AUGMENTING SEISMIC INTERPRETATION

PREDICTING ROCK TYPES FROM 3D SEISMIC DATA TO IMPROVE WORKFLOW PIPELINES

PROJECT

Interpreting seismic data is hard!

Prediction of seismic lithologies using feature engineering and tree-based classifiers

Goal 1: Robust prediction with atypical geophysical features, and data augmentation

Goal 2: Deeper understanding of impactful feature types for tree-based methods

DATA & TOOLS

- 464,148,280 samples (rows)
- 25 features (seismic volumes)

AUGMENTED WORKFLOW

Features

Seismic Volume(s)

Amplitude

Seismic Attributes (GLCM & computed)

- **Absolute position**
- Total Energy
- Instantaneous Freq.
- RMS amplitude
- Frequency bands
- **GLCM** transforms

Pseudo QI attributes

- Shear Impedance

Labels

Well logs & Core

Here:

Pre-labeled seismic

Prediction

Rock Types

Ensemble Methods:

Multiclass prediction

Attribute or feature importance

- Acoustic Impedance
- Vp/Vs ratio

FEATURES

Seismic Amplitude	Max Peak Amplitude	Glcm_asm	Glcm_maxamp	Fband_04_08hz
Standardized Amp	RMS Amplitude	Glcm_contrast	Glcm_mean	Fband_08_16hz
Cos of Inst. Phase	X-position	Glcm_dissimilarity	Glcm_stdev	Fband_16_32hz
Envelope Amplitude	Y-position	Glcm_entropy	Glcm_total_energy	Fband_32_64hz
Hilbert Transform	Z-position	Glcm_homogeneity	Fband_02_04hz	Fband_64_128hz

SUPERVISED LEARNING: AIDING SEISMIC INTERPRETATION

UNET BENCHMARK FOR TRAINED PREDICTIONS

DECISION-TREE PREDICTION: HOLDOUT DATA

Prediction on Holdout Data

SCORING METRICS

- High Recall and F1 scores for a DecisionTree improve the overall quality of our seismic predictions, with plenty of room for improvement
- The large number of samples from Class 1 are classifying elsewhere and impact the overall interpretation

	0	1	2	3	4	5	Total
Precisio	n 0.99	0.69	0.85	0.99	0.63	0.91	0.97
Recall	1.00	0.72	0.99	0.99	0.99	0.99	0.97
F-1	0.99	0.96	0.91	0.99	0.77	0.95	0.97

VALUE IN FREQUENCY (SPECTRAL) DECOMPOSITION

 Spectral (frequency-based) features can associate large-scale and smallscale features to the target classes

8-16 Hz

16-32 Hz

FEATURE IMPORTANCE: VALUE IN NEURAL NET AUGMENTATIONS

KEY INSIGHTS

- Locality (absolute position) is critical as lithologies tend to be "near" to one another
 - CNNs can naturally encode these positions in images, but we can do explicitly for non-NN models
 - Hypothesis confirmed in a subsequent literature search: https://arxiv.org/pdf/2001.08248.pdf

 Using a DecisionTree model with feature engineering provides an intermediary solution for real-time workflows, before considering more sophisticated neural nets

- Tree-based method feature importance may be biased by higher frequency features
 - i.e., feature importance has to be understood in the context of domain-knowledge

THANK YOU

Bao D. Nguyen

Email: bao.d.nguyen83@gmail.com

GitHub: https://github.com/bdnguyen-ds

LinkedIn: https://www.linkedin.com/in/bao-d-nguyen/