"Deep Q-Network (DQN) trader: Reinforcement learning for Automated trading"

THESIS SUBMITTED TO

Symbiosis Institute of Geoinformatics FOR PARTIAL FULFILLMENT OF THE M. Sc. DATA SCIENCE AND SPATIAL ANALYTICS DEGREE By

Avesh Kumar Bhati

PRN: 22070243005

(Batch 2022-2024)

Symbiosis Institute of Geoinformatics Symbiosis International (Deemed University) 5th Floor, Atur Centre, Gokhale Cross Road Model Colony, Pune – 411016

Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learning for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar Symbiosis Institute of Geoinformatics	Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learnifor automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learning for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learnifor automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learning for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learnifor automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learning for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learnifor automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learning for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learnifor automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learning for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learnifor automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learning for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learnifor automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learning for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learnifor automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learning for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	Certified that this thesis titled "Deep Q-Network (DQN) Trader: Reinforcement learnifor automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	for automated trading" report is a bonafide work done by Mr. Avesh Kumar Bhati (22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
(22070243005) at Symbiosis Institute of Geoinformatics, under our supervision. Supervisor, Internal Name: Dr. Vidya Patkar	(22070243005) at Symbiosis Institute of Geoinformatics, under our supervision.
Supervisor, Internal Name: Dr. Vidya Patkar	
Name: Dr. Vidya Patkar	Supervisor Internal
Name: Dr. Vidya Patkar	Supervisor Internal
Name: Dr. Vidya Patkar	Supervisor Internal
Name: Dr. Vidya Patkar	Supervisor Internal
	Supervisor, internar
Symbiosis Institute of Geoinformatics	Name: Dr. Vidya Patkar
	Symbiosis Institute of Geoinformatics

ACKNOWLEDGEMENT

In today's world of competition there is a race of existence in which only those succeed who have the will to come forward and accept challenges. Project acts as a bridge between theoretical concepts and the practical working. Keeping this in mind I started this project.

First of all I would like to thank the Almighty without his grace this project could not have

First of all, I would like to thank the Almighty without his grace this project could not have become a reality.

Next are my parents, whom have constantly supported me and encouraged me to complete this project.

I would also like to express my special thanks of gratitude to my internal guide "Vidya Patkar" for her able guidance and support in completing my project.

I would also like to thank Dr. T.P. Singh and Dr. Navendu Chaudhary for helping us with the project and internal guide allocation.

I would also like to thank all my teachers and data science friends associated with Symbiosis Institute of Geoinformatics who have always been helpful and encouraged me throughout the year.

To all those who have directly or indirectly contributed to this project, I am truly grateful for your involvement. Your Support has been instrumental in its success.

TABLE OF CONTENTS

Chapter 1: Introduction	.1-2
1.1: Problem statement	2
1.2: Proposing	2
1.3: Background of the project	3
1.4: objectives	3-4
1.5: Expected outcomes	4
Chapter 2: Literature Review	5
Chapter 3: Methodology	15-25
3.1: Data collection.	16
3.2: Data pre-processing.	.16
3.3: Model building	17-19
3.4: DQN Trader	19-21
3.5: functions of DQN trader	22-23
3.6: Model training	.23-25
3.7: Testing	25
Chapter 4: Result and Discussion	26-36
Chapter 5: Conclusion.	37
Chapter 6: References.	38

LIST OF FIGURES

FIGURE 1: Methodology Flowchart	15
FIGURE 2: Working of DQN Trader	19
FIGURE 2.1: DQN Loss Calculation.	21
FIGURE 3: Lstm (Goog)	27
FIGURE 4: Lstm (Amazon)	27
FIGURE 5: Lstm (Nifty)	28
FIGURE 6: Linear Regression (Nifty)	28
FIGURE 7: Linear Regression (GOOG)	29
FIGURE 8: Linear Regression (Amazon)	29
FIGURE 9: XGBOOST(Nifty)	30
FIGURE 10: XGBOOST(Amazon)	30
FIGURE 11: XGBOOST(Goog)	30
FIGURE 12: DQN(Goog)	31
FIGURE 13: DQN(Amazon)	32
FIGURE 14: DQN(Apple)	33
FIGURE 15: DQN(Tesla)	34
FIGURE 16: DQN(New value)	35

LIST OF EQUATION

Equation1:Bellman Equation21
Equation2: Q Learning23
LIST OF TABLES
TABLE 1: Summary of literature review
TABLE 2: Model Accuracy Comparison
ABBREVIATION LIST
API - Application Programming Interface
2. LSTM - Long Short-Term Memory
3. MSE - Mean Squared Error
4. ReLU - Rectified Linear Unit
5. DQN - Deep Q-Network
6. NSEI - Nifty (National Stock Exchange Fifty)
7. AMZN - Amazon
8. GOOGL - Google
9. TSLA - Tesla
10. APPL - Apple
11. Rs Indian Rupees (currency symbol)
12. AI - Artificial Intelligence

PREFACE

In the ever-evolving landscape of financial markets, the ability to make informed and accurate investment decisions is crucial. With advancements in artificial intelligence and machine learning, new opportunities have emerged to harness the power of technology in the world of trading. One such ground-breaking development is the Deep Q-Network (DQN) trader.

This project report explores the application of DQN, a reinforcement learning algorithm, in the domain of trading. DQN combines the concepts of deep neural networks and Q-learning to create an intelligent agent capable of learning and making decisions in complex environments. By training the agent on historical market data, it can learn patterns, adapt to changing market conditions, and optimize trading strategies to maximize returns.

The primary objective of this project is to investigate the performance and effectiveness of the DQN trader in real-world financial markets. By designing and implementing a trading system based on DQN, we aim to assess its ability to generate profitable trading decisions while considering risk management and market dynamics.

Throughout this report, we delve into the theoretical foundations of DQN, exploring its underlying principles and the key components that enable it to learn and improve over time. We discuss the challenges and considerations specific to implementing DQN in the context of trading, including data pre-processing, feature selection, and reward function design.

Furthermore, we present the methodology employed in this project, outlining the data collection process, the architecture of the DQN model, and the training and evaluation procedures. We carefully consider the choice of hyperparameters and provide a detailed analysis of the performance metrics used to assess the effectiveness of the DQN trader.

Importantly, this project report aims to be a comprehensive resource for both traders and researchers interested in exploring the application of DQN in financial markets. We provide a critical analysis of the results obtained, highlighting the strengths and limitations of the DQN trader, and offer insights into potential avenues for further research and improvement.

We would like to acknowledge the support and guidance of our project supervisor, who provided valuable input and helped shape the direction of this research. Additionally, we extend our gratitude to the open-source community for providing access to the necessary tools and libraries used in the implementation of the DQN trader.

It is our hope that this project report contributes to the growing body of knowledge on the use of reinforcement learning techniques in trading. By shedding light on the capabilities and challenges of the DQN trader, we aim to inspire further exploration and innovation in this exciting field.

Avesh Kumar Bhati

Introduction

In the ever-changing and highly desirable world of stock markets, traders strive to maximize their potential profits. To achieve this goal, researchers and professionals have sought to automate the trading process using advanced techniques like Data Science and Machine Learning. One such promising approach is the DQN Trader, a unique model that leverages the power of reinforcement learning to generate automated trading strategies based on historical market data. (Shah, 2021)

The DQN Trader takes its inspiration from the terms commonly used in the stock market: "bear" and "bull." A bear run signifies a market downturn, while a bull run represents a long-term rise in market prices. In the realm of intraday trading, where traders buy and sell financial instruments within the same trading day, these terms hold great significance. Intraday trading involves closing all positions before the market closes for the day, making it a type of securities speculation.

The significance of historical market data and current events cannot be ignored when formulating trading plans. While human traders have traditionally relied on their expertise and intuition, the advent of Data Science and Machine Learning has opened up opportunities for automating this laborious process. By harnessing the capabilities of these technologies, an automated trading technique can offer better estimates and timely suggestions, particularly beneficial for mutual funds and hedge funds seeking maximum profits.

However, creating an effective automated trading system is not without challenges. There is always a certain level of risk associated with achieving consistently profitable returns. It requires considerable effort to design a balanced and low-risk strategy that can benefit a wide range of individuals in the stock market.

Enter the DQN Trader, a cutting-edge solution that employs reinforcement learning agents to develop automated trading strategies based on historical data. The Deep Q-Network (DQN), a deep reinforcement learning algorithm, lies at the core of this model. By combining deep learning techniques with reinforcement learning principles, the DQN Trader aims to optimize trading decisions and maximize profitability. (Shah, 2021)

The DQN Trader's training process involves iterative interactions with the market environment. Through trial and error, the model learns from past market data, identifies patterns, and seeks to make informed trading decisions. It optimizes a reward function to maximize profits or minimize losses over time, ultimately refining its decision-making capabilities.

To create a successful DQN Trader system, various aspects must be carefully considered. This includes selecting appropriate input features, designing an optimal network architecture, defining an effective reward function, and addressing transaction costs and market dynamics. These considerations contribute to developing a robust and efficient trading system.

PROBLEM STATEMENT:

In recent years the technical analysis attracts a lot of attention due to a simple fact that we have enough information just by looking to the historical stock market, which is public and well-organized, compared to the fundamental analysis where we need to analyze unstructured dataset.

Compared to the supervised learning techniques and at a certain level, un-supervised learning algorithms, are widely used in stock price prediction, to the best of our knowledge the reinforcement learning for stock price prediction has not yet received enough support as it should be. The main issue of supervised learning algorithms is that they are not adequate to deal with time-delayed reward. In other words, supervised learning algorithms focus only on the accuracy of the prediction at the moment without considering the delayed penalty or reward. Furthermore, most supervised machine learning algorithms can only provide action recommendation on particular stocks, using reinforcement learning can lead us directly to the decision making step, i.e. to decide how to buy, hold or sell any stock.

So, in this report we will discuss about the Machine learning techniques that were earlier used for predicting the Stock price.

PROPOSING:

In order to solve this issue, we suggest an agent model that will automatically make the neces sary decisions regarding whether to buy, hold, or sell stocks.

BACKGROUND OF THE PROJECT:

The complicated and volatile financial markets have always attracted academics and traders looking for lucrative investment opportunities. Traditional trading methods are labour-intensive, subject to human bias, and primarily reliant on human intuition, analysis, and manual decision-making. Automated trading systems, which can process enormous volumes of data and make wise trading decisions in real-time thanks to advances in AI and machine learning, have become a potential alternative.

In the field of AI, Deep Q-Networks (DQNs) have attracted a lot of interest, notably in the area of reinforcement learning. DQNs are neural network architectures that incorporate reinforcement learning algorithms and deep learning techniques. This enables the model to learn the best course of action by interacting with the environment and receiving feedback in the form of incentives or Penalties.

OBJECTIVES:

- Automate Trading Strategy: The DQN Trader's main goal is to automate the
 procedure of coming up with trading strategies. By using a model that can make
 trading decisions automatically based on historical market data, it seeks to replace
 manual decision-making.
- Maximise Profitability: By making the best trading decisions possible, the DQN
 Trader aims to maximise profitability. The programme attempts to find patterns and
 trends that could result in winning trades by using reinforcement learning techniques
 to learn from historical data.
- Reduce Risk: Reducing risk is another goal of the DQN Trader. The model seeks to generate trading decisions that strike a balance between prospective gains and potential losses by including a reward function that takes into account both profitability and risk management.

- Learn from previous Market Data: The DQN Trader builds its trading methods by studying previous market data. The model seeks to extract useful information that can direct its decision-making process by examining previous price movements, trends, and other pertinent factors.
- Enhance Trading Decisions: The DQN Trader seeks to enhance its trading decisions through the iterative training process. The model aims to enhance performance over time by assessing and changing its tactics in response to input in the form of rewards.
- Offer a Low-Risk Trading Approach: The DQN Trader strives to create a well-balanced, low-risk trading approach that may be utilised by a variety of traders.
 Profitability is a goal, but it's also important to reduce risk. The approach aims to balance minimising possible losses with profit maximisation.

Expected Outcomes:

- Creation of a fully functional trading system with the ability to conduct transactions
 on its own based on forecasts provided by the DQN model is the project's main
 objective.
- Enhanced trading performance compared to traditional tactics is what the project intends to achieve by utilising AI and reinforcement learning approaches, with the end goal being consistent profitability.
- The DQN-based system should be able to modify its trading strategy in response to changing market conditions so that it can successfully seize opportunities and reduce risks.

LITERATURE REVIEW

Automated stock trading, also known as algorithmic trading or algo-trading, is the use of computer programs to execute trading decisions based on predefined rules and parameters. The use of algorithms and artificial intelligence (AI) in stock trading has become increasingly popular in recent years due to its ability to analyse large amounts of data and make rapid decisions based on market trends and patterns. In this literature review, we will examine several studies that have explored the use of automated stock trading.

The combined findings from various papers indicates that deep reinforcement learning and machine learning techniques offers promising results in automated stock trading. These approaches have the potential to improve trading performance metrics such as cumulative return, Sharpe ratio, and adaptability to changing market conditions and can create more opportunities in the same field. (Hongyang Yang1, 2021)

Ensemble strategies using deep reinforcement learning have been shown to outperform baseline strategies in terms of cumulative return, Sharpe ratio, and maximum drawdown. The FinRL library, based on deep reinforcement learning, has also demonstrated significant outperformance compared to baseline strategies.

The application of deep reinforcement learning in the Chinese stock market has led to improved trading performance, while incorporating stock-specific news analysis has resulted in automated trading systems that outperform baseline strategies.

Furthermore, synchronous deep reinforcement learning models and Q-learning agents have shown higher returns and adaptability to changing market conditions. Machine learning techniques, including decision trees, performance weighted random forests, and logical clustering algorithms, have also exhibited superior performance compared to traditional trading strategies.

Additionally, the integration of optimization methods, portfolio optimization, and sentiment analysis has significantly improved the performance of automated trading systems. Studies have also explored the role of materiality and high-frequency trading in the development of automated trading systems.

Although these combined findings suggest the potential benefits of using deep reinforcement learning and machine learning in automated stock trading, it is important to note that further research and live trading environment testing are necessary to evaluate the practical effectiveness and potential risks associated with these approaches.

Sr.	Author(s),	Title	Year	DATA	Purpose	Findings
No	Journal		Published	SAMPLE		
				S		
1	H. Yang, X. Y.	Deep	2020	S&P	The purpose of the	The
	Liu, S. Zhong,	reinforcemen		Histroical	paper is to propose a	findings of
	and A. Walid	t learning for			new approach to	the paper
		automated			automated stock	indicate that
		stock trading:			trading using deep	the
		An ensemble			reinforcement	proposed
		strategy			learning and an	ensemble
					ensemble strategy.	strategy for
					The authors aim to	automated
					address the	stock
					challenges	trading
					associated with stock	using deep
					trading, such as the	reinforceme
					dynamic and	nt learning
					complex nature of	outperforms
					the stock market and	several
					the difficulty of	baseline
					accurately predicting	strategie
					stock prices.	
2	X. Y. Liu, H.	A deep	2020	The paper	The purpose of the	
	Yang, Q. Chen,	reinforcemen		does not	paper is to present a	
	R. Zhang, L.	t learning		describe	deep reinforcement	
	Yang, and H. Li	library for		specific	learning (DRL)	
		automated		data	library called FinRL,	
		stock trading		samples	designed for	
		in		collected.	automated stock	
		quantitative		Instead,	trading in	
		finance		the authors	quantitative finance.	
				use three		
				popular		
				datasets		

3	L. Chen and Q.	Application	2019	The paper	The purpose of the	The paper
	Gao	of deep		does not	paper is to apply	presents a
		reinforcemen		describe	deep reinforcement	DRL-based
		t learning on		specific	learning (DRL) to	automated
		automated		data	automated stock	trading
		stock trading		samples	trading and	system that
				collected.	investigate its	is trained on
				Instead,	performance in the	historical
				the authors	Chinese stock	stock data
				use	market	from the
				historical		Chinese
				stock data		stock
						market.
4	J. Zou, H. Cao, L.	Astock: A	2022	The	The purpose of the	The paper
	Liu, Y. Lin, E.	new dataset		Astock	paper is to introduce	presents an
	Abbasnejad, and	and		dataset is	a new dataset called	automated
	H. Zhang	automated		created by	Astock, which	stock
		stock trading		collecting	contains stock-	trading
		based on		stock-	specific news and	system that
		stock-specific		specific	stock price data for	uses a
		news		news and	the Chinese stock	stock-
		analyzing		stock price	market. specific	specific
		model		data for	news to predict	news
				1696 listed	future stock price	analyzing
				companies	movements and	model to
				in the	make profitable	predict
				Chinese	trades.	future stock
				stock		price
				market		movements
						and make
						trades.

5	Ramy	A	2021	The paper	The purpose of this	The authors
	AbdelKawy,	synchronous		uses	paper is to propose a	develop a
	Walaa M.	deep		historical	synchronous deep	synchronou
	Abdelmoez, and	reinforcemen		stock price	reinforcement	s deep
	Ahmed Shoukry	t learning		data for a	learning model for	reinforceme
		model for		number of	automated multi-	nt learning
		automated		companies	stock trading. The	model that
		multi-stock		, including	authors aim to	can
		trading		Apple,	develop a model that	simultaneou
				Microsoft.	can learn to trade	sly trade
					multiple stocks	multiple
						stocks.
6	Bin Huang, Yong	Automated	2019	The paper	The purpose of this	The authors
	Huan, Lin Da Xu,	trading		does not	paper is to provide a	provide an
	Lina Zheng	systems		involve	comprehensive	overview of
		statistical and		any data	survey of automated	the different
		machine		collection	trading systems,	types of
		learning		or	including the	automated
		methods and		analysis.	statistical and	trading
		hardware			machine learning	systems,
		implementati			methods used, and	including
		on: a survey			the hardware	rule-based
					implementations that	systems.
					enable high-speed	
					trading.	
7	Jayant B.	A Q-learning	2021	The paper	The purpose of this	The authors
	Chakole, Manish	agent for		uses	paper is to develop	develop a
	S. Kolhe, Gajanan	automated		historical	and evaluate a Q-	Q-learning
	D. Mahapurush,	trading in		stock price	learning agent for	agent that
	and Nitin S.	equity stock		data for a	automated trading in	can learn to
	Mahalle	markets		number of	equity stock markets.	make
				companies		profitable.

						The authors
	Jaewoo So	Analysis of		uses	paper is to	develop a
		Automated		historical	empirically analyze	deep
		Stock		stock price	the effectiveness of	reinforceme
		Trading		data for a	using deep	nt learning-
		Using Deep		number of	reinforcement	based
		Reinforceme		companies	learning for	trading
		nt Learning		, including	automated stock	agent that
				Apple,	trading.	can learn to
				Amazon,		make
				Facebook,		profitable
				and		trades in the
				Google.		stock
						market. The
						agent uses a
						combinatio
						n of
						technical
						indicators
						and market
						sentiment
						data to
						make
						trading
						decisions.
9	Adam Booth,	Automated	2014	The paper	The purpose of this	The authors
	Enrico Gerding,	trading with		uses	paper is to develop	develop a
	and Frank	performance		historical	and evaluate a	machine
	McGroarty	weighted		stock price	machine learning	learning-
		random		data for a	approach for	based
		forests and		number of	automated trading	trading
		seasonality		companies	that accounts for	system.
				Apple.	seasonality in data.	conditions,

10	Mohammed	Machine	2022	The paper	The purpose of this	The authors
	Alsulmi and Nada	Learning-		uses	paper is to develop	develop a
	Al-Shahrani	Based		historical	and evaluate a	machine
		Decision-		stock price	machine learning	learning-
		Making for		data for	approach for	based
		Stock		companies	automated trading in	trading
		Trading:		listed in	the Saudi Stock	system that
		Case Study		the Saudi	Exchange. The	uses a
		for		Stock	authors aim to	decision
		Automated		Exchange.	investigate whether	tree
		Trading in			their approach can	algorithm to
		Saudi Stock			achieve higher	predict
		Exchange			returns and	stock
					outperform	prices.
					traditional trading	
					strategies.	
11	Aleksandra	An	2018	The paper	The purpose of this	The authors
	Rakićević,	automated		uses	paper is to develop	develop an
	Vladimir	system for		historical	an automated trading	automated
	Simeunović,	stock market		stock price	system that uses	trading
	Branislav	trading based		data from	logical clustering	system that
	Petrović, and	on logical		the New	algorithms to	uses logical
	Siniša Milić	clustering		York	identify patterns in	clustering
				Stock	stock market data	algorithms
				Exchange	and make trading	to group
				(NYSE)	decisions based on	stocks
				for the	those patterns.	based on
				period		their
				between		similarities
				2013 and		
				2017.		

12	Andrea Bigiotti	Optimizing	2019	The paper	The purpose of this	The authors
	and Alfredo	automated		does not	paper is to explore	review and
	Navarra	trading		collect any	various methods for	compare
		systems		data	optimizing	various
				samples	automated trading	machine
				but instead	systems, with a focus	learning
				focuses on	on machine learning	techniques
				reviewing	techniques and	for
				and	portfolio	predicting
				analyzing	optimization	stock prices
				existing		and
				literature		optimizing
				on		trading
				automated		strategies,
				trading		including
				systems		support
				and		vector
				optimizati		machines,
				on		artificial
				methods.		neural
						networks.
13	Donald	A material	2017	The paper	The purpose of this	The author
	MacKenzie	political		does not	paper is to explore	argues that
		economy:		collect any	the role of	the success
		Automated		data	materiality in high-	of the ATD
		trading desk		samples	frequency trading	and other
		and price		but instead	and the development	high-
		prediction in		focuses on	of automated trading	frequency
		high-		a case	systems, with a focus	trading
		frequency		study of	on the Automated	firms is due
		trading		the	Trading Desk (ATD)	in part to
				developme	and its efforts to	their ability.
				nt.	predict stock prices	

14	Y Ansari, S	A Deep	2022	Not	To develop a	The authors
	Yasmin, S Naz, H	Reinforceme		explicitly	decision support	demonstrate
	Zaffar, Z Ali, J	nt Learning-		stated	system for	d the
	Moon	Based			automated stock	effectivenes
		Decision			market trading using	s of their
		Support			deep reinforcement	proposed
		System for			learning	system by
		Automated				conducting
		Stock Market				experiments
		Trading				on real-
						world stock
						market data
						and
						comparing
						the results.
15	Q. Huang, J.	Automated	2019	The	The paper presents a	The
	Yang, X. Feng,	trading point		authors	novel approach for	experimenta
	W. Li, and K. Li	forecasting		used	point forecasting in	1 results
		based on		historical	automated trading	show that
		bicluster		data of six	using bicluster	the
		mining and		real stocks	mining and fuzzy	proposed
		fuzzy		from the	inference. The aim is	method
		inference		Chinese	to accurately predict	outperforms
				stock	trading points and	traditional
				market to	achieve higher	time series
				validate	returns.	forecasting
				the		methods
				proposed		and other
				method.		state-of-the-
						art machine
						learning
						models.

16	B. Taylor, M.	Automated	2014	Not	The purpose of this	The paper
	Kim, A. Choi	stock trading		explicitly	paper is to propose	presents a
		algorithm		stated	an automated stock	neural
		using neural			trading algorithm	network-
		networks			using neural	based
					networks. The paper	automated
					aims to evaluate the	trading
					effectiveness of the	algorithm
					algorithm in	that uses
					generating profit in	technical
					the stock market.	indicators
						as input
						features to
						predict
						stock
						prices. e of
						the
						algorithm.
17	S Bajpai	Application	2021	Not	To apply deep	The study
		of deep		specified.	reinforcement	found that
		reinforcemen			learning to automate	the
		t learning for			stock trading in the	proposed
		Indian stock			Indian stock market.	deep
		trading				reinforceme
		automation				nt learning
						algorithm
						outperforme
						d a
						traditional
						buy and
						hold
						strategy.

18	TR Silva, AW Li,	Automated	2020	Not	To develop an	The
	EO Pamplona	trading		specified	automated trading	proposed
		system for			system for stock	system
		stock index			index using LSTM	achieved
		using LSTM			neural networks and	better
		neural			risk management	returns
		networks and				compared to
		risk				a buy-and-
		management				hold
						strategy,
						and also
						outperforme
						d a baseline
						LSTM-

TABLE 1: Summary of Literature review

METHODOLOGY

We use a common approach in validating time-series data, which is called the walk-forward validation. In this experimental scenario, the semantic linking between the observation at time t and t+1 is taken into account to compose the same bunch of training, validation and test sets. This is different with respect to common cross-validation approaches like the leave-one-out cross validation or the k-fold cross validation, where data are randomly sampled in different folds, no matter when they were acquired. Such an approach is quite biased when applied to time series prediction, as features from late past and early future can be mixed in the same fold of data when using that strategy. The walk forward validation better fits this scenario, since the considered folds are temporally split and processed as training, validation and testing data.

A normal Flowchart for the methodology is represented below:

Figure 1 – Methodology Flowchart

• Data Collection

The data collection method used for this project is secondary data collection, which involves collecting data from existing sources. In this case, the dataset that is used for the study of Automated Stock Trading is collected from the different financial databases or API's like Yahoo finance, Up stocks. The dataset consist of different columns like Date, Open, High, Low, Close, Adj Close, Volume.

The dataset is a historical data containing from 2018 to 2023 of different Companies like Googl, Amazon, Tesla. Also there is a dataset of Nifty from the year 2018 to 2023. Since the data was collected from the financial databases so we can definitely trust the data

The different columns in the dataset represents:

• Date: The date on which the stock was traded.

source and assumed it to be the cleaned data and up to dated.

- Open: The price at which the stock opened for trading on that day.
- High: The highest price the stock traded for during the day.
- Low: The lowest price the stock traded for during the day.
- Close: The price at which the stock closed for trading on that day.
- Adj Close: The adjusted closing price takes into account any corporate actions that
 occurred during the trading day, such as stock splits or dividends. It is the closing
 price adjusted for these actions and is considered to be a more accurate reflection of
 the stock's true value.
- Volume: The number of shares of the stock that were traded on that day.

Data Pre-Processing:

Since the data was collected from the historical stock data so the data we got is almost cleaned for all the datasets. We had 4-5 datasets of different stocks like 'APPL', 'AMAZN', 'GOOGL', 'TSLA' and 'NIFTY'.

So the first step we did was of merging all the datasets of all the companies into one data frame.

Then we looked for the null values in the dataset but since the dataset was from financial databases so there were no null values however there were 2-3 incorrect values so we used the mean of the column in those places.

After that we checked the duplicate values in the dataset but there were no duplicate values present in the dataset so we can move on the next step which was to look at the datatypes of all the columns, The 'Date' column should be of datetime type. All other columns have the correct data types.

After the merging all the datasets we added another column named 'Company' so at the end we had 1313 entries with 8 columns for the final dataset.

For DQN Trader the Data was already preprocessed so we have not done anything specific. We just simply used the data directly.

MODEL BUILDING

STOCK PRICE PREDICTION (USING SUPERVISED ALGORITHM)

We have used three Machine Learning Models for predicting the Stock Price:

- 1. LSTM
- 2. Linear Regression
- 3. XGBOOST

LSTM:

The report presents an LSTM (Long Short-Term Memory) model for stock price prediction on multiple companies. The study begins with data pre-processing, where the dataset is divided into training and test sets for each company. The data is then scaled using the MinMaxScaler to normalize the values between 0 and 1.

The LSTM model architecture comprises two LSTM layers with 13 units each, along with dropout layers for regularization. The model is trained using the Adam optimizer and mean squared error (MSE) loss. The training process includes 30 epochs, a batch size of 10, and a validation split of 20% to ensure optimal model performance.

Following training, the model predicts stock prices for the test data. The predicted values are transformed back to their original scale using the inverse transform method of the MinMaxScaler.

(Kong, 2021)

So now to solve our main problem which was the complexity of predicting The evaluation of the model's performance is measured using the R-squared score, which assesses how well the predicted values align with the actual values.

To visualize the results, the paper includes plots that compare the actual stock prices and the predicted prices for each company. The plots are presented in separate subplots, with the company name clearly indicated.

LINEAR REGRESSION:

Linear is not one of the famous Techniques in predicting Stock Prices as it may not capture the complexities and non-linear relationships in stock market data.

However Linear regression is a simple and widely-used technique for modelling the relationship between dependent and independent variables.

It assumes a linear relationship between the input features (previous stock prices) and the target variable (next stock price).

The code prepares the data by iterating over each unique company in the dataset. Historical stock prices (represented by 'Adj Close') are extracted for each company.

XGBOOST:

Stock price prediction is a challenging task that requires sophisticated machine learning techniques. XGBoost (Extreme Gradient Boosting) has emerged as a powerful algorithm for accurate and robust predictions in various domains, including finance.

XGBoost proves to be a valuable tool for stock price prediction in the provided code. By utilizing its ensemble learning approach and advanced techniques, XGBoost demonstrates its capability to capture nonlinear relationships and handle challenges in financial data however we found that the model is giving different Accuracy for different company stock price.

We uses different hyperparameters during our model building like max_depth,n_estimators, seed, gamma, learning rate .

- gamma [default=0, alias: min_split_loss] parameter

 The minimal loss reduction needed to partition the tree's leaf node farther. The algorithm becomes increasingly conservative as gamma increases.
- max_depth [default=6]
 Increasing this amount will complicate the model and increase the likelihood of overfitting. No depth cap is indicated by 0, or 0. Be aware that when training a deep

tree, XGBoost rapidly eats memory. No value can be zero when using the precise tree approach.

• seed (int) - Seed for creating the folds.

maximizes long-term returns.

DQN TRADER

DQN Trader is a term used to describe a trading algorithm or system that uses a Deep Q-Network (DQN) to make trading choices. DQN is a reinforcement learning method that blends Q-learning, a type of value-based reinforcement learning, with deep neural networks. (Foy, 2021)

The typical context in which DQN Trader functions is one in which it gets historical market data and strives to learn a trading strategy that will maximise its cumulative profit over time. The DQN model produces actions, such purchasing, selling, or keeping particular financial assets, based on previous price and volume data as input.

Notably, designing a successful DQN Trader necessitates careful consideration of a number of variables, including the selection of the state representation, incentive design, hyperparameter tuning, and appropriate handling of transaction costs and market constraints. Overall, DQN Trader leverages the power of deep reinforcement learning to make trading decisions based on historical market data, aiming to learn an optimal trading policy that

Stock prices we are proposing DQN trader where we will create an agent which will take all the decisions of buying, hold and sell and to maximize our profits in our portfolio.

FIGURE 2 Working of DQN Trader

AGENT CLASS:

Due to its capacity to learn the best decision-making strategies in dynamic and uncertain contexts, reinforcement learning has attracted considerable attention in the field of financial trading. The implementation of a reinforcement learning agent that learns to make trading decisions based on the condition of the market is the main topic of this research. By using lessons from the past and continually enhancing its decision-making skills, the agent seeks to maximise its revenues over a certain time period.

Agent Class and Initialization:

The agent is created using the Python class "Agent." The state space size, the maximum number of time steps, the initial amount of money, and an optional pre-trained model are all initialised. These parameters provide the necessary context for the agent to operate effectively.

(Yawei Li, 2022)

Model Creation:

The Keras library's neural network model is used by the agent. The model has three dense layers, the first two of which add nonlinearity using the rectified linear unit (ReLU) activation function. To generate Q-values for each potential action, the output layer uses a linear activation function. The Adam optimizer and mean squared error (MSE) loss function used in the model's construction make it possible to train and improve the agent's decision-making skills quickly.

Action Selection:

The agent's act() method chooses the appropriate course of action based on the status of the market. When the agent is in training mode, it randomly selects an action with a probability set by the exploration rate (epsilon) to investigate the surroundings. As an alternative, the agent chooses the action with the highest Q-value predicted by the neural network model if it is in evaluation mode or if exploration is not picked at random.

Experience Replay:

The agent's learning process heavily relies on experience replay. Using a sample from its memory, the agent can learn from a group of prior encounters by using the expReplay() method. The target Q-value is determined using the Bellman equation, taking into account both the discounted maximum Q-value of the subsequent state and the immediate reward.

After that, the neural network model is trained to reduce the mean squared error between the target and predicted Q-values, which helps the agent's decision-making abilities to converge. Bellman Equation:

$$V_{\pi}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma V_{\pi}(s_{t+1}) | s_t = s]$$

Bellman equation

(Taylan Kabbani, 2022)

Equation 1Bellman Equation

Where eqn of s represents a State value function.

Fig2.1. Loss Calculation of DQN Trader

This is the loss calculation of DQN Trader for Improving the next state.

Epsilon Decay:

The agent gradually lowers its exploration rate (epsilon) over time in order to strike a balance between exploration and exploitation. The epsilon value is multiplied by a decay factor (epsilon_decay) after each experience replay step to make sure that the agent gradually relies more on its learnt policy and makes use of the training-related information.

FUNCTIONS OF DQN TRADER

- BUY(Agent, Price)
- SELL
- HOLD

Buy(agent, price):

The agent can carry out a buy action in the trading environment thanks to this capability. It requires two inputs: the agent object and the most recent stock price. Based on the agent's remaining budget (money) and the remaining time steps (max_t - transactions), the function determines how much money should be invested. It adds the matching stock quantity to the agent's inventory and deducts the computed amount from the money attribute of the agent. If a purchase is successful, the function returns 0, otherwise it returns -1 if it is unsuccessful because of financial limitations or exceeding the maximum transaction limit.

- formatPrice(n)- This function formats the numeric number n that is supplied as a string that represents a currency value. If the value is negative, denoting a loss, it includes a prefix of "Rs." and a negative sign. The function makes sure that prices are formatted consistently and readable.
- sigmoid(x)- The input value x is subjected to the sigmoid function, which employs the sigmoid activation function. The chance of a favourable outcome is represented by a value between 0 and 1 that is returned. The trading agent uses sigmoid to normalise input data and make sure that values fall within an appropriate range for processing.

Sell(agent, price):

The sale function allows the agent to execute a sell action in the trading environment. It requires two inputs: the agent object and the most recent stock price. The function determines the total value of the stocks based on the current price and adds it to the agent's money attribute if the agent's inventory is not empty (indicating stocks are owned). The function also determines the reward by comparing the agent's final cash balance with the higher of the original budget or the money before attribute. The reward is a representation of the gain or

loss from the sale activity. The function also refreshes the money_before attribute and resets the agent's transactions and inventory. The calculated reward is returned.

Get state(agent, data):

This function uses the incoming data and the agent object to prepare the state representation for the agent. It accepts as inputs an array of data along with the agent object. The function normalises the data values by applying feature scaling using the StandardScaler from the scikit-learn module. The sigmoid function is then applied element-by-element to guarantee that all values are between 0 and 1. (Salvatore Carta, 2021)

The function adds two further aspects to the data: the agent's current transaction progress (transactions / max_t) and the amount of money now in the agent's possession relative to the starting budget (money / (money_before + 1). The function returns a NumPy array that represents the final state.

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}\right)}$$

(Yang, 2020)

Equation 2 Q Learning

The above picture is taken from Analytics Vidhya Website which describes how Q learning tells the agent which Action to take.

MODEL TRAINING

So we have divided the model training into three parts namely Initialization, Training loop

and Time Step loop

Initialization:

- agent.is eval is set to False, indicating that the agent is in training mode.
- episode_count is set to 12, representing the number of training episodes.
- 1 is set to the length of the data.
- agent.max t is set to 5, indicating the maximum number of time steps per episode.
- batch_size is set to 32, representing the size of the mini-batches used for experience replay.

Training Loop:

- The loop iterates over each episode.
- The current episode number is printed.
- The initial state is obtained using the get_state function, which takes a window of data as input.
- agent.money is set to Money (presumably a predefined starting capital).
- A dictionary code is defined to map actions to corresponding codes ('b', 'r', 'g').
- Lists decisions and actions are initialized to store the agent's decisions and action counts, respectively.
- agent.inventory and agent.transactions are set to 0, representing the current inventory and transaction count of the agent.

Time Step Loop:

- The loop iterates over each time step within the window size to 1-1.
- The agent chooses an action using the act method, which returns the chosen action and the corresponding action code.
- The chosen action code is appended to the decisions list.
- Based on the chosen action, the agent updates the actions list and calculates the reward.
- If the action is 0, the reward is based on the negative count of previous 'buy' actions.
- If the action is 1 ('buy'), the buy function is called to perform a buying action and calculate the reward.

- If the action is 2 ('sell'), the sell function is called to perform a selling action and calculate the reward.
- The next state is obtained using the get_state function for the next window of data.
- The variable done is set to True if it is the last time step, indicating the end of the episode.
- The (state, action, reward, next_state, done) tuple is appended to the agent's memory for experience replay.
- If the episode is done, the agent's final profit is calculated and printed.
- If the agent's memory exceeds the batch size, the agent performs experience replay using the expReplay method.
- The current time step, agent's money, chosen action, and action code are printed.

TESTING

The model was tested on various stock companies like Apple, Tesla, Nifty ,Google, Amazon.

The model was given the Money and Max transaction as the inputs .

The agent is in evaluation mode, as evidenced by the value of agent.is eval being set to True.

The 'Close' column from the stock data was transformed to a NumPy array.

The get_state function, which accepts a window of stock data as input, is used to determine the initial state.

The judgements made by the agent at each time step are recorded in a dictionary called decisions.

RESULTS AND DISCUSSION

COMPARISON OF MODELS FOR 3 COMPANIES:

MODELS	AMZN	NSEI	GOOG
LSTM	90.8	97.2	96.6
LINEAR	96.36	98.71	97.99
REGRESSION			
XGBOOST	95.51	97.90	96.96

Table 2 - Model Accuracy Comparison

The table compares the performance of different models for predicting stock prices for three companies: Amazon (AMZN), National Stock Exchange of India (NSEI), and Google (GOOG). The models evaluated are LSTM (Long Short-Term Memory), Linear Regression, and XGBoost (Extreme Gradient Boosting).

The results indicate the following:

LSTM: The LSTM model achieved an accuracy of 90.8% for predicting AMZN stock prices, 97.20% for NSEI, and 96.60% for GOOG. It performed relatively well for predicting AMZN and GOOG stocks but had better accuracy for NSEI.

Linear Regression: The Linear Regression model yielded an accuracy of 96.36% for AMZN, 98.71% for NSEI, and 97.99% for GOOG. This model performed consistently well across all three companies, with relatively high accuracy for NSEI.

XGBoost: The XGBoost model achieved an accuracy of 95.51% for AMZN, 97.90% for NSEI, and 96.96% for GOOG. It performed well for predicting AMZN and GOOG stocks but had slight better accuracy for NSEI, similar to the LSTM model.

Overall, the Linear Regression model demonstrated the highest accuracy for predicting stock prices, especially for NSEI. It outperformed both LSTM and XGBoost models in terms of accuracy across the evaluated companies.

LSTM:

3/3 [======] - US 3ms/step 0.7876576526756704

Figure 1 - Lstm (Goog)

3/3 [======] - 0s lms/step 0.7760423678712113

Figure 4 - Lstm(Amazon)

Figure 5 – Lstm (Nifty)

LINEAR REGRESSION:

Figure 6 -Linear Regression(Nifty)

0.8661198051948157

Figure 7 - Linear Regression(GOOG)

Figure 8 - Linear Regression(Amazon)

XGBOOST:

Figure 9 - XGBOOST(Nifty)

Figure 10 - XGBOOST(Amazon)

Figure 11 XGBOOST(Goog)

As mentioned above, the results that we got were extremely good as the model gave an average profit of 28% combining all stocks.

Figure 12 DQN(Goog)

Figure 14 - DQN(Apple)

- The green dot represents the Sell
- Red represents the buy

• Blue represents the Hold

Figure 15 - DQN(Tesla)

The model was also tested on different values where we changed the Amount of money and total Transaction and it gave an average of 22.65% profit on all the Stocks.

Total Profit:- 17665

Figure 16 - DQN(New Value)

During the evaluation period, the DQN model generated a profit of about 28%. This shows that the trading technique the model used was able to produce positive returns. Multiple equities were included in the evaluation, and the model consistently showed how to make lucrative trading selections.

Discussion:

A striking outcome, showing that the DQN model has the potential to be a useful tool for trading on financial markets, is the obtained profit of 28%. However, it's crucial to take into account a number of considerations when interpreting these findings.

The performance of the model inside the particular financial market and time frame of its evaluation must first be carefully examined. Market conditions, volatility, and economic events are just a few of the many variables that affect the financial markets. It is necessary to assess the model's robustness in various situations because the model's performance may vary depending on the state of the market.

Evaluation of the evaluation methodology's shortcomings is also crucial. Due to the use of historical data, the evaluation may not have accurately reflected current market conditions. Due to delays in the availability of data, the execution of orders, and market liquidity, the model's performance may differ when used in real-world trading scenarios. As a result, the findings should be carefully evaluated before being tried again in a real-world trading setting.

The quantity and quality of training data also play a role in the trading strategy's performance. It is crucial to make sure that the training data is indicative of the desired trading environment and captures a wide range of market situations. Additional information about the model's generalization ability can be gained by analyzing its performance on other datasets.

The performance of the DQN model is also greatly influenced by the choice of hyperparameters. The model's profitability may be increased by fine-tuning the hyperparameters, including learning rate, discount factor, exploration rate, and neural network design. Sensitivity analysis on these parameters can give important information about how they affect the effectiveness of the model.

It's also crucial to evaluate how the DQN model performs in comparison to benchmarks and alternative trading methods. This enables a thorough evaluation of the model's performance and potential superiority over conventional trading strategies or market indices. These comparisons offer helpful context for evaluating the model's performance in relation to current approaches.

CONCLUSION

The DQN model, in conclusion, showed encouraging results by turning a profit of about 28% over the evaluation time. Although these results show the model's potential, it is important to take into account the unique market situation, assess its robustness, and address any potential shortcomings. To fully comprehend the model's performance and its feasibility as a trading tool, further improvements are required, such as hyperparameter fine-tuning, testing in real-world trading scenarios, and comparisons with competing methods.

Future work in this area will focus on exploring advanced model architectures, ensemble methods, transfer learning methods, and optimizing the trade-off between exploration and exploitation. Important areas of focus will include incorporating risk management techniques, portfolio optimization methods, and real-time trading implementation.

REFERENCES:

- Shah, E. (2021, January 16). *Automated Stock Trading*. Retrieved from Analytics VIdhya: https://www.analyticsvidhya.com/blog/2021/01/bear-run-or-bull-run-can-reinforcement-learning-help-in-automated-trading/
- Yang, B. (2020, August 25). *Deep Reinforcement Learning for Automated Stock Trading*. Retrieved from Towards Data Science: https://towardsdatascience.com/deep-reinforcement-learning-for-automated-stock-trading-fldad0126a02
- Taylan Kabbani, E. D. (2022, July 05). *Deep Reinforcement Learning Approach for Trading Automation in The Stock Market*. Retrieved from arxiv.org: https://arxiv.org/abs/2208.07165
- Foy, P. (2021). *Deep Reinforcement Learning for Trading: Strategy Development & AutoML*. Retrieved from mlq.ai: https://www.mlq.ai/deep-reinforcement-learning-trading-strategies-automl/
- Hongyang Yang1, X.-Y. L. (2021, April). *Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy*. Retrieved from https://damoracapital.com/wp-content/uploads/2021/04/Deep-reinforcement-learning-for-Automated-Stock-trading-Ensemble-Strategy-ID3690996.pdf
- Kong, M. (2021, Jan 03). first_pagesettingsOrder Article Reprints Open AccessArticle Empirical Analysis of Automated Stock Trading Using Deep Reinforcement Learning. Retrieved from mdpi.com: https://www.mdpi.com/2076-3417/13/1/633
- Salvatore Carta, A. F. (2021, Feb). *Multi-DQN: An ensemble of Deep Q-learning agents for stock market forecasting*. Retrieved from sciencedirect.com: https://www.sciencedirect.com/science/article/abs/pii/S0957417420306321
- Yawei Li, 1. L. (2022, March 1). Stock Trading Strategies Based on Deep Reinforcement Learning. Retrieved from hindawi.com: https://www.hindawi.com/journals/sp/2022/4698656/

Undertaking from the PG student while submitting his/her final dissertation to his respective institute

Ref. No.	

I, the following student

Sr. No.	Sequence of students names on a dissertation	Students name	Name of the Institute & Place	Email & Mobile
1.	First Author	Avesh Kumar Bhati	SIG	Email:22070243005@sig.ac.in Mobile:7302436125

Note: Put additional rows in case of more number of students

hereby give an undertaking that the dissertation" Deep Q-Network Trader: Reinforcement Learning for Automated Trading" been checked for its Similarity Index/Plagiarism through Turnitin software tool; and that the document has been prepared by me and it is my original work and free of any plagiarism. It was found that:

1.	The Similarity Index (SI) was: (Note: SI range: 0 to 10%; if SI is >10%, then authors cannot communicate ms;	7%
2.	attachment of SI report is mandatory) The ethical clearance for research work conducted obtained from:	NA
	(Note: Name the consent obtaining body; if 'not appliable' then write so)	
3.	The source of funding for research was:	Self
	(Note: Name the funding agency; or write 'self' if no funding source is involved)	
4.	Conflict of interest:	No
	(Note: Tick $$ whichever is applicable)	
5.	The material (adopted text, tables, figures, graphs, etc.) as has been	Yes
	obtained from other sources, has been duly acknowledged in the	
	manuscript:	
	(Note: Tick $\sqrt{\ }$ whichever is applicable)	

In case if any of the above-furnished information is found false at any point in time, then the University authorities can take action as deemed fit against all of us.

Avesh Kumar Bhati

Dr. Vidya Patkar

Full Name & Signature of the student

Name & Signature of SIU Guide/Mentor

Date: 19 July 2023

Endorsement by Academic Integrity Committee (AIC)

Place: Pune

Turnitin Originality Report

Processed on: 19-Jul-2023 12:08 IST

ID: 2125058353 Word Count: 5469 Submitted: 4

Project Report By Avesh Kumar Bhati

Similarity Index

7%

Similarity Stuce

7%

Similarity by Source

Internet Sources:4%Publications:3%Student Papers:3%

1% match (student papers from 25-Apr-2023)

Submitted to University of Central Florida on 2023-04-25

1% match (Salvatore Carta, Anselmo Ferreira, Alessandro Sebastian Podda, Diego Reforgiato Recupero, Antonio Sanna. "Multi-DQN: an Ensemble of Deep Q-Learning Agents for Stock Market Forecasting", Expert Systems with Applications, 2020)

Salvatore Carta, Anselmo Ferreira, Alessandro Sebastian Podda, Diego Reforgiato Recupero, Antonio Sanna. "Multi-DQN: an Ensemble of Deep Q-Learning Agents for Stock Market Forecasting", Expert Systems with Applications, 2020

1% match (Internet from 24-Mar-2021)

https://www.ic.unicamp.br/~ra023169/publications/jp14.pdf

1% match (student papers from 01-May-2023)

Submitted to University of Bolton on 2023-05-01

< 1% match ("Intelligent Systems and Applications", Springer Science and Business Media LLC, 2020)

"Intelligent Systems and Applications", Springer Science and Business Media LLC, 2020

< 1% match (Internet from 08-Jul-2023)

https://link.springer.com/chapter/10.1007/978-3-031-36402-0 45?code=1af21d27-2c41-477a-b1ea-8209838d71a1&error=cookies not supported

< 1% match (Internet from 12-May-2023)

https://www.mdpi.com/2076-3417/13/1/633/htm

< 1% match (student papers from 19-Dec-2022)

Submitted to Birla Institute of Technology and Science Pilani on 2022-12-19

< 1% match (Internet from 27-May-2023)

https://fatcat.wiki/release/3u3wyd57gzh57liyumcknbaehy