Multiclass Classification Principal Component Analysis

Lecture 06

Recap

Lecture 5: Linear Classification

- Linear classification
 - margin
 - loss functions
- Logistic regression
 - sigmoid derivation
 - o Maximum Likelihood Estimation
 - logistic loss
- Metrics in classification
 - Accuracy, Balanced accuracy
 - Precision, Recall, F-score
 - o ROC curve, PR curve, AUC

Outline

- Multiclass aggregation strategies
 - o One vs Rest
 - o One vs One
- Metrics in classification (again):
 - o Precision, Recall, F-score
 - o ROC curve, PR curve, AUC
 - Confusion matrix
- Dimensionality reduction and PCA
 - Connections with SVD

Multiclass aggregation strategies

girafe ai

One vs Rest

Images source

5

One vs Rest: unclassified regions

One vs Rest: final result

One vs One

Failure case?

Summary

	One vs Rest	One vs One
#classifiers	k	k(k-1)/2
dataset for each	full	subsampled

Metrics: Multi-class Scenario

girafe ai

Metrics

- Multiclass generalization:
 - Precision
 - o Recall
 - F-score
 - ROC-AUC
 - o PR-AUC
- Confusion matrix

Precision and Recall

		True condition	
	Total population	Condition positive	Condition negative
Predicted	Predicted condition positive	True positive	False positive, Type I error
condition	Predicted condition negative	False negative, Type II error	True negative

$$Precision = \frac{TP}{TP + FP} \quad Recall = \frac{TP}{TP + FN}$$

F-score motivation

F-score

Harmonic mean of precision and recall

Closer to smaller one

$$F_1 = \frac{2}{\text{precision}^{-1} + \text{recall}^{-1}} = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Generalization to different ratio between Precision and Recall

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{\beta^2 \text{ precision} + \text{recall}}$$

		True condition	
	Total population	Condition positive	Condition negative
Predicted condition	Predicted condition positive	True positive	False positive, Type I error
	Predicted condition negative	False negative, Type II error	True negative

$$FPR = \frac{FP}{FP + TN}$$

$$TPR = \frac{TP}{TP + FN} (= Recall)$$

Classifier needs to predict probabilities

Objects get sorted by positive probability

Line is plotted as threshold moves

Baseline is random predictions

Always above diagonal (for reasonable classifier)

If below - change sign of predictions

Strictly higher curve means better classifier

Number of steps (thresholds) not bigger than dataset

ROC Area Under Curve (ROC-AUC)

Effectively lays in (0.5, 1)

Bigger ROC-AUC doesn't imply

higher curve everywhere

More explanations with pictures

Precision-Recall Curve

AUC is in (0, 1)

Source of AP metric (important for next semester)

Nice article

Multiclass metrics

As with linear models we need some magic to measure multiclass problems

Basically it's mean of one or another kind

Detailed info here and here

average	Precision	Recall	F_beta
"micro"	$P(y,\hat{y})$	$R(y,\hat{y})$	$F_{\beta}(y,\hat{y})$
"samples"	$rac{1}{ S } \sum_{s \in S} P(y_s, \hat{y}_s)$	$rac{1}{ S } \sum_{s \in S} R(y_s, \hat{y}_s)$	$rac{1}{ S } \sum_{s \in S} F_eta(y_s, \hat{\pmb{y}}_s)$
"macro"	$rac{1}{ L } \sum_{l \in L} P(y_l, \hat{y}_l)$	$rac{1}{ L } \sum_{l \in L} R(y_l, \hat{y}_l)$	$rac{1}{ L } \sum_{l \in L} F_{eta}(y_l, \hat{y}_l)$
"weighted"	$rac{1}{\sum_{l \in L} \hat{y}_l } \sum_{l \in L} \hat{y}_l P(y_l, \hat{y}_l)$	$rac{1}{\sum_{l \in L} \hat{y}_l } \sum_{l \in L} \hat{y}_l R(y_l, \hat{y}_l)$	$rac{1}{\sum_{l \in L} \lvert \hat{m{y}}_l vert} \sum_{l \in L} \lvert \hat{m{y}}_l vert m{F}_eta(m{y}_l, \hat{m{y}}_l)$

Confusion matrix

Principal Component Analysis

girafe ai

Dimensionality Reduction

- In ML we often work with high-dimensional data
 - Hundreds or thousands of features

- Hard to visualize
- Slow training
- Some models perform worse on high-dimensional sparse input

Dimensionality Reduction

• Factorization into smaller-rank matrices

$$X_{l,d} \approx U_{l,k} \cdot V_{k,d}^T$$

$$||X - UV^T|| \to min$$

Dimensionality Reduction with SVD

$$A = U\Sigma V^{T}$$

$$A_{k} = U_{k}\Sigma_{k}V_{k}^{T} = (U_{k}\Sigma_{k})V_{k}^{T} = U_{k}(\Sigma_{k}V_{k}^{T})$$

Theorem (Eckart-Young)

- Truncated SVD gives best low-rank approximation for a given matrix A
- More formally,

$$A_k = U_k \Sigma_k V_k^T$$

$$\forall B_k : rank(B_k) = k$$

$$||A - B_k||_F \ge ||A - A_k||_F$$

- Project all data points into a smaller dimension subspace
- Maximize variance along new basis vectors

PCA: Projection into Subspace

diagonal: sigmas ~ variance

- Consider columns of matrix V new basis vectors:
 principal directions
- Columns of matrix US are called principal components of the data
- Singular values are sorted: truncated SVD gives the best projection of dim K

PCA: Effective Dimensionality

- Often data is noisy and has non-informative features
- Get rid of low-variance components in PCA

$$E_m = \frac{\|GU^{\mathsf{T}} - F\|^2}{\|F\|^2} = \frac{\lambda_{m+1} + \dots + \lambda_n}{\lambda_1 + \dots + \lambda_n} \leqslant \varepsilon.$$

PCA in Practice

- Above said is correct only if X is centered
 - Normalize data before PCA!
- Dimensionality reduction:

$$X_k = U_k \Sigma_k$$

Reconstruction:

$$\overline{X} = U_k \Sigma_k V_k^T$$

Word embeddings visualization

Let's walk through space...

Eigenfaces: image examples

Eigenfaces: top-16 components

Eigenfaces: reconstruction with n=50

Revise

- Multiclass aggregation strategies
 - o One vs Rest
 - o One vs One
- Metrics in classification (again):
 - o Precision, Recall, F-score
 - o ROC curve, PR curve, AUC
 - Confusion matrix
- Dimensionality reduction and PCA
 - Connections with SVD

Next time

- Train-validation-test split
- Validation Strategies
- Bias-variance Trade-off

Thanks for attention!

Questions?

