Multiway Search Trees

Outline

- Basic concept
- Properties and operations
- B-trees
- Key insertion
- Key removal

Basic Concept

Number of Nodes vs. Number of Levels

- Given 3 nodes in a BST
 - Tallest: 3 levels
 - Shortest: 2 levels
- Given 7 nodes in a BST
 - Tallest: 7 levels
 - Shortest: 3 levels
- Given 1000 nodes in a BST
 - Tallest: 1000 levels
 - Shortest: 10 levels

Simple Arithmetic

- Observation from BST
 - \odot 2^{Level} 1
 - $2^{20} 1$: 1M nodes
- More nodes
 - 3^{Level} 1
 - $3^{20} 1$: 3486784400 nodes
 - 3¹³: 1 M nodes
 - \bullet 4^{Level} -1
 - $4^{20} 1$: 1T nodes
 - 4¹⁰: 1M nodes

Issue of Storage

- How to pack more data items?
- More items per level
 - More subtrees
- More items per node

Efficiency in Tree Storage

- Efficient storage
 - Balanced BST
 - AVL Trees
- Issue
 - Height of a tree
 - Shorter the better
- Goal
 - Complete
 - Nearly complete tree

Beyond BST

- Observation
 - maximum number of data items per node
 - maximum number of nodes per level
- BST
 - one data item per node
 - two subtrees under a node
- Multiway Search Tree
 - k data items per node
 - k+1 subtrees under a node

Definition of BST

- Binary tree
- Relationship among values in nodes
 - All values in the left subtree < value in the root
 - All values in the right subtree \geq value in the root
- For all subtrees

Extension to the Definition of BST

- Ternary tree??
- Relationship among values in nodes
 - All values in the left most subtree < key1 in the root
 - All values in the middle subtree ≥ key1 and < key2 in the root
 - All values in the right most subtree \geq key2 in the root
- For all subtrees

Extension to the Definition of BST

Observation

- \bigcirc key1 < key2 < key3 < key4
- 4 keys
 - 5 subtrees

Concept of Order

- N keys
 - N+1 subtrees
- Order (or degree)
 - Number of subtrees
- BST
 - Order of 2
- M-way tree
 - Order of m

Order	# of Subtrees	# of Keys
1	1	?
2	2	1
3	3	2
•••	•••	•••
m	m	m-1

Examples of a BST

Examples of a Multiway Search Tree

Order = 2

Order = 2

Order = 3

Observation in a BST

- Where is the smallest node?
- Where is the largest node?

Observation in a Multiway Search Tree

- Where is the smallest node?
- Where is the largest node?

Properties and Operations

Search Operation

- Start from the root
- Search in the root
- If not found
 - Go to a subtree
 - Search in the root
 - **o** ...

```
Search_mTree (mTree T, data key)
if T is empty
    return FALSE
found \leftarrow seqSearch (T's Root, key)
if found
     return TRUE
 else {
     S← findSubT (T's Root, key)
      Search_mTree (S, key)
```

Example (more extreme version)

B-Tree

Tilted Tree

Complete or Nearly Complete Tree

- Efficiency in search
 - Quickly finding (or not finding) the target
- Efficiency in storage
 - Fully packing each level
 - Most number of nodes

Review: Constructing a Tree

- Original idea
 - Top down
 - \odot Root \rightarrow Internal nodes \rightarrow Leaf nodes
 - "Insert" takes place at bottom.

Different Ways to Construct a Tree

- Original idea
 - Top down
 - Root → Internal nodes → Leaf nodes
 - "Insert" takes place at bottom.
- New idea
 - Bottom up
 - ① Leaf nodes → Internal nodes → Root
 - Filling up the base
 - Stacking level by level

Illustration

Key sequence: 10, 15, 20

Observation on Nodes

- Keys per node
 - Empty node
 - Full node
 - In-between node
- Nodes per level (number of subtrees)
 - Empty node
 - Full node (k keys)
 - k+1 subtrees
 - In-between node
 - 1 key: 2 subtrees
 - 2 keys: 3 subtrees
 - k-1 keys: k substrees

Order of B-Trees

	Number of Subtrees		
Order	Minimum	Maximum	
3	2	3	
4	2	4	
5	3	5	
6	3	6	
• • •	•••	•••	
m	(m/2)	m	

Order of B-Trees (number of keys)

	Number of Subtrees		Number of Keys	
Order	Minimum	Maximum	Min	Max
3	2	3	1	2
4	2	4	1	3
5	3	5	2	4
6	3	6	2	5
• • •	•••	•••	• • •	• • •
m	(m/2)	m	(m/2) - 1	m-1

Incorrect B-Tree (Order of 4)

Key Insertion

Insertion

- Where to insert?
 - BST
 - new node as a leaf or a leaf-like node
 - Multiway tree
 - new node or within an existing node at the leaf level
- Cases to consider
 - Empty tree
 - Tree with nodes
- Empty tree
 - \odot New node \rightarrow Root

Insertion

- Tree with nodes
 - Find the correct leaf node
 - Insert a data item in a node
 - Node not full
 - Insert to an ordered list
 - Node full
 - Insert to a sequential ordered list (overflow)
 - Promote the key in the middle
 - Split the node

Illustration – Order of 3

To insert 10, 20, 15

Empty nodeto insert 10

Node not full

Illustration – Order of 3

Key Removal

Concept from BST

- Removing a node
 - Three cases
 - Leaf node
 - One subtree
 - Two subtrees
- Difference
 - Removing a key
 - Removing a node

Procedures

- Search for a key
 - Start from the root
 - Sequential search in the root
 - If found, remove the key
 - If not found
 - Repeat for the key in the subtree
- Challenge
 - How to keep the requirements of "order"???
 - To avoid underflow

Order of B-Trees (number of keys)

	Number of Subtrees		Number of Keys	
Order	Minimum	Maximum	Min	Max
3	2	3	1	2
4	2	4	1	3
5	3	5	2	4
6	3	6	2	5
• • •	•••	•••	• • •	• • •
m	(m/2)	m	(m/2) - 1	m - 1

Simplest Procedure

Simplest Procedure

Borrowing Procedure

Borrowing Procedure

Borrowing Procedure

Combining Procedure

Combining Procedure

Demote and combine (collapsing procedure)

Variations

- 2-3 Tree
- B* Tree
- B+ Tree
- B# Tree

Ord	Number of Subtrees		Number of Keys	
er	Min	Max	Min	Max
3	2	3	1	2
4	2	4	1	3
5	3	5	2	4
6	3	6	2	5
• • •	•••	•••	• • •	• • •
m	(m/2)	m	(m/2) - 1	m - 1
	Commence of the Commence of th	100 m		

Final Remarks

- Multiway trees
 - General concept
 - Shortcoming
- B-Trees
 - Insert
 - Remove
- Variation