Package 'MetaStan'

October 12, 2022

Version 1.0.0

Title Bayesian Meta-Analysis via 'Stan'

```
Description Performs Bayesian meta-analysis, meta-regression and model-based meta-analysis
      using 'Stan'. Includes binomial-normal hierarchical models and option to use
      weakly informative priors for the heterogeneity parameter and the treatment effect
      parameter which are described in Guenhan, Roever, and Friede (2020) <doi:10.1002/jrsm.1370>.
License GPL (>= 3)
Encoding UTF-8
Date 2021-12-23
LazyData true
ByteCompile true
Depends R (>= 3.5.0)
Imports Rcpp (\geq 0.12.17), methods, rstan (\geq 2.18.1), rstantools (\geq 2.18.1)
      1.5.0), loo (>= 2.0), forestplot (>= 1.6), metafor (>= 2.0-0),
      HDInterval, coda
Suggests testthat, knitr, rmarkdown, ggplot2, shinystan, vdiffr
LinkingTo StanHeaders (>= 2.18.0), rstan (>= 2.18.1), BH (>=
      1.66.0-1), Rcpp (>= 0.12.17), RcppEigen (>= 0.3.3.4.0),
      RcppParallel (>= 5.0.1),
SystemRequirements GNU make
NeedsCompilation yes
RoxygenNote 7.1.2
URL https://github.com/gunhanb/MetaStan
BugReports https://github.com/gunhanb/MetaStan/issues
VignetteBuilder knitr
Author Burak Kuersad Guenhan [aut, cre]
       (<https://orcid.org/0000-0002-7454-8680>),
      Christian Roever [aut] (<a href="https://orcid.org/0000-0002-6911-698X">https://orcid.org/0000-0002-6911-698X</a>),
      Trustees of Columbia University [cph] (src/init.cpp, tools/make_cpp.R,
       R/stanmodels.R)
```

2 MetaStan-package

Maintainer Burak Kuersad Guenhan <burakgunhan@gmail.com>

Repository CRAN

Date/Publication 2022-01-22 12:22:46 UTC

R topics documented:

MetaStan-package		The 'MetaStan' package.																		
Index																				19
	print.meta_stan																			18
	print.MBMA_stan .																			17
	plot.MBMA_stan .																			16
	meta_stan																			1.
	MBMA_stan																			1
	forest_plot																			10
	dat.Eletriptan																			9
	dat.Crins2014																			8
	dat.Boucher2016.pai	irwise																		1
	dat.Boucher2016 .																			(
	dat.Berkey1995																			(
	create_MetaStan_da	t																		4
	convert_data_arm .																			4
	compare_MBMA .																			
	MetaStan-package.														 •			 		4

Description

Fitting Bayesian meta-analysis models via Rstan.

Details

To fit meta-analysis models using frequentist methods, there are many R packages available including 'metafor'. On the other hand, Bayesian estimation methods such as Markov chain Monte Carlo (MCMC) are very attractive for meta-analysis, especially because they can be used to fit more complicated models. These include binomial-normal hierarchical models and beta-binomial models which are based on the exact distributional assumptions unlike (commonly used) normal-normal hierarchical model. Another advantage of Bayesian methods to be able to use informative prior distributions for example to regularize heterogeneity estimates in case of low number of studies. Thus, we developed 'MetaStan' which uses Stan (a modern MCMC engine) to fit several pairwise meta-analysis models including binomial-normal hierarchical model and beta-binomial model. This package is also the accompanying package of Guenhan et al (2020). Another important functionality of the package is the model-based meta-analysis models.

compare_MBMA 3

Author(s)

Burak Kuersad Guenhan

 durak.gunhan@med.uni-goettingen.de>

References

Stan Development Team (2018). RStan: the R interface to Stan. R package version 2.17.3. http://mc-stan.org

Günhan, B and Röver, C and Friede, T (2020). Random-effects meta-analysis of few studies involving rare events. Research Synthesis Methods. doi = 10.1002/jrsm.1370.

compare_MBMA

Compare MBMA fits using LOO-IC

Description

Takes a vector of MBMA_stan fits and give the model comparison results based on LOO-IC criteria. This is useful to compare different dose-response models. The function depends on loo_compare function from loo package.

Usage

```
compare_MBMA(model_list, digits = 2, ...)
```

Arguments

model_list A vector of MBMA_stan object.

digits An integer indicating the number of decimal places.

... Further arguments passed to or from other methods.

References

Vehtari, A, A Gelman, and J Gabry (Sept. 2017). "Practical Bayesian model evaluation using leave one-out cross-validation and WAIC." In: Statistics and Computing 27.5, pp. 1413–1432.

See Also

loo::loo_compare

4 create_MetaStan_dat

convert_data_arm

Convert contrast-based dataset to arm-based dataset (deprecated)

Description

convert_data_arm creates a dataframe to fit a meta-analysis model using meta_Stan function.

Usage

```
convert_data_arm(nt, nc, pt, pc, pub, data = NULL)
```

Arguments

nt	Number of subjects in treatment arm
nc	Number of subjects in control arm
pt	Number of events in treatment arm
рс	Number of events in treatment arm
pub	The corresponding publication
data	Optional data frame containing the variables given to the arguments above.

Value

A dataframe object

Examples

 ${\tt create_MetaStan_dat}$

Prepare model-based meta-analysis dataset for Stan.

Description

create_MetaStan_dat converts datasets in the one-study-per-row format to one-arm-per-row format,

create_MetaStan_dat 5

Usage

```
create_MetaStan_dat(
  dat = NULL,
  armVars = c(dose = "d", responders = "r", sampleSize = "n"),
  nArmsVar = "nd"
)
```

Arguments

dat Data in one-study-per-row format.

armVars Vector of per-arm variables The name of each component will be the column

name in the resulting dataset.

nArmsVar Variable holding the number of arms for each study.

Details

The resulting data.frame can be used as data argument in MBMA_stan.

Value

A data frame with the generated columns.

Author(s)

Burak Kuersad Guenhan,

Surak gunhan@med.uni-goettingen.de> and Gert van Valkenhoef

See Also

```
gemtc::mtc.data.studyrow and nmaINLA::create_INLA_dat
```

Examples

6 dat.Boucher2016

dat.Berkey1995

Trials investigating effectiveness of the BCG vaccine against TB

Description

A dataset containing the results from 13 trials examining the efficacy of Bacillus Calmette-Guerin (BCG) vaccine against tuberculosis (TB).

Usage

dat.Berkey1995

Format

A data frame with following coloumns

Trial Trial number

- **r1** number of TB events in treatment arm
- n1 number of subjects in treatment arm
- r2 number of TB events in control arm
- n2 number of subjects in control arm

Latitude absolute latitude of the study location

publication author and date

Source

Berkey, C.S., Hoaglin, D.C., Mosteller, F. and Colditz, G.A., 1995. A random-effects regression model for meta-analysis. Statistics in medicine, 14(4), pp.395-411

dat.Boucher2016

PARESTHESIA RATES WITH TOPIRAMATE IN MIGRAINE PRO-PHYLAXIS TRIALS

Description

Numbers of patients and events (paresthesia rates) in experimental and control groups of 6 studies. It is in one-study-per-row format.

Usage

dat.Boucher2016

Format

A data frame with following coloumns

- d1 dose (mg) in the first arm (placebo)
- **r1** number of events in the first arm (placebo)
- **n1** number of patients in the first arm (placebo)
- d2 dose (mg) in the second arm
- r2 number of events in the second arm
- n2 number of patients in the second arm
- d3 dose (mg) in the third arm
- r3 number of events in the third arm
- n3 number of patients in the third arm
- **d4** dose (mg) in the fourth arm
- r4 number of events in the fourth arm
- n4 number of patients in the fourth arm
- **nd** number of treatment arms

Source

Boucher M, and Bennets M. The Many Flavors of Model-Based Meta-Analysis: Part I - Introduction and Landmark Data. CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 54-64; doi:10.1002/psp4.12041

dat.Boucher2016.pairwise

PARESTHESIA RATES WITH TOPIRAMATE IN MIGRAINE PROPHYLAXIS TRIALS

Description

Numbers of patients and events (paresthesia rates) in experimental and control groups of 6 studies. It is in one-study-per-row format. Only the arm with 200 mg is included.

Usage

dat.Boucher2016.pairwise

Format

A data frame with following coloumns

study Study ID

duration Durtaion of the study

- **r1** number of events in the first arm (placebo)
- n1 number of patients in the first arm (placebo)
- r2 number of events in the second arm
- n2 number of patients in the second arm

8 dat.Crins2014

Source

Boucher M, and Bennets M. The Many Flavors of Model-Based Meta-Analysis: Part I - Introduction and Landmark Data. CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 54-64; doi:10.1002/psp4.12041

dat.Crins2014

Pediatric liver transplant example data

Description

Numbers of cases and events (PTLDs or deaths) in experimental and control groups of six studies.

Usage

dat.Crins2014

Format

A data frame with following columns

publication publication identifier (first author and publication year)

year publication year

randomized randomization status (y/n)

control.type type of control group ("concurrent" or "historical")

comparison type of comparison ("IL-2RA only", "delayed CNI", or "no/low steroids")

followup t follow-up time in months

exp.AR.events number of AR events in experimental group

exp.PTLD.events number of PTLD events in experimental group

exp.deaths number of deaths in experimental group

exp.total number of patients in experimental group

exp.SRR.events number of SRR events in experimental group

cont.AR.events number of AR events in control group

cont.SRR.events number of SRR events in control group

cont.PTLD.events number of PTLD events in control group

cont.deaths number of deaths in control group

cont.total number of patients in control group

r2 number of AR events in experimental group

n1 number of patients in control group

n2 number of patients in experimental group

r1 number of AR events in control group

Source

N.D. Crins, C. Roever, A.D. Goralczyk, T. Friede. Interleukin-2 receptor antagonists for pediatric liver transplant recipients: A systematic review and meta-analysis of controlled studies. Pediatric Transplantation, 18(8):839-850, 2014.

dat.Eletriptan 9

dat.Eletriptan

Migraine pain relief example (Eletriptan)

Description

Numbers of patients and events (headcahe free at 2 hours) in experimental and control groups of 12 studies. It is in one-study-per-row format.

Usage

dat.Eletriptan

Format

A data frame with following coloumns

- ID trial ID
- d1 dose (mg) in the first arm (placebo)
- **r1** number of events in the first arm (placebo)
- **n1** number of patients in the first arm (placebo)
- d2 dose (mg) in the second arm
- **r2** number of events in the second arm
- n2 number of patients in the second arm
- d3 dose (mg) in the third arm
- r3 number of events in the third arm
- n3 number of patients in the third arm
- **d4** dose (mg) in the fourth arm
- r4 number of events in the fourth arm
- n4 number of patients in the fourth arm
- **nd** number of treatment arms

Source

Thorlund, K., Mills, E., Wu, P., Ramos, E., Chatterjee, A., Druyts, E., and Goadsby, P. (2014). Comparative efficacy of triptans for the abortive treatment of migraine: A multiple treatment comparison meta-analysis. Cephalalgia, 34(4):258-267.

10 forest_plot

forest_plot

Plot a forest plot

Description

Takes a meta_stan object which is obtained by function meta_stan and plot a forestplot, showing individual estimates along with their 95 percent credible intervals, resulting effect estimate and prediction interval.

Usage

```
forest_plot(
  x = NULL,
  labels = NULL,
  digits = 2,
  boxsize = 0.3,
  heterogeneity = TRUE,
  col,
  ...
)
```

Arguments

x A meta_stan object.

labels Optional vector with labels for the studies (publication author/year).

digits A numerical value specifying the number of significant digits to be shown. Default is 2.

boxsize A numerical value specifying the box size. Default is 0.3.

heterogeneity A logical value to include heterogeneity estimates (DEFAULT = TRUE)

col A function specifying the colors. See forestplot::fpColors for details.

Further arguments passed to or from other methods.

Value

The return value is invisible NULL.

Author(s)

Christian Roever and Burak Kuersad Guenhan

Source

This function is based foresplot function from foresplot R package.

See Also

```
foresplot::foresplot
```

MBMA_stan 11

Examples

MBMA_stan

Fitting a model-based meta-analysis model using Stan

Description

'MBMA_stan' fits a model-based meta-analysis model using Stan.

Usage

```
MBMA_stan(
  data = NULL,
  likelihood = NULL,
  dose_response = "emax",
 mu_prior = c(0, 10),
  Emax_prior = c(0, 100),
  alpha_prior = c(0, 100),
  tau_prior = 0.5,
  tau_prior_dist = "half-normal",
  ED50_prior = c(-2.5, 1.8),
  ED50_prior_dist = "functional",
  gamma_prior = c(1, 2),
  Pred_doses,
  re = TRUE,
  ncp = TRUE,
  chains = 4,
  iter = 2000,
  warmup = 1000,
  adapt_delta = 0.95,
)
```

Arguments

data

An object of 'create_MBMA_dat'.

12 MBMA_stan

likelihood A string specifying the likelihood of distributions defining the statistical model. Options include "normal", "binomial", and "Poisson". A string specifying the function defining the dose-response model. Options indose_response clude "linear", "log-linear", "emax", and "sigmoidal". A numerical vector specifying the parameter of the normal prior density for mu_prior baseline risks, first value is parameter for mean, second is for variance. Default is c(0, 10). Emax_prior A numerical vector specifying the parameter of the normal prior density for Emax parameter, first value is parameter for mean, second is for standard deviation. Default is c(0, 10). Needed for emax and sigmoidal models. alpha_prior A numerical vector specifying the parameter of the normal prior density for the alpha parameter, first value is parameter for mean, second is for variance. Default is c(0, 10). Needed for linear and linear log-dose models. A numerical value specifying the standard dev. of the prior density for heterotau_prior genety stdev. Default is 0.5. tau_prior_dist A string specifying the prior density for the heterogeneity standard deviation, option is 'half-normal' for half-normal prior, 'uniform' for uniform prior, 'halfcauchy' for half-cauchy prior. ED50_prior A numerical vector specifying the parameter of the normal prior density for ED50 parameter, first value is parameter for mean, second is for standard deviation. Default is c(0, 10). Needed for emax and sigmoidal models. ED50_prior_dist A string specifying the prior density for the ED50 parameter, 'functional' is for a functional uniform prior, 'half-normal' for uniform prior, 'half-cauchy' for half-cauchy prior. gamma_prior A numerical vector specifying the parameter of the normal prior density for gamma parameter, first value is parameter for mean, second is for standard deviation. Default is c(1, 2). Needed for sigmoidal model. A numerical vector specifying the doses which prediction will be made. Pred_doses A string specifying whether random-effects are included to the model. When re 'FALSE', the model corresponds to a fixed-effects model. The default is 'TRUE'. ncp A string specifying whether to use a non-centered parametrization. The default is 'TRUE'. chains A positive integer specifying the number of Markov chains. The default is 4. iter A positive integer specifying the number of iterations for each chain (including warmup). The default is 2000. A positive integer specifying the number of warmup (aka burnin) iterations per warmup chain. The default is 1000. adapt_delta A numerical value specfying the target average proposal acceptance probability for adaptation. See Stan manual for details. Default is 0.95. In general you should not need to change adapt_delta unless you see a warning message about divergent transitions, in which case you can increase adapt_delta from the default to a value closer to 1 (e.g. from 0.95 to 0.99, or from 0.99 to 0.999, etc). Further arguments passed to or from other methods.

meta_stan 13

Value

an object of class 'stanfit' returned by 'rstan::sampling'

References

Boucher M, et al. The many flavors of model-based meta-analysis: Part I-Introduction and landmark data. *CPT: Pharmacometrics and Systems Pharmacology*. 2016;5:54-64.

Guenhan BK, Roever C, Friede T. MetaStan: An R package for meta-analysis and model-based meta-analysis using Stan. In preparation.

Mawdsley D, et al. Model-based network meta-analysis: A framework for evidence synthesis of clinical trial data. *CPT: Pharmacometrics and Systems Pharmacology*. 2016;5:393-401.

Zhang J, et al. (2014). Network meta-analysis of randomized clinical trials: Reporting the proper summaries. *Clinical Trials*. 11(2), 246–262.

Dias S, et al. Absolute or relative effects? Arm-based synthesis of trial data. *Research Synthesis Methods*. 2016;7:23–28.

Examples

```
## Not run:
## Load the dataset
data('dat.Eletriptan', package = "MetaStan")
datMBMA = create_MetaStan_dat(dat = dat.Eletriptan,
                              armVars = c(dose = "d",
                                           responders = "r",
                                           sampleSize = "n"),
                               nArmsVar = "nd")
MBMA.Emax <- MBMA_stan(data = datMBMA,</pre>
                        likelihood = "binomial",
                        dose_response = "emax",
                        Pred_doses = seq(0, 80, length.out = 11),
                        mu_prior = c(0, 100),
                        Emax\_prior = c(0, 100),
                        tau_prior_dist = "half-normal",
                        tau_prior = 0.5)
plot(MBMA.Emax) + ggplot2::xlab("Doses (mg)") + ggplot2::ylab("response probabilities")
## End(Not run)
```

meta_stan

Fitting a meta-analysis model using Stan

Description

'meta_stan' fits a meta-analysis model using Stan.

14 meta_stan

Usage

```
meta_stan(
  data = NULL,
  likelihood = NULL,
 mu_prior = c(0, 10),
  theta_prior = NULL,
  tau_prior = 0.5,
  tau_prior_dist = "half-normal",
  beta_prior = c(0, 100),
  delta = NULL,
  param = "Smith",
  re = TRUE,
  ncp = TRUE,
  interval.type = "shortest",
 mreg = FALSE,
  cov = NULL,
  chains = 4,
  iter = 2000,
  warmup = 1000,
  adapt_delta = 0.95,
)
```

Arguments

data Data frame created by 'cr	reate MetaStan dat
--------------------------------	--------------------

likelihood A string specifying the likelihood function defining the statistical model. Op-

tions include 'normal', 'binomial', and 'Poisson'.

mu_prior A numerical vector specifying the parameter of the normal prior density for

baseline risks, first value is parameter for mean, second is for variance. Default

is c(0, 10).

theta_prior A numerical vector specifying the parameter of the normal prior density for

treatment effect estimate, first value is parameter for mean, second is for vari-

ance. Default is NULL.

tau_prior A numerical value specifying the standard dev. of the prior density for hetero-

geneity stdev. Default is 0.5.

tau_prior_dist A string specifying the prior density for the heterogeneity standard deviation,

option is 'half-normal' for half-normal prior, 'uniform' for uniform prior, 'half-

cauchy' for half-cauchy prior.

beta_prior A numerical vector specifying the parameter of the normal prior density for

beta coefficients in a meta-regression model, first value is parameter for mean,

second is for variance. Default is c(0, 100).

delta A numerical value specifying the upper bound of the a priori interval for treat-

ment effect on odds ratio scale (*Guenhan et al (2020)*). This is used to calculate a normal weakly informative prior. for theta. Thus when this argument is speci-

fied, 'theta' should be left empty. Default is NULL.

meta_stan 15

param	Paramteriztaion used. The default is the 'Smith' model suggested by Smith et al (1995). The alternative is 'Higgins' is the common meta-analysis model (Simmonds and Higgins, 2014).
re	A string specifying whether random-effects are included to the model. When 'FALSE', the model corresponds to a fixed-effects model. The default is 'TRUE'.
ncp	A string specifying whether to use a non-centered parametrization. The default is 'TRUE'.
interval.type	A string specifying the type of interval estimate. Options include shortest credible interval 'shortest' (default) and qui-tailed credible interval 'central'.
mreg	A string specifying whether to fit a meta-regression model. The default is 'FALSE'.
cov	A numeric vector or matrix specifying trial-level covariates (in each row). This is needed when 'mreg = TRUE'.
chains	A positive integer specifying the number of Markov chains. The default is 4.
iter	A positive integer specifying the number of iterations for each chain (including warmup). The default is 2000.
warmup	A positive integer specifying the number of warmup (aka burnin) iterations per chain. The default is 1000.
adapt_delta	A numerical value specifying the target average proposal acceptance probability for adaptation. See Stan manual for details. Default is 0.95. In general you should not need to change adapt_delta unless you see a warning message about divergent transitions, in which case you can increase adapt_delta from the default to a value closer to 1 (e.g. from 0.95 to 0.99, or from 0.99 to 0.999, etc).
	Further arguments passed to or from other methods.

Value

an object of class 'MetaStan'.

References

Guenhan BK, Roever C, Friede T. MetaStan: An R package for meta-analysis and model-based meta-analysis using Stan. In preparation.

Guenhan BK, Roever C, Friede T. Random-effects meta-analysis of few studies involving rare events *Resarch Synthesis Methods* 2020; doi:10.1002/jrsm.1370.

Jackson D, Law M, Stijnen T, Viechtbauer W, White IR. A comparison of 7 random-effects models for meta-analyses that estimate the summary odds ratio. *Stat Med* 2018;37:1059–1085.

Kuss O. Statistical methods for meta-analyses including information from studies without any events-add nothing to nothing and succeed nevertheless, *Stat Med*, 2015; 4; 1097–1116, doi: 10.1002/sim.6383.

Examples

Not run:

TB dataset

16 plot.MBMA_stan

```
data('dat.Berkey1995', package = "MetaStan")
## Fitting a Binomial-Normal Hierarchical model using WIP priors
dat_MetaStan <- create_MetaStan_dat(dat = dat.Berkey1995,</pre>
                                     armVars = c(responders = "r", sampleSize = "n"))
ma.stan <- meta_stan(data = dat_MetaStan,</pre>
                           likelihood = "binomial",
                           mu_prior = c(0, 10),
                            theta_prior = c(0, 100),
                            tau_prior = 0.5,
                            tau_prior_dist = "half-normal")
print(ma.stan)
forest_plot(ma.stan)
meta.reg.stan <- meta_stan(data = dat_MetaStan,</pre>
                           likelihood = "binomial",
                           mu_prior = c(0, 10),
                            theta_prior = c(0, 100),
                            tau_prior = 0.5,
                            tau_prior_dist = "half-normal",
                           mreg = TRUE,
                            cov = dat.Berkey1995$Latitude)
print(meta.reg.stan)
## End(Not run)
```

plot.MBMA_stan

Plot a dose-response plot

Description

Takes a MBMA_stan object which is obtained by function MBMA_stan and plot a dose-response plot, showing observed event probabilities and the estimated dose-response function with pointwise 95

Usage

```
## S3 method for class 'MBMA_stan'
plot(x = MBMA.stan, ...)
```

Arguments

x A MBMA_stan object.

... Further arguments passed to ggplot.

Value

The return value is invisible NULL.

print.MBMA_stan 17

Author(s)

Christian Roever and Burak Kuersad Guenhan

Source

This function uses ggplot function from ggplot2 R package.

See Also

```
ggplot2::ggplot
```

Examples

```
## Not run:
data('dat.Eletriptan', package = "MetaStan")
datMBMA = create_MetaStan_dat(dat = dat.Eletriptan,
                              armVars = c(dose = "d",
                                           responders = "r",
                                           sampleSize = "n"),
                              nArmsVar = "nd")
MBMA.Emax <- MBMA_stan(data = datMBMA,</pre>
                        likelihood = "binomial",
                        dose_response = "emax",
                        Pred_doses = seq(0, 80, length.out = 11),
                        mu_prior = c(0, 100),
                        Emax\_prior = c(0, 100),
                        tau_prior_dist = "half-normal",
                         tau_prior = 0.5
plot(MBMA.Emax) + ggplot2::xlab("Doses (mg)") + ggplot2::ylab("response probabilities")
## End(Not run)
```

print.MBMA_stan

Print MBMA object

Description

Takes an MBMA_stan object which is obtained by function MBMA_stan and print the model and data information such as model type used in the model.

Usage

```
## S3 method for class 'MBMA_stan'
print(x, digits = 2, ...)
```

print.meta_stan

Arguments

x A MBMA_stan object.digits An integer indicating the number of decimal places.... Further arguments passed to or from other methods.

Value

The return value is invisible NULL

Description

Takes an meta_stan object which is obtained by function meta_stan and print the model and data information such as model type used in the model.

Usage

```
## S3 method for class 'meta_stan'
print(x, digits = 2, ...)
```

Arguments

x A meta_stan object.digits An integer indicating the number of decimal places.... Further arguments passed to or from other methods.

Value

The return value is invisible NULL

Index

```
* datasets
    dat.Berkey1995,6
    dat.Boucher2016, 6
    dat.Boucher2016.pairwise, 7
    dat.Crins2014, 8
    dat.Eletriptan,9
compare\_MBMA, 3
convert_data_arm, 4
{\tt create\_MetaStan\_dat, 4}
dat.Berkey1995,6
dat.Boucher2016, 6
dat.Boucher2016.pairwise, 7
dat.Crins2014, 8
dat.Eletriptan, 9
forest\_plot, 10
MBMA_stan, 11
meta_stan, 13
MetaStan (MetaStan-package), 2
MetaStan-package, 2
plot.MBMA_stan, 16
print.MBMA_stan, 17
print.meta_stan, 18
```