In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as py
import seaborn as sns
from sklearn.linear_model import LogisticRegression

Out[2]:		date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY
	0	2004- 08-01 01:00:00	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002	NaN
	1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28
	2	2004- 08-01 01:00:00	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006	NaN
	3	2004- 08-01 01:00:00	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000	NaN
	4	2004- 08-01 01:00:00	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998	NaN
	245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66
	245492	2004- 06-01 00:00:00	2.49	0.75	2.44	4.57	NaN	97.139999	146.899994	2.34
	245493	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.13	102.699997	132.600006	NaN
	245494	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.09	82.599998	102.599998	NaN
	245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60

245496 rows × 17 columns

In [3]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 245496 entries, 0 to 245495
Data columns (total 17 columns):
     Column
             Non-Null Count
                              Dtype
     -----
             -----
 0
     date
             245496 non-null object
 1
     BEN
             65158 non-null
                              float64
 2
     C0
             226043 non-null float64
 3
             56781 non-null
     EBE
                              float64
 4
    MXY
             39867 non-null
                              float64
 5
    NMHC
             107630 non-null float64
 6
    NO 2
             243280 non-null float64
 7
    N0x
             243283 non-null float64
 8
     0XY
             39882 non-null
                              float64
 9
     0 3
             233811 non-null float64
 10
    PM10
             234655 non-null float64
                              float64
 11
    PM25
             58145 non-null
             39891 non-null
 12
    PXY
                              float64
 13 S0 2
             243402 non-null float64
 14
    TCH
             107650 non-null float64
 15
    T0L
             64914 non-null
                              float64
 16 station 245496 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 31.8+ MB
```

In [4]: df1 =df.fillna(value=0)
 df1

Out[4]:		date	BEN	со	EBE	MXY	имнс	NO_2	NOx	OXY
	0	2004- 08-01 01:00:00	0.00	0.66	0.00	0.00	0.00	89.550003	118.900002	0.00
	1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28
	2	2004- 08-01 01:00:00	0.00	1.02	0.00	0.00	0.00	93.389999	138.600006	0.00
	3	2004- 08-01 01:00:00	0.00	0.53	0.00	0.00	0.00	87.290001	105.000000	0.00
	4	2004- 08-01 01:00:00	0.00	0.17	0.00	0.00	0.00	34.910000	35.349998	0.00
	245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66
	245492	2004- 06-01 00:00:00	2.49	0.75	2.44	4.57	0.00	97.139999	146.899994	2.34
	245493	2004- 06-01 00:00:00	0.00	0.00	0.00	0.00	0.13	102.699997	132.600006	0.00
	245494	2004- 06-01 00:00:00	0.00	0.00	0.00	0.00	0.09	82.599998	102.599998	0.00
	245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60

245496 rows × 17 columns

In [5]: df1.info()

```
<class 'pandas.core.frame.DataFrame'>
      RangeIndex: 245496 entries, 0 to 245495
      Data columns (total 17 columns):
           Column
                    Non-Null Count
                                    Dtype
           -----
                    -----
       0
                    245496 non-null object
           date
           BEN
                    245496 non-null float64
       1
       2
           C0
                    245496 non-null float64
       3
                    245496 non-null float64
           EBE
       4
                    245496 non-null float64
           MXY
       5
                    245496 non-null float64
           NMHC
       6
           NO 2
                    245496 non-null float64
       7
                    245496 non-null float64
           N0x
       8
           0XY
                    245496 non-null float64
       9
                    245496 non-null float64
           0 3
       10 PM10
                    245496 non-null float64
                    245496 non-null float64
       11 PM25
                    245496 non-null float64
       12 PXY
       13 S0 2
                    245496 non-null float64
       14 TCH
                    245496 non-null float64
       15 T0L
                    245496 non-null float64
       16 station 245496 non-null int64
      dtypes: float64(15), int64(1), object(1)
      memory usage: 31.8+ MB
In [6]: df1.columns
Out[6]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O
        3',
               'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
              dtype='object')
In [8]: df2=df1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O 3',
               'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station']]
        df2
```

Out[8]:		BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3
	0	0.00	0.66	0.00	0.00	0.00	89.550003	118.900002	0.00	40.020000
	1	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999
	2	0.00	1.02	0.00	0.00	0.00	93.389999	138.600006	0.00	20.860001
	3	0.00	0.53	0.00	0.00	0.00	87.290001	105.000000	0.00	36.730000
	4	0.00	0.17	0.00	0.00	0.00	34.910000	35.349998	0.00	86.269997
	245491	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999
	245492	2.49	0.75	2.44	4.57	0.00	97.139999	146.899994	2.34	7.740000
	245493	0.00	0.00	0.00	0.00	0.13	102.699997	132.600006	0.00	17.809999
	245494	0.00	0.00	0.00	0.00	0.09	82.599998	102.599998	0.00	0.000000
	245495	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000

245496 rows × 16 columns

In [9]: sns.pairplot(df2)

C:\Users\HP\AppData\Local\Programs\Python\Python311\Lib\site-packages\seabor
n\axisgrid.py:118: UserWarning: The figure layout has changed to tight
self._figure.tight_layout(*args, **kwargs)

Out[9]: <seaborn.axisgrid.PairGrid at 0x1df27da4e90>

In [11]: sns.distplot(df2['station'])

C:\Users\HP\AppData\Local\Temp\ipykernel_5048\1070072814.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df2['station'])

Out[11]: <Axes: xlabel='station', ylabel='Density'>

x_train,x_test,y_train,y_test =train_test_split(x,y,test_size=0.3)

linear

```
In [21]: from sklearn.linear_model import LinearRegression
In [22]: lr=LinearRegression()
lr.fit(x_train,y_train)
Out[22]: v LinearRegression
LinearRegression()
In [23]: coeff =pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
coeff
```

Out[23]:		Co-efficient
	BEN	-0.262028
	СО	-3.738927
	EBE	0.067800
	MXY	0.261178
	NMHC	-6.564362
	NO_2	-0.079584
	NOx	0.011911
	OXY	1.531053
	0_3	-0.015951
	PM10	0.026883
	PM25	0.156959
	PXY	1.699519
	SO_2	-0.145245
	TCH	3.137689
	TOL	-0.079277

```
In [24]: print(lr.intercept_)
```

28079025.382064547

```
In [25]: prediction =lr.predict(x_test)
    py.scatter(y_test,prediction)
```

Out[25]: <matplotlib.collections.PathCollection at 0x1df5ab1a1d0>


```
In [26]: print(lr.score(x_test,y_test))
```

0.11998283318388314

In [27]: print(lr.score(x_train,y_train))

0.11999440524556182

Ridge

Lasso

```
In [31]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[31]: ▼
               Lasso
         Lasso(alpha=10)
In [35]: la.score(x_test,y_test)
Out[35]: 0.05162318484723172
         elasticnet
In [36]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[36]: ▼ ElasticNet
         ElasticNet()
In [37]: print(en.coeff )
        AttributeError
                                                  Traceback (most recent call last)
        Cell In[37], line 1
        ---> 1 print(en.coeff_)
        AttributeError: 'ElasticNet' object has no attribute 'coeff_'
In [38]: print(en.intercept )
        28079026.14620236
In [39]: print(en.predict(x_test))
        [28079017.37188012 28079017.57941925 28079022.99555518 ...
         28079019.24038233 28079023.85637269 28079034.1072114 ]
In [40]: |print(en.score(x_test,y_test))
        0.106728198863277
```

logistic

```
In [41]: feature matrix =df2.iloc[:,0:15]
         target vector=df2.iloc[:,-1]
In [42]: feature_matrix=df2[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY',
                'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL']]
         y=df2['station']
In [43]: feature matrix.shape
Out[43]: (245496, 15)
In [44]: target vector.shape
Out[44]: (245496,)
In [45]: from sklearn.preprocessing import StandardScaler
In [50]: fs=StandardScaler().fit transform(feature matrix)
In [51]: logr = LogisticRegression()
         logr.fit(fs,target vector)
        C:\Users\HP\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklear
        n\linear model\ logistic.py:460: ConvergenceWarning: lbfgs failed to converg
        e (status=1):
        STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
        Increase the number of iterations (max iter) or scale the data as shown in:
            https://scikit-learn.org/stable/modules/preprocessing.html
        Please also refer to the documentation for alternative solver options:
            https://scikit-learn.org/stable/modules/linear model.html#logistic-regre
        ssion
          n iter i = check optimize result(
Out[51]: ▼ LogisticRegression
         LogisticRegression()
In [62]: observation=[[1,2,3,4,5,6,7,8,9,11,12,13,14,15,16]]
In [63]: prediction =logr.predict(observation)
         print(prediction)
        [28079024]
In [64]: logr.classes
Out[64]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
                28079024, 28079025, 28079026, 28079027, 28079035, 28079036,
                28079038, 28079039, 28079040, 28079099], dtype=int64)
```

```
In [65]: logr.score(fs,target vector)
Out[65]: 0.5467787662528106
In [67]: logr.predict proba(observation)[0][0]
Out[67]: 5.605431597800388e-138
In [69]: logr.predict proba(observation)[0][1]
Out[69]: 1.5413918664514151e-179
         Random forest
In [70]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.tree import plot tree
In [74]: x=df2.drop('station',axis=1)
         y=df2['station']
In [76]: x train,x test,y train,y test=train test split(x,y,test size=0.70)
In [77]: rfc=RandomForestClassifier()
         rfc.fit(x train,y train)
Out[77]: ▼ RandomForestClassifier
         RandomForestClassifier()
In [78]: parameters={'max depth':[1,2,3,4,5],
                     'min_samples_leaf' :[6,7,8,9,10],
                     'n estimators':[11,12,13,14,15]}
In [79]: from sklearn.model selection import GridSearchCV
In [80]: grid search =GridSearchCV(estimator =rfc,param grid=parameters,cv=2,scoring=
         grid search.fit(x train,y train)
                      GridSearchCV
Out[80]:
          ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [81]: grid search.best score
Out[81]: 0.5159542689550294
```

```
In [82]: rfc_best=grid_search.best_estimator_
In [86]: py.figure(figsize=(80,50))
   plot_tree(rfc_best.estimators_[5],filled=True)
```

```
Out[86]: [Text(0.45047169811320753, 0.916666666666666, 'x[13] <= 0.095 \ngini = 0.96]
               4\nsamples = 46514\nvalue = [2539, 2543, 2627, 2659, 2689, 2696, 2719, 260
               7, 2568\n2635, 2770, 2594, 2654, 2649, 2608, 2519, 2556, 2589\n2833, 2708,
               2649, 2545, 2679, 2639, 2511, 2636, 2639\n2588]'),
                Text(0.2028301886792453, 0.75, 'x[3] \le 0.12 \eta ini = 0.939 \eta samples = 2604
               2\nvalue = [2539, 2543, 2627, 42, 59, 13, 2719, 65, 2568, 2635\n30, 2594, 2
               654, 600, 2608, 2519, 2556, 31, 65, 2708\n55, 69, 66, 2639, 2511, 2636, 88
               9, 97]'),
                Text(0.10377358490566038, 0.5833333333333334, 'x[9] <= 0.44 \ngini = 0.935
               \n samples = 24292\n value = [2539, 2543, 2627, 34, 59, 13, 2719, 65, 2568, 2
               635\n30, 2594, 2654, 600, 2608, 2519, 2556, 31, 62, 60\n55, 69, 32, 2639, 2
               511, 2636, 889, 5]'),
                Text(0.03773584905660377, 0.416666666666666666666666666666667, 'x[5] <= 2.26 \ngini = 0.634
               \n in samples = 1357 \ nvalue = [9, 39, 24, 34, 37, 6, 41, 6, 16, 35, 4, 45, 44 \ n
               188, 27, 15, 39, 19, 57, 41, 18, 17, 22, 25 n1284, 42, 27, 0]'),
                Text(0.018867924528301886, 0.25, 'gini = 0.947 \nsamples = 330 \nvalue = [1, 0.947]
               32, 2, 34, 30, 6, 22, 6, 2, 22, 4, 26, 25\n27, 16, 11, 30, 19, 57, 41, 18,
               7, 22, 8, 35\n17, 26, 0]'),
                Text(0.05660377358490566, 0.25, 'x[8] \le 4.67 \cdot gini = 0.391 \cdot gini = 102
               7\nvalue = [8, 7, 22, 0, 7, 0, 19, 0, 14, 13, 0, 19, 19\n161, 11, 4, 9, 0,
               0, 0, 0, 10, 0, 17, 1249, 25\n1, 0]'),
                Text(0.03773584905660377, 0.08333333333333333, 'gini = 0.658\nsamples = 72
               \nvalue = [1, 0, 4, 0, 2, 0, 7, 0, 0, 0, 0, 0, 66\n1, 1, 6, 0, 0, 0, 0,
               10, 0, 0, 21, 2, 0, 0]'),
                Text(0.07547169811320754, 0.08333333333333333, 'gini = 0.319\nsamples = 95
               5\nvalue = [7, 7, 18, 0, 5, 0, 12, 0, 14, 13, 0, 19, 19\n95, 10, 3, 3, 0,
               0, 0, 0, 0, 0, 17, 1228, 23\n1, 0]'),
                Text(0.16981132075471697, 0.4166666666666667, 'x[10] \le 0.21 \cdot gini = 0.932
               \n in samples = 22935 \nvalue = [2530, 2504, 2603, 0, 22, 7, 2678, 59, 2552, 260
               0\n26, 2549, 2610, 412, 2581, 2504, 2517, 12, 5, 19\n37, 52, 10, 2614, 122
               7, 2594, 862, 5]'),
                Text(0.1320754716981132, 0.25, 'x[14] \le 0.69 \text{ ngini} = 0.92 \text{ nsamples} = 1934
               7\nvalue = [281, 2504, 2603, 0, 22, 7, 2678, 59, 2552, 2600, 0\n2549, 2610,
               412, 2581, 2504, 359, 12, 0, 19, 0, 52\n10, 2614, 15, 2594, 862, 0]'),
                Text(0.11320754716981132, 0.08333333333333333, 'qini = 0.918\nsamples = 19
               145\nvalue = [281, 2504, 2603, 0, 22, 5, 2678, 59, 2552, 2600, 0\n2549, 261
               0, 412, 2581, 2504, 22, 9, 0, 19, 0, 52\n10, 2614, 15, 2594, 862, 0]'),
                Text(0.1509433962264151, 0.08333333333333333, 'gini = 0.029 \ nsamples = 202
               \nvalue = [0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0\n0, 0, 337, 3, 0, 0, 0,
               0, 0, 0, 0, 0, 0, 0]'),
                Text(0.20754716981132076, 0.25, 'x[14] \le 0.435 \setminus gini = 0.655 \setminus gini = 3
               588\nvalue = [2249, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0\n0, 0\n0, 2158, 0,
               5, 0, 37, 0, 0, 0, 1212, 0, 0\n5]'),
                Text(0.18867924528301888, 0.08333333333333333, 'gini = 0.514\nsamples = 23
               42\nvalue = [2249, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0\n0, 0, 148, 0, 5,
               0, 37, 0, 0, 0, 1212, 0, 0 n5]'),
                Text(0.22641509433962265, 0.08333333333333333, 'gini = 0.009\nsamples = 12
               0, 0, 0, 0, 0, 0, 0, 0]'),
                Text(0.3018867924528302, 0.5833333333333334, 'x[14] \le 6.53 
               \nsamples = 1750\nvalue = [0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
               0, 0, 3, 2648, 0, 0, 34, 0, 0, 0, 0\n92]'),
                Text(0.2641509433962264, 0.4166666666666667, 'x[0] <= 0.22 \ngini = 0.059 \ngin
               0, 1, 1796, 0, 0, 21, 0, 0, 0, 0\n34]'),
```

```
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 6, 0, 0, 2, 0, 0, 0,
            5]'),
            Text(0.2830188679245283, 0.25, 'x[8] \le 44.825 \cdot ngini = 0.052 \cdot nsamples = 11
            74\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 1, 1790,
            0, 0, 19, 0, 0, 0, 0\n29]'),
            Text(0.2641509433962264, 0.08333333333333333, 'gini = 0.03\nsamples = 739
            \nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 1149,
            0, 0, 13, 0, 0, 0, 0, 5]'),
            Text(0.3018867924528302, 0.08333333333333333, 'gini = 0.089 \nsamples = 435
            0, 6, 0, 0, 0, 0, 24]'),
            \nsamples = 568\nvalue = [0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
            0, 0, 2, 852, 0, 0, 13, 0, 0, 0, 0, 58]'),
            Text(0.32075471698113206, 0.25, 'gini = 0.532 \setminus samples = 13 \setminus samples = [0, 1]
            0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0,
            0, 3]'),
            Text(0.3584905660377358, 0.25, 'x[6] \le 103.5 \cdot ngini = 0.152 \cdot nsamples = 555
            \nvalue = [0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 2, 840, 0,
            0, 13, 0, 0, 0, 0, 55]'),
            Text(0.33962264150943394, 0.08333333333333333, 'gini = 0.454\nsamples = 75
            0, 1, 0, 0, 0, 0, 37]'),
            Text(0.37735849056603776, 0.08333333333333333, 'qini = 0.083\nsamples = 48
            0\nvalue = [0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 757,
            0, 0, 12, 0, 0, 0, 0, 18]'),
            Text(0.6981132075471698, 0.75, 'x[11] \le 0.105 \cdot gini = 0.922 \cdot ginsamples = 20
            472\nvalue = [0, 0, 0, 2617, 2630, 2683, 0, 2542, 0, 0, 2740\n0, 0, 2049,
            0, 0, 0, 2558, 2768, 0, 2594, 2476\n2613, 0, 0, 0, 1750, 2491]'),
            Text(0.5471698113207547, 0.5833333333333334, 'x[14] \le 0.365 \cdot gini = 0.896
            \n in samples = 14537\nvalue = [0, 0, 0, 59, 2630, 2683, 0, 2542, 0, 0, 2740, 0
            \n0, 2049, 0, 0, 0, 2558, 942, 0, 2594, 2476, 65\n0, 0, 0, 1750, 27]'),
            Text(0.4716981132075472, 0.41666666666666667, 'x[6] \le 37.625 \cdot mgini = 0.879
            \n in samples = 11264\nvalue = [0, 0, 0, 59, 2630, 40, 0, 2542, 0, 0, 869, 0\n
            0, 2049, 0, 0, 0, 1782, 940, 0, 2594, 2476, 64\n0, 0, 0, 1750, 25]'),
            Text(0.4339622641509434, 0.25, 'x[10] \le 0.69 \text{ ngini} = 0.847 \text{ nsamples} = 237
            9\nvalue = [0, 0, 0, 3, 387, 1, 0, 433, 0, 0, 53, 0, 0\n899, 0, 0, 0, 365,
            368, 0, 34, 451, 10, 0, 0\n0, 696, 9]'),
            Text(0.41509433962264153, 0.0833333333333333, 'gini = 0.815\nsamples = 20
            98\nvalue = [0, 0, 0, 1, 387, 1, 0, 433, 0, 0, 7, 0, 0\n899, 0, 0, 0, 365,
            1, 0, 8, 451, 10, 0, 0, 0\n696, 0]'),
            Text(0.4528301886792453, 0.08333333333333333, 'gini = 0.321 \ nsamples = 281
            \nvalue = [0, 0, 0, 2, 0, 0, 0, 0, 0, 46, 0, 0, 0\n0, 0, 0, 0, 367, 0, 2
            6, 0, 0, 0, 0, 0, 0, 9]'),
            Text(0.5094339622641509, 0.25, 'x[10] \le 0.42 \cdot gini = 0.872 \cdot nsamples = 888
            5\nvalue = [0, 0, 0, 56, 2243, 39, 0, 2109, 0, 0, 816, 0\n0, 1150, 0, 0, 0,
            1417, 572, 0, 2560, 2025, 54\n0, 0, 0, 1054, 16]'),
            Text(0.49056603773584906, 0.08333333333333333, 'qini = 0.834\nsamples = 65
            91\nvalue = [0, 0, 0, 8, 2243, 39, 0, 2109, 0, 0, 8, 0, 0\n1150, 0, 0, 0, 1
            417, 19, 0, 320, 2025, 54, 0, 0\n0, 1054, 0]'),
            Text(0.5283018867924528, 0.08333333333333333, 'gini = 0.555 \nsamples = 229
            4\nvalue = [0, 0, 0, 48, 0, 0, 0, 0, 0, 808, 0, 0, 0\n0, 0, 0, 553,
            0, 2240, 0, 0, 0, 0, 0, 0\n16]'),
            Text(0.6226415094339622, 0.4166666666666667, 'x[12] <= 5.345 \ngini = 0.605
            \n samples = 3273\n value = [0, 0, 0, 0, 0, 2643, 0, 0, 0, 1871, 0, 0\n0,
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js 1, 0, 0, 0\n2]'),
```

```
Text(0.5849056603773585, 0.25, 'x[5] \le 39.405 \cdot ngini = 0.47 \cdot nsamples = 558
0, 0, 1, 0, 0, 0, 0, 0]'),
Text(0.5660377358490566, 0.08333333333333333, 'gini = 0.571 \ nsamples = 204
0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.6037735849056604, 0.08333333333333333, 'qini = 0.316 \nsamples = 354
\nvalue = [0, 0, 0, 0, 0, 467, 0, 0, 0, 0, 6, 0, 0, 0 \setminus 0, 0, 105, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0]'),
Text(0.660377358490566, 0.25, 'x[1] \le 0.455 \cdot gini = 0.595 \cdot samples = 2715
\nvalue = [0, 0, 0, 0, 0, 2027, 0, 0, 0, 1836, 0, 0 \setminus 0, 0, 0, 500, 2,
0, 0, 0, 0, 0, 0, 0, 0 \setminus n2]'),
Text(0.6415094339622641, 0.08333333333333333, 'gini = 0.584\nsamples = 678
\nvalue = [0, 0, 0, 0, 0, 327, 0, 0, 0, 616, 0, 0, 0 \setminus 0, 0, 168, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1]'),
Text(0.6792452830188679, 0.08333333333333333, 'qini = 0.576 \ nsamples = 203
7\nvalue = [0, 0, 0, 0, 0, 1700, 0, 0, 0, 1220, 0, 0\n0, 0, 0, 0, 332,
2, 0, 0, 0, 0, 0, 0, 0\n1]'),
Text(0.8490566037735849, 0.5833333333333334, 'x[3] <= 1.185 \ngini = 0.746
nsamples = 5935 \quad [0, 0, 0, 2558, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
0, 0, 0, 1826, 0, 0, 0, 2548, 0, 0, 0, 0\n2464]'),
Text(0.7735849056603774, 0.4166666666666667, 'x[11] <= 1.115 \ngini = 0.39
0, 0, 1027, 0, 0, 0, 173, 0, 0, 0, 0 \setminus n92]
Text(0.7358490566037735, 0.25, 'x[9] \le 8.415 \cdot gini = 0.332 \cdot gini = 774
0, 0, 108, 0, 0, 0, 0\n89]'),
Text(0.7169811320754716, 0.08333333333333333, 'qini = 0.632\nsamples = 168
0, 0, 69, 0, 0, 0, 0, 41]'),
Text(0.7547169811320755, 0.08333333333333333, 'gini = 0.212\nsamples = 606
\nvalue = [0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0, 0, 0, 871, 0,
0, 0, 39, 0, 0, 0, 0, 48]'),
Text(0.8113207547169812, 0.25, 'x[7] \le 1.005 \cdot ngini = 0.487 \cdot nsamples = 56
0, 65, 0, 0, 0, 0, 3]'),
Text(0.7924528301886793, 0.08333333333333333, 'gini = 0.516 \nsamples = 16
0, 7, 0, 0, 0, 0, 0]'),
Text(0.8301886792452831, 0.08333333333333333, 'gini = 0.199\nsamples = 40
0, 58, 0, 0, 0, 0, 3]'),
Text(0.9245283018867925, 0.41666666666666667, 'x[0] <= 2.765 \ngini = 0.719
\nsamples = 5105\nvalue = [0, 0, 0, 2510, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0,
0, 0, 0, 799, 0, 0, 0, 2375, 0, 0, 0, 0 \setminus n2372]
Text(0.8867924528301887, 0.25, 'x[12] \le 5.335 \setminus gini = 0.721 \setminus gini = 34
42\nvalue = [0, 0, 0, 1100, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 730,
0, 0, 0, 1721, 0, 0, 0, 0\n1867]'),
Text(0.8679245283018868, 0.0833333333333333, 'gini = 0.486 \nsamples = 552
0, 0, 589, 0, 0, 0, 0\n78]'),
Text(0.9056603773584906, 0.08333333333333333, 'gini = 0.716 \nsamples = 289
0\nvalue = [0, 0, 0, 1040, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0, 0, 606,
0, 0, 0, 1132, 0, 0, 0, 0\n1789]'),
Text(0.9622641509433962, 0.25, 'x[5] \le 99.085 \cdot gini = 0.616 \cdot gini = 16
```


concusion

The bestfit model is logistic Regression with score of 0.5467787662528106

In []: