

AULA II – SQL: DQL

PROFA. DRA. LEILA BERGAMASCO

CC5232 – Banco de Dados

NA AULA DE HOJE

- Modelo Relacional (Chave estrangeira)
- Normalização FI

MODELO RELACIONAL

- Modelo relacional
 - Banco de Dados: coleção de relações
 - Cada relação tem um nome único.
 - Informalmente, uma relação é semelhante a uma tabela de valores.

FUNCIONARIO

Pnome M	Minicial	Unome	Cpf	Datanasc	Endereco	Sexo	Salario
---------	----------	-------	-----	----------	----------	------	---------

Pnome	Minicial	Unome	CPF	Datanasc	Endereco	Sexo	Salario	Cpf_supervisor	Dnr
Leila	CC	Berga	1111-22	09/02/1988	Rua XPTO,1	F	600,00	2222-33	1
Alex	Α	Siqueira	2222-33	27/07/1980	Rua ABC,12	M	1000,00	5555-66	1
Noeli		Couto	7777-88	10/04/1981	Rua DEF,4	F	600,00	1010-10	2
Francisco	В	Silva	1212-41	05/03/1970	Rua ZZZZ,5	M	10000,00	5151-51	1

Domínio = conjunto de valores permitidos para o atributo.

São atômicos (indivisíveis)

Dominios

CONTA		
<u>número-</u> conta	saldo	CPF
900	634,00	123.456.765-55
556	215,87	544.443.965-66
647	981,23	975.365.876-11
801	125.32	120.332.436-23

TRANS	ĄÇAO		
<u>número-</u> conta	<u>número-</u> transação	data	valor
900	1	01/02/1999	78,00
900	2	08/02/2000	45,08
647	1	30/03/2002	16,89
647	2	05/11/2005	4,12

- Regras a respeito dos valores que podem ser armazenados nas relações
 - Garantem que mudanças feitas no BD por usuários não resultem em inconsistência dos dados.
 - Valores devem ser sempre satisfeitos em quaisquer das relações R de um banco de dados BD.
- Três categorias:
 - I. Restrições inerentes baseadas em modelo.
 - Exemplo: relação não pode ter tuplas repetidas.
 - 2. Restrições baseadas em esquemas: que podem ser expressas diretamente nos esquemas do modelo de dados.
 - Exemplo: intervalo de um atributo, chave estrangeira.
 - 3. Restrições baseadas em aplicação: devem ser expressas e impostas nos programas de aplicação.
 - Exemplo: tuplas que um usuário pode acessar em uma relação.

- Restrições de domínio
- Restrições de chave
- Restrições de valores nulos
- Restrições de integridade de entidade
- Restrições de integridade referencial

Baseada em esquema

- I. Restrições de domínio
 - Dentro de cada tupla, o valor de cada atributo A deve ser um valor atômico do domínio dom(A).
- 2. Restrições de chave
 - Duas tuplas distintas não podem ter valores idênticos para todos os atributos da chave primária e superchaves (unicidade de chave).
- 3. Restrições de valores nulos
 - Especifica que um atributo da relação não pode ser nulo. Por exemplo: NOME is not null.
- 4. Restrições de integridade de entidade
 - Nenhum valor de chave primária pode ser nulo.

- 5. Restrições de integridade referencial
 - O conceito de integridade referencial depende do conceito de chave estrangeira
 - Chave estrangeira:
 - Dois conjuntos de atributos C e D compatíveis → existe uma ordem entre os atributos de ambos os domínios tal que o primeiro atributo de C tenha o mesmo domínio do primeiro atributo de D, o mesmo valendo para os segundos atributos, e assim por diante.
- chave estrangeira → conjunto de atributos D contidos em RI que não é chave em RI porém é compatível com outro conjunto de atributos C contidos em Rk que é a chave primária da relação Rk.

- A restrição de integridade referencial determina que o valor dos atributos D numa tupla qualquer t(D) da relação RI onde D não é chave:
 - ou é igual ao valor t(C) na relação Rk onde C é chave
 - ou é nulo.

– Exemplo 1:

Professor (número-professor, nome, data-admissão)

Disciplina (código, nome-disc, prof-responsável)

Professor

número- professor	nome	data- admissão
213	Antônio	02/02/1999
400	José	02/04/2000
67	Joana	05/01/1998
43)	João	10/11/1997
25	Maria	14/11/1996

Disciplina

código	nome-disc	prof- responsável
CC876	Banco Dados	43
CC566	Linguagem I	NULL
AS654	Algoritmos	(43
AS543	Compiladores	400

- 6. Outros tipos de restrições
 - Restrições de integridade semântica
 - Exemplos:
 - salário do empregado deve ser menor que o do chefe
 - Número máximo de horas-extras é 35.
 - Feitas através dos programas de aplicação ou da linguagem de especificação de restrição (gatilhos e asserções)
 - Restrições de dependência funcional
 - Estabelece relacionamento funcional entre dois conjuntos de atributos X e Y, sendo que X determina o valor de Y em todos os estados da relação.
 - Exemplo:
 - O número 335432 determina sempre o nome da aluna Ana Silva.

 Considere o Modelo Relacional abaixo para modelagem de um sistema de Controle dos sócios de um clube (os símbolos '{'e '} indicam repetição)

Sócio(CPF, nome-sócio, endereço-sócio, RG-sócio, {nome-dependente, data-nascimento, idade}, quantidade-dependentes, data-validade, código-categoria, descrição-categoria)

Mensalidade (CPF, ano, mês, nome-sócio, quantidade-dependentes, valor-mês, valor-total-ano)

Categoria (código-categoria, descrição-categoria, valor-mensalidade)

Existe algum problema nessas relações?

PROJETO DE BANCO DE DADOS

- Medidas informais para mensurar a qualidade de um projeto de BD:
 - semântica dos atributos
 - quanto mais fácil explicar significado da relação, melhor será o modelo de esquema da relação
 - redução de valores redundantes nas tuplas
 - redução de valores null nas tuplas
 - impedimento para a geração de valores ilegítimos nas tuplas

- Codd 1972 verificação de um conjunto de regras pra certificar se o esquema de uma relação satisfaz a uma forma normal.
 - 3 formas normais previstas: IFN, 2FN, 3FN
- Boyce-Codd definição mais forte da 3FN

4FN e 5FN dependência multivalorada e junção

- Objetivo:
 - gerar um conjunto de esquemas de relações:
 - sem redundância desnecessária
 - que permita recuperar informações de forma fácil
 - projetar esquemas na forma normal apropriada
 - cada relação deve ter atributos de um único assunto!
 - Para atingir tais objetivos precisamos normalizar o banco!

- Para atingir um bom projeto de Banco de Dados, às vezes é necessário decompor uma relação em relações menores.
- Propriedades a serem preservadas:
 - junção sem perda
 - preservação da dependência

- Processo de normalização:
 - Elaborado em torno do conceito de formas normais.
 - Formas normais: regras que devem ser obedecidas para que uma tabela seja considerada "bem projetada"
 - Tem origem na definição de E.F. Codd*

*E.F.Codd. "Normalized Data Base Structure: A Brief Tutorial", Proc 1971 ACM SIGFIDET Workshop in Data Description, Access, and Control, San Diego, Califórnia.

 O processo de normalização permite ao projetista CONTROLAR quanto da consistência é garantida pela maneira de construção do sistema, e quantodeve ser responsabilidade do SGBD.

- ↑Normalizar --- eficiência dos aplicativos ↓
- ↓ Normalizar --- inconsistências ↑

- Processo para simplificar as relações através de regras
 - São definidas basicamente três formais normais, em ordem crescente de simplicidade das relações:
 - Primeira Forma Normal (IFN)
 - Segunda Forma Normal (2FN)
 - Terceira Forma Normal (3FN)
- A aplicação das formais normais gera um BD com mais relações. Porém, essas relações são mais simples.
- Para a maioria dos projetos, a 3FN é suficiente. Porém, há outras formas que podem ser aplicadas:
 - FNBC: Forma Normal de Boyce-Codd
 - 4FN
 - 5FN

- Primeira Forma Normal
- Uma relação está na Primeira Forma Normal quando todos os seus atributos são atômicos e monovalorados:
 - Atômicos: simples, indivisíveis
 - Exemplo: endereço não é atômico, porque é composto por rua, número e cidade.
 - Monovalorados: um único valor no domínio do atributo, isto é, não pode haver relações dentro de relações. Não pode haver repetições!

Como deixar na IFN

- Se existirem atributos compostos:
 - Substituí-los por atributos atômicos
- Aluno (RA,nome, endereço)
- Aluno (RA,nome, rua, número, bairro, cidade, estado)

Como deixar na IFN

- Atributo monovalorado
 - aquele que tem apenas um valor.
- Exemplo:
- Aluno (RA,nome, {código-disciplina, nome-disciplina})

Consiste em uma lista de todas as disciplinas nas quais o aluno se matriculou. Pode ser uma ou várias disciplinas (usaremos o símbolo { } para indicar repetições)

Como deixar na IFN

- Se existirem atributos multivalorados:
 - Duas situações
 - Quantidade de valores é pequena e conhecida previamente.
 - Quantidade de valores é desconhecida, grande ou variável.

- Como deixar na IFN
- Situação I: Quantidade de valores é pequena e conhecida previamente
 - Substitui-se o atributo multivalorado por um conjunto de atributos de mesmo domínio, cada um monovalorado representando uma ocorrência do valor.

Exemplo:

Aluno (RA, nome, {notas-bimestrais})

Aluno (RA, nome, nota1, nota2, nota3, nota4)

Exemplo:

Aluno (<u>RA</u>,nome, {código-disciplina, nome-disciplina})

Aluno (<u>RA</u>,nome)
Matrícula (<u>RA</u>, <u>código-disciplina</u>, nome-disciplina)

Como deixar na IFN

- Situação 2: Quantidade de valores é desconhecida, grande ou variável.
 - Retira-se da relação o atributo multivalorado
 - cria-se uma nova relação que tem o mesmo conjunto de atributos chave, mais o atributo multivalorado. Verificar a formação da chave primária.

EXERCÍCIOS

I. Dado o esquema do BD Banco abaixo responda as questões:

```
Cliente (codcli, numcli, enderecocli, CPF)
Conta(numconta, tipoconta, codcli, codag)
Agencia(codag, nomeag, ende, codag)
```

- a) Defina domínios para os atributos de Conta
- b) Dê um exemplo de instanciação da relação Agencia que fere a restrição de chave
- c) Dê 3 exemplos de superchave para a relação Conta
- d) Dê um exemplo e aplicação da restrição de valores nulos na relação Conta
- e) Dê um exemplo que fere a restrição de integridade da entidade na relação Conta
- f) Dê dois exemplos de restrição de integridade referencial no esquema do BD fornecido
- g) Dê um exemplo de restrição de integridade semântica

EXERCÍCIOS

Deixe os BDs abaixo na Primeira Forma Normal (atributos entre { } indicam repetição)

I. Biblioteca

Livro(cod-livro, título, cod-editora, nome-editora, endereço-editora, {cod-autor, nomeautor})

2. Controle de Projetos

ProjetoEmpr(cod-proj, tipo, descrição, {cod-empregado, nome-empregado, categoriaempregado, salario-categoria, data-início-projeto, data-fim-projeto})

3. Fábrica de Móveis

```
Movel(<u>cod-movel</u>, descrição, preço-unit, {cod-mão-obra, descrição-mo, preço-mo, quantidade-usada-mo}, {cod-matéria-prima, descrição-mp, preço-mp, quant-usada-mp})

Mao-obra(<u>cod-mão-obra</u>, descrição-mão-obra, preço-mão-obra)

Materia-prima(cod-matéria-prima, descrição-mat-prima, preço-mat-prima)
```


EXERCÍCIOS

4. Clínica Médica

Médico(<u>CRM</u>, med-nome, med-telefone, {med-data-consulta, med-hora-consulta, codigopaciente})

Paciente(<u>pac-código</u>, pac-nome, pac-ddd, pac-telefone, {cod-convênio, descrição-convênio})

Consulta(<u>CRM-Medico</u>, codigo-paciente, data-consulta, hora-consulta, valor-consulta, cod-convênio, descrição-convênio)

5. Folha de Pagamento

Funcionario(<u>func-código</u>, func-nome, func-endereço, numero-banco, agencia-banco, {func-data-falta, func-motivo-falta})

Pagamento (func-código, func-mês, func-ano, valor-depositado)

OBRIGADO E ATÉ A PRÓXIMA AULA!