CLARKSON UNIVERSITY

Abstract Linear Algebra

MA 313/513

Orthogonal Complements and Minimization Problems

Authors:

Kariyawasam Dias, Evan Lira, Olaoluwa Ogunleye

December 5, 2022

1 Introduction

For the orthogonal complement we will present a definition, some basic properties, and then move on to three theorems. For the orthogonal projection we will present a definition, some basic properties, and then move on to an application to minimization problems.

2 Orthogonal Complements

Definition 2.1. If U is a subset of V, then the **orthogonal complement** of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \ \forall u \in U \}$$

Example 2.1. If U is a plane in \mathbb{R}^3 then U^{\perp} is a line perpendicular to the plane that passes through the origin.

We now present some basic properties of the orthogonal complement.

Theorem 2.1. 1. If $U \subset V$, then $U^{\perp} < V$

- $2. \{0\}^{\perp} = V$
- 3. $V^{\perp} = \{0\}$
- 4. If $U \subset V$, then $U \cap U^{\perp} \subset \{0\}$.
- 5. If $U \subset W \subset V$, then $W^{\perp} \subset U^{\perp}$

Proof.

1. Since $\langle 0,u\rangle=0 \ \forall u\in U, 0\in U^{\perp}$. Thus $U^{\perp}\neq\emptyset$. Let $w_1,w_2\in U^{\perp}$. Then for any $u\in U, \ \langle w_1+w_2,u\rangle=\langle w_1,u\rangle+\langle w_2,u\rangle=0$ by the definition of the inner product and $w_1,w_2\in U^{\perp}$. Thus $w_1+w_2\in U^{\perp}$. Take $c\in \mathbb{F},w\in U^{\perp}$. Then for any $u\in U, \ \langle cw,u\rangle=c\cdot\langle w,u\rangle=c\cdot 0=0$ by the definition of the inner product and $w\in U^{\perp}$. Thus $cw\in U^{\perp}$ and $U^{\perp}< V$.

- 2. The orthogonal complement of any subset of V is necessarily a subset of V. If you prefer, we could also argue that since $\{0\} \subset V$, by (1) we have that $\{0\}^{\perp} < V$. Thus $\{0\}^{\perp} \subset V$. Now we show that $V \subset \{0\}^{\perp}$. Take any $v \in V$. Then $\langle v, 0 \rangle = 0$ by the properties of inner products. Thus $v \in \{0\}^{\perp}$. Thus $V \subset \{0\}^{\perp}$ and it follows that $V = \{0\}^{\perp}$.
- 3. Since $\langle 0,v\rangle=0$ for all $v\in V$, $\{0\}\subset V^{\perp}$. Now take any $v\in V^{\perp}$. Note that $V^{\perp}\subset V$, so v is also in V. Since $v\in V^{\perp}$, v is orthogonal to every vector in V. Symbolically we can see this as $\langle v,v'\rangle=0$ for all $v'\in V$. But v itself is in V. Therefore $\langle v,v\rangle=0$. By the definition of inner product, this implies that v=0. Therefore $V^{\perp}\subset\{0\}$ and it follows that $V^{\perp}=\{0\}$.
- 4. Take any $u \in U \cap U^{\perp}$. Then $u \in U$ and $\langle u, u' \rangle = 0$ for all $u' \in U$. Thus $\langle u, u \rangle = 0$ which implies that u = 0. Thus $U \cap U^{\perp} \subset \{0\}$. Note that if U < V then since $U^{\perp} < V$ we have that $U \cap U^{\perp} < V$. Therefore $\{0\} \subset U \cap U^{\perp}$ and we have $U \cap U^{\perp} = \{0\}$
- 5. Take $v \in W^{\perp}$. Then $\langle v, w \rangle = 0$ for all $w \in W$. But since $U \subset W$, all $u \in U$ are in W. Thus $\langle v, u \rangle = 0$ for all $u \in U$. Thus $v \in U^{\perp}$. Thus $W^{\perp} \subset U^{\perp}$.

We now present a useful fact about how a subspace and its orthogonal complement sit inside the whole space.

Theorem 2.2. Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}$$

Proof. We will first show that $V = U + U^{\perp}$. Take any $v \in V$. Let $e_1, e_2, ..., e_m$ be an orthonormal basis of U. Let $u = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \cdots + \langle v, e_m \rangle e_m$. Then we can write v as

$$v = u + v - u$$

$$= \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \dots + \langle v, e_m \rangle e_m + v - (\langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \dots + \langle v, e_m \rangle e_m).$$

Let w = v - u. We note that $u \in U$ because u is a linear combination of basis elements of U. We claim that $w \in U^{\perp}$. We note that for each j = 1, ..., m we have

$$\begin{split} \langle w, e_j \rangle &= \langle v - u, e_j \rangle & \text{ (definition of w)} \\ &= \langle v, e_j \rangle - \langle u, e_j \rangle & \text{ (inner product property)} \\ &= \langle v, e_j \rangle - \langle \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m, e_j \rangle & \text{ (definition of } u) \\ &= \langle v, e_j \rangle - \langle \langle v, e_1 \rangle e_1, e_j \rangle - \dots - \langle \langle v, e_m \rangle e_m, e_j \rangle & \text{ (inner product property)} \\ &= \langle v, e_j \rangle - \langle v, e_1 \rangle \langle e_1, e_j \rangle - \dots - \langle v, e_m \rangle \langle e_m, e_j \rangle & \text{ (inner product property)} \\ &= \langle v, e_j \rangle - \langle v, e_1 \rangle \cdot 0 - \dots - \langle v, e_j \rangle \langle e_j, e_j \rangle - \langle v, e_m \rangle \cdot 0 & \text{ (properties of orthonormal basis)} \\ &= \langle v, e_j \rangle - \langle v, e_j \rangle \cdot 1 \\ &= 0. \end{split}$$

Thus w is orthogonal to every basis element of U. Take any $x \in U$. Then $x = c_1 e_1 + \cdots + c_m e_m$ for some $c_1, ..., c_m \in \mathbb{F}$. Then

$$\langle w, x \rangle = \langle w, c_1 e_1 + \dots c_m e_m \rangle \qquad \text{(definition of x)}$$

$$= \langle w, c_1 e_1 \rangle + \dots + \langle w, c_m e_m \rangle \qquad \text{(property of inner product)}$$

$$= \bar{c_1} \langle w, e_1 \rangle + \dots + \bar{c_m} \langle w, e_m \rangle \qquad \text{(property of inner product)}$$

$$= \bar{c_1} \cdot 0 + \dots + \bar{c_m} \cdot 0 \qquad \text{(by claim above)}$$

$$= 0.$$

Thus $w \in U^{\perp}$. Therefore we have that $V = U + U^{\perp}$. We have previously shown that $U \cap U^{\perp} \subset \{0\}$. Then if U < V, then $U, U^{\perp} < V$ implies that $\{0\} \subset U \cap U^{\perp}$. Thus $U \cap U^{\perp} = \{0\}$ and we have the direct sum as desired.

The next result follows directly from the previous.

Theorem 2.3. Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim (U^{\perp}) = \dim (V) - \dim (U)$$

Proof. From the result above we have that $V = U \oplus U^{\perp}$ and using a previous theorem we then have that $\dim(V) = \dim(U) + \dim(U^{\perp})$. Therefore $\dim(U^{\perp}) = \dim(V) - \dim(U)$.

Our last result of this section shows that the orthogonal complement of the orthogonal complement is just the space itself.

Theorem 2.4. Suppose U is a finite-dimensional subspace of V. Then

$$U = (U^{\perp})^{\perp}$$

Proof. First want to show that $U \subset (U^{\perp})^{\perp}$

To do this, suppose $u \in U$. Then $\langle u, v \rangle = 0$ for every $v \in U^{\perp}$ by the definition of orthogonal complement. Because u is orthogonal to every vector in U^{\perp} , we have $u \in (U^{\perp})^{\perp}$, So, $U \subset (U^{\perp})^{\perp}$.

To prove the inclusion in the other direction, suppose $v \in (U^{\perp})^{\perp}$. Since $V = U \oplus U^{\perp}$, we can write v = u + w, where $u \in U$ and $w \in U^{\perp}$. We have $v - u = w \in U^{\perp}$. Because $v \in (U^{\perp})^{\perp}$ and $u \in (U^{\perp})^{\perp}$, we have $v - u \in (U^{\perp})^{\perp}$. Thus $v - u \in U^{\perp} \cap (U^{\perp})^{\perp}$, which implies that v - u is orthogonal to itself, which implies that v - u = 0, which implies that v = u, which implies that $v \in U$. Thus $(U^{\perp})^{\perp} \subset U$, which completes the proof.

3 Orthogonal Projection

Definition 3.1. Suppose U is a finite-dimensional subspace of V. The **orthogonal projection** of V onto U is the operator $P_U \in L(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

Example 3.1. Suppose $x \in V$ with $x \neq 0$ and U = span(x) Show that

$$P_U v = \frac{\langle v, x \rangle}{\|x\|^2} x$$

for every $v \in V$.

Proof.

$$v = \frac{\langle v, x \rangle}{\|x\|^2} x + (v - \frac{\langle v, x \rangle}{\|x\|^2} x)$$

$$\frac{\langle v, x \rangle}{\|x\|^2} x \in \text{span}(x)$$

$$(v - \frac{\langle v, x \rangle}{\|x\|^2} x) \in U^{\perp} \quad \text{since } \langle v - \frac{\langle v, x \rangle}{\|x\|^2} x, x \rangle = 0$$
Therefore,
$$P_U v = \frac{\langle v, x \rangle}{\|x\|^2} x$$

3.1 Properties of the orthogonal projection

Theorem 3.1. Suppose U is a finite-dimensional subspace of V and $v \in V$. Then

- 1. $P_U \in L(U)$
- 2. $P_U u = u$ for every $u \in U$
- 3. $P_U w = 0$ for every $w \in U^{\perp}$
- 4. range $P_U = U$
- 5. $\text{null}P_U = U^{\perp}$
- 6. $v P_U v \in U^{\perp}$
- 7. $P_U^2 = P_U$
- 8. $||P_U v|| \le ||v||$

Proof. 1. Suppose $v_1 = u_1 + w_1, v_2 = u_2 + w_2 \in V$ with $u_1, u_2 \in U$ and $w_1, w_2 \in U^{\perp}$.

Thus $P_U v_1 = u_1$ and $P_U v_2 = u_2$

But
$$v_1 + v_2 = (u_1 + u_2) + (w_1 + w_2)$$

where $u_1 + u_2 \in U$ and $w_1 + w_2 \in U^{\perp}$

$$\implies P_U(v_1 + v_2) = u_1 + u_2 = P_Uv_1 + P_Uv_2$$

Similarly, suppose $\lambda \in \mathbb{F}$

$$\lambda v_1 = \lambda u_1 + \lambda w_1$$
 where $\lambda u_1 \in U$ and $\lambda w_1 \in U^{\perp}$
 $\implies P_U(\lambda v_1) = \lambda u_1 = \lambda P_U v_1$

2. $P_U u = u$ for every $u \in U$

Suppose $u \in U$. We can write u = u + 0, where $u \in U, 0 \in U^{\perp}$ Therefore, $P_U u = u$.

- 3. $P_Uw=0$ for every $w\in U^\perp$ Suppose $w\in U$. We can write w=0+w, where $0\in U, w\in U$ Therefore, $P_Uw=0$
- 4. range $P_U = U$ The definition of P_U implies that range $P_U \subset U$. From (2) above, $P_U u = u$ for every $u \in U \implies U \subset \text{range } P_U$ Therefore, range $P_U = U$.
- 5. null $P_U = U^{\perp}$

From (3) above, $P_U w = 0$ for every $w \in U^{\perp} \implies U^{\perp} \subset \text{null } P_U$ Next, suppose $v \in \text{null } P_U \implies P_U v = 0 \implies v = 0 + v$ where $0 \in U, v \in U^{\perp} \implies \text{null } P_U \subset U^{\perp}$.

Therefore, null $P_U = U^{\perp}$

6. $v - P_U v \in U^{\perp}$ Let v = u + w, with $u \in U$ and $w \in U^{\perp}$ then

$$v - P_U v = v - u = w \in U^{\perp}$$

7. $P_U^2 = P_U$ If v = u + w with $u \in U, w \in U^{\perp}$, then

$$(P_U^2)v = P_U(P_Uv) = P_Uu = u = P_Uv$$

8. $||P_U v|| \le ||v||$

let v = u + w with $u \in U, w \in U \perp$, then

$$||P_Uv||^2 = ||u||^2 \le ||u||^2 + ||w||^2 = ||v||^2;$$

where the last equality comes from the Pythagorean Theorem.

4 Minimization Problems

Let us now apply the inner product to minimization problems. Given a subspace $U \subset V$ and a vector $v \in V$, find the $u \in U$ that is closest to the vector V. In other words, we want to make ||v - u|| as smallest as possible.

The next theorem shows that $P_U v$ is the closest point in U to the vector v.

Theorem 4.1. Suppose U is a finite dimensional subspace of $V, v \in V$ and $u \in U$. Then,

$$||v - P_U v|| \le ||v - u||$$

Furthermore, the inequality above is an equality if and only if $u = P_U v$

Proof. Consider,

$$||v - P_U v||^2 \le ||v - P_U v||^2 + ||P_U v - u||^2$$

Because $||P_U v - u|| \ge 0$

 $v-P_Uv\in U^\perp$ and $P_Uv-u\in U\implies v-P_Uv$ and P_Uv-u are orthogonal to each other.

Therefore, by Pythagorean theorem,

$$||v - P_U v||^2 \le ||(v - P_U v) + (P_U v - u)||^2 = ||v - u||^2$$

$$\implies ||v - P_{U}v|| < ||v - u||$$

If $P_U v = u$ then $P_U v - u = 0$. Then,

$$||v - P_U v||^2 = ||v - P_U v||^2 + ||P_U v - u||^2 = ||v - u||^2$$

Example 4.1. Find a polynomial u with real coefficients and degree at most 5 that approximate sin(x) as well as possible on the interval $[-\pi, \pi]$ in the sense that,

$$\int_{-\pi}^{\pi} |\sin(x) - u(x)|^2 dx$$

is as well as possible. Compare this result to the Taylor series approximation.

Solution:

 $C_{\mathbf{R}}[-\pi,\pi]$ denotes continuous real valued functions on $[-\pi,\pi]$. Let $f,g\in C_{\mathbf{R}}[-\pi,\pi]$. Then

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx - - - - (1)$$

Let $v \in C_{\mathbf{R}}[-\pi, \pi]$ be the function defined by $v(x) = \sin(x)$. Let U denote the subspace of $C_{\mathbf{R}}[-\pi, \pi]$ consisting polynomials with real coefficients and degree at most 5. Now we can reformulate our problem as follows,

Find $U \in U$ such that $||v - u|| = (\int_{-\pi}^{\pi} |\sin(x) - u(x)|^2 dx)^2$ is smallest as possible. $B = \{1, x^1, x^2, x^3, x^4. x^5, x^6\}$ basis for U. By applying Gram-Schmidt procedure we can find Orthonormal basis $B_0 = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ of U as follows,

$$e_{1} = \frac{1}{\sqrt{2}\pi}, e_{2} = \frac{\sqrt{6}x}{2\pi\sqrt{\pi}}, e_{3} = \frac{1}{8} \frac{\sqrt{8}\sqrt{45}(x^{2} - \frac{1}{3}\pi^{2})}{\sqrt{\pi^{5}}}$$

$$e_{4} = \frac{1}{8} \frac{\sqrt{175}\sqrt{8}(x^{3} - \frac{3}{5}\pi^{2}x)}{\sqrt{\pi^{7}}}$$

$$e_{5} = \frac{1}{128} \frac{\sqrt{11025}\sqrt{128}(x^{4} - \frac{1}{5}x^{4} - \frac{6}{7}\pi^{2}(x^{2} - \frac{1}{3}\pi^{2}))}{\sqrt{\pi^{9}}}$$

$$e_{6} = \frac{1}{128} \frac{\sqrt{128}\sqrt{43659}(x^{5} - \frac{3}{7}\pi^{4}x - \frac{10}{9}\pi^{2}(x^{3} - \frac{3}{5}\pi^{2}x))}{\sqrt{\pi^{11}}}$$

Since U is finite dimensional, we can use $||v - P_U v|| \le ||v - u||$

Now want to find $P_U v = P_U sin(x)$,

$$U(x) = P_U \sin(x) = \langle \sin(x), e_1 \rangle e_1 + \langle \sin(x), e_2 \rangle e_2 + \dots + \langle \sin(x), e_6 \rangle e_6$$

by using the inner product given by (1),

$$u(x) = \left(\int_{-\pi}^{\pi} \sin(x)e_1 dx\right)e_1 + \left(\int_{-\pi}^{\pi} \sin(x)e_2 dx\right)e_2 + \dots \left(\int_{-\pi}^{\pi} \sin(x)e_6 dx\right)e_6$$
$$u(x) = 0.987862x - 0.155271x^3 + 0.00564312x^5$$

For comparison,

There is a better known 5^{th} degree polynomial approximation for sin(x).

$$T_5(x) = f(0) + \frac{f'(0)x}{1!} + \frac{f''(0)x^2}{2!} + \dots + \frac{f^5(0)x^5}{5!}$$

For
$$f(x) = sin(x)$$
, $sin(x) = T_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$

$$T_5(x) = x - 0.1667x^3 + 0.00833x^5$$

As we moved from 0 towards $\pm \pi$, the approximation from $T_5(x)$ is not good as the u(x) approximation.