MA522 Lecture Notes

Instructor: Betsy Stovall Note taken by: Yujia Bao

Definition. Let (X, d) be a metric space, let $K \subseteq X$, then

- An open cover of K (in X) is a set $\mathcal{G} = \{G_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ where each G_{α} is an open subset of X and $K \subseteq \bigcup_{{\alpha} \in \mathcal{A}} G_{\alpha}$.
- K is compact if every open cover of K contains a finite subcover of K, i.e. if for every open cover $\mathcal{G} = \{G_{\alpha}\}_{{\alpha} \in \mathcal{A}}$, there $\exists \alpha_1, \ldots, \alpha_N \in \mathcal{A}$, s.t. $K \subseteq \bigcup_{i=1}^N G_{\alpha_i}$.

Example. Show that (0,1] is not compact.

Proof. Let $\mathcal{G} = \{(1/n, 2) : n \in \mathbb{N}\}$. Then \mathcal{G} is an open cover of (0, 1]. But if $\{n_1, \ldots, n_N\}$ is any finite set, $\bigcup_{j=1}^N (1/n, 2) = (1/\max n_j, 2) \nsubseteq (0, 1]$.

Example. Show that \mathbb{R} is not compact.

Proof. Let
$$\mathcal{G} = \{(-n, n) : n \in \mathbb{N}\}.$$

Theorem 1 (Heine-Borel). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Example. Show that $\{0\} \cup \{1/n : n \in \mathbb{N}\}$ is compact.

Proof. Let $\mathcal{G} = \{G_{\alpha}\}_{\alpha \in \mathcal{A}}$ be any open cover. Then $0 \in G_{\alpha_0}$ for some $\alpha_0 \in \mathcal{A}$. Since G_{α_0} is open, $\exists \epsilon > 0$ such that $B_{\epsilon}(0) \subseteq G_{\alpha_0}$. For $N = \lceil \epsilon \rceil$, we have $1/n \in B_{\epsilon}(0) \subseteq G_{\alpha_0}$ for all n > N. Choose α_n such that $1/n \in G_{\alpha_n}$ for each $n \leq N$. Thus $\{G_{\alpha_j}\}_{j=0}^N$ is a finite subcover of the origin set. So the origin set is compact.

Definition. $U \subseteq X$ is precompact if \overline{U} is compact. (Here \overline{U} stands for the closure of U.)

Example. By Theorem 1, every Borel subset of \mathbb{R}^n is precompact.

Question: Definition of Borel set.

Definition. $K \subseteq X$ is sequentially compact if every sequence $\{x_n\}$ contains a subsequence $\{x_{n_k}\}$ that converges to a limit in K.

Definition. $U \subseteq X$ is totally bounded if $\forall \epsilon > 0$, U is covered by a finite collection of ϵ -balls, i.e., $\exists x_1, \ldots, x_{N_{\epsilon}} \in X$, s.t. $U \subseteq \bigcup_{j=1}^{N_{\epsilon}} B_{\epsilon}(x_j)$.

Example. Every bounded subset of \mathbb{R}^n is totally bounded.

Example. In discrete metric space,

$$\delta(x,y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

Then, every set is both open and closed. For $\epsilon < 1$, the ϵ Ball becomes a single ball. Infinite sets are bounded but not totally bounded.

Definition. $K \subseteq X$ is complete if every Cauchy sequence in K converges to some limit in K.

Definition. x is an accumulation point of $E \subseteq X$ if $\forall \epsilon > 0$, $(B_{\epsilon}(x) \setminus \{x\}) \cap E \neq \emptyset$. This is equivalent to say $\forall \epsilon > 0$, $B_{\epsilon}(x) \cap E$ contains infinitly many points.

Theorem 2. Let (X, d) be a metric space, then TFAE

- 1. K is compact.
- 2. K has the Bolzano-Weierstrass property (Every infinity subset of K has an accumulation point in K).
- 3. K is sequentially compact.
- 4. K is complete and totally bounded.
- Proof. $1 \Rightarrow 2$: Assume K is compact. Let $E \subseteq K$ be an infinite set. If there doesn't exist such E, then Bolzano-Weierstrass property holds trivially. Now suppose E has no accumulation point in K. That means for every x in K, \exists neighbour U_x of x (i.e. $x \in U_x$ and U_x is open), that contains no points of E other than (possibly) x itself. Since $K = \bigcup_{x \in K} \{x\} \subseteq \bigcup_{x \in K} U_x$, $\{U_x : x \in K\}$ is an open cover of K. By compactness, $\exists x_1, \ldots, x_N$, s.t. $K \subseteq \bigcup_{j=1}^N U_{x_j}$. But $\bigcup_{j=1}^N U_{x_j}$ contains at most N points of E. So it cannot contain all points of E because E is an infinity set. Contradiction! Since $E \subseteq K$, $\bigcup_{j=1}^N U_{x_j}$ should be a cover of E.
- $2 \Rightarrow 3$: Assume K has the Bolzano-Weierstrass property. Let $\{x_n\}$ be a sequence in K. We need to show that it has a convergent subsequence. Let $E = \{x_n : n \in \mathbb{N}\}$.
 - Case I: E is a finite set. By the pigeonhole principle, $\exists x \in E \subseteq K$, s.t. $x_n = x$ for infinitely many n. Here $\{x_n\}$ has a constant subsequence which only takes the value x. This is a subsequence converge to $x \in K$.
 - Case II: E is an infinite set. By Bolazano-Weierstrass propert, E has an accumulation point $x \in K$. Thus every ball centered at x contains infinitely many x_n s. Choose n_1 such that $x_{n_1} \in B_1(x)$; Choose $n_2 > n_1$ such that $x_{n_2} \in B_{1/2}(x)$; and so on. Proceeding by induction, we may find $n_1 < n_2 < \cdots < n_k < \cdots$, s.t. $x_{n_k} \in B_{1/k}(x)$ for all k. Then $\{x_{n_k}\}$ is a subsequent of $\{x_n\}$ and $x_{n_k} \to x$.
- $3 \Rightarrow 4$: Assume K is sequentially compact.
 - **Completeness:** Let $\{x_n\}$ be a Cauchy sequence in K. By sequentially compactness, there exists a convergent subsequent $\{x_{n_k}\}$ of $\{x_n\}$, say $x_{n_k} \to x \in K$. Then we claim that $x_n \to x$. Since $x_{n_k} \to x$, let $\epsilon > 0$, $\exists M$ s.t. $\forall k \geq M$, $d(x_{n_k}, x) < \epsilon$. Since $\{x_n\}$ is a

Cauchy sequence, $\exists N \text{ s.t. } \forall n, m \geq N, d(x_n, x_m) < \epsilon. \text{ Now fix } k_0 \geq \max\{M, N\} \text{ and let } n \geq N. \text{ Then}$

$$d(x_n, x) \le d(x_n, x_{n_{k_0}}) + d(x_{n_{k_0}}, x).$$

Since $k_0 \ge M$, we have $d(x_{n_{k_0}}, x) < \epsilon$. Since $n_{k_0} \ge k_0 \ge N$, we have $d(x_n, x_{n_{k_0}}) < \epsilon$. Then $d(x_n, x) < 2\epsilon$. So $\{x_n\}$ does converge.

- **Totally boundedness:** Suppose not. Then $\exists \epsilon > 0$ s.t. K cannot be covered by a finite union of ϵ -balls. Thus, we may (inductively) construct a sequence $\{x_n\}$ in K such that $\forall n \geq 2, x_n \notin \bigcup_{j=1}^{n-1} B_{\epsilon}(x_j)$. Let $\{x_{n_k}\}$ be any subsequence of $\{x_n\}$. Pick any k_1, k_2 with $k_1 < k_2$. Then $x_{k_2} \notin B_{\epsilon}(x_{k_1})$ which means $d(x_{n_{k_1}}, x_{n_{k_2}}) \geq \epsilon$. So $\{x_{n_k}\}$ is not Cauchy and hence not convergent. This contradicts with sequential compactness of K.
- $4\Rightarrow 3$: Assume K is complete and totally bounded. Let $\{x_n\}$ be a sequence in K. We want to find a convergent subsequence. By totally boundedness, K is covered by a finite number of 1-balls, $K\subseteq \cup_{j=1}^N B_1(y_j)$. By the pigenhole principle, there must exist an $B_1(y_j)$ which contains x_n for infinitely many n. Denote that y_j as z_1 . So there exists a subsequence $\{x_{n_k^1}\}$ contained in $B_1(z_1)$. By the same argument, $\exists z_2$ s.t. $B_{1/2}(z_2)$ contains a subsequent $\{x_{n_k^2}\}$ of $\{x_{n_k^1}\}$, and so on. So for each $m\in\mathbb{N}$, we find z_m and a subsequent $\{x_{n_k^m}\}$ of $\{x_{n_k^{m-1}}\}$ s.t. $\{x_{n_k^m}\}$ is contained in $B_{1/m}(z_m)$. Now we define $x_{n_k}=x_{n_k^k}$ (diagonalization).
 - Claim 1: $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$. This is because $n_k = n_k^k \ge n_k^{k-1} > n_{k-1}^{k-1} = n_{k-1}$, where the first inequality comes from the fact that $\{x_{n_j^k}\}$ is a subsequence of $\{x_{n_j^{k-1}}\}$.
 - Claim 2: $\{x_{n_k}\}$ is a Cauchy sequence.

For $k_1, k_2 \ge M$, $x_{n_{k_1}}$ and $x_{n_{k_2}}$ are both terms in the sequence $\{x_{n_j^M}\}$. So both of them lie in $B_{1/M}(z_M)$ which means $d(x_{n_{k_1}}, x_{n_{k_2}}) \le 2/M$.

By completeness of K, $\{x_{n_k}\}$ converges in K.

- $4 \Rightarrow 2$: Assume K is complete and totally bounded. Let $E \subseteq K$ be an infinite subset. Since K is totally bounded, K can be covered by finitely many 1-balls. By pigeonhole principle, $\exists x_1 \in K$, s.t. $B_1(x_1) \cap E =: E_1$ is an infinite set. By induction, for each $n \in \mathbb{N}^+$, $\exists x_n \in K$, s.t. $B_{1/n}(x_n) \cap E_{n-1} =: E_n$ is an infinite set.
 - Claim 1: $\{x_n\}$ is a Cauchy sequence.

Notice that $\forall n, m$,

$$B_{1/n}(x_n) \cap B_{1/m}(x_m) \supseteq E_{\max\{m,n\}} \neq \emptyset.$$

This implies

$$d(x_n, x_m) < \frac{1}{n} + \frac{1}{m} \le \frac{2}{\min\{n, m\}}.$$

Then as long as $n, m > 2/\epsilon$, we have $d(x_n, x_m) < \epsilon$. So $\{x_n\}$ is a Cauchy sequence.

By completeness of K, $\{x_n\}$ converges, say $x_n \to x_0$.

Claim 2: x_0 is an accumulation point for E.

Let $\epsilon > 0$. Choose N sufficiently large, such that $\forall n \geq N$, $d(x_0, x_n) < \epsilon/2$ and $1/n < \epsilon/2$. For any $y \in B_{1/n}(x_n)$, we have $d(y, x_n) < 1/n$. Then

$$d(x_0, y) \le d(x_0, x_n) + d(x_n, y) < \frac{\epsilon}{2} + \frac{1}{n} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

So we have $y \in B_{\epsilon}(x_0)$. Then $B_{\epsilon}(x_0) \supseteq B_{1/n}(x_n) \supseteq E_n$. Since E_n is an infinite subset of E and ϵ is selected arbitrary, x_0 is an accumulation point of E.

 $4, 3 \Rightarrow 1$: Assume K is complete, totally bounded and sequentially compact. Let $\mathcal{G} := \{G_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ be an open cover of K. Then $\forall x \in K$, $\exists \alpha \in \mathcal{A}$, s.t. $x \in G_{\alpha}$. Since G_{α} is open, $\exists r > 0$, s.t. $B_r(x) \subseteq G_{\alpha}$. Thus we define

$$\epsilon(x) := \sup\{r > 0 : \exists \alpha \in \mathcal{A}, \text{ s.t. } B_r(x) \subseteq G_\alpha\}$$

By definition, $\epsilon(x) > 0$. If $\epsilon(x) = +\infty$ for some $x \in K$, then since K is bounded (because K is totally bounded), there must be one G_{α} containing all of K. Now we assume $\epsilon(x)$ is finite for all $x \in K$.

Claim: $\exists \epsilon_0 > 0$, s.t. $\epsilon(x) \ge \epsilon_0$, $\forall x \in K$.

Suppose such ϵ_0 doesn't exist. Then $\exists \{x_n\}$, s.t. $\epsilon(x_n) \to 0$. By sequential compactness of K, there exists a subsequence $x_{n_k} \to x_0 \in K$. As $\epsilon(x_0) > 0$, we can choose some r > 0 and α s.t. $B_r(x_0) \subseteq G_\alpha$. But for k sufficiently large, $\epsilon(x_{n_k}) < r/2$ and $d(x_0, x_{n_k}) < r/2$. Then

$$B_{r/2}(x_{n_k}) \subseteq B_r(x_0) \subseteq G_{\alpha},$$

and this implies $r/2 \le \epsilon(x_{n_k}) < r/2$ which leads to contradiction.

Since K is totally bounded, so $\exists x_1, \ldots, x_N$, s.t.

$$K \subseteq \bigcup_{j=1}^{N} B_{\epsilon_0/2}(x_j) \subseteq \bigcup_{j=1}^{N} B_{\epsilon(x_j)/2}(x_j)$$

Furthermore, as $\epsilon(x_j)/2 < \epsilon(x_j)$ (because $\epsilon(x_j) > 0$), $\exists r > 0$, s.t. $r > \epsilon(x_j)/2$ and $B_r(x_j) \subseteq G_{\alpha_j}$ for some $\alpha_j \in \mathcal{A}$. Finally, $\bigcup_{j=1}^N G_{\alpha_j}$ is a finite subcover of K. Thus K is compact.

Corollary. A subset of a complete metric space is compact if and only if it is closed and totally bounded.

Corollary. A subset of a complete metric space is precompact if and only if it is totally bounded.

Example. A closed subset of a compact set is compact.

Proof. Suppose $K \subseteq E$. Since E is compact, by Bolzano-Weierstrass property, every infinite subset of K has an accumulation point. Since K is closed, K contains all its accumulation points. So K also satisfies B-W property which means K is compact.

Definition. A subset E of a metric space X is not connected if \exists sets A, B s.t.

$$\begin{cases} E = A \cup B, \ A \neq \emptyset, \ B \neq \emptyset \\ \bar{A} \cap B = \emptyset, \ A \cap \bar{B} = \emptyset \end{cases}$$

We say A and B form a separation of E, or A and B separate E.

Definition. E is connected if it is not disconnected.

Theorem 3. Let E be a subset of X. Then TFAE:

- 1. $E \subseteq X$ is not connected.
- 2. \exists open sets $U, V \subseteq X$, s.t.

$$E \subset U \cup V$$
, $E \cap U \neq \emptyset$, $E \cap V \neq \emptyset$, $U \cap V = \emptyset$.

3. $\exists A \subseteq E, s.t.$

$$A \neq \emptyset$$
, $A \neq E$, $A = E \cap F = E \cap G$,

where F is closed and G is open.

Proof. $2 \Rightarrow 3$: Assume 2 holds. We pick $A = E \cap U$. Then $A \neq \emptyset$. Let G = U. Then $A = E \cap G$. Let $F = V^c$. Then F is closed since V is open.

Claim 1: $A = E \cap F$.

Let $a \in A$. Then $a \in E$ and $a \in U \subseteq V^c = F$. So $a \in E \cap F$. Let $x \in E \cap F$. Then $x \in E$ and $x \notin V$. Since $E \subseteq U \cup V$, $x \in U$. So $x \in E \cap U = A$.

Claim 2: $A \neq E$.

This is true because $E \setminus A = E \setminus (E \cap F) = E \cap V$ and we know $E \cap V \neq \emptyset$ by 2.

 $3 \Rightarrow 1$: Assume 3 holds. We define A as in 3 and let $B = E \setminus A$. Then by definition, $A \cup B = E$, $A \neq \emptyset$ and $B \neq \emptyset$ (since $A \neq E$). Note that

$$\bar{A} \cap B = \overline{E \cap F} \cap (E \cap F^c) \subseteq \bar{F} \cap F^c = F \cap F^c = \emptyset,$$

since F is closed. Also

$$A\cap \bar{B}=E\cap G\cap \overline{E\cap G^c}\subseteq G\cap \overline{G^c}=G\cap G^c=\emptyset,$$

since G^c is closed. Then E is not connected.

1 \Rightarrow 2: Assume 1 holds. Let $a \in A$. Then $a \notin \bar{B}$, since $A \cap \bar{B} = \emptyset$. So $\exists r(a) > 0$, s.t. $B_{r(a)}(a) \cap B = \emptyset$. Likewise, if $b \in B$, $\exists r(b) > 0$, s.t. $B_{r(b)}(b) \cap A = \emptyset$. Now define $U = \bigcup_{a \in A} B_{r(a)/2}(a)$ and $V = \bigcup_{b \in B} B_{r(b)/2}(b)$. Then U and V are open sets since they are unions of open sets. Also $E \subseteq A \cup B \subseteq U \cup V$ and $E \cap U \supseteq A \neq \emptyset$, $E \cap V \supseteq B \neq \emptyset$. Now we just need to show $U \cap V = \emptyset$. If it is not true, $\exists x \in U \cap V$. By our construction of U and V, $\exists a \in A, b \in B$, s.t. $x \in B_{r(a)/2}(a) \cap B_{r(b)/2}(b)$. So

$$d(a,b) \le d(a,x) + d(b,x) < \frac{r(a)}{2} + \frac{r(b)}{2} \le \max\{r(a), r(b)\}\$$

Then if $r(a) \ge r(b)$, we have $b \in B_{r(a)}(a)$. If $r(b) \ge r(a)$, we have $a \in B_{r(b)}(b)$. Both of them contradicts with our definition of r(a) or r(b). So $U \cap V = \emptyset$.

Example. $(-\infty, 0) \cup (0, +\infty)$ is not connected.

Example. $E := \{(x,y) : y \in [-1,1] \text{ with } x = 0 \text{ or } y = \sin(1/x) \text{ with } x > 0\}$ is connected.

Proposition. If E is connected and $f: E \to Y$ is continuous, then f(E) is connected.

Proof. Assume f(E) is not connected. Then $\exists U, V$ open with $f(E) \subseteq U \cup V, U \cap V = \emptyset$, $f(E) \cap U \neq \emptyset$, $f(E) \cap V \neq \emptyset$. Note that $f^{-1}(U)$ is open, nonempty. Likeliwise for $f^{-1}(V)$. Moreover $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ (If $\exists x \in f^{-1}(U) \cap f^{-1}(V)$, then $f(x) \in U \cap V = \emptyset$. Contradiction!) and $f^{-1}(U) \cup f^{-1}(V) \supseteq E$. By Theorem 3, E is not connected. Contradiction!

Definition. Let (X, D) be a metric space. (Assume $X \neq \emptyset$.) Say $\Phi : X \to X$ is a contraction if $\exists r < 1$, s.t. $\forall x, y \in X$,

$$d(\Phi(x), \Phi(y)) \le r \cdot d(x, y)$$

Example. By mean value theorem, if $f: \mathbb{R} \to \mathbb{R}$ is differentiable and $\exists r < 1$, s.t. $\forall x, |f'(x)| \leq r$. Then f is a contraction.

Proposition. If Φ is a contraction, then Φ is continuous.

Theorem 4 (Contraction Mapping Theorem). If (X, d) is a nonempty complete metric space and $\Phi: X \to X$ is a contraction. Then Φ has a unique fixed point, i.e. $\exists ! x_0 \in X$, s.t. $\Phi(x_0) = x_0$.

Proof. Let Φ be a contraction with shrinking constant r < 1.

Uniqueness: Suppose x_1, x_2 are both fixed points of the contraction Φ . Then

$$d(x_1, x_2) = d(\Phi(x_1), \Phi(x_2)) \le r \cdot d(x_1, x_2).$$

Thus $d(x_1, x_2) = 0$ and $x_1 = x_2$, since r < 1.

Existence: Let $x \in X$. Define a sequence $\{x_n\}$ inductively by setting $x_0 = x$ and $x_n = \Phi(x_{n-1})$ for $n \in \mathbb{N}^+$.

Claim 1: $\{x_n\}$ is a Cauchy sequence and hence convergent.

Suppose $m, n \in \mathbb{N}^+, m > n$. Then

$$d(x_m, x_n) = d(\Phi(x_{m-1}), \Phi(x_{n-1})) \le rd(x_{m-1}, x_{n-1}).$$

By induction,

$$d(x_{m}, x_{n}) \leq r^{n} d(x_{m-n}, x_{0})$$

$$\leq r^{n} (d(x_{m-n}, x_{m-n-1}) + d(x_{m-n-1}, x_{m-n-2}) + \dots + d(x_{1}, x_{0}))$$

$$\leq r^{n} (r^{m-n-1} d(x_{1}, x_{0}) + r^{m-n-2} d(x_{1}, x_{0}) + \dots + d(x_{1}, x_{0}))$$

$$\leq r^{n} d(x_{1}, x_{0}) \sum_{j=0}^{\infty} r^{j}$$

$$= \frac{r^{n}}{1-r} d(x_{1}, x_{0})$$

Given any $\epsilon > 0$, choose N such that $r^N d(x_1, x_0)/(1 - r) < \epsilon$. Then by the preceding calculation, $\forall n, m \geq N, d(x_n, x_m) < \epsilon$.

Claim 2: $\lim_{n\to\infty} x_n$ is a fixed point of Φ .

Since Φ is a contraction, Φ is continuous. So we can exchange Φ with the limit operation. Then

$$\Phi(\lim_{n\to\infty} x_n) = \lim_{n\to\infty} \Phi(x_n) = \lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} x_n.$$

Corollary. If $\exists r < 1, s.t. |f'(x)| \le r, \forall x \in \mathbb{R}$. Then $\exists !x_0, s.t. f(x_0) = x_0$.

Example. $\Phi(x) = x + 1$ on \mathbb{R} is not a contraction.

Example. $X = (-\infty, 0) \cup (0, \infty)$ is not complete. For $\Phi(x) = \frac{1}{2}x$, it is a contraction but the fixed point $x_0 = 0$ is not in X.

Definition. Let $E \subseteq X$.

- E is dense in X if $\bar{E} = X$.
- E is nowhere dense in X if \bar{E} has empty interior.

Example. $\mathbb{Z} \subseteq \mathbb{R}$ is nowhere dense in \mathbb{R} . $\mathbb{Q} \cap (-2,2)$ is neither dense nor nowhere dense in \mathbb{R} .

Definition. Let $E \subseteq X$, where X is some metric space.

- E is meager if E can be written as a countable union of nowhere dense sets.
- E is generic if E^c is meager.

Theorem 5 (Baire Category Theorem). A nonempty complete metric space cannot be written as a countable union of nowhere dense sets.

This is equivalent to say that a complete metric space cannot be meager and is also equivalent to say that a subset of a complete metric space cannot be both meager and generic. In particular, generic subsets of complete metric space are nonempty.

Proof. Let (X, d) be a complete metric space and $\{F_n\}$ be a collection of nowhere dense subsets of X. Suppose for contradiction that $X = \bigcup_n F_n$. Then $X = \bigcup_n \bar{F}_n$ and \bar{F}_n are also nowhere dense. Without loss of generality, we assume each F_n is closed.

Since $X \nsubseteq F_i$ for any i (Otherwise, $\overline{\text{interior}(F_i)} = X \neq \emptyset$.), $\exists x_1 \in F_1^c$ and $\exists r_1 > 0$, s.t. $\bar{B}_{r_1}(x_1) \subseteq F_1^c$. Since F_1^c interior $F_2^c = \emptyset$, $B_{r_1}(x_1) \nsubseteq F_2$. Then $\exists x_2$, s.t. $x_2 \in F_2^c \cap B_{r_1}(x_1)$. Since F_2^c and $B_{r_1}(x_1)$ are both open, their intersection is open. $\exists r_2 > 0$, s.t. $\bar{B}_{r_2}(x_2) \subseteq F_2^c \cap B_{r_1}(x_1)$ and $r_2 \leq r_1/2$. By induction, we obtain a sequence $\{x_n\}$ in X and $\{r_n\}$ in $(0, +\infty)$, s.t. for all n,

$$B_{r_n}(x_n) \subseteq F_n^c \cap B_{r_{n-1}}(x_{n-1}), \quad r_n \le \frac{1}{2}r_{n-1}.$$

So $r_n \to 0$.

Claim 1: $\{x_n\}$ is a Cauchy sequence.

For $n, m \ge M$, $x_n, x_m \in B_{r_M}(x_M)$. So $d(x_n, x_m) < r_M$ and $r_M \to 0$.

Claim 2: $x_{\infty} := \lim_{x \to \infty} x_n \notin \bigcup_n F_n$.

Since $\{x_n\}_{n\geq M}$ is a sequence in $B_{r_M}(x_M), x_\infty \in \overline{B_{r_M}(x_M)} \subseteq F_M^c$. As M was arbitrary,

$$x_{\infty} \in \bigcap_{M} F_{M}^{c} = \left(\bigcup_{M} F_{M}\right)^{c}.$$

Then we have $x_{\infty} \notin \bigcup_n F_n = X$. However, X is a complete metric. Contradiction.

Proposition. \mathbb{R}^n cannot be written as a countable union of hyperplanes.

Proof. Let P be any hyperplane. So $P = \{x \in \mathbb{R}^n : \langle x, a \rangle = d\}$ for fixed a, d, where $a \neq 0$.

Claim 1: Hyperplane P is closed.

P can also be defined by $f^{-1}(d)$ where $f(x) = \langle x, a \rangle$. Since d is closed, f is continuous, the preimage f^{-1} of a closed set d is also closed.

Claim 2: Hyperplane P has empty interior.

Let $x_0 \in P$. For any r > 0, the point $x_0 + (r/2|a|) \cdot a$ is inside $B_r(x_0)$. However,

$$\langle x_0 + \frac{ra}{2|a|}, a \rangle = d + \frac{r|a|}{2} \neq d.$$

So P has empty interior.

Then by definition, all hyperplanes are nowhere dense in \mathbb{R}^n . So \mathbb{R}^n cannot be written as a countable union of hyperplanes.

Proposition (Well-approximable numbers). Let

$$\Lambda_n = \left\{ x \in \mathbb{R} : \left| x - \frac{p}{q} \right| < \frac{1}{q^n} \text{ for infinitely many } \frac{p}{q} \in \mathbb{Q} \right\}.$$

 Λ_n is generic. Thus by Theorem 5, \exists well-approximable irrationals, since \mathbb{Q} is meager (Every countable set is meager).

Proof. By definition

$$\Lambda_n^c = \left\{ x \in \mathbb{R} \, : \, \left| x - \frac{p}{q} \right| \ge \frac{1}{q^n} \text{ for all but finitely many } \frac{p}{q} \in \mathbb{Q} \right\}.$$

If we can show that Λ_n^c is meager, then since R is a complete metric space, Λ_n is generic. Now define

$$F_q := \left\{ x \in \mathbb{R} : \forall p \in \mathbb{Z}, \left| x - \frac{p}{q} \right| \ge \frac{1}{q^n} \right\}, \quad E_q := \bigcap_{q' > q} F_{q'}$$

Since $F_{q'}$ is closed for all q', E_q is also closed for all q. Then

$$\Lambda_n^c = \bigcup_{q \in \mathbb{N}} E_q = \bigcup_{q \in \mathbb{N}} \bigcap_{q' > q} \left\{ x \in \mathbb{R} : \forall p \in \mathbb{Z}, \left| x - \frac{p}{q'} \right| \ge \frac{1}{(q')^n} \right\}.$$

Now we need to show that E_q is nowhere dense in \mathbb{R} . We know $\bar{E}_q = E_q$. But $E_q \cap \{p/q' : p, q' \in \mathbb{Z}, q' > q\} = \emptyset$. Since the latter set is a dense set in \mathbb{R} , then E_q^c countains a dense set which implies the interier of E_q is empty.

Furthermore, we can express Λ_n in another way,

$$\Lambda_n = (\Lambda_n^c)^c
= \bigcap_{q \in \mathbb{N}} \bigcup_{q' \ge q} \left\{ x \in \mathbb{R} : \exists p \in \mathbb{Z}, \left| x - \frac{p}{q'} \right| < \frac{1}{(q')^n} \right\}
= \bigcap_{q \in \mathbb{N}} \bigcup_{q' \ge q} \bigcup_{p \in \mathbb{Z}} \left(\frac{p}{q'} - \frac{1}{(q')^n}, \frac{p}{q'} + \frac{1}{(q')^n} \right)$$

The inner part is the union of intervals of width $2/(q')^n$ with spacing 1/q. So heuristically,

$$\Pr\left(x \in \bigcup_{p \in \mathbb{Z}} \left(\frac{p}{q'} - \frac{1}{(q')^n}, \frac{p}{q'} + \frac{1}{(q')^n}\right)\right) \leq \frac{2/(q')^n}{1/q} = \frac{2}{(q')^{n-1}},$$

$$\Pr\left(x \in \bigcup_{q' \geq q} \bigcup_{p \in \mathbb{Z}} \left(\frac{p}{q'} - \frac{1}{(q')^n}, \frac{p}{q'} + \frac{1}{(q')^n}\right)\right) \leq \sum_{q' \geq q}^{\infty} \frac{2}{(q')^{n-1}}$$

$$\leq \frac{2}{q^{n-\alpha}} \sum_{q' \geq q}^{\infty} \frac{(q')^{n-\alpha}}{(q')^{n-1}}$$

$$\leq \frac{2}{q^{n-\alpha}} \sum_{q' \geq q}^{\infty} \frac{1}{(q')^{\alpha-1}}$$

$$\leq \frac{C_n}{q^{n-\alpha}},$$

as long as n > 2 (α is also greater than 2). So as $n \to +\infty$, the probability that $x \in \Lambda_n$ goes to zero.

Definition. Let X be a nonempty set and (Y, d_y) be a metric space. Let $\{f_n\}$ be a sequence of functions from X to Y, and let f be a function from X to Y.

- Say $f_n \to f$ pointwise if $\forall x \in X$ and $\forall \epsilon > 0$, $\exists N = N(\epsilon, x)$, s.t. $\forall n \geq N$, $d_y(f_n(x), f(x)) < \epsilon$.
- Say $\{f_n\}$ is pointwise Cauchy if $\forall x \in X, \ \forall \epsilon > 0, \ \exists N = N(\epsilon, x), \ \text{s.t.} \ \ \forall n, m > N, \ d_y(f_n(x), f_m(x)) < \epsilon.$
- Say $f_n \to f$ uniformly if $\forall \epsilon > 0$, $\exists N = N(\epsilon)$, s.t. $\forall n > N$, $\forall x \in X$, $d_y(f_n(x) f(x)) < \epsilon$.
- Say $\{f_n\}$ is uniformly Cauchy if $\forall \epsilon > 0$, $\exists N = N(\epsilon)$, s.t. $\forall n, m > N, \forall x \in X, d_y(f_n(x), f_m(x)) < \epsilon$. That is to say $\lim_{n \to \infty} \sup_{x \in X} d(f_n(x), f(x)) = 0$.

Note. Uniform convergence is much better than pointwise convergence.

Definition. $f: X \to Y$ is a bounded function if f(X) is a bounded subset of Y. (i.e. if f(x) is contained in some metric ball $B_{r_f}(y_f)$ in Y)

Example. The pointwise limit of a sequence of bounded functions need not be bounded. For example,

$$f_n(x) = \begin{cases} x & \text{for } |x| \le N \\ N & \text{for } x \ge N \\ -N & \text{for } x \le -N. \end{cases}$$

Each f_n is bounded in [-N, N]. However, its pointwise limit is f(x) = x, which is unbounded.

Definition. Let X, Y be two nonempty metric spaces. Let

$$\mathcal{B}(X,Y) := \{ f : X \to Y : f(X) \text{ is a bounded set} \}.$$

Proposition. The uniform limit of a sequence of bounded function is bounded.

Proof. Let $\{f_n\}$ be assequence in $\mathcal{B}(X,Y)$ and assume that $f_n \to f$ uniformly. By uniform convergence, $\exists n \in \mathbb{N}$, s.t. $\forall x \in X$, $d_Y(f(x), f_N(x)) < 1$. Since f_N is a bounded function, $\exists y_0, k$, s.t. $f_N(x) \in B_k(y_0)$ for every x in X. So $f(x) \in B_{k+1}(y_0)$ for every x in X. Thus f is bounded. \square

Proposition. $\mathcal{B}(X,Y)$ is a metric sapee with metric $d_{\mathcal{B}}(f,g) = \sup_{x \in X} d(f(x),g(x))$.

- 1. If f, g are bounded functions, then $d_{\mathcal{B}}(f, g)$ is finite.
- 2. $d_{\mathcal{B}}$ is a metric on $\mathcal{B}(X,Y)$.
- 3. Uniform convergent of a sequence in $\mathcal{B}(X,Y)$ is equivalent to metric convergence with respect to $d_{\mathcal{B}}$.
- 4. If Y is complete, then so is $\mathcal{B}(X,Y)$.

Definition. Let X, Y be two nonempty metric spaces. Let

$$C(X,Y) := \{ \text{continuous functions from } X \text{ to } Y \}.$$

Example. The pointwise limit of a sequence of continuous functions need not to be continuous. Let $f_n: [0,1] \to \mathbb{R}$, $f_n(x) = x^n$. But

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0, & \text{if } x \in [0, 1) \\ 1, & \text{if } x = 1 \end{cases}$$

is not continuous.

Proposition (Honors HW). If $\{f_n\}$ is a sequence of functions on \mathbb{R} and $f_n \to f$ pointwise, then the set of continuity points for f is generic.

Theorem 6. If $\{f_n\}$ is a sequence in $\mathcal{C}(X,Y)$ and $f_n \to f$ uniformly. Then $f \in \mathcal{C}(X,Y)$.

Proof. Assume $f_n \to f$ uniformly. Let $x_0 \to X$ and $\epsilon > 0$. By uniform convergence, $\exists N \in \mathbb{N}$, s.t. $\forall x, d_Y(f(x), f_N(x)) < \epsilon$. Since f_N is continuous, $\exists \delta > 0$, s.t. $\forall x$ with $d(x, x_0) < \delta$, we have $d_Y(f_N(x), f_N(x_0)) < \epsilon$. Finally, by triangle inequality, $\forall x$ with $d_x(x, x_0) < \delta$,

$$d_Y(f(x), f(x_0)) \le d_Y(f(x), f_N(x)) + d_Y(f_N(x), f_N(x_0)) + d_Y(f_N(x_0), f(x_0)) < 3\epsilon.$$

Definition. Let X, Y be two nonempty metric spaces. Define

$$\mathcal{C}^0(X,Y) := \mathcal{C}(X,Y) \cap \mathcal{B}(X,Y).$$

Then $\mathcal{C}^0(X,Y)$ is a metric space with metric $d_{\mathcal{C}^0}(f,g) := d_{\mathcal{B}}(f,g)$.

Definition. For $Y = \mathbb{R}$, X being any metric space, let $\mathcal{C}^0(X) := \mathcal{C}^0(X, \mathbb{R})$ and define the norm (Question: why it is a norm?)

$$||f||_{\mathcal{C}^0(X)} = \sup_{x \in X} |f(x)|.$$

Proposition. Let X, Y be two metric spaces. $(C^0(X, Y), d_{C^0})$ is a metric space which is complete if Y is complete.

Proof. Let $\{f_n\}$ be a Cauchy sequence in $\mathcal{C}^0(X,Y)$, then $\{f_n\}$ is uniformly Cauchy in $\mathcal{C}^0(X,Y)$. Thus $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{s.t.} \ \forall n, m \geq N, d_{\mathcal{C}^0}(f_n, f_m) < \epsilon$. Notice that $d_{\mathcal{C}^0}(f_n, f_m) = \sup_{x \in X} d_Y(f_n(x), f_m(x))$. So in paticular, for any $x \in X$, $d_Y(f_n(x), f_m(x)) < \epsilon$. Now fix $x \in X$. Then $\{f_n(x)\}$ is a Cauchy in Y. As Y is complete, $\forall x \in X, \exists f(x) \coloneqq \lim_{n \to \infty} f_n(x)$.

Claim: $f_n \to f$ uniformly.

Let $\epsilon > 0$. By uniform Cauchyness, we may choose $N \in \mathbb{N}$, s.t. $\forall n, m \geq N, \forall x \in X, d_Y(f_n(x), f_m(x)) < \epsilon$. Now fix $n \geq N, x \in X$. Choose m_x s.t. $m_x \geq N$ and $d_Y(f_{m_x}(x), f(x)) < \epsilon$. Then

$$d_Y(f_n(x), f(x)) \le d_Y(f_n(x), f_{m_x}(x)) + d_Y(f_{m_x}(x), f(x)) < 2\epsilon.$$

Note, it is okay that m_x depends on x, since it doesn't appear on either side of the inequality. Since $d_Y(f_n(x), f(x)) < 2\epsilon$ for all $x \in X$,

$$d_{\mathcal{C}^0}(f_n(x), f) \le 2\epsilon < 3\epsilon.$$

Thus, $f_n \to f$ in C^0 .

Theorem 7. There exists a nowhere differentiable (not differentiable at any point) continuous function $f \in C^0([0,1])$.

Proof. Since \mathbb{R} is complete, $C^0([0,1])$ is a complete metric space and thus it is not meager. It sufficies to prove that

$$F := \{ f \in \mathcal{C}^0([0,1]) : \exists x_0, \text{ s.t. } f'(x_0) \text{ exists} \}$$

is meager, i.e. a countable union with nowhere dense sets. It then suffices to prove that F is contained in a countable union of nowhere dense sets.

Claim 1: $F \subseteq \bigcup_{n=1}^{\infty} F_n$, where

$$F_n := \{ f \in \mathcal{C}^0([0,1]) : \exists x_0 \in [0,1], \text{ s.t. } |f(x) - f(x_0)| \le n|x - x_0|, \forall x \in [0,1] \}.$$

If $f \in F$, then $\exists x_0$, s.t.

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. Thus, there exists $\delta > 0$, s.t. $\forall x \in [0,1]$ with $|x - x_0| < \delta$,

$$|f(x) - f(x_0)| \le (|f'(x_0)| + 1)|x - x_0|.$$

For $x \in [0,1]$ with $|x - x_1| \ge \delta$, we have

$$|f(x) - f(x_0)| \le |f(x)| + |f(x_0)| \le 2||f||_{\mathcal{C}^0} \cdot \frac{|x - x_0|}{|x - x_0|} \le \frac{2||f||_{\mathcal{C}^0}}{\delta} \cdot |x - x_0|.$$

Finally, for any $n \ge |f'(x_0)| + 1 + 2||f||_{\mathcal{C}^0}/\delta$, we have $f \in F_n$.

Claim 2: F_N is closed.

Claim 3: F_N is nowhere dense.

Since F_N is closed, it suffices to prove that F_N has an empty interior, i.e. that $\forall f \in F_N$, $\forall \epsilon > 0$, $\exists g \in C^0([0,1])$, s.t. $||f - g||_{C^0([0,1])} < \epsilon$ and $g \notin F_N$. Let $f \in F_N$ and $\epsilon > 0$. The idea is to find g, piecewise linear, such that the slopes of linear parts of g has absolute value > N.

Since f is continuous and [0,1] is compact, f is uniformly continuous. So there exists $\delta > 0$, s.t. $|x-y| \le \delta$, $|f(x)-f(y)| \le \epsilon$. Choose $n \in \mathbb{N}$, s.t. $1/n < \delta$ and $2\epsilon/(1/n) > 1000N$. Set $x_j = j/n$, $0 \le j \le n$. Define

$$g(x_i) \coloneqq f(x_i) + (-1)^i \epsilon,$$

and make g linear in $x \in (x_j, x_{j+1})$, for j = 0, ..., n. Note, if $x \in [x_j, x_{j+1}]$, then $x = (1 - \theta)x_j + \theta x_{j+1}$ for some $0 \le \theta \le 1$, and this implies $g(x) = (1 - \theta)g(x_j) + \theta g(x_{j+1})$.

Subclaim 1: $||g - f||_{\mathcal{C}^0([0,1])} < 3\epsilon$.

Suffices to show that $\forall j$ and $\forall x \in [x_j, x_{j+1}], |g(x) - f(x)| < 3\epsilon$. Write $x = (1 - \theta)x_j + \theta x_{j+1}$, with $0 \le \theta \le 1$. Then

$$|g(x) - f(x)| = |(1 - \theta)(g(x_j) - f(x_j)) + (1 - \theta)(f(x_j) - f(x)) + \theta(g(x_{j+1}) - f(x_j)) + \theta(f(x_j) - f(x))|$$

$$\leq (1 - \theta)|g(x_j) - f(x_j)| + (1 - \theta)|f(x_j) - f(x)|$$

$$+ \theta|g(x_{j+1}) - f(x_j)| + \theta|f(x_j) - f(x)|$$

$$\leq (1 - \theta)\epsilon + (1 - \theta)\epsilon + \theta\epsilon + \theta\epsilon$$

$$= 2\epsilon < 3\epsilon$$

Claim 2: The slopes of g have absolute value greater than N:

Suffices to prove

$$\frac{|g(x_{j+1}) - g(x_j)|}{1/n} > N.$$

Indeed,

$$|g(x_{j+1}) - g(x_j)| \ge 2\epsilon - |f(x_{j+1}) - f(x_j)| \ge \epsilon,$$

because $|x_{j+1} - x_j| \le \delta$. Since $n\epsilon > 500N > N$, done.

Finally, observe that $g \notin F_N$ since any x_0 belongs to some $[x_j, x_{j+1}]$ and $|g(x) - g(x_0)| > N|x - x_0|$ for $x_0 \neq x \in [x_j, x_{j+1}]$.

Uniform Convergence and Integration

Definition. Let $f:[a,b] \to \mathbb{R}$ be a bounded function.

• A partition of [a, b] is a finite set

$$P = \{ a = x_0 < x_1 < \dots < x_N = b \}.$$

- Define intervals $I_j := [x_{j-1}, x_j]$ for $j = 1, \dots, N$, with lengths $\Delta x_j := x_j x_{j-1}$.
- Upper Riemann sums:

$$U(f,p) := \sum_{j=1}^{N} M_j(f,P) \Delta x_j,$$

where $M_j(f, p) = \sup_{x \in I_j} f(x)$.

• Lower Riemann sums:

$$L(f,p) := \sum_{j=1}^{N} m_j(f,P) \Delta x_j,$$

where $m_i(f, p) = \inf_{x \in I_i} f(x)$.

Theorem 8. f is Riemann integrable if and only if $\forall \epsilon > 0$, there exists an partition P, s.t. $U(f,P) - L(f,P) < \epsilon$. In this case,

$$\int_a^b f(x) dx = \inf_P U(f, P) = \sup_P L(f, P).$$

Example. Pointwise limit of Riemann integrable functions need not be Riemann integrable. Let $f_n(x)$ be a function from [0,1] to \mathbb{R} defined as following

$$f_n(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \cap [0, 1] \text{ with denominator of x at most } n \\ 0, & \text{otherwise} \end{cases}$$

 $f_n(x)$ is Riemann integrable since it is piecewise linear. Consider the limit

$$\lim_{n \to \infty} f_n(x) = f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 0, & \text{if } x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

For any partition P, U(f, P) = 1 and L(f, P) = 0. We see the limit f(x) is not Riemann integrable.

Theorem 9. Let $\{f_n\}$ be a sequence of Riemann integrable functions on [a,b] and assume $f_n \to f$ uniformly. Then f is Riemann integrable and

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

Note. Under the assumption of pointwise convergence, the above formula can fail even if the limit f is Riemann integrable.

Under the assumption of uniform convergence, this is a total mess if [a,b] is replaced by $[a,\infty)$ and \int_a^b is replaced by \int_a^∞ .

Uniform Convergence and Differentiation

Example. Consider the sequence

$$f_n(x) = \sqrt{\frac{1}{n} + x^2}, \quad x \in \mathbb{R}.$$

Claim: $f_n \to f$ uniformly, where f = |x|, on \mathbb{R} .

Let $\epsilon > 0$. Let $N = \lceil 1/\epsilon \rceil$. Then $\forall n > N$ and $\forall x$, we have

$$|f_n(x) - |x|| < \frac{1}{n} < \epsilon.$$

Furthermore, each f_n is differentiable and

$$f_n'(x) = \frac{x}{\sqrt{\frac{1}{n} + x^2}}.$$

However, $f'_n \to g$ pointwise, where

$$g(x) = \begin{cases} -1, & x < 0, \\ 1, & x > 0, \\ 0, & x = 0. \end{cases}$$

Also we observe that the limiting function f is not differentiable.

Definition. Let I be an interval with nonempty interior. Let

$$\mathcal{C}^k(I) \coloneqq \{f: I \to \mathbb{R} \ : \ f \text{ is k-'times' differentiable and } f^{(j)} \in \mathcal{C}^0(I), \ 0 \le j \le k\}.$$

Define the norm

$$||f||_{\mathcal{C}^k(I)} := \sum_{j=0}^k ||f^{(j)}||_{\mathcal{C}^0(I)}.$$

Proposition (HW). $\exists A = A(I), \ s.t. \ \|f\|_{C^k(I)} \le A(\|f\|_{C^0(I)} + \|f^{(k)}\|_{C^0(I)}).$ Further, this A can be independent of I.

Theorem 10. $C^k(I)$ is a complete metric space.

Proof. Prove by induction. First, we know that $C^0(I)$ is complete. We want to deduce completeness of $C^{k+1}(I)$ from completeness of $C^k(I)$.

Now we assume $C^k(I)$ is complete and let $\{f_n\}$ be a Cauchy sequence in $C^{k+1}(I)$. Notice $\forall n, m, m \in \mathbb{N}$

$$||f_n - f_m||_{\mathcal{C}^k(I)} + ||f_n^{(k+1)} - f_m^{(k+1)}||_{\mathcal{C}^0(I)} = ||f_n - f_m||_{\mathcal{C}^{k+1}(I)},$$

so $\{f_n\}$ is a Cauchy sequence in $C^k(I)$. Then by hypothesis, $\exists f \in \mathcal{C}^k(I)$, s.t. $||f_n - f||_{\mathcal{C}^k(I)} \to 0$ as $n \to \infty$. Since $\{f_n^{(k+1)}\}$ is Cauchy in $\mathcal{C}^0(I)$, $\exists g \in \mathcal{C}^0(I)$, s.t. $f_n^{(k+1)} \to g$ uniformly on I. If we can show that $f \in \mathcal{C}^{k+1}(I)$ and $f^{(k+1)} = g$, then

$$||f_n - f||_{\mathcal{C}^{k+1}(I)} = ||f_n - f||_{\mathcal{C}^k(I)} + ||f_n^{(k+1)} - f^{(k+1)}||_{\mathcal{C}^0(I)}$$
$$= ||f_n - f||_{\mathcal{C}^k(I)} + ||f_n^{(k+1)} - g||_{\mathcal{C}^0(I)}$$

goes to 0 as $n \to \infty$. For this, it suffices to prove that $f^{(k)}$ is differentiable and $(f^{(k)})' = g$. Fix $x_0 \in I$. Then $\forall x \in I$, by the fundamental theorem of calculus, we have

$$f_n^{(k)}(x) = f_n^{(k)}(x_0) + \int_{x_0}^x (f_n^{(k)})'(y) \, \mathrm{d}y.$$

Since $f_n \to f$ in C^k , $\lim_{n\to\infty} f_n^{(k)}(x) = f^{(k)}(x)$ for all $x \in I$. Since $f_n^{(k+1)} = (f_n^{(k)})' \to g$ uniformly, we know

$$\lim_{n \to \infty} \int_{x_0}^x (f_n^{(k)})'(y) \, \mathrm{d}y = \int_{x_0}^x \lim_{n \to \infty} (f_n^{(k)})'(y) \, \mathrm{d}y = \int_{x_0}^x g(y) \, \mathrm{d}y.$$

Finally, by linearity of limits,

$$f^{(k)}(x) = f^{(k)}(x_0) + \int_{x_0}^x g(y) \, dy.$$

Since g is continuous, the fundamental theorem of calculus says $\int_{x_0}^x g(y) \, dy$ is differentiable with derivative g(x). Then we can conclude that $f^{(k)}$ is differentiable and $f^{(k)} = g$.

Proposition (HW). Let $\{f_n\}$ be a sequence in $C^k(I)$. Assume $\{f_n^{(k)}\}$ is Cauchy in $C^0(I)$ and $\exists x_0 \in I$, s.t. $\forall j = 0, \ldots, k-1$, $\{f_n^{(j)}(x_0)\}$ is a Cauchy sequence. Then $\{f_n\}$ is convergent in $C^k(I)$.

Theorem 11 (7.17). Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. If $\{f'_n\}$ converges uniforly on [a,b], then $\{f_n\}$ converges uniformly on [a,b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x) \quad (a \le x \le b).$$

Example. Let

$$f(x) = \begin{cases} x^2 \sin 1/x, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

It has derivative

$$f'(x) = \begin{cases} 2x \sin 1/x - \cos 1/x, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

and f'(x) is discontinuous. So there exists some functions which has derivative at every point, but the derivative is not continuous.

Recall. Let (X, d) be a complete metric space. A subset $K \subseteq X$ is compact if and only if K is closed and totally bounded.

Corollary. $\mathcal{F} \subseteq \mathcal{C}^0(X)$ is compact if and only if \mathcal{F} is closed and totally bounded.

But what does totally bounded mean for $C^0(X)$? We want a simpler characterization of totally boundedness.

Definition. Let $\mathcal{F} \subseteq \mathcal{C}(X)$.

• \mathcal{F} is pointwise bounded if $\forall x \in X$, $\exists M_x$, s.t. $\forall f \in \mathcal{F}$, $|f(x)| \leq M_x$ (i.e. $\forall x \in X$, $\{f(x) : f \in \mathcal{F}\}$ is a bounded set).

- \mathcal{F} is equicontinuous if $\forall \epsilon > 0$, $\forall x \in X$, $\exists \delta = \delta(x, \epsilon) > 0$, s.t. $\forall f \in \mathcal{F}$ and $\forall y \in \mathcal{B}_{\delta}(x)$, $|f(x) f(y)| < \epsilon$.
- \mathcal{F} is uniformly equicontinuous if $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon) > 0$, s.t. $\forall f \in \mathcal{F}$ and $\forall x, y \in X$ with $d(x,y) < \delta$, $|f(x) f(y)| < \epsilon$.

Example. $\mathcal{F} := \{ f \in \mathcal{C}^0([0,1]) : f \text{ if differentiable on } (0,1) \text{ and } |f'(x)| \leq 1, \forall x \in (0,1) \} \text{ is uniformly equicontinuous.}$

Proof. $\forall f \in \mathcal{F}, x, y \in [0, 1], |f(x) - f(y)| \le |x - y|$ by mean value theorem. So $\forall \epsilon > 0$, pick $\delta = \epsilon$. Then $|f(x) - f(y)| < \epsilon$ for all $f \in \mathcal{F}$ and for all $x, y \in [0, 1]$ with $|x - y| < \delta$.

Example. $f_n(x) = x^n$ defined on [0,1]. Then $\mathcal{F} := \{f_n : n \in \mathbb{N}\}$ is a pointwise bounded, but not a equicontinuous subset of $\mathcal{C}^0([0,1])$.

Proof. For any $x \in [0,1]$, $\{f(x) : f \in \mathcal{F}\} \subseteq [0,1]$. So \mathcal{F} is pointwise bounded. Fix x=1 and $\epsilon = 0.5$. For any $\delta > 0$, there exists N sufficiently large such that for all n > N, $f_n(x - \delta/2) < 0.5$. Thus, $f_n(x)$ is not equilcontinous.

Proposition. If K is compact, then $C^0(K) = C(K)$. (C^0 means bounded continuous functions, while C means continuous functions)

Example. Show by example that a pointwise bounded subset of $C^0(K)$ need not be uniformly pointwise bounded (i.e. a bounded subset of $C^0(K)$).

$$f_n(x) = \begin{cases} n^2 x, & 0 \le x \le 1/n \\ 2n - n^2 x, & 1/n < x \le 2/n \\ 0 & 2/n < x \le 1 \end{cases}$$

Proposition. If K is compact, then $\mathcal{F} \subseteq \mathcal{C}^0(K)$ is equicontinuous if and only if \mathcal{F} is uniformly equicontinuous.

Proof. \Leftarrow : is immediate.

 \Rightarrow : Assume K is compact and $\mathcal{F} \subseteq \mathcal{C}^0(K)$ is equicontinuous. Let $\epsilon > 0$. Then $\forall x \in K, \exists \delta_x > 0$, s.t. $\forall y \in B_{\delta_x}(x), \ \forall f \in \mathcal{F}, \ |f(x) - f(y)| < \epsilon/2$. Since $K \subseteq \bigcup_{x \in K} B_{\delta_x}(x), \ \exists x_1, \ldots, x_N, \ \text{s.t.}$ $K \subseteq \bigcup_{j=1}^N B_{\delta_{x_j}}(x_j)$.

Claim: $\exists \delta > 0$, s.t. $\forall y, z \in K$, if $d(y, z) < \delta$, then $y, z \in B_{\delta_{x_j}}(x_j)$.

Suppose not. Then there exists sequences $\{y_n\}$ and $\{z_n\}$ such that $d(y_n, z_n) \to 0$, but y_n and z_n never belong to the same $B_{\delta_{x_j}}(x_j)$. Each z_n lives in some $\mathcal{B}_{\delta_{x_j}}(x_j)$ and since there are only finitely many such balls, there must be a ball that contains infinitely many z_n . Passing to a subsequence, we may assume $\exists j_0$, s.t. $z_n \in B_{\delta_{x_{j_1}}}(x_{j_1})$ for all n. Similarly, passing to a further subsequence, we may assume $y_n \in B_{\delta_{x_{j_2}}}(x_{j_2})$ for all n. Since $\{z_n\}$ is in K, which is compact, passing to a further subsequence, we may assume $z_n \to z$. Since $d(z_n, y_n) \to 0$, $y_n \to z$. Notice $\exists j$, s.t. $z \in B_{\delta_{x_j}}(x_j)$ (z is not necessarily in $B_{\delta_{x_{j_1}}}(x_{j_1})$). For n sufficiently large, y_n and z_n are both in $B_{\delta_{x_j}}(x_j)$. Contradiction.

Then we have

$$|f(y) - f(z)| \le |f(y) - f(x_i)| + |f(x_i) - f(z)| < \epsilon$$

for any $f \in \mathcal{F}$.

Theorem 12 (Arzela-Ascali Theorem). If K is a compact metric space, then $\mathcal{F} \subseteq \mathcal{C}^0(K)$ is totally bounded if and only if \mathcal{F} is pointwise bounded and equicontinuous.

Proof. \Rightarrow : Assume $\mathcal{F} \subseteq \mathcal{C}^0(K)$ is totally bounded.

Pointwise bounded: Since \mathcal{F} is totally bounded, $\exists N$ and $f_1, \ldots, f_n \in \mathcal{F}$, s.t. $\mathcal{F} \subseteq \bigcup_{j=1}^N B_1(f_1)$. Then $\forall x$ and $\forall f \in \mathcal{F}$,

$$|f(x)| < \sum_{j=1}^{N} |f_j(x)| + 1 \le \sum_{j=1}^{N} ||f_j||_{\mathcal{C}^0(K)} + 1.$$

Equicontinuous: Let $\epsilon > 0$. Since \mathcal{F} is totally bounded, $\exists N$ and $f_1, \ldots, f_n \in \mathcal{F}$, s.t. $\mathcal{F} \subseteq \bigcup_{j=1}^N B_{\epsilon/3}(f_1)$. Since each f_j is uniform continuous (being continuous on a compact set), $\exists \delta_j > 0$, s.t. $\forall x, y \in K$ with $d(x, y) < \delta_j$, we have $|f_j(x) - f_j(y)| < \epsilon/3$. Let $\delta := \min\{\delta_1, \ldots, \delta_N\}$. Let $f \in \mathcal{F}$. Then $\exists j$, s.t. $||f - f_j||_{\mathcal{C}^0} < \epsilon/3$. Finally, if $d(x, y) < \delta$,

$$|f(x) - f(y)| \le |f(x) - f_j(x)| + |f_j(x) - f_j(y)| + |f_i(y) - f(y)| < \epsilon.$$

Thus \mathcal{F} is uniform equicontinuous.

 \Leftarrow : Assume \mathcal{F} is pointwise bounded and equicontinouus. Let $\epsilon > 0$. By proposition, \mathcal{F} is uniformly equicontinous, so $\exists \delta > 0$, s.t. $\forall f \in \mathcal{F}$, $\forall x, y \in K$ with $d(x, y) < \delta$, $|f(x) - f(y)| < \epsilon/4$. Since K is compact, K is totally bounded. So $\exists N$ and $x_1, \ldots, x_N \in K$, s.t. $K \subseteq \bigcup_{j=1}^N B_\delta(x_j)$. The idea is to discretize the functions in \mathcal{F} . Consider $P \coloneqq \{(f(x_1), f(x_2), \ldots, f(x_N)) : f \in \mathcal{F}\} \subseteq \mathbb{R}^N$. By pointwise boundedness, for each f, f, s.t. f and f is uniformly equivalent.

$$P \subseteq [-M_1, M_1] \times [-M_2, M_2] \times \cdots \times [-M_N, M_N],$$

which is a bounded (hence totally bounded) subset of \mathbb{R}^N . So P is totally bounded. Then $\exists L$ and $y_1, \ldots, y_L \in P$, s.t. $P \subseteq \bigcup_{j=1}^L B_{\epsilon/4}(y_j)$. (Note: $B_{\epsilon/4}(y_j)$ is the ball in Euclidean space.) For each y_j , by definition, $\exists f_j \in \mathbb{F}$, s.t. $(y_j)_i = f_j(x_i)$, $i = 1, \ldots, N$. Thus, $\forall f \in \mathcal{F}$, $\exists j$, s.t. $1 \leq j \leq L$ and

$$|f(x_i) - f_j(x_i)| \le |(f(x_1), \dots, f(x_N)) - (f_j(x_1), \dots, f_j(x_N))| < \epsilon/4, \quad i = 1, \dots, N$$

For any $x \in K$, by totally boundedness of K, $\exists i \in 1, ..., N$, s.t. $x \in B_{\delta}(x_i)$. So

$$|f(x) - f_j(x)| \le |f(x) - f(x_i)| + |f(x_i) - f_j(x_i)| + |f_j(x_i) - f_j(x)| < 3\epsilon/4.$$

Taking the supremum over x, $||f_j - f||_{\mathcal{C}^0(K)} \le 3\epsilon/4 < \epsilon$. Thus, $f \in B_{\epsilon}(f_j)$ and we have $\mathcal{F} \subseteq \bigcup_{j=1}^L B_{\epsilon}(f_j)$.

Corollary. Let K be a compact metric space.

- 1. $\mathcal{F} \subseteq \mathcal{C}^0(K)$ is compact if and only if \mathcal{F} is closed, pointwise bounded and equicontinuous.
- 2. $\mathcal{F} \subseteq \mathcal{C}^0(K)$ is precompact if and only if \mathcal{F} is pointwise bounded and equicontinuous.
- 3. Let $\{f_n\}$ be a pointwise bounded equicontinuous sequence in $C^0(K)$. Then $\{f_n\}$ has a uniformly convergent subsequence.

Proposition. For $k \in \mathbb{N}$ and I compact, a subset of $C^k(I)$ is totally bounded if and only each of its ith derivatives, i = 0, 1, ..., k, is pointwise bounded and equicontinuous.

Theorem 13 ((Baby) Stone-Weierstress Theorem). Let $f : [a, b] \to \mathbb{R}$ be a continuous function. There exists a sequence $\{P_n\}$ of polynomials, s.t. $P_n \to f$ uniformly on [a, b].

Note that even if f has derivatives of all orders, it probably doesn't work if we just take P_n equal to the n-th Taylor polynomial. Also, unless f itself is a polynomial, the degress of P_n must tend to infinity.

Proof. First, we do some reductions:

- 1. We assume [a,b] = [0,1]. If this is not true, we can approximate $g(x) := f(\frac{x-a}{b-a})$ and replace $P_n(x)$ by $P_n((b-a)x + a)$.
- 2. We assume f(0) = f(1) = 0. If this is not the case, we approximate g(x) = f(x) f(0) x(f(1) f(0)) and replace $P_n(x)$ by $P_n(x) + f(0) + x(f(1) f(0))$.

Now, we extend f to all of \mathbb{R} by setting f(x) = 0 off of [0,1]. (Warning: We are only approximating f on [0,1], even though the domain of f is larger.) Then f is continuous and thus uniformly continuous on \mathbb{R} . Define

$$Q_n(x) := c_n(1 - x^2)^n,$$

where c_n is chosen s.t.

$$\int_{-1}^{1} Q_n(x) \, \mathrm{d}x = 1,$$

i.e. $c_n = \left(\int_{-1}^1 (1 - x^2)^n \, \mathrm{d}x \right)^{-1}$. Let

$$P_n(x) := \int_0^1 f(t)Q_n(x-t) dt = f * Q_n(x) = \int_{x-1}^x f(x-t)Q_n(t) dt.$$

We need to prove that P_n is a polynomial and $P_n \to f$ uniformly on [0,1].

Claim 1: P_n is a polynomial of degree $\leq 2n$.

Subproof. Expand the expression for $Q_n(x-t)$.

$$Q_n(x-t) = c_n (1 - (x-t)^2)^n = \sum_{j=0}^n c_n \binom{n}{j} (-1)^j (x-t)^{2j}$$

$$= \sum_{j=0}^n \sum_{k=0}^{2j} c_n \binom{n}{j} \binom{2j}{k} (-1)^{j+k} x^{2j-k} t^k$$

$$= \sum_{m=0}^{2n} \left(\sum_{m \le 2j \le 2n} c_n \binom{n}{j} \binom{2j}{2j-m} (-1)^{j-m} x^m t^{2j-m} \right)$$

So $P_n(x) = \sum_{m=0}^{2n} a_{n,m} x^m$, where

$$a_{n,m} = \sum_{m \le 2j \le 2n} c_n \binom{n}{j} \binom{2j}{2j-m} (-1)^{j-m} \int_0^1 f(t) t^{2j-m} dt.$$

Subproof (An alternative approach). For $k \in \mathbb{N}$, P_n is k times differentiable and

$$P_n^{(k)}(x) = \int_0^1 f(t)Q_n^{(k)}(x-t) dt.$$

In particular, since Q_n is a polynomial of degree 2n,

$$p_n^{(2n+1)}(x) = \int_0^1 f(t) \cdot 0 \, \mathrm{d}t = 0.$$

So P_n is a polynomial of degree at most 2n. By induction, it sufficies to prove the following proposition, which sometimes is of independent interest.

Proposition. Let $g \in \mathcal{C}^1(\mathbb{R})$ and let $f \in \mathcal{C}^0(\mathbb{R})$ with f = 0 out of [0, 1]. Then the convolution

$$h(x) := \int_0^1 f(t)g(x-t) \, \mathrm{d}t$$

is also in $C^1(\mathbb{R})$, where its derivative is

$$h'(x) = \int_0^1 f(t)g'(x-t) dt.$$

Note: Since f(x) = 0 off of [0,1], we can also replace the proper integral $\int_{-\infty}^{1}$ by the inproper integral $\int_{-\infty}^{\infty}$.

Proof of Proposition. First, observe that h is bounded in $\mathcal{C}^1(\mathbb{R})$. This is because

$$|h(x)| = \left| \int_0^1 f(t)g(x-t) \, \mathrm{d}x \right| \le \int_0^1 |f(t)g(x-t)| \, \mathrm{d}t \le ||f||_{\mathcal{C}^0} ||g||_{\mathcal{C}^1}.$$

By a similar argument, we observe that

$$|h'(x)| \le ||f||_{\mathcal{C}^0} ||g||_{\mathcal{C}^1}.$$

In addition, we claim that h'(x) is continuous. Let $x_n \to x$. Define

$$\varphi_n(t) := f(t)g'(x_n - t)$$
 and $\varphi(t) := f(t)g'(x - t)$.

Without loss of generality, assume $x_n \in [x-1,x+1]$ for all n. Observe that every φ_n and φ lives on [0,1]. For any $t \in [0,1]$, $x_n - t \in [x-2,x+1]$. Since g' is continuous, it is uniform continuous on [x-2,x+1]. Hence $\forall \epsilon > 0$, $\exists N$, s.t. $\forall n \geq N$, $\forall t \in [0,1]$, $|g'(x_n-t)-g'(x-t)| < \epsilon$ (because $|x_n-x| < \text{some } \delta$). Thus, $\varphi_n \to \varphi$ uniformly on [0,1]. Then we have

$$\lim_{x_n \to x} h'(x_n) = \lim_{x_n \to x} \int_0^1 \varphi_n(t) dt = \int_0^1 \varphi(t) dt = h'(x).$$

Claim 2: $P_n \to f$ uniformly on [0,1].

Subclaim 1: $c_n \leq \sqrt{n}, \forall n$.

Let $g(y) = (1 - y)^n$. Then $g''(y) = n(n - 1)(1 - y)^{n-2} \ge 0$ for $y \in [0, 1]$. By Taylor's theorem, for $y \in [0, 1]$,

$$g(y) = g(0) + g'(0)y + \frac{1}{2}g''(ty)y^{2}, \text{ for some } t \in [0, y] \subseteq [0, 1]$$

$$\geq g(0) + g'(0)y$$

= 1 - ny.

Apply the above result by setting y to x^2 , then we have

$$\int_{-1}^{1} (1 - x^{2})^{n} dx \ge \int_{-1/\sqrt{n}}^{1/\sqrt{n}} (1 - x^{2})^{n} dx$$
$$\ge \int_{-1/\sqrt{n}}^{1/\sqrt{n}} 1 - nx^{2} dx = \frac{4}{3\sqrt{n}}.$$

Hence

$$c_n \le \frac{3\sqrt{n}}{4} \le \sqrt{n}.$$

Subclaim 2: $\forall \delta > 0, Q_n \to 0$ uniformly on $\{x : \delta \le |x| \le 1\}$.

On $\delta \leq |x| \leq 1$,

$$Q_n(x) = c_n(1 - x^2)^n \le \sqrt{n}(1 - \delta^2)^n \to 0,$$

since $1 - \delta^2 < 1$.

Now let's prove the claim. Let $x \in [0, 1]$.

$$P_n(x) - f(x) = \int_0^1 f(t)Q_n(x - t) dt - f(x) \int_{-1}^1 Q_n(s) ds$$
$$= \int_{x-1}^x f(x - s)Q_n(s) ds - \int_{-1}^1 f(x)Q_n(s) ds$$
$$= \int_{-1}^1 f(x - s)Q_n(s) ds - \int_{-1}^1 f(x)Q_n(s) ds.$$

since f = 0 off of [0,1] (so f(x-s) vanishes for $s \notin [x-1,x]$). Thus

$$P_n(x) - f(x) = \int_{-1}^{1} (f(x-s) - f(x))Q_n(s) dx = \int_{-\delta}^{\delta} + \int_{-1}^{-\delta} + \int_{\delta}^{1} =: I_1 + I_2 + I_3$$

For I_1 , we have

$$I_1 \le \int_{-\delta}^{\delta} |f(x-s) - f(x)| \cdot |Q_n(s)| \, \mathrm{d}s$$

$$\le \max_{|s| \le \delta} |f(x-s) - f(x)| \int_{-1}^{1} Q_n(s) \, \mathrm{d}s.$$

$$= \max_{|s| \le \delta} |f(x-s) - f(x)|$$

For I_2 and I_3 , we have

$$I_2 + I_3 \le 2 \cdot \max_{s \in \mathbb{R}} |f(x - s) - f(x)| \cdot \max_{\delta \le |s| \le 1} |Q_n(s)| \le 4 \cdot ||f||_{\mathcal{C}^0} \cdot \max_{\delta \le |s| \le 1} |Q_n(s)|$$

Now, let $\epsilon > 0$. Since f is uniformly continuous, $\exists \delta > 0$, s.t. whenever $|s| \leq \delta$, $|f(x - s) - f(x)| < \epsilon/2$, $\forall x \in \mathbb{R}$. So $I_1 < \epsilon/2$, $\forall n$. Also, by the subclaim, $\exists N$, s.t. $\forall n \geq N$, $\max_{\delta \leq |s| \leq 1} |Q_n(s)| < \epsilon/(4||f||_{\mathcal{C}^0})$. So $\forall n \geq N$ and $x \in [0, 1]$,

$$|P_n(x) - f(x)| \le |I_1| + |I_2 + I_3| < \epsilon.$$

Definition. Let E be a nonempty set.

$$\mathcal{F}(E) := \mathcal{F}(E; \mathbb{R}) := \{ f : E \to \mathbb{R} \}.$$

Definition. A family $A \subseteq \mathcal{F}(E)$ is an algebra if $\forall c \in \mathbb{R}$, and $f, g \in A$,

$$cf, f+g, fg \in \mathcal{A}$$
.

Definition. Let $\mathcal{A} \subseteq \mathcal{F}(E)$.

- \mathcal{A} separates points in E if $\forall x_1, x_2 \in E$ with $x_1 \neq x_2, \exists f \in \mathcal{A}$, s.t. $f(x_1) \neq f(x_2)$.
- \mathcal{A} is nonvanishing on E if $\forall x \in E, \exists f \in \mathcal{A}, \text{ s.t. } f(x) \neq 0.$

Example. The set P of polynomials on \mathbb{R} is an algebra, which separates points in \mathbb{R} and vanishes nowhere.

Example. The set P_{odd} is not an algebra and is not nonvanishing (because it is always 0 at x = 0). The set P_{even} is an algebra, which is nonvaishing on \mathbb{R} but it doesn't separate points.

Proposition. Let $A \subseteq \mathcal{F}(E)$ be an algebra that separates points and vanishes nowhere. Then $\forall x_1 \neq x_2 \in E$ and $\forall c_1, c_2 \in \mathbb{R}$, $\exists f \in A$, s.t. $f(x_1) = c_1$ and $f(x_2) = c_2$.

Proof. By definition, $\exists g, h, k \in \mathcal{A}$, s.t. $g(x_1) \neq g(x_2)$, $h(x_1) \neq 0$, $k(x_2) \neq 0$. Now let

$$u = (g - g(x_1))k = gk - g(x_1)k \in \mathcal{A},$$

 $v = (g - g(x_2))h = gh - g(x_2)h \in \mathcal{A}.$

Then $u(x_1) = 0, u(x_2) \neq 0, v(x_1) \neq 0, v(x_2) = 0$. Finally, let

$$f = c_1 \frac{v}{v(x_1)} + c_2 \frac{u}{u(x_2)} \in \mathcal{A}.$$

Theorem 14 (Full Stone Weierstress). Let K be a compact set and $\mathcal{A} \subseteq \mathcal{C}^0(K)$ be an algebra that separtes points and vanishes nowhere. Then \mathcal{A} is dense in $\mathcal{C}^0(K)$. In other words, $\forall f \in \mathcal{C}^0(K)$, there exists a sequence $\{f_n\}$ in \mathcal{A} , s.t. $f_n \to f$ uniformly.

21

Proof. Let's $C = \bar{A}$. Claim C is an algebra (HW). We now need to show that $C = C^0(K)$.

Claim 1: If $f \in \mathcal{C}$, then so is |f|.

Let $a := ||f||_{\mathcal{C}^0(K)}$. By baby Stone Weierstress (aka Weierstress preparation lemma), there exists a polynomial P on \mathbb{R} such that $|P(y) - |y|| < \epsilon$ for any $y \in [-a, a]$. Define $g := P \circ f$. Then $g(x) = \sum_{n=0}^{N} a_n f(x)^n$, where the a_n 's are the coefficients of P. Since \mathcal{C} is an algebra, $g \in \mathcal{C}$. Furthermore, $\forall x \in K$, $f(x) \in [-a, a]$. So

$$|g(x) - |f(x)|| = |P(y) - |y|| < \epsilon.$$

Thus $||f| - g||_{\mathcal{C}^0(K)} \le \epsilon$. Since ϵ was arbitrary, $|f| \in \bar{\mathcal{C}} = \mathcal{C}$.

Claim 2: If $f_1, \ldots, f_n \in \mathcal{C}$, then so are $\max\{f_1, \ldots, f_n\}$ and $\min\{f_1, \ldots, f_N\}$. If N = 2, this follows from Claim 1 and

$$\max\{f,g\} = \frac{f+g}{2} + \frac{|f-g|}{2}, \quad \min\{f,g\} = \frac{f+g}{2} - \frac{|f-g|}{2}.$$

For larger N, by induction, we have

$$\max\{f_1,\ldots,f_{N+1}\} = \max\{\max\{f_1,\ldots,f_N\},f_{N+1}\},$$

$$\min\{f_1,\ldots,f_{N+1}\} = \min\{\min\{f_1,\ldots,f_N\},f_{N+1}\}.$$

Claim 3: Let $f \in \mathcal{C}^0(K)$, $\epsilon > 0$ and $x_0 \in K$. Then $\exists g_{x_0} \in \mathcal{C}$, s.t. $g_{x_0}(x_0) = f(x_0)$ and $g_{x_0}(x) > f(x) - \epsilon$ for all $x \in K$ (approximate f from not too far below). Let $x_1 \in K$. Then $\exists h_{x_1} \in \mathcal{C}$, s.t. $h_{x_1}(x_0) = f(x_0)$ and $h_{x_1}(x_1) = f(x_1)$. For $y \in K$, define

$$G_y := \{x \in K : h_y(x) > f(x) - \epsilon\}.$$

Then G_y is open since h_y is continuous. Also $y \in G_y$ since $h_y(y) = f(y)$. Thus, $\{G_y : y \in K\}$ is an open cover of K, so $\exists y_1, \ldots, y_N \in K$, s.t. $K \subseteq \bigcup_{n=1}^N G_{y_n}$. Now, let $g_{x_0} = \max\{h_{y_1}, \ldots, h_{y_N}\}$. By Claim 2, $g_{x_0} \in \mathcal{C}$. Furthermore, $g_{x_0}(x_0) = f(x_0)$. Finally, for $x \in G_{y_n}$, $g_{x_0}(x) \ge h_{y_n}(x) > f(x) - \epsilon$. Thus, g_{x_0} is the function we want.

Claim 4: $\forall f \in \mathcal{C}^0(K)$ and $\forall \epsilon > 0$, $\exists g \in \mathcal{C}$, s.t. $\forall x, f(x) - \epsilon < g(x) < f(x) + \epsilon$. Let $x_0 \in K$. By Claim 3, $\exists g_{x_0} \in \mathcal{C}$, s.t. $g_{x_0} = f(x_0)$ and $g_{x_0}(x) > f(x) - \epsilon$, $\forall x \in K$. For $y \in K$, define

$$H_y := \{ x \in K : g_y(x) < f(x) + \epsilon \}.$$

Then H_y is open since g_y is continuous. Again, $y \in H_y$ since $g_y(y) = f(y)$. So $\{H_y : y \in K\}$ is an open cover of K. Then $\exists y_1, \ldots, y_N \in K$, s.t. $K \subseteq \bigcup_{n=1}^N H_{y_n}$. Finally, define $g = \min\{g_{y_1}, \ldots, g_{y_n}\}$. Then $\forall x, g(x) > f(x) - \epsilon$. Also $\exists n, \text{ s.t. } x \in H_{y_n}$. Then $g(x) \leq g_{y_n}(x) < f(x) + \epsilon$.

Theorem 15 (Picard's theorem). Let $t_0 \in \mathbb{R}$ and $y_0 \in \mathbb{R}^k$. Let $a, b \in \mathbb{R}$ and define

$$B := \{ y \in \mathbb{R}^k : |y - y_0| \le b \},$$

and

$$R := [t_0 - a, t_0 + a] \times B.$$

Let $F: R \to \mathbb{R}^k$ be a bounded, continuous function and let $M := ||F||_{\mathcal{C}^0(R)}$. Assume that $\exists C \in \mathbb{R}$, s.t. $\forall t \in (t_0 - a, t_0 + a), \ \forall u, y \in B, \ |F(t, u) - F(t, y)| \le C|u - y|$. Then, $\exists !$ function $g: (t_0 - \tilde{a}, t_0 + \tilde{a}) \to B$, s.t. g is differentiable and g solves the initial value problem

$$\begin{cases} g(t_0) = y_0 \\ g'(t) = F(t, g(t)), \quad \forall t \in (t_0 - \tilde{a}, t_0 + \tilde{a}). \end{cases}$$

Here, $\tilde{a} = \min\{a, b/M\}$.

Warning: The C in the assumption is crucial for this theorem. Consider k = 1, $F(t, y) = y^{1/3}$ and the initial value problem

$$\begin{cases} g(0) &= 0 \\ g'(t) &= (g(t))^{1/3} \end{cases}$$

Here is one solution, g(t) = 0 for all t. Here is another solution,

$$g(t) = \begin{cases} ct^{3/2}, & t \ge 0, \\ 0, & t < 0, \end{cases}$$

where $c^2 = 8/27$. Actually, there are infinitely many distinct solutions.

Proof. Observe that g solves our initial value problem if and only if

- q is continuous;
- $|g(t) y_0| \le b, \forall t \in I$.
- $g(t) = y_0 + \int_{t_0}^t F(s, g(s)) ds, \forall t \in I := [t_0 \tilde{a}, t_0 + \tilde{a}].$

Here we are using the fact that differentiable functions are continuous and equal the integral of their derivative plus some constant. On the other hand, that condition of g implies continuity of the integrand and then we can use the fundamental theorem of calculus.

Consider the set

$$\mathcal{M} := \{ g \in \mathcal{C}^0(I; \mathbb{R}^k) : g(t) \in B, \forall t \in I; g(t_0) = y_0 \}.$$

Consider the map $\Phi: \mathcal{M} \to \mathcal{C}^0(I, \mathbb{R}^k)$

$$[\Phi(g)](t) := y_0 + \int_{t_0}^t F(s, g(s)) \, \mathrm{d}s.$$

By the fundamental theorem of calculus, $\Phi(g)$ is differentiable and hence it is continuous.

Now, we want to show that there exists an unique fixed point g of Φ in \mathcal{M} . The idea is to apply contraction mapping theorem. Observe that \mathcal{M} is closed since it is the intersection of two closed sets (careful here). Also since $\mathcal{C}^0(I,\mathbb{R})$ is complete, \mathcal{M} is complete. Since the function $g(t) = y_0, \forall t \in I$ is in \mathcal{M} , $\mathcal{M} \neq \emptyset$. Thus, by the contraction mapping theorem, any contraction on \mathcal{M} has a unique fixed point p. Now we want to show Φ is a contraction on \mathcal{M} .

Compute

$$|\Phi(g)(t) - y_0| = \left| \int_{t_0}^t F(s, g(s)) \, \mathrm{d}s \right| \le \left| \int_{t_0}^t |F(s, g(s))| \, \mathrm{d}s \right|$$
$$\le \left| \int_{t_0}^t M \, \mathrm{d}s \right| = |t - t_0| M \le \tilde{a}M \le b.$$

Let $g_1, g_2 \in \mathcal{M}$.

$$|\Phi(g_{1})(t) - \Phi(g_{2})(t)| = \left| \int_{t_{0}}^{t} F(s, g_{1}(s)) - F(s, g_{2}(s)) \, \mathrm{d}s \right|$$

$$\leq \left| \int_{t_{0}}^{t} |F(s, g_{1}(s)) - F(s, g_{2}(s))| \, \mathrm{d}s \right|$$

$$\leq \left| \int_{t_{0}}^{t} C|g_{1}(s) - g_{2}(s)| \, \mathrm{d}s \right|$$

$$\leq |t - t_{0}| \cdot C \cdot ||g_{1} - g_{2}||_{\mathcal{C}^{0}(I;\mathbb{R}^{k})}$$

$$\leq \tilde{a}C||g_{1} - g_{2}||_{\mathcal{C}^{0}(I;\mathbb{R}^{k})}$$

So Φ is a contraction if and only if $\tilde{a}C < 1$. We have two approaches to fix this.

Approach 1. By contraction mapping theorem and above computation, we can uniquely solve the initial value problem for a shorter time, say on $I_0 := [t_0 - a_0, t_0 + a_0]$, where $a_0 := \min\{a, b/M, 1/(2C)\}$. Now define $t_{-1} := t_0 - a_0$ and $t_1 := t_0 + a_0$. Look at the new initial value problem on $[t_{-1} - a_0, t_1 + a_0]$. Define $y_{\pm 1} := g_0(t_{\pm 1})$. The new initial value problem can be written as

$$\begin{cases} g_{\pm 1}(t_{\pm 1}) = y_{\pm 1} \\ g'_{\pm 1}(t) = F(t, g(t)) \end{cases}$$

We a find a unique solution on

$$I_{\pm 1} := [t_{\pm 1} - b_1, t_{\pm 1} + b_1],$$

where $b_1 = \min\{a - a_0, \frac{b - a_0 M}{M}, 1/2C\}$. Furthermore, by uniqueness (in contraction mappining theorem), $g_{\pm 1}$ equals g on $I_{\pm 1} \cap I_0$. Thus there exists an unique solution on

$$I_1 \cup I_0 \cup I_{-1} = [t_0 - a_0 - b_1, t_0 + a_0 + b_1].$$

Let $a_1 := a_0 + b_1$. Then $a_1 \ge \{a, b/M, 2/2C\}$. Iterate this process will finish the proof.

Approach 2. Find a better (but equivalent) metric on \mathcal{M} .

Definition. Two metrics d_1 and d_2 are equivalent if there exists positive constants c_1, c_2 , s.t. $\forall f, g$,

$$c_1 d_2(f,g) \le d_1(f,g) \le c_2 d_2(f,g).$$

Proposition (HW). Two equivalent metrics yield the same open and closed set, the same continuous functions, the same Cauchy and convergent sequences.

Now define

$$d_C(f,g) := \sup_{t \in I} e^{-2C|t-t_0|} |g(t) - f(t)|.$$

Then

$$e^{-2C\tilde{a}} \|f - g\|_{\mathcal{C}^0(I,\mathbb{R}^k)} \le d_C(f,g) \le \|f - g\|_{\mathcal{C}^0(I,\mathbb{R}^k)}.$$

So the metrics are equivalent and \mathcal{M} is complete with respect to d_C . Finally, for $t \in I$,

$$e^{-2C|t-t_0|} |\Phi(g_1)(t) - \Phi(g_2)(t)| = e^{-2C|t-t_0|} \left| \int_{t_0}^t F(s, g_1(s)) - F(s, g_2(s)) \, \mathrm{d}s \right|$$

$$\leq e^{-2C|t-t_0|} \left| \int_{t_0}^t Ce^{2C|s-t_0|} e^{-2C|s-t_0|} |g_1(s) - g_2(s)| \, \mathrm{d}s \right|$$

$$\leq e^{-2C|t-t_0|} \left| \int_{t_0}^t Ce^{2C|s-t_0|} d_C(g_1, g_2) \, \mathrm{d}s \right|$$

$$\leq e^{-2C|t-t_0|} \cdot C \cdot d_C(g_1, g_2) \cdot \frac{1}{2C} e^{2C|t-t_0|}$$

$$= \frac{1}{2} d_C(g_1, g_2)$$

So Φ is a contraction on \mathcal{M} with respect to d_C and hence has unique fixed point.

Analytic Functions

Definition. \mathbb{C} is the complex field defined by

$$\mathbb{C} := \{x + iy : x, y \in \mathbb{R}\}.$$

Define $\overline{x+iy} := x-iy$. Then $(x+iy)(x-iy) = x^2+y^2$. Define $|x+iy| := \sqrt{x^2+y^2}$ and d(z,w) = |z-w|. Note that $\mathbb C$ is a complete metric space. Recall that for a field, if $x_1+iy_1, x_2+iy_2 \in \mathbb C$, then

- $(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2) \in \mathbb{C}$.
- $(x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1y_1 x_2y_2) + i(x_1y_2 + x_2y_1) \in \mathbb{C}$.
- $-(x+iy) = -x iy \in \mathbb{C}.$
- If $x_2 + iy_2 \neq 0$ (i.e. $x_2 \neq 0$ or $y_2 \neq 0$), then

$$\frac{(x_1+iy_1)}{(x_2+iy_2)} = \frac{(x_1+iy_1)}{(x_2+iy_2)} \cdot \frac{(x_2-iy_2)}{(x_2-iy_2)} = \frac{(x_1x_2+y_1y_2)}{x_2^2+y_2^2} + i\frac{(-x_1y_2+x_2y_1)}{x_2^2+y_2^2}.$$

Definition. If $\{c_n\}$ is a sequence of complex numbers, $\sum_{n=0}^{\infty} c_n$ converges if the sequence $\{s_n\}$ of partial sums $s_n := \sum_{n=0}^{N} c_n$ converges. Furthermore, by completeness, $\{s_n\}$ converges if and only if $\{s_n\}$ is Cauchy, in which case, we say $\{s_n\}$ satisfies the Cauchy criterion, that $\forall \epsilon, \exists N, \text{ s.t. } \forall n > m \geq N$,

$$\left| \sum_{j=m+1}^{n} c_j \right| < \epsilon.$$

Definition. $\sum_{n=0}^{\infty} c_n$ converges absolutely if $\sum_{n=0}^{\infty} |c_n|$ converges.

Proposition. If $\sum_{n=0}^{\infty} c_n$ converges absolutely, then $\sum_{n=0}^{\infty} c_n$ converges.

Proof. Use the Cauchy criterion and triangle inequality.

Definition. Let X be a nonempty set and $\{f_n\}$ be a sequence of functions mapping from X into \mathbb{C} . Say that $\sum_{n=1}^{\infty} f_n$ converges (uniformly) if the sequence $s_n := \sum_{j=0}^n f_n$ converges (uniformly).

Proposition. $\sum_{n=0}^{\infty} f_n$ converges uniformly if and only if $\sum_{n=0}^{\infty} f_n$ satisfies a uniform Cauchy criterion, which means $\forall \epsilon > 0$, $\exists N$, s.t. $\forall n \geq m \geq N$ and $\forall x \in X$,

$$\left| \sum_{j=m}^{n} f_j(x) \right| < \epsilon.$$

Note. Usually, it is much easier to show the convergence a sequence by showing that it is Cauchy.

Theorem 16 (Weierstress M test). Let $\{M_n\}$ be a sequence in $[0, \infty)$. Let f_n be a sequence of functions mapping from $X \neq \emptyset$ into \mathbb{C} . Assume that $\forall n \in \mathbb{N}$ and $x \in X$, $|f_n(x)| \leq M_n$. Then, if $\sum_{n=0}^{\infty} M_n$ converges, then $\sum_{n=0}^{\infty} f_n$ converges uniformly on X.

Proof. Show $\sum_{n=0}^{\infty} f_n$ satisfies the uniform Cauchy criterion:

$$\left| \sum_{j=m}^{n} f_j(x) \right| \le \sum_{j=m}^{n} |f_j(x)| \le \sum_{j=m}^{n} M_j.$$

Since $\sum_{n=0}^{\infty} M_n$ is Cauchy, we are done.

Theorem 17 (Root test). Let $\{c_n\}$ be a complex sequence in \mathbb{C} . Let $L := \limsup |c_n|^{1/n}$. If L < 1, then $\sum c_n$ converges absolutely. If L > 1, then $\sum c_n$ diverges (badly).

Recall. Let $\{c_n\}$ be a sequence in \mathbb{R} . Then

 $\limsup s_n = \sup \{ \text{subsequence limits of } \{s_n\} \} = \lim_{n \to \infty} \sup \{ s_k : k \ge n \}.$

Proof. If L < 1, then $\frac{L+1}{2} > L$. So $\exists N$, s.t. $\forall n \ge N$, $|c_n|^{1/n} < \frac{L+1}{2}$. Thus $|c_n| < \left(\frac{L+1}{2}\right)^n$ for $n \ge N$ and $\sum \left(\frac{L+1}{2}\right)^n$ converges since $\frac{L+1}{2} < 1$. By comparison, $\sum |c_n|$ converges. If L > 1, define $L' := \min\{\frac{L+1}{2}, 2\}$. Since L' < L, $|c_n|^{1/n} > L'$ infinitely often. Thus $|c_n| > (L')^n$ infinitely often and since L' > 1, c_n cannot converge to zero. So $\sum c_n$ diverges.

Definition. Let $\{c_n\}$ be a complex sequence. The radius of convergence of the power series $\sum_{n=0}^{\infty} c_n(z-z_0)^n$ is

$$R := \liminf |c_n|^{-1/n} = \left(\limsup |c_n|^{1/n}\right)^{-1}.$$

Theorem 18. Let R denote the radius of convergence of the complex power series $\sum_{n=0}^{\infty} c_n(z-z_0)^n$. Then $\forall R' < R$, $\sum_{n=0}^{\infty} c_n(z-z_0)^n$ converges absolutely uniformly on $\{z \in \mathbb{C} : |z-z_0| \leq R'\}$ and $\sum_{n=0}^{\infty} c_n(z-z_0)^n$ diverges on $\{z \in \mathbb{C} : |z-z_0| > R\}$.

Proof. If $|z - z_0| \le R' < R$,

$$\limsup |c_n(z-z_0)^n|^{1/n} = \limsup |c_n|^{1/n} \cdot |z-z_0| \le \frac{1}{R} \cdot R'.$$

So eventually, $|c_n| \cdot |z - z_0|^n < \alpha^n$ for some $\alpha \in (R'/R, 1)$. Outside $\{|z - z_0| \le R\}$, root test shows divergence.

Lemma. The series

$$f^{(k)}(y) = \sum_{n=k}^{\infty} c_n n(n-1) \cdots (n-k+1)(x-a)^{n-k},$$

has the same radius of convergence as $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$.

Proof. We want to show

$$\lim_{n \to \infty} (n(n-1)\cdots(n-k+1))^{1/n} = 1.$$

Since $\lim_{n\to\infty} (n(n-1)\cdots(n-k+1))^{1/n} \ge 1$, it sufficies to show that the \limsup is ≤ 1 . But

$$\lim_{n \to \infty} \sup (n(n-1) \cdots (n-k+1))^{1/n} \le \lim_{n \to \infty} n^{k/n} = (\lim_{n \to \infty} n^{1/n})^k = 1.$$

Theorem 19. Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$. Assume R > 0 and define $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ on I := (a-R, a+R). Then f is indefinitely differentiable on I and we can differentiate it term by term:

$$f^{(k)}(y) = \sum_{n=k}^{\infty} c_n n(n-1) \cdots (n-k+1)(x-a)^{n-k}.$$

Proof. Let $g_N(x) = \sum_{n=0}^N c_n(x-a)^n$. Let 0 < R' < R. By the lemma and previous theorem, $\{g_N\}$ is a Cauchy sequence in $C^k((a-R',a+R'))$. Thus, $\{g_N\}$ converges in $C^k((a-R',a+R'))$. By uniqueness of limits, the limit must be f. Thus f is differentiable to order k on (a-R',a+R') and

$$f^{(k)}(x) = \lim_{N \to \infty} g_N^{(k)}(x) = \lim_{N \to \infty} \sum_{n=0}^{N} c_n (n \cdots (n-k+1))(x-a)^{n-k}.$$

Since k is arbitrary and R' is arbitrary, we are done.

Corollary. Under the hypotheses of the theorem, $f^{(k)}(a) = k!c_k$, i.e. $c_k = \frac{1}{k!}f^{(k)}(a)$.

Theorem 20. Let I denote the set of all points x at which $\sum_{n=0}^{\infty} c_n(x-a)^n$ converges. Then

$$f(x) := \sum_{n=0}^{\infty} c_n (x - a)^n$$

is continuous on I.

Proof. First, we do some reductions:

- By replacing f(x) with f(x+a), we can assume a=0.
- Also, without loss of generality, we just need to prove for $0 < R < \infty$. This is because R = 0, then there is only one point at which the infinity sum converges. If $R = \infty$, then $I = \mathbb{R}$. So we can replace f(x) with f(Rx) and assume R = 1.
- It suffices to prove continuity at each interval and replacing f(x) with f(-x), it suffices to prove the following theorem.

Theorem 21. If $\sum c_n$ converges, then $\sum c_n x^n$ converges $\forall |x| < 1$ and $\lim_{x \to 1^-} \sum c_n x^n = \sum c_n$. Proof. Define $s_{-1} := 0$, $s_n := \sum_{j=0}^n c_j$, $s := \sum_{j=0}^\infty c_j$. Define

$$f(x) := \sum_{n=0}^{\infty} c_n x^n, \quad x \in (-1, 1].$$

Then we can write

$$\sum_{n=0}^{m} c_n x^n = \sum_{n=0}^{m} (s_n - s_{n-1}) x^n = \sum_{j=0}^{m-1} s_j (x^j - x^{j+1}) + s_m x^m.$$

If |x| < 1, $s_m x^m \to 0$ as $x \to \infty$ since s_m is bounded. Thus, for |x| < 1,

$$f(x) = \sum_{j=0}^{\infty} s_j(x^j - x^{j+1}) = (1 - x) \sum_{j=0}^{\infty} s_j x^j.$$

Since $\sum_{j=0}^{\infty} x^j = 1/(1-x)$, we can write

$$\sum_{n=0}^{\infty} c_n x^n - \sum_{n=0}^{\infty} c_n = f(x) - f(1) = (1-x) \sum_{j=0}^{\infty} s_j x^j - s(1-x) \sum_{j=0}^{\infty} x^j = (1-x) \sum_{j=0}^{\infty} (s_j - s) x^j.$$

Let $\epsilon > 0$. Choose N, s.t. $\forall j \geq N$, $|s_j - s| < \epsilon$. Thus,

$$\left| (1-x) \sum_{j=N}^{\infty} (s_i - s) x^j \right| < (1-x) \sum_{j=N}^{\infty} \epsilon |x|^j < \epsilon \cdot \frac{1-x}{1-|x|} < \epsilon,$$

if $0 \le x \le 1$. Since $\sum c_n$ converges, $\sum c_n x^n$ also converges. Furthermore, let $\delta := \epsilon / \sum_{j=0}^{N-1} |s - s_j|$. Then if $1 - \delta < x < 1$,

$$\left| (1-x) \sum_{j=0}^{N-1} (s-s_j) x^j \right| \le (1-x) \sum_{j=0}^{N-1} |s-s_j| < \delta \cdot \sum_{j=0}^{N-1} |s-s_j| = \epsilon.$$

Combining with the previous result, we obtain

$$|f(x) - f(1)| = \left| (1 - x) \sum_{j=0}^{\infty} (s_j - s) x^j \right| < 2\epsilon.$$

Definition. The Cauchy product of the two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0$.

Theorem 22. Assume $\sum a_n$ converges absolutely and $\sum b_n$ converges. Then their Cauchy product $\sum c_n$ converges. Furthermore, it converges to $\sum a_n \cdot \sum b_n$. If $\sum b_n$ converges absolutely as well, then $\sum c_n$ converges absolutely.

Proof. Some notations: $A_N := \sum_{n=0}^N a_n$, $B_N := \sum_{n=0}^N b_n$, $C_N := \sum_{n=0}^N c_n$, $A := \sum a_n$, $B := \sum b_n$, $\bar{A} = \sum |a_n|$, $M := \sup B_N$.

$$C_N = c_0 + \dots + c_N$$

$$= a_0 b_0 + (a_0 b_1 + a_1 b_0) + \dots + (a_0 b_N + \dots + a_N b_0)$$

$$= a_0 B_N + a_1 B_{N-1} + \dots + a_N B_0$$

$$= A_N B + a_0 (B_N - B) + \dots + a_N (B_0 - B)$$

Define $\Gamma_N := a_0(B_N - B) + \cdots + a_N(B_0 - B)$. If we can show that $\lim_{N \to \infty} \Gamma_N = 0$, it follows that $\lim_{n \to \infty} C_n = AB$.

Let $\epsilon > 0$. By absolute convergence of $\sum a_n$, $\exists N$, s.t. $\forall n \geq m \geq N_1$, $\sum_{j=m}^n |a_j| < \epsilon/2M$. Since $B_n \to B$, $\exists N_2$, s.t. $\forall n > N_2$, $|B_n - B| < \epsilon/\bar{A}$. Finally, if $N \geq N_1 + N_2$,

$$|\Gamma_N| \le \sum_{j=0}^N |a_j| \cdot |B_{N-j} - B|$$

$$= \sum_{j=0}^{N_1} |a_j| \cdot |B_{N-j} - B| + \sum_{j=N_1+1}^N |a_j| \cdot |B_{N-j} - B|$$

$$< \sum_{j=0}^{N_1} |a_j| \cdot \frac{\epsilon}{\overline{A}} + \sum_{j=N_1+1}^N |a_j| \cdot 2M$$

$$< \overline{A} \cdot \frac{\epsilon}{\overline{A}} + \frac{\epsilon}{2M} \cdot 2M$$

$$= 2\epsilon$$

Now we want to show that $\sum c_n$ converges absolutely if $\sum b_n$ converges absolutely. Note,

$$\sum_{n=0}^{N} |c_n| = |c_0| + \dots + |c_N|$$

$$= |a_0b_0| + |a_0b_1 + a_1b_0| + \dots + |a_0b_N + \dots + a_Nb_0|$$

$$\leq |a_0| \cdot |b_0| + (|a_0| \cdot |b_1| + |a_1| \cdot |b_0|) + \dots + (|a_0| \cdot |b_N| + \dots + |a_N| \cdot |b_0|)$$

Since $\sum |a_n|$ and $\sum |b_n|$ are both convergent, we are done.

Example. Consider the Cauchy product of the two absolutely convergent power series

$$\sum_{n=0}^{\infty} a_n \quad \text{with} \quad a_n = \frac{1}{n!} x^n,$$

$$\sum_{n=0}^{\infty} b_n \quad \text{with} \quad b_n = \frac{1}{n!} y^n.$$

By definition, we have

$$c_n = a_0 b_n + \dots + a_n b_0$$

$$= \sum_{j=0}^n a_j b_{n-j}$$

$$= \sum_{j=0}^n \frac{1}{j!} x^j \frac{1}{(n-j)!} y^{n-j}$$

$$= \frac{1}{n!} \sum_{j=0}^n \frac{n!}{j!(n-j)!} x^j y^{n-j}$$

$$= \frac{1}{n!} (x+y)^n$$

Upshot:

$$\left(\sum_{n=0}^{\infty} \frac{1}{n!} x^n\right) \left(\sum_{n=0}^{\infty} \frac{1}{n!} y^n\right) = \sum_{n=0}^{\infty} \frac{1}{n!} (x+y)^n,$$

i.e. $e^x e^y = e^{x+y}$.

Unordered Series

Definition. Let S be a set and $\{a_x\}_{s\in S}$ be a function from S into \mathbb{R} . We say that the unordered series $\sum_{s\in S} a_s$ converges to $b\in \mathbb{R}$ if $\forall \epsilon>0$, \exists a finite set $S_{\epsilon}\subseteq S$, s.t. \forall finite set S' with $S_{\epsilon}\subseteq S'\subseteq S$,

$$\left| \sum_{s \in S'} a_s - b \right| < \epsilon.$$

Proposition. An unordered series can have at most one sum.

Theorem 23. The following are equivalent:

- 1. The unordered series $\sum_{s \in S} a_s$ converges.
- 2. $\forall \epsilon > 0, \exists a \text{ finite set } S_{\epsilon} \subseteq S, \text{ s.t. } \forall \text{ finite set } S' \subseteq S \setminus S_{\epsilon}, \sum_{s \in S'} |a_s| < \epsilon.$
- 3. $\sum_{s \in S} |a_s|$ converges absolutely.
- 4. $\sup\{\sum_{s\in S'} |a_s| : S' \subseteq S \text{ is finite}\} < \infty.$

Proof. $1 \Rightarrow 2$: Assume $\sum_{s \in S} a_s$ converges to b and let $\epsilon > 0$. Then \exists a finite set $S_{\epsilon} \subseteq S$, s.t. \forall finite set S' with $S_{\epsilon} \subseteq S' \subseteq S$, $\left| \sum_{s \in S'} a_s - b \right| < \epsilon$. Let $S'' \subseteq S \setminus S_{\epsilon}$ be a finite set. Now let

 $S''_+ := \{s \in S'' : a_s > 0\}$ and $S''_- := \{s \in S'' : a_s < 0\}$. Then

$$\left| \sum_{s \in S''} |a_s| \right| = \left| \sum_{s \in S''_+} a_s - \sum_{s \in S''_-} a_s \right|$$

$$= \left| \sum_{s \in S''_+ \cup S_\epsilon} a_s - \sum_{s \in S_\epsilon} a_s - \sum_{s \in S''_- \cup S_\epsilon} a_s + \sum_{s \in S_\epsilon} a_s \right|$$

$$\leq \left| \sum_{s \in S''_+ \cup S_\epsilon} a_s - b \right| + 2 \left| \sum_{s \in S_\epsilon} a_s - b \right| + \left| \sum_{s \in S_\epsilon \cup S''_-} a_s - b \right|$$

$$< 4\epsilon.$$

- $2 \Rightarrow 4$: $\sup\{\sum_{s \in S'} |a_s| : S' \subseteq S \text{ is finite}\} \le \epsilon + \sum_{s \in S_{\epsilon}} |a_s| < \infty.$
- $4 \Rightarrow 3$: Let $B := \sup\{\sum_{s \in S'} |a_s| : S' \subseteq S \text{ is finite}\}$. We want to show that $\sum_{s \in S} |a_s| = B$. Let $\epsilon > 0$. By the definition of sup, there exists a finite subset $S_{\epsilon} \subseteq S$ such that $\sum_{s \in S_{\epsilon}} |a_s| > B \epsilon$. So if S' is a finite set with $S_{\epsilon} \subseteq S' \subseteq S$,

$$B - \epsilon < \sum_{s \in S_{\epsilon}} |a_s| \le \sum_{s \in S'} |a_s| \le B.$$

Thus, by definition, the series $\sum_{s \in S} |a_s|$ converges.

- $3 \Rightarrow 2$: The argument is similar as the argument for showing $1 \Rightarrow 2$.
- $3 \Rightarrow 1$: Suppose for contradiction that the unordered series $\sum_{s \in S} a_s$ does not converge. This means for all $b \in \mathbb{R}$, $\exists \epsilon > 0$, s.t. \forall finite $S_{\epsilon} \subseteq S$, \exists a finite set S' with $S_{\epsilon} \subseteq S' \subseteq S$, s.t.

$$\left| \sum_{s \in S'} a_s - b \right| > \epsilon.$$

This implies

$$\sum_{s \in S'} a_s - b > \epsilon, \quad \text{or} \quad \sum_{s \in S'} a_s - b < -\epsilon,$$

which further implies

$$b - \epsilon > \sum_{s \in S'} a_s > b + \epsilon.$$

Now, let's choose b to be the limit of $\sum_{s\in S} |a_s|$. We have

Lemma. If $\sum_{s \in S} |b_s|$ converges and $|a_s| \leq |b_s|$ for all s. Then $\sum_{s \in S} |a_s|$ converges.

Proof. Let $\epsilon > 0$. If $\sum_{s \in S} |b_s|$ converges, by the theorem, there exists a finite set $S_{\epsilon} \subseteq S$, s.t. \forall finite set $S' \subseteq S \setminus S_{\epsilon}$, $\sum_{s \in S'} |b_s| < \epsilon$. Then \forall finite set $S' \subseteq S \setminus S_{\epsilon}$, $\sum_{s \in S'} |a_s| \le \sum_{s \in S'} |b_s| < \epsilon$. Then $\sum_{s \in S} |a_s|$ converges.

Corollary. The unordered series $\sum_{n\in\mathbb{N}} a_n$ converges if and only if $\sum_{n=1}^{\infty} a_n$ converges absolutely.

Proposition (HW). Show directly (without the theorem), that if $\lambda \in \mathbb{R}$ and $\sum_{s \in S} a_s$, $\sum_{s \in S} b_s$ converges, then

$$\sum_{s \in S} \lambda a_s = \lambda \sum_{s \in S} a_s$$

and

$$\sum_{s \in S} a_s + b_s = \sum_{s \in S} a_s + \sum_{s \in S} b_s$$

Proposition. The unordered series $\sum_{(i,j)\in\mathbb{N}^2} a_{i,j}$ converges if and only if $\sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} |a_{i,j}|\right)$ converges. In this case,

$$\sum_{(i,j)\in\mathbb{N}^2} a_{i,j} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i,j} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i,j}.$$

Proof. Idea: \Leftrightarrow follows directly from $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} |a_{i,j}| = \lim_{N \to \infty} \lim_{M \to \infty} \sum_{j=1}^{N} \sum_{i=1}^{M} |a_{i,j}|$. For the identity, consider the positive and negative parts separately.

Definition. Let $G \subseteq \mathbb{R}$ be an open set and let $f: G \to \mathbb{R}$. Say that f is analytic on G if $\forall a \in G$, $\exists \epsilon > 0$, s.t. $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a) (x-a)^n$, on $(a-\epsilon,a+\epsilon)$ (i.e. f has a power series representation on $(a-\epsilon,a+\epsilon)$).

Theorem 24. f is analytic on the open set $G \subseteq \mathbb{R}$ if and only if G can be written as a union of open intervals at which f has a power series representation.

Note. Every open subset of \mathbb{R} is a countable union of disjoint open intervals.

Theorem 25. Suppose that $f(x) = \sum_{n=0}^{\infty} c_n x^n$ on $\{|x| < R\}$, some R > 0. If |a| < R, then f has a power series representation centered at a converging on |x - a| < R - |a|.

Proof. Notice that

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a + a)^n = \sum_{n=0}^{\infty} \sum_{j=0}^{n} c_n \binom{n}{j} a^{n-j} (x - a)^j.$$

Observe that

$$\sum_{n=0}^{\infty} \sum_{j=0}^{n} \left| c_n \binom{n}{j} a^{n-j} (x-a)^j \right| = \sum_{n=0}^{\infty} |c_n| (|x-a| + |a|)^n.$$

Converges on |x-a|+|a| < R. So by proposition, we can switch the order of summation,

$$f(x) = \sum_{j=0}^{\infty} \left(\sum_{n=j}^{\infty} c_n \binom{n}{j} a^{n-j} \right) (x-a)^j, \quad |x-a| < R - |a|,$$

and $\sum_{n=j}^{\infty} c_n \binom{n}{j} a^{n-j}$ is the coefficient $c_j(a)$. In particular, the sum representing $c_j(a)$ converges absolutely $\forall |a| < R$ and

$$c_j(a) = \frac{1}{j!} f^{(j)}(a).$$

Theorem 26. If f and g are analytic on the open interval I, then so are f + g and $f \cdot g$. In particular, if f and g both have power series representations centered at a on (a - R, a + R), then so do f + g and $f \cdot g$.

Theorem 27. If f is analytic on the open interval I, g is analytic on the open interval J, and $g(J) \subseteq I$. Then $f \circ g$ is analytic on J.

Proof. Let $a \in J$. By translating and adding a constant to g, we can assume a = g(a) = 0. Now we expand

$$f(y) = \sum_{n=0}^{\infty} b_n y^n$$
, $g(x) = \sum_{k=0}^{\infty} c_k x^k$, on $|y| < \epsilon$, $|x| < \delta$.

Define $\bar{g}(x) := \sum_{k=0}^{\infty} |c_k| x^k$. The $\bar{g}(x)$ is continuous on $|x| < \delta$. So by shrinking δ if needed, we may assume that $|\bar{g}(x)| < \epsilon$, $|x| < \delta$.

$$f \circ g(x) = \sum_{n=0}^{\infty} b_n(g(x))^n.$$

By previous theorem and induction, for each n,

$$(g(x))^n = \sum_{k=0}^{\infty} a_k^{(n)} x^k, \quad (\bar{g}(x))^n = \sum_{k=0}^{\infty} \bar{a}_k^{(n)} x^k, \quad \text{on } |x| < \delta.$$

Furthermore, $|a_k^{(n)}| \leq \bar{a}_k^{(n)}$. Therefore,

$$f \circ g(x) = \sum_{n=0}^{\infty} b_n \sum_{k=0}^{\infty} a_k^{(n)} x^k.$$

We want to switch the order of summation, but it requires absolute convergence. Now

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} |b_n a_k^{(n)} x^k| \le \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} |b_n| \cdot \bar{a}_k^{(n)} \cdot |x|^k = \sum_{n=0}^{\infty} |b_n| (\bar{g}(|x|))^n,$$

which converges since $\bar{q}(|x|) < \epsilon$. So

$$f \circ g(x) = \sum_{k=0}^{\infty} \left(\sum_{n=0}^{\infty} b_n a_k^{(n)} \right) x^k.$$

Corollary. If f and g are analytic on the open interval I and $g \neq 0$ on I. Then f/g is analytic on I.

Proof. Since 1/x is analytic on $\mathbb{R} \setminus \{0\}$, by the previous theorem, 1/g is analytic. And so is $f \cdot 1/g = f/g$.

Theorem 28. Let $E \subseteq \mathbb{R}$. Then $[x,y] \subseteq E$ for all $x,y \in E$ if and only if $E = \emptyset$, E is a singleton (i.e. E is a single point), or E is an interval.

Proof. \Leftarrow : This direction is trivial.

 \Rightarrow : Assume $\forall x,y\in E, [x,y]\subseteq E$. We may assume E has at least 2 points. Thus,

$$\alpha := \inf E < \sup E =: \beta.$$

Claim that $(\alpha, \beta) \subseteq E$. If so, we're done, since $E \subseteq [\alpha, \beta]$.

Let $x \in (\alpha, \beta)$. Then $\exists y \in E$, s.t. y < x and $\exists z \in E$, s.t. z > x. By hypothesis, $x \in [y, z] \subseteq E$.

Theorem 29. $E \subseteq \mathbb{R}$ is connected if and only if E is empty, E is singleton, or E is an interval. Notice, by the last theorem, the R.H.S. is equivalent to $[x, y] \subseteq E$ for all $x, y \in E$.

Proof. \Rightarrow : It suffices to prove the contrapositive: If $E \neq \emptyset$, $E \neq \{x\}$ and E is not an interval, then $\exists x, y \in E$ and z with x < z < y s.t. $z \notin E$. Then $E \cap (-\infty, z)$ and $E \cap (z, \infty)$ form a separation of E. So E is not connected.

 \Leftarrow : Assume that $E = \emptyset$ or $E \neq \{x\}$ or E is an interval and E is not connected. Since a set that isn't connected must contain at least 2 points, E is an interval. Now we fix a separation $E = A \cup B$. By definition, $A, B \neq \emptyset$ and $\bar{A} \cap B = A \cap \bar{B} = \emptyset$. Fix $x \in A$ and $y \in B$. Since $A \cap B = \emptyset$, $x \neq y$. So we may assume x < y (otherwise, just rename A and B). Define $z := \sup A \cap [x,y]$. Then, $z \geq x$ because $x \in A \cap [x,y]$ and $z \leq y$ because y is an upper bound of A. So $z \in [x,y] \subseteq E = A \cup B$. Furthermore $z \in \overline{A \cap [x,y]} \subseteq \bar{A}$. Since $\bar{A} \cap B = \emptyset$, $z \notin B$. Then $z \in A$. Since $A \cap \bar{B} = \emptyset$, $z \notin \bar{B}$. So $\exists r > 0$, s.t. $(z - r, z + r) \cap B = \emptyset$. But $y \geq z$ and $y \in B$, so $z + r \leq y$. So $z + r/2 \in [z,y] \cap B^c \subseteq [x,y] \cap A$. But z was an upper bound for $[x,y] \cap A$ and z + r/2 > z. Contradiction!

Theorem 30. Let I be an open interval and assume that f and g are analytic on I. Let $E := \{x \in I : f(x) = g(x)\}$. If E has an accumulation point in I, then E = I, i.e. $f \equiv g$ on I.

Note, it is extremely important for I to be an open interval and the assumption that E has an accumulation point in I.

Proof. By replacing f with f-g, we may assume that $g\equiv 0$ on I. Since f is continuous, E is closed in I. Let E' be a set of accumulation points of E. Therefore $E'\cap I\subseteq E$. Then $E'\cap I$ is closed in I.

Claim: $E' \cap I$ is open.

Let $a \in E' \cap I$. Then for some $\epsilon > 0$, $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a) (x-a)^n$, on $|x-a| < \epsilon$. Since $a \in E' \cap I \subseteq E$, $f(a) = f^{(0)}(a) = 0$. Suppose $f(a) = f'(a) = \cdots = f^{(k)}(a) = 0$ and $f^{(k+1)}(a) \neq 0$ for some $k \geq 0$. By Taylor's theorem with remainder,

$$f(x) = \frac{1}{(k+1)!} f^{(k+1)}(a)(x-a)^{k+1} + \frac{1}{(k+2)!} f^{(k+2)}(t_{x,a})(x-a)^{k+2},$$

for some $t_{x,a}$ between a and x. By continuity of $f^{(k+2)}$, there exists $\delta > 0$, s.t. $\forall |x-a| < \delta$ and $|t-a| < \delta$,

$$\frac{1}{(k+2)!} \left| f^{(k+2)}(t) \right| \cdot |x-a| < \frac{1}{2} \cdot \frac{1}{(k+1)!} \cdot \left| f^{(k+1)}(a) \right|.$$

Thus for $0 < |x - a| < \delta$,

$$|f(x)| \ge \frac{1}{2} \cdot \frac{1}{(k+1)!} \cdot |f^{(k+1)}(a)| \cdot |x-a|^{k+1} \ne 0.$$

So $a \notin E'$. Contradiction. So $f^{(n)}(a) = 0$ for all n. So $f \equiv 0$ on $(a - \epsilon, a + \epsilon)$. So $(a - \epsilon, a + \epsilon) \subseteq E' \cap I$. Since a was arbitrary, $E' \cap I$ is open.

Then we conclude that $E' \cap I$ is closed and open. Since I is connected (I is an open interval), $E' \cap I = \emptyset$ or $E' \cap I = I$. In the latter case, E = I.

The exponential function

Properties. Let $E(z) := \sum_{n=0}^{\infty} \frac{1}{n!} z^n$, $z \in \mathbb{C}$. By root test, its radius of convergence is ∞ and it has the following properties:

- 1. $E(z) \cdot E(w) = E(z+w)$ for every $z, w \in \mathbb{C}$.
- 2. $E(z) \neq 0$ and $E(-z) = \frac{1}{E(z)}$ for every $z \in \mathbb{C}$.
- 3. E(x) > 0 for every $x \in \mathbb{R}$.
- 4. E'(x) = E(x) for every $x \in \mathbb{R}$.

Proof. 1. By Cauchy products.

- 2. E(z)E(-z) = E(0) = 1.
- 3. For $x \ge 0$, $E(x) \ge 1$ by inspection. For x < 0, $E(x) = \frac{1}{E(-x)} > 0$.
- 4. Differentiate term by term.

Definition. e := E(1).

Proposition. $E(x) = e^x$, $\forall x \in \mathbb{R}$.

Proof. For $x = n \in \mathbb{N}$, this follows from property 1 and induction. $E(n) = E(1 + \cdots + 1) = (E(1))^n = e^n$. For $x = n \in \mathbb{Z}$, this follows from preceding and property 2. For $x = \frac{n}{m}$ with $n \in \mathbb{Z}$, $m \in \mathbb{N}$, we know that

$$E\left(\frac{n}{m}\right)^m = E(n)$$

by property 1. So by property 2 and uniqueness of m-th roots, $E(n/m) = E(n)^{1/m} = e^{n/m}$. So the conclusion holds for all rationals. Finally, for $x \in \mathbb{R}$, e^x is (by definition, since e > 1) $\sup\{e^p : p \in \mathbb{Q} \text{ and } p \leq x\}$. So the general case of proposition follows from continuity of E.

Theorem 31. 1. e^x is continuous and differentiable on \mathbb{R} and $\frac{d}{dx}e^x = e^x$.

- 2. e^x is positive and strictly increasing on \mathbb{R} .
- 3. $\lim_{x\to\infty} e^x = \infty$ and $\lim_{x\to-\infty} e^x = 0$.

4. For fixed n, $\lim_{x\to\infty} e^x x^{-n} = \infty$ and $\lim_{x\to\infty} e^{-x} x^n = 0$.

Proof. 1. Proved by the 4th statement in the proposition.

- 2. Combine the 3th statement in the proposition and the fact that $E(x) = e^x$, $e^x > 0$. Also, since E'(x) = E(x) > 0, so e^x is strictly increasing.
- 3. It is clear that $\lim_{x\to\infty} e^x = \lim_{x\to\infty} E(x) = \infty$. Also by inspection,

$$\lim_{x \to -\infty} e^x = \lim_{x \to \infty} e^{-x} = \lim_{x \to \infty} \frac{1}{e^x} = 0.$$

4. For $x \ge 0$, $e^x \ge \frac{1}{(n+1)!} x^{n+1}$. So $e^x x^{-n} \ge \frac{1}{(n+1)!} x \to \infty$. On the other hand, $\lim_{x \to \infty} e^{-x} x^n = \lim_{x \to \infty} \frac{1}{e^x x^{-n}} = 0$.

Lemma. Let I and J be intervals. Let $f: I \to J$ be a continuous bijection onto J. Then f has a continuous inverse. Furthermore, if $y \in int(J)$ and f is differentiable at $f^{-1}(y)$ with $f'(f^{-1}(y)) \neq 0$. Then f^{-1} is differentiable at g and

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Note. The conclusion is not true if I is an open interval and J is a subset of an arbitrary metric space. For example, consider $I = \mathbb{R}$ and J = 8. Map \mathbb{R} into a bounded open interval (s.t. arctan).

Remarks. If K is compact and $f: K \to J$ is a continuous bijection, then f^{-1} is continuous.

Proof. f is either strictly increasing or strictly decreasing. Without loss of generality, we may assume f is strictly increasing. Let $g := f^{-1}$. Then g is strictly increasing.

Claim 1: g is continuous.

Let $y \in J$. Then both $g(y^+) = \lim_{t \to y^+} g(t)$ and $g(y^-) = \lim_{t \to y^-} g(t)$ exists (modify as needed if y is an end point). Furthermore, we know $g(y^-) \le g(y) \le g(y^+)$. If $g(y^-) = g(y) = g(y^+)$, then g is continuous at g. Let's suppose $g(y^-) < g(y)$. Because g is increasing, then $g(t) \le g(y^-)$ for all t < y and $g(t) \ge g(y)$ for all $t \ge y$. So g omits in $(g(y^-), g(y)) \subseteq I$. But I is the domain of f, which is the range of g. Contradiction. So $g(y^-) = g(y)$. Similarly, $g(y^+) = g(y)$.

Clam 2: If $y \in \text{int}(J)$ and f is differentiable at $f^{-1}(y)$ with $f'(f^{-1}(y)) \neq 0$. Then f^{-1} is differentiable at y.

We want to evaluate

$$\lim_{h \to 0} \frac{g(y+h) - g(y)}{y+h-y} = \lim_{h \to 0} \frac{g(y+h) - g(y)}{f(g(y+h)) - f(g(y))}.$$

Define

$$\varphi(t) = \begin{cases} \frac{t - g(y)}{f(t) - f(g(y))}, & t \neq g(y), \\ \frac{1}{f'(g(y))}, & t = g(y). \end{cases}$$

Then $\frac{1}{\varphi}$ is continuous on I and $\frac{1}{\varphi(g(y))} = f'(g(y)) \neq 0$. So φ is continuous on a nerighbourhood of g(y). So $\varphi \circ g$ is continuous at y, i.e.

$$\lim_{h \to 0} \frac{g(y+h) - g(y)}{f(g(y+h)) - f(g(y))} = \lim_{h \to 0} \varphi(g(y+h)) = \varphi(g(y)) = \frac{1}{f'(g(y))}.$$

Definition. Since $E: x \mapsto e^x$ is continuous, differentiable, strictly increasing and maps \mathbb{R} onto $(0, \infty)$. Thus it has an inverse, which we call log, that is continuous, differentiable, strictly increasing and maps $(0, \infty)$ onto \mathbb{R} .

Properties. 1. $e^{\log y} = y$ for all y > 0 and $\log(e^x) = x$ for all $x \in \mathbb{R}$.

- $2. \ \frac{\mathrm{d}}{\mathrm{d}x} \log y = \frac{1}{y}, \, \forall y > 0.$
- 3. $\log(1) = 0$.
- 4. $\log(y) = \int_1^y 1/s \, dx, \, \forall y > 0.$
- 5. $\log(uv) = \log u + \log v, \forall u, v > 0.$
- 6. $\log(y) \to +\infty$ as $y \to +\infty$. $\log y \to -\infty$ as $y \to 0$.
- 7. For u > 0 and $\alpha \in \mathbb{R}$, $\log(u^{\alpha}) = \alpha \log(u)$ and $u^{\alpha} = e^{\alpha \log u}$.

Proof. 1. Done.

- 2. By the lemma, log is differentiable and $\frac{d}{dy}\log(y) = \frac{1}{E'(\log(y))} = \frac{1}{E(\log(y))} = \frac{1}{y}$.
- 3. Because E(0) = 1, done.
- 4. By property two and three, done.
- 5. $\log(uv) = \log(e^{\log u} \cdot e^{\log v}) = \log(e^{\log u + \log v}) = \log u + \log v$.
- 6. Done.
- 7. $\log(u^{\alpha}) = \log((e^{\log u})^{\alpha}) = \log(e^{\alpha \log u}) = \alpha \log u$.

Proposition. For any a > 0, $x \mapsto a^x$ is differentiable on \mathbb{R} and

$$\frac{\mathrm{d}}{\mathrm{d}x}a^x = (\log a) \cdot a^x.$$

Proof. $a^x = e^{x \log a}$. By the chain rule, done.

Proposition (HW). If $\alpha \neq -1$, then $x \mapsto x^{\alpha}$ has $x \mapsto \frac{x^{\alpha+1}}{\alpha+1}$ as an antiderivative.

Proposition. $\forall \epsilon > 0, \ 0 = \lim_{x \to \infty} x^{-\epsilon} \log x = \lim_{x \to 0+} x^{\epsilon} \log x.$

This is saying log goes to infinity very slow.

Proof. Notice that

$$\lim_{x \to 0+} x^{\epsilon} \log x = \lim_{y \to \infty} \left(\frac{1}{y}\right)^{\epsilon} \log \left(\frac{1}{y}\right) = -\lim_{y \to \infty} y^{-\epsilon} \log y.$$

So it suffices to prove the first equation.

$$\lim_{x \to \infty} x^{-\epsilon} \log x = \lim_{t \to \infty} (e^t)^{-\epsilon} \log(e^t) = \lim_{t \to \infty} e^{-\epsilon t} t = 0.$$

Trigonometric Functions

Definition. Define

$$C(z) \coloneqq \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}$$
 and $S(z) \coloneqq \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$,

where $z \in \mathbb{C}$ (radius of convergence is $+\infty$).

Definition. Let z := x + iy where $x, y \in \mathbb{R}$. Recall that $\bar{z} = x - iy$. Define Re(z) := x and Im(z) := y. Then

- $\operatorname{Re}(z) = (z + \bar{z})/2$,
- $\operatorname{Im}(z) = (z \bar{z})/(2i),$
- $\bullet \ \overline{z \cdot w} = \bar{z} \cdot \bar{w},$
- $\bullet \ \overline{z+w} = \bar{z} + \bar{w}.$

Note. For all $x \in \mathbb{R}$

$$\overline{E(ix)} = \overline{\sum_{n=0}^{\infty} \frac{1}{n!} (ix)^n} = \sum_{n=0}^{\infty} \overline{\frac{1}{n!} (ix)^n} = E(\overline{ix}) = E(-ix).$$

By this, we have

$$C(x) = \sum_{n=0}^{\infty} \frac{(ix)^{2n}}{(2n)!} = \text{Re}(E(ix)) = \frac{1}{2}(E(ix) + E(-ix)).$$

$$S(x) = \frac{1}{i} \sum_{n=0}^{\infty} \frac{(ix)^{2n+1}}{(2n+1)!} = \operatorname{Im}(E(ix)) = \frac{1}{2i} (E(ix) - E(-ix)).$$

Properties. Trigonometric functions have the following properties:

- 1. $C(x)^2 + S(x)^2 = 1, \forall x \in \mathbb{R}.$
- 2. C(0) = 1 and S(0) = 0.

3.
$$C'(x) = -S(x)$$
, $S'(x) = C(x)$, $\forall x \in \mathbb{R}$.

Proof. 1.
$$C(x)^2 + S(x)^2 = |E(ix)|^2 = E(ix) \cdot \overline{E(ix)} = E(ix)E(-ix) = E(0) = 1$$
.

2. Done.

3.
$$C'(x) + iS'(x) = \frac{d}{dx}E(ix) = iE'(ix) = iE(ix) = iC(x) + i^2S(x)$$
. So we have $C'(x) = -S(x)$, $S'(x) = C(x)$.

Proposition. C has a positive zero.

Proof. Since $C(0) = 1 \neq 0$ and since C(x) = C(-x), it suffices to show C has a zero. Suppose not. Since C(0) > 0 and C is continuous, C(x) > 0, $\forall x \in \mathbb{R}$. Then S is strictly increasing since S' = C. So for 0 < x < y,

$$S(x)(y-x) = \int_{x}^{y} S(x) dt < \int_{x}^{y} S(t) dt = C(x) - C(y).$$

Since $C(x) \le 1$ (because $C^2 + S^2 = 1$), and C(y) > 0, so $S(x) < \frac{1}{y-x}$, $\forall 0 < x < y$. Fix x and let $y \to \infty$, we see S(x) = 0. But S strictly increasing and S(0) = 0, so S(x) > 0. Contradiction! So C must has a zero.

Definition. Define $\pi := 2\inf\{x > 0 : C(x) = 0\}$. By continuity and $C(0) \neq 0$, $\pi > 0$ and the infimum is a minimum, i.e. $C(\pi/2) = 0$.

Theorem 32. The following statements hold:

- 1. $C(k\pi) = (-1)^k$, $S(k\pi) = 0$, $C(k\pi + \pi/2) = 0$ and $S(k\pi + \pi/2) = (-1)^k$, $k \in \mathbb{Z}$.
- 2. $E(z+2k\pi i)=E(z), \forall k\in\mathbb{Z}$ and consequently C and S are periodic with period 2π .

Proof. 1. Since $C(\pi/2) = 0$ and $C^2 + S^2 = 1$, we see $S(\pi/2) = \pm 1$. By definition of π and continuity of C and C(0) > 0, S is increasing on $[0, \pi/2]$ and since S(0) = 0, $S(\pi/2) = 1$. So $E(i\pi/2) = C(\pi/2) + iS(\pi/2) = 0 + i$. So $E(ik\pi/2) = i^k$ and all identities in 1 hold.

2.
$$E(z + 2\pi ik) = E(z)E(2\pi i)^k = E(z)$$
 by part 1.

Lemma. If E(it) = 1 and $t \in [0, 2\pi)$, then t = 0.

Proof. Suppose $t \in (0, 2\pi)$ and E(it) = 1. By the proof of part 1 of the previous theorem, $S \neq 0$ on $(0, \pi/2]$. Since $S(\pi/2 - t) = S(\pi/2 + t)$ (Exercise) so S > 0 on $(0, \pi)$. Since $S(t) = -S(-t) = -S(2\pi - t)$, S < 0 on $(\pi, 2\pi)$. So $t = \pi$. But $E(i\pi) = -1$.

Theorem 33. If $z \in \mathbb{C}$ with |z| = 1, then $\exists ! t \in [0, 2\pi)$, s.t. E(it) = z.

Proof. The above lemma proves the uniqueness of z. It remains to prove the existence. Let $z \in \mathbb{C}$ with |z| = 1. Write z = x + iy, $x, y \in \mathbb{R}$. Thus $x^2 + y^2 = 1$.

Case 1: $x \ge 0, y \ge 0$.

Then $0 \le x \le 1$ and since $\cos 0 = 1$ and $\cos \pi/2 = 0$, by the intermediate value theorem, $\exists t \in [0, \pi/2]$, s.t. $\cos t = x$. Furthermore, $y = \sqrt{1 - x^2} = \sqrt{1 - \cos^2 t} = \sqrt{\sin^2 t} = |\sin t|$. Since sin is increasing on $[0, \pi/2]$ (because $\sin' = \cos$ is nonnegative) and $\sin(0) = 0$, $\sin t \ge 0$ and $|\sin t| = \sin t$.

Case 2: $x \ge 0, y > 0$.

Then \bar{z} is in the first quadrant. By Case 1, there exists $t \in (0, \pi/2]$, s.t. $e^{it} = \bar{z}$. Therefore, $z = e^{-it} = e^{i(2\pi - t)}$ and $2\pi - t \in [3\pi/2, 2\pi)$.

Case 3: x < 0.

Then by Case 1 and Case 2, $\exists t \in (-\pi/2, \pi/2)$, s.t. $-z = e^{it}$. Therefore $z = (-1)e^{it} = e^{i(\pi+t)}$ and $\pi + t \in (\pi/2, 3\pi/2)$.

Corollary. The circumference of the unit circle is 2π .

Proof.

Circumference =
$$\int_0^{2\pi} |E'(it)| dt = \int_0^{2\pi} |E(it)| dt = \int_0^{2\pi} C^2(t) + S^2(t) dt = 2\pi$$
.

Corollary. If $z \in \mathbb{C}$ with $z \neq 0$, then $\exists ! t \in [0, 2\pi)$, s.t. $z = |z|e^{it}$.

Theorem 34 (Algebraic Completeness of \mathbb{C}). Let $P(z) = a_0 + a_1 z + \cdots + a_n z^n$ be a complex polynomial with $a_n \neq 0$ and $n \geq 1$. Then there exists $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Proof. Let $\mu = \inf_{z \in \mathbb{C}} |P(z)|$. We claim that μ is a minimum (it is achieved). Indeed, $|P(z)| \ge |a_n| \cdot |z|^n - \sum_{j=0}^{n-1} |a_j| \cdot |z|^j$. So $\exists R$, s.t. $\forall |z| > R$, $|P(z)| \ge \mu + 1$. Therefore by the continuity of |P(z)|, $\mu = \inf_{|z| \le R} |P(z)| = \min_{|z| \le R} |P(z)|$. Thus $\exists z_0 \in \mathbb{C}$, s.t. $|P(z_0)| = \mu$. If $\mu = 0$, we are done.

So now suppose $\mu > 0$. Define $Q(z) = \frac{P(z+z_0)}{P(z_0)}$. Then Q is a polynomial. Q(0) = 1 and $|Q(z)| \ge 1$ for all z (because $P(z_0)$ is the minimum). Thus

$$Q(z) = 1 + \sum_{j=k}^{n} b_j z^j, \text{ with } b_k \neq 0.$$

By the previous theorem, $\exists \theta \in [0, 2pi/k)$, s.t. $e^{ik\theta} = -\frac{|b_k|}{b_k}$. Thus for r > 0,

$$\begin{aligned} |Q(re^{i\theta})| &= \left| 1 + |b_k| r^k \cdot \frac{e^{ik\theta} b_k}{|b_k|} + \sum_{k=1}^n b_j r^j e^{ij\theta} \right| \\ &= \left| 1 - |b_k| r^k + \sum_{k=1}^n b_j r^j e^{ij\theta} \right| \\ &\leq 1 - |b_k| r^k + \sum_{j=k+1}^n |b_j| r^j \end{aligned}$$

Notice that $|b_j|r^j \leq \frac{1}{2}|b_k|r^k$ for sufficiently small r. So we further have

$$\left|Q(re^{i\theta})\right| \le 1 - \frac{1}{2}|b_k|r^k < 1.$$

Contradiction! Since $|Q(x)| \ge 1$ for all x. Tracing back, we see $\mu = 0$. So there exists $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Corollary. Let $P(z) = a_0 + a_1 z + \cdots + a_n z^n$ be a complex polynomial with $a_n \neq 0$ and $n \geq 1$. There exists $z_1, \ldots, z_n \in \mathbb{C}$, s.t.

$$P(z) = a_n(z - z_1) \cdots (z - z_n).$$

Proof. By the theorem, there exists $z_n \in \mathbb{C}$ s.t. $P(z_n) = 0$. By long division algorithm, $P(z) = (z - z_n)Q(z) + \text{constant}$, where Q is a polynomial with degree n - 1. Evaluating both sides at $z = z_n$, we see that the constant is zero, i.e. $z - z_n|P$. Now repeat this procedure and we're done.

Banach Spaces

Definition. X is a real (or complex) vector space if $\forall x, y \in X$ and $\alpha, \beta \in \mathbb{R}$ (or \mathbb{C}), $\alpha x + \beta y \in X$ and some axioms hold.

Definition. A norm on X is a function $\|\cdot\|_X: X \to \mathbb{R}$ satisfying

- $\forall x \in X$, $||x||_X \ge 0$ and $||x||_X = 0$ if and only if x = 0.
- $\forall \alpha \in \mathbb{R} \text{ (or } \mathbb{C}), \forall x \in X, \|\alpha x\|_X = |\alpha| \cdot \|x\|_X.$
- $\forall x, y \in X, \|x + y\|_X \le \|x\|_X + \|y\|_X$.

Definition. The normed vector space $(X, \|\cdot\|)$ is a Banach space if X is a complete metric space with respect to the distance $d(x,y) = \|x - y\|$.

Example. \mathbb{R}^k with euclidean metric is a Banach space. For any interval $I \subseteq \mathbb{R}$, $C^k(I)$ is a Banach space. For any metric space X, $C^0(X)$ is a Banach space.

Definition. Define

$$l^{\infty} := l^{\infty}(\mathbb{N}) := \{ \text{bounded sequences } \{x_n\}_{x \in \mathbb{N}} \text{ in } \mathbb{R} \}.$$

Define $\|\{x_n\}\|_{l^{\infty}} := \sup_n |x_n|$.

Definition. For $1 \le p < \infty$,

$$l^p := l^p(\mathbb{N}) := \{ \text{real sequences } \{x_n\}_{n \in \mathbb{N}} \text{ with } \|\{x_n\}\|_{l^p} < \infty \},$$

where

$$\|\{x_n\}\|_{l^p} := \left(\sum |x_n|^p\right)^{1/p}.$$

Note. In fact, $(l^{\infty}(\mathbb{N}), \|\cdot\|_{l^{\infty}}) = (\mathcal{C}^0(\mathbb{N}), \|\cdot\|_{\mathcal{C}^0(\mathbb{N})})$. So we have already seen that l^{∞} is a Banach space.

Theorem 35 (Holders inequality). Let $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$ $(1/\infty = 0)$. Let $\{a_n\} \in l^p$ and $\{b_n\} \in l^q$. Then $\{a_nb_n\} \in l^1$ and

$$\|\{a_nb_n\}\|_{l^1} = \sum_{n=1}^{\infty} |a_nb_n| \le \|\{a_n\}\|_{l^p} \cdot \|\{b_n\}\|_{l^q}.$$

Proof. If $\{a_n\} = \{0\}$ or $\{b_n\} = \{0\}$, the inequality holds trivially. Now suppose $p = \infty$ and q = 1 (the argument also works for p = 1 and $q = \infty$). We have

$$\sum_{n=1}^{\infty} |a_n b_n| \le \sum_{n=1}^{\infty} \|\{a_n\}\|_{l^{\infty}} \cdot |b_n| = \|\{a_n\}\|_{l^{\infty}} \cdot \|\{b_n\}\|_{l^1}.$$

Now consider $p, q \neq \infty$. Replacing $\{a_n\}$ with $\{a_n/\|\{a_n\}\|_{l^p}\}$ and $\{b_n\}$ with $\{b_n/\|\{b_n\}\|_{l^q}\}$ if needed, we may assume $\|\{a_n\}\|_{l^p} = \|\{b_n\}\|_{l^q} = 1$.

Claim: For $1 < p, q < \infty$ and $x, y \ge 0$, $xy \le x^p/p + y^q/q$.

Define

$$f_y(x) = \frac{x^p}{p} + \frac{y^q}{q} - xy.$$

Then $f_y'(x) = x^{p-1} - y$ and $f_y''(x) = (p-1)x^{p-2} \ge 0$. So f_y has a global minimum at the zero of f_y' , i.e. $x = y^{1/(p-1)}$. Remember that 1/q = (p-1)/p, so

$$f_y(y^{1/(p-1)}) = \frac{y^{p/(p-1)}}{p} + \frac{y^q}{q} - y^{p/(p-1)}$$
$$= y^q \left(\frac{1}{p} + \frac{1}{q} - 1\right)$$
$$= 0.$$

Then we see

$$\sum_{n=0}^{\infty} |a_n b_n| \le \sum_{n=0}^{\infty} \frac{|a_n|^p}{p} + \frac{|b_n|^q}{q}$$

$$= \frac{1}{p} \sum_{n=1}^{\infty} |a_n|^p + \frac{1}{q} \sum_{n=1}^{\infty} |b_n|^q$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1.$$

Proposition. Let $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then for every real sequence $\{a_n\}$,

$$\left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/p} = \sup_{\{b_n\}\in l^q, \|\{b_n\}\|_{l^q}=1} \sum_{n=1}^{\infty} |a_n b_n|.$$

Proof. By Holders inequality, RHS \leq LHS. If $\{a_n\} \in l^p$, take $b_n = |a_n|^{p-1}$. Then

$$\|\{b_n\}\|_{l^q} = \left(\sum_{n=1}^{\infty} \left(|a_n|^{p-1}\right)^q\right)^{1/q} = \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/q} = \|\{a_n\}\|_{l^p}^{p/q}.$$

So $\{b_n\} \in l^q$. Divide $\{b_n\}$ by $\|\{b_n\}\|_{l^q}$ to make $\|\{b_n\}\|_{l^q=1}$ and we have

$$\sum_{n=1}^{\infty} |a_n b_n| = \sum_{n=1}^{\infty} \frac{|a_n|^p}{\|\{a_n\}\|_{l^p}^{p/q}} = \frac{\|\{a_n\}\|_{l^p}^p}{\|\{a_n\}\|_{l^p}^{p/q}} = \|\{a_n\}\|_{l^p}.$$

If $\{a_n\} \notin l^p$, take

$$b_n^N = \begin{cases} |a_n|^{p-1} / \text{normalizing factor}, & n \leq N, \\ 0, & n > N. \end{cases}$$

Then

$$\lim_{N \to \infty} \sum_{n=1}^{N} |a_n b_n^N| = \lim_{N \to \infty} \left(\sum_{n=1}^{N} |a_n|^p \right)^{1/p} = \infty.$$

Theorem 36 (Triangle inequality). For $\{a_n\}$, $\{b_n\} \in l^p$, $\{a_n + b_n\} \in l^p$ and

$$||(a_n+b_n)||_{l^p} \le ||\{a_n\}||_{l^p} + ||\{b_n\}||_{l^p}.$$

Consequently, l^p is a normed vector space.

Proof. Choose q such that $\frac{1}{q} + \frac{1}{p} = 1$. Then by the above proposition, we see

$$\begin{aligned} \|\{a_n + b_n\}\|_{l^p} &= \sup_{\{c_n\} \in l^q, \|\{c_n\}\|_q = 1} \sum_{n=1}^{\infty} |c_n| \cdot |a_n + b_n| \\ &\leq \sup_{\|\{c_n\}\|_q = 1} \left(\sum_{n=1}^{\infty} |c_n a_n| + \sum_{n=1}^{\infty} |c_n b_n| \right) \\ &\leq \|\{a_n\}\|_{l^p} + \|\{b_n\}\|_{l^p}. \end{aligned}$$

Definition. $\sum x_n$ converges absolutely if $\sum ||x_n||$ converges. $\sum x_n$ converges if the sequence $s_n := x_1 + \cdots + x_n$ of partial sums converges.

Example. Define

$$l_K^{\infty} = \{ \text{real sequences } \{x_n\}, \text{s.t. } x_n = 0, \text{for all except finitely many } n \},$$

where K stands for compact support. Let $x_n := (0, \dots, 0, 2^{-n}, 0, \dots)$ where 2^{-n} appears at the nth position. Then $\sum x_n$ converges absolutely but it doesn't converge in l_K^{∞} .

Theorem 37. The normed vector space $(X, \|\cdot\|)$ is a Banach space if and only if every absolutely convergence series in X converges.

Proof. \Rightarrow : If X is a Banach space and $\sum x_n$ converges absolutely, then by traingle inequality, for $n \geq m$,

$$||s_n - s_{m-1}|| = ||a_m + \dots + a_n|| \le \sum_{j=m}^n ||a_j||.$$

So the sequence of partial sums is Cauchy. Since X is complete, the sequence of partial sums converge and thus $\sum x_n$ converges.

 \Leftarrow : Assume that every absolute convergence series in X converges. Let $\{x_n\}$ be a Cauchy sequence in X. Recall that a Cauchy sequence with a convergence subsequence must converges (in any metric space). We need to prove that $\{x_n\}$ has a convergent subsequence. The idea is to use telescoping series.

By Cauchyness, there exists a subsequence $\{x_{n_k}\}$ s.t. $||x_{n_{k+1}} - x_{n_k}|| \le 2^{-(k+1)}$, $\forall k \in \mathbb{N}$. Then $\sum x_{n_{k+1}} - x_{n_k}$ converges absolutely, so it converges by hypothesis. Therefore,

$$\lim_{k \to \infty} x_{n_k} = x_{n_1} + \sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k}),$$

which implies $\{x_{n_k}\}$ is a convergent subsequence of $\{x_n\}$.

Theorem 38. l^p is a Banach space for $1 \le p \le \infty$.

Proof. We've already checked the case when $p = \infty$. Let $1 \le p < \infty$ and assume $\sum \|\boldsymbol{x}_n\|_{l^p} \le \infty$, where \boldsymbol{x}_n is a sequence for each n. If we can show $\sum \boldsymbol{x}_n$ converges, then by the above theorem, l^p is a Banach space. For each $k \in \mathbb{N}$, the k-th coordinate satisfy

$$\sum_{n} |x_{n,k}| \le \sum_{n} \left(\sum_{k} |x_{n,k}|^{p} \right)^{1/p} = \sum_{n} ||\boldsymbol{x}_{n}||_{l^{p}} < \infty.$$

So we can define a sequence $\{y_k\}$ by $y_k = \sum_n x_{n,k}$. We need to show $\{y_k\} \in l^p$ and $\sum x_n = \{y_k\}$ with convergence in l^p . Choose q with $\frac{1}{q} + \frac{1}{p} = 1$ and pick any $\{a_k\} \in l^q$ with $\|\{a_k\}\|_{l^q} = 1$. We see

$$\sum_{k} |a_k y_k| = \sum_{k} \left| a_k \sum_{n} x_{n,k} \right| \leq \sum_{k} \sum_{n} |a_k x_{n,k}| \leq \sum_{n} \sum_{k} |a_k x_{n,k}| \leq \sum_{n} \|\boldsymbol{x}_n\|_{l^p} \|\boldsymbol{a}_k\|_{l^q} = \sum_{n} \|\boldsymbol{x}_n\|_{l^p} < \infty.$$

Thus, $\|\{y_k\}\|_{l^p} < \infty$. Question. To show $\sum_n \boldsymbol{x}_n = \{y_n\}$ is similar. Show $\sum_{n=N}^{\infty} \boldsymbol{x}_n \to 0$ in l^p as $N \to \infty$ using a similar argument.

Bounded linear operators

Definition. If X, Y are real vector spaces, a map $T: X \to Y$ is linear if $\forall \alpha_1, \alpha_2 \in \mathbb{R}, \forall x_1, x_2 \in X, T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T(x_1) + \alpha_2 T(x_2)$.

Definition. Let $T: X^{\text{normed v.s.}} \to Y^{\text{normed v.s.}}$ be linear. We say T is a bounded linear operator (or T is bounded) if $\exists C$, s.t. $\forall x \in X$, $\|T(x)\|_Y \leq C \cdot \|x\|_X$.

Example. $\frac{d}{dx}: \mathcal{C}^k(I) \to \mathcal{C}^{k-1}(I)$ is a bounded linear operator.

Example. $X = \mathcal{C}^0([a,b])$ and $Y = \mathbb{R}$, $T(f) = \int_a^b f(x) \, \mathrm{d}x$ is a bounded linear operator.

For convention, we write T(x) as Tx.

Theorem 39. Let X, Y be normed vector spaces and $T: X \to Y$ being a linear operator. Then the following are equivalent:

- 1. T is a bounded linear opeartor;
- 2. T is uniformly continuous on X;
- 3. T is countinuous on X;
- 4. T is continuous at 0.

Proof. $1 \Rightarrow 2$: By 1, we have $\forall x, y, \|Tx - Ty\| = \|T(x - y)\| \le C\|x - y\|$. So T is Lipschitz, which implies 2.

 $2 \Rightarrow 3$: Done by definition.

 $3 \Rightarrow 4$: Done by definition.

 $4\Rightarrow 1$: Assume T is continuous at 0. Then $\exists \delta>0,$ s.t. $\|x\|\leq\delta$ implies $\|Tx\|\leq1$. Now if x=0, $\|Tx\|=0$. For $x\neq0,$ since $\|\delta x/\|x\|\|=\delta,$ so $\|T(\delta x/\|x\|)\|\leq1$. By linearity and arithmetic, $\|Tx\|\leq\|x\|/\delta.$ So T is a bounded linear operator $(C=1/\delta).$

Definition. Define

 $\mathcal{L}(X,Y) \coloneqq \{ \text{bounded linear operators from } X \text{ to } Y \}$.

Then $\mathcal{L}(X,Y)$ is a vector space, since

$$\|(\alpha T + \beta S)x\|_{Y} = \|\alpha(Tx) + \beta(Sx)\|_{Y}$$

$$\leq |\alpha| \cdot \|Tx\|_{Y} + |\beta| \cdot \|Sx\|_{Y}$$

$$\leq (|\alpha|C_{1} + |\beta|C_{2})\|x\|_{X}.$$

Definition. Define the norm

$$||T||_{X \to Y} := \sup_{0 \neq x \in X} \frac{||Tx||_Y}{||x||_X}.$$

Proposition. The following properties holds,

- 1. $||T|| = \sup_{||x||=1} ||Tx||$;
- 2. $||T|| = \min \{C : ||Tx|| \le C||x||, \forall x \in X\}$, in particular, $\forall x, ||Tx|| \le ||T|| \cdot ||x||$;
- 3. $\|\cdot\|$ is a norm;
- 4. If Y is a Banach space, so is $\mathcal{L}(X,Y)$;

5. If X, Y, Z are normed vector spaces and $T \in \mathcal{L}(X, Y)$, $S \in \mathcal{L}(Y, Z)$, then $S \circ T \in \mathcal{L}(X, Z)$ and $||S \circ T|| \leq ||S|| \cdot ||T||$.

Proof. 1. By definition

$$||T|| = \sup_{0 \neq x \in X} \frac{||Tx||}{||x||} = \sup_{0 \neq x \in X} \left| |T\frac{x}{||x||} \right| = \sup_{||y|| = 1} ||Ty||.$$

- 2. For any C < ||T||, by definition of ||T||, $\exists x \neq 0$, s.t. ||Tx||/||x|| > C. So ||Tx|| > C||x||. Also check that $||T|| \ge ||Tx||/||x||$, which implies $||Tx|| \le ||T|| \cdot ||x||$.
- 3. Done.
- 4. Assume that $\{T_n\}$ is a Cauchy sequence. Then $\forall x, \{T_nx\}$ is a Cauchy sequence (because $\|T_nx-T_mx\| \leq \|T_n-T_m\|\cdot\|x\|$). Since Y is complete, $\{T_nx\}$ converges. Define $Tx := \lim T_nx$. We need to show that $T \in L(X,Y)$. We see T is linear by linearity of limits and the T_n 's. For the boundedness of T, we see $\|Tx\| = \lim \|T_nx\| \leq (\lim \sup \|T_n\|)\|x\|$. Note that $\{\|T_n\|\}$ is Cauchy in \mathbb{R} since

$$||T_m|| - ||T_n|| \le ||T_m - T_n||$$

and hence $\{||T_n||\}$ is convergent and bounded. So T is bounded.

5. Apply 2, we have

$$||S \circ T(x)|| \le ||S|| \cdot ||Tx|| \le ||S|| \cdot ||T|| \cdot ||x||.$$

Definition. Define the following norms on \mathbb{R}^n :

- $1. ||x||_{l_n^{\infty}} := \max_{1 \le i \le n} |x_i|$
- 2. $||x||_{l_n^p} := (\sum_{i=1}^n |x_i|^p)^{1/p}, 1 \le p \le \infty.$

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ takes the form Tx = Ax, where $A = (a_{ij})$ is a $m \times n$ matrix.

Proposition. In the above notation,

- 1. $||T||_{l_n^{\infty} \to l_m^{\infty}} = \max_{i=1,\dots,m} \sum_{j=1}^n |a_{ij}|;$
- 2. $||T||_{l_n^1 \to l_m^1} = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|.$

Proof. 1. Define $C := \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$. We need to first show $||Tx||_{l_m^{\infty}} \leq C||x||_{l_n^{\infty}}, \forall x$. This is true since

$$\max_{i=1,\dots,m} |(Tx)_i| = \max_{i=1,\dots,m} \left| \sum_j a_{ij} x_j \right| \le \max_{i=1,\dots,m} \sum_j |a_{ij}| \cdot ||x||_{l_n^{\infty}}.$$

Now we need to show if C' < C, then $\exists x$, s.t. $||Tx||_{l_m^{\infty}} > C'||x||_{l_n^{\infty}}$. This is enough to find $x \neq 0$, s.t. ||Tx|| = C||x||. This is always possible in finite dimensional vector space (may not be possible in infinity dimensional vector space). Choose i to maximize $\sum_i |a_{ij}|$. Take

$$x_j = \operatorname{sign}(\alpha_{ij}) := \begin{cases} 1 & \text{if } a_{ij} \ge 0 \\ -1 & \text{if } a_{ij} < 0. \end{cases}$$

Then $||Tx||_{l^{\infty}} = \sum_{j} |a_{ij}| = C||x||_{l^{\infty}}.$

2. Homework.

The open mapping and closed graph theorem

Definition. Let X, Y be metric spaces. A function $f: X \to Y$ is an open map if f(U) is open in Y whenever U is open.

Theorem 40 (Open Mapping Theorem). Let X and Y be Banach spaces. Then a surjective map $T \in \mathcal{L}(X,Y)$ is also an open map.

Proof. Assume $T \in \mathcal{L}(X,Y)$ is surjective. Then, $Y = \bigcup_{n=1}^{\infty} T(B_n(0))$. By the Baire Category Theorem (Y is complete), for some n, $\overline{T(B_n(0))}$ has nonempty interior. Since $\overline{T(B_n(0))} = n\overline{T(B_1(0))}$ by linearity of T, $\overline{T(B_1(0))}$ has nonempty interior. Suppose $y_0 \in \operatorname{int}(\overline{T(B_1(0))})$. Then $\exists r > 0$, s.t. $B_r(y_0) \subseteq \overline{T(B_1(0))}$.

Claim 1: $B_{2r}(0) \subseteq B_r(y_0) - B_r(y_0) := \{y - y' : y, y' \in B_r(y_0)\}$ If ||x|| < 2r, $y_0 + x/2$, $y_0 - x/2 \in B_r(y_0)$. If $y, y' \in B_r(y_0)$, then $||y - y'|| \le ||y - y_0|| + ||y_0 - y'|| < 2r$.

So
$$B_{2r}(0) \subseteq \overline{T(B_1(0))} - \overline{T(B_1(0))} = \overline{T(B_2(0))}$$
. So $B_r(0) \subseteq \overline{T(B_1(0))}$.

Claim 2: $B_{r/2}(0) \subseteq T(B_1(0))$.

Let $y_1 \in B_{r/2}(0)$. Then $\exists x_1 \in B_{1/2}(0)$, s.t. $||y_1 - Tx_1|| < r/4$. Let $y_2 := y_1 - Tx_1$. In general, given $y_n \in B_{2^{-n}r}(0) \subseteq \overline{T(B_{2^{-n}}(0))}$, $\exists x_n \in B_{2^{-n}}(0)$, s.t. $||y_n - Tx_n|| < 2^{-(n+1)}r$. Set $y_{n+1} = y_n - Tx_n$. Then $y_{n+1} \in B_{2^{-(n+1)}r}(0)$. So we repeat. We obtain sequences $\{y_n\}$ in Y and $\{x_n\}$ in X, s.t. $||x_n|| < 2^{-n}$, $\forall n$ and $||y_n - Tx_n|| < 2^{-(n+1)}r$. Notice that

$$||y_n - Tx_n|| = ||y_{n-1} - Tx_{n-1} - Tx_n|| = \dots = ||y_1 - \sum_{j=1}^n Tx_j|| = ||y_1 - T\sum_{j=1}^n x_j||.$$

Now $\sum x_n$ converges absolutely (since $||x_n|| < 2^{-n}$). Since X is complete, $\exists x \in X$, s.t. $\sum x_n = x$. Moreover, $||x|| \le \sum ||x_n|| < \sum 2^{-n} = 1$. So $x \in B_1(0)$. Finally,

$$y_1 = \lim_{n \to \infty} T \sum_{j=1}^n x_j = T(\lim_{n \to \infty} \sum_{j=1}^n x_j) = T(x) \in T(B_1(x)).$$

Let U be open and let $y \in T(U)$. Then $\exists x \in U$, s.t. Tx = y. Since U is open, $\exists \epsilon > 0$, s.t. $B_{\epsilon}(x) \subseteq U$. Notice that

$$T(B_{\epsilon}(0)) + Tx = T(B_{\epsilon}(0) + x) = T(B_{\epsilon}(x)) \subseteq T(U),$$

and Tx = y. Finally, by Claim 2,

$$B_{\epsilon r/2}(y) = B_{\epsilon r/2}(0) + y \subseteq \epsilon T(B_1(0)) + y \subseteq T(U).$$

Corollary. If X and Y are Banach spaces and $T \in L(X,Y)$ is a bijection. Then T^{-1} is also a bounded linear operator.

Proof. It suffices to show that T^{-1} is continuous. Let $U \subseteq X$ be an open set. Then

$$preImage(T^{-1}) = T(U)$$

is open. So T^{-1} is continuous.

Theorem 41 (Closed Graph Theorem). Let X, Y be Banach spaces. The map $T: X \to Y$ is a bounded linear operator if and only if the graph

$$\Gamma_T := \{(x, Tx) \in X \times Y : x \in X\}$$

is a closed linear subspace of $X \times Y$. Here $X \times Y$ is the Banach space with operations $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and $\alpha(x, y) = (\alpha x, \alpha y)$, $\|(x, y)\| = \|x\|_X + \|y\|_Y$.

Proof. \Rightarrow : Homework.

 \Leftarrow : Assume that Γ_T is a closed linear subspace.

Claim 1: T is linear.

Let $x, x' \in X$ and $\alpha, \alpha' \in \mathbb{R}$, then $(x, Tx), (x', Tx') \in \Gamma_T$. So $(\alpha x + \alpha' x', \alpha Tx + \alpha' Tx') \in \Gamma_T$. Thus by definition of Γ_T , $\alpha Tx + \alpha' Tx' = T(\alpha x + \alpha' x')$.

Claim 2: T is continuous.

We know Γ_T is a Banach space. We consider the projections $P_x: \Gamma_T \to X$ with $(x,y) \mapsto x$ and $P_y: \Gamma_T \to Y$ with $(x,y) \mapsto y$. Then P_x and P_y are bounded, since $||y||, ||x|| \le ||(x,y)||$. Furthermore, P_x is a bijection. So $P_x^{-1}: X \to \Gamma_T$, $x \mapsto (x,Tx)$, is a bounded linear operator (by the previous corollary). Finally, $T = P_y \circ P_x^{-1}$.

Invertible linear operators and the van Neumann series

Theorem 42. Let X and Y be Banach spaces and let $\Omega(X,Y)$ denote the set of bijections in $\mathcal{L}(X,Y)$. Then $\Omega(X,Y)$ is open subset of $\mathcal{L}(X,Y)$ and the inversion map $A \mapsto A^{-1}$ is a continuous bijection of $\Omega(X,Y)$ onto $\Omega(Y,X)$

Proof. By corollary of the open mapping theorem, we know $A \in \Omega(X, Y)$ implies $A^{-1} \in \mathcal{L}(Y, X)$. Thus $A \mapsto A^{-1}$ is a bijection. Remains to prove that $\Omega(X, Y)$ is open and $A \mapsto A^{-1}$ is continuous.

Lemma: If $A \in \Omega(X,Y)$ and $||B-A||_{X\to Y} < 1/||A^{-1}||_{Y\to X}$. Then $B \in \Omega(X,Y)$ and

$$B^{-1} = B^{-1}AA^{-1} = (A^{-1}B)^{-1}A^{-1} = (I - (I - A^{-1}B))^{-1}A^{-1} = \sum_{n=0}^{\infty} (I - A^{-1}B)^n A^{-1},$$

with convergence (indeed absolute convergence) in $\mathcal{L}(Y,X)$ and

$$||B^{-1} - A^{-1}||_{Y \to X} \le \frac{||A^{-1}||^2 \cdot ||A - B||}{1 - ||A^{-1}|| \cdot ||A - B||}$$

Proof of the lemma. Observe that

$$\|(I-A^{-1}B)^nA^{-1}\| \leq \|I-A^{-1}B\|^n \cdot \|A^{-1}\| = \|A^{-1}(A-B)\|^n \cdot \|A^{-1}\| \leq \|A^{-1}\|^{n+1} \cdot \|A-B\|^n.$$

By hypothesis, we know $||A^{-1}|| \cdot ||A - B|| < 1$. So by geometric series test, $\sum_{n=0}^{\infty} (I - A^{-1}B)^n A^{-1}$ converges absolutely. And since L(Y,X) is a Banach space, the series converges. Now we compute

$$B \cdot \sum_{n=0}^{\infty} (I - A^{-1}B)^n A^{-1} = \sum_{n=0}^{\infty} B(I - A^{-1}B)^n A^{-1}$$

$$= \sum_{n=0}^{\infty} A(I - (I - A^{-1}B))(I - A^{-1}B)^n A^{-1}$$

$$= \sum_{n=0}^{\infty} A(I - A^{-1}B)^n A^{-1} - \sum_{n=1}^{\infty} A(I - A^{-1}B)^n A^{-1}$$

$$= A(I - A^{-1}B)^0 A^{-1}$$

$$= I.$$

For the other direction, we compute

$$\left(\sum_{n=0}^{\infty} (I - A^{-1}B)^n A^{-1}\right) B = \sum_{n=0}^{\infty} (I - A^{-1}B)^n A^{-1}B$$

$$= \sum_{n=0}^{\infty} (I - A^{-1}B)^n (I - (I - A^{-1}B))$$

$$= \sum_{n=0}^{\infty} (I - A^{-1}B)^n - \sum_{n=1}^{\infty} (I - A^{-1}B)^n$$

$$= (I - A^{-1}B)^0$$

$$= I.$$

Note the first equality is due to the continuity of B.

Aside: $S_N = \sum_{n=0}^N (I - A^{-1}B)$. We know $\lim S_N = S$. We want $B \cdot S = \lim Bs_N$. $\|BS - BS_N\| < \|B\| \cdot \|S - S_N\| \to 0$.

So $B \in \Omega(X,Y)$ and B^{-1} is indeed the given sum. Then finally, we have

$$\| \sum_{n=1}^{\infty} (I - A^{-1}B)^n A^{-1} \| \le \sum_{n=1}^{\infty} \|I - A^{-1}B\|^n \cdot \|A^{-1}\|$$

$$\le \sum_{n=1}^{\infty} \|A^{-1}\|^{n+1} \cdot \|A - B\|^n$$

$$= \frac{\|A^{-1}\|^2 \cdot \|A - B\|}{1 - \|A^{-1}\| \cdot \|A - B\|}.$$

Multivariable Calculus

Definition. Let $(V, \|\cdot\|_C)$, $(W, \|\cdot\|_W)$ be normed vector spaces. Let E be an open subset of V and $f: E \to W$. We say f is differentiable at $v \in E$ if $\exists L_v \in \mathcal{L}(V, W)$ s.t.

$$\lim_{h \in V, h \to 0} \frac{\|f(v+h) - f(v) - L_v(h)\|}{\|h\|} = 0.$$

We call L_v the total derivative of f at v and write

$$Df_v = Df(v) = L_v \in \mathcal{L}(V, W).$$

Proposition. Total derivatives, if they exist, are unique.

Proof. If L_v and L'_v both satisfies the equation above. Then by triangle inequality, we have

$$\lim_{h \to 0} \frac{\|L_v(h) - L_v'(h)\|}{\|h\|} = 0.$$

So $\forall \epsilon > 0, \exists \delta > 0, \text{ s.t. } ||h|| < \delta \text{ implies}$

$$\frac{\|L_v(h) - L_v'(h)\|}{\|h\|} < \epsilon.$$

This implies (HW) $||L_v - L'_v|| < \epsilon$. Since ϵ is arbitrary, $L_v = L'_v$.

Proposition. If f is differentiable at v, then f is continuous at v.

Proof. If f is differentiable at v, look at

$$||f(v+h) - f(v)|| = o(||h||) + ||L_v(h)|| \le o(||h||) + ||L_v|| \cdot ||h|| \to 0.$$

Example. If $f \in \mathcal{L}(V, W)$, then f is differentiable at each point $v \in V$ and $Df_v = f$.

Proof. By linearity, $f(v+h) - f(v) - f(h) \equiv 0$ and we are done.

Example. Let $V = \mathbb{R}^k$, $W = \mathbb{R}$. Let $f(x) = ||x||_2^2 = \sum_{j=1}^k x_j^2$. Then $\forall v \in \mathbb{R}^k$, f is differentiable at v and $Df_v(h) = 2v \cdot h$. In matrix form, $Df_v = [2v_1, 2v_2', \dots, 2v_k]$.

Proof.

$$\lim_{h \to 0} \frac{\|f(v+h) - f(v) - 2v \cdot h\|}{\|h\|} = \lim_{h \to 0} \frac{\|h\|^2}{\|h\|} = 0.$$

Example. Let V be an arbitrary space but $V \neq \{0\}$, $W = \mathbb{R}$. Let f(x) = ||x|| (any norm). Then f is not differentiable at 0.

Proof. Let $L_v \in \mathcal{L}(V, \mathbb{R})$. Let $e \in V$ with ||e|| = 1. By definition,

$$0 = \lim_{h \in \mathbb{R}, h \to 0} \frac{\|f(0+he) - f(0) - L_v(he)\|}{\|h\|} = \lim_{h \in \mathbb{R}, h \to 0} \frac{\||h| - hL_v(e)\|}{\|h\|} = \lim_{h \in \mathbb{R}, h \to 0} \left|1 - \frac{h}{|h|}L_v(E)\right|.$$

If $L_v(e) = 0$, this is false because the limit is 1. If $L_v(e) \neq 0$, this is false because the left and right limits disagree.

Example. Let $V = \mathcal{C}^0([a,b])$, $W = \mathbb{R}$. Let $F(g) = \int_a^b (g(x))^2 dx$ is differentiable at $g, \forall g \in \mathcal{C}^0([a,b])$ and $DF_g(f) = \int_a^b 2f(x)g(x) dx$.

Proof.

$$||F(g+h) - F(g) - DF_v(h)|| = \left\| \int_a^b h^2(x) \, dx \right\| \le (b-a)||h||^2$$

Example. Let X, Y be Banach spaces. Define $V = \mathcal{L}(X,Y)$, $W = \mathcal{L}(Y,X)$ and $E = \Omega(X,Y)$ (the set of all bijections from X to Y), $F(T) = T^{-1}$, $T \in \Omega(X,Y)$. Then F is differentiable at each point of E and

$$DF_T(h) = -T^{-1}hT^{-1}$$

Remember that $DF_T \in \mathcal{L}(V, W)$, $h \in \mathcal{L}(X, Y)$ and $DF_T(h) \in \mathcal{L}(Y, X)$.

Proof. Let $T \in \Omega(X,Y)$. For h small, we can write

$$F(T+h) = (T+h)^{-1} = (T(I+T^{-1}h))^{-1} = (I+T^{-1}h)^{-1}T^{-1} = \sum_{n=0}^{\infty} (-1)^n (T^{-1}h)^n T^{-1}.$$

Now

$$F(T+h) - F(T) + T^{-1}hT^{-1} = \sum_{n=2}^{\infty} (-1)^n (T^{-1}h)^n T^{-1} = \mathcal{O}(\|h\|^2),$$

since F(t) cancels out the zeroth term and $T^{-1}hT^{-1}$ cancels out the first term. So

$$||F(T+h) - F(T) + T^{-1}hT^{-1}|| \le \frac{||T^{-1}h||^2 \cdot ||T^{-1}||}{1 - ||T^{-1}h||} \le \frac{||T^{-1}||^3 \cdot ||h||^2}{1 - ||T^{-1}|| \cdot ||h||}.$$

Theorem 43 (Chain rule). Let V, W, X be normed vector spaces and assume that $f: V \to W$ is differentiable at $v \in V$ and $g: W \to X$ is differentiable at f(v). Then $g \circ f$ is differentiable at v and $D(g \circ f)_v = Dg_{f(v)} \circ Df_v$ (in $\mathcal{L}(V, X)$).

Special case: If V, W, X are finite dimensional vector spaces, then we can think of $Dg_{f(v)}$, Df_v as matrices and we can think of the composition $Dg_{f(v)} \circ Df_v$ as matrix multiplication.

Proof. Notation:

$$\epsilon(h) = \|h\|^{-1} \left(f(v+h) - f(v) - Df_v(h) \right),$$

$$\delta(h) = \|k\|^{-1} \left(g(f(v) + k) - g(f(v)) - Dg_{f(v)}(k) \right).$$

We know that

$$\lim_{h\to 0} \epsilon(h) = 0_W, \quad \lim_{k\to 0} \delta(k) = 0_X.$$

Let k = f(v + h) - f(v), we have

$$g(f(v+h)) - g(f(v)) - Dg_{f(v)} \circ Df_v(h)$$

$$= g(f(v) + (f(v+h) - f(v))) - g(f(v)) - Dg_{f(v)}(f(v+h) - f(v)) + Dg_{f(v)}(f(v+h) - f(v) - Df_v(h))$$

$$= ||k|| \cdot \delta(k) + Dg_{f(v)}(||h|| \cdot \epsilon(h)) =: T_1 + T_2.$$

Notice that $||T_2|| \leq ||Dg_{f(v)}|| \cdot ||h|| \cdot ||\epsilon(h)||$, so

$$\lim_{h \to 0} \frac{\|T_2\|}{\|h\|} = 0.$$

On the other hand,

$$||k|| = ||(||h||\epsilon(h) + Df_v(h))|| \le ||h|| \cdot (||\epsilon(h)|| + ||Df_v||).$$

By continuity of f at v, $\lim_{h\to 0} ||f(v+h)-f(v)|| = 0$. So $\lim_{h\to 0} \delta(f(v+h)-f(v)) = 0$. So

$$\lim_{h \to 0} \frac{\|T_1\|}{\|h\|} \le \lim_{h \to 0} (\|\epsilon(h)\| + \|Df_v\|) \cdot \|\delta(k)\| = 0.$$

Henceforth, $V = \mathbb{R}^k$, $W = \mathbb{R}^m$, all norms are Euclidean.

Proposition. If $f: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable at x_0 , then all first order partial derivatives of f at x_0 exist and moreover,

$$Df(x_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \cdots & \frac{\partial f_m}{\partial x_n}(x_0) \end{bmatrix}.$$

Proof. Notice that

$$\lim_{h \to 0, h \in \mathbb{R}} \frac{\|f(x_0 + he_j) - f(x_0) - Df(x_0)he_j\|}{\|h\|} = 0.$$

Also we have

$$\lim_{h \to 0, h \in \mathbb{R}} \frac{\|f(x_0 + he_j) - f(x_0) - Df(x_0)he_j\|}{\|h\|} = \left\| \frac{\partial f}{\partial x_j}(x_0) - Df(x_0)e_j \right\|.$$

Since $\frac{\partial f}{\partial x_j}(x_0)$ is the jth column of the Jacobian matrix and $Df(x_0)e_j$ is the jth column of total derivative. So we are done.

Theorem 44 (Single variable mean value theorem). If $f : [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b). Then $\exists c \in (a, b), s.t.$

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

How can we generalize this result to $f: E \to \mathbb{R}^m$, where $E \subseteq \mathbb{R}^n$? First, we consider the case $n \ge 1, m = 1$.

Definition. The set $E \subseteq V^{\text{vector space}}$ is convex if $\forall x, y \in E$, and $0 \le t \le 1$, $(1-t)x + ty \in E$. In other words, the line segment connecting x and y is in E.

Theorem 45. Let $E \subseteq \mathbb{R}^n$ be open and convex. Let $f: E \to \mathbb{R}$ be differentiable. Let $x, y \in E$. Then $\exists t \in [0,1], s.t.$

$$f(y) - f(x) = Df((1-t)x + ty)(y - x).$$

Proof. Define g(t) = f((1-t)x + ty). Then g is continuous on [0,1]. By the chain rule, g is differentiable on (0,1) and $g'(t) = Df((1-t)x + ty) \cdot (y-x)$. Finally, by the mean value theorem, $\exists t \in [0,1]$, s.t. g'(t) = g(1) - g(0) = f(y) - f(x). We are done.

Now consider m > 1. The direct analogue of mean value theorem is false.

Example. Let $\gamma(t) = (\cos(t), \sin(t))$. Then, $\gamma(0) = \gamma(2\pi)$, i.e. $\gamma(0) - \gamma(2\pi) = 0$. But $\gamma'(t) = (-\sin(t), \cos(t))$ is never 0.

Theorem 46. Let $E \subseteq \mathbb{R}^n$ be open, convex and $f: E \to \mathbb{R}^m$ be differentiable. If $\|Df(x)\|_{\mathcal{L}(l_n^2, l_m^2)} \le M$ (this norm is not the 2-norm of the matrix), $\forall x \in E$, then

$$||f(x) - f(y)|| \le M||x - y||$$

for all $x, y \in E$.

Proof. Fix $x_0, y_0 \in E$. Define $v := f(y_0) - f(x_0)$, $g(x) := \langle v, f(x) \rangle$. By the previous theorem, $\exists t \in [0, 1]$, s.t.

$$||v|| \cdot ||f(x_0) - f(y_0)|| = g(y_0) - g(x_0) = \langle v, Df((1-t)x_0 + ty_0)(y_0 - x_0) \rangle \le ||v|| \cdot M \cdot ||y_0 - x_0||.$$

Both theorems are false if E is not convex.

Example. Define

$$E := \{(x, y) \in \mathbb{R}^2 : |x| < 1, |y| < 1, y = 0 \Rightarrow x = 0\}.$$

Let

$$f(x,y) = \begin{cases} 0 & \text{if } x \le 0, \\ 0 & \text{if } x > 0, y < 0, \\ e^{-1/x} & \text{if } x > 0, y > 0. \end{cases}$$

Theorem 47. Let $E \subseteq \mathbb{R}$ be open connected and $f: E \to \mathbb{R}^m$ be differentiable with $Df \equiv 0$ on E. Then f is a constant function on E.

Proof. Let $x_0 \in E$. Let $F := \{x \in E : f(x) = f(x_0)\}$. Then F is closed (relative to E) and f is continuous. Let $y_0 \in F$. Then $\exists r > 0$, s.t. $B_r(y_0) \subseteq E$. Since $B_r(y_0)$ is convex, by the previous theorem, $f(x) - f(y_0) = 0$, $\forall x \in B_r(y_0)$. So $B_r(y_0) \in F$. Thus F is open. Since E is connected, F closed and open implies F = E or $F = \emptyset$. But $x_0 \in F$, so $F \neq \emptyset$. Thus F = E.

Question: Is there any relationship between partial derivatives and differentiability of f? Answer: No.

Example. Let

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

Then all partial derivatives of f of all orders exist. But f is not differentiable, since it is not continuous at 0.

Definition. Let $E^{\text{open}} \subseteq \mathbb{R}^n$ and $f: E \to \mathbb{R}^m$. Say f is continuously differentiable on E if f is differentiable on E and Df is continuous on E (i.e. as a map from E into $\mathcal{L}(l_n^2, l_m^2)$).

Definition. Say $f \in \mathcal{C}^1(E)$ if f is continuously differentiable on E and

$$||f||_{\mathcal{C}^1(E)} := ||f||_{\mathcal{C}^0(E)} + ||Df||_{\mathcal{C}^0(E)}.$$

Definition. Say $f \in \mathcal{C}^1_{loc}(E)$ if f is continuously differentiable on E. Warning: $\mathcal{C}^1_{loc}(E)$ is not a normed (not even a normable) space.

Theorem 48. Let $E^{open,\neq\emptyset} \subseteq \mathbb{R}^n$ and $f: E \to \mathbb{R}^m$. Then f is continuously differentiable on E if and only if all first order partial derivatives of f exist and are continuous on E.

Proof. \Rightarrow : Immediate follows from the proposition earlier.

⇐: By the proposition, we just need to show that

$$\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0) - Df(x_0)h\|}{\|h\|} = 0, \quad \forall x_0 \in E.$$

Note, here $Df(x_0)$ is the Jacobian matrix. Considering each component separately, it suffices to consider the case m=1. Fix $x_0 \in E$ and let $\epsilon > 0$. Choose $\delta > 0$, s.t. $B_{\delta}(x_0) \subseteq E$ and $x \in B_{\delta}(x_0) \Rightarrow \|\nabla f(x) - \nabla f(x_0)\| < \epsilon$. Let $\vec{h} \in \mathbb{R}^n$ and assume $\|\vec{h}\| < \delta$. Set $\vec{k}_0 := (0, \ldots, 0)$ and $\vec{k}_j := (h_1, h_2, \ldots, h_j, 0, \ldots, 0)$. Therefore,

$$f(x_0 + h) - f(x_0) = \sum_{j=1}^{n} f(x_0 + k_j) - f(x_0 + k_{j-1}).$$

By the mean value theorem for one variable, for each j, there exists $\theta_j \in [0,1]$, such that

$$f(x_0 + k_j) - f(x_0 + k_{j-1}) = \frac{\partial f}{\partial x_j} (x_0 + k_{j-1} + \theta_i h_j e_j).$$

Then

$$f(x_0 + h) - f(x_0) - \nabla f(x_0) \cdot h = \sum_{j=1}^n \left(\frac{\partial f}{\partial x_j} (x_0 + k_{j-1} + \theta_j h_j e_j) - \frac{\partial f}{\partial x_j} (x_0) \right) h_j.$$

So

$$|f(x_0+h)-f(x_0)-\nabla f(x_0)\cdot h| \leq \left|\sum_{j=1}^n \left(\frac{\partial f}{\partial x_j}(x_0+k_{j-1}+\theta_j h_j e_j)-\frac{\partial f}{\partial x_j}(x_0)\right)h_j\right| < n\epsilon ||h||.$$

Theorem 49 (Inverse function theorem). Let E be an open subset of \mathbb{R}^n . Let $f: E \to \mathbb{R}^n$ be continuously differentiable on E. Assume $\mathrm{D} f(a)$ is invertible (as a linear operator) for some $a \in E$. Then there exists an open neighbourhood U of a and V of f(a) such that f is a bijection of U onto V and if $g: V \to U$ is the local inverse of f. Then g is continuously differentiable on V and

$$Dg(y) = Df(g(y))^{-1}, \quad y \in V.$$

Warning: Df invertible throughout E and E is connected does not imply that f has a global inverse, unless n = 1.

Proof. First we do some reductions. We may assume that a = f(a) = 0 and $Df(a) = I_n$. Otherwise, replace f with $Df(a)^{-1}(f(x+a) - f(a))$.

Since f is continuously differentiable, there exists $\delta > 0$, s.t. $\|Df(x) - I_n\| < 1/2$ for all $|x| < \delta$. Let's fix $y_0 \in \mathbb{R}^n$ and define $\varphi_{y_0}(x) = x - (f(x) - y_0)$. Then we have $\forall x_1, x_2 \in B_{\delta}(0)$.

$$\|\varphi_{y_0}(x_1) - \varphi_{y_0}(x_2)\| \le \frac{1}{2} \|x_1 - x_2\|.$$

Therefore, φ_{y_0} has at most one fixed point. In other words, $f(x) = y_0$ has at most one solution $x \in B_{\delta}(0)$. Therefore, f is one-to-one on $B_{\delta}(0)$. Let $U := B_{\delta}(0)$, V := f(U). Then f is a bijection of U onto V and we need to show that V is open. Let $x_0 \in U$ and set $y_0 := f(x_0)$ (We need to show that $\exists r > 0$, s.t. $B_r(y_0) \subseteq V$, i.e. $\forall y \in B_r(y_0)$, $\exists x \in U$, s.t. f(x) = y).

Fix r > 0, s.t. $\overline{B_r(x_0)} \subseteq U$. We will prove that $B_{r/2}(y_0) \subseteq f(\overline{B_r(x_0)})$. Let $y \in B_{r/2}(y_0)$. Observe that for $|x - x_0| \le r$,

$$|\varphi_{y}(x) - x_{0}| \leq |\varphi_{y}(x) - \varphi_{y}(x_{0})| + |\varphi_{y}(x_{0}) - x_{0}|$$

$$\leq \frac{1}{2}||x - x_{0}|| + |f(x_{0}) - y|$$

$$< \frac{1}{2}r + \frac{1}{2}r = r.$$

So φ_y maps $\overline{B_r(x_0)}$ into $B_r(x_0)$. So φ_y is a contraction on the complete metric space $\overline{B_r(x_0)}$. Therefore, φ_y has a unique fixed point, $x \in \overline{B_r(x_0)}$, in other words, there exists $x \in \overline{B_r(x_0)}$, s.t. f(x) = y. Therefore, $y \in f(\overline{B_r(x_0)})$. Since y is arbitrary, $B_{r/2}(y_0) \subseteq f(\overline{B_r(x_0)}) \subseteq f(U) = V$. Since y_0 was arbitrary, V is open.

Let g denote the local inverse. We need to show that g is continuously differentiable. Let y, k be such that $y, y + k \in V$. Then let x := g(y) and h := g(y + k) - x. So f(x) = y and f(x + h) = y + k. Recall, $\varphi_y(x) := x - (f(x) - y)$ is a contraction with shrinking constant 1/2 on U. Since $\varphi_y(x + h) - \varphi_y(x) = h - k$, we have

$$||h - k|| \le \frac{1}{2}||(x + h) - x|| = \frac{1}{2}||h||.$$

So $||k|| \ge \frac{1}{2}||h||$. Therefore,

$$\frac{\|g(y+k) - g(y) - Df(g(y))^{-1}k\|}{\|k\|} = \frac{\|x+h - x - Df(x)^{-1}(f(x+h) - f(x))\|}{\|k\|}$$
$$\leq \frac{\|Df(x)^{-1}\| \cdot \|f(x+h) - f(x) - Df(X)h\|}{\frac{1}{2}\|h\|}.$$

Let $\epsilon > 0$. Then $\exists \delta = \delta(x, \epsilon) > 0$, s.t. $||h|| < \delta$ implies RHS of the above inequality is less than ϵ . Now if $||k|| < \frac{1}{2}\delta$, then $||h|| < \delta$. So the LHS of the above inequality is less than ϵ . So g is differentiable at g and $g(g) = g(g(g))^{-1}$.

Finally, we need to show that g is continuously differentiable. We know that g is continuous since it is differentiable. Df is continuous by assumption and we proved $A \mapsto A^{-1}$ is continuous. So Dg, the composition of these maps is continuous.

Example. $f(x,y) = (e^x \cos y, e^x \sin y)$, for $(x,y) \in \mathbb{R}^2$. f does not have a global inverse, since the y variable has period 2π .

Theorem 50. Let E be an open subset of \mathbb{R}^n . Let $f: E \to \mathbb{R}^n$ be continuously differentiable and Df(x) is invertible $\forall x \in E$. Then f is an open map.

Proof. Let $W \subseteq E$ be open. Let $x \in W$. Let U_x and V_x be the sets guaranteed in the last theorem. Let $g_x : V_x \to U_x$ be the local inverse. Then,

$$f(U_x \cap W) = g_x^{-1}(U_x \cap W)$$

is a neighbourhood of f(x) which is contained in f(W). So f(x) is an interior point of f(W). Since $x \in W$ was arbitrary, f(W) is open.

Theorem 51 (Implicit function theorem). Let $E^{open} \subseteq \mathbb{R}^n \times \mathbb{R}^m$ and $F: E \to \mathbb{R}^m$ continuously differentiable. Assume F(a,b) = 0 for some $(a,b) \in E$ and that

$$D_{y}F(a,b) := \begin{bmatrix} \frac{\partial F_{1}}{\partial y_{1}}(a,b) & \cdots & \frac{\partial F_{1}}{\partial y_{n}}(a,b) \\ \vdots & & \vdots \\ \frac{\partial F_{m}}{\partial y_{1}}(a,b) & \cdots & \frac{\partial F_{m}}{\partial y_{n}}(a,b) \end{bmatrix}$$

is nonsingular. Then there exists neighbourhoods U of a and V of b and a function $f: U \to V$, s.t. $\forall x \in U, y \in V$, F(x,y) = 0 if and only if y = f(x). Moreover, f is continuously differentiable on U and

$$Df(x) = -D_y F(x, f(x))^{-1} D_x F(x, f(x)).$$

Proof. The idea is to use the inverse function theorem. Define G(x,y) := (x, F(x,y)). Then G is continuously differentiable on E and

$$DG(a,b) = \begin{bmatrix} I_n & 0 \\ D_x F(a,b) & D_y F(a,b) \end{bmatrix}$$

is nonsingular. So there exist neighbourhoods A of (a,b) and B of G(a,b) such that G(A) = B and a local inverse $H: B \to A$. Then H must take the form H(x,z) = (x,h(x,z)) (we use h to denote the second element of H). Let's pick $\epsilon > 0$, s.t. $B_{\epsilon}(a) \times B_{\epsilon}(b) \subseteq A$. Then $G(B_{\epsilon}(a) \times B_{\epsilon}(b))$ is open, contains (a,0) (which is G(a,b)). So $\exists \delta > 0$, s.t. $B_{\delta}(a) \times \{0\} \subseteq G(B_{\epsilon}(a) \times B_{\epsilon}(b))$. Notice that $B_{\delta}(a) \subseteq B_{\epsilon}(a)$. Now define $f: B_{\delta}(a) \to B_{\epsilon}(b)$ by f(x) := h(x,0) (this is okay since $(x,0) \subseteq B$ and G(A) = B). Let $U = B_{\delta}(a)$, $V = B_{\epsilon}(b)$. If $x \in U$, $y \in V$, then $(x,y) \in B_{\epsilon}(a) \times B_{\epsilon}(b) \subseteq A$. So

$$F(x,y) = 0 \Longleftrightarrow G(x,y) = (x,0) \Longleftrightarrow y = h(x,0) = f(x).$$

f is continuously differentiable because H is. Formula for Df:

$$F(x, f(x)) \equiv 0.$$

By the chain rule, we have

$$D_x F(x, f(x)) + D_y F(x, f(x)) Df(x) = 0.$$

Example (an application of the implict function theorem). The zero set is $\{(x,y): F(x,y)=0\}$. The theorem tells us that it can be written (locally) as $\{(x,f(x)): x \in U \subseteq \mathbb{R}^n\}$.