Kuvocavzivos ExcopSovilus 1115 2016 00155

14 Epyaoría treificial Intelligence

Θ θε κομβοι σε βαθος g επεκτείνονται g φορες $g-1$ επεκτείνονται g φορες f του f θε επεκτείνονται g φορες f επεκτείνονται g φορες f επεκτείνονται g φορες f επεκτείνονται g φορες f ου f θου f επεκτείνονται g φορες f ου f επεκτείνονται g φορες f ου f επεκτείνονται f επεκτείνονται τούσες φορες f f επεκτείνονται τούσες f ερρες f f f επεκτείνονται τούσες	نح (σον IDS γυωρίζουμε σο εξώς: Έστω σο βάθος σες λύσες 9:
9-1 επεκτείνονται 2 φορές 1 επεκτείνονται g φορές 1 κοοτ \Rightarrow Ο επεκτείνεται $g+1$ φορές 8 Ο αλχόριθμος επαναλαμόσιει των αναζωτωση κόθε φορά, αργίζοπα μέχρι να φτάσει σε βάθος J . Για αντό επεκτείνονται τόσες φορές 9 Τρα εχουμε: ($g+1$) + g 5 + ($g-1$) b 2 + + 2 5 g 4 g 7 = X Θ Best case scenatio: $g=0$ => Foot is goal state. ($g+1$) + g 5 + g 7 = g 8 foot is goal state. ($g+1$) + g 8 + g 9 = g 9 = g 9 foot is goal state. ($g+1$) + g 9 + g 9 + g 9 = g 9 foot is goal state.	(-)	Οι κομβοι σε βάθος 3 επεκτείνονται 1 φορα
(g+1) + g + $(g-1)$ b + $(g-1)$		
$⊗$ Ο αλχόριθμος επαναλαμβάνει των αναζώτωση να θε φορά, αρχήτακα μέχρι να φτάσει σε βάθος J . Για αντό επεμτείνονται τόσες φορές $Θ$ τρα εχουμε: $(g+J) + gb + (g-1)b^2 + + 2b^{g-1} + b^g = X$ $Θ Best case scenatio: g=0 > foot is goal state. Φ[X=1], παράχεται μόνο O τοοτ, πον είναι και το goal state. Φ[X=1] Worst case scenatio: g=J > Reached bottom of Thee.$		9 9
(g+1) + g b + (g-1) b 2 + + 2 b 4 b 5 = X		1 EMEKCE (VOVCAL 9 GODE'S
(b) U algorithus Ettavalation and Cole and Cole Gopa, appliance péxpl va praise de babos l. Fig avoi etterceivovant robes Gopa's, appliance péxpl va praise de babos l. Fig avoi etterceivovant robes Gopés (g+1) + g > + (g-1) $ > > > > > > > > > > > > > > > > > > $		toot → O ETTEKZEÍVEZAL 9+1 GOPES
Θ f	(X)	U alxopituos Ettavalakoaver our avatucuou va de Good, apritoras
$(g+1) + gb + (g-1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+1)b^{2} + \dots + b^{g-1} + b^{g} = X$ $(g+1) + gb + (g+$		
O Best case scenatio: $g=0 \Rightarrow$ foot is goal state O Worst case scenatio: $g=d \Rightarrow$ Reached bottom of Thee	9	Ήρα εχουμε:
O Best case scenatio: $g=0 \Rightarrow foot$ is goal state O Worst case scenatio: $g=d \Rightarrow foot$ is goal state O Worst case scenatio: $g=d \Rightarrow foot$ bottom of Thee		[] 12 19 1
(a) $X=1$, π apayeral provo o toot, π ov Eival kal to goal state Φ Worst case scenatio: $g=d=0$ Reached bottom of Thee		[(g+1) + gb + (g-1)b + + 2b + b] = X
(a) $X=1$, π_{apa} year prove the following that the following $Y=1$ and $Y=1$ are $Y=1$ and $Y=1$ and $Y=1$ and $Y=1$ are $Y=1$ and $Y=1$ and $Y=1$ are $Y=1$ and $Y=1$ and $Y=1$ are		P - (0
⊕ Worse case scenatio: g=d => Reached bottom of Thee	0	Dest case scenario: 19=0 => 100t is goal state
⊕ Worse case scenatio: g=d => Reached bottom of Thee	-	A Vall Prince
		U IN =1) HapayEcal povo o root, nov Eval kai to goal sto
	0	West are contini Ta-II - Roaded batton of The
	U	Worse case scenario. 19-0 -> reactive buccom of thee
(C(1) + CD + CC 1) B 1 , 1 , 1 20 1 B	(H)	$[X = (d+1) + db + (d-1)]^2 + + 7b^{d-1} + b^d = 0(b^d)$
		10 10 11 10 10 11 11 1 1 20 1 D

IDS tack) Fringe => POP (S) (X) 9 Depth O: £53 $\begin{array}{cccc} \{S\} & \Rightarrow & POP & S \\ \{D,B,\pm\} & \Rightarrow & POP & A \\ \{D,B\} & \Rightarrow & POP & B \\ \{D\} & \Rightarrow & POP & D \end{array}$ 9 Depth 1: $\{53\}$ => POP (5) $\{10, 10, 10, 10\}$ => POP (61)9 Depth 2: Greedy £53=£53 => POP(5) $\{4, B, D=\{7,3,6\} \Rightarrow POP(B)$ $\{4, C\}=\{7,4\} \Rightarrow POP(C)$ $\{62, F\}=\{0, G\} \Rightarrow POP(G2)$ {s,B,c}

						0 11/3 70/4	
0	E) A*	Visited { } { } { } { } { } { } { } {	G(u) 0 0 5 8	{H, B, D} {GI, B}	f(u) £5} £12,12,123 £13,113 £13,8 £14,225	⇒ POP(s) ⇒ POP(B) ⇒ POP(Cc) ⇒ POP(G2) =	Helasetically
•							
					1 + 12-17-	= (w)t,	
4)						:

Toobhuna 4 (Ovoragerra co Pavake Sotting Algarithm)
$\Theta u=1 \Rightarrow f(1)=0$, ser xperaseau casuráncon
De for to prexadite por porotetal usu Katu, don't slip
O al χόριθμος λειτοπρχεί ως εξύς: Έστω α στο ίδα μεχείτης (α) a) Εντοπίζον με τα θέσα τας μεχαλύτερας πίτας εστω (index=m∠n= b) τραποδοχυρίζον με το κομματι τως στο ίδως, πρχίζοντας σπό ταν κορνφά () είας τα πίτα (ω)
To (m) Elvai ocus populai -> flip odu cu ocoilea xia va moeil oco celos 8) Meimae co eripos quejucuous cara 1, vai emavedabe cu fradiciada
=> f(u) = f(u-1) + 2 , u > 3
9u=2: $ f(2)=1 $ point a avallosoxúplopa
θ $u=3$: $f(3)=3$ $θ$ $u=3$: $f(3)=3$ $f(3)=3$ $f(3)=3$ $f(3)=3$ $f(3)=3$
$θu=4$: $f(4)=5$ $θ'Εσεω όξι α μεγαλνεερα βρίσκεται; μ=21 (3α θέση) Για να τα φερονμε στη σωστή θέση \Rightarrow (2 f(PS)) Για τα νπόλοιπα 3= f(3)=3, οποτε \Rightarrow f(4)=5$

.

Blev Osupu valisflegal move va avoitosograpion mono I mica το να ορίσονμε το προβλιμα σαν προβλιμα αναζώτωσης. πρέπει να ορίσονμε πρώτα κάποια προίχαστα Landassi Tes Deores cur orockellur ou acoiba => STATE { 2,45,6,1,3} (xai en Pérorie ca (vourse) Letions/ Ενέρχειες: Χρειαζόμασε την FLIP(:), 15 15 4-1]

Ανλαδή από την κορυφή Ο μέχρι και την πίτα i,

να τις αναποδοχυρίσει. 1 Successots/Acadoxa: H orvapanou airai ga mas suiozi >> => (Actioni, New-Statei, DK Cose)

Andacui Soogievus mas macarocarus, mas Siver rapuis rai co avaiocoixó róocos Succ (State) = { (Slip(1), NState, 1) ..., (flip(u-1), NState - 4.1)} 3 luitial State = { 2,14,5,6,1,3} (apxiku kazajoraou ozoibas) Goal State = £1,2,3,4,5,6} (cafivoguation ocoiba) E) Path Cost: θα μετράμε ως το πλώθος των FLIP() πον οπαιζούντας
για να φταστυμε στο Goal State

> Δυλαδή σλα θα έχουν κόστος = 1

0	Τώρα για το μεγεθος του χώρου αναζώτωσως
	2015/2
1	1) Maisos Karaoraioseur: (4) (oles or moaves peradeous con initial set)
	DIlly flow Actions => Branching factor: (1-1) => number of flips
	Θ Επομένως το μεχεθος του χώρου αναζίζωσης είναι:
	X = (u-1) n X
1.1	Grand
7	B TEACRO LEXEDOS XUPON ONOGUENOUS => MILIBOS ROJUBLIN SEARCH -
	MAGOS KAROSTAUEUN
	X=4!
	and the state of t
	Not all some
	r

Y) Successots / Lia Soxi: A orvapayon avai de pas Siver quincies = => (fction; NState; Costi) Julasu SoonEvas I raca orgons, nos siver as Milaves EVERYEIES => Mapayoueves varaorabeis, valuis vai TO KÓDZOS CUS EVEDYELOS Succ(State) = { (Hove(...), ([...], [...]), (68), } 8) Initial State: ([(1,2),(3,4)], [0,0]) => Dévos agent rai initial flag list Goal State: ([(x2,41), , (xx,42)], [1,1,1, ,1]) θ Δηλαδά το βlag list να έχει μόνο 1 (κανεία 0).
 Εφτασαν όλοι ταντόχρονα στα Gool κελιά. E) Path Cost: i) Kavovikó Kedi -> (ost=1)

(ii) Kagé Kedi -> (ost=2) A Late action Eyel LOUCOS: Cost = cost + cost + ... + cost = £ cost; / Endadi co a Goodqua con LOUTONS EUR KIVHOTENY TO EKELOW OF agents 1) To path cose sivai Path Cose = E Costi => To appoiona con kootons (x) d: to ballos as dious mas

8 Max Branching Factor Εστω το ιδανικό σενάριο, όπον κάθε agent μπορεί να εκτελέσει ναι τις 4 γινώσεις τον $(\uparrow,\downarrow,\leftarrow,\rightarrow)$ χωρις να δημιονργώθει προβλημα orus: a) Out of bounds

a) Wall Collision ME ZUV KIVUOU ZON, VQ MÉDEL DE CEZPQYONVÁKI GE ÁHON agent ζαντοχρου Θ Επομένως θο έχουμε: 4.4.4.4...4 = (4") = Max Branching Foctor

Hentistic Function
Ταίρνουμε καταρχός το telaxed ptoblem (γη Ιαρωμείω είκδοση τον προβηματος) Αναδή αφαιρονίμε όλα τα Walls. Ο οπαιτώσεις τον προβλήματος παραμείνουν ίδιες (να φτάσουν αντίχρανα στα μικές
O γρυσιμοποιούμε σαν Manhattan Distance => μύριο component του heutistic pas
a) (πολοχίζω τις Mauhattan αποστάσεις, κάθε agent από τα goals b) Maζενω τις (xx) τιρές και βρίσκονμε των (max) γ) τντώ λοιπόν αποτελεί το heutistic value μος
O 4 ιδεία εχει ως εξώς:
$=>$ θ é louge va 6 agoure olor or agents (auxògova) ora θ
\Rightarrow \downarrow_V εχονμε τα ζείγα αποστασεών (2,4), (5,6) \Rightarrow μαχ \Rightarrow 0 \uparrow_S είναι πιο κοντά στα Goals από τον \uparrow_S
Επειδώ όμως θελουμε ταντόχρονω άφιξω, ο β1 πρεπεί να (καθνοτερώσει) τόσο, όσο χρειάζεται ο β2 για να φτάσει και αντός.
⊕ Eivac 4 ornapour orvers?
Fival, γιατί σε κάθε bujua, οι Manhattau aποστάτεις των agents το αλλάζουν κατα 1 ⇒ Max aλλάζει το πολύ κατα 1 ⇒ heutistic το πολύ κατα 1 ⇒ heutistic το πολύ κατα 1 ⇒ Norst case Scenatio: Ολοι οι agents να επιλέξουν ασπρο κουτάχι → λετίου τος = ξ 1 = K, κ≥1 } => (ξυνεπιίς)
1: heutistic_change = 1)
Kate orverus heutistic Eival Kal (Rapadekai) => 0