

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH

Faculty of Science & Technology Department of Mathematics

MAT1205: Integral Calculus and Ordinary Differential Equations

Assignment 1

1. Evaluate the followings integrals:

(a)
$$\int_{2}^{4} \int_{0}^{3} (x+y) dx dy$$

(b)
$$\int_0^1 \int_x^y xy \, dy dx$$

(c)
$$\int_0^1 \int_{y^2}^y (x^2y + xy^2) dx dy$$

(d)
$$\int_{1}^{2} \int_{1}^{y} (\frac{1}{x} + \frac{1}{y}) dx dy$$

(e)
$$\int_0^1 \int_0^{\sqrt{x}} y e^{x^2} dy dx$$

(f)
$$\int_0^{\sqrt{\frac{\pi}{2}}} \int_0^{x^2} x \cos y \, dy \, dx$$

(g)
$$\int_0^1 \int_0^{x^2} (x^2 + y) dy dx$$

(h)
$$\int_0^{\pi/2} \int_0^2 r \sqrt{4 - r^2} \ dr \ d\theta$$

(i)
$$\int_0^1 \int_{-x}^x (x^2 - y^2) dy dx$$

(j)
$$\int_0^{\frac{\pi}{2}} \int_0^{\sin\theta} r \cos\theta \, dr d\theta$$

2. Evaluate the following integrals:

- (a) $\iint_R (xy y^2) dA$ where R is rectangle whose vertices are (-1,0), (0,0), (0,1), and (-1,1).
- (b) $\iint_R (2x + y) dA$ over the rectangle $R = \{(x, y) | 3 \le x \le 5, 1 \le y \le 2\}$.
- (c) $\iint_R (x^2 + y^2) dA$ where R is rectangle whose vertices are (0,1), (1,1), (1,2) and (0,2).
- (d) $\iint_R x \, dA$ over the triangular region R enclosed by the lines x+2y=2, x=0 and y=0.
- 3. Sketch the region and **using** double integrals, find the finite area bounded by the following curve (s).

(a)
$$y = 2x - x^2$$
 and x-axis

(b)
$$x^2 = 4y$$
, $8y = x^2 + 16$

(c)
$$y = -x$$
, $x = 0$, $y = 2$

4. Evaluate the following integrals:

(a)
$$\int_{1}^{2} \int_{0}^{1} \int_{-1}^{1} (x^{2} + y^{2} + z^{2}) dx dy dz$$

(b)
$$\int_0^1 \int_0^{y^2} \int_0^{x+y} x \ dz dx dy$$

(c)
$$\int_0^1 \int_0^x \int_0^{x-y} x dz dy dx$$

(d)
$$\int_{0}^{2} \int_{-1}^{y^{2}} \int_{-1}^{z} yz dx dz dy$$

(e)
$$\int_0^{2\pi} \int_0^2 \int_0^{4-r^2} zr \ dz dr d\theta$$

(f)
$$\int_0^{2\pi} \int_0^{\pi} \int_0^a r^3 \sin\theta \ dr d\theta d\varphi$$

- 5. Find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ . Where $D = \{(x,y) | 0 \le x \le 1, \ 0 \le y \le 2\}$ and $\rho(x,y) = y^2$.
- 6. Find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ . Where $D = \{(x,y) | 0 \le x \le 1, \ 0 \le y \le 1\}$ and $\rho(x,y) = 2x$.

Instruction of submission:

- Write down the answer on paper.
- Scan and make one pdf file.

or

- Take photo and compile all photos in one word file.
- Give the name of the file (Section, Name, ID).
- Submit assignment in the assignment section of Microsoft TEAMS and turn on.
- Submit by 21 August (Friday).