Maestría en Ciencias del Procesamiento de la Información Universidad Autónoma de Zacatecas

Regresión Logística

Reconocimiento de Patrones

Dr. Gamaliel Moreno Chávez gamalielmch@uaz.edu.mx

Enero-Julio 2021

Temas

Clasificación Clasificación Regresión Logística

Modelos lineales generalizados Familia exponencial Modelos lineales generalizados

Clasificación

- ▶ Regresión: $y = h_{\theta}(\mathbf{x})$ con $y \in \mathbb{R}$ continuo
- ▶ Clasificación: $y = h_{\theta}(\mathbf{x})$ como antes, pero con $y \in \mathbb{C}$ es discreto y posiblemente no ordenado.
- ▶ iniciaremos con problema de clasificación binario $y \in \{0, 1\}$
- Ejemplos
 - Clasificación de correo como spam o no spam
 - ► Paciente con enfermedad o no la presenta
 - Una máquina fallará o no dadas ciertas lecturas de sensores
- ▶ Dado $\mathbf{x}^{(i)}$, el valor deseado correspondiente y^i se llama etiqueta

Regresión Logística

- ▶ Buscar una hipótesis $h(x) \in [0, 1]$
- Elijamos:

$$h_{\boldsymbol{\theta}} = g(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}) = \sigma(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}) = \frac{1}{1 + \boldsymbol{e}^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

con *g* una función no lineal, es este caso concreto elegido como la función sigmoide, función logística

Función logística
$$\sigma(z) = \frac{1}{1+e^{-z}}$$
 y su derivada $\sigma'(z) = \sigma(z)(1-\sigma(z))$

Regresión Logística. Planteo probabilístico

- Vamos a usar planteo probabilístico para derivar solución
- Supongamos que la hipótesis cumple

$$P(y=1|\mathbf{x};\theta)=h_{\theta}(\mathbf{x})$$

además

$$P(y=0|\mathbf{x};\theta)=1-h_{\theta}(\mathbf{x})$$

las cuales se pueden combinar (Bernoulli)

$$P(y|\mathbf{x};\theta) = h_{\theta}(\mathbf{x})^{y} (1 - h_{\theta}(\mathbf{x}))^{1-y}$$

► La verosimilitud, igual que el caso de regresión con i.i,d es:

$$L(\theta) = P(\mathbf{y}|\mathbf{X};\theta) = \prod_{i=1}^{m} P(y^{(i)}|\mathbf{x}^{(i)};\theta)$$
$$= \prod_{i=1}^{m} h_{\theta}(\mathbf{x}^{(i)})^{y^{(i)}} (1 - h_{\theta}(\mathbf{x}^{(i)}))^{1 - y^{(i)}}$$

Regresión Logística. Planteo probabilístico

 Queremos maximizar esta verosimilitud, lo que es más fácil a través de la verosimilitud logarítmica

$$\ell(\theta) = InL(\theta) = \sum_{i=1}^{m} In\left(h_{\theta}(\mathbf{x}^{(i)})^{y^{(i)}} (1 - h_{\theta}(\mathbf{x}^{(i)}))^{1 - y^{(i)}}\right)$$
$$= \sum_{i=1}^{m} y^{(i)} In\left(h_{\theta}(\mathbf{x}^{(i)})\right) + (1 - y^{(i)}) In(1 - h_{\theta}(\mathbf{x}^{(i)}))$$

Podemos maximizar esto utilizando ascenso de gradiente:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \ell(\theta)$$

► Si derivamos $\partial \ell(\theta)/\partial \theta_i$ llegamos con $\sigma'(z) = \sigma(z)(1 - \sigma(z))$ a

$$\frac{\partial}{\partial \theta_j} \ell(\boldsymbol{\theta}) = \sum_{i=1}^m \left(y^{(i)} - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) \right) \boldsymbol{x}_j^{(i)} \quad \nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) = \sum_{i=1}^m \left(y^{(i)} - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) \right) \boldsymbol{x}^{(i)}$$

Regresión Logística. Planteo probabilístico

Con lo anterior obtenemos para el ascenso estocástico de gradiente:

$$\theta_j \leftarrow \theta_j + \alpha \left(\mathbf{y}^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right) \mathbf{x}_j^{(i)} \quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \left(\mathbf{y}^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right) \mathbf{x}^{(i)}$$

Es exactamente la misma expresión que para los mínimos cuadrados ordinarios (OLS), a pesar de que $h_{\theta}(\cdot)$ es distinta

Modelos lineales generalizados

- ► Hemos visto dos tipos de problemas
 - ► Regresión lineal con mínimos cuadrados: $y|\mathbf{x}; \theta \sim \mathcal{N}(\mu\sigma^2)$
 - ► Regresión logística: $y|\mathbf{x}; \theta \backsim Ber(\phi)$
- ¿Por qué en ambos problemas llegamos a la misma regla de actualización de θ:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \left(\mathbf{y}^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right) \mathbf{x}^{(i)}$$
?

 Ambos métodos pertenecen a los Modelos Lineales Generalizados (GLM)

Familias de distribuciones

- Podemos ver las distribuciones con sus parámetros como familias:
 - ightharpoonup Ber $(\phi): P(y=1;\theta)=\theta$
- ► Esto es: cada instancia de parámetros produce una distribución particular
- Mostraremos que estos son casos especiales de la familia exponencial

La familia exponencial

► La familia exponencial incluye las distribuciones que se pueden expresar:

$$p(y; \boldsymbol{\eta}) = b(y) exp(\boldsymbol{\eta}^T \boldsymbol{T}(y) - a(\boldsymbol{\eta}))$$

- \triangleright η es el parámetro natural (o canónico) de la distribución
- ► T(y) es el estadístico suficiente. En casos aquí, se cumple T(y) = y
- $ightharpoonup a(\eta)$ es la función de partición logarítmica
- ▶ Usualmente $e^{-a(\eta)}$ es constante de normalización
- Elección fija de T, a y b define una familia (o conjunto) de distribuciones parametrizadas con η

Caso de distribución de Bernoulli

$$p(y; \boldsymbol{\eta}) = b(y) exp(\boldsymbol{\eta}^T \boldsymbol{T}(y) - a(\boldsymbol{\eta}))$$

Distribución de Bernoulli

$$p(y;\phi) = \phi^{y}(1-\phi)^{1-y} = exp(In(\phi^{y}(1-\phi)^{1-y}))$$

$$= exp(yIn\phi + (1-y)In(1-\phi))$$

$$= exp\left(\underbrace{\left(In\left(\frac{\phi}{1-\phi}\right)\right)}_{\eta}\underbrace{y}_{T(y)} + \underbrace{In(1-\phi)}_{-a(\eta)}\right)$$

con lo que se deriva el parámetro natural

$$oldsymbol{\eta} = \eta = ln\left(rac{\phi}{1-\phi}
ight)$$

Caso de distribución de Bernoulli

▶ Despejando ϕ en términos de η resulta en:

$$\phi = \frac{e^{\eta}}{1 + e^{\eta}} = \frac{1}{1 + e^{-\eta}}$$

es la función logística que usamos anteriormente

▶ Además

$$T(y) = y$$

 $a(\eta) = -ln(1 - \phi) = ln(1 + e^{\eta})$
 $b(y) = 1$

Caso de distribución normal

- Para la interpretación probabilística de regresión lineal, la variaza σ^2 no tuvo efecto
- ▶ Vamos a simplificar caso asumiendo varianza $\sigma^2 = 1$
- ► Para la distribución gaussiana tenemos:

$$p(y; \mu) = \frac{1}{\sqrt{2\pi}} exp\left(-\frac{1}{2}(y - \mu)^2\right)$$
$$= \frac{1}{\sqrt{2\pi}} exp\left(-\frac{1}{2}y^2\right) exp\left(\mu y - \frac{1}{2}\mu^2\right)$$

familia gaussiana $p(y; \eta) = b(y) exp(\eta^T T(y) - a(\eta))$

Caso de distribución normal

$$\eta = \mu$$
 $T(y) = y$
 $a(\eta) = \frac{\mu^2}{2} = \frac{\eta^2}{2}$
 $b(y) = \frac{1}{\sqrt{2\pi}}exp\left(-\frac{1}{2}y^2\right)$

