

Healthineers

Threshold PCA Denoising Outperforms MP-PCA in Correlation Tensor Imaging of Human Brain Microstructure at 3T

Finanziato

dall'Unione europea

NextGenerationEU

^aCIMeC, University of Trento, Trento, Italy, ^bFondazione Bruno Kessler, Trento, Italy, ^cChampalimaud Foundation, Lisbon, Portugal, ^dKing's College London, London, UK, ^eSiemens Healthineers AG, Erlangen, Germany, ^fSiemens Healthcare, Milan, Italy

Healthy [Human]³

INTRODUCTION

Correlation Tensor Imaging (CTI)¹ (**K**: Kurtosis, non-Gaussian diffusion)

- Is micro kurtosis (µK) relevant in <u>healthy tissue</u>? **YES!**^{1,2,3}
- Is micro kurtosis (µK) relevant in <u>pathological tissue</u>? **YES!**^{3,4}
- Human CTI² ~ so far 50min
 - → Limited clinical feasibility → **Acceleration** is critical
- Acceleration → SNR losses → **Denoising is critical**
- This work compares 3 denoising pipelines on human CTI data at 3T:
 - P1: No Denoising (Reference)
 - P2: Marčenko-Pastur PCA (MP-PCA)⁵
 - P3: Threshold PCA (TPCA)⁶

METHODS

- **Population & MRI Acquisition:**
 - CTI data of 8 healthy young volunteers, 3T MRI³
- **Preprocessing and CTI:**
 - **Denoising:** P1 (None), P2 (MP-PCA), P3 (TPCA)
 - Gibb's ringing (MRtrix3)
 - Geometric distortions and eddy currents (FSL),
 - Signal drift⁷, Bias field (MRtrix3)
- **Statistical Analysis:**
 - **Denoising Performance:**
 - Mean Values of CTI metrics
 - Within-ROI variability of CTI metrics
 - % CTI fit fails (biologically implausible)
 - **Pipeline Effects:** Friedman → Wilcoxon's + FDR correction

RESULTS

Figure 1. Single subject CTI derived maps of microkurtosis (μK), anisotropic kurtosis (Kaniso), isotropic kurtosis (Kiso), and total kurtosis (Kt) across denoising pipelines.

- PCA denoising does not affect mean CTI ROI values
- But, both PCA methods reduce CTI variability within ROIs, especially in µK:
 - Lower voxelwise standard deviation (p < 0.01)
 - Lower biologically implausible fits (p < 0.01)
- TPCA outperforms MP-PCA (WM & GM regions)
- CSF: Strongest difference in % negatives between the P1, P2 and P3

CONCLUSION

- **Denoising Performance:**
- \circ P3 (TPCA) > P2 (MP-PCA) > P1 (No Denoising)
- Correcting for spatial autocorrelations (TPCA) improves CTI accuracy
- **Strongest Improvement:**
 - CTI Metric: µK, Brain Regions: CSF, Hippocampus, Putamen
- **Future Directions:**
 - Add Rician bias correction
 - Acquisition of CTI data with an accelerated (~12m) protocol
 - Test-retest reproducibility of current results

