Comp2007 - Assignment 1

Ashwin Ramesh

August 5, 2012

1 Problem 1

1.1 Overview of Problem 1

Polynomial calculation can be a very expensive computation to run and therefore efficiency is integral when creating algorithms to solve this problem. This problem introduces two algorithms. Algorithm 1 uses a naive approach, recalculating the new power of x on every iteration. On the other hand, Algorithm 2 uses Horner's rule by calculating the new power by using the previous power of x. Below is the asymptotically tight analysis of both algorithms.

1.2 Algorithm Analysis

Upper Bounds: T(n) is O(f(n)) if there exists constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \le c * f(n)$.

Lower Bounds: T(n) is $\Omega(f(n))$ if there exists constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \ge c * f(n)$.

Tight Bounds: T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

1.3 Algorithm 1 - NAIVE(x,A) Analysis

- Line 3: O(n) time as it is an iteration from 0 to n
- Line 4: O(1) time
- Line 5: O(n) time as i varies from 1 to n
- Line 6/7: O(1) time

Upper Bound Time Complexity of Naive Approach: $O(n) * O(n) = O(n^2)$

Lower Bound Time Complexity of Naive Approach: similarly the lower bound will be $\Omega(n^2)$

This means that the **Tight Bound Complexity** will be $\Theta(n^2)$

1.4 Algorithm 2 - HORNER(x,A) Analysis

- Line 3: O(n) time as it is an iteration from 0 to n
- Line 4: O(1) as it uses the result from above to calculate addition

Upper Bound Time Complexity of Naive Approach: O(n) * O(1) = O(n)

Lower Bound Time Complexity of Naive Approach: similarly the lower bound will be $\Omega(n)$

This means that the **Tight Bound Complexity** will be $\Theta(n)$