MAT4400: Notes on Linear analysis

Morten Tryti Berg May 22, 2024

3 σ -Algebras

Definition 3.1 (σ -Algebra). A family $\mathscr A$ of subsets of X with:

- (i) $X \in \mathcal{A}$,
- (ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$,
- (iii) $(A_n)_{n\in\mathbb{N}}\in\mathscr{A}\Rightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathscr{A}$

Remark. It follows that,

- (i) $\emptyset \in \mathscr{A}$
- (ii) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- (iii) $(A_n)_{n\in\mathbb{N}}\subset\mathscr{A}\Rightarrow\bigcap_{n\in\mathbb{N}}A_n\in\mathscr{A}$

Theorem 3.2 (and Definition).

- (i) The intersection of arbitrarily many σ -algebras in X is againg a σ -algebra in X
- (ii) For every system of sets $p \subset \mathcal{P}(X)$ there exists a smallest σ -algebra containing. This is the σ -algebra generated by p, denoted $\sigma(p)$, and $\sigma(p)$ is called its generator.

Definition 3.3 (Borel). The σ -algebra $\sigma(\mathcal{O})$ generated by the open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called **Borel** σ -algebra, and its members are called **Borel sets** or **Borel measurable sets**.

4 Measures

Definition 4.1. A (positive) measure μ on X is a map $\mu: \mathscr{A} \to [0, \infty]$ satisfying

- 1. \mathscr{A} is a σ -algebra in X,
- 2. $\mu(\emptyset) = 0$,
- 3. $(A_n)_{n\in\mathbb{N}}\subset\mathscr{A}$ pairwise disjoint $\Rightarrow \mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$.

If μ satisfies point 2. and 3., but $\mathscr A$ is not a σ -algebra, then μ is called a pre-measure.

Definition 4.2. Let X be a set and \mathscr{A} a σ -algebra on X. The pair (X,\mathscr{A}) is called a measurable space. If μ is a measure on X, then (X,\mathscr{A},μ) is called a measure space. A finite measure is a measure with $\mu(X) < \infty$, and a probability measure is a measure with $\mu(X) = 1$. The corresponding measure spaces are called finite measure spaces and probability spaces respectively.

Proposition 4.3. Let (X, \mathcal{A}, μ) be a measure space and $A, B, A_n, B_n \in \mathcal{A}$, $n \in \mathbb{N}$. Then

- 1. $A \cap B = \emptyset \rightarrow \mu(A \cup B) = \mu(A) + \mu(B)$
- 2. $A \subset B \to \mu(A) \le \mu(B)$,
- 3. $A \subset B$, $\mu(A) < \infty \Rightarrow \mu(B \setminus A) = \mu(B) \mu(A)$,
- 4. $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$,
- 5. $\mu(A \cup B) \le \mu(A) + \mu(B)$,
- 6. $A_n \uparrow A \Rightarrow \mu(A) = \sup_{n \in \mathbb{N}} \mu(A_n) = \lim_{n \to \infty} \mu(A_n),$
- 7. $B_n \downarrow B, \mu(B_1) < \infty \Rightarrow \mu(B) = \inf_{n \in \mathbb{N}} \mu(B_n) = \lim_{n \to \infty} \mu(B_n),$
- 8. $\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}\mu(A_n)$.

Definition 4.4. The set function λ^n on $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n))$ that assigns every halfopen rectangle $[a, b) = [a_1, b_1) \times \ldots \times [a_n, b_b)$ the value

$$\lambda^n([a,b)) = \prod_{i=1}^n (b_i - a_i)$$

is called the n-dimensional Lebesgue measure.

5 Uniqueness of Measures

Lemma 5.1. A Dynkin system D is a σ -algebra iff it is stable under finite intersections, i.e. $A, B \in D \Rightarrow A \cap B \in D$.

Theorem 5.2 (Dynkin). Assume X is a set, S is a collection of subsets of X closed under finite intersections, that is, if $A, B \in S \Rightarrow A \cap B \in S$. Then $D(S) = \sigma(S)$.

Theorem 5.3 (uniqueness of measures). Let (X, B) be a measurable space, and $S \subset P(X)$ be the generator of B, i.e. $B = \sigma(S)$. If S satisfies the following conditions:

- 1. S is stable under finite intersections (\cap -stable), i.e. $A, C \in S \Rightarrow A \cap C \in S$.
- 2. There exists an exhausting sequence $(G_n)_{N\in\mathbb{N}}\subset with\ G_N\uparrow X$. Assume also that there are two measures μ,ν satisfying:
- 3. $\mu(A) = \nu(A), \ \forall A \in S$.
- 4. $\mu(G_n) = \nu(G_n) < \infty$.

Then $\mu = \nu$.

6 Existence of Measures

Assume X is a set, $S \subset \mathcal{P}(X)$, $\emptyset \in S$, and $\mu : S \to [0, +\infty]$ is a map s.t. $\mu(\emptyset) = 0$. Can we extend μ to a measure on $(X, \sigma(S))$?

We define $\mu^*: \mathcal{P}(X) \to [0, +\infty]$ by

$$\mu^* = \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) : A_n \in S, \ A \in \bigcup_{n=1}^{\infty} A_n \right\}$$

In general μ^* is neither a measure nor it extends μ . But we have,

Lemma 6.1. The map μ^* has the following properties:

- 1. $\mu^*(\emptyset) = 0$,
- 2. $A \subset B$ then $u^*(A) \leq \mu^*(B)$,

3.
$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \mu^* (A_n),$$

Any map $\mu^*: \mathcal{P}(X) \to [0, +\infty]$ with properties (1.) - (3.) is called an <u>outer measure</u> on X. It turns out, every outer measure defines a measure on a certain σ -algebra.

Theorem 6.2 (Carathéodory's theorem). Assume X is a set and $\mu^* : \mathcal{P}(X) \to [0, +\infty]$ is an outer measure. Let $\mathscr{B} \subset \mathcal{P}(X)$ be the collection of sets A s.t.

$$\mu^*(B) = \mu^*(A \cap B) + \mu^*(A^c \cap B), \ \forall B \in X.$$

Such sets A are called <u>Carathéodory measurable</u> with respect to μ^* . Then $\mathscr B$ is a σ -algebra and $\mu \stackrel{def}{=} \mu^*|_{\mathscr B}$ is a measure on $(X,\mathscr B)$.

7 Measurable Mappings

We consider maps $T: X \to X'$ between two measurable spaces (X, \mathscr{A}) and (X', \mathscr{A}') which respects the measurable structures and the σ -algbras on X and X'. These maps are useful as we can transport a measure μ , defined on (X, \mathscr{A}) , to (X', \mathscr{A}') .

Definition 7.1. Let (X, \mathscr{A}) , (X', \mathscr{A}') be measurable spaces. A map $T: X \to X'$ is called \mathscr{A}/\mathscr{A}' -measurable if the pre-image of every measurable set is a measurable set:

$$T^{-1}(A') \in \mathscr{A}, \quad \forall A' \in \mathscr{A}'.$$
 (1)

- A $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^m)$ measurable map is often called a Borel map.
- The notation $T:(X,\mathscr{A})\to (X',\mathscr{A}')$ is often used to indicate measurability of the map T.

Lemma 7.2. Let (X, \mathscr{A}) , (x', \mathscr{A}') be measurable spaces and let $\mathscr{A}' = \sigma(\mathscr{G}')$. Then $T: X \to X'$ is \mathscr{A}/\mathscr{A}' -measurable iff $T^{-1}(\mathscr{G}') \subset \mathscr{A}$, i.e. if

$$T^{-1}(G') \in \mathscr{A}, \ \forall G' \in \mathscr{G}'.$$
 (2)

Theorem 7.3. Let (X_i, \mathcal{A}_i) , i = 1, 2, 3, be measurable spaces and $T : X_1 \to X_2$, $S : X_2 \to X_3$ be $\mathcal{A}_1/\mathcal{A}_2$ and $\mathcal{A}_2/\mathcal{A}_3$ -measurable maps respectively. Then $S \circ T : X_1 \to X_3$ is $\mathcal{A}_1/\mathcal{A}_3$ -measurable.

Corollary 7.4. Every continuous map between metric spaces is a Borel map.

Definition 7.5. (and lemma) Let $(T_i)_{i \in I}$, $T_I : X \to X_i$, be arbitrarily many mappings from the same space X into measurable spaces (X_i, \mathscr{A}_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is

$$\sigma(T_i: i \in I) := \sigma\left(\bigcup_{i \in I} T_i^{-1}(\mathscr{A}_i)\right)$$
(3)

Corollary 7.6. A function $f:(X,\mathcal{B})\to\mathbb{R}$ is measurable if $f((a,+\infty))\in\mathcal{B}$, $\forall a\in\mathbb{R}$.

Corollary 7.7. Assume (X, \mathcal{B}) is a measurable space, (Y, d) is a metric space, $(f_n : (X, \mathcal{B}) \to Y)_{n=1}^{\infty}$ is a sequence of measurable maps. Assume this sequence of images $(f_n(x))_{n=1}^{\infty}$ is convergent in $Y \ \forall x \in X$. Define

$$f: X \to Y, \quad by \ f(x) = \lim_{n \to \infty} f_n(x).$$
 (4)

Then f is measurable.

Theorem 7.8. Let (X, \mathcal{A}) , (X', \mathcal{A}') be measurable spaces and $T: X \to X'$ be an \mathcal{A}/\mathcal{A}' -measurable map. For every measurable μ on (X, \mathcal{A}) ,

$$\mu'(A') := \mu(T^{-1}(A')), \quad A' \in \mathscr{A}',$$
 (5)

defines a measure on (X', \mathscr{A}') .

Definition 7.9. The measure $\mu'(\cdot)$ in the above theorem is called the push forward or image measure of μ under T and it is denoted as $T(\mu)(\cdot)$, $T_{*\mu}(\cdot)$ or $\mu \circ T^{-1}(\cdot)$.

Theorem 7.10. If $T \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\lambda^n = T(\lambda^n)$.

Theorem 7.11. Let $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$S(\lambda^n) = |\det S^{-1}| \lambda^n = |\det S|^{-1} \lambda^n.$$
(6)

Corollary 7.12. Lebesgue measure is invariant under motions: $\lambda^n = M(\lambda^n)$ for all motions M in \mathbb{R}^n . In particular, congruent sets have the same measure. Two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry

8 Measurable Functions

A measurable function is a measurable map $u: X \to \mathbb{R}$ from some measurable space (X, \mathscr{A}) to $(\mathbb{R}, \mathscr{B}(\mathbb{R}^1))$. They play central roles in the theory of integration.

We recall that $u: X \to \mathbb{R}$ is $\mathscr{A}/\mathscr{B}(\mathbb{R}^1)$ -measurable if

$$u^{-1}(B) \in \mathscr{A}, \ \forall B \in \mathscr{B}(\mathbb{R}^1).$$
 (7)

Moreover from a lemma from chapter 7, we actually only need to show that

$$u^{-1}(G) \in \mathscr{A}, \ \forall G \in \mathscr{G} \text{ where } \mathscr{G} \text{ generates } \mathscr{B}(\mathbb{R}^1).$$
 (8)

Proposition 8.1.

- 1 If $f, g: (X, \mathcal{B}) \to \mathbb{C}$ are measurable, then the function f+g, $f \cdot g$, cf, $(c \in \mathbb{C})$ are measurable.
- 2 If $b: \mathbb{C} \to \mathbb{C}$ is Borel and $b: (\mathbb{C}, \mathscr{B}) \to \mathbb{C}$ is measurable, then $b \circ f$ is measurable.
- 3 If $f(x) = \lim_{n \to \infty} f_n(x)$, $x \in X$ and f_n are measurable, then f is measurable.
- 4 If $X = \bigcup_{n=1}^{\infty} A_n$, $(A_n \in \mathcal{B})$, $f|_{A_n} : (A_n, \mathcal{B}_{A_n}) \to \mathbb{C}$ is measurable $\forall n$, then f is measurable.

Definition 8.2. Given a measurable space (X, \mathcal{B}) , a measurable function $f: (X, \mathcal{B}) \to \mathbb{C}$ is called simple if

$$f(x) = \sum_{k=1}^{N} c_k \mathbb{1}_{A_k}(x), \tag{9}$$

for some $c_k \in \mathbb{C}$, $A_k \in \mathcal{B}$, where $\mathbb{1}$ is the characteristic function,

$$\mathbb{1}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases} \tag{10}$$

The representation of simple function is **not** unique. We denote the standard representation of f by

$$f(x) = \sum_{n=0}^{N} z_n \mathbb{1}_{B_n}(x), \quad N \in \mathbb{N}, \ z_n \in \mathbb{R}, \ B_n \in \mathscr{A}, \ X = \bigcup_{n=1}^{N} B_n, \ \text{ for } B_n \cap B_m = \emptyset, \ n \neq m.$$

$$\tag{11}$$

The set of simple functions is denoted $\mathcal{E}(\mathscr{A})$ or \mathcal{E} .

Definition 8.3. Assume μ is a measure on (X, \mathcal{B}) . Given a *positive* simple function

$$f = \sum_{k=1}^{N} c_k \mathbb{1}_{A_k}, \quad (c_k \ge 0).$$
 (12)

We define

$$\int_{X} f d\mu = \sum_{k=1}^{n} c_{k} \mu(A_{k}) \in [0, +\infty].$$
(13)

We also denote this by $I_{\mu}(f)$.

Lemma 8.4. This is well defined, that is, $\int_x f d\mu$ does not depend on the presentation of the simple function f.

Properties 8.5. For every positive simple function

1
$$\int_X cf d\mu = c \int_X f d\mu$$
, for only $c \ge 0$

$$2 \int_X (f+g)d\mu = \int_X f d\mu + \int_X g d\mu.$$

Corollary 8.6. If $f \ge g \ge 0$ are simple functions, then

$$\int_{X} f d\mu \ge \int_{X} g d\mu. \tag{14}$$

Definition 8.7. If $f: X \to [0, +\infty)$ is measurable, then we define

$$\int_{X} f d\mu = \sup \left\{ \int_{Y} g d\mu : f \ge g \ge 0, \ g \text{ is simple} \right\}$$
 (15)

Remark. This means that any measurable function can be approximated by simple functions.

Properties 8.8. Measurable functions like this have the following properties

$$1 \int_X cf d\mu = c \int_X f d\mu, \quad \forall c \ge 0.$$

2 If $f \ge g \ge 0$, then $\int_X f d\mu \ge \int_X g d\mu$ for any measurable g, f.

3 If $f \ge 0$ is simple, then $\int_X f d\mu$ is the same value as obtained before.

To advance in measure theory we consider measurable functions

$$f: X \to [0, +\infty].$$

Measurability is understood w.r.t the σ -algebra $\mathscr{B}([0,+\infty])$ generated by $\mathscr{B}([0,+\infty))$ and $\{+\infty\}$. In other words, $A \subset [0,+\infty] \in B([0,+\infty])$ iff $A \cap [0,+\infty) \in \mathscr{B}([0,+\infty))$.

Remark. Hence $f: X \to [0, +\infty]$ is measurable iff $f^{-1}(A)$ is measurable $\forall A \in \mathscr{B}([0, +\infty))$.

Definition 8.9. For measurable functions $f: X \to [0, +\infty]$, we define

$$\int_X f d\mu = \sup \left\{ \int_x g d\mu \ : \ f \ge g \ge 0 \ : \ g \text{ is simple} \right\} \in [0, +\infty]. \tag{16}$$

2

Theorem 8.10. (Monotone convergence theorem) Assume (X, \mathcal{B}, μ) is a measure space, $(f)_{n=1}^{\infty}$ is an increasing sequence of measurable positive functions $f_n: X \to [0, +\infty]$. Define $f(x) = \lim_{n \to \infty} f_n(x)$. Then f is measurable and

$$\int_{X} f d\mu = \lim_{n \to \infty} \int_{X} f_n d\mu. \tag{17}$$

Theorem 8.11. Assume (X, \mathcal{B}) is a measurable space and $f: X \to [0, +\infty]$ is measurable. Then there are simple functions g_n , s.t.

$$0 \le g_1 \le g_2 \le \dots$$
, $g_n(x) \to f(x)$, $\forall x \in X$.

Moreover, if f is bounded, we can choose g_n s.t. the convergence is uniform, that is,

$$\lim_{n \to \infty} \sup_{x \in X} |g_n(x) - f(x)| = 0.$$
 (18)

9 Integration of measurable functions

Through this chapter (X, \mathscr{A}, μ) will be some measure space. Recall that $\mathcal{M}^+(\mathscr{A})$ $[\mathcal{M}^+_{\mathbb{R}}(\mathscr{A})]$ are the \mathscr{A} -measurable positive functions and $\mathcal{E}(\mathscr{A})$ $[\mathcal{E}^+_{\mathbb{R}}(\mathscr{A})]$ are the positive and simple functions.

The fundamental idea of *Integration* is to measure the area between the graph of the function and the abscissa. For positive simple functions $f \in \mathcal{E}^+(\mathscr{A})$ in standard representation, this is done easily

if
$$f = \sum_{i=0}^{M} y_i \mathbb{1}_{A_i} \in \mathcal{E}^+(\mathscr{A})$$
 then $\sum_{i=0}^{M} y_i \mu(A_i)$ (19)

would be the μ -area enclosed by the graph and the abscissa. We note that the representation of f should not impact the integral of f.

Lemma 9.1. Let $\sum_{i=0}^{M} y_i \mathbb{1}_{A_i} = \sum_{k=0}^{N} z_k \mathbb{1}_{B_k}$ be two standard representations of the same function $f \in \mathcal{E}^+(\mathscr{A})$. Then

$$\sum_{i=0}^{M} y_i \mu(A_i) = \sum_{k=0}^{N} z_k \mu(B_k).$$
 (20)

Definition 9.2. Let $f = \sum_{i=0}^{M} y_i \mathbb{1}_{A_i} \in \mathcal{E}^+(\mathscr{A})$ be a simple function in standard representation. Then the number

$$I_{\mu}(f) = \sum_{i=0}^{M} y_i \mu(A_i) \in [0, \infty]$$
 (21)

(which is independent of the representation of f) is called the μ -integral of f.

Proposition 9.3. Let $f, g \in \mathcal{E}^+(\mathscr{A})$. Then

- (i) $I_{\mu}(\mathbb{1}_A) = \mu(A) \quad \forall A \in \mathscr{A}.$
- (ii) $I_{\mu}(\lambda f) = \lambda I_{\mu}(f) \quad \forall \lambda \geq 0.$
- (iii) $I_{\mu}(f+g) = I_{\mu}(f) + I_{\mu}(g)$.
- (iv) $f \leq g \Rightarrow I_{\mu}(f) \leq I_{\mu}(g)$.

In theorem 8.8 we saw that we could for every $u \in \mathcal{M}^+(\mathscr{A})$ write it as an increasing limit of simple functions. By corollary 8.10, the suprema of simple functions are again measurable, so that

$$u \in \mathcal{M}^+(\mathscr{A}) \Leftrightarrow u = \sup_{n \in \mathbb{N}} f_n, \quad f \in \mathcal{E}^+(\mathscr{A}), \quad f_n \le f_{n+1} \le \dots$$

We will use this to "inscribe" simple functions (which we know how to integrate) below the graph of a positive measurable function u and exhaust the μ -area below u.

Definition 9.4. Let (X, \mathscr{A}, μ) be a measure space. The (μ) -integral of a positive function $u \in \mathcal{M}_{\bar{\mathbb{p}}}^+(\mathscr{A})$ is given by

$$\int ud\mu = \sup \left\{ I_{\mu}(g) : g \le u, \ g \in \mathcal{E}^{+}(\mathscr{A}) \right\} \in [0, +\infty]. \tag{22}$$

If we need to emphasize the *integration variable*, we write $\int u(x)\mu(dx)$. The key observation is that the integral $\int \dots d\mu$ extends I_{μ} .

Lemma 9.5. For all $f \in \mathcal{E}^+(\mathscr{A})$ we have $\int f d\mu = I_{\mu}(f)$.

The next theorem is one of many convergence theorems. It shows that we could have defined 22 using any increasing sequence $f_n \uparrow u$ of simple functions $f_n \in \mathcal{E}^+(\mathscr{A})$.

Theorem 9.6. (Beppo Levi) Let (X, \mathcal{A}, μ) be a measure space. For an increasing sequence of functions $(u_n)_{n\in\mathbb{N}}\subset\mathcal{M}^+_{\mathbb{R}}(\mathcal{A}),\ 0\leq u_n\leq u_{n+1}\leq\ldots$, we have for the supremum $u=\sup_{n\in\mathbb{N}}u_n\in\mathcal{M}^+_{\mathbb{R}}(\mathcal{A})$ and

$$\int \sup_{n \in \mathbb{N}} u_n d\mu = \sup_{n \in \mathbb{N}} \int u_n d\mu. \tag{23}$$

Note we can write $\lim_{n\to\infty}$ instead of $\sup_{n\in\mathbb{N}}$ as the supremum of an increasing sequence is its limit. Moreover, this theorem holds in $[0,+\infty]$, so the case $+\infty = +\infty$ is possible.

Corollary 9.7. Let $u \in \mathcal{M}_{\bar{\mathbb{R}}}^+(\mathscr{A})$. Then

$$\int u d\mu = \lim_{n \to \infty} \int f_n d\mu$$

holds for every sequence $(f_n)_{n\in\mathbb{N}}\subset\mathcal{E}^+(\mathscr{A})$ with $\lim_{n\to\infty}f_n=u$.

Proposition 9.8. (of integral) Let $u, v \in \mathcal{M}_{\bar{\mathbb{R}}}^+(\mathscr{A})$. Then

- (i) $\int \mathbb{1}_A d\mu = \mu(A) \quad \forall A \in \mathscr{A}.$
- (ii) $\int \alpha u d\mu = \alpha \int u d\mu \quad \forall \alpha \geq 0$
- (iii) $\int u + v d\mu = \int u d\mu + \int v d\mu.$
- (iv) $u < v \Rightarrow \int u d\mu < \int v d\mu$.

Corollary 9.9. Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{M}^+_{\mathbb{R}}(\mathscr{A})$. Then $\sum_{n=1}^{\infty}u_n$ is measurable and we have

$$\int \sum_{n=1}^{\infty} u_n d\mu = \sum_{n=1}^{\infty} \int u_n d\mu$$

(including the possibility $+\infty = +\infty$.)

Theorem 9.10. (<u>Fatou</u>) Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{M}^+_{\mathbb{R}}(\mathscr{A})$ be a sequence of positive measurable functions. Then $u=\liminf_{n\to\infty}u_n$ is measurable and

$$\int \liminf_{n \to \infty} u_n d\mu \le \liminf_{n \to \infty} \int u_n d\mu \tag{24}$$

10 Integrals of Measurable Functions

We have defined our integral for positive measurable functions, i.e. functions in $\mathcal{M}^+(\mathscr{A})$. To extend our integral to not only functions in $\mathcal{M}^+(\mathscr{A})$ we first notice that

$$u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A}) \Leftrightarrow u = u^+ - u^-, \ u^+, u^- \in \mathcal{M}_{\overline{\mathbb{R}}}^+,$$
 (25)

i.e. that every measurable function can be written as a sum of **positive** measurable functions.

Definition 10.1 (μ -integrable). A function $u: X \to \overline{\mathbb{R}}$ on (X, \mathscr{A}, μ) is μ -integrable, if it is $\mathscr{A}/\mathscr{B}(\overline{\mathbb{R}})$ -measurable and if $\int u^+ d\mu$, $\int u^- d\mu < \infty$ (recall the definition for the integral of positive measurable functions). Then

$$\int ud\mu := \int u^+ d\mu - \int u^- d\mu \in (-\infty, \infty)$$
 (26)

is the $(\mu$ -)integral of u. We write $\mathcal{L}^1(\mu)$ for the set of all real-valued μ -integrable functions ¹.

Theorem 10.2. Let $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, then the following conditions are equivalent:

- (i) $u \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$.
- (ii) $u^+, u^- \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$.
- (iii) $|u| \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\mu)$.
- (iv) $\exists w \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu) \text{ with } w \geq 0 \text{ s.t. } |u| \leq w.$

Theorem 10.3 (Properties of the μ -integral). The μ -integral is: **homogeneous**, additive, and:

(i)
$$\min\{u, v\}, \max\{u, v\} \in \mathcal{L}^{1}_{\mathbb{R}}(\mu)$$
 (lattice property)

(ii)
$$u \le v \Rightarrow \int u d\mu \le \int v d\mu$$
 (monotone)

(iii)
$$\left| \int u d\mu \right| \le \int |u| d\mu$$
 (triangle inequality)

Remark. If $u(x) \pm v(x)$ is defined in $\overline{\mathbb{R}}$ for all $x \in X$ then we can exclude $\infty - \infty$ and the theorem above just says that the integral is linear:

$$\int (au + bv)d\mu = a \int ud\mu + b \int vd\mu.$$
 (27)

¹In words, we extend our integral to positive measurable functions by noticing that we can write every measurable function as a sum of positive measurable functions, something that we do know how to integrate. We don't want to run into the problem of $\infty - \infty$, thus we require the integral of the positive and negative parts to both (separately) be less than infinity.

This is always true for real-valued $u, v \in \mathcal{L}^1(\mu) = \mathcal{L}^1_{\mathbb{R}}(\mu)$, making $\mathcal{L}^1(\mu)$ a vector space with addition and scalar multiplication defined by

$$(u+v)(x) := u(x) + v(x), (a \cdot u)(x) := a \cdot u(x),$$
 (28)

and

$$\int ...d\mu : \mathcal{L}^1(\mu) \to \mathbb{R}, \ u \mapsto \int u d\mu, \tag{29}$$

is a positive linear functional.

Integration of complex functions

Assume (X, \mathcal{B}, μ) is a measure space.

Definition 10.4. A measurable function $f: X \to \mathbb{C}$ is called <u>integrable</u> (or μ -integrable) if

$$\int_X |f| d\mu < \infty.$$

Denote by $\mathcal{L}^1(X, \mathcal{B}, d\mu)$ or $\mathcal{L}^1(X, d\mu)$ the set of integrable functions. This is a vector space over \mathbb{C} , since

$$|f+g| \le |f| + |g|$$
, and $|cf| = |c||f|$, $(c \in \mathbb{C})$.

It is also spanned by positive functions since

$$f = (\operatorname{Re} f)_{+} - (\operatorname{Re} f)_{-} + i(\operatorname{Im} f)_{+} - i(\operatorname{Im} f)_{-},$$

where for a function h we let $h_+ = max\{0, h\}$, $h_- = -\min\{h, 0\}$. If $f \in \mathcal{L}^1(X, d\mu)$, then

$$(\operatorname{Re} f)_{\pm}, (\operatorname{Im} f)_{\pm} \in \mathcal{L}^{1}(X, d\mu), \text{ as } |(\operatorname{Re} f)_{\pm}|, |(\operatorname{Im} f)_{\pm}| \leq |f|.$$

Proposition 10.5. The integral extends uniquely for the positive integrable functions to linear functionals $\mathcal{L}^1(X, d\mu) \to \mathbb{C}$, that is, to a map such that

$$\int_X (f+g) d\mu = \int_x f d\mu + \int_X g d\mu \ , \ \int_X c f d\mu = c \int_X f d\mu, \ (c \in \mathbb{C}).$$

Proposition 10.6. (Triangle inequality)

$$\left| \int_{X} f d\mu \right| \leq \int_{X} |f| d\mu.$$

11 Null sets and the Almost Everywhere (lecture 08, 05. Feb.)

Definition 11.1. A $(\mu$ -)null set $N \in \mathcal{N}_{\mu}$ is a measurable set $N \in \mathscr{A}$ satisfying

$$N \in \mathcal{N}_{\mu} \iff N \in \mathscr{A} \text{ and } \mu(N) = 0.$$
 (30)

This can be used generally about a 'statement' or 'property', but we will be interested in questions like 'when is u(x) equal to v(x)', and we answer this by saying

$$u = v \text{ a.e.} \Leftrightarrow \{x : u(x) \neq v(x)\} \text{ is (contained in) a } \mu\text{-null set.,}$$
 (31)

i.e.

$$u = v \quad \mu\text{-a.e.} \Leftrightarrow \mu\left(\left\{x : u(x) \neq v(x)\right\}\right) = 0.$$
 (32)

The last phrasing should of course include that the set $\{x: u(x) \neq v(x)\}$ is in \mathscr{A} .

Theorem 11.2. Let $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, then:

- (i) $\int |u|d\mu = 0 \Leftrightarrow |u| = 0$ a.e. $\Leftrightarrow \mu \{u \neq 0\} = 0$,
- (ii) $\mathbb{1}_N u \in \mathcal{L}^{\frac{1}{m}}(\mu) \ \forall \ N \in \mathcal{N}_{\mu},$
- (iii) $\int_N u d\mu = 0$.
- (i) is really useful, later we will define \mathcal{L}^p and the $||\cdot||_p$ -(semi)norm. Then (i) means that if we have a sequence u_n converging to u in the $||\cdot||_p$ -norm then $u_n(x) = u(x)$ a.e.

Corollary 11.3. Let $u = v \mu$ -a.e. Then

- (i) $u, v \ge 0 \Rightarrow \int u d\mu = \int v d\mu$,
- (ii) $u \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu) \Rightarrow v \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu) \text{ and } \int u d\mu = \int v d\mu.$

Corollary 11.4. If $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, $v \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\mu)$ and $v \geq 0$ then

$$|u| \le v \ a.e. \ \Rightarrow u \in \mathcal{L}^{1}_{\mathbb{R}}(\mu).$$
 (33)

Proposition 11.5 (Markow inequality). For all $u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$, $A \in \mathscr{A}$ and c > 0

$$u\left(\left\{|u| \ge c\right\} \cap A\right) \le \frac{1}{c} \int_{A} |u| d\mu,\tag{34}$$

if A = X, then (obviosly)

$$u\{|u| \ge c\} \le \frac{1}{c} \int |u| d\mu. \tag{35}$$

Completions of measure spaces

Definition 11.6. A measure space (X, \mathcal{B}, μ) is called **complete** if whenever $A \in \mathcal{B}$ and $\mu(A) = 0$, we have $B \in \mathcal{B}$, $\forall B \subset A$.

Remark. Any measure space can be completed as follows: Let $\bar{\mathcal{B}}$ be the σ -algebra generated by \mathcal{B} and all sets $B \subset X$ s.t. there exists $A \in \mathcal{B}$ with $B \subset A$ and $\mu(A) = 0$.

Thus, the completed σ -algebra is of the form

$$\bar{\mathscr{B}} = \{B \cup N : B \in \mathscr{B}, \ N \subset A, \text{ for all } A \in \mathscr{B} \text{ with } \mu(A) = 0\}$$

Proposition 11.7. The σ -algebra $\bar{\mathscr{B}}$ can also be described as follows:

$$\bar{\mathscr{B}} := \{ B \subset X : A_1 \subset B \subset A_2 \text{ for some } A_1, A_2 \in \mathscr{B} \text{ with } \mu(A_2 \backslash A_1) = 0 \},$$
(36)

with B, A_1, A_2 as above, we define

$$\bar{\mu} := \mu(A_1) = \mu(A_2)$$
 (37)

Then $(X, \bar{\mathscr{B}}, \bar{\mu})$ is a complete measure space.

Definition 11.8. If μ is a Borel measure on a **metric** space (X, d), then the completion $\bar{\mathcal{B}}(X)$ of the Borel σ -algebra with respect to μ is called the σ -algebra of μ -measurable sets.

Remark. For $\mu = \lambda_n$ on \mathbb{R}^n we talk about the σ -algebra of **Lebesgue measurable sets**. Instead of $\bar{\lambda_n}$ we still write λ_n and call it the **Lebesgue measure**. A function $f: \mathbb{R}^n \to \mathbb{C}$, measurable w.r.t. the σ -algebra of Lebesgue measurable sets is called the **Lebesgue measurable**.

The following result shows that any Lebesgue measurable function coincides with a Borel function a.e.

Proposition 11.9. Assume (X, \mathcal{B}, μ) is a measure space and consider its completion $(X, \overline{\mathcal{B}}, \overline{\mu})$. Assume $f: X \to \mathbb{C}$ is $\overline{\mathcal{B}}$ -measurable. Then there is a \mathcal{B} -measurable function $g: X \to \mathbb{C}$ s.t. $f = g \ \overline{\mu}$ -a.e.

12 Convergence Theorems and Their Applications (lecture 9, 8. Feb.)

- To interchange limits and integrals in **Riemann integrals** one typically has to assume uniform convergence. ¡- The set of Riemann integrable functions is somewhat limited, see theorem 12.7

Theorem 12.1 (Generalization of Beppo Levi, monotone convergence).

(i) Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$ be s.t. $u_1\leq u_2\leq ...$ with limit $u:=\sup_{n\in\mathbb{N}}u_n=\lim_{n\to\infty}u_n$. Then $u\in\mathcal{L}^1(\mu)$ iff

$$\sup_{n\in\mathbb{N}}\int u_n d\mu < +\infty,$$

in which case

$$\sup_{n\in\mathbb{N}}\int u_n d\mu = \int \sup_{n\in\mathbb{N}} u_n d\mu.$$

(ii) Same thing only with a decreasing sequence ...> $-\infty$ in which case

$$\inf_{n\in\mathbb{N}}\int u_n d\mu = \int \inf_{n\in\mathbb{N}} u_n d\mu.$$

Theorem 12.2 (<u>Lebesgue</u>; <u>dominated convergence</u>). Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$ s.t.

- (a) $|u_n|(x) \le w(x), w \in \mathcal{L}^1(\mu),$
- (b) $u(x) = \lim_{n \to \infty} u_n(x)$ exists in \mathbb{R} ,

then $u \in \mathcal{L}^1(\mu)$ and we have

- (i) $\lim_{n \to \infty} \int |u_n u| d\mu = 0;$
- (ii) $\lim_{n\to\infty} \int u_n d\mu = \int \lim_{n\to\infty} u_n d\mu = \int u d\mu$;

Application 1: Parameter-Dependent Integrals

- We are interested in questions of the sort, when is

$$U(t) := \int u(t,x)\mu(dx), \ t \in (a,b),$$

again a smooth function of t? The answer involves interchange of limits and integration. Also, it turns out to better understand Riemann integrability, we need the Lebesgue integral.

Theorem 12.3 (continuity lemma). Let $\emptyset \neq (a,b) \subset \mathbb{R}$ be a non-degenerate open interval and $u:(a,b)\times X\to \mathbb{R}$ satisfy

- (a) $x \mapsto u(t,x)$ is in $\mathcal{L}^1(\mu)$ for every fixed $t \in (a,b)$;
- (b) $t \mapsto u(t,x)$ is continuous for every fixed $x \in X$;
- (c) $|u(t,x)| \le w(x)$ for all $(t,x) \in (a,b) \times X$ and some $w \in \mathcal{L}^1(\mu)$.

Then the function $U:(a,b)\to\mathbb{R}$ given by

$$t \mapsto U(t) := \int u(t, x) \mu(dx) \tag{38}$$

is continuous.

Theorem 12.4 (differentiability lemma). Let $\emptyset \leq (a,b) \subset \mathbb{R}$ be a non-degenerate open interval and $u:(a,b)\times X\to \mathbb{R}$ satisfy

- (a) $x \mapsto u(t,x)$ is in $\mathcal{L}^1(\mu)$ for every fixed $t \in (a,b)$;
- (b) $t \mapsto u(t,x)$ is continuous for every fixed $x \in X$;
- (c) $|\partial_t u(t,x)| \leq w(x)$ for all $(t,x) \in (a,b) \times X$ and some $w \in \mathcal{L}^1(\mu)$.

Then the function

$$t \mapsto U(t) := \int u(t, x) \mu(dx) \tag{39}$$

is differentiable and its derivative is

$$\frac{d}{dt}U(t) = \frac{d}{dt}\int u(t,x)\mu(dx) = \int \frac{\partial}{\partial t}u(t,x)\mu(dx). \tag{40}$$

Application 2: Riemann vs Lebesgue Integration

Consider only $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$.

Definition 12.5 (The Riemann Integral). Consider on the finite interval $[a, b] \subset \mathbb{R}$ the partition

$$\Pi := \{ a = t_0 < t_1 < \dots < t_k < b \}, k = k(\Pi), \tag{41}$$

and introduce

$$S_{\Pi}[u] := \sum_{i=1}^{k(\Pi)} m_i(t_i - t_{i-1}), \qquad m_i := \inf_{x \in [t_{i-1}, t_i]} u(x), \tag{42}$$

$$S^{\Pi}[u] := \sum_{i=1}^{k(\Pi)} M_i(t_i - t_{i-1}), \qquad M_i := \sup_{x \in [t_{i-1}, t_i]} u(x). \tag{43}$$

(44)

A bounded function $u:[a,b]\to\mathbb{R}$ is said to be **Riemann integrable** if the values

$$\int u := \sup_{\Pi} S_{\Pi}[u] = \inf_{\Pi} S^{\Pi}[u] =: \bar{\int} u$$
(45)

coincide and are finite. Their common value is called the **Riemann integral** of u and denoted by $(R)\int\limits_a^b u(x)dx$ or $\int\limits_a^b u(x)dx$.

Theorem 12.6. Let $u:[a,b] \to \mathbb{R}$ be a measurable and Riemann integrable function. Then

$$u \in \mathcal{L}^1(\lambda) \ and \int_{[a,b]} u d\lambda = \int_a^b u(x) dx.$$
 (46)

Theorem 12.7. Let $u:[a,b] \to \mathbb{R}$ be a bounded function, it is Riemann integrable *iff* the points in (a,b) where u is discontinuous are a (subset of) Borel measurable null set.

Improper Riemann Integrals

- The Lebesgue integral extends the (proper) Riemann integral. However, there is a further extension of the Riemann integral which cannot be captured by Lebesgue's theory. u is Lebesgue integrable iff |u| ha finite Lebesgue integral. Fig. The Lebesgue integral does not respect sign-changes and cancellations. However, the following $improper\ Riemann\ integral\ does$:

$$(R)\int_{0}^{\infty} u(x)dx := \lim_{n \to \infty} (R)\int_{0}^{a} u(x)dx. \tag{47}$$

Corollary 12.8. Let $u:[0,\infty)\to\mathbb{R}$ be a measurable, Riemann integrable function for every interval $[0,N],\ N\in\mathbb{N}$. Then $u\in\mathcal{L}^1[0,\infty)$ iff

$$\lim_{N \to \infty} (R) \int_{0}^{N} |u(x)| dx < \infty. \tag{48}$$

In this case, $(R) \int_0^\infty u(x) dx = \int_{[0,\infty)} u d\lambda$

Example of a function which is *improperly Riemann integrable* but **not** *Lebesgue integrable*:

$$f(x) = \frac{\sin(x)}{x}. (49)$$

Proposition 12.9 (appearing as example 12.13 in Schilling). Let $f_{\alpha}(x) := x^{\alpha}, x > 0$ and $\alpha \in \mathbb{R}$. Then

- (i) $f_{\alpha} \in \mathcal{L}^1(0,1) \Leftrightarrow \alpha > -1$.
- (ii) $f_{\alpha} \in \mathcal{L}^1[1,\infty) \Leftrightarrow \alpha < -1$.

13 The Function Spaces \mathcal{L}^p (lecture 11, 15. Feb.)

Assume V is a vector space over $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$.

Definition 13.1. A seminorn on V is a map $p: V \to [0, +\infty)$ s.t.

- (1) $p(cx) = |c|p(x) \ \forall x \in V, \forall c \in \mathbb{K}.$
- (2) $p(x+y) \le p(x) + p(y) \ \forall x, y \in V$. triangle inequality.

A seminorm is called a norm if we also have

$$p(x) = 0 \iff x = 0.$$

A norm is commonly denoted ||x||, and a vectorspace equipped with a norm is called a **normed space**.

Definition 13.2. Assume (X, d) is a measure space. Fix $1 \le p \le \infty$. For every measurable function $f: X \to \mathbb{C}$ we define the following

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p} \in [0, +\infty].$$
 (50)

We can see that $||cf||_p = |c|||f||_p \ \forall c \in \mathbb{C}$.

Notice that by Theorem 11.2(i) we have that $||f||_p = 0 \Rightarrow f = 0$ a.e. Consider for example $\lim_{n\to\infty} ||f_n - f||_p = 0$, then we can find a subsequence s.t. $\lim_{k\to\infty} |f_{n(k)} - f| = 0$ a.e., i.e. $\lim_{k\to\infty} f_{n(k)} = f$ a.e.

Lemma 13.3.

$$||f+g||_p \le ||f||_p + ||g||_p. \tag{51}$$

Definition 13.4. We define

$$\mathcal{L}^p(X, d\mu) = \{ f : X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_p < \infty \}.$$

This is a vector space with seminorm $f \mapsto ||f||_p$. And in general this is not a normed space, since $||f||_p = 0 \iff f = 0$ a.e.

Generally, if p is a seminorm on a vectorspace V, then

$$V_0 = \{ x \in V \mid p(x) = 0 \}$$
 (52)

which is a subspace of V. Then we consider the quotient/factor space V/V_0 .

Definition 13.5. For $x, y \in V$, define

$$x \sim y \iff x - y \in V_0. \tag{53}$$

This is an equivalence relation on V. The representation class of V is defined by [x] or $x + V_0$.

Then V/V_0 is equals the set of equivalence classes. We can show that it is a normed space.

$$[x] + [y] = [x + y]$$
, $c[x] = [cx]$, $||[x]|| = p(x)$.

Applying this to $\mathcal{L}^p(X, d\mu)$ we get the normed space

$$L^p(X, d\mu) := \mathcal{L}^p(X, d\mu) / \mathcal{N} = \mathcal{L}^p(X, d\mu) /_{\sim}. \tag{54}$$

Where \mathcal{N} is the space of measurable functions f s.t. f=0 a.e. The equivalence relation \sim is defined by

$$u \sim v \iff \{u \neq v\} \in \mathcal{N}_{\mu} \iff \mu \{u \neq v\} = 0,$$

and so $L^p(X, d\mu)$ consists of all equivalence classes $[u]_p = \{v \in \mathcal{L}^p | u \sim v\}$. So for every $u \in L^p$ there is no $v \in L^p$ such that $\mu\{u \neq v\} \neq 0$.

We will further continue to denote the norm by $||\cdot||_p$, and we will normally **not** distinguish between $f \in \mathcal{L}^p(X, d\mu)$ and the vector in $L^p(X, d\mu)$ that f defines.

Definition 13.6. A normed space $(X, ||\cdot||)$ is called a Banach space if V is complete w.r.t the metric d(x, y) = ||x - y||.

Theorem 13.7. If (X, \mathcal{B}, μ) is a measure space, $1 \leq p \leq \infty$, then $L^p(X, d\mu)$ is a Banach space.

Definition 13.8. A measurable function $f: X \to \mathbb{C}$ is called **essentially bounded** if there is $c \geq 0$ s.t.

$$\mu(\{x : |f(x)| > c\}) = 0. \tag{55}$$

That is $|f| \leq c$ a.e. The smallest such c is called the essential supremum of f and is denoted by $||f||_{\infty}$.

Definition 13.9.

$$\mathcal{L}^{\infty}(X, d\mu) = \{ f : X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_{\infty} < \infty \}.$$

$$L^{\infty}(X, d\mu) = \mathcal{L}^{\infty}(X, d\mu)/\mathcal{N}.$$

Where by the previous definiton these spaces become the spaces of all essentially bounded functions.

Theorem 13.10. If (X, \mathcal{B}, μ) is a σ -finite measure space, then $L^{\infty}(X, d\mu)$ is a Banach space.

Convergence in \mathcal{L}^p and completeness

Lemma 13.11. For any sequence $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p(\mu), p\in[1,\infty)$, of positive functions $u_n\geq 0$ we have

$$\left| \left| \sum_{n=1}^{\infty} u_n \right| \right|_p \le \sum_{n=1}^{\infty} ||u_n||_p.$$

Theorem 13.12 (Riesz-Fischer). The spaces $\mathcal{L}^p(\mu), p \in [1, \infty)$, are complete, i.e. every Cauchy sequence $(u_n)_{n \in \mathbb{N}} \subset \mathcal{L}^p(\mu)$ converges to some limit $u \in \mathcal{L}^p(\mu)$

Corollary 13.13. Let $(u_n)_{n\in\mathbb{N}}\subset \mathcal{L}^p(\mu), p\in[1,\infty)$ with $\mathcal{L}^p-\lim_{n\to\infty}u_n=u$. Then there exists a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ s.t. $\lim_{k\to\infty}u_{n_k}(x)=u(x)$ holds for almost every $x\in X$.

Theorem 13.14. Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p(\mu), p\in[1,\infty)$, be a sequence of functions s.t. $|u_n|\leq w\ \forall n\in\mathbb{N}$ and some $w\in\mathcal{L}^p(\mu)$. If $u(x)=\lim_{n\to\infty}u_n(x)$ exists for (almost) every $x\in X$, then

$$u \in \mathcal{L}^p$$
 and $\lim_{n \to \infty} ||u - u_n||_p = 0.$

Theorem 13.15 (F. Riesz convergence theorem). Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p(\mu), p\in[1,\infty)$, be a sequence s.t. $\lim_{n\to\infty}u_n(x)=u(x)$ for almost every $x\in X$ and some $u\in\mathcal{L}^p(\mu)$. Then

$$\lim_{n\to\infty}||u_n-u||_p=0\Longleftrightarrow\lim_{n\to\infty}||u_n||_p=||u||_p.$$

14 Product measures

Assume $(X_1, \mathcal{B}_1, \mu_1)$ and $(X_2, \mathcal{B}_2, \mu_2)$ are measure spaces. Consider $X_1 \times X_2$. Consider the σ -algebra $\mathcal{B}_1 \times \mathcal{B}_2$ (sometimes denoted by $\mathcal{B}_1 \otimes \mathcal{B}_2$) of subsets of $X_1 \times X_2$, generated by all the sets of form $A_1 \times A_2$, with $A_1 \in \mathcal{B}_1$ and $A_2 \in \mathcal{B}_2$. We want to define a measure $\mu = \mu_1 \times \mu_2$ such that $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$.

Theorem 14.1. Assume $(X_1, \mathcal{B}_1, \mu_1)$ and $(X_2, \mathcal{B}_2, \mu_2)$ are σ -finite measure spaces, $f: X_1 \times X_2 \to [0, +\infty]$ is $(\mathcal{B}_1 \otimes \mathcal{B}_2)$ -measurable. Then the following functions are measurable,

1.
$$(X_1, \mathcal{B}_1) \to [0, +\infty], x_1 \mapsto f(x_1, x_2) \ \forall x_2 \in X_2,$$

2.
$$(X_2, \mathcal{B}_2) \to [0, +\infty], \ x_2 \mapsto f(x_1, x_2) \ \forall x_1 \in X_1,$$

3.
$$(X_1, \mathcal{B}_1) \to [0, +\infty], \ x_1 \mapsto \int_{X_2} f(x_1, x_2) d\mu(x_2),$$

4.
$$(X_2, \mathcal{B}_2) \to [0, +\infty], \ x_2 \mapsto \int_{X_1} f(x_1, x_2) d\mu(x_1),$$

and we have

$$\int_{X_1} \left(\int_{X_2} f(x_1, x_2) d\mu_2(x_2) \right) d\mu_1(x_1) = \int_{X_2} \left(\int_{X_1} f(x_1, x_2) d\mu_1(x_1) \right) d\mu_2(x_2)$$

Theorem 14.2. Assume $(X_1, \mathcal{B}_1, \mu_1)$, $(X_2, \mathcal{B}_2, \mu_2)$ are σ -finite measure spaces. Then there is a unique measure $\mu = \mu_1 \times \mu_2$ in $(X_1 \times X_2, \mathcal{B}_1 \times \mathcal{B}_2)$ s.t.

$$\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2), \quad \text{for all } A_1 \in \mathcal{B}_1, \ A_2 \in \mathcal{B}_2.$$

Theorem 14.3. <u>Tonelli and Fubini's theorem</u> Assume $(X_1, \mathcal{B}_1, \mu_1)$, $(X_2, \mathcal{B}_2, \mu_2)$ are σ -finite measure spaces.

1. <u>Tonelli's theorem</u>: If $f: X_1 \times X_2 \to [0, +\infty]$ is $(\mathcal{B}_1 \times \mathcal{B}_2)$ -measurable, then

$$\int_{X_1 \times X_2} f(x_1, x_2) d(\mu_1 \times \mu_2)(x_1, x_2) = \int_{X_1} \left(\int_{X_2} f(x_1, x_2) d\mu_2(x_2) \right) d\mu_1(x_1)$$

$$= \int_{X_2} \left(\int_{X_1} f(x_1, x_2) d\mu_1(x_1) \right) d\mu_2(x_2)$$

2. <u>Fubini's theorem</u>: If $f: X_1 \times X_2 \to \mathbb{C}$ is $(\mathcal{B}_1 \times \mathcal{B}_2)$ -measurable and any of the integrals

$$\int_{X_1 \times X_2} |f(x_1, x_2)| d(\mu_1 \times \mu_2)(x_1, x_2),$$

$$\int_{X_1} \left(\int_{X_2} |f(x_1, x_2)| d\mu_2(x_2) \right) d\mu_1(x_1),$$

$$\int_{X_2} \left(\int_{X_1} |f(x_1, x_2)| d\mu_1(x_1) \right) d\mu_2(x_2).$$

are finite, then the two other are finite as well, f is integrable w.r.t. $\mu_1 \times \mu_2$ and

$$\begin{split} \int_{X_1 \times X_2} |f(x_1, x_2)| d(\mu_1 \times \mu_2)(x_1, x_2) &= \int_{X_1} \left(\int_{X_2} |f(x_1, x_2)| d\mu_2(x_2) \right) d\mu_1(x_1) \\ &= \int_{X_2} \left(\int_{X_1} |f(x_1, x_2)| d\mu_1(x_1) \right) d\mu_2(x_2) \end{split}$$

Remark.

- 1. σ -finiteness is important.
- 2. In the last equality in the Fubini's theorem it is important that f is integrable. Without it is possible that both of the iterative integrals are defined, but not equal!

Corollary 14.4. In the setting of the theorem, consider $A \in \mathcal{B}_1 \times \mathcal{B}_2$. Consider for $x_1 \in X_1$, the set

$$A_{x_1} = \{x_2 \in X_2 : (x_1, x_2) \in A\}, \text{ thus } A = \bigcup_{x_1 \in X_1} (\{x_1\} \times A_{x_1}).$$

Thus, for each $x_1 \in X_1$, we have $A_{x_1} \in \mathscr{B}_2$ and

$$(\mu_1 \times \mu_2)(A) = 0 \Leftrightarrow \mu_2(A_{x_1}) = 0$$
 for μ_1 -a.e. $x_1 \in X_1$

Lebesgue measures on \mathbb{R}^n

Theorem 14.5. Let $\Omega_1, \Omega_2 \subset \mathbb{R}^n$ be open sets,

 $F: \Omega_1 \to \Omega_2$ be a C^1 -diffeomorphism, (invertible, has cont. first derivative.)

Consider the restriction μ_1, μ_2 of λ_n to Ω_1, Ω_2 . Then F is Lebesgue measurable, $F_*\mu_1 << \mu_2$ and

$$\frac{d(F_*\mu_1)}{d\mu_2} = |\det J_{F^{-1}}| \circ F^{-1},$$

where $(J_F)_{ij} = \partial F_i/\partial x_j$ is the Jacobi matrix of F.

15 Integrals with respect to image measures

Definition 15.1. For functions $f, g : \mathbb{R}^n \to \mathbb{C}$, the <u>convolution</u> is defined as

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy = \int_{\mathbb{R}^n} f(x - y)g(y)dy.$$

A good question is when this is well-defined.

Lemma 15.2. If $f, g \in L^1(\mathbb{R}^n)$, then the function $y \mapsto f(y)g(x-y)$ is integrable for a.e. $x \in \mathbb{R}^n$, $f * g \in L^1(\mathbb{R}^n)$, and

$$||f * g||_1 \le ||f||_1 ||g||_1.$$

Lemma 15.3. Assume $\phi:(a,b)\to [0,+\infty)$ is a convex function. Then ϕ is continuous and

$$\phi(x) = \sup\{l(x) : \phi \ge l, \ l(t) = \alpha t + \beta\}, \quad \forall x \in (a, b).$$

Theorem 15.4. (Jensen's inequality) Assume (X, \mathcal{B}, μ) is a probability space $(\mu(X) = 1), \ \phi : \overline{[0, +\infty)} \rightarrow [0, +\infty)$ is convex. Then for every integrable $f: X \rightarrow [0, +\infty]$, we have

$$\phi\left(\int_X f d\mu\right) \le \int_X \phi \circ f d\mu.$$

If in addition $\lim_{x\to\infty} \phi(x) = +\infty$, then for every measurable function $f: X \to [0, +\infty]$ we have

$$\phi\left(\int f d\mu\right) \le \int_X \phi \circ f d\mu,$$

where we put $\phi(+\infty) = +\infty$.

Lemma 15.5. Assume $f \in L^1(\mathbb{R}^n)$, $g \in L^p(\mathbb{R}^n)$ $(1 \leq p \leq \infty)$. Then the function $y \mapsto f(y)g(x-y)$ is integrable for a.e. $x, f * g \in L^p(\mathbb{R}^n)$ and

$$||f * g||_p \le ||f||_1 ||g||_p.$$

Note that

$$\int_{\mathbb{R}^n} f(y)g(x-y)dy = \int_{\mathbb{R}^n} f(x-y)g(y)dy,$$

so f * g = g * f.

Remark. More generally, for $\mu \in M(\mathbb{R}^n)$ (M(X) is the space of complex Borel measures on X) and $g \in L^p(\mathbb{R}^n)$, we can define $\mu * g = g * \mu \in L^p(\mathbb{R}^n)$ by

$$(\mu * g)(x) = \int_{\mathbb{R}^n} g(x - y) d\mu(y).$$

Then $||\mu * g||_p \le |\mu|(\mathbb{R}^n)||g||_p$.

One might ask what convolutions are good for? The following example sheds some light on it,

Example 15.6. Consider

$$f = \frac{1}{\lambda_n(B_r(0))} \mathbb{1}_{B_r(0)}.$$

Then

$$(f * g)(x) = \frac{1}{\lambda_n(B_r(0))} \int_{B_r(0)} g(x - y) dy = \frac{1}{\lambda_n(B_r(x))} \int_{B_r(x)} g(y) dy.$$

Where we note that $\lambda_n(B_r(0)) = \lambda_n(B_r(x))$.

For a multi-index variable $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{Z}_+^n$, write ∂^α for $\partial^{\alpha_1+\ldots\alpha^n}/\partial x_1^{\alpha_1}\ldots\partial x_n^{\alpha_n}$. Denote by $L^1_{loc}(\mathbb{R}^n)$ the space of Lebesgue measurable functions that are integrable on every ball. We identify functions that coincide a.e. (so, more pedantically, $L^1_{loc}(\mathbb{R}^n)$ is a space of equivalence classes of functions). We have $L^p(\mathbb{R}^n)\subset L^1_{loc}(\mathbb{R}^n)$ for all $1\leq p\leq\infty$.

Lemma 15.7. If $\phi \in C_c^{\infty}(\mathbb{R}^n)$ and $f \in L^1_{loc}(\mathbb{R}^n)$, then $\phi * f \in C^{\infty}(\mathbb{R}^n)$ and

$$\partial^{\alpha}(\phi * f) = (\partial^{\alpha}\phi) * f.$$

By choosing suitable ϕ we can make $(\phi * f)$ close to f, as we will see shortly.

Definition 15.8. A positive mollifier is a function $\phi \in C_c(\mathbb{R}^n)$ s.t. $\phi \geq 0$ and

$$\int_{\mathbb{R}^n} \phi(x) dx = 1.$$

For a function ϕ on \mathbb{R}^n and $\epsilon > 0$, define

$$\phi^{\epsilon}(x) = \epsilon^{-n}\phi(\frac{x}{\epsilon}).$$

Also note that if $\phi \in L^1(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} \phi dx = 1$, then $\int_{\mathbb{R}^n} \phi^{\epsilon} dx = 1$.

Example 15.9. Consider the function h on \mathbb{R} defined by

$$h(t) = \begin{cases} e^{-\frac{1}{1-t^2}} &, |t| < 1, \\ 0 & t \ge 1. \end{cases}$$

Then $h \in C_c^{\infty}(\mathbb{R}^n)$. Hence $\phi(x) = c_n h(|x|)$ is a mollifier, where $c_n = \left(\int_{\mathbb{R}^n} h(|x|) dx\right)^{-1}$.

Proposition 15.10. Let $\phi \in L^1(\mathbb{R}^n)$ be s.t. $\phi \geq 0$ and $\int_{\mathbb{R}^n} \phi dx = 1$. Then we have:

1. if $f \in C_0(\mathbb{R}^n)$, then $\phi^{\epsilon} * f \in C_0(\mathbb{R}^n)$ and

$$\lim_{\epsilon \to 0^+} ||\phi^{\epsilon} * f - f|| = 0 \quad (uniform \ norm),$$

2. if $f \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$, then

$$\lim_{\epsilon \to 0^+} ||\phi^{\epsilon} * f - f||_p = 0.$$

Corollary 15.11. For any Radon measure μ on \mathbb{R}^n , $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n, d\mu)$ for $1 \leq p < \infty$.

17 Dense subspaces of L^p

Theorem 17.1. Assume (X,d) is a metric space, μ is a Borel measure on X s.t. $\mu(B_R(x)) < \infty$, $\forall x \in X$ and $\forall R > 0$, $1 \le p \le \infty$. Then the bounded continuous functions on X with bounded support form a dense subspace of $L^p(X,d\mu)$. (Where by bounded support we mean that f is zero outside $B_R(x)$ for some x and R > 0.)

If X is locally compact, then by $C_c(X)$ we denote the space of continuous functions on X with compact support.

Theorem 17.2. Assume (X,d) is a separable, so it has a dense subset, locally compact metric space, μ is a Borel measure on X s.t. $\mu(K) < \infty$ for every compact $K \subset X$, $1 \le p < \infty$. Then $C_c(X)$ is dense in $L^p(X,d\mu)$.

Remark. Theorem 17.8 in the book is wrong.

Remark. These results do not extent to $p = \infty$.

For $X = \mathbb{R}^n$, either theorem implies that if μ is a Borel measure on \mathbb{R}^n , s.t. $\mu(B_R(x)) < \infty$, $\forall x, \forall R > 0$, then $C_c(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n, d\mu)$, $1 \le p < \infty$. Later we will prove that $C_c^{\infty}(\mathbb{R}^n)$ is still dense in $L^p(\mathbb{R}^n, d\mu)$. For $\mu = \lambda_n$ we write $L^p(\mathbb{R}^n)$ instead of $L^p(\mathbb{R}^n, d\lambda_n)$.

Modes of convergence

Theorem 17.3. (Egorov)

Assume $(X, \mathcal{B}, \overline{\mu})$ is a measure space, $\mu(X) < \infty$. Assume $f_n, f: X \to \mathbb{C}$ are measurable functions and $f_n \to f$ a.e. Then $\forall \epsilon > 0$ there is $X_{\epsilon} \in \mathcal{B}$ s.t. $\mu(X_{\epsilon}) < \epsilon$ and $f_n \to f$ uniformly on $X \setminus X_{\epsilon}$.

- 1. For measurable functions f_n, f , we write $f_n \to f$ in the p th mean, excluding $p = \infty$, if $\lim_{n \to \infty} ||f_n f||_p = 0$.
- 2. For p=1 we sat that $f_n\to f$ in <u>mean</u> and for p=2 we say that $f_n\to f$ in quadratic mean.
- 3. We say that $f_n \to f$ in <u>measure</u> if $\lim_{n \to \infty} \mu(\{x : |f_n(x) f(x)| \ge \epsilon\}) = 0$, $\forall \epsilon > 0$.

Theorem 17.4. Assume (X, \mathcal{B}, μ) is a measure space, $1 \leq p < \infty$, $f_n, f \to \mathbb{C}$ are measurable functions. Then

- 1. if $f_n \to f$ in the p-th mean, then $f_n \to f$ in measure
- 2. if $f_n \to f$ in measure, then there is a subsequence $(f_n)_{n=1}^{\infty}$ s.t. $f_{n_k} \to f$ a.e.
- 3. if $f_n \to f$ a.e. and $\mu(X) < \infty$, then $f_n \to f$ in measure.

In particular, if $f_n \to f$ in the p-th mean, then $f_{n_k} \to f$ a.e. for a subsequence $(f_{n_k})_k$.

19 Fourier transform

Write $L^1(\mathbb{R}^n)$ for $L^1(\mathbb{R}^n, d\lambda_n)$. We also write

$$\int_{\mathbb{R}^n} f(x)dx \quad \text{for} \quad \int_{\mathbb{R}^n} f(x)d\lambda_n(x).$$

The Fourier transform of $f \in L^1(\mathbb{R}^n)$ is the function $\hat{f} : \mathbb{R}^n \to \mathbb{C}$ defined by

$$\hat{f}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} f(y)e^{-i\langle x,y\rangle} dy$$
, where $\langle x,y\rangle = x_1y_1 + \ldots + x_ny_n$.

More generally, if μ is a complex measure on \mathbb{R}^n , then its Fourier transform is the function $\hat{\mu}: \mathbb{R}^n \to \mathbb{C}$ defined by

$$\hat{\mu}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i\langle x, y \rangle} d\mu(y).$$

If $f \in L^1(\mathbb{R}^n)$ and μ_f is defined by $d\mu_f = f d\lambda_n$ then $\hat{\mu}_f = \hat{f}$.

Remark. (and warning)

There are many conventions:

- 1. Instead of the normalisation $1/(2\pi)^n$, one has 1, $1/(2\pi)^{n/2}$.
- 2. Instead of $e^{-i\langle x,y\rangle}$, one has $e^{i\langle x,y\rangle}$, $e^{\pm i2\pi\langle x,y\rangle}$.

Lemma 19.1. If μ is a complex Borel measure (and hence finite) on \mathbb{R}^n , then $\hat{\mu}$ is a continuous function on \mathbb{R}^n and

$$|\hat{\mu}(x)| \le \frac{|\mu|(\mathbb{R}^n)}{(2\pi)^n}.$$

(In particular, if $f \in L^1(\mathbb{R}^n)$, then \hat{f} is continuous and $|\hat{f}(x)| \leq ||f||_1/(2\pi)^n$)

Lemma 19.2.

1. If $f_t(x) = f(x - t)$, then

$$\hat{f}_t(x) = e^{-i\langle t, x \rangle} \hat{f}(x).$$

- 2. Uf $l_t(x) = e^{i\langle t, x \rangle}$ $(x, t \in \mathbb{R}^n)$, then $\hat{l_t}f(x) = \hat{f}(x t)$.
- 3. If $T \in GL_n(\mathbb{R})$, then $\hat{f} \circ T = \frac{1}{|\det T|} \hat{f} \circ (T^T)^{-1}$.
- 4. $\hat{f}(x) = \bar{\hat{f}}(-x)$.

Example 19.3. (With omitted proof, good exercise tho). Let $f(x) = e^{-\frac{|x|^2}{2}}$, where $|x| = \langle x, x \rangle^{1/2}$. Then

$$\hat{f}(x) = \frac{1}{(2\pi)^{n/2}} e^{-\frac{|x|^2}{2}}$$

. More, generally, if $f(x) = e^{-\frac{C|x|^2}{2}}$ (C > 0), then

$$\hat{f}(x) = \frac{1}{(2\pi C)^{n/2}} e^{-\frac{|x|^2}{2C}}.$$

Proposition 19.4. If $f, g \in L^1(\mathbb{R}^n)$, then $\widehat{f * g} = (2\pi)^n \hat{f} \hat{g}$.

Lemma 19.5. (Rieemann-Lebesgue lemma)

If
$$f \in L^1(\mathbb{R}^n)$$
, then $\hat{f} \in C_0(\mathbb{R}^n)$.

Theorem 19.6. (Fourier inversion theorem)

Assume $f \in L^1(\mathbb{R}^n)$ is s.t. $\hat{f} \in L^1(\mathbb{R}^n)$. Then for a.e. $x \in \mathbb{R}^n$, we have

$$f(x) = \int_{\mathbb{R}^n} \hat{f}(y)e^{i\langle x,y\rangle}dy.$$

Equivalently,

$$\hat{f}(x) = \frac{1}{(2\pi)^n} f(-x), \quad \text{for a.e. } x.$$

Lemma 19.7. For any $f, g \in L^1(\mathbb{R}^n)$, we have

$$\int_{\mathbb{R}^n} \hat{f}(x)g(x)dx = \int_{\mathbb{R}^n} f(x)\hat{g}(x)dx$$

Corollary 19.8. If $f \in L^1(\mathbb{R}^n)$ is s.t. $\hat{f} = 0$, then f = 0 a.e.

A linear map $U: H \to K$ between Hilbert spaces is called an isometry if $||Ux|| = ||x|| \ \forall x \in H$. By the polarisation identity, this is equivalent to

$$\langle Ux, Uy \rangle = \langle x, y \rangle, \quad \forall x, y, \in H.$$

If U is in addition surjective, then U is called a unitary operator.

Theorem 19.9. (Plancherel)

There is a unique unitary operation $U: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ s.t.

$$Uf = (2\pi)^{\frac{n}{2}} \hat{f}, \quad for \ f \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n).$$

Definition 19.10. We define the Fourier transform of $f \in L^2(\mathbb{R}^n)$ by

$$\hat{f} = (2\pi)^{-\frac{n}{2}} U f.$$

If $f \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$, then

$$\hat{f}(X) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} f(y) e^{-i\langle x, y \rangle} dy.$$

Schwartz space

Proposition 19.11. Assume $f \in L^1(\mathbb{R}^n)$ and $x_j f \in L^1(\mathbb{R}^n)$ for some $1 \leq j \leq n$. Then

$$\partial_j \hat{f} = -i\widehat{x_j f}, \qquad \left(\partial_j = \frac{\partial}{\partial x_j}\right).$$

(Here by $x_j f$ we mean the function $x_j \mapsto x_j f(x)$.)

Proposition 19.12. Assume $f \in C(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$ is such that $\partial_j f \in L^1(\mathbb{R}^n)$. Then

$$\widehat{\partial_j f} = ix_j \hat{f}.$$

Corollary 19.13. If $f, \partial_i f \in L^1(\mathbb{R}^n)$, then

$$\lim_{x \to \infty} x_j \hat{f}(x) = 0.$$

Corollary 19.14.

- 1. If $x^{\alpha}f \in L^{1}(\mathbb{R}^{n})$ for all $|\alpha| \leq N$, then $\hat{f} \in C^{N}(\mathbb{R}^{n})$ and $\partial^{\alpha}\hat{f} = (-i)^{|\alpha|}\widehat{x^{\alpha}f}$.
- 2. If $f \in C^N(\mathbb{R}^n)$ and $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$ for all $|\alpha| \leq N$, then $\widehat{\partial^{\alpha} f} = i^{|\alpha|} x^{\alpha} \widehat{f}$ and hence $(1+|x|)^N \widehat{f}(x) \xrightarrow[x \to \infty]{} 0$.

(Here
$$\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n_+$$
, $|\alpha| = \alpha_1 + \dots + \alpha_n$, $x_1^{\alpha} = x^{\alpha_1} \dots x_n^{\alpha_n}$.)

Definition 19.15. A function f on \mathbb{R}^n is called a <u>Schwartz function</u> if $f \in C^{\infty}(\mathbb{R}^n)$ and $x^{\alpha}\partial^{\beta}f$ is bounded for all multi-indices α, β . The space $S(\mathbb{R}^n)$ of Schwartz functions is called a Schwartz space.

Note that for every $f \in C^{\infty}(\mathbb{R}^n)$ the following conditions are equivalent:

- 1. $x^{\alpha} \partial^{\beta} f$ is bounded for all α, β ,
- 2. $x^{\alpha}(\partial^{\beta} f)(x) \xrightarrow[x \to \infty]{} 0$ for all α, β ,
- 3. $(1+|x|)^N \partial^{\beta} f$ is bounded for all $N \geq 1$ and all β .

Example 19.16. $C_c^{\infty}(\mathbb{R}^n) \subset S(\mathbb{R}^n)$, $e^{-a|x|^2} \in S(\mathbb{R}^n)$ for all a > 0. If $f \in S(\mathbb{R}^n)$, then $x^{\alpha}\partial^{\beta}f \in S(\mathbb{R}^n)$. The product of two Schwartz functions is a Schwartz function.

Clearly, $S(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$ for all $1 \leq p \leq \infty$. From the Corollary above we conclude that if $f \in S(\mathbb{R}^n)$, then $\hat{f} \in S(\mathbb{R}^n)$. By the Fourier inversion theorem we then get

Theorem 19.17. The Fourier transform maps $S(\mathbb{R}^n)$ into $S(\mathbb{R}^n)$.

Remark. This gives another proof to the fact that the image of the Fourier transform $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is dense, which is needed to prove Plancherel's theorem

Remark. If $f \in \mathbb{C}_c^{\infty}(\mathbb{R}^n)$, $f \neq 0$, then $\hat{f} \in S(\mathbb{R}^n)$, but \hat{f} is <u>never</u> compactly supported, since it extends to an analytic function on \mathbb{C}^n

$$\hat{f}(z) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} f(y) e^{-i\langle x,y\rangle} dy.$$

20 Radon-Nikodym theorem

Assume (X, \mathcal{B}, μ) is a measure space. Are there other measures on (X, \mathcal{B}) ?

Example 20.1. Take a measurable function $f: X \to [0, +\infty]$ and define

$$\nu(A) = \int_A f d\mu \quad \text{ for } A \in \mathcal{B}.$$

This is a measure by the monotone convergence theorem. We write $d\nu = f d\mu$.

Proposition 20.2. Assume (X, \mathcal{B}) is a measurable space, μ and ν are σ -finite measures on (X, \mathcal{B}) . Then there exist $N \in \mathcal{B}$ and a measurable $f: X \to [0, +\infty)$ s.t. $\mu(N) = 0$ and

$$\nu(A) = \nu(A \cap N) + \int_A f d\mu \quad \forall A \in \mathcal{B}.$$

We can discard the term $\nu(A \cap N)$ as follows.

Definition 20.3. Given measures μ and ν on (X, \mathcal{B}) , we say that ν is absolutely continuous with respect to μ and write $\nu << \mu$, if $\nu(A) = 0$ whenever $A \in \mathcal{B}$ and $\overline{\mu(A)} = 0$.

One can justify the name with the following lemma

Lemma 20.4. Assume μ and ν are measures on (X, \mathcal{B}) , $\nu(X) < \infty$. Then $\nu << \mu$ if and only if $\forall \epsilon > 0$ there exists $\delta > 0$ s.t. if $A \in \mathcal{B}$ and $\mu(A) < \delta$, then $\nu(A) < \epsilon$.

Remark. The result is not true for infinite ν .

Theorem 20.5. (Radon-Nikodym) Assume μ and ν are σ -finite measures on a measurable space (X, \mathcal{B}) , $\nu << \mu$. Then there is a measurable function $f: X \to [0, +\infty)$ s.t. $d\nu = f d\mu$. If \tilde{f} is another function with the same properties, then $f = \tilde{f} \mu$ -a.e.

The function f is called the Radon-Nikodym derivative of ν with regard to μ and is denoted by $\frac{d\nu}{d\mu}$.

$$\nu(A) = \int_A \frac{d\nu}{d\mu} d\mu$$

Example 20.6. Consider a real-valued function $f \in C^1[a, b]$ s.t. f'(t) > 0 $\forall t \in [a, b]$, let c = f(a) and d = f(b). We know that for any Riemann integrabbe function g on [c, d] we have

$$\int_{c}^{d} g(t)dt = \int_{a}^{b} g(f(t))f'(t)dt.$$

Equivalently, for any Riemann integrable function g on [a, b], we have

$$\int_{c}^{d} g \circ f^{-1}dt = \int_{a}^{b} gf'dt.$$

Denote by $\lambda_{[a,b]}$, $\lambda_{[c,d]}$ the Lebesgue measure restricted to the Borel subsets of [a,b] and [c,d] respectively. Then the integral above implies that

$$d((f^{-1})_*\lambda_{[c,d]}) = f'd\lambda_{[a,b]},$$

since the integration of $\mathbbm{1}_{[\alpha,\beta]}$ gives the same result for any interval $[\alpha,\beta] \subset [a,b]$ and since a finite Borel measure on [a,b] is determined by its value on such intervals. Thus $(f^{-1})_*\lambda_{[c,d]} << \lambda_{[a,b]}$ and

$$\frac{d((f^{-1})_*\lambda_{[c,d]})}{d\lambda_{[a,b]}} = f'.$$

Decomposition theorems

Definition 20.7. Two measures ν and μ on a measurable space (X, \mathcal{B}) are called <u>mutually singular</u>, or we say that ν is <u>singular</u> with regard to μ , if there is $N \in \overline{\mathcal{B}}$ such that $\nu(N^c) = 0$, $\mu(N) = 0$. We then write $\nu \perp \mu$.

Theorem 20.8. (Lebesgue decomposition theorem) Assume ν, μ are σ -finit measures on (X, \mathcal{B}) . Then there exists unique measures ν_a and ν_s s.t.

$$\nu = \nu_a + \nu_s, \quad \nu_a << \mu, \quad \nu_s \perp \mu$$

Theorem 20.9. (Polar decomposition of complex measures) Assume ν is a complex measure on (X, \mathcal{B}) . Then there exists a finite measure μ on (X, \mathcal{B}) and a measurable function $f: X \to \Pi$ such that $d\nu = f d\mu$. If $(\tilde{\mu}, \tilde{f})$ is another such pair, then $\tilde{\mu} = \mu$ and $\tilde{f} = f$ μ -a.e.

For signed measures we have the following decomposition

Theorem 20.10. (*Hahn decomposition theorem*) Assume ν is a finite signed measure on (X, \mathcal{B}) . Then there exists $P, N \in \mathcal{B}$ such that $X = P \cup N$, $P \cap N = \emptyset$, $\nu(A \cap P) \geq 0$, $\nu(A \cap N) \leq 0 \ \forall A \in \mathcal{B}$. Moreover, then $|\nu|(A) = \nu(A \cap P) - \nu(A \cap N)$, and if $X = \tilde{P} \cup \tilde{N}$ is another such decomposition, then

$$|\nu|(P\Delta \tilde{P}) = |\nu|(N\Delta \tilde{N}) = 0.$$

Corollary 20.11. (Jordan's decomposition theorem) Assume ν is a finite signed measure on (X, \mathcal{B}) . Then there exists unique finite measures ν_+, ν_- on (X, \mathcal{B}) such that

$$\nu = \nu_+ - \nu_-$$
 and $\nu_+ \perp \nu_-$.

Moreover, then $|\nu| = \nu_+ + \nu_-$, hence

$$u_{+} = \frac{|\nu| + \nu}{2}, \quad \nu_{-} = \frac{|\nu| - \nu}{2}.$$

21 Duals of L^p-spaces

Assume (X, \mathcal{B}, μ) is a measure space, $1 \leq p < \infty$. What is the dual of $L^p(X, d\mu)$? When does a measurable function $g: X \to \mathbb{C}$ define a bounded linear functional on $L^p(X, d\mu)$ by

$$\phi(f) = \int_X fg d\mu?$$

Theorem 21.1. (Young's inequality) Assume $f:[0,a] \to [0,b]$ is a strictly increasing continuous functions, f(0) = 0, f(a) = b. Then for all $s \in [0,a]$ and $t \in [0,b]$ we have

$$st \le \int_0^s f(x)dx + \int_0^t f^{-1}dydy$$

and the equality holds if and only if t = f(s).

If we apply this to $f(s) = s^{p-1}$. Then $f^{-1}(t) = t^{q-1}$, where q is the Hölder conjugate of p. (p-1)(q-1) = 1, that is

$$\frac{1}{p} + \frac{1}{q} = 1.$$

We get

$$st \le \int_0^s x^{p-1} dx + \int_0^t y^{q-1} dy = \frac{s^p}{p} + \frac{t^q}{q}.$$

Theorem 21.2. (*Hölder's inequality*) If $f \in L^p(X, d\mu)$, $g \in L^q(X, d\mu)$, 1 and <math>1/p + 1/q = 1. Then

$$fg \in L^1(X, d\mu)$$
 and $||fg||_1 \le ||f||_p ||g||_q$.

It follows that every $g \in L^q(X, d\mu)$ defines a bounded linear functional

$$l_g: L^p(X, d\mu) \to \mathbb{C}, \quad l_g(f) = \int_X fg d\mu, \text{ and } ||l_g|| \le ||g||_q.$$

The same makes sense for $p=1, q=\infty$ and $p=\infty, q=1$, when μ is σ -finite as

$$\int_X |fg|d\mu \le \int_X |f|d\mu||g||_\infty = ||f||_1||g||_\infty.$$

Lemma 21.3. Assume $1 \le p \le \infty$, 1/p + 1/q = 1 and μ is σ -finite if p = 1 or $p = \infty$. For $g \in L^q(X, d\mu)$ consider $l_g \in L^p(X, d\mu)^*$. Then

$$||l_q|| = ||g||_q.$$

Therefore we can view $L^q(X,d\mu)$ as a subspace of $L^p(X,d\mu)^*$ using the isometric embedding

$$L^q(X, d\mu) \hookrightarrow L^p(X, d\mu), \quad g \mapsto l_q.$$

Theorem 21.4. Assume (X, \mathcal{B}, μ) is a σ -finite measure space, $1 \leq p < \infty$, 1/p + 1/q = 1. Then

$$L^p(X, d\mu)^* = L^q(X, d\mu).$$

Remark. This is usually not true for $p = \infty$.

Dual of C(X) spaces (lecture 4.april)

When μ is sigma finite we know that

$$L^p(X, d\mu)^* = L^q(X, d\mu)$$

when $1 \leq p < \infty$ and $p^{-1} + q^{-1} = 1$. However, what is the dual space of C(X)? Assume (X, d) is a locally compact metric space. Consider the space $C_c(X)$ of continuous functions with compact support on X. A linear functional

$$\phi: C_c(X) \to \mathbb{C}$$

is called positive if $\phi(f) \geq 0$ for $f \geq 0$.

Example 21.5. Assume μ is a Borel measure on X s.t. $\mu(K) < \infty$ for every compact $K \subset X$. Then

$$\phi(f) = \int_X f d\mu$$

defines a positive linear functional on $C_c(X)$.

Theorem 21.6. (Riesz-Markov) Assume (X,d) is a locally compact metric space and $\phi: C_c(X) \to \mathbb{C}$ is a positive linear functional. Then there is a Borel measure μ such that $\mu(K) < \infty$ for every compact $K \subset X$ and

$$\phi(f) = \int_{Y} f d\mu, \quad \forall f \in C_c(X).$$

Such a measure is unique if X is separable.

To prove this we need some other results

Lemma 21.7. (*Urysohn's lemma*) Assume (X,d) is a metric space, $A,B \subset X$ are disjoint closed subsets. Then there is a continuous function $f:X \to [0,1]$ s.t. $f|_A = 1$, $f|_B = 0$.

Lemma 21.8. Assume (X,d) is a compact metric space, assume we have a finite open cover $U = (U_i)_{i=1}^n$ of X. Then there exists continuous functions ρ_1, \ldots, ρ_n such that

$$supp(\rho_i) \subset U_i, \quad \rho_i \ge 0, \quad \sum_{i=1}^n \rho_i = 1.$$

Every such function is called a partition of unity <u>subordinate</u> to U.

Remark. Without separability of X we can assume that the uniqueness holds within the class of Borel measures μ s.t.

- 1. $\mu(K) < \infty$ for every compact K
- 2. μ is outer regular $\mu(A) = \inf_{A \subset U, U \text{ open } \mu(U)}$

3. μ is inner regular on open sets, $\mu(U) = \sup_{K \subset U, K \ compact} \mu(K)$

Such measures are called Radon measures.

As an application we will describe $C(X)^*$ for compact metric spaces X in terms of measures. Denote by M(X) the space of complex Borel measures on X. For every $\nu \in M(X)$ we want to make sense of

$$\int_X f d\nu \text{ for } f \in C(X).$$

It is enough to consider finite signed measures, as we can then define

$$\int_X f d\nu = \int_X f d(Re\nu) + i \int_X f d(Im\nu).$$

So assume that ν is a finite signed measure. Then $\nu=\mu_1-\mu_2$ for positive measures and we can define

$$\int_X f d\nu = \int_X f d\mu_1 - \int_X f d\mu_2.$$

This is well defined, since if

$$\nu = \mu_1 - \mu_2 = \omega_1 - \omega_2,$$

then $\mu_1 + \omega_2 = \mu_2 + \omega_1$ and

$$\int_X f d\mu_1 + \int_X f d\omega_2 = \int_X f d\mu_2 + \int_X f d\omega_1.$$

Thus, every $\nu \int M(X)$ defines a linear functional $\phi_{\nu}: C(X) \to \mathbb{C}$ by

$$\phi_{\nu}(f) = \int_{X} f d\nu$$

and the map $\nu \mapsto \phi_{\nu}$ is linear.

Lemma 21.9. If $\nu \in M(X)$ and $d\nu = gd|\nu|$ is its polar decomposition, then

$$\int_X f d\nu = \int_X f g d|\nu|, \ \forall f \in C(X).$$

Lemma 21.10. For every $\nu \in M(X)$, the linear functional ϕ_{ν} is bounded and

$$||\phi_{\nu}|| = |\nu|(X).$$

Recall that the norm on C(X) is

$$||f|| = \sup_{x \in X} |f(x)|.$$

Now consider (X, d) to be a compact metric space. Denote M(X) to be the set of complex Borel measures on X.

$$M(X) \to C(X)^*, \ \nu \mapsto \phi_{\nu}, \ \phi_{\nu}(f) = \int_X f d\nu, \ ||\phi_{\nu}|| = |\nu|(X).$$

Lemma 21.11.

- 1. If $\phi: C(X) \to \mathbb{C}$ is positive, then it is bounded and $||\phi|| = \phi(1)$.
- 2. The positive linear functional on C(X) span $C(X)^*$.

Theorem 21.12. Assume (X, d) is a compact metric space. Then the map

$$M(X) \to C(X)^*, \quad \nu \mapsto \phi_{\nu}, \quad \phi_{\nu}(f) = \int_X f d\mu,$$

is a linear isomorphism.

Remark.

- 1. As a byproduct we see that M(X) is a Banach space with norm $||\nu|| = |\nu|(X)$.
- 2. Assume (X, d) is a locally compact metric space

 $C_0(X) \equiv the \ space \ of \ all \ continuous \ functions \ vanishing \ at \ infinity$

$$= \{f: X \to \mathbb{C} : f \text{ is continuous}, f(x) \to 0, \text{ as } x \to 0\}.$$

Where " $f(x) \to 0$, as $x \to 0$ " means that $\forall \epsilon > 0 \exists$ compact $K \subset X$ s.t. $|f(K)| < \epsilon \ \forall x \in K^c$. This is a Banach space with norm $||f|| = \sup_{x \in X} |f(x)|$ and $C_c(X)$ is dense in $C_0(X)$. One can prove that if X is separable, then we again have a linear isomorphism $M(X) \xrightarrow{\sim} C_0(X)^*$, $\nu \mapsto \phi_{\nu}$, $\phi_{\nu}(f) = \int_X f d\nu$. For general X we simply have $M_{reg}(X) \xrightarrow{\sim} C_0(X)^*$, where $M_{reg}(X)$ is the space of regular complex Borel measures on X. Here regularity of ν means that $|\nu|$ is regular.

26 Hilbert spaces

Assume H is a vector space over \mathbb{C} .

Definition 26.1. A <u>pre-inner product</u> on H is a map $(\cdot, \cdot): H \times H \to \mathbb{C}$ which is

1. <u>sesquilinear</u>: that is, linear in the first variable, and antilinear in the $\overline{\text{second, for}} u, v, w, \in H, \quad \alpha, \beta \in \mathbb{C}$

$$(\alpha u + \beta v, w) = \alpha(u, w) + \beta(v, w)$$

$$(w, \alpha u + \beta v) = \bar{\alpha}(w, u) + \bar{\beta}(w, v)$$

- 2. Hermitian: $(u, v) = \overline{(v, u)}$
- 3. Positive semidefinite: $(u, u) \ge 0$ for $u \in H$.

It is called an inner product or a scalar product, if instead of (3) the map is

3. positive definite: (u, u) > 0 for $u \in H$, $u \neq 0$.

A similar definition makes sense for real vector spaces, but then $(\cdot,\cdot):H\times H\to\mathbb{R}$ is

- 1. bilinear
- 2. Symmetric: (u, v) = (v, u).
- 3. Positive semidefinite (for pre-inner products) or
- 3'. positive definite (for inner products)

We only consider complex vector spaces, but all the results will have analogues for real ones as well.

Theorem 26.2. (*Cauchy-Schwarz inequality*) If (\cdot, \cdot) is a pre-inner product, then

$$|(u,v)| \le (u,u)^{1/2} (v,v)^{1/2}$$

Corollary 26.3. We have a seminorm $||u|| \equiv (u, u)^{1/2}$. It is a norm if and only if (\cdot, \cdot) is an inner product.

Definition 26.4. A <u>Hilbert space</u> is a complex vector space H with an inner product (\cdot, \cdot) s.t. H is complete with respect to the norm $||u|| = (u, u)^{1/2}$. The norm of the Hilbert space is determined by the inner product, but the inner product can also be recovered from the norm by the polarisations identity

$$(u,v) = \frac{||u+v||^2 - ||u-v||^2}{4} + i \frac{||u+iv||^2 - ||u-iv||^2}{4},$$

which is proven by direct computation. A similar computation also proves the parallelogram law:

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2.$$

Remark. A norm in a vector space is given by an inner product if and only if it satisfies the parallelogram law, and then the scalar product is uniquely determined by the polarisation identity.

Remark. Assume (X, \mathcal{B}, μ) is a measure space. Then $L^2(X, d\mu)$ is a Hilbert space with inner product

 $(f,g) = \int_{Y} f\bar{g}d\mu.$

If $\mathscr{B} = \mathcal{P}(X)$ and μ is the counting measure, then we denote $L^2(X, d\mu)$ by $l^2(X)$. If $X = \mathbb{N}$ then we simply write l^2 , this is called sequence space. A more formal definition is

$$l^{2}(X) = \left\{ f: X \to \mathbb{C} : \sum_{x} |f(x)|^{2} < \infty \right\}$$

which is a Hilbert space with inner product $(f,g) = \sum_{x \in X} f(x)\bar{g}(x)$.

We recall that a subspace C of a vector space is called <u>convex</u> if $\forall u, v \in C$, $\forall t \in [0, 1]$ we have $tu + (1 - t)v \in C$. The following is one of the key properties of Hilbert spaces.

Theorem 26.5. Assume H is a Hilbert space, $C \subset H$ is a closed convex subset, $u \in H$. Then there is a unique $u_0 \in C$ s.t.

$$||u - u_0|| = d(u, C) = \inf_{v \in C} ||u - v||.$$

Orthogonal projections

For a Hilbert space H and a subset $A \subset H$, let

$$A^{\perp} = \{ x \in H : x \perp y \ \forall y \in A \},\,$$

where $x \perp y$ means that (x,y) = 0. A^{\perp} is a closed subset of H.

Proposition 26.6. Assume H_0 is a closed subspace of a Hilbert space H. Then every $u \in H$ uniquely decomposes as $u = u_0 + u_1$ with $u_0 \in H_0$ and $u_1 \in H_0^{\perp}$.

For a closed subspace $H_0 \subset H$, consider the map $P: H \to H_0$ s.t. $Pu \in H_0$ is a unique element satisfying $u - Pu \in H_0^{\perp}$. The operator $P: H \to H_0$ is linear. It is also <u>contractive</u>, meaning that $||Pu|| \leq ||u||$. It is called the <u>orthogonal projection</u> onto H_0 . If H_0 is finite dimensional with an orthonormal basis u_1, \ldots, u_n , then

$$Pu = \sum_{k=1}^{n} (u, u_k) u_k.$$

Orthogonal basis can be defined for arbitrary Hilbert spaces.

Definition 26.7. (Projection operators) A projection on a vector space V is a linear operator

$$P: V \to V$$
 such that $P^2 = P$.

If V = H is a Hilbert space, then we can use the notion of orthogonality, then a projection P on H is called orthogonal if it satisfies

$$(Px, y) = (x, Py)$$
 for all $x, y \in H$

.

Definition 26.8. An <u>orthogonal system</u> in H is a collection of vectors $u_i \in H$ $(i \in I)$ s.t.

$$(u_i, u_j) = \delta_{ij} \ \forall i, j \in I.$$

It is called an orthogonal basis if $span\{u_i\}_{i\in I}$ is dense in H.

Here $span\{u_i\}_{i\in I}$ denotes the linear span of $\{u_i\}_{i\in I}$, the space of finite linear combinations of the vectors u_i .

Theorem 26.9. Every Hilbert space H has an orthonormal basis. If H is separable, then there is a countable orthonormal basis.

Proposition 26.10. Assume $\{u_i\}_{i\in I}$ is an orthogonal system in the Hilbert space H. Take $u \in H$. Then

- 1. (Bessel's inequality) $\sum_{i \in I} |(u, u_i)|^2 \le ||u||^2$
- 2. $(\underline{Parseval's\ identity})\ if\ \{u_i\}_{i\in I}\ is\ an\ orthogonal\ basis\ then\ \sum_{i\in I}|(u,u_i)|^2=|u|^2.$

If $(u_i)_{i\in I}$ is an orthogonal basis, then the numbers (u,u_i) $(i\in I)$ are called the <u>Fourier coefficients</u> of u with respect to $(u_i)_{i\in I}$. The Parseval identity suggests that u is determined by its Fourier coefficients. This is true, and even more we have

Proposition 26.11. Assume $(u_i)_{i\in I}$ is an orthogonal basis in a Hilbert space H. Then for every vector $(c_i)_{i\in I} \in l^2(I)$ there is a unique vector $u \in H$ with Fourier coefficients c_i . We write

$$u = \sum_{i \in I} c_i u_i.$$

Corollary 26.12. We have a linear isomorphism $U: l^2(I) \tilde{\to} H$, $U((c_i)_{i \in I}) = \sum_{i \in I} c_i u_i$. By Parseval's identity this isomorphism is isometric, that is $||Ux|| = ||x|| \ \forall x \in l^2(I)$. By the polarisation identity this is equivalent to

$$(Ux, Uy) = (x, y), \ \forall x, y \in l^2(I).$$

Hence U is unitary.

Corollary 26.13. Up to a unitary isomorphism, there is only one infinite dimensional separable Hilbert space, namely, l^2 .

Given two orthogonal bases $(u_i)_{i\in I}$ and $(v_j)_{j\in J}$ in a Hilbert space H, we can decompose $u_i = \sum_{j\in J} (u_i, v_j) v_j$ and using that the sets $\{j: (u_i, v_j) \neq 0\}$ are countable proves the following.

Remark. Any two orthonormal bases in a Hilbert space have the same cardinality.

Dual spaces

Lemma 26.14. Assume V is a normed space over $K = \mathbb{R}$ or $K = \mathbb{C}$. Consider a linear functional $f: V \to K$. TFAE:

- 1. f is continuous
- 2. f is continuous at 0
- 3. there is $c \geq 0$ s.t. $|f(x)| \leq c||x|| \ \forall x \in V$.

If (1) - (3) are satisfies, then f is called a <u>bounded linear functional</u>. The smallest such $c \ge 0$ in (3) is called the <u>norm</u> of f and is denoted by ||f||. We have

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \sup_{||x|| = 1} |f(x)| = \sup_{||x|| \leq 1} |f(x)|.$$

Proposition 26.15. For every normed vector space V over $K = \mathbb{R}$ or $K = \mathbb{C}$, the bounded linear functionals on V forms a Banach space V^* .

Theorem 26.16. (Riesz representation theorem) Assume H is a Hilbert space. Then every $f \in H^*$, where H^* is the dual-space of H, containing continuous, linear functionals, has the form

$$f(x) = (x, y)$$

for a uniquely determined $y \in H$. Moreover, we have ||f|| = ||y||.

For every Hilbert space H we can define the <u>conjugate Hilbert space</u> \overline{H} . Its elements are the symbols \overline{x} for $x \in H$. The linear structure and inner products are defined by

$$\bar{x} + \bar{y} = \overline{x+y}, \ c\bar{x} = \overline{\bar{c}x}, \ (\bar{x}, \bar{y}) = \overline{(x,y)} = (y,x).$$

Corollary 26.17. For every Hilbert space H, we have an isometric isomorphism $\overline{H} \tilde{\to} H^*$, $\bar{x} \mapsto (\cdot, x)$.

Appendix

H Regularity of measures (lecture 10, 12. Feb.)

We let (X, d) be a metric space and denote by \mathcal{O} the open, by \mathcal{C} the closed and $\mathscr{B}(X) = \sigma(\mathcal{O})$ the Borel set of X.

Definition H.1. A measure μ on $(X, d, \mathcal{B}(X))$ is called outer regular, if

$$\mu(B) = \inf \{ \mu(U) \mid B \subset U, U \text{ open} \}$$
 (56)

and inner regular, if $\mu(K) < \infty$ for all compact sets $K \subset X$ and

$$\mu(U) = \sup \{ \mu(K) \mid K \subset U, K \text{ compact} \}. \tag{57}$$

A measure which is both inner and outer regular is called **regular**. We write $\mathfrak{m}_r^+(X)$ for the family of regular measures on $(X, \mathcal{B}(X))$.

Remark. The space X is called σ -compact if there is a sequence of compact sets $K_n \uparrow X$. A typical example of such a space is a locally compact, separable metric space.

Theorem H.2. Let (X, d) be a metric space. Every finite measure μ on $(X, \mathcal{B}(X))$ is outer regular. If X is σ -compact, then μ is also inner regular, hence regular.

Theorem H.3. Let (X, d) be a metric space and μ be a measure on (X, B(X)) such that $\mu(K) < \infty$ for all compact sets $K \subset X$.

- 1 If X is σ -compact, then μ is inner regular.
- 2 If there exists a sequence $G_n \in \mathcal{O}$, $G_n \uparrow X$ such that $\mu(G_n) < \infty$, then μ is outer regular.

I Hahn-Banach theorem

Theorem I.1. (<u>Hahn-Banach theorem</u>) Assume V is a real vector space, $V_0 \subset V$ a subspace, $\phi: V \to \mathbb{R}$ a convex function and $f: V_0 \to \mathbb{R}$ a linear functional s.t. $f \leq \phi$ on V_0 . Then f can be extended to a linear functional F on V s.t. $F \leq \phi$.

Theorem I.2. (<u>Hahn-Banach theorem 2</u>) Assume V is a real or complex vector space, p is a seminorm on V, $V_0 \subset V$ a subspace and f is a linear functional on V_0 s.t. $|f(x)| \leq p(x) \ \forall x \in V_0$. Then f can be extended to a linear functional F on V s.t. $|F(x)| \leq p(x) \ \forall x \in V$.

Corollary I.3. Assume V is a normed vector space (real or complex), $V_0 \subset V$ a subspace and $F \in V_0^*$. Then there is $F \in V^*$ s.t. $F|_{V_0} = f$ and ||F|| = ||f||.

Corollary I.4. Assume V is a normed space and $x \in V, x \neq 0$. Then there is $F \in V^*$ s.t. ||F|| = 1 and F(x) = ||x||.

Such an F is called a supporting functional of x.

Definition I.5. A normed space V is called reflexive if $V^{**} = V$.

Remark. This is stronger than requiring $V \cong V^{**}$.

Example I.6. 1. Every f.d. normed vector space V is reflexive for dimensional reasons dim $V^{**} = \dim V^* = \dim V$.

2. Every Hilbert space H is reflexive. By Riesz' theorem every bounded linear functional f on \overline{H} has the form

$$f(\bar{x}) = (\bar{x}, \bar{y}) = (y, x) \quad y \in H,$$

which means that f = y in H^{**} . As we will later see, the spaces $L^p(X, d\mu)$, with μ σ -finite and $1 , are reflexive. The spaces <math>L^1(X, d\mu)$ and $L^{\infty}(X, d\mu)$ are usually not reflexive.

J Complex and signed measures

Assume (X, \mathcal{B}) is a measurable space.

Definition J.1. A complex measure on (X, \mathcal{B}) is a map $\nu : \mathcal{B} \to \mathbb{C}$ s.t. $\nu(\emptyset) = 0$ and $\nu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \nu(A_n)$ for any disjoint $A_n \in \mathcal{B}$ where the series is assumed to bee absolutely convergent. If ν takes values in \mathbb{R} , then ν is called a finitely signed measure.

Remark. More generally, a signed measure is allowed to take values in $\mathbb{R} \cup \{+\infty\}$ or $\mathbb{R} \cup \{-\infty\}$. Given a complex measure ν on (X, \mathcal{B}) , its <u>total variation</u> is the map

$$|\nu|: \mathscr{B} \to [0, +\infty]$$

defined by

$$|\nu|(A) = \sup \left\{ \sum_{n=1}^{N} |\nu(A_n)| : A = \bigcup_{n=1}^{N} A_n, A_n \in \mathcal{B}, A_n \cap A_m = \emptyset \text{ for } n \neq m \right\}$$

Proposition J.2. $|\nu|$ is a finite measure on (X, \mathcal{B}) .

Definition J.3. If (X, \mathcal{B}, μ) is a measure space, ν is a complex measure on (X, \mathcal{B}) , then we say that ν is <u>absolutely continuous</u> with regards to μ and write $\nu << \mu$, if $\nu(A) = 0$ whenever $A \in \mathcal{B}$ and $\mu(A) = 0$. Equivalently $|\nu| << \mu$.

Theorem J.4. Radon-Nikodym theorem for complex measures

Assume (X, \mathcal{B}, μ) is a measurable space, ν is a complex measure on (X, \mathcal{B}) , $\nu \ll \mu$. Then there is a unique $f \in L^1(X, d\mu)$ s.t. $d\nu = f d\mu$.

K Kolmogorov extension theorem

Assume X is a set and $(\mathscr{B}_n)_{n=1}^{\infty}$ is an increasing sequence of σ -algebras of subsets of X. Assume μ_n is a measure on (X, \mathscr{B}_n) and

$$\mu_{n+1}|_{\mathscr{B}_n} = \mu_n, \quad \forall n.$$

Can we define a measure μ on (X, \mathcal{B}) , where $\mathcal{B} = \sigma(\bigcup_{n=1}^{\infty} \mathcal{B}_n)$ s.t. $\mu|_{\mathcal{B}_n} = \mu_n$, $\forall n$? In general <u>no</u>. But we have the following:

Theorem K.1. In the above setting, assume in addition that $\mu_n(X) = 1 \ \forall n$ and there is a collection of subsets $\mathscr{C} \subset \mathscr{B}$ s.t.:

- 1. $\mu_n(A) = \sup\{\mu_n(C) : C \subset A, C \in \mathscr{C} \cap \mathscr{B}_n\} \ \forall A \in \mathscr{B}_n,$
- 2. if $(C_n)_{n=1}^{\infty}$ is a sequence in $\mathscr C$ and $\bigcap_{n=1}^{\infty} C_n = \emptyset$, then $\bigcap_{n=1}^{N} C_n = \emptyset$ for some N.

Then there is a unique measure μ on (X, \mathcal{B}) s.t. $\mu|_{\mathcal{B}_n} = \mu_n$.

Remark. If in addition $\mathscr C$ is closed under finite unions and countable intersections, then

$$\mu(A) = \sup \{ \mu(C) : C \subset A, C \in \mathscr{C} \} \quad \forall A \in \mathscr{B}.$$

Indeed, consider the collection $\tilde{\mathscr{B}}$ of sets $A \in \mathscr{B}$ s.t.

$$\mu(A) = \sup\{\mu(C) : C \subset A, C \in \mathscr{C}\},$$

$$\mu(A^c) = \sup\{\mu(C) : C \subset A^c, C \in \mathscr{C}\}.$$

Then $\tilde{\mathscr{B}}$ is a σ -algebra by the same argument as in the lecture on regularity of measures, and $A \subset \tilde{\mathscr{B}}$. Hence, $\tilde{\mathscr{B}} = \mathscr{B}$.

Assume now we have a collection $((X_i, \mathcal{B}_i))_{i \in I}$ of measurable spaces, (It can be infinite and uncountable). Consider $X = \prod_{i \in I} X_i$. Denote by $\prod_{i \in I} \mathcal{B}_i$ the σ -algebra generated by all sets of the form

$$\prod_{i \in I} A - i \times \prod_{j \in F^c} X_j,$$

where $F \subset I$ is finite, $A_i \subset \mathcal{B}_i$, $(i \in F)$.

Example K.2. Consider a sequence $((X_n, d_n))_{n=1}^{\infty}$ of separable metric spaces. We assume $d_n(x,y) \leq 1$, $\forall x,y$. Note that any metric can be replaced by definition $\tilde{d}(x,y) = d(x,y)/(1+d(x,y))$. Then $\prod_{n\in I} X_n$ is a metric space with metric

$$d(\underline{x}, \underline{y}) = \sum_{n=1}^{\infty} \frac{1}{2^n} d_n(x_n, y_n),$$

where $\underline{x} = (x_n)_{n=1}^{\infty} \in X$. Given a sequence $(\underline{x}(n))_{n=1}^{\infty}$ in X, we have $\underline{x}(n) \xrightarrow[n \to \infty]{n \to \infty} \underline{x}$ if and only if $x(n)_k \xrightarrow[n \to \infty]{n \to \infty} x_k$, $\forall k$. Consider the Borel σ -algebra $\mathscr{B}(X_n)$. Then $\prod_{n=1}^{\infty} \mathscr{B}(X_n) = \mathscr{B}(X)$.

To see this, for every n, choose open sets, $U_{nk} \subset X_n$ (k = 1, 2, ...) s.t. every open set in X_n is the union of some of U_{nk} 's. This is possible by separability. Take a dense countable subset of X_n and then all balls of rational radii with centers at points of this subset. Then every open subset of X is the union of sets of the form

$$U_{1,k_1} \times U_{2,k_2} \times \ldots \times U_{n,k_n} \times \prod_{m=n+1}^{\infty} X_m.$$

Therefore, such sets generate the σ -algebra $\mathscr{B}(X)$, and as $U_{n,k}$ $(n \in \mathbb{N})$ generate $\mathscr{B}(X_n)$, we conclude that $\bigcap_{n=1}^{\infty} \mathscr{B}(X_n) = \mathscr{B}(X)$.

Remark. In relation to this example, we will need the following:

Theorem K.3. (Tychonoff)

Assume $((X_n, \overline{d_n}))_{n=1}^{\infty}$ is a sequence of compact metric spaces. Then $\prod_{n=1}^{\infty} X_n$ (with metrics as in the example) is compact.

Theorem K.4. (Kolmogorov extension theorem)

Assume $(X_i)_{i\in I}$ is a collection of metric spaces. Consider $X=\prod_{i\in I}X_i$, $\mathscr{B}=\prod_{i\in I}\mathscr{B}(X_i)$. Assume for every finite $F\subset I$ we are given a regular Borel probability measure μ_F on X_F s.t.

$$(\pi_{G,F})_*\mu_G = \mu_F$$

for all finite $F \subset G \subset I$. Then there is a unique probability measure μ on (X, \mathcal{B}) s.t.

$$(\pi_{I,F})_*\mu = \mu_F$$

for all finite $F \subset I$.

Remark. If in addition the spaces X_i are separable, then we can also conclude that for every $A \in \mathcal{B} = \prod_{i \in I} \mathcal{B}(X_i)$ we have

$$\mu(A) = \sup \mu(C),$$

where the supremum is taken over the sets $C \subset A$ of the form

$$C = K \times \prod_{i \in I \setminus J} X_i,$$

where $J \subset I$ is countable and $K \subset X_J$ is compact.

L Random variables and stochastic processes

Assume $(X, \mathcal{B}, \mathbb{P})$ is a probability measure space. Assume (Y, \mathcal{C}) is a measurable space.

A measurable map $f:X\to Y$ is called a <u>random variable</u>. For $A\in\mathscr{C},$ define

$$\mathbb{P}(f \in A) \stackrel{\text{def}}{=} \mathbb{P}(f^{-1}(A)) = (f_* \mathbb{P}) (A),$$

as the probability that f takes values in A. The measure $f_*\mathbb{P}$ is called the probability distribution of f.

Definition L.1. A stochastic process is a collection of random variables $(f_t : X \to Y)_{t \in T}$, T stands for "time". Typically, $T = \mathbb{N}, \mathbb{Z}, \mathbb{R}_+$ or \mathbb{R} .

Given different $t_1, \ldots, t_n \in T$, we can consider the <u>disjoint distribution</u> of f_{t_1}, \ldots, f_{t_n} as the measures

$$\mu_{t_1,\dots,t_n} = (f_{t_1} \times \dots \times f_{t_n})_* \mathbb{P}, \quad \text{ on } (Y^n, \mathscr{C}^n).$$

Thus.

$$\mu_{t_1,\dots,t_n}(A_1 \times \dots \times A_n) = \mathbb{P}(f_{t_1} \in A_1,\dots,f_{t_n} \in A_n) \stackrel{\text{def}}{=} \mathbb{P}\left(\bigcap_{k=1}^n f_{t_k}^{-1}(A_k)\right).$$

Theorem L.2. Assume T is a set, and for all different $t_1, \ldots t_n$ we are given a Borel probability measure μ_{t_1, \ldots, t_n} on \mathbb{R}^n s.t.

1. if $\delta \in S_n$ (S_n is the permutation group) and $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$, then

$$\mu_{t_1,\ldots,t_n}(A_1\times\ldots\times A_n)=\mu_{t_{\delta(1)},\ldots,t_{\delta(n)}}(A_{\delta(1)}\times\ldots\times A_{\delta(n)})$$

2. Additionally,

$$\mu_{t_1,\dots,t_n,s_1,\dots,s_m}\left(A_1\times\dots\times A_n \underset{k=1}{\overset{m}{\times}} \mathbb{R}\right) = \mu_{t_1,\dots,t_n}(A_1\times\dots\times A_n)$$

for all different $t_1, \ldots, t_n, s_1, \ldots, s_m \in T$ and $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$.

Then there is a probability measure space $(X, \mathcal{B}, \mathbb{P})$ and a stochastic process $(f_t : X \to \mathbb{R})_{t \in T}$ s.t. μ_{t_1, \dots, t_n} is the joint distribution of $f_{t_1}, \dots f_{t_n}$ for all different $t_1, \dots, t_n \in T$.

Remark. Instead of \mathbb{R} we could have taken any complete separable metric space. Or we could have taken any metric space, but we would have to require that $\mu_{t_1,...,t_n}$ are regular measures.

Definition L.3. Random variables $f_1, \dots f_n : X \to Y$ are called independent if

$$\mathbb{P}(f_1 \in A_1, \dots, f_n \in A_n) = \mathbb{P}\left(\bigcap_{k=1}^n f_k^{-1}(A_k)\right) = \mathbb{P}(f_1 \in A_1) \dots \mathbb{P}(f_n \in A_n).$$

In other words, this means that if the joint distribution of $f_1, \ldots f_n$ is the product of distributions of $f_1, \ldots f_n$. For such measures the theorem gives the following results:

Assume we are given a Borel probability measure μ_t on \mathbb{R} or any other complete separable metric space for $t \in T$. Then there is a unique measure

$$\mathbb{P} = \prod_{t \in T} \mu_t$$
 s.t. $(\pi_{T,F})_* \mathbb{P} = \prod_{t \in T} \mu_t$ for all finite $F \subset T$.

Example L.4. Consider the process of tossing a coin. Write 0 for tail and 1 for head. We can model the process as follows:

$$X = \prod_{n=1}^{\infty} \{0, 1\}, \ \mathbb{P} = \prod_{n=1}^{\infty} \nu, \text{ where } \nu = \frac{1}{2} \delta_0 + \frac{1}{2} \delta_1.$$

With $\mathscr{B} = \prod_{n=1}^{\infty} \mathcal{P}(\{0,1\}).$

Then if we define $f_n: X \to \{0,1\}$, $f_n(\underline{x}) = x_n$, for $\underline{x} = (x_m)_{m=1}^{\infty}$. For a.e. $\underline{x} \in X$ we have

$$\frac{1}{n} \sum_{k=1}^{n} f_n(\underline{x}) \xrightarrow[n \to \infty]{} \frac{1}{2} \qquad \text{(Law of large numbers)}.$$

If Kolmogorov's theorem requires some regularity assumption, infinite products of probability spaces always exists:

Theorem L.5. Assume $((X_i, \mathcal{B}_i, \mu_i))_{i \in I}$ is a collection of probability measure spaces. Consider $X = \prod_{i \in I} X_i$, $\mathcal{B} = \prod_{i \in I} \mathcal{B}_i$. Then there is a unique measure μ on (X, \mathcal{B}) s.t. $(\pi_{I,F})_*\mu = \prod_{i \in F} \mu_i$ for all finite $F \in I$.

In other words,

$$\mu\left(\prod_{i\in F} A_i \times \prod_{j\in J\setminus F} X_j\right) = \prod_{i\in F} \mu_i(A_i).$$

Remark. One nice property worth minding used in the proof of this theorem is that when proving σ -additivity for $B = \bigcap_{n=1}^{\infty} B_n$, $B_n \cap B_m = \emptyset$ for $n \neq m$.

$$\mu(B) = \sum_{n=1}^{\infty} \mu(B_n) \Leftrightarrow \mu(A_n) \xrightarrow[n \to \infty]{} 0, \quad A_n = B \setminus \left(\bigcup_{m=1}^{n-1} B_m\right), \quad A_n \downarrow \emptyset,$$

for a pre-measure on an algebra of sets. Hence, this gives us an alternative method of proving σ -additivity.