Introdução à Ciência de Dados

Inteligência Artificial

- Inteligência Artificial é a ciência que treina máquinas para realizar tarefas humanas
- Machine Learning foca-se na criação de algoritmos que têm a habilidade de aprender com os dados sem serem explicitamente programados

Machine Learning/Aprendizagem Máquina

Novo paradigma de programação

Os algoritmos de Machine Learning aprendem a partir de dados

Evolução da Tecnologia de Bases de Dados

- 1950s: Primeiros computadores, usados no censos da população Americana
- 1960s: Coleção de dados, criação de bases de dados (modelo hierárquico e de rede)
- 1970s: Modelo Relacional, Implementação DBMS
- 1980s: RDBMS, modelos de dados avançados (relacional estendido, OO, dedutivo, etc.) e DBMS orientados a aplicações (espacial, científica, etc.)
- 1990s: armazéns de dados (OLAP), bases de dados multimédia, bases de dados WEB (surge Data Mining)
- 2000s: século da informação
 - Fluxo constante de dados: sensor networks, web logs, mobile SMS, computer network traffic
 - WEB 2.0 (mensagens e logs gerados de blogs, redes sociais, jornais on-line)

Dados Armazenados

- Transações de negócio suportadas por cartões magnéticos
- Dados científicos
- Dados pessoais e médicos
- Vídeo, áudio, imagens
- Dados recolhidos via satélite espaciais, sensores remotos
- Introdução dos códigos de barra nos produtos comerciais
- Digital media
- CAD
- Data streams

Formas de Análise dos Dados

- SQL Linguagem de Interrogação de Bases de Dados
 - Sem capacidade de programação
 - Com limitações
- Folhas de Cálculo
- Bases de Dados Analíticas (OLAP)
 - Espaço de Dados Multidimensional
 - Versáteis, flexíveis permitem combinar múltiplas dimensões de informação
 - Análises quantitativas dos dados

Transformam Dados em Informação

Motivação

- Desenvolvimento das capacidades informáticas
 - Novas formas de recolha de dados
 - Evolução na tecnologia de armazenamento de dados
 - Crescimento Exponencial do volume de dados
 - Aplicações mais complexas
 - Novos métodos de Análise de Dados
 - Análise Lógica versus Análise Gráfica

Dados, Informação, Conhecimento

 Primeiros SGBD's a ênfase recaía sobre conteúdo dos atributos das tabelas das BD's

→ dados

 Estes dados passaram a ser manipulados através de ferramentas de análise de dados, SQL, Folhas de Cálculo, Sistemas EIS

informação

 Novos métodos de Análise de Dados – baseados em técnicas de Inteligência Artificial, Estatística

⇒conhecimento

Necessidade de Conhecimento

Afogamo-nos em Informação

mas temos sede de conhecimento [Naibestt 1999]

É necessário extrair conhecimento interessante dos dados Regras, Regularidades, Relações, Padrões

Data Science vs. Estatística

Estatística

Os processos são de **análise confirmatória** - um método só é aceite após a sua prova – teste da hipótese

- a distribuição dos dados tem de ser conhecida à partida
- o desenvolvimento e teste de uma hipótese é feito através do processo de análise
- as amostras são dados numéricos de reduzida dimensão

O termo Data Mining é conotado com análises ad-hoc que conduzem a descobertas de relações um pouco por acaso

Data Science

- Os processos são de natureza exploratória
- Para além de técnicas Estatísticas inclui técnicas de outras áreas:
 Inteligência Artificial, Bases de Dados, Ciências da Computação,...
- A maioria dos dados que ocorrem nas BD's são por natureza aleatórios, não lineares e de diferentes formatos e tipos (numérico, nominal, imagem, ...)
- Integra teoria e heurísticas, assume-se uma atitude mais experimental
- Foca-se nas várias fases do processo de descoberta de conhecimento: seleção, limpeza, integração e visualização dos resultados

Várias Designações

- Data Fishing, Data Dredging: 1960usado pelos Estatísticos (como mau nome)
- Data Mining: 1990-usado pela comunidade das Bases de Dados, Software houses
 "database mining"™ marca registada pela HNC
- Knowledge Discovery in Databases: 1995usado pelas comunidades IA, Machine Learning
 Data Archaeology, Information Harvesting, Information Discovery,
 Knowledge Extraction, ...
- Atualmente: Data Science

Processo centrado em diferentes utilizadores

- Especialista de domínio possui amplo conhecimento da área em estudo
- Analista especialista no processo de DCBD e responsável pela sua execução. Este especialista deve conhecer profundamente todo o processo de descoberta de conhecimento e as técnicas mais adequadas a cada uma das suas fases
- Utilizador final usa o conhecimento extraído a partir do processo DCBD em aplicações que o auxiliam na tomada de decisões. Não é necessário que este utilizador tenha um conhecimento profundo da área em questão

O sucesso do processo de DCBD depende, em parte, da interação entre estes três tipos de utilizadores

A participação do especialista do domínio e/ou do utilizador final tem grande importância na **definição dos objetivos iniciais** do processo de DCBD, bem como na **avaliação final do conhecimento extraído**

Operações de Descoberta de Conhecimento

Aprendizagem Supervisionada

A aprendizagem é feita usando dados que estão etiquetados com a resposta correta. O algoritmo de ML aprende com os dados etiquetados e gera um modelo. Posteriormente, é dado ao modelo dados não etiquetados e o mesmo consegue prever qual o rótulo correto para esses dados

Aprendizagem não Supervisionada

Os dados não estão etiquetados e, portanto, o algoritmo atua sobre os mesmos sem orientação. Os algoritmos neste caso determinam semelhanças e padrões entre os dados

Operações de Descoberta de Conhecimento

Aprendizagem Semi-supervisionada

Apenas uma parcela dos dados está etiquetada

Aprendizagem por Reforço

É uma abordagem de treino dentro do ML, onde o agente é incentivado por meio de um sistema de recompensa que atribui valores positivos ou negativos com base no desempenho das suas ações.

Com o tempo, o agente gravita instintivamente em direção a ações que produzem resultados positivos, evitando aquelas que levam a consequências negativas

O Processo de Descoberta de Conhecimento

Processo de Descoberta de Conhecimento

É o processo não trivial de identificação de relações válidas, novas, compreensíveis e potencialmente úteis nos dados [Fayyad et al., 1995]

O conhecimento descoberto é usado para:

- Fazer classificações sobre novos dados
- Fazer previsões
- Sintetizar o conteúdo de grandes bases de dados
- Obter uma visão lógica dos dados

Conhecimento

Sob a perspectiva de *Descoberta de Conhecimento*, o conhecimento é quantificado em termos de:

- Utilidade
- Validade
- Simplicidade/Complexidade
- Novidade

Estas medidas são aplicadas às relações/modelos sempre sob a perspectiva de **Interesse**

Processo de Descoberta de Conhecimento

Processo Interactivo e Iterativo

Fase de Selecção

para exploração

- Escolha dos dados de acordo com os objectivos de descoberta
- Volume de dados necessário
- Periodicidade de recolha das amostras
- Frequência de repetição dos exercícios de exploração

Fase de Limpeza

Amostra escolhida para exploração

Dados Corrigidos

- Tratamento de dados em falta
- Tratamento de exemplos anormais
 - dados inconsistentes
 - valores isolados
- Eliminação de dados em mau estado
- Conversão de dados categóricos para valores numéricos
- Conversão de unidades

Fase de Pré-Processamento

Redução em Linhas

- Generalização de atributos categóricos
- Discretização de atributos contínuos
 - Algoritmos não sensíveis à classe
 - Algoritmos orientados por classes
- Normalização dos dados

Fase de Pré-Processamento

Redução em Colunas

- Combinação de Variáveis de Entrada não correlacionadas
- Eliminação de variáveis correlacionadas
- Análise Sensitiva
- Análise dos Componentes Principais
- Aproximação Empacotadora
- Aproximação Filtro

Fase de Pré-Processamento

Sobre-ajustamento

O modelo prevê os resultados baseado em particularidades dos dados usados no seu treino

Sub-ajustamento

O modelo falha na procura de relações de interesse nos dados, ou disponibiliza relações muito genéricas

Fase de Data Mining

Envolve a adaptação de modelos, ou extracção de relações a partir dos dados, sem os passos adicionais que fazem parte de todo o processo de Descoberta de Conhecimento

Principais Operações de Data Mining

- Classificação
- Clustering
- Análise de Associações
- Análises Sequenciais
- Análise de Desvios
- Sumarização

Fase de Interpretação e Avaliação

- Visualização
- Filtragem de Conhecimento
 - Corte das regras
 - Limite mínimo de confiança das regras geradas
- Avaliação
 - Precisão
 - Taxa de Erro

Fase de Integração do novo Conhecimento

Integração do conhecimento num repositório central único pode envolver:

- modificação do conhecimento já existente (revisão)
- eliminação de conhecimento
- resolução de conflitos

Operações de Data Mining

Classificação

É uma função de aprendizagem que divide (ou classifica) os dados de acordo com um número específico de características.

Definição

- Seja uma base de dados $D=\{t_1,t_2,...,t_n\}$
- um conjunto de classes C={C₁,...,C_m},
- a Classificação consiste em definir uma relação f:D→C em que cada t_i é atribuído a uma classe
- a base de dados D é dividida em classes de equivalência

Classificação

Aplicação

- Identificar potenciais clientes para uma campanha de marketing
- Identificar clientes com risco de crédito
- Reconhecimento de voz
- Reconhecimento de caracteres

Técnicas mais usadas:

- Árvores de Decisão
- Redes Neuronais
- Máquinas de Suporte Vectorial
-

Clustering

É uma operação que tem por objetivo identificar um conjunto finito de classes ou agrupamentos nos dados

Definição

- seja a base de dados D = $\{t_1, t_2, ..., t_n\}$
- um valor K (nº de classes)
- Clustering consiste em definir uma relação f:D→{1,..,k} em que cada tuple t_i é atribuído a um cluster K_i, 1<=j<=k
- o Cluster, K_j, contém precisamente os tuples a ele alocados
- o nº de clusters não é conhecido à priori

Clustering

Aplicação:

- sumariar o conteúdo de uma base de dados
- preparação de dados para outros métodos

Técnicas mais usadas:

- Técnicas Estatísticas Algoritmo K-means
- Redes Neuronais
- Redes Kohonnen

Análise de Associações

Tem por objetivo gerar todas as associações entre items de transações que impliquem a presença de outros items

Definição

- seja um conjunto de itens $I = \{I_1, I_2, ..., I_m\}$
- uma base de dados de transações $D=\{t_1,t_2,...,t_n\}$ em que $t_i=\{I_{i1},I_{i2},...,I_{ik}\}$ e $I_{ij}\in I$
- Análise de Associações consiste em identificar todas as regras de associação X ⇒ Y com um Suporte e Confiança mínimo

TID	Product		
1	MILK, BREAD, EGGS		
2	BREAD, SUGAR		Conjuntos Itens Frequentes:
3	BREAD, CEREAL		Milk, Bread (4) Bread, Cereal (3) Milk, Bread, Cereal (2)
4	MILK, BREAD, SUGAR		
5	MILK, CEREAL		
6	BREAD, CEREAL		
7	MILK, CEREAL		
8	BREAD, BUTTER		
9	MILK, BREAD, CEREAL, EGGS	Milk => Bread (Sup 40%, Conf 67%)	
10	MILK, BREAD, CEREAL		

Análise de Associações

Exemplos

- Determinar produtos vendidos conjuntamente
- Relacionar diagnósticos médicos com valores de análises
- Relacionar acessos de páginas web

Técnicas mais usadas:

- Técnicas Estatísticas
- Algoritmo Apriori

Análises Sequenciais

Tem por objectivo encontrar regras que prevejam fortes dependências sequenciais entre diferentes eventos ao longo do tempo

- Regras são formadas primeiro por descoberta de padrões
- Ocorrências nas relações são ordenadas temporalmente

Exemplo

Compras livrararia:

```
(Intro_To_Visual_C) (C++_Primer) →
(Perl_for_dummies,Tcl_Tk)
```

 Alarmes de logs (Rectifier_Alarm) → (Fire_Alarm)

Análise de Desvios

Foca-se na descoberta de mudanças mais significativas nos dados a partir de valores previamente medidos ou valores normais

Exemplos

- Deteção de desvios em stocks
- Deteção de fraudes
- Deteção intrusos em redes

Exemplo: Agência de Viagens

- Os pacotes turísticos estão classificados em várias categorias: aventura, cultura, campo, praia...
- Cada pacote pode ter vários destinos, ou um só destino
- Sobre o mesmo pacote s\u00e3o feitos v\u00e1rias compras, por diferentes clientes em datas distintas
- A agência pode fazer promoções aos pacotes em vários períodos de tempo

Técnicas de Data Mining

Principais Técnicas de Data Mining

- Árvores de Decisão
- Redes Neuronais
- Máquinas de Suporte Vectorial
- Regressão
- Raciocínio Baseado em Casos
- Naive Bayes, Redes Bayesianas
- Algoritmos Genéticos
-

Uma técnica é adequada para fazer Data Mining:

- se produzir modelos de elevada qualidade
- se produzir modelos compreensíveis
- se puder aceitar conhecimento

Árvores de Decisão

Dividem o conjunto de dados de modo a construir um modelo que classifica cada registo de acordo com o valor que apresentar no atributo objectivo

Algoritmos mais usados em ferramentas de Descoberta de Conhecimento:

CART, C4.5

Redes Neuronais

São constituídas por uma série de nós interligados arranjados em níveis

Algoritmos mais usados em ferramentas de Descoberta de Conhecimento:

- Propagação Retroactiva Classificação
- Função Base Radial Classificação
- Rede Mapas Kohonen Clustering

Top 10 Algoritmos Data Mining

- C4.5 (indução de árvores de decisão e regras)
- K-means (Clustering)
- SVM (Máquinas de Suporte Vectorial)
- Apriori (Extração de Regras de Associação)
- EM (finite mixtures models)
- PageRank (Motor pesquisa Google, information retrieval)
- AdaBoost (combinação de classificadores)
- kNN (classificador baseado em instâncias)
- Naive Bayes (classificação baseado no Teorema de Bayes)
- CART (árvores de decisão)

Fonte original: "Top 10 algorithms in data mining", artigo da revista Knowledge and Information Systems, Dezembro de 2007

Teorema "No Free Lunch", Wolpert (1996)

Metodologias KDD

Com base no processo de DCBD foram definidas duas metodologias:

- CRISP-DM (CRoss Industry Standard Process for Data Mining)
 - Consórcio inicialmente composto com DaimlerChryrler, SPSS e NCR
- SEMMA (Sample, Explore, Modify, Model, Assessment)
 - SAS Enterprise Miner

As metodologias CRISP-DM e SEMMA são independentes das ferramentas, métodos ou técnicas de DM adoptadas, podendo ser usadas por qualquer uma

KDD	SEMMA	CRISP-DM	
Pre KDD		Business understanding	
Selection	Sample	- Data Understanding	
Pre processing	Explore		
Transformation	Modify	Data preparation	
Data mining	Model	Modeling	
Interpretation/Evaluation	Assessment	Evaluation	
Post KDD		Deployment	

Metodologias KDD

Metodologia SEMMA

Metodologia CRISP-DM

Domínios de Aplicação

- Defesa
- Marketing&Vendas,
 Telecomunicações, Banca,
 Seguros
- Ciência & Medicina
- World Wide Web
- Text Mining
- Finanças
- Demografia
- Previsão de Audiências
-

Ferramentas por Segmentos Mercado

Complexidade/Escala do problema

R (156)	18%		
RapidMiner (135)	16%		
KNIME (104)	12%		
Weka / Pentaho (97)	11%		
SAS (52)	6%		
MATLAB (45)	5%		
IBM SPSS Modeler (29) 3%			
Orange (29)	3%		
Outras (29)	11%		

Inquérito realizado em Agosto 2017 no site www.kdnuggets.com

Top 3 open-source:

- Python
- R
- RapidMiner (Yale)
-

Big Data software you used in the past 12 months		
Apache Hadoop/Hbase/Pig/Hive (67)	8.4%	
Amazon Web Services (AWS) (36)	4.5%	
NoSQL databases (33)	4.1%	
Other Big Data Data/Cloud analytics software (21)	2.6%	
Other Hadoop-based tools (10)	■ 1.3%	

Data Mining versus Tipos de Dados

- Text Mining: Bases de dados textuais, e-mails, páginas web
- Espacial Mining: Sistemas de Informação Geográfica, Imagens
- Multimedia Mining: Bases de dados de imagem, vídeo/audio
- Web Mining
 - Web Content Mining extrair conhecimento do conteúdo das páginas web (textos, gráficos, imagens, ...)
 - Web Structure Mining extrair conhecimento da organização da Web, links entre referências, etc...
 - Web Usage Mining também conhecida como Web Log Mining, extrair padrões interessantes dos logs dos servidores web
- Reality Mining: estuda interacções humanas com base no uso de dispositivos sem fio, como telefones celulares e sistemas de GPS

Data Mining e Ética

- Estará algum princípio ético ameaçado pela utilização exaustiva da análise de dados?
- Poderá o Data Mining contribuir negativamente para problemas de racismo, exclusão social, repressão ideológica?
 - Viés nos dados
 - Resultados Discriminatórios
 - Perfil social
 - Repressão através da Vigilância
 - Câmaras de eco e polarização
 - Exclusão da tomada de decisões
 - Violação da privacidade

Como mitigar estes problemas

- Garantir a qualidade dos dados
- Auditar regularmente modelos
- Diretrizes e Regulamentos Éticos
- Transparência e responsabilidade
- Equipes diversificadas e inclusivas
- Educar e aumentar a conscientização

Familiaridade/Interesse na área Data Mining

Conhecem ou usam no dia a dia alguma aplicação de Data Mining?

 Têm algum problema a que potencialmente se possa aplicar Data Mining?

Alguns Apontadores

Sites

```
http://www.kdnuggets.com
(Maior site KDD: empresas, ferramentas, livros, publicações,
conferências, empregos, ... )
www.acm.org/sigkdd
ACM SIGKDD – Associação profissional da sociedade Data Mining
```

Mailing Lists

http://www.kdnuggets.com/nuggets/index.html (KDD) http://www.ics.uci.edu/~mlearn/MLList.html (Machine Learning)