Weekly Report: May 20 -May 24

-Vatsa Shah

Read following research paper's to get acquainted with project.

- 1) Davies_2016_IcebindingProteinAndFunctions_AnnualRevBiochem
- 2) Sanz 2016 SeedingPaper MD
- 3) Supporting information for: Nucleation of NaCl from aqueous solution: critical sizes, ion-attachment kinetics, and rates -Nils E. R. Zimmermann, Bart Vorselaars, David Quigley, and Baron Peters.

Created box of water (tip4p) of known dimension (eg. 4X4x4 nm³, 6x6x6 nm³, 8x8x8 nm³, 10x10x10 nm³) through simulations and performed energy minimization. Further did simulations to bring this box of water to fix temperature of 300K, to fixed volume and fixed number of molecules.

To create box of water ->

qmx solvate -box 4 4 4 -cs tip4p -o box.gro -p tip4p-ice.top

Energy Minimization ->

gmx grompp -c box.gro -f em.mdp -o em.tpr -p tip4p-ice.top gmx mdrun -s em.tpr -v -deffnm em

Bringing system to fixed factors like Temperature, volume and number of molecules ->

gmx grompp -f nvteq-t300.mdp -c em.gro -p tip4p-ice.top -o nvt_300k_4x4x4_eq.tpr gmx mdrun -s nvt_300k_4x4x4_eq.tpr -v -deffnm nvt_300k_4x4x4_eq

Visualized the .gro file in vmd ->

vmd em.gro em.xtc vmd nvt_300k_4x4x4_eq.gro nvt_300k_4x4x4_eq.xtc

Added ice seed in the equilibrium box of water using Python files ->

```
cut_cap_slab.pycombine_grofile.py-to cut a sphere out of a box-combining two gro files
```

- 1) carved out sphere of different radius (1.7 nm, 2.5 nm, 3.1 nm, 4.2 nm) from *Ih_15x15x15.gro* file and *Ic_15x15x15.gro* file.
- 2) carved out sphere from *nvt_300k_4x4x4_eq.gro* file.
- 3) combined the shere of ice from 1st step and box with hole from 2nd step.

Performed above steps with different Dimensions of boxes of water and visualized the icewater.gro file in each case.