Pushdown Automata (PDAs) Pt 1

Announcements

- Exam Tomorrow
 - 8:00am-10:00pm EST
 - Instructions and Gradescope
- Homework due shortly after
- Homework 3 Data + Analysis
- Exam Review / Q&A 1st pt class

Hours / # ppl <= "20+"
Blanks/no submissions ranges

<u>Last Time</u>:

Regular Languages	Context-Free Languages (CFLs)
Regular Expression (Regexp)	Context-Free Grammar (CFG)
A Reg expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL

<u>Today</u>

Regular Languages	Context-Free Languages (CFLs)
Regular Expression (Regexp)	Context-Free Grammar (CFG)
A Reg expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL
	TODAY:
Finite automaton (FSM)	Push-down automaton (PDA)
An FSM <u>recognizes</u> a Regular lang	A PDA <u>recognizes</u> a CFL

<u>Today</u>

Regular Languages	Context-Free Languages (CFLs)
Regular Expression (Regexp)	Context-Free Grammar (CFG)
A Reg expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL
	TODAY:
Finite automaton (FSM)	Push-down automaton (PDA)
An FSM <u>recognizes</u> a Regular lang	A PDA <u>recognizes</u> a CFL
DIFFERENCE:	DIFFERENCE:
A Regular lang is <u>defined</u> with a FSM	A CFL is <u>defined</u> with a CFG
Proven : Reg expr ⇔ Reg lang	Must prove: PDA ⇔ CFL

Pushdown Automata (PDA)

• PDA = NFA + a stack

A (Mathematical) Stack Specification

- Access to top element of stack only
- Operations: push, pop

• (What could be a possible data representation in code?)

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - Can only read/write top location
 - Push/pop

An Example PDA $\{0^n 1^n | n \ge 0\}$

Formal Definition of PDA

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,

Stack alphabet can have special stack symbols, e.g., \$

- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- 5. $q_0 \in \text{Input Pop art state, and Push}$
- **6.** $F \subseteq Q$ is the set of accept states.

In-class example

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

1. Q is the set of states,

Input 2. Σ is the input alphabet, Pop Push

3. Γ is the stack alphabet,

4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,

5. $q_0 \in Q$ is the start state, and

6. $F \subseteq Q$ is the set of accept states.

Check-in Quiz

On Gradescope