Übungsaufgaben zur Vorlesung Panorama der Mathematik

Dr. Moritz Firsching Sommersemester 2017

Blatt 4 Donnerstag, 2.III.2017

LEONHARD EULER im Portrait von EMANUEL HANDMANN, 1753

Aufgabe 13 (rationale Potenz irrationaler Zahlen)

Beweisen Sie oder widerlegen Sie: es gibt zwei irrationale Zahlen $a,b \in \mathbb{R} \setminus \mathbb{Q}$, so dass $a^b \in \mathbb{Q}$.

Aufgabe 14 (Papiergrößen)

Ein rechteckiges Blatt mit Seitenlängen a und b habe den Flächeninhalt 1 000 000 und das Seitenverhältnis $\frac{a}{b} = \sqrt{2}$. Berechnen Sie a, b sowie $2^{-\frac{k}{2}}b$ für $k \in 1, 2, 3, 4$ auf einige Dezimalstellen. Zeigen Sie, dass wenn a und b das Seitenverhältnis $\sqrt{2}$ haben, dass dann auch b und $\frac{a}{2}$ in diesem Verhältnis stehen. Vergleichen Sie mit der folgenden Tabelle von Papiergrößen nach ISO 216 in mm.

DIN A0	DIN A1	DIN A2	DIN A3	DIN A4	DIN A5	DIN A6
841×1189	594×841	420×594	297×420	210×297	148×210	105×148

Aufgabe 15 (Machins Formel)

Für $x \in \mathbb{C}$ mit $|x| \leq 1$ und $x \neq i$ und $x \neq -i$ läßt sich arctan als konvergente Reihe wie folgt darstellen:

$$\arctan(x) := \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} \pm \dots$$

Es folgt:

$$\frac{\pi}{4} = \arctan(1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \pm \dots$$

Berechnen Sie die ersten paar Partialsummen dieser unendlichen Reihe.

Rechnen Sie in den komplexen Zahlen: $(5+i)^4 \cdot (239-i)$.

Nutzen Sie die Formel

$$\frac{\pi}{4} = 4\arctan\frac{1}{5} - \arctan\frac{1}{239},$$

benannt nach John Machin, zusammen mit der Reihenentwicklung von arctan um die ersten drei Dezimalstellen von π zu berechnen. Wie viele Summanden von arctan $\frac{1}{5}$ und arctan $\frac{1}{239}$ werden mindestens dafür benötigt?

Für die Rechnungen in dieser Aufgabe können Sie einen Taschenrechner verwenden.