

boundary of a closed set is nowhere dense

 ${\bf Canonical\ name} \quad {\bf Boundary Of AClosed Set Is Nowhere Dense}$

Date of creation 2013-03-22 18:34:01 Last modified on 2013-03-22 18:34:01 Owner neapol1s (9480) Last modified by neapol1s (9480)

Numerical id 4

Author neapol1s (9480) Entry type Derivation Classification msc 54A99 Let A be closed. In general, the boundary of a set is closed. So it suffices to show that ∂A has empty interior.

Let $U \subset \partial A$ be open. Since $\partial A \subset \overline{A} = A$, this implies that $U \subset A$. Since $\operatorname{int}(A)$ is the largest open subset of A, we must have $U \subset \operatorname{int}(A)$. Therefore $U \subset \partial A \cap \operatorname{int}(A)$. But $\partial A \cap \operatorname{int}(A) = (\overline{A} - \operatorname{int}(A)) \cap \operatorname{int}(A) = \emptyset$, so $U = \emptyset$.