Programming Design In-class Practices Complexity and Graphs

Ling-Chieh Kung

Department of Information Management National Taiwan University

Problem 1: Big-O practices

- Determine whether the following big-O relationships are valid or not:
 - $-100n \in O(n)$.
 - $-100n + 5 \in O(n)$.
 - $-100n + m^2 \in O(n + m^2).$
 - $n^2 m + n \log n \in O(n^2 m).$
 - $-2^n \in O(n!).$
 - $n^2 \in O(2^n).$

Problem 2: Big-O practices

- For each of the following functions, find a valid g(n) or g(n, m) to validate the big-O relationship. Let your answer be as small as possible.
 - $-\sqrt{n}+n\in O(g(n)).$
 - $mn \log n + m^2 n \in O(g(n, m)).$
 - $100n + m^2 + n! \in O(g(n, m)).$
 - $n(m + n \log n) \in O(g(n, m)).$
 - $2^{n+2}m \in O(g(n,m)).$
 - $-1+3+5+7+\cdots+(2n-1)\in O(g(n)).$
 - $-1 \times 1 + 3 \times 2 + 5 \times 4 + 7 \times 8 + \dots + (2n-1)2^{n-1} \in O(g(n)).$

Problem 3: bubble vs. insertion

- Consider bubble sort and insertion sort (implemented in the next page).
 - Find the complexity for each algorithm.
 - Determine whether their execution time will be different in average.

Problem 3: bubble vs. insertion

```
void bubbleSort(const int unsorted[],
                int sorted[], int len)
  for (int i = 0; i < len; i++)
    sorted[i] = unsorted[i];
  for(int i = len - 1; i > 0; i--) {
    for(int j = 0; j < i; j++) {
      if(sorted[j] > sorted[j + 1]) {
        int temp = sorted[j];
        sorted[j] = sorted[j + 1];
        sorted[j + 1] = temp;
```

```
void insertionSort(const int unsorted[],
                    int sorted[], int len)
{
  for (int i = 0; i < len; i++)
    sorted[i] = unsorted[i];
  for(int i = 0; i < len; i++) {
    for (int j = i; j > 0; j--) {
      if(sorted[j] < sorted[j - 1]) {</pre>
        int temp = sorted[j];
        sorted[j] = sorted[j - 1];
        sorted[j - 1] = temp;
      else
        break;
```

Shortest paths

- We are given a directed graph G = (V, A), where V is the set of vertices and A is the set of arcs.
 - d_{uv} is the distance of arc $(u, v) \in A$.
- We want to find the **shortest path** from vertex $s \in V$ to vertex $t \in V$.
- Assume that *G* is acyclic.

- From 1 to 6: (1, 3, 2, 4, 6), distance = 7.
- From 1 to 5: (1, 3, 5), distance = 6.
- From 2 to 6: (2, 4, 6), distance = 4.

Shortest paths

• How to find the shortest path from *s* to *t* in general?

Shortest paths: idea

- Let's go from s = 1 to t = 9.
 - Somehow we need to get to at least one of t's incoming neighbor.

Shortest paths: idea

- If we know how to get to each incoming neighbor of t in the best way, we know how to get to t in the best way.
 - It is the smallest among $d_{16} + 3$, $d_{17} + 1$, and $d_{18} + 4$.
 - How to find d_{16} ? **Recursion**!

Shortest paths: idea

- More precisely, let $N^{I}(t)$ be the set of incoming neighbors of t.
- Let d_{uv} be the distance of the shortest path from $u \in V$ to $v \in V$.
- We have

$$d_{st} = \min_{v \in N^{I}(t)} \{d_{sv} + d_{vt}\}.$$

• To find d_{sv} , treat v as the destination and play the same trick.

Problem 4: pseudocode

• Please write **pseudocode** of the above problem solving strategy for the shortest path problem.

Problem 5: implementation

- Given a graph and a pair of source and destination vertices, find a shortest path.
- Let n be the number of vertices, m be the number of arcs, $V = \{1, ..., n\}$ be the set of vertices, $A = \{(u, v) | u \in V, v \in V\}$ be the set of arcs, $s \in V$ be the ID of the source vertex, and $t \in V$ be the ID of destination set.
- Input:
 - The first line: $n \in V$, $m \in \{1, ..., n(n-1)\}$, $s \in V$, and $t \in V$.
 - The *i*th line, i = 2, ..., n + 1: $d_{i-1,1}, d_{i-1,2}, ...,$ and d_{in} .
 - $-d_{uv} = -1$ if u = v or $(u, v) \notin A$; d_{uv} is the distance of (u, v) otherwise.
 - Two consecutive values in one line are separated by a white space.
 - $n \le 10, m \le n(n-1), d_{uv} \in \{1, ..., 100\}.$
- Output:
 - The distance of any shortest path from s to t.

Problem 5: implementation

• Sample Input/output:

Input:
6 9 1 6
-1 5 2 -1 -1 -1
-1 -1 -1 2 -1 -1
-1 1 -1 4 4 -1
-1 -1 -1 -1 4 2
-1 -1 -1 -1 -1 3
-1 -1 -1 -1 -1

Output:

7

Problem 5: implementation

• Sample Input/output:

Input:
6 9 1 6
-1 5 2 -1 -1 -1
-1 -1 -1 9 -1 -1
-1 1 -1 4 4 -1
-1 -1 -1 -1 4 2
-1 -1 -1 -1 -1 3
-1 -1 -1 -1 -1

Output:

8

Weakness of recursion

- The above naïve recursion works for small-scale instances only.
- What if the instance size is big (e.g., n = 100 and m = 4000)?
- We may do "smart" recursion:
 - Do not solve a subproblem twice.
 - For function parameters, add one additional array to record the shortest path distances for all solved subproblems.
- In the function, check that array to see whether we have the solution already.
 - If so, return it directly.
 - Otherwise, solve it recursively.