Controlli Automatici T

Kevin Michael Frick

28 gennaio 2020

1 Domande

1. Sistemi dinamici

(a) Quali caratteristiche ha un punto di equilibrio?

 \mathbf{R} : Il vettore \dot{x} delle derivate delle variabili di stato è nullo.

(b) Come si linearizza un sistema dinamico?

R: Sviluppando in serie di Taylor al primo ordine intorno a un punto di equilibrio le espressioni dell'uscita e delle derivate dello stato.

2. Trasformata di Laplace

(a) Dimostrare l'espressione della trasformata di Laplace G(s) di un sistema dinamico.

R: Dall'espressione in forma di stato

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

si ottiene, trasformando secondo Laplace:

$$\begin{cases} sX(s) - x_0 = AX(s) + BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases}$$

Siamo interessati solo all'evoluzione forzata, quindi $x_0 = 0$. Si ricava l'espressione di X(s):

$$(sI - A)X(s) = BU(s) \implies X(s) = (sI - A)^{-1}BU(s)$$

Sostituendo nell'espressione di Y si ha:

$$Y(s) = (C(sI - A)^{-1}B + D)U(s)$$

Quindi

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D = G(s)$$

3. Risposte di sistemi elementari

(a) Ricavare la risposta allo scalino di un sistema con due poli reali e uno zero. Cosa cambia al variare di T e τ ?

1

 $\mathbf{R} \text{:}\$ Un sistema con due poli reali e uno zero (e guadagno unitario) ha trasformata di Laplace

$$G(s) = \frac{1 + \tau s}{(1 + T_1 s)(1 + T_2 s)} \tag{1}$$

La risposta allo scalino si ricava mediante lo sviluppo in fratti semplici di $\frac{1}{s}G(s)$ ed è pari a

$$y(t) = \operatorname{sca}(t)\left(1 + \frac{\tau - T_1}{T_1 - T_2}e^{-t/T_1} - \frac{\tau - T_2}{T_1 - T_2}e^{-t/T_1}\right)$$
(2)

Si distinguono tre casi:

- 1. $\tau > T_1 > T_2 > 0$: il sistema presenta una sovraelongazione tanto più marcata quanto più lo zero è vicino all'origine;
- 2. $\tau \approx T_1 > T_2$: il sistema è approssimabile con un sistema del primo ordine con un solo polo, presenta lieve sovraelongazione se $\tau > T_1$ e sottoelongazione se $\tau < T_1$.
- 3. $\tau<0,T_1>T_2$: il sistema presenta una sottoelongazione tanto più marcata quanto più lo zero è vicino all'origine.
- (b) Ricavare la risposta allo scalino di un sistema con una coppia di poli complessi coniugati. Cosa cambia al variare di ξ ?

 $\mathbf{R} \colon$ Un sistema con una coppia di poli complessi coniugati e guadagno unitario ha trasformata di Laplace

$$G(s) = \frac{1}{1 + 2\xi s/\omega_n + s^2/\omega_n^2}$$
 (3)

La risposta allo scalino si ricava mediante lo sviluppo in fratti semplici di $\frac{1}{s}G(s)$ e, per $\xi \in]0,1[$, è pari a

$$y(t) = \operatorname{sca}(t)\left(1 - \frac{e^{-\xi\omega_n t}}{\sqrt{1-\xi^2}}\sin(\omega_n\sqrt{1-\xi^2}t + \arccos(\xi))\right)$$
(4)

Si dimostra che $S_{\%} = 100e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}}$. È possibile approssimare il tempo di assestamento al k% con l'istante di tempo in cui $e^{\xi\omega_n t} = k/100$. Si ottiene quindi $T_{ak} \approx \bar{t}_k = -\frac{\log(k/100)}{\xi\omega_n}$. Se $\xi = 0$ il sistema è stabile, non asintoticamente, mentre per $\xi < 0$ il sistema diventa instabile.

4. Risposta in frequenza

(a) Regole per il tracciamento approssimato dei diagrammi di Bode.

 \mathbf{R} : Prendendo i logaritmi dei moduli, i prodotti e i quozienti diventano somme e differenze: è quindi possibile separare i contributi di guadagno k, zeri/poli reali e cc e poi sommarli per ottenere il diagramma di Bode finale. I contributi degli zeri si ottengono negando quelli dei poli. Lo stesso vale per gli argomenti.

Modulo

- 1. Guadagno k: Retta orizzontale che vale $20 \log_{10} k$;
- 2. Poli nell'origine $(j\omega)^g$: Retta con pendenza -20g dB/decade;
- 3. Poli reali $1 + \tau j\omega$: Retta con pendenza -20 dB/decade per $\omega > 1/|T|$;
- 4. Poli cc $1 + 2j\omega\xi/\omega_n \omega^2/\omega_n^2$: Retta con pendenza -40 dB/decade per $\omega > \omega_n$.

Argomento

- 1. Guadagno k: 0 per guadagno positivo, -180° per guadagno negativo;
- 2. Poli nell'origine $(j\omega)^g$: $-g90^\circ$ su tutto l'asse delle pulsazioni;
- 3. Poli reali $1 + \tau j\omega$: $-90^{\circ} \operatorname{sgn}(T)$ per $\omega > \frac{1}{|\tau|}$;
- 4. Poli cc $1 + 2j\omega\xi/\omega_n \omega^2/\omega_n^2$: $-180^{\circ} \operatorname{sgn}(\xi)$ per $\omega > \omega_n$.

5. Stabilità e prestazioni

(a) Definizione di margine di ampiezza e fase. In che modo questi margini danno indicazioni sulla stabilità robusta del sistema?

R: Il margine di fase è definito come $M_f=180^\circ+\arg\{L(j\omega_c)\},|L(j\omega_c)|_{dB}=0$, quello di ampiezza come $M_a=-|L(j\omega_\pi)|,\arg\{L(j\omega_\pi)\}=-180^\circ$. Il margine di fase dà una misura della stabilità del sistema a fronte di un ritardo di tempo: dato che un ritardo di tempo τ dà al diagramma di Bode della fase un contributo di $-\omega\tau$ il sistema rimane stabile finché $\tau<\frac{M_f}{\omega_c}$. Lo stesso vale per il margine di ampiezza e incertezze sul guadagno del sistema, che rimane stabile finché l'incertezza $\delta k < M_a$.

(b) Regole per il tracciamento approssimato del luogo delle radici.

R:

- 1. Il luogo delle radici ha p rami;
- 2. il luogo delle radici è simmetrico rispetto all'asse reale;
- 3. tutti i punti dell'asse reale a sinistra di un numero dispari di singolarità reali appartengono al luogo delle radici;
- 4. i rami partono dai poli di L(s);
- 5. z rami arrivano agli zeri di L(s), i restanti p-z divergono all'infinito;
- 6. i rami che divergono hanno asintoti obliqui che intersecano l'asse reale in $x_a = \frac{1}{p-z}\sum (z_i-p_i)$ con $z_i\in \mathrm{Ze}\{L(s)\}, p_i\in \mathrm{Po}\{L(s)\}$ e formano con esso angoli pari a $\frac{(2k+1)180^\circ}{p-z}, k\in [1..(p-z)];$
- 7. i punti di intersezione dei rami con l'asse reale sono dati dai massimi e minimi di $\gamma(s) = -(1/L(s))$: i massimi di γ rappresentano rami che si separano e diventano cc, i minimi rami che confluiscono sull'asse reale.
- (c) Derivare le espressioni delle funzioni di sensitività F(s), S(s), Q(s) e le espressioni approssimate dei loro moduli.

R: A partire dal modello nella prima figura, sfruttando il principio di sovrapposizione degli effetti si definiscono le uscite $Y_w(s), Y_d(s), Y_n(s)$ dovute rispettivamente al riferimento, al disturbo sull'uscita e al disturbo di misura. In maniera analoga si definiscono gli errori e le variabili di controllo $E_{w,d,n}(s), U_{w,d,n}(s)$. A questo punto, analizzando un'uscita per volta, è possibile scomporre il modello nella somma dei tre modelli rappresentati nelle figure successive.

Analizzando l'uscita dovuto al riferimento, si ha $(W(s) - Y_w(s))L(s) = Y_w(s) \implies Y_w(s)(1+L(s)) = W(s)L(s) \implies \frac{Y_w(s)}{W(s)} = \frac{L(s)}{1+L(s)} = F(s)$ (prima figura).

Analizzando l'errore dovuto al riferimento, si ha $E_w(s)L(s)=E_w(s)+W(s) \implies \frac{E_w(s)}{W(s)}=\frac{1}{1+L(s)}=S(s)$ (seconda figura).

Analizzando la variabile di controllo dovuta al riferimento, si ha $(W(s) - U_w(s))R(s) = U_w(s) \implies U_w(s) = W(s) \frac{R(s)}{1 + R(s)G(s)} \implies \frac{U_w(s)}{W(s)} = \frac{R(s)}{1 + R(s)G(s)} = Q(s)$ (terza figura).

Per valori alti di $|L(j\omega)|$ (e quindi $\omega < \omega_c$) si ha $|1 + L(j\omega)| = |L(j\omega) + o(L(j\omega))|$, per valori bassi di $L(j\omega)$ invece $|1 + L(j\omega)| = |1 + o(1)|$, quindi

$$|F(j\omega)| \approx \begin{cases} 1 & \omega < \omega_c \\ |L(j\omega)| & \omega > \omega_c \end{cases}$$
 (5)

$$|S(j\omega)| \approx \begin{cases} \frac{1}{|L(j\omega)|} = -|L(j\omega)|_{dB} & \omega < \omega_c \\ 1 & \omega > \omega_c \end{cases}$$
 (6)

$$|Q(j\omega)| \approx \begin{cases} \frac{|R(j\omega)|}{|R(j\omega)G(j\omega)|} = \frac{1}{|G(j\omega)|} & \omega < \omega_c \\ \frac{|R(j\omega)|}{1} = |R(j\omega)| & \omega > \omega_c \end{cases}$$
 (7)

(d) Criterio di Bode.

R: Un sistema dinamico L(s) con più poli che zeri è asintoticamente stabile se e solo se:

- 1. L(s) non ha poli a parte reale strettamente positiva;
- 2. il diagramma di Bode di |L(s)| interseca una sola volta l'asse delle pulsazioni;
- 3. $k_s > 0$;
- 4. $M_f > 0$.

6. Progetto di regolatori

(a) Tracciare un diagramma di flusso con le fasi del progetto di un regolatore.

- (b) Perché può essere utile cancellare un polo nell'origine inserendo uno zero nel regolatore dinamico?
 - R: Perché un solo polo nell'origine è sufficiente per garantire errore a regime nullo; ogni polo in più toglie 90 gradi alla fase del sistema, abbassando il margine di fase.

Un solo polo nell'origine permette di avere errore a regime nullo per un ingresso a scalino: se $W(s) = \mathcal{L}\{W \operatorname{sca}(t)\} = \frac{W}{s}$ allora, per il teorema del valore finale,

$$e_{\infty} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} S(s)W(s) = W \lim_{s \to 0} S(s) = W(s) = W(s)$$

$$= W \lim_{s \to 0} \frac{1}{1 + N(s)/s^g D^*(s)} = W \lim_{s \to 0} \frac{s^g D^*(s)}{s^g D^*(s) + N(s)}$$

Dato che $\lim_{s\to 0} N(s) = k$ e $\lim_{s\to 0} D^*(s) = 1$ si ha

$$e_{\infty} = \lim_{s \to 0} \frac{Ws^g}{k + s^g} = \begin{cases} \frac{W}{1+k} & g = 0\\ 0 & g > 0 \end{cases}$$

Il risultato si può generalizzare a ingressi a rampa, parabola, ecc. (con trasformata W/s^p) ottenendo

$$e_{\infty} = \lim_{s \to 0} \frac{Ws^{g-p+1}}{k+s^g} = \begin{cases} \frac{W}{k} & g = p-1\\ 0 & g > p-1\\ \infty & g < p-1 \end{cases}$$

(c) In quali scenari ci si può trovare durante la sintesi di un regolatore?

R:

- 1. Se c'è un intervallo di pulsazioni tali che, se la pulsazione critica ricade in quell'intervallo, il margine di fase è pari o superiore a quello desiderato, allora è necessario attenuare il diagramma delle ampiezze alterando il meno possibile la fase:
 - (a) se si ha guadagno dinamico libero, scegliere $k_d=10^{-\frac{1}{20}|G_e(j\bar{\omega}_c)|_{dB}};$
 - (b) altrimenti si attenua mediante l'inserimento di poli e zeri, definendo una rete ritardatrice nella forma $R_d(s) = \frac{1+aTs}{1+Ts}, 0 < a < 1 (\Longrightarrow aT < T)$ che attenua l'ampiezza per $\omega > 1/T$ e il cui contributo di fase è quasi nullo per le stesse pulsazioni;
- 2. se non c'è un intervallo di "fasi buone", invece, è necessario alzare il diagramma delle fasi alterando il meno possibile l'ampiezza per ricondursi allo scenario precedente: si definisce quindi una rete anticipatrice nella forma $R_d(s) = \frac{1+Ts}{1+aTs}, 0 < a < 1 \implies 1$

aT < T), che aumenta la fase di circa 90 gradi nell'intervallo $[\frac{1}{T}, \frac{1}{aT}]$, aumentando però progressivamente anche l'ampiezza per $\omega > \frac{1}{T}$.

(d) Quale valore deve assumere, la F(s) per abbattere di K dB un rumore ad alta frequenza? Come si mappa questo requisito sulla L(s)? Quale valore deve invece assumere la S(s) e quindi la L(s) per abbattere di K dB un rumore a bassa frequenza? Come si traducono le approssimazioni di |Q(s)| sul progetto di un regolatore?

R: Il requisito sull'abbattimento del disturbo di misura in alta frequenza impone che $|F(s)|_{dB} \leq -K[dB]$. Si ha che $\omega > \omega_c \implies |F(s)| = \frac{|L(s)|}{|1+L(s)|} \approx |L(s)| \implies |L(s)|_{dB} \leq -K[dB]$.

Per abbattere invece un disturbo in bassa frequenza è necessario che $|S(s)|_{dB} \leq K[dB]$, quindi dato che $|L(j\omega)|_{dB} \approx -|S(j\omega)|_{dB} (\omega < \omega_c)$ si richiede che $|L(j\omega)|_{dB} \geq -K[dB]$. Infine, dato che $|Q(j\omega)| \approx \frac{1}{|G(j\omega)|} (\omega < \omega_c)$, non è possibile influenzare la variabile di controllo con il regolatore a basse frequenze: è quindi importante non avere valori di ω_c troppo alti.

(e) Come si ricavano i vincoli sul margine di fase $(M_f\omega_c\approx\frac{460}{T^*})$ e sui poli complessi coniugati $(\xi\approx\frac{M_f}{100})$ a partire da specifiche sulla sovraelongazione e sul tempo di assestamento e quali approssimazioni sono necessarie?

R: La seguente discussione è valida se la funzione F(s) ha una coppia di poli cc dominanti con $\omega_n \approx \omega_c$. Lo studio della risposta allo scalino di un sistema del secondo ordine con poli cc permette di affermare che $S_{\%} = 100e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}}$ e $T_{a1} \approx \frac{4.6}{\xi\omega_n}$. Per $s = j\omega_c$ si ha che

$$\frac{|L(s)|}{|1+L(s)|} = \frac{1}{|1+e^{j(\pi-M_f^{(rad)})}|} = \frac{1}{\sqrt{(1+\cos(\pi-M_f^{(rad)}))^2 + \sin^2(\pi-M_f^{(rad)})}}$$
$$= \frac{1}{\sqrt{2-2\cos(M_f^{(rad)})}} = \frac{1}{2\sin(M_f^{(rad)}/2)}$$

Ma $F(j\omega_c) = \frac{1}{2\xi}$, quindi

$$\frac{1}{2\xi} = \frac{1}{2\sin(M_f^{(rad)}/2)} \implies \xi \approx M_f^{(rad)}/2 = \frac{M_f}{2}\frac{\pi}{180} \implies \xi \approx \frac{M_f}{100}$$

da cui

$$T_{a1} \approx 100 \frac{4.6}{M_f \omega_n} \implies M_f \omega_n \approx M_f \omega_c \approx \frac{460}{T_{a1}}$$
 (8)

(f) Come si mappa una specifica sul tempo di assestamento nel luogo delle radici?

R: Tramite un vincolo sulla parte reale dei poli in anello chiuso: $\sigma \leq -\log(0.01k)/T_{ak}^*$

(g) Come si mappa una specifica sullo smorzamento dei poli dominanti nel luogo delle radici?

R: Perché i poli dominanti abbiano uno smorzamento maggiore di una soglia $\bar{\xi}$, i poli in anello chiuso devono essere all'interno del settore circolare che forma con l'asse reale un angolo pari a 180° – $\arccos \bar{\xi}$.

(h) Come si mappa una specifica sulla pulsazione naturale dei poli dominanti nel luogo delle radici?

R: Perché la pulsazione naturale dei poli dominanti sia maggiore di una soglia $\bar{\omega}_n$, i poli in anello chiuso devono essere all'esterno della circonferenza con centro nell'origine e raggio $\bar{\omega}_n$.

$\mathbf{2}$ **Formulario**

Sistemi con uno zero:

$$y(t) = sca(t)(1 - e^{-t/T})$$
 (9)

Sistemi con uno zero e due poli:

$$y(t) = \operatorname{sca}(t)\left(1 + \frac{\tau - T_1}{T_1 - T_2}e^{-t/T_1} - \frac{\tau - T_2}{T_1 - T_2}e^{-t/T_2}\right)$$
(10)

Sistemi con una coppia di poli cc:

$$y(t) = \operatorname{sca}(t)\left(1 - \frac{e^{-\xi\omega_n t}}{\sqrt{1-\xi^2}}\sin(\omega_n\sqrt{1-\xi^2}t + \arccos(\xi))\right) \text{ Rete ritardatrice } (R(s) = \frac{1+aTs}{1+Ts}, 0 < a < 1):$$
(11)

$$S_{\%} = 100e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}} \tag{12}$$

$$T_{ak} \approx \bar{t}_k = -\frac{\log(0.01k)}{\xi\omega_n} \tag{13}$$

$$M_f = 180^{\circ} + \arg(L(j\omega_c)), |L(j\omega_c)|_{dB} = 0$$
 (14)

$$M_a = -|L(j\omega_\pi)|_{dB}, \arg(L(j\omega_\pi)) = -180^\circ \quad (15)$$

$$|F(j\omega)| \approx \begin{cases} 1 & \omega < \omega_c \\ |L(j\omega)| & \omega > \omega_c \end{cases}$$
 (16)

3 Legenda

- k_s : guadagno statico;
- k_d : guadagno dinamico;
- τ_i : costante di tempo di zeri reali;
- T_i : costante di tempo di poli reali;
- ζ_i : smorzamento di zeri cc;
- ξ_i : smorzamento di poli cc;
- α_n : pulsazione naturale di zeri cc;
- ω_n : pulsazione naturale di poli cc;
- M_f : margine di fase;
- M_a : margine di ampiezza;
- ω_c : pulsazione critica;
- T_{ak} : tempo di assestamento al k%;
- p: numero di poli;

$$|S(j\omega)| \approx \begin{cases} \frac{1}{|L(j\omega)|} & \omega < \omega_c \\ 1 & \omega > \omega_c \end{cases}$$
 (17)

$$|Q(j\omega)| \approx \begin{cases} \frac{1}{|G(j\omega)|} & \omega < \omega_c \\ |R(j\omega)| & \omega > \omega_c \end{cases}$$
 (18)

$$k_d = 10^{-\frac{1}{20}|G_e(j\bar{\omega}_c)|_{dB}} \tag{19}$$

$$\begin{cases} |G_e(j\omega_c)|_{dB} + 20\log_{10} M^* = 0\\ M_f^* = 180^\circ + \arg\{G_e(j\omega_c^*)\} + \phi^* \end{cases}$$
 (20)

$$\begin{cases}
T = \frac{\cos \phi^* - 1/M^*}{\omega_c^* \sin \phi^*} \\
a = \frac{M^* - \cos \phi^*}{T \omega_c^* \sin \phi^*}
\end{cases}$$
(21)

Rete anticipatrice $(R(s) = \frac{1+Ts}{1+aTs}, 0 < a < 1)$:

$$\begin{cases} |G_e(j\omega_c^*)|_{dB} + 20\log_{10}M^* = 0\\ M_f^* = 180^\circ + \arg\{G_e(j\omega_c^*)\} + \phi^* \end{cases}$$
 (22)

$$\begin{cases}
T = \frac{M^* - \cos \phi^*}{\omega_c^* \sin \phi^*} \\
a = \frac{\cos \phi^* - 1/M^*}{T\omega^* \sin \phi^*}
\end{cases}$$
(23)

- z: numero di zeri;
- $Po\{G(s)\}$: insieme dei poli di G(s);
- $Ze\{G(s)\}$: insieme degli zeri di G(s);
- sca(t): funzione scalino;
- $G_e(s)$: funzione di trasferimento del sistema con regolatore statico;
- ϕ^* : sfasamento desiderato di una rete anticipatrice/ritardatrice ;
- \bullet M^* : attenuazione/amplificazione desiderata di una rete anticipatrice/ritardatrice.

Disclaimer: Questo documento può contenere errori e imprecisioni che potrebbero danneggiare sistemi informatici, terminare relazioni e rapporti di lavoro, liberare le vesciche dei gatti sulla moquette e causare un conflitto termonucleare globale. Procedere con cautela.

Questo documento è rilasciato sotto licenza CC-BY-SA 4.0. @ 🔾 🧿