

CAMADA FÍSICA DA COMPUTAÇÃO

ENGENHARIA DA COMPUTAÇÃO - Rodrigo Carareto - 0#07E4/02

PROJETO 5 - DTMF

Você deve implementar via software um sistema de transmissão do *dual tone multi frequency*, um sinal de áudio utilizado pelas empresas de telefonia para detectar o sinal digitado pelo usuário. O primeiro passo é construir uma rotina que gere um sinal de áudio com duas senoides somadas. Cada tecla digitada pelo usuário deve gerar duas senoides, cujas frequências são definidas de acordo com a tabela a seguir.

	1209 Hz	1336 Hz	$1477~\mathrm{Hz}$	1633 Hz
697 Hz	1	2	3	A
$770~\mathrm{Hz}$	4	5	6	\mathbf{B}
$852~\mathrm{Hz}$	7	8	9	\mathbf{C}
$941~\mathrm{Hz}$	X	0	#	D

Esse sinal de áudio deve ser executado pela sua placa de som, e futuramente construiremos as rotinas que identifica, essas frequências através da transformada de Fourirer.

Você encontrará no Blackboard um arquivo "suaBibSignal" com a classe responsável por gerar o sinal e outras coisas. Deverá instalar também o módulo *sounddevice*, *entre outros*.

A segunda parte é gerar um detector do DTMF. Uma segunda aplicação deve capturar um sinal de áudio gerado por outro computador ou celular, identificar os picos através da transformada de Fourier e assim identificar a tecla relativa às duas frequências que compõem o sinal.

Seu código deve:

Lado emissor

- Perguntar ao usuário qual número, entre 0 e 9 ele quer digitar.
- Emitir por alguns segundos as duas frequências relativas ao número escolhido. Pesquise como usar a biblioteca sounddevice para gravar sons.
- Plotar o gráfico com as duas frequências somadas.
- Opcional: Você poderá também salvar o sinal gerado em um arquivo.

Lado receptor

- Captar o sinal de áudio emitido pela aplicação do emissor através do microfone.
- Fazer o Fourier do sinal captado.
- Identificar os picos.
- Identificar a tecla relativa aos picos e "printar" o número da tecla.
- Plotar o gráfico no tempo do sinal recebido
- Plotar o gráfico da transformada de Fourier do sinal recebido.

Entrega

Você deverá submeter via exercício no BB seu código e um link com um vídeo de poucos segundos demonstrando o funcionamento das duas aplicações. Filme o usuário escolhendo um valor de tecla, capte o som das senoides sendo produzido pelo computador e o gráfico das senoides. Filme também a outra aplicação produzindo os gráficos e a identificação da tecla.

Esse projeto, sendo entregue dentro da data estipulada, terá apenas 4 notas possíveis:

0 pontos - não entrega ou não funcionando.

CAMADA FÍSICA DA COMPUTAÇÃO

ENGENHARIA DA COMPUTAÇÃO - Rodrigo Carareto - 0#07E4/02

5 pontos- funcionando parcialmente

8 pontos- funcionando, mas sem os gráficos

10 pontos- funcionando bem e com os gráficos.

Exemplo de saída de um código.

FFT - número 3

шәрег