STAT5030 Linear Models (Final Exam 2021-2022)

25 April 2022

1. (15 marks) Consider the one-way ANOVA model

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij},$$

for i = 1, 2, 3 and j = 1, 2, where $E(\epsilon_{ij}) = 0$. Then,

$$\mathbf{Y} = \begin{pmatrix} Y_{11} \\ Y_{12} \\ Y_{21} \\ Y_{22} \\ Y_{31} \\ Y_{32} \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}, \quad \text{and} \quad \boldsymbol{\beta} = \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}.$$

- (a) Is μ estimable? Is α_1 estimable?
- (b) Is $\mu + \alpha_1$ estimable? Is $\alpha_1 (\alpha_2 + \alpha_3)/2$ estimable?
- (c) Assume that ϵ_{ij} are independently distributed as $N(0, \sigma^2)$. Consider a hypothesis $H_{01}: \alpha_1 = \alpha_2 = \alpha_3$. Is H_0 testable? If yes, derive a test for testing H_0 .
- 2. (20 marks) Suppose that $\mathbf{Y} = (Y_1, Y_2, Y_3)^{\top}$ follows $N(0, \sigma^2 I_3)$.
 - (a) Let

$$Q = \frac{(Y_1 - Y_2)^2 + (Y_2 - Y_3)^2 + (Y_3 - Y_1)^2}{3}.$$

Write Q as $\mathbf{Y}^{\top} \mathbf{A} \mathbf{Y}$ where \mathbf{A} is symmetric. Is \mathbf{A} idempotent? what is the distribution of Q/σ^2 ? Find E(Q). Provide detailed arguments to your answers.

- (b) What is the distribution of $L = Y_1 + Y_2 + Y_3$? Find E(L) and Var(L).
- (c) Are Q and L independent? Provide detailed proofs.
- (d) Find the distribution of Q/L^2 .

3. (20 marks) Consider a linear model

$$Y = X\beta + \epsilon, \tag{1}$$

where \mathbf{Y} is $n \times 1$, \mathbf{X} is an $n \times (p+1)$ fixed design matrix, $\boldsymbol{\beta}$ is a (p+1)-vector of regression coefficient, $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $\text{cov}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$.

- (a) When X is of full rank, find the best linear unbiased estimates (BLUE) of $p^{\top}\beta$, where $p \in \mathbb{R}^{p+1}$ is a constant vector. (Students are required to show the detailed proof of the Gauss-Markov theorem.)
- (b) When X is not of full rank, find a sufficient and necessary condition for $c^{\top}\beta$ to be estimable, where $c \in \mathbb{R}^{p+1}$.
- (c) Suppose that $\Lambda^{\top}\beta$ is any k-dimensional estimable vector and that $c + A^{\top}Y$ is any vector of linear unbiased estimators of the elements of $\Lambda^{\top}\beta$. Let $\hat{\beta}$ denote any solution to the normal equations. Prove that the matrix $\operatorname{cov}(c + A^{\top}Y) \operatorname{cov}(\Lambda^{\top}\hat{\beta})$ is nonnegative definite.
- 4. (15 marks) Let $\beta_1, \beta_2, \beta_3$ be the interior angles of a triangle, so that $\beta_1 + \beta_2 + \beta_3 = 180$ degrees. Suppose we have available estimates Y_1, Y_2, Y_3 of $\beta_1, \beta_2, \beta_3$, respectively. We assume that $Y_i \sim N(\beta_i, \sigma^2)$, i = 1, 2, 3 (σ is unknown) and that the Y_i 's are independent. Derive a test for testing the null hypothesis that the triangle is equilateral, that is $\beta_1 = \beta_2 = \beta_3 = 60$ degrees. Please state clearly the test statistics and the rejection rule when the level of significance is α .
- 5. (30 marks) Consider a linear regression model

$$y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + \dots + x_{ip}\beta_p + \epsilon_i = \sum_{j=1}^p x_{ij}\beta_j + \epsilon_i, \quad i = 1, \dots, n.$$
 (2)

By convention, the response and covariates are centered and standardized. The ridge regression is to apply squared penalty on the least square estimate by minimizing

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2,$$

where $\lambda \geq 0$ is a tuning parameter, $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_p)^{\top}$. The resulting estimate is denoted by $\hat{\boldsymbol{\beta}}^{\text{ridge}}$.

- (a) (10 marks) Show that $\|\hat{\boldsymbol{\beta}}^{\text{ridge}}\|_2$ increases as the tuning parameter $\lambda \to 0$. Here $\|\cdot\|_2$ is the L_2 norm.
- (b) (10 marks) When the design matrix $X_{n\times p}=(x_1,\ldots,x_p)$ is orthogonal design, that is $X^{\top}X=I_p$, find the explicit expression of $\hat{\boldsymbol{\beta}}^{\text{ridge}}$.
- (c) (10 marks) Consider model (2) in matrix form

$$Y = X\beta + \epsilon$$
,

where $X_{n\times p} = (x_1, \ldots, x_p)$ is orthogonal design and $\boldsymbol{\beta} = (\beta_1, \ldots, \beta_p)^{\top}$. Instead of fitting ridge regression, one may consider the *non-negative lasso*, which is to minimize

$$\frac{1}{2} \| \mathbf{Y} - \mathbf{X}\boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1 \text{ subject to } \beta_j \ge 0, j = 1, \dots, p,$$
 (3)

over β . Here $\|\cdot\|_2$ and $\|\cdot\|_1$ are the L_2 norm and the L_1 norm, respectively. Find the solution to the non-negative lasso problem. Explain the difference between lasso and the non-negative lasso by comparing the solutions. (Students are required to provide detailed steps.)