Reliable Offline Pricing in eCommerce Decision-Making: A Distributionally Robust Viewpoint

Jie Wang

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

Date: October 14, 2023

Data-Driven Pricing

• Unknown: Customer Demand

• Decision: Price offered

• Information: Historical data on demand, price, competitor's price, inventory level, etc.

Challenges in Data-Driven Pricing

 Inaccurate and Unreliable Prediction of Demand Nonconvex Optimization
 Due to Decision Dependent Uncertainty

Profit Model

• Profit = Sales – (Cost-of-goods-sold + eCommerence Fee + Referral Fee + Ad Spend).

Sales	$p(D \wedge y)$
Cost-of-goods-sold (COGs)	$a_1(D \wedge y)$
eCommerence Fee (FBA)	$a_2(D \wedge y)$
Referral Fee (REFFEE)	$15\% \cdot p(D \wedge y)$
Ad Spend	Constant ind. of any variable

- y: inventory level
- p: product price
- z: competitor's price (Cprice)
- D: customer demand, following demand distribution $f_D(p,z)$ for fixed (p,z).
- Reward function for given (y, D, p):

$$85\% \cdot p(D \wedge y) - (a_1 + a_2) \cdot (D \wedge y).$$

Profit Model

• Profit = Sales – (Cost-of-goods-sold + eCommerence Fee + Referral Fee + Ad Spend).

Sales	$p(D \land y)$
Cost-of-goods-sold (COGs)	$a_1(D \wedge y)$
eCommerence Fee (FBA)	$a_2(D \wedge y)$
Referral Fee (REFFEE)	$15\% \cdot p(D \land y)$
Ad Spend	Constant ind. of any variable

- y: inventory level
- p: product price
- z: competitor's price (Cprice)
- D: customer demand, following demand distribution $f_D(p,z)$ for fixed (p,z).
- ullet Goal: find price p to maximize the expected reward function:

$$\mathbb{E}_{D \sim f_D(\boldsymbol{p}, z)} \left[85\% \cdot p(D \wedge y) - (a_1 + a_2) \cdot (D \wedge y) \right].$$

Cons: $f_D(p,z)$ is unknown!

General Framework

Optimal (Expected) Profit =
$$\max_{p} \left\{ \mathbb{E}_{D \sim f_D(p, \mathbf{z})} \Big[85\% \cdot p(D \wedge y) - (a_1 + a_2) \cdot (D \wedge y) \Big] \right\}.$$

- Step (I): Non-parametric prediction of $f_D(p, z)$ for given (p, z).
- Step (II): Interval estimate of profit via distributionally robust optimization (DRO).

Step (I): Learning Demand Distribution

Optimal (Expected) Profit =
$$\max_{p} \left\{ \mathbb{E}_{D \sim f_D(p,z)} \Big[85\% \cdot p(D \wedge y) - (a_1 + a_2) \cdot (D \wedge y) \Big] \right\}.$$

 \bullet Given: historical samples on $\{(p^i,z^i,D^i)\}_{i=1}^N.$

Step (I): Learning Demand Distribution

Optimal (Expected) Profit =
$$\max_{p} \left\{ \mathbb{E}_{D \sim f_D(p,z)} \Big[85\% \cdot p(D \wedge y) - (a_1 + a_2) \cdot (D \wedge y) \Big] \right\}.$$

- \bullet Given: historical samples on $\{(p^i,z^i,D^i)\}_{i=1}^N.$
- Parzen-window density estimate of demand distribution:

$$\widehat{f}_D(p, z) = \sum_{i=1}^N \omega^i(p, z) \mathbf{1} \{ D = D_i \},$$

$$\omega^i(p, z) \propto \exp\left(-\frac{\|(p, z) - (p^i, z^i)\|^2}{2\sigma^2}\right), \qquad \sum_{i=1}^N \omega^i(p, z) = 1$$

Under certain assumptions and with $\sigma^2 = O(N^{-\delta}), \delta \in (0, 1/\dim((p, z)))$, predicted profit based on $\widehat{f}_D(p, z)$ converges to the optimal profit as $N \to \infty$.

¹Ref: D. Bertsimas and N. Kallus, From Predictive to Prescriptive Analytics, Management Science (2019)

Step (II): Distributionally Robust/Optimistic Predictions

- Motivation: Demand estimator in Step (I) may be unreliable.
- Distributionally Robust counterpart:

$$\max_{p} \min_{f_{D}(p,z)} \mathbb{E}_{D \sim f_{D}(p,z)} \left[r(p,y;D) \triangleq 85\% \cdot p(D \wedge y) - (a_{1} + a_{2}) \cdot (D \wedge y) \right]$$
s.t.
$$\sup_{p} (f_{D}(p,z)) \subseteq \sup_{p} (\widehat{f}_{D}(p,z))$$

$$\mathcal{W} \left(f_{D}(p,z), \widehat{f}_{D}(p,z) \right) \leq \epsilon$$

$$\mathcal{W}(\mathbb{P}, \mathbb{Q}) = \min_{\gamma} \ \left(\mathbb{E}[\|\omega - \omega'\|^2] \right)^{1/2}$$

s.t. γ is a joint distribution of (ω, ω') with mariginal distributions $\mathbb P$ and $\mathbb Q$

Tractability of DRO

For fixed (p, z, y), **robust profit** is reformulated as

$$\begin{split} \min_{\gamma \in \mathbb{R}^{N \times N}, \nu \in \mathbb{R}^{N}_{+}} & & \sum_{i=1}^{N} \nu_{i} r(p, y; D^{i}) \\ \text{s.t.} & & \sum_{i=1}^{N} \gamma_{i, j} = \nu_{j}, \forall j, \sum_{j=1}^{N} \gamma_{i, j} = \omega^{i}(p, z), \forall i \\ & & \sum_{i, j=1}^{N} \gamma_{i, j} |D^{i} - D^{j}|^{2} \leq \epsilon^{2} \end{split}$$

- \bullet γ : optimal transport map
- \bullet ν : worst-case demand distribution
- $r(p, y; D) = 85\% \cdot p(D \wedge y) (a_1 + a_2) \cdot (D \wedge y)$
- Optimal robust profit prediction: Enumerate all choices of p.

Regularization Effect of Robust Profit

Optimal (Expected) Profit =
$$\max_{p} \left\{ \mathbb{E}_{D \sim f_D(p,z)} \left[85\% \cdot p(D \wedge y) - (a_1 + a_2) \cdot (D \wedge y) \right] \right\}.$$

With $\epsilon = O(1/\sqrt{N})$, the distributionally robust profit is equivalent to 2

$$\max_{p} \left\{ \mathbb{E}_{D \sim \widehat{f}_{D}(p, \mathbf{z})} \left[85\% \cdot p(D \wedge y) - (a_1 + a_2) \cdot (D \wedge y) \right] - \epsilon \left| 85\% \cdot p - (a_1 + a_2) \right| \cdot \mathbb{E}_{D \sim \widehat{f}_{D}(p, \mathbf{z})} [\mathbf{1} \{D \leq y\}] + \tilde{\mathcal{O}}(1/N) \right\}.$$

Remark: regularization penalies aggresive pricing strategy.

 $^{^2}$ Ref: R. Gao, X. Chen, and A. Kleywegt, Wasserstein Distributionally Robust Optimization and Variation Regularization (2022)

Regularization Effect of Optimistic Profit

Optimal (Expected) Profit =
$$\max_{p} \left\{ \mathbb{E}_{D \sim f_D(p,z)} \Big[85\% \cdot p(D \wedge y) - (a_1 + a_2) \cdot (D \wedge y) \Big] \right\}.$$

With $\epsilon = O(1/\sqrt{N})$, the distributionally optimistic profit is equivalent to ³

$$\max_{p} \left\{ \mathbb{E}_{D \sim \widehat{f}_{D}(p, \mathbf{z})} \left[85\% \cdot p(D \wedge y) - (a_1 + a_2) \cdot (D \wedge y) \right] + \epsilon \left| 85\% \cdot p - (a_1 + a_2) \right| \cdot \mathbb{E}_{D \sim \widehat{f}_{D}(p, \mathbf{z})} [\mathbf{1} \{D \leq y\}] + \tilde{\mathcal{O}}(1/N) \right\}.$$

Remark: regularization balances the trade-off between **price maximization** and **customer demand satisfaction**.

³Ref: R. Gao, X. Chen, and A. Kleywegt, Wasserstein Distributionally Robust Optimization and Variation

Numerical Study on Profit Estimation

- Training data: historical data from 2/16/2022 to 8/23/2023 for File Folders SKU 21.
- Testing data: remaining historical data.

Interval profit estimation by distributionally robust/optimistic solver

Take Away

Actual profit locates in our estimated interval with high probability and small interval width.

Visualization of Demand Distribution

Visualization of Demand Distribution

Mean of demand over all price choices

Take Away

A non-parametric, data-driven estimator of the relation between demand v.s. price

Optimal Pricing in Week1/Week2

Contributions

Contextual Optimization with Sample Average Approximation

Data-driven prediction on demand distribution, with theoretical guarantees

Distributionally Robust/Optimistic Optimization

Reliable interval estimate of optimal profit

Regularization effects on robust profit

Source code and full manuscript:

https://github.com/WalterBabyRudin/ BSS-Data-Challenge-Solution/tree/main