# Al Labs

### Index

- Download and Run a Model on Local
- What is Model, FM, LLM?
- What is Foundation Model?
- How to create it?
- How it works?
- What are weights in Model?
- What are technologies?
- How/Where to deploy a model?
- A Cause

## Demo

https://ollama.com/



Q Search models

Sign in





### Get up and running with large language models.

Run <u>DeepSeek-R1</u>, <u>Qwen 3</u>, <u>Llama 3.3</u>, <u>Qwen 2.5-VL</u>, <u>Gemma 3</u>, and other models, locally.



### What is Al Model

An **AI model** (Artificial Intelligence model) is a computer program designed to perform tasks that normally require human intelligence. These tasks can include things like:

- Recognizing speech
- Understanding language
- Identifying images
- Making decisions
- Predicting outcomes

#### More Specifically:

An Al model is usually **trained** using large amounts of data and mathematical techniques to learn patterns. Once trained, it can make predictions or perform tasks based on new inputs.

#### Types of Al Models:

- 1. Machine Learning (ML) models Learn from data to make predictions (e.g., linear regression, decision trees).
- 2. **Deep Learning models** A type of ML using neural networks, especially good at complex tasks like image recognition and language processing (e.g., GPT, CNNs).
- 3. Natural Language Processing (NLP) models Understand and generate human language (like ChatGPT).

## What is a FM



### What is LLM



FMs are models trained on broad data (using self-supervision at scale) that can be adapted to a wide range of downstream tasks. https://hai.stanford.edu/news/reflections-foundation-models

### Tell me more

### **Traditional ML**



- · Individual siloed models
- · Require task-specific training
- Lots of human supervised training

### **Foundation Models**





- Massive multi-tasking model
- · Adaptable with little or no training
- Pre-trained unsupervised learning

## Step to make a model



## What is Weight in LLM

https://www.youtube.com/watch?v=LPZh9BOjkQs

## Technologies

#### **Generative AI Stack**



#### UI/UX

- Stremlit, Chainlit
- Angular, React etc

### **Programming Languages**

- Python Popular.
- R, Java, C++ etc

#### **Libraries & Frameworks**

- TensorFlow
- PyTorch
- Scikit-learn
- Keras etc

### **Data Handling Tools**

- Pandas
- NumPy
- SQL / NoSQL/Vector databases

### **Compute Platforms**

- GPUs.
- TPUs.

#### **Cloud Platforms**

AWS, GCP, Azure etc.

### **Model Training & Experiment Tracking**

- Jupyter Notebooks
- MLflow / Weights & Biases
- Docker / Kubernetes

## Where to deploy and get more details

| A                 | В                        | С                                  | D                                         | E                                                | F                                       | G                                            |
|-------------------|--------------------------|------------------------------------|-------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------------|
| Deployment Type   | Target Platform          | Use Case                           | Examples / Tools                          | Pros                                             | Cons                                    | Best For                                     |
|                   |                          |                                    |                                           | High data privacy, low latency, no internet      | High setup/maintenance cost, less       |                                              |
| On-Premise        | Local Servers            | Sensitive data, real-time control  | Custom hardware, enterprise servers       | needed                                           | scalable                                | Enterprises, government, healthcare          |
|                   |                          | Low-latency tasks, offline         |                                           |                                                  |                                         |                                              |
|                   | Edge Devices             | functionality                      | Raspberry Pi, NVIDIA Jetson, Google Coral | Offline support, minimal latency                 | Limited compute, model size constraints | IoT, robotics, mobile AI apps                |
|                   |                          | Scalable AI pipelines, training,   |                                           |                                                  |                                         |                                              |
| Cloud Platforms   | General Cloud            | inference                          | AWS SageMaker, GCP Vertex AI, Azure ML    | Auto-scaling, managed infra, GPU/TPU access      | Recurring costs, data privacy concerns  | Startups, SaaS apps, enterprise ML workflow  |
|                   |                          |                                    | AWS Lambda, Google Cloud Functions,       | Cost-effective for sporadic loads, no server     | Cold starts, limited execution time &   |                                              |
|                   | Serverless Compute       | Event-based API endpoints          | Azure Functions                           | management                                       | memory                                  | Lightweight API-based inference              |
|                   |                          | End-to-end model deployment,       | Runway ML, Algorithmia, Spell, Paperspace |                                                  |                                         |                                              |
|                   | Custom ML Platforms      | monitoring                         | Gradient                                  | Easy MLops integration, experiment tracking      | Often paid services                     | MLops teams, model lifecycle management      |
|                   |                          | Interactive UIs with local model   |                                           |                                                  | Limited model size, performance         |                                              |
| ∰ Web & App       | Browser                  | execution                          | TensorFlow.js, ONNX.js                    | Runs on client-side, no server needed            | bottlenecks                             | Educational apps, client-side demos          |
|                   |                          |                                    | TensorFlow Lite, CoreML, ONNX Runtime     |                                                  |                                         |                                              |
|                   | Mobile Apps              | On-device inference                | Mobile                                    | Fast, private, offline capable                   | Model quantization may reduce accuracy  | AR apps, voice assistants, health monitoring |
|                   |                          | Environment isolation, repeatable  |                                           |                                                  |                                         |                                              |
| Containers        | Docker                   | deployment                         | Docker, Docker Compose                    | Easy deployment, consistent environments         | Learning curve, resource overhead       | DevOps workflows, CI/CD                      |
|                   |                          |                                    |                                           |                                                  |                                         |                                              |
|                   | Kubernetes               | Scalable inference in production   | Kubernetes, Kubeflow, Helm                | Auto-scaling, self-healing, robust orchestration | Complex setup, steep learning curve     | Large-scale systems, distributed apps        |
|                   |                          | Model tracking, versioning,        |                                           | Track experiments, datasets, models, automate    |                                         |                                              |
| MLOps Tools       | ML Lifecycle Management  | reproducibility                    | MLflow, DVC, Weights & Biases, Neptune.ai | retraining                                       | Extra tooling/setup overhead            | Data science teams, regulated environments   |
|                   |                          | Quick prototype sharing, small     | Hugging Face Spaces, Gradio, Replicate,   |                                                  |                                         |                                              |
| AI-Specific Hosts | Low-code ML platforms    | models                             | Streamlit                                 | Easy to use, instant sharing, often GPU-backed   | Limited compute/resources on free tiers | Prototypes, demos, small teams               |
|                   |                          | Expose models to external users or |                                           | Language-agnostic, scalable with containers or   |                                         |                                              |
| ₩ APIs            | REST / gRPC Services     | services                           | FastAPI, Flask, Django REST, gRPC         | serverless                                       | API rate limits, network overhead       | SaaS features, ML-powered apps               |
|                   |                          | Privacy-preserving                 | TensorFlow Federated, NVIDIA Fleet        |                                                  |                                         |                                              |
| Hybrid/Edge+Cloud | Federated/Distributed AI | training/inference                 | Command                                   | Combines privacy with power of cloud             | Complex setup, network dependency       | Healthcare, finance, remote edge systems     |
|                   | ·                        |                                    |                                           |                                                  | ,                                       |                                              |

### Donate for India

- <a href="https://indianarmy.nic.in/about/dg-1b-ii--departments-dgafms-directorates-and-branches/army-welfare-funds-for-donation--contributions-cw-directorate-directorates-and-branches">https://indianarmy.nic.in/about/dg-1b-ii--departments-dgafms-directorates-and-branches</a>
- https://www.pmindia.gov.in/en/national-defence-fund/
- https://ndf.gov.in/en/online-donation

## End