Zusammenfassung

 ${\it Maschinelles \ Lernen} \\ {\it WS \ 19/20}$

November 28, 2019

Grundlagen

1.1 Lineare Algebra

1.1.1 Skalarprodukt

- Vektoren $x, y \in \mathbb{R}^n$: $x \circ y = \sum_{i=1}^n x_i \cdot y_i = x^T y$ $-\begin{bmatrix} 1\\2 \end{bmatrix} \circ \begin{bmatrix} 3\\4 \end{bmatrix} = 1 \cdot 3 + 2 \cdot 4 = 11$

1.1.2 Vektornorm

 $f: \mathbb{R}^n \to \mathbb{R}$ mit

- $f(x) = 0 \Rightarrow x = 0$
- $f(x+y) \le f(x) + f(y)$ (Dreiecksgleichung)
- $f(\alpha x) = |\alpha| f(x)$

- L_1 -Norm: $||x||_1 = \sum_i |x_i|$ - L_2 -Norm: $||x||_2 = \sqrt{\sum_i x_i^2}$ (euklidische Norm)

Matrizen 1.1.3

-
$$m$$
 Zeilen und n $Spalten$ $\mathbf{A} = \begin{bmatrix} A_{11} & \dots & A_{1n} \\ A_{m1} & \dots & A_{mn} \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$

$$- \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \cdot \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix} = \begin{bmatrix} ag + bi + ck & ah + bj + cl \\ dg + ei + fk & dh + ej + fl \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- $A^{-1}A = I$ (Matrizen mit linear abhängigen Zeilen oder Spalten (niedriger Rang) sind nicht invertierbar)

Hyperebene

- $\mathbf{x} \in \mathbb{R}^d$ erfüllen Gleichung $w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = 0 \ (w_0 + w^T x_d = 0)$

- d = 1: Skalar $(w_0 + w_1x_1)$, d = 2: Gerade $(w_0 + w_1x_1 + w_2x_2)$, d = 3: Ebene

- Für einen Punkt x entscheidet das Vorzeichen $sgn(w_0 + w^T x) \in \{-1, 0, 1\}$ auf welcher Seite der Hyperebene er liegt (bzw. ob er auf ihr liegt)

2

1.2 Statistik

• Durchschnittswert: (Summe über alle Zeilen) / (Anzahl an Zeilen)

• Standardabweichung: Wurzel ver Varianz

• 25%-Quantile: 25% aller Werte sind kleiner als dieser Wert

• 50%-Quantile: 50% aller Werte sind kleiner als dieser Wert (= Median)

• 75%-Quantile: 75% aller Werte sind kleiner als dieser Wert

1.3 Analysis

1.3.1 Kettenregel

- Wenn
$$z$$
 von y und y von x abhängt, dann gilt: $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ - $f(x) = g(h(x)) = \frac{1}{2} \cdot (x_1 - x_2)^2 \rightarrow g(x) = \frac{1}{2} x^2$ und $h(x) = x_1 - x_2$ - $\frac{df}{dx_2} = \frac{dg}{dh} \frac{dh}{dx^2} = h(x)(-1) = -(x_1 - x_2) = x_2 - x_1$

1.3.2 Partielle Ableitung

$$f(x) = 2x_1^3 - 5x_2^2 + 3, \ \frac{df}{dx_1} = 6x_1^2, \ \frac{df}{dx_2} = -10x_2$$

1.3.3 Gradient

$$\nabla f = \begin{bmatrix} \frac{df}{dx_1} \\ \vdots \\ \frac{df}{dx_n} \end{bmatrix}, f(x) = 2x_1^3 - 5x_2^2 + 3, \nabla f = \begin{bmatrix} 6x_1^2 \\ -10x_2 \end{bmatrix}$$

Was ist maschinelles Lernen 1.4

1.4.1 Paradigmenwechsel

Es ist schwierig, den entsprechenden Programmcode manuell zu schreiben, daher wird ein anderes Paradigma verwendet:

Traditionelle Programmierung:

Drei verschiedene Lernmethoden

- Überwachtes Lernen (Supervised Learning)
- Unüberwachtes Lernen (Unsupervised Learning)
- Bestärkendes Lernen (Reinforcement Learning)

1.5 Überwachtes Lernen

- Ziel: finden einer Funktion $f:X\to Y$ wobei X auch Features / Prädiktoren und Y auch Responses genannt werden
- $X = \mathbb{R}^d$ (d-dimensionaler Vektorraum) mit $d \in \mathbb{N}$
- Eine perfekte Abbildung ist nicht möglich, es treten reduzierbare Fehler (z.B. durch eine bessere Funktion f) und nicht reduzierbare Fehler (z.B. Messfehler in Eingabedaten) auf
 - Vorhersage: y = f(x) optimieren wobei f auch Blackbox sein kann
 - Inferenz: Interpretierbarkeit von f steht im Vordergrund (Welche Prädiktoren sind für welche Response verwantwortlich)
 - Parametrische Methoden: Annahme einer parametrisierten Struktur von f dessen Parameter mit Hilfe von Daten bestimmt werden
 - Nicht-parametrische Methoden: Keine Annahme einer Struktur von f sondern möglichst direkte Definition mit Hilfe von Daten
- Menge X und Y bekannt, genaue Abbildung f kann aber nur anhand von Beispielen $D=\{(x^i,y^i)|x^i\in X,y^i\in Y,1\leq i\leq n\}$ (Trainingsdatensatz bzw. gelabelte Daten) erahnt werden

1.5.1 Beispiel Klassifikation

- Wenn Y diskrete Menge $\{C_1,...,C_k\}$ für $k\in\mathbb{N}$ dann handelt es sich um ein Klassifikationsproblem, $C_1,...,C_k$ sind dann Klassen / Kategorien

- |Y|=2 (Binäre Klassifikation) mit $f:\mathbb{R}\to\{$ angenehm, unangenehm $\}$ (Temperaturklassifikation)
- |Y|=5 (Mehrklassen-Klassifikation) mit $f:\mathbb{R}\to\{\text{frostig, kalt, angenehm, warm, heiß}\}$

1.5.2 Beispiel Regression

- Wenn Ykontinuierliche Menge, d.h. $Y\subseteq \mathbb{R},$ dann handelt es sich um ein Regressionsproblem
- Interesse an quantitativen Aussagen

- Ausgabemenge Ykann auch mehrdimensional sein (z.B. {gut, schlecht} \times {günstig, normal, teuer})

1.6 Unüberwachtes Lernen

- Mehrwert erhalten ohne Zuhilfenahme von gelabelten Daten
- Man geht von Menge an Daten $D=\{x^i|x^i\in X, 1\leq i\leq n\}$ aus und versucht mehr über Beschaffenheit von X herauszufinden
- z.B. Verteilung von X bei Sprachmodellen, Dimensions reduktion zur Verbesserung von überwachten Lernverfahren

1.7 Datenvisualisierung

Abbildung 6: Beispiel eines Liniendiagramms.

Abbildung 7: Beispiel eines Balkendiagramms.

Abbildung 8: Beispiel eines Histogramms – eines speziellen Balkendiagramms.

Abbildung 9: Beispiel eines Streudiagramms.

1.7.1 Boxplot

- Zwischen dem linken waagerechten Strich (Minimum) und dem rechten waagerechten Strich (Maximum) liegen 99.3%aller Daten
- Die Outliersan den beiden Enden sind die letzten 0.7%
- Der Abstandsfaktor (hier 1.5) ist frei wählbar
- Sollte der Punkt $Q1-1.5\cdot IQR$ bzw. $Q3+1.5\cdot IQR$ nicht existieren wird der Strich auf den nächst-näheren Punkt gesetzt

1.8 Datenvorverarbeitung

Bevor ein Modell erstellt und trainiert werden kann, müssen Daten durch

- Auswahl: Nur für den Anwendungsfall relevante Daten verwenden
- Aufbereitung

Dateiformat (Tabellen, BigData)

Bereinigung von unvollständigen oder ungültigen Daten

Repräsentative Auswahl bei langer Laufzeit / großem Speicheraufwand

 $\bullet \quad Transformation$

Features in geeigneten Wertebereich bringen ([0, 1])

Zerlegen in sinnvolle Features

Aggregation mehrerer Features

Lineare Regression

Lineare Regression im Eindimensionalen 2.1

- $f: \mathbb{R} \to \mathbb{R}$ mit $f_w(x) = w_1 x + w_0$ - $w = (w_0, w_1)^T \in \mathbb{R}^2$ sind die Parameter des Modells

- Wie mit Daten $D = \{(x^i, y^i) \in \mathbb{R}^2 | 1 \le i \le n\}$ die besten Parameter von fbestimmen?

2.1.1 Lösungsverfahren

- Quadratischen Fehler (Residual Sum of Squares) mit $RSS(w) = \sum_{i=1}^{n} (y^i - f_w(x^i))^2$ bestimmen

- Zur besseren Vergleichbarkeit verwendet man oft die normalisierte Variante
- Mean Squared Error: $MSE(w) = \frac{1}{n} \cdot RSS(w)$ (n = Anzahl Trainingsdaten) Die beste Funktion durch Minimierung des Fehlers finden $\Rightarrow w^* = \arg\min E(w) = \arg\min \frac{1}{2} \cdot \sum_{i=1}^{n} (y^i f_w(x^i))^2$
 - \bullet Ableitung von E(w) gleich Null setzen und Gleichungssystem lösen

•
$$\nabla E(w) = \begin{bmatrix} \frac{dE(w)}{dw_0} \\ \frac{dE(w)}{dw_1} \end{bmatrix} = 0$$

$$\frac{dE(w)}{dw_0} = -\sum_{i=1}^n y^i + w_1 \cdot \sum_{i=1}^n x^i + n \cdot w_0$$

$$\frac{dE(w)}{dw_1} = -\sum_{i=1}^n x^i y^i + w_1 \cdot \sum_{i=1}^n x^i x^i + w_0 \cdot \sum_{i=1}^n x^i$$

• Gleichungssystem mit zwei Gleichungen und zwei Unbekannten lösbar, aber numerisch ungenau bei großen Matrizen

8

2.1.2 Gradientenabstiegsverfahren

Abbildung 5: Gradientenabstiegsverfahren auf f(x) = x(x-2)

- Iterativ einem Bruchteil der negativen Ableitung: $-\eta f'(x) = \eta \cdot (2-2x)$ folgen
- Lernrate η hat direkten Einfluss auf Konvergenz (zu klein \Rightarrow viele Schritte, zu groß \Rightarrow Oszillation)

$$\begin{array}{lll} w0 = 0\,, & w1 = 0 \\ for & (x\,,\,\,y) & in \,\,D \\ dw0 += -y\,+\,w1*x\,+\,w0 \\ dw1 += -xy\,+\,w1*x*x\,+\,w0*x \\ end & for \\ w0 += -eta*dw0 \\ w1 += -eta*dw1 \end{array}$$

2.2 Mehrdimensionale Lineare Regression

- $X = \mathbb{R}^d$ und $f : \mathbb{R}^d \to \mathbb{R}$ sowie $f_w(x) = \sum_{i=1}^d w_i x_i + w_0$ mit Parametern $w = (w_0, w_1, ..., w_d)^T \in \mathbb{R}^{d+1}$ - Kompaktere Schreibweise mit $x_0 = 1$: $f_w(x) = \sum_{i=1}^d w_i x_i + w_0 = w^T x$

- Im Mehrdimensionalen wird eine Hyperebene, im dreidimensionalen eine Ebene, im Raum so positioniert, dass der Abstand zu den Datenpunkten minimiert wird

- Angepasste Fehlermetrik
$$E(w) = \frac{1}{2} \cdot \sum_{i=1}^{n} (y^i - f(x^i))^2$$
 mit $\nabla E(w) = \begin{bmatrix} \frac{dE(w)}{dw_0} \\ \frac{dE(w)}{dw_1} \\ \dots \\ \frac{dE(w)}{dw_d} \end{bmatrix}$

$$\begin{array}{l} dw \, = \, 0 \\ for \, (x , \, y) \ in \ D \\ dw \, + = \, - (y \, - \, f \, (x) \, * \, gradF \, (x)) \\ end \, for \\ w \, + = \, -et \, a \, * dw \end{array}$$

wobei grad
F(x) =
$$\nabla f(x) = \begin{bmatrix} 1 \\ x_1 \\ \dots \\ x_d \end{bmatrix}$$

Abbildung 9: Gradientenabstiegsverfahren im mehrdimensionalen Raum bei der Funktion $f(\mathbf{x}) = \mathbf{x}_1^2 + \mathbf{x}_2^2$.

2.3 Genauigkeit

- Wie gut ist das durch das Gradientenabstiegsverfahren gefundene Modell?
- \Rightarrow Quadratischer Fehler RSS oder mittlerer quadratischer Fehler MSE
- Letzterer ist unabhängig von der Anzahl an Trainingsdaten allerdings gibt es keine allgemein gültige Skala da diese vom Wertebereich der y-Werte abhängt

2.3.1 R^2 Statistik

- Definiert über den quadratischen Gesamtfehler $TSS = \sum_{i=1}^n (y^i \bar{y})^2$ $\bar{y} = \frac{1}{n} \cdot \sum_{i=1}^n y^i \Rightarrow R^2(w) = \frac{TSS RSS(w)}{TSS} = 1 \frac{RSS(w)}{TSS}$ TSS misst die komplette Varianz in den Ausgabedaten y^i
- TSS-RSS(w) misst die durch das Modell mit Parametern w erklärte Varianz
- R^2 misst die komplette Varianz des Modells und ist $\in [0,1]$
 - \bullet R^2 nahe 1 zeugt von einem passenden Model das die Daten gut erklärt (viele Datenpunkte liegen auf der Geraden bzw. Hyperebene)

- R^2 nahe 0 bedeutet, dass das Modell die Daten schlecht erklärt (umso weiter entfernt die Datenpunkte von der Hyperebene sind umso näher ist R^2 bei 0)
- R^2 ist unabhängig von Anzahl an Trainingsdaten UND dem Wertebereich
- Allgemeine Aussage ab welchem R^2 -Wert das Modell gut ist, ist nicht möglich. Hängt vom Anwendungsfall (Medizin / Physik) ab

2.4 Interpretierbarkeit

- Die Parameter w von Linearen Regressionsmodellen sind interpretierbar:
 - $w_i > 0$: positiver Zusammenhang, steigt x_i um m so steigt y um $m \cdot |w_i|$
 - $w_i nahe0$: kein linearer Zusammenhang zwischen x_i und y
 - $w_i < 0$ negativer Zusammenhang, steigt x_i um m so sinkt y um $m \cdot |w_i|$

2.5 Nichtlineare Zusammenhänge

- Mit der mehrdimensionalen linearen Regressions lassen sich auch nichtlineare Zusammehänge lernen
- Mit Funktion $\Phi: \mathbb{R} \to \mathbb{R}^d$ wird ein Basiswechsel vollzogen
 - Die Konkatenation von $\Phi: \mathbb{R} \to \mathbb{R}^d$, $\Phi(x) = (x, x^2)^T$ und $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = w_2 x_w + w_1 x_1 + w_0$ durch $f \circ \Phi$ erlaubt Darstellung der quadratischen Funktion $(f \circ \Phi)(x) = f(\Phi(x)) = w_2 x^2 + w_1 x + w_0$
 - $\Phi: \mathbb{R}^2 \to \mathbb{R}^5, \Phi(x) = (x_2, x_1, x_1 x_2, x_2^2, x_1^2)^T$ und $f: \mathbb{R}^5 \to \mathbb{R}, f(x) = \sum_{i=1}^5 w_i x_i + w_0 \text{ ergibt } (f \circ \Phi)(x) = f(\Phi(x)) = w_5 x_1^2 + w_4 x_2^2 + w_3 x_1 x_2 + w_2 x_1 + w_1 x_2 + w_0$

2.5.1 Beispiel

- Annahme eines quadratischen Zusammenhangs $f(x) = w_2 \cdot x^2 + w_1 \cdot x + w_0$

2.5.2 Richtiger Grad

- Mit der mehrdimensionalen Regression, dem Basiswechsel und Gradientenabstiegsverfahren ist es möglich, ein Polyon n-ten Grades an n Datenpunkte zu fitten

Abbildung 12: Lineare Regression eines Polynoms 3-ten Grades an die Eisverkaufdaten durch Basiserweiterung. Gewichte $\mathbf{w} \approx (-1853, 307, -14.6, 0.247)^T$

Abbildung 13: Lineare Regression eines Polynoms 12-ten Grades an die Eisverkaufdaten durch Basiserweiterung. Gewichte $\mathbf{w}=(0,-0.0000457,-0.0000496,-0.0000570,-0.000489,-0.00297,-0.00977,0.00256,-0.000271,0.000152,-0.000000471,0.000000000777,-0.000000000530)^T$

- Mit höherer Modellkomplexität (Grad und Koeffizienten des Polynoms) kommt es zu
 - Numerischen Problemen
 - Overfitting: Das Modell passt sich zu sehr an die Daten an und ist nicht mehr in der Lage zu generalisieren → Schlechte Leistung in der Praxis

2.6 Trainings- und Testdaten

- Datensatz D wird in zwei disjunkte Teile T und V aufgeteilt
- Trainingsdatensatz T wird für das Lernen verwendet
- Testdatensatz V enthält ungesehene Daten zur Validierung der Praxistauglichkeit
 - \bullet Ein hoher Fehler auf T lässt auf Unteranpassung schließen (zu geringe Modellkomplexität, zu wenig Daten)
 - $\bullet\,$ Ein geringer Fehler auf Taber hoher Fehler auf V bedeutet Überanpassung \to Komplexität verringern

2.7 Optimierung von Hyperparametern

- Lineare Regression auf Polynomen mit Gradientenabstiegsverfahren besitzt
 - Lernrate η : Einfluss auf Modellkomplexität
 - Anzahl Lernschritte: Je geringer desto unwahrscheinlicher ist Überanpassung, allerdings Unteranpassung wiederum möglich
- \bullet Polynomgrad Zu Hoch \to Überanpassung, zu niedrig \to Unteranpassung als Hpyerparameter

2.7.1 Rastersuche

- Durchsuchen des Hyperparameterraums entweder
 - Entlang eines gleichmäßigen Rasters mit linearer oder logarithmischer Skala
 - Entlang eines zufälligen Rasters mit uniformer oder logarithmischer Skala
- Verfeinern der Suche durch Rekursion

2.7.2 Validierungsdaten

- Sollen die Hyperparameter des Modells optimiert werden, werden die verfügbaren Daten D in Trainingsdaten, Validierungsdaten und Testdaten aufgeteilt.
- Die Hyperparameter werden mit dem Validierungsdatensatz optimiert Endgültige Performance des Modells wird auf den Testdaten bestimmt

2.7.3 Kreuzvalidierung

- Zerteilen des Datensatzes in k Partitionen, ws wird nun k-mal trainiert
- Mit jeder Iteration i wird eine andere Partition i getestet
- Die Restlichen Partitionen dienen als Trainingsdaten
- Final wird die ausgewählte Leistungsmetrik über k Iterationen gemittelt

2.7.4 Ridge Regression

- Verhindern von Überanpassung durch Bestrafung von w für exzessive Werte mit angepasster Fehlerfunktion $E(w) = \frac{1}{2} \cdot \sum_{i=1}^n (y^i f_w(x^i))^2 + \alpha ||w||^2$
- Hyperparamter $\alpha \in \mathbb{R} \geq 0$ ist ein weiterer Freiheitsgrad mit dem sich der Polynomgrad stufenlos einstellen lässt

Abbildung 16: Ridge Regression eines Polynoms 5-ten Grades an die Eisverkaufdaten durch Basiserweiterung, $\alpha = 10$.

Abbildung 17: Ridge Regression eines Polynoms 5-ten Grades an die Eisverkaufdaten durch Basiserweiterung, $\alpha=10^{10}$.

- $\alpha = 0$: klassische Regression
- \bullet $\alpha>0$: Normaler Wirkungsbereich, mit wachsendem α werden wimmer weiter eingeschränkt und der effektive Polynomgrad sinkt
- $\bullet \ \mbox{lim} \ \alpha \rightarrow \infty \! : \ f(x) = 0$ da Parameter lim $w \rightarrow 0$

Logistische Regression

3.1 Klassifikation

3.1.1 Lineare Regression

- Lineare Regression als Klassifikator zu verwenden: $f:\mathbb{R}\to\mathbb{R}$ mit $f(x)=w_1x+w_0$

Abbildung 2: Lineares Regressionsmodell zur Bestimmung der Kreditwürdigkeit.

- Im Beispiel: x= Monatseinkommen, f(x)= Kunde kreditwürdig ja / nein, ABER:

- \bullet Diskrete Ausgabewerte (Klasse 0 / 1) wird nicht eingehalten, Ausgabe nimmt alle Werte in [-0.0014, 1.4] an
- Interpretation von f(x) als Wahrscheinlichkeit auch nicht möglich da f(0) = -0.0014 < 0 und f(8000) = 1.4 > 1

3.1.2 Logistische Regression

- Idee: Wahrscheinlichkeit der Klassenzugehörigkeit aufgreifen aber Wertebereich von f mit Hilfe der logistischen Funktion

$$logistic(x) = \frac{e^x}{1 + e^x}$$

unter Kontrolle bekommen

Abbildung 3: Logistische Funktion.

- Kombination der Linearen Regression $f(x) = w_1 x + w_0$ mit der logistischen Funktion

$$p(x) = logistic(f(x)) = \frac{e^{w_1 x + w_0}}{1 + e^{w_1 x + w_0}}$$

15

$$p(x) \in (0,1) \forall x \in \mathbb{R}$$

- p(x) ist die Wahrscheinlichkeit, dass x zur Klasse 1 gehört:

$$p(x) = Pr(y = 1|X = x)$$

- x gehört zur Klasse 0 mit Wahrscheinlichkeit 1 - p(x):

$$Pr(y = 0|X = x) = 1 - Pr(y = 1|X = x) = 1 - p(x)$$

3.2 Maximum Likelihood

Parameter der Modells werden so bestimmt, dass die Wahrscheinlichkeit, dass das Modell die Daten generiert, maximiert wird

3.2.1 Beispiel Münzwurf

- Eine Münze zeigt mit unbekannter Wahrscheinlichkeit $w \in [0,1]$ Kopf und mit Wahrscheinlichkeit (1-w) Zahl
- Münze wird n-mal geworfen, die Wahrscheinlichkeit, k-mal Kopf zu erhalten ist

$$L(w) = w^k (1 - w)^{n-k}$$

- L(w) wird Likelihood genannt, man sucht: $arg\ max\ L(w)$ Maximum finden durch Ableiten
 - $\frac{dL(w)}{dw} = kw^{k-1} \cdot (1-w)^{n-k} + w^k(n-k)(1-w)^{n-k-1} \cdot (-1)$ $= w^{k-1} \cdot (1-w)^{n-k-1} \cdot [k(1-w) (n-k) \cdot w]$

anschließend gleich Null setzen

- $\frac{dL(w)}{dw} = 0 \Leftrightarrow w = 0 \lor w = 1 \lor w = \frac{k}{n}$
- $\bullet \ k(1-w)-w\cdot (n-k)=0 \Leftrightarrow k-wk-wn+wk=0 \Leftrightarrow k-wn=0 \Leftrightarrow w=\tfrac{k}{n}$

und Überprüfen von

- $w = 0 : L(0) = 0^k (1-0)^{n-k} = 0$
- $w = 1: L(1) = 1^k (1-1)^{n-k} = 0$
- $w = \frac{k}{n} : L(\frac{k}{n}) = (\frac{k}{n})^k \cdot (1 \frac{k}{n})^{n-k} > 0$ für k > 0 und $k \neq n$

Die Maximum Likelihood Schätzung ist demnach $w = \frac{k}{n}$

3.2.2 Beispiel Logistische Regression

Die Likelihood ist wie folgt definiert

$$L(w) = \prod_{i=1}^{n} \begin{cases} p(x^{i}) & \text{falls } y^{i} = 1\\ 1 - p(x^{i}) & \text{falls } y^{i} = 0 \end{cases} = \prod_{i|y^{i}=1} p(x^{i}) \cdot \prod_{i|y^{i}=0} (1 - p(x^{i}))$$

Anstatt das Maximum mit Hilfe der Ableitung zu finden, kann auch das Minimum des negativen Logarithmus gesucht werden

$$-log(L(w)) = -\sum_{i|y^i=1} log(p(x^i)) - \sum_{i|y^i=0} log(1 - p(x^i))$$

und Ableiten

$$\frac{d(-log(L_w))}{dw_j} = -\sum_{i|y^i=1} \frac{\frac{dp(x^i)}{dw_j}}{p(x^i)} + \sum_{i|y^i=0} \frac{\frac{dp(x^i)}{dw_j}}{1 - p(x^i)}$$

$$\frac{dp(x)}{dw_j} = \frac{d}{dw_j} \cdot \frac{e^{w_1 x + w_0}}{1 + e^{w_1 x + w_0}} = \frac{e^{w_1 x + w_0}}{(1 + e^{w_1 x + w_0})^2} \begin{cases} 1 & \text{falls } j = 0 \\ \mathbf{x} & \text{falls } j = 1 \end{cases}$$

$$1 - p(x) = \frac{1}{1 + e^{w_1 x + w_0}}$$

$$\frac{dp(x)}{dw_j} = \frac{1}{p(x)} \cdot \frac{dp(x)}{dw_j} = \frac{1 + e^{w_1 x + w_0}}{e^{w_1 x + w_0}} \cdot \frac{e^{w_1 x + w_0}}{(1 + e^{w_1 x + w_0})^2} = (1 - p(x)) \begin{cases} 1 & \text{falls } j = 0 \\ \mathbf{x} & \text{falls } j = 1 \end{cases}$$

$$\frac{\frac{dp(x)}{dw_j}}{1 - p(x)} = \frac{1}{1 - p(x)} \cdot \frac{dp(x)}{dw_j} = (1 + e^{w_1 x + w_0}) \cdot \frac{e^{w_1 x + w_0}}{(1 + e^{w_1 x + w_0})^2} = p(x) \begin{cases} 1 & \text{falls } j = 0 \\ x & \text{falls } j = 1 \end{cases}$$

Zusammenfassend

$$\frac{d(-log(L(w)))}{dw_0} = -\sum_{i|y^i=1} (1 - p(x^i)) + \sum_{i|y^i=0} p(x^i)$$

$$\frac{d(-log(L(w)))}{dw_1} = -\sum_{i|y^i=1} (1 - p(x^i)) \cdot x^i + \sum_{i|y^i=0} p(x^i) \cdot x^i$$

 Mit dem Gradientenabstiegsverfahren erhält man für das Beispiel der Kreditvergabe

 $\mathbf{w}_0 = -1.25238942, \mathbf{w}_1 = 0.000542.$

Abbildung 4: Kreditbeispiel: Wahrscheinlichkeit für die Rückzahlung (orange) p(x) bzw. Nicht-Rückzahlung (blau) 1-p(x).

3.3 Bayes Klassifikator

- Der Kredit wird also genau dann ausgegeben, wenn die Wahrscheinlichkeit, dass er zurück gezahlt wird größer ist, als dass er es nicht wird
- Der Bayes Klassifikator weißt jeder Beobachtung $x \in X$ die wahrscheinlichste Klasse zu: $f(x) = arg\ max\ Pr(y=y*|X=x)$
- Im Beispiel liegt die Entscheidungsgrenze bei 2300EUR

Abbildung 5: Kreditbeispiel: In Rot ist nun die Entscheidungsgrenze zwischen den beiden Klassen eingezeichnet.

3.4 Mehrdimensionale Logistische Regression

- Für $x \in \mathbb{R}^d$ wird das Modell beschrieben durch $p(x) = \frac{e^{w^Tx}}{1 + e^{w^Tx}}$
- Der Gradient aus der negativen, logarithmierten Likelihood ergibt sich durch

$$\frac{d(-log(L(w)))}{dw_j} = -\sum_{i|y^i=1} (1 - p(x_j^i)) \cdot x_j^i + \sum_{i|y^i=0} p(x_j^i) \cdot x_j^i$$

3.5 Nichtlineare Logistische Regression