2024-03-11

Rappels

 $\mathfrak{sl}(3\mathbb{C}) = h \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$ osti, je suis deja done

On a montré que les poids diffèrent par une combinaison de racines :

Si $v \in V_{\alpha}, C \in g_{\beta}$ β -racine, α -poids

alors $X \cdot v \in V_{\alpha+\beta}$

Le poids le plus haut est une poids maximal pour l'ordre induit l'évaluation sur $\begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} \in h$ t.q. $a_0 > b_0 > C_0$

Il existe un vecteur de plus haut poids v qui satisfait

- $v \in V_{\alpha}$ pour $\alpha \in h^*$
- $-E_{23}v = E_{13}v = E_{?}v = 0$

Proposition:

V est engendré par v (vecteurs de plus haut poids) et toutes ses images par tout les mots possible en $E_{2,1}, E_{3,2}, E_{3,1}$

Démonstration

W le sous-espace engendré par v et tout les motes possibles en $E_{2,1}, E_{32}, E_{31}$ appliqué à V

$$W = \langle v, E_{21}v, e_{32}v, E_{31}v, E_{21}E_{32}v, \cdots \rangle$$

On veur montrer que W est $\mathfrak{sl}(3,\mathbb{C})$ -invarient

Partie facile, W est invariant par h et par E_{21}, E_{31}, E_{32}

Reste à montrer que W est invarient par $E_{1,2}, E_{2,3}$

 $E_{1,3}=[E_{1,2},E_{2,3}]$, il suffit donc de vérifier $E_{1,2}W\subseteq W$ et $E_{23}W\subseteq W$

Posons W_n le sous-espace engendré par va et tout les mots en E_{21}, E_{32} de la longeure $\leq n$ appliqué à v

Par récurence, on montre $E_{12} \cdot W_n \subseteq W_{n-1}, E_{2,3} \cdot W_n \subset W_{n-1}$

Soit $w \in W_n$

$$\implies w = E_{21} \cdot w' \quad \text{pour} \quad w' \in W_n - 1$$

ou

$$w = E_{32} \cdot w'$$

1.

$$E_{1,2} \cdot w = E_{1,2} \cdot E_{2,1} \cdot w' = ([E_{12}, E_{21}] + E_{21} \cdot E_{12}) w'$$

$$E_{1,2} \in g_{L_1 - L_2}$$

$$E_{21} \in G_{L_2 - L_1}$$

$$\implies [E_{1,2}, E_{21}] \in h = g_e$$

$$= \in W_{n-1} + \in W_{n-1}$$

$$E_{2,3} \cdot w = E_{2,3} \cdot E_{1,2} \cdot w'$$

$$= \left(\underbrace{[E_{23}, E_{21}]}_{0} + E_{2,1} + E_{23}\right) \cdot w'$$

$$= E_{21} \cdot \underbrace{(E_{21} \cdot w')}_{W_{n-2}}$$

$$\underbrace{W_{n-2}}_{W_{n-1}}$$

2. même chose

Puisque $W = \bigcup_n W_n$, W est stable par $\mathfrak{sl}(3\mathbb{C}) \implies W = V \blacksquare$

De la preuve, on déduit :

Pour V une représentation (pas nécéssairement irréductible), si v est un vecteur de plus haut poidsm alors le sous espace engendré par v est ses images par E_{21} et $E_{3,2}$ est une sous représentation irréductible

Il existe un n pour lequel $\left(E_{2,1}\right)^n\cdot v=0$ mais $\left(E_{2,1}\right)^{n-1}\cdot v\neq 0$

Observation : $V_{\alpha+m(L_2-L_1)}$ est de dim 1 ou 0 (car il existe un seul *chemin* entre α et $\alpha+m(L_2-L_1)$

$$\begin{pmatrix} E_{21} & E_{12} & E_{11} - E_{22} \\ \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ Y & X & H$$

engendrent une sous-algèbre de Lie de $\mathfrak{sl}(3\mathbb{C})$ isomorphe à $\mathfrak{sl}(2\mathbb{C})$

En restreignant à cette sous-algèbre, on obtient une représentation de $\mathfrak{sl}(2,\mathbb{C})$ sur V (par nécéssairement irréductible)

Rappel Les valeurs propres pour H dans un représentation de $\mathfrak{sl}(2\mathbb{C})$ sont entière et symétriques par rapport à 0

Les valeurs propres de "H" = $E_{11} - E_{22}$ sont $\alpha(H), (\alpha + L_2 - L_1)(H), \dots, (\alpha + n(L_2 - L_1))(H)$

on réécrit $\alpha(H), \alpha(H) - 2, \alpha(H) - 4, \cdots, \alpha(H) - 2n$

$$\implies \alpha(H) - 2n = -\alpha(H)$$

$$\implies n = \alpha(H)$$

L'arrête entre α et $\alpha + n(L_2 - L_1)$ est symétrique par rapport à la droite $\beta(H_{12}) = 0$

Posons
$$\alpha + \alpha \left(J_{1,2}\right)\left(L_2 - L_1\right) = \alpha_2$$
 et $v_2 = E_{2,1}^{???} \cdot v \in V_{\alpha_2}$

On a
$$E_{21} \cdot v_2 = 0, \, E_{2,3} \cdot v_2 = 0 \, , \, E_{1,2} \cdot v_2 = 0$$

 v_2 est une vecteur de plus haut poids pour l'ordre définis par $\begin{pmatrix} a & & \\ & b & \\ & & c \end{pmatrix}, \, b>a>c$

Les espaces de poids sont contenus dans l'hexagone des sommets α et ses réflexions dans les 3 droites Les espace de poids sur les arêtes sont de dimension 1

On déduit que $\alpha(H)_{i,j} \in \mathbb{Z} \forall H \in h$

$$\implies \alpha = aL_1 + bL_2 + cL_3 \quad a, b, c \in \mathbb{Z}$$