FEUILLE D'EXERCICE 4

Exercice 1. Trouver la solution, pour $t \ge 0$, des équations suivantes :

$$\begin{cases} \frac{\partial u}{\partial t} - u \frac{\partial u}{\partial x} = 0\\ u(0, x) = -x + 1 \end{cases},$$

$$\begin{cases} \frac{\partial u}{\partial t} + (1 - u)\frac{\partial u}{\partial x} = 0\\ u(0, x) = 2x \end{cases}.$$

Exercice 2. Considérons l'équation suivante :

$$x_1 \frac{\partial u}{\partial x_1} + x_2 \frac{\partial u}{\partial x_2} = u .$$

- (1) Vérifier que la fonction $u(x_1, x_2) = \sqrt{x_1^2 + x_2^2}$ est solution de l'équation.
- (2) Montrer que les courbes caractéristiques pour l'équation sont des demi-droites à partir de l'origine.
- (3) Observer que toute courbe caractéristique intersect le cercle

$$\mathbb{S}^1 = \{(x_1, x_2) : x_1^2 + x_2^2 = 1\}$$

exactement en un point.

- (4) En utilisant la méthode des caractéristiques, déterminer la solution qui satisfait la condition initiale $u(x_1, x_2) = g(x_1, x_2)$ pour tour point $(x_1, x_2) \in \mathbb{S}^1$, pour une fonction $g : \mathbb{S}^1 \to \mathbb{R}$.
- (5) Vérifier que, en coordonnées polaires (r, θ) , l'équation est écrite comme

$$r\frac{\partial u}{\partial r} = u .$$

(6) Vérifier que la solution trouvée au point (4) est, en coordonnées polaires, solution de l'équation au point (5).

Exercice 3. Considérons l'équation d'ondes :

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \ .$$

- (1) Prouver que l'espace des solutions est un espace vectoriel.
- (2) Vérifier que les fonctions

$$u_1(x,t) = A_1 \cos(kx - \omega t)$$
 $u_2(x,t) = A_2 \sin(kx - \omega t)$

sont des solutions de l'équation d'ondes, pour tout $A_1, A_2 \in \mathbb{R}$, si k et ω satisfont la relation $\omega = \pm ka$.

- (3) Calculer la position initiale et la vitesse initiale de la corde correspondante aux solutions du point (2), c'est-à-dire, les fonctions $u_i(x,0)$ et $u_t(x,0)$ (i=1,2).
- (4) Dessiner la position de la corde, correspondante aux solutions u_1 et u_2 (en supposant $A_1 = A_2 = 1$ et $k = \omega = a = 1$), aux temps $t = 0, \pi/2, \pi, 2\pi$.