Genome-wide association of adiposity in heterogeneous stock rats

Apurva S. Chitre¹, Oksana Polesskaya², Katie Holl³, Jianjun Gao², Riyan Cheng², Angel Garcia Martinez⁷, Anthony George⁶, Alexander F. Gileta⁷, Wenyan Han⁷, Aidan Horvath⁴, Alesa Hughson⁴, Keita Ishiwari^{8,9}, Christopher P. King⁸, Alexander Lamparelli⁸, Cassandra L. Versaggi⁸, Connor Martin⁸, Celine L. St. Pierre⁵, Jordan A. Tripi⁸, Tengfei Wang⁷, Hannah Bimschleger², Hao Chen⁷, Paul Meyer⁸, Jerry B. Richards^{8,9}, Terry E. Robinson¹¹, Katarina Cohen², Thiago Missfeldt Sanches², Benjamin B. Johnson², Daniel Munro^{2,6}, Khai-Minh Nguyen², Denghui Chen¹, Shelly B. Flagel^{4,10}, Keita Ishiwari^{8,9},Nazzareno Cannella¹⁶,Roberto Ciccocioppo¹⁶, Olivier George², Suzanne H. Mitchell¹⁷, Brittany N. Kuhn¹⁵,Peter W. Kalivas¹⁵, Leah C. Solberg Woods¹². Abraham A. Palmer^{2,13}

¹ Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, USA

² Department of Psychiatry, University of California San Diego, La Jolla, CA, USA

³ Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA

⁴ Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA

⁵ Department of Genetics, Washington University in St Louis, St. Louis, MO, USA

⁶ Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA

⁷ Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA

⁸ Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, USA

⁹ Clinical and Research Institute on Addictions, State University of New York at Buffalo, Buffalo, NY, USA

¹⁰ Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA

¹¹ Department of Psychology, University of Michigan, Ann Arbor, MI, USA

¹² Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA

¹³ Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA

¹⁴ University of Chicago, Department of Human Genetics, Chicago, IL, USA

- ¹⁵ Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- ¹⁶ School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Italy
- ¹⁷ Departments of Behavioral Neuroscience and Psychiatry, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA

Obesity arises from a complex interaction between genetic and environmental factors, yet the specific genes involved remain largely unidentified. In an initial genome-wide association study (GWAS) using 3,173 outbred N/NIH heterogeneous stock (HS) rats, we identified 32 independent loci associated with obesity-related traits, such as body weight, body length, BMI, fasting glucose, and fat pad weights. Notably, several loci contained a single gene (e.g., *Epha5*, *Nrg1*, *Klhl14*) or other clear candidate genes (e.g., *Adcy3*, *Prlhr*), providing strong targets for functional studies.

The initial study, involving 3,173 rats, represented the largest rat GWAS that we are aware of. Our current analysis includes a significantly expanded sample size of 8,857 rats, with 37 quantitative trait loci (QTLs) identified for body weight (SNP heritability: 0.37 ± 0.02). This expanded dataset allows for a more precise understanding of the genetic factors influencing obesity. Additionally, we are further increasing our sample size to over 9,000 rats, specifically focusing on body weight. This substantial increase in sample size enables us to conduct sex-specific analyses, offering deeper insights into the genetic architecture of obesity.

This work underscores the importance of large, well-characterized populations in elucidating the genetic basis of complex traits and highlights the HS rat as a valuable model for obesity research.