Periodo: 2021-2 Profesor: M. Artigiani

EJERCICIO 1: Escriba el correspondiente diagrama de transiciones para los siguientes conjuntos de instrucciones:

a)
$$\delta(q_0, \omega) = (q_1, a, R)$$

 $\delta(q_1, \omega) = (q_2, b, R)$
 $\delta(q_2, \omega) = (q_0, c, R)$
b) $\delta(q_0, a) = (q_0, a, R)$
 $\delta(q_0, b) = (q_0, a, R)$
 $\delta(q_0, c) = (q_0, a, R)$
 $\delta(q_0, c) = (q_0, a, R)$
 $\delta(q_0, c) = (q_1, c, R)$
 $\delta(q_1, c) = (q_1, a, R)$
 $\delta(q_1, c) = (q_1, a, R)$
 $\delta(q_1, c) = (q_2, c, S)$

EJERCICIO 2: Para cada una de las siguientes descripciones de una subrutina de una TM, escribir en el simulador el respectivo código que la implementa:

- a) Asuma $\Sigma = \{a, b\}$ y $\Gamma = \{a, b, \bot\}$ y $w \in \Sigma^*$. La subrutina requerida es que, comenzando en q_0w , la unidad de control busca la primera a en w.
- b) Asuma $\Sigma = \{a, b\}$ y $\Gamma = \{a, b, X, \bot\}$ y $w \in \Sigma^*$. La subrutina requerida es que, comenzando en q_0w , la unidad de control busca la primera a en w, la cambia por una X y busca hacia la derecha la primera b que encuentre.
- c) Asuma $\Sigma = \{a, b\}$ y $\Gamma = \{a, b, \bot\}$ y $w \in \Sigma^*$. La subrutina requerida es que, comenzando en q_0w , la unidad de control busca la última b (de izquierda a derecha) en w.

EJERCICIO 3: Implemente en el simulador el algoritmo implementado por cada uno de los siguientes diagramas de transiciones (asuma $\Sigma = \{a, b\}$ y $\Gamma = \{a, b, X, \bot\}$). En cada caso, describa el funcionamiento de la unidad de control sobre la cinta:

EJERCICIO 4: Implemente en el simulador la TM del ejemplo 3.11 del libro de texto.

EJERCICIO 5: Implemente en el simulador las TMs que reconozcan los siguientes lenguajes (asuma $\Sigma = \{a, b, c\}$ y $\Gamma = \{a, b, c, X, \bot\}$):

- a) $L = \{ w \in \Sigma^* : |w| = 2n + 1, n \in \mathbb{N} \}.$
- b) $L = \{w \in \Sigma^*: N_a(w) = 3\}$, donde $N_a(w)$ representa el número de as en w.
- c) $L = \{a^n b^n : n \ge 0\}.$
- d) $L = \{a^n b^n c^n : n \ge 0\}.$
- e) $L = \{ w \in \Sigma^* : N_a(w) = N_b(w) \}.$

EJERCICIO 6: Implemente en el simulador una TM de dos cintas que toma dos numerales separados por # y retorna en la primera cinta su multiplicación. Por ejemplo, la salida de $q_0||\#|||$ debe ser $||||||q_{accept}$.

