

BLM3620 Digital Signal Processing*

Erkan Uslu

euslu@yildiz.edu.tr

Yıldız Technical University – Computer Engineering *Based on lecture notes from Ali Can Karaca & Ahmet Elbir

Lecture #5 – Discrete Time Signals and Convolution

- Basic discrete time signals
- Linear, Time-Invariant, Causal and Stable Systems
- Impulse Response
- Discrete Convolution
- MATLAB Application

Before we begin...

Is convolution topic important for AI?

Before we begin...

Is convolution topic important for AI?

Remember: Last Lecture

After sampling, we have discrete time signal.

We should learn how to process this digital signal.

Remember: Last Lecture

Concentrate on the Filtering theory

After sampling, we have discrete time signal.

We should learn how to process this digital signal.

Filtering - Block Diagram Representation

- BUILD UP COMPLICATED FILTERS
 - FROM SIMPLE MODULES
 - Ex: FILTER MODULE MIGHT BE 3-pt FIR

Filtering - Block Diagram Representation

- BUILD UP COMPLICATED FILTERS
 - FROM SIMPLE MODULES
 - Ex: FILTER MODULE MIGHT BE 3-pt FIR

$$x[n] = \cos\left(\frac{2\pi n}{12}\right)$$
 -> Plot this signal in MATLAB.

$$x[n] = \cos\left(\frac{2\pi n}{12}\right)$$
 -> Plot this signal in MATLAB.

MATLAB kodu:

```
clc; clear all;
%%

n=-20:20;
x = 0.*n;
for i=1:length(n)
    x(i)=cos(2*pi*n(i)/12);
End

stem(n,x,'filled');
```


$$x[n] = \cos\left(\frac{2\pi n}{12}\right)$$
 -> Plot this signal in MATLAB.

MATLAB kodu:

```
clc; clear all;
%%

n=-20:20;
x = 0.*n;
for i=1:length(n)
    x(i)=cos(2*pi*n(i)/12);
End

stem(n,x,'filled');
```


MATLAB kodu:

```
clc; clear all;
%%

n=-20:20;
x = 0.*n;

for i=1:length(n)
    x(i)=(0.8^n(i))*cos(pi*n(i));
end

stem(n,x,'filled');
```

Exponential Sinuzoids

Example

Given the following,

$$x(n) = \delta(n+1) + 0.5\delta(n-1) + 2\delta(n-2),$$

Sketch this sequence.

Example with Sampling

Assuming a DSP system with a sampling time interval of 125 µs,

- (a) Convert each of following analog signal x(t) to the digital signal x(n).
 - 1. $x(t) = 10e^{-5000t}u(t)$
 - 2. $x(t) = 10 \sin(2000\pi t)u(t)$
- (b) Determine and plot the sample values from each obtained digital function.

Example with Sampling

Assuming a DSP system with a sampling time interval of 125 µs,

- (a) Convert each of following analog signal x(t) to the digital signal x(n).
 - 1. $x(t) = 10e^{-5000t}u(t)$
 - 2. $x(t) = 10 \sin(2000\pi t)u(t)$
- (b) Determine and plot the sample values from each obtained digital function.
- (a) Since T = 0.000125 s in Eq. (3.3), substituting $t = nT = n \times 0.000125 = 0.000125n$ into the analog signal x(t) expressed in (1) leads to the digital sequence
 - 1. $x(n) = x(nT) = 10e^{-5000 \times 0.000125n}u(nT) = 10e^{-0.625n}u(n)$. Similarly, the digital sequence for (2) is achieved as follows:
 - 2. $x(n) = x(nT) = 10\sin(2000\pi \times 0.000125n)u(nT) = 10\sin(0.25\pi n)u(n)$

Assuming a DSP system with a sampling time interval of 125 μs,

- (a) Convert each of following analog signal x(t) to the digital signal x(n).
 - 1. $x(t) = 10e^{-5000t}u(t)$
 - 2. $x(t) = 10 \sin(2000\pi t)u(t)$
- (b) Determine and plot the sample values from each obtained digital function.

Assuming a DSP system with a sampling time interval of 125 μs,

- (a) Convert each of following analog signal x(t) to the digital signal x(n).
 - 1. $x(t) = 10e^{-5000t}u(t)$
 - 2. $x(t) = 10 \sin(2000\pi t)u(t)$
- (b) Determine and plot the sample values from each obtained digital function.

Assuming a DSP system with a sampling time interval of 125 µs,

- (a) Convert each of following analog signal x(t) to the digital signal x(n).
 - 1. $x(t) = 10e^{-5000t}u(t)$
 - 2. $x(t) = 10 \sin(2000\pi t)u(t)$
- (b) Determine and plot the sample values from each obtained digital function.

Assuming a DSP system with a sampling time interval of 125 μs,

- (a) Convert each of following analog signal x(t) to the digital signal x(n).
 - 1. $x(t) = 10e^{-5000t}u(t)$
 - 2. $x(t) = 10 \sin(2000\pi t)u(t)$
- (b) Determine and plot the sample values from each obtained digital function.

$$x(0) = 10e^{-0.625 \times 0}u(0) = 10.0$$

$$x(1) = 10e^{-0.625 \times 1}u(1) = 5.3526$$

$$x(2) = 10e^{-0.625 \times 2}u(2) = 2.8650$$

$$x(3) = 10e^{-0.625 \times 3}u(3) = 1.5335$$

$$x(4) = 10e^{-0.625 \times 4}u(4) = 0.8208$$

Assuming a DSP system with a sampling time interval of 125 μs,

- (a) Convert each of following analog signal x(t) to the digital signal x(n).
 - 1. $x(t) = 10e^{-5000t}u(t)$
 - 2. $x(t) = 10 \sin(2000\pi t)u(t)$
- (b) Determine and plot the sample values from each obtained digital function.

$$x(0) = 10e^{-0.625 \times 0}u(0) = 10.0$$

$$x(1) = 10e^{-0.625 \times 1}u(1) = 5.3526$$

$$x(2) = 10e^{-0.625 \times 2}u(2) = 2.8650$$

$$x(3) = 10e^{-0.625 \times 3}u(3) = 1.5335$$

$$x(4) = 10e^{-0.625 \times 4}u(4) = 0.8208$$

$$x[n] = 10\delta[n] + 5.3526\delta[n-1] + 2.865\delta[n-2] + 1.535\delta[n-3] + 0.821\delta[n-4] + \dots$$

Discrete Time Systems

A system with input x and output y can be described by the equation

$$y = \mathcal{H}\{x\},$$

where \mathcal{H} denotes an operator (i.e., transformation).

Note that the operator \$\mathcal{H}\$ maps a function to a function (not a number to a number).

A system is linear if and only if it satisfies the <u>superposition principle</u>, or equivalently both the additivity and homogeneity properties.

A system is linear if and only if it satisfies the <u>superposition principle</u>, or equivalently both the additivity and homogeneity properties.

A system is linear if and only if it satisfies the <u>superposition principle</u>, or equivalently both the additivity and homogeneity properties.

A system is linear if and only if it satisfies the <u>superposition principle</u>, or equivalently both the additivity and homogeneity properties.

$$y_1(n) = 10x_1(n)$$
 and $y_2(n) = 10x_2(n)$

A system is linear if and only if it satisfies the <u>superposition principle</u>, or equivalently both the additivity and homogeneity properties.

$$y_1(n) = 10x_1(n)$$
 and $y_2(n) = 10x_2(n)$
 $\alpha y_1(n) + \beta y_2(n) = \alpha [10x_1(n)] + \beta [10x_2(n)]$

A system is linear if and only if it satisfies the <u>superposition principle</u>, or equivalently both the additivity and homogeneity properties.

$$x(n) = \alpha x_1(n) + \beta x_2(n)$$

$$y_1(n) = 10x_1(n)$$
 and $y_2(n) = 10x_2(n)$
 $\alpha y_1(n) + \beta y_2(n) = \alpha [10x_1(n)] + \beta [10x_2(n)]$

A system is linear if and only if it satisfies the <u>superposition principle</u>, or equivalently both the additivity and homogeneity properties.

$$x(n) = \alpha x_1(n) + \beta x_2(n)$$

$$y(n) = 10x(n) = 10(\alpha x_1(n) + \beta x_2(n)) = 10\alpha x_1(n) + 10\beta x_2(n)$$

$$y_1(n) = 10x_1(n) \text{ and } y_2(n) = 10x_2(n)$$

 $\alpha y_1(n) + \beta y_2(n) = \alpha [10x_1(n)] + \beta [10x_2(n)]$

A system is linear if and only if it satisfies the <u>superposition principle</u>, or equivalently both the additivity and homogeneity properties.

$$x(n) = \alpha x_1(n) + \beta x_2(n)$$

$$y(n) = 10x(n) = 10(\alpha x_1(n) + \beta x_2(n)) = 10\alpha x_1(n) + 10\beta x_2(n)$$

$$y_1(n) = 10x_1(n)$$
 and $y_2(n) = 10x_2(n)$

$$\alpha y_1(n) + \beta y_2(n) = \alpha [10x_1(n)] + \beta [10x_2(n)]$$

A system is linear if and only if it satisfies the <u>superposition principle</u>, or equivalently both the additivity and homogeneity properties.

$$x(n) = \alpha x_1(n) + \beta x_2(n)$$

$$y(n) = 10x(n) = 10(\alpha x_1(n) + \beta x_2(n)) = 10\alpha x_1(n) + 10\beta x_2(n)$$

$$y_1(n) = 10x_1(n)$$
 and $y_2(n) = 10x_2(n)$

$$\alpha y_1(n) + \beta y_2(n) = \alpha [10x_1(n)] + \beta [10x_2(n)]$$

$$y(n) = \alpha y_1(n) + \beta y_2(n)$$

Classification of Systems: (2) Time-Invariance

If the system is time invariant and $y_1(n)$ is the system output due to the input $x_1(n)$, then the shifted system input $x_1(n_0)$ will produce a shifted system output $y_1(nn_0)$ by the same amount of time n_0 .

Example

y[n] = nx[n] -> Is this signal time-invariant or not?

Example

y[n] = nx[n] -> Is this signal time-invariant or not?

1) First, apply an input x1 and find the output y1 ->

$$x_1[n] \to y_1[n] = nx_1[n]$$

Example

y[n] = nx[n] -> Is this signal time-invariant or not?

1) First, apply an input x1 and find the output y1 ->

$$x_1[n] \rightarrow y_1[n] = nx_1[n]$$

2) Second, shift the input x1 by n0 and find the output y2 ->

$$x_2[n] = x_1[n - n_0] \longrightarrow y_2[n] = nx_1[n - n_0]$$

Example

y[n] = nx[n] -> Is this signal time-invariant or not?

1) First, apply an input x1 and find the output y1 ->

$$x_1[n] \to y_1[n] = nx_1[n]$$

2) Second, shift the input x1 by n0 and find the output y2 ->

$$x_2[n] = x_1[n - n_0] \longrightarrow y_2[n] = nx_1[n - n_0]$$

3) Does it match with the shifted output of y1?

$$y_1[n-n_0] = (n-n_0)x_1[n-n_0] \neq y_2[n]$$

Example

y[n] = nx[n] -> Is this signal time-invariant or not?

1) First, apply an input x1 and find the output y1 ->

$$x_1[n] \to y_1[n] = nx_1[n]$$

2) Second, shift the input x1 by n0 and find the output y2 ->

$$x_2[n] = x_1[n - n_0] \longrightarrow y_2[n] = nx_1[n - n_0]$$

3) Does it match with the shifted output of y1?

$$y_1[n-n_0] = (n-n_0)x_1[n-n_0] \neq y_2[n]$$

Therefore, it is not a time-invariant system!!

A causal system is the one in which the output y(n) at time n depends only on the current input x(n) at time n, and its past input sample values such as x(n-1), x(n-2),.... Otherwise, if a system output depends on the future input values such as x(n+1), x(n+2),..., the system is noncausal. The noncausal system cannot be realized in real time.

A causal system is the one in which the output y(n) at time n depends only on the current input x(n) at time n, and its past input sample values such as x(n-1), x(n-2),.... Otherwise, if a system output depends on the future input values such as x(n+1), x(n+2),..., the system is noncausal. The noncausal system cannot be realized in real time.

EXAMPLE 3.4

Given the following linear systems

(a)
$$y(n) = 0.5x(n) + 2.5x(n-2)$$
, for $n \ge 0$,

A causal system is the one in which the output y(n) at time n depends only on the current input x(n) at time n, and its past input sample values such as x(n-1), x(n-2),.... Otherwise, if a system output depends on the future input values such as x(n+1), x(n+2),..., the system is noncausal. The noncausal system cannot be realized in real time.

EXAMPLE 3.4

Given the following linear systems

(a)
$$y(n) = 0.5x(n) + 2.5x(n-2)$$
, for $n \ge 0$,

(a) Since for $n \ge 0$, the output y(n) depends on the current input x(n) and its past value x(n-2), the system is causal.

A causal system is the one in which the output y(n) at time n depends only on the current input x(n) at time n, and its past input sample values such as x(n-1), x(n-2),.... Otherwise, if a system output depends on the future input values such as x(n+1), x(n+2),..., the system is noncausal. The noncausal system cannot be realized in real time.

EXAMPLE 3.4

Given the following linear systems

(a)
$$y(n) = 0.5x(n) + 2.5x(n-2)$$
, for $n \ge 0$,

(a) Since for $n \ge 0$, the output y(n) depends on the current input x(n) and its past value x(n-2), the system is causal.

$$y(n) = 0.25x(n-1) + 0.5x(n+1) - 0.4y(n-1)$$
, for $n \ge 0$,

A causal system is the one in which the output y(n) at time n depends only on the current input x(n) at time n, and its past input sample values such as x(n-1), x(n-2),.... Otherwise, if a system output depends on the future input values such as x(n+1), x(n+2),..., the system is noncausal. The noncausal system cannot be realized in real time.

EXAMPLE 3.4

Given the following linear systems

(a)
$$y(n) = 0.5x(n) + 2.5x(n-2)$$
, for $n \ge 0$,

(a) Since for $n \ge 0$, the output y(n) depends on the current input x(n) and its past value x(n-2), the system is causal.

$$y(n) = 0.25x(n-1) + 0.5x(n+1) - 0.4y(n-1)$$
, for $n \ge 0$,

A causal system is the one in which the output y(n) at time n depends only on the current input x(n) at time n, and its past input sample values such as x(n-1), x(n-2),.... Otherwise, if a system output depends on the future input values such as x(n+1), x(n+2),..., the system is noncausal. The noncausal system cannot be realized in real time.

EXAMPLE 3.4

Given the following linear systems

(a)
$$y(n) = 0.5x(n) + 2.5x(n-2)$$
, for $n \ge 0$,

(a) Since for $n \ge 0$, the output y(n) depends on the current input x(n) and its past value x(n-2), the system is causal.

$$y(n) = 0.25x(n-1) + 0.5x(n+1) - 0.4y(n-1)$$
, for $n \ge 0$,

-> Is this causal?

Check This Example at Home!

System	Linear	Time invariant	Causal
Constant offset $y[n] = x[n] + C, C \neq 0$	N	Y	Y
Time shift $y[n] = x[n - n_d]$	Y	Υ	Y, if $n_d > 0$
$\begin{array}{c} Squaring \\ y[n] = x^2[n] \end{array}$	N	Y	Y
Accumulator $y[n] = \sum_{k=-\infty}^{n} x[k]$	Y	Υ	Y
	Υ	N	N
$\begin{array}{c} Differentiator \\ y[n] = x[n] - x[n-1] \end{array}$	Υ	Y	Y
A difference equation $y[n] = x[n] + y[n-1]$	Y	Υ	Y

$$y[n] = x[n] + kx[n - d]$$

$$y[n] = x[n] + kx[n - d]$$

$$h[n] = \delta[n] + k\delta[n - d]$$

$$y[n] = x[n] + kx[n - d]$$

$$h[n] = \delta[n] + k\delta[n - d]$$

$$y[n] = x[n] + kx[n - d]$$

$$h[n] = \delta[n] + k\delta[n - d]$$

Remember...

• We can write any sampled signal in terms of impulse functions:

Remember...

• We can write any sampled signal in terms of impulse functions:

System

 $x[k]\delta[n-k]$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$CONVOLUTION SUM$$

x[k]h[n-k]

System

CONVOLUTION SUM

Or

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$x[k]\delta[n-k] \longrightarrow x[k]h[n-k]$$
System

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
System

$$y[n] = x[n] * h[n]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$CONVOLUTION SUM$$

1) Distributive Property:

$$y[n] = x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$$

Block Diagram:

It can be used with the systems connected parallel.

2) Associativity Property:

$$y[n] = x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$

Blok diyagram:

$$x(t) \qquad h_1(t) \qquad h_2(t) \qquad \equiv \qquad x(t) \qquad h_1 * h_2(t) \qquad y(t)$$

$$x(t) \qquad h_1(t) \qquad h_2(t) \qquad \equiv \qquad x(t) \qquad h_2(t) \qquad h_1(t) \qquad y(t)$$

It can be used with the systems that are cascaded-connected.

3) Identity Element of Convolution Property:

$$x[n]*\delta[n] = x[n]$$

3) Identity Element of Convolution Property:

$$x[n]*\delta[n] = x[n]$$

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

3) Identity Element of Convolution Property:

$$x[n]*\delta[n] = x[n]$$

Convolution with an Impulse

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

Original

Shifted left By 1 pixel

Convolution in Discrete-Time Systems

- There are three approaches to calculate convolution:
- 1) Mathematical Approach

2) Table Approach (Polynomial Multiplication)

3) Graphical Approach

Example 1 (Mathematical Approach)

Impulse response of a LTI system and the input signal are given right.

Find the output y[n]!

$$n = 0$$
:

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k] = \sum_{k=0}^{1} x[k]h[-k] = x[0]h[0] + x[1]h[-1] = 0.5$$

Example 1 (Mathematical Approach)

Impulse response of a LTI system and the input signal are given right.

Find the output y[n]!

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$n = 0$$
:

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k] = \sum_{k=0}^{1} x[k]h[-k] = x[0]h[0] + x[1]h[-1] = 0.5$$

Example 1 (Mathematical Approach)

Impulse response of a LTI system and the input signal are given right.

Find the output y[n]!

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$n = 0$$
:

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k] = \sum_{k=0}^{1} x[k]h[-k] = x[0]h[0] + x[1]h[-1] = 0.5$$

Example 1 (Mathematical Approach)

Impulse response of a LTI system and the input signal are given right.

Find the output y[n]!

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

n = -1:

$$y[-1] = \sum_{k=-\infty}^{\infty} x[k]h[-1-k] = \sum_{k=0}^{1} x[k]h[-1-k] = x[0]h[-1] + x[1]h[-2] = 0$$

n = 0:

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k] = \sum_{k=0}^{1} x[k]h[-k] = x[0]h[0] + x[1]h[-1] = 0.5$$

Impulse response of a LTI system and the input signal are given right.

Find the output y[n]!

n = 1:

$$y[1] = \sum_{k=-\infty}^{\infty} x[k]h[1-k] = \sum_{k=0}^{1} x[k]h[1-k] = x[0]h[1] + x[1]h[0] = 0.5 * 1 + 2 * 1 = 2.5$$

n = 2:

$$y[2] = \sum_{k=-\infty}^{\infty} x[k]h[2-k] = \sum_{k=0}^{1} x[k]h[2-k] = x[0]h[2] + x[1]h[1] = 0.5 * 1 + 2 * 1 = 2.5$$

Impulse response of a LTI system and the input signal are given right.

Find the output y[n]!

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

n = 1:

$$y[1] = \sum_{k=-\infty}^{\infty} x[k]h[1-k] = \sum_{k=0}^{1} x[k]h[1-k] = x[0]h[1] + x[1]h[0] = 0.5 * 1 + 2 * 1 = 2.5$$

n = 2:

$$y[2] = \sum_{k=-\infty}^{\infty} x[k]h[2-k] = \sum_{k=0}^{1} x[k]h[2-k] = x[0]h[2] + x[1]h[1] = 0.5 * 1 + 2 * 1 = 2.5$$

Check the **Associativity property?**

Example 2 (Table Approach)

Example 2 (Table Approach)

$$y[n] = \sum_{k=0}^{2} h[k]x[n-k] = h[0]x[n] + h[1]x[n-1] + h[2]x[n-2]$$

Example 2 (Table Approach)

$$y[n] = \sum_{k=0}^{2} h[k]x[n-k] = h[0]x[n] + h[1]x[n-1] + h[2]x[n-2]$$

n	n<0	0	1	2	3	4	5
x[n]	0	1	1	1	0	0	0
h[n]	0	0.5	2	0	0	0	0
h[0]x[n]	0	0.5	0.5	0.5	0	0	0
h[1]x[n-1]	0	0	2	2	2	0	0
h[2]x[n-2]	0	0	0	0	0	0	0
y[n]	0	0.5	2.5	2.5	2	0	0

Graphical approach will be explained next week!!

Find the impulse response of a system which is given below.

$$y[n] = x[n] + 0.4x[n - 1600]$$

$$h[n] = \delta[n] + 0.4\delta[n - 1600]$$

 $h[n] = \delta[n] + 0.4\delta[n - 1600]$

Find the impulse response of a system which is given below.

$$y[n] = x[n] + 0.4x[n - 1600]$$

* Find the output when the input signal $x[n] = \cos(5\pi n)$ is applied to the system.

Find the impulse response of a system which is given below.

$$y[n] = x[n] + 0.4x[n - 1600] h[n] = \delta[n] + 0.4\delta[n - 1600]$$

* Find the output when the input signal $x[n] = \cos(5\pi n)$ is applied to the system.

$$y[n] = h[n] * x[n]$$

Find the impulse response of a system which is given below.

$$y[n] = x[n] + 0.4x[n - 1600]$$

$$h[n] = \delta[n] + 0.4\delta[n - 1600]$$

* Find the output when the input signal $x[n] = \cos(5\pi n)$ is applied to the system.

$$y[n] = h[n] * x[n]$$

$$y[n] = (\delta[n] + 0.4\delta[n - 1600]) * \cos(5\pi n)$$

Find the impulse response of a system which is given below.

$$y[n] = x[n] + 0.4x[n - 1600]$$
 $h[n] = \delta[n] + 0.4\delta[n - 1600]$

* Find the output when the input signal $x[n] = \cos(5\pi n)$ is applied to the system.

$$y[n] = h[n] * x[n]$$

$$y[n] = (\delta[n] + 0.4\delta[n - 1600]) * \cos(5\pi n)$$

*Using Distributive Property

$$y[n] = \delta[n] * \cos(5\pi n) + 0.4\delta[n - 1600] * \cos(5\pi n)$$

Find the impulse response of a system which is given below.

$$y[n] = x[n] + 0.4x[n - 1600]$$
 $h[n] = \delta[n] + 0.4\delta[n - 1600]$

* Find the output when the input signal $x[n] = \cos(5\pi n)$ is applied to the system.

$$y[n] = h[n] * x[n]$$

$$y[n] = (\delta[n] + 0.4\delta[n - 1600]) * \cos(5\pi n)$$

*Using Distributive Property

$$y[n] = \delta[n] * \cos(5\pi n) + 0.4\delta[n - 1600] * \cos(5\pi n)$$

*Using Identity Element of Convolution Property

Convolution with an Impulse

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

Find the impulse response of a system which is given below.

$$y[n] = x[n] + 0.4x[n - 1600]$$

$$h[n] = \delta[n] + 0.4\delta[n - 1600]$$

* Find the output when the input signal $x[n] = \cos(5\pi n)$ is applied to the system.

$$y[n] = h[n] * x[n]$$

$$y[n] = (\delta[n] + 0.4\delta[n - 1600]) * \cos(5\pi n)$$

*Using Distributive Property

$$y[n] = \delta[n] * \cos(5\pi n) + 0.4\delta[n - 1600] * \cos(5\pi n)$$

*Using Identity Element of Convolution Property

$$y[n] = \cos(5\pi n) + 0.4\cos(5\pi(n - 1600))$$

Convolution with an Impulse

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

What does this system do?

$$y[n] = x[n] + 0.4x[n - 1600]$$

```
clc; clear all;
99
[x,Fs] = audioread('myRecording.wav');
x = x(:,1);
sound (x, Fs);
99
h = zeros(1, 1601);
h(1) = 1;
h(1601) = 0.8;
응응
lenOutput = length(x) + length(h) - 1;
y = zeros(1, lenOutput);
for n = 1:length(x)
    for k = 1: length(h)
        if (n-k) > 1
          y(n) = y(n) + h(k) *x(n-k);
        end
    end
end
figure (2); stem(1:lenOutput, y));
sound(y,Fs);
```


What does this system do?

$$y[n] = x[n] + 0.4x[n - 1600]$$
$$h[n] = \delta[n] + 0.4\delta[n - 1600]$$

```
clc; clear all;
99
[x,Fs] = audioread('myRecording.wav');
x = x(:,1);
sound (x, Fs);
99
h = zeros(1, 1601);
h(1) = 1;
h(1601) = 0.8;
응응
lenOutput = length(x) + length(h) - 1;
y = zeros(1, lenOutput);
for n = 1:length(x)
    for k = 1:length(h)
        if (n-k) > 1
          y(n) = y(n) + h(k) *x(n-k);
        end
    end
end
figure (2); stem(1:lenOutput, y));
sound(y,Fs);
```


What does this system do?

$$y[n] = x[n] + 0.4x[n - 1600]$$
$$h[n] = \delta[n] + 0.4\delta[n - 1600]$$

Write a convolution code that applies this filter to a piano sound.

```
clc; clear all;
응응
[x,Fs] = audioread('myRecording.wav');
x = x(:, 1);
sound (x, Fs);
h = zeros(1, 1601);
h(1) = 1;
h(1601) = 0.8;
응응
lenOutput = length(x) + length(h) - 1;
y = zeros(1, lenOutput);
for n = 1:length(x)
    for k = 1:length(h)
        if (n-k) > 1
          y(n) = y(n) + h(k) *x(n-k);
        end
    end
end
figure (2); stem(1:lenOutput, y));
sound(y,Fs);
```


What does this system do?

$$y[n] = x[n] + 0.4x[n - 1600]$$

$$h[n] = \delta[n] + 0.4\delta[n - 1600]$$

Write a convolution code that applies this filter to a piano sound.

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

```
clc; clear all;
[x,Fs] = audioread('myRecording.wav');
x = x(:, 1);
sound (x, Fs);
h = zeros(1, 1601);
h(1) = 1;
h(1601) = 0.8;
응응
lenOutput = length(x) + length(h) - 1;
y = zeros(1, lenOutput);
for n = 1:length(x)
    for k = 1:length(h)
        if (n-k) > 1
          y(n) = y(n) + h(k) *x(n-k);
        end
    end
end
figure (2); stem(1:lenOutput, y));
sound(y,Fs);
```


What does this system do?

$$y[n] = x[n] + 0.4x[n - 1600]$$

$$h[n] = \delta[n] + 0.4\delta[n - 1600]$$

Write a convolution code that applies this filter to a piano sound.

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$h[n] = [10000...000...1]$$
 -> length of h is 1601

$$y[n] = \sum_{k=0}^{1600} h[k]x[n-k]$$

```
clc; clear all;
[x,Fs] = audioread('myRecording.wav');
x = x(:, 1);
sound (x, Fs);
h = zeros(1, 1601);
h(1) = 1;
h(1601) = 0.8;
응응
lenOutput = length(x) + length(h) - 1;
y = zeros(1, lenOutput);
for n = 1:length(x)
    for k = 1: length(h)
        if (n-k) > 1
           y(n) = y(n) + h(k) *x(n-k);
        end
    end
end
figure (2); stem(1:lenOutput, y));
sound(y,Fs);
```


What does this system do?

$$y[n] = x[n] + 0.4x[n - 1600]$$

$$h[n] = \delta[n] + 0.4\delta[n - 1600]$$

Write a convolution code that applies this filter to a piano sound.

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$h[n] = [1 \ 0 \ 0 \ 0 \ \dots \ 0 \ 0 \ \dots \ 1]$$
 -> length of h is 1601

$$y[n] = \sum_{k=0}^{1600} h[k]x[n-k]$$

```
clc; clear all;
[x,Fs] = audioread('myRecording.wav');
x = x(:, 1);
sound (x, Fs);
h = zeros(1, 1601);
h(1) = 1;
h(1601) = 0.8;
응응
lenOutput = length(x) + length(h) - 1;
y = zeros(1, lenOutput);
for n = 1:length(x)
    for k = 1: length(h)
        if (n-k) > 1
           y(n) = y(n) + h(k) *x(n-k);
        end
    end
end
figure (2); stem(1:lenOutput, y));
sound(y,Fs);
```

Just code, no R, L, C circuit elements!!

Convolution in 2D

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Delta fonksiyonu

Kaydır ve çıkart

$$\begin{bmatrix} -k/8 & -k/8 & -k/8 \\ -k/8 & k+1 & -k/8 \\ -k/8 & -k/8 & -k/8 \end{bmatrix}$$

-k/6 -k/6]

Kenar pekiştirme

Mart 2012

Homework

3.4. Şekil 3.17'de gösterilen dürtü yanıtı ve giriş işareti için sistemin çıkışını bulunuz. I sistem kararlı mıdır? Bu sistem nedensel midir?

Şekil 3.17. Problem 3.4. için giriş işareti ve dürtü yanıtı.

3.5. Şekil 3.18'de gösterilen sistem düzeneğinde $h_1[n] = (0.2)^n u[n]$ ve $h_2[n] = \delta[n-1]$ olarak verildiğine göre eşdeğer sistemin dürtü yanıtını bulunuz.

Şekil 3.18. Problem 3.5. için sistem düzeneği