# 4.3若干常用的组合逻辑电路

4.3.1 编码器

编码:用文字、图像或数码表示特定对象的过程称为编码将每个事物用一个二值代码(高、低电平)表示

编码器的逻辑功能: 把输入的每一个高、低电平信号编制

成一个对应的二进制代码

编码器 普通编码器 优先编码器

# 一、普通编码器

任何时刻只允许输入一个编码信号, 否则输出将发生混乱

- 二进制编码器的输入是一组高低电平(Io、I1m I7),输出是
- 一组与输入高低电平一一对应的二进制代码(Y<sub>2</sub>、Y<sub>1</sub>、Y<sub>0</sub>)



表4.3.1 3位二进制编码器的真值表

| _  |                | 输              |                |                |                | 入              | 输出             |                |                |                |       |
|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|
|    | I <sub>0</sub> | I <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | l <sub>4</sub> | l <sub>5</sub> | I <sub>6</sub> | l <sub>7</sub> | Y <sub>2</sub> | Y <sub>1</sub> | $Y_0$ |
|    | 1              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0     |
|    | 0              | 1              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 1     |
|    | 0              | 0              | 1              | 0              | 0              | 0              | 0              | 0              | 0              | 1              | 0     |
|    | 0              | 0              | 0              | 1              | 0              | 0              | 0              | 0              | 0              | 1              | 1     |
|    | 0              | 0              | 0              | 0              | 1              | 0              | 0              | 0              | 1              | 0              | 0     |
|    | 0              | 0              | 0              | 0              | 0              | 1              | 0              | 0              | 1              | 0              | 1     |
|    | 0              | 0              | 0              | 0              | 0              | 0              | 1              | 0              | 1              | 1              | 0     |
| Ì_ | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 1              | 1              | 1              | 1 2   |

3位二进制(8线−3线)编码器的框图——

# 将真值表写成对应的逻辑式并化简得:

$$\begin{cases} Y_2 = I_4 + I_5 + I_6 + I_7 \\ Y_1 = I_2 + I_3 + I_6 + I_7 \\ Y_0 = I_1 + I_3 + I_5 + I_7 \end{cases}$$

由此可得编码器电路



二、优先编码器 允许同时输入两个以上 信号,并按优先级输出。

**S**为选通输入端,

 $\bar{S}=0$ ,编码器正常工作,

 $\overline{S}$ =1,输出端被封锁在高电平

Ys为选通输出端。

YEX为扩展端,用于扩展编码功能。







## 由图可看出:

$$\overline{Y}_S = \overline{I}_0 \overline{I}_1 \overline{I}_2 \overline{I}_3 \overline{I}_4 \overline{I}_5 \overline{I}_6 \overline{I}_7 S$$

所有的编码输入端都是高电平(即没有编码输入),而且S=1时, $\overline{Y}_S$ 才是低电平,

因此, $Y_s$ 的低电平输出信号表示"电路工作,但无编码输入"

另外: 
$$\overline{Y}_{EX} = \overline{I_0}\overline{I_1}\overline{I_2}\overline{I_3}\overline{I_4}\overline{I_5}\overline{I_6}\overline{I_7}S \cdot S$$

$$= \overline{(I_0 + I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7) \cdot S}$$

只要任何一个编码输入端有低电平信号输入,且S=1, $Y_{EX}$ 为低电平

因此, $Y_{EX}$ 的低电平输出信号表示"电路工作,而且有编码输入"



表4.2.2 74LS148的功能表

|   |             |                  | 4           | 输出          |                                        |                             |             |                             |                           |                |                  |                    |                     |
|---|-------------|------------------|-------------|-------------|----------------------------------------|-----------------------------|-------------|-----------------------------|---------------------------|----------------|------------------|--------------------|---------------------|
| S | $\bar{I}_0$ | $\overline{I}_1$ | $\bar{I}_2$ | $\bar{I}_3$ | $\overline{\overline{\mathrm{I}}}_{4}$ | $\overline{\mathrm{I}}_{5}$ | $\bar{I}_6$ | $\overline{\mathrm{I}}_{7}$ | $\overline{\mathbf{Y}}_2$ | $\mathbf{Y}_1$ | $\overline{Y}_0$ | $\overline{Y}_{S}$ | $\overline{Y}_{EX}$ |
| 1 | X           | X                | X           | X           | X                                      | X                           | X           | X                           | 1                         | 1              | 1                | 1                  | 1                   |
| 0 | 1           | 1                | 1           | 1           | 1                                      | 1                           | 1           | 1                           | 1                         | 1              | 1                | 0                  | 1                   |
| 0 | X           | X                | X           | X           | X                                      | X                           | X           | 0                           | 0                         | 0              | 0                | 1                  | 0                   |
| 0 | X           | X                | X           | X           | X                                      | X                           | 0           | 1                           | 0                         | 0              | 1                | 1                  | 0                   |
| 0 | X           | X                | X           | X           | X                                      | 0                           | 1           | 1                           | 0                         | 1              | 0                | 1                  | 0                   |
| 0 | X           | X                | X           | X           | 0                                      | 1                           | 1           | 1                           | 0                         | 1              | 1                | 1                  | 0                   |
| 0 | X           | X                | X           | 0           | 1                                      | 1                           | 1           | 1                           | 1                         | 0              | 0                | 1                  | 0                   |
| 0 | X           | X                | 0           | 1           | 1                                      | 1                           | 1           | 1                           | 1                         | 0              | 1                | 1                  | 0                   |
| 0 | X           | 0                | 1           | 1           | 1                                      | 1                           | 1           | 1                           | 1                         | 1              | 0                | 1                  | 0                   |
| 0 | 0           | 1                | 1           | 1           | 1                                      | 1                           | 1           | 1                           | 1                         | 1              | 1                | 1                  | 0                   |

当S=0,电路正常工作 允许 $I_0 - I_7$  当中同时有 几个输入端为低电平。

 $I_7$ 的优先权最高 10的优先权最低

当 $I_7=0$ 时,无论其他输入端有无输入信号(表中以×表示), 输出端只给出 $I_7$ 的编码,即 $Y_2Y_1Y_0 = 000$ 

## [例4.3.1]:用2片74LS148接成16线-4线的优先编码器

 $A_{15} - A_{8}$ 8个优先权高的输入信号接到第一片的 $I_{7} - I_{0}$ 输入端, $A_7 - A_0$ 接到第二片的 $I_7 - I_0$ 

按优先权顺序的要求,把第一片的 $Y_s$  作为第二片的片选信号S



# 二-十进制优先编码器

能将 $I_0 - I_9$ 10个输入信号分别编成10个BCD码,

 $I_0$ 的优先权最高, $I_0$ 的优先权最低

$$\overline{Y}_{3} = \overline{I_{8} + I_{9}}$$

$$\overline{Y}_{2} = \overline{I_{7}} \overline{I_{8}} \overline{I_{9}} + I_{6} \overline{I_{8}} \overline{I_{9}} + I_{5} \overline{I_{8}} \overline{I_{9}}$$

$$\overline{Y}_{1} = \overline{I_{7}} \overline{I_{8}} \overline{I_{9}} + I_{6} \overline{I_{8}} \overline{I_{9}} + I_{3} \overline{I_{4}} \overline{I_{5}} \overline{I_{8}} \overline{I_{9}}$$

$$\overline{Y}_{0} = \overline{I_{9} + I_{7}} \overline{I_{8}} \overline{I_{9}} + I_{5} \overline{I_{6}} \overline{I_{8}} \overline{I_{9}}$$

$$\overline{Y}_{1} = \overline{I_{1}} \overline{I_{1}}$$





### 表4.3.3 二-十进制编码器74LS147的功能表

|                  |                  |                  | 输出               |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| $\overline{I}_1$ | $\overline{I}_2$ | $\overline{I}_3$ | $\overline{I}_4$ | $\overline{I}_5$ | $\overline{I}_6$ | $\overline{I}_7$ | $\overline{I}_8$ | $\overline{I}_9$ | $\overline{Y}_3$ | $\overline{Y}_2$ | $\overline{Y}_1$ | $\overline{Y}_0$ |
| 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                |
| ×                | X                | ×                | X                | X                | ×                | X                | ×                | 0                | 0                | 1                | 1                | 0                |
| ×                | ×                | ×                | X                | ×                | ×                | X                | 0                | 1                | 0                | 1                | 1                | 1                |
| ×                | ×                | ×                | X                | ×                | ×                | 0                | 1                | 1                | 1                | 0                | 0                | 0                |
| ×                | ×                | ×                | X                | ×                | 0                | 1                | 1                | 1                | 1                | 0                | 0                | 1                |
| ×                | ×                | ×                | X                | 0                | 1                | 1                | 1                | 1                | 1                | 0                | 1                | 0                |
| ×                | ×                | ×                | 0                | 1                | 1                | 1                | 1                | 1                | 1                | 0                | 1                | 1                |
| ×                | ×                | 0                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 0                | 0                |
| ×                | 0                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 0                | 1                |
| 0                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 0,0              |

# 4.3.2 译码器

译码是编码的反操作

译码器的功能:将每个输入的二进制代码译成 对应的输出高低电平信号。

常用的译码器:二进制译码器,二—十进制译码器,和显示译码器三类。

一。二进制译码器



图4.3.6 3位二进制(3线-8线)译码器的框图

## 二极管与门阵列组成的3线-8线译码器



假定电源电压 $V_{CC}=5V$ ,输入信号 的高、低电平为3V和0V,二极管的 导通压降为0.7V

3位二进制译码器的真值表

| 车                | 俞)    |       | 输出    |       |       |       |                  |       |       |                  |  |  |  |
|------------------|-------|-------|-------|-------|-------|-------|------------------|-------|-------|------------------|--|--|--|
| $\overline{A_2}$ | $A_1$ | $A_0$ | $Y_7$ | $Y_6$ | $Y_5$ | $Y_4$ | $\overline{Y_3}$ | $Y_2$ | $Y_1$ | $\overline{Y_0}$ |  |  |  |
| 0                | 0     | 0     | 0     | 0     | 0     | 0     | 0                | 0     | 0     | 1                |  |  |  |
| 0                | 0     | 1     | 0     | 0     | 0     | 0     | 0                | 0     | 1     | 0                |  |  |  |
| 0                | 1     | 0     | 0     | 0     | 0     | 0     | 0                | 1     | 0     | 0                |  |  |  |
| 0                | 1     | 1     | 0     | 0     | 0     | 0     | 1                | 0     | 0     | 0                |  |  |  |
| 1                | 0     | 0     | 0     | 0     | 0     | 1     | 0                | 0     | 0     | 0                |  |  |  |
| 1                | 0     | 1     | 0     | 0     | 1     | 0     | 0                | 0     | 0     | 0                |  |  |  |
| 1                | 1     | 0     | 0     | 1     | 0     | 0     | 0                | 0     | 0     | 0                |  |  |  |
| 1                | 1     | 1     | 1     | 0     | 0     | 0     | 0                | 0     | 10    | 0                |  |  |  |

用二极管与门阵列组成的3线-8线译码器

# 二极管与门阵列组成的译码器

优点:简单

缺点:

- 电路的输入电阻较低,而输出电阻较高
- 输出的高、低电平信号发生偏移(偏离输入信号的高、 低电平)

因此,中规模集成电路译码器多采用三极管集成门电路

## TTL与非门组成的3线-8线译码器74LS138



# 当Gs的输出为高电平 (S=1) 时:

$$\begin{aligned}
\overline{Y}_{0} &= \overline{\overline{A}_{2}} \overline{\overline{A}_{1}} \overline{\overline{A}_{0}} = \overline{m_{0}} \quad \overline{Y}_{1} = \overline{\overline{A}_{2}} \overline{\overline{A}_{1}} \overline{A_{0}} = \overline{m_{1}} \\
\overline{Y}_{2} &= \overline{\overline{A}_{2}} \overline{\overline{A}_{1}} \overline{\overline{A}_{0}} = \overline{m_{2}} \quad \overline{Y}_{3} = \overline{\overline{A}_{2}} \overline{\overline{A}_{1}} \overline{A_{0}} = \overline{m_{3}} \\
\overline{Y}_{4} &= \overline{\overline{A}_{2}} \overline{\overline{A}_{1}} \overline{\overline{A}_{0}} = \overline{m_{4}} \quad \overline{Y}_{5} = \overline{\overline{A}_{2}} \overline{\overline{A}_{1}} \overline{A_{0}} = \overline{m_{5}} \\
\overline{Y}_{6} &= \overline{\overline{A}_{2}} \overline{\overline{A}_{1}} \overline{\overline{A}_{0}} = \overline{m_{6}} \quad \overline{Y}_{7} = \overline{\overline{A}_{2}} \overline{\overline{A}_{1}} \overline{A_{0}} = \overline{m_{7}}
\end{aligned}$$

该译码器也叫最小项译码器

## 3线-8线译码器74LS138的功能表

|       | 输                                 | 入     | •     |       |                  |                  | į                | <br>输            | 出                |                             |                             |                             |
|-------|-----------------------------------|-------|-------|-------|------------------|------------------|------------------|------------------|------------------|-----------------------------|-----------------------------|-----------------------------|
| $S_1$ | $\overline{S}_2 + \overline{S}_3$ | $A_2$ | $A_1$ | $A_0$ | $\overline{Y}_0$ | $\overline{Y}_1$ | $\overline{Y}_2$ | $\overline{Y}_3$ | $\overline{Y}_4$ | $\overline{\overline{Y}}_5$ | $\overline{\overline{Y}}_6$ | $\overline{\overline{Y}}_7$ |
| 0     | ×                                 | ×     | ×     | ×     | 1                | 1                | 1                | 1                | 1                | 1                           | 1                           | 1                           |
| X     | 1                                 | ×     | ×     | ×     | 1                | 1                | 1                | 1                | 1                | 1                           | 1                           | 1                           |
| 1     | 0                                 | 0     | 0     | 0     | 0                | 1                | 1                | 1                | 1                | 1                           | 1                           | 1                           |
| 1     | 0                                 | 0     | 0     | 1     | 1                | 0                | 1                | 1                | 1                | 1                           | 1                           | 1                           |
| 1     | 0                                 | 0     | 1     | 0     | 1                | 1                | 0                | 1                | 1                | 1                           | 1                           | 1                           |
| 1     | 0                                 | 0     | 1     | 1     | 1                | 1                | 1                | 0                | 1                | 1                           | 1                           | 1                           |
| 1     | 0                                 | 1     | 0     | 0     | 1                | 1                | 1                | 1                | 0                | 1                           | 1                           | 1                           |
| 1     | 0                                 | 1     | 0     | 1     | 1                | 1                | 1                | 1                | 1                | 0                           | 1                           | 1                           |
| 1     | 0                                 | 1     | 1     | 0     | 1                | 1                | 1                | 1                | 1                | 1                           | 0                           | 1                           |
| 1     | 0                                 | 1     | 1     | 1     | 1                | 1                | 1                | 1                | 1                | 1                           | 1                           | 0                           |

## [例4.3.2]: 用两片3线-8线译码器组成4线-16线译码器

由于74LS138仅有3个地址输入端,利用附加控制端( $S_1$ 、 $S_2$ 、 $S_3$ 当中一个)作为第四个地址输入端





练习:用译码器和逻辑门实现逻辑函数

 $F(A,B,C)=\sum m(0,1,4,6,7)$