APRINDIZATI AUTOMATICO

AGENDA

Aprendizaje no supervisado

Aprendizaje supervisado

Machine Learning

what society thinks I do

what my friends think I do

what my parents think I do

$$\begin{split} L_r &= \frac{1}{2} \|\mathbf{v}\|^2 - \sum_{i=1}^{r} \alpha_i y_i (\mathbf{x}_i \cdot \mathbf{w} + b) + \sum_{i=1}^{r} \alpha_i \\ \alpha_i &\geq 0, \forall i \\ \mathbf{w} &= \sum_{i=1}^{r} c_i y_i \mathbf{x}_i - \sum_{i=1}^{r} \alpha_i y_i = 0 \\ \nabla \hat{g}(\theta_t) &= \frac{1}{\pi} \sum_{i=1}^{n} \nabla \ell(\mathbf{x}_i, y_t; \theta_t) + \nabla r(\theta_t) \\ \ell_{t-1} &= \theta_t - \eta_t \nabla \ell(\mathbf{x}_{t(t)}, y_{t(t)}; \theta_t) - \eta_t \cdot \nabla r(\theta_t) \\ \mathbb{E}_{1[t]} \left[\ell(\mathbf{x}_{t(t)}, y_{t(t)}; \theta_t) \right] &= \frac{1}{\pi} \sum_{i} \ell(\mathbf{x}_i, y_t; \theta_t). \end{split}$$

what other programmers think I do

what I think I do

>>> from scipy import SVM

what I really do

- Por qué es necesario?
 - Tareas complejas extremamente difíciles de programar
 - Poder computacional disponible para tratar grandes volúmenes de datos

Las máquinas tienen que aprender por sí solas

Definición:

El aprendizaje automático es la ciencia que permite a los computadores aprender, sin ser explícitamente programados¹

Modelo tradicional

Ciencia de datos

1. Andrew Ng, Stanford University, 2014

Aprendizaje supervisado

- Aprender a partir de un "experto"
- Datos de entrenamiento etiquetados con una clase o valor:

• Meta: predecir una clase o valor

Aprendizaje no supervisado

- Sin conocimiento de una clase o valor objetivo
- Datos no están etiquetados

 Meta: descubrir factores no observados, estructura, o una representación mas simple de los datos

Aprendizaje supervisado

Aprendizaje no supervisado

Edad	Ingresos	Tiene carro?
24	1'200.000	NO Datos etiquetados:
23	4'500.000	SI "Respuestas correctas"
45	1'250.000	SI disponibles
32	1'100.000	NO

	Edad	Ingresos
	24	1'200.000
	23	4'500.000
	45	1'250.000
Ī	32	1'100.000
L		

Factores/atributos/variables

34 3'500.000

predictores, explicativos

Factores/atributos/variables independientes, Dependiente, objetivo,

¿Cuál es el valor predicho para una instancia dada?

respuesta, salida

¿Se puede encontrar alguna estructura en los datos?

Aprendizaje supervisado

Aprendizaje no supervisado

AGENDA

Aprendizaje no supervisado

Aprendizaje supervisado

CLASIFICACIÓN

KINN (KINEAREST NEIGHBORS)

Neighbors

can be a pain in the ass

CLASIFICACIÓN

CLASIFICACIÓN

- Encontrar modelos que describan clases para futuras predicciones:
 - KNN
 - Árboles de decisión
 - Regresión logística
 - Redes neuronales
 - ...
- Valores discretos de la variable objetivo
- Incluye la estimación de probabilidades de clase
- Baseline: medida de evaluación dada por un clasificador que escoge siempre la clase mayoritaria

KNN

KNN (K Nearest Neighbors): K Vecinos más Cercanos

- Algoritmo de aprendizaje supervisado para clasificación y regresión
- Sencillo: asignar la clase o valor agregado de las instancias conocidas que se encuentran mas cerca de la instancia a predecir
- Basado en las instancias de aprendizaje, no en un modelo subyacente probabilístico/estadístico
- Aprendizaje perezoso: en realidad el algoritmo solo se ejecuta en el momento que se requiere predecir una nueva instancia a partir de una predicción local

KNN — DISTANCIAS

- Basado en una medida de similitud o distancia que hay que definir para encontrar los vecinos mas cercanos:
 - Euclidiana: tamaño del segmento linear que une las dos instancias comparadas.

$$egin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

- Manhattan: basada en una organización
 - en bloques rectilíneos

 Coseno: coseno del ángulo entre las dos instancias comparadas → Alta dimensionalidad y big data

dimensionalidad y big data
$$sim(x, y) = cos(\theta_{x,y}) = \frac{x \cdot y}{\|x\| \|y\|} = \frac{\sum_{i} x_{i} * y_{i}}{\sqrt{(\sum_{i} x_{i} * x_{i}) * \sum_{i} y_{i} * y_{i}}}$$

KNN – K

• Parámetro K: número de vecinos mas cercanos a considerar para establecer la clase o valor de una nueva instancia $_{\mathrm{KNN: \ K=10}}$

KNN - K

Parámetro K

- El resultado puede ser drásticamente diferente para diferentes valores de K
- Un valor de K grande suavizará los límites entre clases/valores (alto sesgo, baja varianza)
- Un valor de K pequeño resultará en límites muy flexibles (bajo sesgo, alta varianza)
- El valor de K óptimo se encuentra empíricamente

KNN: K=100

James et al, ISLR, 2013

KNN - K

- Overfitting: (sobre aprendizaje) a considerar en el momento de escoger el K.
- Modelos mas sencillos previenen el overfitting
 → K mas grandes
- Igualmente, cuidado con el underfitting (sub aprendizaje)

KNN – K

En el caso de la utilización de KNN para la regresión las mismas consideraciones aplican

- En el panel izquierdo: se aplica KNN con un valor de K=1 (azul) y K=9 (rojo)
- En el panel derecho, se puede ver el valor de RMSE para diferentes valores de K (en verde).
 También se puede ver, por comparación el nivel de error de la regresión lineal simple (punteada en negro)

KNN

Consideraciones:

- Perezoso (Lazy learning)
- No paramétrica y no lineal
- Método local, no generalizable (no hay un modelo construido como tal):
 - Puede encontrar particularidades muy específicas a ciertas regiones
 - Su uso (sobre todo en regresión) sólo permite estimaciones en los rangos de las variables del set de aprendizaje (extrapolación no tiene mucho sentido)
- Maldición de la dimensionalidad
- Muy sensible a la unidad de medida de los atributos, y a atributos que no aportan poder predictivo (e.g. el color de los ojos no debería considerarse para predecir la edad de una persona)
- No sabe que hacer con los missing values, ni con variables categóricas
- Variaciones: K-nn ponderado por la distancia, basado en un radio dado.

TALLER DE CLASIFICACIÓN CON KNN

- DATASET: 150 ejemplos pertenecientes a 3 especies diferentes de la flor Iris
- 4 Atributos: largo y ancho del sépalo, largo y ancho del pétalo
- Reproducir el taller hasta antes de la sección de métricas y matriz de confusión

CNN (CONDENSED NEAREST NEIGHBORS)

- Dificultad de aplicación de KNN cuando se tienen muchos registros
- No todos los registros son necesarios para la correcta clasificación
- Aproximación de KNN utilizando un conjunto de datos reducido
- Escogencia de **prototipos** que permitan una clasificación con K=1 lo más parecida al resultado utilizando el dataset completo
- Algoritmo: Siendo X el conjunto de datos inicial y U el conjunto reducido:
 - Identificar todos los elementos x de X cuyo vecino más cercano sea de clase diferente
 - Retirar los x identificados (son prototipos) de X y agregarlos a U
 - Repetir hasta que no se agreguen más prototipos a U

AGENDA

Aprendizaje no supervisado

Aprendizaje supervisado

MÉTRICAS DE EVALUACIÓN

- Necesidad de evaluar la calidad de los modelos de aprendizaje automático
- Diferentes criterios a tener en cuenta:
 - Correctitud de la predicción
 - Simplicidad (parsimonia)
 - Interpretabilidad
 - Tiempo de aprendizaje o de predicción
 - Escalabilidad (importante para Big Data)

- Se usa una matriz de confusión para evaluar diferentes métricas de correctitud/error
- Se utilizan dos calificadores para describir cada una de sus casillas:
 - Un calificador de la correctitud de la predicción con respecto a la realidad: Verdadero o Falso
 - Un calificador del tipo de la predicción: Positivo o Falso, con respecto a cada clase de interés (i.e churn)
- Dependiendo del contexto los tipos de error pueden ser mas graves que otros (costos diferentes) ¿Qué pasa cuando hay mas de dos clases?

		Predicción			
		Churn P	No churn		
Realidad	Churn ⁺	VP	FN - Tipo II		
Realiuau	No churn	FP - Tipo I	VN		

- La diagonal (en verde) muestra las instancias correctamente clasificadas. Las demás casillas resume diferentes tipos de error:
 - Tipo I: Falsos positivos
 - Tipo II: Falsos negativos

 Interpretarían el caso de la detección de un email spam

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

• Interpretar el caso del diagnóstico de una enfermedad grave?

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

		Predicción			
		Churn P	No churn		
Realidad	Churn ⁺	VP	FN - Tipo II		
Realiuau	No churn	FP - Tipo I	VN		

 Interpretar el caso de la prospección de clientes de un crédito de consumo (baja aceptación)

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

- Tasa de correctitud (accuracy) = (VP+VN)/(VP+VN+FP+FN)
- Error de mala clasificación (contrario de accuracy) = (FP+FN)/(VP+VN+FP+FN): probabilidad de error
- Precisión= VP / (VP+FP): valor de predicción positiva, P(Real+|Predicho+)
- Recall (o TPR o sensibilidad)= VP / (VP+FN): qué proporción de todos los positivos reales pude identificar como tal, P(Predicho+|Real+)
- Especificidad (o TNR): = VN / (VN+FP): qué proporción de todos los negativos reales pude identificar como tal, P(Predicho-|Real-)
- Valor de predicción negativa (FPR) = VN / (VN+FN)

Imaginemos el problema de detección de spam mail e interpretemos cada métrica

Imaginemos el problema de diagnóstico de cáncer e interpretemos cada métrica

- Coeficiente de concordancia Kappa
 - Para datos nominales u ordinales
 - Concordancia entre las predicciones y las clases reales
 - Sustrae el efecto de concordancia por suerte (AC) del valor del accuracy (concordancia observada - OA)
 - Valores van de 0 a 1
 - Muy útil sobretodo cuando las clases no están balanceadas
 - Diagnóstico de enfermedades raras
 - Clientes que acepten productos de crédito)
- F1-Measure = $2 * \frac{precision*recall}{precision+recall}$
 - Promedio armónico de precisión y recall
 - Evalúa los modelos con 1 sola métrica y no 2

			+	-	TOTAL	OA	=	0,63	
	reales	+	10	4	14	AC	=	0,59	
	reales	-	3	2	5	Карра	=	0,11	
		TOTAL	13	6	19				

Accuracy (OA) = (10+2)/19=0.63(AC) = (13/19 * 14/19) + (6/19 * 5/19) = 0.59Kappa = (OA-AC)/(1-AC) = 0.11

		Predicciones			_			
			+	-	TOTAL	OA	=	0,97
	rooloo	+	0	3	3	AC	=	0,97
	reales	-	0	97	97	Карр	a =	0,00
		TOTAL	0	100	100			

Accuracy (OA) = (0+97)/100=0.97(AC) = (0/100 * 3/100) + (100/100 * 97/100) = 0.97Kappa = (OA-AC)/(1-AC) = 0

		Predicciones						
		+	-	TOTAL	OA	=	0,69	
	reales	+	1475	988	2463	AC	=	0,50
		-	556	1981	2537	Карр	a =	0,38
		TOTAL	2031	2969	5000			

TALLER DE CLASIFICACIÓN CON KNN

- DATASET: Iris
 - Ejecutar las tareas de métricas y matriz de confusión para encontrar el K ideal.

Iris setosa Iris versicolor Iris virgínica

TALLER DE CLASIFICACIÓN CON KNN

1. DATASET: MNIST

- Crear un clasificador K-NN siguiendo las mismas etapas que con el dataset de Iris.
 - Un modelo para cada uno de los 2 dígitos asignados
 - Un modelo para todos los dígitos

2. DATASET: Churn

• Crear un clasificador K-NN siguiendo las mismas etapas que con el dataset de Iris.

