Глава 1

Дебильник

1.1 Многомерное нормальное распределение

<u>def.</u> Стандартный гауссовский вектор — случайный n-мерный вектор $Z = (Z_1, Z_2, \dots Z_n)$, координаты которого независимы и имеют распределение $\mathcal{N}(0,1)$.

<u>def</u>. Гауссовский вектор (Нормальный вектор) — вектор, для которого существует матрица $\mathbf{A} \in \mathbb{R}^{n \times m}$, стандартный гауссовский вектор $Z \in \mathbb{R}^m$, и вектор $b \in \mathbb{R}^n$ такие, что $X = \mathbf{A}Z + b$.

 $\underline{\mathbf{def}}$. Распределение нормального вектора $X\in\mathbb{R}^n-\mathcal{N}(\mu,\mathbf{\Sigma})$ или $\mathcal{N}_n(\mu,\mathbf{\Sigma}),$ где $\mu=\mathbb{E}X$ и $\mathbf{\Sigma}=\mathrm{cov}(X).$

<u>def</u>. Распределение хи-квадрат с n степенями свободы — распределение $\chi^2(n)$ величины $\chi^2=Z_1^2+Z_2^2+\ldots+Z_n^2$, где $Z_1,Z_2,\ldots Z_n$ — независимы $\mathcal{N}(0,1)$ величины.

<u>def.</u> Распределение Стьюдента с n степенями свободы — распределение T(n) величины $\frac{\sqrt{n}X}{\sqrt{Y}}$, где $X \sim \mathcal{N}(0,1), \ Y \sim \chi^2(n)$ и независимы.

<u>def</u>. Распределение Фишера со степенями свободы n и m — распределение F(n,m) величины $\frac{X/n}{Y/m}$, где $X\sim \chi^2(n),\, Y\sim \chi^2(m)$ и независимы.

1.2 Условное матожидание

<u>def</u>. Условное матожидание $\mathbb{E}(Y\mid X)$ случайной величины Y при условии случайной величины X — такая измеримая функция g_0 величины X, при которой $\mathbb{E}(Y-g(X))^2$ минимально для всех измеримых функций g.

Условное матожидание — ортогональная проекция Y на линейное пространство всех измеримых функций X. То есть УМО — единственная измеримая функция, которая удовлетворяет условию ортогональности:

$$\forall g \colon \mathbb{E}(Y - \mathbb{E}(Y \mid X))g(X) = 0.$$

1.3 Статистическая модель, выборка

<u>def</u>. Статистическая модель — множество распределений \mathfrak{P} , которое, по нашему мнению, адекватно приближает \mathcal{P}_D .

 $\underline{\operatorname{def}}$. Данные d — реализация случайного элемента D, имеющего распределение \mathcal{P}_D .

Статистические модели делят на:

- параметрические, если $\mathfrak{P} = \{ \mathcal{P}_0 \mid \theta \in \Theta \subset \mathbb{R}^k \}.$ Пример: $\mathfrak{P} = \{ \mathcal{N}(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 \geqslant 0 \}.$
- непараметрические, если $\mathfrak{P}=\{\mathcal{P}_0\mid \theta\in\Theta\subset V\}$, где V не обязательно конечномерное.

Пример:
$$\mathfrak{P} = \{ \mathcal{P}^{\otimes n} \mid \int_{\mathfrak{X}} x \mathcal{P}(dx) = 0 \}$$

• семипараметрические, если $\mathfrak{P} = \{ \mathcal{P}_0 \mid \theta \in \Theta \subset \mathbb{R}^k \times V \}.$ Пример: линейная регрессия $Y = X\beta + \varepsilon, \ \beta \in \mathbb{R}^k, \ \mathbb{E}\varepsilon = 0, \ \mathbb{D}\varepsilon = \sigma^2.$

Если $D = [X_1, \dots X_n]$ и X_i независимы и имеют одинаковое распределение \mathcal{P}_X , D называется выборкой объема n и обозначается $X_{[n]}$, \mathcal{P}_X — генеральная совокупность. В этом случае модель приобретает вид $\mathfrak{P} = \{\mathcal{P}^{\otimes n} \mid \mathcal{P} \in \mathfrak{P}_X\}$, где \mathfrak{P}_X — модель для \mathcal{P}_X .

1.4 Формула Байеса, априорное, апостериорное распределение

- Априорное распределение наше ощущение относительно значения параметра до проведения эксперимента.
- Апостериорное распределение ощущение после получения данных эксперимента.

 $\underline{\mathbf{def}}$ (Формула Байеса). Здесь p — вероятность, d — данные, θ — параметры.

$$p(\theta \mid d) = \frac{p(d \mid \theta) \cdot p(\theta)}{p(d)}.$$

- $p(\theta \mid d)$ апостериорное распределение,
- $p(d \mid \theta)$ правдоподобие,
- $p(\theta)$ априорное распределение,
- p(d) вероятность данных.

1.5 Расстояние Кульбака-Лейблера, энтропия

Пусть мы принимаем случайные символы $x_1, \dots x_k$, вероятность появления x_i равна p_i , записываем с помощью битовой строки длины l_i . Тогда средняя длина символа равна

$$l = \sum_{i=1}^{k} p_i \cdot l_i.$$

Чтобы минимизировать l, необходимо подобрать следующие $l_i = -\log_2 p_i$. И тогда средняя длина будет равна $H(x) \coloneqq -\sum_{i=1}^k p_i \cdot \log_2 p_i$, эта величина называется **двоичной энтропией сообщения**. Аналогично можно брать любой другой логарифм, мы будем использовать натуральный.

Для непрерывной величины можно завести дифференциальную энтропию:

$$H(X) = -\int p(x) \log p(x) dx.$$

Пусть случайная величина X имеет функцию вероятности p, но мы кодируем символы, как-будто она имеет функцию вероятности q. Тогда средняя длина сообщения будет равна $-\sum_{i=1}^k p_i \cdot \log q_i$, эта величина называется кросс-энтропией $H(p \mid q)$ распределений p и q.

 $H(p \mid q)$ всегда будет больше H(p), так как H(p) минимально.

<u>def</u>. Величина потери информации из-за использования q вместо p называется расстоянием Кульбака-Лейблера между p и q:

$$D_{KL}(p,q) = H(p \mid q) - H(p) = -\sum_{i=1}^{k} p_i \cdot \log \frac{q_i}{p_i}.$$

Для непрерывных величин все обобщается следующим образом

$$D_{KL} = -\int p_i \cdot \log \frac{q_i}{p_i}.$$

1.6 Статистика...

1.6.1 Статистика

Параметр или характеристика распределения — функционал от этого распределения.

<u>def</u>. Статистика — функция θ^* от данных d.

Пусть модель $\mathfrak{P}_{[n]}=\{\mathcal{P}^{\otimes n}\mid \mathcal{P}\in\mathfrak{P}\}$, искомая характеристика $\theta\colon\mathfrak{P}\to\mathbb{R}^k$.

1.6.2 Несмещенность

Чему равна оценка как случайная величина в среднем, если она равна характеристике?

def. Оценка Θ^* называется

- несмещенной, если $\forall \mathcal{P} \in \mathfrak{P} \colon \mathbb{E}\theta^*(X_{[n]}) = \theta(\mathcal{P})$, где $X_{[n]} \sim \mathcal{P}^{\otimes n}$,
- ullet асимптотически несмещенной, если $orall \mathcal{P} \in \mathfrak{P} \colon \mathbb{E} heta^*(X_{[n]}) o heta(\mathcal{P}).$

Смещение — величина $b(\theta^*) = \mathbb{E}(\theta^*(X_{[n]})) - \theta(\mathcal{P}).$

Среднеквадратичная ошибка — величина $\mathrm{MSE}(\theta^*) = \mathbb{E}\left(\theta^*(X_{[n]}) - \theta(\mathcal{P})\right)^2$.

В общем случае

$$MSE(\theta^*) = \mathbb{D}\theta^*(X_{[n]} + b^2(\theta^*).$$

- Выборочное среднее как оценка матожидания несмещенная оценка,
- Выборочная дисперсия как оценка дисперсии асимптотически несмещенная,
- Исправленная выборочная дисперсия как оценка дисперсии несмешенная оценка.

1.6.3 Состоятельность

 $\operatorname{\underline{\mathbf{def}}}$. Оценка θ^* называется

- состоятельной, если $\forall \mathcal{P} \in \mathfrak{P} \colon \theta^*(X_{[n]}) \xrightarrow{\mathbb{P}} \theta(\mathcal{P})$, где $X_{[n]} \sim \mathcal{P}^{\otimes n}$,
- сильно состоятельной, если $\theta^*(X_{[n]}) \xrightarrow{\text{п. н.}} \theta(\mathcal{P}).$

1.6.4 Асимптотическая нормальность

<u>def</u>. Оценка θ^* называется асимптотически нормальной с коэффициентом рассеивания (или просто дисперсией) $\sigma^2(\theta(\mathcal{P}))$ 0, если

$$\sqrt{n} \left(\theta^*(X_{[n]}) - \theta(\mathcal{P}) \right) \xrightarrow{d} \eta \sim \mathcal{N}(0, \sigma^2(\theta^*(\mathcal{P}))).$$

В многомерном случае рассматривается ковариационная матрица вместо дисперсии.

- Выборочная дисперсия и второй момент асимптотически нормальная оценка.
- Из асимптотической нормальности следует состоятельность.

1.6.5 Эффективность

Рассмотрим класс оценок $K = \{\hat{\theta}\}$ параметра θ .

<u>def</u>. Оценка $\theta^* \in K$ называется эффективной в классе K, если для любой другой оценки $\hat{\theta} \in K$ и для любого исследуемого параметра $\theta \in \Theta$ выполняется

$$MSE_{\theta}(\theta^*) \leqslant MSE_{\theta}(\hat{\theta}).$$

Класс несмещенных оценок

$$K_0 = {\{\hat{\theta} \mid \mathbb{E}\hat{\theta} = \theta, \forall \theta \in \Theta\}}.$$

def. Эффективная оценка θ^* , если эффективна в классе K_0 .

 $\underline{\operatorname{def}}$. Асимптотически эффективной в классе K, если для любой оценки $\hat{\theta} \in K$ и для любого $\theta \in \Theta$ выполняется

$$\overline{\lim_{n\to\infty}} \frac{\mathrm{MSE}(\theta^*)}{\mathrm{MSE}(\hat{\theta})}.$$

1.6.6 Робастность

 $\underline{\mathbf{def}}$. Робастность — свойство оценки быть устойчивой к хвостам распределения.

Пусть F — распределение, $\{G_n\}$ — последовательность распределений, что

$$|F - G_n| := \sup_{x} |F(x) - G_n(x)| \to 0.$$

 $\underline{\operatorname{def}}$. Характеристика θ обладает качественной робастностью, если $\theta(G_n) \to \theta(F)$

Пусть также δ_x — вырожденное распределение в точке x.

 $\operatorname{\underline{\mathbf{def}}}$. Загрязненное распределение — смесь $F_{x,\varepsilon}=(1-\varepsilon)F+\varepsilon\delta_x.$

 $\underline{\mathbf{def}}$. Функция влияния характеристики θ — величина

$$IF(x) = \lim_{\varepsilon \to 0+} \frac{\theta(F_{x,\varepsilon}) - \theta(F)}{\varepsilon}.$$

 $\underline{\mathbf{def}}$. Характеристика θ называется B-робастной или инфинитезимально робастной, если IF(x) ограничена.

 $\operatorname{\underline{\mathbf{def}}}$. Асимптотическая толерантность характеристики θ —

$$\tau = \inf \{ \varepsilon \mid \sup_{x} |\theta(F_{x,\varepsilon} - \theta(F))| = \infty \}.$$

1.6.7 Достаточность

 $\underline{\mathbf{def}}$. Статистика $T(x)=\{T_1(x),\ldots,T_m(x))\}$ называется достаточной, если для всех

- $\theta \in \Theta$.
- $B \in \mathfrak{P}(\mathbb{R}^n)$ и
- $t = (t_1, \ldots, t_m)$

условная вероятность $\mathbb{P}(X_{[n]} \in B \mid T(X_{[n]}) = t)$ не зависит от θ .

То есть информация о θ в выборке полностью содержится в значении $T(x_{[n]})$.

 $\underline{\operatorname{thm}}$ (факторизации). T(x) достаточна, согда существуют функции g u h, что

$$p(X_{[n]} = x_{[n]} \mid \theta) = g(T(x_{[n]}), \theta) h(x_{[n]}),$$

 $\it rde\ p\ -\ вероятность\ или\ плотность.$

1.6.8 Полнота

 $\underline{\mathbf{def}}.$ Статистика T называется полной, если для любой измеримой g верно следствие

$$\forall \theta \in \Theta \colon \mathbb{E}g(T(X_{[n]})) \equiv 0 \implies g(T(X_{[n]})) \stackrel{n.n.}{=} 0.$$

1.7 Теоремы Колмогорова-Блэкуэлла-Рао и Лемана-Шеффе

<u>thm</u> (Колмогорова-Блэкуэлла-Рао). Пусть θ^* — оценка параметра θ , T — достаточная статистика. Тогда

$$MSE(\theta^*) \geqslant MSE(\mathbb{E}(\theta^* \mid T)).$$

<u>thm</u> (Лемана-Шеффе). Пусть θ^* — оценка параметра θ , T — достаточная и полная статистика. Тогда $\mathbb{E}(\theta^* \mid T)$ — единственная эффективная оценка в классе оценок со смещением $b(\theta^*)$.

1.8 Доверительный интервал

Пусть есть модель $\mathfrak{P}_{[n]}=\{\mathcal{P}^{\otimes n}\mid \mathcal{P}\in\mathfrak{P}\}$ и $\theta\colon\mathfrak{P}\to\mathbb{R}^k$ — искомая характеристика.

 $\underline{\mathbf{def}}$. Доверительный интервал (точный доверительный интервал) с уровнем доверия γ — пара статистик (θ_L^*, θ_R^*) , такая что для любого $\mathcal{P} \in \mathfrak{P}$ и $X_{[n]} \sim \mathcal{P}^{\otimes n}$

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) \leqslant \theta(\mathcal{P}) \leqslant \theta_R^*(X_{[n]})\right) = \gamma.$$

Интервал называется

• асимптотическим, если

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) \leqslant \theta(\mathcal{P}) \leqslant \theta_R^*(X_{[n]})\right) \xrightarrow{n \to \infty} \gamma.$$

• центральным, если

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) > \theta(\mathcal{P})\right) = \mathbb{P}\left(\theta_R^*(X_{[n]}) < \theta(\mathcal{P})\right).$$

• левым, если

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) > \theta(\mathcal{P})\right) = 0.$$

• правым, если

$$\mathbb{P}\left(\theta_R^*(X_{[n]}) < \theta(\mathcal{P})\right) = 0.$$

1.9 Бутстреп

1.9.1 Параметрический бутстреп

Если работаем с параметрической моделью, можем заменить $X=X(\theta)$ не на X^* , а на $X(\theta^*)$ и сэмплировать из этого распределения.

1.9.2 Непараметрический бутстреп

Рецепт

- 1. изготовим N выборок $x_{[n],1}^*,\dots,x_{[n],N}^*$ из эмпирического распределения (рандом с возвращением)
- 2. вычисляем $\theta_i^b = \theta^*(x_{[n],i}^*$, получаем бутстреповскую выборку $\theta_{[N]}^b$,
- 3. по бутстреповской выборке оцениваем, что нужно.

Ограничения

- θ^* plug-in оценка
- θ^* достаточно гладкая (обычно дифференцируема)
- у X достаточно много моментов (обычно конечная дисперсия)
- нужно генерировать большие выборки
- на очень больших данных трудозатратен
- на маленьких данных велика неустранимая ошибка

1.10 Гипотеза, альтернатива...

Пусть \mathfrak{P} — модель.

1.10.1 Гипотеза и альтернатива

 $\operatorname{\underline{\mathbf{def}}}$. Гипотеза — утверждение вида $H\colon \mathcal{P}_X\in\mathfrak{P}_0\subset\mathfrak{P}$.

Если $|\mathfrak{P}_0|=1$, гипотеза называется простой, иначе сложной.

Нулевая гипотеза — гипотеза H_0 , которую мы хотим проверить. Проверка гипотезы — процесс принятия решения о том, противоречит ли она наблюдаемой выборке данных.

Альтернатива — гипотеза H_1 , которая отражает, какие отклонения от нулевой гипотезы нам интересны.

1.10.2 Критерий

<u>def</u>. Нерандомизированный критерий (критерий) — отображение $\varphi \colon d \to \{$ принимаем, отвергаем $\} = \{H_0, H_1\} = \{0, 1\}.$

Часто критерий устроен так: имеется

- ullet статистика критерия T и
- ullet критическое множество C, и

$$\varphi(d) = [T(d) \in C] = [d \in T^{-1}(C)].$$

<u>def</u>. Рандомизированный критерий — отображение $\varphi: d \to [0,1]$. Значение на данных d определяется как реализация случайной величины $D(\varphi(d))$.

Пусть мы согласны отвергать нулевую гипотезу пр условии, что она верна, но хотим делать это не очень часто. Пусть зафиксирован уровень значимости

$$\alpha := \mathbb{P}(\varphi(D) = 1 \mid H_0),$$

который обычно является napamempom критерия, то есть, задавая его, мы определяем критическое множесство C_{α} такое, что

$$\mathbb{P}(T(D) \in C_{\alpha} \mid H_0) = \alpha.$$

Таким образом, для одного критерия определено семейство критических областей $\{C_{\alpha} \mid \alpha \in [0,1]\}$, где обычно $C_{\alpha} \subset C_{\alpha'}$, если $\alpha < \alpha'$.

 $\underline{\mathbf{def}}$. Уровень значимости — параметр критерия, который регулирует, насколько часто мы будем отвергать нулевую гипотезу при условии, что она верна.

1.10.3 p-value

Хотим оценить, насколько гипотеза противоречит наблюдаемым данным.

<u>def.</u> p-value — характеристика противоречия гипотезы наблюдаемым данным:

p-value :=
$$\arg \min \{ \alpha \in [0, 1] \mid T(d) \in C_{\alpha} \}.$$

Другими словами, p-value — минимальное значение уровня значимости для данного значения статистики критерия, при котором H_0 может быть отвергнута.

Чем меньше p-value, тем больше гипотеза противоречит данным.

1.10.4 Ошибки разных родов

<u>def</u>. Ошибка первого рода — событие $\varphi(D) = 1 \mid H_0$. Если уровень значимости совпадает с вероятностью ошибки первого роба, То критерий называется точным.

Уровень значимости — вероятность ошибки первого рода.

<u>def</u>. Ошибка второго рода β — событие $\varphi(D)=0\mid H_1$, не отклонили нулевую гипотезу при условии, что была верна альтернатива.

Мощность критерия — вероятность $1-\beta$ отклонить H_0 при условии, что верна H_1 .

Для заданного уровня значимости мы хотим иметь как можно более мощный критерий.

1.10.5 Свойства критериев

<u>def</u>. Несмещенность — мощность всегда не меньше ошибки первого рода, критерий не отдает предпочтение альтернативе. $1-\beta\geqslant\alpha$ для всех простых гипотез из \mathfrak{P}_0 и простых альтернатив из \mathfrak{P}_1 .

 $\underline{\mathbf{def}}$. Состоятельность — $\beta \xrightarrow{n \to \infty} 0$ для всех простых альтернатив из \mathfrak{P}_1 .

<u>def</u>. Асимптотичность — $\alpha \xrightarrow{n \to \infty}$ для всех простых гипотез из \mathfrak{P}_0 .

<u>def</u>. Наиболее мощный критерий для данного уровня значимости α_0 и простой альтернативы — такой критерий φ_1 , что для любого критерия φ_2 такого, что $\alpha(\varphi_2) \leqslant \alpha_0$:

$$\beta(\varphi_1) \leqslant \beta(\varphi_2).$$

1.10.6 Размер эффекта

Во многих случаях важна не только информация о p-value, но и величина наблюдаемого эффекта. Размеры эффекта бывают разные, использование того или иного размера эффекта зависит от контекста.

Вместо сравнения p-value с уровнем значимости для принятия статистического решения можно считать размер эффекта, сравнивать с минимальным практически интересным.

1.11 Постановка гипотезы согласия. Критерии Колмогорова и Андерсона-Дарлинга

1.11.1 Постановка гипотезы согласия

<u>def</u>. Гипотеза согласия — гипотеза о соответствии эмпирического распределения теоретическому распределению вероятностей.

Критерии для гипотез согласия бывают

- общие применимые к любому предполагаемому распределению выборки,
- специальные применимые к гипотезам, формулирующие согласие с определенным свойством распределений;
- для простых гипотез,
- для сложных гипотез.

1.11.2 Критерий Колмогорова

Сравнивает эмпирическое и истинное распределение. Для простой гипотезы.

Пусть F_0 непрерывна на \mathbb{R} . Определим статистику Колмогорова:

$$D_n(x_{[n]}) = \sup_{x \in \mathbb{R}} |F_n^* - F_0(x)|.$$

- Если H_0 верна, то $D_n\left(X_[n]\right) \xrightarrow{\text{п.н.}} 0$;
- Если H_0 неверна, то $D_n\left(X_{[n]}\right) \xrightarrow{\text{п.н.}} \sup_{x \in \mathbb{R}} \lvert F_X(x) F_0(x) \rvert > 0.$

1.11.3 Критерий Андерсона-Дарлинга

Для простой гипотезы.

Определим статистику критерия Андерсона-Дарлинга:

$$A^{2} = n \int_{\mathbb{R}} \frac{(F_{n}^{*}(x) - F_{0}(x))^{2}}{F_{0}(x) (1 - F_{0}(x))} dF_{0}(x) =$$

$$= -n - \sum_{i=1}^{n} \frac{2i - 1}{n} \left[\ln F_{0}(X_{(i)} \mid \theta) + \ln \left(1 - F_{0}(X_{(n+1-i)} \mid \theta) \right) \right]$$

Статистика A^2 при выполнении H_0 и непрерывности F_0 подчиняется табличному распределению. $C_{\alpha}=(a_{1-\alpha}^2,\infty)$.

1.12 Постановка гипотезы о параметрах, проверка через доверительные интервалы, z-test, ttest, бутстреп из нулевой гипотезы

1.12.1 Постановка гипотезы о параметрах

Пусть θ — параметр $(X \sim F(x,\theta))$ или характеристика $(\theta = \varphi(F_x))$ распределения.

Нулевая гипотеза: H_0 : $\theta = \theta_0$. Типичные альтернативы:

- H_1 : $\theta = \theta_1 \neq \theta_0$,
- $H_>$: $\theta > \theta_0$,
- $H_{<}: \theta < \theta_0$,
- H_{\neq} : $\theta \neq \theta_0$.

Усредненный рецепт:

- 1. Выбираем оценку θ^* параметра θ , распределение которой приближенно известно при данном θ .
- 2. В зависимости от альтернативы строим критическое множество:
 - H_1 : $\theta = \theta_1 > \theta_0$ или $H_>$, то $C_\alpha = (\theta_{1-\alpha}^*, \infty)^{-1}$ правое критическое множество;
 - H_1 : $\theta=\theta_1<\theta_0$ или $H_<$, то $C_\alpha=(-\infty,\theta_\alpha^*)$ левое критическое множество;
 - H_{\neq} , то $C_{\alpha}=(-\infty,\theta_{\frac{\alpha}{2}}^*\cup(\theta_{1-\frac{\alpha}{2}}^*,\infty)$ двустороннее критическое множество.
- 3. Если $\theta^* \in C_{\alpha}$, то гипотезу можно отклонить, иначе нельзя.

1.12.2 Проверка через доверительные интервалы

Усредненный рецепт:

- 1. В зависимости от альтернативы строим доверительный интервал с уровнем доверия $\gamma = 1 \alpha$:
 - $H_1\colon \theta=\theta_1>\theta_0$ или $H_>,$ то (θ_L^*,∞) правый доверительный интервал;
 - H_1 : $\theta = \theta_1 < \theta_0$ или $H_{<}$, то $(-\infty, \theta_R^*)$ левый доверительный интервал;
 - H_{\neq} , то (θ_L^*, θ_R^*) центральный доверительный интервал.

 $^{^{1}}$ Здесь θ_{x}^{*} — квантиль уровня x распределения $\theta^{*} \mid H_{0}$

1.12.3 z-test

Пусть $X \sim \mathcal{N}(\mu, \sigma^2)$, μ неизвестно, σ^2 известно.

Если
$$H_0$$
 верна, то $Z = \frac{\sqrt{n}(\overline{X} - \mu_0)}{\sigma} \sim \mathcal{N}(0, 1)$ и $\overline{X} \sim N(\mu_0, \frac{\sigma^2}{n})$.

В зависимости от альтернативы подбираем критическую область:

Таблица 1.1: Критическая область для альтернативы

1.12.4 t-test

Пусть $X \sim \mathcal{N}(\mu, \sigma^2)$, μ неизвестно, σ^2 неизвестно.

Если
$$H_0$$
 верна, то $T=rac{\sqrt{n}(\overline{X}-\mu_0)}{s}\sim T(n-1).$

В зависимости от альтернативы подбираем критическую область:

$$\frac{\theta_{1} > \theta_{0}, H_{>}}{C_{\alpha} \quad (\mu_{0} + t_{1-\alpha} \frac{s}{\sqrt{n}}, \infty) \quad (-\infty, \mu_{0} + t_{\alpha} \frac{s}{\sqrt{n}}) \quad \mathbb{R} \setminus (\mu_{0} \pm t_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}})}{\text{p-value} \quad 1 - T^{-1}(t) \quad T^{-1}(t) \quad 2(1 - T^{-1}(|t|))}$$

Таблица 1.2: Критическая область для альтернативы

1.12.5 Бутстреп из нулевой гипотезы

Пусть мы хотим проверить гипотезу $H_0 \colon \mathbb{E} X = \theta_0$.

Рецепт:

- 1. Назначим каждому наблюдению x_i в выборке вероятность p_i .
- 2. Из пар (x_i, p_i) изготовим дискретное распределение F_p^* .

- 3. Подберем p_i так, чтобы с одной стороны $\overline{x} = \theta_0$, а с другой p_i максимизировали правдоподобие выборки $\mathcal{L}(p \mid x_{[n]}) = p_1 p_2 \dots p_n$.
- 4. Бутстрепим кучу выборок из получившегося F_p^* , считаем по ним выборочное среднее.
- 5. Построим критическое множество в зависимости от альтернативы и проверим, лежит ли в нем выборочное среднее исходной выборки.

1.13 Постановка гипотезы однородности, ранговые критерии, permutation.

1.13.1 Гипотеза однородности

Пусть $D = (x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m)$ и

- $X_{\text{нез}} X_1, \dots, X_n$ независимы и имеют одну функцию распределения F(x),
- $Y_{\text{нез}} Y_1, \dots, Y_n$ независимы и имеют одну функцию распределения G(x),
- \bullet FG_c F и G непрерывны.

Гипотеза однородности: H_0 : F = G.

Альтернативы:

- неоднородности: H_{\neq} : $\exists x \ F(x) \neq G(x)$;
- доминирования $H_{\geqslant} \colon \forall x \ F(x) \geqslant G(x) \land \exists x \ F(x) > G(x);$
- правого сдвига H_{\rightarrow} : $\forall x \ F(x) = G(x+\theta) \land \theta > 0$;
- масштаба H_{\leftrightarrow} : $\forall x \ F(x) = G(x\theta) \land 1 \neq \theta > 0$;

1.13.2 Ранговые критерии

Критерий Уилкоксона ранговых сумм

Используется для проверки гипотезы H_0 против H_{\geqslant} и H_{\rightarrow} .

Идея: Если H_0 верна, то $Y_{(i)}$ распределены в вариационном ряду Z равномерно.

Статистика критерия: $W = \sum_{i=1}^{m} R(Y_i)$.

$$W \in \left[\frac{m(m+1)}{2}, mn + \frac{m(m+1)}{2}\right].$$

$$C_{\alpha} = \left(c_{\alpha}, mn + \frac{m(m+1)}{2}\right).$$

Критерий Манна-Уитни

Используется для проверки гипотезы H_0 против H_{\geqslant} и H_{\rightarrow} .

Идея аналогичная.

Статистика критерия: $U = \sum_{i=1}^{n} \sum_{j=1}^{m} [x_i < y_j].$

Нетрудно видеть, что $U = W - \frac{m(m+1)}{2}$, поэтому $U \in [0, mn]$.

$$C_{\alpha} = (c_{\alpha}, mn).$$

Ценность этих критериев в том, что можно проверять выборки из величин, сравнимых только качественно.

Критерий знаковых рангов Уилкоксона

Пусть

- $\mathsf{E}_{\mathsf{Hes}} E_1, \dots, E_n$ независимы,
- $\mathsf{E}_{\mathsf{сим}} E_1, \dots, E_n$ распределены одинаково и симметричны относительно нуля.

Рассматриваем вариационный ряд величин $|z_i|$.

Статистика критерия: $T = \sum_{i=1}^{n} R(|z_i|)[z_i < 0].$

Для маленьких n квантили смотрим в таблице, для больших можем использовать Монте-Карло или аппроксимацию:

$$\frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} \to \eta \sim \mathcal{N}(0,1).$$

1.13.3 Permutation

Пусть выполнено $\mathsf{E}_{\mathsf{нез}}$ и $\mathsf{E}_{\mathsf{сим}}$

- 1. Случайно умножаем z_i на 1 и -1;
- 2. Для полученного вектора считаем медиану;
- 3. Повторяем так N раз;
- 4. Считаем, сколько медиан меньше med(z) и делим на N.

Пусть $y_{[n]}^p$ — случайная перестановка $y_{[n]}$. Если верна H_0 , то все выборки $(x,y^p)_{[n]}$ «равновероятны». План-капкан:

- 1. генерируем случайную перестановку y^p ,
- 2. вычисляем значение требуемой статистики $r(x, y^p)$,
- 3. повторяем N раз,
- 4. считаем, какая доля оказалась меньше, чем r(x, y).

Пусть есть статистика $\theta^*(x_{[n]}, y_{[m]})$. Мы можем представить ее в виде $\theta^* = \theta^*(z_v, u)$.

Пусть u^p — случайная перестановка u. Тогда, если верна H_0 , то

$$\mathbb{P}(\theta^*(z_v, u^p) < \theta^*(z_v, u)) = \frac{\#\{u^p \mid \theta^*(z_v, u^p) < \theta^*(z_v, u)\}}{\binom{n+m}{n}}.$$

Статистика критерия:

$$C(x_{[n]}, y_{[m]}) = \frac{\#\{u^p \mid \theta^*(z_v, u^p) < \theta^*(z_v, u)\}}{\binom{n+m}{n}},$$

$$C_{\alpha} \in \left\{ (1 - \alpha, 1), (0, \alpha), (0, \frac{\alpha}{2}) \cup (1 - \frac{\alpha}{2}, 1) \right\}.$$

Killer Feature: ошибка первого рода в точности равна α .

1.14 Дисперсионного анализ, корреляционного анализ, таблицы сопряженности.

ANOVA — ANalysis Of VAriance.

1.14.1 Однофакторный дисперсионный анализ

- имеется несколько выборок $x^1_{[n_1]}, \dots, x^k_{[n_k]},$
- которые являются наблюдениями случайных величин

$$X_{i,j} = \mu + \beta_j + \varepsilon_{i,j}, \quad i = 1, \dots, j = 1, \dots k,$$

где μ — общее среднее, β_j — систематическая ошибка (или эффект фактора) выборки $x^j_{[n_i]}$ и $\varepsilon_{i,j}$ — случайная ошибка.

Постановка задачи дисперсионного анализа

Пусть
$$\mu_j = \mu + \beta_j$$
, $N = n_1 + \ldots + n_j$ и

- $\mathsf{E}_{\mathsf{Hes}}$ все ошибки $\varepsilon_{i,j}$ независимы,
- ullet E_c все ошибки $arepsilon_{i,j}$ имеют одинаковое непрерывное распределение.

Гипотеза H_0 : $\mu_1 = \mu_2 = \ldots = \mu_k$.

Альтернатива $H_1: \exists i, j: \mu_i \neq \mu_j$.

Критерий Андерсона-Дарлинга для ANOVA

Пусть выборки $X^i_{[n_i]}$ независимы и имеют распределение F_i .

Гипотеза H_0 : $F_1 = F_2 = \ldots = F_k$.

Альтернатива H_1 : $\exists i, j : F_i \neq F_j$.

$$A_{k,N}^{2} = \sum_{i=1}^{k} n_{i} \int_{\mathbb{R}} \frac{\left(F_{n_{i}}^{2}(x) - H_{N}(x)\right)^{2}}{H_{N}(x)\left(1 - H_{N}(x)\right)} dH_{N}(x),$$

где $H_N = \frac{1}{n} \sum_{i=1}^k n_i F_{n_i}^*$ — эмпирическая функция распределения объединенной выборки $Z = (X_{[n_1]}, \dots, X_{[n_k]}).$

Если повторений нет, то можно переписать следующим образом:

$$A_{k,N}^2 = \frac{1}{N} \sum_{i=1}^k \frac{1}{n_j} \sum_{i=1}^{N-1} \frac{(Nc_{i,j} - jn_j)^2}{i(N-i)},$$

где $c_{i,j}$ — количество наблюдений $X^j_{[n_i]}$ меньших $Z_{(i)}$.

1.14.2 Постановка задачи корреляционного анализа

Гипотеза независимости Имеется выборка $(x,y)_{[n]}$ — реализация $(X,Y)_{[n]}$, при этом X_i имеет функцию распределения F_X , а Y_i имеет F_Y .

Гипотеза $H_0: F_{X,Y}(x,y) = F_X(x)F_Y(y)$.

Предполагаем гипотезу независимости, но проверять будем отсутствие корреляции.

1.14.3 Таблица сопряженности

Три схемы, в которых они возникают:

• Гипотеза однородности: строка i — реализация случайной величины x_i с вероятностями $\mathbb{P}(x_i=y_j)=q_{i,j}, \sum q_{i,j}=1$ и с заданным числом наблюдений n (то есть $\forall i \colon n=n_{i,+}$).

$$H_I: q_{i,j} = q_{+,j}, \quad q_{+,j} = \frac{1}{k} \sum_i q_{i,j}.$$

	y_1	 y_l	
x_1	$n_{1,1}$	 $n_{1,l}$	n _{1,+}
x_k	$n_{k,1}$	 $n_{k,l}$	$n_{k,+}$
	n _{+,1}	 $n_{+,l}$	n _{+,+}

Пример: k кубиков, каждый подбросили n раз, $n_{i,j}$ — количество выпадений числа j у кубика i.

• Гипотеза независимости: вся таблица — реализация случайной величины ξ с $\mathbb{P}(\xi=(x_i,y_j))=p_{i,j}$, где $\sum_{i,j}p_{i,j}=1$, и с $n_{*,*}$ наблюдениями.

$$H_{II}$$
: $\mathbb{P}(\xi = (x_i, y_j)) = \mathbb{P}(\xi_x = x_i)\mathbb{P}(\xi_y = y_j).$

Пример: выборка двумерной случайной величины $(x,y)_{[n]}$, для которой построена гистограмма с ячейками $\delta^x_i \times \delta^y_i$.

• Гипотеза мультипликативности: каждая ячейка — реализация случайной величины.

Важный частный случай: когда $n_{i,j}$ независимы и имеют распределение Пуассона с параметрами $\lambda_{i,j}$. Тогда их сумма тоже имеет распределение Пуассона.

$$H_{III}$$
: $\lambda_{i,j} = \frac{a_i b_j}{c}$, $a_i = \sum_j \lambda_{i,j}$, $b_j = \sum_i \lambda_{i,j}$, $c = \sum_{i,j} \lambda_{i,j}$.

Пример: $n_{i,j}$ — количество заболевших с диагнозом i в районе j за некоторый фиксированный промежуток времени.

Все три гипотезы проверяются с помощью критерия хи-квадрат.

Статистика критерия:

$$\xi^2 = n_{+,+} \sum_{i,j} \frac{\left(n_{i,j} - \frac{n_{i,+} n_{+,j}}{n_{+,+}}\right)^2}{n_{i,+} n_{+,j}}.$$

Если гипотеза H_{I} , H_{II} или H_{III} верна, то

$$\xi^2 \xrightarrow{d} \eta \sim \xi^2 \left((k-1)(l-1) \right),$$

$$C_\alpha = (\xi_{1-\alpha}^2, \infty).$$

1.15 Линейная регрессия: постановка, теорема Гаусса-Маркова, базовые свойства, беды с регрессией.

1.15.1 Регрессионный анализ

- Данные: многомерная выборка $(X,Y)_{[n]}, X_i \in \mathbb{R}^k, Y_i \in \mathbb{R}$ и семейство функционалов $\{f(\cdot \mid \beta) \mid \beta \in B\}.$
- $Y \coloneqq Y_{[n]}$ зависимая переменная, target.
- $X \coloneqq X_{[n]}$ факторы, фичи.

Считаем, что $y_i \approx f(X_i, \beta_0)$, то есть $y_i = f(X_i, \beta_0) + \varepsilon_i$, где ε_i — шум, обладающий какими-то свойствами, например, $\mathbb{E}\varepsilon_i = 0$.

Хотим по (X,Y) найти наилучшую в каком-то смысле оценку β^* параметра β_0 . Смысл задается функционалом качества $Q(\beta)$.

1.15.2 Линейная регрессия

Модель:

- D = (X, Y)
- $Y \in \mathbb{R}^n$, $Y = X\beta_0 + \varepsilon$,
- $X \in \mathbb{R}^{n \times k}$ фиксирована и известна, rank X = k,
- $\beta_0 \in \mathbb{R}^k$ фиксирован и неизвестен,
- $\varepsilon \in \mathbb{R}^n$, $\mathbb{E}\varepsilon = 0$,
- $\mathbb{D}\varepsilon_i = \sigma^2$ гомоскедастичностьб
- $\forall i \neq j$: $cov(\varepsilon_i, \varepsilon_j) = 0$ некоррелированность.

$$cov(\varepsilon) = \sigma^2 I.$$

Ищем оценку β^* в виде $\arg\min_{\beta\in\mathbb{R}^k}\sum_{i=1}^n (y_i-X_{i,*}\beta)^2$. Она называется оценкой метода наименьших квадратов или МНК-оценкой.

 $\underline{\mathbf{thm}}$ (Гаусс-Марков). Если X имеет ранг k, ошибки гомоскедастичны и некоррелированы, то

- β^* несмещенная оценка β_0 ,
- $\operatorname{cov}(\beta^*) = \sigma^2(X^\top X)^{-1}$,
- $\beta^* 3\phi\phi$ ективная оценка в классе несмещенный линейных оценок².

Базовые свойства

- $\frac{\beta_i^* \beta_i}{s(\beta_i^*)} \to \mathcal{N}(0,1)$, где $s^2(\beta_i^* = \hat{\sigma} (X^\top X)_{i,i}^{-1}$ и $\hat{\sigma}^2 = \frac{RSS}{(n-k)}$,
- $\hat{\sigma}^2$ является несмещенной и состоятельной оценкой σ^2 .

Дисперсия target — сумма дисперсии предсказания и дисперсии ошибки:

$$\mathbb{D}y_i = \mathbb{D}\left(f(X_i \mid \beta_0) + \varepsilon_i\right) = \mathbb{D}\left(f(X_i \mid \beta_0)\right) + \mathbb{D}\varepsilon_i.$$

- $TSS = \sum (Y_i \overline{Y})^2$ total sum of squares (типа $n\mathbb{D}y_i$),
- $ESS = \sum (Y_i^* \overline{Y})^2$ explained sum of squares (типа $n\mathbb{D}\left(f(X_i \mid \beta_0)\right)$,
- $RSS = \sum (Y_i Y_i^*)^2$ residual sum of squares (типа $n\mathbb{D}\varepsilon_i$),

$$TSS = ESS + RSS.$$

Беды с регрессией

Беды с предположениями

- Неверная спецификация модели: Y не линейно выражаются через X. Смотрим на график остатков против предсказания. Надо чтобы было линейно. Можно переделать модель.
- Непостоянная дисперсия остатков: дисперсия (ковариация) зависит от X_i .
- Корреляция остатков: возникает, когда наблюдения близки во времени или пространстве.

 $^{^2}$ Линейные оценки — оценки вида $\beta=f(X)y,$ оптимальность означает, что $\forall c\in\mathbb{R}^k\colon c^\top \operatorname{cov}(\beta^*)c\leqslant c^\top\operatorname{cov}(\beta^*)c$

Беды с данными

- Выбросы: X_i типичный, а Y_i нетипичный.
- \bullet Разбалансировка: X большой и Y большой.
- Мультиколлинеарность: k факторов, но rank X < k, есть линейные зависимости или нестрогая rank X = k, cond $\gg 1$.