

proof of Radon-Nikodym theorem

Canonical name ProofOfRadonNikodymTheorem

 Date of creation
 2013-03-22 18:58:03

 Last modified on
 2013-03-22 18:58:03

 Owner
 Ziosilvio (18733)

 Last modified by
 Ziosilvio (18733)

Numerical id 5

Author Ziosilvio (18733)

Entry type Proof

Classification msc 28A15

Synonym Hilbert spaces proof of Radon-Nikodym's theorem Synonym measure- theoretic proof of Radon-Nikodym theorem The following proof of Radon-Nikodym theorem is based on the original argument by John von Neumann. We suppose that μ and ν are real, nonnegative, and finite. The extension to the σ -finite case is a standard exercise, as is μ -a.e. uniqueness of Radon-Nikodym derivative. Having done this, the thesis also holds for signed and complex-valued measures.

Let (X, \mathcal{F}) be a measurable space and let $\mu, \nu : \mathcal{F} \to [0, R]$ two finite measures on X such that $\nu(A) = 0$ for every $A \in \mathcal{F}$ such that $\mu(A) = 0$. Then $\sigma = \mu + \nu$ is a finite measure on X such that $\sigma(A) = 0$ if and only if $\mu(A) = 0$.

Consider the linear functional $T: L^2(X, \mathcal{F}, \sigma) \to \mathbb{R}$ defined by

$$Tu = \int_{X} u \, d\mu \, \forall u \in L^{2}(X, \mathcal{F}, \sigma) . \tag{1}$$

T is well-defined because μ is finite and dominated by σ , so that $L^2(X, \mathcal{F}, \sigma) \subseteq L^2(X, \mathcal{F}, \mu) \subseteq L^1(X, \mathcal{F}, \mu)$; it is also linear and bounded because $|Tu| \leq ||u||_{L^2(X,\mathcal{F},\sigma)} \cdot \sqrt{\sigma(X)}$. By Riesz representation theorem, there exists $g \in L^2(X,\mathcal{F},\sigma)$ such that

$$Tu = \int_X u \ d\mu = \int_X u \cdot g \, d\sigma \tag{2}$$

for every $u \in L^2(X, \mathcal{F}, \sigma)$. Then $\mu(A) = \int_A g \, d\sigma$ for every $A \in \mathcal{F}$, so that $0 < g \le 1$ μ - and σ -a.e. (Consider the former with $A = \{x \mid g(x) \le 0\}$ or $A = \{x \mid g(x) > 1\}$.) Moreover, the second equality in (??) holds when $u = \chi_A$ for $A \in \mathcal{F}$, thus also when u is a simple measurable function by linearity of integral, and finally when u is a $(\mu$ - and σ -a.e.) nonnegative \mathcal{F} -measurable function because of the monotone convergence theorem.

Now, 1/g is \mathcal{F} -measurable and nonnegative μ - and σ -a.e.; moreover, $\frac{1}{g} \cdot g = 1$ σ - and μ -a.e. Thus, for every $A \in \mathcal{F}$,

$$\int_{A} \frac{1}{g} d\mu = \int_{A} d\sigma = \sigma(A) \tag{3}$$

Since σ is finite, $1/g \in L^1(X, \mathcal{F}, \mu)$, and so is $f = \frac{1}{g} - 1$. Then for every $A \in \mathcal{F}$

$$\nu(A) = \sigma(A) - \mu(A) = \int_A \left(\frac{1}{q} - 1\right) d\mu = \int_A f d\mu.$$