Sammanfattning av SG1121 Mekanik

Yashar Honarmandi 23 januari 2018

Sammanfattning

Denna sammanfattningen innehåller essensiella ekvationer i kursen ${\bf SG}1121$

Innehåll

1 Fundamentala koncepter

1

1 Fundamentala koncepter

Krafter En kraft **F** beskrivs av en vektor med belopp och rikting, samt en angrepspunkt.

Kraftmoment En kraft kan ha en viss vridningsförmåga med avseende på en punkt. Detta är kraftens kraftmoment. Dens storhet ges av

$$\mathbf{M}_O = \mathbf{r} \times \mathbf{F},$$

där O är punkten vi tänker oss att kraften vrider kring, \mathbf{r} är vektorn från O till \mathbf{F} :s angrepspunkt och \mathbf{F} är själva kraften.

Riktingen till kraftmomentet anger den positiva rotationsriktningen. Vad betyder detta? Jo, låt en linje gå genom O och parallellt med \mathbf{M} . Då skapar \mathbf{M} en vridning mot klockan kring denna linjen.

Kraftmomentet ändras inte av att kraften förskjutas längs med dens verkningslinje. Detta ser man vid att låta den angripa i två punkter A, B på verkningslinjen.

$$\begin{aligned} \mathbf{M}_O &= \mathbf{r}_{OA} \times \mathbf{F} \\ \mathbf{M}_O' &= \mathbf{r}_{OB} \times \mathbf{F} \\ &= (\mathbf{r}_{OA} + \mathbf{r}_{AB}) \times \mathbf{F} \\ &= \mathbf{r}_{OA} \times \mathbf{F} + \mathbf{r}_{AB} \times \mathbf{F} \\ &= \mathbf{M}, \end{aligned}$$

då den andra vektoren är parallell med \mathbf{F} .

Detta kan utvidgas till kraftmomentet kring en axel vid att välja en punkt P på axeln och beräkna kraftmomentet med avseende på denna punkten. Projektionen på axeln av detta kraftmomentet är oberoende av valet av P. Detta ser man vid att välja en ny punkt Q och beräkna

$$\begin{aligned} \mathbf{M}_{P} &= \mathbf{r}_{PA} \times \mathbf{F} \\ \mathbf{M}_{Q} &= \mathbf{r}_{QA} \times \mathbf{F} \\ &= (\mathbf{r}_{QP} + \mathbf{r}_{PA}) \times \mathbf{F} \\ &= \mathbf{r}_{QP} \times \mathbf{F} + \mathbf{r}_{PA} \times \mathbf{F} \end{aligned}$$

Man projicerar sen på axeln.

$$\begin{aligned} \mathbf{M}_{Q} \cdot \mathbf{e}_{\lambda} &= \mathbf{r}_{QP} \times \mathbf{F} \cdot \mathbf{e}_{\lambda} + \mathbf{r}_{PA} \times \mathbf{F} \cdot \mathbf{e}_{\lambda} \\ &= \mathbf{r}_{QP} \times \mathbf{F} \cdot \mathbf{e}_{\lambda} \\ &= \mathbf{M}_{Q} \cdot \mathbf{e}_{\lambda}, \end{aligned}$$

där \mathbf{e}_{λ} är parallell med axeln. Detta är eftersom \mathbf{r}_{QP} är parallell med \mathbf{e}_{λ} , och kryssprodukten vi beräknar då måste vara normal på båda dessa.