Fontes principais

- 1. J. Jaja, An introduction to Parallel Algorithms, Addison Wesley, 92
 - > Algoritmos paralelos
- 2. E. Cáceres, H. Mongeli, S. Song: Algoritmos paralelos usando CGM/PVM/MPI: uma introdução http://www.ime.usp.br/~song/papers/jai01.pdf

Técnicas de desenvolvimento de algoritmos paralelos

Método da árvore binária balanceada

O problema é decomposto em 2 subproblemas menores que são decompostos, cada um, em dois subproblemas menores, e assim sucessivamente, até chegarmos a subproblemas triviais.

A decomposição do problema é representada por uma árvore binária e balanceada

Método da árvore binária balanceada

O problema é resolvido de baixo para cima na árvore (dos subproblemas menores para os maiores).

Temos um passo de tempo no algoritmo para cada nível da árvore.

Método da árvore binária balanceada

Todos os subproblemas de um mesmo nível da árvore são resolvidos em paralelo.

Idéia:

- DO algoritmo determina o máximo de 2 em 2 elementos

Entrada:

```
\triangleright n: número de elementos do vetor = 2^n (senão, ajeitar)
```

 $\triangleright A$: vetor de n elementos $A[0] \cdots A[n-1]$

Estrutura auxiliar:

- $\triangleright B$: vetor com $2 \times n$ posições $B[0], \cdots B[2n-1]$
- \triangleright As n posições finais de B terão uma cópia de A.
- \triangleright As n posições iniciais de B terão máximos intermediários.
- \triangleright Ao final do algoritmo, B[1] terá o máximo de A.

Saída:

Algoritmo

 \triangleright Vetor A é copiado para a 2a. metade de B para $0 \le i \le n-1$ faça em paralelo B[n+i] := A[i]

Decided by Loop sequencial, para cada nível da árvore para $j := (\log_2 n) - 1$ até 0 faça

Decided by Loop paralelo, alocando um processador

Decided para cada subproblema deste nível

Decided para 2^j ≤ i ≤ 2^{j+1} − 1 faça em paralelo

B[i] := max(B[2i], B[2i+1])

maximo := B[1]

Exemplo: $n = 8 = 2^3$

Exemplo: $n = 8 = 2^3$

Submodelos e complexidade

- > EREW
- \triangleright Tempo: $O(\log_2 n)$ (loop mais externo, número de níveis da árvore)
- ightharpoonup Processadores: O(n) (número de vértices no último nível da árvore =n/2)
- \triangleright Custo: $O(n \log_2 n)$
- \triangleright Ótimo: Não, pois o tempo sequencial é O(n)

Solução genérica, para qualquer n:

- \triangleright *n* não é potência de 2
- \triangleright Obter n', menor potência de 2 maior que n: $n' = 2^{\lceil \log_2 n \rceil}$.
- \triangleright Ajeitar o vetor A, preenchendo posições de n a n'-1, com valores neutros em relação à operação a ser realizada.
- Neste caso, o valor neutro é qualquer valor que seja menor que o máximo.

Algoritmo

$$n':=2^{\lceil \log_2 n \rceil}$$
 para $n \leq i \leq n'-1$ faça em paralelo $A[i]:=A[i-n]-1$

Submodelo e Complexidade

- > EREW
- \triangleright Tempo: O(1)
- \triangleright Processadores: O(n)
- ▶ Não altera a complexidade do algoritmo original.

Idéia do algoritmo

- \triangleright Utilizar p < n processadores.
- \triangleright Os n elementos de A são divididos em p grupos de $\lceil n/p \rceil$ elementos.

 \triangleright Para determinar o máximo dos p números resultantes, aplicamos o algoritmo visto, substituindo n por p.

Entrada:

- \triangleright n: número de elementos do vetor, n é potência de 2.
- $\triangleright p$: número de processadores
- $\triangleright A$: vetor de n elementos $A[0], \cdots, A[n-1]$

Estrutura auxiliar:

 $\triangleright B$: vetor com $2 \times p$ posições $B[0], \dots, B[2 \times p-1]$

Armazena máximos intermediários. As p posições finais de B terão o elemento máximo de cada grupo de A. Ao final do algoritmo, B[1] conterá o valor do elemento máximo de A

Saída

 \triangleright máximo: valor do elemento máximo de A.

Algoritmo

```
ightharpoonup Loop paralelo, alocando um processador para cada grupo de elementos  \begin{aligned} \mathbf{para} &\ 0 \leq i \leq p-1 \ \mathbf{faça} \ \mathbf{em} \ \mathbf{paralelo} \\ &\ B[p+i] := A[i \times \lceil n/p \rceil] \\ &\  \triangleright \  \  \mathsf{Loop} \ \mathsf{sequencial}, \ \mathsf{para} \ \mathsf{determinar} \ \mathsf{o} \ \mathsf{máximo} \ \mathsf{de} \\ &\  \  \triangleright \  \mathsf{cada} \ \mathsf{grupo} \ \mathsf{de} \ A \ \mathsf{e} \ \mathsf{copiá-lo} \ \mathsf{para} \ \mathsf{o} \ \mathsf{vetor} \ B \\ &\  \  \mathsf{para} \ j := 1 \ \mathsf{at\'e} \ \lceil n/p \rceil - 1 \ \mathsf{fa\'e} \\ &\  \  \mathsf{se} \ A[i \times \lceil n/p \rceil + j] > B[p+i] \ \mathsf{ent\~ao} \\ &\  \  B[p+i] := A[i \times \lceil n/p \rceil + j] \end{aligned}
```

continuação ...

```
Decided Loop sequencial, para cada nível da árvore para j := (\log_2 p) - 1 até 0 faça

Decided Loop paralelo, alocando um processador

Decided para cada subproblema deste nível

Decided para 2<sup>j</sup> ≤ i ≤ 2<sup>j+1</sup> − 1 faça em paralelo

B[i] := max(B[2i], B[2i+1])
```

maximo := B[1]

Exemplo: $n = 16, p = 4, \lceil n/p \rceil = 4$

Submodelo: EREW

Complexidades:

- \triangleright Tempo: $O(\lceil n/p \rceil + \log_2 p)$
- \triangleright Processadores: O(p)

Fazendo
$$p = \frac{n}{\log_2 n}$$

Complexidades:

$$> \text{Tempo: } O\left(\left\lceil \frac{n}{\frac{n}{\log_2 n}}\right\rceil + \log_2 \frac{n}{\log_2 n}\right) = O\left(\log_2 n + \log_2 \frac{n}{\log_2 n}\right)$$

 \triangleright Tempo: $O(\log_2 n)$

- \triangleright Processadores: $O\left(\frac{n}{\log_2 n}\right)$
- \triangleright Custo: O(n)

Exemplo de simulação CRCW forte → EREW

para
$$0 \le i \le n-1$$
 faça em paralelo $maximo := A[i]$

- \triangleright Tempo: O(1)
- \triangleright Processadores: O(n)

Exemplo de simulação CRCW Forte → CRCW Fraco

Algoritmo

para
$$0 \le i \le n-1$$
 faça em paralelo $F[i] := 1$

para
$$0 \le i, j \le n-1$$
, $i < j$ faça em paralelo se $A[i] < A[j]$ então
$$F[i] := 0$$
 senão se $A[i] > A[j]$ então
$$F[j] := 0$$
 senão
$$F[j] := 0$$

para
$$0 \le i \le n-1$$
 faça em paralelo
se $F[i] = 1$ então
 $maximo := A[i]$

Exemplo: n = 3

Maximo = 29

```
\triangleright tempo : O(1)
```

 \triangleright processadores: $O(n^2)$

 \triangleright custo: $O(n^2)$

É eficiente, não é ótimo.

Comparação dos Algoritmos

Modelo:	tempo	processadores	eficiente	ótimo
CRCW Forte	<i>O</i> (1)	O(n)	Sim	Sim
CRCW Fraco	<i>O</i> (1)	$O(n^2)$	Sim	Não
EREW	$O(\log_2 n)$	O(n)	Sim	Não
EREW com	$O(\log_2 n)$	$O(n/\log_2 n)$	Sim	Sim
Teorema de Brent	$\left[\begin{array}{c}O(\log_2 n)\end{array}\right]$	$O(n/\log_2 n)$	JIII	اااات

Exemplos Análogos

- ▶ Algoritmo para determinar o elemento de valor mínimo de um vetor.
 - \triangleright Valor neutro: A[i] + 1
- ▷ Algoritmo para determinar a soma dos elementos de um vetor.
- ▷ Algoritmo paralelo para determinar o índice do elemento de valor máximo (ou mínimo) de um vetor.

Dado um vetor A de n elementos $A[0], \dots, A[n-1]$, a computação de prefixos calcula valores

```
A[0]
A[0] op A[1]
A[0] op A[1] op A[2]
...
A[0] op A[1] ... op A[n-1]
```

onde op é uma operação binária associativa.

Este método utiliza a árvore binária balanceada em 2 passos.

- > Vetor de entrada:

Soma de Prefixos - Algoritmo Sequencial

```
ightharpoonup passo 1: out[0] recebe a soma de prefixos de in[0]. soma:=in[0] out[0]:=soma 
ightharpoonup passo 2: Calcule os demais prefixo. para\ 1 \le i \le n-1 faça 
ightharpoonup passo 2.1: A soma do i-ésimo prefixo é a i-ésima posição 
ightharpoonup do vetor de entrada mais soma. 
ightharpoonup Soma contém a soma do (i-ésimo)-1 prefixo. out[i]:=in[i]+soma soma:=out[i]
```

Complexidade: O(n)

- passo 1: equivalente a técnica da árvore binária balanceada.
- passo 2: desce na árvore subtraindo alguns elementos das somas intermediárias para outras somas de prefixos. Quando desce para o filho esquerdo subtrai o valor do filho direito, e quando desce para o filho direito passa o valor direto

Entrada:

- \triangleright n: número de elementos (n potência de 2, senão, ajeitar..)
- $\triangleright A$: vetor de n elementos

Estrutura auxiliar:

- \triangleright B: vetor de 2 \times n elementos
- ightharpoonup As n posições finais de B terão cópias de A

Saída:

- ho P vetor de $2 \times n$ posições
- ightharpoonup As n posições finais de P terão somas de prefixos

Algoritmo

 \triangleright Vetor A é copiado para a segunda metade de B para $0 \le i \le n-1$ faça em paralelo B[n+i] := A[i]

parso 1: subida na árvore

para $j := (\log_2 n) - 1$ até 0 faça

para $2^j \le i \le 2^{j+1} - 1$ faça em paralelo $B[i] := B[2 \times i] + B[2 \times i + 1]$

Subida na árvore

Subida na árvore


```
ho passo 2: descida na árvore P[1] := B[1]

ho loop sequencial para cada nível da árvore \operatorname{para} j := 1 até \log_2 n faça

ho loop paralelo alocando um processador para

ho cada vértice deste nível
\operatorname{para} 2^j \le i \le 2^{j+1} - 1 faça em paralelo
\operatorname{se} i \ mod \ 2 = 0 \ \operatorname{então}
P[i] := P[i/2] - B[i+1] 
ho filho esquerdo \operatorname{senão}
```

 $P[i] := P[(i-1)/2] \triangleright filho direito$

Descida na árvore

Descida na árvore

Submodelo: EREW

Complexidade

tempo: $O(\log_2 n)$

processadores: O(n)

custo: $O(n \log_2 n)$

É eficiente. Não é ótimo

```
Aplicando o Teorema de Brent processadores: O(n/\log_2 n) tempo: O(\log_2 n + \log_2 p) = O(\log_2 n)
```

custo: O(n)

É eficiente. É ótimo

Polinômio de grau n-1:

$$P(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_{n-1} x^{n-1}$$

Algoritmo sequencial:

para
$$i := 0$$
 até $n-1$ faça $P := P + c[i] * x^i$

Problema: Executa muitas exponenciações!

Algoritmo sequencial mais eficiente:

para
$$i := n-1$$
 até 1 faça
$$P := (P+c[i])*x$$

$$P := P+c[0]$$

Mesma complexidade de tempo, mas não faz exponenciação.

Polinômio de grau n-1:

$$P(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_{n-1} x^{n-1}$$

Idéia: Representar P(x) da forma:

$$P(x) = R(x) + Q(x) \times x^{n/2}$$

onde R(x) e Q(x) são polinômios de graus $\frac{n}{2}-1$

Recursivamente aplicamos a mesma idéia para determinar R(x) e Q(x), e assim sucessivamente até chegarmos a polinômios de grau 1, que são a base da recursão.

Ex.:
$$n = 8$$

$$c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5 + c_6 x^6 + c_7 x^7$$

Ex.: n = 8

$$c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} + c_{5}x^{5} + c_{6}x^{6} + c_{7}x^{7}$$

$$c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3}$$

$$x^{4}(c_{4} + c_{5}x^{1} + c_{6}x^{2} + c_{7}x^{3})$$

$$c_{0} + c_{1}x$$

$$x^{2}(c_{2} + c_{3}x)$$

$$c_{4} + c_{5}x$$

$$x^{2}(c_{6} + c_{7}x)$$

Entrada:

```
\triangleright n: Supomos que n é potência de 2.
```

 $\triangleright c$: Vetor de n coeficientes $c[0], \cdots, c[n-1]$

Saída

resultado: resultado do polinômio.

Algoritmo

```
resultado := avalia(0, n - 1)
```

```
função avalia(i, j:inteiros)
    variáveis locais: a, b
    se i = j - 1 então
       retorna c[i] + c[j]x
    senão
       para 0 \le k \le 1 faça em paralelo
              se k = 0 então
                a := avalia(i, \frac{i+j-1}{2})
              senão
                b := avalia(\frac{i+j+1}{2}, j)
```

retorna
$$a + bx^{\left\lceil \frac{j-i}{2} \right\rceil}$$

fim

Submodelo: EREW

Complexidades:

 \triangleright Tempo: $O(\log_2 n)$

 \triangleright Processadores: O(n)

 \triangleright Custo: $O(n \log_2 n)$

É eficiente. Não é ótimo.

Podemos aplicar o teorema de Brent para obter o algoritmo ótimo.

Fim