Chapter 2 - 2 2rd Law -> Entropy
$$P(n) = \frac{n}{N}$$

Combinatories

Coin flips -> 5 coins

H HTTH -> microstate 3 hooks -> macrostate 2 2(n)

THHHHH H -> 4 hoods

How many microstates are in a mecrostate?

Le multiplicity $\Omega(n) = \frac{5!}{n!(5-n)!}$ -- combinations

 $\frac{4}{3}$ of hooks

 $\frac{5!}{n!(N-n)!}$ -- $\frac{N!}{n!(N-n)!}$ -- $\frac{N!}{n!(N-n)!}$

to atoms - reach one can have 0 or 1 energy units. So how many way are there of arranging I wints of energy? (10 with of everyng) 0 @ @ 0 0 @ 0 @ 0 0 = microstate 4 energies vs. 10 energies « macrostate What if an atom can have more than I? of the formula $Q(N,q) = \frac{(q+N-1)!}{q!(N-1)!}$ This idea of treating a solid like this is known as an Einstein solid & Debye model

This f= \frac{1}{2\pi \big|_{m}}

· Large Number -> addition of small #5 does not matter $10^{23} + 23 = 10^{23}$

$$N! \approx N^N e^N \cdot \sqrt{2\pi N} \approx N^N e^N = \frac{N^N}{e^N}$$

$$\ln N! \approx N \ln N - N$$

~ microstate w/i the same macrostate

Fundamental Assumption of Statistical Medianics

(sall microstates are possible and equally probable.

But that does not mean that every microstate will occur.

Not all macrostates are equally probable.

n_A=300, N_b=200 q=100

two einstein solids

3 particles each and 6 energy units

```
[24]: table0 = pd.DataFrame()
table0['q_A'] = range(0,6+1, 1)
table0['q_B'] = range(6, 0-1, -1)
table0['mult_A'] = [multiplicity(3, i) for i in table0['q_A']]
table0['mult_B'] = [multiplicity(3, i) for i in table0['q_B']]
table0['mult_total'] = table0['mult_A']*table0['mult_B']
```

[25]: table0

[25]:		q_A	q_B	mult_A	mult_B	$mult_total$
	0	0	6	1	28	28
	1	1	5	3	21	63
	2	2	4	6	15	90
	3	3	3	10	10	100
	4	4	2	15	6	90
	5	5	1	21	3	63
/	6	6	0	28	1	28

So, now lets apply Stirlings Approximation to the Multiplicity $\Omega(N,q) = \frac{(q+N-1)!}{q!(N-1)!} \approx \frac{(q+N)!}{q!N!} \Rightarrow \ln N! = N \ln N - N$ |n D = (n(q+N)!)-(lnq! + (nN!) - N(nN! = N | nN! = N | nN!) > |nq! = q |nq - q > |n(q+N)! = (q+N) |n(q+N) - (q+N)In S = (q+N) In (q+N) - q - N - q lng + q - N m N + N $\ln \Omega = (q+N)\ln(q+N) - q \ln q - N \ln N$

high temperature limit -> 9 >> N

$$\ln \Omega = (q+N) \ln (q+N) - q \ln q - N \ln N$$

$$= q \ln (q+N) + N \ln (q+N) - q \ln q - N \ln N$$

$$= \ln \left[q \cdot (1 + \frac{N}{q})\right]$$

$$= \ln q + \ln (1 + \frac{N}{q})$$

$$= \ln q + \frac{N}{q} \approx \ln (q+N)$$

$$\ln \Omega = q \ln q + N + N \ln q + \frac{N^2}{q} - q \ln q - N \ln N$$

$$= N \ln \left[\frac{q}{N}\right] + N + \frac{N^2}{q}$$

$$\Omega(q)>N = e^{N\ln(\frac{q}{N}) + N} = e^{N\ln(\frac{q}{N})} \cdot e^{N} = e^{\ln(\frac{q}{N})} \cdot e^{N}$$

$$Q(q >> N) = \left(\frac{q}{N}\right)^{N} \cdot e^{N}$$

$$Q(q >> N) = \left(\frac{eq}{N}\right)^{N} \leftarrow \text{Einstein solid at high temps}$$

2 solids in thermal contact

$$\Omega = \left(\frac{eq_A}{N_A}\right)^{N_A} \cdot \left(\frac{eq_B}{N_B}\right)^{N_B}$$

$$\Omega = \left(\frac{e^{2N}}{N} \cdot (q_A \cdot q_B)^{N}\right)$$

$$\underline{r} = \left(\frac{e^{2N}}{N} \cdot (q_A \cdot q_B)^{N}\right)$$

$$q_A = q_B = \frac{q}{2}$$

$$\mathcal{L}_{\text{max}} = \left(\frac{e}{N}\right)^{2N} \left(\frac{q}{2}\right)^{2N}$$

$$\int = \left(\frac{e}{N}\right)^{2N} \left[\frac{q^{2}}{2} - x^{2}\right]^{N}$$

$$\ln\left[\frac{q^2}{2}^2 - \chi^2\right]^N = N \cdot \ln\left[\frac{q^2}{2}^2 - \chi^2\right]$$

=
$$N \ln \left[\frac{q^2}{2}\right] \cdot \left(1 - \frac{x^2}{(q^2)^2}\right]$$
 Takaway! There is one was rootable where we will ever measure this experiment to be in

In(1+x) = x, for small x

$$\ln\left[\frac{q^{2}}{2}^{2}-\chi^{2}\right]^{N}=N\left(\ln\left(\frac{q}{2}\right)^{2}-\left(\frac{2\chi}{q}\right)^{2}\right)$$

$$\Omega = \left(\frac{e}{N}\right)^{2N} e^{N \cdot \ln\left(\frac{q}{2}\right)^{2} - N\left(\frac{2x}{q}\right)^{2}}$$

$$\int 2^{-\frac{2N}{N}} e^{N \cdot \ln(\frac{q}{2})^2} - N(\frac{2x^2}{q})^2$$

$$\int L = \left(\frac{e}{N}\right)^{2N} \cdot \left(\frac{q}{2}\right)^{2N} \cdot e^{-N\left(\frac{2x}{q}\right)^{2}}$$

$$\int L_{\text{max}} = \left(\frac{e}{N}\right)^{2N} \left(\frac{q}{2}\right)^{2N} \cdot e^{-N\left(\frac{2x}{q}\right)^{2}}$$

$$\Omega = \Omega_{\text{max}} e^{-N\left(\frac{2x^2}{4}\right)^2}$$
Gaussian function

$$\frac{Q}{S^{2}} = e^{-N\left(\frac{2x}{4}\right)^{2}}$$

$$\frac{1}{e} = e^{-1}$$

rion for $X = \frac{4}{2W}$ Suppose $N = 10^{22}$ width $= 2X = \frac{10^{28}}{10} = \frac{10^{28}}{10^{11}} = \frac{10^{28}}$

with =
$$2x = \frac{9}{10^2} = \frac{10^{24}}{10^{11}} = \frac{10^{24}}{10^{11}} = \frac{10^{11}}{10^{11}} = \frac{10^{11}}{10^{11$$

2.18 Show:
$$\Omega = \frac{(q+N)^{2}(q+N)^{N}}{\sqrt{2\pi q(q+N)/N}}$$

$$\Omega = \frac{(q+N)!}{q! N!}$$

$$Q = \frac{(q+N)!}{q!N!}$$

$$\Omega = (q + N)^{q + N} \cdot \frac{q + N}{\sqrt{2\pi q} \cdot \sqrt{2\pi (q + N)}}$$

$$q^{q} = \sqrt{2\pi q} \cdot \sqrt{N} \cdot \sqrt{2\pi N}$$

$$\Omega = (q+N)^{\frac{1}{4}} \cdot (q+N)^{N} \cdot \sqrt{(q+N)}$$

$$q^{\frac{1}{4}} \cdot N^{N} \cdot \sqrt{2\pi q N}$$

Stirling's Approximation

$$N! \approx N^N e^N \cdot \sqrt{2\pi N} \approx N^N e^N = \frac{N^N}{e^N}$$

In NI = NINN - N

$$D = \frac{(q+N-1)!}{q!(N-1)!}$$

$$N = N \left(N-1 \right) \left(N-2 \right) \cdots$$

$$N-II = \frac{N}{NI}$$

Entropy and the Second Law of Thermodynamics Any large system in equilibrium will be found in the macrostate with the largest multiplicity 2nd Law of Thermodynamics Multiplicity tends to morrage Multiplications are large numbers! Take the natural log of them entropy -> 5 = kgln Q S = Inl Ex: entropy of an Einstein solid. 5 = kg ln ((eg)) = Nkg ln (eg) = Nkg (lx(e) + ln(q)) Q = (eq) q>>N 5 = NkB(1 + lm(q))= $N = 10^{23}$ $q = 10^{25}$ 5= Nkg(1+ lu(102))= 1.38(1+4.6)=7.7 JK

$$\frac{\partial U_{A}}{\partial U_{A}} = 0$$

$$\frac{\partial U_{B}}{\partial U_{A}} = 0$$

$$\frac{\partial U_{A}}{\partial U_{A}} = 0$$

$$\frac{\partial U_{B}}{\partial U_{A}} = 0$$

$$\frac{\partial U_{A}}{\partial U_{A}} = 0$$

$$\frac{\partial U_{B}}{\partial U_{A}} = 0$$

$$\frac{\partial U_{A}}{\partial U_{A}} = 0$$

$$\frac{\partial U_{B}}{\partial U_{A}} = 0$$

$$\frac{\partial U_{A}}{\partial U_{A}} = 0$$

$$\frac{\partial S_{A}}{\partial U_{A}} - \frac{\partial S_{B}}{\partial U_{B}} = 0$$

$$\frac{\partial S_{A}}{\partial U_{A}} = \frac{\partial S_{B}}{\partial U_{B}}$$

$$\frac{1}{1} = \frac{\partial S_{A}}{\partial U_{A}} = \frac{\partial S_{B}}{\partial U_{B}}$$

$$\frac{1}{1} = \frac{\partial S_{A}}{\partial U_{A}} = \frac{\partial S_{B}}{\partial U_{B}}$$

HW: 2.29 + 2.30 -> look at 3.1

