

CAUSAL INFERENCE IN NATURAL LANGUAGE PROCESSING FOR ECONOMICS

WEEK I: CAUSAL INFERENCE WITH TEXT DATA OVERVIEW

SUMMER SEMESTER 22

DR.HUYEN NGUYEN

HTTP://HUYENTTNGUYEN.COM

CENTRAL POLICY QUESTION

What happens if someone receives a treatment/policy X is implemented vs. what would happen if they had not received that treatment/X is not implemented?

THE EMPIRICAL PROBLEM

y = outcome

w = (text) treatments

x = observable covariates

 ε = confounders

z = instruments

(!) spurious correlation by confounders i.e. variables that are correlated with both the treatment and outcome.

What are the likely (text) confounders ε in Example 1?

SUPPOSE YOU WANT TO KNOW WHETHER BEING RICH INCREASES LONGEVITY....

That can only be answered if you have identical individual, with one having a lot of money, and the other not....

And the difference between longevity outcomes is the causal impact (i.e. treatment effect) of being rich.

BUT EVERYONE IS DIFFERENT. AND THERE ARE OTHER FACTORS AFFECTING LONGEVITY.

AND IT COULD BETHAT PEOPLE WITH MORE MONEY OPT FOR HEALTHIER LIFESTYLES...

FUNDAMENTAL CHALLENGE OF CAUSAL INFERENCE...

- We can NEVER observe both counterfactual outcomes for an individual/policy.
- > Impossible to make both interventions to the treatment and observe the resulting outcomes.
- → This problem is what makes causal inference harder than statistical inference and impossible without assumptions.

AVERAGE TREATMENT EFFECT (ATE)

 Based on the defined counterfactuals, an analyst must specify a quantity of interest that involves the distribution of counterfactuals.

$$ATE = E[Y(1)] - E[Y(0)]$$

• This is the average difference in counterfactual individuals who do not obtain university degrees, if we could intervene to change the obtain-university- degree "treatment", with which the individual is assigned to.

PITFALLS OF NLP

 NLP systems are often black boxes → hard to understand how human interpretable features of the text lead to the observed predictions.

- In this setting, we want to know if some part of the text (e.g., some sequence
- of tokens) causes the output of an NLP method (e.g., classification prediction).

ASSUMPTIONS OF CAUSAL INFERENCE

• Ignorability: $(Y(1), Y(0)) \perp T$

• Positivity: $0 < \Pr(T = 1 | X = x) < 1$

• Consistency:

$$\forall i \ s.t \ T_i = t, Y_i(t) = Y_i$$

CI WITH TEXT AS CONFOUNDERS

- Where? Observational data sets with texts
- <u>Challenge</u>: How to condition on the text such that it blocks confounding with NLP methods.
- Unsupervised dim reduction techniques. E.g. topic models (<u>Roberts et al.</u> 2020), embedding methods, auto-encoders
- > Supervised models by learning low-dimensional variables that can predict
- treatment and outcome well, confounding properties can be found in text.
- . E.g: Veitch, Sridhar and Blei (2020) adapted pre-trained language models and supervised topic models to predict the treatment and outcome.

CI WITH TEXT AS OUTCOMES

- Where? Open-ended responses from randomized experiments
- Challenge:
- Distill high-dimensional data into low-dimensional quality of interest
 - E.g. The effect of intensive English skill course intervention on readability in student essays

Readability is a latent variable of language!

Unknown outcome measure at the start of the experiment

CI WITH TEXT AS TREATMENTS

- Where?
- 1) Study of treatment discovery:
- e.g: topics &latent dimensions of candidate biographies that drove voter evaluations Fong
 & Grimmer 2016
- n-gram influential writing style in marketing materials that increase sales figures Pryzant
 et al., 2017)
- \rightarrow producing interpretable features of the text that can be causally linked to outcomes.

CI WITH TEXT AS TREATMENTS (CONT)

- Where?
- 2) estimate the causal effects of specific properties extracted from text:
- e.g: how appealing to civic duty via mails impacts on voter turnout in Michigan 2006 primary election (Gerber et al 2008)
- > factors are latent properties of the text for which we need a measurement model.

CI WITH TEXT AS TREATMENTS (CONT)

• <u>Goal</u>? The causal relationship that (specific aspects of the) text has on downstream decisions, behaviors, and outcomes.

- Challenges?
- 1) Ignorability is typically violated.
- Why? People often choose the text they read for reasons related to outcome of interests. (e.g.: political affiliation, mood, education level, gender)

CI WITH TEXT AS TREATMENTS (CONT)

Challenges?

- 2) Positivity is often violated.
- Why? Suppose we want to know if politeness causally affect e-mail response times. Even if the text contains all confounders (e.g.: topic, tone, writing styles), a polite email is unlikely to contain a certain writing style (e.g., profane).

CI WITH TEXT AS MEDIATOR

Causal mediation analysis (<u>Hicks and Tingley 2011 for Stata, Tingley et al., 2014 for R. Statsmodel in Python</u>) introduces a mediator into the causal graph.

The mediator decouples the total effect into a direct and indirect effect (of intermediaries).

E.g: Vaccine causes headaches -> subjects take aspirin (mediators) -> impact on protection level

→ To understand the <u>process</u> in which the treatment causally affects the outcome.

CI WITH TEXT AS MEDIATOR: AN APPLICATION

How grammatical gender bias in large pre-trained Transformer-based language models.
 (Vig et al., 2020)

Major concern in word representations, both static word embeddings and contextualized word representations.

(You can check their Github code here:

https://github.com/sebastianGehrmann/CausalMediationAnalysis)

- Given a prompt u: The nurse said that..., a language model is asked to generate a continuation:
- Stereoptypical candidate: SHE . Anti-stereotypical candidate: HE

→ A biased model assigns a higher likelihood to SHE than HE

$$p_{\theta}(SHE|u) > p_{\theta}(HE|u)$$

→ A measure of grammatical gender bias in the model:

$$y(u) = \frac{p_{\theta}(HE|u)}{p_{\theta}(SHE|u)}$$

$$y(u) > 1$$
?

$$y(u) < 1$$
?

$$y(u) = 1$$
?