Épreuve : Statistique mathé-

matique

Durée : 02 Heures Date : 20/01/2022

Nbre de pages : 02 pages

Université de Sousse

Institut des Hautes Études Commerciales de Sousse Niveau: M1

Finance & Actuariat

Enseignant: Hamrita

Mohamed Essaied

Session principale

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la clarté entreront pour une part importante dans l'appréciation des copies.

Téléphone portable et documents interdits.

Exercice 1 (7 points)

Soit *X* une variable aléatoire continue dont sa fonction de probabilité, *f* , est définie par :

$$f(x) = \begin{cases} \frac{x^2}{2\theta^3} \exp\left(-\frac{x}{\theta}\right), & x \ge 0 \text{ et } \theta > 0.\\ 0 & \text{sinon} \end{cases}$$

On rappelle que : $\Gamma(n) = \int_0^{+\infty} x^{n-1} e^{-x} dx$ et $\Gamma(n+1) = n! \ \forall n \in \mathbb{N}$.

- 1) Montrer que *X* suit une loi de gamma dont on précisera ses paramètres.
- 2) Calculer la fonction génératrice des moments de X. En déduire $\mathbb{E}(X)$ et $\mathbb{V}(X)$.
- 3) Déterminer l'estimateur du maximum de vraisemblance du paramètre θ .
- 4) Etudier les qualités de cet estimateur (biais, convergence et efficacité).

Exercice 2 (7 points)

On considère la fonction de densité jointe du couple aléatoire (X, Y) définie par :

$$f(x, y) = \frac{6}{7} \left(x^2 + \frac{xy}{2} \right), \quad 0 < x < 1, \ 0 < y < 2.$$

- 1) Calculer $\mathbb{P}\left(X = \frac{1}{2}, Y = \frac{1}{3}\right)$, $\mathbb{P}\left(X = \frac{1}{2}, Y = 2\right)$ et $\mathbb{P}\left(X > \frac{1}{2}, Y < \frac{1}{3}\right)$.
- 2) Déterminer les densités marginales en X et en Y. Les variables X et Y sont-elles indépendantes? Calculer $\mathbb{E}(X)$.

1

- 3) Calculer la densité conditionnelle de Y|X = x.
- 4) Calculer $\mathbb{E}(Y|X=x)$. En déduire $\mathbb{E}(Y)$.
- 5) Soient U = X + Y et V = X Y. Déterminer la densité jointe du couple (U, V).

Exercice 3 (7 points)

Soit $(x_1, x_2, ..., x_n)$ un n-échantillon aléatoire indépendant et identiquement distribué selon la loi normale de paramètres m et $\sigma^2 = \theta$ inconnus tous les deux.

- 1) Déterminer la fonction de vraisemblance en logarithme de l'échantillon.
- 2) Déterminer par la méthode du maximum de vraisemblance des estimateurs des paramètres m et θ .
- 3) Les estimateurs sont-ils sans biais? Sinon, donner des estimateurs sans biais.
- 4) Déterminer la matrice des variances-covariance de $(\widehat{m}, \widehat{\theta})$. Étudier l'efficacité des estimateurs.

Bon travail