

IR2106(4)(S)

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V (IR2106(4))
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5V offset.
- Lower di/dt gate driver for better noise immunity
- Outputs in phase with inputs (IR2106)

Packages

Description

The IR2106(4)(S) are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output driv-

2106/2301//2108//2109/2302/2304Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Dead-Time	Ground Pins	Ton/Toff	
2106/2301	HIN/LIN	no	none	COM	220/200	
21064	HIIN/LIIN	110	none	VSS/COM	220/200	
2108	HIN/LIN	1/00	Internal 540ns	COM	220/200	
21084	HIIN/LIIN	yes	Programmable 0.54~5µs	VSS/COM	220/200	
2109/2302	IN/SD	ves	Internal 540ns	COM	750/200	
21094	IIV/SD	Programmable 0.54~5		VSS/COM	750/200	
2304	HIN/LIN	yes	Internal 100ns	СОМ	160/140	

ers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
V _B	High side floating absolute voltage		-0.3	625	
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	
Vcc	Low side and logic fixed supply voltage		-0.3	25	V
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	\ \
V _{IN}	Logic input voltage		V _{SS} - 0.3	V _{CC} + 0.3	
V _{SS}	Logic ground (IR21064 only)		V _{CC} - 25	V _{CC} + 0.3	
dVs/dt	Allowable offset supply voltage transient		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(8 lead PDIP)	_	1.0	
		(8 lead SOIC)	_	0.625	
		(14 lead PDIP)	_	1.6	W
		(14 lead SOIC)	_	1.0	
Rth _{JA}	Thermal resistance, junction to ambient	(8 lead PDIP)	_	125	
		(8 lead SOIC)	_	200	
		(14 lead PDIP)	_	75	°C/W
		(14 lead SOIC)	_	120	
TJ	Junction temperature		_	150	
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage IR2106(4)	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	Vs	V _B	
Vcc	Low side and logic fixed supply voltage IR2106(4)	10	20	V
V _{LO}	Low side output voltage	0	Vcc	
V _{IN}	Logic input voltage	V _{SS}	V _C C	
V _{SS}	Logic ground (IR21064 only)	-5	5	
T _A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, V_{SS} = COM, C_L = 1000 pF, T_A = 25°C.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	220	300		V _S = 0V
toff	Turn-off propagation delay	_	200	280		V _S = 0V or 600V
MT	Delay matching, HS & LS turn-on/off	_	0	30	nsec	
tr	Turn-on rise time	_	150	220		Vs = 0V
tf	Turn-off fall time	_	50	80		V _S = 0V

Static Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, V_{SS} = COM and T_A = 25°C unless otherwise specified. The V_{IL}, V_{IH} and I_{IN} parameters are referenced to V_{SS}/COM and are applicable to the respective input leads. The V_O, I_O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage (IR2106(4))	2.9	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" input voltage (IR2106(4))	_	_	0.8	V	V _{CC} = 10V to 20V
VoH	High level output voltage, V _{BIAS} - V _O	_	0.8	1.4	\ \	I _O = 20 mA
V _{OL}	Low level output voltage, VO	_	0.3	0.6		I _O = 20 mA
I _{LK}	Offset supply leakage current	_	_	50		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} supply current	20	75	130		V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} supply current	60	120	180		V _{IN} = 0V or 5V
I _{IN+}	Logic "1" input bias current				μΑ	
	$V_{IN} = 5V (IR2106(4))$	-	5	20		
I _{IN-}	Logic "0" input bias current					
	$V_{IN} = 0V (IR2106(4))$	-	_	2		
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive going	8.0	8.9	9.8		
V _{BSUV+}	threshold					
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage negative going	7.4	8.2	9.0	V	
V _{BSUV} -	threshold				-	
Vccuvн	Hysteresis	0.3	0.7	_		
V _{BSUVH}						
I _{O+}	Output high short circuit pulsed current	120	200	_		$V_O = 0V$,
					mA	PW ≤ 10 µs
I _O -	Output low short circuit pulsed current	250	350	-		$V_0 = 15V$,
						PW ≤ 10 µs

Functional Block Diagrams

IR2106(4) (S)

International

TOR Rectifier

Lead Definitions

Symbol	Description
HIN	Logic input for high side gate driver output (HO), in phase
LIN	Logic input for low side gate driver output (LO), in phase
VSS	Logic Ground (IR21064 only)
V _B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
V _{CC}	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Delay Matching Waveform Definitions

Figure 4A. Turn-on Propagation Delay vs. Temperature

Figure 4B. Turn-on Propagation Delay vs. Supply Voltage

Figure 5A. Turn-off Propagation Delay vs. Temperature

Figure 5B. Turn-off Propagation Delay vs. Supply Voltage

Figure 6A. Turn-on Rise Time vs. Temperature

Figure 6B. Turn-on Rise Time vs. Supply Voltage

Figure 7A. Turn-off Fall Time vs. Temperature

Figure 7B. Turn-off Fall Time vs. Supply Voltage

Figure 8A. Logic "1" Input Voltage vs. Temperature

Figure 8B. Logic "1" Input Voltage vs. Supply Voltage

Figure 9A. Logic "0" Input Voltage vs. Temperature

Figure 9B. Logic "0" Input Voltage vs. Supply Voltage

Figure 10A. High Level Output Voltage vs. Temperature

Figure 10B. High Level Output Voltage vs. Supply Voltage

Figure 11A. Low Level Output Voltage vs. Temperature

Figure 11B. Low Level Output Voltage vs. Supply Voltage

Figure 12A. Offset Supply Leakage Current vs. Temperature

Figure 12B. Offset Supply Leakage Current vs. Supply Voltage

Figure 13A. VBS Supply Current vs. Temperature

Figure 13B. V_{BS} Supply Current vs. Supply Voltage

Figure 14A. Quiescent V_{CC} Supply Current vs. Temperature

Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage

Figure 15A. Logic "1" Input Current vs. Temperature

Figure 15B. Logic "1" Bias Current vs. Supply Voltage

Figure 16A. Logic "0" Input Current vs. Temperature

Figure 16B. Logic "0" Input Currentt vs. Supply Voltage

Figure 17. VCC Undervoltage Threshold (+) vs. Temperature

Figure 18. VCC Undervoltage Threshold (-) vs. Temperature

Figure 19. VBS Undervoltage Threshold (+) vs. Temperature

Figure 20. VBS Undervoltage Threshold (-) vs. Temperature

Figure 21A. Output Source Current vs. Temperature

Figure 21B. Output Source Current vs. Supply Voltage

Figure 22A. Output Sink Current vs. Temperature

Figure 22B. Output Sink Currentt vs. Supply Voltage

Figure 23. Maximum Vs Negative Offset vs. Supply Voltage

Figure 24. IR2106 vs. Frequency (IRFBC20), Rgate=33 Ω , VCC=15V

Figure 25. IR2106 vs. Frequency (IRFBC30), ${\rm R_{\rm oate}}{=}22\Omega, {\rm V_{\rm cc}}{=}15{\rm V}$

Figure 26. IR2106 vs. Frequency (IRFBC40), $R_{\text{qate}}\text{=}15\Omega,\,V_{\text{CC}}\text{=}15\text{V}$

Figure 27. IR2106 vs. Frequency (IRFPE50), $R_{gate} {=} 10 \Omega, \, V_{cc} {=} 15 V$

Figure 28. IR21064 vs. Frequency (IRFBC20), ${\rm R_{\rm qate}}\text{=}33\Omega,\,{\rm V_{\rm CC}}\text{=}15{\rm V}$

Figure 29. IR21064 vs. Frequency (IRFBC30), ${\rm R_{\rm cate}}{=}22\Omega, {\rm V_{CC}}{=}15{\rm V}$

Figure 30. IR21064 vs. Frequency (IRFBC40), $R_{\text{nate}}\text{=}15\Omega,\,V_{\text{CC}}\text{=}15\text{V}$

Figure 31. IR21064 vs. Frequency (IRFPE50), $R_{uate} \text{=} 10\Omega, \, V_{cc} \text{=} 15 \text{V}$

Figure 33. IR2106S vs. Frequency (IRFBC30), $\rm R_{gate} = 22\Omega,\, \rm V_{cc} = 15V$

Figure 34. IR2106S vs. Frequency (IRFBC40), ${\rm R_{\rm qate}}{=}15\Omega, {\rm V_{\rm CC}}{=}15{\rm V}$

Figure 35. IR2106S vs. Frequency (IRFPE50), $\rm R_{\rm gate}$ =10 Ω , $\rm V_{\rm CC}$ =15 V

Figure 36. IR21064S vs. Frequency (IRFBC20), $R_{\rm qate} \text{=} 33\Omega, \, V_{\text{CC}} \text{=} 15 \text{V}$

Figure 37. IR21064S vs. Frequency (IRFBC30), $\rm R_{gate} = 22\Omega, \, \rm V_{cc} = 15V$

Figure 38. IR21064S vs. Frequency (IRFBC40), ${\rm R_{\rm tate}}\text{=}15\Omega,\,{\rm V_{CC}}\text{=}15{\rm V}$

Figure 39. IR21064S vs. Frequency (IRFPE50), $\rm R_{gate}$ =10 $\Omega,\,\rm V_{CC}$ =15 V

IR2106(4)(S)

Case Outlines

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 1/27/2004