Resumen de Álgebra I

Sergio Rodríguez

Agosto 2020

1 Clase 1.1

1.1 Números Complejos

Son de la forma z=a+bi con $a,b \in \mathbb{R}$. La parte real de z corresponde a Re(z)=a y la parte imaginaria es Im(z)=b. Cuando Im(z)=0 decimos que el número es un **complejo real**, por otro lado, si Re(z)=0 decimos que se trata de un **imaginario puro**. Supongamos que tenemos $z_1, z_2 \in \mathbb{C}$, entonces

$$z_1 = z_2 \Longleftrightarrow Re(z_1) = Re(z_2) \land Im(z_1) = Im(z_2)$$

1.1.1 Formas de representar números complejos

Existen 4 formas de expresar un número complejo

- Binomial $(a + bi \text{ con } a, b \in \mathbb{R})$
- \bullet Como par ordenado ((a,b)es representado como vector en el plano de Argant)
- Polar; de la forma |z| cis(Arg(z))
- Exponencial (Agregar más adelante)

1.2 Suma y producto de \mathbb{C}

Tenemos $z = x + yi \in \mathbb{C}$ y $w = a + bi \in \mathbb{C}$, si $x, y, a, b \in \mathbb{R}$

1.
$$z + w = (x + yi) + (a + bi) = (x + a) + (y + b)i$$

2.
$$z \cdot w = (x + yi)(a + bi) = xa + xbi + yai + ybi^2 = (xa - yb) + (xb + ya)i$$

2 Clase 1.2

2.1 Propiedades de la suma de complejos

1. $\forall z_1, z_2 \in \mathbb{C}$ se cumple que $z_1 + z_2 = z_2 + z_1$ (Conmutativa)

- 2. $\forall z_1, z_2, z_3 \in \mathbb{C}$ se cumple que $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ (Asociativa)
- 3. Existe el complejo real 0 tal que $\forall z \in \mathbb{C} : z + 0 = z$. Notemos que el 0 es el **único** elemento neutro para la suma. (**Existencia de un elemento** neutro)
- 4. Para todo $z \in \mathbb{C}$ existe el -z tal que z + (-z) = 0. Para cada $z \in \mathbb{C}$, -z es el **único** inverso aditivo de z. (**Inverso aditivo**)

2.2 Propiedades del producto de complejos

- 1. $\forall z_1, z_2 \in \mathbb{C} : z_1 z_2 = z_2 z_1$. (Conmutativa)
- 2. $\forall z_1, z_2, z_3 \in : z_1(z_2z_3) = (z_1z_2)z_3$. (Asociativa)
- 3. El complejo real 1 es tal que $\forall z \in \mathbb{C} : z \cdot 1 = z$. El 1 es el **único** neutro para el producto. (**Existencia de un neutro para el producto**)
- 4. $\forall z \in \mathbb{C} : 0 \cdot z = 0$. Es por esto que el 0 no tiene inverso multiplicativo
- 5. Sea $z = x + yi, z \neq 0$. Un número u = a + bi es inverso multiplicativo de z si y sólo si $z \cdot u = u \cdot z = 1$. (Inverso multiplicativo)
- 6. $\forall z_1, z_2, z_3 \in \mathbb{C}$ se cumple que $z1(z_2+z_3) = z_1z_2+z_1z_3$. (Distributividad de la suma con respecto al producto)

2.3 Conjugado de números complejos

Si $z = a + bi \in$, entonces si conjugado se denota $\overline{z} = a - bi$.

2.4 Producto de z por su conjugado

Si z=a+bi con $a,b\in\mathbb{R}, \overline{z}=a-bi$ entonces $z\overline{z}=a^2+b^2$. Esto vendría siendo el cuadrado de la distancia de (0,0) a (a,b). Notemos que esta distancia se denomina el **módulo de** z y se denota |z|, en donde

$$|z| = \sqrt{a^2 + b^2} \Rightarrow z\overline{z} = |z|^2$$

2.5 Inverso multiplicativo de z

Para cada $z \in \mathbb{C} - \{0\}$ el número $\frac{1}{|z|^2}\overline{z}$ es su **único** inverso multiplicativo (demostración trivial).

2.6 Diferencia y cociente de de números complejos

Dados $z, w \in \mathbb{C}$, la diferencia z - w es: z - w = z + (-w). Si $w \neq 0$ el cociente $\frac{z}{w}$ es: $\frac{z}{w} = zw^{-1} = w^{-1}z$.

2.7 Propiedades de \overline{z}

Para todo $z, w \in \mathbb{C}$ se cumple que

- 1. $\overline{\overline{z}} = z$.
- 2. $z = \overline{z}$ si y sólo si z es complejo real.
- 3. $z = -\overline{z}$ si y solo si z es imaginario puro.
- 4. $\overline{z+w} = \overline{z} + \overline{w}$. En particular, $\overline{-z} = -\overline{z}$.
- 5. $\overline{zw} = \overline{z} \cdot \overline{w}$. En particular, $\overline{z^{-1}} = (\overline{z})^{-1}$
- 6. $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$.

2.8 Propiedades del módulo de z

Para todo $z, w \in \mathbb{C}$ se cumple que

- 1. $|z| \in \mathbb{R}^+ \cup \{0\}$.
- 2. $|z| = 0 \Leftrightarrow z = 0$.
- 3. Si z es un complejo real, |z| es su valor absoluto (ocurre lo mismo con los imaginarios puros).
- 4. $\forall z \in \mathbb{C}$ se cumple que
 - $z\overline{z} = |z|^2$
 - $|\overline{z}^2| = \overline{z} \cdot \overline{\overline{z}} = \overline{\overline{z}} \cdot \overline{z}$
- 5. $\forall z, w \in \mathbb{C} : |zw| = |z||w|$. En particular, si $z \neq 0, |z^{-1}| = \frac{1}{|z|}$.
- 6. $\forall z, w \in \mathbb{C} : |z + w| \le |z| + |w|$

3 Clase 2.1

3.1 Más propiedades de suma y producto de complejos

- 1. El producto de números complejos es cero si y sólo si uno de los dos es cero, $\forall z_1,z_2\in\mathbb{C}:z_1z_2=0\Leftrightarrow z_1=o$ o $z_2=0$.
- 2. el inverso aditivo de z + w es -z w.
- 3. El inverso aditivo del inverso aditivo de z es $z, \forall z \in \mathbb{C} : -(-z) = z$.
- 4. Si $z, w \neq 0$, entonces $(zw)^{-1} = z^{-1}w^{-1}$.
- 5. $(w^{-1})^{-1} = w$.

3.2 Potencias con exponente natural de un número complejo

Sean $z,w\in\mathbb{C},n,m\in\mathbb{N}.$ Entonces z^n es el producto de z por sí mismo n veces.

$$z^n z^m = z^{n+m}, (z^n)^m = z^{nm}, z^n w^m = (zw)^n, \frac{z^n}{z^m} = z^{n-m}.$$

3.3 Forma polar de números complejos

Se basa en la relación entre coordenadas polares y coordenadas cartesianas de puntos en el plano cartesiano

- Coordenadas cartesianas: $(x, y), x, y \in \mathbb{R}$
- Coordenadas polares: $(\rho, \theta) : \rho \in \mathbb{R}^+ \cup \{0\}, \in \mathbb{R}$

3.4 Forma polar de un número complejo

Si z = w + yi con $x, y \in \mathbb{R}$, podemos ubicar a z en el plano de Argand del mismo modo que ubicamos el punto con coordenadas cartesianas (x, y) en el plano cartesiano. Las coordenadas polares de (x, y) son (ρ, θ) con

$$\rho = |z| \wedge \theta$$
 satisface $\cos \theta = \frac{x}{|z|}, \sin \theta = \frac{y}{|z|}z$.

Por lo tanto,

$$z = x + yi = |z|\cos\theta + i|z|\sin\theta = |z|(\cos\theta + i\sin\theta) = |z|\cos\theta$$

Si $\theta \in]-\pi,\pi],|z|$ cis θ es la **representación polar** de z y θ recibe el nombre de **argumento principal de** z

4 Clase 2.2

4.1 Transformar números complejos de forma polar a binomial y viceversa

Trivial

4.2 Inverso aditivo de un número complejo en forma polar

Si $z = |z| \operatorname{cis} \theta$, entonces

$$-z = |z|(-\cos\theta - i\sin\theta) = |z|(\cos(\pi + \theta) + i\sin(\pi + \theta))$$

4.3 Conjugado e inverso multiplicativo de números complejos en forma polar

Si $z = |z| \operatorname{cis} \theta$, entonces

- $\overline{z} = |z|(\cos\theta i\sin\theta) = |z|(\cos(-\theta) + i\sin(-\theta)) = |z|\cos(-\theta)$
- $z^{-1} = \frac{1}{|z|}\operatorname{cis}(-\theta)$

5 Clase 3.1

5.1 Operaciones con números complejos en forma polar

Sean $z_1 = |z_1| \operatorname{cis} \theta_1, z_2 = |z_2| \operatorname{cis} \theta_2$ y $n \in \mathbb{N}$, entonces

- $z_1 + z_2 = |z_1| \cos \theta_1 + |z_2| \cos \theta_2 + i(|z_1| \sin \theta_1 + |z_2| \sin \theta_2)$
- $\overline{z_1} = |z_1| \operatorname{cis}(-\theta_1)$
- $-z_1 = |z_1| \operatorname{cis} (\pi + \theta_1)$
- si $z_1 \neq 0, z_1^{-1} = \frac{1}{|z_1|} \operatorname{cis}(-\theta_1)$
- $z_1 z_2 = |z_1||z_2| \operatorname{cis} (\theta_1 + \theta_2)$
- $z_1^n = |z_1|^n \operatorname{cis}(n\theta_1)$
- si $z_1 \neq 0, \frac{z_2}{z_1} = \frac{|z_2|}{|z_1|} \operatorname{cis} (\theta_2 \theta_1)$

5.2 Raíces de números complejos

Sea $z \in \mathbb{C}, w \in \mathbb{C}$ es raíz n-ésima de z $(n \in \mathbb{N})$ si y sólo si $w^n = z$

6 Clase 3.2

6.1 Fórmula de Moivre

Si $z \in \mathbb{C}$, $z = \operatorname{cis}(\theta)$, $n \in \mathbb{N}$, entonces

$$z^n = |z|^n \operatorname{cis}(n\theta)$$

Es decir,

$$|z|^n(\cos\theta + i\sin\theta)^n = |z|^n(\cos(n\theta) + i\sin(n\theta)) \Longrightarrow (\cos\theta + i\sin\theta)^n = (\cos(n\theta) + i\sin(n\theta))$$

6.2 Ejemplo de cómo sacar raíz de un número complejo

Calculemos la raíz cuadrada de 1-i, tenemos 2 formas para hacerlo:

• Forma polar: primero escribimos 1-i en forma polar, osea $\sqrt{2}$ cis $\frac{-\pi}{4}$. Ahora tenemos que encontrar $w \in \mathbb{C}$ tal que $w^2 = \sqrt{2}$ cis $\frac{-\pi}{4}$. Tenemos que

$$|w|^2 \operatorname{cis}(2\alpha) = \sqrt{2} \operatorname{cis} \frac{-\pi}{4}$$
$$|w|^2 = \sqrt{2} \wedge \operatorname{cis}(2\alpha) = \operatorname{cis} \frac{-\pi}{4}$$
$$|w| = \sqrt[4]{2} \wedge 2\alpha = \frac{-\pi}{4} + 2\pi k, k \in \mathbb{Z}$$
$$w = \sqrt[4]{2} \wedge \alpha = -\frac{\pi}{8} + \pi k, k \in \mathbb{Z}$$

Ahora veamos que valores puede tomar α sabiendo que el conjunto solución del mismo es $\alpha=\{k\in\mathbb{Z}:-\frac{\pi}{8}+\pi k\}$. Para $k=0,\alpha=-\frac{\pi}{8}$, para $k=1,\alpha=\frac{7\pi}{8}$ y para los demás valores de k cis α va tomando los mismos valores ya que la función es periódica. Entonces podemos concluir que $\sqrt{1-i}=\{\sqrt{2}\operatorname{cis}(-\frac{\pi}{8}),\sqrt{2}\operatorname{cis}\frac{7\pi}{8}\}$

• Forma binomial: (pendiente)

6.3 Raíces *n*-ésimas de $z \in \mathbb{C}$

Sea $z\in\mathbb{C}, w\in\mathbb{C}$ es raíz n-ésima de z $(n\in\mathbb{N})$ si y solo si $w^n=z$. Si $z=|z|\operatorname{cis}\theta,$ entonces

$$\sqrt[n]{z} = \{|z|^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta}{n} + \frac{2\pi}{n}k\right) : k = 0, 1, \dots, n-1\}$$

6.4 Algunas propiedades

Si $z = |z| \operatorname{cis} \theta$ y $n \in \mathbb{N}$, entonces

- las raíces *n*-ésimas de z están en la circunferencia de centro en el origen y radio $|z|^{\frac{1}{n}}$ (las raíces *n*-ésimas de z tienen el módulo igual a $|z|^{\frac{1}{n}}$).
- Si n es par, por cada w que es raíz n-ésima de z, -w también lo es.
- ullet Si n es par, la suma de las raíces n-ésimas de z es cero.

6.5 Raíces n-ésimas de 1 y raíces n-ésimas de cualquier $z \in \mathbb{C}$

Si \widetilde{w} es una de las raíces *n*-ésimas de z, entonces

$$\sqrt[n]{z} = \{\widetilde{w}u_0, \widetilde{w}u_1, \cdots, \widetilde{w}u_{n-1}\}$$

Siendo $u_0, u_1, \cdots, u_{n-1}$ las raíces n-ésimas de 1,

$$\sqrt[n]{(1)} = \{ \operatorname{cis}\left(\frac{2\pi}{n}k\right) : k = 0, 0, \cdots, n-1 \}$$

Entonces cuando \widetilde{w} es un de las raíces n-ésimas de z y u_j es una de las raíces n-ésimas de 1, tenemos $(\widetilde{w}u_j)^n = (\widetilde{w})^n(u_j)^n = z \cdot 1 = z$. Ademas $\widetilde{w}u_0, \widetilde{w}u_1, \cdots, \widetilde{w}u_{n-1}$ son n valores distintos entre sí. Por tanto,

$$\sqrt[n]{z} = \{\widetilde{w}u_0, \widetilde{w}u_1, \cdots, \widetilde{w}u_{n-1}\}\$$

También podemos ver que la suma de las raíces de z es:

$$\widetilde{w}u_0 + \widetilde{w}u_1 + \dots + \widetilde{w}u_{n-1} = \widetilde{w}(u_0 + u_1 + \dots + u_{n-1}) = \widetilde{w} \cdot (0) = 0$$

6.6 Forma exponencial de números complejos

Sea $z \in \mathbb{C}$

- existen $x, y \in \mathbb{R}$ de modo que z = x + iy.
- existe $\theta \in]-\pi,\pi]$ de modo que $z=|z|\operatorname{cis}\theta.$
- existe $\theta \in]-\pi,\pi]$ de modo que $z=|z|e^{i\theta}$.

Es cierto por que para cada $\theta \in \mathbb{R}$ se cumple que $\cos \theta + i \sin \theta = e^{i\theta}$

6.7 Operaciones con números complejos en forma exponencial

Si $z_1 = |z_1|e^{i\theta_1}, z_2 = |z_2|e^{i\theta_2}$, entonces

- $z_1 + z_2 = |z_1|e^{i\theta_1} + |z_2|e^{i\theta_2}$
- $\overline{z} = |z_1|e^{-i\theta_1}$
- $\bullet \ -z_1 = |z_1|e^{i(\pi+\theta_1)}$
- si $z_1 \neq 0, z_1^{-1} = \frac{1}{|z_1|} e^{-i\theta_1}$
- $z_1 z_2 = |z_1||z_2|e^{i(\theta_1 + \theta_2)}$
- $\bullet \ z_1^n = |z_1|^n e^{i(n\theta_1)}$
- si $z 1 \neq 0$, $\frac{z_2}{z_1} = \frac{|z_2|}{|z_1|} e^{i(\theta_2 \theta_1)}$

6.8 Representación exponencial de raíces n-ésimas de 1

$$\sqrt[n]{(1)} = \{e^{i0}, e^{i(\frac{2\pi}{n})}, e^{i(\frac{4\pi}{n})}, \cdots, e^{i(\frac{2(n-1)\pi}{n})}\}$$