Rozdział 1

Analiza kinematyki manipulatora

Celem poniższej pracy było zaprojektowanie manipulatora 3R z konfiguracją stawową. Przyjęto następujące parametry manipulatora

- ...
- ...

Rysunek 1.1: Schemat kinematyczny manipulatora

Na powyższym rysunku (1.1) przedstawiono schemat kinematyczny manipulatora typu 3R wraz z wpisanymi układami współrzędnych. Układ znajduje się w orientacji Denavita-Hartenberga.

1.2 Kinematyka Prosta

Kinematyka prosta umożliwia wyznaczenie położenia roboczego punktu końcowego manipulatora. Bazuje na kątach wychylenia poszczególnych przegubów oraz wymiarów manipulatora.

Tebala z parametrami notacji Denavita-Hartenberga dla manipulatora 3R

Człon	ϕ_z	d_z	a_x	α_x
1	$\phi_1 + 90^{\circ}$	$d_1 + const$	0	90°
2	ϕ_2	0	$d_2 = const$	0°
3	ϕ_3	0	$d_3 = const$	0°

Tebala 1. Wartośći notacji D-H

W celu przekształcenia notacji D-H, dane z tabeli 1. podstawiono do ogólnej postaci poniższego wzoru:

$$A_i = Rot_{z,\phi} \times Trans_{z,d} \times Trans_{z,a} \times Rot_{z,a}$$

$$A_{i} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 & 0\\ \sin \phi & \cos \phi & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & d\\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & a\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & a\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Powyższe obliczenia umożliwiły wyznaczenie poszczególnych macierzy przekształceń

Macierze przekształceń:

$$A_1 = \begin{bmatrix} \cos \phi_1 & 0 & \sin \phi_1 & 0\\ \sin \phi_1 & 0 & -\cos \phi_1 & 0\\ 0 & 1 & 0 & d_1\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} \cos \phi_2 & -\sin \phi_2 & 0 & a_2 \times \cos \phi_2 \\ \sin \phi_2 & \cos \phi_2 & 0 & a_2 \times \sin \phi_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} \cos \phi_3 & -\sin \phi_3 & 0 & a_3 \times \cos \phi_3 \\ \sin \phi_3 & \cos \phi_3 & 0 & a_3 \times \sin \phi_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Na podstawie powyższych macierzy wyznaczono macierz przekształceń T_0^3

$$T_0^3 = A_1 \times A_2 \times A_3 = \begin{bmatrix} n_{11} & n_{12} & n_{13} & n_{14} \\ n_{21} & n_{22} & n_{23} & n_{24} \\ n_{31} & n_{32} & 0 & n_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Poszczególne współczynniki macierzy przyjmują poniższą postać:

$$n_{11} = \frac{\cos(\phi_1 + \phi_2 + \phi_3) + \cos(\phi_1 - \phi_2 - \phi_3)}{2}$$

$$n_{21} = \frac{\sin(\phi_1 + \phi_2 + \phi_3) + \sin(\cos(\phi_1 - \phi_2 - \phi_3))}{2}$$

$$n_{31} = \sin(\phi_2 + \phi_3)$$

$$n_{12} = \frac{-\sin(\phi_1 + \phi_2 + \phi_3) + \sin(\cos(\phi_1 - \phi_2 - \phi_3))}{2}$$

$$n_{22} = \frac{\cos(\phi_1 + \phi_2 + \phi_3) + \cos(\cos(\phi_1 - \phi_2 - \phi_3))}{2}$$

$$n_{32} = \cos(\phi_2 + \phi_3)$$

$$n_{13} = \sin \phi_1$$

$$n_{23} = -\cos \phi_1$$

$$n_{14} = \frac{a_2 \times \cos(\phi_1 + \phi_2) + a_2 \times \cos(\phi_1 - \phi_2) + a_3 \times \cos(\phi_1 + \phi_2 + \phi_3) + a_3 \times \cos(\phi_1 - \phi_2 - \phi_3)}{2}$$

$$n_{14} = \frac{a_2 \times \sin(\phi_1 + \phi_2) + a_2 \times \sin(\phi_1 - \phi_2) + a_3 \times \sin(\phi_1 + \phi_2 + \phi_3) + a_3 \times \sin(\phi_1 - \phi_2 - \phi_3)}{2}$$

$$n_{34} = d_1 + a_2 \times \sin \phi_2 + a_3 \times \sin(\phi_2 + \phi_3)$$

Współrzędne końcowego punktu manipulatora w bazowym układzie współrzędnych mają następującą postać:

$$x = \frac{a_2 \times \cos(\phi_1 + \phi_2) + a_2 \times \cos(\phi_1 - \phi_2) + a_3 \times \cos(\phi_1 + \phi_2 + \phi_3) + a_3 \times \cos(\phi_1 - \phi_2 - \phi_3)}{2}$$

$$y = \frac{a_2 \times \sin(\phi_1 + \phi_2) + a_2 \times \sin(\phi_1 - \phi_2) + a_3 \times \sin(\phi_1 + \phi_2 + \phi_3) + a_3 \times \sin(\phi_1 - \phi_2 - \phi_3)}{2}$$

$$z = d_1 + a_2 \times \sin \phi_2 + a_3 \times \sin(\phi_2 + \phi_3)$$

1.3 Kinematyka Odwrotna

1. Wyznaczanie kąta ϕ_1 :

Rysunek 1.2: Schemat kinematyczny do wyznaczania kąta ϕ_1

Niech wektor $P_C = 4$, zatem rzut środka kiści na płaszczyznę x_0, y_0 przedstawia się następująco:

$$\phi_1 = \operatorname{arctg}(p_x, p_y)$$

gdzie arc tg(x,y) oznaczają dwu
argumentową funkcję arc tg() zdefiniowaną dla wszystkich $(x,y)\neq 0$, wyznaczającą jednoznacznie kąt
 ϕ taki, że:

$$\cos(\phi) = \frac{x}{\sqrt{x^2 + y^2}}, \sin(\phi) = \frac{y}{\sqrt{x^2 + y^2}}$$

Drugim dopuszczalnym rozwiązaniem dla kąta ϕ_1 jest:

$$\phi_1 = \Pi + \operatorname{arctg}(p_x, p_y)$$

2. Pozycja osobliwa manipulatora $\left(p_x=p_y=0\right)$

Rysunek 1.3: Pozycja nieosobliwa manipulatora.

Na rysunku 1.3 przedstawiono pozycję nieosobliwą manipulatora, w której środek kiści leży na osi z_0 , więc dla każdej wartości kąta ϕ_1 położenie środka jest stałe. Zatem występuje nieskończona liczba rozwiązań dla ϕ_1 .

3. Wyznaczanie kątów ϕ_2, ϕ_3 :

Rysunek 1.4: Dwuczłonowy mechanizm płaski

Na mocy wzorów dla dwuczłonowego mechanizmu płaskiego przedstawionego na rysunku 1.4 uzyskujemy następujące wartości dla kątów ϕ_2 i ϕ_3

$$\phi_2 = \arctan (\sqrt{p_x^2 + p_y^2, p_z - d_1}) - \arctan (a_2 + a_3 \cos(\phi_3), a_3 \sin(\phi_3))$$
$$\phi_3 = \arctan (M \pm \sqrt{1 - M^2})$$

Spis treści

1	Analiza kinematyki manipulatora				
	1.1	Schemat kinematyczny manipulatora łokciowego 3R	2		
	1.2	Kinematyka Prosta	3		
	1.3	Kinematyka Odwrotna	6		
	Spis	treści			