MATH 114 Final Exam Question 3

Brandon Tsang

April 14, 2020

- 3. Suppose S_1 and S_2 are 3-dimensional figures. The volume of S_1 is 10, and the volume of S_2 is 4. Also suppose that A_1 and A_2 are matrices such that A_1 transforms S_1 to S_3 and A_2 transforms S_2 to the same S_3 .
 - (a) Is $\frac{\det(A_1)}{\det(A_2)}$ guaranteed to exist? Explain.

The only way for $\frac{\det(A_1)}{\det(A_2)}$ to not exist is to have $\det(A_2)=0$. This would only be the case when S_3 has a volume of zero (i.e., A_2 transforms a shape of nonzero volume to one with zero volume). In all other cases, $\frac{\det(A_1)}{\det(A_2)}$ exists.

(b) If it does exist, what is it?

 A_1 transforms an object from one that has a volume of 10 to one that has a volume of $V \neq 0$. So its determinant must be $\frac{V}{10}$. Likewise, A_2 transforms an object from one that has a volume of 4 to one that has a volume of that same V. So its determinant must be $\frac{V}{4}$. Putting these together, we get

$$\frac{\det(A_1)}{\det(A_2)} = \frac{\frac{V}{10}}{\frac{V}{4}}$$
$$= \frac{4V}{10V}$$
$$= \frac{2}{5}$$