TD 1 de processus stochastiques et mouvement brownien

Dans cette première feuille de TD, on emploiera "mouvement brownien" comme abréviation de "mouvement brownien unidimensionnel issu de 0".

Exercice 1 — tribu sur l'espace des fonctions

On muni \mathbb{R} de sa topologie usuelle \mathcal{O} et sa tribu borélienne \mathcal{B} . Soit I un ensemble non vide, on note, pour $x \in I$, $T_x : f \in \mathbb{R}^I \mapsto f(x) \in \mathbb{R}$ l'application coordonnée.

- 1. Rappeler la définition de la tribu produit \mathcal{B}^I sur \mathbb{R}^I .
- 2. Soit $J \subset I$, on identifie $A' \subset \mathbb{R}^J$ avec $A \subset \mathbb{R}^I$ où $A = \{f \in \mathbb{R}^I : (f_x)_{x \in J} \in A'\}$. Montrons que

$$\mathcal{B}^I = \bigcup_{J \subset I \text{ dénombrable}} \mathcal{B}^J.$$

- 3. Soit $\sigma(\mathcal{O}^I)$ la plus petite tribu rendant tous éléments de la topologie produit mesurable, montrer que si I est au plus dénombrable, alors $\sigma(\mathcal{O}^I) = \mathcal{B}^I$ et sinon $\mathcal{B}^I \subsetneq \sigma(\mathcal{O}^I)$.
- 4. Soit $I = \mathbb{R}$, montrer que $C(\mathbb{R})$ n'est pas mesurable (indication : quel est le cardinal de $C(\mathbb{R})$?).

Exercice 2 — Une version discontinue du mouvement brownien.

En admettant qu'il existe un mouvement brownien, construire un espace probabilisé et, pour tout $t \in \mathbb{R}_+^*$, une variable aléatoire B_t définie sur cet espace de telle sorte que

- pour tout ω , la fonction $t \mapsto B_t(\omega)$ ne soit continue en aucun point;
- pour tous $t_1 < \ldots < t_n$, le vecteur $(B_{t_1}, \ldots, B_{t_n})$ ait la loi attendue de la part d'un mouvement brownien.

Exercice 3 — Lemme du Lemme de Kolmogorov

Soit f une fonction définie sur [0,1] à valeurs dans l'espace métrique (E,d). Supposons qu'il existe un réel $\alpha > 0$ et une constante $C < \infty$ tels que, pour tout entier $n \ge 1$ et tout $i \in \{1, 2, ..., 2^n\}$,

$$d(f(\frac{i-1}{2^n}), f(\frac{i}{2^n})) \le C2^{-n\alpha}.$$

Alors on a, pour tous $s, t \in D$ dyadiques,

$$d(f(s), f(t)) \le \frac{2C}{1 - 2^{-\alpha}} |t - s|^{\alpha}.$$

Exercice 4 — Un mouvement brownien en donne plusieurs.

Soit $(B_t)_{t\geq 0}$ un mouvement brownien.

- 1. Montrer que, si $\lambda \in \mathbb{R}_+^*$, le processus $(\lambda^{-1/2}B_{\lambda t})_{t\geq 0}$ est un mouvement brownien.
- 2. Démontrer que $B_1 B_{1-t}$ définit un mouvement brownien sur [0,1].
- 3. Établir que $(tB_{1/t})_{t\geq 0}$ définit un mouvement brownien, la valeur en 0 de ce processus étant définie comme égale à 0.

Exercice 5 — Plusieurs mouvements browniens en forment un.

Soit $(B^{(n)})$ une suite de mouvements browniens indépendants définis sur [0,1]. On définit sur \mathbb{R}_+ le processus

$$B: t \mapsto B_{t-\lfloor t\rfloor}^{(\lfloor t\rfloor)} + \sum_{i=0}^{\lfloor t\rfloor - 1} B_1^{(i)}.$$

Montrer que B est un mouvement brownien.

Exercice 6 — Nulle part monotone.

Soit B un mouvement brownien. Montrer que, presque sûrement, la fonction $t \mapsto B_t$ n'est monotone sur aucun intervalle d'intérieur non-vide.