STATS 762 Assignment 4

Francis Tang, ID 240887036

Due: 12 June 2019

Packages

```
library(MASS)
library(klaR)
library(nnet)
library(reshape2)
library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
##
    method
                    from
##
     [.quosures
                    rlang
##
     c.quosures
                    rlang
     print.quosures rlang
library(glmnet)
## Loading required package: Matrix
## Loading required package: foreach
## Loaded glmnet 2.0-18
library(splines)
```

Question 1

(a)

First we read data and only subset the positions contain RDM, RCM and LS:

```
#read data
fifa=read.csv("~/Desktop/STATS 762/Fifa2019.csv")
fifa0 <- fifa[,-1]
fifa1 <- subset(fifa0, Position %in% c("RDM", "RCM", "LS"))
fifa1$Position <- factor(fifa1$Position)</pre>
```

Now we first try to fit a multinomial regression:

```
#fit a multinomial regression for the fifa data
fifa.mn <- multinom(Position ~ ., data = fifa1)</pre>
```

```
## # weights: 108 (70 variable)
## initial value 929.425996
## iter 10 value 518.531804
## iter 20 value 504.714000
## iter 30 value 502.813422
## iter 40 value 493.590840
## iter 50 value 473.086244
```

```
## iter 60 value 448.736984
## iter 70 value 435.141344
## iter 80 value 413.418365
## iter 90 value 411.689334
## final value 411.687916
## converged
Make predictions based on the multinomial regression model, the results are shown in the matrix:
#prediction
mn.pred=predict(fifa.mn,fifa1)
#confusion matrix
table(mn.pred,fifa1$Position)
##
## mn.pred LS RCM RDM
##
       LS 203
                  4
##
       RCM
             4 320 123
       RDM
             0 67 123
##
Now let's try to fit LDA:
#Fit the LDA for the data
lda.fifa <- lda(Position ~ ., fifa1)</pre>
Make predictions based on the LDA model, the results are shown in the matrix:
#prediction
lda.pred=predict(lda.fifa,fifa1)
\#confusion\ matrix
table(lda.pred$class,fifa1$Position)
##
##
          LS RCM RDM
##
     LS 195
               8
##
     RCM 12 310 116
##
     RDM
           0 73 129
Now let's try to fit QDA:
#Fit the QDA for the train data
qda.fifa <- qda(Position ~ .,fifa1)
Make predictions based on the QDA model, the results are shown in the matrix:
#prediction
qda.pred=predict(qda.fifa,fifa1)
#confusion matrix
table(qda.pred$class,fifa1$Position)
##
```

It is very obvious that QDA model achieved the best prediction accuracy. So in this case, we will pick QDA as our best model.

##

##

##

##

LS RCM RDM

4 336

0

8

47 182

63

LS 203

RCM

RDM

(b)

Here we need to find those rows which result in predicting RDM and RCM. This means that the membership probability of LS must be minimised and RDM and RCM need to be as close as possible. In this case, we pick 0.001 as the threshold for LS, [0.4.0.6] for RDM and RCM.

```
#print the class membership probability
qda.pred.prob.df <- as.data.frame.matrix(qda.pred$posterior)</pre>
#extract those rows which not resulting in LS
new1.df <- qda.pred.prob.df[(qda.pred.prob.df$LS < 0.001), ]</pre>
#one more step to extract those who result in both RDM and RCM (both probabilities between 0.4 to 0.6)
new2.df <- new1.df [new1.df $RCM > 0.4 & new1.df $RDM > 0.4, ]
new2.df
##
                   LS
                            RCM
                                       RDM
         2.189597e-13 0.4275358 0.5724642
## 1260
         7.801973e-16 0.5987345 0.4012655
## 1949
         5.470421e-19 0.5218050 0.4781950
## 1960
         4.135051e-13 0.5030562 0.4969438
## 2098
         1.823022e-14 0.4633033 0.5366967
## 2458
         1.434826e-16 0.4957068 0.5042932
## 3598
        1.708051e-09 0.5496794 0.4503206
## 3683
         1.536073e-18 0.5092774 0.4907226
## 3718
         1.417468e-10 0.4497646 0.5502354
## 4200
         2.356951e-17 0.5214958 0.4785042
## 4305
         3.334352e-26 0.4386582 0.5613418
## 4539
         1.872576e-27 0.4692426 0.5307574
## 4608
         2.440561e-22 0.5997135 0.4002865
         4.648895e-19 0.5436244 0.4563756
## 4866
## 4999
        9.849763e-07 0.5158382 0.4841608
         1.188624e-16 0.4997141 0.5002859
## 5702
## 5743
         6.483179e-07 0.5769393 0.4230601
## 5796
         2.001461e-18 0.4865715 0.5134285
## 5907
         3.065174e-09 0.5142871 0.4857129
## 7238
         3.005751e-09 0.5502656 0.4497344
## 7510
         9.734893e-08 0.5449031 0.4550968
## 7985
        6.256405e-09 0.5033189 0.4966811
         3.904366e-07 0.5245165 0.4754831
## 9418
         2.342970e-07 0.5658330 0.4341667
         1.915169e-17 0.4174697 0.5825303
## 9665
## 10163 4.861618e-07 0.5429784 0.4570212
## 10232 7.731262e-15 0.4842512 0.5157488
## 10419 1.435424e-22 0.4796220 0.5203780
## 10581 3.109864e-23 0.4835385 0.5164615
## 10788 5.123872e-08 0.4716201 0.5283798
## 11030 7.123522e-13 0.4193666 0.5806334
## 11374 1.819433e-15 0.5789556 0.4210444
## 12681 3.742474e-16 0.5597038 0.4402962
## 12786 2.062864e-07 0.5979880 0.4020118
## 12823 1.257851e-11 0.5777964 0.4222036
## 12888 5.243587e-16 0.4942304 0.5057696
## 13172 3.071227e-07 0.4294524 0.5705473
## 13382 1.598966e-15 0.5223960 0.4776040
## 14334 2.052584e-10 0.5259151 0.4740849
```

15094 1.647273e-11 0.4060602 0.5939398

15947 3.627611e-08 0.5010714 0.4989285

#match those performance scores in the original dataset and print out
subset(fifa1[,-1], rownames(fifa1) %in% rownames(new2.df))

##		Crossi	ng	Finishing	HeadingAcc	uracy	ShortP	assing	Volleys	Dribbling
##	1260		70	64		41		78	68	73
##	1306	(62	56		63		80	63	72
##	1949		52	47		50		71	40	69
##	1960		78	68		61		80	62	73
##	2098		42	65		73		76	71	64
##	2458		60	56		68		76	50	75
	3598		73	59		70		74	57	71
##	3683		63	49		47		68	71	68
##	3718		59	63		48		75	48	67
	4200		59	53		58		74	56	71
	4305		58	37		58		69	46	63
	4539		50	39		54		72	38	67
	4608		42	59		51		79	31	69
	4866		53	48		55		73	57	64
	4999		73	66		49		71	63	67
##	5702		44	55		62		68	39	65
##	5743		66	61		60		71	60	69
	5796		46	49		58		64	35	58
	5907		59	59		46		70	49	69
##	7238		67	55		64		67	51	62
##	7510		59	63		55		68	60	63
##	7985		52	59		65		75	63	64
	8685		62	61		66		63	56	65
	9418		66	58		58		68	64	66
	9665		48	46		61		72	43	66
##	10163		57	54		48		67	45	70
##	10232		54	56		55		68	56	64
##	10419		41	41		51		65	41	58
##	10581		41	33		60		69	41	61
##	10788		61	52		52 57		67	57 50	65
## ##	11030		53	45		57		68	50	63 56
##	11374 12681		49 41	41 35		68 65		63 60	46 39	56 51
##	12786		53	54		41		64	47	59
##	12823		49	46		53		68	42	72
	12888		4 9	48		61		63	46	50
	13172		57	59		66		62	53	58
	13382		61	29		45		54	35	62
	14334		44	44		53		63	41	58
	15094		48	43		45		67	46	59
			48	49		55		56	44	56
##	10011				ongPassing		ontrol			
	1260	60		70	74		76		69	69
	1306	69		67	76		76		67	66
	1949	45		40	67		71		71	69
	1960	83		85	79		78		55	45
	2098	53		71	77		70		74	76
	2458	42		45	70		77		67	72
	3598	61		73	73		74		55	60

##	3683	68	68		70	72	83		74
##	3718	58	63		68	70	69		75
##	4200	66	56		70	74	61		60
##	4305	53	50		67	67	66		63
##	4539	42	41		69	71	70		72
##	4608	48	38		77	69	47		47
##	4866	49	48		66	68	64		65
##	4999	68	65		67	70	78		77
##	5702	53	39		67	67	47		41
##	5743	64	58		68	72	74		68
##	5796	47	42		60	63	63		66
##	5907	55	60		65	71	74		68
##	7238	59	62		65	64	76		72
##	7510	59	66		66	68	66		63
##	7985	66	65		68	68	52		54
##	8685	55	56		60	65	76		73
##	9418	68	68		61	67	65		64
##	9665	48	43		61	70	67		60
##	10163	64	54		64	67	68		68
##	10232	58	53		63	67	64		60
##	10419	38	41		59	64	54		41
##	10581	37	40		66	69	61		68
##	10788	62	57		59	72	70		60
##	11030	48	45		63	67	71		65
##	11374	48	29		58	60	48		44
##	12681	48	49		57	57	67		66
##	12786	46	43		63	62	70		71
##	12823	47	35		62	69	79		66
##	12888	56	45		62	56	54		58
##	13172	62	60		58	62	57		54
##	13382	54	36		50	58	77		76
##	14334	48	38		58	62	64		62
##	15094	49	41		61	61	59		62
##	15947	49	44		55	57	60		64
##	100 1.		Reactions	Balance			Stamina St	rength	0.2
##	1260	71	76	61	70		78	66	
##	1306	70	73	66	66		80	69	
	1949	70	66	75	63		90	78	
	1960	58	70	61	78		66	65	
	2098	68	82	68	82		77	69	
	2458	68	73	67	73		76	76	
	3598	63	71	59	77		68	75	
	3683	91	74	92	76		86	36	
	3718	72	70	71	72		88	70	
	4200	64	73	69	73		72	67	
	4305	66	68	71	68		82	71	
	4539	69	66	62	65		77	66	
	4608	64	70	65	73		78	71	
	4866	71	67	68	65		79	72	
	4999	82	67	67	76		80	66	
	5702	58	67	67	67		81	78	
	5743	78	64	70	64			74	
	5796	63	64	62	53		94	76	
	5907	69	70	63	71		84	72	

##	7238	71	66	64	62		82	66
##	7510	73	66	75	67	68	78	62
##	7985	61	64	58	73	61	68	65
##	8685	75	65	70	65	66	73	68
##	9418	73	61	72	65	79	67	74
##	9665	66	65	71	62	65	68	56
##	10163	80	61	77	61	74	68	64
##	10232	73	60	71	72	67	83	73
	10419	59	71	63	64		76	66
	10581	65	62	67	60		82	78
	10788	72	61	74	59		70	64
	11030	77	60	69	59		68	59
	11374	34	60	45	51		69	81
	12681	62	53	66	57		80	73
	12786	71	62	73	59		66	67
	12823	71 78	56	53	59 52		74	63
	12888	50	61	49	65		71	80
	13172	61	56	66	66		69	72
	13382	73	45	67	52		86	60
	14334	63	58	65	53		70	66
	15094	62	55	60	52		58	67
	15947	54	63	50	53		79	70
##		_	Aggression	Interc		_		
	1260	70	60		72	76	74	61
	1306	64	71		76	55	76	51
	1949	44	95		74	57	63	42
	1960	78	60		62	63	80	84
	2098	77	66		66	70	63	70
	2458	68	80		73	66	71	49
	3598	70	77		68	67	73	59
##	3683	78	63		74	68	68	57
##	3718	68	76		66	68	75	55
##	4200	66	73		72	61	66	57
##	4305	63	76		72	46	65	49
	4539	59	74		70	47	70	47
##	4608	54	82		67	56	62	36
##	4866	55	80		70	49	60	48
##	4999	67	53		65	70	73	61
##	5702	63	81		64	55	65	63
##	5743	65	68		68	68	68	69
##	5796	54	77		70	55	60	44
##	5907	66	65		58	56	68	50
	7238	54	67		70	63	65	68
	7510	64	74		64	63	66	68
	7985	70	69		66	65	69	55
	8685	56	67		64	63	65	54
	9418	59	59		63	66	72	65
	9665	51	69		64	60	64	55
	10163	54	54		60	59	65	48
	10103	68	74		65	51	58	57
	10232	58	64		64	51	57	40
	10419	46	70		61	54 57	60	40
	10788	45	60		58	66	67	40
##	T0100	45	00		50	00	07	41
44	11030	51	67		57	63	63	50

##	11374	39		66		61	49	55	39
	12681	43		79		61	49		52
	12786	53		62		61	52		49
	12823	41		53		47	57 57		44
	12888	62		67		54	41		58
	13172	61		63		56	58		52
	13382	43		56		56	42		44
	14334	46		60		58	54		43
	15094	39		57		52	61		48
	15947	50		61		59	54		48
##	10011								GKHandling
	1260	76	76	2001101	72	2	68		8
	1306	70	71		73		68		13
	1949	72	73		75		74		15
	1960	75	70		65		58		7
	2098	69	81		76		68		12
	2458	70	68		70		66		8
	3598	70	57		65		66		15
##	3683	67	70		66		62	10	8
##	3718	73	62		66		54	8	9
##	4200	72	72		73		67	9	9
##	4305	66	63		71		68	9	15
##	4539	68	66		70		67	9	6
##	4608	72	69		65		61	8	15
##	4866	69	64		69		61	8	9
##	4999	71	59		59		63		15
##	5702	64	62		70		66		8
##	5743	69	58		67		64		12
	5796	67	69		70		68		12
	5907	63	58		62		53		12
	7238	64	70		64		63		10
	7510	64	60		64		60		14
	7985	66	65		59		56		14
	8685	66	65		65		62		16
	9418	72	53		61		54		9
	9665	67	64 60		69 62		66 58		12
	10163	62							15
	10232 10419	56 66	62 58		66 62		61 58		12 10
	10581	58	63		64		63		14
	10788	62	56		55		52		11
	11030	59	60		61		60		12
	11374	52	63		64		59		8
	12681	55	66		61		58		13
	12786	51	60		61		60		8
	12823	68	51		52		50		7
	12888	53	59		65		62		6
	13172	61	54		63		57		6
	13382	55	59		58		59		8
	14334	63	59		58		54		10
##	15094	59	58		56		55	8	11
##	15947	56	58		58		57	7	8
##		${\tt GKKicking}$	GKPositi	_					
##	1260	9		14		13			

```
## 1306
                   8
                                  12
                                               10
## 1949
                   9
                                               11
                                  16
## 1960
                   8
                                  11
                                               16
## 2098
                  13
                                   7
                                                8
## 2458
                   5
                                  13
                                               10
## 3598
                   9
                                                7
                                  15
## 3683
                  14
                                                9
                                  10
## 3718
                  14
                                  15
                                               15
## 4200
                  11
                                   8
                                                9
                                  10
                                                8
## 4305
                  14
## 4539
                  13
                                   9
                                               13
                                   9
                                                6
## 4608
                  14
                   7
                                                9
## 4866
                                  15
                                               14
## 4999
                  16
                                  10
## 5702
                  13
                                  10
                                               14
## 5743
                  12
                                  11
                                               16
## 5796
                  10
                                   8
                                               13
## 5907
                  15
                                  14
                                                7
## 7238
                  13
                                  14
                                               11
## 7510
                   8
                                   7
                                                9
## 7985
                  15
                                  11
                                               13
## 8685
                  12
                                   8
                                               14
## 9418
                  16
                                   6
                                               16
## 9665
                   9
                                   5
                                               12
                                  13
                                               14
## 10163
                  11
## 10232
                   8
                                   9
                                               12
## 10419
                  12
                                  13
                                                7
## 10581
                  14
                                               12
                                  12
                                                7
## 10788
                   9
                                  10
## 11030
                  10
                                   7
                                               12
## 11374
                  13
                                  13
                                               12
## 12681
                  13
                                  13
                                                9
                                                6
## 12786
                   8
                                   7
## 12823
                   8
                                                8
                                  11
## 12888
                  12
                                   6
                                                8
## 13172
                  10
                                   6
                                                9
## 13382
                  10
                                  13
                                               11
## 14334
                  10
                                                5
                                  11
## 15094
                  14
                                   6
                                               11
## 15947
                  14
                                  13
                                                8
```

(c)

We substitute the number given from the question then use QDA to predict the result:

```
Penalties = 57.40189, Composure = 65.89835, Marking = 54.90898,
                    StandingTackle = 55.4669, SlidingTackle = 51.90544, GKDiving = 10.69267,
                    GKHandling = 10.63357, GKKicking = 10.83333, GKPositioning = 10.65248,
                    GKReflexes = 10.69031)
qda.pred1=predict(qda.fifa,qc.df)
qda.pred1
## $class
## [1] RCM
## Levels: LS RCM RDM
## $posterior
               LS
                        RCM
                                   RDM
## 1 1.964279e-06 0.7651683 0.2348298
(d)
Here we fit a classification tree:
library(rpart); library(rpart.plot); library(rattle); library(gbm)
## Rattle: A free graphical interface for data science with R.
## Version 5.2.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
## Loaded gbm 2.1.5
#Fit a classification tree
set.seed(1e5)
fifa.cart0 <- rpart(Position~., data=fifa1,method='class',cp=0.001)
fifa.cart0$cptable
##
               CP nsplit rel error
                                       xerror
                                                     xst.d
## 1
     0.364835165
                       0 1.0000000 1.0000000 0.03187113
## 2 0.053846154
                       1 0.6351648 0.6417582 0.03039133
## 3 0.017582418
                       3 0.5274725 0.6109890 0.03002617
## 4 0.015384615
                       5 0.4923077 0.6153846 0.03008089
## 5 0.013186813
                       6 0.4769231 0.6131868 0.03005364
## 6 0.008791209
                       7 0.4637363 0.6021978 0.02991415
## 7
     0.007692308
                       9 0.4461538 0.6043956 0.02994248
## 8 0.007326007
                      11 0.4307692 0.6087912 0.02999849
## 9 0.006593407
                      14 0.4087912 0.6065934 0.02997060
## 10 0.004395604
                      17 0.3846154 0.6021978 0.02991415
                      22 0.3626374 0.6087912 0.02999849
## 11 0.003296703
## 12 0.003076923
                      24 0.3560440 0.6153846 0.03008089
## 13 0.002197802
                      30 0.3318681 0.6175824 0.03010792
## 14 0.001000000
                      33 0.3252747 0.6373626 0.03034169
Now we prune the tree with a particular cp. We noticed that 0.008791209 has the smallest cross validation
error 0.6021978, so we use this one to prune the tree. We will also compare this with the full model.
#Prune the tree with a particular complexity paramter (cp)
fifa.prune0 <-prune(fifa.cart0,cp=fifa.cart0$cptable[6,1])</pre>
```

fancyRpartPlot(fifa.prune0, uniform=TRUE, main=" ")

Rattle 2019-Jun-12 23:59:05 francistang

```
fifa.prune0.full <-prune(fifa.cart0,cp=fifa.cart0$cptable[14,1])
fancyRpartPlot(fifa.prune0.full, uniform=TRUE,main=" ")</pre>
```

Warning: labs do not fit even at cex 0.15, there may be some overplotting

Rattle 2019-Jun-12 23:59:05 francistang

(e)

Now we use pruned tree to make predictions also comparing the full model. Although the full model has better predictions, it may suffer from the problem of overfitting.

```
fifa.pred0 <- predict(fifa.prune0,newdata=fifa1[,-1],type='class')</pre>
fifa.pred0.full <- predict(fifa.prune0.full,newdata=fifa1[,-1],type='class')</pre>
table(fifa.pred0,fifa1$Position)
##
## fifa.pred0 LS RCM RDM
##
          LS
              195
                   22
              12 301 102
##
          RCM
          RDM
                   68 139
table(fifa.pred0.full,fifa1$Position)
##
## fifa.pred0.full LS RCM RDM
                        12
##
                    199
                              5
##
               RCM
                      6 311
                            55
##
               RDM
                      2
                         68 188
```

Comparing to the QDA model, the classification tree does not achieve a better prediction accuracy. So the best model will remain as the QDA model in (a).

```
#confusion matrix
table(qda.pred$class,fifa1$Position)
```

##

```
## LS RCM RDM
## LS 203 8 3
## RCM 4 336 63
## RDM 0 47 182
```

Question 2:

(a)

In this question, instead of using Position in Question 1, we use Overall for processing.

```
#keep Overall but get rid of Position
fifa3 <- subset(fifa, Position %in% c("RDM", "RCM", "LS"))
fifa3$Position <- factor(fifa3$Position)
fifa2 <- fifa3[,-2]</pre>
```

First, we fit a regression tree with cp=0.001

```
#Setup random numbers
set.seed(1e5)

#Fit a regression tree with cp=0.001
fifa2.cart <- rpart(Overall~. , data=fifa2,method='anova',cp=0.001)
fifa2.cart$cptable</pre>
```

```
##
               CP nsplit rel error
                                       xerror
                       0 1.00000000 1.0009109 0.05147726
## 1
     0.492527507
## 2 0.106461467
                       1 0.50747249 0.5334657 0.03031492
                       2 0.40101103 0.4292515 0.02326115
## 3
     0.078900624
## 4
     0.033098990
                       3 0.32211040 0.3581378 0.01978659
## 5
     0.025668595
                       4 0.28901141 0.3174626 0.01859831
                       5 0.26334282 0.2955118 0.01666606
## 6
     0.025577783
## 7
     0.022393129
                       6 0.23776503 0.2835535 0.01655685
                       7 0.21537190 0.2717535 0.01612412
## 8
     0.016256616
## 9
     0.010207695
                       8 0.19911529 0.2585760 0.01562668
## 10 0.009165922
                       9 0.18890759 0.2453542 0.01490193
## 11 0.008946992
                      10 0.17974167 0.2419035 0.01427666
## 12 0.006272348
                      11 0.17079468 0.2357554 0.01387268
## 13 0.005889702
                      12 0.16452233 0.2294103 0.01359778
## 14 0.005864620
                      13 0.15863263 0.2265236 0.01361185
## 15 0.005738690
                      14 0.15276801 0.2265236 0.01361185
## 16 0.005533938
                      15 0.14702932 0.2231265 0.01314817
                      16 0.14149538 0.2241645 0.01337391
## 17 0.005172275
                      17 0.13632311 0.2219853 0.01333352
## 18 0.004455127
                      18 0.13186798 0.2199174 0.01297966
## 19 0.003858016
## 20 0.003848973
                      19 0.12800996 0.2160672 0.01292953
## 21 0.003436386
                      20 0.12416099 0.2131558 0.01290195
## 22 0.003333182
                      21 0.12072461 0.2095240 0.01280840
                      22 0.11739142 0.2076158 0.01238015
## 23 0.003284612
## 24 0.002440085
                      23 0.11410681 0.2034690 0.01217081
## 25 0.002419914
                      25 0.10922664 0.2002660 0.01229456
## 26 0.002405192
                      26 0.10680673 0.1996279 0.01228839
## 27 0.002318690
                      27 0.10440154 0.1997131 0.01229406
## 28 0.001965770
                      29 0.09976416 0.1980072 0.01214966
```

```
## 29 0.001944549
                      30 0.09779839 0.1910233 0.01183062
## 30 0.001871194
                      31 0.09585384 0.1911958 0.01183486
                      32 0.09398264 0.1912890 0.01179788
## 31 0.001839383
                      33 0.09214326 0.1912890 0.01179788
## 32 0.001832131
## 33 0.001529021
                      34 0.09031113 0.1886008 0.01123284
## 34 0.001518805
                      35 0.08878211 0.1890735 0.01125954
## 35 0.001501875
                      36 0.08726330 0.1881291 0.01125729
                      37 0.08576143 0.1875399 0.01123321
## 36 0.001310566
## 37 0.001289367
                      38 0.08445086 0.1876222 0.01120510
## 38 0.001255896
                      39 0.08316150 0.1871208 0.01117898
## 39 0.001249564
                      40 0.08190560 0.1876353 0.01119065
## 40 0.001239840
                      41 0.08065604 0.1876353 0.01119065
## 41 0.001233527
                      42 0.07941620 0.1879520 0.01118441
                      43 0.07818267 0.1873484 0.01112875
## 42 0.001213148
## 43 0.001115453
                      45 0.07575637 0.1891926 0.01119668
## 44 0.001000000
                      46 0.07464092 0.1889483 0.01115605
```

When $\alpha=0.001255896$, the cv-error is minimised: 0.1871208. $\alpha=0.001965770$ is the largest value in which the corresponding cv-error: 0.1980072 is within the one standard deviation around the minimum error: 0.1871208 + 0.01117898 = 0.19829978.

Now we prue the trees and plot it out together:

```
#Prune trees
fifa2.opt=prune(fifa2.cart,cp=fifa2.cart$cptable[28,1])
fancyRpartPlot(fifa2.opt, uniform=TRUE,main="Pruned Regression Tree")
```


Rattle 2019-Jun-12 23:59:06 francistang

fifa2.opt

n= 846

```
##
  node), split, n, deviance, yval
##
         * denotes terminal node
##
##
     1) root 846 31079.27000 69.51655
##
       2) BallControl < 69.5 462 7806.63400 65.63853
##
         4) Reactions < 61.5 181 2490.25400 62.76796
##
           8) BallControl< 59.5 55
                                      722.80000 59.80000
##
            16) Interceptions< 60.5 47
                                          353.23400 58.87234
##
              32) Stamina < 58.5 10
                                       53.60000 55.80000 *
##
              33) Stamina>=58.5 37
                                      179.72970 59.70270 *
##
            17) Interceptions>=60.5 8
                                          91.50000 65.25000 *
                                     1071.49200 64.06349
##
           9) BallControl>=59.5 126
            18) ShotPower< 66.5 93
                                      611.69890 63.11828
##
##
              36) SlidingTackle< 62.5 74
                                            432.50000 62.50000
##
                72) BallControl< 64.5 49
                                            255.83670 61.59184
##
                 144) Stamina < 67.5 20
                                          135.80000 60.10000 *
##
                 145) Stamina>=67.5 29
                                           44.82759 62.62069 *
##
                73) BallControl>=64.5 25
                                              57.04000 64.28000 *
##
              37) SlidingTackle>=62.5 19
                                              40.73684 65.52632 *
##
            19) ShotPower>=66.5 33
                                      142.54550 66.72727 *
##
         5) Reactions>=61.5 281 2864.20600 67.48754
##
          10) StandingTackle< 67.5 206 1623.32500 66.47087
##
            20) Positioning < 70.5 184
                                       1052.08200 65.92935
##
              40) Positioning < 55.5 50
                                          284.50000 64.30000
##
                80) Marking< 59.5 20
                                        102.95000 62.55000 *
##
                81) Marking>=59.5 30
                                         79.46667 65.46667 *
##
              41) Positioning>=55.5 134
                                           585.31340 66.53731
##
                82) BallControl< 63.5 34
                                             174.97060 65.02941 *
##
                83) BallControl>=63.5 100
                                              306.75000 67.05000 *
##
            21) Positioning>=70.5 22
                                         66.00000 71.00000 *
##
          11) StandingTackle>=67.5 75
                                         443.12000 70.28000
##
            22) Interceptions< 71.5 50
                                          164.02000 69.14000 *
##
            23) Interceptions>=71.5 25
                                           84.16000 72.56000 *
##
       3) BallControl>=69.5 384 7965.24000 74.18229
##
         6) BallControl< 75.5 241 2273.50200 71.92116
##
          12) Reactions < 70.5 144
                                     969.30560 70.43056
            24) ShotPower< 65.5 38
##
                                      259.07890 68.60526
##
              48) Reactions< 63.5 10
                                         45.60000 65.80000 *
##
              49) Reactions>=63.5 28
                                        106.67860 69.60714 *
##
            25) ShotPower>=65.5 106
                                       538.23580 71.08491
##
              50) StandingTackle< 71.5 94
                                              417.15960 70.79787
##
               100) Finishing< 69.5 65
                                          229.13850 70.16923 *
##
                                          104.75860 72.20690 *
               101) Finishing>=69.5 29
##
              51) StandingTackle>=71.5 12
                                               52.66667 73.33333 *
##
          13) Reactions>=70.5 97
                                    509.25770 74.13402
##
            26) Reactions< 75.5 65
                                      207.53850 73.23077 *
##
            27) Reactions>=75.5 32
                                      140.96880 75.96875
              54) Strength< 79.5 25
##
                                        43.36000 75.16000 *
##
              55) Strength>=79.5 7
                                       22.85714 78.85714 *
##
         7) BallControl>=75.5 143
                                    2382.99300 77.99301
##
          14) BallControl< 81.5 115
                                       993.44350 76.66957
##
            28) Reactions< 79.5 100
                                       639.64000 76.06000
##
              56) Reactions < 69.5 16
                                         78.00000 73.00000 *
```

```
##
              57) Reactions>=69.5 84
                                        383.28570 76.64286
##
               114) StandingTackle< 78.5 74
                                               290.21620 76.32432
                                            169.55930 75.79661 *
##
                 228) Finishing< 75.5 59
                                             39.60000 78.40000 *
##
                 229) Finishing>=75.5 15
##
               115) StandingTackle>=78.5 10
                                                30.00000 79.00000 *
            29) Reactions>=79.5 15
                                       68.93333 80.73333 *
##
##
          15) BallControl>=81.5 28
                                      360.85710 83.42857
            30) Stamina < 83.5 21
                                    138.95240 81.95238 *
##
##
            31) Stamina>=83.5 7
                                    38.85714 87.85714 *
```

(b)

This question requires us to fit a gradient boosting regression tree:

fifa.gbm.perf

[1] 3058

From the result above we can conclude that the optimal number of trees are 3058.

(c)

```
#Predict values and find the MSE using optimal regression tree
fifa2.opt.pred <- predict(fifa2.opt,newdata=fifa2[,-1],type='vector')
opt.res=fifa2.opt.pred-fifa2$0verall;
mean(opt.res^2)</pre>
```

[1] 3.665008 #Predict values and find the MSE using optimal gradient boosting regression tree fifa.gbm.pred <- predict(fifa.gbm,newdata = fifa2[,-1],n.trees = fifa.gbm.perf,type = "response") #mse fifa.res=fifa.gbm.pred-fifa2\$0verall; mean(fifa.res^2) ## [1] 1.097266 #Predict values and find the MSE using optimal linear regression with lasso set.seed(1e5) cv.lasso=cv.glmnet(as.matrix(fifa2[,-1]),as.matrix(fifa2[,1]),alpha=1,standardize=TRUE) fifa.lasso.pred <- predict(cv.lasso, as.matrix(fifa2[,-1]), type='response',lambda=cv.lasso\$lambda.1se) lasso.res = fifa.lasso.pred - fifa2\$0verall mse3 = mean(lasso.res^2) mse3</pre>

[1] 3.909375

From the comparison of MSE among those three model above, we found out that the optimal gradient boosting regression tree model achieved the smallest MSE, so we are able to conclude that the optimal gradient boosting regression tree model is the best model for this case.

(d)

In this question, we are required to plot residual against overall score for the optimal gradient boosting regression tree:

```
par(mfrow=c(1,2)); plot(fifa2$Overall,fifa.res,xlab='observation',ylab='residual');
qqnorm(fifa.res/sd(fifa.res))
```

Normal Q-Q Plot

The residual VS observation plot shows no obvious pattern and most of the points concentrate between [-2, 2] which is actually a good result for modelling. Normal Q-Q plots also proves the same conclusion as almost all points stand on the line together.

(e)

This question requires us to compare the relative variable importance of both my trees in (a) and (b).

#reltive variable importance of optimal regression tree
fifa2.cart\$variable.importance/sum(fifa2.cart\$variable.importance)

##	BallControl	Reactions	Dribbling	ShortPassing
##	0.2305382257	0.1369057188	0.1318139069	0.1261103201
##	Vision	LongPassing	Positioning	StandingTackle
##	0.1134453557	0.0944542590	0.0201117160	0.0196792053
##	Interceptions	LongShots	Composure	Marking
##	0.0169788065	0.0151097339	0.0146184851	0.0122423988
##	SlidingTackle	Finishing	Aggression	ShotPower
##	0.0117693760	0.0090674022	0.0085215933	0.0081859016
##	Stamina	HeadingAccuracy	Crossing	Volleys
##	0.0055878179	0.0047447899	0.0040151015	0.0035855561
##	Strength	Penalties	Balance	Agility
##	0.0033779482	0.0021655553	0.0016112820	0.0011732980
##	Acceleration	FKAccuracy	Curve	GKHandling
##	0.0010376560	0.0009955272	0.0008877492	0.0004246820
##	${\tt SprintSpeed}$	Jumping	GKDiving	
##	0.0003646797	0.0002660874	0.0002098648	

In order to compare them, we combine them together to compare:

```
ort.rvi <- as.matrix(fifa2.cart$variable.importance/sum(fifa2.cart$variable.importance) * 100)
gbm.rvi <- fifa.gbm.summary$rel.inf
compare.rvi = cbind(ort.rvi, gbm.rvi[match(rownames(ort.rvi), rownames(fifa.gbm.summary))])
colnames(compare.rvi) = c("regression tree", "gradient boosting tree")
compare.rvi</pre>
```

##		regression tree	gradient boosting tree
##	BallControl	23.05382257	33.03098084
##	Reactions	13.69057188	28.47428063
##	Dribbling	13.18139069	1.20486159
##	ShortPassing	12.61103201	3.75838490
##	Vision	11.34453557	0.33137879
##	LongPassing	9.44542590	0.57950165
##	Positioning	2.01117160	3.34531457
##	StandingTackle	1.96792053	2.30487147
##	Interceptions	1.69788065	1.17245649
##	LongShots	1.51097339	0.63527299
##	Composure	1.46184851	4.98385002
##	Marking	1.22423988	0.82443586
##	SlidingTackle	1.17693760	1.45527133
##	Finishing	0.90674022	2.90463613
##	Aggression	0.85215933	1.10960971
##	ShotPower	0.81859016	4.74214808
##	Stamina	0.55878179	1.10378380
##	HeadingAccuracy	0.47447899	2.05773145
##	Crossing	0.40151015	0.34733525
##	Volleys	0.35855561	0.55332566
##	Strength	0.33779482	0.37048659
##	Penalties	0.21655553	0.39807456
##	Balance	0.16112820	0.51466982

```
## Agility
                         0.11732980
                                                 0.42650598
## Acceleration
                         0.10376560
                                                 0.57380160
## FKAccuracy
                         0.09955272
                                                 0.45623188
## Curve
                                                 0.22790807
                         0.08877492
## GKHandling
                         0.04246820
                                                 0.13829641
## SprintSpeed
                         0.03646797
                                                 0.74744805
## Jumping
                         0.02660874
                                                 0.65216298
## GKDiving
                         0.02098648
                                                 0.09076354
```

To find out which variables have similar importance score, we allow them to have 10% difference in this case:

```
compare.rvi[0.9< compare.rvi[,1]/compare.rvi[,2] & compare.rvi[,1]/compare.rvi[,2]<1.11, ]
```

```
## regression tree gradient boosting tree
## 0.3377948 0.3704866
```

In this case we have "Strength" has similar results between tree models in (a) and (b). Let's loose the boundary of similarity:

```
compare.rvi[0.75< compare.rvi[,1]/compare.rvi[,2] & compare.rvi[,1]/compare.rvi[,2]<1.33, ]
```

```
##
                   regression tree gradient boosting tree
## StandingTackle
                         1.9679205
                                                 2.3048715
## SlidingTackle
                         1.1769376
                                                 1.4552713
## Aggression
                         0.8521593
                                                 1.1096097
## Crossing
                         0.4015102
                                                 0.3473353
## Strength
                         0.3377948
                                                 0.3704866
```

Now we have four more! "StandingTackle", "SlidingTackle", "Aggression", "Crossing" and "Strength". So we can conclude that these five are roughly equally important.

Now it comes with the question: why all variables are NOT equally important? To answer this question, we need to go back to what actually determines relative variable importances - it depends on how many times this variable has been chosen for splitting the tree, which means a variable achieves higher importance score only because it has been chosen for more time than others. Rather than just calculate the times when the variable got chosen for splitting for optimal regression trees, optimal gradient boosting regression tree sums its importance of each trees separately. The sum will be divided by the total number of trees, which makes it different from normal regression trees, so the difference comes out.

Question 3

(a)

First, we read the data and give indexes to the rows:

```
accident <- read.csv("~/Desktop/STATS 762/airliner_accidents-1.csv")
accident$index <- 1:72</pre>
```

The goal is to model the fatal accidents with year using both natural splines and B-splines to fit. We fit the temperature data using natural splines and B-splines with the degree of 3. Various number of inner knots are considered, 0-10.

```
set.seed(1e5)
acci.mse.ns=acci.mse.bs=c(0:10)
n.knots=c(0:10)
for(j in 1:length(acci.mse.ns)){
```


LOOCV error -vs- number of knots:

```
plot(n.knots,log(acci.cv.ns),ylab='log(cv error)',xlab='Number of knots','o',ylim=c(3.5,4.5)); lines(n.logend(6,4.5,legend=c("Natural splines","B splines, Order 3"),col=c(1,2), lty=1);
```


It is not hard to figure out that when the natural splines has the smallest error when number of knots equals 7 and B splines has the smallest errir when number of knots equals to 10.

B splines

We can conclude that B splines achieves a better result than natural splines, it has smaller LOOCVSE and MSE.

(b)

The goal is to model the hijacking insidents with fatal accidents using both natural splines and B-splines to fit. We fit the temperature data using natural splines and B-splines with the degree of 3. Various number of inner knots are considered, 0-10.

```
# dataset has been sorted based on the fatal accidents
accident<-accident[sort(accident$Fatal,index=TRUE)$ix,]</pre>
```

LOOCV for natrual splines and B splines

```
accident.cv.ns1=accident.cv.bs1=rep(0,length(n.knots))
for(j in 1:length(n.knots)){ for(l in 1:length(accident$Fatal)){
  #predict hijacking insidents
  a.ns.pre1=predict(glm(Hijacking~ns(Fatal,df=n.knots[j]+1,
                                     intercept=FALSE,Boundary.knots=c(10,80)),
                                    data=accident[-1,], family = poisson),
                                    newdata=accident[1,],type = "response")
  a.bs.pre1=predict(glm(Hijacking~bs(Fatal,df=n.knots[j]+3,
                                     intercept=FALSE,Boundary.knots=c(10,80)),
                                    data=accident[-1,],family = poisson),
                                    newdata=accident[1,],type = "response")
  #cumulative sum of error
  accident.cv.ns1[j]=accident.cv.ns1[j]+(accident$Hijacking[l]-a.ns.pre1)^2
  accident.cv.bs1[j]=accident.cv.bs1[j]+(accident$Hijacking[l]-a.bs.pre1)^2
}}
accident.cv.ns1=accident.cv.ns1/length(accident$Fatal)
```


It is not hard to figure out that when the natural splines has the smallest error when number of knots equals 4 and B splines has the smallest errir when number of knots equals to 10.

Rather than fitting only natual splines and B splines, we also fit a possion regression based on that.

```
n.knots.ns <- 4
n.knots.bs <- 10
# Natrual splines
acci0.ns1=predict(glm(Hijacking~ns(Fatal,df = n.knots.ns+1,intercept=FALSE),
                      data=accident,family = poisson),
                      type = "response", newdata=accident,
                      interval = 'confidence')
# B splines
acci0.bs1=predict(glm(Hijacking~bs(Fatal,df = n.knots.bs+3,intercept=FALSE),
                      data=accident, family = poisson),
                      type = "response", newdata=accident,
                      interval = 'confidence')
# Possion model
acci0.p=predict(glm(Hijacking~Fatal,data=accident,family = poisson),
                      type = "response",interval = 'confidence')
par(mfrow=c(2,2))
plot(accident$Fatal,accident$Hijacking, ylim = c(0,90),
     main = "Natural splines")
matlines(accident$Fatal,acci0.ns1,lty=c(1,3,3),col=c(4,4,4))
plot(accident$Fatal,accident$Hijacking, ylim = c(0,90),
```

```
main = "B splines")
matlines(accident$Fatal,acci0.bs1,lty=c(1,3,3),col=c(2,2,2))
plot(accident$Fatal,accident$Hijacking, ylim = c(0,90),
    main = "Poisson model")
matlines(accident$Fatal,acci0.p,lty=c(1,3,3),col=c(6,6,6))
```


We can conclude that B splines achieves a better result than natural splines, it has smaller LOOCVSE and MSE, the same as question 2(b).

Description of the relationship of those incidents: it is obvious that most of the large Hijacking points concentrates between 25 and 70, Hijacking points are relatively very small in [10,25] and [70,80]. There are some very high Hijacking points locating between 60 and 70. Also, most of the Hijacking points locate between [30,60] fatal interval. There can be a potential relationship between Hijacking and Fatal as in [30,60] of Fatal, Hijacking keeps increasing.