Additional File 1

Table S1. List of genes, sequences of primers, cycling conditions for PCR assays, and amplicon sizes.

Assay	Gene	Primer sequence	PCR program ^a	Product size (bp)	Reference
E. coli	uspA	F: 5'-CCGATACGCTGCCAATCAGT-3'	94°C/ 120 s, 70°C/ 60 s,	884	1
confirmation	R: 5'-ACGCAGACCGTAGGCCAGAT-3'	72°C/ 60 s (30 cycles)			
Phylogenetic	chuA _	F: 5'-GACGAACCAACGGTCAGGAT-3' R: 5'-TGCCGCCAGTACCAAAGACA-3'	94°C/ 30 s,		
typing (Triplex	ујаА	F: 5'-TGAAGTGTCAGGAGACGCTG-3' R: 5'-ATGGAGAATGCGTTCCTCAAC-3'	55°C/ 30 s, 72°C/ 30 s	211	2
method)	TspE4.C2	F: 5'-GAGTAATGTCGGGGCATTCA-3' R: 5'-CGCGCCAACAAAGTATTACG-3'		152	
Phylogenetic typing	chuA _	F: 5'-ATGGTACCGGACGAACCAAC-3' R: 5'-TGCCGCCAGTACCAAAGACA-3'	94°C/ 5 s,	288	
(Quadruplex method)	ујаА	F: 5'-CAAACGTGAAGTGTCAGGAG-3' R: 5'-AATGCGTTCCTCAACCTGTG-3'	57°C/ 20 s (30 cycles)	211	3
metriouj	TspE4.C2	F: 5'-CACTATTCGTAAGGTCATCC-3'		152	

		R: 5'-AGTTTATCGCTGCGGGTCGC-3'			
	arpA	F: 5'-AACGCTATTCGCCAGCTTGC-3'		400	
	(Group F)	R: 5'-TCTCCCCATACCGTACGCTA-3'		400	
	arpA	F: 5'-GATTCCATCTTGTCAAAATATGCC-3'		301	
	(Group E)	R: 5'-GAAAAGAAAAGAATTCCCAAGAG-3'		301	
	trpA	F: 5'-AGTTTTATGCCCAGTGCGAG-3'	94°C/ 5 s,		
	(Group C)	P. F/ TOTOCOCCOCTON COCCO 2/	59°C/ 20 s	219	
	(Group C)	R: 5'-TCTGCGCCGGTCACGCCC-3'	(30 cycles)		
	trpA	F: 5'-CGGCGATAAAGACATCTTCAC-3'	94°C/ 5 s,		
	(Internal	D. F./ CCA ACCCCCCCCCCC A A C. 2/	57°C/ 20 s	489	
	control)	R: 5'-GCAACGCGGCCTGGCGGAAG-3'	(30 cycles)		
		F: 5'-GACCCGGCACAAGCATAAGC-3'	95°C/ 30 s,		
	eae		54°C/ 90 s,	384	
		R: 5'-CCACCTGCAGCAACAAGAGG-3'	72°C/ 90 s	304	
DEC			(30 cycles)		4, 5
DEC	stx1	F: 5'-ATAAATCGCCATTCGTTGACTAC-3'	95°C/ 30 s,	180	7, 5
	35.71	R: 5'-AGAACGCCCACTGAGATCATC-3'	52°C/ 60 s,	130	
	stx2 F: 5'-GGCACTGTCTGAAACTGCTCC-3' R: 5'-TCGCCAGTTATCTGACATTCTG-3'	F: 5'-GGCACTGTCTGAAACTGCTCC-3'	72°C/ 60 s	255	
		(35 cycles)			

	fyuA	F: 5'-GTAAACAATCTTCCCGCTCGGCAT-3'	72°C/ 90 s	850	
ExPEC ^c		R: 5'-GGCCAGAACATTTGCTCCCTTGTT-3'	63°C/ 90 s,		6
	vat	F: 5'-TCAGGACACGTTCAGGCATTCAGT-3'	94°C/ 30 s,	1100	
			(35 cycles)		
	aggA	R: 5'-TCAACCTTGACACTTGCC-3'	72°C/ 120 s	414	
			50°C/ 60 s,	414	
	bfpA	F: 5'-ATGCATTACTTTGGGTTTAG-3'	94°C/ 60 s,		
		R: 5'-ATAGCAGTCGATTTAGCAGCC-3'	(30 cycles)		
			72°C/ 40 s	461	
		F: 5'-ATTGAATCTGCAATGGTGC-3'	55°C/ 40 s,		
			95°C/ 40 s,		
		R: 5'-GCCGGTCAGCCACCCTCTGAGAGTAC-3'	(35 cycles)		
	іраН		72°C/ 60 s	620	
		F: 5'-GTTCCTTGACCGCCTTTCCGATACCGTC-3'	60°C/ 60 s,		
			94°C/ 40 s,		
	st1A	R: 5'-ATAACATCCAGCACAGGC-3'	(35 cycles)	186	
	ItA	F: 5'-TCTGTATTATCTTTCCCCTC-3'	72°C/ 120 s		
		R: 5'-CCGAATTCTGTTATATATGTC-3'	50°C/ 60 s,	696	
		F: 5'-GGCGACAGATTATACCGTGC-3'	94°C/ 60 s,		

		R: 5'-TGACGATTAACGAACCGGAAGGGA-3'	(30 cycles)		
	chuA	F: 5'-CTGAAACCATGACCGTTACG-3'		652	
		R: 5'-TTGTAGTAACGCACTAAACC-3'		032	
	yfcV	F: 5'-ACATGGAGACCACGTTCACC-3'		292	
	ујси	R: 5'-GTAATCTGGAATGTGGTCAGG-3'		292	
		F: 5'-TAGCAAACGTTCTATTGGTGC-3'	94°C/ 30 s,		
	kpsM K1		63°C/ 30 s,	153	7
		R: 5'-CATCCAGACGATAAGCATGAGCA-3'	68°C/ 3 min		
			(25 cycles)		
	F: 5'-GCGCATTTGCT	F: 5'-GCGCATTTGCTGATACTGTTG-3'	94°C/ 30 s,		
		2000	58°C/ 30 s,	577	8
	προινί ΙΙ	R: 5'-AGGTAGTTCAGACTCACACCT-3'	72°C/ 3 min	3,7	
		in a real national telephone of	(25 cycles)		

- ^aBefore starting the PCR cycle, DNA was first denatured at 95°C/15 min. After completion
- 3 of the cycle, there was a final primer extension at 72°C/8 min.
- 4 bDiarrheagenic E. coli are defined by the following genes: eae+bfpA/eae (EPEC), ltA+st1A/ltA/st1A (ETEC), ipaH (EIEC),
- 5 eae+stx1+stx2/stx1/stx2 (EHEC), and aggA (EAEC).
- 6 cExtra-intestinal pathogenic *E. coli*

7 8	References in Table 1
9	1. Chen J, Griffiths MW. PCR differentiation of Escherichia coli from other Gram-negative
10	bacteria using primers derived from the nucleotide sequences flanking the gene encoding
11	the universal stress protein. Lett Appl Microbiol. 1998; 27: 369–71.
12	
13	2. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the
14	Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000; 66: 4555–8.
15	
16	3. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli
17	phylo-typing method revisited: Improvement of specificity and detection of new phylo-
18	groups. Environ Microbiol Rep. 2013; 5: 58–65.
19	
20	4. Robins-Browne RM, Bordun A-M, Tauschek M, Bennett-Wood VR, Rusell J, Oppedisano
21	F, et al. Escherichia coli and community-acquired gastroenteritis, Melbourne, Australia.
22	Emerg Infect Dis. 2004; 10: 1797-1805.
23	
24	5. Sethabutr O, Venkatesan M, Yam S, Pang LW, Smoak BL, Sang WK, et al. Detection of
25	PCR product of the ipaH gene from Shigella and enteroinvasive Escherichia coli by
26	enzyme-linked immunosorbent assay. Diagn Microbiol Infect Dis. 2000; 37: 11-16.

28	6. Spurbeck RR, Dinh PC Jr, Walk ST, Stapleton AE, Hooton TM, Nolan LK, et al. Escherichia
29	coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect
30	Immun. 2012; 80: 4115–22.
31	
32	7. Johnson JR, Stell AL. (2000) Extended virulence genotypes of <i>Escherichia coli</i> strains
33	from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis.
34	2000; 181: 261–72.
35	
36	8. Johnson JR, O'Bryan TT. Detection of the <i>Escherichia coli</i> group 2 polysaccharide
37	capsule synthesis gene kpsM by a rapid and specific PCR-based assay. J Clin Microbiol.
38	2004; 42: 1773–6.
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	

Table S2. Sample collection dates and locations, and phylogenetic groupings of E. coli by

52 triplex and quadruplex PCR assays.

Date of sample collection	Location (no. of confirmed <i>E. coli</i>)	Phylogenetic grouping by triplex PCR (no. of isolates) B1 (2)	Phylogenetic grouping by quadruplex PCR (no. of isolates) B1 (2)
11 June 2018	Z ^b (2) J (7) Z (2) H ^c (5)	D (1) A (6) B1 (3) D (5)	D (1) A (6) B1 (3) D (4) E (1)
9 July 2018	J (1) Z (3) H (2)	A (3) B1 (1) B2 (1) D (1)	A (3) B1 (1) B2 (1) D (1)
13 August 2018	J (6) Z (6) H (7)	A (9) B1 (5) D (2)	A (9) B1 (5) D (1) E (1)
10 September 2018	J (2) Z (1) H (9)	A (8) B1 (3) B2 (1)	A (7) B1 (3) B2 (1) C (1)
8 October 2018	J (4) Z (1) H (4)	A (4) B1 (3) D (2)	A (4) B1 (3) D (1) F (1)

			1
12 November	J (4)	A (7)	A (7)
2018	Z (1) H (4)	B1 (2)	B1 (2)
	11 (4)		1 (2)
	J (3)	A (3)	A (3)
10 December	Z (4)	B1 (3)	B1 (3)
2018	H (3)	D (4)	D (2)
	11 (3)	<i>D</i> (4)	F (2)
			A (3)
	1 (4)	A (3)	B1 (3)
7 January	J (4)	B1 (3)	B2 (2)
2019	Z (5)	B2 (2)	D (3)
	H (5)	D (6)	F (1)
			E (2)
4 Fobruary	J (4)	A (3)	A (3)
4 February	Z (2)	B1 (3)	B1 (3)
2019	H (2)	D (2)	F (2)
	1 (3)	A (6)	A (6)
11 March	J (3)	B1 (1)	B1 (1)
2019	Z (6)	B2 (4)	B2 (4)
	H (3)	D (1)	D (1)
			A (14)
	J (7)	A (16)	B1 (5)
8 April 2019	Z (7)	B1 (5)	D (1)
	H (10)	D (3)	F (2)
			C (2)
ما بالمام المام			

^{53 &}lt;sup>a</sup>Jabriya.

^{54 &}lt;sup>b</sup>Zahraa.

^{55 &}lt;sup>c</sup>Hateen.

 Table S3. Distribution of ExPEC according to location and date of collection of samples.

Month/Year	No. of ExPEC	Location			
Wionthy real	isolates	Jabriya	Zahraa	Hateen	
14 May/2018	1	0	1	0	
11 June/2018	7	2	1	4	
9 July/2018	2	0	1	1	
13 August/2018	8	1	2	5	
10 September/2018	2	0	0	2	
8 October/2018	4	1	0	3	
12 November/2018	3	2	1	0	
10 December/2018	5	2	2	1	
7 January/2019	7	2	3	2	
4 February/2019	4	0	2	2	
11 March/2019	7	2	3	2	
8 April/2019	7	2	0	5	