Concurrent & Parallel Systems - Coursework 2 Report

Glenn Wilkie-Sullivan - 40208762

November 26, 2018

Abstract

This report will comprehensively examine the approaches to parallelising a sequential JPEG compressor, taken from user kornelski on GitHub. These approaches will range from CPU-based parallelism to GPU frameworks and architectures such as CUDA and OpenCL. The ideal result is an optimised JPEG compressor which runs significantly faster with the new approaches implemented.

1 Introduction and Background

In order to understand how JPEG (Joint Photographic Experts Group) compression can be parallelised, we must first investigate the overall process and purpose of the compression. According to technadar.com, JPEG compression, "is a lossy compression format conceived explicitly for making photo files smaller and exploits the imperfect characteristics of our perception". The process for this can be split into five main steps:

- Covert RGB colours of the image to YCbCr (Luminance, Chroma: Blue; Chroma: Red) colour space.
- Preprocess image for DCT (Discrete Cosine Transformation) conversion.
- DCT transformation.
- Coefficient Quantization
- Lossless Encoding

We will touch more on these concepts in the following sections, which involve evaluating the base program, suggesting a better solution for optimisation, implementing it as described, discussing the results and wrapping up the findings. First, the program must be examined and evaluated based on it's overall performance.

2 Initial Analysis

For this project, the JPEG compressor created by the user 'kornelski' on GitHub will be analysed. The link for this repository can be found as a reference. The specifications

used to run this compressor and analyse it are as follows:

• CPU: Intel Core i7-6700HQ @ 2.60GHz (4 cores, 8 threads)

• GPU: NVIDIA GeForce GTX 960M (4GB, GDDR5)

As such, the report will detail a methodology and results assuming these specifications. To start with, I used the Visual Studio 2017 diagnostic tools to analyse the overall CPU usage of the program when given various parameters. The program has a range of functionality, and the most pressing of them is the exhaustive test for the compressor, amongst the general compression and decompression. For this report, we will look exclusively we at the general compression algorithm, which has multiple variables affecting the execution time. Among these variables is the image size and quality factor. The quality factor is simply a number ranging from 0 - 100, relative to how sharp the resulting image should be. By modifying the quality factor and image size over 100 runs, the following execution times were found:

Image Size	Quality Factor: 40	Quality Factor: 60	Quality Factor: 80	Quality Factor: 100
100 x 100	0.005 seconds	0.006 seconds	0.010 seconds	0.010 seconds
200 x 200	0.0089 seconds	0.0213 seconds	0.0129 seconds	0.0177 seconds
400 x 400	0.0337 seconds	0.0339 seconds	0.0369 seconds	0.0445 seconds
800 x 800	0.1309 seconds	0.1343 seconds	0.1492 seconds	0.1797 seconds
1600 x 1600	0.3461 seconds	0.3586 seconds	0.381 seconds	0.4653 seconds
3000 x 3000	1.0833 seconds	1.0854 seconds	1.1238 seconds	1.2284 seconds

Table 1: JPEG Compression Execution Time

These findings were exclusively within Visual Studio, Release mode, x86. As we can see from table 1, the program itself is very fast. The quality factor of the compression doesn't seem to have much effect on the execution time - in most cases, there was only a rise of roughly 3.5%. When modifying the image size, the rise in execution time can range from between 160% to $288\% \pm 10\%$ - in order to effectively test the execution time, the image size is the important variable to focus on. When using methods or parallelisation such as multi-threading, OpenMP (Open Multi-Processing) or GPU architectures, it seems likely that at lower image sizes, the initialisation of threads, parallelised loops or quantisation will have more strain on the CPU than the image compression itself. With that in mind, images with a pixel amount larger than 9,000,000 will be far more useful in testing the compression, and will be used as test cases in the following sections. Table 1 will eventually be used as a comparison after a parallelised solution is implemented - for now,

the bottleneck(s) of the program must be identified, such that we have a foundational understanding of where the program can be parallelised.

The main hot-path of the program in main can be seen as follows:

Called Functions	
jpge::compress_image_to_jpeg_file	3337 (45.19%)
stbi_load	1710 (23.16%)
jpgd::decompress_jpeg_image_from_file	1680 (22.75%)
image_compare	608 (8.23%)
@ILT+2300(_labs)	7 (0.09%)
[Other]	11 (0.15%)

Figure 1: JPEG Compressor Hot-Path

From this, we can extract that the image loading and image comparison functions are costly; these load function simply load the image from a path with predetermined dimension values and parses it accordingly. The image comparison function computes the image error statistics, used to measure the accuracy of the observed image to the expected image. These functions cannot be parallelised, as the operations are inherently sequential. However, the general compression algorithms are pressing the CPU more than these functions; While figure 1 shows the CPU usage within main, we have to look further in the code to find the bottleneck of the program. The almost-full list of function CPU usage is:

Function	CPU Unit Usage	CPU Usage %
jpge::compress_image_to_jpeg_file()	3337	45.19%
jpge::compress_image_to_stream()	3334	45.15%
jpge::jpeg_encoder::read_image()	1930	26.13%
$do_{-}png()$	1710	23.16%
parse_png_file()	1710	23.16%
stbi_load()	1720	23.16%

Table 2: Individual Function CPU Usage

When looking at the definitions and calling of these functions, it appears as though there are multiple bottlenecks within the 'compress_image_to_jpeg_file' function. The CPU usage for this function is split between reading in the image, taking subsamples of the coordinate data and compressing the image subsequently. A handful of functions from table 2 point to these lines, and it seems logical to assume that this section will be parallelised for better performance using our previously mentioned techniques. When analysing the function itself, the line-by-line breakdown shows some potential areas of parallelisation:

```
224
                     bool jpeg_encoder::compress_image()
               825
                          for(int c=0; c < m_num_components; c++) {</pre>
               826
               827
                              for (int y = 0; y < m_image[c].m_y; y+= 8) {</pre>
               222
                                   for (int x = 0; x < m_image[c].m_x; x += 8) {</pre>
                                       dct_t sample[64];
               829
  12 (1.64%)
               830
                                       m_image[c].load_block(sample, x, y);
               831
                                       quantize\_pixels(sample, \ m\_image[c].get\_dctq(x, \ y), \ m\_huff[c \ > \ 0].m\_quantization\_table);
107 (14.64%)
               832
               223
                              }
               834
                          }
               835
               836
                          for (int y = 0; y < m_y; y+= m_mcu_h) {
               837
                              code_mcu_row(y, false);
  32 (4.38%)
               838
               839
                          compute_huffman_tables();
               849
                          reset_last_dc();
               841
               842
                          emit_start_markers();
               843
                          for (int y = 0; y < m_y; y+= m_mcu_h) {</pre>
               244
                              if (!m_all_stream_writes_succeeded) {
                                   return false;
               845
               846
  52 (7.11%)
               847
                              code_mcu_row(y, true);
               848
               249
                          return emit_end_markers();
               850
```

Figure 2: Potential Spots of Parallelisation

As seen in figure 2, the 'quantize_pixels' function is compressing a range of values related to the image into a single quantum value, such that with less discrete variables, the image should be easier to compress. These discrete values include: sample 'sub-images' which come from the main image, the discrete cosine transform and quantisation of the image dimensions, as well as the values returned from the Huffman¹² encoding function. When optimising this application, threaded approaches are generally useful for breaking down and parallelising looped processes, as are parellelised loops supported by OpenMP. As long as the discrete/quantum variables can be shared, the application should benefit greatly from these techniques in the overall speed of execution.

¹Huffman coding is a lossless data compression algorithm.

²Lossless compression is a class of data compression algorithms that allows the original data to be perfectly reconstructed from the compressed data.

3 Methodology

As seen from the previous section, the main bottlenecks lie in the quantisation process and the image loading processes. From this, we can prepare a selection of parallelisation techniques to optimise the application. These techniques can be split into two types: CPU-based, and GPU-based. In this report, we will aim to look at CPU-based approaches such as multithreading, OpenMP parallelisation and MPI, as well as utilising GPU-based approaches such as the OpenCL and CUDA architectures.

The first method of optimisation should and will be general improvements around the application - for such a large program, it seems likely that it contains some superfluous code or functions which could be improved. If there are instances of slow code which can be quickly improved or removed, it will be changed. After this is done, the parallelisation techniques should be executed in order of difficulty. Starting off with the easiest - OpenMP will be used as a proof of concept that particular facets of the program can be parallelised and optimised. If applicable, the multiple occurences of OpenMP parallelisation should utilise the available integrated functions to make the process more robust. However, proving the compression process is optimised will be difficult - parallelisation can be proved by methods such as OpenMP's built-in functions or printing the thread numbers. However, while the application may be faster, the only way to test the compression is comparing the file sizes. In this report, the findings will reference the execution time of the application and the difference in file size.

Following this, a multithreaded approach will be implemented and tested, as well as a possible MPI solution. Theoretically, in the 'compress_image' and 'read_image' functions where a bottleneck exists, the task could be distributed between a number of threads; As long as the resources are shared during the quantisation process, then the application is almost guaranteed to be faster. Similarly, if MPI is used, the in-built functions can distribute the parallelism among the tasks to improve performance.

In order to measure the speedup and efficiency, the execution time of each run must be serialised. For unbiased and high-coverage results, the program execution times in the results section will be an average of 100 runs of the application.

4 Results and Discussion

5 Conclusion

References

[Barnwal,] Barnwal, A. Huffman coding — greedy algo-3. https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/.

[Dias,] Dias, D. Jpeg compression algorithm. https://medium.com/@danojadias/jpeg-compression-algorithm-969af03773da.

[kornelski,] kornelski. jpeg-compressor. https://github.com/kornelski/jpeg-compressor.

[Plus,] Plus, P. All you need to know about jpeg compression. https://www.techradar.com/news/computing/all-you-need-to-know-about-jpeg-compression-586268/2.

[TechTerms,] TechTerms. Lossless definition. https://techterms.com/definition/lossless.