MUSIC, Root MUSIC and MVDR Algorithms

João Vitor de O. Fraga

Universidade Federal do Ceará - Brasil vitor.oliveira@gtel.ufc.br

27 de fevereiro de 2025

Summary

- Introduction
- 2 System Model
 - System Standards
 - MUltiple SIgnal Classification (MUSIC)
 - Root MUSIC
 - Minimum Variance Distortionless Response (MVDR)
- 3 Numerical Results

Presentation Objectives

- Direction of Arrival (DoA) is a fundamental problem in array signal processing;
- Several algorithms have been developed to improve DoA estimation accuracy.

In this presentation, we will discuss:

- MUSIC algorithm;
- 2 Root MUSIC algorithm;
- MVDR beamformer.

System standards

Consider a Uniform Linear Array (ULA) with M antennas, spaced by Δ .

- Δ : Spacing between antennas;
- M: Number of antennas;
- d: Direction of arrival of the signal.

The time delay at each antenna due to signal arrival is given by:

$$\tau_M(\theta_i) = (M-1)\frac{\Delta \operatorname{sen}\theta_i}{c}$$
(1)

The spatial frequency associated with the direction θ_i is:

$$\mu_i = -\frac{2\pi f_c}{c} \Delta \operatorname{sen}(\theta_i) \tag{2}$$

Assuming $\Delta = \frac{\lambda}{2}$, we get:

$$\mu_i = -\pi \operatorname{sen}(\theta_i) \tag{3}$$

System standards

We define the steering matrix A_{ULA} , as:

$$\mathbf{A}_{\mathbf{ULA}} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ e^{j\mu_1} & e^{j\mu_2} & \cdots & e^{j\mu_d} \\ e^{j2\mu_1} & e^{j2\mu_2} & \cdots & e^{j2\mu_d} \\ \vdots & \vdots & \ddots & \vdots \\ e^{j(M-1)\mu_1} & e^{j(M-1)\mu_2} & \cdots & e^{j(M-1)\mu_d} \end{bmatrix} \in \mathbb{C}^{M \times d}$$
(4)

With this matrix $\mathbf{A}_{\mathsf{ULA}}$, we can write our received signal model as:

$$X(t) = A_{ULA} \cdot S(t) + N(t)$$
 (5)

where:

- $\mathbf{X} \in \mathbb{C}^{M \times t}$: Received signal at the antenna array.
- $\mathbf{A}_{\mathsf{ULA}} \in \mathbb{C}^{M \times d}$: Steering matrix.
- $\mathbf{S} \in \mathbb{C}^{d \times t}$: Source signals.
- $\mathbf{N} \in \mathbb{C}^{M \times t}$: Additive noise.

MUSIC

The MUSIC spectrum is defined as:

$$S_{\text{MUSIC}}(\theta) = \frac{\mathbf{a}^{H}(\theta)\mathbf{a}(\theta)}{\mathbf{a}^{H}(\theta)\mathbf{P_{o}a}(\theta)},$$
 (6)

Where:

- $P_o = U_o U_o^H$ is the projector onto the noise subspace \mathcal{N} ;
- U_o : Noise subspace contains the eigenvectors associated with the smallest eigenvalues of the correlation matrix R.
- $a(\theta)$: Steering vector describes the response of the antenna array to an incoming signal at angle θ .

Root MUSIC

Root MUSIC Polynomial:

$$P_{\text{Root-MUSIC}}(\theta) = \frac{1}{\mathbf{a}^H(\theta)\mathbf{Ca}(\theta)},$$
 (7)

where $\mathbf{C} = \mathbf{P_o}$ is the noise subspace correlation matrix. Polynomial Formulation:

$$D(z) = \sum_{l=-M+1}^{M-1} c_l z^l,$$
 (8)

where $z = e^{-jkd\sin\theta}$ and the coefficients c_l are the sum of the diagonal elements of \mathbf{C} .

- The roots of D(z) closest to the unit circle correspond to the DoA estimates.
- The estimated angles are obtained from:

$$\theta_i = \sin^{-1}\left(\frac{1}{kd}\arg(z_i)\right). \tag{9}$$

MVDR Beamforming

MVDR Weight Computation:

$$\mathbf{w}_{\text{MVDR}} = \frac{\mathbf{R}^{-1} \mathbf{a}(\theta_0)}{\mathbf{a}^{H}(\theta_0) \mathbf{R}^{-1} \mathbf{a}(\theta_0)},$$
 (10)

where:

- \mathbf{w}_{MVDR} is the weight vector;
- $\mathbf{R} = \mathbb{E}[\mathbf{X}\mathbf{X}^H]$ is the covariance matrix of the received signal;
- $\mathbf{a}(\theta_0)$ is the steering vector of the desired direction θ_0 .

Beampattern Calculation:

$$B(\theta) = \mathbf{w}_{\text{MVDR}}^{H} \mathbf{a}(\theta), \tag{11}$$

where $B(\theta)$ represents the beam pattern formed by the array.

MUSIC

The angles set were: $[\theta_1=-30,\theta_2=60]$.

MUSIC - Signal-to-Noise Ratio (SNR) variation

Figura: MUSIC Spectrum

MUSIC - Snapshot Variation

Figura: MUSIC Spectrum

MUSIC - RMSE

Parameter	Value
Number of iterations	5000
Snapshot	500
Variation of θ	$\mathcal{U}[-60, 60]$
Variation of SNR	$\{-5,0,5,10,15,20\}$

Root Mean Square Error (RMSE) formula is defined by:

$$RMSE(\hat{\phi}_r) = \sqrt{\mathbb{E}[|\phi_r - \hat{\phi}_r|^2]}.$$
 (12)

MUSIC - RMSE

Figura: RMSE MUSIC

Root MUSIC

It was defined $\theta_1 = -4, \theta_2 = 30$. And we found $\hat{\theta}_1 = -4.33, \hat{\theta}_2 = 30.29$.

Figura: Root MUSIC

Root MUSIC - RMSE

Figura: RMSE at Root MUSIC

MVDR Beampattern

Figura: MVDR Beampattern.

MVDR Beampattern

Figura: MVDR Beampattern with zoom.

Thank you! Questions?

18 / 18