(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 September 2001 (13.09.2001)

PCT

(10) International Publication Number WO 01/66905 A2

- (51) International Patent Classification⁷: 3/04, 19/20, 19/15, 19/10, 21/00, 21/10
- E21B 19/16,
- (21) International Application Number: PCT/GB01/00781
- (22) International Filing Date: 26 February 2001 (26.02.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 0004354.7 25 February 2000 (25.02.2000) C
- (71) Applicant (for all designated States except US): WELLSERV PLC [GB/GB]; HWU Department, Orwell House, Souterhead Road, Aberdeen AB12 3LF (GB).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): ROBICHAUX, Dicky [US/GB]; The Tower, Melville Court, 75 Rose Street, Aberdeen AB10 1UH (GB).

- (74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: APPARATUS AND METHOD

(57) Abstract: A tong system includes an upper tong having grips for gripping a tubular and a rotation mechanism to rotate the grips and the tubular. A lower tong also has grips and a rotation mechanism to rotate the grips to provide rotation to a lower tubular, such that the upper and lower tubulars may be made up/broken out from one another, also so that string of tubulars may be rotated for drilling purposes without requiring a rotary table. Also, an apparatus and method for circulating fluid through a tubular string has a first fluid conduit for supplying fluid to the bore of an upper tubular to be made up into or broken out from the tubular string and a second fluid conduit for supplying fluid to the bore of the tubular string, which allows continuous circulation of fluid to occur whilst running the string into/pulling the string from, a borehole and also whilst making up tubulars into/breaking out tubulars from the string. Also, an upper seal for sealing about a portion of the outer circumference of a tubular to be made up onto or broken out from the string and a lower seal means for sealing about a portion of the outer circumference of the string, where the upper seal is an elastomeric ring which has an inner diameter substantially the same as the outer diameter of the tubular. Also, a valve mechanism includes a rotatable plate member and at least one bore. The plate member is moveable between obturation and non-obturation of the tubular. Also, a safety slip to prevent at least one tubular slipping therein has first and second arrangements of grips which are coupled to one another, preferably by a biasing mechanism.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1	Apparatus and Method
2	
3	The present invention relates to an apparatus and
4	method of drilling boreholes in the ground or subsea
5	surface, and also to an apparatus and method for use
6	in workovers, well maintenance and well
7	intervention, and particularly, but not exclusively
8	relates to apparatus and method for use in
9	hydrocarbon exploration, exploitation and
10	production, but could also relate to other uses such
11	as water exploration, exploitation and production.
12	- '
13	Conventional drilling operations for hydrocarbon
14	exploration, exploitation and production utilise
15	many lengths of individual tubulars which are made
16	up into a string, where the tubulars are connected
17	to one another by means of screw threaded couplings
18	provided at each end. Various operations require
19	strings of different tubulars, such as drill pipe,
20	casing and production tubing.
21	

PCT/GB01/00781

WO 01/66905 ·

2

The individual tubular sections are made up into the 1 required string which is inserted into the ground by 2 3 a make up/break out unit, where the next tubular to 4 be included in the string is lifted into place just 5 above the make up/break out unit. A first 6 conventional method of doing this uses a single 7 joint elevator system which attaches or clamps onto the outside surface of one tubular section and which 8 then lifts this upwards. A second conventional 9 10 method for doing this utilises a lift nubbin which 11 comprises a screw thread which engages with the box end of the tubular such as drill pipe, and the lift 12 13 nubbin and tubular are lifted upwards by a cable. However, this second method in particular can be 14 15 relatively dangerous since the lift nubbin and 16 tubular will tend to sway uncontrollably as they are 17 being pulled upwards by the cable. 18 19 From a second aspect, conventional drilling rigs 20 utilise a make up/break out system to 21 couple/decouple the tubular pipe sections from the 22 tubular string. A conventional make up/break out 23 system comprises a lower set of tongs which are brought together to grip the lower pipe like a vice, 24 25 and an upper set of tongs which firstly grip and then secondly rotate the upper pipe relative to the 26 lower pipe and hence screw the two pipes together. 27 28 In addition to this conventional make up/break out 29 system, a conventional drilling rig utilises a 30 rotary unit to provide rotation to the drill string 31 to facilitate drilling of the borehole, where the conventional rotary unit is either a rotary table 32

3

PCT/GB01/00781

1 provided on the drill rig floor or a top drive unit 2 which is located within the drilling rig derrick. 3 4 According to a first aspect of the present invention 5 there is provided an apparatus for handling 6 tubulars, the apparatus comprising a pair of 7 substantially vertical tracks; 8 a rail mechanism movably connected to each track; 9 and a coupling mechanism, associated with the rail 10 mechanism, for coupling to a tubular; and 11 12 a movement mechanism to provide movement to the rail 13 mechanism. 14 According to a second aspect of the present 15 invention there is provided a method of handling 16 tubulars, the method comprising:-17 providing a rail mechanism, the rail mechanism being 18 19 associated with a coupling mechanism for coupling to 20 a tubular, and the rail mechanism being movably connected to a substantially vertical track; 21 coupling the coupling mechanism to a tubular; and 22 operating a movement mechanism to move the rail 23 mechanism. 24 25 The substantially vertical tracks are preferably 26 secured to a frame which is typically a derrick of a 27 drilling rig. The pair of substantially vertical 28 tracks are preferably arranged about the 29 longitudinal axis of a borehole mouth, such that the 30 31 pair of tracks and the borehole mouth lie on a

4

1 common plane, with one track at either side of the 2 borehole mouth. 3 4 Preferably, the rail mechanism is suitably connected 5 to the respective track by any suitable means such 6 as runners or rollers and the like. 7 The movement mechanism may comprise a motive means 8 associated with the runners or rollers and the like. Alternatively, the movement mechanism may comprise a 9 10 cable, winch or the like coupled at one end to the 11 rail mechanism and coupled at the other end to a 12 motor and real arrangement or a suitable 13 counterweight arrangement or a suitable 14 counterbalance winch hoisting or the like. 15 16 Preferably, the coupling mechanism comprises a 17 suitable coupling for coupling to the tubular, where 18 the suitable coupling may comprise a member provided 19 with a screw thread thereon for screw threaded 20 engagement with one end of the tubular. Alternatively, the suitable coupling may comprise a 21 22 vice means to grip the end of the tubular. Alternatively, the suitable coupling may comprise a 23 fluid swivel which couples directly to the end of 24 the tubular, or indirectly to the end of the tubular 25 26 via a kelly. Typically, the derrick may be provided 27 with a tubular rack for storing tubulars, and a ramp 28 which may extend downwardly at an angle from the 29 lower end of the derrick toward the tubular rack, 30 and a tubular guide track may also be provided at 31 one or both sides of the ramp.

1	According to a third aspect of the present invention
2	there is provided an apparatus for handling a
3	tubular, the apparatus comprising at least one
4	substantially vertical track;
5	a coupling mechanism, connected to the track, for
6	coupling to a tubular;
7	a pair of moveable members which are hingedly
8	connected to both the coupling mechanism and the
9	vertical track, such that movement of the pair of
LO	moveable members results in movement of the coupling
11	mechanism substantially about a longitudinal axis of
12	the track.
L3	
L 4	According to a fourth aspect of the present
L 5	invention there is provided a method of handling a
L 6	tubular, the method comprising providing at least
L7	one substantially vertical track;
18	connecting a coupling mechanism to the track, the
19	coupling mechanism for coupling to a tubular;
20	providing a pair of moveable members which are
21	hingedly connected to both the coupling mechanism
22	and the vertical track; and
23	moving the pair of moveable members to move the
24	coupling mechanism substantially about a
25	longitudinal axis of the track.
26	
27	Preferably, a rail mechanism is provided and which
28	is movably connected to the track, and typically,
29	the coupling mechanism is associated with the rail
30	mechanism. More preferably, the pair of movable
31	members are hingedly connected to both the coupling
32	mechanism and the rail mechanism.

1	
2	Preferably, there are a pair of substantially
3	vertical tracks, and the substantially vertical
4	tracks are preferably secured to a frame which is
5	typically a derrick of a drilling rig. The pair of
6	substantially vertical tracks are preferably
7	arranged about the longitudinal axis of a borehole
8	mouth, such that the pair of tracks and the borehole
9	mouth lie on a common plane, with one track at
10	either side of the borehole mouth. Typically, the
11	movement of the pair of movable members results in
12	movement of the coupling mechanism substantially
13	about the longitudinal axis of the track such that a
14	longitudinal axis of a tubular coupled to the
15	coupling mechanism is substantially coincident with
16	the longitudinal axis of the borehole mouth.
17	
18	Preferably, a motive means is provided to permit
19	movement of the pair of moveable members, where the
20	motive means may be a suitable motor such as a
21	hydraulic motor.
22	
23	According to a fifth aspect of the present
24	invention, there is provided a tong apparatus, the
25	tong apparatus comprising:-
26	an upper tong having a gripping means for gripping a
27	tubular, the upper tong further comprising a
28	rotation mechanism to provide rotation to the
29	gripping means to provide rotation to said tubular;
30	and
31	a lower tong having a gripping means for gripping a
32	tubular, the lower tong further comprising a

1	rotation mechanism to provide rotation to the
2	gripping means to provide rotation to said tubular.
3	
4	According to a sixth aspect of the present
5	invention, there is provided a method of providing
6	rotation to at least one tubular, the method
7	comprising:-
8	providing an upper tong having a gripping means for
9	gripping a tubular, the upper tong further
10	comprising a rotation mechanism to provide rotation
11	to the gripping means;
12	providing a lower tong having a gripping means for
13	gripping a tubular, the lower tong further
14	comprising a rotation mechanism to provide rotation
15	to the gripping means; and
16	operating at least the rotation mechanism of the
17	upper tong to provide rotation to said tubular.
18	
19	Preferably, the method further comprises operating
20	the rotation mechanism of the lower tong to provide
21	rotation to said tubular.
22	
23	Typically, the upper tong comprises a plurality of
24	gripping means. Preferably, a range of gripping
25	means can be utilised to grip differing diameters of
26	tubulars.
27	
28 .	Preferably, a motive means is provided to actuate
29	the rotation mechanism, where the motive means may
30	be a hydraulic motor having a suitable hydraulic
31	fluid power supply.
32	

8

1 Preferably, the lower tong comprises a plurality of 2 gripping means. Preferably, a range of gripping 3 means can be utilised to grip differing diameters of tubulars. Preferably, a motive means is provided to 4 5 actuate the rotation mechanism, where the motive 6 means may be a hydraulic motor having a suitable 7 hydraulic fluid power supply. Preferably, the lower 8 tong further comprises a turntable bearing means 9 which support ring gear of the gripping means. 10 Typically, the lower tong further comprises a 11 breaking system which permits controlled release of 12 residual tubular string torque. 13 14 Preferably, a travelling slip mechanism is also 15 provided and which is capable of engaging at least a 16 portion of the outer circumference of a tubular 17 string, and preferably, the travelling slip is capable of being rotated with respect to the derrick 18 19 by means of a rotary bearing assembly mechanism. Typically, the travelling slip is provided with a 20 21 vertical movement mechanism which can be actuated to 22 move the travelling slip and the engaged tubular 23 string in one or both vertical directions. 24 25 According to a seventh aspect of the present 26 invention, there is provided an apparatus for 27 circulating fluid through a tubular string, the 28 string comprising at least one tubular, the 29 apparatus comprising:-30 a first fluid conduit for supplying fluid to the 31 bore of an upper tubular to be made up into or 32 broken out from the tubular string; and

9

1 a second fluid conduit for supplying fluid to the 2 bore of the tubular string. 3 4 According to an eighth aspect of the present 5 invention, there is provided a method of circulating 6 fluid through a tubular string, the string 7 comprising at least one tubular, the method 8 comprising: -9 providing a first fluid conduit for supplying fluid to the bore of an upper tubular to be made up into 10 or broken out from the tubular string; and 11 12 providing a second fluid conduit for supplying fluid 13 to the bore of the tubular string. 14 15 Preferably, the first fluid conduit is releasably 16 engageable with an upper end of the upper tubular. Preferably, the first fluid conduit is provided with 17 18 a valve mechanism which can be operated to permit 19 the flow of fluid into or deny the flow of fluid 20 into the first fluid conduit and/or upper end of the 21 tubular. 22 23 Preferably, one end of the second fluid conduit is 24 in fluid communication with a chamber, and 25 typically, the second fluid conduit is provided with 26 a valve mechanism which can be operated to permit 27 the flow of fluid into, or deny the flow of fluid 28 into, the second fluid conduit and/or the chamber. 29 30 Preferably, the chamber is adapted to permit a 31 tubular to be made up into, or broken out from, a 32 tubular string. The chamber typically comprises a

10

1 bore, which is preferably arranged to be 2 substantially vertical, and is more preferably 3 arranged to be coincident with the longitudinal axis 4 of the mouth of the borehole. Typically, the chamber comprises an upper port into which the said 5 6 tubular can be inserted into or removed from the 7 chamber. Preferably, a valve mechanism is provided 8 and is actuable to seal the bore of the chamber, 9 typically at a location below the upper port. 10 Preferably, an upper seal is provided, where the 11 upper seal is preferably located above the said 12 location, and where the upper seal is arranged to 13 seal around at least a portion of the circumference 14 of the said tubular. Typically, a lower seal is 15 provided, where the lower seal is preferably located 16 below the said location, and where the lower seal is arranged to seal around at least a portion of the 17 18 circumference of the tubular string. 19 20 Preferably, a valve system comprising one or more 21 further valves is provided to control the supply of fluid to the first fluid conduit valve mechanism and 22 23 second fluid conduit mechanism. 24 25 Typically, the method comprises the further steps of 26 inserting the lower end of the upper tubular into 27 the upper port, where the valve mechanism typically denies the flow of fluid into the first fluid 28 29 conduit. At this point, the valve mechanism seals 30 the bore of the chamber. Thereafter, the upper seal seals around at least a portion of the circumference 31 32 of the tubular, and the valve mechanism of the

•

WO 01/66905 PCT/GB01/00781

11

second fluid conduit is operated to permit the flow 1 2 of fluid into the chamber, preferably at a location 3 below the valve mechanism sealing the bore of the chamber, such that fluid flows into the upper end of 4 the tubular string. 5 6 7 The method preferably comprises the further steps of operating the valve mechanism to permit the flow of 8 fluid into the first fluid conduit and upper end of 9 10 the tubular. Preferably, thereafter, the valve 11 mechanism is actuated to open the bore of the 12 chamber, and thereafter, the valve mechanism is operated to deny the flow of fluid into the second 13 fluid conduit. Thereafter, the tubular is 14 preferably made up into the tubular string, and 15 thereafter, the first fluid conduit is typically 16 released from engagement with the upper end of the 17 18 upper tubular. 19 20 According to a ninth aspect of the present 21 invention, there is provided an apparatus for 22 providing a seal between a tubular to be made up in 23 to or broken out from a tubular string, the tubular 24 string comprising at least one tubular, the apparatus comprising:-25 an upper seal means for sealing about a portion of 26 27 the outer circumference of the said tubular to be 28 made up onto or broken out from the string; 29 a lower seal means for sealing about a potion of the 30 outer circumference of the string; and the upper seal comprising an elastomeric ring which 31 32 is adapted to have an inner diameter substantially

12

the same as the outer diameter of at least a portion 1 2 of the tubular. 3 Preferably, the elastomeric ring is formed from a 4 5 suitable material such as rubber. Typically, the 6 lower seal also comprises an elastomeric ring which is adapted to have an inner diameter substantially 7 8 the same as the outer diameter of at least a portion 9 of tubular string. 10 According to a tenth aspect of the present invention 11 12 there is provided a valve mechanism for use in providing a seal between two tubulars, the valve 13 mechanism comprising:-14 a plate member which is capable of rotation about an 15 16 17 at least one bore formed through the plate member; 18 the plate member being arranged such that it is 19 capable of movement between a first configuration in 20 which a portion of the plate member obturates the longitudinal axis of at least one of the tubulars; 21 22 and 23 a second configuration in which the bore is 24 concentric with the longitudinal axis of at least 25 one of the tubulars. 26 According to an eleventh aspect of the present 27 28 invention there is provided a method of providing a 29 seal between two tubulars, the method comprising:providing a plate member which is capable of 30 31 rotation about an axis; 32 the plate member having at least one bore;

13

PCT/GB01/00781

wherein the plate member is capable of being rotated 1 2 between a first configuration in which a portion of 3 the plate member obturates the longitudinal axis of at least one of the tubulars; and 4 5 a second configuration in which the bore is 6 concentric with the longitudinal axis of at least 7 one of the tubulars. 8 9 Preferably, the plate member is capable of being 10 rotated between a first configuration from which a 11 portion of the plate member obturates the longitudinal axis of both of the tubulars, and a 12 13 second configuration in which the bore is concentric 14 with the longitudinal axis of both of the tubulars, 15 both of the tubulars being concentric with one 16 another. 17 Preferably, the plate member is arranged within a 18 chamber, such that the radius of the plate member is 19 perpendicular to the longitudinal axis of both 20 21 tubulars. Preferably, the plate member is substantially circular, and more preferably, the 22 centre axis of the plate member is off-centre with 23 24 respect to the longitudinal axis of both tubulars. 25 26 According to a twelfth aspect of the present invention, there is provided an apparatus to prevent 27 a tubular slipping therein, the apparatus comprising 28 a first arrangement of grips adapted to grip the 29 tubular, and a second arrangement of grips adapted 30 to grip the tubular, characterised in that the first 31

14

PCT/GB01/00781

1 and second arrangements of grips are coupled to one 2 another. 3 4 Preferably the first and second arrangements of 5 grips are coupled to one another by a coupling 6 mechanism which is more preferably a biasing 7 mechanism. Preferably the biasing mechanism is 8 arranged to bias the first and second arrangements 9 of grips away from one another. Preferably at least one of or more preferably both of each of the first 10 and second arrangements of grips comprise a first 11 12 and second portions wherein the first portion is coupled to the second portion by a tapered surface 13 and preferably a moveable locking mechanism, such 14 15 that the first portion is capable of moving with 16 respect to the second portion along the tapered 17 surface. 18 19 Preferably the first arrangements of grips are 20 located vertically below the second arrangements of grips and the first arrangements of grips comprise a 21 22 relatively large surface area for gripping the 23 tubular and are the primary gripping arrangement. 24 25 Typically the second arrangement of grips comprise a 26 relatively smaller surface area for gripping the 27 tubular and provide a backup or safety gripping . 28 arrangement. 29 Preferably a lower face of the second arrangement of 30 grips is coupled to an upper face of the first 31 32 arrangement of grips and the upper face of the first

15

arrangement of grips is of a larger surface area 1 2 than a lower face of the first arrangement of grips. 3 4 Preferably the first arrangement of grips comprise a 5 stop means for preventing movement of the second 6 arrangement of grips in a direction, preferably 7 radially, away from the tubular being gripped. 8 Embodiments of the invention will now be described, 9 10 by way of example only, with reference to the accompanying drawings, in which:-11 12 13 Fig. 1 is a perspective view of a drilling riq 14 incorporating aspects of the present invention; 15 Fig. 2 is a portion of the drilling rig of Fig. 1 in a first configuration; 16 Fig. 3a is a portion of the drilling rig of 17 18 Fig. 1 in a second configuration; Fig. 3b is a more detailed perspective view of 19 the portion of the drilling rig of Fig. 3a; 20 21 Fig. 4 is a front perspective view of a portion 22 of the drilling rig of Fig. 3a; Fig. 5 is a perspective view looking upwardly 23 24 at the portion of the drilling rig of Fig. 3a; 25 Fig. 6 is a perspective view of a ramp and drill pipe loading area of the drilling rig of 26 27 Fig. 1; 28 Fig. 7a is a cross-sectional side view of the 29 derrick of the drilling rig of Fig. 1; 30 Fig. 7b is a front view of the derrick of Fig. 31 7a;

PCT/GB01/00781

1 .	Fig. 8a is a cross-sectional more detailed view
2	of a portion of the apparatus of Fig. 8b;
3	Fig. 8b is a front cross-sectional view of a
4	portion of the derrick of the drilling rig of
5	Fig. 1;
6	Fig. 9a is a cross-sectional more detailed view
7	of a portion of the derrick of Fig. 9b;
8	Fig. 9b is a front cross-sectional view of the
9	derrick of the drilling rig of Fig. 1;
10	Fig. 10a is a more detailed view of a portion
11	of the apparatus of Fig. 10b;
12	Fig. 10b is a front view of the derrick of Fig.
13	1;
14	Fig. 11a is a more detailed view of a portion
15	of the apparatus of Fig. 11b;
16	Fig. 11b is a front view of the derrick of Fig.
17 .	1;
18	Fig. 12a is a side view of the derrick of Fig.
19	1;
20	Fig. 12b is a front view of the derrick of Fig.
21	1;
22	Fig. 13a is a side view of the derrick of Fig.
23	1;
24	Fig. 13b is a front view of the derrick of Fig.
25	1;
26	Fig. 14a is a more detailed view of the portion
27	of the apparatus of Fig. 14b;
28	Fig. 14b is a front view of the derrick of Fig.
29	1;
30	Fig. 15a is a side view of the derrick of Fig.
31	1;

1	Fig. 15b is a front view of the derrick of Fig
2	. 1;
3	Fig. 16a is a side view of the derrick of Fig.
4	1;
5	Fig. 16b is a front view of the derrick of Fig
6	1;
7	Fig. 17a is a front view of upper and lower
8 .	tongs mounted within a snubbing unit;
9	Fig. 17b is a perspective view of a portion of
10	the snubbing unit of Fig. 17a;
11	Fig. 17c is a top view of a portion of the
12	snubbing unit of Fig. 17a;
13	Fig. 17d is a rear view of a portion of the
14	snubbing unit of Fig. 17a;
15	Fig. 17e is a side view of a portion of the
16	snubbing unit of Fig. 17a;
17	Fig. 18 is a more detailed part cross-sectional
18	view of a portion of the snubbing unit of Fig.
19	17a;
20	Fig. 19 is a more detailed part cross-sectional
21	view of the snubbing unit of Fig. 17a;
22	Fig. 20 is a more detailed part cross-sectional
23	view of a portion of the snubbing unit of Fig.
24	17a;
25	Fig. 21 is a more detailed part cross-sectional
26	view of a portion of the snubbing unit of Fig.
27	17a;
28	Fig. 22 is a more detailed part cross-sectional
29	view of a portion of the snubbing unit of Fig.
30	17a;
31	Fig. 23 is a perspective view of a valve plate
32	of the snubbing unit of Fig. 17a;

18

PCT/GB01/00781

1 Fig. 24 is a schematic view of the snubbing 2 unit of Fig. 17a showing a continuous circulation configuration with a main valve 3 4 closed; 5 Fig. 25 is a schematic view of the snubbing 6 unit of Fig. 17a in a continuous circulation 7 configuration with the main valve open; 8 Fig. 26 is a schematic view of the snubbing 9 unit of Fig. 17a incorporating a stripper 10 design; Fig. 27 is a schematic view of the snubbing 11 unit of Fig. 17a incorporating a ram design in 12 13 a first configuration; Fig. 28 is a schematic view of the snubbing of 14 Fig. 17a incorporation a ram design in a second 15 16 configuration; 17 Fig. 29 is a cross-sectional view of a first embodiment of a safety slip mechanism, in 18 19 accordance with a twelfth aspect of the present 20 invention, in an open configuration; 21 Fig. 30 is a cross-sectional view of the safety 22 slip mechanism of Fig. 29 in a closed 23 configuration; 24 Fig. 31 is a cross-sectional view of a portion 25 of the safety slip mechanism of Fig. 29; Fig. 32 is a half cross sectioned view of a 26 27 second embodiment of a safety slip mechanism, in accordance with the twelfth aspect of the 28 present invention, in a closed configuration; 29 30 Fig. 33 is a cross-sectional view of the second 31 embodiment of the safety slip mechanism of Fig. 32 32, but in an open configuration; and

19

1 Fig. 34 is a cross-sectional plan view of the 2 safety slip mechanism of Fig. 33 through 3 section C-C. 4 5 Fig. 1 shows a drilling rig generally designated at 6 The drilling rig 100 is particularly suited 7 for use in the business of exploration, exploitation 8 and production of hydrocarbons, but could also be 9 used for the same purposes for other gases and fluids such as water. With regard to hydrocarbons, 10 the drilling rig 100 can be used for operations such 11 as, but not limited to, snubbing, side tracks, under 12 balanced drilling, work overs and plug and 13 14 abandonments. The drilling rig 100 can be utilised 15 for land operations (as shown in Fig. 1) as well as in marine operations since it can be modified to be 16 17 installed on an offshore drilling rig, a drill ship 18 or other floating vessels. 19 20 The drilling rig 100 comprises a derrick 102 which 21 extends vertically upwardly from a rig floor 8, 22 where the rig floor 8 is carried by a suitable 23 arrangement of supports 104 which are secured by 24 appropriate means to the ground 1 or floating vessel 25 top side 1. 26 As can be seen in Figs. 1 to 4 and 6, the drilling 27 rig 100 optionally includes a ramp 5 which extends 28 29 downwardly at an angle from the rig floor 8. 30 ramp 5 can be used by personnel as an evacuation 31 slide 5 if it is required that the personnel quickly evacuate the drilling rig 100. A drill pipe guide 32

PCT/GB01/00781

20

1 track 7a, 7b is located at each side of the slide 5 and which fully extends from the drill rig floor 8 2 3 to the ground 1. A drill pipe rack 6a, 6b is located at the outer side of each respective drill 4 5 pipe guide track 7a, 7b, where the rack 6a, 6b is 6 capable of holding a plurality of tubular drill pipe 7 lengths, such as drill pipe 17. Each rack 6a, 6b 8 comprises two or more kickover troughs (not shown) 9 spaced along the length of the rack 6a, 6b, where 10 the troughs can be operated to move lengths of drill pipe 17 from the rack 6a, 6b to the respective track 11 12 7a, 7b or vice versa as required, and do this by 13 being angled either respectively inwardly or outwardly by approximately two or three degrees 14 15 either way. A rope or counterbalance winch 16 arrangement (not shown) is also provided for each 17 pipe guide track 7, such that the rope/winch. arrangement can be operated to pull pipes 17 from 18 19 the lower end of the track 7a, 7b up to the drill rig floor 8. The rope/winch arrangement can also be 20 operated to lower pipe 17 from the drill rig floor 8 21 22 to the lower end of the track 7a, 7b. 23 It should however be noted that the downwardly 24 angled fire evacuation slide 5 is an optional 25 26 feature of the drilling rig 100. 27 28 Fig. 1 also shows an arm runner 9a, 9b being 29 moveably located on a respective derrick dolly track 30 4a, 4b. As shown in Figs. 3b, 7a and 8b for 31 example, each arm runner 9a, 9b is provided with a 32 pair of articulated pipe arms 12 which are hingedly

21

PCT/GB01/00781

1 attached at one end to the respective arm runner 9a, 2 9b and are hingedly attached at the other end to a 3 respective pipe handler fluid swivel 13a, 13b. 4 arrangement allows the fluid swivel 13a, 13b to be 5 moved, by means of suitable motors (not shown), inwardly from the plane parallel to the longitudinal 6 7 axis of the respective dolly track 4a, 4b to the 8 plane parallel with the longitudinal axis of the 9 borehole, such that the articulated pipe arms 12 act like a collapsible parallelogram. A respective 10 goose neck pipe 18a, 18b is provided at the upper 11 end of the respective fluid swivel 13a, 13b and is 12 in sealed fluid communication with the internal bore 13 14 of the respective fluid swivel 13a, 13b. A suitable 15 pipe end coupling is provided at the lower end of each fluid swivel 13, where this pipe end coupling 16 17 may suitably be a screw thread coupling for 18 connection with the box end of a drill pipe 17. A 19 wire pulley 10a, 10b is provided for each arm runner 20 9, and is secured at one end to the upper portion of the arm runner 9, where the other end of the wire 21 pulley 10 is coupled to a suitable lifting/lowering 22 23 mechanism, which may be a motor and reel 24 arrangement, or may be a suitable counter weight arrangement, or may be a suitable counter balance 25 26 winch hoisting (not shown). 27 Alternatively however, the dolly tracks 4A, 4B of 28 the derrick 102 could be modified to be the same as 29 30 the dolly tracks of a conventional rig in which 31 there will be a block (not shown) and top drive (not shown), and in this case the arm runners 9A, 9B are 32

22

1 also suitably modified such that they can be used in 2 conventional dolly tracks of a conventional rig. 3 4 A method of operating the pipe handling mechanism, 5 in accordance with an aspect of the present 6 invention, will now be described. Drill pipe 17a is 7 lifted up one of the guide tracks 7a as previously 8 described, until the upper end of the drill pipe 17a is located in relatively close proximity to the pipe 9 10 coupling provided on the first pipe handler swivel 11 The box end of the drill pipe 17a is then coupled to the pipe end coupling of the fluid swivel 12 13a, such that the pipe handling mechanism is in the 13 14 configuration shown in Fig. 2. The cable 10a lifting/lowering mechanism is then operated such 15 that the arm runner 9a, and hence drill pipe 17a is 16 17 lifted upwardly to the configuration shown in Figs. 18 1, 3a, 3b, 4, 5, 7a and 7b, until the arm runner 9a 19 and hence drill pipe 17a are in the configuration 20 shown in Figs. 8a and 8b. It should be noted that 21 it is preferred that the drill pipe 17a is lifted 22 upwardly at a downwardly projecting angle, and this provides the advantage that the lower end of the 23 drill pipe 17a is kept well clear of the rig floor 24 25 8. 26 27 However, it should be noted that the other arm 28 runner 9b and drill pipe 17b have already been moved in a similar manner, and the associated motor has 29 30 been operated to move the drill pipe 17b such that 31 the articulated pipe arms 12 have moved inward and: 32 the drill pipe 17b is co-axial with the borehole.

23

1	
2	A make up/break out unit will now be described for
3	making up the drill string, in accordance with the
4	present invention.
5	·
6	A make up/break out unit in the form of a snubbing
7	unit is generally designated at 20 and is shown in
8	Fig. 17(a) as comprises a frame 106 which is made up
9	of a work basket base 106a, support column spacers
10	106b, work basket support column 106c, and snubbing
11	unit base 106d. An upper tong 108 and a lower tong
12	109 are mounted within a tong frame 110 which is
13	further mounted within the work basket base 106a as
14	can be seen in Fig. 17a, where the tong frame 110
15	can be seen in isolation in Figs. 17b to 17e.
16	
17	It should be noted that the upper tong 108 can be
18	used to make up/break out work strings, casing and
19	production tubulars as large as $8^5/_8$ inches in
20	diameter, although if modified in a suitable
21	fashion, then it could be used for larger diameters
22	if required.
23	
24	The lower tong 109 is also known as a rotary back up
25	109, and is used to rotate the drill string 17 at
26	speed and torque required for milling, side tracking
27	and drilling. However, the lower tong 109 also acts
28	as a back up to the upper tong 108 when making up or
29	breaking out connections.
30	

Another main component of the snubbing unit 20 is a rotary bearing assembly 112 which is coupled to the

24

PCT/GB01/00781

1 upper surface of a cylinder plate 116. The moveable bearing of the rotary bearing 112 is secured to a 2 3 set of travelling slips 114 which are used to engage the drill pipe 17, and hence the rotary bearing 4 5 assembly 112 allows the travelling slips 114 to 6 rotate whilst the slips 114, as will subsequently be 7 described, support the weight of the drill string to 8 permit simultaneous vertical pipe manipulation and 9 rotation of the work string. As will also be 10 described, a hydraulic swivel or hydraulic bypass 11 (not shown) is integrated into the rotary bearing 12 assembly 112 and allows the slips 114 to be remotely 13 operated at all times and eliminate the need to 14 make/break hose connections. 15 Mounting the tong system above the snubbing unit 20 16 17 travelling slips 114 eliminates the need to swing 18 tongs 108, 109 to engage and disengage the drill 19 pipe 17 at every drill pipe joint connection by 20 allowing the drill pipe 17 and drill pipe joints to 21 pass through the tongs 108, 109 during tripping operations. The tongs 108, 109 and travelling slips 22 114 have a manually operated "large-bore" feature 23 which allows their bore to be quickly increased to 24 25 allow passage of downhole tools with diameters up to 26 and over 11 inches. A remotely mounted control 27 panel can be utilised to operate all tong 108, 109 28 functions at any jack position without placing 29 personnel at dangerous positions, and this enhances 30 safety and speeds tripping operations. Additionally, this has the advantage that operators 31 32 will be able to make up/break out connections while

25

PCT/GB01/00781

1 the drill pipe 17 is being moved by the snubbing 2 unit 20. It should be noted that reactive make 3 up/break out torques are transferred between the 4 tongs 108, 109 via the frame 106 and a reaction 5 column 118 (as shown in Fig. 17(a) and 14 (as shown 6 in Fig. 4), which is coupled to the frame 106 by 7 means of a roller joint 120. Hence, the snubbing 8 unit 20 can move vertically upwardly or downwardly by means of the roller joint 120. Hydraulic jacking 9 cylinders 122, of which there are preferably four, 10 are arranged, and act, between the stationary 11 12 snubbing unit base 106d and the moveable cylinder plate 116, and actuation of the hydraulic jacking 13 cylinders 122 provides movement to the cylinder 14 15 plate 116 and hence snubbing unit 20. 16 Fig. 17a also shows the location of fixed/stationary 17 slips 124 as being mounted to the upper section of 18 19 the BOP stack 126, where the fixed slips 124 and BOP 20 stack 126 are stationary with respect to the drill rig floor 8. Hence, the snubbing unit 20 is 21 moveable by the hydraulic jacking cylinders 122 with 22 23 respect to the fixed slips 124. 24 The active make up/break out torques are transferred 25 between the upper tong 108 and lower rotary back up 26 27 109 by means of an integral reaction column in the form of a closed head tong leg assembly 113 and the 28 substructure of the derrick 102. This allows the 29 snubbing unit 20 to accept conventional hydraulic 30 31 load cell and torque gauge assemblies and/or

26

1 electronic load cells required for computerised 2 tubular make up control. 3 4 Reactive drilling torques will be transferred back 5 to the derrick 102 by means of the reaction column 6 118 (shown if Fig. 3(b) as being securely mounted to 7 the derrick 102) and roller joint 120. Hence, this 8 rigid mounting system allows high speed work string 9 rotation during milling/drilling operations with a 10 minimum of rotating components, these being the 11 travelling slips 114 and a portion of the rotary 12 bearing assembly 112, which reduces vibration and 13 hazards associated with exposed rotating equipment. 14 The upper tong 108 will now be described in detail. 15 The upper tong 108 provides means to make up and 16 17 break out tubing, casing or drill pipe during tripping and snubbing operations, and is 18 19 hydraulically powered. The upper tong 108 comprises 20 three sliding jaws (not shown) which virtually encircle the drill pipe 17 to maximise torque while 21 22 minimising marking and damage to the outer surface. of the drill pipe 17. The upper tong 108 is 23 provided with a cam operated jaw system (not shown) 24 25 which can be opened to allow passage of work string 26 tool joints as well as tubing and casing couplings. 27 A range of jaw systems can be used for different dies such as dove tail strip dies which are used 28 29 with drill pipe tool joints, and wrap around dies which are used with tubing or casing. The upper 30 tong 108 can also be used for running CRA tubulars 31 32 (such as 13% to 26% Cr tubulars) with grit faced

1 dies. Additionally, non-marking aluminium dies can

- 2 also be used with low friction jaws. Additionally,
- 3 electronic turns encoder(s) and electronic load
- 4 cell(s) can be provided to permit torque turn
- 5 compatibility with electronic OCTG analysis systems,
- 6 which can provide a record, such as a computer print
- out, of the quality of the make up between the
- 8 respective end joints of two tubulars.
- 9 Additionally, it should be noted that the dies can
- 10 be replaced whilst pipe passes through the upper
- tong 108. Also, the upper tong 108 can be manually
- 12 operated such that the tong bore can be increased to
- allow passage of tools with diameters up to 11.06
- 14 inches. The upper tong 108 is powered by twin two
- 15 speed hydraulic motors (not shown) which provide
- speeds and torque capable of spinning and
- 17 making/breaking high torque connections. The upper
- tong 108 is provided with a hydraulic power supply
- which has a 35 gpm and 3000 psi output (62 hydraulic
- 20 Horse Power) which produces 30,000 ft lbs at 9 rpm
- 21 and high torque, low speed mode and 15,000 ft lbs at
- 22 18 rpm in low torque, high speed mode.
- 23 Alternatively, the hydraulic motors can provide 24
- 24 rpm maximum speed and low torque, high speed mode at
- 25 47.6 gpm which is the maximum allowable flow rate
- 26 using a standard PVG 120 Danfoss™ valve package,
- 27 although alternative valve systems can be used to
- 28 provide even higher speeds at higher flow rates.
- 29 The upper tong 108 can be used for tubulars with a
- range from $2^{1}/_{16}$ inches to $8^{5}/_{8}$ inches outside
- 31 diameter with a range of jaws and dies being
- 32 supplied as required to accommodate the varying

1

diameters.

28

The gripping range for jaws being

2 supplied with dove tail dies is half an inch under 3 the nominal size of the jaws, and the gripping range 4 for jaws supplied with wrap around dies is that the 5 wrap around dies are machined to match specific 6 tubing, casing, tool joints, couplings or accessory 7 diameters. 8 9 The lower tong or rotary back up 109 has two 10 functions. During drilling operations, the rotary 11 back up 109 generates the torque required for high 12 speed milling and drilling. This torque is transferred to the outer diameter of the work or 13 14 drill string 17 by means of three sliding jaws. 15 During tripping operations, the jaws of the rotary back up 109 are activated to grip the pipe 17 and 16 17 resist the torque generated by the upper tong 108 18 when making up or breaking out the tubular 19 connections. However, the rotary back up 109 20 differs from the upper tong 108 in several aspects. 21 Firstly, the rotary back up 109 has large turntable bearings (not shown) to support the ring gear (not 22 23 shown) instead of a series of dumb bell roller 24 assemblies (not shown) which are provided on the 25 upper tong 108. Also, the body of the rotary back 26 up 109 is sealed and filled with gear oil to protect 27 the bearings in gear surfaces during extended 28 periods of drilling. A hydraulically operated 29 braking system (not shown) is also provided which 30 allows controlled release of residual work string 31 torque. However, the rotary back ups 109 drive 32 train (not shown) is similar to the drive train (not

29

1 shown) of the upper tong 108, but features different 2 motor displacements and gear ratios. However, like 3 the upper tong 108, the rotary back up 109 utilises 4 three jaws which virtually encircle the pipe 17 to 5 maximise torque whilst minimising marking and damage 6 to the outer surface of the pipe 17. 7 operated jaw system (not shown) of the rotary back 8 up 109 can be opened to allow passage of tubing and casing couplings, and the rotary back UP's 109 jaw 9 systems (not shown) are interchangeable with those 10 11 of the upper tong 108. Dovetail strip dies (not 12 shown) can be provided for the rotary back up's 109 13 jaws for use with drill pipe tool joints and wrap 14 around dies can be used for tubing or casing. 15 Additionally, the dies can be replaced while the drill pipe 17 passes through the rotary back up 109, 16 17 and the rotary back up 109 can be manually operated 18 to increase it's bore to allow the passage of tools 19 with diameters up to 11.06 inches. Twin two speed 20 hydraulic motors (not shown) provides speeds for milling and drilling operations. A removable lower 21 pipe guide plate assembly (not shown) is provided 22 23 separately for each specific coupling diameter and 24 assists pipe alignment during jacking operations. 25 26 The hydraulic power supply of the rotary back up 109 27 supplies 145 gpm and 2250 psi output (190 hydraulic horse power) and produces 7500 ft lbs at 80 rpm in 28 29 high speed, low torque mode and 15000 ft lbs at 40 rpm in high torque, low speed mode. 30 31

30

1 The tubular capacity and the gripping range for the 2 rotary back up 109 is the same as that for the upper 3 tong 108. 4 5 Referring again to Fig. 17(a), the tong frame 110 is 6 bolted to the travelling slips 114 via a lower tong 7 frame 111, although it should be noted that some 8 configurations may require a separate adapter plate 9 (not shown). The upper tong 108 is suspended within 10 the tong frame 111 by double acting spring 11 assemblies located on legs 113 (see Fig. 17(b)) 12 which extend upward from the rotary back up 109. 13 The upper tong 108 can be pinned in one of two 14 positions to facilitate make up of work string tool joints and connections using couplings. The spring 15 assemblies (not shown) within legs 113 allow the 16 17 upper tong 108 to float ±2.5 inches to accommodate 18 thread lead during make up or break out. An open 19 throat top guide plate 115 is fixed to the upper end of legs 113 and is fitted with lifting eyes 117 20 21 which enable handling of the tong frame 110. An 22 optional remotely operated adjustable upper guide 23 plate assembly can be provided to facilitate hands 24 off stabbing of tubulars, and hence the remotely 25 operated adjustable upper guide plate assembly acts as a hydraulic stabbing guide for the tubulars. The 26 27 tong frame 110 is approximately 39 inches wide by 39 28 inches deep. 29 30 The rotary bearing assembly 112 allows the 31 travelling slips 114 to rotate under load while the 32 pipe 17 is being manipulated. The rotary bearing

1	assembly 112 is attached to the upper end of the
2	cylinder plate 116 of the snubbing unit 20 and
3	features a flange (not shown) to accommodate the .
4	travelling slip's 114 mounting bolts (not shown).
5	These loads are transferred into a large diameter
6	turntable bearing system (not shown) which runs
7	within a closed housing of the assembly 112 to guard
8	against contamination. An integral hydraulic swivel
9	system (not shown) allows continuous slip 114
0	operation without the need to connect or disconnect
1	hoses. The swivel features a cooling system (not
12	shown) to minimise heat build up in seals (not
13	shown) while the rotary bearing assembly 112 is
L 4	being used for extended drilling operations.
15	Preliminary specifications for the rotary bearing
16	assembly 112 are as follows.
L 7	
L8	Compressive load rating 460,000 pounds
١9	
20	Tense (snubbing) load
21	rating 170,000 pounds
22	
23	Rotational speed limit (swivel
24	seal rating) 106 rpm
25	
26	Maximum swivel pressures (static
27	non-rotating conditions) 1500 psi
28	(note pressure should be bled off swivel while
29	rotating)
30	
31	Maximum swivel coolant pressure 60 psi
32	•

1	Recor	mmended swivel coolant supply
2	flow	rate 5 - 10 gpm
3		
4	The s	swivel should be cooled by fresh water although
5	glyce	erol based antifreeze or equivalent may be
6	requ	ired in cold climates.
7		
8	A rem	mote control and instrumentation console may
9	also	be provided and which features direct acting
10	hydra	aulic control valves (not shown) to provide
11	conti	rol for the following:-
12		
13	i)	Tong motor direction manual directional control
14		which uses a Danfoss PGV 120™ load independent
15		proportional hydraulic control valve assembly.
16		(not shown) for open loop power unit with a
17		manual lever operated valve section to control
18	•	the tong motor with flow rates to 47.6 gpm.
19		
20	ii)	Tong motor mode (high torque, low speed or low
21		torque, high speed).
22		
23	iii)	Tong torque limiter (manual preset for
24		automatic dumping, and an electronic solenoid
25		can add computer dump control).
26		
27	iv)	Tong backing pin.
28		
29	v)	Hydraulic system pressure control.
30		
31	vi)	Rotary back up motor manual directional control

33

PCT/GB01/00781

1		which uses a hydraulic control valve assembly
2		for open loop power unit with a manual lever
3		operated valve section. One section controls
4		the rotary back up 109 motors with flow rates
5		to 145 gpm which is the maximum allowable flow
6		rate for continuous operation in high speed
7		mode. Infinitely variable rotational speed
8		control may be achieved most efficiently
9		through the use of variable displacement pump
10		systems. Alternatively, the speed may be
11		adjusted by throttling the direction of control
12		valve or through the use of an adjustable flow
13		control valve.
14		
15	vii)	Rotary back up 109 motor mode providing for
16		high torque, low speed or low torque, high
17		speed.
18		
19	viii	Tong backing pin for the rotary back up 109.
20		
21	ix)	Braking system control.
22		
23	x)	Torque gauge (hydraulic style) with dampener
24		valve.
25		
26	xi)	Hydraulic system pressure gauge.
27		
28	Refe	rring now back to Fig. 8a, a tripping operation
29		an already drilled borehole will now be
30		ribed. By way of explanation, a tripping
31		ation is performed to insert tools required in
32	the l	corehole for a specific downhole operation.

34

With boreholes being many thousands of feet deep,

1

2 the length of drill pipe 17 must be included in the drill string and inserted into the borehole as 3 quickly as possible. 4 5 6 A make up/break out mechanism in accordance with the 7 present invention will now be described. 8 9 Fig. 8a shows the upper end of drill pipe 17c 10 projecting upwardly from the snubbing unit 20. 11 this point, the fixed slips 124, which are located 12 within a fixed slip housing 3, are energised to 13 firmly grip against the outer surface of the lower 14 end of drill pipe 17c, such that the fixed slips 124 15 are holding the entire weight of the drill string. 16 The four hydraulic jacking cylinders 122 are then 17 actuated to raise the snubbing unit 20 upwards until 18 it reaches the position shown in Figs. 7a and 9a, such that the upper end of drill pipe 17c and lower 19 20 end of drill pipe 17b are located within the 21 snubbing unit 20. The travelling slips 114 are then 22 energised to engage the outer surface of drill pipe 23 17c just below the upper end thereof. The jaws of 24 the rotary back up 109 are then energised to engage the outer surface of drill pipe 17c immediately 25 below the upper end thereof and the jaws of the 26 27 upper tong 108 are energised to engage the outer 28 surface of drill pipe 17b immediately above the 29 lower end thereof. The fixed slips 124 are then 30 released and the hydraulic jacking cylinders 122 are 31 then actuated to move the snubbing unit 20 32 downwardly. Simultaneously, the upper tong 108 is

35

1 operated to rotate drill pipe 17b relative to drill 2 pipe 17c such that the two joints thereof are made 3 up to the required torque level. Therefore, by the 4 time snubbing unit 20 has reached the position shown 5 in Fig. 10a, the joint between drill pipe 17b and 6 17c has been made up. The pipe handler fluid swivel 7 13b can then be disengaged from the upper end of 8 drill pipe 17b and can be moved downwardly on the 9 arm runner 9b, as shown in Figs. 11b and 12b to pick 10 up another pipe 17. The fixed slips 124 are then 11 re-energised to engage the outer surface of drill 12 pipe 17b, and when this has been done, the 13 engagement between upper tong 108, rotary back up 14 109 and the respective drill pipe 17b, 17c can be 15 released. The hydraulic jacking cylinders 122 are 16 then actuated once more such that the snubbing unit 20 moves to the configuration shown in Fig. 13a. 17 The travelling slips 114 are re-energised to grip 18 19 the drill pipe 17 and the fixed slips 124 are 20 released. The hydraulic jacking cylinders 122 are 21 then actuated to move downwardly such that the 22 snubbing unit 20 and travelling slips 114 stroke the 23 drill string 17 into the borehole. A typical length 24 of travel of the hydraulic jacking cylinders 122, 25 and hence stroke of the drill string 17, is 13 feet. The snubbing unit 20 therefore moves from the 26 27 configuration shown in Fig. 13a to the configuration 28 shown in the Fig. 14a and 15a. Additionally, 29 articulated pipe arms 12a have moved pipe 17a to be co-axial with the drill pipe 17b. 30

31

36

1 The fixed slips 124 are once again energised to 2 engage the drill pipe 17b and the travelling slips 3 114 are released, such that the hydraulic jacking 4 cylinders 122 move the snubbing unit 20 to the 5 configuration shown in Fig. 16a so that the upper 6 end and lower end of respective drill pipes 17b and 7 17a are located within the snubbing unit 20. 8 9 This process is repeated for as many drill pipe 17 10 sections as required in order to make up the desired 11 length of drill string 17. 12 This process provides an extremely quick make up (or 13 14 if operated in reverse, break out) for a tripping 15 operation. 16 17 Normally, for tripping operations, rotation of the drill string is not required. However, for drilling 18 operations, the drill string 17 is required to be 19 20 rotated and also requires that circulation occurs. 21 through the bore of the drill string 17 down to the 22 drill bit located at the bottom of the drill string 23 The drilling rig 100 is capable of imparting 24 rotary movement to the drill string 17 without the 25 requirement for a conventional rotary table or top 26 drive, and can also provide continuous circulation 27 through the bore of the drill string 17, as will now 28 be described. 29 The travelling slips 114, as previously described, 30 are used to lower the drill string 17 into, or raise 31 32 the drill string 17 from, the borehole, and the

37

PCT/GB01/00781

1 control system for the hydraulic jacking cylinders 2 can be operated such that the cylinders 122 can push the drill string 17 into the hole. For instance, 3 4 the drilling operation may require that the drill 5 string 17 is forced down into the hole by a certain percentage of weight of drill pipe 17, such as 10% 6 7 The rotary bearing assembly 112 and the 8 travelling slips 114 can also be operated to impart 9 rotation to the drill string 17, either as it is being inserted into, or pulled from the borehole, or 10 even whilst the drill string 17 is vertically 11 12 stationary. 13 14 Additionally, or alternatively to the rotary bearing assembly providing the power to rotate the drill 15 string 17, the rotary backup 109 can be operated to 16 impart rotation to the drill string 17. 17 18 A continuous circulation apparatus and method in 19 20 accordance with the present invention will now be 21 described, which is particularly for use during a 22 milling/drilling operation. 23 Figs. 18 to 23 show a portion of an apparatus 130 of 24 the continuous circulation system, with Figs. 24 to 25 26 28 showing flow diagrams for the operation thereof. Fig. 19 shows the continuous circulation apparatus 27 130 in isolation, and Fig. 18 shows the continuous 28 29 circulation apparatus 130 incorporated in the 30 snubbing unit 20. Referring firstly to Fig. 19, 31 there is shown a first embodiment of apparatus 130 32 as comprising an upper seal 132 in the form of a

PCT/GB01/00781

WO 01/66905

1 shaffer sealing element 132, a lower seal in the 2 form of a pair of rams 134a, 134b and a middle full 3 bore valve 136 in the form of a 10,000 psi plate 4 valve 136. Housing for these components is also provided in the form of a shaffer type bonnet 138, 5 6 centre housing 140 and a main housing 142. 7 shaffer seal 132 is provided with a piston assembly 8 144 which can be moved upwardly to energise the 9 shaffer seal 132 around the outer surface of a pipe 10 17 located in the bore of the shaffer seal 132 by 11 the introduction of pressured hydraulic fluid into sealed closed port 146. The piston assembly 144 can 12 be moved downwardly to release the sealing action of 13 14 the shaffer seal 132 on the drill pipe 17 by introduction of hydraulic fluid into the seal open 15 16 port 148. 17 It is important to note that the centre spindle 137 18 19 of the plate valve 136 is not located on the 20 intended path of the longitudinal axis of the drill 21 string 17. However, the main working plane of the 22 plate valve 136 is perpendicular to the longitudinal 23 axis of the intended path of travel of the drill string 17. A pair of circular apertures 150a, 150b 24 25 are provided in the plate valve 136, and a pair of 26 sealing rings 152a, 152b are provided on the upper surface of the plate valve 136, such that the 27 28 centres of the apertures 150a, 150b and sealing 29 rings 152a, 152b are located at the same radius from 30 the centre spindle 137. Furthermore, the centres of 31 the apertures 150a, 150b are located on the same 32 diameter, and the centres of the sealing rings 152a,

38

39

1 152b are also located on the same diameter. 2 valve plate 136 is arranged such that, with the centre spindle 137 being off centre of the 3 4 longitudinal axis of the drill string 17, the centre 5 point of the apertures 150a, 150b and sealing rings 6 152a, 152b bisect the longitudinal axis of the drill string 17 as the valve plate 136 rotates. 7 In other words, the centre spindle 137 is located off centre 8 by a distance equal to the radius of the centre 9 10 lines of the apertures 150 and sealing rings 152. 11 12 As shown most clearly in Fig. 20, a circulating port 13 154 is formed immediately vertically below the 14 location of the plate valve 136 and immediately 15 vertically above the pipe rams 134a, 134b. 16 The inner faces of the pipe rams 134a, 134b are 17 18 formed such that when the rams 134 are brought 19 together, they provide a sealing fit around the 20 outer surface of the drill pipe 17. 21 22 The plate valve 136 is provided with a gearing 23 surface 156, and an internal hydraulic motor 158 24 with an appropriately geared drive is also provided, 25 such that actuation of the hydraulic motor 158 26 rotates the plate valve 136. 27 28 Optionally, but preferably, a further port 220 (as 29 shown in Fig. 24) is provided into the inner chamber 30 of the continuous circulation apparatus 130, where the further port 220 is located in between the 31 32 shaffer sealing element 132 and the plate valve 136.

PCT/GB01/00781

40

PCT/GB01/00781

1 The further port 220 can be opened to purge air from 2 the pipe joint 17B being introduced into the 3 apparatus 130 prior to the plate valve 136 being 4 opened; in this manner the shaffer seal 132 is first 5 closed around the pipe joint 17B and the further 6 port 220 is opened such that air may be flushed out 7 or pumped out of the joint 17B. 8 9 Optionally, but preferably, a joint integrity 10 checking apparatus is further provided for use with the continuous circulation apparatus 130; the joint 11 12 integrity apparatus (not shown) provides an external 13 pressure check on the integrity of the pipe joints 14 that are made up within the continuous circulation 15 apparatus 130. In order to utilise the joint 16 integrity apparatus, the pipe joint to be checked is 17 maintained within the middle of the continuous 18 circulation apparatus 130, that is in the position 19 shown in Fig. 25. The rams 134A, 134B are 20 maintained in the closed configuration, such that 21 they seal about the upper end of the lower pipe 17C. Then, either a fluid or more preferably a gas, such 22 23 as nitrogen or most preferably helium, is introduced 24 under pressure into the chamber (the portion 25 intermediate the circulation port 154 and injection 26 port 184) through either the circulating port 154 or 27 the injection port 184 until the pressure of the 28 fluid or gas reaches a relatively high fixed 29 pressure. A pressure sensor (not shown), which is 30 preferably a digital pressure sensor, is provided in either the circulating port 154 or the injection 31 port 184 lines and the output of the pressure sensor 32

PCT/GB01/00781

41

WO 01/66905

is preferably coupled to a computer control system 1 2 that is recording the whole activity of the rig 100; the computer control system typically being located 3 4 in the rig cabin 31. The computer control system 5 (not shown) monitors the output of the pressure 6 sensor, such that if the output of the pressure 7 sensor starts to fall then the integrity of the pipe joint between the lower pipe 17C and the upper pipe 8 17B is questionable. Such a questionable pipe joint 9 connection could be due to a number of factors such 10 as, but not limited to:-11 12 13 1) wear and tear of the joint; 14 15 2) contamination within the screw thread 16 connections of the joint; 17 insufficient torque being applied to the joint; 18 3) and/or 19 20 21 excessive jawing or washout passing through the 22 joint on previous trips of the joint into a 23 borehole. 24 25 A second embodiment of a continuous circulating 26 apparatus 160 is shown in schematic form in Fig. 26 27 and comprises an upper seal 162, which may be in the 28 form of a shaffer sealing element 162, similar to 29 that shown in Fig. 19, a lower seal 164, again in 30 the form of a shaffer sealing element and a plate valve 166, similar to that shown in Fig. 19. This 31 32 embodiment is termed a stripper design 160. With

42

1 regard to the stripper design 160, it should be 2 noted that the upper seal may alternatively be a rubber pack off element 162 in the form of a rubber 3 4 ring 162. This provides a friction seal with 5 respect to the outside surface of the pipe 17 or 6 pipe joint and does not require to be actuated. The 7 inner diameter of the rubber ring 162 is slightly less than the outer diameter of the pipe 17, and the 8 rubber ring 162 is elastic such that it can deform 9 10 to allow the passage of joints therethrough. 11 lower seal element 164 of the stripper design may 12 have a similar rubber ring 164. 13 A third embodiment of a continuous circulating 14 15 apparatus 170 is shown in Figs. 27 and 28 and comprises an upper seal 172 in the form of a pair of 16 17 rams 172 similar to the rams 134 shown in Fig. 19, a 18 lower seal 174 in the form of rams 174, similar to 19 the rams 134 shown in Fig. 19, and a centre valve 20 176 in the form of a pair of full bore sealing rams 176. This third embodiment 170 is termed a ram 21 22 design 170. 23 24 A method of operating the continuous circulating 25 system will now be described. 26 27 For drilling operations, the lower end of a kelly hose 180 is attached to the upper end of the next 28 drill pipe 17 to be made up into the drill string, 29 30 with the upper end of the kelly hose 180 being 31 coupled to the pipe handler fluid swivel 13. A 32 drilling fluid supply conduit 182 is coupled to the

43

outer end of the goose neck pipe 18. Referring to 1 2 Fig. 9a, at this point in the circulation system cycle, no drilling fluid is circulated through the 3 4 goose neck 18, and the relative locations of the lower drill pipe 17c and upper drill pipe 17b within 5 the snubbing unit 20 is shown in schematic form in 6 7 Fig. 24 at this point. Valve V_3 , which is located between the kelly hose 180 and the fluid supply 8 conduit 182, is shown as closed. At this point, 9 middle full bore valve, in the form of plate valve 10 136 is shown as being closed, in that one of the 11 12 sealing rings 152 is concentric with the longitudinal axis of the drill pipe 17c. Lower valve 13 134 is closed around the outer surface of the upper 14 15 end of drill pipe 17c, and injection port 184 is 16 closed by means of valve V2. Valve V4 is also closed 17 and which is located between the kelly hose 180 and a bleed off line 186. Valves V_5 and V_1 are located 18 19 between the circulating port 154 and the fluid 20 supply conduit 182, and at this point, V_5 and V_1 are both open, and hence drilling fluid is being 21 22 supplied through circulating port 154 and into the inner bore of the snubbing unit 20 and hence inner 23 bore of the drill pipe 17c. 24 25 It should also be noted that the snubbing unit 20 is 26 27 provided with another slip system 190, in the form 28 of upper slips 190, and which will normally only be 29 utilised during a continuous circulating operation. 30 The upper slips 190 (not shown in Fig. 17(a) but shown in schematic form in Figs. 24 and 25, and 31 32 shown in a preferred form in Figs. 29, 30 and 31)

44

1 are mounted to the upper end of a feeder plate 192 2 of the snubbing unit 20 by means of an arrangement 3 of hydraulic jacking cylinders 194, and in a preferred embodiment, there are four such hydraulic 4 5 jacking cylinders 194. The upper slips 190 are 6 operable to firmly grip the drill pipe 17b as it is 7 being inserted into the snubbing unit 20, such that 8 the upper slips 190 provide support to the drill 9 pipe 17b, and the hydraulic jacking cylinders 194 10 are actuated to firmly lower or feed the drill pipe 11 17b into the snubbing unit 20. 12 13 The next stage of operation is shown in Fig. 25, and 14 which shows that the middle plate valve 136 has been rotated such that an aperture 150 is co-axial with 15 16 the longitudinal axis of the drill pipes 17. 17 Simultaneously, the upper seal 132 is closed around the upper pipe 17b, and valve V_3 is opened. 18 19 flushes fluid into the drill pipe 17b and hence 20 equalises the pressure above the plate valve 136 with the pressure below the plate valve 136, since. 21 22 valves V₅ and V₁ are still open. 23 24 The upper slips 190 remain actuated to firmly grip, 25 and hence support, the drill pipe 17b against the 26 force of the pressure which would otherwise force 27 the drill pipe 17b upwards and out of the snubbing 28 unit 20. 29 30 The plate valve 136 is then rotated to the position 31 shown in Fig. 25 such that one of the apertures 150

45

is concentric with the longitudinal axis of the drill pipe 17. Valve V₁ is then closed.

PCT/GB01/00781

3

WO 01/66905

4 Downward movement of the upper pipe 17b is again

5 commenced as previously described (i.e. by a

6 combination of downward movement of the wire pulley

7 10b and also downward movement of the hydraulic

8 jacking cylinders 194) until it comes into close

9 proximity with the upper end of lower pipe 17c.

10 Valve V2 is then opened and a suitable fluid is

11 supplied into the injection port 184 via the now

open V_2 , in order to flush the threads of the two

13 pipes. Hence, the upper tong 108 and the lower tong

or rotary back up 109 are operated to grip the two

pipes 17b, 17c and the actuation of the upper slips

16 190 upon the drill pipe 17b is released.

17 Thereafter, the upper tong 108 and the lower

18 tong/rotary back up 109 are operated to make up the

19 two pipes 17b, 17c.

20

21 The drill string 17 continues its downward movement

22 by operation of the hydraulic jacking cylinders 122,

23 travelling slips 114 and fixed slips 124 until such

24 a time that the upper end of the pipe 17b is at the

25 thread engagement height; that is the location of

26 pipe 17c as shown in Fig. 24. The kelly valve is

then backed off the upper end of pipe 17b and is

28 pulled upwardly by the counterbalance winch and/or

29 the upper slips 190 and hydraulic jacking cylinders

30 194. It should be noted that upper seal 132 is

31 still sealing around the kelly valve. Once the

32 kelly valve has passed upwards through the aperture

46

PCT/GB01/00781

1 150, the middle plate valve 136 is closed. Valve V4 2 is then opened to bleed off pressure, and V3 is 3 closed and V_5 is opened. The upper seal element 132 4 can then be opened and the next pipe joint can be 5 introduced into the snubbing unit 20. The method is 6 repeated for as many joints as required, and hence 7 continuous circulation of drilling fluid through the 8 drill string is achieved. 9 Figs. 29 to 31 show a preferred form of a slip 10 11 mechanism 200; it should be noted that the slip 12 mechanism 200 is preferably suitable for use as the fixed/stationary slips 124 and/or travelling slips 13 14 114 and/or upper slips 190. 15 The slip mechanism 200 can also be referred to as a 16 17 snubbing slip mechanism 200. The slip mechanism 200 18 comprises a slip bowl 202 or slip housing 202 which 19 is provided with at least one, and preferably four, 20 hydraulic jacking cylinders 204 which extend 21 vertically upwardly from the base of the slip 22 housing 202. Four snubbing slips 206 are provided 23 within the slip housing 202 where the width of each snubbing slip 206 circumscribes no greater than 90° 24 of a circle. The innermost faces of each of the 25 26 snubbing slips 206 have a common curvature such that 27 when they are in the closed configuration as shown 28 in Fig. 30, they 206 come together to form an inner 29 bore and are provided with a suitably gripable 30 surface such that they 206 are capable of securely 31 gripping the outer surface of the drill pipe 17 and 32 can thus support the weight of the drill string.

47

PCT/GB01/00781

1 The inner surface of the slip housing 202 is tapered 2 outwardly from the base of the slip housing 202 to the uppermost portion of the slip housing 202 and 3 4 four longitudinally extending slots (not shown) are 5 formed equi-distantly around the inner surface of the slip housing 202. A longitudinally extending 6 7 dovetail shaped key (not shown) is provided on the 8 outer surface of each snubbing slip 206 such that 9 the dovetail shaped key engages in the respective 10 slot of the slip housing 202. The upper end of the hydraulic jacking cylinders 204 are suitably coupled 11 12 to each snubbing slip 206 such that actuation of the hydraulic jacking cylinders 204 moves the cylinders 13 204 from their home (non-stroked) configuration 14 15 shown in Fig. 30 to the fully stroked configuration 16 shown in Fig. 29; in this manner the snubbing slips 17 206 can be moved from the closed (and pipe gripping) configuration shown in Fig. 30 to the open (and non-18 pipe gripping) configuration shown in Fig. 29. 19 20 21 It should be noted that conventionally, particularly 22 when tubing such as casing and liner tubing (which 23 has a flush outer surface along its length) is being 24 passed through a set of slips, that a safety 25 mechanism is used. This conventional safety 26. mechanism comprises a manual clamp which is set 27 around the outer surface of the tubing and which 28 must be put on manually by an operator such as a 29 roughneck. This manually applied clamp is arranged 30 to act as a safety feature such that if the snubbing 31 slips 206 lose their grip on the smooth outer 32 surface of the casing/liner string then the manually

48

1 applied clamp will collide against the upper surface 2 of the snubbing slips, thus forcing them further 3 down the tapered surface and thereby increasing the 4 grip being applied by the snubbing slips to the 5 outer surface of the casing. However, this conventional clamp arrangement is dangerous to apply 6 7 and also time consuming. 8 9 In accordance with the present invention a safety 10 slip 208 is mounted to the upper end of each 11 snubbing slip 206 by means of a biasing mechanism 12 such as a set of coiled springs 210; however, those skilled in the art will appreciate that a different 13 type of biasing mechanism could be used, such as a 14 leaf spring or rubber/neoprene element (not shown) 15 or a lever arrangement as shown in the second 16 17 embodiment of Figs. 32 to 34. The coiled springs 210 are arranged to naturally bias the safety slips 18 19 208 away from the snubbing slips 206. When the 20 snubbing slips 206 are in the closed configuration 21 as shown in Fig. 30, they are gripping the casing 22 string or drill string 17 and the safety slips 208. are also gripping the outer surface of the string. 23 since the rear end or outermost end of each safety 24 25 slip 208 abuts against a safety slip stop 212 which 26 is conveniently mounted in a suitable manner to the 27 upper end of the snubbing slip 206. Even more 28 advantageously, the safety slip 208 is provided with a moveable safety slip front 214, where the safety 29 slip front 214 is mounted to the safety slip back 30 31 208 by means of a dovetail shaped key (not shown)

PCT/GB01/00781 WO 01/66905

49

and slot (not shown) arrangement provided on a tapered surface, as shown in Fig. 31. 2 3 Accordingly, with the safety slip front 214 gripping 4 the casing string, if the casing string begins to 5 6 slip through the snubbing slips 206 when they are in 7 the closed configuration, the safety slip front 214 8 and then the safety slip back 208 will travel 9 downwardly with the casing string against the biasing action of the coiled springs 210 until the 10 11 lower face of the front 214 and back 208 collide 12 with the upper face of the snubbing slips 206 across the full cross-sectional area of the upper face of 13 14 the snubbing slips 206 (which are greater in crosssectional area than the lower face of the snubbing 15 slips 206). Accordingly, the aforementioned 16 collision causes the snubbing slips 206 to move 17 18 downwardly to grip the tubing string even more. When the tubing string or drill string is ready to 19 20 intentionally move through the slip mechanism 200, the cylinders 204 are actuated to stroke outwardly 21 22 from the closed configuration of Fig. 30 to the open 23 configuration of Fig. 29. In this manner, the snubbing slips 206 and safety slips 208, 214 are 24 25 moved not only upwardly but outwardly away from the 26 tubing/drill string 17, and the safety slips 208, 27 214 are moved upwardly away from the snubbing slip 206 by the biasing mechanism 210, such that they 28 29 208, 214 return to their 208, 214 starting (spaced) 30 configuration.

31

1

50

1 Accordingly, the embodiment of the slip mechanism provides an automatic safety slip 208, 214 device 2 3 that does not require manual intervention. 4 5 Figs. 32, 33 and 34 show an alternative arrangement 6 of the safety slips 208, 214 where the safety slips 7 208, 214 move in an arc via a hinge 218 and pivot 8 219 into engagement and out of engagement with the 9 tubing string or drill string 17, rather than in the 10 vertical movement shown in the embodiment of Figs. 11 29 and 30, where the arc movement is shown in Fig. 12 33 by arrow 216. In addition, the hinge 218 that moves about the pivot 219, acts as a safety slip 13 stop 218, 219. 14 15 16 The aforementioned apparatus provides distinct 17 advantages over conventional work over and drilling 18 units. For instance, it is capable of making or 19 breaking connections while circulating and tripping 20 pipe in or out of the well bore. Furthermore, it 21 can replace a conventional rotary table and can be 22 rigged up on almost any drilling rig, platform, drill ship or floater. For rig assist, the jacking 23 24 slips are picked up like a joint of pipe and simply 25 stabbed into the rotary table. The unit fits flush with the rig floor and allows for normal rig pipe 26 27 handling to be used. In this scenario, there is 28 minimal or no learning curve for the rig personnel 29 to go through, and with there being no loose 30 equipment above the rig floor 8 associated with this 31 apparatus, the possibility of dropped objects has 32 been eliminated.

51

1 2 The unique articulating pipe handling arms 12 and power tong 108, 109 make up provides the apparatus 3 100 with the ability to make tubular connections "on 4 the fly" with a continual trip speed of over 60 5 joints per hour being possible. 6 7 8 The apparatus 100 can be broken down into readily liveable components. Furthermore, the continuous 9 circulation feature allows an operator to make and 10 break connections without stopping circulation of 11 fluid through the drill string. It is envisaged 12 13 that the system will minimise collapse of boreholes 14 and differential sticking without surging the 15 borehole formation. 16 17 Modifications and improvements can be made to the 18 embodiments herein described without departing from the scope of the invention. 19

52

1 CLAIMS:-

2

3 1. A tong apparatus comprising:-

4 an upper tong having a gripping device for

5 gripping a tubular, the upper tong further

6 comprising a rotation mechanism to provide rotation

7 to the gripping device to provide rotation to said

8 tubular; and

9 a lower tong having a gripping device for

10 gripping a tubular, the lower tong further

11 comprising a rotation mechanism to provide rotation

12 to the gripping device to provide rotation to said

13 tubular.

14

15 2. A tong apparatus according to claim 1, wherein

16 a motive means is provided to actuate the respective

17 rotation mechanism of the upper and lower tongs.

18

19 3. A tong apparatus according to either of claims

20 1 or 2, wherein the lower tong further comprises a

21 turntable bearing means which support ring gear of

the gripping device.

23

24 4. A tong apparatus according to any preceding

25 claim, wherein the lower tong further comprises a

26 braking system which permits controlled release of

27 residual torque of a string of tubulars.

28

29 5. A tong apparatus according to any preceding

30 claim, further comprising a travelling slip

31 mechanism which is capable of engaging at least a

32 portion of the outer circumference of a tubular, and

33 preferably, the travelling slip is capable of being

53

PCT/GB01/00781

1 rotated by means of a rotary bearing assembly 2 mechanism. 3 A tong apparatus according to claim 5, wherein 4 5 the travelling slip mechanism is provided with a 6 vertical movement mechanism which can be actuated to 7 move the travelling slip and the engaged string of tubulars in one or both vertical directions. 8 9 A method of providing rotation to at least one 10 tubular, the method comprising:-11 12 providing an upper tong having a gripping device for gripping a tubular, the upper tong 13 further comprising a rotation mechanism to provide 14 15 rotation to the gripping device; providing a lower tong having a gripping device 16 17 for gripping a tubular, the lower tong further 18 comprising a rotation mechanism to provide rotation 19 to the gripping device; and 20 operating at least the rotation mechanism of the upper tong to provide rotation to said tubular. 21 22 23 8. A method according to claim 7, further

WO 01/66905

comprising operating the rotation mechanism of the 24

lower tong to provide rotation to said tubular. 25

26

27 9. An apparatus for circulating fluid through a

28 tubular string, the string comprising at least one

29 tubular, the apparatus comprising:- PCT/GB01/00781

WO 01/66905

54

1 a first fluid conduit for supplying fluid to 2 the bore of an upper tubular to be made up into or 3 broken out from the tubular string; and a second fluid conduit for supplying fluid to the 4 bore of the tubular string. 5 6 7 An apparatus according to claim 9, wherein the 8 first fluid conduit is releasably engageable with an upper end of the upper tubular. 9 10 11 An apparatus according to either of claims 9 or 10, wherein the first fluid conduit is provided with 12 a valve mechanism which is operable to permit the 13 flow of fluid into and/or deny the flow of fluid 14 into the first fluid conduit and/or upper end of the 15 tubular. 16 17 18 12. An apparatus according to any of claims 9 to 19 11, wherein one end of the second fluid conduit is in fluid communication with a chamber, and the 20 second fluid conduit is provided with a valve 21 22 mechanism which is operable to permit the flow of 23 fluid into, or deny the flow of fluid into, the 24 second fluid conduit and/or the chamber. 25 26 An apparatus according to claim 12, wherein 27 the chamber is adapted to permit a tubular to be made up into, or broken out from, a tubular string. 28 29 30 14. An apparatus according to either of claims 12

30

55

PCT/GB01/00781

or 13, wherein the chamber comprises a bore which is 1 2 vertically arranged to be coincident with the longitudinal axis of the mouth of a borehole. 3 4 5 15. An apparatus according to claim 14, wherein 6 the chamber comprises an upper port into which the 7 said tubular can be inserted into or removed from 8 the chamber. 9 10 16. An apparatus according to either of claims 14 or 15, further comprising a valve mechanism actuable 11 12 to seal the bore of the chamber at a location below 13 the upper port. 14 15 An apparatus according to claim 16, further comprising an upper seal located above the said 16 17 location, and where the upper seal is arranged to seal around at least a portion of the circumference 18 19 of the said tubular. 20 21 18. An apparatus according to either of claims 15 22 or 16, further comprising a lower seal located below the said location, and where the lower seal is 23 24 arranged to seal around at least a portion of the 25 circumference of the tubular string. 26 27 19. An apparatus according to claim 12 further 28 comprising a valve system comprising one or more 29 further valves is provided to control the supply of

31 second fluid conduit valve mechanism.

fluid to the first fluid conduit valve mechanism and

56

PCT/GB01/00781

1 2 20. A method of circulating fluid through a tubular 3 string, the string comprising at least one tubular, 4 the method comprising:-5 providing a first fluid conduit for supplying 6 fluid to the bore of an upper tubular to be made up 7 into or broken out from the tubular string; and 8 providing a second fluid conduit for supplying fluid 9 to the bore of the tubular string. 10 11 The method according to claim 20, comprising 12 the further steps of inserting the lower end of the 13 upper tubular into an upper port, where a valve mechanism denies the flow of fluid into the first 14 15 fluid conduit. 16 17 The method according to claim 21, comprising 18 the further steps of operating the valve mechanism 19 to permit the flow of fluid into the first fluid 20 conduit and upper end of the tubular. 21 22 23. An apparatus for providing a seal with a 23 tubular to be made up in to or broken out from a 24 tubular string, the tubular string comprising at 25 least one tubular, the apparatus comprising:-26 an upper seal device for sealing about a 27 portion of the outer circumference of the said tubular to be made up onto or broken out from the 28 29 string; a lower seal device for sealing about a portion 30 of the outer circumference of the string; and 31

57

the upper seal device comprising an elastomeric ring 1 which is adapted to have an inner diameter 2 substantially the same as the outer diameter of at 3 least a portion of the tubular. 4 5 Apparatus according to claim 23, wherein the 6 24. 7 the lower seal device also comprises an elastomeric ring which is adapted to have an inner diameter 8 substantially the same as the outer diameter of at 9 least a portion of tubular string. 10 11 A valve mechanism for providing a seal between 12 13 two tubulars, the valve mechanism comprising:a plate member which is capable of rotation 14 15 about an axis; at least one bore formed through the plate 16 17 member; 18 the plate member being capable of movement between a first configuration in which a portion of 19 the plate member obturates the longitudinal axis of 20 21 at least one of the tubulars; and a second configuration in which the bore is 22 concentric with the longitudinal axis of at least 23 24 one of the tubulars. 25 26 26. A valve mechanism according to claim 25, wherein the plate member is capable of being rotated 27 between a first configuration from which a portion 28 of the plate member obturates the longitudinal axis 29 of both of the tubulars, and a second configuration 30 in which the bore is concentric with the 31

PCT/GB01/00781

58

PCT/GB01/00781

1 longitudinal axis of both of the tubulars, both of 2 the tubulars being concentric with one another. 3 4 A valve mechanism according to either of claims 5 25 or 26, wherein the plate member is circular and is arranged within a cylindrical chamber, such that 7 the radius of the plate member is perpendicular to the longitudinal axis of both tubulars. 8 9 10 A valve mechanism according to claim 27, wherein the centre axis of the plate member is off-11 centre with respect to the longitudinal axis of both 12 13 tubulars. 14 29. A method of providing a seal between two 15 16 tubulars, the method comprising:-17 providing a plate member which is capable of rotation about an axis; 18 19 the plate member having at least one bore; 20 wherein the plate member is capable of being 21 rotated between a first configuration in which a 22 portion of the plate member obturates the 23 longitudinal axis of at least one of the tubulars 24 and a second configuration in which the bore is 25 concentric with the longitudinal axis of at least 26 one of the tubulars. 27 28 An apparatus to prevent at least one tubular 29 slipping therein, the apparatus comprising a first. 30 arrangement of grips adapted to grip at least one of 31 the tubular(s), and a second arrangement of grips

59

1 adapted to grip the said tubular(s), characterised 2 in that the first and second arrangements of grips are coupled to one another. 3 4 5 An apparatus according to claim 30, wherein the 6 first and second arrangements of grips are coupled 7 to one another by a biasing mechanism. 8 9 An apparatus according to claim 31, wherein 32. the biasing mechanism is arranged to bias the first 10 and second arrangements of grips away from one 11 12 another. 13 14 An apparatus according to any of claims 30 to 15 32, wherein at least one of each of the first and second arrangements of grips comprise first and 16 17 second portions, wherein the first portion is 18 coupled to the second portion by a tapered surface, 19 and a moveable locking mechanism, such that the first portion is capable of moving with respect to 20 the second portion along the tapered surface. 21 22 23 34. An apparatus according to any of claims 30 to 33, wherein the first arrangements of grips are 24 25 located vertically below the second arrangements of 26 grips and the first arrangements of grips comprise a 27 relatively large surface area for gripping the tubular. 28 29

30 35. An apparatus according to claim 34, wherein the

60

second arrangement of grips comprise a relatively

2 smaller surface area for gripping the tubular.

3

4 36. An apparatus according to any of claims 30 to

5 35, wherein a lower face of the second arrangement

of grips is coupled to an upper face of the first

7 arrangement of grips, and the upper face of the

8 first arrangement of grips is of a larger surface

9 area than a lower face of the first arrangement of

10 grips.

11.

12 37. An apparatus according to any of claims 30 to

13 36, wherein the first arrangement of grips comprise

14 a stop means for preventing movement of the second

15 arrangement of grips in a direction radially away

16 from the tubular being gripped.

Fig. 3a

Fig. 3b

Fig. 4

Fig. 5

Fig. 6

Fig. 7a

Fig. 7b

13/32

Fig. 12a

Fig. 12b

Fig. 13a

Fig. 13b

16/32

Fig. 15a

Fig. 15b

17/32

Fig. 16a

Fig. 16b

Fig. 17a

19/32

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

22/32

WO 01/66905

24/32

Fig. 21

Fig. 22

Fig. 23

27/32

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)