IV.6 Détermination de la constante de partage du dilode entre deux solvants, H₂O et cyclohexane

Temps de manipulation : 2 h

Matériel :

- 3 erlenmeyers 250 mL + bouchons
- -3 burettes 50 mL
- -2 béchers 150 mL
- 2 erlenmeyers 150 mL
- 1 pipette jaugée 5 mL
- 1 pipette jaugée 50 mL
- 1 pipette graduée 20 mL
- 3 ampoules à décanter 250 mL (ou plus) + supports
- 3 agitateurs magnétiques + barreaux
- 1 fiole jaugée 20 mL
- 1 fiole jaugée 100 mL
- 2 fioles jaugées 250 mL
- 1 fiole jaugée 200 mL

Produits:

- -12 A
- C₆H₁₂[△] (cyclohexane)
- KI (sol. aqueuse à 2,0 mol.L-1)
- Na2S2O3
- empois d'amidon
- eau permutée

IV.6.1 Objectifs

Illustrer de manière colorée la solubilité du diiode dans deux solvants non miscibles (eau et cyclohexane C₆H₁₂) et calculer la constante thermodynamique K de cet équilibre de partage (NB: dans la première édition de cet ouvrage, les solvants étaient l'eau et le tétrachlorure de carbone CCl₄ dont la toxicité est telle que nous avons choisi de le remplacer par le cyclohexane).

IV.6.2 Manipulation¹⁰

IV.5.2.1 PRÉPARATION DES SOLUTIONS

 $- Solution \ de \ I_2 \ dans \ C_6 H_{12} \ \grave{a} \ 0,040 \ mol. L^{-1} : dissoudre \ 1,0 \ g \ de \ diiode^{\triangle} \ (L+G+H)$ dans une fiole jaugée de 100 mL avec du $C_6 H_{12}^{\triangle} \ (L+G+H)$.

Solution aqueuse de Na₂S₂O₃ à 1,0.10⁻² mol.L⁻¹: dissoudre 0,375 g de thiosulfate de sodium anhydre dans une fiole de 250 mL avec de l'eau permutée.

 Solution aqueuse de KI à 2,0 mol.L-1: dissoudre 6,7 g d'iodure de potassium dans une fiole de 20 mL avec de l'eau permutée.

IV.6.2.2 VISUALISATION DU PARTAGE DU DIIODE ENTRE H2O ET CYCLOHEXANE

Dans des erlenmeyers de 250 mL numérotés 1, 2 ou 3, préparer les trois mélanges décrits tableau IV.6-I.

¹⁰ Département de chimie, Université de Cergy-Pontoise.

\$ 19 Select of equally d'un ma isile

126 CHAPITRE IV MESURES DE GRANDEURS THERMODYNAMIQUES

Tableau IV.6-I: Volumes à prélever pour réaliser les mélanges 1, 2 ou 3.

Erlenmeyer	I ₂ dans C ₆ H ₁₂	C ₆ H ₁₂ pur	H ₂ O
1	20,0 mL	0 mL	200 mL
2	15,0 mL	5,0 mL	200 mL
3	10,0 mL	10,0 mL	200 mL

Placer les erlenmeyers munis de bouchons sur les agitateurs magnétiques et agiter pendant 30 min. Transvaser dans des ampoules à décanter et laisser décanter 15 min (sans bouchon) △ (H).

IV.6.2.3 DOSAGE DU DIIODE

ec le x'us

a) Phase organique

Prélever 5,0 mL de la phase organique à l'aide d'une pipette et les mettre dans un erlenmeyer de 150 mL. Ajouter environ 2 mL de solution aqueuse de KI de concentration 2,0 mol.L⁻¹ pour provoquer une extraction complète du diiode. Effectuer le dosage par la solution de thiosulfate de sodium à 1,0.10⁻² mol.L⁻¹. Agiter fortement après chaque addition le thiosulfate de sodium. À l'équivalence, la solution devient incolore. Noter les volumes quivalents V_{e1}, V_{e2} et V_{e3} de thiosulfate de sodium ajoutés aux solutions organiques 1, 2 et 3.

Remarque: KI ne passe pas dans la phase organique.

b) Phase aqueuse

Transvaser une grande partie de la phase aqueuse dans un bécher. Prélever, à la pipette, 50,0 mL et les placer dans un erlenmeyer de 150 mL. Doser par la solution de thiosulfate de sodium à 1,0.10⁻² mol.L⁻¹. À l'équivalence, la solution vire au jaune pâle : ajouter alors 5 gouttes d'empois d'amidon et la solution devient bleue. Verser 1 goutte de solution de thiosulfate de sodium : la solution se décolore. Noter les trois volumes équivalents V'e1, V'e2 et V'e3 de thiosulfate de sodium ajoutés aux solutions aqueuses 1, 2 et 3.

Tableau IV.6-II : Résultats du dosage du diiode par le thiosulfate de sodium à 1,0.10-2 mol.L-1 (19 °C). $\bar{K}=66\pm3$ à 19 °C.

Erlenmeyer	V _e (organique)	V' _e (aqueuse)	[l ₂] (mol.L ⁻¹)	[l ₂]' (mol.L ⁻¹)	К
1 2	31,85 23,40	4,85	0,0318	0,485.10-3	66 ± 2
3	15,55	3,65 2,30	0,0234 0,0156	0,365.10 ⁻³ 0,230.10 ⁻³	64 ± 2 68 ± 3

IV.6 CONSTANTE DE PARTAGE DU DIIODE ENTRE DEUX SOLVANTS, H2O ET CCI4

127

IV.6.3 Discussion

IV.6.3.1 CONSTANTE THERMODYNAMIQUE K DE PARTAGE ENTRE DEUX SOLVANTS

Soit un corps C soluble dans deux solvants A et B non miscibles ou très partiellement miscibles entre eux. Un mélange de A et B se présente sous la forme de deux phases (deux couches de liquide). Lorsqu'on ajoute C à ce mélange de A et B, il se répartit (se "partage") entre les deux phases. L'équilibre hétérogène suivant est réalisé :

La constante K de cet équilibre dépend de la température et de l'état d'association moléculaire de C dans chaque solvant. Lorsque C est dans le même état d'association moléculaire dans les deux solvants, cette constante est égale au rapport des concentrations de C dans les deux solvants :

$$K = \frac{[C]_A}{[C]_B}$$

La constante K est appelée coefficient de partage de C entre A et B. On le détermine en dosant C dans chacun des deux solvants.

Dans cette expérience, C représente I2, B le solvant eau et A le solvant cyclohexane.

Remarque: Lorsque l'état d'association moléculaire de C n'est pas le même dans les deux phases, l'expression du coefficient de partage est plus compliquée.

IV.6.3.2 DOSAGE DU DIIODE PAR LE THIOSULFATE DE SODIUM ET DÉTERMINATION DE K

On peut déterminer la concentration en diiode $[I_2]$ en effectuant un dosage par le thiosulfate de sodium $Na_2S_2O_3$. La réaction du dosage est la suivante :

$$2 S_2O_3^{2-} + I_2 \Rightarrow 2 I^- + S_4O_6^{2-}$$

La détermination du volume équivalent V_e (ou V_e) permet de calculer la concentration de diiode initialement présente dans C_6H_{12} (ou dans l'eau). À l'équivalence, on a :

$$n_{Na_2S_2O_3} = 2 n_{I_2} \Rightarrow [I_2] = \frac{V_e \cdot [Na_2S_2O_3]}{2 V_{I_2}}$$

Si $V_e = 31,85$ mL, alors $[I_2] = 0,0318$ mol.L⁻¹.

L'incertitude sur le résultat se calcule de la manière suivante :

$$\frac{\Delta [I_2]}{[I_2]} = \frac{\Delta V_c}{V_c} + \frac{\Delta [Na_2S_2O_3]}{[Na_2S_2O_3]} + \frac{\Delta V_{I_3}}{V_{I_3}} = \frac{2 \times 0.03}{31.85} + \frac{0.04.10^{-3}}{1.0.10^{-2}} + \frac{0.045}{5.0} = 0.015$$

 $\Delta[I_2] = 5.10^{-4} \text{ mol.L}^{-1}, \text{ d'où } [I_2] = 0.0318 \pm 0.0005 \text{ mol.L}^{-1}$

CHAPITRE IV MESURES DE GRANDEURS THERMODYNAMIQUES

On trouve les résultats rassemblés dans le tableau IV.6-II. La détermination de la constante de partage K du diiode entre H_2O et C_6H_{12} est simple :

$$K = \frac{[I_2]_{C_6 H_{12}}}{[I_2]_{H_2 O}} \approx 66$$

L'incertitude sur K est déterminée de la façon suivante :

128

$$\frac{\Delta K}{K} = \frac{\Delta [I_2]_{C_6 H_{12}}}{[I_2]_{C_6 H_{12}}} + \frac{\Delta [I_2]_{H_2 O}}{[I_2]_{H_2 O}} \approx 0,015 \times 2$$

$$\Rightarrow K = 66 \pm 2$$

Le diiode est donc 66 fois plus soluble dans C_6H_{12} que dans H_2O . I_2 et C_6H_{12} sont deux molécules apolaires ($\mu = 0$ D), tandis que H_2O est polaire ($\mu = 1,86$ D). I_2 est donc plus soluble dans C_6H_{12} que dans H_2O .

Remarque : Pour dissoudre I_2 dans l'eau, on ajoute des ions I^- . Le complexe I_3^- , très soluble dans H_2O , se forme.

IV.6.4 Données relatives à l'expérience¹¹

Produit	M (g.mol ⁻¹)	Solvant	M (g.mol ⁻¹)	d (20 °C)	ϵ_{r}	μ (D)
l ₂	254	H ₂ O	18,0	1,000	80	1,86
Na ₂ S ₂ O ₃	158	CCI ₄	84,16	0,779	= 0	0,00
KI	167					