Algèbre linéaire et bilinéaire

Table des matières

1.	Rappels d'algèbre linéaire.	1
	1.1. Sous-espaces vectoriels.	1
	1.2. Familles de vecteurs et bases.	
	1.3. Applications linéaires. · · · · · · · · · · · · · · · · · · ·	2
2.	Sous-espaces stables par un endomorphisme.	3
3.	Polynôme caracteristique.	3
	3.1. Rappels sur les polynômes.	
	3.2. Polynôme caractéristique. · · · · · · · · · · · · · · · · · · ·	
	3.3. Polynôme d'endomorphisme.	4
4.	Trigonalisation.	5
	4.1. Décomposition des noyaux. · · · · · · · · · · · · · · · · · · ·	5
	4.2. Théorème de Cayley-Hamilton. · · · · · · · · · · · · · · · · · · ·	6
5.	Polynôme minimal.	7
6.	Réduction d'endomorphisme.	7
	6.1. Décomposition de Dunford. · · · · · · · · · · · · · · · · · · ·	
	6.2. Réduction de Jordan.	8

1. Rappels d'algèbre linéaire.

1.1. Sous-espaces vectoriels.

Définition 1.1. Soit E un espace vectoriel sur \mathbb{K} . On dit que $F \subseteq E$ est un sous-espace vectoriel si (1) $\forall (x,y) \in F^2, \forall \lambda \in \mathbb{K}, \lambda x + y \in F$,

(2) $0 \in F$.

Proposition 1.2. Soit F, G des sous-espaces vectoriels de E. Alors $F \cap G$ et F + G sont des sous-espaces vectoriels de E.

Définition 1.3. Soit $A \subseteq E$ un sous-ensemble, on peut definir le plus petit sous-espace vectoriel contenant A par : Vect $(A) = \left\{ \sum_{i=1}^{n} \lambda_i a_i, a_i \in A, \lambda_i \in \mathbb{K} \right\}$.

Remarque 1.4. Si $A = \{v\}, v \in E, v \neq 0, \text{Vect}(A) = \text{Vect}(v) = kv.$

Définition 1.5. Soit $F, G \subseteq E$ des sous-espaces vectoriels. On dit que F et G sont en somme directe si $F \cap G = \{0\}$.

1.2. Familles de vecteurs et bases.

Définition 1.6 (Libre). Soit $(x_1, \dots, x_n) \in E^n$, $(\lambda_1, \dots, \lambda_n)$. On dit que (x_1, \dots, x_n) est une famille *libre* si

$$\lambda_1 x_1 + \dots + \lambda_n x_n = 0 \Rightarrow \lambda_1 = \dots = \lambda_n = 0$$

Définition 1.7. Une famille infinie est libre si toute sous-famille finie est libre.

Définition 1.8 (Génératrice). Soit $\mathcal{F} = (x_1, \dots, x_n) \in E^n$. On dit que \mathcal{F} est génératrice de E si $\text{Vect}(\mathcal{F}) = E$.

Définition 1.9 (Base). On appelle *base* de *E* toute famille libre et génératrice de *E*.

Définition 1.10 (Dimension). On appelle *dimension* de *E* le cardinal d'une base de *E*.

Proposition 1.11 (Changement de base). Soit $\mathcal{E}=e_1,\cdots,e_n$ et $\mathcal{F}=f_1,\cdots,f_n$ deux bases de E.

Soit
$$x \in E$$
. Il existe d'unique $(x_1, \dots, x_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n x_i e_i$.
On note $[x]_{\mathcal{E}} := \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in M_{nx1}(\mathbb{K})$, et $\mathrm{Pass}_{\mathcal{E}}^{\mathcal{F}} = ([f_1]_{\mathcal{E}} \dots [f_n]_{\mathcal{E}}) \in M_{nxn}(\mathbb{K})$ On a :

$$[x]_{\mathcal{E}} = \operatorname{Pass}_{\mathcal{E}}^{\mathcal{F}}[x]_{\mathcal{F}}.$$

1.3. Applications linéaires.

Définition 1.12 (Linéaire). Soit $u: E \to F$ une application. On dit que u est linéaire si $\forall x, y \in F$ $E^2, \forall \lambda \in \mathbb{K}, u(\lambda x + y) = \lambda u(x) + u(y).$

Notation 1.13. On note $\mathcal{L}(E,F)$ l'espace vectoriel des applications linéaires de E dans F et $\mathcal{L}(E)$ l'espace vectoriel des endomorphismes.

Définition 1.14 (Noyau). Soit E un espace vectoriel, $u \in \mathcal{L}(E)$. On appelle noyau de u l'ensemble $ker(u) = \{x \in E | u(x) = 0\}.$

Définition 1.15 (Image). Soit *E* un espace vectoriel, $u \in \mathcal{L}(E)$. On appelle *image* de *u* l'ensemble $Im(u) = \{ y \in F | \exists x \in E, y = u(x) \}.$

Théorème 1.16 (Théorème du rang). Soit E un espace vectoriel de dimension finie, $u: E \to E$. $\dim(E) = \dim(\ker(u)) + \dim(\dim(u)).$

Démonstration. Notons $p \coloneqq \dim(\ker(u)), n \coloneqq \dim(E)$. Soit (e_1, \dots, e_p) une base de $\ker(u)$. Par le théorème de la base incomplète, on note $(e_1, \dots, e_p, (e_{p+1}, \dots, e_n))$.

Une base de $\mathcal{I}m(u)$ est $\mathrm{Vect}(u(e_1), \dots, u(e_p), u(e_{p+1}), \dots, u(e_n)) = \mathrm{Vect}(u(e_{p+1}), \dots, u(e_n))$. Verifions que $(u(e_{p+1}), \dots, u(e_n))$ est une famille libre. Soit $(\lambda_{p+1}, \dots, \lambda_n) \in \mathbb{R}$

$$\begin{split} \lambda_{p+1}u(e_{p+1})+\ldots+\lambda_nu(e_n)&=0 \Leftrightarrow u\big(\lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n\big)=0\\ &\Leftrightarrow \lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n\in\ker(u)\\ &\Leftrightarrow \exists\big(\lambda_1,\lambda_p\big)\in\mathbb{R}, \lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n=\lambda_1e_1+\ldots\lambda_pe_p \end{split}$$

Or $\lambda_1 e_1 + ... \lambda_p e_p \neq 0$ car c'est une famille libre. D'où, $\text{Vect}(u(e_{p+1}), \cdots, u(e_n))$ libre. Ainsi, on a $\dim(\operatorname{Vect}(u(e_{p+1}), \dots, u(e_n))) = \dim(\operatorname{Im}(u)) = n - p = \dim(E) - \dim(\ker(u)).$ On a bien montré, $\dim(\ker(u)) + \operatorname{rg}(u) = \dim(E)$.

Corollaire 1.17. Soit $u: E \to E$ un endomorphisme, $\ker(u) = 0 \Leftrightarrow u$ injective $\Leftrightarrow u$ surjective.

Démonstration.

- (1) \Rightarrow Soit f une application linéaire injective. On a nécessairement $0_E \in \ker(f)$ or f est injective, donc $\forall x \in E, x \neq 0_E \Rightarrow f(x) \neq 0$ d'où $\ker(f) = \{0_E\}$. \Leftarrow Soit f une application linéaire tel que $\ker(f) = \{0_E\}$. Supposons par absurde f non injective. Alors $\exists u \neq v \in E$, f(u) = f(v). Donc f(u - v) = f(u) - f(v) = 0 impossible car $u \neq v$.
- (2) \Rightarrow Supposons f injective. Alors $\ker(f) = \{0\} \Rightarrow \dim(\ker(f)) = 0 \Rightarrow \dim(\mathcal{I}m) = \dim(E) = 0$ $\dim(F)$ d'où f surjective. \Leftarrow Supposons f surjective. Alors $\dim(\Im m) = \dim(F) \Rightarrow \dim(\ker(f)) = 0$ d'où f injective.

Théorème 1.18. Soit $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, G)$.

$$[g \circ f]_{\mathcal{E}}^{\mathcal{F}} = [g]_{\mathcal{F}}^{\mathcal{G}} [f]_{\mathcal{E}}^{\mathcal{F}}.$$

Corollaire 1.19. Soit $E, \mathcal{E}, \mathcal{F}$ deux bases de E, et $u \in \mathcal{L}(E)$. On note $P = \mathcal{P}ass_{\mathcal{E}}^{\mathcal{F}} = [id_E]_{\mathcal{F}}^{\mathcal{E}}$ $[u]_{\mathcal{F}} = [id_E]_{\mathcal{E}}^{\mathcal{F}} [u]_E [id_E]_{\mathcal{F}}^{\mathcal{E}} = P^{-1} [u]_{\mathcal{E}} P.$

Proposition 1.20. Soit A une matrice carrée de la forme $A = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$ avec B, C deux matrices carrées. Alors det $A = \det B \det C$.

2. Sous-espaces stables par un endomorphisme.

Définition 2.1 (Stable). Soit E un espace vectoriel de degré $n, u \in \mathcal{L}(E)$. Un sous-espace vectoriel F de E est dit *stable* par u si $u(F) \subseteq F$.

Définition 2.2 (Valeur propre). Soit $u \in \mathcal{L}(E)$, $\lambda \in \mathbb{K}$. On note $E_{\lambda}(u) = \ker(u - \lambda \operatorname{id}_{E})$. λ est appelée valeur propre de u si $E_{\lambda}(u) \neq \{0\}$. Auquel $\operatorname{cas} E_{\lambda}(u)$ est l'espace propre associé. Les $u \in \ker(u - \lambda \operatorname{id}_{E})$ sont les vecteurs propres.

Proposition 2.3. Soit $u \in \mathcal{L}(E)$. Ses espaces propres sont en somme directe.

Démonstration. Par récurrence sur $n \in \mathbb{N}$, on montre que $x_1 + \dots + x_n = 0 \Rightarrow x_i = 0 \forall i \in [1, n]$ où $x_i \in E_{\lambda_i(u)}$

Corollaire 2.4. Si $n = \dim E$, u a au plus n valeurs propres et s'il y en a n, dim $E_{\lambda_i} = 1$.

Définition 2.5 (Diagonalisable). Soit $u \in \mathcal{L}(E)$. On dit que u est diagonalisable si E est la somme directe de ses sous-espaces propres.

Définition 2.6 (Nilpotent). Soit $f \in \mathcal{L}(E)$. On dit que f est nilplotent si $\exists r \in \mathbb{N}$ tq $f^{(r)} = 0$.

3. Polynôme caracteristique.

3.1. Rappels sur les polynômes.

Proposition 3.1. Soit P, Q dans $\mathbb{K}[X]$ et D leur PGCD. Alors il existe $(U, V) \in \mathbb{K}[X]^2$ tels que UP + VQ = D.

Corollaire 3.2. P, Q sont premiers entre eux ssi $\exists (U, V) \in \mathbb{K}[X]^2$ tels que UP + VQ = 1.

Proposition 3.3 (Matrice compagnon). Soit $P = \sum_{k=0}^{n} a_k X^k$ de degré unitaire $a_n = 1$. Soit

$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

3

Alors $\chi_A = (-1)^n P$. A est appelée la matrice *compagnon* de P.

3.2. Polynôme caractéristique.

Définition 3.4 (Polynôme caractéristique). Soit $u: E \to E$ un endomorphisme, et M une matrice associée à u. On définit son polynôme caractéristique par $\chi_u := \det(X \operatorname{id}_E - M)$.

Proposition 3.5. Soit E un espace vectoriel de dimension n, et $u: E \to E$ une application linéaire. Le polynôme caractéristique de u est un polynôme unitaire de la forme

$$\chi_u(X) := X^n - \text{Tr}(u)X^{n-1} + \dots + (-1)^n \det(u).$$

Lemme 3.6. Soit M, N deux matrices semblables. Alors $\chi_M = \chi_N$.

Démonstration. Soit $M, N \in \mathcal{M}_n$. Puisque M et N sont semblables, il existe $P \in \mathcal{M}_n$ tel que $M = P^{-1}NP$. Ainsi,

$$\begin{split} \chi(M) &= \det(X \operatorname{id}_E - M) = \det(P - 1(X \operatorname{id}_E - N)P) \\ &= \det P^{-1} \det(X \operatorname{id}_E - N) \det P = \det(X \operatorname{id}_E - N). \end{split}$$

Proposition 3.7. Soit $u: E \to E$ un endomorphisme, et $\lambda \in \mathbb{R}$. λ est une valeur propre de u si et seulement si $\chi_u(\lambda) = 0$.

Proposition 3.8. Soit E un espace vectoriel tel que dim E = n, $u : E \to E$ un endomorphisme. Si u est Nilpotent alors $\chi_u = X^n$.

Démonstration. Soit $\lambda \in \mathrm{Sp}(u)$, $x \in E \setminus \{0\}$ un vecteur propre associé à λ . Alors

$$u(x) = \lambda x \Rightarrow u^n(x) = \lambda^n x.$$

Or $u^n = 0$ donc $\lambda^n = 0 \Rightarrow \lambda = 0$. Ainsi, $\chi_u = X^n$.

Théorème 3.9. Soit $u \in \mathcal{L}(E)$, dim $E = n < +\infty$, (λ_i) ses valeurs propres. u est diagonalisable si et seulement si pour tout $\lambda_i \in \operatorname{Sp}(u)$,

$$\chi_u = \prod_{\lambda_i} (X - \lambda_i)^{\dim E_{\lambda}(u)}.$$

Démonstration.

 \Rightarrow Si u est diagonalisable, il existe \mathcal{B} une base de B telle que

$$u = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

où $\lambda_{i \in \{1, \dots, \#Sp(u)\}} \in Sp(u)$ apparaissent dim $E_{\lambda_i}(u)$ fois chacune. Ainsi, par Lemme 3.6, χ_u est de la forme souhaitée.

 \Leftarrow Soit $\chi_u = \prod_{\lambda_i} (X - \lambda_i)^{\dim E_{\lambda}(u)}$. Alors $n = \deg \chi_u = \sum_{\lambda \in \operatorname{Sp}(u)} \dim E_{\lambda}(u)$. Donc E est la somme directe des espaces propres de u i.e, u est diagonalisable.

3.3. Polynôme d'endomorphisme.

Définition 3.10. Soit $u: E \to E$ un endomorphisme, $P = \sum_{k=0}^{d} a_k X^k$. Alors on définit P de u par

$$P(u)\coloneqq \sum a_k u^k\in \mathcal{L}(E).$$

Proposition 3.11. Soit $P, Q \in \mathbb{K}[X]$, et $u : E \to E$ un endomorphisme. Alors

- (P + Q)(u) = P(u) + Q(u),
- $P(u) \circ Q(u) = PQ(u)$,
- si A est semblable à B, alors $P(A) = Q^{-1}P(B)Q$,
- Un polynôme d'une matrice triangulaire supérieure est une matrice triangulaire supérieure.

Proposition 3.12. Soit $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ tel que P(u) = 0. Alors pour toute valeur propre de $u \lambda$, $P(\lambda) = 0$.

Démonstration. Soit $\lambda \in \operatorname{Sp}(u)$, $x \in E \setminus \{0\}$ un vecteur propre associé à λ . Alors $u^k(x) = \lambda^k x$ par linéarité, donc $P(u)(x) = P(\lambda)x = 0$. Comme $x \neq 0$, on a P(u) = 0.

4. Trigonalisation.

Définition 4.1 (Trigonalisable). Soit $u: E \to E$ un endomorphisme, M une matrice associée à u. On dit que u est trigonalisable s'il existe une base \mathcal{E} de E telle que $M_{\mathcal{E}}$ soit triangulaire supérieure.

Théorème 4.2. Soit E un espace vectoriel de dimension finie, $u: E \to E$ un endomorphisme. u est trigonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbb{K} .

Démonstration.

- \Rightarrow Supposons u trigonalisable. Soit \mathcal{E} une base de E telle que M_u soit triangulaire supérieure. Alors $\chi_u(X) = (a_{1,1} X) \cdots (a_{n,n} X)$, qui est scindé sur \mathbb{K} .

 χ_N scindé sur K. Par hypothèse de récurrence ca fonctionne on trust

4.1. Décomposition des noyaux.

Théorème 4.3 (Lemme des noyaux). Soit $u: E \to E$ un endomorphisme et $P_1, \dots, P_r \in \mathbb{K}[X]$ 2 à 2 premiers entres eux. Soit $P = \prod_{k=1}^r P_k$. Alors

$$\ker P(u) = \bigoplus_{k=1}^r \ker P_k(u).$$

Démonstration.

- $\subseteq P_k(u) = 0 \Rightarrow P(u) = 0.$
- \supseteq Par récurrence sur $r \ge 2$, r = 2, puisque P_1 , et P_2 sont premiers entre eux, il existe $Q_1, Q_2 \in \mathbb{K}[X]$ tels que $Q_1P_1 + Q_2P_2 = 1_{\mathbb{K}[X]}$. Soit $x \in \ker P_1(u) \cap \ker P_2(u)$, alors

$$x = Q_1(u) \circ P_1(u)(x) + Q_2(u) \circ P_2(u)(x) = 0$$

Ainsi, $\ker P_1(u) \cap \ker P_2(u) = \{0\}$. On pose $y := Q_1(u) \circ P_1(u)(x)$, $z := Q_2(u) \circ P_2(u)(x)$ et $x = y + z \in \ker (P)$. On a alors $P_2(u)(y) = (P_2(u) \circ P_1(u) \circ Q_1(u))(x) = Q_1(u) \circ P(u)(x) = 0$,. De même, $P_1(u)(z) = 0$. D'où le résultat vrai au rang 2.

On suppose le résultat vrai au rang r. Notons $Q = P_1 \cdots P_r$. Les polynômes Q et P_{r+1} sont premiers

entre eux donc d'après la cas r=2, on a $\ker(P(u))=\ker(Q(u))\oplus\ker P_{r+1}(u)$. Ainsi, par récurrence on à bien $\ker P(u)=\bigoplus_{k=1}^r\ker P_k(u)$.

Théorème 4.4. Soit $u: E \to E$ un endomorphisme. u est diagonalisable si et seulement si, il existe $P \in \mathbb{K}[X]$ simplement scindé tel que P(u) = 0.

Démonstration.

$$\Rightarrow E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} \ker(u - \lambda \operatorname{id}_{E}) = \bigoplus_{\lambda \in \operatorname{Sp}(u)} \ker(X - \lambda)(u)$$
$$= \ker \left(\left(\prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda) \right)(u) \right).$$

Par le Lemme des noyaux car pgcd $(X - \lambda, X - \mu) = 1$ si $\lambda \neq \mu$. Ainsi, $P = \Pi(X - \lambda)$ simplement scindé annule P(u) = 0.

 \Leftarrow Si $P = \prod_{k=1}^{r}$ simplement scindé vérifie P(u) = 0 alors $E = \ker(P(u)) = \bigoplus_{k=1}^{r} \ker(u - \lambda_k \operatorname{id}_E)$. Donc u est diagonalisable quitte ne pas prendre en compte les E_{λ_k} où $E_{\lambda_k} = \{0\}$.

Corollaire 4.5. Soit E un espace vectoriel, $u: E \to E$ un endomorphisme diagonalisable, $F \subset E$ stable par u. Alors $u_F \in \mathcal{L}(E)$ est diagonalisable.

Démonstration. $\exists P$ simplement scindé tq $P(u) = 0 \Rightarrow P(u_F) = P(u)_{|_F} = 0$. Ainsi, u est diagonalisable par le Théorème 4.4. □

4.2. Théorème de Cayley-Hamilton.

Notation 4.6. Considérons $u: E \to E$ un endomorphisme. On notera I_u l'ensemble des polynômes annulateurs de u.

Proposition 4.7. Soit $u: E \to E$ un endomorphisme.

- (1) $0 \in I_u$,
- (2) $\forall P, Q \in I_u, P + Q \in I_u$,
- (3) $\forall P \in I_u, \forall Q \in \mathbb{K}[X], PQ \in I_u$.

Démonstration.

- On a bien $0_{K[X]} = Ou^0 = 0$,
- (P+Q)(u) = P(u) + Q(u) = 0,
- En effet, $(PQ)(u) = P(u) \circ Q(u) = 0$.

Remarque 4.8. I_n contient forcément un polynôme non nul car si $n = \dim E$, la famille $(\operatorname{id}_E, u, u^2, ..., u^{n^2})$ est liée car $\dim \mathcal{L}(E) = n^2$.

Théorème 4.9 (Théorème de Cayley-Hamilton). Soit E un espace vectoriel de dimension finie, $u: E \to E$ un endomorphisme, Alors $\chi_u(u) = 0$.

Démonstration. Soit $x \in E \setminus \{0\}$. Soit r > 0 tel que $\mathcal{F} = (x, u(x), \dots, u^{r-1}(x))$ soit libre. Alors $u^r(x) \in \text{Vect}(x, u(x), \dots, u^{r-1}(x))$ et il existe par la Remarque 4.8 un polynôme unitaire de degré r tel que P(u)(x) = 0. Complétons \mathcal{F} en une base de \mathcal{E} . Ainsi dans cette base,

$$u_{\mathcal{E}} = \left(\frac{A \mid \bigstar}{0 \mid N}\right)$$

avec N une matrice carrée et A matrice compagnon du polynôme P. Par la Matrice compagnon, $\chi_{u_{\mathcal{E}}} = (-1)^r P$, donc $\chi_u = (-1)^r \chi_N P$. Ainsi, $\chi_u(u)(x) = (-1)^r \chi_N(u)(P(u)(x)) = \chi_N(u)(0) = 0$.

5. Polynôme minimal.

Proposition 5.1. Soit $u: E \to E$ un endomorphisme, et $P \in I_u \setminus \{0\}$ de degré minimal. Alors pour tout $S \in I_u$, $P \mid S$.

Démonstration. La division de S par P nous donne: S = PQ + R deg $R < \deg P \Rightarrow R = 0$ par minimalité.

Définition 5.2 (Polynôme minimal). Soit $u: E \to E$ un endomorphisme. On appelle *polynôme minimal* de u, noté μ_u l'unique $P \in I_u \setminus \{0\}$ de degré minimal et de coeff dominant 1.

Remarque 5.3. Le polynôme minimal de u divise le polynôme caractéristique et ils ont les mêmes racines.

$$\chi_u = (-1)^n \prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda)^{n_\lambda} \Rightarrow \mu_u = \prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda)^{m_\lambda}$$

avec $1 \le m_{\lambda} \le n_{\lambda}$. On a *u* diagonalisable si et seulement si tous les m_{λ} sont égaux à 1.

Théorème 5.4. Soit $u: E \to E$ un endomorphisme. Alors u est diagonalisable si et seulement si μ_u est simplement scindé.

Démonstration.

- \Rightarrow Soit u un endomorphisme diagonalisable. Alors par le Théorème 4.4, $\exists P$ simplement scindé tel que P(u) = 0 et $\mu_u \mid P$ donc μ_u simplement scindé.
- \Leftarrow Supposons μ_u simplement scindé. Alors par le Théorème 4.4, u est diagonalisable.

Proposition 5.5. Soit $u: E \to E$ un endomorphisme, $\lambda \in \mathbb{R}$. Alors, λ est valeur propre si et seulement si $\mu_u(\lambda) = 0$.

Démonstration.

- \Rightarrow Par Proposition 3.7, toute valeur propre de u annule le polynôme μ_u .
- \Leftarrow On a $\mu_u(\lambda) = 0$ or $\mu_u \mid \chi_u$ donc $\chi_u(\lambda) = 0$ d'où λ valeur propre.

6. Réduction d'endomorphisme.

6.1. Décomposition de Dunford.

Lemme 6.1. Soit $(u, v) : E \to E$ deux endomorphismes diagonalisables tels que $u \circ v = v \circ u$. Alors il existe une base \mathcal{E} de E telle que $[u]_{\mathcal{E}}$ et $[v]_{\mathcal{E}}$ sont diagonales.

Démonstration. Soit $F = E_{\lambda}(u)$ un espace-propre. Alors F est stable par v. Soit $x \in F$, alors

$$u(v(x)) = v(u(x)) = v(\lambda x) = \lambda v(x).$$

Donc $v(x) \in E_{\lambda}(u) = F$. On sait alors que $v_F \in \mathcal{L}(\mathcal{F})$ est diagonalisable (car v l'est) $\Rightarrow \exists \mathcal{E}_{\lambda}$ une base de F faite de vecteurs propres pour v (et pour u!) $\Rightarrow \mathcal{E} = \bigcup_{\lambda \in S_{n(u)}} \mathcal{E}_{\lambda}$ convient.

Définition 6.2 (Espace caractéristique). Soit $u: E \to E$ un endomorphisme, λ une valeur propre de f, et m_{λ} sa multiplicité dans χ_u . On appelle sous-espace propre caractéristique par rapport à u et λ l'espace vectoriel

$$N_{\lambda}(u) := \ker((u - \lambda \operatorname{id}_E)^{m_{\lambda}}).$$

Proposition 6.3. Soit $u: E \to E$ un endomorphisme de polynôme caractéristique scindé. Alors,

$$E = \bigoplus_{\lambda \in Sp(u)} N_{\lambda}(u).$$

De plus, dim $N_{\lambda}(u)$ est égale à la multiplicité de λ dans χ_u .

Démonstration. Par le Lemme des noyaux on a la décomposition facilement. De plus, on déduit de la décomposition que $\sum_{\lambda} n_{\lambda} = \dim E = \sum_{\lambda} \dim N_{\lambda}(u)$. Montrons $n_{\lambda} \geq \dim N_{\lambda}(u)$. Soit $\lambda \in \operatorname{Sp}(u)$. On a que N_{λ} est stable par u... TO DO.

Théorème 6.4 (Décomposition de Dunford (Jordan-Charalley)). Soit E un espace de dimension $n, u : E \to E$ un endomorphisme, tel que χ_u scindé. Alors il existe un unique couple $(D, V) \in \mathcal{M}_n$ tel que

- D est diagonalisable et V milpotent,
- D et V commutent,
- $M_u = D + V$.

Démonstration. TO DO

6.2. Réduction de Jordan.

Proposition 6.5 (Indice). Soit $u: E \to E$ un endomorphisme. Il existe un unique $r \in \mathbb{N}$, appelé *l'indice* de u tel que $\{0\} = \ker(u^0) \subsetneq \ker(u) \subsetneq \ker(u^r) = \ker(u^{r+k}) \forall k \in \mathbb{N}$.

Démonstration. Posons $n_p := \dim \ker(u^p)$. Comme $\ker(u^p) \subseteq \ker(u^{p+1})$. La suite $(n_p)_{p \in \mathbb{N}}$ est croissante à valeur dans \mathbb{N} . On peut donc définir $r = \min\{p \in \mathbb{N} \mid n_p = n_{p+1}\}$. Pour tout $p \ge r$, pour tout $x \in \ker(u^{p+1})$, on a $u^{r+1}(u^{p-r}(x)) = 0$. Donc $u^{p-r} \in \ker(u^{r+1}) = \ker(u^r)$ donc $x \in \ker(u^p)$. D'où $u^p(x) = u^r(u^{p-r}(x)) = 0$ Ainsi, $\ker(u^p) = \ker(u^{p+1})$. □

Théorème 6.6. Soit $u: E \to E$ un endomorphisme tel que χ_u scindé et λ une valeur propre. La multiplicité de λ dans μ_u est donnée par l'indice de $u - \lambda$ id $_E$.

Démonstration. On écrit $\mu_u = (X - \lambda)^m Q$ où λ est la multiplicité cherchée de sorte que Q et $(X - \lambda)^m$ sont premiers entre eux.

Par le Lemme des noyaux, $E = \ker(u - \lambda \operatorname{id}_E)^m \oplus \ker(Q(u))$. Pour chaque $k \in \{1, -, n\}$, on pose $Q_k = (X - \lambda)^k Q$. On a $\ker(Q_k(u)) = \ker(u - \lambda \operatorname{id}_E) \oplus \ker(Q(u))$.

Par minimalité de μ_u , si k < m, on a $\ker(Q_k(u)) \subset E$ donc $\ker(u - \lambda \operatorname{id}_E)^k \subset \ker(u - \lambda \operatorname{id}_E)^m$ tandis que si $k \ge m$, $\ker(Q_k(u)) = E$, et $\ker(u - v)^k = \ker(u - \lambda \operatorname{id}_E)^m$.

Définition 6.7 (Bloc de Jordan). On appelle bloc de Jordan une matrice $J_k(\lambda) \in \mathcal{M}_k(\mathbb{K})$, $k \in \mathbb{N} \setminus \{0\}$, $\lambda \in \mathbb{K}$ définie par

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix}.$$

Définition 6.8. On appelle matrice de Jordan toute matrice de la forme :

$$J = \begin{pmatrix} J_{n_1}(\mu_1) & 0 & \cdots & 0 \\ 0 & J_{n_2}(\mu_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{n_r}(\mu_r) \end{pmatrix}$$

Théorème 6.9. Soit $u:E\to E$ un endomorphisme nilpotent. Alors il existe une base $\mathcal E$ de E telle que

$$[u]_{\mathcal{E}} = \begin{pmatrix} J_{n_1}(0) & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & J_{n_r}(0) \end{pmatrix}.$$

Théorème 6.10. Soit $u: E \to E$ un endomorphisme tel que χ_u soit scindé, alors il existe une base \mathcal{E} de E telle que :

$$[u]_{\mathcal{E}} = \begin{pmatrix} J_{n_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{n_2}(\lambda_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{n_r}(\lambda_r) \end{pmatrix}.$$

Cette décomposition est unique à permutation de blocs près.