ENG 1440 Lab # 9 PRACTICE

Determine the resultant, \mathbf{R} , of the parallel force system acting on the rectangular plate shown below and determine the intersection of the line of action of \mathbf{R} with the y-z plane.

Force	Position vector	Force vector	Moment vector $\mathbf{M_o}$
$\mathbf{F_1}$			
$\mathbf{F_2}$			
$\mathbf{F_3}$			
$\mathbf{F_4}$			
R			

2) A flat plate is supported by ball-and-socket joints at A and E and by a cable DF. A 1600 N load is applied at point C. Neglecting the weight of the plate, determine the tension in the cable.

 $\sum M_{EA} = 0$ (moment about line EA =0 since A and E are pins)

$$\begin{split} M_{EA} &= \pmb{\lambda}_{EA} ~\bullet ~ \mathbf{M}_E = M_{EA} = \pmb{\lambda}_{EA} ~\bullet ~ (\mathbf{r}_{BD} ~x~ \mathbf{T}_{DF} + \mathbf{r}_{BC} ~x~ \mathbf{W}) \\ &= \pmb{\lambda}_{BA} ~\bullet ~ (\mathbf{r}_{BD} ~x~ \mathbf{T}_{DF}) + \pmb{\lambda}_{BA} ~\bullet ~ (\mathbf{r}_{BC} ~x~ \mathbf{W}) \end{split}$$