Abstract

In the lab experiment the intel 8086 microprocessor were introduced with some basic programs. Some basic commands such as ADD, SUB, XCHG etch were used on the four codes done in the lab.

1 Introduction

The main purpose of this experiment was to introduce us with the architecture, operation, working procedure etc of Intel 8086 microprocessor. Here we were introduced with the basic architecture and working procedure of Intel 8086 microprocessor. We also simulated a few simple programs in EMU8086 emulator and executed them in a MTS-86c trainer board.

2 Pre-Lab Homework

• The basic architecture of 8086 was studied.

3 Apparatus

- Microprocessor 8086 Trainer Board (MTS-86c)
- EMU8086
- PC having Intel Microprocessor

4 Precautions

- Input of MTS-86c should be entered carefully
- Pen drives should not be used in the PC.

5 Calculation

- Exchange Program
 - AX = 1234H
 - BX = 5678H
 - CX = AX = 1234H
 - -AX = BX = 5678H
 - -BX = CX = 1234H
- Addition Program

```
-BX = 1234H
-CX = 5678H
-BX = BX + CX = 1234H + 5678H = 068AH
-AL = 13H
-DL = 01H
-AL = AL + DL = 13H + 01H = 14H
```

• Subtraction Program

```
- BX = 1234H

- CX = 5678H

- BX = BX - CX = 1234H - 5678H = BBBC

- AL = 13H

- DH = 014H

- AL = AL - DH = 13H - 01H = 11H
```

6 Result

All the register value in the training kit matched with the calculated and simulated value of the program. So, the experiment was successful.

7 Answer to Report Question

1. Write an assembl program to complete the following task. CX = 15 + AX - 17 + BX; AX = 10, BX = 5

CODE SEGMENT

```
ASSUME CS:CODE, DS:CODE
```

```
MOV AX, 10
MOV BX, 5
MOV CX, 15
ADD CX, AX
SUB CX, 17
ADD CX, BX
HILT
CODE ENDS
```

END

2. Write an assembl program to complete the following task.

```
BX = 5+2-3+4

CODE SEGMENT

ASSUME CS:CODE, DS:CODE

MOV BX, 5

ADD BX, 2

SUB BX, 3

ADD BX, 4

HLT
```

8 Discussion

END

CODE ENDS

- All the codes were verified on the simulator before running them on the training kit.
- Some keys on the training kit was not clear, so we were careful wile inputing the opt code.
- In case of inputing the value of General Purpose Registers the last 4bits was entered first, followed by the first 4bits.
- All the register value in the training kit was similar to that of the emulator and as expected.
- In one of the trainer kit we were using the "," key was problematic, which caused a little trouble at once stage of the experiment.

9 Conclusions

After inputing the opt code in the training kit we checked the register values. All the register value matched the calculated value of those registers. Whic proves that the experiment was successful.

References

- [1] Download emu8086 4.08. http://8086-microprocessor-emulator. soft32.com/. (Visited on 06/02/2015).
- [2] Instruments techno test inc. http://catalogue.techno-test.com/products/6-Educational_Products/38-Electricity___Electronics/354-K_H_MTS_86C-MTS_86C_8086_Microcomputer_Trainer.html. (Visited on 06/02/2015).

[3] A.P. Malvino and J.A. Brown. *Digital Computer Electronics*. McGraw-Hill electricity & electronics series. Glencoe, 1992.

10 Appendices

10.1 Exchange Programs

1 2 3	0000			CODE SEGMENT ASSUME CS:CODE, DS:CODE
4	$0000 \\ 0003$			MOV AX, 1234H MOV BX, 5678H
8	0006 0008 000A	8B	C3	MOV CX, AX MOV AX, BX MOV BX, CX
11	000C 000D	F4		HLT CODE ENDS END
2 3 4 5 6	0000 0000 0003 0006 0008 0009	B9 87	5678	CODE SECMENT ASSUME CS:CODE, DS:CODE MOV BX, 1234H MOV CX, 5678H XOHG BX, CX HILT CODE ENDS END

10.2 Addition Program

1 0000		CODE SEGMENT
2		ASSUME CS:CODE, DS:CODE
3 0000	BB 1234	MOV BX, 1234H
$4 \ 0003$	B9 5678	MOV CX , 5678H
5 0006	03 D9	ADD BX, CX
6 0008	B0 13	MOV AL , 13H
7 000A	B2 01	MOV DL, 01H
8 000C	02 C2	ADD AL, DL

10.3 Subtraction Program

1	0000			CODE SEGMENT	
2				ASSUME CS:CODE,	DS:CODE
3					
4	0000	BB	1234	MOV BX, 1234H	
5	0003	B9	5678	MOV CX , 5678H	
6					
7	0006	2B	D9	SUB BX, CX	
8	0008	B0	1B	MOV AL, 1BH	
9	000A	B6	02	MOV DH , 02H	
10	000C	2A	C6	SUB AL, DH	
11					
12	000E	F4		HLT	
13	000F			CODE ENDS	
14				END	