E1.10 Mathematics I

UNIVERSITY OF LONDON

B.ENG. AND M.ENG. EXAMINATIONS 2006

For Internal Students of Imperial College London

This paper is also taken for the relevant examination for the Associateship of the City & Guilds of London Institute

PART I: MATHEMATICS 1 (ELECTRICAL ENGINEERING)

Tuesday 30th May 2006 10.00 am - 1.00 pm

Answer EIGHT questions.

Corrected Copy

[Before starting, please make sure that the paper is complete; there should be 6 pages, with a total of 10 questions. Ask the invigilator for a replacement if your copy is faulty.]

1. (i) Consider the Heaviside function

$$H(x) = \begin{cases} 1; & x \geq 0, \\ 0; & x < 0. \end{cases}$$

- (a) Where is H discontinuous?
- (b) Sketch the even and odd parts of H(x) H(x-1).
- (ii) Consider the function

$$f(x) = x + 1/x.$$

Give a reasonable domain of definition of f and the corresponding range.

Is this function even, odd or neither?

Show that $f(x) \ge 2$ if x > 0 and give a domain such that f can be restricted to be an invertible function on that domain.

2. (i) The implicit relationship

$$x^2 - y^2 = 1$$

holds on some curve Γ in the xy-plane.

Sketch Γ , noting any asymptotes and extreme values taken by x and y on Γ .

(ii) Sketch the graph of

$$y(x) = 2 + \frac{1}{1-x} ,$$

noting any important features.

3. (i) Differentiate with respect to x

$$\ln [x + (1+x^2)^{1/2}]; \quad (\sin x)^x.$$

(ii) Given that

$$x(t) = t + \sin t$$
 and $y(t) = t + \cos t$,

find $\frac{dy}{dx}$ in terms of t and show that

$$(1 + \cos t)^3 \frac{d^2y}{dx^2} = \sin t - \cos t - 1.$$

4. (i) Given the function $f(x) = x^2 \sin x$, express the *n*-th derivative of f in the form $d^n f$

$$\frac{d^n f}{dx^n} = A \cos x + B \sin x ,$$

where A and B are coefficients that depend on x and n.

(ii) Use induction to prove that

$$\sum_{n=0}^{N} x^{n} = \frac{x^{N+1} - 1}{x - 1}$$

for all integer N and real $x \neq 1$.

5. Evaluate the following limits:

(i)
$$\lim_{x \to \pi/4} \frac{\cos 2x}{\tan(\sqrt{x}) - 1} ;$$

(ii)
$$\lim_{x \to \pi/4} \frac{\cos 2x}{\tan x - 1} ;$$

(iii)
$$\lim_{x \to 2} \frac{\sqrt{(x+2)} - 2}{\sqrt{(x^3 - 4)} - 2} ;$$

(iv)
$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x.$$

6. Evaluate the following integrals:

$$\int \frac{1}{x^2 + x - 6} dx ;$$

(ii)
$$\int_0^{\pi/2} (\sin^3 x - 3) \cos x \, dx \; ;$$

(iii)
$$\int (1 - x)^{10} dx;$$

(iv)
$$\int \frac{1}{1 + \cos x + \sin x} dx.$$

7. Evaluate the following indefinite integrals:

(i)
$$\int \frac{6x - 12}{\sqrt{x^2 - 4x + 5}} \, dx \; ;$$

(ii)
$$\int \frac{\sec^2 x}{4\tan x + 7} dx ;$$

(iii)
$$\int x^2 \sin x \ dx ;$$

(iv)
$$\int \frac{2x+1}{x^2-5x+6} \, dx \, .$$

8. (i) Show that the power series

$$\sum_{n=1}^{\infty} n! x^n$$

converges only if x = 0.

(ii) Find the radius of convergence of the power series

$$\sum_{n=2}^{\infty} \frac{\ln(n)}{n+1} x^n.$$

(iii) Use the integral test to decide whether or not

$$\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}}$$

converges.

9. (i) Express each of the following complex numbers in the form a + ib with a and b real:

(a) i^{105} ; (b) $\frac{1}{i}$; (c) $(1 - i\sqrt{3})^2$.

(ii) Find all values of z such that

(a) $e^z = 1$; (b) $e^z = 1 + i$.

(iii) Express the following complex numbers in polar coordinates:

(a) 1 + i; (b) -3 - i.

10. (i) Show directly from the definitions

 $cosh(x) = \frac{1}{2} (e^x + e^{-x}) \text{ and } sinh(x) = \frac{1}{2} (e^x - e^{-x})$

that

 $\cosh(nx) = \frac{1}{2} \left(\left[\cosh x + \sinh x \right]^n + \left[\cosh x - \sinh x \right]^n \right)$

for any integer $n \geq 1$ and verify the result independently for n=2 .

(ii) Prove that

 $\sinh^{-1}(x) = \ln \left[x + \sqrt{x^2 + 1} \right].$

(iii) Sketch the functions

(a) $y = \sinh^{-1}(x)$, (b) $y = \cosh^{-1}(x)$ and (c) $y = \tanh^{-1}(x)$,

where

 $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}.$

MATHEMATICS DEPARTMENT

MATHEMATICAL FORMULAE

1. VECTOR ALGEBRA

$$a = a_1i + a_2j + a_3k = (a_1, a_2, a_3)$$

Scalar (dot) product:

 $a.b = a_1b_1 + a_2b_2 + a_3b_3$

Vector (cross) product:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar triple product:

[a, b, c] = a.b × c = b.c × a = c.a × b =
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Vector triple product: a >

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$

2. SERIES

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots$$
 (α arbitrary, $|x| < 1$)

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \ldots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{(n+1)} + \dots (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$
;

$$\cos(a+b) = \cos a \cos b - \sin a \sin b.$$

 $\cos iz = \cosh z$; $\cosh iz = \cos z$; $\sin iz = i \sinh z$; $\sinh iz = i \sin z$.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} Df D^{n-1}g + \ldots + \binom{n}{r} D^{r}f D^{n-r}g + \ldots + D^{n}f g.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h) = f(a) + hf'(a) + h^2f''(a)/2! + \ldots + h^nf^{(n)}(a)/n! + \epsilon_n(h),$$

where $\epsilon_n(h) = h^{n+1} f^{(n+1)} (a + \theta h) / (n+1)!, \quad 0 < \theta < 1.$

(c) Taylor's expansion of f(x, y) about (a, b):

$$f(a+h,b+k) = f(a,b) + [hf_x + kf_y]_{a,b} + 1/2! [h^2f_{xx} + 2hkf_{xy} + k^2f_{yy}]_{a,b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If
$$y = y(x)$$
, then $f = F(x)$, and $\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$.

ii. If
$$x = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

iii. If x = x(u, v), y = y(u, v), then f = F(u, v), and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$$

(e) Stationary points of f(x, y) occur where f_x = 0, f_y = 0 simultaneously. Let (a, b) be a stationary point: examine D = [f_{xx}f_{yy} - (f_{xy})²]_{a.b}. If D > 0 and f_{xx}(a, b) < 0, then (a, b) is a maximum; If D > 0 and f_{xx}(a, b) > 0, then (a, b) is a minimum; If D < 0 then (a, b) is a saddle-point.

(f) Differential equations:

i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor $I(x) = \exp[\int P(x)(dx)]$, so that $\frac{d}{dx}(Iy) = IQ$.

ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.

5. INTEGRAL CALCULUS

- (a) An important substitution: $\tan(\theta/2)=t$: $\sin\theta=2t/(1+t^2), \quad \cos\theta=(1-t^2)/(1+t^2), \quad d\theta=2\,dt/(1+t^2).$
- (b) Some indefinite integrals:

$$\int (a^2 - x^2)^{-1/2} dx = \sin^{-1} \left(\frac{x}{a}\right), \quad |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a} \right) = \ln \left\{ \frac{x}{a} + \left(1 + \frac{x^2}{a^2} \right)^{1/2} \right\}.$$

$$\int (x^2 - a^2)^{-1/2} dx = \cosh^{-1} \left(\frac{x}{a} \right) = \ln \left| \frac{x}{a} + \left(\frac{x^2}{a^2} - 1 \right)^{1/2} \right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of f(x) = 0 occurs near x = a, take $x_0 = a$ and $x_{n+1} = x_n - [f(x_n)/f'(x_n)], n = 0, 1, 2 \dots$

(Newton Raphson method).

- (b) Formulae for numerical integration: Write $x_n = x_0 + nh$, $y_n = y(x_n)$.
- i. Trapezium rule (1-strip): $\int_{x_0}^{x_1} y(x) dx \approx (h/2) \left[y_0 + y_1\right]$.
- ii. Simpson's rule (2-strip): $\int_{x_0}^{x_2} y(x) dx \approx (h/3) [y_0 + 4y_1 + y_2]$.
- (c) Richardson's extrapolation method: Let $I=\int_a^b f(x)dx$ and let I_1 , I_2 be two

estimates of I obtained by using Simpson's rule with intervals h and h/2.

Then, provided h is small enough,

 $I_2 + (I_2 - I_1)/15$,

is a better estimate of I.

7. LAPLACE TRANSFORMS

	0.0
rans	8
-	
	ं
uc	

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

sF(s) - f(0)

df/dt

F(s-a)

$$af(t) + bg(t)$$

$$aF(s) + bG(s)$$

Transform

Function

$$aF(s) + bG(s)$$

 $s^{2}F(s) - sf(0) - f'(0)$

$$f + \frac{\partial}{\partial t} (t)$$

$$f/dt^2$$

$$d^2f/dt^2$$

-dF(s)/ds

$$\int_0^t f(t)dt$$

$$\int_0^t f(t)dt$$

$$\int_0^t f(t)dt$$

$$\int_0^t f(t)dt$$

$$\int_0^t f(t)dt$$

F(s)/s

$$\int_0^t f(t)dt$$

$$\int_0^t f(t)dt$$

$$(\partial/\partial lpha)F(s,lpha)$$

F(s)G(s)

 $\int_0^t f(u)g(t-u)du$

 $(\partial/\partial\alpha)f(t,\alpha)$

$$(n=1,2\ldots)$$

$$(n=1, 2\ldots)$$

$$n!/s^{n+1}$$
, $(s>0)$
 $\omega/(s^2+\omega^2)$, $(s>0)$

$$1/(s-a), (s>a)$$
 $\sin \omega t$ $\omega/(s^2+\omega^2), (s^3+\omega^2), (s^3$

1/(s-a), (s>a)

cosmt

$$\omega/(s^2+\omega^2), \ (s>0)$$

$$\omega/(s^2 + \omega^2), \ (s > 0)$$

.

8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L) = f(x), and

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \text{ where}$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
, $n = 0, 1, 2, ...$, and

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, 3, \dots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} [f(x)]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) .$$

i). a) (1) he Heaviside fuchar is discarturals at x=0 (i) The even part of finj=H(x) & H(+1x) can be [2] found thus: 1 + o 1 × Then fever $(z) = \frac{f(x) + f(-x)}{2}$ -1 1 1 n and food (x) = f(x) - f(-x) -1 "/2 forcel
-1 "/2 i
-1 [4] i, If f(x) = n+1/n then {x+18/x+0} is and possible choice to D(f). Then f(-x) = -x + 1/-x = -(x + 1/x) = -f(x) so f is cold. Now $f(x) \sim x \rightarrow mas \quad x \rightarrow x \quad and \quad f(x) \rightarrow t x \quad an \quad x \rightarrow 0$ and $f'(x) = 1 - 1/x^2$ which is zero if $x = \pm 1$. At x = +1, f(x) = 2 and so min f(x) = 2 = f(1). 2Hence the range of f with the above domain is $(-\infty, -2)v(2, \infty)$ If we define $Dinv(f) = \begin{cases} x \in \mathbb{R} \mid x > i \end{cases}$ then f'(n) > 0 for all n+ Din(f) and so f is mondaine increasing on this domain and home workble. AT RB

FE T(1)

2). a) Cinen $x^2 - y^2 = 1$, we can consider y as (2) a fraction of x or n as a fraction of y as \mathbb{Z} . New x - y dy = 0 $\frac{dy}{dn} = 0 \text{ at } n = 0 \text{ and so } y^2 = -1!$ $x \frac{dx}{dy} - y = 0 \quad \text{So} \quad \frac{dx}{dy} = 0 \text{ at } y = 0.$ Along T, $y = \pm \sqrt{x^2 - 1} = \pm |x| \sqrt{1 - x^2} (x^2 - 1 > 0)$ y asymptotes to ±1×1 as x > 0. A

2b). If $y(x) = 2 + \frac{1}{1-n} = \frac{2-2x+1}{1-n} = \frac{3-2x}{1-x}$. Hence there is a next asymptote at x=1. [2]

Then $dy = (1-x)^2$ which is never dero [2]

and $\frac{1}{1-x}$ has the graph

and $\frac{1}{1-x}$ has the graph

were the graph is cavex for x<1means the graph is cavex for x<1and caucane for x>1. Finally, y(x) = 0 if $2 + \frac{1}{1-n} = 0$ so x=3/2 of [3]

	EXAMINATION QUESTIONS/SOLUTIONS 2005-06	Course DET(1)
Question C		Marks & seen/unseen
Parts	(i) y=1/[x+(1+x2)1/2]	
	dy = 1+x(1+x2)1/2	3
	$\frac{q_{1}}{q_{2}} = \frac{1+x_{5}}{1+x_{1}+x_{5}} \frac{2x+(1+x_{5})}{(1+x_{5})_{1/5}} = \frac{1+x_{5}}{1+x_{5}}$ $\frac{q_{1}}{q_{2}} = \frac{x+(1+x_{5})_{1/5}}{1+x_{5}} = \frac{1+x_{5}}{1+x_{5}} = \frac{1+x_{5}}{1+x_{5}}$	2
	y=(sn x) lny = xln (snx)	2
	So $\frac{dy}{dx} = \ln(\sin x) + x \cot x$ $\frac{dy}{dx} = (\sin x)^{x} \left[\ln(\sin x) + x \cot x\right]$	2,1
	(11) X= ++ sint, Y= ++ wot.	
	widx = 1+ cost, dy = 1-sut	1,1
	$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = 1 - Sut$	2
	Lo (1+cost) dy = 1-snt	1
	-sort $\frac{dy}{dx}$ + (1+ast) $\frac{d^2y}{dx^2} \frac{dx}{dt} = -\cos t$	2
	$(1+ast)^{2} \frac{d^{2}y}{dx^{2}} = snt\left(\frac{1-snt}{1+ast}\right) - cost$	
	= snt-sn2t-cost-cos2t)	
	: (1+ cost) 3 dry = sut - cost -1	3
	Setter's initials Checker's initials Anc.	Page number

4a) If f(x) = x2 six then $D^{n}f = \int_{-\infty}^{\infty} D^{n}(x^{2}snx) = \int_{-\infty}^{\infty} u_{C_{i}} b^{i}(x^{2}) b^{n-i}snx$ = $\frac{2}{5}$ $h_{c_{j}}$ $h_{c_{j}}$ $h_{c_{j}}$ $h_{c_{j}}$ $h_{c_{j}}$ $h_{c_{j}}$ $h_{c_{j}}$ $h_{c_{j}}$ $h_{c_{j}}$ = $\mu_{c_0} \approx L \delta^{\mu}(\hat{s}_1 \times 1) + \mu_{c_1} (\hat{s}_1 \times 1)$ + hc, 2. Dn-2 (six) = n2 Dh(six) + 2hx Dh-(six) + h(n-1) Dh-2 (six) n is men, his equals 22 Da six + Dux Du-1 (-D coox) + u(n-1) D-2-03sin = x2 Dh six _ dnx Dh cox - n(n-1) Dh six $= \left(\alpha^2 - n(n-1) \right) b^n \sin x - 2n x b^n \cos x$ $= \begin{cases} (n^2 - (n-1)n) \cdot (-1)^{n/2} \sin x - \partial n \times \cdot (-1)^{n/2} \cos x \text{ in even} \\ (n^2 - n(n-1)) \cdot (-1)^{(n-1)/2} \cos x - 2n \times \cdot (-1)^{(n+1)/2} \sin x \text{ in each}. \end{cases}$

b). To prove
$$\sum_{n=0}^{\infty} x^n = \frac{x^{n+1} - 1}{x - 1}$$
 for $x \neq 1$, (i)

let $P(x)$ denote this as a proposition. Then

(i) $P(1)$ is the because

$$\sum_{n=0}^{\infty} x^n = 1 + x = \frac{x^2 - 1}{x - 1} - \frac{(x - 1)(x + 1)}{(x - 1)}$$

$$= 1 + x.$$
(ii) Assume $P(b)$ to be then. Then

$$\sum_{n=0}^{k+1} x^n = \sum_{n=0}^{\infty} x^n + x^{k+1} = \frac{x^{k+1} - 1}{x - 1} + x^{k+1}$$

$$= \frac{x^{k+1} - 1}{x - 1} + x^{k+1} (n - 1)$$

$$= \frac{x^{k+2} - 1}{x - 1}$$
Hence $P(k+1)$ follows and so $P(k)$ is then of all $k \in \mathbb{R}$ by includian. (6)

	EXAMINATION QUESTIONS/SOLUTIONS 2005-06	Course EEI(1)
Question 2 SO*		Marks & seen/unseen
Parts	(i) When X > 7/4 numeration or zeo, denomination or nut lumb = 0	3
	(ii) Derumenter and numerator both 30. 1. 2' Hopital. lim = lim - 2 sn22 = -2 = -1 x=1/4 sec2 × (2/52) ²	5
	(iii) Agan L' Hopelul & rule lim = limi 1/2(x+2) x=2 (2/52)	
	$= \frac{1}{12}$ Let $y = \frac{3x+3}{2}$. Take loop	5
	$ x = x \ln \left(\frac{x+3}{x}\right) = x \ln \left(\frac{1+3/x}{x}\right)$ Two loge x $\ln y = x \left(\frac{3/x}{x} - \frac{9}{2x} \cdot \frac{x}{x}\right) = 3 - \frac{9}{2x}$	
	So lim lay = 3 Here limy = e ³	7
	Setter's initials Onc.	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2005-06	Course (1)
C3	SOLUTION	Marks & seen/unseen
Parts	i) Using partial fraction $ \frac{1}{\chi^2 + \chi - 6} = \frac{1}{(\chi + 3)(\chi - 2)} = \frac{-1/5}{\chi + 3} + \frac{1/5}{\chi - 2} $ So $ \int \frac{1}{\chi^2 + \chi - 6} = -\int \frac{1/5}{\chi + 3} + \int \frac{1/5}{\chi - 2} = \frac{1}{3} \ln \chi + 3 + \frac{1}{3} \ln \chi - 2 + \tau C $ $ = \frac{1}{3} \ln \frac{\chi - 2}{\chi + 3} + C $ II) Let $t = \sin \chi$ and $dt = \cos \chi d\chi$. Then	5
	$\int_{0}^{\pi/2} (sm^{3}x-3) \cos x dx = \int_{0}^{2} \frac{1}{4} - 3 dt$ $= \left[\frac{1}{4} - 3t \right]_{0}^{1} = \left(\frac{1}{4} - 3 \right) - 0 = 2.75$	S Page number
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2005-06	Course EE] (1)
Question C 3		Marks & seen/unseen
Parts	(iii) Let $u = 1-x$. Hen $\frac{du}{dx} = -1$ and $dx = -du$. Herefore $\int (1-x)^{10} dx = \int -u^{10} du = -\frac{u''}{11}$ $= -\frac{(1-x)^{11}}{11}$	5
	iv) Using $t = \text{den}(x/2)$ we have $\sin x = \frac{2t}{1+t^2}$ and $\cos x = \frac{1-t^2}{1+t^2}$ and so $\frac{dx}{dt} = \frac{2}{1+t^2}$ So	
	$\int \frac{1}{1+\cos x + \sin x} dx = \int \frac{1}{1+\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2}} \cdot \frac{2}{1+t^2} dt$ $= \int \frac{2}{1+t^2 + 2t + 1 - t^2} dt = \int \frac{2}{2+2t} dt$	£
	$= \int \frac{1}{1+t} dt = \ln(1+t) = \ln(\tan \frac{x}{2})$	5
	Setter's initials Checker's initials	Page number

EXAMINATION QUESTIONS/SOLUTIONS 2005-06	Course Q
Question	EEI
7	Marks &
Parts	seen/unseen
is la soir H - 1 co	
(1) Kelogrape and of (x=4x+5)	
(i) larguise that of (x2-4x+5) = 2x-4.	
$S_{\alpha} + + c \cdot (c + \dot{c})$	
> i to i (2	2
I megal is 3 du	
⇒ integral is \ 3 du	
- 6 Ju + Constart	1.
= 6 Tx2-Ax+5 + contact	2
12 18 13	-
(ii) Trigaranetre substitution V= ton x where dy = sec2x	
who dry cere	
and of the second	2
Distingual is (dr	2
J 4V+7	
= 4 ln Av+7/ + content	
= 4 ln Atanx+71 + contact	2
4 of Frank +11 tomans	
(iii) Integrate by parts	
C. 2	
$\int x^2 \sin x dx = -x^2 \cos x + \left[2x \cos x dx \right]$	
Setter's initials Checker's initials	Page number
PJD PJD	1/2

	EXAMINATION QUESTIONS/SOLUTIONS 2005-06	Course Q7
Question		Marks &
Parts	$= -x^2 \cos x + 2x \sin x - \int 2\sin x dx$	seen/unseen
	= -x2cosx +2xsinx +2cosx+caytai	t 4
	(iv) Note that x2-5x+6=(x-2)(x-3)	
	2x+1 - 2x+1 A 2	
	$\frac{2\times +1}{x^2-5\times +6} = \frac{2\times +1}{(x-2)(x^23)} = \frac{A}{x-2} + \frac{B}{x-3}.$	
6	$\Rightarrow 2x+1 = A(x-3) + B(x-2)$ The operating or equate coeff $\Rightarrow A+b=2$ $-3A-2b=1$	2
•	· (6 ·) = -5, 6=+7.	
_	$\int \frac{(2x+1) dx}{x^2 - 5x + 6} = \int \left(\frac{-5}{x-2} + \frac{7}{x-3}\right) dx$	
= Γ=	$=-5 \ln x-2 + 7 \ln x-3 + contact$	3
	$= \ln \left \frac{(x-3)}{(x-2)^5} \right + Constant$	
		(20)
Se	Checker's initials PJD	age number 2/2

8a) Given the n-th term an = n, xh consider (8) The limit-ratio $\lim_{n\to\infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n\to\infty} \left| \frac{(n+1)!}{n!} \times \frac{\alpha_{n+1}}{n!} \right|$ and so define l= | (in |x| |u+1| = 00 & each x ∈ (R) lo}. By the Limit Ratio lest, the series cody canonges of $e_{\kappa} \leq 1$. The nosult follows. b) Grien an = li(n) xh then $\left|\lim_{n\to\infty}\left|\frac{\alpha_{n+1}}{\alpha_n}\right| = \left|\lim_{n\to\infty}\left|n\right| \cdot \left|\frac{\ln(n+1)}{\ln n} \cdot \frac{n}{n+1}\right|$ = |n| |im| |ln(n+1)| as |im| |m| = |m|and setting 2, = len, me kiel = line | + du(1+e2) = 1 1 and so if |n| 21 the series canerges. c). Because $\int_{0}^{\infty} \frac{1}{\sqrt{n}} dn = \lim_{n \to \infty} 2n^{n/2} \int_{0}^{\infty} dn$ for any a 70, he series diverges R.B

	EXAMINATION QUESTIDAS SOLUTIONS 2005-06	Course EEI(1)
Solvion CA	,	Marks & seen/unseen
Parts	a) i 105 = 1 L	*2
	b) $\frac{1}{i} = \frac{i}{i^2} = -i$	3
	c) $(1-i\sqrt{3})^2 = 1 + (i\sqrt{3})^2 - 2i\sqrt{3} = -2 - i\sqrt{3} - 2$	3
ίί)	a) e=1 fr Z=i2\pi k, KEZ	3
	b) $e^2 = 1 + i$ for $z = (eg\sqrt{2} + i)\left(\frac{\pi}{4} + 2\pi k\right)$ $K \in \mathbb{Z}$	3
à	1 171 - 12 0	3
	b) -3-i = VIO. ei 0= 17+tai 1/3	3
	Setter's initials Checker's initials	Page number

$$y = Sinhx$$

 $= \frac{1}{2}(e^{x} + -e^{-x})$
 $2y = e^{x} - e^{-x}$
 $2y = e^{x} - e^{-x}$
 $2y = e^{x} - e^{-x}$
 $2y = e^{x} - 1$
 $e^{2x} - 2ye^{x} + -1 = 0$
 $(e^{x})^{2} - 2ye^{x} - 1 = 0$
 $e^{x} = 2y + \sqrt{4y^{2} + 4}$
 $= y + \sqrt{y^{2} + 1}$

Now ex > 0 and y-Jy2+1 < 0 so take +. 2 for this specific point.

 $e^{\times} = y + J y^2 + 1$

: x = log (y+Jy2+1). Leace result.

