FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

${\displaystyle \begin{array}{c} {\rm HSC} \\ {\rm Hardware/Software~Codesign} \end{array}}$

Vstavaný systém pre filtráciu a segmentáciu obrazu

2018/2019

Obsah

1	CPU	2
2	MCU	3
3	FPGA	3
4	Porovnanie vlastností SW a SW-HW	4
5	Zhrnutie	4

1 CPU

Profilovanie CPU časti projektu bolo vykonané pomocou programu $GNU\ gprof^1$ verzie 2.26.1. Desať profilovacích výsledkov bolo nameraných pomocou $n\'{a}vodu\ z\ dokument\'{a}cie^2$ na základe čoho bol vo výsledku jeden sumárny výpis profilovacích hodnôt (priemer desiatich profilovaní).

Názov	Percento času
median	62.02
gen_pixel	10.00
$clip_window$	8.74
$pixel_processing$	5.34
$shift_window$	4.46
buffer	3.66
$system_input$	2.80
thresholding	0.95
main	0.79
$update_base_pos$	0.11
$histogram_\ clean$	0.00
otsu	0.00

Tabuľka 1: Výsledky desiatich profilovaní pomocou gprof.

Obr. 1: Graf zobrazujúci namerané hodnoty z tabuľky 1.

¹sourceware.org/binutils/docs/gprof

 $^{^2} sourceware.org/binutils/docs/gprof/Sampling-Error.html\\$

2 MCU

Profilovanie MCU bolo vykonané pomocou makra #define PROFILE. Výsledky sú zobrazené v tabuľke 2.

Spracovaná časť	Čas spracovania	
*	$183 \ \mu s$	
rámec	$14.0544 \ s$	

Tabuľka 2: Spracovanie určitých častí a ich trvanie na MCU.

Implementácia MCU časti je upravená tak aby spracovala 5 rámcov – rámce číslo 100, 200, 300, 400, 500. Napriek tomu, že sa spracuje len 5 rámcov, doba spracovania piatich rámcov trvá 70.272s (1min 10s 272ms). Kebyže implementácia MCU časti nie je upravená – spracuje sa každý rámec (500 rámcov), tak by spracovanie trvalo 7027.2s (1h 57min 7s 200ms).

3 FPGA

Vlastnosti komponenty pre filtráciu a segmentáciu obrazu:

- V jadre modulu pre *filter* je *main* zreťazený (pipeline enabled) s inicializačným intervalom 4
- Cyklus označený ako *Linit* je rozbalený (unroll enabled)
- \bullet Cyklus označený ako L2 je rozbalený (unroll enabled)
- Cyklus označený ako L1a je rozbalený (unroll enabled)
- \bullet Cyklus označený ako L1b je rozbalený (unroll enabled)
- Latencia obvodu je 4

Využitie zdrojov je zobrazené v tabuľke 3.

Number of Slice Flip Flops	492 out of 1,536 (32%)
Number of 4 input LUTs	1,178 out of 1,536 (76%)
Number of occupied Slices	766 out of 768 (99%)

Tabuľka 3: Množstvo spotrebovaných zdrojov FPGA čipu.

Výpočet času potrebného na spracovanie jednotlivých častí je zobrazený v tabuľke 4.

Spracovaná časť	Čas spracovania	
*	160 ns	
rámec	$0.012288 \ s$	

Tabuľka 4: Spracovanie určitých častí a ich trvanie na MCU-FPGA.

S rozdelenou implementáciou sa rýchlosť spracovania výrazne zvýšila. Spracovanie všetkých rámcov (500 rámcov) za pomoci rozdelenia SW-HW trvá 6.144s (6s 144ms).

4 Porovnanie vlastností SW a SW-HW

Časť SW je realizovaná iba na MCU narozdiel od SW-HW ktorá je realizovaná za pomoci MCU a FPGA súčastne. Porovnanie spracovaných častí v SW a SW-HW implementácii je zobrazené v tabuľke 5.

	\mathbf{SW}	SW-HW
pixel	$183~\mu s$	$160 \ ns$
rámec	$14.0544 \ s$	$0.012288 \ s$

Tabuľka 5: Spracovanie určitých častí a ich trvanie.

Rýchlosti spracovania hore uvedených častí (viz tabuľka 5) sú zobrazené v tabuľke 6.

	\mathbf{SW}	SW-HW
počet pixelov za sekundu		
počet rámcov za sekundu	0.07115209471	81.3802083333

Tabuľka 6: Spracovanie určitých častí za jednotku času.

Metóda SW-HW implementovaná pomocou MCU-FPGA je o 1143.75 násobne rýchlejšia od medódy SW ktorá je implementovaná pomocou MCU.

5 Zhrnutie

Na základe hore uvedených meraní je zrejmé, že čisto SW a čisto HW realizácia má svoje výhody a nevýhody. Samotná SW realizácia sa ukázala ako značne pomalšia voči ostatným realizáciam. Čisto HW realizácia nie je možná z dôvodu nedostatkov výpočetných zdrojov ktoré sú zreteľne drahšie.

Kombináciou SW a HW je ale možné dosiahnuť najefektívnejšiu metódu realizácie, ktorá na základe prepojenia SW a HW umožní realizovať SW pomalé časti v HW ktorý ich vykoná výrazne rýchlejšie.

Keďže HW je v našom prípade limitovaný v rámci zdrojov, treba zvážiť na základe rýchlosti ktoré časti (časti ktoré sú v SW značne pomalé) treba previesť do HW keďže nie všetky je možné previesť. V našom prípade bola najpomalšia časť SW funkcia *median* ale keďže bolo dostatok zdrojov ešte aj na ďalšie funkcie previedli sa aj ďalšie pomalé funkcie. Pri správnom rozdelení a prevode je výsledná realizácia výrazne rýchlejšia – v našom prípade až 1143.75 krát rýchlejšia.

Ak by HW (čip FPGA) obsahoval dostatok zdrojov na to aby bolo možné presunúť zvyšné SW časti do HW (realizácia čisto v HW), zrýchlenie by bolo najväčšie. Problémom ale je, že v HW je výpočetná kapacita výrazne limitovaná cenou.