Production of hollow spheres made of a meltable material comprises heating the material on a surface region up to its melting temperature, driving off molten material particles, etc

Patent number:

DE10039320

Publication date:

2002-03-07

Inventor:

MUELLER HARTMUT (DE); NEUHAEUSER MICHAEL

(DE); BLIEDTNER JENS (DE)

Applicant:

INST FUEGETECHNIK UND WERKSTOF (DE)

·Classification:

- international:

B22F9/08

- european:

B22F1/00A2S2; B22F9/08B; B23K35/02D5

Application number: DE20001039320 20000807 Priority number(s): DE20001039320 20000807

Report a data error here

Abstract of DE10039320

Production of hollow spheres made of a meltable material comprises: (i) heating the material on a surface region up to its melting temperature; (ii) driving off a number of molten material particles (8, 9) using a gas stream (7) directed onto the surface; and (iii) contacting the material particles removed from the region with a material which has a temperature below the melting temperature of the material to form the hollow spheres. An Independent claim is also included for a device for producing hollow spheres made of a meltable material comprising a laser beam source for directing a laser beam (3) onto the surface of the material, a nozzle (6) for directing a gas stream at an angle alpha onto the surface, and a control device for selecting and adjusting the operating parameters such as wavelength and intensity of the laser beam and/or the speed of the gas stream.

Data supplied from the esp@cenet database - Worldwide

(5) Int. Cl.⁷:

B 22 F 9/08

(19) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift

_® DE 100 39 320 A 1

(7) Aktenzeichen:

100 39 320.9

Anmeldetag:

7. 8.2000

43 Offenlegungstag:

7. 3.2002

(7) Anmelder:

Institut für Fügetechnik und Werkstoffprüfung GmbH, 07745 Jena, DE

(74) Vertreter:

Dr. Werner Geyer, Klaus Fehners & Partner, 07745 Jena

(72) Erfinder:

Müller, Hartmut, Dr., 07749 Jena, DE; Neuhäuser, Michael, 99425 Weimar, DE; Bliedtner, Jens, Dr., 07745 Jena, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Verfahren zur Herstellung von Hohlkugeln
- Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von aus einem schmelzbaren Material bestehenden Hohlkugeln (10), bevorzugt zur Herstellung von Hohlkugeln (10) mit Durchmessern D ≤ 1 mm, wobei das schmelzbare Material in nahezu beliebiger Ausgangsform vorliegen kann. Gegenstand der Erfindung ist weiterhin eine Anordnung zur Durchführung des Verfahrens. Erfindungsgemäß ist vorgesehen, daß das in einer Ausgangsform vorliegende schmelzbare Material an einem Oberflächenbereich bis über seine Schmelztemperatur hinaus erwärmt wird, mit einem auf diesen Oberflächenbereich gerichteten Gasstrom (7) eine Vielzahl von geschmolzenen Materialpartikeln (8, 9) ausgetrieben wird und die sich von dem Oberflächenbereich entfernenden Materialpartikel (8, 9) mit einem Medium in Kontakt gebracht werden, das eine Temperatur unterhalb der Schmelztemperatur des Materials aufweist, wobei sich die Materialpartikel (8, 9) zu Hohlkugeln (10) formen.

1

Beschreibung

[0001] Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von aus einem schmelzharen Material bestehenden Hohlkugel, bevorzugt zur Herstellung von Hohlkugeln mit Durchmessern $D \le 1$ mm, wobei das schmelzbare Material in nahezu beliebiger Ausgangsform vorliegen kann. Gegenstand der Erfindung ist weiterhin eine Anordnung zur Durchführung des Verfahrens.

[0002] Hohlkugeln geringer Größe bilden in vielfältigen 10 industriellen Anwendungen zunehmend die Grundlage zur Herstellung hochporöser metallischer Werkstoffe. Derartige Werkstoffe zeichnen sich, wie in "Pulvermetallurgie und Verbundwerkstoffe", Jahresbericht 1999, Fraunhoferinstitut "Fertigungstechnik und Materialforschung", Seiten 34/35 15 beschrieben, durch Eigenschaften aus, die mit anderen Materialien kaum erreicht werden können, vor allem im Hinblick auf Leichtigkeit, Festigkeit, elektrische Leitfähigkeit, Temperaturbeständigkeit und ein durch den Porengehalt stark vermindertes Wärmeleitvermögen. Somit ergibt sich 20 für die Entwicklung von Strukturen unter Verwendung solcher Hohlkugeln ein breites Anwendungsspektrum, das von der Schall- und Wärmedämmung in heißen Umgebungen über schwingungsdämpfende Gehäusebauteile bis zu einem anspruchsvollen Leichtbau reicht.

[0003] Die Mängel, die bisher dazu geführt haben, daß derartige Werkstoffe noch keine praktische Relevanz erlangt haben, bestehen in fehlenden bzw. uneffizienten Verfahren zur Herstellung metallischer Hohlkugeln mit Durchmessern von einem Millimeter und darunter.

[0004] In EP 0 300 543 A1 ist ein Verfahren zum Herstellen von metallischen oder keramischen Hohlkugeln beschrieben, bei dem vorgesehen ist, auf im wesentlichen kugelförmige Teilchen aus geschäumtem Polymer eine Feststoffschicht aufzubringen. Dazu werden die Teilchen unter 35 Bewegung mit einer wäßrigen Suspension behandelt, die gelöstes oder suspendiertes Bindemittel und metallische und/oder keramische Pulverteilchen enthält. Dann werden die beschichteten und getrockneten Teilchen unter Bewegung pyrolisiert und gesintert. Nachteilig an diesem Verfahren ist die erforderliche Vielzahl Zeit- und energieaufwendiger Verfahrensschritte, so daß auf diese Weise eine wirtschaftliche Massenfertigung kleiner Hohlkugeln nicht möglich ist.

[0005] In DE 195 37 137 A1 sind ein Kompositwerkstoff 45 sowie ein Verfahren zu dessen Herstellung beschrieben. Der Kompositwerkstoff besteht aus einer Metallmatrix mit eingebetteten Hohlkugeln, und dem Verfahren zur Herstellung des Kompositwerkstoffes liegt eine elektrolytische Metallabscheidung zugrunde, wobei die Hohlkugeln einem Elektrolytbad zugesetzt werden. Bevorzugt betrifft das Hohlkugeln aus Borosilikatglas.

[0006] In DE 196 03 196 A1 ist ein Verfahren zur Herstellung von anorganischen Hohlkugeln mit einer Kugelkorngröße im Bereich von 0,5 bis 1 mm angegeben. Dabei wer- 55 den Ausgangspulver aus porösen Primärpartikeln, porösen Agglomeraten oder porösen Aggregaten in einen Spritzstrahl eingebracht, an- bzw. aufgeschmolzen und schließlich in einer Auffangvorrichtung abgekühlt. Zum An- bzw. Aufschmelzen der Ausgangspulver werden konventionelle 60 Brenner zum thermischen Spritzen, wie sie beispielsweise in der Plasmaspritztechnik verwendet werden, und auch Sonderspritzgeräte, wie z. B. Langlichtbogenbrenner, genutzt. Das hier vorgeschlagene Verfahren ist zur Herstellung von Hohlkugeln aus allen anorganischen Materialien geeig- 65 net, die sich vor dem Schmelzen nicht zersetzten, wie zum Beispiel Metalle, Legierungen, Oxide, Silikate, Poride, Karbide usw. Auch hier sind nachteiligerweise zeitaufwendige

Verfahrensschritte erforderlich.

[0007] Ein weiteres Verlahren ist noch aus DE-PS 32 10 770 bekannt. Diese ist zur Herstellung von metallischen, im wesentlichen kugelförmigen Leichtkörperteilchen geeignet ist. Hierbei werden Schaumstoffteilchen, z. B. aus expandierendem Polystyrol, stromlos mit Kupfer, Silber oder Nickel metallisiert und die Kunststoffkerne pyrolytisch bei Temperaturen von etwa 400°C zersetzt. Auf diese Weise entstehen metallische Hohlkörper mit Wandungen, die elektrochemisch bis auf Dicken von 0,05 mm verstärkt werden können. Auch dieses Verfahren ist hinsichtlich einer Massenfertigung von Hohlkugeln nicht effektiv. [0008] Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art so weiterzuentwickeln, daß in wesentlich kürzeren Zeitabschnitten die Herstellung einer Vielzahl von Hohlkugeln möglich ist. [0009] Erfindungsgemäß ist vorgesehen, daß das in einer beliebigen Ausgangsform vorliegende schmelzbare Material an einem Oberflächenbereich bis über seine Schmelztemperatur hinaus erwärmt wird, mit einem auf diesen Oberflächenbereich gerichteten Gasstrom eine Vielzahl von geschmolzenen Materialpartikeln ausgetrieben wird und die sich von dem Oberflächenbereich entfernenden Materialpartikel mit einem Medium in Kontakt gebracht werden, das eine Temperatur unterhalb der Schmelztemperatur des Materials aufweist. Dabei ist vorteilhaft vorgesehen, daß die zur Erwärmung bis über die Schmelztemperatur erforderliche Energie mit Hilfe von Laserstrahlung in das Material eingebracht wird.

[0010] Aufgrund der hohen kinetischen Energie der Schmelze sowie durch Unterstützung des Gasstromes werden die Materialpartikel sehr schnell aus dem Bereich des aufgeschmolzenen Materials ausgetrieben, wonach die Materialpartikel dann sofort mit der kühleren Umgebung in Kontakt kommen. Dabei ändert sich die Oberflächenspannung bei den Materialpartikeln so, daß die Hohlkugelformen entstehen.

[0011] Mit diesem Verfahren läßt sich eine sehr große Zahl solcher kleinen Hohlkugeln mit Durchmessern unter 1 mm in wesentlich kürzerer Zeit herstellen, als dies nach dem Stand der Technik bisher möglich war. Die Entstehungszeit der Hohlkugeln liegt dabei im Millisekundenbereich. Ofenprozesse oder auch umweltbedenkliche chemische Verfahrensschritte, bei denen schädliche Dämpfe entstehen, sind nicht erforderlich.

[0012] Ein weiterer wesentlicher Vorteil besteht darin, daß nach dem erfindungsgemäßen Verfahren Hohlkugeln aus den verschiedenartigsten schmelzbaren Werkstoffen hergestellt werden können. Außerdem ist es möglich, die Durchmesser der entstehenden Hohlkugeln beispielsweise durch Variation der Laserleistung oder der Strömungsgeschwindigkeit des zur Unterstützung des Austreibens der Materialpartikel verwendeten Gases zu variieren.

[0013] Mit der Vorgabe unterschiedlicher Umgebungstemperaturen läßt sich in diversen Ausgestaltungen der Erfindung die Abkühlgeschwindigkeit der Hohlkugeln beeinflussen; damit ist es möglich, auf die Beibehaltung oder Veränderung der Eigenschaften des Ausgangsmaterials während der Entstehung der Hohlkugeln Einfluß zu nehmen, so beispielsweise auf Gefügeeigenschaften, Festigkeit und Härte, magnetische Eigenschaften usw. Die Abhängigkeiten zwischen der Abkühlgeschwindigkeit z. B. von geschmolzenem Stahl und den Materialeigenschaften des Stahles sind aus der Metallurgie hinreichend bekannt und müssen deshalb hier nicht ausführlich erläutert werden.

[0014] Auch die Wandstärken der Hohlkugeln sind mit der Wahl der Laserstrahlungsquelle, den Laserstrahlungsparametern sowie weiteren Prozeßgrößen wie Umgebungs3

temperatur, Ausgangsmaterial usw. beeinflußbar. Die Modifikation dieser Parameter kann problemlos während des Herstellungsprozesses verändert werden, so daß bei laufendem Verfahren unterschiedliche Kugelarten bzw. -größen erzeugbar sind.

[0015] In einer weiteren bevorzugten Ausgestaltungsvariante kann vorgesehen sein, daß das Material mit einer gesonderten Wärmequelle vorgewärmt wird, indem beispielsweise in dem zu erwärmenden Oberflächenbereich eine Temperatur dicht unterhalb der Schmelztemperatur des Materials, bevorzugt bei etwa dem 0,8- bis 0,95-fachen der Schmelztemperatur, erzielt wird. In diese Vorwärmung kann das gesamte vorbereitete. Ausgangsmaterial einbezogen werden, jedoch ist es auch möglich, lediglich eine Zone um den aufzuschmelzenden Oberflächenbereich.

[0016] Die Vorwärmung hat den Vorteil, daß mit der auf den schon vorgewärmten Oberflächenbereich gerichteten Laserstrahlung wesentlich schneller die Schmelztemperatur erreicht wird und so das Austreiben der Materialpartikel wirkungsvoller erfolgt. Als Wärmequelle kann vorteilhaft 20 ein Plasmabrenner mit einem auf den Oberflächenbereich gerichteten Plasmastrahl vorgesehen sein.

[0017] In einer besonders bevorzugten Ausgestaltung der Erfindung werden die sich von dem Oberflächenbereich entfernenden Materialpartikel mit Lust der freien Atmosphäre 25 in Kontakt gebracht, wodurch die Abkühlung der Materialpartikel und infolgedessen deren Formung zu Hohlkugeln bewirkt und wobei eine entsprechende Menge Lust in das Innere einer jeden Hohlkugel eingeschlossen wird.

[0018] So ist es zum Beispiel vorteilhaft möglich, als Ausgangsmaterial Stahl mit einer Schmelztemperatur zu verwenden, die bei ca. 1.540°C liegt. Unter Anwendung der erfindungsgemäßen Verfahrensschritte ist so die Massenfertigung kleiner mit Luft gefüllter Stahlkugeln bei sehr geringem Zeitaufwand möglich. Es kommen hierfür sowohl legierte, unlegierte als auch Stähle mit hohem Kohlenstoffgehalt in Betracht.

[0019] Es ergeben sich für die mit eingeschlossener Luft versehenen Hohlkugeln Quantitäts- und Qualitätsmerkmale, welche die besten Voraussetzungen zur Verwendung bei der. 40 Entwicklung und Herstellung thermischer Isoliermaterialien bieten.

[0020] Abweichend davon ist es bei alternativen Ausgestaltungen des erfindungsgemäßen Verfahrens auch möglich, die sich von dem Oberflächenbereich entfernenden Materialpartikel anstatt mit Luft der freien Atmosphäre beispielsweise mit einem Inertgas, etwa Stickstoff, in Kontakt zu bringen. Treten die ausgetriebenen Materialpartikel mit diesem Gas in Kontakt, erfolgt ebenfalls die Abkühlung und die Umformung zu Hohlkugeln, wobei eine entsprechende Menge des Inertgases in das Innere einer jeden Hohlkugel eingeschlossen wird. Auf diese Weise können beispielsweise korrosionshemmende Eigenschaften oder auch verbesserte Wärmedämmeigenschaften erzielt werden.

[0021] In einer weiteren alternativen Ausgestaltung ist es denkbar, daß die sich von dem Oberflächenbereich entfernenden Materialpartikel mit einer Flüssigkeit oder einer Emulsion in Kontakt gebracht werden. Liegt die Temperatur der Flüssigkeit bzw. der Emulsion im entsprechenden Bereich unterhalb der Schmelztemperatur des Ausgangsmaterials, erfolgt hier ebenfalls wie vorbeschrieben die Umformung der Materialpartikel zu Hohlkugeln, wobei in diesem Falle eine entsprechende Menge der Flüssigkeit bzw. der Emulsion in das Innere einer jeden Hohlkugel eingeschlossen wird. Nach diesem Verfahren lassen sich beispielsweise Lötzinn als Ausgangsmaterial und ein Lotflußmittel miteinander in der Weise verbinden, daß bei der Formung zu Hohlkugeln der Innenraum einer jeden Hohlkugel mit dem Lot-

4

flußmittel ausgefüllt ist. Die so entstehenden "Lötkugeln" lassen sich bevorzugt bei automatischen Lötprozessen verwenden.

[0022] Weiterhin ist es denkbar, das erfindungsgemäße Verfahren so auszugestalten, daß die bereits zu Hohlkugeln geformten und mit jeweils dem vorgesehenen Medium (Gas, Flüssigkeit, Emulsion) gefüllten Hohlkugeln in einem weiteren Verfahrensschritt mit einer zusätzlichen Substanz, beispielsweise einem Pulver oder Gas, in Kontakt gebracht werden.

[0023] Auf diese Weise wird erreicht, daß sich Teilchen dieser Substanz auf der Hohlkugeloberfläche absetzen und dort eine Beschichtung bilden. Als eine solche Substanz zur Beschichtung der Hohlkugeloberfläche kann beispielsweise Stellitpulver verwendet werden.

[0024] Nach dem erfindungsgemäßen Verfahren lassen sich demzufolge kugelförmige Körper in der Größenordnung < 1 mm herstellen, die aus mindestens drei Materialarten bestehen, wobei eine der Materialarten im Innern eingeschlossen ist, das Ausgangsmaterial die kugelförmige feste Hülle bildet und auf der Oberfläche eine oder auch mehrere übereinander liegende Materialschichten, je nach Anzahl der diesbezüglichen Verfahrensschritte, abgesetzt sind.

[0025] Auch ist es denkbar, die Ausführung der Verfahrensschritte zeitlich zu trennen, indem zunächst in der vorbeschriebenen Weise die Hohlkugeln ohne Beschichtung hergestellt und in weiteren in zeitlichen Abständen folgenden Verfahrensschritten die Hohlkugeln an ihrer Oberfläche beschichtet werden.

[0026] Die Erfindung bezieht sich weiterhin auf eine Anordnung zur Durchführung der vorgenannten Verfahrensschritte, umfassend eine Laserstrahlungsquelle, von der ein gebündelter Laserstrahl unter einem Winkel ß auf einen Oberflächenbereich des in einer beliebigen Ausgangsform vorliegenden Materials gerichtet ist; eine mit einem Gebläse verbundene Düse, von der ein Gasstrom unter einem Winkel α auf den Oberflächenbereich gerichtet ist und eine Bedienund Ansteuereinrichtung zur Vorwahl und zur Einstellung von Betriebsparametern, wie Wellenlänge und Intensität des Laserstrahles, Geschwindigkeit des Gasstromes und andere. [0027] Bevorzugt kann als Laserstrahlungsquelle ein CO2-Laser mit einer Leistung von etwa 1500 Watt und als Ausgangsmaterial unlegierter Stahl mit einer Schmelztemperatur bei 1535°C vorgesehen sein. Mittels einer Düse, die einen Öffnungsdurchmesser von etwa 1,7 mm aufweist und die mit einem unter einem Druck von etwa 3 bar stehenden Druckluftbehälter in Verbindung steht, kann Luft unter einem Winkel α ≈ 47°C auf den Auftreffort des Laserfokus gerichtet sein.

[0028] In vorteilhaften Ausgestaltungen der erfindungsgemäßen Anordnung können Einrichtungen zur Veränderung der Winkel α und/oder β während des Herstellungsprozesses vorgesehen sein, wodurch der Herstellungsprozeß auf ein Optimum konfigurierbar ist. Weiterhin ist es vorteilhaft, wenn das Ausgangsmaterial relativ zum Auftreffort des Laserstrahlfokus und des Gasstromes auf die Materialoberfläche kontinuierlich verschoben wird, womit die fortlaufende Herstellung der Hohlkugeln möglich ist. Zu diesem Zweck sollte das Material beispielsweise auf einen Tisch aufgelegt sein, der mit einer Zustelleinrichtung in Verbindung steht. [0029] Weiterhin kann die Anordnung von einer Schutzkammer umgeben sein, die den Oberflächenbereich umschließt, der aufgeschmolzen werden soll, wobei dieser hermetisch von der freien Atmosphäre getrennt ist. Mit einer solchen Anordnung ist es möglich, Hohlkugeln herzustellen, deren Inneres mit einem Inertgas gefüllt ist, sofern sich das Inertgas innerhalb der Schutzkammer befindet.

[0030] Im Rahmen der Erfindung liegt es weiterhin, Ein-

•

richtungen zum Auffangen, Sammeln und Sortieren der entstehenden Hohlkugeln nach der Größe vorzusehen. So können zum Auffangen Aufprallbleche vorhanden sein, die vorteilhaft noch mit einem Gleitmittel, bevorzugt mit Öl, beschichtet sind und die mit Sammelbehältern für die aufprallenden und abgleitenden Hohlkugeln in Verbindung stehen. Bei entsprechender Neigung der Aufprallbleche folgen die Hohlkugeln der Schwerkraft und können so in die Sammelbehälter gelangen, die in Schwerkraftrichtung aufgestellt sind.

[0031] Den Sammelbehältern kann eine Sortiereinrichtung, die beispielsweise aus Rüttelsieben mit unterschiedlichen Durchlaßöffnungen besteht, vorgeordnet sein, so daß hiermit sofort nach der Herstellung eine Selektion der Hohlkugeln nach ihrer Größe vorgenommen wird.

[0032] Die Erfindung soll nachfolgend anhand eines Ausführungsbeispieles näher erläutert werden. In den zugehörigen Zeichnungen zeigen

[0033] Fig. 1 den prinzipiellen Aufbau einer Anordnung zur Durchführung des erfindungsgemäßen Verfahrens in ei- 20 ner ersten Ausgestaltungsvariante,

[0034] Fig. 2 den prinzipiellen Aufbau der Anordnung nach Fig. 1, jedoch aus einem anderen Blickwinkel und zusätzlich ausgestattet mit einer Einrichtung zur Vorwärmung des Ausgangsmaterials,

[0035] Fig. 3 eine Ausgestaltungsvariante der erfindungsgemäßen Anordnung, bei der das Ausgangsmaterial bzw. die Schmelzzone auf dem Ausgangsmaterial von einem Schutzraum umgeben ist,

[0036] Fig. 4 eine Ausgestaltungsvariante, bei der zur Abkühlung der Materialpartikel ein flüssiges Medium vorgesehen ist.

[0037] In Fig. 1 ist ein Ausgangsmaterial 1, hier beispielsweise Lötzinn, auf einem Tisch 2 abgelegt, der in Richtung X und in Richtung Z verstellbar ist. Der Tisch 2 ist zu diesem Zweck mit einem Antrieb gekoppelt, der seinerseits mit einer Ansteuereinrichtung in Verbindung steht (zeichnerisch nicht dargestellt). Derartige Tischantriebe und Ansteuerschaltungen sind aus dem Stand der Technik hinreichend bekannt, so daß eine nähere Beschreibung an dieser Stelle entfallen kann.

[0038] Weiterhin ist in Fig. 1 eine Laserstrahlung 3 dargestellt, die durch eine Optik 4 gebündelt auf die Oberfläche des Ausgangsmaterials 1 gerichtet ist. Es handelt sich beispielsweise um die Strahlung eines CO₂-Laser mit einer Leistung von etwa 1500 W bei einer Wellenlänge von 10,6 μm. [0039] Damit ist die Intensität der gebündelten Laserstrahlung 3 am Auftreffort auf die Oberfläche 5 des Materials 1 groß genug, um das Ausgangsmaterial 1 dort partiell auf eine Temperatur zu erhitzen, die über der Schmelztemperatur liegt. Es bildet sich also aufgrund der Wechselwirkung der intensiven Laserstrahlung 3 mit dem Ausgangsmaterial 1 eine örtlich begrenzte flüssige Phase des Ausgangsmaterials 1.

[0040] Die Erwärmung des entsprechenden Bereiches erfolgt dabei in sehr kurzer Zeit, wobei eine zumindest teilweise Wandlung der Wärmeenergie in kinetische Energie erfolgt und Partikel des Ausgangsmaterials 1 in eine Relativbewegung zueinander geraten. Dabei werden Partikel mit entsprechend hoher kinetischer Energie aus der Oberfläche 5 ausgetrieben, d. h. sie entfernen sich von der Oberfläche 5. [0041] Die Anordnung nach Fig. 1 weist weiterhin eine Düse 6 auf, die mit einem (zeichnerisch nicht dargestellten) Gebläse oder Druckgefäß verbunden ist und von der ein Gasstrom 7 auf den Bereich des flüssigen Ausgangsmaterials 1 gerichtet ist. Das Gebläse ist beispielsweise ebenfalls mit der Ansteuersschaltung verbunden, wobei die Möglichkeit besteht, durch entsprechende Sollwertvorgaben die Ge-

schwindigkeit des Gasstromes 7 und die Menge des pro Zeiteinheit aus der Düse 6 austretenden Gases zu beeinflussen.

[0042] Der unter einem Winkel α auf das Ausgangsmate-5 rial 1 gerichtete Gasstrom 7 sorgt dafür, daß aus dem flüssigen Bereich des Ausgangsmaterials 1 Materialpartikel 8 ausgetrieben und in eine bevorzugte Richtung R gelenkt werden.

[0043] Dabei kann der Winkel α mit beispielsweise 45° fest eingestellt sein. Es kann aber auch eine Verstelleinrichtung zur Variation des Winkels α vorgesehen sein. Außerdem kann die Düse 6 auch noch mit einer Verstelleinrichtung verbunden sein, die ihre Verschiebung in Richtung X ermöglicht, wodurch erreicht wird, daß der Auftreffort des

5 Gasstromes 7 relativ zum Fokus des gebündelten Laserstrahles 3 justierbar ist. Hierdurch können Gasstrom 7 und Laserstrahl 3 bedarfsweise so zueinander positioniert werden, daß das Austreiben der Materialpartikel 8 mit höchstmöglicher Ausbeute erfolgt.

[0044] Die Materialpartikel 8 entfernen sich mit hoher Geschwindigkeit in Richtung R von der Oberfläche 5 und werden dabei durch den hohen Innendruck (hohe Temperatur) und die geringe Zähigkeit in eine Vielzahl kleinerer Materialpartikel 9 aufgespalten. Die Materialpartikel 9 bewegen sich durch die kühlere Umgebungslust hindurch, was

dazu führt, daß sich die Oberflächenspannung bei den noch unregelmäßig geformten Materialpartikeln 9 schnell ändert und sich dabei kleine Hohlkugeln 10 bilden.

[0045] Zum Auffangen der Hohlkugeln 10 ist eine Prallplatte 11 vorgesehen, an welcher die Hohlkugeln 10 der Schwerkraft folgend abgleiten und in einen Sammelbehälter (zeichnerisch nicht dargestellt) gelangen.

[0046] Die Prallplatte 11 kann hinsichtlich ihrer Materialeigenschaften elastisch ausgebildet sein, so daß eine Deformation der sich eben gebildeten Hohlkugeln 10 vermieden
wird. Außerdem ist es denkbar, die Temperatur der Prallplatte 11 mit Hilfe einer Kühleinrichtung so einzustellen, so
daß beim Kontakt der Hohlkugeln 10 mit der Prallplatte 11
eine weitere Abkühlung der Hohlkugeln 10 erfolgt und damit eine Formstabilisierung gegeben ist.

[0047] Besteht der Gasstrom 7 aus Luft und bewegen sich die Materialpartikel 8 durch die freie Atmosphäre, welche die Anordnung umgibt, so wird bei der Umformung zu Hohlkugeln 10 Luft in das Innere der Hohlkugeln 10 eingeschlossen.

[0048] Zusätzlich kann, wie in Fig. 1 dargestellt, noch ein Temperatursensor 12 vorgesehen sein, der ebenfalls mit der Ansteuereinheit verbunden ist, wobei sich die Möglichkeit ergibt, die gemessene Temperatur als Regelgröße für die Intensität der Laserstrahlung 3 und/oder für die Strömungsgeschwindigkeit des Gasstromes 7 zu verwenden.

[0049] In Fig. 2 ist die Anordnung nach Fig. 1 bei Betrachtung aus einem anderen Blickwinkel dargestellt. Hier ist der Blick auf die Oberfläche 5 gerichtet, wobei wiederum der Laserstrahl 3, die bündelnde Optik 4, die Düse 6, der Luftstrom 7 und die Materialpartikel 8, die sich in Richtung R von der Oberfläche des Ausgangsmaterials 1 entfernen, zu erkennen sind.

[0050] Die Anordnung nach Fig. 2 weist jedoch gegenüber Fig. 1 insofern eine Ergänzung auf, als hier eine zusätzliche Wärmequelle 13 in Form eines Plasmabrenners vorhanden ist. Vom Plasmabrenner 13 ist ein Plasmastrahl 14 zusätzlich auf den Bereich auf der Oberfläche 5 gerichtet, indem das Ausgangsmaterials 1 über die Schmelztemperatur 5 crhitzt werden soll.

[0051] Damit wird erreicht, daß dem Haupterwärmungsprozeß mittels des Laserstrahls 3 eine Vorwärmung durch den Plasmastrahl 14 vorgeordnet ist. So wird die Tempera-

60

65

8

turdifferenz verringert, die mittels Laserstrahlung 3 zu überwinden ist, um die materialspezifische Schmelztemperatur möglichst sprunghaft zu erreichen bzw. zu überschreiten. So wird der Energieeintrag in den betreffenden Oberflächenabschnitt und damit auch der Austreibungsprozeß intensiviert. [0052] In Fig. 3 ist eine Ausführungsvariante der Anordnung dargestellt, bei welcher der Prozeß der Austreibung der Materialpartikel 8 aus der Flüssigphase des Ausgangsmaterials 1 unter einer Schutzgasatmosphäre stattfindet. Zu diesem Zweck sind die wesentlichen Anordnungsbestand- 10 18 Beschichtungswerkstoff teile, wie Ausgangsmaterial 1, Tisch 2, Laserstrahl 3, bündelnde Optik 4, Düse 6 von einem Gehäuse 15 umschlossen. Die bereits oben beschriebenen Verfahrensschritte finden nun innerhalb des von dem Gehäuse 15 umschlossenen Raumes statt, wobei als Schutzgas beispielsweise Stickstoff vor- 15 gesehen ist.

[0053] Das Schutzgas tritt dabei durch die Düse 6 aus. Der in diesem Falle aus Schutzgas gebildete Gasstrom 7 wird sowohl zum Austreiben der Materialpartikel 8 genutzt als auch bei der Ausbildung der Hohlkugeln 10 in entsprechender 20 Menge in deren Hohlraum eingeschlossen. Die in der oben geschilderten Weise entstehenden Hohlkugeln 10 treten durch eine im Gehäuse 15 vorgesehene Öffnung 16 aus dem Schutzraum aus und gelangen von dort in einen Sammelbehälter (zeichnerisch nicht dargestellt).

[0054] Eine Besonderheit bei dieser Anordnung kann beispielsweise noch darin bestehen, daß eine Zuführeinrichtung 17 für ein Beschichtungswerkstoff 18 vorhanden ist, der bei entsprechender Ausrichtung einer Austrittsdüse 19 mit den soeben entstandenen Hohlkugeln 10 in Kontakt ge- 30 bracht wird und der sich dabei auf der Außenfläche der Hohlkugeln 10 absetzt. Als Beschichtungswerkstoff 18 kommt beispielsweise Stellitpulver in Betracht.

[0055] Auf diese Weise entstehen Hohlkugeln 10, die im Inneren mit dem Schutzgas gefüllt sind und an ihrer Ausflä- 35 che eine Beschichtung aufweisen.

[0056] Bei einer weiteren in Fig. 4 dargestellten Anordnung, mit der sich die erfindungsgemäßen Verfahrensschritte ebenfalls ausführen lassen, ist eine Ringdüse 20 konzentrisch zum Laserstrahl 3 angeordnet, durch die der 40 Gasstrom 7 austritt und gleichmäßig um den Laserstrahl 3 verteilt auf den zu erwärmenden Oberflächenabschnitt trifft. [0057] Hier sind die bündelnde Optik 4 und die Ringdüse 20 gemeinsam in den Richtungen X und Y relativ zum Tisch 2 bzw. dem Ausgangsmaterial 1 verschiebbar. Die hierbei 45 ausgetriebenen Materialpartikel 8 fallen der Schwerkraft folgend in eine Flüssigkeit 21, beispielsweise ein Lotflußmittel, mit einer Temperatur unterhalb der Schmelztemperatur des Ausgangsmaterials 1.

[0058] Beim Eintauchen der Materialpartikel 8 in die 50 Flüssigkeit 21 vollzieht sich die Umformung zu Hohlkugeln 10 wiederum aufgrund der mit der plötzlichen Absenkung der Temperatur einhergehenden Veränderung der Oberflächenspannung, wobei in diesem Falle die Flüssigkeit in das Innere der Hohlkugeln 10 eingeschlossen wird. Auf diese 55 Weise lassen sich beispielsweise vorteilhaft "Lötzinnkugeln" mit einschlossenem Lotflußmittel herstellen, die bei automatischen Lötprozessen Verwendung finden können.

Bezugszeichenliste

- 1 Ausgangsmaterial
- 2 Tisch
- 3 Laserstrahl
- 4 Optik
- 5 Oberfläche
- 6 Düse
- 7 Gasstrom

- 8, 9 Materialpartikel
- 10 Hohlkugeln
- 11 Prallplatte
- 12 Temperatursensor
- 5 13 Wärmequelle
 - 14 Plasmastrahl
 - 15 Gehäuse
 - 16 Öffnung
 - 17 Zuführeinrichtung
- - 19 Austrittsdüse
 - 20 Ringdüse
 - 21 Flüssigkeit
 - R, X, Y, Z Richtungen

Patentansprüche

- 1. Verfahren zur Herstellung von Hohlkugeln aus einem schmelzbaren Material, dadurch gekennzeich-
- das in einer Ausgangsform vorliegende schmelzbare Material an einem Oberflächenbereich bis über seine Schmelztemperatur hinaus erwärmt wird,
- mit einem auf diesen Oberflächenbereich gerichteten Gasstrom (7) eine Vielzahl von geschmolzenen Materialpartikeln (8, 9) ausgetrieben wird und
- die sich von dem Oberflächenbereich entfernenden Materialpartikel (8, 9) mit einem Medium in Kontakt gebracht werden, das eine Temperatur unterhalb der Schmelztemperatur des Materials aufweist, wobei sich die Materialpartikel (8, 9) zu Hohlkugeln (10) formen. 2. Verfahren nach Anspruch 1, dadurch gekennzeich-
- net, daß die zur Erwärmung bis über die Schmelztemperatur erforderliche Energie mit Hilfe von Laserstrahlung (3) in das Material eingebracht wird.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Material mit einer gesonderten Wärmequelle (13) vorgewärmt wird, wobei an dem zu erwärmenden Oberflächenbereich eine Temperatur unterhalb der Schmelztemperatur erreicht wird.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Material auf eine Temperatur von etwa der 0,8-fachen der Schmelztemperatur vorgewärmt wird. 5. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die sich von dem Oberflächenbereich entfernenden Materialpartikel (8, 9) mit Luft der freien Atmosphäre in Kontakt gebracht werden, wobei mit der Formung der Materialpartikel (8,9) zu Hohlkugeln (10) eine entsprechende Menge Luft in das Innere einer jeden Hohlkugel (10) eingeschlossen wird.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß als Material Stahl mit einer Schmelztemperatur bei etwa 1540°C verwendet wird.
- 7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die sich von dem Oberflächenbereich entfernenden Materialpartikel (8, 9) mit einem Inertgas in Kontakt gebracht werden, dessen Temperatur unterhalb der Schmelztemperatur des Materials gehalten wird, wobei mit der Formung der Materialpartikel (8, 9) zu Hohlkugeln (10) eine entsprechende Menge dieses Gases in das Innere einer jeden Hohlkugel (10) eingeschlossen wird.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die sich von dem Oberflächenbereich entfernenden Materialpartikel (8, 9) mit Stickstoff in Kontakt gebracht werden, dessen Temperatur bei etwa der 0,5fachen der Schmelztemperatur des Materials gehalten

wird.

- 9. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die sich von dem Oberflächenbereich entfernenden Materialpartikel (8, 9) mit einem flüssigen Medium in Kontakt gebracht werden, 5 dessen Temperatur unterhalb der Schmelztemperatur des Materials gehalten wird, wobei mit der Formung der Materialpartikel (8, 9) zu Hohlkugeln (10) eine entsprechende Menge dieses Mediums in das Innere einer jeden Hohlkugel eingeschlossen wird.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als schmelzbares Material Lötzinn und als flüssiges Medium ein Lotflußmittel verwendet werden und die Temperatur des Lotflußmittels bei etwa dem 0,5-fachen der Schmelztemperatur des Materials gehalten 15 wird.
- 11. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die bereits zu Hohlkugeln (10) geformten und mit dem Medium gefüllten Materialpartikel (8, 9) mit einer weiteren Substanz, bevorzugt einem Pulver in Kontakt gebracht werden, wobei sich Teilchen dieser Substanz auf der Hohlkugeloberfläche absetzten und dort eine Beschichtung bilden.
 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß als Substanz zur Beschichtung der Hohlkugeloberfläche Stellitpulver verwendet wird.
- 13. Anordnung zur Herstellung von Hohlkugeln aus einem schmelzbaren Material, umfassend eine Laserstrahlungsquelle, von der ein gebündelter Laserstrahl (3) unter einem Winkel β auf einen Oberflächenbereich des in einer beliebigen Ausgangsform vorliegenden Materials gerichtet ist,

eine mit einem Gebläse verbundene Düse (6), von der ein Gasstrom (7) unter einem Winkel α auf den Oberflächenbereich gerichtet ist und

- eine Bedien- und Ansteuereinrichtung zur Vorwahl und Einstellung von Betriebsparametern wie Wellenlänge und Intensität des Laserstrahles (3) und/oder Geschwindigkeit des Gasstromes (7).
- 14. Anordnung nach Anspruch 13, wobei als Material 40 unlegierter Stahl mit einer Schmelztemperatur bei 1535°C vorgesehen ist, ein CO_2 -Laser mit einer Leistung von etwa 1500 W als Laserstrahlungsquelle dient und mittels einer Düse, die einen Öffnungsdurchmesser von etwa 1,7 mm aufweist und die mit einem unter einem Druck von etwa 3 bar stehenden Druckluftbehälter in Verbindung steht, Luft unter einem Winkel $\alpha \approx 45$ °C auf den Auftreffort des Laserfokus gerichtet ist.
- 15. Anordnung nach Anspruch 14, ausgestattet mit eiser Einrichtung zur Veränderung des Winkels α und/oder des Winkels β .
- 16. Anordnung nach einem der Ansprüche 13 bis 15, ausgestattet mit einer Einrichtung zum kontinuierlichen Verschieben des Materials relativ zum Auftreffort 55 des Laserstrahles (3) und des Gasstromes (7) auf die Materialoberfläche.
- 17. Anordnung nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß ein Plasmabrenner zur Vorwärmung des Materials vorgesehen ist.
- 18. Anordnung nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, daß eine Schutzkammer vorgesehen ist, die den Oberflächenbereich umschließt und diesen hermetisch von der freien Atmosphäre trennt, wobei das Innere der Schutzkammer mit einem 65 Inertgas oder einem reaktiven Gas gefüllt ist.
- Anordnung nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, daß Einrichtungen zum Auf-

- fangen, Sammeln und Sortieren der entstehenden Hohlkugeln (10) nach der Größe vorhanden ist.
- 20. Anordnung nach Anspruch 19, dadurch gekennzeichnet, daß zum Auffangen mindestens eine Prallplatte (11) vorgesehen ist.
- 21. Anordnung nach Anspruch 19 oder 20, dadurch gekennzeichnet, daß die Prallplatte (11) mit einem Gleitmittel, bevorzugt mit Öl, beschichtet und mit Sammelbehältern für die aufprallenden und abgleitenden Hohlkugeln (10) verbunden ist.
- 22. Anordnung nach Anspruch 21, dadurch gekennzeichnet, daß den Sammelbehältern eine Sortiereinrichtung aus Rüttelsieben mit unterschiedlichen Durchlaßgrößen vorgeordnet sind.

Hierzu 4 Seite(n) Zeichnungen

Nummer:

Int. CI.⁷: Offenlegungstag:

DE 100 39 320 A1 B 22 F 9/08 7. März 2002

Fig.1

Nummer:

B 22 F 9/08 7. März 2002

DE 100 39 320 A1

Int. Cl.⁷: Offenlegungstag:

Fig.2

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 100 39 320 A1 B 22 F 9/08**7. März 2002

Fig.3

Nummer: Int. Cl.⁷:

Offenlegungstag:

DE 100 39 320 A1 B 22 F 9/08

7. März 2002

Fig.4