DAA Unit 1 Important

1. Algorithm design and analysis process

2. Big Oh, Big omega and Big theta formal definitions with example each

Big Oh Notation(O)

A function t(n) is said to be O(g(n)), denoted t(n) ∈ O(g(n)), if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some non negative integer n₀ Such that t(n) ≤ c.g(n) for all n≥ n₀

Example:

Let
$$t(n)=100n+5$$
. Express $t(n)$ using Big-Oh(O)
 $t(n) \le c.g(n)$ for all $n \ge n_0$
 $100n+5 \le 101n$ for $n \ge 5$
 $c=101$, $g(n)=n$, $n_0=5$
 $\therefore t(n) \in O(g(n))$

Big Omega Notation(Ω)

• A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some non negative integer n_0 Such that $t(n) \ge c \cdot g(n)$ for all $n \ge n_0$

Let $t(n)=10n^3+5$. Express t(n) using Omega(Ω) $t(n) \ge c.g(n)$ for all $n \ge n_0$ $10n^3+5 \le 10n^3$ for $n \ge 0$ c=10, $g(n)=n^3$, $n_0=0$ $\therefore t(n) \in \Omega(g(n^3))$

Big Theta Notation(θ)

• A function t(n) is said to be in $\theta(g(n))$, denoted $t(n) \in \theta(g(n))$, if t(n) is bounded both above and below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c_1 and c_2 and some non negative integer n_0 Such that $c_2 \cdot g(n) \le t(n) \le c_1 \cdot g(n)$ for all $n \ge n_0$

For example, let us prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$. First, we prove the right inequality (the upper bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2 \quad \text{for all } n \ge 0.$$

Second, we prove the left inequality (the lower bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n \text{ (for all } n \ge 2) = \frac{1}{4}n^2.$$

Hence, we can select $c_2 = \frac{1}{4}$, $c_1 = \frac{1}{2}$, and $n_0 = 2$.

- 3. General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms
- Decide on a parameter (or parameters) indicating an input's size.

- Identify the algorithm's basic operation. (As a rule, it is located in the innermost loop.)
- Check whether the number of times the basic operation is executed depends only on the size of an input. If it also depends on some additional property, the worst-case, averagecase, and, if necessary, best-case efficiencies have to be investigated separately.
- Set up a sum expressing the number of times the algorithm's basic operation is executed
- Using standard formulas and rules of sum manipulation, either find a closed form formula for the count or, at the very least, establish its order of growth.
- 4. General Plan for Analyzing the Time Efficiency of Recursive Algorithms
- Decide on a parameter (or parameters) indicating an input's size
- Identify the algorithm's basic operation
- Check whether the number of times the basic operation is executed can vary on different inputs of the same size; if it can, the worst-case, average-case, and best-case efficiencies must be investigated separately.
- Set up a recurrence relation, with an appropriate initial condition, for the number of times the basic operation is executed

Solve the recurre	nce or, at leas	t, ascertain th	ne order of į	growth