Cálculo de Programas

2.° ano das Licenciaturas em Engenharia Informática (LEI) e Ciências da Computação (LCC) da Universidade do Minho

2009/10 - Ficha nr.º 12

1. Em contraste com a definição matemática de *mónade*, que oferece um functor F equipado com os operadores *unidade* e *multiplicação*,

$$A \xrightarrow{u} \mathsf{F} A \stackrel{\mu}{\longleftarrow} \mathsf{F}^2 A \tag{1}$$

a class Monad em Haskell exibe a unidade (renomeada para return) mas substitui a multiplicação pela operação de "binding":

class Monad m where

return :: $a \to m \ a$ (\gg) :: $m \ a \to (a \to m \ b) \to m \ b$

(a) Mostre que, tendo \gg , pode sempre obter μ através de

$$\mu x = x \gg id \tag{2}$$

qualquer que seja o mónade subjacente.

(b) Mostre ainda que, num mónade F,

$$id \bullet id = \mu \tag{3}$$

se verifica e que F f se pode obter também a partir de \gg :

$$\mathsf{F} f x = x \gg (\mathsf{return} \cdot f) \tag{4}$$

2. O quadro seguinte tabula os mónades estudados nesta disciplina,

Mónade	Tipo	μ	u (return)	$x \gg f$
Apontadores	1 + A	$[i_1,id]$	i_2	
Mensagens de erro	Error A	(ver Ficha 11)	Ok	
Listas	A^*	concat	singl	
Árvores	LTree A	join (ver Ficha 10)	Leaf	
Acções sobre um estado	$(A \times S)^S$	exp ap	\overline{id}	$\widehat{f} \cdot x$

onde (recordar Ficha 5) exp f designa o mesmo que $\overline{(f \cdot \mathsf{ap})}$, isto é, exp f $g = f \cdot g$. Calcule as definições da operação de *binding* que faltam na tabela.

3. Mostre que, no mónade de acções sobre um estado, se tem

$$x \gg y = y \cdot \pi_2 \cdot x \tag{5}$$

(faça também um diagrama explicativo dos tipos em jogo) sabendo da seguinte propriedade

$$f = \overline{(f \cdot \pi_2)} \tag{6}$$

que relaciona funções constantes de ordem superior com a exponenciação.

4. Considere as seguintes acções que habitam o mónade de estado St $A=(A\times S)^S$, para um dado espaço de estados S:

$$modify \ g = \langle !, g \rangle$$
 (7)

$$query f = \langle f, id \rangle \tag{8}$$

A acção $query\ f$ interroga o estado aplicando-lhe a observação f e deixando-o inalterado; já a acção $modify\ g$ recorre a g para actualizar o valor corrente do estado, dando como resultado um mero "acknowledgement" da accção realizada.

Mostre que as igualdades

$$\mathbf{do} \{ modify \ id; query \ g \} = query \ g \tag{9}$$

$$\mathbf{do} \{ modify \ f; modify \ g \} = modify \ (g \cdot f)$$
 (10)

se verificam.

5. Aplique as regras para "monadificação" de programas Haskell (escritos ao nível *pointwise*) apresentadas nas aulas teóricas aos combinadores

$$foldr f b [] = b$$
$$foldr f b (a : x) = f a (foldr f b x)$$

e

$$\begin{aligned} & \operatorname{map} f \ [\] = [\] \\ & \operatorname{map} f \ (a : x) = (f \ a) : \operatorname{map} f \ x \end{aligned}$$

por forma a obter as correspondentes versões monádicas, com tipos

$$mmap :: (\mathsf{Monad}\ m) \Rightarrow (a \rightarrow m\ b) \rightarrow [a] \rightarrow m\ [b]$$

e

$$mfoldr :: (\mathsf{Monad}\ m) \Rightarrow (a \to b \to m\ b) \to m\ b \to [a] \to m\ b$$

respectivamente.

6. Considere o hilomorfismo "quick fold" que se segue:

$$qFold :: (\mathsf{Ord}\ a) \Rightarrow (a \to a \to a) \to a \to [a] \to a$$

 $qFold\ f\ b = \llbracket [\underline{b}\ , g], qsep \rrbracket$
where $g\ (a, (x, y)) = a\ 'f'\ (x\ 'f'\ y)$

- (a) Escreva a função auxiliar g em notação pointfree.
- (b) Qual o tipo da árvore intermédia do hilomorfismo dado? Faça um diagrama explicativo em que se explicitem todos os tipos envolvidos e, em particular, o da função *qsep*.
- (c) A definição de *qFold* mostra como combinar "material genético" de diferentes hilomorfismos para produzir novos hilomorfismos. Qual é a função que conhece onde *qsep* é usada como gene da correspondente parte "ana"?