Improving algorithmic alignment with autoregressive memory

Nikita Okhotnikov

2024

Introduction

Algorithmic alignment

Definition 1

 $\varepsilon>0$ – error parameter, $\delta\in(0,1)$ – error probability. $\{x_i,y_i\}_{i=1}^M$ – i.i.d from $\mathcal D$ and $y_i=g(x_i)$ for some function g. Let $f=\mathcal A(\{x_i,y_i\}_{i=1}^M)$ be the function generated by a learning algorithm $\mathcal A$. Then g is (M,ε,δ) -learnable with $\mathcal A$ if

$$\mathbb{P}_{x \sim \mathcal{D}}\left[\|f(x) - g(x)\| \le \varepsilon\right] \ge 1 - \delta$$

Definition 2

Sample complexity $\mathcal{C}_{\mathcal{A}}(g,\varepsilon,\delta)$ is the minimum M so that g is (M,ε,δ) -learnable with \mathcal{A} .

Definition 3

Let g be a reasoning function, \mathcal{N} – neural network with n modules \mathcal{N}_i . Module functions f_1,\ldots,f_n generate g for \mathcal{N} if, by replacing \mathcal{N}_i with f_i , the network \mathcal{N} simulates g. Then \mathcal{N} (M,ε,δ) -algorithmically aligns with g if f_1,\ldots,f_n generate g and there are learning algorithms \mathcal{A}_i for the \mathcal{N}_i such that $n\cdot\max_i \mathcal{C}_{\mathcal{A}_i}(f_i,\varepsilon,\delta)\leq M$.

Algorithmic alignment impoves sample complexity

Theorem 1 (Keyulu Xu, et. al. 2020)

 \mathcal{A} – an overparameterized and randomly initialized 2-layer MLP trained with GD for a sufficient number of iterations. Suppose $g: \mathbb{R}^d \to \mathbb{R}^m$ with

components $g(x)^{(i)} = \sum_{j} \alpha_{j}^{(i)} \left(\beta_{j}^{(i)\top} x\right)^{p_{j}^{(i)}}$, where $\beta_{j}^{(i)} \in \mathbb{R}^{d}$, $\alpha \in \mathbb{R}$ and $p_{j}^{(i)} = 1$ or $p_{j}^{(i)} = 2I$, $(I \in \mathbb{N})$. Then the sample complexity $\mathcal{C}(g, \varepsilon, \delta)$ is

$$C_{\mathcal{A}}(g,\varepsilon,\delta) = O\left(\frac{\max_{i} \sum_{j=1}^{K} p_{j}^{(i)} |\alpha_{j}^{(i)}| \cdot \|\beta_{j}^{(i)}\|_{2}^{p_{j}^{(i)}} + \log(m/\delta)}{(\varepsilon/m)^{2}}\right)$$

Theorem 2 (Keyulu Xu, et. al. 2020)

For some ε, δ suppose $\{S_i, y_i\}_{i=1}^M \sim \mathcal{D}, \ |S_i| < N, \ y_i = g(S_i) \ \text{for some } g$. Suppose $\mathcal{N}_1 \dots \mathcal{N}_n$ are sequential MLP modules of \mathcal{N} . Suppose \mathcal{N} and g (M, ε, δ) -algorithmically align via $f_1 \dots f_n$. Then g is $(M, O(\varepsilon), O(\delta))$ -learnable by \mathcal{N} .

Corollary 1

Suppose universe S has n objects $x_1 \dots x_n$ and $g(S) = \sum_{i,j} (x_i - x_j)^2$. Then the sample complexity of MLP is $O(n^2)$ times larger than that of GNN.

Neural algorithmic reasoning, processor network

- ► Trained to follow trajectory of classical algorithm
- Aligns poorly with multiple algorithms at once
- Needs implicit hints on each step to enforce trajectory following

Processor network with autoregressive memory

$$L = -\sum_{X \in \mathcal{X}} \sum_{X_{a} \in \mathcal{X}_{X}} \log \frac{\exp \left(\sum_{t=1}^{T} \phi\left(M_{t}^{X}, M_{t}^{X_{a}}\right)\right)}{\exp \left(\sum_{t=1}^{T} \phi\left(M_{t}^{X}, M_{t}^{X_{a}}\right)\right) + \sum\limits_{\overline{X_{a}} \in \mathcal{X}_{X}} \exp \left(\sum_{t=1}^{T} \phi\left(M_{t}^{X}, M_{t}^{\overline{X_{a}}}\right)\right)}$$

 \mathcal{X} – set of inputs, $M_t^X \in \mathbb{R}^k$ – the «idea» generated on step t for input X, \mathcal{X}_X – set of inputs similar to X, $\overline{\mathcal{X}_X}$ – set of inputs dissimilar to X

Processor network with autoregressive memory

- Mimics the step-by-step behaviour of classical algorithms not the exact trajectories
- ▶ Much less constraint compared to usual hint-prediction approach
- ► Does not require explicit hints
- ► Force processor to extract similar features («ideas») for similar algorithms at each step that might help with multi-algorithm learning