- **1.** Sea $\alpha: (0,\pi) \to \mathbb{R}^2$ la curva dada por $\alpha(t) = (\operatorname{sen} t, \cos t + \log(\tan \frac{t}{2}))$.
 - (a) Estúdiese la regularidad de α .
 - (b) Pruébese que en cualquier punto de la traza de α , la longitud del segmento de la recta tangente entre dicho punto y el eje y es constante e igual a uno.
 - (c) Calcúlese la curvatura de α .
- (a) En primer lugar, α está bien definida porque $\frac{t}{2} \in (0, \frac{\pi}{2}) \subset (-\frac{\pi}{2}, \frac{\pi}{2})$ para todo $t \in (0, \pi)$, y además $\tan \frac{t}{2} > 0$ para todo $t \in (0, \pi)$. Hay que estudiar la existencia de puntos singulares de α . Se tiene que

$$\alpha'(t) = 0 \iff \left(\cos t, -\sin t + \frac{1}{2\tan\frac{t}{2}\cos^2\frac{t}{2}}\right) \iff \left(\cos t, \frac{\cos t}{\tan t}\right) = 0$$

Se deduce que $t = \frac{\pi}{2}$ es el único punto singular de α .

(b) La recta tangente en un punto $\alpha(t)$ de la traza de α es aquella que pasa por $\alpha(t)$ y tiene vector director $\alpha'(t)$. Hay que hallar entonces el punto en que dicha recta corta al eje y. La ecuación punto-pediente de la recta tangente es

$$y = \frac{1}{\tan t}(x - \sin t) + \cos t + \log(\tan \frac{t}{2})$$

Poniendo x=0 se obtiene $y=\log(\tan\frac{t}{2})$, luego el punto de corte de la recta tangente con el eje y es $(0, \log(\tan\frac{t}{2}))$. La longitud L pedida no es más que la distancia entre $\alpha(t)$ y este punto:

$$L = \sqrt{\sin^2 t + (\cos t + \log(\tan \frac{t}{2}) - \log(\tan \frac{t}{2}))^2} = 1$$

(c) Como α no está parametrizada por el arco, la curvatura será

$$k_{\alpha}(t) = \frac{\langle \alpha''(t), J\alpha'(t) \rangle}{||\alpha'(t)||^3}$$

y como lo que queda consiste en hacer cuentas, el ejercicio se da por terminado.

2. Sea $f: U \to \mathbb{R}$ una función diferenciable en un abierto $U \subset \mathbb{R}^2$. Pruébese que

gr
$$f = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in U, z = f(x, y)\}$$

es una superficie regular.

Va a probarse que (U, φ) es una carta global de S, donde

$$\varphi \colon U \longrightarrow \mathbb{R}^3$$

 $(u, v) \longmapsto \varphi(u, v) = (u, v, f(u, v))$

Como f es diferenciable, entonces φ también. La inyectividad es clara, pues si $(u,v), (u',v') \in U$ son tales que (u,v,f(u,v))=(u',v',f(u'v')), entonces tiene que ser u=u' y v=v', de forma que (u,v)=(u',v'). La inversa de $\varphi\colon U\to \varphi(U)$ es

$$\psi \colon \varphi(U) \longrightarrow U$$
$$(u, v, w) \longmapsto \psi(u, v, w) = (u, v)$$

como se comprueba fácilmente. Evidentemente, es una aplicación continua, así que $\varphi \colon U \to \varphi(U)$ es homeomorfismo. Por último, la matriz jacobiana de φ en cada punto $q = (u, v) \in U$ es

$$J\varphi_q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ f_u & f_v \end{pmatrix}$$

que tiene siempre rango máximo. Por tanto $d\varphi_q$ es inyectiva para cada $q \in U$. Esto prueba que (U, φ) es una carta global de S y en consecuencia S es una superficie regular.

3. Sea

$$S = \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 = 1, z > 0\}$$

el semicilindro vertical, y sea

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, z > 0\}$$

el cono. Considérese la aplicación $f: S \to C$ definida por f(x, y, z) = (zx, zy, z).

- (a) Calcúlese la curvatura de Gauss y la curvatura media de S y C.
- (b) Compruébese que f está bien definida y es un difeomorfismo.
- (c) ¿Es f una isometría?
- (a) El semicilindro vertical S queda recubierto por las cartas (U, φ) y (V, ψ) , siendo los dominios de las cartas $U = (0, 2\pi) \times (0, \infty)$ y $V = (-\pi, \pi) \times (0, \infty)$, mientras que

$$\varphi \colon U \longrightarrow \mathbb{R}^3 \qquad \qquad \psi \colon V \longrightarrow \mathbb{R}^3$$
$$(u, v) \longmapsto \varphi(u, v) = (\cos u, \sin u, v) \qquad (u, v) \longmapsto \psi(u, v) = (\cos u, \sin u, v)$$

Se tiene que

$$\varphi_u = (-\sin u, \cos u, 0)$$
 $\varphi_v = (0, 0, 1)$ $\psi_u = (-\sin u, \cos u, 0)$ $\psi_v = (0, 0, 1)$

Como se van a obtener los mismos resultados con cada una de las cartas, de aquí en adelante se trabajará solo con la primera de ellas. Los coeficientes de la métrica son

$$E=1$$
 $F=0$ $G=1$

Por otro lado,

$$\varphi_{uu} = (-\cos u, -\sin u, 0)$$
 $\varphi_{vv} = (0, 0, 0)$ $\varphi_{uv} = (0, 0, 0)$

luego

$$e = -1$$
 $f = 0$ $q = 0$

Las curvaturas del semicilindro vertical serían

$$k_S = \frac{eg - f^2}{EG - F^2} = 0$$
 $H_S = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2} = -\frac{1}{2}$

En cuanto al cono, puede ser recubierto por las cartas (U, φ) , (V, ψ) siendo los dominios de las cartas los mismos de antes, mientras que

$$\varphi \colon U \longrightarrow \mathbb{R}^3 \qquad \qquad \psi \colon V \longrightarrow \mathbb{R}^3$$
$$(u, v) \longmapsto \varphi(u, v) = (v \cos u, v \sin u, v) \qquad (u, v) \longmapsto \psi(u, v) = (v \cos u, v \sin u, v)$$

Como se van a obtener los mismos resultados con cada una de las cartas, de aquí en adelante se trabajará solo con la primera de ellas. Se tiene que

$$\varphi_u = (-v \operatorname{sen} u, v \operatorname{cos} u, 0)$$
 $\varphi_v = (\operatorname{cos} u, \operatorname{sen} u, 1)$

Los coeficientes de la métrica son

$$E = v^2 \qquad F = 0 \qquad G = 2$$

Por otro lado,

$$\varphi_{uu} = (-v\cos u, -v\sin u, 0)$$
 $\varphi_{vv} = (0, 0, 0)$ $\varphi_{uv} = (-\sin u, \cos u, 0)$

luego

$$e = -\frac{v^2}{\sqrt{2}v} = -\frac{v}{\sqrt{2}}$$
 $f = 0$ $g = 0$

Las curvaturas del cono serían

$$k_C = \frac{eg - f^2}{EG - F^2} = 0$$
 $H_C = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2} = -\frac{v}{2\sqrt{2}v^2} = -\frac{1}{2\sqrt{2}v}$

(b) Si
$$(x, y, z) \in S$$
 y $f(x, y, z) = (zx, zy, z) = (x', y', z')$, entonces

$$x'^2 + y'^2 = z^2x^2 + z^2y^2 = z^2 = z'^2$$

luego $(x', y', z') = f(x, y, z) \in C$ y por tanto f está bien definida. Es fácil comprobar (queriendo decir con esto que no va a hacerse) que f es difeomorfismo.

(c) Dado $p = (p_1, p_2, p_3) \in S$, hay que estudiar si se tiene

$$\langle df_p(v), df_p(w) \rangle = \langle v, w \rangle$$

para todos $v, w \in T_pS$. Primero se calculará df_p . Sea $v = (v_1, v_2, v_3) \in T_pS$ representado por la curva $\alpha = (x, y, z)$. Entonces

$$df_p(v) = (f \circ \alpha)'(0)$$

$$= (z(t)x(t), z(t)y(t), z(t))'(0)$$

$$= (z'(0)x(0) + z(0)x'(0), z'(0)y(0) + z(0)y'(0), z'(0))$$

$$= (v_3p_1 + p_3v_1, v_3p_2 + p_3v_2, v_3)$$

y por tanto,

$$\langle df_p(v), df_p(v) \rangle = (v_3p_1 + p_3v_1)^2 + (v_3p_2 + p_3v_2)^2 + v_3^2$$

que evidentemente no coincide con $\langle v, v \rangle$. Como df_p no preserva la norma, entonces tampoco preserva el producto escalar, así que puede concluirse que f no es una isometría.