intel

8-Bit Embedded Controller Handbook

LITERATURE

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel Literature Sales. In Europe and other international locations, please contact your local sales office or distributor.

INTEL LITERATURE SALES P.O. BOX 58130 SANTA CLARA, CA 95052-8130 In the U.S. and Canada call toll free (800) 548-4725

CURRENT HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

TITLE	LITERATURE ORDER NUMBER
COMPLETE SET OF HANDBOOKS (Available in U.S. and Canada only)	231003
AUTOMOTIVE PRODUCTS HANDBOOK (Not included in handbook set)	231792
COMPONENTS QUALITY/RELIABILITY HANDBOOK	210997
EMBEDDED CONTROL APPLICATIONS HANDBOOK	270648
8-BIT EMBEDDED CONTROLLER HANDBOOK	270645
16-BIT EMBEDDED CONTROLLER HANDBOOK	270646
32-BIT EMBEDDED CONTROLLER HANDBOOK	270647
MEMORY COMPONENTS HANDBOOK	210830
MICROCOMMUNICATIONS HANDBOOK	231658
MICROCOMPUTER PROGRAMMABLE LOGIC HANDBOOK	296083
MICROPROCESSOR AND PERIPHERAL HANDBOOK (2 volume set)	230843
MILITARY PRODUCTS HANDBOOK (2 volume set. Not included in handbook set)	210461
OEM BOARDS AND SYSTEMS HANDBOOK	280407
PRODUCT GUIDE (Overview of Intel's complete product lines)	210846
SYSTEMS QUALITY/RELIABILITY HANDBOOK	231762
INTEL PACKAGING OUTLINES AND DIMENSIONS (Packaging types, number of leads, etc.)	231369
LITERATURE PRICE LIST (U.S. and Canada) (Comprehensive list of current Intel Literature)	210620
INTERNATIONAL LITERATURE GUIDE	E00029

CG/LIT/100188

About Our Cover:

As the inventor of the 8-bit embedded architecture that leads the market, Intel has provided the basis for over 50% of all 8-bit embedded controllers today. From simple consumer products to complex peripherals, our 8-bit controllers provide new venues for mold-breaking technological development.

Intel the Microcomputer Company:

When Intel invented the microprocessor in 1971, it created the era of microcomputers. Whether used as microcontrollers in automobiles or microwave ovens, or as personal computers or supercomputers, Intel's microcomputers have always offered leading-edge technology. In the second half of the 1980s, Intel architectures have held at least a 75% market share of microprocessors at 16 bits and above. Intel continues to strive for the highest standards in memory, microcomputer components, modules, and systems to give its customers the best possible competitive advantages.

8-BIT

8-BIT

BEMBEDDED CONTROLLER

EMBEDDED CONTROLLER

HANDBOOK

tion in the first of the second second second and the second seco

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMpuler, CREDIT, Data Pipeline, ETOX, FASTPATH, Genius, I. 1 ICE, ICEL, ICS, IOBP, IOIS, IPICE, ILBX, IMDDX, IMMX, Inboard, Insite, Intel, Intellevision, Intellegant Identifier, Intellegant Intellegant Identifier, Intellegant Identifier, Intellegant Identifier, Intellegant Identifier, Intellegant Int

989 an ordering code only and is not used as a product name or trademark. MDS® is a register trademark of Mohawik Data Sciences Corporation.

*MULTIBUS is a patented Intel bus

Additional cooles of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 58130
Senta Clara, CA 95052-8130

Intel the Microcompular Company:

When thell invented the microprocessor in 1971, it created the era of microcomputers. Whether used as microcomputers automobiles or microwave ovens, or as personal computers or supercomputers, intel's microcomputers have always offered leading-adge technology, in the second half of the 1980s, intel the have have held at least a 75% market share of microprocessors at 15 bits and above. Intel continues to strive for the highest standards in memory, microcomputer components, modules, and systems to give its customers the best possible competitive advantages.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, ETOX, FASTPATH, Genius, i, \hat{i} , ICE, iCEL, iCS, iDBP, iDIS, I2ICE, iLBX, i_m, iMDDX, iMMX, Inboard, Insite, Intel, int_el, Intel376, Intel386, Intel486, int_eIBOS, Intel Certified, Intelevision, int_eligent Identifier, int_eligent Programming, Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library Manager, MAPNET, MCS, Megachassis, MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE, ONCE, OpenNET, OTP, PC BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube, UPI, and VLSiCEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix, 4-SITE, 376, 386, 486.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation Literature Sales P.O. Box 58130 Santa Clara, CA 95052-8130

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software support, customer training, consulting services and network management services. For detailed information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in determining whether that product will continue to meet a customer's expectations. Such support requires an international support organization and a breadth of programs to meet a variety of customer needs. As you might expect, Intel's customer support is quite extensive. It can start with assistance during your development effort to network management. 100 Intel sales and service offices are located worldwide — in the U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is within close reach.

HARDWARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity from the start and keep you running at maximum efficiency. Support for system or board level products can be tailored to match your needs, from complete on-site repair and maintenance support economical carry-in or mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Phone Service (TIPS) that has a special toll free number to provide you with direct, ready information on known, documented problems and deficiencies, as well as work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information Phone Service), updates and subscription service (product-specific troubleshooting guides and; *COMMENTS Magazine*). Basic support consists of updates and the subscription service. Contracts are sold in environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product, developing an application, personalizing training and customizing an Intel product to providing technical and management consulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications, embedded microcontrollers, and network services. You know your application needs; we know our products. Working together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include: architecture and assembly language, programming and operating systems, BITBUSTM and LAN applications.

NETWORK MANAGEMENT SERVICES

Today's networking products are powerful and extremely flexible. The return they can provide on your investment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network's physical and functional design, to implementation, installation and maintenance. Whether installing your first network or adding to an existing one, Intel's Networking Specialists can optimize network performance for you.

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software support, customer training, consulting services and network management services. For detailed information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in determining whether that product will continue to meet a customer's expectations. Such support requires an international support organization and a breadth of programs to meet a variety of customer needs. As you might expect, intel's customer support is quite extensive. It can start with assistance during your development effort to network management. 100 Intel sales and service offices are located worldwide — in the U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is within close reach.

HARDWARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity from the start and keep you running at maximum efficiency. Support for system or board level products can be tailored to match your needs, from complete on-site repair and maintenance support economical carry-in or mail-in factory service.

Intel dan provide support service for not only fintel systems and emulators, but also support for equipment in your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Phone Service (TIPS) that has a special roll free number to provide you with direct, ready information on known, documented problems and deficiencies, as well as work-arounds, patches and other solutions,

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information Phone Service), updates and subscription service (product-specific troubleshooting guides and: COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in environments which represent product groupings (e.g., [RMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application of you can use our system engineers in a variety of ways ranging from assistance in using a new product, developing an application, personalizing training and customizing an intel product to providing technical and management constituing. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications, embedded microcontrollers, and network services. You know your application needs; we know our products.

Working together we can belo you get a successful product to market in the least possible time.

CHSTOMER TRAINING

ntel offers a wide range of instructional programs covering various aspects of system design and implementation: a just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study or optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our vorkshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include: Include the same and assembly language, programming and operating systems, BITBUS^M and LAN applications.

NETWORK MANAGEMENT SERVICES

Today's networking products are powerful and extremely flexible. The return they can provide on your investment

Intel offers complete network support, from definition of your network's physical and functional design, to implementation, installation and maintenance. Whether installing your first network or adding to an existing one, Intel's Networking Specialists can optimize network performance for you.

Table of Contents

Alphanumeric Index	x Cha
MCS®-48 FAMILY Hardware Description of the 830152	
MCS®-48 Single Component System	1-1
Chapter 2 MCS®-48 Expanded System	2-1
Chapter 3 MCS®-48 Instruction Set	3-1
Chapter 4 MCS®-48 DATA SHEETS MCS®-48 DATA SHEETS MCS®-48 DATA SHEETS MCS®-48 DATA SHEETS	4-1
MCS®-48 DATA SHEETS 8243 MCS®-48 Input/Output Expander	MARKET LA
HMOS 8-Bit Microcontroller	4-8
MCS®-48 Express	4-33
MCS®-51 FAMILY	
Chapter 5 Chapte	
MCS®-51 Architectural Overview	5-1
Chapter 6 MCS®-51 Programmer's Guide and Instruction Set	6-1
Chapter 7	
Using the Intel MCS®-51 Boolean Processing Capabilities	7-1
	A 8-1
Hardware Description of the 8051, 8052 and 80C51	vn.
8031/8051/8031AH/8051AH/8032AH/8052AH/8751H/8751-8 8-Bit HMOS and	8-35
HMOS EPROM Microcontroller 8051AHP 8-Bit Microcontroller with Protected ROM	8-49
8031AH/8051AH/8032AH/8751H/8751H-8 Express	8-59
8751BH 8-Bit HMOS EPROM Microcontroller	8-61
8752BH 8-Bit HMOS EPROM Microcontroller	8-73
8752BH Express	8-85
80C31BH/80C51BH 8-Bit CHMOS Microcontroller	8-87
80C31BH/80C51BH Express	8-100
80C51 BHP 8-Bit CHMOS Microcontroller with Protected ROM	8-102
87C51 8-Bit CHMOS EPROM Microcontroller	8-115
87C51 Express Chapter 9	0-129
Hardware Description of the 83C51FA/FB	9-1
Hardware Description of the 83C51FA/FB. DATA SHEETS 83C51FA 8-Bit CHMOS Microcontroller	
83C51FA Express	9-57
87C51FA 8-Bit CHMOS Microcontroller	9-59
87C51FA Express	9-75 9-78
87C51FB 8-Bit CHMOS Microcontroller	9-91
EV80C51FA Microcontroller Evaluation Board Fact Sheet	9-107 9-109
Chapter 10	
Chapter 10 Hardware Description of the 8XC51GA	10-1
DATA SHEET 87C51GA 8-Bit CHMOS Microcontroller	
6705 TGA 6-BIL CHIVIOS IVIICTOCOTILIONET	10-12

Table of Contents (Continued)

x Chapter 11 x Sphill on a munishquar	
Hardware Description of the 83C152	1151
DATA SHEETS	11 60
	11-69 11-85
Chapter 12 Hardware Description of the 8XC451 Hardware Description of the 8XC451	
	12-1
8XC451 8-Bit CHMOS Microcontroller	12-5
Chapter 13 UPITM-452 CHMOS Programmable I/O Processor	13-1
Chapter 14 DATA SHEETS DATA SHEETS DATA SHEETS DATA SHEETS	
27C64/87C64 64K (8K v 8) CHMOS Production and LIV Frasable PROM	14-1
87C257 256K (32K x 8) CHMOS UV Erasable PROM 87C75PF Microcontroller Peripheral I/O Port Expander	14-14
87C75PF Microcontroller Peripheral I/O Port Expander	830
MOCO EL DEVELODMENT CUIDDODT TOOLS	
1-3 8051 Software Packageswsiv:ev0.isrutoetidorA.t.a.e20M	15-1
AEDIT Text Editor Fact Sheet	
ICETM-5100/252 Fact Sheet	15-6
ICETM-5100/451 Fact Sheet	15-10
Chapter 16	
ASIC: INTEL CELL-BASED DESIGN AND has CARE FARE and to nothing all assumption	
introduction to inter cell-based besign	16-1
DATA SHEETS 9 9 9 7278 H1278 HASSOS HASSOS HATSOS HATS	16-12
LICE1 Timing Coloulation Deckage Fact Cheet	
ASIC Tools and Services	16-25
ASIC Tools and Services	16-27
Daisy-Based ASIC Libraries	16-29
ACS®-96/8098 FAMILY	
Chapter 17 relicrocontroller MOS Microcontroller Page 148 18308 HB16308	
MCS®-96 8098 Architectural Overview	17-1
8098/8398 Advanced 8-Bit Microcontroller with 16-Bit CPU	17-43
BYCS1 Express EXPRESS	
H (27 H H H H H H H H H H H H H H H H H H H	Cha
Chapter 18 The RUPITM-44 Family	18-1
83C51FA 8-Bit CHMOS Microcontroller	
Value 8044 Architecture	19-1
87C51FA 8-Bit CHMOS Microcontroller	
8044 Serial Interface	20-1
8 Chapter 21 silosmoocratik 20MHO #18-8 8718068	
Chapter 22 8044 Application Examples	21-1
Chapter 22 8044 DATA SHEET 8044 DATA SHEET See Sheet	
8044AH/8344AH/8744H High Performance 8-Bit Microcontroller with On-Chip	
Serial Communication Controller	22-1
	and .

Table of Contents (Continued)

	UPITM DEVELOPMENT SUPPORT TOOL & ROBOUDO FE SOMHO (8 x X8) X48 ASO 8 A	
OR R	UPITM DEVELOPMENT SUPPORT TOOL ICETM-5100/044 In-Circuit Emulator Fact Sheet	A 1508
5575	ICE M-5100/044 In-Circuit Emulator Fact Sneet	1209
MCS®	-80/85 FAMILY reflections and the second sec	
Cha	pter 24 selgmax3 notability	
1-0180	7-80/85 FAMILY Apter 24 O/85 DATA SHEETS O/85 DATA SHEETS	8044 /
	8080A/8080A-1/8080A-2 8-Bit N-Channel Microprocessor	24-1
	8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessor doi:	24-11
	o tooth o tooth o tooth Erotoon E 2040 Bit otatio him oo to this with ho to to and	Gon
		24-31
	8185/8185-2 1024 x 8-Bit Static RAM for MCS®-85.cn. div relicitors of the control	24-45
24-1	8224 Clock Generator and Driver for 8080A CPU	24-50
	8755A 16,384-Bit EPROM with I/O	24-59
Carl Sale		24-59
onho	BH/80051BH Express	25-1
001-0	MCS®-48 Index	25-3
	8YC451 Architectural Index	25-5
24-45	8XC451 Architectural Index. MAR 20M 101 MA	8185/8
24-50	lock Generator and Driver for 8080A CPU	
	ysiem Controller and Bus Driver for 8080A CPU	
	ICS®-48 Input/Output Expander	
	FA 8-Bit CHMOS Microcontroller	
9-57	"A EXPIESS	
9-78	FB 8-Bit CHMOS Microcontroller	
19-8	4 8-Bit HMOS EPROM Microcontroller	
8-75	4 8-Bit HMOS EPROM Microcontroller	
	Express	
24-59	16,384-Bit EPROM with I/O. 7 255K (32K x 8) CHMOS UV Erasable PROM	
14-14	8-Bit CHMOS EPROM Microcontroller	
8-129	Express	
	FA 8-Bit CHMOS Microcontroller	
9-75	FA Express	
	E 8-8t CHMOS Microcontroller	
10-12	3A 8-Bit CHMOS Microcontroller	
14-25	F Microcontroller Peripheral I/O Port Expander	
11-69	2 JA/JB/JC/JD Communication Controller	
11-85	ZUA/JB/JC/JD Express	
12-5	8-Bit CHMOS Microcontroller	
15-4	Text Editor Fact Sheet	TOUSA
16-25	pols and Services	
4-21	1/8749H HMOS-E Single-Component 8-Bit Microcomputer	
16-29	ased ASIC Libraries	
9-107	FFB Microcontroller Evaluation Board Fact Sheet	
9-109	re Description of the 8XC51GA	ewhork
1-11	re Description of the 83C152	
	re Description of the 83C51FA/FB	
	re Description of the 8XC451	
	re Description of the 8051, 8052 and 80C51	
	5100/252 Fact Sheet	
	300/451 Fact Sheet	

1.5 Micron CHMOS III Cell Library	16-12
27C64/87C64 64K (8K x 8) CHMOS Production and UV Erasable PROM	
8031AH/8051AH/8032AH/8751H/8751H-8 Express	8-59
8031/8051/8031AH/8051AH/8032AH/8052AH/8751H/8751-8 8-Bit HMOS and HMOS	
EPROM Microcontroller	8-35
8044 Application Examples	21-1
8044 Architecture CTARRATAG 38.4	19-1
8044 Serial Interface	20-1
8044AH/8344AH/8744H High Performance 8-Bit Microcontroller with On-Chip Serial	
Communication Controller CAR 2004 And ARCH BAR SAR SAR SAR SAR SAR SAR SAR SAR SAR S	22-1
8051 Software Packages	15-1
8051AHP 8-Bit Microcontroller with Protected ROM	8-49
8080A/8080A-1/8080A-2 8-Bit N-Channel Microprocessor	24-1
8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessor	24-11
8098/8398 Advanced 8-Bit Microcontroller with 16-Bit CPU	17-43
80C31BH/80C51BH 8-Bit CHMOS Microcontroller	
80C31BH/80C51BH Express	
80C51 BHP 8-Bit CHMOS Microcontroller with Protected ROM	8-102
8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer	
8185/8185-2 1024 x 8-Bit Static RAM for MCS®-85	24-45
8224 Clock Generator and Driver for 8080A CPU.	24-50
8228 System Controller and Bus Driver for 8080A CPU	24-55
8243 MCS®-48 Input/Output Expander	4-1
83C51FA 8-Bit CHMOS Microcontroller	9-43
83C51FA Express	9-57
83C51FB 8-Bit CHMOS Microcontroller	9-78
8751BH 8-Bit HMOS EPROM Microcontroller	8-61
8752BH 8-Bit HMOS EPROM Microcontroller	8-73
8752BH Express	8-85
8755A 16,384-Bit EPROM with I/O	24-59
87C257 256K (32K x 8) CHMOS UV Erasable PROM	14-14
87C51 8-Bit CHMOS EPROM Microcontroller	8-115
87C51 Express	8-129
87C51FA 8-Bit CHMOS Microcontroller	9-59
87C51FA Express	9-75
87C51FB 8-Bit CHMOS Microcontroller	9-91
87C51GA 8-Bit CHMOS Microcontroller	10-12
87C75PF Microcontroller Peripheral I/O Port Expander	14-25
8XC152 JA/JB/JC/JD Communication Controller	11-69
8XC152 JA/JB/JC/JD Express	11-85
8XC451 8-Bit CHMOS Microcontroller	12-5
AEDIT Text Editor Fact Sheet	15-4
ASIC Tools and Services	16-25
D8748H/8749H HMOS-E Single-Component 8-Bit Microcomputer	4-21
Daisy-Based ASIC Libraries	16-29
EV80C51FA Microcontroller Evaluation Board Fact Sheet	9-107
EV80C51FB Microcontroller Evaluation Board Fact Sheet	9-109
Hardware Description of the 8XC51GA	10-1
Hardware Description of the 83C152	11-1
Hardware Description of the 83C51FA/FB	9-1
Hardware Description of the 8XC451	12-1
Hardware Description of the 8051, 8052 and 80C51	8-1
ICETM-5100/252 Fact Sheet	15-6
ICETM-5100/451 Fact Sheet	15-10

Alphanumeric Index (Continued)

letni

ICETM-5100/452 In-0	Circuit Emulator F	act Sheet .	ets may appear in	ollowing produ	1.edt lo 23-1
MCS®-48 Expanded MCS®-48 Express .	. Sugar kanlann e dani	henra cast To .	bt.L. crocooni2.1	atal . and hop	4-33
MCS®-48 Instruction	Set		mer Anterdeducing	dans no france to	3-1
MCS®-48 Instruction MCS®-48 Single Con	page of Custom	S91100.0011.	ot than moted here to	MI GIE STORDONG	i rindialundi
MCS®-48 Single Con	nponent System			unibers	trangles bart un
MCS®-51 Architectul	rai Overview				5-1
MCS®-96 8098 Archi	itectural Overview	v			17-1
Mentor-Based ASIC	Libraries			CARLAND ARAD BAIL!	
P8748H/P8749H/80	148AH/8035AHL	/8049AH/80)39AHL/8050AH/8	040AHL HMOS	8-Bit
Microcontroller	Product Codes/	Construction of the constr	Fart Nanheau	Froduct Codes/	4-8
UC51 Timing Calcula	tion Package For	ot Shoot		Part Halabers	16.22
UDITAL AFRICA DE LA COLOR	Illori Fackage Fac	of Officer			10-23
UPITM-452 CHMOS F	rogrammable 1/0	Processor		*****************	13-1
Using the Intel MCS®	-51 Boolean Pro	cessing Cap	abilities		7-1
		KMS			
	PENLAN				
		KT60		p914	
		KW140			
		E/W40			
		MDSGID			
		MDX3013			B386M4
		MDX3015			
		MDX3016			
	pMDX457 pMDX457	MBX457 MDX457			
					DSSASM
				pD86ED1	
				PET PGUPILOGICHD	
		KIBGELM			
		R286SSC			
	pRCK920				
	pRMX/86				
					111086
					1H286
sSBC18603					
		SBC18848			
			THE THE PARTY OF T		
sSBC220				pIPATS6	
		SBC28612			
		SBC28614		pkMil	

Any of the following products may appear in this publication. If so, it must be noted that such products have counterparts manufactured by Intel Puerto Rico, Inc., Intel Puerto Rico II, Inc., and/or Intel Singapore, Ltd. The product codes/part numbers of these counterpart products are listed below next to the corresponding Intel Corporation product codes/part numbers.

Intel Corporation Product Codes/ Part Numbers	Intel Puerto Rico, Inc. Intel Puerto Rico II, Inc. Product Codes/ Part Numbers Intel Singapore, Ltd. Product Codes/ Part Numbers	Intel Corporation Product Codes/ Part Numbers	Intel Puerto Rico, Inc. Intel Puerto Rico II, Inc. Product Codes/ Part Numbers	Intel Singapore, Ltd. Product Codes/ Part Numbers
376SKIT	p376SKIT	KM2 019 0\	рКМ2	
903	p903 eeitilide	KM4	pKM4	
904	p904	KM8	pKM8	
913	p913	KNLAN	pKNLAN	
914	p914	KT60	pKT60	
923	p923	KW140	pKW140	
924	p924	KW40	pKW40	
952	p952	KW80	pKW80	
953	p953	M1	pM1	
954	p954	M2	pM2	
ADAICE	pADAICE	M4	pM4	
B386M1	pB386M1	M8	pM8	
B386M2	pB386M2	MDS610	pMDS610	
B386M4	pB386M4	MDX3015	pMDX3015	
B386M8	pB386M8	MDX3015	pMDX3015	
C044KIT	pC044KIT	MDX3016	pMDX3016	
C252KIT	pC252KIT	MDX3016	pMDX3016	
C28	pC28	MDX457	pMDX457	
C32	pC32	MDX457	pMDX457	
C452KIT	pC452KIT	MDX458	pMDX458	
D86ASM	pD86ASM	MDX458	pMDX458	
D86C86	pD86C86	MSA96	pMSA96	
D86EDI	pD86EDI	NLAN	pNLAN	
DCM9111	pDCM9111	PCLINK		sPCLINK
DOSNET	pDOSNET	PCX344A	pPCX344A	
F1	pF1	R286ASM	pR286ASM	
GUPILOGICIID	pGUPILOGICIID	R286EDI	pR286EDI	
H4	pH4	R286PLM	pR286PLM	
1044	pI044	R286SSC	pR286SSC	
I252KIT	pI252KIT	R86FOR	pR86FOR	-DCD4410
I452KIT	pI452KIT	RCB4410	-BCV020	sRCB4410
I86ASM	pI86ASM	RCX920	pRCX920	
ICE386	pICE386	RMX286 RMXNET	pRMX286 pRMXNET	
III010	pIII010	S301	pS301	
III086 III086	pIII086 TIII086	S386	pS386	
III111	pIII111	SBC010	pSBC010	
III186	pIII186	SBC012	pSBC012	sSBC012
III186	TIII186	SBC020	pSBC020	SODCOIZ
III198	pIII198	SBC028	pSBC028	
III212	pIII212	SBC040	pSBC040	
III286	pIII286	SBC056	pSBC056	
III286	TII1286	SBC108	pSBC108	
III515	pIII515	SBC116	pSBC116	
III520	TIII520	SBC18603	pSBC18603	sSBC18603
III520	pIII520	SBC186410	pSBC186410	
III531	pIII531	SBC18651	pSBC18651	sSBC18651
III532	pIII532	SBC186530	pSBC186530	
III533	pIII533	SBC18678	pSBC18678	
III621	pIII621	SBC18848	pSBC18848	sSBC18848
III707	pIII707	SBC18856	pSBC18856	sSBC18856
III707	TIII707	SBC208	pSBC208	sSBC208
III815	pIII815	SBC214	pSBC214	
INA961	pINA961	SBC215	pSBC215	
IPAT86	pIPAT86	SBC220	pSBC220	sSBC220
KAS	pKAS	SBC221	pSBC221	
KC	pKC	SBC28610	pSBC28610	sSBC28610
KH	pKH	SBC28612	pSBC28612	
KM1	pKM1	SBC28614	pSBC28614	

Intel Corporation Product Codes/ Part Numbers	Intel Puerto Rico, Inc. Intel Puerto Rico II, Inc. Product Codes/ Part Numbers	Intel Singapore, Ltd. Product Codes/ Part Numbers	Intel Corporation Product Codes/ Part Numbers	Intel Puerto Rico, Inc. Intel Puerto Rico II, Inc. Product Codes/ Part Numbers	Intel Singapore, Ltd Product Codes/ Part Numbers
SBC28616	pSBC28616		SBCMEM310	pSBCMEM310	3
SBC300	pSBC300		SBCMEM312	pSBCMEM312	
SBC301	pSBC301		SBCMEM320	pSBCMEM320	
SBC302	pSBC302		SBCMEM340	pSBCMEM340	
SBC304	pSBC304		SBE96	pSBE96	
SBC307	pSBC307		SBX217	pSBX217	
SBC314	pSBC314		SBX218	pSBX218	
SBC322	pSBC322		SBX270	pSBX270	
SBC324	pSBC324		SBX311	pSBX311	
SBC337	pSBC337		SBX328	pSBX328	
SBC341	pSBC341		SBX331	pSBX331	
SBC386	pSBC386	sSBC386	SBX344	pSBX344	
SBC386116	pSBC386116		SBX350	pSBX350	
SBC386120	pSBC386120		SBX351	pSBX351	
SBC38621	pSBC38621		SBX354	pSBX354	
SBC38622	pSBC38622		SBX488	pSBX488	
SBC38624	pSBC38624		SBX586		sSBX586
SBC38628	pSBC38628		SCHEMAIIPLD	pSCHEMAIIPLD	
SBC38631	pSBC38631		SCOM	pSCOM	
SBC38632	pSBC38632		SDK51	pSDK51	
SBC38634	pSBC38634		SDK85	pSDK85	
SBC38638	pSBC38638	-CDC420	SDK86	pSDK86	
SBC428	pSBC428	sSBC428	SXM217	pSXM217	
SBC464 SBC517	pSBC464 pSBC517		SXM28612 SXM386	pSXM28612 pSXM386	
SBC517 SBC519	pSBC517 pSBC519	sSBC519	SXM544	pSXM544	
SBC519	pSBC519	sSBC519	SXM552	pSXM552	
SBC548	pSBC548	35BC334	SXM951	pSXM951	
SBC550	TSBC550		SXM955	pSXM955	
SBC550	pSBC550		SYP120	pSYP120	
SBC550	pSBC550		SYP301	pSYP301	
SBC552	pSBC552		SYP302	pSYP302	
SBC556	pSBC556	sSBC556	SYP31090	pSYP31090	
SBC569	pSBC569		SYP311	pSYP311	
SBC589	pSBC589		SYP3847	pSYP3847	
SBC604	pSBC604		SYR286	pSYR286	
SBC608	pSBC608		SYR86	pSYR86	
SBC614	pSBC614		SYS120	pSYS120	
SBC618	pSBC618		SYS310	pSYS310	
SBC655	pSBC655		SYS311	pSYS311	
SBC6611	pSBC6611		T60	pT60	
SBC8010	pSBC8010		TA096	pTA096	
SBC80204	pSBC80204	CDC0004	TA252	pTA252	
SBC8024	pSBC8024	sSBC8024	TA452	pTA452	
SBC8030	pSBC8030	-CDC0606	W140	pW140	
SBC8605	pSBC8605	sSBC8605	W280	pW280	
SBC8612 SBC8614	pSBC8612 pSBC8614		W40 W80	pW40 pW80	
SBC8630	pSBC8630	sSBC8630	XNX286DOC	pXNX286DOC	
SBC8635	pSBC8635	sSBC8635	XNX286DOCB	pXNX286DOCB	
SBC86C38	positions	sSBC86C38	XNXIBASE	pXNXIBASE	
SBC8825	pSBC8825	sSBC8825	XNXIDB	pXNXIDB	
SBC8840	pSBC8840	552 50025	XNXIDESK	pXNXIDESK	
SBC8845	pSBC8845	sSBC8845	XNXIPLAN	pXNXIPLAN	
SBC905	pSBC905		XNXIWORD	pXNXIWORD	
SBCLNK001	pSBCLNK001				

iel Corporation uduet Codes/ iet Pianabers	Intel Puerto Rico, Inc. batel Puerto Rico II, Inc. Freduct Codes/ Part Numbers	lutel Singeparo, Ltd. Product Codes/ Part Numbers	Intel Corporation Product Codes/ Part Plumbers	Intel Paieto Rico, line. Intel Paerro Rico II, Inc. Product Codes/ Part Numbers	Intel Stagapore, Ltd., Product Cohes/ Parl Numbers
				#SBCMEM310	
			SBCMBM320		
	pSBC304				
	0SBC314				
	pSBC324				
				pSBX331	
			SBX344		
				#SBX351	
			SBX354		
			SBY488		
				PSCHEMAHPLD	
	pSBC428		SXM217		
				pSXM28612	
615.08		*SBC519			
	pSRC548		SXM951	pSXM951	
	TSBC530 .		SXIM955		
				PSY8311	
				0750	
			William		
			MAXISSDOC		
			XNX286DOCB		
				DXNXIBASE	
				agixux _q	
				PKNKIRAN	

MCS®-48 Single Component System

THE SINGLE COMPONENT MCS®-48 SYSTEM

1.0 INTRODUCTION

Sections 2 through 5 describe in detail the functional characteristics of the 8748H and 8749H EPROM. 8048AH/8049AH/8050AH ROM, and 8035AHL/ 8039AHL/8040-AHL CPU only single component microcomputers. Unless otherwise noted, details within these sections apply to all versions. This chapter is limited to those functions useful in single-chip implementations of the MCS®-48. The Chapter on the Expanded MCS®-48 System discusses functions which allow expansion of program memory, data memory, and input output capability.

2.0 ARCHITECTURE

The following sections break the MCS-48 Family into functional blocks and describe each in detail. The following description will use the 8048AH as the representative product for the family. See Figure 1.

2.1 Arithmetic Section

The arithmetic section of the processor contains the basic data manipulation functions of the 8048AH and can be divided into the following blocks:

- Arithmetic Logic Unit (ALU)
- Accumulator
- · Carry Flag
- Instruction Decoder

In a typical operation data stored in the accumulator is combined in the ALU with data from another source on the internal bus (such as a register or I/o port) and the result is stored in the accumulator or another register.

The following is more detailed description of the function of each block.

INSTRUCTION DECODER

The operation code (op code) portion of each program instruction is stored in the Instruction Decoder and converted to outputs which control the function of each of the blocks of the Arithmetic Section. These lines control the source of data and the destination register as well as the function performed in the ALU.

ARITHMETIC LOGIC UNIT

The ALU accepts 8-bit data words from one or two sources Therefore, the first instruction to be executed after iniand generates an 8-bit result under control of the Instruction Decoder. The ALU can perform the following functions:

- · Add With or Without Carry
- AND, OR, Exclusive OR
- Increment/Decrement
- Bit Complement
- Rotate Left, Right
- Swap Nibbles
- BCD Decimal Adjust

If the operation performed by the ALU results in a value represented by more than 8 bits (overflow of most significant bit), a Carry Flag is set in the Program Status

ACCUMULATOR

The accumulator is the single most important data register in the processor, being one of the sources of input to the ALU and often the destination of the result of operations performed in the ALU. Data to and from I/O ports and memory also normally passes through the accumulator.

2.2 Program Memory

Resident program memory consists of 1024, 2048, or 4096 words eight bits wide which are addressed by the program counter. In the 8748H and the 8749H this memory is user programmable and erasable EPROM; in the 8048AH/ 8049AH/8050AH the memory is ROM which is mask programmable at the factory. The 8035AHL/8039AHL/ 8040AHL has no internal program memory and is used with external memory devices. Program code is completely interchangeable among the various versions. To access the upper 2K of program memory in the 8050AH, and other MCS-48 devices, a select memory bank and a JUMP or CALL instruction must be executed to cross the 2K boundary.

There are three locations in Program Memory of special importance as shown in Figure 2.

LOCATION 0

Activating the Reset line of the processor causes the first instruction to be fetched from location 0.

LOCATION 3

Activating the Interrupt input line of the processor (if interrupt is enabled) causes a jump to subroutine at location 3.

LOCATION 7

A timer/counter interrupt resulting from timer counter overflow (if enabled) causes a jump to subroutine at loca-

tialization is stored in location 0, the first word of an external interrupt service subroutine is stored in location 3, and the first word of a timer/counter service routines

is stored in location 7. Program memory can be used to store constants as well as program instructions. Instructions such as MOVP and MOVP3 allow easy access to data "lookup" tables.

Figure 2. Program Memory Map

2.3 Data Memory

Resident data memory is organized as 64, 128, or 256 by 8-bits wide in the 8048AH, 8049AH and 8050AH. All locations are indirectly addressable through either of two RAM Pointer Registers which reside at address 0 and 1 of the register array. In addition, as shown in Figure 3, the first 8 locations (0–7) of the array are designated as working registers and are directly addressable by several instructions. Since these registers are more easily addressed, they are usually used to store frequently accessed intermediate results. The DJNZ instruction makes very efficient use of the working registers as program loop counters by allowing the programmer to decrement and test the register in a single instruction.

By executing a Register Bank Switch instruction (SEL RB) RAM locations 24-31 are designated as the working

registers in place of locations 0-7 and are then directly addressable. This second bank of working registers may be used as an extension of the first bank or reserved for use during interrupt service subroutines allowing the registers of Bank 0 used in the main program to be instantly "saved" by a Bank Switch. Note that if this second bank is not used, locations 24-31 are still addressable as general purpose RAM. Since the two RAM pointer Registers R0 and R1 are a part of the working register array, bank switching effectively creates two more pointer registers (R0/and R1/) which can be used with R0 and R1 to easily access up to four separate working areas in RAM at one time. RAM locations (8-23) also serve a dual role in that they contain the program counter stack as explained in Section 2.6. These locations are addressed by the Stack Pointer during subroutine calls as well as by RAM Pointer Registers R0 and R1. If the level of subroutine nesting is less than 8, all stack registers are not required and can be used as general purpose RAM locations. Each level of subroutine nesting not used provides the user with two additional RAM locations.

Figure 3. Data Memory Map

2.4 Input/Output www.smitzmangorf.adT. show add

The 8048AH has 27 lines which can be used for input or output functions. These lines are grouped as 3 ports of 8 lines each which serve as either inputs, outputs or bidirectional ports and 3 "test" inputs which can alter program sequences when tested by conditional jump instructions.

PORTS 1 AND 2

Ports 1 and 2 are each 8 bits wide and have identical characteristics. Data written to these ports is statically latched and remains unchanged until rewritten. As input ports these lines are non-latching, i.e., inputs must be present until read by an input instruction. Inputs are fully TTL compatible and outputs will drive one standard TTL load.

The lines of ports 1 and 2 are called quasi-bidirectional because of a special output circuit structure which allows each line to serve as an input, and output, or both even though outputs are statically latched. Figure 4 shows the circuit configuration in detail. Each line is continuously pulled up to V_{CC} through a resistive device of relatively high impedance.

This pullup is sufficient to provide the source current for a TTL high level yet can be pulled low by a standard TTL gate thus allowing the same pin to be used for both input and output. To provide fast switching times in a ''0'' to ''1'' transition a relatively low impedance device is switched in momentarily (\approx 1/5 of a machine cycle) whenever a ''1'' is written to the line. When a ''0'' is written to the line a low impedance device overcomes the light pullup and provides TTL current sinking capability. Since the pulldown transistor is a low impedance device a ''1'' must first be written to any line which is to be used as an input. Reset initializes all lines to the high impedance ''1'' state.

It is important to note that the ORL and the ANL are read/write operations. When executed, the μ C "reads" the port, modifies the data according to the instruction, then "writes" the data back to the port. The "writing" (essentially an OUTL instruction) enables the low impedance pull-up momentarily again even if the data was unchanged from a "1." This specifically applies to configurations that have inputs and outputs mixed together on the same port. See also section 8 in the Expanded MCS-48 System chapter.

to be tested by the users program. By using the condit QUE

Bus is also an 8-bit port which is a true bidirectional port with associated input and output strobes. If the bidirectional feature is not needed, Bus can serve as either a

statically latched output port or non-latching input port. Input and output lines on this port cannot be mixed however.

As a static port, data is written and latched using the OUTL instruction and inputted using the INS instruction. The INS and OUTL instructions generate pulses on the corresponding \overline{RD} and \overline{WR} output strobe lines; however, in the static port mode they are generally not used. As a bidirectional port the MOVX instructions are used to read and write the port. A write to the port generates a pulse on the \overline{WR} output line and output data is valid at the trailing edge of \overline{WR} . A read of the port generates a pulse on the \overline{RD} output line and input data must be valid at the trailing edge of \overline{RD} . When not being written or read, the BUS lines are in a high impedance state. See also sections 7 and 8 in the Expanded MCS-48 System chapter.

2.5 Test and INT Inputs

Three pins serve as inputs and are testable with the conditional jump instruction. These are T0, T1, and \overline{INT} . These pins allow inputs to cause program branches without the necessity to load an input port into the accumulator. The T0, T1, and \overline{INT} pins have other possible functions as well. See the pin description in Section 3.

2.6 Program Counter and Stack

The Program Counter is an independent counter while the Program Counter Stack is implemented suing pairs of registers in the Data Memory Array. Only 10, 11, or 12 bits of the Program Counter are used to address the 1024, 2048, or 4096 words of on-board program memory of the 8048AH, 8049AH, or 8050AH, while the most significant bits can be used for external Program Memory fetches. See Figure 5. The Program Counter is initialized to zero by activating the Reset line.

Figure 5. Program Counter

An interrupt or CALL to a subroutine causes the contents of the program counter to be stored in one of the 8 register pairs of the Program Counter Stack as shown in Figure 6. The pair to be used is determined by a 3-bit Stack Pointer which is part of the Program Status Word (PSW).

Figure 6. Program Counter Stack

Data RAM locations 8-23 are available as stack registers and are used to store the Program Counter and 4 bits of PSW as shown in Figure 6. The Stack Pointer when initialized to 000 points to RAM locations 8 and 9. The first subroutine jump or interrupt results in the program counter contents being transferred to locations 8 and 9 of the RAM array. The stack pointer is then incremented by one to point to locations 10 and 11 in anticipation of another CALL. Nesting of subroutines wihtin subroutines can continue up to 8 times without overflowing the stack. If overflow does occur the deepest address stored (locations 8 and 9) will be overwritten and lost since the stack pointer overflows from 111 to 000. It also underflows from 000 to 111.

The end of a subroutine, which is signalled by a return instruction (RET or RETR), causes the Stack Pointer to be decremented and the contents of the resulting register pair to be transferred to the Program Counter.

2.7 Program Status Word

An 8-bit status word which can be loaded to and from the accumulator exists called the Program Status Word (PSW). Figure 7 shows the information available in the word. The Program Status Word is actually a collection of flip-flops throughout the machine which can be read or written as a whole. The ability to write to PSW allows for easy restoration of machine status after a power down sequence.

Figure 7. Program Status Word (PSW)

The upper four bits of PSW are stored in the Program Counter Stack with every call to subroutine or interrupt vector and are optionally restored upon return with the RETR instruction. The RET return instruction does not the circuit configuration in detail. Each line, WSP abbqu ously pulled up to VCC through a resistive device

The PSW bit definitions are as follows:

- Bits 0-2: Stack Pointer bits (S₀, S₁, S₂) can be pulled low by a standard TTI.
- Bit 3: Not used ("1" level when read)
- Bit 4: Working Register Bank Switch Bit (BS) -madw (al 0 = Bank 0 to 21 =) vinatnamom ni banatiwa nestriw at 1 = Bank 1 only of the bring at 1 1 a rows

- Bit 5: Flag 0 bit (F0) user controlled flag which can be complemented or cleared, and tested with the conditional jump instruction JF0.
- Bit 6: Auxiliary Carry (AC) carry bit generated by an ADD instruction and used by the decimal adjust instruction DA A.
- Bit 7: Carry (CY) carry flag which indicates that the previous operation has resulted in overflow of the accumulator.

2.8 Conditional Branch Logic

The conditional branch logic within the processsor enables several conditions internal and external to the processor to be tested by the users program. By using the conditional jump instruction the conditions that are listed in Table 1 can effect a change in the sequence of the program execution. If Il and the sugar belsioned

Table 1

Device Testable	Jump Conditions (Jump On)		
		not all	
Accumulator	All zeros	zeros	
Accumulator Bit		1	
Carry Flag	0	1	
User Flags (F0, F1)		1	
Timer Overflow Flag	0 -	1	
Test Inputs (T0, T1)	0	1	
Interrupt Input (INT)	0	+	

2.9 Interrupt

An interrupt sequence is initiated by applying a low "0" level input to the INT pin. Interrupt is level triggered and active low to allow "WIRE ORing" of several interrupt sources at the input pin. Figure 8 shows the interrupt logic of the 8048AH. The Interrupt line is sampled every instruction cycle and when detected causes a "call to subroutine" at location 3 in program memory as soon as all cycles of the current instruction are complete. On 2cycle instructions the interrupt line is sampled on the 2nd cycle only. INT must be held low for at least 3 machine cycles to ensure proper interrupt operations. As in any CALL to subroutine, the Program Counter and Program Status word are saved in the stack. For a description of this operation see the previous section, Program Counter and Stack. Program Memory location 3 usually contains an unconditional jump to an interrupt service subroutine elsewhere in program memory. The end of an interrupt service subroutine is signalled by the execution of a Return and Restore Status instruction RETR. The interrupt system is single level in that once an interrupt is detected all further interrupt requests are ignored until execution of an RETR reenables the interrupt input logic. This occurs at the beginning of the second cycle of the RETR instruction. This sequence holds true also for an internal interrupt generated by timer overflow. If an internal timer/counter generated interrupt and an external interrupt are detected at the same time, the external source will be recognized. See the following Timer/Counter section for a description of timer interrupt. If needed, a second external interrupt can be created by enabling the timer/counter interrupt, loading FFH in the Counter (ones less than terminal count), and enabling the event counter mode. A "1" to "0" transition on the T1 input will then cause an interrupt vector to location 7.

INTERRUPT TIMING

The interrupt input may be enabled or disabled under Program Control using the EN I and DIS I instructions. Interrupts are disabled by Reset and remain so until enabled by the users program. An interrupt request must be removed before the RETR instruction is executed upon return from the service routine otherwise the processor will re-enter the service routine immediately. Many peripheral devices prevent this situation by resetting their interrupt request line whenever the processor accesses (Reads or Writes) the peripherals data buffer register. If the interrupting device does not require access by the processor, one output line of the 8048AH may be designated as an "interrupt acknowledge" which is activated by the service subroutine to reset the interrupt request. The INT pin may also be tested using the conditional jump instruction JNI. This instruction may be used to detect the presence of a pending interrupt before interrupts are enabled. If interrupt is left disabled, INT may be used as another test input like T0 and T1.

2.10 Timer/Counter

The 8048AH contains a counter to aid the user in counting external events and generating accurate time delays without placing a burden on the processor for these functions. In both modes the counter operation is the same, the only difference being the source of the input to the counter. The timer/event counter is shown in Figure 9.

COUNTER

The 8-bit binary counter is presettable and readable with two MOV instructions which transfer the contents of the accumulator to the counter and vice versa. The counter content may be affected by Reset and should be initialized by software. The counter is stopped by a Reset or STOP TCNT instruction and remains stopped until started as a timer by a START T instruction or as an event counter by a START CNT instruction. Once started the counter will increment to this maximum count (FF) and overflow to zero continuing its count until stopped by a STOP TCNT instruction or Reset.

The increment from maximum count to zero (overflow) results in the setting of an overflow flag flip-flop and in the generation of an interrupt request. The state of the overflow flag is testable with the conditional jump instruction JTF. The flag is reset by executing a JTF or by Reset. The interrupt request is stored in a latch and then ORed with the external interrupt input INT. The timer interrupt may be enabled or disabled independently of external interrupt by the EN TCNT1 and DIS TCNT1 instructions. If enabled, the counter overflow will cause a subroutine call to location 7 where the timer or counter service routine may be stored.

If timer and external interrupts occur simultaneously, the external source will be recognized and the Call will be to

can be created by enabling the timer/coupigod tqurrent. 8 surgist The flag is reset by executing a FIF or by Reset.

count), and enabling the event counter mode. A "I" to

call to location / where the timer or counter service routs
may be stored.
interrupt input may be enabled or disabled under
gram Control using the EN I and DIS I instructions.
If timer and external interrupts occur simultaneously, the country is and interrupts of the Call will be recognized and the Call will be

Table 2. Saud Rate Generation

Figure 9. Timer/Event Counter

location 3. Since the timer interrupt is latched it will remain pending until the external device is serviced and to the T1 input and the counter operated in the event immediately be recognized upon return from the service routine. The pending timer interrupt is reset by the Call to location 7 or may be removed by executing a DIS TCNT1 instruction, his perhapser eta (xHM·11 @ au 8.0)

AS AN EVENT COUNTER IN SLINE STATE (1 =

Execution of a START CNT instruction connects the T1 input pin to the counter input and enables the counter. The T1 input is sampled at the beginning of state 3 or in later MCS-48 devices in state time 4. Subsequent high to low transitions on T1 will cause the counter to increment. T1 must be held low for at least 1 machine cycle to insure it won't be missed. The maximum rate at which the counter may be incremented is once per three instruction cycles (every 5.7 µsec when using an 8 MHz crystal) there is no minimum frequency. T1 input must remain high for at least 1/5 machine cycle after each transition.

AS A TIMER

Eexcution of a START T instruction connects an internal clock to the counter input and enables the counter. The internal clock is derived bypassing the basic machine cycle clock through a ÷ 32 prescaler. The prescaler is reset during the START T instruction. The resulting clock increments the counter every 32 machine cycles. Various delays from 1 to 256 counts can be obtained by presetting the counter and detecting overflow. Times longer than 256 counts may be achieved by accumulating multiple overflows in a register under software control. For time resolution less than 1 count an external clock can be applied counter mode. ALE divided by 3 or more can serve as this external clock. Very small delays or "fine tuning" of larger delays can be easily accomplished by software delay loops.

Often a serial link is desirable in an MCS-48 family member. Table 2 lists the timer counts and cycles needed for a specific baud rate given a crystal frequency.

2.11 Clock and Timing Circuits

Timing generation for the 8048AH is completely selfcontained with the exeception of a frequency reference which can be XTAL, ceramic resonator, or external clock source. The Clock and Timing circuitry can be divided into the following functional blocks. of 5 machine states as shown in Figur

Shows the different internal operations NOTALINEO

The on-board oscillator is a high gain parallel resonant circuit with a frequency range of 1 to 11 MHz. The X1 external pin is the input to the amplifier stage while X2 is the output. A crystal or ceramic resonator connected between X1 and X2 provides the feedback and phase shift required for oscillation. If an accurate frequency reference is not required, ceramic resonator may be used in place of the crystal, a sed usqui roggin-manto? sldT nossoorq

For accurate clocking, a crystal should be used. An externally generated clock may also be applied to X1-X2 as the frequency source. See the data sheet for more pin must be held low for at least 10 millisect noisemrofni

Frequency (MHz)		Тсу	T0 Prr(1/5 T _{Cy})	Timer Prescaler (32 T _{Cy})
	4	3.75 μs	750ns	120μs
	6	2.50 μs	500ns	80μs
	8	1.88 μs	375ns	60.2μs
	11 QABB 80 0	1.36 μs	275ns	43.5μs
Baud Rate	4 MHz Timer Counts +	6 MHz Timer Counts + Instr. Cycles	8 MHz Timer Counts + Instr. Cycles	11 MHz Timer Counts + Instr. Cycles
110	75 + 24 Cycles	113 + 20 Cycles	151 + 3 Cycles	208 + 28 Cycles
	.01% Error	.01% Error	.01% Error	.01% Error
300	27 + 24 Cycles	41 + 21 Cycles	55 + 13 Cycles	76 + 18 Cycles
	.1% Error	.03% Error	.01% Error	.04% Error
1200	6 + 30 Cycles	10 + 13 Cycles	12 + 27 Cycles	19 + 4 Cycles
	.1% Error	.1% Error	.06% Error	.12% Error
1800	4 + 20 Cycles	6 + 30 Cycles	9 + 7 Cycles	12 + 24 Cycles
	.1% Error	.1% Error	.17% Error	.12% Error
2400	3 + 15 Cycles	5 + 6 Cycles	6 + 24 Cycles	9 + 18 Cycles
	.1% Error	.4% Error	.29% Error	.12% Error
4800	1 + 23 Cycles	2 + 19 Cycles	3 + 14 Cycles	4 + 25 Cycles
	1.0% Error	.4% Error	.74% Error	.12% Error

STATE COUNTER TOTAL VIEWS and the evaluation of larger delays can be easily accounter

The output of the oscillator is divided by 3 in the State Counter to create a clock which defines the state times of the machine (CLK). CLK can be made available on the external pin T0 by executing an ENTO CLK instruction. The output of CLK on T0 is disabled by Reset of the processor.

CYCLE COUNTER OF IS TO DOING SOME OF THE BENEFIT

CLK is then divided by 5 in the Cycle Counter to provide a clock which defines a machine cycle consisting of 5 machine states as shown in Figure 10. Figure 11 shows the different internal operations as divided into the machine states. This clock is called Address Latch Enable (ALE) because of its function in MCS-48 systems with external memory. It is provided continuously on the ALE output pin.

2.12 Reset Xandback out solvivors CX bas IX asswered

The reset input provides a means for initialization for the processor. This Schmitt-trigger input has an internal pullup device which in combination with an external 1 μ fd capacitor provides an internal reset pulse of sufficient length to guarantee all circuitry is reset, as shown in Figure 12. If the reset pulse is generated externally the RESET pin must be held low for at least 10 milliseconds after the

power supply is within tolerance. Only 5 machine cycles (6.8 μ s @ 11 MHz) are required if power is already on and the oscillator has stabilized. ALE and PSEN (if EA = 1) are active while in Reset.

Reset performs the following functions:

- 1) Sets program counter to zero.
- 2) Sets stack pointer to zero.
- 3) Selects register bank 0.
- 4) Selects memory bank 0.
- 5) Sets BUS to high impedance state (except when EA = 5V).
- 6) Sets Ports 1 and 2 to input mode.
- 7) Disables interrupts (timer and external).
- 8) Stops timer. All assessed to a discoult about the stop and the stop
- 9) Clears timer flag. (1) 26 V19V9 19101005 6th 211911010
- 10) Clears F0 and F1. voltavo callosists has to title of the
- 11) Disables clock output from T0.

Figure 10. MCS®-48 Timing Generation and Cycle Timing

2.13 Single-Step

This feature, as pictured in Figure 13, provides the user with a debug capability in that the processor can be stepped through the program one instruction at a time. While stopped, the address of the next instruction to be fetched is available concurrently on BUS and the lower

half of Port 2. The user can therefore follow the program through each of the instruction steps. A timing diagram, showing the interaction between output ALE and input \overline{SS} , is shown. The BUS buffer contents are lost during single step; however, a latch may be added to reestablish the lost I/O capability if needed. Data is valid at the leading edge of ALE.

S5

_

-

-

-

-

-

S4

*OUTPUT

TO PORT

*OUTPUT

TO PORT

-1-

*OUTPUT

TO PORT

TO PORT

Figure 11. 8048AH/8049AH Instruction Timing Diagram

10 1 1 1 1		CYCLE	1		
INSTRUCTION	S1	S2	\$3	S4	\$5
IN A,P	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	P a	*INCREMENT TIMER	- 1
OUTL P,A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	4.7	*INCREMENT TIMER	OUTPUT TO PORT
ANL P, = DATA	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER		*INCREMENT TIMER	READ PORT
ORL P, = DATA	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	7 7 8	*INCREMENT TIMER	READ PORT
INS A, BUS	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER		INCREMENT TIMER	10.00
OUTL BUS, A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	L L	INCREMENT TIMER	OUTPUT TO PORT
ANL BUS, - DATA	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	F 8.	*INCREMENT TIMER	READ PORT
ORL BUS, = DATA	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	日ラミ	*INCREMENT TIMER	READ PORT
MOVX @ R,A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT RAM ADDRESS	INCREMENT TIMER	OUTPUT DATA TO RAM
MOVX A,@R	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT RAM ADDRESS	INCREMENT	3 - 18 5
MOVD A,Pi	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT OPCODE/ADDRESS	INCREMENT	- No. 12
MOVD P _i ,A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT OPCODE/ADDRESS	INCREMENT TIMER	OUTPUT DATA TO P2 LOWER
ANLD P,A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT OPCODE/ADDRESS	INCREMENT TIMER	OUTPUT
ORLD P,A	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	OUTPUT OPCODE/ADDRESS	INCREMENT	OUTPUT DATA
J(CONDITIONAL)	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	SAMPLE CONDITION	*INCREMENT SAMPLE	-
STRT T STRT CNT	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	4-	- un-	START
STOP TCNT	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	THE &	.0 -	STOP
ENI	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	1 7 S	* ENABLE INTERRUPT	-
DISI	FETCH INSTRUCTION	INCREMENT PROGRAM COUNTER	1	* DISABLE INTERRUPT	-
ENTO CLK	FETCH	INCREMENT	3	. ENABLE	

*VALID INSTRUCTION ADDRESSES ARE OUTPUT AT THIS TIME IF EXTERNAL PROGRAM MEMORY IS BEING ACCESSED.

CYCLE 2

S3

INCREMENT

PROGRAM COUNTER

INCREMENT

PROGRAM COUNTER

INCREMENT

PROGRAM COUNTER

INCREMENT

PROGRAM COUNTER

N 111-

UPDATE

PROGRAM COUNTER

S2

READ PORT

READ

-

READ

DATA READ P2

LOWER

S1

FETCH

IMMEDIATE DATA

(1) IN LATER MCS-48 DEVICES T1 IS SAMPLED IN S4.

Figure 12.

TIMING

The 8048AH operates in a single-step mode as follows:

- The processor is requested to stop by applying a low level on \$\overline{SS}\$.
- 2) The processor responds by stopping during the address fetch portion of the next instruction. If a double cycle instruction is in progress when the single step command is received, both cycles will be completed before stopping.
- 3) The processor acknowledges it has entered the stopped state by raising ALE high. In this state (which can be maintained indefinitely) the address of the next instruction to be fetched is present on BUS and the lower half of port 2.
- 4) SS is then raised high to bring the processor out of the stopped mode allowing it to fetch the next instruction. The exit from stop is indicated by the processor bringing ALE low.
- 5) To stop the processor at the next instruction SS must be brought low again soon after ALE goes low. If SS is left high the processor remains in a "Run" mode.

A diagram for implementing the single-step function of the 8748H is shown in Figure 13. D-type flip-flop with preset and clear is used to generate \overline{SS} . In the run mode SS is held high by keeping the flip-flop preset (preset has precedence over the clear input). To enter single step, preset is removed allowing ALE to bring \overline{SS} low via the

clear input. ALE should be buffered since the clear input of an SN7474 is the equivalent of 3 TTL loads. The processor is now in the stopped state. The next instruction is initiated by clocking a "1" into the flip-flop. This "1" will not appear on SS unless ALE is high removing clear from the flip-flop. In response to SS going high the processor begins an instruction fetch which brings ALE low resetting SS through the clear input and causing the processor to again enter the stopped state.

2.14 Power Down Mode (8048AH, 8049AH, 8050AH, 8039AHL, 8035AHL, 8040AHL)

Extra circuitry has been added to the 8048AH/8049AH/8050AH ROM version to allow power to be removed from all but the data RAM array for low power standby operation. In the power down mode the contents of data RAM can be maintained while drawing typically 10% to 15% of normal operating power requirements.

 V_{CC} serves as the 5V supply pin for the bulk of circuitry while the V_{DD} pin supplies only the RAM array. In normal operation both pins are a 5V while in standby, V_{CC} is at ground and V_{DD} is maintained at its standby value. Applying Reset to the processor through the \overline{RESET} pin inhibits any access to the RAM by the processor and guarantees that RAM cannot be inadvertently altered as power is removed from V_{CC} .

A typical power down sequence (Figure 14) occurs as follows:

- Imminent power supply failure is detected by user defined circuitry. Signal must be early enough to allow 8048AH to save all necessary data before V_{CC} falls below normal operating limits.
- Power fail signal is used to interrupt processor and vector it to a power fail service routine.
- 3) Power fail routine saves all important data and machine status in the internal data RAM array. Routine may also initiate transfer of backup supply to the V_{DD} pin and indicate to external circuitry that power fail routine is complete.
- 4) Reset is applied to guarantee data will not be altered as the power supply falls out of limits. Reset must be held low until V_{CC} is at ground level.

Recovery from the Power Down mode can occur as any other power-on sequence with an external capacitor on the Reset input providing the necessary delay. See the previous section on Reset.

Figure 13. Single Step Operation

A disgram for implementing the single

reset the prescaler and time state generators. T0 may then be brought down with the rising edge of X1. Two clock cycles later, with the rising edge of X1, the device enters into Time State 1, Phase 1, SS' is then brought down to 5 volts 4 clocks later after T0. RESET' is allowed to go high 5 tCY (75 clocks) later for normal execution of code. See Figure 15.

Figure 14. Power Down Sequence

2.15 External Access Mode

Normally the first 1K (8048AH), 2K (8049AH), or 4K (8050AH) words of program memory are automatically fetched from internal ROM or EPROM. The EA input pin however allows the user to effectively disable internal program memory by forcing all program memory fetches to reference external memory. The following chapter explains how access to external program memory is accomplished.

The External Access mode is very useful in system test and debug because it allows the user to disable his internal applications program and substitute an external program of his choice — a diagnostic routine for instance. In addition, the date sheet shows how internal program memory can be read externally, independent of the processor. A "1" level on EA initiates the external accesss mode. For proper operation, Reset should be applied while the EA input is changed.

2.16 Sync Mode to seein United 84-20M before

The 8048AH, 8049AH, 8050AH has incorporated a new SYNC mode. The Sync mode is provided to ease the design of multiple controller circuits by allowing the designer to force the device into known phase and state time. The SYNC mode may also be utilized by automatic test equipment (ATE) for quick, easy, and efficient synchronizing between the tester and the DUT (device under test).

SYNC mode is enabled when SS' pin is raised to high voltage level of +12 volts. To begin synchronization, T0 is raised to 5 volts at least four clocks cycles after SS'. T0 must be high for at least four X1 clock cycles to fully

Figure 15. Sync Mode Timing managed all program memory. The following chapter ex-

Figure 16. 8048AH and 8049AH Logic Symbol

3.0 PIN DESCRIPTION designation a - epiodo zar lo

The MCS-48 processors are packaged in 40 pin Dual In-Line Packages (DIP's). Table 3 is a summary of the functions of each pin. Figure 16 is the logic symbol for the 8048AH product family. Where it exists, the second paragraph describes each pin's function in an expanded MCS-48 system. Unless otherwise specified, each input is TTL compatible and each output will drive one standard TTL load.

YNC mode is enabled when SS' pin is raised to high obtage level of +12 volts. To begin synchronization, TO is raised to 5 volts at least four clocks cycles after SS'.

Table 3. Pin Description

Designation	Pin Number*	Function	Function	Pin Number*	Designation	
Vss	20	Circuit GND potential				
V _{DD}	26 to "single ster	Programming power supply; 21V during program for the 8748H/8749H; +5V during operation for both ROM and EPROM. Low power standby pin in 8048AH and 8040AH/8050AH ROM vorsions.				
V _{CC}	40	Main power supply; +5V during operation and during 8748H and 8749H programming.				
PROG Saltes	rolla25 sees	Program pulse; +18V input pin during 8748H / 8749H programming. Output strobe for 8243 I/O expander.				
P10-P17 (Port 1)	27-34	8-bit quasi-bidirectional port. (Internal Pullup $\approx 50 \mathrm{K}\Omega$)				
P20-P27 (Port 2)	21-24 35-38	8-bit quasi-bidirectional port. (Internal Pullup $\approx 50 \mathrm{K}\Omega$) P20-P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit $1/O$ expander bus for 8243.				
D0-D7 IMAS (BUS)	12-19	True bidirectional port which can be written or read synchronously using the \overline{RD} , \overline{WR} strobes. The port can also be statically latched.				
H and 8749H		ory fetch, and receives th	program counter bits dur e addressed instruction un d data during an external D, and WR.	der the control RAM data st	of PSEN. Also	
carely 400 OT a nlight and cert tyelengths in	than Ipproxim noted that su mps have w		the conditional transfer in ock output using ENTO C I sync mode.	nstructions JT(LK instruction	and JNT0. T0. T0 is also used	
nstaut exposure erase the typi ears while it wo			the JTI, and JNTI instruge the STRT CNT instructions	ctions. Can be		
are when TNIs	k to 60000 era 1748H or 8749	Interrupt input. Initiates after a reset. (Active low			ess, applying da	
		Interrupt must remain lo	w for at least 3 machine cyc	eles to ensure pr	oper operation.	
RD	ention 81 erasu	Output strobe activated	during a BUS read. Can bevice. (Active low)	e used to enab	le data onto the	
	148H and 8/4	Used as a Read Strobe to	o External Data Memory.			
RESET	4 subsoonq sr	Input which is used to initialize the processor. Also used during EPROM programming and verification (Active low) (Internal pullup ≈ 80K O)				
violet light what A.). The in A.W. tume) for eras	An Ofroms (Output strobe during a BUS write. (Active low) Used as write strobe to external data memory.				
ALE SES SHT	15Wriec/cm ² numstely 15 to	and the second s	his signal occurs once du	ring each cycle	and is useful as	
	The second section is the second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section in the second section in the second section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in	TOTAL CONTRACTOR OF THE PARTY O	Sanahara didaga Cara anggan	well da kelena di a		
20 minutes usi cm² power ratin ed within one in cene lamps have	hould be place	The negative edge of ALE	Hel	nai data and pr ATS not inquites	20-2 Addres	

Table 3. Pin Description (Continued)

Designation	Pin Number*	Function	Function	Pin Number*	Designation
PSEN	9 he 8748H/874		This output occurs only dur		sternal program
br SSASAS and Bro-	standby pin	through each instruction	used in conjunction with AL on. (Active low) (Internal pu	illup ≈ 300KΩ	
EA adonts tuqtuO	7 programming K(I)	ternal memory. Useful f gram verification. (Act verification and +18V for	which forces all program m for emulation and debug, an live high) +12V for 8048Al or 8748H/8749H program 9AH/8035AHL/8039AHL	d essential for H/8049AH/80 verification (In	testing and pro- 50AH program ternal pullup ≈
XTALI	2	One side of crystal inpu	at for internal oscillator. Als	o input for ex	ternal source.
XTAL2 -ong language	3 annub and a		sternal source input.	35-38	

^{*}Unless otherwise stated, inputs do not have internal pullup resistors. 8048AH, 8748H, 8049AH, 8050AH, 8040AHL

4.0 PROGRAMMING, VERIFYING AND ERASING EPROM

The internal Program Memory of the 8748H and the 8749H may be erased and reprogrammed by the user as explained in the following sections. See also the 8748H and 8749H data sheets.

4.1 Programming/Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. This programming algorithm applies to both the 8748H and 8749H. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function
XTAL 1	Clock Input (3 to 4 MHz)
Reset	Initialization and Address Latching
Test 0	Selection of Program (0V) or Verify (5V) Mode
EA	Activation of Program/Verify Modes
BUS	Address and Data Input Data Output
P20 1	During Verify
P20-1	Address Input for 8748H
P20-2	Address Input for 8749H
V _{DD}	Programming Power Supply
PROG	Program Pulse Input
P10-P11	Tied to ground (8749H only)

8748H AND 8749H ERASURE CHARACTERISTICS

The erasure characteristics of the 8748H and 8749H are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (A). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000–4000A range. Data show that constant exposure to room level fluorescent lighting could erase the typical 8748H and 8749H in approximately 3 years while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the 8748H or 8749H is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the 8748H window to prevent unintentional erasure.

When erased, bits of the 8748H and 8749H Program Memory are in the logic "0" state.

The recommended erasure procedure for the 8748H and 8749H is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (A). The integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of 15W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a $12000\mu \text{W/cm}^2$ power rating. The 8748H and 8749H should be placed within one inch from the lamp tubes during erasure. Some lamps have a filter in their tubes and this filter should be removed before erasure.

Figure 17. Program/Verify Sequence for 8749H/8748H

Figure 17. Program/Verify Sequence for 8749H/8748H

MCS®-48 Expanded System

EXPANDED MCS®-48 SYSTEM

1.0 INTRODUCTION

If the capabilities resident on the single-chip 8048AH/8748H/8035AHL/8049AH/8749H/8039AHL are not sufficient for your system requirements, special on-board circuitry allows the addition of a wide variety of external memory, I/O, or special peripherals you may require. The processors can be directly and simply expanded in the following areas:

- Program Memory to 4K words
- Data Memory to 320 words (384 words with 8049AH)
- I/O by unlimited amount
- Special Functions using 8080/8085AH peripherals

By using bank switching techniques, maximum capability is essentially unlimited. Bank switching is discussed later in the chapter. Expansion is accomplished in two ways:

- 1) Expander I/O A special I/O Expander circuit, the 8243, provides for the addition of four 4-bit Input/Output ports with the sacrifice of only the lower half (4-bits) of port 2 for inter-device communication. Multiple 8243's may be added to this 4-bit bus by generating the required "chip select" lines.
- 2) Standard 8085 Bus One port of the 8048AH/ 8049AH is like the 8-bit bidirectional data bus of the 8085 microcomputer system allowing interface to the numerous standard memories and peripherals of the MCS®-80/85 microcomputer family.

MCS-48 systems can be configured using either or both of these expansion features to optimize system capabilities to the application.

Both expander devices and standard memories and peripherals can be added in virtually any number and combination required.

2.0 EXPANSION OF PROGRAM MEMORY

Program Memory is expanded beyond the resident 1K or 2K words by using the 8085 BUS feature of the MCS®-48. All program memory fetches from the addresses less than 1024 on the 8048AH and less than 2048 on the 8049AH occur internally with no external signals being generated (except ALE which is always present). At address 1024 on the 8048AH, the processor automatically initiates external program memory fetches.

2.1 Instruction Fetch Cycle (External)

As shown in Figure 1, for all instruction fetches from addresses of 1024 (2048) or greater, the following will occur:

- 1) The contents of the 12-bit program counter will be output on BUS and the lower half of port 2.
- Address Latch Enable (ALE) will indicate the time at which address is valid. The trailing edge of ALE is used to latch the address externally.
- 3) Program Store Enable (PSEN) indicates that an external instruction fetch is in progress and serves to enable the external memory device.
- BUS reverts to input (floating) mode and the processor accepts its 8-bit contents as an instruction word.

Figure 1. Instruction Fetch from External Program Memory

All instruction fetches, including internal addresses, can be forced to be external by activating the EA pin of the 8048AH/8049AH/8050AH. The 8035AHL/8039AHL/8040AHL processors without program memory always operate in the external program memory mode (EA = 5V).

2.2 Extended Program Memory Addressing (Beyond 2K)

For programs of 2K words or less, the 8048AH/8049AH addresses program memory in the conventional manner. Addresses beyond 2047 can be reached by executing a program memory bank switch instruction (SEL MB0, SEL MB1) followed by a branch instruction (JMP or CALL). The bank switch feature extends the range of branch instructions beyond their normal 2K range and at the same time prevents the user from inadvertently crossing the 2K boundary.

PROGRAM MEMORY BANK SWITCH

The switching of 2K program memory banks is accomplished by directly setting or resetting the most significant bit of the program counter (bit 11); see Figure 2. Bit 11 is not altered by normal incrementing of the program counter but is loaded with the contents of a special flip-flop each time a JMP or CALL instruction is executed. This special flip-flop is set by executing an SEL MB1

instruction and reset by SEL MB0. Therefore, the SEL MB instruction may be executed at any time prior to the actual bank switch which occurs during the next branch instruction encountered. Since all twelve bits of the program counter, including bit 11, are stored in the stack, when a Call is executed, the user may jump to subroutines across the 2K boundary and the proper bank will be restored upon return. However, the bank switch flip-flop will not be altered on return.

Figure 2. Program Counter

INTERRUPT ROUTINES

Interrupts always vector the program counter to location 3 or 7 in the first 2K bank, and bit 11 of the program

counter is held at "0" during the interrupt service routine. The end of the service routine is signalled by the execution of an RETR instruction. Interrupt service routines should therefore be contained entirely in the lower 2K words of program memory. The execution of a SEL MB0 or SEL MB1 instruction within an interrupt routine is not recommended since it will not alter PC11 while in the routine, but will change the internal flip-flop.

2.3 Restoring I/O Port Information

Although the lower half of Port 2 is used to output the four most significant bits of address during an external program memory fetch, the I/O information is still outputed during certain portions of each machine cycle. I/O information is always present on Port 2's lower 4 bits at the rising edge of ALE and can be sampled or latched at this time.

2.4 Expansion Examples A Out rebreated (1

Shown in Figure 3 is the addition of 2K words of program memory using an 2716A 2K x 8 ROM to give a total of 3K words of program memory. In this case no chip select decoding is required and PSEN enables the memory directly through the chip select input. If the system requires only 2K of program memory, the same configuration can be used with an 8035AHL substituted for the 8048AH. The 8049AH would provide 4K of program memory with the same configuration.

Figure 3. Expanding MCS®-48 Program Memory Using Standard Memory Products

Figure 4. External Program Memory Interface

Figure 4 shows how the 8755/8355 EPROM/ROM with I/O interfaces directly to the 8048AH without the need for an address latch. The 8755/8355 contains an internal 8-bit address latch eliminating the need for an 8212 latch. In addition to a 2K x 8 program memory, the 8755/8355 also contains 16 I/O lines addressable as two 8-bit ports. These ports are addressed as external RAM; therefore the RD and WR outputs of the 8048AH are required. See the following section on data memory expansion for more detail. The subsequent section on I/O expansion explains the operation of the 16 I/O lines.

3.0 EXPANSION OF DATA MEMORY

Data Memory is expanded beyond the resident 64 words by using the 8085AH type bus feature of the MCS®-48.

3.1 Read/Write Cycle

All address and data is transferred over the 8 lines of BUS. As shown in Figure 5, a read or write cycle occurs as follows:

Figure 5. External Data Memory Timings

- 1) The contents of register R0 or R1 is outputed on BUS.
- Address Latch Enable (ALE) indicates addresss is valid. The trailing edge of ALE is used to latch the address externally.
- 3) A read (RD) or write (WR) pulse on the corresponding output pins of the 8048AH indicates the type of data memory access in progress. Output data is valid at the trailing edge of WR and input data must be valid at the trailing edge of RD.
- 4) Dat (8 bits) is transferred in or out over BUS.

3.2 Addressing External Data Memory

External Data Memory is accessed with its own two-cycle move instructions. MOVXA, @R and MOVX@R, A, which transfer 8 bits of data between the accumulator and the external memory location addressed by the contents of one of the RAM Pointer Registers R0 and R1. This allows 256 locations to be addressed in addition to the resident locations. Additional pages may be added by "bank switching" with extra output lines of the 8048AH.

3.3 Examples of Data Memory Expansion

Figure 6 shows how the 8048-AH can be expanded using the 8155 memory and I/O expanding device. Since the 8155 has an internal 8-bit address latch, it can interface directly to the 8048AH without the use of an external latch. The 8155 provides an additional 256 words of static data memory and also includes 22 I/O lines and a 14-bit timer. See the following section on I/O expansion and the 8155 data sheet for more details on these additional features.

4.0 EXPANSION OF INPUT/OUTPUT

There are four possible modes of I/O expansion with the 8048AH: one using a special low-cost expander, the 8243; another using standard MCS-80/85 I/O devices; and a third using the combination memory I/O expander devices the 8155, 8355, and 8755. It is also possible to expand using standard TTL devices.

4.1 I/O Expander Device

The most efficient means of I/O expansion for small systems is the 8243 I/O Expander Device which requires only 4 port lines (lower half of Port 2) for communication with the 8048AH. The 8243 contains four 4-bit I/O ports which serve as an extension of the on-chip I/O and are addressed as ports #4–7 (see Figure 13-7). The following operations may be performed on these ports:

- Transfer Accumulator to Port
- Transfer Port to Accumulator
- AND Accumulator to Port
- OR Accumulator to Port

A 4-bit transfer from a port to the lower half of the Accumulator sets the most significant four bits to zero. All communication between the 8048AH and the 8243 occurs over Port 2 lower (P20–P23) with timing provided by an output pulse on the PROG pin of the processor. Each transfer consists of two 4-bit nibbles: The first containing the "op code" and port address, and the second containing the actual 4 bits of data.

Figure 6. 8048AH Interface to 256 x 8 Standard Memories

Figure 7. 8243 Expander I/O Interface

A high to low transition of the PROG line indicates that address is present, while allow to high transition indicates the presence of data. Additional 8243's may be added to the four-bit bus and chip selected using additional output lines from the 8048AH/8748H.

I/O PORT CHARACTERISTICS

Each of the four 4-bit ports of the 8243 can serve as either input or output and can provide high drive capability in both the high and low state.

4.2 I/O Expansion with Standard Peripherals

Standard MCS-80/85 type I/O devices may be added to the MCS®-48 using the same bus and timing used for Data Memory expansion. Figure 8 shows an example of how an 8048AH can be connected to an MCS-85 peripheral. I/O devices reside on the Data Memory bus and in the data memory address space and are accessed with the same MOVX instructions. (See the previous section on data memory expansion for a description of timing.) The following are a few of the Standard MCS-80 devices which are very useful in MCS®-48 systems:

- 8214 Priority Interrupt Encoder
- 8251 Serial Communications Interface
- 8255 General Purpose Programmable I/O
- 8279 Keyboard/Display Interface
- 8254 Interval Timer

4.3 Combination Memory and I/O Expanders

As mentioned in the sections on program and data memory expansion, the 8355/8755 and 8155 expanders also contain I/O capability.

Figure 8. Keyboard/Display Interface

8355/8755: These two parts of ROM and EPROM equivalents and therefore contain the same I/O structure. I/O consists of two 8-bit ports which normally reside in the external data memory address space and are accessed with MOVX instructions. Associated with each port is an 8-bit Data Direction Register which defines each bit in the port as either an input or an output. The data direction registers are directly addressable, thereby allowing the user to define under software control each individual bit of the ports as either input or output. All outputs are statically latched and double buffered. Inputs are not latched.

8155/8156: I/O on the 8155/8156 is configured as two 8-bit programmable I/O ports and one 6-bit programmable

port. These three registers and a Control/Status register are accessible as external data memory with the MOVX instructions. The contents of the control register determines the mode of the three ports. The ports can be programmed as input or output with or without associated handshake communication lines. In the handshake mode, lines of the six-bit port become input and output strobes for the two 8-bit ports. Also included in the 8155 is a 14-bit programmable timer. The clock input to the timer and the timer overflow output are available on external pins. The timer can be programmed to stop on terminal count or to continuously reload itself. A square wave or pulse output on terminal count can also be specified.

Figure 9. Low Cost I/O Expansion

I/O EXPANSION EXAMPLES

Figure 9 shows the expansion of I/O using multiple 8243's. The only difference from a single 8243 system is the addition of chip selects provided by additional 8048AH output lines. Two output liens and a decoder could also be used to address the four chips. Large numbers of 8243's would require a chip select decoder chip such as the 8205 to save I/O pins.

Figure 10 shows the 8048AH interface to a standard MCS®-80 peripheral; in this case, the 8255 Programmable Peripheral Interface, a 40-pin part which provides three 8-bit programmable I/O ports. The 8255 bus interface is typical of programmable MCS®-80 peripherals with an 8-bit bidirectional data bus, a RD and WR input for Read/Write control, a CS (chip select) input used to enable the Read/Write control logic and the address inputs used to select various internal registers.

Figure 10. Interface to MCS®-80 Peripherals

Interconnection to the 8048AH is very straightforward with BUS, \overline{RD} , and \overline{WR} connecting directly to the corresponding pins on the 8255. The only design consideration is the way in which the internal registers of the 8255 are to be addressed. If the registers are to be addressed as external data memory using the MOVX instructions, the appropriate number of address bits (in this case, 2) must be latched on BUS using ALE as described in the section on external data memories. If only a single device is connected to BUS, the 8255 may be continuously selected by grounding \overline{CS} . If multiple 8255's are used, additional address bits can be latched and used as chip selects.

A second addressing method eliminates external latches and chip select decoders by using output port lines as address and chip select lines directly. This method, of course, requires the setting of an output port with address information prior to executing a MOVX instruction.

5.0 MULTI-CHIP MCS®-48 SYSTEMS

Figure 11 shows the addition of two memory expanders to the 8048AH, one 8355/8755 ROM and one 8156 RAM. The main consideration in designing such a system is the

addressing of the various memories and I/O ports. Note that in this configuration address lines A₁₀ and A₁₁ have been ORed to chip select the 8355. This ensures that the chip is active for all external program memory fetches in the 1K to 3K range and is disabled for all other addresses. This gating has been added to allow the I/O port of the 8355 to be used. If the chip was left selected all the time, there would be conflict between these ports and the RAM and I/O of the 8156. The NOR gate could be eliminated and A₁₁ connected directly to the CE (instead of CE) input of the 8355; however, this would create a 1K word "hole" in the program memory by causing the 8355 to be active in the 2K and 4K range instead of the normal 1K to 3K range.

In this system the various locations are addressed as follows:

- Data RAM Addresses 0 to 255 when Port 2 Bit
 0 has been previously set = 1 and Bit 1 set = 0
- RAM I/O Addresses 0 to 3 when Port 2 Bit 0 = 1 and Bit 1 = 1
 - ROM I/O Addresses 0 to 3 when Port 2 Bit 2 or Bit 3 = 1

See the memory map in Figure 12.

and useful common stirt. 3388 of Figure 11. The Three-Component MCS®-48 System 3388 of the aniq anithmogram

6.0 MEMORY BANK SWITCHING

Certain systems may require more than the 4K words of program memory which are directly addressable by the program counter or more than the 256 data memory and I/O locations directly addressable by the pointer registers R0 and R1. These systems can be achieved using ''bank switching'' techniques. Bank switching is merely the selection of various blocks of ''banks'' of memory using dedicated output port lines from the processor. In the case of the 8048AH, program memory is selected in blocks of 4K words at a time, while data memory and I/O are enabled 256 words at a time.

The most important consideration in implementing two or more banks is the software required to cross the bank boundaries. Each crossing of the boundary requires that the processor first write a control bit to an output port before accessing memory or I/O in the new bank. If program memory is being switched, programs should be organized to keep boundary crossings to a minimum.

Jumping to subroutines across the boundary should be avoided when possible since the programmer must keep track of which bank to return to after completion of the subroutine. If these subroutines are to be nested and accessed from either bank, a software "stack" should be implemented to save the bank switch bit just as if it were another bit of the program counter.

From a hardware standpoint bank switching is very straightforward and involves only the connection of an I/O line or lines as bank enable signals. These enables are ANDed with normal memory and I/O chip select signals to activate the proper bank.

7.0 CONTROL SIGNAL SUMMARY

Table 1 summarizes the instructions which activate the various control outputs of the MCS®-48 processors. During all other instructions these outputs are driven to the active state.

Table 1. MCS®-48 Control Signals

Control	hile address is present, then retored when omplete. HovertoA nehW Fort 2 is use
RD	During MOVX, A, @R or INS Bus
WR	During MOVX @R, A or OUTL Bus
ALE Walle	Every Machine Cycle
PSEN	During Fetch of external program memory (instruction or immediate data)
PROG	During MOVD, A,P ANLD P,A MOVD P,A ORLD P,A

8.0 PORT CHARACTERISTICS

8.1 BUS Port Operations

The BUS port can operate in three different modes: as a latched I/O port, as a bidirectional bus port, or as a program memory address output when external memory is used. The BUS port lines are either active high, active low, or high impedance (floating).

The latched mode (INS, OUTL) is intended for use in the single-chip configuration where BUS is not begin used as an expander port. OUTL and MOVX instructions can be mixed if necessary. However, a previously latched output will be destroyed by executing a MOVX instruction and BUS will be left in the high impedance state. INS does not put the BUS in a high impedance state. Therefore, the use of MOVX after OUTL to put the BUS in a high impedance state is necessary before an INS instruction intended to read an external word (as opposed to the previously latched value).

OUTL should never be used in a system with external program memory, since latching BUS can cause the next instruction, if external, to be fetched improperly.

8.2 Port 2 Operations

The lower half of Port 2 can be used in three different ways: as a quasi-bidirectional static port, as an 8243 expander port, and to adddress external program memory.

Figure 12. Memory Map for Three-Component MCS®-48 Family

In all cases outputs are driven low by an active device and driven high momentarily by a low impedance device and held high by a high impedance device to VCC.

The port may contain latched I/O data prior to its use in another mode without affecting operation of either. If lower Port 2 (P20-3) is used to output address for an external program memory fetch, the I/O information pre-

viously latched will be automatically removed temporarily while address is present, then retored when the fetch is complete. However, if lower Port 2 is used to communicate with an 8243, previously latched I/O information will be removed and not restored. After an input from the 8243, P20-3 will be left in the input mode (floating). After an output to the 8243, P20-3 will contain the value written, ANDed, or ORed to the 8243 port.

Figure 13. MCS®-48 Expansion Capability

Figure 12, Memory Map for Three-Component MCS -48 Family

1.0 INTRODUCTION

The MCS®-48 instruction set is extensive for a machine of its size and has been tailored to be straightforward and very efficient in its use of program memory. All instructions are either one or two bytes in length and over 80% are only one byte long. Also, all instructions execute in either one or two cycles and over 50% of all instructions execute in a single cycle. Double cycle instructions include all immediate instructions, and all I/O instructions.

The MCS-48 microcomputers have been designed to handle arithmetic operations efficiently in both binary and BCD as well as handle the single-bit operations required in control applications. Special instructions have also been included to simplify loop counters, table look-up routines, and N-way branch routines.

1.1 Data Transfers muse of to return send broad

As can be seen in Figure 1 the 8-bit accumulator is the central point for all data transfers within the 8048. Data can be transferred between the 8 registers of each working register bank and the accumulator directly, i.e., the source or destination register is specified by the instruction. The remaining locations of the internal RAM array are referred to as Data Memory and are addressed indirectly via an address stored in either R0 or R1 of the active register bank. R0 and R1 are also used to indirectly address external data memory when it is present. Transfers to and from internal RAM require one cycle, while transfers to external RAM require two. Constants stored in Program Memory can be loaded directly to the accumulator and to the 8 working registers. Data can also be transferred directly between the accumulator and the on-

Status word (PSW). Writing to the

Figure 1. Data Transfer Instructions anahow guibulooi yoomsM and IIA

board timer counter or the accumulator and the Program Status word (PSW). Writing to the PSW alters machine status accordingly and provides a means of restoring status after an interrupt or of altering the stack pointer if necessary.

1.2 Accumulator Operations

Immediate data, data memory, or the working registers can be added with or without carry to the accumulator. These sources can also be ANDed, ORed, or Exclusive ORed to the accumulator. Data may be moved to or from the accumulator and working registers or data memory. The two values can also be exchanged in a single operation.

In addition, the lower 4 bits of the accumulator can be exchanged with the lower 4-bits of any of the internal RAM locations. This instruction, along with an instruction which swaps the upper and lower 4-bit halves of the accumulator, provides for easy handling of 4-bit quantities, including BCD numbers. To facilitate BCD arithmetic, a Decimal Adjust instruction is included. This instruction is used to correct the result of the binary addition of two 2-digit BCD numbers. Performing a decimal adjust on the result in the accumulator produces the required BCD result.

Finally, the accumulator can be incremented, decremented, cleared, or complemented and can be rotated left or right 1 bit at a time with or without carry.

Although there is no subtract instruction in the 8048AH, this operation can be easily implemented with three single-byte single-cycle instructions.

A value may be subtracted from the accumulator with the result in the accumulator by:

- Complementing the accumulator
- Adding the value to the accumulator
- Complementing the accumulator

1.3 Register Operations

The working registers can be accessed via the accumulator as explained above, or can be loaded immediate with constants from program memory. In addition, they can be incremented or decremented or used as loop counters using the decrement and jump, if not zero instruction, as explained under branch instructions.

All Data Memory including working registers can be accessed with indirect instructions via R0 and R1 and can be incremented.

1.4 Flags

There are four user-accessible flags in the 8048AH: Carry, Auxiliary Carry, F0 and F1. Carry indicates overflow of the accumulator, and Auxiliary Carry is used to indiate overflow between BCD digits and is used during decimaladjust operation. Both Carry and Auxiliary Carry are accessible as part of the program status word and are stored on the stack during subroutines. F0 and F1 are undedicated general-purpose flags to be used as the programmer desires. Both flags can be cleared or complemented and tested by conditional jump instructions. F0 is also accessible via the Program Status word and is stored on the stack with the carry flags.

1.5 Branch Instructions

The unconditional jump instruction is two bytes and allows jumps anywhere in the first 2K words of program memory. Jumps to the second 2K of memory (4K words are directly addressable) are made first by executing a select memory bank instruction, then executing the jump instruction. The 2K boundary can only be crossed via a jump or subroutine call instruction, i.e., the bank switch does not occur until a jump is executed. Once a memory bank has been selected all subsequent jumps will be to the selected bank until another select memory bank instruction is executed. A subroutine in the opposite bank can be accessed by a select memory bank instruction followed by a call instruction. Upon completion of the subroutine, execution will automatically return to the original bank; however, unless the original bank is reselected, the next jump instruction encountered will again transfer execution to the opposite hank

Conditional jumps can test the following inputs and machine status:

- TO Input Pin
- T1 Input Pin
- INT Input Pin
- Accumulator Zero
- Any bit of Accumulator
- Carry Flag
- F0 Flag
- F1 Flag

Conditional jumps allow a branch to any address within the current page (256 words) of execution. The conditions tested are the instantaneous values at the time the conditional jump is executed. For instance, the jump on accumulator zero instruction tests the accumulator itself, not an intermediate zero flag.

The decrement register and jump if not zero instruction combines a decrement and a branch instruction to create an instruction very useful in implementing a loop counter. This instruction can designate any one of the 8 working registers as a counter and can effect a branch to any address within the current page of execution.

A single-byte indirect jump instruction allows the program to be vectored to any one of several different locations based on the contents of the accumulator. The contents of the accumulator points to a location in program memory which contains the jump address. The 8-bit jump address refers to the current page of execution. This instruction could be used, for instance, to vector to any one of several routines based on an ASCII character which has been loaded in the accumulator. In this way ASCII key inputs can be used to initiate various routines.

1.6 Subroutines

Subroutines are entered by executing a call instruction. Calls can be made like unconditional jumps to any address in a 2K word bank, and jumps across the 2K boundary are executed in the same manner. Two separate return instructions determine whether or not status (upper 4-bits of PSW) is restored upon return from the subroutine.

The return and restore status instruction also signals the end of an interrupt service routine if one has been in progress.

1.7 Timer Instructions

The 8-bit on board timer/counter can be loaded or read via the accumulator while the counter is stopped or while counting. The counter can be started as a timer with an internal clock source or an event counter or timer with an external clock applied to the T1 input pin. The instruction executed determines which clock source is used. A single instruction stops the counter whether it is operating with an internal or an external clock source. In addition, two instructions allow the timer interrupt to be enabled or disabled.

1.8 Control Instructions

Two instructions allow the external interrupt source to be enabled or disabled. Interrupts are initially disabled and are automatically disabled while an interrupt service routines is in progress and re-enabled afterward.

There are four memory bank select instructions, two to designate the active working register bank and two to control program memory banks. The operation of the program memory bank switch is explained in Section 2.2 in the Expanded MCS-48 System chapter.

The working register bank switch instructions allow the programmer to immediately substitute a second 8-register working register bank for the one in use. This effectively provides 16 working registers or it can be used as a means of quickly saving the contents of the registers in response to an interrupt. The user has the option to switch or not to switch banks on interrupt. However, if the banks are switched, the original bank will be automatically restored upon execution of a return and restore status instruction at the end of the interrupt service routine.

A special instruction enables an internal clock, which is the XTAL frequency divided by three to be output on pin T0. This clock can be used as a general-purpose clock in the user's system. This instruction should be used only to initialize the system since the clock output can be disabled only by application of system reset.

1.9 Input/Output Instructions

Ports 1 and 2 are 8-bit static I/O ports which can be loaded to and from the accumulator. Outputs are statically latched but inputs are not latched and must be read while inputs are present. In addition, immediate data from program memory can be ANDed or ORed directly to Port 1 and Port 2 with the result remaining on the port. This allows "masks" stored in program memory to selectively set or reset individual bits of the I/O ports. Ports 1 and 2 are configured to allow input on a given pin by first writing a "1" out to the pin.

An 8-bit port called BUS can also be accessed via the accumulator and can have statically latched outputs as well. It too can have immediate data ANDed or ORed directly to its outputs, however, unlike ports 1 and 2, all eight lines of BUS must be treated as either input or output at any one time. In addition to being a static port, BUS can be used as a true synchronous bi-directional port using the Move External instructions used to access external data memory. When these instructions are executed, a corresponding READ or WRITE pulse is generated and data is valid only at that time. When data is not being transferred, BUS is in a high impedance state. Note that the OUTL, ANL, and the ORL instructions for the BUS are for use with internal program memory only.

The basic three on-board I/O ports can be expanded via a 4-bit expander bus using half of port 2. I/O expander devices on this bus consist of four 4-bit ports which are addressed as ports 4 through 7. These ports have their own AND and OR instructions like the on-board ports as well as move instructions to transfer data in or out. The expander AND and OR instructions, however, combine the contents of accumulator with the selected port rather than immediate data as is done with the on-board ports.

I/O devices can also be added externally using the BUS port as the expansion bus. In this case the I/O ports become "memory mapped", i.e., they are addressed in the same way as external data memory and exist in the external data memory address space addressed by pointer register R0 or R1.

2.0 INSTRUCTION SET DESCRIPTION

The following pages describe the MCS®-48 instruction set in detail. The instruction set is first summarized with instructions grouped functionally. This summary page is followed by a detailed description listed alphabetically by mnemonic opcode.

Ports I and 2 are 8-bit static I/O ports which can be loaded to and from the accumulator. Outputs are statically latched but inputs are not latched and most be read while inputs are present. In addition, immediate data, from program memory can be ANDed or ORed directly to Pon I and Pont 2 with the result remaining on the pont. This allows "masks" stored in program memory to selectively set or reset individual bits of the I/O ports. Ports I and 2 are configured to allow input on a given pin by first writing a."1" out to the pin.

An 8-bit port called BUS can also be accessed via the accumulator and can have statically latched outputs as well. It too can have immediate data ANDed or ORed directly to its outputs, however, unlike ports I and 2, all cipk lines of BUS must be treated as either input or output or output at any one time: In addition to being a static port, BUS at any one time: In addition to being a static port, BUS the Move External instructions used to access external data memory. When these instructions are executed, a corresponding READ or WRITE pulse is generated and data is valid only at that time. When data is not being transferred, BUS is in a high impedance state. Note that the ORL instructions for the BUS are few tree, with internal account context.

The basic three on-board I/O ports can be expended via a 4-bit expander bus using half of port 2. I/O expander devices on his bus consist of four 4-bit ports which are addressed as ports 4 through 7. These ports have their own AND and OR instructions like the on-board ports as well as move instructions for transfer data in or out. The expander AND and OR instructions, however, combine the contents of accumulator with the selected port rather than immediate data as is done with the on-board ports.

The alphabetical listing includes the following information.

- Mnemonic
- Machine Code a tooffe and can offect a loos are erestined
- Symbolic Description
 Symbolic Description
- Assembly Language Example

The machine code is represented with the most significant bit (7) to the left and two byte instructions are represented with the first byte on the left. The assembly language examples are formulated as follows:

routines based on an ASCII character win varidarA

Label: Mnemonic, Operand;

Descriptive Comment

Subroutines are entered by executing a call instruction. Calls can be made like unconditional jumps to any address it a 2K word bank, and jumps across the 2K boundary are executed in the same manner. Two separate return use accounted to the same manner. Two separate return the executions determine whether or not status (upper 4-bits and process).

The return and restore status instruction also signals the end of an interrupt service routine if one has been in orderess.

1.7 Times Inciruations

The 8-bit on board timer/counter can be loaded or read via the accumulator while the counter is stopped or while counting. The counter can be started as a timer with an internal clock source or an event counter or timer with an external clock applied to the Tl input pin. The instruction executed determines which clock source is used. A single instruction stops the counter whether it is operating with an instruction stops the counter whether in addition, two instructions allow the timer interrupt to be enabled or distributed.

.8 Control instructions

Two instructions silow the external interrupt source to be enabled or disabled. Interrupts are initially disabled and are automatically disabled while an interrupt service, routines is in progress and re-enabled afterward.

There are four meroory bank select instructions, two to designate the active working register bank and two to control program are more benks. The operation of the program memory bank switch is explained in Section 2.2 in the Expanded MiCS-48 Seviem chapter.

8048AH/8748H/8049AH/8050AH/8749H Instruction Set Summary

Mnemonic

Registers INCR

INC @R

Mnemonic (Description and and and	Bytes	Cycle	
Accumulator		is	Contra	
ADD A. R	Add register to A	1	143	
ADD A, @R	Add data memory to A	1	1	
ADD A, # data	Add immediate to A	2	2	
ADDC A, R	Add register with carry	1	ล ป๋ะ	
ADDC A,	Add data memory with carry	108	shu n	
ADDC A, # data	Add immediate with carry	2	6	
ANL A, R	And register to A	CLK	0143	
ANL A, @R	And data memory to A	1	1	
ANL A, # data	And immediate to A	2	221	
ORL A, R	Or register to A	1	1	
ORL A @R	Or data memory to A	- 1	1	
ORL A. # data	Or immediate to A	2	2	
XRL A, R	Exclusive Or register to A	1	1	
XRL A, @R	Exclusive or data memory to A	1	1	
XRL, A, # data	Exclusive or immediate to A	2	2	
INC A	Increment A	1	1	
DEC A	Decrement A	1	1	
CLRA	Clear A	1	1	
CPL A	Complement A	1	1	
	Decimal adjust A	cs cop	nongen	
SWAPA	Swap nibbles of A	1	1	
RLA	Rotate A left	1	1	
RLCA	Rotate A left	1	1	
	through carry		A STATE	
RR A	Rotate A right	1	1	
RRC A	Rotate A right through carry	1	1	
Input/Output				
IN A, P	Input port to A	1	2	
OUTL P, A	Output A to port	1	2	
ANL P, # data	And immediate to port	2	2	
ORL P, # data	Or immediate to port	2	2	
INS A, BUS	Input BUS to A	1	2	
OUTL BUS, A	Output A to BUS	1	2	
*ANL BUS, # data	And immediate to BUS	2	2	
*ORL BUS, # data	Or immediate to BUS	2	2	
MOVD A, P	Input Expander port to A	1	2	
MOVD P, A	Output A to Expander port	1	2	
ANLD P, A	1	2		
ORLD P, A	Or A to Expander port	1	2	

DECR	Decrement register	1	ALCON.
Branch	yiomem stab		
JMP addr	Jump unconditional	102 A	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register	1 2	2
	and jump		******
JC addr	Jump on carry = 1	2	2
JNC addr	Jump on carry = 0	2	2
JZ addr	Jump on A Zero	2	2
JNZ addr	Jump on A not Zero	2	2
JT0 addr	Jump on T0 = 1	2	2
JNT0 addr	Jump on T0 = 0	2	2
JT1 addr	Jump on T1 = 1 base	2	V 2
JNT1 addr	Jump on T1 = 0	2	V(2)
JF0 addr	Jump on F0 = 1	2	112
JF1 addr	Jump on F1 = 1	7210	2
JTF addr	Jump on timer flag = 1	1/2	1028
JNI addr	Jump on INT = 0	2	12
JBb addr	Jump on Accumulator	2	2
	Disable Timer/Coutiler	HINO	DIS T
Subroutine	Adollous		
CALL addr	Jump to subroutine	2	2
RET	Return	1	2
RETR	Return and restore	1	2
	status		
Flags			
CLRC	Clear Carry	1	1
CLR C CPL C	Clear Carry Complement Carry	1	1
CPL C	Complement Carry	11000000	THE RESIDENCE
	Complement Carry Clear Flag 0	1	1
CPL C CLR F0	Complement Carry Clear Flag 0 Complement Flag 0	1	1
CPL C CLR F0 CPL F0	Complement Carry Clear Flag 0	1 1 1	1 1 1
CPL C CLR F0 CPL F0 CLR F1	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1	1 1 1	1 1 1 1
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1	1 1 1 1 1	1 1 1 1 1
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves MOV A, R	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1	1 1 1 1 1	1 1 1 1 1
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1	1 1 1 1 1	1 1 1 1 1
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves MOV A, R	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1 Move register to A Move data memory to A	1 1 1 1 1	1 1 1 1 1
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves MOV A, R MOV A, @R	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1 Move register to A Move data memory to A	1 1 1 1 1 1	1 1 1 1 1 1
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves MOV A, R MOV A, @R MOV A, # data	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1 Move register to A Move data memory to A Move immediate to A	1 1 1 1 1 2	1 1 1 1 1 1 2
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves MOV A, R MOV A, @R MOV A, # data MOV R, A MOV @R, A	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1 Move register to A Move data memory to A Move immediate to A Move A to register Move A to data memory	1 1 1 1 1 1 2 1 1 1	1 1 1 1 1 2 1 1 1
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves MOV A, R MOV A, @R MOV A, # data MOV R, A	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1 Move register to A Move data memory to A Move immediate to A Move A to register Move A to data memory Move immediate	1 1 1 1 1 1 2 1	1 1 1 1 1 1 1 2 1
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves MOV A, R MOV A, @R MOV A, # data MOV R, A MOV @R, A MOV R, # data	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1 Move register to A Move data memory to A Move immediate to A Move A to register Move A to data memory Move immediate to register	1 1 1 1 1 2 1 1 1 2	1 1 1 1 1 1 2 1 1 1 2
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves MOV A, R MOV A, @R MOV A, # data MOV R, A MOV R, # data MOV R, # data MOV R, # data	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1 Move register to A Move data memory to A Move immediate to A Move A to register Move A to data memory Move immediate to register Move immediate to register Move immediate to register Move immediate	1 1 1 1 1 1 2 1 1 1	1 1 1 1 1 2 1 1 1
CPL C CLR F0 CPL F0 CLR F1 CPL F1 Data Moves MOV A, R MOV A, @R MOV A, # data MOV R, A MOV @R, A MOV R, # data	Complement Carry Clear Flag 0 Complement Flag 0 Clear Flag 1 Complement Flag 1 Move register to A Move data memory to A Move immediate to A Move A to register Move A to data memory Move immediate to register	1 1 1 1 1 2 1 1 1 2	1 1 1 1 1 1 2 1 1 1 2

Description 1

Increment data memory 1 1

Increment register

Bytes Cycles

1 (0 (104))

Mnemonics copyright Intel Corporation 1983.

^{*}For use with internal memory only.

8048AH/8748H/8049AH/8050AH/8749H Instruction Set Summary (Con't)

Mnemonic	monic Description		
Data Moves		275	Regist
(Cont'd)	Increment register		NO R
XCH A, R	Exchange A and	1 5	9 JM
XCH A, @R	register Exchange A and	1	R OSC
Aon A, en	data memory		iona (8
XCHD A, @R	Exchange nibble of A and register		s stat
MOVX A, @R	Move external data	1 Alg	2
MOVX @R, A	Move A to external data memory	1 ,	2
MOVP A, @A	Move to A from	1 100	2
MOVP3 A, @A	current page	1 10	280
MOVPS A, @A	Move to A from Page 3	15	be ott
Timer/Counte		ddr	OTM
MOV A, T	Read Timer/Counter	1	bs 1T
MOV T, A	Load Timer/Counter	16b	HAM
STRTT	Start Timer no qual	1 15	bs 13
STRT CNT	Start Counter	1 1	bs 17t
STOP TONT	Stop Timer/Counter		os 1Ti
EN TCNTI	Enable Timer/Counter		bs IVI
2 2	Interrupt on an omul		os dal
DIS TCNTI	Disable Timer/Counter Interrupt	1	1
		onto	Lordus
8 1			
	Clear Flag 1		ELR F
1 1			
		SSWO	
1 1			
	Move data memory to A		A VOI
	memory		
2 2	Move immediate to register		
	Move immediate to		
	data memory		
	Move PSW to A		

Mnemonic Control		Description lightess	Bytes Cycl		
			rotski	muso	
ENI		Enable external	18	A da	
1 1 1		Interrupt and also boA	80	A CO	
DIST		Disable external		A da	
SEL RBO		Interrupt	g,A	000	
-		Select register bank 0 Select register bank 1	1.8	200	
SEL RB1 SEL MB0		Select register bank 1		F 150	
SEL M		Select memory bank 1	1 .00	oftic data	
ENTO		Enable clock output	18	A 14:	
		on TO mem stab both	800	A IIA	
NOP	2	No Operation	вітар 4	A 44	
		Or register to A	- A	A JET	
	2	Or data memory to A Or immediate to A			
		Exclusive Or register			
	+	Exclusive or date memory to A			
1		Decrement A			
1 1		Clear A			
		Complement A			
nemoni		yright Intel Corporation 19			
7					
	. 7				
	1	Rotate A right			
		Rotate A right through carry			
				O\tuga	
		A of frog Jugal		9 A P	
		Output A to port			
		And immediate to port			
		Or immediate to port			
		Input BUS to A			
		Output A to BUS	A SUE		
			A .SUE		
		Output A to BUS	A .SUE	OUTL B NIL BI GERR OPIL BI	
		Output A to BUS And immediate to BUS	SUS. A US.	NUTU BI CATA CATA CATA CATA CATA	
		Output A to BUS And immediate to BUS Or immediate to BUS Input Expander port	JUS. A JUS. JUS. A, P	VUTL B VAL BI VAL BI data COVD	
	2 2 1	Output A to BUS And immediate to BUS Or Immediate to BUS Input Expander port to A Output A to Expander	BUS. A US. A, P P, A		

Mnemonics copyright Intel Corporation 1983.
For use with internal memory only.

MCS®-48 INSTRUCTION SET Symbols and Abbreviations Used

d by register 'i' bits

A AC	Accumulator Auxiliary Carry 12-Bit Program Memory Address	DO A.(6)R. A
addr Bb	Bit Designator (b = 0-7)	
BUSDS	BUS Port metab Inables edit to sinaino enT	Description:
CLK	Carry	Operations
CNT	Event Counter Harox OA VOM :MODA	Example:
CRR D	Conversion Result Register Mnemonic for 4-Bit Digit (Nibble)	
data	8-Bit Number or Expression	sisb#,A QQ
DBF F0, F1	Memory Bank Filp-Fiop	
pebbs si s	Interrupt Mnemonic for "in-page" Operation	Description:
PC	Dunaum Countai	
Pp PSW	Port Designator (p = 1, 2 or 4-7) Program Status Word	Operation: Example:
Ri DOA	Data memory Pointer (i = 0 or 1)	
Rr SP	Register Designator (r = 0-7) Stack Pointer	DDC A.Rr
T	Timer	Encoding:
	naTest 0, Test 1 or to contents of test 1 test of	
X #	Mnemonic for External RAM	
@ QMAY	Immediate Data Prefix	
\$ 0A 0T (X)	Current Value of Program Counter Contents of X	
((X))	Contents of Location Addressed by X	
-	Is Replaced by	

Mnemonics copyright Intel Corporation 1983.

ADD A,R, Add Register Contents to Accumulator

Encoding: 0 1 1 0 1 r r r 68H-6FH

Description: The contents of register 'r' are added to the accumulator. Carry is

affected.

Operation: $(A) \leftarrow (A) + (Rr)$ r = 0-7

Example: ADDREG: ADD A.R6 :ADD REG 6 CONTENTS

TO ACC

ADD A.@R. Add Data Memory Contents to Accumulator

Encoding; 0 1 1 0 0 0 0 i 60H-61H

Description: The contents of the resident data memory location addressed by register 'i' bits

0-5** are added to the accumulator. Carry is affected.

Operation: $(A) \leftarrow (A) + ((Ri))$ i = 0-1-0

Example: ADDM: MOV R0, #01FH :MOVE '1F' HEX TO REG 0

ADD A, @RO ;ADD VALUE OF LOCATION

(elddiVI) fipid fi8-4 tot ;31 TO ACC

ADD A.#data Add Immediate Data to Accumulator

Encoding: 0 0 0 0 0 0 1 1 d7 d6 d5 d4 d3 d2 d1 d0

Description: This is a 2-cycle instruction. The specified data is added to the accumulator.

Carry is affected.

Operation: $(A) \leftarrow (A) + data$

ADD VALUE OF SYMBOL Example: ADDID: ADD A,#ADDER: (1 to 0 = 1) retning vio; ADDER' TO ACC

ADDC A,Rr Add Carry and Register Contents to Accumulator

Encoding: 0 1 1 1 1 rrr 78H-7FH

Description: The content of the carry bit is added to accumulator location 0 and the carry

bit cleared. The contents of register 'r' are then added to the accumulator.

Carry is affected. A lamsbid not binomenM

Operation: (A) \leftarrow (A) + (Rr) + (C)

Example: ADDRGC: ADDC A.R4 ADD CARRY AND REG 4

:CONTENTS TO ACC

** 0-5 in 8048AH/8748H DA nottsood to sine mod 0-6 in 8049AH/8749H 0-7 in 8050AH

ADDC A,@R; Add Carry and Data Memory Contents to Accumulator

Encoding: 0 1 1 1 0 0 0 i 70H-71H

Description: The content of the carry bit is added to accumulator location 0 and the carry bit

cleared. Then the contents of the resident data memory location addressed by

register 'i' bits 0-5** are added to the accumulator. Carry is affected.

Examples: ANDIO: ANL A.#OAFH Operation: $(A) \leftarrow (A) + ((Ri)) + (C)$ i = 0 - 1

Example: ADDMC: MOV R1,#40 :MOVE '40' DEC TO REG 1

> ADDC A,@R1 :ADD CARRY AND LOCATION 40

> > **:CONTENTS TO ACC**

ADDC A,@data Add Carry and Immediate Data to Accumulator and a stable JMA

Encoding: | 0 0 0 1 | 0 0 1 1 d7 d6 d5 d4 d3 d2 d1 d0 13H

Description: This is a 2-cycle instruction. The content of the carry bit is added to

be CIVA accumulator location 0 and the carry bit cleared. Then the specified data is

added to the accumulator. Carry is affected.

Specification of an OUTL BUS, A' instr(O) + ata + (A) → (A) → (A)

;ADD CARRY AND '225' DEC Example: ADDC A,#225

Example: ANDBUS: ANL BIODA OT:K

ANL A,R, Logical AND Accumulator with Register Mask

Encoding: 0 1 0 1 1 r r rate of 58H-5FH filly S-1 no 9 CMA table of stable of JMA

Description: Data in the accumulator is logically ANDed with the mask contained in

working register 'r'.

Operation: (A) ← (A) AND (Rr) r = 0-7

Example: ANDREG: ANL A,R3 :'AND' ACC CONTENTS WITH MASK

Operation: (Pp) - (Pp) AND C PAR

Logical AND Accumulator with memory Mask ANL A,@R;

Encoding: 0 1 0 1 0 0 0 1 50H-51H

Description: Data in the accumulator is logically ANDed with the mask contained in the

data memory location referenced by register 'i' bits 0-5**.

Operation: (A) ← (A) AND ((Ri)) i = 0 - 1

Example: ANDDM: MOV R0,#03FH :MOVE '3F' HEX TO REG 0

ANL A, @RO ;'AND' ACC CONTENTS WITH

:MASK IN LOCATION 63 ** 0-5 in 8048AH/8748H

0-6 in 8049AH/8749H 0-7 in 8050AH

ANL A,#data Logical AND Accumulator with Immediate Mask

Encoding: 0 1 0 1 0 0 1 1 d7 d6 d5 d4 d3 d2 d1 d0 t 053Halbooni **Description:** This is a 2-cycle instruction. Data in the accumulator is logically ANDed vd beasenbbs with an immediately-specified mask. method and next bease Operation: (A) ← (A) AND data Examples: ANDID: ANL A,#0AFH "AND" ACC CONTENTS ;WITH MASK 10101111 (A) :89081690 ANL A,#3 + X/Y ;'AND' ACC CONTENTS A SELECTION OF :WITH VALUE OF EXP :'3 + XY/Y' ANL BUS,#data* Logical AND BUS with Immediate Mask Encoding: 1 0 0 1 1 0 0 0 d7 d6 d5 d4 d3 d2 d1 d0 Description H80 his is Description: This is a 2-cycle instruction. Data on the BUS port is logically ANDed with an immediately-specified mask. This instruction assumes prior specification of an 'OUTL BUS, A' instruction. (A) -- (A) -- (A) -- (B) Operation: (BUS) - (BUS) AND data Example: ADDC A.#225 Example: ANDBUS: ANL BUS, #MASK :'AND' BUS CONTENTS WITH MASK EQUAL VALUE AssA stalped ;OF SYMBOL 'MASK' leelpol ,A.A.JVA ANL Pp,#data Logical AND Port 1-2 with Immediate Mask Encoding: 1 0 0 1 10 pp d7 d6 d5 d4 d3 d2 d1 d0 99H-9AH Description: This is a 2-cycle instruction. Data on port 'p' is logically ANDed with an immediately-specified mask. Operation: (Pp) ← (Pp) AND DATA p = 1-2Example: ANDP2: ANL P2,#0F0H ;'AND' PORT 2 CONTENTS ;WITH MASK 'FO' HEX * For use with internal program memory ONLY. Description: Date in the accumulator is logically ANDed with the mask contained in the

ANLD Pp,A Logical AND Port 4-7 with Accumulator Mask a notification listor

Encoding: 1 0 0 1 1 1 p p 9CH-9FH

Description: This is a 2-cycle instruction. Data on port 'p' is logically ANDed with the

digit mask contained in accumulator bits 0-3.

Operation: (Pp) ← (Pp) AND (A0-3) p = 4-7 St. A GGA

Note: The mapping of port 'p' to opcode bits 0-1 is as follows:

10 Port DER GGA 00 4 ABUS JIAO 01 5 DER GGA 10 6 8 DER GGA 10 6 8 DER GGA 10 7 FORUS 11 TO BBUS JIAO

Example: ANDP4: ANLD P4,A

;'AND' PORT 4 CONTENTS :WITH ACC BITS 0-3

CALL address Subroutine Call

Encoding:	a ₁₀ a ₉ a ₈ 1	0100	a ₇ a ₆ a ₅ a ₄	a ₃ a ₂ a ₁ a ₀
	Page	Hex Op Code		CLR A Clear Accumulator
	0	14		Encoding: 0 0 1 0 0 1 1 1
	1	34	e antelumunne	Description: The conlents of the
	2	54	a ressignation	on to ememorate mongrosse
	3	74		Operation: A 0
	4	94		
	5	B4		CLR C Clear Carry Bit
	6	D4		
	7	F4		Encoding: 100110111

Description: This is a 2-cycle instruction. The program counter and PSW bits 4-7 are

saved in the stack. The stack pointer (PSW bits 0-2) is updated. Program control is then passed to the location specified by 'address'. PC bit 11 is determined by the most recent SEL MB instruction.

A CALL cannot begin in locations 2046–2047 or 4094–4095. Execution continues at the instruction following the CALL upon return from the subroutine.

Operation: $((SP)) \leftarrow (PC), (PSW_{4-7})$

 $(SP) \leftarrow (SP) + 1$ $(PC_{8-10}) \leftarrow (addr_{8-10})$ $(PC_{0-7}) \leftarrow (addr_{0-7})$ $(PC_{11}) \leftarrow DBF$

Example: Add three groups of two numbers. Put subtotals in locations 50, 51 and total in location 52::sM votalumusa Artw 5-5 ried GMA tablea Local A.g9 GJMA MOV R0,#50 ;MOVE '50' DEC TO ADDRESS REG 0 digit mask containeOOA OT; mulator bits 0-3. :ADD REG 2 TO ACC ADD A,R2 ewollor as CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT' ADDC A R3 :ADD REG 3 TO ACC ADDC A,R4 ;ADD REG 4 TO ACC CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT' ADDC A,R5 ADD REG 5 TO ACC ADDC A,R6 ;ADD REG 6 TO ACC CALL SUBTOT :CALL SUBROUTINE 'SUBTOT' SUBTOT: MOV @RO,A :MOVE CONTENTS OF ACC TO **;LOCATION ADDRESSED BY** :REG 0 INC RO ;INCREMENT REG 0 RETURN TO MAIN PROGRAM RET Encoding: |ato as as 1 | 0 1 0 0 06 16 06 06 18 26 26 76 **CLR A Clear Accumulator** Encoding: 0 0 1 0 0 1 1 1 27H **Description:** The contents of the accumulator are cleared to zero. Operation: A - 0 CLR C Clear Carry Bit Encoding: 1 0 0 1 0 1 1 1 97H Fd Description: During normal program execution, the carry bit can be set to one by the ADD, ADDC, RLC, CPL C, RRC, and DAA insructions. This instruction resets the carry bit to zero. Operation: C - 0 CLR F1 Clear Flag 1 noqu LL CALL upon religion to the continues at the Instruction following the CALL upon religions and the CALL upon religio Encoding: |1 0 1 0 | 0 1 0 1 A5H Description: Flag 1 is cleared to zero. Operation: $(F1) \leftarrow 0$

CLR F0 Clear Flag 0 The 8-bit accumulator value is an H28 Encoding: 1 0 0 0 0 1 0 1 Description: Flag 0 is cleared to zero. Id and polivollo angle (COS) lamiced Operation: (F0) ← 0 6-0 stid to stricting on the batteries at 0 tid yrise and CPL A Complement Accumulator sale and sent sets afid about and sent 37H Encoding: 0 0 1 1 0 1 1 1 Description: The contents of the accumulator are complemented. This is strictly a one's complement. Each one is changed to zero and vice-versa. Operation: (A) ← NOT (A) **Example:** Assume accumulator contains 01101010. CPLA: CPL A OT XIE GOA ;ACC CONTENTS ARE COMPLE-;MENTED TO 10010101 CPL C Complement Carry Bit Encoding: 1 0 1 0 0 1 1 1 A7H Description: The setting of the carry bit is complemented; one is changed to zero, and zero is changed to one. Operation: (C) ← NOT (C) emergeb are not slumples and to smethod entition and transfer of the contract of the **Example:** Set C to one; current setting is unknown. CTO1: CLR C ;C IS CLEARED TO ZERO CPL C ;C IS SET TO ONE CPL F0 Complement Flag 0 Encoding: 1 0 0 1 0 1 0 1 95H Description: The setting of flag 0 is complemented; one is changed to zero, and zero is changed to one. Operation: F0 ← NOT (F0) CPL F1 Complement Flag 1 Encoding: 1 0 1 1 0 1 0 1 be a B5H assign unblow to street and another a Description: The setting of flag 1 is complemented; one is changed to zero, and zero is

changed to one.

Operation: (F1) ← NOT (F1)

DA A Decimal Adjust Accumulator

Encoding: 0 1 0 1 0 1 1 1

57H

Description: The 8-bit accumulator value is adjusted to form two 4-bit Binary Coded Decimal (BCD) digits following the binary addition of BCD numbers. The carry bit C is affected. If the contents of bits 0-3 are greater than nine,

or if AC is one, the accumulator is incremented by six.

The four high-order bits are then checked. If bits 4-7 exceed nine, or if C is one, these bits are increased by six. If an overflow occurs, C is set to one.

Example: Assume accumulator contains 10011011.

DA A ;ACC Adjusted to 00000001

;WITH C SETA) TOM -- (A) inolisisque

CAC 7 0 0 1 0 0 1 1 0 1 1 00000110 0 1 1 0 1 0 0 0 0 1

ADD SIX TO BITS 0-7

0 1 1 0 1 0 0 0 0 0 0 0 0 1

ADD SIX TO BITS 4-7
OVERFLOW TO C

DEC A Decrement Accumulator

Encoding: 0 0 0 0 0 1 1 1

07H

Description: The contents of the accumulator are decremented by one. The carry flag

is not affected.

Operation: $(A) \leftarrow (A) -1$

Example: Decrement contents of external data memory location 63.

MOV RO.#3FH

:MOVE '3F' HEX TO REG 0 MOVE CONTENTS OF

MOVX A, @RO

:LOCATION 63 TO ACC

DECA

:DECREMENT ACC

MOVX @RO,A mented; one is changed to zero, and zero is

:MOVE CONTENTS OF ACC TO ;LOCATION 63 IN EXPANDED

:MEMORY and of beginsil

DEC Rr Decrement Register

Encoding: 1 1 0 0 1 r r r

C8H-CFH

3-14

Description: The contents of working register 'r' are decremented by one.

Operation: (Rr) ← (Rr) -1 a and between 10-7 1 gelf to gnittee ed T :notiginated

Example: DECR1: DECR1

:DECREMENT CONTENTS OF REG 1

DIS I External Interrupt 15H **Encoding:** 0001 0 1 0 1 Description: External interrupts are disabled. A low signal on the interrupt input pin has no effect. DIS TCNTI Disable Timer/Counter Interrupt . Iquition Interrupt . Iquitio Encoding: 0 0 1 1 0 1 0 1 35H Description: Timer/counter interrupts are disabled. Any pending timer interrupt request is cleared. The interrupt sequence is not initiated by an overflow, but the timer flag is set and time accumulation continues. ENTO CLK Enable Clock Output DJNZ R_r, address Decrement Register and Test Encoding: 1110 1 rrr a7 a6 a5 a4 E8H-EFHDOOM a3 a2 a1 a0 Description: This is a 2-cycle instruction. Register 'r' is decremented, then tested for zero. If the register contains all zeros, program control falls through to the mext instruction. If the register contents are not zero, control jumps to the specified 'address'. The address in this case must evaluate to 8-bits, that is, the jump must be to a location within the current 256-location page. Example: (Rr) ← (Rr) -1 Description: This is a 2-cycle instruction. D If Rr not 0 $(PC_{0-7}) \leftarrow addr$ Note: A 12-bit address specification does not cause an error if the DJNZ instruction and the jump target are on the same page. If the DJNZ instruction begins in location 255 of a page, it must jump to a target address on the following page. Example: Increment values in data memory locations 50-54. MOV RO,#50 :MOVE '50' DEC TO ADDRESS :REG 0 ;MOVE '5' DEC TO COUNTER A DIAL MOV R3,#5 REG 3 INCREMENT CONTENTS OF INCRT: INC @R0 LOCATION ADDRESSED BY :REG 0 INC RO ;INCREMENT ADDRESS IN REG 0 DJNZ R3. INCRT :DECREMENT REG 3 - JUMP TO ; 'INCRT' IF REG 3 NONZERO

;'NEXT' ROUTINE EXECUTED

:IF R3 IS ZERO

NEXT -

EN I Enable External Interrupt

Encoding: 0 0 0 0 0 1 0 1

05H

Description: External interrupts are enabled. A low signal on the interrupt input pin

initiates the interrupt sequence.

EN TCNTI Enable Timer/Counter Interrupt | journal of the Country | State | Sta

Encoding: 0 0 1 0 0 1 0 1

25H

Description: Timer/counter interrupts are enabled. An overflow of the timer/counter

and fud winitiates the interrupt sequence. suppos tournami and benselo at

ENTO CLK Enable Clock Output

Encoding: 0 1 1 1 0 1 0 1

Encoding: 1110 1111 ay as as H57 an

Description: The test 0 pin is enabled to act as the clock output. This function is

and of rigure disabled by a system reset, was also enisting a resistance resistance and it is one

Example: EMTST0: ENTO CLK ;ENABLE TO AS CLOCK OUTPUT

IN A,Ppe Input Port or Data to Accumulator ve taum seas sint ni seemble en T

Encoding: | 0 0 0 0 | 1 0 p p

to a location within the current PAO-HEO

Description: This is a 2-cycle instruction. Data present on port 'p' is

transferred (read) to the accumulator.

Operation: (A) (Pp) se edi no era tegra p = 1-2 di ona noitourieni XIALO

MOV R6.A

IN A,P2 MOV R7,A

Jegus INP12: IN A,P1 II Joseph St. INPUT PORT 1 CONTENTS TO ACC MOVE ACC CONTENTS TO REG 6

;INPUT PORT 2 CONTENTS TO ACC MOVE ACC CONTENTS TO REG 7

INC A Increment Accumulator

Encoding: 0 0 0 1 0 1 1 1

17H

Description: The contents of the accumulator are incremented by one. Carry is not

affected.

Operation. (A) \leftarrow (A) +1

Example: Increment contents of location 100 in external data memory. :MOVE '100' DEC TO ADDRESS REG 0 INCA: MOV RO,#100 MOVX A,@R0 MOVE CONTENTS OF LOCATION 08 15 98 88 AB 35 85 INC A INCREMENT A :MOVE ACC CONTENTS TO MOVX @RO, AO Xell :LOCATION 101 INC R, Increment Register 18H-1FH Encoding: 0 0 0 1 1 rrr Description: The contents of working register 'r' are incremented by one. Operation: (Rr) ← (Rr) + 1 r = 0 - 7Example: INCR0: INC R0 :INCREMENT CONTENTS OF REG 0 Description: This is a 2-cycle instruction. Control passes to the specified address if INC @R, Increment Data Memory Location and of the ail d'itid totalumuoss Encoding: 0 0 0 1 0 0 0 i 10H-11H Description: The contents of the resident data memory location addressed by register 'i' bits 0-5** are incremented by one. Operation: ((Ri)) ← ((Ri)) + 18 00A 31; i = 0 - 1MOVE ONES TO REG 1 Example: INCDM: MOV R1,#03FH INC @R1 :INCREMENT LOCATION 63 INS A,BUS* Strobed Input of BUS Data to Accumulator Encoding: 0 0 0 0 1 0 0 0 08H Description: This is a 2-cycle instruction. Data present on the BUS port is transferred (read) to the accumulator when the RD pulse is dropped. (Refer to section on programming memory expansion for details.) Operation: (A) ← (BUS) Example: INPBUS: INS A,BUS INPUT BUS CONTENTS TO ACC * For use with internal program memory ONLY. ** 0-5 in 8048AH/8748H 0-6 in 8049AH/8749H This is a 2-cycle instruction. Control passes to the specified ad HA0208 in 7-0 (PC) = (PC) + 2

Example: Increment contents of location 100 in external data memory. INCA: MOV RO,#100 JBb address Jump If Accumulator Bit Is Set 0 0 1 0 **Encoding:** b2 b1 b0 1 a7 a6 a5 a4 a3 a2 a1 an OT STUBTIO Accumulator Bit | Hex Op Code VOM 0 12 32 52 3 72 18H-11FH ng register 'r' age incremented by one. R2 D2 6-0 = 1 HNCREMENT CONTENTS OF REG 0 Example: INCRO: INC RO Description: This is a 2-cycle instruction. Control passes to the specified address if accumulator bit 'b' is set to one. noticed your Manager and All Old Operation: b = 0-7If Bb = 1 $(PC_{0-7}) \leftarrow addr$ Description: The contents of the 10 = de filate memory locatics + (2P) = (2P) register T bits Example: JB4IS1: JB4 NEXT JUMP TO 'NEXT' ROUTINE ((Ri)) → ((Ri)) ··· (Ri) inoitre Q JC address Jump If Carry Is Set NO BYOM. Encoding: 11110110 a7 a6 a5 a4 a3 a2 a1 a0 F6H Description: This is a 2-cycle instruction. Control passes to the specified address if the carry bit is set to one. Operation: $(PC_{0-7}) \leftarrow addr$ If C = 1 Description: This is a 2-cycle instroct of (PC) = (PC) + 2Example: JC1: JC OVFLOW JUMP TO 'OVFLOW' ROUTINE :IF C = 1 JF0 address Jump If Flag 0 Is Set Encoding: 1 0 1 1 0 1 1 0 a7 a6 a5 a4 a3 a2 a1 a0 Description: This is a 2-cycle instruction. Control passes to the specified address if flag 0 is set to one. Operation: $(PC_{0-7}) \leftarrow addr$ If F0 = 1(PC) = (PC) + 2If F0 = 0Example: JF0IS1: JF0 TOTAL ;JUMP TO 'TOTAL' ROUTINE IF F0 = 1

a3 a2 a1 a0 a7 a6 a5 a4

Description: This is a 2-cycle instruction. Control passes to the specified address if

flag 1 is set to one.

Operation: $(PC_{0-7}) \leftarrow addr$ (PC) = (PC + 2)

Example: JF1IS1: JF1 FILBUF

;JUMP TO 'FILBUF' :ROUTINE IF F1 = 1

JMP address **Direct Jump within 2K Block**

Encoding: a10 a9 a8 0 a7 a6 a5 a4 a3 a2 a1 a0

Page Hex Op Code

0	04
1	24
2 2	AS 38448
3	eq 101164)
	el tarti 84
	A4
6	C4
7	E4

Description: This is a 2-cycle instruction. Bits 0-10 of the program counter are replaced

with the directly-specified address. The setting of PC bit 11 is

determined by the most recent SELECT MB instruction.

Operation: (PC₈₋₁₀) ← addr 8-10

 $(PC_{0-7}) \leftarrow addr 0-7$ (PC₁₁) ← DBF

Example: JMP SUBTOT

JMP \$-6

;JUMP TO SUBROUTINE 'SUBTOT'

JUMP TO INSTRUCTION SIX

LOCATIONS BEFORE CURRENT :LOCATION

JMP 2FH

:JUMP TO ADDRESS '2F' HEX

JMPP @A Indirect Jump within Page

Encodina:

1011 0011

B3H

Description: This is a 2-cycle insruction. The contents of the program memory location pointed to by the accumulator are substituted for the 'page' portion of the program counter (PC bits 0-7).

Operation: $(PC_{0-7}) \leftarrow ((A))$ Example: Assume accumulator contains 0FH. JMPPAG: JMPP @A JUMP TO ADDRESS STORED IN :LOCATION 15 IN CURRENT PAGE JNC address Jump If Carry Is Not Set E6H Encoding: 11100110 a7 a6 a5 a4 a3 a2 a1 a0 **Description:** This is a 2-cycle instruction. Control passes to the specified address if the carry bit is not set, that is, equals zero. If C = 0 Operation: $(PC_{0-7}) \leftarrow addr$ (PC) = (PC) + 2JMP address Direct Jump within Die Other Example: JC0: JNC NOVFLO ;JUMP TO 'NOVFLO' ROUTINE 87 26 25 24 :IF C = 0 JNI address Jump If Interrupt Input Is Low Encoding: 100000110 86H a7 a6 a5 a4 a3 a2 a1 a0 Description: This is a 2-cycle instruction. Control passes to the specified address if the interrupt input signal is low (= 0), that is, an external interrupt has been signaled. (This signal initiates an interrupt service sequence if the external interrupt is enabled.) Operation: $(PC_{0-7}) \leftarrow addr$ If I = 0Description: This is a 2-cycle instr = 111 Bits 0-10 of the rs + (29) = (29) are replaced Example: LOC 3: JNI EXTINT POLITICAL SUPPLY STATEMENT ROUTINE determined by the rors | 41; ent SELECT MB instruction. JNT0 address Jump If Test 0 is Low **Encoding:** 0110 0010 a7 a6 a5 a4 a3 a2 a1 a0 26H: algmina Description: This is a 2-cycle instruction. Control passes to the specified address, if the test 0 signal is low. Operation: $(PC_{0-7}) \leftarrow addro19MUL$ If TO = 0(PC) = (PC) + 2If T0 = 1 JUMP TO LOCATION 60 DEC Example: JT0LOW: JNT0 60 ;IF T0 = 0

JNT1 address Jump If Test 1 Is Low Encoding: 0 1 0 0 0 1 1 0 a a₇ a₆ a₅ a₄ a₃ a₂ a₁ a₀ 46H Description: This is a 2-cycle instruction. Control passes to the specified address, if the test 1 signal is low. If T1 = 0 Operation: $(PC_{0-7}) \leftarrow addr$ If T1 = 1 (PC) = (PC) + 2JNZ Address Jump If Accumulator Is Not Zero Encoding: 1 0 0 1 0 1 1 0 a7 a6 a5 a4 a3 a2 a1 a0 96H Description: This is a 2-cycle instruction. Control passes to the specified address if the accumulator contents are nonzero at the time this instruction is executed. Operation: (PC₀₋₇) ← addr assas formod If A ≠ 0 and slove 2 a stant molighose 0 the accumulator cor0 = A II xeros at the time (PC) = (PC) Example: JACCN0: JNZ 0ABH JUMP TO LOCATION 'AB' HEX :IF ACC VALUE IS NONZERO JTF address Jump If Timer Flag Is Set Encoding: 0 0 0 1 0 1 1 0 a7 a6 a5 a4 a3 a2 a1 a0 Description: This is a 2-cycle instruction. Control passes to the specified address if the timer flag is set to one, that is, the timer/counter register has overflowed. Testing the timer flag resets it to zero. (This overflow initiates an interrupt service sequence if the timer-overflow interrupt is enabled.) Operation: $(PC_{0-7}) \leftarrow addr$ If TF = 1 (PC) = (PC) + 2If TF = 0Example: JTF1: JTF TIMER JUMP TO 'TIMER' ROUTINE :IF TF = 1 JT0 address Jump If Test 0 Is High 00 936H nelighbas C Encoding: 0 0 1 1 0 1 1 0 a7 a6 a5 a4 a3 a2 a1 a0 Description: This is a 2-cycle instruction. Control passes to the specified address if the test 0 signal is high (= 1).V89 M eniture TB818F of gmuL selamax3 BSCHK: MOV A.PSW OT 11 Operation: (PC₀₋₇) ← addr (PC) = (PC) + 2 If TO = 0 188 481 Example: JT0HI: JT0 53 **;JUMP TO LOCATION 53 DEC**

:IF T0 = 1

JT1 address Jump If Test 1 Is High Encoding: 0 1 0 1 0 1 1 0 a7 a6 a5 a4 a3 a2 a1 a0 56H Description: This is a 2-cycle instruction. Control passes to the specified address if the test 1 signal is high (= 1). Operation: $(PC_{0-7}) \leftarrow addr = 1711$ If T1 = 1 (PC) = (PC) + 2If T1 = 0 Example: JT1HI: JT1 COUNT ;JUMP TO 'COUNT' ROUTINE JNZ Address Jump If Accumula PIL JZ address Jump If Accumulator Is Zero Encoding: 1 1 0 0 0 1 1 0 0 a7 a6 a5 a4 a3 a2 a1 a0 C6H Description: This is a 2-cycle instruction. Control passes to the specified address if a control passes to the cont the accumulator contains all zeros at the time this instruction is executed. Operation: $(PC_{0-7}) \leftarrow addr \cap \neg \neg \square$ Example: JACCNO: JNZ.0ABHO = A 11 OP(PC) = (PC) + 2 AV OOA PI If $A \neq 1$ Example: JACCO: JZ 0A3H ;JUMP TO LOCATION 'A3' HEX ;IF ACC VALUE IS ZERO MOV A,#data Move Immediate Data to Accumulator 0 0 1 0 0 0 1 1 a₇ a₆ a₅ a₄ a₃ a₂ a₁ a₀ 23H Encoding: Description: This is a 2-cycle instruction. The 8-bit value specified by 'data' is loaded in the accumulator. It woll evo-temit ent it eansupe Operation: (A) ← data Example: MOV A,#0A3H ;MOVE 'A3' HEX TO ACC JUMP TO 'TIMER' ROUTINI MOV A,PSW Move PSW Contents to Accumulator Encoding: 1 1 0 0 0 1 1 1 C7H Description: The contents of the program status word are moved to the accumulator. Description: This is a 2-cycle instruction. Control passes to (W29) (A) :noitsraqO Example: Jump to 'RB1SET' routine if PSW bank switch, bit 4, is set. BSCHK: MOV A,PSW ;MOVE PSW CONTENTS TO ACC JB4 RB1SET ;JUMP TO 'RB1SET' IF ACC BIT 4 = 1

MOV A,R, Move Register Contents to Accumulator 15/10/3 10/14/14/1934 940M A,R VOM Encoding: | 1 1 1 1 1 1 rrr F8H-FFH Description: 8-bits of data are removed from working register 'r' into the accumulator. Operation: (A) ← (Rr) r = 0 - 7Example: MAR: MOV A,R3 :MOVE CONTENTS OF REG 3 TO ACC MOV A,@R; Move Data Memory Contents to Accumulator Encoding 11110001 FOH-F1H Description: The contents of the resident data memory location addressed by bits 0-5** of register 'i' are moved to the accumulator. Register 'i' contents are unaffected. Operation: $(A) \leftarrow ((Ri))$ Examples: MIR4: MOV R4,#HEX 150 = 1 Example: Assume R1 contains 00110110. MADM: MOV A,@R1 MOVE CONTENTS OF DATA MEM ;LOCATION 54 TO ACC MOV A,T Move Timer/Counter Contents to Accumulator Encoding: 0 1 0 0 0 0 1 0 42H Description: The contents of the timer/event-counter register are moved to the location whose address is specified by bits 0-5 ... Totalumusos Register Operation: $(A) \leftarrow (T)$ Example: Jump to "EXIT" routine when timer reaches '64', that is, when bit 6 setassuming initialization 64, TIMCHK: MOV A,T MOVE TIMER CONTENTS TO ACC JB6 EXIT ;JUMP TO 'EXIT' IF ACC BIT 6 = 1 MOV PSW,A Move Accumulator Contents to PSW D7H 30 75 Encoding: | 1 1 0 1 0 1 1 1 **Description:** The contents of the accumulator are moved into the progam status word. All condition bits and the stack pointer are affected by this move. Operation: (PSW) ← (A) **Example:** Move up stack pointer by two memory locations, that is, increment the pointer by one. INCPTR: MOV A,PSW :MOVE PSW CONTENTS TO ACC HIGHER INCA INCREMENT ACC BY ONE MOV PSW.A ;MOVE ACC CONTENTS TO PSW ** 0-5 in 8048AH/8748H 0-6 in 8049AH/8749H

0-7 in 8050AH

MOV R.A Move Accumulator Contents to Register of alignment of the state of the stat

Encoding: 1010 1 rrr

A8H-AFH

r = 0-7

Description: The contents of the accumulator are moved to register 'r'.

Operation: (Rr) ← (A)

:MOVE CONTENTS OF ACC TO REG 0 Example: MRA: MOV RO, A

MOV R.,#data Move Immediate Data to Register

Encoding: 1011 1 r2 r1 r0 d7 d6 d5 d4 d3 d2 d1 d0

B8H-BFH

Description: This is a 2-cycle instruction. The 8-bit value specified by 'data' is moved to

register 'r'.

Operation: (Rr) - data r = 0 - 7

Examples: MIR4: MOV R4,#HEXTEN THE VALUE OF THE SYMBOL

> : 'HEXTEN' IS MOVED INTO REG 4 THE VALUE OF THE EXPRESSION :'PI*(R*R)' IS MOVED INTO REG 5

:'AD' HEX IS MOVED INTO REG 6

MIR 6: MOV R6. #0ADH

MIR 5: MOV R5, #PI*(R*R)

MOV @ Ri, A Move Accumulator Contents to Data Memory

Encoding: 101000001 A0H-A1H

Description: The contents of the accumulator are moved to the resident data memory

location whose address is specified by bits 0-5** of register 'i'. Register 'i'

contents are unaffected.

Operation: ((Ri)) - (A) A series remit ij = 0-1 liver TIXE of gmut seigment

Example: Assume R0 contains 00000111.

MDMA: MOV @RO,A

:MOVE CONTENTS OF ACC TO

;LOCATION 7 (REG 7)

MOV @ R_i,#data Move Immediate Data to Data memory

Encoding: 1011 0001 d7 d6 d5 d4 d3 d2 d1 d0 B0H-B1H

MOV A,T Move Timer/Count

Description: This is a 2-cycle instruction. The 8-bit value specified by 'data' is moved

to the resident data memory location addressed by register 'i', bits 0-5**.

Operation: ((Ri)) ← data

Examples: Move the hexadecimal value AC3F to locations 62-63.

MIDM: MOV RO,#62

;MOVE '62' DEC TO ADDR REG 0 MOV @RO,#0ACH ;MOVE 'AC' HEX TO LOCATION 62

INC RO :INCREMENT REG 0 to '63'

MOV @R0,#3FH :MOVE '3F' HEX TO LOCATION 63

** 0-5 in 8048AH/8748H 0-6 in 8049AH/8749H 0-7 in 8050AH

MOV T,A Move Accumulator Contents to Timer/Counter 22 1001110 evol Appl 4 9 0 14

Encoding: 0 1 1 0 0 0 1 0 62H

Description: The contents of the accumulator are moved to the timer/event-counter accumulator are moved to the accumulator. Only bits Crategoram

Operation: (T) (A) (A) (A) (The program counter is restored follow(A)

Example: Initialize and start event counter.

INITEC: CLR A ;CLEAR ACC TO ZEROS

MOVE ZEROS TO EVENT COUNTER MOV T,A

spec priwoller START CNT START COUNTER

MOVD A,Pp Move Port 4-7 Data to Accumulator

Encoding: 0 0 0 0 1 1 p p 0CH-0FH

Description: This is a 2-cycle instruction. Data on 8243 port 'p' is moved (read) to

accumulator bits 0-3. Accumulator bits 4-7 are zeroed.

Operation: $(0-3) \leftarrow (Pp)$ p = 4-7 $(4-7) \leftarrow 0$

Note: Bits 0-7 of the opcode are used to represent ports 4-7. If you are coding in binary rather than assembly language, the mapping is as

accumulator. The program counter is restored followin: awollopperation.

	Bits 10	Port	
	0.0	4	(PC8-11) - 0011
	01	5	
nal code in table contained at t	1010 xer	to 6 relat	
haracters are designated by a	LABOIL	Not7 the	

Example: INPPT5: MOVD A,P5

;MOVE PORT 5 DATA TO ACC ;BITS 0-3, ZERO ACC BITS 4-7

MOVPS A. (C) A Move

MOVD Pp,A Move Accumulator Data to Port 4-7

Encoding: 0 0 1 1 1 1 p p and 3CH-3FH normand to street as A

Description: This is a 2-cycle instruction. Data in accumulator bits 0-3 is moved

(written) to 8243 port 'p'. Accumulator bits 4-7 are unaffected. (See NOTE

above regarding port mapping.)

P = 4-7 A E9VOM Operation: (Pp) \leftarrow (A₀₋₃)

Example: Move data in accumulator to ports 4 and 5.

OUTP45: MOVD P4.A :MOVE ACC BITS 0-3 TO PORT 4 SWAPA ;EXCHANGE ACC BITS 0-3 and 4-7 MOVD P5.A ;MOVE ACC BITS 0-3 TO PORT 5

MOVP A,@A Move Current Page Data to Accumulator

Encoding: 1 0 1 0 0 0 1 1

АЗН

Description: The contents of the program memory location addressed by the

accumulator are moved to the accumulator. Only bits 0–7 of the program counter are affected, limiting the program memory reference to the current page. The program counter is restored *following* this operation.

Operation: $(PC_{0-7}) \leftarrow (A)$ $(A) \leftarrow ((PC))$

Note: This is a 1-byte, 2-cycle instruction. If it appears in location 255 of a program memory page, @A addresses a location in the *following* page.

Example: MOV128: MOV A,#128

;MOVE '128' DEC TO ACC

MOVP A,@A

CONTENTS OF 129th LOCATION IN

MOVP3 A,@A Move Page 3 Data to Accumulator

Encoding: 1 1 1 0 0 0 1 1

E3H

Description: This is a 2-cycle instruction. The contents of the program memory location

(within page 3) addressed by the accumulator are moved to the

accumulator. The program counter is restored following this operation.

Operation: $(PC_{0-7}) \leftarrow (A)$

 $(PC_{8-11}) \leftarrow 0011$

(A) ← ((PC))

Example: Look up ASCII equivalent of hexadecimal code in table contained at the

beginning of page 3. Note that ASCII characters are designated by a

7-bit code; the eighth bit is always reset.

TABSCH: MOV A,#0B8H

;MOVE 'B8' HEX TO ACC (10111000)

;LOGICAL AND ACC TO MASK BIT

;7 (00111000)

MOVP3 A,@A

MOVE CONTENTS OF LOCATION '38'

;HEX IN PAGE 3 TO ACC (ASCII '8')

Access contents of location in page 3 labelled TAB1.

bev Assume current program location is not in page 3. 5-5 a al aid Tomorous de la company de la comp

TABSCH: MOV A,#LOW TAB 1 ;ISOLATE BITS 0-7 OF LABEL

ADDRESS VALUE

MOVP3 A,@A

;MOVE CONTENTS OF PAGE 3

;LOCATION LABELED 'TAB1' TO ACC

MOVX A,@R; Move External-Data-Memory Contents to Accumulator

Description: Date in the accumulator is to H18-H08 at w Encoding: 1 0 0 0 0 0 0 i

Description: This is a 2-cycle instruction. The contents of the external data memory

location addressed by register 'i' are moved to the accumulator. Register 'i'

contents are unaffected. A read pulse is generated. Example: ORDM: MOV RO.#3F

i = 0-1 080, A 190 Operation: (A) ((Ri))

Example: Assume R1 contains 01110110.

MAXDM: MOVX A,@R1 :MOVE CONTENTS OF LOCATION

ORL A.#deta Logical OR ACOA OT 811;11h Immediate Mask

Encoding: 0 1 0 0 0 0 1 1 | dr de de da da do do do do

MOVX @R; A Move Accumulator Contents to External Data Memory

90H-91H Encoding: 1 0 0 1 0 0 0 i

Description: This is a 2-cycle instruction. The contents of the accumulator are moved to

the external data memory location addressed by register 'i'. Register 'i'

contents are unaffected. A write pulse is generated.

Operation: ((Ri)) - A i = 0 - 1

Example: Assume R0 contains 11000111. It will dill 2UE R0 isolgo J *stsb# 3UE JR0

MXDMA: MOVX @RO,A :MOVE CONTENTS OF ACC TO

to to go ab ab ab ;LOCATION 199 IN EXPANDED

Description: This is a 2 YROMAM ATAG; Data on the BUS port is logically ORed with an

NOP The NOP Instruction

Encoding: 0 0 0 0 0 0 0 0 00H

Description: No operation is performed. Execution continues with the following

instruction. JUJAV JAUDE:

ORL A.R. Logical OR Accumulator With Register Mask

Encoding: | 0 1 0 0 | 1 r r r 48H-4FH

Description: Data in the accumulator is logically ORed with the mask contained in

working register 'r'.

Operation: (A) ← (A) OR (Rr) r = 0-7

Operation: (Pp) - (Ph) OB de Example: ORREG: ORL A,R4 "OR" ACC CONTENTS WITH

MASK IN REG 4

ORL A,@Ri Logical OR Accumulator With Memory Mask

Encoding: 0 1 0 0 0 0 0 i 40H-41H

Description: Data in the accumulator is logically ORed with the mask contained in the

resident data memory location referenced by register "i", bits 0-5**, alignosed

Operation: (A) ← (A) OR ((Ri))

Example: ORDM: MOV R0,#3FH ;MOVE '3F' HEX TO REG 0

ORL A,@R0 ;'OR' AC CONTENTS WITH MASK

Of ;IN LOCATION 631 emusa : elemax 3

MAXDM: MOVX A, @R1

ORL A,#data Logical OR Accumulator With Immediate Mask

Description: This is a 2-cycle instruction. Data in the accumulator is logically ORed with

an immediately-specified mask.

Operation: (A) ← (A) OR data

Example: ORID: ORL A,#'X' ;'OR' ACC CONTENTS WITH MASK ;010111000 (ASCII VALUE OF 'X')

ORL BUS,#data* Logical OR BUS With Immediate Masknistnop OR smussA reigmax3

Encoding: 1 0 0 0 1 0 0 0 d₇ d₆ d₅ d₄ d₃ d₂ d₁ d₀ 88H

Description: This is a 2-cycle instruction. Data on the BUS port is logically ORed with an

immediately-specified mask. This instruction assumes prior specification

on an 'OUTL BUS, A' instruction.

Operation: (BUS) - (BUS) OR data

Example: ORBUS: ORL BUS, #HEXMSK : 'OR' BUS CONTENTS WITH MASK

;EQUAL VALUE OF SYMBOL 'HEXMSK'

ORL Pp, #data Logical OR Port 1 or 2 With Immediate Mask

Encoding: 1 0 0 0 1 0 p p d₇ d₆ d₅ d₄ d₃ d₂ d₁ d₀ 89H-8AH

Description: This is a 2-cycle instruction. Data on port 'p' is logically ORed with an

immediately-specified mask.

Operation: (Pp) ← (Pp) OR data

p = 1-2

Example: ORP1: ORL P1, #0FFH

;'OR' PORT 1 CONTENTS WITH MASK ;'FF' HEX (SET PORT 1 TO ALL ONES)

* For use with internal program memory ONLY.

** 0-5 in 8048AH/8748H

0-6 in 8049AH/8749H

0-7 in 8050AH

ORLD Pp,A Logical OR Port 4-7 With Accumulator Mask

Encoding: 1 0 0 0 1 1 p p 8CH-8FH

Description: This is a 2-cycle instruction. Data on port 'p' is logically ORed with the

digit mask contained in accumulator bits 0-3.

Operation: (Pp) \leftarrow (Pp) OR (A₀₋₃) p = 4-7

Example: ORP7: ORLD P7,A ;'OR' PORT 7 CONTENTS WITH ACC

:BITS 0-3

OUTL BUS,A* Output Accumulator Data to BUS

Encoding: 0 0 0 0 0 0 1 0 02H

Description: This is a 2-cycle instruction. Data residing in the

accumulator is transferred (written) to the BUS port and latched. The latched data remains valid until altered by another OUTL instruction. Any other instruction requiring use of the BUS port (except INS) destroys the contents of the BUS latch. This includes expanded memory operations (such as the MOVX instruction). Logical operations on BUS data (AND, OR) assume the OUTL BUS, A instruction

has been issued previously.

Operation: (BUS) ← (A)

Example: OUTLBP: OUTL BUS, A

;OUTPUT ACC CONTENTS TO BUS

OUTL Pp,A Output Accumulator Data to Port 1 or 2

Encoding: 0 0 1 1 1 0 p p 39H-3AH

Description: This is a 2-cycle instruction. Data residing in the accumulator is transferred

(written) to port 'p' and latched.

Operation: (Pp) \leftarrow (A) p = 1-2

Example: OUTLP: MOV A,R7 :MOVE REG 7 CONTENTS TO ACC

OUTL P2,A ;OUTPUT ACC CONTENTS TO PORT 2

MOV A, R6 ;MOV REG 6 CONTENTS TO ACC
OUTL P1,A ;OUTPUT ACC CONTENTS TO PORT 1

^{*} For use with internal program memory ONLY.

MCS®-48 INSTRUCTION SET

RET Return Without PSW Restore Encoding: 1000 0011 83H Encoding: 11 0 0 0 1 1 pp **Description:** This is a 2-cycle instruction. The stack pointer (PSW bits 0-2) is decremented. The program counter is then restored from the stack. PSW bits 4-7 are not restored. Operation: (Pp) - (Pp) OR (A₀₋₃) Operation: (SP) ← (SP)-1 00A HT (PC) ← ((SP)) **RETR** Return with PSW Restore 1001 0011 Encoding: 93H Description: This is a 2-cycle instruction. The stack pointer is decremented. The program counter and bits 4-7 of the PSW are then restored from the stack. Note that RETR should be used to return from an interrupt, but should not be used within the interrupt service routine as it signals the end of an interrupt routine by resetting the Interrupt in Progress flip-flop. Operation: (SP) to (SP) to mem bedrages expanded the SUS latch. This includes expanded memory to the Sus and the S (PC) ← ((SP)) tarego Ispigo J. (noitourtani XVOM ent as nous) SUS data (AND, OR) assume the OUTL B((SP)) - ((SP)) Example: OUTLBP: OUTL BUS A OUTL Pp.A Output Accumulator Data to Port 1 or 2

RL A Rotate Left without Carry

Encoding: 1111001111 E7H

Description: The contents of the accumulator are rotated left one bit. Bit 7 is rotated

into the bit 0 position! and office to the line of the into the bit of the carry bit is rotated into the carry bit is rotated into the bit 0 position.

Operation: $(An + 1) \leftarrow (An)$

 $(A0) \leftarrow (A7)$ n = 0-6

Example: Assume accumulator contains 10110001.

RLNC: RL A mismoo notsiumuoos; NEW ACC CONTENTS ARE 01100011

RLC A Rotate Left through Carry TMOO

Encoding: 1 1 1 1 0 1 1 1 F7H

Description: The contents of the accumulator are rotated left one bit. Bit 7 replaces the

carry bit; the carry bit is rotated into the bit 0 position.

Operation: (An + 1) — (An)

Description: PC bit 11 is set to zero on next JMP or CALL instruction 0-0 = neterences to program memory addresses fall within the range 0(3) are (0A)

 $(C) \leftarrow (A7)$

Example: Assume accumulator contains a 'signed' number; isolate sign without

changing value

RETC: CLR C M TO 132;

JUMP TO LOADIAN 58 HEX

RRA

CLEAR CARRY TO ZERO

;ROTATE ACC LEFT, SIGN

:BIT(7) IS PLACED IN CARRY ;ROTATE ACC RIGHT - VALUE

;(BITS 0-6) IS RESTORED,

;CARRY UNCHANGED, BIT 7

:IS ZERO

RR A Rotate Right without Carry of night with a season by viomem managed

Encoding: 0 1 1 1 0 1 1 1 77H

Description: The contents of the accumulator are rotated right one bit. Bit 0 is rotated

into the bit 7 position.

Operation: $(An) \leftarrow (An + 1)$ n = 0-6

 $(A7) \leftarrow (A0)$

Example: Assume accumulator contains 10110001.

RRNC: RRA :NEW ACC CONTENTS ARE 11011000

MCS®-48 INSTRUCTION SET

RRC A Rotate Right through Carry

Encoding: 0 1 1 0 0 1 1 1

67H

Description: The contents of the accumulator are rotated right one bit. Bit 0 replaces the

carry bit; the carry bit is rotated into the bit 7 position.

Operation: $(An) \leftarrow (An + 1)$

n = 0-6

 $(A7) \leftarrow (C)$ $(C) \leftarrow (A_0)$

Example: Assume carry is not set and accumulator contains 10110001.

RRTC: RRC A

CARRY IS SET AND ACC

:CONTAINS 01011000

Description: The contents of the accumulator are rotated left one bit. Bit 7 replie SEL MB0 Select Memory Bank 0

Encoding: 1 1 1 0 0 1 0 1

E5H

Description: PC bit 11 is set to zero on next JMP or CALL instruction. All references to

program memory addresses fall within the range 0-2047.

Operation: (DBF) ← 0

Example: Assume program counter contains 834 Hex.

SEL MBOT YRRAD RABIO

;SELECT MEMORY BANK 0 **;JUMP TO LOCATION 58 HEX**

JMP \$+20 EL ODA ETATOR

Select Memory Bank 1 SEL MB1

Encoding: 1 1 1 1 0 1 0 1

F5H

Description: PC bit 11 is set to one on next JMP or CALL instruction. All references to

program memory addresses fall within the range 2048-4095.

3-32

Operation: (DBF) ← 1

Example: Disable interrupt, but jump to interrupt routine after eight overflows and SEL RBO Select Register Bank 0 START: DIS TONTI 1 1 0 0 0 1 0 1 A C5H Encoding: Description: PSW bit 4 is set to zero. References to working registers 0-7 address data memory locations 0-7. This is the recommended setting for normal program execution. TRATE: Operation: (BS) - 0 SEL RB1 Select Register Bank 1 Encoding: 1 1 0 1 0 1 0 1 D5H Description: PSW bit 4 is set to one. References to working registers 0-7 address data memory locations 24-31. This is the recommended setting for interrupt service routines, since locations 0-7 are left intact. The setting of PSW bit 4 in effect at the time of an interrupt is restored by the RETR instruction when the interrupt service routine is completed. Operation: (BS) ← 1 Example: Assume an external interrupt has occurred, control has passed to program memory location 3, and PSW bit 4 was zero before the interrupt. Operation: LOC3: JNI INIT JUMP TO ROUTINE 'INIT' IF :INTERRUPT INPUT IS ZERO INIT: MOV R7,A MOVE ACC CONTENTS TO 7, NOITASOL; as the event-counter input and the counter wol-of-doin dose die be SEL RB1 STATE SELECT REG BANK 1 MOV R7.#0FAH ;MOVE 'FA' HEX TO LOCATION 31 Example: Initialize and start event counter. Assume overflow is desired with first T1 SEL RB0 SELECT REG BANK 0 MOV A,R7 :RESTORE ACC FROM LOCATION 7 RETR SEVOM ;RETURN - RESTORE PC AND PSW STOP TCNT Stop Timer/Event-Counter Encoding: 0 1 1 0 0 1 0 1 65H

Description: This instruction is used to stop both time accumulation and event counting.

MCS®-48 INSTRUCTION SET

Example: Disable interrupt, but jump to interrupt routine after eight overflows and

stop timer. Count overflows in register 7.

START: DIS TONTI

:DISABLE TIMER INTERRUPT CLEAR ACC TO ZEROS

CLRA

Description: Or STATE OF STATE

MOV R7,A , MOVE ZEROS TO REG 7

STRT T

START TIMER

MAIN: JTF COUNT

JUMP TO ROUTINE 'COUNT'

;IF TF = 1 AND CLEAR TIMER FLAG

SEL RB0 Select Register Bank 0

JMP MAIN

CLOSE LOOP

COUNT: INC R7 MOV A,R7 :INCREMENT REG 7

MOVE REG 7 CONTENTS TO ACC JUMP TO ROUTINE 'INT' IF ACC

JB3 INT

;BIT 3 IS SET (REG 7 = 8)

to wor NIAM AMCIS 0-7 address data

OTHERWISE RETURN TO ROUTINE

memory locations 24-3 NIAM, is the recommended setting for interrupt service

INT: STOP TONT

:STOP TIMER

manporg of beassess and formon bentupon and

JUMP TO LOCATION 7 (TIMER)

INTERRUPT ROUTINE

STRT CNT Start Event Conter Tamble

Encoding:

0 1 0 0 0 1 0 1 45H

Description: The test 1 (T1) pin is enabled as the event-counter input and the counter is started. The event-counter register is incremented with each high-to-low

transition on the T1 pin.

Example: Initialize and start event counter. Assume overflow is desired with first T1

routines, since locations 0-7 are left intact. The setting of PSW bit 4 in

input.

STARTC: EN TCNTI

THOITAGO MORMOV A, #0FFH

RETURNA,T VOM ORE PO AND PSW

STRT CNT

:ENABLE COUNTER INTERRUPT

;MOVE 'FF'HEX (ONES) TO ACC

:MOVES ONES TO COUNTER

:ENABLE T1 AS COUNTER

INPUT AND START

STRT T Start Timer

Encoding: 0 1 0 1 0 1 0 1 55H

Description: Timer accumulation is initiated in the timer register. The register is

incremented every 32 instruction cycles. The prescaler which counts the

32 cycles is cleared but the timer register is not.

Example: Initialize and start timer.

STARTT: CLR A

;CLEAR ACC TO ZEROS

MOVE AT VOM O ADDRESS REG 0

:MOVE ZEROS TO TIMER **;ENABLE TIMER INTERRUPT**

EXCHITIOT NA ITENTS OF ACC STRTTO

START TIMER

SWAP A Swap Nibbles within Accumulator

Encoding: 0 1 0 0 0 1 1 1

Description: Bits 0-3 of the accumulator are swapped with bits 4-7 of the accumulator.

Operation: $(A_{4-7}) \leftrightarrows (A_{0-3})$

Example: Pack bits 0-3 of locations 50-51 into location 50.

PCKDIG: MOV R0, #50 ;MOVE '50' DEC TO REG 0

To 7-4 stid. I refelee MOV R1, #51 besserbt ;MOVE '51' DEC TO REG 1 XCHD A,@R0 EXCHANGE BITS 0-3 OF ACC

;AND LOCATION 50

SWAP A ;SWAP BITS 0-3 AND 4-7 OF ACC

EXCHANGE BITS 0-3 OF ACC AND XCHD A,@R1

:LOCATION 51

MOV @RO,A :MOVE CONTENTS OF ACC TO CLEAR ACC TO ZEROS

:LOCATION 50

XCH A,R, Exchange Accumulator-Register Contents

Encoding: 0 0 1 0 1 r r r 28H-2FH

Description: The contents of the accumulator and the contents of working register 'r'

are exchanged.

Operation: (A) == (Rr)

Encoding: 1 1 0 1 1 1 1 7-0 = 7-1-DFH

Example: Move PSW contents to Reg 7 without losing accumulator contents.

XCHAR7: XCH A,R7

EXCHANGE CONTENTS OF REG 7

AND ACC

MOV A, PSW XCH A,R7 :MOVE PSW CONTENTS TO ACC EXCHANGE CONTENTS OF REG 7

'AND ACC AGAIN

XCH A,@R; Exchange Accumulator and Data Memory Contents

20H-21H Encoding: 00100001

Description: The contents of the accumulator and the contents of the resident data

memory location addressed by bits 0-5** of register 'i' are exchanged.

Register 'i' contents are unaffected.

Operation: (A) == ((Ri))

Example: Initialize and start tint 20 = i

Example: Decrement contents of location 52.

DEC52: MOV R0,#52

XCH A,@RO

;MOVE '52' DEC TO ADDRESS REG 0

XCH A,@RO **:EXCHANGE CONTENTS OF ACC** START TIMER

;AND LOCATION 52

DECA :DECREMENT ACC CONTENTS

EXCHANGE CONTENTS OF ACC **;AND LOCATION 52 AGAIN**

XCHD A,@R; Exchange Accumulator and Data Memory 4-Bit Data

Encoding: 0 0 1 1 0 0 0 i 30H-31H

Description: This instruction exchanges bits 0-3 of the accumulator with bits 0-3 of

the data memory location addressed by bits 0-5** of register 'i'. Bits 4-7 of the accumulator, bits 4-7 of the data memory location, and the contents of

register 'i' are unaffected.

Operation: $(A_{0-3}) \Longrightarrow ((Ri0-3))$

1 = 0-1 A 9AW8

Example: Assume program counter contents have been stacked in locations 22-23.

XCHNIB: MOV R0,#23

CLR ADITADOJ:

;MOVE '23' DEC TO REG 0 ;CLEAR ACC TO ZEROS

XCHD A,@R0

EXCHANGE BITS 0-3 OF ACC AND LOCATION 23 (BTS 8-11 OF PC ARE

:ZEROED. ADDRESS REFERS

Encoding: 0 0 1 0 1 (0 BDAY OTH 2FH

XRL A.R. Logical XOR Accumulator With Register Mask

Encoding: | 1 1 0 1 | 1 r r r | D8H-DFH

Description: Data in the accumulator is EXCLUSIVE ORed with the mask contained in

TOBRE (working register 'r'. HOXE

Operation: (A) ← (A) XOR (Rr)

r = 0 - 7

Example: XORREG: XRL A,R5

"XOR' ACC CONTENTS WITH

:MASK IN REG 5

** 0-5 in 8048AH/8748H 0-6 in 8049AH/8749H 0-7 in 8050AH

MCS®-48 INSTRUCTION SET

XRL A,@R; Logical XOR Accumulator With Memory Mask

Encoding: | 1 1 0 1 | 0 0 0 i | D0H-D1H

Description: Data in the accumulator is EXCLUSIVE ORed with the mask contained in the

data memory location addressed by register 'i', bits 0-5.**

Operation: (A) \leftarrow (A) XOR ((Ri))

i = 0-1

Example: XORDM: MOV R1,#20H

;MOVE '20' HEX TO REG 1

XRL A,@R1

"XOR' ACC CONTENTS WITH MASK

;IN LOCATION 32

XRL A,#data Logical XOR Accumulator With Immediate Mask

Encoding: 1 1 0 1 0 0 1 1 d₇ d₆ d₅ d₄ d₃ d₂ d₁ d₀ D3H

Description: This is a 2-cycle instruction. Data in the accumulator is EXCLUSIVE ORed

with an immediately-specified mask.

Operation: (A) ← (A) XOR data

Example: XORID: XOR A, #HEXTEN ;XOR CONTENTS OF ACC WITH MASK

EQUAL VALUE OF SYMBOL 'HEXTEN'

** 0-5 in 8048AH/8748H 0-6 in 8049AH/8749H 0-7 in 8050AH

XRL A. @R. Logical XOR Accumulator With Memory Mask

MCS@-48 Data Sheets

8243 MCS®-48 INPUT/OUTPUT EXPANDER

Figure 1. 8243 Block Diagram

the logic block of the specified output port.

After the logic manipulation is performed, the data is

ual 4-bits of data.

show bead

Initial application of power to the device forces input/output Ports 4, 5, 6, and 7 to the tri-state and

Table 1. Pin Description

Symbol	Pin No.	Function
PROG	7	Clock Input. A high to low transition on PROG signifies that address and control are available on P20–P23, and a low to high transition signifies that data is available on P20–P23.
CS	6	Chip Select Input. A high on CS inhibits any change of output or internal status.
P20-P23	11-8	Four (4) bit bi-directional port contains the address and control bits on a high to low transition of PROG. During a low to high transition, P2 contains the data for a selected output port if a write operation, or the data from a selected port before the low to high transition if a read operation.
GND	12	0V supply.
P40-P43	2-5	Four (4) bit bi-directional I/O ports.
P50-P53 P60-P63 P70-P73	1, 23-21 20-17 13-16	May be programmed to be input (during read), low impedance latched output (after write), or a tri-state (after read). Data on pins P20-P23 may be directly written, ANDed or ORed with previous data.
V _{CC}	24	+5V supply.

FUNCTIONAL DESCRIPTION

General Operation

The 8243 contains four 4-bit I/O ports which serve as an extension of the on-chip I/O and are addressed as Ports 4–7. The following operations may be performed on these ports:

- Transfer Accumulator to Port.
- · Transfer Port to Accumulator.
- AND Accumulator to Port.
- · OR Accumulator to Port.

All communication between the 8048 and the 8243 occurs over Port 2 (P20-P23) with timing provided by an output pulse on the PROG pin of the processor. Each transfer consists of two 4-bit nibbles:

The first containing the "op code" and port address and the second containing the actual 4-bits of data. A high to low transition of the PROG line indicates that address is present while a low to high transition indicates the presence of data. Additional 8243's may be added to the 4-bit bus and chip selected using additional output lines from the 8048/8748/8035.

Power On Initialization

Initial application of power to the device forces input/output Ports 4, 5, 6, and 7 to the tri-state and Port 2 to the input mode. The PROG pin may be either high or low when power is applied. The first high to low transition of PROG causes the device to exit power on mode. The power on sequence is initiated if V_{CC} drops below 1V.

P21	P20	Address Code	P23	P22	Instruction Code
0	0	Port 4	0	0	Read
0	1 5	Port 5	0	1	Write
-1	0	Port 6	1/-	0	ORLD
1910 1	1	Port 7	10	1	ANLD

Write Modes

The device has three write modes. MOVD Pi, A directly writes new data into the selected port and old data is lost. ORLD Pi, A takes new data, OR's it with the old data and then writes it to the port. ANLD Pi, A takes new data, AND's it with the old data and then writes it to the port. Operation code and port address are latched from the input Port 2 on the high to low transition of the PROG pin. On the low to high transition of PROG data on Port 2 is transferred to the logic block of the specified output port.

After the logic manipulation is performed, the data is latched and outputed. The old data remains latched until new valid outputs are entered.

Read Mode

The device has one read mode. The operation code and port address are latched from the input Port 2

on the high to low transition of the PROG pin. As soon as the read operation and port address are decoded, the appropriate outputs are tri-stated, and the input buffers switched on. The read operation is terminated by a low to high transition of the PROG pin. The port (4, 5, 6 or 7) that was selected is switched to the tri-stated mode while Port 2 is returned to the input mode.

Normally, a port will be in an output (write mode) or input (read mode). If modes are changed during operation, the first read following a write should be ignored; all following reads are valid. This is to allow the external driver on the port to settle after the first read instruction removes the low impedance drive from the 8243 output. A read of any port will leave that port in a high impedance state.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature	-65°C to +150°C
Voltage on Any Pin	50
with Respect to Ground	0.5V to +7V
Power Dissipation	1 Watt

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS TA = 0°C to 70°C. VCC = 5V ± 10%

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
V _{IL}	Input Low Voltage	-0.5	CONTRACTOR OF THE STREET	0.8	V	Section 2.5
VIH	Input High Voltage	2.0		V _{CC} + 0.5	V	
V _{OL1}	Output Low Voltage Ports 4-7	BISHOW TES	1	0.45	V	$I_{OL} = 4.5 \text{ mA}^*$
V _{OL2}	Output Low Voltage Port 7		NIC WEST	17	V	I _{OL} = 20 mA
V _{OH1}	Output High Voltage Ports 4-7	2.4	SI Vax o	Inn 200 ainn La mh	V	$I_{OH} = 240 \mu\text{A}$
I _{IL1}	Input Leakage Ports 4-7	-10		20	μΑ	$V_{in} = V_{CC}$ to 0V
I _{IL2}	Input Leakage Port 2, CS, PROG	-10		10	μΑ	$V_{in} = V_{CC}$ to 0V
V _{OL3}	Output Low Voltage Port 2			0.45	V	$I_{OL} = 0.6 \text{mA}$
Icc	V _{CC} Supply Current		10	20	mA	(Note 1)
V _{OH2}	Output Voltage Port 2	2.4				$I_{OH} = 100 \mu A$
loL	Sum of All I _{OL} From 16 Outputs			72	mA	4.5 mA Each Pin

^{*}Refer to Figure 3 for additional sink current capability.

on the high to low transition of the PROG pin. As

Normally, a port will be in an output (write mode) or soon as the read operation and port address are input (read mode). If modes are changed during op-A.C. CHARACTERISTICS TA = 0°C to 70°C, Vcc = 5V ± 10% or a studio electronic

Symbol	Parameter Parameter	Min	Max	Units	Test Conditions
edance dave	Code Valid before PROG	50	was sele	isit ns 10	80 pF Load
t _B	Code Valid after PROG	60	I JIO T BIIII	ns .e	20 pF Load
tc	Data Valid before PROG	200		ns	80 pF Load
t _D	Data Valid after PROG	20	TINGS*	ns ns	20 pF Load
-offy, sepur	Floating after PROG	0	150	ns	20 pF Load
tk no on	PROG Negative Pulse Width	700	- 65°C to +	ns	erutsreameT epsrof
votes esent	CS Valid before/after PROG	50		ns	oltage on Any Pin
tpo	Ports 4-7 Valid after PROG	V7+0	700	ns bn	100 pF Load
t _{LP1}	Ports 4-7 Valid before/after PROG	100		ns	ower Dissipation
tacc	Port 2 Valid after PROG		650	ns	80 pF Load

WAVEFORMS

Exemple: How many pins can drive 5 TTL loads (1.6 mA) assuming remaining pins are unloaded?

 $lol = 5 \times 1.6 \text{ mA} = 8 \text{ mA}$

evino mon vin ne - 1013

pins = 60 mA + 8 mA/pin = 7.5 = 7

In this case, 7 lines can sink 8 mA for a total of 56 mA. This teaves 4 mA sink our-rent capability which can be divided in any way among the remaining 8 I/O lines of the 8243.

3 loads-3.2 mA @ 0.45V

is this within the specified limits?

is the which the specimen arms of $(8 \times 8) + (8 \times 3.2)$

From the curve: for lot = 4 mA, clot = 93 mA. Since 91.2 mA < 92 mA the loads are within specified limits

Atthough the 20 mA @ 1V loads are used in calculating clot. It is the largest current required @ 0.45V which determines the maximum allowable clot.

Figure 3. 8243 Current Sink Capability

Sink Capability

The 8243 can sink 5 mA @ 0.45V on each of its 16 I/O lines simultaneously. If, however, all lines are not sinking simultaneously or all lines are not fully loaded, the drive capability of any individual line increases as is shown by the accompanying curve.

For example, if only 5 of the 16 lines are to sink current at one time, the curve shows that each of those 5 lines is capable of sinking 9 mA @ 0.45V (if any lines are to sink 9 mA the total I_{OL} must not exceed 45 mA or five 9 mA loads).

Example: How many pins can drive 5 TTL loads (1.6 mA) assuming remaining pins are unloaded?

 $I_{OL} = 5 \times 1.6 \text{ mA} = 8 \text{ mA}$

 $\epsilon l_{OL} = 60 \text{ mA from curve}$

pins = 60 mA \div 8 mA/pin = 7.5 = 7

In this case, 7 lines can sink 8 mA for a total of 56 mA. This leaves 4 mA sink current capability which can be divided in any way among the remaining 8 I/O lines of the 8243.

NOTE:

A10 to 50 K Ω pullup resistor to +5V should be added to 8243 outputs when driving to 5V CMOS directly.

Example: This example shows how the use of the 20 mA sink capability of Port 7 affects the sinking capability of the other I/O lines.

An 8243 will drive the following loads simultaneously.

2 loads-20 mA @ 1V (Port 7 only)

8 loads-4 mA @ 0.45V

6 loads-3.2 mA @ 0.45V

Is this within the specified limits?

 $\epsilon l_{OL} = (2 \times 20) + (8 \times 4) + (6 \times 3.2)$ = 91.2 mA.

From the curve: for $I_{OL}=4$ mA, $\epsilon I_{OL}\cong93$ mA. Since 91.2 mA < 93 mA the loads are within specified limits.

Although the 20 mA @ 1V loads are used in calculating ϵl_{OL} , it is the largest current required @ 0.45V which determines the maximum allowable ϵl_{OL} .

Figure 4. Expander Interface

to see meloiled the making GOS by Figure 5. Output Expander Timing as will design prilibrart tid evieness.

P8748H/P8749H 8048AH/8035AHL/8049AH/8039AHL/8050AH/8040AHL HMOS SINGLE-COMPONENT 8-BIT PRODUCTION MICROCONTROLLER

- **■** High Performance HMOS II
- Interval Time/Event Counter
- Two Single Level Interrupts
- Single 5-Volt Supply
- Over 96 Instructions; 90% Single Byte
- Programmable ROMs Using 21V
- Easily Expandable Memory and I/O
- Up to 1.36 μs Instruction Cycle All Instructions 1 or 2 Cycles

The Intel MCS®-48 family are totally self-sufficient, 8-bit parallel computers fabricated on single silicon chips using Intel's advanced N-channel silicon gate HMOS process.

The family contains 27 I/O lines, an 8-bit timer/counter, and on-board oscillator/clock circuits. For systems that require extra capability, the family can be expanded using MCS®-80/MCS®-85 peripherals.

These microcontrollers are available in both masked ROM and ROMless versions as well as a new version, The Programmable ROM. The Programmable ROM provides the user with the capability of a masked ROM while providing the flexibility of a device that can be programmed at the time of requirement and to the desired data. Programmable ROM's allow the user to lower inventory levels while at the same time decreasing delay times and code risks.

These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting of mostly single byte instructions and no instructions over 2 bytes in length.

Device	Internal	Memory	RAM STANDBY	
8050AH	4K x 8 ROM	256 x 8 RAM	yes	
8049AH	2K x 8 ROM	128 x 8 RAM	yes	
8048AH	1K×8 ROM	64 x 8 RAM	yes	
8040AHL	None	256 x 8 RAM	yes	
8039AHL	None	128 x 8 RAM	yes	
8035AHL	None	64 x 8 RAM	yes	
P8749H	2K x 8 Programmable ROM	128 x 8 RAM	a no	
P8748H	1K x 8 Programmable ROM	64 x 8 RAM	no	

Figure 2. Logic Symbol

Figure 3. Pin Configuration

Figure 4. Pad Configuration

Table 1 Pin Description

MAUGUS		Table 1. Pin Description	
Symbol	Pin No.	Function manager annub best	Device
V _{SS}	20	Circuit GND potential.	All
V _{DD} 34789	26	+5V during normal operation.	All
8049AH P8748H 8050AH		Low power standby pin.	8048AH 8035AHL 8049AH
IIA		Output strobe during a bus write, (Active low) Used as write strobe to external data memory.	8039AHL 8050AH
	ai bns	Address latch enable. This signal occurs once during each cycle	8040AHL
	ı	Programming power supply (+21V).	P8748H P8749H
Vcc	40	Main power supply; +5V during operation and programming.	All Magage
PROG	25	Output strobe for 8243 I/O expander, ordern mangood lamelike	All
	step"	Program pulse (+18V) input pin During Programming.	P8748H P8749H
P10-P17 Port 1	27-34	8-bit quasi-bidirectional port	All
P20-P23 P24-P27 Port 2	21-24 35-38	8-bit quasi-bidirectional port. P20-P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit I/O expander bus for 8243.	All
DB0-DB7 BUS	12-19	True bidirectional port which can be written or read synchronously using the RD, WR strobes. The port can also be statically latched. Contains the 8 low order program counter bits during an external	All AB
		program memory fetch, and receives the addressed instruction under the control of PSEN. Also contains the address and data during an	
		external RAM data store instruction, under control of ALE, $\overline{\text{RD}}$, and $\overline{\text{WR}}$.	
TO-LOCAL OT	1	Input pin testable using the conditional transfer instruction JTO and	All
	Ism	JNT0. T0 can be designated as a clock output using ENT0 CLK instruction.	XTAL1
		Used during programming. Jugni letevio to obia seritO &	P8748H P8749H

Table 1. Pin Description (Continued)

	Pin	Table 1. Pin Description (Continued)		
Symbol	No.	Function DOVERS	Per	Device
T1 239 Input pin testable using the JT1, and JNT1 instructions. Can be designated the timer/counter input using the STRT CNT instruction.				All
TALE TALE	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrudisabled after a reset. Also testable with conditional jump instruct (Active low) interrupt must remain low for at least 3 machine cycloper operation.	ction.	All
Output strobe activated during a BUS read. Can be used to enable data onto the bus from an external device. Used as a read strobe to external data memory. (Active low)				
RESET	4	Input which is used to initialize the processor. (Active low) (Non V_{IH})	TTL:	All
	3 3 3	Used during power down.		8048AH 8035AHL
	olismug	n Configuration Figure 4. Pad Confi Table 1. Pin Description	gure 3, Pi	8049AH 8039AHL 8050AH 8040AHL
Device		Used during programming.	1967	P8748H
HA			.oH	P8749H
IIA IIA		Used during ROM verification.	26	8048AH P8748H
8048AH 8035AHL 8049AH		Low power standby pin.		8049AH P8749H 8050AH
BOSS AW BOSOAM	10	Output strobe during a bus write. (Active low) Used as write strobe to external data memory.		All
ALE 11 Address latch enable. This signal occurs once during each cycle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory.				
PSEN	9	Program store enable. This output occurs only during a fetch to	40	All 30
IIA		external program memory. (Active low)	25	ROG
PB748ZZ P8749H	5	Single step input can be used in conjunction with ALE to "single the processor through each instruction.	step"	All
		(Active low) Used in sync mode. Hog land/lasup lid-8	27-34	8048AH 8035AHL
ВA		8-bit quasi-bidirectional port. P20P23 contain the four high order program counter bits during an external program memory letch a serve as a 4-bit I/O expander bus for 8243.	21-24	8049AH 8039AHL 8050AH 8040AHL
EA 7 External access input which forces all program memory fetches to reference external memory. Useful for emulation and debug. (Active high)				DB0-DIIA
	rebn	Used during (18V) programming.		P8748H P8749H
	bi	Used during ROM verification (12V).		8048AH 8049AH
XTAL1	2	One side of crystal input for internal oscillator. Also input for exte	ernal	8050AH
		source. (Non TTL V _{IH})		
XTAL2	3	Other side of crystal input.	E 18 18 18	All

Table 2. Instruction Set

Accumulator			O\nemfT
Mnemonic	Description	Bytes	Cycles
ADD A, R	Add register to A		MON A.
ADD A, @R	Add data memory to A	1 A	MONT, STRITT
ADD A, #data	Add immediate to A		0.1213
ADDC A, R	Add register with carry		STOP TO EN TON
ADDC A, @R	Add data memory with carry	1	1 DIS TON
ADDC A, #data	Add immediate with carry	2	2
ANL A, R	And register to A	1	. 1
ANL A, @R	And data memory to A		Control
ANL A, #data	And immediate to A	2	2
ORL A, R	Or register to A	81	HME
ORL A, @R	Or data memory to A		1
ORL A, #data	Or immediate to A	1 2	2
XRL A, R	Exclusive or register to A		SEL RB
XRL A, @R	Exclusive or data memory to A	810	SEL MB
XRL A, #data	Exclusive or immediate to A	2	0 0 2 /13
INC A	Increment A	1	1
DEC A	Decrement A	-1	1
CLRA	Clear A	900	meqM
CPL A	Complement A	1	901/1
DA A	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RLA	Rotate A left	1	1
RLCA	Rotate A left through carry	1	1
RRA	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1

Input/Output			Subro
Mnemonic	Description	Bytes	Cycles
IN A, P	Input port to A	1bbs	2
OUTL P, A	Output A to port	1	2
ANL P, #data	And immediate to port	2	2
ORL P, #data	Or immediate to port	2	2
INS A, BUS	Input BUS to A	1	2
OUTL BUS, A	Output A to BUS	1	2
ANL BUS, #data	And immediate to BUS	2	2
ORL BUS, #data	Or immediate to BUS	-	20
MOVD A, P	Input expander port to A		120
MOVD P, A	Output A to expander port		120
ANLD P, A	And A to expander port	8970	2
ORLD P, A	Or A to expander port	15 Inc	2

Registers	A ol		
Mnemonic	Description	Bytes	Cycles
INCR	Increment register	1 A	ANY IN
INC @R	Increment data memory	1	IS YOU
DECR	Decrement register	1	a la

Branch	Move immediate to data memory	R, # data	19 VON
Mnemonic	Description	Bytes	Cycles
JMP addr	Jump unconditional	2	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register and skip	2	,A 20x
JC addr	Jump on carry = 1	2	A (20)
JNC addr	Jump on carry = 0	2	2
JZ addr	Jump on A zero	2	4 X 20 N
JNZ addr	Jump on A not zero	2	2
JT0 addr	Jump on T0 = 1	2	20V
JNT0 addr	Jump on TO = 0	2	2
JT1 addr	Jump on T1 = 1	2	4 920N
JNT1 addr	Jump on $T1 = 0$	2	2
JF0 addr	Jump on F0 = 1	A2 A	8920W
JF1 addr	Jump on F1 = 1080	2	2
JTF addr	Jump on timer flag	2	2
JNI addr	Jump on $\overline{INT} = 0$	2	2
JBb addr	Jump on accumulator bit	2	2

Table 2. Instruction Set (Continued)

Subroutine			
Mnemonic -	Description	Bytes	Cycles
CALL addr	Jump to subroutine	2	92\1
RET	Return of A tuesdo	1 A	9 2 10
RETR	Return and restore status	1 tab	4 92 IMA

Flags	port Input BUS to A		
Mnemonic	Description	Bytes	Cycles
CLRC	Clear carry	1	1
CPLC	Complement carry	stal to	eua1iao
CLR F0	Clear flag 0	1	1
CPL F0	Complement flag 0	1 9	A CTOM
CLR F1	Clear flag 1 A of	1	1
CPL F1	Complement flag 1	1 A	,9 GI/OM

Data Moves	noq		
Mnemonic	Description	Bytes	Cycles
MOV A, R	Move register to A	1	1
MOV A, @R	Move data memory to A	1 8%	1 stalgafi
MOV A, #data	Move immediate to A	2	2 omenM
MOV R, A	Move A to register	oni 1	яђи
MOV @R, A	Move A to data	ont 1	Re bu
MOV R, #data	Move immediate to register	2	2
MOV @R, #data	Move immediate to data memory	2	10.2
MOV A, PSW	Move PSW to A	1, in	omenM
MOV PSW, A	Move A to PSW	1	1
XCH A, R	Exchange A and register		JMP ad
XCH A, @R	Exchange A and data memory		H ZALO
XCHD A, @R	Exchange nibble of A and data memory	10	JOIC adi
MOVX A, @R	Move external data memory to A		JZ gddr JNZ ade
MOVX @R, A	Move A to external data memory		SOTIAL
MOVP A, @A	Move to A from current page		bs2TL
MOVP3 A, @A	Move to A from page 3	1	DET add
2 2	Jump on timer riag		JIF ado
2 2	Jump on INT = 0 Jump on accumulate		

Timer/Counter		Accumulator
Mnemonic	Description	Bytes Cycles
MOV A, T	Read timer/counter	1 A A BOA
MOV T, A	Load timer/counter	THE A COA
STRTT	Start timer	1 1
STRT CNT	Start counter	stilb# .A digA
STOP TCNT	Stop timer/counter	18 ADIGA
EN TCNTI	Enable timer/	1 1
+ +	counter interrupt	
DIS TCNTI	Disable timer/	1 1
	counter interrupt	
The second second second	VALOR	

Control	And register to A And data memory	ANLA, H
Mnemonic	Description	Bytes Cycles
ENI	Enable external	1 A.A.180
1 1	interruptomen alab 10	
DISI	Disable external A O	1 1
2 2	interrupt etabemmi 10	
SEL RBO	Select register bank 0	1 R.A1HD
SEL RB1	Select register bank 1	1 1
SEL MB0	Select memory bank 0	1 89 A1R
SEL MB1	Select memory bank 1	1 1
ENTO CLK	Enable clock output on T0	And

Mnem	onic	Description Bytes	Cycles	
NOP		No operation 1	1 190	
	1	- Decimal adjust A	AAC	
4			A PAWS	
	+	Rotate A right		
		Rotate A right through carry	A DAR	

Case Temperature Under Bias	0°C to +70°C
Storage Temperature	-65°C to +150°C
Voltage on any Pin with Respect to Ground	0.5V to +7V
Power Dissipation	1.5W

Tute Maximum Hatings may calls per per per land only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$

Symbol	Parameter		Limits		Unit	Test Conditions	Device	
Symbol	Farameter	Min	Тур	Max	Oille	Test conditions	Device	
AIT 2008	Input Low Voltage (All Except RESET, X1, X2)	-0.5	C	0.8	V	V _{DD} Supply Current (RAM Standby)	All	
VIL1	Input Low Voltage (RESET, X1, X2)	-5		0.6	V		All	
V _{IH} _{0>08}	Input High Voltage (All Except XTAL1,	2.0	10	Vcc	٧		All	
	XTAL2, RESET)	Am	85	30		Total Supply Current	+ 00	
V _{IH1}	Input High Voltage (X1, X2, RESET)	3.8	70	V _{CC}	V		AIPO	
VOL	Output Low Voltage (BUS)	Am.	08	0.45	V	I _{OL} = 2.0 mA	All	
V _{OL1}	Output Low Voltage (RD, WR, PSEN, ALE)	Am	100	0.45	V	I _{OL} = 1.8 mA	All	
V _{OL2}	Output Low Voltage	Am	011	0.45	V	I _{OL} = 1.0 mA	All	
HABE08	(PROG)	V	8.5		22 8	FAM Standby Voltag	act)	
V _{OL3}	Output Low Voltage			0.45	V	I _{OL} = 1.6 mA	IIA	
HA9408	(All Other Outputs)	I V	8.8		1 22			
VOH	Output High Voltage	2.4			V	$I_{OH} = -400 \mu A$	All	
BOSOAH	(BUS)	V	6.5		22			
V _{OH1}	Output High Voltage (RD, WR, PSEN, ALE)	2.4	Mater AESE	panabann	V (foir high)	$I_{OH} = -100 \mu\text{A}$	All	
V _{OH2}	Output High Voltage (All Other Outputs)	2.4			V	$I_{OH} = -40 \mu\text{A}$	All	

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = V_{DD} = 5V \pm 10^{\circ}$; $V_{SS} = 0V$ (Continued)

Symbol	Parameter Limits		000	Unit	Test Conditions	Device	
UR 10 888	itton of the device at th	Min	Тур	Max	to + 15		
nequent https://pailgm ntitions ro	Leakage Current (T1, INT)		ither co ional se iosure	±10	μA	V _{SS} ≤ V _{IN} ≤ V _{CC}	oftelia on a
ILI1 -Villed	Input Leakage Current (P10-P17, P20-P27, EA, SS)		v.tende VOTTO	-500	μΑ	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}^{OBS}$	All
I _{LI2}	Input Leakage Current RESET	-10	announce of the second	-300	μΑ	$V_{SS} \le V_{IN} \le 3.8$	All
ILO	Leakage Current	/a = a	V =, 0	±10	μΑ	V _{SS} ≤ V _{IN} ≤ V _{CC}	All
	(BUS, T0) (High Impedance State)	nu -	rn68	ends	013.2	Parameter	Symbol
I _{DD}	V _{DD} Supply Current (RAM Standby)	V	8.03	5	mA	Input Low Voltage (All	8048AH 8035AHL
		V	a.¢	7	mA	Input Low Voltage	8049AH 8039AHL
IIA		V	5	10	mA	Input High Voltage	8050AH 8040AHL
I _{DD} +	Total Supply Current*		30	65	mA	XTAL2, RESET)	8048AH
ICC		V	DoV		3.8	apatloV dpiH tugal	8035AHL
			35	70	mA	(X1, X2, RESET)	8049AH
IIA	toL = 2.0 mA	V	23.0			Output Low Voltage	8039AHL
			40	80	mA	(SUS)	8050AH 8040AHL
IIA	Am 8.1 = Jol	V	30	100	mA	Output Low Voltage (RD, WR, PSEN, ALE)	P8748H
	lot = 1.0 mA	V	50	110	mA	Output Low Voltage	P8749H
	RAM Standby Voltage		30			20000	3,210 1
V _{DD}	Am a.t = 10	2.2	0.45	5.5	V	Standby Mode Reset ≤ V _{IL1}	8048AH 8035AH
		2.2		5.5	V	(All Other Outputs)	8049AH
IIA.	Ащ 004 — но1	V		0.0	2.4	Output High Voltage	8039AH
		2.2		5.5	V	(8U8)	8050AH
	Au 001 - = HO!	V			2.4	Output High Voltage	8040AHL

^{*}I_{CC} + I_{DD} are measured with all outputs in their high impedance state; RESET low; 11 MHz crystal applied; INT, SS, and EA floating.

A.C. CHARACTERISTICS TA = 0°C to +70°C: Voc = Vpp = 5V ±10%: Vee = 0V MROTENAW

O	AND A TAKE DAMPED AND A SAME	f (t)	11.1	VIHZ	Lieis	Conditions
Symbol	M3M ATAO Parameter3 MORR GA	(Note 3)	Min	Max	Unit	(Note 1)
t	Clock Period	1/xtal freq	90.9	1000	ns	(Note 3)
t _{LL}	ALE Pulse Width	3.5t-170	150		ns	
t _{AL}	Addr Setup to ALE	2t-110	70		ns	(Note 2)
t _{LA}	Addr Hold from ALE	t-40	50	- 1003	ns s	u i
t _{CC1}	Control Pulse Width (RD, WR)	7.5t-200	480		ns	14329
t _{CC2}	Control Pulse Width (PSEN)	6t-200	350		ns	Vouceur or sure
t _{DW} eaooss	Data Setup before WR	6.5t-200	390	RTEN -SOR	ns	
t _{WD}	Data Hold after WR	t-50	40		ns	
t _{DR}	Data Hold (RD, PSEN)	1.5t-30	0	110	ns	
t _{RD1}	RD to Data in	6t-170	YRON	375	ns	TXE OF STR
t _{RD2}	PSEN to Data in	4.5t-170		240	ns	
t _{AW}	Addr Setup to WR	5t-150	300		ns	
t _{AD12001S}	Addr Setup to Data (RD)	10.5t-220	- al r	730	ns	
t _{AD2}	Addr Setup to Data (PSEN)	7.5t-200		460	ns	AW
t _{AFC1}	Addr Float to RD, WR	2t-40	140	- 40	ns	(Note 2)
t _{AFC2}	Addr Float to PSEN	0.5t-40	10	DHIL	ns	(Note 2)
tLAFC1	ALE to Control (RD, WR)	3t-75	200		ns	
tLAFC2	ALE to Control (PSEN)	1.5t-75	60		ns	
t _{CA1}	Control to ALE (RD, WR, PROG)	t-65	25	MIL (A)	ns	THOUSAND S. THE
t _{CA2}	Control to ALE (PSEN)	4t-70	290		ns	
t _{CP}	Port Control Setup to PROG	1.5t-80	50	BJDV	Te ns	
t _{PC}	Port Control Hold to PROG	4t-260	100	7	ns	
tpR	PROG to P2 Input Valid	8.5t-120		650	ns	89
tpF	Input Data Hold from PROG	1.5t	0	140	ns	
t _{DP}	Output Data Setup	6t-290	250	IDM .	ns	R-029 PTUO
t _{PD}	Output Data Hold	1.5t-90	40	ion I	ns	P24-2
tpp	PROG Pulse Width	10.5t-250	700		ns	erigo :
t _{PL}	Port 2 I/O Setup to ALE	4t-200	160		ns	EXPLA
t _{LP}	Port 2 I/O Hold to ALE	0.5t-30	15	00	ns	PORT
tpv	Port Output from ALE	4.5t+100		5.0	ns	
toper	T0 Rep Rate	3t	270		ns	MARKS.
tcy	Cycle Time	15t	1.36	15.0	μs	TROP

NOTES: 1. Control outputs: $C_L=80$ pF. BUS Outputs: $C_L=150$ pF. 2. BUS High Impedance Load 20 pF 3. f(t) assumes 50% duty cycle on X1, X2. Max clock period is for a 1 MHz crystal input.

A.C. CHARACTERISTICS TA = 0°C to +70°C; Voc = Vb = 5V ±10°6; Vss = 0'ZMROTBVAW

INSTRUCTION FETCH FROM PROGRAM

READ FROM EXTERNAL DATA MEMORY

WRITE TO EXTERNAL DATA MEMORY

INPUT AND OUTPUT FOR A.C. TESTS

PORT 1/PORT 2 TIMING

CRYSTAL OSCILLATOR MODE

CERAMIC RESONATOR MODE

DRIVING FROM EXTERNAL SOURCE

270053-11

For XTAL1 and XTAL2 define "high" as voltages above 1.6V and "low" as voltages below 1.6V. The duty cycle requirements for externally driving XTAL1 and XTAL2 using the circuits shown above are as follows: XTAL1 must be high 35–65% of the period and XTAL2 must be high 35–65% of the period. Rise and fall times must be faster than 20 ns.

PROGRAMMING AND VERIFYING THE P8749H/48H PROGRAMMABLE ROM

Programming Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function				
XTAL1	Clock Input (3 to 4.0 MHz)				
XTAL2					
RESET	Initialization and Address Latching				
ТО	Selection of Program or Verifying Mode				
EA	Activation of Program/Verify Modes				
BUS	Address and Data Input				
	Data Output During Verify				
P20-P22	Address Input				
V _{DD}	Programming Power Supply				
PROG	Program Pulse Input				

WARNING:

An attempt to program a missocketed P8749H/48H will result in severe damage to the part. An indication of a properly socketed part is the appearance of the ALE clock output. The lack of this clock may be used to disable the programmer.

The Program/Verify sequence is:

- V_{DD} = 5V, Clock applied or internal oscillator operating, RESET = 0V, T0 = 5V, EA = 5V, BUS and PROG floating. P10 and P11 must be tied to ground.
- 2. Insert P8749H/48H in programming socket
- 3. T0 = 0V (select program mode)
- 4. EA = 18V (activate program mode)
- 5. Address applied to BUS and P20-22
- 6. RESET = 5V (latch address)
- 7. Data applied to BUS
- 8. V_{DD} = 21V (programming power)
- 9. PROG = V_{CC} or float followed by one 50 ms pulse to 18V
- 10. $V_{DD} = 5V$
- 11. T0 = 5V (verify mode)
- 12. Read and verify data on BUS
- 13. TO = 0V
- 14. RESET = 0V and repeat from step 5
- 15. Programmer should be at conditions of step 1 when P8749H/48H is removed from socket.

NOTE:

Once programmed the P8749H/48H cannot be erased.

A.C. TIMING SPECIFICATION FOR PROGRAMMING P8748H/P8749H ONLY

 $T_A = 25^{\circ}C \pm 5^{\circ}C$; $V_{CC} = 5V \pm 5\%$; $V_{DD} = 21 \pm 0.5V$

Symbol	TARABARA Parameter ARABARA	Min	Max	Unit	Test Conditions
t _{AW}	Address Setup Time to RESET	4t _{CY}			(гатом)
t _{WA}	Address Hold Time After RESET	4t _{CY}			197 YST-
t _{DW}	Data in Setup Time to PROG	4t _{CY}			horsenes All
t _{WD}	Data in Hold Time After PROG	4t _{CY}			
t _{PH}	RESET Hold Time to Verify	4t _{CY}			
t _{VDDW}	V _{DD} Hold Time Before PROG	0	1.0	ms	289
tvddh	V _{DD} Hold Time After PROG	0	1.0	ms	
tpw	Program Pulse Width	50	60	ms	
t _{TW}	T0 Setup Time for Program Mode	4t _{CY}			13638
twT	T0 Hold Time After Program Mode	4t _{CY}			
t _{DO}	T0 to Data Out Delay		4t _{CY}		P20-P23 sympactors
tww	RESET Pulse Width to Latch Address	4t _{CY}			
tretf-sacoss	V _{DD} and PROG Rise and Fall Times	0.5	100	μs	
tcy	CPU Operation Cycle Time	3.75	5 HD	μs	H8A 48H
t _{RE}	RESET Setup Time before EA	4t _{CY}	Rigid	HUGA	O OTA

NOTE:

If Test 0 is high, tDO can be triggered by RESET.

D.C. CHARACTERISTICS FOR PROGRAMMING P8748H/P8749H ONLY

 $T_A = 25^{\circ}C \pm 5^{\circ}C$; $V_{CC} = 5V \pm 5\%$; $V_{DD} = 21 \pm 0.5V$

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{DDH}	V _{DD} Program Voltage High Level	20.5	21.5	V	309 /64
V _{DDL}	V _{DD} Voltage Low Level	4.75	5.25	V	
V _{PH}	PROG Program Voltage High Level	17.5	18.5	٧	A DOA OF
V _{PL}	PROG Voltage Low Level	4.0	Vcc	V	_
VEAH	EA Program or Verify Voltage High Level	17.5	18.5	V	- 130V
IDD	V _{DD} High Voltage Supply Current		20.0	mA	TSTAN
IPROG	PROG High Voltage Supply Current		1.0	mA	131A
IEA VAGO	EA High Voltage Supply Current	OT AYAC	1.0	mA	promise .

COMBINATION PROGRAM/VERIFY MODE (PROGRAMMABLE ROMS ONLY)

D8748H/D8749H HMOS-E SINGLE-COMPONENT 8-BIT MICROCOMPUTER

- **High Performance HMOS-E**
- Interval Timer/Event Counter
- **Two Single Level Interrupts**
- Single 5-Volt Supply
- Over 96 Instructions; 90% Single Byte
- **Compatible with 8080/8085 Peripherals**
- Easily Expandable Memory and I/O
- Up to 1.35 μs Instruction Cycle; All Instructions 1 or 2 Cycles

The Intel D8749H/D8748H are totally self-sufficient, 8-bit parallel computers fabricated on single silicon chips using Intel's advanced N-channel silicon gate HMOS-E process.

The family contains 27 I/O lines, an 8-bit timer/counter, on-chip RAM and on-board oscillator/clock circuits. For systems that require extra capability, the family can be expanded using MCS®-80/MCS®-85 peripherals.

These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over 2 bytes in length.

Device	(SIC nig-0h) notigingsed Internal Memory					
D8749H	nodonu 2K x 8 EPROM	128 x 8 RAM oday 2				
D8748H	1K x 8 EPROM matog GMO husa	64 x 8 RAM				

Figure 3. Pin Configuration

Table 1. Pin Description (40-Pin DIP)

		Table 1. Pin Description (40-Pin DIP)	491703						
Symbol MA	Pin No.	MOR93 8 X X Function	D8749H						
V _{SS}	AR 8 20 a	Circuit GND potential.	D8748H						
V _{DD}	26	+5V during normal operation.							
		Programming power supply (+21V).							
Vcc	40	Main power supply; +5V during operation and prog	gramming.						
PROG	25	Output strobe for 8243 I/O expander.							
1904		Program pulse (+18V) input pin during programmir							
P10-P17 Port 1	27-34	8-bit quasi-bidirectional port.							
P20-P23	21-24	8-bit quasi-bidirectional port. P20-P23 contain the counter bits during an external program memory fel I/O expander bus for 8243.							
Port 2	33-36	The state of the s							
DB0-DB7 BUS BUS PROMABLE STATEMENT OF THE	12-19	True bidirectional port which can be written or read RD, WR strobes. The port can also be statically late order program counter bits during an external program receives the addressed instruction under the control the address and data during an external RAM data control of ALE, RD, and WR.	ched. Contains the 8 low ram memory fetch, and ol of PSEN. Also contains						
TO_caeors	1	Input pin testable using the conditional transfer inst T0 can be designated as a clock output using ENT							
	ure 2.	Used during programming.							
T1	39	Input pin testable using the JT1, and JNT1 instructi the timer/counter input using the STRT CNT instruction.							
INT	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. Also testable with conditional jump instruction. (Activious) interrupt must remain low for at least 3 machine cycles for proper operation.							
RD	8	Output strobe activated during a BUS read. Can be the bus from an external device. Used as a read strobe to external data memory. (A							
Contract of the same		Cook do diferent to external data memory. (A	out o low)						

Table 1. Pin Description (40-Pin DIP) (Continued)

Symbol	Pin No.	Function Function	G sinomant
RESET	4	Input which is used to initialize the processor. (Active low) (No	n TTL V _{IH})
	to register	Used during programming.	MOVD P. A
WR	10 of etailbern	Output strobe during a bus write. (Active low) Used as write strobe to external data memory.	ANLD P. A.
ALE	nediate to mory W to A	Address latch enable. This signal occurs once during each cy- useful as a clock output. The negative edge of ALE strobes address into external data memory.	
PSEN	9ns A en	Program store enable. This output occurs only during a fetch to program memory. (Active low.)	o external
SS	ye A sn č mory	Single step input can be used in conjunction with ALE to "sing processor through each instruction.	le step" the
EA	7lddin eg register	External access input which forces all program memory fetche external memory. Useful for emulation and debug. (Active high	
	A of your	Used during (18V) programming.	JUNE P, BOOK D
XTAL1	to exte S al	One side of crystal input for internal oscillator. Also input for e (Non TTL V _{IH} .)	
XTAL2	3mon A	Other side of crystal input.	Z add(

Table 2. Instruction Set

Mnemonic	Description	Bytes	Cycles
ACCUMULATOR	henFl		T,A YOM
ADD A, R	Add register to A	1	1
ADD A,@R	Add data	1	A.T.VOM
	memory to A		
ADD A, #data	Add immediate	2	2
	to A Temit note		
ADDC A, R	Add register with		STEP CIVI
	carry		STOP TON
ADDC A, @R	Add data	1	EN TONTI
	memory with		
1 1 1 1	carry lamit eldasiC		DIS TONT
ADDC A, #data	Add immediate	2	2
7155071, " data	with carry		
ANL A, R	And register to A		CONTRO
ANL A, @R	And data	1	INS
ANLA, en	And data		
ANL A. #data	memory to A		DIST
ANL A, #data	And immediate	2	2
	Select register A of		
ORL A, R	Or register to A	1	1
ORL A, @R	Or data memory	1	ren ¹ Jae
	to A		
ORL A, #data	Or immediate to	2	09.2
	A Distance		
XRL A, R	Exclusive or	1	SEL ¹ MB1
	register to A		
XRLA, @R	Exclusive or	1	ENTO CLK
	data memory to		ENTOCLE
XRL A, #data	Exclusive or	2	SON
	immediate to A		
	miniodicto to 71		

Mnemonic S	Description and I	Bytes	Cycles
	(Continued) no amul		
INCA	Increment A	1	JF0 Eddr
DECA	Decrement A	1	JET Beder
CLRA	Clear A	1	JIF addit
CPLA	Complement A	1	abbat HAL
DAA	Decimal adjust A	1	UBb addr
SWAPA	Swap nibbles of	1	1
	A		
RLA	Rotate A left	1	1
RLCA	Rotate A left	3/4/7	nostins
	through carry		
RRA	Rotate A right	1	138
RRCA	Rotate A right	- 1	RETE
	through carry		
INPUT/OUTPUT			
IN A, P	Input port to A	1	2
OUTL P. A	Output A to port	1	2
ANL P, #data	And immediate	2	2
	to port		
ORL P. #data	Or immediate to	2	290
	port pall real		
INS A, BUS	Input BUS to A	1	2
OUTL BUS, A	Output A to BUS	33V0	M 2 AC
ANL BUS, #data	And immediate	2	A 20M
	to BUS		MOVA, @
ORL BUS, #data	Or immediate to	2	2
	BUS bomm evold		MOV A.
MOVD A, P	Input expander	1	2
	port to A		

Table 2. Instruction Set (Continued)

Mnemonic	Description		Cycles
	T (Continued)		
MOVD P, A	Output A to	1	2
	expander port		hatt win
ANLD P, A	And A to expander port	(nemen)	nieg (Act
ORLD P. A	Or A to expander	เปรายาการ	000 2 00
	port		
REGISTERS	to external data and		
INCR	Increment register	1	1
INC @R	Increment data	ourt onl	00 Hqtu
	memory		
DEC R	Decrement register	notoni	in toosis
BRANCH			
JMP addr	Jump unconditional	2	
JMPP @A	Jump indirect	isigniq i	2
DJNZ R, addr	Decrement register	2	2
2011211, addi	and skip		gni
JC addr a lan		2	lar2ain
JNC addr	Jump on carry = 0	2	2
JZ addr	Jump on A zero	2	2
JNZ addr	Jump on A not zero	2	2
JT0 addr	Jump on T0 = 1	2	1022101
JNT0 addr	Jump on T0 = 0	2	2
JT1 addr		2 0	2
JNT1 addr	Jump on T1 = 0	RC2A.	UM 2 04
JF0 addr	Jump on F0 = 1	2	2014
JF1 addr	Jump on F1 = 1	2	2
JTF addr	Jump on timer flag	2	2
JNI addr	Jump on INT = 0	2	2
JBb addr	Jump on	2	A SAWS
	accumulator bit		ASAWE
OUDDOUTINE			
SUBROUTINE	Rotate A left		A OUF
CALL addr	Jump to subroutine	2	2
RET	Return on A stato A	1	2 88
RETR	Return and restore	1	A2AF
FLAGS			DITURN
CLRC	Clear carry	1	NA.P OUTLP,
CPLC	Complement carry	1	NULP, #
CLR F0	Clear flag 0	1	1
CPL F0	Complement flag 0	1	# ,91jBC
CLR F1	Clear flag 1	1	1
CPL F1	Complement flag 1	1 10	us A su
DATA MOVES	2UB of A timbo		
MOV A, R	Move register to A		eustur.
MOV A, @R	Move data memory	1	1
9 9	to A atalbammi 10		ORL BUS
MOV A, #data	Move immediate	2	2
2	to Alabragua tuoni		A OVOM
PE ALL VALVE DE			

Mnemonic	Description	Bytes	
DATA MOVES (C	Continued)		
MOV R, A	Move A to register	1	1
MOV @R, A	Move A to data	1	1
it strobe during	memory		
MOV R, #data	Move immediate to	2	2
		-	
iss latch enable	register		ALE
MOV @R, #data	Move immediate to	2	2
	data memory		
MOV A, PSW	Move PSW to A	- 1	1
MOV PSW, A	Move A to PSW	1	1
XCH A, R	Exchange A and	1	PSEN
AL Moment ma	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM		
	register	-	
XCH A, @R		1	183
	data memory		
XCHD A, @R	Exchange nibble	1	143
	of A and register		
MOVX A, @R	Move external	1	2
WOVAA, en			-
	data memory to A		
MOVX @R, A	Move A to external	1	1 2 X
	data memory		
MOVP A, @A	Move to A from	1	2
	current page		2001/11/
MOVP3 A, @A	Move to A from	1	2
1 8 8 6 B 1			No.
	page 3		
TIMER/COUNTE	- Description		
		ROTA.	ACCUMUI ADD A, R
MOV A, T	Read	1	A A GOA
	timer/counter		
MOV T, A	Load A of viernem.	1	1
	timer/counter		
STRTT	Start timer	1	1
STRT CNT	Start counter.	1	1
STOP TCNT	Stop timer/counter	4	ADDC A, F
	Stop timer/counter		
EN TCNTI	Enable timer/	He	ADDICA,
	counter interrupt		
DIS TCNTI	Disable timer/	1	1
	counter interrupt		
	Oldinollilli Dun		E THE OFFICE
CONTROL	with carry		
ENI	Enable external	1	B.A.IMA
	interrupt		ANLA, OF
DICI	interrupt		
DIST	Disable external	atel	ANL A. #C
	interrupt		
SEL RB0	Select register	1	A A JRO
	bank 0		
SEL RB1	Select register	1	io A ino
	bank 1		
SEL MB0		gist	ORLA, #1
SEL MBU	Select memory	1	
	bank 0		
SEL MB1	Select memory	1	R.A.IRX
	bank 1		
ENTO CLK	Enable clock	1	TO , A , IFU
LITTOOLI			
NOP	output on T0		
	No operation	1	A A IEX

A of etailberroni

Ambient Temperature Under Bias .	0°C to	+70°C
Storage Temperature	-65°C to	+150°C
Voltage On Any Pin With Respect		
to Ground	0.5V	to + /V
Power Dissipation		1.0 Watt

ABSOLUTE MAXIMUM RATINGS* * Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

> NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = V_{DD} = 5V \pm 10^{\circ}$; $V_{SS} = 0V$

		01	Limits					ANG
Symbol	Parameter	40	Min	Тур	Max	Unit	Test Conditions	Device
V _{IL}	Input Low Voltage (All Except RESET, X1, X2)	0	-0.5	; — je. [] — j	0.8	V	Uata Hold (RD, PSEN) RD to Data in	All
V _{IL1}	Input Low Voltage (RESET, X1, X2)		-0.5	r – ta	0.6	٧	PSEN to Data In	All
V _{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET	300	2.0	5t - 15	Vcc	V	Addr Setup to WHA	All ^{A3} rgA ³
V _{IH1} (Note 2)	Input High Voltage (X1, X2, RESET)	140	3.8	a - 19	Vcc	٧	Addr Float to RD, WR	All
Vote 2JoV	Output Low Voltage (Bl	JS)	0	.5t - 4	0.45	V	I _{OL} = 2.0 mA	All
V _{OL1}	Output Low Voltage (RD, WR, PSEN, ALE)	200	ē	31 - 7	0.45	V	IOL = 1.8 mA	All
V _{OL2}	Output Low Voltage (PROG)	25	0	- je. 38 - j	0.45	V DORS.	I _{OL} = 1.0 mA	All
V _{OL3}	Output Low Voltage (All Other Outputs)	280		7 - 12	0.45	٧	I _{OL} = 1.6 mA	All
V _{OH}	Output High Voltage (B	US)	2.4	10.		V	$I_{OH} = -400 \mu\text{A}$	All
V _{OH1}	Output High Voltage (RD, WR, PSEN, ALE)	100	2.4	t - 26	8	VOC	$I_{OH} = -100 \mu\text{A}$	All
V _{OH2}	Output High Voltage (All Other Outputs)	0	2.4	1.5t		yo	$I_{OH} = -40 \mu\text{A}$	All
I _{L1}	Leakage Current (T1, INT)	250	0	it - 29	±10	μΑ	V _{SS} ≤ V _{IN} ≤ V _{CC}	Allo
I _{LI1}	Input Leakage Current (P10-P17, P20-P27,	700	089	— ja:	-500	μΑ	$V_{SS} + 0.45 \le V_{IN} \le V_{CC}$	All
	EA, SS)	160	0	08 - 1			Port 21/O Satup to ALE	tec
I _{LI2}	Input Leakage Current RESET	15	-10	- tê.	-300	μΑ	$V_{SS} \le V_{IN} \le 3.8V$	All
ILO	Leakage Current (BUS, T0) (High	270	00	5t + 18 3t	±10	μΑ	V _{SS} ≤ V _{IN} ≤ V _{CC}	All
	Impedance State)	010		10				HA401
IDD + ICC	Total Supply Current*	05.5		80	100	mA	. Oyde Time	8748H
				95	110	mA		8749H

^{*}I_{CC} + I_{DD} is measured with all outputs disconnected; SS, RESET, and INT equal to V_{CC}; EA equal to V_{SS}.

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$

Cumbal	meximum haungs may cause pem to the device. This is a stress rate	f(t) 07 +	of 0°011	MHz	nilleaute	Conditions	
Symbol	Parameter No. 10	(Note 3)	Min	Max	Unit	(Note 1)	
t bellemi	Clock Period	1/xtal freq	90.9	1000	ns	(Note 3)	
tLLenoillion	ALE Pulse Width	3.5t - 170	150		ns	to Ground	
tal	Addr Setup to ALE	2t - 110	70		ns	(Note 2)	
t _{LA}	Addr Hold from ALE	○M t − 40	50		ns		
t _{CC1}	Control Pulse Width (RD, WR)	7.5t - 200	480		ns		
t _{CC2}	Control Pulse Width (PSEN)	6t - 200	350		ns		
t _{DW}	Data Setup before WR	6.5t - 200	390	SOLI	ns	C. CHARA	
two	Data Hold after WR	t - 50	40	neter	ns	lodmys	
tDR	Data Hold (RD, PSEN)	1.5t - 30	0	110	ns	and .	
t _{RD1}	RD to Data In	6t - 170		375	ns	wa T	
t _{RD2}	PSEN to Data In	4.5t - 170		240	ns	gal Li	
t _{AW}	Addr Setup to WR	5t - 150	300	ength	ns	nn)	
t _{AD1}	Addr Setup to Data (RD)	10.5t - 220		730	ns	(A)	
t _{AD2}	Addr Setup to Data (PSEN)	7.5t - 200		460	ns	TX	
t _{AFC1}	Addr Float to RD, WR	2t - 40	140	(73	ns	(Note 2)	
t _{AFC2}	Addr Float to PSEN	0.5t - 40	10	/oltage (wonsug	(Note 2)	
tLAFC1	ALE to Control (RD, WR)	3t - 75	200	oparto\	ms	uO HIO	
tLAFC2	ALE to Control (PSEN)	1.5t - 75	60	anatio\	ns	10 010	
t _{CA1}	Control to ALE (RD, WR, PROG)	t - 65	25		ns	19)	
t _{CA2}	Control to ALE (PSEN)	4t - 70	290	oltage	ns	DIS DU	
t _{CP}	Port Control Setup to PROG	1.5t - 80	50	anatioV	ns	10	
tpc	Port Control Hold to PROG	4t - 260	100	Voltage	ns	UO PHE	
t _{PR}	PROG to P2 Input Valid	8.5t - 120		650	ns	(月)	
tpF	Input Data Hold from PROG	1.5t	0	140	ns	OH2 OU	
t _{DP}	Output Data Setup	± 6t − 290	250	iner	ns ns	eJ ,	
t _{PD}	Output Data Hold	1.5t - 90	40		ns	(7)	
tpp	PROG Pulse Width	10.5t - 250	700	e Currer 20_227	ns	ani ti	
t _{PL}	Port 2 I/O Setup to ALE	4t - 200	160		ns	ΑΞΊ	
t _{LP}	Port 2 I/O Hold to ALE	0.5t - 30	15	nemu0 ej	ns	and a si	
tpv	Port Output from ALE	4.5t + 100		510	ns	all	
toper	T0 Rep Rate	3t	270	rigi	ns	(8)	
tcy	Cycle Time	15t	1.36	15.0	μs	TON .	

^{1.} Control outputs CL = 80 pF; BUS outputs CL = 150 pF.
2. BUS High Impedance Load 20 pF.
3. f(t) assumes 50% duty cycle on X1, X2. Max clock period is for a 1 MHz crystal input, we fix this because of a collection of the collec

PORT 1/PORT 2 TIMING

WAVEFORMS

INSTRUCTION FETCH FROM PROGRAM MEMORY

WRITE TO EXTERNAL DATA MEMORY

READ FROM EXTERNAL DATA MEMORY

LJATE S

INPUT AND OUTPUT FOR A.C. TESTS

PORT 1/PORT 2 TIMING

CRYSTAL OSCILLATOR MODE

CERAMIC RESONATOR MODE

DRIVING FROM EXTERNAL SOURCE DAMMARD WARNING MOUTA DE 10 392 DAMME DA

For XTAL1 and XTAL2 define "high" as voltages above 1.6V and "low" as voltages below 1.6V. The duty cycle requirements for externally driving XTAL1 and XTAL2 using the circuit shown above are as follows: XTAL1 must be high 35-65% of the period and XTAL2 must be high 36-65% of the period. Rise and fall times must be faster than 20 ns.

PROGRAMMING, VERIFYING AND ERASING THE 8749H (8748H) EPROM

Programming Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function						
	Clock Input (3 to 4.0 MHz)	niM					
XTAL 2	V 3 10						
RESET	Initialization and Address Late	ching					
TEST 0	Selection of Program or Verif	y Mode					
EA	Activation of Program/Verify						
BUS	Address and Data Input						
	Data Output During Verify						
P20-P22	Address Input						
VDD	Programming Power Supply						
PROG	Program Pulse Input						

An attempt to program a missocketed 8749H (8748H) will result in severe damage to the part. An indication of a properly socketed part is the appearance of the ALE clock output. The lack of this clock may be used to disable the programmer.

The Program/Verify sequence is:

- 1) V_{DD} = 5V, Clock applied or internal oscillator operating. RESET = 0V, TEST 0 = 5V, EA = 5V, BUS and PROG floating. P10 and P11 must be tied to ground. and and bloth and
- 2) Insert 8749H (8748H) in programming socket.
- 3) TEST 0 = 0V (select program mode)
- 4) EA = 18V (activate program mode)
- 5) Address applied to BUS and P20-22
- 6) RESET = 5V (latch address)
- 7) Data applied to BUS
- 8) $V_{DD} = 21V$ (programming power)
- 9) PROG = V_{CC} or float followed by one 50 ms pulse to 18V
- 11) TEST 0 = 5V (verify mode)
- 12) Read and verify data on BUS
- 13) TEST 0 = 0V bereposit ad neo cot noin at 0 TEST II
- 14) RESET = 0V and repeat from step 5
- 15) Programmer should be at conditions of step 1 when 8749H (8748H) is removed from socket.

A.C. TIMING SPECIFICATION FOR PROGRAMMING 8748H/8749H 3 MORE DAILY 1990

 $T_A = 25^{\circ}C \pm 5^{\circ}C; V_{CC} = 5V \pm 5\%; V_{DD} = 21V \pm 0.5V$

Symbol	Parameter (H8ASH)	Min	Max	Unit	Test Conditions
t _{AW} and to	Address Setup Time to RESET↑	4t _{CY}	8	12019 5	
t _{WA}	Address Hold Time after RESET ↑	4t _{CY}		Va-	T WEED IT
t _{DW}	Data in Setup Time to PROG ↑	4t _{CY}		0.00 \$ P	COLLECTOR
two	Data in Hold Time after PROG J	4t _{CY}	SJATH E		
t _{PH}	RESET Hold Time to Verify	4tcy	210 Apple a apple	u se "rinid" s	or XT&L and XTAL2 done
t _{VDDW}	V _{DD} Hold Time before PROG ↑	0	1.0	ms	Lit woled asgstlov as "wol
tvDDH	V _{DD} Hold Time after PROG ↓	000	1.0	ms	bove are safollows, XTAL
tpW	Program Pulse Width	50	60	ms	mes must be faster than 2
t _{TW}	TEST 0 Setup Time for Program Mode	4t _{CY}			
t _{WT}	TEST 0 Hold Time after Program Mode	4t _C Y	AA DIAN	VERIF	SOCIAL MINO
t _{DO}	TEST 0 to Data Out Delay as and (V	MORS	4t _{CY}	(8) H6V	ASING THE 87
t _{WW}	RESET Pulse Width to Latch Address	4t _{CY}			
t _r , t _f	V _{DD} and PROG Rise and Fall Times	0.5	100	μs	ogramming Vel
tcy	CPU Operation Cycle Time	3.75	talar50 at	μs	brief, the programm
t _{RE}	RESET Setup Time before EA ↑	4t _{CY}	ns gniga sta and a	gs ,spor	ung the program to ching the address a
			and the same of the same	- C 100 - C 10	

NOTE:

If TEST 0 is high, t_{DO} can be triggered by RESET ↑.

D.C. SPECIFICATION FOR PROGRAMMING 8748H/8749H

 $T_A = 25^{\circ}C \pm 5^{\circ}C$; $V_{CC} = 5V \pm 5^{\circ}$; $V_{DD} = 21V \pm 0.5V$

Symbol	Parameter	Min	Max	Unit	Test Conditions				
V _{DDH}	V _{DD} Program Voltage High Level	20.5	21.5	V	destination.	CIALZ			
V _{DDL}	V _{DD} Voltage Low Level	4.75	5.25	gotVto g	Sefection	TEST 0			
V _{PH}	PROG Program Voltage High Level	17.5	18.5	V	Activation	A: Dis			
V _{PL}	PROG Voltage Low Level	4.0	Vcc	muV Jug	Data Out				
VEAH	EA Program or Verify Voltage High Level	17.5	18.5	Voni	Address	220-P22			
I _{DD}	V _{DD} High Voltage Supply Current		20.0	mA	Program	DORS			
I _{PROG}	PROG High Voltage Supply Current		1.0	mA					
IEA	EA High Voltage Supply Current		1.0	mA					

WAVEFORMS

COMBINATION PROGRAM/VERIFY MODE (EPROMS ONLY)

VERIFY MODE

SUGGESTED EPROM VERIFICATION ALGORITHM FOR HMOS-E DEVICE ONLY

MCS®-48 EXPRESS

MCS@-48 EXPRESS

■ 0°C to 70°C Operation

■ -40°C to +85°C Operation

MAGGO 168 Hr. Burn-In COSCT MASSORGT

■ 8048AH/8035AHL ■ 8748H

VO = 22 8049AH/8039AHL

D.C. CHARACTERISTICS TA 8288

■ 8050AH/8040AHL

■ 8749H

The new Intel EXPRESS family of single-component 8-bit microcomputers offers enhanced processing options to the familiar 8048AH/8035AHL, 8748H, 8049AH/8039AHL, 8749H, 8050AH/8040AHL Intel components. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards, but fall short of military conditions.

The EXPRESS options include the commercial standard and -40° C to $+85^{\circ}$ C operation with or without 168 ± 8 hours of dynamic burn-in at 125°C per MIL-STD-883, method 1015. Figure 1 summarizes the option marking designators and package selections.

For a complete description of 8048AH/8035AHL, 8748H, 8049AH/8309AHL, 8749H, 8040AHL and 8050AH features and operating characteristics, refer to the respective standard commercial grade data sheet. This document highlights only the electrical specifications which differ from the respective commercial part.

Temp Range °C	0	-70	00	-40-+8	5	0-70	-4	0-+85
Burn In Chart	inu 0	Hrs	Limits	0 Hrs		168 Hrs . 9	168	Sym and 8
KERKSKILES	P	8048AH	Typ	TP8048AH	1	QP8048AH	LP8	3048AH
	VD	8048AH		TD8048AH	toept H	QD8048AH	igni LD	8048AH
	D	8748H		TD8748H	N. S.	QD8748H	TX LD	8748H
	Am P	8035AHL	- a	TP8035AH	1L	QP8035AHL	LP8	B035AHL
	D	8035AHL	-	TD8035AH	1L	QD8035AHL	LD	8035AHL
	Am P	8049AH	50	TP8049AH	1	QP8049AH	LP8	3049AH
	D	8049AH		TD8049AH	1	QD8049AH		8049AH
		8749H		TD8749AH	97 7	QD8749H		8749AH
	P	8039AHL		TP8039AH	IL	QP8039AHL		3039AHL
	2007	8039AHL	JH AOI	TD8039AH	Walter Proper In	QD8039AHL		8039AHL
		8050AH	594,HZ	TP8050AH	St. St. Steller and	QP8050AH		3050AH
		8050AH		TD8050AH		QD8050AH		8050AH
		8040AHL		TP8040AH		QP8040AHL	the same of the same of	3040AHL
		8040AHL	90	TD8040AH	ILO.ON	QD8040AHL	LD	8040AHL
	The state of the s	8243	Limits	TP8243		QP8243		
Test Conditions		8243	100	TD8243		QD8243	LD	8243
		nercial Grade c Package						
		p Package		2.2		t High Voltage (All E) L1, XTAL2, RESET)		
	:Am	20	10			Supply Current		

TP8048AH/TP8035AHL/LP8048AH/LP8035AHL TD8048AH/TD8035AHL/LD8048AH/LD8035AHL

M SOASAH/SOSSAHL M STASH

D.C. CHARACTERISTICS $T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{CC} = V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$

Symbol	Parameter	JHAC	Limits	e 8050.	Unit	Test Conditions	
	T didillotor	Min	Тур	Max	Oilit	Tool oonalions	
sessing opplyns a components	Input High Voltage (All Except XTAL1, XTAL2, RESET)	m 2:29 f	omponen , 8049At	Vcc 1	S teVnity I	The new Intel EXPRES o the familiar 8048At	
DD guille in	V _{DD} Supply Current	been en stillen to	4	8	mA	nese EXPRESS prot	
IDD + ICC	Total Supply Current		40	80	mA		

For a complete description of JHA008047LHA008047

±8 hours of dynamic burn-in at 125°C per MIL-STD-883, method 1015. Figure 1 summarizes the option

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$

Symbol	Parameter	evM 0	Limits	ani	Unit	Test Conditions
HAANORGI	OPROJEKA-)	Min	Тур	Max	19	
D8048AH _{HI} V D8748H	Input High Voltage (All Except XTAL1, XTAL2, RESET)	A 2.2		Vcc	O V	
IDD HAREORY	V _{DD} Supply Current	P8035AH	5	10	mA	
IDD + ICC	Total Supply Current	P8049AH	50	100	mA	

TP8050AH/TP8040AHL/LP8050AHL/LP8040AHL TD8050AH/TD8040AHL/LD8050AH/LD8040AHL

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = V_{DD} = 5V \pm 10\%$; $V_{SS} = 0V$

Symbol	Parameter Parameter	PASAG	Limits		Unit	Test Conditions
	T diamotor	Min	Тур	Max	"Commo	
VIH	Input High Voltage (All Except XTAL1, XTAL2, RESET)			Vcc	PVastio DVertip	
I _{DD}	V _{DD} Supply Current		10	20	mA	
IDD + ICC	Total Supply Current		75	120	mA	

Extended Temperature Electrical Specification Deviations*

TD8748H/LD8748H

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = V_{DD} = 5\text{V} \pm 10\%$; $V_{SS} = 0\text{V}$

Symbol	Parameter		Limits		Unit	Test Conditions	
	T di dillotto	Min	Тур	Max	Oilit	Tool oonarions	
VIH	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.2		Vcc	٧		
I _{DD} + I _{CC}	Total Supply Current		50	130	mA		

TD8749H/LD8749H

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = V_{DD} = 5\text{V} \pm 10\%$; $V_{SS} = 0\text{V}$

Symbol	Parameter		Limits		Unit	Test Conditions	
	Tarameter	Min	Тур	Max	Oilit	rest condition	
V _{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET)	2.2		Vcc	٧		
I _{DD} + I _{CC}	Total Supply Current		75	150	mA		

TP8743/TD8243/LD8243

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = 5\text{V} \pm 10\%$; $V_{SS} = 0\text{V}$

Symbol	Parameter	Limits		Unit	Test Conditions	
	raiametei	Min	Тур	Max	Oilit	rest conditions
Icc	V _{CC} Supply Current		15	25	mA	

^{*}Refer to individual commercial grade data sheet for complete operating characteristics.

Extended Temperature Electrical Specification Deviations*

TOSTASH/LOSTASH

D.C. CHARACTERISTICS TA = -40°C to +85°C; Voc = Von = 5V ±10%; Voc = 0V

Test Conditions	Parameter Limits Unit T	Limits			Parameter	Symbol
		104 015 10 10 1				
	٧				Input High Voltage (All Except XTAL1, XTAL2, RESET)	ніУ
	Am				Total Supply Current	

TDS749H/LDS749H

D.C. CHARACTERISTICS TA = -40°C to +85°C; Voc = Von = 5V ± 10%; Veq = 0V

Test Conditions		atlmi.i			Parameter		
				Miles	TO STATE OF THE ST	io.ango	
	V				Input High Voltage (All Except XTAL1, XTAL2, RESET)	нι∨	

SLOOP RESERVED STROP

O.C. CHARACTERISTICS TA = -40°C to +85°C: Vac = 5V ±10%: Vac = 0V

Test Conditions			Limits		Parameter	Symbol
	4000	xsM		min	197900010:1	
					V _{CC} Supply Current	

^{*}Refer to Individual commercial grade data sheet for complete operating characteristics.

MCS®-51 Architectural Overview

ARCHITECTURAL OVERVIEW
OF THE MCS®-51 FAMILY OF MICROCONTROLLERS

INTRODUCTION

The 8051 is the original member of the MCS®-51 family, and is the core for all MCS-51 devices. The features of the 8051 core are:

- 8-bit CPU optimized for control applications
- Extensive Boolean processing (single-bit logic) capabilities
- 64K Program Memory address space
- 64K Data Memory address space
- 4K bytes of on-chip Program Memory
- 128 bytes of on-chip Data RAM
- 32 bidirectional and individually addressable I/O lines
- Two 16-bit timer/counters
- Full duplex UART
- 6-source/5-vector interrupt structure with two priority levels
- · On-chip clock oscillator

The basic architectural structure of this 8051 core is shown in Figure 1.

Figure 1. Block Diagram of the 8051 Core

Each device on the MCS-51 family consists of all the core features plus some additional features. A feature comparison of all the MCS-51 devices is shown in Table 1.

Table 1. The MCS®-51 Family of Microcontrollers

Device	ROMIess Version	EPROM Version	ROM Bytes	RAM Bytes	8-Bit I/O Ports	16-Bit Timer/ Counters	Programmable Counter Array (PCA)	UART	Serial Expansion Port (SEP)	Global Serial Channel (GSC)	DMA Channels	A/D Channels	Interrupt Sources/ Vectors	Power Down and Idle Modes
8051	8031		4K	128	4	2		~					6/5	50
8051AH	8031AH	8751H 8751BH	4K	128	4	2		-	eleve evels			- 18	6/5	AL.
8052AH	8032AH	8752BH	8K	256	4	3	7 50 1	1	2 2	2			8/6	
80C51BH	80C31BH	87C51	4K	128	4	2	1 21	"	10			disa	6/5	V
83C51FA	80C51FA	87C51FA	8K	256	4	3	~	~	4 0	9		8	14/7	-
83C51FB	80C51FA	87C51FB	16K	256	4	3	-	v	8	9		200	14/7	1
83C51GA	80C51GA	87C51GA	4K	128	4	2		10	-	100		8	8/7	-
83C152JA	80C152JA	M -1	8K	256	5	2	granes extension and the	V	55 4 50 G	v -	2	9 0 10	19/11	-
_	80C152JB	- 4-		256	7	2		-	B B	N 8	2	9 6 8	19/11	-
83C152JC	80C152JC	_	8K	256	5	2	1 6 %	1	ē	v	2	10 (8	19/11	~
	80C152JD	_ 4-		256	7	2		-		"	2		19/11	-
83C451	80C451	_	4K	128	7	2	Representation of seasons being	-	H H H	19 10	1 60 E	E 8 5	6/5	-
83C452	80C452	87C452P	8K	256	5	2		"	S 15 15	100	9 4 8	2 2 2	9/8	V

Figure 2. MCS®-51 Memory Structure

CHMOS Devices

Functionally, the CHMOS devices (designated with "C" in the middle of the device name) are all fully compatible with the 8051, but being CMOS, draw less current than an HMOS counterpart. To further exploit the power savings available in CMOS circuitry, two reduced power modes are added:

- Software-invoked Idle Mode, during which the CPU is turned off while the RAM and other on-chip peripherals continue operating. In this mode, current draw is reduced to about 15% of the current drawn when the device is fully active.
- Software-invoked Power Down Mode, during which all on-chip activities are suspended. The on-chip RAM continues to hold its data. In this mode the device typically draws less than 10 µA.

Although the 80C51BH is functionally compatible with its HMOS counterpart, specific differences between the two types of devices must be considered in the design of an application circuit if one wishes to ensure complete interchangeability between the HMOS and CHMOS devices. These considerations are discussed in the Application Note AP-252, "Designing with the 80C51BH".

For more information on the individual devices and features listed in Table 1, refer to the Hardware Descriptions and Data Sheets of the specific device.

MEMORY ORGANIZATION IN MCS®-51 DEVICES

Logical Separation of Program and Data Memory

All MCS-51 devices have separate address spaces for Program and Data Memory, as shown in Figure 2. The logical separation of Program and Data Memory allows the Data Memory to be accessed by 8-bit addresses, which can be more quickly stored and manipulated by an 8-bit CPU. Nevertheless, 16-bit Data Memory addresses can also be generated through the DPTR register.

Program Memory can only be read, not written to. There can be up to 64K bytes of Program Memory. In the ROM and EPROM versions of these devices the lowest 4K, 8K or 16K bytes of Program Memory are provided on-chip. Refer to Table 1 for the amount of on-chip ROM (or EPROM) on each device. In the ROMless versions all Program Memory is external. The read strobe for external Program Memory is the signal PSEN (Program Store Enable).

Erogram vacanory. Op to oak bytes of external KAM can be addressed in the external Data Memory space. The CPU generates read and write signals, RD and WR, as needed during external Data Memory accesses.

External Program Memory and external Data Memory may be combined if desired by applying the RD and PSEN signals to the inputs of an AND gate and using the output of the gate as the read strobe to the external Program/Data memory.

Program Memory

Figure 3 shows a map of the lower part of the Program Memory. After reset, the CPU begins execution from location 0000H.

As shown in Figure 3, each interrupt is assigned a fixed location in Program Memory. The interrupt causes the CPU to jump to that location, where it commences execution of the service routine. External Interrupt 0, for example, is assigned to location 0003H. If External Interrupt 0 is going to be used, its service routine must begin at location 0003H. If the interrupt is not going to be used, its service location is available as general purpose Program Memory.

Figure 3. MCS®-51 Program Memory

The interrupt service locations are spaced at 8-byte intervals: 0003H for External Interrupt 0, 000BH for Timer 0, 0013H for External Interrupt 1, 001BH for Timer 1, etc. If an interrupt service routine is short enough (as is often the case in control applications), it can reside entirely within that 8-byte interval. Longer service routines can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

ory can be either in the on-chip ROM or in an external ROM. This selection is made by strapping the \overline{EA} (External Access) pin to either V_{CC} or V_{SS} .

In the 4K byte ROM devices, if the $\overline{\rm EA}$ pin is strapped to $V_{\rm CC}$, then program fetches to addresses 0000H through 0FFFH are directed to the internal ROM. Program fetches to addresses 1000H through FFFFH are directed to external ROM.

In the 8K byte ROM devices, $\overline{EA} = V_{CC}$ selects addresses 0000H through 1FFFH to be internal, and addresses 2000H through FFFFH to be external.

In the 16K byte ROM devices, $\overline{EA} = V_{CC}$ selects addresses 0000H through 3FFFH to be internal, and addresses 4000H through FFFFH to be external.

If the \overline{EA} pin is strapped to V_{SS}, then all program fetches are directed to external ROM. The ROMless parts must have this pin externally strapped to V_{SS} to enable them to execute properly.

The read strobe to external ROM, PSEN, is used for all external program fetches. PSEN is not activated for internal program fetches.

Figure 4. Executing from External Program Memory

The hardware configuration for external program execution is shown in Figure 4. Note that 16 I/O lines (Ports 0 and 2) are dedicated to bus functions during external Program Memory fetches. Port 0 (P0 in Figure 4) serves as a multiplexed address/data bus. It emits the low byte of the Program Counter (PCL) as an address, and then goes into a float state awaiting the arrival of the code byte from the Program Memory. During the time that the low byte of the Program Counter is valid on PO, the signal ALE (Address Latch Enable) clocks this byte into an address latch. Meanwhile, Port 2 (P2 in Figure 4) emits the high byte of the Program Counter (PCH). Then PSEN strobes the EPROM and the code byte is read into the microcontroller.

Program Memory addresses are always 16 bits wide, even though the actual amount of Program Memory used may be less than 64K bytes. External program execution sacrifices two of the 8-bit ports, P0 and P2, to the function of addressing the Program Memory.

Data Memory

The right half of Figure 2 shows the internal and external Data Memory spaces available to the MCS-51 user.

Figure 5 shows a hardware configuration for accessing up to 2K bytes of external RAM. The CPU in this case is executing from internal ROM. Port 0 serves as a multiplexed address/data bus to the RAM, and 3 lines of Port 2 are being used to page the RAM. The CPU generates \overline{RD} and \overline{WR} signals as needed during external RAM accesses.

Figure 5. Accessing External Data Memory.

If the Program Memory is Internal, the Other

Bits of P2 are Available as I/O.

There can be up to 64K bytes of external Data Memory. External Data Memory addresses can be either 1 or 2 bytes wide. One-byte addresses are often used in conjunction with one or more other I/O lines to page the RAM, as shown in Figure 5. Two-byte addresses can also be used, in which case the high address byte is emitted at Port 2.

Figure 6. Internal Data Memory

Internal Data Memory is mapped in Figure 6. The memory space is shown divided into three blocks, which are generally referred to as the Lower 128, the Upper 128, and SFR space.

Internal Data Memory addresses are always one byte wide, which implies an address space of only 256 bytes. However, the addressing modes for internal RAM can in fact accommodate 384 bytes, using a simple trick. Direct addresses higher than 7FH access one memory space, and indirect addresses higher than 7FH access a different memory space. Thus Figure 6 shows the Upper 128 and SFR space occupying the same block of addresses, 80H through FFH, although they are physically separate entities.

Figure 7. The Lower 128 Bytes of Internal RAM

The Lower 128 bytes of RAM are present in all MCS-51 devices as mapped in Figure 7. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word (PSW) select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

Figure 8. The Upper 128 Bytes of Internal RAM

Figure 10. PSW (Program Status Word) Register in MCS®-51 Devices

The next 16 bytes above the register banks form a block of bit-addressable memory space. The MCS-51 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by either direct or indirect addressing. The Upper 128 (Figure 8) can only be accessed by indirect addressing. The Upper 128 bytes of RAM are not implemented in the 8051, but are in the devices with 256 bytes of RAM. (See Table 1).

Figure 9 gives a brief look at the Special Function Register (SFR) space. SFRs include the Port latches, timers, peripheral controls, etc. These registers can only be accessed by direct addressing. In general, all MCS-51 microcontrollers have the same SFRs as the 8051, and at the same addresses in SFR space. However, enhancements to the 8051 have additional SFRs that are not present in the 8051, nor perhaps in other proliferations of the family.

Figure 9. SFR Space

Sixteen addresses in SFR space are both byte- and bitaddressable. The bit-addressable SFRs are those whose address ends in 000B. The bit addresses in this area are 80H through FFH.

THE MCS®-51 INSTRUCTION SET

All members of the MCS-51 family execute the same instruction set. The MCS-51 instruction set is optimized for 8-bit control applications. It provides a variety of fast addressing modes for accessing the internal RAM to facilitate byte operations on small data structures. The instruction set provides extensive support for one-bit variables as a separate data type, allowing direct bit manipulation in control and logic systems that require Boolean processing.

An overview of the MCS-51 instruction set is presented below, with a brief description of how certain instructions might be used. References to "the assembler" in this discussion are to Intel's MCS-51 Macro Assembler, ASM51. More detailed information on the instruction set can be found in the MCS-51 Macro Assembler User's Guide (Order No. 9800937 for ISIS Systems, Order No. 122752 for DOS Systems).

Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the current state of the CPU. The PSW, shown in Figure 10, resides in SFR space. It contains the Carry bit, the Auxiliary Carry (for BCD operations), the two register bank select bits, the Overflow flag, a Parity bit, and two user-definable status flags.

The Carry bit, other than serving the functions of a Carry bit in arithmetic operations, also serves as the "Accumulator" for a number of Boolean operations.

lejmi

The bits RS0 and RS1 are used to select one of the four register banks shown in Figure 7. A number of instructions refer to these RAM locations as R0 through R7. The selection of which of the four banks is being referred to is made on the basis of the bits RS0 and RS1 at execution time.

The Parity bit reflects the number of 1s in the Accumulator: P = 1 if the Accumulator contains an odd number of 1s, and P = 0 if the Accumulator contains an even number of 1s. Thus the number of 1s in the Accumulator plus P is always even.

Two bits in the PSW are uncommitted and may be used as general purpose status flags.

Addressing Modes

The addressing modes in the MCS-51 instruction set are as follows:

DIRECT ADDRESSING

In direct addressing the operand is specified by an 8-bit address field in the instruction. Only internal Data RAM and SFRs can be directly addressed.

INDIRECT ADDRESSING

In indirect addressing the instruction specifies a register which contains the address of the operand. Both internal and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be R0 or R1 of the selected register bank, or the Stack Pointer. The address register for 16-bit addresses can only be the 16-bit "data pointer" register, DPTR.

REGISTER INSTRUCTIONS

The register banks, containing registers R0 through R7, can be accessed by certain instructions which carry a 3-bit register specification within the opcode of the instruction. Instructions that access the registers this way are code efficient, since this mode eliminates an address byte. When the instruction is executed, one of the eight registers in the selected bank is accessed. One of four banks is selected at execution time by the two bank select bits in the PSW.

REGISTER-SPECIFIC INSTRUCTIONS

Some instructions are specific to a certain register. For example, some instructions always operate on the Accumulator, or Data Pointer, etc., so no address byte is needed to point to it. The opcode itself does that. Instructions that refer to the Accumlator as A assemble as accumulator-specific opcodes.

IMMEDIATE CONSTANTS

The value of a constant can follow the opcode in Program Memory. For example,

MOV A, #100

loads the Accumulator with the decimal number 100. The same number could be specified in hex digits as 64H

INDEXED ADDRESSING

Only Program Memory can be accessed with indexed addressing, and it can only be read. This addressing mode is intended for reading look-up tables in Program Memory. A 16-bit base register (either DPTR or the Program Counter) points to the base of the table, and the Accumulator is set up with the table entry number. The address of the table entry in Program Memory is formed by adding the Accumulator data to the base pointer.

Another type of indexed addressing is used in the "case jump" instruction. In this case the destination address of a jump instruction is computed as the sum of the base pointer and the Accumulator data.

Arithmetic Instructions

The menu of arithmetic instructions is listed in Table 2. The table indicates the addressing modes that can be used with each instruction to access the
byte> operand. For example, the ADD A,
byte> instruction can be written as:

ADD	A,7FH	(direct addressing)
ADD	A,@RO	(indirect addressing)
ADD	A,R7	(register addressing)
ADD	A.#127	(immediate constant)

The execution times listed in Table 2 assume a 12 MHz clock frequency. All of the arithmetic instructions execute in 1 μ s except the INC DPTR instruction, which takes 2 μ s, and the Multiply and Divide instructions, which take 4 μ s.

Note that any byte in the internal Data Memory space can be incremented or decremented without going through the Accumulator.

One of the INC instructions operates on the 16-bit Data Pointer. The Data Pointer is used to generate 16-bit addresses for external memory, so being able to increment it in one 16-bit operation is a useful feature.

The MUL AB instruction multiplies the Accumulator by the data in the B register and puts the 16-bit product into the concatenated B and Accumulator registers.

Table 2. A List of the MCS®-51 Arithmetic Instructions

Mnemonic	Operation Operation	b R7.	Address	sing Mode	SI MASI S	Execution
Willelifolifo	gram Memory. For example,	Dir	Ind	Reg	Imm	Time (µs)
ADD A, < byte>	A = A + < byte >	X	X	X	X	cxecution time
ADDC A, < byte>	A = A + <byte> + C</byte>	X	X	X	X	1
SUBB A, < byte>	$A = A - \langle byte \rangle - C$	X	X	X	X	no Farry bit ser-
INC A	A = A + 1	ns an	Accum	ulator only	= 0 if the	er of 1t, and P
INC <byte></byte>	 byte> = <byte> + 1</byte>	X	X	O TO X TUBE	. I hus the	ven number of 1
INC DPTR	DPTR = DPTR + 1		Data P	ointer only		2
DEC A A bessesses	Only Program MenAre An	beau	Accum	ulator only	W are unce	wo bittin the P
DEC <byte></byte>	$\langle \text{byte} \rangle = \langle \text{byte} \rangle - 1$	X	X	X	all Single is	1
MUL AB	$B:A = B \times A$		ACC a	nd B only		4
he base of BA tab VIOne the table entry number	A = Int [A/B] B = Mod [A/B]	198 m	ACC a	and B only	action in the	he addressing a
DA A	Decimal Adjust		Accum	ulator only		cas follows:

The DIV AB instruction divides the Accumulator by the data in the B register and leaves the 8-bit quotient in the Accumulator, and the 8-bit remainder in the B register.

Oddly enough, DIV AB finds less use in arithmetic "divide" routines than in radix conversions and programmable shift operations. An example of the use of DIV AB in a radix conversion will be given later. In shift operations, dividing a number by 2^n shifts its n bits to the right. Using DIV AB to perform the division

completes the shift in 4 μ s and leaves the B register holding the bits that were shifted out.

The DA A instruction is for BCD arithmetic operations. In BCD arithmetic, ADD and ADDC instructions should always be followed by a DA A operation, to ensure that the result is also in BCD. Note that DA A will not convert a binary number to BCD. The DA A operation produces a meaningful result only as the second step in the addition of two BCD bytes.

Table 3. A List of the MCS®-51 Logical Instructions

Mnemonic	Operation	tack P	Addres	sing Mo	des	Execution
tirect addressins)	he the ADD AJEH A	Di	Ind	Reg	Imm	Time (µs)
ANL A, < byte >	A = A .AND. <byte></byte>	X	X	X	X	Per Louis Di
ANL <byte>,A</byte>	 byte> = <byte> .AND. A</byte>	X				1
ANL <byte>,#data</byte>	 byte> = <byte> .AND. #data</byte>	X		GROT	CHUTTI C	2
ORL A, <byte></byte>	A = A .OR. <byte></byte>	X	X	X	X	he repuses bar
ORL <byte>,A</byte>	 byte> = <byte> .OR. A</byte>	X	rise oner	riditive or	toy con	Die relaieter at
ORL <byte>,#data</byte>	 byte> = <byte> .OR. #data</byte>	X	the regi	at access	ctions t	rection last
XRL A, < byte>	A = A .XOR. <byte></byte>	X	X	X	X	e code emore
XRL <byte>,A</byte>	 byte> = <byte> .XOR. A</byte>	X	accessed.	ai sined	batcelez	states in the
XRL <byte>,#data</byte>	 byte> = <byte> .XOR. #data</byte>	X	me by t	noution, ti	ed at ear	unks 2 select
CRL A	A = 00H	1	Accum	ulator o	nly	to ni stipi tooli
CPL and an estimago anoi	A = .NOT. A		Accum	ulator or	nly	1
Pointer is used A genda	Rotate ACC Left 1 bit		Accum	ulator or	nly	1
RLC A	Rotate Left through Carry	regist	Accum	ulator or	nly	ome ipstructio
RR A	Rotate ACC Right 1 bit	e on a	Accum	nulator or	nly	20 20 limm
RRC A	Rotate Right through Carry	di apel	Accum	nulator o	nly	niog officebas
SWAP A	Swap Nibbles in A	24 24.8	Accum	nulator o	nly	ractiques than

Logical Instructions

Table 3 shows the list of MCS-51 logical instructions. The instructions that perform Boolean operations (AND, OR, Exclusive OR, NOT) on bytes perform the operation on a bit-by-bit basis. That is, if the Accumulator contains 00110101B and

byte> contains 01010011B, then

will leave the Accumulator holding 00010001B.

The addressing modes that can be used to access the

byte> operand are listed in Table 3. Thus, the ANL A,

byte> instruction may take any of the forms

ANL	A,7FH	(direct addressing)
ANL	A,@R1	(indirect addressing)
ANL	A,R6	(register addressing)
ANL	A,#53H	(immediate constant)

All of the logical instructions that are Accumulator-specific execute in $1\mu s$ (using a 12 MHz clock). The others take $2 \mu s$.

Note that Boolean operations can be performed on any byte in the lower 128 internal Data Memory space or the SFR space using direct addressing, without having to use the Accumulator. The XRL

byte>, #data instruction, for example, offers a quick and easy way to invert port bits, as in

If the operation is in response to an interrupt, not using the Accumulator saves the time and effort to stack it in the service routine.

The Rotate instructions (RL A, RLC A, etc.) shift the Accumulator 1 bit to the left or right. For a left rotation, the MSB rolls into the LSB position. For a right rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and low nibbles within the Accumulator. This is a useful operation in BCD manipulations. For example, if the Accumulator contains a binary number which is known to be less than 100, it can be quickly converted to BCD by the following code:

Dividing the number by 10 leaves the tens digit in the low nibble of the Accumulator, and the ones digit in the B register. The SWAP and ADD instructions move the tens digit to the high nibble of the Accumulator, and the ones digit to the low nibble.

Data Transfers as ACHD and XOH to see to To see the problem of similarity manipulations, consider first the problem of similarity manipulations.

ing an 8-digit BCD number two digit MAR JANNETNI

Table 4 shows the menu of instructions that are available for moving data around within the internal memory spaces, and the addressing modes that can be used with each one. With a 12 MHz clock, all of these instructions execute in either 1 or 2 μ s.

The MOV <dest>, <src> instruction allows data to be transferred between any two internal RAM or SFR locations without going through the Accumulator. Remember the Upper 128 byes of data RAM can be accessed only by indirect addressing, and SFR space only by direct addressing.

Note that in all MCS-51 devices, the stack resides in on-chip RAM, and grows upwards. The PUSH instruction first increments the Stack Pointer (SP), then copies the byte into the stack. PUSH and POP use only direct addressing to identify the byte being saved or restored,

Table 4. A List of the MCS®-51 Data Transfer Instructions that Access Internal Data Memory Space

	Dell John ACH and Zhi	odnA	ddress	ing Mo	des	Execution
	to location 2AH. Since that	Dir	Ind	Reg	Imm	Time (μs)
MOV A, < src>	A = <src></src>	X	X	X	X	1
MOV <dest>,A</dest>	<dest> = A</dest>	X	Х	X		1
MOV <dest>, <src></src></dest>	<dest> = <src></src></dest>	X	X	X	X	2
MOV DPTR, #data16	DPTR = 16-bit immediate constant.				X	2
PUSH <src></src>	INC SP : MOV "@SP", < src>	X				2
POP <dest></dest>	MOV <dest>, "@SP": DEC SP</dest>	X				2
XCH A, <byte></byte>	ACC and <byte> exchange data</byte>	X	X	X		1
XCHD A,@Ri	ACC and @Ri exchange low nibbles		X			1

but the stack itself is accessed by indirect addressing using the SP register. This means the stack can go into the Upper 128, if they are implemented, but not into SFR space.

In devices that do not implement the Upper 128, if the SP points to the Upper 128, PUSHed bytes are lost, and POPped bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV that can be used to initialize the Data Pointer (DPTR) for look-up tables in Program Memory, or for 16-bit external Data Memory accesses.

The XCH A,

syte > instruction causes the Accumulator and addressed byte to exchange data. The XCHD A, @Ri instruction is similar, but only the low nibbles are involved in the exchange.

To see how XCH and XCHD can be used to facilitate data manipulations, consider first the problem of shifting an 8-digit BCD number two digits to the right. Figure 11 shows how this can be done using direct MOVs, and for comparison how it can be done using XCH instructions. To aid in understanding how the code works, the contents of the registers that are holding the BCD number and the content of the Accumulator are shown alongside each instruction to indicate their status after the instruction has been executed.

E SFE		24	2B	2C	2D	2E	ACC
MOV	A,2EH	00	12	34	56	78	78
MOV	2EH,2DH	00	12	34	56	56	78
MOV	2DH,2CH	00	12	34	34	56	78
MOV	2CH,2BH	00	12	12	34	56	78
MOV	2BH,#0	00	00	12	34	56	78
(a) Us	ing direct M	OVs:	14 byt	es, 9 ,	ıs		oie th
(a) Us	he PUSIT in	T et	nswqu	SWOT	and ,	nt in	ote the
astruo copie	he PUSIT in	2A	14 byt	es, 9 ,	2D	2E	ACC
CLR	Te PUSH in (SP), then Use Aly	2A	nswqu	2C	2D 56	2E 78	ACC
CLR XCH	A A,2BH	2A	2B	2C	2D	71004	111111111111111111111111111111111111111
CLR	Te PUSH in (SP), then Use Aly	2A	2B	2C	2D 56	78	00
CLR XCH	A A,2BH	2A 00 00	2B 12 00	2C 34 34	2D 56 56	78 78	00

Figure 11. Shifting a BCD Number
Two Digits to the Right

After the routine has been executed, the Accumulator contains the two digits that were shifted out on the right. Doing the routine with direct MOVs uses 14 code bytes and 9 μ s of execution time (assuming a 12 MHz clock). The same operation with XCHs uses less code and executes almost twice as fast.

To right-shift by an odd number of digits, a one-digit shift must be executed. Figure 12 shows a sample of code that will right-shift a BCD number one digit, using the XCHD instruction. Again, the contents of the registers holding the number and of the Accumulator are shown alongside each instruction.

i in Table 3. Thus, the ANL v take any of the forms	2A	2B	2C	2D	2E	ACC
MOV R1,#2EH MOV R0,#2DH	1000	100	12000	56 56	12 3	XX
loop for R1 = 2EH:						
LOOP: MOV A,@R1 XCHD A,@R0 SWAP A MOV @R1,A DEC R1 DEC R0 CJNE R1,#2AH,LOOI	00 00 00 00 00	12	34 34 34 34	58 58 58	78 78 67 67	78 76 67 67 67 67
loop for R1 = 2DH: loop for R1 = 2CH: loop for R1 = 2BH:	-	18		(58) Dis	67	23
CLR A 19X of	- December 1	O SPECULAR	100000	45 45	1812.01	00 08

Figure 12. Shifting a BCD Number
One Digit to the Right

First, pointers R1 and R0 are set up to point to the two bytes containing the last four BCD digits. Then a loop is executed which leaves the last byte, location 2EH, holding the last two digits of the shifted number. The pointers are decremented, and the loop is repeated for location 2DH. The CINE instruction (Compare and Jump if Not Equal) is a loop control that will be described later.

The loop is executed from LOOP to CJNE for R1 = 2EH, 2DH, 2CH and 2BH. At that point the digit that was originally shifted out on the right has propagated to location 2AH. Since that location should be left with 0s, the lost digit is moved to the Accumulator.

Note that the Boolean instruction MAR JANNATXA

Table 5 shows a list of the Data Transfer instructions that access external Data Memory. Only indirect addressing can be used. The choice is whether to use a one-byte address, @Ri, where Ri can be either R0 or R1 of the selected register bank, or a two-byte address, @DPTR. The disadvantage to using 16-bit addresses if only a few K bytes of external RAM are involved is that 16-bit addresses use all 8 bits of Port 2 as address bus. On the other hand, 8-bit addresses allow one to address a few K bytes of RAM, as shown in Figure 5, without having to sacrifice all of Port 2.

All of these instructions execute in 2 μ s, with a 12 MHz clock.

Table 5. A List of the MCS®-51 Data

Transfer Instructions that Access

External Data Memory Space

Address Width	Mnemonic	Operation	Execution Time (µs)	
8 bits	MOVX A,@Ri	Read external RAM @Ri	his code u	
8 bits	MOVX @Ri,A	Write external RAM @Ri	ressed oit a	
16 bits	MOVX A,@DPTR	Read external RAM @DPTR	2 .197	
16 bits	MOVX @DPTR,A	Write external RAM @DPTR	2 2 58	

Note that in all external Data RAM accesses, the Accumulator is always either the destination or source of the data.

The read and write strobes to external RAM are activated only during the execution of a MOVX instruction. Normally these signals are inactive, and in fact if they're not going to be used at all, their pins are available as extra I/O lines. More about that later.

LOOKUP TABLES of the office of additional

Table 6 shows the two instructions that are available for reading lookup tables in Program Memory. Since these instructions access only Program Memory, the lookup tables can only be read, not updated. The mnemonic is MOVC for "move constant".

If the table access is to external Program Memory, then the read strobe is PSEN.

Table 6. The MCS®-51 Lookup Table Read Instructions

Mnemonic	Operation	Execution Time (µs)
MOVC A,@A+DPTR	Read Pgm Memory at (A+DPTR)	d,0 2 JM/
MOVC A,@A+PC	Read Pgm Memory at (A+PC)	2 180

The first MOVC instruction in Table 6 can accommodate a table of up to 256 entries, numbered 0 through 255. The number of the desired entry is loaded into the Accumulator, and the Data Pointer is set up to point to beginning of the table. Then

MOVC A,@A+DPTR

copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, except the Program Counter (PC) is used as the table base, and the table is accessed through a subroutine. First the number of the desired entry is loaded into the Accumulator, and the subroutine is called:

MOV A,ENTRY_NUMBER CALL TABLE

The subroutine "TABLE" would look like this:

TABLE: MOVC A,@A+PC

The table itself immediately follows the RET (return) instruction in Program Memory. This type of table can have up to 255 entries, numbered 1 through 255. Number 0 can not be used, because at the time the MOVC instruction is executed, the PC contains the address of the RET instruction. An entry numbered 0 would be the RET opcode itself.

Boolean Instructions and all I how to deal

MCS-51 devices contain a complete Boolean (single-bit) processor. The internal RAM contains 128 addressable bits, and the SFR space can support up to 128 other addressable bits. All of the port lines are bit-addressable, and each one can be treated as a separate single-bit port. The instructions that access these bits are not just conditional branches, but a complete menu of move, set, clear, complement, OR, and AND instructions. These kinds of bit operations are not easily obtained in other architectures with any amount of byte-oriented software.

on whether the flag bit is I or

Table 7. A List of the MCS®-51 Boolean Instructions

Mnei	monic	Operation	Execution Time (μs)
ANL	C,bit	C = C.AND. bit	2
ANL	C,/bit	C = C.ANDNOT. bit	MA ZIVOM
ORL	C,bit	C = C.OR. bit	2
ORL	C,/bit	C = C.ORNOT. bit	2
MOV	C,bit	C = bit	eldar ¹ s ofal
MOV	bit,C	bit = Cratical add to radi	NAME AND ADDRESS OF TAXABLE PARTY.
CLR	C	C = 0	Accountants of
CLR	bit	bit = 0	1
SETB	С	C = 1 ATTO + AD, A	MONC
SETB	bit	bit = 1	opies the de
CPL	С	C = .NOT. C	1
CPL	bit	bit = .NOT. bit	M 191410 SM
JC	rel	Jump if C = 1	ns bi2 ,see
JNC	rel	Jump if C = 0	nun ogr leur
JB	bit,rel	Jump if bit = 1	2
JNB 🦠	bit,rel	Jump if bit = 0	2
JBC	bit,rel	Jump if bit = 1; CLR bit	2

The instruction set for the Boolean processor is shown in Table 7. All bit accesses are by direct addressing. Bit addresses 00H through 7FH are in the Lower 128, and bit addresses 80H through FFH are in SFR space.

Note how easily an internal flag can be moved to a port pin:

MOV C,FLAG
MOV P1.0,C

In this example, FLAG is the name of any addressable bit in the Lower 128 or SFR space. An I/O line (the LSB of Port 1, in this case) is set or cleared depending on whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single-bit Accumulator of the Boolean processor. Bit instructions that refer to the Carry bit as C assemble as Carry-specific instructions (CLR C, etc). The Carry bit also has a direct address, since it resides in the PSW register, which is bit-addressable.

and ORL operations, but not the XRL (Exclusive OR) operation. An XRL operation is simple to implement in software. Suppose, for example, it is required to form the Exclusive OR of two bits:

C = bit1 XRL bit2 and releget berseles of to 19

The software to do that could be as follows:

MOV C,bit1
JNB bit2,OVER
CPL C

OVER: (continue)

First, bit1 is moved to the Carry. If bit2 = 0, then C now contains the correct result. That is, bit1 .XRL bit2 = bit1 if bit2 = 0. On the other hand, if bit2 = 1 C now contains the complement of the correct result. It need only be inverted (CPL C) to complete the operation.

This code uses the JNB instruction, one of a series of bit-test instructions which execute a jump if the addressed bit is set (JC, JB, JBC) or if the addressed bit is not set (JNC, JNB). In the above case, bit2 is being tested, and if bit2 = 0 the CPL C instruction is jumped over.

JBC executes the jump if the addressed bit is set, and also clears the bit. Thus a flag can be tested and cleared in one operation.

All the PSW bits are directly addressable, so the Parity bit, or the general purpose flags, for example, are also available to the bit-test instructions.

RELATIVE OFFSET she clarify seeds will most

The destination address for these jumps is specified to the assembler by a label or by an actual address in Program Memory. However, the destination address assembles to a relative offset byte. This is a signed (two's complement) offset byte which is added to the PC in two's complement arithmetic if the jump is executed.

The range of the jump is therefore -128 to +127 Program Memory bytes relative to the first byte following the instruction.

Jump Instructions

Table 8 shows the list of unconditional jumps.

Table 8. Unconditional Jumps in MCS®-51 Devices

Mnemonic	Operation	Execution Time (μs)		
JMP addr	Jump to addr	X 2		
JMP @A+DPTR	Jump to A + DPTR	2		
CALL addr	Call subroutine at addr	2		
RET	Return from subroutine	2		
RETI 2044	Return from interrupt	2		
NOP	No operation	, 1		

The Table lists a single "JMP addr" instruction, but in fact there are three—SJMP, LJMP and AJMP—which differ in the format of the destination address. JMP is a generic mnemonic which can be used if the programmer does not care which way the jump is encoded.

The SJMP instruction encodes the destination address as a relative offset, as described above. The instruction is 2 bytes long, consisting of the opcode and the relative offset byte. The jump distance is limited to a range of -128 to +127 bytes relative to the instruction following the SJMP.

The LJMP instruction encodes the destination address as a 16-bit constant. The instruction is 3 bytes long, consisting of the opcode and two address bytes. The destination address can be anywhere in the 64K Program Memory space.

The AJMP instruction encodes the destination address as an 11-bit constant. The instruction is 2 bytes long, consisting of the opcode, which itself contains 3 of the 11 address bits, followed by another byte containing the low 8 bits of the destination address. When the instruction is executed, these 11 bits are simply substituted for the low 11 bits in the PC. The high 5 bits stay the same. Hence the destination has to be within the same 2K block as the instruction following the AJMP.

In all cases the programmer specifies the destination address to the assembler in the same way: as a label or as a 16-bit constant. The assembler will put the destination address into the correct format for the given instruction. If the format required by the instruction will not support the distance to the specified destination address, a "Destination out of range" message is written into the List file.

The JMP @A+DPTR instruction supports case jumps. The destination address is computed at execution time as the sum of the 16-bit DPTR register and

the Accumulator. Typically, DPTR is set up with the address of a jump table, and the Accumulator is given an index to the table. In a 5-way branch, for example, an integer 0 through 4 is loaded into the Accumulator. The code to be executed might be as follows:

MOV	DPTR, #JUMP_TABLE
MOV	A,INDEX_NUMBER
RL	Atlamut Isr. < styd
JMP	@A+DPTR

The RL A instruction converts the index number (0 through 4) to an even number on the range 0 through 8, because each entry in the jump table is 2 bytes long:

JUMP_TABLE:

AJMP	CASE_	_0
AJMP	CASE_	_1
AJMP	CASE_	2
AJMP	CASE	_3
AJMP	CASE	4

Table 8 shows a single "CALL addr" instruction, but there are two of them—LCALL and ACALL—which differ in the format in which the subroutine address is given to the CPU. CALL is a generic mnemonic which can be used if the programmer does not care which way the address is encoded.

The LCALL instruction uses the 16-bit address format, and the subroutine can be anywhere in the 64K Program Memory space. The ACALL instruction uses the 11-bit format, and the subroutine must be in the same 2K block as the instruction following the ACALL.

In any case the programmer specifies the subroutine address to the assembler in the same way: as a label or as a 16-bit constant. The assembler will put the address into the correct format for the given instructions.

Subroutines should end with a RET instruction, which returns execution to the instruction following the CALL.

RETI is used to return from an interrupt service routine. The only difference between RET and RETI is that RETI tells the interrupt control system that the interrupt in progress is done. If there is no interrupt in progress at the time RETI is executed, then the RETI is functionally identical to RET.

Table 9 shows the list of conditional jumps available to the MCS-51 user. All of these jumps specify the destination address by the relative offset method, and so are limited to a jump distance of -128 to +127 bytes from the instruction following the conditional jump instruction. Important to note, however, the user specifies to the assembler the actual destination address the same way as the other jumps: as a label or a 16-bit constant.

Table 9. Conditional Jumps in MCS®-51 Devices								
Mnemonic	an integer O through 4 i	Addressing Modes				Execution		
loaded into the Accumulator.		Dir	Ind	Reg	Imm	Time (µs)		
JZ relaciiot as ed trigim	Jump if A = 0	Accumulator only			2			
JNZ rel great gm	Jump if A ≠ 0	Accumulator only				2		
DJNZ <byte>,relaman</byte>	Decrement and jump if not zero	X	no	X		oinom2nM		
CJNE A, < byte > , rel	Jump if A ≠ <byte></byte>	X		abbs of c	X	155 2 QAH		
CJNE <byte>.#data.rel</byte>	Jump if <bvte> ≠ #data</bvte>		X	X	man I CT	2 2		

Table 9. Conditional Jumps in MCS®-51 Devices

There is no Zero bit in the PSW. The JZ and JNZ instructions test the Accumulator data for that condition.

The DJNZ instruction (Decrement and Jump if Not Zero) is for loop control. To execute a loop N times, load a counter byte with N and terminate the loop with a DJNZ to the beginning of the loop, as shown below for N=10:

MOV COUNTER, #10 works and LOOP: (begin loop)

(end loop)

DJNZ COUNTER,LOOP

(continue)

given to the CPU. CALL is a generic minemonic which

The CJNE instruction (Compare and Jump if Not Equal) can also be used for loop control as in Figure 12. Two bytes are specified in the operand field of the instruction. The jump is executed only if the two bytes are not equal. In the example of Figure 12, the two bytes were the data in R1 and the constant 2AH. The initial data in R1 was 2EH. Every time the loop was executed, R1 was decremented, and the looping was to continue until the R1 data reached 2AH.

Another application of this instruction is in "greater than, less than" comparisons. The two bytes in the operand field are taken as unsigned integers. If the first is less than the second, then the Carry bit is set (1). If the first is greater than or equal to the second, then the Carry bit is cleared.

CPU TIMING

All MCS-51 microcontrollers have an on-chip oscillator which can be used if desired as the clock source for the CPU. To use the on-chip oscillator, connect a crystal or ceramic resonator between the XTAL1 and XTAL2 pins of the microcontroller, and capacitors to ground as shown in Figure 13.

Figure 13. Using the On-Chip Oscillator

Figure 14. Using an External Clock

Examples of how to drive the clock with an external oscillator are shown in Figure 14. Note that in the HMOS devices (8051, etc.) the signal at the XTAL2 pin actually drives the internal clock generator. In the CHMOS devices (80C51BH, etc.) the signal at the XTAL1 pin drives the internal clock generator. If only one pin is going to be driven with the external oscillator signal, make sure it is the right pin.

The internal clock generator defines the sequence of states that make up the MCS-51 machine cycle.

Machine Cycles and approxy to assert the sent

A machine cycle consists of a sequence of 6 states, numbered S1 through S6. Each state time lasts for two oscillator periods. Thus a machine cycle takes 12 oscillator periods or 1 µs if the oscillator frequency is 12 MHz.

Each state is divided into a Phase 1 half and a Phase 2 half. Figure 15 shows the fetch/execute sequences in

Figure 15. State Sequences in MCS®-51 Devices

states and phases for various kinds of instructions. Normally two program fetches are generated during each machine cycle, even if the instruction being executed doesn't require it. If the instruction being executed doesn't need more code bytes, the CPU simply ignores the extra fetch, and the Program Counter is not incremented.

Execution of a one-cycle instruction (Figure 15A and B) begins during State 1 of the machine cycle, when the opcode is latched into the Instruction Register. A second fetch occurs during S4 of the same machine cycle. Execution is complete at the end of State 6 of this machine cycle.

The MOVX instructions take two machine cycles to execute. No program fetch is generated during the second cycle of a MOVX instruction. This is the only time program fetches are skipped. The fetch/execute sequence for MOVX instructions is shown in Figure 15(D).

The fetch/execute sequences are the same whether the Program Memory is internal or external to the chip. Execution times do not depend on whether the Program Memory is internal or external.

Figure 16 shows the signals and timing involved in program fetches when the Program Memory is external. If Program Memory is external, then the Program Memory read strobe PSEN is normally activated twice per machine cycle, as shown in Figure 16(A).

If an access to external Data Memory occurs, as shown in Figure 16(B), two PSENs are skipped, because the address and data bus are being used for the Data Memory access.

Note that a Data Memory bus cycle takes twice as much time as a Program Memory bus cycle. Figure 16 shows the relative timing of the addresses being emitted at Ports 0 and 2, and of ALE and PSEN. ALE is used to latch the low address byte from P0 into the address latch.

Figure 16. Bus Cycles in MCS®-51 Devices Executing from External Program Memory

When the CPU is executing from internal Program Memory, PSEN is not activated, and program addresses are not emitted. However, ALE continues to be activated twice per machine cycle and so is available as a clock output signal. Note, however, that one ALE is skipped during the execution of the MOVX instruction.

Interrupt Structure

The 8051 core provides 5 interrupt sources: 2 external interrupts, 2 timer interrupts, and the serial port interrupt. What follows is an overview of the interrupt structure for the 8051. Other MCS-51 devices have additional interrupt sources and vectors as shown in Table 1. Refer to the appropriate chapters on other devices for further information on their interrupts.

INTERRUPT ENABLES

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the SFR

	EA	ES ET1 EX1 ET0 EX0
	t = 1 enables t = 0 disables	s the interrupt. s it.
Symbol	Position	Function maley a leading C
EA	IE.7	disables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit. reserved*
	IE.5	reserved*
ES	IE.4	Serial Port Interrupt enable bit.
ET1	IE.3	
EX1	IE.2	External Interrupt 1 enable bit.
O mma	tie VE.tisels	Timer 0 Overflow Interrupt enable bit
ET0		

Figure 17. IE (Interrupt Enable)
Register in the 8051

named IE (Interrupt Enable). This register also contains a global disable bit, which can be cleared to disable all interrupts at once. Figure 17 shows the IE register for the 8051.

INTERRUPT PRIORITIES

Each interrupt source can also be individually programmed to one of two priority levels by setting or clearing a bit in the SFR named IP (Interrupt Priority). Figure 18 shows the IP register in the 8051.

A low-priority interrupt can be interrupted by a highpriority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Figure 19 shows, for the 8051, how the IE and IP registers and the polling sequence work to determine which if any interrupt will be serviced.

rery m	D C STR	PS PT1 PX1 PT0 PX0
	= 1 assigns = 0 assigns	low priority.
Symbol	Position	Function (1) the ed of b
ruitaniei	IP.7	reserved*
orta non	IP.6	reserved*
The Sino	IP.5	reserved*
PS .	IP.4	Serial Port interrupt priority bit.
PT1	IP.3	Timer 1 interrupt priority bit.
PX1	IP.2	External Interrupt 1 priority bit.
PTO TO	o of IP.teus	Timer 0 interrupt priority bit.
PX0	IP.0	External Interrupt 0 priority bit.

Figure 18. IP (Interrupt Priority)
Register in the 8051

Figure 19. 8051 Interrupt Control System

In operation, all the interrupt flags are latched into the interrupt control system during State 5 of every machine cycle. The samples are polled during the following machine cycle. If the flag for an enabled interrupt is found to be set (1), the interrupt system generates an LCALL to the appropriate location in Program Memory, unless some other condition blocks the interrupt. Several conditions can block an interrupt, among them that an interrupt of equal or higher priority level is already in progress.

The hardware-generated LCALL causes the contents of the Program Counter to be pushed onto the stack, and reloads the PC with the beginning address of the service routine. As previously noted (Figure 3), the service routine for each interrupt begins at a fixed location.

Only the Program Counter is automatically pushed onto the stack, not the PSW or any other register. Having only the PC be automatically saved allows the programmer to decide how much time to spend saving which other registers. This enhances the interrupt response time, albeit at the expense of increasing the programmer's burden of responsibility. As a result, many interrupt functions that are typical in control applications—toggling a port pin, for example, or reloading a timer, or unloading a serial buffer—can often be com-

pleted in less time than it takes other architectures to commence them.

SIMULATING A THIRD PRIORITY LEVEL IN SOFTWARE

Some applications require more than the two priority levels that are provided by on-chip hardware in MCS-51 devices. In these cases, relatively simple software can be written to produce the same effect as a third priority level.

First, interrupts that are to have higher priority than 1 are assigned to priority 1 in the IP (Interrupt Priority) register. The service routines for priority 1 interrupts that are supposed to be interruptible by "priority 2" interrupts are written to include the following code:

PUSH IE MOV IE,#MASK CALL LABEL

IE

(execute service routine)

POP RET LABEL: RETI

As soon as any priority 1 interrupt is acknowledged, the IE (Interrupt Enable) register is re-defined so as to disable all but "priority 2" interrupts. Then, a CALL to LABEL executes the RETI instruction, which clears the priority 1 interrupt-in-progress flip-flop. At this point any priority 1 interrupt that is enabled can be serviced, but only "priority 2" interrupts are enabled.

POPping IE restores the original enable byte. Then a normal RET (rather than another RETI) is used to terminate the service routine. The additional software adds 10 μs (at 12 MHz) to priority 1 interrupts.

ADDITIONAL REFERENCES

The following application notes are found in the *Embedded Control Applications* handbook. (Order Number: 270648)

- 1. AP-69 "An Introduction to the Intel MCS®-51 Single-Chip Microcomputer Family"
- 2. AP-70 "Using the Intel MCS®-51 Boolean Processing Capabilities"

As soon as any priority 1 interrupt is acknowledged, the IE (Interrupt Enable) register is re-defined so as to disable all but 'priority 2' interrupts. Then, a CALL to LABEL executes the RETI instruction, which clears the priority 1 interrupt-in-progress flip-flop. At this point any priority 1 interrupt that is enabled can be serviced but only 'priority 2' interrupts are enabled.

POPping IE restores the original enable byte. Then a normal RET (rather than another RETI) is used to terminate the service routine. The additional software adds 10 µs (at 12 MHz) to priority 1 interrupts.

ADDITIONAL REFERENCES

The following application notes are found in the Embedded Control Applications handbook (Order Number: 270648)

- AP-69 "An Introduction to the Intel MCS@-51 Single-Chip Microcompater Family"
- AP-70 "Using the latel MCS®-51 Boolean Process ing Capabilities"

MCS®-51 Programmer's Guide and Instruction Set

MCS®-51 Programmer's Guide and Instruction Set

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET TASMADRO VROMEN

The information presented in this chapter is collected from the MCS®-51 Architectural Overview and the Hardware Description of the 8051, 8052 and 80C51 chapters of this book. The material has been selected and rearranged to form a quick and convenient reference for the programmers of the MCS-51. This guide pertains specifically to the 8051, 8052 and 80C51.

The following list should make it easier to find a subject in this chapter.

Memory Organization	grand	
Program Memory		6-2
Data Memory		6-3
Direct and Indirect Address Area		6-5
Special Function Registers		6-7
Contents of SFRs after Power-On	aerve	6-8
SFR Memory Map	JARSSTAS	6-9
Program Status Word (PSW)		6-10
Power Control Register (PCON)		
Interrupts		6-11
Interrupt Enable Register (IE)		6-11
Assigning Priority Level	OMA	6-12
Interrupt Priority Register		
Timer/Counter Control Register (TCON)		
Timer/Counter Mode Control Register (TMOD)		6-13
Timer Set-Up		
Timer/Counter 0	O - 2 - 4 - 4 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5	6-14
Timer/Counter 1		
Timer/Counter 2 Control Register (T2CON)		6-16
Timer/Counter 2 Set-Up		6-17
Serial Port Control Register		6-18
Serial Port Set-Up		6-18
Generating Baud Rates		
MCS-51 Instruction Set		
Instruction Definitions		6-27

MEMORY ORGANIZATION 2 MONTO WATER OMA

PROGRAM MEMORY

The 8051 has separate address spaces for Program Memory and Data Memory. The Program Memory can be up to 64K bytes long. The lower 4K (8K for the 8052) may reside on-chip.

Figure 1 shows a map of the 8051 program memory, and Figure 2 shows a map of the 8052 program memory.

Figure 1. The 8051 Program Memory

Figure 2. The 8052 Program Memory

Data Memory:

The 8051 can address up to 64K bytes of Data Memory external to the chip. The "MOVX" instruction is used to access the external data memory. (Refer to the MCS-51 Instruction Set, in this chapter, for detailed description of instructions).

The 8051 has 128 bytes of on-chip RAM (256 bytes in the 8052) plus a number of Special Function Registers (SFRs). The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr) or by indirect addressing (MOV @Ri). Figure 3 shows the 8051 and the 8052 Data Memory organization.

Figure 3a. The 8051 Data Memory

Figure 3b. The 8052 Data Memory

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

INDIRECT ADDRESS AREA:

Note that in Figure 3b the SFRs and the indirect address RAM have the same addresses (80H-0FFH). Nevertheless, they are two separate areas and are accessed in two different ways.

For example the instruction

MOV 80H, #0AAH

writes 0AAH to Port 0 which is one of the SFRs and the instruction

MOV RO, #80H

MOV @RO, #0BBH

writes 0BBH in location 80H of the data RAM. Thus, after execution of both of the above instructions Port 0 will contain 0AAH and location 80 of the RAM will contain 0BBH.

Note that the stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space in those devices which implement 256 bytes of internal RAM.

DIRECT AND INDIRECT ADDRESS AREA:

The 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into 3 segments as listed below and shown in Figure 4.

1. Register Banks 0-3; Locations 0 through 1FH (32 bytes). ASM-51 and the device after reset default to register bank 0. To use the other register banks the user must select them in the software (refer to the MCS-51 Micro Assembler User's Guide). Each register bank contains 8 one-byte registers, 0 through 7.

Reset initializes the Stack Pointer to location 07H and it is incremented once to start from location 08H which is the first register (RO) of the second register bank. Thus, in order to use more than one register bank, the SP should be intialized to a different location of the RAM where it is not used for data storage (ie, higher part of the RAM).

2. Bit Addressable Area: 16 bytes have been assigned for this segment, 20H-2FH. Each one of the 128 bits of this segment can be directly addressed (0-7FH).

The bits can be referred to in two ways both of which are acceptable by the ASM-51. One way is to refer to their addresses, ie. 0 to 7FH. The other way is with reference to bytes 20H to 2FH. Thus, bits 0-7 can also be referred to as bits 20.0-20.7, and bits 8-FH are the same as 21.0-21.7 and so on.

Each of the 16 bytes in this segment can also be addressed as a byte.

3. Scratch Pad Area: Bytes 30H through 7FH are available to the user as data RAM. However, if the stack pointer has been initialized to this area, enough number of bytes should be left aside to prevent SP data destruction.

Figure 4 shows the different segments of the on-chip RAM.

Figure 4. 128 Bytes of RAM Direct and Indirect Addressable

Address

SPECIAL FUNCTION REGISTERS: PRINTED AND ANALYSIS SHIP OF TARMY

Table 1 contains a list of all the SFRs and their addresses. To the swood paths AAR flows to absolute a state of the AAR flows to the the

Symbol

Comparing Table 1 and Figure 5 shows that all of the SFRs that are byte and bit addressable are located on the first column of the diagram in Figure 5.

Table 1

000000000 Name	
Accumulator	
B Register	
Program Status Word	
Stack Pointer	
Data Pointer 2 Bytes	
Law Puta	

*ACC	Accumulator	0E0H
*B	B Register	arga OFOH
*PSW	Program Status Word	OD0H
SP	Stack Pointer	81H
DPTR	Data Pointer 2 Bytes	69*
DPL	Low Byte	82H
DPH	High Byte	83H
*P0	Port 0	80H
*P1	occiocoPorto	90H
*P2	000 00x Port 2	0A0H
*P3	000 000 Port 3	овон
*IP	and Interrupt Priority Control	0B8H
*IE	Interrupt Enable Control	GOMT 0A8H
TMOD	Timer/Counter Mode Control	HOOT 89H
*TCON	Timer/Counter Control	H88 + T2001
*+T2CON	Control	OHT OC8H
TH0	Counter 0 High Byte	OUT 8CH
TLO	Timer/Counter 0 Low Byte	HAR BAH
TH1	Octimer/Counter 1 High Byte	BDH 8DH
TL1	OccTimer/Counter 1 Low Byte	SHT + 8BH
+TH2	Timer/Counter 2 High Byte	OCDH
+TL2	Octimer/Counter 2 Low Byte	HISAOR OCCH
+RCAP2H	T/C 2 Capture Reg. High Byte	JANA OCBH
+RCAP2L	T/C 2 Capture Reg. Low Byte	MOOS OCAH
*SCON	Serial Control	H86 SBUF
SBUF X	Serial Data Buffer	Hee POON
PCON 000	Power Control	87H

Bit addressable

^{+ = 8052} only

WHAT DO THE SFRs CONTAIN JUST AFTER POWER-ON OR A RESET?

Table 2 lists the contents of each SFR after power-on or a hardware reseting affect and line to tail a anistmoot I olda I

Table 2. Contents of the SFRs after reset

Register	Value in Bir	nary and or marge
*ACC	r eldsT 00000000	
*B *PSW	00000000	Symbol
1030 SP	101sh 00000111	*ACC
1070 DPTR	B Register	8*
OCO DPH	00000000 Status Word	*PSW
IN DPL	000000000	
*P0	111Fhrt Pointer 2 Bytes	RT90
S8 *P1	9/9/11111111	
E8 *P2	9 V 11111111	
108 *P3	111111111	
100 *IP	8051 XXX000	00.
	8052 XX00000	
080 *IE	8051 0XX0000	00,
	loan of whom 198052 0X00000	91*
BAO TMOD	00000000pt Enable Control	31*
*TCON	00000000 Counter Mode Control	
*+T2CON	00000000 Counter Control	*TCON
800 TH0	00000000 Counter 2 Control	"+TECON
OS TLO	00000000 Counter 0 High Byte	
A8 TH1	00000000 Counter 0 Low Byte	
G8 TL1	00000000 Counter 1 High Byte	THT
18 +TH2	00000000 Counter 1 Low Byte	TLI
000+TL2	00000000 Counter 2 High Byte	+TH2
+RCAP2H	00000000 Counter 2 Low Byte	+TL2
+RCAP2L	.0000000000000000000000000000000000000	+RCAP2H
ADO *SCON	00000000 Capture Reg Low Byte	
88 SBUF	Indeterminate	
PCON PCON	HMOS 0XXXX	
	lownoo CHMOS 0XXX	PCON 0000)

X = Undefined * = Bit Addressable

+ = 8052 only

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

-			
SED	DATE BY	$m \nu$	MAP
SID	IVILIV	\cup n I	IVIA

Addressable

0 B		SABLE	BURNOUA	IN JUN	US WC	IATE M	AFIDOF
		-	l un il		100		
8		N -	I VO	088	138	09	- AC
0 ACC						Carry Play	PSW.7
18					Certy Pla	Auxiliary	PSW.6
0 PSW		.53	general purp	ic user for	t or sidali	Fing O ava	PSW.5
8 T2CON		RCAP2L	RCAP2H	TL2	TH2	Register B	PS 11V, 4
0			A MION da	O U HE TO	TOOLOG MILE	N. CERSIEL D	6.W69 6.W69
8 IP					night fing	User defin	1.0029
0 P3	indicate as c	ruction cycle In	ware each inst	front yd ba	Set/clear	Parity flag	PSW.0
.8 IE				alator,	he accum	"I" bits in	
.0 P2		Witness and	inos naihmanas	ann selt et	olos tag	ne opp ud i	ateograpia
8 SCON	SBUF					Aut et	
0 P1		Address No. Lon	7550	a meetin		967	
8 TCON	TMOD	TLO	TL1	THO	TH1		
0 P0	SP	DPL	DPH	2		0	PCON

features, in that case, the reset or inactive value of the new bit will be 0, and its active value will be

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

Those SFRs that have their bits assigned for various functions are listed in this section. A brief description of each bit is provided for quick reference. For more detailed information refer to the Architecture Chapter of this book.

PSW: PROGRAM STATUS WORD. BIT ADDRESSABLE.

CY	AC	F0	RS1	RS0	OV		P	
Y	PSW.7	Carry Fl	ag.					
CO	PSW.6	Auxiliary	Carry Flag					
7070	PSW.5	Flag 0 av	ailable to th	ne user for g	eneral purp	ose.		
RS1	PSW.4	Register	Bank selecto	or bit 1 (SEI	E NOTE 1)	APRL		
RS0 OV	PSW.3 PSW.2	Register Overflow	Bank selecto	or bit 0 (SEI	E NOTE 1)			
188	PSW.1		nable flag.					
87	PSW.0	Parity fla	g. Set/clear	ed by hardw	are each ins	struction o	cycle to indi	cate an odd/even
		'1' bits ir	the accumi	ulator.				

NOTE:

1. The value presented by RS0 and RS1 selects the corresponding register bank.

RS1		RS0	Register Bank			Address
18 0		0	THT	0	rat	00H-07H 08H-0FH
18 1	PCON	0		2	H90	10H-17H
1		1		3	2	18H-1FH

PCON: POWER CONTROL REGISTER, NOT BIT ADDRESSABLE.

SMOD — — GF1 GF0	PD IDL	1
------------------	--------	---

- SMOD Double baud rate bit. If Timer 1 is used to generate baud rate and SMOD = 1, the baud rate is doubled when the Serial Port is used in modes 1, 2, or 3.
- Not implemented, reserved for future use.*
- Not implemented, reserved for future use.*
- Not implemented, reserved for future use.*
- GF1 General purpose flag bit.
- GF0 General purpose flag bit.
- PD Power Down bit. Setting this bit activates Power Down operation in the 80C51BH. (Available only in CHMOS).
- IDL Idle Mode bit. Setting this bit activates Idle Mode operation in the 80C51BH. (Available only in CHMOS).

If 1s are written to PD and IDL at the same time, PD takes precedence.

*User software should not write 1s to reserved bits. These bits may be used in future MCS-51 products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

ASSIGNING HIGHER PRIORITY TO ONE OF MORE INTERRUPTS: :2TYURASIGNING

In order to use any of the interrupts in the MCS-51, the following three steps must be taken. If a size of table of the interrupts in the MCS-51, the following three steps must be taken.

- 1. Set the EA (enable all) bit in the IE register to 1.
- 2. Set the corresponding individual interrupt enable bit in the IE register to 1.
- 3. Begin the interrupt service routine at the corresponding Vector Address of that interrupt. See Table below.

Interrupt Source is to also	Vector Address
IE0	0003H
TF0	000BH
IE1	0013H
TF1	001BH
RI & TI	0023H
TF2 & EXF2	002BH

In addition, for external interrupts, pins $\overline{\text{INT0}}$ and $\overline{\text{INT1}}$ (P3.2 and P3.3) must be set to 1, and depending on whether the interrupt is to be level or transition activated, bits IT0 or IT1 in the TCON register may need to be set to 1.

ITx = 0 level activated

ITx = 1 transition activated

IE: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE.

If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled.

EA		ET2	ES	ET10 S	EX1	ETO	EX0	Defines the Th	
EA	IE.7					*		lged. If EA = ts enable bit.	terrupt
_	IE.6	Not implen	nented, res	erved for f	uture use.	I priority	al Interrupt	Defines Extern	
ET2	IE.5	Enable or d	lisable the	Timer 2 ov	verflow or	capture int	errupt (805	2 only).	
ES	IE.4	Enable or d	lisable the	serial port	interrupt	rupt 0 prior			PXO
ET1	IE.3	Enable or d	lisable the	Timer 1 ov	verflow in	terrupt.			
EX1	IE.2	Enable or d	lisable Ext	ernal Inter	rupt 1.		reset or init		
ET0	IE.1	Enable or d							
EX0	IE.0	Enable or d	lisable Ext	ernal Inter	rupt 0.				

*User software should not write 1s to reserved bits. These bits may be used in future MCS-51 products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

In order to assign higher priority to an interrupt the corresponding bit in the IP register must be set to 1.

Remember that while an interrupt service is in progress, it cannot be interrupted by a lower or same level interrupt.

PRIORITY WITHIN LEVEL:

Priority within level is only to resolve simultaneous requests of the same priority level.

From high to low, interrupt sources are listed below:

IE0 TF0 IE1 TF1 RI or TI TF2 or EXF2

IP: INTERRUPT PRIORITY REGISTER. BIT ADDRESSABLE.

If the bit is 0, the corresponding interrupt has a lower priority and if the bit is 1 the corresponding interrupt has a higher priority.

^{*}User software should not write 1s to reserved bits. These bits may be used in future MCS-51 products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

TCON: TIMER/COUNTER CONTROL REGISTER, BIT ADDRESSABLE, T38 H3MIT

				_			
TF1	epotBilese	TFO TO	TR0	of JE10 o	hickran b	IE0	ITO SV

- TF1 TCON. 7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by hardware as processor vectors to the interrupt service routine.
- TR1 TCON. 6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter 1 ON/OFF.
- TF0 TCON. 5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by hardware as processor vectors to the service routine.
- TRO TCON. 4 Timer 0 run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF.
- IE1 TCON. 3 External Interrupt 1 edge flag. Set by hardware when External Interrupt edge is detected. Cleared by hardware when interrupt is processed.
- IT1 TCON. 2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered External Interrupt.
- IEO TCON. 1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared by hardware when interrupt is processed.
- ITO TCON. 0 Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low level triggered External Interrupt.

TMOD: TIMER/COUNTER MODE CONTROL REGISTER. NOT BIT ADDRESSABLE.

GATE	C/T	M1	MO	GATE	C/T	M1	МО
			119		1100		
	TIME	R1			TIME	RO	DECIDIO

- GATE When TRx (in TCON) is set and GATE = 1, TIMER/COUNTERx will run only while INTx pin is high (hardware control). When GATE = 0, TIMER/COUNTERx will run only while TRx = 1 (software control).
- C/T Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for Counter operation (input from Tx input pin).

INTERNAL

- M1 Mode selector bit. (NOTE 1)
- M0 Mode selector bit. (NOTE 1)

NOTE 1:

M1	MO	Ope	erating Mode HAO	13-bit Timer	
0	0	0	13-bit Timer (MCS-48 compatible)		
0	1	1	16-bit Timer/Counter		
1	0	2	8-bit Auto-Reload Timer/Counter		
1	1	3	(Timer 0) TL0 is an 8-bit Timer/Counter control bits, TH0 is an 8-bit Timer and is		
1	1	3	(Timer 1) Timer/Counter 1 stopped.	O of I add und EEO MO homes	

TOOM: TIMER/COUNTER CONTROL REGISTER, BIT ADDRESSARQUETINER,

Tables 3 through 6 give some values for TMOD which can be used to set up Timer 0 in different modes.

It is assumed that only one timer is being used at a time. If it is desired to run Timers 0 and 1 simultaneously, in any mode, the value in TMOD for Timer 0 must be ORed with the value shown for Timer 1 (Tables 5 and 6).

For example, if it is desired to run Timer 0 in mode 1 GATE (external control), and Timer 1 in mode 2 COUNTER, then the value that must be loaded into TMOD is 69H (09H from Table 3 ORed with 60H from Table 6).

Moreover, it is assumed that the user, at this point, is not ready to turn the timers on and will do that at a different point in the program by setting bit TRx (in TCON) to 1.

TIMER/COUNTER 0

As a Timer:

Table 3

		TMOD			
MODE	TIMER 0 FUNCTION	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)		
0	13-bit Timer	00H	08H		
1	16-bit Timer	01H	09H		
2	8-bit Auto-Reload	02H	0AH		
3	two 8-bit Timers	03H	0BH		

As a Counter:

Timer or Counter selector. Cleared for Timer operation (in 4 aldaT.

		TMOD			
MODE	COUNTER 0 FUNCTION	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)		
0	13-bit Timer	04H	0CH		
1	16-bit Timer	05H	ODH		
2	8-bit Auto-Reload	06H	0EH		
3	one 8-bit Counter	07H	0FH		

NOTES:

1. The Timer is turned ON/OFF by setting/clearing bit TR0 in the software.

2. The Timer is turned ON/OFF by the 1 to 0 transition on $\overline{\text{INT0}}$ (P3.2) when TR0 = 1 (hardware control).

TROOM: TIMER/COUNTER 2 CONTROL REGISTER, BIT ADDITIONAL PROPERTY.

As a Timer:

Table 5

not be set when		Tardware and dies	MOD
adom ve transition on cause the CPU	TIMER 1 FUNCTION Decided by the state of the	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)
0	13-bit Timer	00H	80H
on and appearing the	16-bit Timer	. 10H	90H
2	8-bit Auto-Reload	20H	AOH
3	does not run	30H	ВОН

As a Counter: Table 6 Table 6

	ZEX	= 0 causes TimGOMT ignore events at 1			
MODE	FUNCTION (basegard agos gaillat)	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)		
OS AL OPEK	13-bit Timer	40H	COH COH		
2 OVERTIONS OF	16-bit Timer	50H	DOH		
2	8-bit Auto-Reload	60H	E0H		
3	not available	DUAN OF ROOTERS OF 12118	r our tune nountili st		

1. The Timer is turned ON/OFF by setting/clearing bit TR1 in the software.

2. The Timer is turned ON/OFF by the 1 to 0 transition on INT1 (P3.3) when TR1 = 1 (hardware control).

T2CON: TIMER/COUNTER 2 CONTROL REGISTER. BIT ADDRESSABLE OF SHARE STATEMENT 8052 Only

TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2		
TF2	T2CON.			flag set by			eared by softv	vare. TF2 cannot	be set when
EXF2	T2CON.	T2EX,	and EXE	$\sqrt{2} = 1$. Wh	en Timer	2 interru	pt is enabled,	used by a negative EXF2 = 1 will cared by software.	ause the CPU
RCLK	T2CON.							Fimer 2 overflow rflow to be used i	
TLCK	T2CON.	transm						Fimer 2 overflow to be	
EXEN2	T2CON.	negativ	e transitio		K if Tim	er 2 is	not being us	reload to occur ed to clock the	
TR2	T2CON.	2 Softwa	re START	/STOP cont	rol for T	imer 2. A	logic 1 starts	the Timer.	
C/T2	T2CON.	1 Timer	or Counter	select.	108	CONT		FUNCT	
		$0 = I_I$	nternal Tin	er. 1 = Ex			ter (falling ed	ge triggered).	
CP/RL2	T2CON.	EXEN negativ	2 = 1. W ye transition	hen cleared as at T2EX	, Auto-R when EX	eloads w EN2 =	ill occur either. When either	gative transitions er with Timer 2 er RCLK = 1 or Timer 2 overflo	overflows or TCLK = 1,

TIMER/COUNTER 2 SET-UP OF THE RETRIBUTE TO THOSE THOSE THOSE THOSE THOSE TIMER TO THE PROPERTY OF THE PROPERTY

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the Timer on.

As a Timer:

SCON. 5 Enables the multiprocessor communication featur sldardes 2 & 3. In mode 2

	on eaw tid gots bil T20	I not be activate NO	
at/Cleared by software.	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)	
16-bit Auto-Reload	HOO Selved	08H	
16-bit Capture	01H	09H	
BAUD rate generator receive &	ngroware at the cool of the property of the cool of th	f the stop bit in the	
transmit same baud rate	34H	36H	
receive only asia ad saily (CM2 as	24H	26H	
transmit only	14H	16H	

As a Counter:

Table 8

	NT Fosc./64 OR	IOD HE BUDON
MODE	INTERNAL CONTROL (NOTE 1)	EXTERNAL CONTROL (NOTE 2)
6-bit Auto-Reload 6-bit Capture	02H 03H	0AH 0BH

NOTES:

1. Capture/Reload occurs only on Timer/Counter overflow.

2. Capture/Reload occurs on Timer/Counter overflow and a 1 to 0 transition on T2EX

(P1.1) pin except when Timer 2 is used in the baud rate generating mode.

SENERATING BAUD RATES

Mode 0 has a fixed band rate which

SCON: SERIAL PORT CONTROL REGISTER, BIT ADDRESSABLE. THUO AREA

SMC	SM1	SM2 REN TB8 RB8 TIS RIP
SM0	SCON. 7	Serial Port mode specifier. (NOTE 1).
SM1	SCON. 6	Serial Port mode specifier. (NOTE 1).
SM2	SCON. 5	Enables the multiprocessor communication feature in modes 2 & 3. In mode 2 or 3, if SM2 is set to 1 then RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if $SM2 = 1$ then RI will not be activated if a valid stop bit was not received. In mode 0, SM2 should be 0. (See Table 9).
REN	SCON. 4	Set/Cleared by software to Enable/Disable reception.
TB8	SCON. 3	The 9th bit that will be transmitted in modes 2 & 3. Set/Cleared by software.
RB8	SCON. 2	In modes 2 & 3, is the 9th data bit that was received. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0, RB8 is not used.
TI	SCON. 1	Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in the other modes. Must be cleared by software.
RI	SCON. 0	Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway

NOTE 1:

SM0	SM1	Mode	Description	Baud Rate	
0	0	0	SHIFT REGISTER	Fosc./12	s a Counter:
0	1	1	8-Bit UART	Variable	
1	0	2	9-Bit UART	Fosc./64 OR	
1	1	3	9-Bit UART	Fosc./32 Variable	

through the stop bit time in the other modes (except see SM2). Must be cleared by software.

SERIAL PORT SET-UP:

Table 9

MODE	SCON	SM2 VARIATION
0 1 2 3	10H 50H 90H D0H	Single Processor
0 1 2 3	NA 70H B0H F0H	Multiprocessor Environment (SM2 = 1)

GENERATING BAUD RATES

Serial Port in Mode 0:

Mode 0 has a fixed baud rate which is 1/12 of the oscillator frequency. To run the serial port in this mode none of the Timer/Counters need to be set up. Only the SCON register needs to be defined.

Baud Rate =
$$\frac{\text{Osc Freq}}{12}$$

Serial Port in Mode 1:

Mode 1 has a variable baud rate. The baud rate can be generated by either Timer 1 or Timer 2 (8052 only).

USING TIMER/COUNTER 1 TO GENERATE BAUD RATES:

For this purpose, Timer 1 is used in mode 2 (Auto-Reload). Refer to Timer Setup section of this chapter.

Baud Rate =
$$\frac{K \times \text{Oscillator Freq.}}{32 \times 12 \times [256 - (\text{TH1})]}$$

If SMOD = 0, then K = 1.

If SMOD = 1, then K = 2. (SMOD is the PCON register).

Most of the time the user knows the baud rate and needs to know the reload value for TH1.

Therefore, the equation to calculate TH1 can be written as:

eraborami bbA slab TH1 =
$$256 - \frac{\text{K x Osc Freq.}}{384 \text{ x baud rate}}$$

TH1 must be an integer value. Rounding off TH1 to the nearest integer may not produce the desired baud rate. In this case, the user may have to choose another crystal frequency.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register. (ie, ORL PCON, #80H). The address of PCON is 87H.

USING TIMER/COUNTER 2 TO GENERATE BAUD RATES:

For this purpose, Timer 2 must be used in the baud rate generating mode. Refer to Timer 2 Setup Table in this chapter. If Timer 2 is being clocked through pin T2 (P1.0) the baud rate is:

And if it is being clocked internally the baud rate is:

$$\frac{\text{Osc Freq}}{\text{DoA monto Baud Rate}} = \frac{\text{ESUS}}{32 \times [65536 - (\text{RCAP2H, RCAP2L})]} = \frac{\text{Osc Freq}}{\text{Osc Freq}}$$

To obtain the reload value for RCAP2H and RCAP2L the above equation can be rewritten as:

SERIAL PORT IN MODE 2:

The baud rate is fixed in this mode and is $\frac{1}{32}$ or $\frac{1}{64}$ of the oscillator frequency depending on the value of the SMOD bit in the PCON register.

In this mode none of the Timers are used and the clock comes from the internal phase 2 clock.

SMOD = 1, Baud Rate =
$$\frac{1}{32}$$
 Osc Freq.

To set the SMOD bit: ORL PCON, #80H. The address of PCON is 87H.

SERIAL PORT IN MODE 3:

The baud rate in mode 3 is variable and sets up exactly the same as in mode 1.

MCS®-51 INSTRUCTION SET

Table 10. 8051 Instruction Set Summary

Instruc	tion	s tha	t Af	fect Flag S	ettings(1)	
Instruction		Flag		Instruction	Flag	ister
	C	OV	AC	and and the later to	C OV A	C
ADD	X		X		on and we	ds to kee
ADDC	X	X	X	CPLC	X	100 1
SUBB	X	X	X	ANL C,bit	X v Fred v	KrOs
MUL	0	X		ANL C,/bit	X San bas	-
DIV DA	O X	^		ORL C,bit	X	-
RRC				MOV C,bit		taurience n
RLC	X			CJNE		requency
SETB C	1			COINE	^	
		MO		danal TO fe	ingle lide	d) the or
(1)Note that	ope	eration	ns or	SFR byte a	ddress 208	or
				, the PSW	or bits in th	ne
PSW) will a	uso	affect	nag	settings.		
Note on inc	truo	tion s	of cr	nd addressin	a modes.	S BTA
				-R0 of the		e-
Rn slds I				er Bank.	currently s	Sing sta
direct -				l data locat	ion's addres	SS. (0.1
				e an Interna		
				127) or a S		
				l register, st		
		. (128				
@Ri -	- 8-b	it int	erna	data RAM	location (0)_
	25	5) add	dress	ed indirectly	through re	g-
	iste	er R1	or F	20.		101
				t included in		
#data 16 -	- 16-	bit co	onsta	nt included i	n instructio	n.
addr 16 -				nation addre		
				LJMP. A b		
		A COM MICHIGA		ithin the 6		0-0-000
		mM	emoi			
				ry address sp		
addr 11 —	- 11-	bit d	lestin	nation addre	ess. Used 1	
addr 11 —	- 11- AC	bit c	lestin	ation addre	ess. Used loranch will	be
addr 11 —	AC wit	bit c	lestin & A he sa	ation address AJMP. The bame 2K-byte	ess. Used to branch will to page of pr	be o-
	AC wit	bit contact thin to m	lestin & A he sa emor	nation addre AJMP. The bame 2K-byte ry as the firs	ess. Used to branch will to page of pr	be o-
of the SMOI	AC with grafoll	bit con the control of the control o	lestin & A he sa emon g ins	nation address AJMP. The bame 2K-byte ry as the first truction.	ess. Used to branch will to page of prest byte of the	be o- he
of the SMOI	- 11- AC wit gra fol: - Sig	chin to m m lowin ned (lesting & A he sa emong instances two's	nation address AJMP. The barne 2K-byte ry as the first truction. s complemen	ess. Used to branch will be page of prest byte of the at) 8-bit offs	be o- he et
addr 11 — IOM2 = 10 10	AC with grafol! Sig byte	chin to m m lowin ned (te. Us	he sa emor g ins two's ed by	AJMP. The barne 2K-byte ry as the firstruction. s complement y SJMP and	ess. Used to pranch will be page of prest byte of the at) 8-bit offs all condition	be o- he et n-
of the SMOI	AC with grafoll Sign by al	chin to m m m lowin med (te. Us	lesting & A he sa emore gins two's ed by s. R	nation address AJMP. The barne 2K-byte ry as the first truction. s complement y SJMP and ange is -1	ess. Used to pranch will be page of prost byte of the at) 8-bit offs all condition 28 to +12	be o- he et n- 27
of the SMOI	AC with grafoll Sig byte al byte	chin to med (te. Us jump es re	lesting & A he sa emore g instance two's ed by s. R lative	nation address AJMP. The barne 2K-byte ry as the first truction. s complement y SJMP and ange is -1 e to first by	ess. Used to pranch will be page of prost byte of the at) 8-bit offs all condition 28 to +12	be o- he et n- 27
of the SMOI	AC with grafoll Sig byte al byte love	chin to thin to thin to the mind (i.e. Us jump tes re ving i	he sa emorg ins two's ed by s. R lative	nation address AJMP. The barne 2K-byte ry as the first truction. s complement y SJMP and ange is -1	ess. Used to pranch will be page of prest byte of the state of the state of the state of the state of the formal state of the formal state of the formal state of the state of	et n- 27

Mne	monic	Description	Byte	Oscillator Period
ARITH	METIC OPI	ERATIONS	1. 0	
ADD	A,Rn	Add register to	1	12
	M. atti st i	Accumulator		
ADD	A,direct		2	12
DE DER	A, GII GUE	Accumulator		on 12
ADD	A.@Ri	Add indirect RAM	ne cous	ופו פרים ו
ADD	A, en	to Accumulator		12
	A # 1-1-			10
AUD	A, # data		2	12
		data to		
i or th		Accumulator		
ADDC	A,Rn	Add register to	1	12
		Accumulator		
		with Carry		
ADDC	A,direct	Add direct byte to	2	12
		with Carry Add direct byte to Accumulator		
		with Carry		
ADDC	A,@Ri		1	12
43013	DOL	Add indirect RAM to	nami	I SMIS
		Accumulator		
		with Court		
ADDC	A,#data	Add immediate	2	12
ADDO	n, # uala	data to Acc	2	12
		with Carry		40
SUBB	A,HII	Subtract Register	1	12
	ne baud e	from Acc with		
		borrow		
SUBB	A,direct	Subtract direct	2	12
		byte from Acc		
		with borrow		
SUBB	A,@Ri	Subtract indirect	1	12
		RAM from ACC		
		with borrow		
SUBB	A, # data	Subtract	2	12
		immediate data		
		from Acc with		
INC	A	borrow	1499	12
INC	Rn	Increment register	XIT SLOT	12
INC	direct	Increment direct	1 2	12
1140	direct			
INC	@Ri	Increment direct	shon s	bom 12
INC	en!		1	12
DEC	Preq.	RAM	Band ,	= GON
DEC	A	Decidinalit		16
	_ DenH	Accumulator		= COM
DEC	Rn	Decrement	1	12
		Register	CON	
DEC	direct	Decrement direct	2	12
		byte		
050	@Ri		4	10
DEC	@NI	Decrement	raba	12

All mnemonics copyrighted © Intel Corporation 1980

Mnemonic	Description	Byte	Oscillator Period
ARITHMETIC OPE	RATIONS (Continue	d) RAV	BOOLEAN
INC DPTR	Increment Data	1	24 10
	Pointer and assid		
MUL AB	Multiply A & B	1.	0 48 88
DIV AB	Divide A by B	1	48 38
DA A	Decimal Adjust	1	0 12/90
	Accumulator		
OGICAL OPERAT	TONS memelamo		
ANL A,Rn	AND Register to	1	12
19 9	Accumulator MA	bit	
ANL A, direct	AND direct byte	2	12
49 9	to Accumulator	Abit	
ANL A,@Ri	AND indirect	1	12
THE MOTH	RAM to		
	Accumulator		
ANL A,#data	AND immediate	2	12
ANL A, # uala	data to	tid	
	Accumulator		
ANL direct,A	AND Accumulator	2	12
AINL GIRECT, A	to direct byte	tid	
	AND immediate	3	24 VOM
ORL A.Rn	data to direct byte		
DHL A,HII	OR register to	1	12
	Accumulator		
ORL A,direct	OR direct byte to	2	12 07 OVIL
	Accumulator		
ORL A,@Ri	OR indirect RAM	1	12
3 24	to Accumulator	ler,	
ORL A, #data	OR immediate	2	12
3 24	data to 10 1 gmul		
	Accumulator		
ORL direct,A	OR Accumulator	2	1208
	to direct byte		
ORL direct, #data	OR immediate	3	24
	data to direct byte		PROGRAM
RL A,Rn	Exclusive-OR	f 1 abi	12 OA
	register to		
	Accumulator		
(RL A, direct	Exclusive-OR	82	12401
	direct byte to		
	Accumulator		
KRL A,@Ri	Exclusive-OR	1	12 3
	indirect RAM to		
	Accumulator		
(RL A, #data	Exclusive-OR	2	12
2 24	immediate data to	f Iribi	SS SMLA
	Accumulator		
(RL direct,A	Exclusive-OR	2	12/1
	Accumulator to		
	direct byte		
(RL direct, #data	Exclusive-OR	3	24
	immediate data		
	to direct byte		
CLR A	Clear	1	12
	Accumulator		
CPL A	Complement	1	12
	Accumulator		
		Albert Hall	

Mn	emonic	Description	Byte	Oscillator Period
LOGICA	L OPERATIO	ONS (Continued)	NSFER	ART ATAC
RL MS				RE 12/01
		Accumulator Left		
RLC	A	Rotate	1	12
12	8	Accumulator Left	ately St.	
		through the Carry		
RR	٨	Rotate	1	12
nn		Accumulator		12
24		Right bood area	111, W. CE	
RRC		Rotate	1	12
		Accumulator		
24		Right through		
		the Carry		
SWAP	A	Swap nibbles	1	12
24		within the		MOVO A.
		Accumulator		
DATA T	RANSFER	PC to Acc		
MOV	A,Rn	Move	118	8,A 12/ON
		register to		
		Accumulator		
MOV	A,direct	Move direct	2	12
		byte to	RTSO	
		Accumulator		
MOV	A @Ri	Move indirect	1	12
	71,011	RAM to		-
		Accumulator		
		Move	2	12
IVICV	A, # uala	immediate	-	12
		data to		
1401/		Accumulator		40
	Rn,A	Move	1	1000
AS		Accumulator		enib HSU
		to register		
	Rn,direct	Move direct	2	24
24		byte to	15	
		register		
MOV	Rn, # data	Move	2	12
12	1	immediate data		
		to register		
MOV	direct,A	Move	2	12
		Accumulator		
		to direct byte		
MOV	direct,Rn	Move register	2	24
		to direct byte		
MOV	direct, direct	Move direct	3	B.A 24HOX
		byte to direct		
MOV	direct,@Ri	Move indirect	2	24
1100		RAM to	-	24
12		direct byte		A OHO
MOV	direct, # data		3	24
		immediate data		
	Comments of	to direct byte		
MOV	@Ri,A	Move	1	12
		Accumulator to		
		indirect RAM		

All mnemonics copyrighted © Intel Corporation 1980

tofallo bold	Inemonic	Description	Byte		cillator eriod
DATA 1	RANSFER (C	ontinued)	PERA	3 IA	COGIC
	@Ri,direct	Move direct	2		24
	tte	byte to			
		indirect RAM			
MOV	@Ri.#data	Move	2		12
		immediate			
		data to			
		indirect RAM			
MOV	DPTR.#data1	6 Load Data	3		24
12	t	Pointer with a			
		16-bit constant			
MOVC	A,@A+DPTR	Move Code	1		24
		byte relative to			
		DPTR to Acc			
MOVC	A.@A+PC	Move Code	- 1		24
		byte relative to			
MOVX	A.@Ri	Move			24
		External			
		RAM (8-bit			
		addr) to Acc			
	A,@DPTR	Move	1		24
	71,001 111	External			
		RAM (16-bit		(i) A	VON
		addr) to Acc			
MOVX	@Ri A	Move Acc to	1		24
NOVA	Grii,A	External RAM			VOM
		(8-bit addr)			The same of the sa
MOVX	@DPTR.A	Move Acc to	1		24
IN VIX	001 111,71	External RAM			-
		(16-bit addr)			
PUSH	direct	Push direct	2		24
1 0011	direct	byte onto			-
		stack			
	direct	Pop direct	2		24
101	direct	byte from	-		27
	2	stack			
XCH		Exchange	1		12
AOIT	Α,ΓΙΙΙ	register with			12
		Accumulator			
XCH	A,direct	Exchange	2		12
AUH	A,ullect	direct byte	-		12
		with			
		Accumulator			
VCH	A,@Ri		minile to		12 OM
AUH	A, WHI	Exchange indirect RAM	mand 40		12
VOLID	A OD:	Accumulator	,		10
XCHD	A,@HI	Exchange low-	1		12 VOM
		order Digit			
		indirect RAM			
		with Acc			

avolvi_

Mnen	nonic	Description	Byte	Oscillator Period
BOOLE	AN VARIA	BLE MANIPULATIO	ONC	ARITHORETI
CLR	C	Clear Carry	1	AT9012 0//
CLR	bit	Clear direct bit	2	12
SETB	C	Set Carry	1	8/12
SETB	bit	Set direct bit	2	8/12 VIO
CPL	C	Complement	1	12 AC
		Carry of shumupo A		
CPL	bit	Complement (1970)	TA2	0 JA1200J
12		direct bit and DMA		ANL ARn
ANL	C,bit	AND direct bit	2	24
12	9	to CARRY		ANL Adire
ANL	C,/bit	AND complement	2	24
		of direct bit I QUA		ANL A, BRI
		to Carry of MAR		
ORL	C,bit	OR direct bit	2	24
1.2		to Carry		ANL A #de
ORL	C./bit	OR complement	2	24
		of direct bit		
2.7		to Carry SA CIAA		Joseph JMA
MOV	C,bit	Move direct bit	2	12
24	6	to Carry		ANL direct
MOV	bit,C	Move Carry to	2	24
12		direct bit		nR,A JRO
JC	rel	Jump if Carry	2	24
12	\$	is set of beath RO		ORL Adies
JNC	rel	Jump if Carry	2	24
12		not set		IRE A JRO
JB	bit,rel	Jump if direct	3	24
12	9	Bit is set		ORL A. #de
JNB	bit,rel	Jump if direct	3	24
		Bit is Not set		
JBC	bit,rel	Jump if direct	3 A	24
		Bit is set &		
24		clear bit		January JRO
PROGR	AM BRAN	ICHING		
ACALL	addr11	Absolute	2	n9 24 19X
		Subroutine		
		Call totslumusoA		
LCALL	addr16	Long O evisuosa	3	24 JAX
		Subroutine		
		Call notsiumuooA		
RET		Return from	1	24
		Subroutine		
RETI		Return from	1	24
12		interrupt		XRL A,#ds
AJMP	addr11	Absolute	2	24
	Journal	Jump of sharupo A		
LJMP	addr16	Long Jump	3 4	Joen 24 JAX
SJMP	rel	Short Jump	2	24
Solvii	101	(relative addr)	-	
		(relative audi)		

All mnemonics copyrighted © Intel Corporation 1980

Table 10. 8051 Instruction Set Summary (Continued)

Mnemonic		Description	Byte	Oscillator Period
PROG	RAM BRANCH	IING (Continued)	1- 1	33
JMP	@A+DPTR	Jump indirect	1	24 16
		relative to the		
		DPTR		36
JZ	rel 199.A	Jump if	2	24 10
		Accumulator		
	I.A.A	is Zero	1	
JNZ	rel SA.A	Jump if	2	24
		Accumulator		
	A,R4	is Not Zero		
CJNE	A,direct,rel	Compare	3	24 00
		direct byte to		
		Acc and Jump		
		if Not Equal		
CJNE	A, # data,rel	Compare	3	24
		immediate to		
		Acc and Jump	3	
	A, # data	if Not Equal		

N	Mnemonic Description		Byte	Oscillator Period
PROG	RAM BRANCHII	NG (Continued)	1	00
CJNE	Rn, # data, rel	Compare	3	24
		immediate to		
		register and		
		Jump if Not		
		Equal Old		
CJNE	@Ri,#data,rel	Compare	3	24 80
		immediate to		
		indirect and		
		Jump if Not		
	SA	Equal OVI	1	
DJNZ	Rn,rel 88	Decrement	2	24 80
		register and		
		Jump if Not		
		Zero M		
DJNZ	direct,rel	Decrement	3	24 70
		direct byte		10
		and Jump if		
		Not Zero		
NOP		No Operation	1	12 81

A,data,addr	JAO	2	43
A,eRt			47
A,Rf			
A,R3			
	JRO		
			45
			58
ORD,A			

1_g/mi

Table 11. Instruction Opcodes in Hexadecimal Order

	Number of Bytes	Mnemonic	Operands
00	1	(NOPOD) DM	PROGRAM BRANCHI
01 48	2	AJMP	code addra
02	. 3	of LJMP	code addr
03	1	bRRedelper	Α
04	1	INC grant	Α
05	2	INC Isupil	data addr
06 49	1	INC amo	CINE ON POR
07	1	of INCommi	@R1
08	1	hINCombni	R0
09	1	INC qual	R1
OA	1	INC Isupil	R2
OB S	18	INCerceO	DJNZ Rarel 8R
OC	1	bINC telper	R4
0D	1	INC gmul	R5
0E	1	INC OIES	R6
0F 49	15	INCHOOL	DJNZ direct_rel7R
10	3	JBC losalo	bit addr, code addr
11	2	ACALL	code addr
12	3	LCALL	code addr
13 \$7	- 1	TO RRCO ON	NOP A
	t notson	DEC	at memonics copAigh
15	2	DEC	data addr
16	1	DEC	@R0
17	1	DEC	@R1
18	1	DEC	R0
19	1	DEC	R1
1A	1	DEC	R2
1B	1	DEC	R3
1C	1	DEC	R4
1D	1	DEC	R5
1E	1	DEC	R6
1F	1	DEC	R7
20	3	JB	bit addr, code addr
21	2	AJMP RET	code addr
23	1	RL	Α
24	2	ADD	A,#data
25	2	ADD	A,data addr
26	1	ADD	A,@R0
27	1	ADD	A,@R1
28	1	ADD	A,R0
29	1	ADD	A,R1
2A	1	ADD	A,R2
2B	1	ADD	A,R3
2C	1	ADD	A,R4
2D	1	ADD	A,R5
2E	1	ADD	A,R6
2F	1	ADD	A,R7
30	3	JNB	bit addr. code addr
31	2	ACALL	code addr
	1	RETI	

Hex	-	Mnemonic	Operands
33	1	beuRLCO DMIN	PROGRAM BRANCE
34 55	2	ADDC	A,#data
35	. 2	ADDC	A,data addr
36	1	ADDCT	A,@R0
37 55	1	ADDG	A,@R1
38	1	ADDC	A,R0
39	1	ADDC	A,R1
3A 15	1	ADDC	A.R2 In SML
3B	1	ADDC 04	A.R3
3C	1	ADDC // ai	A,R4
3D 8	1	ADDCno	CARSIDA BULO
3E	1	ADDC	A,R6
3F	1	am ADDC ooA	A,R7
40	2	INC BIOLET	code addr
41 85	2	AJMP	code addr 9/40
42	2	of ORLemmi	data addr.A
43	3	OMORLIS SOA	data addr. # data
44	2	ORL told H	A,#data
45	2	ORL	A,data addr
46	1	ORL	A,@R0
47	1	ORL	A,@R1
48	1	ORL	A,R0
49	-1	ORL	A,R1
4A	1	ORL	A,R2
4B	1	ORL	A,R3
4C	1	ORL	A,R4
4D	1	ORL	A,R5
4E	1	ORL	A,R6
4F	1	ORL	A,R7
50	2	JNC	code addr
51	2	ACALL	code addr
52	2	ANL	data addr,A
53	3	ANL	data addr, # data
54	2	ANL	A, # data
55	2	ANL	A,data addr
56	1	ANL	A,@R0
57	1	ANL	A,@R1
58	1	ANL	A,R0
59	1	ANL	A,R1
5A	1	ANL	A,R2
5B	1	ANL	A,R3
5C	1	ANL	A,R4
5D	1	ANL	A,R5
5E	1	ANL	A,R6
5F	1	ANL	A,R7
60	2	JZ	code addr
61	2	AJMP	code addr
62	2	XRL	data addr,A
63	3	XRL	data addr, # data
64	2	XRL	A, # data
65	2	XRL	A,data addr

Table 11. Instruction Opcodes in Hexadecimal Order (Continued)

Code	Number of Bytes	Mnemonic	Operands	teM bo3	Hex Code	Number of Bytes	Mnemo	onic and	Operands	Hex Space
66	089,A1	XRLOM	A,@R0	韻	99	1 89,		HOA,R1		
67	THE.A1	XRLOM	A,@R1	-E7	9A	1 an.	SUBB	A,R2		
68	08,A1	XRLOM	A,R0	83	9B	1 aA	SUBB	HOA,R3		
69	18,A1	XRL	A,R1	69		1 78		HO A,R4		
6A	SR.A1	XRLOM	A,R2	AB	9D	ata adtir		A,R		
6B	EH,A1	XRL	A,R3	83	9E	abt abo		A,Re		
6C	5R,A1	XRLOM .	A,R4	93	9F	1 bbs h		A,R7		
6D	1A,RS	XRL	A,R5	GB	A0	2	ORL		it addr	
6E	89.A1	XRL	A,R6	33	A1	2	AJMP		addr	
6F	TRA1	XRLOM	A,R7	73	A2	about 2 s ats	MOV		addr	
	979002	JNZOM	code addr	FO	A3		INC	OHO DPT	R	
	os eboo2	ACALL	code addr	19.	A4	1/20	MUL	OHO AB		
72	A,0R@2	ORL	C,bit addr	EZ	A5		reserve			
73	A,IRB1	JMP	@A+DPTR	88	A6	150a 2000,11			,data addr	
74	A2	MOV	A,#data	69	A7	2,000\$ addr	MOV	@R1	,data addr	
75	ba atab3	MOV	data addr, # dat	a	A8	16bs 2000,8	MOV	R0,0	ata addr	
76	A,0902	MOV	@R0,#data	F6	A9	A,coc\$ addr	MOV	S/4L(R1,d	ata addr	
77	ATRE2	MOV	@R1,#data	13	AA	is,coc2 addr			ata addr	gg
78	A,OR2	MOV	R0,#data	07	AB	Tibba 2000,8		R3,0		
79	A.IA2	MOV	R1,#data	97	AC	7,000 8 ddr			ata addr	
7A	A.SR2	MOV	R2,#data	FA	AD	A2900	MOV		ata addr	
7B	A,ER2	MOV	R3,#data	89	AE	2.000			ata addr	
7C	A,492	MOV	R4, # data	03	AF	2088	MOV		ata addr	
7D	A,aR2	MOV	R5, # data	03	B0	21 A 0			it addr	
7E	A,892	MOV	R6,#data	39	B1		ACALL		addr	
7F	A,TR2	MOV	R7,#data	88	B2	rbb2 atsb.	CPL	VOI bit a	ddr	
80	2	SJMP	code addr		B3	1	CPL	С		
81	2	AJMP	code addr		B4	3	CJNE		data,code a	
82	2	ANL	C,bit addr		B5	3	CJNE		ta addr,cod	
83	1	MOVC	A,@A+PC		B6	3	CJNE		,#data,cod	
84	1	DIV	AB		B7	3	CJNE		,#data,cod	
85	3	MOV	data addr, data	addr	B8	3	CJNE		data,code	
86 87	2 2		data addr,@R0		B9	3	CJNE		data,code	
88	2	MOV	data addr,@R1		BA BB	3	CJNE		data,code	
89	2	MOV	data addr,R0		BC	3	CJNE		data,code	
8A	2	MOV	data addr,R1 data addr,R2		BD	3	CJNE		data,code	
8B	2	MOV	data addr,R3		BE	3	CJNE		data,code data,code	
8C	2	MOV	data addr,R4		BF	3	CJNE		data,code	
8D	2	MOV	data addr,R5		CO	2	PUSH		addr	auui
8E	2	MOV	data addr,R6		C1	2	AJMP		addr	
8F	2	MOV	data addr,R7		C2	2	CLR	bit a		
90	3	MOV	DPTR,#data		C3	1	CLR	C		
91	2	ACALL	code addr		C4	1	SWAP	A		
92	2	MOV	bit addr,C		C5	2	XCH		ta addr	
93	1	MOVC	A,@A+DPTR		C6	1	XCH	A,@I		
94	2	SUBB	A, # data		C7	1	XCH	A,@I		
95	2	SUBB	A,data addr		C8	1	XCH	A,RC		
96	1	SUBB	A,@R0		C9	1	XCH	A,R1		
97	1	SUBB	A,@R1		CA	1	XCH	A,R2		
98	1	SUBB	A,R0		CB	1	XCH	A,R3		

Table 11. Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code	Number of Bytes	Mnemonic Operands			Hex Code	He Co		Mnemonic	Operands	
CC	1 18	XCH	88024	A,R4	88	E6	A.OHO	MOV	A,@R0	88
CD	1 SR,	XCH	SEUBB	A,R5		E7	A.QB1	MOV	A,@R1	
CE	1 69.	XCH	BBUSA			E8	OR.A	MOV	A,R0	
CF	1 184		88084			E9	111,A	MOV	A,R1	
D0	2 89.			lata addr		EA	SEA	MOV	A,R2	
D1	2 89.	ACALL		ode addr		EB	A.FJ.A	MOV	A,R3	
D2	2 TA	SETB		oit addr		EC	I/FLA	MOV	A.R4	
D3	/bit audir	SETB	JROC			ED	A,P,S	MOV	A,R5	
D4	11 ba abo	DA	SMLAP	2		EE	AFI.A	MOV	A,R6	
D5	3 be fid.			lata addr,cod	e addr	EF	SEA.	MOV	A,R7	
D6	1 819			A.@R0	SA	FO	oods addr	MOVX	@DPTR	
D7	1 8	XCHD		A,@R1		F1	10bs (200	ACALL	code ad	
D8	2			R0,code addr	AS	F2	C,ltfl eddr	MOVX	@R0,A	22
D9	RO, dag addr			R1,code addr		F3	RT90+1AD	MOVX	@R1,A	
DA	F1,dags addr			R2.code addr		F4	A, #data	CPLOM	SA.	
DB	O.data g.ddr			3,code addr			da 2 addr. # data	MOV	data ad	
DC	obigateb.T			R4,code addr		F6	GFD, # data	MOV	@RO,A	35
DD	2 date 2 dete			R5,code addr		F7	stab*, MR®	MOV	@R1,A	
DE	3,date2ddr			R6,code addr		F8	RISD # 10A	MOV	RO.A	
DF	A,deta Sidde			R7,code addr		F9	plab*11F	MOV	SR1,A	
E0	5 data pddr	MOVX		A,@DPTR		FA	R2f#dala	MOV	SR2,A	
E1	6,datasddr	AJMP		ode addr		FB	stab 418R	MOV	R3,A	
E2	7,data nddr	MOVX	VOMA	A,@R0		FC	FIAT data	MOV	SR4,A	
E3	rbins rid \.	MOVX		A,@R1		FD	R51#data	MOV	SR5,A	
E4	11bs abc	CLR	JJADAA	2 4		FE	R61#data	MOV	R6,A	37
E5	2 addr 5	MOV	ACPL	A,data addr		FF	R71#data	MOV	SR7,A	
		9	CPL-		68		code addr	SJMP	2	08
	#data,code a				84		code addr	AIMIA		
	data addr, cod			3				ANL		
	RO, # data, cod						A,@A+PC			
							AB			
								VOM		
							data addr,@R0	VOM		
								AOW	2	
							data addr, FI2			
									2	
	7,#dala,code									
								VOM		
				2	10					
					C2			VOM		
								VOM		
								ACALL		
	data addr									
			XCH				ATTO + AD, A	MOVC		
	tA0,				G7		A, # data		2	
			XCH -							
					60			asus		
					AO				1	

INSTRUCTION DEFINITIONS

ACALL addr11

Function:

Absolute Call

Description:

ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC twice to obtain the address of the following instruction, then pushes the and four and Vaid to 16-bit result onto the stack (low-order byte first) and increments the Stack Pointer twice. The destination address is obtained by successively concatenating the five high-order bits of the incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called must therefore start within the same 2K block of the program memory as the first byte of the instruction following ACALL. No flags are affected.

Example:

Initially SP equals 07H. The label "SUBRTN" is at program memory location 0345 H. After executing the instruction, (ELECTRICAL PROPERTY AND ASSETS OF THE PROPERTY OF

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain 25H and 01H, respectively, and the PC will contain 0345H.

2 Bytes: 2 Cycles:

Encoding:

a10 a9 a8 1 0001

a7 a6 a5 a4 a3 a2 a1 a0

Operation: ACALL

 $(PC) \leftarrow (PC) + 2$

 $(SP) \leftarrow (SP) + 1$ $((SP)) \leftarrow (PC_{7-0})$ $(SP) \leftarrow (SP) + 1$

 $((SP)) \leftarrow (PC_{15-8})$

(PC₁₀₋₀) ← page address

Function:

Add

Description:

ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6; and to add a stro-day otherwise OV is cleared. When adding signed integers, OV indicates a negative number probable and duced as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate

Example:

The Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B). The instruction,

ADD A,R0

will leave 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry flag and OV set to 1.

ADD A,Rn

Bytes:

Cycles:

Encoding: 0010 1rrr

Operation: ADD

 $(A) \leftarrow (A) + (Rn)$

ADD A, direct

Bytes: 2

Cycles:

Encoding:

0 0 1 0 | 0 1 0 1 | direct address

Operation: ADD

 $(A) \leftarrow (A) + (direct)$

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

ADDC A, < src-byte >

Description:

Function: Add with Carry

ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator contents, leaving the result in the Accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number

IRP,A DOGA

produced as the sum of two positive operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) with the

carry flag set. The instruction,

ADDC A,R0

will leave 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and OV set to 1.

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

ADDC A,Rn

Bytes:

Cycles:

Encoding: 0 0 1 1 1 rrr

Operation: ADDC

(A) \leftarrow (A) + (C) + (R_n)

ADDC A, direct

Bytes: 2

Cycles: 1

Encoding: 0 0 1 1 0 1 0 1 direct address

Operation: ADDC

 $(A) \leftarrow (A) + (C) + (direct)$

ADDC A,@Ri

Bytes:

Cycles:

Encoding: 0 0 1 1 0 1 1 i

Operation: ADDC

To see to find V find (A) (A) + (C) + ((Ri)) , and a sid to see your as a second it see it VO

ADDC A, #data owl mon mus svinso or a positive operands or a positive sum or must sell se beoutong

Four source operand addressing modes are allowed: register, direct, reg Ster-1:29yell or imme-

Cycles: 1

Encoding:

0011

immediate data

Operation: ADDC

 $(A) \leftarrow (A) + (C) + \# data$

0100

AJMP addr11

Function: Absolute Jump

Description: AJMP transfers program execution to the indicated address, which is formed at run-time by

concatenating the high-order five bits of the PC (after incrementing the PC twice), opcode bits 7-5, and the second byte of the instruction. The destination must therefore be within the same

2K block of program memory as the first byte of the instruction following AJMP.

Example: The label "JMPADR" is at program memory location 0123H. The instruction,

AJMP JMPADR

is at location 0345H and will load the PC with 0123H.

Bytes: 2 Cycles: 2

Encoding:

a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

Operation: AJMP

 $(PC) \leftarrow (PC) + 2$ $(PC_{10-0}) \leftarrow page address$

ANL <dest-byte>, <src-byte>

Function: Logical-AND for byte variables

Description: ANL performs the bitwise logical-AND operation between the variables indicated and stores the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, *not* the input pins.

Example: If the Accumulator holds 0C3H (11000011B) and register 0 holds 55H (01010101B) then the instruction,

ANL A,RO

will leave 41H (01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction will clear combinations of bits in any RAM location or hardware register. The mask byte determining the pattern of bits to be cleared would either be a constant contained in the instruction or a value computed in the Accumulator at run-time. The instruction,

ANL P1, #01110011B

will clear bits 7, 3, and 2 of output port 1.

ANL A,Rn		Fribbs 9MUA
Bytes:	Absolute Jump	Function:
Cycles: Encoding:	A.JMP transfers program execution to the indicated address, which is for concatenating the high-order five bits of the PC (1) 11th 1:01 0:11 0:	
AJMP	2K block of program memory as the first byte of the instruction following	
Operation:	ANL $(A) \leftarrow (A) \land (Rn)$ level program memory local (Rn) (Rn)	
ANL A,direct		
Bytes:	is at location 0345H and will load the PC with 0123H.	
Cycles:	2	
Facadian	2	
Encoding:	0 1 0 1 0 1 0 1 direct address	
Operation:	ANL (A) \leftarrow (A) \wedge (direct) (A) \leftarrow (A) \wedge (A) \wedge (A) \rightarrow (A) \rightarrow (A) \rightarrow (A) \rightarrow (A) \rightarrow (A) \rightarrow (B) \rightarrow	Operation:
ANL A,@Ri	cesuma 28ed (00) 2.1)	
Bytes:	1 <sro-byte>,<</sro-byte>	ANL <dest-byte< td=""></dest-byte<>
Cycles:	Logical-AND for byte variables 1	
Encoding:	ANL performs the bitwise logical-AND operation of the results in the destination variable. No flags is the coults in the destination variable.	Description:
	The two operands allow six addressing mode combinations. When JIAS in mulator, the source can use register, direct, register-indirect or immediate the destination is a direct address, the source can $((iR)) \land (A) \xrightarrow{i} (A)$	
ANL A, # data Bytes:	Note: When this instruction is used to modify an output port, the value is port data will be read from the output data latch, not the input pins	
Cycles:	If the Accumulator holds 0C3H (11000011B) and register 0 holds 55H (0 instruction,	
Encoding:	0 1 0 1 0 1 0 0 immediate data 09.A JMA	
Operation:	ANL (A) \leftarrow (A) \wedge #data	
ANL direct,A	When the destination is a directly addressed byte, this instruction will old bits in any RAM location or hardware register. The mask byte determining to be cleared would either be a constant of the instruction or a	
Bytes: Cycles:	ANL PL/W01110011B	
Encoding:	0 1 0 1 0 0 1 0 direct address	
Operation:	ANL $(direct) \leftarrow (direct) \land (A)$	

Operation:

ANL

 $(C) \leftarrow (C) \land \neg (bit)$

CJNE <dest-byte>, <src-byte>, rel

Function: Compare an

Compare and Jump if Not Equal.

Description:

CJNE compares the magnitudes of the first two operands, and branches if their values are not equal. The branch destination is computed by adding the signed relative-displacement in the last instruction byte to the PC, after incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may be compared with any directly addressed byte or immediate data, and any indirect RAM location or working register can be compared with an immediate constant.

Example:

The Accumulator contains 34H. Register 7 contains 56H. The first instruction in the sequence.

odd ywell on the Boolean value of the source at the carry flag of the carry flag of the assembly language.

NOT_EQ: JC REQ_LOW ; IF R7 < 60H. ; R7 > 60H.

sets the carry flag and branches to the instruction at label NOT_EQ. By testing the carry flag, this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the instruction,

WAIT: CJNE A,P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since the Accumulator does equal the data read from P1. (If some other value was being input on P1, the program will loop at this point until the P1 data changes to 34H.)

CJNE A, direct, rel

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 0 1 0 1 direct address rel. address

Operation: $(PC) \leftarrow (PC) + 3$

IF (A) <> (direct)
THEN

 $(PC) \leftarrow (PC) + relative offset$

IF(A) < (direct)

THEN

(C) ← 1

ELSE

 $(C) \leftarrow 0$

CLR A					
Function:	Clear Accumulator			3	Bytes:
Description:	The Accumulator is cleared				
Example:	The Accumulator contains 5CH (0101.1100B). The instruction,				
	CLR A	* -	← (PC) + 3	(D9)	
	will leave the Accumulator				
Bytes:	1	C) + relative officer			
Cycles:	1				
Encoding	1110 0100		(c) ← 1		
Encoding:	1110 0100				
Operation:	CLR (A) ← 0				
CLR bit					
our bit				6.	Syctos
Example:	Port 1 has previously been v			structio	on,
Example:	Port 1 has previously been v	written with 5DH (010	11101B). The in	structio	on,
	CLR P1.2				
	will leave the port set to 591	H (01011001B).	tn) < data		
CLR C			(C) 1		
Bytes:	1		0 -> (O)		
Cycles:	1				
					:sstyB
Encoding:	1100 0011				
Operation:	CLR				
	(C) ← 0 s let		110 110	U.	
CLR bit			€ + (DQ) →		
Bytes:	2				
Cycles:	1	O + relative offset	(1) → (O9)		
Encoding:	1100 0010	bit address		IF ((
Operation:	CLR		1->(0)		
o por a li o li	(bit) ← 0		0->0	ELS	

CPL A

Function: Complement Accumulator

Description: Each bit of the Accumulator is logically complemented (one's complement). Bits which previ-

ously contained a one are changed to a zero and vice-versa. No flags are affected.

DA A adjusts the eight-bit value in the Accumu 0.0 1.01 variables (each in packed-BCD format), producing two four

Example: The Accumulator contains 5CH (01011100B). The instruction,

CPL A

will leave the Accumulator set to 0A3H (10100011B).

Bytes:

Cycles:

Encoding: 1 1-1-1

> CPL Operation:

 $(A) \leftarrow \neg (A)$

(xixx (Function:)) Complement bit and report fairly and and the report was a self virus and ill

Description: The bit variable specified is complemented. A bit which had been a one is changed to zero and vice-versa. No other flags are affected. CLR can operate on the carry or any directly address-

able bit.

Note: When this instruction is used to modify an output pin, the value used as the original data

will be read from the output data latch, not the input pin.

Example: Port 1 has previously been written with 5BH (01011101B). The instruction sequence,

Note: DA A cannot simply convert a hexadecimal number if if Alqo

CPL P1.2

will leave the port set to 5BH (01011011B).

CPL C

Bytes:

Cycles:

Encoding: 1011 0011

Operation: CPL

 $(C) \leftarrow \neg (C)$

CPL bit

Bytes: 2

Cycles: 1

Encoding: 1 0 1 1

bit address

Operation: CPL

(bit) $\leftarrow \neg$ (bit)

0010

DA A

Function: Decimal-adjust Accumulator for Addition

Description:

DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two variables (each in packed-BCD format), producing two four-bit digits. Any ADD or ADDC instruction may have been used to perform the addition.

If Accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added to the Accumulator producing the proper BCD digit in the low-order nibble. This internal addition would set the carry flag if a carry-out of the low-order four-bit field propagated through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-111xxxx), these high-order bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but wouldn't clear the carry. The carry flag thus indicates if the sum of the original two BCD variables is greater than 100, allowing multiple precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion by adding 00H, 06H, 60H, or 66H to the Accumulator, depending on initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD notation, nor does DA A apply to decimal subtraction.

Example:

The Accumulator holds the value 56H (01010110B) representing the packed BCD digits of the decimal number 56. Register 3 contains the value 67H (01100111B) representing the packed BCD digits of the decimal number 67. The carry flag is set. The instruction sequence.

will first perform a standard twos-complement binary addition, resulting in the value 0BEH (10111110) in the Accumulator. The carry and auxiliary carry flags will be cleared.

The Decimal Adjust instruction will then alter the Accumulator to the value 24H (00100100B), indicating the packed BCD digits of the decimal number 24, the low-order two digits of the decimal sum of 56, 67, and the carry-in. The carry flag will be set by the Decimal Adjust instruction, indicating that a decimal overflow occurred. The true sum 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumulator initially holds 30H (representing the digits of 30 decimal), then the instruction sequence,

bins HTF10 and less HTFADD HTFA, #99H1 MAR Isometed bins HST of less 0 retainers vessel life

DA A

will leave the carry set and 29H in the Accumulator, since 30 + 99 = 129. The low-order byte of the sum can be interpreted to mean 30 - 1 = 29.

Bytes:

Cycles: 1

Encoding: 1 1 0 1 0 1 0 0

Operation: DA

-contents of Accumulator are BCD

F $[[(A_{3-0}) > 9] \lor [(AC) = 1]]$ THEN $(A_{3-0}) \leftarrow (A_{3-0}) + 6$

AND

IF $[[(A_{7-4}) > 9] \lor [(C) = 1]]$ THEN $(A_{7-4}) \leftarrow (A_{7-4}) + 6$

DEC byte

Function: Decrement less si gall yers o all le redmun lambes out le stigit COI

Description: The variable indicated is decremented by 1. An original value of 00H will underflow to 0FFH.

No flags are affected. Four operand addressing modes are allowed: accumulator, register,

direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original

port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7FH (011111111B). Internal RAM locations 7EH and 7FH contain 00H

own report and 40H, respectively. The instruction sequence, and the factor of the fact

Ading instruction, indicating that a decimal overflow occuOR®TIOE sum 56, 67, and 1 is

DEC RO

initially holds 30H (representing the digits of 30 decimal), 0R9 hDEC notion sequence,

will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH set to 0FFH and

THEN (A74) <- (A74) + 6

3FH.

DEC A

Bytes:

Cycles:

Encoding: 0 0 0 1 0 1 0 0

Operation: DEC

 $(A) \leftarrow (A) - 1$

DEC Rn

Bytes:

Cycles:

Encoding:

Operation: DEC

 $(Rn) \leftarrow (Rn) - 1$

1 rrr

0001

6-40

Bytes:

Cycles:

Encoding:

0001 0 1 0 1 direct address

Operation: DEC

 $(direct) \leftarrow (direct) - 1$

DEC @Ri

port data will be read from the output data latch, not the input pins. I

Internal RAM locations 40H, 50H, and 60H contain the values 01H, 10H; Evcles:

0001 **Encoding:**

DEC Operation:

 $((Ri)) \leftarrow ((Ri)) - 1$

0 1 1 i

DIV AB

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit

integer in register B. The Accumulator receives the integer part of the quotient; register B

receives the integer remainder. The carry and OV flags will be cleared.

Exception: if B had originally contained 00H, the values returned in the Accumulator and Bregister will be undefined and the overflow flag will be set. The carry flag is cleared in any

case. 900 but XVIII not own galayo smidsem sendi 1761 flow saluo

The Accumulator contains 251 (0FBH or 11111011B) and B contains 18 (12H or 00010010B). **Example:**

The instruction,

DIV AB

will leave 13 in the Accumulator (0DH or 00001101B) and the value 17 (11H or 00010001B)

in B, since 251 = (13 X 18) + 17. Carry and OV will both be cleared.

Bytes:

Cycles:

1000 **Encoding:** 0 1 0 0

Operation: DIV

 $(A)_{15-8} \leftarrow (A)/(B)$

DJNZ <byte>,<rel-addr>

Function:

Decrement and Jump if Not Zero

Description:

DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if the resulting value is not zero. An original value of 00H will underflow to 0FFH. No flags are affected. The branch destination would be computed by adding the signed relative-displacement value in the last instruction byte to the PC, after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.

Example:

Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H, respectively. The instruction sequence,

DJNZ 40H,LABEL_1 DJNZ 50H,LABEL_2 DJNZ 60H,LABEL_3

will cause a jump to the instruction at label LABEL_2 with the values 00H, 6FH, and 15H in the three RAM locations. The first jump was *not* taken because the result was zero.

This instruction provides a simple way of executing a program loop a given number of times, or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction. The instruction sequence,

MOV R2,#8
TOGGLE: CPL P1.7
DJNZ R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1.

Each pulse will last three machine cycles; two for DJNZ and one to alter the pin.

DJNZ Rn,rel

Bytes: 2

Cycles:

Encoding:

1 1 0 1 1 r r r rel. address

Operation:

DJNZ $(PC) \leftarrow (PC) + 2$ $(Rn) \leftarrow (Rn) - 1$ IF (Rn) > 0 or (Rn) < 0THEN $(PC) \leftarrow (PC) + rel$

DJNZ direct,rel 3 Bytes: Cycles: 2 **Encoding:** 1101 0101 direct address rel. address Operation: DJNZ $(Rn) \leftarrow (Rn) + 1$ $(PC) \leftarrow (PC) + 2$ $(direct) \leftarrow (direct) - 1$ IF (direct) > 0 or (direct) < 0 THEN $(PC) \leftarrow (PC) + rel$ <byte> INC **Function:** Increment **Description:** INC increments the indicated variable by 1. An original value of 0FFH will overflow to 00H. No flags are affected. Three addressing modes are allowed: register, direct, or register-indirect. Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins. Example: Register 0 contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain 0FFH and 40H, respectively. The instruction sequence, INC @RO INC RO INC @RO will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding (respectively) 00H and 41H. INC A Increment the 16-bit data pointer by 1. A 16-bit increment (modulo! 216:setyel overflow of the low-order byte of the data pointer (DPL) from 0FFH to Cycles: **Encoding:** This is the only 16-bit register which can be inc0 0-1:0! 0000 Registers DPH and DPL contain 12H and OFEH, respectively TOM Operation: $(A) \leftarrow (A) + 1$

INC Rn **Bytes:** Cycles: **Encoding:** 0000 1 rrr Operation: INC $(Rn) \leftarrow (Rn) + 1$ **INC** direct **Bytes:** 2 Cycles: **Encoding:** 0000 0101 direct address Operation: INC (direct) ← (direct) + 1 INC @Ri Note: When this instruction is used to modify an output port, the value HTHO michigan 0000 0 1 1 i **Encoding:** Operation: INC $((Ri)) \leftarrow ((Ri)) + 1$ will leave register 0 set to VFH and internal RAM locations VEH and VFH holding (respective-INC DPTR **Function:** Increment Data Pointer **Description:** Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed; an overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H will increment the high-order byte (DPH). No flags are affected. This is the only 16-bit register which can be incremented. Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The instruction sequence, INC DPTR INC DPTR INC DPTR will change DPH and DPL to 13H and 01H. **Bytes:** Cycles: 2 1010 0011 **Encoding:** Operation: INC

 $(DPTR) \leftarrow (DPTR) + 1$

Exemple:

bit,rel

Function: Jump if Bit set

Description:

If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are affected.

Example:

The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The instruction sequence,

 $(bit) \leftarrow 0$

P1.2,LABEL1

ACC.2,LABEL2

will cause program execution to branch to the instruction at label LABEL2.

Bytes:

Cycles:

3

Encoding:

0000

If the carry flag is set, branch to the address indicated: otherw bit address

rel. address

Operation:

 $(PC) \leftarrow (PC) + 3$ IF (bit) = 1THEN

 $(PC) \leftarrow (PC) + rel$

JBC bit,rel

Function:

Jump if Bit is set and Clear bit

Description:

If the indicated bit is one, branch to the address indicated; otherwise proceed with the next instruction. The bit will not be cleared if it is already a zero. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the original data will be read from the output data latch, not the input pin. Malel

Example:

The Accumulator holds 56H (01010110B). The instruction sequence,

JBC ACC.3,LABEL1 JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by the label LABEL2, with the Accumulator modified to 52H (01010010B).

Bytes: 3

Cycles: 2

Encoding:

0001 0000

bit address

rel. address

Operation: JBC

 $(PC) \leftarrow (PC) + 3$ and $(PC) \leftarrow (PC) + 3$ and

THEN

 $\begin{array}{l} \text{(bit)} \longleftarrow 0 \\ \text{(PC)} \longleftarrow \text{(PC)} + \text{rel} \end{array}$

JC rel

Function:

Jump if Carry is set

Description:

If the carry flag is set, branch to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. No flags are affected.

Example:

The carry flag is cleared. The instruction sequence,

JC LABEL1 CPL C

JC LABEL 2

will set the carry and cause program execution to continue at the instruction identified by the

ed by adding the signed relative

label LABEL2.

Bytes:

Cycles:

Encoding: 0 1 0 0 0 0 0 0

2

2

rel. address

Operation: JC

 $(PC) \leftarrow (PC) + 2$

Note: When this instruction is used to test an output pin, in THEN. The read from the output data latch, not the input out.

(PC) ← (PC) + rel

@A+DPTR JMP

> **Function:** Jump indirect

Description: Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer, and and an analysis load the resulting sum to the program counter. This will be the address for subsequent instrucand the standard transfer in fetches. Sixteen-bit addition is performed (modulo 216): a carry-out from the low-order eight bits propagates through the higher-order bits. Neither the Accumulator nor the Data

Pointer is altered. No flags are affected.

An even number from 0 to 6 is in the Accumulator. The following sequence of instructions will **Example:** branch to one of four AJMP instructions in a jump table starting at JMP_TBL:

> MOV DPTR, #JMP_TBL BRALLOOA 8ML

JMP @A+DPTR

JMP TBL: AJMP LABELO of moltupexs margore same live

> **AJMP** LABEL1 **AJMP** LABEL2 **AJMP** LABEL3

the second instruction byte to the PC, after incrementing the PC twice to point to the next

If the Accumulator equals 04H when starting this sequence, execution will jump to label LABEL2. Remember that AJMP is a two-byte instruction, so the jump instructions start at every other address.

Bytes: Cycles: 2

Encoding: 0111 0011

Operation: **JMP**

 $(PC) \leftarrow (A) + (DPTR)$

JNB bit,rel

Function:

Jump if Bit Not set

Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next annual mapped as instruction. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next stad on the instruction. The bit tested is not modified. No flags are affected.

The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B). The An even number from 0 to 6 is in the Accumulator, even number from 0 to 6 is in the Accumulator,

> JNB P1.3,LABEL1 JNB ACC.3,LABEL2

will cause program execution to continue at the instruction at label LABEL2.

Bytes:

Cycles:

Encoding:

0011 0000

bit address

rel. address

Operation:

JNB $(PC) \leftarrow (PC) + 3$

IF (bit) = 0THEN (PC) ← (PC) + rel.

JNC rel

Function:

Jump if Carry not set

Description:

If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.

The carry flag is set. The instruction sequence,

Example:

JNC LABEL1 CPL C JNC LABEL2

will clear the carry and cause program execution to continue at the instruction identified by the label LABEL2.

2 **Bytes:**

Cycles: 2

Encoding:

0101 0000

rel. address

Operation: **JNC**

 $(PC) \leftarrow (PC) + 2$

IF (C) = 0THEN $(PC) \leftarrow (PC) + rel$

JNZ rel

Function: Jump if Accumulator Not Zero

Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with

iid-of and and the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The

to ested built has two Accumulator is not modified. No flags are affected.

The Accumulator originally holds 00H. The instruction sequence, Example:

JNZ LABEL1

Initially the Stack Pointer equals OTH. The label "SUBRIN" AssONI

JNZ LABEL2

will set the Accumulator to 01H and continue at label LABEL2.

Bytes:

Cycles:

0111 0000 **Encoding:**

rel. address

Operation: JNZ

 $(PC) \leftarrow (PC) + 2$

 $(A) \neq 0$

THEN $(PC) \leftarrow (PC) + rel$

JZ rel

Function: Jump if Accumulator Zero

Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed with

> the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The

 $(SP) \leftarrow (SP) + 1$

Accumulator is not modified. No flags are affected.

Example: The Accumulator originally contains 01H. The instruction sequence,

JZ LABEL1

DEC A

JZ LABEL2 and lim off at endward of ordered year notanitesb

will change the Accumulator to 00H and cause program execution to continue at the instruction identified by the label LABEL2.

2 **Bytes:**

Cycles: 2

Encoding:

rel. address

0000

Operation: JZ

 $(PC) \leftarrow (PC) + 2$

0110

 $IF \quad (A) = 0$ THEN $(PC) \leftarrow (PC) + rel$

PC) +- addrs-0

LCALL addr16

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the

program counter to generate the address of the next instruction and then pushes the 16-bit result onto the stack (low byte first), incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the instruction at this address. The subroutine may therefore begin anywhere in the full 64K-byte program memory address space.

No flags are affected.

Example: Initially the Stack Pointer equals 07H. The label "SUBRTN" is assigned to program memory

location 1234H. After executing the instruction,

LCALL SUBRTN to suminos bus HIO of totalumus A off see lilw

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H

will contain 26H and 01H, and the PC will contain 1234H.

Bytes:

Cycles:

0001 **Encoding:** 0010 addr15-addr8 addr7-addr0

Operation: LCALL

> $(PC) \leftarrow (PC) + 3$ $(SP) \leftarrow (SP) + 1$ $((SP)) \leftarrow (PC_{7-0})$ $(SP) \leftarrow (SP) + 1$ $((SP)) \leftarrow (PC_{15-8})$

If all bits of the Accumulator are zero, branch to the addr₁₅₋₀

LJMP addr16

Function: Long Jump

Description: LJMP causes an unconditional branch to the indicated address, by loading the high-order and

> low-order bytes of the PC (respectively) with the second and third instruction bytes. The destination may therefore be anywhere in the full 64K program memory address space. No

Example: The label "JMPADR" is assigned to the instruction at program memory location 1234H. The

instruction,

LJMP JMPADR

at location 0123H will load the program counter with 1234H.

Bytes:

Cycles: 2

Encoding: 0000 0010 addr15-addr8 addr7-addr0

Operation: LJMP

 $(PC) \leftarrow addr_{15-0}$

MOV C,bit **Bytes:** Cycles: 1010 0010 **Encoding:** bit address MOV Operation: (C) (bit) in necessary of the continued so a carry-out fre (bit) of the continue of the contin MOV bit,C setamaxB walne in the Accumulator to one of four values defined by the DB (degue b;setye Cycles: 1001 0010 **Encoding:** bit address **Operation:** MOV $(bit) \leftarrow (C)$ MOV DPTR, # data16 **Function:** Load Data Pointer with a 16-bit constant **Description:** The Data Pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded into the second and third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte (DPL) holds the low-order byte. No flags are affected. This is the only instruction which moves 16 bits of data at once. **Example:** The instruction, MOVC A. @A + DPTR MOV DPTR. # 1234H will load the value 1234H into the Data Pointer: DPH will hold 12H and DPL will hold 34H. **Bytes:** 3 Cycles: 2 **Encoding:** 1001 0000 immed. data15-8 immed. data7-0 **Operation:** MOV MOVC A. @A + PC (DPTR) ← #data₁₅₋₀ DPH □ DPL ← #data₁₅₋₈ □ #data₇₋₀

Bytes:

MOVC A.@A+ <base-reg>

Function:

Move Code byte

Description:

The MOVC instructions load the Accumulator with a code byte, or constant from program memory. The address of the byte fetched is the sum of the original unsigned eight-bit Accumulator contents and the contents of a sixteen-bit base register, which may be either the Data Pointer or the PC. In the latter case, the PC is incremented to the address of the following instruction before being added with the Accumulator; otherwise the base register is not altered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may propagate through higher-order bits. No flags are affected.

Example:

A value between 0 and 3 is in the Accumulator. The following instructions will translate the value in the Accumulator to one of four values defined by the DB (define byte) directive.

REL_PC: INC A

MOVC A, @A+PCos id O 1 0 0 1 0 0 1 conibconia

RET

DB 66H

DB 77H

DB 88H

DB 99H

Instance iid-di a diiw zenioq abol zenioquia

Accumulator. The INC A before the MOVC instruction is needed to "get around" the RET instruction above the table. If several bytes of code separated the MOVC from the table, the corresponding number would be added to the Accumulator instead.

MOVC A,@A+DPTR

Bytes: 1

will load the value 1234H into the Data Pointer DPH will hold 12H at Disabyold 34H.

Encoding: 1 0 0 1 0 0 1 1

Operation: MOVC

 $(A) \leftarrow ((A) + (DPTR))$

10000 10001

(DFTR) + #data15.0

DPH C DPL - #data15.6 C #data7.0

MOVC A,@A + PC

Bytes: 1

Cycles: 2

Encoding: 1 0 0 0 0 0 1 1

Operation: MOVC

 $(PC) \leftarrow (PC) + 1$ $(A) \leftarrow ((A) + (PC))$

MOVX <dest-byte>, <src-byte>

Function:

Move External

Description:

The MOVX instructions transfer data between the Accumulator and a byte of external data memory, hence the "X" appended to MOV. There are two types of instructions, differing in whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an eight-bit address multiplexed with data on P0. Eight bits are sufficient for external I/O expansion decoding or for a relatively small RAM array. For somewhat larger arrays, any output port pins can be used to output higher-order address bits. These pins would be controlled by an output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a sixteen-bit address. P2 outputs the high-order eight address bits (the contents of DPH) while P0 multiplexes the low-order eight bits (DPL) with data. The P2 Special Function Register retains its previous contents while the P2 output buffers are emitting the contents of DPH. This form is faster and more efficient when accessing very large data arrays (up to 64K bytes), since no additional instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with its high-order address lines driven by P2 can be addressed via the Data Pointer, or with code to output high-order address bits to P2 followed by a MOVX instruction using R0 or R1.

Example:

An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel 8155 RAM/I/O/Timer) is connected to the 8051 Port 0. Port 3 provides control lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 34H. Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A,@R1

MOVX @RO.A

copies the value 56H into both the Accumulator and external RAM location 12H.

The MOVX instructions transfer data between the Accumulator and

order eight bits (DPL) with data. The P2 Speci tents while the P2 output buffers are emitting (10 0 0 0

Location 34H of the external RAM holds the

more efficient when accessing very large data array

decoding or for a relatively small RAM array. For somewhat larger arrays, any output port

MOVX A,@Ri

Bytes:

Cycles:

Encoding: 1 1 1 0 0 0 1 i

In the first type, the contents of RO or R1 in the current regis XVOM pr: noitaraqOnt bit

address multiplexed with data on PO. Eight bits are suf((iR)) (A) ernal I/O expansion

pins can be used to output higher-order address birs. These pins would ATQON

Bytes:

wol and Cycles: outputs the high-order eight address bits (the contents of DPH) while 12

Encoding: 1110

Operation:

MOVX

(A) ← ((DTTR)) → (RTTQT)) → Is is possible in some situations to mix the two MOVA (special A) large

MOVX @RI,A

Bytes:

Cycles:

Encoding: 1111

Operation: MOVX

 $((Ri)) \leftarrow (A)$

Bytes:

Cycles: 2

Encoding:

1111 0000

0 0 1 i

Operation: MOVX

 $(DPTR) \leftarrow (A)$

MUL AB

Function: Multiply

Description: MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The

low-order byte of the sixteen-bit product is left in the Accumulator, and the high-order byte in B. If the product is greater than 255 (0FFH) the overflow flag is set; otherwise it is cleared.

The carry flag is always cleared. An analysis and a wolla about on I

Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (0A0H).

The instruction,

Note: When this instruction is used to modify an output port, the value port data will be read from the output data latch, not the in BA pullUM

will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumula-

in any RAM location or hardware register. The pattern of

tor is cleared. The overflow flag is set, carry is cleared.

Bytes:

Cycles: 4

mask byte, which may be either a constant data value in the instrucTUM a vincin may be

(A)₇₋₀ ← (A) X (B) another than all a smith our to a note learned A and mi

 $(B)_{15-8}$

NOP

Function: No Operation

Description: Execution continues at the following instruction. Other than the PC, no registers or flags are

affected

Example: It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A

simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must be inserted. This may be done (assuming no interrupts are enabled) with the instruction

sequence,

CLR P2.7

NOP

NOP

NOP

NOP

SETB P2.7

Bytes:

Cycles:

Encoding: 0 0 0 0 0 0 0 0

Operation: NOI

 $(PC) \leftarrow (PC) + 1$

<dest-byte> <src-byte>

Function:

Logical-OR for byte variables

Description: ORL performs the bitwise logical-OR operation between the indicated variables, storing the all shall refuse digital are results in the destination byte. No flags are affected.

> The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the Accumulator or immediate data.

> Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.

Example:

If the Accumulator holds OC3H (11000011B) and R0 holds 55H (01010101B) then the instruction.

ORL A,R0

will leave the Accumulator holding the value 0D7H (11010111B).

It is desired to produce a low-going output paise on bit 7 of Port 2 last

When the destination is a directly addressed byte, the instruction can set combinations of bits in any RAM location or hardware register. The pattern of bits to be set is determined by a mask byte, which may be either a constant data value in the instruction or a variable computed in the Accumulator at run-time. The instruction, (A) X (A)

ORL P1, #00110010B

will set bits 5, 4, and 1 of output Port 1.

ORL A,Rn

Bytes:

Cycles:

Encoding:

0100 1 rrr

Operation:

ORL $(A) \leftarrow (A) \lor (Rn)$

POP direct

Function:

Pop from stack.

Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the salt ellarones assubb Stack Pointer is decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are affected.

Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H through 32H contain the values 20H, 23H, and 01H, respectively. The instruction sequence,

POP DPH

will leave the Stack Pointer equal to the value 09H. ProJIO eqoquon will continue at

will leave the Stack Pointer equal to the value 30H and the Data Pointer set to 0123H. At this point the instruction,

POP SP

will leave the Stack Pointer set to 20H. Note that in this special case the Stack Pointer was decremented to 2FH before being loaded with the value popped (20H).

Bytes: 2

Cycles: 2

Encoding:

1101 0000 direct address

Operation: POP

 $(direct) \leftarrow ((SP))$ $(SP) \leftarrow (SP) - 1$

PUSH direct

Function:

Push onto stack and an art and all and a start and a s

Description:

The Stack Pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the Stack Pointer. Otherwise no flags are affect-

Example:

On entering an interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the value 0123H. The instruction sequence,

PUSH DPL

PUSH DPH

will leave the Stack Pointer set to 0BH and store 23H and 01H in internal RAM locations 0AH and 0BH, respectively.

Bytes: 2

Cycles:

Encoding:

1100 0000

direct address

Operation: PUSH

> $(SP) \leftarrow (SP) + 1$ $((SP)) \leftarrow (direct)$

RET **Function:** Return from subroutine **Description:** RET pops the high- and low-order bytes of the PC successively from the stack, decrementing the Stack Pointer by two. Program execution continues at the resulting address, generally the instruction immediately following an ACALL or LCALL. No flags are affected. **Example:** The Stack Pointer originally contains the value OBH. Internal RAM locations OAH and OBH contain the values 23H and 01H, respectively. The instruction, RET will leave the Stack Pointer equal to the value 09H. Program execution will continue at location 0123H. **Bytes:** Cycles: 2 Encoding: 0010 decremented to 2FH before being loaded with the value p RET Operation: $(PC_{15-8}) \leftarrow ((SP))$ $(SP) \leftarrow (SP) - 1$ $(PC_{7-0}) \leftarrow ((SP))$ $(SP) \leftarrow (SP) - 1$ RETI **Function:** Return from interrupt **Description:** RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The Stack Pointer is left decremented by two. No other registers are affected; the PSW is not automatically restored to its pre-interrupt status. Program execution continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-level interrupt had been pending when the RETI instruction is executed, that one instruction will be executed before the pending interrupt is processed. Example: The Stack Pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction, RETI will leave the Stack Pointer equal to 09H and return program execution to location 0123H. will leave the Stack Pointer set to OBH and store 23H and OIH in inter Bytes: Cycles: **Encoding:** 0011 0010 Operation: RETI $(PC_{15-8}) \leftarrow ((SP))$ $(SP) \leftarrow (SP) - 1$ $(PC_{7-0}) \leftarrow ((SP))$ $(SP) \leftarrow (SP) - 1$

Function: Rotate Accumulator Left **Description:** The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No flags are affected. Example: The Accumulator holds the value OC5H (11000101B). The instruction, RL A leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected. **Bytes:** Cycles: **Encoding:** 0010 0011 Operation: $(A_n + 1) \leftarrow (A_n) \quad n = 0 - 6 \quad \partial - 0 = n \quad (1 + A_n) \rightarrow (A_n)$ $(A0) \leftarrow (A7)$ RLC A **Function:** Rotate Accumulator Left through the Carry flag Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected. **Example:** The Accumulator holds the value OC5H (11000101B), and the carry is zero. The instruction, RLC A leaves the Accumulator holding the value 8BH (10001010B) with the carry set. Bytes: Cycles: **Encoding:** 0011 0011 Operation: RLC $(An + 1) \leftarrow (An) \quad n = 0 - 6$ $(An) \leftarrow (An + 1)$ n = 0 - 6

 $(OA) \rightarrow (O)$

 $(A0) \leftarrow (C)$ $(C) \leftarrow (A7)$

RILC A

RR A

Function: Rotate Accumulator Right

Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7

position. No flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The instruction,

RR A

leaves the Accumulator holding the value 0E2H (11100010B) with the carry unaffected.

Bytes:

Cycles:

0000 **Encoding:** 0011

Operation:

 $(An) \leftarrow (A_n + 1) \quad n = 0 - 6$

 $(A7) \leftarrow (A0)$

0010 0011

 $(A_0 + 1) \leftarrow (An) \quad n = 0 - 6$ (A0) - (A7)

RRC A

Function: Rotate Accumulator Right through Carry flag of Total and A state Accumulator Right through Carry flag of Total and T

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. M. more Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7

position. No other flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B), the carry is zero. The instruction,

RRC A

leaves the Accumulator holding the value 62 (01100010B) with the carry set.

Bytes:

Cycles:

Operation:

Encoding: 0001 0011

RRC

 $(An) \leftarrow (An + 1) \quad n = 0 - 6$ $\delta - 0 = n \cdot (An) \rightarrow (1 + nA)$ $(A7) \leftarrow (C)$

 $(C) \leftarrow (A0)$

RLC A

Operation:

SETB (bit) ← 1

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

latni

SETB <bit> **Function:** Set Bit Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No other flags are affected. Example: The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B). The SETB C SETB P1.0 will leave the carry flag set to 1 and change the data output on Port 1 to 35H (00110101B). (Note: Under the above conditions the instruction following SIMP will be at 102H One STEE the displacement byte of the instruction will be the relative offset (01221-012styg 21H. Put another way, an SIMP with a displacement of OFEH would be a one-instruct Cycles: 1101 **Encoding:** 0011 Operation: SETB $(C) \leftarrow 1$ SETB bit **Bytes:** 2 Cycles: 1101 **Encoding:** 0010 bit address

Function: Short Jump

Description: Program control branches unconditionally to the address indicated. The branch destination is computed by adding the signed displacement in the second instruction byte to the PC, after

incrementing the PC twice. Therefore, the range of destinations allowed is from 128 bytes preceding this instruction to 127 bytes following it.

Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The

instruction,

SJMP RELADR

(81010100) He will assemble into location 0100H. After the instruction is executed, the PC will contain the

value 0123H.

(*Note:* Under the above conditions the instruction following SJMP will be at 102H. Therefore, the displacement byte of the instruction will be the relative offset (0123H-0102H) = 21H. Put another way, an SJMP with a displacement of 0FEH would be a one-instruction infinite loop.)

1100

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 0 0 0

rel. address

Operation: SJMP

 $(PC) \leftarrow (PC) + 2$

 $(PC) \leftarrow (PC) + rel$

SUBB A, < src-byte >

Function:

Subtract with borrow

Description:

SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result in the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set before executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a multiple precision subtraction, so the carry is subtracted from the Accumulator along with the source operand.) AC is set if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but not bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative value is subtracted from a positive value, or a positive result when a positive number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

Example:

The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry flag is set. The instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due to the carry (borrow) flag being set before the operation. If the state of the carry is not known before starting a single or multiple-precision subtraction, it should be explicitly cleared by a CLR C instruction.

SUBB A,Rn

Bytes: 1

Encoding:

1001 1 rrr

Operation:

 $(A) \leftarrow (A) - (C) - (Rn)$

SUBB A <arc-byte>

SUBB A, direct

Bytes: 2

Cycles: SUBB subtracts the indicated variable and the carry flag together from

Encoding: 0101 1001

direct address

Operation:

the carry is subtracted from the Accumulator along with the sor BBUS 13d and one belove (A) ← (A) - (C) + (direct) to be used here a sid roll belove at worked

SUBB A,@Ri

Bytes: a subtracted from a positive value, or a positive result when a present

Cycles:

1001 **Encoding:** 0 1 1 i

Operation:

SUBB

 $(A) \leftarrow (A) - (C) - ((Ri))$

SUBB A, # data

Bytes:

Cycles:

Encoding: 1001 0 1 0 0 immediate data

SUBB Operation:

 $(A) \leftarrow (A) - (C) - \# data$

SWAP A

Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator

(bits 3-0 and bits 7-4). The operation can also be thought of as a four-bit rotate instruction. No

The source operand allows four addressing mode

flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The instruction,

SWAP A

leaves the Accumulator holding the value 5CH (01011100B).

Bytes:

Cycles:

Encoding: 1100 0100

Operation: **SWAP**

 $(A_{3-0}) \stackrel{\rightarrow}{\leftarrow} (A_{7-4})$

XCH A, < byte>

Function: Exchange Accumulator with byte variable

Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original Accumulator contents to the indicated variable. The source/destination

operand can use register, direct, or register-indirect addressing.

Example: R0 contains the address 20H. The Accumulator holds the value 3FH (00111111B). Internal

RAM location 20H holds the value 75H (01110101B). The instruction,

XCH A,@R0

will leave RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in

will leave RAM location 20H holding the value 76H (C. rotalumus) in the

XCH A,Rn

Bytes:

Cycles:

Encoding: 1100 1rrr

Operation: XCH

 $(A) \stackrel{\rightarrow}{\leftarrow} (Rn)$

XCH A, direct

Bytes: 2

Cycles:

Encoding: | 1 1 0 0 | 0 1 0 1

direct address

Operation: XCH

 $(A) \stackrel{?}{\sim} (direct)$

XCH A,@Ri

Bytes:

Cycles: 1

Encoding: 1 1 0 0 0 1 1 i

Operation: WXCH obtained side of the best of the vibration of the ball of the

tions of bits in any RAM location or hardware register. I ((iR)) (A) its to be complement

XCHD A,@Ri

Function: Exchange Digit

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3-0), generally representing a

hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the specified register. The high-order nibbles (bits 7-4) of each register are not affected. No flags

XCH A. < byte>

are affected.

Example: R0 contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal

RAM location 20H holds the value 75H (01110101B). The instruction,

XCHD A,@R0

will leave RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the

Accumulator.

Bytes:

Cycles:

Encoding: 1 1 0 1 0 1 1 i

Operation: XCHD

 $(A_{3-0}) \stackrel{\rightarrow}{\leftarrow} ((Ri_{3-0}))$

XRL <dest-byte>, <src-byte>

Example:

Function: Logical Exclusive-OR for byte variables

Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables,

storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the Accumulator or immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original

port data will be read from the output data latch, not the input pins.)

If the Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) then

the instruction, XRL A,R0

will leave the Accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinations of bits in any RAM location or hardware register. The pattern of bits to be complemented is then determined by a mask byte, either a constant contained in the instruction or a variable computed in the Accumulator at run-time. The instruction,

XRL P1, #00110001B

will complement bits 5, 4, and 0 of output Port 1.

Encodings

XRL A,Rn

Bytes: 1
Cycles: 1

Encoding:

Operation:

 $\begin{array}{c} XRL \\ (A) \longleftarrow (A) \ \forall \ (Rn) \end{array}$

0 1 1 0 1 rrr

[1100 0110

XRL (direct) 4-date

XRL A, direct

Bytes: 2 Cycles: 1

Encoding: 0 1 1 0 0 1 0 1

direct address

Operation: XRL

 $(A) \leftarrow (A) \lor (direct)$

XRL A,@Ri

Bytes: 1 Cycles: 1

Encoding: 0 1 1 0 0 1 1 i

Operation: XRL

 $(A) \leftarrow (A) \lor ((Ri))$

XRL A,#data

Bytes: 2 Cycles: 1

Encoding: 0 1

0110 0100

immediate data

Operation: XRL

 $(A) \leftarrow (A) \lor \# data$

XRL direct,A

Bytes: 2 Cycles: 1

Encoding:

0110 0010

direct address

Operation: XRL

 $(direct) \leftarrow (direct) \lor (A)$

Using the Intel MCS®-51 Boolean Processing Capabilities

7

Using the Intel MCS@-51 Boolean Processing Capabilities

USING THE INTEL MCS®-510099 MARLOOR O.S BOOLEAN PROCESSING CAPABILITIES

1.0 INTRODUCTION bas no isoliquition salog

The Intel microcontroller family now has three new members: the Intel® 8031, 8051, and 8751 single-chip microcomputers. These devices, shown in Figure 1, will allow whole new classes of products to benefit from recent advances in Integrated Electronics. Thanks to Intel's new HMOS technology, they provide larger program and data memory spaces, more flexible I/O and peripheral capabilities, greater speed, and lower system cost than any previous-generation single-chip microcomputer, special many multipogla lorinos smir-lare

Figure 1. 8051 Family Pinout Diagram

Table 1 summarizes the quantitative differences between the members of the MCS®-48 and 8051 families. The 8751 contains 4K bytes of EPROM program memory fabricated on-chip, while the 8051 replaces the EPROM with 4K bytes of lower-cost maskprogrammed ROM. The 8031 has no program memory on-chip; instead, it accesses up to 64K bytes of program memory from external memory. Otherwise, the three new family members are identical. Throughout this Note, the term "8051" will represent all members of the 8051 Family, unless specifically stated otherwise.

The CPU in each microcomputer is one of the industry's fastest and most efficient for numerical calculations on byte operands. But controllers often deal with bits, not bytes: in the real world, switch contacts can only be open or closed, indicators should be either lit or dark, motors are either turned on or off, and so forth. For such control situations the most significant aspect of the MCS®-51 architecture is its complete hardware support for one-bit, or Boolean variables (named in honor of Mathematician George Boole) as a separate data type. gamin of noisuparts marajorq seuso stantons

The 8051 incorporates a number of special features which support the direct manipulation and testing of individual bits and allow the use of single-bit variables in performing logical operations. Taken together, these features are referred to as the MCS-51 Boolean Processor. While the bit-processing capabilities alone would be adequate to solve many control applications, their true power comes when they are used in conjunction with the microcomputer's byte-processing and numerical capabilities.

Many concepts embodied by the Boolean Processor will certainly be new even to experienced microcomputer system designers. The purpose of this Application Note is to explain these concepts and show how they are used.

For detailed information on these parts refer to the Intel Microcontroller Handbook, order number 210918. The instruction set, assembly language, and use of the 8051 assembler (ASM51) are further described in the MCS®-51 Macro Assembler User's Guide for DOS Systems, order number 122753.

Table 1. Features of Intel's Single-Chip Microcomputers

EPROM Program Memory	ROM Program Memory	External Program Memory	Program Memory (Int/Max)	Data Memory (Bytes)	Instr. Cycle Time	Input/ Output Pins	Interrupt Sources	Reg. Banks
8748	8048	8035	1K 4K	64	2.5 µs	27	2	2
_	8049	8039	2K 4K	128	1.36 µs	27	2	2
8751	8051	8031	4K 64K	128	1.0 µs	32	5	4

2.0 BOOLEAN PROCESSOR OPERATION

The Boolean Processing capabilities of the 8051 are based on concepts which have been around for some time. Digital computer systems of widely varying designs all have four functional elements in common (Figure 2):

- a central processor (CPU) with the control, timing, and logic circuits needed to execute stored instructions:
- a memory to store the sequence of instructions making up a program or algorithm:
- data memory to store variables used by the program:
 and
- some means of communicating with the outside world.

The CPU usually includes one or more accumulators or special registers for computing or storing values during program execution. The instruction set of such a processor generally includes, at a minimum, operation classes to perform arithmetic or logical functions on program variables, move variables from one place to another, cause program execution to jump or conditionally branch based on register or variable states, and instructions to call and return from subroutines. The program and data memory functions sometimes share a single memory space, but this is not always the case. When the address spaces are separated, program and data memory need not even have the same basic word width.

A digital computer's flexibility comes in part from combining simple fast operations to produce more complex (albeit slower) ones, which in turn link together eventually solving the problem at hand. A four-bit CPU executing multiple precision subroutines can, for example, perform 64-bit addition and subtraction. The subroutines could in turn be building blocks for floating-point multiplication and division routines. Eventually, the four-bit CPU can simulate a far more complex "virtual" machine.

In fact, any digital computer with the above four functional elements can (given time) complete any algorithm (though the proverbial room full of chimpanzees at word processors might first re-create Shakespeare's classics and this Application Note)! This fact offers little consolation to product designers who want programs to run as quickly as possible. By definition, a real-time control algorithm must proceed quickly enough to meet the preordained speed constraints of other equipment.

One of the factors determining how long it will take a microcomputer to complete a given chore is the number of instructions it must execute. What makes a given computer architecture particularly well- or poorly-suited for a class of problems is how well its instruction set matches the tasks to be performed. The better the "primitive" operations correspond to the steps taken by the control algorithm, the lower the number of instructions needed, and the quicker the program will run. All else being equal, a CPU supporting 64-bit arithmetic directly could clearly perform floating-point math faster than a machine bogged-down by multiple-precision subroutines. In the same way, direct support for bit manipulation naturally leads to more efficient programs handling the binary input and output conditions inherent in digital control problems.

Figure 2. Block Diagram for Abstract Digital Computer

Processing Elements

The introduction stated that the 8051's bit-handling capabilities alone would be sufficient to solve some control applications. Let's see how the four basic elements of a digital computer—a CPU with associated registers, program memory, addressable data RAM, and I/O capability—relate to Boolean variables.

CPU. The 8051 CPU incorporates special logic devoted to executing several bit-wide operations. All told, there are 17 such instructions, all listed in Table 2. Not shown are 94 other (mostly byte-oriented) 8051 instructions.

Program Memory. Bit-processing instructions are fetched from the same program memory as other arithmetic and logical operations. In addition to the instruc-

Table 2. MCS-51™ Boolean

Processing Instruction Subset

Mnem	onic	Description	Byte	Сус
SETB	C	Set Carry flag	1	1
SETB	bit	Set direct Bit	2	. 1
CLR	C	Clear Carry flag	1	1
CLR	bit	Clear direct bit	2	1
CPL	C	Complement Carry flag	1	-1
CPL	bit	Complement direct bit	0A2 1	1
MOV	C.bit	Move direct bit to Carry flag	2	1
MOV	bit.C	Move Carry flag to direct bit	2	2
ANL	C.bit	AND direct bit to Carry flag	2	2
ANL	C.bit	AND complement of direct bit to Carry flag	2	2
ORL	C.bit	OR direct bit to Carry flag	2	2 2
ORL	C.bit	OR complement of direct bit to Carry flag	2	2
JC	rel	Jump if Carry is flag is set	2	- 2
JNC	rel	Jump if No Carry flag	2	2
JB	bit.rel	Jump if direct Bit set	3	2
JNB	bit.rel	Jump if direct Bit Not set	3	2
JBC	bit.rel	Jump if direct Bit is set & Clear bit	88 1	2

Address mode abbreviations

C—Carry flag.

bit—128 software flags, any I/O pin, control or status bit.

rel—All conditional jumps include an 8-bit offset byte. Range is +127 -128 bytes relative to first byte of the following instruction.

All mnemonics copyrighted © Intel Corporation 1980.

tions of Table 2, several sophisticated program control features like multiple addressing modes, subroutine nesting, and a two-level interrupt structure are useful in structuring Boolean Processor-based programs.

Boolean instructions are one, two, or three bytes long, depending on what function they perform. Those involving only the carry flag have either a single-byte opcode or an opcode followed by a conditional-branch destination byte (Figure 3a). The more general instructions add a "direct address" byte after the opcode to specify the bit affected, yielding two or three byte encodings (Figure 3b). Though this format allows potentially 256 directly addressable bit locations, not all of them are implemented in the 8051 family.

Figure 3. Bit Addressing Instruction Formats

Figure 4. Bit Address Maps

Data Memory. The instructions in Figure 3b can operate directly upon 144 general purpose bits forming the Boolean processor "RAM." These bits can be used as software flags or to store program variables. Two operand instructions use the CPU's carry flag ("C") as a special one-bit register: in a sense, the carry is a "Boolean accumulator" for logical operations and data transfers.

Input/Output. All 32 I/O pins can be addressed as individual inputs, outputs, or both, in any combination. Any pin can be a control strobe output, status (Test) input, or serial I/O link implemented via software. An additional 33 individually addressable bits reconfigure, control, and monitor the status of the CPU and all onchip peripheral functions (timer counters, serial port modes, interrupt logic, and so forth).

Figure 5. PSW—Program Status Word Organization

(MSI	٥,						(LSB)	INT1	P3.3	Interrupt 1 input pin.
RD	WR	T1	ТО	INT1	INT0	TXD	RXD			Low-level or falling-edge trig- gered.
Symb RD	P3		Rea	me and ad data ive low	control pulse	output genera	ted by	INT0	P3.2	Interrupt 0 input pin. Low-level or falling-edge triggered.
				dware mory is		externa	I data	TXD	P3.1	Transmit Data pin for serial port in UART mode. Clock out-
WR	P3	.6		te data						put in shift register mode.
			har	Active low pulse generated by hardware when external data memory is written.				RXD	P3.0	Receive Data pin for serion port in UART mode. Data I/Opin in shift register mode.
T1	P3	.5		ner/cou test pin.		externa	l input			piir iii siiiit register mode.
ТО	P3	.4		ner/cou		externa	l input			

Figure 6. P3—Alternate I/O Functions of Port 3

Direct Bit Addressing

The most significant bit of the direct address byte selects one of two groups of bits. Values between 0 and 127 (00H and 7FH) define bits in a block of 32 bytes of on-chip RAM, between RAM addresses 20H and 2FH (Figure 4a). They are numbered consecutively from the lowest-order byte's lowest-order bit through the highest-order byte's highest-order bit.

Bit addresses between 128 and 255 (80H and 0FFH) correspond to bits in a number of special registers, mostly used for I/O or peripheral control. These positions are numbered with a different scheme than RAM: the five high-order address bits match those of the register's own address, while the three low-order bits identify the bit position within that register (Figure 4b).

USING THE INTEL MCS®-51 BOOLEAN PROCESSING CAPABILITIES

Notice the column labeled "Symbol" in Figure 5. Bits with special meanings in the PSW and other registers have corresponding symbolic names. General-purpose (as opposed to carry-specific) instructions may access the carry like any other bit by using the mnemonic CY in place of C, P0, P1, P2, and P3 are the 8051's four L/O ports: secondary functions assigned to each of the eight pins of P3 are shown in Figure 6.

Figure 7 shows the last four bit addressable registers. TCON (Timer Control) and SCON (Serial port Control) control and monitor the corresponding peripherals, while IE (Interrupt Enable) and IP (Interrupt Priority) enable and prioritize the five hardware interrupt sources. Like the reserved hardware register addresses,

the five bits not implemented in IE and IP should not be accessed: they can *not* be used as software flags.

Addressable Register Set. There are 20 special function registers in the 8051, but the advantages of bit addressing only relate to the 11 described below. Five potentially bit-addressable register addresses (OCOH, OC8H, OD8H, OE8H, & OF8H) are being reserved for possible future expansion in microcomputers based on the MCS-51 architecture. Reading or writing non-existent registers in the 8051 series is pointless, and may cause unpredictable results. Byte-wide logical operations can be used to manipulate bits in all non-bit addressable registers and RAM.

borrow out of bit 3.		
Flag 0. Set/cleared/tested by soft- ware as a user-defined status flag.		
Register bank Select control bits.		
1 & 0. Set/cleared by software to determine working register bank (see Note).	PSW.3	

Figure 5. PSW--Program Status Word Organization

interrupt 1 input pin.	P3.3								(sta)
			OXT		PTMI				
Interrupt 0 input pin. Low-level or falling-edge triggered.					ne and ad data ive low				
put in shift register mode. Receive Data pin for serial port in UART mode. Data I/O						Act			
					er/coul				

Figure 6, P3-Alternata i/O Functions of Port 3

Bit addresses between 128 and 255 (80H and 0FFH) correspond to bits in a number of special registers, mostly used for I/O or peripheral control. These positions are numbered with a different scheme than RAM: the five high-order address bits match those of the register's own address, while the three low-order bits identify the bit position within that register (Fagure 4b).

Direct Bit Addressing

The most significant bit of the direct address byte selects one of two groups of bits. Values between 0 and 127 (60H and 7FH) define bits in a block of 32 bytes of on-chip RAM, between RAM addresses 20H and 2FH (Figure 4a) They are numbered consecutively from the lowest-order byte's lowest-order bit through the high-

(MSB)				(LSB)	(88J)	TCON.3	Interrupt 1 Edge flag.
TF1	ol Positi	on Nan .7 Time Set cour	THE PARTY STATE OF THE STATE OF	gnificar ow Flag lware of erflow.	on timer/ Cleared	disable of the lent of	TCON.2	Set by hardware when external interrupt edge detected Cleared when interrupt processed. Interrupt 1 Type control bit. Set/cleared by software to
TRI	TCON	.6 Time Set/ time .5 Time Set coul whe	er 1 Run o /cleared b er/counter er 0 overfl	ontrol by software on Flag lware of erflow.	on timer/ Cleared	IT mon	oort contro e software itemupte t	specify falling edge/low lever triggered external interrupts. Interrupt 0 Edge flag. Set by hardware when external interrupt edge detected. Cleared when interrupt processed. Interrupt 0 Type control bit.
INO	TOON	Set	cleared ber/counter	y software on/off.	are to turn		interrupts 1.	specify falling edge/low leve triggered external interrupts.
SM0	SM1	N. Set	REN TB		1 1 1	RB8	SCON.2	Receive Bit 8. Set/cleared by hardware to indicate state of ninth data b
	DIPOSITI				10300			received.
SM0 SM1 SM2	SCON SCON	1.7 Seri Set/ note 1.6 Seri Set/ note 1.5 Seri Set	al port Mo/cleared	de cont ode cont ode cont ode cont ode cont are to c	crol bit 0. ware (see crol bit 1. ware (see	are to printer. RI it. it. are to	rity controlly by softwood	received. Transmit Interrupt flag. Set by hardware when byt transmitted. Cleared by sof ware after servicing. Receive Interrupt flag. Set by hardware when byte received. Cleared by softwar after servicing. the state of (SM0, SM1)
SM0 SM1 SM2 WOLV	SCON SCON SCON	1.7 Seri Setv. note 1.6 Seri Setv. note 1.5 Seri Set cept 8 is 1.4 Rec Setv. able tion	al port Mo /cleared a) al port Mo /cleared a) al port Mo by softwa tion of fra zero. ceiver Enal /cleared be /disable	ode control ode co	rol bit 0. ware (see rol bit 1. ware (see rol bit 2. lisable re- which bit rol bit.	A bit. In the property of the	SCON.0	Transmit Interrupt flag. Set by hardware when byt transmitted. Cleared by software after servicing. Receive Interrupt flag. Set by hardware when byte received. Cleared by softwar after servicing. the state of (SM0, SM1) selects: (0,0)—Shift register I/O expansion. (0,1)—8-bit UART, variable

Figure 7. Peripheral Configuration Registers

Figure 7. Peripheral Configuration Registers (Continued)

The accumulator and B registers (A and B) are normally involved in byte-wide arithmetic, but their individual bits can also be used as 16 general software flags. Added with the 128 flags in RAM, this gives 144 general purpose variables for bit-intensive programs. The program status word (PSW) in Figure 5 is a collection of flags and machine status bits including the carry flag itself. Byte operations acting on the PSW can therefore affect the carry.

Instruction Set

Having looked at the bit variables available to the Boolean Processor, we will now look at the four classes of

instructions that manipulate these bits. It may be helpful to refer back to Table 2 while reading this section.

State Control. Addressable bits or flags may be set, cleared, or logically complemented in one instruction cycle with the two-byte instructions SETB, CLR, and CPL. (The "B" affixed to SETB distinguishes it from the assembler "SET" directive used for symbol definition.) SETB and CLR are analogous to loading a bit with a constant: 1 or 0. Single byte versions perform the same three operations on the carry.

The MCS-51 assembly language specifies a bit address in any of three ways:

 by a number or expression corresponding to the direct bit address (0-255):

loin

- by the name or address of the register containing the bit, the *dot operator* symbol (a period: "."), and the bit's position in the register (7-0):
- in the case of control and status registers, by the predefined assembler symbols listed in the first columns of Figures 5-7.

Bits may also be given user-defined names with the assembler "BIT" directive and any of the above techniques. For example, bit 5 of the PSW may be cleared by any of the four instructions.

```
USR_FLG BIT PSW.5 ; User Symbol Definition

... ...
CLR OD5H ; Absolute Addressing
CLR PSW.5 ; Use of Dot Operator
CLR FO ; Pre-Defined Assembler
; Symbol
CLR USR_FLG ; User-Defined Symbol
```

Data Transfers. The two-byte MOV instructions can transport any addressable bit to the carry in one cycle, or copy the carry to the bit in two cycles. A bit can be moved between two arbitrary locations via the carry by combining the two instructions. (If necessary, push and pop the PSW to preserve the previous contents of the carry.) These instructions can replace the multi-instruction sequence of Figure 8, a program structure appearing in controller applications whenever flags or outputs are conditionally switched on or off.

Figure 8. Bit Transfer Instruction Operation

Logical Operations. Four instructions perform the logical-AND and logical-OR operations between the carry and another bit, and leave the results in the carry. The instruction mnemonics are ANL and ORL; the absence or presence of a slash mark ("/") before the source operand indicates whether to use the positive-logic value or the logical complement of the addressed bit. (The source operand itself is never affected.)

Bit-test Instructions. The conditional jump instructions "JC rel" (Jump on Carry) and "JNC rel" (Jump on Not Carry) test the state of the carry flag, branching if it is a one or zero, respectively. (The letters "rel" denote relative code addressing.) The three-byte instructions "JB bit.rel" and "JNB bit.rel" (Jump on Bit and Jump on Not Bit) test the state of any addressable bit in a similar manner. A fifth instruction combines the Jump on Bit and Clear operations. "JBC bit.rel" conditionally branches to the indicated address, then clears the bit in the same two cycle instruction. This operation is the same as the MCS-48 "JTF" instructions.

All 8051 conditional jump instructions use program counter-relative addressing, and all execute in two cycles. The last instruction byte encodes a signed displacement ranging from -128 to +127. During execution, the CPU adds this value to the incremented program counter to produce the jump destination. Put another way, a conditional jump to the immediately following instruction would encode 00H in the offset byte.

A section of program or subroutine written using only relative jumps to nearby addresses will have the same machine code independent of the code's location. An assembled routine may be repositioned anywhere in memory, even crossing memory page boundaries, without having to modify the program or recompute destination addresses. To facilitate this flexibility, there is an unconditional "Short Jump" (SJMP) which uses relative addressing as well. Since a programmer would have quite a chore trying to compute relative offset values from one instruction to another, ASM51 automatically computes the displacement needed given only the destination address or label. An error message will alert the programmer if the destination is "out of range."

The so-called "Bit Test" instructions implemented on many other microprocessors simply perform the logical-AND operation between a byte variable and a constant mask, and set or clear a zero flag depending on the result. This is essentially equivalent to the 8051 "MOV C.bit" instruction. A second instruction is then needed to conditionally branch based on the state of the zero flag. This does not constitute abstract bit-addressing in the MCS-51 sense. A flag exists only as a field

within a register: to reference a bit the programmer must know and specify both the encompassing register and the bit's position therein. This constraint severely limits the flexibility of symbolic bit addressing and reduces the machine's code-efficiency and speed.

Interaction with Other Instructions. The carry flag is also affected by the instructions listed in Table 3. It can be rotated through the accumulator, and altered as a side effect of arithmetic instructions. Refer to the User's Manual for details on how these instructions operate.

Simple Instruction Combinations

By combining general purpose bit operations with certain addressable bits, one can "custom build" several hundred useful instructions. All eight bits of the PSW can be tested directly with conditional jump instructions to monitor (among other things) parity and overflow status. Programmers can take advantage of 128 software flags to keep track of operating modes, resource usage, and so forth.

The Boolean instructions are also the most efficient way to control or reconfigure peripheral and I/O registers. All 32 I/O lines become "test pins," for example, tested by conditional jump instructions. Any output pin can be toggled (complemented) in a single instruction cycle. Setting or clearing the Timer Run flags (TRO and TR1) turn the timer/counters on or off; polling the same flags elsewhere lets the program determine if a timer is running. The respective overflow flags (TF0 and TF1) can be tested to determine when the desired period or count has elapsed, then cleared in preparation for the next repetition. (For the record, these bits are all part of the TCON register, Figure 7a. Thanks to symbolic bit addressing, the programmer only needs to remember the mnemonic associated with each function. In other words, don't bother memorizing control word layouts.) notice telesta, dentons of notionalent and mort

In the MCS-48 family, instructions corresponding to some of the above functions require specific opcodes. Ten different opcodes serve to clear complement the software flags F0 and F1, enable/disable each interrupt, and start/stop the timer. In the 8051 instruction set, just three opcodes (SETB, CLR, CPL) with a direct bit address appended perform the same functions. Two test instructions (JB and JNB) can be combined with bit addresses to test the software flags, the 8048 I/O pins T0, T1, and INT, and the eight accumulator bits, replacing 15 more different instructions.

Table 4a shows how 8051 programs implement software flag and machine control functions associated with special opcodes in the 8048. In every case the MCS-51 solution requires the same number of machine cycles, and executes 2.5 times faster.

Table 3. Other Instructions Affecting

Mnem	onic	Description	Byte	Cyc
ADD	A,Rn	Add register to Accumulator	so più sallob	pit s
ADD	A,direct	Add direct byte to	2	1
ADD	A,@Ri	Accumulator Add indirect RAM to	ela yes er es	n spil
ADD	A,#data	Add immediate data	2	isque na ve
ADDC	A,Rn	to Accumulator Add register to Accumulator with	1 1	1
ADDC	A,direct	Carry flag Add direct byte to	10 2	1
ADDC	A,@Ri	Carry flag Add indirect RAM to Accumulator with	20 1	1
ADDC	A,#data	Carry flag Add immediate data	2	op(
	A,Rn	to Acc with Carry flag Subtract register from Accumulator with borrow	307	ior 1
SUBB	A,direct	DOITOW	2	1 900
SUBB	A,@Ri	Subtract indirect RAM from Acc with borrow	equenc contr	
SUBB	A, #data	Subtract immediate data from Acc with	2)) P
MUL	AB	borrow Multiply A & B	1	4
DIV	AB	Divide A by B	1	4
DA	A	Decimal Adjust Accumulator	1	1
RLC	A	Rotate Accumulator Left through the Carry flag	1	1
RRC	A	Rotate Accumulator Right through Carry flag	1	1
CJNE	A,direct.rel	Compare direct byte to Acc & Jump if Not Equal	3	2
CJNE	A,#data.rel		3	- 2
CJNE	Rn, # data.rel	Compare immed to	3	2
OINE		register & Jump if Not Equal		
CJNE	@Ri,#data.rel	Compare immed to indirect & Jump if Not Equal	3	2

All mnemonics copyrighted @ Intel Corporation 1980.

Table 4a. Contrasting 8048 and 8051 Bit Control and Testing Instructions

139992511 125-3	48 uction	Bytes	Cycles	μSec	59403245.63	8x51 truction	Bytes	Cycle	es & μSec
Flag Cont	trol								
CLR	C	1	1	2.5	CLR	C	0 1 gsl		lump if So
CPL	F0	1	1	2.5	CPL	F0	2		1.094
Flag Test	ing		le 1.UH	SIMP	0.01		+ =	lesito	SIML
JNC	offset	2	2	5.0	JNC	rel	0 8 2 0 10		2 gmu
JF0	offset	2	2	5.0	JB	F0.rel	3		2 190
JB7	offset	2	2	5.0	JB	ACC.7.rel	3		2 78
Periphera	l Polling	3	AGC, 7.(e)	SIML	10.0		1 =	A	CPL
JTO	offset	2	2	5.0	JB	T0.rel	3		2 100
JN1	offset	2	2	5.0	JNB	INT0.rel	bebra ore		2
JTF	offset	2	2	5.0	JBC	TF0.rel	3	19.A	2 1/1
Machine	and Periph	eral Control						N. H.A.	190
STRT	T	8 1	P1.2.rel	2.5	SETB	TRO	2		1 881
EN	1	1	1	2.5	SETB	EX0	102121		est if Itte
DIS	TCNT1	1	1	2.5	CLR	ET0	2		1 1/16
C TANK TO BE		12.11.12	DO 13 7 M	- SP	73.032		The second	1000720	Own

Table 4b. Replacing 8048 Instruction Sequences with Single 8x51 Instructions

8048 Bytes Cycles μSec	8051 Bytes Cycles & μ.Sec
Flag Control Set carry CLR C CPL C = 2 5.0 Set Software Flag	to what? Then what does all this buy you? Qualitative to colling. All the same capacitit areas! e (and often have been) implemented on other ma-
Set Software Flag CLR F0 CPL F0 = 2 2 5.0	SETB F0 2 deposit of a second post of the second se
Turn Off Output Pin ANL P1.#0FBH = 2 2 5.0	CLR its P1.2 sowted as a 2 This art was postured.
Complement Output Pin IN A.P1 XRL A.#04H OUTL P1.A = 4 6 15.0	hilectures are numerous. What the 8051 Family buys out is a fester, cleaner, lower-cost solution to micro- controller applications CPL P1.2 2 P1.2
Clear Flag in RAM MOV R0.#FLGADR MOV A.@R0	The opcode space freed by condensing many specific 048 instructions into a few general operations has been used to add new functionality to the MCS-31 architecture—both for byte and bit operations. 144 software
MOV @R0.A = 6 6 15.0	CLR USER_FLG 2

7-11

8048 Instruction	tes	Cycles	μSec	oe8 ins	8x51 truction	Bytes	Cycle	es & μSec
Flag Testing:							lo	Flag Contro
Jump if Software Flag is	0	0		2.5				
JF0 \$+4 S			JPO	2.5	1			CPL
JMP offset =	4	4	10.0	JNB	F0.rel	3		Flag Techin
Jump if Accumulator bit is	s 0	ler		5.0				
CPL A 8				5.0				
JB7 offset				5.0				187
CPL A =	4	4	10.0	JNB	ACC.7.rel	3	Polling	2
Peripheral Polling		for OT	- BL	5.0	9	\$	offset	OTL
Test if Input Pin is Ground	ded			5.0	2			
IN S A.P1 8				5.0	2		offset	
CPL A						Lostona Constrol		
JB3 offset =	4	5	12.5	JNB	P1.3.rel	Seral Control		2
Test if Interrupt Pin is High	h			2.5				
JN1 1 \$+4			RJO	2.5				
JMP offset =	4	4	10.0	JB	INT0.rel	3		2

3.0 BOOLEAN PROCESSOR APPLICATIONS

So what? Then what does all this buy you?

Qualitatively, nothing. All the same capabilities could be (and often have been) implemented on other machines using awkward sequences of other basic operations. As mentioned earlier, any CPU can solve any problem given enough time.

Quantitatively, the differences between a solution allowed by the 8051 and those required by previous architectures are numerous. What the 8051 Family buys you is a faster, cleaner, lower-cost solution to microcontroller applications.

The opcode space freed by condensing many specific 8048 instructions into a few general operations has been used to add new functionality to the MCS-51 architecture—both for byte and bit operations. 144 software flags replace the 8048's two. These flags (and the carry) may be directly set, not just cleared and complemented, and all can be tested for either state, not just one. Operating mode bits previously inaccessible may be read, tested, or saved. Situations where the 8051 instruction set provides new capabilities are contrasted with 8048 instruction sequences in Table 4b. Here the 8051 speed advantage ranges from 5x to 15x!

Combining Boolean and byte-wide instructions can produce great synergy. An MCS-51 based application will prove to be:

- simpler to write since the architecture correlates more closely with the problems being solved:
- easier to debug because more individual instructions have no unexpected or undesirable side-effects:
- more byte efficient due to direct bit addressing and program counter relative branching:
- faster running because fewer bytes of instruction need to be fetched and fewer conditional jumps are processed:
- lower cost because of the high level of system-integration within one component.

These rather unabashed claims of excellence shall not go unsubstantiated. The rest of this chapter examines less trivial tasks simplified by the Boolean processor. The first three compare the 8051 with other microprocessors; the last two go into 8051-based system designs in much greater depth.

Design Example #1—Bit Permutation

First off, we'll use the bit-transfer instructions to permute a lengthy pattern of bits.

A steadily increasing number of data communication products use encoding methods to protect the security of sensitive information. By law, interstate financial transactions involving the Federal banking system must be transmitted using the Federal Information Processing Data Encryption Standard (DES).

Basically, the DES combines eight bytes of "plaintext" data (in binary, ASCII, or any other format) with a 56-bit "key", producing a 64-bit encrypted value for transmission. At the receiving end the same algorithm is applied to the incoming data using the same key, reproducing the original eight byte message. The algorithm used for these permutations is fixed; different user-defined keys ensure data privacy.

It is not the purpose of this note to describe the DES in any detail. Suffice it to say that encryption/decryption is a long, iterative process consisting of rotations, exclusive -OR operations, function table look-ups, and an extensive (and quite bizarre) sequence of bit permutation, packing, and unpacking steps. (For further details refer to the June 21, 1979 issue of Electronics magazine.) The bit manipulation steps are included, it is rumored, to impede a general purpose digital supercomputer trying to "break" the code. Any algorithm implementing the DES with previous generation microprocessors would spend virtually all of its time diddling bits.

The bit manipulation performed is typified by the Key Schedule Calculation represented in Figure 9. This step is repeated 16 times for each key used in the course of a transmission. In essence, a seven-byte, 56-bit "Shifted Key Buffer" is transformed into an eight-byte, "Permutation Buffer" without altering the shifted Key. The arrows in Figure 9 indicate a few of the translation steps. Only six bits of each byte of the Permutation Buffer are used; the two high-order bits of each byte are

cleared. This means only 48 of the 56 Shifted Key Buffer bits are used in any one iteration.

Different microprocessor architectures would best implement this type of permutation in different ways. Most approaches would share the steps of Figure 10a:

- Initialize the Permutation Buffer to default state (ones or zeroes):
- Isolate the state of a bit of a byte from the Key Buffer. Depending on the CPU, this might be accomplished by rotating a word of the Key Buffer through a carry flag or testing a bit in memory or an accumulator against a mask byte:
- Perform a conditional jump based on the carry or zero flag if the Permutation Buffer default state is correct:
- Otherwise reverse the corresponding bit in the permutation buffer with logical operations and mask bytes.

Each step above may require several instructions. The last three steps must be repeated for all 48 bits. Most microprocessors would spend 300 to 3,000 microseconds on each of the 16 iterations.

Notice, though, that this flow chart looks a lot like Figure 8. The Boolean Processor can permute bits by simply moving them from the source to the carry to the destination—a total of two instructions taking four bytes and three microseconds per bit. Assume the Shifted Key Buffer and Permutation Buffer both reside in bit-addressable RAM, with the bits of the former assigned symbolic names SKB_1, SKB_2, ... SKB_56, and that the bytes of the latter are named PB_1, ... PB_8. Then working from Figure 9, the software for the permutation algorithm would be that of Example 1a. The total routine length would be 192 bytes, requiring 144 microseconds.

Figure 9. DES Key Schedule Transformation

Figure 10a. Flowchart for Key Permutation Attempted with a Byte Processor

is repeated 16 times for each key used in the course of a transmission. In essence, a seven-byte, 56-bit "Shifted Key Puffer" is transformed into an eight-byte, "Perumention Buffer" without altering the shifted Key, The arrows in Figure 9 indicate a few of the translation sleep. Only six buts of each byte of the Pernautation Buffer are used; the two high-order bits of each byte are

Paure 9, DES Key Schedule Transformation

Figure 10b. DES Key Permutation with Boolean Processor

USING THE INTEL MCS®-51 BOOLEAN PROCESSING CAPABILITIES

The algorithm of Figure 10b is just slightly more efficient in this time-critical application and illustrates the synergy of an integrated byte and bit processor. The bits needed for each byte of the Permutation Buffer are assimilated by loading each bit into the carry (1 μ s.) and shifting it into the accumulator (1 μ s.). Each byte is stored in RAM when completed. Forty-eight bits thus need a total of 112 instructions, some of which are listed in Example 1b.

Worst-case execution time would be 112 microseconds, since each instruction takes a single cycle. Routine length would also decrease, to 168 bytes. (Actually, in the context of the complete encryption algorithm, each permuted byte would be processed as soon as it is assimilated—saving memory and cutting execution time by another 8 µs.)

To date, most banking terminals and other systems using the DES have needed special boards or peripheral controller chips just for the encryption/decryption process, and still more hardware to form a serial bit stream for transmission (Figure 11a). An 8051 solution could pack most of the entire system onto the one chip (Figure 11b). The whole DES algorithm would require less than one-fourth of the on-chip program memory, with the remaining bytes free for operating the banking terminal (or whatever) itself.

Moreover, since transmission and reception of data is performed through the on-board UART, the unencrypted data (plaintext) never even exists outside the microcomputer! Naturally, this would afford a high degree of security from data interception.

Example 1. DES Key Permutation Software. a.) "Brute Force" technique MOV C.SKB_1 MOV PB_1.1,C MOV C.SKB_2 WOV PB_4.0.C MOV C,SKB_3 MOV PB_2.5,C MOV C.SKB_4 MOV PB_1.0.C MOV C,SKB_55 MOV PB_5.0,C MOV C,SKB_56 MOV PB_7.2,C b.) Using Accumulator to Collect Bits CLR MOV C,SKB_14 RLC A MOV C,SKB_17 RLC MOV C.SKB_11 RLC A MOV C, SKB_24 RLC A MOV C.SKB_1 RLC MOV C.SKB_5 RLC MOV PB_1, A ... MOV C,SKB_29 RLC MOV C,SKB_32 RLC

MOV

PB_8,A

Figure 11. Secure Banking Terminal Block Diagram

Design Example #2—Software Serial I/O

An exercise often imposed on beginning microcomputer students is to write a program simulating a UART. Though doing this with the 8051 Family may appear to be a moot point (given that the hardware for a full UART is on-chip), it is still instructive to see how it would be done, and maintains a product line tradition.

As it turns out, the 8051 microcomputers can receive or transmit serial data via software very efficiently using the Boolean instruction set. Since any I/O pin may be a serial input or output, several serial links could be maintained at once.

Figures 12a and 12b show algorithms for receiving or transmitting a byte of data. (Another section of program would invoke this algorithm eight times, synchronizing it with a start bit, clock signal, software delay, or timer interrupt.) Data is received by testing an input pin, setting the carry to the same state, shifting the carry into a data buffer, and saving the partial frame in internal RAM. Data is transmitted by shifting an output buffer through the carry, and generating each bit on an output pin.

A side-by-side comparison of the software for this common "bit-banging" application with three different microprocessor architectures is shown in Table 5a and 5b. The 8051 solution is more efficient than the others on every count!

Figure 12. Serial I/O Algorithms and provide the library increases and the library increases and

Design Example #3—Combinatorial **Logic Equations**

Next we'll look at some simple uses for bit-test instructions and logical operations. (This example is also presented in Application Note AP-69.)

Virtually all hardware designers have solved complex functions using combinatorial logic. While the hardware involved may vary from relay logic, vacuum tubes, or TTL or to more esoteric technologies like fluidics, in each case the goal is the same: to solve a problem represented by a logical function of several Boolean variables.

Figure 13 shows TTL and relay logic diagrams for a function of the six variables U through Z. Each is a solution of the equation.

$$Q = (U \bullet (V + W)) + (X \bullet \overline{Y}) + \overline{Z}$$

Equations of this sort might be reduced using Karnaugh Maps or algebraic techniques, but that is not the purpose of this example. As the logic complexity increases, so does the difficulty of the reduction process. Even a minor change to the function equations as the design evolves would require tedious re-reduction from scratch.

Figure 13. Hardware Implementations of Boolean Functions

For the sake of comparison we will implement this function three ways, restricting the software to three proper subsets of the MCS-51 instruction set. We will also assume that U and V are input pins from different input ports, W and X are status bits for two peripheral controllers, and Y and Z are software flags set up earlier in the program. The end result must be written

to an output pin on some third port. The first two implementations follow the flow-chart shown in Figure 14. Program flow would embark on a route down a test-and-branch tree and leaves either the "True" or "Not True" exit ASAP—as soon as the proper result has been determined. These exits then rewrite the output port with the result bit respectively one or zero.

Figure 14. Flow Chart for Tree-Branching Algorithm

Other digital computers must solve equations of this type with standard word-wide logical instructions and conditional jumps. So for the first implementation, we won't use any generalized bit-addressing instructions. As we shall soon see, being constrained to such an instruction subset produces somewhat sloppy software solutions. MCS-51 mnemonics are used in Example 2a: other machines might further cloud the situation by requiring operation-specific mnemonics like INPUT, OUTPUT, LOAD, STORE, etc., instead of the MOV mnemonic used for all variable transfers in the 8051 instruction set.

The code which results is cumbersome and error prone. It would be difficult to prove whether the software worked for all input combinations in programs of this sort. Furthermore, execution time will vary widely with input data.

Thanks to the direct bit-test operations, a single instruction can replace each move mask conditional jump sequence in Example 2a, but the algorithm would be equally convoluted (see Example 2b). To lessen the confusion "a bit" each input variable is assigned a symbolic name.

A more elegant and efficient implementation (Example 2c) strings together the Boolean ANL and ORL functions to generate the output function with straight-line code. When finished, the carry flag contains the result, which is simply copied out to the destination pin. No flow chart is needed—code can be written directly from the logic diagrams in Figure 14. The result is simplicity itself: fast, flexible, reliable, easy to design, and easy to debug.

An 8051 program can simulate an N-input AND or OR gate with at most N+1 lines of source program—one for each input and one line to store the results. To simulate NAND and NOR gates, complement the carry after computing the function. When some inputs to the gate have "inversion bubbles", perform the ANL or ORL operation on inverted operands. When the first input is inverted, either load the operand into the carry and then complement it, or use DeMorgan's Theorem to convert the gate to a different form.

```
Example 2. Software Solutions to Logic Function of Figure 13.
```

a.) Using only byte-wide logical instructions
:BFUNCI SOLVE RANDOM LOGIC
; FUNCTION OF 6 VARIABLES
; BY LOADING AND MASKING
; THE APPROPRIATE BITS IN
; THE ACCUMULATOR. THEN
; EXECUTING CONDITIONAL
; JUMPS BASED ON ZERO
; CONDITION. (APPROACH USED
; BY BYTE-ORIENTED
; ARCHITECTURES.) BYTE AND
; MASK VALUES CORRESPOND TO
; RESPECTIVE BYTE ADDRESS
; AND BIT POSITIONS.

OUTBUF DATA 22H ;OUTPUT PIN STATE MAP


```
TESTY: MOV A, P2 of the of bluow
ANL A,#00000100B
I Forther JNZ TESTU CONTROL SOMEON STATE TO
       MOV A.TCON
       ANL A.#00100000B
sleads a JZ of TESTX delid tograb and of slead
TESTU: MOV A,Pl m does solder use dellouri
ANL A, #0000010B
qually convoluted (see E . QTES 2 ZNLo lessen th
TESTX: MOV A, TCON de des "id a" moralino
      ANL A,#00001000B
       JZ
          TESTZ
more elegant and efficient HOV -A, 20H coloffe boa tagget stom
ANL A, #0000001B
nd-tidgients JZ w SETQ miguo and attraction of ano
TESTZ: MOV A, 21H
ANL A, #0000010B
ow chart is needed -code of SETQ of short is needed wo
CLRQ: MOV A, OUTBUF
ANL A,#11110111B
       JMP OUTQ
SETQ: MOV A.OUTBUF
ORL A,#00001000B
OUTQ: MOV OUTBUF, A
T .allures MOV .. P3, A I end bee lugar does not on
b.) Using only bit-test instructions
:BFUNC2 SOLVE A RANDOM LOGIC
; FUNCTION OF 6 VARIABLES
BY DIRECTLY POLLING EACH
; BIT. (APPROACH USING
       MCS-51 UNIQUE BIT-TEST
       INSTRUCTION CAPABILITY.)
       SYMBOLS USED IN LOGIC
 DIAGRAM ASSIGNED TO
       CORRESPONDING 8x51 BIT
       ADDRESSES.
```

```
BIT
              P1.1
V
        BIT
              P2.2
W
        BIT
              TFO
X
        BIT
              IE1
Y
        BIT
              20H.0
Z
        BIT
              21H.1
Q
        BIT
              P3.3
        ...
TEST_V: JB
              V, TEST_U
        JNB
              W, TEST_X
TEST_U: JB
              U, SET_Q
TEST_X: JNB
              X, TEST_Z
        JNB
              Y, SET_Q
TEST_Z: JNB
              Z, SET_Q
CLR_Q: CLR
              0
        JMP
              NXTTST
SET_Q: SETB Q
NXTTST: (CONTINUATION OF
       :PROGRAM)
c.) Using logical operations on Boolean variables
:FUNC3 SOLVE A RANDOM LOGIC
       FUNCTION OF 6 VARIABLES
       USING STRAIGHT_LINE
       LOGICAL INSTRUCTIONS ON
       MCS-51 BOOLEAN VARIABLES.
MOV C.V
ORL C.W
        ;OUTPUT OF OR GATE
ANL C.U
         ;OUTPUT OF TOP AND GATE
MOV FO, C ; SAVE INTERMEDIATE STATE
MOV C.X
ANL C,Y
         ;OUTPUT OF BOTTOM AND GATE
ORL C.FO :INCLUDE VALUE SAVED ABOVE
ORL C.Z : INCLUDE LAST INPUT
         :VARIABLE
MOV Q,C ;OUTPUT COMPUTED RESULT
```

Other digital computers must solve equations of this yee with standard word-wide logical instructions and conditional jumps. So for the first implementation, we won't use any generalized bit-addressing instructions as we shall soon see, being constrained to such an intruction subset produces somewhat sloppy software obtained and MCS-51 mnemonics are used in Example 2nterions machines might further cloud the situation by septiming operation-specific numerouses like INPUT, MOTPUT, LOAD, STORE, etc., instead of the MOV

An upper-limit can be placed on the complexity of software to simulate a large number of gates by summing the total number of inputs and outputs. The actual total should be somewhat shorter, since calculations can be "chained," as shown. The output of one gate is often the first input to another, bypassing the intermediate variable to eliminate two lines of source.

Design Example #4—Automotive Dashboard Functions

Now let's apply these techniques to designing the software for a complete controller system. This application is patterned after a familiar real-world application which isn't nearly as trivial as it might first appear: automobile turn signals. Imagine the three position turn lever on the steering column as a single-pole, triple-throw toggle switch. In its central position all contacts are open. In the up or down positions contacts close causing corresponding lights in the rear of the car to blink. So far very simple.

Two more turn signals blink in the front of the car, and two others in the dashboard. All six bulbs flash when an emergency switch is closed. A thermo-mechanical relay (accessible under the dashboard in case it wears out) causes the blinking.

Applying the brake pedal turns the tail light filaments on constantly ... unless a turn is in progress, in which case the blinking tail light is not affected. (Of course, the front turn signals and dashboard indicators are not affected by the brake pedal.) Table 6 summarizes these operating modes.

Table 6. Truth Table for Turn-Signal Operation

ect, right-turn	Input S	Signals Hamil	to the five	Visional and beautiful Signals				
Brake Switch	Emerg. Switch	merg. Left		Left Front & Dash	Right Front & Dash	Left Rear	Right Rear	
langito uquo	ily upotes the	vhich 10 riodics	sooware,	amuOff going	dash off dash	of Off	Off	
0 5311	conditons cha	pacs and input	as sime ela	18 Off	Blink	Off	Blink	
0	0	1	0	Blink	Off	Blink	Off	
0	1	. 0	0	Blink	Blink	Blink	Blink	
0	наад .1	0	1	Blink	Blink	Blink	Blink	
0	1	1	0	Blink	Blink	Blink	Blink	
1	0	0	0	Off	Off	On	On	
1	1 FRM1	0	1	Off	Blink	On	Blink	
1	0	1	0	Blink	Off	Blink	On	
1	1	0	0	Blink	Blink	On	On	
1	RASR I	0	1	Blink	Blink	On	Blink	
1	1	1	0	Blink	Blink	Blink	On	

But we're not done yet. Each of the exterior turn signal (but not the dashboard) bulbs has a second, somewhat dimmer filament for the parking lights. Figure 15 shows TTL circuitry which could control all six bulbs. The signals labeled "High Freq." and "Low Freq." represent two square-wave inputs. Basically, when one of the turn switches is closed or the emergency switch is activated the low frequency signal (about 1 Hz) is gated through to the appropriate dashboard indicator(s) and turn signal(s). The rear signals are also activated when the brake pedal is depressed provided a turn is not being made in the same direction. When the parking light switch is closed the higher frequency oscillator is gated to each front and rear turn signal, sustaining a low-intensity background level. (This is to eliminate the need for additional parking light filaments.)

In most cars, the switching logic to generate these functions requires a number of multiple-throw contacts. As many as 18 conductors thread the steering column of some automobiles solely for turn-signal and emergency blinker functions. (The author discovered this recently to his astonishment and dismay when replacing the whole assembly because of one burned contact.)

A multiple-conductor wiring harness runs to each corner of the car, behind the dash, up the steering column, and down to the blinker relay below. Connectors at

each termination for each filament lead to extra cost and labor during construction, lower reliability and safety, and more costly repairs. And considering the system's present complexity, increasing its reliability or detecting failures would be quite difficult.

There are two reasons for going into such painful detail describing this example. First, to show that the messiest part of many system designs is determining what the controller should do. Writing the software to solve these functions will be comparatively easy. Secondly, to show the many potential failure points in the system. Later we'll see how the peripheral functions and intelligence built into a microcomputer (with a little creativity) can greatly reduce external interconnections and mechanical part count.

The Single-Chip Solution

The circuit shown in Figure 16 indicates five input pins to the five input variables—left-turn select, right-turn select, brake pedal down, emergency switch on, and parking lights on. Six output pins turn on the front, rear, and dashboard indicators for each side. The microcomputer implements all logical functions through software, which periodically updates the output signals as time elapses and input conditions change.

Figure 15. TTL Logic Implementation of Automotive Turn Signals

Figure 16. Microcomputer Turn-Signal Connections

Design Example #3 demonstrated that symbolic addressing with user-defined bit names makes code and documentation easier to write and maintain. Accordingly, we'll assign these I/O pins names for use throughout the program. (The format of this example will differ somewhat from the others. Segments of the overall program will be presented in sequence as each is described.)

```
nd will be restored to its previous state after service
; INPUT PIN DECLARATIONS:
; (ALL INPUTS ARE POSITIVE-TRUE LOGIC)
BRAKE
       BIT P1.0 ; BRAKE PEDAL
                 :DEPRESSED
       BIT Pl.1
                 :EMERGENCY BLINKER
                 :ACTIVATED
       BIT P1.2
                 :PARKING LIGHTS ON
I_TURN BIT P1.3 ;TURN LEVER DOWN
R_TURN BIT P1.4 ;TURN LEVER UP
       OUTPUT PIN DECLARATIONS:
I_FRNT BIT P1.5 :FRONT LEFT-TURN
                 :INDICATOR
R_FRNT BIT P1.6 ;FRONT RIGHT-TURN
                 :INDICATOR
I_DASH BIT P1.7 :DASHBOARD LEFT-TURN
                 :INDICATOR
```

```
R_DASH BIT P2.0 ;DASHBOARD RIGHT-
;TURN INDICATOR
I_REAR BIT P2.1 ;REAR LEFT-TURN
;INDICATOR
R_REAR BIT P2.2 ;REAR RIGHT-TURN
;INDICATOR
;
```

Another key advantage of symbolic addressing will appear further on in the design cycle. The locations of cable connectors, signal conditioning circuitry, voltage regulators, heat sinks, and the like all affect P.C. board layout. It's quite likely that the somewhat arbitrary pin assignment defined early in the software design cycle will prove to be less than optimum; rearranging the I/O pin assignment could well allow a more compact module, or eliminate costly jumpers on a single-sided board. (These considerations apply especially to automotive and other cost-sensitive applications needing singlechip controllers.) Since other architectures mask bytes or use "clever" algorithms to isolate bits by rotating them into the carry, re-routing an input signal (from bit 1 of port 1, for example, to bit 4 of port 3) could require extensive modifications throughout the software.

The Boolean Processor's direct bit addressing makes such changes absolutely trivial. The number of the port containing the pin is irrelevent, and masks and complex

USING THE INTEL MCS®-51 BOOLEAN PROCESSING CAPABILITIES

program structures are not needed. Only the initial Boolean variable declarations need to be changed; ASM51 automatically adjusts all addresses and symbolic references to the reassigned variables. The user is assured that no additional debugging or software verification will be required.

:INTERRUPT RATE SUBDIVIDER SUB_DIV DATA 20H :HIGH-FREQUENCY OSCILLATOR BIT HI_FREQ SUB_DIV.O BIT :LOW-FREQUENCY OSCILLATOR BIT LO_FREQ BIT SUB_DIV, 7 ORG 0000H JMP INIT ORG 100H :PUT TIMER O IN MODE 1 INIT: MOV TMOD, #00000001B :INITIALIZE TIMER REGISTERS MOV TLO,#0 MOV THO, #-16 :SUBDIVIDE INTERRUPT RATE BY 244 MOV SUB_DIV, #244 ENABLE TIMER INTERRUPTS SETB ETO :GLOBALLY ENABLE ALL INTERRUPTS RIDASH BIT FR. (AS DASHE SETB START TIMER SETB HASS TRO OF THE SANS ; (CONTINUE WITH BACKGROUND PROGRAM) :PUT TIMER O IN MODE 1 :INITIALIZE TIMER REGISTERS SUBDIVIDE INTERRUPT RATE BY 244 :ENABLE TIMER INTERRUPTS GLOBALLY ENABLE ALL INTERRUPTS START TIMER

Timer 0 (one of the two on-chip timer counters) replaces the thermo-mechanical blinker relay in the dashboard controller. During system initialization it is configured as a timer in mode 1 by setting the least significant bit of the timer mode register (TMOD). In this configuration the low-order byte (TL0) is incremented every machine cycle, overflowing and incrementing the high-order byte (TH0) every 256 µs. Timer interrupt 0 is enabled so that a hardware interrupt will occur each time TH0 overflows.

An eight-bit variable in the bit-addressable RAM array will be needed to further subdivide the interrupts via software. The lowest-order bit of this counter toggles very fast to modulate the parking lights: bit 7 will be

"tuned" to approximately 1 Hz for the turn- and emergency-indicator blinking rate.

Loading TH0 with -16 will cause an interrupt after 4.096 ms. The interrupt service routine reloads the high-order byte of timer 0 for the next interval, saves the CPU registers likely to be affected on the stack, and then decrements SUB_DIV. Loading SUB_DIV. with 244 initially and each time it decrements to zero will produce a 0.999 second period for the highest-order bit.

```
ORG 000BH ;TIMER O SERVICE VECTOR
MOV THO,#-16
PUSH PSW
PUSH ACC
PUSH B
DJNZ SUB_DIV,TOSERV
MOV SUB_DIV,#244
```

The code to sample inputs, perform calculations, and update outputs—the real "meat" of the signal controller algorithm—may be performed either as part of the interrupt service routine or as part of a background program loop. The only concern is that it must be executed at least serveral dozen times per second to prevent parking light flickering. We will assume the former case, and insert the code into the timer 0 service routine.

First, notice from the logic diagram (Figure 15) that the subterm (PARK • H_FREQ), asserted when the parking lights are to be on dimly, figures into four of the six output functions. Accordingly, we will first compute that term and save it in a temporary location named "DIM". The PSW contains two general purpose flags: F0, which corresponds to the 8048 flag of the same name, and PSW.1. Since the PSW has been saved and will be restored to its previous state after servicing the interrupt, we can use either bit for temporary storage.

		;DECLARE TEMP ;STORAGE FLAG
;	 C, PARK	;GATE PARKING :LIGHT SWITCH
	HI_FREQ	;WITH HIGH ;FREQUENCY
	DIM, C	ATEMD WADTADIE

This simple three-line section of code illustrates a remarkable point. The software indicates in very abstract terms exactly what function is being performed, inde-

pendent of the hardware configuration. The fact that these three bits include an input pin, a bit within a program variable, and a software flag in the PSW is totally invisible to the programmer.

Now generate and output the dashboard left turn signal.

VOM	C,L_TURN	;SET CARRY IF
ORT.	C,EMERG	OR EMERGENCY
	ave becaming each	;SELECTED
ANL	C, LO_FREQ	GATE IN 1 HZ
		SIGNAL
VOM	I_DASH,C	;AND OUTPUT TO
		;DASHBOARD

To generate the left front turn signal we only need to add the parking light function in F0. But notice that the function in the carry will also be needed for the rear signal. We can save effort later by saving its current state in F0.

there em more a a	WOODS, O M WIN MUM
MOV FO, C	;SAVE FUNCTION
2018.	;SO FAR
ORL C, DIM	;ADD IN PARKING
	;LIGHT FUNCTION
MOV L_FRNT, C	:AND OUTPUT TO
AIUK KOARD BICHT-TURK	:TURN SIGNAL

Finally, the rear left turn signal should also be on when the brake pedal is depressed, provided a left turn is not in progress.

MOV	C.BRAKE	:GATE BRAKE
	O, Diames	:PEDAL SWITCH
ANL	C, L_TURN	;WITH TURN
		;LEVER
ORL	C,FO	;INCLUDE TEMP.
		; VARIABLE FROM DASH

ORL C,DIM ;AND PARKING ;LIGHT FUNCTION ;AND OUTPUT TO ;TURN SIGNAL ;TURN SIGNAL

Now we have to go through a similar sequence for the right-hand equivalents to all the left-turn lights. This also gives us a chance to see how the code segments above look when combined.

MOV	C.R_TURN	;SET CARRY H-	
		TURN AND AND STORES	
ORL	C.EMERG	;TURN ;OR EMERGENCY	
		;SELECTED ;IF SO. GATE IN 1	
ANL	C, LO_FREQ	; IF SO. GATE IN 1	
		;HZ SIGNAL	
VOM	R_DASH.C	;AND OUTPUT TO	
		;DASHBOARD ;SAVE FUNCTION	
VOM	FO.C	;SAVE FUNCTION	
	ES OF BWO	SO FAR	
ORL	C.DIM	;SO FAR ;ADD IN PARKING	
	TEN BACK TO	;LIGHT FUNCTION	
VOM	R_FRNT.C	;LIGHT FUNCTION ;AND OUTPUT TO	
		;TURN SIGNAL	
VOM	C.BRAKE	GATE BRAKE	
		;PEDAL SWITCH	
ANL	C. R_TURN	;WITH TURN	
		;LEVER	
ORL	C.FO	;INCLUDE TEMP.	
		;VARIABLE FROM	
ORL	C.DIM	:AND PARKING	
		;LIGHT FUNCTION	
MOV	R_REAR.C	;AND OUTPUT TO	
		-MITTAL CTONIAT	

(The perceptive reader may notice that simply rearranging the steps could eliminate one instruction from each sequence.)

Now that all six bulbs are in the proper states, we can return from the interrupt routine, and the program is finished. This code essentially needs to reverse the status saving steps at the beginning of the interrupt.

Table 7. Non-Trivial Duty Cycles

	Sub_Div Bits							1 BAG	Duty Cycles						
7	6	5	4	3	2	1	0	12.5%	25.0%	37.5%	50.0%	62.5%	75.0%	87.5%	
X	X	X	X	X	0	0	0	Off	Off	Off	Off	Off	Off	Off	
X	X	X	X	X	0	0	1	Off	Off	Off	Off	Off	Off	On	
X	X	X	X	X	0	1	0	Off	Off	Off	Off	Off	On	On	
X	X	X	X	X	0	1	a112	Off	Off	Off	Off	On	On	On	
X	X	X	X	X	1	0	0	Off	Off	Off	On	On	On	On	
X	X	X	X	X	1	0	1	Off	Off	On	On	On	On	On	
X	X	X	X	X	1	1	0	Off	On	On	On	On	On	On	
X	X	X	X	X	1	1	1	On	On	On	On	On	On	On	

POP B ;RESTORE CPU 110.0 140 ;REGISTERS.
POP ACC TUSTO 044 POP PSW RETI

Program Refinements. The luminescence of an incandescent light bulb filament is generally non-linear: the 50% duty cycle of HI_FREQ may not produce the desired intensity. If the application requires, duty cycles of 25%, 75%, etc. are easily achieved by ANDing and ORing in additional low-order bits of SUB_DIV. For example, 30 H/ signals of seven different duty cycles could be produced by considering bits 2-0 as shown in Table 7. The only software change required would be to the code which sets-up variable DIM;

MOV C,SUB_DIV.1;START WITH 50
;PERCENT
ANL C,SUB_DIV.0;MASK DOWN TO 25
;PERCENT
ORL C,SUB_DIV.2;AND BUILD BACK TO
;62 PERCENT
MOV DIM,C ;DUTY CYCLE FOR
;PARKING LIGHTS.

Interconnections increase cost and decrease reliability. The simple buffered pin-per-function circuit in Figure 16 is insufficient when many outputs require higher-than-TTL drive levels. A lower-cost solution uses the 8051 serial port in the shift-register mode to augment I/O. In mode 0, writing a byte to the serial port data buffer (SBUF) causes the data to be output sequentially through the "RXD" pin while a burst of eight clock pulses is generated on the "TXD" pin. A shift register connected to these pins (Figure 17) will load the data byte as it is shifted out. A number of special peripheral

driver circuits combining shift-register inputs with high drive level outputs have been introduced recently.

Cascading multiple shift registers end-to-end will expand the number of outputs even further. The data rate in the I/O expansion mode is one megabaud, or 8 µs. per byte. This is the mode which the serial port defaults to following a reset, so no initialization is required.

The software for this technique uses the B register as a "map" corresponding to the different output functions. The program manipulates these bits instead of the output pins. After all functions have been calculated the B register is shifted by the serial port to the shift-register driver. (While some outputs may glitch as data is shifted through them, at 1 Megabaud most people wouldn't notice. Some shift registers provide an "enable" bit to hold the output states while new data is being shifted in.)

This is where the earlier decision to address bits symbolically throughout the program is going to pay off. This major I/O restructuring is nearly as simple to implement as rearranging the input pins. Again, only the bit declarations need to be changed.

I_FRNT BIT B.O ;FRONT LEFT-TURN ;INDICATOR R_FRNT BIT B.1 :FRONT RIGHT-TURN :INDICATOR I_DASH BIT B.2 ;DASHBOARD LEFT-TURN ;INDICATOR R_DASH BIT B.3 :DASHBOARD RIGHT-TURN :INDICATOR I_REAR BIT B.4 :REAR LEFT-TURN :INDICATOR R_REAR BIT B.5 ;REAR RIGHT-TURN ;INDICATOR

Figure 17. Output Expansion Using Serial Port

The original program to compute the functions need not change. After computing the output variables, the control map is transmitted to the buffered shift register through the serial port.

MOV SBUF, B ; LOAD BUFFER AND TRANSMIT

The Boolean Processor solution holds a number of advantages over older methods. Fewer switches are required. Each is simpler, requiring fewer poles and lower current contacts. The flasher relay is eliminated entirely. Only six filaments are driven, rather than 10. The wiring harness is therefore simpler and less expensive—one conductor for each of the six lamps and each of the five sensor switches. The fewer conductors use far fewer connectors. The whole system is more reliable.

And since the system is much simpler it would be feasible to implement redundancy and or fault detection on the four main turn indicators. Each could still be a standard double filament bulb, but with the filaments driven in parallel to tolerate single-element failures.

Even with redundancy, the lights will eventually fail. To handle this inescapable fact current or voltage sensing circuits on each main drive wire can verify that each bulb and its high-current driver is functioning properly. Figure 18 shows one such circuit.

Assume all of the lights are turned on except one: i.e., all but one of the collectors are grounded. For the bulb which is turned off, if there is continuity from +12V through the bulb base and filament, the control wire, all connectors, and the P.C. board traces, and if the transistor is indeed not shorted to ground, then the collector will be pulled to +12V. This turns on the base of Q8 through the corresponding resistor, and grounds the input pin, verifying that the bulb circuit is operational. The continuity of each circuit can be checked by software in this way.

Figure 18

Now turn *all* the bulbs on, grounding all the collectors. Q7 should be turned off, and the Test pin should be high. However, a control wire shorted to +12V or an open-circuited drive transistor would leave one of the collectors at the higher voltage even now. This too would turn on Q7, indicating a different type of failure. Software could perform these checks once per second by executing the routine every time the software counter SUB_DIV is reloaded by the interrupt routine.

DJNZ SUB_DIV, TOSERV MOV SUB_DIV, #244 ;RELOAD COUNTER ORL P1,#11100000B :SET CONTROL OUTPUTS HIGH ORL P2.#00000111B or will be pulled to + 12 CLR I_FRNT :FLOAT DRIVE :COLLECTOR JB TO FAULT ;TO SHOULD BE ;PULLED LOW SETB L_FRNT ;PULL COLLECTOR ;BACK DOWN CLR L_DASH TO, FAULT SETB L_DASH CLR L_REAR TO. FAULT JB SETB L_REAR CLR R_FRNT JB TO, FAULT SETB R_FRNT CLR R_DASH JB TO, FAULT SETB R_DASH CLR R_REAR JB TO, FAULT SETB R_REAR :WITH ALL COLLECTORS GROUNDED. TO SHOULD BE HIGH ; IF SO. CONTINUE WITH INTERRUPT ROUTINE. JB TO, TOSERV FAULT: ;ELECTRICAL ;FAILURE ;PROCESSING ;ROUTINE ;(LEFT TO :READER'S :IMAGINATION) TOSERV: ; CONTINUE WITH :INTERRUPT :PROCESSING

The complete assembled program listing is printed in Appendix A. The resulting code consists of 67 program statements, not counting declarations and comments, which assemble into 150 bytes of object code. Each pass through the service routine requires (coincidently) 67 μ s plus 32 μ s once per second for the electrical test. If executed every 4 ms as suggested this software would typically reduce the throughput of the background program by less than 2%.

Once a microcomputer has been designed into a system, new features suddenly become virtually free. Software could make the emergency blinkers flash alternately or at a rate faster than the turn signals. Turn signals could override the emergency blinkers. Adding more bulbs would allow multiple tail light sequencing and syncopation—true flash factor, so to speak.

Design Example #5—Complex Control Functions

And since the system is much simpler it would be feasi-

Finally, we'll mix byte and bit operations to extend the use of 8051 into extremely complex applications.

Programmers can arbitrarily assign I/O pins to input and output functions only if the total does not exceed 32, which is insufficient for applications with a very large number of input variables. One way to expand the number of inputs is with a technique similar to multiplexed-keyboard scanning.

Figure 19 shows a block diagram for a moderately complex programmable industrial controller with the following characteristics:

- 64 input variable sensors:
- 12 output signals:
- Combinational and sequential logic computations:
- Remote operation with communications to a host processor via a high-speed full-duplex serial link:
- Two prioritized external interrupts:
- Internal real-time and time-of-day clocks.

While many microprocessors could be programmed to provide these capabilities with assorted peripheral support chips, an 8051 microcomputer needs no other integrated circuits!

The 64 input sensors are logically arranged as an 8x8 matrix. The pins of Port 1 sequentially enable each column of the sensor matrix: as each is enabled Port 0 reads in the state of each sensor in that column. An eight-byte block in bit-addressable RAM remembers the data as it is read in so that after each complete scan cycle there is an internal map of the current state of all sensors. Logic functions can then directly address the elements of the bit map.

Figure 19. Block Diagram of 64-Input Machine Controller

The computer's serial port is configured as a nine-bit UART, transferring data at 17,000 bytes-per-second. The ninth bit may distinguish between address and data bytes.

The 8051 serial port can be configured to detect bytes with the address bit set, automatically ignoring all others. Pins INTO and INT1 are interrupts configured respectively as high-priority, falling-edge triggered and low-priority, low-level triggered. The remaining 12 I/O pins output TTL-level control signals to 12 actuators.

There are several ways to implement the sensor matrix circuitry, all logically similar. Figure 20a shows one possibility. Each of the 64 sensors consists of a pair of simple switch contacts in series with a diode to permit multiple contact closures throughout the matrix.

The scan lines from Port 1 provide eight un-encoded active-high scan signals for enabling columns of the matrix. The return lines on rows where a contact is closed are pulled high and read as logic ones. Open return lines are pulled to ground by one of the 40 k Ω resistors and are read as zeroes. (The resistor values must be chosen to ensure all return lines are pulled above the 2.0V logic threshold, even in the worst-case,

where all contacts in an enabled column are closed.) Since P0 is provided open-collector outputs and high-impedance MOS inputs its input loading may be considered negligible.

The circuits in Figures 20b-20d are variations on this theme. When input signals must be electrically isolated from the computer circuitry as in noisy industrial environments, phototransistors can replace the switch diode pairs and provide optical isolation as in Figure 20b. Additional opto-isolators could also be used on the control output and special signal lines.

The other circuits assume that input signals are already at TTL levels. Figure 20c uses octal three-state buffers enabled by active-low scan signals to gate eight signals onto Port 0. Port 0 is available for memory expansion or peripheral chip interfacing between sensor matrix scans. Eight-to-one multiplexers in Figure 20d select one of eight inputs for each return line as determined by encoded address bits output on three pins of Port 1. (Five more output pins are thus freed for more control functions.) Each output can drive at least one standard TTL or up to 10 low-power TTL loads without additional buffering.

Going back to the original matrix circuit, Figure 21 shows the method used to scan the sensor matrix. Two complete bit maps are maintained in the bit-addressable region of the RAM: one for the current state and one for the previous state read for each sensor. If the need arises, the program could then sense input transitions and or debounce contact closures by comparing each bit with its earlier value.

The code in Example 3 implements the scanning algorithm for the circuits in Figure 20a. Each column is enabled by setting a single bit in a field of zeroes. The bit maps are positive logic: ones represent contacts that are closed or isolators turned on.

INPUT.	SCAN:		OUTINE TO READ
		,	ENT STATE
			4 SENSORS AND
		;SAVE	IN RAM 20H-27H
	MOV RO,	#20H	;INITIALIZE
X			;POINTERS
	MOV R1,	#28H	FOR BIT MAP
X			;BASES
S man	MOV A,#8	BOH	;SET FIRST BIT
			;IN ACC
SCAN;	MOV P1,	1	;OUTPUT TO SCAN
			;LINES
1 4	RR A		;SHIFT TO ENABL
			;NEXT COLUMN
	1		;NEXT
9	MOV R2,	32 40 48	;REMEMBER CUR-
4 -	57		RENT SCAN
79 Jugan	0.5	por of sense from	;POSITION
	MOV A, PO		;READ RETURN
9 100000			;LINES
9	XCH A,@F	RO	;SWITCH WITH
	01	T. P.	;PREVIOUS MAP
			BITS
	MOV @R1		SAVE PREVIOUS
		16 42 88	STATE AS WELL
	INC RO	4 4 4	;BUMP POINTERS
	INC R1		-DELOAD COAR
	MOV A, R2		;RELOAD SCAN :LINE MASK
	THE ACC	7 .COAN	LOOP UNTIL ALL
9	JMB ACC,	, / ,SCAN	:EIGHT COLUMNS
			:READ
4	RET		INEAD

Figure 19, Block Diagram of 64-input Machine Controller

There are several ways to implement the sensor matrix circuitry, all logically similar. Figure 2/a shows one possibility. Each of the 64 sensors consists of a pair of simple switch contacts in series with a diode to permit wellicht, and of the contact of the sensor.

The scan lines from Port I provide eight un-encoded active-high scan signals for enabling columns of the matrix. The return lines on rows where a coutact is closed are pulled high and read as logic ones. Open return lines are pulled to ground by one of the 40 kft resistors and are read as zeroes. (The resistor values must be chosen to ensure all return lines are pulled must be chosen to ensure all return lines are pulled

he computer's social poor is configured as a nine-bit IAAC, transferring data at 17,000 bytes-per-second, he ninth bit may distinguish between address and data yes.

the 9031 sensi port can be consigned to detect operawith the address bit set, automatically ignoring all others. Fins INTO and INT1 are interrupts configured respectively as high-priority, falling-edge triggered and low-priority, low-level triggered. The remaining 12 I/O pins output TTL-level control signals to 12 actuators.

Figure 20. Sensor Matrix Implementation Methods

Figure 20. Sensor Matrix Implementation Methods (Continued)

Figure 20. Sensor Matrix Implementation Methods (Continued)

Figure 20. Sensor Matrix implementation Methods (Continued) Figure 20. Sensor Matrix Implementation Methods (Continued)

Figure 21. Flowchart for Reading in Sensor Matrix

What happens after the sensors have been scanned depends on the individual application. Rather than inventing some artificial design problem, software corresponding to commonplace logic elements will be discussed.

Combinatorial Output Variables. An output variable which is a simple (or not so simple) combinational function of several input variables is computed in the spirit of Design Example 3. All 64 inputs are represented in the bit maps: in fact, the sensor numbers in Figure 20 correspond to the absolute bit addresses in RAMI The code in Example 4 activates an actuator connected to P2.2 when sensors 12, 23, and 34 are closed and sensors 45 and 56 are open.

```
Example 4.

Simple Combinatorial Output Variables.

;SET P2.2=(12)(23)(34)(45)(56)

MOV C,12

ANL C,23

ANL C,34

ANL C, 45

ANL C, 56

MOV P2.2,C
```

Intermediate Variables. The examination of a typical relay-logic ladder diagram will show that many of the rungs control not outputs but rather relays whose contacts figure into the computation of other functions. In effect, these relays indicate the state of intermediate variables of a computation.

The MCS-51 solution can use any directly addressable bit for the storage of such intermediate variables. Even when all 128 bits of the RAM array are dedicated (to input bit maps in this example), the accumulator, PSW, and B register provide 18 additional flags for intermediate variables.

For example, suppose switches 0 through 3 control a safety interlock system. Closing any of them should deactivate certain outputs. Figure 22 is a ladder diagram for this situation. The interlock function could be recomputed for every output affected, or it may be computed once and save (as implied by the diagram). As the program proceeds this bit can qualify each output.


```
Example 5. Incorporating Override signal into actu-
ator outputs.
        CALL INPUT_SCAN
       MOV C.O saldaha tuqtuO lonatanidmo
which is a simple (or not so sign) and as a didn't
at m bet ORL C. 2 darray tuqui lareyes to noitonu
pirit of Design Example 3. All 64 8., 9 JRO represent
ad in the bit maps: in fact, the sen J, OF VOM in Figur
O correspond to the absolute bit addresses in RAN
; COMPUTE FUNCTION O
       ANL C. FO
       MOV PLO, C
      COMPUTE FUNCTION 1
       ANL C, FO
       MOV P1,1,C; (23) (31)=5.89 Tag:
      COMPUTE FUNCTION 2
       ANL C. FO
       MOV P1,2,C
       . . . . . . . . . .
```


Figure 22. Ladder Diagram for Output Override Circuitry

Latching Relays. A latching relay can be forced into either the ON or OFF state by two corresponding input signals, where it will remain until forced onto the opposite state—analogous to a TTL Set/Reset flip-flop. The relay is used as an intermediate variable for other calculations. In the previous example, the emergency condition could be remembered and remain active until an "emergency cleared" button is pressed.

Any flag or addressable bit may represent a latching relay with a few lines of code (see Example 6).

```
Example 6. Simulating a latching relay.

;I_SET SET FLAG O IF C=1
I_SET: ORL C,FO
MOV FO,C
;
;I_RSET RESET FLAG O IF C=1
I_RSET: CPS C
ANL C,FO
MOV FO,C
;
```

Time Delay Relays. A time delay relay does not respond to an input signal until it has been present (or absent) for some predefined time. For example, a ballast or load resistor may be switched in series with a D.C. motor when it is first turned on, and shunted from the circuit after one second. This sort of time delay may be simulated by an interrupt routine driven by one of the two 8051 timer counters. The procedure followed by the routine depends heavily on the details of the exact function needed: time-outs or time delays with resettable or non-resettable inputs are possible. If the interrupt routine is executed every 10 milliseconds the code in Example 7 will clear an intermediate variable set by the background program after it has been active for two seconds.

```
Example 7. Code to clear USRFLG after a fixed time delay.

JNB USR_FLG,NXTTST
DJNZ DLAY_COUNT,NXTTST
CLR USR_FLG
MOV DLAY_COUNT,#200
NXTTST; :.....
```

Serial Interface to Remote Processor. When it detects emergency conditions represented by certain input combinations (such as the earlier Emergency Override), the controller could shut down the machine immediately and/or alert the host processor via the serial port. Code bytes indicating the nature of the problem could be transmitted to a central computer. In fact, at 17,000 bytes-per-second, the entire contents of both bit maps could be sent to the host processor for further analysis in less than a millisecond! If the host decides that conditions warrant, it could alert other remote processors in the system that a problem exists and specify which shut-down sequence each should initiate. For more information on using the serial port, consult the MCS-51 User's Manual.

Response Timing

One difference between relay and programmed industrial controllers (when each is considered as a "black box") is their respective reaction times to input changes. As reflected by a ladder diagram, relay systems contain a large number of "rungs" operating in parallel. A change in input conditions will begin propagating through the system immediately, possibly affecting the output state within milliseconds.

Software, on the other hand, operates sequentially. A change in input states will not be detected until the next time an input scan is performed, and will not affect the outputs until that section of the program is reached. For that reason the raw speed of computing the logical functions is of extreme importance.

Here the Boolean processor pays off. Every instruction mentioned in this Note completes in one or two microseconds—the minimum instruction execution time for many other microcontrollers! A ladder diagram containing a hundred rungs, with an average of four contacts per rung can be replaced by approximately five hundred lines of software. A complete pass through the entire matrix scanning routine and all computations would require about a millisecond: less than the time it takes for most relays to change state.

It is hoped that these design examples give the reader an appreciation of these unique features and suggest A programmed controller which simulates each Boolean function with a subroutine would be less efficient by at least an order of magnitude. Extra software is needed for the simulation routines, and each step takes longer to execute for three reasons: several byte-wide logical instructions are executed per user program step (rather than one Boolean operation): most of those instructions take longer to execute with microprocessors performing multiple off-chip accesses: and calling and returning from the various subroutines requires overhead for stack operations.

In fact, the speed of the Boolean Processor solution is likely to be much faster than the system requires. The CPU might use the time left over to compute feedback parameters, collect and analyze execution statistics, perform system diagnostics, and so forth.

Additional Functions and Uses

With the building-block basics mentioned above many more operations may be synthesized by short instruction sequences.

Exclusive-OR. There are no common mechanical devices or relays analogous to the Exclusive-OR operation, so this instruction was omitted from the Boolean Processor. However, the Exclusive-OR or Exclusive-NOR operation may be performed in two instructions by conditionally complementing the carry or a Boolean variable based on the state of any other testable bit.

;EXCLUSIVE-;OR FUNCTION IMPOSED ON CARRY ;USING FO IS INPUT VARIABLE. ;XOR_FO: JNB FO,XORCNT ;("JB" FOR X-NOR) CPL C

XCH. The contents of the carry and some other bit may be exchanged (switched) by using the accumulator as temporary storage. Bits can be moved into and out of the accumulator simultaneously using the Rotate-

through-carry instructions, though this would alter the accumulator data.

;EXCHANGE CARRY WITH USRFLG
XCHBIT: RLC A
MOV C,USR_FLG
RRC A
MOV USR_FLG,C
RLC A

Extended Bit Addressing. The 8051 can directly address 144 general-purpose bits for all instructions in Figure 3b. Similar operations may be extended to any bit anywhere on the chip with some loss of efficiency.

The logical operations AND, OR, and Exclusive-OR are performed on byte variables using six different addressing modes, one of which lets the source be an immediate mask, and the destination any directly addressable byte. Any bit may thus be set, cleared, or complemented with a three-byte, two-cycle instruction if the mask has all bits but one set or cleared.

Byte variables, registers, and indirectly addressed RAM may be moved to a bit addressable register (usually the accumulator) in one instruction. Once transferred, the bits may be tested with a conditional jump, allowing any bit to be polled in 3 microseconds—still much faster than most architectures—or used for logical calculations. (This technique can also simulate additional bit addressing modes with byte operations.)

Parity of bytes or bits. The parity of the current accumulator contents is always available in the PSW, from whence it may be moved to the carry and further processed. Error-correcting Hamming codes and similar applications require computing parity on groups of isolated bits. This can be done by conditionally complementing the carry flag based on those bits or by gathering the bits into the accumulator (as shown in the DES example) and then testing the parallel parity flag.

Multiple byte shift and CRC codes

Though the 8051 serial port can accommodate eight- or nine-bit data transmissions, some protocols involve much longer bit streams. The algorithms presented in Design Example 2 can be extended quite readily to 16 or more bits by using multi-byte input and output buffers.

Many mass data storage peripherals and serial communications protocols include Cyclic Redundancy (CRC) codes to verify data integrity. The function is generally computed serially by hardware using shift registers and Exclusive-OR gates, but it can be done with software. As each bit is received into the carry, appropriate bits in the multi-byte data buffer are conditionally complemented based on the incoming data bit. When finished, the CRC register contents may be checked for zero by ORing the two bytes in the accumulator.

4.0 SUMMARY

A truly unique facet of the Intel MCS-51 microcomputer family design is the collection of features optimized for the one-bit operations so often desired in real-world, real-time control applications. Included are 17 special instructions, a Boolean accumulator, implicit and direct addressing modes, program and mass data storage, and many I/O options. These are the world's first single-chip microcomputers able to efficiently manipulate, operate on, and transfer either bytes or individual bits as data.

This Application Note has detailed the information needed by a microcomputer system designer to make full use of these capabilities. Five design examples were used to contrast the solutions allowed by the 8051 and those required by previous architectures. Depending on the individual application, the 8051 solution will be easier to design, more reliable to implement, debug, and verify, use less program memory, and run up to an order of magnitude faster than the same function implemented on previous digital computer architectures.

Combining byte- and bit-handling capabilities in a single microcomputer has a strong synergistic effect: the power of the result exceeds the power of byte- and bit-processors laboring individually. Virtually all user applications will benefit in some way from this duality. Data intensive applications will use bit addressing for test pin monitoring or program control flags: control applications will use byte manipulation for parallel I/O expansion or arithmetic calculations.

It is hoped that these design examples give the reader an appreciation of these unique features and suggest ways to exploit them in his or her own application.

```
ISIS-II MCS-51 MACRO ASSEMBLER V1. 0
OBJECT MODULE PLACED IN FO AP70 HEX
ASSEMBLER INVOKED BY: f1.asm51 ap70 src date(328)
                           SOURCE OB 10 102ENA
LOC DBJ
                  LINE
                           STREE TITLE (AP-70 APPENDIX) H IMLESSON SOLLINE
                    41
                     2
                           3
                    4
                                  THE FOLLOWING PROGRAM USES THE BOOLEAN INSTRUCTION SET
                     5
                                  OF THE INTEL 6051 MICROCOMPUTER TO PERFORM A NUMBER OF
                     6
                                  AUTOMOTIVE DASHBOARD CONTROL FUNCTIONS RELATING TO
                                  TURN SIGNAL CONTROL, EMERGENCY BLINKERS, BRAKE LIGHT
                    87
                    8
                                  CONTROL, AND PARKING LIGHT OPERATION.
                    9
                                  THE ALGORITHMS AND HARDWARE ARE DESCRIBED IN DESIGN
                    10
                                  EXAMPLE #4 OF INTEL APPLICATION NOTE AP-70.
                    11
                                          UUSING THE INTEL MCS-51(TM)
                    12
                                         BOOLEAN PROCESSING CAPABILITIES" BENELLY
                    13
                    14
                          15
                    16
                                  INPUT PIN DECLARATIONS:
                    17
                                   (ALL INPUTS ARE POSITIVE-TRUE LOGIC.
                    18
                                  INPUTS ARE HIGH WHEN RESPECTIVE SWITCH CONTACT IS CLOSED.)
                    19
 0090
                    20
                          BRAKE
                                  RIT
                                         P1. 0 VALL BRAKE PEDAL DEPRESSED BATTED TOM
 0091
                    21
                          EMERG
                                  BIT
                                         P1.1 ; EMERGENCY BLINKER ACTIVATED
 0092
                    22
                          PARK
                                  BIT
                                         P1. 2 PARKING LIGHTS ON
 0093
                    23
                          L_TURN BIT
                                         P1.3 TITLE TURN LEVER DOWN HOT GOLDEN HICK
 0094
                    24
                          R TURN
                                         P1.4 ; TURN LEVER UP MEDICAM EFECTIFICAL SASTEM TEST CODE
                                  BIT
                    25
                                                         GET VALUE FOR NEXT ONE SECOND DELAY AND
                                  OUTPUT PIN DECLARATIONS: | EXECUTE SASTEM TEST ONLY ONCE PER SECOND
                    26
                    27
                                  (ALL DUTPUTS ARE POSITIVE TRUE LOGIC.
                    28
                                  BULB IS TURNED ON WHEN OUTPUT PIN IS HIGH. )
                    29
 0095
                    30
                          L FRNT BIT
                                         P1.5 ; FRONT LEFT-TURN INDICATOR CACHE COMMIT MALIF GAENETOM
 0096
                                              ; FRONT RIGHT-TURN INDICATOR DEVETA ENVERE INTERNALS; DASHBOARD LEFT-TURN INDICATOR 10 INTERNAL BEDGSVE
                    31
                          R_FRNT
                                 BIT
 0097
                    35
                          L DASH
                                 BIT
                                         P1 7
 00A0 350L
                    33
                          R_DASH
                                 BIT
                                         P2. O DIA; DASHBOARD RIGHT-TURN INDICATOR IE BA See LOW I HS
                                         P2.1 ; REAR LEFT-TURN INDICATOR DE LON LINER O REFECTED
 OOA1
                    34
                          L REAR
                                  BIT
 00A2 00A91
                    35
                          R_REAR
                                 BIT
                                         P2.2 REAR RIGHT-TURN INDICATOR
                    36
000A3
                    37
                          S_FAIL BIT
                                         P2.3 . ELECTRICAL SYSTEM FAULT INDICATOR & BALE WAD
                    38
                    39
                                  INTERNAL VARIABLE DEFINITIONS:
                    40
                                                               CONTINUE WITH REST OF ROUTINE)
 0020
                    41
                          SUB DIV DATA
                                                        ; INTERRUPT RATE SUBDIVIDER MEDIZIENE GEED BEFORE
                                         20H
 0000
                                                       HIGH-FREQUENCY OSCILLATOR BIT COMINDE INT HAVE
                    42
                          HI FREG BIT
                                         SUB DIV O
 0007
                    43
                          LO FREG BIT
                                         SUB DIV. 7
                                                       ; LOW-FREQUENCY OSCILLATOR BIT
                    44
-00D1 -0000
                    45
                          DIM
                                  BIT
                                                       ; PARKING LIGHTS ON FLAG
                    46
                    47
                          SEJECT
                                                                                                270656-26
```

LOC (OBJ L	INE	SOURCE				
		47	1 mapping				
		49		ORG	OOOOH , RESET VEC		
0000	020040		DIN	LJMP	INIT SWIND TO	OHTS ON FLAG	
			1				
OOOB				ORG		SERVICE VECTOR 111	
	758CF0	53		MOV	THO: #-16 ; HIGH TIME	R BYTE ADJUSTED TO CONTROL INT. RATE	
000E (CODO	54		PUSH	PSW ; EXECUTE C	ODE TO SAVE ANY REGISTERS USED BELOW	
0010	0154	55		AJMP	UPDATE ; (CONT	INUE WITH REST OF ROUTINE)	
		56			WARIABLE DEFINITIONS		
0040		57		ORG	0040H		
	758A00		INIT	MOV	TLO. #0 ZERO LOAD	DED INTO LOW-ORDER RYTE AND	
	758CF0	NAME OF THE OWNER OWNER OF THE OWNER	CATEAUTO	MOV		GH-ORDER BYTE GIVES 4 MSEC PERIOD	
	758961			MOV		O RELOAD COUNTER MODE FOR TIMER 1.	
							2012
0041				DIL		IMER MODE FOR TIMER O SELECTED	
	7520F4			MOV		INTERRUPT RATE BY 244 FOR 1 HZ	10005
004C I				SETB		O OVERFLOWS TO INTERRUPT PROGRAM	
004E			R FRMT	SETB		TE TO GLOBALLY ENABLE INTERRUPTS	
0050		65		SETB		RUCTION CYCLE COUNT UNTIL OVERFLOW	
0052 8	BOFE	66		SJMP	\$ START BAC	KGROUND PROGRAM EXECUTION	
		67	,		TURNED ON WHEN OUTPUT PIN IS	HIGH I	
		68	;		PUTS ARE POSITIVE TRUE LOGIC		965
0054 1	052038	69	UPDATE:	DUNZ	SUB DIV, TOSERV ; EXECUTE S	SYSTEM TEST ONLY ONCE PER SECOND	200
0057	7520F4	70		MOV		FOR NEXT ONE SECOND DELAY AND	
		-	FURNT F			H ELECTRICAL SYSTEM TEST CODE:	ordi.
	4390E0	NO DE	LINNN	ORL	P1. #11100000B , SET CONTR		653
	43A007			ORL	P2, #00000111B	OC BOTTOTS TITOT	
0060				CLR	L_FRNT FLOAT DRI	UE COLLECTOR	6,2
	20B428		EMERG	JB	TO FAULT TO SHOULD		routh
0065 I		76		SETB			
0067		77				ECTOR BACK DOWN	
					L_DASH ME RECERPEAT SE		
	20B421	78			TO FAULT HORILINE-180E FOGIO		
006C I		79			L_DASH SVATORE		
006E		80		CLR	L_REAR ;	L. REAR,	63
	20B41A		1. 数本标识的特点		TO, FAULT	· 长校县设备管理设计系统处理会	
0073		82		SETB	L_REAR		
0075 (C296	83		CLR	R_FRNT SHOCESSIVE CAPABILITY		82305
0077 2	208413	84		JB	TO FAULT THE THIEF MOR-DITTE		
007A I	0296	85		SETB	R FRNT MIET WENT TOWN HOLE	V6=20	69
007C (C2A0	86		CLR	R DASH WED HOSDING TE ME DEEL	R DASH, 184	63
007E 2	20B40C	87		JBUBER	TO FAULTING FIGHT OFFRATION		
0081	0240	88		SETB	B DASH TROL EMERGENCY BLIM	KERS, BRAKE LIGHT .	
0083		89		CLR	R REARISONSD COMINGE ENWICETE	ME MEAND P PEAD	
	20B405	90		OLIN IN	TO FAULT WICHDOOMBALEH 10 H	CHANGE A MURBER OF	
0088		91		CETA	R REAR SOCKER DEER THE BOOF	TWO TWO INDICATION REA	
OOBB I	VEME	92		SEIB	K_KEMA SOUDS A SOUR SOUR SOUR		
			· ·			POWER LOSS LOTTON	
		93			COLLECTORS GROUNDED, TO SH		
		94	AUDET TI	IF 50,	CONTINUE WITH INTERRUPT ROUT	INE.	
		95	i				
				JB	TO, TOSERV		
008D I	B2A3 IMADMED BA	97	FAULT:	CPL	S_FAIL ; ELECTRICA	AL FAILURE PROCESSING ROUTINE	
	L MODYIFE BEYCEB :	98			; (TOGGLE)	INDICATOR ONCE PER SECOND)	

LOC	OBJ	LINE	SOURCE			
		100		CONTINU	WE WITH INTERRUPT PROCESSING:	
		102	, 1)	COMPUTE	LOW BULB INTENSITY WHEN PARKING LIGHTS ARE ON.	
008F	A201	104	TOSERV	: MOV	C. SUB DIV 1 , START WITH 50 PERCENT,	
	8200	105		ANL	C, SUB DIV 0 , MASK DOWN TO 25 PERCENT,	
0093	7202	106		ORL	C. SUB DIV 2 , BUILD BACK TO 62.5 PERCENT,	
0095	8292	107		ANL	C. PARK ; GATE WITH PARKING LIGHT SWITCH,	
0097	92D1	108		MOV	DIM, C , AND SAVE IN TEMP. VARIABLE.	
		109				
		110	; 2)	COMPUTE	AND OUTPUT LEFT-HAND DASHBOARD INDICATOR	
0000	A293	111	,			
009B		113		ORL	C, L_TURN ; SET CARRY IF TURN C, EMERG ; OR EMERGENCY SELECTED.	
007B		114		ANL	C, EMERG ; OR EMERGENCY SELECTED. C, LD FREG ; IF SD, GATE IN 1 HZ SIGNAL	
009F		115		MOV	L DASH, C ; AND OUTPUT TO DASHBOARD.	
0071	, = , ,	116		HOV	L_DHAN, C , AND OUTPUT TO DHANBORKS.	
		117	; 3)	COMPUTE	AND OUTPUT LEFT-HAND FRONT TURN SIGNAL	
		118	1			
00A1	92D5	119		MOV	FO, C ; SAVE FUNCTION SO FAR.	
00A3		120		ORL	C. DIM ; ADD IN PARKING LIGHT FUNCTION	
00A5	9295	121		MOV	L_FRNT, C ; AND OUTPUT TO TURN SIGNAL.	
		122	1			
		123	, 4)	COMPUTE	AND OUTPUT LEFT-HAND REAR TURN SIGNAL.	
0047	A290	124 125	,	MOLL	C PRAYE SATE PRAYE PERM SUITCH	
	B073	126		MOV	C. BRAKE ; GATE BRAKE PEDAL SWITCH C. /L_TURN ; WITH TURN LEVER.	
	72D5	127		ORL	C, FO ; INCLUDE TEMP. VARIABLE FROM DASH	
OOAD		128		ORL	C. DIM , AND PARKING LIGHT FUNCTION	
OOAF		129		MOV	L REAR, C , AND OUTPUT TO TURN SIGNAL.	
		130	,		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		131	; 5)	REPEAT	ALL OF ABOVE FOR RIGHT-HAND COUNTERPARTS.	
		132	,		The second state of the second	
0081		133		MOV	C.R_TURN ; SET CARRY IF TURN	2
00B3		134		ORL	C, EMERG OR EMERGENCY SELECTED. C, LD FREQ IF SD, GATE IN 1 HZ SIGNAL	
00B7		136		MOV	C,LD_FREG ; IF SO, GATE IN 1 HZ SIGNAL R DASH,C ; AND OUTPUT TO DASHBOARD.	
0089		137		MOV	FO, C SAVE FUNCTION SO FAR.	
OOBB		138		ORL	C, DIM ADD IN PARKING LIGHT FUNCTION	
	9296	139		MOV	R FRNT, C AND OUTPUT TO TURN SIGNAL.	
OOBF	A290	140		MOV	C. BRAKE , GATE BRAKE PEDAL SWITCH	
00C1	B094	141		ANL	C. /R_TURN WITH TURN LEVER	
0003		142		DRL	C. FO SINCLUDE TEMP. VARIABLE FROM DASH	
00C5		143		ORL	C. DIM ; AND PARKING LIGHT FUNCTION	
00C7	92A2	144		MOV	R_REAR. C ; AND OUTPUT TO TURN SIGNAL.	
		145		DECTORE	CTATUS PERSONNEL PORTURE PORTU	
		147	,	KESTURE	STATUS REGISTER AND RETURN	
0009	DODO	148		POP	PSW ; RESTORE PSW	
OOCB		149		RETI	AND RETURN FROM INTERRUPT ROUTINE	
THE LITE		150	,			
		:51		END		
					2706	56-28


```
XREF SYMBOL TABLE LISTING
 NAME
         TYPE
                 VALUE AND REFERENCES
 BRAKE . N BSEG 0090H 20# 125 140
 DIM .
         N BSEG 00D1H 45# 108 120 128 138 143
N BSEG 00AFH 64
 EA.
         N BSEG 0091H 21# 113 134
N BSEG 00A9H 43
 EMERG .
 ETO .
         N BSEG
                 00A9H 63
 FO.
         N BSEG 00D5H 119 127 137 142
FAULT L CSEG 008DH
HI FREG N BSEG 0000H
                       75 78 81 84 87 90 97#
      N BSEG
                008CH 65
 TRO
 UPDATE L CSEG
                0054H 55 69#
 ASSEMBLY COMPLETE, NO ERRORS FOUND
                                                              270656-29
```


HARDWARE DESCRIPTION

OF THE 8051, 8052 AND 80C51

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

INTRODUCTION

This chapter presents a comprehensive description of the on-chip hardware features of the MCS®-51 microcontrollers. Included in this description are

- The port drivers and how they function both as ports and, for Ports 0 and 2, in bus operations
- The Timer/Counters
- The Serial Interface
- The Interrupt System
- Reset
- The Reduced Power Modes in the CHMOS devices

 The EPROM versions of the 8051AH, 8052AH, and 80C51BH

The devices under consideration are listed in Table 1. As it becomes unwieldy to be constantly referring to each of these devices by their individual names, we will adopt a convention of referring to them generically as 8051s and 8052s, unless a specific member of the group is being referred to, in which case it will be specifically named. The "8051s" include the 8051, 8051AH, and 80C51BH, and their ROMless and EPROM versions. The "8052s" are the 8052AH, 8032AH, and 8752BH.

Figure 1 shows a functional block diagram of the 8051s and 8052s.

Table 1. The MCS-51 Family of Microcontrollers

Device Name	ROMIess Version	EPROM Version	ROM Bytes	RAM Bytes	16-bit Timers	Ckt Type
8051	8031	(8751)	4K	128	2	HMOS
8051AH	8031AH	8751H	4K	128	2	HMOS
8052AH	8032AH	8752BH	8K	256	3	HMOS
80C51BH	80C31BH	87C51	4K	128	2	CHMOS

Special Function Registers

A map of the on-chip memory area called SFR (Special Function Register) space is shown in Figure 2. SFRs marked by parentheses are resident in the 8052s but not in the 8051s.

messall'i shalifi terminatidasa (2.833) i asunifi

Figure 1. MCS-51 Architectural Block Diagram

			8 Bytes	3			
	(LSB) *					(ASB)	
В	9	- VO	RS0	F0 R8	DA	YO	
ACC	Norma M	Position	todeny8	gonnoil	ingl8 basin	entă	Position
7.00	Defit wolfreyC	9.W89	VO	301010		Demy flag	r.weg
PSW	User definable	PSW.1			my flag.	Auxiliary Co	9.W89
(T2CON)	Panty flag.	(RCAP2L)	(RCAP2H)	(TL2)	(TH2)	(For BCD t	
naise essentian	Participated by					0.0814	SWEY
IP	to sadous rava			Barrotal	of today orb o	(samonaw	
P3	Accumulator			3. Falld lost	nk select col	Register by	- b.Wed
IE			:BYOM	68.01	iwitos yd ber	0. Set/clea	E.WER
P2	DW GIT BRISING	(den ,ren) to mi	Fellowers	er bank (see	vorking regis	determine	
SCON	SBUF	0.0)—Sank 0				.(etci/i	
P1	(HFI0-H80)	(0.1)Bank 1					
TCON	TMOD	TLO	TL1	TH0	TH1		
P0	SP	DPL	DPH				PCON

Figure 2. SFR Map. (...) Indicates Resident in 8052s, not in 8051s

Note that not all of the addresses are occupied. Unoccupied addresses are not implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have no effect.

User software should not write 1s to these unimplemented locations, since they may be used in future MCS-51 products to invoke new features. In that case the reset or inactive values of the new bits will always be 0, and their active values will be 1.

The functions of the SFRs are outlined below.

ACCUMULATOR

ACC is the Accumulator register. The mnemonics for Accumulator-Specific instructions, however, refer to the Accumulator simply as A.

B REGISTER

The B register is used during multiply and divide operations. For other instructions it can be treated as another scratch pad register.

PROGRAM STATUS WORD

The PSW register contains program status information as detailed in Figure 3.

STACK POINTER

The Stack Pointer Register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions. While the stack may reside anywhere in on-chip RAM, the Stack Pointer is initialized to 07H after a reset. This causes the stack to begin at location 08H.

All the Port 3 pins, and (in the 805 STATION ATAO

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is

to hold a 16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit registers.

PORTS 0 TO 3

P0, P1, P2 and P3 are the SFR latches of Ports 0, 1, 2 and 3, respectively.

SERIAL DATA BUFFER

The Serial Data Buffer is actually two separate registers, a transmit buffer and a receive buffer register. When data is moved to SBUF, it goes to the transmit buffer where it is held for serial transmission. (Moving a byte to SBUF is what initiates the transmission.) When data is moved from SBUF, it comes from the receive buffer.

TIMER REGISTERS

Register pairs (TH0, TL0), (TH1, TL1), and (TH2, TL2) are the 16-bit Counting registers for Timer/Counters 0, 1, and 2, respectively.

CAPTURE REGISTERS

The register pair (RCAP2H, RCAP2L) are the Capture registers for the Timer 2 "Capture Mode." In this mode, in response to a transition at the 8052's T2EX pin, TH2 and TL2 are copied into RCAP2H and RCAP2L. Timer 2 also has a 16-bit auto-reload mode, and RCAP2H and RCAP2L hold the reload value for this mode. More about Timer 2's features in a later section.

sists of a latch (Special Punction Registers PO through

Special Function Registers IP, IE, TMOD, TCON, T2CON, SCON, and PCON contain control and status bits for the interrupt system, the Timer/Counters, and the serial port. They are described in later sections.

					28	hys s					
		(MSB)		THE RE					(LSB)		
		CY	AC	FO	RS1	RS0	OV	-	P		
ymbol	Position	Nam	ne and Sign	nificance		Symbol	Pos	sition	Name a	and Significance	E0 1
CY	PSW.7	Carry flag.				OV	PS	W.2	Overflow flag.		80
AC	PSW.6	Auxiliary Ca	arry flag.				PS	W.1	User definable	flag. Was	
		(For BCD o	perations.)			HSTA PH	PS	W.0	Parity flag.		
F0	PSW.5	Flag 0							Set/cleared by	y hardware each	
		(Available to purposes.)	o the user t	for general						le to indicate an of "one" bits in th	
RS1	PSW.4	Register ba	nk select c	ontrol bits	1 &					.e., even parity.	08
RS0	PSW.3	0. Set/clear	red by soft	ware to		NOTE:				PASS 31 17 61	
		determine v	working reg	ister bank	(see	The conte	ents of (RS1, RS0) enable the wo	orking register ba	inks a
		Note).				lollows.	(0.0)	-Bank 0	(00H-07H)		
							(0.1)	-Bank 1	(08H-0FH)	19	
				OHI		137		—Bank 2 —Bank 3	(10H-17H) (18H-1FH)		
	MODE					Man	(1.1)	- Dank 3	(IOH-IFH)	Ad	0.0

Figure 3. PSW: Program Status Word Register

Figure 4. 8051 Port Bit Latches and I/O Buffers

*See Figure 5 for details of the internal pullup.

PORT STRUCTURES AND OPERATION

All four ports in the 8051 are bidirectional. Each consists of a latch (Special Function Registers P0 through P3), an output driver, and an input buffer.

The output drivers of Ports 0 and 2, and the input buffers of Port 0, are used in accesses to external memory. In this application, Port 0 outputs the low byte of the

external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise the Port 2 pins continue to emit the P2 SFR content.

All the Port 3 pins, and (in the 8052) two Port 1 pins are multifunctional. They are not only port pins, but also serve the functions of various special features as listed on the following page.

Port Pin	Alternate Function
*P1.0	T2 (Timer/Counter 2
	external input)
*P1.1	T2EX (Timer/Counter 2
	Capture/Reload trigger)
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt)
P3.3	INT1 (external interrupt)
P3.4	T0 (Timer/Counter 0 external input)
P3.5	T1 (Timer/Counter 1 external
	input)
P3.6	WR (external Data Memory write strobe)
P3.7	RD (external Data Memory read strobe)

*P1.0 and P1.1 serve these alternate functions only on the 8052.

The alternate functions can only be activated if the corresponding bit latch in the port SFR contains a 1. Otherwise the port pin is stuck at 0.

I/O Configurations

Figure 4 shows a functional diagram of a typical bit latch and I/O buffer in each of the four ports. The bit latch (one bit in the port's SFR) is represented as a Type D flip-flop, which will clock in a value from the internal bus in response to a "write to latch" signal from the CPU. The Q output of the flip-flop is placed on the internal bus in response to a "read latch" signal from the CPU. The level of the port pin itself is placed on the internal bus in response to a "read pin" signal from the CPU. Some instructions that read a port activate the "read latch" signal, and others activate the "read pin" signal. More about that later.

As shown in Figure 4, the output drivers of Ports 0 and 2 are switchable to an internal ADDR and ADDR/DATA bus by an internal CONTROL signal for use in external memory accesses. During external memory accesses, the P2 SFR remains unchanged, but the P0 SFR gets 1s written to it.

Also shown in Figure 4, is that if a P3 bit latch contains a 1, then the output level is controlled by the signal labeled "alternate output function." The actual P3.X pin level is always available to the pin's alternate input function, if any.

Ports 1, 2, and 3 have internal pullups. Port 0 has open drain outputs. Each I/O line can be independently used as an input or an output. (Ports 0 and 2 may not be used as general purpose I/O when being used as the

ADDR/DATA BUS). To be used as an input, the port bit latch must contain a 1, which turns off the output driver FET. Then, for Ports 1, 2, and 3, the pin is pulled high by the internal pullup, but can be pulled low by an external source.

Port 0 differs in not having internal pullups. The pullup FET in the P0 output driver (see Figure 4) is used only when the Port is emitting 1s during external memory accesses. Otherwise the pullup FET is off. Consequently P0 lines that are being used as output port lines are open drain. Writing a 1 to the bit latch leaves both output FETs off, so the pin floats. In that condition it can be used a high-impedance input.

Because Ports 1, 2, and 3 have fixed internal pullups they are sometimes called "quasi-bidirectional" ports. When configured as inputs they pull high and will source current (IIL, in the data sheets) when externally pulled low. Port 0, on the other hand, is considered "true" bidirectional, because when configured as an input it floats.

All the port latches in the 8051 have 1s written to them by the reset function. If a 0 is subsequently written to a port latch, it can be reconfigured as an input by writing a 1 to it.

Writing to a Port

In the execution of an instruction that changes the value in a port latch, the new value arrives at the latch during S6P2 of the final cycle of the instruction. However, port latches are in fact sampled by their output buffers only during Phase 1 of any clock period. (During Phase 2 the output buffer holds the value it saw during the previous Phase 1). Consequently, the new value in the port latch won't actually appear at the output pin until the next Phase 1, which will be at S1P1 of the next machine cycle. See Figure 39 in the Internal Timing section.

If the change requires a 0-to-1 transition in Port 1, 2, or 3, an additional pullup is turned on during S1P1 and S1P2 of the cycle in which the transition occurs. This is done to increase the transition speed. The extra pullup can source about 100 times the current that the normal pullup can. It should be noted that the internal pullups are field-effect transistors, not linear resistors. The pullup arrangements are shown in Figure 5.

In HMOS versions of the 8051, the fixed part of the pullup is a depletion-mode transistor with the gate wired to the source. This transistor will allow the pin to source about 0.25 mA when shorted to ground. In parallel with the fixed pullup is an enhancement-mode transistor, which is activated during S1 whenever the port bit does a 0-to-1 transition. During this interval, if the port pin is shorted to ground, this extra transistor will allow the pin to source an additional 30 mA.

A. HMOS Configuration. The enhancement mode transistor is turned on for 2 osc. periods after Q makes a 0-to-1 transition.

270252-7

270252-6

B. CHMOS Configuration. pFET 1 is turned on for 2 osc. periods after Q makes a 0-to-1 transition. During this time, pFET 1 also turns on pFET 3 and and larger through the inverter to form a latch which holds the 1. pFET 2 is also on.

Figure 5. Ports 1 And 3 HMOS And CHMOS Internal Pullup Configurations. and the resource Port 2 is Similar Except That It Holds The Strong Pullup On While Emitting 1912 as ad flaw doi: 1s That Are Address Bits. (See Text, "Accessing External Memory".) and July and more vate the "read latch" signal, and others activate the

In the CHMOS versions, the pullup consists of three pFETs. It should be noted that an n-channel FET (nFET) is turned on when a logical 1 is applied to its gate, and is turned off when a logical 0 is applied to its gate. A p-channel FET (pFET) is the opposite: it is on when its gate sees a 0, and off when its gate sees a 1.

pFET1 in Figure 5 is the transistor that is turned on for 2 oscillator periods after a 0-to-1 transition in the port latch. While it's on, it turns on pFET3 (a weak pullup), through the inverter. This inverter and pFET form a latch which hold the 1.

Note that if the pin is emitting a 1, a negative glitch on the pin from some external source can turn off pFET3. causing the pin to go into a float state. pFET2 is a very weak pullup which is on whenever the nFET is off, in traditional CMOS style. It's only about 1/10 the strength of pFET3. Its function is to restore a 1 to the pin in the event the pin had a 1 and lost it to a glitch.

Port Loading and Interfacing

The output buffers of Ports 1, 2, and 3 can each drive 4 LS TTL inputs. These ports on HMOS versions can be driven in a normal manner by any TTL or NMOS circuit. Both HMOS and CHMOS pins can be driven by open-collector and open-drain outputs, but note that 0to-1 transitions will not be fast. In the HMOS device, if the pin is driven by an open-collector output, a 0-to-1 transition will have to be driven by the relatively weak depletion mode FET in Figure 5(A). In the CHMOS device, an input 0 turns off pullup pFET3, leaving only the very weak pullup pFET2 to drive the transition.

In external bus mode, Port 0 output buffers can each drive 8 LS TTL inputs. As port pins, they require external pullups to drive any inputs.

used as general purpose I/O when being used as the

SETB PX.Y

Read-Modify-Write Feature

Some instructions that read a port read the latch and others read the pin. Which ones do which? The instructions that read the latch rather than the pin are the ones that read a value, possibly change it, and then rewrite it to the latch. These are called "read-modify-write" instructions. The instructions listed below are read-modify-write instructions. When the destination operand is a port, or a port bit, these instructions read the latch rather than the pin:

ANL	(logical AND, e.g., ANL P1, A)
ORL	(logical OR, e.g., ORL P2, A)
XRL	(logical EX-OR, e.g., XRL P3, A)
JBC is bas I = awella I = 3T	(jump if bit = 1 and clear bit, e.g., JBC P1.1, LABEL)
CPL	(complement bit, e.g., CPL P3.0)
INC	(increment, e.g., INC P2)
DEC	(decrement, e.g., DEC P2)
DJNZ	(decrement and jump if not zero, e.g., DJNZ P3, LABEL)
MOV, PX.Y, C	(move carry bit to bit Y of Port X)
CLR PX.Y	(clear bit Y of Port X)

It is not obvious that the last three instructions in this list are read-modify-write instructions, but they are. They read the port byte, all 8 bits, modify the addressed bit, then write the new byte back to the latch.

(set bit Y of Port X)

The reason that read-modify-write instructions are directed to the latch rather than the pin is to avoid a possible misinterpretation of the voltage level at the pin. For example, a port bit might be used to drive the base of a transistor. When a 1 is written to the bit, the transistor is turned on. If the CPU then reads the same port bit at the pin rather than the latch, it will read the base voltage of the transistor and interpret it as a 0. Reading the latch rather than the pin will return the correct value of 1.

ACCESSING EXTERNAL MEMORY

Accesses to external memory are of two types: accesses to external Program Memory and accesses to external Data Memory. Accesses to external Program Memory use signal PSEN (program store enable) as the read strobe. Accesses to external Data Memory use RD or WR (alternate functions of P3.7 and P3.6) to strobe the memory. Refer to Figures 36 through 38 in the Internal Timing section.

Fetches from external Program Memory always use a 16-bit address. Accesses to external Data Memory can use either a 16-bit address (MOVX @DPTR) or an 8-bit address (MOVX @Ri).

Whenever a 16-bit address is used, the high byte of the address comes out on Port 2, where it is held for the duration of the read or write cycle. Note that the Port 2 drivers use the strong pullups during the entire time that they are emitting address bits that are 1s. This is during the execution of a MOVX @DPTR instruction. During this time the Port 2 latch (the Special Function Register) does not have to contain 1s, and the contents of the Port 2 SFR are not modified. If the external memory cycle is not immediately followed by another external memory cycle, the undisturbed contents of the Port 2 SFR will reappear in the next cycle.

If an 8-bit address is being used (MOVX @Ri), the contents of the Port 2 SFR remain at the Port 2 pins throughout the external memory cycle. This will facilitate paging.

In any case, the low byte of the address is time-multiplexed with the data byte on Port 0. The ADDR/DATA signal drives both FETs in the Port 0 output buffers. Thus, in this application the Port 0 pins are not open-drain outputs, and do not require external pullups. Signal ALE (Address Latch Enable) should be used to capture the address byte into an external latch. The address byte is valid at the negative transition of ALE. Then, in a write cycle, the data byte to be written appears on Port 0 just before WR is activated, and remains there until after WR is deactivated. In a read cycle, the incoming byte is accepted at Port 0 just before the read strobe is deactivated.

During any access to external memory, the CPU writes OFFH to the Port 0 latch (the Special Function Register), thus obliterating whatever information the Port 0 SFR may have been holding. If the user writes to Port 0 during an external memory fetch, the incoming code byte is corrupted. Therefore, do not write to Port 0 if external program memory is used.

External Program Memory is accessed under two conditions:

- 1) Whenever signal EA is active; or
- Whenever the program counter (PC) contains a number that is larger than 0FFFH (1FFFH for the 8052).

This requires that the ROMless versions have \overline{EA} wired low to enable the lower 4K (8K for the 8032) program bytes to be fetched from external memory.

When the CPU is executing out of external Program Memory, all 8 bits of Port 2 are dedicated to an output function and may not be used for general purpose I/O. During external program fetches they output the high byte of the PC. During this time the Port 2 drivers use the strong pullups to emit PC bits that are 1s.

TIMER/COUNTERS

The 8051 has two 16-bit Timer/Counter registers: Timer 0 and Timer 1. The 8052 has these two plus one

more: Timer 2. All three can be configured to operate either as timers or event counters.

In the "Timer" function, the register is incremented every machine cycle. Thus, one can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is $\frac{1}{12}$ of the oscillator frequency.

In the "Counter" function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0, T1 or (in the 8052) T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is $\frac{1}{2}$ ₂₄ of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

In addition to the "Timer" or "Counter" selection, Timer 0 and Timer 1 have four operating modes from which to select. Timer 2, in the 8052, has three modes of operation: "Capture," "Auto-Reload" and "baud rate generator."

Timer 0 and Timer 1 and 0 more and at HITTO

These Timer/Counters are present in both the 8051 and the 8052. The "Timer" or "Counter" function is selected by control bits C/\overline{T} in the Special Function Register TMOD (Figure 6). These two Timer/Counters have

er C and Timer I. The 8052 has these two plus one

four operating modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0, 1, and 2 are the same for both Timer/Counters. Mode 3 is different. The four operating modes are described in the following text.

that read a value, possibly change it, and then o adom

Either Timer in Mode 0 is an 8-bit Counter with a divide-by-32 prescaler. This 13-bit timer is MCS-48 compatible. Figure 7 shows the Mode 0 operation as it applies to Timer 1.

In this mode, the Timer register is configured as a 13-Bit register. As the count rolls over from all 1s to all 0s, it sets the Timer interrupt flag TF1. The counted input is enabled to the Timer when TR1 = 1 and either GATE = 0 or $\overline{\text{INT1}}$ = 1. (Setting GATE = 1 allows the Timer to be controlled by external input $\overline{\text{INT1}}$, to facilitate pulse width measurements.) TR1 is a control bit in the Special Function Register TCON (Figure 8). GATE is in TMOD.

The 13-Bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 are indeterminate and should be ignored. Setting the run flag (TR1) does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer 1. Substitute TR0, TF0 and INTO for the corresponding Timer 1 signals in Figure 7. There are two different GATE bits, one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

The reason that read-modify-write instruction! ADOM

Mode 1 is the same as Mode 0, except that the Timer register is being run with all 16 bits.

External Program Memory is accessed under two con- ditions: (R2M)	ransistor is numed on. If the CPU then reads the same ort bit at the pin rather (gez) he latch, it will read the
GATE C/T M1 M0	GATE C/T M1 M0
s) whenever the region of earlier (PC) contains a number t ramiTarger than 0FFFH (1FFFH for the	Timer 0 1 to suley toward
GATE Gating control when set. Timer/Counter "x" is enabled only while "INTx" pin is high and "TRx" control pin is set. When cleared Timer "x" is enabled whenever "TRx" control bit is set. C/T Timer or Counter Selector cleared for Timer operation (input from internal system clock). Set for Counter operation (input from "Tx" input pin).	M1 M0 Operating Mode 0 9-bit Timer/Counter "THx" with "TLx" as 5-bit prescaler. 0 1 16-bit Timer/Counter "THx" and "TLx" are cascaded; there is no prescaler. 1 0 8-bit auto-reload Timer/Counter "THx" holds a value which is to be reloaded into "TLx" each time it overflows. 1 1 (Timer 0) TL0 is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits. TH0 is an 8-bit timer only controlled by Timer 1 control bits.
TIMER/COUNTERS	1 sau av1 (Timer 1) Timer/Counter 1 stopped.

-mili anataget nation of Figure 6. TMOD: Timer/Counter Mode Control Register and be needed a needed see

Figure 7. Timer/Counter 1 Mode 0: 13-Bit Counter

Figure 8.TCON: Timer/Counter Control Register

MODE 2

Mode 2 configures the Timer register as an 8-bit Counter (TL1) with automatic reload, as shown in Figure 9. Overflow from TL1 not only sets TF1, but also reloads TL1 with the contents of TH1, which is preset by software. The reload leaves TH1 unchanged.

able 2. Timer 2 Operating Modes

Mode 2 operation is the same for Timer/Counter 0.

MODE 3

Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 = 0.

Timer 0 in Mode 3 establishes TL0 and TH0 as two separate counters. The logic for Mode 3 on Timer 0 is shown in Figure 10. TL0 uses the Timer 0 control bits: C/\overline{T} , GATE, TR0, $\overline{INT0}$, and TF0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus, TH0 now controls the "Timer 1" interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer or counter. With Timer 0 in Mode 3, an 8051 can look like it has three Timer/Counters, and an 8052, like it has four. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a baud rate generator, or in fact, in any application not requiring an interrupt.

Figure 9. Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

Figure 10. Timer/Counter 0 Mode 3: Two 8-Bit Counters

Timer 2

Timer 2 is a 16-bit Timer/Counter which is present only in the 8052. Like Timers 0 and 1, it can operate either as a timer or as an event counter. This is selected by bit $C/\overline{T2}$ in the Special Function Register T2CON (Figure 11). It has three operating modes: "capture," "auto-load" and "baud rate generator," which are selected by bits in T2CON as shown in Table 2.

Table 2. Timer 2 Operating Modes

RCLK +	TCLK	CP/RL2	TR2	Mode			
or Coun		resorter	Tipo	16-bit Auto-Reload			
6 ams 0	m awo	is seq,bec	240	16-bit Capture			
ebsoles q		X	1	Baud Rate Generator			
X	is prose	X	0	(off)			

First 1 in Mode 3 simply holds its count. The effect is the same as setting $TR1\,=\,0.$

Figure 11. T2CON: Timer/Counter 2 Control Register

In the Capture Mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then Timer 2 is a 16-bit timer or counter which upon overflowing sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. (RCAP2L and RCAP2H are new Special Function Registers in the 8052.) In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2, like TF2, can generate an interrupt.

The Capture Mode is illustrated in Figure 12.

In the auto-reload mode there are again two options, which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then when Timer 2 rolls over it not only sets TF2 but also causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2 still does the above, but with the

added feature that a 1-to-0 transition at external input T2EX will also trigger the 16-bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 13.

The baud rate generator mode is selected by RCLK = 1 and/or TCLK = 1. It will be described in conjunction with the serial port.

SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost). The serial port receive and transmit registers are both accessed at Special Function Register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

Figure 12. Timer 2 in Capture Mode

The serial port can operate in 4 modes:

Mode 0: Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at 1/12 the oscillator frequency.

Mode 1: 10 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable.

Mode 2: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On Transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in Special Functon Register SCON, while the stop bit is ignored. The baud rate is programmable to either $\frac{1}{32}$ or $\frac{1}{64}$ the oscillator frequency.

Mode 3: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI=0 and REN=1. Reception is initiated in the other modes by the incoming start bit if REN=1.

Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. The slaves that weren't being addressed leave their SM2s set and go on about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit. In a Mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

Serial Port Control Register

The serial port control and status register is the Special Function Register SCON, shown in Figure 14. This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).

Figure 13. Timer 2 in Auto-Reload Mode

				(MSB)							Ma.s	(LSB)			
			HO?	SMO	SM1	SM2	REI	тв:	F	B8	TI	RI			
Where SN	ио, SM1	specify t	he seri	al port mo	de, as f	ollows:			30.15	T	B8	is the 9th date			et or
SMO	SM1	Mode	Des	cription	Baud	Rate						clear by sof			
0	0	0	shift	register	fosc.	12		SHM 3		-	00	G. Y.S.F.			L-14
0	1	1	8-bi	UART	varia	ble			9	н	B8	in Modes 2	and the same of th		
1	0	2	9-bit	UART	fosc.	64			12			that was red		The state of the state of	
				Baud F	fosc.	32				5-1		= 0, RB8 is received. In			
1	1	3	9-bit	UART var						• 7	П	is transmit in	terrupt fla	g. Set by	
• SM	namits			ultiprocess			11).					hardware at	SECTION ASSESSMENT AND ADDRESS.	Control of the Contro	TOTAL STATE OF THE STATE OF
	топод с	2 and 3 set to 1 activate	In Moo then R	de 2 or 3, i I will not b received in Mode 1,	f SM2 is e 9th data		TCL as sl					stop bit in the serial transm by software			
				Il not be a						F	31	is receive in	errupt fla	g. Set by	
				it was not								hardware at	the end o	f the 8th bi	t time
		receive	d. In Mo	de 0, SM	2 should							in Mode 0, d	r halfway	through the	estop
		be 0.		-6								bit time in th			
• RE	N	enables	serial	reception.	Set by							serial recep			2).
			softwa	able recep are to disa						oza		Must be cle	ared by so		

Figure 14. SCON: Serial Port Control Register

Baud Rates

The baud rate in Mode 0 is fixed:

Mode 0 Baud Rate =
$$\frac{\text{Oscillator Frequency}}{12}$$

The baud rate in Mode 2 depends on the value of bit SMOD in Special Function Register PCON. If SMOD = 0 (which is the value on reset), the baud rate $\frac{1}{64}$ the oscillator frequency. If SMOD = 1, the baud rate is $\frac{1}{32}$ the oscillator frequency.

Mode 2 Baud Rate =
$$\frac{2\text{SMOD}}{64} \times (\text{Oscillator Frequency})$$

In the 8051, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate. In the 8052, these baud rates can be determined by Timer 1, or by Timer 2, or by both (one for transmit and the other for receive).

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD as follows:

Modes 1, 3
$$Baud Rate = \frac{2SMOD}{32} \times (Timer 1 Overflow Rate)$$

The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In the most typical applications, it is configured for "timer" operation, in the auto-reload

mode (high nibble of TMOD = 0010B). In that case, the baud rate is given by the formula

Modes 1, 3
Baud Rate =
$$\frac{2\text{SMOD}}{32} \times \frac{\text{Oscillator Frequency}}{12\text{x} [256 - (TH1)]}$$

One can achieve very low baud rates with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1 interrupt to do a 16-bit software reload.

Figure 15 lists various commonly used baud rates and how they can be obtained from Timer 1.

			Timer 1				
Baud Rate	fosc	SMOD	C/T	Mode	Reload Value		
Mode 0 Max: 1 MHZ	12 MHZ	X	X	X	X		
Mode 2 Max: 375K	12 MHZ	1	X	X	X		
Modes 1, 3: 62.5K	12 MHZ	1	0	2	FFH		
19.2K	11.059 MHZ	1	0	2 334	FDH		
9.6K	11.059 MHZ	A OSME	0	2 000	FDH		
4.8K	11.059 MHZ	0	0	2	FAH		
2.4K	11.059 MHZ	0:240	0	short 2 had	F4H		
1.2K	11.059 MHZ	0	0	2	E8H		
137.5	11.986 MHZ	0	0	2	1DH		
1888 MADE 2 and 3, is	6 MHZ	0	0	2 RAI	72H		
110	12 MHZ	0	0.0	108A	FEEBH		

Figure 15. Timer 1 Generated Commonly Used Baud Rates

Using Timer 2 to Generate Baud Rates

In the 8052, Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Figure

11). Note then the baud rates for transmit and receive can be simultaneously different. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 16.

Figure 16. Timer 2 in Baud Rate Generator Mode

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate as follows:

Modes 1, 3 Baud Rate =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

The Timer can be configured for either "timer" or "counter" operation. In the most typical applications, it is configured for "timer" operation (C/T2 = 0). "Timer" operation is a little different for Timer 2 when it's being used as a baud rate generator. Normally, as a timer it would increment every machine cycle (thus at $\frac{1}{12}$ the oscillator frequency). As a baud rate generator, however, it increments every state time (thus at $\frac{1}{12}$ the oscillator frequency). In that case the baud rate is given by the formula

Modes 1, 3
Baud Rate =
$$\frac{\text{Oscillator Frequency}}{32x [65536 - (RCAP2H, RCAP2L)]}$$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 16. This Figure is valid only if RCLK + TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2 = 1) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions the Timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP registers may be read, but shouldn't be written to, because a write might overlap a reload and cause write and/or reload errors. Turn the Timer off (clear TR2) before accessing the Timer 2 or RCAP registers, in this case.

More About Mode 0

Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at ½12 the oscillator frequency.

Figure 17 shows a simplified functional diagram of the serial port in Mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF," and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P3.0, and also enables SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1 and S2. At S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift register are shifted to the right one position.

As data bits shift out to the right, zeroes come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeroes. This condition flags the TX Control block to do one last shift and then deactivate SEND and set TI. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF."

Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 11111110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enables SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are shifted to the left one position. The value that comes in from the right is the value that was sampled at the P3.0 pin at S5P2 of the same machine cycle.

As data bits come in from the right, 1s shift out to the left. When the 0 that was initially loaded into the rightmost position arrives at the leftmost position in the shift register, it flags the RX Control block to do one last shift and load SBUF. At S1P1 of the 10th machine cycle after the write to SCON that cleared RI, RE-CEIVE is cleared and RI is set.

More About Mode 1

Ten bits are transmitted (through TXD), or received (through RXD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in SCON. In the 8051 the baud rate is determined by the Timer 1 overflow rate. In the 8052 it is determined either by the Timer 1 overflow rate, or the Timer 2 overflow rate, or both (one for transmit and the other for receive).

Figure 18 shows a simplified functional diagram of the serial port in Mode 1, and associated timings for transmit receive.

Figure 17. Serial Port Mode 0

Figure 17 shows a simplified functional diagram of the

Figure 18. Serial Port Mode 1. TCLK, RCLK and Timer 2 are Present in the 8052/8032 Only.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads a 1 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission actually commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. (Thus, the bit

times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal).

The transmission begins with activation of SEND, which puts the start bit at TXD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit time after that.

As data bits shift out to the right, zeroes are clocked in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position is just to the left of the MSB, and all positions to the left of that contain zeroes. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 10th divide-by-16 rollover after "write to SBUF."

Reception is initiated by a detected 1-to-0 transition at RXD. For this purpose RXD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written into the input shift register. Resetting the divide-by-16 counter aligns its rollovers with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into 16ths. At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register, (which in mode 1 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated.

- 1) RI = 0, and
- 2) Either SM2 = 0, or the received stop bit = 1

If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met, the stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated. At this time, whether the above conditions are met or not, the unit goes back to looking for a 1-to-0 transition in RXD.

More About Modes 2 and 3

Eleven bits are transmitted (through TXD), or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On trans-

mit, the 9th data bit (TB8) can be assigned the value of 0 or 1. On receive, the 9th data bit goes into RB8 in SCON. The baud rate is programmable to either $\frac{1}{32}$ or $\frac{1}{64}$ the oscillator frequency in Mode 2. Mode 3 may have a variable baud rate generated from either Timer 1 or 2 depending on the state of TCLK and RCLK.

Figures 19 and 20 show a functional diagram of the serial port in Modes 2 and 3. The receive portion is exactly the same as in Mode 1. The transmit portion differs from Mode 1 only in the 9th bit of the transmit shift register.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads TB8 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. (Thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SBUF" signal.)

The transmission begins with activation of SEND, which puts the start bit at TXD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit time after that. The first shift clocks a 1 (the stop bit) into the 9th bit position of the shift register. Thereafter, only zeroes are clocked in. Thus, as data bits shift out to the right, zeroes are clocked in from the left. When TB8 is at the output position of the shift register, then the stop bit is just to the left of TB8, and all positions to the left of that contain zeroes. This condition flags the TX Control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 11th divide-by-16 rollover after "write to SBUF."

Reception is initiated by a detected 1-to-0 transition at RXD. For this purpose RXD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written to the input shift register.

At the 7th, 8th and 9th counter states of each bit time, the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3 samples. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

SEUF as a destination register. The "write to SBUF" signal also loses a 1 into the 9th bit position of the transmit shift register and flags the TX Control unit that a transmission is requested. Transmission actually commences at S1P1 of the machine cycle following the next rejiover in the divide-by-16 counter. (Thus, the bit

Figure 20. Serial Port Mode 3. TOLK, ROLK, and Timer 2 are Present in the 8052/8032 Only.

Figure 20. Serial Port Mode 3. TCLK, RCLK, and Timer 2 are Present in the 8052/8032 Only.

intel

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in Modes 2 and 3 is a 9-bit register), it flags the RX Control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated:

- 1) RI = 0, and
- 2) Either SM2 = 0 or the received 9th data bit = 1

If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set. If both conditions are met, the received 9th data bit goes into RB8, and the first 8 data bits go into SBUF. One bit time later, whether the above conditions were met or not, the unit goes back to looking for a 1-to-0 transition at the RXD input.

Note that the value of the received stop bit is irrelevant to SBUF, RB8, or RI.

INTERRUPTS Ibnell et A atgument wolf

The 8051 provides 5 interrupt sources. The 8052 provides 6. These are shown in Figure 21.

The External Interrupts INTO and INTI can each be either level-activated or transition-activated, depending on bits ITO and IT1 in Register TCON. The flags that actually generate these interrupts are bits IEO and IE1 in TCON. When an external interrupt is generated, the flag that generated it is cleared by the hardware when the service routine is vectored to only if the interrupt

Figure 21. MCS®-51 Interrupt Sources

was transition-activated. If the interrupt was level-activated, then the external requesting source is what controls the request flag, rather than the on-chip hardware.

The Timer 0 and Timer 1 Interrupts are generated by TF0 and TF1, which are set by a rollover in their respective Timer/Counter registers (except see Timer 0 in Mode 3). When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR of RI and TI. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine will normally have to determine whether it was RI or TI that generated the interrupt, and the bit will have to be cleared in software.

In the 8052, the Timer 2 Interrupt is generated by the logical OR of TF2 and EXF2. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and the bit will have to be cleared in software.

All of the bits that generate interrupts can be set or cleared by software, with the same result as though it had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be canceled in software.

1	EA	W(s)	ETO	Fe	CT4	EV4	8537	LSB)	89
L		EN 101	EIZ	ES	EII	EX1	ET0	EX0	
					bles thables it		rrupt.		
Symbol	P	ositio	on		namiT	Fur	ction		
EA	Hy bit.	IE.7		interr = 1, indivi	upt wil each in dually	be ac nterrup enable	knowle ot source d or di	EA = 0 edged. ce is sabled able bit.	If EA
-10		IE.6		reser	ved.				
ET2		IE.5					nable		
ES		IE.4		Seria	Port i	nterrup	t enab	le bit.	
ET1	oxity	IE.3		Time	1 inte	rrupt e	nable	bit.	
EX1		IE.2		Exter	nal inte	errupt	1 enab	le bit.	
ET0		IE.1					nable l		
EX0		IE.0		Exter	nal inte	errupt) enab	le bit.	
User sof	tware	shoul	d neve	er write	1s to	unimpl	ement	ed bits.	

Figure 22. IE: Interrupt Enable Register

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE (Figure 22). IE contains also a global disable bit, EA, which disables all interrupts at once.

Note in Figure 22 that bit position IE.6 is unimplemented. In the 8051s, bit position IE.5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future MCS-51 products.

Priority Level Structure

Each interrupt source can also be individually programmed to one of two priority levels by setting or clearing a bit in Special Function Register IP (Figure 23). A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

M IN SO	ISB) o	01100	-	20171	TAC	2888	(LSB)
L-		PT2	PS	PT1	PX1	PT0	PX0
	Priority						the bi
	Priority	DIT =	u ass	signs ic	ow pric	ority.	d by so
Symbol	Positio	n			Fur	ction	
de carrecte	d 11P.7		reser	ved			
-	IP.6		reser	ved			
PT2	IP.5		Time	r 2 inte	rrupt p	riority	bit.
PS	IP.4		Seria	Port i	nterrup	ot prior	ity bit.
PT1	IP.3		Time	r 1 inte	rrupt p	riority	bit.
PX1	IP.2		Exter	nal inte	errupt	1 prior	ity bit.
PT0	IP.1		Time	r 0 inte	rrupt p	riority	bit.
	A IPO		Exter	nal inte	errupt	0 prior	ity bit.

Figure 23. IP: Interrupt Priority Register

If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence, as follows:

	Source	Priority Within Level
		(highest)
2.		final shift pulse is generate
3.	IE1	
4.	TF1	
5.	RI + TI	
6.	TF2 + EXF2	(lowest)

Note that the "priority within level" structure is only used to resolve simultaneous requests of the same priority level.

The IP register contains a number of unimplemented bits. IP.7 and IP.6 are vacant in the 8052s, and in the 8051s these and IP.5 are vacant. User software should not write 1s to these bit positions, since they may be used in future MCS-51 products.

How Interrupts Are Handled

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. The 8052's Timer 2 interrupt cycle is different, as described in the Response Time Section. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

- 1. An interrupt of equal or higher priority level is already in progress.
- 2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.
- 3. The instruction in progress is RETI or any write to the IE or IP registers.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be

Figure 24. Interrupt Response Timing Diagram

completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any access to IE or IP, then at least *one more* instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. Note then that if an interrupt flag is active but not being responded to for one of the above conditions, and is not *still* active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in Figure 24.

Note that if an interrupt of higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in Figure 24, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it doesn't. It never clears the Serial Port or Timer 2 flags. This has to be done in the user's software. It clears an external interrupt flag (IEO or IE1) only if it was transition-activated. The hardware-generated LCALL pushes the contents of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown below.

Source	Vector Address
I AZ I ZZIEO	0003H
TF0	000BH
IE1	0013H
NUAL RESERTATION	001BH
RI + TI	0023H
TF2 + EXF2	002BH

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress.

External Interrupts dani and to be a good aclose

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITx = 0, external interrupt x is triggered by a detected low at the INTx pin. If ITx = 1, external interrupt x is edge-triggered. In this mode if successive samples of the INTx pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

Response Time

The INTO and INTI levels are inverted and latched into the interrupt flags IEO and IE1 at S5P2 of every machine cycle. Similarly, the Timer 2 flag EXF2 and the Serial Port flags RI and TI are set at S5P2. The values are not actually polled by the circuitry until the next machine cycle.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag TF2 is set at S2P2 and is polled in the same cycle in which the timer overflows.

If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles elapse between activation of an external interrupt request and the beginning of execution of the first instruction of the service routine. Figure 24 shows interrupt response timings.

A longer response time would result if the request is blocked by one of the 3 previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles, since the longest instructions (MUL and DIV) are only 4

cycles long, and if the instruction in progress is RETI or an access to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

SINGLE-STEP OPERATION

The 8051 interrupt structure allows single-step execution with very little software overhead. As previously noted, an interrupt request will not be responded to while an interrupt of equal priority level is still in progress, nor will it be responded to after RETI until at least one other instruction has been executed. Thus, once an interrupt routine has been entered, it cannot be re-entered until at least one instruction of the interrupted program is executed. One way to use this feature for single-stop operation is to program one of the external interrupts (say, INTO) to be level-activated. The service routine for the interrupt will terminate with the following code:

JNB P3.2,\$;Wait Here Till INTO Goes High
JB P3.2,\$;Now Wait Here Till it Goes Low
RETI :Go Back and Execute One Instruction

Now if the INTO pin, which is also the P3.2 pin, is held normally low, the CPU will go right into the External Interrupt 0 routine and stay there until INTO is pulsed (from low to high to low). Then it will execute RETI, go back to the task program, execute one instruction, and immediately re-enter the External Interrupt 0 routine to await the next pulsing of P3.2. One step of the task program is executed each time P3.2 is pulsed.

RESETuor solving to any service betalques

The reset input is the RST pin, which is the input to a Schmitt Trigger.

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. The CPU responds by generating an internal reset, with the timing shown in Figure 25.

The external reset signal is asynchronous to the internal clock. The RST pin is sampled during State 5 Phase 2 of every machine cycle. The port pins will maintain their current activities for 19 oscillator periods after a logic 1 has been sampled at the RST pin; that is, for 19 to 31 oscillator periods after the external reset signal has been applied to the RST pin.

While the RST pin is high, ALE and PSEN are weakly pulled high. After RST is pulled low, it will take 1 to 2 machine cycles for ALE and PSEN to start clocking. For this reason, other devices can not be synchronized to the internal timings of the 8051.

Driving the ALE and PSEN pins to 0 while reset is active could cause the device to go into an indeterminate state.

The internal reset algorithm writes 0s to all the SFRs except the port latches, the Stack Pointer, and SBUF. The port latches are initialized to FFH, the Stack Pointer to 07H, and SBUF is indeterminate. Table 3 lists the SFRs and their reset values.

The internal RAM is not affected by reset. On power up the RAM content is indeterminate.

visio sta (VICI bas JUM) anoitotatani Figure 25. Reset Timing

Table:	3.	Reset	V	alues	of	the	SFRs
--------	----	-------	---	-------	----	-----	-------------

SFR Name	Reset Value
PC	0000H
ACC	00H
Timer 1 is used to generate Bud	00H
PSWu al tho Serial Port la uW29	00H
SP	07H
DPTR	0000H
P0-P3 (power)	PORT AMERICA
IP (8051) gen eaggrug-lax	XXX00000B
IP (8052) gell acoquq lan	
IE (8051) setter (1608) 31	
IE (8052)	0X000000B
TMOD note special on	
TCONs GR ,entil emes ent	If the are writeHOO PD and IDL a
PCON is (0)COC0000). OHT	00H
nplemented only in the OJT	SMOD. The H00 lour bits are in
THOSE flaver with the or new be used in future MidHT	00H
TL1	51 products H00
TH2 (8052)	00H
TL2 (8052)	00H
RCAP2H (8052)	0011
RCAP2L (8052)	00H
and SCON of to end les o	hat activatH00He can als
y an interrupt, tiques rupt	Indeterminate
PCON (HMOS)	0XXXXXXXB
PCON (CHMOS)	0XXX0000B

Figure 26. Power on Reset Circuit

POWER-ON RESET of the bessele of learning about

For HMOS devices when V_{CC} is turned on an automatic reset can be obtained by connecting the RST pin to V_{CC} through a 10 μ F capacitor and to V_{SS} through an 8.2 K Ω resistor (Figure 26). The CHMOS devices do not require this resistor although its presence does no harm. In fact, for CHMOS devices the external resistor can be removed because they have an internal pulldown on the RST pin. The capacitor value could then be reduced to 1 μ F.

When power is turned on, the circuit holds the RST pin high for an amount of time that depends on the capacitor value and the rate at which it charges. To ensure a valid reset the RST pin must be held high long enough to allow the oscillator to start up plus two machine cycles.

On power up, $V_{\rm CC}$ should rise within approximately ten milliseconds. The oscillator start-up time will depend on the oscillator frequency. For a 10 MHz crystal, the start-up time is typically 1 ms. For a 1 MHz crystal, the start-up time is typically 10 ms.

With the given circuit, reducing V_{CC} quickly to 0 causes the RST pin voltage to momentarily fall below 0V. However, this voltage is internally limited and will not harm the device.

NOTE:

The port pins will be in a random state until the oscillator has started and the internal reset algorithm has written 1s to them.

Powering up the device without a valid reset could cause the CPU to start executing instructions from an indeterminate location. This is because the SFRs, specifically the Program Counter, may not get properly initialized.

POWER-SAVING MODES OF OPERATION

For applications where power consumption is critical the CHMOS version provides power reduced modes of operation as a standard feature. The power down mode in HMOS devices is no longer a standard feature and is being phased out.

CHMOS Power Reduction Modes

CHMOS versions have two power-reducing modes, Idle and Power Down. The input through which back-up power is supplied during these operations is VCC. Figure 27 shows the internal circuitry which implements these features. In the Idle mode (IDL = 1), the oscillator continues to run and the Interrupt, Serial Port, and Timer blocks continue to be clocked, but the

clock signal is gated off to the CPU. In Power Down (PD = 1), the oscillator is frozen. The Idle and Power Down modes are activated by setting bits in Special Function Register PCON. The address of this register is 87H. Figure 26 details its contents.

In the HMOS devices the PCON register only contains SMOD. The other four bits are implemented only in the CHMOS devices. User software should never write 1s to unimplemented bits, since they may be used in future MCS-51 products.

IDLE MODE

An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the Interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into Idle.

Figure 27. Idle and Power Down Hardware

(MSB)	fitte sff	o souls V tess N.E sids (LSB)
SMOD	V /4 883	- GF1 GF0 PD IDL
Symbol	Position	Name and Function
SMOD	PCON.7	Double Baud rate bit. When set to a 1 and Timer 1 is used to generate baud rate, and the Serial Port is used in modes 1, 2, or 3.
-	PCON.6	(Reserved)
	PCON.5	(Reserved)
_	PCON.4	(Reserved)
GF1 BU	PCON.3	General-purpose flag bit. (108)
GF0 80	PCON.2	General-purpose flag bit. 208) 91
PD 80	PCON.1	Power Down bit. Setting this bit activates power down operation.
IDL	PCON.0	Idle mode bit. Setting this bit activates idle mode operation.

If 1s are written to PD and IDL at the same time, PD takes precedence. The reset value of PCON is (0XXX0000). In the HMOS devices the PCON register only contains SMOD. The other four bits are implemented only in the CHMOS devices. User software should never write 1s to unimplemented bits, since they may be used in future MCS-51 products.

Figure 28. PCON: Power Control Register

The flag bits GF0 and GF1 can be used to give an indication if an interrupt occurred during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

The signal at the RST pin clears the IDL bit directly and asynchronously. At this time the CPU resumes program execution from where it left off; that is, at the instruction following the one that invoked the Idle Mode. As shown in Figure 25, two or three machine cycles of program execution may take place before the internal reset algorithm takes control. On-chip hardware inhibits access to the internal RAM during this time, but access to the port pins is not inhibited. To eliminate the possibility of unexpected outputs at the port pins, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external Data RAM.

POWER DOWN MODE

An instruction that sets PCON.1 causes that to be the last instruction executed before going into the Power Down mode. In the Power Down mode, the on-chip oscillator is stopped. With the clock frozen, all func-

Table 4.	EPROM	Versions	of	the	8051	and	8052

Device Name	EPROM Version	EPROM Bytes	Ckt Type	VPP	Time Required to Program Entire Array
8051	(8751)	sol 4K ada	HMOS	21.0V	4 minutes
8051AH	8751H	4K	HMOS	21.0V	4 minutes
80C51BH	87C51	4K	CHMOS	12.75V	13 seconds
8052AH	8752BH	8K	HMOS	12.75V	26 seconds

tions are stopped, but the on-chip RAM and Special Function Registers are held. The port pins output the values held by their respective SFRs. ALE and PSEN output lows.

The only exit from Power Down for the 80C51 is a hardware reset. Reset redefines all the SFRs, but does not change the on-chip RAM.

In the Power Down mode of operation, VCC can be reduced to as low as 2V. Care must be taken, however, to ensure that VCC is not reduced before the Power Down mode is invoked, and that VCC is restored to its normal operating level, before the Power Down mode is terminated. The reset that terminates Power Down also frees the oscillator. The reset should not be activated before VCC is restored to its normal operating level, and must be held active long enough to allow the oscillator to restart and stabilize (normally less than 10 msec).

EPROM VERSIONS

The EPROM versions of these devices are listed in Table 4. The 8751H programs at VPP = 21V using one 50 msec \overline{PROG} pulse per byte programmed. This results in a total programming time (4K bytes) of approximately 4 minutes.

The 8752BH and 87C51 use the faster "Quick-Pulse" programming TM algorithm. These devices program at $\overline{VPP}=12.75V$ using a series of twenty-five 100 μ s \overline{PROG} pulses per byte programmed. This results in a total programming time of approximately 26 seconds for the 8752BH (8K bytes) and 13 seconds for the 87C51 (4K bytes).

Detailed procedures for programming and verifying each device are given in the data sheets.

EXPOSURE TO LIGHT ON any to annieral 2014H on

It is good practice to cover the EPROM window with an opaque label when the device is in operation. This is not so much to protect the EPROM array from inadvertent erasure, but to protect the RAM and other onchip logic. Allowing light to impinge on the silicon die while the device is operating can cause logical malfunction.

Program Memory Locks

In some microcontroller applications it is desirable that the Program Memory be secure from software piracy. Intel has responded to this need by implementing a Program Memory locking scheme in some of the MCS-51 devices. While it is impossible for anyone to guarantee absolute security against all levels of technological sophistication, the Program Memory locks in the MCS-51 devices will present a formidable barrier against illegal readout of protected software.

One Lock Bit Scheme on 8751H

The 8751H contains a lock bit which, once programmed, denies electrical access by any external means to the on-chip Program Memory. The effect of this lock bit is that while it is programmed the internal Program Memory can not be read out, the device can not be further programmed, and it can not execute external Program Memory. Erasing the EPROM array deactivates the lock bit and restores the device's full functionality. It can then be re-programmed.

The procedure for programming the lock bit is detailed in the 8751H data sheet.

Two-Level Program Memory Lock Scheme

The 87C51 and 8752BH contain two Program Memory locking schemes: Encrypted Verify and Lock Bits.

Encrypted Verify: These devices implement a 32-byte EPROM array that can be programmed by the customer, and which can then be used to encrypt the program code bytes during EPROM verification. The EPROM verification procedure is performed as usual, except that each code byte comes out X-NORed with one of the 32 key bytes. The key bytes are gone through in sequence. Therefore, to read the ROM code, one has to know the 32 key bytes in their proper sequence.

Unprogrammed bytes have the value FFH. Therefore, if the Encryption Array is left unprogrammed all the key bytes have the value FFH. Since any code byte X-NORed with FFH leaves the code byte unchanged, leaving the Encryption Array unprogrammed in effect bypasses the encryption feature.

laini

Lock Bits: Also on the chip are two Lock Bits which can be left unprogrammed (U) or programmed (P) to obtain the following features:

Bit 2	Bit 1	Additional Features
U	U	assume None Vo.rs
U	Р	Externally fetched code can not access internal Program Memory. Further programming disabled.
P	` U	(Reserved for Future definition.)
	P sis desire software implement	 Externally fetched code can not access internal Program Memory. Further programming disabled. Program verification is disabled.

When Lock Bit 1 is programmed, the logic level at the \overline{EA} pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of \overline{EA} be in agreement with the current logic level at that pin in order for the device to function properly.

ROM Protection S Isolatos seines beaming

The 8051AHP and 80C51BHP are ROM Protected versions of the 8051AH and 80C51BH, respectively. To incorporate this Protection Feature, program verification has been disabled and external memory accesses have been limited to 4K. Refer to the data sheets on these parts for more information.

ONCE Mode

The ONCE ("on-circuit emulation") mode facilitates testing and debugging of systems using the device without the device having to be removed from the circuit. The ONCE mode is invoked by:

- Pull ALE low while the device is in reset and PSEN is high;
- 2. Hold ALE low as RST is deactivated.

While the device is in ONCE mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored after a normal reset is applied.

THE ON-CHIP OSCILLATORS

HMOS Versions and box abadoval at short awoll

The on-chip oscillator circuitry for the HMOS (HMOS-I and HMOS-II) members of the MCS-51 family is a single stage linear inverter (Figure 29), intended for use as a crystal-controlled, positive reactance oscillator (Figure 30). In this application the crystal is operated in its fundamental response mode as an inductive reactance in parallel resonance with capacitance external to the crystal.

vertent crasure, but to protect the RAM and other onohip logic. Allowing light to impinge on the silicon die

Figure 29. On-Chip Oscillator Circuitry in the HMOS Versions of the MCS®-51 Family

Figure 30. Using the HMOS On-Chip Oscillator

The crystal specifications and capacitance values (C1 and C2 in Figure 30) are not critical. 30 pF can be used in these positions at any frequency with good quality crystals. A ceramic resonator can be used in place of the crystal in cost-sensitive applications. When a ceramic resonator is used, C1 and C2 are normally selected to be of somewhat higher values, typically, 47 pF. The manufacturer of the ceramic resonator should be

Figure 31. ESR vs Frequency

consulted for recommendations on the values of these capacitors.

In general, crystals used with these devices typically have the following specifications:

ESR (Equivalent Series Resistance)	see Figure 31
C _O (Shunt Capacitance)	7.0 pF max.
C _L (Load Capacitance)	30 pF ±3 pF
Drive Level	1 MW

Frequency, tolerance and temperature range are determined by the system requirements.

A more in-depth discussion of crystal specifications, ceramic resonators, and the selection of values for C1 and C2 can be found in Application Note AP-155, "Oscillators for Microcontrollers," which is included in the Embedded Control Applications Handbook.

To drive the HMOS parts with an external clock source, apply the external clock signal to XTAL2, and ground XTAL1, as shown in Figure 32. A pullup resistor may be used (to increase noise margin), but is optional if VOH of the driving gate exceeds the VIH MIN specification of XTAL2.

Figure 32. Driving the HMOS MCS®-51
Parts with an External Clock Source

The on-chip oscillator circuitry for the 80C51BH, shown in Figure 33, consists of a single stage linear inverter intended for use as a crystal-controlled, positive reactance oscillator in the same manner as the HMOS parts. However, there are some important differences.

One difference is that the 80C51BH is able to turn off its oscillator under software control (by writing a 1 to the PD bit in PCON). Another difference is that in the 80C51BH the internal clocking circuitry is driven by the signal at XTAL1, whereas in the HMOS versions it is by the signal at XTAL2.

Figure 32, Driving the HMOS MCS⁰-51 Parts with an External Clock Source The feedback resistor R_f in Figure 33 consists of paralleled n- and p- channel FETs controlled by the PD bit, such that R_f is opened when PD = 1. The diodes D1 and D2, which act as clamps to VCC and VSS, are parasitic to the R_f FETs.

The oscillator can be used with the same external components as the HMOS versions, as shown in Figure 34. Typically, C1 = C2 = 30 pF when the feedback element is a quartz crystal, and C1 = C2 = 47 pF when a ceramic resonator is used.

To drive the CHMOS parts with an external clock source, apply the external clock signal to XTAL1, and leave XTAL2 float, as shown in Figure 35.

Figure 33. On-Chip Oscillator Circuitry in the CHMOS Versions of the MCS®-51 Family

Figure 34. Using the CHMOS On-Chip Oscillator

Figure 35. Driving the CHMOS MCS®-51
Parts with an External Clock Source

The reason for this change from the way the HMOS part is driven can be seen by comparing Figures 29 and 33. In the HMOS devices the internal timing circuits are driven by the signal at XTAL2. In the CHMOS devices the internal timing circuits are driven by the signal at XTAL1.

INTERNAL TIMING

Figures 36 through 39 show when the various strobe and port signals are clocked internally. The figures do not show rise and fall times of the signals, nor do they show propagation delays between the XTAL signal and events at other pins.

:293

Rise and fall times are dependent on the external loading that each pin must drive. They are often taken to be something in the neighborhood of 10 nsec, measured between 0.8V and 2.0V.

Propagation delays are different for different pins. For a given pin they vary with pin loading, temperature, VCC, and manufacturing lot. If the XTAL waveform is taken as the timing reference, prop delays may vary from 25 to 125 nsec.

The AC Timings section of the data sheets do not reference any timing to the XTAL waveform. Rather, they relate the critical edges of control and input signals to each other. The timings published in the data sheets include the effects of propagation delays under the specified test conditions.

Figure 36. External Program Memory Fetches

Figure 37. External Data Memory Read Cycle

Figure 38. External Data Memory Write Cycle

Figure 39. Port Operation

ADDITIONAL REFERENCES

The following application notes and articles are found in the *Embedded Control Applications* handbook. (Order Number: 270535)

- 1. AP-125 "Designing Microcontroller Systems for Electrically Noisy Environments".
- 2. AP-155 "Oscillators for Microcontrollers".
- 3. AP-252 "Designing with the 80C51BH".
- 4. AR-409 "Increased Functions in Chip Result in Lighter, Less Costly Portable Computer".
- 5. AR-517 "Using the 8051 Microcontroller with Resonant Transducers".

Paure 39. Port Operation

MCS®-51 8-BIT CONTROL-ORIENTED MICROCOMPUTERS 8031/8051

8031/8051 8031AH/8051AH 8032AH/8052AH 8751H/8751H-8

- **High Performance HMOS Process**
- Internal Timers/Event Counters
- 2-Level Interrupt Priority Structure
- 32 I/O Lines (Four 8-Bit Ports)
- 64K Program Memory Space
- Security Feature Protects EPROM Parts Against Software Piracy

EPROM parts. External pullups are required during

- **■** Boolean Processor
- Bit-Addressable RAM
- Programmable Full Duplex Serial Channel
- 111 Instructions (64 Single-Cycle)
- 64K Data Memory Space

The MCS®-51 products are optimized for control applications. Byte-processing and numerical operations on small data structures are facilitated by a variety of fast addressing modes for accessing the internal RAM. The instruction set provides a convenient menu of 8-bit arithmetic instructions, including multiply and divide instructions. Extensive on-chip support is provided for one-bit variables as a separate data type, allowing direct bit manipulation and testing in control and logic systems that require Boolean processing.

The 8051 is the original member of the MCS-51 family. The 8051AH is identical to the 8051, but it is fabricated with HMOS II technology.

The 8751H is an EPROM version of the 8051AH; that is, the on-chip Program Memory can be electrically programmed, and can be erased by exposure to ultraviolet light. It is fully compatible with its predecessor, the 8751-8, but incorporates two new features: a Program Memory Security bit that can be used to protect the EPROM against unauthorized read-out, and a programmable baud rate modification bit (SMOD). The 8751H-8 is identical to the 8751H but only operates up to 8 MHz.

The 8052AH is an enhanced version of the 8051AH. It is backwards compatible with the 8051AH and is fabricated with HMOS II technology. The 8052AH enhancements are listed in the table below. Also refer to this table for the ROM, ROMless, and EPROM versions of each product.

Data 256 x 8 RAM 128 x 8 RAM 128 x 8 RAM	3 x 16-Bit 2 x 16-Bit 2 x 16-Bit	xito19	Interrupts 6 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
128 x 8 RAM	2 x 16-Bit	Prefix	-
		Prefix	-
128 x 8 RAM	2 x 16-Bit	q	\5Af808
256 x 8 RAM	3 x 16-Bit	0	6A1808
128 x 8 RAM	2 x 16-Bit	M	5
128 x 8 RAM	olies 9 2 x 16-Bit	q	1052A6/
128 x 8 RAM	10ABO 2 x 16-Bit	0	5ASEO
128 x 8 RAM	2 x 16-Bit	N	5
	128 x 8 RAM 128 x 8 RAM	128 x 8 RAM 2 x 16-Bit 128 x 8 RAM 2 x 16-Bit	128 x 8 RAM 2 x 16-Bit 128 x 8 RAM 2 x 16-Bit

October 1988 Order Number: 270048-004

Figure 1. MCS®-51 Block Diagram

PACKAGES

Part	Prefix	Package Type		
8051AH/ 8031AH	P D N	40-Pin Plastic DIP 40-Pin CERDIP		
8052AH/ 8032AH	P D N	44-Pin PLCC 40-Pin Plastic DIF 40-Pin CERDIP 44-Pin PLCC		
8751H/ 8751H-8	D R	40-Pin CERDIP 44-Pin LCC		

PIN DESCRIPTIONS

Vcc: Supply voltage.

Vss: Circuit ground.

Port 0: Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs.

Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s and can source and sink 8 LS TTL inputs.

Port 0 also receives the code bytes during programming of the EPROM parts, and outputs the code bytes during program verification of the ROM and EPROM parts. External pullups are required during program verification.

Figure 2. MCS®-51 Connections

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/ source 4 LS TTL inputs. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current ($I_{\rm IL}$ on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address bytes during programming of the EPROM parts and during program verification of the ROM and EPROM parts.

In the 8032AH and 8052AH, Port 1 pins P1.0 and P1.1 also serve the T2 and T2EX functions, respectively.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/ source 4 LS TTL inputs. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL} on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. Dur-

ing accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits during programming of the EPROM parts and during program verification of the ROM and EPROM parts.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source 4 LS TTL inputs. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL} on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternative Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/PROG: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during programming of the EPROM parts.

In normal operation ALE is emitted at a constant rate of ½ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the read strobe to external Program Memory.

When the device is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.

EA/V_{PP}: External Access enable EA must be strapped to V_{SS} in order to enable any MCS-51 device to fetch code from external Program memory locations starting at 0000H up to FFFFH. EA must be strapped to V_{CC} for internal program execution.

Note, however, that if the Security Bit in the EPROM devices is programmed, the device will not fetch code from any location in external Program Memory.

This pin also receives the 21V programming supply voltage (VPP) during programming of the EPROM parts.

Figure 3. Oscillator Connections

XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier

OSCILLATOR CHARACTERISTICS

SO TOS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be grounded, while XTAL2 is driven, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 4. External Drive Configuration

DESIGN CONSIDERATIONS

If an 8751BH or 8752BH may replace an 8751H in a future design, the user should carefully compare both data sheets for DC or AC Characteristic differences. Note that the V_{IH} and I_{IH} specifications for the \overline{EA} pin differ significantly between the devices.

Exposure to light when the EPROM device is in operation may cause logic errors. For this reason, it is suggested that an opaque label be placed over the window when the die is exposed to ambient light.

ABSOLUTE MAXIMUM RATINGS*

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$

Symbol	Parameter	Min	Max	Units	Test Conditions
VIL	Input Low Voltage (Except EA Pin of 8751H & 8751H-8)	-0.5	0.8	V	HO HA
V _{IL1}	Input Low Voltage to EA Pin of 8751H & 8751H-8	0	0.7	biW est	TELPE ALE LOW TPLPH PSEN PU
VIH	Input High Voltage (Except XTAL2, RST)	2.0	V _{CC} + 0.5	V	BYSTH All Oth
V _{IH1}	Input High Voltage to XTAL2, RST	2.5	V _{CC} + 0.5	٧	XTAL1 = V _{SS}
VOL	Output Low Voltage (Ports 1, 2, 3)*		0.45	٧	I _{OL} = 1.6 mA
V _{OL1}	Output Low Voltage (Port 0, ALE, PSEN)*	1	MERS settle	r blold a	ent tubni XIX9T
	8751H, 8751H-8		0.60 0.45	V	I _{OL} = 3.2 mA I _{OL} = 2.4 mA
	All Others		0.45	V	I _{OL} = 3.2 mA
VOH	Output High Voltage (Ports 1, 2, 3, ALE, PSEN)	2.4	137 (48)111	٧	$I_{OH} = -80 \mu A$
V _{OH1}	Output High Voltage (Port 0 in External Bus Mode)	2.4	dress Float	Vane A of w	$I_{OH} = -400 \mu\text{A}$
lıL en	Logical 0 Input Current (Ports 1, 2, 3, RST) 8032AH, 8052AH All Others	400	-800 -500	μA μA	V _{IN} = 0.45V V _{IN} = 0.45V
IL1 an	Logical 0 Input Current to EA Pin of 8751H & 8751H-8 Only		-15	mA	V _{IN} = 0.45V
I _{IL2}	Logical 0 Input Current (XTAL2)		-3.2	mA	$V_{IN} = 0.45V$
su In su	Input Leakage Current (Port 0) 8751H & 8751H-8 All Others	obe	±100 ±10	μΑ μΑ	0.45 ≤ V _{IN} ≤ V _{CC} 0.45 ≤ V _{IN} ≤ V _{CC}
Inan	Logical 1 Input Current to EA Pin of 8751H & 8751H-8	203	500	μА	V _{IN} = 2.4V
l _{IH1}	Input Current to RST to Activate Reset	0	500	μΑ	$V_{IN} < (V_{CC} - 1.5V)$
lcon an an	Power Supply Current: 8031/8051 8031AH/8051AH 8032AH/8052AH 8751H/8751H-8	23 403 33	160 125 175 250	mA mA mA	All Outputs Disconnected; EA = V _{CC}
CIO	Pin Capacitance		10	pF	Test freq = 1 MHz

*NOTE:

Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; Load Capacitance for Port 0, ALE, and PSEN = 100 pF; Load Capacitance for All Other Outputs = 80 pF bnU sight segme Title dma

Symbol	Parameter & Should	12 MHz O	scillator	Variable	Units	
Symbol	ion a noticolioeca aid to anoi	Min	Max	Min as	Max A A	Office
1/TCLCL	Oscillator Frequency	posure to	ALT OL	78.0 - 3.5 22V 0	12.0	MHz
TLHLL	ALE Pulse Width	127	W6.1	2TCLCL-40	seipation	ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold after ALE Low	48 00	to 70°C; \	TCLCL - 35	HARACTERIS	ns.
TLLIV	ALE Low to Valid Instr In 8751H All Others	Min -0.5	183 233	Parameter ge (Except EA Pi 14.8)	4TCLCL - 150 4TCLCL - 100	ns ns
TLLPL	ALE Low to PSEN Low	58		TCLCL-25	etinV wo I toent	ns
TPLPH	PSEN Pulse Width 8751H All Others	190 215	2,	3TCLCL - 60 3TCLCL - 35	8751H & 875 Input High Volta	ns ns
TPLIV _{eeV}	PSEN Low to Valid Instr In 8751H All Others	2.5	100 125	ge to XTAL2, RS age (Ports 1, 2, 3	3TCLCL-150 3TCLCL-125	ns ns
TPXIX	Input Instr Hold after PSEN	0	PSEN)*	age (Po 0, ALE	Output Low Vol	ns
TPXIZ	Input Instr Float after PSEN		63	8751H,	TCLCL-20	ns
TPXAV	PSEN to Address Valid	75		TCLCL-8		ns
TAVIV 80 08 Au 000	Address to Valid Instr In 8751H All Others	(N) 2.4 2.4	267 302	tage (Ports 1, 2, 1 tage (Port 0 in	5TCLCL-150 5TCLCL-115	ns
TPLAZ	PSEN Low to Address Float		20	(eboM	Ex 02 al Bus	ns
TRLRH	RD Pulse Width	400	, B ,	6TCLCL-100	Logical 0 Input	ns
TWLWH	WR Pulse Width	400		6TCLCL-100	PASSUB (1871	ns
TRLDV	RD Low to Valid Data In		252	aid Kill of talenus	5TCLCL-165	ns
TRHDX	Data Hold after RD	0		√010 B-H1	8751H & 875	ns
TRHDZ	Data Float after RD		97	Current (XTAL2)	2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		517	Surrent (Port 0)	8TCLCL-150	ns
TAVDV	Address to Valid Data In		585	8-141	9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address to RD or WR Low	203	10	4TCLCL-130	Logical 1 input	ns
TQVWX	Data Valid to WR Transition 8751H All Others	13 23	1eseF	TCLCL-70 TCLCL-60	Input Current to Power Supply C	ns ns
TQVWH	Data Valid to WR High	433		7TCLCL-150	8021/8091 80218H/80E	ns
TWHQX	Data Hold after WR	33		TCLCL-50	BOS/HASEOS	ns
TRLAZ	RD Low to Address Float		20	8-7-	1878/12078	ns
TWHLH	RD or WR High to ALE High 8751H All Others	33 43	133 123	TCLCL-50 TCLCL-40	TCLCL+50 TCLCL+40	ns ns

NOTE:

*This table does not include the 8751-8 A.C. characteristics (see next page).

This Table is only for the 8751H-8

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; Load Capacitance for Port 0, ALE, and PSEN = 100 pF; Load Capacitance for All Other Outputs = 80 pF

Symbol	Parameter	8 MHz Oscillator		Variable	Units	
Symbol	raidilletei	Min	Max	Min	Max	Omto
1/TCLCL	Oscillator Frequency		s - VIJJT	3.5	8.0	MHz
TLHLL	ALE Pulse Width	210		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	85	1.1	TCLCL-40	РСЕИ	ns
TLLAX	Address Hold after ALE Low	90		TCLCL-35		ns
TLLIV	ALE Low to Valid Instr In		350	SAJIIT	4TCLCL-150	ns
TLLPL	ALE Low to PSEN Low	100	-	TCLCL-25		ns
TPLPH	PSEN Pulse Width	315	1	3TCLCL-60		ns
TPLIV	PSEN Low to Valid Instr In	10 /	225	14-03	3TCLCL-150	ns
TPXIX	Input Instr Hold after PSEN	0		0		ns
TPXIZ	Input Instr Float after PSEN		105		TCLCL-20	ns
TPXAV	PSEN to Address Valid	117		TCLCL-8		ns
TAVIV	Address to Valid Instr In		475		5TCLCL-150	ns
TPLAZ	PSEN Low to Address Float		20		20	ns
TRLRH	RD Pulse Width	650		6TCLCL-100		ns
TWLWH	WR Pulse Width	650		6TCLCL-100		ns
TRLDV	RD Low to Valid Data In		460		5TCLCL-165	ns
TRHDX	Data Hold after RD	0		0		ns
TRHDZ	Data Float after RD		180		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		850		8TCLCL-150	ns
TAVDV	Address to Valid Data In		960		9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	325	425	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address to RD or WR Low	370		4TCLCL-130		ns
TQVWX	Data Valid to WR Transition	55		TCLCL-70		ns
TQVWH	Data Valid to WR High	725		7TCLCL - 150		ns
TWHQX	Data Hold after WR	75		TCLCL-50		ns
TRLAZ	RD Low to Address Float		20		20	ns
TWHLH	RD or WR High to ALE High	75	175	TCLCL-50	TCLCL+50	ns

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING—SHIFT REGISTER MODE: DO GASE VECMEN ATAG JAMESTKS

Test Conditions: $T_A = 0^{\circ}\text{C}$ to 70°C ; $VCC = 5V \pm 10\%$; VSS = 0V; Load Capacitance = 80 pF

Symbol	Parameter	12 MHz Oscillator		Variable	Oscillator	Units
Cymbol	raiameter	Min	Max	Min	Max	Max μs ns
TXLXL	Serial Port Clock Cycle Time	1.0		12TCLCL		μs
TQVXH	Output Data Setup to Clock Rising Edge	700	90145 -	10TCLCL-133	1389	ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2TCLCL-117		ns
TXHDX	Input Data Hold after Clock Rising Edge	0 - va	IR7	0	GR GR	ns
TXHDV	Clock Rising Edge to Input Data Valid	5A.	700	70-0A	10TCLCL - 133	ns

EXTERNAL CLOCK DRIVE

Symbol	Parameter			3.5 3.5	Max 12 8	Units	
1/TCLCL	Oscillator Frequency (except 8751H-8) 8751H-8					MHz	
X - X	The state of the s		1 99V	-0		10	1911 12
TCHCX	High Time	1	L X		20		ndins
TCLCX	Low Time	0	1	1	20		ns
TCLCH	Rise Time		1 99V	*0	0	20	ns
TCHCL	Fall Time	VIS+	= eqqye			20	ns =

EXTERNAL CLOCK DRIVE WAVEFORM

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. Testing: Inputs are driven at 2.4V for a Logic "1" and 0.45V for a Logic "0". Timing measurements are made at 2.0V for a Logic "1" and 0.8V for a Logic "0".

EPROM CHARACTERISTICS

Units	nsM-	Table 3	Table 3. EPROM Programming Modes					Symbol		
Mode	RST	PSEN	ALE	EACAS 67	P2.7	P2.6	P2.5	10 P2.4		
Program	81	<u>0</u>	0*	VPP	1	0	X	X		
Inhibit	1	0	1	X	1	smiTO piH	X	XOHOX		
Verify	1	0	1	1	0	emiT0woJ	X	X		
Security Set	ne1	0	0*	VPP	1	projetting	X	X		

NOTE:

"1" = logic high for that pin

"0" = logic low for that pin

"X" = "don't care"

"VPP" = +21V ±0.5V

*ALE is pulsed low for 50 ms.

Programming the EPROM

To be programmed, the part must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal registers.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0–P2.3 of Port 2, while the code byte to be programmed into that location is applied to Port 0. The other Port 2 pins, and RST, PSEN, and EA should be held at the "Program" levels indicated in Table 3. ALE is **pulsed** low for 50 ms to program the code byte into the addressed EPROM location. The setup is shown in Figure 5.

Normally \overline{EA} is held at a logic high until just before ALE is to be pulsed. Then \overline{EA} is raised to +21V, ALE is pulsed, and then \overline{EA} is returned to a logic high. Waveforms and detailed timing specifications are shown in later sections of this data sheet.

Figure 5. Programming Configuration

Note that the EA/VPP pin must not be allowed to go above the maximum specified VPP level of 21.5V for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The VPP source should be well regulated and free of glitches.

Program Verification

If the Security Bit has not been programmed, the onchip Program Memory can be read out for verification purposes, if desired, either during or after the programming operation. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0–P2.3. The other pins should be held at the "Verify" levels indicated in Table 3. The contents of the addressed location will come out on Port 0. External pullups are required on Port 0 for this operation

The setup, which is shown in Figure 6, is the same as for programming the EPROM except that pin P2.7 is held at a logic low, or may be used as an active-low read strobe.

Figure 6. Program Verification

EPROM Security

The security feature consists of a "locking" bit which when programmed denies electrical access by any external means to the on-chip Program Memory. The bit is programmed as shown in Figure 7. The setup and procedure are the same as for normal EPROM programming, except that P2.6 is held at a logic high. Port 0, Port 1, and pins P2.0-P2.3 may be in any state. The other pins should be held at the "Security" levels indicated in Table 3.

Once the Security Bit has been programmed, it can be cleared only by full erasure of the Program Memory. While it is programmed, the internal Program Memory can not be read out, the device can not be further programmed, and it can not execute out of external program memory. Erasing the EPROM, thus clearing the Security Bit, restores the device's full functionality. It can then be reprogrammed.

EPROM PROGRAMMING AND VERIFICATION W X = "DON'T CARE" VCC P2.0-P2.3 8751H ALE/PROG P2.4 50 ms PULSE TO GND P2.5 P2.6 P2.7 EA EAVPP XTAL2 VIH1 XTAL1 VSS PSEN 270048-14

Figure 7. Programming the Security Bit

Erasure Characteristics

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 20 to 30 minutes, at a distance of about 1 inch. should be sufficient.

Erasure leaves the array in an all 1s state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

 $T_A = 21^{\circ}C$ to 27°C; VCC = 5V ±10%; VSS = 0V

Symbol	Parameter	Min	bebbsMaxitsrebia	Units
VPP	Programming Supply Voltage	20.5	al bns 21.5 of ano	TesyCondit
IPP	Programming Supply Current	added.	Revisio 08 umman	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	P2.7 (ENABLE) High to VPP	48TCLCL		
TSHGL	VPP Setup to PROG Low	10		μs
TGHSL	VPP Hold after PROG	10		μs
TGLGH	TGLGH PROG Width		55	ms
TAVQV	TAVQV Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	

label be placed over the window.

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -003 version of this data sheet:

- 1. Introduction was expanded to include product descriptions. THY CHA COMPANA SOORS MORES
- 2 Package table was added

	ible was added.		AO - COA COULT AC - OCIA 'C	1201012 - A
3. Design Cor	nsiderations added.	nild	Parameter	Symbol
4. Test Condi	tions for IIL1 and IIH	specifications add	led to the DC Characteristics.	· qqv
5. Data Sheet	t Revision Summary	added.	Programming Supply Current	
MHz		4	Oscillator Frequency	:I/TOLOL
			Address Setup to PROG Low	TAVGL
			Address Hold after PROG	TGHAX
		48TGLCL	Data Setup to PROG Low	TDVGL
		48TCLCL	Data Hold after PROG	танрх
			P2.7 (ENABLE) High to VPP	TEHSH
			VPP Setup to PROG Low	TSHEL
			VPP Hold after PROG	TGHSL
		45	PAGG Width	
	48TCLCL			VOVAT
	48TOLCL		ENABLE Low to Date Valid	TELOV

8051AHP MCS®-51 FAMILY 8-BIT CONTROL-ORIENTED MICROCONTROLLER WITH PROTECTED ROM

- **High Performance HMOS Process**
- **Internal Timers/Event Counters**
- 2-Level Interrupt Priority Structure
- 32 I/O Lines (Four 8-Bit Ports)
- **4K Program Memory Space**
- Protection Feature Protects ROM Parts
 Against Software Piracy
- **■** Boolean Processor

- **■** Bit-Addressable RAM
- Programmable Full Duplex Serial Channel
- 111 Instructions (64 Single-Cycle)
- 4K Data Memory Space*
 *Expandable to 64K
- Available in 40 Pin Plastic and CERDIP Packages

(See Packaging Outlines and Dimensions Order #231369)

The MCS®-51 products are optimized for control applications. Byte-processing and numerical operations on small data structures are facilitated by a variety of fast addressing modes for accessing the internal RAM. The instruction set provides a convenient menu of 8-bit arithmetic instructions, including multiply and divide instructions. Extensive on-chip support is provided for one-bit variables as a separate data type, allowing direct bit manipulation and testing in control and logic systems that require Boolean processing.

MCS-51 HMOS	Internal	Memory	Timers/	Interrupts	
Family Device	Program	Data	Event Counters	interrupts	
8051AH	4K x 8 ROM	128 x 8 RAM	2 x 16-Bit	DWM. 5	
8051AHP	4K x 8 ROM	128 x 8 RAM	2 x 16-Bit	лоятноо 5 45	

The 8051AHP is identical to the 8051AH with the exception of the Protection Feature. To incorporate this Protection Feature, program verification has been disabled and external memory accesses have been limited to 4K.

Figure 1. MCS®-51 Block Diagram

PACKAGES

Part	Prefix	Package Type		
8051AHP	Р	40-Pin Plastic DIP		
	D	40-Pin CERDIP		

Figure 2. MCS®-51 Connections

PIN DESCRIPTIONS

Vcc

Supply voltage.

VSS

Circuit around.

Port 0

Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs,

Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s and can source and sink 8 LS TTL inputs.

beeu ed laure instructions must be used A XVOM to A Port 1

Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink source 4

LS TTL inputs. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current ($I_{\rm IL}$, on the data sheet) because of the internal pullups.

Port 2 of seeseoon grirub saerbbs on to sivd wol

Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source 4 LS TTL inputs. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL} on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. Bits P2.4 through P2.7 are forced to 0, effectively limiting external Data and Code space to 4K each in the 8051AHP during external accesses*. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Voc for internal program executions. EA 8 tro9

Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source 4 LS TTL inputs. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL} on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

LIATE Incomment (Incomment) (incomment)	
Port Pin	Alternative Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

RSTitle and the state of the st

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE

Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of ½ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN

Program Store Enable is the read strobe to external Program Memory.

When the device is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.

EA

External Access enable \overline{EA} should be strapped to V_{CC} for internal program executions. \overline{EA} must be strapped to V_{SS} in order to enable any MCS-51 device to fetch code from external Program memory locations starting at 0000H up to FFFFH.

Figure 3. Oscillator Connections

XTAL1

Input to the inverting oscillator amplifier.

XTAL2

Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be grounded, while XTAL2 is driven, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 4. External Drive Configuration

DESIGN CONSIDERATION

The 8051AHP cannot access external Program or Data memory above 4K. This means that the following instructions that use the Data Pointer only read/write data at address locations below 0FFFH:

MOVX A, @DPTR MOVX @DPTR, A

When the Data Pointer contains an address above the 4K limit, those locations will not be accessed.

To access Data Memory above 4K, the MOVX, @Ri, A or MOVX A, @Ri instructions must be used.

ABSOLUTE MAXIMUM RATINGS*

 *Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS TA = 0°C to +70°C; VCC = 5V ±10%; VSS = 0V

Parameter		48	Min	Max	Units	Test Conditions
Input Low Voltage	283		-0.5	0.8	aVVii	TLLIV ALE LOY
Input High Voltage (Except XTAL	2, RST)	88	2.0	V _{CC} + 0.5	SAN	TLLPL ALE LOV
Input High Voltage to XTAL2, RS	T	ars	2.5	V _{CC} + 0.5	W Valu	XTAL1 = V _{SS}
Output Low Voltage (Ports 1, 2, 3	125 *(6			0.45	Veywo	I _{OL} = 1.6 mA
Output Low Voltage (Port 0, ALE	, PSEN)*	. 0		0.45	oleV th	I _{OL} = 3.2 mA
Output High Voltage (Ports 1, 2,	3, ALE, PS	EN)	2.4	siter PSEN	soV 1	$I_{OH} = -80 \mu\text{A}$
Output High Voltage (Port 0 in Ex	cternal Bus	Mode)	2.4	bilsV as	OIVA	$I_{OH} = -400 \mu\text{A}$
Logical 0 Input Current	302			-500	μΑ	V _{IN} = 0.45V
Logical 0 Input Current (XTAL2)	20			-3.2	mA	V _{IN} = 0.45V
Input Leakage Current (Port 0)		004		±10	μΑ	$0.45 \le V_{IN} \le V_{CC}$
Input Current to RST to Activate	Reset	001		500	μΑ	$V_{IN} < (V_{CC} - 1.5V)$
Power Supply Current	252			125	mA	All Outputs
0		0		d _R	toths bi	Disconnected; EA = VCC
Pin Capacitance	97			10	pF	Test freq = 1 MHz
	Input Low Voltage Input High Voltage (Except XTAL Input High Voltage to XTAL2, RS Output Low Voltage (Ports 1, 2, 3 Output Low Voltage (Port 0, ALE Output High Voltage (Port 0 in Ex Logical 0 Input Current Logical 0 Input Current (XTAL2) Input Leakage Current (Port 0) Input Current to RST to Activate Power Supply Current	Input Low Voltage Input High Voltage (Except XTAL2, RST) Input High Voltage to XTAL2, RST Output Low Voltage (Ports 1, 2, 3)* Output Low Voltage (Port 0, ALE, PSEN)* Output High Voltage (Ports 1, 2, 3, ALE, PSEN)* Output High Voltage (Port 0 in External Bust Logical 0 Input Current Logical 0 Input Current (XTAL2) Input Leakage Current (Port 0) Input Current to RST to Activate Reset Power Supply Current	Input Low Voltage Input High Voltage (Except XTAL2, RST) Input High Voltage to XTAL2, RST Output Low Voltage (Ports 1, 2, 3)* Output Low Voltage (Port 0, ALE, PSEN)* Output High Voltage (Ports 1, 2, 3, ALE, PSEN) Output High Voltage (Port 0 in External Bus Mode) Logical 0 Input Current Logical 0 Input Current (XTAL2) Input Leakage Current (Port 0) Input Current to RST to Activate Reset Power Supply Current	Input Low Voltage — 0.5 Input High Voltage (Except XTAL2, RST) 2.0 Input High Voltage to XTAL2, RST 2.5 Output Low Voltage (Ports 1, 2, 3)* Output Low Voltage (Port 0, ALE, PSEN)* Output High Voltage (Ports 1, 2, 3, ALE, PSEN) 2.4 Output High Voltage (Port 0 in External Bus Mode) 2.4 Logical 0 Input Current Logical 0 Input Current (XTAL2) Input Leakage Current (Port 0) Input Current to RST to Activate Reset Power Supply Current	Input Low Voltage Input High Voltage (Except XTAL2, RST) Input High Voltage to XTAL2, RST Output High Voltage (Ports 1, 2, 3)* Output Low Voltage (Port 0, ALE, PSEN)* Output High Voltage (Ports 1, 2, 3, ALE, PSEN) Output High Voltage (Port 0 in External Bus Mode) Logical 0 Input Current Logical 0 Input Current (XTAL2) Input Leakage Current (Port 0) Input Current to RST to Activate Reset Power Supply Current 10	Input Low Voltage Input High Voltage (Except XTAL2, RST) Input High Voltage to XTAL2, RST) Output High Voltage to XTAL2, RST Output Low Voltage (Ports 1, 2, 3)* Output Low Voltage (Port 0, ALE, PSEN)* Output High Voltage (Ports 1, 2, 3, ALE, PSEN) Output High Voltage (Port 0 in External Bus Mode) Logical 0 Input Current Logical 0 Input Current (XTAL2) Input Leakage Current (Port 0) Input Current to RST to Activate Reset Power Supply Current Pin Capacitance

*NOTE:

Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the $V_{OL}s$ of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

	7TCLCL - 150			Date Valid to WR High	
			83	Data Hold after WR	
				RD Low to Address Float	
TCLCL+40	TCLCL-40			RD or WR High to ALE High	HJHWT
		TCLCL-50 . 20	7GLCL-50 20 . 20	83 TCLCL-50 20 20	Data Hold after WR 33 TCLCL—50 RD Low to Address Float 20 20

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; Load Capacitance for Port 0, ALE, and PSEN = 100 pF; Load Capacitance for All Other Outputs = 80 pF

Symbol	Parameter		MHz O	scillator	Variable	Units	
	ion al non-solling the to show	l sec	Min	Max	an- Minasyo	Max	entio
1/TCLCL	Oscillator Frequency	pelor	exter	1.5W	3.5	12.0	MHz
TLHLL	ALE Pulse Width		127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	SV.	43	C to + 70°	TCLCL-40	HARACTERI	ns
TLLAX	Address Hold after ALE Low	Hill	48		TCLCL-35		ns
TLLIV	ALE Low to Valid Instr In	0-		233	90	4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	2.0	58	Z, RST)	TCLCL-25	thoy rigit High Volt	ns
TPLPH	PSEN Pulse Width	2.5	215	T	3TCLCL-35	Input High Volt	ns
TPLIV	PSEN Low to Valid Instr In			125	tage (Ports 1, 2, :	3TCLCL-125	ns
TPXIX	Input Instr Hold after PSEN		0	PSEN)*	tage (P.Ot 0, ALE	Output Low Vol	ns
TPXIZ 08	Input Instr Float after PSEN	2,4	(ME	89 63 A	tage (Ports 1, 2,	TCLCL-20	ns
TPXAV	PSEN to Address Valid	2.4	75 bold	demai Bus	TCLCL-8	Output High Vo	ns
TAVIV	Address to Valid Instr In			302	Current	5TCLCL-115	ns
TPLAZ	PSEN Low to Address Float			20	Current (XTAL2)	tugal 020 lagut	ns
TRLRH	RD Pulse Width		400		6TCLCL-100	Input Leakage	ns
TWLWH	WR Pulse Width		400	Reset	6TCLCL-100	Input Current to	ns
TRLDV	RD Low to Valid Data In			252	trient	5TCLCL-165	ns
TRHDX	Data Hold after RD		0		0		ns
TRHDZ	Data Float after RD			97		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In			517		8TCLCL-150	ns
TAVDV	Address to Valid Data In	of mi	anning ag	585		9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	18 PG	200	300	3TCLCL-50	3TCLCL+50	ms.
TAVWL	Address to RD or WR Low	ing - lehm	203	assa (capal LiA vilisup o	4TCLCL-130	during bus operated. In such cases it	ns
TQVWX	Data Valid to WR Transition		23		TCLCL-60	TROBE input.	ns
TQVWH	Data Valid to WR High		433		7TCLCL-150		ns
TWHQX	Data Hold after WR		33		TCLCL-50		ns
TRLAZ	RD Low to Address Float			20		20	ns
TWHLH	RD or WR High to ALE High		43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

SERIAL PORT TIMING—SHIFT REGISTER MODE

Test Conditions: $T_A = 0$ °C to +70°C; $V_{CC} = 5V \pm 10$ %; $V_{SS} = 0V$; Load Capacitance = 80 pF

Symbol	Parameter	12 MHz Os	cillator	Variable	Oscillator	Units
Symbol	raidilietei	Min	Max	Min	Max	Oilles
TXLXL	Serial Port Clock Cycle Time	1.0		12TCLCL	XOJO	μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10TCLCL - 133	СГСН	ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2TCLCL-117	30110	ns
TXHDX	Input Data Hold after Clock Rising Edge	0		IVE WAGEFORE	MAL CLOCK DR	ns
TXHDV	Clock Rising Edge to Input Data Valid	CLCH	700	тонск	10TCLCL-133	ns

SHIFT REGISTER TIMING WAVEFORMS

ated on the 8051AHP. It is not possible to verify the OM contents using this mode, the way EPROM regrammers typically do. Also, the ROM contents annot be verified by a program executing out of identify program memory due to the restricted adversing on the 8051AHP.

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min W	Max	Units
1/TCLCL	Oscillator Frequency	3.5	12 12 12 13 T	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20	rt Glock Gyele Tilt	XLXL an Senal P
TCLCH	Rise Time	(Rising 700	20° 20° ata	ns AXVO
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. Testing: Inputs are driven at 2.4V for a Logic "1" and 0.45V for a Logic "0". Timing measurements are made at 2.0V for a Logic "1" and 0.8V for a Logic "0".

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -002 version of 8051AHP data sheet:

- 1. Package Table was added.
- Added clearer explanation to DESIGN CONSID-ERATION.
- 3. Data Sheet Revision Summary was added.

Program Verification

The program verification test mode has been eliminated on the 8051AHP. It is not possible to verify the ROM contents using this mode, the way EPROM programmers typically do. Also, the ROM contents cannot be verified by a program executing out of external program memory due to the restricted addressing on the 8051AHP.

8031AH/8051AH 8032AH/8052AH 8751H/8751H-8

telerammos EXPRESS

■ Extended Temperature Range

Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in, and an extended temperature range with or without burn-in.

With the commercial standard temperature range operational characteristics are guaranteed over the temperature range of 0° C to 70° C. With the extended temperature range option, operational characteristics are guaranteed over the range of -40° C to $+85^{\circ}$ C.

The optional burn-in is dynamic, for a minimum time of 160 hours at 125°C with $V_{CC}=5.5V\pm0.25V$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Examples: P8031AH indicates 8031AH in a plastic package and specified for commercial temperature range,

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the period of the period

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = 5\text{V} \pm 10\%$; $V_{SS} = 0\text{V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
VIL	Input Low Voltage	-0.5	0.75	V	
V _{IH}	Input High Voltage (Except XTAL2, RST)	2.1	V _{CC} + 0.5	٧	
lcc	Power Supply Current: 8051AH, 8031AH 8052AH, 8032AH 8751H, 8751H-8		135 175 265	mA mA mA	All Outputs Disconnected; EA = V _{CC}
I _{IL2}	Logic 0 Input Current (XTAL2)		-4.0	mA	V _{in} = 0.45V

Specifications for Extended

Temperature Range

ROSTANIAN RATEOR **Table 1. Prefix Identification**

Prefix	Package Type	Temperature Range	Burn-In
Р	plastic	plastic commercial	
D	cerdip	commercial	no
С	ceramic	commercial	no
N	PLCC	commercial	no
MCS*-ER family of	orti lo anoita:LCC de lanoitane	o and of atricommercial arelto meta	ne Intel ConPRESS sy
TP TP	plastic	extended	on serging on seasons
TD	cerdip	extended	no
TC TC	ceramic	extended	diw er na no dateum
QP	plastic	commercial	yes
QD constant	enoreseo cerdip sones esu	commercial may	of O'D Toyes rish shut
QC	ceramic	commercial	yes elle at
gniwollo LP as.0 ± V	La = 00V (plastic) 11 to auto	lynamic, for abeneze time of 160	si ni-mucyes eliqo en
LD	cerdip	extended	yes
edT nedLC n had e	t of xillers ceramic throteno	PRESS versibebnetxelentified by a	CH bos ayes agains

Please note:

- Commercial temperature range is 0°C to 70°C. Extended temperature range is -40°C to +85°C.
- Burn-in is dynamic, for a minimum time of 160 hours at 125°C, V_{CC} = 5.5V ±0.25V, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).
- The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages:

 The following devices are not available in ceramic packages: 8051AH, 8031AH 8052AH, 8032AH
- The following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available in extended temperature range: the following devices are not available to 8751H, 8751H-8

Examples: P8031AH indicates 8031AH in a plastic package and specified for commercial temperature range, without burn-in. LD8051AH indicates 8051AH in a cerdip package and specified for extended temperature range with burn-in.

Test Conditions	tinU	xsM	rilliA	Parameter	
	V		- 0.5	Input Low Voltage	
		Vcc + 0.5	r.S	Input High Voltage (Except XTAL2, RST)	HIV
All Outputs Disconnected; EA = Voc		135 175 285		Power Supply Current: 6051AH, 8031AH 8052AH, 8032AH 8751H, 6751H-8	
$V_{in} = 0.45V$				Logic 0 Input Current (XTAL2)	

8751BH SINGLE-CHIP 8-BIT MICROCOMPUTER WITH 4K BYTES OF EPROM PROGRAM MEMORY

- **Program Memory Lock**
- 128 Bytes Data Ram
- Quick Pulse Programming™ Algorithm
- 12.75 Volt Programming Voltage
- Boolean Processor
- 32 Programmable I/O Lines
- Two 16-Bit Timer/Counters
- 5 Interrupt Sources
- Programmable Serial Channel
- **64K External Program Memory Space**
- **■** 64K External Data Memory Space

Figure 1. 8751BH Block Diagram

st Program Memory Lock

PACKAGES GETTIGHTOOONIN

Part	Prefix	Package Type
8751BH	Р	40-Pin Plastic DIP
	Counters	44-Pin PLCC

Figure 2. Pin Connections

PIN DESCRIPTIONS

Vcc: Supply voltage.

Vss: Circuit ground.

Port 0: Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s, and can source and sink 8 LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullups are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/ source 4 LS TTL inputs. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address bytes during EPROM programming and program verification.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/ source 4 LS TTL inputs. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/ source 4 LS TTL inputs. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS®-51 Family, as listed below:

Port Pin	Alternate Function						
P3.0	RXD (serial input port)	t ± Va =	00				
P3.1 and	TXD (serial output port)	Mex					
P3.2	INTO (external interrupt 0)		2				
P3.3	INT1 (external interrupt 1)	AND					
P3.4	T0 (Timer 0 external input)	1.0					
P3.5	T1 (Timer 1 external input)	1.0+00V					
P3.6	WR (external data memory	write stro	be)				
P3.7	RD (external data memory re	ead strob	e)				

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/PROG: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during EPROM programming.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the Read strobe to External Program Memory.

When the 8751BH is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to External Data Memory.

EA/Vpp: External Access enable. EA must be strapped to VSS in order to enable the device to fetch code from External Program Memory locations starting at 0000H up to FFFFH. Note, however, that if either of the Lock Bits are programmed, EA will be internally latched on reset.

EA should be strapped to V_{CC} for internal program executions.

This pin also receives the 12.75V programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Applications Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be grounded, while XTAL2 is driven, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

DESIGN CONSIDERATIONS

If an 8751BH is replacing an 8751H in an existing design, the user should carefully compare both data sheets for DC or AC Characteristic differences. Note that the $V_{\rm IH}$ and $I_{\rm IH}$ specifications for the EA pin differ significantly between the 8751H and 8751BH.

ABSOLUTE MAXIMUM RATINGS*

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS ($T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$)

Symbol	Parameter	Min	Max	Unit	Test Conditions
VIL	Input Low Voltage (Except EA)	-0.5	0.8	(0 VIO	P3.2 INTO (external intel
V _{IL1}	Input Low Voltage EA	Vss	0.7	V	PO A TO CITY OF A SYNCHES
VIH ixem	Input High Voltage (Except XTAL2, RST, EA)	2.0	V _{CC} +0.5	il irVsut	P3.5 T1 (Timer 1 external P3.6 WR (external data)
V _{IH1}	Input High Voltage XTAL2, RST	2.5	V _{CC} +0.5	neVer	XTAL1 = VSS
V _{IH2}	Input High Voltage to EA	4.5	5.5	V	da and data data data da and and
VOL	Output Low Voltage (Note 3) (Ports 1, 2 and 3)	-61	0.45	gnVini	I _{OL} = 1.6 mA (Note 1)
V _{OL1}	Output Low Voltage (Note 3) (Port 0, ALE/PROG, PSEN)	tor	0.45	V elder	I _{OL} = 3.2 mA (Notes 1, 2)
V _{OH}	Output High Voltage (Ports 1, 2, 3, ALE/PROG and PSEN)	2.4	the programing	eleVsi g MQF	OH =T-80 μA Ismetxe o
V _{OH1}	Output High Voltage (Port 0 in External Bus Mode)	2.4	st a constr	be Vim	ΙΟΗ = -400 μΑ
I _{IL}	Logical 0 Input Current (Ports 1, 2, 3 and RST)	to, ch	urpo t es. No se during es	mA	V _{IN} = 0.45V metre tot bear
I _{IL1}	Logical 0 Input Current (EA)		-10	mA	V _{IN} = VSS
I _{IL2}	Logical 0 Input Current (XTAL2)	07	-3.2	mA	V _{IN} = 0.45 V XTAL1 = V _{SS}
1 _{LI}	Input Leakage Current (Port 0)		±10	μΑ	0.45 < V _{IN} < V _{CC}
I _{IH}	Logical 1 Input Current (EA)	ler	from exten	mA	4.5V < V _{IN} < 5.5V
l _{IH1}	Input Current to RST to Activate Reset	916	500	μА	V _{IN} < (V _{CC} - 1.5V)
Icc	Power Supply Current	WAS.	175	mA	All Outputs Disconnected
CIO	Pin Capacitance	en	ter 10 A	pF	Test Freq = 1MHz

NOTES

Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port - 10 MA

Port 0: 26 mA

Ports 1, 2, and 3: 15 mA
Maximum total I_{OL} for all output pins: 71 mA

^{1.} Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE/PROG and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE/PROG pin may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

^{2.} ALE/PROG refers to a pin on the 8751BH. ALE refers to a timing signal that is output on the ALE/PROG pin.

^{3.} Under steady state (non-transient) conditions, IOL must be externally limited as follows:

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

A.C. CHARACTERISTICS ($T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$); Load Capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100$ pF; Load Capacitance for All Other Outputs = 80 pF)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MF	z Osc	Variable	Units	
	SIX97	Min	Max	Min	Max	Office
1/TCLCL	Oscillator Frequency	ASAMI H GYDLE	- Personal	3.5	12.0	MHz
TLHLL "	ALE Pulse Width	127	Justine	2TCLCL-40	acarelizations	ns
TAVLL -	Address Valid to ALE Low	43	Company of the	TCLCL-40	nontranseria in 2000	ns
TLLAX	Address Hold After ALE Low	48	PA - UN	TCLCL-35		ns
TLLIV	ALE Low to Valid Instruction In		233	Inventoria	4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	58	and the same	TCLCL-25		ns
TPLPH	PSEN Pulse Width	215		3TCLCL-35		ns
TPLIV	PSEN Low to Valid Instruction In		125		3TCLCL-125	ns
TPXIX	Input Instr Hold After PSEN	0	E-SECTION STATE	0	Notice No.	ns
TPXIZ	Input Instr Float After PSEN		63	er-johan at Sansarian Art old took	TCLCL-20	ns
TPXAV	PSEN to Address Valid	75	V	TCLCL-8	~	ns
TAVIV	Address to Valid Instruction In	HRURI -	302	W2H	5TCLCL-115	ns
TPLAZ	PSEN Low to Address Float	VI	20		20	ns
TRLRH	RD Pulse Width	400	UST-1	6TCLCL-100	JJYAI -	ns
TWLWH	WR Pulse Width	400	7774	6TCLCL-100	A with her	ns
TRLDV	RD Low to Valid Data In	PER CONTRACTOR AND AND	252	- VQVAT	5TCLCL-165	ns
TRHDX	Data Hold After RD	0	CTAMBA I	0		ns
TRHDZ	Data Float After RD		97		2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In	a Asoma	517	Freizz	8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address to RD or WR Low	203	and the spinor	4TCLCL-130	No.	ns
TQVWX	Data Valid to WR Transition	23		TCLCL-60		ns
TQVWH	Data Valid to WR High	433		7TCLCL-150	\	ns
TWHQX	Data Held After WR	33		TCLCL-50		ns
TRLAZ	RD Low to Address Float		0/	CVOX	.0	ns
TWHLH	RD or WR High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

External Data Memory Write Cycle

SERIAL PORT TIMING - SHIFT REGISTER MODE

TEST CONDITIONS (T_A = 0°C to +70°C; V_{CC} = 5V ±10%; V_{SS} = 0V; Load Capacitance = 80 pF)

Symbol	Parameter	12MHz Osc		Variable	Units	
01-685071	a and Mis O an appoint your applicant points of	Min	Max	Min	Max	VALOT
TXLXL	Serial Port Clock Cycle Time	1.0		12TCLCL	Disc Tiese	μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10TCLCL-133	Fall Time	ns
TXHQX	Output Data Hold After Clock Rising Edge	50		2TCLCL-117	CHARACTER	ns
TXHDX	Input Data Hold After Clock Rising Edge	rice ₀ Th		0 MO	nming the EPR	ns rograi
TXHDV	Clock Rising Edge to Input Data Valid		700	nust be running with reason the oscilla	10TCLCL - 133	origins of

Shift Register Mode Timing Waveforms

External Clock Drive Waveforms

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	3.5	12	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20	300 	ns
TCLCH	Rise Time	100	20	ns
TCHCL	Fall Time		20	ns

EPROM CHARACTERISTICS

Programming the EPROM

To be programmed, the part must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal registers.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0 - P2.3 of Port 2, while the code byte to be programmed into that location is applied to Port 0. The other Port 2 and 3 pins, and RST, PSEN, and EA/V_{PP} should be held at the "Program" levels indicated in Table 1. ALE/PROG is pulsed low to program the code byte into the addressed EPROM location. The setup is shown in Figure 5.

Normally EA/Vpp is held at a logic high until just before ALE/PROG is to be pulsed. Then EA/Vpp is raised to Vpp, ALE/PROG is pulsed low, and then EA/Vpp is returned to a valid high voltage. The voltage on the EA/Vpp pin must be at the valid EA/Vpp high level before a verify is attempted. Waveforms and detailed timing specifications are shown in later sections of this data sheet.

Note that the EA/V_{PP} pin must not be allowed to go above the maximum specified V_{PP} level for any

AC TESTING INPUT/OUTPUT WAVEFORMS

amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The V_{PP} source should be well regulated and free of glitches.

Figure 5. Programming the EPROM

Table 1. EPI	ROM Progra i	mming Modes
--------------	---------------------	-------------

MODE	RST	PSEN	ALE/ PROG	EA/ Vpp	P2.7	P2.6	P3.6	P3.7
Program Code Data	1.1.	0	0*1108	VPP	ponipin r	1870019 4	rolept th	sect to a
Verify Code Data	1	0	1,	1	0	0	1	1
Program Encryption Table Use Addresses 0-1FH	e in a pia onnao ,e	nd, benefici	0*	V _{PP}	1	0	rA nois	1 Encryp
Program Lock x=1 Bits (LBx) x=2	ne Alge	0	0*10lfq 0*(19V	V _{PP}	32 bytes yemmed	analy are	EPROM arcoinitis	1 0
Read Signature of yellower of	s as t yd e	ina signatur	1-0910	y verify.	0	0	0	0

except that P3.6 and P3.7 need to be pulle:RETON

"1" = Valid high for that pin notes seulay ent well slool

"0" = Valid low for that pin

" V_{PP} " = $+12.75V \pm 0.25V$

* ALE/PROG is pulsed low for 100 uS for programming. (Quick-Pulse Programming™)

QUICK-PULSE PROGRAMMING™ ALGORITHM

The 8751BH can be programmed using the Quick-Pulse Programming Algorithm for microcontrollers. The features of the new programming method are a lower Vpp (12.75 volts as compared to 21 volts) and a shorter programming pulse. It is possible to program the entire 4K Bytes of EPROM memory in less than 13 seconds with this algorithm

To program the part using the new algorithm, Vpp must be 12.75 ± 0.25 Volts. ALE/PROG is pulsed low for 100 μ seconds, 25 times. Then, the byte just programmed may be verified. After programming, the entire array should be verified. The Program Lock features are programmed using the same method, but with the setup as shown in Table 1. The only difference in programming Lock features is that the Lock features cannot be directly verified. Instead, verification of programming is by observing that their features are enabled.

PROGRAM VERIFICATION

If the Lock Bits have not been programmed, the onchip Program Memory can be read out for verification purposes, if desired, either during or after the programming operation. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0 - P2.3. The other pins should be held at the "Verify" levels indicated in Table 1. The contents of the addressed location will come out on Port 0. External pullups are required on Port 0 for this operation. (If the Encryption Array in the EPROM has been programmed, the data present at Port 0 will be Code Data XNOR Encryption Data. The user must know the Encryption Array contents to manually "unencrypt" the data during verify.)

(XNOR) with the code byte, creating an Encrypted

The setup, which is shown in Figure 6, is the same as for programming the EPROM except that pin P2.7 is held at a logic low, or may be used as an active low read strobe.

Figure 6. Verifying the EPROM

PROGRAM MEMORY LOCK bold primaring on

The two-level Program Lock system consists of 2 Lock bits and a 32-byte Encryption Array which are used to protect the program memory against software piracy.

Encryption Array

Within the EPROM array are 32 bytes of Encryption Array that are initially unprogrammed (all 1s). Every time that a byte is addressed during a verify, 5 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NORed (XNOR) with the code byte, creating an Encrypted Verify byte. The algorithm, with the array in the unprogrammed state (all 1s), will return the code in its original, unmodified form.

It is recommended that whenever the Encryption Array is used, at least one of the Lock Bits be programmed as well.

Lock Bits energetion Array contensation word feum

Also included in the EPROM Program Lock scheme are two Lock Bits which function as shown in Table 2.

Table 2. Lock Bits and their Features

		OR DITO WITH WITH COURSE (185) WO		
Lock	Bits	Logic Enabled		
LB1	LB2			
U ATAGE EXON EXAMPLE TRONG	U 30V	Minimum Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array)		
Р	U 3,11	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled		
Р	P	Same as above, but Verify is also disabled		
U-889	ovs b	Reserved for Future Definition		

P = Programmed 3 and grahameV .0 enupl3

To ensure proper functionality of the chip, the internally latched value of the $\overline{\mathsf{EA}}$ pin must agree with its external state.

ERASURE CHARACTERISTICS

This device is in a plastic package without a window and, therefore, cannot be erased.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low, the values returned are:

(030H) = 89H indicates manufactured by Intel (031H) = 51H indicates 8751BH

To program the part using the new algorithm, Vep must be 12.75 ±0.25 Volts. ALE/PROG is pulsed low for 100 µseconds, 25 times. Then, the byte just programmed may be verified. After programming, the entire array should be verified. The Program method, but with the setup as shown in Table 1. The only difference in programming Lock features is that the Lock features cannot be directly verified. Instead, verification of programming is by observing that their features are enabled.

ship Program Memory can be read out for verificaion purposes, if desired, either during or after the programming operation. The address of the Program Memory location to be read is applied to Port 1 and plant P2.0 - P2.3. The other pins should be held at the "Verify" levels indicated in Table 1. The con-

U = Unprogrammed

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS TERMS AT A G

 $(T_A = 21^{\circ}C \text{ to } 27^{\circ}C, V_{CC} = 5.0V \pm 10\%, V_{SS} = 0V)$

Symbol	ParameteryRAMMURR	FORMINDN to P	trom AXAMNOE II	Units ?
Vpp	Programming Supply Voltage	12.5	.bel13.0 sw eld	PacVage Ta
IPP	Programming Supply Current		.nworle 50 olloenn	mA
1/TCLCL	Oscillator Frequency	replaced with refe	Holloes Groffarebu	MHz
TAVGL	Address Setup to PROG Low	48TCLCL	eximum current spec	hmu f akieT
TGHAX	Address Hold After PROG	48TCLCL	rostsa MORGS SH	ERASING T
TDVGL	Data Setup to PROG Low	48TCLCL	HARACTERISTIC	ERASURE (
TGHDX	Data Hold After PROG	48TCLCL	des added.	Signature B
TEHSH	P2.7 (ENABLE) High to V _{PP}	48TCLCL	Revision Summar	Data Shee
TSHGL	V _{PP} Setup to PROG Low	10		μsec
TGHSL	V _{PP} Hold After PROG	10		μsec
TGLGH	PROG Width	90	110	μsec
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float After ENABLE	0	48TCLCL	
TGHGL	PROG High to PROG Low	10		μsec

EPROM Programming and Verification Waveforms

DATA SHEET REVISION SUMMARY ACITACIPINEV QUA DAIMMARDORS MORGE

The following are the key differences between this and the -002 version of 8751BH data sheet:

1. Status went from ADVANCE INFORMATION to PRELIMINARY.

2. Package Table was added.

3. PLCC pin connections shown.

4. Design Considerations section replaced with reference to previous designs using the 8751H.

5. Note 3 on maximum current specification was added to DC Characteristics.

6. Table 1 updated to show Read Signature Mode.

7. ERASING THE EPROM paragraph deleted.

8. ERASURE CHARACTERISTICS section changed to indicate plastic packages only.

9. Signature Bytes added.

10. Data Sheet Revision Summary was added.

11. Data Sheet Revision Summary was added.

12. Data Sheet Revision Summary was added.

13. Data Sheet Revision Summary was added.

14. Data Sheet Revision Summary was added.

15. Data Sheet Revision Summary was added.

16. Data Sheet Revision Summary was added.

17. Data Sheet Revision Summary was added.

18. Data Sheet Revision Summary was added.

19. Data Sheet Revision Summary was added.

19. Data Sheet Revision Summary was added.

PROG High to PROG Low

PROM Programming and Verification Waveforms

8752BH SINGLE-CHIP 8-BIT MICROCOMPUTER WITH 8K BYTES OF EPROM PROGRAM MEMORY

- 2-Bit Program Memory Lock
- 256 Bytes Data Ram
- Quick Pulse Programming™ Algorithm
- 12.75 Volt Programming Voltage
- Boolean Processor
- 32 Programmable I/O Lines
- **Three 16-Bit Timer/Counters**

- **6 Interrupt Sources**
- **Programmable Serial Channel**
- Separate Transmit/Receive Baud Rate Capability
- **64K External Program Memory Space**
- **64K External Data Memory Space**

inputs. Port 0 pins that have 1s written to margan Block Diagram of marganish being pulled

PACKAGES COMMONICACIONAL

Part	Prefix	Package Type
8752BH	Р	40-Pin Plastic DIP
	D	40-Pin CERDIP
	N SS	44-Pin PLCC
	R feb	44-Pin LCC

Figure 2. Pin Connections

PIN DESCRIPTION

Vcc: Supply voltage.

Vss: Circuit ground.

Port 0: Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s, and can source and sink 8 LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullups are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/ source 4 LS TTL inputs. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address bytes during EPROM programming and program verification.

In addition, P1.0 and P1.1 serve the functions of the following special features of the MCS®-51 Family:

Port Pin	Alternate Function
P1.0	T2 (Timer/Counter 2 External Input)
P1.1	T2EX (Timer/Counter 2
×	Capture/Reload Trigger)

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/ source 4 LS TTL inputs. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/ source 4 LS TTL inputs. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS®-51 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/PROG: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during EPROM programming on the 8752BH.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the Read strobe to External Program Memory.

When the device is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to External Data Memory.

EA/Vpp: External Access enable. EA must be strapped to Vss in order to enable the device to fetch code from External Program Memory locations starting at 0000H up to FFFFH. Note, however, that if either of the Lock Bits are programmed, EA will be internally latched on reset.

EA should be strapped to V_{CC} for internal program executions.

This pin also receives the 12.75V programming supply voltage (Vpp) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator

may be used. More detailed information concerning the use of the on-chip oscillator is available in Applications Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be grounded, while XTAL2 is driven, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

DESIGN CONSIDERATIONS

Exposure to light when the 8752BH is in operation may cause logic errors. For this reason, it is suggested that an opaque label be placed over the window of the 8752BH when the die is exposed to ambient light.

Due to a timing problem in the Timer/Counter 2 interrupt circuitry, the device may vector to location 03H (External Interrupt 0 vector address). It happens when a low priority interrupt has been in progress for either 1 or 2 machine cycles and Timer/Counter 2 generates a priority 1 interrupt. Therefore, Timer/Counter 2 should only be assigned priority level 0.

If an 8752BH is replacing an 8751H in an existing design, the user should carefully compare both data sheets for DC or AC characteristic differences. Note that the V_{IH} and I_{IH} specifications for the EA pin differ significantly between the 8751H and 8752BH.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias0°C to 70°C Storage Temperature -65°C to +150°C Voltage on EA/V_{PP} Pin to V_{SS} ... −0.5V to +13.0V Voltage on Any Other Pin to VSS - 0.5V to +7V Maximum IOL Per I/O Pin15 mA Power Dissipation......1.5W (based on PACKAGE heat transfer limitations, not device power consumption)

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

tively, of an inverting amplifier which can be config-

D.C. CHARACTERISTICS ($T_A = 0^{\circ}C$ to $\pm 70^{\circ}C$: $V_{CC} = 5V \pm 10^{\circ}$: $V_{CS} = 0V$)

Symbol	Parameter	Min -	b erMaxager	Units	Test Conditions
VIL	Input Low Voltage (Except EA)	-0.5	0.8	٧	6.0
V _{IL1}	input Low Voltage EA	VSS	0.7	o elVane	E/PROC: Address Latch
V _{IH}	Input High Voltage (Except XTAL2, RST, EA)	2.0	V _{CC} +0.5	ddrys di in is also	ching the low byte of the a external memory. This p
V _{IH1}	Input High Voltage XTAL2, RST	2.5	V _{CC} +0.5	V	XTAL1 = V _{SS}
V _{IH2}	Input High Voltage to EA	4.5	5.5	٧	
V _{OL}	Output Low Voltage (Note 3) (Ports 1, 2 and 3)	9	0.45	vaneupa)	I _{OL} = 1.6 mA (Note 1)
V _{OL1}	Output Low Voltage (Note 3) (Port 0, ALE/PROG, PSEN)		0.45	iqqix ai s	I _{OL} = 3.2 mA (Note 1, 2)
V _{OH}	Output High Voltage (Ports 1, 2, 3, ALE/PROG and PSEN)	2.4	edoste baei	e is the I	I _{OH} = -80 μA dend store Endo
V _{OH1}	Output High Voltage (Port 0 in External Bus Mode)	2.4	metxe mon	V aboo pn	I _{OH} = -400 μA
IIL	Logical 0 Input Current (Ports 1, 2, 3 and RST)	9	-500	μΑ	V _{IN} = 0.45V (19M margo
I _{IL1} nottenug	Logical 0 Input Current (EA)	-10	500	mA μA	$V_{IN} = V_{SS}$
I _{IL2}	Logical 0 Input Current (XTAL2)	0	-3.2	mA	VIN = 0.45V XTAL1 = VS
ILI	Input Leakage Current (Port 0)	1 0	±10	μА	0.45 < V _{IN} < V _{CC}
qitanaqo if	Logical 1 Input Current (EA)	3 4	howelver, th	mA	4.5V < V _{IN} < 5.5V
hна	Input Current to RST to activate Reset	9	11w 500 ben	μΑ	V _{IN} < (V _{CC} - 1.5V)
Icc	Power Supply Current	il m	175	mA	All Outputs Disconnected
CIO	Pin Capacitance		10	pF	Test freq = 1 MHz

2. ALE/PROG refers to a pin on the device. ALE refers to a timing signal that is output on the ALE/PROG pin.

3. Under steady state (non-transient) conditions, IQL must be externally limited as follows:

Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port-

XTAL1 and XTAL2 are the input and output, respectively Am 32 0.0 prochara Ports 1, 2, and 3: 15 mA

Maximum total IoL for all output pins: 71 mA

If IoL exceeds the test condition, Vol. may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

^{1.} Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Vols of ALE/PROG and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE/PROG pin may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A:Address C:Clock D:Input Data

I:Instruction (program memory contents)

H:Logic level HIGH

L:Logic level LOW, or ALE

P:PSEN

Q:Output data R:RD signal

T:Time V:Valid

W:WR signal

X:No longer a valid logic level Z:Float

For example,

TAVLL = Time from Address Valid to ALE Low.

TLLPL = Time from ALE Low to PSEN Low.

A.C. CHARACTERISTICS ($T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$); Load Capacitance for Port 0, ALE/PROG, and PSEN = 100 pF; Load Capacitance for All Other Outputs = 80 pF)

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MI	Hz Osc	Variable	Units	
Symbol	HJHWI	Min	Max	Min	Max	O. Med
1/TCLCL	Oscillator Frequency		the second distribution	3.5	12.0	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL-40		ns
TLLAX	Address Hold After ALE Low	48	and the same	TCLCL-35		ns
TLLIV	ALE Low to Valid Instruction In		233	- TLLAXIJT	4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	58	(X	TCLCL-25	AO-AZ F	ns
TPLPH	PSEN Pulse Width	215	16	3TCLCL-35		ns
TPLIV	PSEN Low to Valid Instruction In	нао моя	125	P2 C=22.7 OR	3TCLCL-125	ns
TPXIX	Input Instr Hold After PSEN	0		0	and the same of the same of	ns
TPXIZ	Input Instr Float After PSEN		63		TCLCL-20	ns
TPXAV	PSEN to Address Valid	75	SAME BUILDED IN	TCLCL-8		ns
TAVIV	Address to Valid Instruction In		302		5TCLCL-115	ns
TPLAZ	PSEN Low to Address Float		20		20	ns
TRLRH	RD Pulse Width	400		6TCLCL-100	V	ns ns
TWLWH	WR Pulse Width	400	Property Chicago Story	6TCLCL-100	1 100 17	ns
TRLDV	RD Low to Valid Data In	to the contract of the contrac	252		5TCLCL-165	ns
TRHDX	Data Hold After RD	0		0		ns
TRHDZ	Data Float After RD	14867841-	97	awaa	2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns ns
TAVDV	Address to Valid Data In		585	- TILLAX - I	9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address to RD or WR Low	203		4TCLCL-130	H283	ns
TQVWX	Data Valid to WR Transition	23	144	TCLCL-60		ns
TQVWH	Data Valid to WR High	433	AB-AIS F	7TCLCL-150	Constitution Constitution	e Tens
TWHQX	Data Held After WR	33		TCLCL-50	CALL STREET, CALL STREET, CALL	ns
TRLAZ	RD Low to Address Float	wild sensor	0	anatu X	0	ns
TWHLH	RD or WR High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

External Program Memory Read Cycle

-TLHLL--TWHLH PSEN -TLLWL-TWLWH-BO WR TQVWX TAVLL - TLLAX → TWHQX of eachbol TQVWH-FROM RI OR DPL PORTO DATA OUT AO-A7 FROM PCL INSTR. IN TAVWL PORT 2 P2.0-P2.7 OR A8-A15 FROM DPH A8-A15 FROM PCH 270429-7

External Data Memory Write Cycle

SERIAL PORT TIMING—SHIFT REGISTER MODE

TEST CONDITIONS TA = 0°C to +70°C; VCC = 5V ±10%; VSS = 0V; Load Capacitance = 80 pF

Symbol	Parameter	12 MHz Osc		Variable	Units	
01-83801	- di di iliotoi	Min	Max	Min	Max	Vin Inc
TXLXL	Serial Port Clock Cycle Time	1.0	011	12TCLCL	ONET CO.	μs
TQVXH	Output Data Setup to Clock Rising Edge	700	an	10TCLCL-133	Fall Time	ns
TXHQX	Output Data Hold After Clock Rising Edge	50		2TCLCL-117	CHARACTE	ns
TXHDX	Input Data Hold After Clock Rising Edge	dre o ed l	g the the	als for pogramming nyption Table, and		
TXHDV	Clock Rising Edge to AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Normally before At	700	sergio organici o	10TCLCL - 133	ns

Shift Register Mode Timing Waveforms

External Clock Drive Waveforms

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	3.5	12	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time	0.10	20	ns
TCHCL	Fall Time	110	20	ns

EPROM CHARACTERISTICS

Table 1 shows the logic levels for programming the Program Memory, the Encryption Table, and the Lock Bits and for reading the signature bytes.

Programming the EPROM

To be programmed, the 8752BH must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal registers.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0 - P2.4 of Port 2, while the code byte to be programmed into that location is applied to Port 0. The other Port 2 and 3 pins, and RST, PSEN, and EA/VPP should be held at the "Pro-

A.C. TESTING INPUT/OUTPUT WAVEFORMS

gram" levels indicated in Table 1. ALE/PROG is pulsed low to program the code byte into the addressed EPROM location. The setup is shown in Figure 5.

Normally \overline{EA}/V_{PP} is held at a logic high until just before ALE/PROG is to be pulsed. Then \overline{EA}/V_{PP} is raised to V_{PP} , ALE/PROG is pulsed low, and then \overline{EA}/V_{PP} is returned to a valid high voltage. The voltage on the \overline{EA}/V_{PP} pin must be at the valid \overline{EA}/V_{PP} high level before a verify is attempted. Waveforms and detailed timing specifications are shown in later sections of this data sheet.

Note that the $\overline{\text{EA}}/\text{Vpp}$ pin must not be allowed to go above the maximum specified Vpp level for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The Vpp source should be well regulated and free of glitches.

Figure 5. Programming the EPROM

Table 4	FRANK	Due susualist	Blades
Table 1	PPRUM	Programming	MODES

MODE	RST	PSEN	ALE/ PROG	EA/ Vpp	P2.7	P2.6	P3.6	P3.7
Program Code Data	1 ATAG	0	0*	Vpp	1	0	1,	1
Verify Code Data	1	0	1 188	1	0	0	1	1
Program Encryption Table Use Addresses 0-1FH	1	0	ивсека масека	V _{PP}	1	0	0	1
Program Lock x=1 Bits (LBx) x=2	(3,/54/3)	0	0* 0*	V _{PP}	1	1	1 0	1 0
Read Signature	1	0	1	1	0	0	0	0

NOTES:

"1" = Valid high for that pin

"0" = Valid low for that pin

" V_{PP} " = $+12.75V \pm 0.25V$

*ALE/PROG is pulsed low for 100 uS for programming. (Quick-Pulse Programming™)

QUICK-PULSE PROGRAMMINGTM ALGORITHM

The 8752BH can be programmed using the Quick-Pulse Programming™ Algorithm for microcontrollers. The features of the new programming method are a lower V_{PP} (12.75 volts as compared to 21 volts) and a shorter programming pulse. It is possible to program the entire 8K Bytes of EPROM memory in less than 25 seconds with this algorithm!

To program the part using the new algorithm, V_{PP} must be 12.75 \pm 0.25 Volts. ALE/PROG is pulsed low for 100 μ seconds, 25 times as shown in Figure 6. Then, the byte just programmed may be verified. After programming, the entire array should be verified. The Program Lock features are programmed using the same method, but with the setup as shown in Table 1. The only difference in programming Lock features is that the Lock features cannot be directly verified. Instead, verification of programming is by observing that their features are enabled.

PROGRAM VERIFICATION

If the Lock Bits have not been programmed, the onchip Program Memory can be read out for verification purposes, if desired, either during or after the programming operation. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0 - P2.4. The other pins should be held at the "Verify" levels indicated in Table 1. The contents of the addressed location will come out on Port 0. External pullups are required on Port 0 for this operation. (If the Encryption Array in the EPROM has been programmed, the data present at Port 0 will be Code Data XNOR Encryption Data. The user must know the Encryption Array contents to manually "unencrypt" the data during verify.)

The setup, which is shown in Figure 7, is the same as for programming the EPROM except that pin P2.7 is held at a logic low, or may be used as an active low read strobe.

Figure 6. PROG Waveforms

Figure 7. Verifying the EPROM

PROGRAM MEMORY LOCK

The two-level Program Lock system consists of 2 Lock bits and a 32-byte Encryption Array which are used to protect the program memory against software piracy.

ENCRYPTION ARRAY

Within the EPROM array are 32 bytes of Encryption Array that are initially unprogrammed (all 1s). Every time that a byte is addressed during a verify, 5 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NORed (XNOR) with the code byte, creating an Encrypted Verify byte. The algorithm, with the array in the unprogrammed state (all 1s), will return the code in its original, unmodified form.

It is recommended that whenever the Encryption Array is used, at least one of the Lock Bits be programmed as well.

LOCK BITS

Also included in the EPROM Program Lock scheme are two Lock Bits which function as shown in Table 2.

Erasing the EPROM also erases the Encryption Array and the Lock Bits, returning the part to full unlocked functionality.

To ensure proper functionality of the chip, the internally latched value of the $\overline{\mathsf{EA}}$ pin must agree with its external state.

Table 2. Lock Bits and their Features

Lock Bits		Logic Enabled		
LB1	LB2	The R7528H can be programmed		
	or Union amming compan rulse. It	chorypted by the Eneryption		
P _{mm} V _{PP} s pulsed n Figure verified.	PROG I shown may be	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled		
ran q ned s shown	010p016	Same as above, but Verify is also disabled		
U	d Pre	Reserved for Future Definition		

U = Unprogrammed STB acturate the fill family privileged

READING THE SIGNATURE BYTES

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values returned are:

(030H) = 89H indicates manufactured by Intel

(031H) = 52H indicates 8752BH

ERASURE CHARACTERISTICS

Erasure of the EPROM begins to occur when the 8752BH is exposed to light with wavelengths shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to

this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at lease 15 W-sec/cm. Exposing the EPROM to an ultraviolet lamp of 12,000 µW/cm rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1s state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

 $(T_A = 21^{\circ}C \text{ to } 27^{\circ}C, V_{CC} = 5.0V \pm 10\%, V_{SS} = 0V)$

Symbol	Parameter	Min	Max	Units	
V _{PP}	Programming Supply Voltage	12.5	13.0	V	
Ірр	Programming Supply Current		50	mA	
1/TCLCL	Oscillator Frequency	4	6	MHz	
TAVGL	Address Setup to PROG Low	48TCLCL			
TGHAX	Address Hold After PROG	48TCLCL			
TDVGL	DVGL Data Setup to PROG Low				
TGHDX	Data Hold After PROG	48TCLCL			
TEHSH	P2.7 (ENABLE) High to V _{PP}	48TCLCL			
TSHGL	V _{PP} Setup to PROG Low	10		μs	
TGHSL	V _{PP} Hold After PROG	10		μs	
TGLGH	PROG Width	90 .	110	μs	
TAVQV	Address to Data Valid		48TCLCL		
TELQV	TELQV ENABLE Low to Data Valid		48TCLCL		
TEHQZ	Data Float After ENABLE	0	48TCLCL		
TGHGL	PROG High to PROG Low	10		μs	

EPROM Programming and Verification Waveforms

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -002 version of the 8752BH data sheet.

- 1. PLCC pin connection diagram was added.
- 2. Package table was added.
- 3. Timer/Counter 2 Design Consideration was added.
- 4. Design Consideration was added referring to previous designs using the 8751H.
- 5. Note 3 was added to DC Characteristics to explain the maximum current specification.
- 6. Signature Byte was corrected.
- 7. Data Sheet Revision Summary was added.

		C, Voc = 5.0V ± 10%, Vss = 0V)	TA = 21°C to 27°
Units	Max		Symbol
	oa e		
			1/TOLOL
		Address Hold After PROG	XAHOT
		Data Setup to PROG Low	TDVGL
			тензн
		Vpp Hold After PROG	TGHSL
		PROG width	
		Address to Data Valid	VOVAT
	48TCLCL	ENABLE Low to Data Valid	
		Data Float After ENABLE	TEHOZ

8752BH

STATES STATES OF EXPRESS

■ Extended Temperature Range

Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in, and an extended temperature range with or without burn-in.

With the commercial standard temperature range operational characteristics are guaranteed over the temperature range of 0° C to 70° C. With the extended temperature range option, operational characteristics are guaranteed over the range of -40° C to $+85^{\circ}$ C.

The optional burn-in is dynamic, for a minimum time of 160 hours at 125°C with $V_{CC} = 5.5V \pm 0.25V$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = 5\text{V} \pm 10\%$; $V_{SS} = 0\text{V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input High Voltage (Except XTAL2, RST)	2.1	V _{CC} + 0.5	٧	

Specifications for Extended

Temperature Range

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
Р	plastic	commercial	no
D	cerdip	commercial	no
N SOM O	PLCC BROMENEO	commercial	The Intel on PRESS sy
R	LCC	abusbnacommercial of besoxes	porating onquirement
TD has no	cerdip	extended	no
QP	plastic	commercial tuorities to r	tiw egnaryes aregme
QD evo bas	cerdip	commercial	yes
al characgustics are	ture range qibres operation	70°C. With bebnetxeded tempera	of 0°0 toyeshar enuts

September 1988

- Please note:

 Commercial temperature range is 0°C to 70°C. Extended temperature range is -40°C to +85°C.
- Burn-in is dynamic, for a minimum time of 160 hours at 125°C, V_{CC} = 5.5V ±0.25V, following guidelines in MIL-STD-883 Method 1015 (Test Condition D), s vd beillinebi ens enoistes 223,8933 bas eauly epishas 9 prefixes are listed in Table 1.

Examples: N8752BH indicates 8752BH in a PLCC package and specified for commercial temperature range, without burn-in. LD8752BH indicates 8752BH in a cerdip package and specified for extended temperature commercial temperature range limits. The commercial temperature range data sheets at ni-mud drive agent

		V _{CC} = 5V ± 10	to +85°C;	ACTERISTICS TA = -40°C	O.C. CHAR
Test Conditions	tinU	xsM	esiNi .	Parameter	
		V _{GC} + 0.5	2.1	Input High Voltage (Except XTAL2, RST)	

WITH FACTORY MASK-PROGRAMMABLE ROM 80C31BH/80C31BH-1/80C31BH-2 CHMOS SINGLE-CHIP 8-BIT CONTROL-ORIENTED CPU WITH RAM AND I/O

80C51BH/80C31BH—3.5 to 12 MHz, $V_{CC} = 5V \pm 20\%$ 80C51BH-1/80C31BH-1—3.5 to 16 MHz, $V_{CC} = 5V \pm 20\%$ 80C51BH-2/80C31BH-2—0.5 to 12 MHz, $V_{CC} = 5V \pm 20\%$

- **■** Power Control Modes
- 128 x 8-Bit RAM
- 32 Programmable I/O Lines
- **Two 16-Bit Timer/Counters**
- **■** 64K Program Memory Space

- **High Performance CHMOS Process**
- **■** Boolean Processor
- **■** 5 Interrupt Sources
- **Programmable Serial Port**
- **■** 64K Data Memory Space

The MCS®-51 CHMOS products are fabricated on Intel's CHMOS III process and are functionally compatible with the standard MCS-51 HMOS and EPROM products. CHMOS III is a technology which combines the high speed and density characteristics of HMOS with the low power attributes of CHMOS. This combination expands the effectiveness of the powerful MCS-51 architecture and instruction set.

Like the MCS-51 HMOS versions, the MCS-51 CHMOS products have the following features: 4K byte of ROM (80C51BH/80C51BH-1/80C51BH-2 only); 128 bytes of RAM; 32 I/O lines; two 16-bit timer/counters; a five-source two-level interrupt structure; a full duplex serial port; and on-chip oscillator and clock circuitry. In addition, the MCS-51 CHMOS products have two software selectable modes of reduced activity for further power reduction—Idle and Power Down.

The Idle mode freezes the CPU while allowing the RAM, timer/counters serial port and interrupt system to continue functioning. The Power Down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

October 1988 Order Number: 270064-006

Figure 1. Block Diagram

IDLE MODE

In the Idle mode, the CPU puts itself to sleep while all the on chip peripherals stay active. The instruction that invokes the Idle mode is the last instruction executed in the normal operating mode before Idle mode is activated. The content of CPU, the on chip RAM, and all the Special Function Registers remain intact during this mode. The Idle mode can be terminated either by any enabled interrupt, at which time the process is picked up at the interrupt service routine and continued, or by a hardware reset which starts the processor the same as a power on reset.

POWER DOWN MODE

In the Power Down mode the oscillator is stopped, and the instruction that invokes Power Down is the

last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

The only exit from Power Down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

The control bits for the reduced power modes are in the Special Function Register PCON.

NOTE:

For more detailed information on these reduced power modes refer to Application Note AP-252, "Designing with the 80C51BH".

Table 1. Status of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the external pins during Idle and Power Down modes of the Idle and Power Down modes of the Idle and I

Mode	Program Memory	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	128	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	lipecOpril (lirlw Oolo	Float	Data	Data	Data

PACKAGES

Part	Prefix	Package Type
80C51BH/	Р	40-Pin Plastic DIP
80C31BH*	D	40-Pin CERDIP
	N	44-Pin PLCC

^{*}The 80C51BH-1, 80C51BH-2, 80C31BH-1, and 80C31BH-2 have the same package types.

Figure 2. Connection Diagrams

PIN DESCRIPTIONS

VCC

Supply voltage during normal, Idle, and Power Down operations.

Vss

Circuit ground. wog becoder entract stid lostnoo ent

Port 0

Port 0 is an 8-bit open drain bi-directional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s.

Port 1

Port 1 is an 8-bit bidirectional I/O port with internal pullups. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 2

Port 2 is an 8-bit bidirectional I/O port with internal pullups. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current ($I_{\rm IL}$, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 3

Port 3 is an 8-bit bidirectional I/O port with internal pullups. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write
	strobe)
P3.7	RD (external data memory read
1	strobe)

RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal diffused resistor to V_{SS} permits Power-On reset using only an external capacitor to V_{CC} .

ALE

Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN

Program Store Enable is the read strobe to external Program Memory.

When the 80C51BH is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory. PSEN is not activated during fetches from internal program memory.

EA

External Access enable. $\overline{\text{EA}}$ must be strapped to V_{SS} in order to enable the device to fetch code from external Program Memory locations starting at 0000H up to FFFFH. If $\overline{\text{EA}}$ is strapped to V_{CC} the device executes from internal Program Memory unless the program counter contains an address greater than 0FFFH.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock generator circuits.

XTAL2

Output from the inverting oscillator amplifier.

Figure 3. Crystal Oscillator

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be config-

ured for use as an on-chip oscillator, as shown in Figure 3. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillator for Microcontrollers".

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Design Considerations

- At power on, the voltage on V_{CC} and RST must come up at the same time for a proper start-up.
 - Before entering the Power Down mode the contents of the Carry Bit and B.7 must be equal.
 - When the Idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

Figure 4. External Drive Configuration

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0°C to +70°C
Storage Temperature65°C to +150°C
Voltage on any Pin to V_{SS} $-0.5V$ to V_{CC} $+0.5V$
Voltage on V _{CC} to V _{SS} 0.5V to 6.5V
Maximum I _{OL} per I/O pin15 mA
Maximum I _{OL} per I/O pin

^{*}This value is based on the maximum allowable die temperature and the thermal resistance of the package.

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS ($T_A = 0^{\circ}\text{C to }70^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 20\%; V_{SS} = 0\text{V}$)

Symbol	Parameter Parameter		Typ (3)	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage (Except EA)	-0.5		0.2 V _{CC} -0.1	٧	LIAT
V _{IL1}	Input Low Voltage (EA)	-0.5	1 0	0.2 V _{CC} - 0.3	٧	ipin to the trivering oscillator at as internal clock generator circu
VIH	Input High Voltage (Except XTAL1, RST)	0.2 V _{CC} + 0.9		V _{CC} + 0.5	٧	SJAT
V _{IH1} i of	Input High Voltage (XTAL1, RST)	0.7 V _{CC}		V _{CC} + 0.5	٧	Julput from the inverting oscillar
VOL	Output Low Voltage (6) (Ports 1, 2, 3)	s not inhibited. inexpected with the instruct		0.45	٧	I _{OL} = 1.6 mA (1)
V _{OL1}	Output Low Voltage (6)			0.45	٧	I _{OL} = 3.2 mA (1)
V _{OH}	Output High Voltage	2.4			V	$I_{OH} = -60 \mu\text{A} V_{CC} = 5V \pm 10\%$
	(Ports 1, 2, 3, ALE, PSEN)	0.75 V _{CC}			V	$I_{OH} = -25 \mu\text{A}$
791.2	880	0.9 V _{CC}		ecomist	V	$I_{OH} = -10 \mu\text{A}$
V _{OH1}	Output High Voltage	2.4	0	27000444	V	$I_{OH} = -800 \mu\text{A} V_{CC} = 5V \pm 10\%$
	(FOIL O III EXTERNAL BUS	0.75 V _{CC}	10		٧	$I_{OH} = -300 \mu\text{A}$
30	Mode)	0.9 V _{CC}			V	$I_{OH} = -80 \mu\text{A}$ (2)
I _{IL}	Logical 0 Input Current (Ports 1, 2, 3)			-50 dput, respec-	μА	V _{IN} = 0.45V
ITL no	Logical 1 to 0 Transition Current (Ports 1, 2, 3)	Figure 4. Ex		-650	μА	V _{IN} = 2V and down has to way
lu	Input Leakage Current (Port 0, EA)			±10	μА	0.45 < V _{IN} < V _{CC}
RRST	Reset Pulldown Resistor	50		150	ΚΩ	
CIO	Pin Capacitance			10	pF	Test Freq = 1 MHz, T _A = 25°C
lcc	Power Supply Current: Active Mode, 12 MHz (4) Idle Mode, 12 MHz (4) Power Down Mode		11 1.7 5	20 5 50	mA mA μA	(5)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OLS} of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

2. Capacitive loading on Ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the 0.9 VCC

specification when the address bits are stabilizing.

3. "Typicals" are based on a limited number of samples taken from early manufacturing lots and are not guaranteed. The values listed are at room temperature, 5V.

4. ICCMAX at other frequencies is given by

Active Mode: ICCMAX = 1.47 × FREQ + 2.35

Idle Mode: ICCMAX = 0.33 × FREQ + 1.05

where FREQ is the external oscillator frequency in MHz. ICCMAX is given in mA. See Figure 5.

5. See Figures 6 through 9 for ICC test conditions. Minimum VCC for Power Down is 2V.

6. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 10 mA

Maximum I_{OL} per 8-bit port-

Port 0: 26 mA

Ports1, 2, and 3: 15 mA
Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 5. I_{CC} vs. Frequency.

Valid only within frequency specifications of the device under test.

Figure 6. I_{CC} Test Condition, Active Mode.
All other pins are disconnected.

Figure 7. I_{CC} Test Condition, Idle Mode. All other pins are disconnected.

Figure 8. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

Figure 9. I_{CC} Test Condition, Power Down Mode. All other pins are disconnected. V_{CC} = 2V to 6V.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

- A: Address.
- C: Clock.
- D: Input data.
- H: Logic level HIGH. Mono Diseas of a stupid
- I: Instruction (program memory contents).
- L: Logic level LOW, or ALE.

P: PSEN.

- Q: Output data.
- R: RD signal.
- T: Time.
- V: Valid.
- W: WR signal.
- X: No longer a valid logic level.
- Z: Float.

EXAMPLE:

TAVLL = Time for Address Valid to ALE Low.
TLLPL = Time for ALE Low to PSEN Low.

Figure 7. lcc Test Condition, Idle Mode.

A.C. CHARACTERISTICS

(T_A = 0°C to 70°C, V_{CC} = 5V \pm 20%, V_{SS} = 0V, Load Capacitance for Port 0, ALE, and \overline{PSEN} = 100 pF, Load Capacitance for All Other Outputs = 80 pF)

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

Symbol	Parameter	12 MF	Iz Osc	Variable	Oscillator	Units
Symbol	Parameter	Min	Max	Min	Max	Office
1/TCLCL	Oscillator Frequency 80C51BH/80C31BH 80C51BH-1/80C31BH-1 80C51BH-2/80C31BH-2		90	3.5 3.5 0.5	12 16 12	MHz
TLHLL	ALE Pulse Width	127		2TCLCL - 40		ns
TAVLL	Address Valid to ALE Low	28		TCLCL - 55	28	ns
TLLAX	Address Hold After ALE Low	48	vouat	TCLCL - 35		ns
TLLIV	ALE Low to Valid Instr In		234	- TELEST-	4TCLCL - 100	ns
TLLPL	ALE Low to PSEN Low	43		TCLCL - 40	o TROR	ns
TPLPH	PSEN Pulse Width	205		3TCLCL - 45		ns
TPLIV	PSEN Low to Valid Instr In		145	YOWAY	3TCLCL - 105	ns
TPXIX	Input Instr Hold After PSEN	0		0	-V	ns
TPXIZ	Input Instr Float After PSEN		59		TCLCL - 25	ns
TAVIV	Address to Valid Instr In		312		5TCLCL - 105	ns
TPLAZ	PSEN Low to Address Float		10		10	ns
TRLRH	RD Pulse Width	400	SIOV	6TCLCL - 100	WARDORY IAI	ns
TWLWH	WR Pulse Width	400		6TCLCL - 100		ns
TRLDV	RD Low to Valid Data In		252	13/11/	5TCLCL - 165	ns
TRHDX	Data Hold After RD	0		0		ns
TRHDZ	Data Float After RD		97	-()	2TCLCL - 70	ns
TLLDV	ALE Low to Valid Data In	185,29	517	25417 23087 -	8TCLCL - 150	ns
TAVDV	Address to Valid Data In		585		9TCLCL - 165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL - 50	3TCLCL + 50	ns
TAVWL	Address Valid to RD or WR Low	203	1	4TCLCL - 130	SHEEK	ns
TQVWX	Data Valid to WR Transition	23		TCLCL - 60		ns
TWHQX	Data Hold After WR	33		TCLCL - 50		ns
TRLAZ	RD Low to Address Float	- guggr	0		0	ns
TWHLH	RD or WR High to ALE High	43	123	TCLCL - 40	TCLCL + 40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

Shift Register Mode Timing Waveforms

80C31BH/80C51BH

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
LOSS-51 family of	Oscillator Frequency 80C51BH/80C31BH 80C51BH-1/80C31BH-1 80C51BH-2/80C31BH-2	3.5 3.5 3.5	12 16 12 12	nl-muS i
TCHCX	High Time III Jeem of bengiss	o ere 20 bord	nese EXPRESS	erellonsoporoin
TCLCX	Low Time	20	ioo oooaxo sino	ns
Debnitchen bes ni-	Rise Time Puls regmed bashast	ie commerciai s	gram '02 udes t	ng all ns XB en
TCHCL	Fall Time	STREET BUL	20	ns

SERIAL TIMING SHIFT REGISTER MODE of behind the off die of the series of

Test Conditions: TA = 0°C to 70°C; VCC = 5V ±20%; VSS = 0V; Load Capacitance = 80 pF

Symbol	Parameter	12 MF	Iz Osc	Variable Oscillator		Units
Cymbo.	T di dillocoi	Min	Max	Min	Max	Omto
TXLXL	Serial Port Clock Cycle Time	1.0	medi s	12TCLCL	e types and take	μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10TCLCL - 133		ns
TXHQX	Output Data Hold After Clock Rising Edge	50	, this de	2TCLCL - 117	reduced rember	ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0 .	iters not listed her	ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10TCLCL - 133	ns

EXTERNAL CLOCK DRIVE WAVEFORM

AC TESTING INPUT, OUTPUT WAVEFORMS

AC Inputs during testing are driven at $V_{CC}=0.5$ for a logic "1" and 0.45 V for a logic "0". Timing measurements are made at V_{IH} min. for a logic "1" and V_{IL} max. for a logic "0".

FLOAT WAVEFORMS

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $|_{OL}/I_{OH} \geq \pm 20$ mA.

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -005 version of the 80C51BH data sheet:

1. Package table was added.

Order Number: 270218-002

- 2. Note 6 on maximum current specifications added to DC Characteristics.
- 3. Data Sheet Revision Summary was added.

80C31BH/80C51BH

EXPRESS

Extended Temperature Range

■ 3.5 to 12 MHz V_{CC} = 5V ±20%

Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of 0° C to 70° C. With the extended temperature range option, operational characteristics are guaranteed over the range of -40° C to $+85^{\circ}$ C.

The optional burn-in is dynamic for a minimum time of 160 hours at 125°C with $V_{CC}=6.9V\pm0.25V$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

TXHDV | Clock Rising Edge to Input Data Valid

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data

80C51BHP-2-0,5-12 MHz, Voc = 5V ± 20% D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = 5V \pm 20\%$; $V_{SS} = 0V$

Cumbal	Parameter Masicola a	Liı	Unit	Test	
Symbol	Parameter	Min	Max	Onit	Conditions
VIL	Input Low Voltage (Except EA)	-0.5	0.2V _{CC} - 0.15	٧	- 18 M J 20
V _{IL1}	EA TION ISSUED PROGRAMME TOOM BE	-0.5V	0.2V _{CC} - 0.35	٧	u-ar ow f
VIH	Input High Voltage (Except XTAL1, RST)	0.2V _{CC} + 1	V _{CC} + 0.5	V	AK Progra
V _{IH1}	Input High Voltage to XTAL1, RST	0.7V _{CC} + 0.1	V _{CC} + 0.5	V	Protection
IIL	Logical 0 Input Current (Port 1, 2, 3)		-75	μΑ	$V_{in} = 0.45V$
TLinguage	Logical 1 to 0 transition Current (Ports 1, 2, 3)	ucts is fabricate	-750	μΑ	$V_{in} = 2.0V$

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range	Burn-In
Payle os I	Plastic	Commercial	No No
o achemDeldetoel	enswitoe Cerdip 1 9HB 120	Commercial Commercial	one note No nido
N	PLCC BwoG te	Commercial 19400 1941	luced solvity for fur
TP.	Plastic	Extended	No
ls pricuTD rotellio	edit assoc Cerdip notice 144	Red save Extended	nonnoi No sunit
TN	PLCC	Extended that agont ad	er chipoMnotions to
QP	Plastic	Commercial	Yes
etimil nQD, evant	Cerdip metre bas	beldes a Commercial	Yes
QN	PLCC	Commercial	Yes
LP	Plastic	Extended	Yes
LD	Cerdip	Extended	Yes
LN	PLCC	Extended	Yes

 Commercial temperature range is 0°C to 70°C. Extended temperature range is -40°C to +85°C.
 Burn-in is dynamic for a minimum time of 160 hours at 125°C, V_{CC} = 6.9V ±0.25V, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

Examples:

P80C31BH indicates 80C31BH in a plastic package and specified for commercial temperature range, without

LD80C51BH indicates 80C51BH in a cerdip package and specified for extended temperature range with burn-

80C51 BHP CHMOS SINGLE-CHIP 8-BIT MICROCOMPUTER WITH PROTECTED ROM

80C51BHP—3.5–12 MHz, $V_{CC}=5V\pm20\%$ 80C51BHP-1—3.5–16 MHz, $V_{CC}=5V\pm20\%$ 80C51BHP-2—0.5–12 MHz, $V_{CC}=5V\pm20\%$

	Power Control Modes	
	128 x 8-Bit RAM	
-	32 Programmable I/O Lines	MIn — 0.6
=	Two 16-Bit Timer/Counters	
-	4K Program Memory Space	

■ Protection Feature Protects ROM Parts
Against Software Piracy

■ High Performance CHMOS Process

Boolean Processor

■ 5 Interrupt Sources

■ Programmable Serial Port

4K Data Memory Space (Expandable to 64K)

The MCS®-51 family of CHMOS products is fabricated on Intel's CHMOS III process and is functionally compatible with the standard 8051 HMOS and EPROM products. CHMOS III is a technology which combines the high speed and density characteristics of HMOS with the low power attributes of CMOS. This combination expands the effectiveness of the powerful 8051 architecture and instruction set.

Like the 8051 HMOS versions, the 80C51 BHP has the following features: 4K byte of ROM; 128 bytes of RAM; 32 I/O lines; two 16-bit timer/counters; a five-source two-level interrupt structure; a full duplex serial port; and on-chip oscillator and clock circuitry. In addition, the 80C51 BHP has two software selectable modes of reduced activity for further power reduction—Idle and Power Down.

The Idle mode freezes the CPU while allowing the RAM, timer/counters serial port and interrupt system to continue functioning. The Power Down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

The 80C51BHP is identical to the 80C51BH with the exception of the Protection Feature. To incorporate this Protection Feature, program verification has been disabled and external memory accesses have been limited to 4K.

igure z. connecuon piagrama

IDLE MODE

In the Idle mode, the CPU puts itself to sleep while all the on chip peripherals stay active. The instruction that invokes the Idle mode is the last instruction executed in the normal operating mode before Idle mode is activated. The content of the on-chip RAM and all the Special Function Registers remain intact during this mode. The Idle mode can be terminated either by any enabled interrupt, at which time the process is picked up at the interrupt service routine and continued, or by a hardware reset which starts the processor the same as a power on reset.

POWER DOWN MODE

In the Power Down mode the oscillator is stopped, and the instruction that invokes Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

The only exit from Power Down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

The control bits for the reduced power modes are in the Special Function Register PCON.

NOTE:

For more detailed information on these reduced power modes refer to Application Note AP-252, "Designing with the 80C51BH".

PACKAGES

Part	Prefix	Package Type
80C51BHP	Р	40-Pin Plastic DIP
HLEY	N	44-Pin PLCC

Table 1. Status of the external pins during Idle and Power Down modes

Mode	Program Memory	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3
Idle	Internal	THOR 1	1	Data	Data	Data	Data
Idle	External	TE 1	1	Float	Data	Address	Data
Power Down	Internal	1010	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

Figure 2. Connection Diagrams

PIN DESCRIPTIONS CONTROL OF THE CONT

ments on the duty cycle of the external clock sicosV

Supply voltage during normal, Idle, and Power Down operations.

VSS

Circuit ground.

or Data memory above 4K. This means ti 0 troil

Port 0 is an 8-bit open drain bi-directional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s.

MOVX @RL A or MOVX A, @RI instructions

Port 1 is an 8-bit bidirectional I/O port with internal pullups. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current ($I_{\rm IL}$, on the data sheet) because of the internal pullups.

Port 200 and of seeded, but avent, in MAR Isn

Port 2 is an 8-bit bidirectional I/O port with internal pullups. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current ($I_{\rm IL}$, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. In the 80C51 BHP, Bits 2.4 through 2.7 are forced to 0, effectively limiting external data and code space to 4K each during external accesses (see Design Considerations). During accesses to external Data Mem-

ory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 3

Port 3 is an 8-bit bidirectional I/O port with internal pullups. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current ($I_{\rm IL}$, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal diffused resistor to V_{SS} permits Power-On reset using only an external capacitor to V_{CC}.

ALE

Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN

Program Store Enable is the read strobe to external Program Memory.

When the device is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory. PSEN is not activated during fetches from internal program memory.

pullups. Port 3 pins that have 1s written to them AB

External Access enable. \overline{EA} must be strapped to V_{SS} in order to enable the device to fetch code from external Program Memory locations starting at 0000H up to FFFFH. If \overline{EA} is strapped to V_{CC} the device executes from internal Program Memory unless the program counter contains an address greater than 0FFFH.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock generator circuits.

XTAL2 (fugni ismetics friemit) IT

Output from the inverting oscillator amplifier.

Figure 3. Crystal Oscillator

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillator for Microcontrollers".

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Design Considerations

 The 80C51BHP cannot access external Program or Data memory above 4K. This means that the following instructions that use the Data Pointer only read/write data at address locations below 0FFFH:

MOVX A, @DPTR MOVX @DPTR, A

When the Data Pointer contains an address above the 4K limit, those locations will not be accessed. To access Data Memory above 4K, the MOVX @Ri, A or MOVX A, @Ri instructions must be used.

- Before entering the Power Down mode the contents of the Carry Bit and B.7 must be equal.
- When the Idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

Figure 4. External Drive Configuration

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias0°C to +70°C
Storage Temperature65°C to +150°C
Voltage on any Pin to V_{SS} $-0.5V$ to V_{CC} $+0.5V$
Voltage on V _{CC} to V _{SS} 0.5V to 6.5V
Maximum I _{OL} per I/O Pin15 mA
Power Dissipation1.0W*

^{*}This value is based on the maximum allowable die temperature and the thermal resistance of the package.

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS ($T_A = 0$ °C to +70°C; $V_{CC} = 5V \pm 20$ %; $V_{SS} = 0V$)

Symbol	Parameter	Min	Typ (3)	AMax	Unit	Test Conditions
V _{IL}	Input Low Voltage (Except EA)	-0.5 loadon. Pins are	ed speci	0.2 V _{CC} -0.1	L may	Maximum Total I _{OL} for all out I _{OL} exceeds the test condition, V _C
V _{IL1}	Input Low Voltage (EA)	-0.5		0.2 V _{CC} - 0.3	٧	ner the listed less conditions.
VIH	Input High Voltage (Except XTAL1, RST)	0.2 V _{CC} + 0.9		V _{CC} + 0.5	٧	25
V _{IH1}	Input High Voltage (XTAL1, RST)	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage (6) (Ports 1, 2, 3)			0.45	٧	I _{OL} = 1.6 mA (1)
V _{OL1}	Output Low Voltage (6) (Port 0, ALE, PSEN)			0.45 ¹³ 9YT	V	I _{OL} = 3.2 mA (1)
VoH	Output High Voltage	JAMOI 2.4			V	$I_{OH} = -60 \mu\text{A}V_{CC} = 5V \pm 10\%$
	(Ports 1, 2, 3, ALE, PSEN)	0.75 V _{CC}			V	$I_{OH} = -25 \mu A$
	rs	0.9 V _{CC}		XAM -	V	$I_{OH} = -10 \mu\text{A}$
V _{OH1}	Output High Voltage (Port 0 in External Bus Mode)	001 (2.4 up) F		2008 250	V	$I_{OH} = -800 \mu\text{A} V_{CC} = 5V \pm 10\%$
		0.75 V _{CC}			٧	$I_{OH} = -300 \mu\text{A}$
		0.9 V _{CC}		JOLE MODE	V	$I_{OH} = -80 \mu A (2)$
I _{IL}	Logical 0 Input Current (Ports 1, 2, 3)			-50 ³³⁴	μΑ	V _{IN} = 0.45V
I _{TL}	Logical 1 to 0 Transition Current (Ports 1, 2, 3)			-650	μА	V _{IN} = 2V
ILI	Input Leakage Current (Port 0, EA)			±10	μΑ	0.45 < V _{IN} < V _{CC}
RRST	Reset Pulldown Resistor	50		150	ΚΩ	
CIO	Pin Capacitance	STONAL		10	pF	Test Freq = 1 MHz, T _A = 25°C
lcc a_coso	Power Supply Current: Active Mode, 12 MHz (4) Idle Mode, 12 MHz (4) Power Down Mode	Flgure 7. Ic	11 1.7 5	20 5 50	mA mA μA	(5)

- 1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OLS} of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.
- 2. Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the 0.9 V_{CC} specification when the address bits are stabilizing.
- 3. "Typicals" are based on a limited number of samples taken from early manufacturing lots and are not guaranteed. The values listed are at room temperature, 5V.
- 4. ICCMAX at other frequencies is given by

Active Mode: ICCMAX = 1.47 × FREQ + 2.35

Idle Mode: ICCMAX = 0.33 × FREQ + 1.05

- where FREQ is the external oscillator frequency in MHz. ICCMAX is given in mA. See Figure 5.
- 5. See Figures 6 through 9 for ICC test conditions. Minimum VCC for Power Down is 2V.
- 6. Under steady state (non-transient) conditions, IQI must be externally limited as follows:

Maximum I_{OL} per Port Pin: 10 mA

Maximum I_{OL} per 8-Bit Port —

Port 0: 26 mA

Ports 1, 2 and 3: 15 mA

Maximum Total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 8. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

Figure 9. I_{CC} Test Condition, Power Down Mode. All other pins are disconnected. V_{CC} = 2V to 6V.

D. DEEN

EXPLA	NATION OF THE	AC SYMBOLS		P: P	utput data.				
	ming symbol has 5			R: F	D signal. In the It bills V of easinbbA				
charact	s always a 'T' (staters, depending on	their positions, st	e other	T: T V: V		TPLAZ			
the nar	me of a signal or The following is a lis	the logical status	of that		R signal.				
	ney stand for.	st Of all the Charact	lers and	Z: F	o longer a valid logic level.				
A: Address JOJOTa									
C: Cloc				EXA	MPLE: CA setta bloH staO	XOHRT			
H: Logic level HIGH.				TAVLL = Time for Address Valid to ALE Low.					
	ruction (program m ic level LOW, or Al			TLLF	PL = Time for ALE Low to PSEN Low	TLLDY.			
an	9TCLCL - 165					VOVAT			
					ALE Low to RD or WR Low				
		4TCLCL - 130							
					Data Valid to WR Transition				
en				33	Data Hold After WR				
						TRLAZ			
	TOLOL + 40	TCLCL - 40							

A.C. CHARACTERISTICS

 $(T_A = 0$ °C to 70°C, $V_{CC} = 5V \pm 20\%$, $V_{SS} = 0V$, Load Capacitance for Port 0, ALE, and $\overline{PSEN} = 100$ pF, Load Capacitance for All Other Outputs = 80 pF)

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

Symbol	Parameter Parameter	12 MHz Osc Variable Oscillator					
Symbol	raiameter	Min	Max	Min	Max	Units	
1/TCLCL	Oscillator Frequency 80C51BH/80C31BH 80C51BH-1/80C31BH-1 80C51BH-2/80C31BH-2	V col		3.5 3.5 0.5	12 16 12	MHz	
TLHLL	ALE Pulse Width	127		2TCLCL - 40		ns	
TAVLL	Address Valid to ALE Low	28	L BEST	TCLCL - 55		ns	
TLLAX	Address Hold After ALE Low	48	=	TCLCL - 35		ns	
TLLIV	ALE Low to Valid Instr In	2	234	DM)	4TCLCL - 100	ns	
TLLPL	ALE Low to PSEN Low	43	eeV -	TCLCL - 40		ns	
TPLPH	PSEN Pulse Width	205	100	3TCLCL - 45		ns	
TPLIV	PSEN Low to Valid Instr In	arito IIA	145	dition Course Day	3TCLCL - 105	ns	
TPXIX	Input Instr Hold After PSEN	0		0		ns	
TPXIZ	Input Instr Float After PSEN	0:0	59	VC SAMBOTS	TCLCL - 25	ns	
TAVIV	Address to Valid Instr In	同::8	312		5TCLCL - 105	ns	
TPLAZ	PSEN Low to Address Float	BV :V	10	nds for time). The	no poi 10 ceb a	ns	
TRLRH	RD Pulse Width	400	of that	6TCLCL - 100	e of a signal or	ns	
TWLWH	WR Pulse Width	400	Date Sto	6TCLCL - 100	ne foliceing is a la v stand for.	ns	
TRLDV	RD Low to Valid Data In	San Se	252		5TCLCL - 165	bins	
TRHDX	Data Hold After RD	0		0	etch	ns	
TRHDZ	Data Float After RD of smill = _	JVAT	97		2TCLCL - 70	ns	
TLLDV .WO	ALE Low to Valid Data In	14331	517	emory contents).	8TCLCL - 150	ns	
TAVDV	Address to Valid Data In		585		9TCLCL - 165	ns	
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL - 50	3TCLCL + 50	ns	
TAVWL	Address Valid to RD or WR Low	203		4TCLCL - 130		ns	
TQVWX	Data Valid to WR Transition	23		TCLCL - 60		ns	
TWHQX	Data Hold After WR	33		TCLCL - 50		ns	
TRLAZ	RD Low to Address Float		0		0	ns	
TWHLH	RD or WR High to ALE High	43	123	TCLCL - 40	TCLCL + 40	ns	

EXTERNAL PROGRAM MEMORY READ CYCLE

Shift Register Mode Timing Waveforms

EXTERNAL CLOCK DRIVE

Symbol Parameter		Min	Max	Units
1/TCLCL	Oscillator Frequency 80C51BHP 80C51BHP-1 80C51BHP-2	3.5 3.5 0.5	12 16 12	MHz
TCHCX	High Time	20	estate	ns
TCLCX Low Time		20		ns
TCLCH Rise Time		and the second	20	ns
TCHCL	Fall Time		20	ns

SERIAL TIMING—SHIFT REGISTER MODE

Test Conditions: TA = 0°C to 70°C; VCC = 5V ±20%; VSS = 0V; Load Capacitance = 80 pF

Parameter		z Osc	Variable	Units	
		Max	Min	Max	
Serial Port Clock Cycle Time	1.0		12TCLCL		μs
Output Data Setup to Clock Rising Edge	700	Bernan	10TCLCL - 133		ns
Output Data Hold After Clock Rising Edge	50		2TCLCL - 117		ns
Input Data Hold After Clock Rising Edge	0	formal	0		ns
Clock Rising Edge to Input Data Valid		700	good	10TCLCL - 133	ns
	Serial Port Clock Cycle Time Output Data Setup to Clock Rising Edge Output Data Hold After Clock Rising Edge Input Data Hold After Clock Rising Edge	Serial Port Clock Cycle Time 1.0 Output Data Setup to Clock Rising Edge 700 Output Data Hold After Clock Rising Edge 50 Input Data Hold After Clock Rising Edge 0	Serial Port Clock Cycle Time 1.0 Output Data Setup to Clock Rising Edge 700 Output Data Hold After Clock Rising Edge 50 Input Data Hold After Clock Rising Edge 0	Min Max Min Serial Port Clock Cycle Time 1.0 12TCLCL Output Data Setup to Clock Rising Edge 700 10TCLCL - 133 Output Data Hold After Clock Rising Edge 50 2TCLCL - 117 Input Data Hold After Clock Rising Edge 0 0	Min Max Min Max Serial Port Clock Cycle Time 1.0 12TCLCL Output Data Setup to Clock Rising Edge 700 10TCLCL - 133 Output Data Hold After Clock Rising Edge 50 2TCLCL - 117 Input Data Hold After Clock Rising Edge 0 0

EXTERNAL CLOCK DRIVE WAVEFORM

AC TESTING INPUT, OUTPUT WAVEFORMS

AC Inputs during testing are driven at $V_{CC} - 0.5$ for a logic "1" and 0.45 V for a logic "0". Timing measurements are made at V_{IH} min. for a logic "1" and V_{IL} max. for a logic "0".

FLOAT WAVEFORMS

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \geq \, \pm 20$ mA.

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -001 version of the 80C51BHP data sheet:

- 1. Package Table was added.
- 2. Note 6 on Maximum Current Specifications was added to D.C. Characteristics.
- 3. Data Sheet Revision Summary was added.

87C51/87C51-1/87C51-2 CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH 4K BYTES OF EPROM PROGRAM MEMORY

87C51-3.5 to 12 MHz, $V_{CC} = 5V \pm 10\%$ 87C51-1-3.5 to 16 MHz, $V_{CC} = 5V \pm 10\%$ 87C51-2-0.5 to 12 MHz, $V_{CC} = 5V \pm 10\%$

- High Performance CHMOS EPROM
- Quick-Pulse Programming™ Algorithm
- 2-Level Program Memory Lock
- Boolean Processor
- 128-Byte Data RAM
- 32 Programmable I/O Lines
- Two 16-Bit Timer/Counters
- 5 Interrupt Sources

- **Programmable Serial Channel**
- TTL- and CMOS-Compatible Logic Levels
- **64K External Program Memory Space**
- **64K External Data Memory Space**
- III IDLE and POWER DOWN Modes
- ONCE™ Mode Facilitates System Testing
- LCC, PLCC, and DIP Packaging Available

The 87C51 is the EPROM version of the 80C51BH. It is fabricated on Intel's CHMOS II-E process. It contains 4K bytes of on-chip Program memory that can be electrically programmed, and can be erased by exposure to ultraviolet light.

The 87C51 EPROM array uses a modified Quick-Pulse programming algorithm, by which the entire 4K-byte array can be programmed in about 12 seconds.

The extremely low operating power, along with the two reduced power modes, Idle and Power Down, make this part very suitable for low power applications. The Idle mode freezes the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power Down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

Figure 1. MCS®-51 Architectural Block Diagram

PACKAGES

Part	Prefix	Package Type
87C51/	P	40-Pin Plastic DIP
87C51-1/	D	40-Pin CERDIP
87C51-2	N	44-Pin PLCC

Figure 2. Pin Connections

PIN DESCRIPTION

Vcc: Supply voltage during normal, Idle, and Power Down operations.

Vss: Circuit ground, and and approach and a

Port 0: Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external memory. In this application it uses strong internal pullups when emitting 1s.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullups are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address bytes during EPROM programming and program verification.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}) on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program memory and during accesses to external Data Memory that use 16-bit address (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s.

During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives some control signals and the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL} , on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Pin	Name	Alternate Function
P3.0	RXD	Serial input line and enter that the break
P3.1	TXD	Serial output line
P3.2	INTO	External Interrupt 0
P3.3	INT1	External Interrupt 1 and colo al 0 mos
P3.4	ТО	Timer 0 external input
P3.5	erT1	Timer 1 external input
P3.6	WR	External Data Memory Write strobe
P3.7	RD	External Data Memory Read strobe

Port 3 also receives some control signals for EPROM programming and program verification.

RST: Reset input. A logic high on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits a power-on reset to be generated using only an external capacitor to V_{CC} .

ALE/PROG: Address Latch Enable output signal for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during EPROM programming.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the Read strobe to External Program Memory. When the 87C51 is executing from Internal Program Memory, PSEN is inactive (high). When the device is executing code from External Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to External Data Memory.

EA/Vpp: External Access enable. EA must be strapped to VSS in order to enable the 87C51 to fetch code from External Program Memory locations starting at 0000H up to FFFFH. Note, however, that if either of the Lock Bits is programmed, the logic level at EA is internally latched during reset.

EA must be strapped to V_{CC} for internal program execution.

This pin also receives the 12.75V programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier and input to the internal clock generating circuits.

XTAL2: Output from the inverting oscillator amplifier.

Figure 3. Using the On-Chip Oscillator

Figure 4. External Clock Drive

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3.

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

IDLE MODE

In Idle Mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the Special Functions Registers remain unchanged during this mode. The Idle Mode can be terminated by any enabled interrupt or by a hardware reset.

It should be noted that when Idle is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port

Table 1. Status of the external pins during Idle and Power Down

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	operation	monoqui	Data	Data	Data	Data
Idle impliable	External	stions of the	sa larfoit	Float	Data 38	Address	Data
Power Down	Internal	0.0	eur.0d	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Controller Handbook, and Application Note AP-252, "Designing with the 80C51BH."

pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

POWER DOWN MODE

In the Power Down mode the oscillator is stopped, and the instruction that invokes Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

The only exit from Power Down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

DESIGN CONSIDERATIONS

Exposure to light when the device is in operation may cause logic errors. For this reason, it is suggested that an opaque label be placed over the window when the die is exposed to ambient light.

If using the 87C51 to prototype for the 80C51BH, consult the Design Considerations section of the 80C51BH data sheet.

PROGRAM MEMORY LOCK

The 87C51 contains two program memory lock schemes: Encrypted Verify and Lock Bits.

Encrypted Verify: The 87C51 implements a 32-byte EPROM array that can be programmed by the customer, and which can then be used to encrypt the program code bytes during EPROM verification. The EPROM verification procedure is performed as usual, except that each code byte comes out logically X-NORed with one of the 32 key bytes. The key bytes are gone through in sequence. Therefore, to read the ROM code, one has to know the 32 key bytes in their proper sequence.

Lock Bits: Also on the chip are two Lock Bits which can be left unprogrammed (U) or can be programmed (P) to obtain the following additional features:

1	Bit 1	Bit 2	Additional Features
	U	U	none none
	P (5) (7)	(7) (7) ALE, PSI	Externally fetched code can not access internal Program Memory. Further programming disabled.
	UPU P	P	(Reserved for Future definition.)
	Р	P	 Externally fetched code can not access internal Program Memory. Further programming disabled. Program verification is disabled.

When Lock Bit 1 is programmed, the logic level at the \overline{EA} pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of \overline{EA} be in agreement with the current logic level at that pin in order for the device to function properly.

ONCETM MODE

The ONCE ("on-circuit emulation") mode facilitates testing and debugging of systems using the 87C51 without the 87C51 having to be removed from the circuit. The ONCE mode is invoked by:

- 1. Pull ALE low while the device is in reset and PSEN is high;
- 2. Hold ALE low as RST is deactivated.

While the device is in ONCE mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 87C51 is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0°C to +70°C
Storage Temperature65°C to +150°C
Voltage on EA/VPP Pin to VSS 0V to + 13.0V
Voltage on Any Other Pin to VSS0.5V to +6.5V
Maximum I _{OL} per I/O Pin
Power Dissipation1.5W
(Based on package heat transfer limitations, not device power consumption).

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS: (TA = 0°C to +70°C; VCC = 5V ±10%; VSS = 0V) T belighted for all and

Symbol	Parameter	Min	Typ(1)	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage (Except EA)	-0.5	writes to	.2V _{CC} 1	IVI	nyokes (die snoul
V _{IL1}	Input Low Voltage to EA	0		.2V _{CC} 3	TOMO	in of to external i
VIH	Input High Voltage (Except XTAL1, RST)	.2V _{CC} +.9		V _{CC} +.5	٧	
V _{IH1}	Input High Voltage (XTAL1, RST)	0.7V _{CC}		V _{CC} +.5	٧	MOR HEMO.
VOL	Output Low Voltage (Ports 1, 2, 3) (7)	,beqqo	ator is sl	0.45	DOA!	$I_{OL} = 1.6 \text{mA} (2)$
VOLT	Output Low Voltage (Port 0, ALE, PSEN) (7)	bon M	NVOU 181	0.45	V	$I_{OL} = 3.2 \text{mA} (2)$
VOH	Output High Voltage (Ports 1, 2, 3, ALE, PSEN)	2.4 88	leir valu	es retain th	teVel	$I_{OH} = -60 \mu\text{A}$
00 000	P P Externally fetched code can			terminated	i wo	$I_{OH} = -25 \mu\text{A}$
viomaM		.9Vcc	bardwan	Down is a	V	$I_{OH} = -10 \mu\text{A}$
V _{OH1}	Output High Voltage (Port 0 in	2.4 901	not char	s but does	HV 8	$I_{OH} = -800 \mu A$
disabled		.75 V _{CC}	BVIIOS 90	should not	V	$I_{OH} = -300 \mu\text{A}$
	External Bus Mode)	.9V _{CC}	erit woll	s of douces	V	$I_{OH} = -80 \mu\text{A}$ (3)
III c level	Logical 0 Input Current (Ports 1, 2, 3)			-50	μΑ	V _{IN} = 0.45 V
July adi	Logical 1-to-0 transition current (Ports 1, 2, 3)			-650	μΑ	(4)
that ijt	Input Leakage Current (Port 0) at 1989 linu	nationa	no at al	±10	μΑ	VIN = VIL or VIH
lcc of s	Power Supply Current: Active Mode @ 12 MHz (5) Idle Mode @ 12 MHz (5) Power Down Mode	window		25 ec 100 4 s of 50	mA mA μA	ney cause logic en ed that an opaque when th (6) tie is ex
RRST	Internal Reset Pulldown Resistor	50	ine 80t	300	kΩ	Lusing the 87C5
CIO	Pin Capacitance	9/11 10	1100000	10	pF	Model His money

NOTES: and debugging of systems using the :Saton

Active Mode: I_{CC}MAX = 0.94 × FREQ + 13.71 page ni ripuorni enop era servi Idle Mode: I_{CC}MAX = 0.14 × FREQ + 2.31 and and about MOR and been

where FREQ is the external oscillator frequency in MHz. ICCMAX is given in mA. See Figure 5.0002 190000 1901000 in MHz.

^{1. &}quot;Typicals" are based on a limited number of samples taken from early manufacturing lots and are not guaranteed. The values listed are at room temp, 5V.

^{2.} Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOI s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

^{3.} Capacitive loading on Ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the 0.9VCC specification when the address bits are stabilizing.

^{4.} Pins of Ports 1, 2, and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2V.

5. I_{CC}MAX at other frequencies is given by:

See Figures 6 through 9 for I_{CC} test conditions. Minimum V_{CC} for Power Down is 2V.
 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin:

Maximum I_{OL} per port pin: 10 mA

Maximum I_{OL} per 8-bit port—

Port 0: 26 mA

Ports 1, 2, and 3: 15 mA lend no prioneged seguenaria

Maximum total IOL for all output pins: 171 mA 1001 and 10 langle a 10 amen ent

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. The latest and private the related specification and the latest and private the related specification.

Figure 5. I_{CC} vs. FREQ. Valid only within frequency specifications of the device under test.

Figure 6. I_{CC} Test Condition, Active Mode.

All other pins are disconnected.

Figure 7. I_{CC} Test Condition, Idle Mode.

All other pins are disconnected.

Figure 9. I_{CC} Test Condition, Power Down

Mode. All other pins are disconnected.

V_{CC} = 2V to 5.5V.

Figure 8. Clock Signal Waveform for JA of right RW to GR I_{CC} tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Q:Output data.
R:RD signal.
T:Time.

V:Valid.
W:WR signal.
X:No longer a valid.

A:Address.
C:Clock.
D:Input data.
H:Logic level HIGH.
I:Instruction (program memory contents).

L:Logic level LOW, or ALE.

P:PSEN.

Q:Output data.

R:RD signal.

T:Time.

V:Valid.

W:WR signal.

Z:Float.
For example.

TAVLL = Time from Address Valid to ALE Low. TLLPL = Time from ALE Low to PSEN Low.

X:No longer a valid logic level.

A.C. CHARACTERISTICS: $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = 5V \pm 10\%; V_{SS} = 0V; Load Capacitance for Port 0, ALE, and <math>\overline{PSEN} = 100 \text{ pF}; Load Capacitance for All Other Outputs = 80 pF)$

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

Symbol	Parameter 201 V an street and connection is	12 MHz O	scillator	Variable	Units	
Symbol		Min	Max	Min	Max	Omits
1/TCLCL	Oscillator Frequency 87C51 87C51-1 87C51-2			3.5 2004 3.6 3.5 2004 3.6 3.5 0.5 44437	12 16 12	MHz
TLHLL	ALE Pulse Width	127		2TCLCL-40	EA 0397	ns
TAVLL	Address Valid to ALE Low	28	147-16	TCLCL-55		ns
TLLAX	Address Hold After ALE Low	48	1	TCLCL-35	Plaure 5. Inc. vs.	ns
TLLIV	ALE Low to Valid Instr In		234	to enoltrollions of	4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	43		TCLCL-40	device u	ns
TPLPH	PSEN Pulse Width	205	p	3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instr In		145		3TCLCL-105	ns
TPXIX	Input Instr Hold After PSEN	0		0		ns
TPXIZ	Input Instr Float After PSEN	Figur	59	平 50%	TCLCL-25	ns
TAVIV	Address to Valid Instr In	IOM MOIN	312	b9	5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float		10	1 B Ta	10	ns
TRLRH	RD Pulse Width	400		6TCLCL-100		ns
TWLWH	WR Pulse Width	400		6TCLCL-100	(NO) NOO.10	ns
TRLDV	RD Low to Valid Data In		252	25	5TCLCL-165	ns
TRHDX	Data Hold After RD	0	0147-17	0 27		ns
TRHDZ	Data Float After RD		97	E acceptant to the second	2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		517	inventorally a	8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address to RD or WR Low	203	parentered	4TCLCL-130	-wV	ns
TQVWX	Data Valid to WR Transition	23	and in	TCLCL-60	0	ns
TWHQX	Data Hold After WR	33	- 1 - 23NUT	TCLCL-50		ns
TRLAZ	RD Low to Address Float		0		0	ns
TWHLH	RD or WR High to ALE High	10ve 43	123	TCLCL-40	TCLCL+40	ns

External Program Memory Read Cycle

External Data Memory Read Cycle

External Data Memory Write Cycle

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units	
1/TCLCL	Oscillator Frequency 87C51 87C51-1 87C51-2	3.5 3.5 0.5	12 16 12	MHz	
TCHCX	High Time	20	-	ns	
TCLCX	Low Time	20	KR	ns	
TCLCH	Rise Time		20	ns	
TCHCL	Fall Time	C MANUFACTURE	20	ns	

EXTERNAL CLOCK DRIVE WAVEFORM

SERIAL PORT TIMING—SHIFT REGISTER MODE

Symbol	Parameter		MHz llator	Variable	Units	
		Min	Max	Min	Max	
TXLXL	Serial Port Clock Cycle Time	1.0	Michigan Property and	12TCLCL		μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10TCLCL-133		ns
TXHQX	Output Data Hold After Clock Rising Edge	50	VQ.	2TCLCL-117	1 1	ns
TXHDX	Input Data Hold After Clock Rising Edge	0		JWJ 0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

A.C. TESTING:

INPUT, OUTPUT WAVEFORMS

AC inputs during testing are driven at $V_{CC}=0.5$ for a Logic "1" and 0.45V for a Logic "0." Timing measurements are made at V_{IH} min for a Logic "1" and V_{IL} max for a Logic "0".

FLOAT WAVEFORM

270147-11

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. IOL/IOH ≥ ±20 mA.

EPROM CHARACTERISTICS

The 87C51 is programmed by a modified Quick-Pulse Programming™ algorithm. It differs from older methods in the value used for V_{PP} (Programming Supply Voltage) and in the width and number of the ALE/PROG pulses.

The 87C51 contains two signature bytes that can be read and used by an EPROM programming system

to identify the device. The signature bytes identify the device as an 87C51 manufactured by Intel.

Table 2 shows the logic levels for reading the signature byte, and for programming the Program Memory, the Encryption Table, and the Lock Bits. The circuit configuration and waveforms for Quick-Pulse Programming™ are shown in Figures 10 and 11. Figure 12 shows the circuit configuration for normal Program Memory verification.

that location is applied to Port 0, RST, PSEN, and

Table 2. EPROM Programming Modes

MODE	RST	PSEN	ALE/ PROG	EA/ Vpp	P2.7	P2.6	P3.7	P3.6
Read Signature	ent Bus	ugh OH, u	ond 1	- 1	0	0	0	0
Program Code Data	a slov I vins	0	0*	V _{PP}	19.100	0	north and	1
Verify Code Data	1	o sta	be 1 18	t tha t 870	NOO the	01 00 p	ni navode	ei Magnii
Pgm Encryption Table	Lock Bits		0*	V _{PP}	adt et prin	0	ahaan ini	0
Pgm Lock Bit 1	ence using	nbos Ouru	1819 0* 81	VPP	iq ops a	serbhs (metri en	tupere
Pgm Lock Bit 2	cotto Ne	100	0*	V _{PP}	1	1	0	0

NOTES:

"1" = Valid high for that pin

"0" = Valid low for that pin

 $V_{pp} = 12.75V \pm 0.25V$

V_{CC} = 5V ± 10% during programming and verification

*ALE/PROG receives 25 programming pulses while V_{PP} is held at 12.75V. Each programming pulse is low for 100 μ S(\pm 10 μ S) and high for a minimum of 10 μ S.

Figure 10. Programming Configuration

Figure 11. PROG Waveforms

Quick-Pulse Programming™

The setup for Microcontroller Quick-Pulse ProgrammingTM is shown in Figure 10. Note that the 87C51 is running with a 4 to 6 MHz oscillator. The reason the oscillator needs to be running is that the device is executing internal address and program data transfers.

The address of the EPROM location to be programmed is applied to Ports 1 and 2, as shown in Figure 10. The code byte to be programmed into that location is applied to Port 0. RST, PSEN, and pins of Ports 2 and 3 specified in Table 2 are held at the "Program Code Data" levels indicated in Table 2. Then ALE/PROG is pulsed low 25 times as shown in Figure 11.

To program the Encryption Table, repeat the 25pulse programming sequence for addresses 0 through 1FH, using the "Pgm Encryption Table" levels. Don't forget that after the Encryption Table is programmed, verify cycles will produce only encrypted data.

To program the Lock Bits, repeat the 25-pulse programming sequence using the "Pgm Lock Bit" levels. After one Lock Bit is programmed, further programming of the Code Memory and Encryption Table is disabled. However, the other Lock Bit can still be programmed.

Note that the $\overline{\text{EA}}/\text{V}_{PP}$ pin must not be allowed to go above the maximum specified V_{PP} level for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The V_{PP} source should be well regulated and free of glitches and overshoot.

8-126

Figure 10. Programming Configuration

Figure 12. Program Verification

Program Verification

If Lock Bit 2 has not been programmed, the on-chip Program Memory can be read out for program verification. The address of the Program Memory location to be read is applied to Ports 1 and 2 as shown in Figure 12. The other pins are held at the "Verify Code Data" levels indicated in Table 2. The contents of the addressed location will be emitted on Port 0. External pullups are required on Port 0 for this operation. Detailed timing specifications are shown in later sections of this data sheet.

If the Encryption Table has been programmed, the data presented at Port 0 will be the Exclusive NOR of the program byte with one of the encryption bytes. The user will have to know the Encryption Table contents in order to correctly decode the verification data. The Encryption Table itself can not be read out.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values returned are:

(030H) = 89H indicates manufactured by Intel

(031H) = 57H indicates 87C51

Program/Verify Algorithms

Any algorithm in agreement with the conditions listed in Table 2, and which satisfies the timing specifications, is suitable.

Erasure Characteristics

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1s state.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS:

 $(T_A = 21^{\circ}C \text{ to } 27^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V)$

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Supply Voltage	12.5	13.0	٧
Ірр	Programming Supply Current	19 TA-1	50	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold After PROG	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold After PROG	48TCLCL		
TEHSH	P2.7 (ENABLE) High to V _{PP}	48TCLCL		
TSHGL	V _{PP} Setup to PROG Low	10		μs
TGHSL	V _{PP} Hold After PROG	10	4-6 WHZ	μs
TGLGH	PROG Width	1 JATX 90	110	μs
TAVQV	Address to Data Valid	72V	48TCLCL	
TELQV	ENABLE Low to Data Valid	ACCOUNT NAME OF THE PARTY OF TH	48TCLCL	
TEHQZ	Data Float After ENABLE	0	48TCLCL	
TGHGL	PROG High to PROG Low	10		μs

EPROM Programming and Verification Waveforms

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -004 version of the 87C51BH data sheet:

- 1. Package table was added.
- 2. Note 7 on maximum current specifications added to DC Characteristics.
- 3. Data Sheet Revision Summary was added.

87C51 enolisoil EXPRESS nammod mont enolisived labiticel3

■ Extended Temperature Range

■ 3.5 MHz to 12 MHz V_{CC} = 5V ± 10%

Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of 0° C to $+70^{\circ}$ C. With the extended temperature range option, operational characteristics are guaranteed over the range of -40° C to $+85^{\circ}$ C.

The optional burn-in is dynamic for a minimum time of 160 hours at 125°C with $V_{CC} = 6.9V \pm 0.25V$, following quidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 10\%; V_{SS} = 0\text{V}$

Symbol	Parameter	Ligi standards.	Unit	Test	
extended	ed temperature range with burn-in and an	mmerniM stand	m inclumed the or	progra	Conditions
VIL	Input Low Voltage (Except EA)	-0.5	0.2V _{CC} - 0.15	٧	an paruteragine
V _{IL1} net e	EAvo beatransup era solitahetearanto land	re ranço, operal	0.2V _{CC} - 0.35	a lyon	vitn the comm
VIH	Input High Voltage (Except XTAL1, RST)	0.2V _{CC} + 1	V _{CC} + 0.5	V	use range or.
V _{IH1}	Input High Voltage to XTAL1, RST	0.7V _{CC} + 0.1	V _{CC} + 0.5	V	
I _{IL}	Logical 0 Input Current (Port 1, 2, 3)	moun ome er ro	75 688	μΑ	V _{IN} = 0.45V
nber. The	Logical 1 to 0 transition Current (Ports 1, 2, 3)	are identified by	-750 anoistev 23/199	μА	V _{IN} = 2.0V
from their ble for all	Power Supply Current Active Mode Idle Mode Power Down Mode	The second secon		mA mA μA	(Note 1) sonable entro net isionemno ton energenera

NOTE

1. V_{CC} = 4.5V-5.5V, Frequency Range = 3.5 MHz-12 MHz.

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range(2)	Burn-In(3)
Р	Plastic	Commercial	No
D	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic	Extended	No
TD	Cerdip	Extended	No
TN	PLCC	Extended	No
QP	Plastic	Commercial	Yes
QD	Cerdip	Commercial	Yes
QN	PLCC	Commercial	Yes
LP	Plastic	Extended	Yes
LD	Cerdip	Extended	Yes
LN	PLCC	Extended	Yes

NOTES:

Examples:

P87C51 indicates 87C51 in a plastic package and specified for commercial temperature range, without burn-in. LD87C51 indicates 87C51 in a cerdip package and specified for extended temperature range with burn-in.

^{2.} Commercial temperature range is 0° C to $+70^{\circ}$ C. Extended temperature range is -40° C to $+85^{\circ}$ C.

3. Burn-in is dynamic for a minimum time of 160 hours at $+125^{\circ}$ C, $V_{CC}=6.9V\pm0.25V$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

(8) _{mi-mu} a	Temperature Range(2)	Package Type	Prefix
No		Piastic	9
	Commercial	Cerdip	
No			
		Plastic	q _I
	Extended		at at
No	Extended		
Yes	Commercial		
Yes	Commercial	Cerdip	GQ
	Commercial	PLCC	ND
Extended Yes		Plastic	q _J
Extended Yas		Cerdip	a a
	Extended	PLCC	N

2. Commercial temperature range is 0°C to \pm 70°C. Extended temperature range is \pm 40°C to \pm 85°C. 3. Sum-in is dynamic for a minimum time of 160 hours at \pm 125°C, $V_{\rm CC}=$ 8.9V \pm 0.25V, following guidelines in MIL-STD-

P87C51 Indicates 87C51 in a plastic package and specified for commercial temperature range, without burn-in. LD87C51 indicates 87C51 in a cardip package and specified for extended temperature range with burn-in.

PAGE	CONTENTS	HARDWARE DESCRIPTION
	1.0 INTRODUCTION	OF THE 83C51FA AND
9-4-9 Vfon	2.1 Program Men	83051FB
10м	3.0 SPECIAL FUNCT	
##ES AND 8-9 tilons 9-9 ort 9-10	4.1 I/O Configure	October 1988
and Interfacing 9-12 Write Feature 9-12 ternal Memory 9-12	4.4 Read-Modify	
TERS 9-13	5.1 TIMER O AND	
LE COUNTER 8-19	6.0 PROGRAMMAB	
Hardw	vare Des	cription of the
830	C51FA ar	nd 83C51FB
Output Mode 9-25	6.5 High Speed C	
ner Mode 9-25	6,6 Watchdog Tin	
Addulator Mode 9-27	6.7 Pulse Width N	
ACE 9-27	7.0 SERIAL INTERF	
r Detection 8-26	7.1 Framing Error	
819 ations 8-28		
dress Recognition 9-28		
06-9 9-30		
to Generate Baud 9-30		
2 to Generate Baud 9-30		

Order Number: 270653-001

HARDWARE DESCRIPTION	CONTENTS	PAGE
OF THE 83C51FA AND	1.0 INTRODUCTION	9-4
83C51FB	2.0 MEMORY	9-4
	2.1 Program Memory	
	2.2 Data Memory	
	3.0 SPECIAL FUNCTION REGISTERS	9-5
	4.0 PORT STRUCTURES AND OPERATION	9-9
October 198	4.1 I/O Configurations	
061 1900100	4.2 Writing to a Port	
	4.3 Port Loading and Interfacing	
	4.4 Read-Modify-Write Feature	
	4.5 Accessing External Memory	/ 9-12
	5.0 TIMERS/COUNTERS	
	5.1 TIMER 0 AND TIMER 1	
	5.2 TIMER 2	9-16
	6.0 PROGRAMMABLE COUNTER ARRAY	9-19
cription of the	6.1 PCA 16-Bit Timer/Counter	9-20
	6.2 Capture/Compare Modules	9-22
id 83C51FB	6.3 16-Bit Capture Mode	
	0.4 10-bit Software Timer Mode	
	6.5 High Speed Output Mode .	
	6.6 Watchdog Timer Mode	
	6.7 Pulse Width Modulator Mod	e 9-27
	7.0 SERIAL INTERFACE	9-27
	7.1 Framing Error Detection	9-28
	7.2 Multiprocessor Communications	9-28
	7.3 Automatic Address Recogni	ition 9-28
	7.4 Baud Rates	
	7.5 Using Timer 1 to Generate E Rates	9-30
	7.6 Using Timer 2 to Generate E Rates	

CONTENTS CONTENTS 8.0 INTERRUPTS 9-32 10.0 POWER-SAVING MODES OF **OPERATION**9-38 8.1 External Interrupts 9-33 8.2 Timer Interrupts 9-33 10.2 Power Down Mode 9-39 8.3 PCA Interrupt 9-33 10.3 Power Off Flag 9-39 8.4 Serial Port Interrupt 9-33 8.5 Interrupt Enable 9-33 11.0 EPROM VERSIONS 9-40 8.6 Priority Level Structure 9-33 11.1 Two-Level Program Memory Lock 9-40 8.7 Response Time 9-36 9.1 Power-On Reset 9-37 13.0 ON-CHIP OSCILLATOR 9-40 14.0 CPU TIMING 9-42 * 256 Bytes On-Chip Data RAM When an instruction accesses an internal location above · Full-Duplex Programmable Serial Interface with . Interrupt Structure with MOV GAGH, #data accesses the SFR at location 0A0H (which is P2). In-

The 8XC51FA/FB uses the standard 8051 instruction et and is pin-for-pin compatible with the existing MCS-51 family of products. The 83C51FA/FB is the actory masked ROM device; the 80C51FA/FB is the RVOMICO. The designation 8XC51FA/FB refers to any of the standard or and the standard refers to any of the standard refers to the standard refers to

HARDWARE DESCRIPTION OF THE 83C51FA/FB

1.0 INTRODUCTION MIVAS ASWOOD OF

The 80C51FA and 80C51FB are highly integrated 8-bit microcontrollers based on the MCS®-51 architecture. Their key feature is the programmable counter array (PCA) which is capable of measuring and generating pulse information on five I/O pins. Also included are an enhanced serial port for multi-processor communications, an up/down timer/counter, and a program lock scheme for the on-chip program memory. Since these products are CHMOS, they have two software selectable reduced power modes: Idle Mode and Power Down Mode. As a member of the MCS-51 family, the 80C51FA/FB are optimized for control applications.

This document presents a comprehensive description of the on-chip hardware features of the 8XC51FA/FB. It begins with a discussion of the on-chip memory and then discusses each of the peripherals as follows:

- 8K Bytes On-Chip EPROM/ROM (on the 87C51FA/83C51FA)
- 16K Bytes On-Chip EPROM/ROM (on the 87C51FB/83C51FB)
- 256 Bytes On-Chip Data RAM
- Special Function Registers (SFR)
- Four 8-bit bidirectional parallel ports
- Three 16-bit Timer/Counters with
 - One Up/Down Timer/Counter
- Programmable Counter Array with
- Compare/Capture
- Software Timer
- High Speed Output
- Pulse Width Modulator
- Watchdog Timer
- Full-Duplex Programmable Serial Interface with
- Framing Error Detection
- Automatic Address Recognition
- Interrupt Structure with
- Seven interrupt sources
- Two priority levels
- Reduced Power Modes
- Idle Mode
- Power Down Mode

The 8XC51FA/FB uses the standard 8051 instruction set and is pin-for-pin compatible with the existing MCS-51 family of products. The 83C51FA/FB is the factory masked ROM device; the 80C51FA is the ROMless device; and the 87C51FA/FB is the EPROM device. The designation 8XC51FA/FB refers to any of these devices.

Figure 1 shows a functional block diagram of the 8XC51FA/FB.

2.0 MEMORY ORGANIZATION

All MCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.

2.1 Program Memory

The only difference between the 8XC51FA and 8XC51FB is the program memory size. The 8XC51FA has 8K bytes of internal ROM or EPROM, whereas the 8XC51FB has 16K bytes.

If the $\overline{\rm EA}$ pin is connected to V_{SS}, all program fetches are directed to external memory. On the 83C51FA (or 87C51FA), if the $\overline{\rm EA}$ pin is connected to V_{CC}, then program fetches to addresses 0000H through 1FFFH are directed to internal ROM and fetches to addresses 2000H through FFFFH are to external memory.

On the 83C51FB (or 87C51FB) if $\overline{\rm EA}$ is connected to VCC, program fetches to addresses 0000H through 3FFFH are directed to internal ROM, and fetches to addresses 4000H through FFFFH are to external memory.

2.2 Data Memory

The 8XC51FA/FB implement 256 bytes of on-chip data RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. That means they have the same addresses, but they are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example,

MOV 0A0H, #data

accesses the SFR at location 0A0H (which is P2). Instructions that use indirect addressing access the upper 128 bytes of data RAM. For example,

MOV @R0, #data

where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H). Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.

intal

Figure 1. 8XC51FA/FB Functional Block Diagram

3.0 SPECIAL FUNCTION REGISTERS

A map of the on-chip memory area called the SFR (Special Function Register) space is shown in Table 1.

Note that not all of the addresses are occupied. Unoccupied addresses are not implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have no effect.

User software should not write is to these unimplemented locations, since they may be used in future MCS-51 products to invoke new features. In that case the reset or inactive values of the new bits will always be 0, and their active values will be 1.

The functions of the SFRs are outlined below. More information on the use of specific SFRs for each peripheral is included in the description of that peripheral.

Accumulator ACC is the Accumulator register. The mnemonics for Accumulator-Specific instructions, however, refer to the Accumulator simply as A.

Table 1. SFR Mapping and Reset Values

F8		CH 00000000	CCAP0H XXXXXXXX	CCAP1H XXXXXXXX	CCAP2H XXXXXXXX	CCAP3H XXXXXXXX	CCAP4H XXXXXXXX		F
F0	* B 00000000	100 N	193 J L 1	67X)	нотал	NAN X	MÜ		F
E8		CL 00000000	CCAP0L XXXXXXXX	CCAP1L XXXXXXXX	CCAP2L XXXXXXXX	CCAP3L XXXXXXXX	CCAP4L XXXXXXXX		E
E0	* ACC 00000000	089 0A 038	Ū,				全 介		E
28	CCON 00X00000	CMOD 00XXX000	CCAPM0 X0000000	CCAPM1 X0000000	CCAPM2 X0000000	CCAPM3 X0000000	CCAPM4 X0000000		D
00	* PSW 00000000	COCOCADATA	grice or other		The second	J	I narenan		D
28	T2CON 00000000	T2MOD XXXXXXXX0	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			C
00	NOTIFIC PROTOCOL	00	n	介介		[PSW]		1	C
38	* IP X0000000	SADEN 00000000		×		7	AND SEED OF THE SE	~→ 5689\ EA/\PP	B
30	* P3 11111111	ORT 3	errorsemby		pianet	PORT 1	lan and an agent and		В
8	* IE 00000000	SADDR 00000000	- manual			1			A
10	* P2 11111111	ORT 3 HVERS	: KI	L		PORT I	.020		A
8	* SCON 00000000	* SBUF XXXXXXXX	allo con con ma			****	TALE OF XTALE	a X	9
90	* P1 11111111	0=93.7	E9			P1.G-P1.	11		9
88	* TCON 00000000	* TMOD 00000000	* TL0 00000000	* TL1 00000000	* TH0 00000000	* TH1 00000000			8
30	* P0	* SP 00000111	* DPL 00000000	* DPH 00000000	RERS	иозя ио			8

^{* =} Found in the 8051 core (See 8051 Hardware Description for explanations of these SFRs).

^{** =} See description of PCON SFR. Bit PCON.4 is not affected by reset.

⁽Special Function Register) space is shown in Table 1. random data, and write accesses will h.benilabnU = X

Table 2. PSW: Program Statue Word Register

angire	Table 6. Allemate Port Fun	AU PORT STRUCTURES AND
PSW	Address = 0D0H	Reset Value = 0000 0000B
	Bit Addressable Lim -0CIA\0.09	All four ports in the 8XC51FA/FB are bidirectional. Each consists of a latch (Special Eunction Registers PD)
		through P3), an outq1 dive-and anVO ut biOSR 12R
Input	Bit 7 6 5	The output drivers of Ports 0 and 2, and the input built-
Symbol	Function Source	ers of Port O, are used in accesses to external memory. In this application, Port O outputs, the low bute of the
CY	Carry flag.	external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte
AC	Auxiliary Carry flag. (For BCD Oper	of the external memory address when the address is (enoits
FO tount	Flag 0. (Available to the user for ge	to bits wide. Otherwise the Port 2 pins continescoping laran
RS1	Register bank select bit 1.	the P2 SFR content.
RS0 gal	Register bank select bit 0.	All the Port 1 and Port 3 pins are multifunctional.
	0 0 Bank 0 (0 Bank 1 (0	They are not only port pins, but also se gearbbA and and of various special features as listed in Table 3. (H70–H86 H80–H80 (H70–H80
		responding bit latch in the port SFR contains a 1. (H71-H0 revise the port pin is stuck at 0.
or Externol	Overflow flag. User definable flag.	was wone at this board at w
Р		e each instruction cycle to indicate an odd/even ulator, i.e., even parity.
	PSAVTXD Serial Part Output	The self of the sense and the state of the sense of the s

B Register The B register is used during multiply and divide operations. For other instructions it can be treated as another scratch pad register.

Stack Pointer The Stack Pointer Register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions. The stack may reside anywhere in on-chip RAM. On reset, the Stack Pointer is initialized to 07H causing the stack to begin at location 08H.

Data Pointer The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16-bit address, but it may be manipulated as a 16-bit register or as two independent 8-bit registers.

Program Status Word The PSW register contains program status information as detailed in Table 2.

Ports 0 to 3 Registers P0, P1, P2, and P3 are the SFR latches of Port 0, Port 1, Port 2, and Port 3 respectively.

Timer Registers Register pairs (TH0, TL0), (TH1, TL1), and (TH2, TL2) are the 16-bit count registers for Timer/Counters 0, 1, and 2 respectively. Control and status bits are contained in registers TCON and TMOD for Timers 0 and 1 and in registers T2CON and T2MOD for Timer 2. The register pair (RCAP2H, RCAP2L) are the capture/reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.

Programmable Counter Array (PCA) Registers The 16-bit PCA timer/counter consists of registers CH and CL. Registers CCON and CMOD contain the control and status bits for the PCA. The CCAPMn (n = 0, 1, 2, 3, or 4) registers control the mode for each of the five PCA modules. The register pairs (CCAPnH, CCAPnL) are the 16-bit compare/capture registers for each PCA module.

Serial Port Registers The Serial Data Buffer, SBUF, is actually two separate registers: a transmit buffer and a receive buffer register. When data is moved to SBUF, it goes to the transmit buffer where it is held for serial transmission. (Moving a byte to SBUF initiates the transmission). When data is moved from SBUF, it comes from the receive buffer. Register SCON contains the control and status bits for the Serial Port. Registers SADDR and SADEN are used to define the Given and the Broadcast addresses for the Automatic Address Recognition feature.

Interrupt Registers The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the 7 interrupts in the IP register.

Power Control Register PCON controls the Power Reduction Modes. Idle and Power Down Modes.

4.0 PORT STRUCTURES AND OPERATION

All four ports in the 8XC51FA/FB are bidirectional. Each consists of a latch (Special Function Registers P0 through P3), an output driver, and an input buffer.

The output drivers of Ports 0 and 2, and the input buffers of Port 0, are used in accesses to external memory. In this application, Port 0 outputs the low byte of the external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise the Port 2 pins continue to emit the P2 SFR content.

All the Port 1 and Port 3 pins are multifunctional. They are not only port pins, but also serve the functions of various special features as listed in Table 3.

The alternate functions can only be activated if the corresponding bit latch in the port SFR contains a 1. Otherwise the port pin is stuck at 0.

4.1 I/O Configurations of stoyo noticusters close

Figure 2 shows a functional diagram of a typical bit latch and I/O buffer in each of the four ports. The bit latch (one bit in the port's SFR) is represented as a Type D flip-flop, which clocks in a value from the internal bus in response to a "write to latch" signal from the CPU. The Q output of the flip-flop is placed on the internal bus in response to a "read latch" signal from the CPU. The level of the port pin itself is placed on the internal bus in response to a "read pin" signal from the CPU. Some instructions that read a port activate the "read latch" signal, and others activate the "read pin" signal. See the Read-Modify-Write Feature section.

As shown in Figure 2, the output drivers of Ports 0 and 2 are switchable to an internal ADDRESS and ADDRESS/DATA bus by an internal CONTROL signal for use in external memory accesses. During external memory accesses, the P2 SFR remains unchanged, but the P0 SFR gets 1s written to it.

SADDR and SADEN are used to define the Given and he Broadcast addresses for the Automatic Address Recognition feature

Laterrapt Registers The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the 7 interrupts in the IP register.

Power Control Register PCON controls the Power Reduction Modes. Idle and Power Down Modes.

Table 3. Alternate Port Functions

Port Pin	Alternate Function Was
P0.0/AD0- P0.7/AD7	Multiplexed Byte of Address/Data for External Memory
P1.0/T2	Timer 2 External Clock Input
P1.1/T2EX	Timer 2 Reload/Capture/Direction Control
P1.2/ECI	PCA External Clock Input
P1.3/CEX3	PCA Module 0 Capture Input, Compare/PWM Output
P1.4/CEX4	PCA Module 1 Capture Input, Compare/PWM Output
P1.5/CEX5	PCA Module 2 Capture Input, Compare/PWM Output
P1.6/CEX6	PCA Module 3 Capture Input, Compare/PWM Output
	PCA Module 4 Capture Input, Compare/PWM Output
P2.0/A8- P2.7/A15	High Byte of Address for External Memory
	Serial Port Input
P3.1/TXD	Serial Port Output
P3.1/1AD P3.2/INTO	
P3.2/INTO	External Interrupt 0
P3.4/T0	Frank Control of the
P3.4/10 P3.5/T1	Timer 1 External Clock Input
P3.5/11 P3.6/WR	Timer 1 External Clock Input
	Write Strobe for External Memory
P3.7/RD	Read Strobe for External Memory

Data Pointer The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16-bit address, but it may be manipulated as a 16-bit register or as two independent 8-bit registers.

zed to 07H causing the stack to begin at location 08H

Program Status Word The PSW register contains program status information as detailed in Table 2.

Posts 0 to 3 Registers PO P1, P2, and P3 are the SFR

Timer Registers Register pairs (TH0, TL0), (TH1, TL1), and (TH2, TL2) are the 16-bit count registers for Timer/Counters 0, 1, and 2 respectively. Control and status bits are contained in registers TCON and TMOD for Timers 0 and 1 and in registers TCON and

CAPZL) are the capture/reload registers for Timer 2 to 16-bit capture mode or 16-bit auto-reload mode.

Figure 2. 8XC51FA/FB Port Bit Latches and I/O Buffers

Also shown in Figure 2 is that if a P1 or P3 latch contains a 1, then the output level is controlled by the signal labeled "alternate output function." The actual pin level is always available to the pin's alternate input function, if any.

Ports 1, 2, and 3 have internal pullups. Port 0 has open drain outputs. Each I/O line can be independently used as an input or an output (Ports 0 and 2 may not be used as general purpose I/O when being used as the ADDRESS/DATA BUS). To be used as an input, the port bit latch must contain a 1, which turns off the output driver FET. On Ports 1, 2, and 3, the pin is pulled high by the internal pullup, but can be pulled low by an external source.

Port 0 differs from the other ports in not having internal pullups. The pullup FET in the P0 output driver (see Figure 2) is used only when the Port is emitting 1s during external memory accesses. Otherwise the pullup FET is off. Consequently P0 lines that are being used as output port lines are open drain. Writing a 1 to the bit latch leaves both output FETs off, which floats the pin land allows it to be used as a high-impedance input. Because Ports 1 through 3 have fixed internal pullups they are sometimes call "quasi-bidirectional" ports.

When configured as inputs they pull high and will source current (IIL in the data sheets) when externally pulled low. Port 0, on the other hand, is considered "true" bidirectional, because it floats when configured as an input.

All the port latches have 1s written to them by the reset function. If a 0 is subsequently written to a port latch, it can be reconfigured as an input by writing a 1 to it.

4.2 Writing to a Port

In the execution of an instruction that changes the value in a port latch, the new value arrives at the latch during State 6 Phase 2 of the final cycle of the instruction. However, port latches are in fact sampled by their output buffers only during Phase 1 of any clock period. (During Phase 2 the output buffer holds the value it saw during the previous Phase 1). Consequently, the new value in the port latch won't actually appear at the output pin until the next Phase 1, which will be at S1P1 of the next machine cycle. Refer to Figure 3. For more information on internal timings refer to the CPU Timing section.

Figure 3. Port Operation

If the change requires a 0-to-1 transition in Ports 1, 2, and 3, an additional pullup is turned on during S1P1 and S1P2 of the cycle in which the transition occurs. This is done to increase the transition speed. The extra pullup can source about 100 times the current that the normal pullup can. The internal pullups are field-effect transistors, not linear resistors. The pull-up arrangements are shown in Figure 4.

The pullup consists of three pFETs. Note that an n-channel FET (nFET) is turned on when a logical 1 is applied to its gate, and is turned off when a logical 0 is applied to its gate. A p-channel FET (pFET) is the opposite: it is on when its gate sees a 0, and off when its gate sees a 1.

pFET 1 in is the transistor that is turned on for 2 oscillator periods after a 0-to-1 transition in the port latch. A 1 at the port pin turns on pFET3 (a weak pull-up), through the invertor. This invertor and pFET form a latch which hold the 1.

If the pin is emitting a 1, a negative glitch on the pin from some external source can turn off pFET3, causing the pin to go into a float state. pFET2 is a very weak pullup which is on whenever the nFET is off, in traditional CMOS style. It's only about $\frac{1}{10}$ the strength of pFET3. Its function is to restore a 1 to the pin in the event the pin had a 1 and lost it to a glitch.

that it holds the strong pullup on while emitting 1s that are address bits. (See text, "Accessing External Memory".)

Figure 4. Ports 1 and 3 Internal Pullup Configurations

4.3 Port Loading and Interfacing

The output buffers of Ports 1, 2, and 3 can each sink 1.6 mA at 0.45 V. These port pins can be driven by open-collector and open-drain outputs although 0-to-1 transitions will not be fast since there is little current pulling the pin up. An input 0 turns off pullup pFET3, leaving only the very weak pullup pFET2 to drive the transition.

In external bus mode, Port 0 output buffers can each sink 3.2 mA at 0.45 V. However, as port pins they require external pullups to be able to drive any inputs.

See the latest revision of the data sheet for design-in information.

4.4 Read-Modify-Write Feature

Some instructions that read a port read the latch and others read the pin. Which ones do which? The instructions that read the latch rather than the pin are the ones that read a value, possibly change it, and then rewrite it to the latch. These are called "read-modify-write" instructions. Listed below are the read-modify-write instructions. When the destination operand is a port, or a port bit, these instructions read the latch rather than the pin:

(logical AND, e.g., ANL P1, A)
(logical OR, e.g., ORL P2, A)
(logical EX-OR, e.g., XRL P3, A)
(jump if bit = 1 and clear bit, e.g
JBC P1.1, LABEL)
(complement bit, e.g., CPL P3.0)
(increment, e.g., INC P2)
(decrement, e.g., DEC P2)

DJNZ (decrement and jump if not zero, e.g., DJNZ P3, LABEL)

MOV, PX.Y, C (move carry bit to bit Y of Port X)

CLR PX.Y (clear bit Y of Port X)

SETB PX.Y (set bit Y of Port X)

It is not obvious that the last three instructions in this list are read-modify-write instructions, but they are. They read the port byte, all 8 bits, modify the addressed bit, then write the new byte back to the latch.

The reason that read-modify-write instructions are directed to the latch rather than the pin is to avoid a possible misinterpretation of the voltage level at the pin. For example, a port bit might be used to drive the base of a transistor. When a 1 is written to the bit, the transistor is turned on. If the CPU then reads the same port bit at the pin rather than the latch, it will read the base voltage of the transistor and interpret it as a 0. Reading the latch rather than the pin will return the correct value of 1.

4.5 Accessing External Memory

Accesses to external memory are of two types: accesses to external Program Memory and accesses to external Data Memory. Accesses to external Program Memory use signal PSEN (program store enable) as the read strobe. Accesses to external Data Memory use RD or WR (alternate functions of P3.7 and P3.6) to strobe the memory. Refer to Figures 5 through 7.

Fetches from external Program Memory always use a 16-bit address. Accesses to external Data Memory can use either a 16-bit address (MOVX @ DPTR) or an 8-bit address (MOVX @ Ri).

Figure 5. External Program Memory Fetches

Figure 6. External Data Memory Read Cycle de realist dottel and base tand agold

Figure 7. External Data Memory Write Cycle

9-12

Whenever a 16-bit address is used, the high byte of the address comes out on Port 2, where it is held for the duration of the read or write cycle. The Port 2 drivers use the strong pullups during the entire time that they are emitting address bits that are 1s. This occurs when the MOVX @ DPTR instruction is executed. During this time the Port 2 latch (the Special Function Register) does not have to contain 1s, and the contents of the Port 2 SFR are not modified. If the external memory cycle is not immediately followed by another external memory cycle, the undisturbed contents of the Port 2 SFR will reappear in the next cycle.

If an 8-bit address is being used (MOVX @ Ri), the contents of the Port 2 SFR remain at the Port 2 pins throughout the external memory cycle. In this case, Port 2 pins can be used to page the external data memory.

In either case, the low byte of the address is time-multiplexed with the data byte on Port 0. The ADDRESS/DATA signal drives both FETs in the Port 0 output buffers. Thus, in external bus mode the Port 0 pins are not open-drain outputs and do not require external pullups. The ALE (Address Latch Enable) signal should be used to capture the address byte into an external latch. The address byte is valid at the negative transition of ALE. Then, in a write cycle, the data byte to be written appears on Port 0 just before WR is activated, and remains there until after WR is deactivated. In a read cycle, the incoming byte is accepted at Port 0 just before the read strobe (RD) is deactivated.

During any access to external memory, the CPU writes OFFH to the Port 0 latch (the Special Function Register), thus obliterating the information in the Port 0 SFR. Also, a MOV P0 instruction must not take place during external memory accesses. If the user writes to Port 0 during an external memory fetch, the incoming code byte is corrupted. Therefore, do not write to Port 0 if external program memory is used.

External Program Memory is accessed under two conditions:

- 1. Whenever signal EA is active, or
- Whenever the program counter (PC) contains an address greater than 1FFFH (8K) for the 8XC51FA or 3FFFH (16K) for the 8XC51FB.

This requires that the ROMless versions have \overline{EA} wired to V_{SS} enable the lower 8K or 16K program bytes to be fetched from external memory.

When the CPU is executing out of external Program Memory, all 8 bits of Port 2 are dedicated to an output function and may not be used for general purpose I/O. During external program fetches they output the high byte of the PC with the Port 2 drivers using the strong pullups to emit bits that are 1s.

5.0 TIMERS/COUNTERS

The 8XC51FA/FB has three 16-bit Timer/Counters: Timer 0, Timer 1, and Timer 2. Each consists of two 8-bit registers, THx and TLx, (x = 0, 1, and 2). All three can be configured to operate either as timers or event counters.

In the Timer function, the TLx register is incremented every machine cycle. Thus one can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.

In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin—T0, T1, or T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is $\frac{1}{24}$ of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

In addition to the Timer or Counter selection, Timer 0 and Timer 1 have four operating modes from which to select: Modes 0 - 3. Timer 2 has three modes of operation: Capture, Auto-Reload, and Baud Rate Generator.

5.1 Timer 0 and Timer 1

The Timer or Counter function is selected by control bits C/\overline{T} in the Special Function Register TMOD (Table 4). These two Timer/Counters have four operating modes, which are selected by bit-pairs (M1, M0) in TMOD. Modes 0, 1, and 2 are the same for both Timer/Counters. Mode 3 operation is different for the two timers.

MODE 0

Either Timer 0 or Timer 1 in Mode 0 is an 8-bit Counter with a divide-by-32 prescaler. Figure 8 shows the Mode 0 operation for either timer.

In this mode, the Timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the Timer interrupt flag TFx. The counted input is enabled to the Timer when TRx = 1 and either GATE = 0 or $\overline{\text{INTx}} = 1$. (Setting GATE = 1 allows the Timer to be controlled by external input $\overline{\text{INTx}}$, to facilitate pulse width measurements). TRx and TFx are

control bits in SFR TCON (Table 5). The GATE bit is in TMOD. There are two different GATE bits, one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

The 13-bit register consists of all 8 bits of THx and the lower 5 bits of TLx. The upper 3 bits of TLx are indeterminate and should be ignored. Setting the run flag (TRx) does not clear these registers.

MODE 1

Mode 1 is the same as Mode 0, except that the Timer register uses all 16 bits. Refer to Figure 9. In this mode, THx and TLx are cascaded; there is no prescaler.

Whenever a 16-bit address is used, the high be 300M

Mode 2 configures the Timer register as an 8-bit Counter (TLx) with automatic reload, as shown in Figure 10. Overflow from TLx not only sets TFx, but also reloads TLx with the contents of THx, which is preset by software. The reload leaves THx unchanged.

Table 4. TMOD: Timer/Counter Mode Control Register

uls invited	shie fur	Table 4. TMOD: Timer/Coun	ter Mode Control Register		
Thomas de se		Address = 89H Not Bit Addressable TIMER 1 GATE C/T M1 M0 Bit 7 6 5 4 Function	Reset Value = 0000 0000B TIMER 0 GATE C/T M1 M0 3 2 1 0		
GAT	selection des fron	is high and TR0 or TR1 control pin is whenever TR0 or TR1 control bit is so Timer or Counter Selector. Clear for	nter 0 or 1 is enabled only while INTO or INT1 pin set. When cleared, Timer 0 or 1 is enabled et. Timer operation (input from internal system out from T0 or T1 input pin).		
		clock). Set for Souther operation (inp	FIFH to the Port 0 latch (the Special Punction Regis-		
M1	MO	Operating Mode			
0	0	8-bit Timer/Counter. THx with TLx as	5-bit prescaler. Nom notice that 09 VOM a old .99		
0	1	16-bit Timer/Counter. THx and TLx a	re cascaded; there is no prescaler.		
by contro	.0	8-bit auto-reload Timer/Counter. THx holds a value which is to be reloaded into TLx each time it overflows.			
operation i	ave our	(Timer 0) TL0 is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits. TH0 is an 8-bit timer only controlled by Timer 1 control bits.			
both Tim	and jor Second	(Timer 1) Timer/Counter stopped.	xternal Program Memory is accessed under two con- itions:		

Figure 8. Timer/Counter 0 or 1 in Mode 0: 13-Bit Counter

		Tal	ble 5. TC	ON: Tim	er/Count	er Cont	trol Regi	ster			
TCON	Addres	ss = 88	Н	Reset	Reset Value = 0000 0000						
	Bit Addressable										
тяцияатиц	TF1		TR1	1 TF0	TR0	IE1	IT1	1 IEO	IT0		
	Bit	7	6	5	JORTHOX	3	2	1	0		
Symbol	Function	on									
TF1	Timer 1 overflow Flag. Set by hardware on Timer/Counter overflow. Cleared by hardware when processor vectors to interrupt routine.										
TR1 Timer 1 Run control bit. Set/clea				ared by so	ftware to	turn Tir	ner/Cour	nter 1 on/	off.		
TFO From	Timer 0 overflow Flag. Set by hardware on Timer/Counter 0 overflow. Cleared by hardware when processor vectors to interrupt routine.							d by			
TR0	Timer 0	Run co	ntrol bit.	Set/clea	ared by so	ftware to	turn Tir	ner/Cour	nter 0 on/	off.	
IE1		nitted or			when extended w					sition-	
IT1			e control nal interr		cleared by	softwa	re to spe	cify fallin	g edge/lo	w level	
ТЭЦЯЯЗТИ!	Interrupt 0 flag. Set by hardware when external interrupt 0 edge is detected (transmitted or level-activated). Cleared when interrupt processed only if transitionactivated.							sition-1 211			
ITO	Interrupt 0 Type control bit. Set/cleared by software to specify falling edge/low level triggered external interrupt 0.										

Figure 9. Timer/Counter 0 or 1 in Mode 1: 16-Bit Counter

MODE 3

Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 = 0.

Timer 0 in Mode 3 establishes TL0 and TH0 as two separate counters. The logic for Mode 3 on Timer 0 is shown in Figure 11. TL0 uses the Timer 0 control bits: C/\overline{T} , GATE, TR0, $\overline{INT0}$, and TF0. TH0 is locked into

a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus TH0 now controls the Timer 1 interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer or counter. When Timer 0 is in Mode 3, Timer 1 can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a baud rate generator, or in any application not requiring an interrupt.

Figure 10. Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

Figure 11. Timer/Counter 0 Mode 3: Two 8-Bit Counters

5.2 Timer 2

Timer 2 is a 16-bit Timer/Counter which can operate either as a timer or as an event counter. This is selected by bit $C/\overline{12}$ in the Special Function Register T2CON (Table 7). It has three operating modes: capture, autoreload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON as shown in Table 6.

Table 6. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	TR2	Mode
0	0	1	16-Bit Auto-Reload
0	1	1	16-Bit Capture
unt. The effect is	o a Xaplo	1 19	Baud Rate Generator
X	X .0	0	(Off)

S semiT doe at MEOG and Table 7. T2CON: Timer/Counter 2 Control Register (EST lingui language la noide

T2CON	Addres	ss = OC	8H	ip our up c	can c T28X	captured tively. In EXF2 in	L, respectuses bit		Reset Value = 0000 0000B			
	Bit Ad	dressab	le				TF2, can		T2CON to be s			
	N NO	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2			
	Bit	7	6	5 00	4	3	2	1	0			
Symbol	Functi		colosde RCAP2L	ers to be	registi RCAL			(R	ND MODE N COUNTE	AUTO-RELOM		
TF2 2V	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 or TCLK = 1.											
EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).											
RCLK	Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used											
TCLK	for the receive clock. Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.											
EXEN2	Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.											
TR2					0	arts the tim	ner.					
C/T2	0 = In	ternal tir	mer (OSC		SC/2 in b	aud rate g		mode).		DECN		
CP/RL2 solverion a outevent.	Captur EXEN2 negativ	e/Reloa 2 = 1. W ve transi	d flag. W hen cleations at T	hen set, ared, auto 2EX whe	captures -reloads n EXEN2	will occur o	on negat either wit en either	h Timer 2 RCLK =	tions at T2E) 2 overflows o 1 or TCLK = w.	User softwa		

CAPTURE MODE

In the capture mode there are two options selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a

16-bit timer or counter which upon overflow sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN2 = 1, Timer 2 still does the above, but with the added feature that a 1-to-0 tran-

Figure 12. Timer 2 in Capture Mode 9-17

sition at external input T2EX causes the current value will default to count up. When DCEN is set, Timer 2 in the Timer 2 registers, TH2 and TL2, to be captured into registers RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure

AUTO-RELOAD MODE (UP OR DOWN COUNTER)

Timer 2 can be programmed to count up or down when configured in its 16-bit auto-reload mode. This feature is invoked by a bit named DCEN (Down Counter Enable) located in the SFR T2MOD (see Table 8). Upon reset the DCEN bit is set to 0 so that Timer 2

can count up or down depending on the value of the T2EX pin.

Figure 13 shows Timer 2 automatically counting up when DCEN = 0. In this mode there are two options selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L. The values in RCAP2H and RCAP2L are preset by software. If EXEN2 = 1, a 16bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Either the TF2 or EXF2 bit can generate the Timer 2 interrupt if it is enabled.

all 101 sealing wolfreyo Table 8. T2MOD: Timer 2 Mode Control Register 2000 svisce R

Figure 13. Timer 2 Auto Reload Mode (DCEN = 0)

Setting the DCEN bit enables Timer 2 to count up or down as shown in Figure 14. In this mode the T2EX pin controls the direction of count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at 0FFFFH and set the TF2 bit which can then generate an interrupt if it is enabled. This overflow also causes a the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logic 0 at T2EX makes Timer 2 count down. Now the timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows. This bit can be used as a 17th bit of resolution if desired. In this operating mode, EXF2 does not generate an interrupt.

BAUD RATE GENERATOR MODE

The baud rate generator mode is selected by setting the RCLK and/or TCLK bits in T2CON. Timer 2 in this mode will be described in conjunction with the serial port.

6.0 PROGRAMMABLE COUNTER ARRAY

The Programmable Counter Array (PCA) consists of a 16-bit timer/counter and five 16-bit compare/capture

modules as shown in Figure 15. The PCA timer/counter serves as a common time base for the five modules and is the only timer which can service the PCA. Its clock input can be programmed to count any one of the following signals:

- oscillator frequency ÷ 12
- oscillator frequency ÷ 4
- Timer 0 overflow
- external input on ECI (P1.2).

Each compare/capture module can be programmed in any one of the following modes:

- rising and/or falling edge capture
- software timer
- high speed output
- pulse width modulator.

Module 4 can also be programmed as a watchdog timer.

When the compare/capture modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector (more about this in the PCA Interrupt section).

Figure 14. Timer 2 Auto Reload Mode (DCEN = 1)

Figure 15. Programmable Counter Array

The PCA timer/counter and compare/capture modules share Port 1 pins for external I/O. These pins are listed below. If the port pin is not used for the PCA, it can still be used for standard I/O.

PCA Component	External I/O Pin
16-bit Counter	P1.2 / ECI
16-bit Module 0	P1.3 / CEX0
16-bit Module 1	P1.4 / CEX1
16-bit Module 2	P1.5 / CEX2
16-bit Module 3	P1.6 / CEX3
16-bit Module 4	P1.7 / CEX4

6.1 PCA 16-Bit Timer/Counter

The PCA has a free-running 16-bit timer/counter consisting of registers CH and CL (the high and low bytes of the count value). These two registers can be read or written to at any time. Figure 16 shows a block dia-

gram of this timer. The clock input can be selected from the following four modes:

- Oscillator frequency ÷ 12
 The PCA timer increments once per machine cycle.
 With a 16 MHz crystal, the timer increments every 750 nanoseconds.
- Oscillator frequency ÷ 4
 The PCA timer increments three times per machine cycle. With a 16 MHz crystal, the timer increments every 250 nanoseconds.
- Timer 0 overflows
 The PCA timer increments whenever Timer 0 overflows. This mode allows a programmable input frequency to the PCA.
- External input

 The PCA timer increments when a 1-to-0 transition is detected on the ECI pin (P1.2). The maximum input frequency in this mode is oscillator frequency ÷ 8.

Figure 16. PCA Timer/Counter

83C51FA/FB HARDWARE DESCRIPTION

The mode register CMOD contains the Count Pulse Select bits (CPS1 and CPS0) to specify the clock input. CMOD is shown in Table 9. This register also contains the ECF bit which enables the PCA counter overflow to generate the PCA interrupt. In addition, the user has the option of turning off the PCA timer during Idle Mode by setting the Counter Idle bit (CIDL). The Watchdog Timer Enable bit (WDTE) will be discussed in a later section.

The CCON register, shown in Table 10, contains two more bits which are associated with the PCA timer/ counter. The CF bit gets set by hardware when the counter overflows, and the CR bit is set or cleared to turn the counter on or off. The other five bits in this register are the event flags for the compare/capture modules and will be discussed in the next section.

	Not Bit Addres	sable ACH and m						
	CIDL	WDTE -		Tio TeJinues	CPS1	CPS0	ECF	
	Bit 7	5 nation or cap	eriw erewb	Set by han	pali iqui	ile 4 inter	PCA Mode	CCF4
Symbol	Function						deared by	
at be TOW et be	Watchdog Tim WDTE = 1 en		E = 0 disak	oles Watch	dog Time			odule 4.
	Not implemen	ted, reserved for	future use.			software		
CDC4								
CPS1	PCA Count Pu	lse Select bit 1.						
CPS0	PCA Count Pu PCA Count Pu CPS1 CPS0	Ise Select bit 1. Ise Select bit 0. Selected PCA	Input** Fosc÷12 Fosc÷4					
CPS0	PCA Count Pu PCA Count Pu CPS1 CPS0	lse Select bit 1. lse Select bit 0. Selected PCA Internal clock, Internal clock,	Ninput** Fosc÷12 Fosc÷4					

read from a reserved bit is indeterminate.

**Fosc = oscillator frequency

			abio ioi	0001111	07 000	11001 0011	or riogi	0.00		
CCON	Addre	ss = 0D8	non are a CF bit flows, and		COUNT		ny the ck gister also L'ocunter	Reset	n jenabiles	00X0 0000B
	the cou	HTHE STORY	and assure	ditton, the	tpl. in ad		generate the PC			
	the ner	CF	CR	ule s e nd	CCF4	CCF3	CCF2	CCF1	CCF0	fode by setting
	Bit	7	6	5	4	3	2	i (uyr) i	0	Vatelidog Timer i a later section.
Symbol	Functi	ion	retalpeR	show's	Counte	IOD: PCA	MO Raid	eT.		
CF 8000X XX	interru		OF in CMC	D is set		re when to be set by				ags an re but can
CR	PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to turn the PCA counter off.									
-	Not im	plemente	d, reserve	ed for fut	ure use*					
CCF4		fodule 4 ind d by softw		ag. Set b	y hardwa	are when	a match o	or capture		Must be
CCF3		fodule 3 in d by softw				are when			e occurs.	Must be
CCF2						are when				
CCF1		lodule 1 ind by softw		ag. Set b	y hardwa	are when	a match o	or capture	e occurs.	Must be
CCF0		fodule 0 in d by softw		ag. Set b	y hardwa	are when				
*NOTE:	Cleared by sortware. 0.0 Fig. 20 Cleared by sortware. 0.0 September 5.0									

User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Each of the five compare/capture modules has six possible functions it can perform:

- 16-bit Capture, positive-edge triggered
- 16-bit Capture, negative-edge triggered
- 16-bit Capture, both positive and negative-edge triggered
- 16-bit Software Timer
- 16-bit High Speed Output
- 8-bit Pulse Width Modulator.

In addition, module 4 can be used as a Watchdog Timer. The modules can be programmed in any combination of the different modes.

Each module has a mode register called CCAPMn (n = 0, 1, 2, 3, or 4) to select which function it will perform. The CCAPMn register is shown in Table 11. Note the ECCFn bit which enables the PCA interrupt

6.2 Capture/Compare Modules when a module's event flag is set. The event flags (CCFn) are located in the CCON register and get set when a capture event, software timer, or high speed output event occurs for a given module.

> Table 12 shows the combinations of bits in the CCAPMn register that are valid and have a defined function. Invalid combinations will produce undefined results.

> Each module also has a pair of 8-bit compare/capture registers (CCAPnH and CCAPnL) associated with it. These registers store the time when a capture event occurred or when a compare event should occur. For the PWM mode, the high byte regiser CCAPnH controls the duty cycle of the waveform.

> The next five sections describe each of the compare/ capture modes in detail.

outside and a Table 11. CCAPMn: PCA Modules Compare/Capture Registers

PCA the flexibility to

Reset Value = X000 0000B

CCAPMn Address CCAPM0 0DAH (n = 0-4) CCAPM1 0DBH

CCAPM1 0DBH CCAPM2 0DCH

CCAPM3 0DDH CCAPM4 0DEH

Not Bit Addressable

enli	sy tirf-d	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn
3it	7	6	5	4	3	2	XO phroni	0

Symbol Function

B CCAPAL). The

Not implemented, reserved for future use*.

ECOMn Enable Comparator. ECOMn = 1 enables the comparator function.

CAPPn Capture Positive, CAPPn = 1 enables positive edge capture.

CAPNn Capture Negative, CAPNn = 1 enables negative edge capture.

MATn Match. When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON to be set, flagging an interrupt.

TOGn Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle.

PWMn Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.

ECCFn Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.

NOTE

*User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Table 12. PCA Module Modes (CCAPMn Register)

_	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	Module Function
X	0	0	0	0	0	0	0	No operation
X	×	Jagaco	0	0	0	0	X	16-bit capture by a postive-edge trigger on CEXn
X	X	0	1	0	0	0	X	16-bit capture by a negative-edge trigger on CEXr
X	X	1	1	0	0	0	X	16-bit capture by a transition on CEXn
X	1	0	0	1	0	0	X	16-bit Software Timer
X	1	0 10	2.00	n 1	1	0	X	16-bit High Speed Output
X	1	0	0	0	0	1	0	8-bit PWM
X	1	0	0	1	×	0	×	Watchdog Timer

X = Don't Care

Both positive and negative transitions can trigger a capture with the PCA. This gives the PCA the flexibility to measure periods, pulse widths, duty cycles, and phase differences on up to five separate inputs. Setting the CAPPn and/or CAPNn in the CCAPMn mode register select the input trigger—positive and/or negative transition-for module n. Refer to Figure 17.

The external input pins CEX0 through CEX4 are sampled for a transition. When a valid transition is detected (positive and/or negative edge), hardware loads the 16-bit value of the PCA timer (CH, CL) into the module's capture registers (CCAPnH, CCAPnL). The resulting value in the capture registers reflects the PCA timer value at the time a transition was detected on the CEXn pin.

Upon a capture, the module's event flag (CCFn) in CCON is set, and an interrupt is flagged if the ECCFn bit in the mode register CCAPMn is set. The PCA interrupt will then be generated if it is enabled. Since the hardware does not clear an event flag when the interrupt is vectored to, the flag must be cleared in software.

6.3 16-Bit Capture Mode In the interrupt service routine, the 16-bit capture value must be saved in RAM before the next capture event occurs. A subsequent capture on the same CEXn pin will write over the first capture value in CCAPnH and CCAPnL.

6.4 16-Bit Software Timer Mode

In the compare mode, the 16-bit value of the PCA timer is compared with a 16-bit value pre-loaded in the module's compare registers (CCAPnH, CCAPnL). The comparison occurs three times per machine cycle in order to recognize the fastest possible clock input (i.e. ½ x oscillator frequency). Setting the ECOMn bit in the mode register CCAPMn enables the comparator function as shown in Figure 18.

For the Software Timer mode, the MATn bit also needs to be set. When a match occurs between the PCA timer and the compare registers, a match signal is generated and the module's event flag (CCFn) is set. An interrupt is then flagged if the ECCFn bit is set. The PCA interrupt is generated only if it has been properly enabled. Software must clear the event flag before the next interrupt will be flagged.

Figure 17. PCA 16-Bit Capture Mode

During the interrupt routine, a new 16-bit compare value can be written to the compare registers (CCAPnH and CCAPnL). Notice, however, that a write to CCAPnL clears the ECOMn bit which temporarily disables the comparator function while these registers are being updated so an invalid match does not occur. A write to CCAPnH sets the ECOMn bit and re-enables the comparator. For this reason, user software should write to CCAPnL first, then CCAPnH.

6.5 High Speed Output Mode

The High Speed Output (HSO) mode toggles a CEXn pin when a match occurs between the PCA timer and a pre-loaded value in a module's compare registers. For this mode, the TOGn bit needs to be set in addition to the ECOMn and MATn bits as seen in Figure 18. By setting or clearing the pin in software, the user can select whether the CEXn pin will change from a logical 0 to a logical 1 or vice versa. The user also has the option of flagging an interrupt when a match event occurs by setting the ECCFn bit.

The HSO mode is more accurate than toggling port pins in software because the toggle occurs before branching to an interrupt. That is, interrupt latency will not effect the accuracy of the output. If the user does not change the compare registers in an interrupt routine, the next toggle will occur when the PCA timer rolls over and matches the last compare value.

6.6 Watchdog Timer Mode

A Watchdog Timer is a circuit that automatically invokes a reset unless the system being watched sends regular hold-off signals to the Watchdog. These circuits are used in applications that are subject to electrical noise, power glitches, electrostatic discharges, etc., or where high reliability is required.

The Watchdog Timer function is only available on PCA module 4. In this mode, every time the count in the PCA timer matches the value stored in module 4's compare registers, an internal reset is generated. (See Figure 19.) The bit that selects this mode is WDTE in the CMOD register. Module 4 must be set up in either compare mode as a Software Timer or High Speed Output.

To hold off the reset, the user has three options:

- (1) periodically change the compare value so it will never match the PCA timer,
- periodically change the PCA timer value so it will never match the compare value,
- (3) disable the Watchdog by clearing the WDTE bit before a match occurs and then later re-enable it.

The first two options are more reliable because the Watchdog Timer is never disabled as in option #3. The second option is not recommended if other PCA modules are being used since this timer is the time base for all five modules. Thus, in most applications the first solution is the best option.

If a Watchdog Timer is not needed, module 4 can still be used in other modes.

Figure 18. PCA 16-Bit Comparator Mode: Software Timer and High Speed Output

6.7 Pulse Width Modulator Mode

Any or all of the five PCA modules can be programmed to be a Pulse Width Modulator. The PWM output can be used to convert digital data to an analog signal by simple external circuitry. The frequency of the PWM depends on the clock sources for the PCA timer. With a 16 MHz crystal the maximum frequency of the PWM waveform is 15.6 KHz.

The PCA generates 8-bit PWMs by comparing the low byte of the PCA timer (CL) with the low byte of the module's compare registers (CCAPnL). Refer to Figure 20. When CL < CCAPnL the output is low. When CL ≥ CCAPnL the output is high. The value in CCAPnL controls the duty cycle of the waveform. To change the value in CCAPnL without output glitches, the user must write to the high byte register (CCAPnH). This value is then shifted by hardware into CCAPnL when CL rolls over from 0FFH to 00H which corresponds to the next period of the output.

Figure 19. Watchdog Timer Mode

odt pastibba nwo all estisoet li med Figure 21. CCAPnH Varies Duty Cycle & to & il seltom ni alid gota hillsv rol

CCAPnH can contain any integer from 0 to 255 to vary the duty cycle from a 100% to 0.4% (see Figure 21). A 0% duty cycle can be obtained by writing directly to the port pin with the CLR bit instruction.

7.0 SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. (However, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost). The serial port receive and transmit registers are both accessed through Special Function Register SBUF. Actually, SBUF is two separate registers, a transmit buffer and a receive buffer. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

The serial port control and status register is the Special Function Register SCON, shown in Table 13. This register contains the mode selection bits (SM0 and SM1); the SM2 bit for the multiprocessor modes (see Multiprocessor Communications section); the Receive Enable bit (REN); the 9th data bit for transmit and receive (TB8 and RB8); and the serial port interrupt bits (TI and RI).

The serial port can operate in 4 modes:

Mode 0: Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at 1/12 the oscillator frequency.

can be caused, for example, by noise on the serial li

Mode 1: 10 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable.

Mode 2: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). Refer to Fiugre 22. On Transmit, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P in the PSW) could be moved into TB8. On receive, the 9th data bit goes into RB8 in SCON, while the stop bit is ignored. (The validity of the stop bit can be checked with Framing Error Detection.) The baud rate is programmable to either ½32 or ½64 the oscillator frequency.

Figure 22. Data Frame: Modes 1, 2 and 3

Mode 3: 11 bits are transmitted (through TXD) or received (through RXD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI=0 and REN=1. Reception is initiated in the other modes by the incoming start bit if REN=1. For more detailed information on each serial port mode, refer to the "Hardware Description of the 8051, 8052, and 80C51."

7.1 Framing Error Detection

Framing Error Detection allows the serial port to check for valid stop bits in modes 1, 2, or 3. A missing stop bit can be caused, for example, by noise on the serial lines, or transmission by two CPUs simultaneously.

If a stop bit is missing, a Framing Error bit FE is set. The FE bit can be checked in software after each reception to detect communication errors. Once set, the FE bit must be cleared in software. A valid stop bit will not clear FE.

The FE bit is located in SCON and shares the same bit address as SM0. Control bit SMOD0 in the PCON register (location PCON.6) determines whether the SM0 or FE bit is accessed. If SMOD0 = 0, then accesses to SCON.7 are to SM0. If SMOD0 = 1, then accesses to SCON.7 are to FE.

7.2 Multiprocessor Communications

Modes 2 and 3 provide a 9-bit mode to facilitate multiprocessor comunication. The 9th bit allows the controller to distinguish between address and data bytes. The 9th bit is set to 1 for address bytes and set to 0 for data bytes. When receiving, the 9th bit goes into RB8 in SCON. When transmitting, TB8 is set or cleared in software.

The serial port can be programmed such that when the stop bit is received the serial port interrupt will be activated only if the received byte is an address byte (RB8 = 1). This feature is enabled by setting the SM2 bit in SCON. A way to use this feature in multiprocessor systems is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. Remember, an address byte has its 9th bit set to 1, whereas a data byte has its 9th bit set to 0. All the slave processors should have their SM2 bits set to 1 so they will only be interrupted by an address byte. In fact, the 8XC51FA/FB has an Automatic Address Recognition feature which allows only the addressed slave to be interrupted. That is, the address comparison occurs in hardware, not software. (On the 8051 serial port, an address byte interrupts all slaves for an address comparison.)

The addressed slave then clears its SM2 bit and prepares to receive the data bytes that will be coming. The other slaves are unaffected by these data bytes. They are still waiting to be addressed since their SM2 bits are all set.

7.3 Automatic Address Recognition

Automatic Address Recognition reduces the CPU time required to service the serial port. Since the CPU is only interrupted when it receives its own address, the software overhead to compare addresses is eliminated. With this feature enabled in one of the 9-bit modes, the Receive Interrupt (RI) flag will only get set when the received byte corresponds to either a Given or Broadcast address.

The feature works the same way in the 8-bit mode (Mode 1) as in the 9-bit modes, except that the stop bit takes the place of the 9th data bit. If SM2 is set, the RI flag is set only if the received byte matches the Given or Broadcast Address and is terminated by a valid stop bit. Setting the SM2 bit has no effect in Mode 0.

The master can selectively communicate with groups of slaves by using the Given Address. Addressing all slaves at once is possible with the Broadcast Address. These addresses are defined for each slave by two Special Function Registers: SADDR and SADEN.

A slave's individual address is specified in SADDR. SADEN is a mask byte that defines don't-cares to form the Given Address. These don't-cares allow flexibility in the user-defined protocol to address one or more slaves at a time. The following is an example of how the user could define Given Addresses to selectively address different slaves.

CYR				-	
SI	a	167	a	on.	
21	а	97	c		۰

SADDR	a Lation	1111	0001	
SADEN	q leinsa	1111	1010	
GIVEN	=	1111	0X0X	

Slave 2:

SADDR	2=/	1111	0011
SADEN	-	1111	1001
GIVEN	=	1111	0XX1

liggs and in boldsaib od blands Table 13. SCON: Serial Port Control Register and add grantish in villidix

SCON	Address = 98		er" or "co ting modes "timer" op		NH and SADEN	address A	Reset	t Value =	0000 0000B
	SM0/FE	SM1	SM2	REN	TB8	RB8	XXTIX	RI	
	Bit: 7 (SMOD0		es 1 and 3 nud Rate		30 OF FIG	Addressin	th other l	aribio y wi	
Symbol	Function	e very lo	can achiev	One					
nd confirm high nibble 1 interrupt	Framing Error bit is not clear set to enable a	ed by valaccess to	lid frames to the FE bit	out shou	uld be clea	ared by so	ftware. T		
SM0	Serial Port Mo				0 to acces	s bit SM0	Oscillat		
SM1 based	Serial Port Mo					12			
	SMO SM	MTISSOO S	Mode		ription egister		aud Rate		
te Baud.	0 General 0 0 1 1 1	Timer 3	1 2 miaU 3 miaU	8-bit U 9-bit U 9-bit U	JART JART	va Fo	riable	r F _{OSC} /32	OD1 in Sp OD1 = 0 (q is V_{0s} the os
cator SMS of the cator be simulated or TCLK posterior as shown	Enables the A not be set unle byte is a Giver unless a valid In Mode 0, SM	ess the re for Broa stop bit v	eceived 9th dcast Addr was receive	n data b ress. In ed, and	it (RB8) is Mode 1, if the receiv	1, indicat SM2 = 1	then RI a Given	ldress, and will not be or Broadc	the receive activated
REN	Enables serial reception.	receptio	n. Set by s	oftware	to enable	reception	n. Clear b	y software	to disable
ТВ8	The 9th data bedsired.		ll be transr		Modes 2	and 3. Se	t or clear	r by softwa	re as
RB8	In modes 2 an bit that was re	d 3, the 9	9th data bit	that wa		d. In Mode	e 1, if SM	2 = 0, RB	8 is the stop
TI	Transmit interaction beginning of the software.	rupt flag. ne stop b	Set by har it in the oth	dware a ner mod	at the end les, in any	of the 8th serial tran	bit time i	in Mode 0, n. Must be	or at the cleared by
RI	Receive interr through the st be cleared by	op bit tim	e in the oth						
	ocated at PCON6 scillator frequenc					3z Timer 1 C	At side	T	

The SADEN byte are selected such that each slave can be addressed separately. Notice that bit 1 (LSB) is a don't-care for Slave 1's Given Address, but bit 1 = 1 for Slave 2. Thus, to selectively communicate with just Slave 1 the master must send an address with bit 1 = 0(e.g. 1111 0000).

Similarly, bit 2 = 0 for Slave 1, but is a don't-care for Slave 2. Now to communicate with just Slave 2 an address with bit 2 = 1 must be used (e.g. 1111 0111).

Finally, for a master to communicate with both slaves at once the address must have bit 1 = 1 and bit 2 = 0.

Notice, however, that bit 3 is a don't-care for both slaves. This allows two different addresses to select both slaves (1111 0001 or 1111 0101). If a third slave was added that required its bit 3 = 0, then the latter address could be used to communicate with Slave 1 and 2 but not Slave 3.

The master can also communicate with all slaves at once with the Broadcast Address. It is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-cares. The don't-cares also allow

intel

flexibility in defining the Broadcast Address, but in The Timer 1 interrupt should be disabled in this applimost applications a Broadcast Address will be 0FFH.

SADDR and SADEN are located at address A9H and B9H, respectively. On reset, the SADDR and SADEN registers are initialized to 00H which defines the Given and Broadcast Addresses as XXXX XXXX (all don't-cares). This assures the 8XC51FA/FB serial port to be backwards compatibility with other MCS®-51 products which do not implement Automatic Addressing.

7.4 Baud Rates

The baud rate in Mode 0 is fixed:

Mode 0 Baud Rate =
$$\frac{\text{Oscillator Frequency}}{12}$$

The baud rate in Mode 2 depends on the value of bit SMOD1 in Special Function Register PCON. If SMOD1 = 0 (which is the value on reset), the baud rate is $\frac{1}{64}$ the oscillator frequency. If SMOD1 = 1, the baud rate is $\frac{1}{32}$ the oscillator frequency.

The baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate, or by Timer 2 overflow rate, or by both (one for transmit and the other for receive).

7.5 Using Timer 1 to Generate Baud

When Timer 1 is used as the baud rate generator, the sense of squared immension of the sense of squared immension of the sense of squared immension of the squared of squared of

The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In most applications, it is configured for "timer" operation in the auto-reload mode (high nibble of TMOD = 0010B). In this case, the baud rate is given by the formula:

Modes 1 and 3 Baud Rate =
$$\frac{2\text{SMOD1} \times \text{Oscillator Frequency}}{32 \times 12 \times [256 - (\text{TH1})]}$$

One can achieve very low baud rates with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the Timer to run as a 16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1 interrupt to do a 16-bit software reload.

Table 14 lists various commonly used baud rates and how they can be obtained from Timer 1.

7.6 Using Timer 2 to Generate Baud Rates

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 7). Note that the baud rates for transmit and receive can be simultaneously different. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 23.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

Table 14. Timer 1 Generated Commonly Used Baud Rates

			Timer 1			
Baud Rate	Posc Notice, hor	SMOD mag ava	C/T	Mode	Reload Value	
Mode 0 Max: 1 MHz	12 MHz	X	X	X	X	
Mode 2 Max: 375K	12 MHz	19.1	X	X	X	
Modes 1, 3: 62.5K	12 MHz	0 1 11	0	2	FFH	
19.2K	11.059 MHz	1	0	2	FDH	
9.6K	11.059 MHz	0	0	2	FDH	
4.8Koda nso	11.059 MHz	7000750	0	2	FAH	
Leasthb 2.4Kobsorff of	11.059 MHz	-bOne S	SIO .	reui 2 irw	F4H	
AZ bas A.2KAZ and To	11.059 MHz	011	1011	2.02	E8H	
137.5 nob es b	11.986 MHz	0	0	2	1DH	
110	6 MHz	0 0	00	0 9120100	72H	
110	12 MHz	200.	0	1 =11 tio	FEEBH	

The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate as follows:

Modes 1 and 3 Baud Rates =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

The Timer can be configured for either "timer" or "counter" operation. In most applications, it is configured for "timer" operation (C/T2=0). The "Timer" operation is different for Timer 2 when it's being used as a baud rate generator. Normally, as a timer, it increments every machine cycle (1/12 the oscillator frequency). As a baud rate generator, however, it increments every state time ($\frac{1}{2}$ the oscillator frequency). The baud rate formula is given below:

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 23. This figure is valid only if RCLK and/or TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set

EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2 = 1) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions the Timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read, but shouldn't be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Table 15 lists commonly used baud rates and how they can be obtained from Timer 2.

Table 15. Timer 2 Generated Commonly Used Baud Rates

Baud	Osc	Timer 2				
Rate	Freq	RCAP2H	RCAP2L			
375K	12 MHz	0 FF	FF			
9.6K	12 MHz	FF	D9			
4.8K	12 MHz	FF	B2			
2.4K	12 MHz	FF	64			
1.2K	12 MHz	FE	C8			
300	12 MHz	FB	1E			
110	12 MHz	F2	AF			
300	6 MHz	FD	8F			
110	6 MHz	F9	57			

Figure 23. Timer 2 in Baud Rate Generator Mode

The 8XC51FA/FB has a total of 7 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), the PCA interrupt, and the serial port interrupt. These interrupts are all shown in Figure 24.

All of the bits that generate interrupts can be set or cleared by software, with the same result as though it had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled in software.

Each of these interrupts will be briefly described followed by a discussion of the interrupt enable bits and the interrupt priority levels.

Figure 24. Interrupt Sources

Figure 23. Timer 2 in Baud Rate Generator Mode

8.1 External Interrupts

External Interrupts $\overline{\text{INT0}}$ and $\overline{\text{INT1}}$ can each be either level-activated or transition-activated, depending on bits IT0 and IT1 in register TCON. If ITx = 0, external interrupt x is triggered by a detected low at the $\overline{\text{INTx}}$ pin. If ITx = 1, external interrupt x is negative edge-triggered. The flags that actually generate these interrupts are bits IE0 and IE1 in TCON. These flags are cleared by hardware when the service routine is vectored to only if the interrupt was transition-activated. If the interrupt was level-activated, then the external requesting source is what controls the request flag, rather than the on-chip hardware.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called.

If external interrupt $\overline{\text{INT0}}$ or $\overline{\text{INT1}}$ is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

8.2 Timer Interrupts

Timer 0 and Timer 1 Interrupts are generated by TF0 and TF1 in register TCON, which are set by a rollover in their respective Timer/Counter registers (except see Timer 0 in Mode 3). When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

Timer 2 Interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and the bit will have to be cleared in software.

setsigest elden 3 190 8.3 PCA Interrupt

The PCA interrupt is generated by the logical OR of CF, CCF0, CCF1, CCF2, CCF3, and CCF4 in register CCON. None of these flags is cleared by hardware when the service routine is vectored to. Normally the service routine will have to determine which bit flagged the interrupt and clear that bit in software. The PCA interrupt is enabled by bit EC in the Interrupt Enable register (see Table 16). In addition, the CF flag and each of the CCFn flags must also be enabled by bits ECF and ECCFn in registers CMOD and CCAPMn respectively, in order for that flag to be able to cause an interrupt.

8.4 Serial Port Interrupt

The serial port interrupt is generated by the logical OR of bits RI and TI in register SCON. Neither of these flags is cleared by hardware when the service routine is vectored to. The service routine will normally have to determine whether it was RI or TI that generated the interrupt, and the bit will have to be cleared in software.

8.5 Interrupt Enable

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable (IE) register. (See Table 16.) Note that IE also contains a global disable bit, EA. If EA is set (1), the interrupts are individually enabled or disabled by their corresponding bits in IE. If EA is clear (0), all interrupts are disabled.

8.6 Priority Level Structure

Each interrupt source can also be individually programmed to one of two priority levels, by setting or clearing a bit in the Interrupt Priority (IP) register shown in Table 17. A low-priority interrupt can itself be interrupted by a higher priority interrupt, but not by another low-priority interrupt. A high priority interrupt cannot be interrupted by any other interrupt source.

Table 16. IE: Interrupt Enable Register

Table 17. IP: Interrupt Priority Registers

individual q ag a bit in able 16.)	Bit Add									X000 0000B
		bat sas	PPC	PT2	PS	PT1	PX1	PT0	PX0	2 Timente
. If EA is o	Bit	807000	6	od 5d be	side 4	3	2	1	0	
Symbol	Functio	on	ity Lev			s generat-	nerrupt j red by th	a timer in it is clear	3). When senerated	their respective ner 0 in Mode the flag that
PPC			ed, resen		ture us	e.* .01 b	s vectore			
PT2			priority bit pt priority							
PS			rrupt prio							
PT1			pt priority	hit						
PX1			pt 1 prior							ermine whether interrupt, an
PTO	Timer 0	Interru	pt priority	bit.						iware.
PX0	Externa	I Interru	pt 0 prior	rity bit.						
										ducts to invoke

read from a reserved bit is indeterminate.

If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence shown in Table 18.

Note that the "priority within level" structure is only used to resolve simultaneous requests of the same priority level.

at box 250 Table 18. Interrupt Priority is assemble within Level Polling Sequence in ballog

1 (Highest)	INTO INTO
re subroutine call 12 the re-	Timer 0
Il be the next instructon to be	
skes two cycles. Thut a mini-	
achine cycles elapse between	m stel PCA sends to mum
interrupt request and the be-	Serial Port
7 (Lowest)	Timer 2 de amining

How Interrupts are Handled

The interrupt flags are sampled at S5P2 of every machine cycle. The samples are polled during the following machine cycle. The Timer 2 interrupt cycle is slightly different, as described in the Response Time section. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

1. An interrupt of equal or higher priority level is already in progress.

dock. The RST pin is sampled during State 5 Phase

- 2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.
- 3. The instruction in progress is RETI or any write to the IE or IP registers.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any write to IE or IP, then at least one more instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. If the interrupt flag for a level-sensitive external interrupt is active but not being responded to for one of the above conditions and is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in Figure 25.

Note that if an interrupt of a higher priority level goes active prior to S5P2 of the machine cycle labeled C3 in Figure 25, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine having been executed.

emistral entrol automordonyas at Figure 25. Interrupt Response Timing Diagram entrols and anique trave

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. The hardware-generated LCALL pushes the contents of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown in Table 19.

Table 19. Interrupt Vector Address

Interrupt Source	Interrupt Request Bits		15 110000000000000000000000000000000000
OTNI machine cycle,	cated with each		The pollin
TIMER 0	slo TFO dose	Yes	000BH
bove FTAI tions is be serviced. In	for ontall the	No (level)	0013H
t flag was once		Yes	001BH
SERIAL PORT		No	0023H
TIMER 2	Carrie and the Allin and Total State of	No	
PCA The	CF, CCFn (n = 0-4)	No	0033H

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Execution of the interrupted program continues from where it left off

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking interrupt was still in progress.

Note that the starting addresses of consecutive interrupt service routines are only 8 bytes apart. That means if consecutive interrupts are being used (IEO and TFO, for example, or TFO and IE1), and if the first interrupt routine is more than 7 bytes long, then that routine will have to execute a jump to some other memory location where the service routine can be completed without overlapping the starting address of the next interrupt routine.

8.7 Response Time

The INTO and INTO levels are inverted and latched into the Interrupt Flags IEO and IE1 at S5P2 of every machine cycle. Similarly, the Timer 2 flag EXF2 and the Serial Port flags RI and TI are set at S5P2. The values are not actually polled by the circuitry until the next machine cycle.

The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag TF2 is set at S2P2 and is polled in the same cycle in which the timer overflows.

If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles elapses between activation of an external interrupt request and the beginning of execution of the service routine's first instruction. Figure 25 shows interrupt response timing.

A longer response time would result if the request is blocked by one of the 3 previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles, since the longest instructions (MUL and DIV) are only 4 cycles long, and if the instruction in progress is RETI or write to IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one or more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

9.0 RESET

The reset input is the RST pin, which has a Schmitt Trigger input. A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods) while the oscillator is running. The CPU responds by generating an internal reset, with the timing shown in Figure 26.

The external reset signal is asynchronous to the internal clock. The RST pin is sampled during State 5 Phase 2 of every machine cycle. The port pins, ALE, and PSEN will maintain their current activities for the 19 oscillator periods after a logic 1 has been sampled at the RST pin; that is, for 19 to 31 oscillator periods after the external reset signal has been applied to the RST pin.

Conceptions Idle and Power Down. The impolimit seas 2.6 supplying Idle. For example, an instruction that

While the RST pin is high, the port pins, ALE and PSEN are weakly pulled high. After RST is pulled low, it will take 1 to 2 machine cycles for ALE and PSEN to start clocking. For this reason, other devices can not be synchronized to the internal timings of the 8XC51FA/FB.

Driving the ALE and PSEN pins to 0 while reset is active could cause the device to go into an indeterminate state.

The internal reset algorithm redefines all the SFRs. Table 1 lists the SFRs and their reset values. The internal RAM is not affected by reset. On power up the RAM content is indeterminate.

9.1 Power-On Reset

For CHMOS devices, when VCC is turned on, an automatic reset can be obtained by connecting the RST pin to VCC through a 1 μ F capacitor (Figure 27). The CHMOS devices do not require an external resistor like the HMOS devices because they have an internal pulldown on the RST pin.

When power is turned on, the circuit holds the RST pin high for an amount of time that depends on the capacitor value and the rate at which it charges. To ensure a

Figure 27. Power on Reset Circuitry

valid reset the RST pin must be held high long enough to allow the oscillator to start up plus two machine cycles.

On power up, $V_{\rm CC}$ should rise within approximately ten milliseconds. The oscillator start-up time will depend on the oscillator frequency. For a 10 MHz crystal, the start-up time is typically 1 msec. For a 1 MHz crystal, the start-up time is typically 10 msec.

With the given circuit, reducing V_{CC} quickly to 0 causes the RST pin voltage to momentarily fall below 0V. However, this voltage is internally limited and will not harm the device.

Note that the port pins will be in a random state until the oscillator has started and the internal reset algorithm has written 1s to them.

Powering up the device without a valid reset could cause the CPU to start executing instructions from an indeterminate location. This is because the SFRs, specifically the Program Counter, may not get properly initialized.

10.0 POWER-SAVING MODES OF OPERATION

For applications where power consumption is critical, the 8XC51FA/FB provides two power reducing modes of operation: Idle and Power Down. The input through which backup power is supplied during these operations is V_{CC}. Figure 28 shows the internal circuitry which implements these features. In the Idle mode (IDL = 1), the oscillator continues to run and the Interrupt, Serial Port, PCA, and Timer blocks continue to be clocked, but the clock signal is gated off to the CPU. In Power Down (PD = 1), the oscillator is frozen. The Idle and Power Down modes are activated by setting bits in Special Function Register PCON (Table 20).

10.1 Idle Mode

An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle

mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the Interrupt, Timer, and Serial Port functions. The PCA can be programmed either to pause or continue operating during Idle (refer to the PCA section for more details). The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle Mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into Idle.

The flag bits (GF0 and GF1) can be used to give an indication if an interrupt occurred during normal operation or during Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

The signal at the RST pin clears the IDL bit directly and asynchronously. At this time the CPU resumes program execution from where it left off; that is, at the instruction following the one that invoked the Idle Mode. As shown in Figure 26, two or three machine cycles of program execution may take place before the

Figure 28. Idle and Power Down Hardware

Table 20.	DCON-	Dower	Control	Pagieter
I aprie 20.	POUN.	LOME	Control	neulstel

PCON be	PCON Address = 87H		Pro	Reset Value = 00XX				
	Not Bit Addressable	1.82	LB1					
	SMOD1 SMOD0	U_'	POF	GF1	GF0	PD	E IDL	CC raust remain
ed lide filw nollqy Symbol	Bit 7 6	5	4	3	2	silon	PERS	1.0 EPROM
SMOD1	Double Baud rate bit. V Serial Port is used in m					-		tes, and the
SMOD0	When set, Read/Write accesses to SCON.7 a						rogrami	
	Not implemented, rese	rved for t	future use	-Exordds				6 seconds for the
POF cals al ythe no alds	Power Off Flag. Set by flag allows detection of this bit.				of Vcc. S	Set or clea	ared by s	oftware. This
GF1	General-purpose flag b	it.						
GF0	General-purpose flag b	it.						
PD	Power Down bit. Setting	g this bit	activates	Power Do	wn opera	tion.		
IDL	Idle mode bit. Setting the If 1s are written to PD a	nis bit ac and IDL a	tivates idle t the sam	e modes o	peration.	ecedence	the code	ure which protect tOM. The two-lev
NOTE:	are should not write 1s to a		The state of the s	These hits	may be us			ryption array and

*User software should not write 1s to unimplemented bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate

internal reset algorithm takes control. On-chip hardware inhibits access to the internal RAM during this time, but access to the port pins is not inhibited. To eliminate the possibility of unexpected outputs at the port pins, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external Data RAM.

10.2 Power Down Mode

An instruction that sets PCON.1 causes that to be the last instruction executed before going into the Power Down mode. In this mode the on-chip oscillator is stopped. With the clock frozen, all functions are stopped, but the on-chip RAM and Special Function Registers are held. The port pins output the values held by their respective SRFs, and ALE and PSEN output lows. In Power Down V_{CC} can be reduced to as low as 2V. Care must be taken, however, to ensure that V_{CC} is not reduced before Power Down is invoked.

The 8XC51FA/FB can exit Power Down with either a hardware reset or external interrupt. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before $V_{\rm CC}$ is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 msec).

With an external interrupt, INTO or INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator and bringing the pin back high completes the exit. After the RETI instruction is executed in the interrupt service routine, the next instruction will be the one following the instruction that put the device in Power Down.

10.3 Power Off Flag

The Power Off Flag (POF) is set by hardware when $V_{\rm CC}$ rises from 0 to 5 Volts. POF can also be set or cleared by software. This allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is one that is coincident with V_{CC} being turned on to the device after it was turned off. A warm start reset occurs while V_{CC} is still applied to the device and could be generated, for example, by a Watchdog Timer or an exit from Power Down.

Immediately after reset, the user's software can check Table 21. EPROM Lock Bits the status of the POF bit. POF = 1 would indicate a cold start. The software then clears POF and commences its tasks. POF = 0 immediately after reset would indicate a warm start.

V_{CC} must remain above 3 volts for POF to retain a 0.

11.0 EPROM VERSIONS

The 87C51FA/FB uses the fast "Quick-Pulse" programmingTM algorithm. The devices program at Vpp = 12.75V (and V_{CC} = 5.0V) using a series of twentyfive 100 us PROG pulses per byte programmed. This results in a total programming time of approximately 26 seconds for the 87C51FA's 8K bytes and approximately 50 seconds for the 87C51FB's 16K bytes.

11.1 Two-Level Program Memory Lock

In some microcontroller applications it is desirable that the Program Memory be secure from software piracy. The 8XC51FA/FB has a two-level program lock feature which protect the code of the on-chip EPROM or 12.0 ONCE MODE ROM. The two-level scheme consists of a 32-byte encryption array and two lock bits.

Encryption Array: Within the EPROM/ROM are 32 bytes of Encryption Array that are initially unprogrammed (all 1's). The user can program the Encryption Array to encrypt the program code bytes during EPROM/ROM verification. The verification procedure is performed as usual except that each code byte comes out exclusive-NOR'ed (XNOR) with one of the key bytes. Therefore, to read the ROM code the user has to know the 32 key bytes in their proper sequence.

Unprogrammed bytes have the value OFFH. So if the Encryption Array is left unprogrammed, all the key bytes have the value OFFH. Since any code byte XNORed with 0FFH leaves the byte unchanged, leaving the Encryption Array unprogrammed in effect bypasses the encryption feature.

Program Lock Bits: Also included in the Program Lock scheme are two Lock Bits which can be programmed as shown in Table 21.

Erasing the EPROM also erases the Encryption Array and the Lock Bits, returning the part to full functionalicleared by software. This allows the user to distinguitt

Exposure to Light: The EPROM window must be covered with an opaque label when the device is in operation. This is not so much to protect the EPROM array from inadvertent erasure, but to protect the RAM and other on-chip logic. Allowing light to impinge on the silicon die while the device is operating can cause logical malfunction.

	gram c Bits	Logic Enabled				
LB1	LB2	Not Bit Addressable				
UPO	_U ā	No Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array.)				
P t to a. t a 2, or 3. se to SO s SMO bit future as	odes 1, access re to the	from internal memory, EA is sampled and latched on reset, and lether programming of				
P	P.s	Same as above, but Verify is also disabled (option available on EPROM only)				
U	P	Reserved for Future Definition				

The ONCE (ON-Circuit Emulation) mode facilitates testing and debugging of systems using the 8XC51FA/ FB without having to remove the device from the circuit. The ONCE mode is invoked by:

- 1. Pulling ALE low while the device is in reset and PSEN is high;
- 2. Holding ALE low as RST is deactivated.

While the device is in ONCE mode, the Port 0 pins go into a float state, and the other port pins, ALE, and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit.

Normal operation is restored after a valid reset is ap-

13.0 ON-CHIP OSCILLATOR

The on-chip oscillator for the CHMOS devices, shown in Figure 29, consists of a single stage linear inverter intended for use as a crystal-controlled, positive reactance oscillator. In this application the crystal is operating in its fundamental response mode as an inductive reactance in parallel resonance with capacitance external to the crystal (Figure 30).

The oscillator on the CHMOS devices can be turned off under software control by setting the PD bit in the PCON register. The feedback resistor Rf in Figure 29 consists of paralleled n- and p-channel FETs controlled by the PD bit, such that Rf is opened when

l_etrii

PD = 1. The diodes D1 and D2, which act as clamps to V_{CC} and V_{SS} , are parasitic to the R_f FETs.

The crystal specifications and capacitance values (C1 and C2 in Figure 30) are not critical. 30 pF can be used in these positions at any frequency with good quality crystals. In general, crystals used with these devices typically have the following specifications:

ESR (Equivalent Series Resistance) see Figure 32

 $C_{\rm O}$ (shunt capacitance) 7.0 pF maximum $C_{\rm L}$ (load capacitance) 30 pF ± 3 pF Drive Level 1 MW

Frequency, tolerance, and temperature range are determined by the system requirements.

A ceramic resonator can be used in place of the crystal in cost-sensitive applications. When a ceramic resonator is used, C1 and C2 are normally selected as higher values, typically 47 pF. The manufacturer of the ceramic resonator should be consulted for recommendations on the values of these capacitors.

A more in-depth discussion of crystal specifications, ceramic resonators, and the selection of values for C1 and C2 can be found in Application Note AP-155, "Oscillators for Microcontrollers" in the Embedded Control Applications handbook.

To drive the CHMOS parts with an external clock source, apply the external clock signal to XTAL1 and leave XTAL2 floating as shown in Figure 31. This is an important difference from the HMOS parts. With HMOS, the external clock source is applied to XTAL2, and XTAL1 is grounded.

Figure 29. On-Chip Oscillator Circuitry

Figure 30. Using the CHMOS On-Chip Oscillator

Figure 31. Driving the CHMOS Parts with an External Clock Source

Figure 32. ESR vs Frequency

14.0 CPU TIMING

The internal clock generator defines the sequence of states that make up a machine cycle. A machine cycle consists of 6 states, numbered S1 through S6. Each state time lasts for two oscillator periods. Thus a machine cycle takes 12 oscillator periods or 1 microsecond if the oscillator frequency is 12 MHz. Each state is then divided into a Phase 1 and Phase 2 half.

Figure 3 and Figures 5 through 7 show when the various strobe and port signals are clocked internally. The figures do not show rise and fall times of the signals, nor do they show propagation delays between the XTAL1 signal and events at other pins.

Rise and fall times are dependent on the external loading that each pin must drive. They are approximately 10 nsec, measured between 0.8V and 2.0V.

Propagation delays are different for different pins. For a given pin they vary with pin loading, temperature, $V_{\rm CC}$, and manufacturing lot. If the XTAL1 waveform is taken as the timing reference, propagation delays may vary from 25 to 125 nsec.

SECSTRAFIE

SECRETARIO

SECRETARIO

CHOCK GATE

CHOCK GATE

CHOCK GATE

270853-29

The AC Timings section of the data sheets do not reference any timing to the XTAL1 waveform. Rather, they relate the critical edges of control and input signals to each other. The timings published in the data sheets include the effects of propagation delays under the specified test condition.

ADDITIONAL REFERENCES

The following application notes provide supplemental information to this document and can be found in the *Embedded Control Applications* handbook.

- 1. AP-125 "Designing Microcontroller Systems for Electrically Noisy Environments"
- 2. AP-155 "Oscillators for Microcontrollers"
- 3. AP-252 "Designing with the 80C51BH"
- 4. AP-410 "Enhanced Serial Port on the 83C51FA"
- 5. AP-415 "83C51FA/FB PCA Cookbook"
- 6. AB-41 "Software Serial Port Implemented with the PCA"
- 7. AP-425 "Small DC Motor Control"

83C51FA/80C51FA CHMOS SINGLE-CHIP 8-BIT MICROCOMPUTER

83C51FA—8K Bytes of Factory Mask Programmable ROM 80C51FA—CPU with RAM and I/O 83C51FA/80C51FA—3.5 MHz to 12 MHz, $V_{CC}=5V\pm10\%$ 83C51FA-1/80C51FA-1—3.5 MHz to 16 MHz, $V_{CC}=5V\pm10\%$ 83C51FA-2/80C51FA-2—0.5 MHz to 12 MHz, $V_{CC}=5V\pm10\%$

- **High Performance CHMOS EPROM**
- Three 16-Bit Timer/Counters
 - Timer 2 is an Up/Down Timer/Counter
- Programmable Counter Array with:
 - High Speed Output,
 - Compare/Capture,
 - Pulse Width Modulator,
 - Watchdog Timer capabilities
- Program Lock System
- 256 Bytes of On-Chip Data RAM
- **■** Boolean Processor
- 32 Programmable I/O Lines

- **7** Interrupt Sources
- Programmable Serial Channel with:
 - Framing Error Detection
 - Automatic Address Recognition
- TTL and CMOS Compatible Logic Levels
- **64K External Program Memory Space**
- 64K External Data Memory Space
- MCS®-51 Fully Compatible Instruction Set
- Power Saving Idle and Power Down Modes
- ONCE™ (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 8K bytes of the program memory can reside in the on-chip ROM (83C51FA only). In addition the device can address up to 64K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256 x 8 on-chip RAM. In addition it can address up to 64K bytes of external data memory.

The Intel 83C51FA is a single-chip control oriented microcontroller which is fabricated on Intel's reliable CHMOS III technology. Being a member of the 8051 family, the 83C51FA uses the same powerful instruction set, has the same architecture, and is pin for pin compatible with the existing MCS-51 products. The 83C51FA is an enhanced version of the 80C51BH. It's added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

For the remainder of this document, the 83C51FA and 80C51FA will be referred to as the 83C51FA.

Figure 1. 83C51FA Block Diagram

PACKAGES to prince xe at A-18008 ent nertw

ens Part vibs	Prefix	Package Type
83C51FA	P P P P P P P P P P P P P P P P P P P	40-Pin Plastic DIP
80C51FA	D	40-Pin CERDIP
EA must be	elderN ass	44-Pin PLCC

Figure 2. Pin Connections

PIN DESCRIPTIONS

V_{CC}: Supply voltage.

VSS: Circuit ground.

Port 0: Port 0 is an 8-bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting1's, and can source and sink several LS TTL inputs.

Port 0 outputs the code bytes during program verification on the 83C51FA. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 83C51FA:

Port Pin	(O fee Alternate Function 9.89
P1.0	T2 (External Count Input to Timer/ Counter 2)
P1.1 (edods eth	T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)
P1.2	ECI (External Count Input to the PCA)
P1.3	CEX0 (External I/O for Compare/ Capture Module 0)
P1.4	CEX1 (External I/O for Compare/ Capture Module 1)
P1.5 for latching	CEX2 (External I/O for Compare/ Capture Module 2)
P1.6	CEX3 (External I/O for Compare/ Capture Module 3)
ns P1.7 ₀ s	CEX4 (External I/O for Compare/ Capture Module 4)

Port 1 receives the low-order address bytes during ROM verification.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternate Functio	n addition n
P3.0	RXD (serial input port)	ng special fi
P3.1	TXD (serial output port)	
P3.2	INTO (external interrupt 0)	Port Pin
P3.3	INT1 (external interrupt 1)	
P3.4	T0 (Timer 0 external input)	
P3.5	T1 (Timer 1 external input)	
P3.6	WR (external data memory w	vrite strobe)
P3.7	RD (external data memory re	ead strobe)

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of ½ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the read strobe to external Program Memory.

When the 80C51FA is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.

EA/V_{PP}: External Access enable. EA must be strapped to V_{SS} in order to enable the device to fetch code from external Program Memory locations 0000H to 0FFFFH. Note, however, that if either of the Program Lock bits are programmed, EA will be internally latched on reset.

 $\overline{\text{EA}}$ should be strapped to V_{CC} for internal program executions.

XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 83C51FA either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before $V_{\rm CC}$ is restored to its normal operating level and must be

held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

DESIGN CONSIDERATION

• When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCETM MODE 9 aparloV wo J sugre

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 83C51FA without the 83C51FA having to be removed from the circuit. The ONCE Mode is invoked by:

- 1) Pull ALE low while the device is in reset and PSEN is high;
- 2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 83C51FA is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0 75	8 0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Controller Handbook, and Application Note AP-252, "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias0°C to +7	0°C
Storage Temperature65°C to +15	0°C
Voltage on EA/V _{PP} Pin to V _{SS}	.5\
Voltage on Any Other Pin to VSS0.5V to +6	.5\
Maximum I _{OL} per I/O Pin15	m/
Power Dissipation	.5W

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS: $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$

Symbol	the device normally resumes pro-	noite:Min	Typical (4)	Max	Unit	Test Conditions
V _{IL} ni of a	Input Low Voltage (Except EA)	-0.5	de. When	0.2 V _{CC} -0.1	ov y n	he user's software of
VIL10	Input Low Voltage EA	on a O	one erete	0.2 V _{CC} -0.3	V	on is reduced. The S.
V _{IH}	Input High Voltage (Except XTAL1, RST)	0.2 V _{CC} +0.9	g Idle, bu ons. Idle	V _{CC} +0.5	DEX.	re onboard RAM reta re processor stops
V _{IH1}	Input High Voltage Anomem Isms (XTAL1, RST)	0.7 V _{CC}	unter cer uning lidle	0.5 P	Vie ning	bled interrupt occurs ptionally be left run
V _{OL}	Output Low Voltage (5) (Ports 1, 2 and 3)	ONCET The ONC		0.3 0.45 1.0	V V	$I_{OL} = 100 \mu A$ $I_{OL} = 1.6 \text{ mA}$ (1) $I_{OL} = 3.5 \text{ mA}$
V _{OL1}	Output Low Voltage (5) (Port 0, ALE/PROG, PSEN)	testing 83C51FA moved fi by:	node car oscillator ed Power	0.3 0.45 1.0	V V V	$I_{OL} = 200 \mu A$ $I_{OL} = 3.2 \text{ mA}$ (1) $I_{OL} = 7.0 \text{ mA}$
VOH	Output High Voltage (Ports 1, 2 and 3 ALE/PROG and PSEN)	V _{CC} -0.3 V _{CC} -0.7 V _{CC} -1.5	e on-chit their val ted.	executed. The legisters retain to de is terminal to the legisters are the legisters	V V	$I_{OH} = -10 \mu A$ $I_{OH} = -30 \mu A$ (2) $I_{OH} = -60 \mu A$
VOH1	Output High Voltage (Port 0 in External Bus Mode)	V _{CC} -0.3 V _{CC} -0.7 V _{CC} -1.5	or an ex ver Down of change	exit from Pov	V	$I_{OH} = -200 \mu\text{A}$ $I_{OH} = -3.2 \text{mA}$ (2) $I_{OH} = -7.0 \text{mA}$
is in tight	Logical 0 Input Current (Ports 1, 2, and 3)	cuit rem mode, ar	-10	±====================================	μΑ	V _{IN} = 0.45V
ILI	Input leakage Current (Port 0 and EA)	eser Ism	0.02	±10	μΑ	$V_{IN} = V_{IL} \text{ or } V_{IH}$
I _{TL}	Logical 1 to 0 Transition Current (Ports 1, 2, and 3)	d Pine during	-265	-650	μΑ	V _{IN} = 2V
RRST	RST Pulldown Resistor	01R040 I	100	3 225	ΚΩ	Node P
CIO	Pin Capacitance	ste(1		10	pF	@1MHz, 25°C
Data Data	Power Supply Current: Running at 12 MHz (Figure 5) Idle Mode at 12 MHz (Figure 5) Power Down Mode	Float Ploat	15 5 5	30 7.5 7.5	mA mA μA	Note 3) TO (Restor)

i: Instruction (program memory contents)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In applications where capacitance loading exceeds 100 pFs, the noise pulse on the ALE signal may exceed 0.8V. In these cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an Address Latch with a Schmitt Trigger Strobe input.

2. Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the 0.9 V_{CC} specification when the address lines are stabilizing.

3. See Figures 6-9 for test conditions. Minimum V_{CC} for power down is 2V.

4. Typicals are based on limited number of samples, and are not guaranteed. The values listed are at room temperature and 5V.

5. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

Maximum IOL per port pin:

10 mA

Maximum IOL per 8-bit port -

Port 0: 26 mA

Ports 1, 2, and 3: 15 mA

Maximum total IOL for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 9. Clock Signal Waveform for ICC Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

X: No longer a valid logic level

Z: Float

A: Address

C: Clock

D: Input Data

H: Logic level HIGH

I: Instruction (program memory contents)

L: Logic level LOW, or ALE

P: PSEN 5 year 5 bits 6 short no pribable evinceoso in O: Output Date 6 smorte of sub si exten ent 6 bits 1 Q: Output Data

C: Output Data
R: RD signal

T: Time Schmitt Tripper Strobe input.

specifive loading on Ports 0 and 2 osuse (ibilaV :Vn

W: WR signal

X: No longer a valid logic level 6-3 serum assumed as a serum a

ewollet as belimit vitametre of rexample, illines (instance) etals vibate rebut.

TAVLL = Time from Address Valid to ALE Low TLLPL = Time from ALE Low to PSEN Low

A.C. CHARACTERISTICS T_A = 0°C to +70°C, V_{CC} = 5V ±20%, V_{SS} = 0V, Load Capacitance for Port 0, ALE and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MH	z Oscillator	Variable	Units	
Symbol	Parameter	Min	Max	Min	Max	Office
1/TCLCL	Oscillator Frequency 83C51FA 83C51FA-1 83C51FA-2		2	3.5 3.5 0.5	12 16 12	MHz
TLHLL	ALE Pulse Width	127	210H2 16 MH3	2TCLCL-40	MHz Zhitz	ns
TAVLL	Address Valid to ALE Low	tento 12/43	27053B-5	TCLCL-40	couped and a to ve	ns
TLLAX	Address Hold After ALE Low	53		TCLCL-30	Mode	ns
TLLIV	ALE Low to Valid Instruction In	Figu	234	T.C T 503	4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	-53	A.	TCLCL-30	WAX = 0.49 × FI	ns
TPLPH	PSEN Pulse Width	205		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		145	Inhaus as 30t	3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		59	DOV VOC	TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312	L 20V	5TCLCL - 105	ns
TPLAZ	PSEN Low to Address Float		10	09	10	ns
TRLRH	RD Pulse Width	400		6TCLCL-100		ns
TWLWH	WR Pulse Width	400		6TCLCL-100		ns
TRLDV	RD Low to Valid Data In	All other	252	ATAL2	5TCLCL - 165	ns
TRHDX	Data Hold After RD	0 igure		0 227		ns
TRHDZ	Data Float After RD		1-88107		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In		517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address Valid to RD or WR Low	203		4TCLCL - 130		ns
TQVWX	Data Valid to WR Transition	33	Verman Very	TCLCL-50	EXCEPTION.	ns
TWHQX	Data Hold after WR	33	7.2 V _{CC} =0.1	TCLCL-50	2 1 1 1	ns
TQVWH	Data Valid to WR High	433		7TCLCL-70		ns
TRLAZ	RD Low to Address Float		0		0	ns
TWHLH	RD or WR High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE 199W YOMEN ATAG JAMPETAE

EXTERNAL DATA MEMORY READ CYCLE

Units	Secillator (their	Variable (scillator	12 MHz C	Parameter	
			Max	niM	10/0/110 15 1	
		12TCLCL		1		
					Output Data Setup to Clock Rising Edge	
		2TCLCL-117				
					Input Data Hold After Clock Rising Edge	ханхт
	10TCLCL-133					

EXTERNAL DATA MEMORY WRITE CYCLEARS YROMEM MARROOSS JAMRETIKE

A.C. TESTING INPUT

SERIAL PORT TIMING—SHIFT REGISTER MODE

Test Conditions: $T_A = 0$ °C to +70°C; $V_{CC} = 5V \pm 20$ %; $V_{SS} = 0V$; Load Capacitance = 80 pF

Symbol	Parameter	12 MHz Oscillator		Variable	Units	
	raidilictor	Min	Max	Min	Max	Onito
TXLXL	Serial Port Clock Cycle Time	1		12TCLCL		μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter		Min	Max	Units
1/TCLCL	Oscillator Frequency 83C51FA/80C51FA 83C51FA-1/80C51FA-1 83C51FA-2/80C51FA-2	P3.6	3.5 3.5 0.5	12 16 12	MHz
TCHCX	High Time	XTAL	20	7	ns
TCLCX	Low Time		20	4-6 MHz	ns
TCLCH	Rise Time	INTX		20	ns
TCHCL	Fall Time			20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

ROM CHARACTERISTICS

Table 2 shows the logic levels for verifying the code data and reading the signature bytes on the 83C51FA.

Table 2. ROM Modes

Mode	RST	PSEN	ALE	EA	P2.7	P2.6	P3.6	P3.7
Verify Code Data	1	0	1	1	0	0	1	1
Read Signature	1	0	1	1	0	0	0	0

NOTES:

"1" = Valid high for that pin

[&]quot;0" = Valid low for that pin

Program Verification

If the Program Lock Bit has not been programmed, the on-chip Program Memory can be read out for verification purposes, if desired. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0–P2.4. The other pins should be held at the "Verify" levels indicated in Table 2. The contents of the addressed locations will come out on Port 0. External pullups are required on Port 0 for this operation.

If the Encryption Array in the ROM has been programmed, the data present at Port 0 will be Code Data XNOR Encryption Data. The user must know the Encryption Array contents to manually "unencrypt" the data during verify.

Figure 10 shows the setup for verifying the program memory.

Figure 10. Verifying the ROM

ROM VERIFICATION CHARACTERISTICS

 $T_A = 21^{\circ}\text{C to } 27^{\circ}\text{C}; V_{CC} = 5V \pm 0.25V; V_{SS} = 0V$

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	boo 4 point	a logic levels for vari	MHz
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid	S SIGN I	48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	SOCIA

ROM VERIFICATION WAVEFORMS

ROM Program Lock

The Program Lock system consists of one Program Lock bit and a 32 byte Encryption Array which are used to protect the program memory against software piracy.

Table 3 outlines the features of programming the Lock Bit.

Encryption Array

Within the ROM array are 32 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 5 address lines are used to select a byte of the Encryp-

tion Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encrypted Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in it's original, unmodified form.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values returned are:

(030H) = 89H indicates manufacture by Intel (031H) = 53H indicates 83C51FA

Table 3. Program Lock Bit and its Features

Program Lock Bit LB1	Logic Enabled	
U	No Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array.)	
Р	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset.	

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -001 version of the 83C51FA/80C51FA data sheet:

- 1. Data sheet was upgraded from ADVANCE INFORMATION to PRELIMINARY.
- 2. The old device name (83C252/80C252) was removed from the title.
- 3. PLCC pin connection diagram was added.
- 4. Package table was added.
- 5. Exit from Power Down Mode was clarified.
- 6. Maximum Ior per I/O pin was added to the ABSOLUTE MAXIMUM RATINGS.
- 7. Note 4 was added to explain the maximum safe current spec.
- 8. Ipd was improved from 100 μA to 75 μA.
- 9. Typical DC characteristics were added for: IIL, ILI, ITL, RRST, ICC.
- 10. Note 5 was added to explain the test conditions for typical values.
- 11. Maximum clock frequency was added to the AC table.
- 12. Timing spec's improved for:

TAVLL changed from TCLCL-55 to TCLCL-40

TLLAX changed from TCLCL-35 to TCLCL-30

TLLPL changed from TCLCL-40 to TCLCL-30

TRHDZ changed from TCLCL-70 to TCLCL-60

TQVWX changed from "Address Valid Before WR" to "Data Valid to WR Transition", and changed from TCLCL-60 to TCLCL-50

TQVWH was added. I to not software termion a as

13. Data sheet revision summary was added.

Logic Enabled	Program Lock Bit LB1
MOVC instructions executed from external program risemory, are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset.	

83C51FA/80C51FA

Electrical Deviations from Commerci SSBRYX3 cations for Extended Temperature

83C51FA/80C51FA—3.5 MHz to 12 MHz, $V_{CC}=5V\pm10\%$ 83C51FA-1/80C51FA-1—3.5 MHz to 16 MHz, $V_{CC}=5V\pm10\%$ 83C51FA-2/80C51FA-2—0.5 MHz to 12 MHz, $V_{CC}=5V\pm10\%$

■ Extended Temperature Range

Burn-In

D.C. CHARACTERISTICS TA = -40°C to +85°C: Vec = 5V ± 10%; Vec

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of 0° C to 70° C. With the extended temperature range option, operational characteristics are guaranteed over the range of -40° C to $+85^{\circ}$ C.

The optional burn-in is dynamic for a minimum time of 168 hours at 125°C with $V_{CC}=6.9V\pm0.25V$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = 5\text{V} \pm 10^{\circ}\text{K}$; $V_{SS} = 0\text{V}$

-51 family of	each entitle and spilicage land the MCS established to meet the most be spilicage and the most be spilicage.	erts of sinLimits adno are		ito metev	Test on e
Symbol		Min	Max	Unit	Conditions
IL	Logical 0 Input Current (Port 1, 2, 3)	100 listrinsio 16	-75	μΑ	V _{in} = 0.45V
V _{OH1}	Output High Voltage (Port 0 in External Bus Mode)	V _{CC} -1.5	es the com out burn-in.	m iVslude h or with	IOH = -6.0 mA

negmet eff revo besins aug en sollal Table 1. Prefix Identification is request as basins a laboration with

are collegate avade legalitate on gardene at the party of the party of the college of the colleg			
Prefix	refix Package Type Temperature Range		Burn-In
Р	Plastic	Commercial	No
Bulmonol D/gz'0 = A	Cerdip	Commercial	el ni-mud No loligo en
N	PLCC	Commercial	No
e part ngToer. The	of xilleng Plastic wit no -eno	PRESS vers bebnetx3 antified by a	ackage to the and EX
TD	Cerdip	Extended	I ni bela No s aexite
nent moTN siveb do	information PLCC is sollinger	Extended	omat heh Noxa erit so
re applicatie for all	s ateeds at Plastical enutared	e range limit bebnetzemmercial ten	ommerciaeYemperatur
LD	Cerdip	Extended	Yes element
LN	PLCC	Extended	Yes

NOTE

• Commercial temperature range is 0°C to 70°C. Extended temperature range is -40°C to +85°C.

• Burn-in is dynamic for a minimum time of 168 hours at 125°C, $V_{CC} = 6.9V \pm 0.25V$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

Examples:

P83C51FA indicates 83C51FA in a plastic package and specified for commercial temperature range, without burn-in

LD80C51FA indicates 80C51FA in a cerdip package and specified for extended temperature range with burnin.

87C51FA

CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH PROGRAMMABLE COUNTER ARRAY, UP/DOWN COUNTER, 8K BYTES USER PROGRAMMABLE EPROM

- **High Performance CHMOS EPROM**
- Power Control Modes
- Three 16-Bit Timer/Counters
- Programmable Counter Array with:
 - High Speed Output,
 - Compare/Capture,
 - Pulse Width Modulator,
 - Watchdog Timer capabilities
- **■** Up/Down Timer/Counter
- Two Level Program Lock System
- 8K On-Chip EPROM
- 256 Bytes of On-Chip Data RAM
- Quick Pulse Programming™ Algorithm
- Boolean Processor

- **32 Programmable I/O Lines**
- **7** Interrupt Sources
- Programmable Serial Channel with:
 Framing Error Detection
 Automatic Address Recognition
- **TTL Compatible Logic Levels**
- **64K External Program Memory Space**
- 64K External Data Memory Space
- MCS®-51 Fully Compatible Instruction Set
- Power Saving Idle and Power Down Modes
- ONCE™ (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 8K bytes of the program memory can reside in the on-chip EPROM. In addition the device can address up to 64K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256 x 8 on-chip RAM. In addition it can address up to 64K bytes of external data memory.

The Intel 87C51FA is a single-chip control oriented microcontroller which is fabricated on Intel's reliable CHMOS II-E technology. Being a member of the MCS®-51 family, the 87C51FA uses the same powerful instruction set, has the same architecture, and is pin for pin compatible with the existing MCS-51 products. The 87C51FA is an enhanced version of the 87C51. It's added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

Figure 1. 87C51FA Block Diagram

PACKAGES DO BRIBLORY SE ARTROVA est nentw

Part vibs	Prefix	Package Type	
87C51FA	Jelxe ^b l 888	40-Pin Plastic DIP	
	D	40-Pin CERDIP	
EA must be	nida N soo	44-PIN PLCC	

PAD
Figure 2. Pin Connections

29 P2.5

270258-23

PIN DESCRIPTIONS

V_{CC}: Supply voltage.

P3.5 17

Vss: Circuit ground.

Port 0: Port 0 is an 8-bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting1's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 87C51FA:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2)
(ePJv1 ett	T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)
P1.2	ECI (External Count Input to the PCA)
en P1.3	CEX0 (External I/O for Compare/ Capture Module 0)
P1.4	CEX1 (External I/O for Compare/ Capture Module 1)
P1.5	CEX2 (External I/O for Compare/ Capture Module 2)
P1.6	CEX3 (External I/O for Compare/ Capture Module 3)
P1.7	CEX4 (External I/O for Compare/ Capture Module 4)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternate Function	
P3.0	RXD (serial input port)	
P3.1	TXD (serial output port)	
P3.2	INTO (external interrupt 0)	
P3.3	INT1 (external interrupt 1)	
P3.4	T0 (Timer 0 external input)	
P3.5	T1 (Timer 1 external input)	
P3.6	WR (external data memory write strobe)	
P3.7	RD (external data memory read strobe)	

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits a power-on reset with only a capacitor connected to $V_{\rm CC}$.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C51FA.

In normal operation ALE is emitted at a constant rate of $\frac{1}{6}$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG pin, and the pin will be referred to as the ALE/PROG pin.

PSEN: Program Store Enable is the read strobe to external Program Memory.

When the 87C51FA is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.

EA/Vpp: External Access enable. EA must be strapped to VSS in order to enable the device to fetch code from external Program Memory locations 0000H to 0FFFH. Note, however, that if either of the Program Lock bits are programmed, EA will be internally latched on reset.

EA should be strapped to V_{CC} for internal program executions.

This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 87C51FA either hardware reset or external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

DESIGN CONSIDERATION

- Ambient light is known to affect the internal RAM contents during operation. If the 87C51FA application requires the part to be run under ambient lighting, an opaque label should be placed over the window to exclude light.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCETM MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 87C51FA without the 87C51FA having to be removed from the circuit. The ONCE Mode is invoked by:

- 1) Pull ALE low while the device is in reset and PSEN is high;
- 2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 87C51FA is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	E 1	al- 1	Data	Data	Data	Data
Idle	External	1	° 1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Controller Handbook, and Application Note AP-252, "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0°C to +7	0°C
Storage Temperature65°C to +15	o°C
Voltage on EA/V _{PP} Pin to V _{SS} 0V to +13	3.0V
Voltage on Any Other Pin to VSS 0.5V to +6	3.5V
Maximum I _{OL} per I/O Pin15	mA
Power Dissipation	no

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

Figure 4. External Clock Drive Configuration

D.C. CHARACTERISTICS: $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = 5V \pm 10\%; V_{SS} = 0V)$

Symbol	Parameter m elle erti	niMWher	Typical (Note 4)	A SAM ALE N	Unit	Test Conditions
VIL	Input Low Voltage	-0.5	nisteres an	0.2 V _{CC} -0.1	V	e microcontroller i
VILLE	Input Low Voltage EA	oning 0	ng Idle, bu	0.2 V _{CC} -0.3	I Vs	e priboard HAM re
V _I H O	Input High Voltage (Except XTAL1, RST, EA)	0.2 V _{CC} +0.9	mons. ion or if an en	V _{CC} +0.5	٧	lade will be exited aled interrupt occu-
VIH1 vni s	Input High Voltage (XTAL1, RST)	0.7 V _{CC}	during ldf	V _{CC} +0.5	niVau	ptionally be left r lode,
V _{OL}	Output Low Voltage(5) (Ports 1, 2 and 3)	ONCE		0.3 0.45 1.0	V	$I_{OL} = 100 \mu A$ $I_{OL} = 1.6 \text{ mA(1)}$ $I_{OL} = 3.5 \text{ mA}$
V _{OL1}	Output Low Voltage(5) (Port 0, ALE/PROG, PSEN)	The ONG testing arcs1F	e oscillato ked Powe he on-chi	0.3 0.45 1.0	it Vis	$I_{OL} = 200 \mu A$ $I_{OL} = 3.2 \text{ mA}(1)$ $I_{OL} = 7.0 \text{ mA}$
V _{OH} v ⁿⁱ	Output High Voltage (Ports 1, 2 and 3 ALE/PROG and PSEN)	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5	in their va	Registers reta mode is termi	V V V	$I_{OH} = -10 \mu A$ $I_{OH} = -30 \mu A(2)$ $I_{OH} = -60 \mu A$
V _{OH1}	Output High Voltage (Port 0 in External Bus Mode)	V _{CC} -0.3 V _{CC} -0.7 V _{CC} -1.5	own. Rese tige the or a both th	trom Power D does not chat nterrupt allow	V	$I_{OH} = -200 \mu A$ $I_{OH} = -3.2 \text{ mA}(2)$ $I_{OH} = -7.0 \text{ mA}$
and Auli and Auli	Logical 0 Input Current (Ports 1, 2, and 3)	go into a	-10	-50	μΑ	$V_{IN} = 0.45V$
is in tight d to drive	Input leakage Current (Port 0)	s cuit rem e mode, ai	0.02	ed be±10 e ed is level pribate	μΑ	$V_{IN} = V_{IL} \text{ or } V_{IH}$
I _{TL}	Logical 1 to 0 Transition Current (Ports 1, 2, and 3)	mal rese	-265	-650	μΑ	$V_{IN} = 2V$
RRST	RST Pulldown Resistor	pnhu40 ni41s	100	225	ΚΩ	
CIO	Pin Capacitance	vrane li	100	10 man	pF	@1MHz, 25°C
lcc staG	Power Supply Current: Running at 12 MHz (Figure 5) Idle Mode at 12 MHz (Figure 5) Power Down Mode	Data Float	15 5 5	30 7.5 75	mA mA μA	(Note 3)

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Vols of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In applications where capacitance loading exceeds 100 pFs, the noise pulse on the ALE signal may exceed 0.8V. In these cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an Address Latch with a Schmitt Trigger Strobe input.

2. Capacitive loading on Ports 0 and 2 cause the VOH on ALE and PSEN to drop below the 0.9 VCC specification when the address lines are stabilizing.

3. See Figures 6-9 for test conditions. Minimum V_{CC} for power down is 2V.

4. Typicals are based on limited number of samples, and are not guaranteed. The values listed are at room temperature and 5V.

5. Under steady state (non-transient) conditions, IOL must be externally limited as follows: 10 mA Maximum IOL per port pin:

Maximum IOL per 8-bit port -

Port 0: 26 mA

Wo 1 3 IA of ble V Ports 1, 2, and 3: 15 mA Maximum total IOI for all output pins: 71 mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 6. I_{CC} Test Condition, Active Mode

Figure 5. I_{CC} vs Frequency

PO EA RST 87C252 (NC)-XTAL2 XTAL1 270258-8 All other pins disconnected

Figure 8. I_{CC} Test Condition, Power Down Mode. Figure 7. I_{CC} Test Condition Idle Mode $V_{CC} = 2.0V \text{ to 5.5V}.$

Figure 9. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for. Typicals are based on limited number of samp Hoat St. Float guaranteed. The values listed are at room temper

A: Address

C: Clock

D: Input Data

H: Logic level HIGH

I: Instruction (program memory contents)

L: Logic level LOW, or ALE

Capacitive loading on Ports 0 and 2 may ca NEST !

Q: Output Data dismethe of sub a salon ent & bas

R: RD signal

T: Time

V: Valid
W: WR signal

X: No longer a valid logic level

For example, and hog log and mumber.

TAVLL = Time from Address Valid to ALE Low TLLPL = Time from ALE Low to PSEN Low

A.C. CHARACTERISTICS (TA = 0°C to +70°C, V_{CC} = 5V ±10%, V_{SS} = 0V, Load Capacitance for Port 0, ALE/PROG and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF)

Flor exceeds the test condition, Volt may exceed the related specification. Pins are not guaranteed to sink current greater

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MH	z Oscillator	Variable	Units	
Symbol	Farameter	Min	Max	Min	Max	Office
1/TCLCL	Oscillator Frequency	NAME OF		3.5	12	MHz
TLHLL	ALE Pulse Width	127	TYPICAL	2TCLCL-40		ns
TAVLL	Address Valid to ALE Low	43	2 Mrz 15 Mrs	TCLCL-40	SHIP STORE	ns
TLLAX	Address Hold After ALE Low	53	2702585	TCLCL-30	possessi serio te vi	ns
TLLIV	ALE Low to Valid Instruction In	HOLIOT	234		4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	53		TCLCL-30	app.	ns
TPLPH	PSEN Pulse Width	205		3TCLCL-45	MAX = 0.49 X PR	ns
TPLIV	PSEN Low to Valid Instruction In		145		3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0	(OII	0 000	o sugns	ns
TPXIZ	Input Instruction Float After PSEN		59		TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312	I	5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float		10	-1 00	10	ns
TRLRH	RD Pulse Width	400		6TCLCL-100		ns
TWLWH	WR Pulse Width	400	+	6TCLCL-100	-	ns
TRLDV	RD Low to Valid Data In		252	CHEE	5TCLCL-165	ns
TRHDX	Data Hold After RD	0		0 1341	SIGHAL	ns
TRHDZ	Data Float After RD		107	Particular Security Community	2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In	modes till	517		8TCLCL-150	ns
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address Valid to WR Low	203		4TCLCL-130		ns
TQVWX	Data Valid to WR Transition	33		TCLCL-50	BIN MEYE	ns
TWHQX	Data Hold after WR	33	A 20	TCLCL-50	1.0-00V	ns
TQVWH	Data Valid to WR High	433	TOWN TOWN	7TCLCL-150	/CA.0	ns
TRLAZ	RD Low to Address Float		0		0	ns
TWHLH	RD or WR High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL CLOCK DRIVE

EXTERNAL PROGRAM MEMORY READ CYCLE & TAIMS - DAINIT TROS JAIRES

EXTERNAL DATA MEMORY READ CYCLE VAW DAMMIT 300M 83721039 THINS

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING - SHIFT REGISTER MODE SOMEM MARDORS JAMES XX

Test Conditions: TA = 0°C to +70°C; VCC = 5V ±10%; VSS = 0V; Load Capacitance = 80 pF

Symbol Parame	Parameter	12 MHz Oscillator		Variable	Units	
	Farallietei	Min Min	Max	Min	Max	Offics
TXLXL	Serial Port Clock Cycle Time	1 VD	27	12TCLCL	0.358	μs
TQVXH	Output Data Setup to Clock Rising Edge	700	EAUST-1	10TCLCL - 133	SUL STATEMENT COM	ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2TCLCL-117	0 1909	ns
TXHDX	Input Data Hold After Clock Rising Edge	0	211 51	VIVATO		ns
TXHDV	Clock Rising Edge to Input Data Valid		700	and the same of th	10TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS AS A VROMEN ATACLE AMPRITY OF

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	3.5	12	MHz
TCHCX	High Time	20		ns
TCLCX	Low Time	20	4—119.	ns
TCLCH	Rise Time	SERVICE OF THE PROPERTY OF THE PARTY OF THE	20	ns
TCHCL	Fall Time	j	W 117 20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

A.C. TESTING INPUT

AC Inputs during testing are driven at $V_{CC}-0.5V$ for a Logic "1" and 0.45V for a Logic "0". Timing measurements are made at V_{IH} min for a Logic "1" and V_{OL} max for a Logic "0".

VLOAD + 0.1 V VLOAD - 0.1 V VOL+0.1 V 270258-15

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. I_{OL}/I_{OH} \geq \pm 20 mA.

EPROM CHARACTERISTICS

Table 2 shows the logic levels for programming the Program Memory, the Encryption Table, and the Lock Bits and for reading the signature bytes.

Table 2. EPROM Programming Modes

Mode	RST	PSEN	ALE/ PROG	EA/ Vpp	P2.7	P2.6	P3.6	P3.7
Program Code Data	1	0	0*	Vpp	1	0	1	1
Verify Code Data	1	0	1	1	0	0	1	1
Program Encryption Table Use Addresses 0–1FH	Verifica	magor	0*11111	V _{PP}	MTgnim	ma020	9 0	l-slaius so seco
Program Lock x=1 Bits (LBx) x=2	e ontchip rud notrac	am 0 d, ti	0 0* louis 0 0*borts	V _{PP}	not finith	optA1 MTg	nim1erge	ng falu
Read Signature	Memory	0	t 1 max	S (VIS O	0	0	0	0

NOTES:

PROGRAMMING THE EPROM

To be programmed, the part must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal EPROM locations.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0 - P2.4 of Port 2, while the code byte to be programmed into that location is applied to Port 0. The other Port 2 and 3 pins, RST PSEN, and EA/Vpp should be held at the "Program" levels indicated in Table 2. ALE/PROG is pulsed low to program the code byte into the addressed EPROM location. The setup is shown in Figure 10.

Normally EA/V_{PP} is held at logic high until just before ALE/PROG is to be pulsed. Then EA/V_{PP} is raised to V_{PP}, ALE/PROG is pulsed low, and then EA/V_{PP} is returned to a valid high voltage. The voltage on the EA/V_{PP} in must be at the valid EA/V_{PP} high level before a verify is attempted. Waveforms and detailed timing specifications are shown in later sections of this data sheet.

Note that the EA/V_{PP} pin must not be allowed to go above the maximum specified V_{PP} level for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The V_{PP} source should be well regulated and free of glitches.

[&]quot;1" = Valid high for that pin

^{&#}x27;0" = Valid low for that pin "VPP" = $\pm 12.75V \pm 0.25V$

^{*} ALE/PROG is pulsed low for 100 µs for programming. (Quick-Pulse Programming™)

Figure 10. Programming the EPROM

Quick-Pulse Programming™ Algorithm

The 87C51FA can be programmed using the Quick-Pulse Programming™ Algorithm for microcontrollers. The features of the new programming method are a lower Vpp (12.75V as compared to 21V) and a shorter programming pulse. It is possible to program the entire 8K Bytes of EPROM memory in less than 25 seconds with this algorithm!

To program the part using the new algorithm, V_{PP} must be 12.75V \pm 0.25V. ALE/ \overline{PROG} is pulsed low for 100 μ s, 25 times as shown in Figure 11. Then, the byte just programmed may be verified. After programming, the entire array should be verified. The Program Lock features are programmed using the same method, but with the setup as shown in Table 2. The only difference in programming Program Lock features is that the Program Lock features cannot be directly verified. Instead, verification of programming is by observing that their features are enabled.

Program Verification

If the Program Lock Bits have not been programmed, the on-chip Program Memory can be read out for verification purposes, if desired, either during or after the programming operation. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0 - P2.4. The other pins should be held at the "Verify" levels indicated in Table 3. The contents of the addressed locations will come out on Port 0. External pullups are required on Port 0 for this operation.

If the Encryption Array in the EPROM has been programmed, the data present at Port 0 will be Code Data XNOR Encryption Data. The user must know the Encryption Array contents to manually "unencrypt" the data during verify.

The setup, which is shown in Figure 12, is the same as for programming the EPROM except that pin P2.7 is held at a logic low, or may be used as an active-low read strobe.

Figure 11. PROG Waveforms

Figure 12. Verifying the EPROM

Verifying the Line of the memory.

WOVC instructions executed from external program memory.

EA is sampled and latched on reset, and further programming of the EPROM is disabled.

P Same as above, but Verify is also disabled.

P Reserved for Future Definition.

EPROM Program Lock

The two-level Program Lock system consists of two Program Lock bits and a 32 byte Encryption Array which are used to protect the program memory against software piracy.

Encryption Array

Within the EPROM array are 32 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 5 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encrypted Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in it's original, unmodified form.

Program Lock Bits

Also included in the EPROM Program Lock scheme are two Program Lock Bits which are programmed as shown in Table 2.

Table 3 outlines the features of programming the Lock Bits.

Erasing the EPROM also erases the Encryption Array and the Program Lock Bits, returning the part to full functionality.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values returned are:

(030H) = 89H indicates manufacture by Intel (031H) = 50H indicates 87C51FA

Erasure Characteristics

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least 15 W-sec/cm. Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the all EPROM Cells in a 1's state.

Table 3. Program Lock Bits and their Features

Program Lock Bits LB1 LB2		Logic Enabled			
2 U 258–	U	No Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array.)			
Р	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.			
Р	Р	Same as above, but Verify is also disabled			
U	Р	Reserved for Future Definition			

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS THE ATAC

 $(T_A = 21^{\circ}C \text{ to } 27^{\circ}C; V_{CC} = 5V \pm 0.25V; V_{SS} = 0V)$

Symbol	YA Parameter of MOITAM	ADVA NIM E INFOR	non beMaxqu sev	Units
V _{PP}	Programming Supply Voltage	non bev12.51 saw	ce nar0.6/17/02/52	2. The Vold dev
Ірр	Programming Supply Current	was added.	mergalicoticom	mA .
1/TCLCL	Oscillator Frequency	4	bebig saw eli	MHz
TAVGL	Address Setup to PROG Low	48TCLCL	wer Open Mode w	i estambaka a
TGHAX	Address Hold after PROG	48TCLCL	t nislove or bebbs	sew h etol/i 5
TDVGL	Data Setup to PROG Low	48TCLCL	roved from 100 µA	8. log was imp
TGHDX	Data Hold after PROG 1299 (1)	48TCLCL	characteristics wer	B. Typical DC
TEHSH	P2.7 (ENABLE) High to V _{PP}	48TCLCL	s added to explain	10. Note 5 wa
TSHGL	V _{PP} Setup to PROG Low	10	o's improved for.	μS
TGHSL	V _{PP} Hold after PROG	10	Inged non TOLOL	μS
TGLGH	PROG Width	16-10 90 ot 01-	110	μS
TAVQV	Address to Data Valid	-70 to TCLCL-6	48TCLCL	do SOHAT
TELQV bas	ENABLE Low to Data Valid	ess Valid Before V	48TCLCL	TQVWX cl
TEHQZ	Data Float after ENABLE	0	48TCLCL	6-10101
TGHGL	PROG High to PROG Low	10	ravision surmany	μS

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

The following are the key differences between this and the -002 version of the 87C51FA data sheet:

- 1. Data sheet was upgraded from ADVANCE INFORMATION to PRELIMINARY.
- 2. The old device name (87C252) was removed from the title. V viocal animators
- 3. PLCC pin connection diagram was added.
- 4. Package table was added.
- 5. Exit from Power Down Mode was clarified.
- 6. Maximum IOL per I/O pin was added to ABSOLUTE MAXIMUM RATINGS.
- 7. Note 4 was added to explain the maximum safe current spec.
- 8. IPD was improved from 100 μA to 75 μA.
- 9. Typical DC characteristics were added for: IIL, ILI, ITL, RRST and ICC. IS MOH STACK
- 10. Note 5 was added to explain the test conditions for typical values.
- 11. Timing spec's improved for:
 - TAVLL changed from TCLCL-55 to TCLCL-40
 - TLLAX changed from TCLCL-35 to TCLCL-30
 - TLLPL changed from TCLCL-40 to TCLCL-30
 - TRHDZ changed from TCLCL-70 to TCLCL-60

TQVWX changed from "Address Valid Before WR" to "Data Valid to WR Transition" and changed from

- TCLCL-60 to TCLCL-50
- TQVWH was added.
- 12. Data sheet revision summary was added.
- 13. EA Leakage current not spec'ed.

for Extended Temperature Range

87C51FA

Electrical Deviations from Commer SZSRXX fications

■ Extended Temperature Range

■ 3.5 MHz to 12 MHz V_{CC} = 5V ± 10%

Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the 8051 family of microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range with or without burn-in.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of 0° C to $+70^{\circ}$ C. With the extended temperature range option, operational characteristics are guaranteed over the range of -40° C to $+85^{\circ}$ C.

The optional burn-in is dynamic for a minimum time of 168 hours at 125°C with $V_{CC}=6.9V\pm0.25V$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

parameters not listed here.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets.

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = 5\text{V} \pm 10\%$; $V_{SS} = 0\text{V}$

Symbol	Parameter	Li	mits	Unit	Test Conditions	
an extended	dard temperature range with burn-in and	Min	Max	m include		
I _{IL}	Logical 0 Input Current (Port 1, 2, 3)		-75	μΑ	V _{IN} = 0.45V	
r the temper- cteristics are	Input Leakage Current (Port 0 and EA)	nge, oper inded ten	±15	μΑ	$V_{IN} = V_{IL}$ or V_{IH}	
JTL 15V, following	Logical 1 to 0 transition Current (Ports 1, 2, 3)	time of t	-750 uminim s 10	μA tomamic	V _{IN} = 2.0V	
Icc ertT .redmun	Power Supply Current Active Mode and a vol Idle Mode Power Down Mode	beititnebi	7.5 150	mA mA μA	(Note 1) Package types and E Continue are listed in 1	

commercial temperature range limits. The commercial temperature range data sheets are applicable :3TON

1. $V_{CC} = 4.5V-5.5V$, Frequency Range = 3.5 MHz-12 MHz.

Table 1. Prefix Identification

Prefix	Package Type	Temperature Range(2)	Burn-In(3)
Р	Plastic = ooV	HM ST of Commercial 14 12089	No
D	Cerdip	Commercial	No
N	PLCC	Commercial	No
TP	Plastic William	Extended 20MMO o	High 60 formand
:rito lenn	10 Ishe2 Cerdip mangor	Extended 1971000\18	Threcon-Bit Tim
TN	PLCC	Extended TA Telinuc	Progro/mable C
LP	Plastic	Extended	Yes
LD	Cerdip aleve	Extended notable	Yes
VIOLNIA mi	Formal PLCCentrel Product	Extended 1989 19	Yes W-

NOTES

2. Commercial temperature range is 0°C to +70°C. Extended temperature range is -40°C to +85°C.

3. Burn-in is dynamic for a minimum time of 168 hours at + 125°C, $V_{CC} = 6.9V \pm 0.25V$, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

Examples: 19wo9 bns elbl pnivs8 19wo9 m

P87C51FA indicates 87C51FA in a plastic package and specified for commercial temperature range, without burn-in.

LD87C51FA indicates 87C51FA in a cerdip package and specified for extended temperature range with burn-in.

capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor

September 198 Order Northern 970538-00

Profix

83C51FB CHMOS SINGLE-CHIP 8-BIT MICROCOMPUTER

83C51FB—16K bytes of Factory Mask Programmable ROM 83C51FB—3.5 MHz to 12 MHz, $V_{CC}=5V\pm10\%$ 83C51FB-1—3.5 MHz to 16 MHz, $V_{CC}=5V\pm10\%$ 83C51FB-2—0.5 MHz to 12 MHz, $V_{CC}=5V\pm10\%$

- **High Performance CHMOS EPROM**
- Three 16-Bit Timer/Counters
- Programmable Counter Array with:
 - High Speed Output,
 - Compare/Capture,
 - Pulse Width Modulator,
 - Watchdog Timer Capabilities
- **■** Up/Down Timer/Counter
- Program Lock System
- 16K bytes of On-Chip Program ROM
- 256 Bytes of On-Chip Data RAM
- Boolean Processor
- 32 Programmable I/O Lines of the fibera by

- **7** Interrupt Sources
- Programmable Serial Channel with:
 - Framing Error Detection
 Automatic Address Recognition
- TTL and CMOS Compatible Logic
- 64K bytes External Program Memory Space
- 64K bytes External Data Memory Space
- MCS®-51 Fully Compatible Instruction Set
- Power Saving Idle and Power Down Modes
- ONCE™ (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 16K bytes of the program memory can reside in the on-chip ROM. In addition the device can address up to 64K bytes of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256 x 8 on-chip RAM. In addition it can address up to 64K bytes of external data memory.

The Intel 83C51FB is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS IV technology. Being a member of the MCS-51 family, the 83C51FB uses the same powerful instruction set, has the same architecture, and is pin-for-pin upward compatible with the existing MCS-51 products. The 83C51FB is an enhanced version of the 80C51BH. Its added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multi-processor communications.

9-79

PACKAGES

Prefix	Package Type
- P	40-Pin Plastic DIP
D	40-Pin CERDIP
N	44-Pin PLCC
	- P

Figure 2. Connection Diagrams

PIN DESCRIPTIONS

V_{CC}: Supply voltage.

Vss: Circuit ground.

Port 0: Port 0 is an 8-bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1's, and can source and sink several LS TTL inputs.

Port 0 outputs the code bytes during program verification on the 83C51FB. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 83C51FB:

Port Pin	Alternate Function
P1.0	T2 (External Count Input to Timer/ Counter 2)
P1.1	T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)
-P1.2	ECI (External Count Input to the PCA)
P1.3	CEX0 (External I/O for Compare/ Capture Module 0)
P1.4	CEX1 (External I/O for Compare/ Capture Module 1)
P1.5	CEX2 (External I/O for Compare/ Capture Module 2)
P1.6	CEX3 (External I/O for Compare/ Capture Module 3)
P1.7	CEX4 (External I/O for Compare/ Capture Module 4)

Port 1 receives the low-order address bytes during ROM verification.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function A biol (S
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt 0) and Mass bas
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used

for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the read strobe to external Program Memory.

When the 83C51FB is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.

EA: External Access enable. EA must be strapped to V_{SS} in order to enable the device to fetch code from external Program Memory locations 0000H to 0FFFFH. Note, however, that if the Program Lock bit is programmed, EA will be internally latched on reset.

EA should be strapped to V_{CC} for internal program executions.

XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

external Program Memory locaticaCOM addl

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions, Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode.

POWER DOWN MODE TO HOTALLIDEO

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 83C51FB either a hardware reset or external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be

held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

DESIGN CONSIDERATION

• When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCETM MODE in ent yd rigid beiliug ers merit

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 83C51FB without the 83C51FB having to be removed from the circuit. The ONCE Mode is invoked by:

- 1) Pull ALE low while the device is in reset and PSEN is high:
- 2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 83C51FB is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	PSEN	PORTO	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	or = 0, 0s	20.0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Controller Handbook, and Application Note AP-252, "Designing with the 80C51BH."

Ambient Temperature Under Bias 0°C to +70°C
Storage Temperature65°C to +150°C
Voltage on EA Pin to V _{SS} 0V to +13.0V
Voltage on Any Other Pin to V_{SS} $-0.5V$ to $+6.5V$
Maximum I _{OL} Per I/O Pin
Power Dissipation

ABSOLUTE MAXIMUM RATINGS* Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

> NOTICE: Specifications contained within the following tables are subject to change.

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

D.C. CHARACTERISTICS: $(T_A = 0^{\circ}\text{C to} + 70^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 10\%; V_{SS} = 0\text{V})$

Symbol	Parameter	Specification, P Min	Typical (Note 5)	Max (Note 5)	Unit	Test Conditions
VIL	Input Low Voltage	-0.5		0.2 V _{CC} -0.1	٧	
V _{IL1}	Input Low Voltage EA	0		0.2 V _{CC} -0.3	٧	And-
VIH	Input High Voltage (Except XTAL1, RST, EA)	0.2 V _{CC} +0.9		V _{CC} +0.5	V	am GE
V _{IH1}	Input High Voltage (XTAL1, RST)	0.7 V _{CC}		V _{CC} +0.5	V	ACTON
VOL	Output Low Voltage(Note 6)			0.3 XAM	٧	I _{OL} = 100 μA (Note 1)
	(Ports 1, 2, and 3)			0.45	V	I _{OL} = 1.6 mA (Note 1)
T_992/	eres		16 MHz	1.0	Visit	I _{OL} = 3.5 mA (Notes 1, 4)
V _{OL1}	Output Low Voltage (Note 6)	All other pins	-20	0.3	d nV/ig	I _{OL} = 200 μA (Note 1)
	(Port 0, ALE, PSEN)	71 9 HOJO1		0.45	Ve	I _{OL} = 3.2 mA (Note 1)
shol	ice Test Condition, Active is	Figure		1.0	٧	I _{OL} = 7.0 mA (Notes 1, 4)
V _{OH} Output High Voltage (Ports 1, 2, and 3)		V _{CC} -0.3		Am of n	V	$I_{OH} = -10 \mu\text{A}$
	(Ports 1, 2, and 3)	V _{CC} -0.7		voneupo	V	$I_{OH} = -30 \mu\text{A}$
		V _{CC} -1.5			V	$I_{OH} = -60 \mu\text{A}$
V _{OH1}	Output High Voltage	V _{CC} -0.3			٧	$I_{OH} = -200 \mu\text{A}$
	(Port 0 in External Bus Mode, ALE, PSEN)	V _{CC} -0.7		- V 20/1	V	$I_{OH} = -3.2 \text{mA}$
	ALL, FOLIV	V _{CC} -1.5		T-N	V	$I_{OH} = -7.0 \text{ mA (Note 4)}$
I _{IL}	Logical 0 Input Current (Ports 1, 2, and 3)			-50	μΑ	V _{IN} = 0.45V
l _{LI}	Input Leakage Current (Port 0)			±10	μΑ	0 < V _{IN} < V _{CC} - 0.3V
I _{LI1}	Input Leakage Current (EA)			TBD	μΑ	0 < V _{IN} < V _{CC} - 0.3V
ITL 8-886	Logical 1 to 0 Transition Current (Ports 1, 2, and 3)		8-8	8079 - 650	μΑ	V _{IN} = 2V
RRST		40		225	ΚΩ	
CIO	Pin Capacitance			10	pF	@1 MHz, 25°C
lcc	Power Supply Current: Running at 12 MHz (Figure 5) Idle Mode at 12 MHz (Figure 5) Power Down Mode	rotox - 101	20 5 15	40 10 100	mA mA μA	(Note 3)

D.C. CHARACTERISTICS: $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = 5V \pm 10\%; V_{SS} = 0V)$ (Continued)

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Voi s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In applications where capacitance loading exceeds 100 pFs, the noise pulse on the ALE signal may exceed 0.8V. In these cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an Address Latch with a Schmitt Trigger Strobe input.

2. Capacitive loading on Ports 0 and 2 cause the VOH on ALE and PSEN to drop below the 0.9 VCC specification when the address lines are stabilizing.

3. See Figures 6-9 for test conditions. Minimum V_{CC} for power down is 2V.

Port 0:

4. Care must be taken not to exceed the maximum allowable power dissipation.

5. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and

6. Under steady state (non-transient) conditions, IOI must be externally limited as follows:

Maximum IOL per port pin:

10 mA

Maximum IoL per 8-bit port-

26 mA 15 mA

Ports 1, 2, and 3: Maximum total IOL for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 6. I_{CC} Test Condition, Active Mode

Figure 5. Icc vs Frequency

Figure 7. I_{CC} Test Condition Idle Mode

Figure 8. I_{CC} Test Condition, Power Down Mode. $V_{CC} = 2.0V \text{ to 5.5V}.$

Figure 9. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

EXPLANATION OF THE AC SYMBOLS L: Logic level LOW, or ALE

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address

C: Clock

D: Input Data

H: Logic level HIGH

I: Instruction (program memory contents)

Q: Output Data

R: RD signal

T: Time V: Valid

W: WR signal

X: No longer a valid logic level

Z: Float

For example,

TAVLL = Time from Address Valid to ALE Low

TLLPL = Time from ALE Low to PSEN Low

A.C. CHARACTERISTICS TA = 0°C to +70°C, VCC = 5V ±10%, VSS = 0V, Load Capacitance for Port 0, ALE and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz (12 MHz Oscillator		Variable Oscillator		
Symbol	Parameter M.HWT	Min	Max	Min	Max	Units	
1/TCLCL	Oscillator Frequency 83C51FB 83C51FB-1 83C51FB-2	- TRLRH -	TLLDV	3.5 3.5 0.5	12 16 12	MHz	
TLHLL	ALE Pulse Width	127	annual .	2TCLCL-40	IVAT OI	ns	
TAVLL	Address Valid to ALE Low	43	IST	TCLCL-40		ns	
TLLAX	Address Hold After ALE Low	53	Nod.	TCLCL-30		ns	
TLLIV	ALE Low to Valid Instruction In	reservations)	234	INDIANT	4TCLCL-100	ns	
TLLPL	ALE Low to PSEN Low	53	VGY	TCLCL-30		ns	
TPLPH	PSEN Pulse Width	205 1093	22.7 OR A8-A15	3TCLCL-45	X s	nons	
TPLIV see	PSEN Low to Valid Instruction In		145		3TCLCL-105	ns	
TPXIX	Input Instruction Hold After PSEN	0		0		ns	
TPXIZ	Input Instruction Float After PSEN		59		TCLCL-25	ns	
TAVIV	Address to Valid Instruction In	3.10	312	MEMORY	5TCLCL-105	ns	
TPLAZ	PSEN Low to Address Float		10		10	ns	
TRLRH	RD Pulse Width	400		6TCLCL-100		ns	
TWLWH	WR Pulse Width	400		6TCLCL-100	3.	ns	
TRLDV	RD Low to Valid Data In		252		5TCLCL-165	ns	
TRHDX	Data Hold After RD	0		0	The second second second	ns	
TRHDZ	Data Float After RD		107	Recorded to	2TCLCL-60	ns	
TLLDV	ALE Low to Valid Data In	Name .	517	WITH THE	8TCLCL-150	ns	
TAVDV	Address to Valid Data In		585		9TCLCL-165	ns	
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TCLCL+50	ns	
TAVWL	Address Valid to RD or WR Low	203		4TCLCL-130		ns	
TQVWX	Data Valid before WR	33) ATAU		TCLCL-50	- >- 0	nons	
TWHQX	Data Hold after WR	33		TCLCL-50	The second second	ns	
TQVWH	Data Valid to WR High	433	Park Chapter Schoolsen	7TCLCL-150		ns	
TRLAZ	RD Low to Address Float	PROM DPH	0 0	92,0	0	ns	
TWHLH	RD or WR High to ALE High	43	123	TCLCL-40	TCLCL+40	ns	

EXTERNAL DATA MEMORY READ CYCLE ATMOS -- MOTAM ROSMI GEOMANGA

EXTERNAL DATA MEMORY WRITE CYCLE

A.C. TESTING INPUT

SERIAL PORT TIMING—SHIFT REGISTER MODE

Test Conditions: T_A = 0°C to +70°C; V_{CC} = 5V ±10%; V_{SS} = 0V; Load Capacitance = 80 pF

Symbol	Parameter	12 MHz Oscillator			Variable Oscillator		
Symbol	Farameter	Min	Max	Min	Max	Units	
TXLXL	Serial Port Clock Cycle Time	1-1		12TCLCL	.0	μs	
TQVXH	Output Data Setup to Clock Rising Edge	700	- 10 m	10TCLCL-133		ns	
TXHQX	Output Data Hold after Clock Rising Edge	50		2TCLCL-117		ns	
TXHDX	Input Data Hold After Clock Rising Edge	0		STICSO	CHARACTERI	ns	
TXHDV	Clock Rising Edge to Input Data Valid	a and read R Rodes	700	L Britines to sten	10TCLCL - 133	ns	

SHIFT REGISTER MODE TIMING WAVEFORMS

7.09

P2.6 | P3.6

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL 91.9+30V	Oscillator Frequency 83C51FB 83C51FB-1 83C51FB-2	3.5 3.5 0.5	12 00 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MHz 30V
TCHCX	High Time	20	g are driven at Voc - 0 B	nitaet grikenstugni O
TCLCX	Low Time	20	t V _{IL} max for a Logic "D	na "t" alpinsa no ni
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

ROM CHARACTERISTICS

Table 2 shows the logic levels for verifying the code data and reading the signature bytes on the 83C51FB.

Table 2. ROM Modes

Table 2. Now modes								
Mode	RST	PSEN	ALE	EA	P2.7	P2.6	P3.6	P3.7
Verify Code Data	1	0	FORMS	WAVE	THOMO	BOOM	EGISTER	A THIN
Read Signature	1	0	1	1	0	0	0	0

OTES:

"1" = Valid high for that pin "0" = Valid low for that pin

Program Verification

If the Program Lock Bits have not been programmed, the on-chip Program Memory can be read out for verification purposes, if desired. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0–P2.5. The other pins should be held at the "Verify" levels indicated in Table 2. The contents of the addressed locations will come out on Port 0. External pullups are required on Port 0 for this operation.

If the Encryption Array in the ROM has been programmed, the data present at Port 0 will be Code Data XNOR Encryption Data. The user must know the Encryption Array contents to manually "unencrypt" the data during verify.

Figure 10 shows the setup for verifying the program memory.

else mumbem entinisique of bebbs a Figure 10. Verifying the ROM s viornem margora ismatxe

ROM VERIFICATION CHARACTERISTICS

 $T_A = 21^{\circ}C \text{ to } 27^{\circ}C; V_{CC} = 5V \pm 0.25V; V_{SS} = 0V$

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	bs 8 Anev s	gninub be 6 serbbs at	ond MHz emi
OETAVQV of 30	Address to Data Valid	of the Encryp	48TCLCL	ress lines are Unit
TELQV OF ON	ENABLE Low to Data Valid	an Encrypted	48TCLCL	KNOR) with the
TEHQZ	Data Float after ENABLE	0	48TCLCL	

ROM VERIFICATION WAVEFORMS

ROM Program Lock

The Program Lock system consists of one Program Lock bit and a 32 byte Encryption Array which are used to protect the program memory against software piracy.

Table 3 outlines the features of programming the Lock Bit.

Table 3. Program Lock Bit and their Features

Program Lock Bit LB1	Logic Enabled			
U	No Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array.)			
Р	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset.			

Encryption Array

Within the ROM array are 32 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 5 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encrypted

Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in it's original, unmodified form.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values returned are:

(030H) = 89H indicates manufacture by Intel (031H) = 5EH indicates 83C51FB

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -001 version of the 83C51FB data sheet:

- 1. Package table was added.
- Note 4 was added to explain the maximum safe current spec.
- 3. Maximum I_{OL} per I/O pin was added to the AB-SOLUTE MAXIMUM RATING.
 - 4. Typical values for I_{CC} table were added.
 - 5. Note 5 was added to explain the test conditions for typical values.
 - 6. I_{CC} vs Frequency (Figure 5) was changed to resemble the 87C51FB data sheet.
 - 7. Timing specs improved for:

TLLAX changed from TCLCL-35 to TCLCL-30 TLLPL changed from TCLCL-40 to TCLCL-30 TRHDZ changed from TCLCL-70 to TCLCL-60 TQVWH was added.

TQVWX changed from TCLCL-60 to TCLCL-50

- 8. A.C. TESTING INPUT figure and specs were changed to match the 87C51FB.
- 9. Data sheet revision summary was added.

87C51FB

CHMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH 16K BYTES USER PROGRAMMABLE EPROM

87C51FB—3.5 MHz to 12 MHz, $V_{CC}=5V\pm10\%$ 87C51FB-1—3.5 MHz to 16 MHz, $V_{CC}=5V\pm10\%$ 87C51FB-2—0.5 MHz to 12 MHz, $V_{CC}=5V\pm10\%$

- High Performance CHMOS EPROM
- Three 16-Bit Timer/Counters
- Programmable Counter Array with:
 - High Speed Output,
 - Compare/Capture,
 - Pulse Width Modulator,
 - Watchdog Timer capabilities
- Up/Down Timer/Counter
- Two Level Program Lock System
- 16K On-Chip EPROM
- 256 Bytes of On-Chip Data RAM
- Quick Pulse Programming™ Algorithm
- Boolean Processor

- 32 Programmable I/O Lines
- **■** 7 Interrupt Sources
- Programmable Serial Channel with:
 Framing Error Detection
 - Automatic Address Recognition
- TTL and CMOS Compatible Logic Levels
- 64K External Program Memory Space
- 64K External Data Memory Space
- MCS®-51 Fully Compatible Instruction Set
- Power Saving Idle and Power Down Modes
- ONCE™ (On-Circuit Emulation) Mode

MEMORY ORGANIZATION

PROGRAM MEMORY: Up to 16K bytes of the program memory can reside in the on-chip EPROM. In addition the device can address up to 64K of program memory external to the chip.

DATA MEMORY: This microcontroller has a 256 x 8 on-chip RAM. In addition it can address up to 64K bytes of external data memory.

The Intel 87C51FB is a single-chip control-oriented microcontroller which is fabricated on Intel's reliable CHMOS III-E technology. Being a member of the MCS-51 family, the 87C51FB uses the same powerful instruction set, has the same architecture, and is pin for pin compatible with the existing MCS-51 family of products. The 87C51FB is an enhanced version of the 87C51. It's added features make it an even more powerful microcontroller for applications that require Pulse Width Modulation, High Speed I/O, and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multiprocessor communications.

Figure 1, S7C51FB Block Disgram

Figure 1. 87C51FB Block Diagram

PACKAGES co gnilusexe al ER15078 ent mentW

ens Part vitos	Prefix	Package Type
87C51FB	P	40-Pin Plastic DIP
	D	40-Pin CERDIP
EA must be	es Mable	44-Pin PLCC

Figure 2. Pin Connections

PIN DESCRIPTIONS

V_{CC}: Supply voltage.

VSS: Circuit ground.

Port 0: Port 0 is an 8-bit, open drain, bidirectional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting1's, and can source and sink several LS TTL inputs.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

In addition, Port 1 serves the functions of the following special features of the 87C51FB:

Port Pin	(0 squi Alternate Function S.89
P1.0	T2 (External Count Input to Timer/ Counter 2)
(edotta eff	T2EX (Timer/Counter 2 Capture/ Reload Trigger and Direction Control)
P1.2	ECI (External Count Input to the PCA)
eniP1.3	CEX0 (External I/O for Compare/ Capture Module 0)
-19 P1.43 at	CEX1 (External I/O for Compare/ Capture Module 1)
P1.5	CEX2 (External I/O for Compare/ Capture Module 2)
P1.6	CEX3 (External I/O for Compare/ Capture Module 3)
P1.7	CEX4 (External I/O for Compare/ Capture Module 4)

Port 1 receives the low-order address bytes during EPROM programming and verifying.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can drive LS TTL inputs. Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1's. During accesses to external Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Some Port 2 pins receive the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Port Pin	Alternate Function				
P3.0	RXD (serial input port)	ng special f			
P3.1	TXD (serial output port)				
P3.2	INTO (external interrupt 0)	Part Pin			
P3.3	INT1 (external interrupt 1)	0.19			
P3.4	T0 (Timer 0 external input)				
P3.5	T1 (Timer 1 external input)				
P3.6	WR (external data memory w	rite strobe)			
P3.7	RD (external data memory re-				

RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC}.

ALE: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the program pulse input during EPROM programming for the 87C51FB.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

Throughout the remainder of this data sheet, ALE will refer to the signal coming out of the ALE/PROG pin, and the pin will be referred to as the ALE/PROG pin.

PSEN: Program Store Enable is the read strobe to external Program Memory.

When the 87C51FB is executing code from external Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.

EA/Vpp: External Access enable. EA must be strapped to VSS in order to enable the device to fetch code from external Program Memory locations 0000H to 0FFFFH. Note, however, that if either of the Program Lock bits are programmed, EA will be internally latched on reset.

EA should be strapped to V_{CC} for internal program executions.

This pin also receives the programming supply voltage (V_{PP}) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of a inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 floats, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

Figure 3. Oscillator Connections

Figure 4. External Clock Drive Configuration

IDLE MODE

The user's software can invoke the Idle Mode. When the microcontroller is in this mode, power consumption is reduced. The Special Function Registers and the onboard RAM retain their values during Idle, but the processor stops executing instructions. Idle Mode will be exited if the chip is reset or if an enabled interrupt occurs. The PCA timer/counter can optionally be left running or paused during Idle Mode.

POWER DOWN MODE

To save even more power, a Power Down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 87C51FB either a hardware reset or an external interrupt can cause an exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and on-chip RAM to retain their values.

To properly terminate Power down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INTO and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

DESIGN CONSIDERATION

- Ambient light is known to affect the internal RAM contents during operation. If the 87C51FB application requires the part to be run under ambient lighting, an opaque label should be placed over the window to exclude light.
- When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCETM MODE

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 87C51FB without the 87C51FB having to be removed from the circuit. The ONCE Mode is invoked by:

- 1) Pull ALE low while the device is in reset and PSEN is high;
- 2) Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 87C51FB is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Table 1. Status of the External Pins during Idle and Power Down

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	ade	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

NOTE:

For more detailed information on the reduced power modes refer to current Embedded Controller Handbook, and Application Note AP-252, "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias .	
Storage Temperature	65°C to + 150°C
Voltage on EA/VPP Pin to VSS	0V to + 13.0V
Voltage on Any Other Pin to VSS	-0.5V to +6.5V
Maximum IOL Per I/O Pin	15 mA
Power Dissipation(based on PACKAGE heat transfidevice power consumption)	

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

D.C. CHARACTERISTICS: $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{CC} = 5V \pm 10\%; V_{SS} = 0V)$

Symbol	gong semi Parameter n epivel e owl of qu. it of the semi or the	# Je Min	Typ (Note 5)	Max eb	Unit	Test Conditions
VIL	Input Low Voltage	-0.5	tud sil	0.2 V _{CC} -0.1	V	he onboard RAM, retain th
V _{ILI} 1 ho	Input Low Voltage EA	IAR IO	s. idle .	0.2 V _{CC} -0.3	٧	he processor stops exited if the
V _{IH}	Input High Voltage (Except XTAL1, RST, EA)	0.2 V _{CC} +0.9	er can	V _{CC} +0.5	10	bled interrupt occurs. The optionally be left running
V _{IH1} iq h	Input High Voltage (XTAL1, RST)	0.7 V _{CC}		V _{CC} +0.5	٧	.ioda.
	Output Low Voltage (Note 6)	teixe of		0.3	٧	I _{OL} = 100 μA (Note 1)
	(Ports 1, 2, and 3)	ONCETH	asa ab	0.45	٧	I _{OL} = 1.6 mA (Note 1)
antatiin	st chald (finalish on 7 throat) and (i)	SOMO AND	cillator	mod 0.1he or	V	I _{OL} = 3.5 mA (Notes 1, 4)
VOL1	Output Low Voltage (Note 6)	testing at	Power muchin	0.3	٧	I _{OL} = 200 μA (Note 1)
	(Port 0, ALE, PSEN) and funding	87C51FB	-hav tie	0.45	V	I _{OL} = 3.2 mA (Note 1)
OUZUVIII EL SIGI	or obom Series of the State of the fi	by:	4	1.0	٧	$I_{OL} = 7.0 \text{ mA (Note 1, 4)}$
V _{OH}	Output High Voltage wol 3 (Ports 1, 2, and 3)	V _{CC} -0.3	-хе пв	ware reset or	V	$I_{OH} = -10 \mu\text{A}$
		V _{CC} -0.7	- sprisris	n nom Power	٧	$I_{OH} = -30 \mu\text{A}$
		V _{CC} -1.5	s both	nterrupt allow	V	$I_{OH} = -60 \mu\text{A}$
V _{OH1}	Output High Voltage	V _{CC} -0.3	.000	DV HOLD THEST	٧	$I_{OH} = -200 \mu\text{A}$
ator cir-	(Port 0 in External Bus Mode, ALE, PSEN)	V _{CC} -0.7	-X8 10	own the reset	V	$I_{OH} = -3.2 \text{mA}$
in this to drive	is active, write the order in a manufator or test CPU can be used	V _{CC} -1.5	ust be	n bas level g	V	$I_{OH} = -7.0 \text{ mA (Note 4)}$
n a nogr	Logical 0 Input Current (Ports 1, 2, and 3)	the circuit, mal reset i	halasi	-50	μΑ	V _{IN} = 0.45V
ILI	Input leakage Current (Port 0)	lins during id	l lemetx	il ed进10min	μΑ	$0 < V_{IN} < V_{CC} - 0.3V$
LITETRO	Input Leakage Current (EA)	PORTO	PSEN	TBD	μΑ	0 < V _{IN} < V _{CC} -0.3V
ITL sts(Logical 1 to 0 Transition Current (Ports 1, 2, and 3)	Date	·	-650	μΑ	V _{IN} = 2V
RRST	RST Pulldown Resistor	40		225	ΚΩ	lole bxte
CIO	Pin Capacitance	Data	0	10	pF	@1 MHz, 25°C
ICC	Power Supply Current: Running at 12 MHz (Figure 5)	TOOL OF THE PARTY	20	40	mA	(Note 3)
and the	Idle Mode at 12 MHz (Figure 5) Power Down Mode	manus un luter	15	".M810008 ed	mA μA	ion Note AP-252, "Designing

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Vols of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operations. In applications where capacitance loading exceeds 100 pFs, the noise pulse on the ALE signal may exceed 0.8V. In these cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an Address Latch with a Schmitt Trigger Strobe input.

2. Capacitive loading on Ports 0 and 2 cause the VOH on ALE and PSEN to drop below the 0.9 VCC specification when the 3. See Figures 6–9 for test conditions, Minimum V_{CC} for Power Down is 2V. address lines are stabilizing.

4. Care must be taken not to exceed the maximum allowable power dissipation.

5. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

6. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

10mA

Maximum IOL per port pin:

Maximum IOL per 8-bit port-

Port 0: 26 mA

Ports 1, 2 and 3: 15 mA 71 mA

Maximum total IOL for all output pins: If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 6. I_{CC} Test Condition, Active Mode

Figure 5. I_{CC} vs Frequency

Figure 7. I_{CC} Test Condition Idle Mode

Figure 8. I_{CC} Test Condition, Power Down Mode. $V_{CC} = 2.0V \text{ to 5.5V}.$

Figure 9. Clock Signal Waveform for ICC Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for. Care must be asken not to exceed the meximum. Z. Float "Z. Float" see not quaranteed. The values listed are at room ten

A: Address

C: Clock

D: Input Data

H: Logic level HIGH

I: Instruction (program memory contents)

L: Logic level LOW, or ALE

and 3. The noise is due to external bus nan Q: Output Data ni anoitsnego and gninub anoitianent C

R: RD signal is ease eased in V8.0 become yard langua

pacitive loading on Ports 0 and 2 cause thiblist :V ALE

W: WR signal gnixilidate era eenil a

X: No longer a valid logic level

ewolici se befinil yllametre aFor example, itibno (inelanart-gon) at.

TAVLL = Time from Address Valid to ALE Low

TLLPL = Time from ALE Low to PSEN Low

A.C. CHARACTERISTICS ($T_A = 0$ °C to +70°C, $V_{CC} = 5V \pm 10$ %, $V_{SS} = 0V$, Load Capacitance for Port 0, ALE/PROG and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF)

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz (Oscillator	Variable	Units	
Symbol	raidiletei	Min	Max	Min	Max	Ach GE
1/TCLCL	Oscillator Frequency			0.5	16	MHz
TLHLL	ALE Pulse Width	127	12 1042 16 1415	2TCLCL-40	D MPE 4 MRE	ns
TAVLL	Address Valid to ALE Low	43	270663-24	TCLCL-40		ns
TLLAX	Address Hold After ALE Low	53		TCLCL-30	Mode	ns
TLLIV	ALE Low to Valid Instruction In		234	1.6 + 1.0	4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	53	Arr	TCLCL-30	MAX = 0.49 X FF	ns
TPLPH	PSEN Pulse Width	205		3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		145	super-ray oor	3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		0		ns
TPXIZ	Input Instruction Float After PSEN		59	T	TCLCL-25	ns
TAVIV	Address to Valid Instruction In		312	D 00V	5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float		10	-V 04	10	ns
TRLRH	RD Pulse Width	400	and	6TCLCL-100	1_	ns
TWLWH	WR Pulse Width	400		6TCLCL-100		ns
TRLDV	RD Low to Valid Data In		252	XTALL	5TCLCL-165	ns
TRHDX	Data Hold After RD	0		0		ns
TRHDZ	Data Float After RD		107		2TCLCL-60	ns
TLLDV	ALE Low to Valid Data In	agnio RA	517	b	8TCLCL-150	ns
TAVDV	Address to Valid Data In	- Pigure	585		9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address Valid to WR Low	203		4TCLCL-130		ns
TQVWX	Data Valid before WR	33	1.2 Ver 0.1	TCLCL-50		ns
TWHQX	Data Hold after WR	33	10HD1	TCLCL-50		ns
TQVWH	Data Valid to WR High	433		7TCLCL - 150		ns
TRLAZ	RD Low to Address Float	in Active and	n for loc Test	notavaW lang	ure 9. Olock S	ns
TWHLH	RD or WR High to ALE High	43	123	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL PORT TIMING - SHIFT REGISTER MODE

Test Conditions: TA = 0°C to +70°C; VCC = 5V ±10%; VSS = 0V; Load Capacitance = 80 pF

Symbol	Parameter	12 MHz C	scillator	Variable	Units	
Symbol	Parameter	Min	Max	Min	Max	Omto
TXLXL	Serial Port Clock Cycle Time	1	91 - VIII	12TCLCL		μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10TCLCL-133	N329	ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		VIVAT	0.1904	ns
TXHDV	Clock Rising Edge to Input Data Valid		700	X	10TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency 87C51FB 87C51FB-1 87C51FB-2	3.5 3.5 0.5	12 16 12	MHz
TCHCX	High Time	20	and the same of	ns
TCLCX	Low Time	20	deside Company (2000)	ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns

EXTERNAL CLOCK DRIVE WAVEFORM

A.C. TESTING INPUT

and 0.45V for a Logic "0". Timing measurements are made at VIH min for a Logic "1" and VIL max for a Logic "0".

EPROM CHARACTERISTICS

Table 2 shows the logic levels for programming the Program Memory, the Encryption Table, and the Lock Bits and for reading the signature bytes.

Table 2. EPROM Programming Mode

IOL/IOH ≥ ±20 mA.

Mode	RST	PSEN	ALE/ PROG	EA/ Vpp	P2.7	P2.6	P3.6	P3.7
Program Code Data	1	0	0*	V _{PP}	1	0	1	1
Verify Code Data	1	0	1	1	0	0	1	1
Program Encryption Table Use Addresses 0–1FH	Verific	ms0gor	dun*0	V _{PP}	MTghim	ms0go	9 00 109	l-olofus
Program Lock x=1 Bits (LBx) x=2	e ort-chip	tt booms	o 0*louin	V _{PP}	ntink for	pgiA 1 мтg en e i lt to	iminate of the series	1 1
Read Signature	programm	0 0	0 1 B bril	(VIS of	0	0	0	0

NOTES:

"1" = Valid high for that pin

"0" = Valid low for that pin "VPP" = +12.75V ±0.25V | 10 lement 3 .0 no 9 no 100

* ALE/PROG is pulsed low for 100 μs for programming. (Quick-Pulse ProgrammingTM)

PROGRAMMING THE EPROM

To be programmed, the part must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal EPROM locations.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0 - P2.5 of Port 2, while the code byte to be programmed into that location is applied to Port 0. The other Port 2 and 3 pins, RST, PSEN, and EA/VPP should be held at the "Program" levels indicated in Table 2. ALE/PROG is pulsed low to program the code byte into the addressed EPROM location. The setup is shown in Figure 10.

Normally EA/VPP is held at logic high until just before ALE/PROG is to be pulsed. Then EA/Vpp is raised to VPP, ALE/PROG is pulsed low, and then EA/VPP is returned to a valid high voltage. The voltage on the EA/Vpp pin must be at the valid EA/Vpp high level before a verify is attempted. Waveforms and detailed timing specifications are shown in later sections of this data sheet. and fand privileged vd all

Note that the EA/VPP pin must not be allowed to go above the maximum specified VPP level for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The V_{PP} source should be well regulated and free of glitches.

Figure 10. Programming the EPROM

Quick-Pulse Programming™ Algorithm

The 87C51FB can be programmed using the Quick-Pulse ProgrammingTM Algorithm for microcontrollers. The features of the new programming method are a lower Vpp (12.75V as compared to 21V) and a shorter programming pulse. It is possible to program the entire 16K Bytes of EPROM memory in less than 50 seconds with this algorithm!

To program the part using the new algorithm, VPP must be 12.75V ±0.25V. ALE/PROG is pulsed low for 100 µs, 25 times as shown in Figure 11. Then, the byte just programmed may be verified. After programming, the entire array should be verified. The Program Lock features are programmed using the same method, but with the setup as shown in Table 2. The only difference in programming Program Lock features is that the Program Lock features cannot be directly verified. Instead, verification of programming is by observing that their features are enabled.

Program Verification

If the Program Lock Bits have not been programmed, the on-chip Program Memory can be read out for verification purposes, if desired, either during or after the programming operation. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0 - P2.5. The other pins should be held at the "Verify" levels indicated in Table 2. The contents of the addressed locations will come out on Port 0. External pullups are required on Port 0 for this operation. as not not well bestug at 5079 VELLA

If the Encryption Array in the EPROM has been programmed, the data present at Port 0 will be Code Data XNOR Encryption Data. The user must know the Encryption Array contents to manually "unencrypt" the data during verify.

The setup, which is shown in Figure 12, is the same as for programming the EPROM except that pin P2.7 is held at a logic low, or may be used as an activelow read strobe. I tent of the beams agond ed of styd

Indicated in Table 2. ALE/PROG is pulsed low to

Figure 12. Verifying the EPROM		
MOVC instructions executed from external program memory, are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.	U	Q.
Same as above, but Verify is also disabled		9
Reserved for Future Definition	9	U

EPROM Program Lock

The two-level Program Lock system consists of two Program Lock bits and a 32 byte Encryption Array which are used to protect the program memory against software piracy.

Encryption Array

Within the EPROM array are 32 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 5 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encrypted Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in it's original, unmodified form.

Program Lock Bits

Also included in the EPROM Program Lock scheme are two Program Lock Bits which are programmed as shown in Table 2.

Table 3 outlines the features of programming the Lock Bits.

Erasing the EPROM also erases the Encryption Array and the Program Lock Bits, returning the part to full functionality.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values returned are:

(030H) = 89H indicates manufacture by Intel (031H) = 5FH indicates 87C51FB

Erasure Characteristics

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in roomlevel fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves all the EPROM Cells in a 1's state.

Table 3. Program Lock Bits and their Features

Program Lock Bits LB1 LB2		Logic Enabled
U	U	No Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array.)
Р	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.
Р	Р	Same as above, but Verify is also disabled
U	Р	Reserved for Future Definition

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS THEMS ATAC

 $(T_A = 21^{\circ}\text{C to } 27^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 0.25\text{V}; V_{SS} = 0\text{V})$

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

Symbol	Parameter	Min	beMax asw e	Units
V _{PP}	Programming Supply Voltage	12.5	w ebo 13.0 ob 104	Edt yom po
lpp	Programming Supply Current	oded to the ABSC	25W /1150 1150	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG Low	48TCLCL	it nislaxe at bebbs	Note 5 was
TGHAX	Address Hold after PROG	48TCLCL	improved for:	Timing speci
TDVGL	Data Setup to PROG Low	0 48TCLCL 38	anged from TCLCL	TLLAX ch
TGHDX	Data Hold after PROG	48TCLCL	inged from TOLCL	TLLPL civil
TEHSH	P2.7 (ENABLE) High to V _{PP}	48TCLCL	anged from FOLO	D ZUMRT
TSHGL	V _{PP} Setup to PROG Low	10	behbe se	μs
TGHSL	V _{PP} Hold after PROG	10,00 284	viemmus noisiver	
TGLGH	PROG Width	90	110	μs
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	
TGHGL	PROG High to PROG Low	10		μs

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

DATA SHEET REVISION SUMMARY OF A OFFICE OF A DRIBMAR SOORS MORSE

The following are the key differences between this and the -001 version of the 87C51FB data sheet:

- 1. Title changed to include -1 and -2 version of the device.
- 2. PLCC pin connection diagram was added. 4 TOATMOO-MOTAMEO MEDICAL CECUNAVOA
- 3. Package table was added.
- 4. Exit from power down mode was clarified.
- 5. Maximum IOI per I/O pin was added to the ABSOLUTE MAXIMUM RATING.
- 6. Note 6 was added to explain the maximum safe current spec.
- 7. Typical values for ICC table were added.
- 8. Note 5 was added to explain the test conditions for typical values. The second seco
- 9. Timing specs improved for:

TLLAX changed from TCLCL-35 to TCLCL-30
TLLPL changed from TCLCL-40 to TCLCL-30
TRHDZ changed from TCLCL-70 to TCLCL-60
TQVWX changed from TCLCL-60 to TCLCL-50
TOVWH was added

10. Data sheet revision summary was added

10. Data snee		
	06	
		Low to Data Valid
		at after ENABLE

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

EV80C51FA EVALUATION BOARD

LOW COST CODE EVALUATION TOOL

Intel's EV80C51FA evaluation board provides a hardware environment for code execution and software debugging at a relatively low cost. The board features the 80C51FA single chip, CHMOS*, 8-bit microcontroller, the newest member of the industry standard 8051 family. The board allows the user to take full advantage of the power of the 8051. The EV80C51FA provides up to 16 MHz execution of a user's code. Plus, its memory (ROMsim) can be reconfigured to match the user's planned memory system, allowing for exact analysis of code execution speeds in a particular application.

Popular features such as single-step program execution and sixteen software breakpoints are standard on the EV80C51FA. Intel provides a complete code development environment using assembly language (ASM-51) as well as Intel's high-level language PL/M-51 to accelerate development schedules.

The evaluation board is hosted on an IBM PC** or BIOS-compatible clone, already a standard development solution in most of today's engineering environments. The source code for the on-board monitor (written in ASM-51) is public domain. The program is about 2K bytes and can be easily modified to be included in the user's target hardware. In this way, the provided PC host software can be used throughout the development

EV80C51FA FEATURES

- Up to 16 MHz Execution Speed
- 8K Bytes of ROMsim
- Totally CMOS, low power board
- Concurrent Interrogation of Memory and Registers
- · Sixteen Software Breakpoints
- · Program Step Mode
- · High-Level Language Support
- RS-232-C Communication Link

FULL SPEED EXECUTION

The EV80C51FA executes the user's code from on-board ROMsim at up to 16 MHz. By changing crystals on the 80C51FA any slower execution speed can be evaluated. However, the board's host interface timing is affected by this crystal change, and therefore the monitor code requires minor modifications.

8K BYTES OF ROMSIM

The board comes with 8K bytes of SRAM to be used as ROMsim for the user's code and as data memory if needed.

"CHMUS is a patenticul inter process.
"BIBM PC, XT, AT and DOS are registered trademarks of International Business Machines Corporation.
Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel

MARCH.

© Intel Corporation 1988

Order Number: 270592-001

EV80C51FA EVALUATION BOARD

TOTALLY CMOS BOARD

The EV80C51FA board is built totally with CMOS components. Its power consumption is therefore very low, requiring 5 volts at only 120 mA. The board also requires +/- 12 volts at 0.1 mA.

CONCURRENT INTEROGATION OF MEMORY AND REGISTERS

The monitor for the EV80C51FA allows the user to read and modify internal registers and external memory while the user's code is running in the board.

SIXTEEN SOFTWARE **BREAKPOINTS**

There are sixteen breakpoints available which automatically substitute an LCALL instruction for a user's instruction at the breakpoint location. The substitution occurs when execution is started. If the code is halted or a breakpoint is reached, the user's code is restored into the ROMsim.

PROGRAM STEP MODE

The stepping mode redirects the external interrupt 0 vector for use by the monitor. All other interrupts are available to the user, and will function as normal. External interrupt 0 is returned to the user after stepping.

HIGH LEVEL LANGUAGE **SUPPORT**

The host software for the EV80C51FA board is able to load absolute object code generated by ASM-51, PL/M-51 or RL-51, which are available from Intel.

RS-232-C COMMUNICATION LINK

The EV80C51FA communicates with the host using the on chip UART of the 80C51FA. Timer 2 is used as the baud-rate generator to reach 9600 baud with a 16 MHz crystal. Timer 1 could be used as the baud-rate generator if a different crystal frequency is selected. This is outlined in the supplied User's Manual.

PERSONAL COMPUTER REOUIREMENTS

The EV80C51FA Evaluation Board is hosted on an IBM PC**, XT**, AT** or BIOS-compatible clone. The PC must meet the following minimum requirements:

- 512K Bytes of Memory
- One 360K Byte floppy Disk Drive
 PC DOS** 3.1 or Later
- · A Serial Port (COM1 or COM2) at 9600 Baud
- · A text editor such as AEDIT

However, the board's host interface firning is affected by this crystal change, and

Printed in USA-TP270/0388/10K-SM

EV80C51FB EVALUATION BOARD

LOW COST CODE EVALUATION TOOL

Intel's EV80C51FB evaluation board provides a hardware environment for code execution and software debugging at a relatively low cost. The board features the 80C51FB or 80C51FA, single chip, CHMOS*, 8-bit microcontrollers, the newest members of the industry standard 8051 family. The board allows the user to take full advantage of the power of the 8051. The EV80C51FB provides up to 16 MHz execution of a user's code. Plus, its memory (ROMsim) can be reconfigured to match the user's planned memory system, allowing for exact analysis of code execution speeds in a particular and the second system as the second system as

Popular features such as a single line assembler/disassembler, single-step program execution and sixteen software breakpoints are standard on the EV80C51FB. Intel provides a complete code development environment using assembly language (ASM-51) as well as Intel's high-level language PL/M-51 to accelerate development schedules.

The evaluation board is hosted on an IBM PC** or BIOS-compatible clone, already a standard development solution in most of today's engineering environments. The source code for the on-board monitor (written in ASM-51) is public domain. The program is about 3K bytes and can be easily modified to be included in the user's target hardware. In this way, the provided PC host software can be used throughout the development and STIRDORVE and compatible clone. The PC must meet the following minimum requirements # A Serial Port (COM1 or CO # 512K Bytes of Memory

EV80C51FB FEATURES

- Up to 16 MHz Execution Speed Sixteen Software Breakpoints
- 16K Bytes of ROMsim
- Flexible Chip-Select Controller Totally CMOS, low power board
- Concurrent Interrogation of Memory and Registers
- Cone 360K Byte Roppy Disk Di
- Program Step Mode
 - High-Level Language Support
 - Single Line Assembler/Disassembler
 - RS-232-C Communication Link

FULL SPEED EXECUTION

The EV80C51FB executes the user's code from on-board ROMsim at up to 16 MHz. By changing crystals on the 80C51FB any slower execution speed can be evaluated. The board's host interface timing is not affected by this crystal change.

16K BYTES OF ROMSIM

The board comes with 16K bytes of SRAM to be used as ROMsim for the user's code and as data memory if needed. SKNO

*CHMOS is a patented Intel process.

**IBM PC, XT, AT and DOS are registered trademarks of International Business Machines Corporation.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel.

© Intel Corporation 1988

ORDER NUMBER: 270618-001

FLEXIBLE MEMORY DECODING

By changing the Programable Logic Device (PLD) on the board, the memory on the board can be made to look like the memory system planned for the user's hardware application. The PLD controls the chip-select inputs on the board with 64 byte boundaries of resolution.

TOTALLY CMOS BOARD

The EV80C51FB board is built totally with CMOS components. Its power consumption is therefore very low, requiring 5 volts at only 225 mA. If the on board LED's are disabled, the current drops to only 80 mA. The board also requires +/- 12 volts at 10 mA.

CONCURRENT INTEROGATION OF MEMORY AND REGISTERS

The monitor for the EV80C51FB allows the user to read and modify internal registers and external memory while the user's code is running in the board.

SIXTEEN SOFTWARE BREAKPOINTS

There are sixteen breakpoints available which automatically substitute an LCALL instruction for a user's instruction at the breakpoint location. The substitution occurs when execution is started. If the code is halted or a breakpoint is reached, the user's code is restored into the ROMsim.

PROGRAM STEP MODE

The stepping mode redirects the external interrupt 0 vector for use by the monitor. All other interrupts are available to the user, and will function as normal. External interrupt 0 80C51FB or 80C51FA, single chip, CHMCS*, 8-bit microcontrollers. Eniquestry standard 8051 family. The board allows the previous to the industry standard 8051 family. The board allows the previous to the controllers.

HIGH LEVEL LANGUAGE SUPPORT at of the septions 84 is 2008 of 1 1008 of 1 to reway of

The host software for the EV80C51FB board is able to load absolute object code generated by ASM-51, PL/M-51 or RL-51, which are available from Intel.

SINGLE LINE ASSEMBLER/DISASSEMBLER

The host has a Single Line Assembler, and a Disassembler, to simplify modification and provides a complete code development environment using as examination of code loaded on the board.

RS-232-C COMMUNICATION LINK State loops of 12-M 1/9 spatigrate level-daily a tested on the way

The EV80C51FB communicates with the host using an Intel 82510 UART provided on board. This frees the on-chip UART of the 80C51FB or 80C51FA for the user's application.

PERSONAL COMPUTER REQUIREMENTS

The EV80C51FB Evaluation Board is hosted on an IBM PC**, XT**, AT** or BIOS compatible clone. The PC must meet the following minimum requirements:

- 512K Bytes of Memory
- One 360K Byte floppy Disk Drive
- PC DOS** 3.1 or Later ASM-51 or PL/M-51
- A Serial Port (COM1 or COM2) at
 - 9600 Baud

 - A text editor such as AEDIT

8XC51GA

10

HARDWARE DESCRIPTION OF THE 8XC51GA

INTRODUCTION

The 8XC51GA is an 8-bit control-oriented microcontroller based on the 8051 architecture. The 8XC51GA is an enhanced version of the 8XC51BH and incorporates many new features.

- 8-Channel 8-Bit A/D Converter
- 16-Bit Watchdog Timer
- Oscillator Fail Detect Logic
- Half-Duplex, Synchronous Serial Interface
- 7 Interrupt Sources
- 400 mV Hysteresis on Ports 1 and 3 Inputs

Other features available on the 8XC51GA which are also on the 8XC51BH include:

- 4 Kbytes of EPROM (87C51GA) or ROM (83C51GA) Program Memory
- 128 Bytes of Data RAM
- Idle and Power Down Modes
- Full-Duplex, Asynchronous Serial Interface
- Two 16-Bit Programmable Timer/Counters
- 32 Programmable I/O Lines

The 8XC51GA uses the standard 8051 instruction set and is compatible with existing 80C51 family of products. The 83C51GA is the factory masked ROM device; the 80C51GA is the ROMless device; and the 87C51GA is the EPROM device. The designation, 8XC51GA, refers to any of the three GA devices.

It is assumed that the reader is familiar with the 8051 architecture. The following sections discuss only the differences between the 8XC51GA and the standard 80C51. For more detailed information on the 8051,

consult the "Hardware Description of the 8051, 8052 and 80C51" chapter in the Intel Embedded Controller Handbook.

OVERVIEW OF THE A/D CONVERTER

The 8XC51GA A/D Converter is an 8-bit device with 8 inputs in the 48- and 52-pin packages. It features user selectable internal Sample and Hold and conversion speed control circuitry. The AD Converter operates in both normal and idle modes with a nominal conversion speed of 22 μs (130 states) at 12 MHz and an accuracy of ± 1 LSB. Separate voltage reference (V_REF) and analog ground (AGND) signals are bonded out to external pins. The 4 low-order analog inputs are multiplexed with the 4 low-order Port 1 inputs.

A/D Special Function Registers

There are two Special Function Registers associated with the A/D operation. Writing to the A/D control register ADCON controls the start of the A/D Conversion, the enabling or disabling of the internal sample and hold, the number of states taken for conversion, and the analog input channel selection. Reading the ADCON register yields the current status of the A/D converter operation.

The A/D conversion result is stored in the result register, ADRES, a read-only register which is cleared before the start of any conversion.

The A/D Control Register, ADCON, contains the bits necessary for controlling the A/D conversion process.

HARDWARE DESCRIPTION OF THE 8XC51GA

Bit	7	6	917508	BEADE	AVIOR	1/1-2	1	0
DCON	X	X	SHD	RCS	GO	CH2	CH1	CH0
Write)	Address	s = 97H			Reset V	alue = XX0	H00000	
f the 8051.		s = 97H Addressable	nsuit the "Te		Reset V	alue = XX0	00000H	

Symbol	Position	The 8XC51GA is an 8-bit conolinated microcon- Fandbook.
	ADCON.7	roller based on the 8051 architecture. The 8XC51GA best toN
CONVERTER	ADCON.6	rates many new features. best for the best f
SHD*	ADCON.5	Sample-and-Hold Bit. Writing a 0 enables S/H. Writing a 1 disables S/H.
iold at*RCS*ta bloi Converter operates in nominal conversion	ADCON.4 no	Reduce Conversion States bit. Writing a 1 reduces the number of states for conversion. Writing a 0 causes a normal number of conversion states.
once (VR QQ and analymost out to external	ACON.3 seps (ACID) signals are b	Start A/D Conversion Bit. Writing a 1 starts the A/D conversion process. Writing a 0 means conversion process not started (or cancelled).
CH2	ADCON.2	High-order bit for analog input channel selection. Value = 4 MOS TO (AD12018) MOS SERVICE SERVICE AND SERVICE SERVICE AND SERVICE SERVICE SERVICE AND SERVICE SERVIC
CH1191elg	ADCON.1 Islan	Mid-order bit for analog input channel selection. Value = 2
CH0 add of	ADCON.0	Low-order bit for analog input channel selection. Value = 1

*See SHD/RLS/States Chart
Figure 1. ADCON: A/D Control Register

Reading the ADCON register yields the complete status of the A/D conversion process as follows:

Bit	7	6	5	4-501	fingly of p	sisting 80C51	atible with e	and o comp
ADCON	is st X ed in	AIF	SHD	RCS	STA	CH2 on	a CH1	8 CHO
(Read)		s = 97H	fore the start of	gon,	Reset	Value = XX0	00000Н	SYCSIGA IS

Symbol 7000	A Position 10	rebitecture. The following control only the mecessity in
	ADCON.7	ifferences between the 8XC51GA and the standard best toN
AIF	ADCON.6	A/D Interrupt Flag: Set to a 1 at the end of a conversion. A 0 indicates idle or conversion in progress.
SHD	ADCON.5	Sample/Hold Disabled status bit. A 1 means disabled. A 0 means enabled.
RCS	ADCON.4	Reduced Conversion States status bit. A 1 means reduced number of states. A 0 indicates normal number of states.
STA	ADCON.3	Conversion Status bit. A 1 indicates A/D conversion in progress. A 0 means A/D Idle.
CH2	ADCON.2	High-order input channel address bit.
CH1	ADCON.1	Mid-order input channel address bit.
CH0	ADCON.0	Low-order input channel address bit.

Figure 2. ADCON: A/D Status Register

The A/D Result register ADRES is a binary-coded result of the last A/D conversion and ranges from 00 to FF Hex.

TOM game Bit de	cannio be dis	1 960M	TWO STATES	4	al logoneu	Das 12 0 1	Oliwipe WE	s our Olda
ADRES	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
(Read Only)	MSB	erated reset	a WDT gene	bas (e	Lower Byt Byte). The f	hdog Timer ner Upner l	TLB (Wate	LSB
	Address Not Bit A	= 84H Addressabl	е		Reset V	/alue = 011	111111B	

Writing to the read-only ADRES register should be avoided.

A/D Conversion Speed Control

The purpose of a sample and hold capacitor is to minimize the effect of external noise by isolating the signal input from the signal source during an A/D conversion. Unfortunately, capacitor leakage can lead to inaccuracies in the A/D conversion at very low clock speeds. For this reason, the sample and hold capacitor can be taken out of the circuit under program control and the number of cycles needed for the conversion can be reduced under program control. Thus, the conversion time for designs using slow clocks is reduced. Note that when running at full speed, both the sample and hold capacitors and the normal number of states should be enabled for the conversion. The following table indicates the number of states needed for a conversion with all possible combinations of the SHD (Sample-and-Hold Disabled) and RCS (Reduced Clock States) bits in the ADCON register.

SHD	RCS	Number of States
0	Q0XXX0	130 (22 μs @ 12 MHz)
0	1	75
1	0	235
1	1	131

A/D Interrupt

The A/D interrupt flag, AIF, is set following each A/D conversion cycle. Bit IE.6 of the 8XC51GA Interrupt Enable Register and Bit IP.6 of the Interrupt Priority Register are assigned to the A/D interrupt. If the A/D interrupt is enabled by IE.6, then IP.6 is examined before service to determine the priority level. AIF is cleared when the system vectors to the interrupt service routine address 0033H. For further information on the A/D interrupt, refer to the "Interrupts" section.

Analog Input Channels

poblish will ease o H13 one H31 consuper of The input pins for the four low-order analog inputs, ACH0-3, are shared with the four low-order digital inputs, P1.0-3. This restricts P1.0-3 as inputs only; they cannot be used as outputs. The four high-order analog inputs, ACH4-7 are not shared and exist as discrete inputs in the 48-pin and 52-pin packages. Note that the high-order four bits of Port 1, P1.4-7, can be used as normal outputs.

PORTS

Except for the shared input portion of Port 1 all the other port functions are essentially the same as in the 80C51 with the following enhancements:

P1.4-P1.7, Port 2, and Port 3 in the 8XC51GA reset to output high asynchronously in order to guarantee known states even in the absence of an active internal clock. (The 80C51 ports reset synchronously which requires that the clock be running). In the 8XC51GA, Port 0 is floated asynchronously at reset. If output highs are required, then external pull-up resistors should be installed on Port 0. P1.0-P1.3 are high-impedance (floating), input-only type inputs.

For improved noise margin, Ports 1 and 3 have Schmitt trigger inputs with minimum hysteresis of 400 mV. TTL compatibility is maintained.

WATCHDOG TIMER (WDT)

The Watchdog Timer (WDT) provides the ability to recover from hardware or software malfunctions by forcing the part into reset. The WDT is a 16-bit counter which must be cleared by software before the counter reaches the maximum value of FFFFH. Otherwise, the WDT generates an internal reset signal. The WDT reset signal is logically ORed with the Oscillator Fail Detect reset signal to generate an asynchronous reset which has a 4 machine cycle duration. The WDT operates in both normal and idle modes. The counter is cleared and initiated by reset or a software clear. A software clear consists of writing the sequence 1EH and E1H to the Watchdog Timer Control Register, WDTCON.

Three Special Function Registers are allocated for the WDT. The software WDT clear sequence of 1EH and E1H is written to WDTCON, a write-only register. The other two SFRs are allocated to the read-only timer registers, WDTLB (Watchdog Timer Lower Byte) and WDTUB (Watchdog Timer Upper Byte). The following chart indicates the SFR addresses of these three registers:

The Watchdog Timer is automatically disabled during Power Down Mode. It cannot be disabled during Normal and Idle Modes and is active anytime the oscillator is running. The external RESET pin is not driven upon a WDT generated reset.

SFR Name	Address	PolanA so bluons to Function LA vino-best and or gain
order NOOTGW puts four low-order digital	pins for HOA four lover shared with the	Writing sequence 1EH and E1H clears the watchdog timer registers to 0s.
WDTUB	96H	Reading this address yields the contents of the upper byte of the WDT.
52-pin piBLTOW Note Port I, PLA-7, can be	uts in tl H88-pin and th-order four bits of	Reading this address yields the contents of the lower byte of the WDT.

OSCILLATOR FAIL DETECT (OFD)

The Oscillator Fail Detect Circuit triggers a reset (for 4 machine cycles) if the oscillator frequency is below the trigger frequency (range of 20 KHz to 400 KHz). The reset is removed when the oscillator frequency is higher than the trigger frequency. The OFD can be disabled by software by writing the sequence E1H and 1EH to the OFDCON register. Writing anything to OFDCON except the disable sequence, E1H and 1EH, will have no effect.

Before going into the Power Down Mode, the OFD must be disabled or the OFD will force the 8XC51GA out of Power Down. Once the OFD has been disabled, it can only be enabled again by a RESET, which is a necessary step to come out of the Power Down Mode. The OFD cannot be enabled under software control.

SERIAL EXPANSION PORT (SEP)

In addition to the existing serial port of the 8XC51, a half-duplex synchronous serial interface is provided in the 8XC51GA. Two pins, SEPIO and SEPCLK, are dedicated for the interface. The SEPIO pin is used for transmission or reception of 8-bit packets of serial data, and the SEPCLK outputs the synchronizing clock

signal. Four clock frequencies and four serial interface timing modes are provided through the SEP Control Register.

Three SFRs are used for the Serial Expansion Port. The SEPCON register controls the operation of the SEP while the SEPSTA register returns the status of the SEP operation. The data is exchanged through the SEPDAT register.

HARDWARE DESCRIPTION OF THE 8XC51GA

Symbol	Position			Function		
SEPIP SEPIE	SEPCON.7	Not Used	X	X	Χ	SEPSTA
- 800	SEPCON.6	Not Used		= F7H	Address	Read/Write)
SEPE	SEPCON.5	SEP Enab		Enable, 0 = D IO and SEPCLI		
SEPREN	SEPCON.4	SEP Rece	many and some many or the second	ble: 1 = Enabl 0 = Disab		Symbol
CLKP	SEPCON.3	Clock Pol		= Idle Polarity i = Idle Polarity i		
CLKPH Designed A ethi	SEPCON.2: t = 1	Clock Pha	First	Start Data Sar t SEPCLK Edge Start Data Sar	Э	
	= 1: SEPDAT Read/W	SEPFRO		e Half Phase L		SEPFRD
SEPS1	SEPCON.1	See SEPS	31/SEPS	S0 Chart, Figure	e 4	
SEPS0	SEPCON.0	See SEPS	31/SEPS	S0 Chart, Figure	e 4	-1(438

Figure 3. SEPCON: Serial Expansion Port Control Register

SEPS1	SEPS0	XTAL Divided by	Freq. (@12 MHz)	
0	0	12	1.000 MHz	
0	1	24	500 KHz	
1	0	48	250 KHz	
1	1	96	125 KHz	

Figure 4. User Selectable Clock Frequencies

Reset disables the SEP by resetting the enable bit, SEPE. When SEPE is set by the software, the SEPCLK will assume the idle state controlled by the CLKP bit. If CLKP = 0 the idle state of the SEPCLK clock

output is low, and if CLKP = 1 the idle state of the SEPCLK output is high.

The CLKPH bit controls the point in time at which the input data is sampled. If CLKPH = 0 the data is sampled for 8 cycles starting from the first SEPCLK transition edge. If CLKPH = 1 the data is sampled for 8 cycles starting from the transition edge one-half phase later from the first SEPCLK transition edge. The four combinations of the CLKP and CLKPH bits allow four different serial interface timings as shown in the following diagram. No matter which timing is chosen, the data will always be transmitted a half cycle ahead of the sampling edge. (See Figure 5.)

Figure 5. SEP Clock Waveforms

Bit	7	Fu@otton	5	4	3 110	inso 2	1 10	0Symb
SEPSTA	X	X	X be	SEPFWR	SEPFRD	SEPIF	SEPIP	SEPIE
(Read/Write)	Address	= F7H	Not Used		Reset Value = XXX00000B			
Not Bit Addressable					210			

Symbol	Position Position		Function	
	SEPSTA.7	Reserved		
wo.	SEPSTA.6	Reserved	SEPCON:3	CLKP
The state of the s	SEPSTA.5	Reserved		
SEPFWR NO OR	SEPSTA.4	SEPFWR	= 1: SEPDAT Read/W During Data Trans	PRODUCE OF THE PROPERTY OF THE
SEPFRD	SEPSTA.3		= 1: SEPDAT Read/Wr During Data Recep	
SEPIF	SEPSTA.2		1: Interrupt Flag Set upo of Data Transmission 0: Interrupt Flag Cleare	or Reception
of the SEPIP of the	SEPSTA.1 of a supplement is bigin.	SEPIP =	1: SEP Interrupt Priority 0: SEP Interrupt Priority	is High
ent in the data is sam-	SEPSTA.0		1: SEP Interrupt Enable 0: SEP Interrupt Disable	

Figure 6. SEPSTA: Serial Expansion Port Status Register

HARDWARE DESCRIPTION OF THE 8XC51GA

Transmitting

The SEPIO pin will float until transmit is initiated by writing to the SEPDAT register. Note that the Receive Enable Bit SEPREN must be cleared before transmitting. The data byte that is written to SEPDAT will be shifted out through the SEPIO pin, MSB first. At the same time, the synchronous clock SEPCLK will be output (8 cycles). If an attempt to read or write is made to the SEPDAT register during a transmit operation the Fault Write Bit SEPFWR will be set. The transmit operation will still be completed, and the SEPIF bit will be set. SEPFWR can be cleared by software or by a reset.

Receiving

Data reception is initiated by setting the SEPREN bit in the SEPCON SFR. The SEPCLK outputs the synchronizing clock, and the data received on the SEPIO pin is shifted into SEPDAT. The SEPREN bit is automatically cleared after 8 bits have been received. The Read Fault bit SEPFRD is set when a read or write to the SEPDAT register is attempted during a receive operation. The data reception will be completed and the false operation will be ignored. The SFRFRD bit can be cleared by software or a reset. Note that the input data must be stable during the SEPCLK pulse train. The source of the transmitted data during a receive operation has no control over the clock.

SEP Interrupt

At the end of either a transmission or reception, the SEP interrupt flag SEPIF is set, and if the SEPIE bit equals a 1 then an interrupt is generated. The SEPIF bit can be set regardless of the state of the SEPIE bit, but SEPIF must be cleared by software.

INTERRUPTS

The A/D interrupt and the Serial Expansion Port interrupt have been added to the five standard 8XC51 interrupts for a total of seven. When an A/D conversion is completed, the A/D interrupt flag AIF is set. (AIF is located in the ADCON register). When the A/D interrupt vectors to address 0033H, this flag is cleared by hardware. The A/D interrupt can be enabled or disabled by the control bit EAI in the IE register (Figure 7). The priority level can be set by the control bit PAI in the IP register (Figure 8).

At the end of data transmission or reception in the Serial Expansion Port, the SEP interrupt flag SEPIF is set. The SEP interrupt is enabled or disabled by the SEPIE bit in the SEPSTA register. The priority level can be set by the SEPIP bit in the SEPSTA register.

	20111103	Tenentitine 1932
Symbol	Position	Function
	and of enter a transmission of the an interrupt is set, I then an interrupt is gen et regardless of the state	EA = 1: Interrupts Enabled by the Individual
EAI .ST	aust be classed by softy	EAI = 0: A/D Interrupt Disabled EAI = 1: A/D Interrupt Enabled if EA = 1
X	IE.5:T9UR	Reserved for 8052 Timer 2 Interrupt
tandard 8XC51 inter-	o interrup t al d the Serial	
at His set. (Aiff is	a total of Sayen. When ad, the A/D interrupt fa	
un be enabled or dis-	tors to ac. 31s 0033H, to The A/D interrupt the control bit EA1 in	EX1 = 1: External Interrupt 1 Enabled
ET0	register (LaJure 8).	ET0 = 0: Timer 0 Interrupt Disabled Branch School Branch B
lisabled by the SEPIE	sion Port 0.31 SEP into hinterrupt is enabled or of SEPSIA register. The	'/ FA

ialse operation will be ignored. The State Register.

be cleared by software or a reset. Note that the input
data must be stable during the SEPCLK pulse train.

Interrupt Priority Register (IP)

to Hachdog Timer,	O Converte	A si6 ,sbp	M of 5 gni	4 1011	iner & vare	owi c2ni ba	bivib 1 1s at	ne O errup
routiny and also es-	X	PAI	X	PS	PT1	PX1	PT0	PX0
(Read/Write)	0.10	s = B8H ressable	During Pov	n each	Reset \	/alue = X0	X00000B	wo groups,

Symbol	Position	T ON Fun	ction	
fore going iXo Power	ed boldsei 1P.7 teum tos	Reserved	Vector	tourreint
PAI	IP.6 IP.6 is stop	A/D Interrupt Priority Bit	Address	Source
	ring the part out of Por	PAI = 1: High Priority		
Y	IP.5	PAI = 0: Low Priority Reserved for 8052 Timer	2 Interrunt	ORBMIT
Xnareio	THE R. P. LEWIS CO., LANSING MICH. 49 LANSING.	0398 3	Heeco	OW
Sq s layout of the Special	P.4 Swing table indicates the	Serial Port Interrupt Priori	ty Bit He roo	INT1
e addresses and initial	Registers locluding (i)	PS = 0: Low Priority		
PT1	IP.3	Timer 1 Interrupt Priority	Bit	Expansion Port
s are occupied. Unoc-	st not all of the address	PT1 = 1: High Priority		
	iddresses are not impl		HESON	Serial Port
will have no effect.	data, and write accesses twee should not write	PX1 = 1: High Priority	addresses for	lote that the vector terrupts are backw
in that case, the reset	ocations, syqp they may to invoke new features we values of the new bit ive values will be i	PTO = 1: High Priority		terropis.
PX0	IP.0		luction mode	he two power red lown, are similar to

Figure 8. Interrupt Priority Register

Interrupt Priority

The interrupts are divided into two hardware priority levels depending on the state of the interrupt priority bit in the IP register. This divides the interrupts into two groups, high and low priority. Also within each priority level there is a second priority structure determined by the internal polling sequence. These priorities are given below.

Philadelphia and American School and the second sec		
Interrupt Source	Vector Address	Priority Within Level
INT0	0003H	0 (Highest)
TIMER 0	000BH	VI CON PROPER
A/D	0033H	2
INT1	0013H	vihor3 ripiH:
Serial Expansion Port	003BH	0: Low Priority
TIMER 1	001BH	1: High & riority
Serial Port	0023H	6 (Lowest)

Note that the vector addresses for the A/D and SEP interrupts are backwards compatible with the 8XC51 interrupts.

POWER REDUCTION MODES

The two power reduction modes, Idle and Power Down, are similar to the 8XC51 with the following additions:

In addition to the CPU being disabled and the External Interrupts, Serial Port, and Timers being enabled during Idle Mode, the A/D Converter, Watchdog Timer, and the Oscillator Fail Detect circuitry are also enabled.

During Power Down Mode, all functions are suspended while maintaining the status of the CPU, memory, and I/O. The only exit from Power Down on the 8XC51GA is a hardware reset. Note that the Oscillator Fail Detect must be disabled before going into Power Down Mode. Otherwise, the OFD logic will cause a reset when the oscillator is stopped. This would immediately bring the part out of Power Down Mode.

SPECIAL FUNCTION REGISTERS

The following table indicates the layout of the Special Function Registers including the addresses and initial values immediately following reset.

Note that not all of the addresses are occupied. Unoccupied addresses are not implemented on the chip. Read accesses to these addresses will, in general, return random data, and write accesses will have no effect.

User software should not write 1s to these unimplemented locations, since they may be used in future 8051 products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0, and their active values will be 1.

HARDWARE DESCRIPTION OF THE 8XC51GA

ВН	MOR	OF EF	BYTES	ID 4 K	ER Al	NVERT	A/D CO	HTIW
Н	*B 00000000	960		to other the second second		GA-1-3.5 GA-2-0.5		SEPSTA XXX00000
Н	e Logic	-Competib	nd CMOS	es YTL-s		refrev	IN A/D Co	hannel 8-8
Н	*ACC 00000000	gramming al Channel					Detect fog Timer	SEPDAT XXXXXXXX
H	nory Spac	ogram Mer	demal Pr	M 64KE		lenn	Serial Cha	euonandoi
+	*PSW 00000000	Down Mod	id Power	a Idle at		ROOTI A	am hiemoi essor	SEPCON XX000000
+	System	acilitates	N Mode	a ONCE Testin		e en		-Byte Dati Programm
+	Packagin	and PLCC		m DIP, C Avoila			mer/Coun	
+	*IP	orts 1 and ry Lock	esis on F			OS EPRON	ance CHM	iterrupt S h Perform
1	*P3				e 87051 wit	eatures of th	ent lle senio	CS1GA com
1	*IE 00X00000	alf-duplex sy IAM; 32 I/O	try; and a f	etect circuit PROM; 12I	illator fall o Obytes of E	og timer; osc include: 4	6-bit watchd mily features	nverter, a t ne 87051 fa
+	*P2 0 000	MOR ant al	80C51GA	modes. The	reduction	OFDCON XXXXXXX0	WDTCON XXXXXXXX	loolo bna no 3A is the m
7	* SCON 00000000	* SBUF XXXXXXXX	functionally ology which		IN THE prod	intel's CHMC	bricated on	C51GA is fa
1	* P1 111111	e noitsnidme		butes of CN		WDTDIS XXXXXXXX0	WDTUB 00000000	ADCON XX000000
P	* TCON 00000000	* TMOD 00000000	* TL0 00000000	*TL1 00000000	* TH0 00000000	* TH1 00000000	OM array usu	CS1GA EPP an be progra
1	* P0 11111111	* SP 00000111	* DPL 00000000	* DPH 00000000	ADRES 01111111	ille-violet ligit	WDTLB 00000000	* PCON ** 0XXX0000

NOTES:

* = Found in the 8051 core *(See 8051 Hardware Description for explanations of these SFRs)

* = See description of PCON SFR. Bit PCON.4 is not affected by reset.

X = Undefined

X = Undefined

CHMOS 8-BIT MICROCONTROLLER WITH A/D CONVERTER AND 4 KBYTES OF EPROM

87C51GA-3.5 MHz to 12 MHz, $V_{CC} = 5V \pm 10\%$ 87C51GA-1-3.5 MHz to 16 MHz, $V_{CC} = 5V \pm 10\%$ 87C51GA-2-0.5 MHz to 12 MHz, $V_{CC} = 5V \pm 10\%$

8-Channel 8-Bit A/D Converter	■ TTL- and CMOS-Compatible Logic
Oscillator Fail Detect 16-Bit Watchdog Timer	■ Quick-Pulse Programming™ ■ Full-Duplex Serial Channel
 Synchronous Serial Channel 2-Level Program Memory Lock Boolean Processor 	■ 64K External Program Memory Space ■ 64K External Data Memory Space ■ Idle and Power Down Modes
■ 128-Byte Data RAM ■ 32 Programmable I/O Lines	■ ONCE™ Mode Facilitates System Testing
Two 16-Bit Timer/Counters	■ DIP, CERQUAD and PLCC Packaging Available
■ 7 Interrupt Sources ■ High Performance CHMOS EPROM	■ Hysteresis on Ports 1 and 3 ■ Program Memory Lock
	201

The 87C51GA combines all the features of the 87C51 with these additional enhancements: an 8-channel, 8-bit A/D converter; a 16-bit watchdog timer; oscillator fail detect circuitry; and a half-duplex synchronous serial port. The 87C51 family features include: 4 Kbytes of EPROM; 128 bytes of RAM; 32 I/O lines; two 16-bit programmable timer/counters; a seven source two-level interrupt structure; a full-duplex serial port; on-chip oscillator and clock circuitry; and two power reduction modes. The 80C51GA is the ROMless part and the 83C51GA is the masked ROM part.

The 87C51GA is fabricated on Intel's CHMOS II-E process and is functionally compatible with the standard 8051 Family of HMOS and EPROM products. CHMOS II-E is a technology which combines the high speed and density characteristics of HMOS with the low power attributes of CMOS. This combination expands the effectiveness of the powerful 8051 architecture and instruction set.

The 87C51GA EPROM array uses a modified Quick-Pulse Programming Algorithm, by which the entire 4-Kbyte array can be programmed in about 12 seconds. The on-chip Program Memory is electrically programmed and can be erased by exposure to ultra-violet light.

The extremely low operating power, along with the two software selectable reduced power modes, Idle and Power Down, make this part very suitable for low power applications. The Idle mode freezes the CPU while allowing the RAM, timer/counters, serial port, A/D converter, watchdog timer, oscillator fail detect and interrupt system to continue functioning. The Power Down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

Figure 1. Block Diagram

PACKAGES

Part	Prefix	Package Type
87C51GA/	С	48-Pin Ceramic
87C51GA-1/	P	48-Pin Plastic
87C51GA-2	N	52-Pin PLCC
	J	52-Pin Cerquad

Figure 2. Pin Connections

PIN DESCRIPTION

V_{CC}: Supply voltage during normal, Idle, and Power Down operations.

Vss: Circuit ground.

AVREF: Analog reference voltage.

AVss: Analog ground.

Port 0: Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s.

Port 0 also receives the code bytes during EPROM programming, and outputs the code bytes during program verification. External pullup resistors are required during program verification.

Port 1: Port 1 is an 8-bit I/O port with internal pullups on the 4 high-order bits which can be used for normal I/O. The 4 low-order bits are shared with 4 of the analog inputs and as such, are input only. Highorder Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state

can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (III on the data sheet) because of the internal pullups. Outputs to the 4 low-order bits have no effect and are ignored. Port 1 inputs are equipped with Schmitt trigger logic with 400 mV of hysteresis and TTL compatible input specifications. Port 1 I/O is explained in the following list:

P1.7—quasi-bidirectional

P1.6—quasi-bidirectional

P1.5—quasi-bidirectional

P1.4—quasi-bidirectional

P1.3—digital input/ACH3—Analog CHannel 3

P1.2—digital input/ACH2—Analog CHannel 2 P1.1—digital input/ACH1—Analog CHannel 1

P1.0—digital input/ACH0—Analog CHannel 0

Port 1 also receives the low-order address bytes during EPROM programming and program verification.

ACH4-ACH7: Analog CHannel 4-7. These are the four high-order analog inputs which have dedicated input pins.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program memory and during accesses to external Data Memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s.

During accesses to External Data Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives some control signals and the high-order address bits during EPROM programming and program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the pullups. Port 3 inputs are equipped with Schmitt Trigger logic with 400 mV of hysteresis and TTL compatible input specifications.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Pin	Name	Alternate Function
P3.0	RXD	Serial Input Line
P3.1	TXD	Serial Output Line
P3.2	INTO	External Interrupt 0
P3.3	INT1	External Interrupt 1
P3.4	TO	Timer 0 External Input
P3.5	T1 :	Timer 1 External Input
P3.6	WR	External Data Memory Write Strobe
P3.7	RD	External Data Memory Read Strobe

SEPIO: Serial Expansion Port I/O bit. This bit is an output for transmission and an input for reception of half-duplex synchronous serial data.

SEPCLK: Serial Expansion Port Clock (Output-only). This clocking signal is an output for transmission and reception of synchronous serial data.

RST: Reset Input. A logic high on this pin resets the device. An internal pulldown resistor permits a power-on reset to be generated using only an external capacitor to VCC. Toeo girlo-no na as sau to

ALE/PROG: Address Latch Enable output signal for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during EPROM programming.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to External Data Memory.

PSEN: Program Store Enable is the Read strobe to External Program Memory. When the 87C51GA is executing from Internal Program Memory, PSEN is inactive (high). When the device is executing code from External Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to External Data Memory.

EA/Vpp: External Access Enable. EA must be strapped to VSS in order to enable the 87C51GA to fetch code from External Program Memory locations starting at 0000H up to FFFFH. Note, however that if either of the Lock Bits is programmed, the logic level at EA is internally latched during reset.

EA must be strapped to V_{CC} for internal program execution.

This pin also receives the 12.75V programming supply voltage (Vpp) during EPROM programming.

XTAL1: Input to the inverting oscillator amplifier and input to the internal clock generating circuits.

XTAL2: Output from the inverting oscillator amplifier.

Figure 3. Using the On-Chip Oscillator

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3.

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the data sheet must be observed.

PSEM: Program Store Enable is the 300M 310I

In Idle Mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the Special Function Registers remain

Figure 4. External Clock Drive

unchanged during this mode. The Idle Mode can be terminated by any enabled interrupt or by a hardware reset. Note that the Watchdog Timer is active during Idle Mode. See Design Considerations.

POWER DOWN MODE

In Power Down Mode, the oscillator is stopped and all on-chip functions cease except that the on-chip RAM content is maintained. The mode is invoked by software. The Oscillator Fail Detect circuitry should be disabled before entering Power Down.

The Power Down Mode can be terminated only by a hardware reset. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

A/D Converter and said ismetre of second

The A/D Converter is an 8-bit successive approximation device with the following features:

8 User Selectable Analog Input Channels
User Selectable Internal Sample and Hold
User Selectable Conversion Speed Control
Nominal Conversion Speed: 22 μs at 12 MHz
Accuracy ±1 LSB (LSB = 20 mV)
Input Signal Range, Nominally 0V to 5V
(AVss to VREF)
Interrupt Driven

Table 1. Status of the External Pins during Idle and Power Down Modes

Memory location its, ho show that	Program Memory	de from Es HALE is the Lock	PSEN	Port 0	Port 1	Port 2	Port 3
Idle Jese	Internal	internally	at EA is	Data	Data	Data	Data
Idle	External	t be ¹ strac	eum As	Float	Data	Address	Data
Power Down	Internal	0 0	e 0 ecuti	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

LING all 0001 1 army fullouolis, the A/D conventer is controlled by reads and writes to the Special Function Registers. Refer to the "Hardware Description of the 8XC51GA" for further information.

Watchdog Timer (WDT)

The Watchdog Timer provides the ability to recover from hardware or software malfunctions by forcing the part into reset. It has the following features:

16-bit Synchronous Counter; Counts Machine

Asynchronous Reset when Counter = FFFFH (65.5 ms at 12 MHz)

Cleared and Initiated by Reset or Software Clear Operates in Normal and Idle Mode 201 ± V3 = 55

Oscillator Fail Detect (OFD)

The Oscillator Fail Detect circuitry triggers a reset if the oscillator frequency is lower than the OFD trigger frequency. It can be disabled by software during Power Down Mode and has the following features.

OFD Trigger Frequency: 20 KHz to 400 KHz Asynchronous Reset for at Least 4 Machine Cycles

Functions in Normal and Idle Modes Reactivated by Reset after Software Disable

Serial Expansion Port (SEP)

The Serial Expansion Port is a half-duplex synchronous serial interface with the following features:

Four Clock Frequencies

- -XTAL/12
- -XTAL/24
- -XTAL/48
- -XTAL/96

Four Interface Modes

- -Rising Edges
- -Falling Edges
- -High Level
- -Low Level Interrupt Driven

ONCETM MODE MUNICIPALITY AND STUDIOSEIA

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 87C51GA without the 87C51GA having to be removed from the circuit. The ONCE Mode is invoked

- 1. Pulling ALE low while the device is in reset and PSEN is high;
- 2. Holding ALE low as RST is deactivated.

While the device is in the ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 87C51GA is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

DESIGN CONSIDERATIONS

It should be noted that when Idle Mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

During Idle Mode, the Watchdog Timer must periodically be reset under program control to hold off a Watchdog timeout from generating a device reset.

Ambient light is known to affect the internal memory contents during operation. If the 87C51GA application requires the part to be run under ambient lighting, an opaque label should be placed over the window to exclude light.

In this device, ports are reset asynchronously: Port 0 resets to a high impedance (floating) and Ports 1.4-1.7, Port 2 and Port 3 reset to an output high even in the absence of an active internal clock. The 8 analog inputs, ACH0-7, are input-only high-impedance (tri-state) inputs. about 208 fred ni 0 hos

ABSOLUTE MAXIMUM RATINGS (1)

Ambient Temperature under Bias ..., 0°C to +70°C Storage Temperature-65°C to +150°C Voltage on Any Pin to V_{SS} ... -0.5V to V_{CC} + 0.5V Voltage on V_{CC} to V_{SS} -0.5V to +6.5V Power Dissipation.....1.0W*

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION (co.o me at 12 MHz) Cleared and initiated by Roset or Software Clear this mode, an emulator or test CPU can be used to

DC CHARACTERISTICS TA = 0°C to +70°C; V_{CC} = 5V ±10%, V_{SS} = 0V one lamout of selected

Symbol	Parameter	Lin	nits	Unit	Test Conditions	
Cyllibol		Min	Max	teate	O link antelline	
VT+	High-Going Threshold (Ports 1, 3)	1.1 (3)	2.0	·V		
VT-	Low-Going Threshold (Ports 1, 3)	0.6 Mg 0.6	1.2 (3)	V	le Oscillator fracuer e oscillator fracuer	
V _H YS	Hysteresis (Ports 1, 3)	0.4 (3)	bled by software	belysis	er frequency. If can	
V _{IL}	Input Low Voltage (except EA)	-0.5	0.2 V _{CC} - 0.1	٧	S GLOSAL TIWOCI TOWL	
V _{IL1} entro	Input Low Voltage (EA) ni MASI Is	72 c.0 – intern	0.2 V _{CC} - 0.3	:VVIe	OFD Trigger Frag	
HIV one that	Input High Voltage (except XTAL1, RST)	0.2 V _{CC} + 0.9	V _{CC} + 0.5	V bns ls	Cycles Functions in Norm	
V _{IH1} of a	Input High Voltage (XTAL1, RST)	Nov 0.7 Vcc	V _{CC} + 0.5	V	Reactivated by Flo	
	Output Low Voltage (4)		0.3	V	$I_{OL} = 100 \mu A^{(1)}$	
hold off a	(Ports 1, 2, 3) gord hebnu feaen ed	Cally	0.45	٧	$I_{OL} = 1.6 \text{mA} (1)$	
	Total grounding monitoring goon	186	utest 1.0 volici s	V	$I_{OL} = 3.5 \text{mA} (1)$	
V _{OL1}	Output Low Voltage (4)	HGITIA BÍRIOO	0.3	٧	$I_{OL} = 200 \mu A (1)$	
sient light-	(Port 0, ALE, PSEN)	n noit	0.45	٧	$I_{OL} = 3.2 \text{mA} (1)$	
-CING WAID-	n opaque label should be placed ov o exclude light.	dow l	1.0	V	$I_{OL} = 7 \text{ mA} (1)$	
VOH	Output High Voltage	V _{CC} - 0.3		٧	$I_{OH} = -10 \mu A$	
Ports 1.4-	(Ports 1, 2, 3)	V _{CC} - 0.7		V	$I_{OH} = -30 \mu\text{A}$	
gh even in	ort 2 and Port 3 reset to an output hi	V _{CC} - 1.5		٧	$I_{OH} = -60 \mu A$	
V _{OH1} equ	Output High Voltage 1-0HOA alug	V _{CC} - 0.3		٧	$I_{OH} = -200 \mu A$	
	(Port 0 in Ext Bus Mode, Augni (etc. ALE, PSEN) (2)	V _{CC} - 0.7		V	$I_{OH} = -3.2 \text{mA}$	
	ALE, PSEN) (2)	V _{CC} - 1.5		٧	$I_{OH} = -6.5 \text{mA}$	
I _{IL}	Logical 0 Input Current (Ports 1, 2, 3)		-50	μА	V _{IN} = 0.45V	
I _{TL}	Logical 1 to 0 Transition (Ports 1, 2, 3)		-650	μΑ	V _{IN} = 2V	

^{*} Based on package heat transfer limitations, not device power con-While the device is in the ONCE Mode, the Port 0

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

DC CHARACTERISTICS TA = 0°C to +70°C; VCC = 5V ±10%, VSS = 0V (Continued)

Symbol	Parameter	Li	mits	Unit	Test Conditions
		Min	Max		Test conditions
lu [Input Leakage Current (Ports 0, EA)		±10	μΑ	$0 < V_{IN} < V_{CC} - 0.3V$
I _{LI1}	Input Leakage Current (ACH0-7)		±3	μΑ	0 < V _{IN} < V _{REF}
RRST	Reset Pulldown Resistor	50	225	ΚΩ	M 8 39M 4 SHM 0
CIO - 8-588073	Pin Capacitance		10	pF	Test Freq. = 1 MHz T _A = 25°C
	Power Supply Current Operating, 12 MHz (5) Idle Mode, 12 MHz (5) Power Down Mode Reference Voltage = 5.12V		40 10 TBD	mA mA μA mA	de Mods loc MAX = 0.65 x FREQ + 2 Where FREQ lain MMx, loc Max b (3) Figure 6, loc vs Frequer frequency specifications

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLS of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst case (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

2. During reset, VOH1 for ALE and PSEN may fall below the specified value.

3. VT+min and VT-max cannot occur together in the same part as hysteresis is guaranteed to be 400 mV Minimum. See

4. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

Maximum IOL per port pin: 10 mA Maximum IOL per 8-bit port -

Port 0: 26 mA Ports 1, 2, and 3: 15 mA Maximum total IOL for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

5. See Figure 6.

6. See Figures 7 through 10 for ICC test conditions. Minimum VCC for Power Down mode is 2.0V.

Figure 5. Port 1 and 3 Hysteresis

Figure 6. I_{CC} vs Frequency valid only within frequency specifications of the device under test.

Figure 7. I_{CC} Test Condition, Active Mode.
All other pins are disconnected.

Figure 8. I_{CC} Test Condition, Idle Mode.
All other pins are disconnected.

Figure 10. I_{CC} Test Condition, Power Down Mode. $V_{CC} = 2.0V$ to 5.5V

Figure 9. Clock Signal Waveform for I_{CC} tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns

Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address C: Clock D: Input data

H: Logic level HIGH

1: Instruction (program memory contents)

L: Logic level LOW, or ALE PROPERTY OF THE PRO

Q: Output data R: RD signal ATAG GHA MARDORS JAMESTAS

T: Time V: Valid

W: WR signal

X: No longer a valid logic level

Z: Float

Example:

TAVLL = Time for Address Valid to ALE Low. TLLPL = Time for ALE Low to PSEN Low.

AC ELECTRICAL CHARACTERISTICS

 $T_A = 0$ °C to +70°C, $V_{CC} = 5V \pm 10$ %, $V_{SS} = 0V$, load capacitance for port 0, ALE, and $\overline{PSEN} = 100$ pF, load capacitance for all other outputs = 80 pF

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

Symbol	Parameter	12 MHz Clock		Variabl	Unit	
Symbol	raiametei	Min	Max	Min	Max	Offic
1/TCLCL	Oscillator Freqquency 87C51GA 87C52GA-1 87C51GA-2	TPXIX INSTRIN	TPLA	3.5 A -3.5 0.5	12 16 mos	MHz
TLHLL -	ALE Pulse Width	127	254 - 01	2 TCLCL - 40	excentrosans o Traca	ns
TAVLL	Address Valid to ALE Low	43	partial statement year	TCLCL - 40	CONTRACTOR OF THE PARTY OF THE	ns
TLLAX	Address Hold after ALE Low	53		TCLCL - 30		ns
TLLIV	ALE Low to Valid Instr In		234		4 TCLCL - 100	ns
TLLPL	ALE Low to PSEN Low	53		TCLCL - 30	NAL DATA MEMO	ns
TPLPH	PSEN Pulse Width	205		3 TCLCL - 45	/	ns
TPLIV	PSEN Low to Valid Instr In		145	COSC BUILDING WITH THE PARTY OF	3 TCLCL - 105	ns
TPXIX	Input Instr Hold after PSEN	0	PARTY OF THE PROPERTY OF	0		ns
TPXIZ	Input Instr Float after PSEN		59	VGLIT	TCLCL - 25	ns
TAVIV	Address to Valid Instr In	1381,2713	312	and at	5 TCLCL - 105	ns
TPLAZ	PSEN Low to Address Float		10		10	ns
TRLRH	RD Pulse Width	400	-TRLAZ	6 TCLCL - 100	management passes	ns
TWLWH	WR Pulse Width	400		6 TCLCL - 100	TA OR C	ns
TRLDV	RD Low to Valid Data In		252	TAVDV	5 TCLCL - 165	ns
TRHDX	Data Hold after RD	0	T CIA-GA	0	·	ns
TRHDZ	Data Float after RD		107		2 TCLCL - 60	ns
TLLDV	ALE Low to Valid Data In		517		8 TCLCL - 150	ns
TAVDV	Address to Valid Data In		585		9 TCLCL - 165	ns

ADVANCED INFORMATION—CONTACT INTEL FOR DESIGN-IN INFORMATION

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS (Continued)

Symbol	Parameter	12MHz Clock		Variable Clock age and		
	isngla	Min	Max	Min s to tal	Max	Unit
TLLWL	ALE Low to RD or WR Low	200	300	3 TCLCL - 50	3 TCLCL + 50	ns
TAVWL	Address Valid to RD or WR Low	203		4 TCLCL - 130	889	ns
TQVWX	Data Valid to WR Transition	33		TCLCL - 50	oteh i	ns
TWHQX	Data Hold after WR	33		TCLCL - 50	HOIH level o	ns
TRLAZ	RD Low to Address Float	14771	0	lemoly contents)	i margo (i) notion	ns
TWHLH	RD or WR High to ALE High	43	123	TCLCL - 40	TCLCL + 40	ns
TQVWH	Data Valid to WR High	433		7TCLCL - 150		ns

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

EXTERNAL CLOCK DRIVE WAVEFORM

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Unit
1/TCLCL	Oscillator Frequency			
	87C51GA	3.5	12	3TIRW
AYX XOL	87C51GA-1	3.5	16	MHz
	87C51GA-2	0.5	12	
TCHCX	High Time	20	251 51.5	ns
TCLCX	Low Time	20		ns
TCLCH	TCLCH Rise Time		20	ns
TCHCL	Fall Time		20	ns

A.C. TESTING INPUT: INPUT, OUTPUT WAVEFORMS

logic "1" and 0.8V for a logic "0".

FLOAT WAVEFORM

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. I_{OL}/I_{OH} \geq \pm 20 mA.

EXTERNAL DATA MEMORY WRITE CYCLE

SERIAL TIMING—SHIFT REGISTER MODE

Test Conditions: $T_A = 0$ °C to 70°C; $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$; Load Capacitance = 80 pF

Symbol	Parameter	12 MHz Osc.		Variable Oscillator		
		Min	Max	Min	- лит Мах	Unit
TXLXL	Serial Port Clock Cycle Time	1.0	A PROPERTY OF THE PARTY OF THE	12 TCLCL	NEW Y	μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10 TCLCL - 133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50	A CONTRACTOR OF THE PERSON OF	2 TCLCL - 117	WR TAVLI	ns
TXHDX	Input Data Hold after Clock Rising Edge	0	124	10 TILO		ns
TXHDV	Clock Rising Edge to Input Data Valid	Services and con-	700	mount framemonishment	10 TCLCL - 133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

VLOAD+0.1 V
VLOAD -0.1 V
VLOAD -0.1 V
VLOAD -0.1 V
POINTS

270582-17

NV clange trom load voltage occurs, and begins to float when a 100 mV change from the joaded Vol. level occurs. Iot./Iot. 100 mV change from the joaded Vol. level occurs. Iot./Iot. 2 80 mA.

A TO D CHARACTERISTICS

The absolute conversion accuracy is dependent on the accuracy of V_{REF} . The specifications given below assume adherence to the Operating Conditions section of this data sheet. Testing is done at $V_{REF}=5.12V$.

An A/D Glossary of Terms is available at the end of this data sheet.

OPERATING CONDITIONS

VCC, VREF	4.5V to 5.5V
V _{SS} , AV _{SS} ACH0-7	0V
ACH0-7	AV _{SS} to V _{REF}
T _A	0°C to +70°C
Fosc	0.5 MHz to 16.0 MHz
Test Conditions: V _{REF} V _{CC}	5.12V

A/D CONVERTER SPECIFICATIONS

Parameter	Minimum	Typical	Maximum	Unit**	Notes
Resolution	256 8	t 0	256 8	Levels Bits	Read Sig
Absolute Error	0		±1	LSB	remarket i
Full Scale Error		-0.5 ± 0.5		LSB	
Zero Offset Error	949	±0.5		LSB	
Non-Linearity	0	***	±1	LSB	out ing
Differential Non-Linearity	0		± 1/2	LSB	BOS HIR
Channel-to-Channel Variation	0		±0.4	LSB	TES:
Repeatability		±0.25		LSB	bileV =
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	12.75V. Each pr	0.003 0.003 0.003		LSB/°C LSB/°C LSB/°C	DORANA rigid by us 1
Off Isolation	VE+		-60	dB	1, 2, 3
Feedthrough	2000	-60		dB	1,2
V _{CC} Power Supply Rejection	50	-60	1	dB	1,2
Input Resistance	1K		5K	Ω	1
D.C. Input Leakage	0	A 75 700	3.0	μΑ	

NOTES:

* These values are expected for most parts at 25°C

** An "LSB", as used here, has a value of approximately 20 mV.

1. These values are not tested in production and are based on theoretical estimates and laboratory tests.

2. DC to 100 KHz

3. Multiplexer Break-Before-Make Guaranteed.

EPROM CHARACTERISTICS

The 87C51GA is programmed by a modified Quick-Pulse Programming algorithm. It differs from older methods in the value used for VPP (Programming Supply Voltage) and in the width and number of the ALE, PROG pulses.

The 87C51GA contains two signature bytes that can be read and used by an EPROM programming system to identify the device. The signature bytes identify the device as an 87C51GA manufactured by Intel.

Table 2 shows the logic levels for reading the signature byte, and for programming the Program Memory, the Encryption Table, and the Lock Bits. The circuit configuration and waveforms for Quick-Pulse Programming are shown in Figures 11 and 12. Figure 13 shows the circuit configuration for normal Program Memory verification.

Table 2. EPROM Programming Modes

Mode Motes	RST	PSEN	ALE/ PROG	EA/ Vpp	P2.7	P2.6	P3.7	P3.6
Read Signature	256	0	1	254	0	0	onoli	0 0
Program Code Data	1	0	0*	Vpp	1	0	1	- 1
Verify Code Data	1	0	1	1	0	0	10113 91	JIOSUM 1
Pgm Encryption Table	1	0	0*	Vpp	1	0	10113 918	0
Pgm Lock Bit 1	1	0	0*	V _{PP}	1	1	Ons Jeen	1
Pgm Lock Bit 2	1	0	0*	VPP	1	1	0	0

NOTES:

^{*}ALE/ \overline{PROG} receives 25 programming pulses while V_{PP} is held at 12.75V. Each programming pulse is low for 100 μs (± 5 μs) and high for a minimum of 10 μs.

Figure 11. Programming Configuration

[&]quot;1" = Valid high for that pin

[&]quot;0" = Valid low for that pin

[&]quot; V_{PP} " = $+12.75V \pm 0.25V$

Figure 12. PROG Waveforms

Quick-Pulse ProgrammingTM

The setup for Microcontroller Quick-Pulse Programming is shown in Figure 11. Note that the 87C51GA is running with a 4 MHz to 6 MHz oscillator. The reason the oscillator must be running is that the device is executing internal address and program data transfers.

The address of the EPROM location to be programmed is applied to Ports 1 and 2, as shown in Figure 11. The code byte to be programmed into that location is applied to Port 0. RST, PSEN, and pins of Ports 2 and 3 specified in Table 2 are held at the "Program Code Data" levels indicated in Table 2. Then ALE/PROG is pulsed low 25 times as shown in Figure 12.

To program the Encryption Table, repeat the 25pulse programming sequence for addresses 0

through 1FH, using the "Pgm Encryption Table" levels. Don't forget that after the Encryption Table is programmed, verify cycles will produce only encryptdeta. The Encryption Table itself cannot be stab be

To program the Lock Bits, repeat the 25-pulse programming sequence using the "Pgm Lock Bit" levels. After one Lock Bit is programmed, further programming of the Code Memory and Encryption Table is disabled. However, the other Lock Bit can still be programmed.

Note that the EA/Vpp pin must not be allowed to go above the maximum specified Vpp level for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The V_{PP} source should be well regulated and free of glitches and overshoot. of been end ribining

Figure 13. Program Verification and seases only MOR93 and principal

If Lock Bit 2 has not been programmed, the on-chip Program Memory can be read out for program verification. The address of the Program Memory location to be read is applied to Ports 1 and 2 as shown in Figure 13. The other pins are held at the "Verify Code Data" levels indicated in Table 2. The contents of the addressed location will be emitted on Port 0. External pullups are required on Port 0 for this operation. Detailed timing specifications are shown in later sections of this data sheet.

If the Encryption Table has been programmed, the data presented at Port 0 will be the Exclusive NOR of the program byte with one of the encryption bytes. The user will have to know the Encryption Table contents in order to correctly decode the verification data. The Encryption Table itself cannot be read out.

Program/Verify Algorithms

Any algorithm in agreement with the conditions listed in Table 2, and which satisfies the timing specifications, is suitable.

EPROM Program Lock

The two-level Program Lock system consists of two Program Lock bits and a 32 byte Encryption Array which are used to protect the program memory against software piracy.

Encryption Array

Within the EPROM array are 32 bytes of Encryption Array that are initially unprogrammed (all 1's). Every time that a byte is addressed during a verify, 5 address lines are used to select a byte of the Encryption Array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an Encrypted Verify byte. The algorithm, with the array in the unprogrammed state (all 1's), will return the code in it's original, unmodified form.

Program Lock Bits

Also included in the EPROM Program Lock scheme are two Program Lock Bits which are programmed as shown in Table 2.

Table 3 outlines the features of programming the Lock Bits.

Program Lock Bits LB1 LB2	Logic Enabled
البال البال	No Program Lock features enabled. (Code Verify will still be encrypted by the Encryption Array.)
P U P P P P P P P P P P P P P P P P P P	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.
t tri 87059GA	Same as above, but Verify is also disabled.
sisjent thude	Reserved for Future Definition.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are:

(030H) = 89H indicates manufactured by Intel (031H) = 60H indicates 87C51GA

Erasure Characteristics

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537Å) to an integrated dose of at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 20 to 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1s state.

Erasing the EPROM also erases the Encryption Arange of the part to full functionality.

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

 $T_A = 21^{\circ}C$ to 27°C, $V_{CC} = 5V \pm 10\% V_{SS} = 0V$

Symbol	Parameter a diblow	-dA anMinnest eb	actual xaMideal or	Unit
Vpp	Programming Supply Voltage	12.5	13.0	s ron valulo
olpp des elgme	Programming Supply Current		50.0	mA
1/TCLCL	Oscillator Frequency	-os na to adamstos	6	MHz
TAVGL	Address Setup to PROG Low	48 TCLCL	ver temperature, s	r may vary o
TGHAX	Address Hold after PROG	48 TCLCL	oleons. An actual o	equency con as ideal first
TDVGL	Data Setup to PROG Low	48 TCLCL	may even vary ov	ode widths. I
TGHDX	Data Hold after PROG	48 TCLCL	e same conditions	ons under or
TEHSH	P2.7 (ENABLE) HIGH to VPP	48 TCLCL	-Make The prope	reak-Before
TSHGL	V _{PP} Setup to PROG Low	before 10 lennam	ses mat a previous ded before a new r	μs
TGHSL	V _{PP} Hold after PROG	nguts (onther).	erter will not short.	μs
TGLGH	PROG Width hevnes noism.	sonerel 95 ent-	niciona 105	μS
TAVQV	Address to Data Valid	lautos to enotiana	48 TCLCL	stween com
TELQV	ENABLE Low to Data Valid	d frequency condi-	48 TCLCL	e same tem
TEHQZ	Data Float after ENABLE	0	48 TCLCL	:enc
TGHGL	PROG High to PROG Low	voltage Ofrsus the	tugni to desig A-c	is us us

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

A/D Glossary of Terms TOARAND MOT

Absolute Error—The maximum difference between corresponding actual and ideal code transitions. Absolute Error accounts for all deviations of an actual converter from an ideal converter.

Actual Characteristic—The characteristic of an actual converter. The characteristic of a given converter may vary over temperature, supply voltage, and frequency conditions. An actual characteristic rarely has ideal first and last transition locations or ideal code widths. It may even vary over multiple conversions under the same conditions.

Break-Before-Make—The property of a multiplexer which guarantees that a previously selected channel will be deselected before a new channel is selected (e.g. the converter will not short inputs together).

Channel-To-Channel Matching—The difference between corresponding code transitions of actual characteristics taken from different channels under the same temperature, voltage and frequency conditions.

Characteristic—A graph of input voltage versus the resultant output code for an A/D converter. It describes the transfer function of the A/D converter.

Code—The digital value output by the converter.

Code Center—The voltage corresponding to the midpoint between two adjacent code transitions.

Code Transition—The point at which the converter changes from an output code of Q, to a code of Q+1. The input voltage corresponding to a code transition is defined to be that voltage which is equally likely to produce either of two adjacent codes.

Code Width—The voltage corresponding to the difference between two adjacent code transitions.

Crosstalk-See "Off-Isolation."

D.C. Input Leakage—Leakage current to ground from an analog input pin.

Differential Non-Linearity—The difference between the ideal and actual code widths of the terminal based characteristic.

Feedthrough—Attenuation of a voltage applied on the selected channel of the A/D Converter after the sample window closes.

Full Scale Error—The difference between the expected and actual input voltage corresponding to the full scale code transition.

Ideal Characteristic—A characteristic with its first code transition at $V_{IN}=0.5$ LSB, its last code transition at $V_{IN}=(V_{REF}-1.5$ LSB) and all code widths equal to one LSB.

Input Resistance—The effective series resistance from the analog input pin to the sample capacitor.

LSB—Least Significant Bit: The voltage corresponding to the full scale voltage divided by 2ⁿ, where n is the number of bits of resolution of the converter. For an 8-bit converter with a reference voltage of 5.12V, one LSB is 20 mV. Note that this is different than digital LSBs since an uncertainty of two LSBs, when referring to an A/D converter, equals 40 mV. (This has been confused with an uncertainty of two digital bits, which would mean four counts, or 80 mV.)

Monotonic—The property of successive approximation converters which guarantees that increasing input voltages produce adjacent codes of increasing value, and that decreasing input voltages produce adjacent codes of decreasing value.

No Missed Codes—For each and every output code, there exists a unique input voltage range which produces that code only.

Non-Linearity—The maximum deviation of code transitions of the terminal based characteristic from the corresponding code transitions of the ideal characteristic.

Off-Isolation—Attenuation of a voltage applied on a deselected channel of the A/D converter. (Also referred to as Crosstalk.)

Repeatability—The difference between corresponding code transitions from different actual characteristics taken from the same converter on the same channel at the same temperature, voltage and frequency conditions.

Resolution—The number of input voltage levels that the converter can unambiguously distinguish between. Also defines the number of useful bits of information which the converter can return.

Sample Delay—The delay from receiving the start conversion signal to when the sample window opens.

Sample Delay Uncertainty—The variation in the sample delay.

Sample Time—The time that the sample window is open.

Sample Time Uncertainty—The variation in the sample time.

Sample Window—Begins when the sample capacitor is attached to a selected channel and ends when the sample capacitor is disconnected from the selected channel.

Successive Approximation—An A/D conversion method which uses a binary search to arrive at the best digital representation of an analog input.

Temperature Coefficients—Change in the stated variable per degree centigrade temperature change. Temperature coefficients are added to the typical values of a specification to see the effect of temperature drift.

Terminal Based Characteristic—An actual characteristic which has been rotated and translated to remove zero offset and full scale error.

 \textbf{V}_{CC} Rejection—Attenuation of noise on the \textbf{V}_{CC} line to the A/D converter.

Zero Offset—The difference between the expected and actual input voltage corresponding to the first code transition.

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -001 version of the 87C51GA data sheet:

- 1. Reference to ROM and ROMless versions was reworded.
- 2. Packages Table was added.
- 3. Second paragraph to Power Down Mode description was added.
- 4. A/D nominal conversion speed changed from 27 µs to 22 µs at 12 MHz.
- 5. Figure 5 for Ports 1 and 3 hysteresis added.
- 6. Note 2 for DC Characteristics pertaining to the V_{OH1} specification on ALE and PSEN was changed.
- 7. Note 4 on maximum current specifications added to DC Characteristics.
- 8. The graph for I_{CC} specs was extended on Figure 6 from 12 MHz to 16 MHz and from 3.5 MHz to 0.5 MHz.
- 9. The following AC Timing specifications were changed:
 - TLLAX changed from TCLCL-35 to TCLCL-30.
 - TLLPL changed from TCLCL-40 to TCLCL-30.
 - TRHDZ changed from 2TCLCL-70 to 2TCLCL-60.
 - TQVWX changed from TCLCL-60 to TCLCL-50.
 - TQVWH was added.
- 10. FOSC specifications for Sample and Hold were deleted on A/D Characteristics.
- 11. Program Memory Lock scheme description was added.
- 12. Data Sheet Revision Summary added.

sample 1 me-- I he time that the sample window is seen.

Sample Time Uncertainty—The variation in the sample time.

Sample Window—Begins when the sample capacitor is attached to a selected channel and ends when the sample capacitor is disconnected from the selected channel.

Successive Approximation—An A/D conversion method which uses a binary search to arrive at the best digital representation of an analog input.

remperature odernoteme consignation of angeveriable per degree centigrade temperature charge. Temperature coefficients are added to the typical values of a specification to see the effect of tempersture drift.

Terminal Based Characteristic -- An actual characteristic which has been rotated and translated to remove zero offset and full scale error.

Vcc Rejection—Attenuation of noise on the Vcc

Zero Offset—The difference between the expected and actual input voltage corresponding to the first code transition.

DATA SHEET REVISION SUMMARY

The following are the key differences between this and the -001 version of the 87C51GA data sheet

- 1. Reference to ROM and ROMless versions was reworded.
 - . Packages Table was added.
- a Second paragraph to Power Down Mode description was added.
- 6 A/D nominal conversion speed changed from 27 µs to 22 µs at 12 MHz.
 - i. Figure 5 for Ports 1 and 3 hysteresis added.
- 6. Note 2 for DC Characteristics penalining to the Voyri specification on ALE and PSEN was changed.
 - 7. Note 4 on maximum current specifications added to DC Characteristics.
- The graph for log specs was extended on Figure 6 from 12 MHz to 16 MHz and from 3.5 MHz to 0.5 MHz.
 - 9. The following AC Timing specifications were changed:
 - DE IO IOT of ON IO IOT most become in IO IOT
 - TTTL CUBUSED HOW TOTOF AN IS LOTOT SO
 - AND THE PROPERTY OF THE PROPERTY TO THE
 - seems of an analysis inchi maffill the VALANA
 - OVWH was added.
 - 10. Fosc specifications for Sample and Hold were deleted on A/D Characteristics
 - 11. Program Memory Lock scheme description was added.
 - 12. Data Sheet Flevision Summary added.

83C152 11

HARDWARE DESCRIPTION OF THE 83C152

1.0 INTRODUCTION

The 83C152 Universal Communications Controller is an 8-bit microcontroller designed for the intelligent management of peripheral systems or components. The 83C152 is a derivative of the 80C51BH and retains the same functionality. The 83C152 is fabricated on the same CHMOS III process as the 80C51BH. What makes the 83C152 different is that it has added functions and peripherals to the basic 80C51BH architecture that are supported by new Special Function Registers (SFRs). These enhancements include: a high speed multi-protocol serial communication interface, two channels for DMA transfers, HOLD/HLDA bus control, a fifth I/O port, expanded data memory, and expanded program memory.

In addition to a standard UART, referred to here as Local Serial Channel (LSC), the 83C152 has an onboard multi-protocol communication controller called the Global Serial Channel (GSC). The GSC interface supports SDLC, CSMA/CD, user definable protocols, and a subset of HDLC protocols. The GSC capabilities include: address recognition, collision resolution, CRC generation, flag generation, automatic retransmission, and a hardware based acknowledge feature. This high speed serial channel is capable of implementing the Data Link Layer and the Physical Link Layer as shown in the OSI open systems communication model. This model can be found in the document "Reference Model for Open Systems Interconnection Architecture", ISO/TC97/SC16 N309.

The DMA circuitry consists of two 8-bit DMA channels with 16-bit addressability. The control signals; Read (RD), Write (WR), hold and hold acknowledge (HOLD/HLDA) are used to access external memory. The DMA channels are capable of addressing up to 64K bytes (16 bits). The destination or source address can be automatically incremented. The lower 8 bits of the address are multiplexed on the data bus Port 0 and the upper eight bits of address will be on Port 2. Data is transmitted over an 8-bit address/data bus. Up to 64K bytes of data may be transmitted for each DMA activation.

The new I/O port (P4) functions the same as Ports 1-3, found on the 80C51BH.

Internal memory has been doubled in the 83C152. Data memory has been expanded to 256 bytes, and internal program memory has been expanded to 8K bytes.

There are also some specific differences between the 83C152 and the 80C51BH. The first is that the numbering system between the 83C152 and the 80C51BH is slightly different. The 83C152 and the 80C51BH are factory masked ROM devices. The 80C152 and the 80C31BH are ROMless devices which require the

use of external program memory. The second difference is that RESET is active low in the 83C152 and active high in the 80C51BH. This is very important to designers who may currently be using the 80C51BH and planning to use the 83C152, or are planning on using both devices on the same board. The third difference is that GFO and GF1, general purpose flags in PCON, have been renamed GFIEN and XRCLK. GFIEN enables idle flags to be generated in SDLC mode, and XRCLK enables the receiver to be externally clocked. All of the previously unused bits are now being used and interrupt vectors have been added to support the new enhancements. Programmers using old code generated for the 80C51BH will have to examine their programs to ensure that new bits are properly loaded, and that the new interrupt vectors will not interfere with their pro-

Throughout the rest of this manual the 80C152 and the 83C152 will be referred to generically as the "C152".

The C152 is based on the 80C51BH architecture and utilizes the same 80C51BH instruction set. Figure 1.1 is a block diagram of the C152. Readers are urged to compare this block diagram with the 80C51BH block diagram. There have been no new instructions added. All the new features and peripherals are supported by an extension of the Special Function Registers (SFRs). Very little of the information pertaining specifically to the 80C51BH core will be discussed in this chapter. The detailed information on such functions as: the instruction set, port operation, timer/counters, etc., can be found in the MCS®-51 Architecture chapter in the Intel Embedded Controller Handbook. Knowledge of the 80C51BH is required to fully understand this manual and the operation of the C152. To gain a basic understanding on the operation of the 80C51BH, the reader should familiarize himself with the entire MCS-51 chapter of the Embedded Controller Handbook.

Another source of information that the reader may find helpful is Intel's LAN Components User's Manual, order number 230814. Inside are descriptions of various protocols, application examples, and application notes dealing with different serial communication environments.

2.0 COMPARISON OF 80C152 AND 80C51BH FEATURES

2.1 Memory Space

A good understanding of the memory space and how it is used in the operation of MCS-51 products is essential. All the enhancements on the C152 are implemented by accessing Special Function Registers (SFRs), added data memory, or added program memory.

P1.0-P1.7

P4.0 - P4.7

PO.0 - PO.7

P2.0-P2.7

P3.0 - P3.7

KGT UKG

2.1.1 SPECIAL FUNCTION REGISTERS (SFRs)

The following list contains all the SFRs, their names and function. All of the SFRs of the 80C51BH are retained and for a detailed explanation of their operation, please refer to the chapter, "Hardware Description of the 8051 and 8052" that is found in the Embedded Controller Handbook. An overview of the new SFRs is found in Section 2.1.1.1, with a detailed explanation in Section 3.7, Section 4.5, and 6.0.

2.1.1.1 New SFRs (HOIH) O THUOD TTYS AMO

The following descriptions are quick overviews of the new SFRs, and not intended to give a complete understanding of their use. The reader should refer to the detailed explanation in Section 3 for the GSC SFRs, and Section 4 for the DMA SFRs.

ADR 0,1,2,3 - (95H, 0A5H, 0B5H, 0C5H) Contains the four bytes for address matching during GSC operation.

AMSK0 - (0D5H) Selects "don't care" bits to be used with ADR0.

AMSK1 - (0E5H) Selects "don't care" bits to be used with ADR1.

BAUD - (94H) Contains the programmable value for the baud rate generator for the GSC. The baud rate will equal (fosc)/($(BAUD + 1) \times 8$).

BCRL0 - (0E2H) Contains the low byte of a countdown counter that determines when the DMA access for Channel 0 is complete.

BCRH0 - (0E3H) Contains the high byte for count-down counter for Channel 0.

BCRL1 - (0F2H) Same as BCRL0 except for DMA Channel 1.

BCRH1 - (0F3H) Same as BCRH0 except for DMA Channel 1.

BKOFF - (0C4H) An 8-bit count-down timer used with the CSMA/CD resolution algorithm.

DARLO - (0C2H) Contains the low byte of the destination address for DMA Channel 0.

DARHO - (0C3H) Contains the high byte of the destination address for DMA Channel 0.

DARL1 - (0D2H) Same as DARL0 except for DMA Channel 1.

DARH1 - (0D3H) Same as DARH0 except for DMA Channel 1.

DCONO - (92H) Contains the Destination Address Space bit (DAS), Increment Destination Address bit

(IDA), Source Address Space bit (SAS), Increment Source Address bit (ISA), DMA Channel Mode bit (DM), Transfer Mode bit (TM), DMA Done bit (DONE), and the GO bit (GO). DCONO is used to control DMA Channel 0.

DCON1 - (93H) Same as DCON0 except this is for DMA Channel 1.

GMOD - (84H) Contains the Protocol bit (PR), the Preamble Length (PL1,0), CRC Type (CT), Address Length (AL), Mode select (M1,0), and External Transmit Clock (TXC). This register is used for GSC operation only.

IEN1 - (0C8H) Interrupt enable register for DMA and GSC interrupts.

IFS - (0A4H) Determines the number of bit times separating transmitted frames.

IPN1 - (0F8H) Interrupt priority register for DMA and GSC interrupts.

MYSLOT - (0F5H) Contains the Jamming mode bit (DCJ), the Deterministic Collision Resolution Algorithm bit (DCR), and the DCR slot address for the GSC.

P4 - (0C0H) Contains the memory "image" of Port 4.

PRBS - (0E4H) Contains a pseudo-random number to be used in CSMA/CD backoff algorithms. May be read or written to by user software.

RFIFO - (F4H) RFIFO is used to access a 3-byte FIFO that contains the receive data from the GSC.

RSTAT - (0E8H) Contains the Hardware Based Acknowledge Enable bit (HABEN), Global Receive Enable bit (GREN), Receive FIFO Not Empty bit (RFNE), Receive Done bit (RDN), CRC Error bit (CRCE), Alignment Error bit (AE), Receiver Collision/Abort detect bit (RCABT), and the Overrun bit (OVR), used with both DMA and GSC.

SARLO - (0A2H) Contains the low byte of the source address for DMA transfers.

SARHO - (0A3H) Contains the high byte of the source address for DMA transfers.

SARL1 - (0B2H) Same as SARL0 but for DMA Channel 1.

SARH1 - (0B3H) Same as SARH1 but for DMA Channel 1.

SLOTTM - (0B4H) Determines the length of the slot time in CSMA/CD.

TCDCNT - (0D4H) Contains the number of collisions in the current frame if using CSMA/CD GSC.

Old(O)/New(N)	Name	Addr	THE SECOND FUNCTION FUNCTIONS (SERIE)
TM) DMS Done bit	A hold relan	0E0H	ACCUMULATOR
at hear at Negoci (Or	ADRO	095H	GSC MATCH ADDRESS 0
io). DCOM is used to	ADR1	0A5H	CCC MATCH ADDDESS 1
N	ADR2	0B5H	CCC MATCH ADDDESS 2
N NI			CCC MATCH ADDDEECC 2
CONU excell this is for	AMCKO	ODEH	
N	AMSK0		GSC ADDRESS MASK 0
N	AMSK1	0E5H	GSC ADDRESS MASK 1
e Protocol Ot (PR), the		OF0H	BREGISTER
RC Type (NI), Addres	BAUD	094H	GSC BAUD RATE
1.0), and EsManul Trans	BCRLO M	OE2H	DMA BYTE COUNT 0 (LOW)
r is used fo/OSC opera		0E3H	DMA BYTE COUNT 0 (HIGH)
N	BCRL1	0F2H	DAMA BYTE COLINIT 1 (LOW)
N	BCRH1	0F3H	DMA BYTE COUNT 1 (HIGH)
de register IN DMA and	DUNIE HE	0C4H	CCC PACYOFE TIMED
			* DAMESTER COMMENT AND STREET STANDARDS COMMENT AND A COMMENT OF THE PARTY.
N	Ditte	OOLII	DMA DESTINATION ADDR 0 (LOW)
number of by times sepa	DARH0 DARL1	0C3H	DMA DESTINATION ADDR 0 (HIGH)
N. To supply		0D2H	DMA DESTINATION ADDR 1 (LOW)
N	DARH1	0D3H	DMA DESTINATION ADDR 1 (HIGH)
ority registed for DMA	DCON0	092H	DMA CONTROL 0 detress matches for safed and
ority register for DMA	DCON1	093H	DMA CONTROL 1
0	DPH	083H	DATA POINTER (HIGH)
the JammOg mode bi		082H	DATA POINTER (LOW) 200102 (HCCIO) - OXIZA
		00411	GSC MODE ORGA A
llision Resolution Algo		084H	
CR slot adOess for th			INTERRUPT ENABLE REGISTER 0
N	IEN1	0C8H	INTERNOT I ENABLE REGISTER
N	IFS	0A4H	GSC INTERFRAME SPACING
mory "imago" of Port 4	Contains 91c me	0B8H	INTERRUPT PRIORITY REGISTER 0
N	IPN1	0F8H	INTERRUPT PRIORITY REGISTER 1
eudo-randon number to	MYSLOT	0F5H	GSC SLOT ADDRESS
algorithms of the read	MAZ CO OP		PORT 0
0	o by user spaware		
0	Do	OAOH	RED - (082H) Contains the low byte 1 TRO9 at-
I to access a byte FIFC	P2 THE CHA	4 1 4 9 THE R PRINT THE TANK THE PARTY OF TH	we counter that determines when the TOTAL
from the C.C.	P3	овон	Channel 0 is complete.
N	P4	0C0H	PORT 4
he Hardwall Based Ac	OEBH) Coldins	091H	RHO - (0E3H) Contains the high byted TRO9 nt-
IN). Global Receive En	Enable bit 69 AB	0A1H	PORT 6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
FIFO No Empty bi		087H	POWER CONTROL
(RDN), CIN Error b		0E4H	GSC PSEUDO-RANDOM SEQUENCE
it (AE) ROever Coll	THE SECTION SET SECURE	ODOH	PROGRAM STATUS WORD
	The state of the s	0F4H	GSC DECEIVE BLIEFED
T), and the Overran bi	THE RESERVE AS A SECOND OF MANAGEMENT	APPROPRIEST TOURSE	RECEIVE STATUS (DMA & GSC)
and GSC. N	RSTAT	0E8H	DMA SOURCE ADDR O (LOW)
N	SARLO	0A2H	DMA SOURCE ADDR 0 (LOW)
e low byte N the source			DMA SOURCE ADDR 0 (HIGH)
N	SARL1	0B2H	DMA SOURCE ADDR 1 (LOW)
N	SARH1	0B3H	DMA SOURCE ADDR 1 (HIGH)
e high byte of the source	SBUF	099H	LOCAL SERIAL CHANNEL (LSC) BUFFER
0	SCON	098H	LOCAL SERIAL CHANNEL (LSC) CONTROL
	CLOTTM	ODALI	GSC SLOT TIME
RLO but for OMA Char	SP	0011	STACK POINTER and autismo (HEOD) - OHAL
N	TCDCNT	0D4H	GSC TRANSMIT COLLISION COUNTER
RHI but for DIMA Chan			TIMER CONTROL
N	TFIFO	085H	GSC TRANSMIT BUFFER
0	TH0	08CH	TIMER 0 (HIGH)
ies the lengO of the sic			TIMER 1 (HIGH)
0	TLO CONAN		TIMER 0 (LOW)
Č	TL1	08BH	TIMER 1 (LOW)
the numbeof collision	TMOD	00011	
CSMA/CD NSC.			TIMER MODE OF THE PROPERTY OF
M STATES	TSTAT	0D8H	TRANSMIT STATUS (DMA & GSC)

TFIFO - (85H) TFIFO is used to access a 3-byte FIFO that contains the transmission data for the GSC.

TSTAT - (0D8H) Contains the DMA Service bit (DMA), Transmit Enable bit (TEN), Transmit FIFO Not Full bit (TFNF), Transmit Done bit (TDN), Transmit Collision Detect bit (TCDT), Underrun bit (UR), No Acknowledge bit (NOACK), and the Receive Data Line Idle bit (LNI). This register is used with both DMA and GSC.

The general purpose flag bits (GF0 and GF1) that exist on the 80C51BH are no longer available on the C152. GF0 has been renamed GFIEN (GSC Flag Idle Enable) and is used to enable idle fill flags. Also GF1 has been renamed XRCLK (External Receive Clock Enable) and is used to enable the receiver to be clocked externally.

2.1.2 DATA MEMORY

Internal data memory consists of 256 bytes as shown in Figure 2.1. The first 128 bytes are addressed exactly like an 80C51BH, using direct addressing.

The addresses of the second 128 bytes of data memory happen to overlap the SFR addresses. The SFRs and their memory locations are shown in Figure 2.2. This means that internal data memory spaces have the same address as the SFR address. However, each type of memory is addressed differently. To access data memory above 80H, indirect addressing or the DMA channels must be used. To access the SFRs, direct addressing is used. When direct addressing is used, the address is the source or destination, e.g. MOV A, 10H, moves the contents of location 10H into the accumulator. When indirect addressing is used, the address of the destination or source exists within another register, e.g. MOV A, @RO. This instruction moves the contents of the memory location addressed by R0 into the accumulator. Directly addressing the locations 80H to 0FFH will access the SFRs. Another form of indirect addressing is with the use of Stack Pointer Operations. If the Stack Pointer contains an address and a PUSH or POP instruction is executed, indirect addressing is actually used. Directly accessing an unused SFR address will give undefined results.

Physically, there are separate SFR memory and data memory spaces allocated on the chip. Since there are separate spaces, the SFRs do not diminish the available data memory space.

*NOTE:

User data memory above 80H must be addressed indirectly. Using direct addressing above 80H accesses the Special Function Registers.

Figure 2.1. Data Memory Map

External data memory is accessed like an 80C51BH, with "MOVX" instructions. Addresses up to 64K may be accessed when using the Data Pointer (DPTR). When accessing external data memory with the DPTR, the address appears on Port 0 and 2. When using the DPTR, if less than 64K of external data memory is used, the address is emitted on all sixteen pins. This means that when using the DPTR, the pins of Port 2 not used for addresses cannot be used for general purpose I/O. An alternative to using 16-bit addresses with the DPTR is to use R0 or R1 to address the external data memory. When using the registers to address external data memory, the address range is limited to 256 bytes. However, software manipulation of I/O Port 2 pins as normal I/O, allows this 256 bytes restriction to be expanded via bank switching. When using R0 or R1 as data pointers, Port 2 pins that are not used for addressing, can be used as general purpose I/O.

2.1.2.1 Bit Addressable Memory

The C152 has several memory spaces in which the bits are directly addressed by their location. The directly addressable bits and their symbolic names are shown in Figure 2.3A, 2.3B, and 2.3C.

Bit addresses 0 to 7FH reside in on-board user data RAM in byte addresses 20H to 2FH (see Figure 2.3A).

Bit addresses 80H to 0FFH reside in the SFR memory space, but not every SFR is bit addressable, see Figure 2.3B. The addressable bits are scattered throughout the SFRs. The addressable bits occur every eighth SFR address starting at 80H and occupy the entire byte. Most of the bits that are addressable in the SFRs have been given symbolic names. These names will often be referred to in this or other documentation on the C152. Most assemblers also allow the use of the symbolic names when writing in assembly language. These names are shown in Figure 2.3C.

Figure 2.2. Special Function Registers

Figure 2.3A. Bit Addresses

Byte				BIT ADD	RESSES		YF	MEMO!	ARDONY E.
Address	(MSE	3)	ereacing .		emorry,	rogram m	of ROM p	(LSB)	83C152 cor
080H	87	86	85	84	83	82	81	80	(P0)
088H	8F	им 8Ехэ	8D	8C	8B	8A	89	88	(TCON)
090H	97	96	95	94	93	92	91	90	(P1)
098H	9F	9E	9D	9C	9B	9A	99	98	(SCON)
0A0H	A7	A6	A5	A4	АЗ	A2	A1	AO	(P2)
0A8H	AF	-	- 1	AC	AB	AA	A9	A8	(IE)
овон	B7	B6	B5	B4	В3	B2	B1	В0	(P3)
0B8H		-		ВС	BB	ВА	B9	B8	(IP)
0C0H	C7	C6	C5	C4	СЗ	C2	C1	CO	(P4)
0C8H		RNALTE EX	CD	CC	СВ	CA	C9	C8	(IEN1)
ODOH	D7	D6	D5	D4	D3	D2	D1	D0	(PSW)
0D8H	DF	DE	DD	DC	DB	DA	D9	D8	(TSTAT)
0E0H	E7	E6	E5	E4	E3	E2	E1	E0	(A)
0E8H	EF	EE	ED	EC	EB	EA	E9	E8	(RSTAT)
0F0H	F7	F6	F5	F4	F3	F2	F1	F0	(B)
0F8H	-		FD	FC	FB	FA	F9	F8	(IPN1)

Figure 2.3B. Bit Addresses

Byte	-		S	MBOLIC N	NAME BIT	MAP		y Map (bit	omeki ste
Address	(MSB)		SEES	SAGGA TI	8			(LSB)	Byte
080H	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	(P0)
088H	TF1	TR1	TFO	TR0	IE1	IT1	IE0	ITO	(TCON)
090H	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	(P1)
098H	SMO	SM1	SM2	REN	TB8	RB8	TI	RI	(SCON)
OAOH	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	(P2)
0A8H	EA	_ AC	- 00	ES	ET1	EX1	ET0	EX0	(IE)
овон	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	(P3).
0B8H	89	AE	- SR	PS	PT1	PX1	PT0	PX0	(IP)
осон	P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0	(P4)
0C8H	49	-AA	EGSTE	EDMA1	EGSTV	EDMA0	EGSRE	EGSRV	(IEN1)
0D0H	CY	AC	F0 88	RS1	RS0	OV a	3 + 5	Р	(PSW)
0D8H	LNI	NOACK	UR	TCDT	TDN	TFNF	TEN	DMA	(TSTAT)
0E0H	61	58	63	84	čč	8	5	9	HOS(A)
0E8H	OVR	RCABT	AE 88	CRCE	RDN (RFNE	GREN	HABEN	(RSTAT)
оБОН	71	72	73	74	zs l	0		7	H= (B)
0F8H	7 9-	7A-	PGSTE	PDMA1	PGSTV	PDMA0	PGSRE	PGSRV	(IPN1)

Figure 2.3C. Bit Addresses

DORESSES

2.1.3 PROGRAM MEMORY

The 83C152 contains 8K of ROM program memory, and the 80C152 uses only external program memory. Figure 2.4 shows the program memory locations and where they reside. The user is allowed a maximum of 64K of program memory. In the 83C152 program memory fetches beyond 8K automatically access external program memory. When program memory is externally addressed, all of the Port 2 pins emit the address. Since all of Port 2 is affected by the address, unused address pins cannot be used as normal I/O ports even if less than 64K of memory is being accessed.

Figure 2.4. Program Memory

2.2 Interrupt Structure

The C152 retains all five interrupts of the 80C51BH. In addition, six new interrupts have been added for a total of 11 available interrupts. Two SFRs have been added to the C152 for control of the new interrupts. These added SFRs are IEN1 (C8H) for enabling the

interrupts and IPN1 (F8H) for setting the priority. For an explanation on how the priority of interrupts affects their operation please refer to the MCS-51 Architecture and Hardware Chapters in the Intel Embedded Controller Handbook. A detailed description on how the interrupts function is in the MCS®-51 Architectural Overview.

	1492	i viezena	Main and Market and Market Mar
	H80	OT3	IEN1 FUNCTIONS
Symbol	Position	Vector	A IPM1.1 noisonalage lent.1
_	IEN1.7	EDMAG	RESERVED and do not exist on chip.
4-16	IEN1.6	(A)	RESERVED and do not exist on chip.
EGSTE (TSAJ)	18H 18H 18H 28H	04BH	GSC TRANSMIT ERROR—If TSTAT.0 (DMA) is cleared, the interrupt service routine at 4BH is invoked when TSTAT.6 (NOACK) or TSTAT.4 (TCDT) is set and EGSTE is enabled. If TSTAT.0 (DMA) is set, the interrupt service routine will be invoked when the TSTAT.5 (UR) is set and EGSTE is enabled
EDMA1	IEN1.4	053H	DMA CHANNEL REQUEST 1—The interrupt service routine at53H is invoked when DCON1.1 (DONE) is set and EDMA1 is enabled.
EGSTV	IEN1.3	043H	GSC TRANSMIT VALID—If TSTAT.0 (DMA) is cleared, the interrupt service routine at 43H is invoked when TSTAT.2 (TFNF) is set and EGSTV is enabled. If TSTAT.0 (DMA) is set, the interrupt service routine will be invoked when TSTAT.3 (TDN) is set and EGSTV is enabled.
EDMA0	IEN1.2	03BH	DMA CHANNEL REQUEST 0—The interrupt service routine at 3BH will be invoked when DCON0.1 (DONE) is set and EDMA0 is enabled.
EGSRE 80000 ETAMI	INDETERM ODOO INDETERM UNDETERM	033H	GSC RECEIVE ERROR—The interrupt service routine at 33H will be invoked when RSTAT.4 (CRCE), RSTAT.7 (OVR), RSTAT.6 (RCABT), or RSTAT.5 (AE), is set and EGSRE is enabled. This functions the same whether or not TSTAT.0 (DMA) is set.
EGSRV HOO	IEN1.0	02BH	GSC RECEIVE VALID—If TSTAT.0 (DMA) is cleared, the interrupt service routine at 2BH will be invoked when RSTAT.2 (RFNE) is set and EGSRV is enabled. If TSTAT.0 (DMA) is set, the interrupt service routine will be invoked when RSTAT.3 (RDN) is set and EGSRV is enabled.

IPN1 is used the same way the current 80C51BH interrupt priority register (IP) is. By assigning a "1" to the appropriate bit, that interrupt has a higher priority than an interrupt with a "0" assigned to it in the priority register.

The new interrupt priority register (IPN1) contents are:

Symbol	Position	Function
PGSTE	IPN1.5	GSC TRANSMIT ERROR
PDMA1	IPN1.4	DMA CHANNEL REQUEST 1
PGSTV	IPN1.3	GSC TRANSMIT VALID
PDMA0	IPN1.2	DMA CHANNEL REQUEST 0
PGSRE	IPN1.1	GSC RECEIVE ERROR
PGSRV	IPN1.0	GSC RECEIVE VALID

HARDWARE DESCRIPTION OF THE 83C152

The eleven interrupts are sampled in the following order when assigned the same priority level in the IP and IPN1 registers:

Priority Sequence	Priority Symbolic Address	Priority Symbolic Name	Interrupt Symbolic Address	Interrupt Symbolic Name	Vector Address	The C152 retained different six not six not the C152 for
1	IP.0	PX0	SVIE.0 and 8	EXO TO	03H	(FIRST)
2	IPN1.0	PGSRV	IEN1.0	EGSRV	2BH	
3	IP.1	PTO	OTE THE THE	ET0	OBH	
4	IPN1.1 no	PGSRE	IEN1.1	EGSRE	33H	Symbol
5	IPN1.2	PDMA0	IEN1.2	EDMA0	3BH	
6	IP.2	PX1	IE.2	EX1	13H	
7	IPN1.3	PGSTV	IEN1.3	EGSTV	43H	
ena Dersek	IPN1.4	PDMA1	IEN1.4	EDMA1	53H	EGSTE
9	IP.3	PT1	IE.3	ET1	1BH	
10	IPN1.5	PGSTE	IEN1.5	EGSTE	4BH	
bei11ne al ∃	IP.4	PS	IE.4	ES	23H	(LAST)

DMA CHANNEL REQUEST 1—The interrupt service routine at 53H is invoked when DCON1.1 (DONE) is set and EDMA1 is enabled.

RESET performs the same operations in both the 80C51BH and the C152 and those conditions that exist at the end of a valid RESET are:

Register	Contents Contents	Register	Contents
ACC	00H	P0-P6	0FFH
ADR0-3	00H	PCON	0XXX0000B
AMSK0	00H	PRBS	00Н
AMSK1	00H	PSW	00H
B	00H	RFIFO	INDETERMINATE
BAUD	HOO BETATE AND	RSTAT	00000000B
BCRH0	INDETERMINATE	SARH0	INDETERMINATE
BCRH1	INDETERMINATE	A SARH1	INDETERMINATE
BCRL0	INDETERMINATE	SARLO MAGO	INDETERMINATE
STCRL1 nedw be	INDETERMINATE	SARL1	INDETERMINATE
BKOFF OTA	INDETERMINATE	SBUF	INDETERMINATE
DARHO	INDETERMINATE INTERIOR	SCON	00H
DARH1	INDETERMINATE	SLOTTM	00H
DARL0	INDETERMINATE	SP	07H
DARL1	INDETERMINATE	TCDCNT	INDETERMINATE
DCON0	terr Hoo ith a "0" assigned to	TCON Contain a	prop H00 bit, that interrupt has
DCON1	00H	TFIFO	INDETERMINATE
DPTR	0000H	THO	Hoo and district on the or
GMOD	X000000B	TH1	00H
IE	0XX00000B	TL0	HOO Symbol
IEN1	ORAE TIMEXX000000B	TL1//9/	HOO POSTE
IFS	HOOA CHANNEL REOURS	TMOD	намира оон
IP	XXX00000B	TSTAT	XX000100B
IPN1	XX000000B	PC	0000Н
MYSLOT	00000000B	IPN1.2	PDMAG

The same conditions apply for both the 80C51BH and C152 for a correct reset pulse or "power-on" reset except that Reset is active low on the C152. Please refer to the 8051/52 Hardware Description Chapter of the Intel Embedded Controller Handbook for an explanation on how to provide a proper power-on reset. Since Reset is active low on the C152, the resistor should be tied to VCC and the capacitor should be tied to VCC and the capacitor should be tied to VSS.

Because the clocking on part of the GSC circuitry is independent of the processor clock, data may still be transmitted and \overline{DEN} active for some time after reset is applied. The transmission may continue for a maximum of four machine cycles after reset is first pulled low. Although Reset has to be held low for only three machine cycles to be recognized by the GSC hardware, all of the GSC circuitry may not be reset until in the user application that all transmission and \overline{DEN} becomes inactive at the end of a reset, then Reset will have to be held low for a minimum of four machine cycles.

2.4 Ports 4, 5 and 6

Ports 4, 5 and 6 operation is identical to Ports 1-3 on the 80C51BH. The description of port operation can be found in the 8051/52 Hardware Description Chapter of the Intel Embedded Controller Handbook. Ports 5 and 6 exist only on the "JB" and "JD" version of the C152 and can either function as standard I/O ports or can be configured so that program memory fetches are performed with these two ports. To configure ports 5 and 6 as standard I/O ports, EBEN is tied to a logic low. When in this configuration, ports 5 and 6 operation is identical to that of port 4 except they are not bit addressable. To configure ports 5 and 6 to fetch program memory, EBEN is tied to a logic high. When using ports 5 and 6 to fetch the program memory, the signal EPSEN is used to enable the external memory device instead of PSEN. Regardless of which ports are used to fetch program memory, all data memory fetches occur over ports 0 and 2. The 80C152JB and 80C152JD are available as ROMless devices only. ALE is still used to latch the address in all configurations. Table 2.1 summarizes the control signals and how the ports may be

to the Intel Embedded Controller Handbook which describes the timer/counters and their use. The user should bear in mind, when reading the Intel Embedded Controller Handbook that the C152 does not have the third event timer named Timer 2, which is in the 8052.

2.6 Package

The 83C152 is packaged in a 48 pin DIP and a 68 lead PLCC. This differs from the 40 pin DIP and 44 pin PLCC of the 80C51BH. The larger package is required to accommodate the extra 8 bit I/O port (P4). Figures 2.5A, 2.5B and 2.5C show the packages and the pin names.

Figure 2.5A. DIP Pin Out

2.5 Timer/Counters applied mangord points safed abox ent at

The 80C51BH and C152 have the same pair of 16-bit general purpose timer/counters. The user should refer

Table 2.1 Program Memory Fetches

EBEN	EA	Program Fetch via	PSEN	EPSEN	Comments
0	0	P0, P2	Active	Inactive	Addresses 0-0FFFFH
0	1	N/A	N/A	N/A	Invalid Combination
1	0	P5, P6	Inactive	Active	Addresses 0-0FFFFH
1	1	P5, P6 P0, P2	Inactive Active	Active Inactive	Addresses 0-1FFFH Addresses ≥ 2000H

Figure 2.5C. PLCC Pin Out

2.7 Pin Description

The pin description for the 80C51BH also applies to the C152 and is listed below. Changes have been made to the descriptions as they apply to the C152.

PIN DESCRIPTION

Pin #		(Wil) PS.6 El 16	standard I/O ports, EBEN is tied to a logic low.					
DIP	PLCC(1)	(85) 93.7 € 17	When its this configuration, ports 5 annotarious is lentical to that of port 4 except they are not bit ad-					
48	2	V _{CC} —Supply voltage.	reseable. To configure ports 5 and 6 to fetch program					
24 (84)	3, 33(2)	VSS—Circuit ground.	orts 5 and 6 to fetch the program memory, the signal					
18-21, 25-28	27–30, 34–37	pin can sink 8 LS TTL input that state can be used as h Port 0 is also the multiplexe external program memory i Memory, Port 0 always emi	pen drain bi-directional I/O port. As an output port each ts. Port 0 pins that have 1s written to them float, and in igh-impedance inputs. ed low-order address and data bus during accesses to f EBEN is pulled low. During accesses to external Data its the low-order address byte and serves as the asse applications it uses strong internal pullups when					
		emitting 1s.	e bytes during program verification. External pullups are					

NOTES:

1. N.C. pins on PLCC package may be connected to internal die and should not be used in customer applications.

		Program Fetoh via	7.53	
Addresses 0-0FFFFH				
	N/A			

PIN DESCRIPTION (Continued)

Pi	in #			Technology Description	* n	9
DIP	PLCC(1)			Description	PLCC(1)	
	les w11-4 to permits a p s. Although nue to be d.	have to	Is written to ed as input e current (I also serve	s an 8-bit bidirectional I/O port with internal pull to them are pulled high by the internal pullups, as. As inputs, Port 1 pins that are externally bein IL, on the data sheet) because of the internal pass the functions of various special features of the	and in that stang pulled low ullups.	ate can will
		Pin	Name	Anomem lemente Alternate Function		
	osoliator free, towever, the ory. While in	P1.0 P1.1 P1.2 P1.3	GRXD GTXD DEN TXC	GSC data input pin GSC data output pin GSC enable signal for an external driver		
	rogram Men PSEN is act n Memory, F vations are s	P1.4 P1.5 P1.6	RXC HLD HLDA	GSC input pin for external transmit clock GSC input pin for external receive clock DMA hold input/output DMA hold acknowledge input/output		
	in order to e lone 0000H	have 1 be use source Port 2 Memo 16-bit addres During Port 2	Is written to a sinput to a current (I emits the ory if EBEN addresses as byte. In gaccesses emits the	s an 8-bit bi-directional I/O port with internal puto them are pulled high by the internal pullups, a.s. As inputs, Port 2 pins that are externally beingle, on the data sheet) because of the internal phigh-order address byte during fetches from extended low. During accesses to external Data (MOVX @ DPTR and DMA operations), Port 2 these applications it uses strong internal pullups to external Data Memory that use 8-bit address contents of the P2 Special Function Register.	and in that stand pulled low ullups. Atternal Program a Memory that emits the highest when emitted asses (MOVX)	ate can will am at use ph-order ting 1s.
	14–16, 18, 19, 23–25	have 1 be use source Port 3	s written to das input current (I	s an 8-bit bi-directional I/O port with internal put to them are pulled high by the internal pullups, a s. As inputs, Port 3 pins that are externally bein IL, on the data sheet) because of the pullups. se the functions of various special features of the	and in that sta ng pulled low	ate can will
	Hups, Port 6	Pin	Name	Alternate Function	88 \$8	AND
	ps, and in tr pulled low w uilups, ternal Progr pullups whe	P3.0 P3.1 P3.2 P3.3 P3.4 P3.5	RXD TXD INTO INT1 T0 T1	Serial input line Serial output line External interrupt 0 External interrupt 1 Timer 0 external input Timer 1 external input	52,57 50,68 1,51	
	nemory fatch he ports are	P3.6 P3.7	WR RD	External Data Memory Write strobe External Data Memory Read strobe		AN
47-40	65–58 ngong ismet evitsler beet	have 1 be use source	s written to ed as input current (I	s an 8-bit bi-directional I/O port with internal pure them are pulled high by the internal pullups, as. As inputs, Port 4 pins that are externally being on the data sheet) because of the internal pures the low-order address bytes during program	and in that sta ig pulled low ullups. In add	ate can will lition,

N.C. pins on PLCC package may be connected to internal die and should not be used in customer applications.
 It is recommended that both Pin 3 and Pin 33 be grounded for PLCC devices.

HARDWARE DESCRIPTION OF THE 83C152

PIN DESCRIPTION (Continued)

Pi	n #	noligheast Description					
DIP	PLCC(1)	Dooription	PLCCH				
	ups. Po E1 p ind in that st g pulled low allups. e 8XC152, a	RST—Reset input. A logic low on this pin for three machine cy oscillator is running resets the device. An internal pullup resist on reset to be generated using only an external capacitor to V recognizes the reset after three machine cycles, data may cor transmitted for up to 4 machine cycles after Reset is first applied.	or permits a po SS. Although that ntinue to be				
38	55	ALE—Address Latch Enable output signal for latching the low during accesses to external memory. In normal operation ALE is emitted at a constant rate of 1/6 the and may be used for external timing or clocking purposes. Not ALE pulse is skipped during each access to external Data Mer ALE remains at a constant high level.	oscillator freq te, however, the	uency, at one			
	54 Lips. Port 2 and le that st	PSEN—Program Store Enable is the Read strobe to External When the 8XC152 is executing from external program memory (low). When the device is executing code from External Program activated twice each machine cycle, except that two PSEN act during each access to External Data Memory. While in Reset, constant high level.	y, PSEN is activated in Memory, PS tivations are sk	SEN is			
	g pulled 66 will be seen at Programmery the Memory the comits the but	EA—External Access enable. EA must be externally pulled low the 8XC152 to fetch code from External Program Memory loca OFFFH. EA must be connected to V _{CC} for internal program execution.					
23 500	32 narky s XVOM) see	XTAL1—Input to the inverting oscillator amplifier and input to generating circuits.	the internal clo	ck			
22	31	XTAL2—Output from the oscillator amplifier.					
A/N pins that are can will amily,	17, 20 21, 22 38, 39 40, 49	Port 5—Port 5 is an 8-bit bi-directional I/O port with internal pthat have 1s written to them are pulled high by the internal pulcan be used as inputs. As inputs, Port 5 pins that are externall source current (I _{IL} , on the data sheet) because of the internal Port 5 is also the multiplexed low-order address and data bus external program memory if EBEN is pulled high. In this applic pullups when emitting 1s.	lups, and in that y being pulled l pullups. during accesse	t state low wil			
N/A	67, 66 52, 57 50, 68 1, 51	Port 6—Port 6 is an 8-bit bi-directional I/O port with internal put that have 1s written to them are pulled high by the internal put can be used as inputs. As inputs, Port 6 pins that are externall source current (I _{IL} , on the data sheet) because of the internal Port 6 emits the high-order address byte during fetches from e Memory if EBEN is pulled high. In this application it uses stronemitting 1s.	lups, and in the y pulled low wil pullups. external Progra	it state			
N/A	12	EBEN—E-Bus Enable input that designates whether program place via Ports 0 and 2 or Ports 5 and 6. Table 2.1 shows how conjunction with EBEN.					
oms mat ate can will	53 n i brus	EPSEN —E-bus Program Store Enable is the Read strobe to e memory when EBEN is high. Table 2.1 shows when EPSEN is PSEN depending on the status of EBEN and EA.					

NOTES:

N.C. pins on PLCC package may be connected to internal die and should not be used in customer applications.
 It is recommended that both Pin 3 and Pin 33 be grounded for PLCC devices.

2. It is recommended that both Pin 3 and Pin 33 be grounded for PLCC devices.

2.8 Power Down and Idle

Both of these operations function identically as in the 80C51BH. Application Note 252, "Designing with the 80C51BH" gives an excellent explanation on the use of the reduced power consumption modes. Some of the items not covered in AP-252 are the considerations that are applicable when using the GSC or DMA in conjunction with the power saving modes.

The GSC continues to operate normally in Idle as long as the interrupts are enabled. The interrupts need to be enabled, so that the CPU can service the FIFO's and terminate transmission or reception when appropriate. After servicing the GSC, user software will need to again invoke the Idle command as the CPU does not automatically re-enter the Idle mode after servicing the interrupts.

The GSC does not operate while in Power Down so the steps required prior to entering Power Down become more complicated. The sequence when entering Power Down and the status of the I/O is of major importance in preventing damage to the C152 or other components in the system. Since the only way to exit Power Down is with a Reset, several problem areas become very significant. Some of the problems that merit careful consideration are cases where the Power Down occurs during the middle of a transmission, and the possibility that other stations are not or cannot enter this same mode. The state of the GSC I/O pins becomes critical and the GSC status will need to be saved before power down is entered. There will also need to be some method of identifying to the CPU that the following Reset is probably not a cold start and that other stations on the link may have already been initialized.

The DMA circuitry stops operation in both Idle and Power Down modes. Since operation is stopped in both modes, the process should be similar in each case. Specific steps that need to be taken include: notification to other devices that DMA operation is about to cease for a particular station or network, proper withdrawal from DMA operation, and saving the status of the DMA channels. Again, the status of the I/O pins during Power Down needs careful consideration to avoid damage to the C152 or other components.

Port 4 returns to its input state, which is high level using weak pullup devices.

2.9 Local Serial Channel

The Local Serial Channel (LSC) is the name given to the UART that exists on all MCS-51 devices. The LSC's function and operation is exactly the same as on the 80C51BH. For a description on the use of the LSC, refer to the 8051/52 Hardware Description Chapter in the Intel Embedded Controller Handbook, under Serial Interface.

3.0 GLOBAL SERIAL CHANNEL

3.1 Introduction

The Global Serial Channel (GSC) is a multi-protocol, high performance serial interface targeted for data rates up to 2 MBPS with on-chip clock recovery, and 2.4 MBPS using the external clock options. In applications using the serial channel, the GSC implements the Data Link Layer and Physical Link Layer as described in the ISO reference model for open systems interconnection.

The GSC is designed to meet the requirements of a wide range of serial communications applications and is optimized to implement Carrier-Sense Multi-Access with Collision Detection (CSMA/CD) and Synchronous Data Link Control (SDLC) protocols. The GSC architecture is also designed to provide flexibility in defining non-standard protocols. This provides the ability to retrofit new products into older serial technologies, as well as the development of proprietary interconnect schemes for serial backplane environments.

The versatility of the GSC is demonstrated by the wide range of choices available to the user. The various modes of operation are summarized in Table 3.1. In subsequent sections, each available choice of operation will be explained in detail.

In using Table 3.1, the parameters listed vertically (on the left hand side) represent an option that is selected (X). The parameters listed horizontally (along the top of the table) are all the parameters that could theoretically be selected (Y). The symbol at the junction of both X and Y determines the applicability of the option Y.

Note, that not all combinations are backwards compatible. For example, Manchester encoding requires half duplex, but half duplex does not require Manchester encoding.

nnel LSC) is the name given to	lad	DATA	lai v	Ser	AGS	I so		. 00	D	U-		KNO	w-	AD	DRE	SS G-	dsis	СКС	hese	PF	RE+
N=NOT AVAILABLE M=MANDATORY O=OPTIONAL P=NORMALLY PREFERRED X=N/A	MANCHESTE	N R Z	N R Z I	0 1 1 1 0	1 1 / 1 D L E	N O N E	1 6 B I T C C I T	3 2 B 1 T A U T O	HALF	ha r	NONE	HARDWARE	OWEDER-ZED	NONE/ALL	ST ST S svir svir sed.	1 6 B 1 T	N O R M A L	ALTERNATE	DETERMINIST	NONE HOGO	B I I I I I I I I I I I I I I I I I I I
		no	itoti	ubc	nie	1	8		riate ed to	qore	igs lliw	hen	wile v ne	epti	os'r	n or	issio	min i	c	nate	m
DATA ENCODING:									013:3	anh	Tro	3 00	2 50	bn	0.79177	100	alli	od:	oka	772	-
MANCHESTER(CSMA/CD)	X	N.	N	31 H	Р	0 10	0	0	M	N	0	0	0	0	0	0	0	0	0	N	C
NRZI (SDLC)	N	X	N	P	10	1	0	0	0	0	0	N	Р	0	0	0	N	N	N	0	0
NRZ (EXT CLK)	N	N	X	0	0	10	0	0	0	0	0	N	0	0	0	0	0	0	0	0	0
FLAGS:01111110 (SDLC)	N	P	0	X	1	ali	0	0	0	0	0	N	Р	0	0	0	N	N	N	0	C
ik Layer as descraddittithe	Р	N	0	114 1	X	18	0	0	0	N	0	0	0	0	0	0	0	0	0	ndo	C
CRC:NONE	99	115	1	7	1	X	N	N	048	N	1141	D[¶III	P	110	(110)	11110	N	N	N	119 1	1
16-BIT CCITT	0	0	0	0	0	N	X	N	0	0	0	0	0	0	0	0	0	0	0	0	C
32-BIT AUTODIN II	0	0	0	0	0	N	N	X	0	N	0	0	0	0	0	0	0	0	0	0	C
DUPLEX:HALF	0	0	0	0	0	114	0	0	(X)	N	0	0	0	0	0	0	0	0	0	0	C
OSMA/CD) and SULTA	N	0	0	М	N	N	М	N	N	X	0	N	P	0	0	0	N	N	N	0	C
ACKNOWLEDGEMENT:NONE	0	0	0	0	0	1	0	0	0	0	X	N	N	0	0	0	0	0	0	0	C
HARDWARE ON BIT A	0	N	N	N.	0	911	0	0	0	N	N	X	N	0	0	0	N	0	0	N	C
USER DEFINED	0	P	0	0	0	7	0	0	0	P	N	N	X	0	0	0	0	0	0	0	0
ADDRESS RECOGNITION:	bala	niqui	Llain	00.3	े हार भी	men	25		nette	1.5.0	208 5	01	B05	B 08	LS II	197 3	IOTA I	.00	nien	S SI	
NONE/ALL	0	0	0	0	0	1	0	0	0	0	0	0	0	X	N	N	0	0	0	0	0
s demonstrated by TIB-81de	0	0	0	0	0	¥ 101	0	0	0	0	0	0	0	N	X	N	0	0	0	0	0
to the user. The TIE-brush	0	0	0	0	0	1	0	0	0	0	0	0	0	N	N	X	0	0	0	0	0
COLLISION RESOLUTION:	a di	0169 3	inoi	Sec	neni	naeri	112	- 3	ans.	DED1	FIFO	g III	HOI	HI IS	do s	QO32	14	1007	D E	MIL	91
NORMAL	0	N	0	N	0	N	0	0	М	N	0	N	0	0	0	0	X	N	N	N	C
ALTERNATE	0	N	0	N	0	N	0	0	M	N	0	0	0	0	0	0	N	X	N	N	0
DETERMINISTIC	0	N	0	N	0	N	0	0	M	N	0	0	0	0	0	0	N	N	X	N	C
PREAMBLE:NONE	N	0	0	0	11	1	0	0	0	0	0	N	0	0	0	0	N	N	N	X	N
meters that could TIB-8ch-	0	0	0	0	0	er i i	0	0.	0	0	0	0	0	0	0	0	0	0	0	N	X
32-BIT 1 SAT IS IODITIVE	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	N	N
64-BIT	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	N	N
JAM:D.C.	М	N	N	N	0	N.	0	0	М	N	0	0	0	0	0	0	0	0	0	N	0
ons are backwards cononi-	M	dN.	N	N	0	N	0	0	М	N	0	0	0	0	0	0	0	0	0	N	C
CLOCKING:EXTERNAL	N	М	N	0	0	N	0	0	0	0	0	N	0	0	0	0	N	N	N	0	C
INTERNAL	0	0	N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONTROL: CPU	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DMA	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
RAW RECEIVE:	1	1	1	1	1	.1	1	1	1	N	1	1	1	1	1	1	0	0	0	1	1
RAW TRANSMIT:	1	1	1	1	1	1	1	1	1	N	1	1	1	1	1	1	N	N	N	1	1
CSMA/CD:	0	N	2	1	Р	1	0	0	М	N	0	0	0	0	0	0	0	0	0	N	0
SDLC:	N	0	0	Р	1	1	0	0	0	0	0	N	0	0	0	0	N	N	N	Р	0

	Continu	

station's opportunity has ar		BLE	i mdjį	ME	CLO			TROL				12100
re-tran 3JBAJIAVA TON = N andom Tri YROTAGNAM = M ANOITYCO = O GARRATARY AND ANOITYCO = O tations having the same slo ption on the C152 which al ve their slot assignments pre	to be r pportu t also l two s is an c	tended equal o link bu due to There station	ts are in ons an ication allision nment	hen stati mun er c assig lows	E R N A L	E N S N S N S N S N S N S N S N S N S N	t op en t i qui t on U fair on t i beyon on. For bough i bough i	tteM by te IA k ould be anches tents ge tentati	WRECE-VE	W T R A N S M I	M of A control of this	and
DATA ENCODING:	bollen	ei ato	10 10 1	men								
MANCHESTER INTUINEST	W.O.B	0,0	0 9	0	N	M	0	0010	0	0	M	N
ess of the link to earsnot to terministic resolutions.	000	200	N	O N	N	TI MISC	0	0	0	0	bNmo	паМ
the business repeated of the	0	0	0	0	M	N	0	0	0	0	0	0
FLAGS:01111110	0 0000	0	N	II N	0	0	0	0	0	1 1 1	enolige	P
sm is required. IBJONthistic	ninO oi	000	0	0.10	0.10	0	0	0	0	nitisd	t aiPans	am hi
CRC:NONE	ab ad c	nay, als	N	N	140133	iot pra	TOTAL	St clotte	to salt 1	an Bun	reads si	10010
16-BIT CCITT	0	0	0	0	0	0	0	0	tw has	100	0	0
32-BIT AUTODIN II	0	0	coOsic	8 0	0	0	0	0.1	pletner	ni dd n	0	0
DUPLEX:HALF	0	0	0	0	0	0	0	0	05	0	0	0
FULL TAMBOR 3	0	00/4	N)	N.2.	0	0	0	0	N	N	N	P
ACKNOWLEDGEMENT:NONE	0	0	0	0	O 01	qoobn	0	10 000	9 O m	0	0	0
HARDWARE (TOR) NAT	0	1000	0	0	None	010	0	atro bi	Bd Nsa	e Mires	0	SON
USER DEFINED To bad	0	00	пОля	0	0	0	0	0	0	0	0	21.9
ADDRESS RECOGNITION:	+1	gure 3.	er ar av	SHOW	besoc	1074	de the	uloni	ındardı	280 868	dI b	hieve
DRESS INFO CANON	0 -	0	0	0	-0818	100	bro (a	100	086	0	100	8 0
8-BIT	0	0	0	0	0	0	0	0	ne pau	i dade	0	0
16-BIT	0	0	0	0	0	0	0	0	ant o	inilar	0	0
COLLISION RESOLUTION:	e pread	E-Th	AMBL	PRE							d rate.	uad s
ne presimble is plannang on	0	0	0	0	N	0	0	0	0	N	М	N
ALTERNATE	0	0	0	0	N	0	0	0	0	N	M	N
DETERMINISTIC	0	0	0	0	N	0	0	0	0	N	М	N
PREAMBLE:NONE	N	VitNs a	e Nat	IN N	0	0	0	0	0	0	No	P
B-BIT on ai dignol aldma	N	N	0	0	0	0	0	0	1	1	0	0
onsidered part of TIB-SE	X	N	0	0	0	0	0	0	oy sen	esigned si elajet	0	0
where the DOF is TIB-40art o	N	X	0	0	0	0	0	0	e rahm	noi fare	0	0
JAM:D.C.	0	0	X	N	2	0	0	81101	0	political	ээ Мизэ	sb N
CRC	0	0	N	X	2	0	0	0	0	N	М	N
CLOCKING:EXTERNAL	beO e	100	d Nes	5 N	X	N	0	0	0	0	2	0
sidiNTERNAL 30 symposini	0	0	0	0	N	Х	0	0	0	0	0	0
CONTROL:CPU	0	0	0	0	0	0	X	N	0	0	0	0
DMA	0	0	0	0	0	0	N	X	0	0	0	0
RAW RECEIVE: 10-24-11-12-22	Drine	SMA	0	0	10 0	baku.	i a t ia	do:tm)	ni X	ted/(s)	ris fetar	oiat.
RAW TRANSMIT:	entop b	Con Sale	N	N	19 00	are provi	9/4/ 9	is quit	N	X	a liqua	3 7
CSMA/CD: and tada (a) and a	0	0	0	0	2	0	0	0	0	0	X	N
SDLC:	0	0	of Nos	N	0	0	0	0	0	0	N	X

Note 1: Programmable in Raw transmit or receive of collision resolution made available to the user on the mode.

Note 2: When CSMA/CD is enabled, an external clock can be used on the transmitter, but not the receiver. Since the receiver monitors the link for Manchester violations, external hardware would be required to reformat the data from NRZ to Manchester on the transmitter. These hardware requirements go beyond the expectations of this table for implementation. For that reason it was assumed that the external clock cannot be used at all with CSMA/CD protocol, although it is actually possible to do so.

Almost all the options available from Table 3.1 can be implemented with the proper software to perform the functions that are necessary for the options selected. In Table 3.1, a judgment has been made by the authors on which options are practical and which are not. What this means is that in Table 3.1, an "N" should be interpreted as meaning that the option is either not practical when implemented with user software or that it cannot be done. An "O" is used when that function is one of several that can be implemented with the GSC without additional user software.

The GSC is targeted to operate at bit rates up to 2.4 MBps using the external clock options and up to 2 MBps using the internal baud rate generator, internal data formatting and on-chip clock recovery. The baud rate generator allows most standard rates to be achieved. These standards include the proposed IEEE802.3 LAN standard (1.0MBps) and the T1 standard (1.544MBps). The baud rate is derived from the crystal frequency. This makes crystal selection important when determining the frequency and accuracy of the baud rate.

3.2 CSMA/CD Operation

3.2.1 CSMA/CD OVERVIEW

CSMA/CD operates by sensing the transmission line for a carrier, which indicates link activity. At the end of link activity, a station must wait a period of time, called the deference period, before transmission may begin. The deference period is also known as the interframe space. The interframe space is explained in Section 3.2.3.

With this type of operation, there is always the possibility of a collision occurring after the deference period due to line delays. If a collision is detected after transmission is started, a jamming mechanism is used to ensure that all stations monitoring the line are aware of the collision. A resolution algorithm is then executed to resolve the contention. There are three different modes C152. Re-transmission is attempted when a resolution algorithm indicates that a station's opportunity has arrived.

Normally, in CSMA/CD, re-transmission slot assignments are intended to be random. This method gives all stations an equal opportunity to utilize the serial communication link but also leaves the possibility of another collision due to two stations having the same slot assignment. There is an option on the C152 which allows all the stations to have their slot assignments previously determined by user software. This pre-assignment of slots is called the deterministic resolution mode. This method allows resolution after the first collision and ensures the access of the link to each station during the resolution. Deterministic resolution can be advantageous when the link is being heavily used and collisions are frequently occurring and in real time applications where determinism is required. Deterministic resolution may also be desirable if it is known beforehand that a certain station's communication needs to be prioritized over those of other stations if it is involved in a collision.

3.2.2 CSMA/CD FRAME FORMAT

The frame format in CSMA/CD consists of a preamble, Beginning of Frame flag (BOF), address field, information field, CRC, and End of Frame flag (EOF) as shown in Figure 3.1.

PREAMBLE | BOF | ADDRESS | INFO | CRC | EOF

Figure 3.1 Typical CSMA/CD Frame

PREAMBLE - The preamble is a series of alternating 1s and 0s. The length of the preamble is programmable to be 0, 8, 32, or 64 bits. The purpose of the preamble is to allow all the receivers to synchronize to the same clock edges and identifies to the other stations on-line that there is activity indicating the link is being used. For these reasons zero preamble length is not compatible with standard CSMA/CD, protocols. When using CSMA/CD, the BOF is considered part of the preamble compared to SDLC, where the BOF is not part of the preamble. This means that if zero preamble length were to be used in CSMA/CD mode, no BOF would be generated. It is strongly recommended that zero preamble length never be used in CSMA/CD mode. If the preamble contains two consecutive Os, the preamble is considered invalid. If the C152 detects an invalid preamble, the frame is ignored.

BOF - In CSMA/CD the Beginning-Of-Frame is a part of the preamble and consists of two sequential 1s. The purpose of the BOF is to identify the end of the preamble and indicate to the receiver(s) that the address will immediately follow.

ADDRESS - The address field is used to identify which messages are intended for which stations. The user must assign addresses to each destination and source. How the addresses are assigned, how they are maintained, and how each transmitter is made aware of which addresses are available is an issue that is left to the user. Some suggestions are discussed in Section 3.5.5. Generally, each address is unique to each station but there are special cases where this is not true. In these special cases, a message is intended for more than one station. These multi-targeted messages are called broadcast or multicast-group addresses. A broadcast address consisting of all 1s will always be received by all stations. A multicast-group address usually is indicated by using a las the first address bit. The user can choose to mask off all or selective bits of the address so that the GSC receives all messages or multicast-group messages. The address length is programmable to be 8 or 16 bits. An address consisting of all 1s will always be received by the GSC on the C152. The address bits are always passed from the GSC to the CPU. With user software, the address can be extended beyond 16 bits, but the automatic address recognition will only work on a maximum of 16 bits. User software will have to resolve any remaining address bits.

INFO - This is the information field and contains the data that one device on the link wishes to transmit to another device. It can be of any length the user wishes but needs to be in multiples of 8 bits. This is because multiples of 8 bits are used to transfer data into or out of the GSC FIFOs. The information field is delineated from the rest of the components of the frame by the preceding address field and the following CRC. The receiver determines the position of the end of the information field by passing the bytes through a temporary storage space. When the EOF is received the bytes in temporary storage are the CRC, and the last bit received previous to the CRC constitute the end of the information field.

CRC - The Cyclic Redundancy Check (CRC) is an error checking algorithm commonly used in serial communications. The C152 offers two types of CRC algorithms, a 16-bit and a 32-bit. The 16-bit algorithm is normally used in the SDLC mode and will be described in the SDLC section. In CSMA/CD applications either

algorithm can be used but IEEE 802.3 uses a 32-bit CRC. The generation polynomial the C152 uses with the 32-bit CRC is:

$$G(X) = X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$$

The CRC generator, as shown in Figure 3.2, operates by taking each bit as it is received and XOR'ing it with bit 31 of the current CRC. This result is then placed in temporary storage. The result of XOR'ing bit 31 with the received bit is then XOR'd with bits 0, 1, 3, 4, 6, 7, 9, 10, 11, 15, 21, 22, 25 as the CRC is shifted right one position. When the CRC is shifted right, the temporary storage space holding the result of XOR'ing bit 31 and the incoming bit is shifted into position 0. The whole process is then repeated with the next incoming or outgoing bit.

The user has no access to the CRC generator or the bits which constitute the CRC while in CSMA/CD. On transmission, the CRC is automatically appended to the data being sent, and on reception, the CRC bits are not normally loaded into the receive FIFO. Instead, they are automatically stripped. The only indication the user has for the status of the CRC is a pass/fail flag. The pass/fail flag only operates during reception. A CRC is considered as passing when the the CRC generator has 11000111 00000100 11011010 01111011B as a remainder after all of the data, including the CRC checksum, from the transmitting station has been cycled through the CRC generator. The preamble, BOF and EOF are not included as part of the CRC algorithm. An interrupt is available that will interrupt the CPU if the CRC of the receiver is invalid. The user can enable the CRC to be passed to the CPU by placing the receiver in the raw receive mode.

This method of calculating the CRC is compatible with IEEE 802.3.

EOF - The End Of Frame indicates when the transmission is completed. The end flag in CSMA/CD consists of an idle condition. An idle condition is assumed when there is no transitions and the link remains high for 2 or more bit times.

d if their C152 is teeted teeted in this is in (TEEE

frer reset IPS is 0, which delays the first transmission or both SDLC and CSMA/CD by 256 bit times (after seet a bit time equals 8 oscillator clock periods).

Figure 3.2. CRC Generator

3.2.3 INTERFRAME SPACE

The interframe space is the amount of time that transmission is delayed after the link is sensed as being idle and is used to separate transmitted frames. In alternate backoff mode, the interframe space may also be included in the determination of when retransmissions may actually begin. The C152 allows programmable interframe spaces of even numbers of bit times from 2 to 256.

The period of the interframe space is determined by the contents of IFS. IFS is an SFR that is programmable from 0 to 254. The interframe space is measured in bit times. The value in IFS multiplied by the bit time equals the interframe space unless IFS equals 0. If IFS does equal 0, then the interframe space will equal 256 bit times. One of the considerations when loading the IFS is that only even numbers (LSB must be 0) can be used because only the 7 most significant bits are loaded into IFS. The LSB is controlled by the GSC and determines which half of the IFS is currently being used. In some modes, the interframe space timer is re-triggered if activity is detected during the first half of the period. The GSC determines which half of the interframe space is currently being used by examining the LSB. A one indicates the first half and zero indicates the second half of the IFS.

After reset IFS is 0, which delays the first transmission for both SDLC and CSMA/CD by 256 bit times (after reset, a bit time equals 8 oscillator clock periods).

In most applications, the period of the interframe space will be equal to or greater than the amount of time needed to turn-around the received frame. The turn-around period is the amount of time that is needed by user software to complete the handling of a received frame and be prepared to receive the next frame. An interframe space smaller than the required turn-around period could be used, but would allow some frames to be missed.

When a GSC transmitter has a new message to send, it will first sense the link. If activity is detected, transmission will be deferred to allow the frame in progress to complete. When link activity ceases, the station continues deferring for one interframe space period.

As mentioned earlier, the interframe space is used during the collision resolution period as well as during normal transmission. The backoff method selected affects how the deference period is handled during normal transmission. If normal backoff mode is selected, the interframe space timer is reset if activity occurs during approximately the first half of the interframe space. If alternate backoff or deterministic backoff is selected, the timer is not reset. In all cases when the interframe space timer expires, transmission may begin, regardless if there is activity on the link or not. Although the C152 resets the interframe space timer if activity is detected during the first one-half of the interframe space, this is not necessarily true of all CSMA/CD systems. (IEEE 802.3 recommends that the interframe space be reset if activity is detected during the first two-thirds or less of the interframe space.)

3.2.4 CSMA/CD DATA ENCODING

Manchester encoding/decoding is automatically selected when the user software selects CSMA/CD transmission mode (See Figure 3.3). In Manchester encoding the value of the bit is determined by the transition in the middle of the bit time, a positive transition is decoded as a 1 and a negative transition is decoded as a 0.

If the external 1X clock feature is chosen the transmission mode is always NRZ (see Section 3.5.11). Using CSMA/CD with the external clock option is not supported because the data needs reformatting from NRZ to Manchester for the receiver to be able to detect code violations and collisions.

mines whether a collision sets RCART or not

3.2.5 COLLISION DETECTION

The GSC hardware detects collisions by detecting Manchester waveform violations at its GRXD pin. Three kinds of waveform violations are detected: a missing 0-to-1 transition where one was expected, a 1-to-0 transition where none was expected, and a waveform that stays low (or high) for too short a time.

Jitter Tolerance someone ROBA standard and to be

A valid Manchester waveform must have a transition at the midpoint of any bit cell, and may have a transition at the edge of any bit cell. Therefore, transitions will nominally be separated by either 1/2 bit-time or 1 bit-time.

The GSC samples the GRXD pin at the rate of 8 x the bit rate. The sequence of samples for the received bit sequence 001 would nominally be:

The sampling system allows a jitter tolerance of ± 1 sample for transitions that are 1/2 bit-time apart, and ± 2 samples for transitions that are 1 bit-time apart.

Narrow Pulses and and demonstrate out and allei and

A valid Manchester waveform must stay high or low for at least a half bit-time, nominally 4 sample-times. Jitter tolerance allows a waveform which stays high or low for 3 sample-times to also be considered valid. A sample sequence which shows a second transition only 1 or 2 sample-times after the previous transition is considered to be the result of a collision. Thus, sample sequences such as 0000110000 and 111101111 are interpreted as collisions.

The GSC hardware recognizes the collision to have occurred within 3/8 to 1/2 bit-time following the second transition.

Missing 0-to-1 Transition

A 0-to-1 transition is expected to occur at the center of any bit cell that begins with 0. If the previous 1-to-0 transition occurred at the bit cell edge, a jitter tolerance of ± 1 sample is allowed. Sample sequences such as 1111:00001111 and 1111:000001111 are valid, where ":" indicates a bit cell edge. Sequences of the form 1111:000000XXX are interpreted as collisions.

For these kinds of sequences, the GSC recognizes the collision to have occurred within 1 to 1 1/8 bit-times after the previous 1-to-0 transition.

If the previous 1-to-0 transition occurred at the center of the previous bit cell, a jitter tolerance of ± 2 samples is allowed. Thus, sample sequences such as 11110000:00001111 and 111100000:000001111 are valid. Sequences of the form 111100000:000000XXX are interpreted as collisions.

For these kinds of sequences, the GSC recognizes the collision to have occurred within 1 5/8 to 1 3/4 bit-times after the previous 1-to-0 transition.

Unexpected 1-to-0 Transition

If the line is at a logic 1 during the first half of a bit cell, then it is expected to make a 1-to-0 transition at the midpoint of the bit cell. If the transition is missed, it is assumed that this bit cell is the first half of an EOF flag

Figure 3-4, Response to a De

Figure 3.3. Manchester Encoding

(line idle for two bit-times). One bit-time later (which marks the midpoint of the next bit cell), if there is still no 1-to-0 transition, a valid EOF is assumed and the line idle bit (LNI in TSTAT) gets set.

However, if the assumed EOF flag is interrupted by a 1-to-0 transition in the bit-time following the first missing transition, a collision is assumed. In that case the GSC hardware recognizes the collision to have occurred within 1/2 to 5/8 bit-time after the unexpected transition.

3.2.6 RESOLUTION OF COLLISIONS

How the GSC responds to a detected collision depends on what it was doing at the time the collision was detected. What it might be doing is either transmitting or receiving a frame, or it might be inactive.

any bit cell that begins with 0. If the least constitution occurred at the bit cell coles.

The collision is detected whether the GSC is active or not. If the GSC is neither transmitting nor receiving at the time the collision is detected, it takes no action unless user software has selected the Deterministic Collision Resolution (DCR) algorithm. If DCR has been selected, the GSC will participate in the resolution algorithm.

GSC Receiving wood dollienent 0-ot-1 environg adr 11

If the GSC is already in the process of receiving a frame at the time the collision is detected, its response depends on whether the first byte of the frame has been transferred into RFIFO yet or not. If that hasn't occurred, the GSC simply aborts the reception, but takes no other action unless DCR has been selected. If DCR has been selected, the GSC participates in the resolution algorithm.

If the reception has already progressed to the point where a byte has been transferred to RFIFO by the time the collision is detected, the receiver is disabled (GREN = 0), and the Receive Error Interrupt flag RCABT is set. If DCR has been selected, the GSC participates in the resolution algorithm.

Incoming bits take 1/2 bit time to get from the GRXD pin to the bit decoder. The bit decoder strips off the preamble/BOF bits, and the first bit after BOF is shifted into a serial strip buffer. The length of the strip buffer is equal to the number of bits in the selected CRC. It is within this buffer that address recognition takes place. If the address is recognized as one for which reception should proceed, then when the first address bit exits the strip buffer it is shifted into an 8-bit shift register. When the shift register is full, its content is transferred to RFIFO. That is the event that determines whether a collision sets RCABT or not.

GSC Transmitting

If the GSC is in the process of transmitting a frame at the time the collision is detected, it will in every case execute its jam/backoff procedure. Its reponse beyond that depends on whether the first byte of the frame has been transferred from TFIFO to the output shift register yet or not. That transfer takes place at the beginning of the first bit of the BOF; that is, 2 bit-times before the end of the preamble/BOF sequence.

If the transfer from TFIFO hasn't occurred yet, the GSC hardware will try again to gain access to the line after its backoff time has expired. Up to 8 automatic restarts can be attempted. If the 8th restart is interrupted by yet another collision, the transmitter is disabled (TEN = 0) and the Transmit Error Interrupt flag TCDT is set.

If the transfer from TFIFO occurs before a collision is detected, the transmitter is disabled (TEN = 0) and the TCDT flag is set.

The response of the GSC to detected collisions is summarized in Figure 3.4.

What the GSC was doing	Response
assumed that this bit or pnidton irst half of an EOP flat	None, unless DCR = 1. If DCR = 1, begin DCR countdown.
Receiving a Frame, first byte not in RFIFO yet.	None, unless DCR = 1. If DCR = 1, begin DCR countdown.
Receiving a Frame, first byte already in RFIFO.	Set RCABT, clear GREN. If DCR = 1, begin DCR countdown.
Transmitting a Frame, first byte still in TFIFO	Execute jam/backoff. Restart if collision count ≤8.
Transmitting a Frame, first byte already taken from TFIFO	Execute jam/backoff. Set TCDT, clear TEN.

Figure 3-4. Response to a Detected Collision. References to DCR and the DCR Countdown Have to Do with the Deterministic Collision Resolution Algorithm.

The jam signal is generated by any 8XC152 that is involved in transmitting a frame at the time a collision is detected at its GRXD pin. This is to ensure that if one transmitting station detects a collision, all the other stations on the network will also detect a collision.

If a transmitting 8XC152 detects a collision during the preamble/BOF part of the frame that it is trying to transmit, it will complete the preamble/BOF and then begin the jam signal in the first bit time after BOF. If the collision is detected later in the frame, the jam signal will begin in the next bit time after the collision was detected.

The jam signal lasts for the same number of bit times as the selected CRC length—either 16- or 32-bit times.

The 8XC152 provides two types of jam signals that can be selected by user software. If the node is DC-coupled to the network, the DC jam can be selected. In this case the GTXD pin is pulled to a logic 0 for the duration of the jam. If the node is AC-coupled to the network, then AC jam must be selected. In this case the GSC takes the CRC it has calculated thus far in the transmission, inverts each bit, and transmits the inverted CRC. The selection of DC or AC jam is made by setting or clearing the DCJ bit, which resides in the SFR named MYSLOT.

When the jam signal is completed, the 8XC152 goes into an idle state. Presumeably, other stations on the network are also generating their own jam signals, after which they too go into an idle state. When the 8XC152 detects the idle state at its own GRXD pin, the backoff sequence begins.

turn out that the higher the slot assignment, that the mut

There are three software selectable collision resolution algorithms in the 8XC152. The selection is made by writing values to 3 bits:

DCR	OCR M1 M0		Algorithm
fr do stag	to Ortici	0 0	Normal Random
0	1	1	Alternate Random
1	1	1	Deterministic

M1 and M0 reside in GMOD, and DCR is in MYSLOT.

In the Normal Random algorithm, the GSC backs off for a random number of slot times and then decides whether to restart the transmission. The backoff time begins as soon as a line idle condition is detected.

The Alternate Random algorithm is the same as the Normal Random except the backoff time doesn't start until an IFS has transpired.

In the Deterministic algorithm, the GSC backs off to await its pre-determined turn.

Random Backoff

In either of the random algorithms, the first thing that happens after a collision is detected is that a 1 gets shifted into the TCDCNT (Transmit Collision Detect Count) register, from the right.

Thus if the software cleared TCDCNT before telling the GSC to transmit, then TCDCNT keeps track of how many times the transmission had to be aborted because of collisions:

TCDCNT =	00000000	first attempt
	00000001	first collision
	00000011	second collision
	00000111	third collision
MARTIN	00001111	fourth collision

kass 3.8 supplittill eighth collision

After TCDCNT gets a 1 shifted into it, the logical AND of TCDCNT and PRBS is loaded into a count-down timer named BKOFF. PRBS is the name of an SFR which contains the output of a pseudo-random binary sequence generator. Its function is to provide a random number for use in the backoff algorithm.

Thus on the first collision BKOFF gets loaded randomly with either 00000000 or 00000001. If there is a second collision it gets loaded with the random selection of 00000000, 00000001, 00000010, or 00000011. On the third collision there will be a random selection among 8 possible numbers. On the fourth, among 16, etc. Figure 3.5 shows the logical arrangement of PRBS, TCDCNT, and BKOFF.

BKOFF starts counting down from its preload value, counting slot times. At any time, the current value in BKOFF can be read by the CPU, but CPU writes to BKOFF have no effect. While BKOFF is counting down, if its current value is not 0, transmission is disabled. The output signal "BKOFF = 0" is asserted when BKOFF reaches 0, and is used to re-enable transmission.

At that time transmission can proceed, subject of course to IFS enforcement, unless:

- shifting a 1 into TCDCNT from the right caused a 1 to shift out from the MSB of TCDCNT, or
- the collision was detected after TFIFO had been accessed by the transmit hardware.

Ittliffi Figure 3.5. Backoff Timer Logic

In either of these cases, the transmitter is disabled (TEN = 0) and the Transmit Error flag TCDT is set. The automatic restart is canceled.

Where the Normal and Alternate Random backoff algorithms differ is that in Normal Random backoff the BKOFF timer starts counting down as soon as a line idle condition is detected, whereas in Alternate Random backoff the BKOFF timer doesn't start counting down till the IFS expires.

The Alternate Random mode was designed for networks in which the slot time is less than the IFS. If the randomly assigned backoff time for a given transmitter happens to be 0, then it is free to transmit as soon as the IFS ends. If the slot time is shorter than the IFS, Normal Random mode would nearly guarantee that if there's a first collision there will be a second collision. The situation is avoided in Alternate Random mode, since the BKOFF countdown doesn't start till the IFS is over.

The unit of count to the BKOFF timer is the slot time. The slot time is measured in bit-times, and is determined by a CPU write to the register SLOTTM. The slot time clock is a 1-byte downcounter which starts its countdown from the value written to SLOTTM. It is decremented each bit time when a backoff is in progress, and when it gets to 1 it generates one tick in the slot time clock. The next state after 1 is the reload value which was written to SLOTTM. If 0 is the value written to SLOTTM, the slot time clock will equal 256 bit times.

A CPU write to SLOTTM accesses the reload register. A CPU read of SLOTTM accesses the downcounter. In

most protocols, the slot period must be equal to or greater than the longest round trip propagation time plus the jam time.

Deterministic Backoff

In the Deterministic backoff mode, the GSC is assigned (in software) a slot number. The slot assignment is written to the low 6 bits of the register MYSLOT. This same register also contains, in the 2 high bit positions, the control bits DCJ and DCR.

Slot assignments therefore can run from 0 to 63. It will turn out that the higher the slot assignment, the sooner the GSC will get to restart its transmission in the event of a collision.

The highest slot assignment in the network is written by each station's software into its TCDCNT register. Normally the highest slot assignment is just the total number of stations that are going to participate in the backoff algorithm.

In deterministic backoff mode a collision will not cause a 1 to be shifted into TCDCNT. TCDCNT will still be ANDed with PRBS and the result loaded into BKOFF. In order to insure that all stations have the same value loaded into BKOFF, which determines the first slot number to occur, the PRBS should be loaded with 0FFH; the PRBS will maintain this value until either the 8XC152 is reset or the user writes some other value into PRBS. After BKOFF is loaded it begins counting down slot times as soon as the IFS ends. Slot times are defined by the user, the same way as before, by loading SLOTTM with the number of bit times per slot.

When BKOFF equals the slot assignment (as defined in MYSLOT), the signal "BKOFF = MYSLOT" in Figure 3.5 is asserted for one slot time, during which the GSC can restart its transmission.

While BKOFF is counting down, if any activity is detected at the GRXD pin, the countdown is frozen until the activity ends, a line idle condition is detected, and an IFS transpires. Then the countdown resumes from where it left off.

If a collision is detected at the GRXD pin while BKOFF is counting down, the collision resolution algorithm is restarted from the beginning.

In effect, the GSC "owns" its assigned slot number, but with one exception. Nobody owns slot number 0. Therefore if the GSC is assigned slot number 0, then when BKOFF = 0, this station and any other station that has something to say at this time will have an equal chance to take the line.

3.2.7 HARDWARE BASED ACKNOWLEDGE

Hardware Based Acknowledge (HBA) is a data link packet acknowledging scheme that the user software can enable with CSMA/CD protocol. It is not an option with SDLC protocol however.

In general HBA can give improved system response time and increased effective transmission rates over acknowledge schemes implemented in higher layers of the network architecture. Another benefit is the possibility of early release of the transmit buffer as soon as the acknowledge is received.

The acknowledge consists of a preamble followed by an idle condition. A receiving station with HABEN enabled will send an acknowledge only if the incoming address is unique to the receiving station and if the frame is determined to be correct with no errors. For the acknowledge to be sent, ten must be set. For the transmitting station to recognize the acknowledge GREN must be set. A zero as the LSB of the address indicates that the address is unique and not a group or broadcast address. Errors can be caused by collisions, incorrect CRC, misalignment, or FIFO overflow. The receiver sends the acknowledge as soon as the line is

sensed to be idle. The user must program the interframe space and the preamble length such that the acknowledge is completed before IFS expires. This is normally done by programming IFS larger than the preamble.

A transmitting station with HABEN enabled expects an acknowledge. It must receive one prior to the end of the interframe space, or else an error is assumed and the NOACK bit is set. Setting of the TDN bit is also delayed until the end of the interframe space. Collisions detected during the interframe space will also cause NOACK to be set.

The user software may enable the interrupt so that the CPU is notified when TDN is set. If the GSC is serviced by DMA, the user must time out one interframe space and then check the NOACK bit or the TDN bit.

3.3 SDLC Operation

3.3.1 SDLC OVERVIEW gring hid box authors hid to

SDLC is a communication protocol developed by IBM and widely used in industry. It is based on a primary/secondary architecture and requires that each secondary station have a unique address. The secondary stations can only communicate to the primary station, and then, only when the primary station allows communication to take place. This eliminates the possibility of contention on the serial line caused by the secondary station's trying to transmit simultaneously.

In the C152, SDLC can be configured to work in either full or half duplex. When adhering to strict SDLC protocol, full duplex is required. Full duplex is selected whenever a 16-bit CRC is selected. At the end of a valid reset the 16-bit CRC is selected. To select half duplex with a 16-bit CRC, the receiver must be turned off by user software before transmission. The receiver is turned off by clearing the GREN bit (RSTAT.1). The receiver needs to be turned off because the address that is transmitted is the address of the secondary station's receiver. If not turned off, the receiver could mistake the outgoing message as being intended for itself. When 32-bit CRCs are used, half duplex is the only method available for transmission.

3.3.2 SDLC Frame Format

The format of an SDLC frame is shown in Figure 3.6. The frame consists of a Beginning of Frame flag, Address field, Control Field, Information field (optional), a CRC, and the End of Frame flag.

BOF ADDRESS CONTROL INFO CRC EOF Figure 3.6. Typical SDLC Frame

BOF - The begin of frame flag for SDLC is 01111110. It is only one of two possible combinations that have six consecutive ones in SDLC. The other possibility is an abort character which consists of eight or more consecutive ones. This is because SDLC utilizes a process called bit stuffing. Bit stuffing is the insertion of a 0 as the next bit every time a sequence of five consecutive Is is detected. The receiver automatically removes a 0 after every consecutive group of five ones. This removal of the 0 bit is referred to as bit stripping. Bit stuffing is discussed in Section 3.3.4. All the procedures required for bit stuffing and bit stripping are automatically handled by the GSC.

In standard SDLC protocol the BOF signals the start of a frame and is limited to 8 bits in length. Since there is no preamble in SDLC the BOF is considered an entire separate field and marks the beginning of the frame. The BOF also serves as the clock synchronization mechanism and the reference point for determining the position of the address and control fields.

ADDRESS - The address field is used to identify which stations the message is intended for. Each secondary station must have a unique address. The primary station must then be made aware of which addresses are assigned to each station. The address length is specified as 8-bits in standard SDLC protocols but it is expandable to 16-bits in the C152. User software can further expand the number of address bits, but the automatic address recognition feature works on a maximum of 16-bits.

In SDLC the addresses are normally unique for each station. However, there are several classes of messages that are intended for more than one station. These messages are called broadcast and group addressed frames. An address consisting of all 1s will always be automatically received by the GSC, this is defined as the broadcast address in SDLC. A group address is an address that is common to more than one station. The GSC provides address masking bits to provide the capability of receiving group addresses.

If desired, the user software can mask off all the bits of the address. This type of masking puts the GSC in a promiscuous mode so that all addresses are received. CONTROL - The control field is used for initialization of the system, identifying the sequence of a frame, to identify if the message is complete, to tell secondary stations if a response is expected, and acknowledgement of previously sent frames. The user software is responsible for insertion of the control field as the GSC hardware has no provisions for the management of this field. The interpretation and formation of the control field must also be handled by user software. The information following the control field is typically used for information transfer, error reporting, and various other functions. These functions are accomplished by the format of the control field. There are three formats available. The types of formats are Informational, Supervisory, or Unnumbered. Figure 3.7 shows the various format types and how to identify them.

Since the user software is responsible for the implementation of the control field, what follows is a simple explanation on the control field and its functions. For a complete understanding and proper implementation of SDLC, the user should refer to the IBM document, GA27-3093-2, IBM Synchronous Data Link Control General Information. Within that document, is another list of IBM documents which go into detail on the SDLC protocol and its use.

The control field is eight bits wide and the format is determined by bits 0 and 1. If bit 0 is a zero, then the frame is an informational frame. If bit 0 is a one and bit 1 a zero, then it is a supervisory frame, and if bit 0 is a one and bit 1 a one then the frame is an unnumbered frame.

In an informational frame bits 3,2,1 contain the sequence count of the frame being sent.

Bit 4 is the P/F (Poll/Final) bit. If bit 4 equals 1 and originates from the primary, then the secondary station is expected to initiate a transmission. If bit 4 equals 1 and originates from a secondary station, then the frame is the final frame in a transmission.

Bits 7,6,5 contain the sequence count a station expects on the next transmission to it. The sequence count can vary from 000B to 111B. The count then starts over again at 000B after the value 111B is incremented. The acknowledgement is recognized by the receiving station when it decodes bits 7,6,5 of an incoming frame. The station sending the transmission is acknowledging the frames received up to the count represented in bits 7,6,5 (sequence count-1). With this method, up to seven sequential frames may be transmitted prior to an acknowledgement being received. If eight frames were allowed to pass before an acknowledgement, the sequence count would roll over and this would negate the purpose of the sequence numbers.

270427-15

RECEPTION SEQUENCE - The sequence expected in the SENDING SEQUENCE portion of the control byte in the next received frame. This also confirms correct reception of up to seven frames prior to the sequence given.

POLL/FINAL - Identifies the frame as being a polling request from the master station or the last in a series of frames from the master or secondary.

SENDING SEQUENCE - Identifies the sequence of the frame being transmitted.

0 -If bit 0 = 0 the frame is identified as a informational format type.

INFORMATION FORMAT

270427-1

RECEPTION SEQUENCE - Expected sequence of frame for next reception.

POLL/FINAL - Identifies frame as being a polling request from the master station or the last in a series of frames from the master or secondary.

MODE - Identifies whether receiver is ready (00), not ready (10) or a frame was rejected (01). The rejected frame is identified by the reception sequence.

0,1 - If bits 1,0 = 0,1 the frame is identified as a supervisory format type.

SUPERVISORY FORMAT

POSITIONS	→7	6005	noi4me	3	2	Function	0
			POLL/			Station der Ufic	10
	KE	SPONSE	FINAL	KF2h	ONSF	Test par	0 0

270427-17

COMMAND/RESPONSE - Identifies the type of command or response.

POLL/FINAL - Identifies frame as being a polling request from the master station or the last in a series of frames from the master or secondary.

1,1 - If bits 1,0 = 1,1 the frame is identified as an unnumbered format type.

NONSEQUENCED FORMAT

270427-18

Figure 3.7. SDLC Control Field

HARDWARE DESCRIPTION OF THE 83C152

Following the informational control field comes the information to be transferred.

In the supervisory format (bits 1,0 = 0,1) bits 3,2 determine which mode is being used.

When the mode is 00 it indicates that the receive line of the station that sent the supervisory frame is enabled and ready to accept frames.

When the mode is 01, it indicates that previously a received frame was rejected. The value in the receive count identifies which frame(s) need to be retransmitted

When the mode is 10, the sending station is indicating that its receiver is not ready to accept frames.

Mode 11 is an illegal mode in SDLC protocol.

Bits 7,6,5 represent the value of the sequence the station expects when the next transfer occurs for that station. There is no information following the control field when the supervisory format is used.

In the unnumbered format (bits 1,0 = 1,1) bits 7, 6, 5, 3, 2 (notice bit 4 is missing) indicate commands from the primary to secondary stations or requests of secondary stations to the primary.

The standard commands are:

BITS	7	6	5	3	2	Command
	0	0	0	0	0	Unnumbered Information (UI)
	0	0	0	0	1	Set initialization mode (SIM)
	0	1	0	0	0	Disconnect (DISC)
	0	0	1	0	0	Response optional (UP)
	1	1	0	0	1	Function descriptor in
						information field (CFGR)
	1	0	1	1	1	Identification in information field. (XID)
	1	1	1	0	0	Test pattern in information field. (TEST)

The standard responses are:

BITS	700	6	5	3	2	er receiver is ready (00), not ready (10) or a fram bnammoD
	0	0	0	0	0	Unnumbered information (UI)
	0	0	0	0	1	Request for initialization (RIM) and a second secon
	0	0	0	1	1	Station in disconnected mode (DM)
	1	0	0	0	1	Invalid frame received (FRMR)
	0	1	1	0	0	Unnumbered acknowledgement (UA)
	1	1	1	1	1	Signal loss of input (BCN)
	1	1	0	0	1	Function descriptor in information field (CFGR)
	0	1	0	0	0	Station wants to disconnect (RD)
	1	0	1	1	1	Identification in information field (XID)
	1	1	1	0	0	Test pattern in information field (TEST)

NONSEQUENCED FORMAT

Roure 3.7. SBLC Control Field

latti

In an unnumbered frame, information of variable length may follow the control field if UI is used, or information of fixed length may follow if FRMR is used.

As stated earlier, the user software is responsible for the proper management of the control field. This portion of the frame is passed to or from the GSC FIFOs as basic informational type data.

INFO - This is the information field and contains the data that one device on the link wishes to transmit to another device. It can be of any length the user wishes, but must be a multiple of 8 bits. It is possible that some frames may contain no information field. The information field is identified to the receiving stations by the preceding control field and the following CRC. The GSC determines where the last of the information field is by passing the bits through the CRC generator. When the last bit or EOF is received the bits that remain constitute the CRC.

CRC - The Cyclic Redundancy Check (CRC) is an error checking sequence commonly used in serial communications. The C152 offers two types of CRC algo-

rithms, a 16-bit and a 32-bit. The 32-bit algorithm is normally used in CSMA/CD applications and is described in section 3.2.2. In most SDLC applications a 16-bit CRC is used and the hardware configuration that supports 16-bit CRC is shown in Figure 3.8. The generating polynomial that the CRC generator uses with the 16-bit CRC is:

$$G(X) = X^{**}16 + X^{**}12 + X^{**}5 + 1$$

The way the CRC operates is that as a bit is received it is XOR'd with bit 15 of the current CRC and placed in temporary storage. The result of XOR'ing bit 15 with the received bit is then XOR'd with bit 4 and bit 11 as the CRC is shifted one position to the right. The bit in temporary storage is shifted into position 0.

The required CRC length for SDLC is 16 bits. The CRC is automatically stripped from the frame and not passed on to the CPU. The last 16 bits are then run though the CRC generator to insure that the correct remainder is left. The remainder that is checked for is 001110100001111B (1D0F Hex). If there is a mismatch, an error is generated. The user software has the option of enabling this interrupt so the CPU is notified.

Figure 3.9. NRZI Encoding

EOF - The End Of Frame (EOF) indicates when the transmission is complete. The EOF is identified by the end flag. An end flag consists of the bit pattern 01111110. The EOF can also serve as the BOF for the next frame.

3.3.3 DATA ENCODING

The transmission of data in SDLC mode is done via NRZI encoding as shown in Figure 3.9. NRZI encoding transmits data by changing the state of the output whenever a 0 is being transmitted. Whenever a 1 is transmitted the state of the output remains the same as the previous bit and remains valid for the entire bit time. When SDLC mode is selected it automatically enables the NRZI encoding on the transmit line and NRZI decoding on the receive line.

3.3.4 BIT STUFFING/STRIPPING

In SDLC mode one of the primary rules of the protocol is that in any normal data transmission, there will never be an occurrence of more than 5 consecutive 1s. The GSC takes care of this housekeeping chore by automatically inserting a 0 after every occurrence of 5 consecutive 1s and the receiver automatically removes a zero after receiving 5 consecutive 1s. All the necessary steps required for implementing bit stuffing and stripping are incorporated into the GSC hardware. This makes the operation transparent to the user. About the only time this operation becomes apparent to the user, is if the actual data on the transmission medium is being monitored by a device that is not aware of the automatic insertion of Os. The bit stuffing/stripping guarantees that there will be at least one transition every 6 bit times while the line is active.

3.3.5 SENDING ABORT CHARACTER

An abort character is one of the exceptions to the rule that disallows more than 5 consecutive 1s. The abort character consists of any occurrence of seven or more consecutive ones. The simplest way for the C152 to send an abort character is to clear the TEN bit. This causes the output to be disabled which, in turn, forces it to a constant high state. The delay necessary to insure that the link is high for seven bit times is a task that needs to be handled by user software. Other methods of sending an abort character are using the IFS register or using the Raw Transmit mode. Using IFS still entails clearing the TEN bit, but TEN can be immediately reenabled. The next message will not begin until the IFS expires. The IFS begins timing out as soon as DEN goes high which identifies the end of transmission. This also requires that IFS contain a value equal to or greater than 8. This method may have the undesirable effect that DEN goes high and disables the external drivers. The other alternative is to switch to Raw Transmit mode. Then, writing 0FFH to TFIFO would generate a high output for 8 bit times. This method would leave DEN active during the transmission of the abort charmunications. The C152 offers two types of CRC. ratas

When the receiver detects seven or more consecutive 1s and data has been loaded into the receive FIFO, the RCABT flag is set in RSTAT and that frame is ignored. If no data has been loaded into the receive FIFO, there are no abort flags set and that frame is just ignored. A retransmitted frame may immediately follow an abort character, provided the proper flags are used.

Figure 3.9. NRZI Encoding

3.3.6 LINE IDLE

If 15 or more consecutive 1s are detected by the receiver the Line Idle bit (LNI) in TSTAT is set. The seven 1s from the abort character may be included when sensing for a line idle condition. The same methods used for sending the Abort character can be used for creating the Idle condition. However, the values would need to be changed to reflect 15 bit times, instead of seven bit times.

3.3.7 ACKNOWLEDGEMENT

Acknowledgment in SDLC is an implied acknowledge and is contained in the control field. Part of the control frame is the sequence number of the next expected frame. This sequence number is called the Receive Count. In transmitting the Receive Count, the receiver is in fact acknowledging all the previous frames prior to the count that was transmitted. This allows for the transmission of up to seven frames before an acknowledge is required back to the transmitter. The limitation of seven frames is necessary because the Receive Count in the control field is limited to three binary digits. This means that if an eighth transmission occurred this would cause the next Receive Count to repeat the first count that still is waiting for an acknowledge. This would defeat the purpose of the acknowledgement. The processing and general maintenance of the sequence count must be done by the user software. The Hardware Based Acknowledge option that is provided in the C152 is not compatible with standard SDLC protocol.

3.3.8 PRIMARY/SECONDARY STATIONS

All SDLC networks are based upon a primary/secondary station relationship. There can be only one primary station in a network and all the other stations are considered secondary. All communication is between the primary and secondary station. Secondary station to secondary station direct communication is prohibited. If there is a need for secondary to secondary communication, the user software will have to make allowances for the master to act as an intermediary. Secondary stations are allowed use of the serial line only when the master permits them. This is done by the master polling the secondary stations to see if they have a need to access the serial line. This should prevent any collisions from occurring, provided each secondary station has its own unique address. This arrangement also partially determines the types of networks supported. Normal SDLC networks consist of point-to-point, multi-drop, or ring configurations and the C152 supports all of these. However, some SDLC processors support an automatic one bit delay at each node that is not supported by the C152. In a "Loop Mode" configuration, is is necessary that the transmission be delayed from the reception of the frames from the upstream station before passing the message to the downstream station. This delay is necessary so that a station can decode its own address before the message is passed on. The various networks are shown in Figure 3.10.

3.3.9 HDLC/SDLC COMPARISON

HDLC (High level Data Link Control) is a standard adopted by the International Standards Organization (ISO). The HDLC standard is defined in the ISO document #ISO 6159 - HDLC unbalanced classes of procedures. IBM developed the SDLC protocol as a subset of HDLC. SDLC conforms to HDLC protocol requirements, but is more restrictive. SDLC contains a more precise definition on the modes of operation.

Some of the major differences between SDLC and HDLC are:

SDLC HDLC Unbalanced (primary/ Balanced secondary) (peer to peer) Modulo 8 (no extensions Modulo 128 (up to 127 allowed, up to 7 outoutstanding frames standing frames before before acknowledge acknowledge is required) is required) 8-bit addressing only Extended addressing Byte aligned data Variable size of data

The C152 does not support HDLC implementation requiring data alignment other than byte alignment. The user will find that many of the protocol parameters are programmable in the C152 which allows easy implementation of proprietary or standard HDLC network. User software needs to implement the control field functions.

3.4 User Defined Protocols

The explanation on the implementation of user defined protocols would go beyond the scope of this manual, but examining Table 3.1 should give the reader a consolidated list of most of the possibilities. In this manual, any deviation from the documents that cover the implementation of CSMA/CD or SDLC are considered user defined protocols. Examples of this would be the use of SDLC with the 32-bit CRC selected or CSMA/CD with hardware based acknowledge.

3.5 Using the GSC

3.5.1 LINE DISCIPLINE

Line discipline is how the management of the transfer of data over the physical medium is controlled. Two types of line discipline will be discussed in this section: full duplex and half duplex.

Full duplex is the simultaneous transmission and reception of data. Full duplex uses anywhere from two to four wires. At least one wire is needed for transmission and one wire for reception. Usually there will also be a ground reference on each signal if the distance from station to station is relatively long. Full-duplex operation in the C152 requires that both the receive and the transmit portion of the GSC are functioning at the same time. Since both the transmitter and receiver are operating, two CRC generators are also needed. The C152 handles this problem by having one 32-bit CRC generator and one 16-bit CRC generator. When supporting full-duplex operation, the 32-bit CRC generator is modified to work as a 16-bit CRC generator. Whenever the 16-bit CRC is selected, the GSC automatically enters the full duplex mode. Half duplex with a 16-bit CRC is discussed in the following paragraph.

Half duplex is the alternate transmission and reception of data over a single common wire. Only one or two wires are needed in half-duplex systems. One wire is needed for the signal and if the distance to be covered is long there will also be a wire for the ground reference. In half-duplex mode, only the receiver or transmitter can operate at one time. When the receiver or transmitter operates is determined by user software, but typically the receiver will always be enabled unless the GSC is transmitting. Whenever half duplex is being used the software must insure that only the receiver or transmitter is enabled at any given time. This is particularly important when using SDLC, so that the receiver will not recognize its own address when the transmitter is operating. Half-duplex operation in the C152 is supported with either 16-bit or 32-bit CRCs. Whenever a 32-bit CRC is selected, only half-duplex operation can be supported by the GSC. It is possible to simulate fullduplex operation with a 32-bit CRC, but this would require that the CRC be performed with software. Calculating the CRC with the CPU would greatly reduce the data rates that could be used with the GSC. Whenever a 16-bit CRC is selected, full-duplex operation is automatically chosen and the GSC must be reconfigured if half-duplex operation is preferred.

3.5.2 PLANNING FOR NETWORK CHANGES AND EXPANSIONS

A complete explanation on how to plan for network expansion will not be covered in this manual as there are far too many possibilities that would need to be discussed. But there are several areas that will have major impact when allowing for changes in the system. In cases where there will never be any changes allowed, expansion plans become a mute issue. However, it is strongly suggested that there always be some allowance for future modifications.

Some of the general areas that will impact the overall scheme on how to incorporate future changes to the system are:

- 1) Communication of the change to all the stations or the primary station.
- 2) Maximum distance for communication. This will affect the drivers used and the slot time.
- 3) More stations may be on the line at one time. This may impact the interframe space or the collision resolution used.
- 4) If using CSMA/CD without deterministic resolution, any increase in network size will have a negative impact on the average throughput of the network and lower the efficiency. The user will have to give careful consideration when deciding how large a system can ultimately be and still maintain adequate performance.

3.5.3 DMA SERVICING OF GSC CHANNELS

There are two sources that can be used to control the GSC. The first is CPU control and the second is DMA control.

CPU control is used when user software takes care of the tasks such as: loading the TFIFO, reading the RFIFO, checking the status flags, and general tracking of the transmission process. As the number of tasks grow and higher data transfer rates are used, the overhead required by the CPU becomes the dominant consumption of time. Eventually, a point is reached where the CPU is spending 100% of its time responding to the needs of the GSC. An alternative is to have the DMA channels control the GSC.

A detailed explanation on the general use of the DMA channels is covered in Section 4. In this section only those details required for the use of the DMA channels with the GSC will be covered.

The DMA channels can be configured by user software so that the GSC data transfers are serviced by the DMA controller. Since there are two DMA channels, one channel can be used to service the receiver, and one channel can be used to service the transmitter. In using the DMA channels, the CPU is relieved of much of the time required to do the basic servicing of the GSC buffers. The types of servicing that the DMA channels can provide are: loading of the transmit FIFO, removing data from the receive FIFO, notification of the CPU when the transmission or reception has ended, and response to certain error conditions. When using the

DMA channels the source or destination of the data intended for serial transmission can be internal data memory, external data memory, or any of the SFRs.

The only tasks required after initialization of the DMA and GSC registers are enabling the proper interrupts and informing the DMA controller when to start. After the DMA channels are started all that is required of the CPU is to respond to error conditions or wait until the end of transmission.

Initialization of the DMA channels requires setting up the control, source, and destination address registers. On the DMA channel servicing the receiver, the control register needs to be loaded as follows: DCONn.2 = 0, this sets the transfer mode so that response is to GSC interrupts and put the DMA control in alternate cycle mode; DCONn.3 = 1, this enables the demand mode; DCONn.4 = 0, this clears the automatic increment option for the source address; and DCONn.5 = 1, this defines the source as SFR. The DMA channel servicing the receiver also needs its source address register to contain the address of RFIFO (SARHN = XXH. SARLN = 0F4H). On the DMA channel servicing the transmitter, the control register needs to be loaded as follows: DCONn.2 = 0; DCONn.3 = 1; DCONn.6 = 0, this clears the automatic increment option for the destination address; and DCONn.7 = 1, this sets the destination as SFR. The DMA channel serving the transmitter also requires that its destination address register contains the address of TFIFO (DARHN = XXH, DARLN = 85H). Assuming that DCON0 would be serving the receiver and DCON1 the transmitter, DCON0 would be loaded with XX1010X0B and DCON1 would be loaded with 10XX10X0B. The contents of SARHO and DARHI do not have any impact when using internal SFRs as the source or destination.

When using the DMA channels to service the GSC, the byte count registers will also need to be initialized.

The Done flag for the DMA channel servicing the receiver should be used if fixed packet lengths only are being transmitted or to insure that memory is not overwritten by long received data packets. Overwriting of data can occur when using a smaller buffer than the packet size. In these cases the servicing of the DMA and/or GSC would be in response to the DMA Done flag when the byte count reaches zero.

In some cases the buffer size is not the limiting factor and the packet lengths will be unknown. In these cases it would be desirable to eliminate the function of the Done flag. To effectively disable the Done flag for the DMA channel servicing the receiver, the byte count should be set to some number larger than any packet

that will be received, up to 64K. If not using the Done flag, then GSC servicing would be driven by the receive Done (RDN) flag and/or interrupt. RDN is set when the EOF is detected. When using the RDN flag, RFNE should also be checked to insure that all the data has been emptied out of the receive FIFO.

The byte count register is used for all transmissions and this means that all packets going out will have to be of the same length or the length of the packet to be sent will have to be known prior to the start of transmission. When using the DMA channels to service the GSC transmitter, there is no practical way to disable the Done flag. This is because the transmit done flag (TDN) is set when the transmit FIFO is empty and the last message bit has been transmitted. But, when using the DMA channel to service the transmitter, loads to the TFIFO continue to occur until the byte count reaches 0. This makes it impossible to use TDN as a flag to stop the DMA transfers to TFIFO. It is possible to examine some other registers or conditions, such as the current byte count, to determine when to stop the DMA transfers to TFIFO, but this is not recommended as a way to service the DMA and GSC when transmitting because frequent reading of the DMA registers will cause the effective DMA transfer rate to slow down.

When using the DMA channels, initialization of the GSC would be exactly the same as normal except that TSTAT.0 = 1 (DMA), this informs the GSC that the DMA channels are going to be used to service the GSC. Although only TSTAT is written to, both the receiver and transmitter use this same DMA bit.

The interrupts EGSTE (IEN1.5); GSC transmit error; EGSTV (IEN1.3), GSC transmit valid; EGSRE (IEN1.1), GSC receive error; and EGSRV (IEN1.0), GSC receive valid; need to be enabled. The DMA interrupts are normally not used when servicing the GSC with the DMA channels. To ensure that the DMA interrupts are not responded to is a function of the user software and should be checked by the software to make sure they are not enabled. Priority for these interrupts can also be set at this time. Whether to use high or low priority needs to be decided by the user. When responding to the GSC interrupts, if a buffer is being used to store the GSC information, then the DMA registers used for the buffer will probably need updating.

After this initialization, all that needs to be done when the GSC is actually going to be used is: load the byte count, set-up the source addresses for the DMA channel servicing the transmitter, set-up the destination addresses for the DMA channel servicing the receiver, and start the DMA transfer. The GSC enable bits should be set first and then the GO bits for the DMA. This initiates the data transfers.

This simplifies the maintenance of the GSC and can make the implementation of an external buffer for packetized information automatic.

An external buffer can be used as the source of data for transmission, or the destination of data from the receiver. In this arrangement, the message size is limited to the RAM size or 64K, whichever is smaller. By using an external buffer, the data can be accessed by other devices which may want access to the serial data. The amount of time required for the external data moves will also decrease. Under CPU control, a "MOVX" command would take 24 oscillator periods to complete. Under DMA control, external to internal, or internal to external, data moves take only 12 oscillator periods.

3.5.4 BAUD RATE

The GSC baud rate is determined by the contents of the SFR, BAUD, or the external clock. The formula used to determine the baud rate when using the internal clock is:

(fosc)/((BAUD+1)*8)

For example if a 12 MHz oscillator is used the baud rate can vary from:

12,000,000/((0+1)*8) = 1.5 MBPS

to

12,000,000/((255+1)*8) = 5.859 KBPS

There are certain requirements that the external clock will need to meet. These requirements are specified in the data sheet. For a description of the use of the GSC with external clock please read Section 3.5.11.

3.5.5 INITIALIZATION noo si ti moos oot zuroon noitis

Initialization can be broken down into two major components, 1) initialization of the component so that its serial port is capable of proper communication; and 2) initialization of the system or a station so that intelligible communication can take place.

Most of the initialization of the component has already been discussed in the previous sections. Those items not covered are the parameters required for the component to effectively communicate with other components. These types of issues are common to both system and component initialization and will be covered in the following text. Initialization of the system can be broken down into several steps. First, are the assumptions of each network station.

The first assumption is that the type of data encoding to be used is predetermined for the system and that each station will adhere to the same basic rules defining that encoding. The second assumption is that the basic protocol and line discipline is predetermined and known. This means that all stations are using CSMA/CD or SDLC or whatever, and that all stations are either full or half duplex. The third assumption is that the baud rate is preset for the whole system. Although the baud rate could probably be determined by the microprocessor just by monitoring the link, it will make it much simpler if the baud rate is known in advance.

One of the first things that will be required during system initialization is the assignment of unique addresses for each station. In a two-station only environment this is not necessary and can be ignored. However, keep in mind, that all systems should be constructed for easy future expansions. Therefore, even in only a two station system, addresses should be assigned. There are three basic ways in which addresses can be assigned. The first, and most common is preassigned addresses that are loaded into the station by the user. This could be done with a DIP-switch, through a keyboard. The second method of assigning addresses is to randomly assign an address and then check for its uniqueness throughout the system, and the third method is to make an inquiry to the system for the assignment of a unique address. Once the method of address assignment is determined, the method should become part of the specifications for the system to which all additions will have to adhere. This, then, is the final assumption.

The negotiation process may not be clear for some readers. The following two procedures are given as a guideline for dynamic address assignment.

In the first procedure, a station assumes a random address and then checks for its uniqueness throughout the system. As a station is initialized into the system it sends out a message containing its assumed address. The format of the message should be such that any station decoding the address recognizes it as a request for initialization. If that address is already used, the receiving station returns a message, with its own address stating that the address in question is already taken. The initializing station then picks another address. When the initializing station sends its inquiry for the address check, a timer is also started. If the timer expires before the inquiry is responded to, then that station assumes the address chosen is okay.

In the second procedure, an initializing station asks for an address assignment from the system. This requires that some station on the link take care of the task of maintaining a record of which addresses are used. This station will be called station-1. When the initializing station, called station-2, gets on the link, it sends out a message with a broadcast address. The format of the message should be such that all other stations on the link recognize it as a request for address assignment. Part of the message from station-2 is a random number generated by the station requesting the address. Station-2 then examines all received messages for this random number. The random number could be the address of the received message or could be within the information section of a broadcast frame. All the stations, except station-1, on the link should ignore the initialization request. Station-1, upon receiving the initialization request, assigns an address and returns it to station-2. Station-1 will be required to format the message in such a manner so that all stations on the link recognize it as a response to initialization. This means that all stations except station-2 ignore the return message.

system, addresses should be ass salom TEST 8.6.6.

There are two test modes associated with the GSC that are made available to the user. The test modes are named Raw Receive and Raw Transmit. The test modes are selected by the proper setting of the two mode bits in GMOD (M0 = GMOD.5, M1 = GMOD.6). If M1,M0 = 0,1 then Raw Transmit is selected. If M1,M0 = 1,0 then Raw Receive is enabled.

In Raw Transmit, the transmit output is internally connected to the Receiver input. This is intended to be used as a local loop-back test mode, so that all data written to the transmitter will be returned by the receiver. Raw Transmit can also be used to transmit user data. If Raw Transmit is used in this way the data is emitted with no preamble, flag, address, CRC, and no bit insertion. The data is still encoded with whatever format is selected, Manchester with CSMA/CD, NRZI with SDLC or as NRZ if external clocks are used. The receiver still operates as normal and in this mode most of the receive functions can be tested.

In Raw Receive, the transmitter should be externally connected to the receiver. To do this a port pin should be used to enable an external device to connect the two pins together. In Raw Receive mode the receiver acts as normal except that all bytes following the BOF are loaded into the receive FIFO, including the CRC. Also address recognition is not active but needs to be performed in software. If SDLC is selected as the protocol, zero-bit deletion is still enabled. The transmitter still operates as normal and in this mode most of the transmitter functions and an external transceiver can be tested. This is also the only way that the CRC can be read by the CPU, but the CRC error bit will not be set.

3.5.7 EXTERNAL DRIVER INTERFACE

A signal is provided from the C152 to enable transmitter drivers for the serial link. This is provided for systems that require more than what the GSC ports are capable of delivering. The voltage and currents that the GSC is capable of providing are the same levels as those for normal port operation. The signal used to enable the external drivers is \overline{DEN} . No similar signal is needed for the receiver.

3.5.8 JITTER (RECEIVE)

Data jitter is the difference between the actual transmitted waveform and the exact calculated value(s). In NRZI, data jitter would be how much the actual waveform exceeds or falls short of one calculated bit time. A bit time equals 1/baud rate. If using Manchester encoding, there can be two transitions during one bit time as shown in Figure 3.11. This causes a second parameter to be considered when trying to figure out the complete data jitter amount. This other parameter is the half-bit jitter. The half-bit jitter is comprised of the difference in time that the half-bit transition actually occurs and the calculated value. Jitter is important because if the transition occurs too soon it is considered noise, and if the transition occurs too late, then either the bit is missed or a collision is assumed.

ed during the clock evole.

In CSMA/CD mode the receiver synchronizes to the reasonitted data during the preamble. If a pulse is detected as being too short it is assumed to be noise or a collision. If a pulse is too long it is assumed to be a collision or an idle condition.

In SDIC the synchronization takes place during the BOF flag. In addition, pulses less than four sample periods are ignored, and assumed to be noise. This sets a lower limit on the pulse size of received zeros.

in CSMA/CD the preamble consists of alternating is and 0s. Consequently, the preamble looks like the stayeform in Figure 3.13A and 3.13B.

1.5.11 External Clocking

To select external clocking, the user is given three choices. External clocking can be used with the transmitter, with the receiver; or with both. To select external clocking for the transmitter, XTCLK (GMOD.7)

refigure 3.11. Jitter the external clock option is used, the format

NRZ encoding and the protocol is restricted to SDLC.
With external clock, the bit stuffing/strioping is still
active with SDLC protocol.

3.6 GSC Operation

entining it is a maintenant of a second

In normal operation the GSC uses full or half dupiex operation. When using a 32-bit CRC (GMOD.3 = 1), apperation can only be half duplex. If using a 16-bit CRC (GMOD.3 = 0), full duplex is selected by default. When using a 16-bit CRC the receiver can be turned off while transmitting (RSTAT.1 = 0), and the transmitter can be turned off during reception (TSTAT.1 = 0). This simulates half-duplex operation when using a 16-bit CRC.

Normally, HDLC uses a 16-bit CRC, so half duples is determined by turning off the receiver or transmitter. This is so that the receiver will not detect its own ad-

Figure 3.12. Transmit Waveforms

3.5.9 Transmit Waveforms

The GSC is capable of three types of data encoding, Manchester, NRZI, and NRZ. Figure 3.12 shows examples of all three types of data encoding.

3.5.10 Receiver Clock Recovery

The receiver is always monitored at eight times the baud rate frequency, except when an external clock is used. When using an external clock the receiver is loaded during the clock cycle.

In CSMA/CD mode the receiver synchronizes to the transmitted data during the preamble. If a pulse is detected as being too short it is assumed to be noise or a collision. If a pulse is too long it is assumed to be a collision or an idle condition.

In SDLC the synchronization takes place during the BOF flag. In addition, pulses less than four sample periods are ignored, and assumed to be noise. This sets a lower limit on the pulse size of received zeros.

In CSMA/CD the preamble consists of alternating 1s and 0s. Consequently, the preamble looks like the waveform in Figure 3.13A and 3.13B.

3.5.11 External Clocking

To select external clocking, the user is given three choices. External clocking can be used with the transmitter, with the receiver, or with both. To select external clocking for the transmitter, XTCLK (GMOD.7)

has to be set to a 1. To select external clocking for the receiver, XRCLK (PCON.3) has to be set to a 1. Setting both bits to 1 forces external clocking for the receiver and transmitter.

The external transmit clock is applied to pin 4 (TXC), P1.3. The external receive clock is applied to pin 5 (RXC), P1.4. To enable the external clock function on the port pin, that pin has to be set to a 1 in the appropriate SFR, P1.

Whenever the external clock option is used, the format of the transmitted and received data is restricted to NRZ encoding and the protocol is restricted to SDLC. With external clock, the bit stuffing/stripping is still active with SDLC protocol.

3.6 GSC Operation

3.6.1 Determining Line Discipline

In normal operation the GSC uses full or half duplex operation. When using a 32-bit CRC (GMOD.3 = 1), operation can only be half duplex. If using a 16-bit CRC (GMOD.3 = 0), full duplex is selected by default. When using a 16-bit CRC the receiver can be turned off while transmitting (RSTAT.1 = 0), and the transmitter can be turned off during reception (TSTAT.1 = 0). This simulates half-duplex operation when using a 16-bit CRC.

Normally, HDLC uses a 16-bit CRC, so half duplex is determined by turning off the receiver or transmitter. This is so that the receiver will not detect its own ad-

not using the same timings as the rest of the network. before data is leaded into the receive FIFO,

dress as transmission takes place. This also needs to be done when using CSMA/CD with a 16-bit CRC for the same reason.

3.6.2 CPU/DMA CONTROL OF THE GSC

The data for transmission or reception can be handled by either the CPU (TSTAT.0 = 0) or DMA controller (TSTAT.0 = 1). This allows the user two sets of flags to control the FIFO. Associated with these flags are interrupts, which may be enabled by the user software. Either one or both sets of flags may be used at the same time.

In CPU control mode the flags (RFNE, TFNF) are generated by the condition of the receive or transmit FIFO's. After loading a byte into the transmit FIFO, there is a one machine cycle latency until the TFNF flag is updated. Because of this latency, the status of TFNF should not be checked immediately following the instruction to load the transmit FIFO. If using the interrupts to service the transmit FIFO, the one machine cycle of latency must be considered if the TFNF flag is checked prior to leaving the subroutine.

When using the CPU for control, transmission normally is initiated by setting the TEN bit (TSTAT.1) and then writing to TFIFO. TEN must be set before loading the transmit FIFO, as setting TEN clears the transmit FIFO. TCDCNT should also be checked by user software and cleared if a collision occurred on a prior transmission.

To enable the receiver, GREN (RSTAT.1) is set. After GREN is set, the GSC begins to look for a valid BOF. After detecting a valid BOF the GSC attempts to match the received address byte(s) against the address match registers. When a match occurs the frame is loaded into the GSC. Due to the CRC strip hardware, there is a 40 or 24 bit time delay following the BOF until the first data byte is loaded into RFIFO if the 32 or 16 bit CRC is chosen. If the end of frame is detected before data is loaded into the receiver FIFO, the receiver ignores that frame.

If the receiver detects a collision during reception in CSMA/CD mode and if any bytes have been loaded into the receive FIFO, the RCABT flag is set. The GSC hardware then halts reception and resets GREN. The user software needs to filter any collision fragment data which may have been received. If the collision occurred prior to the data being loaded into RFIFO the CPU is not notified and the receiver is left enabled. At the end of a reception the RDN bit is set and GREN is cleared. In HABEN mode this causes an acknowledgement to be transmitted if the frame did not have a broadcast or

multi-cast address. The user software can enable the interrupt for RDN to determine when a frame is completed.

In DMA mode the interrupts are generated by the internal "transmit/receive done" (TDN,RDN) conditions. When the CPU responds to TDN or RDN, checks are performed to see if the transmit underrun error has occurred. The underrun condition is only checked when using the DMA channels.

Upon power up the CPU mode is initialized. General DMA control is covered in Section 4.0. DMA control of the GSC is covered in Section 3.5.4. If DMA is to be used for serving the GSC, it must be configured into the serial channel demand mode and the DMA bit in TSTAT has to be set.

3.6.3 COLLISIONS AND BACKOFF

The actions that are taken by the GSC if a collision occurs while transmitting depend on where the collision occurs. If a collision occurs in CSMA/CD mode following the preamble and BOF flag, the TCDT flag is set and the transmit hardware completes a jam. When this type of collision occurs, there will be no automatic retry at transmission. After the jam, control is returned to the CPU and user software must then initiate whatever actions are necessary for a proper recovery. The possibility that data might have been loaded into or from the GSC deserves special consideration. If these fragments of a message have been passed on to other devices, user software may have to perform some extensive error handling or notification. Before starting a new message, the transmit and receive FIFOs will need to be cleared. If DMA servicing is being used the pointers must also be reinitialized. It should be noted that a collision should never occur after the BOF flag in a well designed system, since the system slot time will likely be less than the preamble length. The occurrence of such a situation is normally due to a station on the link that is not adhering to proper CSMA/CD protocol or is not using the same timings as the rest of the network.

A collision occurring during the preamble or BOF flag is the normal type of collision that is expected. When this type of collision occurs the GSC automatically handles the retransmission attempts for as many as eight tries. If on the eighth attempt a collision occurs, the transmitter is disabled, although the jam and backoff are performed. If enabled, the CPU is then interrupted. The user software should then determine what action to take. The possibilities range from just reporting the error and aborting transmission to reinitializing the serial channel registers and attempt retransmission.

lem

If less than eight attempts are desired TCDCNT can be loaded with some value which will reduce the number of collisions possible before TCDCNT overflows. The value loaded should consist of all 1s as the least significant bits, e.g. 7, 0FH, 3FH. A solid block of 1s is suggested because TCDCNT is used as a mask when generating the random slot number assignment. The TCDCNT register operates by shifting the contents one bit position to the left as each collision is detected. As each shift occurs a 1 is loaded into the LSB. When TCDCNT overflows, GSC operation stops and the CPU is notified by the setting of the TCDT bit which can flag an interrupt.

The amount of time that the GSC has before it must be ready to retransmit after a collision is determined by the mode which is selected. The mode is determined M0 (GMOD.5) and M1 (GMOD.6). If M0 and M1 equal 0,0 (normal backoff) then the minimum period before retransmission will be either the interframe space or the backoff period, whichever is longer. If M0 and M1 equal 1,1 (alternate backoff) then the minimum period before retransmission will be the interframe space plus the backoff period. Both of these are shown in Figure 3.4. Alternate backoff must be enabled if using deterministic resolution. If the GSC is not ready to retransmit by the time its assigned slot becomes available, the slot time is lost and the station must wait until the collision resolution time period has passed.

Instead of waiting for the collision resolution to pass, the transmission could be aborted. The decision to abort is usually dependent on the number of stations on the link and how many collisions have already occurred. The number of collisions can be obtained by examining the register, TCDCNT. The abort is normally implemented by clearing TEN. The new transmission begins by setting TEN and loading TFIFO. The minimum amount of time available to initiate a retransmission would be one interframe space period after the line is sensed as being idle.

As the number of stations approach 256 the probability of a successful transmission decreases rapidly. If there are more than 256 stations involved in the collision there would be no resolution since at least two of the stations will always have the same backoff interval selected.

All the stations monitor the link as long as that station is active, even if not attempting to transmit. This is to ensure that each station always defers the minimum amount of time before attempting a transmission and so that addresses are recognized. However, the collision detect circuitry operates slightly differently.

In normal back-off mode, a transmitting station always monitors the link while transmitting. If a collision is detected one or more of the transmitting stations apply the jam signal and all transmitting stations enter the back-off algorithm. The receiving stations also constantly monitor for a collision but do not take part in the resolution phase. This allows a station to try to transmit in the middle of a resolution period. This in turn may or may not cause another collision. If the new station trying to transmit on the link does so during an unused slot time then there will probably not be a collision. If trying to transmit during a used slot time, then there will probably be a collision. The actions the receiver does take when detecting a collision is to just stop receiving data if data has not been loaded into RFIFO or to stop reception, clear receiver enable (REN) and set the receiver abort flag (RCABT -RSTAT.6)... semis and sensood instance of ion yam test

If deterministic resolution is used, the transmitting stations go through pretty much the same process as in normal back-off, except that the slots are predetermined. All the receivers go through the back-off algorithm and may only transmit during their assigned slot.

3.6.4 SUCCESSFUL ENDING OF TRANSMISSIONS AND RECEPTIONS

In both CSMA/CD and SDLC modes, the TDN bit is set and TEN cleared at the end of a successful transmission. The end of the transmission occurs when the TFIFO is empty and the last byte has been transmitted. In CSMA/CD the user should clear the TCDCNT register after successful transmission.

At the end of a successful reception, the RDN bit is set and GREN is cleared. The end of reception occurs when the EOF flag is detected by the GSC hardware.

3.7 Register Descriptions

ADR0,1,2,3 (95H, 0A5H, 0B5H, 0C5H) - Address Match Registers 0,1,2,3 - Contains the address match values which determines which data will be accepted as valid. In 8 bit addressing mode, a match with any of the four registers will trigger acceptance. In 16 bit addressing mode a match with ADR1:ADR0 or ADR3:ADR2 will be accepted. Addressing mode is determined in GMOD (AL).

AMSK0,1 (0D5H, 0E5H) - Address Match Mask 0,1 - Identifies which bits in ADR0,1 are "don't care" bits. Writing a one to a bit in AMSK0,1 masks out that corresponding bit in ADDR0,1.

BAUD (94H) - GSC Baud Rate Generator - Contains the value of the programmable baud rate. The data rate will equal (frequency of the oscillator)/((BAUD + 1) × (8)). Writing to BAUD actually stores the value in a reload register. The reload register contents are copied into the BAUD register when the Baud register decrements to 00H. Reading BAUD yields the current timer value. A read during GSC operation will give a value that may not be current because the timer could decrement between the time it is read by the CPU and by the time the value is loaded into its destination.

BKOFF (0C4H) - Backoff Timer - The backoff timer is an eight bit count-down timer with a clock period equal to one slot time. The backoff time is used in the CSMA/CD collision resolution algorithm. The user software may read the timer but the value may be invalid as the timer is clocked asynchronously to the CPU. Writing to 0C4H will have no effect.

		G	MOD	(84H)	hereals		
when the	6	5	4	3	2	the .	0
XTCLK	M1	МО	AL	СТ	PL1	PLO	PR

Figure 3.14. GMOD

GMOD.0 (PR) - Protocol - If set, SDLC protocols with NRZI encoding and SDLC flags are used. If cleared, CSMA/CD link access with Manchester encoding is used. The user software is responsible for setting or clearing this flag.

GMOD.1,2 (PL0,1) - Preamble length

PL1 PL0 LENGTH (BITS)

LI	ILU	TTIOITI (T
0	0	0
0	1	8
1	0	32
1	1	64

The length includes the two bit Begin Of Frame (BOF) flag in CSMA/CD but does not include the SDLC flag. In SDLC mode, the BOF is an SDLC flag, otherwise it is two consecutive ones. Zero length is not compatible in CSMA/CD mode. The user software is responsible for setting or clearing these bits.

GMOD.3 (CT) - CRC Type - If set, 32 bit AUTODIN-II-32 is used. If cleared, 16 bit CRC-CCITT is used. The user software is responsible for setting or clearing this flag.

GMOD.4 (AL) - Address Length - If set, 16 bit addressing is used. If cleared, 8 bit addressing is used. In 8 bit mode a match with any of the 4 address registers will be accepted (ADR0, ADR1, ADR2, ADR3). "Don't Care" bits may be masked in ADR0 and ADR1 with AMSK0 and AMSK1. In 16 bit mode, addresses are matched against "ADR1:ADR0" or "ADR3: ADR2". Again, "Don't Care" bits in ADR1:ADR0 can be masked in AMSK1:AMSK0. A received address of all ones will always be recognized in any mode. The user software is responsible for setting or clearing this flag.

GMOD.5,6 (M0,M1) - Mode Select - Two test modes, an optional "alternate backoff" mode, or normal backoff can be enabled with these two bits. The user software is responsible for setting or clearing the mode bits.

M1 M0 Mode
0 0 Normal
0 1 Raw Transmit
1 0 Raw Receive

1 1 Alternate Backoff

In raw receive mode, the receiver operates as normal except that all the bytes following the BOF are loaded into the receive FIFO, including the CRC. The transmitter operates as normal.

In raw transmit mode the transmit output is internally connected to the receiver input. The internal connection is not at the actual port pin, but inside the port latch. All data transmitted is done without a preamble, flag or zero bit insertion, and without appending a CRC. The receiver operates as normal. Zero bit deletion is performed.

In alternate backoff mode the standard backoff process is modified so the the backoff is delayed until the end of the IFS. This should help to prevent collisions constantly happening because the IFS time is usually larger than the slot time.

GMOD.7 (XTCLK) - External Transmit Clock - If set an external 1X clock is used for the transmitter. If cleared the internal baud rate generator provides the transmit clock. The input clock is applied to P1.3 $(\overline{T \times C})$. The user software is responsible for setting or clearing this flag. External receive clock is enabled by setting PCON.3.

IFS (0A4H) - Interframe Spacing - Determines the number of bit times separating transmitted frames in CSMA/CD. A bit time is equal to 1/baud rate. Only even interframe space periods can be used. The number written into this register is divided by two and loaded in the most significant seven bits. Complete interframe space is obtained by counting this seven bit number down to zero twice. A user software read of this register will give a value where the seven most significant bits gives the current count value and the least significant bit shows a one for the first count-down and a zero for the second count. The value read may not be valid as the timer is clocked in periods not necessarily associated with the CPU read of IFS. Loading this register with zero results in 256 bit times.

MYSLOT (0F5H) - Slot Address Register

7	6	5	4	3	2	1	0
DCJ	DCR	SA5	SA4	SA3	SA2	SA1	SA0
SAn	= SLO	TADD	RESS	(BITS	5 - 0)		exercises.

dismohra at the Figure 3.15. MYSLOT the willed sayd

MYSLOT.0, 1, 2, 3, 4, 5 - Slot Address - The six address bits choose 1 of 64 slot addresses. Address 63 has the highest priority and address 1 has the lowest. A value of zero will prevent a station from transmitting during the collision resolution period by waiting until all the possible slot times have elapsed. The user software normally initializes this address in the operating software.

MYSLOT.6 (DCR) - Deterministic Collision Resolution Algorithm - When set, the alternate collision resolution algorithm is selected. Retriggering of the IFS on reappearance of the carrier is also disabled. When using this feature Alternate Backoff Mode must be selected and several other registers must be initialized. User software must initialize TCDCNT with the maximum number of slots that are most appropriate for a particular application. The PRBS register must be set to all ones. This disables the PRBS by freezing it's contents at 0FFH. The backoff timer is used to count down the number of slots based on the slot timer value setting the period of one slot. The user software is responsible for setting or clearing this flag.

MYSLOT.7 (DCJ) - D.C. Jam - When set selects D.C. type jam, when clear, selects A.C. type jam. The user software is responsible for setting or clearing this flag.

PCON (087H)

7 6 5 4 3 2 1 0

SMOD ARB REQ GAREN XRCLK GFIEN PD IDL

PCON contains bits for power control, LSC control, DMA control, and GSC control. The bits used for the GSC are PCON.2, PCON.3, and PCON.4.

PCON.2 (GFIEN) - GSC Flag Idle Enable - Setting GFIEN to a 1 caused idle flags to be generated between transmitted frames in SDLC mode. SDLC idle flags consist of 01111110 flags creating the sequence 01111110011111110 011111110. A possible side effect of enabling GFIEN is that the maximum possible latency from writing to TFIFO until the first bit is transmitted increased from approximately 2 bit-times to around 8 bit-times. GFIEN has no effect with CSMA/CD.

PCON.3 (XRCLK) - GSC External Receive Clock Enable - Writing a 1 to XRCLK enables an external clock to be applied to pin 5 (Port 1.4). The external clock is used to determine when bits are loaded into the receiver.

PCON.4 (GAREN) - GSC Auxiliary Receiver Enable Bit - This bit needs to be set to a 1 to enable the reception of back-to-back SDLC frames. A back-to-back SDLC frame is when the EOF and BOF is shared between two sequential frames intended for the same station on the link. If GAREN contains a 0 then the receiver will be disabled upon reception of the EOF and by the time user software re-enables the receiver the first bit(s) may have already passed, in the case of back-to-back frames. Setting GAREN to a 1, prevents the receiver from being disabled by the EOF but GREN will be cleared and can be checked by user software to determine that an EOF has been received. GAREN has no effect if the GSC is in CSMA/CD mode.

PRBS (0E4H) - Pseudo-Random Binary Sequence This register contains a pseudo-random number to be used in the CSMA/CD backoff algorithm. The number is generated by using a feedback shift register clocked by the CPU phase clocks. Writing all ones to the PRBS will freeze the value at all ones. Writing any other value to it will restart the PRBS generator. The PRBS is initialized to all zero's during RESET. A read of location 0E4H will not necessarily give the seed used in the backoff algorithm because the PRBS counters are clocked by internal CPU phase clocks. This means the contents of the PRBS may have been altered between the time when the seed was generated and before a READ has been internally executed.

RFIFO (0F4H) - Receive FIFO - RFIFO is a 3 byte buffer that is loaded each time the GSC receiver has a byte of data. Associated with RFIFO is a pointer that is automatically updated with each read of the FIFO. A read of RFIFO fetches the oldest data in the FIFO.

RSTAT (0E8H) - Receive Status Register

7 6 5 4 3 2 1 0

OR RCABT AE CRCE RDN RFNE GREN HABEN

Figure 3.16. RSTAT

RSTAT.0 (HABEN) - Hardware Based Acknowledge Enable - If set, enables the hardware based acknowledge feature. The user software is responsible for setting or clearing this flag.

RSTAT.1 (GREN) - Receiver Enable - When set, the receiver is enabled to accept incoming frames. This also clears RDN, CRCE, AE, RCABT, and the receive FIFO. It is cleared by the receiver at the end of a reception or if any errors occurred. The user software is responsible for setting this flag and the GSC or user software can clear it. The status of GREN has no effect on whether the receiver detects a collision in CSMA/CD mode as the receiver input circuitry always monitors the receive pin.

RSTAT.2 (RFNE) - Receive FIFO Not Empty - If set, indicates that the receive FIFO contains data. The receive FIFO is a three byte buffer into which the receive data is loaded. A CPU read of the FIFO retrieves the oldest data and automatically updates the FIFO pointers. Setting GREN to a one will clear the receive FIFO. The status of this flag is controlled by the GSC. It is cleared if user empties receive FIFO.

RSTAT.3 (RDN) - Receive Done - If set, indicates the successful completion of a receiver operation. Will not be set if a CRC, alignment, abort, or FIFO overrun error occurred. The status of this flag is controlled by the GSC.

RSTAT.4 (CRCE) - CRC Error - If set, indicates that a properly aligned frame was received with a mismatched CRC. The status of this flag is controlled by the GSC.

RSTAT.5 (AE) - Alignment Error - If set, indicates that the line went idle when the receiver shift register was not full and the resulting CRC was bad in the CSMA/CD mode. If a correct CRC was valid then AE is not set. In SDLC mode, AE indicates that a non-byte-aligned flag was received. The status of this flag is controlled by the GSC.

RSTAT.6 (RCABT) - Receiver Collision/Abort Detect - If set, indicates that a collision was detected after data

had been loaded into the receive FIFO in CSMA/CD mode. In SDLC mode, RCABT indicates that 7 consecutive ones were detected prior to the end flag but after data has been loaded into the receive FIFO. The status of this flag is controlled by the GSC.

RSTAT.7 (OVR) - Overrun - If set, indicates that the receive FIFO was full and new shift register data was written into it. The setting of this flag is controlled by the GSC and it is cleared by user software.

SLOTTM (0BH) - Slot Time - Determines the length of the slot time used in CSMA/CD. A slot time equals (256 - SLOTTM) × (1 / baud rate). A read of SLOTTM will give the value of the slot time timer but the value may be invalid as the timer is clocked asynchronously to the CPU. Loading SLOTTM with 0 results in 256 bit times.

TCDCNT (0D4H) - Transmit Collision Detect Count-Contains the number of collisions that have occurred if probabilistic CSMA/CD is used. The user software must clear this register before transmitting a new frame so that the GSC backoff hardware can accurately distinguish a new frame from a retransmit attempt.

In deterministic backoff mode, TCDCNT is used to hold the maximum number of slots.

TFIFO (85H) - GSC Transmit FIFO - TFIFO is a 3 byte buffer with an associated pointer that is automatically updated for each write by user software. Writing a byte to TFIFO loads the data into the next available location in the transmit FIFO. Setting TEN clears the transmit FIFO so the transmit FIFO should not be written to prior to setting TEN. If TEN is already set transmission begins as soon as data is written to TFIFO.

TSTAT (0D8) - Transmit Status Register
7 6 5 4 3 2 1 0

LNI NOACK UR TCDT TDN TFNF TEN DMA

Figure 3.17. TSTAT

TSTAT.0 (DMA) - DMA Select - If set, indicates that DMA channels are used to service the GSC FIFO's and GSC interrupts occur on TDN and RDN, and also enables UR to become set. If cleared, indicates that the GSC is operating in its normal mode and interrupts occur on TFNF and RFNE. For more information on DMA servicing please refer to the DMA section on DMA serial demand mode (4.2.2.3). The user software is responsible for setting or clearing this flag.

When using

TSTAT.1 (TEN) - Transmit Enable - When set causes TDN, UR, TCDT, and NOACK flag to be reset and the TFIFO cleared. The transmitter will clear TEN after a successful transmission, a collision during the data, CRC, or end flag. The user software is responsible for setting but the GSC or user software may clear this flag. If cleared during a transmission the GSC transmit pin goes to a steady state high level. This is the method used to send an abort character in SDLC. Also \overline{DEN} is forced to a high level. The end of transmission occurs whenever the TFIFO is emptied.

TSTAT.2 (TFNF) - Transmit FIFO not full - When set, indicates that new data may be written into the transmit FIFO. The transmit FIFO is a three byte buffer that loads the transmit shift register with data. The status of this flag is controlled by the GSC.

TSTAT.3 (TDN) - Transmit Done - When set, indicates the successful completion of a frame transmission. If HABEN is set, TDN will not be set until the end of the IFS following the transmitted message, so that the acknowledge can be checked. If an acknowledge is expected and not received, TDN is not set. An acknowledge is not expected following a broadcast or multi-cast packet. The status of this flag is controlled by the GSC.

TSTAT.4 (TCDT) - Transmit Collision Detect - If set, indicates that the transmitter halted due to a collision. It is set if a collision occurs during the data or CRC or if there are more than eight collisions. The status of this flag is controlled by the GSC.

TSTAT.5 (UR) - Underrun - If set, indicates that in DMA mode the last bit was shifted out of the transmit register and that the DMA byte count did not equal zero. When an underrun occurs, the transmitter halts without sending the CRC or the end flag. The status of this flag is controlled by the GSC.

TSTAT.6 (NOACK) - No Acknowledge - If set, indicates that no acknowledge was received for the previous frame. Will be set only if HABEN is set and no acknowledge is received prior to the end of the IFS. NOACK is not set following a broadcast or a multicast packet. The status of this flag is controlled by the GSC.

TSTAT.7 (LNI) - Line Idle - If set, indicates the receive line is idle. In SDLC protocol it is set if 15 consecutive ones are received. In CSMA/CD protocol, line idle is set if no transitions occur on GR×D for approximately 1.6 bit times after a required transition. LNI is cleared after a transition on GR×D. The status of this flag is controlled by the GSC.

3.8 Serial Backplane vs. Network Environment

The C152 GSC port is intended to fulfill the needs of both serial backplane environment and the serial communication network environment. The serial backplane is where typically, only processor to processor communications take place within a self contained box. The communication usually only encompasses those items which are necessary to accomplish the dedicated task for the box. In these types of applications there may not be a need for line drivers as the distance between the transmitter and receiver is relatively short. The network environment; however, usually requires transmission of data over large distances and requires drivers and/or repeaters to ensure the data is received on both ends.

4.0 DMA Operation

The C152 contains DMA (Direct Memory Accessing) logic to perform high speed data transfers between any two of

Internal Data RAM
Internal SFRs
External Data RAM

If external RAM is involved, the Port 2 and Port 0 pins are used as the address/data bus, and $\overline{\text{RD}}$ and $\overline{\text{WR}}$ signals are generated as required.

Hardware is also implemented to generate a Hold Request signal and await a Hold Acknowledge response before commencing a DMA that involves external RAM.

Alternatively, the Hold/Hold Acknowledge hardware can be programmed to accept a Hold Request signal from an external device and generate a Hold Acknowledge signal in response, to indicate to the requesting device that the C152 will not commence a DMA to or from external RAM while the Hold Request is active.

4.1 DMA with the 80C152

The C152 contains two identical general purpose 8-bit DMA channels with 16-bit addressability: DMA0 and DMA1. DMA transfers can be executed by either channel independent of the other, but only by one channel at a time. During the time that a DMA transfer is being executed, program execution is suspended. A DMA transfer takes one machine cycle (12 oscillator

Figure 4.1. DMA Registers And The Application and The Application

periods) per byte transferred, except when the destination and source are both in External Data RAM. In that case the transfer takes two machine cycles per byte. The term DMA Cycle will be used to mean the transfer of a single data byte, whether it takes 1 or 2 machine cycles.

Associated with each channel are seven SFRs, shown in Figure 4.1. SARLn and SARHn holds the low and high bytes of the source address. Taken together they form a 16-bit Source Address Register. DARLn and DARHn hold the low and high bytes of the destination address, and together form the Destination Address Register. BCRLn and BCRHn hold the low and high bytes of the number of bytes to be transferred, and together form the Byte Count Register. DCONn contains control and flag bits.

Two bits in DCONn are used to specify the physical destination of the data transfer. These bits are DAS (Destination Address Space) and IDA (Increment Destination Address). If DAS = 0, the destination is in data memory external to the C152. If DAS = 1, the destination is internal to the C152. If DAS = 1 and IDA = 0, the internal destination is a Special Function Register (SFR). If DAS = 1 and IDA = 1, the internal destination is in the 256-byte data RAM.

In any case, if IDA = 1, the destination address is automatically incremented after each byte transfer. If IDA = 0, it is not.

Two other bits in DCONn specify the physical source of the data to be transferred. These are SAS (Source Address Space) and ISA (Increment Source Address). If SAS = 0, the source is in data memory external to the C152. If SAS = 1, the source is internal. If SAS = 1 and ISA = 0, the internal source is an SFR. If SAS = 1 and ISA = 1, the internal source is in the 256-byte data RAM.

In any case, if ISA = 1, the source address is automatically incremented after each byte transfer. If ISA = 0, it is not.

The functions of these four control bits are summarized below:

DAS	IDA	Destination	Auto-Increment			
ucOrano	or One	External RAM	wondon no ada an			
0001	settani	External RAM	yes yes			
ne pre	0 0	SFR ing b	viscon s no believe			
itiqor a	101188	Internal RAM	yes yes			
SAS	ISA	Source	Auto-Increment			
0	0	External RAM	no			
0	1	External RAM	yes			
mil les	0	SFR	no			
1	- 11 ×	Internal RAM	ves			

There are four modes in which the DMA channel can operate. These are selected by the bits DM and TM (Demand Mode and Transfer Mode) in DCONn:

DM	TM	Operating Mode
0	0	Alternate Cycles Mode
0	1	Burst Mode
1	0	Serial Port Demand Mode
es a Hole	52 atneral	External Demand Mode

The operating modes are described below.

4.1.1 ALTERNATE CYCLE MODE

In Alternate Cycles Mode the DMA is initiated by setting the GO bit in DCONn. Following the instruction that set the GO bit, one more instruction is executed, and then the first data byte is transferred from the source address to the destination address. Then another instruction is executed, and then another byte of data is transferred, and so on in this manner.

Each time a data byte is transferred, BCRn (Byte Count Register for DMA Channel n) is decremented. When it reaches 0000H, on-chip hardware clears the GO bit and sets the DONE bit, and the DMA ceases. The DONE bit flags an interrupt.

4.1.2 BURST MODE

Burst Mode differs from Alternate Cycles mode only in that once the data transfer has begun, program execution is entirely suspended until BCRn reaches 0000H, indicating that all data bytes that were to be transferred have been transferred. The interrupt control hardware remains active during the DMA, so interrupt flags may get set, but since program execution is suspended, the interrupts will not be serviced while the DMA is in progress.

4.1.3 SERIAL PORT DEMAND MODE

In this mode the DMA can be used to service the Local Serial Channel (LSC) or the Global Serial Channel (GSC).

In Serial Port Demand Mode the DMA is initiated by any of the following conditions, if the GO bit is set:

Source Address = SBUF .AND. RI = 1
Destination Address = SBUF .AND. TI = 1
Source Address = RFIFO .AND. RFNE = 1
Destination Address = TFIFO .AND. TFNF = 1

Each time one of the above conditions is met, one DMA Cycle is executed; that is, one data byte is transferred from the source address to the destination address. On-chip hardware then clears the flag (RI, TI, RFNE, or TFNF) that initiated the DMA, and decrements BCRn. Note that since the flag that initiated the DMA is cleared, it will not generate an interrupt unless DMA servicing is held off or the byte count equals 0. DMA servicing may be held off when alternate cycle is being used or by the status of the HOLD/HLDA logic. In these situations the interrupt for the LSC may occur before the DMA can clear the RI or TI flag. This is because the LSC is serviced according to the status of RI and TI, whether or not the DMA channels are being used for the transferring of data. The GSC does not use RFNE or TFNF flags when using the DMA channels so these do not need to be disabled. When using the DMA channels to service the LSC it is recommended that the interrupts (RI and TI) be disabled. If the decremented BCRn is 0000H, on-chip hardware then clears the GO bit and sets the DONE bit. The DONE bit flags an interrupt.

4.1.4 EXTERNAL DEMAND MODE

In External Demand Mode the DMA is initiated by one of the External Interrupt pins, provided the GO bit is set. INTO initiates a Channel 0 DMA, and INTI initiates a Channel 1 DMA.

If the external interrupt is configured to be transition-activated, then each 1-to-0 transition at the interrupt pin sets the corresponding external interrupt flag, and generates one DMA Cycle. Then, BCRn is decremented. No more DMA Cycles take place until another 1-to-0 transition is seen at the external interrupt pin. If the decremented BCRn = 0000H, on-chip hardware clears the GO bit and sets the DONE bit. If the external interrupt is enabled, it will be serviced.

If the external interrupt is configured to be level-activated, then DMA Cycles commence when the interrupt pin is pulled low, and continue for as long as the pin is held low and BCRn is not 0000H. If BCRn reaches 0 while the interrupt pin is still low, the GO bit is cleared, the DONE bit is set, and the DMA ceases. If the external interrupt is enabled, it will be serviced.

If the interrupt pin is pulled up before BCRn reaches 0000H, then the DMA ceases, but the GO bit is still 1 and the DONE bit is still 0. An external interrupt is not generated in this case, since in level-activated mode, pulling the pin to a logical 1 clears the interrupt flag. If the interrupt pin is then pulled low again, DMA transfers will continue from where they were previously stopped.

The timing for the DMA Cycle in the transition-activated mode, or for the first DMA Cycle in the level-activated mode is as follows: If the 1-to-0 transition is

detected before the final machine cycle of the instruction in progress, then the DMA commences as soon as the instruction in progress is completed. Otherwise, one more instruction will be executed before the DMA starts. No instruction is executed during any DMA Cycle.

4.2 Timing Diagrams and AMC and and and and

Timing diagrams for single-byte DMA transfers are shown in Figures 4.2 through 4.5 for four kinds of DMA Cycles: internal memory to internal memory, internal memory to external memory, external memory to internal memory, and external memory to external memory. In each case we assume the C152 is executing out of external program memory. If the C152 is executing out of internal program memory, then PSEN is inactive, and the Port 0 and Port 2 pins emit P0 and P2 SFR data. If External Data Memory is involved, the Port 0 and Port 2 pins are used as the address/data bus,

and \overline{RD} and/or \overline{WR} signals are generated as needed, in the same manner as in the execution of a MOVX @DPTR instruction.

4.3 Hold/Hold Acknowledge

Two operating modes of Hold/Hold Acknowledge logic are available, and either or neither may be invoked by software. In one mode, the C152 generates a Hold Request signal and awaits a Hold Acknowledge response before commencing a DMA that involves external RAM. This is called the Requester Mode.

In the other mode, the C152 accepts a Hold Request signal from an external device and generates a Hold Acknowledge signal in response, to indicate to the requesting device that the C152 will not commence a DMA to or from external RAM while the Hold Request is active. This is called the Arbiter mode.

Figure 4.2. DMA Transfer from Internal Memory to Internal Memory

Figure 4.3. DMA Transfer from Internal Memory to External Memory

Figure 4.4. DMA Transfer from External Memory to Internal Memory

Figure 4.5. DMA Transfer from External Memory to External Memory

4.3.1 REQUESTER MODE

The Requester Mode is selected by setting the control bit REQ, which resides in PCON. In that mode, when the C152 wants to do a DMA to External Data Memory, it first generates a Hold Request signal, HLD, and waits for a Hold Acknowledge signal, HLDA, before commencing the DMA operation. Note that program execution continues while HLDA is awaited. The DMA is not begun until a logical 0 is detected at the HLDA pin. Then, once the DMA has begun, it goes to completion regardless of the logic level at HLDA.

The protocol is activated only for DMAs (not for program fetches or MOVX operations), and only for DMAs to or from External Data Memory. If the data destination and source are both internal to the C152, the HLD/HLDA protocol is not used.

The HLD output is an alternate function of port pin P1.5, and the HLDA input is an alternate function of port pin P1.6.

4.3.2 ARBITER MODE

For DMAs that are to be driven by some device other than the C152, a different version of the Hold/Hold Acknowledge protocol is available. In this version, the device which is to drive the DMA sends a Hold Request signal, HLD, to the C152. If the C152 is currently performing a DMA to or from External Data Memory, it will complete this DMA before responding to the Hold Request. When the C152 responds to the Hold Request, it does so by activating a Hold Acknowledge signal, HLDA. This indicates that the C152 will not commence a new DMA to or from External Data Memory while HLD remains active.

Note that in the Arbiter Mode the C152 does not suspend program execution at all, even if it is executing from external program memory. It does not surrender use of its own bus.

The Hold Request input, HLD, is at P1.5. The Hold Acknowledge output, HLDA, is at P1.6. This

version of the Hold/Hold Acknowledge feature is selected by setting the control bit ARB in PCON.

The functions of the ARB and REQ bits in PCON, then, are

ARB	REQ	Hold/Hold Acknowledge Logic
0	0	Disabled
0	1	C152 generates HLD, detects HLDA
1	0	C152 detects HLD, generates HLDA
1	1	Invalid

4.3.3 USING THE HOLD/HOLD ACKNOWLEDGE

The HOLD/HOLDA logic only affects DMA operation with external RAM and doesn't affect other operations with external RAM, such as MOVX instruction.

Figure 4.6 shows a system in which two 83C152s are sharing a global RAM. In this system, both CPUs are executing from internal ROM. Neither CPU uses the bus except to access the shared RAM, and such access-

es are done only through DMA operations, not by MOVX instructions.

One CPU is programmed to be the Arbiter and the other, to be the Requester. The ALE Switch selects which CPU's ALE signal will be directed to the address latch. The Arbiter's ALE is selected if HLDA is high, and the Requester's ALE is selected if HLDA is low.

Figure 4.7. ALE Switch Select

The ALE Switch logic can be implemented by a single 74HC00, as shown in Figure 4.7.

Figure 4.6. Two 83C152s Sharing External RAM

4.3.4 INTERNAL LOGIC OF THE ARBITER

The internal logic of the arbiter is shown in Figure 4.8. In operation an input low at \overline{HLD} sets Q2 if the arbiter's internal signal DMXRQ is low. DMXRQ is the arbiter's "DMA to XRAM Request". Setting Q2 activates \overline{HLDA} through Q3. Q2 being set also disables any DMAs to XRAM that the arbiter might decide to do during the requester's DMA.

Figure 4.9 shows the minimum response time, 4 to 7 CPU oscillator periods, between a transition at the HLD input and the response at HLDA.

When the arbiter wants to DMA the XRAM, it first activates DMXRQ. This signal prevents Q2 from being set if it is not already set. An output low from Q2 enables the arbiter to carry out its DMA to XRAM, and maintains an output high at HLDA. When the arbiter completes its DMA, the signal DMXRQ goes to O, which enables Q2 to accept signals from the HLD input again.

Figure 4, 10, Internal Logic of the Requester

Figure 4.9. Minimum HLD/HLDA Response Time

Figure 4.10. Internal Logic of the Requester (Clock 1 and Clock 2 are Shown in Figure 4.9)

4.3.5 Internal Logic of the Requester

The internal logic of the requester is shown in Figure 4.10. Initially, the requester's internal signal DMXRQ (DMA to XRAM Request) is at 0, so Q2 is set and the HLD output is high. As long as Q2 stays set, the requester is inhibited from starting any DMA to XRAM.

When the requester wants to DMA the XRAM, it first activates DMXRQ. This signal enables Q2 to be cleared (but doesn't clear it), and, if $\overline{\text{HLDA}}$ is high, also activates the $\overline{\text{HLD}}$ output.

A 1-to-0 transition from HLDA can now clear Q2, which will enable the requester to commence its DMA to XRAM. Q2 being low also maintains an output low at HLD. When the DMA is completed, DMXRQ goes to 0, which sets Q2 and de-activates HLD.

Only DMXRQ going to 0 can set Q2. That means once Q2 gets cleared, enabling the requester's DMA to proceed, the arbiter has no way to stop the requester's DMA in progress. At this point, de-activating HLDA will have no effect on the requester's use of the bus. Only the requester itself can stop the DMA in progress, and when it does, it de-activates both DMXRQ and HLD.

If the DMA is in alternate cycles mode, then each time a DMA cycle is completed DMXRQ goes to 0, thus deactivating \overline{HLD} . Once \overline{HLD} has been de-activated, it can't be re-asserted till after \overline{HLDA} has been seen to go high (through flip-flop Q1A). Thus every time the DMA is suspended to allow an instruction cycle to proceed, the requester gives up the bus and must renew

the request and receive another acknowledge before another DMA cycle to XRAM can proceed. Obviously in this case, the "alternate cycles" mode may consist of single DMA cycles separated by any number of instruction cycles, depending on how long it takes the requester to regain the bus.

A channel 1 DMA in progress will always be overridden by a DMA request of any kind from channel 0. If a channel 1 DMA to XRAM is in progress and is overridden by a channel 0 DMA which does not require the bus, DMXRQ will go to 0 during the channel 0 DMA, thus de-activating HLD. Again, the requester must renew its request for the bus, and must receive a new 1-to-0 transition in HLDA before channel 1 can continue its DMA to XRAM.

4.4 DMA Arbitration

The DMA Arbitration described in this section is not arbitration between two devices wanting to access a shared RAM, but on-chip arbitration between the two DMA channels on the 8XC152.

The 8XC152 provides two DMA channels, either of which may be called into operation at any time in response to real time conditions in the application circuit. Since a DMA cycle always uses the 8XC152's internal bus, and there's only one internal bus, only one DMA channel can be serviced during a single DMA cycle. Executing program instructions also requires the internal bus, so program execution will also be suspended in order for a DMA to take place.

Figure 4.11. Internal Bus Usage

Figure 4.11 shows the three tasks to which the internal bus of the 8XC152 can be dedicated. In this figure, Instruction Cycle means the complete execution of a single instruction, whether it takes 1, 2 or 4 machine cycles. DMA Cycle means the transfer of a single data byte from source to destination, whether it takes 1 or 2 machine cycles. Each time a DMA Cycle or an Instruction Cycle is executed, on-chip arbitration logic determines which type of cycle is to be executed next.

Note that when an instruction is executed, if the instruction wrote to a DMA register (defined in Figure 4.1 but excluding PCON), then another instruction is executed without further arbitration. Therefore, a single write or a series of writes to DMA registers will prevent a DMA from taking place, and will continue to prevent a DMA from taking place until at least one instruction is executed which does not write to any DMA register.

The logic that determines whether the next cycle will be a DMA0 cycle, a DMA1 cycle, or an Instruction Cycle is shown in Figure 4.12 as a pseudo-HLL function. The statements in Figure 4.12 are executed sequentially unless an "if" condition is satisfied, in which case the corresponding "return" is executed and the remainder of the function is not. The return value of 0, 1, or 2 is passed to the arbitration logic block in Figure 4.11 to determine which exit path from the block is used.

The return value is based on the condition of the GO bit for each channel, and on the value returned by another function, named mode_logic (). The algorithm for mode_logic () is the same for both channels. The function is shown in Figure 4.13 as a pseudo-HLL function, mode_logic (n), where n = 0 when the function is invoked for DMA channel 0, and n = 1 when it's invoked for DMA channel 1. The value returned by this function is either 0 or 1, and will be passed on to the DMA arbitration logic in Figure 4.12.

Note that the arbitration logic as shown in Figure 4.12 always gives precedence to channel 0 over channel 1. If GOO is set and mode_logic (0) returns a 1, then a DMAO cycle is called without further reference to the situation in channel 1. That is not to say a DMA1 Cycle will be interrupted once it has begun. Once a cycle has begun, be it an Instruction Cycle or a DMA Cycle, it will be completed without interruption.

The statements in mode_logic (n), Figure 4.13, are executed sequentially until an "if" condition, based on the DMA mode programmed into DCONn, is satisfied. For example, if the channel is configured to Burst mode, then the first if-condition is satisfied, so the "return 1" expression is executed and the remainder of the function is not.

igure 4.11. Internal Bus Usage


```
mode_logic(n):
if (DCONn indicates extern_demand_mode)
         if (demand_flag = 1) return 1;
         else return 0;
      if (DCONn indicates SP_demand_mode)
         if (SARn = SBUF .AND. RI = 1) return 1;
         if (DARn = SBUF .AND. TI = 1) return 1;
         if (SARn = RFIFO .AND. RFNE = 1) return 1;
of if (DARn = TFIFO .AND. TFNF = 1 .AND.
previous_cycle = instruction_cycle) return 1;
else return 0;
so, and channel I decides it wants to do a Burst mod
     if (DCONn indicates alt_cycles_mode) Transparation and an indicates alt_cycles_mode)
    Instruction cycle (during which TFNH gets set)
         if (DCONm indicates .NOT. alt_cycles_mode
             .OR. GOm = 0)
            if (previous_cycle = instruction_cycle)
                return 1; ovo moliosmiani
            else return 0;
This sequence begins with two II struction cycles. The first one accesses a DMA register (DCOMI), and there
if (previous_cycle = instruction_cycle
MA register. After the
                                     event some idiosyneracies that the c(nAMC .TOM.
.AND. previous_dma_cycle =
                                      ware of. First, the logic allows sequential DMA cycle
generate DMA cycle; la mutar el 0 of course take
precedence. After this DMA cycle, channel 0 mus
wait for an Instruction cycle before it can access
AMC a return 0; med a bus not better had even
end mode_logic(n);
```

Figure 4.13. DMA Mode Logic AMCI and starting an amaldona

If the channel is configured to External Demand mode, then the first if-condition is not satisfied but the second one is. In that case the block of statements following that if-condition and delimited by {...} is executed: if the demand flag (IEO for channel 0 and IE1 for channel 1) is set, the "return 1" expression is executed and the remainder of the function is not. If the demand flag is not set, the "return 0" expression is executed and the remainder of the function is not.

If the channel is configured to Serial Port Demand mode, the source and destination addresses, SARn and DARn, have to be checked to see which Serial Port buffer is being addressed, and whether its demand flag is set.

SARn refers to the 16-bit source address for "this channel." Note that the condition

SARn = SBUF

cannot be true unless the SAS and ISA bits in DCONn are configured to select SFR space. If SARn is numerically equal to the address of SBUF (99H), and SAS and ISA are configured to select internal RAM rather than SFR space, then SARn refers to location 99H in the "upper 128" of internal RAM, not to SBUF.

If the test for SARn = SBUF is true, and if the flag RI is set, mode_logic (n) returns as 1 and the remainder of the function is not executed. Otherwise, execution proceeds to the next if-condition, testing DARn against SBUF and T1 against 1.

The same considerations regarding SAS and ISA in the SARn test are now applied to DAS and IDA in the DARn test. If SFR space isn't selected, no Serial Port buffer is being addressed.

Note that if DMA channel n is configured to Alternate Cycles mode, the logic must examine the other DCON register, DCONm, to determine if the other channel is also configured to Alternate Cycles mode and whether its GO bit is set. In Figure 4.13, the symbol DCONn refers to the DCON register for "this channel," and DCONm refers to "the other channel."

A careful examination of the logic in Figure 4.13 will reveal some idiosyncracies that the user should be aware of. First, the logic allows sequential DMA cycles to be generated to service RFIFO, but not to service TFIFO. This idiosyncracy is due to internal timing conflicts, and results in each individual DMA cycle to TFIFO having to be immediately preceded by an Instruction cycle. The logic disallows that there be two DMAs to TFIFO in a row.

If the user is unaware of this idiosyncracy, it can cause problems in situations where one DMA channel is servicing TFIFO and the other is configured to a completely different mode of operation. For example, consider the situation where channel 0 is configured to service TFIFO and channel 1 is configured to Alternate Cycles mode. Then DMAs to TFIFO will always override the alternate cycles of channel 1. If TFIFO needs more than 1 byte it will receive them in precendence over channel 1, but each DMA to TFIFO must be preceded by an Instruction cycle. The sequence of cycles might be:

DMA1 cycle
Instruction cycle
DMA1 cycle, during which TFNF gets set
Instruction cycle
DMA0 cycle
Instruction cycle
DMA0 cycle, as a result of which TFNF gets cleared
Instruction cycle
DMA1 cycle
Instruction cycle
DMA1 cycle
Instruction cycle
DMA1 cycle
Instruction cycle

The requirement that a DMA to TFIFO be preceded by an Instruction cycle can result in the normal precedence of channel 0 over channel 1 being thwarted. Consider for example the situation where channel 0 is configured to service TFIFO, and is in the process of doing so, and channel 1 decides it wants to do a Burst mode DMA. The sequence of events might be:

Instruction cycle (sets GO bit in DCON1)
Instruction cycle (during which TFNF gets set)
DMA0 cycle
DMA1 cycle
DMA1 cycle
DMA1 cycle
DMA1 cycle

DMA1 cycle (completes channel 1 burst)
Instruction cycle
DMA0 cycle
Instruction cycle

This sequence begins with two Instruction cycles. The first one accesses a DMA register (DCON1), and therefore is followed by another Instruction cycle, which presumably does not access a DMA register. After the second Instruction cycle both channels are ready to generate DMA cycles, and channel 0 of course takes precedence. After the DMA0 cycle, channel 0 must wait for an Instruction cycle before it can access TFIFO again. Channel 1, being in Burst mode, doesn't have that restriction, and is therefore granted a DMA1 cycle. After the first DMA1 cycle, channel 0 is still waiting for an Instruction cycle and channel 1 still does not have that restriction. There follows another DMA1 cycle.

The result is that in this particular case channel 0 has to wait until channel 1 completes its Burst mode DMA, and then has to wait for an Instruction cycle to be generated, before it can continue its own DMA to TFIFO. The delay in servicing TFIFO can cause an Underflow condition in the GSC transmission.

The delay will not occur if channel 1 is configured to Alternate Cycles mode, since channel 0 would then see the Instruction cycles it needs to complete its logic requirements for asserting its request.

4.4.1 DMA Arbitration with Hold/Hold Ack

The Hold/Hold Acknowledge feature is invoked by setting either the ARB or REQ bit in PCON. Their effect is to add the requirements of the Hold/Hold Ack protocol to mode_logic (). This amounts to replacing every expression "return 1" in Figure 4.13 with the expression "return hld_hlda_logic ()", where hld_hlda_logic () is a function which returns 1 if the Hold/Hold Ack protocol is satisfied, and returns 0 otherwise. A suitable definition for hld_hlda_logic () is shown in Figure 4.14.

4.5 Summary of DMA Control Bits

DCONn DAS IDA SAS ISA DM TM DONE GO

DAS specifies the Destination Address Space. If DAS = 0, the destination is in External Data Memory. If DAS = 1 and IDA = 0, the destination is a Special

Function Register (SFR). If DAS = 1 and IDA = 1, the destination is in Internal Data RAM.

IDA (Increment Destination Address) If IDA = 1, the destination address is automatically incremented after each byte transfer. If IDA = 0, it is not.

SAS specifies the Source Address Space. If SAS = 0, the source is in External Data Memory. If SAS = 1 and ISA = 0, the source is an SFR. If SAS = 1 and ISA = 1, the source is Internal Data RAM.

ISA (Increment Source Address) If ISA = 1, the source address is automatically incremented after each byte transfer. If ISA = 0, it is not.

DM (Demand Mode) If DM = 1, the DMA Channel operates in Demand Mode. In Demand Mode the DMA is initiated either by an external signal or by a Serial Port flag, depending on the value of the TM bit. If DM = 0, the DMA is requested by setting the GO bit in software.

TM (Transfer Mode) If DM = 1 then TM selects whether a DMA is initiated by an external signal (TM = 1) or by a Serial Port flag (TM = 0). If DM = 0 then TM selects whether the data transfers are to be in bursts (TM = 1) or in alternate cycles (TM = 0).

DONE indicates the completion of a DMA operation and flags an interrupt. It is set to 1 by on-chip hardware when BCRn = 0, and is cleared to 0 by on-chip hardware when the interrupt is vectored to. It can also be set or cleared by software.

```
hold_holda():

if (ARB = 0 .AND. REQ = 0) return 1;

if SARn = XRAM .OR. DARn = XRAM)

if (ARB = 1 .AND. HLDA = 1) return 1;

if (REQ = 1 .AND. HLDA = 0) return 1;

else return 0;

and hold_holda();

end hold_holda();
```

Figure 4.14. Hold/Hold Acknowledge Logic as a Pseudo-HLL Function

GO is the enable bit for the DMA Channel itself. The DMA Channel is inactive if GO = 0.

PCON SMOD ARB REQ GAREN XRCLK GFIEN PDN IDL

ARB enables the DMA logic to detect \overline{HLD} and generate \overline{HLDA} . After it has activated \overline{HLDA} , the C152 will not begin a new DMA to or from External Data Memory as long as \overline{HLD} is seen to be active. This logic is disabled when ARB = 0, and enabled when ARB = 1.

REQ enables the DMA logic to generate $\overline{\text{HLD}}$ and detect $\overline{\text{HLDA}}$ before performing a DMA to or from External Data Memory. After it has activated $\overline{\text{HLD}}$, the C152 will not begin the DMA until $\overline{\text{HLDA}}$ is seen to be active. This logic is disabled when REQ = 0, and enabled when REQ = 1.

5.0 INTERRUPT STRUCTURE

The 8XC152 retains all five interrupts of the 80C51BH. Six new interrupts are added in the 8XC152, to support its GSC and the DMA features. They are as listed below, and the flags that generate them are shown in Figure 5.1.

GSCRV — GSC Receive Valid
GSCRE — GSC Receive Error
GSCTV — GSC Transmit Valid
GSCTE — GSC Transmit Error
DMA0 — DMA Channel 0 Done
DMA1 — DMA Channel 1 Done

As shown in Figure 5.1, the Receive Valid interrupt can be signaled either by the RFNE flag (Receive FIFO Not Empty), or by the RDN flag (Receive Done). Which one of these flags causes the interrupt depends on the setting of the DMA bit in the SFR named TSTAT.

DMA = 0 means the DMA hardware is not configured to service the GSC, so the CPU will service it in software in response to the Receive FIFO not being empty. In that case, RFNE generates the Receive Valid interrupt.

DMA = 1 means the DMA hardware is configured to service the GSC, in which case the CPU need not be interrupted till the receive is complete. In that case, RDN generates the Receive Valid interrupt.

Similarly the Transmit Valid interrupt can be signaled either by the TFNF flag (Transmit FIFO Not Full), or by the TDN flag (Transmit Done), depending on whether the DMA bit is 0 or 1.

Note that setting the DMA bit does not itself configure the DMA channels to service the GSC. That job must be done by software writes to the DMA registers. The DMA bit only selects whether the GSCRV and GSCTV interrupts are flagged by a FIFO needing service or by an "operation done" signal.

The Receive and Transmit Error interrupt flags are generated by the logical OR of a number of error conditions, which are described in Section 3.6.5.

Each interrupt is assigned a fixed location in Program Memory, and the interrupt causes the CPU to jump to that location. All the interrupt flags are sampled at S5P2 of every machine cycle, and then the samples are sequentially polled during the next machine cycle. If more than one interrupt of the same priority is active, the one that is highest in the polling sequence is serviced first. The interrupts and their fixed locations in Program Memory are listed below in the order of their polling sequence.

Figure 5.1. Six New Interrupts in the 8XC152

Interrupt	Location	Name
IEO a gain	0003H	External Interrupt 0
GSCRV	002BH	GSC Receive Valid
TFO	000BH	Timer 0 Overflow
GSCRE	0033H	GSC Receive Error
DMA0	003BH	DMA Channel 0 Done
IE1	0013H	External Interrupt 1
GSCTV	0043H	GSC Transmit Valid
DMA1	0053H	DMA Channel 1 Done
TF1T mon	001BH	Timer 1 Overflow
GSCTE		GSC Transmit Error
TI+RI	0023H	UART Transmit/Receive

Note that the locations of the basic 8051 interrupts are the same as in the rest of the MCS-51 Family, And relative to each other they retain their same positions in the polling sequence.

The locations of the new interrupts all follow the locations of the basic 8051 interrupts in Program Memory, but they are interleaved with them in the polling sequence.

To support the new interrupts a second Interrupt Enable register and a second Interrupt Priority register are implemented in bit-addressable SFR space. The two Interrupt Enable registers in the 8XC152 are as follows:

	7	6	5	4	3	TOZ2	1	0
IE:	EA	_	_	ES	ET1	EX1	ET0	EX0

Address of IE in SFR space = 0A8H (bit-addressable)

	7	6	5	4	3	2	1	0
IEN1:	_	_	EGSTE	EDMA1	EGSTV	EDMA0	EGSRE	EGSRV

Address pF IE1 in SFR space = 0C8H (bit-address-able)

The bits in IE are unchanged from the standard 8051 IE register. The bits in IEN1 are as follows:

EGSTE = 1 Enable GSC Transmit Error Interrupt

= 0 Disable EDMA1 = 1 Enable DMA Channel 1 Done Interrupt

= 0 Disable EGSTV = 1 Enable GSC Transmit Valid Interrupt

= 0 Disable

EDMA0 = 1 Enable DMA Channel 0 Done Interrupt = 0 Disable

EGSRE = 1 Enable GSC Receive Error Interrupt = 0 Disable

EGSRV = 1 Enable GSC Receive Valid Interrupt = 0 Disable The two Interrupt Priority registers in the 8XC152 are as follows:

Address of IP in SFR space = 0B8H (bit-addressable)

Address of IPN1 in SFR space = 0F8H (bit-address-able)

The bits in IP are unchanged from the standard 8051 IP register. The bits in IPN1 are as follows:

PGSTE = 1 GSC Transmit Error Interrupt Priority

= 0 Priority to Low PDMA1 = 1 DMA Channel 1 Done Interrupt Priority to High

= 0 Priority to Low PGSTV = 1 GSC Transmit Valid Interrupt Priority to High

= 0 Priority to Low PDMA0 = 1 DMA Channel 0 Done Interrupt Priority to High

= 0 Priority to Low

PGSRE = 1 GSC Receive Error Interrupt Priority to
High

= 0 Priority to Low

PGSRV = 1 GSC Receive Valid Interrupt Priority to High

= 0 Priority to Low

Note that these registers all have unimplemented bits ("—"). If these bits are read, they will return unpredictable values. If they are written to, the value written goes nowhere.

It is recommended that user software should never write 1s to unimplemented bits in MCS-51 devices. Future versions of the device may have new bits installed in these locations. If so, their reset value will be 0. Old software that writes 1s to newly implemented bits may unexpectedly invoke new features.

The MCS-51 interrupt structure provides hardware support for only two priority levels, High and Low. With as many interrupt sources as the 8XC152 has, it may be helpful to know how to augment the priority structure in software. Any number of priority levels can be implemented in software by saving and redefining the interrupt enable registers within the interrupt service routines. The technique is described in the "MCS-51" Architectural Overview" chapter in this handbook.

lejni

5.1 GSC Transmitter Error Conditions

The GSC Transmitter section reports three kinds of error conditions:

TCDT — Transmitter Collision Detector

UR — Underrun in Transmit FIFO

NOACK - No Acknowledge

These bits reside in the TSTAT register. User software can read them, but only the GSC hardware can write to them. The GSC hardware will set them in response to the various error conditions that they represent. When user software sets the TEN bit, the GSC hardware will at that time clear these flags. This is the only way these flags can be cleared.

The logical OR of these three bits flags the GSC Transmit Error interrupt (GSCTE) and clears the TEN bit, as shown in Figure 5.2. Thus any detected error condition aborts the transmission. No CRC bits are transmitted. In SDLC mode, no EOF flag is generated. In CSMA/CD mode, an EOF is generated by default, since the GTXD pin is pulled to a logic 1 and held there.

The TCDT bit can get set only if the GSC is configured to CSMA/CD mode. In that case, the GSC hardware sets TCDT when a collision is detected during a transmission, and the collision was detected after TFIFO has been accessed. Also, the GSC hardware sets TCDT when a detected collision causes the TCDCNT register to overflow.

The UR bit can get set only if the DMA bit in TSTAT is set. The DMA bit being set informs the GSC hardware that TFIFO is being serviced by DMA. In that case, if the GSC goes to fetch another byte from TFIFO and finds it empty, and the byte count register of the DMA channel servicing TFIFO is not zero, it sets the UR bit.

If the DMA hardware is not being used to service TFIFO, the UR bit cannot get set. If the DMA bit is 0, then when the GSC finds TFIFO empty, it assumes that the transmission of data is complete and the transmission of CRC bits can begin.

The NOACK bit is functional only in CSMA/CD mode, and only when the HABEN bit in RSTAT is set. The HABEN bit turns on the Hardware Based Acknowledge feature, as described in Section 3,2.6. If this feature is not invoked, the NOACK bit will stay at 0.

Figure 5.2. Transmit Error Flags (Logic for Clearing TEN, Setting TDN)

thre versions of the device may have new one institued in these locations. If so, their reset value will be 0. Old software that writes is to newly implemented bits may unexpectedly invoke new features.

The MCS-31 interrupt structure provides hardware support for only two priority levels, High and Low. With as many interrupt sources as the \$XC152 has, it may be helpful to know how to sugment the priority structure in software. Any number of priority levels can be implemented in software by saving acd redefining the interrupt enable registers within the interrupt server ice continues. The technique is described in the "MCS-structure in the technique is described in the "MCS-structure".

Address pF IE1 in SFR space = 0C8H (bit-addressable)

The bits in IE are unchanged from the standard 80S1

IE register. The bits in IEN1 are as follows:

EGSTE = 1 Enable GSC Transmit Error Interrupt

EDMA1 = 1 Enable DMA Channel 1 Done Interrupt

EDMA2 = 0 Disable

G Disable

Figure 5.3. Receive Error Flag (Logic for Clearing GREN, setting RDN)

If the NOACK bit gets set, it means the GSC has completed a transmission, and was expecting to receive a hardware based acknowledge from the receiver of the message, but did not receive the acknowledge, or at least did not receive it cleanly. There are three ways the NOACK bit can get set:

- The acknowledge signal (an unattached preamble) was not received before the IFS was completed.
- 2. A collision was detected during the IFS.
- 3. The line was active during the last bit-time of the IFS.

The first condition is an obvious reason for setting the NOACK bit, since that's what the hardware based acknowledge is for. The other two ways the NOACK bit can get set are to guard against the possibility that the transmitting station might mistake an unrelated transmission or transmission fragment for an acknowledge signal.

5.2 GSC Receiver Error Conditions

The GSC Receiver section reports four kinds of error conditions:

CRCE - CRC Error

AE — Alignment Error

RCABT — Receive Abort

OVR — Overrun in Receive FIFO

These bits reside in the RSTAT register. User software can read them, but only the GSC hardware can write to them. The GSC hardware will set them in response to the various error conditions that they represent. When user software sets the GREN bit, the GSC hardware will at that time clear these flags. This is the only way these flags can be cleared.

The logical OR of these four bits flags the GSC Receive Error interrupt (GSCRE) and clears the GREN bit, as shown in Figure 5.3. Note in this figure that any error condition will prevent RDN from being set.

A CRC Error means the CRC generator did not come to its correct value after calculating the CRC of the message plus received CRC. An Alignment Error means the number of bits received between the BOF and EOF was not a multiple of 8.

In SDLC mode, the CRCE bit gets set at the end of any frame in which there is a CRC Error, and the AE bit gets set at the end of any frame in which there is an Alignment Error.

In CSMA/CD mode, if there is no CRC Error, neither CRCE nor AE will get set. If there is a CRC Error and no Alignment Error, the CRCE bit will get set, but not the AE bit. If there is both a CRC Error and an Alignment Error, the AE bit will get set, but not the CRCE bit. Thus in CSMA/CD mode, the CRCE and AE bits are mutually exclusive.

The Receive Abort flag, RCABT, gets set if an incoming frame was interrupted after received data had already passed to the Receive FIFO. In SDLC mode, this can happen if a line idle condition is detected before an EOF flag is. In CSMA/CD mode, it can happen if there is a collision. In either case, the CPU will have to re-initialize whatever pointers and counters it might have been using.

The Overrun Error flag, OVR, gets set if the GSC Receiver is ready to push a newly received byte onto the Receive FIFO, but the FIFO is full.

Up to 7 "dribble bits" can be received after the EOF without causing an error condition.

6.0 GLOSSARY

ADR0,1,2,3 (95H, 0A5H, 0B5H, 0C5H) - Address Match Registers 0,1,2,3 - The contents of these SFRs are compared against the address bits from the serial data on the GSC. If the address matches the SFR, then the C152 accepts that frame. If in 8 bit addressing mode, a match with any of the four registers will trigger acceptance. In 16 bit addressing mode, a match with ADR1:ADR0 or ADR3:ADR2 will be accepted. Address length is determined by GMOD (AL).

AE - Alignment Error, see RSTAT.

AL - Address Length, see GMOD.

AMSK0,1 (0D5H, 0E5H) - Address Match Mask 0,1 - Identifies which bits in ADR0,1 are "don't care" bits. Setting a bit to 1 in AMSK0,1 identifies the corresponding bit in ADDR0,1 as not to be examined when comparing addresses.

BAUD - (94H) Contains the programmable value for the baud rate generator for the GSC. The baud rate will equal $(fosc)/((BAUD+1) \times 8)$.

BCRL0,1 (0E2H, 0F2H) - Byte Count Register Low 0,1 - Contains the lower byte of the byte count. Used during DMA transfers to identify to the DMA channels when the transfer is complete.

BCRH0,1 (0E3H, 0F3H) - Byte Count Register High 0,1 - Contains the upper byte of the byte count.

BKOFF (0C4H) - Backoff Timer - The backoff timer is an eight bit count-down timer with a clock period equal to one slot time. The backoff time is used in the CSMA/CD collision resolution algorithm.

BOF - Beginning of Frame flag - A term commonly used when dealing with packetized data. Signifies the beginning of a frame.

CRC - Cyclic Redundancy Check - An error checking routine that mathematically manipulates a value dependent on the incoming data. The purpose is to identify when a frame has been received in error.

CRCE - CRC Error, see RSTAT.

CSMA/CD - Stands for Carrier Sense, Multiple Access, with Collision Detection.

CT - CRC Type, see GMOD.

DARL0/1 (0C2H, 0D2H) - Destination Address Register Low 0/1 - Contains the lower byte of the destinations' address when performing DMA transfers.

DARH0/1 (0C3H, 0D3H) - Destination Address Register Low 0/1 - Contains the upper byte of the destinations' address when performing DMA transfers.

DAS - Destination Address Space, see DCON.

DCJ - D.C. Jam, see MYSLOT.

DCON0/1 (092H,093H)

7	6	5	4	3	2	1	0
DAS	IDA	SAS	ISA	DM	TM	DONE	GO

The DCON registers control the operation of the DMA channels by determining the source of data to be transferred, the destination of the data to be transfer, and the various modes of operation.

DCON.0 (GO) - Enables DMA Transfer - When set it enables a DMA channel. If block mode is set then DMA transfer starts as soon as possible under CPU control. If demand mode is set then DMA transfer starts when a demand is asserted and recognized.

DCON.1 (DONE) - DMA Transfer is Complete When set the DMA transfer is complete. It is set when BCR equals 0 and is automatically reset when the DMA vectors to its interrupt routine. If DMA interrupt is disabled and the user software executes a jump on the DONE bit, then the user software must also reset the done bit. If DONE is not set, then the DMA transfer is not complete.

DCON.2 (TM) - Transfer Mode - When set, DMA burst transfers are used if the DMA channel is configured in block mode or external interrupts are used to initiate a transfer if in Demand Mode. When TM is cleared, Alternate Cycle Transfers are used if DMA is in the Block Mode, or Local Serial channel/GSC interrupts are used to initiate a transfer if in Demand Mode.

DCON.3 (DM) - DMA Channel Mode - When set, Demand Mode is used and when cleared, Block Mode is used.

DCON.4 (ISA) - Increment Source Address - When set, the source address registers are automatically incremented during each transfer. When cleared, the source address registers are not incremented.

DCON.5 (SAS) - Source Address Space - When set, the source of data for the DMA transfers is internal data memory if autoincrement is also set. If autoincrement is not set but SAS is, then the source for data will be one of the Special Function Registers. When SAS is cleared, the source for data is external data memory.

DCON.6 (IDA) - Increment Destination Address Space - When set, destination address registers are incremented once after each byte is transferred. When cleared, the destination address registers are not automatically incremented.

DCON.7 (DAS) - Destination Address Space - When set, destination of data to be transferred is internal data memory if autoincrement mode is also set. If autoincrement is not set the destination will be one of the Special Function Registers. When DAS is cleared then the destination is external data memory.

DCR - Deterministic Resolution, see MYSLOT.

DEN - An alternate function of one of the port 1 pins (P1.2). Its purpose is to enable external drivers when the GSC is transmitting data. This function is always active when using the GSC and if P1.2 is programmed to a 1.

DM - DMA Mode, see DCONO.

DMA - Direct Memory Access mode, see TSTAT.

DONE - DMA done bit, see DCON0.

DPH - Data Pointer High, an SFR that contains the high order byte of a general purpose pointer called the data pointer (DPTR).

DPL - Data Pointer Low, an SFR that contains the low order byte of the data pointer.

EDMA0 - Enable DMA Channel 0 interrupt, see IEN1.

EDMA1 - Enable DMA Channel 1 interrupt, see IEN1.

EGSRE - Enable GSC Receive Error interrupt, see IEN1.

EGSRV - Enable GSC Receive Valid interrupt, see IFN1

EGSTE - Enable GSC Transmit Error interrupt, see IEN1.

EGSTV - Enable GSC Transmit Valid interrupt, see IEN1.

EOF - A general term used in serial communications. EOF stands for End Of Frame and signifies when the last bits of data are transmitted when using packetized

ES - Enable LSC Service interrupt, see IE.

ETO - Enable Timer 0 interrupt, see IE.

ET1 - Enable Timer 1 interrupt, see IE.

EXO - Enable External interrupt 0, see IE.

EX1 - Enable External interrupt 1, see IE.

C.19 of beliegs a GMOD (84H) at a soolo denia

10 7 illes	6	5	4	3	2	The	0
XTCLK	M1	МО	AL	СТ	PL1	PLO	PR

The bits in this SFR, perform most of the configuration on the type of data transfers to be used with the GSC. Determines the mode, address length, preamble length, protocol select, and enables the external clocking of the transmit data.

GMOD.0 (PR) - Protocol - If set, SDLC protocols with NRZI encoding, zero bit insertion, and SDLC flags are used. If cleared, CSMA/CD link access with Manchester encoding is used.

GMOD.1,2 (PL0,1) - Preamble length

PLI PLO LENGTH (BITS)

0	0	0
0	1	8
1	0	32
1	100	64

The length includes the two bit Begin Of frame (BOF) flag in CSMA/CD but does not include the SDLC flag. In SDLC mode, the BOF is an SDLC flag, otherwise it is two consecutive ones. Zero length is not compatible in CSMA/CD mode.

GMOD.3 (CT) - CRC Type - If set, 32-bit AUTODIN-II-32 is used. If cleared, 16-bit CRC-CCITT is used.

GMOD.4 (AL) - Address Length - If set, 16-bit addressing is used. If cleared, 8-bit addressing is used. In 8-bit mode, a match with any of the 4 address registers will allow that frame to be accepted (ADR0, ADR1, ADR2, ADR3). "Don't Care" bits may be masked in ADR0 and ADR1 with AMSK0 and AMSK1. In 16-bit mode, addresses are matched against "ADR1:ADR0" or "ADR3:ADR2". Again, "Don't Care" bits in ADR1:ADR0 can be masked in AMSK1:AMSK0. A received address of all ones will always be recognized in any mode.

GMOD.5, 6 (M0,M1) - Mode Select - Two test modes, an optional "alternate backoff" mode, or normal backoff can be enabled with these two bits.

(MI) MO Mode which which mode and one of the Miles of the

enable any interrupt to be autom Normal of the O of the O

0 1 Raw Transmit

1 0 Raw Receive

1 Alternate Backoff Side - (OKE) OHI

GMOD.7 (XTCLK) - External Transmit Clock - If set an external 1X clock is used for the transmitter. If cleared the internal baud rate generator provides the

transmit clock. The input clock is applied to P1.3 (TxC). The user software is responsible for setting or clearing this flag. External receive clock is enabled by setting PCON.3.

GO - DMA Go bit, see DCONO.

GRxD - GSC Receive Data input, an alternate function of one of the port 1 pins (P1.0). This pin is used as the receive input for the GSC. P1.0 must be programmed to a 1 for this function to operate.

GSC - Global Serial Channel - A high-level, multi-protocol, serial communication controller added to the 80C51BH core to accomplish high-speed transfers of packetized serial data.

GTxD - GSC Transmit Data output, an alternate function of one of the port 1 pins (P1.1). This pin is used as the transmit output for the GSC. P1.1 must be programmed to a 1 for this function to operate.

HBAEN - Hardware Based Acknowledge Enable, see RSTAT.

HLDA - Hold Acknowledge, an alternate function of one of the port 1 pins (P1.6). This pin is used to perform the "HOLD ACKNOWLEDGE" function for DMA transfers. HLDA can be an input or an output, depending on the configuration of the DMA channels. P1.6 must be programmed to a 1 for this function to operate.

HOLD - Hold, an alternate function of one of the port 1 pins (P1.5). This pin is used to perform the "HOLD" function for DMA transfers. HOLD can be an input or an output, depending on the configuration of the DMA channels. P1.5 must be programmed to a 1 for this function to operate.

IDA - Increment Destination Address, see DCON0.

			Idress	E (0A81	H)		
7	6	5	4.55	3	ni 2 si	e rdeogr	0
EA	s tool	rsw7	ES	ET1	EX1	ET0	EX0

Interrupt Enable SFR, used to individually enable the Timer and Local Serial Channel interrupts. Also contains the global enable bit which must be set to a 1 to enable any interrupt to be automatically recognized by the CPU.

IE.0 (EX0) - Enables the external interrupt $\overline{\text{INT0}}$ on P3.2.

IE.1 (ET0) - Enables the Timer 0 interrupt.

IE.2 (EX1) - Enables the external interrupt INT1 on P3.3.

IE.3 (ET1) - Enables the Timer 1 interrupt.

IE.4 (ES) - Enables the Local Serial Channel interrupt.

IE.7 (EA) - The global interrupt enable bit. This bit must be set to a 1 for any other interrupt to be enabled.

Interrupt enable register for DMA and GSC interrupts. A 1 in any bit position enables that interrupt.

IEN1.0 (EGSRV) - Enables the GSC valid receive interrupt.

IEN1.1 (EGSRE) - Enables the GSC receive error interrupt.

IEN1.2 (EDMA0) - Enables the DMA done interrupt for Channel 0.

IEN1.3 (EGSTV) - Enables the GSC valid transmit interrupt.

IEN1.4 (EDMA1) - Enables the DMA done interrupt for Channel 1.

IEN1.5 (EGSTE) - Enables the GSC transmit error interrupt

IFS - (0A4H) Interframe Space, determines the number of bit times separating transmitted frames.

				IP (0B8	H)		
7	6	5	4	3	2	1	0
			PS	PT1	PX1	PT0	PX0

Allows the user software two levels of prioritization to be assigned to each of the interrupts in IE. A 1 assigns the corresponding interrupt in IE a higher interrupt than an interrupt with a corresponding 0.

 $\frac{\text{IP.0 (PX0)}}{\text{INT0}}$. Assigns the priority of external interrupt,

IP.1 (PT0) - Assigns the priority of Timer 0 interrupt, T0

HARDWARE DESCRIPTION OF THE 83C152

IP.2 (PX1) - Assigns the priority of external interrupt,

IP.3 (PT1) - Assigns the priority of Timer 1 interrupt, T1.

IP.4 (PS) - Assigns the priority of the LSC interrupt, SBUF.

IPN1 - (0F8H)

7	6	5	4	3	2	1 _{cente}	0.5
		PGSTE	PDMA1	PGSTV	PDMA0	PGSRE	PGSRV

Allows the user software two levels of prioritization to be assigned to each of the interrupts in IEN1. A 1 assigns the corresponding interrupt in IEN1 a higher interrupt than an interrupt with a corresponding 0.

IPN1.0 (PGSRV) - Assigns the priority of GSC receive valid interrupt.

IPN1.1 (PGSRE) - Assigns the priority of GSC error receive interrupt.

IPN1.2 (PDMA0) - Assigns the priority of DMA done interrupt for Channel 0.

IPN1.3 (PGSTV) - Assigns the priority of GSC transmit valid interrupt.

IPN1.4 (PDMA1) - Assigns the priority of DMA done interrupt for Channel 1.

IPN1.5 (PGSTE) - Assigns the priority of GSC transmit error interrupt.

ISA - Increment Source Address, see DCON0.

LNI - Line Idle, see TSTAT.

LSC - Local Serial Channel - The asynchronous serial port found on all MCS-51 devices. Uses start/stop bits and can transfer only 1 byte at a time.

M0 - One of two GSC mode bits, see TMOD.

M1 - One of two GSC mode bits, see TMOD

MYSLOT - (0F5H) behalf med had

- 7	6	5	4	3	2	ICI III	0
DCJ	DCR	SA5	SA4	SA3	SA2	SA1	SAO

Determines which type of Jam is used, which backoff algorithm is used, and the DCR slot address for the GSC.

MYSLOT.0,1,2,3,4,5 (SA0,1,2,3,4,5) - These bits determine which slot address is assigned to the C152 when using deterministic backoff during CSMA/CD operations on the GSC. Maximum slots available is 63. An address of 00H prevents that station from participating in the backoff process.

MYSLOT.6 (DCR) - Determines which collision resolution algorithm is used. If set to a 1, then the deterministic backoff is used. If cleared, then a random slot assignment is used.

MYSLOT.7 (DCJ) - Determines the type of Jam used during CSMA/CD operation when a collision occurs. If set to a 1 then a low D.C. level is used as the jam signal. If cleared, then \overline{CRC} is used as the jam signal. The jam is applied for a length of time equal to the CRC length.

NOACK - No Acknowledgment error bit, see TSTAT.

NRZI - Non-Return to Zero inverted, a type of data encoding where a 0 is represented by a change in the level of the serial link. A 1 is represented by no change.

OVR - Overrun error bit, see RSTAT.

PR - Protocol select bit, see GMOD. PCON (87H)

old 7 mor	6	5	rat beterr	3 0	2 30	1	0
SMOD	ARB	REQ	GAREN	XRCLK	GFIEN	PD	IDL
-1799 93	name.	naery S	andons Ist	M-ohttag	ORAHO P	1 - P	8 8

PCON.0 (IDL) - Idle bit, used to place the C152 into the idle power saving mode.

PCON.1 (PD) - Power Down bit, used to place the C152 into the power down power saving mode.

PCON.2 (GFIEN) - GSC Flag Idle Enable bit, when set, enables idle flags (01111110) to be generated between transmitted frames in SDLC mode.

PCON.3 (XRCLK) - External Receive Clock bit, used to enable an external clock to be used for only the receiver portion of the GSC.

PCON.4 (GAREN) - GSC Auxiliary Receive Enable bit, used to enable the GSC to receive back-to-back SDLC frames. This bit has no effect in CSMA/CD mode.

PCON.5 (REQ) - Requester mode bit, set to a 1 when C152 is to be operated as the requester station during DMA transfers.

PCON.6 (ARB) - Arbiter mode bit, set to a 1 when C152 is to be operated as the arbiter during DMA transfers.

PCON.7 (SMOD) - LSC mode bit, used to double the baud rate on the LSC.

PDMA0 - Priority bit for DMA Channel 0 interrupt, see IPN1.

PDMA1 - Priority bit for DMA Channel 1 interrupt, see IPN1.

PGSRE - Priority bit for GSC Receive Error interrupt, see IPN1.

PGSRV - Priority bit for GSC Receive Valid interrupt, see IPN1.

PGSTE - Priority bit for GSC Transmit Error interrupt, see IPN1.

PGSTV - Priority bit for GSC Transmit Valid interrupt, see IPN1.

PL0 - One of two bits that determines the Preamble Length, see GMOD.

PL1 - One of two bits that determines the Preamble Length, see GMOD.

PRBS - (0E4H) Pseudo-Random Binary Sequence, generates the pseudo-random number to be used in CSMA/CD backoff algorithms.

PS - Priority bit for the LSC service interrupt, see IP.

PTO - Priority bit for Timer 0 interrupt, see IP.

PT1 - Priority bit for Timer 1 interrupt, see IP.

PXO - Priority bit for External interrupt 0, see IP.

PX1 - Priority bit for External interrupt 1, see IP.

RCABT - GSC Receiver Abort error bit, see RSTAT.

RDN - GSC Receiver Done bit, see RSTAT.

GREN - GSC Receiver Enable bit, see RSTAT.

RFNE - GSC Receive FIFO Not Empty bit, see RSTAT.

RI - LSC Receive Interrupt bit, see SCON.

RFIFO - (F4H) RFIFO is a 3-byte FIFO that contains the receive data from the GSC.

RSTAT (0E8H) - Receive Status Register

7	6	5	4	3	2	1	0
OVR	RCABT	AE	CRCE	RDN	RFNE	GREN	HABEN

RSTAT.0 (HBAEN) - Hardware Based Acknowledge Enable - If set, enables the hardware based acknowledge feature.

RSTAT.1 (GREN) - Receiver Enable - When set, the receiver is enabled to accept incoming frames. This also clears RDN, CRCE, AE, RCABT and the receive FIFO. It is cleared by the receiver at the end of a reception or if any errors occurred. The status of GREN has no effect on whether the receiver detects a collision in CSMA/CD mode as the receiver input circuitry always monitors the receive pin.

RSTAT.2 (RFNE) - Receive FIFO Not Empty - If set, indicates that the receive FIFO contains data. The receive FIFO is a three byte buffer into which the receive data is loaded. A CPU read of the FIFO retrieves the oldest data and automatically updates the FIFO pointers. Setting GREN to a one will clear the receive FIFO. The status of this flag is controlled by the GSC. This bit is cleared if user S/W empties receive FIFO.

RSTAT.3 (RDN) - Receive Done - If set, indicates the successful completion of a receiver operation. Will not be set if a CRC, alignment, abort, or FIFO overrun error occurred.

RSTAT.4 (CRCE) - CRC Error - If set, indicates that a properly aligned frame was received with a mismatched CRC.

RSTAT.5 (AE) - Alignment Error - If set, indicates that the line went idle when the receiver shift register was not full and the resulting CRC was bad in the CSMA/CD mode. If a correct CRC was valid then AE is not set. In SDLC mode, AE indicates that a non-byte-aligned flag was received.

RSTAT.6 (RCABT) - Receiver Collision/Abort Detect - If set, indicates that a collision was detected after data had been loaded into the receive FIFO in CSMA/CD mode. In SDLC mode, RCABT indicates that 7 consecutive ones were detected prior to the end flag but after data has been loaded into the receive FIFO.

RSTAT.7 (OVR) - Overrun - If set, indicates that the receive FIFO was full and new shift register data was written into it. It is cleared by user S/W.

HARDWARE DESCRIPTION OF THE 83C152

SARHO (0A3H) - Source Address Register High 0, contains the high byte of the source address for DMA Channel 0.

SARH1 (0B3H) - Source Address Register High 1, contains the high byte of the source address for DMA Channel 1.

SARL0 (0A2H) - Source Address Register Low 0, contains the low byte of the source address for DMA Channel 0.

SARL1 (0B2H) - Source Address Register Low 1, contains the low byte of the source address for DMA Channel 1.

SAS - Source Address Space bit, see DCONO.

SBUF (099H) - Serial Buffer, both the receive and transmit SFR location for the LSC.

SCON (098H)

7	6	5	4	3	2	1	0
SM0	SM1	SM2	REN	TB8	RB8	TI	RI

SCON.0 (RI) - Receive Interrupt flag.

SCON.1 (TI) - Transmit Interrupt flag.

SCON.2 (RB8) - Receive Bit 8, contains the ninth bit that was received in Modes 2 and 3 or the stop bit in Mode 1 if SM20. Not used in Mode 0.

SCON.3 (TB8) - Transmit Bit 8, the ninth bit to be transmitted in Modes 2 and 3.

SCON.4 (REN) - Receiver Enable, enables reception for the LSC.

SCON.5 (SM2) - Enables the multiprocessor communication feature in Modes 2 and 3 for the LSC.

SCON.6 (SM1) - LSC mode specifier.

SCON.7 (SM2) - LSC mode specifier.

SDLC - Stands for Synchronous Data Link Communication and is a protocol developed by IBM.

SLOTTM - (0B4H) Determines the length of the slot time in CSMA/CD.

SP (081H) - Stack Pointer, an eight bit pointer register used during a PUSH, POP, CALL, RET, or RETI.

TCDCNT - (0D4H) Contains the number of collisions in the current frame if using probabilistic CSMA/CD and contains the maximum number of slots in the deterministic mode.

TCDT - Transmit Collision Detect, see TSTAT.

TCON (088H)

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	ITO

TCON.0 (IT0) - Interrupt 0 mode control bit.

TCON.1 (IE0) - External interrupt 0 edge flag.

TCON.2 (IT1) - Interrupt 1 mode control bit.

TCON.3 (IE1) - External interrupt 1 edge flag.

TCON.4 (TR0) - Timer 0 run control bit.

CON.5 (TF0) - Timer 0 overflow flag.

TCON.6 (TR1) - Timer 1 run control bit.

TCON.7 (TF1) - Timer 1 overflow flag.

TDN - Transmit Done flag, see TSTAT.

TEN - Transmit Enable bit, see TSTAT.

TFNF - Transmit FIFO Not Full flag, see TSTAT.

TFIFO - (85H) TFIFO is a 3-byte FIFO that contains the transmission data for the GSC.

TH0 (08CH) - Timer 0 High byte, contains the high byte for timer/counter 0.

TH1 (08DH) - Timer 1 High byte, contains the high byte for timer/counter 1.

TI - Transmit Interrupt, see SCON.

TL0 (08AH) - Timer 0 Low byte, contains the low byte for timer/counter 0.

TL1 (08BH) - Timer 1 Low byte, contains the low byte for timer/counter 1.

TM - Transfer Mode, see, DCON0.

HARDWARE DESCRIPTION OF THE 83C152

TMOD (089H)

7	6	5	4	3	2	2400	0
GATE	C/T	M1	МО	GATE	C/T	M1	МО

TMOD.0 (M0) - Mode selector bit for Timer 0.

TMOD.1 (M1) - Mode selector bit for Timer 0.

TMOD.2 (C/\overline{T}) - Timer/Counter selector bit for Timer 0.

TMOD.3 (GATE) - Gating Mode bit for Timer 0.

TMOD.4 (M0) - Mode selector bit for Timer 1.

TMOD.5 (M1) - Mode selector bit for Timer 1.

TMOD.6 (C/T) - Timer/Counter selector bit for Timer 1.

TMOD.7 (GATE) - Gating Mode bit for Timer 1.

TSTAT (0D8) - Transmit Status Register

7	6	5	4	3	2	1	0
LNI	NOACK	UR	TCDT	TDN	TFNF	TEN	DMA

TSTAT.0 (DMA) - DMA Select - If set, indicates that DMA channels are used to service the GSC FIFO's and GSC interrupts occur on TDN and RDN, and also enables UR to become set. If cleared, indicates that the GSC is operating in it normal mode and interrupts occur on TFNE and RFNE.For more information on DMA servicing please refer to the DMA section on DMA serial demand mode (4.2.2.3).

TSTAT.1 (TEN) - Transmit Enable - When set causes TDN, UR, TCDT, and NOACK flags to be reset and the TFIFO cleared. The transmitter will clear TEN after a successful transmission, a collision during the data, CRC, or end flag. If cleared during a transmission the GSC transmit pin goes to a steady state high level. This is the method used to send an abort character in SDLC. Also $\overline{\text{DEN}}$ is forced to a high level. The end of transmission occurs whenever the TFIFO is emptied.

TSTAT.2 (TFNF) - Transmit FIFO not full - When set, indicates that new data may be written into the transmit FIFO. The transmit FIFO is a three byte buffer that loads the transmit shift register with data.

TSTAT.3 (TDN) - Transmit Done - When set, indicates the successful completion of a frame transmission. If HBAEN is set, TDN will not be set until the end of the IFS following the transmitted message, so that the acknowledge can be checked. If an acknowledge is expected and not received, TDN is not set. An acknowledge is not expected following a broadcast or multi-cast packet.

TSTAT.4 (TCDT) - Transmit Collision Detect - If set, indicates that the transmitter halted due to a collision. It is set if a collision occurs during the data or CRC or if there are more than eight collisions.

TSTAT.5 (UR) - Underrun - If set, indicates that in DMA mode the last bit was shifted out of the transmit register and that the DMA byte count did not equal zero. When an underrun occurs, the transmitter halts without sending the CRC or the end flag.

TSTAT.6 (NOACK) - No Acknowledge - If set, indicates that no acknowledge was received for the previous frame. Will be set only if HBAEN is set and no acknowledge is received prior to the end of the IFS. NOACK is not set following a broadcast or a multicast packet.

TSTAT.7 (LNI) - Line Idle - If set, indicates the receive line is idle. In SDLC protocol it is set if 15 consecutive ones are received. In CSMA/CD protocol, line idle is set if no transitions occur on $GR \times D$ for 1.6 bit times after a required transition. LNI is cleared after a transition on $GR \times D$.

TxC - External Clock input for GSC transmitter.

UR - Underrun flag, see TSTAT.

XRCLK - External GSC Receive Clock Enable bit, see PCON.

XTCLK - External GSC Transmit Clock Enable bit, see GMOD.

8XC152JA/JB/JC/JD UNIVERSAL COMMUNICATION CONTROLLER 8-BIT MICROCOMPUTER

■ 8K Factory Mask Programmable ROM Available

- Superset of 80C51 Architecture
- Multi-Protocol Serial Communication
 I/O Port (2.048 Mbps/2.4 Mbps Max)
 SDLC/HDLC Only
 - CSMA/CD and SDLC/HDLC
 - User Definable Protocols
- Full Duplex/Half Duplex
- **MCS®-51 Compatible UART**
- 16.5 MHz Maximum Clock Frequency
- **Multiple Power Conservation Modes**
- **■** 64KB Program Memory Addressing

- 64KB Data Memory Addressing
- 256 Bytes On-Chip RAM
- Dual On-Chip DMA Channels
- Hold/Hold Acknowledge
- **Two General Purpose Timer/Counters**
- 5 or 7 I/O Ports
- 56 Special Function Registers
- 11 Interrupt Sources
- Available in 48 Pin Dual-in-Line Package and 68 Pin Surface Mount PLCC Package

(See Packaging Spec. Order #231369)

The 80C152, which is based on the MCS®-51 CPU, is a highly integrated single-chip 8-bit microcontroller designed for cost-sensitive, high-speed, serial communications. It is well suited for implementing Integrated Services Digital Networks (ISDN), emerging Local Area Networks, and user defined serial backplane applications. In addition to the multi-protocol communication capability, the 80C152 offers traditional microcontroller features for peripheral I/O interface and control.

Silicon implementations are much more cost effective than multi-wire cables found in board level parallel-to-serial and serial-to-parallel converters. The 83C152 contains, in silicon, all the features needed for the serial-to-parallel conversion. Other 83C152 benefits include: 1) better noise immunity through differential signaling or fiber optic connections, 2) data integrity utilizing the standard, designed in CRC checks, and 3) better modularity of hardware and software designs. All of these—cost, network parameter and real estate improvements—apply to 83C152 serial links between boards or systems and 83C152 serial links on a single board.

Figure 1. Connection Diagrams

Table 2, 8XC152 Product Differences

71/0 Ports	51/O Ports	PLCC Only	PLCC and DIP		HDLC/SDLC Only	CSMA/CD and HDLC/SDLC	
			*				BOC152JA
						* 1	
	*		*	*(830152JC)	#		
*							

options available
standard frequency range 3.5 MHz to 12 MHz

80C152JB/JD General Description

The 80C152JB/JD is a ROMless extension of the 80C152 Universal Communication controller. The 80C152JB has the same five 8-bit I/O ports of the 80C152, plus an additional two 8-bit I/O ports, Port 5 and Port 6. The 80C152JB/JD also has two additional control pins, EBEN (EPROM Bus ENable), and EPSEN (EPROM bus Program Store ENable).

EBEN selects the functionality of Port 5 and Port 6. When EBEN is low, these ports are strictly I/O, similar to Port 4. The SFR location for Port 5 is 91H and Port 6 is 0A1H. This means Port 5 and Port 6 are not bit addressable. With EBEN low, all program memory fetches take place via Port 0 and Port 2. (The 80C152 is a ROMless only product). When EBEN is high, Port 5 and Port 6 form an address/data bus called the E-Bus (EPROM-Bus) for program memory operations.

EPSEN is used in conjunction with Port 5 and Port 6 program memory operations. EPSEN functions like PSEN during program memory operation, but supports Port 5 and Port 6. EPSEN is the read strobe to external program memory for Port 5 and Port 6. EPSEN is activated twice during each machine cycle unless an external data memory operation occurs on Port(s) 0 and Port 2. When external data memory is accessed the second activation of EPSEN is skipped, which is the same as when using PSEN. Note that data memory fetches cannot be made through Ports 5 and 6.

When EBEN is high and EA is low, all program memory operations take place via Ports 5 and 6. The high byte of the address goes out on Port 6, and the low byte is output on Port 5. ALE is still used to latch the address on Port 5. Next, the op code is read on Port 5. The timing is the same as when using Ports 0 and 2 for external program memory operations.

Table 1. Program Memory Fetches

EBEN	EA	Program Fetch via	PSEN	EPSEN	Comments
0	0	P0, P2	Active	Inactive	Addresses 0-0FFFFH
0	1	N/A	THE N/A	N/A	Invalid Combination
270434-18	0	P5, P6	Inactive	Active	Addresses 0-0FFFFH
1	1	P5, P6 P0, P2	Inactive Active	Active Inactive	Addresses 0-1FFFH Addresses ≥ 2000H

Table 2, 8XC152 Product Differences

Harris Mary Hall		Table E. ONO	DE I TOUGOT DITTO	011000			
ROMIess Version	CSMA/CD and HDLC/SDLC	HDLC/SDLC Only	ROM Version Available	PLCC and DIP	PLCC Only	5 I/O Ports	7 I/0 Ports
80C152JA	*		*(83C152JA)	*	N. S.	*	
80C152JB	*				*	×	*
80C152JC		*	*(83C152JC)	*		*	
80C152JD		*			*		*

NOTES:

* = options available

0 standard frequency range 3.5 MHz to 12 MHz

0 "-1" frequency range 3.5 MHz to 16.5 MHz

Pi	in #		sion (Continued)	Pin Description									
DIP	PLCC(1)	no	Pin Descripti		#1	Plu							
48	s. Port 4 gir	Vcc-Supply vol	tage. O\I lanoliberi	Port 4-Port 4 is an 8-bit bid	65-58	47-40							
24	3,33(2)	Vss-Circuit grou	A STATE OF THE PARTY OF THE PAR	have is written to them are p									
18-21, i 25-28	27-30, aqu 34-37 in e entre linter og s atimme 0 entre line od of e	can sink 8 LS TT state can be used Port 0 is also the external program Memory, Port 0 a data bus. In these	L inputs. Port 0 pind d as high-impedanche multiplexed low- memory if EBEN is lways emits the low a applications it use	order address and data bus du spulled low. During accesses to v-order address byte and serve es strong internal pullups when	oat, and in ring access o external D s as the mu emitting 1s	es to lata Itiplexed							
8881	bbs ent to e		Port 0 also outputs the code bytes during program verification. External pullups are equired during program verification.										
1-8	scillator. es. Note, ernal Data	Port 1—Port 1 is have 1s written to used as inputs. A current (I _{IL} , on the	an 8-bit bidirection to them are pulled h s inputs, Port 1 pin e data sheet) beca	al I/O port with internal pullups igh by the internal pullups, and s that are externally being pulle use of the internal pullups. f various special features of the	in that state d low will so	e can be ource							
	SEN is activ	Pin	Name	Alternate Fun	ction								
	temory, PSi ions are sk	P1.0 PSEN 0.19	GRXDxe ,elovo e	GSC data input pin									
	Rismen M	P1.1ceeFI at elidy P1.2	GTXD M staG lar	GSC data output pin GSC enable signal for an exte									
	order to en s 0000H to	P1.3 P1.4 P1.5 P1.6	TXC RXC HLD HLD HLDA	GSC input pin for external tra GSC input pin for external red DMA hold input/output DMA hold acknowledge input	eive clock								
	s. Port 5 pla in that stat utiled low w frame access in truses str	have 1s written to used as inputs. A current (I _{IL} , on the Port 2 emits the Memory if EBEN bit addresses (Mit addresses byte. In 1 During accesses Port 2 emits the Central Port 2 also received.	o them are pulled his inputs, Port 2 pined at a sheet) because high-order addressis pulled low. Durin OVX @ DPTR and these applications is to external Data contents of the P2 seives the high-order	al I/O port with internal pullups igh by the internal pullups, and is that are externally being pulle use of the internal pullups. It is so byte during fetches from external Data Model of the person	in that stated low will so ernal Prograemory that the high-ord then emitting es (MOVX overification.	e can be burce am use 16- ler g 1s. @ Ri),							
10- 17a e can ece me	14-16, 18, 19, 23-25	have 1s written to used as inputs. A current (I _{IL} , on the Port 3 also sen	o them are pulled h s inputs, Port 3 pin e data sheet) beca ves the functions o	al I/O port with internal pullups igh by the internal pullups, and is that are externally being pulleuse of the pullups. If various special features of the	in that state d low will so	can be ource							
		Pin	Name	Alternate Fun	ction								
	nory fetche orts are use	P3.0 P3.1 words I P3.2	RXD TXD S S S S S S S S S S S S S S S S S S S	Serial input line Serial output line External Interrupt 0		AVV							
	nal program relative to	P3.3 donta had	FINT1al sldan3 and	External Interrupt 1 Timer 0 external input Timer 1 external input	53								
		P3.6	WR	External Data Memory Write	strohe								

NOTES:

1. N.C. pins on PLCC package may be connected to internal die and should not be used in customer applications.

2. It is recommended that both Pin 3 and Pin 33 be grounded for PLCC devices.

Pin Description (Continued)

THE RESERVE TO THE PARTY OF THE		TIMENERS IN THE		A-10T-11
Pir	1 #	Pin Description	PLOC(1)	910
47-40 niq rios	65-58 shop fuga oat, and in	Port 4—Port 4 is an 8-bit bidirectional I/O port with internal pullup have 1s written to them are pulled high by the internal pullups, an be used as inputs. As inputs, Port 4 pins that are externally being source current (I _{IL} , on the data sheet) because of the internal pull Port 4 also receives the low-order address bytes during program	d in that state c pulled low will lups. In addition	an
9 ot as at a late this lexed	13 ning access o external D um ed tas a at gridhins	RST—Reset input. A logic low on this pin for three machine cycle oscillator is running resets the device. An internal pullup resistor preset to be generated using only an external capacitor to V _{SS} . Alt recognizes the reset after three machine cycles, data may continuous transmitted for up to 4 machine cycles after Reset is first applied.	permits a power though the GSC ue to be	
ed nso	55 Port 1 pini in that state of low will se	ALE—Address Latch Enable output signal for latching the low by during accesses to external memory. In normal operation ALE is emitted at a constant rate of 1/6 the frequency, and may be used for external timing or clocking purpo however, that one ALE pulse is skipped during each access to ex Memory. While in Reset, ALE remains at a constant high level.	oscillator ses. Note,	8
37	54 notto	PSEN—Program Store Enable is the Read strobe to External Prowhen the 8XC152 is executing from external program memory, P (low). When the device is executing code from External Program activated twice each machine cycle, except that two PSEN activa during each access to External Data Memory. While in Reset, PS constant high level.	SEN is active Memory, PSEN ations are skippe	be
39	tuatua\	EA—External Access enable. EA must be externally pulled low in the 8XC152 to fetch code from External Program Memory locatio 0FFFH. EA must be connected to V _{CC} for internal program execution.)
23	32	XTAL1—Input to the inverting oscillator amplifier and input to the generating circuits.	internal clock	E-6
22	31	XTAL2—Output from the inverting oscillator amplifier.		
AVA MARKET SERVICE SER	17, 20 21, 22 38, 39 40, 49	Port 5—Port 5 is an 8-bit bidirectional I/O port with internal pullup have 1s written to them are pulled high by the internal pullups, an be used as inputs. As inputs, Port 5 pins that are externally being source current (I _{IL} , on the data sheet) because of the internal pull Port 5 is also the multiplexed low-order address and data bus dexternal program memory if EBEN is pulled high. In this application pullups when emitting 1s.	d in that state concentrated by pulled low will lups. States accesses	an
can be burde burde amily, as	67, 66 52, 57 50, 68 1, 51	Port 6—Port 6 is an 8-bit bidirectional I/O port with internal pullup have 1s written to them are pulled high by the internal pullups, an be used as inputs. As inputs, Port 6 pins that are externally pulled current (I _{IL} , on the data sheet) because of the internal pullups. Port 6 emits the high-order address byte during fetches from example Memory if EBEN is pulled high. In this application it uses strong premitting 1s.	d in that state call low will source outernal Program	an
N/A	12	EBEN—E-Bus Enable input that designates whether program me place via Ports 0 and 2 or Ports 5 and 6. Table 1 shows how the pconjunction with EBEN.		
N/A	53	EPSEN—E-bus Program Store Enable is the Read strobe to extermemory when EBEN is high. Table 2 shows when EPSEN is used		N

NOTES.

1. N.C. pins on PLCC package may be connected to internal die and should not be used in customer applications.

2. It is recommended that both Pin 3 and Pin 33 be grounded for PLCC devices.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3.

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 3. Using the On-Chip Oscillator

Figure 4. External Clock Drive

IDLE MODE

In Idle Mode, the CPU puts itself to sleep while most of the on-chip peripherals remain active. The major peripherals that do not remain active during Idle, are the DMA channels. The Idle Mode is invoked by software. The content of the on-chip RAM and all the Special Function Registers remain unchanged during this mode. The Idle Mode can be terminated by any enabled interrupt or by a hardware reset.

POWER DOWN MODE

In Power Down Mode, the oscillator is stopped and all on-chip functions cease except that the on-chip RAM contents are maintained. The mode Power Down is invoked by software. The Power Down Mode can be terminated only by a hardware reset.

Table 3. Status of the External Pins During Idle and Power Down Modes 80C152JA/83C152JA/80C152JC/83C152JC

Mode	Program Memory	ALE	PSEN	Port 0	Port 1	Port 2	Port 3	Port 4
Idle	Internal	1	1	Data	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data	Data
Power Down	Internal	0	0	Data	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data	Data

80C152JB/80C152JD

Mode	Instruction Bus	ALE	PSEN	EPSEN	Port 0	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6
Idle	P0, P2	11/4	1	1	Float	Data	Address	Data	Data	OFFH	OFFH
Idle	P5, P6	441	00 ÷	1	Data	Data	Data	Data	Data	OFFH	Address
Power Down	P0, P2	0	0	1	Float	Data	Data	Data	Data	OFFH	0FFH
Power Down	P5, P6	0	120	0	Data	Data	Data	Data	Data	OFFH	OFFH

NOTE : 0 0 10 5 5 100

For more detailed information on the reduced power modes refer to the Embedded Controller Handbook, and Application Note AP-252, "Designing with the 80C51BH."

ABSOLUTE MAXIMUM RATINGS*

 *Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS ($T_A = 0^{\circ}\text{C to} + 70^{\circ}\text{C}$; $V_{CC} = 5\text{V} \pm 10\%$; $V_{SS} = 0\text{V}$)

Symbol	Parameter	Min	Typ (Note 3)	Max	Unit	Test Conditions
V _{IL} em ar	Input Low Voltage (All Except EA, EBEN)	o-no-0.5lo alarenghed		0.2V _{CC} -0.1	V	Marine Marine Marine
V _{IL1}	Input Low Voltage (EA, EBEN)	-0.5		0.2V _{CC} -0.3	V	T area
V _{IH}	Input High Voltage (Except XTAL1, RST)	0.2V _{CC} +0.9		V _{CC} +0.5	V	District Control of Co
V _{IH1}	Input High Voltage (XTAL1, RST)	0.7V _{CC}	11-5	V _{CC} +0.5	٧	add nated County
Vol. beg	Output Low Voltage (Ports 1, 2, 3, 4, 5, 6)	in Power D		0.45	٧	I _{OL} = 1.6 mA (Note 4)
V _{OL1}	Output Low Voltage (Port 0, ALE, PSEN, EPSEN)	PAM conte Down is in Mode cent		0.45	٧	I _{OL} = 3.2 mA (Note 4)
V _{OH}	Output High Voltage (Ports 1, 2, 3, 4, 5, 6 COMM9	6 0101 gathuC	ned Pins	edită edito a	V	$I_{OH} = -60 \mu\text{A}$ $V_{CC} = 5V \pm 10\%$
	ALE, PSEN, EPSEN)	0.9V _{CC}			٧	$I_{OH} = -10 \mu A$
V _{ОН1}	Output High Voltage (Port 0 in External	2.4	ИЗЕ	9 BJA	V	$I_{OH} = -400 \mu\text{A}$ $V_{CC} = 5V \pm 10\%$
	Bus Mode)	0.9V _{CC}			٧	$I_{OH} = -40 \mu\text{A} (\text{Note 5})$
Data Jil	Logical 0 Input Current (Ports 1, 2, 3, 4, 5, 6)	sO staC	0	-50	μΑ	V _{IN} = 0.45V
ITL Data	Logical 1 to 0 Transition Current (Ports 1, 2, 3, 4, 5, 6)	eG I Isol	0	-650	μА	V _{IN} = 2V
Port S	Input Leakage (Port 0, EA)	1 no9 0:	neq MBS	±10	μΑ	0.45 < V _{IN} < V _{CC}
RRST	Reset Pullup Resistor	A 40	0F1 F10		kΩ	ofe P0, P2
l _{iHierbb} A	Logical 1 Input Current (EBEN)	a Data	i Dai	+60	μΑ	die P5, P6
Icc 3 70	Power Supply Current : Active (16.5 MHz) Idle (16.5 MHz) Power Down Mode	at Data	31 8 10	41.1 15.4	mA mA μA	(Note 6) (Note 6) V _{CC} = 2.0V to 5.5V

NOTES:

3. "Typicals" are based on samples taken from early manufacturing lots and are not guaranteed. The measurements were made with $V_{\rm CC}=5V$ at room temperature.

4. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

5. Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the 0.9V_{CC} specification when the address bits are stabilizing.

6. I_{CC} is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, $V_{IL} = V_{SS} + 0.5$ V, $V_{IH} = V_{CC} - 0.5$ V; XTAL2 N.C.; Port 0 pins connected to V_{CC} . "Operating" current is measured with \overline{EA} connected to V_{SS} , " \overline{RST} connected to V_{CC} and \overline{GSC} inactive.

7. The specifications relating to external data memory characteristics are also applicable to DMA operations.

8. TQVWX should not be confused with TQVWX as specified for 80C51BH. On 80C152, TQVWX is measured from data valid to rising edge of WR. On 80C51BH, TQVWX is measured from data valid to falling edge of WR. See timing diagrams.

This value is based on the maximum allowable die temperature and the thermal resistance of the package.
 All specifications relating to external program memory characteristics are applicable to:

EPSEN for PSEN
Port 5 for Port 0
Port 6 for Port 2
when EBEN is at a Logical 1 on the 80C152JB/JD.

Figure 5. ICC vs Frequency

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

- A: Address.
- C: Clock
- D: Input data.
- H: Logic level HIGH.

- I: Instruction (program memory contents).
- L: Logic level LOW, or ALE.
- P: PSEN.
- Q: Output data.
- R: READ signal.
- T: Time.
 - V: Valid.
 - W: WRITE signal.
 - X: No longer a valid logic level.
 - Z: Float.

For example,

TAVLL = Time for Address Valid to ALE Low.
TLLPL = Time for ALE Low to PSEN Low.

A.C. CHARACTERISTICS ($T_A = 0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; Load Capacitance for Port 0, ALE, and $\overline{PSEN} = 100 \text{ pF}$; Load Capacitance for All Other Outputs = 80 pF)

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS (Note 7, 10)

Symbol	Parameter Parameter	16.	5 MHz	Variable (Oscillator	Unit
Symbol	Parameter	Min	Max	Min	Max 380	TS leg
1/TCLCL + O.5.V, Va.0 + O.5.V or and o.5.V o			O" .00V 0			MHz
sured from date ming diagrams.	80C152JA/JC-1 83C152JA/JC-1 80C152JB/JD-1	enatics and to the total distribution distri	s specifie	Them at 3.5 metal XWVOT miny beau XWVOT HEREOOS	of political 16.5 of solitions and solition and solition bluerla no. IFW to egbe property of the solition and	MHz
TLHLL	ALE Pulse Width	81	erio yrome	2TCLCL-40	cifications relating to	ns
TAVLL	Address Valid to ALE Low	5		TCLCL-55	tor PSEN	ns
TLLAX	Address Hold After ALE Low	25	1	TCLCL-35	or Port 2	ns
TLLIV	ALE Low to Valid Instruction In		142	Ouscrode set no 1	4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	20	(2.2)	TCLCL-40		ns
TPLPH	PSEN Pulse Width	137	0.07	3TCLCL-45		ns
TPLIV	PSEN Low to Valid Instruction In		77	23	3TCLCL-105	ns
TPXIX	Input Instruction Hold After PSEN	0		35 0		ns
TPXIZ	Input Instruction Float After PSEN		35	25	TCLCL-25	ns
TAVIV	Address to Valid Instruction In (19) 201 XAM		198	20	5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float		10	01	10	ns
TRLRH	RD Pulse Width	263		6TCLCL-100		ns
TWLWH	WR Pulse Width	263	-8	6TCLCL-100	10年的海绵	ns
TRLDV	RD Low to Valid Data In		(=138	FREQUEN	5TCLCL-165	ns
TRHDX	Data Hold After RD	0	nol .ā e	0 100		ns
TRHDZ	Data Float After RD		51		2TCLCL-70	ns
TLLDV	ALE Low to Valid	D C	335	THE AC CARE	8TCLCL-150	ns
TAVDV	Address to Valid and tughto Data In	:O:	380	haracters. The fire	9TCLCL-165	ns
TLLWL	ALE Low to RD or Some Notice WR Low	132	232	3TCLCL-50	3TCLCL + 50	ns
TAVWL	Address to RD or WR Low	112	bns and	4TCLCL-130	of a signal or to a following is a list	ns
TQVWX(8)	Data Valid to WR Transition	196		6TCLCL-167	Page 101.	ns
TWHQX	Data Hold After WR	10		TCLCL-50	dic	ns
TRLAZIJA	RD Low to Address	AT JT	0		ut data. 0 pic fevel HIGH.	ns ns
TWHLH	RD or WR High to ALE High	20	100	TCLCL-40	TCLCL+40	ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	3.5	16.5	MHz
TCHCX	High Time	20	14331	ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time	TRLAZ	20 LIVA	ns
TCHCL	Fall Time	TAXX J	90 9 20 TA-0	ns

EXTERNAL CLOCK DRIVE WAVEFORM

LOCAL SERIAL CHANNEL TIMING—SHIFT REGISTER MODE

Symbol	Parameter	(6 16.5	MHz	Variable	Units	
Symbol	xalif niM	Min	Max	Min Min	Max	io Onito
TXLXL	Serial Port Clock Cycle Time	727		12TCLCL no 1	Allowable jitte	AL NS
TQVXH	Output Data Setup to Clock Rising Edge	473		10TCLCL-133	bit time (Mand encoding onl)	ns
TXHQX	Output Data Hold After Clock Rising Edge	4.0		2TCLCL-117	Allowable jitte the Receiver	ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0 (19)	and Manches	ns
TXHDV	Clock Rising Edge to Input Data Valid	012	473	1000 1 1/2	10TCLCL-133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

A.C. TESTING:

INPUT, OUTPUT WAVEFORMS

AC Inputs During Testing are Driven at V $_{CC}$ -0.5 for a Logic "1" and 0.45V for a Logic "0". Timing Measurements are made at V $_{IH}$ Min for a Logic "1" and V $_{IL}$ Max for a Logic "0".

FLOAT WAVEFORM

For Timing Purposes a Port Pin is no Longer Floating when a 100 mV change from Load Voltage Occurs, and Begins to Float when a 100 mV change from the Loaded V_{OH}/V_{OL} Level occurs IOL/IOH ≥ ±20 mA.

GLOBAL SERIAL PORT TIMINGS—Internal Baud Rate Generator Application of the serial policy of t

Symbol	Parameter	16.5 MHz (BAUD = 0)			Varia	Unit	
Oymbo.	xs il	Min	xsli	Max	Min	Max	Oille
HBTJR	Allowable jitter on the Receiver for ½	TST		0.0375	ick Cycla	(0.125 × (BAUD+1)×	μs
an	bit time (Manchester encoding only)	10TCL		473	etup to	8TCLCL) - 25 ns	HXVO
FBTJR	Allowable jitter on the Receiver for one	STOL		0.10	neff After dge	(0.25 × (BAUD+1)×	χομs
su	full bit time (NRZI and Manchester)			0	id After	8TCLCL) -25 ns	XCHX
НВТЈТ	Jitter of data from Transmitter for ½ bit time (Manchester encoding only)		173	±10	Will be the second of the second	Crock Rising B	ns.
FBTJT	Jitter of data from Transmitter for one full bit time (NRZI and Manchester)		173	81±10	WING WAY	IT SGC±10 STRE	III ns
DRTR	Data rise time for Receiver(11)	process		20	(= JXJXT-	20	ns
DFTR	Data fall time for Receiver(12)	d leaves		20	DRRT H	20	ns

NOTES:

- 11. Same as TCLCH, use External Clock Drive Waveform.
- 12. Same as TCHCL, use External Clock Drive Waveform.

GSC RECEIVER TIMINGS (INTERNAL BAUD RATE GENERATOR)

GSC TRANSMIT TIMINGS (INTERNAL BAUD RATE GENERATOR) (NOOLO JAMRETOG) 20MMIT 020

GLOBAL SERIAL PORT TIMINGS—External Clock

Symbol	Parameter	16.5	MHz	Variab	le Oscillator	Unit
Symbol	rarameter	Min	Max	Min	Max	Onne
1/ECBT	GSC Frequency with an External Clock	0.009	2.4	0.009	Fosc × 0.145	MHz
ECH	External Clock High	170		2TCLCL + 45 ns	NOTES	ns ns
ECL(13)	External Clock Low	170	non that in	2TCLCL + 45 ns	This will not cause	ns
ECRT	External Clock Rise Time(11)	y than the	20	interrupt a hi	none eviezon entreve	ns
ECFTovion	External Clock Falls edt 11 Time(12) edituor eoime				To clear 02E set the slear GREN after se	
ECDVT to	External Clock to Data Valid Out - Transmit (to External Clock Negative Edge)		150		E bit is checked by it 150 vni bere sondition is dependent	e consid
ECDHT	External Clock Data Hold - Transmit (to External Clock Negative Edge)	0		0	The device receive	ns ATAC
ECDSR	External Clock Data Set-up - Receiver (to External Clock Positive Edge)	45 45 MLJBRING		VGA" mort be	wing represents the 3C152 data sheet. I of data sheet chang JC, 83C152JC, and	Status v
ECDHR		1 1 1 1 1 1 1 1 1 1 1 1 1		added. slive ECL spec	AE/RDN design not sion summary was 13 was added (Effe 2 changed to Table	. Note #

NOTE

^{13.} When using the same external clock to drive both the receiver and transmitter, the minimum ECL spec effectively becomes 195 ns at all frequencies (assuming 0 ns propagation delay) because ECDVT (150 ns) plus ECDSR (45 ns) requirements must also be met (150 \pm 45 = 195 ns). The 195 ns requirement would also increase to include the maximum propagation delay between receivers and transmitters.

DESIGN NOTES

Within the 8XC152 there exists a race condition that may set both the RDN and AE bits at the end of a valid reception. This will not cause a problem in the application as long as the following steps are followed:

- —Never give the receive error interrupt a higher priority than the valid reception interrupt
- —Do not leave the valid reception interrupt service routine when AE is set by using a RETI instruction until AE is cleared. To clear AE set the GREN bit, this enables the receiver. If the user desires that the receiver remain disabled, clear GREN after setting it before leaving the interrupt service routine.
- —If the AE bit is checked by user software in response to a valid reception interrupt, the status of AE should be considered invalid.

The race condition is dependent upon both the temperature that the device is currently operating at and the processing the device received during the wafer fabrication.

DATA SHEET REVISION SUMMARY

The following represents the key differences between this datasheet and the "-001" version of the 80C152/83C152 data sheet. Please review this summary carefully.

- 1. Status of data sheet changed from "ADVANCED" to "PRELIMINARY".
- 2. 80C152JC, 83C152JC, and 80C152JD were added.
- 3. Added AE/RDN design note.
- 4. This revision summary was added.
- 5. Note #13 was added (Effective ECL spec at higher clock rates).
- 6. Table #2 changed to Table #3 (Status of pins during Idle/Power Down).
- 7. Current Table #2 was added (JA vs. JB vs. JC vs. JD matrix).
- 8. Transmit jitter spec changed from ±35 ns and ±70 ns to ±10 ns.1 shoots lamente emas entrement special results.

8XC152JA/JB/JC/JD UNIVERSAL COMMUNICATION CONTROLLER 8-BIT MICROCOMPUTER

D.C. and A.C. parameters not included here ar **SZERRXE** as in the commercial temperature range data sheets. Maximum oscillator frequency for express products is 12 MHz.

■ 3.5 to 12 MHz V_{CC} = 5V ± 10%

Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the 8XC152 microcontroller. These EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in and an extended temperature range.

With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of 0° C to $+70^{\circ}$ C. With the extended temperature range option, operational characteristics are guaranteed over the range of -40° C to $+85^{\circ}$ C.

The optional burn-in is dynamic for a minimum time of 160 hours at 125°C with $V_{CC}=6.9V\pm0.25V$, following guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their commercial temperature range limits. The commercial temperature range data sheets are applicable for all parameters not listed here.

Extended		
Extended	Ceramic	
	PLCC	

DATA SHEET REVISION SUMMARY

100152/830152 datasheet. Please review this summary care. Status of datasheet changed from "ADVANCED" to "PRE

Sucression summary was added.

Electrical Deviations from Commercial Specifications for Extended Temperature Range

D.C. and A.C. parameters not included here are the same as in the commercial temperature range data sheets. Maximum oscillator frequency for express products is 12 MHz.

D.C. CHARACTERISTICS $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$

3.5 to 12 MHz Vcc = 5V ± 10%

account of	se operational specifications of the 8XC152	ego art of streamed Limits			Test
Symbol	Parameter satisfied of each to abeen out tee	m of Minelseb	ns atoMax q 22	Unit	Conditions
VIL	Input Low Voltage (Except EA, EBEN)	-0.5	0.2V _{CC} - 0.15	V	equirente
VILI	EA, EBEN lud illiw egnar erutaregmet brab	nate la 0.5 mod	0.2V _{CC} - 0.35	PV9	he EXPRESS
VIH	Input High Voltage (Except XTAL1, RST)	0.2V _{CC} + 1.0	V _{CC} + 0.5	V	ьт енивлеціпе
V _{IH1}	Input High Voltage to XTAL1, RST	0.7V _{CC} + 0.1	V _{CC} + 0.5	layısı	Vith the comn
I _I L	Logical 0 Input Current (Port 1, 2, 3, 4, 5, 6)	0 +85°C.	2°0≱ -75 apris	μΑ	$V_{in} = 0.45V$
ITL volloit ,	Logical 1 to 0 transition Current (Ports 1, 2, 3, 4, 5, 6)	to emit mumini	-750 m s domanyb s	μΑ	V _{in} = 2.0V

edit of killing retital ov Table 1. Prefix Identification no legit of the letter prefix to the

Prefix	Package Type	Temperature Range	Burn-In
of, deviat 9 rom the	t specifies totaleamenters wh	erature randaismemoo e data shed	or the solvided temp
not eldeoilde ere	Ceramic	Commercial	No No
N PLCC		Commercial	No
LP Plastic		Extended	Yes
LC Ceramic		Extended	Yes
LN PLCC		Extended	Yes

NOTE:

Commercial temperature range is 0°C to 70°C. Extended temperature range is −40°C to +85°C.

• Burn-in is dynamic for a minimum time of 160 hours at 125°C, V_{CC} = 6.9V ±0.25V, following guidelines in MIL-STD-883 Method 1015 (Test Condition D).

Examples:

P80C152JA indicates 80C152JA in a plastic package and specified for commercial temperature range, without burn-in.

LC83C152JA indicates 83C152JA in a ceramic package and specified for extended temperature range with burn-in.

DATA SHEET REVISION SUMMARY

The following represents the key differences between this datasheet and the "-001" version of the express 80C152/83C152 datasheet. Please review this summary carefully.

- 1. Status of datasheet changed from "ADVANCED" to "PRELIMINARY".
- 2. 80C152JC, 83C152JC, and 80C152JD were added.
- 3. This revision summary was added.

HARDWARE DESCRIPTION OF THE 8XC451

INTRODUCTION TO SHIT SHIT SHIT SHIT SHIP SHIP

The 8XC451 is an expanded I/O, 8-bit control-oriented microcontroller based on the MCS®-51 architecture. The 8XC451 contains all of the features of the 80C51 with three extra I/O ports, one of which is a bi-directional bus-type port with I/O strobes and flags. The 8XC451 features include:

- One Extra Strobed Bus Port
- Two Extra I/O Ports
- 56 Programmable I/O Lines
- 4 Kbytes Mask-Programmable ROM
- 128 x 8-Bit RAM
- Full Duplex Serial Channel
- 64K Program Memory Space
- 64K Data Memory Space
- Power Control Modes
- Boolean Processor

The 8XC451 uses the standard 8051 instruction set and is compatible with the existing MCS-51 family of products. The 83C451 is the factory masked ROM device; the 80C451 is the ROMless device; and the 87C451 is the EPROM device. It is assumed that the reader is familiar with the 8051 architecture. For more detailed information on the 8051, consult the "Architectural Overview Chapter" and the "Hardware Description of the 8051, 8052, and 80C51" chapter in the Embedded Controller Handbook.

PORT 4

This port is an 8-bit bidirectional I/O port with internal pullups similar to Port 1. Port 4 has SFR address COH assigned. Port 4 is bit addressable and is functionally identical to Port 1.

P4.7 P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0
-----------	------	------	------	------	------	------

Port 4 Data Address = 0C0H Reset Value = 11111111B

PORT 5

This port is an 8-bit bidirectional I/O port with internal pullups similar to Port 1. Port 5 has SFR address C8H assigned. Port 5 is bit addressable and is functionally identical to Port 1.

P5.7	P5.6	P5.5	P5.4	P5.3	P5.2	P5.1	P5.0
2 5 55					1	Section 25 P. I	NO GONESON AND A

bits can be read and written by the CPU, as 6 TRO9 and 1, which are read only. Reset writes one to the

Port 6 is a special 8-bit bidirectional I/O port with internal pullups. This port can be used as a standard I/O port, or in strobed modes of operation in conjunction with four newly added special control lines: ODS, IDS, AFLAG, and BFLAG (see Figure 1). Port 6 operating modes are controlled by the port 6 control status register (CSR). Port 6 and the CSR are addressed at the special function register addresses shown in Table 1. The following four control pins are used in conjunction with port 6.

ODS: Handshake input for port 6 strobed output data.

ODS can be programmed to control the port 6 output drivers and the output buffer full flag (OBF), or to clear only the OBF flag bit in the CSR (output-always mode). ODS is active low for output driver control. The OBF flag can be programmed to be cleared on the negative or positive edge of ODS.

<u>IDS</u>: Handshake input for port 6 strobed input data. <u>IDS</u> is used to control the port 6 input latch and input buffer full flag (IBF) bit in the CSR. The input data latch can be programmed to be transparent when the <u>IDS</u> is low and latched on the positive transition of <u>IDS</u>, or to latch only on the positive transition of <u>IDS</u>. Correspondingly, the <u>IBF</u> flag is set on the negative or positive transition of <u>IDS</u>.

AFLAG: A bidirectional I/O pin. AFLAG can be programmed to be an output, set high or low under program control, or to output the state of the output buffer full flag. AFLAG can also be programmed to be an input which selects whether the contents of the output buffer, or the contents of the port 6 control status register will be output on port 6. This feature grants complete port 6 status to external devices.

BFLAG: A bidirectional I/O pin. BFLAG can be programmed to be an output, set high or low under program control, or to output the state of the input buffer full flag. BFLAG can also be programmed to input an enable signal for port 6. When BFLAG is used as an enable input, port 6 output drivers are in the high impedance state, and the input latch does not respond to the IDS strobe when BFLAG is high. Both features are enabled when BFLAG is low. This feature facilitates the use of the 8XC451 in bussed multiprocessor systems.

P6.7 P6.6 P6.5 P6.4 P6.3 P6.2 P6.1 P6.0	P6.7	P6.6	P6.5	P6.4	P6.3	P6.2	P6.1	P6.0
---	------	------	------	------	------	------	------	------

Port 6 Data Address = 0D8H Reset Value = 11111111B

PORT 6 CONTROL STATUS REGISTER

The control status register (CSR) establishes the mode of operation for port 6 and indicates the current status of the Port 6 I/O registers. All control status register bits can be read and written by the CPU, except bits 0 and 1, which are read only. Reset writes ones to bits 2 through 7, and writes zeros to bits 0 and 1.

CSR.0—Input Buffer Full Flag (IBF) (Read Only)

The IBF bit is set to a logic 1 when Port 6 data is loaded into the input buffer under control of IDS. This can occur on the negative or positive edge of IDS, as determined by CSR.2. IBF is cleared when the CPU reads the input buffer register.

CSR.1—Output Buffer Full Flag (OBF) (Read Only) a mon salt fortage of bearinging ad new ECIO

The OBF flag is set to a logic 1 when the CPU writes to the Port 6 output data buffer. OBF is cleared by the positive or negative edge of ODS, as determined by CSR.3.

CSR.2—IDS Mode Select (IDSM)

When CSR.2 = 0, a low-to-high transition on the IDS pin sets the IBF flag. The Port 6 input buffer is loaded on the IDS positive edge. When CSR.2 = 1, a high-tolow transition on the IDS pin sets the IBF flag. The Port 6 input buffer is transparent when IDS is low, and latched when IDS is high. To the anismoo 1240X9 setT

CSR.3—Output Buffer Full Flag Clear Mode (OBFC)

When CSR.3 = 1, the positive edge of the ODS input clears the OBF flag. When CSR.3 = 0, the negative edge of the ODS input clears the OBF flag.

A 1911's agula V Port 6 Control Status Register 1927 Into again and a

Symbol	Position	Function
MB1, MB0	CSR.7, 6	BFLAG Mode Select: 0,0 = Logic 0 Out; 0,1 = Logic 1 Out* 1,0 = IBF Output; 1,1 = PE Input BFLAG: 0 = Select; 1 = Disable I/O
MA1, MA0	CSR.5, 4	AFLAG Mode Select: 0,0 = Logic 0 Out; 0,1 = Logic 1 Out 1,0 = OBF Output*; 1,1 = SEL Input Status AFLAG: 0 = Data; 1 = Control/
OBFC	CSR.3	Output Buffer Flag Clear Mode: 0 = Negative Edge of ODS
IDSM	CSR.2	Input Data Strobe Mode: 0 = Positive Edge of IDS 1 = Low Level of IDS
OBF	CSR.1	Output Buffer Full Flag: 0 = Output Data Buffer Empty
IBF	CSR.0	Input Buffer Full Flag: 0 = Input Data Buffer Empty 1 = Input Data Buffer Full

*NOTE

Output-always mode: MB1 = 0, MA1 = 1, and MA0 = 0. In this mode, Port 6 is always enabled for output. ODS only clears the OBF flag.

CSR.4, CSR.5—AFLAG Mode Select (MA0, MA1)

Bits 4 and 5 select the mode of operation for the AFLAG pin, as follows:

MA1	MAO	AFLAG Function
0	0	Logic 0 Output
A O	1	Logic 1 Output
1	0	OBF Flag Output (CSR.1)
Rg 1	1	Select (SEL) Input Mode

The select (SEL) input mode is used to determine whether the Port 6 data register or the control status register is output on Port 6. When the select feature is enabled, the AFLAG input controls the source of Port 6 output data. A logic 0 on AFLAG input selects the Port 6 data register, and a logic 1 on AFLAG input selects the control status register.

CSR.6, CSR.7-BFLAG Mode Select (MB0, MB1)

Bits 6 and 7 select the mode of operation for the benefits on at AUOOA is RHB MOOA in modern as BFLAG pin, as follows:

Note that not all of the addresses are occupied.

MB1	МВО	BFLAG Function
0	0	Logic 0 Output
0	1	Logic 1 Output
1	0	IBF Flag Output (CSR.0)
1	1	Port Enable (PE)

In the port enable mode, $\overline{\rm IDS}$ and $\overline{\rm ODS}$ inputs are disabled when BFLAG input is high. When the BFLAG input is low, the port is enabled for I/O.

MB1	МВО	MA1	MAO	OBFC	IDSM	OBF	IBF

Port 6 Control Status Address = 0E8H Reset Value = 11111100B Bit Addressable

Upon reset, Port 6 is configured in the bus interface input mode to prevent disruption of data on the bus of a host processor. It can also be configured as a standard I/O port by tying the control pins IDS, ODS, AFLAG and BFLAG to V_{SS} before reset. AFLAG and BFLAG can be used as simple outputs in the standard I/O port mode by tying only IDS and ODS to V_{SS}. Grounding IDS and ODS prevents any edges from occurring on these signals thereby preventing automatic data transfers and setting and resetting of flags.

SPECIAL FUNCTION REGISTERS

A map of the Special Function Register (SFR) space is

Note that not all of the addresses are occupied. Unoccupied addresses are not implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have no effect.

User software should not write 1's to these unimplemented locations, since they may be used in future 8051 products to invoke new features. In that case the reset or inactive values of the new bits will always be 0, and their active values will be 1.

Table 1. Special Function Register Memory Map and Values after Reset

F8			Function			no	Positi	Symbol
0	Logic 1 Out	= 1.0 du	0 0 pipo J =	Select 0.0	IFLAG Mode	1 a	5 880	IR1 MRO
0	*B	The second second	= IBF Outp AG: 0 = Se					
8	P6 CSR 111111100	= 1,1 ;*tue	= 08F Out	Select: 0,0 1,0	FLAG Mode	\$.	S.REO	IA1, MAC
Ε0	*ACC 00000000	legative Edge		AFI Flag Clear	natus Julput Buffe	8	REO .	OBFC
08	P6 Data 11111111	oskive Edge Edge Edge of IDS		cobe Mode:	nput Data Si	s s	CSR	Medi
00	* PSW 00000000	ale Buffer Em		Full Flag: 0	° Jutput Buffer)	CSR	780
28	P5 11111111	Buffer Empty	Contract of the Contract of th	r Flag: 0 =	nput Buffer I	0	CSR	781
00	P4 11111111	Burrer Full	ared ruger					
38	*IP XXX00000	duo tot beldan	t 6 is always i	his mode, Por	ni :0 = 0AM	At = 1, and	MB1 = 0, N	telways mode 3F flag:
30	*P3	IAO ORFO I	1 PAM OF	MB1 M	AO, MA1)	M) tosle8 c	FLAG Nod	4, CSR.5—A
48	* IE 0XX00000	06 Bit Address	norsialus Au e = 1111110		SPARA ASTR 625	G Function	lows: AFLA	AG pin, as for
40	* P2 11111111	configured in disruption of c				0 Output 1 Output		0
8	* SCON 00000000	* SBUF XXXXXXXX	by tying the AG to V _{SS} be	and BFL	ebol/i	t (SEL) Inpu	Selec	Ť
0	* P1 11111111	ampus is the 3S and ODS to its any edgas	at as simple tying only II ODS preven	mode by	Decrease Name of the Control of	is used to	input mode i data regist	select (SEL) ser'the Port
8	* TCON 00000000	* TMOD 00000000	* TL0 00000000	* TL1 00000000	00000000	00000000	ogic 0 on A.	ed in company ed, the APLA put data. A i
30	* P0 11111111	* SP 00000111	* DPL 00000000	* DPH 00000000	suçat UA.	ic i on AFI	r, and a log status regista	* PCON ** 00XX0000

A map of the Special Function Register (SFR) : STON

- * = Found in the 8051 core (See 8051 Hardware Description for explanations of these SFRs)
- ** = See description of PCON SFR. Bit PCON.4 is not affected by reset. notrange to about with toolse 1 bring of still
- Note that not all of the addresses are a benilebnU = X

Iser software about not write I's to these unimple acuted locations, since they may be used in future 805 roducts to invoke new features. In that case the reserving crimetive values of the new bits will always be 0, and

In the porr enable mode, IDS and ODS inputs are disabled when BFLAG input is high. When the BFLAG input is low, the port is enabled for I/O.

BFLAG Function

WITH RAM AND EXPANDED I/O

83C451/83C451-1/83C451-2 CHMOS SINGLE-CHIP 8-BIT CPU WITH 4K BYTES FACTORY MASK-PROGRAMMABLE ROM

8XC451 — 3.5 to 12 MHz, $V_{CC} = 5V \pm 20\%$ 8XC451-1 — 3.5 to 16 MHz, $V_{CC} = 5V \pm 20\%$ 8XC451-2 — 0.5 to 12 MHz, $V_{CC} = 5V \pm 20\%$

- Idle and Power Down Modes
- 128 x 8-Bit RAM
- 56 Programmable I/O Lines
- One Extra Strobed Bus Port
- Two 16-Bit Timer/Counters
- **■** 64K Program Memory Space
- **TTL- and CMOS-Compatible Logic**

- **High Performance CHMOS Process**
- **■** Boolean Processor
- 5 Interrupt Sources
- **Two Extra Standard Ports**
- Full Duplex Serial Channel
- 64K Data Memory Space
- 68-Pin PLCC Package

The 8051 family of CHMOS products are fabricated on Intel's CHMOS III process and are functionally compatible with the standard 8051 family of HMOS and EPROM products. CHMOS III is a technology which combines the high speed and density characteristics of HMOS with the low power attributes of CMOS. This combination expands the effectiveness of the powerful 8051 architecture and instruction set.

The 80C451/83C451 are similar to the 80C51 in features with three additional I/O ports, one of which is a special strobed port. The 83C451 contains 4K bytes of ROM. Both devices contain 128 bytes of RAM; 56 I/O lines; two 16-bit timer/counters; a five source two-level interrupt structure; a full-duplex serial port; on-chip oscillator and clock circuitry; and two software selectable modes of reduced activity for further power reduction — Idle and Power Down.

The extremely low operating power, along with the two reduced power modes, Idle and Power Down, make this part very suitable for low power applications. The Idle mode freezes the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power Down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

gure 1. Block Diagran 12-6

PACKAGES bellug gried villametxe era tarti aniq

Part	Prefix	Package Type
83C451	minin N. a lei	68 Pin PLCC
80C451	nea tran sid	anullium lanvaimi r

slipped during each access to External

PIN DESCRIPTION

Vcc: Supply voltage during normal, Idle, and Power Down operations. OX8 and aldana of rabio of gal/

Vss: Circuit ground.

Port 0: Port 0 is an 8-bit open drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance XTAL1: Input to the inverting oscillator amplif.stuqui

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting 1s. Port 0 also outputs the code bytes during program verification in the 83C451. External pullups are required during program verification.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. Port 1 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs. Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups. Systi tell and a hoy aquilug temetri.

Port 1 also receives the low-order address bytes during program verification.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. Port 2 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16-bit addresses (MOVX@DPTR). In this application it uses strong internal pullups when emitting 1s.

During accesses to external Data Memory that use 8-bit addresses (MOVX@Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives some control signals and the high-order address bits during program verification.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. Port 3 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the 8051 Family, as listed below:

Pin	Name	Alternate Function
P3.0	RXD	Serial input line
P3.1	TXD	Serial output line
P3.2	INTO	External interrupt 0
P3.3	ĪNT1	External interrupt 1
P3.4	TO	Timer 0 external input
P3.5	T1	Timer 1 external input
P3.6	WR	External Data Memory write strobe
P3.7	RD	External Data Memory read strobe

Port 4: Port 4 is an 8-bit bidirectional I/O port with internal pullups. Port 4 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 4 pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 5: Port 5 is an 8-bit bidirectional I/O port with internal pullups. Port 5 pins that have 1s written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 5

pins that are externally being pulled low will source current (I_{IL}, on the data sheet) because of the internal pullups.

Port 6: Port 6 is a special 8-bit bidirectional I/O port with internal pullups. This port can be used as a standard I/O port, or in strobed modes of operation in conjunction with the following four special control lines.

Port 6 Control Lines

ODS: Output data strobe

IDS: Input data strobe

AFLAG: A bidirectional I/O pin with internal pullups

BFLAG: A bidirectional I/O pin

with internal pullups

RST: Reset input. A logic high on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits a power-on reset to be generated using only an external capacitor to V_{CC} .

ALE: Address Latch Enable output signal for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN: Program Store Enable is the Read strobe to External Program Memory. When the 83C451 is executing from Internal Program Memory, PSEN is inactive (high). When the device is executing code from External Program Memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to External Data Memory.

EA: External Access enable. EA must be strapped to V_{SS} in order to enable the 8XC451 to fetch code from External Program Memory locations 0000H to 0FFFH.

EA must be strapped to V_{CC} for Internal Program execution.

XTAL1: Input to the inverting oscillator amplifier and input to the internal clock generating circuits.

XTAL2: Output from the inverting oscillator amplifi-

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3.

Figure 3. Using the On-Chip Oscillator

To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 4. External Clock Drive

IDLE MODE

In Idle Mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the Special Function Registers remain unchanged during this mode. The Idle Mode can be terminated by any enabled interrupt or by a hardware reset.

It should be noted that when Idle is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

POWER DOWN MODE

In Power Down Mode, the oscillator is stopped and all on-chip functions cease except that the on-chip RAM content is maintained. The mode is invoked by software. The Power Down Mode can be terminated only by a hardware reset.

Table 1. Status of the External Pins during Idle and Power Down Modes

Mode evit	Program Memory	ALE	PSEN	Port 0	Port 2	Ports 1, 3, 4, 5, 6
Idle Idle	Internal	nd al the	S MAR	Data	Data	Data E etupi
based sidle to jour	External	ited by an	ninne 1	Float	Address	Data
Power Down	Internal	0.1986	1 918 0	Data	Data	Data
Power Down	External	stor 0ed bl	uaris 0	Float	Data	Data

Ambient Temperature Under Bias0°C to +7	0°C
Storage Temperature65°C to +15	O°C
Voltage on Any Pin to VSS 0.5V to VCC + 0	0.5V
Voltage on V _{CC} to V _{SS} 0.5V to +6	3.5V
Maximum I _{OL} per I/O Pin15	mA
Power Dissipation	

ABSOLUTE MAXIMUM RATINGS(1)* *Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

> NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS TA = 0°C to 70°C; VCC = 5V ±20%; VSS = 0V

Symbol	Parameter	la 'Lir	nits sbold	Unit	Test Conditions	
Symbol	r al allietei	Min	Max		:237	
VIL	Input Low Voltage, except EA	-0.5	0.2 V _{CC} - 0.1	Voq	Specifive loading on	
V _{IL1}	Input Low Voltage, EA	080 ev=0.580) ea	0.2 V _{CC} - 0.3	a cyerat	transitions during b	
V _{IH}	Input High Voltage (except XTAL1, RST)	0.2 V _{CC} + 0.9	V _{CC} + 0.5	V Ports 0	iger STROBE input. Sepacitive loading or	
V _{IH1}	Input High Voltage (XTAL1, RST) Specific and Indian to	0.7 V _{CC}	V _{CC} + 0.5 at wood lated and facility	9 Vr lo	See Figures 6 throug Sare should be taken	
V _{OL}	Output Low Voltage		0.3	٧	$I_{OL} = 100 \mu A^{(1)}$	
	(Ports 1,2,3,4,5,6, AFLAG, BFLAG)		0.45	٧	$I_{OL} = 1.6 \text{ mA} (1)$	
			1.0	٧	$I_{OL} = 3.5 \text{mA}^{(1,4)}$	
V _{OL1}	Output Low Voltage (Port 0, ALE, PSEN)		0.3	٧	$I_{OL} = 200 \mu A^{(1)}$	
			0.45	٧	$I_{OL} = 3.2 \text{mA}^{(1)}$	
			1.0	٧	$I_{OL} = 7 \text{ mA}(1,4)$	
VOH	Output High Voltage	V _{CC} - 0.3		٧	$I_{OH} = -10 \mu A$	
	(Port 1,2,3,4,5,6, AFLAG, BFLAG)	V _{CC} - 0.7	THE REAL PROPERTY.	٧	$I_{OH} = -30 \mu A$	
		V _{CC} - 1.5		٧	$I_{OH} = -60 \mu A$	
V _{OH1}	Output High Voltage (Port 0	V _{CC} - 0.3		٧	$I_{OH} = -200 \mu A$	
	in ext bus mode, ALE, PSEN)	V _{CC} - 0.7		٧	$I_{OH} = -3.2 \text{mA}^{(4)}$	
		V _{CC} - 1.5		٧	$I_{OH} = -6.5 \text{mA}^{(4)}$	
IIL	Logical 0 Input Current (Ports 1,2,3,4,5,6, AFLAG, BFLAG)		-50	μΑ	V _{IN} = 0.45V	
ITL	Logical 1 to 0 Transition (Ports 1,2,3,4,5,6, AFLAG, BFLAG)		-650	μА	V _{IN} = 2V	

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5V \pm 20\%$; $V_{SS} = 0V$ (Continued)

Symbol	Parameter	age to the	Limits		Unit	Test Conditions	
riese or any	operation of the device at	Min	Тур	Max	0	orage Temperature	
ImplieduEx-	Input Leakage Current (Port 0, EA, IDS, ODS)	Yonal sect sosure to	va.o	±10 of + of V8.0	μА	0 < V _{IN} < V _{CC} -0.3V	
RRST	Reset Pulldown Resistor	50	Ama	150	kΩ	admum lou per I/O Pin.	
CIO	Pin Capacitance	VOTIGE following	VYO.1	10	pF	Test Freq = 1 MHz	
lcc	Power Supply Current Active Mode, 12 MHz ⁽⁴⁾ Idle Mode, 12 MHz ⁽⁴⁾	= 5V ±2	00\ ¹¹ .7°0\	22 5	mA mA	(Note 3)	
	Power Down Mode	atimi.)	5	50	μА		

NOTES:

2. Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and \overline{PSEN} to momentarily fall below the 0.9 V_{CC} specification when the address bits are stabilizing.

3. See Figures 6 through 9 for I_{CC} test conditions.

4. Care should be taken to assure that the total power dissipation is held within the package limits.

(Ports 1,2,3,4,5,5, AFLAG, BFLAG)				
Output Low Voltage				
(Port 0, ALE, PSEN)				
		1.0		
			N.V	
(Port 1, 2, 3, 4, 5, 6, AFLAG, BFLAG)				
	V _{CC} - 1.5			
Output High Voltage (Port 0				
	Vcc - 1.5			
Logical 0 Input Gurrent (Ports 1,2,3,4,5,5, AFLAG, BFLAG)		-50		
Logical 1 to 0 Transition (Ports 1,2,3,4,5,6, AFLAG, BFLAG)				$V_{\rm IN}=2V$

^{1.} Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst case (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

22 vol has 5 characters. The first char Vcc PO EA RST (NC) -XTAL2 CLOCK XTAL1 SIGNAL VSS 270561-8

Figure 8. I_{CC} Test Condition, Idle Mode. All other pins are disconnected.

Figure 6. I_{CC} vs Frequency. Valid only within frequency specifications of the device under test.

Vcc Vcc PO RST EA 8XC451 (NC)-XTAL2 XTAL1 VSS All other pins disconnected Figure 10. I_{CC} Test Condition,

Power Down Mode.

All other pins are disconnected.

Figure 7. I_{CC} Test Condition, Active Mode. All other pins are disconnected.

Figure 9. Clock Signal Waveform for ICC Tests in Active and Idle Modes. TCLCH = TCHCL = 5 ns.

too MAX at other frequencies is given by:

Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

- A: Address
- C: Clock
- D: Input data
- H: Logic level HIGH STATE (OH)
- I: Instruction (program memory contents)
- L: Logic level LOW, or ALE

- P: PSEN
- Q: Output data
- R: RD signal
- T: Time V: Valid
- W: WR signal
- X: No longer a valid logic level
- Z: Float

Example:

270561-6

TAVLL = Time for Address Valid to ALE Low. TLLPL = Time for ALE Low to PSEN Low.

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}$ C to $+70^{\circ}$ C, $V_{CC} = 5V \pm 20\%$, $V_{SS} = 0V$, load capacitance for Port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.

Symbol	Parameter	12 MH	z Osc	Variat	ole Osc	Unit
Symbol	Parameter	Min	Max	Min	Max	Olint.
1/TCLCL	Oscillator Freq. 8XC451 8XC451-1 8XC451-2			3.5 3.5 0.5	16 12	MHz
TLHLL :	ALE Pulse Width	127		2TCLCL - 40		ns
TAVLL	Address Valid to ALE Low	43		TCLCL - 40	7	ns
TLLAX	Address Hold after ALE Low	48		TCLCL - 35	Yes .	ns
TLLIV	ALE Low to Valid Instr In		234	M_	4TCLCL - 100	ns
TLLPLovs	ALE Low to PSEN Low	43		TCLCL - 40	20	ns
TPLPH	PSEN Pulse Width	205		3TCLCL - 45		ns
TPLIV	PSEN Low to Valid Instr In		145	ALZ ALT	3TCLCL - 105	ns
TPXIX .bs	Input Instr Hold after PSEN	0		0	N JAMAIE	ns
TPXIZ	Input Instr Float after PSEN		59	27058	TCLCL - 25	ns
TAVIV	Address to Valid Instr In			dition, Active Mor	5TCLCL - 105	ns
TPLAZ	PSEN Low to Address Float		10		ne aniq 10 tao IIA	ns
TRLRH	RD Pulse Width	400		6TCLCL - 100		ns
TWLWH	WR Pulse Width	400	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6TCLCL - 100	Vone 2.0=e0V	ns
TRLDV	RD Low to Valid Data In	CONTROL PRODUCTION	252	70.7 Vec	5TCLCL - 165	ns
TRHDX	Data Hold after RD	OUST	J	O TCH		ns
TRHDZ	Data Float after RD		97		2TCLCL - 70	ns
TLLDV	ALE Low to Valid Data In	Active an	517	Waveform for lo	8TCLCL - 150	ns
TAVDV	Address to Valid Data In	HOLES.	585		9TCLCL - 165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL - 50	3TCLCL + 50	ns

A.C. CHARACTERISTICS

 $T_A = 0$ °C to +70°C, $V_{CC} = 5V \pm 20\%$, $V_{SS} = 0V$, load capacitance for Port 0, ALE, and $\overline{PSEN} = 100$ pF, load capacitance for all other outputs = 80 pF. (Continued)

Symbol	Parameter	12 MHz	Clock	Variable	Clock	Unit
Symbol	raidinetei	Min	Max	Min	- Max	Oille
TAVWL	Address Valid to RD or WR Low	203	/	4TCLCL - 130	- as	ns
TQVWX	Data Valid to WR Transition	23	TRIAZ	TCLCL - 60		ns
TWHQX	Data Hold after WR	33		TCLCL - 50	0/1104	ns
TQVWH	Data Valid to WR High	433	74-84 95 T 51	7TCLCL - 70	PORTS	ns
TRLAZ	RD Low to Address Float		0		0	ns
TWHLH	RD or WR High to ALE High	43	102	TCLCL - 40	TCLCL + 40	ns
PORT 6 I	NPUT (Input Rise and Fall Times 5	ns)	3.10	HORY WRITE CY	NAL DATA ME	(TER
TILIH	ĪDS Width	270		3TCLCL + 20		ns
TDVIH	Data Setup to IDS High	0		0	- BJA	ns
TIHDX	Data Hold after IDS	30		30	PSEN	ns
TFLIL	PE to IDS	25		25		ns
TIVFV	IDS to BFLAG (IBF) Delay		130	- YALIT - LIVAT -	130	ns
PORT 6	DUTPUT (See) (See)	100 4740		Canal Wass >C	07909	
TOLOH	ODS Width	270		3TCLCL + 20		ns
TFVDV	SEL to Data Out Delay		85		85	ns
TOLDV	ODS to Data Out Delay		80		80	ns
TOHDZ	ODS to Data Float Delay	reos.	35	S WAVERDBUS	35	ns
TOVFV	ODS to AFLAG (OBF) Delay		100		100	ns
TFLDV	PE to Data Out Delay		120		120	ns
TOHFH	ODS High to AFLAG (SEL) Delay	100	н	100		ns

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

PORT 6 SELECT MODE WAVEFORMS

PORT 6 INPUT WAVEFORMS

IBF FLAG OUTPUT WAVEFORMS

PORT 6 OUTPUT WAVEFORMS

EXTERNAL CLOCK DRIVE WAVEFORM

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Unit
1/TCLCL	Oscillator Frequency 80C451 80C451-1 80C451-2	3.5 3.5 0.5	12 16	MHz
TCHCX	High Time	20	ng spa	ns
TCLCX	Low Time	20	serle i	ns
TCLCH	Rise Time	,	20	ns
TCHCL	Fall Time		20	ns

SERIAL TIMING—SHIFT REGISTER MODE

Test Conditions: T_A = 0°C to 70°C: V_{CC} = 5V ±20%; V_{SS} = 0V: load capacitance = 80 pF.

Symbol	Parameter	12 MHz Osc.		Variable Oscillator		
Cymbol	r di diliotoi	Min	Max	Min	Max	Unit
TXLXL	Serial Port Clock Cycle Time	1.0		12TCLCL		μs
TQVXH	Output Data Setup to Clock Rising Edge	700		10TCLCL - 133		ns
TXHQX	Output Data Hold after Clock Rising Edge	50		2TCLCL - 117		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		700		10TCLCL - 133	ns

SHIFT REGISTER MODE TIMING WAVEFORMS

A.C. TESTING INPUT, OUTPUT WAVEFORMS

Input timings are driven at 2.4V for a logic "1" and 0.45V for a logic "0". Output timing measurements are made at 0.7 $\rm V_{CC}$ for a logic "1" and 0.8V for a logic "0".

FLOAT WAVEFORM

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. IOL/IOH ≥ ±20 mA.

DATA SHEET REVISION SUMMARY

EXTERNAL CLOCK DRIVE WAVEFORM

The following are the key differences between this and the -001 version of the 83C451/80C451 data sheet:

- 1. Package table was added. 10151030 1010TN
- 2. Typical values for ICC were added.
- 3. Note 5 was added to explain the test conditions for typical values.
- 4. Timing spec TQVWH was added.
- 5. Data sheet revision summary was added.

	08		

SERIAL TIMING-SHIFT REGISTER MODE

st Conditions. TA = 0°C to 70°C; Vcc = 5V ±20%; Vss = 0V; load capacitance = 80 pF

Cacillator	Variable (Parameter		
	nist	Mak			
	12TOLOL +		Serial Port Clock Cycle Time		
			Output Data Setup to Clock Rising Edge	HXVOT	
			Clock Rising Edge to Input Data Valid		

SHIPT REGISTER MODE THUNG WAVEFORMS

SARCHBUANT TACK

VLOAD VALOAD THE REFERENCE TO NO. 40.1 VALOAD TO THE POINTS TO THE

A.C. TESTING INPUT, OUTPUT WAVEFORMS

INPUT AC LEVILS OUTPUT AC LEVELS

2.4Y 0.7 Yeb

2.4Y 0.7 Yeb

2.04SV 0.4SV 0.80V 0.8

UPI-452 CHMOS Programmable I/O Processor

13

UPI-452 CHMOS Programmable I/O Processor

CHMOS PROGRAMMABLE I/O PROCESSOR

83C452 - 8K × 8 Mask Programmable Internal ROM

80C452 - External ROM/EPROM

- 83C452/80C452:3.5 to 14 MHz Clock Rate
- Software Compatible with the MCS-51 Family
- 128-Byte Bi-Directional FIFO Slave Interface
- Two DMA Channels
- 256 × 8-Bit Internal RAM
- 34 Additional Special Function Registers
- 40 Programmable I/O Lines

- **Two 16-Bit Timer/Counters**
- **■** Boolean Processor
- Bit Addressable RAM
- 8 Interrupt Sources
- Programmable Full Duplex Serial Channel
- **64K Program Memory Space**
- 64K Data Memory Space
- 68-Pin PGA and PLCC

(See Packaging Spec., Order: #231369)

The Intel UPI-452 (Universal Peripheral Interface) is a 68 pin CHMOS Slave I/O Processor with a sophisticated bi-directional FIFO buffer interface on the slave bus and a two channel DMA processor on-chip. The UPI-452 is the newest member of Intel's UPI family of products. It is a general-purpose slave I/O Processor that allows the designer to grow a customized interface solution.

The UPI-452 contains a complete 80C51 with twice the on-chip data and program memory. The sophisticated slave FIFO module acts as a buffer between the UPI-452 internal CPU and the external host CPU. To both the external host and the internal CPU, the FIFO module looks like a bi-directional bottomless buffer that can both read and write data. The FIFO manages the transfer of data independent of the UPI-452 core CPU and generates an interrupt or DMA request to either CPU, host or internal, as a FIFO service request.

The FIFO consists of two channels:the Input FIFO and the Output FIFO. The division of the FIFO module array, 128 bytes, between Input channel and Output channel is programmable by the user. Each FIFO byte has an additional logical ninth bit to distinguish between a data byte and a Data Stream Command byte. Additionally, Immediate Commands allow direct, interrupt driven, bi-directional communication between the UPI-452 internal CPU and external host CPU, bypassing the FIFO.

The on-chip DMA processor allows high speed data transfers from one writeable memory space to another. As many as 64K bytes can be transferred in a single DMA operation. Three distinct memory spaces may be used in DMA operations; Internal Data Memory, External Data Memory, and the Special Function Registers (including the FIFO IN, FIFO OUT, and Serial Channel Special Functions Registers).

Order Number: 231428-005

13-2

Figure 1. Architectural Block Diagram (Continued)

Figure 2. UPI-452 68-Pin PGA Pinout Diagram

Figure 2A. UPI 452 68-Pin PLCC Pinout Diagram

UPI MICROCONTROLLER FAMILY

The UPI-452 joins the current members of the UPI microcontroller family. UPI's are derivatives of the MCS™ family of microcontrollers. Because of their on-chip system bus interface, UPI's are designed to be system bus "slaves", while their microcontroller counterparts are intended as system bus "masters".

These UPI Microcontrollers are fully supported by Intel's development tools (ICE, ASM and PLM).

Packaging

The 80C452/83C452 is available in either a 68-pin PGA (Pin Grid Array) or 68-pin PLCC package.

UPI Family (Slave Configuration)	MCS Family (Master Configuration)	Speed	RAM (Bytes)	ROM (Bytes)
80C452 1.09	80C51	12 MHz	256	V-69
83C452	80C51	12 MHz	256	8K
80C452-1	80C51	14 MHz	256	ŁA.
83C452-1	80C51	14 MHz	256	8K

UPI-452 PIN DESCRIPTIONS

Symbol	Pin #	Type	Name and Function Vac
V _{SS}	9/43	1	Circuit Ground.
Vcc	60 PAM 1 .00 HP		+5V power supply during normal and idle mode operation. It is also the standby power pin for power down mode.
XTAL1	38	1	Input to the oscillator's high gain amplifier. A crystal or external source can be used.
XTAL2	39	0	Output from the high gain amplifier.
Port 0 (AD0-AD7) P0.0 .1 .2 .3 .4 .5 .6	8 10 11 12 13 14 15 16	1/O	Port 0 is an 8-bit open drain bi-directional I/O port. Port 0 can sink eight LS TTL inputs. It is also the multiplexed low-order address and data local expansion bus during accesses to external memory.

UPI-452 PIN DESCRIPTIONS (Continued)

Symbol	Pin #	Туре	Name and Function and Hoday 2
Port 1 (A0-A7) (HLD, HLDA) P1.0 .1 .2 .3 .4 .5 .6 P1.7	7 6 5 4 3	O I/Ono	Port 1 is an 8-bit quasi-bi-directional I/O port. Port 1 can sink four LS TTL inputs. The alternate functions can only be activated if the corresponding bit latch in the port SFR contains a 1. Otherwise, the port pin is stuck at 0. Pins P1.5 and P1.6 are multiplexed with HLD and HLDA respectively whose functions are defined as below: Port Pin Alternate Function P1.5 HLD —Local bus hold input/output signal P1.6 HLDA —Local bus hold acknowledge input
(A8-A15) 1 nei P2.0	29		Port 2 is an 8-bit quasi-bi-directional I/O port. It also emits the high- order 8 bits of address when accessing local expansion bus external memory. Port 2 can sink four LS TTL inputs.
.4	25 24	luring nor s.	NLE 18 O Provides Address Latch Enable address into external memory of sink/source eight LS TTL input
.6 notet la	23 outno 22 inub 22 inub 21 2	eud arti d	7SEN 19 O The Program Store Enable out the external Program Memory to operation, PSEN can sink/sour
Port 3 molecular P3.0 molecular P3.0 molecular P3.0 molecular P3.7	66 65 64 63	ne UPI-46 direction ne UPI-46 LS TTL I	functions that are used by various options. The alternate functions can only be activated if the corresponding bit latch in the port SFR contains a 1. Otherwise, the port pin is stuck at 0. Port 3 can sink four LS TTL inputs. The alternate functions assigned to the pins of Port 3 are as follows: Port Pin Alternate Function P3.0 RxD Serial input port P3.1 TxD Serial output port P3.2 INT0 Interrupt 0 Input P3.3 INT1 Interrupt 1 Input P3.4 T0 Input to counter 0
ei eosh	erface with I ons. The inte s and the MI	2 operati	P3.5 T1 — Input to counter 1 P3.6 — The write control signal latches the data from Port 0 outputs into the External Data Memory on the
aut FIFO (either	OPU. Activates of the Outp Control Spec	the host a content t Status/	P3.7 RD/ — The read control signal latches the data from Port 0 outputs on the local bus.

This pin is the write strobe from the host. Activating this pin will cause the value on the Slave Data Bus to be written into the register specified by A0–A2.		47	
This pin requests an input transfer from the host system whenever the Input Channel requires data.	0		
Tris output pin requests an output transfer whenever the Output Channel requires service. If the external host to UPI-452 DMA is enabled, and a Data Stream Command is at the Output FIFO, DROOUT is deactivated and INTRO is activated (see 'GENERAL PURPOSE DMA CHANNELS' section).			

UPI-452 PIN DESCRIPTIONS (Continued)

Symbol	Pin #	Туре	Name and Function 19 10 100m/2						
Port 4 P4.0	DS 9:30 10 11	1/0	Port 4 is an 8-bit quasi-bi-directional I/O port. Port 4 can sink/ possible source four TTL inputs.						
.2 H dhw be	32 33 34 35	and P1.6 unctions	71.0 Port pin is stuck at 0. Pins P1.5 and HLDA respectively whose I Port Pin Alternate Fund Alt. 2 5 P1.5 HLD —Local input. 3 in						
-dgid ent atim		cessing H	HMOS MCS-51 family members. This function has been transferred						
ALE	18	0	Provides Address Latch Enable output used for latching the address into external memory during normal operation. ALE can sink/source eight LS TTL inputs.						
PSEN	19	0	The Program Store Enable output is a control signal that enables the external Program Memory to the bus during normal fetch operation. PSEN can sink/source eight LS TTL inputs.						
	ood, 71 s also rel, RD/ and s. The altern g bit latch in t	noirgo au							
DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7	58 57 56 55 54 53 52 51	noil Juqui (shruqtuo (shru							
CS	44	upo Li jud	This pin is the Chip Select of the UPI-452.						
A2 orbin	stuct 41 0 ho		These three address lines are used to interface with the host system. They define the UPI-452 operations. The interface is compatible with the Intel microprocessors and the MULTIBUS.						
READ and the	lang46 lonin eruqiyo 0 ho	e read co ta from P sal bus.	This pin is the read strobe from the host CPU. Activating this pin causes the UPI-452 to place the contents of the Output FIFO (eithe a command or data) or the Host Status/Control Special Function Register on the Slave Data Bus.						
WRITE	47	1	This pin is the write strobe from the host. Activating this pin will cause the value on the Slave Data Bus to be written into the registe specified by A0–A2.						
DRQIN/ INTRQIN	49	0	This pin requests an input transfer from the host system whenever the Input Channel requires data.						
DRQOUT/ INTRQOUT	48	0	This output pin requests an output transfer whenever the Output Channel requires service. If the external host to UPI-452 DMA is enabled, and a Data Stream Command is at the Output FIFO, DRQOUT is deactivated and INTRQ is activated (see 'GENERAL PURPOSE DMA CHANNELS' section).						

UPI-452 PIN DESCRIPTIONS (Continued)

Symbol	Pin #	Туре	Name and Function	
INTRQ	50	0	This output pin is used to interrupt the host processor when an Immediate Command Out or an error condition is encountered. It is	
		also used to interrupt the host processor when the FII service if the DMA is disabled and INTRQIN and INTR not used.		
DACK	45	١	This pin is the DMA acknowledge for the host bus interface Input and Output Channels. When activated, a write command will cause	
			the data on the Slave Data Bus to be written as data to the Input Channel (to the Input FIFO). A read command will cause the Output	
	13HRAH2	ADDITIONA -SERIAL -EXTERN -HLD/H	Channel to output data (from the Output FIFO) on to the Slave Data Bus. This pin should be driven high (+5V) in systems which do not have a DMA controller (see Address Decoding).	
Vcc	26	Pus	+5V power supply during operation.	

ARCHITECTURAL OVERVIEW

Introduction

The UPI-452 slave microcontroller incorporates an 80C51 with double the program and data memory, a slave interface which allows it to be connected directly to the host system bus as a peripheral, a FIFO buffer module, a two channel DMA processor, and a fifth I/O port (Figure 3). The UPI-452 retains all of the 80C51 architecture, and is fully compatible with the MCS-51 instruction set.

The Special Function Register (SFR) interface concept introduced in the MCS-51 family of microcontrollers has been expanded in the UPI-452. To the 20 Special Function Registers of the MCS-51, the UPI-452 adds 34 more. These additional Special Function Registers, like those of the MCS-51, provide access to the UPI-452 functional elements including the FIFO, DMA and added interrupt capabilities. Several of the 80C51 core Special Function Registers have also been expanded to support added features of the UPI-452. In source OFF and to II

This data sheet describes the unique features of the UPI-452. Refer to the 80C51 data sheet for a de-

scription of the UPI-452's core CPU functional blocks including;

- Timers/Counters
- I/O Ports
- Interrupt timing and control (other than FIFO and DMA interrupts)
- Serial Channel appropriate at alegnano monto
- Local Expansion Bus
- Program/Data Memory structure
- Power-Saving Modes of Operation
- CHMOS Features of assessing USO lametri
- Instruction Set wolls slange exercising au

Figure 3 contains a conceptual block diagram of the UPI-452. Figure 4 provides a functional block dia-

FIFO Buffer Interface

A unique feature of the UPI-452 is the incorporation of a 128 byte FIFO array at the host-slave interface. The FIFO allows asynchronous bi-directional transfers between the host CPU and the internal CPU.

Figure 3. UPI-452 Conceptual Block Diagram

Figure 4. UPI-452 Functional Block Diagram

The division of the 128 bytes between Input and Output channels is user programmable allowing maximum flexibility. If the entire 128 byte FIFO is allocated to the Input channel, a high performance Host can transfer up to 128 bytes at one time, then dedicate its resources to other functions while the internal CPU processes the data in the FIFO. Various handshake signals allow the external Host to operate independently and without frequent monitoring of the UPI-452 internal CPU. The FIFO Buffer insures that the slave processor receives data in the same order that it was sent by the host without the need to keep track of addresses. Three slave bus interface handshake methods are supported by the UPI-452: DMA, Interrupt and Polled.

The FIFO is nine bits wide. The ninth bit acts as a command/data flag. Commands written to the FIFO by either the host or internal CPU are called Data Stream Commands or DSCs. DSCs are written to the input FIFO by the Host via a unique external address. DSCs are written to the output FIFO by the internal CPU via the COMMAND OUT Special Function Register (SFR). When encountered by the host or internal CPU a Data Stream Command can be used as an address vector to user defined service routines. DSCs provide synchronization of data and commands between the Host and internal CPU.

FIFO PROGRAMMABLE FEATURES

Size of Input/Output Channels

The 128 bytes of FIFO space can be allocated between the Input and Output channels via the Chan-

nel Boundary Pointer (CBP) SFR. This register contains the number of address locations assigned to the Input channel. The remaining address locations are automatically assigned to the Output FIFO. The CBP SFR can only be programmed by the internal CPU during FIFO DMA Freeze Mode (See FIFO-External Host Interface FIFO DMA Freeze Mode description). The CBP is initialized to 40H (64 bytes) upon reset.

The number in the Channel Boundary Pointer SFR is actually the first address location of the Output FIFO. Writing to the CBP SFR reassigns the Input and Output FIFO address space. Whenever the CBP is written, the Input FIFO pointers are reset to zero and the Output FIFO pointers are set to the value in the CBP SFR.

All of the FIFO space may be assigned to one channel. In such a situation the other channel's data path consists of a single SFR (FIFO IN/COMMAND IN or FIFO OUT/COMMAND OUT SFR) location.

CBP Register	Input FIFO Size	Output FIFO Size		
0	1	128		
1	1	128		
2	2	126		
3	3	125		
4	4	124		
productions	and the second	•		
7B 10914	123 08	5		
7C	124	4		
7D	125	. 3		
7E	128	1		
7F	128	1		

FIFO Read/Write Pointers

These normally operate in auto-increment (and auto-rollover) mode, but can be reassigned by the internal CPU during FIFO DMA Freeze Mode (See FIFO-External Host Interface FIFO DMA Freeze Mode description).

Threshold Register

The Input FIFO Threshold SFR contains the number of empty bytes that must be available in the Input FIFO to generate a Host interrupt. The Output FIFO Threshold SFR contains the number of bytes, data and/or DSC(s), that must be in the FIFO before an interrupt is generated. The Threshold feature prevents the Host from being interrupted each time the FIFO needs to load or unload one byte of data. The thresholds, therefore, allow the FIFO's operation to be adjusted to the speed of the Host, optimizing the overall interface performance.

Immediate Commands

The UPI-452 provides, in addition to data and DSCs, a third direct means of communication between the external Host and internal CPU called Immediate Commands. As the name implies, an Immediate Command is available to the receiving CPU immediately, via an interrupt, without being entered into the FIFO as are Data Stream Commands. Like Data Stream Commands, Immediate Commands are written either via a unique external address by the host CPU, or via dedicated SFR by the internal CPU.

The DSC and/or Immediate Command interface may be defined as either Interrupt or Polled under user program control via the Interrupt Enable (IE), Slave Control Register (SLCON), and Interrupt Enable Priority (IEP) Special Function Registers, for the internal CPU and via the Host Control SFR for the external Host CPU.

DMAsift of laupe if orez of feest at the AMO

The UPI-452 contains a two channel internal DMA controller which allows transfer of data between any

as the Input FIFO operates as a circular buff

of the three writeable memory spaces: Internal Data Memory, External Load Expansion Bus Data Memory and the Special Function Register array. The Special Function Register array appears as a set of unique dedicated memory addresses which may be used as either the source or destination address of a DMA transfer. Each DMA channel is independently programmable via dedicated Special Function Registers for mode, source and destination addresses, and byte count to be transferred. Each DMA channel has four programmable modes:

- Alternate Cycle Mode
- Burst Mode
- FIFO or Serial Channel Demand Mode
- External Demand Mode

A complete description of each mode and DMA operation may be found in the section titled "General Purpose DMA Channels".

FIFO/SLAVE INTERFACE FUNCTIONAL DESCRIPTION

Overview

The FIFO is a 128 Byte RAM array with recirculating pointers to manage the read and write accesses. The FIFO consists of an Input and an Output channel. Access cycles to the FIFO by the internal CPU and external Host are interleaved and appear to be occurring concurrently to both the internal CPU and external Host. Interleaving access cycles ensures efficient use of this shared resource. The internal CPU accesses the FIFO in the same way it would access any of the Special Function Registers e.g., direct and register indirect addressing as well as arithmetric and logical instructions.

Input FIFO Channel On an an and also

The Input FIFO Channel provides for data transfer from the external Host to the internal CPU (Figure 5). The registers associated with the Input Channel during normal operation are listed in Table 1*.

Table 1. Input FIFO Channel Registers*

Tugni ant allow paths a summon problem in part in Contamon togotoro and in case and allo been and vinc									
, if enabled, is sent	Register Name	Attempting	ARE MI GMA Description V abrances						
ontrol lode. Similar	Input Buffer Latch	y address- FH" being	Host CPU Write only						
poty FIFC(\$ rill cause	FIFO IN SFR		I COULD I						
e gener (6 d to the	COMMAND IN SFR		Internal CPU Read only						
yd baen e4) lilw "HR	Input FIFO Read Pointer S	FRs also b	Internal CPU Read only						
5)	Input FIFO Write Pointer S	FRIEnco am	Internal CPU Read only						
6)	Input FIFO Threshold SFR		Internal CPU Read only						

^{*}See "FIFO-EXTERNAL HOST INTERFACE FIFO DMA FREEZE MODE" section for FIFO DMA Freeze Mode SFR characteristics description.

Figure 5. Input FIFO Channel Functional Block Diagram

The host CPU writes data and Data Stream Commands into the Input Buffer Latch on the rising edge of the external WR signal. External addressing determines whether the byte is a data byte or Data Stream Command and the FIFO logic sets the ninth bit of the FIFO accordingly as the byte is moved from the Input Buffer Latch into the FIFO. A "1" in the ninth bit indicates that the incoming byte is a Data Stream Command. The internal CPU reads data bytes via the FIFO IN SFR, and Data Stream Commands via the COMMAND IN SFR.

A Data Stream Command will generate an interrupt to the internal CPU prior to being read and after completion of the previous operation. The DSC can then be read via the COMMAND IN SFR. Data can only be read via the FIFO IN SFR and Data Stream Commands via the COMMAND IN SFR. Attempting to read Data Stream Commands as data by addressing the FIFO IN SFR will result in "0FFH" being read, and the Input FIFO Read Pointer will remain intact. (This prevents accidental misreading of Data Stream Commands.) Attempting to read data as Data Stream Commands will have the same consequence.

The Input FIFO Channel addressing is controlled by the Input FIFO Read and Write Pointer SFRs. These SFRs are read only registers during normal operation. However, during FIFO DMA Freeze Mode (See FIFO-External Host Interface FIFO DMA Freeze Mode description), the internal CPU has write access to them. Any write to these registers in normal mode will have no effect. The Input Write Pointer SFR contains the address location to which data/commands are written from the Input Buffer Latch. The write pointer is automatically incremented after each write and is reset to zero if equal to the CBP, as the Input FIFO operates as a circular buffer.

If a write is performed on an empty FIFO, the first byte is also written into the FIFO IN or COMMAND IN SFR. If the Host continues writing while the Input FIFO is full, an external interrupt, if enabled, is sent to the host to signal the overrun condition. The writes are ignored by the FIFO control logic. Similarly, an internal CPU read of an empty FIFO will cause an underrun error interrupt to be generated to the internal CPU and a value of "OFFH" will be read by the internal CPU.

The Read Pointer SFR holds the address of the next byte to be read from the Input FIFO. An Input FIFO read operation post-increments the Input Read Pointer SFR and loads a new data byte into the FIFO IN SFR or a Data Stream Command into the COMMAND IN SFR at the end of the read cycle.

An Input FIFO Request for Service (via DMA, Interrupt or a flag) is generated to the Host whenever more data can be written into the Input FIFO. For efficient utilization of the Host, a "threshold" value can be programmed into the Input FIFO Threshold SFR. The range of values of the Input FIFO Threshold SFR can be from 0 to (CBP-3). The Request for Service Interrupt is generated only after the Input FIFO has room to accommodate a threshold number of bytes or more. The threshold is equal to the total

number of bytes assigned to the Input FIFO (CBP) minus the number of bytes programmed in the Input FIFO Threshold SFR. With this feature the Host is assured that it can write at least a threshold number of bytes to the Input FIFO channel without worrying about an overrun condition. Once the Request for Service is generated it remains active until the Input FIFO becomes full.

termines whether the byte entered in the FIFO is a

Output FIFO Channel

The Output FIFO Channel provides data transfer from the UPI-452 internal CPU to the external Host (Figure 6).

The registers associated with the Output Channel during normal operation are listed in Table 2*.

Figure 6. Output FIFO Channel Functional Block Diagram

Table 2. Output FIFO Channel Registers

	Register Name	Description
1)	Output Buffer Latch	Host CPU Read only
2)	FIFO OUT SFR	Internal CPU Read and Write
3)	COMMAND OUT SFR	Internal CPU Read and Write
4)	Output FIFO Read Pointer SFR	Internal CPU Read only
5)	Output FIFO Write Pointer SFR	Internal CPU Read only
6)	Output FIFO Threshold SFR	Internal CPU Read only

^{*}See "FIFO-EXTERNAL HOST INTERFACE FIFO DMA FREEZE MODE" section for FIFO DMA Freeze Mode register characteristics description.

The UPI-452 internal CPU transfers data to the Output FIFO via the FIFO OUT SFR and commands via the COMMAND OUT SFR. If the byte is written to the COMMAND OUT SFR, the ninth bit is automatically set (= 1) to indicate a Data Stream Command. If the byte is written to the FIFO OUT SFR the ninth bit is cleared (= 0). Thus the FIFO OUT and COMMAND OUT SFRs are the same but the address determines whether the byte entered in the FIFO is a DSC or data byte.

The Output FIFO preloads a byte into the Output Buffer Latch. When the Host issues a RD/ signal, the data is immediately read from the Output Buffer Latch. The next data byte is then loaded into the Output Buffer Latch, a flag is set and an interrupt, if enabled, is generated if the byte is a DSC (ninth bit is set). The operation is carefully timed such that an interrupt can be generated in time for it to be recognized by the Host before its next read instruction. Internal CPU write and external Host read operations are interleaved at the FIFO so that they appear to be occurring concurrently.

The Output FIFO read and write pointer operation is the same as for the Input Channel. Writing to the FIFO OUT or COMMAND OUT SFRs will increment the Output Write Pointer SFR but reading from it will leave the write pointer unchanged. A rollover of the Output FIFO Write Pointer causes the pointer to be reset to the value in the Channel Boundary Pointer (CBP) SFR.

If the external host attempts to read a Data Stream Command as a data byte it will result in invalid data (0FFH) being read. The DSC is not lost because the invalid read does not increment the pointer. Similarly attempting to read a data byte as a Data Stream Command has the same result.

A Request for Service is generated to the external Host under the following two conditions:

1.) Whenever the internal CPU has written a threshold number of bytes or more into the Output FIFO (threshold = (OTHR) + 1). The threshold number should be chosen such that the bus latency time for the external Host does not result in a FIFO overrun error condition on the internal CPU side. The threshold limit should be large enough to make a bus request by the UPI-452 to the external host CPU worthwhile. Once a request for service is generated, the request remains active until the Output FIFO becomes empty. The range of values of the FIFO Output Threshold (OTHR) SFR is from 2 to {(80H-CBP)-1}. The threshold number can be programmed via the OTHR SFR.

2.) The second type of Request for Service is called "Flush Mode" and occurs when the internal CPU writes a Data Stream Command into the Output FIFO. Its purpose is to ensure that a data block entered into the Output FIFO, which is less than the programmed threshold, will generate a Request for Service interrupt, if enabled, and be read, or "Flushed" from the Output FIFO, by the external host CPU regardless of the status of the OTHR SFR.

Immediate Commands was some of 1992

Immediate Commands provide direct communication between the external Host and UPI-452. Unlike Data Stream Commands which are entered into the FIFO, the Immediate Command is available to the receiving CPU directly, bypassing the FIFO. The Immediate Command can serve as a program vector pointing into a jump table in the recipients software. Immediate Command Interrupts are generated, if enabled, and a bit in the appropriate Status Register is set when an Immediate Command is input or output. A similar bit is provided to acknowledge when an Immediate Command has been read and whether the register is available to receive another command. The bits are reset when the Immediate Commands are read. Two Special Function Registers are dedicated to the Immediate Command interface. External addressing determines whether the Host is accessing the Input FIFO or the Immediate Command IN (IMIN) SFR. The internal CPU writes Immediate Commands to the Immediate Command OUT (IMOUT) SFR.

Both processors have the ability to enable or disable Immediate Command Interrupts. By disabling the interrupt, the recipient of the Immediate Command can poll the status SFR and read the Immediate Command at its convenience. Immediate Commands should only be written when the appropriate Immediate Command SFR is empty (as indicated in the appropriate status SFR:HSTAT/SSTAT). Similarly, the Immediate Command SFR should only be read when there is data in the Register.

The flowcharts in Figure 7a and 7b illustrate the proper handshake mechanisms between the external Host and internal CPU when handling Immediate Commands.

Output Buffer Latch	0
COMMAND OUT SER	
Output FIFO Read Pointer S	
Output FIFO Write Pointer S	
Output FIFO Threshold SFR	

Figure 7a. Handshake Mechanisms for Handling Immediate Command IN Flowchart

Figure 7b. Handshake Mechanisms for Handling Immediate Command OUT Flowchart

HOST & SLAVE INTERFACE SPECIAL FUNCTION REGISTERS

Slave Interface Special Function Registers

The Internal CPU interfaces with the FIFO slave module via the following registers:

- 1) Mode Special Function Register (MODE)
- 2) Slave Control Special Function Register (SLCON)
- 3) Slave Status Special Function Register (SSTAT)

Each register resides in the SFR Array and is accessible via all direct addressing modes except bit. Only the Slave Control Register (SLCON) is bit addressable.

1) MODE Special Function Register (MODE)

The MODE SFR provides the primary control of the external host-FIFO interface. It is included in the SFR Array so that the internal CPU can configure the external host-FIFO interface should the user decide that the UPI-452 slave initialize itself independent of the external host CPU.

The MODE SFR can be directly modified by the internal CPU through direct address instructions. It can also be indirectly modified by the external host CPU by setting up a MODE SFR service routine in the UPI-452 program memory and having the host issue a Command, either Immediate or DSC, to vector to that routine.

Symbolic Address	DEMERANT INTERRUPT TO								Physical Address
MODE	N -	MD6	MD5	MD4	_	1 2	_	—	0F9H
(MSB) Status On Reset:						SOUTH AND	19	(LSB)	
	1*	0	0	0	1*	1*	1*	1*	

- MD7 (reserved)**
- MD6 Request for Service to external CPU via;
 - 1 = DMA (DRQIN/DRQOUT) request to external host when the Input or Output FIFO channel requests service
 - 0 = Interrupt (INTRQIN/INTRQOUT or INTRQ) to external host when the Input or Output FIFO channel requests service or a DSC is encountered in the I/O Buffer Latch
- MD5 Configure DRQIN/INTRQIN and DRQOUT/INTRQOUT to be either;
 - 1 = Enable (Actively driven)
 - 0 = Disable (Tri-state)
- MD4 Configure INTRQ to be either;
 - 1 = Enable (Actively driven)
 - 0 = Disable (Tri-state)
- MD3 (reserved) **
- MD2 (reserved) **
- MD1 (reserved) **
- MD0 (reserved) **

2) Slave Control SFR (SLCON)

Immediate Command OUT Flowchart

The Slave Control SFR is used to configure the FIFO-internal CPU interface. All interrupts are to the internal CPU.

Figure 7a. Handehake illechanisms for Handling

0.00	bolic ress											
	ON	IFI	OFI	ICII	ICOI	FRZ	ve Status	IFRS	OFRS	0E8H		
		(MSB)						and Out R		sment a	SST	
		Status O	Reset:						Full (i.e. Hos			
		0	0	0	0	0	1*	0	0			
IFI	Enabl		Interrup	ot (due to	Underru	n Error Co	ondition,	Data Stre	am Comman	d or Red	uest	
		Enable										
	0 = 1	Disable					rivice Fla					
OFI	Enabl	e Output FIF	O Interru	upt (due 1	to Overrur	Error Co	ndition o	r Request	Service)			
	1 = 1	Enable						requests	Output FIFO			
	0 = [Disable										
		If the DMA enerated.	is configu	ured to s	ervice a F	IFO dema	and, then	the Requ	est for Servi	ce Interru	ipt is	
ICII	Gene	rate Interrup	t when a	comman	d is writte	n to the I	mmediat	e Commai	nd in Registe	romi S		
	1 = [Enable							Empty			
	0 = [Disable				from host						
ICOI	Gene	rate Interrup	t when In	nmediate	Comman	d Out Re	gister is	Available				
	1 = [Enable										
	0 = [Disable										
FRZ	Enabl	e FIFO DMA	Freeze	Mode					FIFO Reque			
	1 = 1	Normal opera	ation									
	0 = FIFO DMA Freeze Mode Solvies for Selvies ORIA fugnt = 1											
SC2		ved) **										
IFRS							ICE SF		L HOST II			
		Request whe			empty							
		Request whe				The external host CPU has direct access to the following SPN 1) Host Control Special Function Register						
OFRS		it FIFO Char										
		Request whe										
									cess other S r Immediate			
*A '1'	will be	read from al	SFR res	served lo	cations ex	cept HCC	ON SFR,	HC0 and	HC2.			

^{*}A '1' will be read from all SFR reserved locations except HCON SFR, HC0 and HC2.

**'reserved'—these locations are reserved for future use by Intel Corporation.

By writing to the Host Control SFR, the host can enable or disable FIFO interrupts and DMA requests and can 3) Slave Status SFR (SSTAT)

The bits in the Slave Status SFR reflect the status of the FIFO-internal CPU interface. It can be read during an internal interrupt service routine to determine the nature of the interrupt or read during a polling sequence to determine a course of action. Symbol

Symbolic	ourse or at	TOH							Physical
Address	(LSB)								Address
SSTAT	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0	0E9H
	, ,0←	Output FII	FO Status	-3	0 +				
	Status C	n Reset:							
	1	0	0	0	1	1	1	1	
	(MSB)			13-	17			(LSB)	

	Output FIFO Overrun Error Condition 1 = No Error				Symbolic
	0 = Error (latched until Slave Status SFR is read)		FIO		SLCON
SST6	Immediate Command Out Register Status			MSBY	
	1 = Full (i.e. Host CPU has not read previous Immedia	te Comm	nand Out	sent by inte	ernal CPU)
	0 = Available				
SST5	FIFO DMA Freeze Mode Status			ala Lund	
	1 = Normal Operation				
	0 = FIFO DMA Freeze Mode in Progress				
SST4	Output FIFO Request for Service Flag			eldse	
	1 = Output FIFO does not request service				
	0 = Output FIFO requests service				
SST3	Input FIFO Underrun Error Condition Flag				
	1 = No Underrun Error				
	0 = Underrun Error (latched until Slave Status SFR is	read)			
SST2	Immediate Command In SFR Status		a nertw t		
	1 = Empty				
	0 = Immediate Command received from host CPU				
SST1	Data Stream Command/Data at Input FIFO Flag		t when In	ete interrup	
	1 = Data (not DSC)				3 = 1 1
	0 = DSC (at COMMAND IN SFR)				
SST0	Input FIFO Request For Service Flag	eboN	Freeze I		
	1 = Input FIFO Does Not Request Service		nolls		1 = N
	0 = Input FIFO Request for Service	eb			

EXTERNAL HOST INTERFACE SPECIAL FUNCTION REGISTERS OF FINAL MORNING

The external host CPU has direct access to the following SFRs:

- 1) Host Control Special Function Register
- 2) Host Status Special Function Register

It can also access other SFRs by commanding the internal CPU to change them accordingly via Data Stream Commands or Immediate Commands. The protocol for implementing this is entirely determined by the user.

1) Host Control SFR (HCON) cool latel yet earlier for future use the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the control SFR (HCON) cool latel yet earlier for the cool la

Symbolic

Address

By writing to the Host Control SFR, the host can enable or disable FIFO interrupts and DMA requests and can reset the UPI-452.

HC7	HC6	HC5	HC4	НС3	-	HC1	-	0E7H
(MSB)							(LSB)	ddress
Status O	n Reset:	SSTE	SSTS	SST4	SSTS	SST6	SSTZ	STAT
0	0	0	0	0	0*	0	0*	

HC7	Request 1 = Enable	reference Condition, Data Stream Command or Service 1 = 1
HC6	Enable Input FIFO Interrupt due to Overrun Erro	or Condition, or Service Request
	speed asynchronous bi-directionaldenal ==11 fers. The host interface is fully controlle will	0 = Immediate Command Present
suer	0 = Disable seeand tool toesecongorolm	HST5 Data Stream Command/Data at Output
HC5	Enable the generation of the Interrupt due to In	nmediate Command Out being present
	atenihen a common of hevelotitum are egent	0 = DSC (present at Output FIFO COM-
	0 = Disable quantities of temporal of temporal of the property	
HC4	Enable the Interrupt due to the Immediate Com Command byte 1 = Enable	mand In Register being Available for a new Immediate
	1 = Enable and one solorisand and opororg	HST4 Output FIFO Request for Service Status
	0 = Disable mateb motifier aPR2 bloncerff	t = No Request for Service 0 = Output FIFO Request for Service due to:
НС3	Reset UPI-452 Willer in ecivies not fasupe R	a. Output FIFO confaining the threshold
	1 = Software RESET and vd bendgings at	number of bytes or more
	0 = Normal Operation	b. Internal CPU sending a block of data ter-
HC2	(reserved) *** all siv algument sostraini teoH	
HC1	Select between INTRQ and INTRQIN/INTRQOU	JT as Request for Service interrupt signal when DMA is
	blocks and are sent with the data basald	

regardless of the programmed value in the Thresh-

2) Host Status SFR (HSTAT)

1 = INTRQ
0 = INTRQIN or INTRQOUT
HC0 (reserved) **

The Host Status SFR provides information on the FIFO-Host Interface and can be used to determine the source of an external interrupt during polling. Like the Slave Status SFR, the Host Status SFR reflects the current status of the FIFO-external host interface.

Symbolic Address			upts to t		e forced to a '1' initially to prevent the like Host from attempting to access the The definition of the Host Status SER				Physical		
HSTAT		HST6	HST5	HST4	HST3	HST2	HST1	HST0	0E6H		
nd DRQOUT equest lines when DMM	Tournett !		FO Status		← Input FIFO Status →				tion) (noit		
I FIFO: "Re	two papeca	propides	sidt their	lat disso	1	21/0*	iest Bervi	PIFO Req	STO Input		
					to the	service due ugh space	request a	(LSB)	l = 0		

^{*}A '1' will be read from all SFR reserved locations except HCON SFR, HC0 and HC2.

**'reserved'—these locations are reserved for future use by Intel Corporation.

1 = No Underrun Error

0 = Underrun Error (latched until Host Status Register is read)

HST6 Immediate Command Out SFR Status

1 = Empty

0 = Immediate Command Present

HST5 Data Stream Command/Data at Output FIFO Status

1 = Data (not DSC)

0 = DSC (present at Output FIFO COM-MAND OUT SFR)

(Note: Only if HST4 = 0, if HST4 = 1 then undetermined)

HST4 Output FIFO Request for Service Status

1 = No Request for Service

0 = Output FIFO Request for Service due to:

a. Output FIFO containing the threshold number of bytes or more

b. Internal CPU sending a block of data terminated by a DSC (DSC Flush Mode)

HST3 Input FIFO Overrun Error Condition

1 = No Overrun Error

0 = Overrun Error (latched until Host Status Register is read)

HST2 Immediate Command In SFR Status 1 = Full (i.e. Internal CPU has not read previous Immediate Command sent by Host) 0 = Empty

* Reset value: SOM bits 00H ,R42

'1' - if read by the external Host

'0' - if read by internal CPU (reads shadow latch - see FIFO DMA Freeze Mode descrip-

HST1 FIFO DMA Freeze Mode Status 1 = Freeze Mode in progress.

(In Freeze Mode, the bits of the Host Status SFR are forced to a '1' initially to prevent the external Host from attempting to access the FIFO. The definition of the Host Status SFR bits during FIFO DMA Freeze Mode can be found in FIFO DMA Freeze Mode descrip-

0 = Normal Operation

HSTO Input FIFO Request Service Status

1 = Input FIFO does not request service 0 = Input FIFO request service due to the Input FIFO containing enough space for the host to write the threshold number of bytes or more

HST7 Output FIFO Underrun Error Condition FIFO MODULE - EXTERNAL HOST INTERFACE

Overview

The FIFO-external Host interface supports high speed asynchronous bi-directional 8-bit data transfers. The host interface is fully compatible with Intel microprocessor local busses and with MULTIBUS. The FIFO has two specialized DMA request pins for Input and Output FIFO channel DMA requests. These are multiplexed to provide a dedicated Request for Service interrupt (DRQIN/INTRQIN, DRQOUT/INTRQOUT). Igument ent elden-

The external Host can program, under user defined protocol, thresholds into the FIFO Input and Output Threshold SFRs which determine when the FIFO Request for Service interrupt is generated to the Host CPU. The FIFO module external Host interface is configured by the internal CPU via the MODE SFR. "The external Host can enable and disable Host interface interrupts via the Host Control SFR." Data Stream Commands in the Input FIFO channel allow the Host to influence the processing of data blocks and are sent with the data flow to maintain synchronization. Data Stream Commands in the Output FIFO Channel allow the internal CPU to perform the same function, and also to set the Output FIFO Request Service status logic to the host CPU regardless of the programmed value in the Threshold SFR.

Slave Interface Address Decoding

The UPI-452 determines the desired Host function through address decoding. The lower three bits of the address as well as the READ, WRITE, Chip Select (CS) and DMA Acknowledge (DACK) are used for decoding. Table 3 shows the pin states and the Read or Write operations associated with each configuration.

Interrupts to the Host

The UPI-452 interrupts the external Host via the INTRQ pin. In addition, the DRQIN and DRQOUT pins can be multiplexed as interrupt request lines, INTRQIN and INTRQOUT respectively, when DMA is disabled. This provides two special FIFO "Request for Service" interrupts.

There are eight FIFO-related interrupt sources; two from The Input FIFO; three from The Output FIFO; one from the Immediate Command Out SFR; one from the Immediate Command IN SFR; and one due to FIFO DMA Freeze Mode.

INPUT FIFO: The Input FIFO interrupt is generated whenever:

a. The Input FIFO contains space for a threshold number of bytes.

Table 3, UPI-452	Address	Decoding
Table 3. UPI-434	Muuless	Decouning

DACK	CS	A2	A1	AO	Read Read	Write
1	1	X	X	X	No Operation rend lametice ent ent neews	No Operation and application TUOOFIG being
1	0	0	0	0	Data or DMA from Output FIFO Channel	Data or DMA to Input FIFO Channel
1	0	0	0	1	Data Stream Command from Output FIFO Channel	Data Stream Command to Input FIFO Channel
1	0	0	1	0	Host Status SFR Read	Reserveds fugal ent toeles alangia ET/AV
	0	0	1.	1	Host Control SFR Read	Host Control SFR Write
FFO	0	/10	0	0	Immediate Command SFR Read	Immediate Command to SFR Write
erli ni	0	aqı	ripir	X	Reserved OMAMMOONTUO	Reserved Jengis NOAC
0	X	X	X	X	DMA Data from Output FIFO Channel	DMA Data to Input FIFO Channel
weth a	0	telva	0	Ø1s	Reserved ent. FFR I/I GMAM -ni no AMM	Reserved lametxe and most ectivise feaus

NOTES:

1. Attempting to read a DSC as a data byte will result in invalid data being read. The read pointers are not incremented so that the DSC is not lost. Attempting to read a data byte as a DSC has the same result.

2. If DACK is active the UPI-452 will attempt a DMA operation when RD or WR becomes active regardless of the DMA enable bit (MD6) in the MODE SFR. Care should be taken when using DACK. For proper operation, DACK must be driven high (+5V) when not using DMA.

When an Input FIFO overrun error condition exists. The appropriate bits in the Host Status SFR are set and the interrupt is generated only if enabled.

OUTPUT FIFO: The Output FIFO Request for Service Interrupt operates in a similar manner as the Input FIFO interrupt:

- a. When the FIFO contains the threshold number of bytes or more.
- b. Output FIFO error condition interrupts are generated when the Output FIFO is underrun.
- c. Data Stream Command present in the Output Buffer Latch.

A Data Stream Command interrupt is used to halt normal processing, using the command as a vector to a service routine. When DMA is disabled, the user may program (through HC1) INTRQ to include FIFO Request for Service Interrupts or use INTRQIN and INTRQOUT as Request for Service Interrupts.

IMMEDIATE COMMAND INTERRUPTS:

a. An Immediate Command Out Interrupt is generated, if enabled, to the Host and the corresponding Host Status SFR bit (HSTAT HST6) is cleared, when the internal CPU writes to the Immediate Command OUT (IMOUT) SFR. When the Host reads the Immediate Command OUT (IMOUT) SFR the corresponding bit in the Host Status (HSTAT) SFR is set. This causes the Slave Status Immediate Command OUT Status bit (SSTAT SST6) to be cleared indicating that the Immediate Command OUT (IMOUT) SFR is empty. If enabled, a FIFO-Slave Interface will also be generated to the internal CPU. (See Figure 7b, Immediate Command OUT Flowchart.)

b. An Immediate Command IN interrupt is generated, if enabled, to the Host when the internal CPU has read a byte from the Immediate Command IN (IMIN) SFR. The read operation clears the Host Status SFR Immediate Command IN Status bit (HSTAT HST2) indicating that the Immediate Command IN SFR is empty. The corresponding Slave Status (SSTAT) SFR bit is also set to indicate an empty status. Setting the Slave Status SFR bit generates a FIFO-Slave Interface interrupt, if enabled, to the internal CPU. (See Figure 7a, Immediate Command IN Flowchart.)

ead and remains activaTON the Output FIFO be-

Immediate Command IN and OUT interrupts are actually specific Request For Service interrupts to the Host.

FIFO DMA FREEZE MODE: When the internal CPU invokes FIFO DMA Freeze Mode, for example at reset or to reconfigure the FIFO interface, INTRQ is activated. The INTRQ can only be deactivated by the external Host reading the Host Status SFR (HST1 remains active until FIFO DMA Freeze Mode is disabled by the internal CPU).

Once an interrupt is generated, INTRQ will remain high until no interrupt generating condition exists. For a FIFO underrun/overrun error interrupt, the interrupt condition is deactivated by the external Host reading the Host Status SFR. An interrupt is serviced by reading the Host Status SFR to determine the source of the interrupt and vectoring the appropriate service routine.

The UPI-452 generates two DMA requests, DRQIN and DRQOUT, to facilitate data transfer between the Host and the Input and Output FIFO channels. A DMA acknowledge, DACK, is used as a chip select and initiates a data transfer. The external READ and WRITE signals select the Input and Output FIFO respectively. The CS and address lines can also be used as a DMA acknowledge for processors with onboard DMA controllers which do not generate a DACK signal.

The internal CPU can configure the UPI-452 to request service from the external host via DMA or interrupts by programming Mode SFR MD6 bit. In addition the external Host enables DMA requests through bits 6 and 7 of the Host Control SFR. When a DMA request is invoked the number of bytes transferred to the Input FIFO is the total number of bytes in the Input FIFO (as determined by the CBP SFR) minus the value programmed in the Input FIFO Threshold SFR. The DMA request line is activated only when the Input FIFO has a threshold number of bytes that can be transferred.

The Output FIFO DMA request is activated when a DSC is written by the internal CPU at the end of a less than threshold size block of data (Flush Mode) or when the Output FIFO threshold is reached. The request remains active until the Input FIFO becomes full or the Output FIFO becomes empty. If a DSC is encountered during an Output FIFO DMA transfer, the DMA request is dropped until the DSC is read. The DMA request will be reactivated after the DSC is read and remains active until the Output FIFO becomes empty or another DSC is encountered.

FIFO MODULE - INTERNAL CPU FIFO DMA FREEZE MODE: When day OFF

Overview

The Input and Output FIFOs are accessed by the internal CPU through direct addressing of the FIFO IN/COMMAND IN and FIFO OUT/COMMAND OUT Special Function Registers. All of the 80C51 instructions involving direct addressing may be used to access the FIFO's SFRs. The FIFO IN, COMMAND IN and Immediate Command In SFRs are actually read only registers, and their Output counterparts are write only. Internal DMA transfers data between Internal memory, External Memory and the Special Function Registers. The Special Function Registers appear as another group of dedicated memory addresses and are programmed as the source or desti-

DMA Requests to the Host and board assemble nation via the DMA0/DMA1 Source Address or Destination Address Special Function Registers. The FIFO module manages the transfer of data between the external host and FIFO SFRs.

Internal CPU Access to FIFO Via Software Instructions

The internal CPU has access to the Input and Output FIFOs via the FIFO IN/COMMAND IN and FIFO OUT/COMMAND OUT SFRs which reside in the Special Function Register Array. At the end of every instruction that involves a read of the FIFO IN/COM-MAND IN SFR, the SFR is written over by a new byte from the Input FIFO channel when available. At the end of every instruction that involves a write to the FIFO OUT/COMMAND OUT SFR, the new byte is written into the Output FIFO channel and the write pointer is incremented after the write operation (post incremented).

The internal CPU reads the Input FIFO by using the FIFO IN/COMMAND IN SFR as the source register in an instruction. Those instructions which read the Input FIFO are listed below:

ADD A,FIFO IN/COMMAND IN ADDC A.FIFO IN/COMMAND IN PUSH FIFO IN/COMMAND IN THE TOTAL TO ANL A.FIFO IN/COMMAND IN ORL A,FIFO IN/COMMAND IN XRL A,FIFO IN/COMMAND IN CJNE A,FIFO IN/COMMAND IN, rel SUBB A,FIFO IN/COMMAND IN MOV direct, FIFO IN/COMMAND IN MOV @RI,FIFO IN/COMMAND IN MOV Rn, FIFO IN/COMMAND IN MOV A,FIFO IN/COMMAND IN

After each access to these registers, they are overwritten by a new byte from the FIFO.

NOTE:

Instructions which use the FIFO IN or COMMAND IN SFR as both a source and destination register will have the data destroyed as the next data byte is rewritten into the FIFO IN register at the end of the instruction. These instructions are not supported by the UPI-452 FIFO. Data can only be read through the FIFO IN SFR and DSCs through the COMMAND IN SFR. Data read through the COM-MAND IN SFR will be read as OFFH, and DSCs read through the FIFO IN SFR will be read as OFFH. The Immediate Command in SFR is read with the same instructions as the FIFO IN and COMMAND IN SFRs. ate Command OUT Flowers

The FIFO IN, COMMAND IN and Immediate Command In SFRs are read only registers. Any write operation performed on these registers will be ignored and the FIFO pointers will remain intact.

The internal CPU uses the FIFO OUT SFR to write to the Output FIFO and any instruction which uses the FIFO OUT or COMMAND OUT SFR as a destination will invoke a FIFO write. DSCs are differentiated from data by writing to the COMMAND OUT SFR. In the FIFO, Data Stream Commands have the ninth bit associated with the command byte set to "1". The instructions used to write to the Output FIFO are listed below:

MOV FIFO OUT/COMMOUT, A
MOV FIFO OUT/COMMOUT, direct
MOV FIFO OUT/COMMOUT, Rn
POP FIFO OUT/COMMOUT
MOV FIFO OUT/COMMOUT, #data
MOV FIFO OUT/COMMOUNT, @Ri

NOTE:

Instructions which use the FIFO OUT/COMMAND OUT SFRs as both a source and destination register cause invalid data to be written into the Output FIFO. These instructions are not supported by the UPI-452 FIFO.

GENERAL PURPOSE DMA CHANNELS

External Data Memory without Auto-IncremweivrevO

There are two identical General Purpose DMA Channels on the UPI-452 which allow high speed data transfer from one writeable memory space to another. As many as 64K bytes can be transferred in a single DMA operation. The following memory spaces can be used with DMA channels:

- Internal Data Memory Juodiliw viornal Mata Clametra
- External Data Memory A rain ground stad lameted
- Special Function Registers

The Special Function Register array appears as a limited group of dedicated memory addresses. The Special Function Registers may be used in DMA transfer operations by specifying the SFR as the source or destination address. The Special Function Registers which may be used in DMA transfers are listed in Table 4. Table 4 also shows whether the SFR may be used as Source or Destination only, or both

The FIFO can be accessed during DMA by using the FIFO IN SFR as the DMA Source Address Register (SAR) or the FIFO OUT SFR as the Destination Ad-

dress Register (DAR). (Note: Since the FIFO IN SFR is a read only register, the DMA transfer will be ignored if it is used as a DMA DAR. This is also true if the FIFO OUT SFR is used as a DMA SAR.)

Each DMA channel is software programmable to operate in either Block Mode or Demand Mode. In the Block Mode, DMA transfers can be further programmed to take place in Burst Mode or Alternate Cycle mode. In Burst Mode, the processor halts its execution and dedicates its resources to the DMA transfer. In Alternate Cycle Mode, DMA cycles and instruction cycles occur alternately.

In Demand Mode, a DMA transfer occurs only when it is demanded. Demands can be accepted from an external device (through External Interrupt pins, EXT0/EXT1) or from either the Serial Channel or FIFO flags. In this way, a DMA transfer can be synchronized to an external device, the FIFO or the Serial Port. If the External Interrupt is configured in Edge Mode, a single byte transfer occurs per transition. The external Interrupt itself will occur if enabled. If the External Interrupt is configured in Level Mode, DMA transfers continue until the External Interrupt request goes inactive or the byte count becomes zero. The following flags activate Demand Mode transfers of one byte to/from the FIFO or Serial Channel:

RI - Serial Channel Receiver Buffer Full

TI - Serial Channel Transmitter Buffer Empty

Architecture

There are three 16 bit and one 8 bit Special Function Registers associated with each DMA channel.

- The 16 bit Source Address SFR (SAR) points to the source byte.
- The 16 bit Destination Address SFR (DAR) points to the destination.
- The 16 bit Byte Count SFR (BCR) contains the number of bytes to be transferred and is decremented when a byte transfer is accomplished.
- The DMA Control SFR (DCON) is eight bits wide and specifies the source memory space, destination memory space and the mode of operation.

In Auto Increment mode, the Source Address and/ or Destination Address is incremented when a byte is transferred. When a DMA transfer is complete (BCR = 0), the DONE bit is set and a maskable interrupt is generated. The GO bit must be set to start any DMA transfer (also, the Slave Control SFR FRZ bit must be set to disable FIFO DMA Freeze Mode). The two DMA channels are designated as DMA0 and DMA1, and their corresponding registers are suffixed by 0 or 1; e.g. SAR0, DAR1, etc.

Physical

Address

092H

093H 191

er. As many as 64K bytes can be transferred in a

(SAR) or the FIFO OUT SFR as the Destination Ad-

Table 4. DMA Accessible Special Function Registers

SFR MO 8 88	Symbol	Address	Source Destination Conly Either
Accumulator B Register FIFO IN COMMAND IN FIFO OUT COMMAND OUT Serial Data Buffer Port 0 Port 1 Port 2 Port 3 Port 4	A/ACC B FIN CIN FOUT COUT SBUF P0 P1 P2 P3 P4	0E0H 0F0H 0EEH 0EFH 0FFH 099H 080H 090H 0A0H 0B0H 0C0H	ne in Xmai CPU uses the FIFO CUT SFR to write the Yutput FIFO and any instruction which uses the FIFO CUT or COMMAND OUT SFR ax a destation will invote a FIFO write. DSCs are different of from data by writing to the COMMAND OUT FR. In the FIFO, Data Stream Commands have the nich by associated with the command byte set to the Cutput FFO axis instructions used to write to the Output FFO axis instructions used to write to the Output YOY FFO OUT/COMMOUT, A

DMA Special Function Registers

DMA Control SFR: DCON0, DCON1

Symbolic Address

DCON0 DCON1

DAS	IDA	SAS	ISA	DM	TM	DONE	GO
DAS	IDA	SAS	ISA	DM	enTMni	DONE	GO
MSB)	t one byte	anetens o	Modet	eta Aq	иррепед	are not s	(LSB)

(MSB)
Reset Status: DCON0 and DCON1 = 00H

Bit Definition:

DAS	IDA	Destination Address Space
0	o enuisetirlo 1	External Data Memory without Auto-Increment External Data Memory with Auto-Increment
a bit Special Fundilon son DMA channel.	ere are three 16 bit and or gisters associated with e	Special Function Register 1979 Special Function Register 1970 Special Function Register 1970 Special Function Register 1970

ess SFR 288	The 16 bit De Azi tion Add	Source Address Space
R (BCR) Contains the	The 16 bit Byt Count Si unit ser of byte to be tree to the tree of byte tree tree tree to the tree tree tree tree tree tree tree	External Data Memory without Auto-Increment External Data Memory with Auto-Increment Special Function Register Internal Data Memory
senitach angos vinnien	n accurage the accurage	ne Special Function Register array appears as a

DM	TM	DMA Transfer Mode yarn energies and notionus laised
course and complete and complet	ULG Increment of node, the less is increment with a DMA care increment with a DME bit is consulted. The decimal and the care is consulted to the decimal and the care is consulted to the decimal and the deci	Alternate-Cycle Transfer Mode Burst Transfer Mode FIFO or Serial Channel Demand Mode External Demand Mode

DONE DMA transfer Flag:

- 0 DMA transfer is not completed.
- 1 DMA transfer is complete.

NOTE:

This flag is set when contents of the Byte Count SFR decrements to zero. It is reset automatically when the DMA vectors to its interrupt routine.

GO Enable DMA Transfer:

- O Disable DMA transfer (in all modes).
- 1 Enable DMA transfer. If the DMA is in the Block mode, start DMA transfer if possible. If it is in the Demand mode, enable the channel and wait for a demand.

NOTE:

The GO bit is reset when the BCR decrements to zero.

DMA Transfer Modes

The following four modes of DMA operation are possible in the UPI-452.

1. ALTERNATE-CYCLE MODE

General

Alternate cycle mode is useful when CPU processing must occur during the DMA transfers. In this mode, a DMA cycle and an instruction cycle occur alternately. The interrupt request is generated (if enabled) at the end of the process, i.e. when BCR decrements to zero. The transfer is initiated by setting the GO bit in the DCON SFR.

Alternate-Cycle FIFO Demand Mode

Alternate cycle demand mode is useful for FIFO transfers of a less urgent nature. As mentioned before, CPU instruction cycles are interleaved with DMA transfer cycles, allowing true parallel processing.

This mode differs from FIFO Demand Mode in that CPU instruction cycles must be interleaved with DMA transfers, even if the FIFO is demanding DMA. In FIFO Demand Mode, CPU cycles would never occur if the FIFO demand was present.

Input Channel 1 RAO to RAZ and tenthe as beau ad

The DMA is configured as in FIFO Demand Mode and transfers are initiated whenever an Input FIFO

service request is generated. DMA transfer cycles are alternated with instruction execution cycles. DMA transfers are terminated as in FIFO Demand Mode.

Output Channel Annual Application OFFS and

The DMA is configured as in FIFO Demand Mode and transfers are initiated whenever an Output FIFO requests service. DMA transfer cycles are alternated with instruction execution cycles. DMA transfers are terminated as in FIFO Demand Mode.

The FIFO logic resets the interrupt flag after transferring the byte, so the interrupt is never generated.

Once the DMA is programmed to service the FIFO, the request for service interrupt for the FIFO is inhibited until the DMA is done (BCR = 0).

2. BURST MODE seemble no Glane to ORIH eril

In BURST mode the DMA is initiated by setting the GO bit in the DCON SFR. The DMA operation continues until BCR decrements to zero (zero byte count), then an interrupt is generated (if enabled). No interrupts are recognized during this DMA operation once it has started.

Input Channel Source AMD entire relation I/I ORF

The FIFO Input Channel can be used in burst mode by specifying the FIFO IN SFR as the DMA Source Address. DMA transfers begin when the GO bit in the DMA Control SFR is set. The number of bytes to be transferred must be specified in the Byte Count SFR (BCR) and auto-incrementing of the SAR must be disabled. Once the GO bit is set nothing can interrupt the transfer of data until the BCR is zero. In this mode, a Data Stream Command encountered in the FIFO will be held in the COMMAND IN SFR with the pointers frozen, and invalid data (FFH) will be read through the FIFO IN SFR. If the input FIFO becomes empty during the block transfer, an 0FFH will be read until BCR decrements to zero.

Output Channel

The Output FIFO Channel can be used in burst mode by specifying the FIFO OUT or COMMAND OUT SFR as the DMA Destination Address. DMA transfers begin when the GO bit is set. This mode can be used to send a block of data or a block of Data Stream Commands. If the FIFO becomes full during the block transfer, the remaining data will be lost.

service request is gen: TON DMA transfer cycles

All interrupts including FIFO interrupts are not recognized in Burst Mode. Burst Mode transfers should be used to service the FIFO only when the user is certain that no Data Stream Commands are in the block to be transferred (Input FIFO) and that the FIFO contains enough space to store the block to be transferred. In all other cases Alternate Cycle or Demand Mode should be used.

3. FIFO AND SERIAL CHANNEL DEMAND MODES

The FIFO fools resets: SATON rupt fled after trans-

- 1. If the output FIFO is configured as a one byte buffer and the user program consists of two-cycle instructions only, then Alternate-Cycle Mode should be used.
- 2. In non-auto increment mode for internal to external, or external to internal transfers, the lower 8 bits of the external address should not correspond to the FIFO or Serial Port address.

FIFO Demand Mode and REA MOOD and milital Oc

Although any DMA mode is possible using the FIFO buffer, only FIFO Demand and Alternate Cycle FIFO Demand Modes are recommended. FIFO Demand Mode DMA transfers using the input FIFO Channel are set-up by setting the GO bit and specifying the FIFO IN register as the DMA Source Address Register. The BCR should be set to the maximum number of expected transfers. The user must also program bit 1 of the Slave Control Register (SC1) to determine whether the Slave Status (SSTAT) SFR FIFO Request For Service Flag will be activated when the FIFO becomes not empty or full. Once the Request For Service Flag is activated by the FIFO, the DMA transfer begins, and continues until the request flag is deactivated. While the request is active, nothing can interrupt the DMA (i.e. it behaves like burst mode). The DMA Request is held active until one of the following occurs: "lavni bas nexon aremice edi

- 1) The FIFO becomes empty.
- A Data Stream Command is encountered (this generates a FIFO interrupt and DMA operation resumes after the Data Stream Command is read).
- 3) BCR = 0 (this generates a DMA interrupt and sets the DONE bit).

DMA transfers to the Output FIFO Channel are similar. The FIFO OUT or COMMAND OUT SFR is the DMA Destination Address SFR and a transfer is started by setting the GO bit. The user programs bit 0 of the Slave Control SFR (SC0) to determine whether a demand occurs when the Output FIFO

is not full or empty. DMA transfers begin when the Request For Service Flag is activated by the FIFO logic and continue as long as the flag is active. The Flag remains active until one of the following occurs:

- 1) The FIFO becomes full
- BCR = 0 (this generates a DMA interrupt and sets the DONE bit).

As in Alternate Cycle FIFO Demand Mode, the FIFO logic resets the interrupt flag after transferring the byte, so the interrupt is never generated.

After the GO bit is set, the DMA is activated if one of the following conditions takes place:

SAR(0/1) = FIFO IN and HIFRS flag is set DAR(0/1) = FIFO OUT and HOFRS flag is set

The HIFRS and HOFRS signals are internal flags which are not accessible by software. These flags are similar to the SST0 and SST4 flags in the Slave Status Register except that they are of the opposite polarity and once set they are not cleared until the Input FIFO becomes empty (HIFRS) or the Output FIFO becomes full (HOFRS).

The following four modes of DMA operation are pos-

Serial Channel Demand Mode Sex 190 and of side

Serial Channel Demand Mode is the logical choice when using the Serial Port. The DMAs can be activated by one of the Serial Channel Flags. Receiver interrupt (RI) or Transmitter Interrupt (TI).

SAR(0/1) = SBUF and RI flag is set of purpose DAR(0/1) = SBUF and TI

alternately. The interrupt request is generated (if enabled) at the end of the: **3TOR**s, i.e. when BCFI dec-

TI flag must be set by software to initiate the first transfer.

When the DMA transfer begins, only one byte is transferred at a time. The serial port hardware automatically resets the flag after completion of the transfer, so an interrupt will not be generated unless DMA servicing is held off due to the DMA being done (BCR = 0) or when the Hold/Hold Acknowledge logic is used and the DMA does not own the bus. In this case a Serial Port interrupt may be generated if enabled because of the status of the RI or TI flags.

In FIFO demand mode, Alternate cycle FIFO demand mode or Serial Port demand mode only one of the following registers (SBUF, FIN or FOUT) should be used as either the SAR or DAR registers to prevent undesired transfers. For example if SAR0 = FIN and DAR0 = SBUF in demand mode, the DMA transfer will start if either the HIFRS or TI flags are set.

4. EXTERNAL DEMAND MODE

The DMA can be initiated by an external device via External interrupt 0 and 1 (INT0/INT1) pins. The INT0 pin demands DMA0 (Channel 0) and INT1 demands DMA1 (Channel 1). If the interrupts are configured in edge mode, a single byte transfer is accomplished for every request. Interrupts also result (INT0 and INT1) after every byte transfer (if enabled). If the interrupts are configured in level mode, the DMA transfer continues until the request goes inactive or BCR = 0. In either case, a DMA interrupt is generated (if enabled) when BCR = 0. The GO bit must be set for the transfer to begin.

EXTERNAL MEMORY DMA

When transferring data to or from external memory via DMA, the HOLD (HLD) and HOLD-ACKNOWL-EDGE (HLDA) signals are used for handshaking. The HOLD and HOLD-ACKNOWLEDGE are active low signals which arbitrate control of the local bus. The UPI-452 can be used in a system where multi-masters are connected to a single parallel Address/Data bus. The HLD/HLDA signals are used to share resources (memory, peripherals, etc.) among all the processors on the local bus. The UPI-452 can be configured in any of three different External Memory Modes controlled by bits 5 and 6 (REQ & ARB) in the PCON SFR (Table 5). Each mode is described below:

REQUESTER MODE: In this mode, the UPI-452 is not the bus master, but must request the bus from another device. The UPI-452 configures port pin P1.5 as a HLD output and pin P1.6 as a HLDA input. The UPI-452 issues a HLD signal when it needs external access for a DMA channel. It uses the local bus after receiving the HLDA signal from the bus master, and will not release the bus until its DMA operation is complete.

ARBITER MODE: In this mode, the UPI-452 is the bus master. It configures port pin P1.5 as HLD input and pin P1.6 as HLDA output. When a device asserts the HLD signal to use the local bus, the UPI-452 asserts the HLDA signal after current instruction execution is complete. If the UPI-452 needs an external access via a DMA channel, it waits until the requester releases the bus, HLD goes inactive.

DISABLE MODE: When external program memory is accessed by an instruction or by program counter overflow beyond the internal ROM address or external data memory is accessed by MOVX instructions, it is a local memory access and the HLD/HLDA logic is not initiated. When a DMA channel attempts data transfer to/from the external data memory, the HLD/HLDA logic is initiated as described below. DMA transfers from the internal memory space to the internal memory space does not initiate the HLD/HLDA logic.

The balance of the PCON SFR bits are described in the "80C51 Register Description: Power Control SFR" section below.

Latency of it success occurs in in the Latency of its succession of the Latency of its succession of the Latency of the Latenc

When the GO bit is set, the UPI-452 finishes the current instruction before starting the DMA operation. Thus the maximum latency is 3.5 microseconds (at 14 MHz).

DMA Interrupt Vectors

Each DMA channel has a unique vectored interrupt associated with it. There are two vectored interrupts associated with the two DMA channels. The DMA interrupts are enabled and priorities set via the Interrupt Enable and Priority SFR (see "Interrupts" section). The interrupt priority scheme is similar to the scheme in 80C51.

Table 5. DMA MODE CONTROL - PCON SFR

Symbolic Address		vsw reis	nerT AM	D ent					Physical Address
PCON	_*	ARB	REQ	_*	Buist	the CiviA3	etrôl4	in Burst	87H
		d as per	MLS-51	Data She					ransfer will follow for (after the compl

Definition:

ARB	REQ	
0	0	HLD/HLDA logic is disabled.
0	1	The UPI-452 is in the Requester Mode.
1	0	The UPI-452 is in the Arbiter Mode.
1	1	Invalid

When a DMA operation is complete (BCR decrements to zero), the DONE flag in the respective DCON (DCON0 or DCON1) SFR is set. If the DMA interrupt is enabled, the DONE flag is reset automatically upon vectoring to the interrupt routine.

Interrupts When DMA is Active

If a Burst Mode DMA transfer is in progress, the interrupts are not serviced until the DMA transfer is complete. This is also true for level activated External Demand DMA transfers. During Alternate Cycle DMA transfers, however, the interrupts are serviced at the end of the DMA cycle. After that, DMA cycles and instruction execution cycles occur alternately. In the case of edge activated External Demand Mode DMA transfers, the interrupt is serviced at the end of DMA transfer of that single byte.

DMA Arbitration 13 MOOR and to consider of T.

Only one of the two DMA channels is active at a time, except when both are configured in the Alternate Cycle mode. In this case, the DMA cycles and Instruction Execution cycles occur in the following order:

- 1. DMA Cycle 0. primate enoted rodountant fremuo
- 2. Instruction execution.
- 3. DMA Cycle 1.
- 4. Instruction execution.

DMA0 has priority over DMA1 during simultaneous activation of the two DMA channels. If one DMA channel is active, the other DMA channel, if activated, waits until the first one is complete.

If DMA0 is already in the Alternate Cycle mode and DMA1 is activated in Alternate Cycle Mode, it will take two instruction cycles before DMA1 is activated (due to the priority of DMA0). Once DMA1 becomes active, the execution will follow the normal sequence.

If DMA0 is already in the Alternate Cycle mode and DMA1 is activated in Burst Mode, the DMA1 Burst transfer will follow the DMA0 Alternate Cycle transfer (after the completion of the next instruction).

If the UPI-452 (as a Requester) asserts a HLD signal to request a DMA transfer (see "External Memory DMA")and its other DMA Channel requests a transfer before the HLDA signal is received, the channel having higher priority is activated first. A Burst Mode transfer on channel 0 can not be interrupted since DMA0 has the highest priority. A Demand Mode transfer on channel 0 is the only type of activity that can interrupt a block transfer on DMA1.

If, while executing a DMA transfer, the Arbiter receives a HLD signal, and then before it can acknowledge, its other DMA Channel requests a transfer, it then completes the second DMA transfer before sending the HLDA signal to release the bus to the HLD request.

DMA transfers may be held off under the following conditions:

 A write to any of the DMA registers inhibits the DMA for one instruction cycle.

ow signals which aroll: aTON nirol of the local bus.

An instruction cycle may be executed in 1, 2 or 4 machine cycles dependent on the instruction being executed. DMA transfers are only executed after the completion of an instruction cycle never between machine cycles of a single instruction cycle. Similarly instruction cycles are only executed upon completion of a DMA transfer whether it be a one machine cycle transfer or two machine cycles (for ext. to ext. memory transfers).

A single machine cycle DMA register read operation (i.e. MOV A, DCON0) will inhibit the DMA for one instruction cycle. However a two cycle DMA register read operation will not inhibit the DMA (i.e. MOV P1, DCON0).

If the HOLD/HOLD Acknowledge logic is enabled in requestor mode the hold request will go active once the go bit has been set (for burst mode) and once the demand flag is set (for demand mode) regardless of whether the DMA is held off by one of the above conditions.

The DMA Transfer waveforms are in Figures 8-11.

	REG	

Figure 8. DMA Transfer from External Memory to External Memory

Figure 9. DMA Transfer from External Memory to Internal Memory

Figure 10. DMA Transfer from Internal Memory to External Memory

Figure 11. DMA Transfer from Internal Memory to Internal Memory

INTERNAL INTERRUPTS

Overview

The UPI-452 provides a total of eight interrupt sources (Table 6). Their operation is the same as in the 80C51, with the addition of three new interrupt sources for the UPI-452 FIFO and DMA features. These added interrupts have their enable and priority bits in the Interrupt Enable and Priority (IEP) SFR. The IEP SFR is in addition to the 80C51 Interrupt Enable (IE) and Interrupt Priority (IP) SFRs. The added interrupt sources are also globally enabled or disabled by the EA bit in the Interrupt Enable SFR. Table 6 lists the eight interrupt sources in order of priority. Table 7 lists the eight interrupt sources and their respective address vector location in program memory. (DMA interrupts are discussed in the "General Purpose DMA Channels" section. Additional interrupt information for Timer/Counter, Serial Channel, External Interrupt may be found in the Microcontroller Handbook for the 80C51.)

FIFO Module Interrupts to Internal CPU

The FIFO module generates interrupts to the internal CPU whenever the FIFO requests service or when a Data Stream Command is in the COMMAND IN SFR. The Input FIFO will request service whenever it becomes full or not empty depending on bit 1 of the Slave Control SFR (IFRS). Similarly, the Output

Table 6. Interrupt Priority

Interrupt Source	Priority Level (highest)
External Interrupt 0	0
Internal Timer/Counter 0	1
DMA Channel 0 Request	2
External Interrupt 1	3
DMA Channel 1 Request	4
Internal Timer/Counter 1	5
FIFO - Slave Bus Interface	6
Serial Channel	7
COSTO - 1204	(lowest)

Table 7. Interrupt Vector Addresses

interrupt Source	Starting Audress
External Interrupt 0	3 (003H)
Internal Timer/Counter 0	11 (00BH)
External Interrupt 1	19 (013H)
Internal Timer/Counter 1	27 (01BH)
Serial Channel	35 (023H)
FIFO - Slave Bus Interface	43 (02BH)
DMA Channel 0 Request	51 (033H)
DMA Channel 1 Request	59 (03BH)

FIFO requests service when it becomes empty or not full as determined by bit 0 of the Slave Control SFR (OFRS). Request for Service interrupts are generated only if enabled by the internal CPU via the Interrupt Enable SFR, and the Slave Control Register.

A Data Stream Command Interrupt is generated whenever there is a Data Stream Command in the COMMAND IN SFR. The interrupt is generated to ensure that the internal interrupt is recognized before another instruction is executed.

Immediate Command Interrupts

- a. An Immediate Command IN interrupt is generated, if enabled, to the internal CPU when the Host has written to the Immediate Command IN (IMIN) SFR. The write operation clears the Slave Status SFR bit (SSTAT SST2) and sets the Host Status SFR bit (HSTAT HST2) to indicate that a byte is present in the Immediate Command IN SFR. When the internal CPU reads the Immediate Command IN (IMIN) SFR the Slave Status SFR status bit is set, and the Host Status SFR status bit is cleared indicating the IMIN SFR is empty. Clearing the Host Status SFR bit will cause a Request For Service (INTRQ) interrupt, if enabled, to signal the Host that the IMIN SFR is empty. (See Figure 7a, Immediate Command IN Flowchart.)
- b. An Immediate Command OUT interrupt is generated, if enabled, to the internal CPU when the Host has read the Immediate Command OUT SFR. The Host read causes the Slave Status

Immediate Command OUT bit (SSTAT SST6) to be set and the corresponding Host Status bit (HSTAT HST6) to be cleared indicating the SFR is empty. When the internal CPU writes to the Immediate Command OUT SFR, the Host Status bit is set and Slave Status bit is cleared to indicate the SFR is full. (See Figure 7b, Immediate Command OUT Flowchart.)

NOTE:

Immediate Command IN and OUT interrupts are actually specific FIFO-Slave Interface interrupts to the internal CPU.

One instruction from the main program is executed between two consecutive interrupt service routines as in the 80C51. However, if the second interrupt service routine is due to a Data Stream Command Interrupt, the main program instruction is not executed (to prevent misreading of invalid data).

Interrupt Enabling and Priority

Each of the three interrupt special function registers (IE, IP and IEP) is listed below with its corresponding bit definitions.

Interrupt Enable SFR (IE) interrupt Enable send Priority Register establishes the enabling and priority Register establishes the enabling and priority Register establishes the enabling and priority Register establishes the enable SFR (IE) interrupt Ena

Symbolic

Address IE Physical

EA ES ET1 EX1 ET0 EX0 (MSB) (LSB)

lasieved upt Enable and Interrupt Priority SFRs. Address 0A8H

Symbol	Position	Function (82M)					
PriASY Within a Level	IE.7	Enables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its					
	IE.6	enable bit. (peviacer) 7.4ai (reserved) (peviacer) 8.4ai					
0.0	IE.5	(reserved) See OFF					
ES ES	IE.4 elds	0					
ET1	15.0	Internal Timer/Counter 1 Overflow Interrupt					
EX1	IE.2	External Interrupt Request 1.					
ET0	IE.1	Internal Timer/Counter 0 Overflow Interrupt					
EX0	IE.0	External Interrupt Request 0.					

Interrupt Priority SFR (IP)

A priority level of 0 or 1 may be assigned to each interrupt source, with 1 being higher priority level, through the IP and the IEP (Interrupt Enable and Priority) SFR. A priority level of 1 interrupt can interrupt a priority level 0 service routine to allow nesting of interrupts.

Address	SFR is full. (See Figure 7b, Im. Commissed Interrupts OUT Flowchart.)								Physical Address
IP	HOTE.	_	_	PS	PT1	PX1	PT0	PX0	0B8H
UT interrupts are ap-	(MSB)	brigana special	Siate Co	emmi	(F/H/6)	ИI brian	ite Com	(LSB)	has written to

	(IAIOD)	A COLO Allianza official	A SHOW THE PARTY OF THE PARTY O
Symbol	Position	ST2) and sets the Host colors and internal CPU. ST2) to Indicate that a byte is	Priority Within A Level
PS PT1 PX1 PT0 PX0	IP.7 IP.6 IP.5 IP.4 IP.3 IP.2 IP.1 IP.0	(reserved) (reserved) (reserved) Local Serial Channel Internal Timer/Counter 1 External Interrupt Request 1 Internal Timer/Counter 0 External Interrupt Request 0	0.7 0.5 0.3 Horizontal 0.0 0.1 No. 2 0.0 No. 1 No. 2 0.0

Interrupt Enable and Priority SFR (IEP)

The Interrupt Enable and Priority Register establishes the enabling and priority of those resources not covered in the Interrupt Enable and Interrupt Priority SFRs.

Symbolic Address					88				Physical Address	
IEP	L287	-	PFIFO	EDMA0	EDMA1	PDMA0	PDMA1	EFIFO	0F8H	
	(MSB)	noi	Punct				neltiac	(LSB)	Symbol	
90	liw tournetni	on 0	s. HEA -	formethi II	Enables a		(E.7:		Priority	

, , ,	COTTO CONTRACT	THE PERSON OF TH	THE WAY TO TAKE THE
Position	riose it = AB it begbeing Function		Priority Within a Level
IEP.7	(reserved) and eldens		
IEP.6	(reserved)		
IEP.5		terrupt Priority	0.6
IEP.4	DIVIA CHAIINEI O INTERIUPI EN	23	
IEP.3	DMA Channel 1 Interrupt En	aule	113
IEP.2	DMA Channel 0 Priority		0.2
IEP.1	DMA Channel 1 Priority	1.31	0.4
IEP.0	FIFO Slave Bus Interface Int	terrupt Enable	OX3
	IEP.7 IEP.6 IEP.5 IEP.4 IEP.3 IEP.2 IEP.1	IEP.6 (reserved) IEP.5 FIFO Slave Bus Interface Interpretation DMA Channel 0 Interrupt Ending DMA Channel 1 Interrupt Ending DMA Channel 0 Priority IEP.1 DMA Channel 1 Priority	IEP.7 IEP.6 IEP.5 IEP.4 IEP.3 IEP.2 IEP.1 IEP.1 IEP.1 IEP.1 IEP.1 IEP.1 IEP.3 IEP.2 IEP.1 IEP.1 IEP.1 IEP.1 IEP.3 IEP.2 IEP.1 IEP.1 IEP.3 IEP.2 IEP.1 IEP.1 IEP.3 IEP.2 IEP.1 IEP.1 IEP.3 IEP.3 IEP.2 IEP.1 IEP.1 IEP.3 IEP.1

FIFO-EXTERNAL HOST INTERFACE FIFO DMA FREEZE MODE

Overview AMO OFF SHOWN to way report of

During FIFO DMA Freeze Mode the internal CPU can reconfigure the FIFO interface. FIFO DMA Freeze Mode is provided to prevent the Host from accessing the FIFO during a reconfiguration sequence. The internal CPU invokes FIFO DMA Freeze Mode by clearing bit 3 of the Slave Control SFR (SC3). INTRQ becomes active whenever FIFO DMA Freeze Mode is invoked to indicate the freeze status. The interrupt can only be deactivated by the Host reading the Host Status SFR.

During FIFO DMA Freeze Mode only two operations are possible by the Host to the UPI-452 slave, the balance are disabled, as shown in Table 8. The internal DMA is disabled during FIFO DMA Freeze Mode, and the internal CPU has write access to all of the FIFO control SFRs (Table 9).

Initialization on a (8878) setalge A autais evals

At power on reset the FIFO Host interface is automatically frozen. The Slave Control Enable FIFO DMA Freeze Mode bit defaults to FIFO DMA Freeze Mode (SLCON FRZ=0). Below is a list of the FIFO

Special Function Registers and their default power on reset values:

SFR Name	Label	Value
Channel Boundary Pointer	CBP	40H / 64D
Output Channel Read Pointers	ORPR	40H / 64D
Output Channel Write Pointers	OWPR	40H / 64D
Input Channel Read Pointers	IRPR	00H / 00D
Input Channel Write Pointers	IWPR	00H / 00D
Input Threshold	THE PERSON NAMED IN	80H / 128D
Output Threshold	OTHR	01H / 1D

The Input and Output FIFO channels can be reconfigured by programming any of these SFRs while the UPI-452 is in the Freeze Mode. The Host is notified when the Freeze Mode is active by a "1" in HST1 of the Host Status Register (HSTAT). The Host should interrogate HST1 to determine the status of the FIFO interface following reset before attempting to read from or write to the UPI-452 FIFO buffer.

noments minimum lament interior.

During the initialization sequence of the UPI-452 FIFO SFRs, the OTHR should be changed from the default setting of 1 to a value between 2 and {(80H-CBP)-1}. Please refer to the section on Input and Output FIFO threshold SFRs for further information.

Table 8. Slave Bus Interface Status During FIFO DMA Freeze Mode

Interface Pins; DACK	CS	A2 A1 A0 READ WRITE Operation In Normal Mode		Status In FIFO DMA Freeze Mode				
npt by tipe exter-	0	0	4	0	8000	d equeri	Read Host Status SFR	Operational
(bits HBTV (for	0	0	eti	o:1 s	0	bnu1bns	Read Host Control SFR	Operational
two bits, HSTS	0	0	1	7	812H	0	Write Host Control SFR	Disabled
O is us t d to re- is frozen upon	0	10	0	0	FR Oas	Statte Si quest se	Data or DMA Data from Output Channel	Disabled to epoM exected (0 = 808) 808 prinse
1 1045 PGO BIN	0	0	0	0	1	aao Oo oo	Data or DMA Data to Input Channel	Disabled
. 1	0	0	0	1	0	1	Data Stream Command from Output Channel	Disabled
1	0	0	0	1	1	0	Data Stream Command to Input Channel	Disabled
GALPH RESIDES	0	1	0	0	0	1 2H	Read Immediate Command Out from Output Channel	Disabled
1	0	1	0	0	TA STOLL	0	Write Immediate Command In to Input Channel	Disabled
0	X	X	X	X	0	1	DMA Data from Output Channel	Disabled
11-0 183	X	X	X	X	1	0	DMA Data to Input Channel	Disabled

The UPI-452 can also be programmed to interrupt the Host following power on reset in order to indicate to the Host that FIFO DMA Freeze Mode is in progress. This is done by enabling the INTRQ interrupt output pin via the MODE SFR (MD4) before the Slave Control SFR Enable FIFO DMA Freeze Mode bit is set to Normal Mode. At power on reset the Mode SFR is forced to zero. This disables all interrupt and DMA output pins (INTRQ, DRQIN/ INTRQIN and DRQOUT/INTRQOUT). Because the Host Status SFR FIFO DMA Freeze Mode In Progress bit is set, a Request For Service, INTRQ, interrupt is pending until the Host Status SFR is read. This is because the FIFO DMA Freeze Mode interrupt is always enabled. If the Slave Control FIFO DMA Freeze Mode bit (SLCON FRZ) is set to Normal Mode before the MODE SFR INTRQ bit is enabled, the INTRQ output will not go active when the MODE SFR INTRQ bit is enabled if the Host Status SFR has been read.

The default values for the FIFO and Slave Interface represents minimum UPI-452 internal initialization. No specific Special Function Register initialization is required to begin operation of the FIFO Slave Interface. The last initialization instruction must always set the UPI-452 to Normal Mode. This causes the UPI-452 to exit FIFO DMA Freeze Mode and enables Host read/write access of the FIFO.

Following reset, either hardware (via the RST pin) or software (via HCON SFR bit HC3) the UPI-452 requires 2 internal machine cycles (24 TCLCL) to update all internal registers.

Invoking FIFO DMA Freeze Mode During Normal Operation

When the UPI-452 is in normal operation, FIFO DMA Freeze Mode should not be arbitrarily invoked by clearing SC3 (SC3=0) because the external Host runs asynchronously to the internal CPU. Invoking

FIFO DMA Freeze Mode without first stopping the external Host from accessing the UPI-452 will not guarantee a clean break with the external Host.

The proper way to invoke FIFO DMA Freeze Mode is by issuing an Immediate Command to the external host indicating that FIFO DMA Freeze Mode will be invoked. Upon receiving the Immediate Command, the external Host should complete servicing all pending interrupts and DMA requests, then send an Immediate Command back to the UPI-452 acknowledging the FIFO DMA Freeze Mode request. After issuing the first Immediate Command, the internal CPU should not perform any action on the FIFO until FIFO DMA Freeze Mode is invoked.

If FIFO DMA Freeze Mode is invoked without stopping the Host during Host transfers, only the last two bytes of data written into or read from the FIFO will be valid. The timing diagram for disabling the FIFO module to the external Host interface is illustrated in Figure 12. Due to this synchronization sequence, the UPI-452 might not go into FIFO DMA Freeze Mode immediately after SC3 is cleared. A special bit in the Slave Status Register (SST5) is provided to indicate the status of the FIFO DMA Freeze Mode operations described in this section are only valid after SST5 is cleared.

As FIFO DMA Freeze Mode is invoked, the DRQIN or DRQOUT will be deactivated (stopping the transferring of data), bit 1 of the Host Status SFR will be set (HST1 = 1), and SST5 will be cleared (SST5 = 0) to indicate to the external Host and internal CPU that the slave interface has been frozen. After the freeze becomes effective, any attempt by the external Host to access the FIFO will cause the overrun and underrun bits to be activated (bits HST7 (for reads) or HST3 (for writes)). These two bits, HST3 and HST7, will be set (deactivated) after the Host Status SFR has been read. If INTRQ is used to request service, the FIFO interface is frozen upon completion of any Host read or write operation in progress.

Figure 12. Disabling FIFO to Host Slave Interface Timing Diagram

External Host writing to the Immediate Command In SFR and the Host Control SFR is also inhibited when the slave bus interface is frozen. Writing to these two registers after FIFO DMA Freeze Mode is invoked will also cause HST3 (overrun) to be activated (HST3=0). Similarly, reading the Immediate Command Out Register by the external Host is disabled during FIFO DMA Freeze Mode, and any attempt to do so will cause the clearing (deactivating, "0") of HST7 bit (underrun).

After the slave bus interface is frozen, the internal CPU can perform the following operations on the FIFO Special Function Registers (these operations are allowed only during FIFO DMA Freeze Mode).

For FIFO Reconfiguration

- 1. Changing the Channel Boundary Pointer SFR.
- 2. Changing the Input and Output Threshold SFR.

Testability

- To Enhance the 3. Writing to the read and write pointers of the Input and Output FIFO's.
 - 4. Writing to and reading the Host Control SFRs.
 - 5. Controlling some bits of Host and Slave Status SFRS.
 - 6. Reading the Immediate Command Out SFR and Writing to the Immediate Comand In SFR.

Description of each of these special functions are as follows:

FIFO Module SFRs During FIFO DMA Freeze Mode

Table 9 summarizes the characteristics of all the FIFO Special Function Registers during normal and FIFO DMA Freeze Modes. The registers that require special treatment in FIFO DMA Freeze Mode are: HCON, IWPR, IRPR, OWPR, ORPR, HSTAT, SSTAT, MIN & MOUT SFRs. They can be described in detail as follows:

Host Control SFR (HCON)

During normal operation, this register is written to or read by the external Host. However, in FIFO DMA Freeze Mode (i.e. SST5=0) the UPI-452 internal CPU has write access to the Host Control SFR and write operations to this SFR by the external Host will not be accepted. If the Host attempts to write to HCON, the Input Channel error condition flag (HST3) will be cleared.

Input FIFO Pointer Registers (IRPR & IWPR)

Once the FIFO module is in FIFO DMA Freeze Mode, error flags due to overrun and underrun of the Input FIFO pointers will be disabled. Any attempt to create an overrun or underrun condition by changing the Input FIFO pointers would result in an inconsistency in performance between the status flag and the threshold counter.

To enhance the speed of the UPI-452, read operations on the Input FIFO will look ahead by two bytes. Hence, every time the IRPR is changed during FIFO DMA Freeze Mode, two NOPs need to be executed so that the two byte pipeline can be updated with the new data bytes pointed to by the new IRPR. The Threshold Counter SFR also needs to change by the same number of bytes as the IRPR (increase Threshold Counter if IRPR goes forward or decrease if IRPR goes backward). This will ensure that future interrupts will still be generated only after a threshold number of bytes are available. (See "Input and Output FIFO Threshold SFR" section below.)

In FIFO DMA Freeze Mode, the internal CPU can also change the content of IWPR, and each change of IWPR also requires an update of the Threshold Counter SFR.

Normally, the internal CPU cannot write into the Input FIFO. It can, however, during FIFO DMA Freeze Mode by first reconfiguring the FIFO as an Output FIFO (Refer to "Input and Output FIFO Threshold SFR" section below). Changing the IRPR to be equal to IWPR generates an empty condition while changing IWPR to be equal to IRPR generates a full condition. The order in which the pointers are written determines whether a full or empty condition is generated.

Output FIFO Pointer SFR (ORPR and OWPR)

In FIFO DMA Freeze Mode the contents of OWPR can be changed by the internal CPU, but each change of OWPR or ORPR requires the Threshold Counter SFR to be updated as described in the next section. A NOP must be executed whenever a new value is written into ORPR, as just described for changes to IRPR. As before, changing ORPR to be equal to OWPR will generate an empty condition, Output FIFO overrun or underrun condition cannot be generated though. The FIFO pointers should not be set to a value outside of its range.

Table 9 FIFO SFR's Characteristics During FIFO DMA Freeze Mode

Label	(AST3) will be deared. Name Input FIFO Pointer Registers	Normal Operation (SST5 = 1)	FIFO DMA Freeze Mode Operation (SST5 = 0)	
HCON	Host Control	Not Accessible	Read & Write	
HSTAT	Host Status m ORR ent sont	Read Only	Read & Write 4	
SLCON	Slave Control	Read & Write	Read & Write	
SSTAT	Slave Status mayons etse	Read Only	Read & Write 4	
IEP	Interrupt Enable & Priority	Read & Write	Read & Write	
MODE	Mode Register	Read & Write	Read & Write	
IWPR	Input FIFO Write Pointer	Read Only	Read & Write 5	
IRPR V	Input FIFO Read Pointer	Read Only	Read & Write 1, 5	
OWPR	Output FIFO Write Pointer	Read Only	Read & Write 6	
ORPR	Output FIFO Read Pointer	Read Only	Read & Write 2, 6	
CBP	Channel Boundary Pointer	Read Only	Read & Write 3	
IMIN	Immediate Command In	Read Only	Read & Write	
IMOUT	Immediate Command Out	Read & Write	Read & Write	
FIN	FIFO IN	Read Only	Read Only	
CINWoled	COMMAND IN OTH MIGHT	Read Only	Read Only	
FOUT	FIFO OUT	Read & Write	Read & Write	
COUT	COMMAND OUT	Read & Write	Read & Write	
ITHR	Input FIFO Threshold	Read Only	Read & Write	
OTHR	Output FIFO Threshold	Read Only	Read & Write	

out FIFO. It can, however, during FIFO DMA :RATON

- 1. Writing of IRPR will automatically cause the FIFO IN SFR to load the contents of the Input FIFO from that location. 2. Writing to ORPR will automatically cause the IOBL SFR to load the contents of the Output FIFO at that ORPR address.
- 3. Writing to the CBP SFR will cause automatic reset of the four pointers of the Input and Output FIFO channels.
- 4. The internal CPU cannot directly change the status of these registers. However, by changing the status of the FIFO channels, the internal CPU can indirectly change the contents of the status registers.
- 5. Changing the Input FIFO Read/Write Pointers also requires that a consistent update of the Input FIFO Threshold Counter
- 6. Changing the Output FIFO Read/Write Pointers also requires that a consistent update of the Output FIFO Threshold Counter SFR.

Input and Output FIFO Threshold SFR The Slave Status SER is a read (AHTO & AHTI)

The Input and Output FIFO Threshold SFRs are also programmable by the internal CPU during FIFO DMA Freeze Mode. For proper operation of the Threshold feature, the Threshold SFR should be changed only when the Input and Output FIFO channels are empty, since they reflect the current number of bytes available to read/write before an interrupt is gener-

Table 10 illustrates the Threshold SFRs range of values and the number of bytes to be transferred when the Request For Service Flag is activated:

Table 10. Threshold SFRs Range of Values and Number of Bytes to be Transferred

(lower	No. of Bytes Available to be Written	OTHR (lower seven bits)	No. of Bytes Available to be Read
0	CBP	2	3
1 801	CBP-1	PIFO Freque	4 166
	CBP-2		
	hat the Outp		
	The status of	or mose data	wesdy.
FIFO read		(80H-CBP)-3	(80H-CBP)-2
nged by the	3	(80H-CBP)-2 (80H-CBP)-1	(80H-CBP)-1

The eighth bit of the Input and Output FIFO Threshold SFR indicates the status of the service requests regardless of the freeze condition. If the eighth bit is a "1", the FIFO is requesting service from the external Host. In other words, when the Threshold SFR value goes below zero (2's complement), a service request is generated*. *The 8th bit of the ITHR SFR must be set during initialization if the Host interrupt request is desired immediately upon leaving Freeze Mode. Normally the ITHR SFR is decremented after each external Host write to the Input FIFO and incremented after each internal CPU read of the Input FIFO. The OTHR SFR is decremented by internal CPU writes and incremented by external Host reads. Thus if the pointers are moved when the FIFO's are not empty, these relationships can be used to calculate the offset for the Threshold SFRs. It is best to change the Threshold SFRs only when the FIFO's are empty to avoid this complication. The threshold registers should also be updated after the pointers have been manipulated. cleared (= 0) if the internal CPU writes to the immediate Com: **3TOM**n SFR and it will be set

The ITHR should only be programmed in the range from 0 to (CBP-3). An ITHR value of (CBP-2) could result in a failure to set the Input FIFO service request signal after the Input FIFO has been emptied.

Correspondingly, the OTHR should be programmed in the range from 2 to {(80H-CBP)-1}. An OTHR value of 1 could result in a failure to set the Output FIFO service request after subsequent writes by the UPI-452 have filled the Output FIFO.

NOTE: I budbut of it

When programming the ITHR SFR, the eighth bit should be set to 1 (OR'd with 80H). This causes HSTAT SFR HST0 = 0, Input FIFO Request For Service. If ITHR bit 7 = 0 then HSTAT HST0 = 1, Input FIFO Does Not Request Service, and no interrupt will be generated.

Host Status SFR (HSTAT)

When in FIFO DMA Freeze Mode, some bits in the Host Status SFR are forced high and will not reflect the new status until the system returns to normal operation. The definition of the register in FIFO DMA Freeze Mode is as follows:

1) Write in: STOR nput FIFO

The internal CPU reads this shadow latch value when reading the Host Status SFR. The shadow latch will keep the information for these bits so normal operation can be resumed with the right status. The following bits are set (= 1) when FIFO DMA Freeze Mode is invoked:

HST7 Output FIFO Error Condition Flag

- 1 = No error, ni bnemmo ofisibemmi ST2H
- 0 = An invalid read has been done on the output FIFO or the Immediate Command Out Register by the host CPU.

NOTE: NOTE:

The normal underrun error condition status is disabled. If an Immediate Command Out (IMOUT) SFR read is attempted during FIFO DMA Freeze Mode, the contents of the IMOUT SFR is output on the Data Buffer and the error status is cleared = Internal CPU writes into IMIN SFR.(0 =)

HST6 Immediate Command Out SFR Status

During normal operation, this bit is cleared (=0) when the IMOUT SFR is written by the UPI-452 internal CPU and set (= 1) when the IMOUT SFR is read by the external Host. Once the host-slave interface is frozen (i.e. SST5 = 0), this bit will be read as a 1 by the host CPU. A shadow latch will keep the information for this bit so normal operation can be resumed with the correct status.

Shadow latch:

- 1 = Internal CPU reads the IMOUT SFR
- 0 = Internal CPU writes to the IMOUT SFR

This bit is forced to a "1" during FIFO DMA Freeze Mode to prevent the external host CPU from trying to read the DSC. Once normal operation is resumed, HST5 will reflect the Data/Command status of the current byte in the Output FIFO.

Shadow Latch (read by the internal CPU):

1 = No Data Stream Command (DSC)

DENOTIFICATION THROUGH PROPERTY OF SOME PROSECULORS

0 = Data Stream Command at Output FIFO

HST4 Output FIFO Service Request Status

When FIFO DMA Freeze Mode is invoked. this bit no longer reflects the Output FIFO Request Service Status. This bit wll be forced to a "1".

HST3 Input FIFO Error Condition Flag

- 10 No error. In beautiful author to Hall author to Hall
- 0 = One of the following operations has been attempted by the external host and is invalid:
 - 1) Write into the Input FIFO
 - 2) Write into the Host Control SFR
- 3) Write into the Immediate Command In sufate triph a SFR w company or not not nothing of lam

NOTE: Movni si eppM e The normal Input FIFO overrun condition is disabled.

HST2 Immediate Command In SFR Status

This bit is normally cleared when the internal CPU reads the IMIN SFR and set when the external host CPU writes into the IMIN SFR. When the host-slave interface is frozen, reading and writing of the IMIN by the internal CPU will change the shadow latch of this bit. This bit will be read as a "1" by the external Host.

Shadow latch. no ent bus netted ent

- 1 = Internal CPU writes into IMIN SFR (0 =)
- 0 = Internal CPU reads the IMIN SFR

HST1 FIFO DMA Freeze Mode Status

- 1 = FIFO DMA Freeze Mode.
- 0 = Normal Operation (non-FIFO DMA Freeze Mode).

SSTS = 0), this bit will be read as a 1 by the NOTE:

This bit is used to indicate to the external Host that the host-slave interface has been frozen and hence the external Host functions are now reduced as shown in Table 8.

HSTO Input FIFO Request Service Satus

When slave interface is frozen this bit no longer reflects the Input FIFO Request Service Status. This bit will be forced to a "1".

Siave Status orn (SSIAI) Das fund

The Slave Status SFR is a read-only SFR. However. once the slave interface is frozen, most of the bits of this SFR can be changed by the internal CPU by reconfiguring the FIFO and accessing the FIFO Special Function Registers.

SST7 Output FIFO Overrun Error Flag

Inoperative in FIFO DMA Freeze Mode.

SST6 Immediate Command Out SFR Status

In FIFO DMA Freeze Mode, this bit will be cleared when the internal CPU reads the Immediate Command Out SFR and set when the internal CPU writes to the Immediate Command Out Register.

SST5 FIFO-External Interface FIFO DMA Freeze Mode Status ad of estyll to radout/4

This bit indicates to the internal CPU that FIFO DMA Freeze Mode is in progress and that it has write access to the FIFO Control. Host control and Immediate Command SFRs.

SST4 Output FIFO Request Service Status

During normal operation, this bit indicates to the internal CPU that the Output FIFO is ready for more data. The status of this bit reflects the position of the Output FIFO read and write pointers. Hence, in FIFO DMA Freeze Mode, this flag can be changed by the internal CPU indirectly as the read and write pointers change.

SST3 Input FIFO Underrun Flag

Inoperative during FIFO DMA Freeze Mode.

During normal operation, a read operation clears (=0) this bit when there are no data bytes in the Input FIFO and deactivated (=1) when the Slave Status SFR is read. In FIFO DMA Freeze Mode, this bit will not be cleared by an Input FIFO read underrun error condition, nor will it be reset by the reading of the Slave Status SFR.

SST2 Immediate Command In SFR Status

This bit is normally activated (=0) when the external host CPU writes into the Immediate Command In SFR and deactivated (=1) when it is read by the internal CPU. In FIFO DMA Freeze Mode, this bit will not be activated (=0) by the external Host's writing of the Immediate Command IN SFR since this function is disabled. However, this bit will be cleared (=0) if the internal CPU writes to the Immediate Command In SFR and it will be set = 1) if it reads from the register.

SST1 Data Stream Command at Input FIFO Flag

In FIFO DMA Freeze Mode, this bit operates normally. It indicates whether the next byte of data from the Input FIFO is a DSC or data byte. If it is a DSC byte, reading from the FIFO IN SFR will result in reading invalid data (FFH) and vice versa. In FIFO DMA Freeze Mode, this bit still reflects the type of data byte available from the Input FIFO.

SST0 Input FIFO Service Request Flag

During normal operation, this bit is activated (=0) when the Input FIFO contains bytes that can be read by the internal CPU and deactivated (=1) when the Input FIFO does not need any service from the internal CPU. In FIFO DMA Freeze Mode, the status of this bit should not change unless the pointers of the Input FIFO are changed. In this mode, the internal CPU can indirectly change this bit by changing the read and write pointers of the Input FIFO but cannot change it directly.

Immediate Command In/Out SFR (IMIN/IMOUT)

If FIFO DMA Freeze Mode is in progress, writing to the Immediate Command In SFR by the external host will be disabled, and any such attempt will cause HST3 to be cleared (=0). Similarly, the Immediate Command Out SFR read operation (by the host) will be disabled internally and read attempts will cause HST7 to be cleared (=0).

Internal CPU Read and Write of the FIFO During FIFO DMA Freeze Mode

In normal operation, the Input FIFO can only be read by the internal CPU and similarly, the Output FIFO can only be written by the internal CPU. During FIFO DMA Freeze Mode, the internal CPU can read the entire contents of the Input FIFO by programming the CBP SFR to 7FH, setting the IRPR SFR to zero, and then the IWPR SFR to zero. Programming the pointer registers in this order generates a FIFO full signal to the FIFO logic and enables internal CPU read operations. If the IWPR and IRPR are already zero, the write pointer should be changed to a non-zero value to clear the empty status then the pointers can be set to zero. Writing to the IRDR SFR automatically updates the look ahead registers.

In a similar manner, the internal CPU can write to all 128 bytes of the FIFO by setting the CBP SFR to zero, setting OWPR SFR to zero, and then setting ORPR SFR to zero. This generates a FIFO empty signal and allows internal CPU write operations to all 128 bytes of the FIFO. The Threshold registers also need to be adjusted when the pointers are changed. (See "Input and Output FIFO Threshold SFR" section below.)

MEMORY ORGANIZATION

The UPI-452 has separate address spaces for Program Memory and Data Memory like the 80C51. The Program Memory can be up to 64K bytes. The lower 8K of Program Memory may reside on-chip. The Data Memory consists of 256 bytes of on-chip RAM, up to 64K bytes of off-chip RAM and a number of "SFRs" (Special Function Registers) which appear as yet another set of unique memory addresses.

Table 11a. Internal Memory Addressing

Memory Space	Addressing Method		
Lower 128 Bytes of Internal RAM	Direct or Indirect		
Upper 128 Bytes of Internal RAM	Indirect Only		
UPI-452 SFR's	Direct Only		

The 80C51 Special Function Registers are listed in Table 11a, and the additional UPI-452 SFRs are listed in Table 11b. A brief description of the 80C51 core SFRs is also provided below.

Accessing External Memory

As in the 80C51, accesses to external memory are of two types: Accesses to external Program Memory and accesses to external Data Memory.

External Program Memory is accessed under two conditions:

- 1) Whenever signal EA = 0; or
- Whenever the program counter (PC) contains a number that is larger than 1FFFH.

This requires that the ROMless versions have \overline{EA} wired low to enable the lower 8K program bytes to be fetched from external memory.

External Data Memory is accessed using either the MOVX @DPTR (16 bit address) or the MOVX @Ri (8 bit address) instructions, or during external data memory transfers.

Table 11b. 80C51 Special Function Registers

Symbol	Name	Address	Contents
*ACC	Accumulator	0E0H	ed o 00H
*B	B Register	OFOH	00H
*PSW	Program Status Word	0D0H	00H
SP	Stack Pointer	81H	07H
DPTR	Data Pointer (consisting of DPH and DPL)		
*P0	Port 0	80H	OFFH
*P1	Port 1	90H	OFFH
*P2	Port 2	OAOH	OFFH
*P3	Port 3	овон	OFFH
*IPsdmu	Interrupt Priority Control	nectal Fund	(2) "2178"
*IE23888	Interrupt Enable Control	0A8H	60H
TMOD	Timer/Counter Mode Control	89H	00H
*TCON	Timer/Counter Control	88H	I TOYNUL
ТНО	Timer/Counter 0 (high byte)	8CH	00Н
TL0	Timer/Counter 0 (low byte)	8AH	не 00Н
TH1	Timer/Counter 1 (high byte)	8DH	00H
TL1trell e	Timer/Counter		
*SCON	Serial Control		00H
SBUF	Serial Data Buff		dore SFRs
PCON	Power Control	87H	10H

I = Indeterminate

The SFRs marked with an asterisk (*) are both bit- and byte- addressable. The functions of the SFRs are as follows:

Table 11c. UPI-452 Additional
Special Function Registers

Symbol	bea Name	Address	Contents
BCRL0	DMA Byte Count Low Byte/	0E2H	conditions: 11 Wheneve
BCRH0	High Byte/ Channel 0	0E3H	2) Vineneve number t
BCRL1	Low Byte/	0F2H	1
BCRH1	Hi Byte/		Thid require wired low to
CBP	Channel Boundary Pointer	0ECH	
CIN	COMMAND IN	OLITI	Edigmal Da
COUT	COMMAND OUT DMA Destination Address	UFFR	MOVX @DR bit address memory tra

Table 11c. UPI-452 Additional Special Function Registers (Continued)

Symbol	Name	Address	Contents
DARLO	Low Byte/	0C2H	dvd 1
DARH0	Hi Byte/ Channel 0	осзн	(4)3 I
DARL1	Low Byte/	0D2H	polvi I
DARH1	Hi Byte/ Channel 1	0D3H	ont orba
DCON0	DMA0 Control	92H	00H
DCON1	DMA1 Control	93H	180 00H
FIN	FIFO IN	0EEH	etsv
FOUT	FIFO OUT	OFEH	oon I
HCON	Host Control	0E7H	00H
HSTAT	Host Status	0E6H	0FBH
*IEP	Interrupt Enable and Priority	0F8H	0C0H
IMIN	Immediate Command In	0FCH	1
IMOUT	Immediate Command Out	0FDH	(Betain)
IRPR	Input Read Pointer	0EBH	00H
ITHR	Input FIFO Threshold	0F6H	80H
IWPR	Input Write Pointer	0EAH	00H
MODE	Mode Register	0F9H	8FH
ORPR	Output Read Pointer	0FAH	40H
OTHR	Output FIFO Threshold	0F7H	01H
OWPR	Output Write Threshold	0FBH	40H
*P4	Port 4 DMA Source Address	0C0H	OFFH
SARLO	Low Byte/	0A2H	Na CBP S
SARH0	Hi Byte/ Channel 0	0A3H	and then I colnier req singulation is
SARL1	Low Byte/	0B2H	riego ble
SARH1	Hi Byte/ Channel 1	0B3H	sero, kito v sero value
*SLCON	Slave Control	0E8H	04H
SSTAT	Slave Status	0E9H	08FH

I = Indeterminate 90 Isme/ni ent negnam islamie a ni

The SFRs marked with an asterisk (*) are both bit- and byte- addressable. The functions of the SFRs are as follows:

Miscellaneous Special Function DATA POINTER **Register Description**

80C51 SFRs

ACCUMULATOR

ACC is the Accumuator SFR. The mnemonics for accumulator-specific instructions, however, refer to the accumulator simply as A.

B REGISTER

The B SFR is used during multiply and divide operations. For other instructions it can be treated as another scratch pad regster.

PROGRAM STATUS WORD

The PSW SFR contains program status information as detailed in Table 12.

STACK POINTER

The Stack Pointer register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions. While the stack may reside anywhere in on-chip RAM, the Stack Pointer is initialized to 07H after a reset. This causes the stack to begin at location 08H.

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit registers.

PORTS 0 TO 4

P0, P1, P2, P3 and P4 are the SFR latches of Ports 0, 1, 2, 3 and 4, respectively.

SERIAL DATA BUFFER

The Serial Data Buffer is actually two separate registers, a transmit buffer and a receive buffer register. When data is moved to SBUF, it goes to the transmit buffer where it is held for serial transmission. (Moving a byte to SBUF is what initiates the transmission.) When data is moved from SBUF, it comes from the receive buffer.

TIMER/COUNTER SFR

Register pairs (TH0, TL0), and (TH1, TL1) are the 16-bit counting registers for Timer/Counters 0 and 2.

POWER CONTROL SFR (PCON)

The PCON Register (Table 13) controls the power down and idle modes in the UPI-452, as well as providing the ability to double the Serial Channel baud rate. There are also two general purpose flag bits available to the user. Bits 5 and 6 are used to set the HOLD/HOLD Acknowledge mode (see "General Purpose DMA Channels" section), and bit 4 is not used.

Table 12. Program Status Word

Symbolic PSW

The Data Pointer (DPTR) consists of assent P FO RS1 RS0 OV CY AC (LSB) (MSB)

Symbol	Position	Name		
CY	PSW.7	tot aci Carry Flag TT . ATR to sumuco A entre al COA		
AC HE PRESENTE	PSW.6	Auxiliary Carry (For BCD operations)		
F0 viewing	PSW.5	Flag 0 (user assignable)		
RS1	PSW.4	Register Bank Select bit 1*		
RS0	PSW.3	Register Bank Select bit 0*		
OV PARTU	PSW.2	Overflow Flag		
sinos otarios por vilendos al	PSW.1	-stago (reserved), vigitium prinub basu at RRS 8 and		
retainer Pitud evisoer s bris	PSW.0	ions. For other instructions it can gall wiraq as an-		

^{*(}RS1, RS0) enable internal RAM register banks as follows:

RS1	RS0	Internal RAM Register Bank		
buffer. 0	on comes from the receive	Bank 0 mergorg entetnoo FF2 W8		
1 RR8	тіменфочитен	Bank 2 Bank 3		

The Stack Pointer register is 8 bits wide, it is incre Table 13. PCON Special Function Register benefit at all shots of better

POWER CONTROL SER (PCC) SIlodmy2 Address

one spicer yam stack ent elidy enotice Physical basilsifini ei retnic Pointer is initialization Address 087H

Physical

Address

ODOH

PCON

SMOD ARB REQ GF1 GF₀ PD IDL (MSB) (LSB)

Symbol	Position	Function		
ge mude QOM2 General section), and bit 4 is no	HOLD / TROOP sknowlest Purpose DMA Channels' used.	Double Baud rate bit. When set to a 1, the baud rate is doubled when the serial port is being used in either Mode 1, 2 or 3.		
ARB	PCON6	HLD/HLDA Arbiter control bit *		
REQ	PCON5	HLD/HLDA Requestor control bit *		
	PCON4	(reserved)		
GF1	PCON3	General-purpose flag bit		
GF0	PCON2	General-purpose flag bit		
PD	PCON1	Power Down bit. Setting this bit activates power down operation.		
IDL	PCON0	Idle Mode bit. Setting this bit activates idle mode operation.		

^{*}See "Ext. Memory DMA" description.

If 1's are written to PD and IDL at the same time, PD takes precedence. The reset value of PCON is (000X0000).

Ambient Temperature Under Bias 0°C to 70°C† Storage Temperature -65°C to +150°C Voltage on Any Pin to V_{SS} -0.5V to V_{CC} + 0.5V

Voltage on V_{CC} to V_{SS} -0.5V to +6.5V

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$

Symbol	Parameter	Min	Max	Units	Test Conditions
VIL (80 IISI4 II	Input Low Voltage	-0.5	0.8	V	
VIH.	Input High Voltage (except XTAL1, RST)	2.0 ed of seeking to total to	V _{CC} + 0.5	V eauso v	WOTES: 1. Capsuitive loading on Ports 0 and 2 ma 1. and 3. The police is due to external bus.
ViH1	Input High Voltage (XTAL1, RST)	3.9	V _{CC} + 0.5	or elder	
VOL 8.0 9	Output Low Voltage (Ports 1, 2, 3, 4)	ALE and PS	0.45	Suzalique	I _{OL} = 1.6 mA (Note 1)
V _{OL1}	Output Low Voltage (except Ports 1, 2, 3, 4)	er Down Moe n with TCLCH DAGE =	0.45	Afy A consects orf 0 =	I _{OL} = 3.2 mA (Note 1)
Vон	Output High Voltage	2.4	LATY decision	V	$I_{OH} = -60 \mu\text{A}, V_{CC} = 5V \pm 10\%$
N2 = Voc	(Ports 1, 2, 3, 4)	0.9 V _{CC}	V = 188 = /	B :VoV	$I_{OH} = -10 \mu\text{A}$ X Va 0 - 00V = HIV
V _{OH1}	Output High Voltage	2.4	S 1615	V	$I_{OH} = -400 \mu\text{A}, V_{CC} = 5V \pm 10\%$
	(except Ports 1, 2, 3, 4 and Host Interface (Slave) Port)	0.9 V _{CC}	-ysrlo is	V The fir	I _{OH} = -40 μA (Note 2)
V _{OH2}	Output High Voltage	2.4	not bna	V	$I_{OH} = -400 \mu A$, $V_{CC} = 5V \pm 10\%$
	(Host Interface (Slave) Port)	V _{CC} - 0.4	of that	STA	$I_{OH} = -10 \mu\text{A}$
IIL	Logical 0 Input Current (Ports 1, 2, 3, 4)	K: No longe 2: Float.	-50	μА	V _{IN} = 0.45V not boats year the Actions A: Address
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3, 4)	EXAMPLE	-650	μΑ	V _{IN} = 2V abolO :0

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$ (Continued)

Symbol	Parameter	Min	Max	Units	Test Conditions
nico esenti ni the opera	Input Leakage Current (except Ports 1, 2, 3, 4)	unctional tiher con	±10°0	81 +μ A Ο %	a 0.45V < V _{IN} < V _{CC} qma ⁻¹ against
onoritorsolo	Output Leakage Current (except Ports 1, 2, 3, 4)	tosure to extended	±10°	+ μA ^V οι + οι Va.ο	0.45V < V _{OUT} < V _{CC} as V of night
Icc	Operating Current	ZOUTOU	50	O.I mA	V _{CC} = 5.5V, 14 MHz (Note 4)
Icci son	Idle Mode Current	prijwello	25	mA	V _{CC} = 5.5V, 14 MHz (Note 5)
I _{PD}	Power Down Current		100	μΑ	V _{CC} = 2V (Note 3)
RRST	Reset Pulldown Resistor	50	150	KΩ	O.C. CHARACTERISTICS TA
CIO an	Pin Capacitance	U X6	20	nii/pF	1 MHz, T _A = 25°C (sampled, not tested on all parts)

NOTES:

2. Capacitive loading on Ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall before the 0.9 VCC specification when the address bits are stabilizing.

3. Power DOWN I_{CC} is measured with all output pins disconnected; EA = Port 0 = V_{CC} ; XTAL2 N.C.; RST = V_{SS} ; DB = V_{CC} ; $\overline{WR} = \overline{RD} = \overline{DACK} = \overline{CS} = A0 = A1 = A2 = <math>V_{CC}$. Power Down Mode is not supported on the 87C452P. 4. I_{CC} is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, $V_{IL} = V_{SS} + 0.5V$, $V_{IH} = V_{CC} = 0.5V$; XTAL2 N.C.; EA = RST = Port 0 = V_{CC} ; $\overline{WR} = \overline{RD} = \overline{DACK} = \overline{CS} = A0 = A1 = A2 = <math>V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator is used.

5. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, V_{IL} = V_{SS} + 0.5V, VIH = VCC - 0.5V; XTAL2 N.C.; Port 0 = VCC; EA = RST = VSS; WR = RD = DACK = CS = A0 = A1 = A2 = VCC.

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for: V34.0 = MV Au

A: Address.

C: Clock.

D: Input data.

H: Logic level HIGH.

1: Instruction (program memory contents).

L: Logic level LOW, or ALE.

P: PSEN.

Q: Output data.

R: READ signal. (evel?) eastern teach

T: Time.

V: Valid.

W: WRITE signal. (eval2) sosheini (sor)

X: No longer a valid logic level.

Z: Float.

EXAMPLE

TAVLL = Time for Address Valid to ALE Low. TLLPL = Time for ALE Low to PSEN Low.

(except Ports 1, 2, 3, 4 a

^{1.} Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLS of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

A.C. CHARACTERISTICS $T_A = 0$ °C to 70°C, $V_{CC} = 5V \pm 10$ %, $V_{SS} = 0V$, Load Capacitance for Port 0, ALE, and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

- Language		14 MHz	Osc	Variable	Units	
Symbol	Parameter	Min	Max	Min	Max	Units
1/TCLCL	Oscillator Frequency	3.5	14	18/11/		MHz
TLHLL	ALE Pulse Width	103	1	2TCLCL-40	SS.	ns
TAVLL	Address Valid to ALE Low (Note 1)	25	177-34 4	TCLCL-55	TAVIL -	ns
TLLAX	Address Hold after ALE Low	36		TCLCL-35	0.790	ns
TLLIV	ALE Low to Valid Instr In		185	TAVWL	4TCLCL-100	ns
TLLPL	ALE Low to PSEN Low	31	24 S/A	TCLCL-40	CTOO	ns
TPLPH	PSEN Pulse Width	169		3TCLCL-45	and prosimental contra	ns
TPLIV	PSEN Low to Valid Instr In		110		3TCLCL-105	ns
TPXIX	Input Instr Hold after PSEN	0		0		ns
TPXIZ	Input Instr Float after PSEN (Note 1)		57	QASH YNONSI	TCLCL-25	ns
TAVIV	Address to Valid Instr In		252	PO- 1.1	5TCLCL-105	ns
TPLAZ	PSEN Low to Address Float	Ancies and the same of	10	and the second	10 3.14	ns
TRLRH	RD Pulse Width	329	19,19T —	6TCLCL-100		ns
TWLWH	WR Pulse Width	329	10	6TCLCL-100		ns
TRLDV	RD Low to Valid Data In	V	192		5TCLCL-165	ns
TRHDX	Data Hold after RD	0		0		ns
TRHDZ	Data Float after RD	I - XIX9Y	73	LLAX I In TPLA	2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In	NI STENI	422	AO ~ A / Princepool	8TCLCL-150	ns
TAVDV	Address to Valid Data In	ener consens	478	TAVIV	9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	164	264	3TCLCL-50	3TCLCL+50	ns
TAVWL	Address Valid to RD or WR Low	156		4TCLCL-130		ns
TQVWX	Data Valid to WR Transition	11		TCLCL-60		ns
TWHQX	Data Hold after WR	21		TCLCL-50		ns
TRLAZ	RD Low to Address Float		0		0	ns
TWHLH	RD or WR High to ALE High	31	111	TCLCL-40	TCLCL+40	ns
TQVWH	Data Valid to WR (Setup Time)	350		7TCLCL-150		ns

NOTE

1. Use the value of 14 MHz specification or variable oscillator specification, whichever is greater.

HOLE:

1. Use the value of 14 MHZ specification or variable oscillator appointation, whichever is greater

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
1/TCLCL	Oscillator Frequency	3.5	14	MHz
TCHCX	High Time	20	atronomia	3 ns
TCLCX	Low Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time	[W]	20	ns

NOTE:

External clock timings are sampled, not tested on all parts.

SERIAL PORT TIMING—SHIFT REGISTER MODE

Test Conditions: $T_A = 0$ °C to 70°C; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; Load Capacitance = 80 pF

0		14 MHz Osc		Variable Oscillator		11-11-
Symbol	Parameter	Min	Max	Min	Max	Units
TXLXL	Serial Port Clock Cycle Time	857	Janus	12TCLCL	inis daraican	ns
TQVXH	Output Data Setup to Clock Rising Edge	581		10TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	26		2TCLCL-117	o I warn	ns
TXHDX	Input Data Hold after Clock Rising Edge	0		0	,	ns
TXHDV	Clock Rising Edge to Input Data Valid	Pal	581	ппп	10TCLCL-133	ns

EXTERNAL CLOCK DRIVE WAVEFORM

AC TESTING INPUT, OUTPUT WAVEFORMS

AC inputs during testing are driven at $V_{CC}=0.5V$ for a logic "1" and 0.45V for a logic "0". Timing measurements are made at V_{IH} min. for a logic "1" and V_{IL} max. for a logic "0".

FLOAT WAVEFORMS

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \geq \pm 20$ mA.

HLD/HLDA TIMINGS

Test Conditions: $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$; Load Capacitance = 80 pF

stinti -	4445		14 MHz Osc		Variable Oscillator		
Symbol	Parameter	Min	Max	4.5	Min	Max	Units
THMIN	HLD Pulse Width	386	0	4TC	LCL+100	Command Pu	ns
THLAL	HLD to HLDA Delay if HLDA is Granted	186	672	4TC	CLCL-100	8TCLCL + 100	ns
ТННАН	HLD to HLDA Delay	186	672	4TC	LCL-100	8TCLCL+100	ns
TAMIN	HLDA Pulse Width	386		4TC	LCL+100	ADIT EESTIDAN	ns
TAHHL	HLDA Inactive to	186		4TC	CLCL-100	WRITE Data	w ns
en	6 40	01	λ	8	old Time	READ Data H	SHOT
						ŘEAD Active Data Valid De	VOT
	4.8TCLCL					WRITE Inactive Data Valid Data (Applies only I Control SFR)	AGT
	150	50				READ or WRI to DRQIN or D Inactive Delay	

HOST PORT TIMINGS

Test Conditions: $T_A = 0$ °C to 70°C; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; Load Capacitance = 80 pF

Cumbal	- UV; Lead Capacitance = 80	14 MH	z Osc	Variable	Oscillator	Units
Symbol	Parameter	Min	Max	Min water	Max	
TCC	Cycle Time	429	W nik	6TCLCL		ns
TPW	Command Pulse Width	100	988	100 1101	HLD Pulse V	ns
TRV	Recovery Time	60 9	86 6	60	HLD to HLD	ns
TAS	Address Setup Time	5	200	5	CHANCE I	ns
TAH	Address Hold Time	30	200	30	malu C A C III	ns
TDS	WRITE Data Setup Time	30	000	30	disport 7/7 III	ns
TDHW	WRITE Data Hold Time	5	981	5	HLD Active	ns
TDHR	READ Data Hold Time	5	40	5	40	ns
TDV	READ Active to Read Data Valid Delay		92		92	ns
TDR	WRITE Inactive to Read Data Valid Delay (Applies only to Host Control SFR)		343		4.8TCLCL	ns
TRQ	READ or WRITE Active to DRQIN or DRQOUT Inactive Delay		150		150	ns

REVISION HISTORY

DOCUMENT: UPI-452 Data Sheet

OLD REVISION NUMBER: 231428-004
NEW REVISION NUMBER: 231428-005

- Maximum Clock Rate was changed from 16 MHz to 14 MHz. This change is reflected in all Maximum Timing specifications.
- The proper range of values for ITHR has been changed from [0 to (CBP-2)] to [0 to (CBP-3)] to ensure
 proper setting of the Input FIFO request for service bit. See the following sections: INPUT FIFO CHANNEL,
 and INPUT AND OUTPUT FIFO THRESHOLD SFR (ITHR & OTHR).
- 3. The proper range of values for OTHR has been changed from [1 to {(80H-CBP)-1}] to [2 to {(80-CBP)-1}] to ensure proper setting of the Output FIFO request for service bit. See the following sections: OUTPUT FIFO CHANNEL, FIFO-EXTERNAL HOST INTERFACE FIFO DMA FREEZE MODE, and INPUT AND OUTPUT FIFO THRESHOLD SFR (ITHR & OTHR).
- 4. The following D.C. Characteristics were deleted from the data sheet:

 $V_{OH} = 0.75* V_{CC} @ I_{OH} = -25 \mu A$

 $V_{OH1} = 0.75* V_{CC} @ I_{OH} = 150 \mu A,$

 $V_{OH2} = 3.0V @ I_{OH} = 1 mA, and$

 $I_{CC1} = 15 \text{ mA} @ V_{CC} = 5.5 \text{V} (87C452P).$

See D.C. CHARACTERISTICS TABLE.

- The parameter descriptions for THHAH and THLAL has been reversed and their maximum specification for clock rates less than 14 MHz has been changed from [4TCLC + 100 ns] to [8TCLC + 100 ns]. See HLD/HLDA TIMINGS.
- TAMIN specification has been removed from the Arbiter Mode waveform diagram and added to the Requestor Mode waveform diagram. See HLD/HLDA WAVEFORMS.

THUISHT HURSTYIN

OCUMENT: UPI-452 Date Shee

OLD REVISION NUMBER: 231428-004

VEW REVISION NUMBER: 231428-005

 Maximum Clock Rate was changed from 16 MHz to 14 MHz. This change is reflected in all Maximum Timing specifications.

- The proper range of values for ITHR has been changed from [0 to (CBP-2)] to [0 to (CBP-3)] to ensure
 proper setting of the input FIFO request for service bit. See the following sections: INPUT FIFO CHANINEL,
 and INPUT AND OUTPUT FIFO THRESHOLD SER (ITHR & OTHR).
- 3. The proper range of values for OTHR has been changed from [1 to [(80H-CBP)-1]] to [2 to [(80-CBP)-1]] to ensure proper setting of the Output FIFO request for service bit. See the following sections: OUTPUT FIFO CHANNEL, FIFO-EXTERNAL HOST INTERFACE FIFO DMA FREEZE MODE, and INPUT AND OUTPUT FIFO THRESHOLD SER (ITHR & OTHR).
 - I. The following D.C. Characteristics were deleted from the data sheet:

VOH = 0.75" VCC @ IOH = -25 µA,

VOH1 = 0.75" VCC @ IOH = 150 µA,

bos Am F = Hol @ V0.8 = sHoV

dot = 15 mA @ Vgg = 5.5V (87C452P

See D.C. CHARACTERISTICS TARKE

- 5. The parameter descriptions for THHAH and THLAL has been reversed and their maximum specification for clock rates less than 14 MHz has been changed from [4TCLC + 100 ns] to [8TCLC + 100 ns]. See HLD/HLDA TIMINGS.
- TAMIN specification has been removed from the Arbiter Mode waveform diagram and added to the Requestor Mode waveform diagram. See HLD/HLDA WAVEFORMS.

27C64/87C64 64K (8K x 8) CHMOS PRODUCTION AND UV ERASABLE PROMS

- CHMOS Microcontroller and Microprocessor Compatible
 - 87C64-Integrated Address Latch
 - Universal 28 Pin Memory Site, 2-line Control
- Low Power Consumption
 100 μA Maximum Standby Current
- Noise Immunity Features
 - ± 10% V_{CC} Tolerance
 - Maximum Latch-up Immunity
 Through EPI Processing

- High Performance Speeds
 150 ns Maximum Access Time
- New Quick-Pulse Programming™
 Algorithm (1 second programming)
- Available in 28-Pin Cerdip and Plastic
 DIP Package and 32-Lead PLCC
 Package.

(See Packaging Spec, Order #231369)

Intel's 27C64 and 87C64 CHMOS EPROMs are 64K bit 5V only memories organized as 8192 words of 8 bits. They employ advanced CHMOS*II-E circuitry for systems requiring low power, high performance speeds, and immunity to noise. The 87C64 has been optimized for multiplexed bus microcontroller and microprocessor compatibility while the 27C64 has a non-multiplexed addressing interface and is plug compatible with the standard Intel 2764A (HMOS II-E).

The 27C64 and 87C64 are offered in both a ceramic DIP, Plastic DIP, and Plastic Leaded Chip Carrier (PLCC). Packages. Cerdip packages provide flexibility in prototyping and R&D environments, whereas Plastic DIP and PLCC EPROMs provide optimum cost effectiveness in production environments. A new Quick-Pulse ProgrammingTM Algorithm is employed which can speed up programming by as much as one hundred times.

The 87C64 incorporates an address latch on the address pins to minimize chip count in multiplexed bus systems. Designers can eliminate an external address latch by tieing address and data pins of the 87C64 directy to the processor's multiplexed address/data pins. On the falling edge of the ALE input (ALE/ $\overline{\text{CE}}$), address information at the address inputs (A0-A12) of the 87C64 is latched internally. The address inputs are then ignored as data information is passed on the same bus.

The highest degree of protection against latch-up is achieved through Intel's unique EPI processing. Prevention of latch-up is provided for stresses up to 100 mA on address and data pins from -1V to $V_{CC} + 1V$.

*HMOS and CHMOS are patented processes of Intel Corporation.

290000-1

CHARLESTEN	HAA	Pin Names	64K (8K x 8)
CTION AND	A ₀ -A ₁₂	ADDRESSES	to a not neo
	00-07	OUTPUTS	IVU
	ŌĒ	OUTPUT ENABLE	
	CE	CHIP ENABLE	trocontroller and
rformance Speeds is Maximum Access	ALE/CE	ADDRESS LATCH ENABLE /CHIP ENABLE	ssor Compatible
and the second second	PGM	PROGRAM STROBE	tegrated Address L
ick-Pulse Programm	N.C.	NO CONNECT	t 28 Pln Memory Sit
im (1 second progn	D.U.	DON'T USE	

27C64/87C64 P27C64/P87C64

27256	27128	2732A	2716
Vpp	Vpp	(0001ES	# Tellar
A ₁₂	A12		
A7	A ₇	A ₇	A ₇
A ₆	A ₆	A ₆	A ₆
A ₅	A ₅	A ₅	A ₅
A ₄	A ₄	A ₄	A ₄
A ₃	A3.	A3	A3
A ₂	A ₂	A ₂	A ₂
A ₁	Ai	A ₁	A ₁
A ₀	Ao	Ao	Ao
00	00	00	00
01	01	01	01
02	02	02	02
Gnd	Gnd	Gnd	Gnd

Vpp C 1	28 V _{CC}
A12 2	27 6 PGM
A7 0 3	26 N.C.
A6 C 4	25 🗆 A ₈
A5 C 5	24 Ag
A4 C 6	23 A11
A3 07 V3	22 0E
A2 0 8	21 A10
A, C 9	20 CE, ALE/CE
A ₀ □ 10	19 🗆 07
00 11	5 18 0 0 ₆
0, 12	17 05
02 13	16 04
GND - 14	15 03

2716	2732A	27128	27256
8971116	led knur	Vcc	Vcc
8506	recToles	PGM	A14
Vcc	Vcc	A ₁₃	A ₁₃
Ag	A ₈	A ₈	A ₈
Ag	Ag	A ₉	A ₉
Vpp	A ₁₁	A ₁₁	A ₁₁
OE	OE/V _{PP}	OE	OE
A ₁₀	A10	A ₁₀ CE	A ₁₀
CE	CE		CE
07	07	07	07
06	06	06	06
05	05	O ₅	05
04	04	04	04
03	03	03	03

ming M Algorithm is employed which can speed

PLOC EPHOMs provide optimum cost ell'g-000002 si in production environments. A new Quick-Pulse Program-

up programming by as much as one hundred sines. : 3TON

Intel "Universal Site" Compatible EPROM Pin Configurations are shown in the adjacent blocks to 27C64 Pins. Shaded Areas represent the 87C64 version frees and data pins of tine 87064 systems. Designers can aliminate an

Figure 2. Pin Configuration

Figure 3. PLCC(N) Lead Configuration

290000-11

Extended Temperature (Express) EPROMS

The Intel EXPRESS EPROM family is a series of electrically programmable read only memories which have received additional processing to enhance product characteristics. EXPRESS processing is available for several densities of EPROM, allowing the choice of appropriate memory size to match system applications.

EXPRESS EPROM products are available with 168 ± 8 hour, 125°C dynamic burn-in using Intel's standard bias configuration. This process exceeds or meets most industry specifications of burn-in. The standard EXPRESS EPROM operating temperature range is 0°C to 70°C. Extended operating temperature range (-40°C to +85°C) EXPRESS products are available along with automotive temperature range (-40°C to +125°C) products. Like all Intel EPROMs, the EXPRESS EPROM family is inspected to 0.1% electrical AQL. This may allow the user to reduce or eliminate incoming inspection testing.

EXPRESS EPROM Product Family

PRODUCT DEFINITIONS

Туре	Operating Temperature (°C)	Burn-in 125°C (hr)
Q	0 to +70	168 ±8
T	-40 to +85	NONE
mk at	-40 to +85	168 ±8
Α	-40 to +125	NONE
B	-40 to +125	168 ±8

EXPRESS Options

27C64/87C64 Versions

Packaging Options					
Speed Versions	Cerdip	PLCC	Plastic DIP		
MMSI 1/AM	T, L, Q	TAL	T		
-15	T, L, Q	9 T	{oTimy?		
-2	T, L, Q, A, B	T, A	T, A		
-20	T, L, Q, A	ester Liver	T		
-STD	T, L, Q, A, B	T, A	T, A		
-25	T, L, Q, A	T	T		
6-380M	T, L, Q, A, B	T, A	OV T, A 88		
-30	T, L, Q, A	Tani	T Page		

READ OPERATION

D.C. CHARACTERISTICS

Electrical Parameters of EXPRESS EPROM products are identical to standard EPROM parameters except for:

Symbol	Parameter S.G.		27C64 87C64		Test Conditions
-,				Max	TOWIST -
I _{SB}	V _{CC} Standby Current (mA)	CMOS		0.1	$\overline{CE} = V_{CC}, \overline{OE} = V_{IL}$
	DOV = 99V V VPP = VGC	TTL	To The	1.0	$\overline{CE} = V_{IH}, \overline{OE} = V_{IL}$
ICC1(1)	V _{CC} Active Current (mA)	TTL		20, 30	OE = CE = VIL
	V _{CC} Active Current at High Temperature	TTL		20, 30	OE = CE = V _{IL} V _{PP} = V _{CC} , T _{ambient} = 85°C

NOTE:

1. See notes 4 and 6 of Read Operation D.C. Characteristics.

Burn-In Bias and Timing Diagrams

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature During Read	0°C to +70°C(2)
Temperature Under Bias	
Storage Temperature	65°C to +150°C
Respect to Ground	+ of 04 - + of 05 - 2.0V to 7V(1)
Voltage on Pin As with	– 2.0V to + 13.5V(1)
Von Supply Voltage with Best	pect to Ground

Supply Voltage with Respect to Ground During Programming -2.0V to +14V(1)

V_{CC} Supply Voltage with

Respect to Ground -2.0V to +7.0V(1)

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

READ OPERATION D.C. CHARACTERISTICS O'C < TA < + 70°C

Symbol	Parameter	Notes	Min	Typ(3)	Max	Unit	Test Condition	
LI A.T	Input Leakage Current	8-11	ot 1	0.01	weflo ya	μΑ	$V_{IN} = 0V \text{ to } 5.5V$	
LO	Output Leakage Current	X-		Qnitee	±10	μΑ	$V_{OUT} = 0V \text{ to } 5.5V$	
IPP1	V _{PP} Current Read	6			100	μΑ	$V_{PP} = V_{CC}$	
SB A T	V _{CC} Current Standby	CMOS	g - 5			100	μΑ	CE = V _{CC}
T	with Inputs— A.O.J.T	8-4			1.0	mA	CE = V _{IH}	
I _{CC1}	V _{CC} Current Active	4, 6			20, 30	mA	$\overline{CE} = V_{IL}$ f = 5 MHz, $I_{OUT} = 0$ mA	
VIL 10es	Input Low Voltage (±10% (TTL)	laoitne	-0.5	М ргоо	SS 8.0 RO	IAdx	lectrical Parameters of E	
	Input Low Voltage (CMOS)	184 184	870	-0.2		0.2	V 89	V _{PP} = V _{CC}
V _{IH}	Input High Voltage(±10%:	0000	2.0	0	V _{CC} +0.5		ISB Voc Stand	
	Input High Voltage (CMOS)	20,30		V _{CC} -0.2		V _{CC} +0.2	Cum	V _{PP} = V _{CC}
VOL	Output Low Voltage	20, 30				0.45	N	I _{OL} = 2.1 mA
VOH	Output High Voltage			3.5		(91	V	I _{OH} = -2.5 mA
los	Output Short Circuit Curren	Output Short Circuit Current		.eoiten	Inaracte	0.100 ₀₀₈	mA	THE RESERVE OF THE RE
VPP	V _{PP} Read Voltage		8	V _{CC} -0.7		Vcc	٧	

- 1. Minimum D.C. input voltage is -0.5V. During transitions, the inputs may undershoot to -2.0V for periods less than 20 ns. Maximum D.C. Voltage on output pins is V_{CC} + 0.5V which may overshoot to V_{CC} + 2V for periods less than 20 ns.
- 2. Operating temperature is for commercial product defined by this specification. Extended temperature options are available in EXPRESS and Military version.
- 3. Typical limits are at $V_{CC} = 5V$, $T_A = +25$ °C.
- 4. 20 mA for STD and -3 versions; 30 mA for -2 and 150 ns versions.
 - VIL, VIH levels at TTL inputs.

- 5. ALE/ $\overline{\text{CE}}$ or $\overline{\text{CE}}$ is $V_{\text{CC}} \pm 0.2 \text{V}$. All other inputs can have any value within spec.
- 6. Maximum Active power usage is the sum IPP + ICC. The maximum current value is with Outputs Oo to O7 unloaded. 7. Output shorted for no more than one second. No more than one output shorted at a time. los is sampled but not 100% tested.
- 8. Vpp may be one diode voltage drop below Vcc. It may be connected directly to VCC.

READ OPERATION

A.C. CHARACTERISTICS 27C64(1) 0°C ≤ TA ≤ +70°C

	Versions (3)	25 M8	Vcc ±5%	27C64-1 N27C64-1 P27C64-1 27C64-15 N27C64-15 P27C64-15		27C64-2 N27C64-2 P27C64-2 27C64-20 N27C64-20 P27C64-20		27C64 N27C64 27C64-25 N27C64-25		27C64-3 N27C64-3 27C64-30 N27C64-30		Unit
		xsA	V _{CC} ± 10%									
Symbol Charac		racter	eristic oz	Min	Max	Min	Max	Min	Max	Min	Max	AP
tACC	Address to Ou	tput D	elay	200	150	150	200		250	atch Acce	300	ns
tCE	CE to Output	Delay		75	150	75	200	bilsV	250	n Enable	300	ns
toE	OE to Output	Delay	69		75		75	9	100	IO of so	120	ns
t _{DF} (2)	OE High to Ou	tput H	igh Z	NO AS	35	20	55	s ngiri ni	60	AtricalCity	105	ns
t _{OH} (2)	Output Hold fr			0		.0		0		0	iHni	ns

- 1. A.C. characteristics tested at $V_{IH} = 2.4V$ and $V_{IL} = 0.45V$. Timing measurements made at V_{OL} = 0.8V and V_{OH} = 2.0V.
- 2. Guaranteed and sampled.
- 3. Model Number Prefixes: No prefix = Cerdip; P = Plastic DIP; N = PLCC.

A.C. WAVEFORMS 27C64

- 1. Typical values are for $T_A=25^{\circ}\text{C}$ and nominal supply voltages. 2. This parameter is only sampled and is not 100% tested.
- 3. $\overline{\text{OE}}$ may be delayed up to $t_{\text{CE}}-t_{\text{OE}}$ after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} .

A.C. CHARACTERISTICS 87C64(1) 0°C ≤ TA ≤ +70°C

Versions (3)		87C64-1 N87C64-1 P87C64-1		87C64-2 N87C64-2 P87C64-2		87C64 N87C64		87C64-3 N87C64-3		,), s
27084-3 N27084-3	V _{CC} ± 10%	87C64-15 N87C64-15 P87C64-15		87C64-20 N87C64-20 P87C64-20		87C64-25 N87C64-25		87C64-30 N87C64-30		Unit
Para	Parameter		Max	Min	Max	Min	Max	Min	Max	
Chip Deselect W	idth	50	1927	50	YSM.	60		75		ns
Address to CE-Latch Set-up		7	129	20	189	25		30		ns
Address Hold from CE-LATCH		30	nilla	45	niM	50	acteristic	60	lo	ns
CE-Latch Access	s Time	008	150	150	200		250	eas to Ou	300	ns
Output Enable to	008	75	oat I	75		100	Output I	120	ns	
ALE/CE to Outp	30		45		50	velot	60	1575	ns	
Chip Deselect to		45		50		60		75	ns	
Output Disable to	00	35	90	50	30 ,ees	60	nt bloH to	75	ns	
	Para Chip Deselect W Address to CE-L Address Hold fro CE-Latch Access Output Enable to ALE/CE to Outp Chip Deselect to Output Disable to	Parameter Chip Deselect Width Address to CE-Latch Set-up Address Hold from CE-LATCH CE-Latch Access Time Output Enable to Output Valid ALE/CE to Output Enable Chip Deselect to Output in High Z Output Disable to Output	Vcc ± 5% N87 P876	VCC ±5% N87C64-1 P87C64-1 P87C64-1 P87C64-15 N87C64-15 N87C64-15	VCC ± 5% N87C64-1 P87C64-1 P87C64-1 P87C64-1 P87C64-1 P87C64-15 P87C64-15	VCC ±5% N87C64-1 P87C64-2 P87C64-2 P87C64-2 P87C64-1 P87C64-1 P87C64-2 P87C64-2 P87C64-15 P87C64-15 P87C64-15 P87C64-15 P87C64-15 P87C64-15 P87C64-15 P87C64-15 P87C64-20 P87C64-15 P87C64-20 P87C64-15 P87C64-20 P87C64-15 P87C64-20 P87C64-15 P87C64-20 P87C64-15 P87C64-20 P87C64-15 P87C64-15 P87C64-20 P87C64-15 P87C64-15 P87C64-15 P87C64-15 P87C64-15 P87C64-15 P87C64-15 P87C64-20 P87C64-15 P8	VCC ±5% N87C64-1 P87C64-2 P87C64-2 P87C64-1 P87C64-2 P87C64-2 P87C64-2 P87C64-2 P87C64-2 P87C64-2 P87C64-2 P87C64-20 P87C64-15 P87C64-15 P87C64-20 P87C64-15 P87C64-20 P87C6	VCC ±5% N87C64-1 P87C64-2 P87C64-2	VCC ±5% N87C64-1 P87C64-2 P87C64-25 P87C64-	VCC ± 5% N87C64-1 P87C64-2 P87C64-2 P87C64-3 N87C64-3 N87C64-20 N87C64-20 N87C64-25 N87C64-25 N87C64-25 N87C64-20 N87C64-25 N87C64-3 N87C64-2 N8

NOTES:

- 1. A.C. characteristics tested at V $_{\rm IH}=2.4$ V and V $_{\rm IL}=0.45$ V. Timing measurements made at V $_{\rm OL}=0.8$ V and V $_{\rm OH}=2.0$ V.
- 2. Guaranteed and sampled.
- 3. Model Number Prefixes: No prefix = Cerdip; P = Plastic DIP; N = PLCC, va.0 = 10 to sham afformation and primit.

A.C. WAVEFORMS 87C64

CAPACITANCE(1) TA = 25°C, f = 1.0 MHz

Symbol	Parameter	Max	Unit	Conditions		
CIN	Address/Control Capacitance	6	pF	$V_{IN} = 0V$		
COUT	Output Capacitance	12	pF	V _{OUT} = 0V		

NOTE:

1. Sampled. Not 100% tested.

A.C. TESTING INPUT/OUTPUT WAVEFORM

A.C. Testing: Inputs are driven at 2.4V for a Logic "1" and 0.45V for a Logic "0". Timing measurements are made at 2.0V for a logic "1" and 0.8V for a Logic "0".

A.C. TESTING LOAD CIRCUIT

DEVICE OPERATION CHARGO MATERIES

The modes of operation of the 27C64/87C64 are listed in Table 1. A single 5V power supply is required in the read mode. All inputs are TTL levels except for V_{PP} and 12V on A₉ for inteligent Identifier the active current level, and the transient c.ebom peaks that are produced by the falling and fising

Table 1. Mode Selection for 27C64 and 87C64

Mode	ALE/CE CE	ŌĒ	PGM (7)	A ₉	A ₀	V _{PP} (7)	Vcc	Outputs
Read migrosop helpele	yheeVilla yd I	VIL	VIH	X(1)	X	Vcc	5.0V	Dout
Output Disable	papuvill	VIH	VIH	X	X	Vcc	5.0V	High Z
Standby o voncuped do	t s eViriuode a f	al X	10 X	X	X	Vcc	5.0V	High Z
Programming	VIL	VIH	VIL	X	X	(4)	(4)	D _{IN}
Program Verify	lytic gvacite	VIL	ud V _{IH}	X	X	(4)	(4)	Dout
Program Inhibit	VIH	X	X	X	X	(4)	(4)	HIGH Z
inteligent Identifier(3) -Manufacturer	ected _{JI} V the tor is to ove	on V _{IL} si	dq V _{IH}	V _H (2)	V _{IL}	Vcc	Vcc	89 H (6) 88 H (6)
inteligent Identifier(3) -27C64	V _{IL}	V _{IL}	V _{IH}	V _H (2)	VIH	Vcc	Vcc	07 H
inteligent Identifier(3, 5) -87C64	VIL	VIL	VIH	V _H (2)	VIH	Vcc	Vcc	37 H

NOTES:

- 1. X can be V_{IL} or V_{IH} .

 2. $V_{H} = 12.0V \pm 0.5V$.
- 3. A₁-A₈, A₁₀₋₁₂ = V_{IL}.
 4. See Table 2 for V_{CC} and V_{PP} voltages.
- 5. ALE/CE has to be toggled in order to latch in the addresses and read the signature codes.
- 6. The Manufacturer's identifier reads 89H for Cerdip devices; 88H for Plastic DIP and PLCC devices.
- 7. In Read Mode tie PGM and VPP to VCC.

Read Mode: 27C64

The 27C64 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output enable (OE) is the output control and should be used to gate data from the output pins. Assuming that addresses are stable, the address access time (tACC) is equal to the delay from CE to output (tCF). Data is available at the outputs after a delay of toE from the falling edge of OE, assuming that CE has been low and addresses have been stable for at least Program Inhibit mode. A high-level OE (0.10)

Read Mode: 87C64

The 87C64 was designed to reduce the hardware interface requirements when incorporated in processor systems with multiplexed address-data busses. Chip count (and therefore power and board space) can be minimized when the 87C64 is designed as shown in Figure 4. The processor's multiplexed bus (AD₀₋₇) is tied to both address and data pins of the 87C64. All address inputs of the 87C64 are latched when ALE/CE is brought low, thus eliminating the need for a separate address latch. The 87C64 internal address latch is directly enabled through the use of the ALE/\overline{CE} line. As the transition occurs on the ALE/\overline{CE} from the TTL high to the low state, the last address presented at the address pins is retained. Data is then enabled onto the bus from the EPROM by the \overline{OE} pin.

Figure 4. 80C31 with 87C64 System Configuration

Standby Mode

The 27C64 and 87C64 have Standby modes which reduce the maximum V_{CC} current to 100 μ A. Both are placed in the Standby mode when \overline{CE} or ALE/ \overline{CE} are in the CMOS-high state. When in the Standby mode, the outputs are in a high impedance state, independent of the \overline{OE} input.

Two Line Output Control

Because EPROMs are usually used in larger memory arrays, Intel has provided 2 control lines which accommodate this multiple memory connection. The two control lines allow for:

- a) the lowest possible memory power dissipation,
- b) complete assurance that output bus contention will not occur.

To use these two control lines most efficiently, $\overline{\text{CE}}$ (or $\overline{\text{ALE}/\text{CE}}$) should be decoded and used as the primary device selecting function, while $\overline{\text{OE}}$ should be made a common connection to all devices in the array and connected to the $\overline{\text{READ}}$ line from the system control bus. This assures that all deselected memory devices are in their low power standby mode and that the output pins are active only when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

The power switching characteristics of EPROMs require careful decoupling of the devices. The supply current, Icc, has three segments that are of interest to the system designer—the standby current level, the active current level, and the transient current peaks that are produced by the falling and rising edges of Chip Enable. The magnitude of these transient and inductive current peaks is dependent on the output capacitive and inductive loading of the device. The associated transient voltage peaks can be suppressed by complying with Intel's Two-Line Control, and by properly selected decoupling capacitors. It is recommended that a 0.1 µF ceramic capacitor be used on every device between V_{CC} and GND. This should be a high frequency capacitor for low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7 µF bulk electrolytic capacitor should be used between V_{CC} and GND for every eight devices. The bulk capacitor should be located near where the power supply is connected to the array. The purpose of the bulk capacitor is to overcome the voltage droop caused by the inductive effect of PC board-traces.

PROGRAMMING MODES

Caution: Exceeding 14V on V_{PP} will permanently damage the device.

Initially, and after each erasure, all bits of the EPROM are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" will be programmed, both "1s" and "0s" can be present in the data word. The only way to change a "0" to a "1" is by ultraviolet light erasure.

The device is in the programming mode when V_{PP} is raised to its programming voltage (See Table 2) and $\overline{\text{CE}}$ (or ALE/ $\overline{\text{CE}}$) and $\overline{\text{PGM}}$ are both at TTL low and $\overline{\text{OE}} = \text{V}_{\text{IH}}$. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

Program Inhibit 30 mon valeb and of laupe at

Programming of multiple EPROMS in parallel with different data is easily accomplished by using the Program Inhibit mode. A high-level $\overline{\text{CE}}$ (or ALE/ $\overline{\text{CE}}$) or $\overline{\text{PGM}}$ input inhibits the other devices from being programmed.

Except for $\overline{\text{CE}}$ (or ALE/ $\overline{\text{CE}}$), all like inputs (including $\overline{\text{OE}}$) of the parallel EPROMs may be common. A TTL low-level pulse applied to the $\overline{\text{PGM}}$ input with V_{PP} at its programming voltage and $\overline{\text{CE}}$ (or ALE/ $\overline{\text{CE}}$) = V_{IL} will program the selected device.

Program Verify

A verify (read) should be performed on the programmed bits to determine that they have been correctly programmed. The verify is performed with $\overline{\text{OE}}$ and $\overline{\text{CE}}$ (or ALE/ $\overline{\text{CE}}$) at V_{IL} , $\overline{\text{PGM}}$ at V_{IH} , and V_{CC} and V_{PP} at their programming voltages. Data should be verified a minimum of t_{OE} after the falling edge of $\overline{\text{OE}}$.

inteligent IdentifierTM Mode

The int_eligent Identifier Mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the 25°C \pm 5°C ambient temperature range that is required when programming the device.

To activate this mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the EPROM. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from $\rm V_{IL}$ to $\rm V_{IH}$. All other address lines must be held at $\rm V_{IL}$ during the intelligent Identifier Mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code and byte 1 (A0 = V_{IH}) the device identifier code. These two identifier bytes are given in Table 1. ALE/ \overline{CE} of the 87C64 has to be toggled in order to latch in the addresses and read the Signature Codes.

pulses per byte are provided before a failure is recognized. A flowchart of the Cuick-Pulse Programming Algorithm is shown in Figure 5.

For the Quick Pulse Programming Algorithm, the entire sequence of programming pulses and byte verifications is performed at $V_{\rm CC}=6.25$ v. and $V_{\rm PC}$ and $V_{\rm PC}$ to 2.75V. When programming of the EPROM has been completed, all bytes should be compared to the original data with $V_{\rm CC}=V_{\rm PP}=5.0$ V.

ERASURE CHARACTERISTICS (FOR CERDIP EPROMS)

The erasure characteristics are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000Å range. Data shows that constant exposure to room level fluorescent lighting could erase the EPROM in approximately 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the device is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.

The recommended erasure procedure is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of 15 Wsec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12000 $\mu\text{W/cm}^2$ power rating. The EPROM should be placed within 1 inch of the lamp tubes during erasure. The maximum integrated dose an EPROM can be exposed to without damage is 7258 Wsec/cm² (1 week @ 12000 $\mu\text{W/cm}^2$). Exposure of the device to high intensity UV light for longer periods may cause permanent damage.

CHMOS NOISE CHARACTERISTICS

Special EPI processing techniques have enabled Intel to build CHMOS with features adding to system reliability. These include input/output protection to latch-up. Each of the data and address pins will not latch-up with currents up to 100 mA and voltages from -1 V to $V_{\rm CC} + 1 V$.

Additionally, the V_{PP} (programming) pin is designed to resist latch-up to the 14V maximum device limit.

grammed using the Quick-Pulse Programming Algorithm, developed by Intel to substantially reduce the throughput time in the production environment. This algorithm allows these devices to be programmed in under one second, almost a hundred fold improvement over previous algorithms. Actual programming time is a function of the PROM programmer being used.

The Guick-Pulse Programming Algorithm uses initial pulses of 100 microseconds followed by a byte veri-

Figure 5. Quick-Pulse Programming™ Algorithm

Quick-Pulse Programming™ Algorithm

Intel's 27C64 and 87C64 EPROMs can now be programmed using the Quick-Pulse Programming Algorithm, developed by Intel to substantially reduce the throughput time in the production environment. This algorithm allows these devices to be programmed in under one second, almost a hundred fold improvement over previous algorithms. Actual programming time is a function of the PROM programmer being used.

The Quick-Pulse Programming Algorithm uses initial pulses of 100 microseconds followed by a byte veri-

fication to determine when the address byte has been successfully programmed. Up to 25 100 μs pulses per byte are provided before a failure is recognized. A flowchart of the Quick-Pulse Programming Algorithm is shown in Figure 5.

For the Quick Pulse Programming Algorithm, the entire sequence of programming pulses and byte verifications is performed at $V_{\rm CC}=6.25 V$ and $V_{\rm PP}$ at 12.75V. When programming of the EPROM has been completed, all bytes should be compared to the original data with $V_{\rm CC}=V_{\rm PP}=5.0 V$.

D.C. PROGRAMMING CHARACTERISTICS (27C64/87C64) TA = 25°C ±5°C

Table 2

Symbol	Parameter		Test Conditions		
- STATE OF THE STA	raidinetti	Min	Max	Unit	(Note 1)
ILI X	Input Current (All Inputs)	BINATEROS	1.0	μΑ	$V_{IN} = V_{IL} \text{ or } V_{IH}$
VIL	Input Low Level (All Inputs)	-0.1	0.8	V	
VIH	Input High Level	2.0	V _{CC} + 0.5	V	
VOL	Output Low Voltage During Verify	and an	0.45	V	$I_{OL} = 2.1 \text{ mA}$
VOH	Output High Voltage During Verify	3.5		V	$I_{OH} = -2.5 \text{mA}$
I _{CC2} (3)	V _{CC} Supply Current		30	mA	
I _{PP2} (3)	V _{PP} Supply Current (Program)		30	mA	CE = V _{IL}
V _{ID}	A ₉ inteligent Identifier Voltage	11.5	12.5	V	A82.24
V _{PP}	Programming Voltage	12.5	13.0	V	
Vcc	Supply Voltage During Programming	6.0	6.5	V	***

A.C. PROGRAMMING CHARACTERISTICS 27C64

 $T_A = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$, See Table 2 for V_{CC} and V_{PP} Voltages

Symbol	Parameter		Limits						
Cymbol	- arameter	Min	Тур	Max	Unit	(Note 1)			
t _{AS}	Address Setup Time	2			μs				
toes	OE Setup Time	2			μs				
t _{DS}	Data Setup Time			1	μs	PG99			
t _{AH}	Address Hold Time	0	Carpen	and	μs	V			
t _{DH}	Data Hold Time	aag1 2	work work	4-	μs				
t _{DFP}	OE High to Output Float Delay	0		130	ns	(Note 2)			
t _{VPS}	V _{PP} Setup Time	2	-5 470		μs	, šö			
t _{VCS}	V _{CC} Setup Time	2			μs				
t _{CES}	CE Setup Time	2			μs				
tpW	PGM Program Pulse Width	95	100	105	μs	Quick-Pulse			
toE	Data Valid from OE	HEV & TOLV	or V _{IL} and 1	V8 150	ns	ne Input Timing			

A.C. CONDITIONS OF TEST

Input Rise and Fall Times (10% to 90%) 20 ns
Input Pulse Levels 0.45V to 2.4V
Input Timing Reference Level0.8V and 2.0V
Output Timing Reference Level 0.8V and 3.5V

- 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.

 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven—see timing diagram. 3. The maximum current value is with outputs O_0 to O_7 Un-

NOTES:

1. The Input Timing Reference Level is 0.8V for VIL and 2V for a VIH.

2. toE and toFP are characteristics of the device but must be accommodated by the programmer.

3. When programming the 27C64, a 0.1 μ F capacitor is required across V_{PP} and ground to suppress spurious voltage transients which can damage the device.

Voc must be applied simultaneous removed simultaneously or after V_{PP}.
 This parameter is only sampled an

Output Float is defined as the per driven—see thing diagram.

3. The maximum current value is

Output Timing Reference Level 0.8V and 3.5V

A.C. PROGRAMMING CHARACTERISTICS 87C64 (8 x)(SE) MAGE

TA = 25°C ±5°C, See Table 2 for VCC and VPP Voltages.

Symbol	Parameter Section	99	Limits	controlle	Unit	Conditions	
Symbol	constraint interest of the	Min	Min Typ		now tos	Conditions	
typs	V _{PP} Setup Time I dougraft	2	ite, 2-line	emory S	A ps as	- Universal	
tycs	V _{CC} Setup Time	2			μs	Control	
tLL	Chip Deselect Width	2		noix	μs	Low Power	
t _{AL}	Address to Chip Select Setup	1		abse	μs	High Perion	
tLA	Address Hold from Chip Select	1	DIII)	The state of the same of	μs	AND COLUMN	
tpW	PGM Pulse Width	95	100	105	μs	Quick-Pulse	
tos	Data Setup Time	200	sek-ba sv	OM is a 2	μs	itel's 87C257 CH	
t _{DFP}	OE High to Data Float	wooni	uper ame,	130	ns	dvanced CHMO	
toes	Output Enable Setup Time	2	are yearsom	allmet -89	βμs	del's 16 MHz 80	
toE	Data Valid from Output Enable	a minument	and the He	150	ns	own Thomas ar	
dt _{DH} eniq str	Data Hold Time has noted assubble	2	8 87G257 s	atlems. Th	e aμs bea	elgitum to ngise	
tces	CE Setup Time	2	serbbs be	elgälum a	μs	ert of ytherib be	

PROGRAMMING WAVEFORMS 87C64

1. 12.75V VPP & 6.25V VCC for Quick-Pulse Programming Algorithm.

^{1.} Programming tolerances and test conditions are the same as 27C64.

87C257 256K (32K x 8) CHMOS UV ERASABLE PROM

- CHMOS/NMOS Microcontroller and Microprocessor Compatible
 - 87C257-Integrated Address Latch
 - Universal 28 Pin Memory Site, 2-line Control
- Low Power Consumption
- High Performance Speeds
 170 ns Maximum Access Time

- Noise Immunity Features

 ± 10% V_{CC} Tolerance
 - Maximum Latch-up Immunity
 Through EPI Processing
- New Quick-Pulse Programming™
 Algorithm
 4 Second Programming
- 28-Pin Cerdip and 32-Lead PLCC Packages

(See Packaging Spec., Order #231369)

Intel's 87C257 CHMOS EPROM is a 256K-bit 5V-only memory organized as 32,768 8-bit words. It employs advanced CHMOS*II-E circuitry for systems requiring low power, high speed performance, and noise immunity. The 87C257 is optimized for compatibility with multiplexed address/data bus microcontrollers such as Intel's 16 MHz 8051- and 8096- families.

The 87C257 incorporates latches on all address inputs to minimize chip count, reduce cost, and simplify design of multiplexed bus systems. The 87C257's internal address latch allows address and data pins to be tied directly to the processor's multiplexed address/data pins. Address information (inputs A_0-A_{14}) is latched early in the memory-fetch cycle by the falling edge of the ALE input. Subsequent address information is ignored while ALE remains low. The EPROM can then pass data (from pins O_0-O_7) on the same bus during the last part of the memory-fetch cycle.

The 87C257 is offered in ceramic DIP and Plastic Leaded Chip Carrier (PLCC) packages. The Cerdip package provides flexibility in prototyping and R&D environments while the PLCC version is used in surface mount and automated manufacturing. The 87C257 employs the Quick-Pulse Programming™ Algorithm for fast and reliable programming.

Intel's EPI processing achieves the highest degree of latch-up protection. Address and data pin latch-up prevention is provided for stresses up to 100 mA from -1V to $V_{\rm CC}$ + 1V.

*HMOS and CHMOS are patented processes of Intel Corporation.

NOTE: Intel "Universal Site"-Compatible EPROM Pin Configurations are Shown in the Blocks Adjacent.

EXTENDED TEMPERATURE (EXPRESS) EPROMS

The Intel EXPRESS EPROM family receives additional processing to enhance product characteristics. EXPRESS processing is available for several EPROM densities allowing the appropriate memory size to match system applications. EXPRESS EPROMs are available with 168 ±8 hour, 125°C dynamic burn-in using Intel's standard bias configuration. This process meets or exceeds most industry burn-in specifications. The standard EXPRESS EPROM operating temperature range is 0°C to +70°C. Extended operating temperature range (-40°C to +85°C) EXPRESS and automotive temperature range (-40°C to +125°C) products are also available. Like all Intel EPROMs, the EXPRESS EPROM family is inspected to 0.1% electrical AQL. This allows reduction or elimination of incoming testing.

AUTOMOTIVE AND EXPRESS OPTIONS

Versions

Speed	Packaging Options					
Versions	Cerdip	PLCC				
-200V05	A	A				
-200V10	A, L	A, T				
-250V10	A, L	A, T				
-250V05	A	A				

Burn-In Bias and Timing Diagrams

AUTOMOTIVE AND EXPRESS EPROM PRODUCT FAMILY

PRODUCT DEFINITIONS

Туре	Operating Temperature (°C)	Burn-in 125°C (hr)
Т	-40°C to +85°C	NONE
L	-40°C to +85°C	168 ±8
Α	-40°C to +125°C	NONE

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature During Read0°C to + 70°C(2)	
Temperature Under Bias 10°C to +80°C(2)	
Storage Temperature65°C to +150°C	
Voltage on any Pin with Respect to Ground2V to +7V(1)	
Voltage on A ₉ with Respect to Ground2V to +13.5V(1)	
V _{PP} Supply Voltage with Respect to Ground During Programming2V to +14.0V(1) V _{CC} Supply Voltage with	
Respect to Ground2V to +7.0V(1)	

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

READ OPERATION

D.C. CHARACTERISTICS TTL and NMOS Inputs

Symbol	Parameter	03	Notes	Min	Typ(3)	Max	Units	Test Condition
ILI	Input Load Current				0.01	1.0	μΑ	$V_{IN} = 0V \text{ to } 5.5V$
ILO	Output Leakage Current				7:	±10	μΑ	V _{OUT} = 0V to 5.5V
ISB	V _{CC} Current Standby	Switching			23	10	mA	CE = ALE = VIH
ns ns	with Inputs—	Stable of			88	1.0	mA	CE = VIH, ALE = VIL
ICC ₁	V _{CC} Current Active		5			30	mA	$\overline{\text{CE}} = \text{V}_{\text{IL}}, \text{ALE} = \text{V}_{\text{IH}}$ $\text{f} = 5 \text{ MHz}, \text{I}_{\text{OUT}} = 0 \text{ mA}$
VIL	Input Low Voltage (±10	% Supply)	1	-0.5	HOW TO	0.8	٧	easurements.
VIH	Input High Voltage (±10	0% Supply)	naut Pul	2.0		V _{CC} + 0.5	٧	Guaranteed and sampled
Vol	Output Low Voltage	ing Referen	nput Tin			0.45	٧	I _{OL} = 2.1 mA
VOH	Output High Voltage	ming Refere	Dutput T	2.4			٧	$I_{OH} = -400 \mu A$
los	Output Short Circuit Current		6			100	mA	I.C. WAVEFORM

D.C. CHARACTERISTICS CMOS Inputs

Symbol	Paramete	roman	Notes	Min	Typ(3)	Max	Units	Test Condition
ILI	Input Load Current			a h 1)	0.01	1.0	μΑ	$V_{IN} = 0V \text{ to } 5.5V$
ILO	Output Leakage Curren	t			1	±10	μΑ	$V_{OUT} = 0V \text{ to } 5.5V$
ISB	V _{CC} Current Standby	Switching	4	manance recovery	icuna de la companione	6	mA	CE = ALE = V _{CC}
	with Inputs—	Stable	200		-	100	μΑ	CE = VCC, ALE = GND
I _{CC1}	V _{CC} Current Active	(2)	5			15	mA	$\overline{CE} = V_{IL}$, ALE = V_{IH} f = 5 MHz, $I_{OUT} = 0$ mA
VIL	Input Low Voltage (±10	% Supply)	pure	-0.2		0.8	V	-HRV :
VIH	Input High Voltage (±10	0% Supply)	and the	0.7 V _{CC}		V _{CC} + 0.2	٧	30 .v
V _{OL}	Output Low Voltage					0.4	٧	I _{OL} = 2.1 mA
VOH	Output High Voltage	money e De	14	V _{CC} - 0.8			٧	$I_{OH} = -2.5 \text{mA}$
los	Output Short Circuit Cur	rent	6	IN THE DESIGNATION OF THE PARTY	en consultation but	100	mA	TUPTUO

NOTES

- 1. Minimum D.C. input voltage is -0.5V. During transitions, the inputs may undershoot to -2.0V for periods less than 20 ns. Maximum D.C. voltage on output pins is $V_{CC} + 0.5$ V which may overshoot to $V_{CC} + 2$ V for periods less than 20 ns.
- 2. Operating temperature is for commercial product defined by this specification. Extended temperature options are available in EXPRESS and Automotive versions.
- 3. Typical limits are at $V_{CC} = 5V$, $T_A = +25$ °C.
- 4. \overrightarrow{CE} is V_{CC} $\pm 0.2V$. All other inputs can have any value within spec.
- Maximum current value is with outputs O₀ to O₇ unloaded.
- 6. Output shorted for no more than one second. No more than one output shorted at a time. I_{OS} is sampled but not 100% tested.

READ OPERATION lute Maximum Fatings" may cause permana

A.C. CHARACTERISTICS(1) 0°C < TA < +70°C

		Vcc ±5%	offiner co	0°081	N87C25	7-200V05	enute	тедтеТ е	Storage
Versions(3)		V _{CC} ± 10%	87C257-170V10		1 104 LIFE	-200V10 7-200V10	87C257 N87C25	Units	
Symbol	Characteristi	C mone a	Min	Max/a	Min V	Max	Min	Max	Ball
t _{ACC}	Address to Output Delay	ig tables ai	followin	170	Ground	200	R ritiw aga	250	ns
t _{CE}	CE to Output Delay			170	er i ui vi	200	rithe eps	250	ns
toE	OE to Output Delay			58 10.	2V to +7	75	bnuo	100	ns
t _{DF} (2)	OE High to Output High Z			35		40	MOITA	55	ns
t _{OH} (2)	Output Hold from Address OE Change-Whichever is		0	OS Inputs	Ald boa J	TICS T	etaêto	СНАВА	ns
t _{LL}	Latch Deselect Width	XBM	35	NUM 2016	50	19751	60	K	ns
t _{AL} (2)	Address to Latch Set-Up	01+	7		15	- Imani	25	auguo I	ns
t _{LA}	Address Hold from LATCH	1 07	23		30	by sw	40	O ooV	ns
t _{LOE} V	ALE to Output Enable	1.0	23		30 ald	Sta	40	rilliw	ns

NOTES:

- 1. See A.C. Testing Input/Output Waveforms for timing measurements.
- 2. Guaranteed and sampled.
- 3. Model Number Prefixes: No Prefix = CERDIP.

A.C. CONDITIONS OF TEST

Input Rise and Fall Times (10% to 90%) 10 ns
Input Pulse LevelsVoL to VoH
Input Timing Reference Level 1.5V
Output Timing Reference LevelVII and VIH

4. CE is Voc ± 0.2V. All other inputs can have any value within so 5. Maximum current value is with outputs Go to Oy unloaded.

A.C. WAVEFORMS

NOTES:

- 1. This parameter is only sampled and is not 100% tested.
- 2. OE may be delayed up to t_{CE}-t_{OE} after the falling edge of CE without impact on t_{CE}.

CAPACITANCE(1) TA = 25°C, f = 1.0 MHz

Symbol	nesto es Parameter ed ta	Max	Units	Conditions		
CIN	Address/Control Capacitance	6	pF	$V_{IN} = 0V$		
Cout	Output Capacitance	12	pF	Vout = 0V		

1. Sampled. Not 100% tested.

A.C. TESTING INPUT/OUTPUT WAVEFORM

DEVICE OPERATION Subola sused freetus

Table 1 lists 87C257 operating modes. Read mode requires a single 5V power supply. All input levels are TTL or CMOS except A9 in inteligent Identifier mode and Vpp.

Table 1. Mode Selection

einT OND bas ac Pins	CE	OE	Ag	Ao	ALE/	Vcc	Outputs
Mode of ald agos as	as close	equency, be placer	bluode -	1.0	Vpp	ML2 DO	×
Read TA a aeolyeb in	VIL	10 VILIBRI	χ(1)	X	A-BA X	5.0V	Dout
Output Disable	VIL	V _{IH}	CI/X	X	30 X	5.0V	High Z
Standby We epstlov an	VIH	X	X	X	30 X	5.0V	High Z
Programming	VIL	V _{IH}	X	X	(Note 4)	(Note 4)	DIN
Program Verify	VIH	VIL	X	Xaen	(Note 4)	(Note 4)	D _{OUT}
Optional Program Verify	VIL VIL	V _{IL}	X	X	V _{CC} (Note 4)	(Note 4)	PIR DOUT
Program Inhibit	VIH	V _{IH}	X	X	(Note 4)	(Note 4)	High Z
inteligent Identifier(3) -Manufacturer	VIL	VIL	V _H (2)	VIL	X	V _{CC} sho	89 H
inteligent Identifier(3) -87C257	ong V _{IL} a "	Villo	V _H (2)	VIH	lally reduces andby Mode p state, indepe	ta en VCC / =	24 H

NOTES:

1. X can be V_{IL} or V_{IH} . 2. $V_{H} = 12.0V \pm 0.5V$.

3. A_1-A_8 , $A_{10-12}=V_{IL}$, $A_{13-14}=X$. 4. See Table 2 for V_{CC} and V_{PP} programming voltages.

Read Mode

The 87C257 has two control functions; both must be logically active to obtain data at the outputs. Chip Enable ($\overline{\text{CE}}$) is the power control and the device-select. Output enable ($\overline{\text{OE}}$) gates data to the output pins by controlling the output buffer. When the address is stable (ALE = V_{IH}) or latched (ALE = V_{IL}), the address access time (t_{ACC}) equals the delay from $\overline{\text{CE}}$ to output (t_{CE}). Outputs display valid data t_{OE} after the falling edge of $\overline{\text{OE}}$, assuming t_{ACC} and t_{CE} times are met.

The 87C257 reduces the hardware interface in multiplexed address-data bus systems. Figure 4 shows a low power, small board space, minimal chip 87C257/microcontroller design. The processor's multiplexed bus (AD₀₋₇) is tied to the 87C257's address and data pins. No separate address latch is needed because the 87C257 latches all address inputs when ALE is low.

The ALE input controls the 87C257's internal address latch. As ALE transitions from V_{IH} to V_{IL} , the last address present at the address pins is retained. The $\overline{\text{OE}}$ control can then enable EPROM data onto the bus.

Figure 4. 80C31 with 87C257 System Configuration

Standby Mode

The standby mode substantially reduces V_{CC} current. When $\overline{CE}=V_{IH}$, the standby mode places the outputs in a high impedance state, independent of the \overline{OE} input.

Two Line Output Control

EPROMs are often used in larger memory arrays. Intel provides two contol inputs to accommodate multiple memory connections. Two-line control provides for:

- a) the lowest possible memory power dissipation,
- b) complete assurance that output bus contention will not occur.

To efficiently use these two control inputs, an address decoder should enable $\overline{\text{CE}}$ while $\overline{\text{OE}}$ should be connected to all memory-array devices and the system's $\overline{\text{READ}}$ control line. This assures that only selected memory devices have active outputs while deselected memory devices are in low-power standby mode.

SYSTEM CONSIDERATIONS

EPROM power switching characteristics require careful device decoupling. System designers are interested in three supply current (ICC) issues-standby current levels, active current levels, and transient current peaks produced by falling and rising edges of Chip Enable. Transient current magnitudes depend on the device outputs' capacitive and inductive loading. Two-Line Control and proper decoupling capacitor selection will suppress transient voltage peaks. Each device should have a 0.1 µF ceramic capacitor connected between its V_{CC} and GND. This high frequency, low inherent-inductance capacitor should be placed as close as possible to the device. Additionally, for every eight devices, a 4.7 µF electrolytic capacitor should be placed between V_{CC} and GND at the array's power supply connection. The bulk capacitor will overcome voltage slumps caused by PC board trace inductances.

PROGRAMMING MODES

Caution: Exceeding 14V on V_{PP} will permanently damage the device.

Initially, and after each erasure, all EPROM bits are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" are programmed, the data word

3. A1-A8. A10-12 = VIL. A13-14 = X.

VII

can contain both "1s" and "0s". Ultraviolet light erasure is the only way to change "0s" to "1s".

The programming mode is entered when V_{PP} is raised to its programming voltage (see Table 2). Data is programmed by applying an 8-bit word to the output pins (O_{0-7}) . Pulsing \overline{CE} to TTL-low while $\overline{OE} = V_{IH}$ will program data. TTL levels are required for address and data inputs.

Program Inhibit

The Program Inhibit mode allows parallel programming of multiple EPROMs with different data. With VPP at its programming voltage, a $\overline{\text{CE}}$ -low pulse programs the desired EPROM. $\overline{\text{CE}}$ -high inputs inhibit programming of non-targeted devices. Except for $\overline{\text{CE}}$ and $\overline{\text{OE}}$, parallel EPROMs may have common inputs.

Program Verify

With V_{PP} and V_{CC} at their programming voltages, a verify (read) determines that bits are correctly programmed. The verify is performed with $\overline{CE} = V_{IL}$ and $\overline{OE} = V_{IL}$. Valid data is available t_{OE} after \overline{OE} falls low.

Optional Program Verify

The optional verify allows parallel programming and verification when several devices share a common bus. It is performed with $\overline{CE} = \overline{OE} = V_{IL}$ and $V_{PP} = V_{CC} = 6.25V$. The normal read mode is then used for program verify. Outputs will tri-state depending on \overline{OE} and \overline{CE} .

tion to determine when the addressed byte is correctly programmed. The algorithm terminates if 25 100 us pulses fall to program a byte. Figure 5 shows the Quick-Pulse Programming algorithm flowchart.

The entire program-pulse/byte-verify sequence is performed with $V_{\rm CC}=6.25{\rm V}$ and $V_{\rm PP}=72.75{\rm V}$. When programming is complete, all bytes should be compared to the original data with $V_{\rm CC}=5.0{\rm V}$.

Afternate Programming

Intel's 27C256 and 27256 Outok-Pulse Programming algorithms will also program the 87C257. By overriding a check for the intelligent Identifier, older or non-upgraded PROM programmers can program the 87C257. See Intel's 27C256 and 27256 data sneets for programming waveforms of these alternate algo-

inteligent IdentifierTM Mode

The inteligent Identifier Mode will determine an EPROM's manufacturer and device type. Programming equipment can automatically match a device with its proper programming algorithm.

This mode is activated when programming equipment forces 12V ± 0.5 V on the EPROM's A_9 address line. With A_1-A_8 , $A_{10}-A_{12}=V_{IL}$ (A_{13-14} are don't care), address line $A_0=V_{IL}$ will present the manufacturer's code and $A_0=V_{IH}$ the device code (see Table 1). When $A_9=V_{IH}$ ALE need not be toggled to latch each identifier address. This mode functions in the 25°C ± 5 °C ambient temperature range required during programming.

ERASURE CHARACTERISTICS (FOR CERDIP EPROMS)

Exposure to light of wavelength shorter than 4000 Angstroms (Å) begins EPROM erasure. Sunlight and some fluorescent lamps have wavelengths in the 3000–4000Å range. Constant exposure to room-level fluorescent light can erase an EPROM in about 3 years (about 1 week for direct sunlight). Opaque labels over the window will prevent unintentional erasure under these lighting conditions.

The recommended erasure procedure is exposure to 2537Å ultraviolet light. The minimum integrated dose (intensity x exposure time) is 15 Wsec/cm². Erasure time using a 12000 $\mu\text{W/cm}^2$ ultraviolet lamp is approximately 15 to 20 minutes. The EPROM should be placed about 1 inch from the lamp. The maximum integrated dose is 7258 Wsec/cm² (1 week @ 12000 $\mu\text{W/cm}^2$). High intensity UV light exposure for longer periods can cause permanent damage.

System reliability is enhanced by Intel's CHMOS EPI-process techniques. Protection on each data and address pin prevents latch-up; even with 100 mA currents and voltages from -1V to Vgc + 1V. Additionally, the Vpp pin is designed to resist latch-up to the 14V maximum device limit.

Quick-Pulse Programming™ Algorithm

The Quick-Pulse Programming algorithm programs Intel's 67C257 EPROM. Developed to substantially reduce production programming throughput time, this algorithm can program a 67C257 in under four seconds. Actual programming time depends on the PROM programmer used.

The Quick-Putes Programming algorithm uses a 100 microsecond initial-putes followed by a byte verifica-

CHMOS NOISE CHARACTERISTICS

System reliability is enhanced by Intel's CHMOS EPI-process techniques. Protection on each data and address pin prevents latch-up; even with 100 mA currents and voltages from -1V to $\text{V}_{\text{CC}}+1\text{V}$. Additionally, the V_{PP} pin is designed to resist latchup to the 14V maximum device limit.

Quick-Pulse Programming™ Algorithm

The Quick-Pulse Programming algorithm programs Intel's 87C257 EPROM. Developed to substantially reduce production programming throughput time, this algorithm can program a 87C257 in under four seconds. Actual programming time depends on the PROM programmer used.

The Quick-Pulse Programming algorithm uses a 100 microsecond initial-pulse followed by a byte verifica-

tion to determine when the addressed byte is correctly programmed. The algorithm terminates if 25 100 µs pulses fail to program a byte. Figure 5 shows the Quick-Pulse Programming algorithm flowchart.

The entire program-pulse/byte-verify sequence is performed with $V_{CC} = 6.25V$ and $V_{PP} = 12.75V$. When programming is complete, all bytes should be compared to the original data with $V_{CC} = 5.0V$.

Alternate Programming

Intel's 27C256 and 27256 Quick-Pulse Programming algorithms will also program the 87C257. By overriding a check for the inteligent Identifier, older or nonupgraded PROM programmers can program the 87C257. See Intel's 27C256 and 27256 data sheets for programming waveforms of these alternate algorithms.

D.C. PROGRAMMING CHARACTERISTICS TA = 25°C ±5°C TAVAW DMMANAROOAT

Table 2

Symbol	Parameter		Test Conditions		
	Parameter	Min	Max	Unit	Test conditions
ILI	Input Current (All Inputs)		1.0	μА	$V_{IN} = V_{IL} \text{ or } V_{IH}$
V _{IL}	Input Low Level (All Inputs)	-0.2	0.8	V	AV S VA
V _{IH}	Input High Level 2.0 V _{CC} + 0.5 V		V	1 13 N	
VOL	Output Low Voltage During Verify		0.4	V	$I_{OL} = 2.1 \text{ mA}$
VOH	Output High Voltage During Verify	V _{CC} - 0.8		V	$I_{OH} = -400 \mu A$
ICC2 ⁽³⁾	V _{CC} Supply Current		30	mA	7 48
I _{PP2} (3)	V _{PP} Supply Current (Program)		50	mA	CE = VIL
V _{ID}	A ₉ int _e ligent Identifier Voltage	11.5	12.5	V	
V _{PP} (1)	Programming Voltage	12.5	13.0	V	LIBA
V _{CC} (1)	Supply Voltage During Programming	6.0	6.5	V	2 2

A.C. PROGRAMMING CHARACTERISTICS

 $T_A = 25$ °C ± 5 °C; see Table 2 for V_{CC} and V_{PP} voltages.

Symbol	Parameter		Conditions			
	o S	Min	Тур	Max	Unit	O
t _{AS}	Address Setup Time	2			μs	TTD TO NO.
toes	OE Setup Time	2			μs	BH C
t _{DS}	Data Setup Time	2		100	μs	nol8 loge 3300
t _{AH}	Address Hold Time	0			μs	
t _{DH}	Data Hold Time	2		T	μs	The la
t _{DFP} (2)	OE High to Output Float Delay	0		130	ns	hithrabi asi V= SI-4
t _{VPS} (1)	V _{PP} Setup Time	2			μs	The adopt
tvcs(1)	V _{CC} Setup Time	2			μs	13 15 2
t _{PW}	CE Program Pulse Width	95	100	105	μs	Pagint
toE	Data Valid from OE			150	ns	1 48 12 18

NOTES:

3. The maximum current value is with outputs 00 to 07 unloaded.

V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
 This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven-see timing diagram.

NOTES:

- 1. The input timing reference level is $V_{IL}=0.8V$ and $V_{IH}=2V$.
- 2. toE and toEP are device characteristics but must be accommodated by the programmer.
- 3. To prevent device damage during programming, a 0.1 µF capacitor is required between Vpp and ground to suppress spurious voltage transients.
- 4. During programming, the address latch function is bypassed whenever Vpp = 12.75V or A9 = VH. When Vpp and A9 are at TTL levels, the address latch function is enabled, and the device functions in read mode.
- 5. Vpp can be 12.75V during Blank Check and Final Verify; if so, CE must be VIH.

87C75PF MICROCONTROLLER PERIPHERAL I/O PORT EXPANDER WITH 32Kx8 EPROM

- 2 Configurable 8-bit I/O Ports
 - Open Drain
 - Quasi-bi-directional
 - CMOS
- 32K x 8 EPROM
 - 200nS Access Time
- Quick-Pulse ProgrammingTM Algorithm
 4 Second Programming
- **■** Configuration Registers
 - Relocate the EPROM in Memory
 - Relocate the SFRs in Memory
 - Programmable RESET Level
 - Double or Single Plane Operation

- No-Glue Microcontroller Interface
 - Programmable Memory Map
 - Programmable Control Signals
 - Built-in Address Latches
 - Integrated Address Decoder
- **Special Function Registers (SFRs)**
 - Port Latch Read/Write
 - Port Pin Read
- Low Power CHMOS-II-E
 - TTL Compatible
- 40-Pin DIP, 44-Lead PLCC (See Packaging Spec., Order #231369)

The microcontroller peripheral Port Expander contains two 8-bit bi-directional I/O ports, a 32K x 8 EPROM, fully multiplexed address/data pins, and a user-configurable architecture. A microcontroller that accesses external memory must use two of its 8-bit I/O ports for multiplexed address/data lines. The Port Expander recovers these two ports while supplying needed EPROM memory. Considerable board space and design time can be saved by replacing discrete memory, port, address-decoder, address-latch, and glue chips with a single Port Expander chip.

User-programmable options allow "no-glue" interfacing with 8051, 8096, and 80188 microcontroller families. EPROM and port addresses can be relocated within dual-64K-byte memory planes. Non-standard-architecture microcontrollers (68xx, 63xx, Z8xx, etc.) require only minimal "glue" chips to interface with the Port Expander. The programmable RESET input will conform to various microcontrollers. Its flexible architecture allows applications to use multiple Port Expander chips.

The device's flexibility accommodates several microcontroller architectures. Its default mode is ideal for dual-memory-plane 8051 applications. A single plane option conforms to 80188, 68xx, and 8-bit-mode 8096 architectures. The memory-plane overlap option allows address-constrained systems and 8051 systems that have code compiled from high-level languages to use multiple Port Expanders.

*CHMOS is a patented process of Intel Corporation.

ARCHITECTURE

Intel's 8051-family and the 87C75PF form the most versatile, integrated microcontroller combination in the industry. No other solution provides a microcontroller, 32K-bytes of EPROM and port expansion in only two chips. Also, the 87C75PF takes full advantage of the 8051's separate program- and datamemory planes. The 87C75PF uses all sixteen address/data lines and all of the 8051's control signals to access two 64K-byte memory planes. In fact, this architecture accommodates two 87C75PFs — 64K-bytes of EPROM and 4 ports — still leaving room for 60K of RAM and other features.

The 87C75PF's versatility makes possible minimumchip solutions for other microcontroller architectures, too. Single memory-plane modes are user programmable for no-glue interfaces to 8096BH, 80C196, 8098, and 80188 controllers.

Flexible Memory Map

Programmable memory map options will customize the 87C75PF for any application. Intel's 8051 and 8096 microcontrollers have boot-up locations in the lower half of their memory maps. The 87C75PF's EPROM defaults to low memory for these controllers. 80188, 68xx, and 63xx microcontrollers use high-memory boot-up (code and vector) addresses. A user programmable option will move the 87C75PF's EPROM to the device's high-memory addresses. Special Function Registers and port addresses can also be moved to any 2K-byte address boundary.

Programmable Control

Reset level varies depending on the microcontroller family. The 87C75PF's reset (RST) is active-high to match the 8051. Other microcontrollers have active-low reset. A programmable active-low reset option will configure the 87C75PF for these controllers.

Versatile I/O Ports Of bruong of nig sidt equal to

The 87C75PF has two 8-bit I/O ports. Port 1 is open-drain and port 2 is quasi-bi-directional. The open-drain port can be used for high impedance inputs or "wire-ORed" input/outputs. The quasi-bi-directional port can be used as inputs with built-in pull-up resistors or as low-current-drive outputs. Alternate modes allow either port to have active pull-up (CMOS) outputs. This output mode provides higher current, faster switching, and low power port drive.

Minimum Chip Microcontroller Solution

Primary applications are: 1) single-chip microcontroller systems that have outgrown the controller's internal code-memory and 2) multiple-chip systems that need features-integration, such as redesigned applications that recover ports with discrete components. Typical memory expansion requires EPROM, port expander chips, address latches, address decoder and glue-logic chips — all are incorporated in the 87C75PF (Figure 1).

Figure 2. 40-Pin Dip Package

Figure 3. 44-Lead PLCC Package

PIN DESCRIPTIONS

Cumbal	Pin N	umber	tel's 8051-tamily and the 870 notion The most Primary applicat						
Symbol	DIP PLCC		realile, integrated microcontroller combination in ler systems that						
sTRN/qV lesigned appl s components EPROM, po dress decode porated in th		y ans 2) r tegration, iver ports i expansion address i hips — al	In operating mode, VPP/RST is V _{IL} or V _{IH} and serves as the reset input. RST is user programmable as active-high or active-low via the Control Level Register (CLR.7). When RST is asserted, ports are set to inputs in non-CMOS mode or 1's in CMOS mode. With RST asserted, port-writes have no affect; port-latch-reads return "1s". VPP is the programming supply-voltage input.						
CE	2	3.01	CE, the master device enable input, is active-low. When asserted, data can be written and read to/from the device. When CE is not asserted, the memory is in standby and cannot be accessed; ports cannot be accessed but maintain their current active states.						
A ₁₅ -A ₈	3-10	4-1138	High-order addresses flow into the device when ALE = V_{IH} and are latched when ALE = V_{IL} .						
GND	19	12,34	VSS (Ground) pins. HE8008 of separatril oulp-on tot eldarmas						
AD ₇ -AD ₀	12–19	14-21	Multiplexed low-order address/data. After ALE latches addresses, these pins input or output data depending on RD, WR/PGM, and PSEN.						
PSEN	20 // 20 //	22 De 80 DE	This active-low pin is the Program Store ENable. EPROM or non-volatile registers are read if this pin is asserted. If bit ELR.6 is programmed ("0"), PSEN and RD are internally combined. If either or both of these signals is V _{IL} , EPROM or SFR data is accessed depending on the address. When VPP is at its programming voltage, PSEN and RD are internally combined, as described above. This allows a resident microcontroller to use its READ signal to verify programmed data during in-system programming.						
P2.0-P2.7	21-28	24-31	8-bit I/O port pins with Quasi-bi-directional (internal pull-up) outputs. All Port 2 pins can be configured as CMOS outputs by programming Control Level Register bit CLR.5.						
ALE	29 Mas 9 qkG	32 32	Addresses flow through the latches to address decoders when ALE = V _{IH} . ALE's falling edge latches all addresses independent of CE. PSEN, RD, and WR/PGM are non-functional when ALE is V _{IH} . Read and write modes are possible only when ALE is V _{IL} :						
50 2014 50 2014 50 2014 57 2012 57 2012 53 2010 53 2010	30	33 8 A A A A A A A A A A A A A A A A A A	During normal operation, $\overline{\text{RD}}$ is used to read information from the SFRs. If bit ELR.6 = "0", $\overline{\text{RD}}$ and $\overline{\text{PSEN}}$ are internally combined (see $\overline{\text{PSEN}}$ pin description). During programming, $\overline{\text{RD}}$ and $\overline{\text{PSEN}}$ are internally combined when VPP is at its programming voltage. This pin's location is the same as a megabit EPROM's GND pin. For compatibility with PROM programmers that force this pin to ground, $\overline{\text{RD}}$ becomes nonfunctional when P1.0 is at V _H .						
P1.0-P1.7 3.4 C SE 5.54 C SE 5.54 C SE 6.59 C SE 8.59 C SE 8.50 C	31-38	35-42	General purpose 8-bit open-drain I/O port pins. When P1.0 is at V _H (12V) the Configuration Plane can be accessed (see the Mode table) and RD is internally disabled. To prevent device damage, Port 1 must be reset, by RST, or have a "1" written to P1.0 before V _H is applied to P1.0. All Port 1 pins can be configured as CMOS outputs by programming Control Level Register CLR.6.						
WR/PGM	39	43	The active-low $\overline{WR}/\overline{PGM}$ is used to write data to the SFRs, During programming (VPP = 12.75V), the SFRs cannot be written, and this signal becomes the program-pulse control input.						
VCC	40	44	This pin is the supply voltage input.						

EXTENDED TEMPERATURE (EXPRESS) uC PERIPHERAL

Intel's EXPRESS microcontroller and applicationspecific peripheral families receive additional processing to enhance product characteristics. EX-PRESS processing is available for several microcontrollers, EPROMs, and peripheral products allowing the appropriate device to match custom system applications. EXPRESS devices are available with 168 ±8 hour, 125°C dynamic burn-in using Intel's standard bias configuration. This process meets or exceeds most industry burn-in specifications. The standard EXPRESS operating temperature range is 0°C to +70°C. EXPRESS extended operating temperature range (-40°C to +85°C) and automotive temperature range (-40°C to +125°C) products are also available. Like all Intel products, the EXPRESS family is inspected to 0.1% electrical AQL. This allows reduction or elimination of incoming testing.

AUTOMOTIVE AND EXPRESS PRODUCT FAMILY

PRODUCT DEFINITIONS

Туре	Operating Temperature (°C)	Burn-in 125°C (hr)
Q	0°C to +70°C	168 ±8
Т	-40°C to +85°C	NONE
L	-40°C to +85°C	168 ±8

AUTOMOTIVE AND EXPRESS OPTIONS

Speed	Packaging Options						
Versions	CERDIP	PLCC					
	Contact your						
H0090	local Intel Sales Office for EXPRESS	10000					
	product availability	3W					

Figure 4. The Port Expander's 3-Plane Memory Map

MEMORY MAP

The Port Expander contains three memory planes — EPROM plane, special function register/RAM (or SFR/RAM) plane, and the configuration plane. Figure 4 shows the three memory planes.

The EPROM's default location (in an erased device) is at the bottom 32K bytes (0000h to 7FFFh) of the 64K-byte EPROM plane. The default location of the special function register block is F800h to FFFFh in the SFR/RAM plane. Non-volatile registers (NVRs) are mapped at addresses 7FFDh through 7FFFh in the configuration plane.

Non-volatile registers are used to program the locations of the EPROM, SFR block, and other features (see Figure 7). In normal operating mode, the configuration plane cannot be accessed; only the EPROM and SFR/RAM planes are available. During programming/verification, the plane select register, PSR, (SFR default location F810h) determines which plane — EPROM or configuration — is accessed. The EPROM array is programmed/verified if PSR contains xxxxxxx01b (X1h). The configuration plane is programmed/verified if PSR contains xxxxxxx10b (X2h) before Vpp is raised to 12.75V.

NVRs in the configuration plane are also read if pin P1.0 = V_H (12V) while V_{PP} = TTL. This allows PROM programmers to identify the device, download its configuration, and program duplicates accordingly.

ARCHITECTURE FLEXIBILITY

The Port Expander can operate in several configurations. The configuration plane's non-volatile registers configure the device for microcontroller-architecture compatibility.

8051 architecture accommodates two 64K-byte memory planes — program-memory and data-memory planes. In its default mode (erased) the device is configured with these two independently addressable planes — a perfect companion for the 8051 family.

Many other 8-bit microcontrollers (8096BH, 8098, Z8xx, 68xx, etc.), and 8051s with code compiled from high-level languages, can handle only one 64K-byte memory plane. Another mode configures the device for single plane operation — again, a perfect 8-bit microcontroller companion device.

Often, more than two external ports and greater than 32K-bytes of external EPROM are required in single-memory-plane applications. Another mode allows two Port Expanders to supply 60K-bytes of EPROM and four 8-bit I/O ports — still leaving 4K-bytes for other read/write devices.

Double-plane Applications

The default configuration has two memory planes; program (EPROM) and data (SFR/RAM). This configuration is consistent with the 8051 architecture. The EPROM plane is read-only and is accessed by PSEN. The SFR/RAM plane is a read/write plane that is accessed by the RD and WR/PGM inputs. These signals and the sixteen address inputs provide two 64K-byte memory-planes.

Single-plane Applications

Many microcontroller architectures have only one 64K-byte memory plane. One way to configure the device for a single-plane is to simply tie PSEN and RD together and connect the combined read signal to the system's READ line.

8051 machine code compiled from high-level languages often can't deal with separate program- and data-planes. Systems using high-level languages usually form one 64K-byte memory plane by combining PSEN and RD into a common READ signal (by using an AND gate).

The Port Expander provides a better solution. If the EPROM Location Register bit ELR.6 is programmed, PSEN and RD are combined internally to form a common READ signal. Either of these signals can be used to gate data from the EPROM plane and/or SFR/RAM plane to the outputs. In effect, this mode forms a single 64K-byte memory plane. For 8051 high-level-language systems, no external glue is required to "AND" PSEN with RD. The 8051's PSEN and RD signals can be connected directly to the Port Expander's corresponding inputs. Single-plane, non-8051 microcontroller systems need to route their READ line to either, or both, PSEN or RD. If only one input is used, the other must be tied high.

Overlapped Single Plane based as a base base

Two Port Expanders can fit in a single-memory-plane system by programming the configuration plane's non-volatile registers. To accomplish this, each device must have its SFR block mapped over a portion of its EPROM array. The SFR block can be placed on any 2K-byte boundary by programming the SFRLR. EPROM Location Register bit ELR.7 allows the EPROM to be moved to high memory or to remain in its default low-memory location. Programming ELR.6, the overlap bit, allows the EPROM plane to be mapped over the SFR/RAM plane; this also internally combines PSEN and RD. 2K EPROM bytes located at the SFR block's base-address are disabled and replaced by the 2K-byte SFR block.

Figure 5 shows various memory configurations.

Figure 5. A Few Possible Memory Plane Configurations

The Port Expander provides a better soluMORGA

The Port Expander contains a 32,768 x 8-bit EPROM. When erased, the EPROM is located between EPROM plane addresses 0000h and 7FFFh. This is a common boot-up address range for most microcontrollers, including 8051 and 8096 families. For microcontrollers that reset in high addresses, the EPROM can be relocated to device addresses 8000h through FFFFh via the EPROM Location Register. This also allows systems to use two Port Expanders — one with EPROM at low-memory and the other with EPROM relocated at high-memory.

When a valid address is present, PSEN controls EPROM access. Asserting PSEN during non-valid addresses places device outputs at high impedance.

SPECIAL FUNCTION REGISTERS (SFRs)

SFR addresses described below and in Figure 6 are default in an erased device. A 2K-byte block (default locations F800h through FFFFh) is reserved for ports, plane select register (PSR), and future features. The SFR/RAM-block base address can change depending on the SFRLR's five most-significant bits (Figure 10). Only five SFR/RAM-block locations are defined. Accessing any other addresses in this block places the external bus in a high impedance state allowing external devices to occupy these locations.

Ports are accessed by reading or writing the SFRs. Port 1 and Port 2 latch data is read/written by accessing locations F800h and F801h. F802h through F807h are reserved for future port latches. Port 1 and Port 2 pins are read at F808h and F809h. Writing to these locations has no effect. F80Ah through F80Fh are reserved for future port-pin locations.

F810h is a two-bit read/write plane select register (PSR). During program/verify, PSR's value before $V_{PP}=12.75V$ determines whether the EPROM- or configuration-plane is accessed. If PSR contains xxxxxx01b, the EPROM plane is programmed and verified. If PSR contains xxxxxxx10b, configuration plane registers will be programmed and verified. In operating mode, the configuration plane cannot be accessed. However, in the configuration read mode (P1.0 = V_H and $V_{PP}=TTL$) configuration registers can be read (only) and the SFRs can be written (only).

Figure 6. SFR Memory Map

CONFIGURATION PLANE

Non-Volatile Registers (NVRs)

The configuration plane contains the inteligent Identifier TM and non-volatile registers. This plane is read:

- 1) if P1.0 = V_H (V_H = 12V ±1V) while V_{PP} = TTL or
- 2) if PSR contains xxxxxx10b while Vpp = 12.75V.

Inteligent Identifier codes are at 0000h (manufacturer) and 0001h (device). NVRs are at 7FFDh (CLR), 7FFEh (ELR), and 7FFFh (SFRLR).

NVRs are programmed/verified by writing xxxxxx10b to PSR before V_{PP} = 12.75V; inteligent Identifier bytes are read-only. Figure 7 shows the configuration plane's NVR locations. Condition 1) above allows PROM programmers to check the device's configuration and locate the SFRs and EPROM. NVRs are EPROM cells which, when erased, contain "1s".

Figure 7. Configuration Plane Memory Map

Control Level Register (CLR)

The Control Level Register, CLR (7FFDh), is used to change the RST pin's active level and port output drive. RST is active-high and CMOS port-drive is disabled in an erased device. If the reset level bit, RSTL (CLR.7), is programmed ("0"), RST is active-low. Port 1 and/or Port 2 outputs will be CMOS if P1C (CLR.6) and/or P2C (CLR.5) are programmed.

Figure 8. Control Level Register (CLR)

EPROM Location Register (ELR)

The EPROM Location Register (ELR) is at 7FFEh. The EPROM location bit, EL (ELR.7), places the EPROM at either top or bottom EPROM-plane addresses. When erased, the EPROM array is at 0000h-7FFFh in the 64K-byte address space. Programming ELR.7="0" places the EPROM at 8000h-FFFFh.

When erased, the overlap option is disabled. EPROM and SFR/RAM blocks are in default locations. PSEN accesses EPROM- and RD accesses the SFR-data.

If the OVERLAP bit, OVLP (ELR.6), is programmed, EPROM and SFR/RAM planes overlap. PSEN and RD are internally combined. If either is V_{IL}, EPROM or SFR data is accessed depending on the address.

If the SFR/RAM block's 2K-byte boundary overlaps the EPROM array and ELR.6=0, the SFR/RAM block replaces 2K EPROM bytes. Accessing non-defined bytes in the 2K-byte space places the external bus in a high-Z state. By programming ELR.6, one-memory-plane microcontrollers (8096, 80188, 68xx) and 8051s with high-level-language-compiled code can use two 87C75PFs.

Figure 9. EPROM Location Register (ELR)

SFR Location Register (SFRLR)

The SFRLR (7FFFh) determines the SFR/RAM block's five most-significant base-address bits; SFRLR.7 = A15, SFRLR.6 = A14, SFRLR.5 = A13, SFRLR.4 = A12, and SFRLR.3 = A11. Programming this register places the SFR/RAM block on any 2K-byte boundary. For example, the SFRs are placed at 2800h by programming 00101xxxb.

Figure 10. SFR Location Register (SFRLR)

If the SFR/RAM block's 2K-byte boundary (1 from

Port 1 has 8 open-drain, bi-directional pins. Pins float if "1s" are written to latches or RST is asserted. They can then serve as high impedance inputs.

P1.0 receives high voltage ($V_H=12V$) during the inteligent Identifier/NVR Mode. P1.0 MUST BE RESET (BY RST OR BY WRITING "1" TO P1.0) BEFORE APPLYING V_H . For megabit PROM programmer compatibility, P1.0 = V_H disables $\overline{\text{RD}}$.

All Port 1 pins are CMOS outputs (TTL level in 200ns, CMOS level in 1us) if P1C is programmed (CLR6 = "0"). Asserting RST or writing "1s" will present CMOS V_{OH} levels. CMOS-configured Port 1 pins should not be used as inputs. Port latch writes occur on WR's rising edge to prevent glitches when changing individual bits; other bits are not affected.

Figure 11. Port 1 Pin Diagram

Port 2 10100 grimmargorq vd d0085 is becald era

Port 2 is an 8-bit quasi-bi-directional port. Writing "1s" asserts short-duration active pull-ups to guarantee CMOS V_{OH} levels within 200ns. Port 2 pins are held high by internal pull-ups allowing them to serve as inputs. Pins pulled low externally source current (I_{IL}). Port 2 latches are set to "1s" upon reset

Programming P2C (CLR.5="0") configures Port 2 as CMOS outputs. Asserting RST or writing "1s" outputs CMOS V_{OH} levels. CMOS-configured Port 2 pins should not be used as inputs. Port latch writes occur on \overline{WR} 's rising edge to prevent glitches when changing individual port bits; other bits are not affected.

Figure 12. Port 2 Pin Diagram

SYSTEM APPLICATIONS

The 87C75PF significantly reduces chip count and interfacing hardware in multiplexed address/data bus systems. Figure 13 shows a low power, small board space, minimum chip design. The controller's multiplexed bus (AD_{0-7}) is tied to the 87C75PF's address/data pins. Separate address latches and address decoders are not needed because the 87C75PF latches all sixteen addresses and decodes internal features within its two 64K-byte memory planes.

ALE controls the 87C75PF's internal address latches. A V_{IH} to V_{IL} transition latches the present address. PSEN, RD, and WR control data-flow between the controller and 87C75PF. 8051, 8096, and 80188 families benefit from the 87C75PF's "noglue" interface.

Figure 13. "No-glue" 80C51 with 87C75PF

Table 4	MADECE	FOTION	OZOZEDE .	41214	configuration show	A corner
I anie i	MUDIE SEI	P-C-110 3Nd	B/U-/DPF	Inerallit	CONTIQUESTION SHOW	wran.

MODE	CE	PSEN	RD	WR/PGM	ALE(6)	Vpp/RST(4)	Vcc	P1.0(2)	AD0-7
Resetti neo stati belda	X(1)	X	X	id tuck	X 10	you VVIA entro	5V	X(10)	X
Read EPROM(12)	VIL	VIL	VIH	VIH	VIL	X	5V	X	D Out
Read SFR(12)	VIL	VIH	VIL	VIH	TE VIDV	S exc Xtt Vpp	01/5V	X	D Out
Single Plane Read(8)	VIL	VILO	r V _{IL}	ViH	VIL	X	5V	X	D Out
Output Disable	VIL	VIH	VIH	X	VIL	X	5V	X	High Z
Write SFR	VIL	VIH	VIH	e V _{IL}	VIL	V _{IL} (14)	5V	X or V _H	Dln
Write Disable	VIL	X	X	VIH	VIL	X	5V	Х	High Z
Read/Write Disable	VIL	al Xgb	X	a A X	VIH	X	5V	X	High Z
Standby Standby	VIH	X	X	X	X	X	5V	X	High Z
Program EPROM/NVR(5)	VIL	VIH	X(11)	VIL	VIL	V _{PP} (3)	V _{CP} (3)	V _H (7)	D In
EPROM/NVR Verify(5)	VIL	VIL	X(11)	VIH	VIL	V _{PP}	VCP	VH	D Out
Program Inhibit	VIH	X	X	X	X	V _{PP}	VCP	X	High Z
Alternate Program	VIL	VIH	VIH	STEVIL	VIL	V _{PP}	V _{CP}	X	DIn
Alternate Verify(9)	VIL	V _{IL} o	r V _{IL}	VIH	VIL	V _{PP}	VCP	X	D Out
NVR Config Read ⁽¹³⁾	VIL	VIL	X	V _{IH}	VIL	χ(7)	5V	VH	D Out
inteligent(13) - Manuf	VIL	V _{IL}	X	езпУн г	VIL	χ(7)	5V	VH	89h
Identifier - Device	VIL	VIL	X	VIH	VIL	X(7)	5V	NH VH	D0h

or apprious writes of invalid data, PSEN, FISATON

- 1. X can be V_{IL} or V_{IH}. Wish output I non the MOTARW
- 2. VH=12.0V ±1V.
- 3. V_{PP} = 12.75V and V_{CP} = 6.25v during programming.
- 4. RST is active-high (erase default shown) or programmable via CLR.7 as active-low.
- 5. The EPROM array is programmed/verified if PSR = X1h. The NVR array is programmed/verified if PSR = X2h. NVRs and inteligent Identifier can be read when $P1.0 = V_H$ and $V_{PP} = TTL$.
- 6. Data cannot be read/written when ALE = V_{IH}. ALE must toggle V_{IH} to V_{IL} to latch addresses.
- 7. Reset must occur via V_{PP}/RST or "1" written to P1.0 before P1.0 = V_H.
- 8. If ELR.6=0, PSEN and RD are internally combined.
- 9. If V_{PP} = 12.75V, PSEN and RD are internally combined. If either is V_{IL}, EPROM (PSR = X1h) or NVR (PSR = X2h) data is verified. If P1.0=V_H, RD is non-functional. If V_{PP}=TTL and P1.0=V_H, only NVRs and inteligent identifier can be read.
- 10. RST sets port latches to "1s". After reset, P1.0 (="1") is protected when VH is applied.
- 11. For programmer compatibility, the 87C75PF's RD is disabled when P1.0 = VH.
- 12. PSEN and RD can be asserted simultaneously unless the EPROM and SFRs overlap & ELR.6=1.
- 13. Addresses must be latched during Identifier/NVR reads.
- 14. RST not asserted.

DEVICE OPERATION offstupfines flusten) 196

Table 1 lists 87C75PF operating and programming modes. Operating modes require a 5V power supply. Programming modes require 12.75V V_{PP}, 6.25V V_{CC}, and 12.0V Identifier/NVR-read voltages. All input levels are TTL or CMOS except V_{PP}, V_{CP}, and V_H.

OPERATING MODES

Reset

RST is an active-high input in an erased device. Programming CLR.7 ("0") makes RST active-low. Asserting RST for 500ns sets port latches to "1s". RST affects no other writable locations. Before a PROM programmer enters the inteligent Identifier/NVR read mode, RST should be asserted (or "1" written to P1.0) to set P1.0's pin. This protects P1.0 from damage by the 12.0V identifier voltage.

EPROM Read Mode

 $\overline{\text{PSEN}}$ enables EPROM data onto AD_{0-7} and controls the device's output buffer. This active-low pin functions only when $\overline{\text{CE}}$ and ALE are asserted. When an address is latched (ALE = V_{IL}), access time (t_{AVDV}) equals the $\overline{\text{CE}}$ to output delay (t_{CLDV}). Outputs display valid data t_{ELDV} after $\overline{\text{PSEN}}$'s falling edge, assuming t_{AVDV} and t_{CLDV} times are met.

SFR Read Mode

 $\overline{\text{RD}}$ enables SFR data onto AD₀₋₇ and controls the device's output buffer. This active-low pin functions only when $\overline{\text{CE}}$ and ALE are V_{IL}. EPROM read mode timing requirements apply to this mode.

Single Plane Read Mode

This mode allows single-plane microcontrollers and 8051-family controllers with high-level-language-compiled code to use an 87C75PF without "glue" devices. It is possible to assert $\overline{\text{PSEN}}$ and $\overline{\text{RD}}$ simultaneously. Data bus conflict will not occur if the SFRs are not memory mapped over EPROM array addresses. If SFR and EPROM addresses overlap, bus conflict can be avoided if the EPROM location register's "Overlap" bit (ELR.6) is programmed. Programming this bit also internally combines $\overline{\text{PSEN}}$ and $\overline{\text{RD}}$. Asserting either (or both) enables EPROM or SFR data, depending on the address, onto AD_{0-7} . See the "Overlapped Single Plane" section for details.

Output Disable Mode

If $\overline{\text{PSEN}}$ and $\overline{\text{RD}}$ are not asserted, the device's output buffers (AD₀₋₇) are disabled. Data can be written to the 87C75PF or transferred to/from other devices.

SFR Write Mode

 $\overline{WR/PGM}$ enables data on AD_{0-7} to be written into the SFRs. This active-low pin functions only when \overline{CE} and ALE are V_{IL} . When an address is latched ($ALE = V_{IL}$) and data has been present for t_{DVWH} , \overline{WR} 's rising edge latches data into an SFR. Other A.C. timing parameters must be observed.

Write Disable

SFR data cannot be written when WR/PGM is high. Low-address and data share common pins, but the device allows new addresses only when ALE is high; data can be written only when ALE is low.

Read/Write Disable

Since the Port Expander uses a multiplexed address/data bus, data can be read or written only if a valid address is latched. To prevent erroneous reads or spurious writes of invalid data, PSEN, RD, and WR/PGM are non-functional when ALE is high; however, new address information can enter the address latches. ALE's falling edge latches the address and enables PSEN, RD, and WR/PGM.

Standby Mode

Standby mode substantially reduces V_{CC} current. $\overline{CE} = V_{IH}$ places output buffers in low-power, high impedance mode independent of \overline{PSEN} , \overline{RD} , or \overline{WR} . Two-line output control ($\overline{CE} + \overline{PSEN}$ or $\overline{CE} + \overline{RD}$) provides:

- a) minimum memory power dissipation, and
- b) assurance that data bus contention will not occur.

To efficiently use two-line control, address decoding circuitry should enable $\overline{\text{CE}}$. $\overline{\text{PSEN}}$ should be connected to the microcontroller's program-store enable ($\overline{\text{PSEN}}$), $\overline{\text{RD}}$ to the controller's data-read enable ($\overline{\text{RD}}$), and $\overline{\text{WR}}/\overline{\text{PGM}}$ to its write control ($\overline{\text{WR}}$). This assures that only selected memory and peripheral devices have active inputs and outputs while non-selected devices are in low-power standby mode.

PROGRAMMING MODES

EPROM/Configuration (NVR) Programming Mode

Initially and after each erasure, all EPROM and NVR bits are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" are programmed, the data word can contain both "1s" and "0s". Ultraviolet light erasure is the only way to change "0s" to "1s".

The programming mode is entered when V_{PP} is raised to its programming voltage. After latching an address, data is programmed by applying an 8-bit word to data pins AD_{0-7} . Pulsing $\overline{WR/PGM}$ to TTLlow while \overline{CE} and ALE are V_{IL} will program data. TTL levels are required for address and data inputs.

To accommodate PROM programmers that force the $\overline{\text{RD}}$ pin to ground (DIP pin 30), applying 12V to port pin P1.0 will internally disable the 87C75PF's $\overline{\text{RD}}$ input. When V_{PP} is not at its programming voltage the device is in the inteligent Identifier mode. When V_{PP} is raised for programming, the inteligent Identifier mode is disabled.

EPROM and NVR Verify

With V_{PP} and V_{CC} at their programming levels and $\overline{\text{CE}}$ asserted, EPROM or configuration data (depending on PSR's contents) can be verified. To simplify on-board and in-system programming, $\overline{\text{PSEN}}$ and $\overline{\text{RD}}$ are internally combined when V_{PP} is at its programming level. Either signal can be used to verify programmed data (if P1.0 is not V_H).

For compatibility with PROM programmers equipped for word-wide megabit EPROMs, DIP-pin 30 — the 87C75PF's $\overline{\text{RD}}$ pin — is internally disabled when P1.0 is V_H.

Program Inhibit

The Program Inhibit mode allows parallel programming and verification of multiple devices with different data. With Vpp at its programming voltage, a

WE/PGM pulse programs any device that has CE asserted. Programming is inhibited on any device with CE not asserted.

Alternate Programming and Verification Modes

For programmers that can apply V_{IH} or V_{CC} to \overline{RD} , the EPROM and NVRs can be programmed using a more conventional slow-motion write-mode-type algorithm. 12V need not be applied to P1.0 to disable the \overline{RD} pin during the alternate programming mode. PSEN and \overline{RD} are internally combined when V_{PP} is applied, and either signal can be used to enable EPROM or NVR data during program verification. See the Quick-Pulse Programming algorithm flow-chart and waveforms at the end of this data sheet.

inteligent IdentifierTM/NVR Mode

Programming equipment determines the device's manufacturer, type, and configuration (NVR contents) by using the inteligent Identifier/NVR Mode. A programmer can read a master device's identifier and NVRs, select the proper algorithm, and program duplicates accordingly.

The configuration plane is accessed by raising port pin P1.0 to V_H = 12.0V. Before P1.0 is brought to V_H, Port 1 must be reset by asserting the V_{PP}/RST pin or by writing a "1" to P1.0's latch. When ALE latches a valid address and PSEN is VIL, identifier/ NVR data appears on Address/Data pins AD0-7. For compatibility with programmers that support megabit EPROMs, RD, which is usually forced to ground, is "don't-care" when P1.0 = VH. When CE, ALE, and PSEN are VIL and P1.0 = VH, identifier/ NVR data can be read. While in this mode, the SFR/ RAM plane cannot be read but can be written. The PSR register can be configured so that either the EPROM or configuration plane is programmed when VPP is raised. This mode's temperature range is 25°C +5°C.

ABSOLUTE MAXIMUM RATINGS*

with CE and appended
Read Operating Temperature 0°C to +70°C(2)
O T
Case Temperature Under Bias 10°C to +80°C(2)
Storage Temperature65°C to +150°C
All Input or Output Voltages 2.0V to +7.0V(1)
with Respect to Ground
Voltage on Pin P1.02.0V to +13.5V(1)
with Respect to Ground
V _{PP} Supply Voltage 2.0V to + 14.0V(1)
with Respect to Ground
with Respect to Ground
at and making the manufacture and has March

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

The programming mode is entered when Vep is

address, data is programmed by applying an 8-bit word to data pins AD_{0-7} . Pulsing WR/PGM to TTL-

low white CE and ALE are Vit will program data. TTL

READ/WRITE BUS OPERATION

D.C. CHARACTERISTICS TTL and NMOS Inputs; see A.C. Characteristics for V_{CC} versions offered

Symbol	bold AV Parameter shi tregi	Notes	Min	Max	Units	M Test Conditions
Llegiveb	Input Load Current (A ₈₋₁₅)	Progr	01/30	1.0	μΑ	V _{IN} = 0V to V _{CC}
ILO	Output Leakage Current (AD ₀₋₇)	unsm -	-tlo	gni.10nsag	μΑ	Vout = 0V to Vcc
Isameb	V _{CC} Current Standby	6	de.	5	mA	CE- inactive, ALE = V _{IL}
lcc	V _{CC} Current Active Vigninosos ante	ilq4		60	mA	CE-active, ALE=V _{IH} f(Hz)=1/t _{AVDV} , l _{OUT} =0 mA
Vieg paid	Input Low Voltage and notation in	er 1 Fre	-0.5	0.8	V	THOW and NVR Verif
VIH	Input High Voltage	PI DIQ .	2.0	V _{CC} +0.5V	V	With Vee and Vee at their on
V _{OL} ne	Output Low Voltage	pin d	-bn	0.45	oliViu	IOL = 2.1 mATE behease E
VOH	Output High Voltage	RVN	2.4	ed, To sim	V	$I_{OH} = -400 \mu A$
los noc	Output Short Circuit Current	5	-016	21 100	mA	Real internally combined w

rogram inning.

The Program Inhibit mode allows parallel programning and verification of multiple devices with differint data. With Vec at its programming voltage, a

Output bring ends at VIH (2.0 VTT) and VIII

D.C. CHARACTERISTICS CMOS Inputs; V_{CC} = see A.C. Characteristics for versions offered.

Symbol	Parameter		Notes	Min	Max	Units	Test Conditions
L	Input Load Current (A ₈₋₁₅)	9		tence	1.0	μА	V _{IN} = 0V to V _{CC}
LO VO	Output Leakage Current (AD ₀₋₇)	21			10	μΑ	V _{OUT} = 0V to V _{CC}
ISB	V _{CC} Current Standby	25	6		eont5losqs	mA	CE-inactive, ALE = V _{IL}
lcc Vo	V _{CC} Current Active	01	3 4		eonatios 45	mA	CE-active, ALE = V _{IH} f(Hz) = 1/t _{AVDV} , l _{OUT} = 0 mA
V _{IL}	Input Low Voltage		1	-0.2	0.8	٧	. Sampled. Not 100% tested.
V _{IH}	Input High Voltage	rai	TOA	0.7 V _{CC}	V _{CC} +0.2V	V	A MENTAL CHITCHES AREAS
VOL	Output Low Voltage			Miles	0.40	V	I _{OL} = 2.1 mA
V _{OH}	Output High Voltage		1	V _{CC} -0.8		٧	$I_{OH} = -400 \mu A$
los	Output Short Circuit Current		5		100	mA	Va.r. Y 1.sv

- 1. Minimum DC input voltage is -0.5V during transitions. Inputs may undershoot to -2.0V for periods less than 20 ns.
- Maximum output-pin DC voltage is $V_{CC} + 0.5V$; overshoot may be $V_{CC} + 2.0V$ for periods less than 20 ns. 2. This specification defines commercial-product operating temperatures. EXPRESS and Automotive versions are available
- 3. CE is V_{CC}±0.2V (87C75PF inactive) or ±0.2V (87C75PF active). Other inputs can have any value within specification. 4. Maximum current value with outputs unloaded.
- 5. One output shorted for no more than one second. Ios is sampled but not 100% tested. With never the never than the second to the second test of the second test of
- 6. Port latches set to "1s"; outputs unloaded.

PORTS/RESET

DC CHARACTERISTICS V -- - - AC Chara

Symbol	Paramet	er	Notes	Min_vo g	Max	Units	Test Conditions
lu	Input Leakage Curre Port 1 Open Drain	1 2	OXXXXXX	из чино		$0.4V \le V_{IN} \le V_{CC}$ P2.x latch = "1", $V_{IN} = 0$ "	
L	Logic 0 current Port 2 (Quasi-bi-directional)			-50 GLIAV SE IRIGIA			
harring.		Ports 1&2	or or or	-0.5	0.2 V _{CC} -0.1	V	MIV
VIL	Input Low Voltage	RST Input	3	-0.5	0.2 V _{CC} -0.1	V	AD ₀₋₇ V _R
	11-12 1-01-4	Ports 1&2		0.2 V _{CC} +.9	V _{CC} +0.5	V	HIV
V _{IH}	Input High Voltage	RST Input	3	0.7 V _{CC}	V _{CC} +0.5	V	Mr. Commence
VOL	Output Low Voltage		energia en esp		0.40	V	I _{OL} = 3.2 mA
	Output High Voltage	CMOS mode		2.4		V	$I_{OH} = -400 \mu A$
		Ports 1&2	E SECTION DATE	0.9 V _{CC}	CONTRACTOR SOCIETY	٧	$I_{OH} = -40 \mu A$
VOH		Quasi-bi-	19	2.4	81	V	$I_{OH} = -60 \mu A$
passen.		dir Port 2	XX	0.9 V _{CC}	*XXXXX	V	$I_{OH} = -10 \mu\text{A}$

- 1. Input Leakage current does not apply to Port 2.
- 2. This specification assumes that Port 2 pins are internally driven to "1" but are externally pulled low
- 3. RST has hysteresis. V_{IL} is valid at or below 0.2 V_{CC} 0.1V. V_{IH} is valid at or above 0.7 V_{CC}.

CAPACITANCE(1) TA = 25°C, f = 1.0MHz

Symbol	Parameter Parameter	Max	Units	Conditions
CIN DOV	Address/Control Capacitance	6	(ar pF) mone	V _{IN} = 0V
Cout	Output Capacitance	12	QA) #PFu0 en	V _{OUT} = 0V
CVPP	RST/VPP Capacitance	25	pF _{clonet}	$V_{IN} = 0V$
CI/O V = 3 1/4	Port Pin Capacitance	10	pF avita	V _{OUT} = 0V

NOTE:

A.C. INPUT/OUTPUT REFERENCE WAVEFORMS

A.C. test inputs are driven at V_{OH} (2.4 V_{TTL}) for a logic "1" and V_{OL} (0.45 V_{TTL}) for a logic "0". Input timing begins at 1.5V. Output timing ends at V_{IH} (2.0 V_{TTL}) and V_{IL} (0.8 V_{TTL}).

A.C. TESTING LOAD CIRCUIT

Input Rise and Fall Times (10% to 90%) ≤ 10 ns. READ AND WRITE WAVEFORMS

^{1.} Sampled. Not 100% tested.

EXPLANATION OF A.C. SYMBOLS

Each timing symbol has five characters. The first is always a "t" (for time). Second and fourth characters represent signal names. Third and fifth represent the signal's logical state. The following list shows character representations. 100 agreet A000A A: Address III MORISE ins ease inso trigil theosen

- A: Address
 C: Chip Enable or VCC Supply Voltage
 D: Data (or instruction)
 E: PSEN or RD Enable
- PSEN or RD Enable
- G: PGM (Program Strobe)
- H: Logic High level

- L: ALE or Latch Enable
- P: VPP Programming Voltage
- Q: Port Output and I no Was galloesex's anothers
- S: RST (Reset Pin)
- T: Time
- V: Valid
- W: Write Enable asks I stations mayord
- X: No longer a valid "driven" logic level
- Z: Float or High-Z level

For example, v a FRS9 no pribnegeb) sensig notice

t_{AVLL} = Time from Address Valid to ALE Low t_{LLEL} = Time form ALE Low to Enable (PSEN or

AC CHARACTERISTICS: READ & WRITE OCC . T. < +70°C

Parameter		Versions	Vcc±5%	87C75PF-200V05		87C75PF-250V05		Unit
No	Symbol	Characteristic 101 Gluec	Notes	Min	Max	Min	Max	VST
1	tLHLL	ALE Pulse Width	ram-	50 A	ocations	68 50 18	grammed	ns
2	tAVLL	Address Valid to ALE Low	ation a	DOL WOULD	relocate	15 vo	त्रमण्ड काण तनननन-	ns
3	tLLAX	Address Hold after ALE Low	A HALE	20	e configu	30	FUB fid 1	ns
4	tLLEL	ALE Low to PSEN or RD Low	- doc	08 20	ay can a	30	bna T.A.	ns
5	tLHDV.	ALE High to Valid Data	nl .		235		305	ns
6	t _{AVDV}	Address Valid to Data Valid	3		200		250	ns
7	tCLDV	CE Active to Data Valid	1,3	all nous	200	ng tine Co	250	ns
8	tELDV	PSEN or RD Low to Data Valid	2,3	momi evil	817510	on plane	100	ns
9	tehdx	PSEN, RD, CE, or Address Invalid — Whichever is first — to Data Invalid	ister, T	per level to	ine contrained SER	denti ⁰ ers.	Address teligent M locatio	ns
10	tEHDZ	PSEN or RD High to Data High-Z	4 4 1	nese latter	35	FFEh, and	45	ns
11	tLLWL	ALE Low to WR Low	con-	ed (20) one	ow the d	30	MORRE	ns
12	twLwH	WR Pulse Width 1000 3981018 e	it -im a	60	onligured	80		ns
13	twhlh	WR High to ALE High	II.	20		30		ns
14	t _{AVWH}	Address Valid to WR High	T Josie	200	d0 txxxx	250	registers r (PSR)	ns
15	tcvwh	CE Active to WR High	it is	200	his plane	250	ed to 12.	ns
16	tovwh	Data Valid to WR High	8 -5116	60	HI OXIII JE	80	125 (JE2411) 11	ns
17	twhox	WR High to Data Invalid		10		20		ns
18	tQVEL	Port Input Valid to RD Low		15		25		ns
19	tEHQX	Data Hold after RD High		0		0		ns
20	twhqv	WR High to Port Output Valid			225		250	ns
21	tsvsx	RST Pulse Width		500		500		ns
22	tsxav	RST Inactive to Address Valid		0		0		ns

- 1. t_{CLDV} is 1 µs during inteligent Identifier/NVR Mode.
- 2. t_{ELDV} is 750 ns during inteligent Identifier/NVR Mode.
- 3. Output load is 100 pF for t_{AVDV} , t_{CLDV} , and t_{ELDV} . 4. Output Load is 5 pF for t_{EHDZ} , which is measured at high-Z \pm 500 mV.

PROGRAMMING

Caution: Exceeding 14V on V_{PP} will permanently damage the device.

Program and Data Planes oldered of the

During programming ($V_{PP}=12.75V$), the SFR/RAM plane is not available, only the EPROM and configuration planes (depending on PSR's value) can be accessed. The SFR/RAM plane is accessed only when V_{PP} is V_{IL} or V_{IH} .

Programming the EPROM Plane

The EPROM array is programmed if the plane select register (PSR) contains xxxxxx01b (X1h) when Vpp is raised to 12.75V. In an erased device, the EPROM array occupies addresses 0000h through 7FFFh and is programmed at these locations. After programming, the array can be relocated to addresses 8000h–FFFFh by programming the EPROM location register bit ELR.7 (EL) in the configuration plane. Alternately, the EPROM array can be relocated first via ELR.7 and programmed at addresses 8000h–FFFFh.

Programming the Configuration Plane

The configuration plane contains five information bytes. Addresses 0000h and 0001h contain read-only inteligent identifiers. The control level register, EPROM location register, and SFR location register are at 7FFDh, 7FFEh, and 7FFFh. These latter three non-volatile registers (NVRs) are made of EPROM cells. EPROM registers allow the device to be configured, or erased and reconfigured, for various microcontroller architectures.

These registers are programmed if the plane select register (PSR) contains xxxxxx10b (X2h) when V_{PP} is raised to 12.75V. Once this plane is entered, it is programmed and verified just like the EPROM plane.

ERASURE CHARACTERISTICS (FOR CERAMIC, WINDOWED EPROMS)

Exposure to light of wavelength shorter than 4000 Angstroms (Å) begins erasure. Sunlight and some fluorescent lamps have wavelengths in the 3000-4000Å range. Constant exposure to room-level fluorescent light can erase an EPROM in about 3 years (about 1 week for direct sunlight). Opaque labels over the window will prevent unintentional erasure under these lighting conditions.

The recommended erasure procedure is exposure to 2537Å ultraviolet light. The minimum integrated Erasure time using a 12000 uW/cm² ultraviolet lamp is approximately 15 to 20 minutes. The EPROM should be placed about 1 inch from the lamp. The maximum integrated dose is 7258 Wsec/cm² (1 week - 12000 uW/cm²). High intensity UV light exposure for longer periods can cause permanent damage.

QUICK-PULSE PROGRAMMINGTM ALGORITHM

The Quick-Pulse Programming algorithm programs Intel's 87C75PF Port Expander. Developed to substantially reduce production programming throughput time, this algorithm allows optimized programming equipment to program an 87C75PF in under four seconds. Actual programming time depends on the PROM programmer used.

The Quick-Pulse Programming algorithm uses a 100 microsecond initial-pulse followed by a byte verification to determine when the addressed byte is correctly programmed. The algorithm terminates if 25 100us pulses fail to program a byte. Figure 14 shows the 87C75PF Quick-Pulse Programming algorithm flowchart.

The entire program-pulse/byte-verify and final verify sequence is performed with $V_{CC}=6.25 V$ and $V_{PP}=12.75 V$. When programming is complete, all bytes should be compared to the original data with $V_{CC}=5.0 V$.

Figure 14. 87C75PF Quick-Pulse ProgrammingTM Algorithm

D.C. PROGRAMMING CHARACTERISTICS TA = 25°C ±5°C

Symbol	Parameter	Notes	Min	Nominal	Max	Units	Test Conditions
ILI	Input Load Current		619	RESET P	1.0	μΑ	$V_{IN} = V_{IL} \text{ or } V_{IH}$
I _{CC2}	V _{CC} Supply Current	2	Page 18	1	60	mA	CE = ALE = VIL
Ірр	V _{PP} Supply Current	2	C	1=0.19	50	mA	$\overline{CE} = \overline{WR} = ALE = V$
V _{IL}	Input Low Voltage	1	-0.2	4 01 01 30	0.8	٧	
VIH	Input High Voltage		2.0	T	V _{CC} +0.5V	٧	
VOL	Verify Output Low Voltage		(MOSIS	SETECT E	0.40	٧	I _{OL} = 2.1 mA
VoH	Verify Output High Voltage		V _{CC} -0.8	I		٧	$I_{OH} = -400 \mu A$
V _{ID}	P1.0 Identifier/Configuration- Read Voltage		11.0	12.0	13.0	٧	
V _{PP}	Programming Voltage	1	12.5	12.75	13.0	٧	
Vcc	Supply Voltage During Programming	1	6.0	6.25	6.5	٧	

NOTES:

V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
 Maximum current value is with Address/Data pins AD₀₋₇ in write mode; port pins are unloaded.

A.C. PROGRAMMING CHARACTERISTICS TA = 25°C ±5°C

Parameter		NOREMENT X				
No	Symbol	Characteristic	Min	Nominal	Max	Units
Α	tLHLL	ALE Pulse Width	100			ns
В	t _{AVLL}	Address Valid to ALE Low	20			ns
С	tLLAX	Address Hold after ALE Low	50			ns
D	toval	Data valid to WR/PGM Low	2			μs
E	tchgl	V _{CC} Setup Time to WR/PGM Low	2			μs
F	tLLGL	ALE to WR/PGM	2			μs
G	tPHGL	V _{PP} Setup Time to WR/PGM Low	2	Contract vitra state of the		μs
Н	tGLGH	WR/PGM Program Pulse Width	95	100	105	μs
1	tGHDX	Data Hold after WR/PGM High	2			μs
J .	t _{DXEL}	Data In Float to PSEN or RD Low	2			μs
K	tELEH	PSEN or RD Verify Pulse Width	150			ns
L	t _{EHLH}	PSEN or RD High to ALE High	0			ns
M	tEHDZ	PSEN or RD High to Instruction/Data High-Z	0		35	ns

Figure 14. 87C75PF Quick-Pulse ProgrammingTM Algorithm

PROGRAMMING WAVEFORMS (For PROM Programmers with RD = GND)

NOTES:

- 1. When Vpp = Programming Voltage, either PSEN or RD will access EPROM (if PSR = x1h) or Configuration (if PSR x2h) Planes and inteligent Identifier mode is disabled.
- 2. RD is Don't-care when P1.0 = V_H .
 3. Port 1 must be RESET or "1" written to P1.0 before V_H is applied to P1.0. All other Port 1 and Port 2 pins should be driven at High-Z or VIH during programming.

PROGRAMMING WAVEFORMS (For PROM Programmers that can have $\overline{RD} = V_{IH}$ or V_{CC})

1. When Vpp = Programming Voltage, either PSEN or RD will access EPROM (if PSR = x1h) or Configuration (if PSR x2h) Planes and inteligent Identifier mode is disabled.

2. RD is Don't-care when P1.0 = V_H.
3. Port 1 must be RESET or "1" written to P1.0 before V_H is applied to P1.0. All other Port 1 and Port 2 pins should be driven at High-Z or VIH during programming.

MCS®-51 Development Support Tools

15

8051 SOFTWARE DEVELOPMENT PACKAGES

COMPLETE SOFTWARE DEVELOPMENT SUPPORT FOR THE MCS®-51 FAMILY OF MICROCONTROLLERS

Intel supports application development for its MCS®-51 family of microcontrollers with a complete set of development languages and utilities. These tools include a macroassembler, a PL/M compiler. linker/relocator program, a librarian utility, and an object-to-hex utility. Develop code in the language(s) you desire, then combine object modules from different languages into a single, fast program. These tools were designed to work with each other, with the MCS-51 architecture, and with the Intel ICE5100 in-circuit emulator. evenue concentre. The PLAI-51 compiler

different levels of optimization for significantly STRUTES

- Support for all members of the Intel MCS-51 family of embedded microcontrollers
 ASM-51 Macroassembler
 Worldwide campies and support.

- Linker/Relocator program all modules and the ability to do syn

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embedied in an Intel product. No other circuit patent licenses are implied. Information contained berein supersedes previously published specifications on these devices from Intel and is subject to change without notice.

© Intel Corporation 1988

September, 1988 Order Number: 280819-001

. Structured programming for cone of unifolientenessee and enhancement. The PLA6-51

SORI SOFFWARE DEVELOPMENT PACHAGES

Figure 1. MCS®-51Application Development Process

ASM-51 MACROASSEMBLER

ASM-51 is the macroassembler for the MCS-51 family of microcontrollers. ASM-51 provides full and accurate support for all of the specific component's instructions. It also provides symbolic access to the many features of the MCS-51 family of microcontrollers. Also provided is an "include" file with all the appropriate component registers and memory spaces defined.

The macro facility in ASM-51 saves development and maintenance time, since common code sequences need only be developed once.

PL/M-51 COMPILER

PL/M-51 is a high-level language designed to support the software requirements of the MCS-51 family of microcontrollers. The PL/M-51 compiler translates PL/M high-level language statements into MCS-51 relocatable object code. Major features of the PL/M-51 compiler include:

 Structured programming for case of maintenance and enhancement. The PI/M-51 language supports modular and structured programming, making programs easier to understand, maintain, and debug.

- Data types facilitate various common functions. PL/M-51 supports three data types to facilitate various arithmetic, logic and address functions. The language also uses BASED variables that map more than one variable to the same memory location to save memory space.
- Interrupt attribute speeds coding effort.
 The INTERRUPT attribute allows you to easily define
 interrupt handling procedures. The compiler will generate
 code to save and restore the program status word for
 INTERRUPT procedures.
- Code optimization reduces memory requirements. The PLM-51 compiler has four different levels of optimization for significantly reducing the size of the program.
- Language compatibility saves development
 time. PL/M-51 object modules are compatible with
 object modules generated by all other MCS-51 language
 translators. This compatibility allows for easy linking of
 all modules and the ability to do symbolic debugging with
 the Intel ICE5100 in-circuit emulator.

RI-51 Linker/Relocator

Intel's RL-51 utility is used to link multiple MCS-51 object modules into a single program, resolve all references between modules and assign absolute addresses to all relocatable segments. Modules can be written in either ASM-51 or PL/M-51.

LIB-51

The Intel LIB-51 utility creates and maintains libraries of software object modules. Standard modules can be placed in a library and linked into your applications programs using RI-51. When using libraries, the linker will link only those modules that are required to satisfy external references.

LIB-51 and RL-51 make it easy to reuse software modules that are fully debugged and used by various applications, thus shortening the software development cycle.

OH OBJECT TO HEXADECIMAL CONVERTER

The OH utility converts Intel OMF-51 object modules into standard hexadecimal format. This allows the code to be loaded directly into PROM via non-Intel PROM programmers.

SERVICE, SUPPORT, AND TRAINING

AEDIT SOURCE CODE AND TEXT SDITOR

Intel augments its MCS-51 architecture family of development tools with a full array of seminars, classes, and workshops; on-site consulting services; field application engineering expertise; telephone hot-line support; and software and hardware maintenance contracts. This full line of services will ensure your design success.

ORDERING INFORMATION

D86ASM51*

MCS-51 Assembler for PC XT or AT system (or compatible), running DOS 3.0

D86PLM51*

PL/M-51 Software Package for PC XT or AT system (or compatible), running DOS 3.0 or higher

*Also Includes: Relocator/Linker, Object-to-hex converter, and Librarian.

MCS is a registered trademark and ICE is a trademark of Intel Corporation IBM and PC/AT are registered trademarks of International Business Machines Corporation

AEDIT SOURCE CODE AND TEXT EDITOR

PROGRAMMER SUPPORT

AEDIT is a full-screen text editing system designed specifically for software engineers and technical writers. With the facilities for automatic program block indentation, HEX display and input, and full macro support, AEDIT is an essential tool for any programming environment. And with AEDIT, the output file is the pure ASCII text (or HEX code) you input—no special characters or proprietary formats.

Dual file editing means you can create source code and its supporting documents at the same time. Keep your program listing with its errors in the background for easy reference while correcting the source in the foreground. Using the split-screen windowing capability, it is easy to compare two files, or copy text from one to the other. The DOS system-escape command eliminates the need to leave the editor to compile a program, get a directory listing, or execute any other program executable at the DOS system level.

There are no limits placed on the size of the file or the length of the lines processed with AEDIT. It even has a batch mode for those times when you need to make automatic string substitutions or insertions in a number of separate text files.

AEDIT FEATURES

- Complete range of editing support—from document processing to HEX code entry and modification
- Supports system escape for quick execution of PC-DOS System level commands
- Full macro support for complex or repetitive editing tasks
- Hosted on PC-DOS and RMX operating systems
- Dual file support with optional split-screen windowing
- No limit to file size or line length
- Quick response with an easy to use menu driven interface
- Configurable and extensible for complete control of the editing process

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent, licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel and is subject to change without notice.

© Intel Corporation 1988

September, 1988 Order Number: 280804-002

FEATURES

POWERFUL TEXT EDITOR

As a text editor, AEDIT is versatile and complete. In addition to simple character insertion and cursor positioning commands, AEDIT supports a number of text block processing commands. Using these commands you can easily move, copy, or delete both small and large blocks of text. AEDIT also provides facilities for forward or reverse string searches, string replacement and query replace.

AEDIT removes the restriction of only inserting characters when adding or modifying text. When adding text with AEDIT you may choose to either insert characters at the current cursor location, or over-write the existing text as you type. This flexibility simplifies the creation and editing of tables and charts.

USER INTERFACE

The menu-driven interface AEDIT provides makes it unnecessary to memorize long lists of commands and their syntax. Instead, a complete list of the commands or options available at any point is always displayed at the bottom of the screen. This makes AEDIT both easy to learn and easy to use

FULL FLEXIBILITY

In addition to the standard PC terminal support provided with AEDIT, you are able to configure AEDIT to work with almost any terminal. This along with user-definable macros and full adjustable tabs, margins, and case sensitivity combine to make AEDIT one of the most flexible editors available today.

MACRO SUPPORT

SCR"-\$100/252 In-Circuit Email

AEDIT will create macros by simply keeping track of the command and text that you type, "learning" the function the macro is to perform. The editor remembers your actions for later execution, or you may store them in a file to use in a later editing session.

Alternatively, you can design a macro using AEDIT's powerful macro language. Included with the editor is an extensive library of useful macros which you may use or modify to meet your individual editing needs.

TEXT PROCESSING

For your documentation needs, paragraph filling or justification simplifies the chore of document formatting. Automatic carriage return insertion means you can focus on the content of what you are typing instead of how close you are to the edge of the screen.

SERVICE, SUPPORT, AND TRAINING

Intel augments its development tools with a full array of seminars, classes, and workshops; on-site consulting services: field application engineering expertise: telephone hot-line support; and software and hardware maintenance contracts. This full line of services will ensure your design

IN-CHICART EMILATOR FOR THE RICS"

For direct information on Intel's Development Tools, or for

800-874-6835 (U.S.). For information or literature on

SPECIFICATIONS

HOST SYSTEM

AEDIT for PC-DOS has been designed to run on the IBM* PC the number of your nearest sales office or distributor, call XT, IBM PC AT, and compatibles. It has been tested and distributions evaluated for the PC-DOS 3.0 or greater operating system. additional Intel products, call 800-548-4725 (U.S. and Canada).

Versions of AEDIT are available for the iRMX™-86 and RMX II Operating System.

ORDERING INFORMATION

D86EDINL

AEDIT Source Code Editor Release 2.2 for

PC-DOS with supporting documentation

122716 **AEDIT-DOS Users Guide**

122721 **AEDIT-DOS Pocket Reference**

AEDIT for iRMX-86 Operating System RMX864WSU

R286EDI286EU AEDIT for iRMX II Operating System

ICE™-5100/252 In-Circuit Emulator

IN-CIRCUIT EMULATOR FOR THE MCS® 51 FAMILY OF MICROCONTROLLERS

The ICE-5100/252 In-Circuit Emulator is a complete hardware/software debug environment for developing embedded control applications based on the Intel MCS-51 family of microcontrollers. With high-performance 16 MHz emulation, symbolic debugging, and flexible memory mapping, the ICE-5100/252 emulator expedites all stages of development: hardware development, software development, system integration, and system test; shortening your project's time to market.

BEATURES

- Full speed to 16 MHz.
 Source code display.
- 254 frames of execution trace.
- Symbolic debug.
- Serial link to an IBM PC XT, AT, 100% compatible.
- · Four address breakpoints with in-range, out-of-range, and page breaks.
- · On-line disassembler and single line assembler.

- 64KB of emulation mapped memory. ASM-51 and PL/M-51 language support. XX, IBM PG AT, and compatibles. It has been tosted and qlad quiqon \$14-6835 (ILS

 - and one of the book shell escape. In the source of the source of the standard of the standard
 - On-line tutorial.
 - Built-in CRT based editor and and additions are Titled to englars.
 - · System self-test diagnostics.
 - · Worldwide service and support.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent beenses are

© Intel Corporation 1988

ge without notice. September, 1988 Order Number: 280798-002

ONE TOOL FOR ENTIRE DEVELOPMENT CYCLE

The ICE-5100/252 emulator speeds target system development by allowing hardware and software design to proceed simultaneously. You can develop software even before prototype hardware is finished. And because the ICE-5100/252 emulator precisely matches the component's electrical and timing characteristics, it's a valuable tool for hardware development and debug. Thus, the ICE-5100/252 emulator can debug a prototype or production system at any stage in its development, without introducing extraneous hardware or software test tools.

HIGH-SPEED. REAL-TIME EMULATION

The ICE-5100/252 emulator provides full-speed, real-time and amulation up to 16 MHz. Because the emulator is fully transparent to the target system, you have complete control over hardware and software debug and system integration.

64KB of zero wait-state emulation memory is available to replace target system code memory, allowing software debug to begin even before prototype hardware is finished.

FLEXIBLE BREAKPOINTING FOR OUICK PROBLEM ISOLATION

The ICE-5100/252 emulator supports three different types of break specifications: specific address breaks on up to 64,000 possible addresses; range breaks, both within and outside a user-defined range; and page breaks, up to 256 pages on 256-byte boundaries. 254 frames of execution trace memory provide ample debug information, with each frame divided into 16 bits of program execution address and 8 bits of external event information. A maximum of four tracepoints allows qualified trace for a variety of debug conditions.

SYMBOLIC DEBUGGING FOR FAST DEVELOPMENT

Design team productivity is enhanced by the use of symbolic debug references to program line, high-level statements, and module and variable names. The terms used to develop programs are the same used for system debugging.

PATCH CODE WITHOUT RECOMPILING

Code-patching is easy with the ICE-5100/252 emulator's single-line assembler. Machine code can be disassembled to mnemonics for significantly easier debugging and project development.

EASY TO LEARN AND USE

The ICE-5100/252 is accompanied by a full tutorial that explains all system functions and provides many examples. Additional features such as on-line help, a built-in CRT-based editor, and DOS shell escape make the emulator fast and easy to use for both novice and experienced users. You can develop your own test suites or save frequently-used debug routines as debug procedures (PROCs) that can be invoked with a single command.

WORLDWIDE SERVICE AND SUPPORT

The ICE-5100/252 emulator is supported by Intel's worldwide service and support organization. In addition to an extended warranty, you can choose from hotline support, on-site system engineering assistance, and a variety of hands-on training workshops.

ICE™-5100/252 Emulator Supported Components

Part	On-Chip Program Memory	On-Chip Data Memory
8031	None	128 bytes
8051	4K ROM	128 bytes
8751	4K EPROM	128 bytes
80C31	None	128 bytes
80C51	4K ROM	128 bytes
87C51	4K EPROM	128 bytes
8032	None	256 bytes
8052	8K ROM	256 bytes
8752	8K EPROM	256 bytes
80C51FA	None	256 bytes
83C51FA	8K ROM	256 bytes
87C51FA	8K EPROM	256 bytes
80C51FB	None and and	256 bytes
83C51FB	16K ROM	256 bytes
87C51FB	16K EPROM	256 bytes

ELECTRICAL CONSIDERATIONS

The emulation processor's user-pin timings and loadings are identical to the 80C51FA component except as follows.

Maximum Operating ICC and Idle ICC (ma)*

V _{cc}	Maximum Operating ICC (ma)*			Maximum Idle ICC (ma) * *				
*ee	4V	5V.	6V	4V	5V	GV		
toda to is	niet liet a ud hain	Fre	quency	not loot plagu	eristics, it's a val	timene charact		
0.5 MHz	0.87	1.62	3.0	0.58	1.21	2.5		
3.5 MHz	4.8	6.82	9.76	2.2	4.97	6.33		
8.0 MHz	10.5	15.0	20.5	6.0	8.98	11.76		
2.0 MHz	15.2	22.2	30.2	9.2	13.34	17.46		
6.0 MHz	19.4	28.6	38.7	11.8	17.4	23.4		

*ICC is measured with all output pins disconnected XTAL1 driven with TCLGH,TCHCL = 10ns, $V_{ii} = V_{ss} + .5V$, $V_{ih} = V_{cc} - .5V$. XTAL2 not connected.

For maximum operating ICC

EA = RST = Port0 = V_{cc}.
**For maximum idle ICC

 $\overline{EA} = Port0 = V_{cc}$, RST = V_{cc} , internal clock to PCA gated off.

- capacitance loading due to sensing circuitry.

 Up to 25 pf of additional pin capacitance is contributed
 Pins 18 and 19, XTAL1 and XTAL2, respectively, have by the processor module and target adaptor assemblies. approximately 15 to 16 pf of additional capacitance when Pin 31, EA, has approximately 32 pf of additional configured for crystal operation.

PROCESSOR MODULE DIMENSIONS

CHMOS AND HMOS DESIGN DIFFERENCES

Chip Function	HMG6 Component 9031	CHROOS Component 80C31
RST trigger threshold	2.5V	70% V _{cc} (3.5V @ V _{cc} = 5V)
RST input impedance	4K-10K ohms	50K-150K ohms
Port 1 _{ii}	- 800µA	- 50μA
Clock threshold	2.5V	70% V _{cc} (3.5V @ V _{cc} = 5V)

Figure 1. Processor Module Dimensions

SPECIFICATIONS

Host Requirements:

IBM PC-XT, AT or compatible PC-DOS 3.0 or later **512K RAM** One floppy drive and hard disk

Physical Characteristics:

The ICE-5100/252 emulator consists of the following components:

Umfit	Wid	th Height		ght	Length	
	Inch	Cm	Inch	Cam	Inch	Can
Controller Pod User Cable Processor	8.25	21.0	1.5	3.8	13.5 39.0	34.3 99.0
Module* Power Supply Serial Cable	3.8 7.6	9.7 18.1	1.5 4.0	3.8 10.2	4.0 11.0 144.0	10.2 28.0 360.0

^{*}with supplied target adaptor.

Electrical Characteristics:

Power supply 100-120V or 220-240V selectable 50-60 Hz 2 amps (AC max) @ 120V 1 amp (AC max) @ 240V

Environmental Characteristics:

Operating temperature: + 10°C to + 40°C (50°F to 104°F) Operating humidity: Maximum of 85% relative humidity, non-condensing

ORDERING INFORMATION

Order Code

Description

pl252KITAD

Kit contains ICE-5100/252 user probe assembly, power supply and cables, serial cables, target adapter, crystal power accessory, emulator controller pod. emulator software, DOS host communication, ASM-51 and AEDIT text editor (requires software license).

pl252KITD

Kit contains the same components as pl252KITAD, excluding ASM-51 and the AEDIT text editor (requires software

license).

pC252KITD

Conversion kit for ICE-5100/452, ICE-5100/451, or ICE-5100/044 running PC-DOS 3.0 or later, to provide emulation support for MCS-51 components (requires

software license).

TA252D

Target adapter converting 48-pin DIP to

44-pin PLCC package.

D86ASM51

ASM/RL 51 package for PC-DOS (requires and all package for PC-DOS (requires and all package) and all p

software license). The amendment encountries are some transfer of the software licenses.

D86PLM51

PL/M/RL 51 package for PC-DOS (requires software license).

D86EDINL

AEDIT text editor for PC-DOS.

MCS is a registered trademark and ICE is a trademark of Intel Corporation.

IBM and PC/AT are registered trademarks and PC/AT a trademark of International Business Machines Corporation.

ICE™-5100/451 In-Circuit Emulator

IN-CIRCUIT EMULATOR FOR THE MCS"-51 FAMILY OF MICROCONTROLLERS

The ICE-5100/451 In-Circuit Emulator is a complete hardware/software debug environment for developing embedded control applications based on the Intel MCS 51 family of microcontrollers. With high-performance 12 MHz emulation, symbolic debugging, and flexible memory mapping, the ICE-5100/451 emulator expedites all stages of development: hardware development, software development, system integration, and system test; shortening your project's time to market.

FEATURES

- Full speed to 12 MHz.
- · 64KB of emulation mapped memory.
- 254 frames of execution trace.
- · Symbolic debug.
- Serial link to an IBM PC XT, AT. 100% compatible.
- · Four address breakpoints with in-range, out-of-range, and page breaks.
- On-line disassembler and single line assembler.
- Source code display.
- ASM-51 and PL/M-51 language support.
- Pop-up help.
- DOS shell escape.
- On-line tutorial.
- Built-in CRT based editor.
- · System self-test diagnostics.
- · Worldwide service and support.

incl Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Information contained herein supersectes previously published specifications on these decires from Intel and is subject to change without notice. September, 1988.

Order Number: 280802-062.

ONE TOOL FOR ENTIRE DEVELOPMENT CYCLE

The ICE-5100/451 emulator speeds target system development by allowing hardware and software design to proceed simultaneously. You can develop software even before prototype hardware is finished. And because the ICE-5100/451 emulator precisely matches the component's electrical and timing characteristics, it's a valuable tool for hardware development and debug. Thus, the ICE-5100/451 emulator can debug a prototype or production system at any stage in its development, without introducing extraneous hardware or software test tools.

HIGH-SPEED. REAL-TIME EMULATION

The ICE-5100/451 emulator provides full-spccd, real-time emulation up to 12 MHz. Because the emulator is fully transparent to the target system, you have complete control over hardware and software debug and system integration.

64KB of zero wait-state emulation memory is available to replace target system code memory, allowing software debug to begin even before prototype hardware is finished.

FLEXIBLE BREAKPOINTING FOR **OUICK PROBLEM ISOLATION**

The ICE-5100/451 emulator supports three different types of break specifications: specific address breaks on up to 64,000 possible addresses; range breaks, both within and outside a user-defined range; and page breaks, up to 256 pages on 256-byte boundaries. 254 frames of execution trace memory provide ample debug information, with each frame divided into 16 bits of program execution address and 8 bits of external event information. A maximum of four tracepoints allows qualified trace for a variety of debug conditions.

SYMBOLIC DEBUGGING FOR FAST DEVELOPMENT

Design team productivity is enhanced by the use of symbolic debug references to program line, high-level statements, and module and variable names. The terms used to develop programs are the same used for system

PATCH CODE WITHOUT RECOMPILING

Code-patching is easy with the ICE-5100/451 emulator's single-line assembler. Machine code can be disassembled to mnemonics for significantly easier debugging and project development.

EASY TO LEARN AND USE

The ICE-5100/451 is accompanied by a full tutorial that. explains all system functions and provides many examples. Additional features such as on-line help, a built-in CRT-based editor, and DOS shell escape make the emulator fast and easy to use for both novice and experienced users. You can develop your own test suites or save frequently-used debug routines as debug procedures (PROCs) that can be invoked with a single command.

WORLDWIDE SERVICE AND SUPPORT

The ICE-5100/451 emulator is supported by Intel's worldwide service and support organization. In addition to an extended warranty, you can choose from hotline support, on-site system engineering assistance, and a variety of hands-on training workshops.

ELECTRICAL CONSIDERATIONS

The emulation processor's user-pin timings and loadings are identical to the 80C451 component except as follows.

Maximum Operating ICC and Idle ICC (ma)*

Vcc	Maximum Operating ICC (ma) *	Maximum idle ICC (ma) * *
-66	153045V::::::::::::::::::::::::::::::::::::	5V III
0.5 MHz	0/6 = 1/4.97/8.21 V acc	4.93
3.5 MHz	9.53	10.39
8.0 MHz	13.0	12.75
12.0 MHz	22.2	18.19

*ICC is measured with all output pins disconnected XTAL1 driven with TCLCH.TCHCL = 5ns, $V_{ij} = V_{ss} + 0.5V$, $V_{ib} = V_{cc} - 0.5V$. XTAL2 not connected.

For maximum operating ICC $\overline{EA} = RST = Port0 = V_{co.}$

**Maximum idle ICC is measured with all output pins disconnected.

XTAL1 driven with TCLCH, TCHCL = 5ns

 $\begin{aligned} V_{\rm d} &= V_{\rm SS} + 0.5 \text{V}, \\ V_{\rm il} &= V_{\rm cc} - 0.5 \text{V}, \\ \text{XTAL2 not connected}, \end{aligned}$

 $\frac{\text{Port } 0 = V_{cc}}{\overline{EA} = RST = V}$

Up to 25 pf of additional pin capacitance is contributed by the processor module and target adapter assemblies. Pin 1 (EA) has approximately 32 pf of additional capacitance loading due to sensing circuitry. Pins 53 and 52, XTAL1 and XTAL2, respectively, have approximately 15 to 16 pf of additional

capacitance when configured for crystal operation.

PROCESSOR MODULE DIMENSIONS

Figure 1: Processor Module Dimensions

CHMOS DESIGN DIFFERENCES

Chip Function	CHMOS Component 80C3 1
RST trigger threshold	70% $V_{cc}(3.5V @ V_{cc} = 5V)$
RST input impedance	50K-150K ohms
Port 1 _{ii}	-50 μ A
Clock threshold	70% $V_{cc}(3.5V @ V_{cc} = 5V)$

SPECIFICATIONS

Host Requirements:

IBM PC-XT, AT or compatible PC-DOS 3.0 or later 512K RAM One floppy drive and hard disk

Physical Characteristics:

The ICE-5100/451 emulator consists of the following components:

Umft	Wid	dth He		ght	Length	
	Inch	Cm	Inch	Cm	Inch	Cano
Controller Pod User Cable Processor	8.25	21.0	1.5	3.8	13.5 39.0	34.3 99.0
Module* Power Supply Serial Cable	3.8 7.6	9.7 18.1	1.5 4.0	3.8 10.2	4.0 11.0 144.0	10.2 28.0 360.0

^{*}with supplied target adapter.

Electrical Characteristics:

Power supply 100-120V or 220-240V selectable 50-60 Hz 2 amps (AC max) @ 120V 1 amp (AC max) @ 240V

Environmental Characteristics:

Operating temperature: + 10°C to + 40°C (50°F to 104°F)
Operating humidity: Maximum of 85% relative humidity,
non-condensing

OUTER PROPIEST ISOLATION

ORDERING INFORMATION

AAO OOF BANKS

Order Code Description

pI451KITAD Kit contains ICE-5100/451 user probe

assembly, power supply and cables, serial cables, target adapter, crystal power accessory, emulator controller pod, emulator software, DOS host communication cables, ASM-51 and AEDIT text editor (requires software

license)

pl451KITD Kit contains the same components as

pl451KITAD, excluding ASM-51 and the AEDIT text editor (requires software

license).

pC451KITD Conversion kit for ICE-5100/452.

ICE-5100/252, or ICE-5100/044 running PC-DOS 3.0 or later, to provide emulation support for 80C451 components (requires software license).

TA451E

Target adapter for 68-pin PLCC package

support.

D86ASM51 ASM/RL 51 package for PC-DOS

(requires software license).

D86PLM51 PL/M/RL 51 package for PC-DOS

(requires software license).

D86EDINL AEDIT text editor for PC-DOS.

MCS is a registered trademark and ICE is a trademark of Intel Corporation.

IBM and PC/AT are registered trademarks and PC/XT a trademark of International Business Machines Corporation.

ICE™-5100/044 In-Circuit Emulator

IN-CIRCUIT EMULATOR FOR THE RUPF"-44 FAMILY OF PERIPHERALS

The ICF-5100/044 In-Circuit Emulator is a complete hardware/software debug environment for developing embedded control applications based on the Intel RUPI™-44 family of peripherals. including the 8044-based BITBUS™ board products. With high-performance 12 MHz emulation, symbolic debugging, and flexible memory mapping, the ICE-5100/044 emulator expedites all stages of development: hardware development, software development, system integration, and system test; shortening your project's time to market.

FEATURES

- · Full speed to 12 MHz.
- 64KB of emulation mapped memory.
- 254 frames of execution trace.
- · Symbolic debug.
- Serial link to an IBM PC XT, AT, 100% compatible.
- Four address breakpoints with in-range, out-of-range, and page breaks.
- On-line disassembler and single line assembler.
- · Source code display.
- · ASM-51 and PL/M-51 language support.
- · Pop-up help.
- · DOS shell escape.
- · On-line tutorial.
- · Built-in CRT based editor.
- · System self-test diagnostics.
- · Worldwide service and support.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Information contained betten supersedes previously published sperifications on these devices from Intel and is subject to change without notice.

September, 1988.

Intel Corporation 1988.

ONE TOOL FOR ENTIRE DEVELOPMENT CYCLE

The ICE-5100/044 emulator speeds target system development by allowing hardware and software design to proceed simultaneously. You can develop software even before prototype hardware is finished. And because the ICE-5100/044 emulator precisely matches the component's electrical and timing characteristics, it's a valuable tool for hardware development and debug. Thus, the ICE-5100/044 emulator can debug a prototype or production system at any stage in its development, without introducing extraneous hardware or software test tools.

HIGH-SPEED, REAL-TIME EMULATION

The ICE-5100/044 emulator provides full-speed, real-time emulation up to 12 MHz. Because the emulator is fully transparent to the target system, you have complete control over hardware and software debug and system integration.

64KB of zero wait-state emulation memory is available to replace target system code memory, allowing software debug to begin even before prototype hardware is finished.

FLEXIBLE BREAKPOINTING FOR OUICK PROBLEM ISOLATION

The ICE-5100/044 emulator supports three different types of break specifications: specific address breaks on up to 64.000 possible addresses; range breaks, both within and outside a user-defined range; and page breaks, up to 256 pages on 256-byte boundaries. 254 frames of execution trace memory provide ample debug information, with each frame divided into 16 bits of program execution address and 8 bits of external event information. A maximum of four tracepoints allows qualified trace for a variety of debug conditions.

SYMBOLIC DEBUGGING FOR FAST DEVELOPMENT

Design team productivity is enhanced by the use of symbolic debug references to program line, high-level statements, and module and variable names. The terms used to develop programs are the same used for system debugging.

PATCH CODE WITHOUT RECOMPILING

Code-patching is easy with the ICE-5100/044 emulator's single-line assembler. Machine code can be disassembled to mnemonics for significantly easier debugging and project development.

EASY TO LEARN AND USE

The ICE-5100/044 is accompanied by a full tutorial that explains all system functions and provides many examples. Additional features such as on-line help, a built-in CRT-based editor, and DOS shell escape make the emulator fast and easy to use for both novice and experienced users. You can develop your own test suites or save frequently-used debug routines as debug procedures (PROCs) that can be invoked with a single command.

WORLDWIDE SERVICE AND SUPPORT

The ICE-5100/044 emulator is supported by Intel's worldwide service and support organization. In addition to an extended warranty, you can choose from hotline support, on-site system engineering assistance, and a variety of hands-on training workshops.

SPECIFICATIONS

One Hoppe drive and bard diss

		Melejat		digi
	and i	Enech	Can	m3
3.8				

15-15

ELECTRICAL CONSIDERATIONS

identical to the 8044 component except as follows.

- . Up to 25 pf of additional pin capacitance is contributed by the processor module and target adaptor assemblies.
- Pin 31, EA, has approximately 32 of of additional capacitance loading due to sensing circuitry.
- · Pins 18 and 19, XTAL1 and XTAL2, respectively, have approximately 15 to 16 pf of additional capacitance when configured for crystal operation. The sale of the vacous sales

PROCESSOR MODULE DIMENSIONS

DESIGN CONSIDERATIONS

The emulation processor's user-pin timings and loadings are Execution of user programs that contain interrupt routines causes incorrect data to be stored in the trace buffer. When an interrupt occurs, the next instruction to be executed is placed into the trace buffer before it is actually executed. A supplied to Following completion of the interrupt routine, the instruction is executed and again placed into the trace buffer. 1036-5100/044 condutor precisely matches to

Figure 1. Processor Module Dimensions

SPECIFICATIONS

Host Requirements:

IBM PG-XT, AT or compatible PC-DOS 3.0 or later 512K RAM One floppy drive and hard disk

Physical Characteristics:

The ICE-5100/044 emulator consists of the following components:

Unit	Width		Height		Length	
	Inch	Cm	Inch	Cm	Inch	Cm
Controller Pod User Cable Processor	8.25	21.0	1.5	3.8	13.5 39.0	34.3 99.0
Module* Power Supply Serial Cable	3.8 7.6	9.7 18.1	1.5 4.0	3.8	4.0 11.0 144.0	10.2 28.0 360.0

^{*}with supplied target adaptor.

Electrical Characteristics:

Power supply 100-120V or 220-240V selectable 50-60 Hz 2 amps (AC max) @ 120V Lamp (AC max) @ 240V

Environmental Characteristics:

Operating temperature: + 10°C to + 40°C (50°F to 104°F) Operating humidity: Maximum of 85% relative humidity, non-condensing

ORDERING INFORMATION

Order Code Description

pI044KITAD Kit contains ICE-5100/044 user probe

assembly, power supply and cables, serial cables, target adapter, crystal power accessory, emulator controller pod, emulator software, DOS host communication, ASM-51 and AEDIT text editor (requires software license).

pl044KITD. Kit contains the same components as

pIO44KITAD, excluding ASM-51 and the AEDIT text editor (requires software

license).

pC044KITD Conversion kit for ICE-5100/452,

ICE-5100/451, or ICE-5100/252 running PC-DOS 3.0 or later, to provide emulation support for RVPI-44 family of peripherals

(requires software license).

D86ASM51 ASM/RL 51 package for PC-DOS (requires

software license).

D86PLM51 PL/M/RL 51 package for PC-DOS

(requires software license).

D86EDINL AEDIT text editor for PC-DOS.

MCS is a registered trademark and ICE is a trademark of Intel Corporation.

IBM and PC/AT are registered trademarks and PC/XT a trademark of International Business Machines Corporation.

ORDERING INFORMATION

Order Orde Description

IOM-HEITAD KIL CON

KR contains KGE-5100044 user probe assembly, power supply and cables, serial cables, larget adapter, mysical power acressory englisher controller and

involution selfuent. DOS host summunication, ASM 51 and AEDIT test

piO#4KITO: Kit centains the same romp

pl044kTAD, recluding ASM-51 and t AFDIT test collor (requires software

BRITTH

pCOH (KPTD Conversion tot for (CE-5 H)(R452).

ICE-5100451, or ICR-5100252 randing PC-005 3.0 or later, to provide equitation support for RVPI-44 family of peripherals

(ware license).

86ASMS1 ASMARI, \$1 package for PCDOS (requires

sed (ware license)

PLAMRU 51 package for PC-DOS

(requires software floense)

DRESDING. AFORT toys editor for PC-DOS

MCS is a registered trademark and ICE is a trademark of local Corporation

IBM and POPT are registered trademarks and PCOT a trademark of International Business Machines Corporation

Design

ASIC: Intel Cell-Based Design

or

INTRODUCTION TO THE INTEL 1.5 MICRON CHMOS III CELL LIBRARY

A complete set of packaging options with lead counts up to 208 pins. Special packaging configurations

A growing number of system designers are turning to Application Specific Integrated Circuits (ASICs) for the solution to their system design needs. ASIC design methodologies bridge the gap between standard ICs and fully-customized devices. Using sophisticated software design tools and a collection of predefined circuit elements, system designers realize the benefits of custom ICs without incurring the high cost and long development times associated with full custom designs.

The Intel Design Environment provides a flexible system for designing and manufacturing Intel ASIC products. The design environment includes a comprehensive set of CAE/CAD tools, design libraries running on the Daisy and Mentor engineering workstations, and design and manufacturing services. Intel cell-based designs are backed by a proven manufacturing capability and the same strict adherence to quality and reliability applied to Intel standard products.

This chapter introduces the Intel 1.5 Micron CHMOS III Cell Library. It provides cell data specifications and describes Intel design services as they relate to cell-based designs executed at Intel design centers or at the customer site.

The Intel 1.5 Micron CHMOS III Cell Library provides customers with the building blocks necessary to design complex semicustom integrated circuits. The Intel 1.5 Micron CHMOS III Cell Library is composed of pre-designed, fully characterized equivalents of common circuit elements and Intel standard products. The library includes SSI, MSI, and LSI circuit elements commonly used in system design. In addition, the library contains VLSiCELTM elements, functional equivalents of Intel standard microcontroller, microprocessor, and microprocessor support peripheral products.

FEATURES/BENEFITS

- Over 150 SSI/MSI/LSI logic functions.
- A comprehensive cell library provides a wide range of cell-based ASIC solutions. The library is highlighted by VLSiCEL elements, cell versions of popular Intel standard microprocessors, microcontrollers, and microprocessor support peripherals. VLSiCEL elements offer the highest level of microcomputer-based system integration. Intel's cell-based design methodology offers customers the ability to use predefined circuit elements as building blocks to design complex circuits. The current library includes:

80C51BH	8-Bit Microcontroller
82C37A	Programmable DMA Controller
82C54	Programmable Interval Timer
82C59A	Programmable Interrupt Controller
82C84A	8086/8088 Clock Generator DIEA beand-12008 to not allower Throad by
82C284	80286 Clock Generator and DIRA and accompanyation statement ashipting latest a
82C88	8086/8088 Bus Controller
82288	80286 Bus Controller

A complete set of test vectors is provided for each VLSiCEL building block, providing a guaranteed 0.1% AQL (Acceptable Quality-Level) or better.

- The emulator kit for 80C51-based ASICs includes a complete set of tools for hardware and software debug of ASIC core-based designs.
- UCS family is based on the 80C51BH standard product and includes both the microcontroller core and peripheral functions. This family makes the internal communications bus (SFR Bus) available to the designer.
- User-configurable n-bit counters, registers, multipliers, and magnitude comparators built from "telescoping" cells
 achieve high performance for repetitive functions.

- CHMOS III—An advanced 1.5 micron, double-layer metal CMOS process technology providing high performance, high density, and low power semicustom integrated circuits with proven manufacturability.
- CMOS, TTL, and Schmitt Trigger compatible I/O cells available with a variety of drive levels and ESD protection to 2000V.
- A complete set of packaging options with lead counts up to 208 pins. Special packaging configurations and higher pin count packages are available upon request.
- The Intel Design Environment provides a comprehensive set of CAE/CAD tools, logic libraries, and customer support and design services that enable users without IC design expertise to design their own cell-based ASICs.
- Intel's 1.5 Micron CHMOS III Cell Library is fully supported on Mentor and Daisy compatible engineering workstations. Mainframe simulation capability is supported through Intel technology centers and direct dial-up to Intel factory mainframes.

design environment includes a comprehensive set of CAE/CAD tools, design libra ADIZED DESIGNS are backed by a Mentor ensineering workstations, and design and manufacturing services. Intel cell-based designs are backed by a

Why Cell-Based ASICs?

Semicustom integrated circuits are designed from a variety of functional building blocks ranging in complexity from individual logic gates to LSI and VLSI functions. Cell-based ASICs offer the highest level of semicustom integration and are capable of implementing complex VLSI functions (microprocessors and microcontrollers). They also offer high performance, increased functionality and better silicon utilization because the individual cells have been hand-packed to the highest possible densities. Better silicon utilization means lower-cost production in high volume. Full custom ICs can provide the same benefits as cell-based ICs. However, while full custom designs often require years to develop, semicustom chips can be developed in weeks or months. Well-characterized, easy-to-use automated design methodologies also typify semicustom chip development, making ASIC design accessible to system engineers without specialized IC design experience. System manufacturers realize a faster time to market, thus giving more time to concentrate on system rather than IC issues.

Why Intel?

Intel believes that to successfully serve its ASIC customers, it must provide customers with a comprehensive product offering, advanced manufacturing capabilities, a complete CAE tool set, and design services to support the entire ASIC design process.

- Product offering. Intel offers a complete cell-based library including ASIC versions of Intel standard products.
- Manufacturing expertise. Intel ASIC manufacturing draws on the recognized strengths of Intel CMOS technology, advanced packaging, and a demonstrated expertise in assembly and test.
- Design tools. Customers may access the Intel libraries on a variety of platforms, including the Daisy Systems and Mentor Graphics compatible workstations. Simulations for complex designs are supported on mainframes through Intel Technology Centers and direct dial-up to the Intel factory. The UC51-EDK supports code development and "bread board" simulation of 80C51-based ASICs.
- Design services. Intel provides complete documentation for ASIC product lines. Technology centers offer comprehensive hands-on training courses.

16-2

What is a Standard Cell?

A standard cell can be thought of as a well characterized module containing an individual, independent, logic circuit. It is a complete functional block with predesigned and precharacterized logic. Intel has designed these cells for optimum electrical performance and silicon utilization. The standard SSI/MSI cells in the library have been designed with a fixed-height and variable-width configuration. These cells are arranged horizontally in rows with routing channels on either side. The height of these routing channels is variable, and is determined by required metalization interconnect between the cells.

Customers who design with standard cells need only look at a "black box" view of the functions. Knowledge of or training on gate/transistor level functionally is not necessary, making the cell-based approach similar to designing with commodity logic or standard products.

Figure 1 is an example of a standard cell. M. C. I bond with all excepts additional IIA. M. bons, A. Amonaganana abulban

Large scale functions including the VLSiCEL elements and Intel's special function cells are designed as "both" variable-width and variable-height cell structures.

Figure 1. Example Standard Cell

An Example of a Cell-Based Design

Figure 2 depicts a 25,000 "gate" cell-based design where a gate is defined as equal to 4 transistors (the typical equivalent complexity of a 2-input NAND function). When VLSiCEL and special function cells are used in a cell-based ASIC, higher densities are achieved via the large, custom-designed cells. Intel cell-based ASICs often have 100,000 or more transistors.

Figure 2. Example Cell-Based Design

CELL TYPES

Standard Cells of and tetal logic bestracterized and preclarational state of the standard Cells of the standar

The 1.5 Micro CHMOS III Cell Library is composed of over 150 hard-wired basic logic building blocks. These standard cells represent SSI and MSI cells, and are as easy to use as their commodity logic counterparts.

The cell library offers an extensive variety of random logic cells. Included in this category are AND, OR, NAND, NOR, AND-OR, AND-OR-INVERT, EXCLUSIVE OR and EXCLUSIVE NOR gates. Inverters and buffers are available with normal drive, high drive, or 3-state outputs.

The Intel cell library contains a broad range of flip-flops and latches. Flip-flops include D, JK, and Toggle; latches include transparent, SR, and \overline{SR} . All bistable devices in the Intel 1.5 Micron CHMOS III Cell Library contain an asynchronous master reset input to aid in system design. Flip-flop and latch configurations provide enable, 3-state, scan input, and set functionality. Other standard cell functions in the Intel 1.5 Micron CHMOS III Cell Library include multiplexers, decoders/demultiplexers and a parity generator/checker.

Telescoping Cells

Registers, shift registers, counters, adders, and magnitude comparators are all available in the Intel 1.5 Micron CHMOS III Cell Library as "telescoping" cells. Telescoping cells provide silicon-efficient, user-configurable implementation of repetitive logic functions.

Designing a telescoping multistage device may require three types of telescoping cells: body cells, control cells, and cap cells. Body cells provide the basic function required by a telescoping component. Control cells provide an interface between a body cell and an external network. Cap cells are used as a driver for any final output (such as carry-out) related to the overall operation of the device. The use of cap cells is optional.

Telescoping cells allow the designer to implement the exact function width required by the design. Silicon utilization is optimized. Front-end workstation tools make the creation of telescoping blocks transparent to the user.

equivalent complexity of a 2-input NAND function). When VI SICEL and special function of a 2-input MAND function of the complexity of the complexit

Intel provides customers with the capability to group cells which when placed together perform a higher level function. During the layout phase of the design, these cells are physically placed together on-chip—minimizing delays due to interconnect. These cell groups, or cluster macros, are particularly useful for controlling critical path timing.

I/O Cells

The Intel cell library contains over 30 types of I/O buffer cells. Input, output, and I/O cells are available in TTL or CMOS compatible configurations. Input cells are available in both inverting or non-inverting configurations, and with Schmitt Trigger inputs. Each type of input cell contains bonding pads as well as input static protection networks. Output cells are also available in both inverting or non-inverting configurations and with open drain and 3-state outputs. Output cells include bonding pads and output static protection networks. ESD protection to 2000V is provided.

Table 1 shows the available I/O cells and the associated options.

Memory Cells of Desert ASIC design sequence begins with the entering of the design schematic followed National Asia College (1997)

The most popular Static RAM sizes are available as standard blocks in the cell library. All RAM cells feature byte-wide organization, with densities ranging from 512 to 8K bits.

VLSiCELTM Elements

VLSiCEL building blocks provide the customer with the ability to use Intel standard products in their design. The VLSiCEL elements are captured and simulated as complete functions with fully supported simulation models. Intel has addressed the long-standing test issues that have prevented the incorporation of embedded microprocessors and complex functions into semicustom ICs by the building in elements of design for testability. All VLSiCEL building blocks come with a pre-defined set of test vectors, assuring circuit validation and eliminating test "bottlenecks." Complex chips can be designed in a fraction of the time required for gate-level implementations.

Cell-based ASIC designs can be separated into three major phases: design, layout and verification, stated

The standard cells (SSI, MSI) in the 1.5 Micron CHMOS III Cell Library are fixed-height, variable-width cells. Intel expresses the size of these cells in terms of grids. Grid counts provide a relative measure of the physical size of these cells. The grid count for each cell, indicated on the cell data sheet, can be used to determine with circuit configuration that yields the optimum silicon area for a given design.

Table 1. Available I/O Cells and Associated Options

I/O Cell Types	of the later and the sloot Options will be interested as the later to the later and th	
s functionality, logic part juqulig, and physical s, die size limitations, operating conditions, and dhere to several cell-based design guidelines and duction to Cell-Based Design Course. During this mulation vectors and identify critical paths.	on. This includ wer requirement at the engineer a cred in the later	TTL and CMOS compatible Inverting/non-inverting buffers Schmitt Trigger inputs Pull-up resistors Normal and high drive
eview can be held. The studtuO will then begin Cells are organized into three general categories standard cells. Data specification sheets can be to evaluate standard components for board level	III Čeli Library notion cells, and	TTL and CMOS compatible Inverting/non-inverting buffers 3-state, open drain, push-pull Multiple output drive levels
lanoitoeribide enters the schematic on a CAE worksta- ter or on an Intel-supported workstation at the		TTL and CMOS compatible 3-state outputs, latched inputs Multiple output drive levels

THE INTEL DESIGN ENVIRONMENT

Intel's design environment provides the customer with a comprehensive set of CAE/CAD tools, logic libraries, customer support and design services. The design environment enables users without IC design expertise to design their own Application Specific Integrated Circuits (ASICs). This section will focus on the design interface for Intel cell-based ASICs.

AN OVERVIEW OF THE INTEL DESIGN ENVIRONMENT

Intel's design environment includes all the design tools and services required to design cell-based ASICs.

The cell-based ASIC design sequence begins with the entering of the design schematic followed by the generation of a netlist (a netlist defines the interconnections between the cells used in the design). Once a netlist has been specified, simulation tools allow the engineer to evaluate the functionality of the design, including timing verification. The design engineer defines the stimulus to exercise the design and verify performance during the simulation phase. After a successful simulation, automatic place and route tools are used to lay out the design. The design is then re-simulated using the delay times that are computed from the layout database. After a successful resimulation, prototypes are manufactured, tested, and delivered.

During all phases of the design process, Intel provides a wide range of support services. Dedicated regional ASIC specialists provide local design analysis and consultation. Technology centers offer comprehensive customer training and technical support, along with access to the software tools running on a variety of hardware platforms. Extensive documentation is available for all software tools and libraries.

AN OVERVIEW OF THE CELL-BASED DESIGN SEQUENCE

Cell-based ASIC designs can be separated into three major phases: design, layout and verification, and manufacturing.

DESIGN PHASE count for each cell, indicated on the cell data sheet, can be used to determine BAHA (Rain of the pride country).

The design phase includes device specification, logic design, schematic capture, and simulation of the ASIC device. Figure 3 shows the typical flow of events that occur during the design phase of a cell-based ASIC design.

After becoming familiar with the CAE tools and the Intel 1.5 Micron CHMOS III Cell Library, the engineer begins the design process by creating a chip specification. This includes functionality, logic partitioning, and physical requirements (i.e., I/O limitations, packaging, power requirements, die size limitations, operating conditions, and performance requirements). Intel recommends that the engineer adhere to several cell-based design guidelines and design for testability considerations which are covered in the *Introduction to Cell-Based Design Course*. During this phase, customers may also develop functional and timing delay simulation vectors and identify critical paths.

Once the preliminary design is complete, an optional pre-design review can be held. The engineer will then begin selecting cells from the Intel 1.5 Micron CHMOS III Cell Library. Cells are organized into three general categories within the library: VLSiCEL elements, special function cells, and standard cells. Data specification sheets can be used to select functions the same way a component catalog is used to evaluate standard components for board level design.

Upon completion of the chip specification and cell selection, the engineer enters the schematic on a CAE workstation. Schematic capture can be done at an Intel technology center or on an Intel-supported workstation at the customer site. Customers may wish to hold an optional pre-simulation design review with Intel at this time.

A functional simulation and a full timing analysis are required to verify that the design will meet performance requirements. Simulation may be done using workstation simulation or Intel-supported mainframe simulators, depending on the complexity of the design. Designs greater than the approximately 10K gates in complexity often require the computational power of a mainframe for efficient simulation. This mainframe capability gives designers maximum flexibility for simulating large designs such as those including VLSiCEL elements. This phase may require several iterations.

During the design and simulation phase, it is important to consider the testability requirements for the circuit. Intel requires customers to produce designs with 100% observability when performing an industry standard node toggle test. Fault grading is an available option.

After the design is successfully simulated, a pre-layout design review must occur before layout can begin. Once approved by both Intel and the customer, the design progresses to the layout and verification phase.

Figure 3. Design Phase Flowchart (Technology Center)

Figure 4. Layout and Verification Phase Flowchart

Figure 5. Manufacturing Phase Flowchart

Table 2 lists the trajer steps required to execute a design and specifies th NOITATION TOYAL

Figure 4 shows the sequence of events in the layout and verification phase. Placement and routing of the ASIC design is performed using automatic place and route software. As a final check Intel factors in the actual delay times as determined from the layout database (this is called back annotation). The design is then resimulated and post-prelayout simulation results are compared for consistency. When requirements are met, and both Intel and the customer are satisfied with the results, a final design specification is approved. The design specification becomes the governing document against which prototype and production components are evaluated. The design then enters the manufacturing phase.

MANUFACTURING PHASE

Figure 5 shows the sequence of events in the manufacturing phase. After the layout and verification phase has been completed, Intel will produce prototypes. These prototypes will be submitted to the customer for a final review and production approval.

Intel offers rapid turnaround times for its ASIC products. The ASIC circuits are fabricated, tested, sorted, assembled into packages, and tested again as finished devices. Customer-defined test patterns are used to verify the device, and standard parametric tests are used to confirm performance over temperature and supply voltage extremes.

PACKAGING

Intel provides a variety of standard IC packages for use with cell-based ASIC designs. Among the available packaging options are ceramic and plastic Dual-In-Line Packages (DIP) with up to 48 pins, Plastic Leaded Chip Carriers (PLCC) with up to 84 pins, ceramic and plastic Pin Grid Arrays (PGA) with up to 180 pins, and ceramic and plastic quad flatpacks for up to 208 pin configurations.

QUALITY AND RELIABILITY

Intel is committed to the highest possible standards of quality, reliability and customer satisfaction in its products. All ASIC products must meet the same quality and reliability standards as Intel standard products. Intel insists on building-in quality and reliability for every product from the very beginning of a technology and product development cycle. Strict controls and monitors are applied in the manufacturing process to ensure high quality and reliability. All processes are audited regularly to ensure that they meet specifications. For additional details on Intel's quality and reliability programs, refer to the *Components Quality/Reliability Handbook*, Order Number 210997.

Intel's cell-based products are shipped to a 0.1% AQL level and less than 200 FITs (Failures In Time).

DESIGN SUPPORT of mainframe simulations that are too time consuming or TROPORT

Intel customers have the option to specify as much or as little design support as needed to complete their ASIC. Table 2 describes two preferred ASIC design interfaces: design tasks performed at the customer's site or at an Intel technology center. Customers may also opt for full service design support.

Intel's design environment provides the necessary design tools and services for all these design interface alternatives. Customers who choose to develop their ASIC on-site port Intel libraries onto their own CAE systems and design the device within their own development environment. Customers who decide to use Intel technology centers for ASIC development take advantage of Intel's on-site CAE systems, libraries, and applications support to assist them during their design effort.

raining classes and technical support are available from Intel's technology center ASIC specialists. The ntroduction to Intel Cell-Rased Design Course consists of both lecture and labs emphasizing "hands-on" experience, ectures address Intel-specific design practices; labs offer hands-on training in the Intel design environment. Contact

Table 2 lists the major steps required to execute a design and specifies the responsibilities for each party.

Table 2. Design Sequence Responsibilities

k Intel factors (ytivity and delay times	Technology Center as a said	Customer Site
Pre-design Start Design Review	Intel/Customer	Intel/Customer
Cell Selection agists at 1	Intel/Customer of bubong bus	agglolo Customer aga Inamasol
Schematic Capture	Intel/Customer	Customer sanda gaina
Simulation (Functional)	Intel/Customer	Customer
Simulation (Timing)	Intel/Customer	Customer
Pre-Layout Design Review	Intel/Customer	Intel/Customer
Test Vector	Intel/Customer	Customer
are fabricated, I noisrana, assembled		latel offers rapid turnaround times
Autolayout of hear one arrest	sished devices. Customer-letnled test pa	are packages, and telatal gain as f
Post-Layout Simulation	Intel/Customer	Customer
Post-Layout Approval	Intel/Customer	Intel/Customer HOAS
Mask Generation	IC packages for use with cell-based ASIC Dual-In-Line Packages (Distributed up to	Intel provides a variety lost standard intel
pitaniq b.Wafer Fabons and Oli or go	and plastic Pin Grid Arra letni SA) with	PLCC) with up to 8 letal, ceramic
Assembly/Test	Intel	pued flatpacks for upleful 08 pia co
Prototype Approval	Customer	Customer

COMPUTER AIDED ENGINEERING (CAE) TOOLS are sideson resident and of barriance at later

The 1.5 Micron CHMOS III Cell Library runs on all engineering workstations from Daisy Systems and Mentor Graphics. This wide range of compatibility gives designers the flexibility to execute cell-based designs using a variety of CAE hardware.

MAINFRAME-BASED SIMULATION I bose level JOA 601.0 a of beginning as a bouldoor beard fless of family

Simulation requirements for complex designs are often best served by mainframe computational power. Using an Intel mainframe simulator, customers can run simulations that are too time consuming or not possible to do using a desktop workstation environment. An integrated design database allows for portability between the mainframe environment and the workstation environment.

Intel's mainframe computers may be accessed through dial-up from the customer site or via an Intel technology center.

INTEL TECHNOLOGY CENTERS to of was controlled and the controlled the controlled to t

Intel technology centers offer training classes, design consultation and technical workstation support for semicustom chip design, cell-based design libraries, and CAE workstations as well as access to workstations for schematic capture and simulation. Customers may use the technology centers to take advantage of Intel's on-site systems, libraries and services. Each center is equipped with Daisy Systems and Mentor Graphics workstations. Direct access to the Intel mainframe is also available for efficient simulation of complex designs.

Training classes and technical support are available from Intel's technology center ASIC specialists. The Introduction to Intel Cell-Based Design Course consists of both lecture and labs emphasizing "hands-on" experience. Lectures address Intel-specific design practices; labs offer hands-on training in the Intel design environment. Contact your local Intel field sales office for scheduling.

16-10

INTEL TECHNOLOGY CENTERS

CALIFORNIA, USA

Intel Technology Center
3065 Bowers Avenue
Santa Clara, CA USA 95051
Tel: (408) 765-2252

FRANCE

Intel Technology Center
1 Rue Edison, BP303
78054 St. Quentin EN
Yvelines Cedex, France
Tel: 33 1-30-57-7000

MASSACHUSETTS, USA

Intel Technology Center
3 Carlisle Rd.
Westford, MA USA 01886
Tel: (617) 692-3222

UNITED KINGDOM

Intel Technology Center
Piper's Way
Swindon SN3IRJ
Wiltshire, U.K.
Tel: 0793 696000

The Cell-Based IC Shown here Contains the

RELATED PUBLICATIONS

• Cell-Based Design—Daisy Environment Order #83002

Cell-Based Design—Mentor Environment
 Order #830000

• Microprocessor and Peripheral Handbook Order #230843

• Components Quality/Reliability Handbook Order #210997

1.3 MICHUN CHMUS III CELL LIDHAN I

Order #210997

- 1.5 Micron CMOS
- User Configurable N-Bit Counters, Registers, Adders, and Magnitude Comparators Built from "Telescoping" Cells Achieve High Performance and Silicon Efficiency for Repetitive Functions
- RAM Configurations up to 8K bits
- All VLSI Cells are Tested and Verified Using the Equivalent Standard Product Test Program, Guaranteeing 0.1% AQL or Better.
- VLSiCEL™ Elements, Cell Versions of Popular Intel Standard Microprocessors, Microcontrollers, and Microprocessor Support Peripherals, Offer the Highest Level of Micro-Computer Based System Integration. The Current Library Includes:
 - 80C51BH 8-Bit Microcontroller
 - 82C37A Programmable DMA Controller
 - 82C54 Programmable Interval
 - 82C59A Programmable Interrupt Controller
 - 82C84 8086/8088 Clock Generator

Microprocessor and Peripheral Handbook

* Components Ouality/Reliability Handbook

- 82C284 80286 Clock Generator 82C88 8086/8088 Bus Controller
- 000068 4 101-82288 80286 Bus Controller

240051_1

The Cell-Based IC Shown here Contains the 80C51BH ASIC Core. This Design also Integrates Approximately 2700 Gates of User Control Logic

240051-2

The Cell-Based IC Shown above Depicts a Standard Cell Design with 3000 Gates of User Logic and 3 RAM Configurations

^{*}Daisy is a registered trademark of Daisy Systems Corporation.

^{*}Mentor Graphics is a registered trademark of Mentor Graphics Corporation.

DESCRIPTION englished 12.1V box 12.1

Intel's advanced cell-based family of integrated circuits is based on a comprehensive set of predesigned, fully-characterized functions for the integration of system logic into high-performance, cost effective semicustom devices. The basic cell library contains over 150 logic, I/O and special function cells. Also available are VLSiCEL™ elements such as the 80C51BH 8-bit microcontroller, and cell equivalents of Intel microprocessor support peripheral functions. Intel libraries run on several industry standard CAE platforms, including Daisy Systems* and Mentor Graphics* workstations. Customers may receive expert technical support via Intel's fully equipped technology centers. Once a design has been completed to the customer's satisfaction, Intel produces its cell-based IC using a 1.5 micron double layer metal CMOS process. This process is also used on standard components such as the 80C51BH, thus ensuring manufacturability and high quality and reliability.

FEATURES/BENEFITS and Mill this area relief

Coller Core with No ROM, 256 Bytes RAN allo

- Over 150 SSI/MSI/LSI logic functions to obtain high performance and high density.
- CMOS, TTL, and Schmitt Trigger compatible I/O cells available with a variety of drive levels and ESD protection to 2000V.

Special Function Cells

- · Fixed configuration RAM to 8K bits.
- User configurable n-bit counters, shift registers, adders and magnitude comparators built from "Telescoping" cells achieve high performance and silicon efficiency for repetitive functions.

ASIC Emulators

 ASIC emulators support code development and "breadboard" simulation of 80C51BH-based ASICs.

Packaging

 A complete set of packaging options with lead counts to 208.

VLSICELTM ELEMENTS & BURNANCE

• Cell versions of popular Intel standard microprocessors, microcontrollers and microprocessor support peripherals are available in the library. These "VLSiCEL" elements offer the highest level of microcomputer based system integration.

80C51BH 8-bit Microcontroller

82C37A Programmable DMA Controller 82C54 Programmable Interval Timer

82C59A Programmable Interrupt Controller

82C84A 8086 Clock Generator

82C284 80286 Clock Generator

82C88 8086 Bus Controller (1987) 82288 80286 Bus Controller (1987) 82288 802

 UCS Family is based on the 80C51BH standard product and includes both the microcontroller core and peripheral functions. This family makes the internal communications bus (SFR Bus) avail-

- The 12.5 MHz microprocessor support peripheral family includes 82CXX peripheral cells compatible with 86/186/286 environments.
- All VLSI cells are tested and verified using the equivalent standard product test program, guaranteeing 0.1% AQL or better.
- Functional relationships identical to the standard product, including standard product code compatibility.

Design Environment

able to the designer.

- Libraries compatible with workstations from Daisy
 Systems and Mentor Graphics.
 - Mainframe interface accessible to customers via Intel technology centers or dial-up from customer site. Supports high complexity designs.
 - All design environments include Intel developed utilities for back annotation of actual delays from layout database for post layout simulations.
 - Software utilities provided by Intel automatically converts your simulation stimulus to Intel tester compatible vectors.
 - For those designs incorporating the 80C51-based VLSI cell and which are designed in the Daisy environment, customers may also simulate the core using Daisy's Physical Modeling Extension (PMX) board. The PMX is a hardware add-on chassis and control software that allows the user to perform software modeling using an actual physical component in the Daisy environment.

CHMOS III: 1.5 Micron CMOS

- Intel's cell based products are produced using CHMOS III—an advanced 1.5 micron, double-layer metal CMOS process technology providing high performance, high density, and low power consumption semi-custom integrated circuits with proven manufacturability.
- Intel's 80C51BH standard product also manufactured in CHMOS III.

Manufacturing Reliability

- 0.1% Average Quality Level (AQL) against submitted test vectors.
- < 200 Failures In Time (FITs).

LSI and VLSI Functions

UCS51 FAMILY: UCS51XX and UCS52XX cells listed below are fully compatible with the 80C51BH standard product. In addition, these cells make the internal bus (Special Function Register Bus) of the 80C51BH accessible to the designer. A series of SFR peripheral cells have been designed to interface to this bus. These peripherals are also listed below. Peripheral communications are optimized (less code required) and the designer can also define his own peripherals and connect them directly to the bus.

produces its cell-based IC using a 1.5 micron double

and silicon efficiency for repetitive functions.

Name of died	abulani bná touborq er Cel	Description enogmos basbasta no beau
UCS5100	80C51BH Microcontroller Cor	re with No ROM, 128 Bytes RAM
UCS5104	80C51BH Microcontroller Cor	re with 4K Bytes ROM, 128 Bytes RAM
UCS5108	80C51BH Microcontroller Cor	re with 8K Bytes ROM, 128 Bytes RAM
UCS5116	80C51BH Microcontroller Cor	re with 16K Bytes ROM, 128 Bytes RAM
UCS5200	80C51BH Microcontroller Cor	re with No ROM, 256 Bytes RAM
UCS5204	80C51BH Microcontroller Con	re with 4K Bytes ROM, 256 Bytes RAM
materia UCS5208	80C51BH Microcontroller Cor	re with 8K Bytes ROM, 256 Bytes RAM
UCS5216	80C51BH Microcontroller Cor	re with 16K Bytes ROM, 256 Bytes RAM
UCS51BRG	Baud Rate Generator	ESD protection to 2000V.
UCS51SIO	Serial I/O	
UCS51T2	Timer 2	Special Function Cells
UCS51BIU animasi D	SFR Bus Interface Unit	 Fixed configuration RAM to 6K bits.
SIV 219 UCS51AD GIGISSO E	8-Bit Analog to Digital Conver	ter with Sample and Hold elderupilnooneal e
UCS51IEU	Interrupt Expansion Unit	"Telescoping" cells achieve high perform

NOTE

All specifications within tables are subject to change.

· Software utilities provided by Intel automatically

All design environments include intel de

pment and 18H-based e

Packaging

UC51 FAMILY: UC51XX cells listed below are fully compatible with the 80C51BH standard product and are available in a variety of ROM configurations. In addition, the signals from the standard product "CORE" have been demultiplexed, making all 116 signals available for use.

neau e Name e sacena	exploid gaigossels to not - Cell Description in bemeterg entress years. being
UC5100	80C51BH Microcontroller Core with No ROM, 128 Bytes RAM
UC5104	80C51BH Microcontroller Core with 4K Bytes ROM, 128 Bytes RAM
UC5108	80C51BH Microcontroller Core with 8K Bytes ROM, 128 Bytes RAM
UC5116	80C51BH Microcontroller Core with 16K Bytes ROM, 128 Bytes RAM
UC5200	80C51BH Microcontroller Core with No ROM, 256 Bytes RAM
UC5204	80C51BH Microcontroller Core with 4K Bytes ROM, 256 Bytes RAM
UC5208	80C51BH Microcontroller Core with 8K Bytes ROM, 256 Bytes RAM
UC5216	80C51BH Microcontroller Core with 16K Bytes ROM, 256 Bytes RAM

80C51 Based Core Companion Cells: The following cells are used in conjunction with the UC51XX cells noted above.

	Name	Cell Description
	POSC	Oscillator ybo5 19
1	PWOSC	Oscillator with Power Down
1	PADB	Address/Data Bus I/O Buffer
	PRESET	Reset Input Buffer
	PTNQB	Quasi-Bidirectional I/O Buffer
	PRGPIN	UC51 Programmable I/O Buffer
1	PRGUCS	UCS Programmable I/O Buffer

MICROPROCESSOR SUPPORT PERIPHERAL COMPANION CELLS: The following cells are used in conjunction with the microprocessor support peripheral cells noted above:

For use v	with SP8284/SP82284
POSC2	Oscillator, frequency range to 37.5 MHz
PCNO4	Non-inverting CMOS Output Buffer, High Drive
For use v	with SP8288/SP82288
PCO2	Inverting CMOS Output Buffer, High Drive
PCOT6	3-State Inverting CMOS Output Buffer with Enable, High Drive

MICROPROCESSOR SUPPORT PERIPHERAL FAMILY: These cells are equivalent in functionality to the corresponding Intel standard products.

Name	Cell Description
SP8237	Programmable DMA Controller
SP8254	Programmable Interval Timer
SP8259	Programmable Interrupt Controller
SP8284	8086/8088 Clock Generator and Driver
SP82284	80286 Clock Generator and Ready
Adder Cam	Interface T 900A
SP8288	8086/8088 Bus Controller
SP82288	80286 Bus Controller

Fixed Configuration Memory

Name	Cell Description
RAM64	64 x 8 Static Random Access Memory
RAM128	128 x 8 Static Random Access Memory
RAM256	256 x 8 Static Random Access Memory
	512 x 8 Static Random Access Memory
	1024 x 8 Static Random Access Memory

NOTE:

certain multi-stage logic functions can be implemented. They are the preferred method of construc-

Telescoping Cells Hardoos and this eldisament tion for multi-stage logic functions because they allow the designer to implement the exact function Telescoping cells are building blocks from which width required by the design. Silicon utilization is optimized. Front end work station tools make the creation of telescoping blocks transparent to the user.

MASS	80CS1SH Microcoproller Core with No ROM, 169 Byter	DOI:30U
Name asiya	Bonotique Rolle Core with 4K Bytes ROM, 128	UC5104
REGC SEIVE	Telescoping Register Control	UC5108
REGB STAR S	Telescoping Register Body	
REGCT MAR	Telescoping 3-State Register Control	
REGBT	Telescoping 3-State Register Body	
SHRC	Telescoping Shift Register Control	
SHRB salva a	Telescoping Shift Register Body	UC5216
SHLC	Telescoping Shift Register with Load, Control	
JAREISHLB TRO	Telescoping Shift Register with Load, Body	
villano CULC ni trielay	and a release plant of the relation of the rel	
CULBOID bish	releaseping op counter body	
CULP	Telescoping Up Counter Carry Out Driver	Name
CUPC	Telescoping Up/Down Counter Control	
CUPBournoO A	Telescoping Up/Down Counter Body	
CUPP miT Isva	of the second of	PWOSC
CUPP2	Telescoping Up/Down Counter End Count/Carry/Borrow Driver	
TeVHCADDC TETEDOS	Nacio Telescoping Adder Control	
ADDB no roter	and the same and t	PTNOB
ADDP	Telescoping Adder Carry Out Driver 8 ON sidemms pm9 1800	
CMPC reflored	The state of the s	
CMPB 101	Telescoping Magnitude Comparator Body	
CMPP	Telescoping Magnitude Comparator Equal/Greater Than/Less Ti	nan Driver

Cell Description	Mame
64 x 6 Static Random Access Memory	RAM64
128 x 8 Static Random Access Memory	
256 x 8 Static Random Access Memory	RAM256
512 x 8 Static Random Access Memory	RAMSTE
	RAMIK

th SP8284/SP82284	
Oscillator, frequency range to 37.5 MHz	
Non-inverting CMOS Output Buffer, High Drive	
th SP8288/SP82288	For use wi
Inverting CMOS Output Buffer, High Drive	
3-State Inverting CMOS Output Buffer with Enable, High Drive	

Inverters, Buffers and Gates

Name	nolinipased ilao Cell Description	emaM
INVN	Inverter, Normal Drive	THR
INVNH	Inverter, High Drive	3178
INVTE	3-State Inverter with Active Low Output Enable	
INVTD	3-State Inverter with Active High Output Enabl	e, Normal Drive
BUF	Buffer, Normal Drive	FLJKT
BUFH	Buffer, High Drive	
BUF2	Buffer with Dual Output, Normal Drive	BORR .
BUFTD	3-State Buffer with Active High Output Enable,	
DITETE	3-State Buffer with Active Low Output Enable,	Normal Drive
CIANIA	2 Input NAND, Normal Drive	
NAN3	3 Input NAND, Normal Drive	FLDM2
NAN4	4 Input NAND, Normal Drive	IHQ77
NAN5	5 Input NAND, Normal Drive	GAJ
NAN6	6 Input NAND, Normal Drive	
NAN7	7 Input NAND, Normal Drive	LASH
NAN8	8 Input NAND, Normal Drive	
NOR2	2 Input NOR, Normal Drive	LANSH
NOR3	3 Input NOR, Normal Drive	
NOR4	4 Input NOR, Normal Drive	
NOR5	5 Input NOR, Normal Drive	
NOR6	6 Input NOR, Normal Drive	
NOR7	7 Input NOR, Normal Drive	MUX21
NOR8	8 Input NOR, Normal Drive	MUX41
AND2	2 Input AND, Normal Drive	
AND3	3 Input AND, Normal Drive	DMX3
AND4	4 Input AND, Normal Drive	
AND5	5 Input AND, Normal Drive	and the second s
AND6	6 Input AND, Normal Drive	OTICE: All sed-clostions within
AND7	7 Input AND, Normal Drive	
AND8	8 Input AND, Normal Drive	
OR2	2 Input OR, Normal Drive	
OR3	3 Input OR, Normal Drive	
OR4	4 Input OR, Normal Drive	
OR5	5 Input OR, Normal Drive	
OR6	6 Input OR, Normal Drive	
OR7	7 Input OR, Normal Drive	
OR8	8 Input OR, Normal Drive	
AOR22	2 AND2 into OR2, Normal Drive	
AOI22	2 AND2 into NOR2, Normal Drive	
EXR2	2 Input EXCLUSIVE OR, Normal Drive	
EXN2	2 Input EXCLUSIVE NOR, Normal Drive	

Flip-Flops and Latches

FFJK FLJK FLJK FLJKT JK Flip-Flop with Mas JK Flip-Flop with Mas 3-State JK Flip-Flop v	Enable and Master Reset ster Reset ster Set and Master Reset with Master Set and Master Reset	INVNI INVNH INVTE INVTD BUF
FFTE FFJK FLJK FLJKT Toggle Flip-Flop with Mas JK Flip-Flop with Mas JK Flip-Flop with Mas 3-State JK Flip-Flop w	Enable and Master Reset ster Reset ster Set and Master Reset with Master Set and Master Reset	
FFJK FLJK FLJKT JK Flip-Flop with Mas JK Flip-Flop with Mas 3-State JK Flip-Flop w	ter Reset ter Set and Master Reset vith Master Set and Master Reset	
FLJK JK Flip-Flop with Mas FLJKT 3-State JK Flip-Flop w	ter Set and Master Reset with Master Set and Master Reset	
FLJKT 3-State JK Flip-Flop v	vith Master Set and Master Reset	
FFD D Flip-Flop with Maste	or Roset	
FFDE D Flip-Flop with Enab		BUF2
	le, Master Set and Master Reset	
	ith Enable, Master Set and Master Re	BUFTER
	Data Multiplexer and Master Reset	SUAU
	Data Multiplexer, Master Set and Ma	aster Reset
	Frigger with Master Reset	NAN4
LAD Transparent D Latch		
LSR S-R Latch with Maste		
LASR S-R Latch with Enable		
LNSR S-R Latch with Maste		
LANSR S-R Latch with Enable		

Multiplexers, Decoders and Arithmetic Functions

Name	eving ismovi is Cell Description and an analysis
MUX21	2-Line to 1-Line Multiplexer
MUX41	4-Line to 1-Line Multiplexer
DMX2	2-Line to 4-Line Demultiplexer/Decoder with 2 Enables
DMX3	3-Line to 8-Line Demultiplexer/Decoder
CPR	8/9-Bit Parity Checker/Generator

INTEL DESIGN ENVIRONMENTanoitanut furtion For complex designs requiring simulation

item Name of si	mis emanthism sebivora letal noil Cell Description	ntal's design environment inclu
PCI PCIH PTI PTIH PTIRH	Non-Inverting CMOS Input Buffer, Normal Drive Non-Inverting CMOS Input Buffer, High Drive Non-Inverting TTL Input Buffer, Normal Drive Non-Inverting TTL Input Buffer, High Drive Non-Inverting TTL Input Buffer with Pull-Up Resistor, H	cols necessary to easist custom self-based design. Intel provides nodels and utilities to support sellist generation, and functions for in the Dalsy Systems or Meneration avird high
PISH	Non-Inverting TTL Schmitt Trigger Input Buffer, High D	
PISHH	Non-Inverting TTL Schmitt Trigger Input Buffer with Pu Inverting CMOS Output Buffer, Low Drive	II-Up Hesistor, High Drive
PCNO PCOT	Non-Inverting CMOS Output Buffer, Low Drive 3-State Inverting CMOS Output Buffer, Low Drive	
PTO PTNO	Inverting TTL Output Buffer, Low Drive Non-Inverting TTL Output Buffer, Low Drive	
PTNO3	Non-Inverting TTL Output Buffer, Low Drive	
PTNO5 PTOT PTOT3 PTOT5	Non-Inverting TTL Output Buffer, High Drive 3-State Inverting TTL Output Buffer, Low Drive 3-State Inverting TTL Output Buffer, Medium Drive	
PTND	3-State Inverting TTL Output Buffer, High Drive Non-Inverting TTL Open-Drain Output Buffer, Low Driv	Design Review
PTND3 PTND5 PCIO PTIO PTIO3 PTIO5	Non-Inverting TTL Open-Drain Output Buffer, Medium Non-Inverting TTL Open-Drain Output Buffer, High Driv CMOS I/O Buffer; Latched Non-Inverting Input, 3-State ITTL I/O Buffer; Latched Non-Inverting Input, 3-State Ir TTL I/O Buffer; Latched Non-Inverting Input, 3-State Ir TTL I/O Buffer; Latched Non-Inverting Input, 3-State Ir	Drive ve porting Output, Low Drive porting Output, Low Drive porting Output, Medium Drive

Intel's design environment includes the software tools necessary to assist customers with their Intel cell-based design. Intel provides workstation library models and utilities to support schematic capture, netlist generation, and functional and timing simulation in the Daisy Systems or Mentor Graphics envition, Intel provides mainframe simulation. Automatic test vector generation software is provided to assist the customer in the development of input test stimuli. The table below shows the typical flow of Intel cell-based design activities. Non-Inverting TTL Input Buffer, Non-Inverting TTL Input Buffer

and un	non-inverting it to reput builds with multiplinesistor, re-	
Task	Intel Feature III prince Intel Feature	Responsibility
System Design	Inverting CMOS Qurput Buffer, Low Drive	Customer
Schematic Capture, User Logic and Test Logic Design	Customer Maintains Control of the Design Specification.	Customer
Netlist Generation	Electrical Rules Check. Flags Illegal use of Cells.	Customer
Simulation	Built in Timing Verifier. Must Juquo JTT primevni-noVi	Customer
Test Vector Generation	Automatic Conversion of User's Simulation Vectors to Intel-tester Compatible Format. 100% Explainable Toggle Node Count Required.	Customer
Design Review	Non-Inverting TTL Open-Drain Output Buffer, Low Driv	Customer
Auto Place and Route	Proprietary Tools for Automatic Place and Route, Mask design.	Intel ^{EGMT9}
Back Annotation/ Post-Layout Simulation	Resistance and Capacitance Values Extracted from Layout Database.	Intel/Customer
Design Review H AughuO primey	TTL I/O Buffer; Latched Non-inventing Input, 3-State in	Intel/Customer
Fab, Assembly, Test	ins within tables are subject to change.	Intel® MA ESTO
Prototype Delivery	On-Time Delivery; Conformance to Specifications.	Intel

ABSOLUTE MAXIN Case Temperature under Plastic Ceramic Storage Temperature	Bias	-40°C to +85°C 55°C to +125°C	CONDITIONS
DC Supply Voltage (V _{DD})		0V to 7.0V	lute Maximum Ratings" may cause permanent dam-
Voltage to Any Pin with Respect to Ground	0.5\	/ to V _{DD} + 0.5V	age to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the opera-
Power Dissipation	V	1.0W	tional sections of this specification is not implied. Ex-
V _{IL} = V _{SS}	Ащ		posure to absolute maximum rating conditions for extended periods may affect device reliability.
	Au	-10	CMOS Inputs
	Au	10	NOTICE: Specifications contained within the following tables are subject to change.

PACKAGING

Intel's cell-based ICs are available in a wide variety of both through-board and surface-mount packages. DIP, chip carrier, pin grid array and flatpack configurations are offered. Special packages are available by request.

Intel ASIC Components Packaging Alternatives

Package Type	Leadcount		S	Ceramicuqui		Plastic		
Dual-In-Line(1)	V		16	3.		QMOS Inputs	X	27.1110
Low Drive Medium Drive High Drive	Am Am Am Am	3.2 7 12 3,2	18 20 24 28 40 48		×	ow Level Outp TTL Outputs TTL Outputs TTL Outputs CMOS Output	X X X X X	
Leaded Chip Carri	er Am	-0.08 -2.4	20 28 32			tigh Level Outp TITL Outputs CMOS Outpu	X X X	HO
ИОІТА	INFORM	DERING	44 52 68 84	3:	XITERFAC	(2)	X NXSUPPO X	
Leadless Chip Car	rier	act your lot	68 84				esign enviro schnical sup Technologr	
Quad Flat Pack L ned Openion 231816			100 132	stom engi- ology	X: for semicularistics, and Xisic Technology	(2) at reft (2) (2) (3) (4) (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	sigx, and te	onsulta hip der sering
Pin Grid Array			68 72 84 88 100 132 144 180		orgvide cus	or group Ac		tations.

NOTES:

Hermetic DIPs may be side-brazed or CERDIP.
 Prototype only.

D.C. CHARACTERISTICS/I-O CELLS 0°C-70°C, 5V ±10%

Symbol	Parameter	Min	Max	Units	Test Conditions
O'C'to JIVO'C under "Abso- smenemt dem	Low Level Input Voltage TTL Inputs CMOS Inputs	C Cast C */Vcr V lute	0.8 0 0.8 0 0.7 0.1.2	- V	Ceramic
Alth a seur	High Level Input Voltage TTL Inputs CMOS Inputs	2.0 3.5	to V _{DD} + 0.5	/3.0 - V V	oltage to Any Prn with Respect to Ground . rower Dissipation
condition al for eliebility.	Low Level Input Current TTL Inputs CMOS Inputs		-10 -10	μA μA	V _{IL} = V _{SS} V _{IL} = V _{SS}
ange. Hil	High Level Input Current TTL Inputs CMOS Inputs	allot	10 10	μA μA	$V_{IH} = V_{DD}$ $V_{IH} = V_{DD}$
VoL packages. DIP, ple by request.	Low Level Output Voltage TTL Inputs CMOS Inputs	of both the	0.45 0.4	ald v svs	ACKAGING ntel's cell-based iCs an hip carrier, pin grid arts
V _{OH} altesig	High Level Output Voltage TTL Inputs CMOS Inputs	2.4 3.6	SIC Componi Leado	V e	Package Typ Dual-In-Line(1)
IOL X	Low Level Output Current TTL Outputs TTL Outputs TTL Outputs CMOS Outputs		3.2 7 12 3.2	mA mA mA	Low Drive Medium Drive High Drive
Iон X	High Level Output Current TTL Outputs CMOS Outputs		-0.08 -2.4	mA mA	All Drives

NOTICE: All specifications within tables are subject to change.

DESIGN SUPPORT AND INTERFACE

Intel's design environment provides customers with expert technical support, either locally or in dedicated ASIC Technology Centers. Intel training and field application engineers offer training classes, design consultation, and technical support for semicustom chip design, cell-based design libraries, and engineering workstation (CAE) tools. ASIC Technology Centers are equipped with Daisy and Mentor workstations. These design centers also provide customers with access to factory mainframes for efficient simulation of complex designs.

ORDERING INFORMATION

Contact your local Intel sales office.

RELATED LITERATURES 1817 DELIC

	Order
Item	Number
Introduction to Intel Cell-Based Design	231816

UC51 TIMING CALCULATION PACKAGE

Daisy Environment

- Full-functional simulation for the UC51 core cell
- Physical model enables fast, accurate timing verification
- Test generator for UC51-to-user logic (ExtASM51)
- Operates with Physical Modeling Extension (PMX) from Daisy
- Timing models correlated with Intel's referent simulator to reduce design iterations
- Post-layout timing values incorporated into simulation (back-annotation)

PRODUCT DESCRIPTION

The Daisy-based UC51 Timing Calculation Package contains software and hardware for performing full-functional simulation of UC51-based ASIC devices. The package includes a software timing shell, a "Daisy hardware modeling kit" (DHMK), and the "Extended ASM51" for creating test patterns from 8051 instruction mnemonics. The DHMK is used with Daisy's Physical Modeling Extension (PMX) to perform accurate timing simulations.

FEATURES

Timing Calculation

The timing calculation shell is installed on the Daisy along with the other full-functional models in the 1.5 micron CHMOS cell library. The timing shell is the software interface between the DLS-II simulator, and the UC51 physical model. The timing package supports functional simulation, full-timing simulation, and post-layout simulation with back-annotated delay values. The timings are correlated with the UC51 timing model on the referent simulator.

Daisy Hardware Modeling Kit

The UC51-DHMK consists of a bonded-out version of the UC51 core cell, and the installation/wiring instructions for use with the Daisy PMX. When simulating a UC51 design, the DHMK enables the user to attach a segment of application code (in hex) that will be executed during the simulation. This flexibility enables the validation of device confidence tests in addition to the logic functionality and timing of the ASIC device. The DHMK kit also explains how a user can connect the completed UC51-based ASIC to the PMX for doing system-level simulation.

© Intel Corporation 1988

AUGUST 1988 ORDER NUMBER: 2402724001

UC51 Testability

The UC51 core cell has been developed to be tested in two modes. The user is only responsible for developing test vectors for the logic surrounding the UC51 core. Through the use of 13 pins on the device, Intel guarantees it can test the final ASIC — including the core. Most of the 13 pins (such as the data bus) can also be used in the application.

In "core isolation" mode, Intel tests the UC51 core to the same conditions it tests the standard 8051. In "user-test" mode, the user-developed test-vectors are used to verify the application-specific logic connected to the UC51. The user develops only one set of test-vectors for both logic simulation and production-test, using Intel-supplied conversion programs between the different environments. To aid development of these user-specific stimuli, Intel provides a software tool call ExtASM51.

ExtASM51

The Extended Assembler-51 is a modified assembler that generates test-patterns in sequence with 8051 instruction mnemonics. Specific keywords in the comment fields indicate to ExtASM51 what test patterns should be generated, and how the generated vectors should be synchronized with the executed instructions. For example, to read in specific values on UC51 ports, during specific tester cycles, ExtASM51 will generate the appropriate stimulus, given a few simple mnemonics.

HOV DPTR, SOAA	HAA	+0018 E0 99 MOVX A, EDPTR ;) DATABUS=AAH
MOVX A, EDPTR	;)DATABUS=OOH	3 1 1 1 0 0 0 0 0 1 mms Jack asidems lei
MOV P1, A	;)IOPORT1=OFF	12 1 1 1 1 1 1 1 1 1 0 0 of year-of-120U to) ye
MOV A, P1	;)IOPORT1=FFH	h Physical Modeling Ex 0 1 0 1 0 1 0 1 frot Daisy
MOV A, P1	;)IOPORT1=OOH	els correlated with in of st did total tit dialer to red
MOVX A, EDPTR	;)DATABUS=AAH	+0019 F590 100 MOV P1,A ;) IOPORT1=OFF
MOV P1,A	;)IOPORT1=OFF	3 11110101 1
MOV A, P1	;) IOPORT1 = 55H	3 11111111 0
MOV A.P1	:)IOPORT1=AAH	3 10010000 1 MOTTENES
HOV DPTR. #1234	are and hardware full	d UCS1 Timing Calculotich Pictate to the Es softw
DRL C.ACC.7		
END:		

ExtASM51 generates a test file (in TPDL format) that can be input to the simulator or IC tester, as well as a .ROM object file and a .LST file.

SPECIFICATIONS

Hardware Required:

For Schematic Entry and Simulation: Daisy Systems' Logician, Personal Logician (286 or 386), or MegaLogician

Physical Modeling Extension (PMX), with Two (2) Dynamic PEM's

Two (2) PMX "Pin Grid Daughter Boards"

Documentation Supplied: UC-51 Daisy Hardware Modeling Kit User's

Software Required: Ital moits lumie Isnorband emogue

Daisy DNIX operating system, release 5.02 or later

W Test genera @ Operates v W Timing me # Post-layou

FEATURES

Intel Daisy Design Entry Package Intel Daisy Cell-Based Basic Timing Package

core cell, and the installation/wiring instruction sibbM 5.25" and 8" Diskettes Supplied and W XM9 valid only

ORDERING INFORMATION

DC-51TP

Daisy UC51 Timing Package of and bearing as a use a work entalgra cells tol MMHQ

Logician and MegaLogician are registered trademarks of Daisy Systems Corporation.

Intel Corporation assumes no responsibility for the use of any circular other than circular other based in an Intel product. No other circuit patent licenses are implied, Internation contained herein supersedes previously published specifications on these devices from Intel.

Printed in USA/AC003/888/3K/RR SM

ASIC TOOLS AND SERVICES

- Complete development cycle support for Intel cell-based ASIC designs
- Complete CAE support on Daisy and Mentor engineering workstations
- Mainframe simulation support for complex designs
- Emulator kits for software development and prototyping core-based ASICs
- Productivity-approaches to ASIC testability
- Training courses on Intel cell-based ASIC design
- Engineering services in Technology Centers

Intel's ASIC Tools and Services provide a low-risk approach to high-performance ASIC design. The offering includes a comprehensive set of tools for design entry, logic simulation, test-program development, and system design, as well as Technology Center services that minimizes the number of design changes required to achieve working

Workstation Libraries

Intel ASICs are supported by several software libraries that operate on Daisy and Mentor Engineering Workstations. The "Design Entry Package" consists of schematic-entry symbols and functional timing models for Intel cell-based designs. The package also contains several utilities for test-program development, netlisting, rules checking, and timing comparison. The design-entry package contains support for Intel-unique elements such as telescoping cells, microprocessor cores, and peripherals.

The "Timing Calculation Packages" contain full-functional simulation models for performing design verification on the engineering workstation. The models are correlated to our referent simulator, to reduce the risk of design changes when we accept the netlist and do a referent simulation. The Timing Calculation Packages will incorporate post-layout timing delays (back-annotation) into a final simulation prior to the manufacture of prototype silicon. Separate Timing Calculation Packages are available for the Basic Standard-Cell library, and the VLSiCEL™ families (for Daisy and Mentor).

Mainframe Simulation

Customers who use the Design Entry Packages may also access Intel's mainframe-based referent simulator for doing design verification. This "Mainframe Design Verification System" is accessible through an Intel Technology Center or dial-up via modem. The benefits of this approach is the increased simulation throughput time (for larger designs), and the ability to design in the same environment in which the cells were originally developed.

© Intel Corporation 1988

ORDER NUMBER: 240269-001

Test Methodology

Intel's approach to testing ASICs enables users to write a single set of test vectors, that will be used for Workstation timing simulation, Mainframe timing simulation, and Production test of wafers and assembled devices. Upon design-acceptance, we can ensure that prototype and production devices are tested with the same test vectors used during design verification. The format conversions between Daisy, Mentor, mainframe, and tester environments are performed by utility programs provided with the Design Entry Packages. Also included is a utility that eases the process of writing test vectors; it provides a shell-file with predefined and design-specific values already filled in.

VLSI cells, such as microprocessor cores and peripherals, are designed with a "test ring" of circuitry that enables two modes of testing to take place. In "core isolation mode," Intel tests the ASIC core to the same stringent requirements as our standard parts. In "user test mode," we run the same user-supplied vectors that were used during simulation. Our Mainframe Design Verification System, as well as workstation-based timing packages for VLSI cells, provide special tools to test the interoperation of the VLSI cells and user logic.

System Design

Breadboarding and software development for programmable cores are addressed with in-circuit emulation products. These Emulator Design Kits make use of "bond-out" versions of the ASIC cores. Such a kit may then be used to build a breadboard version of the ASIC, which includes the core and user logic — this is useful for building prototype systems prior to the completion of the ASIC device. The Emulator kits also contain PC-based software to download and debug system software.

ASIC Training

Training courses for Intel ASIC design, using Daisy or Mentor workstations, are offered periodically in Intel Technology Centers. More detailed courses on designing with microprocessor cores and peripherals are also available, and may be combined with the basic courses. All courses contain a lecture portion on the design rules and methodology, and extensive hands-on lab exercises. Contact the local Technology Center for a complete listing of training courses and to schedule course times.

Emulator kits for software development and prototyping core-based ASICs

Engineering Services

Intel Technology Centers are capable of assisting in all or part of an ASIC design. Engineers are available for consultation, or for complete design specification, verification, and test.

Intel Technology Centers

California Intel Technology Center 3065 Bowers Avenue Santa Clara, CA 95051 Tel: (408) 987-5400 United Kingdom Intel Technology Center Piper's Way Swindon SN31RJ Wiltshire, U.K. Tel: 0793 696000

Massachusetts Intel Technology Center 3 Carlisle Rd Westford, MA 01886 Tel: (617) 692-3222

France Intel Technology Center 1 Rue Edison, BP 303 78054 Saint-Quentinen-Yvelines Cedex Paris, France Tel: 33-1-30-57-7000

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel.

MENTOR-BASED ASIC LIBRARIES

- Support for Intel's entire ASIC library, including complex cells
- Provides design-entry and simulation capability on Mentor Idea Stations
- Added-value utilities for rules-checking, test-pattern development, and design-flow audit
- Timing models correlated with Intel's referent simulator to reduce design iterations
- Post-layout timing values incorporated into simulation (back-annotation)

PRODUCT DESCRIPTION

The Mentor Design Entry Package and Timing Calculation Packages provide complete ASIC design support to users of Mentor Idea Stations. These software libraries contain symbols, timing models, and added-value utilities to support Intel cell-based ASIC designs. The utilities and libraries are well-integrated with Mentor's NETED and QuickSim to provide a productive development environment with minimal design risk.

FEATURES

Schematic Entry Symbols

The Mentor Design Entry Package contains symbols for 150 logic cells in the standard-cell library, plus microprocessor core and peripheral cells, including the UC51, 8284, 8288, 82284, 82284, 8238, 8237, 8254, 8259. Also included is support for 11 different telescoping cells (adders, counters, comparitors, registers) with widths of 1-12 bits. The symbols are used in conjunction with Mentor's NETED software.

Functional Simulation

The Mentor Design Entry Package contains the intrinsic-delay timing models for the logic elements in Intel's ASIC library. This will enable the user to debug the logic of a design, but not the timing accuracy. The models are used with QuickSim.

Full-Functional Timing Simulation

The Mentor-based Basic Timing Package contains simulation models for the SSI/MSI elements of Intel's ASIC library. These contain the load-dependent delays for each pin of each cell, under best-case, worst-case, and normal conditions. Both pre-layout delays (algorithmically determined) and post-layout delays (back-annotated from the layout database) are supported, using QuickSim.

© Intel Corporation 1988

AUGUST 1988 ORDER NUMBER: 240271-001

IDE Utilities

The Intel Development Environment is the term used to describe the tools and services that run on engineering workstations and the internal mainframe environment. A set of utilities common to the development platforms has been created to ease the development of an ASIC design, as well as reduce the number of design iterations required for acceptance. The utilities are outlined in the table below.

IDE_AUDIT	Reports the execution time, version number, and errors for the tools executed in the design flow.
IDE_AUTOTPDL	Generates a skeleton TPDL file, using design elements extracted from the database.
IDE_BA	Backannotates post-layout interconnect delays into the design database.
IDE_ERC	Performs electrical rules checks, such as pad connections, floating inputs, character names, etc.
IDE_EXPAND	Invokes EXPAND with IDE-specific property, parameter, and primitive information.
IDE_ITC	Incorporates estimated load-dependent delays into the design database.
IDE_NETLIST	Generates a hierarchical netlist in SDL format. I DIZA with a statul of trougge?
IDE_SIM	Establishes the simulation environment and invokes QuickSim.
IDE_STATS	Creates a report file that profiles the number and types of cells used in the design.
IDE_TIF	Converts simulation outputs to test pattern (.TPN) format.
IDE_TIFCOMP	Compares .TPN files for slow, fast, and typical simulations, and reports cycle slips.
IDE_TOGGLE	Generates a list of all untoggled nodes.
IDE_TPDL	Converts user-developed production test program (in TPDL format) to MISL format for simulation stimuli.
IDE_TRANSFER	Copies all necessary design files to floppy disk for design acceptance and transfer.
	EATURES

SPECIFICATIONS

Hardware Required:

Apollo DOMAIN System with at least 4 Mb RAM; eg, DN3000 or DN4000

Software Required:

Mentor Idea Station SW Rel 6.0 or later For Design Entry: Mentor Capture Station For Simulation: Mentor Idea Station Media:

9-track MagTape available by request 5-1/4" Floppy disks available by request

Documentation Supplied: Intel Cell-Based Design, Mentor The Mentor Design Entry Package contains, InsmnorivnBelay in elements in Intel's ASIC library. This will enable the user to deb but not the timing accuracy. The models are used with QuickSin

ORDERING INFORMATION

M-DEP Mentor Design Entry Package MC-BTP

Mentor Cell-Based Basic Timing Package

Idea Station, NETED, QuickSim and Capture Station are registered trademarks of Mentor Graphics.

DOMAIN is a registered trademark of Apollo Computer, Inc.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry ombodied in an Intel product. No other circuit patent licenses are implied. Information contained berein supersedes previously published specifications on those devices from Intel

DAISY-BASED ASIC LIBRARIES

- Support for Intel's entire ASIC library, including complex cells
- Provides design-entry and simulation capability on Daisy workstations
- Added-value utilities for rules-checking, test-pattern development, and design-flow audit
- Timing models correlated with Intel's referent simulator to reduce design iterations
- Post-layout timing values incorporated into simulation (back-annotation)

PRODUCT DESCRIPTION

The Daisy Design Entry Package and Timing Calculation Packages provide complete ASIC design support to users of Daisy workstations (Logician, Personal Logician, MegaLogician, and Entry! system). These software libraries contain symbols, timing models, and added-value utilities to support Intel cell-based ASIC designs. The utilities and libraries are well-integrated with Daisy's ACE, DED, and DLS2, to provide a productive development environment with minimal design risk.

FEATURES

Schematic Entry Symbols

The Daisy Design Entry Package contains symbols for 150 logic cells in the standard-cell library, plus microprocessor core and peripheral cells, including the UC51, 8284, 8288, 82284, 82288, 8237, 8254, 8259. Also included is support for 11 different telescoping cells (adders, counters, comparitors, registers) with widths of 1-12 bits. The symbols are used in conjunction with Daisy's ACE and DED2 software.

Functional Simulation

The Daisy Design Entry Package contains the intrinsic-delay timing models for the logic elements in Intel's ASIC library. This will enable the user to debug the logic of a design, but not the timing accuracy. The models are used with DED2.

Full-Functional Timing Simulation

The Daisy-based Basic Timing Package contains simulation models for the SSI/MSI elements of Intel's ASIC library. These contain the load-dependent delays for each pin of each cell, under best-case, worst-case, and normal conditions. Both pre-layout delays (algorithmically determined) and post-layout delays (back-annotated from the layout database) are supported, using DLS2.

© Intel Corporation 1988

AUGUST 1988 ORDER NUMBER: 240270-001

IDE Utilities

The Intel Development Environment is the term used to describe the tools and services that run on engineering workstations and the internal mainframe environment. A set of utilities common to the development platforms has been created to ease the development of an ASIC design, as well as to reduce the number of design iterations required for acceptance. The utilities are outlined in the table below.

IDE_AUDIT	Reports the execution time, version number, and errors for the tools executed in the design flow.
IDE_AUTOTPDL	Generates a skeleton TPDL file, using design elements extracted from the database with SING.
IDE_NETLIST	Generates a hierarchical netlist in SDL format.
IDE_SOM2TPDL	Converts a stimulus file from SOM format to the TTABLE section appended to a TPDL file.
IDE_STATS	Creates a report file that profiles the number and types of cells used in the design.
IDE_TCAL	Executes TCAL (for load-dependent delay calculation) with specific user options.
IDE_TIF	Converts simulation outputs to test pattern (.TPN) format.
IDE_TIFCOMP	Compares .TPN files for slow, fast, and typical simulations, and reports cycle slips.
IDE_TOGGLE	Activates the toggle-test environment, invoking SIFT, SOM, DLS, and the toggle utility.
IDE_TPDL	Converts user-developed production test program (in TPDL format) to SOM format for simulation stimuli.
IDE_TRANSFER	Copies all necessary design files to floppy disk for design acceptance and transfer.

Media:

5.25" or 8" Diskettes

Documentation Supplied:

Intel Cell-based Design, Daisy Environment

Schematic Entry Symbols

SPECIFICATIONS

Hardware Required:

For Schematic Entry and Simulation: Daisy Systems' Logician, Personal Logician (286 or 386), MegaLogician, or DOS-based "Entry!" system.

Required: 4 Mb RAM, 40 Mb Disk Suggested: 8 Mb RAM, 80-140 Mb Disk

Software Required:

Daisy DNIX operating system, release 5.02 or later

ORDERING INFORMATION

D-DEP Daisy Design Entry Package

DC-BTP Daisy Cell-Based Basic Timing Package

Logician and MegaLogician are registered trademarks of Daise Systems Corporation in the Corporation assumes no responsibility for the use of any circuitry other than or, native embodied in an intel product. Ne other circuit patent licenses are implied, Internation contained because previously published specifications on those devices from Intel

MCS®-96 8098 ARCHITECTURAL OVERVIEW

The 8098/8398 microcontrollers are pin compatible eight-bit data bus interface members of Intel Corporation's MCS®-96 architectural family of 16-bit microcontrollers; all of which feature a unique 256-byte Register Arithmetic Logic Unit (RALU) as part of the Central Processing Unit (CPU). There are actually three devices associated with what is generally referred to as the 8098. The product designation of 8398 is the nomenclature for the core RALU architecture intended for standalone designs with 8K × 8-bit on-chip read only memory (ROM) addresses. This on-chip memory is mask programmable for executable code and 8-, 16-, or with some arithmetic instructions 32-bit memory data types. The 8795BH is the 8K byte on-chip EPROM component for prototyping and low volume production; and the 8098 is the ROMless RALU only device intended for applications with external memory addressing to 64K × 8. The EPROM version is the highest functionality device, in that it is user programmable, but is provided in the same package and pinout as the 8098/8398 for easy prototyping. All software is upward compatible to 8X9XBH and the 80C196KX architectures. Notations will be made when features and functionality differ between the various devices.

The on-chip peripheral subsystems (see Figure 1) under microcontrol of the RALU can be separated into several sections for the purpose of describing its operation. There is a 17-bit arithmetic unit associated with the 256-byte on-chip register file, a programmable High Speed Input/Output (HSIO) engine, a four input analog aquisition system (with 10-bit Analog to Digital Converter), an internal interrupt controller and wait state ready logic, a synchronous/asynchronous serial port, and a Pulse Width Modulated (PWM) output for use with digital to analog conversion circuits. There are also clock generators as well as software and hardware timers that help support the overall operation of the device. The 17-bit RALU, 10-bit A/D system, 8-bit PWM, and programmable High Speed I/O make the 8098 a unique high performance product in the 8-bit microcontroller industry. Let's examine each feature.

1.0 CPU OPERATION

The major components of the 8098 CPU are the fast on-chip Register File, Special Function Registers (SFRs), Memory Controller and RALU (Register/Arithmetic Logic Unit). Communication with the outside world is done through either the SFRs or the

Memory Controller. The RALU does not use an accumulator, it operates directly on the 256-byte address space made up of the Register File and the SFRs. Efficient I/O, A/D, PWM and serial port operations are possible by directly controlling the I/O through the SFRs. The main benefits of this structure are the ability to quickly change context, the absence of accumulator bottleneck, and fast throughput and I/O times.

1.1 CPU Buses

A Control Unit and two busses connect the Register File and RALU. Figure 1 shows the CPU with its major bus connections. The two buses are the "A-Bus" which is 8 bits wide, and the "D-Bus" which is 16 bits wide. The D-Bus transfers data only between the RALU and the Register File or Special Function Registers (SFRs). The A-Bus is used as the address bus for the above transfers or as a multiplexed address/data bus connecting to the "Memory Controller". Any accesses of either the internal ROM or external memory are done through the Memory Controller.

1.2 CPU Register File

The Register File contains 232 bytes of RAM which can be accessed as bytes, words, or double-words. Since each of these locations can be used by the RALU, there are essentially 232 "accumulators". The first word in the Register File is reserved for use as the stack pointer so it can not be used for data when stack manipulations are taking place. Addresses for accessing the Register File and SFRs are temporarily stored in two 8-bit address registers by the CPU hardware.

1.3 RALU Control

1.4 RALU

Most calculations performed by the 8098 take place in the RALU. The RALU, shown in Figure 2, contains a 17-bit ALU, the Program Status Word (PSW), the Program Counter (PC), a loop counter, and three temporary registers. All of the registers are 16 bits or 17 bits (16 plus sign extension) wide. Some of the registers have the ability to perform simple operations to off-load the ALU.

Figure 1. Block Diagram

Figure 2. RALU Block Diagram

A separate incrementor is used for the PC; however, jumps must be handled through the ALU. Two of the temporary registers have their own shift logic. These registers are used for the operations which require logical shifts, including Normalize, Multiply and Divide. The "Lower Word" register is used only when doubleword quantities are being shifted, the "Upper Word" register is used whenever a shift is performed or as a temporary register for many instructions. Repetitive shifts are counted by the 5-bit "Loop Counter".

The DELAY shown in Figure 2 is used to convert the 16-bit bus into an 8-bit bus. This is required as all addresses and instructions are carried on the 8-bit A-Bus. Several constants, such as 0, 1 and 2 are stored in the RALU for use in speeding up certain calculations. These come in handy when the RALU needs to make a 2's complement number or perform an increment or decrement instruction.

1.5 Internal Timing

The 8098 requires an input clock frequency of between 6.0 MHz and 12 MHz to function. This frequency can be applied directly to XTAL1. Alternatively, since XTAL1 and XTAL2 are inputs and outputs of an inverter, it is also possible to use a crystal to generate the clock. A block diagram of the oscillator section is shown in Figure 3.

The crystal or external oscillator frequency is divided by 3 to generate the three internal timing phases as shown in Figure 4. Each of the internal phases repeat every 3 oscillator periods: 3 oscillator periods are referred to as one "state time", the basic time measurement for 8098 operations. Most internal operations are synchronized to either Phase A, B or C, each of which have a 33% duty cycle. Phase A is represented externally by CLKOUT, a signal available on the 68-pin part. Phases B and C are not available externally. The relationships of XTAL1, CLKOUT, and Phases A, B and C are shown in Figure 4. It should be noted that propagation delays have not been taken into account in this diagram.

The RESET line can be used to start the 8098 at an exact time to provide for synchronization of test equipment and multiple chip systems. Use of this feature is fully explained under RESET, Section 13.

2.0 MEMORY SPACE

The addressable memory space on the 8098 consists of 64 Kbytes, most of which is available to the user for program or data memory. Locations which have special purposes are 0000H through 00FFH and 1FFEH through 2080H. All other locations can be used for either program or data storage or for memory mapped peripherals. A memory map is shown in Figure 5.

Figure 3. Block Diagram of Oscillator

Figure 4. Internal Timings Relative to XTAL 1

2.1 Register File

Locations 00H through 0FFH contain the Register File and Special Function Registers (SFRs). No code can be executed from this internal RAM section. If an attempt to execute instructions from locations 000H through 0FFH is made, the instructions will be fetched from external memory. This section of external memory is reserved for use by Intel development tools.

The RALU can operate on any of the 256 internal register locations. Locations 00H through 17H are used to access the SFRs. Locations 18H and 19H contain the stack pointer. These are not SFRs, and may be used as standard RAM if stack operations are not being performed. The stack pointer must be initialized by the user program and can point anywhere in the 64K memory space. The stack builds down. There are no restrictions on the use of the remaining 230 locations except that code cannot be executed from them.

Figure 5. Memory Map

2.2 Special Function Registers

All of the I/O on the 8098 is controlled through the SFRs. Many of these registers serve two functions; one if they are read from, the other if they are written to. Figure 5 shows the locations and names of these registers. A summary of the capabilities of each of these registers is shown in Figure 6, with complete descriptions reserved for later sections.

Within the SFR space are several registers labeled "RESERVED". These registers are reserved for future expansion and test purposes. Operations should not be performed with these registers as reads from them and writes to them may produce unexpected results.

he addressable memory space on the 8098 consists of Knyres, most of which is available to the user for rogram or data memory. Locations which have special unposes are 0000H through 00FFH and 1FFEH havingh 2080H. All other locations can be used for einer program or data storage or for memory mapped cribberals. A memory map is shown in Figure 5.

2.3 Power Down

The upper 16 RAM locations (0F0H through 0FFH) receive their power from the V_{PD} pin. If it is desired to keep the memory in these locations alive during a power down situation, one need only keep voltage on the pin. The current required to keep the RAM alive is approximately 1 mA (refer to the datasheet for the exact specification). Both V_{CC} and V_{PD} must have power applied for normal operation.

To place the 8098 into a power down mode, the RESET pin is pulled low. Two state times later the part will be in reset. This is necessary to prevent the part from writing into RAM as the power goes down. The

power may now be removed from the $V_{\rm CC}$ pin, the $V_{\rm PD}$ pin must remain within specifications. The 8098 can remain in this state for any amount of time and the 16 RAM bytes will retain their values.

To bring the 8098 out of power down, \overline{RESET} is held low while V_{CC} is applied. The 8098 should have stable power when the clock circuit starts. Two state times after the oscillator has stabilized, the \overline{RESET} pin can be pulled high. The 8098 will begin to execute code at location 02080H 10 state times after \overline{RESET} is pulled high. Figure 7 shows a timing diagram of the power down sequence. To ensure that the 2 state time minimum reset time (synchronous with CLKOUT) is met, it is recommended that 10 XTAL1 cycles be used.

Register	rved Memory Spaces notificated 2.6 Memory Controller	Section
(except for the loca-	Zero Register: Always reads as a zero, useful for a base when indexing and as a	to anitell A
	constant for calculations and compares.	n Figure 8
AD_RESULT	A/D Result Hi/Low: Low and high order Results of the A/D converter (byte read	8
s. Since the A-Bus is	only), with the Hex value FFH to insure the A-Rus and several company to	They must
AD_COMMAND	A/D Command Register: Controls the A/D	8
HSI_MODE	nsi mode register: sets the mode of the right speed input unit.	6
HSI_TIME	HSI Time Hi/Lo: Contains the time at which the High Speed Input unit was triggered. (word read only)	keseting ti
HSO_TIME	HSO Time Hi/Lo: Sets the time or count for the High Speed Output to execute the	7
	command in the Command Register. (word write only)	
HSO_COMMAND	HSO Command Register: Determines what will happen at the time loaded into the	7
	HSO Time Registers.	
HSI_STATUS	HSI Status Registers: Indicates which HSI pins were detected at the time in the HSI	0 -160000
near aft at has II I A	Time registers and the current state of the pins.	
SBUF (TX)	Transmit buffer for the serial port, holds contents to be outputted.	9
SBUF (RX)	Receive buffer for the serial port, holds the byte just received by the serial port.	90005
INT_MASK	Interrupt Mask Register: Enables or disables the individual interrupts.	S -145105
INT_PENDING	Interrupt Pending Register: Indicates that an interrupt signal has occurred on one of	148108
	the sources and has not been serviced.	
WATCHDOG	Watchdog Timer Register: Written to periodically to hold off automatic reset every	12 109
multiplexed address	64K state times.	
TIMER1	Timer 1 Hi/Lo: Timer 1 high and low bytes. (word read only)	20205
TIMER2	Timer 2 Hi/Lo: Timer 2 high and low bytes. (word read only)	150808
IOPORT0	Port 0 Register: Levels on pins of port 0.	10 800
BAUD_RATE	Register which determines the baud rate, this register is loaded sequentially.	9
IOPORT1	Port 1 Register: Used to read or write to Port 1.	10
IOPORT2	Port 2 Register: Used to read or write to Port 2.	10
SP_STAT	Serial Port Status: Indicates the status of the serial port.	9
SP_CON	Serial Port Control: Used to set the mode of the serial port.	9
IOS0	I/O Status Register 0: Contains information on the HSO status.	11
IOS1	I/O Status Register 1: Contains information on the status of the timers and of the HSI.	PROM pa
IOC0	I/O Control Register 0: Controls alternate functions of HSI pins, Timer 2 reset	atiop 208
Hanation of the ment	sources and Timer 2 clock sources.	
ddress signals will be	I/O Control Register 1: Controls alternate functions of Port 2 pins, timer interrupts and HSI interrupts.	md Speurit
PWM_CONTROL	Pulse Width Modulation Control Register: Sets the duration of the PWM pulse.	noite rion

(ats Figure 6: SFR Summary radio lis AA HEFFE bas HOOG neewed 21

head writing into RAM as the power go mining grown Timing grown at the RAM and the golden bed week.

2.4 Reserved Memory Spaces

A listing of locations with special significance is shown in Figure 8. The locations marked Reserved are reserved by Intel for use in testing or future products. They must be filled with the Hex value FFH to insure compatibility with future parts.

Resetting the 8098 causes instructions to be fetched starting from location 2080H. This location was chosen to allow a system to have up to 8K of RAM continuous with the register file. Further information on reset can be found in Section 13.

0000H-	0017H	Register Mapped I/O (SFRs)
0018H-	0019H	Stack Pointer
1FFEH-	1FFFH	Ports 3 and 4
2000H-	2011H	Interrupt Vectors
2012H-	2017H	Reserved to the shift is abivious edit asida
2018H		Chip Configuration Byte
2019H		Reserved
201AH-	201BH	"Jump to Self" Opcode (27H FEH)
		Reserved
2020H-	202FH	Security Key
		Reserved (vino base brow) as
2080H		Reset Location

Figure 8. Registers with Special Significance

2.5 Internal ROM and EPROM

When an 8398 ROM part is ordered, or an 8795BH EPROM part is programmed, the internal memory locations 2080H through 3FFFH are used specified, as are the interrupt vectors, Chip Configuration Register and Security Key in locations 2000H through 202FH.

Instruction and data fetches from the internal ROM or EPROM occur only if $\overline{E}A$ is tied high and the address is between 2000H and 3FFFH. At all other times data is accessed from either the internal RAM space or external memory and instructions are fetched from external memory. The $\overline{E}A$ pin is latched on \overline{RESET} rising. Information on programming EPROMs can be found in the datasheet.

2.6 Memory Controller

The RALU talks to the memory (except for the locations in the register file and SFR space) through the memory controller which is connected to the RALU by the A-Bus and several control lines. Since the A-Bus is eight bits wide, the memory controller uses a Slave Program Counter to avoid having to always get the instruction location from the RALU. This slave PC is incremented after each fetch. When a jump or call occurs, the slave PC must be loaded from the A-Bus before instruction fetches can continue.

In addition to holding a slave PC, the memory controller contains a 4 byte queue to held speed execution. This queue is transparent to the RALU and to the user unless wait states are forced during external bus cycles.

2.7 System Bus

There are several operating modes on the 8098. The standard bus mode uses a 16-bit multiplexed address and 8-bit data bus. In addition, there are several options available on the type of control signals used by the bus. In the standard mode, external memory is addressed through lines AD0 through AD15 which form a 16-bit address bus multiplexed with an 8-bit data bus. These lines share pins with I/O Ports 3 and 4. The falling edge of the Address Latch Enable (ALE) line is used to provide a signal to a transparent latch (i.e. 74LS373) to hold the lower eight address bits while data is placed on the bus.

To avoid confusion during the explanation of the memory system it is reasonable to give names to the demultiplexed address/data signals. The address signals will be called MA0 through MA15 (Memory Address), and the data signals will be called MD0 through MD7 (Memory Data).

Figure 9. External Memory Timings

TIMINGS

Figure 9 shows the idealized waveforms related to the following description of external memory manipulations. For exact timing specifications please refer to the latest datasheet. When an external memory fetch begins, the Address Latch Enable (ALE) line rises, and the address is put on AD0-AD15. ALE then falls, the address is taken off the pins, and the \overline{RD} (Read) signal goes low. When \overline{RD} falls, external memory should present its data to the 8098.

BUS PERFORMANCE

When using an 8-bit external bus with 16-bit data, some performance degradation is to be expected when compare to fetching the same data internally. On the 8098, execution times will slow down with an 8-bit bus if any of three conditions occur. First, word writes to external memory will cause the executing instruction to take two extra state times to complete. Second, word reads from external memory will cause a one state time extension of instruction execution time. Finally, if the prefetch queue is empty when an instruction fetch is requested, instruction execution is lengthened by one state time for each byte that must be externally acquired (worst case is the number of bytes in the instruction minus one).

READ

The data from the external memory must be on the bus and stable for a minimum of the specified setup time before the rising edge of \overline{RD} . The rising edge of \overline{RD} latches the information into the 8098.

WRITE

Writing to external memory requires timings that are similar to those required when reading from it. The main difference is that the write (\overline{WR}) signal is used instead of the \overline{RD} signal. The timings are the same until the falling edge of the \overline{WR} line. At this point the 8098 removes the address and places the data on the bus. When the \overline{WR} line goes high the data should be latched to the external memory. A unique feature of the 8098 is its ability to use the Chip Configuration Register value (CCR described later) to configure the timing placement of the falling edge of \overline{WR} . The exact timing specifications for memory accesses can be found in the data-sheet, but Figure 9 contains a conceptual diagram of this signal placement.

uration Register (CCR). Three of the bits in the YDASH

A ready line is available on the 8098 to extend the width of the \overline{RD} and \overline{WR} pulses in order to allow access of slow memories or for DMA purposes. If the READY line is low by the specified time after ALE falls, the 8098 will hold the bus lines to their values at the falling edge of CLKOUT. When the READY line rises the bus cycle will continue with the next falling edge of CLKOUT.

The 8098 has the ability to internally limit the number of wait states to 1, 2 or 3 as determined by the value in the Chip Configuration Register (CCR). Using the CCR for ready timing is discussed at the end of this section. If a ready limit is set, the TLLYH MAX specification is not used. If READY is held low at reset, three wait-states will be inserted into the CCR fetch cycle.

OPERATING MODES

The 8098 supports a variety of options to simplify memory systems, interfacing requirements and ready control. Bus flexibility is provided by allowing selection of bus control signal definitions. In addition, several ready control modes are available to simplify the external hardware requirements for accessing slow devices. The Chip Configuration Register (CCR) is used to store the operating mode information.

Figure 10. Chip Configuration Register

CHIP CONFIGURATION REGISTER (CCR)

Configuration information is stored in the Chip Configuration Register (CCR). Three of the bits in the register specify the bus control mode and ready control mode. Two bits also govern the level of ROM/EPROM protection. The CCR bit map is shown in Figure 10. The functions associated with each bit are described in this section.

The CCR is loaded on reset with the Chip Configuration Byte, located at address 2018H. The CCR register is a non-memory mapped location that can only be written to during the reset sequence; once it is loaded it cannot be changed until the next reset occurs. The 8098 will correctly read this location in every bus mode.

If the \overline{EA} pin is set to a logical 0, the access to 2018H comes from external memory. If \overline{EA} is a logical 1, the access comes from internal ROM/EPROM. If \overline{EA} is = 12.5V, the CCR is loaded with a byte from a separate non-memory-mapped location called PCCB (Programming CCB). The Programming mode is described in the datasheet.

BUS CONTROL to visites a strongus 2008 sill

Using the CCR, the 8098 can be made to provide bus control signals of several types. Two control lines have dual functions designed to reduce external hardware. Bits 2 and 3 of the CCR specify the functions performed by these control lines.

Figure 11. Bus Width Options

Standard Bus Control a maday yagras at sursup riots?

If CCR bits 2 and 3 are 1s, then the standard 8098 control signals WR and ALE are provided (Figure 12) WR will come out for every write. ALE will rise as the address starts to come out, and will fall to provide the signal to externally latch the address.

Figure 12. Standard Bus Control

Address Valid Strobe Mode

If CCR bit 3 is a 0, then an Address Valid strobe is provided in the place of ALE (Figure 14). When the address valid mode is selected, ADV will go low after an external address is setup. It will stay low until the end of the bus cycle, where it will go inactive high. This can be used to provide a chip select for external memory.

Write Strobe Mode

A unique ability of the Bus Controller is to utilize the Chip Configuration Register to select at reset time the width of the \overline{WR} signal by changing the position of the falling edge relative to the memory cycle. Clearing bit 2 of the CCR to 0 will enable a shorter \overline{WR} width. This is useful when interfacing to device that latch data on the falling edge of the \overline{WR} signal.

Address Valid with Write Strobe

If both CCR bits 2 and 3 are 0s, both the Address Valid strobe and the shortened Write Strobe timing will be provided for bus control. Figure 15 shows these signals.

Figure 13. Write Strobe Mode

Figure 14. Address Valid Strobe Mode

Figure 15. Write Strobe with Address Valid Strobe

READY CONTROL

To simplify read control, four modes of internal ready control logic have been provided. The modes are chosen by properly configuring bits 4 and 5 of the CCR.

The internal ready control logic can be used to limit the number of wait states that slow devices can insert into the bus cycle. When the READY pin is pulled low, wait states will be inserted into the bus cycle until the READY pin goes high, or the number of wait states equals the number specified by CCR bits 4 and 5, whichever comes first. Figure 16 shows the number of wait states that can be selected. Internal Ready control can be disabled by loading 11 into bits 4 and 5 of the CCR.

IRC1	IRC0	Description
0	0	Limit to 1 Wait State
0	1	Limit to 2 Wait States
1	0	Limit to 3 Wait States
1	1	Disable Internal Ready Control

FIGURE 16. Internal Ready Control

This feature provides for simple ready control. For example, every slow memory chip select line could be ORed together and be connected to the READY pin with CCR bits 4 and 5 programmed to give the desired number of wait states to the slow devices.

ROM/EPROM LOCK

Several modes of program memory lock are available on the 8398/9795BH. CCR bits 6 and 7 (LOC0, LOC1) select whether internal program memory can be read (or written in EPROM parts) by a program executing from external memory. The modes are shown in Figure 17. Internal ROM/EPROM addresses 2020H through 3FFFH are protected from reads while 2000H through 3FFFH are protected from writes, as set by the CCR.

LOC1	Protection					
0	Read Protected					
1 10	No Protection					

Figure 17. Program Lock Modes

Only code executing from internal memory can read protected internal memory, while a write protected memory cannot be written to, even from internal execution. As a result of 8098 prefetching of instructions, however, accesses to protected memory are not allowed for instructions located above 3FFAH. This is because the lock protection mechanism is gated off of the Memory Controller's slave program counter and not the CPU program counter. If the bus controller receives a request to perform a read of protected memory, the read sequence occurs with indeterminate data being returned to the CPU. Note that the interrupt vectors and the CCR are not protected.

To provide verification and testing when the program lock feature is enabled, the 8398 and 8795BH verify the security key before programming or test modes are allowed to read from protected memory. Before protected memory can be read, the chip reads external memory locations 4020H through 402FH and compares the values found to the internal security key located from 2020H through 202FH. Only when the values exactly match will accesses to protected memory be allowed.

The details of ROM/EPROM accessing are discussed in the datasheets.

3.0 SOFTWARE OVERVIEW

This section provides information on writing programs to execute in the 8098. Additional information can be found in the following documents:

INTEL EMBEDDED CONTROLLER HAND-BOOK 1989 16-BIT Order Number 270646

MCS-96 MACRO ASSEMBLER USER'S GUIDE Order Number 186 ASM96 (Intel Systems) Order Number D86 ASM96NL (DOS Systems)

PL/M-96 USER'S GUIDE Order Number I86 PLM96 (Intel Systems) Order Number D86 PLM96NL (DOS Systems)

C96 USER'S GUIDE
Order Number D86 C96NL (DOS Systems)

Throughout this section, short sections of code are used to illustrate the operation of the device. For these sections it has been assumed that a set of temporary registers have been predeclared. The names of these registers have been chosen as follows:

AX, BX, CX and DX are 16-bit registers.
AL is the low byte of AX, AH is the high byte.
BL is the low byte of BX
CL is the low byte of CX
DL is the low byte of DX

These are the same as the names for the general data registers used in the 80186. It is important to note, however, that in the 8098, these are not dedicated register, but merely the symbolic names assigned by the programmer to an eight byte region within the onboard register file.

3.1 Operand Types

The 8098 architecture provides support for a variety of data types which are likely to be useful in an 8098 control application. In the discussion of these operand types that follows, the names adopted by the PLM-96 programming language will be used where appropriate. To avoid confusion, the name of an operand type will be capitalized. A "BYTE" is an unsigned eight bit variable; a "byte" is an eight bit unit of data of any type.

BYTES

BYTES are unsigned 8-bit variables which can take on the values between 0 and 255 Arithmetic and relational operators can be applied to BYTE operands but the result must be interpreted in modulo 256 arithmetic. Logical operations on BYTES are applied bitwise. Bits within BYTES are labeled from 0 to 7, with 0 being the least significant bit. There are no alignment restrictions for BYTES, so they may be placed anywhere in the MCS-96 address space.

In this addressing mode an eight bit field in the RONOW

WORDS are unsigned 16-bit variables which can take on the values between 0 and 65535. Arithmetic and relational operators can be applied to WORD operands but the result must be interpreted modulo 65536. Logical operations on WORDS are applied bitwise. Bits within words are labeled from 0 to 15 with 0 being the least significant bit. WORDS must be aligned at even byte boundaries in the MCS-96 address space. The least significant byte of the WORD is in the even byte address and the most significant byte is in the next higher (odd) address. The address of a word is the address of its least significant byte. Word operations to odd addresses are not guaranteed to operate in a consistent manner.

SHORT-INTEGERS dalay QJOW off of bebba bris

SHORT-INTEGERS are 8-bit signed variables which can take on the values between -128 and +127. Arithmetic operations which generate results outside of the range of a SHORT-INTEGER will set the overflow indicators in the program status word. The actual numeric result returned will be the same as the equivalent operation on BYTE variables. There are no alignment restrictions on SHORT-INTEGERS so they may be placed anywhere in the MCS-96 address space.

INTEGERS OF This congrindexed reference, This co STATE

INTEGERS are 16-bit signed variables which can take on the values between -32,768 and 32,767. Arithmetic operations which generate results outside of the range of an INTEGER will set the overflow indicators in the program status word. The actual numeric result returned will be the same as the equivalent operation on WORD variables. INTEGERS conform to the same alignment and addressing rules as do WORDS.

BITS

BITS are single-bit operands which can take on the Boolean values of true and false. In addition to the normal support for bits as components of BYTE and WORD operands, the 8098 provides for the direct testing of any bit in the internal register file. The MCS-96 architecture requires that bits be addressed as components of BYTES or WORDS, it does not support the direct addressing of bits that can occur in the MCS-51 architecture.

DOUBLE-WORDS Impressori-otals drive to-sub-

DOUBLE-WORDS are unsigned 32-bit variables which can take on the values between 0 and 4,294,967,295. The MCS-96 architecture provides direct support for this operand type only for shifts and as the dividend in a 32 by 16 divide and the product of a 16 by 16 multiply. For these operations a DOUBLE-WORD variable must reside in the on-board register file of the 8098 and be aligned at an address which is evenly divisible by 4. A DOUBLE-WORD operand is addressed by the address of its least significant byte. DOUBLE-WORD operations which are not directly supported can be easily implemented with two WORD operations. For consistency with Intel provided software the user should adopt the conventions for addressing DOUBLE-WORD operands which are discussed in Section 3.5.

CONG-INTEGERS 25500 Of bear 8 about 1991 International Int

LONG-INTEGERS are 32-bit signed variables which can take on the values between 2,147,483,648 and 2,147,483,647. The 8098 architecture provides direct support for this data type only for shifts and as the dividend in a 32 by 16 divide and the product of a 16 by 16 multiply.

LONG-INTEGERS can also be normalized. For these operations a LONG-INTEGER variable must reside in the onboard register file of the 8098 and be aligned at an address which is evenly divisible by 4. A LONG-INTEGER is addressed by the address of its least significant byte.

LONG-INTEGER operations which are not directly supported can be easily implemented with two INTE-GER operations. For consistency with Intel provided software, the user should adopt the conventions for addressing LONG operands which are discussed in Section 3.5.

3.2 Operand Addressing

Operands are accessed within the address space of the 8098 with one of six basic addressing modes. Some of the details of how these addressing modes work are hidden by the assembly language. If the programmer is to take full advantage of the architecture, it is important that these details be understood. This section will describe the addressing modes as they are handled by the hardware. At the end of this section the addressing modes will be described as they are seen through the assembly language. The six basic address modes which will be described are termed register-direct, indirect, indirect with auto-increment, immediate, short-indexed and long-indexed. Several other useful addressing operations can be achieved by combining these basic addressing modes with specific registers such as the ZERO register or the stack pointer.

REGISTER-DIRECT REFERENCES

The register-direct mode is used to directly access a register from the 256 byte on-board register file. The register is selected by an 8-bit field within the instruction and register address and must conform to the alignment rules for the operand type. Depending on the instruction, up to three registers can take part in the calculation.

INDIRECT REFERENCES

The indirect mode is used to access an operand by placing its address in a WORD variable in the register file. The calculated address must conform to the alignment rules for the operand type. Note that the indirect address can refer to an operand anywhere within the address space of the 8098, including the register file. The register which contains the indirect address is selected by an eight bit field within the instruction. An instruction can contain only one indirect reference and the remaining operands of the instruction (if any) must be register-direct references.

INDIRECT WITH AUTO-INCREMENT REFERENCES

This addressing mode is the same as the indirect mode except that the WORD variable which contains the indirect address is incremented after it is used to address the operand. If the instruction operates on BYTES or SHORT-INTEGERS the indirect address variable will be incremented by one, if the instruction operates on WORDS or INTEGERS the indirect address variable will be incremented by two.

IMMEDIATE REFERENCES

This addressing mode allows an operand to be taken directly from a field in the instruction. For operations on BYTE or SHORT-INTEGER operands this field is eight bits wide, for operations on WORD or INTEGER operands the field is 16 bits wide. An instruction can contain only one immediate reference and the remaining operand(s) must be register-direct references.

SHORT-INDEXED REFERENCES

In this addressing mode an eight bit field in the instruction selects a WORD variable in the register file which is assumed to contain an address. A second eight bit field in the instruction stream is sign-extended and summed with the WORD variable to form the address of the operand which will take part in the calculation. Since the eight bit field is sign-extended, the effective address can be up to 128 bytes before the address in the WORD variable and up to 127 bytes after it. An instruction can contain only one short-indexed reference and the remaining operand(s) must be register-direct references.

LONG-INDEXED REFERENCES

This addressing mode is like the short-indexed mode except that a 16-bit field is taken from the instruction and added to the WORD variable to form the address of the operand. No sign extension is necessary. An instruction can contain only one long-indexed reference and the remaining operand(s) must be register-direct references.

ZERO REGISTER ADDRESSING

The first two bytes in the register file are fixed at zero by the 8098 hardware. In addition to providing a fixed source of the constant zero for calculations and comparisons, this register can be used as the WORD variable in a long-indexed reference. This combination of register selection and address mode allows any location in memory to be addressed directly.

operations which generate results outside of the range

INTERRUPT FLAGS (garT woffsvo) TV adT TV

The lower eight bits of the PSW are used to individually mask the various sources of interrupt to the 8098. A logical "1" in these bit positions enables the servicing of the corresponding interrupt. These mask bits can be accessed as an eight bit byte (INT_MASK_address 8) in the on-board register file. Bit 9 in the PSW is the global interrupt disable. If this bit is cleared then all interrupts will be locked out. Note that the various interrupts are collected in the INT_PENDING register even if they are locked out. Execution of the corresponding service routines will proceed according to their priority when they become enabled. Further information on the interrupt structure of the 8098 can be found in Section 4.

STACK POINTER REGISTER ADDRESSING

The system stack pointer in the 8098 can be accessed as register 18H of the internal register file. In addition to providing for convenient manipulation of the stack pointer, this also facilitates the accessing of operands in the stack. The top of the stack, for example, can be accessed by using the stack pointer as the WORD variable in an indirect reference. In a similar fashion, the stack pointer can be used in the short-indexed mode to access data within the stack.

ASSEMBLY LANGUAGE ADDRESSING MODES

The ASM96 language simplifies the choice of addressing modes to be used in several respects:

Direct Addressing. The assembly language will choose between register-direct addressing and long-indexed with the ZERO register depending on where the operand is in memory. The user can simply refer to an operand by its symbolic name; if the operand is in the register file, a register-direct reference will be used, if the operand is elsewhere in memory, a long-indexed reference will be generated.

Indexed Addressing. The assembly language will choose between short and long indexing depending on the value of the index expression. If the value can be expressed in eight bits then short indexing will be used, if it cannot be expressed in eight bits then long indexing will be used.

The use of these features of the assembly language simplifies the programming task and should be used wherever possible.

3.3 Program Status Word Coll bas GROW a

The program status word (PSW) is a collection of Boolean flags which retain information concerning the state of the user's program. The format of the PSW is shown in Figure 18. The information in the PSW can be broken down into two basic categories; interrupt control and condition flags. The PSW can be saved in the system stack with a single operation (PUSHF) and restored in a like manner (POPF).

CONDITION FLAGS a med then had a did out

The remaining bits in the PSW are set as side effects of instruction execution and can be tested by the conditional jump instructions.

ST The ST (STicky bit) flag is set to indicate (bat

- Z The Z (Zero) flag is set to indicate that the operation generated a result equal to zero. For the addwith-carry (ADDC) and subtract-with-borrow (SUBC) operations the Z flag is cleared if the result in non-zero but is never set. These two instructions are normally used in conjunction with the ADD and SUB instructions to perform multiple precision arithmetic. The operation of the Z flag for these instructions leaves it indicating the proper result for the entire multiple precision calculation.
- N The N (Negative) flag is set to indicate that the operation generated a negative result. Note that the N flag will be set to the algebraically correct state even if the calculation overflows.
- V The V (overflow) flag is set to indicate that the operation generated a result which is outside the range that can be expressed in the destination data type. For the SHL, SHLB and SHLL instructions, the V flag will be set if the most significant bit of the operand changes at any time during the shift.

BIT	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
FLAG	Z	N	٧	VT	С	_	1	ST		N N	<inte< td=""><td>errupt</td><td>Mask F</td><td>Reg></td><td></td><td></td></inte<>	errupt	Mask F	Reg>		

Figure 18. PSW Register

- VT The VT (oVerflow Trap) flag is set whenever the V flag is set but can only be cleared by an instruction which explicitly operates on it such as the CLRVT or JVT instructions. The operation of the VT flag allows for the testing for a possible overflow condition at the end of a sequence of related arithmetic operations. This is normally more efficient than testing the V flag after each instruction.
- C The C (Carry) flag is set to indicate the state of the arithmetic carry from the most significant bit of the ALU for an arithmetic operation or the state of the last bit shifted out of the operand for a shift. Arithmetic Borrow after a subtract operation is the complement of the C flag. (i.e. if the operation generated a borrow then C = 0).
- ST The ST (STicky bit) flag is set to indicate that during a right shift a 1 has been shifted first into the C flag and then been shifted out. The ST flag is undefined after a multiply operation. The ST flag can be used along with the C flag to control rounding after a right shift. Consider multiplying two eight bit quantities and then scaling the result down to 12 bits:

MULUB AX, CL, DL ;AX: = CL*DL SHR AX, #4 ;Shift Right 4 Places

If the C flag is set after the shift, it indicates that the bits shifted off the end of the operand were greater-than or equal-to one half the least significant bit (LSB) of the result. If the C flag is clear after the shift, it indicates that the bits shifted off the end of the operand were less than half the LSB of the result. Without the ST flag, the rounding decision must be made on the basis of this information alone. (Normally the result would be rounded up if the C flag is set.) The ST flag allows a finer resolution in the rounding decision:

CST	Value of the Bits Shifted Off
00	Value = 0
012 500	0 < Value < 1/2 LSB
the moraigni	Value = 1/2 LSB
nt any pipe da	Value > 1/2 LSB

Figure 19. Rounding Alternatives

Imprecise rounding can be a major source of error in a numerical calculation; use of the ST flag improves the options available to the programmer.

3.4 Instruction Set | Postalities | Dela Birth, Totaling

The 8098 instruction set contains a full set of arithmetic and logical operations for the 8-bit data types BYTE and SHORT INTEGER and for the 16-bit data types WORD and INTEGER. The DOUBLE-WORD and LONG data types (32 bits) are supported for the products of 16 by 16 multiplies and the dividends of 32 by 16 divides and for shift operations. The remaining operations on 32-bit variables can be implemented by combinations of 16-bit operations. As an example the sequence:

ADD AX, CX and eldmasses of T quiescriba toorid ADDC BX, DX anisotable toorib-integer tooridal

performs a 32-bit addition, and the sequence

SUBC BX, DX

performs a 32-bit subtraction. Operations on REAL (i.e. floating-point) variables are not supported directly by the hardware but are supported by the floating-point library for the 8098 (FPAL-96) which implements a single precision subset of the proposed IEEE standard for floating-point operations. The performance of this software is significantly improved by the 8098 NORML instruction which normalizes a 32-bit variable and by the existence of the ST flag in the PSW.

In addition to the operations on the various data types, the 8098 supports conversions between these types. LDBZE (load byte zero extended) converts a BYTE to a WORD and LDBSE (load byte sign extended) converts a SHORT-INTEGER into an INTEGER. WORDS can be converted to DOUBLE-WORDS by simply clearing the upper WORD of the DOUBLE-WORD (CLR) and INTEGERS can be converted to LONGS with the EXT (sign extend) instruction.

lami

The 8098 instructions for addition, subtraction, and comparison do not distinguish between unsigned words and signed integers. Conditional jumps are provided to allow the user to treat the results of these operations as either signed or unsigned quantities. As an example, the CMPB (compare byte) instruction is used to compare both signed and unsigned eight bit quantities. A JH (jump if higher) could be used following the compare if unsigned operands were involved or a JGT (jump if greater-than) if signed operands were involved.

Section 14.7 summarizes the operation of each of the instructions. Complete descriptions of each instruction and its timings can be found in the Instruction Set chapter. Examples of using the instruction set of the MCS-96 family can be found in Application Note AP-248 "Using the 8096".

3.5 Software Standards and Conventions

For a software project of any size it is a good idea to modularize the program and to establish standards which control the communication between these modules. The nature of these standards will vary with the needs of the final application. A common component of all of these standards, however, must be the mechanism for passing parameters to procedures and returning results from procedures. In the absence of some overriding consideration which prevents their use, it is suggested that the user conform to the conventions adopted by the PLM-96 programming language for procedure linkage. It is a very usable standard for both the assembly language and PLM-96 environment and it offers compatibility between these environments. Another advantage is that it allows the user access to the same floating point arithmetics library that PLM-96 uses to operate on REAL variables.

REGISTER UTILIZATION

PLM-96 adopts the simple and effective strategy of allocating the eight bytes between addresses 1CH and 23H as temporary storage. The starting address of this region is called PLMREG. The remaining area in the register file is treated as a segment of memory which is allocated as required.

ADDRESSING 32-BIT OPERANDS

These operands are formed from two adjacent 16-bit words in memory. The least significant word of the double word is always in lower address, even when the data is in the stack (which means that the most significant word must be pushed into the stack first). A double word is addressed by the address of its least significant byte. Note that the hardware supports some

operations on double words (e.g. normalize and divide). For these operations the double word must be in the internal register file and must have an address which is evenly divisible by four.

SUBROUTINE LINKAGE

Parameters are passed to subroutines in the stack. Parameters are pushed into the stack in the order that they are encountered in the scanning of the source text. Eight-bit parameters (BYTES or SHORT-INTE-GERS) are pushed into the stack with the high order byte undefined. Thirty-two bit parameters (LONG-INTEGERS, DOUBLE-WORDS and REALS) are pushed into the stack as two 16-bit values; the most significant half of the parameter is pushed into the stack first.

As an example, consider the following PLM-96 procedure:

example_procedure: PROCEDURE (param1, param2, param3)

DECLARE param1 BYTE,

param2 DWORD, param3 WORD;

When this procedure is entered at run time the stack will contain the parameters in the following order:

	??????: param1	
	high word of param2	
	low word of param2	
	param3	
	return address	← Stack_
_		

← Stack_pointer

Figure 20. Stack Image

If a procedure returns a value to the calling code (as opposed to modifying more global variables) then the result is returned in the variable PLMREG.PLMREG is viewed as either an 8-, 16- or 32-bit variable depending on the type of the procedure.

The standard calling convention adopted by PLM-96 has several key features: Procedures can always assume that the eight bytes of register file memory starting at PLMREG can be used as temporaries within the body of the procedure. Code which calls a procedure must assume that the eight bytes of register file memory starting at PLMREG are modified by the procedure. The Program Status Word (PSW_see Section 3.3) is not saved and restored by procedures so the calling code must assume that the condition flags (Z, N, V, VT, C and ST) are modified by the procedure. Function results from procedures are always returned in the variable PLMREG.

PLM-96 allows the definition of INTERRUPT procedures which are executed when a predefined interrupt occurs. These procedures do not conform to the rules of a normal procedure. Parameters cannot be passed to these procedures and they cannot return results. Since they can execute essentially at any time (hence the term interrupt), these procedures must save the PSW and PLMREG when they are entered and restore these values before they exit.

4.0 INTERRUPT STRUCTURE

There are 21 sources of interrupts on the 8098. These sources are gathered into 8 interrupt types as indicated in Figure 21. The I/O control registers which control some of the sources are indicated in the figure. Each of the eight types of interrupts has its own interrupt vector as listed in Figure 22. In addition to the 8 standard interrupts, there is a TRAP instruction which acts as a software generated interrupt. This instruction is not currently supported by the MCS-96 Assembler and is reserved for use in Intel development systems.

The programmer must initialize the interrupt vector table with the starting address of the appropriate interrupt service routine. It is suggested that any unused interrupts be vectored to an error handling routine. The error routine should contain recovery code that will not further corrupt an already erroneous situation. In a debug environment, it may be desirable to have the routine lock into a jump to self loop which would be easily traceable with emulation tools. More sophisticated routines may be appropriate for production code recover-

Three registers control the operation of the interrupt system: Interrupt Pending, Interrupt Mask, and the PSW which contains a global disable bit. A block diagram of the system is shown in Figure 23. The transition detector looks for 0 to 1 transitions on any of the sources. External sources have a maximum transition speed of one edge every state time. If this is exceeded the interrupt may not be detected. This means that a signal that transitions in one state time may not transition again until a subsequent state time.

o the PUSHF an	Vector I	ocation			
Vector	(High Byte)	(Low Byte)	Priority		
Software	2011H	2010H	Not Applicable		
Extint	200FH	200EH	7 (Highest)		
Serial Port	200DH	200CH	in the Bending		
Software Timers	200BH	200AH	H). We en the		
HSI.0	2009H		is cleared. This		
High Speed Outputs	2007H	2006H	in Figu g e 24, car It can be read		
HSI Data Available	2005H		are pergling at a		
A/D Conversion Complete			ware dentrol. I		
Timer Overflow		2000H	0 (Lowest)		

Figure 22. Interrupt Vector Locations and of si side of or year assistant of T

Figure 22. Block Diagram of Interrupt System and vina at ano A harlager and

code in the above example can be implemented with a

4.1 Interrupt Control

Interrupt Pending Register

When the hardware detects one of the eight interrupts it sets the corresponding bit in the pending interrupt register (INT_PENDING-09H). When the interrupt vector is taken, the pending bit is cleared. This register, the format of which is shown in Figure 24, can be read or modified as a byte register. It can be read to determine which of the interrupts are pending at any given time or modified to either clear pending interrupts or generate interrupts under software control. Any software which modifies the INT_PENDING register should ensure that the entire operation is indivisible. The easiest way to do this is to use the logical instructions in the two or three operand format, for example:

ANDB INT_PENDING, #11111101B ;Clears the A/D Interrupt

ORB INT_PENDING, #00000010B ;Sets the A/D Interrupt

Figure 24. Interrupt Pending Register

Interrupt Mask Register

Individual interrupts can be enabled or disabled by setting or clearing bits in the interrupt mask register (INT_MASK-08H). The format of this register is the same as that of the Interrupt Pending Register shown in Figure 24.

The INT_MASK register can be read or written as byte register. A one in any bit position will enable the corresponding interrupt source and a zero will disable the source. The hardware will save any interrupts that occur by setting bits in the pending register, even if the interrupt mask bit is cleared. The INT_MASK register also can be accessed as the lower eight bits of the

PSW so the PUSHF and POPF instructions save and restore the INT_MASK register as well as the global interrupt lockout and the arithmetic flags.

GLOBAL DISABLE

The processing of all interrupts can be disabled by clearing the I bit in the PSW. Setting the I bit will enable interrupts that have mask register bits which are set. The I bit is controlled by the EI (Enable Interrupts) and DI (Disable Interrupts) instructions. Note that the I bit only controls the actual servicing of interrupts. Interrupts that occur during periods of lockout will be held in the pending register and serviced on a prioritized basis when the lockout period ends.

4.2 Interrupt Priorities

The priority encoder looks at all of the interrupts which are both pending and enabled, and selects the one with the highest priority. The priorities are shown in Figure 22 (7 is highest, 0 is lowest). The interrupt generator then forces a call to the location in the indicated vector location. This location would be the starting location of the Interrupt Service Routine (ISR).

Interrupt service routines must share some data with other routines. Whenever the programmer is coding those sections of code which access these shared pieces of data, great care must be taken to ensure that the integrity of the data is maintained. Consider clearing a bit in the interrupt pending register as part of a non-interrupt routine:

LDB AL,INT_PENDING
ANDB AL, #bitmask
STB AL,INT_PENDING

This code works if no other routines are operating concurrently, but will cause occasional but serious problems if used in a concurrent environment. (All programs which make use of interrupts must be considered to be part of a concurrent environment). These problems can be avoided by assuring mutual exclusion which basically means that if more than one routine can change a variable, then the programmer must ensure exclusive access to the variable during the entire operation on the variable.

In many cases the instruction set of the 8098 allows the variable to be modified with a single instruction. The code in the above example can be implemented with a single instruction.

ANDB INT PENDING, #bitmask

4.4 Interrupt Timing

Interrupts are not always acknowledged immediately. If the interrupt signal does not occur prior to 4 state-times before the end of an instruction, the interrupt will not be acknowledged until after the next instruction has been executed. This is because an instruction is fetched and prepared for execution a few state times before it is actually executed.

There are 6 instructions which always inhibit interrupts from being acknowledged until after the next instruction has been executed. These instructions are:

EI, DI Enable and Disable Interrupts POPF, PUSHF Pop and Push Flags

SIGND Prefix to perform signed multiply and

divide (Note that this is note an ASM-96 Mnemonic, but is used for signed

multiply and divide)

TRAP Software Interrupt

When an interrupt is acknowledged, the interrupt pending bit is cleared, and a call is forced to the location indicated by the specified interrupt vector. This call occurs after the completion of the instruction in process, except as noted above. The procedure of getting the vector and forcing the call requires 21 state times. If the stack is in external RAM an additional 3 state times are required.

The maximum number of state times required from the time an interrupt is generated (not acknowledged) until the 8098 begins executing code at the desired location is the time of the longest instruction, NORML (Normalize_42 state times), plus the 4 state times prior to the end of the previous instruction, plus the response time (21 to 24 state times). Therefore, the maximum response time is 70 (42 + 4 + 24) state times. This does not include the 12 state times required for PUSHF if it is used as the first instruction in the interrupt routine or additional latency caused by having the interrupt masked or disabled. Refer to Figure 25, Interrupt Response Time, to visualize an example of worst case scenario.

Interrupt latency time can be reduced by careful selection of instructions in areas of code where interrupts are expected. Using "EI" followed immediately by a long instruction (e.g. MUL, NORML, etc.) will increase the maximum latency by 4 state times, as an interrupt cannot occur between EI and the instruction following EI. The "DI", "PUSHF", "POPF" and "TRAP" instructions will also cause the same situation. Typically the PUSHF, POPF and TRAP instructions would only effect latency when one interrupt routine is already in process, as these instructions are seldom used at other times.

Figure 25. Interrupt Response Time and Salars and to guide the product of the salars of the guide about the guide

CHIMILI U.C

Two 16-bit timers are available for use on the 8098. The first is designated "Timer 1", the second, "Timer 2". Timer 1 is used to synchronize events to real time.

sponse time is 70 (42 + 4 + 24) state 1 - 1 - 1.5

Timer 1 is clocked once every eight state times and can be cleared only by executing a reset. The only other way to change its value is by writing to 000CH but this is a test mode which sets both timers to 0FFFXH and should not be used in programs.

5.2 Timer 2 shoo to seem at anotherstant to not

Timer 2 can be incremented by transitions (one count each transition, rising and falling) on HSI.1. The functionality of the timer is determined by the state of I/O Control Register 0, bit 7 (IOCO.7). To ensure that all CAM entries are checked each count of Timer 2, the maximum transition speed is limited to once per eight state times. Timer 2 can be cleared by: executing a reset by setting IOCO.1, by triggering HSO channel 0EH, or by pulling HSI.0 high. The HSO and CAM are described in Section 7 and 8. IOCO.3 and ICOO.5 control the resetting of Timer 2. Figure 26 shows the different ways of manipulating Timer 2.

5.3 Timer Interrupts

Both Timer 1 and Timer 2 can be used to trigger a timer overflow interrupt and set a flag in the I/O Status Register 1 (IOS1). The interrupts are controlled by IOC1.2 and IOC1.3 respectively. The flags are set in IOS1.5 and IOS1.4, respectively.

Caution must be used when examining the flags, as any access (including Compare and Jump on Bit) of IOS1 clears bits 0 through 5 including the software timer flags. It is, therefore, recommended to write the byte to a temporary register before testing bits. The general enabling and disabling of the timer interrupts are controlled by the Interrupt Mask Register bit 0. In all cases, setting a bit enables a function, while clearing a bit disables it.

Figure 26. Timer 2 Clock and Reset Options

5.4 Timer Related Sections

The High Speed I/O unit is coupled to the timers in that the HSI records the value on Timer 1 when transitions occur and the HSO causes transitions to occur based on values of either Timer 1 or Timer 2.

A complete listing of the functions of IOS1, IOC0 and IOC1 are in Section 11.

6.0 HIGH SPEED INPUTS

The High Speed Input Unit (HSI), can be used to record the time at which an event occurs with respect to Timer 1. There are 4 lines (HSI.0 through HSI.3) which can be used in this mode and up to a total of 8 events can be recorded. HSI.2 and HSI.3 are bidirectional pins which can also be used as HSO.4 and HSO.5. The I/O Control Registers (IOC0 and IOC1) are used to determine the functions of these pins. A block diagram of the HSI unit is shown in Figure 27.

HSI Trigger Options

Figure 27. High Speed Input Unit

6.1 HSI Modes

There are 4 possible modes of operation for each of the HSI pins. The HSI mode register is used to control which pins will look for what type of events. The 8-bit register is setup as shown in Figure 28.

High and low levels each need to be held for at least 1 state time to ensure proper operation. The maximum input speed is 1 event every 8 state times except when

5 4 3 2 HSI.O MODE HSI.1 MODE HSI.2 MODE - HSI.3 MODE WHERE EACH 2 - BIT MODE CONTROL FIELD DEFINES ONE OF 4 POSSIBLE MODES: 00 8 POSITIVE TRANSITIONS 01 EACH POSITIVE TRANSITION 10 EACH NEGATIVE TRANSITION **EVERY TRANSITION** (POSITIVE AND NEGATIVE) 270652-20

Figure 28. HSI Mode Register Diagram

the 8 transition mode is used, in which case it is 1 transition per state time. The divide by eight counter can only be zeroed in mid-count by performing a hardware reset on the 8098.

Ths HSI lines can be individually enabled and disabled using bits in IOC0, at location 0015H. Figure 29 shows the bit locations which control the HSI pins. If the pin is disabled, transitions will not be entered in the FIFO.

Figure 29. IOC0 Control of HSI Pin Functions

6.2 HSI FIFO

When an HSI event occurs, a 7×20 bit FIFO stores the 16 bits of Timer 1 and the 4 bits indicating which pins had events. In can take up to 8 state times for this information to reach the holding register. For this reason, 8 state times must be allowed between consecutive reads of HSI_TIME. When the FIFO is full, one additional event, for a total of 8 events, can be stored by considering the holding register part of the FIFO. If the FIFO and holding register are full, any additional events will not be recorded.

6.3 HSI Interrupts

Interrupts can be generated by the HSI unit in three ways; two FIFO related interrupts and 0 to 1 transitions on the HSI.0 pin. The HSI.0 pin can generate interrupts even if it is not enabled to the HSI FIFO. Interrupts generated by this pin cause a vector through location 2008H. The FIFO related interrupts are controlled by bit 7 of I/O Control Register 1, (IOC1.7). If the bit is a 0, then an interrupt will be generated every time a value is loaded into the holding register. If it is a 1, an interrupt will only be generated when the FIFO, (independent of the holding register), has six entries in it. Since all interrupts are rising edge triggered, if IOC1.7 = 1, the processor will not be re-interrupted until the FIFO first contains 5 or less records, then contains six or more.

6.4 HSI Status

Bits 6 and 7 of the I/O Status register 1 (IOS1) indicate the status of the HSI FIFO. If bit 6 is a 1, the FIFO contains at least six entries. If bit 7 is a 1, the FIFO contains at least 1 entry and the HSI holding register has data available to be read. The FIFO may be read

after verifying that it contains valid data. Caution must be used when reading or testing bits in IOS1, as this action clears bits 0-5, including the software and hardware timer overflow flags. It is best to store the byte and then test the stored value. See Section 11.

Reading the HSI is done in two steps. First, the HSI Status register is read to obtain the current state of the HSI pins and which pins had changed at the recorded time. The format of the HSI_STATUS Register is shown in Figure 30. Second, the HSI Time register is read. Reading the Time register unloads one level of the FIFO, so if the Time register is read before the Status register, the event information in the Status register will be lost. The HSI Status register is at location 06H and the HSI Time registers are in locations 04H and 05H.

If the HSI_Time register is read without the holding register being loaded, the returned value will be indeterminate. Under the same conditions, the four bits in HSI_STATUS indicating which events have occurred will also be indeterminate. The four HSI_STATUS bit which indicate the current state of the pins will always return the correct value.

It should be noted that many of the Status register conditions are changed by a reset, see Section 13. A complete listing of the functions of IOS0, IOS1 and IOC1 can be found in Section 11.

Figure 30. HSI Status Register Diagram

7.0 HIGH SPEED OUTPUTS THE SECOND SECOND

The High Speed Output unit, (HSO), is used to trigger events at specific times with minimal CPU overhead. These events include: starting an A to D conversion, resetting Timer 2, setting 4 software flags, and switching 6 output lines (HSO.0 through HSO.5). Up to eight events can be pending at one time and interrupts can be generated whenever any of these events are triggered HSO.4 and HSO.5 are bidirectional pins which can also be used as HSI.2 and HSI.3 respectively. Bits 4 and 6 of I/O Control Register 1, (IOC1.4, IOC1.6), enable HSO.4 and HSO.5 as outputs.

The HSO unit can generate two types of interrupts. The HSO execution interrupt (vector = 2006H) is generated (if enabled) for HSO commands which operate one or more of the six output pins. The other HSO interrupt is the software timer interrupt (vector = (200BH) which is generated (if enabled) by any other HSO command, (e.g. triggering the A/D, resetting Timer 2 or generating a software time delay.) When it is being used as the reference tuner for an HSO action, the comparator has a chance to look at all 8

7.1 HSO CAM and I remit exclude evaleties MAD

A block diagram of the HSO unit is shown in Figure 31. The Content Addressable Memory (CAM) file is the center of control. One CAM register is compared with the timer values every state time, taking 8 state times to compare all CAM registers with the timers. This defines the time resolution of the HSO to be 8 state times (2.0 µs at an oscillator frequency of 12 state times for a command to move from the h.(zHM

Each CAM register is 23 bits wide. Sixteen bits specify the time at which the action is to be carried out and 7 bits specify both the nature of the action and whether Timer 1 or Timer 2 is the reference.

The format of the command to the HSO unit is shown in Figure 32. Note that bit 5 is ignored for command channels 8 through 0FH.

To enter a command into the CAM file, write the 7-bit "Command Tag" into location 0006H followed by the time at which the action is to be carried out into word address 0004H. The typical code would be:

LDB HSO_COMMAND, #what_to_do ADD HSO_TIME, TIMER1, #when_to_do_it

Writing the time value loads the HSO Holding Register with both the time and the last written command tag. The command does not actually enter the CAM file until an empty CAM register becomes available.

10S0.7 equals 0, the holding register is our at the same time as an internal Timer 2 resot.

Commands in the holding register will not execute even if their time tag is reached. Commands must be in the CAM for this to occur. Commands in the holding register can also be overwritten. Since it can take up to 8 state times for a command to move from the holding register to the CAM, 8 states must be allowed between successive writes to the CAM.

To provide proper synchronization, the minimum time that should be loaded to Timer 1 is Timer 1 + 2. Smaller values may cause the Timer match to occur 65,636 counts later than expected. A similar restriction applies if Timer 2 is used.

Care must be taken when writing the command tag for the HSO. If an interrupt occurs during the time between writing the command tag and loading the time value, and the interrupt service routine writes to the HSO time register, the command tag used in the interrupt routine will be written to the CAM at both the time specified by the interrupt routine and the time specified by the main program. The command tag from the main program will not be executed. One way of avoiding this problem would be to disable interrupts when writing commands and times to the HSO unit. See also Section 4.5.

Figure 32. HSO Command Tag Format

7.2 HSO Status

Before writing to the HSO, it is desirable to ensure that the Holding Register is empty. If it is not, writing to the HSO will overwrite the value in the Holding Register. I/O Status Register 0 (IOS0) bits 6 and 7 indicate the status of the HSO unit. This register is described in Section 11. IF ISO0.6 equals 0, the holding register is empty and at least one CAM register is empty. If IOS0.7 equals 0, the holding register is empty.

The programmer should carefully decide which of these two flags is the best to use for each application.

7.3 Clearing the HSO GRADE HOM O.S.

All 8 CAM locations of the HSO are compared before any action is taken. This allows a pending external event to be cancelled by simply writing the opposite event to the CAM. However, once an entry is placed in the CAM, it cannot be removed until either the specified timer matches the written value or the chip is reset. If, as an example, a command has been issued to set HSO.1 when TIMER 1 = 1234, then entering a second command which clears HSO.1 when TIMER 1 = 1234 will result in no operation on HSO.1. Both commands will remain in the CAM until TIMER 1 = 1234.

Internal events are not synchronized to Timer 1, and therefore cannot be cleared. This includes events on HSO channels 8 through F and all interrupts.

7.4 Using Timers with the HSO

Timer 1 is incremented only once every 8 state-times. When it is being used as the reference timer for an HSO action, the comparator has a chance to look at all 8 CAM registers before Timer 1 changes its value. Following the same reasoning, Timer 2 has been synchronized to allow it to change at a maximum rate of once per 8 state-times. Timer 2 increments on both edges of the input signal.

When using Timer 2 as the HSO reference, caution must be taken that Timer 2 is not reset prior to the highest value for a Timer 2 match in the CAM. This is because the HSO CAM will hold an event pending until a time match occurs, if that match is to a time value on Timer 2 which is never reached, the event will remain pending in the CAM until the part is reset.

Additional caution must be used when Timer 2 is being reset using the HSO unit, since resetting Timer 2 using the HSO is an internal event and can therefore happen at any time within the eight-state-time window. This situation arises when the event is set to occur when Timer 2 is equal to zero. If HSI.0 or the T2RST pin is used to clear Timer 2, and Timer 2 equal to zero triggers the event, then the event may not occur. This is because HSI.0 and T2RST clear Timer 2 asynchronously, and Timer 2 may then be incremented to one before the HSO CAM entry can be read and acted upon. This can be avoided by setting the event to occur when Timer 2 is equal to one. This method will ensure that there is enough time for the CAM entry recognition.

The same asynchronous nature can affect scheduled to occur at the same time as an internal Timer 2 reset. These events should be logged into the CAM with a Timer 2 value of zero. When using this method to make a programmable modulo counter, the count will stay at

the maximum Timer 2 value only until the Reset T2 command is recognized. The count will stay at zero for the transition which would have changed the count from "N" to zero, and then changed to a one on the next transition.

7.5 Software Timers

The HSO can be programmed to generate interrupts at preset times. Up to four such "Software Timers" can be in operation at a time. As each preprogrammed time is reached, the HSO unit sets a Software Timer Flag. If the interrupt bit in the command tag was set then a Software Timer Interrupt will also be generated. The interrupt service routine can then examine I/O Status register 1 (IOS1) to determine which software timer expired and caused the interrupt. When the HSO resets Timer 2 or starts an A to D conversion, it can also be programmed to generate a software timer interrupt but there is no flag to indicate that this has occurred.

Each read or test of any bit in IOS1 will clear bits 0 through 5. Be certain to save the byte before testing it unless you are only concerned with 1 bit. See also Section 11.5.

A complete listing of the functions of IOS0, IOS1 and IOC1 can be found in Section 11. The Timers are described in Section 5 and the HSI is described in Section 6.

8.0 ANALOG INTERFACE

The 8098 can easily interface to analog signals using its Analog to Digital Converter and its Pulse-Width-Modulated (PWM) output and HSO Unit. Analog inputs are accepted by the 8-input, 10-bit A to D converter. The PWM and HSO units provide digital signals which can be filtered for use as analog outputs.

8.1 Analog Inputs

The on-chip analog-to-digital aquisition system is a monotonic successive approximation converter with the sample and hold, multiplexer, and D/A ladder circuits built into the silicon. This system can multiplex up to eight channels of conversion to 10 bits of resolution (1024 unique codes). It has a fixed conversion time of 88 state times which includes the 4 state time sample window. With a 12 MHz clock the conversion would take 22 µs, of which one microsecond was the sample window. The sample window period begins 4 state times after the conversion is triggered. A 2 pF capacitance is charged from the input signal during this sam-

ple window period. The D/A is comprised of a 256 resistor ladder which provides ±4 analog LSB's (±20 mV) of absolute error, and uses ratioed capacitors to capacitively interpolate the result to 10 digital LSB's (5 mV) of resolution. This result is the ratio of the input voltage and the analog supply voltage (V_{REF}). If the ratio of this comparison is 1.00, then the result will be a 10-bit value will all bits set to logical one. This is particularly advantageous when used with ratiometric sensors which output proportional signals based on the V_{REF}.

In many applications it is less critical to record the absolute accuracy of an input, than it is to resolve that some determinable change has occurred. This is an acceptable approach as long as the converter is guaranteed to be monotonic and has no missing codes, as is the case for the 8098. This means that increasing input voltages produce adjacent and unique output codes that are also increasing. Decreasing input voltages are guaranteed to produce adjacent and unique output codes that are also decreasing. There exists on the 8098 for each 10 bit output code a unique input voltage range that produces that code only, with a repeatability of typically ± 0.25 LSB's (1.5 mV).

The MSC-96 datasheet guarantees that the maximum Differential Non-Linearity will be 2 LSB, or 10 mV (the minimum is zero). Differential non-linearity specifies the maximum difference between the actual code widths seen in a converter and what those code widths would be in an ideal (perfect) converter. In the MCS-96 10 bit converter, the code widths are ideally 5 mV (5.12 V_{REF}/1024). If such a converter is specified to have a maximum Differential Non-Linearity of 10 mV, then the maximum code width will be no greater than 10 mV larger than ideal, or 15 mV. This indicates to the user how much the input voltage may have changed under worst case conditions to produce a one count change in a particular 10-bit conversion. Due to the fact that the 8098 converter has no missing codes, the minimum code width will always be greater than zero. The differential non-linearity error on a particular code width is compensated for by other code widths in the transfer function such that 1024 unique steps occur. The actual code widths in the 8098 converter typically vary from about 2.5 mV to 7.5 mV.

The analog input must be in the range of zero to V_{REF} (nominally, $V_{REF} = 5V$). This input can be selected from 8 analog inputs which connect to the same pins as PORT 0. A conversion can be initiated either by setting the control bit in the A/D Command Register (Address 02Hex), or by programming the High Speed Output CAM to trigger the conversion at some specified time with sampling intervals occurring accurate to ± 50 ns. (See AP 406 "MCS-96 Analog Aquisition Primer" and the datasheet for further information).

8.2 A/D Commands

Analog signals can be sampled by any one of the 8 analog input pins (ACH0 through ACH7) which are shared with Port 0. ACH7 can also be used as an external interrupt if IOC1.1 is set (see Sections 4 and 11). The A/D Command Register, at location 02H, selects which channel is to be converted and whether the conversion should start immediately or when the HSO triggers it. The A/D command register must be written to for each conversion, even if the HSO is used as the trigger. A to D commands are formatted as shown in Figure 33. of facility seed at it anotheridge yound ni

The command register is double buffered so it is possible to write a command to start a conversion triggered by the HSO while one is still in progress. Care must be taken when this is done since if a new conversion is

±50 ns. (See AP 406 "MCS-96 Analog Aquisition

started while one is already in progress, the conversion in progress is cancelled and the new one is started. When a conversion is started, the result register is cleared. For this reason the result register must be read before a new conversion is started or data will be lost.

8.3 A/D Results

Results of the analog conversions are read from the A/D Result Register at locations 02H and 03H. Although these addresses are on a word boundary, they must be read as individual bytes. Information in the A/D Result register is formatted as shown in Figure 34. Note that the status bit may not be set until 8 state times after the go command, so it is necessary to wait 8 state times before testing it. Information on using the HSO is in Section 7. Against and because both berieves

s even of beilings at representation of the Figure 33. A/D Command Register 30A3937141 DO IAMA 0.8

88 state times which includes the 4 state time sample

against until the counter has expired the remainder of the current 8-bit count.

8.4 Pulse Width Modulation Output (D/A)

Digital to analog conversion can be done with the Pulse Width Modulation output; a block diagram of the circuit is shown in Figure 35. The 8-bit counter is incremented every state time. When it equals 0, the PWM output is set to a one. When the counter matches the value in the PWM register, the output is switched low. When the counter overflows, the output is once again switched high. A typical output waveform is shown in Figure 36. Note that when the PWM register equals 00, the output is always low. Additionally, the PWM register will only be reloaded from the temporary latch when the counter overflows. This means that the compare circuit will not recognize a new value to compare

The output waveform is a variable duty cycle pulse which repeats every 256 state times (64 μ s at 12 MHz). Changes in the duty cycle are made by writing to the PWM register at location 17H. There are several types of motors which require a PWM waveform for most efficient operation. Additionally, if this waveform is integrated it will produce a DC level which can be changed in 256 steps by varying the duty cycle.

The PWM output shares a pin with Port 2, pin 5 so that these two features cannot be used at the same time. IOC1.0 equal to 1 selects the PWM function instead of the standard port function. More information on IOC1 is in Section 11.

Figure 35. Pulse Width Modulated (D/A) Output

Figure 36. Typical PWM Outputs

8.5 PWM Using the HSO

The HSO unit can be used to generate PWM waveforms with very little CPU overhead. If the HSO is not being used for other purposes, a 4 line PWM unit can be made by loading the on and off times into the CAM in sets of 4. The CAM would then always be loaded and only 2 interrupts per PWM period would be needed. An example of using the HSO in their manner can be found AP-248, "Using the 8096".

9.0 SERIAL PORT

The serial port on the 8098 has 3 asynchronous and one synchronous mode. The asynchronous modes are full duplex, meaning they can transmit and receive at the same time. The receiver is double buffered so that the reception of a second byte can begin before the first byte has been read. The port is functionally compatible with the serial port on the MCS-51 family of microcontrollers, althrough the software used to control the ports is different.

Control of the serial port is handled through the Serial Port Control/Status Register at location 11 Hex. Figure 40 shows the layout of this register.

Data to and from the serial port is transferred through SBUF (rx) and SBUF (tx), both located at 07H. Al-

though these registers share the same address, they are physically separate, with SBUF (rx) containing the data received by the serial port and SBUF (tx) used to hold data ready for transmission. The program cannot write to SBUF (rx) or read from SBUF (tx).

The baud rate at which the serial port operates is controlled by an independent baud rate generator. The input to this generator is from the XTAL1 pin. Details on setting up the baud rate are given in Section 9.3.

9.1 Serial Port Modes

when the counter overflows. This means that O HOOM

Mode 0 is a synchronous mode which is commonly used for shift register based I/O expansion. In this mode the TXD pin outputs a set of 8 pulses while the RXD pin either transmits or receives data. Data is transferred 8 bits at a time with the LSB first. A diagram of the relative timing of these signals is shown in Figure 37. Note that this is the only mode which uses RXD as an output.

Although it is not possible to transmit and receive at the same time using this mode, two external gates and a port pin can be used to time-multiplex the two functions.

Figure 37. Serial Port Mode 0 Timing

MODE 1

Mode 1 is the standard asynchronous communications mode. The data frame used in this mode is shown in Figure 38. It consists of 10 bits; a start bit (0), 8 data bits (LSB first), and a stop bit (1). If parity is enabled, (the PEN bit is set to a 1), an even parity bit is sent instead of the 8th data bit and parity is checked on reception.

MODE 2

Mode 2 is the asynchronous 9th bit recognition mode. This mode is commonly used with Mode 3 for multiprocessor communications. Figure 39 shows the data frame used in this mode. It consists of a start bit (0), 9 data bits (LSB first), and a stop bit (1). When transmitting, the 9th bit can be set to a one by setting the TB8 bit in the control register before writing to SBUF (tx). The TB8 bit is cleared on every transmission, so it must be set prior to writing to SBUF (tx) each time it is desired. During reception, the serial port interrupt and the Receive Interrupt (RI) bit will not be set unless the 9th bit being received is set. This provides an easy way to have selective reception on a data link. Parity cannot be enabled in this mode.

MODE 3

Mode 3 is the asynchronous 9th bit mode. The data frame for this mode is identical to that of Mode 2. The transmission differences between Mode 3 and Mode 2 are that parity can be enabled (PEN = 1) and cause the 9th data bit to take the even parity value. The TB8 bit can still be used if parity is not enabled (PEN = 0). When in Mode 3, a reception always causes an interrupt regardless of the state of the 9th bit. The 9th bit is stored if PEN = 0 and can be read in bit RB8. If PEN = 1 then RB8 becomes the Receive Parity Error (RPE) flag.

9.2 Controlling the Serial Port

Control of the serial port is done through the Serial Port Control (SP_CON) and Serial Port Status (SP_STAT) registers shown in Figure 40. Writing to location 11H accesses SP_CON while reading it access SP_STAT. Note that reads of SP_STAT will return indeterminate data in the lower 5 bits and writing to the upper 3 bits of SP_CON has no effect on chip functionality. The TB8 bit is cleared after each transmission and both TI and RI are cleared whenever SP_STAT (not SP_CON) is accessed. Whenever the TXD pin is used for the serial port it must be enabled by setting IOC1.5 to a 1. IOC1 is discussed further in Section 11.3.

Figure 38. Serial Port Frame_Mode 1

Figure 39. Serial Port Frame Modes 2 and 3

Figure 41. Baud Rate Calculations

Figure 40. Serial Port Control/Status Register

In Mode 0, if REN = 1, writing to SBUF (tx) will start a transmission. Causing a rising edge on REN, or clearing RI with REN = 1, will start a reception. Setting REN = 0 will stop a reception in progress and inhibit further receptions. To avoid a partial or complete undersired reception, REN must be set to zero before RI is cleared. This can be handled in an interrupt environment by using software flags or in straight-line code by using the Interrupt Pending register to signal the completion of a reception.

In the asynchronous modes, writing to SBUF (tx) starts a transmission. A falling edge on RXD will begin a reception if REN is set to 1. New data placed in SBUF (tx) is held and will not be transmitted until the end of the stop bit has been sent.

In all modes, the RI flag is set after the last data bit is sampled approximately in the middle of the bit time. Also for all modes, the TI flag is set after the last data bit (either 8th or 9th) is sent, also in the middle of the bit time. The flags clear when SP_STAT is read, but do not have to be clear for the port to receive or transmit. The serial port interrupt bit is set as a logical OR of the RI and TI bits. Note that changing modes will reset the Serial Port and abort any transmission or reception in progress on the channel.

9.3 Determining Baud Rates

Baud rates in all modes are determined by the contents of a 16-bit register at location 000EH. This register must be loaded sequentially with 2 bytes (least significant byte first). The serial port will not function between the loading of the first and second bytes. The MSB of this register equal to a logic one selects the source (XTAL 1) for the input frequency to the baud rate generator.

The unsigned integer represented by the lower 15 bits of the baud rate register defines a number B, where B has a maximum value of 32767. The baud rate for the four serial modes using XTAL1 is given by Figure 41.

Using XTAL1:
$$Mode 0: \frac{Baud}{Rate} = \frac{XTAL1 \text{ Frequency}}{4^*(B+1)}; B \neq 0$$

$$Others: \frac{Baud}{Rate} = \frac{XTAL1 \text{ Frequency}}{64^*(B+1)}$$
Note that B cannot equal 0, except when using XTAL1 in other than Mode 0.

Figure 41. Baud Rate Calculations

Common baud rate values, using XTAL1 at 12 MHz, are shown below.

Baud	Baud Register Value				
Rate	Mode 0	Others			
9600	8137H	8013H			
4800	8270H	8026H			
2400	84E1H	804DH			
1200	89C3H	809BH			
300	A70FH a	8270H			

Figure 42. Common Baud Rates

The maximum baud rates are 1.5 Mbaud synchronous and 187.5 Kbaud asynchronous with 12 MHz on XTAL1.

9.4 Multiprocessor Communications

Mode 2 and 3 are provided for multiprocessor communications. In Mode 2 if the received 9th data bit is not 1, the serial port interrupt is not activated. The way to use this feature in multiprocessor systems is described below.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address frame which identifies the target slave. An address frame wil differ from a data frame in that the 9th data bit is 1 in an address frame and 0 in a data frame. No salve in Mode 2 will be interrupted by a data frame. An address frame, however, will interrupt all slaves so that each slave can examine the received byte and see if it is being addressed. The addressed slave switches to Mode 3 to receive the coming data frames, while the slaves that were not addressed stay in Mode 2 and go on about their business.

10.0 I/O PORTS

There are 32 I/O port pins on the 8098. Some of these ports are input only, some are output only, some are bidirectional and some have alternate functions. In addition to these ports, the HSI/O unit can be used to provide extra I/O lines if the timer related features of these lines are not needed.

Input ports connect to the internal bus through an input buffer. Output ports connect through an output buffer to an internal register that hold the bits to be output. Bidirectional ports consist of an internal register, an input buffer and an output buffer.

Port 0 is an input port which is also used as the analog input for the A to D converter. Port 2 contains input and output. The input and output lines are shared with other functions in the 8098 as shown in Figure 43. Ports 3 and 4 are open-drain bidirectional ports which share their pins with the address/data bus.

Port	Function	Alternate Function
P2.0	Output	TXD (Serial Port Transmit)
P2.1	Input	RXD (Serial Port Receive)
P2.2	Input	EXTINT (External Interrupt)
P2.5	Output	PWM (Pulse Width Modulation

Figure 43. Port 2 Alternate Functions

11.0 STATUS AND CONTROL REGISTERS

There are two I/O Control registers, IOC0 and IOC1. IOC0 controls Timer 2 and the HSI lines. IOC1 controls some pin functions, interrupt sources and 2 HSO pins.

Whenever input lines are switched between two sources, or enabled, it is possible to generate transitions on these lines. This could cause problems with respect to edge sensitive lines such as the HSI lines, Interrupt line and Timer 2 control lines.

11.1 I/O Control Register 0 (IOC0)

IOC0 is located at 0015H. The four HSI lines can be enabled or disabled to the HSI unit by setting or clearing bits in IOC0. Timer 2 functions including clock and reset sources are also determined by IOC0. The control bit locations are shown in Figure 44.

Figure 44. I/O Control Register 0 (IOC0)

11.2 I/O Control Register 1 (IOC1)

IOC1 is used to select some pin functions and enable or disable some interrupt sources. Its location is 0016H. Port pin P2.5 can be selected to be the PWM output instead of a standard output. The external interrupt source can be selected to be either EXTINT (same pin as P2.2) or Analog Channel 7 (ACH7, same pin as P0.7). Timer 1 and Timer 2 overflow interrupts can be individually enabled or disabled. The HSI interrupt can be selected to activate either when there is 1 FIFO entry or 7. Port pin P2.0 can be selected to be the TXD output. HSO.4 and HSO.5 can be enabled or disabled to the HSO unit. More information on interrupts is available in Section 4. The positions of the IOC1 control bits are shown in Figure 45.

11.3 I/O Status Register 0 (IOS0)

There are two I/O Status registers, IOSO and IOS1. IOSO, located at 0015H, holds the current status of the HSO lines and CAM. The status bits of IOSO are shown in Figure 46.

11.0 STATUS AND CONTROL

Figure 45. I/O Control Register 1 (IOC1)

Figure 46. I/O Status Register 0 (IOS0)

Figure 47. HSIO Status Register 1 (IOS1)

11.4 I/O Status Register 1 (IOS1)

IOS1 is located at 016H. It contains status bits for the timers and the HSI/O. The positions of these bits are shown in Figure 47.

Whenever the processor reads this register all of the time-related flags (bits 5 through 0) are cleared. This applies not only to explicit reads such as:

LDB1 AL, IOS1 tail ti savela laves to eno of atab

but also to implicit reads such as:

JB IOS1.3, somewhere_else

which jumps to somewhere else if bit 3 of IOS1 is set. In most cases this situation can best be handled by having a byte in the register file which is used to maintain an image of lower five bits of the register. Any time a hardware timer interrupt or a HSO software timer interrupt occurs the byte can be updated:

ORB IOS1_image, IOS1

leaving IOS1 image containing all the flags that were set before plus all the new flags that were read and cleared from IOS1. Any other routine which needs to sample the flags can safely check IOS1 image. Note that if these routines need to clear the flags that they have acted on, then the modification of IOS1 image must be done from inside a critical region (see Section 4.4).

12.0 WATCHDOG TIMER

The WatchDog Timer (WDT) provides a means to recover gracefully from a software upset. When the watchdog is enabled it will initiate a hardware reset unless the software clears it every 64K state times.

The WDT is implemented as an 8-bit timer with an 8-bit prescaler. The prescaler is not synchronized, so the timer will overflow between 65280 and 65535 state times after being reset.

When the timer overflows it pulls down the RESET pin for at least two state times, resetting the 8098 and any other devices tied to the RESET line. If a large capacitor is connected to the line, the pin may take a long time to go low. This will effect the length of time the pin is low and the voltage on the pin when it is finished falling. The datasheet contains more information about reset hardware connections.

The WDT is enabled the first time it is cleared. Once it is enabled, it can only be disabled by resetting the 8098. The internal bit which controls the watchdog can typically maintain its state through power glitches as low as $V_{\rm SS}$ and as high as 7.0V for up to 1 ms.

Enabling and clearing the WDT is done by writing a "01EH" followed by a "0E1H" to the WDT register at location 0AH. This double write is used to help prevent accidental clearing of the timer.

12.1 Software Protection Hints

Glitches and noise on the PC board can cause software upsets, typically by changing either memory locations or the program counter. These changes can be internal to the chip or be caused by bad data returning to the chip.

There are both hardware and software solutions to noise problems, but the best solution is good design practice and a few ounces of prevention. The software can be designed so that the WatchDog times out if the program does not progress properly. The WatchDog will also time-out if the software error was due to ESD (Electrostatic Discharge) or other hardware related problems. This prevents the controller from having a malfunction for longer than 16 ms if a 12 MHz oscillator is used.

When using the WDT to protect software it is desirable to reset if from only one place in code. This will lessen the chance that an undesired WDT reset will occur. The section of code that resets the WDT should monitor the other code sections for proper operation. This can be done by checking variables to make sure they

are within reasonable values. Simply using a software timer to reset the WDT every 15 ms will not provide much protection against minor problems.

It is also recommended that unused areas of code be filled with NOPs and periodic jumps to an error routine or RST (reset chip) instructions. This is particularly important in the code around lookup tables, since if lookup tables are executed undesired results will occur. Wherever space allows, each table should be surrounded by 7 NOPs (the longest 8098 instruction has 7 bytes) and a RST or jump to error routine instruction. Since RST is a one-byte instruction, the NOPs are not needed if RSTs are used instead of jumps to an error routine. This will help to ensure a speedy recovery should the processor have a glitch in the program flow. Since RST instruction has an opcode of OFFH, pulling the data lines high with resistors will cause an RST to be executed if unimplemented memory is addressed.

12.2 Disabling the WatchDog

The WatchDog should be disabled by software not initializing it. If this is not possible, such as during program development, the WatchDog can be disabled by holding the RESET pin at 2.0V to 2.5V. Voltages over 2.5V on the pin could quickly damage the part. Even at 2.5V, using this technique for other than debugging purposes is not recommended, as it may effect long term reliability. It is further recommended that any part used in this way for more than several seconds, not be used in production versions of products. The datasheet has more information on disabling the WatchDog Timer.

13.0 RESET

13.1 Reset Signal

As with all processors, the 8098 must be reset each time the power is turned on. This is done by holding the RESET pin low for at least 2 state times after the power supply is within tolerance and the oscillator has stabilized.

After the RESET pin is brought high, a ten state reset sequence is executed. During this time, the Chip Configuration Byte (CCB) is read from location 2018H and written to the 8098 Chip Configuration Register (CCR). If the voltage on the EA pin selects the internal/external execution mode the CCB is read from internal ROM/EPROM. If the voltage on the EA pin selects the external execution only mode the CCB is read from external memory.

The 8098 can be reset using a capacitor, 1-shot, or any other method capable of providing a pulse of at least 2 state times longer than required for $V_{\rm CC}$ and the oscillator to stabilize.

For best functionality, it is suggested that the reset pin be pulled low with an open collector device. In this way, several reset sources can be wired ORed together. Remember, the RESET pin itself can be a reset source when the RST instruction is executed or when the WatchDog Timer overflows. Details of hardware suggestions for reset can be found in the datasheet.

13.2 Reset Status as a sturm of glad line and

The I/O lines and control lines of the 8098 will be in their reset state within 2 state times after reset is low, with $V_{\rm CC}$ and the oscillator stabilized. Prior to that time, the status of the I/O lines is indeterminate. After the 10 state time reset sequence, the Special Function Registers will be set as follows:

-ini ton an Register baldsalb a	
Possible, such as conq pro-	XX0XXXX1B
WatchDog can be cerroq by	
at 2.0V to 2.5V. Voltron over	dig 111111111B mible
as as PWM Control same by Libit	
Serial Port (Transmit)	Undefined
Serial Port (Receive)	Undefined
Baud Rate Register	Undefined
Serial Port Control	XXXX0XXXB
Serial Port Control Serial Port Status A/D Command	X00XXXXXB
A/D Command	Undefined
A/D Result midealb no no	
Interrupt Pending	Undefined
Interrupt Mask	0000000B
Timer 1	0000H
Timer 2	0000H
WatchDog Timer	0000H
HSI Mode	11111111B
HSI Status	Undefined
IOS0	00000000
IOS1	00000000B
e 8098 drust be reset 0001 time	X0X0X0X0B
This is done by horoog the	
st 2 state times a OFIFICHOWER	
-idet HSO CAMilioso add bas at	
HSO SFR	000000B
PSW	0000H
Stack Pointer Program Counter	Undefined
Program Counter	2080H

Figure 48. Register Reset Status

Other conditions following a reset are:

er of anna Pin sabivoro	Reset Value					
RD WR/WRL ALE/ADV INST						

Figure 49. Bus Control Pins Reset Status

It is important to note that the Stack Pointer and Interrupt Pending Register are undefined, and need to be initialized in software. The Interrupts are disabled by both the mask register and PSW.9 after a reset.

13.3 Reset Sync Mode

The RESET line can be used to start the 8098 at an exact state time to provide for synchronization of test equipment and multiple chip systems. RESET is active low. To synchronize parts, RESET is brought high on the rising edge of XTAL1.

It is very possible that parts which start in sync may not stay that way. The best example of this would be when a "jump on I/O bit" is being used to hold the processor in a loop. If the line changes during the time it is being tested, one processor may see it as a one, while the other sees its as a zero. The result is that one processor will do an extra loop, thus putting it several states out of sync with the other.

14.0 QUICK REFERENCE

14.1 Pin Description of T. Secured and T. Secure to the chip of De caused by deal data returning to the

On the 8098/8398 the following pins of the 8096BH are not bonded out: Port1, Port0 (Analog In) bits 0-3, T2CLK (P2.3), T2RST (P2.4), P2.6, P2.7, CLKOUT, INST, NMI, BUSWIDTH, BHE/WRH.

8098 ARCHITECTURAL OVERVIEW

14.4 Package

PIN DESCRIPTIONS

Symbol	Name and Function in adalate are available in another some some some some some some some some							
Vcc	Main supply voltage (5V).							
V _{SS}	Digital Circuit Ground (0V). There are two VSS pins, both of which must be connected.							
VPD 09	RAM Standby Supply Voltage (5V). This voltage must be present during normal operation. In a Power Down condition (i.e. V_{CC} drops to zero), if RESET is activated before V_{CC} drops below spec and V_{PD} continues to be held within spec., the top 16 bytes in the Register File will retain their contents. RESET must be held low during the Power Down and should not be brought high until V_{CC} is within spec and the oscillator has stabilized.							
VREF 7:09\TH	Reference Voltage for the A/D Converter (5V). V _{REF} is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0. Must be connected for A/D and Port 0 to function.							
ANGND	Reference Gound for the A/D Converter. Must be held at nominally the same potential as Vss.							
VPP	Programming voltage for the future EPROM parts.							
XTAL1	Input of the oscillator inverter and of the internal clock generator.							
XTAL2	Output of the oscillator inverter.							
RESET _{0.89\0} , 1/83.1 12/83.2	Reset Input to the Chip. Input low for at least 2 state times to reset the chip. The subsequent low-to-high transition re-synchronizes CLKOUT and commences a 10-state-time sequence in which the PSW is cleared, a byte read from 2018H loads CCR, and a jump to location 2080H is executed. Input high for normal operation. RESET has an internal pullup.							
EA 2.89\8/ 4.89\M 8.89\8 8.89\8	Input for Memory Select (External Access). \overline{EA} equal to a TTL-high causes memory accesses to locations 2000H through 3FFFH to be directed to on-chip ROM. \overline{EA} equal to a TTL-low causes accesses to these locations to be directed to off-chip memory. \overline{EA} has an internal pulldown, so it goes to 0 unless driven otherwise. \overline{EA} is latched at reset.							
ALE/ADV	Address Latch Enable or Address Valid Output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is ADV, it goes inactive high at the end of the bus cycle. ADV can be used as a chip select for external memory. ALE/ADV is activated only during external memory accesses.							
RD	Read Signal Output to External Memory. RD is activated only during external memory reads.							
WR	Write Output to External Memory. WR is activated only during external memory writes.							
READY	Ready Input to Lengthen External Memory Cycles, for interfacing to slow or dynamic memory, or for bus sharing. The bus cycle can be lengthened by up to 1 μs. When the external memory is not being used, READY has no effect. Internal control of the number of wait states inserted into a bus cycle held not ready is available through configuration of CCR. READY has a weak internal pullup, so it goes to 1 unless externally pulled low.							
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI.2 and HSI.3. Two of them (HSI.2 and HSI.3) are shared with the HSO Unit.							
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSO.3, HSO.4 and HSO.5. Two of them (HSO.4 and HSO.5) are shared with the HSI Unit.							
Port 0	4-Bit High Impedance Input-Only Port . These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter.							
Port 2	4-Bit Multi-Functional Port. Its pins are shared with other functions in the 8098.							
Ports 3 and 4	8-Bit Bi-Directional I/O Ports with Open Drain Outputs. These pins are shared with the							

The 8098 products are available in 48-pin packages, with and without on-chip ROM. The 8795BH EPROM is to be used as the prototype vechicle (see the MCS-96 datasheets for additional information on the 8795BH). Section 14.4 shows the pinouts for the 48-pin packages. The 48-pin version is offered in a Dual-In-Line Package.

Transistor Count

Device Type	# MOS Gates
839X/879X	120,000
809X	50,000

MTBF Calculations*

3.8	X	107	Device	Hours	@	55°C
1.7	X	107	Device	Hours	@	70°C

*MTBF data was obtained through calculations based upon the actual average junction temperatures under stress at 55°C and 70°C ambient.

Thermal Characteristics

TCASE 1 8 88		Package	θ_{JA}	θјς		
COMM'L	EXPRESS	Туре	JA	yte read t		
Quit	ri indicitat	Plastic DIP	38°C/W	O BILLION		
79.75°C	94.75°C	Ceramic DIP	26°C/W	6.5°C/W		

14.5 Memory Map

historia.	3951			n (Note 1)		-1000	
OFFH	TO TW POWER	R-DOWN	255				
OFOH	_ 1 R	AM	240				BOCADOS
OEFH	- IT NI	N N N	239		A+8 -> 0'		
	INTER REGISTE				3+A+0 → 0		
	(RA	M)					
1AH			26	-	A - B -> 0		
				-	- 3 + A - D - 0 D	- 6	FFFFH IZ\ORU
19H	STACK POINTER	STACK POINTER	25		EXTERNAL MEMORY		MPZCMPR
18H		DUMA CONTROL	24		OR I/O		UJUM\JUR
17H	IOS1	PWM_CONTROL	23		A 0 - 3 - 0,0		4000H
\$16H		1001	22				030% 008
215H	IOSO	1000	21		INTERNAL PROGRAM STORAGE ROM/EPROI	4	BUJUMISJUK
6	RESERVED	DECEDIVED			OR EXTERNAL MEMORY		MULBAMULUB
13H 12H	RESERVED	RESERVED	19	+ 2 + 0	$D \leftarrow (D, D + 2)/A$	2	2080H UVK
11H	SP_STAT	SP_CON	phismen	-> 1 + G	A\(T + \(\) (RESERVED \(\)	S	2030H - 207FH
10H	IO PORT 2	IO PORT 2	16	D+2-	SECURITY KEY	2	2020H - 202FH
OFH	RESERVED	RESERVED	15	-1+0	RESERVED	0	201CH - 201FH
OEH	IO PORT O	BAUD_RATE	14		SELF JUMP OPCODE (27H	FEH)	201AH - 201BH
ODH	TIMER2 (HI)	BAUD_RATE	13		RESERVED		2019H
OCH	TIMER2 (LO)	RESERVED	12		CHIP CONFIGURATION BY	(TE	2018H
OBH	TIMER1 (HI)	RESERVED	11		RESERVED	- 24	2012H - 2017H
OAH	TIMER1 (LO)	WATCHDOG	10		A (10 10xe) Q -> Q		GHUA MU
09Н	INT_PENDING	INT_PENDING	9		INTERRUPT VECTORS		8GJ/G
08Н	INT_MASK	INT_MASK	8		$0 \rightarrow A$		2000Н
07H	SBUF (RX)	SBUF (TX)	7	SIGN(A)	PORT 4	3	1FFFH B880
06H	HSI_STATUS	HSO_COMMAND	6	0	PORT 3	1 3 5	1FFEH BINEO
05H	HSI_TIME (HI)	HSO_TIME (HI)	5	A	EXTERNAL MEMORY		HSU
04H	HSI_TIME (LO)	HSO_TIME (LO)	4	992	92 (92 OR I/O		0100H
03H	AD_RESULT (HI)	HSI_MODE	3	WE9	INTERNAL RAM	. 0	OOFFH
02H	AD_RESULT (LO)	AD_COMMAND	2-		REGISTER FILE		
01H	RO (HI)	RO (HI)	791 3	2 + 98 -	STACK POINTER SPECIAL FUNCTION REGIS	TERS	190
ООН	R0 (L0)	R0 (L0)	0	offset	(WHEN ACCESSED AS DATA M		0000Н ЯМЬ
8	(WHEN READ)	(WHEN WRITTEN)		featho	PC ← PC + 16-bit	-	SML
					PC ← (A)		270652-5
8				:09 ->	SP - 2- (SP)		CALL
					PC - PC + 11-bit		
9,				<- PC;			
				testic			
					PC - (SP): SP		
			(ns				
						1	

1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is clone. Operants D, B, and A must confrom to the signment rules for the required operand type. D and B are locations in the Register File; a can be located anywhere in memory.

2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.

3. D, D + 1 are consecutive BYTES in memory; D is WORD aligned.

Changes a byte to a word.

14.7 Instruction Summary

	Oper-	0			-19-19	FI	ags			Notes
Mnemonic	ands	Operation (Note 1)	7 203	Z	N	C	V	VT	ST	Notes
ADD/ADDB	2	$D \leftarrow D + A$	240	1	1	10	10	1	-	HORD
ADD/ADDB	3	D ← B + A	1 983	10	10	-	-	1		16,530
ADDC/ADDCB	2	$D \leftarrow D + A + C$		1	W 3	1	10	1	_	Fortier.
SUB/SUBB	2	$D \leftarrow D - A$	THE RE	1	1	1	10	1	-	
SUB/SUBB	3	D ← B − A	85 lease	-	-	10	-	1	100	NAT
SUBC/SUBCB	2	$D \leftarrow D - A + C - 1$	20 1	1	V	10	10	1	_	HRT
CMP/CMPB	2	D4- AMMINE	28	1	10	10	1	1	STATE	HSI
MUL/MULU	2	D, D + 2 ← D * A	22	1000	0.0 m V	9	-	10:200 × 10:000	?	117.12
MUL/MULU -	3	D, D + 2 ← B * A	22	_			_	-	?	на 2
MULB/MULUB	2	D, D + 1 ← D*A	19	_	_00		_	_	?	113
MULB/MULUB	3	D, D + 1 ← B * A	20	-	-	-	_	-	?	3
DIVU HOROS	2	$D \leftarrow (D, D + 2)/A, D + 2 \leftarrow$	remainder		SEWVE	-	10	1	GESA	2
DIVUB - HOEGE	2	D ← (D, D + 1)/A, D + 1 ←	remainder	-	-	+	10	1	_	3
DIVHESOS - HOSOS	2	$D \leftarrow (D, D + 2)/A, D + 2 \leftarrow$	remainder	-	7000	-	?	1	00.00	1000
DIVB OS - HO POS	2	$D \leftarrow (D, D + 1)/A, D + 1 \leftarrow$	remainder	-	- TOTAL	ontol.	?	1	03270	ная
AND/ANDB	2	D ← D and A	1.1	1	1	0	0	U.S	0.9 GR	P30
AND/ANDB	3	D ← B and A	41	10	10	0	0	(m) !	S. State	HOO
OR/ORB	2	D ← Dor A	- 12	1	1	0	0	(Alleria	1100
XOR/XORB	2	D ← D (excl. or) A	11	1	1	0	0	(14)	TELLT	1180
LD/LDB	2	D ← A	01	_3	04074	W_	-	(01)	83345	MAO
ST/STB	2	A ← D	-co-ex	SHARE	10,1791	AL Y	_	DIROR.	Shal All	1160
LDBSE	2	$D \leftarrow A; D + 1 \leftarrow SIGN(A)$	CO accorde		PPA TO S	100	-	-	50000	3, 4
LDBZE	2	$D \leftarrow A; D+1 \leftarrow 0$	F424 600 H	CITE A ALL	000 C		rec <u>useds</u> but	DI WAS		3, 4
PUSH	1	$SP \leftarrow SP - 2$; $(SP) \leftarrow A$	-	(19t)	MIT C	Translation of the last	with will requi	(at-17,00)	1 JER	1420
POP	1	A ← (SP); SP ← SP2	4	(UU)	Sales and the sa	Harris -	CSC NAME TO SER	Q.5) 366	Liter	HAD -
PUSHF HTTO	0	$SP \leftarrow SP - 2$; (SP) \leftarrow PSW; PSW \leftarrow 0000H	1 ← 0	0	0	0	0	0	0	HISO HISO
POPF	0	$PSW \leftarrow (SP); SP \leftarrow SP + 2;$	140	10	-	V	10	10	1	HTO
SJMP HOODO	HOME	PC ← PC + 11-bit offset	0	_	-	19-1	_	(3)_05	5
LJMP	1	PC ← PC + 16-bit offset		M HT S	N spar ti	0-	-	IA TH- IC	())	5
BR [indirect]	1	PC ← (A)		_	_	_	-			
SCALL	1	$SP \leftarrow SP - 2$; $(SP) \leftarrow PC$; $PC \leftarrow PC + 11$ -bit offset						-	-	5
LCALL	1	$SP \leftarrow SP - 2$; $(SP) \leftarrow PC$; $PC \leftarrow PC + 16$ -bit offset			F	F		-	F	5
RET	0	$PC \leftarrow (SP); SP \leftarrow SP + 2$	THE W	_	_	_				
J (conditional)	1	PC ← PC + 8-bit offset (if take	n)	_	_	_	_	_	-	5
JC	1	Jump if C = 1		_	_	_	_	_	_	5
JNC	1	Junp if C = 0			_	-				5
JE	1	Jump if Z = 1			_			_		5

It the nimemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B, and A must confrom to the alignment rules for the required operand type. D and B are locations in the Register File; a can be located anywhere in memory.

2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.

3. D, D + 1 are consecutive BYTES in memory; D is WORD aligned.

^{4.} Changes a byte to a word.5. Offset is a 2's complement number.

14.7 Instruction Summary (Continued)

Mnemonic	Oper-	Operation (Note 1)			FI	ags			Notes
Mnemonic	ands	Operation (Note 1)	Z	ON:	C	V	VT	ST	Notes
JNE & BHT RO HOLHW	aro1 siz	Jump if Z = 0	_	-	-	_	-	-	5
JGE 38 07 81 8.17	MAHD TO	Jump if N = 0	_	_	-	-	_	100	5
JLT	1	Jump if N = 1	138×	U <u>M</u>	3 2521	HO_0	M	1	5
JGT or al MOISBRUMOD BH	s wites	Jump if N = 0 and Z = 0	_	-	-	-	20	-	5
JLE .WOH TRATE SMA3	(00)	Jump if $N = 1$ or $Z = 1$	1713	9100	Q'VA	A D	-	-	5
UNIT AT A SPECIFIED THE HL	DEH BHE	Jump if $C = 1$ and $Z = 0$	NO.	583	CON	1	7.	prof. de	5
JNH-saaors	1	Jump if $C = 0$ or $Z = 1$	_	_	-	-	-	- Constant	5
JV	1	Jump if V = 1	_	_			-		5
JNV	1	Jump if V = 0	And a	America.	2 - 2		10	10	5
JVT (HIT) TAT	SASVING	Jump if VT = 1; Clear VT	_	_	-	_	0	1	5
JNVT	1	Jump if VT = 0; Clear VT	_	-	_	-	0	_	5
JST 9 300M = 01 0	3801 = 1	Jump if ST = 1	_	-	-	-	-	-	5
JNST E 300M = 11 1	30014=1	Jump if ST = 0	_	-	_	_	-	-	5
JBS HONTONUT YTHAT THE	3	Jump if Specified Bit = 1	HE	0	OBE.	150	1_	-	5, 6
ЈВС иопоииз аудовя вит	333443	Jump if Specified Bit = 0	-	-	-	-	-	T	5, 6
DJNZ TIS ATAC HTS SHT 2	мал дояч	$D \leftarrow D - 1$; if $D \neq 0$ then $PC \leftarrow PC + 8$ -bit offset		-	T	-		+	5
DEC/DECB	1	D ← D − 1	10	1	10	1	1	-	
NEG/NEGB	18 3 4 12 SI	D ← 0 − D	10	10	1	1	1		
INC/INCB AVECTOR ATAG H	15 T 1 E 9	D ← D + 1	10	10	10	10	1	+	
EXT SOLATION SASS YES	a 11 2	D ← D; D + 2 ← Sign (D)	1	1	0	0	-	-	2
EXTB (3VITOA	TURATE SE)	D ← D; D + 1 ← Sign (D)	10	1	0	0	HOA3	9	3
NOT/NOTB	1	D ← Logical Not (D)	1	1	0	0	_		
CLR/CLRB	1	D ← 0	1	0	0	0	B 0	2-	
SHL/SHLB/SHLL	2	C ← msblsb ← 0	V	?	1	1	AT O	-	7
SHR/SHRB/SHRL	2	$0 \rightarrow \text{msb}$ lsb $\rightarrow C$	10	?	10	0	V3 -1	1	7
SHRA/SHRAB/SHRAL	2	$msb \rightarrow msb$ lsb \rightarrow C	10	1	1	0		1	7
SETC	0	C ← 1	_	_	1	_	_	_	
CLRC consuper 1	0	C ← 0	-	-	0	-	-	-	
CLRVT (1+8)	0	VT ← 0	3 0)	orin.	E 2773 S	9-0	0	-	
RST	0	PC ← 2080H	0	0	0	0	0	0	8
Frequency	10 X	Disable All Interrupts (I ← 0)	200	-	1.00	-	-	-	
El (1 + 8)	0	Enable All Interrupts (I ← 1)	HE	EA	02)	-	100	Lile	
NOP	0	PC ← PC + 1	PER I	ADA	- 100	-	1	-	Make
SKIP	0	PC ← PC + 2	700	B.ET	1234	-	148	_	Mark 1
NORML	2	Left shift till msb = 1; D ← shift count	N	?	0	_	1 + 8	-	7
TRAPO = 8	0	$SP \leftarrow SP - 2$; $(SP) \leftarrow PC$ $PC \leftarrow (2010H)$	GIA V	190	PREF	-	-	-	9

NOTES:

^{1.} If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B and A must conform to the alignment rules for the required operand type. D and B are locations in the Register File; A can be located anywhere in memory.

Offset is a 2's complement number.
 Specified bit is one of the 2048 bits in the register file.

^{7.} The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080H.

^{9.} The assembler will not accept this mnemonic.

PSW Register

BIT	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
FLAG	Z	N	٧	VT	С	_	1	ST			<inte< td=""><td>errupt</td><td>Mask I</td><td>Reg></td><td></td><td></td></inte<>	errupt	Mask I	Reg>		

	IOC1 (16H)
0	SELECT PWM / SELECT P2.5
1	EXTERNAL INTERRUPT ACH7 / EXTINT
2 -	- TIMER 1 OVERFLOW INTERRUPT ENABLE / DISABLE
3 -	TIMER 2 OVERFLOW INTERRUPT ENABLE / DISABLE
4	- HSO.4 OUTPUT ENABLE / DISABLE
5 -	- SELECT TXD / SELECT P2.0
6	- HSO.5 OUTPUT ENABLE / DISABLE
7	HSI INTERRUPT FIFO FULL / HOLDING REGISTER LOADED 270652-48

Vector	Vector L	or Location Prio			
Vedici	(High Byte)	(Low Byte)	Thomy		
Software	2011H	2010H	Not Applicable		
Extint	200FH	200EH	7 (Highest)		
Serial Port	200DH	200CH	6		
Software Timers	200BH	200AH	5		
HSI.0	2009H	2008H	4		
High Speed Outputs	2007H	2006H	3		
HSI Data Available	2005H	2004H	2		
A/D Conversion Complete	2003H	2002H			
Timer Overflow	2001H	2000H	0 (Lowest)		

MCS®-96 8098/8398 ADVANCED 8-BIT MICROCONTROLLER WITH 16-BIT CPU

8398: an 8098 with 8K Bytes of On-Chip ROM

- 232 Byte Register File
- Register-to-Register Architecture
- 10-Bit A/D Converter with S/H
- Two 8-Bit and Two 4-Bit I/O Ports
- 20 Interrupt Sources
- Pulse-Width Modulated Output
- ROM Lock
- High Speed I/O Subsystem

- **■** Full Duplex Serial Port
- **Dedicated Baud Rate Generator**
- 6.25 μs 16 x 16 Multiply
- 6.25 µs 32/16 Divide
- 16-Bit Watchdog Timer
- Four 16-Bit Software Timers
- Two 16-Bit Counter/Timers

The MCS®-96 family of 16-bit microcontrollers consists of many members, all of which are designed for high-speed control functions. The 8X98 members were designed specifically for those applications that require the speed of a 16-bit microcontroller but are limited by board space and cost requirements to an 8-bit external bus. The 8X98 members are produced using Intel's HMOS-III process.

The CPU supports bit, byte, and word operations. Thirty-two bit double-words are supported for a subset of the instruction set. With a 12 MHz input frequency the 8098 can do a 16-bit addition in 1.0 μ s and a 16 x 16-bit multiply or 32/16 divide in 6.25 μ s. Instruction execution times average 1 to 2 μ s in typical applications.

Four high-speed trigger inputs are provided to record the times at which external events occur. Six high-speed pulse generator outputs are provided to trigger external events at preset times. The high-speed output unit can simultaneously perform software timer functions. Up to four 16-bit software timers can be in operation at once.

The on-chip A/D converter includes a Sample and Hold, and converts up to 4 multiplexed analog input channels to 10-bit digital values. With a 12 MHz crystal, each conversion takes 22 µs.

Also provided on-chip are a serial port, a Watchdog Timer, and a pulse-width modulated output signal.

noticular la Figure 1. MCS®-96 Block Diagram

FUNCTIONAL OVERVIEW

The following section is an overview of the 8X98 devices, generally referred to as the 8098. Additional information is available in the Embedded Controller Handbook, order number 210918.

CPU Architecture

The 8098 uses the same address space for both program and data memory, except in the address range from 00H through 0FFH. Data fetches in this range are always to the Register File, while instruction fetches from these locations are directed to external memory. (Locations 00H through 0FFH in external memory are reserved for Intel development systems).

Within the Register File, locations 00H through 17H are register mapped I/O control registers, also referred to as Special Function Registers (SFRs). The rest of the Register File (018H through 0FFH) contains 232 bytes of RAM, which can be referenced as bytes, words, or double-words. This register space allows the user to keep the most frequently-used variables in on-chip RAM, which can be accessed faster than external memory. Locations 0F0H through 0FFH can be preserved during power down via a separate power down pin (V_{PD}).

Outside of the Register File, program memory, data memory, and peripherals can be intermixed. The addresses with special significance are:

		agen conversion takes 22 us
0000H-	0017H	Register Mapped I/O (SFRs)
0018H-	0019H	Stack Pointer Weeling & bris 15
1FFEH-	1FFFH	Ports 3 and 4
2000H-	2011H	Interrupt Vectors
2012H-	2017H	Reserved
2018H		Chip Configuration Byte
2019H		Reserved
201AH-	201BH	"Jump to Self" Opcode (27 FE)
201CH-	201FH	Reserved
2020H-	202FH	Security Key
2030H-	207FH	Reserved
2080H		Reset Location
	0018H- 1FFEH- 2000H- 2012H- 2018H 2019H 201AH- 201CH- 2020H- 2030H-	0018H- 0019H 1FFEH- 1FFFH 2000H- 2011H 2012H- 2017H 2018H 2019H 201AH- 201BH 201CH- 201FH 2020H- 202FH 2030H- 207FH

The 8398 carries 8K bytes of ROM. Internal program memory occupies addresses 2000H through 3FFFH. Instruction or data fetches from these addresses access the on-chip memory if the $\overline{\text{EA}}$ pin is externally held at 5V. If the $\overline{\text{EA}}$ pin is at 0V, these addresses access off-chip memory.

A memory map for the 8098 version of the MCS-96 product family is shown in Figure 3.

Reserved location warning: Intel Reserved addresses can not be used by applications which use 8X98 internal ROM. The data read from a reserved location is not guaranteed, and a write to any reserved location could cause unpredictable results. When attempting to program Intel Reserved addresses, the data must be 0FFFFH to ensure a harmless result. A memory map indicating reserved locations on the 8X98 is shown in Figure 2.

Intel Reserved locations, when mapped to external memory, must be filled with 0FFFFH to ensure compatibility with future parts.

	FFFFH
OR I/O	4000H
OD.	MCS 98 ramile
a lefal RESERVED ubong ena	2072H-207FH
SIGNATURE WORD	2070H-2071H
RESERVED	2030H-206FH
note SECURITY KEY & ni obi	2020H-202FH
RESERVED	201CH-201FH
SELF JUMP CODE (27H FEH)	201AH-201BH
notion RESERVED awtice mi	2019H
CHIP CONFIGURATION BYTE	2018H
RESERVED	2012H-2017H
INTERRUPT VECTORS	2000H

Figure 2. Reserved Locations

The RALU (Register/ALU) section consists of a 17-bit ALU, the Program Status Word, the Program Counter, and several temporary registers. A key feature of the 8098 is that it does not use an accumulator. Rather, it operates directly on any register in the Register File. Being able to operate directly on data in the Register File without having to move it into and out of an accumulator results in a significant improvement in execution speed.

In addition to the normal arithmetic and logical functions, the MCS-96 instruction set provides the following special features:

6.25 µs Multiply and Divide Multiple Shift Instruction 3 Operand Instructions Normalize Instruction Software Reset Instruction

OFC	H POWI	ER-DOWN RAM ERNAL ITER FILE RAM)	240 239	on reset with the Chip Configure address 2018H. The CCR regis mapped location that can on the reset sequence; once it changed until the next reset of	on Byte, located at r is a non-memory written to during
14	н		26		
19	STACK POINTER	STACK POINTER	25 24	TO STATE EXTERNAL MEMORY SALE	order to working or necessary to hold
17		PWM_CONTROL	23	out the CCIOV 80 d cycle since a	Idress bus through
16		IOC1	22	ot be present	dress later Hood
15		1000	21	INTERNAL PROGRAM	
14		D. HUUR	2000A O		the EA pin is set
13	H RESERVED	RESERVED	19	EXTERNAL MEMORY	18H comes from
12			18	mes from internal ROM	2080H 008 eff , 1 1
11		SP_CON	17	RESERVED	2030H - 207FH
10	H IO PORT 2	IO PORT 2	16 BA	SECURITY KEY	2020H - 202FH
o OF	H RESERVED	RESERVED	15	RESERVED	201CH - 201FH
OE	H IO PORT O	BAUD_RATE	14	SELF JUMP OPCODE (27H FEH)	201AH - 201BH
ah on	H TIMER2 (HI)	ere 6. Address	13	RESERVED	2019H
00		RESERVED	12	CHIL CONFIGURATION BITE	201011
ОВ			11	RESERVED	2012H - 2017H
O.A		WATCHDOG	10 GABA	ed by these control lines.	material industrial of
. 09		INT_PENDING	1,	INTERRUPT VECTORS	
meini 10	H INT_MASK	INT_MASK	Idmie of	for	2000H 3 578DHS
abom an	H SBUF (RX)	SBUF (TX)	ready cor	PORT 4	1FFFH
and 5	-	HSO_COMMAND	ere chos	100 8808 DI PORT 3 8 6/13 MO(1)	IFFEH & FID FOO
05	H HSI_TIME (HI)	HSO_TIME (HI)	- floo edt	FYTERNAL MEMORY	inst ALE is provide
04		HSO_TIME (LO)	4	or org of HET OR I/O IS JUD OF	
TIII OI Dea		HSI_MODE	netni edi	INTERNAL PAM	OOFFH
1 050 890		AD_COMMAND	dinun erti	INTERNAL RAM REGISTER FILE	
riid Y O1	H RO (HI)	RO (HI)	OIGH THES	STACK POINTER SPECIAL FUNCTION REGISTERS	TO MANUELLE IN
ud en oo	-	RO (LO)	voi balluq	(WHEN ACCESSED AS DATA MEMORY)	0000Н
idmun en	(WHEN READ)	(WHEN WRITTEN)	Thirt sloto		3JA
	(WHEN KEAD)	(MILIN MAILIEN)		And the second of the second o	270532-2

Figure 3. Memory Map

All operations on the 8098 take place in a set number of "State Times." The 8098 uses a three phase internal clock, so each state time is 3 oscillator periods. With a 12 MHz clock, each state time requires 0.25 μ s, based on a T_{OSC} of 83 ns.

Operating Modes of finial

The 8098 supports a variety of options to simplify memory systems. Several ready control modes are available to simplify the external hardware requirements for accessing slow devices. The Chip Configuration Register is used to store the operating mode information.

CHIP CONFIGURATION REGISTER (CCR)

Configuration information is stored in the Chip Configuration Register (CCR). Three of the bits in the register specify the bus control mode and ready control mode. One bit also governs the level of ROM

protection. The CCR bit map is shown in Figure 4, and the functions associated with each bit are described later.

Figure 4. Chip Configuration Register

The CCR is loaded on reset with the Chip Configuration Byte, located at address 2018H. The CCR register is a non-memory mapped location that can only be written to during the reset sequence; once it is loaded it cannot be changed until the next reset occurs.

In order to work properly with an 8-bit only system, it is necessary to hold the upper address byte on the address bus throughout the CCB read cycle since an address latch may not be present.

If the \overline{EA} pin is set to a logical 0, the access to 2018H comes from external memory. If \overline{EA} is a logical 1, the access comes from internal ROM.

BUS CONTROL

The 8098 can be made to provide two types of bus control signals. ALE has a dual function designed to reduce external hardware. Bit 3 of the CCR specifies the function performed by these control lines.

Standard Bus Control

If CCR bit 3 is a 1, then the standard 8098 control signal ALE is provided (Figure 5). ALE will rise as the address starts to come out, and will fall to provide the signal to externally latch the address.

Figure 5. Standard Bus Control

Address Valid Strobe Mode

If CCR bit 3 is a 0, then an Address Valid Strobe is provided in the place of ALE (Figure 6). When the

Address Valid Mode is selected, $\overline{\text{ADV}}$ will go low after an external address is set up. It will stay low until the end of the bus cycle, where it will go inactive high. This can be used to provide a chip select for external memory.

Figure 6. Address Valid Strobe Mode

READY CONTROL

To simplify ready control, four modes of internal ready control logic have been provided. The modes are chosen by properly configuring bits 4 and 5 of the CCR.

The internal ready control logic can be used to limit the number of wait states that slow devices can insert into the bus cycle. When the READY pin is pulled low, wait states will be inserted into the bus cycle until the READY pin goes high, or the number of wait states equals the number specified by CCR bits 4 and 5, whichever comes first. Table 1 shows the number of wait states that can be selected. Internal ready control can be disabled by loading 11 into bits 4 and 5 of the CCR.

Table 1. Internal Ready Control

IRC1	IRC0	Description MW at
0	0	Limit to 1 Wait State
0	1	Limit to 2 Wait States
1	0	Limit to 3 Wait States
1	1	Disable Internal Ready Control

This feature provides for simple ready control. For example, every slow memory chip select line could be ORed together and be connected to the READY pin with CCR bits 4 and 5 programmed to give the proper number of wait states to the slow devices.

ROM LOCK

Program memory lock is available on the 8398 part. CCR bit 7 (LOC1) selects whether internal program memory can be read by a program executing from external memory. The modes are shown in Table 2. Internal ROM addresses 2020H through 3FFFH are protected from reads as set by the CCR when LOC1 is cleared to 0.

Table 2. Program Lock Modes

LOC1	Protection
0	Read Protected
1	No Protection

Only code executing from internal memory can read protected internal memory. As a result of 8098 prefetching of instructions, however, accesses to protected memory are not allowed for instructions located above 3FFAH. Note that the interrupt vectors and the CCR are not protected.

To provide ROM lock while allowing verification and testing, the 8398 requires security key verification before programming or test modes are allowed to read protected memory.

High Speed I/O Unit (HSIO)

The HSIO unit consists of the High Speed Input Unit (HSI), the High Speed Output Unit (HSO), one counter and one timer. "High Speed" denotes that the units can perform functions related to the timers without CPU intervention. The HSI records times when events occur and the HSO triggers events at pre-programmed times.

All actions within the HSIO unit are synchronized to the timers. The two 16-bit timer/counter registers in the HSIO unit are cleared on chip reset and can be programmed to generate an interrupt on overflow. The Timer 1 register is automatically incremented every 8 state times (every 2.0 μs , with a 12 MHz clock). The Timer 2 register counts transitions on the HSI.1 pin. It is incremented on both positive and negative edges of the input line. In addition to being cleared by reset, Timer 2 can also be cleared in software or by signals from input pin HSI.0. Neither of these timers is required for either the Watchdog Timer or the serial port.

The High Speed Input (HSI) unit can detect transitions on any of its 4 input lines. When one occurs it records the time (from Timer 1) and which input lines made the transition. This information is recorded with 2 μ s (12 MHz system) resolution and stored in an 8-level FIFO. The unit can be programmed to look for four types of events, as shown in Figure 7. It can activate the HSI Data Available interrupt either when the Holding Register is loaded or the 6th FIFO entry has been made. Each input line can be individually enabled or disabled to the HSI unit by software.

The High Speed Output (HSO) unit is shown in Figure 8. It can be programmed to set or clear any of its 6 output lines, reset Timer 2, trigger an A/D conversion, or set one of 4 Software Timer flags at a programmed time. An interrupt can be enabled for any of these events. Either Timer 1 or Timer 2 can be referenced for the programmed time value and up to 8 commands for preset actions can be stored in the CAM (Content Addressable Memory) file at any one time. As each action is carried out at its preset time that command is removed from the CAM making space for another command. HSO.4 and HSO.5 are shared with the HSI unit as HSI.2 and HSI.3, and can be individually enabled or disabled as outputs.

Standard I/O Ports

There are 2 8-bit and 2 4-bit I/O ports on the 8098 in addition to the High Speed I/O lines.

Port 0 is an input-only port which shares its pins with the analog inputs to the A/D converter. The port can be read digitally and/or, by writing to the A/D Command Register, one of the lines can be selected as the input to the A/D converter.

Port 2 is a multi-functional port. The 4 pins are shared with other functions in the 8098, as shown in Table 3.

Table 3. Port 2 Pin Functions

Port	Function	Alternate Function
P2.0	Output	TXD (Serial Port Transmit)
P2.1	Input	RXD (Serial Port Receive)
P2.2	Input	EXTINT (External Interrupt)
P2.5	Output	PWM (Pulse Width Modulation)

Ports 3 and 4 are bi-directional I/O ports with open drain outputs. These pins are also used as the multiplexed address/data bus when accessing external memory, in which case they have strong internal pullups. The internal pullups are only used during external memory read or write cycles when the pins

of ou bins enlay emil bermanpord and Figure 7. High Speed Input Unit

Figure 8. High Speed Output Unit Woo hand Jid-81 own art January and Jid-81 own art January and Jid-81 own art Jid-81 own art

are outputting address or data bits. At any other time, the internal pullups are disabled. When used as a system bus, Ports 3 and 4 are a multiplexed 16-bit address/ 8-bit data bus.

Serial Port

The serial port is compatible with the MCS-51 family, (8051, 8031 etc.), serial port. It is full duplex, and double-buffered on receive. There are 3 asynchronous modes and 1 synchronous mode of operation for the serial port. The asynchronous modes allow for 8 or 9 bits of data with even parity optionally inserted for one of the data bits. Selective interrupts based on the 9th data bit are available to support interprocessor communication.

Baud rates in all modes are determined by an independent 16-bit on-chip baud rate generator. The XTAL1 pin is used as the input to the baud rate generator. The maximum baud rate in the asynchronous mode is 187.5 KBaud. The maximum baud rate in the synchronous mode is 1.5 MBaud.

Pulse Width Modulator (PWM)

The PWM output shares a pin with port bit P2.5. When the PWM output is selected, this pin outputs a pulse train having a fixed period of 256 state times, and a programmable width of 0 to 255 state times. The width is programmed by loading the desired value, in state times, to the PWM Control Register.

A/D Converter with Sample and Hold

The analog-to-digital converter is a 10-bit, successive approximation converter with internal sample and hold. It has a fixed conversion time of 88 state times which includes the 4 state acquisition time of the internal Sample/Hold. With a 12 MHz clock, the conversion takes 22 μ s, including the 1 μ s sample for the Sample and Hold. The Sample acquisition begins 4 state times after the conversion is triggered. A 2 pF capacitance is charged from the input signal during acquisition.

The analog input must be in the range of 0 to V_{REF} (nominally, $V_{REF}=5V$). This input can be selected from 4 analog input lines, which connect to the same pins as Port 0. A conversion can be initiated either by setting a control bit in the A/D Command register, or by programming the HSO unit to trigger the conversion at some specified time.

Interrupts and class embands whom a be

The 8098 has 20 interrupt sources which vector through 8 interrupt vectors. A 0-to-1 transition from any of the sources sets a corresponding bit in the Interrupt Pending register. The content of the Interrupt Mask register determines if a pending interrupt will be serviced or not. If it is to be serviced, the CPU pushes the current Program Counter onto the stack and reloads it with the vector corresponding to the desired interrupt. The interrupt vectors are located in addresses 2000H through 2011H, as shown in Figure 9.

	Vector	Location	tog Timer over
Vector en luisoare to an	(High Byte)	(Low Byte)	Priority
Software	2011H	2010H	Not Applicable
Extint B bankson	200FH	200EH	7 (Highest)
Serial Port	200DH	200CH	0.Tale 6 89181
Software Timers	200BH	200AH	emut eg tonnac sW ent seldans
HSI.0	2009H	2008H	n doid 4s to Vo
High Speed Outputs	2007H	2006H	3
HSI Data Available	2005H	2004H	Wild Hi 2 seth
A/D Conversion Complete	2003H	2002H	s started unless
Timer Overflow	2001H	2000H	0 (Lowest)

Figure 9. Interrupt Vectors

At the end of the interrupt routine the RET instruction pops the program counter from the stack and execution continues where it left off. It is not necessary to store and replace registers during interrupt routines as each routine can be set up to use a different section of the Register File. This feature of the architecture provides for very fast context switching. While the 8098 has a single priority level in the sense that any interrupt may itself be interrupted, a priority structure exists for resolving simultaneously pending interrupts, as indicated in Figure 9. Since the interrupt pending and interrupt mask registers can be manipulated in software, it is possible to dynamically alter the interrupt priorities to suit the users software.

Watchdog Timer mangord memuo entraerlaud

The Watchdog Timer is a 16-bit counter which, once started, is incremented every state time. If not cleared before it overflows, the RESET pin will be pulled down for two state times, causing the system to be reinitialized. In a 12 MHz system, the Watchdog Timer overflows after 16 ms.

This feature is provided as a means of graceful recovery from a software upset. The counter must be cleared by the software before it overflows, or else the system assumes an upset has occurred and activates RESET. Once the Watchdog Timer is started it cannot be turned off by software. The flip-flop which enables the Watchdog Timer has been designed to maintain its state through $V_{\rm CC}$ glitches to as low as 0V or as high as 7V for 1 μs to 1 ms.

To start the Watchdog Timer, or to clear it, one writes 1EH followed by 0E1H to the WDT address (000AH). The Watchdog cannot be stopped once it is started unless the system is reset.

PACKAGING

The 8098 is available in a 48-pin package with and without on-chip ROM. The MCS-96 numbering sys-

tem for the 8X98 parts is shown in Figure 10. Figure 11 shows the pinout for the 48-pin package. The 48-pin version is offered in a Dual-In-Line package.

	.81	With A/D
ROMless	48 Pin	P8098 - Plastic DIP
ROM	48 Pin	P8398 - Plastic DIP

Figure 10. The MCS®-96 Family Nomenclature

Figure 11. 48-Pin Package

PIN DESCRIPTIONS of a enlatrop 8008 of T

Symbol	Name and Function	
VCC III eidT g	Main supply voltage (5V).	ng modes as described below
V _{SS}	Digital circuit ground (0V). There are two VSS pins, both of which	ch must be connected.
at word sday bit eddress liel comes the bas g of variables it	RAM standby supply voltage (5V). This voltage must be present in a Power Down condition (i.e. V_{CC} drops to zero), if RESET is below spec and V_{PD} continues to be held within spec., the top will retain their contents. RESET must be held low during the P be brought high until V_{CC} is within spec and the oscillator has s	s activated before V _{CC} drops 16 bytes in the Register File Power Down and should not
VREF deni 89	Reference voltage for the A/D converter (5V), V _{REF} is also the analog portion of the A/D converter and the logic used to read for A/D and Port 0 to function.	
ANGND	Reference ground for the A/D converter. Must be held at nomi Vss.	nally the same potential as
V _{PP}	Programming voltage for the future EPROM parts.	re operand. The operand can
XTAL1	Input of the oscillator inverter and of the internal clock generate	or.
XTAL2	Output of the oscillator inverter.	NOIRECT WITH AUTO-ING
e bus (TESER) operands. The ects a particula nstructions use uctions. Typical	Reset input to the chip. Input low for at least 2 state times to re subsequent low-to-high transition re-synchronizes CLKOUT an time sequence in which the PSW is cleared, a byte read from 2 jump to location 2080H is executed. Input high for normal oper internal pullup.	nd commences a 10-state- 2018H loads CCR, and a
NMI boo to eo	A positive transition causes a vector to external memory location from 00H through 0FFH is reserved for Intel development system.	
EAsin emit els	Input for memory select (External Access). EA equal to a TTL-accesses to locations 2000H through 3FFFH to be directed to TTL-low causes accesses to these locations to be directed to internal pulldown, so it goes to 0 unless driven otherwise. EA is	on-chip ROM. EA equal to a off-chip memory. EA has an
ALE/ADV	Address Latch Enable or Address Valid output, as selected by provide a latch to demultiplex the address from the address/da ADV, it goes inactive high at the end of the bus cycle. ADV can external memory. ALE/ADV is activated only during external memory.	ata bus. When the pin is to be used as a chip select for
RD	Read signal output to external memory. \overline{RD} is activated only dureads.	uring external memory
WR	Write output to external memory. WR is activated only during e	xternal memory writes.
READY	Ready input to lengthen external memory cycles, for interfacing memory, or for bus sharing. The bus cycle can be lengthened be external memory is not being used, READY has no effect. Interwait states inserted into a bus cycle held not ready is available CCR. READY has a weak internal pullup, so it goes to 1 unless	by up to 1 μs. When the rnal control of the number of through configuration of
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: H: HSI.3. Two of them (HSI.2 and HSI.3) are shared with the HSO	
HSO	Outputs from High Speed Output Unit. Six HSO pins are availal HSO.3, HSO.4, and HSO.5. Two of them (HSO.4 and HSO.5) a	
Port 0	4-bit high impedance input-only port. These pins can be used a analog inputs to the on-chip A/D converter.	as digital inputs and/or as
Port 2	4-bit multi-functional port. Its pins are shared with other function	ns in the 8098.
Ports 3 and 4	8-bit bi-directional I/O ports with open drain outputs. These pin multiplexed address/data bus which has strong internal pullup:	

INSTRUCTION SET

The 8098 instruction set makes use of six addressing modes as described below:

DIRECT—The operand is specified by an 8-bit address field in the instruction. The operand must be in the Register File or SFR space (locations 0000H through 00FFH).

IMMEDIATE—The operand itself follows the opcode in the instruction stream as immediate data. The immediate data can be either 8-bits or 16-bits as required by the opcode.

INDIRECT—An 8-bit address field in the instruction gives the word address of a word register in the Register File which contains the 16-bit address of the operand. The operand can be anywhere in memory.

INDIRECT WITH AUTO-INCREMENT—Same as Indirect, except that, after the operand is referenced, the word register that contains the operand's address is incremented by 1 if the operand is a byte, or by 2 if the operand is a word.

INDEXED (LONG AND SHORT)—The instruction contains an 8-bit address field and either an 8-bit or a 16-bit displacement field. The 8-bit address field gives the word address of a word register in the Register File which contains a 16-bit base address. The 8- or 16-bit displacement field contains a signed displacement that will be added to the base address to produce the address of the operand. The operand can be anywhere in memory.

The 8098 contains a zero register at word address 0000H (and which contains 0000H). This register is available for performing comparisons and for use as a base register in indexed addressing. This effectively provides direct addressing to all 64K of memory.

In the 8098 the Stack Pointer is at word address 0018H in the Register File. If the 8-bit address field contains 18H, the Stack Pointer becomes the base register. This allows direct accessing of variables in the stack.

The following tables list the MCS-96 instructions, their opcodes, and execution times.

A Word on Instruction Execution Times

Some performance degradation is to be expected when using the 8098 with external program memory. The reason for this is that the bus controller has a difficult time keeping the instruction prefetch queue full when the CPU is executing short instructions. The CPU then has to wait while the bus controller fetches the next instruction and its operands. The percentage that this degradation affects a particular string of code is dependent on the instructions used and in the sequencing of those instructions. Typically, add 20% to the state times calculated from the following tables for a given sequence of code that uses long state time instructions, and add 40% for a given sequence that uses short state time instructions.

Instruction Summary

Mnemonic	Oper-	Operation (Note 1)		-5450	FI	ags			Notes
TE T	ands	Operation (Note 1) Basis and O	Z	N	C	V	VT	ST	11010
ADD/ADDB	2	$D \leftarrow D + A$	-	1	10	10	1	_	INE
ADD/ADDB	3	D ← B + A 0 = M N 0	10	10	10	1	1	-	GE
ADDC/ADDCB	2	$D \leftarrow D + A + C$	1	-	10	10	1	_	TI
SUB/SUBB	2	D ← D − A 0 = \(\text{T bas 0} = M is a	1	1	10	10	1	-	та
SUB/SUBB	3	D ← B − A	10	10	10	10	1	_	3.1
SUBC/SUBCB	2	D ← D - A + C - 1 · 0 = Thest = 0 he	1	10	10	10	1	_	Н
CMP/CMPB	2	D - A _ A - O	10	10	10	10	1	_	HM
MUL/MULU	2	D, D + 2 ← D*A	mill	-	-	-	-	?	2
MUL/MULU	3	D, D + 2 ← B*A	nIII.	-	-	-	-	?	2
MULB/MULUB	2	D, D + 1 ← D*A TV soot + = TV so	WITE.	-	-	-	-	?	3
MULB/MULUB	3	D, D + 1 ← B * A TV seek3 · 0 = TV N	1000		-	-	-	?	3
DIVU	2	$D \leftarrow (D, D + 2)/A, D + 2 \leftarrow remainder$	STORIE.	-		10	1	_	2
DIVUB	2	$D \leftarrow (D, D + 1)/A, D + 1 \leftarrow remainder$	Total Control	-		1	1	-	- 3
DIV	2	$D \leftarrow (D, D + 2)/A, D + 2 \leftarrow remainder$	TOTAL STREET	-	-	?	1	_	28
DIVB	2	$D \leftarrow (D, D + 1)/A, D + 1 \leftarrow remainder$	100	-	_	?	1	=	OR
AND/ANDB	2	D ← D and A	1	10	0	0	-	-	ZIVIZ
AND/ANDB	3	D ← B and A teette tid-8 + 09 →	V	10	0	0	_	_	
OR/ORB	2	D ← Dor A	N	10	0	0	_	803	EC/D
XOR/XORB	2	D ← D (excl. or) A	1	10	0	0	_	803	EGAN
LD/LDB	2	D ← A		-	_	_	_	-80	NC/INC
ST/STB	2	- D; D + 2 ← Sign (D) P → A	»-e	-	_	_	_	_	TX
LDBSE	2	$D \leftarrow A; D + 1 \leftarrow SIGN(A) \rightarrow I + 0.0 - I$	»-G		_	_	_	_	3, 4
LDBZE -	2	D ← A; D + 1 ← 0 (C) to M Leolgo J -	→ - B	-		=	_	870	13,4
PUSH	1	SP ← SP - 2; (SP) ← A	>-8	-	_	_	_	en.	LRYCI
POP 1	1.	A ← (SP); SP ← SP + 2	>-0		_	_	1311	n a n	HIT/SI-
PUSHF	0	$SP \leftarrow SP - 2$; $(SP) \leftarrow PSW$; $PSW \leftarrow 0000H$ $I \leftarrow 0$	0	0 9	0	0	1908	0	HR/S
POPF	0	$PSW \leftarrow (SP); SP \leftarrow SP + 2; I \leftarrow \nu$	1	1	10	10	10	V	OTE
SJMP	1	PC ← PC + 11-bit offset	-	-	-	_	_	-	5
LJMP	1	PC ← PC + 16-bit offset	TV	-	-	-	-	_	5
BR [indirect]	1	PC ← (A)	- 75	-	-	_	_	_	TR
SCALL	1	$SP \leftarrow SP - 2$; $(SP) \leftarrow PC$; $PC \leftarrow PC + 11$ -bit offset	JearCI	-	-	-	-	-	5
LCALL	1	$SP \leftarrow SP - 2$; $(SP) \leftarrow PC$; $PC \leftarrow PC + 16$ -bit offset) 09 PC •			-	-	-	5
RET	0	$PC \leftarrow (SP); SP \leftarrow SP + 2$	909	_(_	_	_	_	KIP
J (conditional)	1	PC ← PC + 8-bit offset (if taken)	no_	_5	_	_	_	_	5
JC	1	Jump if C = 1	98	_(_	_	_	5
JNC	1	Jump if C = 0	01	_	_	_		_	5
JE	1	Jump if $Z = 1$	-	_	_	_	_	_	8.5

^{1.} If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B, and A must conform to the alignment rules for the required operand type. D and B are locations in the Register File; A can be located anywhere in memory.

2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.

3. D, D + 1 are consecutive BYTES in memory; D is WORD aligned.

4. Changes a byte to a word.

^{5.} Offset is a 2's complement number.

Instruction Summary (Continued)

Mnemonic	Oper-	Operation (Note 1)			FI	ags		alnon	Notes
WILLIAM A	ands	S Operation (Note 1)	Z	N	C	٧	VT	ST	11010
JNE TO THE TOTAL T	4 14	Jump if $Z = 0$	+0			2	_	800	5
JGE - 1	4.14	Jump if N = 0	1_8	-		8	_	800	5
JLT - T	1	Jump if N = 1	+_0		0_	5	_8	NG <u>CI</u> A	5 A
JGT	4 14	Jump if N = 0 and Z = 0	-0	->	1	2	_	880	5
JLE	1	Jump if $N = 1$ or $Z = 1$	8	=	1	<u>E</u>	_	880	5
JH	W 1.N	Jump if C = 1 and Z = 0	-0		94	2	8	DELLE	5
JNH	N 1 N	Jump if $C = 0$ or $Z = 1$	_	A_		2	_	89M	5
JV	1	Jump if V = 1	8	<u></u>	1	2		UJU	5
JNV	1	Jump if $V = 0$	2	-0		8	_	U.JU	- 5
JVT	1	Jump if VT = 1; Clear VT	-1	<u>- a</u>	94	8	0	UW	5
JNVT	1	Jump if VT = 0; Clear VT	-1	F-0	91	€	0	LIUV	5
JST	1	Jump if ST = 1	1.0)	\rightarrow	91	2		_	5
JNST	1	Jump if ST = 0	(0)			S	_	_	8050
JBS	3	Jump if Specified Bit = 1	1.0)		9_	8	_	_	5, 6
JBC	3	Jump if Specified Bit = 0	1,0)		U_	2	_	_	5, 6
DJNZ	0 1 4	$D \leftarrow D - 1$; if $D \neq 0$ then	BU		u_	3		SOM	ANCIMA
- - 0	0 %	PC ← PC + 8-bit offset	12-5		0+	0	-	BON	ANC51A
DEC/DECB —	0 1%	D ← D − 1	V	1	-	10	1	-8	ROVAO
NEG/NEGB -	0 1%	$D \leftarrow 0 - D$ A (no low	V	10	-	-	1	890	XOR/X
INC/INCB	- 1-	D ← D + 1	1	10	-	-	1	-	IOT/OT
EXT — —	- 1-	$D \leftarrow D; D + 2 \leftarrow Sign(D)$	N	1	A 0	0	_	-1	28
EXTB	1-	$D \leftarrow D; D + 1 \leftarrow Sign(D)$	M	10	0	0	_	_	3
NOT/NOTB	- 1-	D ← Logical Not (D)	-	10	0	0	-	_	LOBZE
CLR/CLRB	1-	D ← 0	91	0	0	0	_	_	PUSH
SHL/SHLB/SHLL	2	C ← msb — — — lsb ← 0	10	?	1	10	1	_	5709
SHR/SHRB/SHRL	0 20	$0 \to msblsb \to C$	1	?	20	0	_	10	947.9
SHRA/SHRAB/SHRAL	2	$msb \rightarrow msb lsb \rightarrow C$	1	10	1	0	_	1	7
SETC	0	C ← 1		INE	1	0	_	_	4404
CLRC	0	C ← 0 testio iid-11 +	09	-	0	_	_	_	STEIL
CLRVT	0	VT ← 0 featto nd-ar +	37	-		1	0	_	, HMLJ
RST	0	PC ← 2080H	0	0	0	0	0	0	8
DI	0	Disable All Interrupts (I ← 0)	200	=	0		_	_	MADE
EI	0	Enable All Interrupts (I ← 1)	200	-	-	-	_	_	11000
NOP	0	PC ← PC + 1	ONE -	-	4	_	_	_	advall Nation
SKIP	0	PC ← PC + 2	180	-	0	0	_	-	THE
NORML	2	Left shift till msb = 1; D ← shift count	-	?	0	-	-	stoll	7
TRAP	0	SP ← SP - 2; (SP) ← PC PC ← (2010H)	- 0	gm	L.	1			9

^{1.} If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B and A must conform to the alignment rules for the required operand type. D and B are locations in the Register File; A can be located anywhere in memory.

5. Offset is a 2's complement number.

^{6.} Specified bit is one of the 2048 bits in the register file.

^{7.} The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at

^{9.} The assembler will not accept this mnemonic.

Opcode and State Time Listing

Opcode			an	15	1 0	161.5	3711A		JAN	INDIRE	CT*	A SA			INDEXE	ED*	0
6	S	D	IRE	СТ	IMN	/ED	IATE	1	IOR	MAL		O-INC.		SHO		Tres 1	ONG
MNEMONIC	OPERANDS	OPCODE	BYTES	STATE	OPCODE	BYTES	STATE	OPCODE	BYTES	STATE © TIMES	BYTES	STATE®	OPCODE	BYTES	STATE ©	BYTES	STATE © TIMES
7713	d	21/0		53 4	181	11		MET	IC II	NSTRUC	TIONS	3 4 18			60 3	2	CIMP
ADD	2	64	3	4	65	4	5	66	3	6/12	3	7/13	67	4	6/12	5	7/13
ADD	3	44	4	5	45	5	6	46	4	7/13	4	8/14	47	5	7/13	6	8/14
ADDB	2	74	3	4.8	75	3	4	76	3	6/11	3	7/12	77	4	6/11	5	7/12
ADDB	3	54	4	500	55	4	5	56	4	7/12	4	8/13	57	5	7/12	6	8/13
ADDC	2	A4	3	478	A5	4	5	A6	3	6/12	3	7/13	A7	4	6/12	5	7/13
ADDCB	2	B4	3	4	B5	3	4	B6	3	6/11	3	7/12	B7	4	6/11	5	7/12
SUB	2	68	3	4	69	4	5	6A	3	6/12	3	7/13	6B	4	6/12	5	7/13
SUB	3	48	4	5	49	5	6	4A	4	7/13	4	8/14	4B	5	7/13	6	8/14
SUBB	2	78	3	4	79	3	4	7A	3	6/11	3	7/12	7B	4	6/11	5	7/12
SUBB	3	58	4	5	59	4	5	5A	4	7/12	4	8/13	5B	5	7/12	6	8/13
SUBC	2	A8	3	4 8	A9	4	5	AA	3	6/12	3	7/13	AB	4	6/12	5	7/13
SUBCB	2	B8	3	4	B9	3	4	BA	3	6/11	3	7/12	BB	4	6/11	5	7/12
CMP	2	88	3	4	89	4	5	8A	3	6/12	3	7/13	8B	4	6/12	5	7/13
СМРВ	2	98	3	4	99	3	4	9A	3	6/11	3	7/12	9B	4	6/11	5	7/12
MULU	2	6C	3	25	6D	4	26	6E	3	27/33	3	28/34	6F	4	27/33	5	28/34
MULU	3	4C	4	26	4D	5	27	4E	4	28/34	4	29/35	4F	5	28/34	6	29/35
MULUB	2	7C	3	17	7D	3	17	7E	3	19/24	3	20/25	7F	4	19/24	5	20/25
MULUB	3	5C	4	18	5D	4	18	5E	4	20/25	4	21/26	5F	5	20/25	6	21/26
MUL	2	2	4	29	@	5	30	@	4	31/37	4	32/38	2	5	31/37	6	32/38
MUL	3	2	5	30	2	6	31	@	5	32/38	5	33/39	@	6	32/38	7	33/39
MULB	2	2	4	21	2	4	21	2	4	23/28	4	24/29	@	5	23/28	6	24/29
MULB	3	2	5	22	2	5	22	2	5	24/29	5	25/30	@	6	24/29	7	25/30
DIVU	2	8C	3	25	8D	4	26	8E	3	28/33	3	29/34	8F	4	28/33	5	29/34
DIVUB	2	9C	3	17	9D	3	17	9E	3	20/24	3	21/25	9F	4	20/24	5	21/25
DIVITISI	2	2	4	29	@	5	30	@	4	32/37	4	33/38	2	5	32/37	6	33/38
DIVB	2	2	4	21	2	4	21	@	4	24/28	4	25/29	2	5	24/28	6	25/29

NOTES

^{*}Long indexed and Indirect + instructions have identical opcodes with Short indexed and Indirect modes, respectively. The second byte of instructions using any Indirect or indexed addressing mode specifies the exact mode used. If the second byte is even, use Indirect or Short indexed. If it is odd, use Indirect + or Long indexed. In all cases the second byte of the instruction always specifies an even (word) location for the address referenced.

① Number of state times shown for internal/external operands.

The opcodes for signed multiply and divide are the opcodes for the unsigned functions with an "FE" appended as a prefix.

Opcode and State Time Listing (Continued)

		D	IRE	СТ	IMN	AEDI	ATE			INDIRE		เบารเม	om		INDEXE		popqu
2	SC	XBQ	141				175	BAIL	IOR	MAL	AUT	O-INC.		SHO	RT	L	ONG
MNEMONIC	OPERANDS	OPCODE	BYTES	STATE	OPCODE	BYTES	STATE	OPCODE	BYTES	STATE © TIMES	BYTES	STATE () TIMES	OPCODE	BYTES	STATE ()	BYTES	STATE
778	201	-(0)		0 0	1 2	100	LO	GICA	LIN	STRUCT	IONS	0 0	-	0 0	0 0	8	55
AND	2	60	3	4	61	4	5	62	3	6/12	3	7/13	63	4	6/12	5	7/13
AND	3	40	4	5	41	5	6	42	4	7/13	4	8/14	43	5	7/13	6	8/14
ANDB	2	70	3	4	71	3	4	72	3	6/11	3	7/12	73	4	6/11	5	7/12
ANDB	3	50	4	5	51	4	5	52	4	7/12	4	8/13	53	5	7/12	6	8/13
OR	2	80	3	4	81	4	5	82	3	6/12	3	7/13	83	4	6/12	5	7/13
ORB	2	90	3	3 478	91	3	4	92	3	6/11	3	7/12	93	4	6/11	5	7/12
XOR	2	84	3	4	85	4	5	86	3	6/12	3	7/13	87	4	6/12	5	7/13
XORB	2	94	3	4	95	3	4	96	3	6/11	3	7/12	97	4	6/11	5	7/12
2/42	Chi I	6 FLS		k 02	10	D	ATA T	RAN	SFE	RINSTR	UCTIC	NS		1	100	0	CILID
LD	2	AO	3	4	A1	4	5	A2	3	6/12	3	7/13	A3	4	6/12	5	7/13
LDB	2	B0	3	4	B1	3	4	B2	3	6/11	3	7/12	B3	4	6/11	5	7/12
ST	2	CO	3	4	12	77		C2	3	7/13	3	8/14	C3	4	7/13	5	8/14
STB	2	C4	3	488	LS	18		C6	3	7/11	3	8/12	C7	4	7/11	5	8/12
LDBSE	2	BC	3	48/	BD	\3	4	BE	3	6/12	3	7/13	BF	4 8	6/12	5	7/13
LDBZE	2	AC	3	488	AD	3	4	AE	3	6/12	3	7/13	AF	4	6/12	5	7/13
7/43	a	2112		A FIR	1 5	ST	ACK C	PER	ATIC	NS (inte	rnal s	tack)	1 6	1.5	88	0	CMP
PUSH	1	C8	2	8	C9	3	8	CA	2	11/16	2	12/17	CB	3	11/16	4	12/17
POP	1	CC	2	12	-	-	-	CE	2	14/20	2	14/20	CF	3	14/20	4	14/20
PUSHF	0	F2	1	8	-	_	_	-	_		_	+		-	-	-	
POPF	0	F3	1	9	26	182	1 15	188	172	£ T 39	88	VT CI9	10		79	S.1.	U.IUM
56762	9	8/34	S	44- 5	35	STA	ACK O	PER/	ATIO	NS (exte	ernal s	tack)	65	3 1 7	46 4	8	MULU
PUSH	ã1	C8	2	14	C9	\3	14	CA	2	17/22	2	18/23	CB	3	17/22	348	18/23
POP	e1	CC	2	15	Las	115	-	CE	2	17/23	2	17/23	CF	3	17/23	84 8	17/23
PUSHF	0	F2	1	14	BS	VEE.	-	78	FE	4十個	THE	12± 0	Po		(5)	0	ILTM
POPF	0	F3	.1	14	100	100	-	00	55	2 0	7.0	5 0	-	-	-	+	1770

82752 9	SCIAS O SCIES C W ESTAS A JUMP AND CALLS IS A W IS A W S SU												
MNEMONIC		OPCODE	BYTES	STATES	MNEMONIC	OPCODE	BYTES	STATES					
LJMP	88	8E7 4 78	48/33	4:\82	E LCALL S	25 8 RE 4	8 308	13/18®					
as\SJMP	24	20-27 €	88/28	8 8 102	SCALL	28-2F®	8 208	13/18®					
BR[]	137	≤E3 ≥ ⊚	88\28	8 \ 38	⇒ RET 08	a F00 89	\$ 10	12/18 ^⑤					
6 25/29	881	@ 5 24	26/29	24/28 4	TRAP@	s F70 19	3 10	21/26					

NOTES: *Long indexed and Indirect + instructions have identical opcodes with Short indexed and Indirect modes, respectively. The second byte of instructions using any Indirect or indexed addressing mode specifies the exact mode used. If the second byte is even, use Indirect or Short indexed. If it is odd, use Indirect + or Long indexed. In all cases the second byte of the instruction always specifies an even (word) location for the address referenced.

Number of state times shown for internal/external operands.

The assembler does not accept this mnemonic.
The least significant 3 bits of the opcode are concatenated with the following 8 bits to form an 11-bit, 2's complement. offset for the relative call or jump.

State times for stack located internal/external.

CONDITIONAL JUMPS

All conditional jumps are 2 byte instructions. They require 8 state times if the jump is taken, 4 if it is not.												
MNEMONIC	OPCODE	MNEMONIC	OPCODE	MNEMONIC	OPCODE	MNEMONIC	OPCODE					
JC	DB	JE	DF	JGE	D6	JGT	D2					
JNC of feet e	D33397 3 6	JNE setate S	D7 of it ablo	SET to Table to	III HDEN se	JLE sexist moits	DA ad a					
JH regnot exist	D9	JV the or best at	DD	JVT	DC	JST	D8					
JNH	D1	JNV	D5	JNVT o Total	D4	JNST	D0					

JUMP ON BIT CLEAR OR BIT SET

70.774.77				BIT N	JMBER	REALINA JEHMAN	0.0\A	
MNEMONIC	0	1	2	3	4	5	6	7
JBC	30	31	32	33	34	35	36	37
JBS ROWGE SHE GUS	38	HOAT 39 HIRW	ЗА	3B	3C	3D	3E	3F

LOOP CONTROL

MNEMONIC	OPCODE	BYTES	STATE TIMES
DJNZ	EO	3	5/9 STATE TIME (NOT TAKEN/TAKEN)

SINGLE REGISTER INSTRUCTIONS

			TE ILE OIL		THE STATE OF THE PARTY OF THE P		
MNEMONIC	OPCODE	BYTES	STATES	MNEMONIC	OPCODE	BYTES	STATES
DEC OF SI IN	05	2	4	EXT	06	2	4
DECB	a Hota 15 00 and	2	4	EXTB	16	2	4
NEG	03	2	4	NOT SOM	02	2	4
NEGB	13	2	4	NOTB 350M	12	. 2	4
INC	07	2	4	CLR	01	2 2	4
INCB	17	2	4	CLRB	TRANSPINS	MIRO92 00	4

	200M = 01 200M = 11		The state of the s	SHIFT	INS	TRUCTIONS	Homen		TO EACH HEC
INSTR		RD	INSTR	BY	TE	INSTR	DBL	. WD	STATE TIMES
MNEMONIC	OP	В	MNEMONIC	OP	В	MNEMONIC	OP	В	STATE TIMES
SHL GALE	09	3	SHLB	19	3	SHLL	0D	3	7 + 1 PER SHIFT(7)
SHR	08	3	SHRB	18	3	SHRL	0C	3	7 + 1 PER SHIFT(7)
SHRA	OA	3	SHRAB	1A	3	SHRAL	0E	3	7 + 1 PER SHIFT(7)

SPECIAL CONTROL INSTRUCTIONS

	The same street													
MNEMONIC	OPCODE	BYTES	STATES	MNEMONIC	OPCODE	BYTES	STATES							
SETC	F9	1 92	TX ene 4	DI 190	FA HURS	100 -1 A	4							
CLRC	F8	Sirk 1 teles	4	EI	FB	1 -	4							
CLRVT	FC	Refe T 64" (**************************************	NOP	FD	1	4							
RST(6)	gninu (FF) Meaxe	senno paqual 0,	166	SKIP	00	2	4							

NORMALIZE

MNEMONIC	OPCODE	BYTES	quire 8 state	All conditional jumps SAMIT STATS offices. They require			
NORML OF	OMBOFA B	00030	MNEMONIC	BOOGO 110+11 PER SHIFT30090 OWOMBIAM			

NOTES

6. This instruction takes 2 states to pull RESET low, then holds it low for 2 states to initiate a reset. The reset takes 12 states, at which time the program restarts at location 2080H. If a capacitor is tied to RESET, the pin may take longer to go low and may never reach the V_{OL} specification.

7. Execution will take at least 8 states, even for 0 shift,

0	IOC0 (15H)	
0	HSI.O INPUT ENABLE / DISABLE	4.50
1	TIMER 2 RESET EACH WRITE	
2	- HSI.1 INPUT ENABLE / DISABLE	0.0
3	TIMER 2 EXTERNAL RESET ENABLE	Z/DISABLE
4	- HSI.2 INPUT ENABLE / DISABLE	4.50
5	SET TO 1	
6	HSI.3 INPUT ENABLE / DISABLE	
7	SET TO 1	270532-17

	IOS0 (15H)
	O HSO.0 CURRENT STATE O + OOV A.S.
	1 HSO.1 CURRENT STATE
	2 — HSO.2 CURRENT STATE 3 — HSO.3 CURRENT STATE
o Vcc	4 - HSO.4 CURRENT STATE
	5 HSO.5 CURRENT STATE
00 V 00	6 — CAM OR HOLDING REGISTER IS FULL 7 — HSO HOLDING REGISTER IS FULL 270522 10
VA	HSO HOLDING REGISTER IS FULL 270532-1

	0	SELECT PWM / SELECT P2.5
1	1	EXTERNAL INTERRUPT ACHT / EXTINT
	2	TIMER 1 OVERFLOW INTERRUPT ENABLE / DISABLE
1		TIMER 2 OVERFLOW INTERRUPT ENABLE / DISABLE
	4	HSO.4 OUTPUT ENABLE / DISABLE
1	5	- SELECT TXD / SELECT P2.0 110 YRA mon egist
7	6	HSO.5 OUTPUT ENABLE / DISABLE MANA 10 28
	.7.	HSI INTERRUPT FIFO FULL / HOLDING REGISTER LOADED

	Vector L	ocation	Priority	
Vector	(High Byte)	(Low Byte)		
Software Extint	2011H 200FH	2010H 200EH	Not Applicable 7 (Highest)	
Serial Port	200DH	200CH	6	
Software Timers	200BH	200AH	5	
HSI.0	2009H	2008H	4.	
High Speed Outputs	2007H	2006H	4 V 3 V	
HSI Data Available	2005H	2004H	NGND Snd Vss I	
A/D Conversion Complete	2003H	2002H	CHARA	
Timer Overflow	2001H	2000H	0 (Lowest)	

ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias0°C to +70°C
Storage Temperature40°C to +150°C
Voltage from EA or V _{PP} to V _{SS} or ANGND
Voltage from Any Other Pin to Vss or ANGND0.3V to +7.0V*
Average Output Current from Any Pin10 mA
Power Dissipation

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.

OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
TA	Ambient Temperature Under Bias	0	+70	С
Vcc	Digital Supply Voltage	4.50	5.50	Vol-
VREF	Analog Supply Voltage	4.50	5.50	V
fosc	Oscillator Frequency	6.0	12	MHz
V _{PD}	Power-Down Supply Voltage	4.50	5.50	V

NOTE:

ANGND and VSS should be nominally at the same potential.

D.C. CHARACTERISTICS

(Test Conditions: V_{CC} , V_{REF} , V_{PD} , V_{PP} , $V_{EA} = 5.0V \pm 0.5V$; $F_{OSC} = 6.0$ MHz; $T_A = 0^{\circ}C$ to $70^{\circ}C$; V_{SS} , ANGND = 0V)

Symbol	Parameter	Min	Max	Units	Test Conditions
Icc	V _{CC} Supply Current (0°C ≤ T _A ≤ 70°C)		240	mA	All Outputs
I _{CC1}	V _{CC} Supply Current (T _A = 70°C)		185	mA	Disconnected.
IPD	V _{PD} Supply Current		200.0 1	mA	Normal operation and Power-Down.
IREF	V _{REF} Supply Current		18H 8	mA	O O LICK
VIL	Input Low Voltage (Except RESET)	-0.3	+0.8	٧	-0-0 E13H
V _{IL1}	Input Low Voltage, RESET	-0.3	+0.7	٧	
VIH	Input High Voltage (Except RESET, NMI, XTAL1)	2.0	V _{CC} + 0.5	v er) ezo	
V _{IH1}	Input High Voltage, RESET Rising	2.4	V _{CC} + 0.5	сик V ит s	1.08H 0
V _{IH2}	Input High Voltage, RESET Falling Hysteresis	2.1	V _{CC} + 0.5	V	LOZH - T
V _{IH3}	Input High Voltage, NMI, XTAL1	2.2	V _{CC} + 0.5	E TINVEND	E.029 8
ILI	Input Leakage Current to each pin of HSI, P3, P4, and to P2.1.		±10 37A	μA	$V_{in} = 0$ to V_{CC}
I _{LI1}	D.C. Input Leakage Current to each pin of P0		+3	μΑ	$V_{in} = 0 \text{ to } V_{CC}$
l _{IH}	Input High Current to EA	81-S63	100	μΑ	V _{IH} = 2.4V

(Test Conditions: V_{CC} , V_{REF} , V_{PD} , V_{PP} , $V_{EA} = 5.0V \pm 0.5V$; $F_{OSC} = 6.0$ MHz; $T_A = 0^{\circ}$ C to 70° C; V_{SS} , with OSC = 0.0 ANGND = 0V) (Continued)

Symbol	Parameter	Min	Max	Units	Test Conditions
I _{IL1}	Input Low Current to RESET	-0.25	-2	a mA	V _{IL} = 0.45V
I _{IL2}	Input Low Current P2.2		-50	μΑ	V _{IL} = 0.45V
V _{QLIM}	Output Low Voltage on P3, P4 when used as ports		0.45	HatoV Fred	I _{OL} = 0.8 mA (Note 1)
V _{OL1}	Output Low Voltage on P3, P4 when used as ports		0.75	VADV Hig	I _{OL} = 2.0 mA (Notes 1, 2, 3)
V _{OL2}	Output Low Voltage on Standard Output pins, RESET and Bus/Control Pins	ALE/ADV	0.45	ress y etus or WR Lov	I _{OL} = 2.0 mA (Notes 1, 2, 3)
V _{OH1}	Output High Voltage on Standard Output pins and Bus/Control pins	2.4 ₀ A	OV to RC		I _{OH} = -200 μA (Note 1)
ГОНЗ	Output High Current on RESET	-50	r)	μΑ	V _{OH} = 2.4V
Cs	Pin Capacitance (Any Pin to VSS)	7077 Av. 6	10	pF	fTEST = 1.0 MHz

NOTES:

 Standard Output Pins include TXD, RXD (Mode 0 only), PWM, and HSO pins. Bus/Control pins include ALE, RD, WR, AD0-AD7, and A8-A15.

Maximum current per pin must be externally limited to the following values if V_{OL} is held above 0.45V.
 I_{OL} on Ports 3 and 4 when used as ports: 4.0 mA

I_{OL} on standard output pins and RESET: 8.0 mA

IOL on Bus/Control pins: 2.0 mA

3.During normal (non-transient) operation the following limits apply:

Total I_{OL} on P2.0, RESET and all HSO pins must not exceed 15 mA. Total I_{OL} on Port 3 must not exceed 10 mA.

Total IOL on P2.5 and Port 4 must not exceed 20 mA.

4. IOI on HSO.0, HSO.4, HSO.5, @ 0.5V = 1.6 mA.

A.C. CHARACTERISTICS V_{CC}, V_{PD} = 4.5V to 5.5V; T_A = 0°C to 70°C; f_{OSC} = 6.0 MHz to 10.0 MHz to

TIMING REQUIREMENTS (Other system components must meet these specs.)

Symbol	Parameter	Min	Max	Units
T _{LLYV}	End of ALE/ADV to READY Valid		2Tosc - 70	ns
T _{LLYH}	End of ALE/ADV to READY High	-2Tosc + 40	4Tosc - 80	ns
T _{YLYH}	Non-Ready Time	No. 5	1000	ns
T _{AVDV} (1)	Address Valid to Input Data Valid		5Tosc - 120	ns
T _{RLDV}	RD Active to Input Data Valid		3Tosc - 100	ns
T _{RHDX}	Data Hold after RD Inactive	0		ns
T _{RHDZ}	RD Inactive to Input Data Float	0	Tosc - 25	ns

NOTE:

1. The term "Address Valid" applies to A0-A15.

A.C. CHARACTERISTICS V_{CC} , $V_{PD} = 4.5V$ to 5.5V; $T_A = 0^{\circ}C$ to 70°C; $f_{OSC} = 6.0$ MHz to 12.0 MHz

Test Conditions: Load Capacitance on Output Pins = 80 pF

Oscillator Frequency = 10 MHz

TIMING RESPONSES (MCS-96 parts meet these specs.)

Symbol	Parameter	Min	Мах	Units
FXTAL	Oscillator Frequency	6.0	12.0	MHz
Tosc	Oscillator Period	83	166	ns
TLHELS I a	ALE/ADV High Time	Tosc - 30	Tosc + 35(3)	ns
T _{AVLL} (4)	Address Setup to End of ALE/ADV	Tosc - 50	Output Low Voltac	ns
T _{RLAZ} (5)	RD or WR Low to Address Float	Typ. = 0	pins, ROPET and	ns
TLLRLOS	End of ALE/ADV to RD Active	Tosc - 40	Output High Volta	nso
T _{LLAX} (5)	Address Hold after End of ALE/ADV	Tosc - 40	pins and bus von	ns
T _{WLWH}	WR Pulse Width	2Tosc - 35	2Tosc + 40	ns
TQVWH	Output Data Valid to End of WR	3Tosc - 60	rin Capacatance (i	ns
T _{WHQX}	Output Data Hold after WR	Tosc - 50	ener abotasi astri dist	ns
T _{WHLH}	End of WR to ALE/ADV High	Tosc - 75	and A8-A15.	, vo ns d
T _{RLRH}	RD Pulse Width	3Tosc - 30	arent per pin must be rts 3 and 4 when used	og aons
TRHLH	End of RD to ALE/ADV High	Tosc - 45	india: d output pins and	ns
T _{RHBX}	RD High to A8-A15 Inactive	Tosc - 25	Tosc + 30	ns
T _{WHBX}	WR High to A8-A15 Inactive	Tosc - 25	Tosc + 100	lo ns
T _{LLWL}	ALE/ADV Low to WR Low	2Tosc - 30	2Tosc + 55	OZH NS
T _{QVWL}	Output Data Valid to WR Low	Tosc - 30		ns

NOTES: Under the second of the

3. Max spec applies only to ALE. Min spec applies to both ALE and ADV.
4. The term "Address Valid" applies to AD0-AD7, A8-A15.

5. The term "Address" in this definition applies to AD0-AD7.

erinti	xsM	nille ·	Parameter	Symbol
			End of ALE/ADV to READY Valid	
			Address Valid to Input Data Valid	(f) _{VOVA} T
			RD Active to Input Data Valid	
		0	Data Hold after RD Inactive	
	Tosc - 25		RD Inactive to Input Data Float	Таног

NOTE:

1. When ADV selected.

A.C. CHARACTERISTICS—SERIAL PORT—SHIFT REGISTER MODE

SERIAL PORT TIMING—SHIFT REGISTER MODE

Test Conditions: TA = 0°C to +70°C; VCC = 5V ±10%; VSS = 0V; Load Capacitance = 80 pF

Symbol	Parameter	Min	Max	Units
T _{XLXL}	Serial Port Clock Period VAW TAOJA	8Tosc	ING INPUT, OU	Bans.o.
T _{XLXH}	Serial Port Clock Falling Edge to Rising Edge	4T _{OSC} - 50	4Tosc + 50	ns
TQVXH	Output Data Setup to Clock Rising Edge	3T _{OSC}	-0.5 V	ns
T _{XHQX}	Output Data Hold After Clock Rising Edge	2T _{OSC} - 50	80	ns
T _{XHQV}	Next Output Data Valid After Clock Rising Edge	270532	2T _{OSC} +50	ns
T _{DVXH}	Input Data Setup to Clock Rising Edge	2T _{OSC} + 200	"O". Thrang measurer	olgons Tol
T _{XHDX}	Input Data Hold After Clock Rising Edge	0		ns
T _{XHQZ}	Last Clock Rising to Output Float		5Tosc	ns

WAVEFORM DIAGRAM

WAVEFORM-SERIAL PORT-SHIFT REGISTER MODE

SERIAL PORT WAVEFORM—SHIFT REGISTER MODE

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units	
1/T _{OLOL}	Oscillator Frequency	6	12	MHz	
Тонох	High Time	25		ns	
T _{OLOX}	Low Time	25	-	ns	
Toloh	Rise Time		15	ns	
TOHOL	Fall Time		15	ns	

EXTERNAL CLOCK DRIVE WAVEFORMS

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. Testing inputs are driven at 2.4V for a Logic "1" and 0.45V for a Logic "0". Timing measurements are made at 2.0V for a Logic "1" and 0.8V for a Logic "0".

FLOAT WAVEFORM DOLO TO SIENES

270532–26 For Timing Purposes a Port Pin is no Longer Floating when a 100 mV change from Load Voltage Occurs, and Begins to Float when a 100 mV change from the Loaded V_{OH}/V_{OL} Level occurs $I_{OL}/I_{OH} \geq \pm 15$ mA.

A/D CONVERTER SPECIFICATIONS

A/D Converter operation is verified only on the 8097BH, 8397BH, 8095BH, 8395BH, 8797BH, 8795BH, 8098, 8398.

The absolute conversion accuracy is dependent on the accuracy of V_{REF} . The specifications given below assume adherence to the Operating Conditions section of these data sheets. Testing is done at $V_{\text{REF}} = 5.120V$.

OPERATING CONDITIONS

VCC, VPD, VREF	4.5V to 5.5V
Vee ANGND	Indian Autoria and Co 0.0V
TA anolisivebilis to ain	0°C to 70°C
Fosc	6.0 MHz to 12.0 MHz
V _{REF}	DEFINITION OF THE STATE OF THE

Parameter	Typical*(1)	1,015	Minimum	Maximum	Units**	Notes	
Resolution se entrol nig tugni go	ens ent most ec	ris	1024 10 m s to	1024	Levels Bits	REAK-BE	
Absolute Error	E-Lessi Sign	Bi	0	±4	LSBs	w langari	
Full Scale Error	-0.5 ±0.5	de	-ot atugral I	rerter will not shor	LSBs	elected. (
Zero Offset Error	±0.5	00			LSBs	(.19/116	
Non-Linearity	tage of 5.12V.	OV	Ollb en	-DMM±4-M .13	LSBs	HANNEL	
Differential Non-Linearity	er nedw .88.1	West .	0	+2	LSBs	parario las	
Channel-to-Channel Matching	est sidt) .Vm	O.F.	(requerior	bue entro	LSBs	as erif te	
Repeatability	±0.25	08			LSBs	1	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	0.009 0.009 0.009	IM Im Im Ini	converter. D convert	graph of input vit code for an A/D function of the A/	LSB/°C LSB/°C LSB/°C	een edi au sedhoseb 1	
Off Isolation	acent codes of	19.0	-60	se output by the c	dB	1, 2, 4	
Feedthrough and	00 -60 M	314	arit of gnit	noqeéndo egatlov	dB	301,20	
V _{CC} Power Supply Rejection	-60	CO.	sidons	adjacent code trai	dB	1, 2	
Input Resistance			1Ko edi n	older to 5Kog self-	-MODIBIA	RT 100	
D.C. Input Leakage	efft to eneitien	737 STI	0	3.0	μА	ener chau	
Sample Delay	enibriogeanos	3	T _{OSC} - 50	3T _{OSC} + 50	ns	1,3	
Sample Time	-01:6110	12	2T _{OSC} - 50	12T _{OSC} + 50	ns	1 _{ebo}	
Sampling Capacitor	P-ISOLATION-	10		2	pF		

NOTES:

^{*} These values are expected for most parts at 25°C.

^{**} An "LSB", as used here, is defined in the glossary which follows and has a value of approximately 5 mV.

^{1.} These values are not tested in production and are based on theoretical estimates and laboratory tests.

^{2.} DC to 100 KHz.

^{3.} For starting the A/D with an HSO Command.

^{4.} Multiplexer Break-Before-Make Guaranteed.

A/D GLOSSARY OF TERMS

ABSOLUTE ERROR—The maximum difference between corresponding actual and ideal code transitions. Absolute Error accounts for all deviations of an actual converter from an ideal converter.

ACTUAL CHARACTERISTIC—The characteristic of an actual converter. The characteristic of a given converter may vary over temperature, supply voltage, and frequency conditions. An actual characteristic rarely has ideal first and last transition locations or ideal code widths. It may even vary over multiple conversions under the same conditions.

BREAK-BEFORE-MAKE—The property of a multiplexer which guarantees that a previously selected channel will be deselected before a new channel is selected. (e.g. the converter will not short inputs together.)

CHANNEL-TO-CHANNEL MATCHING—The difference between corresponding code transitions of actual characteristics taken from different channels under the same temperature, voltage and frequency conditions.

CHARACTERISTIC—A graph of input voltage versus the resultant output code for an A/D converter. It describes the transfer function of the A/D converter.

CODE—The digital value output by the converter.

CODE CENTER—The voltage corresponding to the midpoint between two adjacent code transitions.

CODE TRANSITION—The point at which the converter changes from an output code of Q, to a code of Q+1. The input voltage corresponding to a code transition is defined to be that voltage which is equally likely to produce either of two adjacent codes.

CODE WIDTH—The voltage corresponding to the difference between two adjacent code transitions.

CROSSTALK—See "Off-Isolation".

D.C. INPUT LEAKAGE—Leakage current to ground from an analog input pin.

DIFFERENTIAL NON-LINEARITY—The difference between the ideal and actual code widths of the terminal based characteristic.

FEEDTHROUGH—Attenuation of a voltage applied on the selected channel of the A/D Converter after the sample window closes.

FULL SCALE ERROR—The difference between the expected and actual input voltage corresponding to the full scale code transition.

IDEAL CHARACTERISTIC—A characteristic with its first code transition at $V_{\rm IN}=0.5$ LSB, its last code transition at $V_{\rm IN}=(V_{\rm REF}-1.5$ LSB) and all code widths equal to one LSB.

INPUT RESISTANCE—The effective series resistance from the analog input pin to the sample capacitor.

LSB—Least Significant Bit: The voltage corresponding to the full scale voltage divided by 2ⁿ, where n is the number of bits of resolution of the converter. For a 10-bit converter with a reference voltage of 5.12V, one LSB is 5.0 mV. Note that this is different than digital LSBs, since an uncertainty of two LSB, when referring to an A/D converter, equals 10 mV. (This has been confused with an uncertainty of two digital bits, which would mean four counts, or 20 mV.)

MONOTONIC—The property of successive approximation converters which guarantees that increasing input voltages produce adjacent codes of increasing value, and that decreasing input voltages produce adjacent codes of decreasing value.

NO MISSED CODES—For each and every output code, there exists a unique input voltage range which produces that code only.

NON-LINEARITY—The maximum deviation of code transitions of the terminal-based characteristic from the corresponding code transitions of the ideal characteristic.

OFF-ISOLATION—Attenuation of a voltage applied on a deselected channel of the A/D converter. (Also referred to as Crosstalk.)

REPEATABILITY—The difference between corresponding code transitions from different actual characteristics taken from the same converter on the same channel at the same temperature, voltage and frequency conditions.

RESOLUTION—The number of input voltage levels that the converter can unambiguously distinguish between. Also defines the number of useful bits of information which the converter can return.

SAMPLE DELAY—The delay from receiving the start conversion signal to when the sample window opens.

SAMPLE DELAY UNCERTAINTY—The variation in the sample delay.

SAMPLE TIME—The time that the sample window is open.

SAMPLE TIME UNCERTAINTY—The variation in the sample time.

SAMPLE WINDOW—Begins when the sample capacitor is attached to a selected channel and ends when the sample capacitor is disconnected from the selected channel.

SUCCESSIVE APPROXIMATION—An A/D conversion method which uses a binary search to arrive at the best digital representation of an analog input.

TEMPERATURE COEFFICIENTS—Change in the stated variable per degree centigrade temperature change. Temperature coefficients are added to the typical values of a specification to see the effect of temperature drift.

TERMINAL BASED CHARACTERISTIC—An actual characteristic which has been rotated and translated to remove zero offset and full scale error.

 $\mbox{V}_{\mbox{\footnotesize CC}}$ REJECTION—Attenuation of noise on the $\mbox{V}_{\mbox{\footnotesize CC}}$ line to the A/D converter.

ZERO OFFSET—The difference between the expected and actual input voltage corresponding to the first code transition.

SAMPLE DELAY—The delay from receiving the start convorsion signal to when the sample window opens.

SAMPLE DELAY UNCERTAINTY—The variation in the sample delay.

SAMPLE TIME—The time that the sample window is open.

SAMPLE TIME UNCERTAINTY—The variation in the sample time

SAMPLE VIMDOW—Begins when the sample capaction is attached to a selected channel and ends when the sample capacitor is disconnected from the selected channel

SUCCESSIVE APPROXIMATION—An A/D conversion method which uses a binary search to errive at the best digital representation of an analog input.

TEMPERATURE COEFFICIENTS—Change in the stated variable per degree centigrade temperature change. Temperature coefficients are added to the typical values of a specification to see the effect of temperature drift.

TERMINAL BASED CHARACTERISTIC—An actual characteristic which has been rotated and translated to remove zero offset and full scale error.

V_{CC} REJECTION—Attenuation of noise on the V_{CC} line to the A/D converter.

ZERO OFFSET—The difference between the expected and actual input voltage corresponding to the first code transition.

THE RUPITM-44 FAMILY: MICROCONTROLLER WITH ON-CHIP COMMUNICATION CONTROLLER

INTRODUCTION

The RUPI-44 family is designed for applications requiring local intelligence at remote nodes, and communication capability among these distributed nodes. The RUPI-44 integrates onto a single chip Intel's highest performance microcontroller, the 8051-core, with an intelligent and high performance Serial communication controller, called the Serial Interface Unit, or SIU. See Figure 1. This dual controller architecture allows complex control and high speed data communication functions to be realized cost effectively.

The RUPI-44 family consists of three pin compatible parts:

- 8344—8051 Microcontroller with SIU
- 8044—An 8344 with 4K bytes of on-chip ROM program memory
- 8744—An 8344 with 4K bytes of on-chip EPROM program memory

1.0 ARCHITECTURE OVERVIEW

The 8044's dual controller architecture enables the RUPI to perform complex control tasks and high speed communication in a distributed network environment.

The 8044 microcontroller is the 8051-core, and maintains complete software compatibility with it. The microcontroller contains a powerful CPU with on-chip peripherals, making it capable of serving sophisticated

real-time control applications such as instrumentation, industrial control, and intelligent computer peripherals. The microcontroller features on-chip peripherals such as two 16-bit timer/counters and 5 source interrupt capability with programmable priority levels. The microcontroller's high performance CPU executes most instructions in 1 microsecond, and can perform an 8 × 8 multiply in 4 microseconds. The CPU features a Boolean processor that can perform operations on 256 directly addressable bits. 192 bytes of on-chip data RAM can be extended to 64K bytes externally. 4K bytes of on-chip program ROM can be extended to 64K bytes externally. The CPU and SIU run concurrently. See Figure 2

The SIU is designed to perform serial communications with little or no CPU involvement. The SIU supports data rates up to 2.4 Mbps, externally clocked, and 375 Kbps self clocked (i.e., the data clock is recovered by an on-chip digital phase locked loop). SIU hardware supports the HDLC/SDLC protocol: zero bit insertion/deletion, address recognition, cyclic redundancy check, and frame number sequence check are automatically performed.

The SIU's Auto mode greatly reduces communication software overhead. The AUTO mode supports the SDLC Normal Response Mode, by performing secondary station responses in hardware without any CPU involvement. The Auto mode's interrupt control and frame sequence numbering capability eliminates software overhead normally required in conventional systems. By using the Auto mode, the CPU is free to concentrate on real time control of the application.

Figure 2. Simplified 8044 Block Diagram

2.0 THE HDLC/SDLC PROTOCOLS

2.1 HDLC/SDLC Advantages over

The High Level Data Link Control, HDLC, is a standard communication link control established by the International Standards Organization (ISO). SDLC is a subset of HDLC.

HDLC and SDLC are both well recognized standard serial protocols. The Synchronous Data Link Control, SDLC, is an IBM standard communication protocol. IBM originally developed SDLC to provide efficient, reliable and simple communication between terminals and computers.

The major advantages of SDLC/HDLC over Asynchronous communications protocol (Async):

• SIMPLE: Data Transparency

- EFFICIENT: Well Defined Message-Level Operation
- RELIABLE: Frame Check Sequence and Frame Numbering

The SDLC reduces system complexity. HDLC/SDLC are "data transparent" protocols. Data transparency means that an arbitrary data stream can be sent without concern that some of the data could be mistaken for a protocol controller. Data transparency relieves the communication controller having to detect special characters.

SDLC/HDLC provides more data throughout than Async. SDLC/HDLC runs at Message-level Operation which transmits multiple bytes within the frame, whereas Async is based on character-level operation. Async transmits or receives a character at a time. Since Async requires start and stop bits in every transmission, there is a considerable waste of overhead compared to SDLC/HDLC.

Figure 3. RUPITM-44 Supported Network Configurations

Due to SDLC/HDLC's well delineated field (see Figure 4) the CPU does not have to interpret character by character to determine control field and information field. In the case of Async, CPU must look at each character to interpret what it means. The practical advantage of such feature is straight forward use of DMA for information transfer.

In addition, SDLC/HDLC further improves Data throughput using implied Acknowledgement of transferred information. A station using SDLC/HDLC may acknowledge previously received information while transmitting different information in the same frame. In addition, up to 7 messages may be outstanding before an acknowledgement is required.

The HDLC/SDLC protocol can be used to realize reliable data links. Reliable Data transmission is ensured at the bit level by sending a frame check sequence, cyclic redudancy checking, within the frame. Reliable frame transmission is ensured by sending a frame number identification with each frame. This means that a receiver can sequentially count received frames and at any time infer what the number of the next frame to be received should be. More important, it provides a means for the receiver to identify to the sender some particular frame that it wishes to have resent because of errors.

2.2 HDLC/SDLC Networks

In both the HDLC and SDLC line protocols a (Master) primary station controls the overall network (data link) and issues commands to the secondary (Slave) stations. The latter complies with instructions and responds by sending appropriate responses. Whenever a transmitting station must end transmission prematurely, it sends an abort character. Upon detecting an abort character, a receiving station ignores the transmission block called a frame.

RUPI-44 supported HDLC/SDLC network configurations are point to point (half duplex) multipoint (half duplex), and loop. In the loop configuration the stations themselves act as repeaters, so that long links can be easily realized, see Figure 3.

2.3 Frames OR9 OLGENOLGH BHT O.S

An HDLC/SDLC frame consists of five basic fields: Flag, Address, Control, Data and Error Detection. A frame is bounded by flags—opening and closing flags. An address field is 8 bits wide in SDLC, extendable to 2 or more bytes in HDLC. The control field is also 8 bits wide, extendable to two bytes in HDLC. The SDLC data field or information field may be any number of bytes. The HDLC data field may or may not be on an 8 bit boundary. A powerful error detection code called Frame Check Sequence contains the calculated CRC (Cycle Redundancy Code) for all the bits between the flags. See Figure 4.

In HDLC and SDLC are three types of frames; an Information Frame is used to transfer data, a Supervisory Frame is used for control purposes, and a Nonsequenced Frame is used for initialization and control of the secondary stations.

For a more detailed discussion of higher level protocol functions interested readers may refer to the references listed in Section 2.6.

2.4 Zero Bit Insertion

In data communications, it is desirable to transmit data which can be of arbitrary content. Arbitrary data transmission requires that the data field cannot contain characters which are defined to assist the transmission protocol (like opening flag in HDLC/SDLC communications). This property is referred to as "data transparency". In HDLC/SDLC, this code transparency is made possible by Zero Bit Insertion (ZBI).

The flag has a unique bit pattern: 01111110 (7E HEX). To eliminate the possibility of the data field containing a 7E HEX pattern, a bit stuffing technique called Zero Bit Insertion is used. This technique specifies that during transmission, a binary 0 be inserted by the transmitter after any succession of five contiguous binary 1's. This will ensure that no pattern of 0 1 1 1 1 1 1 0 is ever transmitted between flags. On the receiving side, after receiving the flag, the receiver hardware automatically deletes any 0 following five consecutive 1's. The 8044 performs zero bit insertion and deletion automatically.

Figure 4. Frame Format

2.5 Non-return to Zero Inverted (NR21)

NRZI is a method of clock and data encoding that is well suited to the HDLC/SDLC protocol. It allows HDLC/SDLC protocols to be used with low cost asynchronous modems. NRZI coding is done at the transmitter to enable clock recovery from the data at the receiver terminal by using standard digital phase locked loop (DPLL) techniques. NRZI coding specifies that the signal condition does not change for transmitting a 1, while a 0 causes a change of state. NRZI coding ensures that an active data line will have a transition at least every 5-bit times (recall Zero Bit Insertion), while contiguous 0's will cause a change of state. Thus, ZBI and NRZI encoding makes it possible for the 8044's onchip DPLL to recover a receive clock (from received data) synchronized to the received data and at the same time ensure data transparency.

2.6 References

- 1. IBM Synchronous Data Link Control General Information GA27-3093-2 File No. GENL-09.
- 2. Standard Network Access Protocol Specification, DA-TAPAC Trans-Canada Telephone System CCG111.
- 3. IBM 3650 Retail Store System Loop Interface OEM Information, IBM, GA27-3098-0.
- 4. Guidebook to Data Communications, Training Manual, Hewlett-Packard 5955-1715.
- "Serial Backplane Suits Multiprocessor Architectures", Mike Webb, Computer Design, July 1984, pp. 85–96.
- "Serial Bus Simplifies Distributed Control", P.D. MacWilliams, Control Engineering, June 1984, pp. 101–104
- 7. "Chips Support Two Local Area Networks", Bob Dahlberg, Computer Design, May 1984, pp. 107-114.
- "Build a VLSI-based Workstation for the Ethernet Environment", Mike Webb, EDN, 23 February 1984, pp. 297–307.
- 9. "Networking With the 8044", Young Sohn & Charles Gopen, Digital Design, May 1984, pp. 136-137.

3.0 RUPITM-44 DESIGN SUPPORT

3.1 Design Tool Support

A critical design consideration is time to market. Intel provides a sophisticated set of design tools to speed hardware and software development time of 8044 based products. These include ICE-44, ASM-51, PL/M-51, and EMV-44.

Figure 5. RUPITM-44 Development Support
Configuration Intellec® System, ICETM-44 Buffer
Box, and ICE-44 Module Plugged
into a User Prototype Board

A primary tool is the 8044 In Circuit Emulator, called ICE-44. See Figure 5. In conjunction with Intel's Intellec® Microprocessor Development System, the ICE-44 emulator allows hardware and software development to proceed interactively. This approach is more effective than the traditional method of independent hardware and software development followed by system integration. With the ICE-44 module, prototype hardware can be added to the system as it is designed. Software and hardware integration occurs while the product is being developed.

The ICE-44 emulator assists four stages of development:

1) Software Debugging

It can be operated without being connected to the user's system before any of the user's hardware is available. In this stage ICE-44 debugging capabilities can be used in conjunction with the Intellec text editor and 8044 macroassembler to facilitate program development.

2) Hardware Development

The ICE-44 module's precise emulation characteristics and full-speed program RAM make it a valuable tool for debugging hardware, including the time-critical SDLC serial port, parallel port, and timer interfaces.

Integration of software and hardware can begin when any functional element of the user system hardware is connected to the 8044 socket. As each section of the user's hardware is completed, it is added to the prototype. Thus, each section of the hardware and software is system tested in real-time operation as it becomes available.

4) System Test

When the user's prototype is complete, it is tested with the final version of the user system software. The ICE-44 module is then used for real-time emulation of the 8044 to debug the system as a completed unit.

The final product verification test may be performed using the 8744 EPROM version of the 8044 microcomputer. Thus, the ICE-44 module provides the user with the ability to debug a prototype or production system at any stage in its development.

A conversion kit, ICE-44 CON, is available to upgrade an ICE-51 module to ICE-44.

Intel's ASM-51 Assembler supports the 8044 special function registers and assembly program development. PL/M-51 provides designers with a high level language for the 8044. Programming in PL/M can greatly reduce development time, and ensure quick time to market.

These tools have recently been expanded with the addition of the EMV-44CON. This conversion kit allows you to convert an EMV-51 into an EMV-44 emulation vehicle. The resultant low cost emulator is designed for use with an iPDS Personal Development System, which also supports the ASM-51 assembler and PL/M-51. See Figure 6.

Emulation support is similar to the ICE-44 with support for Software and Hardware Development, System

Figure 6. RUPI-44 iPDS Personal Development System, EMV-44 Buffer Box, and EMV-44 Module Plugged into a User Prototype Board

Integration, and System Test. The iPDS's rugged portability and ease of use also make it an ideal system for production tests and field service of your finished design. In addition, the iPDS offers EPROM programming module for the 8744, and direct communications with the 8044-based BITBUS via an optional iSBX-344 distributed control module.

3.2 8051 Workshop

Intel provides 8051 training to its customers through the 5-day 8051 workshop. Familiarity with the 8051 and 8044 is achieved through a combination of lecture and laboratory exercises.

For designers not familiar with the 8051, the workshop is an effective way to become proficient with the 8051 architecture and capabilities.

8044 ARCHITECTURE

GENERAL

The 8044 is based on the 8051 core. The 8044 replaces the 8051's serial port with an intelligent HDLC/SDLC controller called the Serial Interface or SIU. Thus the differences between the two result from the 8044's increased on-chip RAM (192 bytes) and additional special function registers necessary to control the SIU. Aside from the increased memory, the SIU itself, and differences in 5 pins (for the serial port), the 8044 and 8051 are compatible.

This chapter describes the differences between the 8044 and 8051. Information pertaining to the 8051 core, eg. instruction set, port operation, EPROM programming, etc. is located in the 8051 sections of this manual.

A block diagram of the 8044 is shown in Figure 1. The pinpoint is shown on the inside front cover.

1.0 MEMORY ORGANIZATION OVERVIEW

The 8044 maintains separate address spaces for Program Memory and Data Memory. The Program Memory can be up to 64K bytes long, of which the lowest 4K bytes are in the on-chip ROM.

If the $\overline{\text{EA}}$ pin is held high, the 8044 executes out of internal ROM unlwess the Program Counter exceeds 0FFFH. Fetches from locations 1000H through FFFFH are directed to external Program Memory.

If the \overline{EA} pin is held low, the 8044 fetches all instructions from external Program Memory.

The Data Memory consists of 192 bytes of on-chip RAM, plus 35 Special Function Registers, in addition to which the device is capable of accessing up to 64K bytes of external data memory.

The Program Memory uses 16-bit addresses. The external Data Memory can use erither 8-bit or 16-bit addresses. The internal Data Memory uses 8-bit addresses, which provide a 256-location address space. The lower 192 addresses access the on-chip RAM. The Special Function Registers occupy various locations in the upper 128 bytes of the same address space.

The lowest 32 bytes in the internal RAM (locations 00 through 1FH) are divided into 4 banks of registers, each bank consisting of 8 bytes. Any one of these banks can be selected to be the "working registers" of the CPU, and can be accessed by a 3-bit address in the

same byte as the opcode of an instruction. Thus, a large number of instructions are one-byte instructions.

The next higher 16 bytes of the internal RAM (locations 20H through 2FH) have individually addressable bits. These are provided for use as software flags or for one-bit (Boolean) processing. This bit-addressing capability is an important feature of the 8044. In addition to the 128 individually addressable bits in RAM, twelve of the Special Function Registers also have individually addressable bits.

A memory map is shown in Figure 2.

1.1 Special Function Registers

The Special Function Registers are as follows:

ord sting of DPI
sting of DPI
sting of DPI
de
itrol
nigh byte)
ow byte)
nigh byte)
ow byte)
t. E
rt Address
ngth
yte
Address
gth
gth
yte

The registers marked with * are both byte- and bit-addressable.

Figure 2. RUPITM-44 Memory Map

Stack Pointer

The Stack Pointer is 8 bits wide. The stack can reside anywhere in the 192 bytes of on-chip RAM. When the 8044 is reset, the stack pointer is initialized to 07H. When executing a PUSH or a CALL, the stack pointer is incremented before data is stored, so the stack would begin at location 08H.

1.2 Interrupt Control Registers

The Interrupt Request Flags are as listed below:

Source	Request Flag	Location
External Interrupt 0	$\overline{INT0}$, if IT0 = 0 IE0, if IT0 = 1	P3.2 TCON.1
Timer 0 Overflow	TFO DEMAN THE	TCON.5
External Interrupt 1	$\overline{INT1}$, if $IT1 = 0$ IE1, if $IT1 = 1$	P3.3 TCON.3
Timer 1 Overflow	oTFM stsO lametr	TCON.7
Serial Interface Unit	SI	STS.4

External Interrupt control bits ITO and IT1 are in TCON.0 and TCON.2, respectively. Reset leaves all flags inactive, with IT0 and IT1 cleared.

All the interrupt flags can be set or cleared by software, with the same effect as by hardware.

The Enable and Priority Control Registers are shown below. All of these control bits are set or cleared by software. All are cleared by reset.

IE: Interrupt Enable Register (bit-addressable)

						2		
SDACE.	EA	X	X	ES	ET1	EX1	ET0	EX0

where:

- EA disables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.
- ES enables or disables the Serial Interface Unit interrupt. If ES = 0, the Serial Interface Unit interrupt is disabled.
- ET1 enables or disables the Timer 1 Overflow interrupt. If ET1 = 0, the Timer 1 interrupt is disabled.

- EX1 enables or disables External Interrupt 1. If EX1 = 0, External Interrupt 1 is disabled.
- ETO enables or disables the Timer 0 Overflow interrupt. If ETO = 0, the Timer 0 interrupt is disabled.

IP: Interrupt Priority Register (bit-addressable)

Bit:	7	6	5	4	3	2	1	0
	X	X	X	PS	PT1	PX1	PT0	PX0

where:

- PS defines the Serial Interface Unit interrupt priority level. PS = 1 programs it to the higher priority level.
- PT1 defines the Timer 1 interrupt priority level.
 PT1 = 1 programs it to the higher priority level.
- PX1 defines the External Interrupt priority level.
 PX1 = 1 programs it to the higher priority level.
- PTO defines the Timer 0 interrupt priority level.
 PTO = 1 programs it to the higher priority level.
- PX0 defines the External Interrupt 0 priority level.

 PX0 = 1 programs it to the higher priority level.

2.0 MEMORY ORGANIZATION DETAILS

In the 8044 family the memory is organized over three address spaces and the program counter. The memory spaces shown in Figure 2 are the:

- 64K-byte Program Memory address space
- 64K-byte External Data Memory address space
- 320-byte Internal Data Memory address space

The 16-bit Program Counter register provides the 8044 with its 64K addressing capabilities. The Program Counter allows the user to execute calls and branches to any location within the Program Memory space. There are no instructions that permit program execution to move from the Program Memory space to any of the data memory spaces.

In the 8044 and 8744 the lower 4K of the 64K Program Memory address space is filled by internal ROM and EPROM, respectively. By tying the EA pin high, the processor can be forced to fetch from the internal ROM/EPROM for Program Memory addresses 0 through 4K. Bus expansion for accessing Program Memory beyond 4K is automatic since external instruction fetches occur automatically when the Program Counter increases above 4095. If the EA pin is tied low

all Program Memory fetches are from external memory. The execution speed of the 8044 is the same regardless of whether fetches are from internal or external Program Memory. If all program storage is on-chip, byte location 4095 should be left vacant to prevent an undesired prefetch from external Program Memory address 4096.

Certain locations in Program Memory are reserved for specific programs. Locations 0000 through 0002 are reserved for the initialization program. Following reset, the CPU always begins execution at location 0000. Locations 0003 through 0042 are reserved for the five interrupt-request service programs. Each resource that can request an interrupt requires that its service program be stored at its reserved location.

The 64K-byte External Data Memory address space is automatically accessed when the MOVX instruction is executed.

Functionally the Internal Data Memory is the most flexible of the address spaces. The Internal Data Memory space is subdivided into a 256-byte Internal Data RAM address space and a 128-byte Special Function Register address space as shown in Figure 3.

Figure 3. Internal Data Memory Address Space

RUPITM-44

The Internal Data RAM address space is 0 to 255. Four 8-Register Banks occupy locations 0 through 31. The stack can be located anywhere in the Internal Data RAM address space. In addition, 128 bit locations of the on-chip RAM are accessible through Direct Addressing. These bits reside in Internal Data RAM at byte locations 32 through 47. Currently locations 0 through 191 of the Internal Data RAM address space are filled with on-chip RAM. I ham also to safe SE tes

The stack depth is limited only by the available Internal Data RAM, thanks to an 8-bit reloadable Stack Pointer. The stack is used for storing the Program Counter during subroutine calls and may be used for passing parameters. Any byte of Internal Data RAM or Special Function Register accessible though Direct Addressing can be pushed/popped. abiw-styd beggsm-yromem enti

The Special Function Register address space is 128 to 255. All registers except the Program Counter and the four 8-Register Banks reside here. Memory mapping the Special Function Registers allows them to be accessed as easily as internal RAM. As such, they can be operated on by most instructions. In the overlapping memory space (address 128-191), indirect addressing is used to access RAM, and direct addressing is used to

ARITHMETIC REGISTERS: Accumulator*, B register*, Program Status Word* POINTERS: Stack Pointer, Data Pointer (high & low) PARALLEL I/O PORTS: Port 3*, Port 2*, Port 1*, Port 0* INTERRUPT SYSTEM: Interrupt Priority Control*. Interrupt Enable Control* TIMERS: Timer Mode, Timer Control*, Timer 1 (high & low), Timer 0 (high & low) SERIAL INTERFACE UNIT: Transmit Buffer Start. Transmit Buffer Length, Transmit Control Byte, Send Count Receive Count*, DMA Count, Station Address Receive Field Length Receive Buffer Start Receive Buffer Length Receive Control Byte, Serial Mode. Status Register.*

*Bits in these registers are bit addressable.

access the SFR's. The SFR's at addresses 192-255 are also accessed using direct addressing. The Special Function Registers are listed in Figure 4. Their mapping in the Special Function Register address space is shown in Figures 5 and 6. Don't am animation by a seed a seed as a seed so provide the 8044 with its 21 addressing modes.

Performing a read from a location of the Internal Data memory where neither a byte of Internal Data RAM (i.e., RAM addresses 192-255) nor a Special Function Register exists will access data of indeterminable value.

Architecturally, each memory space is a linear sequence of 8-bit wide bytes. By Intel convention the storage of multi-byte address and data operands in program and data memories is the least significant byte at the low-order address and the most significant byte at the high-order address. Within byte X, the most significant bit is represented by X.7 while the least significant bit is X.O. Any deviation from these conventions will be explicitly stated in the text.

2.1 Operand Addressing

There are five methods of addressing source operands. They are Register Addressing, Direct Addressing, Register-Indirect Addressing, Immediate Addressing

ARITHMETIC REGISTERS:
Accumulator*, B register*,
Program Status Word*
POINTERS:
Stack Pointer, Data Pointer (high & low)
PARALLEL I/O PORTS:
Port 3*, Port 2*, Port 1*, Port 0*
INTERRUPT SYSTEM:
Interrupt Priority Control*,
Interrupt Enable Control*
TIMERS: WE'S GROW BUT AT B WARDONS
Timer Mode, Timer Control*, Timer 1
(high & low), Timer 0 (high & low)
SERIAL INTERFACE UNIT:
Serial Mode, Status/Command*,
Send/Receive Count*, Station Address,
Transmit Buffer Start Address,
Transmit Buffer Length,
Transmit Control Byte,
Receive Buffer Start Address,
Receive Buffer Length,
Receive Field Length,
Receive Control Byte,
DMA Count,
FIFO (three bytes), wor datalog at an
SIU Controller State Counter
PORT 0

Figure 4. Special Function Registers Figure 5. Mapping of Special Function Registers

*Bits in these registers are bit-addressable.

and Base-Register-plus Index-Register-Indirect Addressing. The first three of these methods can also be used to address a destination operand. Since operations in the 8044 require 0 (NOP only), 1, 2, 3 or 4 operands, these five addressing methods are used in combinations to provide the 8044 with its 21 addressing modes.

Most instructions have a "destination, source" field that specifies the data type, addressing methods and operands involved. For operations other than moves, the destination operand is also a source operand. For example, in "subtract-with-borrow A, #5" the A register receives the result of the value in register A minus 5, minus C.

Most operations involve operands that are located in Internal Data Memory. The selection of the Program Memory space or External Data Memory space for a second operand is determined by the operation mnemonic unless it is an immediate operand. The subset of the Internal Data Memory being addressed is determined by the addressing method and address value. For example, the Special Function Registers can be accessed only through Direct Addressing with an address of 128-255. A summary of the operand addressing methods is shown in Figure 6. The following paragraphs describe the five addressing methods.

2.2 Register Addressing

Register Addressing permits access to the eight registers (R7-R0) of the selected Register Bank (RB). One of the four 8-Register Banks is selected by a two-bit field in the PSW. The registers may also be accessed through Direct Addressing and Register-Indirect Addressing, since the four Register Banks are mapped into the lowest 32 bytes of internal Data RAM as shown in Figures 9 and 10. Other Internal Data Memory locations that are addressed as registers are A, B, C, AB and DPTR.

2.3 Direct Addressing

Direct Addressing provides the only means of accessing the memory-mapped byte-wide Special Function Registers and memory mapped bits within the Special Function Registers and Internal Data RAM. Direct Addressing of bytes may also be used to access the lower 128 bytes of Internal Data RAM. Direct Addressing of bits gains access to a 128 bit subset of the Special Function Registers as shown in Figures 5, 6, 9, and 10.

REGISTER NAMES	SYMBOLIC	mana a	IT ADDRESS			YTE	ccumulator*, B register*,
* Shedis	ADDRESS	mosti .	II ADDITED		ADI	MEGG	
B DECISES	203	247	through	240	240	(FOH)	ONTERS:
B REGISTER ACCUMULATOR	B FEDRE				224	(E0H)	tack Pointer, Data Pointer
*THREE BYTE FIFO	ACC FIFO	231	through	224	223	(DFH)	
PORTS	FIFO	10 11 0 11			222	(DEH)	RALLEL I/O PORTS
	FIFO				221	(DDH)	ort 3°. Port 2°, Port 1°, Po
TRANSMIT BUFFER START	TBS	303			220	(DCH)	
TRANSMIT BUFFER LENGTH	TBL	3 T P 13			219	(DBH)	ERRUPT SYSTEM:
TRANSMIT CONTROL BYTE	TCB	-3-57			218	(DAH)	sterrupt Priority Control?.
*SIU STATE COUNTER	SIUST	-			217	(D9H)	
SEND COUNT RECEIVE COUNT	NSNR	223	through	216	216	(D8H) -	sterrupt Enable Control*
PROGRAM STATUS WORD	PSW	215	through	208	208	(D0H) -	TERS:
DMA COUNT	DMA CNT	- April			207	(CFH)	imer Mode, Timer Control
STATION ADDRESS	STAD	12500			206	(CEH)	
RECEIVE FIELD LENGTH	RFL	(hitel)			205	(CDH)	tigh & low), Timer 0 (high &
RECEIVE BUFFER START	RBS	2000000			204	(CCH)	STATE INTERISTRACE PAINTS
RECEIVE BUFFER LENGTH	RBL	ARTEUR C			203	(CBH)	SFR's CONTAINING
RECEIVE CONTROL BYTE	RCB	Prop D			202	(CAH)	DIRECT ADDRESSABLE BITS
SERIAL MODE	SMD	-			201	(C9H)	ranscoit Buffer Leagth
STATUS REGISTER	STS	207	through	200	200	(C8H) -	ransmit Control Byte.
INTERRUPT PRIORITY CONTROL	allPill sing	191	through	184	184	(B8H) -	
PORT 3 INTERRUPT ENABLE CONTROL	P3	175	through	168	168	(A8H)	end Count Receive Cormit;
		400	through	160	160	(AOH)	MA Count.
PORT 2	P2	151	through	144	144	(90H)	
TIMER HIGH 1	TH1	13.172		177	141	(8DH)	tation Address
TIMER HIGH 0	THO	inali.			140	(8CH)	eceive Field Length
TIMED LOW 1	TL1	Jan.			139	(8BH)	eceive Buffler Start
TIMER LOW 0	TLO	NESEL			138	(8AH)	
TIMER MODE		tanii .			137	(89H)	eceive Buffer Length
TIMER CONTROL	TCON	143	through	136	136	(88H) -	eceive Control Byte,
DATA POINTER HIGH	DPH	SATES			131	(83H)	
DATA POINTER LOW		HIN			130	(82H)	erial Mode,
STACK POINTER	SP PO	1170			129	(81H)	terns Register."
PORT 0	PO	135	through	128	128	(80H) -	
isters are bit-addressable.							11d one anothing 1 000 296164

Figure 6. Mapping of Special Function Registers

Figure 7. Special Function Register Bit Address

Figure 9. RAM Bit Address

- Register Addressing and antib A to billion to laigh
- R7-R
- A, B, C (bit), AB (two bytes), DPTR (double byte)
- Direct Addressing a red to see and all yoursel
- Lower 128 bytes of Internal Data RAM
- Special Function Registers
- 128 bits in subset of Special Function Register address space
- Register-Indirect Addressing
- Internal Data RAM [@R1, @R0, @SP (PUSH and POP only)]
- Least Significant Nibbles in Internal Data RAM (@R1, @R0)
- External Data Memory (@R1, @R0, @DPTR)
- Immediate Addressing
- Program Memory (in-code constant)
- Base-Register-plus Index-Register-Indirect Addressing
- Program Memory (@ DPTR + A, @ PC + A)

Figure 8. Operand Addressing Methods

Figure 10. Addressing Operands in Internal Data Memory

or R0 in the selected Register Bank, or using the content of the Stack Pointer (PUSH and POP only), addresses the Internal Data RAM. Register-Indirect Addressing is also used for accessing the External Data Memory. In this case, either R1 or R0 in the selected Register Bank may be used for accessing locations within a 256-byte block. The block number can be preselected by the contents of a port. The 16-bit Data Pointer may be used for accessing any location within the full 64K external address space.

· Register-Indirect Addressing

3.0 RESET ON A HAR MAR AND LEDISTAL -

Reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods) while the oscillator is running. The CPU responds by executing an internal reset. It also configures the ALE and PSEN pins as inputs. (They are quasi-bidirectional.) The internal reset is executed during the second cycle in which RST is high and is repeated every cycle until RST goes low. It leaves the internal registers as follows:

Register	Content _
PC	0000H
A shortfeld gala	Figure 8.H00 rand Address
В	00H
PSW	00H
SP	07H
DPTR HGI	0000H
P0-P3	0FFH
IP NAT BUT	(XXX00000)
IE	(0XX00000)
TMOD	00H
TCON	NOH.
THO YERRING BIN MICH	00H
TLO COST SES	OOH I
TU4 (6719) -0> H00	004
TL1 -8- 88A	00H
SMD -80 1985	00H
STS	ecr oou
NSNR	00H
STAD	개인 집에서 가지를 입은 하나를 다 하는데 되었다.
STAD	00H
	10 4101
	\$ 256 Mg Mg
	name on the contraction of the c
	FRIAN WE C
	0.365AG VII
	L
ADDRESSED	12900
	THE TORRIGHTON REQUESTANCE TO SECOND PROPERTY OF THE PROPERTY
	\$4000 C.

TBL			00H		
TCB			00H		
RBS			00H		
RBL			00H		
RFL SOA			00H		224
RCB			00H		
DMA CN	Tig		00H 30		
FIFO1			00H	YO.	
FIFO2			00H		
FIFO3			00H		
SIUST			01H		
PCON			(0XXXXXXXX)		
10014			(OVVVVVVV)		184

The internal RAM is not affected by reset. When VCC is turned on, the RAM content is indeterminate unless VPD was applied prior to VCC being turned off (see Power Down Operation.)

4.0 RUPITM-44 FAMILY PIN DESCRIPTION

VSS: Circuit ground potential.

VCC: Supply voltage during programming (of the 8744), verification (of the 8044 or 8744), and normal operation.

Port 0: Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus during accesses to external memory (during which accesses it activates internal pullups). It also outputs instruction bytes during program verification. (External pullups are required during program verification.) Port 0 can sink eight LS TTL inputs.

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. It receives the low-order address byte during program verification in the 8044 or 8744. Port 1 can sink/source four LS TTL inputs, It can drive MOS inputs without external pullups.

Two of the Port 1 pins serve alternate functions, as listed below:

Port Pin Alternate Function

P1.6 RTS (Request to Send). In a non-loop configuration, RTS signals that the 8044 is ready to transmit data.

Figure 9. RAM Bit Address

8044 Serial Interface

20

THE RUPITM-44 SERIAL INTERFACE UNIT

SERIAL INTERFACE

The serial interface provides a high-performance communication link. The protocol used for this communication is based on the IBM Synchronous Data Link Control (SDLC). The serial interface also supports a subset of the ISO HDLC (International Standards Organization High-Level Data Link Control) protocol.

The SDLC/HDLC protocols have been accepted as standard protocols for many high-level teleprocessing systems. The serial interface performs many of the functions required to service the data link without intervention from the 8044's own CPU. The programmer is free to concentrate on the 8044's function as a peripheral controller, rather than having to deal with the details of the communication process.

Five pins on the 8044 are involved with the serial interface:

Pin 7 RTS/P16

Pin 8 CTS/P17

Pin 10 I/O/RXD/P30

Pin 11 DATA/TXD/P31

Pin 15 SCLK/T1//P35

Figure 1 is a functional block diagram of the serial interface unit (SIU). More details on the SIU hardware are given later in this chapter.

1.0 DATA LINK CONFIGURATIONS

The serial interface is capable of operating in three serial data link configurations:

- 1) Half-Duplex, point-to-point
- Half-Duplex, multipoint (with a half-duplex or fullduplex primary)
- 3) Loop

Figure 2 shows these three configurations. The RTS (Request to Send) and CTS (Clear to Send) hand-shaking signals are available in the point-to-point and multipoint configurations.

2.0 DATA CLOCKING OPTIONS

The serial interface can operate in an externally clocked mode or in a self clocked mode.

Externally Clocked Mode

In the externally clocked mode, a common Serial Data Clock (SCLK on pin 15) synchronizes the serial bit stream. This clock signal may come from the master CPU or primary station, or from an external phase-locked loop local to the 8044. Figure 3 illustrates the timing relationships for the serial interface signals when the externally clocked mode is used in point-to-point and multipoint data link configurations.

Incoming data is sampled at the rising edge of SCLK, and outgoing data is shifted out at the falling edge of SCLK. More detailed timing information is given in the 8044 data sheet.

Self Clocked (Asynchronous) Mode

The self clocked mode allows data transfer without a common system data clock. Using an on-chip DPLL (digital phase locked loop) the serial interface recovers the data clock from the data stream itself. The DPLL requires a reference clock equal to either 16 times or 32 times the data rate. This reference clock may be externally supplied or internally generated. When the serial interface generates this clock internally, it uses either the 8044's internal logic clock (half the crystal frequency's PH2) or the "timer 1" overflow. Figure 4 shows the serial interface signal timing relationships for the loop configuration, when the unclocked mode is used.

The DPLL monitors the received data in order to derive a data clock that is centered on the received bits. Centering is achieved by detecting all transitions of the received data, and then adjusting the clock transition (in increments of $\frac{1}{16}$ bit period) toward the center of the received bit. The DPLL converges to the nominal bit center within eight bit transitions, worst case.

To aid in the phase locked loop capture process, the 8044 has a NRZI (non-return-to-zero inverted) data encoding and decoding option. NRZI coding specifies that a signal does not change state for a transmitted binary 1, but does change state for a binary 0. Using the NRZI coding with zero-bit insertion, it can be guaranteed that an active signal line undergoes a transition at least every six bit times.

3.0 DATA RATES

The maximum data rate in the externally clocked mode is 2.4M bits per second (bps) a half-duplex configuration, and 1.0M in a loop configuration.

Figure 1. SIU Block Diagram
20-2

Figure 2. RUPI-44 Data Link Configurations

When the transmit buffer is full, the SIU can automatically (without CPU intervention) send an information frame (I-frame) with the appropriate sequence numbers, when the data link becomes available (when the 8044 is polled for information). After the SIU has transmitted the I-frame, it waits for acknowledgement transmitted the I-frame, it waits for acknowledgement in

Format variations consist of onlitting one or more of the fields in the SDLC frame. For example, a supervisory frame is formed by omitting the information field. Supervisory frames are used to confirm received frames, indicate ready or busy conditions, and to report frames. More details on frame formats are given in the terrors. More details on frame formats are given in the in the sen clocked mode with an external reference clock, the maximum data rate is 375K bps.

In the self clocked mode with an internally generated reference clock, and the 8044 operating with a 12 MHz crystal, the available data rates are 244 bps to 62.5K bps, 187.5K bps and 375K bps.

For more details see the table in the SMD register description, below.

4.0 OPERATIONAL MODES

The Serial Interface Unit (SIU) can operate in either of two response modes:

- 1) AUTO mode
- 2) FLEXIBLE (NON-AUTO) mode

In the AUTO mode, the SIU performs in hardware a subset of the SDLC protocol called the normal response mode. The AUTO mode enables the SIU to recognize and respond to certain kinds of SDLC frames without intervention from the 8044's CPU. AUTO mode provides a faster turnaround time and a simplified software interface, whereas NON-AUTO mode provides a greater flexibility with regard to the kinds of operation permitted.

In AUTO mode, the 8044 can act only as a normal response mode secondary station—that is, it can transmit only when instructed to do so by the primary station. All such AUTO mode responses adhere strictly to IBM's SDLC definitions.

In the FLEXIBLE mode, reception or transmission of each frame by the SIU is performed under the control of the CPU. In this mode the 8044 can be either a primary station or a secondary station.

In both AUTO and FLEXIBLE modes, short frames, aborted frames, or frames which have had CRC's are ignored by the SIU.

The basic format of an SDLC frame is as follows:

-					
Flag	Address	Control	Information	FCS	Flag

Format variations consist of omitting one or more of the fields in the SDLC frame. For example, a supervisory frame is formed by omitting the information field. Supervisory frames are used to confirm received frames, indicate ready or busy conditions, and to report errors. More details on frame formats are given in the SDLC Frame Format Options section, below.

4.1 AUTU MODE

To enable the SIU to receive a frame in AUTO mode, the 8044 CPU sets up a receive buffer. This is done by writing two registers—Receive Buffer Start (RBS) Address and Receive Buffer Length (RBL).

The SIU receives the frame, examines the control byte, and takes the appropriate action. If the frame is an information frame, the SIU will load the receive buffer, interrupt the CPU (to have the receive buffer read), and make the required acknowledgement to the primary station. Details on these processes are given in the Operation section, below.

In addition to receiving the information frames, the SIU in AUTO mode is capable of responding to the following commands (found in the control field of supervisory frames) from the primary station:

RR (Receive Ready): Acknowledges that the Primary station has correctly received numbered frames up through N_R-1 , and that it is ready to receive frame N_R .

RNR (Receive Not Ready): Indicates a temporary busy condition (at the primary station) due to buffering or other internal constraints. The quantity $N_{\rm R}$ in the control field indicates the number of the frame expected after the busy condition ends, and may be used to acknowledge the correct reception of the frames up through $N_{\rm R}-1$.

REJ (Reject): Acknowledges the correct reception of frames up through $N_{\rm R}-1$, and requests transmission or retransmission starting at frame $N_{\rm R}$. The 8044 is capable of retransmitting at most the previous frame, and then only if it is still available in the transmit buffer.

UP (Unnumbered Poll): Also called NSP (Non-Sequenced Poll) or ORP (Optional Response Poll). This command is used in the loop configuration.

To enable the SIU to transmit an information frame in AUTO mode, the CPU sets up a transmit buffer. This is done by writing two registers—Transmit Buffer Start (TBS) Address and Transmit Buffer Length (TBL), and filling the transmit buffer with the information to be transmitted.

When the transmit buffer is full, the SIU can automatically (without CPU intervention) send an information frame (I-frame) with the appropriate sequence numbers, when the data link becomes available (when the 8044 is polled for information). After the SIU has transmitted the I-frame, it waits for acknowledgement from the receiving station. If the acknowledgement is

latri

negative, the SIU retransmits the frame. If the acknowledgement is positive, the SIU interrupts the

CPU, to indicate that the transmit buffer may be reloaded with new information.

In addition to transmitting the information frames, the SIU in AUTO mode is capable of sending the following responses to the primary station:

RR (Receive Ready): Acknowledges that the 8044 has correctly received numbered frames up through $N_R = 1$, and that it is ready to receive frame N_R .

RNR (Receive Not Ready): Indicates a temporary busy condition (at the 8044) due to buffering or other internal constraints. The quantity $N_{\rm R}$ in the control field indicates the number of the frame expected after the busy condition ends, and acknowledges the correct reception of the frames up through $N_{\rm R}-1$.

4.2 FLEXIBLE Mode

In the FLEXIBLE (or non-auto) mode, all reception and transmission is under the control of the CPU. The full SDLC and HDLC protocols can be implemented, as well as any bit-synchronous variants of these protocols.

FLEXIBLE mode provides more flexibility than AUTO mode, but it requires more CPU overhead, and much longer recognition and response times. This is especially true when the CPU is servicing an interrupt that has higher priority than the interrupts from the SIU.

In FLEXIBLE mode, when the SIU receives a frame, it interrupts the CPU. The CPU then reads the control byte from the Receive Control Byte (RCB) register. If the received frame is an information frame, the CPU also reads the information from the receive buffer, according to the values in the Receive Buffer Start (RBS) address register and the Received Field Length (RFL) register.

In FLEXIBLE mode, the 8044 can initiate transmissions without being polled, and thus it can act as the primary station. To initiate transmission or to generate a response, the CPU sets up and enables the SIU. The SIU then formats and transmits the desired frame. Upon completion of the transmission, without waiting for a positive acknowledgement from the receiving station, the SIU interrupts the CPU.

5.0 8044 FRAME FORMAT OPTIONS

As mentioned above, variations on the basic SDLC frame consist of omitting one or more of the fields. The choice of which fields to omit, as well as the selection of AUTO mode versus FLEXIBLE mode, is specified by the settings of the following three bits in the Serial Mode Register (SMD) and the Status/Control Register (STS):

SMD Bit 0: NFCS (No Frame Check Sequence)

SMD Bit 1: NB (Non-Buffered Mode—No Control Field)

STS Bit 1: AM (AUTO Mode or Addressed Mode)

Figure 5 shows how these three bits control the frame format.

The following paragraphs discuss some properties of the standard SDLC format, and the significance of omitting some of the fields.

5.1 Standard SDLC Format

The standard SDLC format consists of an opening flag, an 8-bit address field, an 8-bit control field, an n-byte information field, a 16-bit Frame Check Sequence (FCS), and a closing flag. The FCS is based on the CCITT-CRC polynominal (X¹⁶ + X¹² + X⁵ + 1). The address and control fields may not be extended. Within the 8044, the address field is held in the Station Address (STAD) register, and the control field is held in the Receive Control Byte (RCB) or Transmit Control Byte (TCB) register. The standard SDLC format may be used in either AUTO mode or FLEXIBLE mode.

5.2 No Control Field (Non-Buffered Mode)

When the control field is not present, the RCB and TCB registers are not used. The information field begins immediately after the address field, or, if the address field is also absent, immediately after the opening flag. The entire information field is stored in the 8044's on-chip RAM. If there is no control field, FLEXIBLE mode must be used. Control information may, of course, be present in the information field, and in this manner the No Control Field option may be used for implementing extended control fields.

5.3 No Control Field and No Address Field

The No Address Field option is available only in conjuction with the No Control Field option. The STAD, RCB, and TCB registers are not used. When both these fields are absent, the information field begins immediately after the opening flag. The entire information field is stored in on-chip RAM. FLEXIBLE mode must be used. Formats without an address field have the following applications:

Point-to-point data links (where no addressing is necessary)

Monitoring line activity (receiving all messages regardless of the address field)

Extended addressing

FRAME OPTION NFCS NB AM	addition to transmit TAMNOT SMART frames, the						
Standard SDLC 0 0 0 F FLEXIBLE Mode	A C :noilate year of FCS of 20 Fords						
Standard SDLC 0 0 1 F AUTO Mode	Receive Ready): Acknowledges that the 804s has re-						
No Control Field 0 1 1 F	NR (Receive 7 of 807 disases remporty Asy addition on traints. The quantity N _E in the control field						
No Control Field 0 1 0 F No Address Field FLEXIBLE Mode	dicates the number of the ISON to the correct re- usy condition end and action of the frames up through N _K - 1.						
No FCS Field 1 0 0 F FLEXIBLE Mode	A C Isame Electrical and all possition						
No FCS Field and about 1 00 0 1 F	nd transmissist is under the control of 10s C 2U. A he ill SDLC and HDLC protocols can be implemented, well as any bit-synchronous, various of these protocols.						
No FCS Field (BOR) and language (BOR) and FIELD FOR THE FI	A I F A A A A A A A A A A A A A A A A A						
No FCS Field 1 1 0 F No Control Field No Address Field FLEXIBLE Mode	uch longer recognition and reproduce times. This is pecially true when the CPU is serving an interrupt at has higher priority than the interrupts from the U.						
Key to Abbreviations: F = Flag (01111110) A = Address Field C = Control Field I = Information Field FCS = Frame Check Sequence NOTE: The AM bit is AUTO mode control bit when NB = 0, and Ad	n PLEXIBLE mode, when the SIU receives a frame, it necrupts the CPU. The CPU then reads the control syte from the Receive Control Byte (RCB) register. If he received frame is an information frame, the CPU lso reads the information from the receive buffer, acording to the values in the Receive Buffer Start (RBS) ddress register and the Received Field Length (RFL) egister.						

Figure 5. Frame Format Options

5.4 No FCS Field bis 7 long of 8.8

In the normal case (NFCS = 0), the last 16 bits before the closing flag are the Frame Check Sequence (FCS) field. These bits are not stored in the 8044's RAM. Rather, they are used to compute a cyclic redundancy check (CRC) on the data in the rest of the frame. A received frame with a CRC error (incorrect FCS) is ignored. In transmission, the FCS field is automatically computed by the SIU, and placed in the transmitted frame just prior to the closing flag.

The NFCS bit (SMD Bit 0) gives the user the capability of overriding this automatic feature. When this bit is set (NFCS = 1), all bits from the beginning of the information field to the beginning of the closing flag are treated as part of the information field, and are stored

in the on-chip RAM. No FCS checking is done on the received frames, and no FCS is generated for the transmitted frames. The No FCS Field option may be used in conjunction with any of the other options. It is typically used in FLEXIBLE mode, although it does not strictly include AUTO mode. Use of the No FCS Field option AUTO Mode may, however, result in SDLC protocol violations, since the data integrity is not checked by the SIU.

Formats without an FCS field have the following applications:

Receiving and transmitting frames without verifying data integrity.

Using an alternate data verification algorithm.

Using an alternate CRC-16 polynomial (such as $X^{16} + X^{15} + X^2 + 1$), or a 32-bit CRC

Performing data link diagnosis by forcing false CRCs to test error detection mechanisms

In addition to the applications mentioned above, all of the format variations are useful in the support of nonstandard bit-synchronous protocols.

6.0 HDLC

In addition to its support of SDLC communications, the 8044 also supports some of the capabilities of HDLC. The following remarks indicate the principal differences between SDLC and HDLC.

HDLC permits any number of bits in the information field, whereas SDLC requires a byte structure (multiple of 8 bits). The 8044 itself operates on byte boundaries, and thus it restricts fields to multiples of 8 bits.

HDLC provides functional extensions to SDLC: an unlimited address field is allowed, and extended frame number sequencing.

HDLC does not support operation in loop configurations.

7.0 SIU SPECIAL FUNCTION REGISTERS

The 8044 CPU communicates with and controls the SIU through hardware registers. These registers are accessed using direct addressing. The SIU special function registers (SIU SFRs) are of three types:

Control and Status Registers

Parameter Registers

ICE Support Registers

7.1 Control and Status Registers

There are three SIU Control and Status Registers:

Serial Mode Register (SMD)

Status/Command Register (STS)

Send/Receive Count Register (NSNR)

The SMD, STS, and NSNR registers are all cleared by system reset. This assures that the SIU will power up in an idle state (neither receiving nor transmitting).

These registers and their bit assignments are described below (see also the More Details on Registers section).

SMD: SERIAL MODE REGISTER (BYTE-ADDRESSABLE)

it: 7 6 5 4 3 2 1 0

| SCM2 | SCM1 | SCM0 | NRZI | LOOP | PFS | NB | NFCS

The Serial Mode Register (Address C9H) selects the operational modes of the SIU. The 8044 CPU can both read and write SMD. The SIU can read SMD but cannot write to it. To prevent conflict between CPU and SIU access to SMD, the CPU should write SMD only when the Request To Send (RTS) and Receive Buffer Empty (RBE) bits (in the STS register) are both false (0). Normally, SMD is accessed only during initialization.

The individual bits of the Serial Mode Register are as follows:

follows:		BR# Name D
Bit#	Name	Description 0.272
		No FCS field in the SDLC frame.
		Noon-Buffered mode. No control field in the SDLC frame.
t. If NIS is solects AM may mines anerate	PES OF OTHER OF OTHER OT	this mode, the 8044 transmits two bytes before the first flag of a frame, for DPLL synchronization. If NRZI is enabled, 00H is
SMD.3	LOOP	Loop configuration.
SMD.4	NRZI	NRZI coding option.
SMD.5	SCM0	Select Clock Mode—Bit 0
SMD.6	SCM1	Select Clock Mode—Bit 1
SMD.7	SCM2	Select Clock Mode—Bit 2

The SCM bits decode as follows:

SCM		M	Clock Mode	Data Rate				
2	1	0	23H. Si may be set by the	(Bits/sec)*				
0	0	0	Externally clocked	0-2.4M**				
0	0	1	Undefined tuo touristri					
0	1	0	Self clocked, timer overflow	244-62.5K				
0	1	1	Undefined \$408 off tarif					
1	0	0	Self clocked, external 16x	0-375K				
1	0	1	Self clocked, external 32x	0-187.5K				
1	1	0	Self clocked, internal fixed	375K				
1	1	1	Self clocked, internal fixed	187.5K				

*Based on a 12 MHz crystal frequency
**0-1M bps in loop configuration

STS: STATUS/COMMAND REGISTER (BIT-ADDRESSABLE)

Bit:	7	6	5	4 3		2	1 0		
	TBF	RBE	RTS	SI	BOV	ОРВ	AM	RBP	

The Status/Command Register (Address C8H) provides operational control of the SIU by the 8044 CPU, and enables the SIU to post status information for the CPU's access. The SIU can read STS, and can alter certain bits, as indicated below. The CPU can both read and write STS asynchronously. However, 2-cycle instructions that access STS during both cycles ('JBC/B, REL' and 'MOV/B,C.') should not be used, since the SIU may write to STS between the two CPU accesses.

The individual bits of the Status/Command Register are as follows:

Bit#	Name	Description sevold
oM .s		Receive Buffer Protect. Inhibits writing of data into the receive buffer. In AUTO mode, RBP forces an RNR response instead of an RR.
STS.1 nl .ebr 408 erofed ore, for	MA Sync mo to bytes of a frai shronizati	AUTO mode is allowed. If NB is
STS.2	OPB	Optional Poll Bit. Determines whether the SIU will generate an AUTO response to an optional poll (UP with P = 0). OPB may be set or cleared by the SIU.
STS.3		Receive Buffer Overrun. BOV may be set or cleared by the SIU.
STS.4	SI	SIU Interrupt. This is one of the five interrupt sources to the
a Rate s/sec)*		CPU. The vector location = 23H. SI may be set by the SIU. It should be cleared by the CPU
.4M**		before returning from an interrupt routine.
STS.5	RTS	Request To Send. Indicates that the 8044 is ready to
		transmit or is transmitting. RTS may be read or written by the CPU. RTS may be read by the SIU, and in AUTO mode may be written by the SIU.
STS.6	RBE	Receive Buffer Empty. RBE can be thought of as Receive Enable. RBE is set to one by the CPU when it is ready to receive a frame, or has just read the buffer, and to zero by the SIU when a frame has been received.

Bit#	Name	Description
STS.7	TBF	Transmit Buffer Full. Written by the CPU to indicate that it has
	orcing fal	City of the Assessment by Man TDE

NSNR: SEND/RECEIVE COUNT REGISTER (BIT-ADDRESSABLE)

Bit:	7	6	5	4	3	2	1	0
	NS2	NS1	NS0	SES	NR2	NR1	NRO	SER

The Send/Receive Count Register (Address D8H) contains the transmit and receive sequence numbers, plus tally error indications. The SIU can both read and write NSNR. The 8044 CPU can both read and write NSNR asynchronously. However, 2-cycle instructions that access NSNR during both cycles ('JBC /B, REL', and 'MOV /B,C') should not be used, since the SIU may write to NSNR between the two 8044 CPU accesses.

The individual bits of the Send/Receive Count Register are as follows:

Bit#	Name	Description per redemin
NSNR.0		Receive Sequence Error: NS (P) ≠ NR (S)
NSNR.1	NR0	Receive Sequence Counter—Bit 0
NSNR.2	NR1	Receive Sequence Counter—Bit 1
NSNR.3	NR2	Receive Sequence Counter—Bit 2
NSNR.4		Send Sequence Error: NR (P) \neq NS (S) and NR (P) \neq NS (S) + 1
NSNR.5	NS0	Send Sequence Counter—Bit 0
NSNR.6	NS1	Send Sequence Counter—Bit 1
NSNR.7	NS2	Send Sequence Counter—Bit 2

7.2 Parameter Registers

There are eight parameter registers that are used in connection with SIU operation. All eight registers may be read or written by the 8044 CPU. RFL and RCB are normally loaded by the SIU.

The eight parameter registers are as follows:

STAD: STATION ADDRESS REGISTER (BYTE-ADDRESSABLE)

The Station Address register (Address CEH) contains the station address. To prevent access conflict, the CPU

should access STAD only when the SIU is idle (RTS = 0 and RBE = 0). Normally, STAD is accessed only during initialization.

TBS: TRANSMIT BUFFER START ADDRESS REGISTER (BYTE-ADDRESSABLE)

The Transmit Buffer Start address register (Address DCH) points to the location in on-chip RAM for the beginning of the I-field of the frame to be transmitted. The CPU should access TBS only when the SIU is not transmitting a frame (when TBF = 0).

TBL: TRANSMIT BUFFER LENGTH REGISTER (BYTE-ADDRESSABLE)

The Transmit Buffer Length register (Address DBH) contains the length (in bytes) of the I-field to be transmitted. A blank I-field (TBL = 0) is valid. The CPU should access TBL only when the SIU is not transmitting a frame (when TBF = 0).

NOTE:

The transmit and receive buffers are not allowed to "wrap around" in the on-chip RAM. A "buffer end" is automatically generated if address 191 (BFH) is reached.

TCB: TRANSMIT CONTROL BYTE REGISTER (BYTE-ADDRESSABLE)

The Transmit Control Byte register (Address DAH) contains the byte which is to be placed in the control field of the transmitted frame, during NON-AUTO mode transmission. The CPU should access TCB only when the SIU is not transmitting a frame (when TBF = 0). The N_S and N_R counters are not used in the NON-AUTO mode.

RBS: RECEIVE BUFFER START ADDRESS REGISTER (BYTE-ADDRESSABLE)

The Receive Buffer Start address register (Address CCH) points to the location in on-chip RAM where the beginning of the I-field of the frame being received is to be stored. The CPU should write RBS only when the SIU is not receiving a frame (when RBE = 0).

RBL: RECEIVE BUFFER LENGTH REGISTER (BYTE-ADDRESSABLE)

The Receive Buffer Length register (Address CBH) contains the length (in bytes) of the area in on-chip RAM allocated for the received I-field. RBL = 0 is valid. The CPU should write RBL only when RBE = 0.

RFL: RECEIVE FIELD LENGTH REGISTER (BYTE-ADDRESSABLE)

The Received Field Length register (Address CDH) contains the length (in bytes) of the received I-field that has just been loaded into on-chip RAM. RFL is loaded by the SIU. RFL = 0 is valid. RFL should be accessed by the CPU only when RBE = 0.

RCB: RECEIVE CONTROL BYTE REGISTER (BYTE-ADDRESSABLE)

The Received Control Byte register (Address CAH) contains the control field of the frame that has just been received. RCB is loaded by the SIU. The CPU can only read RCB, and should only access RCB when RBE = 0.

7.3 ICE Support Registers

The 8044 In-Circuit Emulator (ICE-44) allows the user to exercise the 8044 application system and monitor the execution of instructions in real time.

The emulator operates with Intel's Intellec® development system. The development system interfaces with the user's 8044 system through an in-cable buffer box. The cable terminates in a 8044 pin-compatible plug, which fits into the 8044 socket in the user's system. With the emulator plug in place, the user can exercise his system in real time while collecting up to 255 instruction cycles of real-time data. In addition, he can single-step the program.

Static RAM is available (in the in-cable buffer box) to emulate the 8044 internal and external program memory and external data memory. The designer can display and alter the contents of the replacement memory in the buffer box, the internal data memory, and the internal 8044 registers, including the SFRs.

Among the SIU SFRs are the following registers that support the operation of the ICE:

DMA CNT: DMA COUNT REGISTER (BYTE-ADDRESSABLE)

The DMA Count register (Address CFH) indicates the number of bytes remaining in the information block that is currently being used.

FIFO: THREE-BYTE (BYTE-ADDRESSABLE)

The Three-Byte FIFO (Address DDH, DEH, and DFH) is used between the eight-bit shift register and the information buffer when an information block is received.

ADDRESSABLE)

The SIU State Counter (Address D9H) reflects the state of the internal logic which is under SIU control. Therefore, care must be taken not to write into this register.

The SIUST register can serve as a helpful aid to determine which field of a receive frame that the SIU expects next. The table below will help in debugging 8044 reception problems.

SIUST Value	contains the contriolitania lite frame that has
01H	Waiting for opening flag.
08H	Waiting for address field.
10H	Waiting for control field.
H81 s the oser	Waiting for first byte of I field. This state is only entered if a FCS is expected. It pushes the received byte onto the top of the FIFO.
20H	Waiting for second byte of I field. This state always follows state 18H.

SIUST Value	and RBE = onoiting STAD is seen
28H 28E Address A for the	Waiting for I field byte. This state can be entered from state 20H or from states 01H, 08H, or 10H depending upon the SIU's mode configuration. (Each time a byte is received, it is pushed onto the top of the FIFO and the byte at the bottom is put into memory. For no FCS formatted frames, the FIFO is collapsed into a single register).
30H	Waiting for the closing flag after having overflowed the receive buffer. Note that even if the receive frame overflows the assigned receive buffer length, the FCS is still checked.

Examples of SIUST status sequences for different frame formats are shown below. Note that status changes after acceptance of the received field byte.

xod refluid sides-ni ne discondi messev Table 1. SIUST Status Sequences

compatible plug,												Fram	Frame Option			
	ant asel										ATH	NFCS	NB	AM		
Example 1:	e collect	lidw :	amit la	in res	motes	n aid					1400			-		
Frame Format	(Idle)	onF3-	A	SC A	non c	Struct	(HAI	FCS	A)Fat	3 39 30 50		Control	-	127 11 11 11		
SIUST Value	01	01	08	10	18	20	28	28	01	30 00	0 28	syte which	s the	romanis ield o		
Example 2:	ibe in-cal	ni) s	Ideliav	s ei N	RAN.	Statio	only	EDT as				dT .noise		t abon		
Frame Format	(Idle)	F	A	T.	atra b	ICIR O'T	FCS	F	a frame			0				
SIUST Value	01	01	08	18	20	28	28	01				abom		11/200		
Example 3:																
Frame Format	(Idle)	F		1		FCS	F	esan			Mal	0	1	0		
SIUST Value	01	01	18	20	28	28	01				23.029	Person and		20 5 20 20 20 20		
Example 4:						gquo						Buffer S to the loca				
Frame Format	(Idle)	FIL	A	ME:	NE.	NAC						he I-field				
SIUST Value	01	01	08	28	01	(EYY						e CPU sh civing a				
Example 5:	ddress C	A) tel	t regis	Соци	AMC											
Frame Format	(Idle)	F	pringr	vitas	F	tent		DISTER	SR HT	LENG	RB	PUT BY	13131	0		
SIUST Value	01	01	2	8	01						(3.	BASSA	IOGA-	BIY6		
Example 6:	AGGA-3	TY8)	этук	9-339	HT:	FIFO	(Hac	idress (A) rois	iger i	100	Buffer I		10.79		
Frame Format	(Idle)	AF (HIR	arvii-	Three	10	VERFL	OW	FCS	b.F.io	peg s	0		0		
SIUST Value	01	01	18	20	28	DE	30	hen RB	30	01	ing	U should	ibe Of	L. hillay		
remarion block is	other than i	тэдія	buffer	поцв	arreta	n sor		The Real Property						d		

2) In a mon-loop configuration months at (2

The SIU is initialized by a reset signal (on pin 9), followed by write operations to the SIU SFRs. Once initialized, the SIU can function in AUTO mode or NON-AUTO mode. Details are given below.

8.1 Initialization

Figure 6 is the SIU. Registers SMD, STS, and NSNR are cleared by reset. This puts the 8044 into an idle state-neither receiving nor transmitting. The following registers must be initialized before the 8044 leaves the idle state: soor at bnammoo yroatvaogus a it , ralu

STAD — to establish the 8044's SDLC station address.

— To configure the 8044 for the proper operating mode.

RBS, RBL - to define the area in RAM allocated for the Receive Buffer.

TBS, TBL - to define the area in RAM allocated for the Transmit Buffer.

Once these registers have been initialized, the user may write to the STS register to enable the SIU to leave the idle state, and to begin transmits and/or receives.

Setting RBE to 1 enables the SIU for receive. When RBE = 1, the SIU monitors the received data stream for a flag pattern. When a flag pattern is found, the SIU enters Receive mode and receives the frame.

Setting RTS to 1 enables the SIU for transmit. When RTS = 1, the SIU monitors the received data stream for a GA pattern (loop configuration) or waits for a CTS (non-loop configuration). When the GA or CTS arrives, the SIU enters Transmit mode and transmits a NS and NR are used to construct the appropriat; smart

In AUTO mode, the SIU sets RTS to enable automatic transmissions of appropriate responses.

Figure 6. SIU State Diagram

8.2 AUTO Mode

Figure 7 illustrates the receive operations in AUTO mode. The overall operation is shown in Figure 7a. Particular cases are illustrated in Figures 7b through 7j. If any Unnumbered Command other than UP is received, the AM bit is cleared and the SIU responds as if in the FLEXIBLE mode, by interrupting the CPU for supervision. This will also happen if a BOV or SES condition occurs. If the received frame contains a poll, the SIU sets the RTS bit to generate a response.

Figure 8 illustrates the transmit operations in AUTO mode. When the SIU gets the opportunity to transmit, and if the transmit buffer is full, it sends an I-frame. Otherwise, it sends an RR if the buffer is free, or an RNR if the buffer is protected. The sequence counters NS and NR are used to construct the appropriate control fields.

Figure 9 shows how the CPU responds to an SI (serial interrupt) in AUTO mode. The CPU tests the AM bit (in the STS register). If AM = 1, it indicates that the SIU has received either an I-frame, or a positive response to a previously transmitted I-frame.

8.3 FLEXIBLE Mode

Figure 10 illustrates the receive operations in NON-AUTO mode. When the SIU successfully completes a task, it clears RBF and interrupts the CPU by setting SI to 1. The exact CPU response to SI is determined by software. A typical response is shown in Figure 11.

Figure 12 illustrates the transmit operations in FLEX-IBLE mode. The SIU does not wait for a positive acknowledge response to the transmitted frame. Rather, it interrupts the CPU (by setting SI to 1) as soon as it finishes transmitting the frame. The exact CPU response to SI is determined by software. A typical response is shown in Figure 13. This response results in another transmit frame being set up. The sequence of operations shown in Figure 13 can also be initiated by the CPU, without an SI. Thus the CPU can initiate a transmission in FLEXIBLE mode without a poll, simply by setting the RTS bit in the STS register. The RTS bit is always used to initiate a transmission, but it is applied to the RTS pin only when a non-loop configuration is used.

8.4 8044 Data Link Particulars

The following facts should be noted:

1) In a non-loop configuration, one or two bits are the respontant transmitted before the opening flag. This is necessary for NRZI synchronization.

- 2) In a non-loop configuration, one to eight extra dribble bits are transmitted after the closing flag. These bits are a zero followed by ones.
- 3) In a loop configuration, when a GA is received and the 8044 begins transmitting, the sequence is 01111110101111110 ... (FLAG, 1, FLAG, AD-DRESS, etc.). The first flag is created from the GA. The second flag begins the message.
- 4) CTS is sampled after the rising edge of the serial data, at about the center of the bit cell, except during a non-loop, externally clocked mode transmit, in which case it is sampled just after the falling edge.
- 5) The SIU does not check for illegal I-fields. In particular, if a supervisory command is received in AUTO mode, and if there is also an I-field, it will be loaded into the receive buffer (if RBP = 0), but it cannot cause a BOV.
- 6) In relation to the Receive Buffer Protect facility, the user should set RFL to 0 when clearing RBP, such that, if the SIU is in the process of receiving a frame, RFL will indicate the proper value when reception of the frame has been completed.

8.5 Turn Around Timing

In AUTO mode, the SIU generates an RTS immediately upon being polled. Assuming that the 8044 sends an information frame in response to the poll, the primary station sends back an acknowledgement. If, in this acknowledgement, the 8044 is polled again, a response may be generated even before the CPU gets around to processing the interrupt caused by the acknowledge. In such a case, the response would be an RR (or RNR), since TBF would have been set to 0 by the SIU, due to the acknowledge.

If the system designer does not wish to take up channel time with RR responses, but prefers to generate a new I-frame as a response, there are several ways to accomplish this:

- 1) Operate the 8044 in FLEXIBLE mode.
- 2) Specify that the master should never acknowledge and poll in one message. This is typically how a loop system operates, with the poll operation confined to the UP command. This leaves plenty of time for the 8044 to get its transmit buffer loaded with new information after an acknowledge.
- 3) The 8044 CPU can clear RTS. This will prevent a response from being sent, or abort it if it is already in progress. A system using external RTS/CTS handshaking could use a one-shot delay RTS or CTS, thereby giving the CPU more time to disable the response.

Figure 7a. SIU AUTO Mode Receive Flowchart—General

Figure 7b. SIU AUTO Mode Receive Flowchart—Unknown Command

Figure 7c. SIU AUTO Mode Receive Flowchart—Unnumbered Poll

Figure 7d. SIU AUTO Mode Receive Flowchart—Supervisory Command

Figure 7e. SIU AUTO Mode Receive Flowchart—I Command: Prior Transmitted I-Field Confirmed, Current Received I-Field in Sequence

Figure 7f. SIU AUTO Mode Receive Flowchart—I Command: Prior Transmitted I-Field Not Confirmed, Current Received I-Field in Sequence

Figure 7g. SIU AUTO Mode Receive Flowchart—I Command: Sequence Error Send, Current Received I-Field in Sequence

Figure 7h. SIU AUTO Mode Receive Flowchart—I Command: Prior Transmitted I-Field Confirmed Sequence Error Receive

Figure 7i. SIU AUTO Mode Receive Flowchart—I Command: Prior Transmitted I-Field Not Confirmed, Sequence Error Receive

Figure 7j. SIU AUTO Mode Receive Flowchart—I Command: Sequence Error Send and Sequence Error Receive

Figure 71. SIU AUTO Mode Receive Flowchart—I Command: Prior Transmitted I-Field Not Confirmed, Sequence Error Receive

Figure 8. SIU AUTO Mode Transmit Flowchart

Figure 9. AUTO Mode Response to "SI"

Figure 10. SIU FLEXIBLE Mode Receive Flowchart

Figure 11. FLEXIBLE Mode Response to Receive "SI"

Figure 12. SIU FLEXIBLE Mode Transmit Flowchart

Figure 13. FLEXIBLE Mode Response to Transmit "SI"

The SIU divides functionally into two sections—a bit processor (BIP) and a byte processor (BYP)—sharing some common timing and control logic. As shown in Figure 14, the BIP operates between the serial port pins and the SIU bus, and performs all functions necessary to transmit/receive a byte of data to/from the serial data stream. These operations include shifting, NRZI encoding/decoding, zero insertion/deletion, and FCS generation/checking. The BYP manipulates bytes of data to perform message formatting, and other transmitting and receiving functions. It operates between the SIU bus (SIB) and the 8044's internal bus (IB). The interface between the SIU and the CPU involves an interrupt and some locations in on-chip RAM space which are managed by the BYP.

The maximum possible data rate for the serial port is limited to ½ the internal clock rate. This limit is imposed by both the maximum rate of DMA to the onchip RAM, and by the requirements of synchronizing to an external clock. The internal clock rate for an 8044 running on a 12 MHz crystal is 6 MHz. Thus the maximum 8044 serial data rate is 3 MHz. This data rate drops down to 2.4 MHz when time is allowed for external clock synchronization.

9.1 The Bit Processor

In the asynchronous (self clocked) modes the clock is extracted from the data stream using the on-chip digital phase-locked-loop (DPLL). The DPLL requires a clock input at 16 times the data rate. This $16 \times$ clock may originate from SCLK, Timer 1 Overflow, or PH2 (one half the oscillator frequency). The extra divide by-two described above allows these sources to be treated alternatively as $32 \times$ clocks.

The DPLL is a free-running four-bit counter running off the $16 \times \text{clock}$. When a transition is detected in the receive data stream, a count is dropped (by suppressing the carry-in) if the current count value is greater than 8. A count is added (by injecting a carry into the second stage rather than the first) if the count is less than 8. No adjustment is made if the transition occurs at the count of 8. In this manner the counter locks in on the point at which transitions in the data stream occur at the count of 8, and a clock pulse is generated when the count overflows to 0.

In order to perform NRZI decoding, the NRZI decoder compares each bit of input data to the previous bit. There are no clock delays in going through the NRZI decoder.

The zero insert/delete circuitry (ZID) performs zero insertion/deletion, and also detects flags, GA's (Go-Ahead's), and aborts (same as GA's) in the data stream. The pattern 1111110 is detected as an early GA, so that the GA may be turned into a flag for loop mode transmission.

The shut-off detector monitors the receive data stream for a sequence of eight zeros, which is a shut-off command for loop mode transmissions. The shut-off detector is a three-bit counter which is cleared whenever a one is found in the receive data stream. Note that the ZID logic could not be used for this purpose, because the receive data must be monitored even when the ZID is being used for transmission.

As an example of the operation of the bit processor, the following sequence occurs in relation to the receive data:

- RXD is sampled by SCLK, and then synchronized to the internal processor clock (IPC).
- If the NRZI mode is selected, the incoming data is NRZI decoded.
- 3) When receiving other than the flag pattern, the ZID deletes the '0' after 5 consecutive '1's (during transmission this zero is inserted). The ZID locates the byte boundary for the rest of the circuitry. The ZID deletes the '0's by preventing the SR (shift register) from receiving a clocking pulse.
- 4) The FCS (which is a function of the data between the flags—not including the flags) is initialized and started at the detection of the byte boundary at the end of the opening flag. The FCS is computed each bit boundary until the closing flag is detected. Note that the received FCS has gone through the ZID during transmission.

9.2 The Byte Processor

Figure 15 is a block diagram of the byte processor (BYP). The BYP contains the registers and controllers necessary to perform the data manipulations associated with SDLC communications. The BYP registers may be read or written by the CPU over the 8044's internal bus (IB), using standard 8044 hardware register operations. The 8044 register select PLA controls these operations. Three of the BYP registers connect to the IB through the IBS, a sub-bus which also connects to the CPU interrupt control registers.

bas basilatini at (aged oil) anibulo Figure 14. The Bit and Byte Processors

Simultaneous access of a register by both the IB and the SIB is prevented by timing. In particular, RAM access is restricted to alternate internal processor cycles for the CPU and the SIU, in such a way that collisions do not occur.

As an example of the operation of the byte processor, the following sequence occurs in relation to the receive data:

- Assuming that there is an address field in the frame, the BYP takes the station address from the register file into temporary storage. After the opening flag, the next field (the address field) is compared to the station address in the temporary storage. If a match occurs, the operation continues.
- Assuming that there is a control field in the frame, the BYP takes the next byte and loads it into the RCB register. The RCB register has the logic to update the NSNR register (increment receive count, set SES and SER flags, etc.).
- 3) Assuming that there is an information field, the next byte is dumped into RAM at the RBS location. The DMA CNT (RBL at the opening flag) is loaded from the DMA CNT register into the RB register and decremented. The RFL is then loaded into the RB register, incremented, and stored back into the register file.
- 4) This process continues until the DMA CNT reaches zero, or until a closing flag is received. Upon either event, the BYP updates the status, and, if the CRC is good, the NSNR register.

Figure 15. The Byte Processor

10.0 DIAGNOSTICS

An SIU test mode has been provided, so that the onchip CPU can perform limited diagnostics on the SIU. The test mode utilizes the output latches for P3.0 and P3.1 (pins 10 and 11). These port 3 pins are not useful as out-put ports, since the pins are taken up by the serial port functions. Figure 16 shows the signal routing associated with the SIU test mode.

Writing a 0 to P3.1 enables the serial test mode (P3.1 is set to 1 by reset). In test mode the P3.0 bit is mapped into the received data stream, and the 'write port 3' control signal is mapped into the SCLK path in place of T1. Thus, in test mode, the CPU can send a serial data

stream to the SIU by writing to P3.0. The transmit data stream can be monitored by reading P3.1. Each successive bit is transmitted from the SIU by writing to any bit in Port 3, which generates SCLK.

In test mode, the P3.0 and P3.1 pins are placed in a high voltage, high impedance state. When the CPU reads P3.0 and P3.1 the logic level applied to the pin will be returned. In the test mode, when the CPU reads 3.1, the transmit data value will be returned, not the voltage on the pin. The transmit data remains constant for a bit time. Writing to P3.0 will result in the signal being outputted for a short period of time. However, since the signal is not latched, P3.0 will quickly return to a high voltage, high impedance state.

The serial test mode is disabled by writing a 1 to P3.1. Care must be taken that a 0 is never written to P3.1 in the course of normal operation, since this causes the test mode to be entered.

Figure 17 is an example of a simple program segment that can be imbedded into the user's diagnostic program. That example shows how to put the 8044 into "Loop-back mode" to test the basic transmitting and receiving functions of the SIU.

Loop-back mode is functionally equivalent to a hard-wire connection between pins 10 and 11 on the 8044.

In this example, the 8044 CPU plays the role of the primary station. The SIU is in the AUTO mode. The CPU sends the SIU a supervisory frame with the poll bit set and an RNR command. The SIU responds with a supervisory frame with the poll bit set and an RR command.

The operation proceeds as follows:

Interrupts are disabled, and the self test mode is enabled by writing a zero to P3.1. This establishes P3.0 as the data path from the CPU to the SIU. CTS (clear-to-send) is enabled by writing a zero to P1.7. The station address is initialized by writing 08AH into the STAD (station address register).

The SIU is configured for receive operation in the clocked mode and in AUTO mode. The CPU then the program jumps to the ERROR loop. If no the program jumps to the DONE loop.

. Primary superts to receive RR From SIU

A. GOTEN. ERSOR

transmits a supervisory frame. This frame consists of an opening flag, followed by the station address, a control field indicating that this is a supervisory frame with an RNR command, and then a closing flag.

Each byte of the frame is transmitted by writing that byte into the A register and then calling the subroutine XMIT8. Two additional SCLKs are generated to guarantee that the last bits in the frame have been clocked into the SIU. Finally the CPU reads the status register (STS). If the operation has proceeded correctly, the status will be 072H. If it is not, the program jumps to the ERROR loop and terminates.

The SIU generates an SI (SIU interrupt) to indicate that it has received a frame. The CPU clears this interrupt, and then begins to monitor the data stream that is being generated by the SIU in response to what it has received. As each bit arrives (via P3.1), it is moved into the accumulator, and the CPU compares the byte in the accumulator with 07EH, which is the opening flag. When a match occurs, the CPU identifies this as byte boundary, and thereafter processes the information byte-to-byte.

The CPU calls the RCV8 subroutine to get each byte into the accumulator. The CPU performs compare operations on (successively) the station address, the control field (which contains the RR response), and the closing flag. If any of these do not compare, the program jumps to the ERROR loop. If no error is found, the program jumps to the DONE loop.

Figure 17. Loop-Back Mode Software

```
MCS-51 MACRO ASSEMBLER DATA
ISIS-II MCS-51 MACRO ASSEMBLER V2. 0
OBJECT MODULE PLACED IN :F1: DATA: OBJ
                                   ASSEMBLER INVOKED BY: asm51 : f1 date man device(44)
  LOC OBJ LINE SOURCE
   lwis into the A register and then calling the subrouting
   Tang of 10000 750800 = 21.10% | 3 OUTINIT: WHOY IN STS. 800H Int 1408 of the ot work swork signate that men
   0003 C281 4 CLR P3.1 Enable self test mode 0005 C297 5 CLR P1.7 Enable CTB 10007 75CEBA 1 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 7 6 MOV STAD, 68AH ; Initialize address 2 0007 75CEBA 1 
  Standard Longitude and 7 8 18150, CONFIGURE RECEIVE OPERATION
 000A 75DB6A 10
                                                                                                                                                                                                                                    ; NS(S)=3, SES=0, NR(S)=5, SER=0
; NFCS=1
                                  0000 750901 11 10 MOV
0010 750802 12
                                                                                                                                                                                             NSNR. #6AH
                                                                                                                                                                                                                                                                                                                             ire connection between pr
                                                                                                                                                                                            SMD, WOIH
                                                                                                                                                                                                                                                  : TBF=1, RBE=1, AM=1
TRANSMIT A SUPERVISORY FRAME FROM THE PRIMARY STATION WITH THE POLL and the state of the state o
  0013 747E 17 SEND: MOV
0015 120066 18 CALL
0018 748A 19 MOV
0014 120066 20 CALL
001D 7495 21 MOV
                                                                                                                                                                                             A. 07EH ; The SIU receives a flag first
                                                                                                                                                                                             XMITE
A. 88AH
XMITE
                                                                                                                                                                                             A. 8095H ; RNR SUP FRAME with P/F=1, NR(P)=4
   001F 120066 22
0022 747E 23
                                                                                                                                                                                             MITE
                                                                                                                                                                  MOV
                                                                                                                                                                                             A. OTEH
                                                                                                                                                                                                                                                    ; Receive closing flag
   0024 120066 24 CALL
   0027 D280 25 SETB
                                                                                                                                                                                             P3. 0
                                                                                                                                                                                                                                                    : Generate extra SCLK's to
                                                                                                                                                                                                                                    ; Initiate receive action Descond findingo and
                                                                                                                                                                                             P3. 0
   0028 E5C8 28 MOV A. STS
                                                                                                                                                         MOV A. STS ; Check for appropriate status
CJNE A. 072H. ERROR
                                   002D B4722A
                                                                                                                                    PREPARE TO RECEIVE RUPI'S RESPONCE TO PRIMARY'S RNR OF OTEN STATEMENT OF THE PROPERTY OF THE P
                                                                                                            te data path from the CPU to the SIU. CTS (clear-to- The CPU calls the R 52
                                                                                                                                                                                                                        ud) is enabled by writing a zero to PLT. The station
  0030 C2CC 35
0032 7400 36
                                                                                                                                       RECV:
                                                                                                                                                                  CLR
                                                                                                                                                                                           SI Clear SI A. SOON Clear ACC CONTRACT OF 
                                                                                                                                                                 MOV
and the 0034 7800 AM edi a38
                                                                                                                        mos doide MOV R3. 012
                                                                                                                                                                                                                                                  : Try 12 times
   OTO SIN STRUCTURE TO SEE 39 10 VI LOOK FOR THE OPENING FLAG
                                                                                                               40
   0036 D280 41 WFLAG1: SETB
                                                                                                                                                                                   he SIU is configured for receive operation, in the o.cum
                                                                                                                                                                                            C. P3.1 Transmitted data A no new about bolool
                                  0038 A281
003A 13
                                                                                                             42
                                                                                                                                                                 MOV
                                   003B 847E03
003E 020046
                                                                                                                                                                  CUNE
                                                                                                               45
                                                                                                                                                                   JMP
                                                                                                                                                                                             CHTINU
                                                                                                                                                                                             R3, WFLAG1
                                   0041 DRE3
                                                                                                               46
                                                                                                                                     WFLG1:
                                                                                                                                                                 DJNZ
                                  0043 02005A
                                                                                                                                                                                             ERROR
                                                                                                                                                                  JMP
                                                                                                               49
50
51
52
                                  0046 12005C
                                                                                                                                      CNTINU: CALL
                                                                                                                                                                                             RCVB
                                                                                                                                                                                                                                                    ; Get SIU's Transmitted address field
                                                                                                                                                                  CJNE
                                                                                                                                                                                                     WOBAH, ERROR
                                   004C 12005C
                                                                                                                                                                  CALL
                                                                                                                                                                                                                                                   , Primary expects to receive RR from SIU
                                                                                                                                                                                             RCVB
                                   OOAF BARIOR
                                                                                                               53
54
                                                                                                                                                                  CUNE
                                                                                                                                                                                             A. WOBIH, ERROR
                                   0052 120050
                                                                                                                                                                  CALL
                                                                                                                                                                                             RCVA
                                                                                                                                                                                                                                                   ; Receive closing flag
                                                                                                              55
56
57
                                                                                                                                                                                            A. BOTEH, ERROR
                                  0055 BA7F02
                                                                                                                                                                  CUNE
                                  0058 BOFE
                                                                                                                                      DONE:
                                                                                                                                                                  JMP
                                                                                                                                                                                            DONE
                                                                                                             58
59
60
61
62
63
64
65
65
67
                                  005A 80FE
                                                                                                                                      ERROR: JMP
                                                                                                                                                                                            ERROR
                                  005C 7808
                                                                                                                                                                                             RO. #08
                                                                                                                                                                                                                                                  ; Initialize the bit counter
                                                                                                                                                                MOV
                                  005E D2B0
                                                                                                                                      GETBIT:
                                                                                                                                                                  SETB
                                                                                                                                                                                           P3. 0
C, P3. 1
                                                                                                                                                                                                                                                           SCLK
                                  0060 A281
                                                                                                                                                                  MOV
                                                                                                                                                                                                                                                  ; Transmitted data
                                  0062 13
                                                                                                                                                                                            RO. GETRIT
                                                                                                                                                                  DJNZ
                                  0065 22
                                                                                                             68
69
70
71
72
73
74
75
76
77
78
90
                                                                                                                                     XMITE:
                                                                                                                                                                                                                                                   : Initialize the bit counter
                                                                                                                                                                MOV
                                                                                                                                                                                            RO. #9
                                                                                                                                                                                                                                                        Put the bit to be transmitted in the Carry
                                  0068 13
                                                                                                                                                                 RRC
                                  0069 DB01
                                                                                                                                                                                                                                                         When all bits have been sent
                                  0068 22
                                                                                                                                                                RET
                                                                                                                                                                                                                                                  return
                                  006C 4004
                                                                                                                                                                                                                                                  ; If the carry bit is set, set ; port P3.0 else ; clear port P3.0
                                                                                                                                              L1: JC
                                                                                                                                                                                            L2
                                  006E C280
                                                                                                                                                                                           P3. 0
                                                                                                                                                                CLR
                                  0070 BOF6
                                                                                                                                                                JMP
                                                                                                            81
                                  0072 D2B0
                                                                                                                                                               SETB
                                                                                                                                               LZ:
                                                                                                                                                                                           P3. 0
                                  0074 B0F2
                                                                                                            83
                                                                                                                                    end
                                                                                                                                                                                                                                                                                                                                                                               296165-29
```

Figure 17. Loop-Back Mode Software

8044 Application Examples

21

8044 APPLICATION EXAMPLES

AL-MTIGUE

1.0 INTERFACING THE 8044 TO A MICROPROCESSOR

The 8044 is designed to serve as an intelligent controller for remote peripherals. However, it can also be used as an intelligent HDLC/SDLC front end for a microprocessor, capable of extensively off-loading link control functions for the CPU. In some applications, the 8044 can even be used for communications preprocessing, in addition to data link control.

This section describes a sample hardware interface for attaching the 8044 to an 8088. It is general enough to be extended to other microprocessors such as the 8086 or the 80186.

OVERVIEW

A sample interface is shown in Figure 1. Transmission occurs when the 8088 loads a 64 byte block of memory with some known data. The 8088 then enables the 8237A to DMA this data to the 8044. When the 8044 has received all of the data from the 8237A, it sends the data in a SDLC frame. The frame is captured by the Spectron Datascope^{TM*} which displays it on a CRT in hex format.

In reception, the Datascope sends a SDLC information frame to the 8044. The 8044 receives the SDLC frame, buffers it, and sends it to the 8088's memory. In this example the 8044 is being operated in the NON-AUTO mode; therefore, it does not need to be polled by a primary station in order to transmit.

THE INTERFACE bas and senabled, and TIM

The 8044 does not have a parallel slave port. The 8044's 32 I/O lines can be configured as a local microprocessor bus master. In this configuration, the 8044 can expand the ROM and RAM memory, control peripherals, and communicate with a microprocessor.

The 8044, like the 8051, does not have a Ready line, so there is no way to put the 8044 in wait state. The clock on the 8044 cannot be stopped. Dual port RAM could still be used, however, software arbitration would be the only way to prevent collisions. Another way to interface the 8044 with another CPU is to put a FIFO or queue between the two processors, and this was the method chosen for this design.

Figure 2 shows the schematic of the 8044/8088 interface. It involves two 8-bit tri-state latches, two SR flipflops, and some logic gates (6 TTL packs). The circuitry implements a one byte FIFO. RS422 transceivers are used, which can be connected to a multidrop link. Fig-

*Datascope is a trademark of Spectron Inc.

ure 3 shows the 8088 and support circuitry; the memory and decoders are not shown. It is a basic 8088 Min Mode system with an 8237A DMA controller and an 8259A interrupt controller.

DMA Channel One transfers a block of memory to the tri-state latch, while Channel Zero transfers a block of data from the latch to 8088's memory. The 8044's Interrupt 0 signal vectors the CPU into a routine which reads from the internal RAM and writes to the latch. The 8044's Interrupt 1 signal causes the chip to read from the latch and write to its on-chip data RAM. Both DMA requests and acknowledges are active low.

Initially, when the power is applied, a reset pulse coming from the 8284A initializes the SR flip-flops. In this initialization state, the 8044's transmit interrupt and the 8088's transmit DMA request are active; however, the software keeps these signals disabled until either of the two processors are ready to transmit. The software leaves the receive signals enabled, unless the receive buffers are full. In this way either the 8088 or the 8044 are always ready to receive, but they must enable the transmit signal when they have prepared a block to transmit. After a block has been transmitted or received, the DMA and interrupt signals return to the initial state.

The receive and transmit buffer sizes for the blocks of data sent between the 8044 and the 8088 have a maximum fixed length. In this case the buffer size was 64 bytes. The buffer size must be less than 192 bytes to enable 8044 to buffer the data in its on-chip RAM. This design allows blocks of data that are less than 64 bytes, and accommodates networks that allow frames of varying size. The first byte transferred between the 8088 and the 8044 is the byte count to follow; thus the 8044 knows how many bytes to receive before it transmits the SDLC frame. However, when the 8044 sends data to the 8088's memory, the 8237A will not know if the 8044 will send less than the count the 8237A was programmed for. To solve this problem, the 8237A is operated in the single mode. The 8044 uses an I/O bit to generate an interrupt request to the 8259A. In the 8088's interrupt routine, the 8237A's receive DMA channel is disabled, thus allowing blocks of data less than 64 bytes to be received.

THE SOFTWARE and organically soft A Journal AMO

The software for the 8044 and the 8088 is shown in Table 1. The 8088 software was written in PL/M86, and the 8044 software was written in assembly language.

The 8044 software begins by initializing the stack, interrupt priorities, and triggering types for the interrupts. At this point, the SIU parameter registers are

Figure 1. Block Diagram of 8088/8044 Interface Test

initialized. The receive and transmit buffer starting addresses and lengths are loaded for the on-chip DMA. This DMA is for the serial port. The serial station address and the transmit control bytes are loaded too.

Once the initialization has taken place, the SIU interrupt is enabled, and the external interrupt which receives bytes from the 8088 is enabled. Setting the 8044's Receive Buffer Empty (RBE) bit enables the receiver. If this bit is reset, no serial data can be received. The 8044 then waits in a loop for either RECEIVE DMA interrupt or the SERIAL INT interrupt.

The RECEIVE DMA interrupt occurs when the 8237A is transferring a block of data to the 8044. The first time this interrupt occurs, the 8044 reads the latch and loads the count value into the R2 register. On subsequent interrupts, the 8044 reads the latch, loads the data into the transmit buffer, and decrements R2. When R2 reaches zero, the interrupt routine sends the data in an SDLC frame, and disables the RECEIVE DMA interrupt. After the frame has been transmitted, a serial interrupt is generated. The SERIAL INT routine detects that a frame has been transmitted and reenables the RECEIVE DMA interrupt. Thus, while the frame is being transmitted through the SIU, the 8237A is inhibited from sending data to the 8044's transmit buffer.

The TRANSMIT DMA routine sends a block of data from the 8044's receive buffer to the 8088's memory.

Normally this interrupt remains disabled. However, if a serial interrupt occurs, and the SERIAL INT routine detects that a frame has been received, it calls the SEND subroutine. The SEND subroutine loads the number of bytes which were received in the frame into the receive buffer. Register R1 points to the receive buffer and R2 is loaded with the count. The TRANS-MIT DMA interrupt is enabled, and immediately upon returning from the SERIAL INT routine, the interrupt is acknowledged. Each time the TRANSMIT DMA interrupt occurs, a byte is read from the receive buffer, written to the latch, and R2 is decremented. When R2 reaches 0, the TRANSMIT DMA interrupt is disabled, the SIU receiver is re-enabled, and the 8044 interrupts the 8088.

CONCLUSION and the 804s is well and the roll will be and the roll will be a seen and t

For the software shown in Table 1, the transfer rate from the 8088's memory to the 8044 was measured at 75K bytes/sec. This transfer rate largely depends upon the number of instructions in the 8044's interrupt service routine. Fewer instructions result in a higher transfer rate.

There are many ways of interfacing the 8044 locally to another microprocessor: FIFO's, dual port RAM with software arbitration, and 8255's are just a few. Alternative approaches, which may be more optimal for certain applications, are certainly possible.

Table 1. Transmit and Receive Software for an 8044/8088 System

OC OBJ L	INE	SOURCE	IE FIRST							
	1	Sdebug	title	(8044/8088 1						
	2	LATCH			(a) A · X					
	3									
0000	4	FIRST_B		BIT 0	DE FL	AG				
		ADING BYT				SNIG				
0000	6		ORG	0						
0000 8024	7	A	SJMP	TINIS		SETB				
	8									
0026	9		ORG	26H 31YB.						
	10									
0026 7581AA	11	INIT:	MOV	SP, #170	; INI	TIALIZE S	STACK			
0029 75B800	12		MOV	IP, #00		INTERR	UPTS ARE	EQUAL	PRIORIT	Y
002C 75C954	13		MOV	SMD, #54H	; TIM	IER I OVE	RFLOW, N	RZI, PRE	-FRAME	SY
				TCON, #44H	; EDO	GE TRIGG	ERED EXT	ERNAL	INTERRU	JPT
		ARTING AL			; LE\	EL TRIGO	GERED EX	TERNAL	INTERR	UP1
	16				; TIM	IER I ON				
0032 758DEC		E COUNT		THI, #0ECH						
0035 758920	18		MOV	TMOD, #20H	; TIM	IER I AUT	O RELOAI)		
	19					-7273/3-427-4				
0038 75DC6A	20		MOV	TBS, #106			ARAMETE	R REGIS		
003B 75DB40	21		MOV							
003E 75CC2A	22		MOV	RBS, #42						
0041 75CB40	23		MOV	RBL, #64		ORG				
0044 75CE55	24		MOV	STAD, #55H						
0047 75DA11	25		MOV	TCB, #000100	01B; RR,	P/F=1				
2011 20122	26							28		
004A 901000	27	T TO TUO	MOV	DPTR, #1000F			TO TRI-S			
004D D200	28	O THE LAT	SETB	FIRST_BYTE			ICATE FIR			
004F D2CE	30		SETB	RBE	1.00	DY TO RI	EINTERRU	PI KOU	TINE	
0051 75A894	31		MOV	IE, #10010100			EIVE DMA	ANDEL	LINTED	DIII
0031 737694	32		MOV	1E, #10010100	D , EIN/	ADLE REC	EIVE DMA	ANDSI	UINIEK	KUI
0054 80FE	33	TERRUPT-	SJMP	ilQ:	·WA	THERE	OR INTER	DIIDTS		
ERMINATE DM	34		nage soss	AS:	P.19"	II HERE I	OK INTER			
0056 80FE	35	ERROR:	SJMP	ERROR						
0000		+1 SEJ		MARKOK						
		. 425								
	37	*******	******	*******	SUBROU	TINES	********	******	*******	****
	38									
0058 85CD29	39	SEND:	MOV	41, RFL			N BLOCK		T	
	40		MOV	R1, #41			OCK OF DA			
005B 7929	41		MOV	R2, RFL		D COUNT	1-201			
005D AACD			INC							
005D AACD 005F 0A	42					DIE DIE	TRANSM	IT INTE		
005D AACD 005F 0A 0060 D2A8	42 43		SETB	EXO TALL						
005D AACD 005F 0A	42 43 44		SETB RET		EN/					
005D AACD 005F 0A 0060 D2A8	42 43 44 45									
005D AACD 005F 0A 0060 D2A8	42 43 44 45 46						SERIK			
005D AACD 005F 0A 0060 D2A8	42 43 44 45 46 47		RET							
005D AACD 005F 0A 0060 D2A8 0062 22	42 43 44 45 46 47	ME RECEN	TEN S A FRA							
005D AACD 005F 0A 0060 D2A8 0062 22	42 43 44 45 46 47	200000000000000000000000000000000000000	RET	W: VOX	UPT SER	ORO TULL VICE ROL	UTINES	101 102 103 104 104	30CE06	****
005D AACD 005F 0A 0060 D2A8 0062 22	42 43 44 45 46 47 48 49	METICANS RERROR	RET A SA	*** INTERR	UPT SER	ORO STALL	UTINES	101 102 103 104 104 107	7 30CE06	****
005D AACD 005F 0A 0060 D2A8 0062 22	42 43 44 45 46 47 48 49 50	RORRER LOC_TM	RET	*** INTERR	UPT SER	VICE ROU	UTINES	101 501 501 501 201 201	30CE08	800
005D AACD 005F 0A 0060 D2A8 0062 22	42 43 44 45 46 47 48 49 50	LOC_TMI	RET PSET ORG	*** INTERR \$ 0013H	UPT SER	VICE ROU	UTINES	101 201 201 201 201 201 201 401 EE JUM	D DZDOSE Q ZDCBCS Q ZDCBCS	800
005D AACD 005F 0A 0060 D2A8 0062 22	42 43 44 45 46 47 48 49 50	LOC_TMI	RET PSET ORG	*** INTERR \$ 0013H RECEIVE_DN	UPT SER	VICE ROU	UTINES RUPT TAE	101 281 201 201 201 201 201 201 401 401	30CE06 0 020036 0 20CBC3 3 1158	800
005D AACD 005F 0A 0060 D2A8 0062 22 0063 0013 00063	42 43 44 45 46 47 48 49 50 51	LOC_TMI	PSET ORG LJMP	*** INTERR \$ 0013H	UPT SER	VICE ROUMAND TO THE R	UTINES RUPT TAE	101 281 201 201 201 201 201 201 201 201 201	D DZDOSE Q ZDCBCS Q ZDCBCS	800 800 800 800
005D AACD 005F 0A 0060 D2A8 0062 22 0063 0013 00063	42 43 44 45 46 47 48 49 50 51 52 53	LOC_TMI	PSET ORG LJMP ORG	*** INTERR \$ 0013H RECEIVE_DN	UPT SER	VICE ROU	UTINES RUPT TAE	101 281 201 201 201 201 201 201 401 401	9 00086 0 020096 0 200803 3 1158	800 800 800 800

Table 1. Transmit and Receive Software for an 8044/8088 System (Continued)

0063	10000E	56 57		JBC	FIRST_BYTE				NSFERR	ED IS THI	COU
		58			ASSETNIER						
0066		59			A, @DPTR				S DIJECT		
0067		60		MOV	@R0, A		TITINT				
0068		61			RO D		BYTE				
0069	DA08	62		DJNZ	R2, L2		TER REA	DING BA	IES,		
00/0	Dace	63		TTD	TDF		ORG				
	B D2CF	64			TBF	, SE	ND DATA				
	D2CD	65			RTS						
	D200	66			FIRST_BYTE EXI						
0071	C2AA	67									
0073	22	68	IZE STACK		10 . 05						
			L2: PURSE								
MYS B	RE-FRAMI	9 170 4	OVERFLOW,	MARK!	PA MARA	GMS	IC A POIN	TER TO	THE TR	750054	
0074	/86A	AMMATO			R0, #106	DII	FFFB OTA	DTINIC A	DDDDGG	INSMIT	
		MALKIN	RIGGERED E	EVEL T	A CORPER	; BU	FFER SIA	KIINGA	DUKESS		
0076			NOV	AOV	A, @DPTR	; PU	TOP THE	COLINIT	INTO		
0077			WE TIMER, 3	VIOV	KZ, A	, KZ	TOK THE	COUNT			
0078	32		AUTO RELO	EIL							
		76	100 7117	rien.							
				EIU TE	\$ 6019	TBS,					
0003		78			0003H				21		
	020079	79		JMP	TRANSMIT_I	DMA			22		
0079		80	O	ORG	LOC_TMP						
		81			Histh.		MOA		24		
		82	TRANSMIT	DMA	A : 8100010001						
0074	E7 F0	95	N	TUYA	A, @R1 @DPTR, A	; RE.	AD BYTE			EIVE BUI	
007B	00			NIO NIO							
0010	09	86		NC	RI				200		
007C	DA08	87	avienae d		R1 R2, L3	; WH	IEN ALL I	BYTES HA	VE BEE	N SENT	
007C	DA08	87 88 89	RECEIVE DA	JNZ			IEN ALL I		5.5	N SENT	
007C 007E	DA08	87 88 89	ACEIVE DA	LR	R2, L3	; DIS	ABLE IN	TERRUPT	32		
007C 007E 0080	DA08 C2A8	87 88 89	D E FOR JUTE	LR LR	R2, L3 IE. 0	; DIS		TERRUPT	32	ERMINA	TE DM
007C 007E 0080 0082	DA08 C2A8 C294	87 88 89 90	RECEIVE DA	LR LR ETB	R2, L3 IE. 0 P1. 4	; DIS	ABLE IN	TERRUPT INTERRU	рт то т	ERMINA	
007C 007E 0080 0082 0084	DA08 C2A8 C294 D294 D2CE	87 88 89 90 91 92 93	AVISCAR DI MO AVISCAR TURI MOT S S S	LR LR ETB	R2, L3 IE. 0 P1. 4 P1. 4 RBE	; DIS	SABLE INT	TERRUPT INTERRU	рт то т	ERMINA	TE DM
007C 007E 0080 0082 0084	DA08 C2A8 C294 D294 D2CE	87 88 89 90 91 92 93 94 95	DATE OF THE PROPERTY OF THE PR	LR LR ETB ETB	R2, L3 IE. 0 P1. 4 P1. 4 RBE	; DIS ; CA	SABLE INT	TERRUPT INTERRU	PT TO T	ERMINA	TE DM
007C 007E 0080 0082 0084	DA08 C2A8 C294 D294 D2CE	87 88 89 90 91 92 93 94 95	AVISOR III AG AVISOR D TIMI NOT SC S S S L3:	LR LR LETB ETB ETB	R2, L3 IE. 0 P1. 4 P1. 4 RBE	; DIS ; CA	SABLE INT USE 8088 I	TERRUPT INTERRU	PT TO T	ERMINA'	TE DM
007C 007E 0080 0082 0084 0086	DA08 C2A8 C294 D294 D2CE 32	87 88 89 90 91 92 93 94 95 96	AVISORA DI MINISTRA DI CONTROLI SI CONTROL	LR LR LETB ETB ETB	R2, L3 IE. 0 P1. 4 P1. 4 RBE	; DIS ; CA	ABLE REC	TERRUPT INTERRU	PT TO T	ERMINATE OF THE PROPERTY OF TH	TE DM 2000
007C 007E 0080 0082 0084 0086	DA08 C2A8 C294 D294 D2CE 32	87 88 89 90 91 92 93 94 95 96 97	L3: R	LR LR ETB ETB ETI	R2, L3 IE. 0 P1. 4 P1. 4 RBE	; DIS ; CA	SABLE INT USE 8088 I	TERRUPT INTERRU	PT TO T	ERMINA'	TE DM 2000
007C 007E 0080 0082 0084 0086	DA08 C2A8 C294 D294 D2CE 32	87 88 89 90 91 92 93 94 95 96 97	LOC_TMPS	ELR LIR ETB	R2, L3 IE. 0 P1. 4 P1. 4 RBE	; DIS ; CA	ABLE REC	TERRUPT INTERRU	PT TO T	ERMINA 108 108 1029 1029 AACD	TE DM 2000
007C 007E 0080 0082 0084 0086	DA08 C2A8 C294 D294 D2CE 32 37 020087	87 88 89 90 91 92 93 94 95 96 97 98 99	LOC_TMPS	ELR LIR ETB	R2, L3 IE. 0 P1. 4 P1. 4 RBE	; DIS ; CA	ABLE REC	TERRUPT INTERRU	PT TO T	ERMINA BIOS PSCIDES	\$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200
007C 007E 0080 0082 0084 0086	DA08 C2A8 C294 D294 D2CE 32 37 020087	87 88 89 90 91 92 93 94 95 96 97 98 99 100	LOC_TMPS:	LR LR LR LETB LETB LETB LETB LETB LETB LETB LETB	R2, L3 IE. 0 P1. 4 P1. 4 RBE	; DIS ; CA	SABLE INTUSE 8088	TERRUPT INTERRU	PT TO T	ERMINA BIOS PSCIDES	0054 0056 0058 0050 0050
007C 007E 0080 0082 0084 0086	DA08 C2A8 C294 D294 D2CE 32 37 020087	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102	LOC_TMPS	LR L	R2, L3 IE. 0 P1. 4 P1. 4 RBE \$ 0023H SERIAL_INT	; DIS ; CA	ABLE REC	TERRUPT INTERRU	PT TO T	ERMINA BIOS PSCIDES	\$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200
007C 007E 0080 0082 0084 0086	DA08 C2A8 C294 D294 D2CE 32 37 020087	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	LOC_TMPS:	LR L	R2, L3 IE. 0 P1. 4 P1. 4 RBE \$ 0023H SERIAL_INT	; DIS ; CA	ABLE REC	TERRUPT INTERRU	PT TO T	ERMINA BIOS PSCIDES	\$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200
007C 007E 0080 0082 0084 0086	DA08 C2A8 C294 D294 D2CE 32	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	L3: R LOC_TMPS	LR L	R2, L3 IE. 0 P1. 4 P1. 4 RBE 0023H SERIAL_INT LOC_TMP	; DIS ; CA	ABLE REC	TERRUPT INTERRU CEIVER A	PT TO T	ERMINA BIOS PSCIDES	0058 0058 0058 0058 0060
007C 007E 0080 0082 0084 0086 0023 0023 0023 0087	DA08 C2A8 C294 D294 D2CE 32 37 020087	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	L3: R LOC_TMPSI O SERIAL_IN'	LR L	IE. 0 P1. 4 P1. 4 P1. 4 RBE S 0023H SERIAL_INT LOC_TMP	; DIS ; CA'; EN.	ABLE REC	TERRUPT INTERRU CEIVER A	PT TO T	AACD AACD AACD AACD AACD AACD AACD AACD	0058 0058 0058 0058 0060
007C 007E 0080 0082 0084 0086 0023 0023 0023 0087	DA08 C2A8 C294 D294 D2CE 32 37 020087	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	L3: R LOC_TMPS: O SERIAL_IN'	LLR	IE. 0 P1. 4 P1. 4 P1. 4 RBE S 0023H SERIAL_INT LOC_TMP RBE, RCV TBF, XMIT	; DIS ; CA' ; EN	ABLE REC	TERRUPT INTERRU CEIVER A	PT TO T	AACD AACD AACD AACD AACD AACD AACD AACD	0058 0058 0058 0058 0060
007C 007E 0080 0082 0084 0086 0023 0023 0023 0087	DA08 C2A8 C294 D294 D2CE 32 37 020087 30CE06 30CF0B 020056	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	L3: R LOC_TMPS: O SERIAL_IN'	LR LR LR ETB ETB ETI OTHER ETI OTH OTHER ETI OTHER ETI OTHER ETI OTHER ETI OTHER ETI OTHER ETI OTH OTHER ETI OTH OTHER ETI OTH	R2, L3 IE. 0 P1. 4 P1. 4 P1. 4 RBE S 0023H SERIAL_INT LOC_TMP RBE, RCV TBF, XMIT ERROR	; DIS ; CA' ; EN	ABLE REC	TERRUPT INTERRU CEIVER A ME RECEI ME TRANS ERROR	PT TO T GAIN VED SMITTE	AACD AACD AACD AACD AACD AACD AACD AACD	\$200 8200 8200 0200 0200 0200 0200 0200
007C 007E 0080 0082 0084 0086 0023 0023 0087	DA08 C2A8 C294 D294 D2CE 32 37 020087 30CE06 30CF0B 020056	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	L3: R LOC_TMPS: O SERIAL_IN' L L L L L L L L L L L L L L L L L L L	LR LR LR ETB ETB ETI OTHER ETI OTH OTHER ETI OTHER ETI OTHER ETI OTHER ETI OTHER ETI OTHER ETI OTH OTHER ETI OTH OTHER ETI OTH	R2, L3 IE. 0 P1. 4 P1. 4 P1. 4 RBE 0023H SERIAL_INT LOC_TMP RBE, RCV TBF, XMIT ERROR	; DIS ; CA' ; EN	SABLE INTUSE 8088 INTUSE 8088 INTUSE 8088 INTUSE RECORD IN	ME RECEI ME TRANSERROR	PT TO T	SOFE 7929 7929 AACD 06A AACD 22	\$200 8200 0300 0300 0300 0300 0300 0300 0
007C 007E 0080 0082 0084 0086 0023 0023 0023 00287	DA08 C2A8 C294 D294 D2CE 32 37 020087 30CE06 30CF0B 020056 20CBC3	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	LOC_TMPSION ON SERIAL_INTEGRAL INTEGRAL	LR LR LR ETB ETB ETT ETT FRG FRG TT: NB NB JMP B	IE. 0 P1. 4 P1. 4 P1. 4 RBE SO023H SERIAL_INT LOC_TMP RBE, RCV TBF, XMIT ERROR BOV, ERROR	; DIS ; CA' ; EN	SABLE INTUSE 8088 INTUSE 8088 INTUSE 8088 INTUSE RECORD IN	ME RECEI ME TRANS ERROR	PT TO T GAIN VED SMITTE	escosa escr GAAA AO 8ASG	0058 0058 0058 0050 0050 0060 0063
007C 007E 0080 0082 0084 0086 0023 0023 0087 0087 0080 0080 0080 0090 0090	DA08 C2A8 C294 D294 D2CE 32 37 020087 30CE06 30CF0B 020056 20CBC3 1158	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	L3: R LOC_TMPS O SERIAL_IN' III	LR LR LR ETB ETB ETB ETI ORG JMP ORG T: NB NB JMP B ALL	R2, L3 IE. 0 P1. 4 P1. 4 P1. 4 RBE S O023H SERIAL_INT LOC_TMP RBE, RCV TBF, XMIT ERROR BOV, ERROR SEND	; DIS ; CA' ; EN.	ABLE RECOMMENS A FRAME NEITHER BUFFER COMMENTER COMMENTS A FRAME OF THE FORD THE FOR	ME RECEI ME TRANS ERROR	PT TO T GAIN VED SMITTE THEN I THE 80	escosa escr GAAA AO 8ASG	\$200 S200 S200 S200 S200 S200 S200 S200
007C 007E 0080 0082 0084 0086 0023 0023 0023 0087 0087 008A 008D	DA08 C2A8 C294 D294 D294 D2CE 32 37 020087 30CE06 30CF0B 020056 20CBC3 1158 C2CC	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	L3: R LOC_TMPS O SERIAL_IN III	LR LR LR LR ETB ETB ETB ETI ORG JMP TT: NB NB NB JMP B EALL LR	R2, L3 IE. 0 P1. 4 P1. 4 P1. 4 RBE S O023H SERIAL_INT LOC_TMP RBE, RCV TBF, XMIT ERROR BOV, ERROR SEND	; DIS ; CA' ; EN	ABLE RECOMMENS A FRAME NEITHER BUFFER COMMENTER COMMENTS A FRAME OF THE FORD THE FOR	ME RECEI ME TRANS ERROR	VED SMITTE	escosa escr GAAA AO 8ASG	0058 0058 0058 0050 0050 0060 0063
007C 007E 0080 0082 0084 0086 0023 0023 0087 0087	DA08 C2A8 C294 D294 D294 D2CE 32 37 020087 30CE06 30CF0B 020056 20CBC3 1158 C2CC	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111	L3: R LOC_TMPS O SERIAL_IN III	LR LR LR ETB ETB ETB ETI ORG JMP ORG T: NB NB JMP B ALL	R2, L3 IE. 0 P1. 4 P1. 4 P1. 4 RBE S O023H SERIAL_INT LOC_TMP RBE, RCV TBF, XMIT ERROR BOV, ERROR SEND	; DIS ; CA' ; EN.	ABLE RECOMMENTAL SA FRAM NEITHER COND THE F	ME RECEI ME TRANS ERROR OVERRUN RAME TO	VED SMITTE	escosa escr GAAA AO 8ASG	\$200 S200 S200 S200 S200 S200 S200 S200
007C 007E 0080 0082 0084 0086 0023 0023 0023 0087 0087 0090 0090 0093 0095	DA08 C2A8 C294 D294 D294 D2CE 32 37 020087 30CE06 30CF0B 020056 20CBC3 1158 C2CC	87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	L3: R LOC_TMPSI O SERIAL_IN' RCV: JI	LR LR LR ETB ETB ETI ORG JMP SRG T: NB NB JMP B ALL LR LETI	R2, L3 IE. 0 P1. 4 P1. 4 P1. 4 RBE S O023H SERIAL_INT LOC_TMP RBE, RCV TBF, XMIT ERROR BOV, ERROR SEND	; DIS ; CA' ; EN.	ABLE RECOMMENS A FRAME NEITHER BUFFER COMMENTER COMMENTS A FRAME OF THE FORD THE FOR	ME RECEI ME TRANS ERROR OVERRUN RAME TO	VED SMITTE	escosa escr GAAA AO 8ASG	\$200 S200 S200 S200 S200 S200 S200 S200

Table 1. Transmit and Receive Software for an 8044/8088 System (Continued)

009A D2AA	115		SETB EXI	BUUGUN RD	LIM-86 VI C COMPILATION	SERIES-111 P
009C 32	116		RETI		E FLACED IN : F1: RBG DGJ	DELECT HODUL
	117			98.88¢	DINED BY: PLMBS BS : F1 R	
	118		END			
SYMBOL TABLE I	LISTI	NG	A V. St. America.	77 774757	ATITLE ('RUPI/8088 IN	
			42.00	a somethis	Mr. 000012 Ten 7 221118	
					RUP 1_08: DO:	
NAME		TYPE	VALUE		ATTRIBUTES	1 8
BOV		B ADDR	00C8H.3 A	LITERAL	TIJ	
ERROR		C ADDR	0056H A	TIJ	3097	
EX0		B ADDR	00A8H.0 A	712	FALSE	
EX1		B ADDR	00A8H.2 A		NECV BUFFER(A4)	
FIRST_BYTE .		B ADDR	0020H.0 A	BYTE	RNIT_BUFFERIGAL	
IE		D ADDR	00A8H A	VALAR		
INIT		C ADDR	0026H A	7467776	TIAH	
P		D ADDR	00B8H A			
		C ADDR	0074H A			
L2		C ADDR	0073H A		HABTER_CLEAR_37 COMMAND_37	
L3		C ADDR	0086H A	95.9	ALL_MASK_37	
LOC_TMP		C ADDR		713	SINGLE_MAGK_37	
					STATUB_37	
		D ADDR		77.1	REQUEST_REG_37 HDDE_REG_37	
RBE		B ADDR	00C8H.6 A	1 1 1 1	CLEAR BYTE PTR 37	
RBL	*	D ADDR	00CBH A			
RBS		D ADDR	00CCH A	911	CHO_CRURET	
RCV		C ADDR	0090H A	TIJ		
		C ADDR	0063H A		CH1_CDUNT	
RFL		D ADDR	OOCDH A		CHS_COUNT	
RTS		B ADDR	00C8H.5 A		CH3_ADDR	
SEND		C ADDR	0058H A	TIJ	CH3_COUNT	
SERIAL_INT .		C ADDR	0087H A	T ASSIGNMENT	IS VEGS av	
SI		B ADDR	00C8H.4 A			
SMD		D ADDR	00C9H A		CHO_SEL	
SP		D ADDR	0081H A	TIJ	CHI_SEL	
STAD		D ADDR	00CEH A	TIJ		
BF		B ADDR	00C8H.7 A			
TBL		D ADDR	00DBH A	LIT	READ_AFER DEMAND_MODE	
TBS		D ADDR	00DCH A	TIJ		
ГСВ		D ADDR	00DAH A	111		
CON		D ADDR	0088H A	TLI	BET_MASK	
THI		D ADDR	008DH A		702630	
MOD		D ADDR	0089H A	No. STRON		
RANSMIT_DMA		C ADDR	0079H A			
KMIT		C ADDR	0098H A	TLI		
			"NEBRIO"	TXJ		
REGISTER BANI	K(S)	USED: 0, TA	RGET MACHINE			
			, HO3440,	LIT	P8_6930	
ASSEMBLY COM	1PLE	TE, NO ERI	RORS FOUND	Y7.3		
			1,84124307	77.4	1098_89	296166-7

3 1 OFF_RECV_DNA: PROCEDURE INTERRUFT 32:

OUTPUT:SINGLE_NABS_371=40H: MAIT=FALSE: END:

Table 2. PL/M-86 Compiler RUPI/8088 Interface Example

```
SERIES-III PL/M-86 V1. O COMPILATION OF MODULE RUPI_88
OBJECT MODULE PLACED IN : F1: R88. OBJ
COMPILER INVOKED BY: PLM86. 86 : F1: R88. SRC
               SDEBUG
               STITLE ('RUPI/8088 INTERFACE EXAMPLE')
               RUP I _88: DO;
                   DECLARE
   2
      1
                                        LITERALLY MEITERALLY , AGGA 8
                                        LIT
                                                      '01H'.
                                                      'OOH'.
                   FALSE
                                        LIT
                   RECV_BUFFER (64)
                                        BYTE.
                                                                 BOGA 8
                   XMIT_BUFFER (64)
                                        BYTE.
                                        BYTE,
                   WAIT
                                        BYTE.
                                    /* 8237 PORTS*/
                                                      'OFFDDH'.
                   MASTER_CLEAR_37
                                        LIT
                                                      'OFFDEH'.
                   COMMAND_37
ALL_MASK_37
                                        LIT
                                        LIT
                   SINOLE_MASK_37
                                                      'OFFDAH'.
                                        LIT
                                        LIT
                  REQUEST_REG_37
MODE_REG_37
                                                      OFFD9H'
                                        LIT
                                                      OFFDBH'
                                        LIT
                   CLEAR_BYTE_PTR_37
                                        LIT
                                                      'OFFDCH',
                   CHO_ADDR
                                        LIT
                                                     'OFFDOH'
                   CHO_COUNT
                                        LIT
                                                      'OFFD1H',
                   CH1_ADDR
                                        LIT
                                                      'OFFD2H'.
                   CH1_COUNT
                                        LIT
                                                      'OFFD3H'
                   CH2_ADDR
                                        LIT
                                                      'OFFD4H',
                   CH2_COUNT
                                        LIT
                                                      'OFFDSH'.
                   CH3_ADDR
                                        LIT
                                                     'OFFD6H'
                   CH3_COUNT
                                        LIT
                                                     'OFFD7H',
                                                                  CADDR
                           /* 8237 BIT ASSIGNMENTS */
                  CHO_SEL
CH1_SEL
                                        LIT
                                                      '00H4
                                                      101H1
                                        LIT
                  CH3 SEL
                                        LIT
                                                      '02H',
                                                      '03H',
                                        LIT
                  WRITE_XFER
                                                     '04H'.
                                        LIT
                                                      '08H'
                                        LIT
                  DEMAND_MODE
SINGLE_MODE
                                                      'OOH'.
                                        LIT
                                                     '40H'
                                        LIT
                  BLOCK_MODE
SET_MASK
                                        LIT
                                                     'BOH'
                                        LIT
                                                      104H1.
            SEJECT
                             /* 8259 PORTS */
                 STATUS_POLL_59
ICW1_59
                                      LIT
                                                    'OFFEOH'.
                                                    OFFEOH'.
                                      LIT
                 DCW1_59
                                      LIT
                                                    'OFFEIH',
                 OCW2_59
                                      LITHER
                                                    REGISTER BANKES USED: 0. TARGETHOUGHOUT
                 OCW3_59
                                      LIT
                                                    'OFFEOH'.
                 ICW2_59
                                      LIT
                                                    'OFFEIH'.
                                                    ASSEMBLY COMPLETE, NO ERROR, HI 370'
                 ICW3_59
                                      LIT
                 ICW4 59
                                      LIT
                                                    'OFFEIH'
                         /* INTERRUPT SERVICE ROUTINE */
3
            OFF_RECV_DMA: PROCEDURE INTERRUPT 32;
     1
                 OUTPUT (SINGLE_MASK_37)=40H;
 5
     2
                 WAIT=FALSE;
     2
 6
                 END:
                                                                                    296166-4
```


HE 8044	T SMISIA
7 1 DISABLE;	. 571100
/* INITIALIZE 8237	1 */
canolisand and ashivorg south salt of sochatal seat of T	2.0 INTRODUCTION
9 1 DUTPUT (COMMAND 37) =C	040H;
-ROLLO 10 1 TOLE LAW Y OUTPUT (ALL_MASK_37)	This section describes the design of an SDLC data linium
	SINGLE_MODE OR WRITE_XFER OR CHO_SEL); SINGLE_MODE OR READ_XFER OR CH1_SEL);
13 1 DUTPUT (CLEAR_BYTE_PTR_37) =0	and a secondary station. The design was implemented if
CHARLES COLOR AND A	and tested. The following discussion assumes that the the
16 1 OUTPUT (CHO_COUNT) =6	eader understands the 8044 and SDLC. This section is 14,
17 0 1 0 0 OUTPUT (CHO_COUNT) =0	livided into two parts. First the data link design exam- 10
19 1 OUTPUT (CH1 ADDR) =4	ale is discussed. Second the software modules used to HO
20 1 DED COUTPUT (CH1_COUNT) -6	explement the data link are described. To help the 14
	eader understand the discussion of the software, flow 10
7* The third module is a primary station, which is a stand-	haits and software listings are displayed in Appendix.
-som 22 to to be an interest of the program of the son	3H; /*SINGLE MODE, EDGE TRIGGERED INPUT, 8086 INTERRUPT TYPE*/
23 01 24 00 DUTPUT(ICW2_59) =0 24 01 DUTPUT(ICW4_59) =0	OH; /*INTERRUPT TYPE 32*/ 3H; /*AUTO-EDI*/
	FEH; /*ENABLE INTERRUPT LEVEL O*/
ondary station transmits a f.TJECT toleces the destina-	This particular data link design example uses a two
CALL SETS INTERRUPT (32, OFF_RE	CV_DMA); /*LOAD INTERRUPT VECTOR LOCATION*/
27 1 4 MIT_BUFFER(0)=64: /*THE FIRST	TO BE TRANSFERED; NOT INCLUDING THE FIRST BYTE*/
28 1 DO 1= 1 TO 64; /* FILL UP TH 29 2 XMIT_BUFFER(I)=I;	Decrease in the received against and the reference
30 2 END;	pology for an SDLC multidrop is a star as shown in
31 0 1 OFCH; /*	ENABLE CHANNEL 1 AND 2 */
(Open Systems Interce, alkana) reference 122 the	ink is multidrop, the castest way to understand the
physical layer and the data link layer. The physical lay-	nformation flow is to think of the logical (star) topolo-
33 1 WAIT=TRUE;	cy. The term data link in this case refers to the logical
34 1 DO WHILE WAIT; 35 2 END; /* A BLOCK	OF DATA WILL BE TRANSFERRED TO THE RUPI.
HT MAHW closs. The data had layer is defined by SDLC. II GMSE's use of acknowledgements and frame number-	E RUPI RECEIVES A BLOCK OF DATA IT WILL TO THE BOSS MEMORY AND INTERRUPT THE BOSS. FRRIENT SERVICE POLITIME WILL SHIT DEE THE DWA.
edt in bevieder od liw legazzen ind seemanzicontrol	LER AND SET 'WAIT' FALSE */
36 1 DO WHILE 1;	As greatures andre amon each admires nous aidde our
message integrity over the idna link. Now 2 or 78 and	nterface to the SDLC network. Each secondary station has an async terminal connected to it. The secondary
work will not guarantee secondary to secondary mes-	tations are in effect protocol converters which allows
	any async terminal to communicate with any other
tween secondary stations. (DAS 1 BE	sync terminal on the network. The secondary stations
	tse en 8044 with a UART to convert SDLC to async.
MODULE INFORMATION:	Figure 6 displays a block diagram of the data link. The primary station, controls the data link. In addition to
CODE AREA SIZE = OOD7H 215D	lata link control the primary provides a higher level
CONSTANT AREA SIZE = 0000H OD	ayer which is a path control function or networking
VARIABLE AREA SIZE = 0082H 130D MAXIMUM STACK SIZE = 001EH 30D	ayer. The primary serves as a message exchange or
Testas in 124 LINES READ () and of hour diod are A1228	witch. It receives information from one secondary sta-
O PROGRAM WARNINGS	ion and retransmits it to suother secondary station.
totally interrupt driven. The success to data and	Thus a virtual end to end connection is made between
END OF PL/M-86 COMPILATION	my two secondary stations on the network.
8254 programmable interval timer is employed as a	296166-5
programmable band rate generator and system clock driver for the 8251A. The third output from the 8254	network. The first module is a Secondary Station Driv-
	and a user interface. This module is a general purpose

A HIGH PERFORMANCE NETWORK USING THE 8044

2.0 INTRODUCTION

This section describes the design of an SDLC data link using the 8044 (RUPI) to implement a primary station and a secondary station. The design was implemented and tested. The following discussion assumes that the reader understands the 8044 and SDLC. This section is divided into two parts. First the data link design example is discussed. Second the software modules used to implement the data link are described. To help the reader understand the discussion of the software, flow charts and software listings are displayed in Appendix A and Appendix B, respectively.

APPLICATION DESCRIPTION

This particular data link design example uses a two wire half-duplex multidrop topology as shown in Figure 4. In an SDLC multidrop topology the primary station communicates with each secondary station. The secondary stations communicate only to the primary. Because of this hierarchial architecture, the logical topology for an SDLC multidrop is a star as shown in Figure 5. Although the physical topology of this data link is multidrop, the easiest way to understand the information flow is to think of the logical (star) topology. The term data link in this case refers to the logical communication pathways between the primary station and the secondary stations. The data links are shown in Figure 5 as two way arrows.

The application example uses dumb async terminals to interface to the SDLC network. Each secondary station has an async terminal connected to it. The secondary stations are in effect protocol converters which allows any async terminal to communicate with any other async terminal on the network. The secondary stations use an 8044 with a UART to convert SDLC to async. Figure 6 displays a block diagram of the data link. The primary station, controls the data link. In addition to data link control the primary provides a higher level layer which is a path control function or networking layer. The primary serves as a message exchange or switch. It receives information from one secondary station and retransmits it to another secondary station. Thus a virtual end to end connection is made between any two secondary stations on the network.

Three separate software modules were written for this network. The first module is a Secondary Station Driver (SSD) which provides an SDLC data link interface and a user interface. This module is a general purpose driver which requires application software to run it.

The user interface to the driver provides four functions: OPEN, CLOSE, TRANSMIT, and SIU_RECV. Using these four functions properly will allow any application software to communicate over this SDLC data link without knowing the details of SDLC. The secondary station driver uses the 8044's AUTO mode.

The second module is an example of application software which is linked to the secondary station driver. This module drives the 8215A, buffers data, and interfaces with the secondary station driver's user interface.

The third module is a primary station, which is a standalone program (i.e., it is not linked to any other module). The primary station uses the 8044's NON-AUTO or FLEXIBLE mode. In addition to controlling the data link it acts as a message switch. Each time a secondary station transmits a frame, it places the destination address of the frame in the first byte of the information or I field. When the primary station receives a frame, it removes the first byte in the I field and retransmits the frame to the secondary station whose address matches this byte.

This network provides two complete layers of the OSI (Open Systems Interconnection) reference model: the physical layer and the data link layer. The physical layer implementation uses the RS-422 electrical interface. The mechanical medium consists of ribbon cable and connectors. The data link layer is defined by SDLC. SDLC's use of acknowledgements and frame numbering guarantees that messages will be received in the same order in which they were sent. It also guarantees message integrity over the data link. However this network will not guarantee secondary to secondary message delivery, since there are acknowledgements between secondary stations.

2.1 Hardware

The schematic of the hardware is given in Figure 7. The 8251A is used as an async communications controller, in support of the 8044. TxRDY and RxRDY on the 8251A are both tied to the two available external interrupts of the 8044 since the secondary station driver is totally interrupt driven. The 8044 buffers the data and some variables in a 2016 (2K x 8 static RAM). The 8254 programmable interval timer is employed as a programmable baud rate generator and system clock driver for the 8251A. The third output from the 8254 could be used as an external baud rate generator for the 8044. The 2732A shown in the diagram was not used

intel

Tejri

since the software for both the primary and secondary stations used far less than the 4K bytes provided on the 8744. For the async interface, the standard RS-232 mechanical and electrical interface was used. For the SDLC channel, a standard two wire three state RS-422 driver is used. A DIP switch connected to one of the available ports on the 8044 allows the baud rate, parity, and stop bits to be changed on the async interface. The primary station hardware does not use the USART, 8254, nor the RS-232 drivers.

2.2 SDLC Basic Repertoire

The SDLC commands and responses implemented in the data link include the SDLC Basic Repertoire as defined in the IBM SDLC General Information manual. Table 3 shows the commands and responses that the primary and the secondary station in this data link design recognize and send.

Figure 4. SDLC Multidrop Topology

Figure 5. SDLC Logical Topology

Figure 6. Block Diagram of the Data Link Application Example

Figure 7. Schematic of Async/SDLC Secondary Station Protocol Converter

Table 3. Data Link Commands and Responses Implemented for This Design

Primary Station

	Responses Recognized	Commands Sent
Unnumbered	UA DM FRMR *RD	SNRM DISC
Supervisory	RR RNR	RR RNR
Information	1	

Secondary Station

	Commands Recognized	Responses Sent
Unnumbered	SNRM DISC *TEST	UA DM FRMR *RD *TEST
Supervisory	RR RNR REJ	RR RNR
Information		SISISIA S

*not included in the SDLC Basic Repertoire

The term command specifically means all frames which the primary station transmits and the secondary stations receive. Response refers to frames which the secondary stations transmit and the primary station receives.

NUMBER OF OUTSTANDING FRAMES

This particular data link design only allows one outstanding frame before it must receive an acknowledgement. Immediate acknowledgement allows the secondary station drivers to use the AUTO mode. In addition, one outstanding frame uses less memory for buffering, and the software becomes easier to manage.

2.3 Secondary Station Driver using AUTO Mode

The 8044 secondary station driver (SSD) was written as a general purpose SDLC driver. It was written to be linked to an application module. The application software implements the actual application in addition to interfacing to the SSD. The main application could be, a printer or plotter, a medical instrument, or a termi-

nal. The SSD is independent of the main application, it just provides the SDLC communications. Existing 8051 applications could add high performance SDLC communications capability by linking the SSD to the existing software and providing additional software to be able to communicate with the SSD.

DATA LINK INTERFACE AND USER INTERFACE STATES

The SSD has two software interfaces: a data link interface and a user interface as shown in Figure 8. The data link interface is the part of the software which controls the SDLC communications. It handles link access, command recognition/response, acknowledgements, and error recovery. The user interface provides four functions: OPEN, CLOSE, TRANSMIT, and SIU_RECV. These are the only four functions which the application software has to interface in order to communicate using SDLC. These four functions are common to many I/O drivers like floppy and hard disks, keyboard/CRT, and async communication drivers.

The data link and the user interface each have their own states. Each interface can only be in one state at any time. The SSD uses the states of these two interfaces to help synchronize the application module to the data link.

There are three states which the secondary station data link interface can be in: Logical Disconnect State (L_D_S), Frame Reject State (FRMR_S), and the Information Transfer State (I_T_S). The Logical Disconnect State is when a station is physically connected to the channel but either the primary or secondary have not agreed to enter the Information Transfer State. Both the primary and the secondary stations synchronize to enter into the Information Transfer State. Only when the secondary station is in the I_T_S is it able to transfer data or information to the primary. The Frame Reject State (FRMR_S) indicates that the secondary station has lost software synchronization with the primary or encountered some kind of error condition. When the secondary station is in the FRMR_S, the primary station must reset the secondary to resynchronize.

The user interface has two states, open or closed. In the closed state, the user program does not want to communicate over the network. The communications channel is closed and not available for use. The secondary station tells the primary this by responding to all commands with DM. The primary continues to poll the secondary in case it wants to enter the I_T_S state. When the user program begins communication over the data link it goes into the open state. It does this by calling the OPEN procedure. When the user interface is in the open state it may transfer information to the primary.

RESPONSES AND STATE TRANSITIONS

Table 4 shows the commands which the secondary station recognizes and the responses it generates. The first row in Table 4 displays commands the secondary station recognizes and each column shows the potential responses with respect to secondary station. For example, if the secondary is in the Logical Disconnect State it will only respond with DM, unless it receives a SNRM command and the user state is open. If this is the case, then the response will be UA and the secondary station will move into the I_T_S.

Figure 9 shows the state diagram of the secondary station. When power is first applied to the secondary station, it goes into the Logical Disconnect State. As mentioned above, the I_T_S is entered when the secondary station receives a SNRM command and the user state is open. The secondary responds with UA to let the primary know that it has accepted the SNRM and is entering the I_T_S. The I_T_S can go into either the L_D_S or the FRMR_S. The I_T_S goes into the L_D_S if the primary sends the secondary DISC. The secondary has to respond with UA, and then goes into the L_D_S. If the user interface changes from open to close state, then the secondary sends RD. This causes the primary to send a DISC.

The FRMR_S is entered when a secondary station is in the I_T_S and either one of the following conditions occurs.

 A command can not be recognized by the secondary station. The Nr that was received from the primary station is invalid.

The secondary station cannot leave the FRMR_S until it receives a SNRM or a DISC command.

SOFTWARE DESCRIPTION OF THE SSD

To aid in following the description of the software, the reader may either look at the flow charts which are given for each procedure, or read the PL/M-51 listing provided in Appendix A.

A block diagram of the software structure of the SSD is given in Figure 10. A complete module is identified by the dotted box, and a procedure is identified by the solid box. Therefore the SIU_RECV procedure is not included in the SSD module, it exists in the application software. Two or more procedures connected by a solid line means the procedure above calls the procedure below. Transmit, Power_on_D, Close, and Open are all called by the application software. Procedures without any solid lines connected above are interrupt procedures. The only interrupt procedure in the SSD module is the SIU_INT.

The entire SSD module is interrupt driven. Its design allows the application program to handle real time events or just dedicate more CPU time to the application program. The SIU_INT is the only interrupt procedure in the SSD. It is automatically entered when an SIU interrupt occurs. This particular interrupt can be the lowest priority interrupt in the system.

Table 4. Secondary Station Responses to Primary Station Commands

Data Link States	Primary Station-Commands								
		RR	RNR	SNRM	DISC	TEST			
Information	eqluboM	on Software	scondary Stat	Figure 8. Sa					
Transfer State	RR	RR	RR						
	RNR	RNR	RNR						
	RD	RD	RD	RD		RD			
	FRMR	FRMR	FRMR						
				UA	UA				
						Test			
Logical									
Disconnect State	DM	DM	DM	DM	DM	DM			
				UA					
Frame	FRMR	FRMR	FRMR			FRMR			
Reject State				UA	UA				

Figure 9. State Diagram of Secondary Station

Figure 10. Secondary Station Driver

Figure 10. Secondary Station Driver

SSD INITIALIZATION

Upon reset the application software is entered first. The application software initializes its own variables then calls Power_On_D which is the SSD's initialization routine. The SSD's initialization sets up the transmit and receive data buffer pointers (TBS and RBS), the receive buffer length (RBL), and loads the State variables. The STATION_STATE begins in the L_D_S state, and the USER_STATE begins in the closed state. Finally Power_On_D initializes XMIT_ BUFFER_EMPTY which is a bit flag. This flag serves as a semaphore between the SSD and the application software to indicate the status of the on chip transmit buffer. The SSD does not set the station address. It is the application software's responsibility to do this. After initialization, the SSD is read to respond to all of the primary station commands. Each time a frame is received with a matching station address and a good CRC, the SIU_INT procedure is entered.

SIU_INT PROCEDURE

The first thing the SIU_INT procedure clears is the serial interrupt_bit (SI) in the STS register. If the SIU_INT procedure returns with this bit set, another SI interrupt will occur.

The SIU_INT procedure is branches three independent cases. The first case is entered if the STATION_STATE is not in the I_T_S. If this is true, then the SIU is not in the AUTO mode, and the CPU will have to respond to the primary on its own. (Remember that the AUTO mode is entered when the STATION_STATE enters into I_T_S.) If the STATION_STATE is in the I_T_S, then either the SIU has just left the AUTO mode, or is still in the AUTO mode. This is the second and third case, respectively.

In the first case, if the STATION_STATE is not in the I_T_S, then it must be in either the L_D_S or the FRMR_S. In either case a separate procedure is called based on which state the station is in. The In_Disconnect_State procedure sends to the primary a DM response, unless it received a SNRM command and the USER_STATE equals open. In that case the SIU sends a UA and enters into the I_T_S. The In_FRMR_State procedure will send the primary the FRMR response unless it received either a DISC or an SNRM. If the primary's command was a DISC, then the secondary will send a UA and enter into the L_D_S. If the primary's command was a SNRM, then the secondary will send a UA, enter into the I_T_S, and clear NSNR register.

For the second case, if the STATION_STATE is in the I_T_S but the SIU left the AUTO mode, then the CPU must determine why the AUTO mode was exited, and generate a response to the primary. There are four

reasons for the SIU to automatically leave the AUTO mode. The following is a list of these reasons, and the responses given by the SSD based on each reason.

1. The SIU has received a command field it does not recognize.

Response: If the CPU recognizes the command, it generates the appropriate response. If neither the SIU nor the CPU recognize the command, then a FRMR response is sent.

 The SIU has received a Sequence Error Sent (SES=1 in NSNR register). Nr(P)≠Ns(S)+1, and Nr(P)≠Ns(S).

Response: Send FRMR.

3. A buffer overrun has occurred. BOV = 1 in STS register.

Response: Send FRMR.

An I frame with data was received while RPB=1.
 Response: Go back into AUTO mode and send an AUTO mode response

In addition to the above reasons, there is one condition where the CPU forces the SIU out of the AUTO mode. This is discussed in the SSD's User Interface Procedures section in the CLOSED procedure description

Finally, case three is when the STATION_STATE is in the I_T_S and the AUTO mode. The CPU first looks at the TBF bit. If this bit is 0 then the interrupt may have been caused by a frame which was transmitted and acknowledged. Therefore the XMIT_BUFF-ER_EMPTY flag is set again, indicating that the application software can transmit another frame.

The other reason this section of code could be entered is if a valid I frame was received. When a good I frame is received the RBE bit equals 0. This means that the receiver is disabled. If the primary were to poll the 8044 while RBE=0, it would time out since no response would be given. Time outs reduce network throughput. To improve network performance, the CPU first sets RBP, then sets RBE. Now when the primary polls the 8044 an immediate RNR response is given. At this point the SSD calls the application software procedure SIU_RECV and passes the length of the data as a parameter. The SIU_RECV procedure reads the data out of the receive buffer then returns to the SSD module. Now that the receive information has been transferred, RBP can be cleared.

COMMAND_DECODE PROCEDURE

The Command_Decode procedure is called from the SIU_INT procedure when the STATION_STATE = I_T_S and the SIU left the AUTO mode as a result of not being able to recognize the receive control byte. Commands which the SIU AUTO mode does not

Figure 11. Information Field of the FRMR Response, as Transmitted

recognize are handled here. The commands recognized in this procedure are: SNRM, DISC, and TEST. Any other command received will generate a Frame Reject with the nonimplemented command bit set in the third data byte of the FRMR frame. Any additional unnumbered frame commands which the secondary station is going to implement, should be implemented in this procedure.

IF an SNRM is received the command_decode procedure calls the SNRM_Response procedure. The SNRM_Response procedure sets the STATION_STATE = I_T_S, clears the NSNR register and responds with a UA frame. If a DISC is received, the command_decode procedure sets the STATION_STATE = L_D_S, and responds with a UA frame. When a TEST frame is received, and there is no buffer overrun, the command_decode procedure responds with a TEST frame retransmitting the same data it received. However if a TEST frame is received and there is a buffer overrun, then a TEST frame will be sent without any data, instead of a FRMR with the buffer overrun bit set.

FRAME REJECT PROCEDURES

There are two procedures which handle the FRMR state: XMIT_FRMR and IN_FRMR_STATE. XMIT_FRMR is entered when the secondary station first goes into the FRMR state. The frame reject response frame contains the FRMR response in the command field plus three additional data bytes in the I

field. Figure 11 displays the format for the three data bytes in the I field of a FRMR response. The XMIT_FRMR procedure sets up the Frame Reject response frame based on the parameter REASON which is passed to it. Each place in the SSD code that calls the XMIT_FRMR procedure, passes the REASON that this procedure was called, which in turn is communicated to the primary station. The XMIT_FRMR procedure uses three bytes of internal RAM which it initializes for the correct response. The TBS and TBL registers are then changed to point to the FRMR buffer so that when a response is sent these three bytes will be included in the I field.

The IN_FRMR_STATE procedure is called by the SIU_INT procedure when the STATION_STATE already is in the FRMR state and a response is required. The IN_FRMR_STATE procedure will only allow two commands to remove the secondary station from the FRMR state: SNRM and DISC. Any other command which is received while in the FRMR state will result in a FRMR response frame.

XMIT_UNNUMBERED PROCEDURE

This is a general purpose transmit procedure, used only in the FLEXIBLE mode, which sends unnumbered responses to the primary. It accepts the control byte as a parameter, and also expects the TBL register to be set before the procedure is called. This procedure waits until the frame has been transmitted before returning. If

this procedure returned before the transmit interrupt was generated, the SIU_INT routine would be entered. The SIU_INT routine would not be able to distinguish this condition.

SSD's User Interface Procedures—OPEN, CLOSE, TRANSMIT, SIU_RECV—are discussed in the following section.

The OPEN procedure is the simplest of all, it changes the USER_STATE to OPEN_S then returns. This lets the SSD know that the user wants to open the channel for communications. When the SSD receives a SNRM command, it checks the USER_STATE. If the USER_STATE is open, then the SSD will respond with a UA, and the STATION_STATE enters the I_T_S.

The CLOSE procedure is also simple, it changes the USER_STATE to CLOSED_S and sets the AM bit to 0. Note that when the CPU sets the AM bit to 0 it puts the SIU out of the AUTO mode. This event is asynchronous to the events on the network. As a result an I frame can be lost. This is what can happen.

- 1. AM is set to 0 by the CLOSE Procedure.
- 2. An I frame is received and an SI interrupt occurs.
- 3. The SIU_INT procedure enters case 2 (STATION_STATE = I_T_S, and AM = 0).
- 4. Case 2 detects that the USER_STATE = CLOSED_S, sends an RD response and ignores the fact that an I frame was received.

Therefore it is advised to never call the CLOSE procedure or take the SIU out of the AUTO mode when it is receiving I frames or an I frame will be lost.

For both the TRANSMIT and SIU_RECV procedures, it is the application software's job to put data into the transmit buffer, and take data out of the receive buffer. The SSD does not transfer data in or out of its transmit or receive buffers because it does not know what kind of buffering the application software is implementing. What the SSD does do is notify the application software when the transmit buffer is empty, XMIT_BUFFER_EMPTY = 1, and when the receive buffer is full.

One of the functions that the SSD performs to synchronize the application software to the SDLC data link. However some of the synchronization must also be done by the application software. Remember that the SSD does not want to hang up the application software waiting for some event to occur on the SDLC data link, therefore the SSD always returns to the application software as soon as possible.

For example, when the application software calls the OPEN procedure, the SSD returns immediately. The

application software thinks that the SDLC channel is now open and it can transmit. This is not the case. For the channel to be open, the SSD must receive an SNRM from the primary and respond with a UA. However, the SSD does not want to hang up the application software waiting for an SNRM from the primary before returning from the OPEN procedure. When the TRANSMIT procedure is called, the SSD expects the STATION_STATE to be in the I_T_S. If it isn't, the SSD refuses to transmit the data. The TRANSMIT procedure first checks to see if the USER_STATE is open. If not, the USER_STATE_CLOSED parameter is passed back to the application module. The next thing TRANSMIT checks is the STATION_STATE. If this is not open, then TRANSMIT passes back LINK_DISCONNECTED. This means that the USER_STATE is open, but the SSD hasn't received an SNRM command from the primary yet. Therefore, the application software should wait awhile and try again. Based on network performance, one knows the maximum amount of time it will take for a station to be polled. If the application software waits this length of time and tries again but still gets a LINK_DISCON-NECTED parameter passed back, higher level recovery must be implemented. * aerubecorg learetze *

Before loading the transmit buffer and calling the TRANSMIT procedure, the application software must check to see that XMIT_BUFFER_EMPTY = 1. This flag tells the application software that it can write new data into the transmit buffer and call the TRANS-MIT procedure. After the application software has verified that XMIT_BUFFER_EMPTY = 1, it fills the transmit buffer with the data and calls the TRANS-MIT procedure passing the length of the buffer as a parameter. The TRANSMIT procedure checks for three reasons why it might not be able to transmit the frame. If any of these three reasons are true, the TRANSMIT procedure returns a parameter explaining why it couldn't send the frame. If the application software receives one of these responses, it must rectify the problem and try again. Assuming these three conditions are false, then the SSD clears XMIT_BUFF-ER_EMPTY, attempts to send the data and returns the parameter DATA_TRANSMITTED. XMIT_ BUFFER_EMPTY will not be set to 1 again until the data has been transmitted and acknowledged.

The SIU_RECV procedure must be incorporated into the application software module. When a valid I frame is received by the SIU, it calls the SIU_RECV procedure and passes the length of the received data as a parameter. The SIU_RECV procedure must remove all of the data from the receive buffer before returning to the SIU_INT procedure.

LINKING UP TO THE SSD THE SENTER METERS AND THE SENTER SENTERS AND THE SENTERS

Figure 12 shows the necessary parts to include in a PL/M-51 application program that will be linked to the SSD module. RL51 is used to link and locate the SSD and application modules. The command line used to do this is:

RL51 SSD.obj,filename.obj,PLM51.LIB TO filename & RAMSIZE(192) men. If not, the USER_STATE_CLOSED paran \$registerbank(0) user\$mod: do; Z sall al axondo TIMEMANT anid \$include (reg44.dcl) and dage for at aid 3 LINK DISCONNECTED This means eraloeb lit freed Gee and literally 'literally', buffer_length lit 60'. siu_xmit_buffer bloods suswflor noitsoilgas add (buffer_length) byte external idata. siu_recv_buffer live it and to tauoma mumizer (buffer_length) byte external. xmit_buffer_empty bit external: /* external procedures */ betnemeloni ed lama power_on_d: procedure external: end power_on_d; ilgs solt subscom TIMEMARI sheck to see that XMIT_BUFFER_EMPTY = close: procedure external using 1: end close; so bas reflud tunguard and other also were MIT procedure. After the application software has veopen: procedure external using 1; end open; allso bus also oft diw tolled imensi MIT procedure passing the length of the buffer as transmit: procedure (xmit_buffer_length) byte external; declare xmit_buffer_length byte; end transmit; ag a smaller stubecom TIMEMART /* local procedures */ salt to see savisces of the problem and try again. Assuming these three comsiu_recv: procedure (length) using 1; R_EMPTY, attempts to send the data angilduq declare length byte, ATAC THE MAN AND THE BUFFER. EMPTY will not be set to I again until th lata has been transmitted and solonowled ad. end siu_recv; od kom sunbecom VOSS UIS ant

Figure 12. Applications Module Link Information

PL/M-51 AND REGISTER BANKS

The 8044 has four register banks. PL/M-51 assumes that an interrupt procedure never uses the same bank as the procedure it interrupts. The USING attribute of a procedure, or the \$REGISTERBANK control, can be used to ensure that.

The SSD module uses the \$REGISTERBANK(1) attribute. Some procedures are modified with the USING attribute based on the register bank level of the calling procedure.

2.4 Application Module; ASYNC to SDLC Protocol Converter

One of the purposes of this application module is to demonstrate how to interface software to the SSD. Another purpose is to implement and test a practical application. This application software performs I/O with an async terminal through a USART, buffers data, and also performs I/O with the SSD. In addition, it allows the user on the async terminal to: set the station address, set the destination address, and go online and offline. Setting the station address sets the byte in the STAD register. The destination address is the first byte in the I field. Going online or offline results in either calling the OPEN or CLOSE procedure respectively.

After the secondary station powers up, it enters the 'terminal mode', which accepts data from the terminal. However, before any data is sent, the user must configure the station. The station address and destination address must be set, and the station must be placed online. To configure the station the ESC character is entered at the terminal which puts the protocol converter into the 'configure mode'. Figure 13 shows the menu which appears on the terminal screen.

Figure 13. Menu for the Protocol Converter

In the terminal mode data is buffered up in the secondary station. A Line Feed character 'LF' tells the secondary station to send an I frame. If more than 60 bytes are buffered in the secondary station when a 'LF' is received, the applications software packetizes the data into 60 bytes or less per frame. If a LF is entered when the station is offline, an error message comes on the screen which says 'Unable to Get Online'.

The secondary station also does error checking on the async interface for Parity, Framing Error, and Overrun Error. If one of these errors are detected, an error message is displayed on the terminal screen.

Figure 14. Block Diagram of Secondary Station Protocol Converter Illustrating Buffering

BUFFERING

There are two separate buffers in the application module: a transmit buffer and a receive buffer. The transmit buffer receives data from the USART, and sends data to the SSD. The receive buffer receives data from the SSD, and transmits data to the USART. Each buffer is a 256 byte software FIFO. If the transmit FIFO becomes full and no 'LF' character is received, the secondary station automatically begins sending the data. In addition, the application modules will shut off the terminal's transmitter using CTS until the FIFO has been partially emptied. A block diagram of the buffering for the protocol converter is given in Figure 14.

APPLICATION MODULE SOFTWARE

A block diagram of the application module software is given in Figure 15. There are three interrupt routines in this module: USART_RECV_INT, USART_XMIT_INT, and TIMER_O_INT. The first two are for servicing the USART. TIMER_O_INT is used if the TRANSMIT procedure in the SSD is called and does not return with the DATA_TRANSMITTED parameter. TIMER_O_INT employs Timer 0 to wait a finite amount of time before trying to transmit again. The highest priority interrupt is USART_RECV_INT. The main program and all the procedures it calls use register bank 0, USART_XMIT_INT and TIMER_O_INT and FIFO_R_OUT use bank 1, while USART_RECV_INT and all the procedures it calls use register bank 2.

POWER_ON PROCEDURE

The Power_On procedure initializes all of the chips in the system including the 8044. The 8044 is initialized to use the on-chip DPLL with NRZI coding, PreFrame Sync, and Timer 1 auto reload at a baud rate of 62.5 Kbps. The 8254 and the 8251A are initialized next based on the DIP switch values attached to port 1 on the 8044. Variables and pointers are initialized, then the SSD's Power-Up Procedure, Power_On_D, is called. Finally, the interrupt system is enabled and the main program is entered.

MAIN PROGRAM

The main program is a simple loop which waits for a frame transmit command. A frame transmit command is indicated when the variable SEND_DATA is greater than 0. The value of SEND_DATA equals the number of 'LF' characters in the transmit FIFO, hence it also indicates the number of frames pending transmission. Each time a frame is sent, SEND_DATA is decremented by one. Thus when SEND_DATA is greater than 0, the main program falls down into the

next loop which polls the XMIT_BUFFER_EMP-TY bit. When XMIT_BUFFER_EMPTY equals 1, the SIU_XMIT_BUFFER can be loaded. The first byte in the buffer is loaded with the destination address while the rest of the buffer is loaded with the data. Bytes are removed from the transmit FIFO and placed into the SIU_XMIT_BUFFER until one of three things happen: 1. a 'LF' character is read out of the FIFO, 2. the number of bytes loaded equals the size of the SIU_XMIT_BUFFER, or 3. the transmit FIFO is empty.

After the SIU_XMIT_BUFFER is filled, the SSD TRANSMIT procedure is called and the results from the procedure are checked. Any result other than DATA_TRANSMITTED will result in several retries within a finite amount of time. If all the retries fail, then the LINK_DISC procedure is called which sends a message to the terminal, 'Unable to Get Online'.

USART_RECV_INT PROCEDURE

When the 8251A receives a character, the RxRDY pin on the 8251A is activated, and this interrupt procedure is entered. The routine reads the USART status register to determine if there are any errors in the character received. If there are, the character is discarded and the ERROR procedure is called which prints the type of error on the screen. If there are no errors, the received character is checked to see if it's an ESC. If it is an ESC, the MENU procedure is called which allows the user to change the configuration. If neither one of these two conditions exists, the received character is inserted into the transmit FIFO. The received character may or may not be echoed back to the terminal based on the dip switch settings.

TRANSMIT FIFO

The transmit FIFO consists of two procedures: FIFO_ T_IN and FIFO_T_OUT. FIFO_T_IN inserts a character into the FIFO, and FIFO_T_OUT removes a character from the FIFO. The FIFO itself is an array of 256 bytes called FIFO_T. There are two pointers used as indexes in the array to address the characters: IN_PTR_T and OUT_PTR_T. IN_ PTR_T points to the location in the array which will store the next byte of data inserted. OUT_PTR_T points to the next byte of data removed from the array. Both IN_PTR_T and OUT_PTR_T are declared as bytes. The FIFO_T_IN procedure receives a character from the USART_RECV_INT procedure and stores it in the array location pointed to by IN_PTR_ T, then IN_PTR_T is incremented. Similarly, when FIFO_T_OUT is called by the main program, to load the SIU_XMIT_BUFFER, the byte in the array

pointed to by OUT_PTR_T is read, then OUT_PTR_T is incremented. Since IN_PTR_T and OUT_PTR_T are always incremented, they must be able to roll over when they hit the top of the 256 byte address space. This is done automatically by having both IN_PTR_T and OUT_PTR_T declared as bytes. Each character inserted into the transmit FIFO is tested to see if it's a LF. If it is a LF, the variable SEND_DATA is incremented, which lets the main program know that it is time to send an I frame. Similarly each character removed from the FIFO is tested. SEND_DATA is decremented for every LF character removed from the FIFO.

IN_PTR_T and OUT_PTR_T are also used to indicate how many bytes are in the FIFO, and whether it is full or empty. When a character is placed into the FIFO and IN_PTR_T is incremented, the FIFO is full if IN_PTR_T equals OUT_PTR_T. When a character is read from the FIFO and OUT_PTR_T is incremented, the FIFO is empty if OUT_PTR_T equals IN_PTR_T. If the FIFO is neither full nor empty, then it is in use. A byte called BUFFER_ STATUS_T is used to indicate one of these three conditions. The application module uses the buffer status information to control the flow of data into and out of the FIFO. When the transmit FIFO is empty, the main program must stop loading bytes into the SIU_ XMIT_BUFFER. Just before the FIFO is full, the async input must be shut off using CTS. Also, if the FIFO is full and SEND_DATA = 0, then SEND_ DATA must be incremented to automatically send the data without an LF.

RECEIVE FIFO

The receive FIFO operates in a fashion similar to the transmit FIFO. Data is inserted into the receive FIFO from the SIU_RECV procedure. The SIU_RECV procedure is called by the SIU_INT procedure when a valid I frame is received. The SIU_RECV procedure merely polls the receive FIFO status to see if it's full before transferring each byte from the SIU_RECV_ BUFFER into the receive FIFO. If the receive FIFO is full, the SIU_RECV procedure remains polling the FIFO status until it can insert the rest of the data. In the meantime, the SIU AUTO mode is responding to all polls from the primary with a RNR supervisory frame. The USART_XMIT_INT interrupt procedure removes data from the receive FIFO and transmits it to the terminal. The USART transmit interrupt remains enabled while the receive FIFO has data in it. When the receive FIFO becomes empty, the USART transmit interrupt is disabled.

2.5 Primary Station

The primary station is responsible for controlling the data link. It issues commands to the secondary

stations and receives responses from them. The primary station controls link access, link level error recovery, and the flow of information. Secondaries can only transmit when polled by the primary.

Most primary stations are either micro/minicomputers, or front end processors to a mainframe computer. The example primary station in this design is standalone. It is possible for the 8044 to be used as an intelligent front end processor for a microprocessor, implementing the primary station functions. This latter type of design would extensively off-load link control functions for the microprocessor. The code listed in this paper can be used as the basis for this primary station design. Additional software is required to interface to the microprocessor. A hardware design example for interfacing the 8044 to a microprocessor can be found in the applications section of this handbook.

The primary station must know the addresses of all the stations which will be on the network. The software for this primary needs to know this before it is compiled, however a more flexible system would download these parameters.

From the listing of the software it can be seen that the variable NUMBER_OF_STATIONS is a literal declaration, which is 2 in this design example. There were three stations tested on this data link, two secondaries and one primary. Following the NUMBER_OF_STATIONS declaration is a table, loaded into the object code file at compile time, which lists the addresses of each secondary station on the network.

REMOTE STATION DATABASE

The primary station keeps a record of each secondary station on the network. This is called the Remote Station Database (RSD). The RSD in this software is an array of structures, which can be found in the listing and also in Figure 16. Each RSD stores the necessary information about that secondary station.

To add additional secondary stations to the network, one simply adjusts the NUMBER_OF_STATIONS declaration, and adds the additional addresses to the SECONDARY_ADDRESSES table. The number of RSDs is automatically allocated at compile time, and the primary automatically polls each station whose address is in the SECONDARY_ADDRESSES table.

Memory for the RSDs resides in external RAM. Based on memory requirements for each RSD, the maximum number of stations can be easily buffered in external RAM. (254 secondary stations is the maximum number SDLC will address on the data link; i.e. 8-bit address, FF H is the broadcast address, and 0 is the null address. Each RSD uses 70 bytes of RAM. 70 x 254 = 17,780.)

ram of User Software

The station state, in the RSD structure, maintains the status of the secondary. If this byte indicates that the secondary is in the DISCONNECT_S, then the primary tries to put the station in the I_T_S by sending an SNRM. If the response is a UA then the station state changes into the I_T_S. Any other frame received results in the station state remaining in the DIS-CONNECT_S. When the RSD indicates that the station state is in the I_T_S, the primary will send either an I, RR, or RNR command, depending on the local and remote buffer status. When the station state equals GO_TO_DISC the primary will send a DISC command. If the response is a UA frame, the station state will change to DISCONNECT_S, else the station state will remain in GO_TO_DISC. The station state is set to GO_TO_DISC when one of the following responses occur:

- 1. A receive buffer overrun in the primary.
- 2. An I frame is received and $Nr(P) \neq Ns(S)$.
- An I frame or a Supervisory frame is received and Ns(P) + 1 ≠ Nr(S) and Ns(P) ≠ Nr(S).
- 4. A FRMR response is received.
- 5. An RD response is received. (2) 14 11 .oals beloods
- 6. An unknown response is received.

The send count (Ns) and receive count (Nr) are also maintained in the RSD. Each time an I frame is sent by the primary and acknowledged by the secondary, Ns is incremented. Nr is incremented each time a valid I frame is received. BUFFER_STATUS indicates the status of the secondary station's buffer. If an RR response is received, BUFFER_STATUS is set to BUFFER_READY. If a RNR response is received, BUFFER_NOT_READY.

ncrementing the Nr field, the I frame in RNINFFUE

The buffering for the primary station is as follows: within each RSD is a 64 byte array buffer which is initially empty. When the primary receives an I frame, it looks for a match between the first byte of the I frame and the addresses of the secondaries on the network. If a match exists, the primary places the data in the RSD buffer of the destination station. The INFO_LENGTH in the RSD indicates how many bytes are in the buffer. If INFO_LENGTH equals 0, then the buffer is empty. The primary can buffer only one I frame per station. If a second I frame is received while the addressed secondary's RSD buffer is full, the primary cannot receive any more I frames. At this point the primary continues to poll the secondaries using RNR supervisory frame.

PRIMARY STATION SOFTWARE

A block diagram of the primary station software is shown in Figure 17. The primary station software consists of a main program, one interrupt routine, and several procedures. The POWER_ON procedure begins by initializing the SIU's DMA and enabling the receiver. Then each RSD is initialized. The DPLL and the timers are set, and finally the TIMER 0 interrupt is enabled.

The main program consists of an iterative do loop within a do forever loop. The iterative do loop polls each secondary station once through the do loop. The variable STATION_NUMBER is the counter for the iterative do statement which is also used as an index to the array of RSD structures. The primary station issues one command and receives one response from every secondary station each time through the loop. The first statement in the loop loads the secondary station address, indexed by STATION_NUMBER into the array of the RSD structures. Now when the primary sends a command, it will have the secondary's address in the address field of the frame. The automatic address recognition feature is used by the primary to recognize the response from the secondary.

Next, the main program determines the secondary station's state. Based on this state, the primary knows what command to send. If the station is in the DIS-CONNECT_S, the primary calls the SNRM_P procedure to try and put the secondary in the I_T_S. If the station state is in the GO_TO_DISC state, the DISC_P is called to try and put the secondary in the L_D_S. If the secondary is in neither one of the above two states, then it is in the I_T_S. When the secondary is in the I_T_S, the primary could send one of three commands: I, RR, or RNR. If the RSD's buffer has data in it, indicated by INFO_LENGTH being greater than zero, and the secondary's BUFF-ER_STATUS equals BUFFER_READY, then an I frame will be sent. Else if RPB = 0, an RR supervisory frame will be sent. If neither one of these cases is true, then an RNR will be sent. The last statement in the main program checks the RPB bit. If set to one, the BUFFER_TRANSFER procedure is called, which transfers the data from the SIU receive buffer to the appropriate RSD buffer.

Figure 16. Remote Station Database Structure

RECEIVE TIME OUT of the frame. The TUO AMIT avide address field of the frame.

Each time a frame is transmitted, the primary sets a receive time out timer; Timer 0. If a response is not received within a certain time, the primary returns to the main program and continues polling the rest of the stations. The minimum length of time the primary should wait for a response can be calculated as the sum of the following parameters.

- 1. Propagation time to the secondary station
- 2. Clear-to-send at the secondary station's DCE
- 3. Appropriate time for secondary station processing
- 4. Propagation time from the secondary station
- 5. Maximum frame length time

The clear-to-send time and the propagation time are negligible for a local network at low bit rates. However, the turnaround time and the maximum frame length time are significant factors. Using the 8044 secondaries in the AUTO mode minimizes turnaround time. The

maximum frame length time comes from the fact the 8044 does not generate an interrupt from a received frame until it has been completely received, and the CRC is verified as correct. This means that the time-out is bit rate dependent.

Ns AND Nr CHECK PROCEDURES

Each time an I frame or supervisory frame is received, the Nr field in the control byte must be checked. Since this data link only allows one outstanding frame, a valid Nr would satisfy either one of two equations; Ns(P) + 1 = Nr(S) the I frame previously sent by the primary is acknowledged, Ns(P) = Nr(S) the I frame previously sent is not acknowledged. If either one of these two cases is true, the CHECK_NR procedure returns a parameter of TRUE; otherwise a FALSE parameter is returned. If an acknowledgement is received, the Ns byte in the RSD structure is incremented, and the Information buffer may be cleared. Otherwise the information buffer remains full.

When an I frame is received, the Ns field has to be checked also. If Nr(P) = Ns(S), then the procedure returns TRUE, otherwise a FALSE is returned.

RECEIVE PROCEDURE 1 has (all) shares times off T

The receive procedure is called when a supervisory or information frame is sent, and a response is received before the time-out period. The RECEIVE procedure can be broken down into three parts. The first part is entered if an I frame is received. When an I frame is received, Ns, Nr and buffer overrun are checked. If there is a buffer overrun, or there is an error in either Ns or Nr, then the station state is set to GO_TO_ DISC. Otherwise Nr in the RSD is incremented, the receive field length is saved, and the RPB bit is set. By incrementing the Nr field, the I frame just received is acknowledged the next time the primary polls the secondary with an I frame or a supervisory frame. Setting RBP protects the received data, and also tells the main program that there is data to transfer to one of the RSD buffers.

Figure 17. Block Diagram of Primary Station Software Structure

If a supervisory frame is received, the Nr field is checked. If a FALSE is returned, then the station state is set to GO_TO_DISC. If the supervisory frame received was an RNR, buffer status is set to not ready. If the response is not an I frame, nor a supervisory frame, then it must be an Unnumbered frame.

The only Unnumbered frames the primary recognizes are UA, DM, and FRMR. In any event, the station

state is set to GO_TO_DISC. However, if the frame received is a FRMR, Nr in the second data byte of the I field is checked to see if the secondary acknowledged an I frame received before it went into the FRMR state. If this is not done and the secondary acknowledged an I frame which the primary did not recognize, the primary transmits the I frame when the secondary returns to the I_T_S. In this case, the secondary would receive duplicate I frames.

Figure 18. Secondary Station Driver Flow Chart

Figure 19. Secondary Station Driver Flow Chart

Figure 21. Secondary Station Driver Flow Chart

Figure 22. Secondary Station Driver Flow Chart

Figure 23. Secondary Station Driver Flow Chart

Figure 25. Application Module Flow Chart

MENU PROCEDURE

OUTPUT MENU TO TERMINAL I = GET-OPTION STATUS = PARITY ERROR ERR MESSAGE = . PARITY 1 = 0 CALL OUTPUT-MESSAGE 'ENTER THE STATION ADDRESS:_ CALL GET-HEX SHIFT TO LEFT BY FOUR ERR-WESSAGE-PTR = OVER-RUN CALL GET-HEX OR WITH PREVIOUS HEX CHAR CHAP-MESS LOAD ADDRESS INTO STAD CALL OUTPUT-MESSAGE
'THE NEW STATION ADDRESS: N 1 = 2 N CALL OPEN CALL OUTPUT-MESSAGE ENTER THE DESTINATION ADDRESS: RETURN CALL GET-HEX SHIFT TO LEFT BY FOUR 1 = 3 CALL GET-HEX OR WITH PREVIOUS HEX-CHAR CALL CLOSE LOAD ADDRESS INTO DESTINATION-ADDRESS RETURN CALL OUT-MESSAGE
'THE NEW DESTINATION ADDRESS IS:_ RETURN RETURN 296166-29 Figure 27. Application Module Flow Chart

Figure 29. Application Module Flow Chart

Figure 30. Application Module Flow Chart

Figure 31. Application Module Flow Chart

Figure 32. Primary Station Flow Charts

Figure 33. Primary Station Flow Charts

Figure 33. Primary Station Flow Charts

Figure 34. Primary Station Flow Charts

Figure 36. Primary Station Flow Charts

Figure 37. Primary Station Flow Charts

APPENDIX B LISTINGS OF SOFTWARE MODULES

L/M-	51 COMF	PILER RUPI-44 Secondary Station Driver	vevirG neithed grabnosed to 20:24:47 09/3	50/B3	PAGE
		/# Variables #/	ADSTRUCT BURFUR ENGINE OF		
		USER_STATE BYTE AUXILIARY,			
		STATION_STATE BYTE AUXILIARY.			
		I_FRAME_LENGTH BYTE AUXILIARY,			
		-7. Was True III	42.45%		
		/* Buffers */	GETTINGUART_ATADABITATE	8	
		/# BUTTETS #/			
			'60', INTATA WRITER		
		BUFFER_LENGTH LIT			55
		SIU_XMIT_BUFFER (BUFFER_LENGTH) BYTE	PUBLIC IDATA,		
		SIU_RECV_BUFFER(BUFFER_LENGTH) BYTE FRMR_BUFFER(3) BYTE,	TALL THEN GENERAL CONTRACTOR CONTRACTOR		
		/* Flags */	DECLARE CONTROL BYTE BYTE		80
		XMIT_BUFFER_EMPTY BIT PUBLIC:		2	
		WILL TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR	129/07	12	45
-	-	ATH BECH. BROOFFIEE A FNATH EVERNA	424979		
7	5	SIU_RECV: PROCEDURE (LENGTH) EXTERNAL;	118 TON 3.10M CC		
8	5	DECLARE LENGTH BYTE			
9	1	END BIU_RECV;			0.0
1.2					
10	5	OPEN: PROCEDURE PUBLIC UBING 2)	(0.58/38/HLANN) TINK CKS		
11	2	USER_STATE=OPEN_S;			
12	1	END OPEN			
13	2	CLOSE: PROCEDURE PUBLIC USING 2			
14	2	AM=0;	MONTH AND THE PARTY OF THE PART		346
15	2	UBER_STATE=CLOSED_S;			
16	1	END CLOSE;	IF TRUE AND LOW) CO U /s Respond 15 p		
			GG VEHT		
17	2	POWER_ON_D: PROCEDURE PUBLIC USING OF			
**		remainings. I mostation of reservoirs of	CHIL KRIT, MRARGERIDIUM		
18	2	HEER STATE-CLOSED S.			
19	2	USER_STATE=CLOSED_S; STATION_STATE=DISCONNECT_S;	图象 3 中的 \$1 中文 《中华大学的图》和SAMON图》表的图像 "经		
20	2	TBS=. SIU_XMIT_BUFFER(0);			
21	2	BRO- BILL DEGLI BUREER (A)			
		RBS=. BIU_RECV_BUFFER(0);	STEER FRANK LENGTH		
55	2	KBL=BOFFEK_LENGTH;		0	
23	2	RBE=1; /* Enable the SIU's receiver	*/	12	
24	2	XMIT_BUFFER_EMPTY=1;			85
La de					
25	1	END POWER_ON_D;	(8890909) 1090 010		
	N. C. S.				
26	5	TRANSMIT: PROCEDURE (XMIT_BUFFER_LENGTH) BYTE	PUBLIC USING O:		
			MIT FROM PROCEDURG (REARDH) .	8	
		/* User must check XMIT_BUFFER_EMPTY flag before	calling this procedure */		
			STYS MODACH BRAJONS		
27	2	DECLARE XMIT_BUFFER_LENGTH BYTE.			
			LIARY,		
		STATUS BYTE AUXI	LIARY	5.	6.95
58	2	IF USER_STATE=CLOSED_S THEN STATUS=USER_STATE_CLOSED;	TRUE FROM SUPPERIORS	2	701
		THEN STATUS-USER_STATE_CLOSED;			18
30	2	ELSE IF STATION_STATE=DISCONNECT_S	PRINT SUPPERIORS		22
		THEN STATUSHI THE DISCONNECTED:			100
	2	ELSE IF XMIT_BUFFER_LENGTH>BUFFER_LENGTH		- 0	
32		THEN STATUS=OVERFLOW;			2.6
32					
32	3	ELSE DO:			
	3	ELSE DO:	FRINCE CONTROL OF CONTROL		85


```
20:24:47 09/20/83 PAGE 3
PL/M-51 COMPILER RUPI-44 Secondary Station Driver
                               XMIT_BUFFER_EMPTY=0;
TBL=XMIT_BUFFER_LENGTH;
I_FRAME_LENGTH=XMIT_BUFFER_LENGTH; /* Store length in case station
is reset by FRMR, SNRH etc. e/
  36
      3
                               TBF=1;
STATUS=DATA_TRANSMITTED;
  39
                            END
              END TRANSMIT;

XMIT_UNNUMBERED: PROCEDURE (CONTROL_BYTE);
  41
  43 2
                DECLARE CONTROL_BYTE BYTE;
  44
      2
                       TCS=CONTROL_SYTE;
TSF=1;
RTS=1;
DO WHILE NOT SI;
LETYS HIGGS SRA
  45
46
47
  48
49
50
       3
                       END;
SI=0;
  51
     1
             END XMIT_UNNUMBERED;
                  STATION_STATE=I_T_S;
NEWR=0;
IF (RCB AND 10H) <> 0 /* Respond if polled */
THEN DO;
TBL=0;
CALL XMIT_UNNUMBERGERS(14)
  52 2
              SNRM_RESPONSE: PROCEDURE
  53
      2
  54
                                TBL=0; CALL XMIT_UNNUMBERED(UA); 10 681280 DILMUM 3864225089 10 80 239499
  57
       3
  58
59
60
                   END:

IF XMIT_BUFFER_EMPTY=0 /e If an I frame was left pending transmission then restore it e/

THEN DD:

TBL=I_FRAME_LENGTH;
TBF=1;
END:

AM=1;
  62
63
64
65
                  AM=1;
     3
  66
              END SNRM_RESPONSE:
      1
                                             TRANSMIT; PROCESURE (MRY DUFFER LEWETH) BYTE PUBLIC USING O
               XMIT_FRMR: PROCEDURE (REASON) , prelias eroted sale YTES RETURNING ASSES FROM YEAR OF
  67 2
                       TCB-FRMR; TABLESTAN STAR BUTATE
  68 2
  69 2
                       TCS=FRMR;
TBS=.FRMR_BUFFER(O);
TSL=3;
TRIR_BUFFER(O)=RCB;
/* Swap nibbles in NSNR */
FRMR_BUFFER(1)=(SHL((NSNR AND OEH),4) DR SHR((NSNR AND OEOH),4));
DO CASE REASON;
FRMR_BUFFER(2)=01H; /* UNASSIGNED_C */
  70
71
  72
 73
74
75
     3 3
                                                                                                                    296166-46
```



```
20:24:47 09/20/83 PAGE
PL/M-51 COMPILER RUPI-44 Secondary Station Driver
                                                                       FRMR_BUFFER(2)=02H; /+ NO_I_FIELD_ALLOWED */
FRMR_BUFFER(2)=04H; /+ BUFF_OVERRUN */
FRMR_BUFFER(2)=08H; /+ SE9_ERR */
     78
79
                  3
                                                   STATION_STATE=FRMR_S;

IF (RCB AND 10H) <>0
THEN DO;
TSF=1;
RTS=1;
DO MMILE NOT SI;
END;
SI=0;
END;
CHIT_FRMR;
SECONNECT SYATE
SYSTEM
SYSTE
                                                     END:
                                                                                                                                                                                                                                         124 1 FOR IN PRINCES
     80
                2
               2
     81
     84
85
86
87
                                     END XMIT_FRMR
                                      IN_DISCONNECT_STATE: PROCEDURE : /* Called from SIU_INT procedure */
     90
              2
     91
               2
                                                            IF ((USER_STATE=OPEN_S) AND ((RCB AND OEFH)=SNRM))
THEN CALL SNRM_RESPONSE;
                        THEN CALL SNRM_RESPONSE;

ELSE IF (RCS AND 10H) \diamondsuit 0
THEN DO,
TBL=0,
TBL=0,
END,
END IN_DISCONNECT_STATE;
    93 2
     95
     98
                1
                                     IN_FRMR_STATE: PROCEDURE ; /* Called by SIU_INT when a frame has been received when in the FRMR state */
                                                 IF (RCB AND OEFH)=SNRM
  100
               5
                                                            CALL SNRM_RESPONSE:

TBS=_SIU_XMIT_BUFFER(O); /* Restore transmit buffer start address */
  102
                3
                                                                         END:
                                                ELSE IF (RCB AND OEFH)=DISC
THEN DO;
STATION_STATE=DISCONNECT_S;
TBS=.SIU_XNIT_BUFFER(O); /* Restore transmit buffer start address */
IF (RCB AND 10H)<> 0
  105 2
  107
  108
                                                                                             RCB AND 10H) O O
THEN DO,
TBL=0,
CALL XMIT_UNNUMBERED(UA),
  111
                 4 4 4 3
 113
                                                                                                          END: STATE OF THE SEC THE SEC
                                               ELSE DO; /* Receive control byte is something other than DISC or SNRM */
IF (RCS AND 10H) <> 0
THEN DO;
TBF=1;
RTB=1;
 118 4
119 4
                                                                                                                                                                                                                                                                                                                 296166-47
```



```
THE THE THE PERSON NAME OF THE P
PL/M-51 COMPILER RUPI-44 Secondary Station Driver
                                                                                                                                                                                                                                           DO WHILE NOT SI; CIST 1 DE V. MADO ES STATUS SERVE END; CONTROLL OF THE STATUS SERVE SERVE
         121
                                                                                                                                                                                                                             END)
         122
                                            4
                                                                                                                                         END:
                                                                                      END IN_FRMR_STATE
       124 1
                                                                                      COMMAND_DECODE: PROCEDURE ;
                                   2
                                                                                                                                                                                                                                                                                                                                                                                                                                                       1F (RES AND 10H) <50
THESE DO:
TRE-11
                                                                                                               IF (RCB AND OEFH)=SNRM
THEN CALL SNRM_RESPONSE;
ELSE IF (RCB AND OEFH)=DISC
       126
                                                                                                          THEN CALL SNRM_RESPONSE;

ELSE IF (RCB AND OEFH)=DISC
THEN DO;
STATION_STATE=DISCONNECT_S;
IF (RCB AND 10H)<00
THEN DO;
THEN DO;

CALL XHIT_UNNUMBERED(UA);

END;

ELSE IF (RCB AND OEFH)=TEST
THEN DO;
IF (RCB AND 10H)>0 /* Respond if polled.*/
THEN DO;
/* FOR BOV**1, SEND THE TEST RESPONSE WITHOUT AN I FIELD */
THEN DO;
TBL=0;
CALL XHIT_UNNUMBERED(TEST OR 10H);
END;

END;

CALL XHIT_UNNUMBERED(TEST OR 10H);
END;

END;

CALL XHIT_UNNUMBERED(TEST OR 10H);
END;

END;

CALL XHIT_UNNUMBERED(TEST OR 10H);
         130
                                         4 4 3
         133
         135
         136
       137
                                         5
       139
                                   3
      141
                                  4
       144
145
146
147
                                                                                                                                                                                                                                                                                            CALL XMIT_UNNUMBERED()EBT OR SAME
END)

ELSE DO: /* If no SOV. send received I field back to primary */
TBS-RFb:
TBS-RBs;
CALL XMIT_UNNUMBERED(TEST OR 10H).
TBS-, SIU_XMIT_BUFFER(O): /* Restore TBS */
END;
         148
149
         150
         151
                                                                                                                     to assiste stude ventua singuary END rook at
                                                                                                                                                                                                                                                                                               /* If an I frame was pending, set it up again */
                                                                                                             IF XMIT_BUFFER_EMPTY=0
THEN DO:
TBL=I_FRAME_LENGTH:
TBF=1;
END:
END:
END:
       152
                                  4
       154
                                         555433
       155
       157
                                                                                                             ELSE IF (RCB AND OIH) = 0 /* Kicked out of the AUTO mode because an I frame was received while RPB = 1 */

THEN DO:

AM = 1;

IF XNIT_BUFFER_EMPTY = 1

THEN TBL = 0;

TBF = 1; /* Send an AUTO mode response */
      160
                                        2
                                         3
       163
    165
                                        3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             296166-48
```



```
PL/M-51 COMPILER RUPI-44 Secondary Station Driver
   1AR 2
                          ELSE CALL XMIT_FRMR(UNASSIGNED_C); /* Received an undefined or not implemented command */
                      END COMMAND_DECODE, Constant tousing Dutationer after methodisent
   170 2
                      SIU_INT: PROCEDURE INTERRUPT 4:
                                 DECLARE I BYTE AUXILIARY,
   171 2
   172
                                 THEN DO:

IF STATION_STATE<> I_T_S /* Must be in NON-AUTO mode */
THEN DO:

IF RBE=0 /* Received a frame? Give response */
   173
   175
                                                       THEN DO CASE STATION_STATE;
CALL IN_DISCONNECT_STATE;
CALL IN_FRMR_STATE;
   177
   178
179
180
   181
182
183
184
                                             RETURN;
                                /* If the program reaches this point, STATION_STATE=I_T_S which means the SIU either was, or still is in the AUTO MODE */
                                IF AM=0
THEN DO:
   185 2
                                                IF (RCB AND OEFH)=DISC

THEN CALL CONTAIND_DECODE;

ELSE IF USER_STATE=CLOSED_S

THEN DO;

TAL=O;

CALL XMIT_UNNUMBERED(REG_DISC);

ELSE IF SES=1
   187
         3
   189
   191
  192
193
194
           4
                                                 ELSE IF SES=1
THEN CALL XMIT_FRMR(SES_ERR);
ELSE IF BOV=1
   196
          3
                                                             BOV=1
THEN DO: /* DON'T SEND FRMR IF A TEST WAS RECEIVED*/
IF (RCB AND OEFN)=TEST
THEN CALL COMMAND_DECODE;
ELSE
CALL XMIT_FRMR(BUFF_OVERRUN);
  198
                                                 ELSE CALL COMMAND_DECODE:
  201
  202
  203
                                ELSE DO: /* MUST STILL BE IN AUTO MODE */

IF TBF=0

THEN XMIT_BUFFER_EMPTY=1: /* TRANSMITTED A FRAME */
  205
          3
  208
        3
                                        296166-49
 PL/M-51 COMPILER RUPI-44 Secondary Station Driver
                                                                                                                                   20:24:47 09/20/83 PAGE 7
                                                            RBP=1; /* RNR STATE */
RBE=1; /* RE-EMBLE RECEIVER */
CALL SIU_RECV(RFL);
RBP=0; /* RR STATE */
  210
   211
   212
   213
   215
                                       END
                    END SIU_INT
  216
  217 1
 Software and application note written by Charles Yager
 WARNINGS:
      4 IS THE HIGHEST USED INTERRUPT
MODULE INFORMATION:
CODE SIZE
CONSTANT SIZE
DIRECT VARIABLE SIZE
INDIRECT VARIABLE SIZE
SIT SIZE
SIT ADDRESSABLE SIZE
AUXILIARY VARIABLE SIZE
MAXIMUM STACK SIZE
REGISTER-BANK(S) USED:
400 LINES READ
O PROPRAM ERROR(S)
END OF PL/M-51 COMPILATION
                                                  (STATIC+OVERLAYABLE)
                                                  = 028FH
= 0000H
= 3FH+02H
= 3CH+00H
= 01H+00H
= 00H+00H
                                                                      655D
                                                                       63D+
63D+
60D+
1D+
0D+
6D
                                                   = 0017H
                                                                        23D
                                                                                                                                                           296166-50
```



```
PL/M-51 COMPILER Application Module: Async/SDLC Protocol converter 18:50:53 09/19/83 PAGE 1
               1818-11 PL/M-51 V1.0
                 COMPILER INVOKED BY: : #2: plm51 : #2: unote. src
                                                                                   ELSE CALL MITTERSTURNMEDIGHED Cit of Received on undefined or not instrumented common of
                                                                                                                  STITLE ('Application Module: Async/SDLC Protocol converter')
                                                                                                                    Sdebug
                                                                                                                  9registerbank(O)
user@mod:do;
eNOL.IST
                                                                                                                                                                                           LIT LITERALLY 'LITERALLY',

TRUE LIT 'OFFH',

FALSE LIT 'OOH',

FOREVER LIT 'MHILE 1',

EBC LIT 'JAH',

LF LIT 'OOH',

BS LIT 'OOH',

BS LIT 'OOH',

INUSE LIT 'OOH',

INUSE LIT 'OOH',

INUSE LIT 'OOH',

LIT 'OOH',

INUSE LIT 'OOH',

LIT 'OOH',

INUSE LIT 'OOH',

LIT 'OOH',

LIT 'OOH',

INUSE LIT 'OOH',

LIT 'OOH',

LIT 'OOH',

LIT 'OOH',

LIT 'OOH',

LIMP DISCONMECTED LIT 'OOH',

LIMP DISCONMENTED LIT 'OOH',

LIMP DISCONME
                                     1
                                                        1
                                     5
                                                        1
                                                                                                                  DECL ARE
                                                                                                                                                                                             OVERFLOW

DUFFER BUFFER 8

BUFFER LENGTH

SIU XMIT BUFFER BUFFER LENGTH)
SIU RECV BUFFER (BUFFER LENGTH)
FIFO T(256)
SIV RECV BUFFER (BUFFER LENGTH)
FIFO T(256)
BYTE

AUXILIARY.
BUFFER BITATUS R
BYTE
AUXILIARY.
BYTE
AUXILIARY.
AUXI
                                                                                                                                                                                                     PARITY(*) BYTE CONSTANT(LF, CR, 'Perity Error Detected', LF, CR, OOH), FRAME(*) BYTE CONSTANT(LF, CR, 'Framing Error Detected', LF, CR, OOH),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   296166-51
```

PEDRAL INFORMATION:
COOK RICK
CHOCK RICK
DIRROT VARIANCE SIZE
INFORCET VARIANCE SIZE
ATT SIZE
ATT SIZE
ATT SIZE
ATT SIZE
OF SIZE
ATT SIZE

					Echo 7			
						DERD_DATA-O /4 Installs Fixes o/	8	
					on on	IN FIR TO BUT FIR TO IN FIRE, BUT FIRE & OCCURE	8	
								1
58	5				P=P1 AND O7H; /* Read TEMP>5	the dip switch to determine the bit rate */		177
31	3			00	THEN TEMP=0; CASE TEMP;	CALL PONER_ON_DE		7.2
	3	/*	300		An usinging i	TP-5100 /w UDART's deRdy is the signest	-	
32	4				DOI-	assurented Labrettan stoll 5%		24
34	4				TIMER_1=20H;	LEASTH PRINCIPLE UNAMED REPORT REPORT REPORT		
35	4				END)	10-PAJP_ROWER		25
36	4	/#	1200	*/	DO:	000_00MD4_00G		
37	4				TIMER_1=20H;			
38	4				TIMER_1=05H;	FIFT N IN: PROCESSOR (CHRS) USING 11		
39	4				END:	PROLABE CHAR BYTE:		87
40	4	. /4	2400	*/	DO	WHILE BY		90
41	4				TIMER_1=60H;	ALVE STRUKTURE STRUKT		09
42	4				TIMER_1=02H;			
					ENUI	VYTHOUGHT GUTATO MANT		
44	4	14	4800	#/	DOI	10-43		
45	4				TIMER_1=30H;	ASSUMITATION ASTRUCT		
46	4				TIMER_1=01Hi	Eliwii Ja Enghiw USART's Tab interp		
"	•				ENDI			
48	4	/*	9600	4/	DO: 145 57	S TACHE RITE MI) COM (BORMINE BUTATO REVENUE) 7 70 70.00	2	88
49	4				TIMER_1=65H; TIMER_1=0;			
51	4				END;			
52	4	/=	19200		00.			
53	4	/-	1720	, ",	TIMER_1=33H;	FIFO_A_OUT: PROGRESSIVE BYTE USING 1:		
54	4				TIMER_1=0;	DECLARE CHAN SYTE AUDICIARY		
55	4 .				END;			
56	3			END;		CHARACTO KION TANK KIN		
57	2			USAF	RT STATUS=0, /# Softwa	are power-on reset for 8251A */	- 8	
58	5			USAF	RT_STATUS=0;	CO TENE	13175	
59	5				RT_STATUS=0;	No separtesing dist 590 spect at contail		7.6
60	2			USAR	RT_STATUS=40H;	HYPECONE BUTATE RESIDE		
61	2			TEMP	=OAH; /# Determ	mine the parity and # of stop bits #/		
62	5				TEMP OR (P1 AND 30H)			
					THEN TEMP-TEMP OR OCOL	di ISARS ABUTSA		
65	2			ELSE	TEMP=TEMP OR 40H;			
66	2				RT_STATUS=TEMP; /* USA	ART Mode Word #/		
67	5			USAR	RT_STATUS, USART_CMD=27	7H; /+USART Command Word RTB, RxE, DTR, TxEN=1+/		
68	2			OTAP	D=OFFH;	USART_DEST_LIST: PROCEDURE INTERNUET D GEDING ES		


```
PL/M-51 COMPILER : Application Module: Async/SDLC Protocol converter 3 18:50:53 09/19/83 PAGE 5
                       69
  70 2
  71
  72
                                        /* USART's RxRdy is the highest priority */
/* Both external interrupts are level triggered*/
/* Enable USART RxRdy, SI, and Timer O interrupts*/
  73
      2
  75
      2
                        ERROR_FLAG=0;
                                                                                                    (DC V+ 00S1 +V
                END POWER_ON:
  76
      1
                FIFO_R_IN: PROCEDURE (CHAR) USING 1;
DECLARE CHAR BYTE;
  79
80
                    FIFO_R(IN_PTR_R)=CHAR;
IN_PTR_R=IN_PTR_R+1;
                    IF BUFFER_STATUS_R=EMPTY
THEN DD;
EA=0;
BUFFER_STATUS_R=INUSE;
EX1=1; /e Enable USART's TxD interrupt */
  81
      2
  84
85
86
87
                    ELSE IF ('BUFFER_STATUS_R=INUSE) AND (IN_PTR_R=OUT_PTR_R))
THEN BUFFER_STATUS_R=FULL;
               END FIFO_R_IN
  90
      1
  91
       2
                FIFO_R_OUT: PROCEDURE BYTE USING 1;
      2
                    DECLARE CHAR BYTE AUXILIARY;
  92
                    CHAR-FIFO_R(OUT_PTR_R);
OUT_PTR_R=OUT_PTR_R+1;
IF OUT_PTR_R=IN_PTR_R
THEN DD;
EX1=0; /* Shut off TID interrupt */
END;
END;
  93
  94
  97
                    BUFFER_STATUS_N=NT. AND (OUT_PTR_R-20=IN_PTR_R))
ELSE IF ((BUFFER_STATUS_R=FULL) AND (OUT_PTR_R-20=IN_PTR_R))
THEN BUFFER_STATUS_R=INUSE;
RETURN CHAR;
  98
 100
 102 2
               END FIFO_R_OUT
103
      1
 104 2
               UBART_XMIT_INT: PROCEDURE INTERRUPT 2 USING 1;
                                                                                                                           296166-55
```


105	2	DECLARE		
		MESSAGE BASED ERR_MESSAGE_PTR(1) BYTE CONSTANT; 4 384083049 TVO_T_0473	20	Cal
106	2	IF ERROR_FLAG THEN DO: 19941JINUA 3198 RA40 284J028	- 8	445
108	3	IF MESSAGE(ERR_MESSAGE_INDEX)<>O /* Then continue to send the message */	100	160
110	4	USART_DATA = MESSAGE(ERR_MESSAGE_INDEX);	8	961
111	4	ERR_MESSAGE_INDEX=ERR_MESSAGE_INDEX+1;		
		SUPPLE STATUS THE STATUS		
113	4	ELSE DO: /* If message is done reset ERROR_FLAQ and shut off interrupt if FI ERROR_FLAQ=0;	IFO is	empt
115	4	IF BUFFER STATUS_R = EMPTY	2	333
		((THEN EXT=0, THE TWO) ONA (LEFF-T SUTATE AZENDE)) RE SELS	S	156
117	3	ENDI HOG RO GRO TRABU-GRO TRABU SUYATE TRABU		00.0
		LEGISLET DIVINIS SERVICE	6	
119	2	ELSE USART_DATA=FIFO_R_OUT;	8	081
		IF (CHARMLE AND SENE DATA)O) THEN GEND DAYA-SEND DAYA-1)	- 6	tel
120	1	END USART_XMIT_INT;	2	8063
		1702,7,0071	1	160
121	5	SIU_RECV: PROCEDURE (LENOTH) PUBLIC USING 1;		001
122	2	DECLARE LENGTH BYTE, I BYTE AUXILIARY,	S	441
123	3	DO I=O TO LENGTH-1; (YTISAS STA SDASSEN SES NEWT	2	702
124	4	DO WHILE SUFFER_STATUS_R=FULL; /* Check to see if fife is full */	-	9.63
125	4	END!	20	
126	3	CALL FIFO_R_IN(SIU_RECV_BUFFER(1)); OCCUMOS COMA SUTATED AT SELECT	- 0	373
127	3	TAGN ERR_HEBBAGE_FTR+. PRANEJ		
128	1	END SIU_RECV: \P TRABU no seelt nothe feast ol ((NOI NO CHO_TRABU)-BUTATE_TRABU	0	173
		ERR ACTROMOS INCOM = 01		471
129	2	FIFO_T_IN: PROCEDURE (CHAR) USING 2;	15	575
30	2	Exists to Torn on Tr Indecruge #1	12	276
130	-	DECLARE CHAR BYTE;		177
131	2	FIFO_T(IN_PTR_T)=CHAR;		
132	2	IN_PTR_T=IN_PTR_T+1; application of the state of the stat	. 0	0.22
133	5	IF CHAR-LF THEN SEND_DATA=SEND_DATA+1; sed at older agreeme and object and ob		
135	2			
		THEN BUFFER STATUS T=INUSE;		
137	2	ELSE IF ((BUFFER_STATUS_T=INUSE) AND (IN_PTR_T+20=DUT_PTR_T))		
139	3	THEN DO; /* Stop reception using CTS */ UBART_STATUS, UBART_CMD=USART_CMD AND NOT(20H);		
140	3	BUFFER STATUS T=FULL)		
141	3	IF SEND_DATA=0 statement street the sudd of Litza-Depth (1/2	0	
		THEN SEND_DATA=1; /*If the buffer is full and no LF	- 6	
		has been received then send data */	9	551
43	3	END;	2	1103
44	1	END FIFO_T_IN;		


```
PL/M-51 COMPILER Application Module: Async/SDLC Protocol converter 18:50:53 09/19/83 PAGE 7
                     FIFO_T_OUT: PROCEDURE BYTE # THE THAT SOLES HAS GREEN SOLES
     145 2
                           DECLARE CHAR BYTE AUXILIARY
     146 2
     147 2 CHAR=FIFD_T(OUT_PTR_T);
148 2 OUT_PTR_T=OUT_PTR_T /= Then FIFO_T is empty */
149 2 IF OUT_PTR_T=IN_PTR_T /= Then FIFO_T is empty */
151 3 EA=0;
152 3 BUFFER_STATUB_T=EMPTY;
153 3 EA=1;
154 3 EA=1;
155 3 EA=1;
156 2 ELSE IF (BUFFER_STATUB_T=FULL) AND (OUT_PTR_T-SO=IN_PTR_T))
THEN DO;
                    ELSE IF ('BUFFER_STATUS_T=FULL') AND (OUT_PTR_T=80=IN_PTR_T')

THEN DO;

UBART_STATUS, USART_CHD=USART_CHD OR 20H;

BUFFER_STATUS_T=INUSE;

END;

IF (CHAR=LF AND SEND_DATA>0) THEN SEND_DATA=SEND_DATA=1;

RETURN CHAR;

END FIFO_T_OUT;
      160
161
163
164
                      PROCEDURE (STATUS) USING 2: LE QUIEU DIJBUT (NTOKEJ) BRUGISCHE - VERE USE CONTROL - VERE
      165 2
     166 2
                                IF (STATUS AND OSH) CO
THEN ERR MEBSAGE_PTR= PARITY;
ELSE IF (STATUS AND IGH) CO
THEN ERR MEBSAGE_PTR= OVER_RUN;
ELSE IF (STATUS AND 20H) CO
THEN ERR MEBSAGE_PTR=. FRAME;
     169 2
     171 2
                                 UBART_STATUS=(USART_CMD OR 10H); /* Reset error #lags on UBART */
      173 2
                                 ERR_MESSAGE_INDEX = 0;
      174 2
175 2
176 2
                                ERROR FLAG=1; /* Turn on Tx Interrupt */
                                                                                               VETTE MARC DEGLES
      177 1
                      FND ERROR
      178 2
                      LINK_DISC: PROCEDURE ;
                            /* This procedure sends the message 'Unable to Get Online' to the terminal #/
                           DECLARE MESSAGE_PTR WORD AUXILIARY,
MESSAGE BASED MESSAGE_PTR(1) BYTE CONSTANT,
J BYTE AUXILIARY,
EXI_STORE BIT;
      179 2
                            EXI_STORE-EXI; /* Shut off async transmit interrupt */
EXI=0; MESSAGE_PTR=.LINK;
      181
      182
                            J=0;
DO WHILE (MESSAGE(J)<>0);
                                                                                                                                                296166-57
```



```
PL/M-31 COMPILER Application Module: Async/SDLC Protocol converter 18:50:53 09/19/83 PAGE
                    DO WHILE (USART_STATUS AND O1H)=0: /* Wait for TxRDY on USART */
 186
187
188
189
190
191
                    END:
UBART_DATA=MESSAGE(J):
J=J+1;
                                                          SND OUTPUT MERBAREL
                 END:
EXI=EX1_STORE: /* Restore async transmit interrupt */
             END LINK_DISC
             CO: PROCEDURE (CHAR) USING 2: DECLARE CHAR BYTE:
 192
193
 194
                    DO WHILE (USART_STATUS AND O1H) = 0;
 195
                    UBART_DATA=CHAR;
            END CO:
CI: PROCEDURE BYTE USING 2:
 197 1
 198 2
 199
                DO WHILE (UBART_STATUS AND 02H) = 0;
      333
                RETURN USART_DATA;
 201
 202
     1
            END CI:
 203 2
 204 2
                LO: CHAR-CI:
 205 2
                   DO I=0 TO 15;

IF CHAR-HEX_TABLE(I) CARACTED AD GOURGEA_MITTATED - BESSELIA_MITTATED - BESSELIA_MIT
209 3
                L1: CALL CO(HEX_TABLE(I)),

IF I=16
THEN QOTO LO;

RETURN I;

GET HEY;
210 2
213 2
            END GET_HEX;
214 1
            OUTPUT_MESSAGE: PROCEDURE (MESSAGE_PTR) UBING 2;
DECLARE MESSAGE_PTR MORD.

MESSAGE BASED MESSAGE_PTR(1) BYTE CONSTANT.

I BYTE AUXILIARY;
215 2
217 2
218 3
219 3
220 3
                DO WHILE MESSAGE(I) <> 0;
CALL CO(MESSAGE(I));
I=I+1;
                                                                                                   296166-58
```



```
PL/M-51 COMPILER Application Module: Async/SDLC Protocol converter 18:50:53 09/19/83 PAGE 9
                                                               END: As TEADU and YERLY THE SECRET AND THE SUTATE TEABURE EXITS OF
                                                             END OUTPUT_MESSAGE;
                                                             MENU: PROCEDURE USING 2: 14 FEUTYSENS SINGHASS SAVER STEERS OF LESSONS TANDAS AND DESCRIPTIONS OF SAVER SAVE
               223 2
                                                                         224 2
               225 2
                                                                          CALL OUTPUT_MESSAGE(.SIGN_ON);
                                                                          MO: CHAR-CI; /* Read a character */
                                                                                      CHAR#CI; /* Read a Character. --

DO 1=0 TO 4;

IF CHAR#WENL_CHAR(I)

THEN GOTO M1;

END;

END;

CHAR#CI; /* Read a Character. --

A BACEU STYLE

A BACEU ST
               230 3
                                                                          M1: CALL CO(MENU_CHAR(I));
                                                                                      234 3
                                                                          DO CASE I
                                                                                                     STATION_ADDRESS=SHL(QET_MEX, 4);
             237 4
                                                                                                     238
                                                                                                   STAD=STATION_ADDRESS
CALL OUTPUT_MESSAGE(. S_ADDR_ACK);
CALL CO(MEX_TABLE(SMR(STATION_ADDRESS, 4)));
CALL CO(MEX_TABLE(OFH AND STATION_ADDRESS));
CALL OUTPUT_MESSAGE(. ADDR_ACK_FIN);
);
             240
                                                                                                    CALL OUTPUT_MESSAGE(.DEST_ADDR);
DESTINATION_ADDRESS-SHL(QET_MEX.4);
             245
                                                                                       DO:
             246
             247
                                                                                                     DESTINATION_ADDRESS-(DESTINATION_ADDRESS OR QET_HEX );
             248
                                                                                                     249
                                                                                                                                                                                                                                                                                                                                                                                                        296166-59
```



```
PL/M-51 COMPILER Application Module: Async/SDLC Protocol converter 18:50:53 09/19/83 PAGE 10
                                 CALL CO(HEX_TABLE(SHR(DESTINATION_ADDRESS,4)));
CALL CO(HEX_TABLE(OFH AND DESTINATION_ADDRESS));
                END;

DO:

CALL OUTPUT_MESSAGE(.FIN);

END;
                             CALL OUTPUT_MESBAGE(.ADDR_ACK_FIN);
     252
     255
                            DO; CALL OUTPUT_MESSAGE(.FIN); some or toll on been of Figure A.
END;
     259
     261
    262
         3
                            CALL OUTPUT_MESSAGE(.FIN);
                        END; /* DO CASE */
     263 3
     264 1
                    END MENU:
    265 2
                    USART_RECV_INT: PROCEDURE INTERRUPT O USING 2
                        DECLARE CHAR BYTE AUXILIARY, STATUS BYTE AUXILIARY,
                        CHAR-UBART_DATA;
STATUS-UBART_STATUS AND 38H;
IF STATUS-O
THEN CALL ERROR(STATUS);
ELSE IF CHAR-ESC
LISE TO THEN CALL MENU;
    268
    271 2
                       THEN CALL FIFD_T_IN(CHAR);

IF ECHO=0

THEN CALL CO(CHAR);
    273
274
275
         3 3
    277 3
                   END USART_RECV_INT;
    278
         1
                   BEGIN:
CALL POWER_ON;
    279
                        DO FOREVER:
IF SEND_DATA>O
    281
                                 THEN DO:
                                           DO WHILE NOT(XMIT_BUFFER_EMPTY); / Mait until SIU_XMIT_BUFFer is empty e/
    283
          4
                                           END;
LENGTH, CHAR =1;
SIU_XMIT_BUFFER(O)=DESTINATION_ADDRESS;
DO WHILE ((CHARC)LF) AND (LENGTH/BUFFER_LENGTH) AND (BUFFER_STATUS_TC)EMPTY));
    285
286
287
                                                                                                                                 296166-60
```



```
OF PL/M-31 COMPILER 0 Application Module: Async/SDLC Protocol converter 1,500 A 181501 Module: 18:50:53 09/19/83 PAGE 11
                                                                    CHAR-FIFO_T_OUT;
SIU_XHIT_BUFFER(LENGTH)=CHAR;
LENGTH-LENGTH+1;
                4 4 4 4
        290
                                                             END:
                            /* If the line entered at the terminal is greater than SUFFER_LENOTH char, send the first SUFFER_LENOTH char, then send the rest; since the SIU buffer is only SUFFER_LENOTH bytes */Li:

I=0; /* Use I to count the number of unsuccessful transmits */
        292
                3
                                                     RESULT=TRANSMIT(LENGTH): /+ Send the message +/
IF RESULT<>DATA_TRANSMITTED
THEN DO:
        293
294
                             RETRY:
                                                      THEN DO;

/* Wait 50 msec for link to connect then try again */

MAIT=1;

TH0=3CH;

TL0=0AFFH;

TR0=1;

DO WHILE MAIT;

END;
                 444455
       297
298
299
300
301
302
303
304
                                                                                 END;
TRO=0;
I=I+1;
                 4 4 5
                                                                                I=I+1;
IF I>100 THEN DO; /* Wait 5 sec to get on line else send error message to terminal and try again */
CALL LINK_DISC:
QOTO LI,
END;
       306
307
308
309
                555443
        310
                                                                           END
                                                                                                                    CMARGARRAY DATAH
GYATUGHARAY PATHUS AND DEM
GYATUGHARAY
IF STATUGHON
THEN CALL GRACE
GLEST DOD
GLEST DOD
IF SCHOOL

IF SCHOOL

THEN CALL FIFED T INCURANT
IF SCHOOL

THEN CALL FIFED T TO COLUMN
TO THEN CALL GRACE

END.
                                                         END:
       312
                2
                            END;
END USERSMOD;
        313
      WARNINGS:
            2 IS THE HIGHEST USED INTERRUPT
    BEGIN: CALL POWER ON
                                                                                                                                                                                       296166-61
```



```
PL/M-51 COMPILER RUPI-44 Primary Station
                                                                                                                                                                                                                                                                                                                                           20:47:13 09/26/83 PAGE 1
ISIS-II PL/M-51 V1.0 COMPILER INVOKED BY: :F2:PLM51 :F2:PNOTE. SRC
                                                                   STITLE ('RUPI-44 Primary Station')
                                                                   SMEDISTERBANK(O)

MAINSMOD: DO: A smeldada y tabnocas and to sudada ent st. daye dutate SETALS
                                                                   /* To save paper the RUPI registers are not listed, but this is the statement of used to include them: SINCLUDE (: #2: REG44, DCL) */
                                                              ONOLIST

DECLARE LIT LITERALLY 'LITERALLY', TAVA BY SASSAM MOTTATE LIT FALSE LIT 'OFFH'. 'OH'. TAM BY SASSAM MOTTATE LIT 'OOH'. TAM BY SASSAM MOTTATE LIT 'OOH'. TAM BY SASSAM MOTTATE LIT 'OH'. TAM BY SASSAM MOTTATE LITERALLY', TAM BY SASSAM MOT
             5 1
                                                                 DECLARE SNRM LIT
                                                                                                                                                                                                                                 '93H'.
'73H'.
'53H'.
'1FH'.
             6 1
                                                                                                     UA
DISC
DM
FRMR
                                                                                                                                                                                                                                       '73H',
'53H',
'15H',
'97H',
'93H',
'33H',
'13H',
'073H',
'15H',
'073H',
'073H',
'073H',
'073H',
'073H',
'11H',
'073H',
                                                                                                       FRMR
REG_DISC
UP
                                                                                                         TEST
                                                                                                       RR
RNR
                                                                                                     /* REMOTE STATION BUFFER STATUS */
BUFFER_READY LIT '0',
BUFFER_NOT_READY LIT '1',
                                                                                                    /* STATION STATES */
DISCONNECT_S LIT 'OOH', /* LOGICALLY DISCONNECTED STATE*/
@O_TO_DISC LIT 'OIH',
I_T_S LIT 'O2H', /* INFORMATION TRANSFER STATE */
                                                                                                    /* PARAMETERS PASSED TO XMIT_1_T S */
T_I_FRAME LIT '00H'.
T_RR LIT '01H'.
T_RNR LIT '02H'.
                                                                                                                                                                                                                                                                                                                                         28 2 XMIT PROCEDURE (CONTROL SYTE)
                                                                                                     /* SECONDARY STATION IDENTIFICATION */
                                                                                                                                                                                                                                                                                                                                          DECLARE CONTROL BYTE.
                                                                                                    NUMBER_OF_STATIONS LIT '2',
SECONDARY_ADDRESSES (NUMBER_OF_STATIONS)
BYTE CONSTANT(35H, 43H),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           296166-62
```



```
PL/M-51 COMPILER RUPI-44 Primary Station
                                                                                                                                                                                                                                                                                                                                                                                     20:47:13 09/26/83 PAGE 2
                                                                                                                                                                  /* Remote Station Database */ 288 STOMS ST. TEX.IS:ST.
                                                                                                                             RSD(NUMBER_OF_STATIONS) STRUCTURE
(STATION_ADDRESS BYTE,
STATION_STATE BYTE,
                                                                                                                                                                                                                                                                            eritis ('Anti-se Primary Seaton') 3.FF179
                                                                                                                                                                                                                                                                                                                                                                                               STESTES AND (O)
                                                                                                                                                                                                                                  BYTE,
                                                                                                                                                                                                                               BYTE.
                                                                                                                                 NR
BUFFER_STATUS
STEE
STATUS
STAT
                                                                                                                                                                   /* VARIABLES */
                                                                                                                           /* VARIABLES */
STATION_NUMBER BYTE AUXILIARY,
RECV_FIELD_LENGTH BYTE AUXILIARY,
MAIT BUFFERS */
SIU_XMIT_BUFFERS 64)
SIU_XMIT_BUFFERS 64)
SIU_RECV_BUFFER (64)
BYTE IDATA.
                                                                                                                                                                                                                                                                                                                                                                      /* BDLC COMMANDE AND RESPONDES */
                              7 2
                                                                                    POWER_ON: PROCEDURE ;
                              8 2
                                                                                                       DECLARE I BYTE AUXILIARY,
                                                                                                                          TBS=.SIU_XMIT_BUFFER(0);
RBS=.SIU_RECV_BUFFER(0);
RBL=64; /-64 Byte receive buffer e/
RBL=1 /-6 Enable the SIU's receiver #/
                          11
                          13
                                                                                                                          DO I= O TO NUMBER_OF_STATIONS-1;
                        14
15
16
17
                                                                                                                                            RSD(I).STATION_ADDRESS=SECONDARY_ADDRESSES(I);
RSD(I).STATION_STATE=DISCONNECT_S;
RSD(I).SUFFER_STATUS=SUFFER_NOT_READY;
RSD(I).INFO_LENGTH=0;
                                                                                                                        RSD(I) INFO_LENGTH=0;

END; \**RSTATE GSTDSM4008IG YIMDIGGI =\ .*HO' TIJ SSTATE GOTTATE =\
.**HIO' TIJ DSIG_GT_GG
.**HIO' TIJ DSIG_GT_GG
                        18
                                          3
                      19
20
21
                                                                                                                           SMD=54H; /* Using DPLL, NRZI, PFS, TIMER 1, @ 62.5 Kbps */
                                                                                                                          THISDEZIH;
THISDEZIH;
THISDEZIH;
THISDEZIH;
THISDEZIH;
TESZH;
TESZH;
TESZH;
                        22
                        23
                        24
                                           1
                                                                                 END POWER_ON;
                        25
                                          2
                                                                                  XMIT: PROCEDURE (CONTROL_BYTE);
                                                                                                  TE PROCEDURE (CONTROL_BYTE):

DECLARE CONTROL_BYTE BYTE;

TCB=CONTROL_BYTE;

TFF=1;

(MCP decl MATE TO SERVE AND SER
                        26
                                        2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 296166-63
```

PL/M-	51 CO	MPILER RUPI-44 Primary Station	notice/8 preside 40:47:13 09/	26/83	PAGE
29	2	RTS=1;	CALL XMIT(BMRH);		60
30	3	DO WHILE NOT SI;	IN (TIME_GOVERNIGE) AND (ROBEUM)	10 M	70
31	3	END;	THEN DO:		
32	2	SI=O: @ T_1-BTATE_MOITATE			20
			RESIDENT HOLLTATE LORS		
33	1	END XMIT;	REDUCTION_NUMBER		73
					51
			(LAURE)	1 1 M	
34	2	TIMER_O_INT: PROCEDURE INTERRUPT 1 USING 1;			
35	2	WAIT=0;	EMB GEND GNDS OND		
36	1	END TIMER_O_INT;			
			CHECK HS: PROCEBURE BYTE:		
37	-	TIME OUT - SECRETURE SUPE			
3/	5	TIME_OUT: PROCEDURE BYTE: /* Time_out	t returns true if there wasn't		
			memeceived within 200 msec. an add sound at		
		If the	ere was a frame received within sec then time_out returns false */		
38	2	DECLARE I BYTE AUXILIARY,	sec then time_out returns false. */	1	
30	~	DECEMBE I BYTE MUXICIARY;	BLOS RETURN FALSE		
39	3	DO 1=0 TO 3;			MIRA
-7	-	00 1-0 10 01	EMD CHECK_NB:		95
40	3	WAIT=1;			
41	3	THO=3CH;	CHECK MR: PROCEDURE BYYES		
42	3	TLO=OAFH;			
43	3		/* Check the Mr field of the received frame		
44	4	DO WHILE WAIT	has been acknowledged, sice if No(P)=Mr(
45	4	IF SI=1	acknowledged, play vesst the agreements		
	100	THEN GOTO T_01;			
47	4	END; ((d.808)948 = (8	IF (((RED(STATION_NURMER), NE + 1) AND GO	100	110
48	3	END;	DE KENT		
		(STATION_MANUER), MS+1) AND OTH);		0	5.6
49	2	RETURN TRUE;		E	
50	5		FIRE CO SE (RESPONDING MATERIALS) WE CO CHECK		98
-	NEW N	SI=0;	THEN RETURN FALSE		
51	5	RETURN FALSE;			
	1		RETURN TRUE:	8	.00
52	1	END TIME_OUT;			wire.
	-				AB
53	2	SEND_DISC: PROCEDURE;			
			THE PERSON NAMED IN COLUMN		
54	2	TBL=0;	RECEIVE: PROCEDURE >		
55	5	CALL XMIT(DISC);	CONTRACT I SYS AND		
30	2	IF TIME_OUT=FALSE	DEGLARE I BYTE AUXILIANY	-	
57	3	THEN IF RCB=UA OR RCB=DM	WINDSTATE OFFICE ACCOUNT ACCOUNTS	100	50
59	3		REDIRECTION NUMBERS SUFFER STATUSHED	11	
60	3		MBER). BUFFER_STATUS=BUFFER_NOT_READY;		
61	3	END:	MBER). STATION_STATE=DISCONNECT_S;		
62	2	RBE=1;	term of weight aborious offered and ausen		
-		NDE-17	William or annual transfer of the supply		
63	1	END SEND_DISC;	IF (RCB AND OIM)=0		50
	× 91 3		Tiuck DO: /* I Frame Received B/		
			IF (CMECK, NEWYRIJE AND BUT		
64	2	SEND SNRM: PROCEDURE;			
	12912	NUMBER) ME (KED (STATION NUMBER) MR+1) AND OWN);			
65	2	TBL=0;		- 4	0.0


```
PL/M-51 COMPILER RUPI-44 Primary Station
                                                                                                                     20: 47: 13 09/26/83 PAGE
                            CALL XMIT(SNRM);

IF (TIME_OUT=FALSE) AND (RCB=UA)

THEN DO;

RSD(STATION_NUMBER). STATION_STATE=I_T_S;

RSD(STATION_NUMBER). NR=0;

FND;

FND;
   66
   69
70
71
72
73
          Nunnu
                             RBE=1:
   74
          1
                      END SEND_SNRM;
   75 2
                      CHECK_NB: PROCEDURE BYTE;
                       /* Check the Ns Field of the received frame. If Nr(P)=Ns(S) return true */
                            IF (RSD(STATION_NUMBER). NR=(SHR(RCB, 1) AND 07H))
   76 2
                                 THEN RETURN TRUE;
ELSE RETURN FALSE;
   78
        2
   79
         1
                     END CHECK_NS;

CHECK_NR: PROCEDURE BYTE;

/* Check the Nr field of the received frame. If Ns(P)+1=Nr(S) then the frame lost has been acknowledged, else if Ns(P)=Nr(S) then the frame has not been acknowledged, else reset the secondary */

IF ((RSD(STATION_NUMBER), NS + 1) AND 07H) = SHR(RCB.97)

THEN DO;

RED(STATION_NUMBER), NS=(PSD(STATION_NUMBER), NS=1) AND 07H);
                      END CHECK_NS;
   80 2
   81 2
                                   THEN DD;

RBD(STATION_NUMBER). NS=((RSD(STATION_NUMBER). NS+1) AND 07H);

RSD(STATION_NUMBER). INFO_LENGTH=0;

FND:
   83
84
85
                            END;
ELSE IF (RSD(STATION_NUMBER). NS <> SHR(RCB,5))
THEN RETURN FALSE;
   86
          2
                            RETURN TRUE;
   89
          1
                      END CHECK_NR:
                             DECLARE I BYTE AUXILIARY;

RSD(STATION_NUMBER). BUFFER_STATUS=BUFFER_READY;

If an RNR was received buffer status
   90 2
                      RECEIVE: PROCEDURE ;
   91 2
   92 2
                       /* If an RNR was received buffer_status will be changed in the supervisory frame decode section futher down in this procedure, any other response means the remote stations buffer is ready */
                                  IF (RCB AND OIH)=0
THEN DD) /* I Frame Received */
THEN DD) /* I Frame Received */
THEN DD) /* I Frame Received */
THEN DD)
THEN DD)
RSD(STATION_NUMBER). NR=((RSD(STATION_NUMBER). NR+1) AND 07H);
RSD(STATION_NUMBER). NR=((RSD(STATION_NUMBER). NR+1) AND 07H);
   93
        2
   95
         3
                                                                                                                                                                             296166-65
```



```
20: 47: 13 09/26/83 PAGE
PL/M-51 COMPILER RUPI-44 Primary Station
                                                                                                                                                                                                                             RECV_FIELD_LENGTH=RFL-1;
         100
           101
                                                                                                                                                                                ELSE RSD(STATION_NUMBER). STATION_STATE=GO_TO_DISC:
            102
                                                                                                                   ELSE IF (RCB AND O3H)=D1H
THEN DD; /* Supervisory frame received */
IF CHECK NR=FALSE
THEN RSD(STATION_NUMBER).STATION_STATE=90_TO_DISC;
                                                                                                                                                                  END:
           103
           105
                                3
                                                                                                                                                                         ELSE IF ((RCB AND OFH)=05H) /* them RNR */
THEN RSD(STATION_NUMBER).BUFFER_STATUS=BUFFER_NOT_READY;
END;
           107
                                3
           109
                                                                                                                                          DO; /* Unnumbered frame or unknown frame received */

IF RCB=FRNR

THEN DD; /* If FRMR was received check Nr for an

acknowledged I frame */

RCB=SIU_RECV_BUFFER(1);

I=CHECK_NR;

END;
           110
                                                                                                                    ELSE DO:
           113
114
115
                                                                                                                                                               RSD(STATION_NUMBER). STATION_STATE=GO_TO_DISC;
                                                                                                                                                                                                                         ELSE IF REDITI INFO LEMPTHARKERY FIELD LEMPTHO DO LEMPTHARKERY FIELD F
         118 2
                                                                                                               RBE=1;
         119
                                  1
                                                                           END RECEIVE
         120
                                2
                                                                            XMIT_I_T_S: PROCEDURE (TEMP);
        121 2
                                                                                               DECLARE TEMP BYTE;
                                                                                                                 IF TEMP=T_I_FRAME
THEN DO: /* Transmit I frame */
/* Transfer the station buffer into internal ram */
**Transfer the station buffer into into internal ram */
**Transfer the station buffer into internal ram */
*
                                                                                                                                                                              DO TEMP=O TO RSD(STATION_NUMBER). INFO_LENGIN-1;
SIU_XMIT_BUFFER(TEMP)=RSD(STATION_NUMBER). DATA(TEMP);
END;
           125
                                                                                                                                                                              END;
/* Build the I frame control field */
                                                                                                              TEMP=(SHL(RSD(STATION_NUMBER), NR, 5) OR SHL(RSD(STATION_NUMBER), NS, 1) OR 10H);
TBL=RSD(STATION_NUMBER), INFO_LENGTH,
CALL XHIT(TEMP),
IF TIME QUT=FALSE
THEN CALL RECEIVE;
END;

ELSE DO; /* Transmit RR or RNR*/
IF TEMP=T_RR
THEN TEMP=RR;
ELSE TEMP=RNR;
        127
128
        130
        132
        133
        136 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   296166-66
```



```
PL/M-51 COMPILER RUPI-44 Primary Station
                                                                                                   09/26/83 PAGE 6
                                          TEMP=(SHL(RSD(STATION_NUMBER), NR, 5) OR TEMP);
  137
                   TEMP-(SHL(RSD(STATION_NUMBER), NR.5) UK TEMP.,
TBL=0;
CALL XMIT(TEMP);
IF TIME_OUT=FALSE
THEN CALL RECEIVE;
END;
END XMIT_I_S
BUFFER_TRANSFER: PROCEDURE;
  138
139
140
  142
          3
   143
  144
        2
                      DECLARE I BYTE AUXILIARY,
  145 2
                        DO I=O TO NUMBER_OF_STATIONS=1;

IF RSD(1).STATION_ADDRESS=SIU_RECV_BUFFER(0)

THEN GOTO T1;

END;
          3
  147
  149
         3
                      Ti: IF I=NUMBER_OF_STATIONS /* If the addressed station does not exits, then discard the data */

THEN DO;

RBP=O;

RETURN,

END;

ELSE_IF_RSD(1)_INFO_LENGTH=O
  150
        2
  152
          3
                             RETURN;
END;
ELSE IF RSD(1): INFO_LENOTH=0
THEN DO;
RSD(1): INFO_LENOTH=RECV_FIELD_LENOTH;
DO J=1 TO RECV_FIELD_LENOTH;
RSD(1): DATA(J-1)=SIU_RECV_BUFFER(J);
END;
BRP=0;
   153
  154
155
  157
          344433
   160
                                                     CEO R MIT_L_T_E PROCEDURE (TEMP): .

TEL E DECLARE YEAR SYTE: .
   161
  163 1
                   END BUFFER_TRANSFER;
                         CALL POWER_ON; * set leasure and rettud notices are returned at 100 Hours
  164
        1
                        DO FOREVER: (**CONT.) ATAIL STREET, OF THE PROPERTY OF CAMPATI OF
 165 2 DD FOREVER;

166 3 DO STATION_NUMBER=O TO NUMBER_OF_STATIONS=1;
167 3 STAD=RBD(STATION_NUMBER). STATION_ADDRESS;
168 3 IF RBD(STATION_NUMBER). STATION_STATE = DISCONNECT_S
170 3 THEN CALL SEND_SWRM;
170 3 ELSE IF RSD(STATION_NUMBER). STATION_STATE = GO_TO_DISC
171 3 ELSE IF (RSD(STATION_NUMBER). SUFFER_STATUS=BUFFER_READY))
172 3 ELSE IF RBP=O

174 3 ELSE IF RBP=O
  165 2
                                   THEN CALL XHIT_1_ST_1_ST_1_STANDED

ELSE IF RBP=0
THEN CALL XHIT_I_T_S(T_RR);
ELSE CALL XHIT_I_T_S(T_RNR);

IF RBP=1
THEN CALL BUFFER_TRANSFER;
  176 3
 177 3
                                                                                                                                                   296166-67
PL/M-51 COMPILER RUPI-44 Primary Station
                                                                                                                             20:47:13 09/26/83 PAGE 7
 180 2
                     END:
  181 1
              END MAINSMOD
WARNINGS
     1 IS THE HIGHEST USED INTERRUPT
OD
     REGISTER-BANK(S) USED:
                                                 0 1
456 LINES READ
O PROGRAM ERROR(S)
END OF PL/M-51 COMPILATION
                                                                                                                                                   296166-68
```


8044AH/8344AH/8744H HIGH PERFORMANCE 8-BIT MICROCONTROLLER WITH ON-CHIP SERIAL COMMUNICATION CONTROLLER

- 8044AH—Includes Factory Mask Programmable ROM
- 8344AH—For Use with External Program Memory
- 8744H—Includes User Programmable/Eraseable EPROM

8051 MICROCONTROLLER CORE

- Optimized for Real Time Control 12
 MHz Clock, Priority Interrupts, 32
 Programmable I/O Lines, Two 16-bit
 Timer/Counters
- **■** Boolean Processor
- 4K × 8 ROM, 192 × 8 RAM
- 64K Accessible External Program

 Memory
- 64K Accessible External Data Memory
- 4 μs Multiply and Divide

SERIAL INTERFACE UNIT (SIU)

- Serial Communication Processor that Operates Concurrently to CPU
- 2.4 Mbps Maximum Data Rate
- 375 Kbps using On-Chip Phase Locked Loop
- Communication Software in Silicon:
 - Complete Data Link Functions
 Automatic Station Response
- Operates as an SDLC Primary or Secondary Station

The RUPI-44 family integrates a high performance 8-bit Microcontroller, the Intel 8051 Core, with an Intelligent/high performance HDLC/SDLC serial communication controller, called the Serial Interface Unit (SIU). See Figure 1. This dual architecture allows complex control and high speed data communication functions to be realized cost effectively.

Specifically, the 8044's Microcontroller features: 4K byte On-Chip program memory space; 32 1/O lines; two 16-bit timer/event counters; a 5-source; 2-level interrupt structure; a full duplex serial channel; a Boolean processor; and on-chip oscillator and clock circuitry. Standard TTL and most byte-oriented MCS-80 and MCS-85 peripherals can be used for I/O amd memory expansion.

The Serial Interface Unit (SIU) manages the interface to a high speed serial link. The SIU offloads the On-Chip 8051 Microcontroller of communication tasks, thereby freeing the CPU to concentrate on real time control tasks.

The RUPI-44 family consists of the 8044, 8744, and 8344. All three devices are identical except in respect of on-chip program memory. The 8044 contains 4K bytes of mask-programmable ROM. User programmable EPROM replaces ROM in the 8744. The 8344 addresses all program memory externally.

The RUPI-44 devices are fabricated with Intel's reliable +5 volt, silicon-gate HMOSII technology and packaged in a 40-pin DIP.

The 8744H is available in a hermetically sealed, ceramic, 40-lead dual in-line package which includes a window that allows for EPROM erasure when exposed to ultraviolet light (See Erasure Characteristics). During normal operation, ambient light may adversely affect the functionality of the chip. Therefore applications which expose the 8744H to ambient light may require an opaque label over the window.

Figure 1. Dual Controller Architecture

Table 1. RUPITM-44 Family Pin Description

VSS

Circuit ground potential.

VCC

+5V power supply during operation and program verification.

PORT 0

Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink/source eight LS TTL loads (six in 8744).

Communication Software in Silicon:

- Complete Data Link Functions TRO9

Port 1 is an 8-bit quasi-bidirectional I/O port. It is used for the low-order address byte during program verification. Port 1 can sink/source four LS TTL loads.

In non-loop mode two of the I/O lines serve alternate functions:

- RTS (P1.6). Request-to-Send output. A low indicates that the RUPI-44 is ready to transmit.
- CTS (P1.7) Clear-to-Send input. A low indicates that a receiving station is ready to receive.

PORT 2

Port 2 is an 8-bit quasi-bidirection I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source four LS TTL loads.

PORT 3

Port 3 is an 8-bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and RD and WR pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. Port 3 can sink/source four LS LTT loads.

In addition to I/O, some of the pins also serve alternate functions as follows:

 I/O RxD (P3.0). In point-to-point or multipoint configurations, this pin controls the direction of pin P3.1. Serves as Receive Data input in loop and diagnostic modes.

- DATA TxD (P3.1) In point-to-point or multipoint configurations, this pin functions as data input/ output. In loop mode, it serves as transmit pin.
 A '0' written to this pin enables diagnostic mode.
- INTO (P3.2). Interrupt 0 input or gate control and program input for counter 0.
 - INT1 (P3.3). Interrupt 1 input or gate control input for counter 1.
 - TO (P3.4). Input to counter 0.
 - SCLK T1 (P3.5). In addition to I/O, this pin provides input to counter 1 or serves as SCLK (serial clock) input.
 - WR (P3.6). The write control signal latches the data byte from Port 0 into the External Data Memory.
 - RD (P3.7). The read control signal enables External Data Memory to Port 0.

4 us Multiply and Divide

RST

A high on this pin for two machine cycles while the oscillator is running resets the device. A small external pulldown resistor (\approx 8.2K Ω) from RST to V_{ss} permits power-on reset when a capacitor (\approx 10 μ f) is also connected from this pin to V_{cc}.

ALE/PROG ala bas notellioso girlo-no bas nos

Provides Address Latch Enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access. It also receives the program pulse input for programming the EPROM version.

PSEN

The Program Store Enable output is a control signal that enables the external Program Memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.

EA/VPP

When held at a TTL high level, the RUPI-44 executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL low level, the RUPI-44 fetches all instructions from external Program Memory. The pin also receives the 21V EPROM programming supply voltage on the 8744.

Table 1. RUPI™-44 Family Pin Description (Continued)

XTAL 1

Input to the oscillator's high gain amplifier. Required when a crystal is used. Connect to VSS when external source is used on XTAL 2.

XTAL 2

Output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal or external source can be used.

Figure 2. Logic Symbol

Figure 3A. DIP Pin Configuration

Figure 3B. PLCC Pin Configuration

Figure 4. Block Diagram

FUNCTIONAL DESCRIPTION

General

The 8044 integrates the powerful 8051 microcontroller with an intelligent Serial Communication Controller to provide a single-chip solution which will efficiently implement a distributed processing or distributed control system. The microcontroller is a selfsufficient unit containing ROM, RAM, ALU, and its own peripherals. The 8044's architecture and instruction set are identical to the 8051's. The 8044 replaces the 8051's serial interface with an intelligent SDLC/HDLC Serial Interface Unit (SIU). 64 more bytes of RAM have been added to the 8051 RAM array. The SIU can communicate at bit rates up to 2.4 M bps. The SIU works concurrently with the Microcontroller so that there is no throughput loss in either unit. Since the SIU possesses its own intelligence, the CPU is off-loaded from many of the communications tasks, thus dedicating more of its computing power to controlling local peripherals or some external process.

The Microcontroller

The microcontroller is a stand-alone high-performance single-chip computer intended for use in sophisticated real-time application such as instrumentation, industrial control, and intelligent computer peripherals.

The major features of the microcontroller are:

- 8-bit CPU
- · on-chip oscillator

- 4K bytes of ROM
- 192 bytes of RAM
- 32 I/O lines
- 64K address space for external Data Memory
- 64K address space for external Program Memory
- two fully programmable 16-bit timer/counters
- a five-source interrupt structure with two priority levels
- bit addressability for Boolean processing

Figure 5. Internal Data Memory Address Space

- 1 μs instruction cycle time for 60% of the instructions 2 μs instruction cycle time for 40% of the instructions
- 4 μs cycle time for 8 by 8 bit unsigned Multiply/ Divide

INTERNAL DATA MEMORY

Functionally the Internal Data Memory is the most flexible of the address spaces. The Internal Data Memory space is subdivided into a 256-byte Internal Data RAM address space and a 128-bit Special Function Register address space as shown in Figure 5.

The Internal Data RAM address space is 0 to 255. Four 8-Register Banks occupy locations 0 through 31. The stack can be located anywhere in the Internal Data RAM address space. In addition, 128 bit locations of the on-chip RAM are accessible through Direct Addressing. These bits reside in Internal Data RAM at byte locations 32 through 47. Currently locations 0 through 191 of the Internal Data RAM address space are filled with on-chip RAM.

Parallel I/O

The 8044 has 32 general-purpose I/O lines which are arranged into four groups of eight lines. Each group is called a port. Hence there are four ports; Port 0, Port 1, Port 2, and Port 3. Up to five lines from Port 3 are dedicated to supporting the serial channel when the SIU is invoked. Due to the nature of the serial port, two of Port 3's I/O lines (P3.0 and P3.1) do not have latched outputs. This is true whether or not the serial channel is used.

Port 0 and Port 2 also have an alternate dedicated function. When placed in the external access mode, Port 0 and Port 2 become the means by which the 8044 communicates with external program memory. Port 0 and Port 2 are also the means by which the 8044 communicates with external data memory. Peripherals can be memory mapped into the address space and controlled by the 8044.

Table 2. MCS®-51 Instruction Set Description

Mnem	onic 10	Description	Byte	Cyc	
ARITH	METIC OP	ERATIONS	sb*,A	VOV	
ADD	A,Rn	Add register to			
	91. 2	Accumulator	. 1	1	
ADD	A,direct	Add direct byte		VOM	
	0110	to Accumulator	2	1	
ADD	A,@Ri	Add indirect			
		RAM to	An,din		
		Accumulator	1	1	
ADD	A, # data	Add immediate			
		data to			
		Accumulator	2	VQM	
ADDC	A,Rn	Add register to			
		Accumulator			
			drect	VQM	
ADDC	A, direct	Add direct byte			
		to A with Carry		VOM	
2		flag	2	1	
ADDC	A,@Ri	Add IIIdii oct			
		RAM to A with			
3		Carry flag	1	1	
ADDC	A, # data	Add immediate		VOM	
		data to A with			
OUDD		Carry flag	2	VOM	
SUBB	A,Rn	Subtract register			
	0) 10 1 M	from A with			
OLIDO	A ambigai fi	Borrow	A ICE	VOLU	
SUBB	A,direct	Subtract direct			
		byte from A with	•		
		Borrow	2	1	

Сус	
1	
1	
1	
-1	
1	
11712	
1	
TEN	
2	
la.	
1	
JED	
1	
4	
H.C	
4	
4	

Table 2. MCS®-51 Instruction Set Description (Continued)

Mnemonic N acc	Description	Byte	Сус
LOGICAL OPERAT	TIONS		
A A VALUE AND THE PROPERTY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE	A A LES		
	Accumulator	1	1
ANL A, direct	AND register to Accumulator AND direct byte to Accumulator		
	to Accumulator	2	1
ANL A,@RI	AND indirect		
bagu al io	RAM to		
	Accumulator	1	1
ANL A, # data	AND immediate		0 ho
bom asecos lemet	data to becale no		
ANL direct,A			
means by which th	Accumulator to	9 bns	
al data memory. Pr	direct byte	210	0 40
ANL direct, # data	AND immediate		
	data to direct		
	byte	3	2
ORL A,Rn	OR register to		
	Accumulator	1	1
ORL A, direct	OR direct byte to		
	Accumulator	2	1
ORL A,@Ri	OR indirect RAM	sed is	
	to Accumulator	1	1
ORL A, # data	OR immediate		
	data to	TEMH	
	Accumulator	2	18 1 18
ORL direct,A	OR Accumulator		
1	to direct byte	2	1
ORL direct, # data			
	data to direct		
2 1	byte one	3	2
XRL A,Rn	Exclusive-OR	A	
	register to		
	Accumulator	nd .	Ju
XRL A,direct	Exclusive-OR		
irect	direct byte to	orib	NC
VDI A ODI	Accumulator	2	1
XRL A,@RI	Exclusive-OR indirect RAM to		
	TAPE A SPECIAL PROPERTY.	1	1
XRL A.#data	Exclusive-OR	rad	Ju.
ARL A, # uala	immediate data		
	to A	2	290
XRL direct.A	Exclusive-OR		
ARE direct,A	Accumulator to		
	direct byte	2	1
XRL direct, #data	Exclusive-OR	enio	210
ATTE direct, " data	SIYU JURUU		
	to direct	3	2
CLR A	Clear		
8 1 8	Accumulator	84	JUM
CPL A	Complement	BA	VIO
JI Z	Accumulator	4	10
	nteluminoA		ZIII.

Mnem	onic	Description	Byte Cyc
LOGIC	AL OPERATI	ONS (Continued	e 4 jis cycle
RL	A	Rotate	Divide
		Accumulator	1 1
		Left	
RLC	A	Rotate A Left	
		through the	
	is. The Intern	Carry flag	arts to alchei
	Add-ads a off	Rotate de la	
		Accumulator	Data RAM at
		Right arbbs rate	igelf nouthu-
RRC	A	Rotate A Right	
		through Carry	I located and
		flag	hepinterpal E
SWAP	y locations A	Swap nibbles	
	angement in addition.	within the	AAGI: otell ter
		Accumulator	nt to anotabo
DATA	TRANSFER		
MOV	A,Rn	Move register to	LABOR OF BEAC
		Accumulator	manufacture of designation
MOV	A,direct	Move direct byte	anena seen
		to Accumulator	2 1
MOV	A,@RI	Move indirect	
		RAM to	
		Accumulator	olinomaqiis
MOV	A, # data	Move immediate	ARITHMETS
		data to	ACD AR
	t tot	Accumulator	2 1
MOV	Rn,A	Move	
		Accumulator to	
		register	DA DIA
MOV	Rn,direct	Move direct byte	
		to register	2 2
MOV	Rn, # data	Move immediate	A DOA
		data to register	2 1
MOV	direct,A	Move	
		Accumulator to	
		direct byte	2 1
MOV	direct,Rn	Move register to	
		direct byte	2 0 2
MOV	direct, direct	Move direct byte	Э
		to direct	3 2
MOV	direct,@Ri	Move indirect	
		RAM to direct	
		byte	2 2
MOV	direct, # data	Move immediate	ADDC A 16
		data to direct	
		byte	3 2
MOV	@Ri,A	Move	
		Accumulator to	
		indirect RAM	1 1
MOV		Move direct byte	SUSB Ade
		to indirect RAM	2 2

Table 2. MCS®-51 Instruction Set Description (Continued)

Mnemonic	Description	Byte	Су
DATA TRANSFER (C			
MOV @Ri, # data			
included as bytes 2			
	RAM	2	1
MOV DPTR, #data10			10
	Pointer with a		
	16-bit constant	3	2
MOVCA,@A+DPTR	Move Code byte		
dress for LCALL &	relative to DPTR		
	to A	1	2
MOVCA,@A+PC	Move Code byte		
	relative to PC to		
	A notingition A	1	2
MOVXA,@Ri			
n memory as the first			
	to A	1	2
MOVXA,@DPTR	Move External		
offset byte, Range is	RAM (16-bit		
	addr) to A	1	2
MOVX @Ri.A	Move A to		
el Corporation 1979	External RAM		
	(8-bit addr)	1	2
MOVX@DPTR,A	Move A to		
	External RAM		
(Uli	(16-bit) addr	had in	2
PUSH direct	Push direct byte		
used for HDLC/SDL	onto stack	2	2
POP direct	Pop direct byte		
recognization, and	from stack	2	2
XCH A,Rn	Exchange		
	register with		
		September 1	1
XCH A,direct	Exchange direct		
FLEXIBLE" (or "NON	byte with	oitan	900
	byte with Accumulator Exchange	2	1
XCH A,@Ri			
	Indirect RAM		
	WILLIAM CONTRACTOR	nissio	ner
XCHD A,@Ri	Exchange low-		
	order Digit ind		
	HAM W A	i dis	818
poor FAN VARIABLE	E MANUPLU ATIO	riolei	
BOOLEAN VARIABL			
CLR C sebom ent to	Clear Carry flag		1
CLR bit	Clear direct bit	2	diam
SETB Carabba nods) SETB bit of mod br CPL C	Set Carry Flag	marie	1
SETB bit	Set direct Bit	2	1
CPL C	Complement	100	1
	Carry Flag	1	.1.
CPL bit	Complement	racec	ud
aive buffers are not a	direct bit	2	1
ANL C,bit	AND direct bit to Carry flag	y" of	ba

	onic notic	Description	Byte	Cyc
BOOLE	AN VARIAB	LE MANIPULATI	ON	ORS
(Continu	ued)			(Con
ANL		ANDO les stab		
		complement of		
		direct bit to		
		Carry les stab	2	2
ORL		OR direct bit to		1
OIL		Carry flag	2	2
ORL		OR complement		
UNL	C,/bit	of direct bit to		
		Carry	2	2
14014	O /hia 1000	Move direct bit		un a
MOV	C,/bit	to Cornelled		4
		to Carry flag	2	1
MOV		Move Carry flag		
		to direct bit	2	2
PROGE	RAM AND MA	ACHINE CONTRO	Lue si	
	addr11	Absolute		
		Subroutine Call	2	2
LCALL	addr16	Long Subroutine		
-ba no	PAM focati	Call in tostibul.	3	2
RET	ter Ro or Rt	Return from		
		subroutine	1	2
RETI		Poturn from		
HEII		interrupt	10917	2
A IMP	oddr11			
	addr11	Absolute Jump	100414	184
	addr16	Long Jump	5613 10	200
	rel and pairs	Short Jump	count	idilns
	g the serial c	(relative addr)	up(2 10	120
		Jump indirect		
			of telev	(10 B
		DPTR uso and vil	emthic	2
JZ	rel	Jump if		
		Accumulator is		
		Zero motava	2	2
JNZ	rel	Jump if		
		Accumulator is		
		Not Zero	2	2
JC	rel	Jump if Carry		
		flag is set	2	2
JNC	rel	Jump if No Carry		
	e reprinsim de	flag	2	2
JB	bit,rel	Jump if direct Bit		
-	LUIG STINE ST	set	3	2
JNB	bit.rel	Jump if direct Bit	and the second	outh c
and man	onina terre	Not set	3	2
JBC	bit rel	Jump if direct Bit	to not be	able
The Suc	haldealis se	is set & Clear bit	3	2
CINE	A direct rel	Compare direct	NICO IN	LITTED!
CONTE	, un oct, i el	to A & Jump if		
	annat anha	Not Equal	3	2
CJNE		Comp, immed,	0	-
COINE	A, # uata,rei	to A & Jump if		
		Not Equal	3	2
		NOT Equal	3	2

Table 2. MCS®-51 Instruction Set Description (Continued)

Mnemonic not	Description	Byte Cyc
PROGRAM AND MA	ACHINE CONTR	BOOLEALOS
(Continued)		
CJNE Rn, # data,rel	Comp, immed, to reg & Jump	
	Not Equal	3 2
CJNE @Ri, # data, re	ol Comp, immed,	
	to ind. & Jump	ORL CAN
	Not Equal	3 2
DJNZ Rn,rel manual	Decrement register & Jum	
2 2	if Not Zero	2 2
DJNZ direct,rel	direct & Jump	MOV C,/bi
	Not Zero	3 2
NOP S fid	No operation	1 1
Notes on data add	ressing modes:	PROGRAMA
	register R0-R7	
direct _ 128 inte		ons, any I/O
	internal RAM by register R0	

Timer/Counters

The 8044 contains two 16-bit counters which can be used for measuring time intervals, measuring pulse widths, counting events, generating precise periodic interrupt requests, and clocking the serial communications. Internally the Timers are clocked at 1/12 of the crystal frequency, which is the instruction cycle time. Externally the counters can run up to 500 KHz.

Interrupt System

External events and the real-time driven on-chip peripherals require service by the CPU asynchronous to the execution of any particular section of code. To tie the asynchronous activities of these functions to normal program execution, a sophisticated multiplesource, two priority level, nested interrupt system is provided. Interrupt response latency ranges from 3 usec to 7 usec when using a 12 MHz clock.

All five interrupt sources can be mapped into one of the two priority levels. Each interrupt source can be enabled or disabled individually or the entire interrupt system can be enabled or disabled. The five interrupt sources are: Serial Interface Unit, Timer 1. Timer 2, and two external interrupts. The external interrupts can be either level or edge triggered.

Notes on data addressing modes:

(Continued)

DATA TRANSFER (Continued) #data - 8-bit constant included in instruction #data16 - 16-bit constant included as bytes 2

& 3 of instruction bit

- 128 software flags, any I/O pin, controll or status bit

Notes on program addressing modes:

addr16 - Destination address for LCALL & LJMP may be anywhere within the 64-K program memory address space

Addr11 - Destination address for ACALL & AJMP will be within the same 2-K page of program memory as the first byte of the following instruction

- SJMP and all conditional jumps inrel clude an 8-bit offset byte, Range is +127 -128 bytes relative to first byte of the following instruction

All mnemonic copyrighted Intel Corporation 1979

Serial Interface Unit (SIU)

The Serial Interface Unit is used for HDLC/SDLC communications. It handles Zero Bit Insertion/Deletion, Flags automatic access recognization, and a 16-bit cyclic redundancy check. In addition it implements in hardware a subset of the SDLC protocol certain applications it is advantageous to have the CPU control the reception or transmission of every single frame. For this reason the SIU has two modes of operation: "AUTO" and "FLEXIBLE" (or "NON-AUTO"). It is in the AUTO mode that the SIU responds to SDLC frames without CPU intervention; whereas, in the FLEXIBLE mode the reception or transmission of every single frame will be under CPU control.

There are three control registers and eight parameter registers that are used to operate the serial interface. These registers are shown in Figure 5 and Figure 6. The control register set the modes of operation and provide status information. The eight parameter registers buffer the station address, receive and transmit control bytes, and point to the on-chip transmit and receive buffers.

Data to be received or transmitted by the SIU must be buffered anywhere within the 192 bytes of onchip RAM. Transmit and receive buffers are not allowed to "wrap around" in RAM; a "buffer end" is generated after address 191 is reached.

en self of blaid I self absol by Figure 5. Mapping of Special Function Registers in OTUA self of financiate of

Figure 6. Serial Interface Unit Control Registers

With the addition of only a few bytes of code, the 8044's frame size is not limited to the size of its internal RAM (192 bytes), but rather by the size of external buffer with no degradation of the RUPI's features (e.g. NRZI, zero bit insertion/deletion, address recognition, cyclic redundancy check). There is a special function register called SIUST whose contents dictates the operation of the SIU. At low data rates, one section of the SIU (the Byte Processor) performs no function during known intervals. For a given data rate, these intervals (stand-by mode) are fixed. The above characteristics make it possible to program the CPU to move data to/from external RAM and to force the SIU to perform some desired hardware tasks while transmission or reception is taking place. With these modifications, external RAM can be utilized as a transmit and received buffer instead of the internal RAM.

AUTO Mode

In the AUTO mode the SIU implements in hardware a subset of the SDLC protocol such that it responds to many SDLC frames without CPU intervention. All AUTO mode responses to the primary station will comform to IBM's SDLC definition. The advantages of the AUTO mode are that less software is required to implement a secondary station, and the hardware generated response to polls is much faster than doing it in software. However, the Auto mode can not be used at a primary station.

To transmit in the AUTO mode the CPU must load the Transmit Information Buffer, Transmit Buffer Start register, Transmit Buffer Length register, and set the Transmit Buffer Full bit. The SIU automatically responds to a poll by transmitting an information frame with the P/F bit in the control field set. When the SIU receives a positive acknowledgement from the primary station, it automatically increments the Ns field in the NSNR register and interrupts the CPU. A negative acknowledgement would cause the SIU to retransmit the frame.

To receive in the AUTO mode, the CPU loads the Receive Buffer Start register, the Receive Buffer Length register, clears the Receive Buffer Protect bit, and sets the Receive Buffer Empty bit. If the SIU is polled in this state, and the TBF bit indicates that the Transmit Buffer is empty, an automatic RR response will be generated. When a valid information frame is received the SIU will automatically increment Nr in the NSNR register and interrupt the CPU.

While in the AUTO mode the SIU can recognize and respond to the following commands without CPU intervention: I (Information), RR (Receive Ready), RNR (Receive Not Ready), REJ (Reject), and UP (Unnumbered Poll). The SIU can generate the fol-

lowing responses without CPU intervention: I (Information), RR (Receive Ready), and RNR (Receive Not Ready).

When the Receive Buffer Empty bit (RBE) indicates that the Receive Buffer is empty, the receiver is enabled, and when the RBE bit indicates that the Receive Buffer is full, the receiver is disabled. Assuming that the Receiver Buffer is empty, the SIU will respond to a poll with an I frame if the Transmit Buffer is full. If the Transmit Buffer is empty, the SIU will respond to a poll with a RR command if the Receive Buffer Protect bit (RBP) is cleared, or an RNR command if RBP is set.

FLEXIBLE (or NON-AUTO) Mode

In the FLEXIBLE mode all communications are under control of the CPU. It is the CPU's task to encode and decode control fields, manage acknowledgements, and adhere to the requirements of the HDLC/SDLC protocols. The 8044 can be used as a primary or a secondary station in this mode.

To receive a frame in the FLEXIBLE mode, the CPU must load the Receive Buffer Start register, the Receive Buffer Length register, clear the Receive Buffer Protect bit, and set the Receive Buffer Empty bit. If a valid opening flag is received and the address field matches the byte in the Station Address register or the address field contains a broadcast address, the 8044 loads the control field in the receive buffer. If there is no CRC error, the SIU interrupts the CPU, indicating a frame has just been received. If there is a CRC error, no interrupt occurs. The Receive Field Length register provides the number of bytes that were received in the information field.

To transmit a frame, the CPU must load the transmit information buffer, the Transmit Buffer Start register, the Transmit Buffer Length register, the Transmit Control Byte, and set the TBF and the RTS bit. The SIU, unsolicited by an HDLC/SDLC frame, will transmit the entire information frame, and interrupt the CPU, indicating the completion of transmission. For supervisory frames or unnumbered frames, the transmit buffer length would be 0.

CRC

The FCS register is initially set to all 1's prior to calculating the FCS field. The SIU will not interrupt the CPU if a CRC error occurs (in both AUTO and FLEX-IBLE modes). The CRC error is cleared upon receiving of an opening flag.

Frame Format Options

In addition to the standard SDLC frame format, the 8044 will support the frames displayed in Figure 7. The standard SDLC frame is shown at the top of this figure. For the remaining frames the information field will incorporate the control or address bytes and the frame check sequences; therefore these fields will

be stored in the Transmit and Receive buffers. For example, in the non-buffered mode the third byte is treated as the beginning of the information field. In the non-addressed mode, the information field begins after the opening flag. The mode bits to set the frame format options are found in the Serial Mode register and the Status register.

FRAME OPTION	NFCS	NB	FRAME FORMAT								
	or internal			F	A	С	ens eo	Blvy b	sing nel	FCS	F. apme
reference clock. Using the	d as the	is use									
	clock the	2.6 Kbi	244 to 6	F	A	C	only in receiver tor will	evisor elnes RC er			than 8-bit U to rejec
Non-Buffered Mode NON-AUTO Mode	ally applied	extern o alzs i	troit 0 to	F	A		1	ę	FCS	F	or ord
Non-Addressed Mode NON-AUTO Mode	sturn to Zi ptio0. Add ion that tr	Non Ri odilna o me opt	a NRZI (anodeci frama sy		trans-		oig i		b entree	ry statio it receiv	ne SIU can y or prima top mode its the dat
No FCS Field NON-AUTO Mode	nobronize operling fi						dt ni J	esu.	can be	the SIU	se recog- to a flag v y station EXIBLE r
No FCS Field AUTO Mode at 2 bas lost	1	0 e three	There ar	F	A	The second second	ta rate	ab mu	mayam	ent soo	LE mode quired fo e Loop m ocked or 3
No FCS Field Non-Buffered Mode NON-AUTO Mode	Count Re	eviese	Send/R	F	A -srupi	noo o				eau ed r	DLC Mu
No FCS Field Non-Addressed Mode NON-AUTO Mode		iche s	up On an ting).	F	bns b	ecelve s a b	n al est delve	skF.ebi	loop me 1, and mode,	the non- on pin	
Mode Bits: AM — "AUTO" Mode/Ac NB — Non-Buffered Mod NFCS — No FCS Field Mod	lecoll sho	ode	scribed SMD: Se Bit 7:		vilsme	n exte	e ni e				ata Cloc
Key to Abbreviations: F = Flag (01111110) A = Address Field C = Control Field	FCS=	Informa Frame (tion Field Check Sec		ystem to the n-chip					self cloc the 804- clocked se Locke ne data,	
Note 1: The AM bit function is contro becomes Address mode sele	olled by the			B =	0, AM	becom	nes AU	TO mod	de select	, when N	B = 1, AM

Figure 7. Frame Format Options atab and driw gnota belique vidia

To realize an extended control field or an extended address field using the HDLC protocol, the FLEX-IBLE mode must be used. For an extended control field, the SIU is programmed to be in the non-buffered mode. The extended control field will be the first and second bytes in the Receive and Transmit Buffers. For extended addressing the SIU is placed in the non-addressed mode. In this mode the CPU must implement the address recognition for received frames. The addressing field will be the initial bytes in the Transmit and Receive buffers followed by the control field.

example, in the non-bullered mode the third byte is

The SIU can transmit and receive only frames which are multiples of 8 bits. For frames received with other than 8-bit multiples, a CRC error will cause the SIU to reject the frame.

SDLC Loop Networks

The SIU can be used in an SDLC loop as a secondary or primary station. When the SIU is placed in the Loop mode it receives the data on pin 10 and transmits the data one bit time delayed on pin 11. It can also recognize the Go ahead signal and change it into a flag when it is ready to transmit. As a secondary station the SIU can be used in the AUTO or FLEXIBLE modes. As a primary station the FLEX-IBLE mode is used; however, additional hardware is required for generating the Go Ahead bit pattern. In the Loop mode the maximum data rate is 1 Mbps clocked or 375 Kpbs self-clocked.

SDLC Multidrop Networks

The SIU can be used in a SDLC non-loop configuration as a secondary or primary station. When the SIU is placed in the non-loop mode, data is received and transmitted on pin 11, and pin 10 drives a tri-state buffer. In non-loop mode, modem interface pins, RTS and CTS, become available.

Data Clocking Options

The 8044's serial port can operate in an externally clocked or self clocked system. A clocked system provides to the 8044 a clock synchronization to the data. A self-clocked system uses the 8044's on-chip Digital Phase Locked Loop (DPLL) to recover the clock from the data, and clock this data into the Serial Receive Shift Register.

In this mode, a clock synchronized with the data is externally fed into the 8044. This clock may be generated from an External Phase Locked Loop, or possibly supplied along with the data. The 8044 can

2.4 Mbps.

This self clocked mode allows data transfer without a common system data clock. An on-chip Digital Phase Locked Loop is employed to recover the data clock which is encoded in the data stream. The DPLL will converge to the nominal bit center within eight bit transitions, worst case. The DPLL requires a reference clock of either 16 times (16x) or 32 times (32x) the data rate. This reference clock may be externally applied or internally generated. When internally generated either the 8044's internal logic clock (crystal frequency divided by two) or the timer 1 overflow is used as the reference clock. Using the internal timer 1 clock the data rates can vary from 244 to 62.5 Kbps. Using the internal logic clock at a 16x sampling rate, receive data can either be 187.5 Kbps, or 375 Kbps. When the reference clock for the DPLL is externally applied the data rates can vary from 0 to 375 Kbps at a 16x sampling rate.

To aid in a Phase Locked Loop capture, the SIU has a NRZI (Non Return to Zero Inverted) data encoding and decoding option. Additionally the SIU has a preframe sync option that transmits two bytes of alternating 1's and 0's to ensure that the receive station DPLL will be synchronized with the data by the time it receives the opening flag.

Control and Status Registers

There are three SIU Control and Status Registers:
Serial Mode Register (SMD)
Status/Command Register (STS)
Send/Receive Count Register (NSNR)

The SMD, STS, and NSNR, registers are all cleared by system reset. This assures that the SIU will power up in an idle state (neither receiving nor transmitting).

These registers and their bit assignments are described below.

SMD: Serial Mode Register (byte-addressable) Bit 7: 6 5 4 3 2 1 0 SCM2 SCM1 SCM0 NRZI LOOP PFS NB NFCS

The Serial Mode Register (Address C9H) selects the operational modes of the SIU. The 8044 CPU can both read and write SMD. The SIU can read SMD but cannot write to it. To prevent conflict between CPU and SIU access to SMD, the CPU should write SMD only when the Request To Send (RTS) and

Receive Buffer Empty (RBE) bits (in the STS register) are both false (0). Normally, SMD is accessed only during initialization.

The individual bits of the Serial Mode Register are as follows: t ed at emait ent to bfeit-I ent to painniped

Bit#	Name	Description and American son a
SMD.0	NFCS	No FCS field in the SDLC frame.
SMD.1	NB	Non-Buffered mode. No control field in the SDLC frame.
SMD.2a ad of bi and to be	eil-l erli	Pre-Frame Sync mode. In this mode, the 8044 transmits two bytes before the first flag of a frame, for DPLL synchronization. If NRZI is enabled, 00H is sent; otherwise, 55H is sent. In either case, 16 preframe transitions are guaranteed.
SMD.3	LOOP	Loop configuration. "Daugas garw"
SMD.4	NRZI	NRZI coding option. If bit = 1, NRZI coding is used. If bit = 0, then it is straight binary (NRZ).
SMD.5	SCM0	Select Clock Mode—Bit 0
SMD.6	SCM1	Select Clock Mode—Bit 1
SMD.7	SCM2	Select Clock Mode—Bit 2

The SCM bits decode as follows:

SCM		1	eld is not usingmining a frair e Ngand Na counters are no	Data Rate	
2	1	0	Clock Mode sbom O	(Bits/sec)*	
0	0	0	Externally clocked	0-2.4M**	
0	0	1	Reserved has been all the	vleceR :88	
0	1	0	Self clocked, timer overflow	244-62.5K	
0	1	1	Reserved and made and	ne Receive	
1	0	0	Self clocked, external 16x	0-375K	
1	0	1	Self clocked, external 32x	0-187.5K	
1	1	0	Self clocked, internal fixed	375K	
1	1	1	Self clocked, internal fixed	187.5K 381	

NOTES:

*Based on a 12 Mhz crystal frequency **0-1 M bps in loop configuration

STS: Status/Command Register (bit- and anismos addressable)

				1 CPUS houls with					
TBF	RBE	RTS	SI	BOV	OPB	AM	RBP		

The Status/Command Register (Address C8H) provides operational control of the SIU by the 8044 CPU, and enables the SIU to post status information for the CPU's access. The SIU can read STS, and can alter certain bits, as indicated below. The CPU can both read and write STS asynchronously. However, 2-cycle instructions that access STS during both cycles ('JBC/B, REL' and 'MOV/B, C.') should not be used, since the SIU may write to STS between the two CPU accesses.

The individual bits of the Status/Command Register are as follows:

Bit#	Name	Description bas ', IER , 8\ 080
STS.0	RBP ^{IM}	Receive Buffer Protect. Inhibits writing of data into the receive buffer. In AUTO mode, RBP forces an RNR response instead of an RR.
STS.1	MA Erron	AUTO Mode/Addressed Mode. Selects AUTO mode where AUTO mode is allowed. If NB is true, (= 1), the AM bit selects the addressed mode. AM may be cleared by the SIU.
STS.2	OPB emino0 e nor bn	Optional Poll Bit. Determines whether the SIU will generate an AUTO response to an optional poll (UP with P = 0). OPM may be set or cleared by the SIU.
STS.3	BOV	Receive Buffer Overrun. BOV may be set or cleared by the SIU.
STS.4	Sl _{eimuc} —remuc	SIU Interrupt. This is one of the five interrupt sources to the CPU. The vector location = 23H. SI may be set by the SIU. It should be cleared by the CPU before returning from an interrupt routine.
STS.5	eight i	Request To Send. Indicates that the 8044 is ready to transmit or is transmitting. RTS may be read or written by the CPU. RTS may be read by the SIU, and in AUTO mode may be written by the SIU.
STS.6		Receive Buffer Empty. RBE can be thought of as Receive Enable. RBE is set to one by the CPU when it is ready to receive a frame, or has just read the buffer, and to zero by the SIU when a frame has been received.
STS.7	TBF	Transmit Buffer Full. Written by the CPU to indicate that it has filled the transmit buffer. TBF may be cleared by the SIU.

NSNR: Send/Receive Count Register (bit-addressable)

Bit:	7	6	5	4	3	2	eo tel	0
	NS2	NS1	NS0	SES	NR2	NR1	NRO	SER

The Send/Receive Count Register (Address D8H) contains the transmit and receive sequence numbers, plus tally error indications. The SIU can both read and write NSNR. The 8044 CPU can both read and write NSNR asynchronously. However, 2-cycle instructions that access NSNR during both cycles ('JBC /B, REL,' and 'MOV /B,C') should not be used, since the SIU may write to NSMR between the two 8044 CPU accesses.

The individual bits of the Send/Receive Count Register are as follows:

Bit#boly	Name	Description UA	MA	STS.1
NSNR.0	IL DEMI	Receive Sequence NS (P) ≠ NR (S)	Error:	
NSNR.1	NRO	Receive Sequence	Counte	r—Bit 0
NSNR.2	NR1	Receive Sequence	Counte	r—Bit 1
NSNR.3	NR2	Receive Sequence	Counte	r—Bit 2
NSNR.4	SES	Send Sequence Er NR (P) ≠ NS (S) at NR (P) ≠ NS (S) +	nd	0 272
NSNR.5	NS0	Send Sequence Co	unter-	Bit 0
NSNR.6	NS1	Send Sequence Co	unter-	Bit 1
NSNR.7	NS2	Send Sequence Co	unter-	Bit 2

Parameter Registers

There are eight parameter registers that are used in connection with SIU operation. All eight registers may be read or written by the 8044 CPU. RFL and RCB are normally loaded by the SIU.

The eight parameter registers are as follows:

STAD: Station Address Register (byte-addressable)

The Station Address register (Address CEH) contains the station address. To prevent acess conflict, the CPU should access STAD only when the SIU is idle (RTS = 0 and RBE = 0). Normally, STAD is accessed only during initialization.

TBS: Transmit Buffer Start Address Register (byte-addressable)

The Transmit Buffer Start address register (Address DCH) points to the location in on-chip RAM for the beginning of the I-field of the frame to be transmitted. The CPU should access TBS only when the SIU is not transmitting a frame (when TBF = 0).

TBL: Transmit Buffer Length Register (byte = addressable)

The Transmit Buffer Length register (Address DBH) contains the length (in bytes) of the I-field to be transmitted. A blank I-field (TBL = 0) is valid. The CPU should access TBL only when the SIU is not transmitting a frame (when TBF = 0).

orderwise, 55H is sent, in either case 3TON frame transitions are

The transmit and receive buffers are not allowed to "wrap around" in the on-chip RAM. A "buffer end" is automatically generated if address 191 (BFH) is reached.

TCB: Transmit Control Byte Register (byte-addressable)

The Transmit Control Byte register (Address DAH) contains the byte which is to be placed in the control field of the transmitted frame, during NON-AUTO mode transmission. The CPU should access TCB only when the SIU is not transmitting a frame (when TBF = 0). The Nsand $\rm N_{R}$ counters are not used in the NON-AUTO mode.

RBS: Receive Buffer Start Address Register (byte-addressable)

The Receive Buffer Start address register (Address CCH) points to the location in on-chip RAM where the beginning of the I-field of the frame being received is to be stored. The CPU should write RBS only when the SIU is not receiving a frame (when RBE = 0).

RBL: Receive Buffer Length Register and Design (byte-addressable)

The Receive Buffer Length register (Address CBH) contains the length (in bytes) of the area in on-chip RAM allocated for the received I-field. RBL=0 is valid. The CPU should write RBL only when RBE=0.

RFL: Receive Field Length Register (byte-addressable)

The Receive Field Length register (Address CDH) contains the length (in bytes) of the received I-field that has just been loaded into on-chip RAM. RFL is loaded by the SIU. RFL = 0 is valid. RFL should be accessed by the CPU only when RBE = 0.

RCB: Receive Control Byte Register (byte-addressable)

The Received Control Byte register (Address CAH) contains the control field of the frame that has just been received. RCB is loaded by the SIU. The CPU can only read RCB, and should only access RCB when RBE = 0.

ICE Support

The 8044 In-Circuit Emulator (ICE-44) allows the user to exercise the 8044 application system and monitor the execution of instructions in real time.

The emulator operates with Intel's IntellecTM development system. The development system interfaces with the user's 8044 system through an in-cable buffer box. The cable terminates in a 8044 pin-compatible plug, which fits into the 8044 socket in the user's system. With the emulator plug in place, the user can excercise his system in real time while collecting up to 255 instruction cycles of real-time data. In addition, he can single-step the program.

Static RAM is available (in the in-cable buffer box) to emulate the 8044 internal and external program memory and external data memory. The designer can display and alter the contents of the replacement memory in the buffer box, the internal data memory, and the internal 8044 registers, including the SFR's.

SIUST: SIU State Counter (byte-addressable)

The SIU State Counter (Address D9H) reflects the state of the internal logic which is under SIU control. Therefore, care must be taken not to write into this register. This register provides a useful means for debugging 8044 receiver problem.

	8044AH/8344AH			V	IOL = 9,2 mA
HOV	Output High Voltage (Ports 1, 2, 3)	2.4		V	Au 08- = HOI
	Output High Voltage (Port 0 in External Bus Mode, ALE, PSEN)	2.4		٧	10Н = -400 дА
	Logical 0 Input Current (Ports 1, 2, 3)		-600	Ан	Vin = 0.46V
	Logical 0 Input Current to EA Pin of 8744H only			Am	
	Logical 0 input Current (XTAL2)			Am	Vin = 0.45V
	Input Leakage Current (Port 0) 8744H 8044AH/8344AH		±100		0.45 < Vin < VCC 0.45 < Vin < VCC
	Logical 1 Input Current to EA Pin of 8744H			Au	
	Input Current to RST to Activate Reset			Asq	
	Power Supply Current: 8744H 8044AH/8344AH		285		
				Fig	Test Freq. = 1MHz(1)

L. Sampled not 100% resided. 1_A = 25°C.
C. Capacitive loading on Ports 0 and 8 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pin when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may acceed 0.8V, in such cases it may be desirable to qualify ALE with a Schmitt Engger, or use an address fatch with a Schmitt Engger STROBE input.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias0°C to 70°C Storage Temperature -65°C to -150°C Voltage on EA, VPP Pin to VSS ... -0.5V to -21.5V Voltage on Any Other Pin to VSS ... -0.5V to -7V Power Dissipation2W

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS TA = 0°C to 70°C, VCC = 5V = 10%, VSS = 0V

Symbol	ara data memory. The	meterns violen	Min	Max	Unit	Test Conditions
VIL	Input Low Voltage (Exce	ept EA Pin of 8744H)	-0.5	0.8	V	contains the control fie
VIL1	Input Low Voltage to EA Pin of 8744H		0	0.8	V	sen recensed. Note is tan only read RCB: at
VIH	Input High Voltage (Exc	ept XTAL2, RST)	2.0	VCC + 0.5	٧	when RBE = 0.
VIH1	Input High Voltage to X7	AL2, RST	2.5	VCC + 0.5	V	XTAL1 = VSS
VOL	Output Low Voltage (Po			0.45	V	IOL = 1.6mA
VOL1	Output Low Voltage (Po	rt 0,ALE,PSEN)*	iows the	(ICE-44) a	nulato	The 8044 In-Circuit E
einto this neans for	lust be taken not to write ster provides a useful re seeker problem	Committee of the same and the s	or a mera	0.60 0.45	V V	IOL = 3.2 mA IOL = 2.4 mA
	anotoriq toriose	8044AH/8344AH		0.45	٧	IOL = 3.2 mA
VOH	Output High Voltage (Ports 1, 2, 3)		2.4		V	$IOH = -80 \mu A$
VOH1	Output High Voltage (Port 0 in External Bus Mode, ALE, PSEN)		2.4		٧	IOH = -400 μA
IIL	Logical 0 Input Current (Ports 1, 2, 3)		-500	μΑ	Vin = 0.45V
IIL1	Logical 0 Input Current to EA Pin of 8744H only			-15	mA	
IIL2	Logical 0 Input Current (XTAL2)		-3.6	mA	Vin = 0.45V
ILI	Input Leakage Current (I 8744H 8044AH/8344AH	Port 0)		±100 ±10	μA μA	0.45 < Vin < VCC 0.45 < Vin < VCC
IIH	Logical 1 Input Current t	o EA Pin of 8744H		500	μΑ	
IIH1	Input Current to RST to Activate Reset			500	μΑ	Vin < (VCC - 1.5V)
ICC	Power Supply Current: 8744H 8044AH/8344AH			285 170	mA mA	All Outputs Disconnected: EA = VCC
CIO	Pin Capacitance			10	pF	Test Freq. = 1MHz(1)

*NOTES:

1. Sampled not 100% tested. TA = 25°C.

^{2.} Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pin when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

EXTERNAL DATA MEMORY CHARACTERISTICS

A.C. CHARACTERISTICS

 $T_A = 0$ °C to +70°C, VCC = 5V \pm 10%, VSS = 0V, Load Capacitance for Port 0, ALE, and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbol	Parameter SOLOTE	12 MH	Iz Osc		Variable Clock 1/TCLCL = 3.5 MHz to 12 MHz		
871	AT IN INTA	Min	Max	Min	Max	n ign	
TLHLL	ALE Pulse Width	127	7	2TCLCL-40	the bloth stell X	ns	
TAVLL	Address Valid to ALE Low	43		TCLCL-40	7 Data Stoat An	ns	
TLLAX1	Address Hold After ALE Low	48		TCLCL-35	Votum (R.M.)	ns	
TLLIV	ALE Low to Valid Instr in 8744H	888	183	lid Data In	41CLCL-150	ns	
en 0	8044AH/8344AH	008	233		410202 100		
TLLPL	ALE Low to PSEN Low	58	609	TCLCL-25	L Address to RE	ns	
TPLPH an	PSEN Pulse Width 8744H 8044AH/8344AH	190 215	13	3TCLCL-60 3TCLCL-35	874411	ns ns	
TPLIV	PSEN Low to Valid Instr in		684	fore WR High	H Data Setup Br	TOVA	
	8744H 8044AH/8344AH		100 125	AW w	3TCLCL-150 3TCLCL-125	ns	
TPXIX	Input Instr Hold After PSEN	0		0	DA OF WOLL OF I	ns	
TPXIZ2	Input Instr Float After PSEN	88	63	High SUA OF	TCLCL-20	ns	
TPXAV2	PSEN to Address Valid	75 88	43	TCLCL-8	8044AH/83	ns	
TAVIV	Address to Valid Instr in 8744H 8044AH/8344AH	for access	267 302	m memory is different	5TCLCL-150 5TCLCL-115	ns ns	
TAZPL	Address Float to PSEN	-25		-25 sottah	nterface Charactu	ns	

TLLAX for access to program memory is different from TLLAX for data memory.
 Interfacing RUPI-44 devices with float times up to 75ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

EXTERNAL DATA MEMORY CHARACTERISTICS

Symbol	nos for Port 0, AUE, and PSEN Parameter	12 MHz Osc		Variable Clock 1/TCLCL = 3.5 MHz to 12 MHz		
	Parameter 12 MHz Osc 1/TCLCL = 3.5 MHz to 12 M Min Max Min Max RD Pulse Width 400 6TCLCL-100 Address Hold after ALE 48 TCLCL-35 RD Low to Valid Data in 252 5TCLCL-1 Data Hold After RD 0 0 Data Float After RD 97 2TCLCL-1 ALE Low to Valid Data In 517 8TCLCL-1 Address to Valid Data In 585 9TCLCL-1 ALE Low to RD or WR Low 200 300 3TCLCL-50 3TLCLCL-1 Address to RD or WR Low 203 4TCLCL-130 4TCLCL-130	Max				
TRLRH	RD Pulse Width	400	TERISTICS	6TCLCL-100	NAL PROGRAM I	ns
TWLWH	WR Pulse Width	400	12 MHz On	6TCLCL-100		ns
TLLAX	Address Hold after ALE	48		TCLCL-35	iate9 k	ns
TRLDV	RD Low to Valid Data in	XB	252		5TCLCL-165	ns
TRHDX	Data Hold After RD	0	12	0	ALC PUISS VER	ns
TRHDZ	Data Float After RD		97	WO ALE LOW	2TCLCL-70	ns
TLLDV	ALE Low to Valid Data In		517	ARELOW LOW	8TCLCL-150	ns
TAVDV	Address to Valid Data In	00	585	ni beni bis	9TCLCL-165	ns
TLLWL	ALE Low to RD or WR Low	200	300	3TCLCL-50	3TLCLCL+50	ns
TAVWL	Address to RD or WR Low	203	88	4TCLCL-130	ALE Low to PE	ns
TQVWX				TCLCL-70	8744H	ns ns
TQVWH	Data Setup Before WR High	433		7TCLCL-150	PSER Low to \	ns
TWHQX	Data Held After WR	33		TCLCL-50	8744H	ns
TRLAZ	RD Low to Address Float		25	10300 waxa 1	25	ns
TWHLH	RD or WR High to ALE High 8744H 8044AH/8344AH	33 43	133 123 av	TCLCL-50 A	TCLCL+50	ns

NOTE:

1. TLLAX for access to program memory is different from TLLAX for access data memory.

Serial Interface Characteristics

Symbol	Parameter	Min	Max	Unit
TDCY	Data Clock	420	to program memory is	ns
TDCL	Data Clock Low	180	vers.	to 0 tro ns agams
TDCH	Data Clock High	100		ns
tTD	Transmit Data Delay		140	ns
tDSS	Data Setup Time	40		ns
tDHS	Data Hold Time	40		ns

WAVEFORMS

Memory Access

PROGRAM MEMORY READ CYCLE

DATA MEMORY READ CYCLE

DATA MEMORY WRITE CYCLE

SYNCHRONOUS DATA RECEPTION

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component to component. Typically three and pin loading, Propagation also varies from output are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are inconcreted in the AC specifications.

CLOCK WAVEFORMS

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component to component. Typically though, (T_A = 25°C, fully loaded) RD and WR propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

8744H EPROM CHARACTERISTICS

Erasure Characteristics

Erasure of the 8744H Program Memory begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000 Ångstroms. Since sunlight and fluorescent lighting have wavelengths in this range, constant exposure to these light sources over an extended period of time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause unintentional erasure. If an application subjects the 8744H to this type of exposure, it is suggested that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Ångstroms) to an integrated dose of at least 15 W-sec/cm² rating for 20 to 30 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1s state.

Programming the EPROM

To be programmed, the 8744H must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate registers.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0-P2.3 of Port 2, while the data byte is applied to Port 0. Pins P2.4-P2.6 and PSEN should be held low, and P2.7 and RST high. (These are all TTL levels except RST, which requires 2.5V for high.) EA/VPP is held normally high, and is pulsed to +21V. While EA/VPP is at 21V, the ALE/PROG pin, which is normally being held high, is pulsed low for 50 msec. Then EA/VPP is returned to high. This is illustrated in Fig-

ure 8. Detailed timing specifications are provided in the EPROM Programming and Verification Characteristics section of this data sheet.

Program Memory Security

The program memory security feature is developed around a "security bit" in the 8744H EPROM array. Once this "hidden bit" is programmed, electrical access to the contents of the entire program memory array becomes impossible. Activation of this feature is accomplished by programming the 8744H as described in "Programming the EPROM" with the exception that P2.6 is held at a TTL high rather than a TTL low. In addition, Port 1 and P2.0-P2.3 may be in any state. Figure 9 illustrates the security bit programming configuration. Deactivating the security feature, which again allows programmability of the EPROM, is accomplished by exposing the EPROM to ultraviolet light. This exposure, as described in "Erasure Characteristics," erases the entire EPROM array. Therefore, attempted retrieval of "protected code" results in its destruction.

Program Verification

Program Memory may be read only when the "security feature" has not been activated. Refer to Figure 10 for Program Verification setup. To read the Program Memory, the following procedure can be used. The unit must be running with a 4 to 6 MHz oscillator. The address of a Program Memory location to be read is applied to Port 1 and pins P2.0-P2.3 of Port 2. Pins P2.4-P2.6 and PSEN are held at TTL low, while the ALE/PROG, RST, and EA/VPP pins are held at TTL high. (These are all TTL levels except RST, which requires 2.5V for high.) Port 0 will be the data output lines. P2.7 can be used as a read strobe. While P2.7 is held high, the Port 0 pins float. When P2.7 is strobed low, the contents of the addressed location will appear at Port 0. External pullups (e.g., 10K) are required on Port 0 during program verification.

Figure 8. Programming Configuration

Figure 10. Program Verification Configuration

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND VERIFICATION CHARACTERISTICS

 $TA = 21^{\circ}C$ to 27°C, $V_{CC} = 4.5V$ to 5.5V, $V_{SS} = 0V$

Symbol	Parameter	Min	Max	Units
V _{PP} SONST	Programming Supply Voltage	20.5	21.5	٧
IPP	Programming Current		30	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
TAVGL	Address Setup to PROG	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to PROG	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	ENABLE High to Vpp	48TCLCL		
TSHGL	V _{PP} Setup to PROG	10		μsec
TGHSL	V _{PP} Hold after PROG	10		μsec
TGLGH	PROG Width	45	55	msec
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE to Data Valid	hasines a	48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND VERIFICATION WAVEFORMS

RUPITM Development Support Tool

23

RUPITM Development Support Tool

23

ICE-5100/452 In-Circuit Emulator

IN-CIRCUIT EMULATOR FOR THE UPT"-452 FAMILY OF A 1983 has 1984 to 1984 PROGRAMMABLE I/O PROCESSORS

The ICE-5100/452 In-Circuit Emulator is a complete hardware/software debug environment for developing embedded control applications based on the Intel UPI™-452 family of I/O peripherals. With high-performance full-speed emulation, symbolic debugging, and flexible memory mapping, the ICE-5100/452 emulator expedites all stages of development: hardware development, software development, system integration, and system test; shortening your project's time to market.

FEATURES

- Full speed to the speed of the component.
- 64KB of emulation mapped memory.
- 254 frames of execution trace.
- · Symbolic debug.
- · Serial link to an IBM PC XT, AT, 100% compatible.
- · Four address breakpoints with in-range, out-of-range, and page breaks.
- · On-line disassembler and single line assembler.
- · Full emulation and debug support for the FIFO Buffer.

- · Source code display.
- ASM-51 and PL/M-51 language support.
- Prop-up help.
 DOS shell escape.
- On-line tutorial.
- · Built-in CRT based editor.
- · System self-test diagnostics.
- · Worldwide service and support.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Information contained between supersides previously multished secretications on these discuss from Intel and as solved to change a floor today.

© Intel Corporation 1988

September, 1988 Order Number, 280817-001

SYMBOLIC DEED CEING FOR PAST

ONE TOOL FOR ENTIRE DEVELOPMENT CYCLE

The ICE-5100/452 emulator speeds target system development by allowing hardware and software design to proceed simultaneously. You can develop software even before prototype hardware is finished. And because the ICE-5100/452 emulator precisely matches the component's electrical and timing characteristics, it's a valuable tool for hardware development and debug. Thus, the ICE-5100/452 emulator can debug a prototype or production system at any stage in its development, without introducing extraneous hardware or software test tools.

HIGH-SPEED, REAL-TIME EMULATION

The ICE-5100/452 emulator provides full-speed, real-time emulation up to the speed of the component. Because the emulator is fully transparent to the target system, you have complete control over hardware and software debug and system integration.

64KB of zero wait-state emulation memory is available to replace target system code memory, allowing software debug to begin even before prototype hardware is finished.

FLEXIBLE BREAKPOINTING FOR QUICK PROBLEM ISOLATION

The ICE-5100/452 emulator supports three different types of break specifications: specific address breaks on up to 64.000 possible addresses; range breaks, both within and outside a user-defined range; and page breaks, up to 256 pages on 256-byte boundaries. 254 frames of execution trace memory provide ample debug information, with each frame divided into 16 bits of program execution address and 8 bits of external event information. A maximum of four tracepoints allows qualified trace for a variety of debug conditions.

SYMBOLIC DEBUGGING FOR FAST DEVELOPMENT

Design team productivity is enhanced by the use of symbolic debug references to program line, high-level statements, and module and variable names. The terms used to develop programs are the same used for system debugging.

PATCH CODE WITHOUT RECOMPILING

Code-patching is easy with the ICE-5100/452 emulator's single-line assembler. Machine code can be disassembled to mnemonics for significantly easier debugging and project development.

EASY TO LEARN AND USE

The ICE-5100/452 is accompanied by a full tutorial that explains all system functions and provides many examples. Additional features such as on-line help, a built-in CRT-based editor, and DOS shell escape make the emulator fast and easy to use for both novice and experienced users. You can develop your own test suites or save frequently-used debug routines as debug procedures (PROCs) that can be invoked with a single command.

WORLDWIDE SERVICE AND SUPPORT

The ICE-5100/452 emulator is supported by Intel's worldwide service and support organization. In addition to an extended warranty, you can choose from hotline support, on-site system engineering assistance, and a variety of hands-on training workshops.

ELECTRICAL CONSIDERATIONS

The emulation processor's user-pin timings and loadings are identical to the 452 component except as follows:

 Up to 25 pF of additional pin capacitance is contributed by the processor module and target adaptor assemblies.

PROCESSOR MODULE DIMENSIONS

Figure 1: Processor Module Dimensions

SPECIFICATIONS

Host Requirements:

IBM PC-XT. AT or compatible PC-DOS 3.0 or later 512K RAM One floppy drive and hard disk

Physical Characteristics:

The ICE-5100/452 emulator consists of the following components:

Unit	Wid	th dis	Hele	ght	Len	ngth
	Inch	Cm	Inch	Cm	Inch	Cm
Controller Pod User Cable Processor	8.25	21.0	1.5	3.8	13.5 39.0	34.3 99.0
Module* Power Supply Serial Cable	3.8 7.6	9.7 18.1	1.5 4.0	3.8 10.2	4.0 11.0 144.0	10.2 28.0 360.0

^{*}with supplied target adapter.

Electrical Characteristics:

Power supply 100-120V or 220-240V selectable 50-60 Hz 2 amps (AC max) @ 120V 1 amp (AC max) @ 240V

Environmental Characteristics:

Operating temperature: $\pm 10^{\circ}\text{C}$ to $\pm 40^{\circ}\text{C}$ (50°F to 104°F) Operating humidity: Maximum of 85% relative humidity. non-condensing

NOTES INCOMES TO SERVICE

ABDIT text editor (requires software

ORDERING INFORMATION

Order Code

Description

pl452KITAD

Kit contains ICE-5100/452 user probe assembly, power supply and cables, serial cables, target adapter, crystal power accessory, emulator controller pod, emulator software, DOS host communication cables, ASM-51 and AEDIT text editor (requires software license).

the number of your nearest sales office or distributor, call 800-874-6835 (U.S.). For information or literature on additional Intel products, call 800-548-4725 (U.S. and

pl452KITD

Kit contains the same components as pl452KlTAD, excluding ASM-51 and the AEDIT text editor (requires software

license).

pC452KITD

Conversion kit for ICE-5100/451. ICE-5100/252, or ICE-5100/044 running PC-DOS 3.0 or later, to provide emulation support for 80C452

components (requires software license).

TA452E

Target adapter for 68-pin PLCC package

support.

D86ASM51

ASM/RL 51 package for PC-DOS

(requires software license).

D86PLM51

PL/M/RL 51 package for PC-DOS (requires software license).

D86EDINL

AEDIT text editor for PC-DOS.

MCS is a registered trademark and ICE is a trademark of Intel Corporation.

IBM and PC/AT are registered trademarks and PC/XT a trademark of International Business Machines Corporation.

For direct information on Intel's Development Tools, or for

984cl 8	:0131	Mels	Xub;	Bigging.	18.8164
	6302		00013	stanti	EDGE
Antenilor Post Ser Cable Processor					
lodale" 'ower Supply 'erral Cable		1.5			

SPECIFICATIONS

Most Megaliveners:

8080A/8080A-1/8080A-2 8-BIT N-CHANNEL MICROPROCESSOR

- **TTL Drive Capability**
- 2 μs (-1:1.3 μs, -2:1.5 μs) Instruction Cycle
- Powerful Problem Solving Instruction Set
- 6 General Purpose Registers and an Accumulator
- 16-Bit Program Counter for Directly Addressing up to 64K Bytes of Memory
- 16-Bit Stack Pointer and Stack Manipulation Instructions for Rapid Switching of the Program Environment

- Decimal, Binary, and Double Precision Arithmetic
- Ability to Provide Priority Vectored Interrupts
- 512 Directly Addressed I/O Ports
- Available in EXPRESS
 - Standard Temperature Range
- Available in 40-Lead Cerdip and Plastic Packages

(See Packaging Spec. Order #231369)

The Intel® 8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel's n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.

The 8080A contains 6 8-bit general purpose working registers and an accumulator. The 6 general purpose registers may be addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set or reset 4 testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/retrieve the contents of the accumulator, flags, program counter, and all of the 6 general purpose registers. The 16-bit stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.

This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bidirectional data busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to memory and I/O are provided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-tying these busses with other control-ling devices for (DMA) direct memory access or multi-processor operation.

NOTE:

The 8080A is functionally and electrically compatible with the Intel 8080.

The 8080A has an external stack featuremental and the sound may be used as a last thriften out

Figure 2. Pin Configuration

Lali			

Table 1. Pin Description	MITAR BALIMIY	SOLUTE MA	
--------------------------	---------------	-----------	--

Symbol	Type	Name and Function
A ₁₅ -A ₀	cated in	ADDRESS BUS: The address bus provides the address to memory (up to 64K 8-bit words) or denotes the I/O device number for up to 256 input and 256 output devices. Ao is the least significant address bit.
D ₇ -D ₀	I/O	DATA BUS: The data bus provides bi-directional communication between the CPU, memory, and I/O devices for instructions and data transfers. Also, during the first clock cycle of each machine cycle, the 8080A outputs a status word on the data bus that describes the current machine cycle. Do is the least significant bit.
SYNC	0	SYNCHRONIZING SIGNAL: The SYNC pin provides a signal to indicate the beginning of each machine cycle.
DBIN esiwiento a	O /; unless	DATA BUS IN: The DBIN signal indicates to external circuits that the data bus is in the input mode. This signal should be used to enable the gating of data onto the 8080A data bus from memory or I/O.
READY	i Condil	READY: The READY signal indicates to the 8080A that valid memory or input data is available on the 8080A data bus. This signal is used to synchronize the CPU with slower memory or I/O devices. If after sending an address out the 8080A does not receive a READY input, the 8080A will enter a WAIT state for as long as the READY line is low. READY can also be used to single step the CPU.
WAIT	0	WAIT: The WAIT signal acknowledges that the CPU is in a WAIT state.
WR	0	WRITE: The \overline{WR} signal is used for memory WRITE or I/O output control. The data on the data bus is stable while the \overline{WR} signal is active low ($\overline{WR} = 0$).
HOLD	nA on A 30 µA. 3 µs ≤ Vcc	HOLD: The HOLD signal requests the CPU to enter the HOLD state. The HOLD state allows an external device to gain control of the 8080A address and data bus as soon as the 8080A has completed its use of these busses for the current machine cycle. It is recognized under the following conditions: • the CPU is in the HALT state. • the CPU is in the T2 or TW state and the READY signal is active. As a result of entering the HOLD state the CPU ADDRESS BUS (A ₁₅ -A ₀) and DATA BUS (D ₇ -D ₀) will be in their high impedance state. The CPU acknowledges its state with the HOLD
HLDA ₁₀ - 0.8V ≥ Voc	0000≤ \ ≤ Vss	ACKNOWLEDGE (HLDA) pin. HOLD ACKNOWLEDGE: The HLDA signal appears in response to the HOLD signal and indicates that the data and address bus will go to the high impedance state. The HLDA signal begins at: • T3 for READ memory or input.
0	oV = A	 The Clock Period following T3 for WRITE memory or OUTPUT operation. In either case, the HLDA signal appears after the rising edge of φ₂.
INTE	0	INTERRUPT ENABLE: Indicates the content of the internal interrupt enable flip/flop. This flip/flop may be set or reset by the Enable and Disable Interrupt instructions and inhibits interrupts from being accepted by the CPU when it is reset. It is automatically reset (disabling further interrupts) at time T1 of the instruction fetch cycle (M1) when an interrupt is accepted and is also reset by the RESET signal.
INT	1	INTERRUPT REQUEST: The CPU recognizes an interrupt request on this line at the end of the current instruction or while halted. If the CPU is in the HOLD state or if the Interrupt Enable flip/flop is reset it will not honor the request.
RESET ¹	1	RESET: While the RESET signal is activated, the content of the program counter is cleared. After RESET, the program will start at location 0 in memory. The INTE and HLDA flip/flops are also reset. Note that the flags, accumulator, stack pointer, and registers are not cleared.
V _{SS}	SMATURE (GROUND: Reference.
V _{DD}		POWER: +12 ±5% V.
V _{CC} av 2	Curren	POWER: +5 ±5% V.
	Normal	POWER: -5 ±5% V.
V _{BB}	.D.O	
φ1, φ2		CLOCK PHASES: 2 externally supplied clock phases. (non TTL compatible)

NOTE:
1. The RESET signal must be active for a minimum of 3 clock cycles.

Notice: Stresses above those listed under "Abso-ABSOLUTE MAXIMUM RATINGS lute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for

extended periods may affect device reliability.

Temperature Under Bias 0°C to +70°C Storage Temperature-65°C to +150°C All Input or Output Voltages

with Respect to VBB-0.3V to +20V

ctions and data transfers. Also, du VCC, VDD and VSS with Respect to VBB-0.3V to +20V

Power Dissipation......1.5W

D.C. CHARACTERISTICS to lameter of setsoioni langis MISC ent. MI 2US ATACT

 $T_A = 0^{\circ}\text{C}$ to 70°C , $V_{DD} = +12\text{V} \pm 5\%$, $V_{CC} = +5\text{V} \pm 5\%$, $V_{BB} = -5\text{V} \pm 5\%$, $V_{SS} = 0\text{V}$; unless otherwise

Symbol	Parameter of beau	Min	Тур	Max	Unit	Test Condition
VILC	Clock Input Low Voltage	V _{SS} - 1	onee	V _{SS} + 0.8	V	memory or U
VIHC	Clock Input High Voltage	9.0	a elgi	V _{DD} + 1	d Valu	READY Can
VIL	Input Low Voltage	Vss - 1	ybelv	V _{SS} + 0.8	V	WAIT: THE V
VIH NO.5	Input High Voltage	3.3	101	V _{CC} + 1	٧	ent ETMW O NW and sigh edt
Voleter	Output Low Voltage	e CPU to	tt ets	0.45	OVO!	loL = 1.9 mA on All Outputs,
VOH	Output High Voltage	3.7	in col	device to ga	V	$I_{OH} = -150 \mu\text{A}$.
IDD (AV)	Avg. Power Supply Current (VDD)	itions;	40	70	mA	begingoger
ICC (AV)	Avg. Power Supply Current (V _{CC})	BB edt bo	60	80	mA	Operation
IBB (AV)	Avg. Power Supply Current (VBB)	ADDRES	0.01	.D state the	mA	$T_{CY} = 0.48 \mu s$
IIL WOM	Input Leakage	(G. 108 OI	NE STEE	±10	μΑ	$V_{SS} \le V_{IN} \le V_{CC}$
Icus len	Clock Leakage senogeer ni erseq	signal ap	HLDA	of 1±1003	μΑ	V _{SS} ≤ V _{CLOCK} ≤ V _{DD}
IDL	Data Bus Leakage in Input Mode	og liw aud	1000	-100 -2.0	μA mA	$V_{SS} \le V_{IN} \le V_{SS} + 0.8V$ $V_{SS} + 0.8V \le V_{IN} \le V_{CC}$
I _{FL}	Address and Data Bus Leakage During HOLD	WRITE m are after t	appe	+10 -100	μA	V _{ADDR/DATA} = V _{CC} V _{ADDR/DATA} = V _{SS} + 0.45V

CAPACITANCE If Jesen at It nertw UPO erit yd betgacos griled mod stau
CAPACITANCE I fester refrantiski skilor FT erit is (atgumetni refrant 16) $T_A = 25^{\circ}C$, $V_{CC} = V_{DD} = V_{SS} = 0V$, $V_{BB} = -5V$

Symbol	Parameter	Тур	Max	Unit	Test Condition
C _{\phi}	Clock Capacitance	17	25	pF	f _C = 1 MHz
C _{IN} bri	Input Capacitance	m6n	900	pF	Unmeasured Pins
C _{OUT}	Output Capacitance	10	20	pF	Returned to V _{SS}

Typical Supply Current vs Temperature, Normalized $\Delta I \, \text{Supply}/\Delta T_A = -0.45\%/^{\circ}C$

lotni

A.C. CHARACTERISTICS (8080A) $T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}, V_{DD} = +12\text{V} \pm 5\%, V_{CC} = +5\text{V} \pm 5\%, V_{CC} = +5\text{V} \pm 5\%$

Vos	=	-5V	±5%.	Vec =	0V: unless	otherwise noted	

Symbol	Parameter	Min	Max	-1 Min	-1 Max	−2 Min	-2 Max	Unit	Test Condition
t _{CY} (3)	Clock Period	0.48	2.0	0.32	2.0	0.38	2.0	μs	7
t _r , t _f	Clock Rise and Fall Time	0	50	0	25	0	50	ns	7
t _{φ1} 5	φ1 Pulse Width	60		50	10	60		ns	
t _{φ2}	φ2 Pulse Width	220		145	TA	175		ns	1
t _{D1} ≤	Delay φ ₁ to φ ₂	0		0		0		ns	
t _{D2}	Delay φ ₁ to φ ₂	70		60		70		ns	
t _{D3}	Delay φ ₁ to φ ₂ Leading Edges	80		60		70	ns		
t _{DA}	Address Output Delay From φ ₂		200		150		175	ns	C ₁ = 100 pF
t _{DD}	Data Output Delay From φ ₂		200		180	90	200	ns	OL 100 pi
tDC	Signal Output Delay From ϕ_1 or ϕ_2 (SYNC, WR, WAIT, HLDA)		120		110	1	120	ns	C _L = 50 pF
t _{DF}	DBIN Delay From φ ₂	25	140	25	130	25	140	ns	
t _{DI} (1)	Delay for Input Bus to Enter Input Mode		tDF		t _{DF}		tDF	ns	
t _{DS1}	Data Setup Time During φ ₁ and DBIN	30		10		20		ns	
t _{DS2}	Data Setup Time to φ ₂ During DBIN	150	77	120		130	n	ns	
t _{DH} (1)	Data Hold Time From φ ₂ and DBIN	(1)		(1)	16	(1)		ns	
t _{IE}	INTE Output Delay From φ ₂		200	IT	200	1	200	ns	$C_L = 50 pF$
t _{RS} §	READY Setup Time During φ ₂	120	1	90		90		ns	
tHS	HOLD Setup Time During φ ₂	140		120	10	120		ns	
t _{IS}	INT Setup Time During ϕ_2	120		100	15	100		ns	
t _H	Hold Time From φ ₂ (READY, INT, HOLD)	0	Park	0	1	0	6016	ns	
t _{FD}	Delay to Float During Hold (Address and Data Bus)		120		120	E.	120	ns	4
t _{AW}	Address Stable Prior to WR	(5)	445	(5)		(5)		ns	
t _{DW}	Output Data Stable Prior to WR	(6)		(6)		(6)		ns	
t _{WD}	Output Data Stable From WR	(7)		(7)	1	(7)		ns	
t _{WA}	Address Stable From WR	(7)		(7)	Post	(7)	1	ns	
t _{HF}	HLDA to Float Delay	(8)	1	(8)		(8)		ns	14
twF	WR to Float Delay	(9)		(9)		(9)	-	ns	7 2
t _{AH}	Address Hold Time After DBIN During HLDA	-20	1	-20		-20	1	ns	Sept.

A.C. TESTING LOAD CIRCUIT

NOTES:

(Parenthesis gives -1, -2 specifications, respectively.)

 Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured.

 $t_{\rm DH}=50$ ns or $t_{\rm DF}$, whichever is less. 2. $t_{\rm CY}=t_{\rm D3}+t_{\rm r\phi2}+t_{\rm d2}+t_{\rm r\phi2}+t_{\rm D2}+t_{\rm r\phi1}\geq480$ ns (-1.320 ns, -2.380 ns).

Typical A Output Delay vs A Capacitance

3. The following are relevant when interfacing the 8080A to devices having $V_{IH} = 3.3V$:

a) Maximum output rise time from 0.8V to 3.3V = 100 ns @ C_L = SPEC.

b) Output delay when measured to 3.0V = SPEC +60 ns @ C_L = SPEC.

c) If C_L = SPEC, add 0.6 ns/pF if C_L > C_{SPEC}, subtract 0.3 ns/pF (from modified delay) if C_L <

4. t_{AW} = 2 t_{CY} = t_{D3} = t_{r\$\phi2} = 140 ns (-1:110 ns, -2:130 ns).

5. $t_{DW} = t_{CY} - t_{D3} - t_{r\phi2} - 170 \text{ ns} (-1:150 \text{ ns}, -2:170 \text{ ns}).$

6. If not HLDA, $t_{WD}=t_{WA}=t_{D3}+t_{r\phi2}+10$ ns. If HLDA, $t_{WD}=t_{WA}=t_{WF}$.

7. the = $t_{D3} + t_{r\phi2} = 50 \text{ ns}$

8, two = $t_{D3} + t_{r\phi2} - 10$ ns. 9. Data in must be stable for this period during

DBIN T₃. Both t_{DS1} and t_{DS2} must be satisfied.

10. Ready signal must be stable for this period during T₂ or T_W. (Must be externally synchronized.)

ing 12 or 1.W. (Must be externally synchronized.)
11. Hold signal must be stable for this period during T2 or T_W when entering hold mode, and during T3, T4, T5 and T_{WH} when in hold mode. (External synchronization is not required.)

12. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)

13. This timing diagram shows timing relationships only; it does not represent any specific machine cycle

The accumulator group instructions include arithmetic and logical operators with direct, indirect, and immediate addressing modes.

Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, indirect, and immediate addressing modes.

The ability to branch to different portions of the program is provided with jump, jump conditional, and computed jumps. Also the ability to call to and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the

d) If Ci = SPEC, add 0.6 ns/oF If Ci > Capen

8080A. The ability to increment and decrement memory, the six general registers and the accumulator is provided as well as extended increment and decrement instructions to operate on the register pairs and stack pointer. Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as I/O ports or the directly addressed I/O provided for in the 8080A instruction set.

The following special instruction group completes the 8080A instruction set: the NOP instruction, HALT to stop processor execution and the DAA instructions provide decimal arithmetic capability. STC allows the carry flag to be directly set, and the CMC instruction allows it to be complemented. CMA complements the contents of the accumulator and XCHG exchanges the contents of two 16-bit register pairs directly.

Data and Instruction Formats

tos - tos - 170 ns (-1:150 ns,

Data in the 8080A is stored in the form of 8-bit binary integers. All data transfers to they system data bus will be in the same format.

D7 D6 D5 D4 D3 D2 D1 D0 DATA WORD - two - two + two + two + to no.

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored in successive words in program memory. The instruction formats then depend on the particular operation executmust be stable for this period duribe

One Byte Instructions

D7 D6 D5 D4 D3 D2 D1 D0 OP CODE 11. Hold signal must be stable for this period during

To or Tw when entering hold mode, and during Ta

Ta. Ts and Twin when in hold mode. (External syn-

Two Byte Instructions (beliaper for el noltexinondo

12. Interrupt signal mus D7 D6 D5 D4 D3 D2 D1 D0 OP CODE

D7 D6 D5 D4 D3 D2 D1 D0 OPERAND

Three Byte Instructions Insertion and Inches

D7 D6 D5 D4 D3 D2 D1 D0 OP CODE

D7 D6 D5 D4 D3 D2 D1 D0 LOW ADDRESS OR OPERAND 1

D7 D6 D5 D4 D3 D2 D1 D0 HIGH ADDRESS OR OPERAND 2

For the 8080A a logic "1" is defined as a high level and a logic "0" is defined as a low level.

Register to register, memory reference, arithmetic or logical, rotate, return, push, pop, enable or disable Interrupt instructions

> MOTES: Immediate mode or I/O instructions

Table 2. Instruction Set Summary

									Table 2.	Instru
Mnemonic*	3 00/20						e (1 D ₁	DK.J	Operations Description	Clock Cycles (2)
MOVE, LO	AD,	AN	ID:	STO	OR	E				ATOR
MOVr1,r2	0	1,	D	D	D	S	S	S	Move register to register	5
MOV M,r	0	1	9	1	0	S	S	s	Move register to	7
MOV r,M	0	1	D	D	D	1	1	0	Move memory to	7 BAR
MVIr		0				1	1	0	register Move immediate	7
MVIM	0	0	1	1	0	1	1	0	register Move immediate	10
LXIB	0	0	0		100		0	1	memory Load immediate	10
LXI D	0		0				0	1	register Pair B & C Load immediate	10
LXIH	0	0				0		1	register Pair D & E Load immediate	10
STAX B	0	0		0			10		register Pair H & L Store A indirect	170
STAX D	0	0	0	1	0	0	1	0	Store A indirect	7
LDAX B	0	0	0	0	1	0	1	0	Load A indirect	7
LDAX D	0	0	0	1	1	0	1	0	Load A indirect	7
STA	0	0	4	1	0	0	1	0	Store A direct	13
LDA	0	0	9	9	4	0	1	0	Load A direct	13
SHLD	0	0	1	0	0	0	1	0	Store H & L direct	16
LHLD	0	0		0	1	0	1	0	Load H & L direct	16
XCHG	1	1	1	0	1	0	1	1	Exchange D & E,	4
STACK OP	9								H & L Registers	
PUSH B	1	1	0	0	0	1	0	1	Push register Pair	11
PUSH D	1	1	0	1	0	1	0	1	B & C on stack Push register Pair	11
PUSH H	1	1	1	0	0	1	0	1	D & E on stack Push register Pair	11
PUSH	1	1	1	1	0	1	0	1	H & L on stack Push A and Flags	11
PSW POP B	1	1	0	0	0	0	0	1	on stack Pop register Pair B	10
POP D	1	1	0	1	0	0	0	1	& C off stack Pop register Pair D	10
POPH	1	1	-	0		0 0	0.0		& E off stack Pop register Pair H	10
POP PSW		4							& L off stack	
XTHL	1	1	1	1	0	0	0	1	Pop A and Flags off stack	10
SPHL	1			0	0	0	1		Exchange top of stack, H & L	18
LXI SP	1	1	1	1	1	0	0	1	H & L to stack pointer	5
	0	0	1	1	0	0	0	1	Load immediate stack pointer	10
INX SP		0	1	1	0	0	1	1	Increment stack pointer	5
DCX SP	0	0	1	1	1	0	1	1	Decrement stack pointer	5
JUMP			H						Martin Co.	
JMP	1	1	0	0	0	0	1	1	Jump unconditional	10
	1	1	0	1	1	0	1		Jump on carry	10
JC	100				-	0	4	0	L	40
JC JNC	1	1	0	1	0	0	1	U	Jump on no carry	10
		1	0	1	1	0	1		Jump on zero	10
JNC	1		70					0	and the second s	

Mnemo	nic*	2000	nsti D ₆					100	16.16	Operations Description	Clock
(0)	130	316	100	- 3	I.	- 3	Q.5	U.S	- 0	ल भव हव हत रक	(2)
JM		1	1	1	1	1	0	1	0	Jump on minus	10
JPE		1	1				0			Jump on parity	10
2		Big	en i						S	even 0 0 T	SUS
JPO		1	1		0		0	1	0	Jump on parity odd	10
PCHL			1			1	0	0	91	H & L to program	5
CALL	VID		1717	100		6	0	-	1	counter	N BUE
				-	MIC		04			0-11-0-0-11-11-1-1	290
CALL			1				91		1	Call unconditional	17
CC		1	1	_	9	1	1	0	0	Call on carry	11/17
CNC	Am	4	1	0	Min	mil.		0	0	Call on no carry	11/17
CZ			1	-5450	0	1	01	0	0	Call on zero	11/17
CNZ		1	1	0	0	0		0	0	Call on no zero	11/17
CP		1	1	1	1	0	1	0	0	Call on positive	11/17
CM		1	1	.]	1	1	1	0	0	Call on minus	11/17
CPE		1	1	1	0	1	1	0	0	Call on parity even	11/17
CPO		1	1	1	0	0	1	0	0	Call on parity odd	11/17
RETUR	RN		0.0	rini	dos		2	2	2	10101	LARY
RET		1	1	0	0	1	0	0	1	Return	10
RC		1	1	0	1	9	0	0	0	Return on carry	5/11
RNC		1	1	0	1	0	0	0	0	Return on no carry	5/11
RZ		1	1	0	0	1	0	0	0	Return on zero	5/11
RNZ		1	9	0	0	0	0	0	0	Return on no zero	5/11
RP		1	1	1	1	0	0	0	0	Return on positive	5/11
RM		1	1	1	1	1	0	0	0	Return on minus	5/11
RPE		1	1	1	0	0	0	0	0	Return on parity	5/11
RPO		9	1	1	0	0	0	0	0	Return on parity	5/11
DEOT	DT	Sec.	iz to	1000	-	16	0	-	-	odd	104.5
RESTA	AHI	27	30	P	(III	WY.	n.	ř.	F. 1	40111	197
RST	4	1	1	A	A	A	1	1	1	Restart	11
INCRE	MEN		-	-	200	- 41	M	-N1		OFFIF	180
INRr		0	0	D	D	D	,1	0	0	Increment register	5
DCR r	Ar	0	0	D	D	D	1	0	1	Decrement register	5
INR M		0	0	1	1	0	1	0	0	Increment memory	10
DCR M	1	0	0	1	1	0	1	0	1	Decrement memory	10
INX B		0	0	0	0	0	0	1	1	Increment B & C	5
סם מצמ		ter		tes			SF			registers	OWT !
INX D		0	0	0	1	0	0	1	1	Increment D & E registers	5 _A
INX H		0	0	1	0	0	0	1	1	Increment H & L registers	5
DCX B		0	0	0	0	1	0	1	1	Decrement B & C	5
DCX D		0	0	0	1	1	0	1	1	Decrement D & E	5
DCX H		0	0	1	0	1	0	1	1	Decrement H & L	5
ADD											
ADD r		1	0	0	0	0	S	S	S	Add register to A	
		1	0			1		S		Add register to A	4
ADC r	11 64	1	U	0	0	1	0	0	0	Add register to A with carry	4
ADD M		1	0	0	0	0	1	1	0	Add memory to A	7
ADC M		1	0	0	0	1	1	1		Add memory to A	7
ADO IVI		1	0	0	U	-	1		U	with carry	,
ADI		1	1	0	0	0	1	1	0	Add immediate to A	7
ACI	AIR	1	1	0	0	1	1	1		Add immediate to A	7
		ľ			3				0	with carry	1
DAD B		0	0	0	0	1	0	0	1	Add B & C to H & L	10
DAD D		0	0	0	1	1	0	0		Add D & E to H & L	10
DADH		0	0	1	0	1	0	0		Add H & L to H & L	10
DADS		0	0	1	1	1	0	0		Add stack pointer	10
DADO											

Mnemonic	Inst D ₇ D ₆						200					ons	1	Clock Cycles (2)	Mnem	onic	Ph 1-192	nst De						200			400	era			Clock Cycles (2)
SUBTRAC	Turning	00.0	Min	40			0							(-)	ROTA	TE									575	04	G	na	,01	, LO	3AOM
SUBr	1 0	0	1	0	s	s	S	Sul	otra	ect	reg	iste	r	4	RLC	0	0	0	0	0) (0	18	18	1	Rota	ate	Ale	eft	27	4
SBB r	dinso						25	fro						091	RRC		0	0						10	2.00	Rota				13	V4.
SDDI	1 0	10	NUO		0	0						orr		14-4	RAL		0	0	0	1)	1	1		Rota					4 VOM
SUB M	1 0	0	1	0	1	1	0	Sul			me	mor	У	LIAO	RAR		0	0	0	1	BI	1	1	1	1	Rota	ate	Ari	ight		4
SBB M	1 0							Sul	otra	ct		mor		1.70	SPEC	IALS	Pho	imi	10	haig	NA:	0	1	-	d	thro	ugr	I Ca	irry		3 IVM
SUI	1 1		1.				200	Sul				JOH	OW	7	CMA	- 61	10	0	1	0	1	0	1	1	1	Con	plan	eme	ent	A	4
DATE:	078										e fr	om	A	20	STC		1	0							-23	Set					84
SBI	1 to				1 0			Sul			e fr	om	A	70	CMC			0							- 1					carry	4
LL/LL	viliso	g-no	Ital	3 3	0 0			wit						90	DAA	8	73.4	AC.	19	0	5.4)	10	10	11	Dec	ıma	ıl ad	djus	t A	040
LOGICAL	a vilia	pair	Ho.		1 6									300	INPU	1 07	1	CHITTE S		No.	00	-	0	0	. 1	10	1	0	0		HING
ANAr	1 0	10	0	0	S	S		An			ter			040	IN	3.6		1								Out				-	10
XRAr	1 0	1	0	1	S	S					or		500	4	CONT	ROL	-	bni	A	630	18	0	F.	0	0		0	0	0	G	XATE
ORAr			piel								vith			TBR	EI		1	1	1	1		10	0	10	1	Ena	ble	Inte	erru	pts	4
CMPr	1 0													4	DI		1	1	1					10		Disa				200	4
	mes n						0	wit	n A					RZ	NOP		2500		0						-	No-		rati	on		4
ANA M	1 0	1	0	0	1 0	1	0	An	m b	em	ory			s7a	HLT	ton	1	-	-	-		-	-	-	-	Halt	4	0	0		7 7
XRA M	1 0	1	0	1	1 .	1	0	Exc	clus	ive	Or			7																	
ORA M	1 0	0413	10	0	1	4	0.1.1				with	vith	A	7																	
CMP M	1 0				1		81					emo		7																	
ANII	The same of							with			11:-			7																	
ANI	1 1	1	0	U	1	'		with		ımı	edia	ite	55,43	rasin																	
XRI	1 1	1	0	1	1	1	0	Exc	lus	ive	Or			7			ack														
ORI	1 1	1	1	0	111	1						ith A	32.5	7/1																	PUSH
	lines to							with	A					- RM	11														8		
CPI	1.1	dia	bec		0	1	0	imn	npa	liat	e w	ith A	4	яЗа	101									0				1			
OTES:																															
. DDD or	SSS: E	} =	00	0,	C	=	00	1, [) =	= (10	E	= 0)11, H =																	
2. Two pos	sible c	ycl	e tir	ne	s (6	3/	12)	inc	dica	ate	ins	truc	ction	cycles	depender	nt on	CO	ndi	tio	n f	lag	js.									
All mnem		2 100	918						•		on	19																			
														4 XMI												E					
																															JIHTX
															Or							7									
2 A								1																		-					
			ritiy bis2										4.6												1	1				9	
														DOA																	SHUL
																						7									

unconditional

8085AH/8085AH-2/8085AH-1 8-BIT HMOS MICROPROCESSORS

- Single +5V Power Supply with 10% Voltage Margins
- 3 MHz, 5 MHz and 6 MHz Selections
 Available
- 20% Lower Power Consumption than 8085A for 3 MHz and 5 MHz
- 1.3 μs Instruction Cycle (8085AH); 0.8 μs (8085AH-2); 0.67 μs (8085AH-1)
- 100% Software Compatible with 8080A
- On-Chip Clock Generator (with External Crystal, LC or RC Network)

- On-Chip System Controller; Advanced Cycle Status Information Available for Large System Control
- Four Vectored Interrupt Inputs (One Is Non-Maskable) Plus an 8080A-Compatible Interrupt
- Serial In/Serial Out Port
- Decimal, Binary and Double Precision
 Arithmetic
- Direct Addressing Capability to 64K Bytes of Memory
- Available in 40-Lead Cerdip and Plastic Packages
 (See Packaging Spec., Order #231369)

The Intel 8085AH is a complete 8-bit parallel Central Processing Unit (CPU) implemented in N-channel, depletion load, silicon gate technology (HMOS). Its instruction set is 100% software compatible with the 8080A microprocessor, and it is designed to improve the present 8080A's performance by higher system speed. Its high level of system integration allows a minimum system of three IC's [8085AH (CPU), 8156H (RAM/IO) and 8755A (EPROM/IO)] while maintaining total system expandability. The 8085AH-2 and 8085AH-1 are faster versions of the 8085AH.

The 8085AH incorporates all of the features that the 8224 (clock generator) and 8228 (system controller) provided for the 8080A, thereby offering a higher level of system integration.

The 8085AH uses a multiplexed data bus. The address is split between the 8-bit address bus and the 8-bit data bus. The on-chip address latches of 8155H/8156H/8755A memory products allow a direct interface with the 8085AH.

September 1987 Order Number: 2317 18-001

Table 1. Pin Description

Symbol	Туре	Name and Function
A ₈ -A ₁₅	0	ADDRESS BUS: The most significant 8 bits of memory address or the 8 bits of the I/O address, 3-stated during Hold and Halt modes and during RESET.
AD ₀₋₇	1/0	MULTIPLEXED ADDRESS/DATA BUS: Lower 8 bits of the memory address (or
nputa (One Is 990A-	i iqun	I/O address) appear on the bus during the first clock cycle (T state) of a machine cycle. It then becomes the data bus during the second and third clock cycles.
ALE Precision	Port Pour	ADDRESS LATCH ENABLE: It occurs during the first clock state of a machine cycle and enables the address to get latched into the on-chip latch of peripherals. The falling edge of ALE is set to guarantee setup and hold times for the address information. The falling edge of ALE can also be used to strobe the status information. ALE is never 3-stated.
S. S. and IO/M		MACHINE CYCLE STATUS:
S ₀ , S ₁ and IO/M		IO/M S ₁ S ₀ Status 0 0 1 Memory write
oitest Plastic	231369)	0 1 0 Memory read 1 0 1 I/O write 1 1 0 I/O read 0 1 1 Opcode fetch
	vare co mance [8085	1 1 Interrupt Acknowledge * 0 0 Halt * X X Hold * X X Reset
rellotteo metev		* = 3-state (high impedance) X = unspecified HAZBOR and to anothers reliast ans 1-HAZBOR X = unspecified
		beginning of a machine cycle and remain stable throughout the cycle. The falling edge of ALE may be used to latch the state of these lines.
bus and the OR	0	READ CONTROL: A low level on $\overline{\text{RD}}$ indicates the selected memory or I/O device is to be read and that the Data Bus is available for the data transfer, 3-stated during Hold and Halt modes and during RESET.
WR	0	WROTE CONTROL: A low level on WR indicates the data on the Data Bus is to be written into the selected memory or I/O location. Data is set up at the trailing edge of WR. 3-stated during Hold and Halt modes and during RESET.
READY COME	Tunnan.	READY: If READY is high during a read or write cycle, it indicates that the memory or peripheral is ready to send or receive data. If READY is low, the CPU will wait an integral number of clock cycles for READY to go high before completing the read or write cycle. READY must conform to specified setup and hold times.
HOLD OF CARE O	THURSDAY OF SECOND	HOLD: Indicates that another master is requesting the use of the address and data buses. The CPU, upon receiving the hold request, will relinquish the use of the bus as soon as the completion of the current bus transfer. Internal processing can continue. The processor can regain the bus only after the HOLD is removed. When the HOLD is acknowledged, the Address, Data $\overline{\text{RD}}$, $\overline{\text{WR}}$, and $\overline{\text{IO}}/\overline{\text{M}}$ lines are 3-stated.
HLDA SA C 85 SEA C 85 BA C 85 BA C 85	0 s	HOLD ACKNOWLEDGE: Indicates that the CPU has received the HOLD request and that it will relinquish the bus in the next clock cycle. HILDA goes low after the Hold request is removed. The CPU takes the bus one half clock cycle after HLDA goes low.
BOSSAH Pin Buration		INTERRUPT REQUEST: Is used as a general purpose interrupt. It is sampled only during the next to the last clock cycle of an instruction and during Hold and Halt states. If it is active, the Program Counter (PC) will be inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled and disabled by software. It is disabled by Reset and immediately after an interrupt is accepted.

Table 1. Pin Description (Continued)

Symbol	Туре	Name and Function
INTA smnon eno	O ₃	INTERRUPT ACKNOWLEDGE: Is used instead of (and has the same timing as) RD during the Instruction cycle after an INTR is accepted. It can be used to activate an 8259A Interrupt chip or some other interrupt port.
RST 5.5 RST 6.5	ERIAI	RESTART INTERRUPTS: These three inputs have the same timing as INTR except they cause an internal RESTART to be automatically inserted.
RST 7.5 ATM :s ITR is identical in Itr of the tivee RE	pt inpurAP. II	The priority of these interrupt is ordered as shown in Table 2. These interrupts have a higher priority than INTR. In addition, they may be individually masked out using the SIM instruction.
TRAP (cumeloi T)	ESTAF	TRAP: Trap interrupt is a non-maskable RESTART interrupt. It is recognized at the same time as INTR or RST 5.5–7.5. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any interrupt. (See Table 2.)
RESET IN 1978 A STORY OF THE PROPERTY OF THE P	p aut p p aut in P P P P P P P P P P P P P P P P P P	RESET IN: Sets the Program Counter to zero and resets the Interrupt Enable and HLDA flip-flops. The data and address buses and the control lines are 3-stated during RESET and because of the asynchronous nature of RESET, the processor's internal registers and flags may be altered by RESET with unpredictable results. RESET IN is a Schmitt-triggered input, allowing connection to an R-C network for power-on RESET delay (see Figure 3). Upon power-up, RESET IN must remain low for at least 10 ms after minimum V _{CC} has been reached. For proper reset operation after the power-up duration, RESET IN should be kept low a minimum of three clock periods. The CPU is held in the reset condition as long as RESET IN is applied.
RESET OUT (08	th 080	RESET OUT: Reset Out indicates CPU is being reset. Can be used as a system reset. The signal is synchronized to the processor clock and lasts an integral number of clock periods.
X ₁ , X ₂ s tes of ber required lameters recommended to the second	iupen a il erit ai signa	X_1 and X_2 : Are connected to a crystal, LC, or RC network to drive the internal clock generator. X_1 can also be an external clock input from a logic gate. The input frequency is divided by 2 to give the processor's internal operating frequency.
CLKsion metave to se enismey golf-d	0	CLOCK: Clock output for use as a system clock. The period of CLK is twice the X_1 , X_2 input period.
be reset by GIS	y clso	SERIAL INPUT DATA LINE: The data on this line is loaded into accumulator bit 7 whenever a RIM instruction is executed.
SOD ed liw quit-	0	SERIAL OUTPUT DATA LINE: The output SOD is set or reset as specified by the SIM instruction.
Vcc		POWER: +5 volt supply.
V _{SS}	ini Teh	GROUND: Reference.

Table 2. Interrupt Priority, Restart Address and Sensitivity

Name	Priority	Address Branched to(1)	and slove engloss Type Trigger
recognized if	ed of a four	When Interrupt Occurs	atsC\zaenbbA en yee ingger
TRAP	ing ss follows:	ned at ano n24Herom	Rising Edge AND High Level until Sampled
RST 7.5	eob er2erbe v	thong ainT v3CH2 tae	Rising Edge (Latched)
RST 6.5	w tant anthuon	10 vinong a 34H	High Level until Sampled
RST 5.5	nterru Als are	ent it enthus 2CH TER MA	High Level until Sampled Maddus enti
INTR	.9/10/15	(Note 2)	High Level until Sampled

- The processor pushes the PC on the stack before branching to the indicated address.
 The address branched to depends on the instruction provided to the CPU when the interrupt is acknowledged.

Figure 3. Power-On Reset Circuit

FUNCTIONAL DESCRIPTION

The 8085AH is a complete 8-bit parallel central processor. It is designed with N-channel, depletion load, silicon gate technology (HMOS), and requires a single +5V supply. Its basic clock speed is 3 MHz (8085AH), 5 MHz (8085AH-2), or 6 MHz (8085-AH-1), thus improving on the present 8080A's performance with higher system speed. Also it is designed to fit into a minimum system of three IC's: The CPU (8085AH), a RAM/IO (8156H), and an EPROM/IO chip (8755A).

The 8085AH has twelve addressable 8-bit registers. Four of them can function only as two 16-bit register pairs. Six others can be used interchangeably as 8-bit registers or as 16-bit register pairs. The 8085AH register set is as follows:

Mnemonic	Register	Contents
ACC or A	Accumulator	8 Bits
PC fid totals	Program Counter	16-Bit Address
BC, DE, HL	General-Purpose	8-Bits x 6 or
		16 Bits x 3
SP	Stack Pointer	16-Bit Address
Flags or F	Flag Register	5 Flags (8-Bit Space)

The 8085AH uses a multiplexed Data Bus. The address is split between the higher 8-bit Address Bus and the lower 8-bit Address/Data Bus. During the first T state (clock cycle) of a machine cycle the low order address is sent out on the Address/Data bus. These lower 8 bits may be latched externally by the Address Latch Enable signal (ALE). During the rest of the machine cycle the data bus is used for memory or I/O data.

The 8085AH provides $\overline{\text{RD}}$, $\overline{\text{WR}}$, S_0 , S_1 , and $IO/\overline{\text{M}}$ signals for bus control. An Interrupt Acknowledge signal ($\overline{\text{INTA}}$) is also provided. HOLD and all Interrupts are synchronized with the processor's internal clock. The 8085AH also provides Serial Input Data

(SID) and Serial Output Data (SOD) lines for simple serial interface.

In addition to these features, the 8085AH has three maskable, vector interrupt pins, one nonmaskable TRAP interrupt, and a bus vectored interrupt, INTR.

INTERRUPT AND SERIAL I/O

The 8085AH has 5 interrupt inputs: INTR, RST 5.5, RST 6.5, RST 7.5, and TRAP. INTR is identical in function to the 8080A INT. Each of the three RESTART inputs, 5.5, 6.5, and 7.5, has a programmable mask. TRAP is also a RESTART interrupt but it is nonmaskable.

The three maskable interrupt cause the internal execution of RESTART (saving the program counter in the stack and branching to the RESTART address) if the interrupts are enabled and if the interrupt mask is not set. The nonmaskable TRAP causes the internal execution of a RESTART vector independent of the state of the interrupt enable or masks. (See Table 2.)

There are two different types of inputs in the restart interrupts. RST 5.5 and RST 6.5 are high level-sensitive like INTR (and INT on the 8080) and are recognized with the same timing as INTR. RST 7.5 is rising edge-sensitive.

For RST 7.5, only a pulse is required to set an internal flip-flop which generates the internal interrupt request (a normally high level signal with a low going pulse is recommended for highest system noise immunity). The RST 7.5 request flip-flop remains set until the request is serviced. Then it is reset automatically. This flip-flop may also be reset by using the SIM instruction or by issuing a RESET IN to the 8085AH. The RST 7.5 internal flip-flop will be set by a pulse on the RST 7.5 pin even when the RST 7.5 interrupt is masked out.

The status of the three RST interrupt masks can only be affected by the SIM instruction and RESET IN. (See SIM, Chapter 5 of the 8080/8085 User's Manual.)

The interrupts are arranged in a fixed priority that determines which interrupt is to be recognized if more than one is pending as follows: TRAP—highest priority, RST 7.5, RST 6.5, RST 5.5, INTR—lowest priority. This priority scheme does not take into account the priority of a routine that was started by a higher priority interrupt. RST 5.5 can interrupt an RST 7.5 routine if the interrupts are re-enabled before the end of the RST 7.5 routine.

The TRAP interrupt is useful for catastrophic events such as power failure or bus error. The TRAP input is recognized just as any other interrupt but has the

highest priority. It is not affected by any flag or mask. The TRAP input is both edge and level sensitive. The TRAP input must go high and remain high until it is acknowledged. It will not be recognized again until it goes low, then high again. This avoids any false triggering due to noise or logic glitches. Figure 4 illustrates the TRAP interrupt request circuitry within the 8085AH. Note that the servicing of any interrupt (TRAP, RST 7.5, RST 6.5, RST 5.5, INTR) disables all future interrupts (except TRAPs) until an EI instruction is executed.

Figure 4. TRAP and RESET In Circuit

The TRAP interrupt is special in that it disables interrupts, but preserves the previous interrupt enable status. Performing the first RIM instruction following a TRAP interrupt allows you to determine whether interrupts were enabled or disabled prior to the TRAP. All subsequent RIM instructions provide current interrupt enable status. Performing a RIM instruction following INTR, or RST 5.5–7.5 will provide current Interrupt Enable status, revealing that interrupts are disabled. See the description of the RIM instruction in the 8080/8085 Family User's Manual.

The serial I/O system is also controlled by the RIM and SIM instruction. SID is read by RIM, and SIM sets the SOD data.

DRIVING THE X1 AND X2 INPUTS

You may drive the clock inputs of the 8085AH, 8085AH-2, or 8085AH-1 with a crystal, an LC tuned circuit, an RC network, or an external clock source. The crystal frequency must be at least 1 MHz, and must be twice the desired internal clock frequency;

hence, the 8085AH is operated with a 6 MHz crystal (for 3 MHz clock), the 8085AH-2 operated with a 10 MHz crystal (for 5 MHz clock), and the 8085AH-1 can be operated with a 12 MHz crystal (for 6 MHz clock). If a crystal is used, it must have the following characteristics:

Parallel resonance at twice the clock frequency desired

C_L (load capacitance) ≤ 30 pF

C_S (Shunt capacitance) ≤ 7 pF R_S (equivalent shunt resistance) $\leq 75\Omega$

Drive level: 10 mW

Frequency tolerance: ±0.005% (suggested)

Note the use of the 20 pF capacitor between X_2 and ground. This capacitor is required with crystal frequencies below 4 MHz to assure oscillator startup at the correct frequency. A parallel-resonant LC citcuit may be used as the frequency-determining network for the 8085AH, providing that its frequency tolerance of approximately $\pm\,10\%$ is acceptable. The components are chosen from the formula:

$$f = \frac{1}{2\pi\sqrt{L(C_{ext} + C_{int})}}$$

To minimize variations in frequency, it is recommended that you choose a value for C_{ext} that is at least twice that of C_{int} , or 30 pF. The use of an LC circuit is not recommended for frequencies higher than approximately 5 MHz.

An RC circuit may be used as the frequency-determining network for the 8085AH if maintaining a precise clock frequency is of no importance. Variations in the on-chip timing generation can cause a wide variation in frequency when using the RC mode. Its advantage is its low component cost. The driving frequency generated by the circuit shown is approximately 3 MHz. It is not recommended that frequencies greatly higher or lower than this be attempted.

Figure 5 shows the recommended clock driver circuits. Note in d and e that pullup resistors are required to assure that the high level voltage of the input is at least 4V and maximum low level voltage of 0.8V.

For driving frequencies up to and including 6 MHz you may supply the driving signal to X_1 and leave X_2 open-circuited (Figure 5d). If the driving frequency is from 6 MHz to 12 MHz, stability of the clock generator will be improved by driving both X_1 and X_2 with a push-pull source (Figure 5e). To prevent self-oscillation of the 8085AH, be sure that X_2 is not coupled back to X_1 through the driving circuit.

nateb vaneupart and as beau ad vam Figure 5. Clock Driver Circuits

GENERATING AN 8085AH WAIT

If your system requirements are such that slow memories or peripheral devices are being used, the circuit shown in Figure 6 may be used to insert one WAIT state in each 8085AH machine cycle.

The D flip-flops should be chosen so that

- CLK is rising edge-triggered
- CLEAR is low-level active.

Figure 6. Generation of a Wait State for 8085AH CPU

As in the 8080, the READY line is used to extend the read and write pulse lengths so that the 8085AH can be used with slow memory. HOLD causes the CPU to relinquish the bus when it is through with it by floating the Address and Data Buses.

SYSTEM INTERFACE dend tournered tremus

The 8085AH family includes memory components, which are directly compatible to the 8085AH CPU. For example, a system consisting of the three chips, 8085AH, 8156H and 8755A will have the following features:

must be twice the desi

- 2K Bytes EPROM
- 256 Bytes RAMY GMA -X SHT OMIVISIO
- 1 Timer/Counter
- 4 8-bit I/O Ports and shoots and swind year up of the state of th
- 1 6-bit I/O Portexe as no showled OR as 16-bit I/O
- Serial In/Serial Out Ports

This minimum system, using the standard I/O technique is as shown in Figure 7.

In addition to the standard I/O, the memory mapped I/O offers an efficient I/O addressing technique. With this technique, an area of memory address space is assigned for I/O address, thereby, using the memory address for I/O manipulation. Figure 8

shows the system configuration of Memory Mapped I/O using 8085AH.

The 8085AH CPU can also interface with the standard memory that does *not* have the multiplexed address/data bus. It will require a simple 8-bit latch as shown in Figure 9.

Figure 7. 8085AH Minimum System (Standard I/O Technique)

BASIC SYSTEM TIMING

The 8085AH has a multiplexed Data Bus. ALE is used as a strobe to sample the lower 8-bits of address on the Data Bus. Figure 10 shows an instruction fetch, memory read and I/O write cycle (as would occur during processing of the OUT instruction). Note that during the I/O write and read cycle that the I/O port address is copied on both the upper and lower half of the address.

There are seven possible types of machine cycles. Which of these seven takes place is defined by the status of the three status lines $(IO/\overline{M}, S_1, S_0)$ and

the three control signals (\overline{RD} , \overline{WR} , and \overline{INTA}). (See Table 3.) The status lines can be used as advanced controls (for device selection, for example), since they become active at the T_1 state, at the outset of each machine cycle. Control lines \overline{RD} and \overline{WR} become active later, at the time when the transfer of data is to take place, so are used as command lines.

A machine cycle normally consists of three T states, with the exception of OPCODE FETCH, which normally has either four or six T states (unless WAIT or HOLD states are forced by the receipt of READY or HOLD inputs). Any T state must be one of ten possible states, shown in Table 4.

Table 3. 8085AH Machine Cycle Chart

Mack	St	tatus		47	Contr	ol		
Maci	nine Cycle		10/M S1 S0		RD	WR	INTA	
OPCODE FETCH	(OF)		0		1	0	1	1
MEMORY READ	(MR)	MILLER	0	1	0	0	1.	1
MEMORY WRITE	(MW)	ALLL	0	0	1	1	0	1
I/O READ	(IOR)	\	1	1	0	0	1	1
I/O WRITE	(IOW)		1	0	1	1	0	1
ACKNOWLEDGE OF INTR	(INA)		1	1	1	1	1	0
BUS IDLE	(BI):	DAD ACK.OF	0	1	0	1	1	1
CONTROLS			1 TS	1 0	1 0	1 TS	1 TS	1

Table 4, 8085AH Machine State Chart

Machine	GNA	Stat	us & Buses	S	C	ontrol	
State	\$1,50	IO/M	A ₈ -A ₁₅	AD ₀ -AD ₇	RD, WR	INTA	ALE
T ₁	X	X	X	X	1	1	1*
T ₂	X	X	X	X	×	X	0
TWAIT	X	X	X	X	X	Х	0
Т3	X	X	X	X	X	X	0
T ₄	(abho	0†	bnsiX gnk	U) mTSnya a	gure 1 , 808	用 1	0
T ₅	1	0†	X	TS	1	1	0
T ₆	1	0†	X	TS	1	1	0
T _{RESET}	X	TS	TS	TS	TS	1	0
THALT	0	TS	TS	TS	TS	1	0
THOLD	X	TS	TS	TS	TS	1	0

^{0 =} Logic "0"

TS = High Impedance

^{1 =} Logic "1" X = Unspecified

^{*}ALE not generated during 2nd and 3rd machine cycles of DAD instruction.

 $[\]pm 10/\overline{M} = 1$ during $T_4 - T_6$ of INA machine cycle.

Figure 10. 8085AH Basic System Timing

Paramater		H-2 (8)		
	Max		nillá	
CLK Low Time (Standard CLK Loading)				
				en
	120			
		0		

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature under Bias	
Storage Temperature	-65°C to +150°C
Voltage on Any Pin with Respect to Ground	0.5V to +7V
Power Dissination	

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

8085AH, 8085AH-2: $T_A=0^{\circ}\text{C}$ to 70°C, $V_{CC}=5\text{V}\pm10\%$, $V_{SS}=0\text{V}$; unless otherwise specified* 8085AH-1: $T_A=0^{\circ}\text{C}$ to 70°C, $V_{CC}=5\text{V}\pm5\%$, $V_{SS}=0\text{V}$; unless otherwise specified*

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{IL}	Input Low Voltage	-0.5	+0.8	٧	
V _{IH}	Input High Voltage	2.0	V _{CC} + 0.5	V	DA DA
VOL	Output Low Voltage		0.45	V	I _{OL} = 2 mA
VoH	Output High Voltage	2.4		٧	$I_{OH} = -400 \mu\text{A}$
Icc	Power Supply Current		135	mA	8085AH, 8085AH-2
			200	mA .	8085AH-1
TIL	Input Leakage		±10	μΑ	$0 \le V_{IN} \le V_{CC}$
ILO	Output Leakage		±10	μΑ	$0.45V \le V_{OUT} \le V_{CC}$
VILR	Input Low Level, RESET	-0.5	+0.8	CHOTES (PETCH)	X suns
VIHRENCES	Input High Level, RESET	2.4	V _{CC} + 0.5	٧	
VHY	Hysteresis, RESET	0.15	S MARROS OF A	V	

A.C. CHARACTERISTICS

8085AH, 8085AH-2: $T_A = 0^{\circ}$ C to 70°C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V^*$ 8085AH-1: $T_A = 0^{\circ}$ C to 70°C, $V_{CC} = 5V \pm 5\%$, $V_{SS} = 0V$

Symbol	Parameter		8085AH (2)		8085AH-2 (2)		8085AH-1 (2)	
Symbol	raiametei	Min	Max	Min	Max	Min	Max	Units
tcyc	CLK Cycle Period	320	2000	200	2000	167	2000	ns
t ₁	CLK Low Time (Standard CLK Loading)	80		40		20		ns
t ₂	CLK High Time (Standard CLK Loading)	120		70		50		ns
t _r , t _f	CLK Rise and Fall Time		30		30		30	ns
txkR	X ₁ Rising to CLK Rising	20	120	20	100	20	100	ns
t _{XKF}	X ₁ Rising to CLK Falling	20	150	20	110	20	110	ns
t _{AC}	A ₈₋₁₅ Valid to Leading Edge of Control (1)	270		115		70		ns
tACL	A ₀₋₇ Valid to Leading Edge of Control	240		115		60		ns
t _{AD}	A ₀₋₁₅ Valid to Valid Data In		575		350		225	ns
t _{AFR}	Address Float after Leading Edge of READ (INTA)		0		0		0	ns
t _{AL}	A ₈₋₁₅ Valid before Trailing Edge of ALE (1)	115		50		25		ns

A C CHARACTERISTICS (Continued)

Symbol	Parameter	8085	AH (2)	8085A	H-2 (2)	8085AH-1 (2)		Units
Symbol	raiametei	Min	Max	Min	Max	Min	Max	Oine
t _{ALL}	A ₀₋₇ Valid before Trailing Edge of ALE	90		50		25		ns
tary	READY Valid from Address Valid		220	122	100	0.5	40	ns
tca	Address (A ₈₋₁₅) Valid after Control	120	X	60	EST POWTS	30	X	ns
tcc	Width of Control Low (RD, WR, INTA) Edge of ALE	400	31-61/18	230		150		ns
t _{CL}	Trailing Edge of Control to Leading Edge of ALE	50	04.0 ions "1 not V0.3 #	25	r at 2.4V to paraments c "0".	0	tuent spritt T ."O" sig 18.0 bes "	ns
t _{DW}	Data Valid to Trialing Edge of WRITE	420	Ballia.	230		140		ns
tHABE	HLDA to Bus Enable aged avolt a as not	ecifica	210	T suB .	150		150	ns
tHABF	Bus Float after HLDA	MARRON	210		150		150	ns
THACK	HLDA Valid to Trailing Edge of CLK	110	SVIV	40	24 - 7	0		ns
tHDH	HOLD Hold Time	0	44.79	0	na – 1	0		ns
tHDS	HOLD Setup Time to Trailing Edge of CLK	170	53.75	120	nin n	120		ns
tINH	INTR Hold Time	0		0	-	0		ns
tins	INTR, RST, and TRAP Setup Time to Falling Edge of CLK	160	(1/2	150	08 - 7	150		ns
tLAmumi	Address Hold Time after ALE	1100	(5/2	50	- T(M +	20		ns
tLCmum	Trailing Edge of ALE to Leading Edge of Control	130	(3/2	60	- T(И +	25		ns
tLCK	ALE Low During CLK High	100	2717	50	391	15		ns
tLDR	ALE to Valid Data during Read	Q8 - 1	460		270	(Z/1)	175	ns
t _{LDW}	ALE to Valid Data during Write	T(H)+	200	08	140	3/8)	110	ns
t _{LL} mum	ALE Width 88 - T(S\F)	140	(1/2	80	00 - 7	50		ns
tLRY	ALE to READY Stable	T(M +	110	08	30	(3/2	10	ns
tRAEnum	Trailing Edge of READ to Re-Enabling of Address	150	(1/2	90	7 - 110	50		ns
t _{RD}	READ (or INTA) to Valid Data	US T	300		150	(210)	75	ns
t _{RV} mum	Control Trailing Edge to Leading Edge of Next Control	400	S/1)	220	08 + 3	160	K	ns
tRDH	Data Hold Time after READ INTA	08 O T	S/4)	0	08 + 1	0		ns
t _{RYH}	READY Hold Time	0 -	6767	0	02 - 7	5		ns
tRYS	READY Setup Time to Leading Edge of CLK	110	217)	100	08 - 1	100		ns
two	Data Valid after Trailing Edge of WRITE	100	SVI)	60	T - 40	30		ns
twoL	LEADING Edge of WRITE to Data Valid	08 - 1	40		20	(3/2)	30	ns

NOTES: XSM

NOTES:

1. A₈-A₁₅ address Specs apply IO/M̄, S₀, and S₁ except A₈-A₁₅ are undefined during T₄-T₆ of OF cycle whereas IO/M̄, S₀, and S₁ are stable.

2. Test Conditions: t_{CYC} = 320 ns (8085AH)/200 ns (8085AH-2);/167 ns (8085AH-1); C_L = 150 pF.

3. For all output timing where C ≠ 150 pF use the following correction factors: 25 pF ≤ C_L < 150 pF: −0.10 ns/pF 150 pF < C_L ≤ 300 pF: +0.30 ns/pF

4. Output timings are measured with purely capacitive load.

5. To calculate timing specifications at other values of toyo use Table 5.

^{5.} To calculate timing specifications at other values of t_{CYC} use Table 5.

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. Testing: Inputs are driven at 2.4V for a Logic "1" and 0.45V for a Logic "0". Timing measurements are made at 2.0V for a Logic "1" and 0.8V for a Logic "0".

A.C. TESTING LOAD CIRCUIT

Table 5. Bus Timing Specification as a T_{CYC} Dependent

Symbol	8085AH	8085AH-2	8085AH-1	18F Bus F1
t _{AL}	(1/2)T - 45	(1/2)T - 50	(1/2)T - 58	Minimum
t _{LA}	(1/2)T - 60	(1/2)T - 50	(1/2)T - 63	Minimum
t _{LL}	(1/2)T - 20	(1/2)T - 20	(1/2)T - 33	Minimum
tLCK	(1/2)T - 60	(1/2)T - 50	(1/2)T - 68	Minimum
tLC	(1/2)T - 30	(1/2)T - 40	(1/2)T - 58 to agb	Minimum
t _{AD}	(5/2 + N)T - 225	(5/2 + N)T - 150	(5/2 + N)T - 192	Maximum
t _{RD}	(3/2 + N)T - 180	(3/2 + N)T - 150	(3/2 + N)T - 175	Maximum
tRAE	(1/2)T - 10	(1/2)T - 10	(1/2)T - 33	Minimum
tca at a	(1/2)T - 40	(1/2)T - 40	(1/2)T - 53	Minimum
tow or	(3/2 + N)T - 60	(3/2 + N)T - 70	(3/2 + N)T - 110 V	Minimum
two	(1/2)T - 60	(1/2)T - 40	(1/2)T - 53	Minimum
tcc or	(3/2 + N)T - 80	(3/2 + N)T - 70	(3/2 + N)T - 100	Minimum
t _{CL}	(1/2)T - 110	(1/2)T - 75	(1/2)T - 83 10 ept 3	Minimum
tary	(3/2)T - 260	(3/2)T - 200	(3/2)T - 210	Maximum
†HACK	(1/2)T - 50	(1/2)T - 60	(1/2)T - 83	Minimum
tHABF	(1/2)T + 50	(1/2)T + 50	(1/2)T + 67 loutno	Maximum
THABE	(1/2)T + 50	(1/2)T + 50	(1/2)T + 67	Maximum
tAC	(2/2)T - 50	(2/2)T - 85	(2/2)T - 97	Minimum
t ₁	(1/2)T - 80	(1/2)T - 60	(1/2)T - 63	Minimum
t ₂	(1/2)T - 40	(1/2)T = 30	(1/2)T - 33	Minimum
t _{RV} 08	(3/2)T - 80	(3/2)T - 80 blisVs	(3/2)T - 90 ogbil 6/	Minimum
tLDR	(4/2 + N)T - 180	(4/2)T - 130	(4/2)T - 159	Maximum

NOTE:

N is equal to the total WAIT states. T = tcyc-day an tern (s.Hacede) an dest (Hacede) and dest enter the board state of the state of th

WAVEFORMS

SW

READ OPERATION WITH WAIT CYCLE (TYPICAL)—SAME READY TIMING APPLIES TO WRITE

Mnemonic	D ₇			ucti D ₄				D ₀	Operations Description
MOVE, LO	AD /	ANI) S1	TOR	E				
MOVr1 r2	0	1	D	D	D	S	S	S	Move register to register
MOV M.r	0	1	1/	1	0	S	S	S	Move register to memory
MOV r.M	0	1	D	D	D	1	1	0	Move memory to register
MVIr	0	0	D	D	D	1	1	0	Move immediate register
MVIM	0	0	1	1	0	1	1	0	Move immediate memory
LXI B	0	0	0	0	0	0	0	1	Load immediate register Pair B & C
LXID	0	0	0	1	0	0	0	-1	Load immediate register Pair D & E
LXIH	0	0	1	0	0	0	0	1	Load immediate register Pair H & L
STAX B	0	0	0	0	0	0	1	0	Store A indirect
STAX D	0	0	0	1	0	0	1	0	Store A indirect
LDAX B	0	0	1	0	1	0	1	0	Load A indirect
LDAX D	0	0	0	1	1	0	1	0	Load A indirect
STA	0	0	1	1	0	0	1	0	Store A direct
LDA	0	0	1	1	1	0	1	0	Load A direct
SHLD	0	0	1	0	0	0	1	0	Store H & L direct
LHLD	0	0	1	0	1	0	1	0	Load H & L direct
XCHG	1	1	1	0	1	0	1	1	Exchange D & E, H & L Registers
STACK OP	S								
PUSH B	1	1	0	0	0	1	0	1	Push register Pair B & C on stack
PUSH D	1	1	0	1	0	1	0	1	Push register Pair D & E on stack
PUSH H	1	1	1	0	0	1	0	1	Push register Pair H & L on stack
PUSH PSW	1	1	1	1	0	1	0	1	Push A and Flags on stack
POP B	1	1	0	0	0	0	0	1	Pop register Pair B & C off stack
POP D	1	1	0	1	0	0	0	1	Pop register Pair D & E off stack
POP H	1	1	1	0	0	0	0	1	Pop register Pair H & L off stack

Mnemonic	D ₇			D ₄				Do	Operations Description
STACK OP	S ((Con	tinu	ed)					
POP PSW	1	1	1	1	0	0	0	1	Pop A and Flags off stack
XTHL	1	1	1	0	0	0	1/	1	Exchange top of stack, H & L
SPHL	1	1	1	1	1	0	0	1	H & L to stack pointer
LXI SP	0	0	1	1	0	0	0	1	Load immediate stack pointer
INX SP	0	0	1	1	0	0	1	1	Increment stack pointer
DCX SP	0	0	1	1	1	0	1	1	Decrement stack pointer
JUMP		42000	arrian	Copper de	the hard	-	Challen	net existing the	Pit
JMP	1	1	0	0	0	0	1	1	Jump unconditiona
JC	1	1	0	1	1	0	1	0	Jump on carry
JNC	1	1	0	1	0	0	1	0	Jump on no carry
JZ	1	1	0	0	1	0	1/	0	Jump on zero
JNZ	1	1	0	0	0	0	1	0	Jump on no zero
JP	1	1	1	1	0	0	1	0	Jump on positive
JM	1	1	1	1	1	0	1	0	Jump on minus
JPE	1	1	1	0	1	0	1	0	Jump on parity eve
JPO	1	1	1	0	0	0	1	0	Jump on parity odd
PCHL	1	1	1	0	1	0	0	1	H & L to program counter
CALL				arni	e pi	di n	enixe	ah e	Word:
CALL	1	1	0	0	1	1	0	1	Call unconditional
CC	1	1	0	1	1	1	0	0	Call on carry
CNC	1	1	0	1	0	1	0	0	Call on no carry
CZ	1	1	0	0	1	1	0	0	Call on zero
CNZ	1	1	0	0	0	-1	0	0	Call on no zero
CP	1	1	1	1	0	1	0	0	Call on positive
СМ	1	1	1	1	1	1	0	0	Call on minus
CPE	1	1	1	0	1	1	0	0	Call on parity even
СРО	1	1	1	0	0	1	0	0	Call on parity odd
RETURN									
RET	1	1	0	0	1.	0	0	1	Return
RC	1	1	0	1	1	0	0	0	Return on carry
RNC	1	1	0	1	0	0	0	0	Return on no carry
RZ	1	1	0	0	1	0	0	0	Return on zero

Mnemonic			stri D ₅						Operations Description
RETURN (Con	tinu	ed)						LORTMOD
RNZ	s1d	81	0	0	0	0	0	0	Return on no zero
RPjumetni	1	1	1	1	0	0	0	0	Return on positive
RM mostan	1	-1	10	10	10	0	0	0	Return on minus
RPE	1	1	10	0	1	0	0	0	Return on parity even
RPO	1	a de F	10	0	0	0	0	0	Return on parity odd
RESTART			11.0						100
RST	1	1	Α	Α	A	1	1	1	Restart
INPUT/OU	TPI	JT							
IN	1	1	0	1	1	0	1	1	Input
OUT	1	1	0	1	0	0	1	1	Output
INCREMEN	IT A	ANE	DE	CF	EN	IEN	Т		/ 111 A 011 1
INRr	0	0	D	D	D	1	0	0	Increment register
DCR r	0	0	D	D	D	1	0	1	Decrement register
INR M	0	0	1	1	0	1	0	0	Increment memory
DCR M	0	0	1	1	0	1	0	1	Decrement memory
INX B	0	0	0	0	0	0	1	1	Increment B & C registers
INX D	0	0	0	1	0	0	1	1	Increment D & E registers
INX H	0	0	1	0	0	0	1	1	Increment H & L registers
DCX B	0	0	0	0	1	0	1	1.	Decrement B & C
DCX D	0	0	0	1	1	0	1	1	Decrement D & E
DCX H	0	0	1	0	1	0	1	1	Decrement H & L
ADD									
ADDr	1	0	0	0	0	S	S	S	Add register to A
ADC r	1	0	0	0	1	S	S	S	Add register to A with carry
ADD M	1	0	С	0	0	1	1	0	Add memory to A
ADC M	1	0	0	0	1	1	1	0	Add memory to A with carry
ADI	1	1	0	0.	0	1	1	0	Add immediate to A
ACI	1	1	0	0	1	1	1	0	Add immediate to A with carry
DAD B	0	0	0	0	1	0	0	1	Add B & C to H & L

Mnemonic	D ₇								Operations Description
ADD (Cont	3197								STATOR
DAD D	0	0	0	1	1	0	0	1	Add D & E to H & L
DADH	0	0	1	0	1	0	0	1	Add H & L to H & L
DAD SP	1			1	1	0	0	1	Add stack pointer to H & L
SUBTRAC	T	8101	9		1	1	1	1	RAR 0 0 0
SUB r	1	0	0	1	0	S	S	S	Subtract register from A
SBB r	1	0	0	1	1	S	S	S	Subtract register from A with borrow
SUB M	1	0	0	. 1	0	1	1	0	Subtract memory from A
SBB M	1	0	0	1	1	1	1	0	Subtract memory from A with borrow
SUI 1 00	11	1	0	toni	0	01.	rqo) as	0	Subtract immediate from A
SBI	1	1	0	1	1	1	1	0	Subtract immediate from A with borrow
LOGICAL		47							
ANAr	1	0	1	0	0	S	S	S	And register with A
XRA r	1	0	1	0	1	S	S	S	Exclusive OR register with A
ORA r	1	0	1	1	0	S	S	S	OR register with A
CMPr	1	0	1	1	1	S	S	S	Compare register with A
ANA M	1	0	1	0	0	1	1	0	And memory with A
XRA M	1	0	1	0	1	1	1	0	Exclusive OR memory with A
ORA M	1	0	1	1	0	1	1	0	OR memory with A
CMP M	1	0	1	1	1	1	1	0	Compare memory with A
ANI	1	1	1	0	0	1	1	0	And immediate with A
XRI	1	1	1	0	1	1	1	0	Exclusive OR immediate with A
ORI	1	1	1	1	0	1	1	0	OR immediate with A
CPI	1	1	1	1	1	1	1	0	Compare immediate with A

Table 6. Instruction Set Summary (Continued)

Mnemonic	D7		DE		-		70.0	Do	Operations Description
ROTATE		-0	-3	-4	-3			-0	(bounitno0) 00
RLC 8 H of	0	0	0	0	0	01	11	11	Rotate A left
RRC® H of	0	0	0	0	1	01	11	1	Rotate A right
RALiefniod		-	0	1	0	1	1	1	Rotate A left through carry
RAR	0	0	0	1	1	1	1	1	Rotate A right through carry
SPECIALS		An	non						
CMA	0	0	18	0	a	1	1	1	Complement A
STC	0	0	9	1	0	1	1	1	Set carry
CMC	0	0	1	.1	1	1	1	1	Complement carry
DAA	0	0	1	0	0	1	1	1	Decimal adjust A

Mnemonic	D ₇	Ir D ₆	D ₅	D ₄	on (D ₂	le D ₁	D ₀	operations
CONTROL								(1)	LETURN (Continue
Ethez on a	111	Life:	810	10	10	0	10	1	Enable Interrupts
DI vilisod u	111	op	810	10	0	0	1	1	Disable Interrupt
NOP	0	0	0	0	0	0	0	0	No-operation
HLT 6	0	up	R10	10	0	1	10	0	Halt Bar
NEW 8085/	H	NS	TRU		And the				
RIM	0	0	9	0	0	0	0	0	Read Interrupt Mask
SIM	0	0	1	1	0	0	0	0	Set Interrupt Masi

NOTES:

1. DDS or SSS: B 000, C 001, D 010, E011, H 100, L101, Memory 110, A 111.

2. Two possible cycle times (6/12) indicate instruction cycles dependent on condition flags.

*All mnemonics copyrighted ©Intel Corporation 1976.

						AMA
Exclusive OR register with A	S					
				*		ORAF
			1	1.	-	
		*			1	
				-		
OR animediate Aritin						IRO

						1		
					*			
				0	0			
		t		1	0		0	
	1							
	8							
Add register to A with carry	8		S				1	
Add memory to A		+						
		1	3	1				
Add immediate to A		1	1					
Add immediate to A' with carry		. †		*				
Add B & C to H & L								

8155H/8156H/8155H-2/8156H-2 2048-BIT STATIC HMOS RAM WITH I/O PORTS AND TIMER

- Single + 5V Power Supply with 10% Voltage Margins
- 30% Lower Power Consumption than the 8155 and 8156
- 256 Word x 8 Bits
- **■** Completely Static Operation
- Internal Address Latch
- 2 Programmable 8-Bit I/O Ports

- 1 Programmable 6-Bit I/O Port
- Programmable 14-Bit Binary Counter/ Timer
- Compatible with 8085AH and 8088 CPU
- **Multiplexed Address and Data Bus**
- Available in EXPRESS
 - Standard Temperature Range
 - Extended Temperature Range

The Intel® 8155H and 8156H are RAM and I/O chips implemented in N-Channel, depletion load, silicon gate technology (HMOS), to be used in the 8085AH and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells organized as 256 x 8. They have a maximum access time of 400 ns to permit use with no wait states in 8085AH CPU. The 8155H-2 and 8156H-2 have maximum access times of 330 ns for use with the 8085H-2 and the 5 MHz 8088 CPU.

The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status pins, thus allowing the other two ports to operate in handshake mode.

A 14-bit programmable counter/timer is also included on chip to provide either a square wave or terminal count pulse for the CPU system depending on timer mode.

C-H33 r 8 \ C H33 r 8 \ H33 r 8 \ H33 r 8 \ Table 1. Pin Description

Symbol	Туре	Name and Function
Port Port Counter/	 -811 I/O -811 Bina	RESET: Pulse provided by the 8085AH to initialize the system (connect to 8085AH RESET OUT). Input high on this line resets the chip and initializes the three I/O ports to input mode. The width of RESET pulse should typically be two 8085AH clock cycle times.
AD ₀ -7		ADDRESS/DATA: 3-state Address/Data lines that interface with the CPU lower 8-bit Address/Data Bus. The 8-bit address is latched into the address latch inside the 8155H/56H on the falling edge of ALE. The address can be either for the memory section or the I/O section depending on the IO/M input. The 8-bit data is either written into the chip or read from the chip, depending on the WR or RD input signal.
CE or CE	erujare	CHIP ENABLE: On the 8155H, this pin is $\overline{\text{CE}}$ and is ACTIVE LOW. On the 8156H, this pin is CE and is ACTIVE HIGH.
oad, silicer on back on the portion is 400 ns to permit hes of 330 ns for the formal of the formal o	lems. The	READ CONTROL: Input low on this line with the Chip Enable active enables and AD_{0-7} buffers. If IO/\overline{M} pin is low, the RAM content will be read out to the AD bus. Otherwise the content of the selected I/O port or command/status registers will be read to the AD bus.
WR d of bernmango	l can be pr	WRITE CONTROL: Input low on this line with the Chip Enable active causes the data on the Address/Data bus to be written to the RAM or I/O ports and command/status register, depending on IO/\overline{M} .
vave or terrifica	e square	ADDRESS LATCH ENABLE: This control signal latches both the address on the AD $_{0-7}$ lines and the state of the Chip Enable and IO/ $\overline{\rm M}$ into the chip at the falling edge of ALE.
IO/M	I	I/O MEMORY: Selects memory if low and I/O and command/status registers if high.
PA ₀₋₇ (8)	O\I	PORT A: These 8 pins are general purpose I/O pins. The in/out direction is selected by programming the command register.
PB ₀₋₇ (8)	1/0	PORT B: These 8 pins are general purpose I/O pins. The in/out direction is selected by programming the command register.
PC ₀₋₅ (6)	al/O _s on tud tud tud tud tud tud tud tud tud tud	PC ₀ —A INTR (Port A Interrupt)
984 Cles 168618 984 Cles 168618 246911	WR C 10 ALE C 11 (AD) C 12	PC ₁ —ABF (Port A Buffer Full) PC ₂ —A STB (Port A Strobe) PC ₃ —B INTR (Port B Interrupt)
√A9 □ 35 A9 □ 15 A9 □ 15	AD CLIS	PC ₄ —B BF (Port B Buffer Full) PC ₅ —B STB (Port B Strobe)
TIMER IN	at D sGA	TIMER INPUT: Input to the timer-counter.
TIMER OUT	AD, C 18	TIMER OUTPUT: This output can be either a square wave or a pulse, depending on the timer mode.
Vcc	V ₅₀ [] 20	VOLTAGE: +5V supply.
Vss		GROUND: Ground reference.

FUNCTIONAL DESCRIPTION

The 8155H/8156H contains the following:

- 2K Bit Static RAM organized as 256 x 8
- Two 8-bit I/O ports (PA & PB) and one 6-bit I/O port (PC).
- 14-bit timer-counter all and pribate vo ballog

The IO/\overline{M} (IO/Memory Select) pin selects either the five registers (Command, Status, PA₀₋₇, PB₀₋₇, PC₀₋₅) or the memory (RAM) portion.

The 8-bit address on the Address/Data lines, Chip Enable input CE or $\overline{\text{CE}}$, and $\overline{\text{IO/M}}$ are all latched on-chip at the falling edge of ALE.

Figure 3. 8155H/8156H Internal Registers

Figure 4. 8155H/8156H On-Board Memory Read/Write Cycle

PROGRAMMING OF THE COMMAND REGISTER

The command register consists of eight latches, Four bits (0-3) define the mode of the ports, two bits (4-5) enable or disable the interrupt from port C when it acts as control port, and the last two bits (6-7) are for the timer.

The command register contents can be altered at any time by using the I/O address XXXXX000 during a WRITE operation with the Chip Enable active and $IO/\overline{M}=1$. The meaning of each bit of the command byte is defined in Figure 5. The contents of the command register may never be read.

READING THE STATUS REGISTER

The status register consists of seven latches, one for each bit; six (0-5) for the status of the ports and one (6) for the status of the timer.

The status of the timer and the I/O section can be polled by reading the Status Register (Address XXXXX000). Status word format is shown in Figure 6. Note that you may never write to the status register since the command register shares the same I/O address and the command register is selected when a write to that address is issued.

Figure 5. Command Register Bit Assignment

Figure 6. Status Register Bit Assignment

INPUT/OUTPUT SECTION

The I/O section of the 8155H/8156H consists of five registers: (see Figure 7.)

 Command/Status Register (C/S)—Both registers are assigned the address XXXXX000. The C/S address serves the dual purpose.

When the C/S registers are selected during WRITE operation, a command is written into the command register. The contents of this register are *not* accessible through the pins.

When the C/S (XXXXX000) is selected during a READ operation, the status information of the I/O ports and the timer becomes available on the AD₀₋₇ lines.

- PA Register—This register can be programmed to be either input or output ports depending on the status of the contents of the C/S Register. Also depending on the command, this port can operate in either the basic mode or the strobed mode (see timing diagram). The I/O pins assigned in relation to this register are PA₀₋₇. The address of this register is XXXXX001.
- PB Register—This register functions the same as PA Register. The I/O pins assigned are PB₀₋₇. The address of this register is XXXXX010.
- PC Register—This register has the address XXXXX011 and contains only 6 bits. The 6 bits can be programmed to be either input ports, output ports or as control signals for PA and PB by properly programming the AD₂ and AD₃ bits of the C/S register.

When PC_{0-5} is used as a control port, 3 bits are assigned for Port A and 3 for Port B. The first bit is an interrupt that the 8155H sends out. The sec-

ond is an output signal indicating whether the buffer is full or empty, and the third is an input pin to accept a strobe for the strobed input mode. (See Table 2.)

When the 'C' port is programmed to either ALT3 or ALT4, the control signals for PA and PB are initialized as follows:

Control	Input Mode	Output Mode
BF	Low	Low
INTR	Low	High
STB	Input Control	Input Control

I/O Address†							Selection	
A7	A6	A5	A4	A3	A2	A1	A0	M HED LOCICUM ACE TOO
X	X	X	X	X	0	0	0	Interval Command/Status Register
X	X	X	X	X	0	0	1	General Purpose I/O Port A
X	X	X	X	X	0	17	0	General Purpose I/O Port B
X	X	X	X	X	0	110	1d	Port C—General Purpose
X	X		X	X	(1) B	0	0	Low-Order 8 bits of Timer Count
X		X	X	X	ndq	0	s15	High 6 bits of Timer Count and 2 bits of Timer Mode

X: Don't Care.

†: I/O Address must be qualified by CE = 1 (8156H) or $\overline{\text{CE}}$ = 0 (8155H) and IO/ $\overline{\text{M}}$ = 1 in order to select the appropriate register.

Figure 7. I/O Port and Timer Addressing Scheme

Figure 8 shows how I/O PORTS A and B are structured within the 8155H and 8156H:

Figure 8. 8155H/8156H Port Functions

	Table 2	. Port	Control	Assignment
7	STATE OF STATE OF	DOMESTIC OF STREET		

111	Pin	ALT 1	ALT 2	ALT 3	ALT 4
	PC0	Input Port	Output Port	A INTR (Port A Interrupt)	A INTR (Port A Interrupt)
-	PC1	Input Port	Output Port	A BF (Port A Buffer Full)	A BF (Port A Buffer Full)
10	PC2	Input Port	Output Port	A STB (Port A Strobe)	A STB (Port A Strobe)
dg	PC3	Input Port	Output Port	Output Port	B INTR (Port B Interrupt)
	PC4	Input Port	Output Port	Output Port	B BF (Port B Buffer Full)
	PC5	Input Port	Output Port	Output Port	B STB (Port B Strobe)

Note in the diagram that when the I/O ports are programmed to be output ports, the contents of the output ports can still be read by a READ operation when appropriately addressed.

The outputs of the 8155H/8156H are "glitch-free" meaning that you can write a "1" to a bit position that was previously "1" and the level at the output pin will not change.

Note also that the output latch is cleared when the port enters the input mode. The output latch cannot be loaded by writing to the port if the port is in the input mode. The result is that each time a port mode is changed from input to output, the output pin will go low. When the 8155H/56H is RESET, the output latches are all cleared and all 3 ports enter the input mode.

When in the ALT 1 or ALT 2 modes, the bits of PORT C are structured like the diagram above in the simple input or output mode, respectively.

Reading from an input port with nothing connected to the pins will provide unpredictable results.

Figure 9 shows how the 8155H/8156H I/O ports might be configured in a typical MCS®-85 system.

Figure 9. Example: Command Register = 00111001

TIMER SECTION

The time is a 14-bit down-counter that counts the TIMER IN pulses and provides either a square wave or pulse when terminal count (TC) is reached.

The timer has the I/O address XXXXX100 for the low order byte of the register and the I/O address XXXXX101 for the high order byte of the register. (See Figure 7.)

To program the timer, the COUNT LENGTH REG is loaded first, one byte at a time, by selecting the timer addresses. Bits 0–13 of the high order count register will specify the length of the next count and bits 14–15 of the high order register will specify the timer output mode (see Figure 10). The value loaded into the count length register can have any value from 2H through 3FFFH in Bits 0–13.

Figure 10. Timer Format

There are four modes to choose from: M2 and M1 define the timer mode, as shown in Figure 11.

Figure 11. Timer Modes

intel

Bits 6-7 (TM₂ and TM₁) of command register contents are used to start and stop the counter. There are four commands to choose from:

TM ₂	TM ₁	
0	0	NOP—Do not affect counter operation.
0	1	STOP—NOP if timer has not started; stop counting if the timer is running.
1	0	STOP AFTER TC—Stop immediately after present TC is reached (NOP if timer has
		not started)
1	1-	START—Load mode and CNT length and start immediately after loading (if timer is not presently running). If timer is running, start the new mode and CNT length im-
		mediately after present TC is reached.

Note that while the counter is counting, you may load a new count and mode into the count length registers. Before the new count and mode will be used by the counter, you **must** issue a START command to the counter. This applies even though you may only want to change the count and use the previous mode.

In case of an odd-numbered count, the first half-cycle of the squarewave output, which is high, is one count longer than the second (low) half-cycle, as shown in Figure 12.

Figure 12. Asymmetrical Square-Wave Output
Resulting from Count of 9

The counter in the 8155H is not initialized to any particular mode or count when hardware RESET occurs, but RESET does *stop* the counting. Therefore, counting cannot begin following RESET until a START command is issued via the C/S register.

Please note that the timer circuit on the 8155H/ 8156H chip is designed to be a square-wave timer, not an event counter. To achieve this, it counts down by twos twice in completing one cycle. Thus, its registers do not contain values directly representing the number of TIMER IN pulses received. You cannot load an initial value of 1 into the count register and cause the timer to operate, as its terminal count value is 10 (binary) or 2 (decimal). (For the detection of single pulses, it is suggested that one of the hardware interrupt pins on the 8085AH be used.) After the timer has started counting down, the values residing in the count registers can be used to calculate the actual number of TIMER IN pulses required to complete the timer cycle if desired. To obtain the remaining count, perform the following operations in order:

- 1. Stop the count
- 2. Read in the 16-bit value from the count length registers
- 3. Reset the upper two mode bits
- Reset the carry and rotate right one position all 16 bits through carry
- If carry is set, add ½ of the full original count (½ full count—1 if full count is odd).

NOTE:

If you started with an odd count and you read the count length register before the third count pulse occurs, you will not be able to discern whether one or two counts has occurred. Regardless of this, the 8155H/56H always counts out the right number of pulses in generating the TIMER OUT waveforms.

8085AH MINIMUM SYSTEM CONFIGURATION

Figure 13a shows a minimum system using three chips, containing:

• 256 Bytes RAM

- 2K Bytes EPROMO to (AMT box AMT) T-0 and
- 38 I/O Pins and gote bas here of been as smet
- 1 Interval Timer

ent , sint to see Figure 13a. 8085AH Minimum System Configuration (Memory Mapped I/O) to redmun tripit and two arrows are reduced by a second system of the second system of the

Figure 12. Asymmetrical Square-Wave Output

8088 FIVE CHIP SYSTEM

Figure 13b shows a five chip system containing:

- 1.25K Bytes RAM
- 2K Bytes EPROM

- . 38 I/O Pins TAR MUMIXAM STULIOSSA
- 1 Interval Timer
- 2 Interrupt Levels

ABSOLUTE MAXIMUM RATINGS* 38 *

Temperature Under Bias	0°C to +70°C
Storage Temperature	65°C to +150°C
Voltage on Any Pin	0.51/1
with Respect to Ground	-0.5 V to $+7$ V
Power Dissipation	1.5W

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS TA = 0°C to 70°C, VCC = 5V ± 10%

Symbol	Parameter	Min	Max	Units	Test Conditions
VIL TROS	Input Low Voltage	-0.5	0.8	٧	
VIH	Input High Voltage	2.0	V _{CC} +0.5	٧	
VOL HEART	Output Low Voltage		0.45	٧	I _{OL} = 2 mA
VOH	Output High Voltage	2.4		٧	$I_{OH} = -400 \mu A$
IIL	Input Leakage	HK	90A ± 10	μΑ	$0V \le V_{IN} \le V_{CC}$
ILO	Output Leakage Current		±10	μΑ	0.45V ≤ V _{OUT} ≤ V _{CC}
lcc	V _{CC} Supply Current	四十二	125	mA	
I _{IL} (CE)	Chip Enable Leakage 8155H 8156H	H	+100 va	μΑ μΑ	0V ≤ V _{IN} ≤ V _{CC}

A.C. CHARACTERISTICS TA = 0°C to 70°C, VCC = 5V ±10%

Symbol	Parameter	8155H	/8156H	8155H-2	Units	
DORE-	Talamoto Talamoto	Min	Max	Min	Max	Olines
t _{AL}	Address to Latch Setup Time	50	Vec	30		ns
tLA	Address Hold Time after Latch	80	3	30	MARKUAL	ns
tLC	Latch to READ/WRITE Control	100	0	40	13834	ns
t _{RD}	Valid Data Out Delay from READ Control		170		140	ns
tLD	Latch to Data Out Valid		350		270	ns
t _{AD}	Address Stable to Data Out Valid		400		330	ns
t _{LL}	Latch Enable Width			70		ns
tRDF	Data Bus Float after READ		100	0	80	ns
tCL	READ/WRITE Control to Latch Enable	20		10		ns
tCLL	WRITE Control to Latch Enable for C/S Register	125		125		ns
tcc	READ/WRITE Control Width	250		200		ns
t _{DW}	Data In to WRITE Setup Time	150		100		ns
t _{WD}	Data In Hold Time after WRITE	25		25		ns
t _{RV}	Recovery Time between Controls	300	gure 13b	200		ns
twp	WRITE to Port Output		400		300	ns

intel

A.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 10^{\circ}$ (Continued)

Symbol	Parameter	8155H/	8156H	8155H-2/	8156H-2	Units	
Symbol	raiametei	Min	Max	Min	Max	Offits	
tpR	Port Input Setup Time	70		50		ns	
t _{RP}	Port Input Hold Time	50		10	(46010).85	ns	
tsbF	Strobe to Buffer Full		400		300	ns	
tss	Strobe Width	200		150	(Heart) 30	ns	
t _{RBE}	READ to Buffer Empty		400		300	ns	
tsı	Strobe to INTR On	Y	400	1	300	ns	
t _{RDI}	READ to INTR Off		400		300	ns	
tpss	Port Setup Time to Strobe	50	ADDRESS	0	T-gOA	ns	
tpHS	Port Hold Time After Strobe	120		100		ns	
tSBE	Strobe to Buffer Empty		400	1	300	ns	
twBF	WRITE to Buffer Full		400	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	300	ns	
t _{WI}	WRITE to INTR Off		400		300	ns	
t _{TL}	TIMER-IN to TIMER-OUT Low		400		300	ns	
t _{TH}	TIMER-IN to TIMER-OUT High		400		300	ns	
tRDE	Data Bus Enable from READ Control	10		10		ns	
291718-16 t	TIMER-IN Low Time	80		40		ns	
t ₂	TIMER-IN High Time	120		70		ns	
t _{WT}	WRITE to TIMER-IN (for writes which start counting)	360		200		ns	

A.C. TESTING INPUT, OUTPUT WAVEFORM

1.0 TEST POINTS 2.0 2.1719-14

A.C. testing: inputs are driven at 2.4V for a logic "1" and 0.45V for a logic "0". Timing measurements are made at 2.0V for a logic "1" and 0.8V for a logic "0".

A.C. TESTING LOAD CIRCUIT

WAVEFORMS (Continued)

STROBED OUTPUT

BASIC OUTPUT

TIMER OUTPUT COUNTDOWN FROM 5 TO 1

8185/8185-2 1024 x 8-BIT STATIC RAM FOR MCS®-85

- Multiplexed Address and Data Bus
- Directly Compatible with 8085AH and 8088 Microprocessors
- Low Operating Power Dissipation
- Low Standby Power Dissipation

status of CE, and CE2 are all latched internally in

- Single +5V Supply
- High Density 18-Pin Package

The Intel 8185 is an 8192-bit static random access memory (RAM) organized as 1024 words by 8-bits using Nchannel Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to interface directly to the 8085AH and 8088 microprocessors to provide a maximum level of system integration.

The low standby power dissipation minimizes system power requirements when the 8185 is disabled.

The 8185-2 is a high-speed selected version of the 8185 that is compatible with the 5 MHz 8085AH-2 and the 5 MHz 8088.

Figure 1. Block Diagram

entaid d ADo	1	-18	□ vcc	CE2	
bris nwo G AP1	2	0 17	RD	X	-
(T)eldasiO ncAD ₂	3	16	WR		
bns nwoCl AD3	4	0 15	ALE	0	
(Paldaeld noAd4	5	14	cs		
bas ou beads	6	0 13	CE1		
(1) ada Disable(1)	7	12	CE ₂		
bns gU b AD7	8	11	_ A9	T.	
Vss [9	10	7 A8		

Figure 2. Pin Configuration

Pin Names

AD ₀ -AD ₇	Address/Data Lines
A ₈ , A ₉	Address Lines
CS autota ni	
CE ₁	Chip Enable (IO/M)
CE ₂	Chip Enable
ALE	Address Latch Enable
WR	Write Enable

FUNCTIONAL DESCRIPTION

The 8185 has been designed to provide for direct interface to the multiplexed bus structure and bus timing of the 8085A microprocessor.

At the beginning of an 8185 memory access cycle, the 8-bit address on AD_{0-7} , A_8 and A_9 , and the status of \overline{CE}_1 and CE_2 are all latched internally in the 8185 by the falling edge of ALE. If the latched status of both \overline{CE}_1 and CE_2 are active, the 8185 powers itself up, but no action occurs until the \overline{CS} line goes low and the appropriate \overline{RD} or \overline{WR} control signal input is activated.

The $\overline{\text{CS}}$ input is not latched by the 8185 in order to allow the maximum amount of time for address decoding in selecting the 8185 chip. Maximum power consumption savings will occur, however, only when $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ are activated selectively to power down the 8185 when it is not in use. A possible connection would be to wire the 8085A's $\overline{\text{IO}}/\overline{\text{M}}$ line to the 8185's $\overline{\text{CE}}_1$ input, thereby keeping the 8185 powered down during I/O and interrupt cycles.

Table 1. Truth Table for Power Down and Function Enable

CE ₁	CE ₂	CS	(CS*)(2)	8185 Status
1	X	XH	SF O	Power Down and Function Disable ⁽¹⁾
X	0	XA 80	ar O	Power Down and Function Disable ⁽¹⁾
0	1	110	5: 0	Powered Up and Function Disable ⁽¹⁾
0	1	0	1 1	Powered Up and Enabled

NOTES:

X = Don't Care.

1: Function Disable implies Data Bus in high impedance state and not writing.

2: $CS^* = (\overline{CE}_1 = 0) \times (CE_2 = 1) \times (\overline{CS} = 0)$.

CS* = 1 signifies all chip enables and chip select active.

Table 2. Truth Table for Control and Data Bus Pin Status

(CS*)	RD	WR	AD ₀₋₇ During Data Portion of Cycle	8185 Function
0	X	X	Hi-Impedance	No Function
1	0	1	Data from Memory	Read
1	1	0	Data to Memory	Write
1	1	1	Hi-Impedance	Reading, but not Driving Data Bus

X = Don't Care.

Figure 3. 8185 in an MCS®-85 System

4 Chips:

2K Bytes EPROM 1.25K Bytes RAM

38 I/O Lines

1 Counter/Timer

2 Serial I/O Lines

5 Interrupt Inputs

IAPX 88 FIVE CHIP SYSTEM:

- 1.25K Bytes RAM
- 2K Bytes EPROM so and to nother add landstonut
- 38 I/O Pins
- 1 Internal Timer

Figure 4. iAPX 88 Five Chip System Configuration

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to +70°C
Storage Temperature	
Voltage on Any Pin	
with Respect to Ground	0.5V to + 7V
Power Dissipation	1.5W

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS TA = 0°C to 70°C, VCC = 5V ±10%

Symbol	Parameter	Min	Max	Units	Test Conditions
VIL TROS	Input Low Voltage	-0.5	0.8	٧	
VIH	Input High Voltage	2.0	V _{CC} +0.5	٧	
VOL	Output Low Voltage		0.45	٧	$I_{OL} = 2 \text{ mA}$
VOH	Output High Voltage	2.4			$I_{OH} = -400 \mu A$
IL TUO	Input Leakage		±10	μΑ	$0V \le V_{IN} \le V_{CC}$
ILO	Output Leakage Current		±10	μΑ	0.45V ≤ V _{OUT} ≤ V _{CC}
Icc Tess	V _{CC} Supply Current Powered Up	ATA	100	mA	
TREA A	Powered Down		35	mA	

A.C. CHARACTERISTICS $T_A = 0$ °C to 70°C, $V_{CC} = 5V \pm 10$ %

Symbol	Parameter	81	185	81	85-2	
Symbol	YOAJA	Min	Max	Min	Max	Unite
t _{AL}	Address to Latch Set Up Time	50		30	230	ns
tLA	Address Hold Time After Latch	80	- V	30	十	ns
tLC	Latch to READ/WRITE Control	100	į	40	- GHS	ns
t _{RD}	Valid Data Out Delay from READ Control		170		140	ns
t _{LD}	ALE to Data Out Valid		300		200	ns
t _{LL}	Latch Enable Width	100		70		ns
t _{RDF}	Data Bus Fioat After READ	0	100	0	80	ns
t _{CL}	READ/WRITE Control to Latch Enable	20		10		ns
tcc	READ/WRITE Control Width	250		200		ns
t _{DW}	Data In to WRITE Set Up Time	150		150		ns
twD	Data In Hold Time After WRITE	20		20		ns
tsc	Chip Select Set Up to Control Line	10		10		ns
tcs	Chip Select Hold Time After Control	10		10		ns
t _{ALCE}	Chip Enable Set Up to ALE Falling	30		10		ns
tLACE	Chip Enable Hold Time After ALE	50		30		ns

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. TESTING LOAD CIRCUIT

8224 CLOCK GENERATOR AND DRIVER FOR 8080A CPU

- Single Chip Clock Generator/Driver for 8080A CPU
- Power-Up Reset for CPU
- Ready Synchronizing Flip-Flop
- Advanced Status Strobe
- Oscillator Output for External System Timing
- Crystal Controlled for Stable System Operation
- Reduces System Package Count
- Available in EXPRESS— Standard Temperature Range
- Available in 16-Lead Cerdip Package (See Packaging Spec, Order #231369)

The Intel 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by the designer to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe, and synchronization of ready.

The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing for 8080A.

Figure 2. Pin Configuration

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to +70°C
Storage Temperature	65°C to +150°C
Supply Voltage, V _{CC}	0.5V to +7V
Supply Voltage, V _{DD}	0.5V to $+13.5V$
Input Voltage	1.5V to +7V
Output Current	100 mA

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = +5.0V \pm 5\%$, $V_{DD} = +12V \pm 5\%$

Symbol	Parameter an 02	2tcy	Limits	toy	Units	Test Conditions
Cymbol	raiameter	Min	Тур	Max	Omico	Test contained
l _F	Input Current Loading			-0.25	mA	$V_F = 0.45V$
IR	Input Leakage Current			10	μΑ	V _R = 5.25V
V _C	Input Forward Clamp Voltage			1.0	٧	$I_C = -5 \text{mA}$
VIL	Input "Low" Voltage			0.8	٧	V _{CC} = 5.0V
VIH	Input "High" Voltage	2.6		en 00 -	VoV	Reset Input 12 or and 1 agod
	641, 6	2.0		011.49	V	All Other Inputs
VIH-VIL	RESIN Input Hysteresis	0.25		15 ns	V	V _{CC} = 5.0V
V _{OL}	Output "Low" Voltage			0.45	60 ns	(ϕ_1, ϕ_2) , Ready, Reset, $\overline{\text{STSTB}}$ $I_{OL} = 2.5 \text{ mA}$
				0.45	٧	All Other Outputs I _{OL} = 15 mA
VoH	Output "High" Voltage φ ₁ , φ ₂	9.4		- 25 ns	V	ΙΟΗ = -100 μΑ
	READY, RESET	3.6			V	$I_{OH} = -100 \mu\text{A}$
	All Other Outputs	2.4			٧	$I_{OH} = -1 \text{ mA}$
lcc	Power Supply Current		tey	115	mA	CLK Period
I _{DD}	Power Supply Current		9	12	mA	

NOTE:

Crystal Requirements

Tolerance: 0.005% at 0°C-70°C Resonance: Series (Fundamental)* Load Capacitance: 20 pF-35 pF Equivalent Resistance: 75Ω-20Ω

Power Dissipation (Min): 4 mW

These formulas are based: STON* ternal workings of the part and intended for

With tank circuit use 3rd overtone mode.

^{1.} For crystal frequencies of 18 MHz connect 510Ω resistors between the X1 input and ground as well as the X2 input and ground to prevent oscillation at harmonic frequencies.

lomi

A.C. CHARACTERISTICS

nen vine t	iango may cause perma ie. This is a stross ratin	ge to the device	Limits	0°C to +70°	COLUMN TO	Conditions		
Symbol	Parameter	Sieco Minosonu	Тур	Max de	Units			
t _{φ1}	φ ₁ Pulse Width	$\frac{2\text{tcy}}{9} - 20 \text{ ns}$	- V	-0.5V to +13.5		tage, V _{CC}		
t _{\$\phi 2\$}	φ ₂ Pulse Width	$\frac{5\text{tcy}}{9} - 35 \text{ ns}$	A V	+ of Vd. +		ga		
t _{D1}	φ ₁ to φ ₂ Delay	0						
t _{D2}	φ ₂ to φ ₁ Delay	$\frac{2\text{tcy}}{9} - 14 \text{ ns}$	+ 12	OV ±5% VDD	ns	C _L = 20 pF	to 50 pF	
t _{D3}	φ ₁ to φ ₂ Delay	2tcy 9	Limits	$\frac{2\text{tcy}}{9}$ + 20 ns	ametor	Par		
t _R	φ ₁ and φ ₂ Rise Time	Am 25 0-		20	baibea I	Input Current		
tF	φ ₁ and φ ₂ Fall Time	Au nr		20	inana Cia	herica I high		
t _{Dφ2}	φ ₂ to φ ₂ (TTL) Delay	V -5 _{0.1}		+15 egsflo\	ns	ϕ_2 TTL, CL $R_1 = 300\Omega$	= 30	
	V _{CC} = 5.0V	V 8.0			Voltage	1.2	TH/	
t _{DSS}	φ ₂ to STSTB Delay	$\frac{6\text{tcy}}{9}$ – 30 ns		9 6tcy	ns	'ngiH' 'hqqnl		
tpW	STSTB Pulse Width	$\frac{\text{tcy}}{9} - 15 \text{ ns}$		s 0.25	Hysteresi	$\overline{STSTB}, C_L = R_1 = 2K$		
t _{DRS}	RDYIN Setup Time to Status Strobe	$50 \text{ ns} - \frac{4\text{tcy}}{9}$			ns ns	R ₂ = 4K		
t _{DRH}	RDYIN Hold Time after STSTB	4tcy 9						
tDR	RDYIN or RESIN to φ ₂ Delay	$\frac{4\text{tcy}}{9} - 25 \text{ ns}$		9.4	ns	Ready & Res C _L = 10 pF R ₁ = 2K	set	
	Am i - = Hol	V		2.4	puts	$R_2 = 4K$		
tCLK	CLK Period	115 mA	tcy 9		ns	Power Suppl		
f _{max}	Maximum Oscillating Frequency			27	MHz		:370	
C _{in}	Input Capacitance	roqui IX era need	Mad Blos	.e freque 8 roles.	pF .	$V_{DD} = +12$ $V_{BIAS} = 2.5$	V	

NOTE

These formulas are based on the internal workings of the part and intended for customer convenience. Actual testing of the part is done at $t_{cy} = 488.28$ ns.

lemi

A.C. CHARACTERISTICS (Continued)

For $t_{CY} = 488.28$ ns; $T_A = 0^{\circ}$ C to 70°C, $V_{CC} = +5V \pm 5\%$, $V_{DD} = +12V \pm 5\%$

Symbol	Parameter	THE REAL PROPERTY.	Limits	2-1	Units	Test Conditions	
Oyin Boi	raiametei	Min	Тур	Max	Cilita	1000 Conditions	
t _{φ1}	φ ₁ Pulse Width	89			ns -	t _{CY} = 488.28 ns	
t _{\phi2}	φ ₂ Pulse Width	236	1	X	ns		
t _{D1}	Delay φ ₁ to φ ₂	0		1	ns		
t _{D2}	Delay φ ₂ to φ ₁	95	spat		ns	φ ₁ & φ ₂ Loaded to	
t _{D3}	Delay φ ₁ to φ ₂ Leading Edges	109		129	ns	$C_L = 20 \text{ pF to } 50 \text{ pF}$	
t _r	Output Rise Time			20	ns		
tf	Output Fall Time		1	20	ns 🔟	SVRC (FROM 2020A)	
t _{DSS}	φ ₂ to STSTB Delay	296		326	ns	unt-e	
t _D ϕ 2	φ ₂ to φ ₂ (TTL) Delay	-5		+15	ns		
tpW	Status Strobe Pulse Width	40			ns	Ready & Reset Loaded	
tDRS	RDYIN Setup Time to STSTB	-167	7		ns	to 2 mA/10 pF All measurements	
tDRH	RDYIN Hold Time after STSTB	217	-		ns	referenced to 1.5V	
t _{DR}	READY or RESET to ϕ_2 Delay	192	X-		ns	unless specified otherwise.	
f _{MAX}	Oscillator Frequency			18.432	MHz		

A.C. TESTING, INPUT, OUTPUT WAVEFORM

A.C. Testing: Inputs are driven at 2.4V for a logic "1" and 0.45V for a logic "0". Timing measurements are made at 2.0V for a logic "1" and 0.8V for a logic "0" (unless otherwise noted).

A.C. TESTING LOAD CIRCUIT

CLOCK HIGH AND LOW TIME (USING X1, X2)

SYSTEM CONTROLLER AND BUS DRIVER FOR 8080A CPU

- Single Chip System Control for MCS®-80 Systems
- Built-In Bidirectional Bus Driver for Data Bus Isolation
- Allows the Use of Multiple Byte Instructions (e.g. CALL) for Interrupt Acknowledge
- Reduces System Package Count
- User Selected Single Level Interrupt Vector (RST 7)
- Available in EXPRESS— Standard Temperature Range
- Available in 28-Lead Cerdip and Plastic Packages

(See Packaging Spec, Order #231369)

The Intel® 8228 is a single chip system controller and bus driver for MCS®-80. It generates all signals required to directly interface MCS-80 family RAM, ROM, and I/O components.

A bidirectional bus driver is included to provide high system TTL fan-out. It also provides isolation of the 8080 data bus from memory and I/O. This allows for the optimization of control signals, enabling the systems designer to use slower memory and I/O. The isolation of the bus driver also provides for enhanced system noise immunity.

A user selected single level interrupt vector (RST 7) is provided to simplify real time, interrupt driven, small system requirements. The 8228 also generates the correct control signals to allow the use of multiple byte instructions (e.g., CALL) in response to an interrupt acknowledge by the 8080A. This feature permits large, interrupt driven systems to have an unlimited number of interrupt levels.

The 8228 is designed to support a wide variety of system bus structures and also reduce system package count for cost effective, reliable design of MCS-80 systems.

NOTE:

The specifications for the 3228 are identical with those for the 8228.

Figure 2. Pin Configuration

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to +70°C
Storage Temperature	
Supply Voltage, VCC	
Input Voltage	
Output Current	100 mA

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5V \pm 5\%$

0	Parameter (6361655 Ambito Ambi			Limits	3	11-14	Acknowledge	
Symbol				Typ(1)	Max	Unit	Test Conditions	
V _C	Input Clamp Voltage, OB SOM TO THE All Input		oVI I	0.75	A.MAR	ve Ve o	V _{CC} = 4.75V; I _C = -5 mA	
IFO8 orti	Input Load Current	STSTB AND JTT AND	syste	rigiri ebi	500	μΑ	V _{CC} = 5.25V (Innolfoenbid A	
	of signals, enabling the so provides for enhance	D ₂ & D ₆	go er	ys for t	750	μΑ	$V_F = 0.45V$	
	real time, interrupt dri	D ₀ , D ₁ , D ₄ , D ₅ & D ₇	ai (S	TRE	250	μΑ	roise immunity. \ user selected single favel in	
	to allow the use of mu	All Other Inputs	noo i	ates the	250	μΑ		
I _R	Input Leakage Current	STSTB	TO TO	dmun bi	100	μΑ	V _{CC} = 5.25V	
	and also reduce system	DB ₀ -DB ₇	syste	to viety of	20	μΑ	V _R = 5.25V	
		All Other Inputs	syste	108-80	100	μΑ		
V _{TH}	Input Threshold Voltage, All Inputs	2 or the 8228.	0.8	it ritiw th	2.0	ers 8	V _{CC} = 5V	
lcc -	Power Supply Current			140	190	mA	V _{CC} = 5.25V	
VOL	Output Low Voltage	D ₀ -D ₇			0.45	٧	$V_{CC} = 4.75V; I_{OL} = 2 \text{ mA}$	
WASH C	H 1350	All Other Outputs			0.45	V	I _{OL} = 10 mA	
VOH	Output High Voltage	D ₀ -D ₇	3.6	3.8	190 - 90 -	٧	$V_{CC} = 4.75V; I_{OH} = -10\mu A$	
ATTIO C	0 LI 10	All Other Outputs	2.4	TAO METER	,ea -	V	$I_{OH} = -1 \text{ mA}$	
los	Short Circuit Current, A	II Outputs	15		90	mA	$V_{CC} = 5V$	
lo (off)	Off State Output Current				100	μΑ	$V_{CC} = 5.25V; V_O = 5.25V$	
30 [All Control Outputs	2000			-100	μΑ	$V_{O} = 0.45V$	
INT	INTA Current	WETCHER			5	mA	(See INTA Test Circuit)	

NOTE:

^{1.} Typical values are for T_A = 25°C and nominal supply voltages.

CAPACITANCE $V_{BIAS}=2.5V$, $V_{CC}=5.0V$, $T_A=25^{\circ}C$, f=1 MHz 1. This parameter is periodically sampled and not 100% tested.

	0/\ 0/\	Limits				
Symbol Parameter	Parameter	Min	Typ(1)	Max	Unit	
CIN	Input Capacitance		8	12	pF	
C _{OUT}	Output Capacitance Control Signals		7	15	pF	
1/0	I/O Capacitance (D or DB)		8	15	pF	

A.C. CHARACTERISTICS TA = 0°C to +70°C. Voc = 5V ±5%

Ohal	and an	Lir	nits	AGSK	0
Symbol	Parameter	Min	Max	Unit	Conditions
tpw	Width of Status Strobe	22	Service and	ns	
tss	Setup Time, Status Inputs D ₀ -D ₇	-8		ns	AUG RUE Maveve
tsH	Hold Time, Status Inputs D ₀ -D ₇	5		ns	TALLET SANS GODA
t _{DC}	Delay from STSTB to any Control Signal	20	60	ns	$C_{L} = 100 pF$
t _{RR}	Delay from DBIN to Control Outputs		30	ns	$C_{L} = 100 pF$
t _{RE}	Delay from DBIN to Enable/Disable 8080 Bus		45	ns	$C_L = 25 pF$
t _{RD}	Delay from System Bus to 8080 Bus during Read		30	ns	$C_L = 25 pF$
twR	Delay from WR to Control Outputs	- 5	45	ns	$C_{L} = 100 pF$
twE	Delay to Enable System Bus DB ₀ -DB ₇ after STSTB		30	ns	$C_{L} = 100 pF$
t _{WD}	Delay from 8080 Bus D ₀ -D ₇ to System Bus DB ₀ -DB ₇ during Write	- 5	-40 -	s ns	$C_L = 100 pF$
tE	Delay from System Bus Enable to System Bus DB ₀ -DB ₇		30	ns	$C_{L} = 100 pF$
tHD	HLDA to Read Status Outputs		25	ns	
t _{DS}	Setup Time, System Bus Inputs to HLDA	_10 _	-	ns	CUB MBTOYE
t _{DH}	Hold Time, System Bus Inputs to HLDA	20		ns	$C_{l} = 100 pF$

AC TESTING LOAD CIRCUIT algo. J V8.0 = "0" algo. (INTA Test Circuit (for RST 7) ARRUCARM EDATIO

VOLTAGE MEASUREMENT POINTS: D_0-D_7 (when outputs) Logic "0" = 0.8V, Logic "1" = 3.0V. All other signals measured at 1.5V.

16,384-BIT EPROM WITH I/O

- 2048 Words x 8 Bits and a search A marky : 3.18
- Single +5V Power Supply (V_{CC})
- Directly Compatible with 8085AH
- U.V. Erasable and Electrically many seni sud of Reprogrammable
- Internal Address Latch

- 2 General Purpose 8-Bit I/O Ports
- Each I/O Port Line Individually Programmable as Input or Output
- Multiplexed Address and Data Bus
- 40-Pin DIP
- Available in EXPRESS
 - Standard Temperature Range
 - Extended Temperature Range

The Intel 8755A is an erasable and electrically reprogrammable ROM (EPROM) and I/O chip to be used in the 8085AH microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum access time of 450 ns to permit use with no wait states in an 8085AH CPU.

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines, and each I/O port line is individually programmable as input or output.

Table 1. Pin Description

Symbol	Туре	Name and Function
ALE VIEW	6-Bjt 1/t Individu	ADDRESS LATCH ENABLE: When Address Latch Enable goes <i>high</i> , AD_{0-7} , IO/\overline{M} , A_{8-10} , CE_2 , and \overline{CE}_1 enter the address latches. The signals, $(AD, IO/\overline{M}, AD_{8-10}, CE_2, \overline{CE}_1)$ are latched in at the trailing edge of ALE.
AD ₀₋₇ as	a shd D	BIDIRECTIONAL ADDRESS/DATA BUS: The lower 8 bits of the PROM or I/O address are applied to the bus lines when ALE is high. During an I/O cycle, Port A or B is selected based on the latched value of ADo. IF RD or IOR is low when the latched Chip Enables are active, the output buffers present data on the bus.
AD ₈₋₁₀	arathro A	ADDRESS BUS: These are the high order bits of the PROM address. They do not affect I/O operations.
PROG/CE ₁ CE ₂ CE ₂ CON A SERIES	li satid 8 ye	CHIP ENABLE INPUTS: $\overline{CE_1}$ is active low and $\overline{CE_2}$ is active high. The 8755A can be accessed only when <i>both</i> Chip Enables are active at the time the ALE signal latches them up. If either Chip Enable input is not active, the $\overline{AD_0}_{-7}$, and READY ouputs will be in a high impedance state. $\overline{\overline{CE_1}}$ is also used as a programming pin. (See section on programming.)
IO/M	1	I/O MEMORY: If the latched IO/\overline{M} is high when \overline{RD} is low, the output data comes from an I/O port. If it is low the output data comes from the PROM.
RD	, 1	READ: If the latched Chip Enables are active when $\overline{\text{RD}}$ goes low, the AD ₀₋₇ output buffers are enabled and output either the selected PROM location or I/O port. When both $\overline{\text{RD}}$ and $\overline{\text{IOR}}$ are high, the AD ₀₋₇ output buffers are 3-stated.
10W 08	10 ja	I/O WRITE: If the latched Chip Enables are active, a low on $\overline{\text{IOW}}$ causes the output port pointed to by the latched value of AD ₀ to be written with the data on AD ₀₋₇ . The state of $\overline{\text{IO/M}}$ is ignored.
CLK	151	CLOCK: The CLK is used to force the READY into its high impedance state after it has been forced low by $\overline{\text{CE}_1}$ low, CE_2 high, and ALE high.
READY	0 4	READY is a 3-state output controlled by $\overline{\text{CE}_1}$, CE_2 , ALE and CLK. READY is forced low when the Chip Enables are active during the time ALE is high, and remains low until the rising edge of the next CLK. (See Figure 6c.)
PAO-75 APC I SE APC I SE		PORT A: These are general purpose I/O pins. Their input/output direction is determined by the contents of Data Direction Register (DDR). Port A is selected for write operations when the Chip Enables are active and $\overline{\text{IOW}}$ is low and a 0 was previously latched from AD ₀ , AD ₁ . Read Operation is selected by either $\overline{\text{IOR}}$ low and active Chip Enables and AD ₀ and AD ₁ low, or IO/M high, $\overline{\text{RD}}$ low, active Chip Enables, and AD ₀ and AD ₁ low.
PB ₀₋₇	1/0	PORT B: The general purpose I/O port is identical to Port A except that it is selected by a 1 latched from AD ₀ and a 0 from AD ₁ .
RESET	2s 177	RESET: In normal operation, an input high on RESET causes all pins in Ports A and B to assume input mode (clear DDR register).
22 NOI 21 Au 231735-2	81 D (4 05 D a)	I/O READ: When the Chip Enables are active, a low on $\overline{\text{IOR}}$ will output the selected I/O port onto the AD bus. $\overline{\text{IOR}}$ low performs the same function as the combination of $\overline{\text{IO/M}}$ high and $\overline{\text{RD}}$ low. When $\overline{\text{IOR}}$ is not used in a system, $\overline{\text{IOR}}$ should be tied to V_{CC} ("1").
Vcc	IOO INT. S.	POWER: +5V supply.
V _{SS}		GROUND: Reference.
V _{DD}		POWER SUPPLY: V_{DD} is a programming voltage, and must be tied to V_{CC} when the 8755A is being read. For programming, a high voltage is supplied with $V_{DD}=25V$, typical. (See section on programming.)

FUNCTIONAL DESCRIPTION METERS

PROM Section S

The 8755A contains an 8-bit address latch which allows it to interface directly to MCS®-48 and MCS®-85 processors without additional hardware.

The PROM section of the chip is addressed by the 11-bit address and the Chip Enables. The address, $\overline{\text{CE}}_1$ and CE_2 are latched into the address latches on the falling edge of ALE. If the latched Chip Enables are active and IO/ $\overline{\text{M}}$ is low when $\overline{\text{RD}}$ goes low, the contents of the PROM location addressed by the latched address are put out on the AD₀₋₇ lines (provided that V_{DD} is tied to V_{CC}).

I/O Section prise WOI bas selden did out

The I/O section of the chip is addressed by the latched value of AD $_{0-1}$. Two 8-bit Data Direction Registers (DDR) in 8755A determine the input/output status of each pin in the corresponding ports. A "0" in a particular bit position of a DDR signifies that the corresponding I/O port bit is in the input mode. A "1" in a particular bit position signifies that the corresponding I/O port bit is in the output mode. In this manner the I/O ports of the 8755A are bit-by-bit programmable as inputs or outputs. The table summarizes port and DDR designation. DDR's cannot be read.

AD ₁	AD ₀	Selection
0	0	Port A
0	1	Port B
1	0	Port A Data Direction Register (DDR A)
1	1	Port B Data Direction Register (DDR B)

When $\overline{\text{IOW}}$ goes low and the Chip Enables are active, the data on the AD_{0-7} is written into I/O port selected by the latched value of AD_{0-1} . During this operation all I/O bits of the selected port are affected, regardless of their I/O mode and the state of IO/ $\overline{\mathbb{M}}$. The actual output level does not change until $\overline{\text{IOW}}$ returns high. (Glitch free output.)

A port can be read out when the latched Chip Enables are active and either \overline{RD} goes low with $\overline{IO/M}$ high, or \overline{IOR} goes low. Both input and output mode bits of a selected port will appear on lines $\overline{AD_{0-7}}$.

To clarify the function of the I/O Ports and Data Direction Registers, the following diagram shows the configuration of one bit of PORT A and DDR A. The same logic applies to PORT B and DDR B.

8755A ONE BIT OF PORT A AND DDR A

WRITE PA = $(\overline{IOW}=0)$ • (CHIP ENABLES ACTIVE) • (PORT A ADDRESS SELECTED) WRITE DDR A = $(\overline{IOW}=0)$ • (CHIP ENABLES ACTIVE) • (DDR A ADDRESS SELECTED) READ PA = $\{(\overline{IO}/\overline{M}=1)$ • $(\overline{RD}=0)$ + $\{\overline{IOR}=0\}\}$ • (CHIP ENABLES ACTIVE) • (PORT A ADDRESS SELECTED)

NOTE: and la presure, all bits : TON

Write PA is not qualified by IO/M.

Note that hardware RESET or writing a zero to the DDR latch will cause the output latch's output buffer to be disabled, preventing the data in the Output Latch from being passed through to the pin. This is equivalent to putting the port in the input mode. Note also that the data can be written to the Output Latch even though the Output Buffer has been disabled. This enables a port to be initialized with a value prior to enabling the output.

The diagram also shows that the contents of PORT A and PORT B can be read even when the ports are configured as outputs.

ERASURE CHARACTERISTICS

The erasure characteristics of the 8755A are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000–4000Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical 8755A in approximately 3 years while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the 8755A is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 8755A window to prevent unintentional erasure.

The recommended erasure procedure for the 8755A is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity x exposure time) for erasure should be a minimum of 15W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12000 $\mu\text{W/cm}^2$ power rating. The 8755A should be placed within one inch from the lamp tubes during erasure. Some lamps have a filter on their tubes and this filter should be removed before erasure.

PROGRAMMING OF A TROS - ENTITOR ESTIMATE

Initially, and after each erasure, all bits of the EPROM portions of the 8755A are in the "1" state. Information is introduced by selectively programming "0" into the desired bit locations. A programmed "0" can only be changed to a "1" by UV erasure

The 8755A can be programmed on the Intel Universal Programmer (iUP), and iUPF8744A programming module.

The program mode itself consists of programming a single address at a time, giving a single 50 msec pulse for every address. Generally, it is desirable to have a verify cycle after a program cycle for the same address as shown in the attached timing diagram. In the verify cycle (i.e., normal memory read cycle) 'VDD' should be at +5V.

SYSTEM APPLICATIONS JAMOITOMUS

System Interface with 8085AH

A system using the 8755A can use either one of the two I/O Interface techniques:

- Standard I/O libbs Worldw.andeeecong 25.420M
- Memory Mapped I/O

If a standard I/O technique is used, the system can use the feature of both CE_2 and $\overline{CE_1}$. By using a combination of unused address lines A_{11-15} and the Chip Enable inputs, the 8085AH system can use up to 5 8755A's without requiring a CE decoder. See Figure 4.

If a memory mapped I/O approach is used the 8755A will be selected by the combination of both the Chip Enables and IO/ \overline{M} using AD₈₋₁₅ address lines. See Figure 3.

to a see Figure 3. 8755A in 8085AH System I nertW hog OV out (Memory-Mapped I/O) also ent svis eld grind a gold out of the leading of the selection of the sele

Use CE1 for the first 8755A in the system, and CE2 for the other 8755A's. Permits up to 5-8755A's in a system without CE decoder.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to +70°C
Storage Temperature	65°C to +150°C
Voltage on any Pin	5
with Respect to Ground	$-0.5V$ to $+7V$
Power Dissipation	1.5W

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = 0$ °C to 70°C, $V_{CC} = V_{DD} = 5V \pm 5\%$

Symbol	Parameter	Min	Max	Unit	Test Conditions
VIL	Input Low Voltage	-0.5	0.8	V	V _{CC} = 5.0V
VIH	Input High Voltage	2.0	V _{CC} + 0.5	V	$V_{CC} = 5.0V$
VOL	Output Low Voltage		0.45	V	I _{OL} = 2 mA
V _{OH}	Output High Voltage	2.4		V	$I_{OH} = -400 \mu A$
I _{IL}	Input Leakage		10	μΑ	V _{SS} ≤ V _{IN} ≤ V _{CC}
ILO	Output Leakage Current		±10	μΑ	0.45V \le Vout \le Vcc
Icc	V _{CC} Supply Current		180	mA	
I _{DD}	V _{DD} Supply Current		30	mA	$V_{DD} = V_{CC}$
CIN	Capacitance of Input Buffer		10	pF	$f_C = 1 \mu Hz$
C _{1/O}	Capacitance of I/O Buffer		15	pF	$f_C = 1 \mu Hz$

D.C. CHARACTERISTICS-PROGRAMMING

 $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = 5V \pm 5\%$, $V_{SS} = 0V$, $V_{DD} = 25V \pm 1V$

Symbol	Parameter	Min	Тур	Max	Unit
V _{DD}	Programming Voltage (during Write to EPROM)	24	25	26	٧
I _{DD}	Prog Supply Current		15	30	mA

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. CHARACTERISTICS OF PARTEST OF

 $T_A = 0$ °C to 70°C, $V_{CC} = 5V \pm 5$ %

	Parameter		87	/ II 4	
Symbol			Min street	Max	Unit
tcyc	Clock Cycle Time	/	320	5.0-	ns
Tierres	CLK Pulse Width	31785-7 and 0.45V	80	S to nevirb era atc	ns
T ₂	CLK Pulse Width	2.0V for a	120	Timing Measurant 8V for a Logic "C"	ns
t _f , t _r	CLK Rise and Fall Time			30	ns
t _{AL}	Address to Latch Set Up Time		50	21/	ns
t _{LA}	Address Hold Time after Latch		80	- Carlo	ns
t _{LC}	Latch to READ/WRITE Control		100 80	PICATION P	ns
t _{RD}	Valid Data Out Delay from READ Cor	itrol*		170	ns
t _{AD}	Address Stable to Data Out Valid**	3		450	ns
t _{LL}	Latch Enable Width		100		ns
tRDF	Data Bus Float after READ	EXTR	0	100	ns
t _{CL}	READ/WRITE Control to Latch Enab	le	20		ns
tcc	READ/WRITE Control Width		250		ns
t _{DW}	Data in Write Set Up Time	a1	150		ns
t _{WD}	Data in Hold Time after WRITE		30		ns
t _{WP}	WRITE to Port Output			400	ns
t _{PR}	Port Input Set Up Time		37 50 V CM	I/O READ A	da ns
t _{RP}	Port Input Hold Time to Control		50		ns
t _{RYH}	READY HOLD Time to Control		0 8855	GGA 160	ns
tary	ADDRESS (CE) to READY		ga/	160	ns
t _{RV}	Recovery Time between Controls		300	WO 1	ns
TRDE	READ Control to Data Bus Enable		10		ns

NOTES:

C_{LOAD} = 150 pF.
*Or T_{AD} - (T_{AL} + T_{LC}), whichever is greater.
**Defines ALE to Data Out Valid in conjunction with T_{AL}.

A.C. CHARACTERISTICS—PROGRAMMING

 $T_A = 0$ °C to 70°C, $V_{CC} = 5V \pm 5$ %, $V_{SS} = 0$ V, $V_{DD} = 25V \pm 1$ V

Symbol	Parameter	Min	Тур	Max	Unit
tps	Data Setup Time	10	f		ns
t _{PD}	Data Hold Time	0			ns
ts	Prog Pulse Setup Time	2	-		μs
tH	Prog Pulse Hold Time	2			μs
tPR	Prog Pulse Rise Time	0.01	2		μs
tpF	Prog Pulse Fall Time	0.01	2		μs
tpRG	Prog Pulse Width	45	ent 1650 rot nie	CE1 must rem	ms

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. Testing: Inputs are driven at 2.4V for a Logic "1" and 0.45V for a Logic "0". Timing Measurements are made at 2.0V for a Logic "1" and 0.8V for a Logic "0".

A.C. TESTING LOAD CIRCUIT

WAVEFORMS

CLOCK SPECIFICATION FOR 8755A

PROM READ, I/O READ AND WRITE

WAVEFORMS (Continued)

8755A PROGRAM MODE

Indexes

MCS®-48 INDEX

8

8243 Expander, 2-4 8243 Port Characteristics, 2-5

A

Accumulator, 1-1 Addressing Beyond 2K, 2-1 Addressing External Data Memory, 2-4 ALE, 1-17, 2-9 ALU, 1-1 Arithmetic Logic Unit, 1-1

B

Bus, 1-5, 1-17, 2-9

C

Clock Circuits, 1-9 Conditional Branches, 1-6 Control Signals, 2-8 Counter, 1-7 Cycle Counter, 1-10

D

Data Memory, 1-3

E

EA, 1-15
Erasing EPROM, 1-18
Erasure Characteristics, 1-18
Event Counter, 1-9
Expansion of Data Memory, 2-3
Expansion of I/O, 2-4
Expansion of Program Memory, 2-1
External Addressing, 2-1
External Access Mode, 1-15
External Data Memory Addressing, 2-4
External Instruction Fetch, 2-1

1

I/O Expander Device (8243), 2-4 I/O Expansion, 2-4, 2-5 I/O Port Characteristics, 2-5 I/O Port Restore, 2-2 Instruction Decoder, 1-1 Instruction Fetch (External), 2-1 INT, 1-17 Interrupt, 1-5, 1-7 Interrupt Routines, 2-2 Interrupt Timing, 1-7

M

Memory Bank Switch, 2-1 Memory Bank Switching, 2-8 Memory Expansion, 2-5 Multi-Chip Systems, 2-7

0

Oscillator, 1-9

P

Pin Description, 1-16 Port 1, 1-5, 1-17 Port 2, 1-5, 2-9 Port Characteristics, 2-9 Power Down, 1-13 PROG, 1-17, 2-9 Program Counter, 1-5 Program Memory, 1-1 Program Status Word, 1-6 Programming EPROM, 1-18 PSEN, 2-9 PSW, 1-6

R

RD, 1-17, 2-9 Read Cycle, 2-3 Reset, 1-10, 1-17 Restoring I/O Ports, 2-2 Single Step, 1-11, 1-14 Stack, 1-5 State Counter, 1-10 Sync Mode, 1-15 V_{CC} V_{DI} Veri V_{SS}

V_{CC}, 1-17 V_{DD}, 1-17 Verifying EPROM, 1-18 V_{SS}, 1-17

T

T0, 1-5, 1-17 T1, 1-5, 1-17 Test Inputs, 1-5 Timer, 1-7, 1-9 Timing, 1-13 Timing Circuits, 1-9 I/O Expander Device (8243), 2
I/O Expansion, 2-4, 2-5
I/O Port Characteristics, 2-5
I/O Port Restors, 2-2
Instruction Decoder, 1-1
Instruction Fetch (External), 2INT, 1-17
Interrupt, 1-5, 1-7
Interrupt Routines, 2-2
Interrupt Timing, 1-7
Interrupt Timing, 1-7

WR, 1-17, 2-9 Write Cycle, 2-3

Accumulator, 1-1
Addressing Beyond 2K, 2-1
Addressing External Data Memory, 2-4
ALE, 1-17, 2-9
ALU, 1-1

M

Memory Bank Switch, 2-1 Memory Bank Switching, 2-8 Memory Expansion, 2-5 Multi-Chin Systems, 2-7

lus, 1-5, 1-17, 2-9

Oscillator 1-9

Clock Circuits, 1-9
Conditional Branches, 1-6
Control Signals, 2-8
Counter, 1-7
Vale Counter, 1-7

Pin Description, 1-16
Port 1, 1-5, 1-17
Port 2, 1-5, 2-9
Port Characteristics, 2-9
Power Down, 1-13
PROG, 1-17, 2-9
Program Counter, 1-5
Program Memory, 1-1
Program Status Word, 1-6
Programming EPROM, 1-18
PREM, 2-9

Datá Memory, 1-3

570

RD, 1-17, 2-9 Read Cycle, 2-3 Reset, 1-10, 1-17 Pestorian I/O Ports 2A, 1-15
resing EPROM, 1-18
resing EPROM, 1-18
vent Counter, 1-9
xpension of Data Memory, 2-3
xpansion of I/O, 2-4
xpansion of Program Memory, 2-1
xtended Addressing, 2-1
xtendal Access Mode, 1-15
xternal Data Memory Addressing, 2-1
xternal Data Memory Addressing, 2-1
xternal Data Memory Addressing, 2-2
xternal Identify Exception (Exception 2)

	Port Bil Laich, 8-4, 9-6
	Ports, 8-3, 8-4, 8-33, 9-4, 9-
10, 8-26, 9-36	Power Down Mode, 5-3, 6-1
8031AH, 5-2, 8-1	
8032AH, 5-2, 8-1	
8051, 5-1, 5-2, 8-1	
8051AH, 5-2, 8-1	
	PSEN, 5-4, 5-16, 8-7
8051AHP, 8-28 8052AH, 5-2, 8-1	
80C31BH, 5-2, 8-1	
80C51BH, 5-2, 5-3, 8-1	
80C51BHP, 8-28	
80C51FA, 5-2, 9-1	0
80C51GA, 5-2, 10-1	Quick-Pulse Programming a
03C31FA, 3-2, 9-1	
83C51FB, 5-2, 9-1	
83C51GA, 5-2, 10-1	
8751BH, 5-2	RD Signal, 5-4, 8-7
8751H, 5-2, 8-1, 8-27	Register Banks, 5-7, 6-5, 6-
8752BH, 5-2, 8-1, 8-27	Register Instructions, 5-7
87C51, 5-2, 8-1, 8-27	
87C51FA, 5-2, 9-1	
87C51FB, 5-2, 9-1	Reset, 6-8, 8-24, 9-33
87C51GA, 5-2, 10-1	Power-On, 8-25, 9-34
	RET, 5-13, 6-64, 8-23
A	RETI, 5-13, 6-22, 6-64, 8-2.
AC (Auxiliary Carry) Flag,	6-10, 8-4
ACALL, 5-13, 6-27	
Accumulator, 8-3, 9-3	
ADCON, 10-1, 10-2	ROM Protection, 8-28
A/D Converter, 10-1	R.R., 6-66
ADD, 6-28, 6-38	RRC, 6-66
ADDC, 6-29, 6-38	
ADDRESS/DATA Bus, 6-5	5. 8-6
Addressing	SBUF, 8-3, 8-11, 8-15
	SCON, 6-18, 8-3, 8-12, 8-13
Given, 9-25	SEPCON, 10-5
Addressing Modes, 5-7	SEPSTA, 10-6
	Serial Expansion Port, 10-4
ALE, 5-16, 8-7	
ANL, 5-12, 6-31, 8-7	SETB, 5-12, 6-67, 8-7
Arithmetic Instructions, 5-7	6-20
ASM51, 5-6	SPRS, 3-0, d-9, d-1, d-4
Automatic Address Recogni	tion, 9-25 % A S A S A S A S A S A S A S A S A S A
Table 1200 2000 gill	SIMIP, 3-13, 6-06 CL
	Software Timer, 9-21
В	Stack Pointer, 6-5, 8-3, 9-4 Start Bit, 8-12, 8-15, 8-18
B Register, 8-3, 9-4	

B Register, 8-3, 9-4
Baud Rate, 6-19, 8-13, 9-27
BCD, 5-8, 5-10
Bit Addressable, 6-5
Boolean Instructions, 5-11, 5-12, 6-22
Bus Cycle
Data Memory, 5-16
Program Memory, 5-16
Byte Addressable, 6-7

C (Carry) Flag, 5-6, 5-12, 6-10, 8-4
Capture Mode, 9-21
Capture Registers, 8-3
Case Jump, 5-7, 5-13
Ceramic Resonator, 5-14, 8-29
CHMOS Devices, 5-3, 8-6, 8-25, 8-30
CJNE, 5-14, 6-34
CLR, 5-12, 6-6, 6-36
Compare Mode, 9-21
Control Registers, 8-3
CPL, 5-12, 6-37, 8-7
CPU Timing, 5-14
Crystal, 5-14, 8-28

DA A, 5-8, 6-3
Data Memory, 5-4, 5-5, 5-11, 6-3, 8-7, 9-1
Read Cycle, 8-32, 9-9
Write Cycle, 8-33, 9-9
Data Pointer, 8-3, 9-4
Data Transfers, 5-9, 6-21
DEC, 6-40, 8-7
Direct Addressing, 5-7, 6-3, 6-5
DIV AB, 5-8, 6-41, 8-23
DJNZ, 5-14, 6-42, 8-7

E EA (Enable All), 8-21, 8-22 EA (External Access), 5-4, 8-7, 8-28, 9-10 Encryption Array, 8-27, 9-37 EPROM Programming, 8-27, 9-37 EPROM Verifying, 8-27 Execution Times, 5-7 External Clock, 8-29, 8-30, 8-31 External Program Execution, 5-4, 8-7, 9-8

Fetch/Execution Sequence, 5-15 Framing Error Detection, 9-25

High Speed Output, 9-22

I/O Buffers, 6-4, 8-5 Idle Mode, 5-3, 6-10, 8-26, 9-35 IE (Interrupt Enable), 5-17, 6-11, 8-3, 8-21, 9-30, 10-8 Immediate Constants, 5-7 INC, 6-43, 8-7 Indexed Addressing, 5-7 Indirect Addressing, 5-7, 6-3, 6-5

I (Continued) P (Continued) Port Bit Latch, 8-4, 9-6 Instruction Opcodes, 6-24 Instruction Set, 5-6, 6-20 Ports, 8-3, 8-4, 8-33, 9-4, 9-5, 10-3 Power Down Mode, 5-3, 6-10, 8-26, 9-36 Internal Timing, 8-31 Interrupt Response Time, 8-23, 9-32, 9-33 Power Off Flag, 9-36 Interrupts, 5-4, 5-17, 6-11, 8-21, 9-4, 9-29, 10-7 Program Memory, 5-3, 5-4, 6-2, 8-7, 8-27, 8-32, 9-1 Program Memory Locks, 8-27 External, 6-11, 8-23, 9-30 Programmable Counter Array (PCA), 9-4, 9-16 IP (Interrupt Priority), 5-17, 6-12, 8-3, 8-22, 9-30, 10-9 PSEN, 5-4, 5-16, 8-7 PSW (Program Status Word), 5-6, 6-10, 8-3, 8-4, 9-4 Pulse Width Modulator (PWM), 9-23 JB, 5-12, 6-45 PUSH, 5-9, 6-63 JBC, 5-12, 6-45, 8-7 JC, 5-12, 6-46 JMP. 5-13, 6-47 Quick-Pulse Programming Algorithm, 8-27 JNB, 5-12, 6-48 JNC, 5-12, 6-48 JNZ, 5-14, 6-49 Jump Instructions, 5-13, 6-22 RD Signal, 5-4, 8-7 JZ, 5-14, 6-49 Register Banks, 5-7, 6-5, 6-10, 8-4 Register Instructions, 5-7 Register-Specific Instructions, 5-7 LCALL, 5-13, 6-50 Relative Offset, 5-12 LJMP, 5-13, 6-50 Reset, 6-8, 8-24, 9-33 Lock Bits, 8-28, 9-37 Power-On, 8-25, 9-34 Logical Instructions, 5-9, 6-21 RET, 5-13, 6-64, 8-23 Lookup Tables, 5-7, 5-11 RETI, 5-13, 6-22, 6-64, 8-23 RI (Receive Interrupt) Flag, 6-18, 8-13, 8-15, 8-18, 8-21 RL, 6-65 M RLC, 6-65 Machine Cycle, 5-15 ROM Protection, 8-28 Memory Organization, 5-3 RR, 6-66 MOV, 5-12, 6-51, 8-7 RRC, 6-66 16-Bit, 5-10 0 85-8 7 8-28 (External Additional Additio MOVX, 5-11, 5-16, 6-57 MOVX, 5-11, 5-16, 6-57 MUL AB, 5-7, 6-59, 8-23 Multiprocessor Communication, 8-12, 9-25 SBUF, 8-3, 8-11, 8-15 SCON, 6-18, 8-3, 8-12, 8-13 SEPCON, 10-5 SEPSTA, 10-6 N Serial Expansion Port, 10-4 Ninth Data Bit, 8-12, 8-18 Serial Port, 6-10, 6-12, 6-16, 6-18, 6-19, 8-11, 9-4 NOP, 6-59 SETB, 5-12, 6-67, 8-7 SFRs, 5-6, 6-5, 6-7, 8-1, 9-2 Single-Step Operation, 8-24 0 SJMP, 5-13, 6-68 CA-P mortingoos X assembly a significant ONCE (On-Circuit Emulation) Mode, 8-28, 9-37 Software Timer, 9-21 ORL, 5-12, 6-60, 8-7 Oscillator, 5-14, 8-24, 8-28, 9-37 Stack Pointer, 6-5, 8-3, 9-4 Start Bit, 8-12, 8-15, 8-18 External, 5-15 State Time, 5-15 Oscillator Fail Detect, 10-4 Status Flags, 5-7 Oscillator Frequency, 8-13 Stop Bit, 8-12, 8-15, 8-18 OV (Overflow) Flag, 6-10, 8-4 SUBB. 6-69 SWAP A, 5-9, 6-70 iE (Interrupt Enable), 5-17, 6-11, 8-3, 8-21, 9-30, 10-8 P (Parity) Flag, 5-7, 6-10, 8-4 PCA Timer/Counter, 9-17 PCON, 6-10, 6-19, 8-3, 8-13, 8-26, 9-4, 9-36 Polling Sequence, 5-17, 8-22

POP, 5-9, 6-63

8XC451 Architectural Index

AFLAG, 12-1, 12-3
BFLAG, 12-1, 12-3
Control Status Register, 12-2
Handshake, 12-1
IBF, 12-2
IDS, 12-1, 12-2
OBF, 12-2
ODS, 12-1, 12-2
Special Function Registers, 12-3

8XC451 Architectural Index

AFLAG 12-1, 12-3
BFLAG, 12-1, 12-3
Control Status Register, 12-2
Handshake, 12-1
18F, 12-2
10S, 12-1, 12-2
ODS, 12-1, 12-2
Special Function Registers, 12-3