Véletlen fizikai folyamatok

7. beadandó

Márton Tamás

 ${\it PJF19C} \\ {\it martontamas@caesar.elte.hu}$

1. feladat

Feladat leírás.

A 8. heti előadáson megoldottuk az Erdős-Rényi gráf növekvő hálózatként értelmezett dinamikai általánosítását. Meghatároztuk a hálózat fokszámeloszlását, $P_k(t)$ -t, amelyre Poisson eloszlást kaptunk. Ebből következett, hogy a fokszám átlaga egyenlő a szórásnégyzetének átlagával, $\langle k \rangle = \langle k^2 \rangle - \langle k \rangle^2$. A feladat most ennek az eredménynek a deriválása a fokszámeloszlás meghatározása nélkül. Ehhez vissza kell térnünk a $P_k(t)$ -ra vonatkozó master egyenlethez [8. előadás, (8-9) egyenlet], s származtatnunk kell a $\langle k \rangle$ -ra és $\langle k^2 \rangle$ -re vonatkozó differenciálegyenleteket (a származtatás menetére lásd a 7. előadást) és persze meg kell találnunk a megoldásukat is.

Az adott esetben a modell elég egyszerű ahhoz, hogy differenciálegyenletek zártak legyenek, azaz ne tartalmazzák k magasabb momentumainak átlagát, s megoldásuk se legyennehéz.

Feladat megoldása.

A megoldáshoz a $P_k(t)$ re felírt master egyenletből indulunk ki:

$$\frac{\partial}{\partial t}P_k = P_{k-1} - P_k$$
$$\frac{\partial}{\partial t}P_0 = -P_0$$

A két alábbi momentum érdekel minket:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k(t)$$
$$\langle k^2 \rangle = \sum_{k=0}^{\infty} k^2 P_k(t)$$

Első lépésben deriváljuk le $\langle k \rangle$ -t, ahol most k = 1-gyel kezdődik:

$$\langle \frac{\partial}{\partial t} k \rangle = \sum_{k=0}^{\infty} k \frac{\partial}{\partial t} P_k(t) = \sum_{k=1}^{\infty} k P_{k-1}(t) - \sum_{k=1}^{\infty} k P_k(t).$$

Átalakítom az egyenletet az alábbi egyenletek alapján:

$$\sum_{k=1}^{\infty} k P_{k-1}(t) = \langle k \rangle + 1$$
$$\sum_{k=1}^{\infty} P_{k} = 1.$$

Így az egyenletünk, ha mindent visszaírok, az alábbi egyenletet kapok:

$$\langle \frac{\partial}{\partial t} k \rangle = \langle k \rangle + 1 - \langle k \rangle = 1.$$
 (1.1)

Majd a végeredményért elvégzem az integrálást:

$$\langle k \rangle = t. \tag{1.2}$$

Következő lépésben $\langle \frac{\partial}{\partial t} k^2 \rangle$ -t határozzuk meg:

$$\langle \frac{\partial}{\partial t} k^2 \rangle = \sum_{k=1}^{\infty} k^2 \frac{\partial}{\partial t} P_k(t) = \sum_{k=1}^{\infty} k^2 P_{k-1}(t) - \sum_{k=1}^{\infty} k^2 P_k(t), \tag{1.3}$$

ahol a második tagot felismerjük, hogy $\langle k^2 \rangle$, a többit pedig átalakítom:

$$\sum_{k=1}^{\infty} k^2 P_{k-1}(t) = \sum_{k=1}^{\infty} (k-1)^2 P_{k-1}(t) + \sum_{k=1}^{\infty} (2k-1)^2 P_{k-1}(t) =$$

$$= \sum_{k=1}^{\infty} k^2 P_{k-1}(t) + 2 \sum_{k=1}^{\infty} (k-1)^2 P_{k-1}(t) + \sum_{k=1}^{\infty} P_{k-1}(t) =$$

$$= \langle k^2 \rangle + 2 \langle k \rangle + 1.$$

Ha mindent visszaírok és átrendezek:

$$\langle \frac{\partial}{\partial t} k^2 \rangle = 2\langle k \rangle + 1. \tag{1.4}$$

Ebbe visszaírva $\langle k \rangle$ -ra kapott értéket és kiintegrálom:

$$\langle k^2 \rangle = t^2 + t. \tag{1.5}$$

Ha a kapott eredményeket beírom a feltett kérdésben szereplő egyenletbe, akkor megkapjuk a keresett értéket:

$$t = \langle k \rangle = \langle k^2 \rangle - \langle k \rangle^2 = t^2 + t - t^2 = t. \tag{1.6}$$

2. feladat

Feladat leírás.

Az egyik legegyszerűbb hálózatnövekedési dinamika a véletlen rekurzív fát állítja elő. A hálózat növekedése abból áll, hogy minden lépésben egy új csúcsot kötünk egy éllel a meglévő csúcsok egyikéhez, egyenlő valószínűséggel bármelyikhez. Tehát a hálózat egy csúccsal indul, s első lépésben csak hozzákötjük a második csúcsot. A második lépésben már két csúcs közül választ a bejövő harmadik csúcs. A választás a két csúcs közül egyenlő (tehát 1/2-1/2) valószínűséggel történik. Hasonlóan, a negyedik csúcs 1/3-1/3-1/3 valószínűséggel kötődik a meglévő három csúcs egyikéhez. Ez a növekedési dinamika folytatódik (rekurzív módon, innen a rekurzív fa elnevezés), amíg felépül egy $N \gg 1$ csúcsból álló fa.

Szimuláljuk a fentiekben definiált rekurzív fát, s oldjuk meg az alábbi feladatokat.

- (i) Próbáljunk elgondolkodni azon, hogy milyen jellegű fokszámeloszlásra számíthatunk, s miért fog ez különbözni az Erdős-Rényi dinamika eredményétől!
- (ii) Határozzuk meg a csúcsok fokszámeloszlását ($P_k = N_k/N$, ahol N a csúcsok száma, N_k pedig a k éllel rendelkező csúcsok száma).
- (iii) Vizsgájuk mekkora N kell ahhoz, hogy az eloszlásfüggvény P_k hibája kisebb legyen mint 10% minden $k \leq 5$ -re. Figyelem, az egzakt eloszlásfüggvényt 9. heti jegyzetben kiszámoljuk, az eredmény $N \to \infty$ -re a következő alakú $P_k^e = 1/2^k$ $(k \geq 1)!$
 - (iv) Határozzuk meg az átlagos fokszámot mind elméletileg, mind pedig a szimulációkból!
- (v) Találjuk meg a maximális fokszámú csúcsot a fenti szimulációkban generált hálózatokban. Többször megismételve a szimulációkat $N=100,\,1000$ és 10000 esetére, határozzuk meg a maximális fokszám átlagát, $\langle k_{max} \rangle$ -t! Látunk-e valamilyen funkcionális trendet az eredményekben?

Feladat megoldása.

(i)

Az Erdős-Rényi gráfban végig konstans a csúcsok száma, emiatt a mi esetünkben $\frac{1}{2^k}$ féle eloszlás alakul ki, míg az Erdős-Rényi gráfnál Gauss-eloszlás.

Valamint a mi esetünkben folyton növeljük a csúcsok számát.

A szimulációs feladatot most is *python* programnyelven oldottam meg. Első lépésben létrehoztam N változót a lépések számát, amit majd változtatok a különböző lépésszámokra. Valamint a csúcsoknak és a fokszámoknak hoztam létre a tömböket és feltöltöttem a csúcsok tömbjét 1-től N-ig egyesével egész számokkal.

Az első és második csúcsot rögtön beállítom, hiszen azokat egyértelmű, hogy melyikhez tudjuk kötni őket.

```
fokszamok[0] = 1
fokszamok[1] = 1
```

Majd betettem az új csúcsokat a hálózatba 2-től, N-ig. Fontos, hogy mikor beteszem az új csúcsot, akkor egy random csúcsot választok ki és ahhoz kötöm.

```
\begin{array}{lll} \textbf{for i in range } (2\,,\!N)\colon \\ & \quad random\_kivalasztott\_csucs = randint(0\,,i) \\ & \quad fokszamok\left[ random\_kivalasztott\_csucs \right] \; +\!\!= \; 1 \\ & \quad fokszamok\left[ \, i \, \right] \; +\!\!= \; 1 \end{array}
```

Majd kigyűjtöttem a fokszámokat és azok előfordulásának számát.

Viszont sorrendbe kellett rendeznem a fokszámokat és a hozzá tartozó gyakoriságukat, mert az első kigyűjtés nem így hajtottam végre.

```
\label{eq:rendezett_fokszameloszlas} $$ rendezett_fokszamokfajtaja = [] $$ for $i$ in $range(1,len(fokszamokfajtaja)+1): $$ for $j$ in $range(0,len(fokszamokfajtaja)): $$ if $fokszamokfajtaja[j] == i: $$ rendezett_fokszamokfajtaja.append(i) $$ rendezett_fokszameloszlas.append(fokszameloszlas[j]) $$
```

(ii) Majd elkészítettem az eloszlásfüggvényt, mely: $P_k = \frac{N_k}{N}$, ahol N_k a fokszámok gyakorisága, N pedig az összes csúcsszám.

```
\begin{array}{lll} rendezett\_fokszameloszlas &= numpy.\,array\,(\,rendezett\_fokszameloszlas\,)\\ rendezett\_fokszamokfajtaja &= numpy.\,array\,(\,rendezett\_fokszamokfajtaja\,)\\ eloszlasfuggveny &= rendezett\_fokszameloszlas &/ N \end{array}
```

Az előadáson levezetett érték stacionárius esetben $P_k^{stac} = \frac{1}{2^k}$, amit számoltam a programmal is és ábrázoltam is n = 10000.

```
def analitikus_mo(k):
    return 1/2**k
```


2..1.ábra. Szimulált és analitikus fokszámeloszlás példa, N=10000esetében.

(iii.)

A hiba meghatározásához a következő lépéseket végeztem:

- \bullet a k értékhez ismerjük a relatív gyakoriságot a szimulációból.
- ullet az analitikus megoldást is kiszámolom a k értékekhez.
- majd megnéztem, hogy hány százaléka a szimulált érték az analitikusnak.
- megállapítom, hogy hibahatáron belül van-e az érték.

A vizsgálat közben, mindig kiírattam, hogy melyik k érték esetén van nagyobb, mint 10%, és így tudtam, hogy mennyit kell változtatnom N értékét.

```
\begin{array}{l} \operatorname{arany} = \operatorname{numpy.zeros}\left(10\right) \\ & \operatorname{if}\left(\operatorname{eloszlasfuggveny.shape}\left[0\right] < 10\right); \\ & \operatorname{meddig} = \operatorname{eloszlasfuggveny.shape}\left[0\right] \\ & \operatorname{if}\left(\operatorname{eloszlasfuggveny.shape}\left[0\right] >= 10\right); \\ & \operatorname{meddig} = 10 \\ & \operatorname{for} \ k \ \operatorname{in} \ \operatorname{range}\left(0, \operatorname{meddig}\right); \\ & \operatorname{arany}\left[k\right] = \operatorname{eloszlasfuggveny}\left[k\right] \ / \ \operatorname{analitikus\_mo}\left(k+1\right) \ * \ 100 \\ & \operatorname{if}\left(\operatorname{arany}\left[k\right] < 90 \ \operatorname{or} \ \operatorname{arany}\left[k\right] > 110\right); \\ & \operatorname{print}\left("k=" + \operatorname{str}\left(k+1\right) + \\ & "\_\operatorname{eseten\_az\_elteres\_:\_"} + \\ & \operatorname{str}\left(\operatorname{abs}\left(\operatorname{arany}\left[k\right] - 100\right)\right) + "\%"\right) \end{array}
```

N értékét 100-tól növeltem folyamatosan és úgy találtam, hogy mikor elértem a 200000 es N számot, akkor már teljesült a 10% alatti hibahatár (200000 felett is).

(iv)

Az átlagos fokszámot a szimuláció alapján, úgy kaptam meg, hogy kiátlagoltam a fokszámokat.

```
atlagfokszam = 0
for i in range (0,shape(rendezett_fokszamokfajtaja)[0]):
          atlagfokszam += rendezett_fokszamokfajtaja[i] * rendezett_fokszamelosz
atlagfokszam = atlagfokszam / N
print("Atlagos_fokszam_szimulaciobol:_" + str(atlagfokszam))
```

Hogy meg tudjam adni az átlagos fokszámot hibával együtt, lefuttattam a szimulációt különböző N-ekre, majd kiátlagoltam.

Az átlag hibája:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \langle x \rangle)^2 \longrightarrow \sigma = \sqrt{\sigma^2}.$$
 (2.1)

N	$\langle k \rangle$ átlagos fokszám
200000	2.000845
300000	2.000415
500000	2.000376
1000000	2.000169
10000000	2.0000225
Átlag hibával	2.0003655 ± 0.0002788

1. táblázat. Átlagos fokszámhoz különböző N esetekre mérések, majd az átlagos fokszám hibával.

A következő lépésben elméleti úton számolom ki $\langle k \rangle$ értékét.

$$\sum_{k=0}^{\infty} \frac{k}{2^k} = \sum_{k=0}^{\infty} k \left(\frac{1}{2}\right)^k \tag{2.2}$$

Valamint a végtelen mértani sorról tudjuk azt:

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}, \quad ha|q| < 1, \tag{2.3}$$

majd deriválom mindkét oldalt:

$$\sum_{k=0}^{\infty} k \cdot q^{k-1} = \frac{1}{(1-q)^2},\tag{2.4}$$

majd átindexeljük:

$$\sum_{k=0}^{\infty} (k+1) \cdot q^k = \frac{1}{(1-q)^2},\tag{2.5}$$

még egy kicsit alakítunk rajta:

$$\sum_{k=0}^{\infty} (k+1) \cdot q^k = \sum_{k=0}^{\infty} kq^k + \sum_{k=0}^{\infty} q^k,$$
 (2.6)

Felhasználom az előző összefüggéseket(2, 2):

$$\sum_{k=0}^{\infty} kk^q = \frac{1}{(1-q)^2} - \frac{1}{1-q} = \frac{q}{(1-q)^2}.$$
 (2.7)

Most nekünk k=1/2, tehát $\langle k \rangle$ átlagos fokszáma:

$$\langle k \rangle = \frac{1/2}{(1 - 1/2)^2} = 2.$$
 (2.8)

Tehát visszakaptam az előadáson kiszámolt megoldást, valamint szimulálva is ezt az értéket kaptam.

v.

Maximális fokszámot az alábbi kóddal kaptam meg:

```
index = where(fokszamok == max(fokszamok))
print("Az_ennyiedik_csucs(ok)nak_van_maximalis_fokszama:"
+ str(csucsok[index[0]]) +
   "_ami_ekkora_fokszamu:_" + str(max(fokszamok)))
```

A számolás eredményeit az alábbi táblázatok tartalmazzák:

N	$\langle k_{max} \rangle$ maximális fokszám
100	8
100	8
100	9
100	8
100	7
100	6
100	6
100	6
100	9
100	9
Átlag hibával	7.6 ± 1.2

2. táblázat. $\langle k_{max} \rangle$ fokszámhoz különböző N = 100 esetekre.

N	$\langle k_{max} \rangle$ maximális fokszám
1000	10
1000	12
1000	11
1000	10
1000	11
1000	11
1000	11
1000	10
1000	10
1000	13
Átlag hibával	10.9 ± 0.943

3. táblázat. $\langle k_{max} \rangle$ fokszámhoz különböző N = 1000 esetekre.

N	$\langle k_{max} \rangle$ maximális fokszám
10000	13
10000	14
10000	14
10000	13
10000	15
10000	15
10000	15
10000	14
10000	16
10000	13
Átlag hibával	14.2 ± 0.979

4. táblázat. $\langle k_{max} \rangle$ fokszámhoz különböző N = 10000 esetekre.

2..2. ábra. $\langle k_{max} \rangle$ maximális fokszám N függése.