

VERSION 2

MAY 16, 2023

OPEN BACCESS

DOI

dx.doi.org/10.17504/protocol s.io.kqdg39mxqg25/v2

Protocol Citation: Megan Mcdonald 2023. Complete Medium or Complete Medium Xylose (from Leach, Lang and Yoder 1982).

protocols.io

https://dx.doi.org/10.17504/p rotocols.io.kqdg39mxqg25/v2 Version created by Megan Mcdonald

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development
We are still developing and optimizing this protocol

Created: May 16, 2023

Last Modified: May 16,

2023

© Complete Medium or Complete Medium Xylose (from Leach, Lang and Yoder 1982) V.2

Megan

Mcdonald¹

¹University of Birmingham, School of Biosciences

Megan Mcdonald

ABSTRACT

For the growth and maintenance of Cochliobolus carbonum and Cochliobolus victoriae

PROTOCOL integer ID: 81948

MATERIALS

Trace Minerals

Boric Acid (H3BO3) CAS:<u>10043-35-3</u> Cupric Sulfate (CuSO4) CAS: <u>7758-98-7</u> Potassium Iodide (KI) CAS:<u>7681-11-0</u>

Manganese (II) sulfate monohydrate MnSO₄ * H2O CAS: <u>10034-96-5</u> Sodum permanganate monohydrate NaMoO₄ *H2O CAS: <u>79048-36-5</u>

Zinc sulfate heptahydrate $ZnSO_4*7H_2O$ CAS: $\underline{7446-20-0}$ Iron (III) chloride hexahydrate $FeCl_3*6H_2O$ CAS: $\underline{10025-77-1}$

Salts

Calcium nitrate tetrahydrate $Ca(NO_3)_2 * 4 H_2O CAS: 13477-34-4$

Potassium Phosphate monobasic KH2PO4 CAS: 7778-77-0

Magnesium Sulfate heptahydrate MgSO4 * 7H2O CAS: 10034-99-8

Sodium Chloride NaCl CAS: 7647-14-5

Media

Yeast Extract CAS: 8013-01-2 (some people report differences between difference sources)

Casein Digests: Still a bit of work to do here to determine, which of these is best (including new plant-based sources). Big differences in prices between different digest types.

Acid hydrolysed Casein CAS: 65072-00-6

Peptone from casein, tryptic digest OR pancreatic digest (tryptone) CAS: 91079-40-2

Make Micronutrients Solution

1 9 mg H₃BO₃

58.5 mg CuSO₄ *5H₂O

1.95 mg KI (Potassium Iodine)

9 mg MnSO₄

7.6 mg NaMoO₄

822 mg ZnSO₄ * 6 H₂O

139.8 mg FeCl₃ * 6H₂O

in 300 mL ddH20 and filter sterilise

Citation:

Heterokaryosis and Parasexuality in the Fungus Ascochyta Imperfecta Author(s): K. E. Sanderson and A. M. Srb Source: American Journal of Botany, Jan., 1965, Vol. 52, No. 1 (Jan., 1965), pp. 72-81 Published by: Wiley Stable URL: https://www.jstor.org/stable/2439977

Make 100x Salt Solutions A and B

2 100X Salt Solution A

10g Ca(NaO₃)₂ * 4 H₂O 100 mL ddH₂O

Autoclave

Citation:

Leach, J., Lang, B. R. & Yoder, O. C. *Microbiology***128**, 1719-1729, doi:https://doi.org/10.1099/00221287-128-8-1719 (1982).

3 100X Salt Solution B

 $2 \text{ g } \text{KH}_2\text{PO}_4*7 \text{ H}_2\text{O}$ 1.5g NaCl

100 mL H20 pH 5.3

Autoclave

Citation:

Leach, J., Lang, B. R. & Yoder, O. C. *Microbiology***128**, 1719-1729, doi:https://doi.org/10.1099/00221287-128-8-1719 (1982).

Make Complete Medium (CM) or Complete Medium Xylose (...

4 Complete Medium Base

10 g glucose OR xylose (substitute glucose for xylose for CMX medium)

1 g Yeast Extract

0.5 g Acid-hydrolysed Casein

0.5 g Enzyme-hydrolysed casein

20g Agar

10 mL Salt A

10 mL Salt B

Make up to 1000 mL with ddH20 and Autoclave

After autoclaving add:

1 mL sterilised micronutrient solution

Citation:

Leach, J., Lang, B. R. & Yoder, O. C. *Microbiology***128**, 1719-1729, doi:https://doi.org/10.1099/00221287-128-8-1719 (1982).

Complete Medium for Sporulation

5 Complete Medium Base

0.5 g glucose OR xylose (substitute glucose for xylose for CMX medium)

20 g Sorbose

1 g Yeast Extract

0.5 g acid hydrolysed casein

0.5 g enzyme hydrolysed casein

20g Agar

10 mL Salt A

10 mL Salt B

Make up to 1000 mL with ddH20 and Autoclave

After autoclaving add:

1 mL sterilised micronutrient solution