Introduction to Machine Learning

Evaluation: Measures for Binary Classification: ROC Measures

Learning goals

- Understand why accuracy is not an optimal performance measure for imbalanced labels
- Understand the different measures computable from a confusion matrix
- Be aware that each of these measures has a variety of names

CLASS IMBALANCE

- Consider a binary classifier for diagnosing a serious medical condition.
- Here, label distribution is often imbalanced, i.e, not many people have the disease.
- Evaluating on error rates is often inappropriate for scenarios with imbalanced labels:
 - Assume that only 0.5 % of 1000 patients have the disease.
 - Always returning "no disease" has an error rate of 0.5%, corresponding to very high accuracy.
 - However, this sends all sick patients home, which is the worst possible system – even classifying everyone as "disease" might be better (depending on the treatment).
- This problem is known as the accuracy paradox.

CLASS IMBALANCE

Classifying all observations as "no disease" (green) yields top accuracy simply because the "disease" occurs so rarely \to accuracy paradox.

IMBALANCED COSTS

- Another point of view is imbalanced costs.
- In our example, classifying a sick patient as healthy should incur a much higher loss than classifying a healthy patient as sick.
- The costs depend a lot on what happens next: we can well assume that our system is some type of screening filter, and often the next step after labeling someone as sick might be a more invasive, expensive, but also more reliable test for the disease.
- Erroneously subjecting someone to this step is undesirable (psychological, economic, medical expense), but sending someone home to get worse or die seems much more so.
- Such situations not only arise under label imbalance, but also when costs differ (even though classes might be balanced).
- We could see this as imbalanced costs of misclassification, rather than imbalanced labels; both situations are tightly connected.

IMBALANCED COSTS

Imbalanced costs: classifying incorrectly as "no disease" incurs very high cost.

- Problem: if we were able to specify costs precisely, we could evaluate or even optimize on them.
- This important subfield of ML is called cost-sensitive learning, which we will not cover in this lecture unit.
- Unfortunately, users find it notoriously hard to come up with precise cost figures in imbalanced scenarios.
- Evaluating "from different perspectives", with multiple metrics, often helps to get a first impression of system quality.

ROC ANALYSIS

- ROC analysis is a subfield of ML which studies the evaluation of binary prediction systems.
- ROC stands for "receiver operating characteristics" and was initially developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battlefields – still has the funny name.

http://media.iwm.org.uk/iwm/mediaLib//39/media-39665/large.jpg

LABELS: ROC METRICS

From the confusion matrix (binary case), we can calculate "ROC" metrics.

		True C			
		+	_		
Pred.	+	TP	FP	$ ho_{ extsf{PPV}} = rac{ extsf{TP}}{ extsf{TP+FP}}$	
ŷ	_	FN	TN	$ \rho_{\text{NPV}} = \frac{\text{TN}}{\text{FN+TN}} $	
		$ ho_{\mathit{TPR}} = rac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$	$ ho_{ extsf{TNR}} = rac{ extsf{TN}}{ extsf{FP+TN}}$	$ ho_{ extit{ACC}} = rac{ ext{TP+TN}}{ ext{TOTAL}}$	

- True positive rate ρ_{TPR} : how many of the true 1s did we predict as 1?
- True Negative rate ρ_{TNR} : how many of the true 0s did we predict as 0?
- Positive predictive value ρ_{PPV} : if we predict 1, how likely is it a true 1?
- Negative predictive value ρ_{NPV} : if we predict 0, how likely is it a true 0?
- Accuracy ρ_{ACC} : how many instances did we predict correctly?

LABELS: ROC METRICS

Example:

		Actual Class y		
		Positive	Negative	
\hat{y} Pred.	Positive	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10 %
	Negative	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
			True Negative Rate = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

MORE METRICS AND ALTERNATIVE TERMINOLOGY

Unfortunately, for many concepts in ROC, 2-3 different terms exist.

	True condition		ondition			
Total population Condition positive		Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	$\frac{\text{Accuracy (ACC)} =}{\sum \text{True positive} + \sum \text{True negative}}{\sum \text{Total population}}$		
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $\frac{\sum \text{True positive}}{\sum \text{Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$ Specificity (SPC),	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR) = LR+ IR-	F ₁ score = 1 Recall + Precision
		False negative rate (FNR), Miss rate = Σ False negative Σ Condition positive	Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	LIX	2

► Clickable version/picture source

► Interactive diagram

LABELS: F₁ MEASURE

- It is difficult to achieve high positive predictive value and high true positive rate simultaneously.
- A classifier predicting more positive will be more sensitive (higher ρ_{TPR}), but it will also tend to give more *false* positives (lower ρ_{TNR} , lower ρ_{PPV}).
- A classifier that predicts more negatives will be more precise (higher ρ_{PPV}), but it will also produce more *false* negatives (lower ρ_{TPR}).

The F_1 score balances two conflicting goals:

- Maximizing positive predictive value
- Maximizing true positive rate

 ρ_{F_1} is the harmonic mean of ρ_{PPV} and ρ_{TPR} :

$$ho_{F_1} = 2 \cdot rac{
ho_{PPV} \cdot
ho_{TPR}}{
ho_{PPV} +
ho_{TPR}}$$

Note that this measure still does not account for the number of true negatives.

LABELS: F₁ MEASURE

 F_1 score for different combinations of ρ_{PPV} & ρ_{TPR} .

 \rightarrow Tends more towards the lower of the two combined values.

- A model with $\rho_{TPR} = 0$ (no positive instance predicted as positive) or $\rho_{PPV} = 0$ (no true positives among the predicted) has $\rho_{F_1} = 0$.
- Always predicting "negative": $\rho_{F_1} = 0$.
- Always predicting "positive": $\rho_{F_1} = 2 \cdot \rho_{PPV}/(\rho_{PPV} + 1) = 2 \cdot n_+/(n_+ + n)$, which will be small when the size of the positive class n_+ is small.

WHICH METRIC TO USE?

- As we have seen, there is a plethora of methods.
 - \rightarrow This leaves practitioners with the question of which to use.
- Consider a small benchmark study.
 - We let k-NN, logistic regression, a classification tree, and a random forest compete on classifying the credit risk data.
 - The data consist of 1000 observations of borrowers' financial situation and their creditworthiness (good/bad) as target.
 - Predicted probabilities are thresholded at 0.5 for the positive class.
 - Depending on the metric we use, learners are ranked differently according to performance (value of respective performance measure in parentheses):

WHICH METRIC TO USE?

- We need not expect overly large discrepancies in general, but neither will we always see an unambiguous picture.
- Different metrics emphasize different aspects of performance.
 - → The choice should be made in the domain context.
- For practitioners it is vital to understand what should be evaluated exactly, and which measure is appropriate.
 - Regarding credit risk, for instance, defaults are to be avoided, but not at all cost.
 - The bank must undertake a certain risk to remain profitable, so a more balanced measure such as the F₁ score might be in order.
 - On the other hand, a system detecting weapons at an airport should be able to achieve very high true positive rates, even if this comes at the expense of some false alarms.