MATH456 - Algebra 3

Based on lectures from Fall 2024 by Prof. Henri Darmon. Notes by Louis Meunier

Contents

1	Groups	. 2
	1.1 Review	
	1.2 Actions of Groups	
	1.3 Homomorphisms, Isomorphisms, Kernels	
	1.4 Conjugation and Conjugacy	
	1.1 Conjugation and Conjugacy	. 0

1 Groups

1.1 Review

 \hookrightarrow **Definition 1.1** (Group): A **group** is a set G endowed with a binary composition rule $G \times G \rightarrow$ $G, (a, b) \mapsto a \star b$, satisfying

- 1. $\exists e \in G \text{ s.t. } a \star e = e \star a = a \forall a \in G$
- 2. $\forall a \in G, \exists a' \in G \text{ s.t. } a \star a' = a' \star a = e$
- 3. $\forall a, b, c \in G, (a \star b) \star c = a \star (b \star c).$

If the operation on G also commutative for all elements in G, we say that G is abelian or *commutative*, in which case we typically adopt additive notation (i.e. a + b, $a^{-1} = -a$, etc).

- \circledast **Example 1.1**: An easy way to "generate" groups is consider some "object" X (be it a set, a vector space, a geometric object, etc.) and consider the set of symmetries of X, denoted Aut(X), i.e. the set of bijections of X that preserve some desired quality of X.
- 1. If X just a set with no additional structure, Aut(X) is just the group of permutations of X. In particular, if X finite, then $\operatorname{Aut}(X) \cong S_{\#X}$.
- 2. If X a vector space over some field \mathbb{F} , $\operatorname{Aut}(X) = \{T : X \to X \mid \operatorname{linear}, \operatorname{invertible}\}$. If $\dim(X) = \{T : X \to X \mid \operatorname{linear}, \operatorname{invertible}\}$. $n < \infty, X \cong \mathbb{F}^n$ as a vector space, hence $\operatorname{Aut}(X) = \operatorname{GL}_n(\mathbb{F})$, the "general linear group" consisting of invertible $n \times n$ matrices with entires in \mathbb{F} .
- 3. If X a ring, we can always derive two groups from it; (R, +, 0), which is always commutative, using the addition in the ring, and $(R^{\times}, \times, 1)$, the units under multiplication (need to consider the units such that inverses exist in the group).
- 4. If X a regular n-gon, Aut(X) can be considered the group of symmetries of the polygon that leave it globally invariant. We typically denote this group by D_{2n} .
- 5. If X a vector space over \mathbb{R} endowed with an inner product $(\cdot,\cdot):V\times V\to\mathbb{R}$, with dim $V<\infty$, we have $\operatorname{Aut}(V) = O(V) = \{T : V \to V \mid T(v \cdot w) = v \cdot w \forall v, w \in V \}$, the "orthogonal group".

 \hookrightarrow Definition 1.2 (Group Homomorphism): Given two groups G_1,G_2 , a group homomorphism φ : $G_1 o G_2$ is a function satisfying $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a,b \in G_1$.

If φ is bijective, we call it an *isomorphism* and say G_1, G_2 are *isomorphic*.

\rightarrow Proposition 1.1:

- $\bullet \ \varphi \Big(1_{G_1} \Big) = 1_{G_2}$ $\bullet \ \varphi \big(a^{-1} \big) = \varphi (a)^{-1}$

1.1 Review

Example 1.2: Let $G = \mathbb{Z}/n\mathbb{Z} = \{0, ..., n-1\}$ be the cyclic group of order n. Let $\varphi \in \operatorname{Aut}(G)$; it is completely determined by $\varphi(1)$, as $\varphi(k) = k \cdot \varphi(1)$ for any k. Moreover, it must be then that $\varphi(1)$ is a generate of G, hence $\varphi(1) \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ (ie the units of the group considered as a ring), and thus

$$\operatorname{Aut}(G) \cong ((\mathbb{Z}/n\mathbb{Z})^{\times}, *).$$

1.2 Actions of Groups

Definition 1.3 (Group Action): An *action* of G on an object X is a function $G \times X \to X, (g, x) \mapsto g \cdot \text{such that}$

- $1 \cdot x = x$
- $\bullet \ (g_1g_2)\cdot x=g_1\cdot (g_2\cdot x)$
- $m_q: x \mapsto g \cdot x$ an automorphism of X.

Proposition 1.2: The map $m: G \to \operatorname{Aut}(X), g \mapsto m_g$ a group homomorphism.

PROOF. One need show $m_{g_1g_2}=m_{g_1}\circ m_{g_2}.$

 \hookrightarrow **Definition 1.4** (G-set): A *G*-set is a set *X* endowed with an action of *G*.

Definition 1.5 (Transitive): We say a *G*-set *X* is *transitive* if $\forall x, y \in X$, there is a *g* ∈ *G* such that $g \cdot x = y$.

A transitive *G*-subset of *X* is called on *orbit* of *G* on *X*.

 \rightarrow **Proposition 1.3**: Every *G*-set is a disjoint union of orbits.

PROOF. Define a relation on X by $x \sim y$ if there exists a $g \in G$ such that $g \cdot x = y$. One can prove this is an equivalence relation on X. Equivalence relations partition sets into equivalence classes, which we denote in this case by X/G. The proof is done by remarking that an equivalence class is precisely an orbit.

Remark 1.2.1: As with most abstract objects, we are more interested in classifying them up to isomorphism. The same follows for G-sets.

1.2 Actions of Groups

 \hookrightarrow Definition 1.6: An *isomorphism of G-sets* is a map between G-sets that respects the group actions. Specifically, if G a group and X_1 , X_2 are G-sets, with the action G on X_1 denoted \star and G on X_2 denoted \star , then an isomorphism is a bijection

$$f: X_1 \to X_2$$

such that

$$f(q \star x) = q * f(x)$$

for all $g \in G$, $x \in X_1$.

 \hookrightarrow **Definition 1.7** (Cosets): Let $H \subseteq G$ be a subgroup of a group G. Then G carries a natural structure as an H set; namely we can define

$$H \times G \rightarrow q$$
, $(h, q) \mapsto q \cdot h$,

which can readily be seen to be a well-defined group action. We call, in this case, the set of orbits of the action of H on G left cosets of H in G, denoted

$$G/H = \{ \text{orbits of } H \text{ acting on } G \}$$

$$= \{ aH : a \in G \} = \{ \{ ah : h \in H \} : a \in G \} \subseteq 2^G.$$

Symmetric definitions give rise to the set of *right cosets* of H in G, denoted $H \setminus G$, of orbits of H acting by left multiplication on G.

Remark 1.2.2: In general, $G/H \neq H \setminus G$. Further, note that at face value these are nothing more than sets; in general they will not have any natural group structure. They do, however, have a natural structure as G-sets, as a theorem to follow will elucidate.

Theorem 1.1: Let $H \subseteq G$ be a finite subgroup of a group G. Then every coset of H in G has the same cardinality.

PROOF. Define the map $H \mapsto aH$ by $h \mapsto ah$. This is a bijection.

Remark 1.2.3: In general, if one considers the general action of G on some set X, then the orbits X/G need not all have the same size, though they do partition the set. It is in the special case where X a group and G a subgroup of X that we can guarantee equal-sized partitions.

1.2 Actions of Groups 4

 \rightarrow **Theorem 1.2** (Lagrange's): Let G be a finite group and H a subgroup. Then

$$\#G = \#H \cdot \#(G/H).$$

In particular, $\#H \mid \#G$ for any subgroup H.

PROOF. We know that G/H is a partition of G, so eg $G=H\sqcup H_1\sqcup \cdots \sqcup H_n$. By the previous theorem, each of these partitions are the same size, hence

$$\begin{split} \#G &= \#(H \sqcup H_1 \sqcup \cdots \sqcup H_n) \\ &= \#H + \#H_1 + \cdots + \#H_{n-1} \quad \text{since H_i's disjoint} \\ &= n \cdot \#H \quad \text{since each H same cardinality} \\ &= \#(G/H) \cdot \#H. \end{split}$$

 \rightarrow **Proposition 1.4**: G/H has a natural left-action of G given by

$$G \times G/H \to G/H, \quad (g, aH) \mapsto (ga)H.$$

Further, this action is always transitive.

Proposition 1.5: If *X* is a transitive *G*-set, there exists a subgroup $H \subseteq G$ such that $X \cong G/H$ as a *G*-set.

In short, then, it suffices to consider coset spaces G/H to characterize G-sets.

PROOF. Fix $x_0 \in X$, and define the *stabilizer* of x_0 by

$$H := \operatorname{Stab}_{G}(x_{0}) := \{ g \in G : gx_{0} = x_{0} \}.$$

One can verify H indeed a subgroup of G. Define now a function

$$f: G/H \to X, \quad gH \mapsto g \cdot x_0,$$

which we aim to show is an isomorphism of G-sets.

First, note that this is well-defined, i.e. independent of choice of coset representative. Let gH = g'H, that is $\exists h \in H$ s.t. g = g'h. Then,

$$f(gH) = gx_0 = (g'h)x_0 = g'(hx_0) = g'x_0 = f(g'H), \\$$

since h is in the stabilizer of x_0 .

For surjectivity, we have that for any $y \in X$, there exists some $g \in G$ such that $gx_0 = y$, by transitivity of the group action on X. Hence,

$$f(gH) = gx_0 = y$$

and so *f* surjective.

1.2 Actions of Groups

5

For injectivity, we have that

$$\begin{split} g_1x_0 &= g_2x_0 \Rightarrow g_2^{-1}g_1x_0 = x_0 \\ &\Rightarrow g_2^{-1}g_1 \in H \\ &\Rightarrow g_2h = g_1 \text{ for some } h \in H \\ &\Rightarrow g_2H = g_1H, \end{split}$$

as required.

Finally, we have that for any coset aH and $g \in G$, that

$$f(g(aH))=f((ga)H)=(ga)x_0, \\$$

and on the other hand

$$gf(aH) = g(ax_0) = (ga)x_0.$$

Note that we were very casual with the notation in these final two lines; make sure it is clear what each "multiplication" refers to, be it group action on X or actual group multiplication.

 \hookrightarrow Corollary 1.1: If X is a transitive G set with G finite, then $\#X \mid \#G$. More precisely,

$$X \cong G/\operatorname{Stab}_G(x_0)$$

for any $x_0 \in X$. In particular, the *orbit-stabilizer formula* holds:

$$\#G = \#X \cdot \#\operatorname{Stab}_G(x_0).$$

The assignment $X \to H$ for subgroups H of G is not well-defined in general; given $x_1, x_2 \in X$, we ask how $\operatorname{Stab}_G(x_1)$, $\operatorname{Stab}_G(x_2)$ are related?

Since X transitive, then there must exist some $g \in G$ such that $x_2 = gx_1$. Let $h \in \text{Stab}(x_2)$. Then,

$$hx_1 = x_2 \Rightarrow (hg)x_1 = gx_1 \Rightarrow g^{-1}hgx_1 = x_1,$$

hence $g^{-1}hg\in \mathrm{Stab}\ (x_1)$ for all $g\in G, h\in \mathrm{Stab}(x_2).$ So, putting $H_i=\mathrm{Stab}\ (x_i),$ we have that

$$H_2 = g H_1 g^{-1}$$
.

This induces natural bijections

$$\{ \text{pointed transitive } G - \text{sets} \} \leftrightarrow \{ \text{subgroups of } G \}$$

$$(X, x_0) \rightsquigarrow H = \operatorname{Stab}(x_0)$$

$$(G/H, H) \rightsquigarrow H,$$

and

$$\{ \text{transitive } G - \text{sets} \} \leftrightarrow \{ \text{subgroups of } G \} / \text{ conjugation}$$

$$H_i = g H_j g^{-1}, \text{some } g \in G.$$

Given a G, then, we classify all transitive G-sets of a given size n, up to isomorphism, by classifying conjugacy classes of subgroups of "index n" := $[G:H] = \frac{\#G}{n} = \#(G/H)$.

1.2 Actions of Groups 6

*** Example 1.3:**

- 0. $G, \{e\}$ are always subgroups of any G, which give rise to the coset spaces $X = \{\star\}, G$ respectively. The first is "not faithful" (not injective into the group of permutations), and the second gives rise to an injection $G \hookrightarrow S_G$.
- 1. Let $G=S_n$. We can view $X=\{1,...,n\}$ as a transitive S_n -set. We should be able to view X as G/H, where $\#(G/H)=\#X=n=\frac{\#G}{\#}(H)=\frac{n!}{\#H}$, i.e. we seek an $H\subset G$ such that $\#H=\frac{n!}{n}=(n-1)!$.

Moreover, we should have H as the stabilizer of some element $x_0 \in \{1,...,n\}$; so, fixing for instance $1 \in \{1,...,n\}$, we have $H = \operatorname{Stab}(1)$, i.e. the permutations of $\{1,...,n\}$ that leave 1 fixed. But we can simply see this as the permutation group on n-1 elements, i.e. S_{n-1} , and thus $X \cong S_n/S_{n-1}$. Remark moreover that this works out with the required size of the subgroup, since $\#S_{n-1} = (n-1)!$.

2. Let X = regular tetrahedron and consider

$$G = Aut(X) := \{ \text{rotations leaving } X \text{ globally invariant} \}.$$

We can easily compute the size of G without necessarily knowing G by utilizing the orbitstabilizer theorem (and from there, somewhat easily deduce G). We can view the tetrahedron as the set $\{1, 2, 3, 4\}$, labeling the vertices, and so we must have

$$\#G = \#X \cdot \# \text{Stab}(1),$$

where $\operatorname{Stab}(1) \cong \mathbb{Z}/3\mathbb{Z}$. Hence #G = 12.

From here, there are several candidates for G; for instance, $\mathbb{Z}/12\mathbb{Z}$, D_{12} , A_4 , Since X can be viewed as the set $\{1,2,3,4\}$, we can view $X \rightsquigarrow G \hookrightarrow S_4$, where \hookrightarrow an injective homomorphism, that is, embed G as a subgroup S_4 . We can show both D_{12} and $\mathbb{Z}/12\mathbb{Z}$ cannot be realized as such (by considering the order of elements in each; there exists an element in D_{12} of order 6, which does not exist in S_4 , and there exists an element in $\mathbb{Z}/12\mathbb{Z}$ of order 12 which also doesn't exist in S_4). We can embed $A_4 \subset S_4$, and moreover $G \cong A_4$. If we were to extend G to include planar reflections as well that preserve X, then our G is actually isomorphic to all of S_4 .

4. Let X be the cube, $G = \{ \text{rotations of } X \}$. There are several ways we can view X as a transitive G sets; for instance F = faces, E = edges, V = vertices, where #F = 6, #E = 12, #V = 8. Let's work with F, being the smallest. Letting $x_0 \in F$, we have that $\operatorname{Stab}(x_0) \cong \mathbb{Z}/4\mathbb{Z}$ so the orbit-stabilizer theorem gives #G = 24.

This seems to perhaps imply that $G = S_4$, since $\#S_4 = 24$. But this further implies that if this is the case, we should be able to consider some group of size 4 "in the cube" on which G acts.

1.3 Homomorphisms, Isomorphisms, Kernels

ightharpoonup Proposition 1.6: If $\varphi: G \to H$ a homomorphism, φ injective iff φ has a trivial kernel, that is, $\ker \varphi = \{a \in G : \varphi(a) = e_H\} = \{e\}.$

 \hookrightarrow **Definition 1.8** (Normal subgroup): A subgroup $N \subset G$ is called *normal* if for all $g \in G, h \in N$, then $ghg^{-1} \in N$.

Proposition 1.7: The kernel of a group homomorphism φ : G → H is a normal subgroup of G.

Proposition 1.8: Let $N \subset G$ be a normal subgroup. Then $G/N = N \setminus G$ (that is, gN = Ng) and G/N a group under the rule $(g_1N)(g_2N) = (g_1g_2)N$.

Theorem 1.3 (Fundamental Isomorphism Theorem): If $\varphi: G \to H$ a homomorphism with $N := \ker \varphi$, then φ induces an injective homomorphism $\overline{\varphi}: G/N \hookrightarrow H$ with $\overline{\varphi}(aN) := \varphi(a)$.

 \hookrightarrow Corollary 1.2: $\operatorname{im}(\varphi) \cong G/N$, by $\overline{\varphi}$ into $\operatorname{im}(\overline{\varphi})$.

Example 1.4: We return to the cube example. Let $\tilde{G} = \widetilde{\operatorname{Aut}}(X) = \operatorname{rotations}$ and reflections that leave X globally invariant. Clearly, $G \subset \tilde{G}$, so it must be that $\#\tilde{G}$ a multiple of 24. Moreover, remark that reflections reverse orientation, while rotations preserve it; this implies that the index of G in \tilde{G} is 2. Hence, the action of \tilde{G} on a set $O = \{\operatorname{orientations} \operatorname{on}\mathbb{R}^3\}$ with #O = 2 is transitive. We then have the induced map

$$\eta: \tilde{G} \to \operatorname{Aut}(O) \cong \mathbb{Z}/2$$

with kernel given by all of G; G fixes orientations after all.

Remark now the existence of a particular element in \tilde{G} that "reflects through the origin", swapping each corner that is joined by a diagonal. This is not in G, but notice that it actually commutes with every other element in \tilde{G} (one can view such an element by the matrix $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ acting on \mathbb{R}^3). Call this element τ . Then, since $\tau \notin G$, $\tau g \neq g$ for any $g \in G$. Hence, we can write $\tilde{G} = G \sqcup \tau G$; that is, \tilde{G} is a disjoint union of two copies of S_4 , and so

$$\begin{split} \tilde{G} &\cong S_4 \times \mathbb{Z}/2\mathbb{Z} \\ f: S_4 \times \mathbb{Z}/2\mathbb{Z} &\to \tilde{G}, \quad (g,j) \mapsto \tau^j g. \end{split}$$

1.4 Conjugation and Conjugacy

 \hookrightarrow **Definition 1.9**: Two elements $g_1,g_2\in G$ are *conjugate* if $\exists h\in G$ such that $g_2=hg_1h^{-1}$.

Recall that we can naturally define G as a G-set in three ways; by left multiplication, by right multiplication (with an extra inverse), and by conjugation. The first two are always transitive, while the last is never (outside of trivial cases); note that if $g^n = 1$, then $(hgh^{-1})^n = 1$, that is, conjugation preserves order, hence G will preserve the order of 1 of the identity element, and conjugation will thus always have an orbit of size 1, $\{e\}$.

An orbit, in this case, is called a conjugacy class.

\hookrightarrow **Proposition 1.9**: Conjugation on S_n preserves cycle shape.

PROOF. Just to show an example, consider $(13)(245) \in S_5$ and let $g \in S_5$, and put $\sigma := g(13)(245)g^{-1}$. Then, we can consider what $\sigma g(k)$ is for each k;

$$\sigma(g(1)) = g(3)$$
 $\sigma(g(3)) = g(1)$
 $\sigma(g(2)) = g(4)$
 $\sigma(g(4)) = g(5)$
 $\sigma(g(5)) = g(2)$

hence, we simply have $\sigma = (g(1)g(3))(g(2)g(4)g(5))$, which has the same cycle shape as our original permutation. A similar logic holds for general cycles.

 \hookrightarrow **Definition 1.10**: The cycle shape of $\sigma \in S_n$ is the partition of n by σ . For instance,

$$1 \leftrightarrow 1 + 1 + \dots + 1$$
$$\sigma = (12...n) \leftrightarrow n.$$

Example 1.5: We compute all the "types" of elements in S_4 by consider different types of partitions of 4:

Partition	Size of Class
1+1+1+1	1
2 + 1 + 1	$\binom{4}{2} = 6$
3 + 1	$4 \cdot 2 = 8$ (4 points fixed, 2 possible orders)
4	3! = 6 (pick 1 first, then 3 choices, then 2)
2+2	3