For this homework, you will be using *Matlab* (or the free and open-source version of *Matlab* called *Octave*). Include a clearly-labeled printout of the work you did in Matlab for each problem.

You can read through

http://web.gps.caltech.edu/classes/ge11d/doc/matlab_Resource_Seminar.pdf for a short Matlab introduction. For additional documentation, see the Matlab website http://www.mathworks.com/help/matlab/index.html

Quick Tips:

- You can supress Matlab output by adding a ';' to the end of your Matlab command (this is useful for Matlab commands executed in loops).
- You can save plots/figures from the figure's dialog by selecting 'Save as' and then choosing png or jpg in the file-types dropdown.
- You can include Matlab code in LATEX by copying and pasting it between \begin{verbatim} ... \end{verbatim}.
- 1. Find the general solution to the system of equations corresponding to each augmented matrix.

$$\begin{bmatrix} 1 & 11 & -22 & 0 & 3 & 1 \\ 5244 & 1542 & -3084 & 576 & 16308 & 2 \\ 108 & 1188 & -2376 & 0 & 324 & 3 \\ 264 & 465 & -930 & 25 & 817 & 4 \\ 2166 & 3729 & -7458 & 206 & 6704 & 5 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 7 & 3 & 2 & 3 & 7 & 1 \\ 9 & 3 & 2 & 1 & 10 & 2 \\ 7 & 5 & 2 & 2 & 8 & 3 \\ 4 & 10 & 3 & 1 & 10 & 4 \\ 4 & 6 & 1 & 3 & 9 & 5 \end{bmatrix}$$

- 2. Although the rref command will row-reduce for you, Matlab makes it easy to row reduce "by hand." If A is a matrix, the row operation $R_2 \mapsto R_2 6R_1$ can be performed with the command A(2,:)=A(2,:)-6*A(1,:) and other row operations can be performed similarly.
 - (a) Consider the 3×3 matrix $A = \begin{bmatrix} 1 & 4 & 0 \\ 1 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. You only need to perform two row operations to fully reduce A. Call these two operations $B^{(1)}$ and $B^{(2)}$.

perform two row operations to fully reduce A. Call these two operations $R^{(1)}$ and $R^{(2)}$. Use Matlab to perform those row operations on A; also, perform the same row operations on B (effectively, un-row reducing B) and call the result B'.

- (b) Let $B_1 = R^{(1)}(B)$ and $B_2 = R^{(2)}(B)$ be the matrices obtained from B by applying the two row operations in isolation (in Matlab, you can name variables B1 and B2 if you like). What happens when you perform the matrix product B_1A ? How about B_2A ? And B_2B_1A ? Finally, compute B'A. Explain your results.
- (c) Let $X = \begin{bmatrix} 2 & 1 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 4 \end{bmatrix}$. Find a matrix Y so that YX = rref(X).
- 3. A loop in Matlab/Octave is written with the

for i=1:n,
 [loop content]
end

syntax.

For example, if we want the variable x to be an accumulated sum of squares from 1^2 to 15^2 (that is $x = 1^2 + 2^2 + \cdots + 15^2$), we could write

```
x=0;
for i=1:15,
    x = x + i^2;
end
```

After executing this code x will be the value 1240. The code works as follows: first we assign the value 0 to x. Then we enter the loop. In the first iteration, when i is 1, the new value of x will be the current value, 0, plus 1^2 . The next time through the loop, i is 2 and so we assign x to be the current value, 1^2 , plus 2^2 , etc.. Once we have looped through with the value of i being 15, we stop.

If statements are written with the

```
if [var] == [val],
     [if content]
end
```

syntax (note the double equals).

For example, if we wanted x to be the sum of the squares of only the even numbers between 1 and 15, we might write:

```
x=0;
for i=1:15,
    if round(i/2) == i/2,
        x = x + i^2;
    end
end
```

Here, round(i/2)==i/2 is true when i/2 has no decimal places and so it is even. Thus, when that happens (and only when that happens) we add the value i^2 to x.

Question:

(a) The command rand(3,1) will generate a random 3×1 column vector. Find out what percentage of random triples of vectors $\{\vec{a}, \vec{b}, \vec{c}\}$ are linearly independent. Sample at least 1000 random triples to gather a statistic.

Consider your result and come up with an explanation of why you got the percentage you did.

Tips: Build a loop to test this 1000 times, but start out with a much smaller loop; use ';' inside your loop so you don't get a bunch of unhelpful information printed to the screen; and use Matlab's built-in commands to help you like **rref** to row reduce, **rank** to find the rank, or **rand(3,3)** to make a 3 × 3 matrix of random numbers.

(b) The command round(rand(3,1)) will generate a random 3×1 column vector of just zeros and ones. Find out what percentage of random triples $\{\vec{a}, \vec{b}, \vec{c}\}$ of zero-one vectors are linearly independent. Sample at least 1000 random triples to gather a statistic.

Explain your result. Why is it different or the same as the previous part? (Hint: it may be useful to think of random zero-one vectors as lying on the vertices of the unit cube.)