#### Dr. Shashi Ranjan Kumar

Assistant Professor
Department of Aerospace Engineering
Indian Institute of Technology Bombay
Powai, Mumbai, 400076 India



1 / 28

Dr. Shashi Ranjan Kumar AE 305/717 Lecture 7 Flight Mechanics/Dynamics

#### Total Moment: Neutral Point



- Neutral point (NP): A CG position h, for which  $C_{m_{\alpha}} = 0$ . Also known as "vehicle aerodynamic center".
- A boundary between positive and negative pitch stiffness
- NP is given by

$$\overline{ \left( h_n = h_{n_{wb}} - \frac{1}{C_{L_{\alpha}}} \left[ \frac{\partial C_{m_{ac_{wb}}}}{\partial \alpha} - \bar{V}_H \frac{\partial C_{L_t}}{\partial \alpha} + \frac{\partial C_{m_p}}{\partial \alpha} \right] \right) }$$

ullet  $C_{m_{\alpha}}$  in terms of NP

$$C_{m_{\alpha}} = C_{L_{\alpha}}(h - h_n)$$

Static margin: Difference between CG position and NP

$$\boxed{K_n = h_n - h}$$

- $K_n > 0 \implies C_{m_\alpha} < 0$ , a positive stiffness
- For positive stiffness, CG must be forward to NP

Total Moment: Static Margin





#### Effect of Linear Lift and Moment on NP



• What if the lift and moment are linear in angle of attack?

$$C_{L_{wb}} = a_{wb}\alpha_{wb}, \quad C_{L_t} = a_t\alpha_t, \quad C_{m_p} = C_{m_{0_p}} + \frac{\partial C_{m_p}}{\partial \alpha}\alpha$$

Angle of attack for tail

$$\alpha_t = \alpha_{wb} - i_t - \epsilon \implies C_{L_t} = a_t(\alpha_{wb} - i_t - \epsilon)$$

Downwash angle

$$\left[\epsilon = \epsilon_0 + \frac{\partial \epsilon}{\partial \alpha} \alpha_{wb}\right]$$

Tail lift coefficient

$$C_{L_t} = a_t \alpha_t = a_t \left[ \alpha_{wb} \left( 1 - \frac{\partial \epsilon}{\partial \alpha} \right) - i_t - \epsilon_0 \right]$$

Total lift coefficient

$$C_{L} = \frac{C_{L_{wb}}}{S} + \frac{S_{t}}{S} C_{L_{t}}$$

$$= \underbrace{a_{wb} \left[ 1 + \frac{a_{t} S_{t}}{a_{wb} S} \left( 1 - \frac{\partial \epsilon}{\partial \alpha} \right) \right]}_{a} \alpha_{wb} \underbrace{-a_{t} \frac{S_{t}}{S} (i_{t} + \epsilon_{0})}_{C_{L_{0}}}$$

$$= C_{L_{0}} + a \alpha_{wb}$$

• As  $\alpha_{wb}$  and  $\alpha$  differ by a constant,  $C_L = a\alpha$ , where lift-curve slope

$$a = a_{wb} \left[ 1 + \frac{a_t S_t}{a_{wb} S} \left( 1 - \frac{\partial \epsilon}{\partial \alpha} \right) \right],$$

and  $\alpha$  is angle of attack of zero-lift line, of whole configuration.

Zero-Lift Line of Wing-Body and Complete Airplane









• As  $i_t > 0$ .

$$C_{L_0} = -a_t \frac{S_t}{S} (i_t + \epsilon_0) < 0$$

• What would be the amount of difference in  $\alpha$  and  $\alpha_{wb}$ ?

$$\alpha - \alpha_{wb} = -\frac{a_t}{a} \frac{S_t}{S} (i_t + \epsilon_0)$$



#### Effect of Linear Lift and Moment on NP



• For linear relations of  $C_L, C_{L_t}, C_{m_p}$ , we have

$$C_m = \frac{C_{m_0}}{C_{m_0}} + C_{m_\alpha} \alpha = \bar{C}_{m_0} + C_{m_\alpha} \alpha_{wb}$$

where

$$\begin{split} C_{m_{\alpha}} &= a(h - h_{n_{wb}}) - a_t \bar{V}_H \left( 1 - \frac{\epsilon}{\alpha} \right) + \frac{\partial C_{m_p}}{\partial \alpha} \\ &= a_{wb}(h - h_{n_{wb}}) - a_t V_H \left( 1 - \frac{\epsilon}{\alpha} \right) + \frac{\partial C_{m_p}}{\partial \alpha} \\ C_{m_0} &= C_{m_{ac_{wb}}} + C_{m_{0p}} + a_t \bar{V}_H (\epsilon_0 + i_t) \left[ 1 - \frac{a_t S_t}{a_{wb} S} \left( 1 - \frac{\partial \epsilon}{\partial \alpha} \right) \right] \\ \bar{C}_{m_0} &= C_{m_{ac_{wb}}} + \bar{C}_{m_{0p}} + a_t V_H (\epsilon_0 + i_t) \\ \bar{C}_{m_{0p}} &= C_{m_{0p}} + (\alpha - \alpha_{wb}) \frac{\partial C_{m_p}}{\partial \alpha} \\ h_n &= h_{n_{wb}} + \frac{a_t}{a} \bar{V}_H \left( 1 - \frac{\partial \epsilon}{\partial \alpha} \right) - \frac{1}{a} \frac{\partial C_{m_p}}{\partial \alpha} \end{split}$$

#### Moment Computation



- What about dependence of  $\bar{C}_{m_0}$  and  $C_{m_0}$  on CG location?
- As  $\bar{C}_{m_0}$  is the pitching moment at zero  $\alpha_{wb}$ , not zero total lift, its value depends on h (via  $V_H$ ).
- ullet  $C_{m_0}$  being the moment at zero total lift, represents a pure couple and is hence independent of CG position.
- ullet Will the results remain applicable for tailless aircraft? Yes with  $V_H=0.$
- As  $C_{m_{\alpha}} = C_{L_{\alpha}}(h h_n)$ , on integration we have

$$C_m = C_{m_0} + C_L(h - h_n)$$
$$= C_{m_0} + a\alpha(h - h_n)$$

ullet  $C_{m_{lpha}}$  reduces to  $C_{m_{lpha}}=a(h-h_n)$ 

Lift and Moment on Vehicle





Effect of cg location on stability





Static Stability





Static Stability







Trim Angle

- How to change the equilibrium state, trim angle, or aircraft speed?
- Is there a relation between trim angle and speed?
  - ⇒ Speed is related to lift coefficient.
  - ⇒ Lower lift coefficient implies higher speed.
- Possible ways to alter trim condition
  - ⇒ A change in propulsive thrust
  - ⇒ A change in configuration (aerodynamic controls)
  - ⇒ Movement of the CG
- What is effect of moving CG forward?
- Moving CG forward reduces the trim  $\alpha$  or  $C_L$ , and hence produces an increase in the trim speed.
- Disadvantages of changing CG location:
  - ⇒ Practical difficulties
  - ⇒ Reducing pitch stiffness and stability, with reduced trim speed How?

Longitudinal Control





- Slope can be changed by changing CG
- ullet Shifting of  $C_{m_0}$  can be done by changing configuration.

Longitudinal Control





#### Longitudinal Control: Derivatives



- Deflection of the elevator through an angle  $\delta_e$ , produces changes in both  $C_m$  as well as  $C_L$  of the airplane.
- Lift and moment increments for both kinds of airplane (aircraft with tails or tailless one) are linear in  $\delta_e$ .
- Increments in lift and moment coefficients

$$\begin{split} C_L &= C_L(\alpha) + C_{L_{\delta_e}} \delta_e, \quad \Delta C_L = C_{L_{\delta_e}} \delta_e \\ C_m &= C_m(\alpha) + C_{m_{\delta_e}} \delta_e, \quad \Delta C_m = C_{m_{\delta_e}} \delta_e \end{split}$$

where 
$$C_{L_{\delta_e}}=rac{\partial C_L}{\partial \delta_e}$$
 and  $C_{m_{\delta_e}}=rac{\partial C_m}{\partial \delta_e}$ 

- $C_L(\alpha)$  and  $C_m(\alpha)$  are lift and moment coefficients when  $\delta_e = 0$ .
- $\delta_e > 0$  when deflected downward  $\Rightarrow C_{L_{\delta_e}} > 0$ ,  $C_{m_{\delta_e}} < 0$
- In the case of linear lift and moment,

$$C_L = C_{L_{\alpha}} \alpha + C_{L_{\delta_e}} \delta_e$$

$$C_m = C_{m_0} + C_{m_{\alpha}} \alpha + C_{m_{\delta_e}} \delta_e$$







 $C_m$  curve gets shifted down without change of slope, while zero-lift angle is changed.

#### Longitudinal Control: Derivatives



Lift coefficient of the tail

$$C_{L_t} = a_t \alpha_t + a_e \delta_e$$

• As  $C_L = C_{L_{wb}} + \frac{S_t}{S} C_{L_t}$ , we have

$$C_{L_{\delta_e}} = \frac{\partial C_L}{\partial \delta_e} = \frac{\partial C_{L_{wb}}}{\partial \delta_e} + \frac{S_t}{S} \frac{\partial C_{L_t}}{\partial \delta_e}$$

Elevator lift effectiveness

$$a_e = \frac{\partial C_{L_t}}{\partial \delta_e} \Rightarrow C_{L_{\delta_e}} = \frac{\partial C_{L_{wb}}}{\partial \delta_e} + a_e \frac{S_t}{S}$$

Total pitching moment coefficient

$$C_m = C_{m_{ac_{wb}}} + C_L(h - h_{n_{wb}}) - \bar{V}_H C_{L_t} + C_{m_p}$$

$$\Rightarrow C_{m_{\delta_e}} = \frac{\partial C_{m_{ac_{wb}}}}{\partial \delta_e} + C_{L_{\delta_e}}(h - h_{n_{wb}}) - \bar{V}_H \frac{\partial C_{L_t}}{\partial \delta_e} + \frac{\partial C_{m_p}}{\partial \delta_e}$$

Longitudinal Control: Derivatives



### Pitching moment coefficient derivative w.r.t. $\delta_e$

$$C_{m_{\delta_e}} = \frac{\partial C_{m_{ac_{wb}}}}{\partial \delta_e} + C_{L_{\delta_e}}(h - h_{n_{wb}}) - a_e \bar{V}_H$$

### Tailed aircraft

$$C_{L_{\delta_e}} = \frac{\mathbf{a}_e}{S}, \ C_{m_{\delta_e}} = C_{L_{\delta_e}}(h - h_{n_{wb}}) - \frac{\mathbf{a}_e \bar{V}_H}{S}$$

#### Tailless aircraft

$$C_{L_{\delta_e}} = \frac{\partial C_L}{\partial \delta_c}, \ C_{m_{\delta_e}} = \frac{\partial C_{m_{ac}}}{\partial \delta_c} + C_{L_{\delta_e}}(h - h_n)$$

What are the important parameters to be measured?

### Longitudinal Control: Elevator Angle to Trim



- Trim condition:  $C_m = 0$
- What would be required trim elevator deflection?

$$\delta_{e_{\text{trim}}} = -\frac{C_m(\alpha)}{C_m \delta_e}$$

Lift coefficient

$$C_{L_{\text{trim}}} = C_L(\alpha) - \frac{C_{L_{\delta_e}}}{C_m \delta_e} C_m(\alpha)$$

• Can we obtain trim values of  $\alpha$  and  $\delta_e$  for linear case?

$$C_{L_{\alpha}}\alpha_{\text{trim}} + C_{L_{\delta_e}}\delta_{e_{\text{trim}}} = C_{L_{\text{trim}}}$$
$$C_{m_{\alpha}}\alpha_{\text{trim}} + C_{m_{\delta_e}}\delta_{e_{\text{trim}}} = -C_{m_0}$$

• What would be trim values of angle of attack and elevator deflection?

$$\boxed{ \alpha_{\text{trim}} = \frac{C_{m_0}C_{L_{\delta_e}} + C_{m_{\delta_e}}C_{L_{\text{trim}}}}{C_{L_{\alpha}}C_{m_{\delta_e}} - C_{m_{\alpha}}C_{L_{\delta_e}}}, \ \delta_{e_{\text{trim}}} = -\frac{C_{m_0}C_{L_{\alpha}} + C_{m_{\alpha}}C_{L_{\text{trim}}}}{C_{L_{\alpha}}C_{m_{\delta_e}} - C_{m_{\alpha}}C_{L_{\delta_e}}} }$$

#### Longitudinal Control: Elevator Angle to Trim



We have

$$\frac{d\delta_{e_{\rm trim}}}{dC_{L_{\rm trim}}} = -\frac{C_{m_\alpha}}{C_{L_\alpha}C_{m_{\delta_e}} - C_{m_\alpha}C_{L_{\delta_e}}} = -\frac{C_{L_\alpha}(h-h_n)}{C_{L_\alpha}C_{m_{\delta_e}} - C_{m_\alpha}C_{L_{\delta_e}}}$$

- $\bullet$  Usually,  $\Delta = C_{L_{\alpha}}C_{m_{\delta_e}} C_{m_{\alpha}}C_{L_{\delta_e}} < 0$
- ullet  $\Delta$  is independent of h

$$\Delta = \underbrace{C_{L_{\alpha}}[C_{L_{\delta_{e}}}(h_{n} - h_{n_{wb}}) - a_{e}\bar{V}_{H}]}_{\text{tailled}}, \quad \underbrace{C_{L_{\alpha}}\frac{\partial C_{m_{ac}}}{\partial \delta_{e}}}_{\text{tailless}}$$

 $\bullet \ \, \text{Trimmed lift curve:} \ \, C_{L_{\text{trim}}} = -\frac{C_{m_0}C_{L_{\delta_e}}}{C_{m_{\delta_e}}} + \frac{\Delta}{C_{m_{\delta_e}}} \alpha_{\text{trim}}$ 





$$\left. \frac{dC_L}{d\alpha} \right|_{\text{trim}} = \frac{\Delta}{C_{m_{\delta_e}}} = C_{L_{\alpha}} - \frac{C_{L_{\delta_e}}}{C_{m_{\delta_e}}} C_{m_{\alpha}}$$



$$\bullet \left. \frac{dC_L}{d\alpha} \right|_{\text{trim}} < C_{L_{\alpha}}$$

- Amount of reduction depends on  $C_{m_{\alpha}}$  or static margin
- Reduction becomes zero when CG is at NP  $h=h_n$

Trim Angle vs  $C_{L_{
m trim}}$ 



$$\delta_{e_{\text{trim}}} = -\frac{C_{m_0}C_{L_{\alpha}} + C_{m_{\alpha}}C_{L_{\text{trim}}}}{C_{L_{\alpha}}C_{m_{\delta_e}} - C_{m_{\alpha}}C_{L_{\delta_e}}}$$



Cg locations





#### Trim Angle w.r.t. Speed



ullet Lift coefficient in trim condition, with equivalent airspeed  $V_E$ ,

$$C_{L_{\text{trim}}} = \frac{W}{(1/2)\rho_0 V_E^2 S}$$

- ullet  $\delta_{e_{
  m trim}}$  is a unique function of  $C_{L_{
  m trim}}$  and thus  $V_{E}.$
- $\bullet$  For any CG position, an increase in trim speed  $\Rightarrow \delta_e > 0.$



- Gradient  $\partial \delta_{e_{\text{trim}}}/\partial V_E$  decreases with rearward movement of the CG.
- $\partial \delta_{e_{tmim}}/\partial V_E = 0$  at  $h = h_n$ .

Trim Angle Example







#### Reference

- John Anderson Jr., Introduction to Flight, McGraw-Hill Education, Sixth Edition, 2017.
- Bernard Etkin and Llyod Duff Reid, Dynamics of Flight Stability and Control, John Wiley and Sons, Third Edition, 1996.

Thank you for your attention !!!