Smart Home

Mach dein Zuhause ein klein wenig sicherer!

Unsere Vision

- Sichere und zukunftsfähige Sicherheitslösung für Smart Home
 - Kein "discontinued product" ohne Updates
 - Keine abgeschaltete Cloud
 - Kein Zwang Version n+1 zu kaufen, weil ältere Versionen nicht mehr unterstützt werden

Umweltschonende Wiederverwendung funktionierender Hardware

Unsere Vision

- Einbruchserkennung mit State-of-the-Art Verschlüsselung
 - Funkstandard 802.11 mit WPA2
 - SSL verschlüsselte Kommunikation mit der Smart Home Zentrale
 - Push und Email-Notifications bei Alarm
 - Erkennung von Störungen im Funkkanal
 - Ausfallerkennung von Knoten

Unsere Vision

- Selbstgehostete Smart Home Lösung
 - Opensource
 - Aktualisierung/ Modifizierungen möglich
 - Austausch einzelner Komponenten möglich
 - Erweiterbarkeit
 - Weitere Sensoren (Umweltsensoren)
 - Einbindung weiterer Smart Home Geräte

Aufbau des Projektes

Hardware

- ESP32
 - 4 MB Flash
 - Dual Core
 - Ladetechnik und 18650 Akku Anschluss
 - Eingebautes Funkmodule (WLAN + Bluetooth)

Sensoren

- Einfache Magnetsensoren für Fenster und Türen
- BME280/BME680 für Umweltmessungen
 - Bessere Qualität als DHT 11/22
 - Zusätzlich Luftdruck / Gas

Gesamtkosten für ein System-Paket

- Raspberry Pi 3 (inkl. WLAN + Bluetooth + Gehäuse, SD-Karte, Netzteil)
 - ~60,00€
- Wemos ESP32 Board (inkl. Li-Ion Batterie) 4 Stück
 - ~60,00€
- Sensoren (Magnetsensoren (8), BME280 (4) oder BME680 (4))
 - ~30,00€

Gesamt: ~150,00 €

openHAB (Open Home Automation Bus)

5)

- Open Source Smart Home Lösung
- Auf Java Basis für alle gängigen Betriebssysteme
- Offizielles Projekt der Eclipse Foundation
- Große Community
- Gut erweiterbar

Automatisierte Einrichtung des Systems

- openHAB, influxDB, mosquitto, grafana, Zertifikate,
 - Übertragung sowie Modifizierung von Dateien auf dem Raspberry Pi mittels Fabric (SSH)
- ESP32 Toolchain
 - Umgebung und Abhängigkeiten für Mac und Linux Systeme eingerichtet

Kommunikation

- Mikrocontroller senden Daten über MQTT (Mosquitto)
- Smart Home Server betreibt auch MQTT-Broker
- Topics sind nach Räumen geordnet
 - "room/office/nodeID/WindowSensor1"
 - "room/livingroom/nodeID/humidity"

Sensorik

- Support von BME280/ BME680
- Grafische Darstellung in Grafana
- Support von weiteren Sensoren möglich

Sicherheitsmerkmale

Angriffserkennung (Akustisches Signal)

- Anschluss eines Lautsprechers an der Smart Home Zentrale
- Bei Fensteröffnung während des aktiven Systems Abspielen eines Signaltons

Angriffserkennung (Störung Funkkanal)

- Smart Home Server (RaspberryPi 3 /3+) hat ein WLAN-Modul
- Das Modul überprüft per Cron die WLAN Qualität
- Alarm, sobald WLAN Qualität unter x % fällt
- Der Server für den tatsächlichen Betrieb über LAN angeschlossen (Erreichbarkeit von außen im Falle einer Funkstörung)

Lost Node Detection

- Verlorene Knoten senden keine Daten mehr
- Alle Knoten senden regelmäßigen Health Check, alle Checks werden persistiert (InfluxDB)
- Senden einer Mail/ Push Notification durch Grafana bei fehlenden Rückmeldungen
- MQTT Event \rightarrow openHab \rightarrow Influx \rightarrow Grafana \rightarrow Notification

Multihop Network

• Idee:

 Weiterleitung der Signale über die ESP32 Boards zur Reichweitenverbesserung

• Feature Abgelehnt:

Widerspruch zu unseren Stromsparzielen

Alternative:

WLAN Repeater im Heimnetzwerk zur Reichweitenverbesserung

Absicherung von Mosquitto

- Essentiell, da Transport der Nachrichten über Fensterstatus kritisch
- Einrichtung von TLS im Mosquitto MQTT Broker
 - Raspberry Pi dient als CA
- Sichere Authentifikation über Client Zertifikate
 - Ausstellung ebenfalls mit RaspberryPi CA
- Zusätzlich Benutzer und Passwort notwendig

Usability

OTA - Updates

- Erleichterte Updates bei bereits montierten Geräten
- Einführung von Versionsnamen und Versionscode zur Unterscheidung
- Minimalistischer HTTP-Server auf Raspberry Pi
- Suche nach Appversion mit h\u00f6herem Versionscode
 - ggf. Download und Installation
- Gegenwärtig ungeschützt (bzw. lediglich über das Heimnetz)

Akkubetrieb

- Boards haben einen Akkuhalter (18650 -3400mAh)
- Ladevorgang über Board ist möglich
- Akkulebenszeit
 - Bei Aufwecken alle 15 Minuten : ~53 Tage*
 - Bei Aufwecken alle 60 Minuten : ~206 Tage*
 - Bei Aufwecken zweimal pro Tag: ~58 Monate*

^{*} Selbstentladung nicht eingerechnet

Stromsparmaßnahmen

- Deep Sleep führt zu Reset des ESP32
 - Irrelevant für unseren Anwendungsfall (Light Sleep nahezu gleich schnell)
- Eingeschränkte GPIO Interrupts im Schlafmodus
 - External wakeup (ext0): nur ein GPIO konfigurierbar
 - External wakeup (ext1): Mehrere GPIO möglich, allerdings entweder "ANY_HIGH" oder "ALL_LOW"
 - maximal 2 Fenstersensoren pro Board
- Zusätzlich Timer zum Aufwecken

Convenience Features

- Automatische Aktivierung des Alarms
 - Momentan nur mit FritzBox
 - Sollten alle spezifizierten WLAN-Geräte offline sein (aus dem WLAN), wird das System aktiviert

Einfache und schnelle Einrichtung

- Sensoren an die Pins stecken
- Einstellungen im Menu
- USB Flash
- Montage
- (Debugging mit USB möglich)
- Fertig

```
/smarthome2/ESP32/window_alert/sdkconfig - Espressif IoT Developm
         Espressif IoT Development Framework Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in [ ]
    SDK tool configuration --->
        Arduino Configuration --->
        Bootloader config --->
        Security features --->
        Serial flasher config --->
        WiFi config --->
        MQTT config --->
        I2C --->
        Sensor config --->
        Partition Table --->
        Compiler options --->
        Component config --->
      <Select>
                 < Exit >
                                                     < Load >
```

Live Demo

Ausblick

- Konfigurator erfasst noch nicht alle Punkte
 - Boards lassen sich nicht automatisiert "in Reihe" flashen
- Ausbau von Sicherheitsfunktionen
 - Bewegungsmelder
 - Kamera
 - Steuerung von Smart Home Geräten (Licht an/aus) bei Alarm
- Angepasstes 3D-Gehäuse für die Boards
- OTA: HTTPS + Client Authentifikation
- Secure Bootloader, Flash Encryption