

Dr. Ananda M

Department of Electronics and Communication.

Unit-3 Digital Electronics

Basic Theorem and Properties of Boolean Algebra

Dr. Ananda M

Department of Electronics and Communication.

Basic Theorem and Properties of Boolean Algebra

- ❖ Boolean Laws and Theorems are used to simplify the Boolean expressions. Hence reduce the number of logic gates.
- ★ Commutative Laws:

 (i) A+ B = B+ A
 (ii) A.B = B.A

$$A \longrightarrow A \text{ OR B} \equiv A \longrightarrow B \text{ OR A} \longrightarrow B \text{ OR A} \longrightarrow B \text{ AND B} \equiv A \longrightarrow B \text{ AND B} \longrightarrow B \text{ AND A}$$

A	В	(A+B)	(B+A)	(A.B)	(B.A)
0	0	0	0	0	0
0	1	1	1	0	0
1	0	1	1	0	0
1	1	1	1	1	1

Proof: Truth Table

Basic Theorems and Properties of Boolean Algebra

$$(A+B)+C=A+(B+C)$$

Boolean addition

Proof

A	В	C	A + B	(A+B)+C	B + C	A + (B + C)
0	0	0	0	0	0	0
0	0	1	0	1	1	1
. 0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	1	0	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

From principle of duality: (A.B).C = A.(B.C) Boolean Multiplication

Basic Theorem and Properties of Boolean Algebra

❖ Distributive Law:

$$A + B.C = (A+B) . (A+C)$$

Proof: Truth Table

Α	В	С	BC	A+BC	(A+B)	(A+C)	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Dual of distributive law:

$$A. (B+C) = A.B + A.C$$

Proof: Truth Table

A	В	C	B+C	A(B+C)	AB	AC	AB+AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Basic Theorem and Properties of Boolean Algebra

De Morgan's Theorem :

(i) The complement of the sum of 2 variables is equal to the product of the complements of individual variables: $\overline{A+B} = \overline{A} \cdot \overline{B}$

(ii) The complement of the product of 2 variables is equal to the sum of the complements of individual variables: $\overline{A.B} = \overline{A} + \overline{B}$

Α	В	\overline{A}	\overline{B}	A+B	A.B	A+B	\overline{A} . \overline{B}	<u>A</u> . <u>B</u>	$\overline{A} + \overline{B}$
0	0	1	1	0	0	1	1	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	1	0	0	0	0

Basic Theorem and Properties of Boolean Algebra

Absorption Theorem:

(i)
$$A+AB=A$$

LHS: = A + AB
= A.1 + AB
$$\rightarrow$$
 since A.1 = A
= A(1+B) \rightarrow since 1 + B = 1
= A.1
= A = RHS

(ii)
$$A(A+B) = A$$

LHS = A (A + B)
= A.A + A.B
= A+AB
$$\rightarrow$$
 since A . A = A
= A (1 + B)
= A.1
= A = RHS

(iii)
$$A+\bar{A}B = A+B$$

LHS = A +
$$\bar{A}B$$

= (A + \bar{A}) (A + B) \rightarrow since A+BC = (A+B)(A+C)
= (1) . (A + B) \rightarrow since A + \bar{A} = 1
= A + B = RHS

(iv)
$$A.(\bar{A}+B) = AB$$

LHS = A.
$$(\bar{A} + B)$$

= A. $\bar{A} + A.B \rightarrow (A \bar{A} = 0)$
= AB = RHS

Redundancy Laws

Basic Theorem and Properties of Boolean Algebra

Consensus Theorem:

$$AB + \bar{A}C + BC = AB + \bar{A}C$$

 $= AB + \bar{A}C = RHS$

LHS = AB+
$$\bar{A}$$
C+BC
= AB + \bar{A} C + BC.1
= AB + \bar{A} C + BC (A + \bar{A}) \rightarrow since A + \bar{A} = 1
= AB + \bar{A} C + ABC + \bar{A} BC
= AB (1 + C) + \bar{A} C (1 + B)
1 + B = 1 + C = 1

Dual of consensus theorem:

$$(A+B)(\bar{A}+C)(B+C) = (A+B)(\bar{A}+C)$$

BC is redundant term

THANK YOU

Dr. Ananda M
Department of Electronics and Communication
anandam@pes.edu