Maximum Likelihood Learning

Stefano Ermon, Yang Song

Stanford University

Lecture 4

Learning a generative model

We are given a training set of examples, e.g., images of dogs

- We want to learn a probability distribution p(x) over images x such that
 - **Generation:** If we sample $x_{new} \sim p(x)$, x_{new} should look like a dog (sampling)
 - **Density estimation:** p(x) should be high if x looks like a dog, and low otherwise (anomaly detection)
 - Unsupervised representation learning: We should be able to learn what these images have in common, e.g., ears, tail, etc. (features)
- First question: how to represent $p_{\theta}(x)$. Second question: how to learn it.

Setting

- ullet Lets assume that the domain is governed by some underlying distribution $P_{
 m data}$
- ullet We are given a dataset ${\cal D}$ of \emph{m} samples from $\emph{P}_{
 m data}$
 - Each sample is an assignment of values to (a subset of) the variables, e.g., $(X_{\rm bank}=1,X_{\rm dollar}=0,...,Y=1)$ or pixel intensities.
- The standard assumption is that the data instances are independent and identically distributed (IID)
- We are also given a family of models \mathcal{M} , and our task is to learn some "good" model $\hat{\mathcal{M}} \in \mathcal{M}$ (i.e., in this family) that defines a distribution $p_{\hat{\mathcal{M}}}$
 - For example, all Bayes nets with a given graph structure, for all possible choices of the CPD tables
 - For example, a FVSBN for all possible choices of the logistic regression parameters. $\mathcal{M} = \{P_{\theta}, \theta \in \Theta\}$, $\theta =$ concatenation of all logistic regression coefficients

Goal of learning

- ullet The goal of learning is to return a model $\hat{\mathcal{M}}$ that precisely captures the distribution P_{data} from which our data was sampled
- This is in general not achievable because of
 - limited data only provides a rough approximation of the true underlying distribution
 - computational reasons
- Example. Suppose we represent each image with a vector X of 784 binary variables (black vs. white pixel). How many possible states (= possible images) in the model? $2^{784} \approx 10^{236}$. Even 10^7 training examples provide extremely sparse coverage!
- We want to select $\hat{\mathcal{M}}$ to construct the "best" approximation to the underlying distribution P_{data}
- What is "best"?

What is "best"?

This depends on what we want to do

- Density estimation: we are interested in the full distribution (so later we can compute whatever conditional probabilities we want)
- ② Specific prediction tasks: we are using the distribution to make a prediction
 - Is this email spam or not?
 - Predict next frame in a video
- 3 Structure or knowledge discovery: we are interested in the model itself
 - How do some genes interact with each other?
 - What causes cancer?
 - Take CS 228

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\rm data}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\rm data}$)

$$x_i \sim P_{\text{data}}$$

 $i = 1, 2, ..., n$

 $\theta \in M$

Model family

• How do we evaluate "closeness"?

KL-divergence

- How should we measure distance between distributions?
- The Kullback-Leibler divergence (KL-divergence) between two distributions p and q is defined as

$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}.$$

• $D(p \parallel q) \ge 0$ for all p, q, with equality if and only if p = q. Proof:

$$\mathsf{E}_{\mathsf{x} \sim p} \left[-\log \frac{q(\mathsf{x})}{p(\mathsf{x})} \right] \ge -\log \left(\mathsf{E}_{\mathsf{x} \sim p} \left[\frac{q(\mathsf{x})}{p(\mathsf{x})} \right] \right) = -\log \left(\sum_{\mathsf{x}} p(\mathsf{x}) \frac{q(\mathsf{x})}{p(\mathsf{x})} \right) = 0$$

- Notice that KL-divergence is **asymmetric**, i.e., $D(p||q) \neq D(q||p)$
- Measures the expected number of extra bits required to describe samples from p(x) using a code based on q instead of p

Detour on KL-divergence

- To compress, it is useful to know the probability distribution the data is sampled from
- For example, let X_1, \dots, X_{100} be samples of an unbiased coin. Roughly 50 heads and 50 tails. Optimal compression scheme is to record heads as 0 and tails as 1. In expectation, use 1 bit per sample, and cannot do better
- Suppose the coin is biased, and $P[H] \gg P[T]$. Then it's more efficient to uses fewer bits on average to represent heads and more bits to represent tails, e.g.
 - Batch multiple samples together
 - Use a short sequence of bits to encode HHHH (common) and a long sequence for TTTT (rare).
 - Like Morse code: $E = \bullet$, $A = \bullet -$, $Q = - \bullet -$
- KL-divergence: if your data comes from p, but you use a scheme optimized for q, the divergence $D_{KL}(p||q)$ is the number of extra bits you'll need on average

Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query
- In this setting we can view the learning problem as density estimation
- We want to construct P_{θ} as "close" as possible to $P_{\rm data}$ (recall we assume we are given a dataset \mathcal{D} of samples from $P_{\rm data}$)
- How do we evaluate "closeness"?
- KL-divergence is one possibility:

$$\mathsf{D}(P_{\mathrm{data}}||P_{\theta}) = \mathsf{E}_{\mathsf{x} \sim P_{\mathrm{data}}} \left[\mathsf{log} \left(\frac{P_{\mathrm{data}}(\mathsf{x})}{P_{\theta}(\mathsf{x})} \right) \right] \\ = \sum_{\mathsf{x}} P_{\mathrm{data}}(\mathsf{x}) \mathsf{log} \frac{P_{\mathrm{data}}(\mathsf{x})}{P_{\theta}(\mathsf{x})}$$

- $D(P_{data}||P_{\theta}) = 0$ iff the two distributions are the same.
- ullet It measures the "compression loss" (in bits) of using $P_{ heta}$ instead of P_{data} .

Expected log-likelihood

• We can simplify this somewhat:

$$\begin{array}{lcl} \mathsf{D}(P_{\mathrm{data}}||P_{\theta}) & = & \mathsf{E}_{\mathsf{x} \sim P_{\mathrm{data}}} \left[\mathsf{log} \left(\frac{P_{\mathrm{data}}(\mathsf{x})}{P_{\theta}} \right) \right] \\ & = & \mathsf{E}_{\mathsf{x} \sim P_{\mathrm{data}}} \left[\mathsf{log} \, P_{\mathrm{data}}(\mathsf{x}) \right] - \mathsf{E}_{\mathsf{x} \sim P_{\mathrm{data}}} \left[\mathsf{log} \, P_{\theta}(\mathsf{x}) \right] \end{array}$$

- The first term does not depend on P_{θ} .
- Then, minimizing KL divergence is equivalent to maximizing the expected log-likelihood

$$\arg\min_{P_{\theta}} \mathsf{D}(P_{\mathrm{data}}||P_{\theta}) = \arg\min_{P_{\theta}} -\mathsf{E}_{\mathsf{x} \sim P_{\mathrm{data}}} \left[\log P_{\theta}(\mathsf{x}) \right] = \arg\max_{P_{\theta}} \mathsf{E}_{\mathsf{x} \sim P_{\mathrm{data}}} \left[\log P_{\theta}(\mathsf{x}) \right]$$

- Asks that P_{θ} assign high probability to instances sampled from $P_{\rm data}$, so as to reflect the true distribution
- Because of log, samples x where $P_{\theta}(x) \approx 0$ weigh heavily in objective
- ullet Although we can now compare models, since we are ignoring H($P_{\rm data}$), we don't know how close we are to the optimum
- Problem: In general we do not know $P_{\rm data}$.

Maximum likelihood

Approximate the expected log-likelihood

$$\mathsf{E}_{\mathsf{x} \sim P_{\mathrm{data}}} \left[\mathsf{log} \, P_{\theta}(\mathsf{x}) \right]$$

with the empirical log-likelihood:

$$\mathsf{E}_{\mathcal{D}}\left[\log P_{\theta}(\mathsf{x})\right] = \frac{1}{|\mathcal{D}|} \sum_{\mathsf{x} \in \mathcal{D}} \log P_{\theta}(\mathsf{x})$$

• Maximum likelihood learning is then:

$$\max_{P_{\theta}} \ \frac{1}{|\mathcal{D}|} \sum_{\mathsf{x} \in \mathcal{D}} \log P_{\theta}(\mathsf{x})$$

• Equivalently, maximize likelihood of the data $P_{\theta}(\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(m)}) = \prod_{\mathbf{x} \in \mathcal{D}} P_{\theta}(\mathbf{x})$

Main idea in Monte Carlo Estimation

Express the quantity of interest as the expected value of a random variable.

$$E_{x \sim P}[g(x)] = \sum_{x} g(x)P(x)$$

- **②** Generate T samples $x^1, ..., x^T$ from the distribution P with respect to which the expectation was taken.
- Stimate the expected value from the samples using:

$$\hat{g}(\mathbf{x}^1, \cdots, \mathbf{x}^T) \triangleq \frac{1}{T} \sum_{t=1}^T g(\mathbf{x}^t)$$

where $x^1, ..., x^T$ are independent samples from P. Note: \hat{g} is a random variable. Why?

Properties of the Monte Carlo Estimate

• Unbiased:

$$E_P[\hat{g}] = E_P[g(x)]$$

• Convergence: By law of large numbers

$$\hat{g} = \frac{1}{T} \sum_{t=1}^{T} g(x^t) \rightarrow E_P[g(x)] \text{ for } T \rightarrow \infty$$

Variance:

$$V_P[\hat{g}] = V_P\left[\frac{1}{T}\sum_{t=1}^T g(x^t)\right] = \frac{V_P[g(x)]}{T}$$

Thus, variance of the estimator can be reduced by increasing the number of samples.

Example

Single variable example: A biased coin

- Two outcomes: heads (H) and tails (T)
- Data set: Tosses of the biased coin, e.g., $\mathcal{D} = \{H, H, T, H, T\}$
- Assumption: the process is controlled by a probability distribution $P_{\text{data}}(x)$ where $x \in \{H, T\}$
- Class of models \mathcal{M} : all probability distributions over $x \in \{H, T\}$.
- Example learning task: How should we choose $P_{\theta}(x)$ from \mathcal{M} if 60 out of 100 tosses are heads in \mathcal{D} ?

MLE scoring for the coin example

We represent our model: $P_{\theta}(x = H) = \theta$ and $P_{\theta}(x = T) = 1 - \theta$

- Example data: $\mathcal{D} = \{H, H, T, H, T\}$
- Likelihood of data $=\prod_i P_{\theta}(x_i) = \theta \cdot \theta \cdot (1-\theta) \cdot \theta \cdot (1-\theta)$

• Optimize for θ which makes \mathcal{D} most likely. What is the solution in this case?

MLE scoring for the coin example: Analytical derivation

Distribution:
$$P_{\theta}(x = H) = \theta$$
 and $P_{\theta}(x = T) = 1 - \theta$

More generally, log-likelihood function

$$\begin{array}{lcl} \textit{L}(\theta) & = & \theta^{\# \textit{heads}} \cdot (1 - \theta)^{\# \textit{tails}} \\ \log \textit{L}(\theta) & = & \log(\theta^{\# \textit{heads}} \cdot (1 - \theta)^{\# \textit{tails}}) \\ & = & \# \textit{heads} \cdot \log(\theta) + \# \textit{tails} \cdot \log(1 - \theta) \end{array}$$

- MLE Goal: Find $\theta^* \in [0,1]$ such that $\log L(\theta^*)$ is maximum.
- Differentiate the log-likelihood function with respect to θ and set the derivative to zero. We get:

$$\theta^* = \frac{\# heads}{\# heads + \# tails}$$

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

$$P_{\theta}(\mathsf{x}) = \prod_{i=1}^{n} p_{\text{neural}}(\mathsf{x}_{i}|\mathsf{x}_{< i};\theta_{i})$$

 $\theta = (\theta_1, \dots, \theta_n)$ are the parameters of all the conditionals. Training data $\mathcal{D} = \{x^{(1)}, \dots, x^{(m)}\}$. Maximum likelihood estimate of the parameters θ ?

Decomposition of Likelihood function

$$L(\theta, \mathcal{D}) = \prod_{j=1}^m P_{\theta}(\mathsf{x}^{(j)}) = \prod_{j=1}^m \prod_{i=1}^n p_{\text{neural}}(\mathsf{x}_i^{(j)}|\mathsf{x}_{< j}^{(j)}; \theta_i)$$

- Goal : maximize $\arg\max_{\theta} L(\theta, \mathcal{D}) = \arg\max_{\theta} \log L(\theta, \mathcal{D})$
- We no longer have a closed form solution

MLE Learning: Gradient Descent

$$L(\theta, \mathcal{D}) = \prod_{j=1}^{m} P_{\theta}(\mathsf{x}^{(j)}) = \prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text{neural}}(\mathsf{x}_{i}^{(j)}|\mathsf{x}_{< i}^{(j)}; \theta_{i})$$

Goal : maximize $\arg\max_{\theta} L(\theta, \mathcal{D}) = \arg\max_{\theta} \log L(\theta, \mathcal{D})$

$$\ell(\theta) = \log L(\theta, \mathcal{D}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text{neural}}(x_i^{(j)} | \mathbf{x}_{< i}^{(j)}; \theta_i)$$

- Initialize $\theta^0 = (\theta_1, \dots, \theta_n)$ at random
- **2** Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)

Non-convex optimization problem, but often works well in practice

MLE Learning: Stochastic Gradient Descent

$$\ell(\theta) = \log L(\theta, \mathcal{D}) = \sum_{i=1}^{m} \sum_{i=1}^{n} \log p_{\text{neural}}(x_i^{(j)} | \mathbf{x}_{< i}^{(j)}; \theta_i)$$

- **1** Initialize θ^0 at random
- **2** Compute $\nabla_{\theta} \ell(\theta)$ (by back propagation)

What is the gradient with respect to θ_i ?

$$\nabla_{\theta_i} \ell(\theta) = \sum_{j=1}^m \nabla_{\theta_i} \sum_{i=1}^n \log p_{\text{neural}}(x_i^{(j)} | \mathsf{x}_{< j}^{(j)}; \theta_i) = \sum_{j=1}^m \nabla_{\theta_i} \log p_{\text{neural}}(x_i^{(j)} | \mathsf{x}_{< j}^{(j)}; \theta_i)$$

Each conditional $p_{\text{neural}}(x_i|\mathbf{x}_{< i};\theta_i)$ can be optimized separately if there is no parameter sharing. In practice, parameters θ_i are shared (e.g., NADE, PixelRNN, PixelCNN, etc.)

MLE Learning: Stochastic Gradient Descent

$$\ell(\theta) = \log L(\theta, \mathcal{D}) = \sum_{i=1}^{m} \sum_{i=1}^{n} \log \rho_{\text{neural}}(x_i^{(j)} | \mathbf{x}_{< i}^{(j)}; \theta_i)$$

- Initialize θ^0 at random
- ② Compute $\nabla_{\theta}\ell(\theta)$ (by back propagation)
- $\theta^{t+1} = \theta^t + \alpha_t \nabla_{\theta} \ell(\theta)$

$$abla_{ heta}\ell(heta) = \sum_{j=1}^{m} \sum_{i=1}^{n}
abla_{ heta} \log p_{ ext{neural}}(x_i^{(j)}|\mathsf{x}_{< i}^{(j)}; heta_i)$$

What if $m = |\mathcal{D}|$ is huge?

$$\begin{array}{lcl} \nabla_{\theta}\ell(\theta) & = & m\sum_{j=1}^{m}\frac{1}{m}\sum_{i=1}^{n}\nabla_{\theta}\log p_{\mathrm{neural}}(x_{i}^{(j)}|x_{< i}^{(j)};\theta_{i}) \\ & = & mE_{x^{(j)}\sim\mathcal{D}}\left[\sum_{i=1}^{n}\nabla_{\theta}\log p_{\mathrm{neural}}(x_{i}^{(j)}|x_{< i}^{(j)};\theta_{i})\right] \end{array}$$

Monte Carlo: Sample $x^{(j)} \sim \mathcal{D}; \nabla_{\theta} \ell(\theta) \approx m \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text{neural}}(x_{i}^{(j)} | \mathbf{x}_{< j}^{(j)}; \theta_{i})$

Empirical Risk and Overfitting

- Empirical risk minimization can easily overfit the data
 - Extreme example: The data is the model (remember all training data).
- Generalization: the data is a sample, usually there is vast amount of samples that you have never seen. Your model should generalize well to these "never-seen" samples.
- Thus, we typically restrict the hypothesis space of distributions that we search over

Bias-Variance trade off

- If the hypothesis space is very limited, it might not be able to represent $P_{\rm data}$, even with unlimited data
 - This type of limitation is called bias, as the learning is limited on how close it can approximate the target distribution
- If we select a highly expressive hypothesis class, we might represent better the data
 - ullet When we have small amount of data, multiple models can fit well, or even better than the true model. Moreover, small perturbations on $\mathcal D$ will result in very different estimates
 - This limitation is call the variance.

Bias-Variance trade off

- There is an inherent **bias-variance trade off** when selecting the hypothesis class. Error in learning due to both things: bias and variance.
- Hypothesis space: linear relationship
 - Does it fit well? Underfits
- Hypothesis space: high degree polynomial
 - Overfits
- Hypothesis space: low degree polynomial
 - Right tradeoff

How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive model family:
 - Smaller neural networks with less parameters
 - Weight sharing

 $\theta \in M$

Model family

- Soft preference for "simpler" models: Occam Razor.
- Augment the objective function with regularization:

$$objective(x, M) = loss(x, M) + R(M)$$

Evaluate generalization performance on a held-out validation set

Conditional generative models

- Suppose we want to generate a set of variables Y given some others X, e.g., text to speech
- We concentrate on modeling p(Y|X), and use a **conditional** loss function

$$-\log P_{\theta}(y \mid x).$$

• Since the loss function only depends on $P_{\theta}(y \mid x)$, suffices to estimate the conditional distribution, not the joint

Recap

- For autoregressive models, it is easy to compute $p_{\theta}(x)$
 - Ideally, evaluate in parallel each conditional log $p_{\text{neural}}(x_i^{(j)}|x_{< i}^{(j)};\theta_i)$. Not like RNNs.
- Natural to train them via maximum likelihood
- Higher log-likelihood doesn't necessarily mean better looking samples
- Other ways of measuring similarity are possible (Generative Adversarial Networks, GANs)