczyn kartezjański (\times) — dla relacji o rozłącznych schematach $(attr(R) \cap attr(S) = \emptyset) \ R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres	
123456	Abacka	Koszalin	
654321	Babacka	Szczecin	
234565	Abacka	Legnica	

Przedmiot

· · Louiiiiot			
Kod Nazwa		Тур	
BD	Bazy danych	podst	
AM	Analiza mat.	obow	

Student × Przedmiot

Indeks	Nazwisko	Adres	Kod	Nazwa	Тур
123456	Abacka	Koszalin	BD	Bazy danych	podst
654321	Babacka	Szczecin	BD	Bazy danych	podst
234565	Abacka	Legnica	BD	Bazy danych	podst
123456	Abacka	Koszalin	AM	Analiza mat.	obow
654321	Babacka	Szczecin	AM	Analiza mat.	obow
234565	Abacka	Legnica	AM	Analiza mat.	obow

BD 2024 20 lutego 2024

lloczyn kartezjański (×) — dla relacji o rozłącznych schematach $(attr(R) \cap attr(S) = \emptyset) \ R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres		
123456	Abacka	Koszalin		
654321	Babacka	Szczecin		
234565	Abacka	Legnica		

Przedmiot

· · · · · · · · · · · · · · · · · · ·				
Kod	Kod Nazwa			
BD	Bazy danych	podst		
AM	Analiza mat.	obow		

Student × Przedmiot

Indeks	Nazwisko	Adres	Kod	Nazwa	Тур
123456	Abacka	Koszalin	BD	Bazy danych	podst
654321	Babacka	Szczecin	BD	Bazy danych	podst
234565	Abacka	Legnica	BD	Bazy danych	podst
123456	Abacka	Koszalin	AM	Analiza mat.	obow
654321	Babacka	Szczecin	AM	Analiza mat.	obow
234565	Abacka	Legnica	AM	Analiza mat.	obow

BD 2024 20 lutego 2024

lloczyn kartezjański (×) — dla relacji o rozłącznych schematach ($attr(R) \cap attr(S) = \emptyset$) $R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Indeks Nazwisko				
123456	Abacka	Koszalin			
654321	Babacka	Szczecin			
234565	Abacka	Legnica			

Przedmiot

1 12 Culliot				
Kod	Nazwa	Тур		
BD	Bazy danych	podst		
AM	Analiza mat.	obow		

Student × Przedmiot

Indeks	Nazwisko	Adres	Kod	Nazwa	Тур
123456	Abacka	Koszalin	BD	Bazy danych	podst
654321	Babacka	Szczecin	BD	Bazy danych	podst
234565	Abacka	Legnica	BD	Bazy danych	podst
123456	Abacka	Koszalin	AM	Analiza mat.	obow
654321	Babacka	Szczecin	AM	Analiza mat.	obow
234565	Abacka	Legnica	AM	Analiza mat.	obow

BD 2024 20 lutego 2024

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres
654321	Babacka	Szczecin
234565	Abacka	Legnica
123456	Abacka	Koszalin

Ocena

Indeks	Kod	Stopien			
654321	BD	5.0			
234565	BD	4.5			
234565	AM	4.5			
012345	AM	3.5			

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres
654321	Babacka	Szczecin
234565	Abacka	Legnica
123456	Abacka	Koszalin

Ocena

Indeks	Kod	Stopien		
654321	BD	5.0		
234565	BD	4.5		
234565	AM	4.5		
012345	AM	3.5		

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Ctuuciit	Otaaciit				
Indeks	Nazwisko	Adres			
654321	Babacka	Szczecin			
234565	Abacka	Legnica			
123456	Abacka	Koszalin			

<u>Ocena</u>

Occiia		
Indeks	Kod	Stopien
654321	BD	5.0
234565	BD	4.5
234565	AM	4.5
012345	AM	3.5
	Indeks 654321 234565 234565	654321 BD 234565 BD 234565 AM

Indeks	Nazwisko	Adres	Kod	Stopien

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Ottadent					
Indeks	Nazwisko	Adres			
654321	Babacka	Szczecin			
234565	Abacka	Legnica			
123456	Abacka	Koszalin			

Ocena

Oochu						
Indeks	Kod	Stopien				
654321	BD	5.0				
234565	BD	4.5				
234565	AM	4.5				
012345	AM	3.5				

otadont // ocona							
Indeks	Nazwisko	Adres	Kod	Stopien			

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Otaucht				
Indeks	Nazwisko	Adres		
654321	Babacka	Szczecin		
234565	Abacka	Legnica		
123456	Abacka	Koszalin		

Ocena

Indeks	Kod	Stopien			
654321	BD	5.0			
234565	BD	4.5			
234565	AM	4.5			
012345	AM	3.5			

Indeks	Nazwisko	Adres	Kod	Stopien
654321	Babacka	Szczecin	BD	5.0

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Student					
Indeks		Nazwisko	Adres		
654321		Babacka Szczed			
	234565	Abacka	Legnica		
	123456	Abacka	Koszalin		

Ocena

Indeks	Kod	Stopien			
654321	BD	5.0			
234565	BD	4.5			
234565	AM	4.5			
012345	AM	3.5			
	654321 234565 234565	654321 BD 234565 BD 234565 AM			

	Indeks	Nazwisko	Adres	Kod	Stopien
	654321	Babacka	Szczecin	BD	5.0
	234565	Abacka	Legnica	BD	4.5
	234565	Abacka	Legnica	AM	3.5

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

	Otadent				
Indeks		Nazwisko	Adres		
	654321 Babacka		Szczecin		
	234565	Abacka	Legnica		
	123456	Abacka	Koszalin		

Ocena

Indeks	Kod	Stopien
654321	BD	5.0
234565	BD	4.5
234565	AM	4.5
012345	AM	3.5
	654321 234565 234565	654321 BD 234565 BD 234565 AM

Student M Ocena

Indeks	Nazwisko	Adres	Kod	Stopien
654321	Babacka	Szczecin	BD	5.0
234565	Abacka	Legnica	BD	4.5
234565	Abacka	Legnica	AM	3.5

Krotki, które nie mają pary, nie wchodzą do wyniku!

BD 2024 20 lutego 2024

Złączenie \bowtie_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenie \bowtie_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

BD 2024 20 lutego 2024

Złączenie \bowtie_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Półzłączenia to operacja wybierająca z relacji krotki, które połączyłyby się, gdyby wykonywano złączenie naturalne.

BD 2024 20 lutego 2024

Złączenie \bowtie_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Półzłączenia to operacja wybierająca z relacji krotki, które połączyłyby się, gdyby wykonywano złączenie naturalne.

Inne operacje np. iloraz, złączenie lewostronne i prawostronne.

BD 2024 20 lutego 2024

Złączenie \bowtie_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Półzłączenia to operacja wybierająca z relacji krotki, które połączyłyby się, gdyby wykonywano złączenie naturalne.

Inne operacje np. iloraz, złączenie lewostronne i prawostronne.

Zapytania budujemy poprawne wyrażenia używając operatorów algebry relacji, nawiasów i stałych.

BD 2024 20 lutego 2024

Złączenie \bowtie_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Półzłączenia to operacja wybierająca z relacji krotki, które połączyłyby się, gdyby wykonywano złączenie naturalne.

Inne operacje np. iloraz, złączenie lewostronne i prawostronne.

Zapytania budujemy poprawne wyrażenia używając operatorów algebry relacji, nawiasów i stałych.

Wszystkie operacje algebry relacji są wyrażalne za pomocą: $\pi, \sigma, \rho, \times, \cup, \setminus$

```
\pi,\sigma,\rho,\times,\cup,\backslash,\bowtie \pi, \sigma, \rho, \times, \cup, \setminus, \Join
```

Kalkulator: https://dbis-uibk.github.io/relax/landing

Baza do przykładów

- Student=(indeks,nazwisko, rok), czyli indeks, nazwisko i rok studiów studenta;
- Przedmiot=(<u>nazwa</u>, typ), czyli nazwa i typ przedmiotu;
- Ocena=(<u>indeks,przed</u>,data,stop), czyli ocena uzyskana przez studenta za przedmiot wraz z datą wystawienia.

Klucze główne relacji są podkreślone. Dodatkowo w relacji O występują klucze obce:

- O.indeks odnoszący się do S.indeks,
- O.przed odnoszący się do P.nazwa,
- Czy pola data i stop w relacji Ocena mogą być puste?

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

BD 2024 20 lutego 2024

Baza danych

$$S = (indeks, nazwisko, rok), P = (nazwa, typ), O = (indeks, przed, data, stop)$$

1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$

Znaczenie zapytań

BD 2024

Baza danych

$$S = (indeks, nazwisko, rok), P = (nazwa, typ), O = (indeks, przed, data, stop)$$

1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$

Znaczenie zapytań

1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.

Baza danych

$$S = (indeks, nazwisko, rok), P = (nazwa, typ), O = (indeks, przed, data, stop)$$

1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$

- 1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.
- 2. Pełne dane studentów, którzy dostali jakaś ocenę 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- 1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$
- 2. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$

- 1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.
- 2. Pełne dane studentów, którzy dostali jakaś ocenę 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- 1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$
- 2. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$

- 1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.
- 2. Pełne dane studentów, którzy dostali jakaś ocenę 5.0.
- 3. Studenci, którzy podchodzili do BD co najmniej dwa razy.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- 1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$
- 2. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$
- 3. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{i1=indeks,\rho1=przed \land przed='BD' \land data\neq d1}(\rho_{O1(i1,\rho1,d1,s1)}(O) \times O)).$

Znaczenie zapytań

- 1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.
- 2. Pełne dane studentów, którzy dostali jakaś ocenę 5.0.
- 3. Studenci, którzy podchodzili do BD co najmniej dwa razy.

BD 2024

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

Znaczenie zapytań

BD 2024

Baza danych

$$S = (\underline{\textit{indeks}}, \textit{nazwisko}, \textit{rok}), \ P = (\underline{\textit{nazwa}}, \textit{typ}), \ O = (\underline{\textit{indeks}}, \underline{\textit{przed}}, \underline{\textit{data}}, \textit{stop})$$

Studenci, którzy nie dostali 5.0.

4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

Znaczenie zapytań

4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$

Znaczenie zapytań

4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 4c. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 4c. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 4c. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$
- 4d. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 4c. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$
- 4d. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.
- 4d. Studenci, którzy mają tylko oceny 5.0 (być może nie mają żadnych).

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 4c. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$
- 4d. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4e. $\pi_{S.ind,naz,rok}(S \bowtie O) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.
- 4d. Studenci, którzy mają tylko oceny 5.0 (być może nie mają żadnych).

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 4c. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$
- 4d. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4e. $\pi_{S.ind,naz,rok}(S \bowtie O) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

- 4a. Studenci, którzy dostali jakaś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.
- 4d. Studenci, którzy mają tylko oceny 5.0 (być może nie mają żadnych).
- Studenci, którzy dostają tylko piątki, przy czym bierzemy pod uwagę tylko tych, którzy mają jakikolwiek wpis.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

5a.
$$\pi_{S,indeks,nazwisko}(S) \setminus \pi_{S,indeks,nazwisko}(S \bowtie O);$$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

5a. $\pi_{S,indeks,nazwisko}(S) \setminus \pi_{S,indeks,nazwisko}(S \bowtie O);$

5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

5a. $\pi_{S,indeks,nazwisko}(S) \setminus \pi_{S,indeks,nazwisko}(S \bowtie O);$

5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop} \bowtie NULL(O));$

5c. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop=NULL}(O));$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

```
5a. \pi_{S,indeks,nazwisko}(S) \setminus \pi_{S,indeks,nazwisko}(S \bowtie O);
```

5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop} \bowtie NULL(O));$

5c. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop=NULL}(O));$

5d. $\pi_{S,indeks,nazwisko}(S \bowtie \sigma_{stop \neq NULL}(O));$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

```
5a. \pi_{S,indeks,nazwisko}(S) \setminus \pi_{S,indeks,nazwisko}(S \bowtie O);
```

5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop} \bowtie NULL(O));$

5c. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop=NULL}(O));$

5d. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \neq NULL}(O));$

Krotka jest wybierana przez selekcję, gdy warunek ma dla niej wartość TRUE. Wartość UNKNOWN nie wystarcza.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Można pytać o to samo na różne sposoby. Czy to ma jakieś znaczenie?

```
(6) \pi_{nazwisko,indeks}(
\sigma_{stop=5.0 \land typ=''zaaw''}(\sigma_{nazwa=przed}(P \times O)) \bowtie 
\sigma_{rok=4}(S))
\cup \pi_{nazwisko,indeks}(
\sigma_{stop=5.0 \land typ=''obow''}(\sigma_{nazwa=przed}(P \times O)) \bowtie 
\sigma_{rok=3}(S));
(6a) \pi_{nazwisko,indeks}(
\sigma_{((rok=3 \land typ='obow') \lor (rok=4 \land typ='zaaw'))}(\sigma_{rok=3 \lor rok=4}(S) \bowtie 
\pi_{indeks,typ}(P_{P(przed,typ)}(\sigma_{typ='zaaw' \lor typ='obow'}(P))) \bowtie 
\pi_{indeks,przed}(\sigma_{stop=5.0}(O)))))
```

BD 2024

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

BD 2024 20 lutego 2024

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

(7a)
$$\pi_{indeks}(\sigma_{stop}>s1 \land przed="BD" \land p1=przed(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$$

Znaczenie zapytań

BD 2024

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

(7a)
$$\pi_{indeks}(\sigma_{stop}>s1 \land przed="BD" \land p1=przed(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$$

Znaczenie zapytań

 Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

(7a)
$$\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$$

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

- (7a) $\pi_{indeks}(\sigma_{stop}>s1 \land przed="BD" \land p1=przed" (O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7b) $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$

- 7a. Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

- (7a) $\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7b) $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- $(7c) \pi_{indeks}(S) \setminus \\ \pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$

Znaczenie zapytań

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).

BD 2024 20 lutego 2024

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

- (7a) $\pi_{indeks}(\sigma_{stop}>s1 \land przed="BD" \land p1=przed" (O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7b) $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7c) $\pi_{indeks}(S) \setminus$ $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$

Znaczenie zapytań

- 7a. Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocene gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).
- 7c. Indeksy studentów, którzy nie są od nikogo gorsi z BD.

BD 2024

Baza danych

```
S = (\underline{indeks}, nazwisko, rok), \ P = (\underline{nazwa}, typ), \ O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)
(7a) \ \pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
(7b) \ \pi_{indeks}(\sigma_{stop<s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
(7c) \ \pi_{indeks}(S) \setminus \\ \pi_{indeks}(\sigma_{stop<s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
(7d) \ \pi_{indeks}(\sigma_{przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
\pi_{indeks}(\sigma_{stop<s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
```

Znaczenie zapytań

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).
- 7c. Indeksy studentów, którzy nie są od nikogo gorsi z BD.

BD 2024 20 lutego 2024

Baza danych

```
S = (\underline{indeks}, nazwisko, rok), \ P = (\underline{nazwa}, typ), \ O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)
(7a) \ \pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
(7b) \ \pi_{indeks}(\sigma_{stop<s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
(7c) \ \pi_{indeks}(S) \setminus \\ \pi_{indeks}(\sigma_{stop<s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
(7d) \ \pi_{indeks}(\sigma_{przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
\pi_{indeks}(\sigma_{stop<s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))
```

Znaczenie zapytań

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).
- 7c. Indeksy studentów, którzy nie są od nikogo gorsi z BD.
- 7d. Indeksy studentów, którzy są najlepsi z BD.

24 20 lutego 2024

Algebra relacji jest językiem imperatywnym (operacyjnym).

- Algebra relacji jest językiem imperatywnym (operacyjnym).
- Znaczenie zapytania (w języku naturalnym) nie zawsze jest oczywiste, gdyż algebra relacji nie przypomina języka naturalnego.

- Algebra relacji jest językiem imperatywnym (operacyjnym).
- Znaczenie zapytania (w języku naturalnym) nie zawsze jest oczywiste, gdyż algebra relacji nie przypomina języka naturalnego.
- To samo zapytanie może mieć wiele równoważnych postaci mogą one różnić się złożonością wykonania.

- Algebra relacji jest językiem imperatywnym (operacyjnym).
- Znaczenie zapytania (w języku naturalnym) nie zawsze jest oczywiste, gdyż algebra relacji nie przypomina języka naturalnego.
- To samo zapytanie może mieć wiele równoważnych postaci mogą one różnić się złożonością wykonania.
- Na podstawie samego opisu trudno określić moc tego jezyka.

- Algebra relacji jest językiem imperatywnym (operacyjnym).
- Znaczenie zapytania (w języku naturalnym) nie zawsze jest oczywiste, gdyż algebra relacji nie przypomina języka naturalnego.
- To samo zapytanie może mieć wiele równoważnych postaci mogą one różnić się złożonością wykonania.
- Na podstawie samego opisu trudno określić moc tego języka.
- 6 Algebra relacji jest podstawa SQL.

Materiały na skosie:

Więcej przykładów zapytań w algebrze relacji: https://skos.ii.uni.wroc.pl/pluginfile.php/68435/mod_label/intro/algebra_relacji_trudne_przyklady_EU.pdf

Materiały na skosie:

- Więcej przykładów zapytań w algebrze relacji: https://skos.ii.uni.wroc.pl/pluginfile.php/68435/mod_label/intro/algebra_relacji_trudne_przyklady_EU.pdf
- Kalkulator algebry relacji:
 https://dbis-uibk.github.io/relax/landing

BD 2024 20 lutego 2024