BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2015-2016 Course Handout (Part II)

Date: 03.08.2015

In addition to part I (general handout for all courses appended to the timetable) this portion gives specific details regarding the course.

Course No. : CHEM F311

Course Title : Organic Chemistry - III

Instructor-In-Charge: Dr. Dalip Kumar

1. Course Description:

This course emphasizes on applications of important reagents and reactions in organic synthesis and disconnection or *synthon* approach. In *disconnection* or *synthon* approach the target molecule is broken down by a series of disconnections into possible starting materials followed by synthesis.

2. Scope and Objective of the Course:

The aim of this course is to familiarize the students with retro-synthetic analysis and enable the student to design the synthesis using organic compounds using appropriate reagents.

3. Text Book:

TB1: Michael B. Smith & Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 6th ed., 2012.

TB2: Stuart Warren: Organic Synthesis: The Disconnection Approach: John Wiley & Sons, 2004.

Reference Books:

R1: Paul Wyatt, Stuart Warren: Organic Synthesis: Strategy and Control, Wiley; 1st edition, 2007

R2: Morrison & Boyd, Organic Chemistry, 6th edition, Prentice-Hall, Inc., 1992.

4. Course Plan:

Lec. No.	Learning Objectives	Topic(s) to be Covered	Chap(s). No(s).
1.	Introduction	Organic synthesis and its applications	-
2-4	Common organic reagents	DIBAL, 9-BBN, Birch Reduction, OsO ₄ , Ti(Oi-Pr) ₄ , Swern Oxidation	TB1: class notes
5-7	Organometallic reagents	organoboranes, organosilicon reagents, organotin reagent	TB1: class notes
8-11	Transition metal catalyzed reactions (coupling reactions)	Carbon-carbon bond forming reactions (Suzuki, Heck, Sonogashira, Stille reaction), Carbon-nitrogen bond forming reactions (Buchwald-Hartwig reaction)	TB1: class notes
12	Introduction of disconnection approach	Basic principles of disconnection approach in organic synthesis	TB2: 1
13-14	Synthesis of aromatic Compounds	Basic Principles: Synthesis of Aromatic Compounds, The Order of Events	TB2: 2, 3
15-24	One group C-X and C-C disconnections	One Group C-X Disconnections, Chemoselectivity, Synthesis of Alcohols, General Strategy of Choosing Disconnection, Stereoselectivity, Synthesis of Carbonyl Compounds, Regioselectivity, Alkene Synthesis, Use of acetylenes for synthesis.	TB2: 4, 5, 10-16

25-34	Two group C-X and C-C disconnections	Two Group C-X Disconnections, Reversal of Polarity, Cyclisation Reactions,	TB2: 17-28	6-9,
		Summary of Strategy, Amine Synthesis, Diels-Alder Reactions, 1,3-Difuntionalised		
		Compounds and α,β-Unsaturated Carbonyl Compounds, Control in Carbonyl Condensations, 1,5-Difuntionalised Compounds, Michael addition and		
		Robinson annelation, Use of Aliphatic Nitro Compounds in Synthesis, 1,2- Difuntionalised compounds, FGA and its		
		Reverse, 1,4-Difuntionalised Compounds, Reconnections, 1,6-Difuntionalised Compounds, Strategy of Carbonyl		
		Disconnections.		
35-38	Ring synthesis (Saturated heterocycles)	Introduction to Ring synthesis, Synthesis of three, four, five and six membered Rings and General strategy of Ring Synthesis		29, 34,
39-40	Synthesis of heterocyclic compounds	Aromatic Heterocycles and Advanced Strategy	TB2: 39	, 40

5. Evaluation scheme

Component	Duration	Weightage (%)	Date and Time	Remarks
Mid Term Test	90 min.	35	6/10 2:00 - 3:30	Close Book
			PM	
Assignments/Quiz		20	Continuous	Close Book
Compre. Exam.	3 hrs.	45	4/12 FN	Partially Open Book

- **6. Chamber Consultation Hour**: To be announced in the class.
- **7. Notices**: Notices concerning the course will be displayed on Chemistry Department notice board only.

Instructor-in-Charge CHEM F311 Organic Chemistry III