NOTE ON COMMUTATIVE ALGEBRA

LIANG TONGTONG

 $\ensuremath{\mathsf{ABSTRACT}}.$ This is a short note on commutative algebra.

Contents

1.	Going-up and Going-down	1
2.	Dimension theory	5
3.	Geometric viewpoint of primary decomposition	6
4.	Regularity and DVRs	7
5.	Decomposition and Dedekind domain	10
6.	Divisor on curves	12
References		14

1. Going-up and Going-down

Theorem 1.1. Suppose $f: A \hookrightarrow B$ is an integral extension, then the induced scheme morphism $f^*: \operatorname{Spec} B \to \operatorname{Spec} A$ is surjective.

Theorem 1.2 (Going-up). Let A, B be two integral domain and $f: A \hookrightarrow B$ be an integral extension. For any two prime ideals $\mathfrak{p}_1 \subset \mathfrak{p}_2$ in A and a prime ideal \mathfrak{q}_1 in B such that $\mathfrak{q}_1 \cap A = \mathfrak{p}_1$, then there exists \mathfrak{q}_2 in B such that $\mathfrak{q}_2 \cap A = \mathfrak{p}_2$.

Going-down property: Let $A \hookrightarrow B$ be an integral extension, $\mathfrak{p}_2 \subset \mathfrak{p}_1 \subset A$ and $\mathfrak{q}_1 \subset B$ be prime ideals such that $\mathfrak{p}_1 \cap A = \mathfrak{p}_1$, then there exists $\mathfrak{q}_2 \in \operatorname{Spec} B$ such that $\mathfrak{q}_2 \cap A = \mathfrak{p}_2$.

Theorem 1.3 (Going-down). When $A \subset B$ are rings and A is integrally closed, then the going-down property holds and the induced morphism $f^* \colon \operatorname{Spec} B \to \operatorname{Spec} A$ is an open map.

To prove this theorem, we need several lemmas.

Lemma 1.4 (Heuristic). Let $A \subset B$ be rings such that B is integral over B, then for any prime ideal $\mathfrak{p} \subset B$ there exists a prime ideal \mathfrak{P} in B such that $\mathfrak{P} \cap A = \mathfrak{p}$.

Proof. First, we do localization with respect to \mathfrak{p} and $A_{\mathfrak{p}} \to B_{\mathfrak{p}}$ is still an integral extension. If there exists a prime ideal $\mathfrak{P}B_{\mathfrak{p}}$ in $B_{\mathfrak{p}}$ over $\mathfrak{p}A_{\mathfrak{p}}$, then $\mathfrak{P} = \mathfrak{P}B_{\mathfrak{p}} \cap B$ satisfies that $\mathfrak{P} \cap A = \mathfrak{p}$.

Received by the editors June 12, 2021.

¹⁹⁹¹ Mathematics Subject Classification. Primary.

Hence the problem is reduced to local case that we may assume A is a local ring with maximal ideal \mathfrak{m} . Next we just need to find a prime ideal \mathfrak{n} in B such that $\mathfrak{n} \cap A = \mathfrak{m}$. A good candidate for such \mathfrak{n} is the maximal ideal in B that contains $\mathfrak{m}B$, but we still need to show that $\mathfrak{m}B$ is a proper ideal in B.

Argue by contradiction to show that $\mathfrak{m}B$ is a proper ideal in B. If $\mathfrak{m}B=B$, then there exists $b_1,\ldots,b_n\in B$ and $m_1,\ldots,m_n\in \mathfrak{m}$ such that

$$\sum m_i b_i = 1$$

Then we have a subsring $A[b_1, \ldots, b_n]$. Note that all b_i is integral over A, then $M = A[b_1, \ldots, b_n]$ is a finitely generated A-module and by previous assumption, $M \subset \mathfrak{m}M$. By Nakayama's lemma, M = 0, contradiction.

Hence there exists a maximal ideal $\mathfrak{n} \subset B$ such that \mathfrak{n} is over \mathfrak{m} . Claim that $\mathfrak{n} \cap A$ is a maximal ideal in A, because B/\mathfrak{n} is a field integral over $A/(\mathfrak{n} \cap A)$, for any non-zero element $x \in A/(\mathfrak{n} \cap A)$, $x^{-1} \in B$ and x^{-1} is integral over $A/(\mathfrak{n} \cap A)$ i.e there exists a monic polynomial with $A/(\mathfrak{n} \cap A)$ such that

$$x^{-n} + a_1 x^{-n+1} + \dots + a_n = 0$$

Then we have

$$x^{-1} = -(a_n x^{n-1} + \dots + a_1)$$

which shows that $A/(\mathfrak{n} \cap A)$ is a field. Here we finish the proof.

Lemma 1.5. Let $A \subset B$ be integral domains, for given \mathfrak{q}_1 in Spec B and \mathfrak{p}_1 in Spec A, then there exists a minimal prime ideal \mathfrak{q} of Spec B such that $\mathfrak{q} \cap A$ is a minimal prime ideal in Spec A.

This is a straight result from Heuristic lemma. Hence we may assume A, B are integral domains. However, the key problem is that we have guaranteed that such $\mathfrak{q} \subset \mathfrak{q}_1$ yet and that we will do next.

Next we show that the condition that A is integrally closed is essential.

Example 1.6. Let $k = \mathbb{C}$, B = k[x,y] and $A = \{f \in B \mid f(0,0) = f(0,1)\}$. The picture of Spec B is the plane k^2 and we get Spec A by gluing $P_1 = (0,0)$ and $P_2 = (0,1)$ in k^2 to be one point P and the induced map Spec $B \to \operatorname{Spec} A$ is the quotient map. Let C be the x-axis in k^2 and \overline{C} be the image of x-axis in Spec A. However, the we have $P \in \overline{C}$ and P_2 over P, but we can find an irreducible closed subset in Spec B such that it contains P_2 and its image is \overline{C} , because the preimage of \overline{C} is C and $P_2 \notin C$. Here the going-down property fails.

(The question is: How to show B is integral over A and A is not integrally closed?)

B is integral over A: $x \in A$, we just need to show for any $f(y) \in B$, f(y) is integral over A: consider $(f(y) - f(0))(f(y) - f(1)) \in A$, then $f^2(y) - (f(0) + f(1)f(y) + f(0)f(1) - (f(y) - f(0))(f(y) - f(1)) = 0$ clearly.

A is not integrally closed: Consider

$$\frac{(x+y-\frac{1}{2})^2-(y-\frac{1}{2})^2}{x}=2y-1$$

which is in K(A) but not in A. However, $(2y-1)^2$ is in A, then 2y-1 is a zero for a monic polynomial over A with variable T:

$$T^2 - (2y - 1)^2$$

Now suppose $A \subset B$ are integral domains and A is integrally closed.

Observation 1: We may assume B is the integral closure of A in L.

Let L be the fraction field of B and K be the fraction field of A, then L/K is an algebraic field extension clearly. Let \overline{A} be the integral closure of A in L, if the going-down property holds for \overline{A} , then it holds for B because $A \subset B \subset \overline{A}$.

Observation 2: If for finite field extension L/K, the going-down properties holds, then for infinite algebraic field extensions, it still holds.

Suppose it is true for finite field extension, then for an algebraic field extension L/K, we have a filtration:

$$K = L_0 \subset L_1 \subset L_2 \subset \cdots \subset L_n \subset \cdots \subset L$$

where L_n/L_{n-1} is a finite field extension. Let \overline{A}_i be the integral closure of A in L_i , and $\overline{A} = \bigcup_{i=1}^{\infty} A_i$. For given prime ideals $\mathfrak{q} \subset \mathfrak{p}$ in A and \mathfrak{Q} in \overline{A} such that $\mathfrak{P} \cap A = \mathfrak{p}$. Let $\mathfrak{P}_n = \mathfrak{P} \cap L_n$, and apply the going-down property for the finite field extension L_n/K to get $\mathfrak{Q}_n \subset \mathfrak{P}_n$ in \overline{A}_n such that $\mathfrak{Q}_n \cap A = \mathfrak{q}$. Clearly, $\bigcup_i^{\infty} \mathfrak{Q}_i \subset \overline{A}$ is a prime ideal and is what we need.

Observation 3: We may assume L/K is a normal finite extension.

We just take the normal closure of L then restrict the prime ideals.

Observation 4: For a finite normal extension L/K, we consider $K \subset K^s \subset L$, where K/K^s is separable and L/K^s is purely inseparable. Hence we just need to check two cases: finite Galois extension (normal and separable) and finite normal purely separable extension.

Lemma 1.7. Suppose L/K is a finite Galois extension with Galois group G, A is integrally closed in K, then for any prime ideal \mathfrak{p} , G acts transitively on the set of prime ideals of B lying over \mathfrak{p} .

Proof. Suppose \mathfrak{q} and \mathfrak{q}' are two prime ideals of B lying over \mathfrak{p} . We need to show there is $\sigma \in G$ such that $\sigma(\mathfrak{q}) = \mathfrak{q}'$.

Claim: $\mathfrak{q}' \subset \bigcup_{\sigma \in G} \sigma(\mathfrak{q})$. For any $x \in \mathfrak{q}'$ and $y = \prod_{\sigma' \in G} \sigma'(x) \in K \in \mathfrak{q}'$, hence $y \in \mathfrak{q}' \cap K$. Since A is integrally closed, $y \in A$, hence $y \in \mathfrak{p}$ actually. So $y \in \sigma(\mathfrak{q})$ for any $\sigma \in G$. Because $\sigma(\mathfrak{q})$ is a prime ideal, there exists $\sigma'(x) \in \sigma(\mathfrak{q})$, then $x \in \sigma'^{-1}\sigma(\mathfrak{q})$. Thus $\mathfrak{q} \subset \bigcup_{\sigma \in G} \sigma(\mathfrak{q})$.

By prime avoidance, there exists a $\sigma(\mathfrak{q})$ such that $\mathfrak{q} \subset \sigma(\mathfrak{q})$. However, $\mathfrak{q}' \cap A = \sigma(\mathfrak{q}) \cap A = \mathfrak{p}$, so $\mathfrak{q}' = \sigma(\mathfrak{q})$, because for integral domains, (0) is unique prime ideal lying over (0)).

Note that if L/K is a finite normal and purely-inseparable field extension, then $\operatorname{Aut}(L/K)=\{\operatorname{id}\}$ and we may assume the characteristic is p. For $x\in L$, there is some integer v such that $x^{p^v}=\alpha\in K$ and $x^{p^v}-\alpha$ is the minimal polynomial.

Recall a lemma in field theory:

Lemma 1.8. Suppose K is of characteristic p, if $f(x) \in K[x]$ is irreducible, then there exists a non-negative integer v and an irreducible separable polynomial $g(x) \in K[x]$ such that $f(x) = g(x^{p^v})$

Sketch proof. We argue it by induction and notice that if f is not separable, then the formal derivation f' = 0, which means that for each non constant item x^m , m is a multiple of p. Hence there is a polynomial f_1 such that $f(x) = f_1(x^p)$. We proceed this procedure until we have a separable polynomial.

Lemma 1.9. Let $A \subset B$ be integral domains and A is integrally closed. If $x \in B$ is integral over an ideal A, then the minimal polynomial of x over K(A) is of the form

$$x^n + \sum_{i=1}^n c_i x^{n-i}$$

where $c_i \in A$.

A proof for more general case is in P63 Proposition 5.15 in [Ati69].

Proof. Clearly, x is algebraic over K(A), suppose the minimal polynomial is

$$x^n + a_1 x^{n-1} + \dots + a_n = 0$$

and we let L be the splitting field of this irreducible polynomial, so all the conjugates x_1, \ldots, x_n are in L and a_i is given by symmetric polynomials in x_i . Note x_i is integral over A as x, then the coefficients a_i are integral over A. Since A is integrally closed, $a_i \in A$ for each i.

Lemma 1.10. Suppose L/K is a finite normal and purely inseparable extension, for any prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the fiber over \mathfrak{p} consists of exactly one element.

Proof. Suppose there are two prime ideals, $\mathfrak{q}, \mathfrak{q}'$ of B lying over \mathfrak{p} . We need to show $\mathfrak{q} = \mathfrak{q}'$. Suppose $x \in \mathfrak{q}$, then $x^{p^v} = \alpha \in A$ (due to previous lemma) for some integer $v \in \mathbb{N}$, so $\alpha \in \mathfrak{q} \cap A = \mathfrak{p}$, then $x^{p^v} \in \mathfrak{q}'$ and $x \in \mathfrak{p}'$. Thus $\mathfrak{q} \subset \mathfrak{q}'$. Similarly, we have $\mathfrak{q}' \subset \mathfrak{q}$. Finally, $\mathfrak{q} = \mathfrak{q}'$.

The existence is given by Heuristic approach.

Theorem 1.11. Suppose $f: A \to B$ is an integral extension between integral domains and A is integrally closed, then $f^*: \operatorname{Spec} B \to \operatorname{Spec} A$ is an open map.

Proof. Since Zariski topology is generated by distinguished open set $D_x = \{ \mathfrak{q} \in \text{Spec } B \mid x \notin \mathfrak{q} \}, x \in B$, we just need to show $f^*(D_x)$ is open.

Let the minimal polynomial of x over K = K(A) be

$$(1) x^n + a_1 x^{n-1} + \dots + a_n$$

where $a_i \in A$ by Lemma 1.9, then we claim that $f^*(D_x) = \bigcup_{i=1}^n D_{a_i}$.

By previous lemmas, we first assume L/K is a Galois extension and B is the integral closure of A in L and let G be the Galois group. Note that for any prime ideal $\mathfrak{q} \in \operatorname{Spec} B$, $f^*(\mathfrak{q}) = f^*(\sigma(\mathfrak{q}))$. Then we have

$$f^*(D(x) = \bigcup_{\sigma \in G} f^*(\sigma(D_x))$$

$$= \bigcup_{\sigma \in G} f^*(D_{\sigma(x)})$$

$$= f^*(\bigcup_{\sigma \in G} D_{\sigma(x)})$$

$$= f^*(V(\{\sigma(x) \mid \sigma \in G\})^c)$$

Note that a_i acts on B via the extension f, let $a'_i = f(a_i)$ and we rewrite equation 1 to be

(3)
$$x^n + a_1' x^{n-1} + \dots + a_n' = 0$$

and if $\mathfrak{q} \in V(\{\sigma(x) \mid \sigma \in G\})$, then $\mathfrak{q} \in V(a'_1, \ldots, a'_n)$ because a'_i is given by polynomial in $\sigma(x)$. Conversely, if $\mathfrak{q} \in V(a'_1, \ldots, a'_n)$, then consider B/\mathfrak{q} , $\overline{x}^n = 0$ in B/\mathfrak{q} , hence $x \in \mathfrak{q}$, moreover, $\sigma(x) \in \mathfrak{q}$ for all $\sigma \in G$. Hence we have

$$V(\{\sigma(x) \mid \sigma \in G\}) = V(a'_1, \dots, a'_n)$$

Back to equation 2, we have

$$f^*(D_x) = f^*(V(a'_1, \dots, a'_n)^c) = f^*(\bigcup_{i=1}^n D_{a'_i}) = \bigcup_{i=1}^n f^*(D_{a'_i}) = \bigcup_{i=1}^n D_{a_i}$$

Then we may assume L/K is a finite normal and purely inseparable extension, then by Lemma 1.10, f^* is injective. For any $x \in B$, there is a natural number v such that $x^{p^v} \in A$, then $f^*D_x = D_{x^{p^v}}$ clearly. f^* is an open map clearly. \Box

Theorem 1.12. Following the condition in previous theorem, $f: A \to B$ has the going-down property.

Proof. We just follows Lemma 1.5 to show we have such minimal prime ideal that is contained in \mathfrak{q}_1 . First, we can find \mathfrak{q}' such that $\mathfrak{q}' \cap A$ is a minimal prime ideal contained in \mathfrak{p}_1 . Then consider the induced map $A/(\mathfrak{q}' \cap A) \to B/\mathfrak{q}'$ and we have $\overline{\mathfrak{q}'_1}$ in B/\mathfrak{q}' such that $\mathfrak{q}'_1 \cap A = \mathfrak{p}_1$. Since the Galois group acts transitively on the fiber of \mathfrak{p} , then we can find σ in the Galois group such that $\sigma(\mathfrak{q}'_1) = \mathfrak{q}_1$, then $\mathfrak{q} = \sigma(\mathfrak{q}')$ is what we need, because $\sigma(\mathfrak{q}') \cap A = \mathfrak{p}$ and $\mathfrak{q} \subset \mathfrak{q}_1$.

The trick of Galois group action (group action):

Proposition 1.1. Let G be a finite group of automorphisms of a ring A, \mathfrak{p} be a prime ideal of A^G (G-fixed points of A) and X be a set of prime ideals \mathfrak{P} in A such that $\mathfrak{P} \cap A^G = \mathfrak{p}$, then G acts transistively on X.

Proof. Let \mathfrak{P} and \mathfrak{P}' be two elements in X, we now claim that $\mathfrak{P}' \subset \bigcup_{\sigma \in G} \sigma(\mathfrak{P})$. If the claim is true, then by prime avoidance, there exists some $\sigma' \in G$ such that $\mathfrak{P} \subset \sigma'(\mathfrak{P})$. Since $\mathfrak{P}' \cap A^G = \sigma'(\mathfrak{P}) \cap A^G = \mathfrak{p}$, then $\mathfrak{P}' = \sigma'(\mathfrak{P})$.

Now we prove the claim: for any $x \in \mathfrak{P}'$, consider $\prod_{\sigma \in G} \sigma(x) \in A^G \cap \mathfrak{P}' = \mathfrak{p}$, then $\prod_{\sigma \in G} \sigma(x) \in \mathfrak{P}$. Hence there exists $\sigma \in G$ such that $\sigma(x) \in \mathfrak{P}$, which is equivalent to say that $x \in \sigma^{-1}\mathfrak{P}$, then $x \in \prod_{\sigma \in G} \sigma(x)$.

2. Dimension theory

Definition 2.1. Let A be a Noetherian semilocal ring and \mathfrak{m} be the Jacobson radical of A, for an ideal I in A satisfying $\mathfrak{m}^v \subset I \subset \mathfrak{m}$ for some postive integer v, then we define the **associated graded ring** $G_I(A)$ to be

$$G_I(A) = \bigoplus_{n=0}^{\infty} I^n / I^{n+1}$$

If M is a finitely generated A-module, then the **associated graded module** is defined as

$$G_I(M) = \bigoplus_{n=0}^{\infty} I^n M / I^{n+1} M.$$

Remark 2.2. Note that A/I is an Artin ring, we just need to show A/I is of dimension 0 i.e. every prime ideal in A that contains I is a maximal ideal. Let \mathfrak{p} be a prime ideal in A that contains I, then $\mathfrak{m}^v \subset \mathfrak{p}$ and $\mathfrak{m} \subset \mathfrak{p}$ so that the product of all maximal ideals in A is contained in \mathfrak{p} , hence \mathfrak{p} is one of maximal ideals.

Proposition 2.1. Let A be a Noetherian semilocal ring and I is such a ideal in the previous definition, then

$$\dim A = \dim G_I(A)$$

Proof.

Application of dimension theory:

Theorem 2.3 (Zariski lemma). Suppose A is a finitely generated k-algebra and \mathfrak{m} is a maximal ideal of A, then A/\mathfrak{m} is a finite algebraic extension of k.

Proof. Note that the dimension of A/\mathfrak{m} is 0, then the transcendental degree of A/\mathfrak{m} is 0, hence A/\mathfrak{m} is a algebraic extension of k. Since A/\mathfrak{m} is finitely generated, A/\mathfrak{m} is a finite k extension.

3. Geometric viewpoint of primary decomposition

Given a spectrum Spec A, the associated points are the generic points of irreducible components of support of some global section i.e. for some $s \in A$,

$$\operatorname{Supp}(s) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \frac{s}{1} \neq 0 \in A_{\mathfrak{p}} \}$$

namely if $\mathfrak{p} \in \operatorname{Supp}(s)$, then $\operatorname{Ann}(s) \subset \mathfrak{p}$, which means that

$$\operatorname{Supp}(s) = V(\operatorname{Ann}(s))$$

For any A-module, we just take the global section of the quasicoherent sheaf M so that we can define associated point of A-modules.

The **isolated points** is the generic points of irreducible components of Spec A i.e. the support of the function 1, while the other associated points are called **embedded points**. (The ideal is to replace the category of A-modules by the category quasicoherent sheaves over Spec A, then think it geometrically.)

Proposition 3.1. Suppose A is a reduced ring, then Spec A has no embedded points.

Proof. If A is integral, for any non-zero $a \in A$, Ann(x) = (0), hence the support is Spec A. Since Spec A is irreducible, the unique associated point is the generic point of Spec A i.e. [(0)].

For general case, if $f \in A$ is a function on a reduced affine scheme Spec A, then claim that $\operatorname{Supp}(f) = \overline{D(f)}$: first, clearly $D(f) \subset \operatorname{Supp}(f)$ and $\operatorname{Supp}(f)$ is a closed subset, we just need to show $\operatorname{Supp}(f)$ is the smallest closed set to contain D(f). Suppose $V(I) \supset D(f)$ for ideal I, then

$$I\subset \bigcap_{\mathfrak{p}\in D(f)}\mathfrak{p}$$

since A is reduced, so is A_f , hence I=0 in A_f , i.e. for any $s \in I$, there is a positive integer n such that $sf^n=0$ in A. Thus we have $s^nf^n=0$ and sf=0, due to the reducedness. Then $I \subseteq \text{Ann}(f)$.

Now we conclude that, for any $s \in I$, $V(\text{Ann}(f)) \subset V(s)$, then $\text{Supp}(f) \subset V(I)$.

Next to show $\overline{D(f)}$ is the union of irreducible components that meets D(f). Suppose $V(\mathfrak{p})$ is an irreducible component of Spec A i.e. \mathfrak{p} is a minimal prime ideal in A and $V(\mathfrak{p}) \cap D(f) \neq \emptyset$, then there is a prime ideal \mathfrak{p}' such that $\mathfrak{p} \subset \mathfrak{p}'$ and $f \notin \mathfrak{p}'$ i.e. $f \notin \mathfrak{p}$, then $\mathfrak{p} \in D(f)$. Hence $V(\mathfrak{p}) = \overline{\{\mathfrak{p}\}} \subset \overline{D(f)}$.

Therefore $\operatorname{Supp}(f)$ is a union of irreducible components and each irreducible component $V(\mathfrak{p})$ has no embedded point (because A/\mathfrak{p} is an integral domian). \square

An important property of associated points: The natural map

$$M \to \prod_{\text{associated primes } \mathfrak{p}} M_{\mathfrak{p}}$$

is injective. The elements in the kernel of this map vanishes at each associated points, which means that their support are empty, hence their zero functions on $\operatorname{Spec} A$ i.e. 0 in M.

4. Regularity and DVRs

Theorem 4.1. Suppose (A, \mathfrak{m}, k) is a Noetherian local ring, then $\dim A \leq \dim_k \mathfrak{m}/fm^2$.

Proof. Since A is a Noetherian, \mathfrak{m} is a finitely generated A-module. Then by Nakayama's lemma, we may assume $\mathfrak{m} = (x_1, \ldots, x_n)$ such that $\{\overline{x_i}\}_{i=1}^n$ is a k-basis of vector space $\mathfrak{m}/\mathfrak{m}^2$. Then by Krull's height theorem, \mathfrak{m} is the minimal prime ideal that over (x_1, \ldots, x_n) , then the height of \mathfrak{m} is not bigger than n i.e. $\dim A \leq \dim_k \mathfrak{m}/\mathfrak{m}^2$.

Definition 4.2. (A, \mathfrak{m}, k) is a regular local ring, if A is a Noetherian ring and $\dim A = \dim_k \mathfrak{m}/\mathfrak{m}^2$. If a Noetherian ring A is saied to be regular, then it is regular at all its prime ideal.

Proposition 4.1. A dimension 0 Noetherian local ring is regular if and only if it is a field.

Proof. The proof is straightforward, Since it is of dimension 0 and regular, then its maxmial ideal is 0.

Lemma 4.3. A surjection between to integral domains of the same dimension is an isomorphism.

Proof. Let A, B be two integral domain of the same dimension and $f: A \to B$ be a surjective ring homomorphism. The kernel ker f must be a prime ideal \mathfrak{p} with $A/\mathfrak{p} \cong B$. Since A/\mathfrak{p} and A have the same dimension, \mathfrak{p} must be a minimal prime ideal of A. Because A is an integral domain, $\mathfrak{p} = 0$, then f is an isomorphism. \square

Theorem 4.4. Suppose (A, \mathfrak{m}, k) is a regular local ring of dimension n, then A is an integral domain.

Proof. We prove it by induction on n. When n = 0, it is clearly true by previous proposition. Suppose it is true for dimension less than n.

Take $f \in \mathfrak{m}/\mathfrak{m}^2$, then A/(f) is a Noatherian local ring. According to Krull's principal ideal theorem, dim $A/(f) \ge n-1$. Observe that the Zariski cotangent space at A/(f) i.e. $(\mathfrak{m}/(f))/(\mathfrak{m}/(f))^2 = (\mathfrak{m}/\mathfrak{m}^2)/(\overline{f})$ is of dimension n-1 clearly. By Theorem 4, A/(f) is a regular local ring of dimension n-1. Apply the inductive hypothesis, A/(f) is an integral domain.

We just need to show that any minimal prime ideal in A is (0). Let $\mathfrak{p} \subset A$ be a minimal prime ideal, we claim that A/\mathfrak{p} is a regular local ring of dimension n. The Zariski cotangent space of A/\mathfrak{p} is a quotient of $\mathfrak{m}/\mathfrak{m}^2$, hence its dimension is at most n. Since \mathfrak{p} is a minimal prime ideal of A, dim $A/\mathfrak{p} = \dim A = n$, then by Theorem 4, A/\mathfrak{p} is a regular Noetherian local ring of dimension n. Now we replace A by A/\mathfrak{p} in the argument in the first paragraph, then $A/(\mathfrak{p}+(f))$ is an integral domain. Note that the quotient morphism $A/(f) \to A/(\mathfrak{p}+(f))$ is an isomorphism by Lemma 4.3.

Thus $\mathfrak{p} = \mathfrak{p} + (f)$ i.e. $\mathfrak{p} \subset fA$. Every element in \mathfrak{p} is of the form fv for $v \in A$. Further, since $f \notin \mathfrak{p}$, $v \in \mathfrak{p}$. We have $\mathfrak{p} \subset f\mathfrak{p}$, then $\mathfrak{p} = f\mathfrak{p}$. Then apply Nakayama's lemma (global version), we conclude that $\mathfrak{p} = 0$.

Next we focus on the case of dimension 1.

Theorem 4.5. Suppose (A, \mathfrak{m}, k) is a Noetherian local ring of dimension 1, then the following are equivalent:

- (a) (A, \mathfrak{m}) is regular.
- (b) m is principal
- (c) all the non-zero ideals are of the form \mathfrak{m}^n .
- (c)' A is a principal ideal domain.

Proof. (a) \Longrightarrow (b): Since A is regular and dim A=1, then dim_k $\mathfrak{m}/\mathfrak{m}^2=1$. Let $u\in\mathfrak{m}\setminus\mathfrak{m}^2$ be a representative of a generator in $\mathfrak{m}/\mathfrak{m}^2$. By Nakayama's lemma, u generates \mathfrak{m} , hence \mathfrak{m} is a principal ideal.

- (b) \Longrightarrow (a): It is obvious. Since $\mathfrak{m}=(t)$, then $\dim_k \mathfrak{m}/\mathfrak{m}^2 \leqslant 1$, while $1=\dim A \leqslant \dim_k \mathfrak{m}/\mathfrak{m}^2$. Thus $\dim A = \dim_k \mathfrak{m}/\mathfrak{m}^2 = 1$ and A is regular.
- (a) \Longrightarrow (c): Let $I \subset A$ be a non-zero ideal, then there exists n such that $I \subset \mathfrak{m}^n$ and $I \not\subset \mathfrak{m}^{n+1}$. We take $t \in I \setminus \mathfrak{m}^{n+1}$. Note that $\dim_k \mathfrak{m}^n/\mathfrak{m}^{n+1} = 1$ because $\mathfrak{m}^n = (u^n)$ (recall previous argument), hence t generates $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ as a representative. By Nakayama's lemma, t generates \mathfrak{m}^n . Hence $\mathfrak{m}^n = (t) \subset I \subset \mathfrak{m}^{m+1}$ and $I = \mathfrak{m}^n$. In total, all the non-zero ideals of A is of the form \mathfrak{m}^k for some positive integer k.
- $(c) \Longrightarrow (a)$: Argue by contradiction. Suppose A is not regular, then $\dim_k \mathfrak{m}/\mathfrak{m}^2$ is at least 2. Then there is an element $x \in \mathfrak{m} \setminus \mathfrak{m}^2$, such that $\mathfrak{m}^2 \subsetneq (u, \mathfrak{m}^2) \subsetneq \mathfrak{m}$, contradiction.
 - (c)' is equivalent to (c) clearly.

Definition 4.6. Suppose K is a field, a **discrete valuation** on K is a function $v: K^* \to \mathbb{Z}$ such that v(xy) = v(x) + v(y) and if $x + y \neq 0$,

$$v(x+y) \geqslant \min\{v(x), v(y)\}$$

(we set $v(0) = \infty$ for convenience). The valuation ring \mathcal{O}_v with respect to v is defined to be

$$\mathcal{O}_v = \{ x \in K \mid v(x) \geqslant 0 \}$$

We say a ring A is a **discrete valuation ring** or **DVR** if there is a discrete valuation v on the fraction field K = K(A) such that A is the valuation ring with respect to v.

Proposition 4.2. (A, \mathfrak{m}) is a DVR if and only if it satisfies the one of the equivalent conditions in 4.5.

Proof. We first to show a DVR is a Noetherian local principal ideal domain. First, it is a local ring: let $\mathfrak{m} = \{x \in A \mid v(x) > 0\}$, it is an ideal clearly. For $x \in A \setminus \mathfrak{m}$, then v(x) = 0 and $v(x^{-1}x) = v(x^{-1}) + v(x) = v(1) = 0$, then $v(x^{-1}) = 0$ with $x^{-1} \in A$. Hence \mathfrak{m} is the unique maximal ideal in A. Next to show \mathfrak{m} is a principal ideal: take $t \in \mathfrak{m}$ such that v(u) = 1, then for any $x \in \mathfrak{m}$ $v(xu^{-1}) = v(x) - v(u) \geqslant 0$ hence $xu^{-1} \in A$ and $\mathfrak{m} = (u)$. Let $I_n = \{x \in A \mid v(x) \geqslant n$, then we have a filtration

$$A = I_0 \supseteq \mathfrak{m} = I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \cdots \supseteq I_n \supseteq \cdots$$

We claim that all the non-zero ideals are of the form I_n . Let $I \subset A$ be an ideal, then take $x \in I$ such that v(x) = n is the least one in I, then $I \subset I_n$. Conversely, for any $y \in I$, $v(x^{-1}y) = v(y) - v(x) \ge 0$, then $x^{-1}y \in A$, hence I = (t). Similarly, $(t) = I_n$. Now we have proven the claim. In particular, suppose $\mathfrak{m} = (u)$, all the non-zero ideals are of the form (u^n) . Then A is a principal ideal domain of dimension 1(it is a domain because it is a subring of a field). Hence A satisfies the conditions in Theorem 4.5.

Conversely, suppose A is a regular Noetherian local and $\mathfrak{m}=(u)$, we define the valuation on K=K(A) by sending v(u)=1 and v(i)=0 if i is a unit in A. Claim that all non-zero element in K is of the form au^n with an integer n: for any $x,y\in A$, they are of the forms $x=bx^n$ and $y=cx^m$ for $b,c\in A^*$ and non-negative integers n,m, then

$$\frac{x}{y} = bc^{-1}x^{n-m}$$

where bc^{-1} is still a unit in A. Hence we prove the claim and following the claim, the valuation is well-defined by extending $v(ax^n) = n$. Clearly, if $v(x) \ge 0$, then $x \in A$. Hence A is a DVR.

Theorem 4.7. Suppose (A, \mathfrak{m}) is a Noetherian local domain of dimension 1, then A is a DVR if and only if A is integrally closed.

Proof. When A is a DVR, it is a principal ideal domain, in particular, it is a UFD, hence it is integrally closed. Conversely, suppose A is integrally closed, we are going to show that \mathfrak{m} is a principal ideal. For any non-zero $x \in \mathfrak{m}$, (x) is a \mathfrak{m} -primary (because \mathfrak{m} is of height 1 i.e. the unique non-zero prime ideal in A). Then $\sqrt{(x)} = \mathfrak{m}$ i.e. for any $y \in \mathfrak{m}$, there exists a positive integer n_y such that $y^{n_y} \in (x)$. Since \mathfrak{m} is finitely generated, there exists n such that $\mathfrak{m}^n \subseteq (x)$ and $\mathfrak{m}^{n-1} \not\subseteq (x)$. Choose $y \in \mathfrak{m}^{n-1}$ such that $y \notin (x)$, then $\frac{y}{x}\mathfrak{m} \subseteq \frac{1}{x}\mathfrak{m}^n \subseteq A$, hence $\frac{y}{x}\mathfrak{m}$ is an ideal in A and either $\frac{y}{x}\mathfrak{m} \subset \mathfrak{m}$ or $\frac{y}{x}\mathfrak{m} = A$. We want to show that $\frac{y}{x}\mathfrak{m} = A$ then $\mathfrak{m} = \frac{x}{y}A$ is a principal ideal.

It suffices to show that $\frac{y}{x} \mathfrak{m} \not\subseteq \mathfrak{m}$ and we argue by contradiction. Suppose $\frac{y}{x} \mathfrak{m} \subset \mathfrak{m}$, then $\frac{y}{x}$ determines an A-linear map from finitely generated A-module \mathfrak{m} to itself. Take a list of generators and we have an A-matrix T. Note that $T - \frac{y}{x}I = 0$ and $\det(T - \frac{y}{x}I) = 0$, hence the monic polynomial with coefficients in A is $\det(T - tI)$ in variable of t. Then $\frac{y}{x}$ is integral over A and $\frac{y}{x} \in A$ because A is integrally closed. Hence $y \in (x)$, which leads to contradiction.

5. Decomposition and Dedekind domain

We first do some observation: suppose A is a Noetherian domain and $\mathfrak{a} \subseteq A$ is a non-zero ideal. We have known that the primary decomposition exists, hence

$$\mathfrak{a} = \bigcap_{\mathrm{primary}} \mathfrak{q}$$

If A is of dimension 1, then every non-zero prime ideal is a maximal ideal and for a primary decomposition, there is no embedded prime in the set of associated prime ideals of \mathfrak{a} . Note that for two distinct primary ideals \mathfrak{q} and \mathfrak{q}' where $\sqrt{\mathfrak{q}}=\mathfrak{m}$ and $\sqrt{\mathfrak{q}'}=\mathfrak{m}'$ are two distinct maximal ideal, then claim that $\mathfrak{q}+\mathfrak{q}'=1$. If $\mathfrak{q}+\mathfrak{q}'\neq 1$, then there exists a maximal ideal \mathfrak{m}'' to contain $\mathfrak{q}+\mathfrak{q}'$, further \mathfrak{m}'' contain $\sqrt{\mathfrak{q}}$ and $\sqrt{\mathfrak{q}'}$ i.e. \mathfrak{m}'' contain $\mathfrak{m}+\mathfrak{m}'=(1)$, contradiction. Since all distinct primary ideals are coprime, we may write

$$\mathfrak{a} = \prod_{\mathrm{primary}} \mathfrak{q}$$

Now the question is: when would every \mathfrak{p} -primary ideal of A be a power of \mathfrak{p} ? The answer is when A is integrally closed (necessary and sufficient condition). Now we move on to this answer.

Observation

- \mathfrak{q} is \mathfrak{p} -primary in A if and only if $\mathfrak{q}A_{\mathfrak{p}}$ is $\mathfrak{p}A_{\mathfrak{p}}$ -primary.
- when \mathfrak{q} is \mathfrak{p} -primary, then $\mathfrak{q} = \mathfrak{p}^n$ if and only $\mathfrak{q}A_{\mathfrak{p}} = (\mathfrak{p}A_{\mathfrak{p}})^n$.

Hence we may reduce the question to local case.

Now the question is: For a Noetherian local domain (A, \mathfrak{m}) of dimension 1, when would every \mathfrak{m} -primary ideal be a power of \mathfrak{m} ?

Further observation:

- Every non-zero ideal in A is m-primary.
- \mathfrak{q} is \mathfrak{m} -primary if and only if $\sqrt{\mathfrak{q}} = \mathfrak{m}$.

Thus, the local question becomes: For a Noetherian local domain (A, \mathfrak{m}) of dimension 1, when would every non-zero ideal be of the form \mathfrak{m}^n , $n \in \mathbb{N}$? Recall Theorem 4.5, we see that the answer is DVR!

Theorem 5.1. Let A be a Noetherian domain of dimension 1, then every primary decomposition is a prime decomposition if and only if for each non-zero prime ideal \mathfrak{p} , $A_{\mathfrak{p}}$ is a DVR.

Recall that A is integrally closed if and only if $A_{\mathfrak{p}}$ is integrally closed for each prime ideal $\mathfrak{p} \in \operatorname{Spec} A$. Then by Theorem 4.7, we have

Theorem 5.2. Let A be a Noetherian domain of dimension 1, then every primary decomposition is a prime decomposition if and only if A is integrally closed.

Definition 5.3. A is a Dedekind domain if A is an integrally closed Noetherian domain of dimension 1.

Example 5.4. Let K be a finite field extension of \mathbb{Q} and \mathcal{O}_K be the integral closure of \mathbb{Z} in K (we may also call it the ring of integers in K.) Now we claim that \mathcal{O}_K is a Dedkind domain.

First, \mathcal{O}_K is integrally closed clearly. Second, $\mathbb{Z} \hookrightarrow \mathcal{O}_K$ is an integral morphism, and \mathbb{Z} is a Dedekind domain clearly, hence by going-up and going-down, dim $\mathcal{O}_K = \dim \mathbb{Z} = 1$. Finally, it remains to show \mathcal{O}_K is a Noetherian. We need the following lemma to show it.

Lemma 5.5. Given a domain A and K = K(A) the fraction field with characteristic 0, let L/K be a finite separable extension of degree n and B be the integral closure of A in L. Then there exists a basis $\{v_1, \ldots, v_n\}$ in L such that

$$B \subseteq Av_1 + \cdots + Av_n$$

Thus, as a consequence, if A is Noetherian, so is B.

Proof. Observe that for any non-zero $v \in L$, there is an $a \in A$ such that $av \in B$ (there is an a such that av is integral over A because v is algebraic over K, the fraction field of A.)

Thus we may assume $\{w_1, \ldots, w_n\}$ is a basis of L over K with $w_i \in B$. Note that $\langle v, v' \rangle = \operatorname{Tr}(vv')$ is a non-degenerate bilinear form of L over K when it is separable. Let (v_1, \ldots, v_n) be the dual basis of (w_1, \ldots, w_n) namely $\langle v_i, w_j \rangle = \delta_{ij}$ for each i, j. $((v_1, \ldots, v_n)$ is still a basis of L over K because they are linearly independent.)

Then $\forall b \in B$, write $b = \sum_{i=1}^{n} \alpha_i v_i$ where $\alpha_i \in K$. Then

$$\langle b, w_j \rangle = \sum_{i=1}^n \alpha_i \langle vi, w_j \rangle = \sum_{i=1}^n \alpha_i \delta_{ij} = \alpha_j$$

because $bw_j \in B$, $\text{Tr}(bw_j) \in B$ (the trace is the sum of all its Galois conjugate elements and all its Galois conjugate elements is integral over K clearly), then $\text{Tr}(bw_j) = B \cap K = A$ i.e. $\alpha_j \in A$.

In general, there is proposition:

Theorem 5.6 (Krull-Akizuki). Let A be a Noetherian domain of dimension 1 with fraction field K, if L/K is a finite extension and $B \subset L$ is an arbitrary subring that contains A, then B is a Noetherian domain.

We need to prove that for any ideal I in B, I is a finitely generated B-module. Observe that $I \otimes_A K$ is a K-vector space in L, hence $I \otimes_A K$ is of finite dimension, namely we say that I is an A-module of finite rank. We need the following lemma to prove the theorem.

Lemma 5.7. Let A and L be the ones in the assumption of the theorem and let M be a torsion-free A-module of finite rank r. Then for $0 \neq a \in A$, we have

$$l(M/aM) \leqslant r * l(A/aA)$$

Proof. First, we assume M is finitely generated. Take x_1, \ldots, x_r in M linearly independent over A and let $E = \bigoplus_{i=1}^r Ax_i$, then there exists $t \in A$ such that for any $y \in M$, $ty \in E$ (We just find such t' for each generator of M, then multiply them together to get such t). Let C = M/E and tC = 0 i.e. C is totally an A-torsion module and is finitely generated obviously. Then there exists a filtration of C:

$$C = C_0 \supset C_1 \supset \cdots \supset C_n = 0$$

such that $C_i/C_{i+1} = A/\mathfrak{p}_i$ for some non-zero prime ideal \mathfrak{p}_i and actually, such prime ideals are maximal ideals (the existence of this filtration is in Professor Qiu's notes Proposition 4.11 P75 and since A is an integral domain of dimension 1, every non-zero prime ideal is a maximal ideal). Hence C is of finite length clearly. For any $0 \neq a \in A$ and any positive integer n, we have an exact sequence

$$E/a^nE \longrightarrow M/a^nM \longrightarrow C/a^nC \longrightarrow 0$$

this gives

$$(4) l(M/a^n M) \leqslant l(E/a^n E) + l(C)$$

Since M and E are torsion-free, we have $a^i E/a^{i+1}E \cong E/aE$ and similar for M, then we may rewrite the equation 4 into

(5)
$$nl(M/aM) \leqslant nl(E/a^n E) + l(C)$$

for each n. Thus $l(M/aM) \leq l(E/aE)$. Note that $E \cong A^r$, hence l(E/aE) = rl(A/aA). This completes the proof in the case finitely generated modules.

In general case, take any finitely generated submodule \overline{N} in M/aM and let N be the preimage of \overline{N} in M, which is finitely generated. Then

$$l(\overline{N}) = l(N/(N \cap aM)) \leqslant l(N/aN) \leqslant rl(A/aA)$$

Since this inequation is independence of the choice of finitely generated submodules in M/aM, so that \overline{M} is in fact finitely generated, otherwise we can find a finitely generated submodule in \overline{M} of arbitrarily length. Hence $l(M/aM) \leq rl(A/aA)$. \square

Remark 5.8. We need C to be torsion, otherwise, consider $C = \mathbb{Z}^2$ and $A = \mathbb{Z}$, which is not of finite length.

Now we prove the theorem.

Proof of the theorem. We may replace the field L by the fraction field of B. For any non-zero ideal I in B, I is a finite rank A-module. Take $0 \neq a \in I \cap A$, $l(I/aI) \leq l(A/aA)$. By Krull's principal ideal theorem, A/aA is of dimension 0, then A/aA is an Artinian ring (Noetherian and dimension 0), hence l(A/aA) is finite. Thus l(I/aI) is finite i.e. I/aI is a finite length A-module. Moreover, I is a finitely generated B-module.

Remark 5.9. Actually, such B is of dimension at most 1. If P is a non-zero prime ideal in B, B/P is a Noetherian domain of dimension 0 i.e. an Artinian ring, therefore B/P is a field, namely P is a maximal ideal and dim B=1.

6. Divisor on curves

Definition 6.1. Let $f: X \to Y$ be a finite morphism between smooth curves. We define

$$f^* : \text{Weil} Y \to \text{Weil} X$$

as follows, for any closed point $Q \in Y$, let t be a local parameter of Q i.e. a generator of the prime ideal in the DVR \mathcal{O}_Q , then define

$$f^*Q = \sum_{f(P)=Q} v_P(f^*(t))[P]$$

where P are closed points and note that f induces a morphism at stalk-level $\mathscr{O}_P \to \mathscr{O}_Q$.

We can extend this definition from prime divisors to any divisor freely.

Remark 6.2. f^*Q is independent of the choice of local parameter t because two local parameters is in difference of a unit in the local ring.

Since f is a finite morphism, then $f^{-1}(Q)$ is a finite set, hence it is well defined.

For a principal divisor $\operatorname{div}(f)$ in Y, $f^*(\operatorname{div}(g)) = \operatorname{div}(g \circ f)$ (we may identify $g \circ f$ as the image of g via the morphism induced by f at the sheaf-level. Hence, we actually have a morphism

$$f^* : \mathrm{Cl}(Y) \to \mathrm{Cl}(X)$$

Proposition 6.1. Let $f: X \to Y$ be a finite morphism between smooth curves, the the degree of field extension $K(Y) \hookrightarrow K(X)$ induced by f is called **the degree of** f, denoted by $\deg f$. Then for any divisor $D \in \operatorname{Weil}(X)$, we have

$$\deg(f^*D) = \deg(f) * \deg(D)$$

Corollary 6.1. For a principle divisor div(h) on X, deg(h) = 0. Hence there is a surjective homomorphism

$$deg: Cl(X) \to \mathbb{Z}$$

However, in general, deg is not injective. Next we will show the necessary and sufficient condition that deg is injective.

Example 6.3. Let X be a projective and smooth curve, then if there exists a pair of distinct closed points $P, Q \in X$ such that $P - Q = \operatorname{div}(h)$ for some $h \in K(X)$, then $X \simeq \mathbb{P}^1$ i.e X is birational equivalent to a projective line. Hence $cl(X) \cong \mathbb{Z}$ if and only if $X \simeq \mathbb{P}^1$.

First, $\operatorname{div}(h) = P - Q$ means for a rational function h on X, h has a simple zero at P and a simple pole at Q.

Fact, there is a rational map $\varphi: X \to \mathbb{P}^1$ corresponds to the field extension $K(t) \to K(X)$ by sending $t \mapsto h$ i.e. on the level of closed points, we have

(6)
$$\varphi(\alpha) = \begin{cases} [1:h(\alpha)] & h(\alpha) \neq 0 \\ [0:1] & h(\alpha) = 0 \end{cases}$$

Hence $\varphi^*([1:0] = P$ while $varphi^*([0:1]) = Q$. Recall Proposition 6.1, we have

$$1 = \deg(\varphi^*([1:0]) = \deg \phi * 1$$

thus $\deg \varphi = 1$ and then $K(X) = K(t), X, \mathbb{P}^1$ are birational.

Example 6.4. Elliptic curves Elliptic curves are smooth cubic curves (degree 3) in \mathbb{P}^2_k . For simplicity, assume $\operatorname{char} k \neq 2$, then it can be described by

$$y^2 = 4x^3 + g_2x + g_3$$

(it can be homogenized by replace x, y by x/z, y/z). This form is called **Weierstrass form**. Now to describe the group structure on the set of closed points of elliptic curve E. Let $\mathrm{Cl}^0(E)$ be the kernel of $\deg \colon \mathrm{Cl}(E) \to \mathbb{Z}$ and we will show there is an 1-1 correspondence between E and $\mathrm{Cl}^0(E)$. (Here we abuse of notation: E means the set of closed points in E, when we want to take it as a group).

We just consider the special case of elliptic curves

$$y^2z - x^3 + xz^2 = 0$$

then let $P_0 = [0:1:0] \in E$ and $\div(z) = 3P_0$ on E due to the following equations

$$\begin{cases} y^2z - x^3 + xz^2 = 0\\ z = 0 \end{cases}$$

have 3 zeros at z = 0, x = 0.

Then let $L \subset \mathbb{P}^2$ be a line ax + by + cz = 0 and let l = ax + by + cz and $L = \div(l)$ on \mathbb{P}^2 . According to Bezout's theorem and a line is of degree 1, $L \cap E$ has 3 points (including multiplicities, then we have

$$\div(\frac{l}{z}) = P + Q + R - 3P_0$$

which means that

$$[P+Q+R] \sim 3[P_0]$$

on E. Note that $deg(P - P_0) = 0$ for any point P, hence $P - P_0 \in Cl^{0}(E)$, then we give a map $\alpha : E \to Cl^{0}(E)$ by

$$P \mapsto [P - P_0]$$

Now claim that it is injective: if $P - P_0 \sim Q - P_0$, then $P - Q \sim \div(f)$ for some rational function f, if $P \neq Q$, then $E \simeq \mathbb{P}^1$ by $F \colon E \to \mathrm{Cl}^0(E)$

$$x \mapsto [1:f(x)]$$

when $x \neq Q$ and $Q \mapsto [0:1]$ and note that F * ([1:0]) = P, thus deg F = 0. However, an elliptic curve is not rational, which leads to contradiction. Therefore, we must have P = Q.

Next to show it is surjective: For any $D = \sum n_i P_i \in \text{Cl}^0(E)$ with $\sim n_i = 0$, then

$$\sum n_i P_i = \sum n_i (P_i - P_0)$$

let L be a line in \mathbb{P}^2 determined by P_0 and P_i , and let P_0, P_i, R_i be $L \cap E$ and

$$(7) P_0 + P_i + R_i \sim 3P_0$$

Hence $P_i - P_0 \sim -(R_i - P_0)$.

Then if $n_i < 0$, we may replace $P_i - P_0$ by $-(R_i - P_0)$ so that we may assume $n_i \ge 0$. In particular, $\sum n_i \ge 0$. If $\sum n_i = 1$ with all $n_i \ge 0$, then $D = P_i - P_0$, which is in the image. Now we argue by induction on $\sum n_i$.

Observe that $P_1 - P_0 + P_2 - P_0 \sim P_0 - R$ for some R (recall the relation 7, we get such R be consider the intersection between E and a line determined by P_1, P_2) Then there is a point T such that $T - P_0 \sim P_0 - R$ by consider the intersection between the E and the line given by T, P_0 . Then we can use this observation to proceed the induction.

References

[Ati69] Michael Atiyah, Introduction to commutative algebra, Addison-Wesley, 1969.

SUSTECH

Email address: 11711505@mail.sustech.edu.cn