Introduction to Artificial Neural Networks

Sudong Lee

sudonglee@ulsan.ac.kr

https://dais.ulsan.ac.kr/

Goal

"Review the history of artificial neural networks and understand how a multilayer perceptron works."

Contents

- History of artificial neural networks
- Multilayer perceptron

History of Artificial Neural Networks

What is an Artificial Neural Network (ANN)?

"An ANN is a collection of connected artificial neurons, which model the neurons in a biological brain."

A biological brain and an artificial neural network

"How do human brains work?"

A biological neuron of a human brain

Neurons in the brain *aggregate* and *activate* signals.

- Aggregation: perceive the inputs from the previous neurons
- Activation: propagate the output to the next neurons if activated.

Illustration of the human brain's division of work

(Source | towardsdatascience)

McCulloch-Pitts Neuron

"The first computational model of a neuron was proposed by Warren MuCulloch (neuroscientist) and Walter Pitts (logician) in 1943."

McCulloch-Pitts neuron

•
$$g(\mathbf{x}) = g(x_1, x_2, ..., x_p) = \sum_{j=1}^{p} x_j$$
 where $x_j \in \{0, 1\} \ \forall j$

•
$$f(x) = \begin{cases} 1 & \text{if } x \ge \theta \\ 0 & \text{if } x < \theta \end{cases}$$

$$\Rightarrow y = f(g(x))$$

Perceptron

"In 1958, Frank Rosenblatt proposed the perceptron model for binary classification."

Rosenblatt's perceptron

Limitation of the Perceptron Model

"Minsky and Papert criticized that the perceptron model can't solve the XOR problem."

Cover of "Perceptrons" by Minsky and Papert (1969)

Application of Hidden Layers

"Make 4 equilateral triangles with 6 matchsticks."

Multilayer Perceptron

Multilayer Perceptron (MLP)

"An MLP is a feedforward network with at least three layers of neurons: an input, hidden and output layer."

Multilayer Perceptron (MLP)

"An MLP consists of fully connected neurons with activation functions."

$$h = f(g(\mathbf{x}))$$

•
$$g(\mathbf{x}) = g(x_1, x_2, ..., x_p) = \sum_{j=1}^p w_j x_j + b$$
, $\mathbf{x} \in \mathbb{R}^p$

• f(x): an activation function

Different Types of Activation Functions

Binary Step Function

Linear

Sigmoid

Hyperbolic Tangent (Tanh)

Formula

$$f(x) = \begin{cases} 1 & \text{if } x \ge \theta \\ 0 & \text{if } x < \theta \end{cases}$$

$$f(x) = x$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Property

- Binary activation with a threshold
- No multi-value outputs
- The gradient is zero.
- All layers will collapse into one layer.

(*i.e.*, the linear of linear is linear.)

• The gradient is constant.

- S-shape
- The output range of 0 and 1
- The gradient is smooth.

- S-shape.
- Zero-centered output
- The gradient is smooth.

Nonlinear Decision Boundary by MLP

"An MLP can represent a nonlinear decision boundary using a hidden layer(s) with a nonlinear activation function(s)."

Universal Approximation Theorem

Theorem. Universal Approximation Theorem (Hornik, Stinchcombe, & White, 1989)

A feedforward neural network with a single hidden layer containing a finite number of neurons can approximate any continuous function on compact subsets of \mathbb{R}^n , given appropriate non-linear activation functions.

- \Rightarrow An MLP can represent an arbitrary nonlinear decision boundary!
- "However, there are some limitations."
 - Existence theorem
 - They state that such a neural network exists and do not provide any way to find it.
 - They also do not guarantee that any method, such as backpropagation, might find such a neural network.
 - Limit theorem
 - There is no guarantee that any finite size, say, 10,000 neurons, is enough.

MLP for XOR Problem

x_1	x_2	XOR		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

<u>Input layer → Hidden layer</u>

$$h_1 = \sigma(w_{11}^{(1)}x_1 + w_{21}^{(1)}x_2 + b_1^{(1)})$$

$$h_2 = \sigma(w_{12}^{(1)}x_1 + w_{22}^{(1)}x_2 + b_2^{(1)})$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

<u>Hidden layer</u> → <u>Output layer</u>

$$y = \sigma(w_1^{(2)}h_1 + w_2^{(2)}h_2 + b^{(2)})$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

MLP for XOR Problem

$$\boldsymbol{X}^T = \begin{bmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \\ x_{3,1} & x_{3,2} \\ x_{4,1} & x_{4,2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\boldsymbol{W}^{(1)} = \begin{bmatrix} w_{11}^{(1)} & w_{12}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 3 & 5 \end{bmatrix}, \ \boldsymbol{W}^{(2)} = \begin{bmatrix} w_{1}^{(2)} \\ w_{2}^{(2)} \end{bmatrix} = \begin{bmatrix} -7 \\ 5 \end{bmatrix}$$

$$\mathbf{B}^{(1)} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(1)} \end{bmatrix} = \begin{bmatrix} -5 \\ -2 \end{bmatrix}, \ \mathbf{B}^{(2)} = \begin{bmatrix} b^{(2)} \end{bmatrix} = \begin{bmatrix} -3 \end{bmatrix}$$

$\overline{x_1}$	x_2	h_1	h_2	у	XOR
0	0	0.0067	0.1192	0.0794	0
0	1	0.1192	0.9526	0.7168	1
1	0	0.1192	0.9526	0.7168	1
1	1	0.7311	0.9997	0.0423	0

Takeaways

Takeaways

1. The history of artificial neural networks

- McCulloch-Pitts Neuron: binary inputs, summation, binary output
- Perceptron: linear decision boundary using affine transformation
- MLP: nonlinear decision boundary using a hidden layer(s) and a nonlinear activation function(s).

2. How an MLP works

- Hidden layers with nonlinear activation functions.
- Universal approximation theorem.

Thank you! 🙂

