

Algorithms & Data Structures I

Lesson 3: Asymptotic Analysis

Marc Gaetano

Edition 2015-2016

Efficiency

- What does it mean for an algorithm to be efficient?
 - We primarily care about *time* (and sometimes space)
- Is the following a good definition?
 - "An algorithm is efficient if, when implemented, it runs quickly on real input instances"
 - Where and how well is it implemented?
 - What constitutes "real input"?
 - How does the algorithm scale as input size changes?

Gauging efficiency (performance)

- Well, why not just run the program and time it?
 - Too much variability, not reliable or portable:
 - Hardware: processor(s), memory, etc.
 - OS, Java version, libraries, drivers
 - Other programs running
 - Implementation dependent
 - Choice of input
 - Testing (inexhaustive) may miss worst-case input
 - Timing does not explain relative timing among inputs (what happens when n doubles in size)
- Often want to evaluate an algorithm, not an implementation
 - Even before creating the implementation

Comparing algorithms

When is one algorithm (not implementation) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is performance: for sufficiently large inputs, runs in less time (our focus) or less space

We will focus on large inputs because probably any algorithm is "plenty good" for small inputs (if *n* is 10, probably anything is fast)

Time difference really shows up as n grows

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

We usually care about worst-case running times

- Has proven reasonable in practice
 - Provides some guarantees
- Difficult to find a satisfactory alternative
 - What about average case?
 - Difficult to express full range of input
 - Could we use randomly-generated input?
 - May learn more about generator than algorithm

Example

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
    ???
}
```

Linear search

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
   for(int i=0; i < arr.length; ++i)
      if(arr[i] == k)
      return true;
   return false;
}</pre>
```

Best case? k is in arr[0] c1 steps = O(1)

Worst case?
k is not in arr
c2*(arr.length)
= O(arr.length)

Binary search

Find an integer in a sorted array

Can also be done non-recursively but "doesn't matter" here

Binary search

```
Best case: c1 steps = O(1)
Worst case: T(n) = c2 steps + T(n/2) where n is hi-lo
    O(log n) where n is array.length
```

Solve recurrence equation to know that...

Solving Recurrence Relations

Determine the recurrence relation. What is the base case?

$$T(n) = c2 + T(n/2)$$
 $T(1) = c1$

 "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

```
- T(n) = c2 + c2 + T(n/4)
= c2 + c2 + c2 + T(n/8)
= ...
= c2(k) + T(n/(2^k))
```

3. Find a closed-form expression by setting *the number of expansions* to a value (e.g. 1) which reduces the problem to a base case

```
- n/(2^k) = 1 means n = 2^k means k = \log_2 n
```

- So $T(n) = c2 \log_2 n + T(1)$
- So $T(n) = c2 \log_2 n + c1$ (get to base case and do it)
- So T(n) is $O(\log n)$

Ignoring constant factors

- So binary search is $O(\log n)$ and linear is O(n)
 - But which is faster?
- Could depend on constant factors
 - How many assignments, additions, etc. for each n
 - E.g. T(n) = 5,000,000n vs. $T(n) = 5n^2$
 - And could depend on overhead unrelated to n
 - E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n
- But there exists some n_0 such that for all $n > n_0$ binary search wins
- Let's play with a couple plots to get some intuition...

Example

- Let's try to "help" linear search
 - Run it on a computer 100x as fast (say 2014 model vs. 1994)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search

Big-Oh relates functions

We use O on a function f(n) (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So
$$(3n^2+17)$$
 is in $O(n^2)$

 $-3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

- $-(3n^2+17)$ is $O(n^2)$
- $-(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

Big-O, formally

Definition: g(n) is in O(f(n)) if there exist positive constants c and n_o such that

$$g(n) \le c f(n)$$
 for all $n \ge n_o$

- To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n_o large enough to "cover the lower-order terms"
 - Example: Let $g(n) = 3n^2 + 17$ and $f(n) = n^2$ c=5 and $n_0 = 10$ is more than good enough $(3*10^2) + 17 \le 5*10^2$ so $3n^2 + 17$ is $O(n^2)$
- This is "less than or equal to"
 - So $3n^2+17$ is also $O(n^5)$ and $O(2^n)$ etc.
 - But usually we're interested in the tightest upper bound.

Example 1, using formal definition

- Let g(n) = 1000n and $f(n) = n^2$
 - To prove g(n) is in O(f(n)), find a valid c and n_0
 - The "cross-over point" is n=1000
 - g(n) = 1000*1000 and $f(n) = 1000^2$
 - So we can choose n_0 =1000 and c=1
 - Many other possible choices, e.g., larger n_0 and/or c

Definition: g(n) is in O(f(n)) if there exist positive constants c and n_o such that

$$g(n) \le c f(n)$$
 for all $n \ge n_0$

Example 2, using formal definition

- Let $g(n) = n^4$ and $f(n) = 2^n$
 - To prove g(n) is in O(f(n)), find a valid c and n_0
 - We can choose n_o =20 and c=1
 - $g(n) = 20^4 \text{ vs. } f(n) = 1*2^{20}$
- Note: There are many correct possible choices of c and n_o

Definition: g(n) is in O(f(n)) if there exist positive constants c and n_o such that

$$g(n) \le c f(n)$$
 for all $n \ge n_0$

What's with the c

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Consider:

```
g(n) = 7n + 5f(n) = n
```

- These have the same asymptotic behavior (linear)
 - So g(n) is in O(f(n)) even through g(n) is always larger
 - The c allows us to provide a coefficient so that $g(n) \le c f(n)$
- In this example:
 - To prove g(n) is in O(f(n)), have c = 12, n₀ = 1
 (7*1)+5 ≤ 12*1

What you can drop

- Eliminate coefficients because we don't have units anyway
 - $-3n^2$ versus $5n^2$ doesn't mean anything when we have not specified the cost of constant-time operations
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - -3^{n} is not $O(2^{n})$

(This all follows from the formal definition)

More Asymptotic Notation

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
- Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist constants c and n_o such that $g(n) \ge c f(n)$ for all $n \ge n_o$
- Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to f(n)
 - g(n) is in $\theta(f(n))$ if **both** g(n) is in O(f(n)) **and** g(n) is in $\Omega(f(n))$

Correct terms, in theory

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- Since a linear algorithm is also $O(n^5)$, it's tempting to say "this algorithm is exactly O(n)"
- That doesn't mean anything, say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
 - For all c, there exists an n₀ such that... ≤
 - Example: array sum is $o(n^2)$ but not o(n)
- "little-omega": intersection of "big-Omega" and not "big-Theta"
 - For all c, there exists an n₀ such that... ≥
 - Example: array sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- The most common thing to do is give an O upper bound to the worst-case running time of an algorithm
- Example: binary-search algorithm
 - Common: O(log n) running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common (but very good to know): the find-insorted-array **problem** is $\Omega(\log n)$ in the worst-case
 - No algorithm can do better
 - A **problem** cannot be O(f(n)) since you can always make a slower algorithm

Other things to analyze

Space instead of time

Remember we can often use space to gain time

Average case

- Sometimes only if you assume something about the probability distribution of inputs
- Sometimes uses randomization in the algorithm
 - Will see an example with sorting
- Sometimes an amortized guarantee
 - Average time over any sequence of operations
 - Will discuss in a later lecture

Big-Oh Caveats

- Asymptotic complexity focuses on behavior for large n and is independent of any computer / coding trick
- But you can "abuse" it to be misled about trade-offs
- Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the "cross-over" point is around 5 * 10¹⁷
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- For small n, an algorithm with worse asymptotic complexity might be faster. If you care about performance for small n then the constant factors can matter

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)