CS3230 AY21/22 SEM 2 github/jovyntls

01. COMPUTATIONAL MODELS

- algorithm → a well-defined procedure for finding the correct solution to the input
- correctness
- worst-case correctness → correct on every valid input
- other types of correctness: correct on random input/with high probability/approximately correct
- efficiency / running time → measures the number of steps executed by an algorithm as a function of the input size (depends on computational model used)
- number input: typically the length of binary representation
- **worst-case** running time \rightarrow *max* number of steps executed when run on an input of size n

Comparison Model

- algorithm can ${\bf compare}$ any two elements in one time unit $(x>y,\,x< y,\,x=y)$
- running time = number of comparisons made
- · array can be manipulated at no cost

Maximum Problem

- \bullet problem: find the largest element in an array A of n distinct elements
- proof that n-1 comparisons are needed:
- fix an algorithm M that solves the Maximum problem on all inputs using < n-1 comparisons. construct graph G where nodes i and j are adjacent iff M compares i and j.

- M cannot differentiate A and A'.

Second Largest Problem

- problem: find the second largest element in <2n-3 comparisons (2x Maximum $\Rightarrow (n-1)+((n-1)-1)=2n-3$)
- solution: knockout tournament $\Rightarrow n + \lceil \lg n \rceil 2$

- 1. bracket system: n-1 matches
 - every non-winner has lost exactly once
- 2. then compare the elements that have lost to the largest
 - the second-largest element must have lost to the winner
 - compares $\lceil \lg n \rceil$ elements that have lost to the winner using $\lceil \lg n \rceil 1$ comparisons

Sorting

- there is a sorting algorithm that requires $\leq n\lg n n + 1$ comparisons.
- proof: every sorting algorithm must make $\geq \lg(n!)$ comparisons.
- 1. let set $\mathcal U$ be the set of all permutations of the set $\{1,\dots,n\}$ that the adversary could choose as array A. $|\mathcal U|=n!$
- 2. for each query "is $A_i > A_j$?", if $\mathcal{U}_{yes} = \{A \in \mathcal{U} : A_i > A_j\}$ is of size $\geq |\mathcal{U}|/2$, set $\mathcal{U} := \mathcal{U}_{ues}$. else: $\mathcal{U} := \mathcal{U} \backslash \mathcal{U}_{yes}$
- 3. the size of $\ensuremath{\mathcal{U}}$ decreases by at most half with each comparison
- 4. for $> \lg(n!)$ comparisons, $\mathcal U$ will still contain at least 2 permutations

$$\begin{array}{l} n! \geq (\frac{n}{e})^n \\ \Rightarrow \lg(n!) \geq n \lg(\frac{n}{e}) = n \lg n - n \lg e \\ \approx n \lg n - 1.44n \end{array}$$

 \Rightarrow roughly $n\lg n$ comparisons are **required** and **sufficient** for sorting n numbers

String Model

- input: string of n bits
- each query: find out one bit of the string
- *n* queries are **necessary** and **sufficient** to check if the input string is all 0s.

Graph Model

- input: (symmetric) adjacency matrix of an n-node undirected graph
- each query: find out if an edge is present between two chosen nodes
- proof: $\binom{n}{2}$ queries are necessary to decide whether the graph is connected or not
- 1. suppose M is an algorithm making $\leq \binom{n}{2}$ queries.
- 2. whenever M makes a query, the algorithm tries not adding this edge, but adding all remaining unqueried edges.
 - 2.1. if the resulting graph is connected, M replies 0 (i.e. edge does not exist)
 - 2.2. else: replies 1 (edge exists)
- 3. after $<\binom{n}{2}$ queries, at least one entry of the adjacency matrix is unqueried.

02. ASYMPTOTIC ANALYSIS

- algorithm \to a finite sequence of well-defined instructions to solve a given computational problem
- runtime → measured in number of instructions taken in word-RAM model
- · operators, comparisons, if, return, etc

Asymptotic Notations

$$\begin{array}{c} \text{upper bound (\leq):} \ f(n)=O(g(n))\\ \text{if } \exists c>0, n_0>0 \ \text{such that} \ \forall n\geq n_0, \quad 0\leq f(n)\leq cg(n) \end{array}$$

$$\begin{array}{c} \text{lower bound (\geq):} \ f(n)=\Omega(g(n))\\ \text{if } \exists c>0, n_0>0 \ \text{such that} \ \forall n\geq n_0, \quad 0\leq cg(n)\leq f(n) \end{array}$$

$$\begin{array}{l} \text{tight bound: } f(n) = \Theta(g(n)) \\ \text{if } \exists c_1 > 0, c_2 > 0, n_0 > 0 \text{ such that} \\ \forall n \geq n_0, \quad 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \end{array}$$

```
\begin{split} o \text{ notation (<): } &f(n) = o(g(n)) \\ \text{if } \forall c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0, \\ &0 \leq f(n) < cg(n) \\ &\omega\text{-notation (>): } &f(n) = \omega(g(n)) \\ \text{if } \forall c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0, \\ &0 \leq cg(n) < f(n) \end{split}
```

Set definitions

```
• upper: O(g(n)) = \{f(n) : \exists c > 0, n_0 > 0 \mid \forall n \ge n_0, 0 \le f(n) \le cg(n)\}
```

• lower:
$$\Omega(g(n)) = \{f(n): \exists c>0, n_0>0 \mid \forall n\geq n_0, \ 0\leq cg(n)\leq f(n)\}$$

Proof. that
$$2n^2=O(n^3)$$
 let $f(n)=2n^2$. then $f(n)=2n^2\leq n^3$ when $n\geq 2$. set $c=1$ and $n_0=2$. we have $f(n)=2n^2\leq c\cdot n^3$ for $n\geq n_0$.

Limits

Assume f(n), g(n) > 0.

$$\begin{split} &\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) = o(g(n)) \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) = O(g(n)) \\ &0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) = \Theta(g(n)) \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0 \Rightarrow f(n) = \Omega(g(n)) \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \omega(g(n)) \end{split}$$

Proof. using delta epsilon definition

Properties of Big O

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

• transitivity - applies for $O, \Theta, \Omega, o, \omega$ $f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$

• reflexivity - for $O, \Omega, \Theta, \quad f(n) = O(f(n))$

• symmetry - $f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$

complementarity -

• $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$ • $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

insertion sort: $O(n^2)$ with worst case $\Theta(n^2)$

 $\log\log n < \log n < (\log n)^k < n^k < k^n$

03. ITERATION, RECURSION, DIVIDE-AND-CONQUER

Iterative Algorithms

loop invariant implies correctness if

- initialisation true before the first iteration
- maintenance if true before an iteration, remains true at the beginning of the next iteration
- · termination true at the end

Divide-and-Conquer

powering a number

- problem: compute $f(n,m)=a^n\ (\mathrm{mod}\ m)$ for all integer n,m
- observation: $f(x+y,m) = f(x,m) * f(y,m) \pmod{m}$
- naive solution: recursively compute and combine $f(n-1,m)*f(1,m)\ (\mathrm{mod}\ m)$

- $T(n) = T(n-1) + T(1) + \Theta(1) \Rightarrow T(n) = \Theta(n)$
- better solution: divide and conquer
- divide: trivial
- conquer: recursively compute $f(\lfloor n/2 \rfloor, m)$
- · combine:
- $f(n,m) = f(\lfloor n/2 \rfloor, m)^2 \pmod{m}$ if n is even
- $f(n,m) = f(1,m) * f(\lfloor n/2 \rfloor, m)^2 \pmod{m}$ if odd
- $T(n) = T(n/2) + \Theta(1) \Rightarrow \Theta(\log n)$

Solving Recurrences

for a sub-problems of size $\frac{n}{b}$ where f(n) is the time to divide and combine, $T(n)=aT(\frac{n}{b})+f(n)$

Recursion tree

total = height × number of leaves

Master method

 $T(n) = aT(\frac{n}{b}) + f(n)$ $a \geq 0, b > 1, f$ is asymptotically positive

$$\begin{split} T(n) &= \\ \left\{ \begin{aligned} &\Theta(n^{\log_b a}) & & \text{if } f(n) < n^{\log_b a} \text{ polynomially} \\ &\Theta(n^{\log_b a} \log n) & & \text{if } f(n) = n^{\log_b a} \\ &\Theta(f(n)) & & \text{if } f(n) > n^{\log_b a} \text{ polynomially} \end{aligned} \right. \end{split}$$

harmonic series: $\sum\limits_{k=1}^{\infty} rac{1}{k} pprox \ln k = \Theta(\lg n)$

Substitution method

- 1. guess that T(n) = O(f(n)). i.e. $\exists c$ such that $T(n) \leq c \cdot f(n)$, for $n \geq n_0$.
- 2. verify by induction:
 - 2.1. set $c = \max\{2, q\}$ and $n_0 = 1$
 - 2.2. base case $(n = n_0 = 1)$
 - 2.3. recursive case (n > 1):
 - by strong induction, assume $T(k) = c \cdot f(k)$ for n > k > 1
 - T(n) = $\langle \text{recurrence} \rangle \dots \leq c \cdot f(n)$
 - 2.4. hence $T(n) \le c \cdot f(n)$ for $n \ge 1$.
- ! may not be a tight bound!

example

 $T(n) = 4T(n/2) + n^2/\lg n \Rightarrow \Theta(n^2 \lg \lg n)$

$$\begin{split} \textit{Proof.} \ T(n) &= 4T(n/2) + \frac{n^2}{\lg n} \\ &= 4(4T(n/4) + \frac{(n/2)^2}{\lg n - \lg 2}) + \frac{n^2}{\lg n} \\ &= 16T(n/4) + \frac{n^2}{\lg n - \lg 2} + \frac{n^2}{\lg n} \\ &= \sum_{k=1}^{\lg n} \frac{n^2}{\lg n - k} \\ &= n^2 \lg \lg n \text{ by approx. of harmonic series } (\sum \frac{1}{k}) \end{split}$$