I. Les ensembles : N; Z; D; Q et R

Activité:

Cocher les cases convenables :

	$\frac{-\sqrt{16}}{2}$	$-\frac{5}{2}$	12,23	$\frac{\pi}{2}$	8	$\sqrt{2}$	-6	Notation de l'ensemble
Entier naturel								
Entier relatif								
Nombre décimal								
Nombre rationnel								
Nombre irrationnel								
Nombre réel								

- ✓ On note l'ensemble des **entiers naturels** par \mathbb{N} : $\mathbb{N} = \{0,1,2,3,...\}$.
- ✓ On note l'ensemble des **entiers relatifs** par \mathbb{Z} : $\mathbb{Z} = \{..., -2, 1, 0, 1, 2, ...\}$.
- ✓ On note l'ensemble des **nombres décimaux** par $ID : ID = \{a.10^n / a \in \mathbb{Z} \text{ et } n \in \mathbb{Z}\}.$
- ✓ On note l'ensemble des **nombres rationnels** par $\mathbb{Q}: \mathbb{Q} = \{\frac{a}{b} \mid a \in \mathbb{Z} \text{ et } b \in IN^*\}$.
- ✓ On note l'ensemble des **nombres réels** par *IR* .C'est l'ensembles des nombres rationnels et irrationnels.

Remarque :

✓ $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$. Le symbole ' \subset 'se lit inclus.

Application:

Compléter à l'aide de l'un des symboles suivants : \in , $\not\subset$, \subset .

$$\frac{2\pi}{3}$$
 ... \mathbb{R}

$$\frac{2\pi}{3}$$
 ... \mathbb{R}

$$\mathbb{R} \dots \mathbb{Z}$$

$$\frac{\sqrt{2}}{3}$$
 ... \mathbb{Q}

$$\frac{-\sqrt{12}}{\sqrt{3}}$$
 ... \mathbb{Z}

$$\mathbb{Z} \dots \mathbb{Q}$$

 $0 \dots \mathbb{R}^*$

 $\sqrt{49}$... IN ID ... IR

 $\pi ... \mathbb{Q}$

 $\frac{1}{3}$... ID

II. Les opérations dans R

Activité:

- Simplifier l'expression suivant: A = a (b c) (b c a) [(c a b) (a + b + c)]
- Calculer le nombre: $B = (\frac{1}{2} \frac{2}{3} \frac{3}{4}) \times \frac{4}{11} + 3(5 \frac{2}{9})$.

// Propriétés :

Soient a, b, c et d des nombres réels. On a :

$$\otimes \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \quad (b \neq 0, d \neq 0)$$

$$\otimes \quad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \quad (b \neq 0, d \neq 0)$$

$$\otimes \quad \frac{1}{\frac{a}{b}} = \frac{b}{a} \quad (a \neq 0, b \neq 0)$$

$$\otimes \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} \quad (b \neq 0, d \neq 0, c \neq 0)$$

$$\otimes \frac{a}{b} = c$$
 $(b \neq 0)$ équivalent à $a = bc$ $\otimes \frac{a}{b} = \frac{c}{d}$ $(b \neq 0, d \neq 0)$ équivalent à $ad = bc$

Application:

2) Soient x et y deux nombres réels non nuls tels que: $x \neq y$. Montrer que :

$$\frac{-1 + \frac{x}{x - y}}{1 + \frac{y}{x - y}} = \frac{y}{x} .$$

31 Déterminer les valeurs possibles de x pour lesquelles on peut calculer l'expression

$$A = \frac{5}{2(x+3)} + \frac{4}{2(1-x)}$$
, puis écrire A sous forme d'une fraction.

III - Puissances – Ecriture scientifique:

Activité:

Parmi les nombres suivants donner ceux écrites en écriture scientifique et écrire les autres sous

cette forme: 0.012×10^{-3} ; 6500×10^{5} ; 5.03×10^{-4} ; -34.56×10^{-2}

PP Définition :

Soit x un nombre décimal non nul.

L'écriture $x = a.10^n$ dont et $1 \le a < 10$ ou $-10 < a \le -1$ est appelée l'écriture scientifique de x.

Ecrire les nombres suivants en écriture scientifique :

251,3 ; 0,095 ; 27,31×10³ ; 150×10⁻³ ; -5248,3 ; -872,731×10⁻⁴ ; 7879.03×10⁷

2

Activité:

Simplifier les nombres suivants : $A = 2^{-5} \times 3^{-3} \times 2^{10} \times 3^{-3} \times (-1)^{2017}$, $B = \frac{4 \times (10^{-2})^3 \times 10^{-5}}{10^{-5} \times 16^{-5}}$

Propriété:

Soient a et b deux nombres réels non nuls et soient. m et n deux nombres entiers relatifs non nuls. On a:

$$\otimes a^n \times a^p = a^{n+p}$$

$$\otimes \frac{a^n}{a^p} = a^{n-p}$$

$$\otimes \quad \frac{1}{a^n} = a^{-n}$$

$$\otimes a^{n} = a^{np}$$

$$\otimes a^n \times a^m = a^{n+m}$$

$$\otimes \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

Application:

On considère le nombre suivant : $A = \frac{6^{15} \times 25^7}{3^7 \times 9^4}$

Déterminer les entiers m et n tels que : $A = 2^m \times 5^m$.

IV - Racines carrés :

Activité:

Simplifier les expressions suivantes :

$$A = \sqrt{2^2 \times 12^3 \times 3}; \quad B = \sqrt{4^2 + 3^2}; \quad C = \sqrt{\frac{2}{5}} \times \sqrt{\frac{10}{16}}; \quad D = (\sqrt{3} + \sqrt{6})(1 - \sqrt{2}).$$

// Propriété :

Soient $a \in \mathbb{R}^+$ et $b \in \mathbb{R}^+$. On a:

$$\otimes \sqrt{a^2} = \sqrt{a^2} = a$$

$$\otimes \sqrt{a^n} = \sqrt{a^n}$$

$$\otimes \sqrt{a^n} = \sqrt{a^n} \qquad \otimes \frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{a} (a \neq 0)$$

$$\otimes \quad \sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

$$\otimes \quad \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \ (b \neq 0)$$

■Application:

Soient a et b deux nombres réels positifs. Simplifier le nombre suivant :

$$\sqrt{a}\sqrt{a^3b^2}-\sqrt{b}\sqrt{a^4b}+\sqrt{\sqrt{a^4b^4}}.$$

Monter que:
$$\frac{5\sqrt{7}}{\sqrt{2}-\sqrt{7}} + \frac{5\sqrt{2}}{\sqrt{2}+\sqrt{7}} \in \mathbb{Z}.$$

V - Identités remarquables :

&Activité:

Soient a et b deux nombres réels. Développer les expressions suivantes : $\left(a+b\right)^2$, $\left(a-b\right)^2$, (a-b)(a+b), $(a-b)(a^2+ab+b^2)$, $(a+b)(a^2-ab+b^2)$, $(a+b)^3$ et $(a-b)^3$.

Propriété:

Soient a et b deux nombres réels. On a :

$$\otimes (a-b)^2 = a^2 - 2ab + b^2$$
 $\otimes (a+b)^2 = a^2 + 2ab + b^2$ $\otimes (a-b)(a+b) = a^2 - b^2$

$$\otimes (a-b)(a+b) = a^2-b^2$$

$$\otimes a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$\otimes a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$\otimes (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
 $\otimes (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

$$\otimes (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Application:

Développer les expressions suivantes : $(a+2)(a^2-2a+4)$, $(x-1)(x^2+x+1)$, 1) $(b+2)^3$, $(y-5)^3$.

Factoriser les expressions suivantes :

•
$$A(x) = x^2 - 9 + (x - 1)(x + 3) - 2(x + 3)^2$$

- $B(x) = 4x^2 36x$
- $C(x) = x^3 1000$
- $D(x) = x^3 8 + 4(x^2 4) 3x + 6$
- $E(x) = x^3 + 1 + 2(x^2 1) (x + 1)$

