学院:		班级:		姓名:	· · · · · · · · · · · · · · · · · · ·	学号:	
任课教师 (请务必填上):							
题号	_	=	三	四	五	总分	
得分							
一、选择题(本题共11小题,每小题3分,满分33分)							
1、若曲线上任意一点 (x,y) 处的切线斜率等于 $-\frac{2x}{y}$,则该曲线是()							
(A) 直线; (B) 抛物线; (C) 圆; (D) 椭圆. 2 、微分方程 $y'' + 2y' + 2y = e^{-x} \sin x$ 的特解形式为()							
(A) $e^{-x}(a\cos x + b\sin x);$ (B) $e^{-x}bx\sin x + ae^{-x}\cos x;$							
(C) $xe^{-x}(a\cos x + b\sin x);$ (D) $e^{-x}b\sin x + axe^{-x}\cos x.$							
3、向量 $\vec{b} = (1,1,-4)$ 在向量 $\vec{a} = (2,-2,1)$ 方向上的投影等于(
(A) $\frac{4}{3}$;	((B) $-\frac{4}{3}$;		(C) $\frac{8}{3}$;	(]	$-\frac{8}{3}$.	
4、与向量 $\vec{a}=(1,-1,0),\vec{b}=(0,2,1)$ 均垂直,且与 z 轴正向成锐角的单位向量是							
()							
(A) (-1,	-1,2);	(B) (1,1,	-2);	$(C)\frac{1}{\sqrt{6}}(-1)$, -1,2);	$(D)\frac{1}{\sqrt{6}}($	1,1,-2).
5、设 $u = 2xy - z^2$,则 u 在点(2, -1,1)处的方向导数最大值为()							
(A) 0 ;		(B) $\sqrt{6}$;		(C) $2\sqrt{6}$;		(D) $3\sqrt{6}$	
$6. \int_0^1 dx \int_0^{\sqrt{1-x^2}} dy = ($							
(A) 0 ;		(B) $\frac{\pi}{4}$;	(C)	$\frac{\pi}{2}$;	(D)	π .	
7、已知 $\Omega = \{(x,y,z) x^2 + y^2 \le 1, 0 \le z \le 2\}$,则 $\iint_{\Omega} z dv = ($							
(A) 2π ;		(B) π ;	(C) $\frac{\pi}{2}$;	(D	0.	
8、曲线积分 $\int_{L} (4x^3 + 2y^3) dx + 6xy^2 dy$ 的值() (A)与曲线 L 及其起点、终点都有关; (B)仅与曲线 L 的起点、终点有关; (C)与曲线 L 的起点、终点无关; (D)等于零.							
9、设Σ是柱面 $x^2 + y^2 = a^2$ 在 $0 \le z \le h$ 之间的部分,则 $\iint_{\Sigma} (x^2 + y^2) dS = 0$							
				(C) $2\pi a^4$	_		

10、幂级数 $\sum_{n=0}^{\infty} \frac{(-1)^n (x-1)^n}{3^n \cdot \sqrt{n+1}}$ 在收敛区间的两端点处(

- (A) 左端点发散,右端点收敛;
- (B) 左端点收敛, 右端点发散;

(C) 全是收敛的;

(D) 全是发散的.

11、设 $f(x) = x^3, x \in [0,1]$,而 $s(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x, x \in (-\infty, +\infty)$,其中 $a_n = -\infty$

 $2\int_0^1 f(x) \cos n\pi x \, dx$, $n = 0,1,2,\dots$, $\bigcup s(-1) = ($

- (A) -1;
- (B) **0**:
- (C) 1:
- (D) 2.

二、解答题(共67分)

1、(6 分)设 $\varphi(u,v,w)$ 有一阶连续偏导数,且z = z(x,y)是由 $\varphi(bz - cy,cx - az,ay - bx) = 0$ 确定的函数,求 $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y}$.

- 2、(6分) 已知 $z = \arctan \frac{y}{r}$,求dz.
- 3、(6分) 计算二次积分: $\int_0^1 y^2 dy \int_y^1 \frac{1}{\sqrt{1+x^4}} dx$.

4、(6 分) 求曲线 $\begin{cases} 3x^2 + 2y^2 = 12 \\ z = 0 \end{cases}$ 处的切平面方程.

5、(7分) 计算 $\int_L (x+y)dx + (y-x)dy$, 其中L是从点(1,1)到点(4,2)的直线段. 6、(7分)求椭圆 $x^2 + 2xy + 5y^2 - 16y = 0$ 与直线x + y - 8 = 0之间的最短距离.

7、(8分) 计算曲面积分 $\iint_{\Sigma} xzdydz + yzdzdx - (z^2 + 1)dxdy$,其中 Σ 是上半球面 $z = \sqrt{1 - x^2 - y^2}$ 的上侧.

8、(8 分) 已知曲线积分 $I = \int_L [e^x + 2f(x)]ydx - f(x)dy$ 与积分路径无关,且 f(0) = 0,求f(x).

9、(8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 3^n} x^n$ 的和函数.

10、(5 分) 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的系数当n > 1时满足 $a_{n-2} = n(n-1)a_n$,且 $a_0 = 4$, $a_1 = 1$,求幂级数的和函数y(x)及 a_n .