4)

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 (original). A compound of formula I,

$$R^1$$
 R_x
 N
 Y
 N
 $(CH_2)_n$
 B

wherein

R¹ represents H, C₁₋₄ alkyl (optionally substituted by one or more substituents selected from cyano, halo, OH, C(O)OR^{1a} or C(O)N(R^{1b})R^{1c}) or OR^{1d};

 R^{1d} represents H, C(O) R^{11} , Si $R^{12}R^{13}R^{14}$ or C_{1-6} alkyl, which latter group is optionally substituted or terminated by one or more substituent selected from OR^{15} or $(CH_2)_{\alpha}R^{16}$;

R¹², R¹³ and R¹⁴ independently represent H, phenyl or C₁₋₆ alkyl;
R¹⁶ represents C₁₋₄ alkyl, phenyl, OH, C(O)OR¹⁷ or C(O)N(H)R¹⁸;
R¹⁸ represents H, C₁₋₄ alkyl or CH₂C(O)OR¹⁹;
R¹⁵ and R¹⁷ independently represent H, C₁₋₆ alkyl or C₁₋₃ alkylphenyl;
R^{1a}, R^{1b}, R^{1c}, R¹¹ and R¹⁹ independently represent H or C₁₋₄ alkyl; and q represents 0, 1 or 2;

4)

R_x represents a structural fragment of formula IIa, IIb or IIc,

wherein

the dotted lines independently represent optional bonds;

A and E independently represent O or S, CH or CH_2 (as appropriate), or N or $N(R^{21})$ (as appropriate);

X₁ represents C₂₋₄ alkylene; C₂₋₃ alkylene interrupted by Z; -C(O)-Z-A¹ -;

$$-Z-CH_2-C(O)-A^2-$$
; $-Z-CH_2-S(O)_m-A^2$; $-C(O)-A^3$; $-Z-A^3-$; or $-A^3-Z-$;

 X_2 represents $C_{2\cdot3}$ alkylene, $-C(O)-A^4-$ or $-A-^4C(O)-$;

X₃ represents CH or N;

X₄ represents a single bond, O, S, C(O), N(R²³), -CH(R²³)-,

$$-CH(R^{23})-CH(R^{24})- or -C(R^{23})=C(R^{24})-;$$

A¹ represents a single bond or C₁₋₂ alkylene;

A² represents a single bond or -CH₂-;

A³ represents C₁₋₃ alkylene;

 A^4 represents C(O) or C_{1-2} alkylene;

Z represents, at each occurrence, O, $S(O)_m$ or $N(R^{25})$;

 R^2 and R^4 independently represent one or more optional substituents selected from C_{1-4} alkyl, C_{1-4} alkoxy (which latter two groups are optionally substituted by one or more halo substituent), methylenedioxy, halo, hydroxy, cyano, nitro, $S(O)_2NH_2$, $C(O)OR^{26}$, SR^{26} , $S(O)_2R^{26a}$, $S(O)_2R^{26a}$ or $N(R^{27})R^{28}$;

 R^3 represents one or more optional substituents selected from OH, C_{1-4} alkoxy, C_{1-6} alkyl (optionally substituted by one or more halo group), or $N(R^{29a})R^{29b}$;

R²⁵, R^{29a} and R^{29b} independently represent H, C₁₋₄ alkyl or C(O)R³⁰;

R²⁶ represents H or C₁₋₄ alkyl;

R^{26a} represents C₁₋₄ alkyl;

 R^{27} and R^{28} independently represent H, C_{1-4} alkyl or $C(O)R^{30}$, or together represent C_{3-6} alkylene, thus forming a 4- to 7-membered ring, which ring is optionally substituted, on a carbon atom that is α to the nitrogen atom, with an =O group;

 R^{21} , R^{22} , R^{23} , R^{24} and R^{30} independently represent, at each occurrence, H or C_{1-4} alkyl;

Y represents CH_2 , $(CH_2)_2$, CH = CH (which latter group is optionally substituted by C_{1-4} alkyl), $(CH_2)_3$, $CH_2CH=CH$ or $CH=CHCH_2$ (which latter three groups are optionally substituted by C_{1-4} alkyl, methylene, =O or hydroxy);

R^y represents H or C₁₋₄ alkyl;

n represents 0, 1, 2, 3 or 4; and

B represents a structural fragment of formula IIIa, IIIb or IIIc

wherein

X⁵, X⁶, X⁷ and X⁸ independently represent CH, N or N-O;

X⁹ and X¹⁰ independently represent a single bond or CH₂;

R³¹ represents an optional substituent selected from halo, C₁₋₄ alkyl (which group is optionally substituted by one or more halo group), N(R³²)R³³, OR³⁴ or SR³⁵;

R³² and R³³ independently represent H, C₁₋₄ alkyl or C(O)R³⁶;

R³⁴, R³⁵ and R³⁶ independently represent H or C₁₋₄ alkyl; and

one of D¹ and D² represents H, and the other represents H, OR^a, NHR^a,

 $C(=X^{11})X^{12}R^{b}$, or D^{1} and D^{2} together represent a structural fragment of formula IVa:-

 R^a represents H or $-A^5[X^{14}]_n[C(O)]_rR^e$;

 R^b represents $-A^5[X^{14}]_n[C(O)]_rR^e$;

 A^5 represents, at each occurrence, a single bond or C_{1-12} alkylene (which alkylene group is optionally interrupted by one or more O, S(O)_m and/or N(R^f) group, and is optionally substituted by one or more of halo, OH, N(H)C(O)R^g, C(O)N(R^g)R^h, C₃₋₇-cycloalkyl (which cycloalkyl group is optionally interrupted by one or more O, S(O)_m and/or N(R^f) group and/or is optionally substituted by one or more substituents selected from C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, =O or =S), Het and C₆₋₁₀ aryl (which aryl and Het groups are themselves optionally substituted by one or more substituents selected from C₁₋₆ alkyl (optionally substituted by one or more substituents selected from C₁₋₆ alkyl (optionally substituted by one or more halo substituent), C₁₋₆ alkoxy, halo, cyano, C(O)OR^g, C(O)N(R^g)R^h and N(R^f)R^g));

 R^c and R^d both represent H; or one of R^c and R^d represents H or C_{1-7} alkoxy and the other represents C_{1-17} alkyl (which alkyl group is optionally interrupted by one or more O atoms); or R^c and R^d together represent C_{3-8} cycloalkyl, which cycloalkyl group is interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group;

 R^e represents, at each occurrence, H, C_{1-12} alkyl (which alkyl group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group, and/or is optionally substituted by one or more substituents selected from halo, OH, $N(H)C(O)R^g$ and $C(O)N(R^g)R^h$), A^7-C_{3-7} -cycloalkyl (which cycloalkyl group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group and/or is substituted by one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, halo, =O and =S), A^7-C_{6-10} aryl or A^7 -Het (which aryl and Het groups are optionally substituted by one or more substituents selected from C_{1-6} alkyl

(optionally substituted by one or more halo substituent), C_{1-6} alkoxy, halo, cyano, $C(O)OR^g$, $C(O)N(R^g)R^h$ and $N(R^f)R^g$);

 A^7 represents a single bond or C_{1-7} alkylene (which alkylene group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group, and/or are optionally substituted by one or more of halo, OH, $N(H)COR^g$ and $CON(R^g)R^h$);

Het represents, at each occurrence, a five- to ten-membered heteroaryl group, which may be aromatic in character, containing one or more nitrogen, oxygen or sulphur atoms in the ring system;

n and r independently represent 0 or 1;

X¹¹, X¹² and X¹⁴ independently represent O or S;

X¹³ represents O or N(R^f);

R^f represents, at each occurrence, H, C₁₋₄ alkyl or C(O)R⁹;

 R_g and R^h independently represent, at each occurrence, H or C_{1-4} alkyl; and m represents, at each occurrence, 0, 1 or 2;

or a pharmaceutically acceptable salt thereof;

provided that:

- (a) A and E do not both represent O or S;
- (b) E and D do not both represent O or S;
- (c) when R^1 represents OR^{1d} and X_1 represents $-C(O)-Z-A^1$,
- $-Z-CH_2S(O)_m-A^2-$ or $-Z-C(O)-Z-A^2$, then A^1 or A^2 (as appropriate) do not represent a single bond;
 - (f) when X₄ represents -CH(R²³)-, R¹ does not represent OH;
 - (g) when A⁵ represents a single bond, then n and r both represent 0;

- (f) when A⁵ represents C₁₋₁₂ alkylene, then n represents 1;
- (g) when A⁵ represents -CH₂-, n is 1 and r is 0, then R^e does not represent H; and
- (h) the compound is not:-
- (S)- or (R)-1 -hydroxy-7-methoxytetralin-1-yl-C(O)-Pro-Pab;
- (R)- or (S)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Pro-Pab;
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc;
- (R)- or (S)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab;
- 1-hydroxy-5-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc;
- 1-hydroxy-5,7-dimethyltetralin-1-yl-C(O)-Aze-Pab x HOAc;
- 1-hydroxy-7-aminotetralin-1-yl-C(O)-Aze-Pab x HOAc;
- 1-hydroxytetralin-1-yl-C(O)-Aze-Pab x HOAc;
- 7-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc;
- (R)- or (S)-7-methoxy-1-methyltetralin-1-yl-C(O)-Aze-Pab;
- 4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab x OAc;
- (S)- or (R)-1-hydroxy-4-methoxyindan-1-yl-C(O)-Aze-Pab;
- 1-hydroxy-5-methoxytetralin-1-yl-C(O)-Aze-Pab(OH);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(OH);
- 4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab(OH);
- 4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab(OMe);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab-
- $(C(O)OCH_2CCI_3);$
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab-
- (C(O)OCH₂CH₃);

7-methoxy-1-allyltetralin-1-yl-C(O)-Aze-Pab x HOAc;

- (S)- or (R)-1-hydroxy-7-chlorotetralin-1-yl-C(O)-Pro-Pab;
- 1-n-propyl-7-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc;
- 6-chloro-4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 6,8-dichloro-4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 6-fluoro-4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 4-hydroxy-6-methylchroman-4-yl-C(O)-Aze-Pab x HOAc;
- 8-chloro-4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 6-chloro-4-hydroxy-8-methylcbroman-4-yl-C(O)-Aze-Pab x HOAc;
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-C(O)-i-Pr);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-C(O)-Et);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-C(O)-Ch);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-allyl);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(0-Bzl);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab-
- (CO-O-methallyl);
- 1-hydroxy-7-aminotetralin-1-yl-C(O)-Aze-Pab(OH);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-Val);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-(Me)Pab; or
- 9-hydroxyfluoren-9-yl-C(O)-Aze-Pab x HOAc.
- 2 (original). A compound as claimed in Claim 1 wherein R¹ represents OH or

C₁₋₄ alkyl (which latter group is optionally substituted by cyano or OH).

3 (currently amended). A compound as claimed in any one of the preceding $\frac{\text{claims claim 1}}{\text{claim 1}} \text{ wherein } R_x \text{ represents a structural fragment of formula IIa or IIb.}$

4 (currently amended). A compound as claimed in any one of the preceding claims-claim 1 wherein, when R_x represents a structural fragment of formula IIa, then the dotted lines represent bonds, A and E both represent CH and D represents - CH=CH-;

5 (currently amended). A compound as claimed in any one of the preceding elaims claim 1 wherein, when R_x represents a structural fragment of formula IIa, X_1 represents optionally unsaturated C_2 - or C_3 -alkylene, or -Z-A³ (in which Z represents O, $S(O)_m$ or $N(R^{25})$ (in which R^{25} is as defined in Claim 1-above or represents C_{1-4} alkyl or $C(O)R^{30}$ and m and R^{30} are as defined in Claim 1-above) and A^3 represents C_1 - or C_2 -alkylene (which latter group is optionally unsaturated)).

6 (currently amended). A compound as claimed in any one of the preceding claims claim 1 wherein Y represents CH₂, (CH₂)₂ or (CH₂)₃.

7 (currently amended). A compound as claimed in any one of the preceding claims claim 1 wherein B represents a structural fragment of formula IIIa in which X^5 , X^6 , X^7 and X^8 all represent CH.

8 (currently amended). A compound as claimed in any one of the preceding elaims-claim 1 wherein, when D^1 and D^2 together represent a structural fragment of formula IVa, in which X^{13} is O, then one of R^c and R^d represents H or C_{1-7} alkoxy and the other represents C_{1-7} alkyl.

9 (currently amended). A compound as claimed in any one of Claims 1 to 7 claim 1, wherein, when D^1 or D^2 represents OR^a and R^a represents $-A^5[X^{14}]_n[C(O)]_rR^e$, and

- (i) A⁵ is a single bond, then R^e is:-
- (1) A^7 -aryl, optionally substituted by one or more halo, C_{1-6} alkoxy, C_{1-6} alkyl or halo- C_{1-6} -alkyl substituents; or
- (2) H or linear, branched, optionally unsaturated, and/or cyclic, C_{1-12} alkyl, which cyclic alkyl group is optionally interrupted by an O atom and, optionally, a further O atom or $S(O)_m$ group; or when
- (ii) A^5 is linear or branched C_{1-12} alkylene, X^{14} is O and r is 0, then R^e is C_{1-3} alkylor A^7 -aryl, in which A^7 is a single bond.

10 (currently amended). A compound as claimed in any one of Claims 1 to 7 or 9claim 1, wherein, when D¹ or D² represents ORa, then Ra is H or C₁-4 alkyl.

11 (currently amended). A compound as claimed in any one of Claims 1 to $\frac{1}{2}$ 7 Telephone 7. The represents $\frac{1}{2}$ 11 (currently amended). A compound as claimed in any one of Claims 1 to $\frac{1}{2}$ 12 Telephone 1.

and X^{12} represents O or S, and, in which R^b group, A^5 represents a single bond then R^e represents optionally unsaturated C_{1-6} alkyl, A^7 - C_{6-10} -aryl (in which A^7 represents a single bond or C_{1-2} alkylene, and which A^7 - C_{6-10} -aryl group is optionally substituted by one or more halo, C_{1-4} alkyl and/or C_{1-4} alkoxy groups), or A^7 - C_{3-7} -cycloalkyl, in which A^7 represents a single bond or linear or branched C_{1-7} alkylene, and which cycloalkyl group is optionally substituted by C_{1-3} alkyl.

12 (currently amended). A compound of formula I, as defined in any one of the preceding claimsclaim 1, wherein the fragment

is in the S-configuration.

13 (currently amended). A pharmaceutical formulation including a compound as defined in any one of Claims 1 to 12 claim 1, or a pharmaceutically acceptable salt thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.

14 (currently amended). A compound as defined in any one of Claims 1 to 12claim 1, or a pharmaceutically acceptable salt thereof, for use as a pharmaceutical.

15 (currently amended). A compound as defined in any one of Claims 1 to 12 claim 1, or a pharmaceutically acceptable salt thereof, for use in the treatment of a condition where inhibition of thrombin is required.

16 (currently amended). A compound as defined in any one of Claims 1 to 12claim 1, or a pharmaceutically acceptable salt thereof, for use in the treatment of thrombosis.

17 (currently amended). A compound as defined in any one of Claims 1 to 12claim 1, or a pharmaceutically acceptable salt thereof, for use as an anticoagulant.

18 (currently amended). The use of a compound as defined in any one of Claims 1 to 12 claim 1, or a pharmaceutically acceptable salt thereof, as active ingredient in the manufacture of a medicament for the treatment of a condition where inhibition of thrombin is required.

19 (original). The use as claimed in Claim 18, wherein the condition is thrombosis.

20 (currently amended). The use of a compound as defined in any one of Claims 1 to 12claim 1, or a pharmaceutically acceptable salt thereof, as active ingredient in the manufacture of an anticoagulant.

21 (currently amended). A method of treatment of a condition where inhibition of thrombin is required which method comprises administration of a therapeutically effective amount of a compound as defined in any one of Claims 1 to 12claim 1, or a pharmaceutically acceptable salt thereof, to a person suffering from, or susceptible to, such a condition.

22 (original). A method as claimed in Claim 21, wherein the condition is thrombosis.

23 (original). A method as claimed in Claim 21, wherein the condition is hypercoagulability in blood and tissues.

24 (original). A process for the preparation of compounds of formula I which comprises:

(i) the coupling of a compound of formula IV,

wherein R^1 and R_x are as defined in Claim 1 with a compound of formula V,

$$V$$

$$O \qquad N \longrightarrow (CH_2)_n \longrightarrow B$$

$$R^y$$

wherein Ry, Y, n and B are as defined in Claim 1;

(ii) the coupling of a compound of formula VI,

wherein $\ensuremath{\mathsf{R}}^1$, $\ensuremath{\mathsf{R}}_x$ and Y are as defined in Claim 1 with a compound of formula VII,

$$H(R^y)N-(CH_2)_n-B$$

VII

wherein Ry, n and B are as defined in Claim 1;

(iii) for compounds of formula I in which D¹ or D² represents OR^a or NHR^a, reaction of a compound of formula VIII,

$$R^{1}$$
 R_{x}
 N
 Y
 O
 N
 $CH_{2})_{n}$
 B^{1}
 R^{y}

wherein B1 represents a structural fragment of formula IIId, IIIe or IIIf

$$\mathbb{R}^{3}$$
 \mathbb{R}^{3}
 \mathbb{R}^{3}

and R^1 , R_x , Y, R^y , n, R^{31} , X^5 , X^6 , X^7 , X^8 , X^9 and X^{10} are as defined in Claim 1 with a compound of formula IX,

$$H_2NX^aR^a$$
 IX

wherein X^a represents O or NH and R^a is as defined in Claim 1;

(iv) for compounds of formula I in which D¹ or D² represents OR^a or NHR^a, reaction of a compound of formula I in which D¹ or D² (as appropriate) represents

C(O)OR^{b1}, in which R^{b1} represents a protecting group with a compound of formula IX as defined above;

(v) for compounds of formula I in which D^1 or D^2 represents OR^a or NHR^a , R^a represents $-A^5[X^{14}]_n[C(O)]_rR^e$, in which A^5 does not represent a single bond, and n represent 1, reaction of a compound of formula I in which D^1 or D^2 (as appropriate) represents OH or NH_2 , with a compound of formula X,

$$L^{1}A^{5a}[X^{14}][C(O)]_{r}R^{e}$$
 X

wherein L¹ represents a suitable leaving group, A^{5a} represents A⁵, as defined in Claim 1 except that it does not represent a single bond, and X¹⁴, r and R^e are as defined in Claim 1;

(vi) for compounds of formula I in which D^1 or D^2 represents OR^a or NHR^a , R^a represents $-A^5[X^{14}]_n[C(O)]_rR^e$, in which A^5 represents C_{2-12} alkylene, which alkylene group is branched at the carbon atom that is α to the O or N atom of OR^a or NHR^a (as appropriate), and which group is optionally branched at the carbon atom that is β to that atom, n represents 1, r represents 0 and R^e is as defined in Claim 1, reaction of a compound of formula I in which D^1 or D^2 (as appropriate) represents OH or NH_2 , with a compound of formula XI,

or a geometrical isomer thereof, or a mixture of such geometrical isomers, in which R^{b1} and R^{b3} each represent H or an alkyl group, provided that the total number of carbon atoms provided by R^{b1} and R^{b3} does not exceed 10, and wherein X¹⁴ and R^e are as defined in Claim 1;

(vii) for compounds of formula I in which D^1 or D^2 represents OR^a or NHR^a , represents $-A^5[X^{24}]_n[C(O)]_rR^e$, in which A^5 represents a single bond, and R^e represents A^7 - C_{3-6} -cycloalkyl, in which A^7 represents a single bond, and the cycloalkyl group is interrupted by at least one O or S atom, which atom is between the carbon atom at the point of attachment to the O or NH group of OR^a or NHR^a , and a carbon atom that is α to that point of attachment, and which cycloalkyl group is optionally interrupted by one or more O or $S(O)_m$ group and/or optionally substituted by one or more =O group, reaction of a compound of formula I, in which D^1 or D^2 (as appropriate) represents OH or NH_2 , with a compound of formula XII,

wherein X^{15} represents O or S and X^{16} represents C_{1-4} alkylene (which alkylene group is optionally interrupted by one or more O or $S(O)_m$ group and/or optionally substituted by one or more =O group);

(viii) for compounds of formula I in which D^1 or D^2 represents $C(X^{11})X^{12}R^b$, reaction of a compound of formula I in which D^1 and D^2 both represent H with a compound of formula XIII,

$$L^2-C(X^{11})X^{12}R^b$$
 XIII

wherein L² represents a suitable leaving group, and X¹¹, X¹² and R^b are as defined in Claim 1;

(ix) for compounds of formula I in which D^1 and D^2 together represent a structural fragment of formula IVa, reaction of a corresponding compound of formula I in which D^1 or D^2 represents OH or NHR^f (in which R^f is as defined in Claim 1), with a compound of formula XV,

$$(R^c)(R^d)C(R^{c1})(R^{c2})$$
 XV

wherein R^{c1} and R^{c2} both represent $-OR^{c3}$, in which R^{c3} represents C_{1-3} alkyl, or together represent =O, and R^{c} and R^{d} are as defined in Claim 1;

- (x) for compounds of formula I in which one or more of X⁵, X⁶, X⁷ and X⁸ represent N-O, oxidation of a corresponding compound of formula I in which X⁵, X⁶, X⁷ and/or X⁸ (as appropriate) represent(s) N; or
- (xi) for compounds of formula I in which any one of Z, X₁, R², R⁴, A⁵, A⁷, R^c, R^d and/or R^e comprises or includes a (O) or a S(O)₂ group, oxidation of a corresponding compound of formula I (or a compound corresponding to a compound of formula I) wherein Z, X₁, R², R⁴, A⁵, A⁷, R^c, Rd and/or R^e (as appropriate) comprise(s) or include(s) a S group;
- (xii) for compounds of formula I in which D¹ and D² both represent H, removal of a OR^a, NHR^a or C(=X¹¹)X¹²R^b group (in which R^a, R^b, X¹¹ and X¹² are as defined in

Claim 1), or removal of a structural fragment of formula IVa as defined in Claim 1, from a corresponding compound of formula I; or

(xiii) introduction and/or interconversion of a substituent on an aromatic and/or non-aromatic, carbocyclic and/or heterocyclic ring in a corresponding compound of formula I.