```
In [22]: import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from scipy.stats import pearsonr
         # Read CSV file
         data = pd.read_csv("C:/Users/user/Desktop/My learning/ClinSoft/expenses.csv")
         # Display the first few rows of the dataframe
         print(data.head())
         # Summary statistics of the dataframe
         print(data.describe())
         # Boxplot for 'children', 'charges', and 'bmi'
         plt.boxplot(data['children'])
         plt.show()
         plt.boxplot(data['charges'])
         plt.show()
         plt.boxplot(data['bmi'])
         plt.show()
```

age	sex	bmi	children	smoker	region	charges
19	female	27.900	0	yes	southwest	16884.92400
18	male	33.770	1	no	southeast	1725.55230
28	male	33.000	3	no	southeast	4449.46200
33	male	22.705	0	no	northwest	21984.47061
32	male	28.880	0	no	northwest	3866.85520
		age	bmi	chil	dren	charges
unt	1338.000	000 133	38.000000	1338.00	0000 133	8.000000
an	39.207	025	30.663397	1.09	4918 1327	0.422265
d	14.049	960	6.098187	1.20	5493 12110	0.011237
n	18.000	000 1	L5.960000	0.00	0000 112:	1.873900
%	27.000	000 2	26.296250	0.00	0000 4740	0.287150
%	39.000	000	30.400000	1.00	0000 938	2.033000
%	51.000	000	34.693750	2.00	0000 16639	9.912515
Х	64.000	000	3.130000	5.00	0000 63770	0.428010
	19 18 28 33 32 unt an d n %	19 female 18 male 28 male 33 male 32 male unt 1338.000 an 39.207 d 14.049 n 18.000 % 27.000 % 39.000 % 51.000	19 female 27.900 18 male 33.770 28 male 33.000 33 male 22.705 32 male 28.880 age unt 1338.000000 133 an 39.207025 d 14.049960 n 18.000000 13 % 27.000000 2 % 39.000000 3	19 female 27.900 0 18 male 33.770 1 28 male 33.000 3 33 male 22.705 0 32 male 28.880 0 age bmi unt 1338.000000 1338.000000 an 39.207025 30.663397 d 14.049960 6.098187 n 18.000000 15.960000 % 27.000000 26.296250 % 39.000000 30.400000 % 51.000000 34.693750	19 female 27.900 0 yes 18 male 33.770 1 no 28 male 33.000 3 no 33 male 22.705 0 no 32 male 28.880 0 no age bmi chil unt 1338.000000 1338.000000 1338.00 an 39.207025 30.663397 1.09 d 14.049960 6.098187 1.20 n 18.000000 15.960000 0.00 % 27.000000 26.296250 0.00 % 39.000000 30.400000 1.00 % 51.000000 34.693750 2.00	19 female 27.900 0 yes southwest 18 male 33.770 1 no southeast 28 male 33.000 3 no southeast 33 male 22.705 0 no northwest 32 male 28.880 0 no northwest age bmi children unt 1338.000000 1338.000000 1338.000000 1338 an 39.207025 30.663397 1.094918 13270 d 14.049960 6.098187 1.205493 12110 n 18.000000 15.960000 0.000000 112: % 27.000000 26.296250 0.000000 4740 % 39.000000 30.400000 1.000000 9383 % 51.000000 34.693750 2.000000 1663


```
In [23]:
         # Plot of 'bmi' vs 'charges'
          plt.scatter(data['bmi'], data['charges'])
          plt.xlabel('BMI')
          plt.ylabel('Charges')
          plt.title('BMI vs Charges')
          plt.show()
          # Plot of 'bmi' vs 'charges' for charges > 15000
          plt.scatter(data.loc[data['charges'] > 15000, 'bmi'], data.loc[data['charges'] > 15000
          plt.xlabel('BMI')
          plt.ylabel('Charges')
          plt.title('BMI vs Charges (Charges > 15000)')
          plt.show()
          # Similar plots for charges > 32000 and 15000 < charges < 32000
          plt.scatter(data.loc[data['charges'] > 32000, 'bmi'], data.loc[data['charges'] > 32000
          plt.xlabel('BMI')
          plt.ylabel('Charges')
          plt.title('BMI vs Charges (Charges > 32000)')
          plt.show()
          plt.scatter(data.loc[(data['charges'] < 32000) & (data['charges'] > 15000), 'bmi'],
                      data.loc[(data['charges'] < 32000) & (data['charges'] > 15000), 'charges'
          plt.xlabel('BMI')
          plt.ylabel('Charges')
          plt.title('BMI vs Charges (15000 < Charges < 32000)')</pre>
          plt.show()
```


35000

20

25

30

35

BMI

40

45

50

Pearson correlation test between 'bmi' and 'charges' correlation, p_value = pearsonr(data['bmi'], data['charges'])

```
print("Correlation between BMI and Charges:", correlation)
          print("p-value:", p_value)
         Correlation between BMI and Charges: 0.19834096883362887
         p-value: 2.459085535117846e-13
         # Create a new column 'overweight'
In [14]:
         data['overweight'] = ['Over30' if x > 30 else 'Under30' for x in data['bmi']]
         data['exp'] = ['High Charge' if x > 15000 else "Low Charge" for x in data['charges']]
          # Summary of the 'overweight' column
          print(data['overweight'].describe())
         data['exp'].describe()
         count
                     1338
         unique
         top
                   Over30
                      705
         freq
         Name: overweight, dtype: object
         count
                         1338
Out[14]:
         unique
                            2
         top
                   Low_Charge
         freq
                          980
         Name: exp, dtype: object
In [16]: # Cross-tabulation of 'overweight' and 'exp'
         cross_tab = pd.crosstab(data['overweight'], data['exp'], margins=True)
          print(cross_tab)
          # Cross-tabulation of 'children', 'smoker', and 'exp'
          cross_tab_3d = pd.crosstab([data['children'], data['smoker']], data['exp'], margins=Tr
          print(cross_tab_3d)
         # Cross-tabulation of 'children', 'smoker', 'region', and 'exp'
          cross_tab_4d = pd.crosstab([data['children'], data['smoker'], data['region']], data['e
          print(cross_tab_4d)
```

						WOIKI		
exp overweig	_	n_Charge	Low_	Charge	All			
0ver30		200		505	705			
Under30		158		475	633			
All		358		980	1338			
exp		High_Ch	arge	Low_Ch		All		
children	smoker	8	u. 8c	2011_0.	iai ge	,,,,,		
0	no		28		431	459		
O			110		5	115		
1	yes no		21		242	263		
1			61			61		
2	yes				0			
2	no		23		162	185		
2	yes		53		2	55		
3	no		14		104	118		
	yes		39		0	39		
4	no		5		17	22		
	yes		3		0	3		
5	no		0		17	17		
	yes		1		0	1		
All			358		980	1338		
exp			Hi	gh_Char	rge Lo	ow_Char	ge	All
children	smoker	region						
0	no	northeas	t		7	1	14	121
		northwes	t		5	1	03	108
		southeas	t		9	1	80	117
		southwes	t		7	1	06	113
	yes	northeas	t		23		3	26
	,	northwes			23		1	24
		southeas			40		0	40
		southwes			24		1	25
1	no	northeas			7		48	55
_	110	northwes			4		61	65
		southeas			7		66	73
		southwes			3		67	70
	yes	northeas			22		0	22
	yes	northwes			9		0	9
		southeas			22		0	22
		southwes			8		0	8
2								
2	no	northeas			10		32	42
		northwes			9		46	55
		southeas			2		46	48
		southwes			2		38	40
	yes	northeas			7		2	9
		northwes			11		0	11
		southeas			18		0	18
		southwes			17		0	17
3	no	northeas			0		29	29
		northwes	t		6		27	33
		southeas	t		6		18	24
		southwes	t		2		30	32
	yes	northeas	t		10		0	10
		northwes	t		13		0	13
		southeas	t		11		0	11
		southwes	t		5		0	5
4	no	northeas	t		3		4	7
		northwes			0		5	5
		southeas			1		4	5
		southwes			1		4	5
	yes	northwes			1		0	1
	,	southwes			2		0	2
		JUACHWCJ	-		_		J	_

```
5
          no
                  northeast
                                         0
                                                       3
                                                              3
                  northwest
                                         0
                                                       1
                                                              1
                  southeast
                                         0
                                                       6
                                                              6
                  southwest
                                         0
                                                       7
                                                              7
                  southwest
                                         1
                                                       0
                                                              1
          yes
A11
                                       358
                                                     980
                                                          1338
```

```
import math
# Histogram of Logarithm of charges
plt.hist(data['charges'].apply(lambda x: math.log(x)), bins=20)
plt.xlabel('Log Charges')
plt.ylabel('Frequency')
plt.title('Histogram of Log Charges')
plt.show()
```

work1

Histogram of Log Charges 160 140 120 100 Frequency 80 60 40 20 0 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 Log Charges

```
In [26]: plt.scatter(data['age'], data['charges'])
    plt.xlabel('Age')
    plt.ylabel('Charges')
    plt.title('Age vs Charges')
    plt.show()
```



```
In [27]: # Scatter plot of age vs charges grouped by sex
sns.scatterplot(data=data, x='age', y='charges', hue='sex')
plt.title('Age vs Charges (Grouped by Sex)')
plt.show()
```



```
In [28]: # Scatter plot of age vs charges for age > 30
plt.scatter(data[data['age'] > 30]['age'], data[data['age'] > 30]['charges'])
plt.xlabel('Age')
plt.ylabel('Charges')
plt.title('Age vs Charges (Age > 30)')
plt.show()
```



```
In [29]: # Boxplot of charges grouped by age
sns.boxplot(x=data['age'], y=data['charges'])
plt.xlabel('Age')
plt.ylabel('Charges')
plt.title('Boxplot of Charges Grouped by Age')
plt.show()
```

Boxplot of Charges Grouped by Age


```
In [30]: # Boxplot of charges grouped by sex
sns.boxplot(x=data['sex'], y=data['charges'])
plt.xlabel('Sex')
plt.ylabel('Charges')
plt.title('Boxplot of Charges Grouped by Sex')
plt.show()
```



```
In [31]: # Scatter plot of age vs charges for charges < 18000
plt.scatter(data[data['charges'] < 18000]['age'], data[data['charges'] < 18000]['charge plt.xlabel('Age')
plt.ylabel('Charges')
plt.title('Age vs Charges (Charges < 18000)')
plt.show()</pre>
```



```
In [32]: # Scatter plot using Seaborn for charges < 18000
sns.scatterplot(data=data[data['charges'] < 18000], x='age', y='charges', hue='sex')
plt.title('Age vs Charges (Charges < 18000)')
plt.show()</pre>
```


Age vs Charges (10000 < Charges < 30000)


```
# Histogram and Density plot of age
In [35]:
         sns.histplot(data['age'], bins=20, kde=True)
         plt.xlabel('Age')
         plt.ylabel('Frequency')
         plt.title('Histogram and Density Plot of Age')
         plt.show()
         # Boxplot of charges for categorical variable 'smoker'
          sns.boxplot(data=data, x='smoker', y='charges')
         plt.xlabel('Smoker')
          plt.ylabel('Charges')
         plt.title('Boxplot of Charges for Smokers')
         plt.show()
          # Scatter plot of age vs charges with color and shape differentiation
          sns.scatterplot(data=data, x='age', y='charges', hue='smoker', style='smoker')
          plt.title('Age vs Charges (Smoker and Overweight)')
         plt.show()
```



```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import statsmodels.api as sm
import scipy.stats as stats

# Scatter plot of age vs charges with color differentiation for sex and smoothing line
sns.scatterplot(data=data, x='age', y='charges', hue='sex')
sns.lmplot(data=data, x='age', y='charges', hue='sex', lowess=True)
plt.title('Age vs Charges (Grouped by Sex)')
plt.show()

C:\Users\user\Anaconda3\lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The f
igure layout has changed to tight
```

self._figure.tight_layout(*args, **kwargs)

C:\Users\user\Anaconda3\lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The f
igure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)


```
In [38]: # Boxplot of charges grouped by sex
sns.boxplot(data=data, x='sex', y='charges')
plt.xlabel('Sex')
plt.ylabel('Charges')
plt.title('Boxplot of Charges Grouped by Sex')
plt.show()
```



```
In [39]: # Scatter plot of age vs charges for age > 30
plt.scatter(data[data['age'] > 30]['age'], data[data['age'] > 30]['charges'])
plt.xlabel('Age')
plt.ylabel('Charges')
plt.title('Age vs Charges (Age > 30)')
plt.show()
```

Sex

male

female


```
In [40]: # Histogram of charges
plt.hist(data['charges'], bins=20)
plt.xlabel('Charges')
plt.ylabel('Frequency')
plt.title('Histogram of Charges')
plt.show()
```



```
In [41]: # Boxplot of charges grouped by age
sns.boxplot(x=data['age'], y=data['charges'])
plt.xlabel('Age')
plt.ylabel('Charges')
plt.title('Boxplot of Charges Grouped by Age')
plt.show()
```

Boxplot of Charges Grouped by Age


```
In [42]: # Bar plot of age vs sex
sns.barplot(x=data['sex'], y=data['age'], hue=data['sex'], estimator=lambda x: len(x)
plt.xlabel('Sex')
plt.ylabel('Proportion')
plt.title('Proportion of Age Grouped by Sex')
plt.show()
```



```
In [43]: # Scatter plot of age vs charges with color differentiation for sex and smoothing line
sns.scatterplot(data=data, x='age', y='charges', hue='sex')
sns.lmplot(data=data, x='age', y='charges', hue='sex', lowess=True)
plt.title('Age vs Charges (Grouped by Sex)')
plt.show()

C:\Users\user\Anaconda3\lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The f
igure layout has changed to tight
    self._figure.tight_layout(*args, **kwargs)
```



```
In [44]: # Scatter plot of age vs charges for charges < 18000
plt.scatter(data[data['charges'] < 18000]['age'], data[data['charges'] < 18000]['charge plt.xlabel('Age')
plt.ylabel('Charges')
plt.title('Age vs Charges (Charges < 18000)')
plt.show()</pre>
```



```
In [45]: # Scatter plot using Seaborn for charges < 18000
sns.scatterplot(data=data['charges'] < 18000], x='age', y='charges', hue='sex')
plt.title('Age vs Charges (Charges < 18000)')
plt.show()</pre>
```


Age vs Charges (10000 < Charges < 30000)


```
# Scatter plot of age^1.5 vs charges with color
In [47]:
          sns.scatterplot(data=data, x=np.power(data['age'], 1.5), y='charges', color='orangered
          plt.title('Transformed Age vs Charges')
          plt.show()
          # Linear regression model
          X = sm.add constant(data['charges'])
         y = data['age']
          model = sm.OLS(y, X).fit()
          # Residual plot
          plt.scatter(model.predict(), model.resid)
          plt.axhline(y=0, color='r', linestyle='--')
          plt.xlabel('Fitted values')
          plt.ylabel('Residuals')
          plt.title('Residual Plot')
          plt.show()
          # Histogram and Q-Q plot of residuals
          plt.subplot(1, 2, 1)
          plt.hist(model.resid, bins=20)
          plt.xlabel('Residuals')
          plt.ylabel('Frequency')
          plt.title('Histogram of Residuals')
          plt.subplot(1, 2, 2)
          stats.probplot(model.resid, plot=plt)
          plt.title('Q-Q Plot of Residuals')
          plt.tight_layout()
          plt.show()
```


ın []: