Week 7 Discussion

Liu Yang lyang422@wisc.edu

This week's topic

- Program correctness
- Loop invariant

This week's topic

Program correctness

- 1. <u>Partial correctness</u>: For all valid input, if the program terminates on the input, then the program produces the **correct** output for that input.
- 2. <u>Termination</u>: for all valid input, the program **terminates**.

This week's topic

Loop invariant

- Statement that holds each time the loop condition is about to be tested.
- Proving loop invariant:
 - proposed invariants will be given. Generally have (at least) two loop invariants
 - one related to the looping conditions (invariant (i))
 - one related to desired output & values computed/changed in loop body (invariant (ii))
 - prove by induction (choose one you think reasonable)
 - either on # times loop test is done base case is P(1)
 - or on # of iterations of loop (# times loop body has executed) base case is P(0)
 - use subscripting on variables to track changes as loop body is executed

Discussion Handout

• Give the link ...

Greatest Common Divisor

- Definition: The *greatest common divisor* of integers a and b, denoted gcd(a,b), is the largest integer d such that d divides both a and b. Furthermore, if c divides both a and b, then c also divides gcd(a,b).
- If a, b > 0, gcd(a, 0)=a, gcd(0, b) = b, gcd(0, 0) is undefined.
- Example:
 - gcd(15, 32) = 1
 - gcd(26, 18) = 2
 - gcd(15, 30) = 15

Greatest Common Divisor

• Properties:

- If a = b, gcd(a, b) = a = b
- If $a < b, \gcd(a, b) = \gcd(a, b a)$
- If a > b, gcd(a, b) = gcd(a b, a)

• Example:

• If gcd(26, 18) = 2, then gcd(26-18, 18) = 2

It_GCD

• It_GCD Algorithm (GCD Algorithm in DvM):

procedure $it_GCD(a, b)$	1
$(x,y) \leftarrow (a,b)$	2
while $x \neq y$ do	3
if $x < y$ then $y \leftarrow y - x$	4
else $x \leftarrow x - y$	5
end	6
return x	7

It_GCD (Example: gcd(26, 18))

procedure $it_GCD(a, b)$			
$(x,y) \leftarrow (a,b)$	(x,y) = (26,18)	(x,y)=(8,18)	(x,y)=(8,10)
while $x \neq y$ do	Yes	Yes	Yes
if $x < y$ then $y \leftarrow y - x$	No	y = 18 - 8 = 10	y = 10 - 8 = 2
else $x \leftarrow x - y$	x = 26 - 18 = 8		
end			
return x			

It_GCD (Example: gcd(26, 18))

procedure $it_GCD(a, b)$	(con't)		
$(x,y) \leftarrow (a,b)$	(x,y)=(8,2)	(x,y)=(6,2)	(x,y)=(4,2)
while $x \neq y$ do	Yes	Yes	Yes
if $x < y$ then $y \leftarrow y - x$	No	No	No
else $x \leftarrow x - y$	x = 8 - 2 = 6	x = 6 - 2 = 4	x = 4 - 2 = 2
end			
return x			

It_GCD (Example: gcd(26, 18))

procedure $it_GCD(a, b)$	(con't)	
$(x,y) \leftarrow (a,b)$	(x,y)=(2,2)	
while $x \neq y$ do	No	
if $x < y$ then $y \leftarrow y - x$		
else $x \leftarrow x - y$		
end		
return x	return 2	

It_GCD - 0 case

• Example: gcd(15, 0)

procedure $it_GCD(a, b)$			
$(x,y) \leftarrow (a,b)$	(x,y)=(15,0)	(x,y)=(15,0)	
while $x \neq y$ do	Yes	Yes	
if $x < y$ then $y \leftarrow y - x$	No	No	
else $x \leftarrow x - y$	x = 15 - 0 = 15	x = 15 - 0 = 15	
end			
return x			

euclid_GCD (at least one of a, b is nonzero)

$procedure \ euclid_GCD(a, b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

Part a

• If x and y are both positive integers, what are the possible values that $x \mod y$ can have?

Part a

• If x and y are both positive integers, what are the possible values that $x \mod y$ can have?

$$0, 1, 2, \dots (y - 1)$$

euclid GCD (Example: gcd(26, 18))

procedure $euclid_GCD(a, b)$	

Fall 2020 CS 240 - Liu Yang

if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$ (x, y) = (18, 26)

while x > 0 do

 $y \leftarrow x$

 $x \leftarrow r$

return y

End

 $r \leftarrow y \mod x$

10/13/2020

Yes

r = 8

y = 18

x = 8

(x, y) = (8, 18)

16

Yes

r=2

y = 8

x = 2

audid GCD (Example: gcd(26 18))

Yes

r = 0

y = 2

x = 0

Fall 2020 CS 240 - Liu Yang

(x,y) = (0,2)

No

return 2

17

if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$ (x, y) = (2, 8)

procedure $euclid_GCD(a, b)$

while x > 0 do

 $y \leftarrow x$

 $x \leftarrow r$

End

 $r \leftarrow y \mod x$

10/13/2020

return y

euclid_GCD - 0 case

procedure $euclid_GCD(a, b)$		
if $a < b$ then $(x, y) \leftarrow (a, b)$ else $(x, y) \leftarrow (b, a)$	(x, y) = (0.15)	

if
$$a \le b$$
, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$ $(x, y) = (0, 15)$

No

return 15

$$(x,y)=(0,15)$$

while
$$x > 0$$
 do

$$r \leftarrow y \mod x$$

$$y \leftarrow x$$

$$x \leftarrow r$$

End

18

Part c

- Use induction to establish the following loop invariant:
- Each time we reach the test of the *while* loop on line (3), (i) $0 \le x \le y$ and (ii) gcd(x, y) = gcd(a, b).

$procedure \ euclid_GCD(a, b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

$procedure \ euclid_GCD(a,b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

$procedure \ euclid_GCD(a, b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

$procedure \ euclid_GCD(a, b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

$procedure \ euclid_GCD(a, b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

$procedure \ euclid_GCD(a,b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

$procedure \ euclid_GCD(a, b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

Group Discussion!

Try with euclid_GCD(15, 32)

Part c

- Use induction to establish the following loop invariant:
- Each time we reach the test of the *while* loop on line (3), (i) $0 \le x \le y$ and (ii) gcd(x, y) = gcd(a, b).

Part c

- Use induction to establish the following loop invariant:
- Each time we reach the test of the *while* loop on line (3), (i) $0 \le x \le y$ and (ii) gcd(x, y) = gcd(a, b).
- Let x_n , y_n , r_n be the value of x, y, r the n-th time we reach the test of the while loop.
- $P(n): 0 \le x_n \le y_n$ and $gcd(x_n, y_n) = gcd(a, b)$.

Part c - Base Case: k=1

procedure $euclid_GCD(a,b)$ 1

if $a \le b$, then $(x,y) \leftarrow (a,b)$, else $(x,y) \leftarrow (b,a)$ 2

while x > 0 do 3 $r \leftarrow y \mod x$ 4 $y \leftarrow x$ 5 $x \leftarrow r$ 6

End 7

return y 8

- Prove by cases:
 - a < b: The condition on the first line is true.
 - $\mathbf{0} \le x \le y$: We set $x_1 = a$ and $y_1 = b$. Then $x_1 \le y_1$. Since the specification says a and b are non-negative, $x_1 \ge 0$ holds too.
 - $gcd(x_1, y_1) = gcd(a, b)$ by initialization.
 - b < a: The condition on the first line is false.
 - $\mathbf{0} \le x \le y$: We set $x_1 = b$ and $y_1 = a$. Then $x_1 \le y_1$. Since the specification says a and b are non-negative, $x_1 \ge 0$ holds too.
 - $gcd(x_1, y_1) = gcd(b, a) = gcd(a, b)$ by initialization.

• Induction Hypothesis: $0 \le x_k \le y_k$ and $gcd(x_k, y_k) = gcd(a, b)$.

$procedure \ euclid_GCD(a,b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

procedure euclid_Go	CD(a,b)	1
if $a \leq b$, then (x, y)	$\leftarrow (a,b)$, else $(x,y) \leftarrow (b,a)$	2
while $x > 0$ do	$0 \le x_k \le y_k \text{ and } \gcd(x_k, y_k) = \gcd(a_k)$	(a,b).
$r \leftarrow y \bmod x$		4
$y \leftarrow x$		5
$x \leftarrow r$		6
End		7
return y		8

End

return y

if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$
while $x > 0$ do
$r \leftarrow y \bmod x \qquad \qquad r_{k+1} \leftarrow y_k \bmod x_k$
$y \leftarrow x$ 5
$x \leftarrow r$

$procedure \ euclid_GCD(a,b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$ y_{k+1}	
$y \times x$	$\leftarrow x_k$
$x \leftarrow r$	6

procedure $euclid_GCD(a, b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$ $x_{k+1} \leftarrow$	r_{k+1}
End	7
return v	8

$procedure \ euclid_GCD(a,b)$	1
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2
while $x > 0$ do	3
$r \leftarrow y \mod x$	4
$y \leftarrow x$	5
$x \leftarrow r$	6
End	7
return y	8

End

return y

$procedure \ euclid_GCD(a, b)$	1	
if $a \le b$, then $(x, y) \leftarrow (a, b)$, else $(x, y) \leftarrow (b, a)$	2	
while $x > 0$ do $0 \le x_{k+1} \le y_{k+1}$ and $gcd(x_{k+1}, y_{k+1}) = 0$	gcd(d	a, b)?
$r \leftarrow y \mod x$	4	
$y \leftarrow x$	5	
$x \leftarrow r$	6	

- Induction Hypothesis: $\mathbf{0} \le x_k \le y_k$ and $\gcd(x_k, y_k) = \gcd(a, b)$.
- Since x_k and y_k are both non-negative, we know $0 \le y_k \bmod x_k \le x_k 1$ WHY? Remainder range
- Since $r_{k+1} \leftarrow y_k \mod x_k$ and $x_{k+1} \leftarrow r_{k+1}$, we have that $0 \le x_{k+1} \le x_k 1 \le x_k$
- And since $y_{k+1} \leftarrow x_k$, therefore we have $0 \le x_{k+1} \le y_{k+1}$

which establish the first part of the invariant.

- Induction Hypothesis: $0 \le x_k \le y_k$ and $gcd(x_k, y_k) = gcd(a, b)$.
- For $gcd(x_{k+1}, y_{k+1})$, since
 - $y_{k+1} \leftarrow x_k$
 - $r_{k+1} \leftarrow y_k \mod x_k$ and $x_{k+1} \leftarrow r_{k+1}$
- We know that

$$\gcd(x_{k+1}, y_{k+1}) = \gcd(y_k \bmod x_k, x_k)$$

- Induction Hypothesis: $0 \le x_k \le y_k$ and $gcd(x_k, y_k) = gcd(a, b)$.
- By theorem "Let x and y be two positive integers. Then $gcd(x, y) = gcd(y \mod x, x)$ ", we know that $gcd(x_{k+1}, y_{k+1}) = gcd(y_k \mod x_k, x_k) = gcd(x_k, y_k)$
- Thus by induction hypothesis we know that $\gcd(x_{k+1},y_{k+1})=\gcd(y_k \bmod x_k,x_k)=\gcd(x_k,y_k)=\gcd(a,b)$
- which establish the second part of the invariant.
- Thus the inductive step holds.

Part c - Conclusion

• Therefore, by induction our loop invariants hold each time we test the while loop on line (3).

Part d – Program Correctness

- Partial Correctness:
- Since the loop invariant (i) tells us that $x \ge 0$, and the loop terminates only if $x \le 0$, we see that when the loop terminates, x = 0. In that case gcd(x, y) = y because gcd(0, y) = y.
- Also by loop invariant (ii), gcd(x, y) = gcd(a, b) at that point, which gives us partial correctness of the algorithm.

Part d – Program Correctness

- Termination:
- Now we show that the algorithm terminates. Consider the situation the k-th time we reach the test of the while loop.
- If $x_k \leq 0$, the loop terminates and the algorithm returns result.
- If $x_k > 0$, we observe that $x_{k+1} < x_k$ (proved in part c). Thus, x is a non-negative integer which decreases by at least 1 in each iteration of the loop unless it's zero already. Since x is initialized to be $\min(a,b)$, after at most $\min(a,b)$ iterations of the loop, x=0, the loop terminates, and the program returns.

Discussion Participation

- Sec #
- How did the exam go/ how was your experience?

Me during exam: I know this answer.

My remaining 2 brain cells:

Reference

Properties and Definitions:

https://canvas.wisc.edu/courses/212414/pages/properties-and-definitions?module item id=3020063

- Week 7 information page:
- https://canvas.wisc.edu/courses/212414/pages/week-7-discussion-info-mpmfe