

Application of Machine Learning Algorithms to Predict Academic Success.

Dataset Info

Class of Variable	Variable	Туре	Class of Variable	Variable	Туре
Demographic data	1 Marital status	Numeric/discrete	Academic data at enrollment	18 Application mode	Numeric/discrete
	2 Nacionality	Numeric/discrete		19 Application order	Numeric/ordinal
	3 Displaced	Numeric/binary		20 Course	Numeric/discrete
	4 Gender	Numeric/binary		21 Daytime/evening attendance	Numeric/binary
	5 Age at enrollment	Numeric/discrete		22 Previous qualification	Numeric/discrete
	6 International	Numeric/binary			
			Academic data at the end of 1st semester	23 Curricular units 1st sem (credited)	Numeric/discrete
data	7 Mother's qualification	Numeric/discrete		24 Curricular units 1st sem (enrolled)	Numeric/discrete
	8 Father's qualification	Numeric/discrete		25 Curricular units 1st sem (evaluations)	Numeric/discrete
	9 Mother's occupation	Numeric/discrete		26 Curricular units 1st sem (approved)	Numeric/discrete
	10 Father's occupation	Numeric/discrete		27 Curricular units 1st sem (grade)	Numeric/continuous
	11 Educational special needs	Numeric/binary		28 Curricular units 1st sem (without evaluations)	Numeric/discrete
	12 Debtor	Numeric/binary			
	13 Tuition fees up to date	Numeric/binary		29 Curricular units 2nd sem (credited)	Numeric/discrete
	14 Scholarship holder	Numeric/binary	Academic data at the end of 2nd semester	30 Curricular units 2nd sem (enrolled)	Numeric/discrete
				31 Curricular units 2nd sem (evaluations)	Numeric/discrete
Macroeconomic data	15 Unemployment rate	Numeric/continuous		32 Curricular units 2nd sem (approved)	Numeric/discrete
	16 Inflation rate	Numeric/continuous		33 Curricular units 2nd sem (grade)	Numeric/continuous
	17 GDP	Numeric/continuous		34 Curricular units 2nd sem (without evaluations)	Numeric/discrete
35 - Target/Response		Type: Categorical		Dropout / Graduate / Enrolled	

MISSISSIPPI STATE UNIVERSITY JAMES WORTH BAGLEY

Problem – Classification case

Problem: Understanding student success.

Goal: Detect students who are at risk of dropping out of their education.

- Tackling student dropout rates.
- Retaining students.

Target:

Dropout, Graduate, and Enrolled

Methods & Deliverables

- Visualizations (descriptive analysis)
- ML algorithms
 - KNN
 - Naïve Bayes (Gaussian & Bernoulli)
 - Decision Tree
 - Random Forest
 - Gradient Boosting
 - Support Vector Machine
- Results:
 - Accuracy (Training & test) Graph
 - Confusion Matrix
- Best Model
 - Metrix

Boxplots by Target

Density Plots by Target

The variable shows each target class overlap, so the classes (Dropout, Enrolled, and Graduate) are not linearly separable.

KNN

Raw Data

Best test accuracy occurs at n_neighbors=18 Training set is 0.705 Testing set is 0.705

Transformed Data

Best test accuracy occurs at n_neighbors=12 Training set is 0.750 Testing set is 0.728

Best cross-validation score: 0.699

Naive Bayes (Gaussian and Bernoulli)

Raw Data Transformed Data

```
# Naive Bayes Classifier
# Naive Bayes Classifier
from sklearn.naive bayes import GaussianNB
                                                                           NB = GaussianNB()
NB = GaussianNB()
brn = BernoulliNB()
                                                                           brn = BernoulliNB()
NB.fit(X train, y train)
                                                                          NB.fit(X_train_scaled, y_train2).predict(X_test_scaled)
print("GBN Train set score: {:.2f}".format(NB.score(X_train, y_train)))
                                                                           print("GBN Train set score: {:.2f}".format(NB.score(X_train_scaled, y_train2)))
print("GBN Test set score: {:.2f}".format(NB.score(X test, y test)))
                                                                           print("GBN Test set score: {:.2f}".format(NB.score(X test scaled, y test2)))
brn.fit(X train, y train)
                                                                           brn.fit(X_train_scaled, y_train2).predict(X_test_scaled)
print("BRN Train set score: {:.2f}".format(brn.score(X_train, y_train)))
                                                                           print("BRN Train set score: {:.2f}".format(brn.score(X train scaled, y train2)))
print("BRN Test set score: {:.2f}".format(brn.score(X test, y test)))
                                                                           print("BRN Test set score: {:.2f}".format(brn.score(X test scaled, y test2)))
GBN Train set score: 0.68
                                                                           GBN Train set score: 0.27
GBN Test set score: 0.67
                                                                           GBN Test set score: 0.23
BRN Train set score: 0.68
                                                                           BRN Train set score: 0.72
BRN Test set score: 0.69
                                                                           BRN Test set score: 0.71
```

- •Best model is Bernoulli after transforming and deleting variables.
- •The small gap between train and test scores indicates no overfitting or underfitting

Decision Tree

Raw Data

Best test accuracy occurs at max_depth=5, min_samples_split=7 Training set is 0.762 Testing set is 0.741

Transformed Data

Best test accuracy occurs at max_depth=8, min_samples_split=2 Training set 0.80 Testing set 0.7559

Transformed Data

```
Test set accuracy: 0.735
Test set precision: 0.715
Test set recall: 0.735
Test set F1 score: 0.717
Confusion matrix:
 [[253 33 67]
 [ 52 56 85]
 [ 34 22 504]]
ROC AUC score: 0.822
Classification report:
                           recall f1-score
              precision
                                             support
                  0.82
                           0.68
                                      0.74
                                                353
                  0.50
                           0.33
                                      0.40
                                                193
                                     0.85
                                                560
                  0.77
                           0.94
                                      0.75
                                               1106
   accuracy
                  0.70
                           0.65
                                      0.66
                                               1106
  macro avg
weighted avg
                  0.74
                            0.75
                                     0.74
                                               1106
                0 = Dropout
                1= Enrolled
```

2=Graduate

Radom Forest Model

Raw Data

Testing set always is higher than training test. No model with full data.

Transformed Data

Best parameters found: {'max_depth': 3, 'max_features': None,

'n_estimators': 50}

Best cross-validation score: 0.728

Train set is 0.74 Test set is 0.74

Gradient Boosting

Raw Data

Best parameters found: learning_reta=0.1, max_depth=2,n_estimatros = 100.

Train set is 0.792 Test set is 0.789

Transformed Data

	Train set so	core: 0.89						
	Test set score: 0.81							
	Test set accuracy: 0.807							
	Test set precision: 0.800							
	Test set red	call: 0.807						
	Test set F1	score: 0.8	01					
	Confusion matrix:							
	[[276 38	39]						
	37 97 !	59]						
	[20 20 52	20]]						
	ROC AUC score: 0.897							
	Classification report:							
		precisi	on recall	f1-score	support			
		0.8	3 0.78	0.80	353			
-		L 0.6	3 0.50	0.56	193			
		0.8	4 0.93	0.88	560			
	accuracy	/		0.81	1106			
	macro av	g 0.7	7 0.74	0.75	1106			
	weighted av	g 0.8	0.81	0.80	1106			

Best parameters found: learning_reta=0.2,

max_depth=1,n_estimatros = 150. Best cross-validation score: 0.770

Train set is 0.833 Test set is 0.794

0 = Dropout

1= Enrolled

2=Graduate

Raw Data

SVM not tuning from sklearn.svm import SVC svc clf = SVC(kernel='rbf', C=100, gamma=0.1) svc clf.fit(X train, y train) print("Train set score: {:.2f}".format(svc clf.score(X train, y train))) print("Test set score: {:.2f}".format(svc clf.score(X test, y test))) Train set score: 1.00 Test set score: 0.51 # SVM from sklearn.svm import SVC svc_clf = SVC(kernel='rbf', C=100, gamma='scale') svc clf.fit(X train, y train) print("Train set score: {:.2f}".format(svc clf.score(X train, y train))) print("Test set score: {:.2f}".format(svc_clf.score(X_test, y_test))) Train set score: 0.87 Test set score: 0.77

kernel=rbf C=100 gamma=scale Train Accuracy = 0.87 Test Accuracy = 0.778

Transformed Data

```
svc clf = SVC(kernel='rbf', C=10, gamma=0.01)
svc clf.fit(X train_scaled, y_train2)
print("Train set score: {:.2f}".format(svc_clf.score(X_train_scaled, y_train2)))
print("Test set score: {:.2f}".format(svc clf.score(X test scaled, y test2)))
Train set score: 0.89
Test set score: 0.81
Best parameters found: kernel=rbf, C=10 gamma=0.01, C=10
Train Accuracy = 0.89
Test Accuracy = 0.81
                   Test set accuracy: 0.789
                   Test set precision: 0.779
                   Test set recall: 0.789
                   Test set F1 score: 0.781
                   Confusion matrix:
                    [[274 38 41]
                    [ 37 83 73]
                    [ 17 27 516]]
                   ROC AUC score: 0.898
                   Classification report:
                                 precision
                                              recall f1-score
                                                                 support
 0 = Dropout
                                     0.84
                                               0.78
                                                         0.80
                                                                    353
 1= Enrolled
                                     0.56
                                               0.43
                                                         0.49
                                                                    193
 2=Graduate
                                     0.82
                                               0.92
                                                         0.87
                                                                    560
                                                         0.79
                                                                   1106
                       accuracy
                                                         0.72
                                     0.74
                      macro avg
                                               0.71
                                                                   1106
                   weighted avg
                                     0.78
                                               0.79
                                                         0.78
                                                                   1106
```

Conclusions

- The models encounter an underfitting problem. Therefore, to obtain optimum performance 33 features were selected.
- Even thought for some models it is not required to scale the data, we found some improvement in general for all models.
- Gradient Boosting and SVM models algorithms perform with more accurate results in predicting dropouts of students with machine learning algorithms, while Naive Bayes has the lowest classification accuracy.
- The proposed model predicted the risk of dropout of students with 79% accuracy in average. Therefore, dropout risk can be predicted with this model in the future.

References

- [1] "P_R_Dashboard_2022Cohort," Tableau Software. Accessed: Oct. 25, 2024. [Online]. Available: <a href="https://public.tableau.com/views/P_R_Dashboard_2022Cohort/PR_Dashboard?:embed=y&:showVizHome=n_o&:host_url=https%3A%2F%2Fpublic.tableau.com%2F&:embed_code_version=3&:tabs=no&:toolbar=yes&:animate_transition=yes&:display_static_image=no&:display_spinner=no&:display_overlay=yes&:display_coun_t=yes&:language=en-US&:loadOrderID=0
- [2] A. W. Astin, Assessment for excellence: The philosophy and practice of assessment and evaluation in higher education. Rowman & Littlefield Publishers, 2012.
- [3] C. Gibson, S. Rankin, and T. York, "Defining and measuring academic success," *Pract. Assess. Res. Eval.*, vol. 20, no. 5, p. 20, 2015.
- [4] R. Los and A. Schweinle, "The interaction between student motivation and the instructional environment on academic outcome: a hierarchical linear model," *Soc. Psychol. Educ.*, vol. 22, no. 2, pp. 471–500, Apr. 2019, doi: 10.1007/s11218-019-09487-5.
- [5] A. I. Adekitan and E. Noma-Osaghae, "Data mining approach to predicting the performance of first year student in a university using the admission requirements," *Educ. Inf. Technol.*, vol. 24, pp. 1527–1543, 2019.
- [6] O. Zawacki-Richter, V. I. Marín, M. Bond, and F. Gouverneur, "Systematic review of research on artificial intelligence applications in higher education—where are the educators?," *Int. J. Educ. Technol. High. Educ.*, vol. 16, no. 1, pp. 1–27, 2019.

References

- [7] S. Hussain and M. Q. Khan, "Student-Performulator: Predicting Students' Academic Performance at Secondary and Intermediate Level Using Machine Learning," *Ann. Data Sci.*, vol. 10, no. 3, pp. 637–655, Jun. 2023, doi: 10.1007/s40745-021-00341-0.
- [8] M. Yağcı, "Educational data mining: prediction of students' academic performance using machine learning algorithms," *Smart Learn. Environ.*, vol. 9, no. 1, p. 11, Mar. 2022, doi: 10.1186/s40561-022-00192-z.
- [9] L. R. Pelima, Y. Sukmana, and Y. Rosmansyah, "Predicting University Student Graduation Using Academic Performance and Machine Learning: A Systematic Literature Review," *IEEE Access*, vol. 12, pp. 23451–23465, 2024, doi: 10.1109/ACCESS.2024.3361479.
- [10] A. Singh, M. N., and R. Lakshmiganthan, "Impact of Different Data Types on Classifier Performance of Random Forest, Naïve Bayes, and K-Nearest Neighbors Algorithms," *Int. J. Adv. Comput. Sci. Appl.*, vol. 8, no. 12, 2017, doi: 10.14569/IJACSA.2017.081201.
- [11] N. Salmi and Z. Rustam, "Naïve Bayes classifier models for predicting the colon cancer," in *IOP conference series: materials science and engineering*, IOP Publishing, 2019, p. 052068.
- [12] Y. Lu, T. Ye, and J. Zheng, "Decision Tree Algorithm in Machine Learning," in 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Aug. 2022, pp. 1014–1017. doi: 10.1109/AEECA55500.2022.9918857.

References

- [13] P. Probst and A.-L. Boulesteix, "To Tune or Not to Tune the Number of Trees in Random Forest".
- [14] Z. Tian, J. Xiao, H. Feng, and Y. Wei, "Credit Risk Assessment based on Gradient Boosting Decision Tree," *Procedia Comput. Sci.*, vol. 174, pp. 150–160, Jan. 2020, doi: 10.1016/j.procs.2020.06.070.
- [15] D. Isa, L. H. Lee, V. P. Kallimani, and R. RajKumar, "Text Document Preprocessing with the Bayes Formula for Classification Using the Support Vector Machine," *IEEE Trans. Knowl. Data Eng.*, vol. 20, no. 9, pp. 1264–1272, Sep. 2008, doi: 10.1109/TKDE.2008.76.
- [16] "Find Open Datasets and Machine Learning Projects | Kaggle." Accessed: Oct. 25, 2024. [Online]. Available: https://www.kaggle.com/datasets

