2.	1) For each real number $a \neq 0$, $a^2 > 0$.		
	Let $a = 3$, $a^2 = 9$, $9 > 0$		
	Let a = 5 , a2 = 25, 25 > 0		
	Let a = 12, a2 = 144, 144 >0		
	Let a = -2, a2 = 4, 4 > 0		
	Let a = 1, a2 = 1, 1>0		
	For each real number a \$0, a²>0		
	ii) For each positive number a, its multiplicative inverse is positive		
	Let $a=3$, $3 \times \frac{1}{3} = 1$, 1>0		
Let a = 1, 1x = 1 , 1>0			
22	Let a = 100, 100 × 100 = 1, 1>0		
	Because 1>0, 1 is positive, thus for each positive		
	number a, its mutiplicative inverse is positive		
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	sss) If a > b, then let		
	a = 8, 6 =3. IP c >0, Let c = 5		
	ac > bc		
	8(5) > 3(5)		
	40 > 15		
	ac > bc /		
	Let a = 8, b = 3. If c < 0, Let c = -5		
	8(-5) < 3(-5)		
	-40 < -15		
	ac 4 be v		

4) i) ab = 0, either a= 0 or	b=0	
Let $\alpha \neq 0$ and α^{-1}	= 1 2	
Let ab = 0	The same can be argued for	
	o = 0 assuming the	
$(a^{-1}a)b=0$	variables are switched	
⇒ 1.6=0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
b=0	Car water was a	
	1	
	If $a^2 = b^2$, then $a^2 - b^2 = 0$	
	$\Rightarrow (a-b)(a+b)=0$	
$= a^2 - b^2$	a+b=0 or a-b=0	
	Either a=b or a=-b	
111) Let c be a positive real number, let E= {x ∈ R x² < c }		
For 0=02, 02 EIR, 0 < any positive number		
=> E is non-empty.		
X. = Sup E; this implies x & E, x < X		
Thus, $x_0 = E + x_0^2 = C$		
X2 = C => X2 - C = O		
$\Rightarrow X^2 - (\sqrt{c})^2 = 0$		
$\Rightarrow (x - \sqrt{c})(x + \sqrt{c}) = 0$ $x = \sqrt{c}, \sqrt{c}$		
c>0, X = VC => X>0		

