

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

Disciplina: INFERÊNCIA ESTATÍSTICA

Curso: Graduação em Estatística

Código: EST0035 Semestre: 2025.1

Professor: Frederico Machado Almeida

LISTA DE EXERCÍCIOS #01

Observações:

• Questões para entregar: 2, 4, 7, 8 e 9

• A lista deve ser feita preferencialmente em duplas.

• Demais questões são apenas para estudar.

• Prazo de entrega: 22/04/2025

- Q1. Nos itens (i)-(iii) escolha a alternativa que melhor responde a pergunta de interesse:
 - (i) Qual das seguintes alternativas descreve a propriedade de um estimador nãoviesado (ou não-tendencioso) para um parâmetro θ ?
 - (a) A forma da distribuição amostral é aproximadamente normal.
 - (b) O centro da distribuição amostral coincide com o valor de θ .
 - (c) A distribuição a amostral em questão apresenta menor variação entre todas as possíveis distribuições amostrais do estimador.
 - (d) O centro da distribuição amostral coincide com o valor do desvio-padrão populacional.
 - (ii) Suponha que a idade dos estudantes do curso de Estatística na UnB segue uma distribuição assimétrica com média de 25 anos, e desvio-padrão igual a 4 anos. Se uma amostra de 200 estudantes for selecionada repetidamente, qual das seguintes afirmações a cerca da distribuição amostral da média está incorreta?
 - (a) A média da distribuição amostral é aproximadamente igual a 25 anos.
 - (b) O desvio-padrão da distribuição amostral é igual a 4 anos.
 - (c) A forma da distribuição amostral é aproximadamente normal.
 - (d) Todas as alternativas anteriores estão corretas.
 - (iii) O Teorema Central de Limite é muito importante na estatística porque afirma que:
 - (a) Para qualquer tamanho da população, a distribuição da média amostral \bar{X}_n é aproximadamente normal.
 - (b) Para n suficientemente grande, a população é não-viesada.
 - (c) Para qualquer população, a distribuição da média amostral \bar{X}_n é aproximadamente normal, independentemente do seu tamanho de amostra.
 - (d) Para n suficientemente grande, a distribuição da média amostral \bar{X}_n é aproximadamente normal, independentemente da população onde a amostra foi selecionada.

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

Q2. Considere a amostra aleatória de dimensão n=2, digamos (X_1,X_2) retirada de uma população da variável aleatória X, que denota o número de animais de estimação por família, cuja distribuição e a seguinte:

x	0	1	2	3
$P\left(X=x\right)$	0,60	0,25	0,10	0,05

- (a) Qual a probabilidade de obter a amostra (3,1), ou seja, qual a probabilidade de a primeira família selecionada ter três animais de estimação e a segunda família selecionada ter 1 animal de estimação?
- (b) Liste todas as possíveis amostras daquela dimensão que pode obter.
- (c) Qual das amostras possíveis de dimensão 2 é a mais provável?
- (d) Qual a probabilidade de uma amostra selecionada ao acaso fornecer uma média amostral \bar{X}_n igual a 2,5?
- Q3. O conteúdo em litros de garrafas de azeite de certa marca segue uma distribuição normal com media $\mu=0,99$ litros e desvio-padrão $\sigma=0,02$ litros. Qual a probabilidade de o conteúdo médio numa amostra de 16 garrafas selecionadas aleatoriamente ser superior a um litro?
- **Q4.** Assuma que Y_1, \dots, Y_n denotam variáveis aleatórias independentes e identicamente distribuídas, com fdp dada por,

$$f(x|\mu) = \begin{cases} e^{\mu - y} & y > \mu, -\infty < \mu < \infty \\ 0 & \text{caso contrário,} \end{cases}$$

que denota a distribuição exponencial de dois parâmetros. Se $Z_1 = \text{Min}\{Y_1, \dots, Y_n\}$ denota a menor estatística de ordem. Assim,

- (a) Especifique o espaço paramétrico e o suporte associado à distribuição de Y.
- (b) Verifique se $T_{1n} = \bar{Y}_n$ e $T_{2n} = Y_{(1)}$ são estimadores não viciados para μ .
- (c) Encontre e compare os EQMs dos dois estimadores apresentados no item (b). Faça um gráfico dos EQMs como função de μ .
- **Q5.** Seja X_1, \dots, X_n uma amostra aleatória proveniente de uma distribuição de Bernoulli com probabilidade de sucesso θ , e seja $W_n = \sum_{i=1}^n X_i$ uma estatística qualquer. Compare os erros quadráticos médios de dois estimadores de θ , respectivamente, $T_{1n} = W_n/n$ e $T_{2n} = (W_n + 1) / (n + 2)$.
- **Q6.** Assuma que X_1, \dots, X_n denota uma amostra aleatória de tamanho n da variável aleatória X extraída de uma distribuição da $\mathcal{N}(\mu, 1)$. Considere os estimadores $T_{1n} = \bar{X}_n$ e $T_{2n} = T_{1n} + X_1$. Encontre o EQM de T_{1n} e T_{2n} como função de μ . Faça um gráfico do EQM para n = 15.
- **Q7.** Considere as variáveis X_1, X_2, \dots, X_9 com distribuição binomial em que, $X_i \sim Binom(n_i, p = 0, 5)$, com $i = 1, 2, \dots, 9$ e as variáveis, $Y_j \sim \mathcal{N}(2, 1)$ para j = 1, 2 (Y_j 's são independentes entre sí).
 - (a) Deduza a distribuição amostral de $T=\sum\limits_{i=1}^5 X_i$

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

- (b) Calcule o valor esperado e a variância da estatística T.
- (c) Deduza a distribuição amostral de $R = \sum_{i=1}^{9} X_i \sum_{j=1}^{2} Y_j$.
- **Q8.** Seja X_1, \dots, X_n uma amostra aleatória da variável aleatória $X \sim \mathbb{U}(0, \theta)$. Se $X_{(n)} = \max\{X_1, \dots, X_n\}$ denota a maior observação do conjunto de dados, obtenha:
 - (a) A função de densidade de probabilidade da estatística $T_n = X(n)$.
 - (b) Mostre T_n é um estimador viesado para θ , e obtenha a função viés, $b(T_n)$.
 - (c) Do item (b), obtenha o valor da constante c > 0, tal que cT_n seja um estimador não-viesado para θ .
 - (d) Considere o seguinte estimador $Y_n = 2\bar{X}_n$. É correto afirmar que Y_n é um estimador não-viesado para θ ? Justifique a sua resposta.
- **Q9.** Definimos a variável $\epsilon = \bar{X}_n \mu$ como sendo o erro amostral da média, onde \bar{X}_n é a média de uma amostra aleatória simples de tamanho n de uma população com média μ e desvio-padrão σ :
 - (a) Determine a média, $E(\epsilon)$ e variância $Var(\epsilon)$.
 - (b) Se a população é normal com $\sigma = 20$; que proporção das amostras de tamanho 100 terá erro amostral absoluto maior do que 2 unidades?
 - (c) Com base na informação do item (b), qual deve ser o valor de δ para que $P(|\epsilon| > \delta) = 0,01$?
 - (d) Qual deve ser o tamanho da amostra para que 95% dos erros amostrais absolutos sejam inferiores a 1 unidade?
- Q10. Em uma sondagem, perguntou-se a 1002 membros de determinado sindicato se eles haviam votado na última eleição para a direção do sindicato e 701 responderam afirmativamente. Os registros oficiais obtidos depois da eleição mostram que 61% dos membros aptos a votar de fato votaram. Calcule a probabilidade de que, dentre 1002 membros selecionados aleatoriamente, no mínimo 701 tenham votado, considerando que a verdadeira taxa de votantes seja de 61%. O que o resultado sugere?
- **Q11.** Uma caixa contem duas bolas pretas e uma bola branca. Seja X o número de bolas pretas retiradas da caixa numa única extração.
 - (a) Qual a distribuição da variável aleatória X?
 - (b) Considere uma amostra aleatória de tamanho n=9 e seja $T=\sum_{i=1}^{9}X_i$. Deduza a distribuição amostral de T.
 - (c) Calcule a $\mathbb{P}(T \leq 3)$.
- **Q12.** Sejam X_1, \dots, X_n um amostra aleatória de tamanho n da distribuição da variável aleatória X com fdp dada por

$$f(x|\theta) = \frac{2x}{\theta^2}, \ 0 < x < \theta, \ \theta > 0.$$

- $(a)\,$ Especifique o espaço paramétrico e o suporte associado à distribuição de X.
- (b) Verifique se $\hat{\theta}_1 = \bar{X}_n$ e $\hat{\theta}_2 = X_{(n)}$ são estimadores viciados para θ . Item Encontre e compare os EQM's dos dois estimadores. Faça um gráfico dos EQM's como função de θ .