<u>Dashboard</u> / My courses / <u>Graph Theory-HK3-0405</u> / <u>Tuần 6 - 7 - Đường đi ngắn nhất trên đồ thị</u> / <u>Bài tập 2 - Thuật toán Moore - Dijkstra (chiều dài)</u>

Started on	Saturday, 21 June 2025, 4:50 PM
State	Finished
Completed on	Saturday, 21 June 2025, 9:05 PM
Time taken	4 hours 14 mins
Marks	2.00/2.00
Grade	10.00 out of 10.00 (100 %)

Question **1**Correct
Mark 1.00 out of

1.00

Viết chương trình đọc một **đơn đồ thị có hướng, có trọng số không âm** từ bàn phím và in ra chiều dài đường đi ngắn nhất từ đỉnh 1 đến đỉnh n.

Đầu vào (Input)

Dữ liệu đầu vào được nhập từ bàn phím với định dạng:

- Dòng đầu tiên chứa 2 số nguyên n và m $(1 \le n < 100; 0 \le m < 500)$
- m dòng tiếp theo mỗi dòng chứa 3 số nguyên u, v, w mô tả cung (u, v) có trọng số w $(0 \le w \le 100)$.

Đầu ra (Output)

- In ra màn hình chiều dài của đường đi ngắn nhất từ 1 đến n. Nếu không có đường đi từ 1 đến n, in ra -1.
- Xem thêm ví dụ bên dưới.

Gợi ý

• Sau khi kết thúc thuật toán nếu pi[u] = oo thì có nghĩa là không có đường đi từ s đến n.

For example:

Input			Result
3	3		8
1	2	3	
2	3	5	
1	3	10	
3	1		-1
1	2	5	
6	9		20
1	2	7	
1	3	9	
1	5	14	
2	3	10	
2	4	15	
3	4	11	
3	5	2	
4	6	6	
5	6	9	

Answer: (penalty regime: 10, 20, ... %)

```
1
   #include <stdio.h>
 2
   #define MAX_N 100
   #define NO_EDGE -1
 3
   #define oo 99999
   int mark[MAX_N];
   int pi[MAX_N], p[MAX_N];
 7
    int path[MAX_N];
 8
 9
10 v typedef struct{
        int n,m;
11
12
        int W[MAX_N][MAX_N];
13
    }Graph;
15 ▼
    void init_graph (Graph *pG, int n){
16
        pG->n = n;
17
        pG->m = 0;
18 •
        for (int u = 1; u <= n; u++){
19 •
            for (int v = 1; v \le n; v++){
20
                pG->W[u][v] = NO\_EDGE;
21
            }
22
        }
```

	Input	Expected	Got	
~	3 3	8	8	~
	1 2 3			
	2 3 5			
	1 3 10			
~	3 1	-1	-1	~
	1 2 5			
~	6 9	20	20	~
	1 2 7			
	1 3 9			
	1 5 14			
	2 3 10			
	2 4 15			
	3 4 11			
	3 5 2			
	4 6 6			
	5 6 9			
~	6 7	-1	-1	~
	1 2 7			
	1 3 9			
	1 5 14			
	2 3 10			
	2 4 15			
	3 4 11			
	3 5 2			
~	6 9	21	21	~
	1 2 7			
	1 3 9			
	1 5 14			
	2 3 10			
	2 4 15			
	3 4 11			
	3 5 3			
	4 6 6			
	5 6 9			

Passed all tests! ✓

Question author's solution (C):

```
#include <stdio.h>
 2
 3
   #define MAXN 100
   #define oo 999999
 5
   #define NO_EDGE -1
 6
 7
 8 | typedef struct {
 9
        int n, m;
        int W[MAXN][MAXN];
10
11
   } Graph;
12
13 void init_graph(Graph *pG, int n) {
14
        pG->n = n;
15
        pG->m = 0;
16
        for (int u = 1; u <= n; u++)</pre>
17
            for (int v = 1; v <= n; v++)
18
                pG->W[u][v] = NO_EDGE;
19
20
21 void add edge(Graph *pG, int u, int v, int w) {
```

22 •

Correct

Marks for this submission: 1.00/1.00.

 \triangleright

Question **2**Correct

Mark 1.00 out of

1.00

Viết chương trình đọc một **đơn đồ thị vô hướng, có trọng số không âm** từ bàn phím và in ra chiều dài đường đi ngắn nhất từ đỉnh 1 đến đỉnh n.

Đầu vào (Input)

Dữ liệu đầu vào được nhập từ bàn phím với định dạng:

- Dòng đầu tiên chứa 2 số nguyên n và m $(1 \le n < 100; 0 \le m < 500)$
- m dòng tiếp theo mỗi dòng chứa 3 số nguyên u, v, w mô tả cung (u, v) có trọng số w $(0 \le w \le 100)$.

Đầu ra (Output)

- In ra màn hình chiều dài của đường đi ngắn nhất từ 1 đến n. Nếu không có đường đi từ 1 đến n, in ra -1.
- Xem thêm ví dụ bên dưới.

Gợi ý

• Sau khi kết thúc thuật toán nếu pi[u] = oo thì có nghĩa là không có đường đi từ s đến n.

For example:

Input		ut	Result
3	3		7
2	1	3	
3	2	4	
1	3	10	
3	1		-1
3	2	5	
6	9		21
1	2	7	
3	1	9	
1	5	14	
2	3	10	
4	2	15	
3	4	11	
3	5	2	
6	4	6	
5	6	10	

Answer: (penalty regime: 10, 20, ... %)

```
1
   #include <stdio.h>
 2
    #define MAX_N 100
   #define NO_EDGE -1
 3
    #define oo 99999
    int mark[MAX_N];
    int pi[MAX_N], p[MAX_N];
 6
 7
    int path[MAX_N];
 8
 9
10 *
    typedef struct{
        int n,m;
11
12
        int W[MAX_N][MAX_N];
13
    }Graph;
15 ▼
    void init_graph (Graph *pG, int n){
16
        pG->n = n;
17
        pG->m = 0;
18 •
        for (int u = 1; u <= n; u++){
19 •
            for (int v = 1; v \le n; v++){
20
                pG->W[u][v] = NO\_EDGE;
21
            }
22
```

	Input	Expected	Got	
~	3 3 2 1 3 3 2 4 1 3 10	7	7	~
	1 3 10			
~	3 1 3 2 5	-1	-1	~
~	6 9 1 2 7 3 1 9 1 5 14 2 3 10 4 2 15 3 4 11 3 5 2 6 4 6 5 6 10	21	21	~
~	6 7 1 2 7 1 3 9 1 5 14 2 3 10 2 4 15 3 4 11 5 3 2	-1	-1	~
*	6 9 2 1 5 1 3 9 5 1 14 2 3 10 4 2 16 3 4 11 3 5 3 4 6 6 6 5 8	20	20	*

Passed all tests! ✓

Question author's solution (C):

```
#include <stdio.h>
 2
 3
   #define MAXN 100
   #define oo 999999
 5
   #define NO_EDGE -1
 6
 7
 8 | typedef struct {
 9
        int n, m;
        int W[MAXN][MAXN];
10
11
   } Graph;
12
13 void init_graph(Graph *pG, int n) {
14
        pG->n = n;
15
        pG->m = 0;
16
        for (int u = 1; u <= n; u++)</pre>
17
            for (int v = 1; v <= n; v++)
18
                pG->W[u][v] = NO_EDGE;
19
20
21 void add edge(Graph *pG, int u, int v, int w) {
```

Correct

Marks for this submission: 1.00/1.00.

Bài tập 1 - Thuật toán Moore
Dijkstra (pi và p)

Bài tập 3 - Thuật toán Moore
Dijkstra (đường đi) ►