

INTERACTIVE SYSTEMS - PROJEKTVORSTELLUNG

IMPLEMENTIERUNG EINER ERKENNUNG VON ZIFFERN

AGENDA

- 1. Projektidee Rückblick
- 2. Support Vector Machines
- 3. Neuronale Netze
- 4. Convolutional Neural Networks
- 5. Vergleich von SVM, NN und CNN

1. PROJEKTIDEE - RÜCKBLICK

- Datensatz MNIST
- Testen von verschiedenen Modellen
- Support Vector Machine,
 Neuronale Netze, CNNs
- Hyperparameter, z. B. Anzahl der Neuronen / Layer

2. SUPPORT VECTOR MACHINE

- Hyperparameter: Trennfläche
 - Linear: Erkennungsrate 84 %
 - Polynom 2., 4., 9. Grades

Linear trennbar

Nicht linear trennbar

NICHT-LINEARE HYPERFLÄCHE — POLYNOM 2. GRADES

- $ightharpoonup \gamma$ und r beeinflussen die Form der Trennfläche
- Training: 18000 Samples

NICHT-LINEARE HYPERFLÄCHE — POLYNOM 2. GRADES

Je mehr Trainings-Samples, desto bessere Erkennungsrate

NICHT-LINEARE HYPERFLÄCHE — POLYNOM N. GRADES

Polynom 4. Grades

Polynom 9. Grades

gamma	r	Erkennungsrate	gamma	r	Erkennungsrate
0,0001	1	0,87	0.0013	1	0.2
0,001	1	0,63	0.1	1	0.94
0,0013	1	0,56	0.0001	1	0.81
0,01	1	0,42	1	0	0.87
0,1	1	0,93	10	0	0.87
1	1	0,95	0.01	0	0.87
1	0	0,94	0.001	0	0.77
1	10	0,94			
1	100	0,43			

höherer Grad N führt zu längerer Trainingsdauer!

3. NEURONALE NETZE

5 verschiedene Netzarchitekturen

ID	architecture	test error for	simulation	weights
	(number of neurons in each layer)	best validation [%]	time [h]	[milions]
1	1000, 500, 10	0.49	23.4	1.34
2	1500, 1000, 500, 10	0.46	44.2	3.26
3	2000, 1500, 1000, 500, 10	0.41	66.7	6.69
4	2500, 2000, 1500, 1000, 500, 10	0.35	114.5	12.11
5	9 × 1000, 10	0.44	107.7	8.86

Quelle: "Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition" https://arxiv.org/pdf/1003.0358.pdf

Epochs

3. NEURONALE NETZE — ERGEBNISSE

Erkennungsraten der verschiedenen Architekturen

	3000 Trair	ningsdaten	60000 Trainingsdaten		
	30 Epochen	50 Epochen	30 Epochen*	50 Epochen*	
NN1	93,5 %	92,7 %	98,1 %	98,2 %	
NN2	91,5 %	93,0 %	-	-	
NN3	92,9 %	93,4 %	-	-	
NN4	92,8 %	92,6 %	-	-	
NN5	92,1 %	91,9 %	98,0 %	97,8 %	

^{* 60000} Test Samples

3. NEURONALE NETZE — ERGEBNISSE

Vergleich der Ergebnisse Paper vs. eigene Tests

ID	architecture	test error for	Eigene Ergebnisse	
	(number of neurons in each layer)	best validation [%]	best test error [%]	
1	1000, 500, 10	0.49	1,9*	
2	1500, 1000, 500, 10	0.46	7,0	
3	2000, 1500, 1000, 500, 10	0.41	6,6	
4	2500, 2000, 1500, 1000, 500, 10	0.35	7,2	
5	9 × 1000, 10	0.44	2,0*	

^{* 60000} Test Samples

4. CONVOLUTIONAL NEURAL NETWORKS

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 28, 28, 32)	320
conv2d_2 (Conv2D)	(None, 28, 28, 32)	9248
max_pooling2d_1(MaxPooling2	(None, 14, 14, 32)	0
dropout_1 (Dropout)	(None, 14, 14, 32)	0
conv2d_3 (Conv2D)	(None, 14, 14, 64)	18496
conv2d_4 (Conv2D)	(None, 14, 14, 64)	36928
max_pooling2d_2 (MaxPooling2	(None, 7, 7, 64)	0
dropout_2 (Dropout)	(None, 7, 7, 64)	0
flatten_1 (Flatten)	(None, 3136)	0
dense_1 (Dense)	(None, 1024)	3212288
dense_2 (Dense)	(None, 1024)	1049600
dense_3 (Dense)	(None, 1024)	1049600
dense_4 (Dense)	(None, 1024)	1049600
dense_5 (Dense)	(None, 10)	10250

Total params: 6,436,330 (trainable)

- Vergleich verschiedener Architekturen
 - Anzahl convolutional layers
 - Anzahl Pooling Layers
 - Poolsize
 - Trainingsamples: 2500

4. CONVOLUTIONAL NEURAL NETWORKS - ERGEBNISSE

4. VERGLEICH VON SVM, NN UND CNN

- Beste Erkennungsraten:
 - > SVM: 98,1 % (Polynom 2. Grades, 60000 Trainingsdaten)
 - NN: 98,2 % (NN1, 50 Epochen, 60000 Trainingsdaten)
 - CNN: 97,4 % (20 Epochen, 2500 Trainingsdaten
- Beste Netze (Papers):
 - SVM: 99,4 % (Virtual SVM, deg-9 poly, 2-pixel jittered)
 - NN: 99,65 % (6-layer, 784-2500-2000-1500-1000-500-10 (on GPU) [elastic distortions])
 - CNN: 99,7 % (35 conv. net, 1-20-P-40-P-150-10 [elastic distortions])

Quelle: http://yann.lecun.com/exdb/mnist/

4. VERGLEICH VON SVM, NN UND CNN

- Support Vector Machines:
 - ▶ Erkennungsrate variiert stark mit verwendeten Kernelparametern
 - ▶ Einzigartiges Ergebnis, weniger anfällig für Overfitting
 - Schnell, wenige Hyperparameter
- ▶ Neuronale Netze:
 - ▶ Klassischer Ansatz für Klassifizierung von verschiedenen Datenstrukturen
 - ▶ Flexible Architektur
- CNN:
 - Viele Architekturen liefern Prediction Modelle mit hohen Erkennungsraten
 - Besonders geeignet für Bilddaten

VIELEN DANK.

Andreas Hallmann – s70261@beuth-hochschule.de Katharina Krebs – s67624@beuth-hochschule.de

Epochs

