Kroczące punkty środkowe

Definicja problemu

Dana jest populacja punktów $P_0 = \{x_1, x_2, ..., x_N\}$ w przestrzeni D-wymiarowej. Punkty są zbiorem współrzędnych $x_i = [a_1, a_2, ..., a_D]$. Gdzie $a_i \in R$.

Mamy zdefiniowana funkcje celu $q(x): \mathbb{R}^D \to \mathbb{R}$ która przypisuje punktom wartości ze zbioru liczb rzeczywistych.

Definiujemy funkcje usuwająca z populacji element najgorszy względem funkcji celu $g(P_i) = P_i \setminus x_j$, gdzie $x_j = min_q(P_i)$.

W przypadku więcej niż jednego elementu będącego minimum, usuwamy pierwszy znaleziony.

Punkt środkowy populacji
$$P_i$$
 oznaczymy jako c_i , oraz zdefiniujemy jako
$$c_i = \frac{\sum_{j=1}^{x_i} a_{1j}}{|P_i|}, a_2 = \frac{\sum_{j=1}^{D} a_{2j}}{|P_i|}, ..., a_D = \frac{\sum_{j=1}^{D} a_{Dj}}{|P_i|}),$$
gdzie a_{ij} to i -ty argument punktu x_j .

Okreslamy sekwencje populacji $S=P_0,P_1,...,P_{N-k}$ która tworzymy wzorem $P_{t+1}=g(P_t),$ gdzie k to minimalna ilość punktów w populacji.

Następnie dla każdej populacji z sekwencji wyznaczamy punkt środkowy dla niej, powstaje nam sekwencja punktów środkowych $C = c_1, c_2, ..., c_{N-k}$.