1ª LISTA DE EXERCÍCIOS PARTE 6

1.

a)

Figura 1. Questão 1, letra A Fonte: Própria

Input	Result
01	Accept
001	Reject
0011	Accept
00111	Reject
0101	Reject
000111	Accept

Figura 2. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra A Fonte: Própria

Figura 3. Questão 1, letra B Fonte: Própria

Input	Result
10000	Reject
01010	Accept
000110	Accept
010100111	Reject
01110000	Reject
00001001	Accept

Figura 4. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra B Fonte: Própria

Figura 5. Questão 1, letra C Fonte: Própria

Input	Result
001101	Accept
010101	Accept
11100100	Accept
10	Accept
011100	Accept
0001	Reject

Figura 6. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra C Fonte: Própria

Figura 7. Questão 1, letra D Fonte: Própria

Input	Result
01011C11010	Accept
10C10	Reject
10C01	Accept
1001	Reject
110C0111	Reject
110011	Reject

Figura 8. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra D Fonte: Própria

Figura 9. Questão 1, letra E Fonte: Própria

Input	Result
0100	Accept
0011100	Reject
	Accept
01000	Reject
00	Accept
0110	Reject

Figura 10. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra E Fonte: Própria

Figura 11. Questão 1, letra F Fonte: Própria

Input	Result
1001	Accept
00100	Reject
0101	Reject
00111100	Accept
01011010	Accept
001010	Reject

Figura 12. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra F Fonte: Própria

Figura 13. Questão 1, letra G Fonte: Própria

Input	Result
abc	Accept
aaabccc	Accept
abbbbc	Accept
aabbccccc	Accept
abaaac	Reject
abbcc	Reject

Figura 14. Alguns exemplos de entradas e resultados com base no AP da Questão 1 letra G Fonte: Própria

2.

a)

$$S \rightarrow 0 \mid 5 \mid N5 \mid N0$$

$$N \rightarrow 1 \mid 2 \mid 3 \mid ... \mid 9 \mid NN \mid N0$$

 $L(G) = \{ w \mid w = \text{todo número múltiplo de 5 incluindo o 0} \}$

b)

$$S \rightarrow 0S1 \mid 1S0 \mid 01 \mid 10$$

 $L(G) = \{ w \in \{0,1\} \mid w \text{ possui os extremos, até o centro, opostos, por exemplo: se o primeiro for 1 o último tem que ser 0, se o segundo for 0 o penúltimo tem que ser 1 até chegar ao centro \}$

Outra solução que encontrei foi:

 $L(G) = \{ w \in \{0,1\} \mid w \text{ tem tamanho par e a mesma quantidade de 0s e 1s e que se lida} \\$ de trás pra frente trocando os 0s por 1s e vice versa terá que resultar na entrada original \}

$$S \rightarrow aBca \mid aca$$

 $B \rightarrow b \mid bB$

$$L(G) = \{ab^n ca \mid n \ge 0\}$$

d)

$$S \to 0A \mid 1B$$
 $A \to 0A \mid 0$ $B \to 1B \mid 1$ $L(G) = \{(0^n + 1^m) \mid n, m \ge 2\}$

3.

As Gramáticas Livres de Contexto (GLC) são gramáticas onde as regras de produção são definidas de forma mais livre do que nas gramáticas regulares. A GLC é um tipo mais complexo de geradores de linguagem, as quais materializam um completo entendimento do procedimento de construção das palavras pertencentes à linguagem. Elas reconhecem todas as linguagens regulares e mais outras. A GLC é aplicada em compiladores e conversores de documentos.

4.

$$L(G) = \{\ 0^n 1^{2n} 0^m \ |\ n, m \ge 0\}$$

$$S \rightarrow \lambda \mid AB$$

$$A \rightarrow 0A11 \mid \lambda$$

$$B \rightarrow 0B \mid \lambda$$

5.

a)

O estudo das Linguagens Livres de Contexto tem uma fundamental importância para a ciência da computação, pois aborda um conjunto mais amplo de linguagens e tem grande importância dentro do estudo das Linguagens Formais, pois através delas pode ser descrita a maior parte das construções sintáticas das linguagens de programação. Com ela podemos tratar questões como as dos parênteses balanceados construções de blocos e estruturas, entre outras

formalidades de linguagens de computação conhecidas. Seu estudo é fundamental para o desenvolvimento de compiladores, pois a partir destas são desenvolvidos os analisadores sintáticos, parte de um compilador.

b)

A aplicação dessas linguagens para os autômatos é usada em autômatos de pilha que se trata de um reconhecedor da linguagem, que consiste basicamente em um autômato que utiliza uma pilha, que serve como memória adicional. E aplicando a sua gramática, se tornam tão importantes porque podem descrever estruturas recursivas o que as tornam necessárias para uma variedade de aplicações, como por exemplo, a formação de um analisador sintático, componente de um compilador.

c)

LINGUAGENS LIVRES DE CONTEXTO	LINGUAGENS REGULARES		
DIFERENÇAS			
Possuem regras gerais	Possuem regras restritas		
Pode expressar linguagens livres de contexto e também as regulares	Expressa apenas as linguagens regulares		
Ao expressar em um autômato pode contar com o auxílio de uma memória para determinar a frequência de um elemento	Não conta com ajuda de memória		
SEMELHANÇAS			
Podem expressar linguagens finitas	Podem expressar linguagens finitas		
São fechadas em determinadas operações	São fechadas em determinadas operações		