Two Loop Matching for Quasi PDF

Yingsheng Huang

June 12, 2020

Contents

Renormalization	2
1.1 One loop diagrams	. 2
1.3 Numerical results for one loop diagrams $(z=1/4)$	
Real Diagrams	4
2.1 All diagrams	. 4
Virtual Diagrams (Excluding Gauge Link Self-Energy Diagrams)	23
3.1 All diagrams	. 23
3.2.2 Remaining diagrams (exclude conjugated ones)	
	۵.
	25
4.1 All diagrams	. 25
Diagrams with Direct Contracting $\bar{\psi}(z)\psi(0)$	27
5.1 All diagrams	
HQET Correspondence	27
	$ \begin{array}{c} 1.2 \text{Vertex corrections} \\ 1.3 \text{Numerical results for one loop diagrams } (z=1/4) \\ \hline \textbf{Real Diagrams} \\ 2.1 \text{All diagrams} \\ 2.2 \text{Amplitude test} \\ 2.3 \text{Numerical test (massless, ordered as Figure 2 and Figure 3, } z=1/4) \\ 2.3.1 \text{Self-conjugated} \\ 2.3.2 \text{Remaining diagrams} \\ 2.4 \text{Numerical test (ordered as Figure 2 and Figure 3, } z=1/4) \\ 2.4.1 \text{Self-conjugated} \\ 2.4.2 \text{Remaining diagrams} \\ \hline \textbf{Virtual Diagrams (Excluding Gauge Link Self-Energy Diagrams)} \\ 3.1 \text{All diagrams} \\ 3.2 \text{Numerical test (ordered as Figure 4 and Figure 3, } z=1/4) \\ 3.2.1 \text{Self-conjugated} \\ 3.2.2 \text{Remaining diagrams (exclude conjugated ones)} \\ \hline \textbf{Gauge Link Self-Energy Diagrams}} \\ 4.1 \text{All diagrams} \\ \hline \textbf{Diagrams with Direct Contracting } \bar{\psi}(z)\psi(0) \\ \hline 5.1 \text{All diagrams} \\ \hline \end{array}$

1 Renormalization

1.1 One loop diagrams

Figure 1: Diagrams of quasi PDF in Feynman gauge.

1.2 Vertex corrections

According to [Ji and Zhang(2015)], the vertex correction diagrams in axial gauge (which corresponds to varieties of diagrams in general covariant gauge) don't have total UV divergence. Rather, they only have subdivergence for subdiagrams. For example the first column (which involves Figure 3), second row of Table 1 in [Ji and Zhang(2015)] is composed of \tilde{q}_{11} and \tilde{q}_{12} , thus we can find some representative diagrams and extract those components ($l \equiv l_1 + l_2, \Delta l \equiv l_1 - l_2$)

Take the $l_1 \gg l_2$ limit, the integrand becomes

$$\frac{1}{[l_1 - m][(P - l_1)^2][l_1^2][l_2 - m][(P - l_2)^2][n \cdot (P - l_2)]}$$
 (2)

The integral involving l_2 is exactly the integral of \tilde{q}_{12} . By adding the gluon self-interacting vertex we can see that the sub-diagram is logarithmic divergent.

Take the $l_2 \gg l_1$ limit, the integrand becomes

$$\frac{1}{[l_1 - m][(P - l_1)^2][l_2^2][l_2 - m][(P - l_2)^2][n \cdot (P - l_2)]}$$
(3)

There's another limit where hard loop momentum flows through all paths except the one that's Δl in our current diagram. This configuration gives a finite integral and a power-divergent integral which happens to be a scaleless integral as well. Thus this configuration won't contribute.

What we extracted above is only the \tilde{q}_{12} part, now we will try on the \tilde{q}_{11} part

$$P + l_{2} \uparrow \downarrow \downarrow \downarrow P + l_{2}$$

$$P - l_{1} \circlearrowleft \uparrow \downarrow \downarrow \downarrow \downarrow P$$

$$P \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow P$$

$$\propto \int \frac{\mathrm{d}^{d}l_{1}}{(2\pi)^{d}} \frac{\mathrm{d}^{d}l_{2}}{(2\pi)^{d}} \frac{1}{[l_{1} - m][l_{1} + l_{2} - m][l_{2} + l_{2$$

In the $l_1 \gg l_2$ limit we have

$$\frac{1}{\left[l_{1}-m\right]\left[l_{1}-m\right]\left[(P-l_{1})^{2}\right]\left[\not P+l_{2}-m\right]\left[\not P+l_{2}-m\right]\left[l_{2}^{2}\right]}$$
(5)

and \tilde{q}_{11} is factorized out.

Another example is the sixth row

Take the $l_2 \gg l_1$ limit, the integrand becomes

$$\frac{1}{[l_1 - m][(P - l_1)^2][n \cdot (P - l_1)][n \cdot (P - l_1)][n \cdot l_2][(P - l_2)^2]}$$
(7)

and the integral involving l_2 should give something proportional to $n \cdot (P - l_1)$, thus cancels one eikonal propagator, the remainder is the integral of \tilde{q}_{12} .

1.3 Numerical results for one loop diagrams (z = 1/4)

2 Real Diagrams

2.1 All diagrams

Figure 2 lists all self-conjugated real diagrams, and Figure 3 lists all non-self-conjugated diagrams, excluding their conjugates.

Figure 2: All self-conjugated diagrams, red n.i marks the diagram number in Ji&Zhang's paper.

Figure 3: All real diagrams (excluding conjugated diagrams), xxx marks conjugated diagram number, red n.i marks the diagram number in Ji&Zhang's paper.

Figure 3: All real diagrams (excluding conjugated and self-conjugated diagrams), xxx marks conjugated diagram number, red n.i marks the diagram number in Ji&Zhang's paper.

2.2 Amplitude test

First we take diagram 2xv to test if the type of diagrams that is a sub-diagram involving only QCD Feynman rules on top of one loop diagram consist with our manual input.

The program gives

$$\begin{array}{l} \left(\delta_{\text{CI}(9) \text{ CI}(10)} \ \delta_{\text{CI}(11) \text{ CI}(12)} \ \delta_{\text{CI}(13) \text{ CI}(14)} \ g^{\text{LI}(9) \text{ LI}(10)} \ g^{\text{LI}(11) \text{ LI}(12)} \ g^{\text{LI}(13) \text{ LI}(14)} \ g_s^4 \ \text{MomC}(-\text{k1}) \ \text{n1}^{\text{LI}(9)} \ \text{n2}^{\text{LI}(11)} \ \text{ColorLine} \left(T_{\text{CI}(11)} . T_{\text{CI}(9)}, \{p, p\} \right) \\ \left(\left(g^{\text{LI}(10) \text{ LI}(13)} \ g^{\text{LI}(12) \text{ LI}(14)} - g^{\text{LI}(10) \text{ LI}(14)} \ g^{\text{LI}(2) \text{ LI}(13)} \right) f_{\text{e}\$19 \text{ CI}(13) \text{ CI}(14)} f_{\text{CI}(10) \text{ CI}(12) \text{ e}\$19} + \left(g^{\text{LI}(10) \text{ LI}(12)} \ g^{\text{LI}(13) \text{ LI}(14)} - g^{\text{LI}(10) \text{ LI}(14)} \ g^{\text{LI}(13) \text{ LI}(12)} \right) \\ f_{\text{e}\$20 \text{ CI}(12) \text{ CI}(14)} f_{\text{CI}(10) \text{ CI}(13) \text{ e}\$20} + \left(g^{\text{LI}(10) \text{ LI}(12)} \ g^{\text{LI}(14) \text{ LI}(13)} - g^{\text{LI}(10) \text{ LI}(12)} \right) f_{\text{e}\$21 \text{ CI}(12) \text{ CI}(13)} f_{\text{CI}(10) \text{ CI}(14) \text{ e}\$21} \right) \\ \text{SpinLine}(\gamma \cdot n, \{p, p\}) \right) / \left(2 \ \text{k2}^2 \ (-p - \text{pe})^2 \ (\text{k1} + p + \text{pe})^2 \ \text{n1} \cdot (p + \text{pe}) \ \text{n2} \cdot (p + \text{pe}) \right) \end{aligned}$$

which translates to

$$\begin{split} g_s^4 \delta(-k_1) \delta_{c13c14} g^{l13l14} n_1^{l10} n_1^{l12} t^{c10} t^{c12} & \bar{u}(P) /\!\!\!/ u(P) \\ & 2k_2^2 (-p - p_e)^2 (k_1 + p + p_e)^2 n_1 \cdot (p + p_e) n_2 \cdot (p + p_e) \\ & \left[\left(g^{l10l13} g^{l12l14} - g^{l10l14} g^{l12l13} \right) f^{e19c13c14} f^{c10c12e19} + \left(g^{l10l12} g^{l13l14} - g^{l10l14} g^{l13l12} \right) f^{e20c12c14} f^{c10c13e20} \right. \\ & \left. + \left(g^{l10l12} g^{l14l13} - g^{l10l13} g^{l14l12} \right) f^{e21c12c13} f^{c10c14e21} \right] \Big|_{p_e = -xP^z \to -p, p = P, n \to z, k_2 = l_2, n_1 = n_2 = n} \end{split}$$

Taking $k_1 = p + p_e - l_1$, the first line (that's excluding the four-gluon vertex) becomes

$$g_s^4 \delta(-k_1) \delta_{c13c14} g^{l13l14} n_1^{l10} n_1^{l12} t^{c10} t^{c12} \frac{\bar{u}(P) \not h u(P)}{2k_2^2 (-p - p_e)^2 (k_1 + p + p_e)^2 n_1 \cdot (p + p_e) n_2 \cdot (p + p_e)} \tag{8}$$

$$=g_s^4 \delta(l_1 - p - p_e) \delta_{c13c14} g^{l13l14} n_1^{l10} n_1^{l12} t^{c10} t^{c12} \frac{\bar{u}(P) \psi u(P)}{2l_2^2 (-p - p_e)^2 (2p + 2p_e - l_1)^2 n_1 \cdot (p + p_e) n_2 \cdot (p + p_e)}$$
(9)

$$=g_s^4 \delta(l_1 - p - p_e) \delta_{c13c14} g^{l13l14} n_1^{l10} n_1^{l12} t^{c10} t^{c12} \frac{\bar{u}(P) / u(P)}{2l_2^2 l_1^2 l_1^2 n_1 \cdot l_1 n_2 \cdot l_1}$$

$$\tag{10}$$

Diagram 2xv gives

$$\begin{split} &\frac{-ig_s^4}{2}\bar{u}(P)\not \eta u(P)\int \frac{\mathrm{d}^4l_1}{(2\pi)^4}\frac{\mathrm{d}^4l_2}{(2\pi)^4}n_\tau t^i \tilde{D}_G^{\tau\mu,ia}(l_1)\tilde{D}_G^{\sigma\lambda,dj}(l_1)\tilde{D}_G^{\nu\rho,bc}(l_2)n_\lambda t^j \frac{i}{n\cdot l_1+i\epsilon}\frac{i}{-n\cdot l_1+i\epsilon}\delta(l_1^z-(1-x)P^z)\\ &\left[f^{abe}f^{cde}\left(g^{\mu\rho}g^{\nu\sigma}-g^{\mu\sigma}g^{\nu\rho}\right)+f^{ace}f^{bde}\left(g^{\mu\nu}g^{\rho\sigma}-g^{\mu\sigma}g^{\nu\rho}\right)+f^{ade}f^{bce}\left(g^{\mu\nu}g^{\rho\sigma}-g^{\mu\rho}g^{\nu\sigma}\right)\right]\\ =&\underbrace{\frac{1}{(-1)^3i^6}g_s^4}\bar{u}(P)\not \eta u(P)\int \frac{\mathrm{d}^4l_1}{(2\pi)^4}\frac{\mathrm{d}^4l_2}{(2\pi)^4}\frac{n^\mu n^\sigma g^{\nu\rho}t^i\delta^{ia}t^j\delta^{dj}}{[l_1^2]^2[l_2^2][n\cdot l_1]^2}\delta(l_1^z-(1-x)P^z) \end{split} \tag{11}$$

 $\left[f^{abe}f^{cde}\left(g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho}\right) + f^{ace}f^{bde}\left(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho}\right) + f^{ade}f^{bce}\left(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma}\right)\right] \tag{12}$

Let's compare the color indices:

2.3 Numerical test (massless, ordered as Figure 2 and Figure 3, z = 1/4)

2.3.1 Self-conjugated

10

 $-((0.2026423672846755428877589264194553167160520680(3)*10^1)/ep)-0.13142890977(7)*10^2$

11

```
-((0.3609567167(4))/ep^2)-(0.16328193(1)*10^1)/ep-0.6455896(1)*10^1
```

11 xiong Not handled eqn.

```
26
                            -0.4052847345693513
26 xiong
                            -0.405285
27
                            -((0.1899772193(3)*10^{-1})/ep^2)+(0.871746(1)*10^{-2})/ep-0.4783185(9)*10^{-1})
27 xiong
\mathbf{52}
                             (0.2251581858718617143197321404660614630178356311(1)*10^-1)/ep^3+(0.302543(3)*10^-2)/ep^2
  \rightarrow -(0.947637(3)*10^-1)/ep-0.692705(2)-I
  \rightarrow 0.0(1)*10^-5
71
                            -((0.4052847345693510857755178528389106334321041360(3))/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.19519788014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2)-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951988014(4)*10^1)/ep^2-(0.1951989014(4)*10^2-(0.19519899014(4)*1
  \rightarrow -0.823627359(1)*10^1
71 xiong
87
                            -((0.7205061947899574858231428494913966816570740196(4))/ep)-0.5969939054(1)*10^1
87 xiong
100
                            -0.1801265486974893714557857123728491704142685049(1)
116
                            (0.6291855(4)*10^{-1})/ep^2-(0.5159034(4))/ep-0.1258567(2)*10^1
116 xiong Zero FIRE.py input file. AutoEnd Failed @ ALL possible bisections!
124
                            (0.2701898230462340571836785685592737556214027573(3))/ep+0.16983474990(6)*10^1
124 xiong
125
```

 $(0.5066059182(3)*10^-1)/ep^2+(0.19628268(1))/ep+0.76838637(9)$

```
125 xiong Not handled eqn.
128
        (0.7100744(2))/ep+0.1478379(1)*10<sup>1</sup>
128 xiong
129
        -((0.2725043(8)*10^{-1})/ep^2)-(0.1354903(1))/ep+0.265727(5)*10^{-1}
129 xiong
133
        (0.2880197(3)*10^-1)/ep^2-(0.1100423(3))/ep+0.1811499(1)*10^1
133 xiong AutoEnd Failed @ ALL possible bisections!
143
        0
143 xiong
144
        0
2.3.2 Remaining diagrams
2 Not handled eqn.
  1 Not handled eqn.
3
  83 Not handled eqn.
85 Not handled eqn.
  4
5 Zero FIRE.py input file.
  113 Zero FIRE.py input file.
```

```
7
                                                        0
               6
                                                        0
13
                                                          (0.16042520743(9))/ep^2-(0.24060641(3))/ep-0.5034791(3)
               14
                                                         (0.16042520743(9))/ep^2-(0.24060641(3))/ep-0.5034791(3)
16
                                                          (0.72172896(3)*10^{-1})/ep^2+(0.13916914(8))/ep+0.10188133(7)*10^{-1}
               18
                                                         (0.72172896(3)*10^-1)/ep^2+(0.13916914(8))/ep+0.10188133(7)*10^-1
25
                                                          (0.8443431970(5)*10^{-2})/ep^2+(0.99323076(2)*10^{-1})/ep+0.32267783(2)
               22
                                                          (0.8443431970(5)*10^{-2})/ep^2+(0.99323076(2)*10^{-1})/ep+0.32267783(2)
88
                                                        -((0.30021091(3)*10^{-1})/ep^3)+(0.11491921(3)+I 0.18862808(2))/ep^2+(0.1510373(2)*10^1+I 0.18862808(2))/ep^2+(0.1510372(2)*10^1+I 0.18862808(2))/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.15102)/ep^2+(0.1
                    0.13143394(4)*10^1)/ep+I 0.669150(1)*10^1+0.1158914(9)*10^2
               30
                                                        -((0.300210915(7)*10^{-1})/ep^3)+(-0.11023898(3)-I 0.18862808(1))/ep^2+(-0.5735834(7)-I 0.18862808(1))/ep^3+(-0.5735834(7)-I 0.18862808(1))/ep^3+(-0.5735844(7)-I 0.18862808(1))/ep^3+(-0.5735844(7)-I 0.18862808(1))/ep^3+(-0.5735844(7)-I 0.18862808(1))/ep^3+(-0.5735844(7)-I 0.18862808(1))/ep^3+(-0.573584(7)-I 0.18862808(1))/ep^3+(-0.573584(7)-I 0.18862808(1))/ep^3+(-0.573584(7)-I 0.18862808(1))/ep^3+(-0.573584(7)-I 0.18862808(1))/ep^3+(-0.573644(7)-I 0.18862808(1))/ep^3+(-0.573644(7)-I 0.18862808(1))/ep^3+(-0.57364(7)-I 0.18862808(1))/ep^3+(-0.57364(7)-I 0.18862808(1))/ep^3+(-0.57644(7)-I 0.18862808(1))/ep^3+(-0.57644(7)-I 0.18862808(1))/ep^3+(-0.57644(7)-I 0.18862808(1))/ep^3+(-0.57644(7)-I 0.18862808(1))/ep^3+(-0.5764(7)-I 0.18862808(1))/ep^3+(-0.5764(7)-I
                       0.13143394(4)*10^1)/ep-0.227073(4)*10^1-I 0.6691519(9)*10^1
31 Numbers overflow.
               106 Not handled eqn. Failed in GiNaC_Parallel!
               3.11
32 Numbers overflow.
               82 Not handled eqn.
              3.12
38
                                                        -((0.4503163717437234286394642809321229260356712622(3)*10^{-1})/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26393587(2)+I)/ep^2)+(-0.26395867(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2)+(-0.263967(2)+I)/ep^2+(-0.263967(2)+I)/ep^2+(-0.263967(2)+I)/ep^2+(-0.263967(2)+I)/ep^2+(-0.263967(2)+I)/ep^2+(-0.263967(2)+I)/ep^2+(-0.263967(2)+I)/ep^2+(-0.263967(2)+I)/ep^2+(-0.263967(2)+I)/ep^2+(-0.263967(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.26397(2)+I)/ep^2+(-0.2659(2)+I)/ep^2+(-0.2659(2)+I)/ep^2+(-0.2659(2)+I)/ep^2+(-0.2659(2)+I)/ep^2+I)/ep^2+(-0.2659(2)+I)/ep^2+II/ep^2+(-0.2659(2)+I)/ep^2+(-0.2
                      0.14147106(4))/ep-0.6590036(3)+I 0.6663843(5)
```

```
62
        -((0.4503163717437234286394642809321229260356712622(3)*10^{-1})/ep^2)+(-0.26393587(2)-I)/ep^2)
\rightarrow 0.14147106(1))/ep-0.65900358(7)-I 0.6663842(5)
89 (3MIs)
        (0.1801265486974893714557857123728491704142685049(1))/ep^2+(0.6273774024(2))/ep_1
   +0.2771696389(5)*10^1
  39 (2MIs)
        (0.1801265486974893714557857123728491704142685049(1))/ep^2+(0.6273774024(2))/ep_1
   +0.2771696389(5)*10^1
40
        -((0.558142 - 0.565884 I)/ep) - (3.52786 - 2.48104 I)
  97
        (-0.5581423(1)-I 0.565884242(3))/ep-I 0.24810455(5)*10^1-0.3527861(1)*10^1
  3.15
        -(0.360253/ep)
74 Zero FIRE.py input file.
  41 Failed in GiNaC_Parallel! power::eval(): division by zero.
54
        -((0.72050619478996(4))/ep)-I 0.226353697(2)*10^1-0.45289267(6)*10^1
  80
        -((0.720506194789957(2))/ep)+I 0.2263536968(3)*10^1-0.45289267(5)*10^1
  4.6
81
        (0.1801265486974894(3))/ep^2+(0.78974126(8)-I 0.56588424(2))/ep+0.2441972(1)*10^1-I
→ 0.24810455(7)*10^1
  55
        (0.18012654869749(3))/ep^2+(0.78974126(9)+I 0.565884242(4))/ep+0.24419718(8)*10^1+I
→ 0.24810453(5)*10^1
  3.14
84
        (0.1395356(1)+I 0.1414710(2))/ep^2+(0.6166541(5)+I 0.3512700(5))/ep+I
\rightarrow 0.1219312(2)*10^1+0.1898527(2)*10^1
```

```
56
                   (0.1395356(2)-I 0.1414711(2))/ep^2+(0.6166541(7)-I 0.3512700(8))/ep-I
 \rightarrow 0.1219311(2)*10^1+0.1898527(2)*10^1
     4.2
86
                   -((0.900632743487447(2)*10^{-1})/ep)+I 0.2829421211(4)-0.5661159(5)
     58
                   -((0.90063274348745(5)*10^{-1})/ep)-I 0.282942121(3)-0.56611583(7)
95
                   (0.2251581858718617(4)*10^{-1})/ep^2+(0.9871766(7)*10^{-1}-I)
 \rightarrow 0.70735530(2)*10^-1)/ep+0.305247(1)-I 0.3101307(3)
     59
                   (0.22515818587186(3)*10^{-1})/ep^2+(0.9871766(1)*10^{-1}+I)
       0.707355303(5)*10<sup>-1</sup>)/ep+0.3052465(1)+I 0.31013067(6)
60
                   (0.45031637(2)*10^{-1})/ep^2+(0.14234890(2)-I 0.70735530(8)*10^{-1})/ep+0.2902786(2)-I
       0.3562536(3)
     63
                   (0.4503163717437(1)*10^{-1})/ep^2+(0.14234890(7)+I 0.70735530(2)*10^{-1})/ep+0.2902786(8)+I
       0.3562535(2)
61
                   -((0.11257909294(3)*10^{-1})/ep^3)+(-0.141816(2)*10^{-1}+I
 \rightarrow 0.176839(2)*10^-1)/ep^2+(-0.61242(7)*10^-2+I 0.554395(8)*10^-1)/ep+0.120741(2)+I 0.225341(2)
     101
                   -((0.11257909293593(2)*10^{-1})/ep^3)+(-0.1418158(7)*10^{-1}-I)
      0.176838826(4)*10^{-1}/ep^2+(-0.61242(3)*10^{-2}-I 0.5543947(5)*10^{-1}/ep+0.120741(1)-I
       0.2253407(6)
64
                   0.31694700(3)*10^1)/ep+0.5380347(5)*10^1-I 0.17422348(5)*10^2
     104
                   (0.675474558(2)*10^{-1})/ep^3+(0.48750543(5)+I 0.42441318(1))/ep^2+(0.19366015(6)*10^1+I 0.42441318(1))/ep^2+(0.19366015(6)*10^2+I 0.42441318(1))/ep^2+(0.19366015(6)*10^2+I 0.42441318(1))/ep^2+(0.19366015(6)*10^2+I 0.42441318(1))/ep^2+(0.19366015(6)*10^2+I 0.42441318(1))/ep^2+(0.19366015(6)*10^2+I 0.42441318(1))/ep^2+(0.19366015(6)*10^2+I 0.424418(1)
       0.31694701(3)*10^1)/ep+0.2877105(4)*10^1+I 0.17422349(4)*10^2
136
     102 Not handled eqn.
```

```
103
        (0.750527286(1)*10^{-2})/ep^3+(0.13063137(6)*10^{-1}-I)
\rightarrow 0.1178926(2)*10^-1)/ep^2+(-0.281112(5)*10^-1+I 0.376194(2)*10^-1)/ep+I
\rightarrow 0.243805(2)-0.58512(3)*10^-1
  108
        (0.7505272862(2)*10^{-2})/ep^3+(0.13063137(6)*10^{-1}+I
\rightarrow 0.1178926(2)*10^-1)/ep^2+(-0.281109(4)*10^-1-I 0.376194(2)*10^-1)/ep-I
   0.243805(3) - 0.58513(2) * 10^{-1}
127
        -((0.7505272862(2)*10^{-2})/ep^{3})+(-0.3668912(2)*10^{-1}+I
\rightarrow 0.1178926(4)*10^-1)/ep^2+(-0.1256239(4)-I 0.376194(2)*10^-1)/ep-I 0.24381(1)-0.617659(3)
  105
        -((0.7505272862(1)*10^{-2})/ep^{3})+(-0.20284742(6)*10^{-1}-I)
\rightarrow 0.1178926(2)*10^-1)/ep^2+(0.569092(5)*10^-1+I 0.1103759(2))/ep+0.312777(2)+I 0.679341(2)
131
        -((0.21235731(2)*10^{-1})/ep^2)-(0.7878081(2)*10^{-1})/ep-0.4849994(2)
  110
        -((0.21235731(2)*10^{-1})/ep^2)-(0.7878081(2)*10^{-1})/ep-0.4849994(1)
121
        -((0.4503163717(1)*10^{-1})/ep^2)-(0.143889556(4))/ep-0.9841648(2)
  111
        -((0.4503163717(1)*10^-1)/ep^2)-(0.143889556(4))/ep-0.9841648(2)
126
        (0.10132118364(2))/ep^2+(0.154882861(5))/ep+0.8068632(2)
  117
        (0.10132118364(2))/ep^2+(0.154882861(5))/ep+0.8068632(2)
123
        -((0.2251581859(1)*10^{-1})/ep^2)+(0.27844106(4)*10^{-1})/ep+0.2197552(4)*10^{-1})
  119
        -((0.2251581859(1)*10^-1)/ep^2)+(0.27844106(4)*10^-1)/ep+0.2197552(4)*10^-1)
135
        (0.8824885(6)*10^{-2})/ep^{2}-(0.4259655(6)*10^{-1})/ep-0.1357314(2)
```

```
134
      (0.8824885(5)*10^{-2})/ep^{2}-(0.4259655(5)*10^{-1})/ep-0.1357314(2)
 3.4
142
      0
 139
      0
    Numerical test (ordered as Figure 2 and Figure 3, z = 1/4)
2.4.1 Self-conjugated
10
      -13.142892209573214 - 2.0264236728467586/ep
11
      (-0.721913433451656621537641175369309494168040468603083244938)
  \log^2(s) - 0.2836658516(3)*10^1 \log(s) - 0.327680(1)*10^1
11 xiong Not handled eqn.
      968.417+24.7655/ep
26
      -0.4052847345693513
26 xiong
      -0.405285
27
      log(s))/ep+0.0379954438658766642914547987036478574722246996482761990896 log^2(s)-0.1732949391(5)
   log(s)+0.174213(4)
27 xiong
      50.484+1.38493/ep
```

```
52 Not handled eqn.
        NAN=198 v.s. RUN=99
        smin = -1, optimized lambda NOT found!
        JPCquasiR: SD.cpp:3732: void HepLib::SD::Integrates(const char*, const char*, int):
        → Assertion false failed.
71
         \hbox{\tt (0.40528473456935108577551785283891061393612511304014832705485) }
    (-\log(s)) - 0.423786494(1))/ep+0.20264236728467554288775892641945530696806255652007416352742
    \log^2(s) - 0.1528192308(1)*10^1 \log(s) - 0.49684439(1)*10^1
71 xiong
(-0.405285 \log(s)-0.423787)/ep+0.202642 \log^2(s)-1.52819 \log(s)-4.96844
87
        -((0.7205061947899575(4))/ep)-0.5969939(1)*10^1
87 xiong
-5.96994 - 0.720506/ep
100
        -0.1801265486974893714557859019664687608595103043616168293442
116 Not handled eqn.
        Failed IDs: {12, 13, 20, 21, 22, }
116 xiong Zero FIRE.py input file. AutoEnd Failed @ ALL possible bisections!
124
        (0.270190 CV(1,3))/ep+1.69835 CV(1,3)
124 xiong
(0.27019 \text{ CV}(1,3))/\text{ep}+1.69835 \text{ CV}(1,3)
125 Not handled eqn.
        (CV(1,3) (0.101321 \log(s)+0.0158833))/ep+0.151982 (-CV(1,3)) \log^2(s)-I 0.318310 CV(1,3)
\rightarrow log(s)+0.473347 CV(1,3) log(s)+(0.0(5)*10^-7 CV(1,3))/s+(I 0.3(3)*10^-7 CV(1,3))/s+I
```

 $0.48(4)*10^{1} \text{ CV}(1,3)+0.83(4)*10^{1} \text{ CV}(1,3)$

125 xiong Not handled eqn.

```
128
                     -((0.0(5)*10^{-7} \text{ CV}(1,3))/\text{ep}^2)+((0.81056947(3) \text{ CV}(1,3))/\text{s}+0.0(4)*10^{-7} \text{ CV}(1,3))
 \rightarrow log(s)+0.2026424(3) CV(1,3))/ep+0.5074321(1) CV(1,3) log(s)-(0.810569 CV(1,3)
          \log(s)/s+(0.45612729(2)*10^1 \text{ CV}(1,3))/s+0.0(2)*10^-7 \text{ (-CV}(1,3)) \log^2(s)+0.13766891(1)*10^2
         CV(1,3)
128 xiong
                     ((0.810569 \text{ CV}(1,3))/\text{s}+0.202642 \text{ CV}(1,3))/\text{ep}+(4.56127 \text{ CV}(1,3))/\text{s}-(0.810569 \text{ CV}(1,3))
       \log(s))/s+0.507432 CV(1,3) \log(s)+13.7669 CV(1,3)
129 Not handled eqn.
                     ((0.500352 \text{ CV}(1,3))/\text{s}+0.500352 \text{ CV}(1,3)+(0.0180127 -2.54985*10^-8)
 \rightarrow I)/s-(9.42776*10^-8+7.15663*10^-8 I))/ep+(2.78522 CV(1,3))/s-(0.500352 CV(1,3))
          \log(s)/s-0.500352 CV(1,3) \log(s)+2.78522 CV(1,3)+(0.526293 -0.0565893 I)/s+(0.0725309 -0.0568893 I)/s+(0.072530 -0.0568893 I)/s+(0.07250 -0.0568893 I)/s+(0.07250 -0.0568893 I)/s+(0.07250 -0.0568893 I)/s+(0.07250 -0.0568893 I)/s+(0.07250 -0.0568893 I)/s+(0.072530 -0.0568893 I)/s+(0.072530 -0.0568893 I)/s+(0.07250 -0.0568893 I)/s+(0.07250 -0.0568893 I)/s+(0.07250 -0.0568893 I)/s+(0.07250 -0.0568893 I)/s+(0.07250 -0.0568891 I)/s+(0.07250 -0.0568891 I)/s+(0.07250 -0.056
        -4.81307*10^-8 I) log(s)+(0.253132 -0.452708 I)+(0.148304 log(s))/s
129 xiong
((0.810569 \text{ CV}(1,3))/\text{s}+0.202642 \text{ CV}(1,3))/\text{ep}+(4.56127 \text{ CV}(1,3))/\text{s}-(0.810569 \text{ CV}(1,3) \log(\text{s}))/\text{s}+0.507432
 \rightarrow CV(1,3) log(s)+13.7669 CV(1,3)
133 Not handled eqn.
                     AutoEnd Failed O ALL possible bisections!
                     JPCquasiR: SD.cpp:138: std::vector<std::pair<GiNaC::container<std::list>,

    GiNaC::container<std::list> > >

                      → >): Assertion false failed.
133 xiong AutoEnd Failed @ ALL possible bisections!
143
                     0
143 xiong
AutoEnd Failed @ ALL possible bisections!
144
                     0
2.4.2 Remaining diagrams
\mathbf{2}
```

```
1 Not handled eqn.
                                      -((0.455945 \log(s)+0.2886892(1)+I 0.143239449(8)*10^1)/ep^2)-(0.227973 (-s) \log^2(s)+s)
                (0.0(1)*10^6-I 0.3(3)*10^6)+(1.21585+s (0.424773500(9)*10^1+I 0.15915495(6)))
                  log(s)+0.0(1)*10^6-I 0.3(2)*10^6)/(ep s)-(3.64756 log(s))/s^2-(0.0(4)*10^6)/s^2+(I s)
                  1.0(7)*10^{6}/s^{2}-0.0759909 \log^{3}(s)+(0.607927 \log^{2}(s))/s-(22.2444 \log(s))/s+(0.0(2)*10^{7})/s+(1.0(7)*10^{6})/s^{2}-0.0759909 \log^{3}(s)+(0.607927 \log^{2}(s))/s-(22.2444 \log(s))/s+(0.0(2)*10^{7})/s+(1.0(3)*10^{6})/s^{2}-0.0759909 \log^{3}(s)+(0.607927 \log^{2}(s))/s-(22.2444 \log(s))/s+(0.0(2)*10^{7})/s+(1.0(3)*10^{6})/s^{2}-0.0759909 \log^{3}(s)+(0.607927 \log^{2}(s))/s-(22.2444 \log(s))/s+(0.0(2)*10^{7})/s+(1.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/s+(0.0(3)*10^{6})/
               0.2(4)*10^7)/s+I 0.7957747(3)*10^-1 log^2(s)+0.212386750(4)*10^1 log^2(s)-I 0.13271482(2)*10^1
                  log(s)-0.214233808(5)*10^2 log(s)+0.1(2)*10^7+I 0.3(4)*10^7
3
                                      -((2.67042 +2.12028 I)/s^2)-((0.260912 -1.01859 I) log(s))/s^2+(14.6734 +1.31932 I) log(s))/s^2+(14.6734 +1.31932 I) log(s)/s^2+(14.6734 +1.31932 I) log(s)/
                I)/s-((0.324228 +3.72868*10^-9 I) log^2(s))/s+(0.222907 -5.53015*10^-9 I) log^2(s)+((0.881442
                  -3.43775 I) log(s))/s+(0.673891 -1.68704 I) log(s)+(13.4354 -26.5232
             I)+(-((4.70467*10^-9+1.04672*10^-9 I)/s^2)-(1.49279*10^-8+4.88207*10^-9 I)/s^2)
             I)/s+(-3.02109*10^-8-6.73934*10^-9 I))/ep^2+(1/ep)(-((2.61261*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.68009*10^-8+1.
             1)/s^2-((4.70467*10^-9+1.04672*10^-9 I) \log(s))/s^2-(1.30934*10^-7+9.62535*10^-8)
                  I)/s-((1.49279*10^-8+4.88207*10^-9 I) log(s))/s-(3.02109*10^-8+6.73934*10^-9 I)
              \log(s) - (3.63837*10^{-7}+2.4728*10^{-7} I)) - ((3.64128*10^{-9}+8.50597*10^{-10} I) \log^{2}(s))/s^{2}
          83 Not handled eqn.
85 Not handled eqn.
          4
                                      -((2.42703 - 0.625114 \text{ I})/\text{s}) + ((0.0810569 - 3.18897*10^-9 \text{ I}) \log^2(\text{s}))/\text{s} - (0.0405285)
              +2.8617*10^{-9} I) log^{2}(s)+((0.0994902 +1.01859 I) log(s))/s+(0.0313118 -0.509296 I)
                 log(s)+(1.1822 +0.196737 I)+((-5.16401*10^-10-3.70072*10^-9 I)-(5.50793*10^-10+3.94743*10^-9
                 I)/s)/ep^2+(-((2.78596*10^-8+7.69087*10^-8 I)/s)-((5.50793*10^-10+3.94743*10^-9 I)
```

```
-((2.42703 -0.625114 I)/s)+((0.0810569 -3.18897*10^-9 I) log^2(s))/s-(0.0405285

+2.8617*10^-9 I) log^2(s)+((0.0994902 +1.01859 I) log(s))/s+(0.0313118 -0.509296 I)

log(s)+(1.1822 +0.196737 I)+((-5.16401*10^-10-3.70072*10^-9 I)-(5.50793*10^-10+3.94743*10^-9 I)

log(s)+(2.78596*10^-8+7.69087*10^-8 I)/s)-((5.50793*10^-10+3.94743*10^-9 I)

log(s))/s-(5.16401*10^-10+3.70072*10^-9 I) log(s)-(3.69889*10^-8+6.98559*10^-8 I))/ep

5

(-((0.3419589947928899786230931883328307387152218491(3))/s)-0.12918450914(7)*10^1)/ep^2+(1/ep)(-((0.1 log^2(s)+(0.34195899479288997862309318833283074349804313682(7)

log(s))/s-(0.8382561761(1)*10^1)/s+0.12918450914(6)*10^1

log(s)-0.1470414820(6)*10^2)-(0.3077630953136009807607838694995476650620431481(3)*10^1)/s^3-(0.3540645512 log(s))/s^2+0.11398633159762999287436439611094360171680492877(1)

log^3(s)-(0.51293849218933496793463978249924613414931972596(7)

log^2(s))/s-(0.132919978(2)*10^3)/s-0.19124846658(3)*10^1 log^2(s)+(0.104343157298(2)*10^2 log(s))/s+0.2985081056(3)*10^2 log(s)-0.17571608(1)*10^3
```

 $\log^3(s) - (0.51293849218933496793463978249924612373111577138(6)$ $\log^2(s))/s - (0.166808716(2)*10^3)/s - 0.24887488978(3)*10^1 \log^2(s) + (0.119731312064(2)*10^2)$

 $\rightarrow \log(s))/s+0.3760146151(3)*10^2 \log(s)-0.22781445(1)*10^3$

7

0

```
6
                  0
     4.9
                  0
13 Zero FIRE.py input file.
     14
                   (0.108076/s^2-0.770041/s)/ep+1.09363/s^2-6.67758/s-1.08404*10^-6
16
                  -((0.211474 +1.27324 I)/s^2)+(2.28897 -1.08225 I)/s-(4.7286 -0.668451 I)
       I)+(-(6.7167*10^{-16}/s^{2})+0.486342/s-0.729513)/ep-(3.00378*10^{-16}log(s))/s^{2}-(0.486342)
      log(s))/s+0.729513 log(s)
     18 Zero FIRE.py input file.
25 Zero FIRE.py input file.
     22
                   (0.0810569/s-0.054038/s^2)/ep-0.411721/s^2+0.617579/s
88 Zero FIRE.py input file.
     30
                  -((0.394011 +1.25922*10^{-8} I)/s)+(0.782248 -2.46415*10^{-8} I)+(0.168118 log(s))/s-0.354249
      log(s)
31 Numbers overflow.
                  -((0.162114 +1.91875*10^{-8} I)/ep^3)+(-0.324228 log(s)-(92.0766 +2.65448 I))/ep^2+1/ep
       (-((158.541 +3.48593 I)/s)+(32.6052 +0.63662 I) log(s)-0.0405285 log^2(s)-(1.58061 I) log(s)
 \rightarrow log(s))/s-(1.91238*10^10+1.98727*10^10 I))-(475.619 +10.4578 I)/s^2-(12502.7 +1351.46
 \rightarrow I)/s-(16.9633 +0.31831 I) log^2(s)-(4.74183 log(s))/s^2+0.148604 log^3(s)+(0.790305 log(s)+(0.790305 log(s))/s^2+0.148604 log(s)+(0.790305 log(
 \rightarrow log^2(s))/s+(81.2751 log(s))/s+(4.05197*10^10-6.80923*10^10 I)
      log(s)+(6.59315*10^13-1.55809*10^14 I)
     106 Not handled eqn. Failed in GiNaC_Parallel!
     3.11
32 Numbers overflow.
                  -((0.162114 +1.91875*10^{-8} I)/ep^3)+(-0.324228 log(s)-(92.0766 +2.65448 I))/ep^2+1/ep
      (-((158.541 +3.48593 I)/s)+(32.6052 +0.63662 I) log(s)-0.0405285 log^2(s)-(1.58061 I) log(s)
 \rightarrow log(s))/s-(1.91238*10^10+1.98727*10^10 I))-(475.619 +10.4578 I)/s^2-(12502.7 +1351.46
 \rightarrow I)/s-(16.9633 +0.31831 I) log^2(s)-(4.74183 log(s))/s^2+0.148604 log^3(s)+(0.790305
 \rightarrow \log^2(s))/s + (81.2751 \log(s))/s + (4.05197*10^10-6.80923*10^10 I)
 \rightarrow log(s)+(6.59315*10^13-1.55809*10^14 I)
```

```
82 Not handled eqn.
  3.12
31 + 32
38 Zero FIRE.py input file.
  62 Zero FIRE.py input file.
89 Divergent integrand.
  39 Divergent integrand.
40
        -((0.3602531(6))/ep)+0.1978893(4) (-log(s))+I 0.5658842(7) log(s)-I
  0.72868(2)-0.170150(1)*10^1
  97
        -((0.3602531(4))/ep)+0.1978892(3) (-log(s))-I 0.5658841(5) log(s)+I
\rightarrow 0.72868(1)-0.170150(1)*10^1
  3.15
        -(0.360253/ep)
74 Zero FIRE.py input file.
  41 Failed in GiNaC_Parallel! power::eval(): division by zero.
54
        -((0.72050619478996(4))/ep)-I 0.226353697(2)*10^1-0.45289267(6)*10^1
  80
        -((0.720506194789957(2))/ep)+I 0.2263536968(3)*10^1-0.4528927(6)*10^1
  4.6
        -2*(0.720506/ep)
81
        ((0.180127 -9.13154*10^{-9} I) log(s)-(0.231946 +7.6754*10^{-8} I))/ep+(1.02169 -0.565884 I)
   log(s)-(0.815813 -0.728676 I)-(5.2095*10^-10+1.21468*10^-8 I)/ep^2+(-0.0900633-4.02323*10^-9 I)
   log^2(s)
  55
        ((0.288202 -2.40402*10^{-8} I)/s-(0.432304 +3.26984*10^{-8} I))/ep+(1.81157 +0.905414)
\rightarrow I)/s-(2.71736 +1.35812 I)
```

```
3.14
                    2*(0.180127 \log(s)-0.231946)/ep
84
                     (-0.900633(1)*10^{-1} log(s)-0.154217(3)-I 0.0(4)*10^{-5})/ep+I 0.14147106(8)
       \log^2(s) + 0.27463050(8) \log^2(s) - I 0.364339(2) \log(s) - 0.823115(2) \log(s) + I
       0.2156(8)-0.11134(8)*10^1
     56
                     (-0.1125791(1) \log(s)+I 0.0(3)*10^{-5}-0.80192(3)*10^{-1})/ep-I 0.1414711(1)
       \log^2(s) + 0.2858884(1) \log^2(s) + I 0.364340(2) \log(s) - 0.975562(2) \log(s) - 0.66278(3) - I 0.0(5) * 10^{-10}
     4.2
                    2*(0.115973 -0.0900633 log(s))/ep
86
                    -((0.900632743487447(2)*10^{-1})/ep)+I 0.2829421211(4)-0.566116(6)
     58
                    -((0.9006327434874(2)*10^{-1})/ep)-I 0.282942121(3)-0.56611583(7)
     4.7
                    -2*(0.0900633/ep)
95
                     (0.225158185872(7)*10^{-1} \log(s)-0.289932(5)*10^{-1}/ep+0.1277109(3)
       \log(s) - 0.112579092936(3)*10^{-1} \log^2(s) - I 0.707355(5)*10^{-1} \log(s) - 0.10198(1) + I 0.9108(1)*10^{-1}
     59
                     (0.22515818587186171431973214046606133(7)*10^{-1} log(s)-0.289932(5)*10^{-1})/ep+0.1277109(2)
       \log(s) - 0.11257909293593085715986607023303066(3)*10^{-1} \log^2(s) + I 0.707355(2)*10^{-1}
        log(s)-0.101977(9)-I 0.9108(1)*10^-1
     4.1
                    2*(0.0289932 -0.0225158 log(s))/ep
60 Zero FIRE.py input file.
     63 Zero FIRE.py input file.
61
                     ((0.0249708 +0.0565884 I)/s-(0.0409356 +0.113177 I)-(0.0180127 log(s))/s+0.0360253
          log(s))/ep+(0.121805 +0.302986 I)/s-((0.0819104 +0.0282942 I) log(s))/s+(0.123545 +0.12025 I)
          \log(s) - (0.132015 + 0.412085 \text{ I}) + ((-1.70997*10^{-8} - 7.51261*10^{-9} \text{ I}) - (3.80204*10^{-}10+2.72486*10^{-9} \text{ I}) - (3.80204*10^{-9} \text{ I}) - (3.80204*1
          I)/s)/ep^2-1.51762*10^-7/s^2+(0.00900633 log^2(s))/s-0.0180127 log^2(s)
```

```
101
        \rightarrow I) log(s)-(0.0200969 -0.045542 I)-(1.32299*10^-8+4.49679*10^-9 I)/s+(-0.0112579-3.05202*10^-9 I)
\rightarrow log^2(s))/ep+(0.0112579 -9.07187*10^-10 I) log^3(s)-(0.0593367 -0.0353677 I) log^2(s)+(0.0923378 -0.0353677 I)
\rightarrow -0.190433 I) log(s)-(0.0423955 -0.117755 I)-(1.47432*10^-10+8.25276*10^-9
\rightarrow I)/ep^3-(4.6093*10^-7+4.84678*10^-8 I)/s
64 Zero FIRE.py input file.
  104 Zero FIRE.py input file.
136
        (-((0.00499433 + 0.0113178 I)/s) + (0.000695404 + 0.00565863 I) + (0.00360253 log(s))/s - 0.00180128
\rightarrow log(s))/ep+(0.232843 -0.0984924 I)/s+((0.0363448 +0.0226354 I) log(s))/s+(0.0153548
\rightarrow -1.05329*10^-7 I) log(s)-(0.653916 -3.42529 I)+((-1.16122*10^-8-2.31214*10^-9)
\rightarrow I)-(4.75779*10^-9+2.54986*10^-9 I)/s)/ep^2-2.41702*10^-7/s^2-(0.0054038 log^2(s))/s+0.00270189
\rightarrow log<sup>2</sup>(s)
  102 Not handled eqn.
103 Zero FIRE.py input file.
  108 Zero FIRE.py input file.
127 Zero FIRE.py input file.
  105 Zero FIRE.py input file.
131
        (0.027019 - 0.0180127/s)/ep+0.0890396/s+(0.0180127 log(s))/s-0.027019 log(s)+0.197988
  110 Zero FIRE.py input file.
121 Zero FIRE.py input file.
  111 Zero FIRE.py input file.
126
        -(0.478416/(ep s))-3.57259/s+(0.478416 log(s))/s
  117
        (0.337737 \log(s)+(12.5141 +0.065117 I))/ep+(4.9247 +0.043133 I)/s-(7.6631 +0.248286 I)
\rightarrow log(s)+(960.52 -2.012 I)-0.371511 log^2(s)+(0.0506606 log(s))/s
123 Zero FIRE.py input file.
  119
        ((0.108076 \text{ CV}(1,3))/\text{s}-(0.0720506 \text{ CV}(1,3))/\text{s}^2)/\text{ep}-(0.621011 \text{ CV}(1,3))/\text{s}^2-(0.221294)
\rightarrow CV(1,3))/s+0.51236 CV(1,3) log(s)+0.289007 CV(1,3)
```

```
135
```

```
\rightarrow 791698673512155(5)*10^-1)/s)+0.328355687729798333382942704846342(2)*10^-1
 \rightarrow log(s)+0.1195769047(6))/ep-(0.6649202676528416251004589773138375479731914560(6)*10^-1)/s^2-(0.4]
 \rightarrow 6125458376(8))/s-0.403111986217495687167289442761083(2)*10^-1
 \rightarrow log^2(s)+(0.22164008921761387503348632577127917203974334809(4)*10^-1
 \rightarrow log(s))/s-0.275899853(5)*10^-1 log(s)+0.935583(2)
       134
                          (0.93815910779942380966555(8)*10^-3)/ep^2+(-((0.1583143494(1)*10^-1)/s)+0.24392136802785019
         0513043(1)*10^-1
 \rightarrow log(s)+0.1710538662(7))/ep-(0.4749430483234583036431849837955982459939784269(4)*10^-1)/s^2-(0.3]
 \rightarrow 21325679(2))/s - 0.339786246441034580014865(1)*10^{-1} log^2(s) + (0.15831434944(1)*10^{-1} log^2(s) + (0.1583144848(1)*10^{-1} log^2(s) + (0.1583144848(1)*10^{-1} log^2(s) + (0.158314488(1)*10^{-1} log^2(s) + (0.15831488(1)*10^{-1} log^2(s) + (0.15831488(1)*10^{-1} log^2(s) + (0.15831488(1)*10^{-1} log^2(s) + (0.15831488(1)*10^{-1} log^2(s) + (0.15841488(1)*10^{-1} log^2(s
         \log(s)/s-0.917320947(5)*10^-1 \log(s)+0.1254593(2)*10^1
142
                          0
       139
                          0
```

3 Virtual Diagrams (Excluding Gauge Link Self-Energy Diagrams)

3.1 All diagrams

Figure 4: All self-conjugated virtual diagrams (actually there's only one).

Figure 5: All virtual diagrams (excluding conjugated and self-conjugated diagrams), red n.i marks the diagram number in Ji&Zhang's paper.

- 3.2 Numerical test (ordered as Figure 4 and Figure 3, z = 1/4)
- 3.2.1 Self-conjugated

75

3.2.2 Remaining diagrams (exclude conjugated ones)

4 Gauge Link Self-Energy Diagrams

4.1 All diagrams

Figure 6: All self-conjugated gauge link self-energy diagrams (actually there's only one).

Figure 7: All gauge link self-energy diagrams (excluding conjugated and self-conjugated diagrams), red n.i marks the diagram number in Ji&Zhang's paper.

5 Diagrams with Direct Contracting $\bar{\psi}(z)\psi(0)$

5.1 All diagrams

Figure 8: All self-conjugated quark contraction diagrams

Figure 9: All quark contraction diagrams (excluding conjugated and self-conjugated diagrams).

6 HQET Correspondence

References

[Ji and Zhang(2015)] X. Ji and J.-H. Zhang, Phys. Rev. **D92**, 034006 (2015), arXiv:1505.07699 [hep-ph] .