

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 26.01.2017

Grundbegriffe Rückblick der Informatik

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Rückblick

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

• Was ist $\Omega(f)$, $\Theta(f)$, O(f)?

Rückblick

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- Was ist $\Omega(f)$, $\Theta(f)$, O(f)?
- Wieso messen wir nicht einfach Laufzeit in "Anzahl Operationen"?

Obere und untere Schranke

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie Obere Schranke (Worst-Case Approximation)

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Obere und untere Schranke

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie Obere Schranke (Worst-Case Approximation)

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Automaten

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Obere und untere Schranke

Lukas Bach Jukas.bach@student.kit.edu

Komplexitätstheorie Obere Schranke (Worst-Case Approximation)

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Automaten

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Average-Case Approximation

$$\Theta(f) = \{g | \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : c \cdot f(n) \leq g(n) \leq c' \cdot f(n) \}$$

Obere und untere Schranke

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Obere Schranke (Worst-Case Approximation)

Mastertheore

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Automaten

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Average-Case Approximation

$$\Theta(f) = \{g | \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : c \cdot f(n) \leq g(n) \leq c' \cdot f(n)\}$$

Auf welche Weise wird hier approximiert?

Gelten folgende Approximationen?

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Gelten folgende Approximationen?

Lukas Bach, lukas.bach@student.kit.edu

•
$$4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
?

Komplexitätstheorie

Mastertheorem

Gelten folgende Approximationen?

Lukas Bach, lukas.bach@student.kit.edu

•
$$4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

Komplexitätstheorie

Mastertheorem

Gelten folgende Approximationen?

Lukas Bach, lukas.bach@student.kit.edu

•
$$4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

Komplexitätstheorie

$$\bullet 5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)?$$

Mastertheorem

Gelten folgende Approximationen?

Lukas Bach, lukas.bach@student.kit.edu

•
$$4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

Komplexitätstheorie

•
$$5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

Gelten folgende Approximationen?

•
$$4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

•
$$5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

•
$$4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
?

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

•
$$4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

•
$$5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

•
$$4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Nein.

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

Gelten folgende Approximationen?

•
$$4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

•
$$5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

•
$$4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Nein.

■
$$4n^4 + 3c^6 \in \Theta(n^4)$$
?

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

Gelten folgende Approximationen?

•
$$4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

•
$$5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Ja.

•
$$4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$$
? Nein.

•
$$4n^4 + 3c^6 \in \Theta(n^4)$$
? Ja

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Es sind immer nur die höchsten Faktoren interessant!

■ $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\qquad \log_{4213}(n) \in \Theta(\log_2(n) \text{ Ja}$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n) \text{ Ja, die Basis des Logarithmus ist im O-Kalkülegal.}$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n) \text{ Ja, die Basis des Logarithmus ist im O-Kalkülegal.}$
 - Grund: $O(\log_b n)$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\bullet \log_{4213}(n) \in \Theta(\log_2(n)$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b})$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\bullet \log_{4213}(n) \in \Theta(\log_2(n)$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b} \log_a n)$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n)$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b}\log_a n) = \mathcal{O}(\log_a n)$.

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\bullet \log_{4213}(n) \in \Theta(\log_2(n)$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.

• Grund:
$$\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b}\log_a n) = \mathcal{O}(\log_a n)$$
.

■ $n! \in \Theta(n^{\pi e 2000})$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\bullet \log_{4213}(n) \in \Theta(\log_2(n)$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b}\log_a n) = \mathcal{O}(\log_a n)$.
- $n! \in \Theta(n^{\pi e 2000})$ Nein

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

Automaten

Gelten folgende Approximationen?

- $4n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.
- $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\bullet \log_{4213}(n) \in \Theta(\log_2(n)$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b}\log_a n) = \mathcal{O}(\log_a n)$.
- $n! \in \Theta(n^{\pi e 2000})$ Nein, Fakultät wächst asymptotisch schneller als fast alles andere.

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

■ $4n^3 + 2n^2 \in \mathcal{O}(n^5)$?

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

• $4n^3 + 2n^2 \in \mathcal{O}(n^5)$? Ja.

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

• $4n^3 + 2n^2 \in \mathcal{O}(n^5)$? Ja.

Mastertheorem

• $4n^3 + 2n^2 \in \mathcal{O}(n^4)$?

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

• $4n^3 + 2n^2 \in \mathcal{O}(n^5)$? Ja.

Mastertheorem

• $4n^3 + 2n^2 \in \mathcal{O}(n^4)$? Ja.

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

• $4n^3 + 2n^2 \in \mathcal{O}(n^3)$?

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

 $\bullet 4n^3 + 2n^2 \in \mathfrak{O}(n^3)$? Ja.

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
?

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

■
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
?

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
?

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
?

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
? Ja.

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \Omega(n^2)$$
?

Lukas Bach, lukas.bach@student.kit.edu

Gelten folgende Approximationen?

Komplexitätstheorie

Mastertheorem

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathfrak{O}(n^4)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^5)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^4)$$
? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
? Ja.

•
$$4n^3 + 2n^2 \in \Omega(n^2)$$
? Ja.

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$						
π						
$\frac{\log(n)}{n\log(n)}$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgab

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in					
π						
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(\mathit{n}^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉				
π						
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(\textit{n}^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉			
π						
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgab

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(\mathbf{n}^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉		
π						
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(\textit{n}^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	
π						
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π						
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(\mathit{n}^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in					
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	€	\in				
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€			
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉		
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	€	€	€	∉	∉	∉
$\log(n)$						
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in					
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	\in				
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉			
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	\in	∉	∉		
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	€	€	∉	∉	∉	
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$						
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	\in	∉	∉	∉	∉
$n\log(n)$	\in					
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	€	\in	€	∉	∉	∉
$\log(n)$	€	\in	∉	∉	∉	∉
$n\log(n)$	\in	∉				
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	\in	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉			
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉		
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	\in	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	
n^{π}						
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}						
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	\in	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉					
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉				
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉			
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€		
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	
$12n^3 + 7000n^2$						
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$						
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	\in					
n ³						
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$-\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	\in	∉				
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉			
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉		
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³						
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in					
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉				
<i>n</i> !						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgab

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2+4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉			
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉		
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	
n!						

Aufgabe

liegt.

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
n!						

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	€	∉	∉	∉	∉	∉
n ³	€	∉	∉	∉	∉	∉
n!	∉					

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$-\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	€	∉	∉	∉	∉	∉
n ³	€	∉	∉	∉	∉	∉
<i>n</i> !	∉	∉				

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^2 + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	€	∉	∉	∉	∉	∉
n ³	€	∉	∉	∉	∉	∉
<i>n</i> !	∉	∉	∉			

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$-\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
<i>n</i> !	∉	∉	∉	∉		

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Übungsaufgabe

Komplexitätstheorie

Mastertheorem

Automaten

	$O(n^3)$	O(n)	Θ(c!)	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	\in	∉	∉	∉	∉	∉
n ³	\in	∉	∉	∉	∉	∉
<i>n</i> !	∉	∉	∉	∉	\in	

Aufgabe

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie Mastertheorem

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte liegt.

	$O(n^3)$	O(n)	$\Theta(c!)$	$\Theta(n^{\pi})$	$\Omega(n^6)$	$\Omega(n!)$
$2n^{2} + 4n$	\in	∉	∉	∉	∉	∉
π	\in	€	€	∉	∉	∉
$\log(n)$	\in	€	∉	∉	∉	∉
$n\log(n)$	€	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	€	∉	∉
$12n^3 + 7000n^2$	€	∉	∉	∉	∉	∉
n ³	€	∉	∉	∉	∉	∉
<i>n</i> !	∉	∉	∉	∉	\in	\in

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\bullet \ \mathbb{O}(n^2) \cap \mathbb{O}(n) = \mathbb{O}(?)?$$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\bullet \ \mathbb{O}(n^2) \cap \mathbb{O}(n) = \mathbb{O}(?)? = \mathbb{O}(n).$$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\bullet \ \mathbb{O}(n^2) \cap \mathbb{O}(n) = \mathbb{O}(?)? = \mathbb{O}(n).$$

$$\quad \bullet \quad \mathfrak{O}(\mathit{n}^{2}) \cap \Omega(\mathit{n}^{3}) =$$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$\bullet \ \mathbb{O}(n^2) \cap \mathbb{O}(n) = \mathbb{O}(?)? = \mathbb{O}(n).$$

$$\quad \bullet \quad \mathfrak{O}(\mathit{n}^{2}) \cap \Omega(\mathit{n}^{3}) = \emptyset$$

Grundlegende Reihenfolge von Größen

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$1 \preceq \log n \preceq n \log n \preceq n^2 \preceq n^3 \preceq n^{10000} \preceq n^2 \preceq 3^n \preceq 1000^n \preceq n! \preceq n^n$$

Mathematische Definitionen

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$f(n) \in \Omega(g(n)) \Leftrightarrow 0 < \liminf_{n \to \infty} \frac{f(n)}{g(n)} \le \infty$$
 $f(n) \in \Theta(g(n)) \Leftarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$

$$f(n) \in \mathcal{O}(g(n)) \Leftrightarrow 0 \leq \limsup_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$$

Mathematische Definitionen

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

$$\begin{split} f(n) \in \Omega(g(n)) &\Leftrightarrow 0 < \liminf_{n \to \infty} \frac{f(n)}{g(n)} \leq \infty \\ f(n) \in \Theta(g(n)) &\Leftarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty \\ f(n) \in \mathcal{O}(g(n)) &\Leftrightarrow 0 \leq \limsup_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty \end{split}$$

Z

eige:

■
$$3n^2 + 14n + 159 \in \Theta(n^2)$$

$$\log n^2 \in \Theta(\log n^3)$$

$$\log^2 n \in \mathcal{O}(\log^3 n)$$

Komplexität mit vollständiger Induktion beweisen

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorer

Automaten

7

eige mittels vollständiger Induktion:

- $\mathbf{2}^n \in \Theta(n^3)$
- (n+1)! ∈ Θ(n! + 2^n)

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Größenordnung Bezeichnung

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie	
---------------------	--

Größenordnung Bezeichnung

O(1) konstante Laufzeit

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie	Größenordnung	Bezeichnung
		konstante Laufzeit
Mastertheorem	𝒪(log <i>n</i>)	logarithmische Laufzeit
Automaton		

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie	Größenordr
•	(
Mastertheorem	O(Ic
Automaten	O(log

Größenordnung	Bezeichnung
0(1)	konstante Laufzeit
𝒪(log <i>n</i>)	logarithmische Laufzeit
$\mathcal{O}(\log^2 n)$	quadratisch logarithmische Laufzeit

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie
Mastertheorem

$O(1)$ konstante Laufzeit $O(\log n)$ logarithmische Laufzeit $O(\log^2 n)$ quadratisch logarithmische Laufz		Größenordnung
· · · · · ·		0(1)
()(log ² n) quadratisch logarithmische Laufz		` • /
quadraticon logaritimicono Laciz	eit	$\mathcal{O}(\log^2 n)$
O(n) lineare Laufzeit		O(n)

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Größenordnung	Bezeichnung
0(1)	konstante Laufzeit
O(log <i>n</i>)	logarithmische Laufzeit
$\mathcal{O}(\log^2 n)$	quadratisch logarithmische Laufzeit
O(n)	lineare Laufzeit
$O(n^2)$	quadratische Laufzeit
0(11)	quadratische Laufzeit

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Größenordnung	Bezeichnung
0(1)	konstante Laufzeit
𝒪(log <i>n</i>)	logarithmische Laufzeit
$\mathcal{O}(\log^2 n)$	quadratisch logarithmische Laufzeit
O(n)	lineare Laufzeit
$O(n^2)$	quadratische Laufzeit
$O(n^3)$	kubische Laufzeit

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Größenordnung	Bezeichnung
0(1)	konstante Laufzeit
𝒪(log <i>n</i>)	logarithmische Laufzeit
$\mathcal{O}(\log^2 n)$	quadratisch logarithmische Laufzeit
O(n)	lineare Laufzeit
$O(n^2)$	quadratische Laufzeit
$O(n^3)$	kubische Laufzeit
$O(n^k)$	polynomielle Laufzeit

$r \leftarrow 0$ Grundbegriffe for $i \leftarrow 0$ to n/2 do der Informatik Lukas Bach, lus ← 0 kas.bach@student.kit.edu for $j \leftarrow i$ to n - i do Komplexitätstheorie $s \leftarrow s + j$ Mastertheorem od $r \leftarrow s + n * i$ Automaten $r \leftarrow r + s$

od

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$
od

Wie oft wird die innere Schleife durchlaufen?

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$
od

• Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$
od

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$
od

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1)$$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Automaten

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

od

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2}$$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

- Wie oft wird die innere Schleife durchlaufen? n 2i + 1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2} + 1)}{2}$$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

-

- Wie oft wird die innere Schleife durchlaufen? n 2i + 1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2}+1)}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{2} = \frac{n^2}{2} + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{2} = \frac{n^2}{2} + \frac{n}{2} = \frac{n^2}{2$$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

od

- Wie oft wird die innere Schleife durchlaufen? n 2i + 1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2} + 1)}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{1}{4}n^2$$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

$$r \leftarrow 0$$

for $i \leftarrow 0$ to $n/2$ do
 $s \leftarrow 0$
for $j \leftarrow i$ to $n - i$ do
 $s \leftarrow s + j$
od
 $r \leftarrow s + n * i$
 $r \leftarrow r + s$

- Wie oft wird die innere Schleife durchlaufen? n-2i+1 mal.
- Wie kommen wir jetzt auf die Gesamtlaufzeit?

$$\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n - 2\sum_{i=0}^{n/2} i + \frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot (\frac{n}{2}+1)}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{1}{4}n^2$$

Kann man das einfacher machen?

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Formel für Mastertheorem

Komplexitätstheorie

Mastertheorem

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Formel für Mastertheorem

Komplexitätstheorie Rekursive Komplexitätsformeln der Form

Mastertheorem

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Formel für Mastertheorem

Komplexitätstheorie Rekursive Komplexitätsformeln der Form

Mastertheorem T(r)

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Formel für Mastertheorem

Komplexitätstheorie Rekursive Komplexitätsformeln der Form

Mastertheorem

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Automaten

lassen sich mit dem Mastertheorem Komplexitätsklassen zuordnen.

Auflösung des Mastertheorem

Fall 1: Wenn $f \in \mathcal{O}(n^{\log_b a - \varepsilon})$ für ein $\varepsilon > 0$ ist, dann ist $T \in \Theta(n^{\log_b a})$.

Fall 2: Wenn $f \in \Theta(n^{\log_b a})$ ist, dann ist $T \in \Theta(n^{\log_b a} \log n)$.

Fall 3: Wenn $f \in \mathcal{O}(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$ ist, und wenn es eine Konstante d gibt mit 0 < d < 1, so dass für alle hinreichend großen n gilt $af(n/b) \le df$, dann ist $T \in \Theta(f)$.

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

$$T(n) := 2T(\frac{n}{4}) + \sqrt{n}$$

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

•
$$T(n) := 2T(\frac{n}{4}) + \sqrt{n}$$
, also $a = 2, b = 4, f(n) = \sqrt{n}$

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also a = 2, b = 4, $f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also a = 2, b = 4, $f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$
- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also $a = 4, b = 2, f(n) = n^2\sqrt{n}$

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also a = 2, b = 4, $f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also a = 4, b = 2, $f(n) = n^2\sqrt{n}$, also dritter Fall des Mastertheorems

Aufgaben zum Mastertheorem

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also a = 2, b = 4, $f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also $a = 4, b = 2, f(n) = n^2\sqrt{n}$, also dritter Fall des Mastertheorems, $T \in \Theta(n^2\sqrt{n})$.

Definition eines endlichen Automaten

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Endlicher Automat

Mastertheorem

Automaten

Definition eines endlichen Automaten

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Endlicher Automat

Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Automaten

endliche Zustandsmenge Z

Definition eines endlichen Automaten

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Endlicher Automat

Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$

Definition eines endlichen Automaten

Lukas Bach, lukas.bach@student.kit.edu

Automaten

Komplexitätstheorie

Endlicher Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X

Definition eines endlichen Automaten

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Automaten

Endlicher Automat

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$

Definition eines endlichen Automaten

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Endlicher Automat

Mastertheorer

Automaten

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y

Definition eines endlichen Automaten

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Endlicher Automat

Mastertheorer

Automaten

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion

Definition eines endlichen Automaten

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Endlicher Automat

Mastertheorer

Automaten

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion
 - Mealy-Automat: $g: Z \times X \rightarrow Y^*$

Definition eines endlichen Automaten

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Endlicher Automat

Mastertheorer

Automaten

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion
 - Mealy-Automat: $g: Z \times X \rightarrow Y^*$
 - Moore-Automat: $h: Z \rightarrow Y^*$

Lukas Bach, lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

