# Esercitazione Sistemi Digitali

13/12/2022



#### Esercizio 1- Traccia

- Disegnare l'automa di Mealy che, presa in input una sequenza di bit, dà in output 1 se e solo se l'AND logico degli ultimi due bit di indice dispari ricevuti fino a quel momento è 1 (si consideri che il primo bit ricevuto ha indice 1). Ad esempio:
  - 001011101001 (INPUT)
  - 0000111111100 (OUTPUT)

Si minimizzi l'automa dato e, dall'automa minimo, si ricavi l'automa di Moore equivalente

### Soluzione 1 (1)

- Da S (stato iniziale) si riceve primo bit (indice dispari) e si và in  $S_0$  (ricevuto 0) oppure  $S_1$  (ricevuto 1)
- In  $S_0/S_1$  si ricevono bits di indice pari
- In  $S_{0-}$  (rispettivamente  $S_{1-}$ ) si ricevono bits di indice dispari e ci indica che ultimo bit di indice dispari ricevuto era uno 0 (rispettivamente 1)
- Da  $S_{1-}$  se si riceve 1 si và in  $S_1'$  e si dà 1 in output. Da  $S_1'$  si torna sempre in  $S_{1-}$  (uniche transizioni con output 1)



# Soluzione 1 (2)

| • | $S_0$    | Χ |       |       |          |          |
|---|----------|---|-------|-------|----------|----------|
|   | $S_1$    | Χ | Χ     |       |          |          |
|   | $S_{0-}$ |   | Χ     | Χ     |          |          |
|   | $S_{1-}$ | Χ | Χ     | Χ     | Х        |          |
|   | $S_{1'}$ | Χ | Χ     | Χ     | Х        | Х        |
|   |          | S | $S_0$ | $S_1$ | $S_{0-}$ | $S_{1-}$ |

Si possono unire S ed  $S_{0-}$ 



### Soluzione 1 (3)

• Notare che solo  $S_{1-}$  ha transizioni entranti con output diverso. Possiamo quindi scomporlo in due stati differenti  $S_{1-}^0$  e  $S_{1-}^1$ 



#### Esercizio 2- Traccia

- Progettare la rete **combinatoria** che ha sulle linee di ingresso la codifica binaria di un intero x,  $0 \le x \le 7$ , e sulle linee di uscita la codifica binaria di  $y=y_4y_3y_2y_1y_0=3x+2$ , usando una ROM
  - 1 Realizzare tabella di verità della funzione descritta
  - 2 Disegnare circuito utilizzando una ROM
  - $oldsymbol{3}$  Scrivere forma canonica POS di  $y_3$  e forma canonica SOP di  $y_4$
  - 4 Definire espressione per  $y_2$  con sole porte NAND (Suggerimento: Iniziare minimizzando  $y_2$  usando mappa di Karnaugh)

### Soluzione 2 (1)

#### Tabella che descrive la funzione:

| x2 x1 x0 | y5 y4 y3 y2 | y1 |
|----------|-------------|----|
| 0 0 0    | 0 0 0 1     | 0  |
| 0 0 1    | 0 0 1 0     | 1  |
| 0 1 0    | 0 1 0 0     | 0  |
| 0 1 1    | 0 1 0 1     | 1  |
| 1 0 0    | 0 1 1 1     | 0  |
| 1 0 1    | 1 0 0 0     | 1  |
| 1 1 0    | 1 0 1 0     | 0  |
| 1 1 1    | 1 0 1 1     | 1  |

#### ROM:



### Soluzione 2 (2)

Tabella che descrive la funzione:

- Forma POS  $y_3$ : (x2+x1+x0)(x2+ $\bar{x}$ 1 + x0)(x2 +  $\bar{x}$ 1 +  $\bar{x}$ 0)( $\bar{x}$ 2 + x1 +  $\bar{x}$ 0)
- Forma SOP  $y_4 : \bar{x2}x1\bar{x0} + \bar{x2}x1x0 + x2\bar{x1}\bar{x0}$

 $v_2 = x1x0 + \bar{x1}\bar{x0}$ 

## Soluzione 2 (3)

• 
$$y_2 = x1x0 + \bar{x1}\bar{x0} = x1x0 + \overline{x1} + x0$$
 De Mo

**De Morgan su**  $x\bar{1}x\bar{0}$ 

$$\underline{x1x0 + \overline{x1 + x0}} = \underline{x1x0(x1 + x0)} =$$

**De Morgan su** 
$$x1x0 + \overline{x1 + x0}$$

• 
$$\overline{\overline{x1x0}}(x1+x0) = (\overline{\overline{x1x0}})(\overline{\overline{x1x0}})$$

**De Morgan su** x1 + x0

• 
$$(\overline{x1x0})(\overline{x1x0}) = (\overline{x1x0})(\overline{(\overline{x1x1})(\overline{x0x0})}))$$

## Definizione NOT con porte NAND su $\bar{x1}, \bar{x0}$



#### Esercizio 3- Traccia

Analisi rete fino alla scrittura dell'automa senza output:



- 1 Scrivere le espressioni booleane associate alle entrate dei FF
- Scrivere in forma canonica congiuntiva l'espressione ottenuta per D<sub>0</sub> specificando assiomi algebra di Boole usati
- $oxed{3}$  Scrivere in forma canonica disgiuntiva l'espressione ottenuta per  $J_1$
- 4 Scrivere la tabella degli stati futuri
- 5 Ricavare dalla tabella l'automa senza output assumendo che inizialmente entrambi i flip flop contengano valore 0

### Soluzione 3 (1)

$$D_0 = y_1 + \bar{x}y_0$$
 $J_1 = (\bar{x}\bar{y_0})y_1 + (x\bar{y_0})y_0 = \bar{y_0}\bar{x}y_1 + x\bar{y_0}$ 
 $K_1 = xy_0$ 

- Semplificazione  $D_0$ : Proprietà distributiva-  $y_1 + \bar{x}y_0 = (y_1 + \bar{x})(y_1 + y_0) =$ Elemento complementare-=  $(y_1 + \bar{x} + y_0\bar{y_0})(y_1 + y_0 + x\bar{x}) =$ Proprietà distributiva-=  $(x + y_0 + y_1)(\bar{y_0} + y_1 + \bar{x})(\bar{x} + y_0 + y_1)(\bar{x} + y_0 + y_1) =$ Idempotenza-=  $(x + y_0 + y_1)(\bar{y_0} + y_1 + \bar{x})(\bar{x} + y_0 + y_1)$
- $J_1$  in forma normale disgiuntiva:  $\bar{y_0}\bar{x}y_1 + x\bar{y_0} = \bar{y_0}\bar{x}y_1 + x\bar{y_0}(y_1 + \bar{y_1}) = \bar{y_0}\bar{x}y_1 + x\bar{y_0}y_1 + x\bar{y_0}\bar{y_1}$



### Soluzione 3 (2)

#### Tabella stati futuri:

| $\mathbf{Q}_1$ | $Q_0$ | X | $J_1$ | K <sub>1</sub> | $\mathbf{D_0}$ | Q <sub>1</sub> ' | Q <sub>0</sub> ' |
|----------------|-------|---|-------|----------------|----------------|------------------|------------------|
| 0              | 0     | 0 | 0     | 0              | 0              | 0                | 0                |
| 0              | 0     | 1 | 1     | 0              | 0              | 1                | 0                |
| 0              | 1     | 0 | 0     | 0              | 1              | 0                | 1                |
| 0              | 1     | 1 | 0     | 1              | 0              | 0                | 0                |
| 1              | 0     | 0 | 1     | 0              | 1              | 1                | 1                |
| 1              | 0     | 1 | 1     | 0              | 1              | 1                | 1                |
| 1              | 1     | 0 | 0     | 0              | 1              | 1                | 1                |
| 1              | 1     | 1 | 0     | 1              | 1              | 0                | 1                |

### Soluzione 3 (3)

In base ai valori di  $Q_1$  e  $Q_0$ :

• *S*<sub>0</sub>: (0,0)

• S<sub>1</sub>: (0,1)

• S<sub>2</sub>: (1,0) • S<sub>2</sub>: (1,1)

|         | Stato Presente |
|---------|----------------|
| 03. (1, | ' /            |

| Stato Presente | x | Stato Futuro   |
|----------------|---|----------------|
| $S_0$          | 0 | $S_0$          |
| $S_0$          | 1 | $S_2$          |
| $S_2$          | 0 | $S_3$          |
| $S_2$          | 1 | S <sub>3</sub> |
| $S_3$          | 0 | $S_3$          |
| $S_3$          | 1 | $S_1$          |
| $S_1$          | 0 | $S_1$          |
| $S_1$          | 1 | $S_0$          |

# Soluzione 3 (4)

