

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	Г «Информатика и системы управления»
КАФЕДРА -	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работа №1 по курсу «Моделирование»

на тему: «Функции распределения и плотности распределения» Вариант N 3

Студент <u>ИУ7-73Б</u> (Группа)	(Подпись, дата)	Лысцев Н. Д. (И. О. Фамилия)
Преподаватель	(Подпись, дата)	Рудаков И. В. (И. О. Фамилия)

СОДЕРЖАНИЕ

1	Равномерное распределение		
2	Распределение Эрланга	4	

1 Равномерное распределение

Случайная величина X имеет pавномерное pacnpedenenue на отрезке $[a,\ b],$ если ее плотность распределения f(x) равна:

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{если } a \le x \le b; \\ 0, & \text{иначе.} \end{cases}$$
 (1.1)

При этом функция распределения F(x) равна:

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x \le b; \\ 1, & x > b. \end{cases}$$
 (1.2)

Обозначение: $X \sim R[a, b]$.

2 Распределение Эрланга

Случайная величина X имеет pacnpedenehus Эрланга с параметрами λ и k (($\lambda \geqslant 0; k=0,1,2,...$), $x\geqslant 0$) если ее плотность распределения $f_k(x)$ равна:

$$f_k(x) = \frac{\lambda \cdot (\lambda \cdot x)^k}{k!} \cdot e^{-\lambda \cdot x}.$$
 (2.1)

При этом функция распределения $F_k(x)$ равна:

$$F_k(x) = 1 - e^{-\lambda \cdot x} \cdot \sum_{i=0}^k \frac{(\lambda \cdot x)^i}{i!}.$$
 (2.2)