大物历年试

急题

详情请加群 216882213

东北大学考试试卷 (A)

2011-2012 年第一学期

课程名称:大学物理(上)

	一、填空趣
	1. 一质量为 $m = 2 \text{ kg}$ 的质点, 其运动方程为: $x = 2t^2$ 和 $y = t^3 - \frac{3}{2}t^2$,
	x、 y 的单位为 m , t 的单位为 s , 则 $t=2s$ 时,质点的速率为
	从 $t=0$ 到 $t=2s$ 这段时间内,合力对质点所作的功为
	2. 质点系从一个状态运动到另一个状态时,质点系的机械能的增量等于外力与
	非保守内力作功的总和,此原理称为质点系
	的
	3. 在 S 参考系中观察到两个事件发生在空间同一地点,第二事件发生在第一事
	件以后 3s, 在另一相对于 S 系运动的 S' 参考系中观察到第二事件是在第一事
	件 5s 之后发生的,则 S' 系相对于 S 系运动的速率为。(真
	空中的光速为 o)
	4. 形成动生电动势的非静电力是洛伦兹力,则相应的非静电场强
	$ar{E}_k =$
	5. 真空中,一半径为 2/1的金属素 A, 带有电量为 Q; 另有一不带电、半径为 R
	的金属球 B, 两球相距很远。当用一很长的细导线将两金属球相连时, 忽略导线
	上的电荷,则金属球 A 带有的电荷量为, 金属球 B 带有的电荷量
	为(填:增加、减少、
	不变》。 <i>》</i>
- 23	6. 真空中,处于均匀磁场中、长为 L 的导体棒 OP , $o!$
	以角速度 ω 绕 00′ 轴旋转, 磁感强度 B的方向
	与 00 [*] 轴平行且向上, 如图所示, 0P 与 00 [*] 轴
	成 60° 夹角, 导体棒 OP的电动势大小为, 4
	且端电势高。
	7. 点电荷系所激发的电场中某点的电势等于各点电荷单独存在时在该点建立的
	电势的。

8. 真空中,一均匀带电的细半圆环,半径为 R ,带电量为 Q ,取无限远处为电
势零点,真空电容率为 ε 。,环心处电场强度大小为、环心处电
势为。
9. 地球依靠阻挡了"太阳风"对地球上生命的杀戮。 二、选择题
(每小题只有一项是符合题目要求的,把所选项前的字母填在题后的括号内) 1. 对功的概念有以下几种说法:
(1)保守力作正功时,系统内相应的势能增加; (2)质点运动经一闭合路径,保守力对质点作的功为零; (3)作用力与反作用力大小相等、方向相反,所以两者作功的代数和必定为裂;
上述说法中正确的是:
(A)(1)、(2)是正确的。 (B)(2)、(3)是正确的。 (C)只有(3)是正确的。 (D)只有(2)是正确的。
2. 判定宇宙的基本运动是相互远离(宇宙在膨胀)的根据是: 【 】
(A) 超新星的爆发。 (B) 多普勒效应, 光谱线红移。 (C) 黑洞的存在。 (D) 太阳风的存在。
3. 将形状完全相同的铜环与木环静止放置在交变磁场中,并假设通过两环面的
磁通量随时间的变化率相等,当不计自感时,下述说法正确的是:
(A) 铜环中有感生电动势; 木环中也有感生电动势。 (B) 铜环中没有感生电动势。
(C) 铜环中有感生电动势。
(D) 铜环中没有感生电动数: 木环中有感生电动势。
4. 下列说法正确的是: 】
(13) 电场强度不为零的点, 电势也一定不为零;
(C) 电势为零的点,电场强度也一定为零; (D) 电场强度为零的点,电势也一定为零。
5. 真空中,一接地半径为 R 的金属球,与球心 O 相距为 $r(r>R)$ 处放置一点电
荷。不计接地导线上电荷影响,则金属球表面上感应电荷总量为
$(A) + q; \qquad (B) - q;$
(C) $-\frac{R}{r}q$; (D) $-\frac{r}{R}q$.

三、一质量为m=2kg的质点沿x轴作直线运动,所受合力与其速率的关系为: $F=-2v^2$,当t=0时,该质点位于坐标原点处,初速度 $v_0=1$ m/s,求: (1) 该质点的速率v与时间t的关系; (2) 该质点的的运动学方程。

四、如图所示,一根长为 L ,质量为 M 的均质细杆,可绕过端点 θ 的水平光滑轴在竖直面内转动。当杆竖直静止下垂时,有一质量为 m 的小球(视为质点)飞来,垂直击中杆的中点。小球与细杆发生完全弹性碰撞,之后小球以初速度为零自由下落,而细杆碰撞后的最大偏转角为 θ ,求小球击中细杆前的速率 κ

五、已知一粒子的静止质量为 ¼, 当其动能等于其静止能量的 3 倍时, 求粒子的质量 m; 速率 产和动量的大小 p。(设真空中的光速为 c)

 $\stackrel{\ \ \, ilde{\ \ \, ilde{\ \ \, }}}{\ \ \,$ 设电荷线密度为 $\lambda=(2l-x)^3$,如图所示,已知真空电容率为 ϵ_0 ,

求 · 轴上坐标为 x=2l处的电场强度大小和电势。

0

七、真空中,有一无限长的、半径为 R 的 $\frac{1}{4}$ 圆柱面导体,导体面上均匀通有电流 I,方向沿轴线向下,如图所示,真空中磁导率为 μ_0 ,求导体柱面的轴线(z 轴)上磁感强度的大小。

八、真空中,在通有电流为 I 的长直导线旁,有一单匝等腰直角三角形导体线圈,线圈平面与长直导线共而,直角边长为 b ,一直角边与长直导线垂直,其喘点 Λ 到导线的垂直距离为 b ,如图所示,已知真空磁导率为 μ 。,求:(1)载流长直导线产生的磁场通过三角形线圈的磁通

(2)当长直导线中的电流 f 以 $\frac{df}{df}$ 的变化率增加时,求在三角形线圈中产生的感应电动势的大小,并说明其方向。

2011-2012 年答案

...、(1) 10; 100; (2) 功能原理 (3)
$$\frac{4}{5}c$$
; (4) $\bar{v} \times \bar{B}$; (5) $\frac{2}{3}Q \times \frac{1}{3}Q \times \bar{g}$

$$(6)\frac{3}{8}BL^2$$
、 $P(7)$ 代数和、电势叠加原理 $(8)\frac{Q}{2\pi^2\varepsilon_0R^2}$ 、 $\frac{Q}{4\pi\varepsilon_0R}$ (9) 地球磁场

$$= v = 1 + t, x = \ln(1+t)$$

$$\underline{\Pi}$$
, $v = \frac{2M}{3m} \sqrt{3gl(1-\cos\theta)}$

$$\underline{\text{H}}$$
, $m = 4m_0$, $v = \frac{\sqrt{15}}{4}c$, $p = mv = \sqrt{15}m_0c$

$$\Rightarrow \quad E = \int_0^1 \frac{1}{4\pi\varepsilon_0} \cdot (2l - x) dx = \frac{3l^2}{8\pi\varepsilon_0}$$

$$+ \int_{s} B_{s} = -\frac{\mu_{0}I}{\pi^{2}R} \int_{0}^{\pi} \sin\theta d\theta = -\frac{\mu_{0}I}{\pi^{2}R}, B_{y} = \frac{\mu_{0}I}{\pi^{2}R} \int_{0}^{\pi} \cos\theta d\theta = \frac{\mu_{0}I}{\pi^{2}R}, B = \sqrt{B_{s}^{2} + B_{y}^{2}} = \sqrt{2} \frac{\mu_{0}I}{\pi^{2}R}$$

八、
$$(1)F_{m} = \iint \vec{B}.d\vec{S} = \int_{a}^{2b} \frac{\mu_{b}T}{2\pi v}(x-b)dx = \frac{\mu_{0}I}{2\pi}b(1-\ln 2)$$

$$(2)\varepsilon_{i} = -\frac{\mu_{0}I}{2\pi}(1-\ln 2)\frac{dI}{dt}, |\varepsilon_{i}| = \frac{\mu_{0}I}{2\pi}(1-\ln 2)\frac{dI}{dt}$$
方向: 逆时针方向

东北大学考试试卷(A) 2012—2013 年第一学期 课程名称:大学物理(上)

	埴	23	即
	上記	-	TF94

、
1、一质点在 $x0y$ 平面内运动,已知质点的运动学方程为: $\bar{r} = at^2\bar{i} + bt^2\bar{j}$,
其中 a. b 为常量,则该质点的轨迹方程为
该质点的速率 v 与时间 t 的关系为
2、一质量为 $1kg$ 的质点从静止出发沿 x 轴作直线运动,该质点受合为为:
$\vec{F}=(3t^2+2t)\vec{i}$, 其中: F 以 N 为单位, t 以 s 为单位, 则从 $t=1s$ 到 $t=2s$ 这段
时间内,合力对质点所作的功为J。
3、已知一运动粒子的静止质量为 m。,其运动时的质量 m = 5m。,则此运动粒子的
速率为、此粒子的动能为、此粒子的动量大小
为。(设真空中的光速为 c)
4、把一个静止质量为 m 的粒子,由静止加速到 $v = \frac{3}{5}c$,需做功为。
(c为真空中的光速)
5. 如图所示,有一磁感应强度为 B 、平行于 x 轴正向
的均匀磁场,则通过图中一半径为了的半球面的
磁感应强度通量 Φ_m 为
6. 处于静电平衡状态下的导体(填:是或不是)等势体,导体表面
(填:是或不是)等势面,导体表面附近的电场线与导体表面相互,导体
体内的电势(填:大于、等于、小于)导体表面的电势。
7、当穿过闭合回路所围面积的磁通量发生变化时,无论什么原因引起的,
回路中都会建立起感应电动势,而按照磁通量变化原因的不同,将 感应
电动势分成两类,分别称为电动势和电动势;
8、真空中,一通有稳恒电流 I 的无限长直导线,
导线旁共面放有一长度为 L 的金属棒,
金属棒绕其一端 0 逆时针匀速转动,
转动角速度为ω, 0点至导线的垂直距离为 a,

设真空中的磁导率为	μ, 如右图所示,			
当金属棒转至与长直	导线垂直时,			
棒中感应电动势的大	小 <u>为</u>		端电势低。	
9、真空中,一半径为 R1	的不带电导体球外有一	一带电量为 q 的点	(电荷, 点电荷	
距导体球球心的距离	为 3.R,取无限远处为中	电势零点,真空中	3 容率为 ϵ 。,	
则导体球上的感应电	苘在球心处产生的 电场	场强度大小为	· managerial days · · · · managerial	
导体球的电势为	: 		444	'83
10、一平行板电容器,极	延板的面积为 S , 两板	及板相距为 d, 若	两极板间的介质	
为空气,极板间电势;	差为 Ⅵ , 已知空气的	电容率为ε。, 则]两极板间相近代	- ¹ 報 - -
用力的大小为	o		AT AND THE AT I MADE AND A STREET	
11、恒星是按照它们的		式分类的。		
二、选择题		4.16. The second		
1. 关于刚体对轴的转动性			· K	1
(A) 只取决于刚体的质量				
(B) 取决于刚体的质量和(C) 取决于网体的质量和				
(C) 取决于刚体的质量, (D) 只取决于转轴的位置			<u></u>	
2. 一边长为 a 的正方形薄				7
y轴平行,今有惯性系 S'				
正向作匀速直线运动, 则	从 S: 系测得薄板的	面积为:		
(A) $\frac{4}{5}a^2$; (B) $\frac{5}{4}a^2$	(6) $\frac{3}{2}a^2$;	(D) $\frac{5}{2}a^2$	*	
3. 下列几种说法:	5	3		
(1) 所有惯性系对一切物	理规律都是等价的:			
(2) 真空中, 光的速度与	光的频率、光源的运	动状态无关;		
(3) 在任何惯性系中,光	在真空中沿任何方向	的传播速率都相同	₹.	
上述说法中正确的是:			K J	
(A) (1)、(2)是正确的	(C) (1),	(3)是正确的;		
(B) (2)、(3)是正确的		说法都是正确的。		TI TI
华 由静电场中的高斯定理 (A) 闭合曲面的电通量分				Y.
(B) 闭合曲面的电通量7	7冬时, 四周工行点的 5为寒时, 曲面上任意	电场强度型定乃 一占的由场强度	令; 郑不可能先要。	
(C) 闭合曲面上各点电均				
(D) 闭合曲面上各点电场				
5. 一空气平行板电容器,				
电源接通的条件下,在	两极板间充满相对电线	容率为 ϵ ,的各向[同性均匀电介质,	
则该电容器中储存的静	电能 // 为.		r	ĺ

- (A) $\frac{W_0}{\varepsilon}$; (B) $\varepsilon_r W_0$; (C) $(1+\varepsilon_r)W_0$; (D) $\frac{W_0}{1+\varepsilon}$
- 6. 构成生命的主要的力是:

- (A) B,与r成正比, B,与r成反比; (C) B、B,均与r成反比; (B) B,与r成反比, B,与r成正比; (D) B、B均与r成正比;

. [

1

- 8. 如图所示, 真空中, 一无限长直导线在 P处弯成半径为 R的圆, 当加 I时,则在圆心0点的磁感应强度大小为:
 - (A) $\frac{\mu_0 I}{2R} (1 \frac{1}{\pi})$
 - (B) $\frac{\mu_0 I}{4R} (1 + \frac{1}{\pi})$
 - (C) $\frac{\mu_0 I}{4R}$
 - (D) $\frac{\mu_0 I}{2\pi R}$

- 9. 一长为L的导体棒AOP处于磁感应强度为B的均匀磁场中,导体棒以O点 为支点,以角速度 ω 绕通过 ∂ 点且垂直于导体棒的轴匀速转动, $\overline{AO} = \frac{L}{3}$,轴与 磁场方向平行,则 4和 产两点电势的关系为
 - (A) A点与P点电势相等。
- (B) A点比P点电势低 (C) A点比 P点电势高
- (D) 无法判断
- 10. 如图所示。在一圆形电流 I 所在的平面内,选取一个同心圆形闭合回路 L, 则由安培环路定理可知:
 - (A) ∮ B·d l ≠ 0, 且环路上任意点 B≠0;
 - (B) ∮ B·d I ≠ 0, 且环路上任意点 B=0;
 - (C) $\oint_{L} \mathbf{B} \cdot d\mathbf{l} = 0$,且环路上任意点 $B \neq 0$;
 - (D) $\oint B \cdot dl = 0$, 且环路上任意点 B=0。

三、在 t_0 = 0 的时刻,一质量为 m 的质点自地球表面以速率 v_0 竖直上抛,设空气对该质点的阻力大小为: f=mv,其中m为质点的质量、v为质点的速率,设重力加速度为g,求: 1)该质点能上升的最大高度H; 2)在该质点上升的过程中,其速率 v 与时间 t 的关系。

四、质量分别为 m 和 3m、半径分别为 r 和 3r 的两个均质圆盘,同轴地粘在一起,可绕通过盘心且垂直于盘面的水平光滑轴转动,在大小盘边缘都绕有刚性细绳,绳下端挂有两个重物A、B,质量分别为m=2m、m=m,盘与绳之间无相对滑动,如图所示,求:1)整个圆盘对水平光滑轴的转动惯量为多少?

2) 重物A和B的加速度的大小a,和a,分别为多少?

五、真空中,一半径为 R 的带电的四分之一细圆环,圆心在坐标系x0y的原点上,圆环所带电荷的线密度 $\lambda = \lambda_0 \cos \theta$,其中 λ_0 为常量, 0 为半径R与x轴所夹的角度、如图所示,已知真空电容率为 ϵ_0 , 求: 1)圆心处的电场强度; 2)圆心处的电势。(设无限远处为电势零点)

六、真空中,有两根相距为 a 的无限长平行直导线,它们通以大小相等、流向相反的电流 I,与两直导线共面有一边长为 a 的正方形单匝导体线圈,如图所示,已知真空磁导率为 μ 。,求:1)两直导线产生的磁场通过正方形线圈的磁通量;2)当直导线中的电流 I 以 $\frac{dI}{dt}$ 的变化率增长时,求在正方形线圈中产生的感应电动势的大小和方向。

$$-, (1) y=\frac{b}{a}x, v=2\sqrt{a^2+b^2t}; (2) 70; (3) \frac{2\sqrt{6}}{5}c, 4m_0c^2,$$

$$2\sqrt{6}m_0c; (4)\frac{1}{4}m_0c^2;$$

(5)0;(6)是、是、垂直、等于; (7) 动生、感生; (8)
$$\frac{\mu_{01\omega}}{2\pi} \left[L - a \ln \left(\frac{L+a}{a} \right) \right]$$
 , M ;

(9)
$$\frac{q}{36\pi\epsilon_0 R^2}$$
、 $\frac{q}{12\pi\epsilon_0 R^2}$; (10) $\frac{\epsilon_0 SU^2}{2d^2}$; (11)死亡;

$$\equiv (1) h = v_0 - g \ln(\frac{g+v_0}{g}), \quad (2) v = (g+v_0) e^{-1} - g$$

$$= \frac{1}{2} \left(\frac{1}{2} \right) \quad \text{if } \quad \mathbf{b} = \mathbf{v}_0 - \mathbf{gln} \left(\frac{\mathbf{g} + \mathbf{v}_0}{\mathbf{g}} \right), \quad \mathbf{c} = \mathbf{c} \cdot \mathbf{g} + \mathbf{v}_0 \cdot \mathbf{g}^{-1} - \mathbf{g}$$

$$= \frac{1}{2} m r^2 + \frac{1}{2} (3m) (3r)_2 \quad \mathbf{c} \cdot \mathbf{g} = \frac{5}{11} \mathbf{g}, \quad \mathbf{c} \cdot \mathbf{g} = \frac{5}{33} \mathbf{g},$$

$$\begin{cases} E_{X} = -\frac{\lambda_{0}}{4\pi\varepsilon_{0}R} \int_{0}^{\pi} \cos^{2}\theta d\theta \\ E_{y} = -\frac{\lambda_{0}}{4\pi\varepsilon_{0}R} \int_{0}^{\pi} \sin\theta \cos\theta d\theta \end{cases}$$

$$\tilde{\Xi}. (1)$$

$$\overline{E} = \left(-\frac{\lambda_0}{16\varepsilon_0 R}\right) \overline{I}_+ \left(-\frac{\lambda_0}{8\pi\varepsilon_0 R}\right) \overline{J}_-$$

$$V = \frac{\lambda_0}{4\pi\epsilon_0} \int_0^{\frac{\pi}{2}} \cos\theta \, d\theta = \frac{\lambda_0}{4\pi\epsilon_0}$$

2)
$$V = \frac{\lambda_0}{4\pi\epsilon_0} \int_0^{\frac{\pi}{2}} \cos\theta \, d\theta = \frac{\lambda_0}{4\pi\epsilon_0}$$

$$F_m = \iint \overline{B} \cdot d\overline{S} = \int_{2a}^{3a} \left[\frac{v_0 I}{2\pi x} - \frac{v_0 I}{2\pi (x+a)} \right] a \, dx, \quad F_m = \frac{v_0 a I}{2\pi} \ln\left(\frac{9}{8}\right)$$

$$(2) \varepsilon_i = \frac{dF_m}{dt}, \quad |\varepsilon_i| = \left[\frac{v_0 a}{2\pi} \ln\left(\frac{9}{8}\right)\right] \frac{dI}{dt}$$

方向: 顺时针方向

东北大学考试试卷(A)

2013-2014 年第一学期

课程名称:大学物理(上)

- 1、一质点在x 轴上作变速直线运动,已知t=0 时刻,其初速度为 v_0 ,初始位置为 x_0 ,加速度 $a=12t^2$,则该质点的运动学方程为____。
- 2、在惯性系 S中,相距 x_2 x_1 =600m 的两地方发生两个事件,时间间隔为 5 t_1 =8 \times 10 $^{-7}$ s,在相对于 S 系沿 x 轴正方向作匀速直线运动的 S 系中观测到这两事作 是同时发生的,则 S 系相对于 S 系运动的速率为 _____m/s。(真空中光速 $c=3\times10^8\,\mathrm{m/s}$)
- 3、真空中,两个半径分别为 R 和2R 的金属球A和B,两球相距很远,用一很长的细导线相连,给此系统带上电荷Q,忽略导线上的电荷,则金属球B上的电荷量为___。
- 4、在惯性系 S 中,A 粒子的静止质量为 n_0 ,其动能等于其静止能量;A 粒子与处于静止状态、静止质量为 $2n_0$ 的 B 粒子相减后合在一起成为一个复合粒子 D ,已知真空中光速为 c ,则碰撞前,A 粒子的速率 n_0 ,碰撞后,复合粒子 D 的的速率 n_0 为____。
- 5、有一半径为 a、载有电流为 I 的四分之一圆弧形导线,按图示方式置于磁感应强度为 B 的均匀磁场中, 其中 OA 与磁场平行、OC 与磁场垂直,则该载流圆弧形导线所受的安培力大小为____。

6、两个圆盘,同轴地粘在一起,可绕通过盘心且垂直于盘面的水平光滑轴转动,在小圆盘边缘绕有不可伸缩的细绳,绳下端挂一质量 m=1kg 的物体,盘绳无相对滑动,小圆盘半径为r=1m,当物体从静止释放后,在时间 t=1s 内下降的距离 S=1m,则整个圆盘对水平光滑轴的转动惯量为____kg·m²(重力加速度 g=9.8 m/s²)

7、真空中,一通有稳恒电流 I 的无限长直导线,导线旁共面放有一长度为 a 的 金属棒,棒以速率v平行于长直载流导线作匀速直线运动,其端点 Λ 至导线的垂 直距离为a,真空中磁导率为 μ _a,如图所示,则金属棒中感应电动势的大小 为。

8、真空中,两个同心均匀带电球面,半径分别为 R 和 3R、所带电荷分别为 q和 3q, P 点与球心相距为 2R, ,真空中电容率为 ϵ 。, 取无限远处为电势零点, 则 P 点的电势为 , P 点的电场强度的大小为

二、选择题

- 1、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运 在此过程中,由这两个粘土球组成的系统:
 - (A) 动量守恒, 动能守恒:
- (B) 动量守恒, 动能不守恒:
- (C) 动量不守恒, 动能守恒; (D) 动量不守恒, 动能不守恒。
- 2、一轻弹簧原长为 R , 劲度系数为 k , 其一端固定在半径为 R 的半圆环的 端点A处,另一端与一套在半圆环上的小环相连。当把小环由半圆环中点B 移到另一端 C 的过程中,弹簧的弹性力对小环所作的助为:

(A)
$$\frac{1}{2}kR^2$$
; (B) $-\frac{1}{2}kR^2$; (C) $kR^2[1-\sqrt{2}]$; (D) $kR^2[\sqrt{2}-1]$;

- 3、真空中,一个细玻璃棒被弯成华径为 R 的半圆形,沿其上半部分均匀分布 有电荷+Q, 沿其下半部分均匀分布有电荷-Q, 取无限远处为电势零点, 如图所示,则圆心0处的电场强度大小和电势分别为:
 - (A) $E_{\alpha}=0$,

(B)
$$E_o = 0$$
, $V_o = \frac{Q}{2\pi\varepsilon_o R}$
(C) $E_o = \frac{Q}{\pi^2\varepsilon_o R^2}$, $V_o = \frac{Q}{2\pi\varepsilon_o R}$
(D) $E_o = \frac{Q}{\pi^2\varepsilon_o R^2}$, $V_o = 0$

(1))
$$E_o = \frac{Q}{\pi^2 \varepsilon_o R^2}$$
, $V_o = 0$

- (B) 高斯面上各点电场强度均为零
- (C) 穿过高斯面上任意一个小面元的电场强度通量均为零
- (D) 说明静电场的电场线是闭合曲线

5、将一不带电的导体 A 从无限远处移到一带负电的导体 B 附近,则导体 A 的电 势将: (A) 升高; (B) 降低; (C) 不变: (D) 无法确定 6、真空中, 一无限长直导线被弯成如图所示的形状, 其中半圆的半径为 R, 当导线通以电流 I 时,则圆心 O 点的磁感应强度大小为: (A) $\frac{\mu_0}{I}$ 4R(B) $\frac{\mu_0 I}{2\pi R}$ (C) $\frac{\mu_0 I}{4R} (1 + \frac{2}{\pi})$ (D) $\frac{\mu_0 I}{4R} (1 - \frac{2}{\pi})$ I 7、宇宙中,恒星的分类是按照它们: (B) 诞生的时间; (C) 寿命的长短; (D) 死亡的方式 (A) 自转的快慢: 8、两根无限长平行直导线载有大小相等方向相反的电流上。电流 I 随时间 t 而逐渐增加,与直导线共面有一静止的矩形闭合导体线圈,如图所示, ľ 7 则矩形导体线圈中: (A) 感应电流为顺时针方向 (B) 感应电流为逆时针方向 (C) 无感应电流 🦠 (D) 感应电流方向不确定 9、判定宇宙的基本运动是相互远离(宇宙在膨胀)的根据是: 7 (A) 超新星的爆发: (B) 多普勒效应,光谱线红移; (D) 太阳风的存在 (亿) 黑洞的存在; T0。 有一半径为 R 的单匝圆线圈,通以电流 I; 若将该导线弯成匝数 N=4 的 平面圆线圈,导线长度不变,并通以同样的电流, 1 则线圈中心的磁感强度和线圈的磁矩大小分别是原来的: K (A) 4 倍和 1/16 倍; (B) 4 倍和 1/4 倍; (D) 16 倍和 1/16 倍 (C) 16 倍和 1/4 倍: 三、质量为 m的质点以初速度 v。沿 x 轴作直线运动,起始位置在坐标原点处, 其所受合力F与其速率成正比、与速度方向相反,即: F = -2v, 求, 1) 该质点的速度 v与时间 t 的关系; 2) 该质点的的运动学方程。

1)
$$a = \frac{F}{m} = -\frac{2}{m}v$$
, $\int_{v_0}^{v} \frac{dv}{v} = -\int_{0}^{t} \frac{2}{m}dt$, $v = v_0 e^{-\frac{2}{m}t}$

2)
$$\int_0^x dx = \int_0^t v_0 e^{-\frac{2}{m}t} dt$$
 -----(2 \(\frac{1}{2}\)), $x = \frac{1}{2} m v_0 (1 - e^{-\frac{2}{m}t})$

四、真空中,一半径为 R 的带电的四分之三细圆环,圆心在坐标系 x0y的原点上,圆环所带电荷的线密度 $\lambda = 4\sin\theta$, θ 为半径 R 与 x 和正方向所夹的角度,如图所示,已知真空中电容率为 ϵ 。,设无限远处为电势零点。 求:1)圆心 θ 处的电场强度:2)圆心 θ 处的电势。

$$dq = \lambda dl = 4R \sin \theta d\theta$$

1)
$$dE = \frac{dq}{4\pi\varepsilon_0 R^2} = \frac{1}{\pi\varepsilon_0 R} \sin\theta d\theta$$
,

$$dE_x = -dE\cos\theta$$
, $dE_y = -dE\sin\theta$

$$\begin{cases} E_x = -\frac{1}{\pi \varepsilon_0 R} \int_0^{\frac{3\pi}{2}} \sin \theta \cos \theta d\theta \end{cases}$$

$$\begin{cases} E_y = -\frac{1}{\pi \varepsilon_0 R} \int_0^{\frac{3\pi}{2}} \sin^2 \theta d\theta \end{cases}$$

$$\bar{E} = -\frac{1}{\pi \varepsilon_0 R} \int_0^2 \sin^2 \theta \, d\theta$$

$$\bar{E} = \left(-\frac{1}{2\pi \varepsilon_0 R}\right) \bar{i} + \left(-\frac{3}{4\varepsilon_0 R}\right) \bar{j}$$

2)
$$dV = \frac{dq}{4\pi\varepsilon_0 R} = \frac{1}{\pi\varepsilon_0} \sin\theta d\theta$$
, $V = \frac{1}{\pi\varepsilon_0} \int_0^{3\pi} \sin\theta d\theta = \frac{1}{\pi\varepsilon_0} \sin\theta d\theta$

- 五、真空中,x 轴上有一长为 a 的带电细棒 AD,可绕距 Λ 端为 a 的 0 点(原点)旋转,旋转角速度为 ω ,转动过程中 Λ 端距 0 点的距离保持不变,带电细棒上的电荷线密度 λ 与到 0 点的距离成正比,即: $\lambda = bx$,b>0 ,如图所示,已知真空中磁导率为 μ_0 ,
- 表: 1) 带电细棒在 O点产生磁感应强度的大小; 2) 旋转带电细棒磁矩的大小。

1)
$$dI = \frac{\omega dq}{2\pi} = \frac{b\omega}{2\pi} x dx$$
,

$$dB = \frac{\mu_0 dI}{2x} = \frac{b \omega \mu_0}{4\pi} dx$$

$$B = \int_a^{2a} \frac{b \,\omega \mu_0}{4\pi} \, dx = \frac{b \,\omega \mu_0}{4\pi} \, a$$

$$2) \quad dm = \pi x^2 dI = \frac{b \,\omega}{2} x^3 dx$$

$$m = \int_a^{2a} \frac{b \, \omega}{2} x^3 dx = \frac{15 \, b \, \omega}{8} a^4$$

六、一根长为 a 的细棒,其质量线密度 λ 与到端点 0 的距离 r 成正比: $\lambda = \frac{2}{a^2}r$,现将细棒放在粗糙的水平桌面上,细棒可绕过其端点 0 的竖直光滑轴(λ 种)在水平面内转动,已知细棒与桌面间的滑动摩擦系数为 μ ,细棒的初始角速度为 ω 。,如图所示,求:1)细棒对转轴 λ 和的转动惯量;2)细棒绕 λ 和转动时,所受到的摩擦力对转轴的力矩;3)细棒从初始角速度 ω 。开始到停止转动所经过的时间。

1)
$$J_z = \int_0^a r^2 dm = \int_0^a \frac{2}{a^2} r^3 dr$$

$$J_z = \frac{1}{2}a^2$$

$$2) M = -\int_0^a \frac{2}{a^2} \mu \, g r^{-2} \, dr$$

$$M = -\frac{2}{3}\mu ga$$

3)
$$M \cdot \Delta t = \Delta L$$

$$\Delta t = \frac{3 a \omega_0}{4 \mu g}$$

ŧķ.

2013-2014 年第一学期答案

1.
$$x = x_0 + v_0 t + t^4$$
; 2. 1.2×10 °; 3. $\frac{2}{3}Q$; 4.

$$3, \frac{2}{3}Q$$

$$\frac{\sqrt{3}}{2}c \quad ; \quad \frac{\sqrt{3}}{4}c \; ;$$

$$7, \frac{\mu_o I v}{2\pi} \ln 2$$

5. BIa; 6. 3.9;
$$7.\frac{\mu_o I v}{2\pi} \ln 2$$
; $8.V = \frac{3q}{8\pi\varepsilon_0 R}$,

二、选择题

东北大学考试试卷 (A)

2013-2014 年第二学期

课程名称:大学物理(上)

一•填空题(每空3分,共30分)
1.已知一质点从坐标原点由静止开始沿 x 轴正方向运动, 其加速度a和位置坐标
x 的关系为α=2x+3(SI)。则该质点的速率 v 与位置坐标 x 的关系式
为
2.甲,乙两辆质量均为 M 的冰车头尾紧挨地静止在光滑的水平冰面上。一质量
为 2M 的.人从甲冰车跳到乙冰车上,然后再跳回,甲,乙两辆冰车的汞速度之比。
为
3.已知 π 介子在其静止的参考系中的半衰期为1.6×10 s, 今有一束 π 介于以速
度 v=0.6C 离开加速器,从实验室参考系看来,当π介子衰变一半时飞越的距离
At the state of th
为。 (c=3×10 ⁸ m/s)
4.长为 l 的带电细棒,沿 X 轴放置,棒的一端在原点,另一端在 X=l 处。设电
荷线密度为 $\lambda = Ax$, A为正的常量,则在 x 如上坐标为 $x=1$ 的(其中 b>0)处的
电场强度大小为。
5.一个半径为 R 的不带电金属球壳为有一点电荷 q, q 据球心为 3R, 球壳上感应
电荷在球心处产生的电场强度大小为。
——————————————————————————————————————
6.一个球形雨滴半径为 0.25 mm,带有电量 8.85 π× 10^{-15} c,下落过程中 8 个这样的
雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势为。(ε
$_{0}=8.85\times10^{-12}\text{C}^{2}\text{eN}^{-1}\text{em}^{-2}$
7.按照引起磁通量变化原因的不同,将感应电动势分为动生电动势和感生电动
势,引起感生电动势的非形电力是。
8.太阳磁场抛出的高能带电脑子称为太阳风,太阳风对生命体有一定的杀伤力。
那么,地球成功的阻挡太阳风对地球上生命的杀戮,依靠的是。
9.为有四种基本形式,构成生命的主要的力是。
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
16.如图所示,一根长直导线载有电流 [1],距离长直导线 1 处有一
边长为1的正方形回路,回路中载有电流 ^I 2,则作用在正方形
- 17 To 128 Control 20
回路监的合力大小为。
二、选择题(每小题 3 分, 共 30 分)
1.质量为 m 的质点在外力作用下,其运动方程为 $\vec{r} = A \cos \omega t \vec{i} + B \sin \omega t \vec{j}$
式中 A, B, ω 都是正的常量,由此可知外力在 $t=0$ 到 $t=\frac{\pi}{2\omega}$ 这段时间内所做得功
\tau_1.

$$(A)\frac{1}{2}m\omega^2(A^2+B^2)$$

$$(B)\frac{1}{2}m\omega^2(A^2-B^2)$$

$$(C)m\omega^2(A^2+B^2)$$

$$(D)\frac{1}{2}m\omega^2\big(B^2\text{-}A^2\big)$$

2.在某地发生两件事,静止位于该地的甲测得时间间隔为 4s,若相对于甲作匀速 直线运动的乙测得时间间隔为 5s,则乙相对于甲的运动速度是(c 表示真空中光 速)

(A)
$$\frac{3}{5}$$
c (B) $\frac{4}{5}$ c (c) $\frac{1}{5}$ c (D) $\frac{2}{5}$ c

3.把一个静止质量为 $^{\mathbf{m}_a}$ 的粒子,由静止加速到 $^{\nu=0.8c}$ ($^{\mathbf{c}}$ 表示真空中光速)需做的功等于

(A)
$$\frac{1}{3}m_ac^2$$
 (B) $\frac{1}{4}m_ac^2$ (C) $\frac{2}{3}m_ac^2$ (D) $\frac{2}{4}m_ac^2$

4.闭合曲面 S 包围点电荷 Q,现从无穷远处引入另一点电荷 q 至曲面内任意一点,则引入 q 后,则有

- (A) 曲面 S 的电场强度通量不变, 曲面上各点电场强度不变
- (B) 曲面 S 的电场强度通量变化,曲面上各点电场强度不变
- (C) 曲面 S 的电场强度通量不变, 曲面上各点电场强度变化
- (D) 曲面 S 的电场强度通量变化,曲面上各点电场强度变化 5.下列说法正确的是

(A) 电场强度不为零的点, 电势也一定不为零

- (B) 申场强度为零的点, 电势不一定为零
- (©) 电势为零的点,电场强度也一定为零
- (D) 电势不为零的点, 电场强度也不一定为零

6.一空气平衡板电容器,接通电源充电后电容器中储存的能量为 W_0 ,然后断开电源连接,在两极板间充满相对电容率为 ϵ_r 的各向同性电介质,则该电容器中储存的能量 W 为()

)

(A)
$$W=W_0/\epsilon_r$$
 (B) $W=\epsilon_rW_0$ (C) $W=(1+\epsilon_r)W_0$ (D) $W=W_0$ 7.下列说法正确的是 (

- (A) 闭合回路上各点磁感强度都为零时, 回路内一定没有电流穿过
- (B) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零
- (C) 闭合回路上各点磁感强度都为零时,回路内穿过的电流的代数和必定为零
- (D) 磁感强度沿闭合回路的积分不为零时,回路上各任意一点的磁感强度不可能为零

8.将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁 通量随时间的变化率相等,不计自感时则

- (A) 铜环中感应电场强度大, 木环中感应电场强度小
- (B) 铜环中感应电场强度小, 木环中感应电场强度大
- (C) 铜环中有感应电动势, 木环中没有感应电动势
- (D) 铜环中有感应电动势, 木环中也有感应电动势
- 9.磁导率为 μ 的各向同性的均匀磁介质中有一根无限长细直导线上通有电流 I, 则距导线距离为a的空间某点处的磁场能量密度为

$$(A) \frac{1}{2\mu_0} \left(\frac{\mu_0 l}{2\pi a} \right)$$

(B)
$$\frac{1}{2\mu} \left(\frac{\mu l}{2\pi a} \right)$$

(A)
$$\frac{1}{2\mu_0} \left(\frac{\mu_0 l}{2\pi a}\right)^2$$
 (B) $\frac{1}{2\mu} \left(\frac{\mu l}{2\pi a}\right)^2$ (C) $\frac{1}{2} \left(\frac{2\pi a}{\mu_0 l}\right)^2$

- 10.对位移电流,下述四种说法中说法正确的是
 - (A) 位移电流和传导电流一样是定向运动的电荷
 - (B) 位移电流服从传导电流遵循的所有定律
 - (C) 位移电流的实质是变化的电场
 - (D) 位移电流的磁效应不服从安培环路定理

三、一质点在力F=6m(1-4t²) (SI) 作用下,从静止开始 (=0.x=0) 沿 x 轴作直 线运动,其中m为质点的质量,t为时间

- 求: (1) 该质点的速度 v 与时间 t 的关系:
 - (2) 该质点的运动学方程。

四. 在一个半径为 R, 带电量为 O (O>0) 的金属球 A 外面套 有一个同心的金属球壳 B,球壳 B 的内,外半径分别为 R_2 和

五、一个塑料圆盘, 半径为 R, 电荷分布于表面, 电荷面密 度为 σ=kr, k>0, 圆盘绕通过圆心垂直盘面的轴转动, 角 速度为中,如图所示。

- 兆·(1) 在圆盘中心 O 处的磁感应强度
 - (2) 圆盘的磁矩。

六. 一根长为 1.25m.质量为 0.50kg 的均质细杆, 其一端挂在 一个光滑的水平轴上,静止在竖直位置,有一质量为 0.05kg 的子弹以 500m/s 速度从杆的中点穿过,穿出的速度为 470m/s,

 $(g=10m/s^2)$

- 求(1) 杆开始转动时的角速度:
 - (2) 杆的最大摆角

评分标准及答案

一、填空题(没空3分,共30分)

1.
$$V = \sqrt{2x^2 + 6x}$$
 2. 1:3 3. 3.2 4. $\frac{A}{4\pi\epsilon_0} \left(\frac{1}{b} - \ln \frac{b+1}{b} \right)$ 5. $\frac{q}{36\pi\epsilon_0 R^2}$ 6.

- 7、感生电场力 8、地球磁场 9、电磁场 10、 $\frac{\mu_0 l_1 l_2}{d\pi}$
- 二、选择题(每小题3分,共30分)
- 1, B2, A3, C4, D5, B6, A7, C8, D9, B10, C 计算题(共40分)
- 三、(10分)

1)
$$a = \frac{F}{m} = 6(1-4t^2)...(2\%), \int_0^v dv = -\int_0^t 6(1-4t^2)dt...(2\%)$$

V=6t-8t3....(2分)

2)
$$\int_0^x dx = \int_0^t (6t-8t^3) dt....(2\%), x=3t^2-2t^4...(2\%)$$

四、(10分)

四、(10分)
1)
$$V_{A} = \frac{Q}{4\pi\epsilon_{0}R_{1}} - \frac{Q}{4\pi\epsilon_{0}R_{2}} + \frac{Q}{2\pi\epsilon_{0}R_{3}}, V_{B} = \frac{Q}{2\pi\epsilon_{0}R_{3}}$$

$$2) \ \ V_{\text{A}}' = \frac{q_{\text{A}}}{4\pi\epsilon_{0}R_{1}} + \frac{-q_{\text{A}}}{4\pi\epsilon_{0}R_{2}} + \frac{q_{\text{A}} - Q}{4\pi\epsilon_{0}R_{3}} = 0, \\ q_{\text{A}} = \frac{R_{1}R_{2}Q}{R_{1}R_{2} + R_{2}R_{3} - R_{1}R_{3}}$$

$$V_{B}'\!=\!\frac{q_{A}\!-\!Q}{4\pi\epsilon_{0}R_{3}}\!=\!\frac{1}{4\pi\epsilon_{0}}\frac{\left(R_{1}\!-\!R_{2}\right)\!Q}{R_{1}R_{2}\!+\!R_{2}\!R_{3}'\!-\!R_{1}\!R_{3}}$$

五、(10分)

1) dI =
$$\frac{\omega}{2\pi} \sigma 2\pi r dr = k\omega r^2 dr$$
, dB = $\frac{\mu_0 dI}{2r} = \frac{\mu_0 k\omega}{2} r dr$

$$R = \frac{\mu_0 k\omega}{r} \int_{-R}^{R} r dr = \frac{\mu_0 k\omega R^2}{r} \int_{-R}^{R} \ln \frac{\pi}{r} dr = \frac{\mu_0 k\omega}{r} dr$$

$$B = \frac{\mu_0 k\omega}{2} \int_0^R r dr = \frac{\mu_0 k\omega R^2}{4}$$
, 方向垂直纸面向外

2) $dm=\pi r^2 dI=\pi k\omega r^4 dr$, $m=\int_0^R\pi k\omega r^4 dr=\frac{\pi k\omega R^5}{5}$,方向垂直纸面向外

六、(10分)

1)
$$mv_0 \frac{1}{2} = mv \frac{1}{2} + J\omega....(2 \%)$$

转动惯量:
$$J = \frac{1}{3}Ml^2....(2分)$$

$$\omega = \frac{3m(v_0 - v)}{2Ml} = 3.6 \text{rad/s.....} (2 \%)$$

2)
$$\frac{1}{2}$$
 J $\omega^2 = Mg \frac{1}{2} l (1 - \cos \theta) \dots (2 \%)$

$$\theta = \arccos \left[1 - \frac{3m^2}{4gM^2l} (v_0 - v)^2 \right] = \arccos 0.46.$$
 (2)

东北大学考试试卷 (A)

2014-2015 年第一学期

课程名称:大学物理(上)

一、填空趣(没空2分,共 40 分)
1、一质量为 m 的质点沿 x 轴正向运动, 假设该质点通过坐标轴为 x 时的速度为
kx(k 为正的常数),则此时作用于该质点上的力 F= 该质点从 x1 处
运动到 x2 处所经历的时间 Δ t=;
2、两个带电粒子,以相同速度垂直进入一均匀磁场中,已知它们的质量之比是
2:3; 电量之比是 1:2:; 则它们所受的磁场力之比是; 运动轨道半径
之比是;
3、一个半径为 R 的不带电金属球外壳有一点电荷 q, q 距球心为 2R。则球壳内
任一点 p 处的电势为(以无穷远处为电势零点); 球壳上感应电荷在球
心处产生的电场强度大小为;
4、两个同心均匀带电球面,半径分别为 R, 和 R, (R, R,),所带电荷分别为 q, 和
q,。设某点与球心相距 r,取无限远处为零电势。则在RXxXR 区域内,其电场强
度分布为
度分布为; 电势分布为
则引入前后曲面 S 的电场强度通量 ; 曲面上个点电场强度 ;
(填变化或不变)。
6、一电容为 C 的平行板电容器,当充电至电压 U 时,电容器内所储存电场能量
为; 若在保持电源仍连接的情况下,将两极间距拉开至原来的 n 倍
(n>1),则过程中拉力做功术小为;
7、真空中一根无限长细直导线上面电流 I,则距导线距离为 a 的空间某点处的
磁感应强度为,核处磁扬能量密度为;
8、在400年前,是
超新星爆发之后产生的浓缩引力的载体称称为
9、一半径为 R 长直圆柱状导体, 通有电流 I, 并在其横截面上电流均匀分布;
则导体内、外磁感应强度的分布分别为; 和; (到体内、外
的 Table 变 46-20 4-11 \
10、如图所示,一长为 1 的金属杆 ab 绕距离一端 d 处 0 点 在垂直于磁场(磁感应强度为 B)平面内,以角速度 ω 做匀 速转动:则旋转杆上产生的动生电动势大小是;
在垂重于磁场(磁感应强度为B)平面内,以角速度ω做匀 B⊗ / 10 l
速转动:则旋转杆上产生的动生电动势大小是;
方向
No selection of the second of
二、选择题(单选题,每小题 2 分,共 10 分)
l、某人骑自行车以速度 v 向正西方向行驶,遇到由北向南刮的风(设风速大小
也为 v),则他感到的风是从; ()
A 东北方向吹来
3 东南方向吹来
C西北方向吹来

D西南方向吹来

- 2、子弹射入放在水平光滑地面上静止的木块后而穿出,以地面为参考系,以下说法正确的是:()
- A 子弹动能的减少等于子弹克服木块阻力所作的功
- B子弹减少的动能转变为木块的动能
- C 子弹-木块系统的机械能守恒
- D子弹克服木块阻力所作的功等于这一过程中产生的热量
- 3、将一点电荷放置在球形高斯面的中心,在下列哪一种情况下通过高斯面的电场强度通量将发生变化()
- A. 将另一点电荷放在高斯面外
- B. 将另一点电荷放进高斯面内
- C. 将球心处的点电荷移开,但点电荷仍在高斯面内
- D. 改变高斯面的半径
- 4、如图,长直电流 I₂与圆形电流 I₁共面,并与其一直径相重合 (但两者间绝缘),设长直电流不动,圆形电流将()
- A: 绕 I₂旋转
- B: 向左运动
- C: 向右运动
- D: 向上运动
- 5、真空中在点电荷+q 的电场中, 若取图中平点低电影零点, 则 M 点的电势为:

 $D \cdot \frac{q}{8\pi\epsilon_0 a}$

质型为 3kg 质点在外力作用下作平面运动,其运动方程为:

$$\overrightarrow{\mathbf{r}}(t) = 5t \mathbf{1} + (10 - t^2) \mathbf{j} (SI)$$

试求: (1) 质点的轨道方程

- (2) 质点从 t=0 到 t=5s 这段时间外力做功大小
- (3) 质点在弟 1s 末所在处轨道曲率半径 p 的大小。

四、一平板电容器,两金属板间为真空时,电荷面密度为土 σ 。,电压 U_0 =280V。若电量保持不变,将三分之一空间充以相对电容率为 ϵ 。=5 的电解质,如图所示;则极板间电压变为多少?

c)(2)已知一粒子的静止质量为 m, 当其动能等于其静止能量时, 来粒子的质

五、(1)由静止长度皆为 10m 的甲、乙两飞船,各自以 0.6c 和 0.8cm的速度相向飞行,则它们相对速度为多少?甲观察乙船的长度为多少?(在真空出光速为

(1) 带点线段在 0 点产生的磁感应强度大小及方向

量、速率和动量的大小。(在真空中光速为c)

(2) 磁距大小。

七、一质量为 m 的子弹以初速度 v。水平射入一长为 L、质量为M=3m,可在竖直面内绕一端转动的匀质杆的中间部位,并停留在杆中,如图所示。初始时,杆处于竖直位置,且保持静止状态,子弹射入后,杆与子弹包构成的系统将绕其下端 0 点转动;试求:

- (1) 杆开始转动时角速度 w 。;
- (2) 转动到任意 θ 位置时角加速度 α 的大小及角速度 ω 的大小。

一、填空题(没空2分,共40分)

2.1:2

$$\frac{q}{8\pi\epsilon_0 R}$$

$$\frac{q}{16\pi\epsilon_0 R^2}$$

$$\frac{q_{a}}{4\pi\epsilon_{0}r^{2}} \qquad \frac{1}{4\pi\epsilon_{0}}\!\!\left(\!\frac{q_{a}}{r}\!+\!\frac{q_{b}}{R_{b}}\!\right)$$

5. 不变

$$\frac{\mu_0 I}{2\pi a}$$

$$6. \quad \frac{\frac{1}{2}CU^2}{2n} \quad \frac{n-1}{2n}CU^2$$

$$\begin{array}{cc} \underline{\mu_0 r I} & \underline{\mu_0 I} \\ 9. \ 2\pi R^2 & 2\pi r \end{array}$$

8. 望远镜 黑洞

$$10, \frac{1}{2}\omega B(2d+1)l$$

$$(1) y = 10 - \frac{1}{25} x^2$$

$$(2)\vec{v} = \frac{d\vec{r}}{dt} = 5\vec{i} - 2t\vec{j}$$

$$v(t) = \sqrt{25 + 4t^2}$$

$$V(t) = \sqrt{25 + 4t}$$

$$W = \Delta E_k = \frac{1}{2} m v^2 (5) - \frac{1}{2} m v^5 (0) = 100J$$

$$(3)\vec{a} = \frac{d\vec{v}}{dt} = -2\vec{j}, a_t = \frac{dv(t)}{dt} = \frac{4t}{\sqrt{25 + 4t^2}}$$

$$a_{t}(1) = \frac{4}{\sqrt{29}}, a_{n} = \frac{v^{2}(1)}{\rho} = \sqrt{a^{2} - a_{t}^{2}(1)} = \frac{10}{\sqrt{29}}$$

 $\rho = 2.9i\sqrt{29} = 15.6$

$$D_{i} = \sigma_{i} = \epsilon_{0}\epsilon_{r}E_{i} \Longrightarrow E_{i} = \frac{\sigma_{i}}{\epsilon_{0}\epsilon_{r}}$$

$$D_2 = \sigma_2 = \varepsilon_0 E_2 \Rightarrow E_2 = \frac{\sigma_2}{\varepsilon_0}$$

板间电压U= E_1 d = E_2 d \Rightarrow E_1 = E_2 \Rightarrow $\frac{\sigma_1}{\epsilon_2}$ = σ_2

$$\mathbb{Z}_{1} \frac{\mathbb{S}}{3} \sigma_{1} + \frac{2\mathbb{S}}{3} \sigma_{2} = \mathbb{S} \sigma_{0} \Rightarrow \sigma_{1} + 2\sigma_{2} = 3\sigma_{0}$$

可得
$$\begin{cases} \sigma_1 = \frac{3\epsilon_r}{2 + \epsilon_r} \sigma_0 \\ \sigma_2 = \frac{3}{2 + \epsilon_r} \sigma_0 \end{cases}$$

这样填充介质后,极板间电压为:

$$U'=Ed=E_{2}d=\frac{\sigma_{2}}{\epsilon_{0}}d=\frac{3\sigma_{0}}{\left(2+\epsilon_{r}\right)\epsilon_{0}}d=\frac{3}{2+\epsilon_{r}}U_{0}=120\left(V\right)$$

五、

$$(1)u'_{x} = \frac{u_{x} - v}{1 - \frac{v}{c^{2}}u_{x}} = \frac{-0.8c - 0.6c}{1 - \frac{0.6c}{c^{2}}(-0.8c)} = -0.94c \left(正负都对\right)$$

$$1 = I_0 \sqrt{1 - \left(\frac{u_x'}{c}\right)^2} = 10\sqrt{0.105084} = 3.24$$

(2)
$$mc^2 - m_0c^2 = m_0c^2 \Rightarrow m = 2m_0$$

$$m = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} = 2m_0$$

$$\Rightarrow v = \frac{\sqrt{3}}{2}c$$

$$p = mv = 2m_0 \cdot \frac{\sqrt{3}}{2}c = \sqrt{3}m_0c$$

六、

$$dI = \frac{\omega}{2\pi} dp = \frac{\omega}{2\pi} \lambda dx$$
......2 β

$$dB = \frac{\mu_0}{2x} dI = \frac{\mu_0}{2x} \frac{\omega}{2\pi} \lambda dx.....1$$
分

$$B = \int dB = \int_{a}^{a+b} \frac{\mu_{0}}{2x} \frac{\omega}{2\pi} \lambda dx = \frac{\mu_{0}\omega\lambda}{4\pi} \ln \frac{a+b}{a} \dots 2 \mathcal{H}$$

$$m = \int dm = \int_{a}^{a+b} \pi x^{2} \cdot \frac{\omega}{2\pi} \lambda dx = \frac{1}{6} \omega \lambda b \left(3a^{2} + 3ab + b^{2}\right) \frac{1}{2\pi} \frac{1}{2\pi}$$

七、

(1) 系统转动惯量:
$$J=m\left(\frac{L}{2}\right)-\frac{1}{3}ML^2=\frac{5}{4}mL^2.....2$$

(2) 挺动定律:
$$M=(m+M)g \cdot \frac{L}{2} \sin \theta = J\alpha......2$$
分

$$\rightarrow$$
 α \rightarrow $\frac{8 \hat{g} \sin \theta}{5 \hat{L}}$ 1分

机械能等恒,取初始位置势能为零:

$$\frac{1}{2} J\omega^2 - (m+M) g \cdot \frac{L}{2} (1-\cos\theta) = \frac{1}{2} J\omega_0^2 - ... 2$$

$$\Rightarrow \omega = \sqrt{\left(\frac{2v}{5L}\right)^2 + \frac{32g}{5L}\sin^2\frac{\theta}{2}}$$
 1\(\frac{\theta}{5}\)

$$\left\{ \vec{\mathbf{y}} \Rightarrow \omega = \sqrt{\left(\frac{2\mathbf{v}}{5L}\right)^2 + \frac{16g}{5L}\left(1 - \cos\theta\right)} \dots 13\right\}$$

东北大学考试试卷(A)

2010-2011 年第一学期

课程名称:大学物理(下)

一、填空题

1. 已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程为
2. 一声源以 20m/s 的速率向静止的观察者运 -1 1 1 1/s
观察者接收到声波的频率是 1063Hz, 则该声调 -2
振动频率为Hz.(声速为:340m/s)
3. 在驻波中,两个相邻波节之间各质点的振动相位。 4. 一束光强为 L的自然光依次通过三个偏振片 P. R. P. 其中 P. 与 P. 的偏振 化方向相互垂直,P. 与 P. 的偏振化方向之间的夹角为 45°,则通过三个偏振片后 透射光强为。
5. 一容器内储有氧气 (视为理想气体), 其压弧为 1,01×10 ⁵ Pa, 温度为 27 ℃,
则氧气系统的分子数密度为_2.44×10 ²⁵ m ⁻³ ; 氧分子的平均平动动能为
9. 激光与普通光源所发出的光相比具有方向性好、单色性好、和能量集中的特性。
二、选择题(单选题,每小题 2 分,共 10 分) (将正确答案前的字母填写到右面的 【 】中) 1. 当质点以频率 ν 作简谐运动时,它的动能变化频率为 【 】 (A) ν /2 (B) ν (C) 2ν 2. 处于平衡态的一瓶氦气和一瓶氦气(均可视为理想气体)的分子数密度相同,分子的平均平动动能也相同,则它们 【 】 (A) 温度,压强均不相同(B) 温度相同但压强不同(C) 温度,压强都相同

- 3. 下列物体哪个是绝对黑体
 - (A) 不能反射任何光线的物体
 - (B) 不辐射任何光线的物体
 - (C) 不辐射可见光的物体
- 4. 以下说法正确的是:

7

A

- (A) 任何过程总是沿着熵增加的方向进行;
- (B) 自然界中的一切自发过程都是不可逆的:
- (C) 不可逆过程就是不能向相反方向进行的过程;
- 5. 一束自然光自空气射向一块平板玻璃,如图: 设入射角等于布儒斯特角,则在界面 2 的反射光
 - (A) 是自然光:
 - (B) 是部分偏振光:
 - (C) 是线偏振光且光矢量的振动方向垂直于 入射面。

三、右图为平面简谐波在 t=0 时的波形图,设此简谐波的频率为 300 Hz,且此时图中质点 P的运动方向向上,求。(1)该波的波动方程;

(2) 在x=7.5m处质点的运动方程;及 t=0时刻该点的振动速度。

四、加射率为1.50的两块标准平板玻璃间形成一个劈尖,用波长 $\lambda = 550~\mathrm{nm}$ 的单色光轴直入射,产生等厚干涉条纹,当劈尖内充满n=1.25的液体时,相邻。则纹闭距比劈尖内是空气时的间距缩小 $\Delta I = 0.10\mathrm{mm}$,求劈尖角 θ 应是多少?

五、 波长为 600nm 的单色光垂直入射在一光栅上,第二级主极大出现在 $\sin\theta = 0.20$ 处,第四级缺级,求: (1) 光栅常数 (b+b') 是多少?

- (2) 光栅上透光缝的最小宽度 b 是多少?
- (3) 按上述选定的 b和b'值,在观察屏上($-90^{\circ} < \theta < 90^{\circ}$)可能观察到的全部条纹级数有哪些?

六、 一定量的某种双原子分子理想气体进行如图所示 ABCA 的循环过程、已知气体在状态 A 的温度为 $T_4=300K$, 求

- (1) 气体在状态 B和 C的温度;
- (2) 各个过程中气体所吸收的热量;
- (3) 整个过程的循环效率 n.

七、 用波长为200 nm 的紫外光照射到铝的表面,铝的逸出功为4.2eV. 求出: (1)光电子的最大初动能; (2) 遏止电势差; (3)铝的截止频率.

- 八、 依据德布罗意关系, 若光子和电子的波长都是0.5 nm, 分别求出:
 - (1) 它们各自的动量大小; (2) 它们各自的总能量; (3) 电子的动能。

一、1.
$$x = 2\cos(\frac{4\pi}{3}t + \frac{2\pi}{3})$$
 2. 1000.5 3. 相同(同相) 4. $\frac{I_0}{8}$ 5. 4.14×10^{-21}

6.
$$R \ln \frac{V_2}{V_1}$$
, 或 $R \ln \frac{P_1}{P_2}$ 7. 5 8. $hc(\frac{1}{\lambda_0} - \frac{1}{\lambda})$ 9. 相干性好

二、C C A B C

三、(1) 已知

$$\lambda = 20.0 \,\mathrm{m}$$
, $A = 0.10 \,\mathrm{m}$, $u = \lambda \cdot v = 20 \times 300 = 6000 \,\mathrm{m/s}$, $\omega = 2\pi v = 600 \,\mathrm{m/s}$

由旋转矢量法得: $\varphi_0 = \pi/3$

振动方程:
$$y = A\cos[\omega(t + \frac{x}{u}) + \varphi_0] = 0.10\cos[600\pi(t + \frac{x}{6000}) + \frac{\pi}{3}]$$
 (m)

(2) x=7.5m 处运动方程;

$$y = 0.10\cos[600\pi(t + \frac{7.5}{6000}) + \frac{\pi}{3}] = 0.10\cos[600\pi t_{\text{st}} + \frac{13}{3}\pi]$$
 (m) $t = 0$ 时该点的振动速度:

$$v = \frac{dy}{dt}\Big|_{t=0} = -0.10 \times 600\pi \sin[600\pi t + \frac{13}{12}\pi] = -60\pi \sin(\frac{13}{42}\pi) = 48.76 \text{ m/s}$$

$$\square$$
, $\lambda = 550 \,\mathrm{nm}$, $n = 1.25 \Rightarrow l$, $n = 1.0 \Rightarrow l'$, $\Delta l = l' - l = 0.10 \,\mathrm{mm}$

劈尖角度很小:
$$l\sin\theta = l\cdot\theta = \frac{\chi_n}{2} = \frac{\lambda}{2n}$$
, $l\cdot\theta = \frac{\lambda_n}{2} = \frac{\lambda}{2n}$ $l'\cdot\theta = \frac{\lambda}{2}$

$$\Delta l = l' - l = (\frac{\lambda}{2} - \frac{\lambda}{2n}) \frac{1}{\theta} = 0.10 \text{ mm}$$

$$\theta = (\frac{\lambda}{2} - \frac{\lambda}{2n}) \frac{1}{\Delta l} = \frac{\lambda}{2\Delta l} (1 - \frac{1}{n}) = \frac{\lambda}{2n\Delta l} (n - 1)$$

$$\theta = \frac{\lambda}{2000}(n-1) = \frac{550 \times 10^{-9} \times 0.25}{2 \times 1.25 \times 0.10 \times 10^{-3}} = 5.50 \times 10^{-4} \text{ (rad)}$$

$$\frac{\mathcal{H}}{\sin \theta} \times (b+b') \sin \theta = k\lambda \quad , (b+b') = \frac{k\lambda}{\sin \theta} = 6 \times 10^{-4} \text{ cm} = 6 \times 10^{-6} \text{ m}$$

(2) 候级,
$$\frac{b+b'}{b} = \frac{k}{k'}$$
 取 $k'=1$,得最小缝宽: $b = \frac{b+b'}{4} = 1.5 \times 10^{-4} \text{ cm} = 1.5 \times 10^{-6} \text{ m}$

(3)
$$(b+b')\sin\theta = k\lambda$$
, $k = 0,\pm 1,\pm 2,\dots \Leftrightarrow \sin\theta = 1$,

解得:
$$k = \frac{b+b'}{\lambda} = 10$$

即 $k=0,\pm1,\pm2,\pm3,\pm5,\pm6,\pm7,\pm9$ 时出现主极大, $\pm4,\pm8$ 缺级, ±10 级主极大在 $\theta=90^\circ$ 处,实际不可见,光屏上可观察到的全部主极大谱线数有 15 条.

六、双原子i=5, 由 $pV=\nu RT$ 据 A 点的 p、 V、 T 值, 得: $\nu R=1$

曲图,
$$P_A = 300 pa$$
, $P_B = P_C = 100 pa$; $V_A = V_C = 1m^3$, $V_B = 3m^3$

(1)
$$C \rightarrow A$$
 为等体过程, $\frac{P_A}{T_A} = \frac{P_C}{T_C}$,得 $T_C = \frac{P_C}{P_A} T_A = 100K$ $B \rightarrow C$ 为等压过程, $\frac{V_B}{T_B} = \frac{V_C}{T_C}$,得 $T_B = \frac{V_B}{V_C} T_C = 300K$

(2) 各过程中气体所吸收的热量为:

$$Q_{AB} = W_1 = \frac{1}{2} (P_A + P_B)(V_B - V_C) = 400J$$

$$Q_{BC} = \frac{i+2}{2} vR(100 - 300) = -700 \text{ J}$$

$$Q_{CA} = \frac{i}{2} vR(300 - 100) = 500 \text{ J}$$

七、(1) 由光电效应方程 $hv = \frac{1}{2}mv_{max}^2 + W$

入射光子的能量为:

入射光子的能量为:
$$E = h\nu = h\frac{c}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{200 \times 10^{-9}} = 9.945 \times 10^{-10} \text{(J)} = 6.216 \text{(eV)}$$

得光电子的最大初动能为:

$$\frac{1}{2}mv_{\text{max}}^2 = \frac{hc}{\lambda} - W = 6.216 - 4.200 = 2.016\text{eV} = 3.225 \times 10^{-19} \text{ J}$$

(2) 遏止电势差为:
$$U_0 = \frac{2.016 \,\text{eV}}{e} = 2.016 \,\text{V}$$

(3)
$$hv_0 = W$$
, $v_0 = \frac{W}{h} = \frac{4.2 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} = 1.014 \times 10^{15} \text{ Hz}$

八、(41) 由于电子和光子具有相同的波长,所以它们的动量相同,即为:

$$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{0.5 \times 10^{-9}} = 1.326 \times 10^{-24} \text{ (kg· m/s)}$$

(2) 电子的总能量为: 由 $E^2 = p^2c^2 + m_0^2c^4$

$$E = \sqrt{p^2c^2 + m_0^2c^4} \approx 8.19 \times 10^{-14} \text{ J} = 0.512 \text{ MeV}$$

而光子的总能量为:
$$E = hv = \frac{hc}{\lambda} = 3.978 \times 10^{-16} (J) = 2.486 \text{ keV}$$

(3) 电子的动能
$$E_k = E - E_0 \approx \frac{p^2}{2m_0} = \frac{(1.326 \times 10^{-24})^2}{2 \times 9.1 \times 10^{-31}} = 9.66 \times 10^{-19} \text{ J} = 6.04 \text{ eV}$$

东北大学考试试卷 (A)

2011-2012 年第一学期

课程名称:大学物理(下)

一、 填空题		
1. 已知两分振动的振动方程分别为: $x_1 = \cos \omega t$ 和 $x_2 = \sqrt{3} \cos(t)$	$\omega t + \frac{\pi}{2}$,(其
中 x 的单位为 m , t 的单位为 s),则合振动的振幅为 $A = 2$. 在驻波中,设波长为 λ ,则相邻波节和波腹之间的距离为 $2.$ 火车 Λ 行驶的速率为 $20m/s$,火车 Λ 汽笛发出的声波频率为 640 另一列行驶速率为 $25m/s$ 的火车 B ,则火车 B 的司机听到火车 Λ 汽 B	llz; JO	而升来
4. 在空气中,用波长为 $\lambda = 500$ nm 的单色光垂直入射一平面透射	光栅上,	,第二
级缺级,光栅常数 d =2.3×10 ⁻³ mm ,则在观察屏上出现的全部数为条。 5. 光的偏振现象说明光波是	主极大	条纹条
6. 一体积为 V的容器内储有氧气(视为理想气体,氧气分子视为区	削性分寸	三),其
压强为 P ,温度为 T ,已知玻耳茲曼常数为 k 、普适气体常数(属	₹尔气体	r常数)
为 R,则此氧气系统的分子数密度为	态 B. 平衡态 平衡态 程中,	将从外 C 时, 系统对
其德布罗意波长为nm。(电子静止质量: $m_e=9.1\times10^{-31}\mathrm{kg}$	3; 电子	电量:
$e = 1.6 \times 10^{-19} \text{ C}$; 普朗克常量: $h = 6.63 \times 10^{-34} \text{ J· s}$)		
9、描述微观粒子运动的波函数 $P(r, t)$ 须满足的条件是、	连续、	有限、
少年。 选择题(将正确答案前的字母填写到右面的【 】中) 1. 一平面简谐波沿 x 轴负方向传播,其振幅 $d=0.01m$,频率 $v=55$ 波速 $u=330$ m/s。若 $t=0$ 时,坐标原点处的质点达到负的最大位移		
则此波的波函数为:	ľ	1
(A) $y = 0.01\cos[2\pi(550t + 1.67x) - \pi/2]$		
(B) $y = 0.01\cos[2\pi(550t - 1.67x) + \pi]$		
(C) $y = 0.01\cos[2\pi(550t + 1.67x) + \pi]$		

- 2. 一容器内储有 4 mo1 的 CO_2 气体 (视为理想气体系统), 当温度为 T时, 其内能为:
 - (A) 12 RT
- (B) 10 RT
- (C) 12 kT
- 3. 一束的自然光依次通过两个偏振片,当两偏振片的偏振化方向之间的夹角为 30° 时,透射光强为 I; 若入射光的强度不变,而使两偏振片的偏振化方向之间的夹角为 45° 时,则透射光的强度为:
 - (A) $\frac{1}{3}I$
- (B) $\frac{2}{3}I$
- (C) I
- 4. 关于激光以下哪种说法是错误的

- (A) 激光具有方向性好、单色性好、相干性好、能量集中的特性
- (B). 激光是由于原子的受激辐射而得到的放大了的光
- (C) 激光是由于原子的自发辐射产生的
- 5. 在加热黑体过程中, 其最大单色辐出度对应的波长由 0.8μm 变到 0.4μm, 则其辐出度增大为原来的:
 - (A) 2倍
- (B) 16 f
- (C) 4 倍
- 三、图为一沿 X 轴负方向传播的平面简谐波在 t=0 时的波形图, 波速为 0.08 m/s...
- 求: (1) 坐标原点 0 处质点的振动方程;
- (2) 该平面简谐波的波动方程:
- (3) 位于 x_i =0.20 m 与 x_i =0.35 m 两处质点之间的相位差。

四、 如图所示,空气中,一折射率 $n_2 = 1.30$ 的油滴落在 $n_3 = 1.50$ 的平板玻璃上,形成一上表面为球面的油膜,油膜中心最高处的高度 $d_a = 1 \times 10^{-3}$ mm, 现用 $\lambda = 500$ nm 的单色光垂直照射油膜,从上表面观察,

求: (1) 油膜周边是暗环还是明环?

- (2) 整个油膜可看到几个完整的暗环?
- (3) 整个油膜可看到几个完整的明环?

五、空气中,在单缝天琅禾费衍射实验中,缝宽 b=0.60 mm,透镜焦距 r=0.40 m,有一与狭缝平行的观察屏放置在透镜焦平面处,以波长 $\lambda=600$ nm 的单色光垂直照射狭缝,如图所示,

求: (1) 在屏上, 离焦点 0为 $x_o = 1.4$ num 处的点 P ,看到的是衍射明纹、还是衍射暗纹?

- (2) 在屏上,中央明纹的宽度为多少?
- (3) 在屏上,第二级明纹中心距中心 0点的距离为多少%

$$(Q_{AB} = \frac{15}{2} P_0 V_0, Q_{BC} = 4 P_0 V_0 \ln 4, Q_{BC} - \frac{21}{2} P_0 V_0)$$

(2) 整个过程的循环效率 η ; ($\eta = 19.5\%$)

(3) 如果此理想气体系统的物质的量为 1 摩尔, 计算 AB 过程中, 系统熵的增量。 ($\Delta S_{AB} = 5R \ln 2$)

- 七、1、在光电效应中,用频率为 ν 的单色光照射某种金属时,逸出光电子的最大初动能为 E_{ν} ,求当用频率为2 ν 的单色光照射此种金属时,逸出光电子的最大初动能?
- 2、在康普顿散射中,入射光子的波长为 0.12 nm ,入射光子与一静止的自由电子相碰撞,碰撞后,光子的散射角为 90°,
- 求: (1) 散射光子的波长?
 - (2) 碰撞后, 电子的动能、动量和运动方向?
- 八、己如某微观粒子处于一宽度为 a 的一维无限深势阱中, 其定态波函数为:

求: 1) 归一化常数 A;

- 2) 在势阱内 $(x = 0 \sim a)$ 何处找到粒子的概率最大?
- 3) 在 $x_1 = 0 \sim x_2 = \frac{a}{3}$ 范围内发现粒子的概率是多少?

$$-$$
、1. $\underline{2}$ 2. $\frac{\lambda}{4}$ 3. $\underline{730}$ 4. $\underline{5}$ 5. 横波 6. $\frac{p}{kT}$ $\frac{5}{2}pV$ 7. $\underline{166}$ 8. $\underline{0.07}$ 9.

单值

 \equiv CABCB

$$\equiv 1. \ y_0 = 0.04 \cos(\frac{2\pi}{5}t + \frac{\pi}{2}) \text{ (m)} \qquad 2. \ y = 0.04 \cos[\frac{2\pi}{5}(t + \frac{x}{0.08}) + \frac{\pi}{2}] \text{ (m)}$$

3.
$$\Delta \varphi = -\frac{3\pi}{4}$$

四、1. 明环 2. 五个 3. 六个

五、1.(P点为(3级)衍射明纹)

2.
$$(\Delta x_0 = 2x_1 = 2 ftg \varphi_1 \approx 2 f \sin \varphi_1 = 2 f \frac{\lambda}{h} = 8.0 \times 10^{-4} m)$$

3.
$$(x_2 = ftg \, \varphi_2 \approx f \sin \varphi_2 = f \frac{5 \, \lambda}{2 \, b} = 1.0 \times 10^{-3} \, m$$
)

AB:
$$Q_{AB} = v C_V (T_B - T_A) = \frac{5}{2} (P_B V_B - P_A V_A) = \frac{15}{2} P_0 V_0 > 0$$

BC:
$$Q_{BC} = W_{BC} = \int_{V_0}^{4V_0} P dV = \int_{V_0}^{4V_0} \frac{vRT_B}{V} dV = 4P_0V_0 \ln 4 > 0$$
,吸热

CA:
$$Q_{BC} = v C_P (T_A - T_C) = \frac{7}{2} (P_1 V_A - P_C V_C) = -\frac{21}{2} P_0 V_0 < 0$$
, 放热

$$(2) Q_1 = Q_{AB} + Q_{BC}, Q_2 = Q_{CA}$$

循环效率:
$$\eta = 1 - \frac{|Q_2|}{Q_1} = 19.5\%$$
(3) $\Delta S_{AR} \equiv S_B - S_A = \int_A^B \frac{dQ}{T} = vC_V \int_{T_A}^{T_B} \frac{dT}{T} = 5R \ln 2$

七、1、
$$h\nu = E_k + W$$
, $2h\nu = E'_k + W$, $E'_k = h\nu + E_k$,

2、1)散射光子的波长:
$$\lambda = \lambda_0 + \lambda_c (1 - \cos 90^{\circ}) = 0.12243 \, \text{nm}$$
,

2) 碰撞后, 电子的动能:
$$E_k = h v_0 - h v = hc \left(\frac{1}{\lambda_0} - \frac{1}{\lambda} \right) = 3.29 \times 10^{-17} \text{ J}$$

电子的动量:
$$p_e = \frac{\sqrt{E_k(E_k + 2E_0)}}{c} = 7.7 \times 10^{-24} \text{ kg} \cdot \text{m/s}$$

电子的运动方向:

$$tg \varphi = \frac{\frac{h}{\lambda}}{\frac{h}{\lambda_0}} = \frac{\lambda_0}{\lambda}$$
, $\varphi = arctg \left[\frac{\lambda_0}{\lambda}\right] = 0.78 \text{ rad} = 44^{\circ}26'$

$$|\Psi(x)|^{2} = \begin{cases} \frac{2}{a} \sin^{2}(\frac{3\pi}{a}x), & (0 \le x \le a) \\ 0, & (x < 0, x > a) \end{cases}$$

$$(2) \quad \frac{dw(x)}{dx} = \frac{d|\Psi(x)|^{2}}{dx} = 0, \quad \sin(\frac{3\pi}{a}x)\cos(\frac{3\pi}{a}x) = 0,$$

(2)
$$\frac{dw(x)}{dx} = \frac{d|\Psi(x)|^2}{dx} = 0, \quad \sin(\frac{3\pi}{a}x)\cos(\frac{3\pi}{a}x) = 0,$$

在
$$x = \frac{1}{6}a$$
 、 $x = \frac{1}{2}a$ 、 $x = \frac{5}{6}a$ 处,找到粒子的概率最大,

(3)
$$W = \int_0^{\frac{a}{3}} w(x) dx = \int_0^{\frac{a}{3}} \frac{2}{a} \sin^2(\frac{3\pi}{a}x) dx$$
, $W = \frac{1}{3} = 33.3\%$,

东北大学考试试卷(A) 2012-2013 年第一学期 课程名称;大学物理(下)

一、填空题

1. 一物体沿 x 轴做简谐运动,振幅 A=0.12m,周期 T=2s,当 t=0 时,物体的位移 $x_0=-0.06m$,且向 x 轴负向运动;则物体第一次回到平衡位置所需的时间为:

2. 一平面简谐波在 t=0 时刻的波形如图所示,如果初相位在 $0^2\pi$ 之间取值,则 坐标原点 0 处质点的振动初相位为: 【

3. 根据光源、衍射孔(或障碍物)、观察屏三者的框对位置,把衍射分为两类,分别为失取未设衍射和: 【

4. 微光是由于原子的受激辐射而得到的放大的光,激光具有四个特性:分别为方向性好、单色性好、相干性好和【 】

5. 一束波长为 λ 的单色光垂直入射在空气中的折射率为 n 的透明薄膜上, 要是反射光干涉加强, 则薄膜的最小厚度应为: 【 】 /

6. 一東自然光的线偏光组成的复合光通过一偏振片,当偏振片转动时,最强的透射光光强是最弱的透射光光强的 5 倍,则在入射光中,自然光的强度 I₁ 和线偏振光的强度 I₂ 之比为 I₄: T₄ 】

7. 将 1mol 温度为 T 的水蒸气分解为同温度的氢气和氧气,水蒸气、氢气和氧气系统均视为理想气体系统,形有气体分子均视为刚性分子,则水蒸气系统和氧气系统的内能之比为: 【

8. 一定量的理想气体系统经历一准静态过程,体积由 V0 膨胀到 2V0,在此过程中,其体积和压强依照 $V=\frac{a}{\sqrt{P}}$ 的规律变化,其中 a 为已知常数,则在此过

程中,气体系统所作的功为: 【 】 9. 凝集粒子处于一宽度为 a 的一维无限深势阱中,其定态波函数为:

$$\psi(x) = \sqrt{\frac{9}{a}} \sin \frac{\pi}{a} x, 0 \le x \le a,$$

在 x=0.至 x=a/2 之间发现粒子的概率为:【 】

10. 根据泡利不相容原理, 在主量子数 n=4 的电子壳层上最多可能有的电子数为:

二、选择题

1. 火车以 30m/s 的速度驶近一静止的观察者,空气中声速为 330m/s,如果火车汽笛的频率为 550HZ,则观察者听到的声音频率为: 【

A, 600HZ B, 605HZ C, 504HZ

2. 一平面简谐波的波动方程为 y=0.1cos(3 π t- π x+ π)(SI), t=0 时的波形曲线

如图所示,则【

1

A、波速为 9m/s

B、a、b 两点间相位差为 3/2 π C、波长为 2m

3. 空气中, 波长 λ =500mm 的单色光垂直照射到宽度 b=0. 25mm 的单缝上, 单缝后 面放置一薄透镜,在薄透镜似平面上放置一屏幕,用以观测衍射条纹, 令测得屏 幕上中央明纹一侧第二级暗纹中心和另一侧第二级暗纹中心之间的距离为 d=16mm, 则薄透镜的焦距为: 【】

A₂ 1m

B₅ 2m

C, 0.5m

4. 折射率为 1.50 的两块标准平板玻璃间形成一个劈尖, 用波长入=500mm的单色 光垂直入射,产生等厚干涉条纹。当劈尖内充满液体时,相邻明纹间距为 0.4mm, 比劈尖内是空气时的相邻明纹间距缩小了Δ1=0.12mm,则液体的折射率为: 【

X

A. 1.20

B、1.40

C₅ 1.30

5. 某种理想气体,体积为V,压强为p,绝对温度为p。每个分子的质量为m, R为普通气体常数, M 为阿伏伽德罗常数, 则该气体系统的分子数密度 n 为:

1

 pN_{s} A, RT

6. 空气中, 一平板玻璃 (n3=1.6) 上有一油滴 (n2=1.35), 油滴展成中央稍高的 很扁的球冠形薄膜,设冠高冠至1×10°m,当用λ=600nm,单色光垂直照射到油膜 上时,从上表面观察反射光,将是...【

- A、油膜边缘为暗纹,中央为明纹
- B、油膜边缘为明纹, 中央为暗
- C、油膜边缘为明纹, 中央为暗纹

7. 某型想气体,初态温度为 T,体积为 V,先绝热变化使体积变为 2V,再等容变 K St. 1

- A、对外界做正功
- B、从外界净吸热
- C、向外界净放热
- 8. 随着绝对黑体温度的升高,对应于最大单色辐出度的峰值波长 \lambda m 将: 【 7
- A、向长波方向移动
- B、向短波方向移动
- C、先向短波方向移动,后向长波方向移动
- 9. 已知某金属的红限频率为 va,用频率为 va和 va的两种单色光先后照射该金属

均能产生光电效应,测得两次照射时的遏止电势差大小关系为 $U_{ ext{ol}}=rac{1}{2}U_{ ext{ol}}$

则,这两种单色光的频率的关系为:【

 $A = v_2 = v_1 - v_0$

B, $V_2 = V_1 + V_0$

 $C_1 v_2 = 2v_1 - v_0$

10. 两个静止质量不同的粒子,当它们运动的质量分别为 m1 和 m2 时, $m1 \neq m2$,发现它们的的布罗意波长相同,则这两种粒子的: \mathbb{Z}

A、动量相同

B、能量相同

C、动能相同

三、一沿 X 轴正方向传播的平面简谐波在 t=0.25s 时波形曲线如图所示, 波速为

 $\frac{\pi}{0.08m/s}$, P点的坐标为 xp=0.04m, 坐标原点 0 处质点的振动初相位在 $\frac{\pi}{2}$ 之 间取值,求:

- (1) 坐标原点 0 处质点的振动方程;
- (2) 该平面简谐波的波动方程:

四、1mo1 单原子分子理想气体(分子视为刚性分子)进行的循环过程如图所示,其中 AB 为等压过程、BC 为等容过程、CA 为等温过程。已知气体在状态 A 的温度为 T_0 、体积为 V_0 ,状态 T_0 的体积为 T_0 0、设普适气体常数(摩尔气体常数)为 T_0 0、水

- (1) AB、BC、CA 三个过程中系统与外界交换的热量;
- (2)整个过程的循环效率小:
- (3) 计算 AB 过程中,系统熵的增量ΔS=S_a-S_a=?(1n3≈1.1)

五、真空中,用一束具有两种波长 λ 1=700nm, λ 2=500nm 的平行光垂直入射到一光栅上,在处于溥透镜焦平面的屏上,发现距中央明纹 50cm 处 P 点, λ 1 光的第 k 级主极大和 λ 2 光的第 (k+2) 极主级大相重合,溥透镜的焦距 f=50cm,求:

- (1) k=? (2) 光栅常数 d=?
- (3) 当用波长为 500nm 的单色光垂直入射到此光棚上,第二级缺级,求在衍射角 (-90° < 0 <90°) 范围内可能观察到的全部主极大条纹级数有哪些?

 $(\sqrt{2} \approx 1.4)$

六、在康普顿散射中,入射光子的波长为5 Å c, 入射光子与一静止的自由电子相碰撞,碰撞后,散射光子的波长为6 Å c, 其中 Å c 为电子的康普顿波长,已知真空中光速为 c, 求:

- (1) 散射光的散射角 θ =?
- (2) 碰撞后, 电子的动能和动量大小各为多少?
- (3) 碰撞后,设电子运动方向与入射光子运动方向的夹角为 ϕ ,求 tg ϕ =?

2012-2013 年第一学期答案

一、填空题

1、5/6s; 2、 $\frac{3}{2}^{\pi}$; 3、菲涅尔衍射; 4、能量集中; 5、 $\frac{\lambda}{4n}$

6. 1/2; 7. 12:5; 8.
$$\frac{a^3}{2V_0}$$
; 9. 1/2; 10. 32

二、选择题

1、B 2、C 3、B 4、C 5、A 6、B 7、C 8、B 9、C 10、A 三、(1) 已知 λ=0.04m, A=0.5m, u=0.08m/s

$$T = \frac{\lambda}{u} = \frac{1}{2} s_s \varpi = \frac{2\pi}{T} = 4\pi s^{-1}$$

坐标原点在 t=0.25s, 位移: $y_0(t=0.25)=0.5\cos(\pi+\phi_0)$ (m) 由旋转矢量法: $\pi+\phi_0=\pi/2$, $\phi_0=\pi/2$ 坐标原点的振动方程: $y_0=0.5\cos(4\pi+\pi/2)$ (m)

(2)被动方程: y=0.5cos[4元(t-x/0.08)-元/2](m) (y=0.5cos(4元t-50元x-元/2)(m))

$$P_{\perp}$$
, $v = 1 \text{mol}_3$ $Cv = \frac{3}{2}R$, $Cp = \frac{5}{2}R$, $T_h = \frac{3V_0}{V_b}T_a = 3T_0$

(1) AB 过程:
$$Q_{AB} = \nu C_p (T_n - T_a) = 5RT_0 > 0$$
,吸热

BC 过程:
$$Q_{BC} = \nu C_{\nu} (T_{C} - T_{B}) = -3RT_{0} < 0$$
,放热

CA 过程:
$$Q_{AC} = W_{AC} = \int_{3V_0}^{V_0} P \mu V = \int_{3V_0}^{V_0} \frac{\nu R T_A}{V} = -RT \ln 3 < 0$$
, 放热

(2)
$$Q_1 = Q_{AB}, Q_2 = Q_{BC} + Q_{CA}, \eta = 1 - \frac{|Q_1|}{Q_1} = 18\%,$$

$$(3) \Delta S_{AB} = S_B - S_A = \int_A^B \frac{dQ}{T} = \nu C_P \int_{T_0}^{3T_0} \frac{dT}{T} = \frac{5}{2} R \ln 3,$$

$$d\sin\theta = k\lambda_1, \quad k\lambda_1 = (k+2)\lambda_2, k = \frac{2\lambda_2}{\lambda_1 - \lambda_2} = 5$$

$$d\sin\theta = (k+2)\lambda_2$$

2)
$$tg\theta = \frac{x}{f} = 1, \theta = 45^{\circ}, d = \frac{5\lambda_1}{\sin 45^{\circ}} = 4900nm(5000nm),$$

3)
$$-1 < \sin \theta < +1, \Rightarrow -\frac{d}{\lambda} < k < +\frac{d}{\lambda}, -10 < k < +10, (-9.8 < k < +9.8),$$

 $k = 0, \pm 1, \pm 3, \pm 5, \pm 7, \pm 9$

六、

1) 散射角:
$$\Delta \lambda = 6\lambda_{\rm c} - 5\lambda_{\rm c} = \lambda_{\rm c}$$

 $\Delta \lambda = \lambda_{\rm c} (1 - \cos \theta)$, $\Rightarrow \theta = 90^{\circ}$

2) 碰撞后,电子的动能:
$$E_k = hv_0 - hv = hc(\frac{1}{5\lambda_c} - \frac{1}{6\lambda_c}) = \frac{hc}{30\lambda_c}$$
,

电子的动量:
$$P_e = \sqrt{\left(\frac{h}{5\lambda_c}\right)^2 + \left(\frac{h}{6\lambda_c}\right)^2} = \frac{h}{\lambda_c} \cdot \frac{\sqrt{61}}{30}$$

3) 运动方向:
$$tg\varphi = \frac{\frac{h}{6\lambda_c}}{\frac{h}{5\lambda_c}} = \frac{5}{6}$$

第一学期东北大学考试试卷 (A)

2013-2014 年第一学期

课程名称:大学物理(下)

一、填空题(每空3分,共30分)
1. 一物体沿 x 轴作简谐振动, 振幅为 0. 10m, 周期为 2. 0s, 取平衡位置 x=0, 1=0
时物体位于+0.05m, 且向 x 轴正方向运动, 当 t=1s 时物体的位置坐标
为:。
2. 火车以 $^{v_r=30m/s}$ 的速度行驶,汽笛的频率为 $^{v=620Hz}$,在铁路近旁的公路上
坐在汽车(汽车与火车同方向行驶,速度为 ¹ 、一72km ¹ h,汽车在前,火车在后,
空气中的声速为 u=340m/s) 里的人听到火车鸣笛的声音频率是:。
3. 在单缝表现禾费衍射实验中,波长为 A 的单色光垂直入射在宽度为 4 2 的单缝
上,对应于衍射角为30°的方向,单维处波阵而可分成的半波带数目
为:
4. 用波长为礼的单色光垂直照射牛顿环装置时,测得中央暗斑外第1和第4暗环
半径之差为 ⁴ ,而用一未知单色光垂直照射时,测得第1和第4暗半径之差为 ⁴ 。,
则该未知单色光的波长多为。
5. 工作上放一平晶,形成一个气劈尖,现用波长为2的单色光
照射,干涉条纹如图,则工件上凹坑的深度 5
6. 在相同温度下, 2 摩尔氢气和 3 摩尔氢气分别放在两个容积
相同的容器中,两气体内能之比 E_{H_2} : E_{H_2} 为
7. 化等压过程中, 0.056 千克氦气从温度为 293K 变化到 393K, 吸收的热量为:。
8. 在加热黑体的过程中,其单色辐出度的峰值波长由 0.8 年 变化到 0.4 年 ,总
辐出度改变为原来的倍数为:
$w(x) = \sqrt{2} \sin \frac{3\pi}{x} x 0 \le x \le a$

10. 原子内电子的量子态由 n, 1, m_1 , m_2 四个量子数来表征,当 n, 1 一定时,不同的量子态数目为:

- 二、选择题(单选题,每小题3分,共30分)
- 1、某简谐运动的振动曲线如图所示,则此简谐运动的运动方程为:()

B,
$$x=2\cos\left(\frac{4}{3}\pi t + \frac{1}{3}\pi\right)$$
 (cm),

C,
$$x=2\cos\left(\frac{4}{3}\pi t - \frac{2}{3}\pi\right)$$
 (cm),

D,
$$x=2\cos\left(\frac{4}{3}\pi t + \frac{2}{3}\pi\right)(cm)$$
.

- 2、关于产生驻波的条件,下列说法正确的是:(//)
- A、任何两列相干波叠加都能产生驻波;
- B、任何两列在同一直线上沿相反方向传播的相干波叠加都能产生驻波:
- C、任何两列振幅相同的相干波叠加都能产生驻波;
- D、两列振幅相同,在同一直线上沿相反方向传播的相干波叠加才能产生驻波。
- 3、在双缝干涉实验中, 若单色光源 S 到两缝 S1、S2 距离相等,则观察屏上中央明条纹位于 0 处,现将光源 S 向下移动到图中 S'位

置,则()

- A、中央明纹位置不变, 且条纹间距增大;
- B、中央明纹向上移动, 且条纹间距不变;
- C、中央明纹向下移动, 且条纹间距增大;
- D、中央明纹向下移动, 且条纹间距变小。
- 4、三个偏振片 P1、P2、P3 依次堆叠在一起,P1 与P3 的偏振化方向互相垂直,P2 与P1 的偏振化方向间夹角为 30°,P2 与P3 的偏振化方向间夹角为 60°,强度为 10 的自然光垂直射到偏振片 P1,并依次透过偏振片 P1、P2、P3,则通过三个偏振片后的光强为:()

A,
$$\frac{3I_0}{16}$$
 B, $\frac{3I_0}{32}$ C, $\frac{I_0}{8}$ D, $\frac{\sqrt{3}I_0}{8}$

- 5、一束波长为 λ 的单色光由空气射到折射率为 n 的透明玻璃薄膜上,要使反射光得到加强,则薄膜的最小厚度应为:()
- Λ λ /9
- B, $\lambda/4$
- $C_{\lambda} \lambda / 4n$
- $D, \lambda/2n$
- 6、两瓶质量密度相等的氮气和氧气(氮气和氧气视为理想气体),若它们的方均 根速率也相等,则有:()
- A、它们的压强 p 相等, 氮气的温度比氧气的温度高;

- B、它们的压强 p 不等, 温度相等;
- C、它们的压强 p 相等, 氧气的温度比氮气的温度高;
- D、它们的温度 T 相等, 氧气的压强比氮气的压强高;
- 7、摩尔数相同的两种理想气体,一种是氦气,一种是氦气,都从相同的初态开 始经等压膨胀为原来体积的 3 倍,则两种气体,()、
- A、对外做功相同, 氮气吸收的热量比氦气吸收的热量多;
- B、对外做功相同, 氦气吸收的热量比氮气吸收的热量多;
- C、对外做功和吸收的热量都不同;
- D、对外做功和吸收的热量都相同。
- 8、光子能量为 0.6MeV 的 X 射线,入射到某种物质上而发生康普顿散射, 电子的动能为 0.2 MeV,则散射光波长的改变量 $\triangle \lambda$ 与入射光波长 $\lambda 0.2 \text{ Li}$
- A. 0.25:; B. 0.50 C. 0.40 D. 0.35
- 9、静止质量为 m0 的微光粒子以速度 ν 作高速运动, 这时粒子物质波的波 lè λ 为:

$$\Lambda = \frac{h}{m_0 v}$$

$$B_{\gamma} \quad \lambda = \frac{2hc}{m_{\alpha}v^2}$$

$$C_{\text{N}} \lambda = \frac{h}{m_0} \sqrt{\frac{1}{v^2} - \frac{1}{c^2}}$$

$$D, \lambda = \frac{h}{m_0 v^2 \sqrt{\frac{1}{v^2} - \frac{1}{c^2}}}$$

- A、粒子的动量不能确定, 但坐标可以被确定;
- B、不确定关系仅仅适用于电子和光子,不适用于其他粒子:
- C、粒子的动量和坐标可以同时确定:
- D: 不确定关系不仅适用于电子和光子,也适用于其他粒子。
 - 至六题为计算题,要求写出计算过程,每题 10 分)
- 三、现有一列沿 x 轴正方向传播的简谐波, 在
- $t_1 = 0s, t_2 = 0.5s$ 时刻的波形如图所示:
 - 求: (1) p点的振动方程(运动方程)
 - (2) 波动方程(波函数)

四. 用波长 $\lambda = 550$ nm 的单色光垂直入射在光棚上,第3级明条纹出现在 $\sin \varphi = 0.3$ 处,第4级缺级(第2级明纹可见)

- 求: (1) 光棚常数 d = (b+b') 是多少?
 - (2) 光棚上狭缝可能的最小宽度 b 有多大?
 - (3) 在 $^{-90^{\circ}\langle\varphi^{(90^{\circ}}}$ 范围内,实际可能呈现的全部级次。

五. 在光电效应实验中,用波长为 150mm 的紫外光照射到铝的表面上,铝的逸出功为 4. 2eV, 试求: (1) 出射光电子的最大初动能 (2) 遏止电势差

- (3) 铝的截止波长(红限波长)
- (4) 如果入射光强度为 3.0W·m⁻²,单位时间内打到单位面积上的平均光子数

六. 有 0.32Kg 的氧气(视为理想气体)作如图的 ABCDA 循环,循环由两个等温

过程和两个等体过程构成,设 $\nu_2 = 3\nu_1$,

 $T_{r=300k}$, $T_2 = 200k$

- (1) 计算每个过程中系统吸收热量;
- (2) 計算整个循环过程的循环效率;
- (3) 計算由状态 B 变化到状态 D,系统的熵变 S_n - S_n =?

参考答案

1.
$$-0.05m$$
 2. $640Hz$ 3. 4 4. $L_2^2 \lambda / L_2^2$ 5. $a \lambda / (2b)$ 6. $10:9$ 7. $5817J$ 8. 16 9. $1/2$ 10. 2. $(21+1)$...
1. D 2. D 3. B 4. B 5. C 6. C 7. A 8. B 9. C 10. D

$$(1)\phi_p = -\frac{\pi}{2}$$
 $T = 2s$ $\overrightarrow{R}\omega = \frac{2\pi}{T} - \pi/s$

$$\lambda=0.4$$
m \mathbb{R} u= $v\lambda=\frac{\omega}{2\pi}\times0.4=0.2$ m/s

$$y_p = A\cos(\omega t + \varphi) = 0.3\cos(\pi t - \frac{\pi}{2})(m)$$

(2) y=Acos
$$\left[2\pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)+\phi\right]=0.3\cos\left[\pi t-5\pi x+\frac{\pi}{2}\right](m)$$

或者y=Acos
$$\left[\omega\left(t-\frac{x}{u}\right)+\phi\right]=0.3\cos\left(\pi t-5\pi x+\frac{\pi}{2}\right)(m)$$

四、

$$(1)(b+b')\sin \varphi = \pm k\lambda$$
 $k = 0,1,2,L$

$$(b+b') = d = \frac{k\lambda}{\sin \varphi} = \frac{3 \times 550}{0.3} = 5500 \text{nm}$$

(2)似级:
$$\frac{b+b^r}{b} = \frac{k}{k'}$$

取
$$k'=178b=\frac{b+b'}{4}=1375nm (最小)$$

$$(3) d \sin \varphi = k \lambda \implies d \sin 90^\circ = k_{\max} \lambda$$

$$k_{max} = \frac{d}{\lambda} = \frac{5500}{550} = 10$$
 3%

屏幕上可能呈现的的全部级次为:

$$0,\pm 1,\pm 2,\pm 3,\pm 5,\pm 6,\pm 7,\pm 9$$

五、

$$(1)\frac{1}{2}mv^{2}_{max} = \frac{hc}{\lambda} - W = 8.28 - 4.2 = 4.08eV$$

$$(2)U_0 = \frac{\frac{1}{2}mv^2_{max}}{e} = \frac{4.08eV}{e} = 4.08V$$

$$(3)\lambda_0 = \frac{c}{v_0} = \frac{hc}{W} = 296 \times 10^{-9} \text{m} = 296 \text{nm}$$

$$(4) N = \frac{I}{hv} = \frac{I\lambda}{hc} = 2.26 \times 10^{18} (m^{-2} \, \text{s}^{-1})$$

六、

$$(1)$$
v = 10, Cv = $\frac{5}{2}$ R

$$\begin{aligned} Q_{AB} &= W_{AB} = vRT_1 ln \frac{V_2}{V_1} = 27423 J \\ B &\rightarrow C \end{aligned}$$

B
$$\to$$
 C
 $Q_{BC} = \Delta E_{BC} = vC_{v,m} (T_2 - T_1) = \frac{m}{M} \frac{5}{2} R (T_2 - T_1) = -20775 (J)$

$$Q_{CD} = W_{CD} = vRT_2 \ln \frac{V_1}{V_2} = -18282J$$

$$Q_{hA} = \Delta E_{DA} = vC_{v,m} (T_1 - T_2) = 20775J$$

(2)
$$\eta = 1 - \frac{|Q_2|}{Q_1} = 1 - \frac{20775 + 18282}{27423 + 20775} \approx 19\%$$

$$(3)S_{D} - S_{B} = \int_{T_{1}}^{T_{2}} \frac{vC_{v}}{T} dT + vR \int_{V_{2}}^{V_{1}} \frac{dV}{V}$$

$$= vR \left(\frac{5}{2} \ln \frac{T_2}{T_1} + \ln \frac{V_1}{V_2} \right)$$

$$\approx -176 \left(J/K \right)$$

东北大学考试试卷 (A)

2014-2015 年第一学期

课程名称:大学物理(下)

一、填空

- 1、一物体沿 x 轴做简谐运动,振幅 A=0.12m,周期 T=2s。物体从 x=0.06m,向 x 轴负方向运动第一次回到平衡位置所需的时间为: ()
- 2、一警车以 25m/然的速度追赶一辆速度为 15m/s 的客车, 假设车上警笛的频率 为800Htz;则客车上人听到的警笛声波频率是()Hz(设空气中声速为300m/s)
- 3、一束由自然光和线偏光组成的复合光通过一偏振片,当偏振片特级阻力。最强 的透射光强是最弱的透射光强的 16 倍,则在入射光中,自然光的强度 11 和偏振 光的强度 A2 之比为()
- 4、用某透明介质膜盖住双缝干涉装置中的一条缝,此时,屏上零级明级移至原 来的第五条明纹处, 若入射波长为 589.3nm, 介质折射率 n=1.58, 则此透明介质 的厚度为()nm
- 5、将 1mo 温度为 T 的水蒸气分解为同温度的氢气和氢气, 求氢气和氧气的内能 之和比水蒸气的内能增加了()(所有气体分子均视为刚性分子)
- 6、对于一卡诺循环系统(高温热源温度为19°, 低运热源温度为172), 工作物质 每循环一次可以从外界所做净功为(
- 7、若一个电子的动能等于他的静能,则该电子的德和罗意波长(
- 8、在光电效应中,当用波长为 λ 的光照射某金属表面时,测得遏止电压为 U_0 ,

则改金的红限频率为(

9、在康普顿散射中,波长为2。公射光子与一自由电子碰撞,碰撞后,光子的

散射角为90°以 2。表示康密顿波长、则散射光子的能量为()

- 10、在描述原子内电子状态的能量数为n, l, ml中, 当, l=4, n的最小可能 取值为()
- 二、选择题
- 1、一治x 轴做简谐振动的弹簧振子,振幅为 A,周期为 T,振动方程用余弦函数 表示。如果该振子的初相为 4x/3,则 t=0 时,质点的位置在()
- --A、过文--1A/2处,向负方向运动
- C。过 x=1A/2处, 向负方向运动
- B、过 x=-1A/2 处,向正方向运动 D、过 x=-1A/2 处,向正方向运动
- 2、一下面简谐波, 其振幅为 A, 频率为 v, 波沿 x 轴正方向传播, 设 t=ta时刻,

波形如图所示,则 x=0 处质点振动方程为(

$$A, \quad y = A\cos[2\pi\nu(t+t_0) + \frac{\pi}{2}]$$

$$B_{\gamma} \quad y = A\cos[2\pi v(t-t_0) + \frac{\pi}{2}]$$

C,
$$y = A\cos[2\pi v(t - t_0) - \frac{\pi}{2}]$$
 D, $y = A\cos[2\pi v(t + t_0) - \frac{\pi}{2}]$

D,
$$y = A\cos[2\pi v(t + t_0) - \frac{\pi}{2}]$$

3、一束自然光从空气射向一块平板玻璃,如图,入射角等于布儒斯特角,则在界面 2 的反射光()
A、是自然光 B、是部分偏振光
C、是线偏振光且光矢量的振动方向垂直于射入面
D、是线偏振光且光矢量的振动方向平行于射入面
4、根据你的理解,下列哪个物体是绝对黑体()
A、不能辐射任何光线的物体 B、不辐射可见光的物体 C、不能反射可见光的物体 D、不能反射任何光线的物体
5、波长为 500nm 的单色光垂直照射到宽度 0. 25mm 的单缝上,单缝后面放置一口
透镜,在凸透镜的焦平面放置一屏幕用于观测衍射条纹。今测得屏幕上中央明条
纹一侧第三级暗条纹和另一侧第三级暗条纹之间的距离为 12mm,则凸透镜的焦
距为()
A. 2m B. 1m
C、 0. 5m D、 0. 2m
6、某种理想气体,体积为 V,压强为 P,绝对温度为 T,每个分子的质量为 m,R
为摩尔气体常数,N为阿伏伽德罗常数,则该气体的分子数密度 n 为()
A, $\frac{PmN_0}{RT}$ B, $\frac{PN_0}{RTV}$ C, $\frac{PN_0}{RT}$ D, $\frac{mN_0}{RTV}$
RT RTV
$C \sim \frac{PN_0}{RT}$ $D \sim \frac{mN_0}{RTV}$
7、一绝热熔器被隔板分成相等的两部分,一部分是真空,另一部分是理想气体;
若把隔板抽出,气体将进行绝热自由膨胀,然后达到新的平衡状态,在此过程中
系统温度和熵的变化为(
A、温度不变,熵增加。 · · · · · · · · · · · · · · · · · · ·
A、温度不变,熵增加 C、温度不变,熵不变 D、温度降低,熔增加 8、根据玻尔的氢原子理论,若大量氢原子处于主量子数 n=4 的激发状态,则跃
8、根据玻尔的氢原子理论,若大量氢原子处于主量子数 n=4 的激发状态,则跃
辐射的谱线中属于巴耳末系的谱线有几条()
A, 4 B, 3 G, 2 D, 1
9、在驻波中,两个相邻波节间各质点的振动()
A、振幅相同,相位相同 B、振幅不同,相位相同
C、振幅相同,相位不同 D、振幅不同,相位不同
.10、当一个光子和一个电子具有相同的波长是,则()
A、光子具有较大的动量 B、电子具有较大的动量
A、光子具有较大的动量 B、电子具有较大的动量 C、光子和电子的动量相等 D、光子和电子的能量相等
A、光子具有较大的动量 B、电子具有较大的动量 C、光子和电子的动量相等 D、光子和电子的能量相等 = 、一列波沿 x 轴正向传播,其中 x=5m 处的质点振动曲线如图所示,已知
A、光子具有较大的动量 B、电子具有较大的动量 C、光子和电子的动量相等 D、光子和电子的能量相等 三、一列波沿 x 轴正向传播,其中 x=5m 处的质点振动曲线如图所示,已知
A、光子具有较大的动量 B、电子具有较大的动量 C、光子和电子的动量相等 D、光子和电子的能量相等 三、一列波沿 x 轴正向传播, 其中 x=5m 处的质点振动曲线如图所示,已知 A=0.1m, 试求:
A、光子具有较大的动量 B、电子具有较大的动量 C、光子和电子的动量相等 D、光子和电子的能量相等 三、一列波沿 x 轴正向传播,其中 x=5m 处的质点振动曲线如图所示,已知
A、光子具有较大的动量 B、电子具有较大的动量 C、光子和电子的动量相等 D、光子和电子的能量相等 E、一列波沿 x 轴正向传播, 其中 x=5m 处的质点振动曲线如图所示,已知 A=0.1m, 试求: (1) 波动表达式 (2) x=8m 处与 x=5m 处质点间相位差

四、如图所示,空气中一折射率 n_2 =1.30 的油滴落在折射率为 n_3 =1.50 的平板玻璃上,形成一表面为球面的油膜,油膜中心最高处的高度 d_m =0.001mm; 现用 λ =600nm 的单色光垂直照射油膜,从上面观察,求:(1)油膜周边是暗环还是明环(2)整个油膜可看到几个完整的暗环(3)整个油膜可看到几个完整的明环

五、空气中有一玻璃棒(折射率为 1.5)长 54cm, 一端面是半径为 6cm 凸球面, 另一端面为平面, 一小物位于左端球面顶点之前 20cm 处的轴线上, 如图所示。问, (1) 小物经玻璃棒成像在何处 (2) 整个玻璃棒系统的横向放大率为多少

七、 $p = \frac{p_0 V^2}{V^2}$,a点的温度为 T_0 ,求: $p = \frac{p_0 V^2}{V^2}$,a点的温度为 T_0 ,求: $p = \frac{p_0 V^2}{V^2}$

气体吸收的热量(2)求此循环过程的效率

一、填空题

1. 5/6 2. 829 3. 2: 15 4. 4. 5080 5. 3/4RT 6.
$$(1-\frac{T_2}{T_1})Q$$
 7.

$$\frac{h}{\sqrt{3}cm_c}$$
(或0.0014nm) 8. $\frac{c}{\lambda} - \frac{U_0e}{h}$ 9、 $\frac{hc}{\lambda_0 + \lambda_c}$ 10、5

二、选择题 1~5: DBCDB 6~10: CACBC 三、(1)、5m 处质点的初相为:
$$\varphi = \frac{\pi}{3}$$
 $\omega \times 2 = \frac{7\pi}{6}$ $\omega = \frac{7\pi}{12}$ $y(5,t) = 0.1\cos(\frac{7}{12}\pi t + \frac{\pi}{2})m$

$$y(5,t) = 0.1\cos(\frac{7}{12}\pi t + \frac{\pi}{3})m$$

5m 处质点的振动方程为:

$$y(x,t) = 0.1\cos\left[\frac{7\pi}{12}\left(t - \frac{x - 5}{10}\right) + \frac{\pi}{3}\right] = 0.1\cos\left[\frac{7\pi}{12}t - \frac{7}{120}\pi t + \frac{5\pi}{8}\right]$$

(2)
$$\Delta \varphi_{12} = \varphi_1 - \varphi_2 = 2\pi \frac{x_2 - x_1}{\lambda} = \frac{2\pi}{\lambda} \Delta x_{21} = \frac{7}{40} \pi$$

四、(1)
$$d=0,\Delta_{\star}=0$$
,油膜周边是明环

(2)
$$\Delta \varphi_{12} = \varphi_1 - \varphi_2 = 2\pi \frac{x_2 - x_1}{\lambda} = \frac{2\pi}{\lambda} \Delta x_{21} = \frac{7\pi}{40}$$
四、(1) $d = 0, \Delta_r = 0$, 油膜周边是明环
(2) 干涉减弱条件: $\Delta_r = 2n_2 d = (2k+1)\frac{\lambda}{2}, k_m = 3.83$

看到的最大级数是 3 级可以看到 4 个完整的暗环: k=0, 1, 2, 3

(3) 干涉加强条件:
$$\Delta_r = 2n_2 d = k\lambda, k_m = 4.33$$

(1) 玻璃棒左端凸球面成像
$$\frac{n'}{p'} = \frac{n'-n}{r}$$
 $\frac{n'}{p'} - \frac{n_1}{p_1} = \frac{n_1'-n_1}{r_1}$

$$\frac{\mathbf{n'}}{\mathbf{p'}} - \frac{\mathbf{n_i}}{\mathbf{p_i}} = \frac{\mathbf{n_i'} - \mathbf{n_i}}{\mathbf{r_i}}$$

$$p_1 = -20 \text{ cm}, n_1 = 1, n'_1 = 1.05, r_1 = 6 \text{ cm}, \frac{1.5}{p_1'} - \frac{1}{-20} = \frac{1.5 - 1}{6}, p_1' = 45 \text{ cm}$$

玻璃棒 存端 凸球面成像:
$$p' = \frac{n'}{n}p$$
 $p_2' = \frac{n_2'}{n_2}p_2$

$$p_{\lambda} = -(54-45) = -9 \text{ cm}, n'_{2} = 1.0, n_{2} = 1.5, \therefore p_{2}' = -6 \text{ cm}$$

~ 最終像成在右端面左侧6cm处

2) 玻璃棒的放大率, 左端球面:
$$\beta = \frac{p'n}{pn'}$$
, $\beta_i = \frac{n_i p_i'}{n_i' p_i}$

$$p_1 = -20 \, cm$$
, $n_1 = 1$, $n'_1 = 1.05$, $p'_1 = 45 \, cm$

$$\beta_1 = \frac{n_1 p_1'}{n_1' p_1} = \frac{1 \times 45}{1.5 \times (-20)} = -1.5$$

右端面:
$$\beta_2 = \frac{n_2 p_2'}{n_2' p_2}$$
, $p_2 = -9 \, \text{cm}$, $p_2' = -6 \, \text{cm}$, $n_2' = 1.0$, $n_2 = 1.5$

$$\beta_2 = \frac{n_2 p_2'}{n_2' p_2} = \frac{1.5 \times (-6)}{1.0 \times (-9)} = 1, \quad \beta = \beta_1 \beta_2 = -1.5$$

六、

$$(1)|\psi_{n}(x)|^{2} = \frac{2}{a}\sin^{2}\frac{n\pi}{a}x$$

$$P = \int_{0}^{a/4} |\psi_{n}(x)|^{2} dx = \frac{2}{a} \int_{0}^{a/4} \sin^{2}\frac{n\pi}{a}x dx$$

$$= \frac{2}{\pi} \int_{0}^{a/3} \sin^{2}u du = \frac{1}{4} - \frac{1}{2\pi n} \sin\frac{n\pi}{2}$$

$$n = 1, P_{1} = \frac{1}{4} - \frac{1}{2\pi}, n = \infty, P_{2} = \frac{1}{4}$$

$$(2)|\psi_{n}(\frac{a}{4})|^{2} = \frac{2}{a}\sin^{2}\frac{n\pi}{a} \times \frac{a}{4} = \frac{2}{a}\sin^{2}\frac{n\pi}{4}$$

概率密度最大,即:

$$\sin \frac{n\pi}{4} = \pm 1$$
 $\frac{n\pi}{4} = (2k+1)\frac{\pi}{2}, (k=0,1,2,3,...)$

n=2+4k=2,6,10,14...概率密度最大

+

$$Q_{AB} = vC_v (T_B - T_A) = \frac{3}{2} (P_B V_B - P_A V_A) = 12P_0 V_0 = 12RT_0$$

BC等压过热:吸热

$$Q_{BC} = VC_{II}(T_C - T_B) = \frac{5}{2}(P_CV_C - P_BV_B) = 45P_0V_0 = 45RT_0$$

CA过热:放热

$$\Delta E_{CA} = vC_{c}(T_{A} - T_{C}) = \frac{3}{2}(P_{A}V_{A} - P_{C}V_{C}) = -39P_{0}V_{0} = -39RT_{0}$$

$$W_{GA} = \int_{3V_0}^{V_0} p dv = \int_{3V_0}^{V_0} \frac{P_0 V^2}{V_0^2} dv = -\frac{26}{3} P_0 V_0 = -\frac{26}{3} RT_0$$

$$Q_{CA} = W_{CA} + \Delta E_{CA} = -\frac{143}{3} RT_0$$

(2)经历一个循环过程:
$$\eta=1-\frac{|Q_{tk}|}{Q_{tw}}=1-\frac{\frac{143}{3}RT_0}{(12+45)RT_0}=16.4\%$$