

Course > Unit 8: ... > Lec. 19:... > 3. Exer...

3. Exercise: CLT

Exercises due May 1, 2020 05:29 IST Completed

Exercise: CLT

2/2 points (graded)

Let X_n be i.i.d. random variables with mean zero and variance σ^2 . Let $S_n=X_1+\cdots+X_n$. Let Φ stand for the standard normal CDF. According to the central limit theorem, and as $n\to\infty$, $\mathbf{P}\left(S_n\le 2\sigma\sqrt{n}\right)$ converges to $\Phi\left(a\right)$, where:

$$a=$$
 2 \checkmark Answer: 2

Furthermore,

Solution:

We have

$$\lim_{n o\infty}\mathbf{P}\left(S_{n}\leq2\sigma\sqrt{n}
ight)=\lim_{n o\infty}\mathbf{P}\left(rac{S_{n}-0}{\sigma\sqrt{n}}\leq2
ight)=\Phi\left(2
ight).$$

Similarly,

$$\lim_{n o\infty}\mathbf{P}\left(S_{n}\leq0
ight)=\lim_{n o\infty}\mathbf{P}\left(rac{S_{n}-0}{\sigma\sqrt{n}}\leq0
ight)=\Phi\left(0
ight)=rac{1}{2}.$$

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 8: Limit theorems and classical statistics:Lec. 19: The Central Limit Theorem (CLT) / 3. Exercise: CLT

© All Rights Reserved

