

SEMICONDUCTOR TECHNICAL DATA

KIA278R25PI~KIA278R37PI

BIPOLAR LINEAR INTEGRATED CIRCUIT

4 TERMINAL 2A OUTPUT LOW DROP VOLTAGE REGULATOR

The KIA278R × × Series are Low Drop Voltage Regulator suitable for various electronic equipments. It provides constant voltage power source with TO-220 4 terminal lead full molded PKG. The Regulator has multi function such as over current

The Regulator has multi function such as over current protection, overheat protection and ON/OFF control.

FEATURES

- · 2.0A Output Low Drop Voltage Regulator.
- · Built in ON/OFF Control Terminal.
- Built in Over Current Protection, Over Heat Protection Function.

LINE UP

ITEM	OUTPUT VOLTAGE (Typ.)	UNIT
* KIA278R25PI	2.5	
* KIA278R30PI	3.0	
KIA278R33PI	3.3	V
* KIA278R35PI	3.5	
* KIA278R37PI	3.7	

^{*} Note) * : Under Development.

DIM MILLIMETERS 10.00±0.20 В 15.00±0.20 2.70±0.20 D 0.60±0.10 Φ3 20±0 20 3.50 ± 0.10 15 70±0 20 0.40 ± 0.10 14.3+0.2/-0.1 1.45±0.10 1.00 ± 0.10 4.50±0.20 О 7.5±0.1 1.50 ± 0.10 1.30±0.1 $3-1.00\pm0.1$ 1.30 ± 0.1 ① DC INPUT (V_{IN}) ② DC OUTPUT (V_O) ③ GND ON/OFF CONTROL TO-220IS-4

MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	Remark	
Input Voltage	V _{IN}	15	V	-	
ON/OFF Control Voltage	$V_{\rm C}$	15	V	-	
Output Current	I _O	2	A	-	
Power Dissipation 1	P _{d1}	1.5	W	No heatsink	
Power Dissipation 2	P _{d2}	15	W	with heatsink	
Junction Temperature	T _j	125	${\mathbb C}$	-	
Operating Temperature	T _{opr}	-20~80	${\mathbb C}$	-	
Storage Temperature	T _{stg}	-30~125	${\mathbb C}$	-	
Soldering Temperature (10sec)	T _{sol}	260	${\mathbb C}$	-	

ELECTRICAL CHARACTERISTICS (Ta=25°C)

(Unless otherwise specified, $I_0=1.0A$, Ta=25 °C, Note1.)

CHARACTERISTIC		SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage	KIA278R25	V _o	-	2.438	2.50	2.562	V
	KIA278R30		-	2.925	3.00	3.075	
	KIA278R33		-	3.220	3.30	3.380	
	KIA278R35		-	3.413	3.50	3.587	
	KIA278R37		-	3.608	3.70	3.792	
Load Regulation		Reg Load	$I_O = 5 \text{mA} \sim 2 \text{A}$	-	0.1	2.0	%
Line Regulation		Reg Line	(Note 2)	-	0.5	2.5	%
Temperature Coefficient of Output Voltage		T_CV_O	Tj=0 ~ 125 °C	-	±0.02	±0.05	%/℃
Ripple Rejection		R · R	-	45	55	-	dB
Drop Out Voltage		V_{D}	I _O =2A	-	-	0.5	V
Output ON state for control Voltage		V _{C(ON)}	-	2.0	-	-	V
Output ON state for control Current		I _{C(ON)}	V _C =2.7V	-	-	20	μΑ
Output OFF state for control Voltage		V _{C(OFF)}	-	-	-	0.8	V
Output OFF state for control Current		I _{C(OFF)}	V _C =0.4V	-	-	-0.4	mA
Quiescent Current		I_Q	I _O =0	-	-	103	mA

Note1) V_{IN} of KIA278R25=4.2V Note2) V_{IN} of KIA278R25=3.2 ~ 10V

Note3) At V_{IN}=0.95V_O

" KIA278R30=4.7V

" KIA278R30= $3.7 \sim 10$ V

KIA278R33=5.0V

" KIA278R33= $4.0 \sim 10$ V

KIA278R35=5.2V

" KIA278R35= $4.2 \sim 10$ V

KIA278R37=5.4V

" KIA278R37= $4.4 \sim 10V$

BLOCK DIAGRAM

Fig. 1 Standard Test Circuit

Fig. 1-2 Ripple Rejection Test Circuit

Fig. 2 Application Circuit for Standard

Note) Oblique line portion : Overheat protection may operate in this area.

Fig.5-3 T_i - ΔV_o (KIA278R33)

Fig.5-2 $T_i - \Delta V_o$ (KIA278R30)

Fig.5-4 T_j - ΔV_o (KIA278R35)

Fig.7 T_j - I_q

Fig.8-1 f - RR

JUNCTION TEMPERATURE T_i (°C)

Fig. 10-2 I_O - RR

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.