

CMOS LDO Regulators for Portable Devices

1ch 200mA CMOS LDO Regulators

BUDDTD3WG Series

Description

BUDDTD3WG series is high-performance FULL CMOS regulator with 200-mA output, which is mounted on versatile package SSOP5 (2.9 mm \times 2.8 mm \times 1.25 mm). It has excellent noise characteristics and load responsiveness characteristics despite its low circuit current consumption of 35μ A. It is most appropriate for various applications such as power supplies for logic IC, RF, and camera modules.

Features

- 1) High-accuracy output voltage of $\pm 1\%$ (± 25 mV on Vout<2.5V products)
- 2) High ripple rejection: 70 dB (Typ., 1 kHz,)
- 3) Compatible with small ceramic capacitor (CIN=Co=0.47 μ F)
- 4) Low current consumption: $35 \mu A$
- 5) ON/OFF control of output voltage
- 6) With built-in over current protection circuit and thermal shutdown circuit
- 7) With built-in output discharge circuit

Applications

Battery-powered portable equipment, etc.

●Line up matrix

■200 mA BU□□TD3WG Series

ELOCHIIX BOLLETBOTTO CONCO											
Product Name	10	12	15	18	1J	19	20	21	25	26	Package
	0	0	0	0	0	0	0	0	0	0	
BU□□TD3WG	27	28	2J	29	30	31	32	33	34	-	SSOP5
	0	0	0	0	0	0	0	0	0	-	

Model name: BU□□TD3WG

Cymbol	Contents											
Symbol	Specification of output voltage											
		Output voltage (V)		Output voltage (V)		Output voltage (V)		Output voltage (V)				
	10	1.0 V(Typ.)	19	1.9 V(Typ.)	27	2.7 V(Typ.)	31	3.1 V(Typ.)				
	12	1.2 V(Typ.)	20	2.0 V(Typ.)	28	2.8 V(Typ.)	32	3.2 V(Typ.)				
а	15	1.5 V(Typ.)	21	2.1 V(Typ.)	2J	2.85 V(Typ.)	33	3.3 V(Typ.)				
	18	1.8 V(Typ.)	25	2.5 V(Typ.)	29	2.9 V(Typ.)	34	3.4 V(Typ.)				
	1J	1.85 V(Typ.)	26	2.6 V(Typ.)	30	3.0 V(Typ.)	-	-				

1/42

Absolute maximum ratings

Parameter	Symbol	Ratings	Unit
Maximum applied power voltage	VMAX	-0.3 ~ +6.5	V
Power dissipation	Pd	540* ¹	mW
Maximum junction temperature	TjMAX	+125	°C
Operational temperature range	Topr	-40 ~ +85	°C
Storage temperature range	Tstg	-55 ~ +125	°C

^(*1) When PCB (70 mm × 70 mm, thickness 1.6-mm glass epoxy) a standard ROHM board is implemented. Reduced to 5.6 mW/°Cwhen used at Ta=25°Cor higher.

•Recommended operating range (Do not exceed Pd.)

Parameter	Symbol	Ratings	Unit	
Input power supply voltage	Vin	1.7 ~ 5.5	V	
Maximum output current	IMAX	200	mA	

Recommended operating conditions

Parameter	Symbol Ratings				Unit	Conditions	
Farameter	Symbol	Min.	Тур.	Max.	Offic	Conditions	
Input capacitor	Cin	0.22(*2)	0.47	_	μF	A ceramic capacitor is recommended.	
Output capacitor	Со	0.22(*2)	0.47	_	μF	A ceramic capacitor is recommended.	

^(*2) Set the capacity value of the capacitor so that it does not fall below the minimum value, taking temperature characteristics, DC device characteristics, and change with time into consideration.

• Electrical characteristics (Ta=25°C, VIN=VOUT+1.0V (*3), STBY=VIN, Cin=0.47μF, Co=0.47μF, unless otherwise noted.)

Parameter		Symbol	Limits		Unit	Conditions		
i alametei		Symbol	Min.	Тур.	Max.	Offic	Conditions	
Overall Device								
			VOUT ×0.99		VOUT ×1.01		IOUT=10μA, VOUT≧2.5V	
Output Voltage		VOUT	VOUT -25mV	VOUT	VOUT +25m V	V	IOUT=10μA, VOUT < 2.5V	
Operating Current		IIN	-	35	60	μΑ	IOUT=0mA	
Operating Current (STBY))	ISTBY	-	-	1.0	μΑ	STBY=0V	
Ripple Rejection Ratio		RR	45	70	-	dB	VRR=-20dBv, fRR=1kHz, IOUT=10mA	
			-	280	540	mV	2.5V≦VOUT≦2.6V (VIN=0.98*VOUT,IOUT=200mA)	
Dropout Voltago		VSAT	-	260	500	mV	2.7V≦VOUT≦2.85V (VIN=0.98*VOUT,IOUT=200mA)	
Dropout Voltage		VOAI	-	240	460	mV	2.9V≦VOUT≦3.1V (VIN=0.98*VOUT,IOUT=200mA)	
			-	220	420	mV	3.2V≦VOUT≦3.4V (VIN=0.98*VOUT,IOUT=200mA)	
Line Regulation		VDL	-	2	20	mV	VIN=VOUT+1.0V to 5.5V ^(*4) , IOUT=10µA	
Load Regulation		VDLO	-	10	80	mV	IOUT=0.01mA to 100mA	
Over-current Protection (C	OCP)							
Limit Current		ILMAX	220	400	700	mA	Vo=VOUT*0.95	
Short Current		ISHORT	20	70	150	mA	Vo=0V	
Standby Block								
Discharge Resistor		RDSC	20	50	80	Ω	VIN=4.0V, STBY=0V, VOUT=4.0V	
STBY Pin Pull-down Current		ISTB	0.1	0.6	2.0	μΑ	STBY=1.5V	
STRV Control Voltage	ON	VSTBH	1.2	ı	5.5	V		
STBY Control Voltage	OFF	VSTBL	-0.3	-	0.3	٧		

^{*} This product does not have radiation-proof design.
(*3) VIN=2.5V for VOUT≦1.5V

●Electrical characteristics of each Output Voltage
(Ta=25°C, STBY=VIN, Cin=0.47μF, Co=0.47μF, unless otherwise noted.)

Output Voltage	Parameter	Min.	Тур.	Max.	Unit	Conditions
1.0. 1.21/		80	160	-	mA	VIN=1.7V
1.0, 1.2V	Maximum output current	200	-	-		VIN=2.1V
1.5V		60	120	-		VIN=1.8V
1.50		200	-	_		VIN=2.2V
1.8V, 1.85V, 1.9V, 2.0V, 2.1V	.9V, 2.0V, 2.1V		-	-		VIN=VOUT+0.6V

^(*4) VIN=2.5V to 5.5V for VOUT≦1.5V

●Block diagram, recommended circuit diagram, and pin configuration diagram

BU□□TD3WG

PIN No.	Symbol	Function
1	VIN	Power input
2	GND	Grounding
3	STBY	ON/OFF control of output voltage (High: ON, Low: OFF)
4	N.C.	NO CONNECT
5	VOUT	Voltage output

Fig.1 Recommended circuit diagram

●Input / Output terminal equivalent circuit schematic

5pin (VOUT)	2pin (GND)	3pin (STBY)	1pin (VIN)
VOUT VOUT		STBY STBY	-

Fig.2 Input / Output equivalent circuit

About input/output capacitor

It is recommended to place a capacitor as close as possible to the pins between the input terminal and GND or between the output terminal and GND.

The capacitor between the input terminal and GND becomes valid when source impedance increases or when wiring is long. The larger the capacity of the output capacitor between the output terminal and GND is, the better the stability and characteristics in output load fluctuation become. However, please check the status of actual implementation. Ceramic capacitors generally have variation, temperature characteristics, and direct current bias characteristics and the capacity value also decreases with time depending on the usage conditions. It is recommended to select a ceramic capacitor upon inquiring about detailed data of the related manufacturer.

● About the equivalent series resistance (ESR) of a ceramic capacitor Capacitors generally have ESR (equivalent series resistance) and it operates stably in the ESR-IOUT area shown on the right. Since ceramic capacitors, tantalum capacitors, electrolytic capacitors, etc. generally have different ESR, please check the ESR of the capacitor to be used and use it within the stability area range shown in the right graph for evaluation of the actual application.

Fig.3 Capacity – bias characteristics

Fig.4 Stability area characteristics (Example)

● Reference data BU12TD3WG (Ta=25°C unless otherwise specified.)

Fig.5. Output Voltage

Fig.6. Line Regulation

Fig.7. Circuit Current IGND

Fig.8. VSTBY - ISTBY

Fig.9. IOUT - IGND

Fig.10. Load Regulation

Fig.11. OCP Threshold

Fig.12. STBY Threshold

Fig.13. VOUT - Temp

Fig.14. IGND vs Temp

Fig.15. IGND - Temp (STBY)

● Reference data BU12TD3WG (Ta=25°C unless otherwise specified.)

Fig.16. Load Response

Fig.17. Load Response

Fig.18. Load Response

Fig.19. Load Response

Fig.20. Load Response

Fig.21. Load Response

Fig.22. Load Response

Fig.23. Load Response

● Reference data BU12TD3WG (Ta=25°C unless otherwise specified.)

Fig.24. Start Up Time lout=0mA

Fig.25. Start Up Time lout=200mA

Fig.26. Start Up Time (VIN=STBY) lout=0mA lout=0mA

Fig.27. Start Up Time (VIN=STBY) lout=200mA

Fig.28. Discharge Time

Fig.29. VIN Response

● Reference data BU15TD3WG (Ta=25°C unless otherwise specified.)

Fig.30. Output Voltage

Fig.31. Line Regulation

Fig.32. Circuit Current IGND

Fig.33. VSTBY - ISTBY

Fig.34. IOUT - IGND

Fig.35. Load Regulation

Fig.36. OCP Threshold

Fig.37. STBY Threshold

Fig.38. VOUT - Temp

Fig.39. IGND vs Temp

Fig.40. IGND vs Temp (STBY)

● Reference data BU15TD3WG (Ta=25°C unless otherwise specified.)

Fig.41. Load Response

Fig.42. Load Response

Fig.43. Load Response

Fig.44. Load Response

Fig.45. Load Response

Fig.46. Load Response

Fig.47. Load Response

Fig.48. Load Response

● Reference data BU15TD3WG (Ta=25°C unless otherwise specified.)

Fig.49. Start Up Time Iout=0mA

Fig.50. Start Up Time lout=200mA

Fig.51. Start Up Time (VIN=STBY) lout=0mA lout=0mA

Fig.52. Start Up Time (VIN=STBY) lout=200mA

Fig.53. Discharge Time

Fig.54. VIN Response

● Reference data BU18TD3WG (Ta=25°C unless otherwise specified.)

Fig.55. Output Voltage

Fig.56. Line Regulation

Fig.57. Circuit Current IGND

Fig.58. VSTBY - ISTBY

Fig.59. IOUT - IGND

Fig.60. Load Regulation

Fig.61. OCP Threshold

Fig.62. STBY Threshold

Fig.63. VOUT - Temp

Fig.64. IGND - Temp

Fig.65. IGND - Temp (STBY)

● Reference data BU18TD3WG (Ta=25°C unless otherwise specified.)

Fig.66. Load Response

Fig.67. Load Response

Fig.68. Load Response

Fig.69. Load Response

Fig.70. Load Response

Fig.71. Load Response

Fig.72. Load Response

Fig.73. Load Response

● Reference data BU18TD3WG (Ta=25°C unless otherwise specified.)

Fig.74. Start Up Time lout=0mA

Fig.75. Start Up Time lout=200mA

Fig.76. Start Up Time (VIN=STBY) lout=0mA lout=0mA

Fig.77. Start Up Time (VIN=STBY) lout=200mA

Fig.78. Discharge Time

Fig.79. VIN Response

● Reference data BU19TD3WG (Ta=25°C unless otherwise specified.)

Fig.80. Output Voltage

Fig.81. Line Regulation

Fig.82. Circuit Current IGND

Fig.83. VSTBY - ISTBY

Fig.84. IOUT - IGND

Fig.85. Load Regulation

Fig.86. OCP Threshold

Fig.87. STBY Threshold

Fig.88. VOUT - Temp

Fig.89. IGND - Temp

Fig.90. IGND - Temp (STBY)

● Reference data BU19TD3WG (Ta=25°C unless otherwise specified.)

Fig.91. Load Response

Fig.92. Load Response

Fig.93. Load Response

Fig.94. Load Response

Fig.95. Load Response

Fig.96. Load Response

Fig.97. Load Response

Fig.98. Load Response

● Reference data BU19TD3WG (Ta=25°C unless otherwise specified.)

Fig.99. Start Up Time lout=0mA

Fig.100. Start Up Time lout=200mA

Fig.101. Start Up Time (VIN=STBY) lout=0mA

Fig.102. Start Up Time (VIN=STBY) lout=200mA

Fig.103. Discharge Time

Fig.104. VIN Response

● Reference data BU25TD3WG (Ta=25°C unless otherwise specified.)

Fig.105. Output Voltage

Fig.106. Line Regulation

Fig.107. Circuit Current IGND

Fig.108. VSTBY - ISTBY

Fig.109. IOUT - IGND

Fig.110. Load Regulation

Fig.111. Dropout Voltage

Fig.112. OCP Threshold

Fig.113. STBY Threshold

Fig.114. VOUT - Temp

Fig.115. IGND - Temp

Fig.116. IGND - Temp (STBY)

● Reference data BU25TD3WG (Ta=25°C unless otherwise specified.)

Fig.117. Load Response

Fig.118. Load Response

Fig.119. Load Response

Fig.120. Load Response

Fig.121. Load Response

Fig.122. Load Response

Fig.123. Load Response

Fig.124. Load Response

● Reference data BU25TD3WG (Ta=25°C unless otherwise specified.)

lout=0mA

Fig.126. Start Up Time iout=200mA

Fig.127. Start Up Time (VIN=STBY) lout=0mA Iout=0mA

Fig.128. Start Up Time (VIN=STBY) lout=200mA

Fig.129. Discharge Time

Fig.130. VIN Response

● Reference data BU26TD3WG (Ta=25°C unless otherwise specified.)

Fig.131. Output Voltage

Fig.132. Line Regulation

Fig.133. Circuit Current IGND

Fig.134. VSTBY - ISTBY

Fig.135. IOUT - IGND

Fig.136. Load Regulation

Fig.137. Dropout Voltage

Fig.138. OCP Threshold

Fig.139. STBY Threshold

Fig.140. VOUT - Temp

Fig.141. IGND - Temp

Fig.142. IGND - Temp (STBY)

● Reference data BU26TD3WG (Ta=25°C unless otherwise specified.)

Fig.143. Load Response

Fig.144. Load Response

Fig.145. Load Response

Fig.146. Load Response

Fig.147. Load Response

Fig.148. Load Response

Fig.149. Load Response

Fig.150. Load Response

● Reference data BU26TD3WG (Ta=25°C unless otherwise specified.)

lout=0mA

Fig.152. Start Up Time iout=200mA

Fig.153. Start Up Time (VIN=STBY) lout=0mA Iout=ÓmA

Fig.154. Start Up Time (VIN=STBY) lout=200mA

Fig.155. Discharge Time

Fig.156. VIN Response

● Reference data BU27TD3WG (Ta=25°C unless otherwise specified.)

Fig.157. Output Voltage

Fig.158. Line Regulation

Fig.159. Circuit Current IGND

Fig.160. VSTBY - ISTBY

Fig.161. IOUT - IGND

Fig.162. Load Regulation

Fig.163. Dropout Voltage

Fig.164. OCP Threshold

Fig.165. STBY Threshold

Fig.166. VOUT - Temp

Fig.167. IGND - Temp

Fig.168. IGND - Temp (STBY)

● Reference data BU27TD3WG (Ta=25°C unless otherwise specified.)

Fig.169. Load Response

Fig.170. Load Response

Fig.171. Load Response

Fig.172. Load Response

Fig.173. Load Response

Fig.174. Load Response

Fig.175. Load Response

Fig.176. Load Response

● Reference data BU27TD3WG (Ta=25°C unless otherwise specified.)

Fig.177. Start Up Time Iout=0mA

Fig.178. Start Up Time lout=200mA

Fig.179. Start Up Time (VIN=STBY) lout=0mA lout=0mA

Fig.180. Start Up Time (VIN=STBY) lout=200mA

Fig.181. Discharge Time

Fig.182. VIN Response

● Reference data BU28TD3WG (Ta=25°C unless otherwise specified.)

Fig.183. Output Voltage

Fig.184. Line Regulation

Fig.185. Circuit Current IGND

Fig.186. VSTBY - ISTBY

Fig.187. IOUT - IGND

Fig.188. Load Regulation

Fig.189. Dropout Voltage

Fig.190. OCP Threshold

Fig.191. STBY Threshold

Fig.192. VOUT - Temp

Fig.193. IGND - Temp

Fig.194. IGND - Temp (STBY)

● Reference data BU28TD3WG (Ta=25°C unless otherwise specified.)

Fig.195. Load Response

Fig.196. Load Response

Fig.197. Load Response

Fig.198. Load Response

Fig.199. Load Response

Fig.200. Load Response

Fig.201. Load Response

Fig.202. Load Response

● Reference data BU28TD3WG (Ta=25°C unless otherwise specified.)

Fig.203. Start Up Time lout=0mA

Fig.204. Start Up Time lout=200mA

Fig.205. Start Up Time (VIN=STBY) lout=0mA lout=0mA

Fig.206. Start Up Time (VIN=STBY) lout=200mA

Fig.207. Discharge Time

Fig.208. VIN Response

● Reference data BU30TD3WG (Ta=25°C unless otherwise specified.)

Fig.209. Output Voltage

Fig.210. Line Regulation

Fig.211. Circuit Current IGND

Fig.212. VSTBY - ISTBY

Fig.213. IOUT - IGND

Fig.214. Load Regulation

Fig.215. Dropout Voltage

Fig.216. OCP Threshold

Fig.217. STBY Threshold

Fig.218. VOUT - Temp

Fig.219. IGND - Temp

Fig.220. IGND - Temp (STBY)

● Reference data BU30TD3WG (Ta=25°C unless otherwise specified.)

Fig.221. Load Response

Fig.222. Load Response

Fig.223. Load Response

Fig.224. Load Response

Fig.225. Load Response

Fig.226. Load Response

Fig.227. Load Response

Fig.228. Load Response

● Reference data BU30TD3WG (Ta=25°C unless otherwise specified.)

Fig.229. Start Up Time lout=0mA

Fig.230. Start Up Time lout=200mA

Fig.231. Start Up Time (VIN=STBY) lout=0mA lout=0mA

Fig.232. Start Up Time (VIN=STBY) lout=200mA

Fig.233. Discharge Time

Fig.234. VIN Response

● Reference data BU31TD3WG (Ta=25°C unless otherwise specified.)

Fig.235. Output Voltage

Fig.236. Line Regulation

Fig.237. Circuit Current IGND

Fig.238. VSTBY - ISTBY

Fig.239. IOUT - IGND

Fig.240. Load Regulation

Fig.241. Dropout Voltage

Fig.242. OCP Threshold

Fig.243. STBY Threshold

Fig.244. VOUT - Temp

Fig.245. IGND - Temp

Fig.246. IGND - Temp (STBY)

● Reference data BU31TD3WG (Ta=25°C unless otherwise specified.)

Fig.247. Load Response

Fig.248. Load Response

Fig.249. Load Response

Fig.250. Load Response

Fig.251. Load Response

Fig.252. Load Response

Fig.253. Load Response

Fig.254. Load Response

● Reference data BU31TD3WG (Ta=25°C unless otherwise specified.)

lout=0mA

Fig.256. Start Up Time lout=200mA

Fig.257. Start Up Time (VIN=STBY) lout=0mA lout=ÓmA

Fig.258. Start Up Time (VIN=STBY) lout=200mA

Fig.259. Discharge Time

Fig.260. VIN Response

● Reference data BU33TD3WG (Ta=25°C unless otherwise specified.)

Fig.261. Output Voltage

Fig.262. Line Regulation

Fig.263. Circuit Current IGND

Fig.264. VSTBY - ISTBY

Fig.265. IOUT - IGND

Fig.266. Load Regulation

Fig.267. Dropout Voltage

Fig.268. OCP Threshold

Fig.269. STBY Threshold

Fig.270. VOUT - Temp

Fig.271. IGND - Temp

Fig.272. IGND - Temp (STBY)

● Reference data BU33TD3WG (Ta=25°C unless otherwise specified.)

Fig.273. Load Response

Fig.274. Load Response

Fig.275. Load Response

Fig.276. Load Response

Fig.277. Load Response

Fig.278. Load Response

Fig.279. Load Response

Fig.280. Load Response

● Reference data BU33TD3WG (Ta=25°C unless otherwise specified.)

Fig.281. Start Up Time Iout=0mA

Fig.282. Start Up Time lout=200mA

Fig.283. Start Up Time (VIN=STBY) lout=0mA lout=0mA

Fig.284. Start Up Time (VIN=STBY) lout=200mA

Fig.285. Discharge Time

Fig.286. VIN Response

About power dissipation (Pd)

As for power dissipation, an approximate estimate of the heat reduction characteristics and internal power consumption of IC are shown, so please use these for reference. Since power dissipation changes substantially depending on the implementation conditions (board size, board thickness, metal wiring rate, number of layers and through holes, etc.), it is recommended to measure Pd on a set board. Exceeding the power dissipation of IC may lead to deterioration of the original IC performance, such as causing operation of the thermal shutdown circuit or reduction in current capability. Therefore, be sure to prepare sufficient margin within power dissipation for usage.

Calculation of the maximum internal power consumption of IC (PMAX)

PMAX=(VIN-VOUT)×IOUT(MAX.) (VIN: Input voltage VOUT: Output voltage IOUT(MAX): Maximum output current)

OMeasurement conditions

Fig.287. SSOP5 Power dissipation heat reduction characteristics (Reference)

● Device Name and Marking

$\mathsf{Device}\;\mathsf{Name} \colon BU\underline{XX}\mathsf{TD3WG}$

а

Symbol	Desci	Montring	
	XX	Output Voltage	Marking
	10	1.0V typ.	F0
	12	1.2V typ.	F1
	15	1.5V typ.	F2
	18	1.8V typ.	F3
	1J	1.85V typ.	F4
	19	1.9V typ.	F5
	20	2.0V typ.	F6
	21	2.1V typ.	F7
	25	2.5V typ.	F8
а	26	2.6V typ.	F9
	27	2.7V typ.	G0
	28	2.8V typ.	G1
	2J	2.85V typ.	G2
	29	2.9V typ.	G3
	30	3.0V typ.	G4
	31	3.1V typ.	G5
	32	3.2V typ.	G6
	33	3.3V typ.	G7
	34	3.4V typ.	G8

Other notes

- About absolute maximum rating

Breakage may occur when absolute maximum ratings such as applied voltage and operating temperature range are exceeded. Short mode or open mode cannot be specified at occurrence of a break, so please prepare physical safety measures (e.g., fuse) if such special mode in which the absolute maximum rating is exceeded can be assumed.

About GND potential

Please be sure that the potential of the GND terminal is the lowest in any operating condition.

- About thermal design

Please provide thermal design with sufficient margin, taking power dissipation (Pd) in actual usage conditions into consideration.

- About short between pins and misattachment

Please be careful regarding the IC direction and misalignment at attachment onto a printed circuit board. Misattachment may cause a break of IC. Short caused by foreign matter between outputs, output and power supply, or GNDs may also lead to a break.

- About operation in a strong electromagnetic field

Please note that usage in a strong electromagnetic field may cause malfunction.

- About common impedance

Please give due consideration to wiring of the power source and GND by reducing common-mode ripple or making ripple as small as possible (e.g., making the wiring as thick and short as possible, or reducing ripple by L-C), etc.

- About STBY terminal voltage

Set STBY terminal voltage to 0.3 V or less to put each channel into a standby state and to 1.2 V or more to put each channel into an operating state. Do not fix STBY terminal voltage to 0.3 V or more and 1.2 V or less or do not lengthen the transition time. This may cause malfunction or failure. When shorting the VIN terminal and STBY terminal for usage, the status will be "STBY=VIN=LOW" at turning the power OFF, and discharge of the VOUT terminal cannot operate, which means voltage may remain for a certain time in the VOUT terminal. Since turning the power ON again in this state may cause overshoot, turn the power ON for use after the VOUT terminal is completely discharged.

- About over current protection circuit

Output has a built-in over current protection circuit, which prevents IC break at load short. Note that this protection circuit is effective for prevention of breaks due to unexpected accidents. Please avoid usage by which the protection circuit operates continuously.

- About thermal shutdown

Output is OFF when the thermal circuit operates since a temperature protection circuit is built in to prevent thermal breakdown. However, it recovers when the temperature returns to a certain temperature. The thermal circuit operates at emergency such as overheating of IC. Since it is prepared to prevent IC breakdown, please do not use it in a state in which protection works.

About reverse current

For applications on which reverse current is assumed to flow into IC, it is recommended to prepare a path to let the current out by putting a bypass diode between the VIN-VOUT terminals.

Fig.289. Example of bypass diode connection

About testing on a set board

When connecting a capacitor to a terminal with low impedance for testing on a set board, please be sure to discharge for each process since IC may be stressed. As a countermeasure against static electricity, prepare grounding in the assembly process and take sufficient care in transportation and storage. In addition, when connecting a capacitor to a jig in a testing process, please do so after turning the power OFF and remove it after turning the power OFF.

Ordering part number

SSOP5

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/