HW1 Example Solutions

2b) Is there a value of x such that $5x \equiv 1 \mod 10$? Carefully explain how you know.

No integers x exist, since multiples of five can only ever be either 0 more than a multiple of ten, or 5 more.

Therefore,

$$5x \equiv \begin{cases} 0 & \text{if } x \text{ is even} \\ 5 & \text{if } x \text{ is odd} \end{cases}$$

and clearly it is not possible to have $5x \equiv 1 \mod 10$

10. Is there a value of x s.t. 5x = 1 mod 10?

The range in this case would be \$0,1,2,...,93

We adding / submoting 10 to a multiple of

The way sure your another

The of to get 1.

5 x	5x ~1
	45 -1= 44
5(8)=40	40-1-39
5(7)=35	35-1=34
5(6)=30	30-1 = 29
5(5)=25	25-1=24
5(4)=20	20 -1 = 19
5 (3) = 15	15 -1 = 14
5(2)=10	10-1=9
5(1)=5	5-1=4
5(0) = 0	0-1=0

There is no x value that works because no value of 5x-1 is evenly divisible by 10.

4) Is composition of symmetries of a square commutative?

If we use the table of symmetries of square.

We can see that Ho Rqo = D. However,

RqooH = D'. Therefore Ho Rqo ≠ RqooH.

Thus, not commutative.

4) When it comes to symmetries of a square the commutative property works for some cases, but not all. If we look at the table for symmetries of a square, any 2 compositions of a rotation will get you the same result. For example P270°P180°P910 and P180°P270°P90. If we look at the reflections Section, compositions of the opposites will get you the same answer as well such as VoH=P180 and HoV=P180. A special case that works with commutative property is any fiven reflection composed with P180 like O°P180=D' and P180°D=D'. Therefore, the commutative property does not always work respectably for compositions that trust which 2 symmetries can be used.

The Symmetric Group, continued

- Visual of composition:

$$\frac{f}{f} = \frac{f}{f} = \frac{f$$

Worksheet 8: Cycle Notation in the Symmetric Group

Math 335

Reporter:

Recorder:

Equity Manager:

1. In S_6 , write the permutation

$$(1,3)(2,5,6,4) = (2,5,6,4)(1,3)$$

in function notation; that is, fill in:

2. In S_6 , write the permutation

in function notation; that is, fill in:

$$f(1) = 3$$
 $f(2) = 1$
 $f(3) = 2$
 $f(4) = 6$
 $f(5) = 5$
 $f(6) = 4$

3. In S_6 , write the permutation

$$f(1) = 6$$

 $f(2) = 2$
 $f(3) = 5$
 $f(4) = 4$
 $f(5) = 3$
 $f(6) = 1$

in cycle notation.

4. In S_4 , consider the two permutations

$$f = (1, 3, 2)$$

and

$$g = (3, 4).$$

(We're using the convention that numbers sent to themselves are omitted; for example, f sends 4 to itself.) What is the composition $f \circ g$? Express your answer in cycle notation.

$$f \circ g = (1,3,4,2)$$

5. For the same f and g as above, what is the composition $g \circ f$? Do f and g commute?

$$g \circ f = (1, 4, 3, 2)$$

6. In S_5 , consider the two permutations

$$f = (1, 5, 2)$$

and

$$g = (3, 4).$$

Calculate both $f \circ g$ and $g \circ f$, in cycle notation. Do f and g commute now?

$$f \circ g = (1,5,2)(3,4)$$

 $g \circ f = (1,5,2)(3,4)$

Yes, they do commute!

Theorem: If f and g are disjoint cycles (i.e., they have no numbers in common), then fog = gof.