PAGE-1 Singular Value Decomposition (SVD)

PAGE-2

Matrix Transpose:

$$\begin{bmatrix} 1 & 2 \end{bmatrix}^{T} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

OPTIONAL: R code

help(matrix)

A<-matrix(c(1,2),nrow=1,ncol=2,byrow=TRUE)

A

t(A)

B < -matrix(c(1,2,3,4),nrow=2,ncol=2,byrow=TRUE)

В

t(B)

C<matrix(c(1,2,3,4,5,6),nrow=3,ncol=2,byrow=TRUE)

 \mathbf{C}

t(C)

PAGE-3

Matrix Multiplication:

$$\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1p} \\ B_{21} & B_{22} & \cdots & B_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mp} \end{pmatrix}$$

$$\mathbf{AB} = \begin{pmatrix} (AB)_{11} & (AB)_{12} & \cdots & (AB)_{1p} \\ (AB)_{21} & (AB)_{22} & \cdots & (AB)_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ (AB)_{n1} & (AB)_{n2} & \cdots & (AB)_{np} \end{pmatrix}$$

$$(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}.$$

$$A_{3x2} \cdot B_{2x4} = C_{3x4} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 5 & 1 \cdot 2 + 2 \cdot 6 & 1 \cdot 3 + 2 \cdot 7 & 1 \cdot 4 + 2 \cdot 8 \\ 3 \cdot 1 + 4 \cdot 5 & 3 \cdot 2 + 4 \cdot 6 & 3 \cdot 3 + 4 \cdot 7 & 3 \cdot 4 + 4 \cdot 8 \\ 5 \cdot 1 + 6 \cdot 5 & 5 \cdot 2 + 6 \cdot 6 & 5 \cdot 3 + 6 \cdot 7 & 5 \cdot 4 + 6 \cdot 8 \end{pmatrix} = \begin{pmatrix} 11 & 14 & 17 & 20 \\ 23 & 30 & 37 & 44 \\ 35 & 46 & 57 & 68 \end{pmatrix}$$

OPTIONAL R Code

A<-

matrix(c(1,2,3,4,5,6),nrow=3,ncol=2,byrow=TRUE)

A

B<-

matrix(c(1,2,3,4,5,6,7,8),nrow=2,ncol=4,byro w=TRUE)

B

C<-A%*%B

 $D \le -t(B)\%*\%t(A) ## note, B%*\%A is not possible;$

how does D look like?

AB ≠BA

PAGE-4

Matrix Inverse:

If, A B I, identity matrix, Then, $B = A^{-1}$ Identity matrix

Page-5 OPTIONAL R Code

How to create n*n

Identity matrix?

help(diag)

 $A \le -diag(5)$

find inverse of a matrix

solve(A)

 $X = U \Sigma V^T$

U and V are orthonormal matrices

PAGE-6

OPTIONAL R Code

		X					ι	J				7	Σ					VT	Г		
1	0	0	0	2		0	0	1	0		4	0	0	0	8	0	1	0	0	0	
0	0	3	0	0		0	1	0	0		0	3	0	0		0	0	1	0	0	
0	0	0	0	0	=	0	0	0	-1	Х	0	0	2.24	0	Х	0.45	0	0	0	0.89	
0	4	0	0	0		1	0	0	0		0	0	0	0		0	0	0	1	0	

- >M=matrix(c(1,0,0,0,0,0,0,4,0,3,0,0,0,0,0,0,0,0,0,0),nrow=4,ncol= 5)
- > X=svd(M)
- > X\$u
- > X\$d
- > X\$v
- > X\$u%*%diag(X\$d)%*%t(X\$v)

PAGE-7

Applications of SVD in image Processing

- Closest rank-k approximation for a matrix - X

$$X^k = \sum_{i=1}^k U_i \sum_i V_i^T$$

 Each term in the summation expression above is called principal image

PAGE-8

Ori	Original matrix (X) Original size																					
1 (0 0	0	2				4*	5=20	byte	s												
_	0 3	_	0	_			_	-														
0	0 0	_	0	-	-	-	_	-			-											
0 4 0 0 0																	1		-			
		×			_			<u> </u>	900				Σ						v			
1	0	0	О	2		О	О	1	О		4	О		О	О		0	1	О	О	О	
О	0	3	О	О	_	0	1	0	О		0	3		О	О	~	О	0	1	О	О	
О	0	0	0	О		0	О	0	-1	×	О	О	2	.24	О	×	0.45	0	О	0	0.89	
О	4	0	О	О		1	0	0	0		0	О		О	О		О	0	0	1	О	
				_	-	=										_		_	_			
k=	1				_																	
О	×	4	×	О	1	0	О	0	=	0	0	0	0	O		Co	Compressed size					
О										О	0	0	0	O		4*	1+1+1	*5	=1	0 b	ytes	
О				Г						О	0	О	О	0								
1										0	4	0	0	0								

PAGE-9

k=	2																
0	0	×	4	0	×	0	1	0	0	0	=	0	0	0	0	0	Compressed size
0	1		0	3		0	0	1	0	0		0	0	3	0	0	4*2+2+2*5=20 bytes
0	0											0	0	0	0	0	
1	0											0	4	0	0	0	

k=3					
0 0 1 x	40 0x	0 1 0	0 0=	1 0 0 0 2	Compressed size
010	03 0	0 0 1	0 0	0 0 3 0 0	4*3+3+3*5=30 bytes
000	0 0 2.24	0.45 0 0	0 0.89	00000	
100				0 4 0 0 0	

k=4																				
0 0	1	0		4	О	О	0		О	1	О	0	О	=	1	0	О	O	2	Compressed size
0 1	0	0		0	3	О	0		0	0	1	0	0		0	0	3	0	0	4*4+4+4*5=40 bytes
0 0	0	-1	×	О	0	2.24	О	×	0.45	0	0	0	0.89		0	0	0	0	0	
1 0	0	0		0	О	О	О		О	О	О	1	О		О	4	0	O	0	

PAGE-10

The image compression example in

http://journal.batard.info/post/2009/04/08/svdfun-profit

- Original size = 384*384 bytes = 147,456 bytes
- k=1: 384*1+1+1*384=769 bytes
- k=10: 384*10+10+10*384=7,690 bytes
- k=20: 384*20+20+20*384=15,380 bytes
- k=50: 384*50+50+50*384=38,450 bytes
- k=100: 384*100+100+100*384=76,900

bytes

• k=200: 384*200+200+200*384=153,800

bytes