DESIGN XOR GATE

BY ADELEYE ADEBODUN 19747

Question

Design your own AND Gate, OR Gate, and NAND Gate

Note

The forward/backward process

- Forward process
- Calculate the output Z for the given input (X,Y).
- Backward process
 Adjust weights
- + If the output Z is too low, increase the weights by 0.5 which had inputs that were "1".
- + If the output Z is too high, decrease the weights by 0.5 which had inputs that were "1".

```
Using step activation function
Z := ( W0 * C + W1 * X + W2 * Y >= T )
    where T := 1.0

if ( W0 * C + W1 * X + W2 * Y >= T )
then output is 1
else output = 0
```

- •
- The bias C for NAND is 1.0

OR Gate Desired output

X	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	1

W1 = W2 = 0

X	Υ	Z
0	0	0
0	1	0
1	0	0
1	1	0

W1 = W2 = 0.5

X	Y	Z
0	0	С
0	1	С
1	0	С
1	1	1

W1 = W2 = 1.0

	_	
X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

If the weight is increased by 0.5

The values for (0,1) and (1,0) will be 0

And the weight is doubled to 1.0

$$Z1 = (1.0 * X + 1.0 * Y >= 1.0)$$

 $Z1 := (Y > -X + 1.0)$

AND Gate

Desired result

X		Y	Z 1
	0	0	C
	0	1	C
	1	0	C
	1	1	1

W1 = W2 = 0

X	Υ	Z
0	0	0
0	1	0
1	0	0
1	1	0

W1= W2= 0.5

x	Y	Z1
0	0	(
0	1	(
1	0	(
1	1	•

$$Z = (0.5 * X + 0.5 * Y >= 1.0)$$

$$Z := (Y > -X + 2.0)$$

Design NAND Gate

X		Y	Z 2
	0	0	1
	0	1	1
	1	0	1
	1	1	0

Using the formula from AND gate

$$Z2 = (0.5 * X + 0.5 * Y \le 1.0)$$

$$Z2:=(-0.5 * X + -0.5 * Y >= -1.0)$$

$$Z2:= (1.5 * 1 + -0.5 * X + -0.5 * Y >= +1.0)$$

$$Z2 := (+1.5 * 1.0 + -0.5 * X + -0.5 * Y >= +1.0)$$

```
"NAnd" +----+
                        "XOr" Function
   | 1.0-->1.5--->|
X \longrightarrow |---> -0.5-->| Neuron |-->Z2--
|\\ +-----+ ->0.5-->|
                 | Neuron |-->Z3-->|-->Z
   | \ \ "Or" +----+ -->0.5-->|
   | \ | Neuron |-->Z1--
    -->1.0-->|
```

The blackbox for the XOR function

Formula for Z

$$Z: = (1 * X + 1 * Y >= 1.0)$$
 "AND"

$$(1.5 + -0.5 * X + -0.5 * Y >= 1.0)$$

Z:= $(0.5 * (1.0 * X + 1.0 * Y >= 1.0) +$

Prove that the XOR Gate works for the following

- X=1, Y=1
- X=1, Y=0
- X=0, Y=1
- X=0, Y=0

```
For X=1, Y=1

Z := (0.5 * (1.0 * 1.0 + 1.0 * 1.0 >= 1.0) +

0.5 * (1.5 + -0.5 * 1.0 + -0.5 * 1.0 >= 1.0) >= 1.0)

Z := (0.5 * (1.0 + 1.0 >= 1.0) +

0.5 * (1.5 + -0.5 + -0.5 >= 1.0) >= 1.0)
```

Z := (0.5 * (2.0 >= 1.0) + 0.5 * (0.5 >= 1.0) >= 1.0)

Z := (0.5 * 1 + 0.5 * 0 >= 1.0)

Z := (0.5 * (true) + 0.5 * (false) >= 1.0)

Z := (0.5 + 0.0 >= 1.0)

Z := (false)

```
For X=1, Y=0

Z := (0.5 * (1.0 * 1.0 + 1.0 * 0 >= 1.0 ) +

0.5 * (1.5 + -0.5 * 1.0 + -0.5 * 0 >= 1.0 ) >= 1.0 )

Z := (0.5 * (1.0 + 0 >= 1.0 ) +

0.5 * (1.5 + -0.5 + -0 >= 1.0 ) >= 1.0 )

Z := (0.5 * (1.0 >= 1.0 ) +
```

0.5 * (1.0 >= 1.0) >= 1.0)

Z := (0.5 * 1 + 0.5 * 1 >= 1.0)

Z := (0.5 * (true) + 0.5 * (true) >= 1.0)

Z := (0.5 + 0.5 >= 1.0)

Z := (true)

```
For X=0, Y=1

Z := (0.5 * (1.0 * 0 + 1.0 * 1.0 >= 1.0 ) +

0.5 * (1.5 + -0.5 * 0 + -0.5 * 1.0 >= 1.0 ) >= 1.0 )

Z := (0.5 * (0 + 1.0 >= 1.0 ) +

0.5 * (1.5 + -0 + -0.5 >= 1.0 ) >= 1.0 )

Z := (0.5 * (1.0 >= 1.0 ) +
```

0.5 * (1.0 >= 1.0) >= 1.0)

Z := (0.5 * 1 + 0.5 * 1 >= 1.0)

Z := (0.5 * (true) + 0.5 * (true) >= 1.0)

Z := (0.5 + 0.5 >= 1.0)

Z := (true)

```
For X=0, Y=0

Z := (0.5 * (1.0 * 0 + 1.0 * 0 >= 1.0) +

0.5 * (1.5 + -0.5 * 0 + -0.5 * 0 >= 1.0) >= 1.0)

Z := (0.5 * (0 + 0 >= 1.0) +

0.5 * (1.5 + -0 + -0 >= 1.0) >= 1.0)

Z := (0.5 * (0 >= 1.0) +
```

0.5 * (1.5 >= 1.0) >= 1.0)

Z := (0.5 * 0 + 0.5 * 1 >= 1.0)

Z := (0.5 * (false) + 0.5 * (true) >= 1.0)

Z := (0 + 0.5 >= 1.0)

Z := (false)