Série nº 1

Exercice 1. Écrire la négation des assertions suivantes :

- 1. Toute les applications impaires sont monotones.
- 2. $\forall \varepsilon > 0 \ \exists \alpha > 0 \ |x + \frac{3}{2}| < \alpha \Rightarrow |2x + 3| < \varepsilon$.
- 3. $\bar{P} \vee Q$, $\bar{P} \wedge \bar{Q}$, $P \vee (Q \wedge R)$, $P \wedge (Q \wedge R)$

Exercice 2. Soient les assertions suivantes :

- $\mathbf{a} \ \exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0$
- $\mathbf{b} \ \forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad x + y > 0;$
- $\mathbf{c} \ \forall x \in \mathbb{R} \ \ \forall y \in \mathbb{R} \ \ x + y > 0;$
- $\mathbf{d} \ \exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad y^2 > x.$
- 1. Les assertions a, b, c, d sont-elles vraies ou fausses?
- 2. Donner leur négation.
- 3. Montrer que les assertions $P \wedge Q$ et $\overline{P \Rightarrow Q}$ sont équivalentes.
- 4. Montrer que

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \text{ tel que } \left(n \geq N \Rightarrow 3 - \varepsilon < \frac{3n+1}{n+1} < 3 + \varepsilon \right).$$

Exercice 3.

- 1. Soit $n \in \mathbb{N}$, montrer que n^2 est impair $\Rightarrow n$ est impair.
- 2. Soit $n \in \mathbb{N}$, montrer que $\sum_{k=0}^{n} k^2 = \left(\frac{n^2(n+1)}{4}\right) = \frac{n(n+1)(3n+2)}{6}$
- 3. Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}^{\P}$, montrer que $a + b\sqrt{2} = 0 \Rightarrow a = b = 0$.
- 4. Soit l'assertion P(x) définie par : $\forall x \in \mathbb{R}$ $x^2 + 2x + 1 \neq 0$. Montrer que P(x) est fausse.
- 5. E étant un ensemble non vide. Montrer de façon directe et par contraposition que :

$$\forall A, B \in \mathscr{P}(E) \quad (A \cap B = A \cup B) \Rightarrow A = B.$$

Exercice 4. Montrer que si F et G'sont des sous-ensembles de E:

- 1. $F \subset G \Leftrightarrow F \cup G = G \Leftrightarrow C_E(F) \cup G = E_F$
- 2. En déduire que $F \subset G \Leftrightarrow F \cap G = F \Leftrightarrow F \cap \mathcal{C}_E(G) = \emptyset$.

Exercice 5. On appelle fonction caractéristique de A, partie de l'ensemble E, une application f de E dans l'ensemble à deux éléments $\{0,1\}$, telle que

$$f(x) = 0$$
 si $x \notin A$
 $f(x) = 1$ si $x \in A$

Soit A et B deux parties de E et leurs fonctions caractéristiques f et g. Quels sont les ensembles A_1, A_2, A_3 dont les fonctions caractéristiques sont :

- a) 1 f
- b) fg;
- c) f+g-fg.

Exercice 6. Soit un ensemble E et deux parties A et B de E

- a) Démontrer que $A\Delta B = \mathbb{C}_A(A\cap B) \cup \mathbb{C}_B(A\cap B)$.
- b) Démontrer que quelles que soient les parties $A,B_{\mathcal{S}}C$ de E

$$(A\Delta B)\Delta C = A\Delta (B\Delta C)$$

- c) Démontrer qu'il existe une partie unique X de E telle que
- i) pour toute partie A de $E: A\Delta X = X\Delta A = A$
- ii) il existe une partie unique A' de E telle que

$$A\Delta A' = A'\Delta A - A$$

Exercice 7. Soit $f: E \to F$ une application, A, B deux parties de E et C, D deux parties de F. Montrer les proprietés suivantes :

- 1. $A \subset B \Rightarrow f(A) \subset f(B)$
- $2. \ f(A \cup B) = f(A) \cup f(B).$
- 3. $f(A \cap B) \subset f(A) \cap f(B)$.
- 4. $C \subset D \Rightarrow f^{-1}(C) \subset f^{-1}(D)$. 5. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$. 6. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- 7. $f^{-1}(\overline{C}) = \overline{f^{-1}(C)}$
- 8. $A \subset f^{-1}(f(A))$.

Exercice 8. Soit E un ensemble et $a \in E$. On considère l'application $f : \mathcal{P}(E) \to \mathcal{P}(E)$

$$X \mapsto \begin{cases} X \cup \{a\} & \text{si } a \notin X \\ X - \{a\} & \text{si } a \in X \end{cases} .$$

- 1) Déterminer $f^{-1}(\{\emptyset\})$ et $f^{-1}(\{E\})$.
- 2) Montrer que f est bijective.

Exercice 9. Soit \Re une relation binaire définie sur l'ensemble des nombres entiers $\mathbb Z$ par :

$$\forall x, y \in \mathbb{Z} \quad x\Re y \Leftrightarrow x^2 - y^2 \neq x - y$$

- 1. Montrer que \Re est une relation d'équivalence sur \mathbb{Z} .
- 2. Déterminer la classe d'équivalence de chaque élément $a \in \mathbb{Z}$.
- 3. En déduire une partition de Z. k

Exercice 10. Soit $f: X \to Y$ une application.

a. Montrer que pour toute famille $(B_i)_{i\in I}$ de parties de Y,

$$f^{-1}\left(\bigcup_{i\in I}B_i\right)=\bigcup_{i\in I}f^{-1}\left(B_i\right),\quad f^{-1}\left(\bigcap_{i\in I}B_i\right)=\bigcap_{i\in I}f^{-1}\left(B_i\right)$$

- b. Montrer que pour toute famille $(A_i)_{i\in I}$ de parties de X, $f\left(\bigcup_{i\in I}A_i\right)=\bigcup_{i\in I}f\left(A_i\right)$.
- c. Montrer que si f est injective, $f\left(\bigcap_{i\in I}A_i\right)=\bigcap_{i\in I}f\left(A_i\right)$

Montrer par un contre-exemple que l'égalité précédente est fausse en général

Exercice 11. Vérifier si les applications suivantes sont injectives? Surjectives?

1.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \rightarrow x^3 - x$$

$$2. \quad g: \mathbb{R}^2 \to \mathbb{R}^2$$

1.
$$f: \mathbb{R} \to \mathbb{R}$$
 2. $g: \mathbb{R}^2 \to \mathbb{R}^2$ 3. $h: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ $(x,y) \to (x+y,x-y)$ $(m,n) \to 2^m 3^n$

3.
$$h: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$(m,n) \rightarrow 2^m 3^n$$

Série nº 2

Exercice 1. On définit sur \mathbb{R}^2 la relation \mathcal{R} par :

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow x+y=x'+y'$$

1- Montrer que $\mathcal R$ une relation d'équivalence.

2- Trouver la classe d'équivalence du couple (0,0).

Exercice 2. Montrer que la relation binaire définie par :

$$x\mathcal{R}y \Leftrightarrow f(x) \leqslant f(\mathbf{y})$$

Est une relation d'ordre.

Exercice 3. Soit \mathcal{R} la relation définie sur $]1, +\infty[$ par :

$$x\mathcal{R}y \Leftrightarrow \frac{x}{1+x^2} \geqslant \frac{y}{1+y^2}$$

Montrer que R est une relation d'ordre total.

Exercice 4.

On définit la relation \mathcal{R} sur \mathbb{N}^* par $p\mathcal{R}q \iff \exists k \in \mathbb{N}^*$. $q = p^k$. Montrer que \mathcal{R} définit un ordre partiel sur \mathbb{N}^* .

Exercice 5. Soit $n \in \mathbb{N}^*$. On définit dans \mathbb{Z} la relation \Re_n définie-par :

$$\forall x, y \in \mathbb{Z} : x \mathfrak{R}_n y \Leftrightarrow \exists k \in \mathbb{Z} : x - y = kn$$

1. Montrer que \Re_n est une relation d'équivalence sur \mathbb{Z} .

2. Montrer que $\forall x \in \mathbb{Z}, \exists r \in \mathbb{Z}: 0 \leqslant r < n \text{ et } \overline{\mathbf{x}} = \bar{r}$

3. En déduire que l'ensemble des classes d'équivalences qu'on note $\mathbb{Z}/n\mathbb{Z}$ est $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$.

Exercice 6. Soit \Re une retation définie sur \mathbb{N}^* par $\forall a, b \in \mathbb{N}^* : a\Re b \Leftrightarrow \exists k \in \mathbb{N}^* : b = a^k$.

1. Montrer que \Re est une relation d'ordre sur \mathbb{N}^* .

2. L'ordre est il total?

Algèbre 1.

Série nº 3

Exercice 1. Soit $E := \mathbb{R}^{\mathbb{R}}$ l'ensemble des applications de \mathbb{R} dans \mathbb{R} .

On considère la relation \leq définie sur E par : pour tout $f, g \in E : f \leq g \iff \forall x \in \mathbb{R}, \quad f(x) \leq g(x)$ Montrer que \leq est une relation d'ordre sur E. Cet ordre est-il partiel? total?

Exercice 2. Montrer que la relation \mathcal{R} définie sur \mathbb{R} par : $x\mathcal{R}y \iff xe^y = ye^x$ est une relation d'équivalence. Préciser, pour x fixé dans \mathbb{R} , le nombre d'éléments de la classe de x modulo \mathcal{R} .

Exercice 3. Soit E un ensemble et A une partie de E. On définit une relation \mathcal{R} sur $\mathcal{P}(E)$ par :

$$XRY \Leftrightarrow X \cup A = Y \cup A$$

- 1- Montrer que \mathcal{R} est une relation d'équivalence
- 2- Décrire la classe d'équivalence de $X \in \mathcal{P}(E)$

Exercice 4. Trouver toutes les solutions dans \mathbb{Z} :

1. $2x + 3 \equiv 10[13]$;

2.
$$\begin{cases} 2x + 3y \equiv 5[7] \\ 5x + 2y \equiv 2[7]; \end{cases}$$

3.
$$x^2 + 2x + 14 \equiv 0$$
[17].

Exercice 5.

Soit p = 2m + 1 un nombre premier. Montrer que :

1.
$$(p-1)! \equiv -1[p]$$
;

2.
$$(m!)^2 \equiv (-1)^{m+1}[p]$$
.

Exercice 6. Soit $n \in \mathbb{N}^*$.

Montrer que si n est impair alors 7^n+1 est divisible par 8. Pour n pair donner le reste de cette division.

Exercice 7. On pose

$$f: \mathbb{Z}/256\mathbb{Z} \to \mathbb{Z}/256\mathbb{Z}$$
$$x \mapsto 137x + 187$$

et pour $n \in \mathbb{N}^*$, on note $f^{(n)}$ la fonction f itérée n-fois, c'est-à-dire $\underbrace{f \circ f \circ \cdots \circ f \circ f}_{n \text{ fois}}$.

- 1- Calculer $f^{(2)}$
- 2- Montrer par récurrence sur $k \in \mathbb{N}$ qu'il existe des suites $(a_k)_{k \in \mathbb{N}}$ et $(b_k)_{k \in \mathbb{N}}$ d'éléments de $\mathbb{Z}/256\mathbb{Z}$ telles que : $f^{(2^k)}(x) = a_k x + b_k$, pour tout $x \in \mathbb{Z}/256\mathbb{Z}$ (on précisera la valeur de a_{k+1} en fonction de a_k et de b_k).
- 3- Calculer les valeurs de a_k et de b_k pour $0 \le k \le 8$ (il est conseillé de présenter le résultat sous la forme d'un tableau). En déduire que pour tout $x \in \mathbb{Z}/256\mathbb{Z}$, on a $f^{(256)}(x) = x$.

Exercice 8.

- 1. Déterminer les restes de la division de 5^p par 13 pour p entier naturel.
- 2. En déduire que pour tout entier naturel n supérieur ou égal à 1, le nombre $N=31^{4n+1}+18^{4n-1}$ est divisible par 13.

Exercice 9.

- 1- Démontrer que a $\mid b$ si et seulement si pour tout k de \mathbb{Z} , $a \mid (b-ka)$.
- 2- Déterminer les entiers relatifs a, tels que $(a-5) \mid (a+7)$. 3- Calculer pour tout entier naturel n non nul :
 - PGCD(n, 2n+1) et PPCM(n, 2n+1),
 - PGCD(2n+2,4n+2) et PPCM(2n+2,4n+2).