· 排筒并极限				
两面移动:				
$\begin{cases} \frac{P}{k_B T} = \frac{1}{\lambda^2} g_{3/2}(2) \end{cases}$				
$n = \frac{1}{\lambda^2} g_{y_\bullet}(z)$				
元雅商并极限下: <u>2~1</u> . 及开9m(≥):。				
gm (7) = 1 / (m) = 2 / 2 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /				
$= \frac{1}{T(m)} \int_{0}^{m} dx \frac{x^{m-1} 3 e^{-x}}{1 - 3 e^{-x}}$				
$=\frac{1}{T(m)}\int_{a}^{\infty}dx\ x^{m-1}\sum_{k=1}^{\infty}\left(2e^{-x}\right)^{k}$				
$= \frac{1}{\prod (m)} \sum_{i=1}^{m} \mathbb{F}^{i} \cdot \int_{0}^{m} dx \cdot \mathbf{x}^{mn} e^{-ix}$ $= \sum_{i=1}^{m} \frac{\mathbb{F}^{i}}{i^{m}} \cdot$:			
$=\sum_{n=1}^{\infty}\frac{f^{n}}{2^{n}}.$	$\overline{m} \int_{0}^{\infty} dt t^{m-1} e^{-t} = \frac{T(m)}{L^{m}}$			
行入.移到:				
$\begin{cases} \frac{P}{\ker 1} = \frac{1}{\lambda^2} \left(2 + \frac{2^2}{2^{3/2}} + \frac{2^3}{3^{3/4}} + \cdots \right) \\ n = \frac{1}{\lambda^2} \left(2 + \frac{2^2}{2^{3/2}} + \frac{2^3}{3^{3/4}} + \cdots \right) \end{cases}$				
运 阶基并:				
$7 = n\lambda^3 - \frac{7^2}{2^{3/2}} - \frac{25}{3^{3/2}} - \cdots [57n\lambda^3 = x]$	נ			
$\mathcal{O}(x): \ \mathcal{Z} = x.$ $\mathcal{O}(x): \ \mathcal{Z} = x - \frac{x^2}{2^{10}} + \mathcal{O}(x^3)$ $\mathcal{O}(x): \ \mathcal{Z} = x - \frac{x^2}{2^{10}} \left(x - \frac{x^2}{2^{10}}\right)^2 - \frac{x^3}{3^{10}} + \frac{x^4}{3^{10}}$	· V (x+)			
结例结果:				
$\frac{P}{\mu_{\text{RT}}} = n - \frac{1}{2^{5/6}} \lambda^3 n^2 - \left(\frac{2}{3^{5/2}} - \frac{1}{8}\right) \lambda^6 n^3$				
∑信力展升的形式:纯解由 <u>银色分布</u> 布多				
$B_2(7) = -\frac{1}{25/2} \lambda^8 \simeq -0.17678 \lambda^3 < 0$.				
对牙段典理想告体,号价敏果为"长程吸引				
另本后及<< 荷政: <u>n2³<<1</u> . □例3年往៛	(珍生的医术,			
・筒弁波色ミ体				
7 = 0 ⁸⁴ > 0,				
$Q = \prod_{k} Q_{k} = \prod_{k} \sum_{n_{k} \neq 0}^{\infty} e^{-\beta (\tilde{z}_{k} - \mu) n_{k}}$				
求和收效, 否求 ε _{k-,} μ > 0 , ∀ k				
⇒ µ <min {2<sub="">k}</min>				
2 8, = 12th rd: 14<0, 37/2 2<1				

$g_{m(2)} = \sum_{i=1}^{\infty} \frac{2i}{L^{m}}$. 院立文件测透外。 $\overline{z} = 0$: $g_{m(0)} = 0$. $\overline{z} = i$: $g_{m(i)} = \sum_{i=1}^{\infty} \frac{1}{L^{m}}$				
独在着孩子放:	= 5 (m).			
$N = \frac{V}{\lambda^3} g_{V_2}(2).$				
高禮: T1. ☆11. 9x(2→0)→0. N 1*	れるる			
1な程: Tレ、大きし、916(+) ミヤ(き)、海陀				
可见在低温下, 无弦像证N多度!				
3==1 rd:				
れる。こく(三) → 临界温度で、				

