UNCLASSIFIED AD 410285

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

MOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

EAI

BY DDC 0. 41028

ELECTRONIC ASSOCIATES, INC.

Research and Computation Division

DDC JUL 2 7 1503

P. O. BOX 582 - PRINCETON, N. J.

Best Available Copy

PROGRAMMING STUDY FOR HIGH FREQUENCY EXOSPHERIC DUCTING

Electronic Associates, Inc.
Research & Computation Division
Princeton, New Jersey

Contract No. AF19(628)1658

Technical Report No. 1 Date: November 12, 1962

Project Order No.: 4603
Task Order No.: 460302

Prepared For:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Requests for additional copies by Agencies of the Department of Defense, their contractors, and other government agencies should be directed to the:

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

All other persons and organizations should apply to the:

U.S. DEPARTMENT, OF COMMERCE OFFICE OF TECHNICAL SERVICES WASHINGTON 25, D.C.

Engineers and scientists employed on this contract:

Mr. Ray Beadle Mr. D. Basson

TABLE OF CONTENTS

Introduc	ction
Comput	er Procedure
Example	e of Computer Results
Instrum	entation of Required Equations
Referen	ces1
APPEN	DICES
1	Generation of $\frac{dc}{dy}$
11	Automatic Cycling Circuit
Ш	Potentiometer Sheets
IV	Amplifier Sheets
v	Static Check Calculations
VI	Circuit Dingram

INTRODUCTION

The purpose of this report is to present specific analog computer programs effective in the solution of a simplified description of the ray paths of radio waves propagating through the earth's ionosphere. The main phenomenon of interest is the description of the conditions necessary for a radio wave of a given frequency to penetrate the ionosphere and then "follow" the earth's magnetic field lines back to the earth. Such propagation in the "whistler" mode may be described by the Hamiltonian ray equations. It is assumed that these ray approximations to the Maxwell Wave Equations are of sufficient accuracy in describing the phenomena.

A simplified set of ray equations may be written if it is assumed that the electron density about the earth is independent of longitude, that the effect of energy loss by collision is negligible and that the anisotropic effects of the earth's magnetic field are negligible at the frequencies of interest.

(\sim 14 mc. $f_H/f < 1$, $f_{H^{ii}}$ gyro frequency). With the above assumptions, the Appleton-Hartree equations for the radio wave index of refraction reduces to:

$$\mu^2 = 1 - \frac{N(r, 0)}{f^2(1.24 \times 10^4)}$$

where:

μ = radio wave index of refraction

 $N(r, \theta)$ = electron density

r = radial distance from the earth's center

• co-latitude

f = radio wave frequency in megacycles

At frequencies where $\frac{N}{f^2(1.24 \times 10^4)}$ << 1 the bionomial expansion gives:

$$\mu \doteq 1 - \frac{N(r, 0)}{(2.28 \times 10^{4}) f^{2}}$$

For the purpose of this study the following form for $N(r, \theta)$ is assumed:

$$\frac{N(r, 0)}{2.28 \times 10^{4} f^{2}} = E F(r) \sin \left[1 + m(r) c(y)\right]$$

where:

E F(r) = normal dependence of electron density

m(r) = radial dependence of duct

c(y) = modulation function for a duct of enhanced electron density

y = geomagnetic latitude parameter = r/sin²0

E F(r) = an empirical function r ≤ 6690 km

E F(r) = e -4.18/a (r-6690) r ≥ 6690 km

a = radius of earth in km

a = 6,370 km

The effect of a single duct of enhanced electron density following the earth's magnetic field lines is determined by this assumed form for N(r, 9).

The Hamiltonian ray path equations in polar co-ordinates, when the anisotropic effect of the magnetic field and the longitudinal electron density dependence are neglected become the following $\frac{2}{3}$. $(\frac{\partial \mu}{\partial \Psi})$ is an anisotropy effect and is not present in the following equations.

$$\frac{d\mathbf{r}}{d\mathbf{s}} = \cos \mathbf{a}$$

$$\frac{d\theta}{ds} = \frac{1}{r} \sin \alpha$$

$$\frac{da}{ds} = -\frac{1}{\mu} \frac{\partial \mu}{\partial r} \sin a + \frac{1}{r} \left(\frac{1}{\mu} \frac{\partial \mu}{\partial \theta} \cos a - \sin a \right)$$

where:

u = radio wave index of refraction

r = radial distance of point on ray path to the earth's center

9 = co-latitude of point on ray path

s = arc length along the ray path

a = angle between the wave normal and the radius vector.
 (Since the anisotropy of the earth's magnetic field has been neglected the wave normal direction coincides with the direction of the ray path).

GEOMETRY OF SITUATION

Inserting $\frac{\partial \mu}{\partial r} \frac{\partial \mu}{\partial \theta}$ in terms of N(r, θ) we obtain after differentiation the following detailed form for $\frac{d\alpha}{ds}$.

$$\begin{split} \frac{da}{ds} &= \left\{ \frac{1}{\mu} \sin a \left[E \sin \theta \frac{dF}{dr} \right] - \frac{1}{\mu r} \cos a \left[E F \cos \theta \right] - \frac{1}{r} \sin a \right\} \\ &+ \frac{1}{\mu} \sin a \left[E \sin \theta \frac{dF}{dr} m(r) c(y) \right] \\ &+ \frac{1}{\mu} \sin a \left[E \sin \theta F \frac{dm}{dr} c(y) \right] \\ &+ \frac{1}{\mu} \sin a \left[\frac{E F m(r)}{\sin \theta} \frac{dc}{dy} \right] \\ &- \frac{1}{\mu r} \cos a \left[E \cos \theta F(r) m(r) c(y) \right] \\ &+ \frac{1}{\mu} \cos a \left[\frac{2 E F m(r)}{\sin \theta} \cos \theta \frac{dc}{dy} \right] \end{split}$$

where the first three terms are always present, but the last five terms are only present when the ray is within the duct of enhanced electron density.

It is useful to know when the radio wave path first becomes tangent to a geomagnetic line. Since the equation of a geomagnetic line is

$$r = c \sin^2 \theta$$

$$\frac{dr}{d\theta} = c 2 \sin\theta \cos\theta = \frac{2 r \cos\theta}{\sin\theta}$$

but $\frac{dr}{d\theta}$ on the ray path is given by

$$\frac{\frac{dr}{ds}}{\frac{d\theta}{ds}} = \frac{r \cos \alpha}{\sin \alpha}$$

Thus when the ray path is parallel to a geomagnetic field line:

ctn a = 2 ctn 0

Whenever this equality holds we know that the ray path may possibly be "trapped" on a magnetic field line.

The remainder of this report deals with the various programming problems and the analog circuits required to successfully and accurately model the system equations. Specific special attention is given to implementing the five terms related to the duct so that they are not present in the circuit when the ray path lies outside the duct, and yet are accurately represented when the ray path is inside of the duct. Special computer control circuits are discussed to accomplish this task. The method of generating F(r), $\frac{dF}{dr}$, c(y), $\frac{dc(y)}{dv}$ is also discussed.

COMPUTER PROCEDURE

An electronic analog computer is an assembly of components whose voltage outputs can simulate the behavior of a physical system. The numerical values of the voltages in the computer are scaled to represent the magnitudes of quantities in a physical system. The computer components operate on their input voltages to produce functions required by the mathematical description of the physical system. By parallel interconnection of the components it is possible to perform many operations simultaneously and thereby construct a computer model of the system. In a general purpose computer the interconnection of the electronic components is established very easily by programming a patch panel, allowing rapid construction and, if necessary, changes in the computer model. The computer contains a complete monitoring capability so that all voltages can be measured accurately and conveniently.

SYMBOLS FOR PACE GENERAL PURPOSE ANALOG COMPUTER

NAME	SYMBOL	FUNCTION	DESCRIPTION
High Gain Amplifier	E G > 10 ⁸ Vo	V _o = - GE	Operational Amplifier
Summer	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V ₀ =-(V ₁ +10V ₂ -5V ₃)	Amplifier Multiple Input
Integrator	$v_1 \circ \underbrace{}_{v_2} \circ \underbrace{}_{v_3} \circ \underbrace{}_{v_0} \circ v_0$	V _o =- (5 V ₁ - V ₂)dt	Amplifier Multiple Input
Coefficient Potentiometer	v ₁ , ~~~ ~ v _o	V _o =KV ₁ 0 < K < 1	Manually Set Potentiometer
Servo Multiplier	+V _p SERVO +LD V _o	$v_0 = + \frac{v_1 v_2}{100}$	Servo Driven Potențiometer
Division Circuit	-V ₂ o 1 v _o	$V_0 = + \frac{100 V_2}{V_1}$	High Gain Amplifier and Servo Driven Potentiometer
Electronic Multiplier	+V ₂ °B +V ₁ °—AEM AB—° V ₀	$V_0 = -\frac{V_1 V_2}{100}$	Elect ronic Multiplier
Servo Function Generator Diode Function Generator	+V ₁ 0 SERVO +V ₀ V ₀ 0 DFG 0 V ₀	v_{o} v_{1} v_{2} v_{2} v_{3}	Arbitrary Functions

The groups of basic components are assembled in electronic racks and wired to a control console:

The control panel contains start and stop switches, as well as means for reading any voltage in the system.

patch board that is used to may represent a particular problem. Next to it is a removable interconnect the basic comions of configurations that ponents in any of the mil-

Above control/patch panels are banks of potentiometers used to set in the numbers representing the parameters of the problem and boundary conditions.

The basic components of the computer perform such mathematical operations as addition, subtraction, multiplication, division, integration, and the computation of analytic or empirical functions (i.e. sines, cosines, etc.). All of the operations required to establish a model of the ray tracing system are readily available.

The basic components, their electrical form, program symbol, and mathematical function are shown in the Table. Assorted view of the PACE General Purpose Analog Computer used in the study are given in the photographs.

EXAMPLE OF COMPUTER RESULTS

The following diagram is an example of the results obtained from the analog computation. The upper figure shows how a set of rays travel at 14 meg. and illustrates the restricted initial angle required to obtain trapping in a plasma duct.

INSTRUMENTATION OF THE REQUIRED EQUATIONS

Page 1 of the analog computer program that was developed by the Research and Computation Division of Electronic Associates, Incorporated, generates the actual integration of the three (3) specified differential equations. The upper right hand side of this page has the integrator that generates r. Directly below this portion of the computer program is another integrator that performs the integration that produces the quantity a. The top left center portion of this page has the integrator that generates the quantity 9. Directly after the a and 9 integrators, one will notice two (2) 8.054 devices. These devices are solid state sinusoid generators that produce the required trigonometric functions of the angles. The lower right hand corner of Page 1 has an amplifier that

The second of the second

ARC LENGTH ALONG EARTH'S SURFACE

generates the quantity $40 \left[\cos \alpha - 2 \cot \theta\right]$. Directly before this amplifier, one will notice that there are two (2) Diode Function Generators (DFG) that produce $40 \cos \alpha$ and $80 \cot \theta$. Associated with each DFG there are two (2) sets of relay contacts. For explanation of these relays see section entitled NOTES ON INSTRUMENTATION OF REQUIRED SYSTEM.

Page 2 of the computer program is devoted entirely to function generation. The functions that are generated on this page are m(r), dF(r)/dr and F(r). The m(r) function is generated in the left section of the page. The dF(r)/dr function is generated in the center portion of the page, and the F(r) function is generated in the right hand portion of page 2. The m(r) function is generated by an amplifier and a bridge limiter. The function generation of dF(r)/dr and F(r) employs amplifiers, bridge limiters, and DFG's. For an explanation of these circuits see NOTES ON INSTRUMENTATION OF REQUIRED SYSTEM.

Page 3 of the analog computer program generates the remainder of the terms and functions required by the equations. These quantities are dc(y)/dy, du/dr, $du/d\theta$, and c(y). In addition to these terms, this page contains the automatic cycling circuit that places the computer in HOLD at various points in the solution. This control circuit may be found in the upper right hand portion of the page. For an explanation of this circuit see section entitled AUTOMATIC CYCLING CIRCUIT. The dc(y)/dy function is generated in the lower left hand portion of page 3. For an explanation of its operation see NOTES ON INSTRUMENTATION OF REQUIRED SYSTEM. The relays that are shown on page 3 insure that when m(r) or dc(y) are zero, then any multiplication by them is indeed a flat zero.

Notes on Instrumentation of Required System

1. Relays Shown on Page 1 of Computer Program. These relays are used to reverse the drive to the associated DFG and to invert the output of the same DFG. One will notice that the function programmed on the DFG is the

contangent of some angle. The angles, that are present in this simulation have their ranges well defined and as a result their contangents may be calculated and placed on DFG's. Because the range of the angles is symmetrical about 90 degrees, the contangent function is symmetrical about zero, and all that is required is to program half the function and attach the appropriate sign to the output. The relays associated with each DFG accomplish the required operations.

2. Function Generation Page 2 of the Computer Program -

A. m(r) is generated by means of an amplifier and a bridge limiter. The amplifier has an output of zero up until such time as the value of r becomes equal to r_c . When r is greater than r_c , the amplifier has some output that is equal to the value of m(r) at that point. The bridge limiter is used to hold m(r) at its maximum value beyond the point r_c . The potentiometer in the feedback path of the amplifier allows the slope of the function to be adjusted. The m(r) function is as follows:

B. The dF(r)/dr function is generated as follows:

$$\frac{dF(r)}{dr} = \left(\frac{dF(r)}{dr}\right)_1 + \left(\frac{dF(r)}{dr}\right)_2$$

 $\left(\frac{dF(r)}{dr}\right)_1$ is a nonanalytic function and with rapidly changing slopes.

 $\left(\frac{dF(r)}{dr}\right)_2$ is an analytic function with gradually changing slopes.

The $(dF(r)/dr)_1$ function is broken up into two sections. One section is simulated using amplifiers and bridge limiters while the other section is instrumented using a DFG. The amplifiers are used to generate straight line segments that approximate the function fairly well. The DFG contains an error function that is added to the straight line segments. This summation of the two sections produces the required function.

- C. The F(r) function is generated in the same manner as dF(r)/dr. (see above for details).
- 3. The relays that are shown in the lower right hand portion of page 2 are used to switch between the first and second portion of the required function. The way in which they are inserted in the problem prevents any discontinuity in the functions.
- 4. The dc(y)/dy function is generated on page 3 in the lower left hand portion of the page. The function is generated in two parts such that when they are added the total required function is generated. The equipment required to generate the function is explained in detail in APPENDIX I of this Technical Report.
- 5. The circuit that generates dc(y)/dy was programmed separate from the rest of the computer program and its output integrated to give the required C(y) function. The output of the integration was plotted and the resultant function was then set up on a DFG. This DFG is in the center of page 3 of the computer program.

Automatic Cycling Circuit

Due to the large amount of switching that is necessary in this computer program, it was necessary to have the computer go into HOLD at certain particular points in the solution. To insure that the machine would go to HOLD at the same point each time, it was necessary to develop a circuit that would accomplish this task. The circuit that was developed is shown in full detail in APPENDIX II of this Technical Report.

Formation of Difference of Geomagnetic Height Within Duct

Since the formation of Δy for input to the c(y) circuit requires the accurate subtraction of two large numbers which are very close to each other, a technique is required to overcome this great error potential. The method adopted here is to compute an integral.

$$\Delta y = \int_{y_1}^{y_2} dy$$

which represents the difference, instead of actually performing a subtraction. Since the computer independent variable is s we must form

$$\Delta y = \int_{y_1}^{y_2} dy = \int \frac{dy}{ds} ds = \int \left(\frac{\partial y}{\partial r} \frac{dr}{ds} + \frac{\partial y}{\partial \theta} \frac{d\theta}{ds} \right) ds$$

since
$$y = \frac{r}{\sin^2 \theta}$$

$$\Delta y = \int \left[\frac{1}{\sin \theta} \left[\cos \alpha \right] + \left[\frac{r-2 \cos \theta}{\sin^3 \theta} \right] \left(\frac{1}{r} \sin \alpha \right) \right] ds$$

$$\Delta y = \int \frac{\sin \alpha}{\sin^2 \theta} \left[\cot \alpha - 2 \cot \theta \right] ds$$

Potentiometer Assignment Sheets

The potentiometer Assignment Sheets list all the potentiometers that are used in the computer program, together with their settings for the static check conditions. A copy of these sheets may be found in APPENDIX III.

Amplifier Assignment Sheets

The Amplifier Assignment Sheets list all of the amplifiers that are used in the computer program, together with their calculated and measured values for the static check conditions. A copy of these sheets may be found in APPENDIX IV.

Computer Program Static Check (Theoretical)

The Theoretical Static Check is a mathematical calculation performed on the basic equations without considering any scale factors. A set of conditions is chosen and then all required calculations are performed until every quantity that is required by the computer program has been calculated. A copy of the theoretical static check is provided in APPENDIX V.

Computer Program Static Check (Voltage)

The Voltage Static Check of the computer program is provided to enable the computer operator to verify the outputs of the various computation elements against the Theoretical Check values. The voltage static check is the same as the theoretical one except that all scale factors must be considered. A copy of the voltage static check may be found in APPENDIX VI.

REFERENCES

- 1. Radio Waves in the Ionosphere, K.G. Budden, Cambridge University Press, 1961.
- 2. Exploratory Programming Studies for Ionospheric Ray Tracing. Contract No. AF(604)-7294.

APPENDIX I

ELECTRONIC ASSOCIATES, INC. PRINCETON COMPUTATION CENTER

BOX 582, PRINCETON, N. J.

DATE 8/20/62 SEMERATION OF ACTUS FUNCTION PROJ. NO. 4700

THE FUNCTION day /dy is DEFINED TO BE AS FOLLOWS:

8 = 1/2 Km 2y = 10 Km; 25 Km; 50 Km; 75 Km; 100Km AND 200 Km

THE SHAPE OF THE PULSE IS SINUSOIDAL WITH THE MAXIMUM VALUE OF 1.0 BEING ACHIEVED AT 5/2.

THE METHOD OF INSTRUMENTATION FOR THIS FUNCTION EMPLOYS THE USE OF ELECTRONIC ASSOCIATES INC. MODEL 8.054 FLECTRONIC SINUSOID GENERATORS.

THIS ELECTRONIC DEVICE PERFORMS THE FUNCTION OF A RESOLVER. (LE WHEN A VOLTAGE PROPORTIONAL TO AN ANGLE IS SUPPLIED TO THE DEVICE THE OUTPUT OF THE SINUSOID GENERATOR IS EQUIVALENT TO 100 SIN OR 100 COS OF THE REQUIRED ANGLE.)

BECAUSE THE SHAPE OF THE PULSE IS SMUSSIDEL, ALL THAT IS REQUISED

15 THE CORRECT METHOD OF OBTAINING THE NPUT. THE FOLLOWING INFORMATION
AS TO THE 8.054 SINUSOID GENERATOR WILL PROVE VALUEBLE.

INPUT YOLTAGE	OUT PUT VOLT	AGE
00.00	00.00	(SIN 0°)
72.50	+ 70.70	(sin 45°)
45.00	+100.60	(SIN 90')
67.50	+70.70	(SIN 135°)
90.00	00.00	(SIN 180')

ELECTRONIC ASSOCIATES, INC. PRINCETON COMPUTATION CENTER

BOX 562, PRINCETON, N. J.

SUBJECT COMPUTER CIRCLIE FOR GENERATION SHEET NO. 2 dely)/14 FUNCTION GENERATION

REQUIRED d City /dy THE FOLLOWING CIRCUIT WAS USED TO GENERATE THE

- 1) AMPLIFIERS 1 + 2 PROVIDE THE CORRECT INPUT VOLTAGE BOTH MAGNITUDE AND SIGN.
- 2) THE BRIDGE LIMITERS PROVIDE THE CORRECT CUTOFF VOLTAGES.
- 3) AMPLIFIERS 344 ISOLATE THE BRIDGE LIMITERS FROM THE 8.054 UNITS.
- 4) AMPLIFIERS 5, 6, 7 AND 8 ARE REQUIRED BY THE 8.054 UNITS.
- 5) AMPLIFIER 9 IS USED AS AN INVERTING AMPLIFIER.
- () AMPLIFIER 10 IS USED TO COMBINE THE ELFRIENTS THAT FORM

THE FUNCTION Cly) IS ACHIEVED BY INTEGRATING dely)/dy. C(4) IS THEN PLACED ON A DIODE FUNCTION GENERATOR

PRINCETON COMPUTATION CENTER

BOX 562, PRINCETON, N. J.

SUBJECT COMPUTER CIRCUIT FOR GENERATION OF SCHOOL STATES

SHEET NO. 2 OF 2

THE POLLOWING CIRCUIT WAS USED TO GENERATE THE REQUIRED dely /dy

- 1) AMPLIFIERS 1 + 2 PROVIDE THE CORRECT INPUT VOLTAGE BOTH MAGNITURE AND SIGN.
- A) THE BRIDGE LIMITERS PROVIDE THE CORRECT CUTOFF VOLTAGES.
- 3) AMPLIFIERS 3 4 4 ISOLATE THE BRIDGE LIMITERS FROM THE 8.05 4 UNITS.
- 4) AMPLIFIERS 5, 4, 7 AND 8 ARE REQUIRED BY THE 8.054 UNITS.
- 5) AMPLIFIER 9 IS USED AS AN INVERTING AMPLIFIER.
- () AMFLIFIER 10 IS USED TO COMBINE THE ELFMENTS THAT FORM dely)

THE FUNCTION C(y) IS ACHIEVED BY INTEGRATING dc(y)/dy. C(y) IS THEN PLACED ON A DIODE FUNCTION GENERATOR.

ELECTRONIC ASSOCIATES, INC. PRINCETON COMPUTATION CENTER

BOX 582, PRINCETON, N. J.

N RA DATE 8/20/62	SUBJECT COMPUTER CHANGES FOR VARING CHANNEL WIDTHS	PROJ. NO. 4	
		PoT	No
CHANNEL WIDTH (24)	SCALE OF dely)/dy + Cly) DRIVE	P40	940
10 KM	5 (Ay + 2)	. 3333	. 1000
25 KM	2 (by +5)	. 1322	.1000
50 KM	(Ay +10)	. 0666	.1000
75 KM	3 (Ay+15)	.0444	-1400
lookn	5 x10 (by +20)	.0333	.1000
200 K M	2.5x10 (Ay +40)	.0167	.1000

APPENDIX II

ELECTRONIC ASSOCIATES, INC. PRINCETON COMPUTATION CENTER

BOX 562, PRINCETON, N. J.

NY RB

SUBJECT COMPUTER CIRCUIT FOR
AUTO MATIC CYCLING OF COMPUTER

SHEET NO. 1 OF 3

F.L. . FEFD BACK LIMITER

OPERATIONAL NOTES

WID POINT OF CHANNEL MEASURED

FROM (y-y_) = 0:

To point of Channel Measured

FROM (y-y_) = 0:

To point of Channel Measured

FROM (y-y_) = 0:

To point of Channel Measured

FROM (y-y_) = 0:

To point of Channel Measured

FROM (y-y_) = 0:

To point of Channel Measured

FROM (y-y_) = 0:

To point of Channel Measured

To point of Channel Meas

IF 17 IS DESIRED TO PLACE THE DUCTING CHANNEL AT A VALUE OF (y-y₀) = -8,000 km

AND THE CHANNEL IS TO BE 200 Km WIDE THEN THE VALUES SHOWN IN FIGURE 1.

ARE REQUIRED TO MAYE THE MODE CONTROL OF THE COMPUTER FUNCTION PROPERLY. THE

MODE CONTROL CIRCUITRY SHOWN ABOVE IS NOTHING MORE THAN TWO (2) ABSOLUTE VALUE

CHARLIES IN CASCADE, EACH OF WHICH HAS AN ADDITIONAL INPUT FROM A TPOT.

THE OUTPUTS OF AMPLIFIERS 1 AND 3 WILL BE NEGATIVE OR ZERO. THE OUTPUT OF AMPLIFIER 2 WILL BE \$ 10 VOLTS DEPENDING UPON THE SUMMATION OF ITS INPUTS. THE OUTPUT OF AMPLIFIER 4 WILL BE \$ 100 VOLTS DEPENDING UPON THE SUMMATION OF ITS INPUTS.

THE 1000 MILL CAPACITOR AROUND AMPLIFIER 4 IS USED TO SHAPE THE PULSE

THAT DRIVES THE MODE CONTROL RELAY. POT \$ 3 IS USED TO BIAS THE CONTROL

PULSE.

FOR THE CONDITIONS SPECIFIED IN FIGURE 1. POT #1 HAS A SETTING OF 0.8100 !

AND POT #2 A SETTING OF 0.8100.

ELECTRONIC ASSCCIATES, INC. PRINCETON COMPUTATION CENTER

BOX 582, PRINCETON, N. J.

 <u> </u>	28		
	/20	142	

CYCLING OF COMPUTER (CONT.)

SHEET NO. 2 OF 3 PROJ. NO. 4706

NOW THAT THE VARIOUS ELEMENTS OF THE CYCLING CIRCUIT HAVE BEFN DEFINED CONSIDER THE CIRCUIT OPERATION.

- 1) AS LONG AS THE OUTPUT OF THE DOTTED AMPLIFIER IS LESS THAN THE OUTPUT OF POT #1, THE OUTPUT OF AMPLIFIER #1 IS NEGATIVE.
- 2) THE NEGATIVE VOLTAGE AT THE OUTPUT OF AMPLIFIER #1 IS COMPARED WITH

 THE POSITIVE OUTPUTS OF POTS #1 AND #2 AT THE GRID OF AMPLIFIER #2.
- 3) CONSIDER THE CASE WHERE $(y-y_0) \leftarrow (y-y_0)$, . ASSUME THAT $(y-y_0) = -7000 \text{ Km}$ THE OUT PUT OF DOTTED AMPLIFIER IS -70.00 VOLTSTHE OUT PUT OF AMPLIFIER #1 IS +11.00 VOLTSTHE OUT PUT OF POT #2 IS +11.00 VOLTS
- 4) THE SUMMATION OF INPUTS AT THE GRID OF AMPLIFIER #2 15 10.00 VOLTS

 (C (+81.00 (1.00)(2) (70.00) + 1.00) = -10.00 VOLTS
- 5) THE OUTPUT OF AMPLIFIER #2 IS +10.00 VOLTS. WHEN THE OUTPUT OF
 AMPLIFIER #2 IS POSITIVE THE RAY BEING TRACED IS OUTSIDE THE
 DUCTING CHANNEL
- 4) THE OUTPUT OF AMPLIFIER # 3 IS -10.00 VOLTS
- 7) THE OUTPUT OF AMPLIFIER #4 18 +100 VOLTS AND THE COMPUTER IS IN OPERATE,

 [C (+10.00 (10.00)(2) + 8.00) = + 2.00 VOLTS

 EVEN THOUGH THE ACTUAL SUMMATION OF THE INPUTS IS ONLY -2.00 VOLTS

 THE AMPLIFIER HAS ONLY A LIMITER FOR FEEDBACK AND THEREFORE THE

 OUTPUT GOES INTO THE CORRECT LIMIT.
- 8) AS THE OUTPUT OF THE DOTTED AMPLIFIER BECOMES CLOSER AND CLUSER TO:
 THE VALUE OF POT *1 THE OUTPUT OF AMPLIFIER *1 BECOMES LESS AND
 LESS NECRTINE. FOR THE CASE UNDER STUDY WHEN THE OUTPUT OF THE DOTTED
 AMPLIFIER BECOMES -80.00 VOLTS THE OUT PUT OF AMPLIFIER *1 IS -1.00 VOLTS.
 THE OUT PUT OF AMPLIFIER *2 BECOMES -10.00 VOLTS. AMPLIFIER OB BECOMES ZERO.
 THE QUIDOT OF AMPLIFIER *4 BECOMES +100.00 VOLTS.

NOTE: AS AMPLIFIER #2 WENT FROM +10.00 VOLTS TO -10.00 VOLTS THERE WAS A PULSE CREATED OUT OF AMPLIFIER #4 THAT PLACED THE COMPUTED IN MAIN

ELECTRONIC ASSOCIATES, INC. PRINCETON COMPUTATION CENTER BOX 882 PRINCETON, N. J.

DATE 8/20/62 SUBJECT COMPUTER CIRCUIT FOR AUTOMATIC SHEET NO. 3 OF 3

APPENDIX III

VIILE CAMBRINGE RESEARCH PROJ. 4700 R.B.

Electronic A

Princeton Cor

POTENTIOMETER ASSIGNMENT SHEET

		T		T	POIENI	IOMETER ASSIGNME	N 1 3
POT. NO.	RUN NO. STATIC CHECK	SETTING RUN NO,	SETTING RUN NO.	SETTING RUN NO.	β = 10^{-3}	PARAMETER Description	PO1
POO	.2045				d STATE CHECK = 40.9	(~/200).	POC
900	.1146					(57.3) (1×10. /8	900
POI	,3000				OSTATIL CK = 60°	(0/200).	POI
901	.1146					(67.3) (10-6/3)	901
P02	,9561				B,= 10-2	(57.3/2) (10 -4/B,)	POS
908							908
POS		,					POS
808							902
P04	. 3333						P04
904	, 4500						904
P06	.3563				& STATE CHECKS 7/25 A. K. M.	(5×10-5r).	POS
999	. 0500					(5 x 10 /B)	906
P00	.1000					SF	PO
406							000
P07							P07
007							907
	.3400					10e,	POS
	.1250					SF	908
	.4100					SF	P09
000	.3335						909
MO	.0010						PIO
910	. 0000						Q10
PH	.0245						PII
	.0202						911
PIE	.0009				, and the second		PIZ
918							Q12
	10436						PI3
013							013
P14							P14
914	. 3345		<u></u>			(5×10 E), (6690)	Q14

Computation Center

MINETON, N.J. PHONE PRINCETON 1-2291

TEET

SHEET | OF 2

		JILL	IIOF	٤.			· · · · · ·
POT.	RUN NO.	SETTING	SETTING	SETTING	NOTES	PARAMETER DESCRIPTION	POT.
PI5	GHECK	1					P15
	,3334	 		<u> </u>	<u> </u>		
Q15					Transfer Charles Communication of the Communication		Q15
PI6	<u> </u>					<u> </u>	P16
Q16	.8500				e, = 0.034	250,	916
PI7		ļ					P17
Q17	. 5000				DIAL	LIMIT	Q17
PI8						ļ	PIB
Q18	.5000				DIAL	LIMIT	018
PI9							PIS
Q19	, 5000				DIAL	LIMIT	CHS
P20							P20
920							920
P21							P21
021							921
P22	0400				4 × 10 - 5	SF	P22
Q22	. 0400						922
P23							P23
923	2500	 				SF	Q23
P24	122 370 (P24
924	.3435	 				5 × 10 / 101	924
P25	1		<u> </u>			e,	P25
025	0460				e, = 0.034	2,	925
_	. (340			 	9 0.004		_
P26		 					P26
Q26	<u> </u>	<u> </u>				<u> </u>	
P27	 	 	<u> </u>	 		1	P27
Q27	.5000				D:# 6_	LIMIT	927
P28						 	P28
928	5000				DIAL	LINIT	928
P29							P29
929			<u></u>	<u> </u>	<u> </u>	·	Q29

B 8/CA

B COMPUTERL

8/1/62

CAMBRIGGE RESEARCH

PRUS #760

RB

Electronic .

Princeton Co

POTENTIOMETER ASSIGNMENT SHEET

POT.	SETTING	SETTING	SETTING	SETTING	NOTES	PARAMETER DESCRIPTION	POT.
	STATIL CNRCK						
P30							P30
Q30	.1766					2 C. F MM/Are	Q30
P31							P3!
Q31							Q31
P32							P32
Q32							Q 32
P33							P33
Q33							Q33
P34							P34
Q34	3685						Q34
P 35							P35
Q35							Q35
P36							P36
Q36							Q36
P37							P 37
Q37	.5000			<u> </u>	DIAL	LIMIT	Q37
P38							P38
Q38	. 5000				DIAL	LIMIT	Q38
P39							P39
Q39	.5000				DIAL	LIMIT	Q39
P40	.0333				B, = 10	10-3/8,	P40
Q40	. 0999					0.1000	940
P41	.0048					REINS BIAS MLY HE	P41
Q41	.0050					CHANNEL WILTH /S	Q41
P42	F						P42
Q42	.586/					J = MIC -CHANNEL	042
P43							P43
Q43							Q43
P44							P44
944	,3000				For plating		Q44

ronic Associates, inc

ceton Computation Center

& PRINCETON, M.J. PHÔNE PRINCETON 1-2291

NT SHEET

POT.

NO.

P30 Q30 R3I Q31 P32 Q 32 P33 Q33 P34 Q34 P35 Q35 P36 Q36 P37 **Q37** P38 Q38 P39 939 P40 940 P41 Q41 P42 042 P43 Q43 P44 944

SHEET 2 OF 3

					•	
POT.	SETTING	SETTING	SETTING	SETTING	NOTES	PARAMETER
NO.	RUN NO. STATIC CHEEK	RUN NO.	RUN NO.	RUN NO.	NOTES	DESCRIPTION
P45						
Q45	. 8500					362,
P46						
946	.7709					5"x10" Yo
P47						
047	50C C				DIAL	FIMIT
P48	0.2000					3 F 2/59.3
048	. 2224					2 1/0 2/57.3
P49						4 40
Q49 Q50	.4446					10ta 6. 1573
Q51	. 3942					2 (1.471)/10
952	.4000					SF
953			 			
Q54						
Q55	.6620					(1.47/x 90/200
Q56	: 9000				,	SF
Q57						
Q5 8						
Q59	.0580					
960	مرجهد.		·		E, = 6870	5 × 10 101
961	. 3089				·	5×10 6 (6574 K
962	.3/86				To = 6370	5x10 6
963	.1764					
064	. 4704					- G - G / J
965	.0283		-			E, - re, Junio Ma
Q66 Q67	1/ / =					SE 5×10/3×10-1
968	.1667	_				SE SXIS
969	. 4730	 		-		

B COMPUTER

B/1/6/2

CRMBPILLE RES.
PRAT 1700

PB 1

Electronic Associates, Inc

Princeton Computation Center
sox see Princeton, N.J. PHOME PRINCETON 1-8881

POTENTIOMETER ASSIGNMENT SHEET

SHEET 3 OF 3

	MITOME	LI 400	0.10.2.11	<u> </u>		SHEET 3	- 01
POT.	SETTING	SETTING	SETTING	SETTING	NOTES	PARAMETER	РОТ.
NO.	RUN NO.	RUN NO.	RUN NO.	RUN NO.		DESCRIPTION	NO.
070	:0656				a=6370	102 (4.18)/4	970
971							971
Q72	.1726				-		972
973	.6654						Q73
Q74	2500				ŞF	74	974
975							Q75
976							976
977	. 3744						977
978	.6772						Q78
979	.5000				SF	1/2	979
980							Ge U
981	.5750					5x10 5(11,500)	981
982	.3235						982
983	.8251						963
984	. 3279						Q84
985	, , ,						985
988	4255				SF	5x10-3/1.175x102	986
987	.5370						Q87
988	.7370	I					988
989	.7080						989
990							G90
991							991
992	.3305						992
	.0500				SF	1/20	993
Q94							994
996							995
996							996
	.2667	l					997
990	1000				SF	110	998
999							999
	<u> </u>		 	•			M354

M354

ELECTRONIC ASSOCIATES, INC.

The state of the s

LONG BRANCH, NEW JERSEY

EV	SUBJECT POT SHE	FT FOR SHEET NO. 1
POT No	SETTING	PORAMETER
Poo	0.8215	0.825
Po2	0.8215	0.8215
Q02	0.1735	0.1785
Po4	0.03/9	1/31.38
908	0.0800	0.08
P17	0.1000	0.1000
Q17	0.2778	25/90
P/8	0.6000	0.6000
QIB	0.2778	25/90
Q06	0.6749	0.6749
924	. 0798	Pulse bias
Pos	9963	
116	,6000	
17	. 9961	
₩8	.0000	

APPENDIX IV

231 R AMPLIFIER ASSIGNMENT SHEET

PROBLEM 407
DATE 6/9/62

АМР		FUNCTION, AND / OR	STATIC CHECK CALCULATED MEASURED				NOTES
AMP NO.	FB	VARIABLE	CHECK PT		CHECK PT	OUTPUT	NOTES
00	I	ع ^د ⁄.,		+20.45			
1	I	್ /೭	42 (a. 3 27	+ 2 . 33	+ 26.27	+30.00	
Ц	Nebe	ccsis - try card - 1A				-41.14	
3	No Ne	100 COS of		-75.575		-7519/2	
•	s'G	NOTE 1		+51.50		+51.40	
5	J.	5·10-3 r	+27.79	+35.625	+37.75	+3:.62	
6	5	-5110 3 r		-31,625		-35.62	
н	الإ مو					+6.07	
8	N. A.C	- Ind sin a		-65.474		-65.38	
9	S	40 [cot a - 2 cct e]		-0.015		+0.06	
10	5	NOTE 5	_	+4.265		+4.21	
1	5	-10 F7) (1+00) Cy] = @		-37.55		-37 60	
	$\kappa_{\epsilon_{4_6}}$					- 60.63	
3	N _{C bo}			-50,0		-49 35	
٩	s'6	5.105 sin x/r		+ 45.946		+45.64	
5	s	- 5.105 de		-45.946		-45.84	
•	S	NOTE 2		+6.35		+647	
<u> </u>	No4e	sin 6 - trig card - 1D				-0.05	
•	Non C	-100 SIN B		-86.6 ()		-86.01	
•	5'6	NOTE 3		- 5, 546		-5,04	

231 R AMPLIFIER ASSIGNMENT SHEET

DATE 8/9/62

				STATIC	CHECK	<u> </u>	
AMP NO.	78	FUNCTION, AND / OR VARIABLE	CALCULATED		MEASURED		NOTES
10.		VARIABLE	CHECK PT.	OUTPUT	CHECK PT.	OUTPUT	
20	5	-[OUTPUT A13]		+5.546		+5.64	
ľ	S	540 Ft ws @ com [1+ mb) QY)]		+ 19,91		+ (9.80	
H	8'6	NOTE G		-2.794		-2.84	
3	No.	10 F() cos e cos e [1+ m(r) (7)]		+ 28 .38		+28.47	
1	56	- [OUTPUT A21]		-19.91		- 103,20	
8	S	NOTE 7				+97.79	
	S	- [OUTPUT A 25]				-97.79	
7	N _{ONE}	10 F(1) SIR 0		+65.04		+65.40	
		-10 SIN @ dF(r)		+ 4.268		+4.21	
1	NON E	-102 cos & F(r)		- 37, 55		-37.72	
30	S	NOTE 4		-3.71		- 3.37	
Ľ		+102 FG/[1+m41C(V)] cas a		+39.24		139.40	
2	NON	+102 m(r) C(y)		+4.50		+4.53	
3	7° 24	-10 m(r) C(y) SIND (F(r)		+0.19		+0.22	
L	NONE	-50 F(r) SINA C(y)		-6.50		- 6.48	
5	S	- 10, E(1) zin 0				-65,40	
Ŀ	-	+ 5x103 y		+47.50		+ 47.65	
	N _{ON}			-1.69		-1.68	
•	NONE E	- 5×1034		-47.50		-47.62	
•	b _{NE}	+10 For mir) C(y) SIN O		+2.43		+2.94	

231 R AMPLIFIER ASSIGNMENT SHEET

PROBLEM 407

DATE 8/10/62

				STATIC	CHECK		
AMP NO.	FB	FUNCTION, AND/OR VARIABLE	CALCU	LATED	MEASURED		NOTES
NO.		VARIABLE	CHECK PT.	OUTPUT	CHECK PT.	OUTPUT	
† 0	I	+ 5(ay+2)		+11.25		+11.29	
-	S	+50 F(1)C(y) 21N 9		+6.50		+6.48	
_		+5x103 r sin 0		+30.85		+30.92	
		+5x103 r cm A		+17.81		+17.83	
4	N. NE	-100 F(r) & C(y)		-76.88		-76,60	
5	દ			+51.94		+5"1.94	
6	5	10-2(4-4.)					
7	NC NE	+200 H SM 8 3 (1)		+34.45		+40.30	
6		NOTE 6		-163.75		-104.9	
•	NON B	-80 cos d ect 0		-34,91		-34,95	
50	S ,	-1.471 [d"-90"]		+72.23		+72.25	
1	S	-2[0-90]	:	+60.00		+60.02	
2	S	2 [6'-90']		-60,00		-60,02	
3	S	+80 cor 8		-46.19		-4623	0> 90°
٠	S	-40 COTX		-46.18		-46.34	()** × ×).
5	\$	USED WITH DEG F.O					
•	ร	+ 100 SINK		+45.474		†65 . 36	
7	-						
•	S	+200 m(r)				+45,32	
•	3	+1.471 [a"-90"]		-72.23		72.20	

231 R AMPLIFIER ASSIGNMENT SHEET

PROBLEM 407
DATE 6/10/62

			Ţ ·	STATIC			
NO.	FB	FUNCTION, AND / OR	CALCU	JLATED	MEAS	URED	NOTES
		VARIABLE	CHECK PT.	OUTPUT	CHECK PT	OUTPUT	
,0	5'6	+ 200 m(r)				+45.45	F.L.09
1	56	+.8 6 206 (r- 6574)		In limit		In hort	
2	56	+.3 (r-r.)		In linit		In limit	
_		SEGMENT WI dF(r)		In limit		Ir lingt	
4	5 '6	SEGMENT #3 dF(r)		In horit		In limit	
5	5	+ 100 SIN 0		+86.613		+86.60	
6	ς	+100 600		150.00		+49.95	
7		USED WITH DEG F66					Professional and the same regard about the second to the contract of the contr
•	S	+ 10 { a F (r) }		-1 92 9		- 4.95	
٢	S	Function Generation		- 2.07		-2.30	
0	S	+ 102 F(r) cos @				+2772	
1	S	+ 104 F(r) SIM O				-4.29	
_		segment #2 $\frac{dF(r)}{dr}$		In Imit		In his it	
-	_	Segment #4 dF()	 	I		In linit	
1	s <i>G</i>	$+10^4 \left\{ \frac{dF(r)}{dr} \right\}$		-7.00		- 7.25	
٥	5	Usec with DES Foz					
١	5	-102 m(r) C(y)		- 4.50		-4.53	
7	5	-5x10 0					
•	S	-104 dF(1)		+4.93		+4.95	
•	5	+ 104 disco		-4.93		-4.95	

231 R AMPLIFIER ASSIGNMENT SHEET

PROBLEM 407
DATE 6/10/62

			,		017011		
AMP NO.		FUNCTION, AND / OR	CALCU	STATIC	CHECK	LIGED	NOTES
NO.		VARIABLE	CHECK PT.		CHECK PT.	OUTPUT	MOTES
පිං	5	- 50c(y)		-10.00		-10.00	
'	s'6	- 1.175 x 152 (r- 11,500)		+51.406		+51,41	
2		Segment #1 F(r),		In Init		<u>I</u> n	
3		segn out #2 F(r),		I n		In	
1	-	Segment #3 F(1)		I_{ij}		I_n	
9	X73 1NV						th restaulter retirementation on a thin completent of recognizing a con-
6	S	+100 dC(y)		+100,00		+99.93	
1	s	+ 102 F(r)		+75.10		+75.60	
•	s	-10°F(r)2		-75 10		-75,5B	
•	S	Function Generation		+24,40		-24.90	
90	S	-200 m(i)				-45,32.	
Ľ	5	10-20(0-0.)+:10-24					
2	36	Segment #4 F(r)		I,		\mathcal{I}_{k}	
3	s'&	10 ² F(r) ₁		+100.00		199,43	
4	5	Pletting Applifus					
5	X.A INV						
•	5	+100 F(r) [d C(r)		+76.8B		+ 76.70	
7		Used with DFG F69					
•	S	-10 E [SINY + 2 COSYLUTA]		-51.44		-51.93	
•	S	-102 F(r)		-75.10		-75.60	

TANCTRONIC ASSOCIATES. INC.

Amalifier Notes

A Computer

B.4/42

2x104 [(+ m(r)C(y)) F(r) cos (3 cos) - 2x[NOIE 6]

(NOTE 4)

(9)

(1) Without Modulation 100 [1-0, FG) SN 0]

With Modulation: 100 [1-0, 10(1) sino - e, 1(1) sino m(1) ayi]

Amp	Parameter	stichk cale.	Output
Fuo	80 - d e	+ 46.19	+ 16.30
FLZ	-40 cold	+ 46,18	+ 46,34
F. 3	EXID A (dF(r))	0.00	4 0,50
Fo4	2X10 1 / 1/5(1);	0.00	+ 0.50
F66	102 (AF(1)).	+75,10	+75.60
F.9	50 C(y)	+10:00	-110,00
FO	+ 100 cosx	+75.585	475.50
F-5	-0.3 (r- ro)	In Limit -	· ·
F76	-10+ (dF(+)/dx),	+ 7.00	+ 7.25

. Parameter

- 80 cot 0 -200 Flym(r) SC(4) F57 F59

- 39.95

40.30

14 14:2

231 R AMPLIFIER ASSIGNMENT SHEET

PROBLEM 4700 PROTECT

C MACHINE

			<u> </u>	STATIC	CHECK		1
MO.	FB	FUNCTION, AND/OR VARIABLE	CALCU	LATED	MEASURED		NOTES
			CHECK PT.	OUTPUT	CHECK PT.	OUTPUT	
<i>∞</i>							
1							
2	s'6	-510, 8 [SMO 82/5]	ļ 	-24.946			
3		+860 ELM /SINTO		-0.25			
•		+ {660.2[5100-0.826]} 2/100		+6,223			
6		560.2 SING - 0.8215]		+24.946			
	Ş	-/00 SIN" 8		-75.00			
-	S	100 SIN 8		+75.00			
-	<u>s'G</u>	-500 Elim		+ 0.19			
10							
1							
2		-500 SINE COTE - 20070 LIM		+0.16			FQUIVALENT TO -500 Y
3	S	-500 ELIM /SIN'B		10.25			
•		FUNCTION GENERATION 100 SIN YI		-0.25			
5	\$	Y, FUNCTION GENERATION		+ 45.00			
٠	S	Y & FUNCTION GENERATION		-0.00			
1	56	Y, FUNCTION GENERATION		-45.00			<u> </u>
븨	SG	Y FUNCTION GENERATION		+0.00			
]		•]

1

231 R AMPLIFIER ASSIGNMENT SHEET

PROBLEM	4700	PROTECT
DATE	8/9/62	

C MACHINE

		DATE DITTE					
		FUNCTION AND / OP		STATIC			
AMP NO.	73	FUNCTION, AND/OR VARIABLE	CHECK PT.	OUTPUT	MEAS CHECK PT.	OUTPUT	NOTES
			- Criscon VII	1	Oncor Fi.	001701	
20				,			
,							
!		POUCTION GENERATION	_				
2		100 SIN Y-	Ĭ	+0.01			
Η.							
3		-100 SIN 4,		-100,00			
•	4	-1005IN 42		+0.00			
5	S	+100 SIN 4,		+ 100.00			
•	S	+100 de(4)/44		-100.00			
7							
•							
•							
3 0							
-							
2							
3							
٠							
5							`
•							
7							
						-	
1.						· · · · · · · · · · · · · · · · · · ·	

	suggest Static Check
B1162	I · Besis System

The following static check is for the basic system without modulation terms.

A. Defined Quantities

a)
$$\frac{\theta = 60.0^{\circ}}{\sin \theta}$$
, $\sin \theta = 0.86603$, $\cos \theta = 0.6000$

b)
$$\alpha = 40^{\circ}54^{\circ} (40.9^{\circ})$$
, $\sin \alpha = 0.65474$
 $\cos \alpha = 0.75585$, $\cot \alpha = 1.15442$

B. Equation | Evaluation

$$\frac{dr}{ds} = \cos \alpha = 0.7558$$

. . C. Equation 2 Evaluation

APPENDIX V

ELECTRONIC ASSOCIATES, INC PRINCETON COMPUTATION CENTER BOX 502. PRINCETON, N. J.

BY_Pu	JB .	
	811147	

SUBJECT Static Check

SHEET NO. 2__OF__

PROJ. NO.

D. Equation 3 Evaluation

$$\frac{-4.18(\frac{r}{a} - 1.05)}{1) \quad F(r) = e$$

F(r) = 0.7510

z)
$$\frac{dF(r)}{dr} = -\frac{(4.18)}{a}F(r) = -\frac{(4.18)}{6370}(0.7510) = -4.9281.10$$

3)
$$M = 1 - e_1 \sin \theta F(r)$$

$$\mu = 1 - (0.034)(0.86603)(0.1510)$$

$$M = 1 - 0.0221 = 0.9779$$

4)
$$\frac{\partial u}{\partial r} = -e_i \sin \theta \frac{dF(r)}{dr}$$

$$\frac{\partial u}{\partial \theta} = -(0.034)(0.5000)(0.7510) = -1.2767 \cdot 10^{-2}$$

ELECTIONIC ASSOCIATES, INC. MINISTEN COMPUTATION CENTER

BOX SOR, PRINCETON, N. J.

PWB

SUBJECT Static Check

SHEET NO. 3 OF_

PROJ. NO.

7)
$$\frac{1}{\mu r} \frac{\partial \mu}{\partial \theta} \cos \alpha = -\left(\frac{1}{0.9779}\right) \left(\frac{1.2767 \cdot 10^{-2}}{7125.0}\right) \left(0.75585\right)$$

$$\frac{dd}{ds} = -9.7156 \cdot 10^{-6} - 1.3850 \cdot 10^{-6} - 9.1893 \cdot 10^{-5}$$

$$\frac{dd}{ds} = -10.30 \cdot 10^{-5}$$

\$

with Modulation

A. Defined Quantities (Bid, r, y, e, as before).

$$(x) = (x) = 0.2000$$

Equation (3) evaluation

1)
$$m(r) = \frac{m \cdot m}{6r_c} (r - (c_1)) = \frac{(0.4412)(7125 - 6870)}{(5.00)}$$

3) Terms of 3r

$$\frac{dm(r)}{dr} = \frac{m_{\rm m}}{\Delta r_{\rm c}} = \frac{.4412}{500} = 8.624 \cdot 10^{-4}$$

$$= -(0.0221)(8.824.10^{-4})(0.20) = -3.900.10^{-6}$$

(d)
$$-\frac{e_1 F(r) m(r)}{eine} \cdot \frac{\partial C(r)}{\partial r} = -\frac{(.034)(.7510)(.2750)(1.0)}{(.86603)}$$

the Terms of 1/10

30 - 4 cosp Fr) - - 12767.10-2

(12767 103) (2250) (0200)

= - 5.745 .10-4

(c) + 28, T Kr) (min) coto . ¿C(u)

- (2)(.034)(7125)(.7510)(.2250)(.5774) . (1.0)

54.6833

(d) Summation of 1st a terms

-e, cos o Fir) [i+ mai ca)]

= - 12.767.10-3 - 0.57/15.10-3 - -1.35/12.10

CONTON 378

5458.33:10 +1334 10 -

AND SHIELD CLASS

in Fr ein = (9769) (-6.6225.103) (0.65474)

- - 4.4385.10-3

6) ur de cos w = (1/9769) (125) (17585)

= + 5.7259.10-3

第二十五学sinar 在置加工一个sina

de + 4.43 FE . 103 + 5.9259 1103 - . 09189 . 103

* + 10.0705 \ 10⁻³ = 1.02725 \ \ 10⁻²

APPENDIX VI

.

ELECTRONIC ABSOCIATES, INC. PRINCETON GONPYTATION GENTER BOX 802, PRINCETON, N. J.

suince Cambridge Research 10 40-00) 6/2 .4500 SM2 MIA F(r) MIC B SM7 M35 M40 (+) e>90 -100

ELECTRONIC ASSOCIATES, INC. PRINCETON GOLFFTATION CENTER BOX 868. PRINCETON, N. J.

N RB CONSCT CAMBRIDGE RESERREN

MATE 7/24/62 F. B + d COORDINA TES

SHEET NO. 2 OF ____

REACTIONIC ASSOCIATES, INC.

UNCLASSIFIED 1. Electrical Engineering 2. Ray Tracing With An Analog Computer 1. Besson, David UNCLASSIFIED	UNCLASSIFIED 1. Electrical Engineering 2. Ray Tracing With An Analog Computer 3. Basson, David 4. Basson, David UNCLASSIFIED
AF Cambridge Research Laboratories, Bedford, Mass. PROGRAMMING STUDY FOR HIGH FREQUENCY EXOSPHERIC DUCTING, by David Basson, November, 1962. 14 pp. AFCRL-63-111 Unclassified report This report presents specific analog computer programs effective in the solution of a two dimensional simplified description of the ray paths of radio waves propagating into the earth's exosphere. The main phenomenon examined concerns the conditions necessary for a high frequency (~14 meg.) radio wave to be trapped in a channel of enhanced ionization that is parallel to one of the earth's magnetic field lines. Complete circuit diagrams, a sprical computer output plot, and detailed descriptions of special purpose circuits required to simulate the plasma channel are included within the report.	AF Cambridge Research Laboratories, Bedford Mass. PROGRAMMING STUDY FOR HIGH FREQUENCY EXOSPHERIC DUCTING, by David Basson, November, 1962. 14 pp. AFCRL-63-111 Unclassified report This report presents specific analog computer programs effective in the solution of a two dimensional simplified description of the ray paths of radio waves propagating into the earth's exosphere. The main phenomenon examined concerns the conditions necessary for a high frequency (~14 meg.) radio wave to be trapped in a channel of embanced ionization that is parallel to one of the earth's magnetic field lines. Complete circuit diagrams, a typical computer output plot, and detailed descriptions of special purpose circuits required to simulate the plasma channel are included within the report.
UNCLASSIFIED 1. Electrical Engineering 2. Ray Tracing With An Analog Computer 1. Basson, David UNCLASSIFIED	UNCLASSIFIED 1. Electrical Engineering 2. Ray Tracing With An Analog Computer 1. Basson, David UNCLASSIFIED
AF Cambridge Research Laboratories, Bedford, Mass. PROCRAMMING STUDY FOR HIGH FREQUENCY EXOSPHERIC DUCTING, by David Basson, November, 1962. 14 pp. November, 1962. 14 pp. Unclassified report This report presents specific analog computer programs effective in the solution of a two dimensional simplified description of the ray paths of radio waves propagating into the earth's exosphere. The main phenomenon examined concerns the conditions necessary for a high frequency (~14 meg.) radio wave to be trapped in a channel of enhanced ionization that is parallel to one of the earth's magnetic field lines. Complete circuit diagrams, a typical computer output plot, and detailed descriptions of special purpose circuits required to simulate the plasma channel are included within the report.	AF Cambridge Research Laboratories, Bedford, Mass. PROGRAMMING STUDY FOR HIGH FREQUENCY EXOSPHERIC DUCTING, by David Basson, November, 1962. 14 pp. Movember, 1962. 14 pp. Unclassified report This report presents specific analog computer programs effective in the solution of a two dimensional simplified description of the ray paths of radio waves propagating into the earth's exosphere. The main phenomenon examined concerns the conditions necessary for a high frequency (~14 meg.) radio wave to be trapped in a channel of enhanced ionisation that is parallel to one of the earth's magnetic field lines. Complete circuit diagrams, a typical computer output plot, and detailed descriptions of special purpose circuits required to simulate the plasma channel are included within the report.

And the control of th

To do