EE230: Labwork-7 Special Opamp Linear Circuits - Active Filters

Kalpit Borkar, 200070029

March 12, 2022

1 Overview of the experiment

1.1 Aim of the experiment

To understand the working of:

- i) Sallen-Key (2-pole) Active Low-pass Filter
- ii) Sallen-Key (2-pole) Active High-pass Filter
- iii) Active Band-Pass Filter

by experimentally finding the filter responses of the above mentioned circuits.

1.2 Methods

We first constructed the circuits for:

- i) Sallen-Key (2-pole) Active Low-pass Filter
- ii) Sallen-Key (2-pole) Active High-pass Filter
- iii) Active Band-Pass Filter

on the breadboard, and measured the output voltage V_o and thus the gain of the circuits as various frquencies. We recorded these parameters and analysed the frequency plots.

2 Design

The design for the three circuits are shown below.

They consists of an op-amp connected with capacitors and resistors with a negative feedback.

2.1 (a) Sallen-Key (2-pole) Active Low-pass Filter

Figure 1: (a) Sallen-Key (2-pole) Active Low-pass Filter

2.2 (b) Sallen-Key (2-pole) Active High-pass Filter

Figure 2: (b) Sallen-Key (2-pole) Active High-pass Filter

2.3 (c) Multiple-feedback Active Band-Pass Filter

Figure 3: (c) Multiple-feedback Active Band-Pass Filter

3 Theoretical analysis

3.1 (a) Sallen-Key (2-pole) Active Low-pass Filter

The cut-off frequency of the filter is given by,

$$f_c = \frac{1}{2\pi RC} \tag{1}$$

Substituting the given values, we get:

$$f_c = 338.62Hz$$
 (2)

$$Bandwidth = f_c = 338.62Hz \tag{3}$$

3.2 (b) Sallen-Key (2-pole) Active High-pass Filter

The cut-off frequency of the filter is given by,

$$f_c = \frac{1}{2\pi RC} \tag{4}$$

Substituting the given values, we get:

$$f_c = 338.62Hz \tag{5}$$

$$Bandwidth = f_c = 338.62Hz (6)$$

3.3 (c) Multiple-feedback Active Band-Pass Filter

Centre frequency f_0 is given by:

$$f_0 = \frac{1}{2\pi C} \sqrt{\frac{R_1 + R_2}{R_1 R_2 R_3}} \tag{7}$$

Substituting the given values, we get:

$$f_0 = 736.13Hz (8)$$

Bandwidth is given by:

$$BW = \frac{f_0}{Q} \tag{9}$$

$$Q = \pi f_0 C R_0 \tag{10}$$

$$\therefore BW = 176.84Hz \tag{11}$$

Cut-off frequencies are given by:

$$f_{c1} = \frac{BW}{2} + f_0 = 824.55Hz \tag{12}$$

$$f_{c2} = \frac{BW}{2} - f_0 = 647.71Hz \tag{13}$$

4 Experimental results

For the three circuits, the following parameters were measured by varying the input frequency.

- 1. input frequency
- 2. output voltage V_o
- 3. gain $\left(\frac{V_o}{V_{in}}\right)$
- 4. gain (dB)

4.1 (a) Sallen-Key (2-pole) Active Low-pass Filter

Input voltage	Input Freq (in Hz)	Output voltage	Gain(db)	Gain
2.12	10	3.16	3.467024434	1.490566038
2.12	50	3.16	3.467024434	1.490566038
2.12	100	3.12	3.356374662	1.471698113
2.12	150	3.12	3.356374662	1.471698113
2.12	200	3.04	3.130754454	1.433962264
2.12	250	2.96	2.899117003	1.396226415
2.12	300	2.8	2.416443408	1.320754717
2.12	338	2.64	1.905361319	1.245283019
2.12	350	2.64	1.905361319	1.245283019
2.12	400	2.4	1.077507616	1.132075472
2.12	450	2.16	0.162357804	1.018867925
2.12	500	1.96	-0.681595791	0.924528302
2.12	550	1.76	-1.616463862	0.830188679
2.12	600	1.52	-2.88984546	0.716981132
2.12	650	1.36	-3.855939051	0.641509434
2.12	700	1.24	-4.658283515	0.58490566
2.12	800	0.96	-6.881292558	0.452830189
2.12	900	0.8	-8.464917479	0.377358491
2.12	1000	0.68	-9.876538964	0.320754717
2.12	1250	0.48	-12.90189247	0.226415094
2.12	1500	0.36	-15.4006672	0.169811321
2.12	1750	0.24	-18.92249238	0.113207547
2.12	2000	0.24	-18.92249238	0.113207547
2.12	432	2.23	0.439380042	1.051886792

Figure 4: (a) Sallen-Key (2-pole) Active Low-pass Filter Measurements

Experimental cut-off frequency = 432 HzExperimental Bandwidth = 432 Hz

Figure 5: (a) Sallen-Key (2-pole) Active Low-pass Filter Frequency plot

4.2 (b) Sallen-Key (2-pole) Active High-pass

Experimental cut-off frequency = 471 HzExperimental Bandwidth = 471 Hz

Input voltage	Input Freq (in Hz)	Output voltage	Gain(db)	Gain
2.04	50	0.064	-30.06900387	0.031372549
2.04	100	0.18	-21.08715325	0.088235294
2.04	150	0.38	-14.59693142	0.18627451
2.04	200	0.64	-10.06900387	0.31372549
2.04	250	0.96	-6.547178688	0.470588235
2.04	300	1.28	-4.048403956	0.62745098
2.04	350	1.56	-2.330111381	0.764705882
2.04	400	1.84	-0.896246888	0.901960784
2.04	450	2.12	0.33411387	1.039215686
2.04	500	2.32	1.117156349	1.137254902
2.04	550	2.48	1.696430268	1.215686275
2.04	600	2.6	2.106863611	1.274509804
2.04	650	2.68	2.370092532	1.31372549
2.04	700	2.8	2.750557278	1.37254902
2.04	800	2.88	2.995246407	1.411764706
2.04	900	2.96	3.233230873	1.450980392
2.04	1000	2.96	3.233230873	1.450980392
2.04	1250	3.04	3.464868324	1.490196078
2.04	1500	3.08	3.578410981	1.509803922
2.04	1750	3.08	3.578410981	1.509803922
2.04	2000	3.08	3.578410981	1.509803922
2.04	471	2.18	0.576526524	1.068627451

Figure 6: (b) Sallen-Key (2-pole) Active High-pass Filter Measurements

Figure 7: (b) Sallen-Key (2-pole) Active High-pass Filter Frequency plot

4.3 (c) Multiple-feedback Active Band-Pass Filter

Input voltage	Input Freq (in Hz)	Output voltage	Gain(db)	Gain
2.08	50	0.08	-28.29946696	0.038461538
2.08	100	0.12	-24.77764178	0.057692308
2.08	150	0.2	-20.34066679	0.096153846
2.08	200	0.28	-17.41810607	0.134615385
2.08	250	0.32	-16.25826713	0.153846154
2.08	300	0.4	-14.32006687	0.192307692
2.08	350	0.52	-12.04119983	0.25
2.08	400	0.64	-10.23766722	0.307692308
2.08	450	0.88	-7.471613256	0.423076923
2.08	500	1.12	-5.376906246	0.538461539
2.08	550	1.52	-2.72439494	0.730769231
2.08	600	2	-0.340666786	0.961538462
2.08	650	2.08	0	
2.08	700	1.76	-1.451013343	0.846153846
2.08	750	1.44	-3.194016857	0.692307692
2.08	800	1.16	-5.072106915	0.557692308
2.08	850	0.96	-6.715842038	0.461538462
2.08	900	0.88	-7.471613256	0.423076923
2.08	950	0.72	-9.214616771	0.346153846
2.08	1000	0.68	-9.711088445	0.326923077
2.08	1050	0.64	-10.23766722	0.307692308
2.08	1100	0.56	-11.39750616	0.269230769
2.08	1200	0.48	-12.73644195	0.230769231
2.08	1300	0.4	-14.32006687	0.192307692
2.08	1400	0.4	-14.32006687	0.192307692
2.08	1500	0.36	-15.23521668	0.173076923
2.08	547	1.48	-2.956032391	0.711538462
2.08	742	1.48	-2.956032391	0.711538462

Figure 8: (c) Multiple-feedback Active Band-Pass Filter Measurements

Figure 9: (c) Multiple-feedback Active Band-Pass Filter Frequency plot

Experimental cut-off frequencies:

$$f_{c1} = 547 \text{ Hz}$$

 $f_{c2} = 742 \text{ Hz}$

Experimental centre frequency:

$$f_0 = 650 \text{ Hz}$$

Experimental Bandwidth = 742 - 547 = 195 Hz

5 Conclusion

Therefore, our experimental results are matching with our theoretical results with some slight deviations due to experimental errors.

6 Experiment completion status

All of the sections of the lab-6 were completed in the lab:

Special Opamp Linear Circuits - Active Filters

- 1. (a) Sallen-Key (2-pole) Active Low-pass Filter
- 2. (b) Sallen-Key (2-pole) Active High-pass Filter
- 3. (c) Multiple-feedback Active Band-Pass Filter