Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of G.

ECE-374-B: Lecture 16 - Shortest Paths [BFS, Djikstra]

Instructor: Nickvash Kani

October 23, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of G.

Breadth First Search

Breadth First Search (BFS)

Overview

- (A) **BFS** is obtained from **BasicSearch** by processing edges using a <u>queue</u> data structure.
- (B) It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

As such...

- DFS good for exploring graph structure
- BFS good for exploring <u>distances</u>

Queue Data Structure

Queues

A <u>queue</u> is a list of elements which supports the operations:

- enqueue: Adds an element to the end of the list
- · dequeue: Removes an element from the front of the list

Elements are extracted in <u>first-in first-out (FIFO)</u> order, i.e., elements are picked in the order in which they were inserted.

BFS Algorithm

Given (undirected or directed) graph G = (V, E) and node $s \in V$

```
BFS(s)
    Mark all vertices as unvisited
    Initialize search tree T to be empty
    Mark vertex s as visited
    set Q to be the empty queue
    enqueue(Q, s)
    while Q is nonempty do
        u = dequeue(Q)
        for each vertex v \in Adi(u)
            if v is not visited then
                 add edge (u,v) to T
                 Mark v as visited and enqueue(v)
```

Proposition BFS(s) runs in O(n + m) time.

T1. [1]

T1. [1] T2. [2.3

- T1. [1]
- T2. [2,3]
- T3. [3,4,5]

- T1. [1]
- T2. [2,3]
- T3. [3,4,5]

T4. [4,5,7,8]

T5. [5,7,8]

[2,3]

T3. [3,4,5]

T2.

6

- T1. [1]
- T2. [2,3]
- T3. [3,4,5]

- T4. [4,5,7,8]
- T5. [5,7,8]
- T6. [7,8,6]

T1.	[1]	T4.	[4,5,7,8]	T7.	[8,6]
T2.	[2,3]	T5.	[5,7,8]	T8.	[6]
T3.	[3,4,5]	T6.	[7,8,6]	T9.	[]

BFS tree is the set of purple edges.

T1.	[1]	T4.	[4,5,7,8]	T7.	[8,6]
T2.	[2,3]	T5.	[5,7,8]	T8.	[6]
T3.	[3,4,5]	T6.	[7,8,6]	T9.	[]

BFS tree is the set of purple edges.

T1.	[1]	T4.	[4,5,7,8]	T7.	[8,6]
T2.	[2,3]	T5.	[5,7,8]	T8.	[6]
T3.	[3,4,5]	T6.	[7,8,6]	T9.	[]

BFS tree is the set of purple edges.

T1. [A]

T1. [A] T2. [B,C,F]

T1. [A] T2. [B,C,F]

- T2. [B,C,F]
- T3. [C,F,E]

- T1. [A]
- T2. [B,C,F]
- T3. [C,F,E]

T4. [F,E,D]

- T2.
- T3. [C,F,E]

- T4. [F,E,D]
- [B,C,F] T5. [E,D,G]

- T2. [B,C,F]
- T3. [C,F,E]

- T4. [F,E,D]
- T5. [E,D,G]
- T6. [D,G,H]

- T1. [A]
- [B,C,F] T2.
- T3. [C,F,E]

- [F,E,D] T4.
- T5. [E,D,G]
- T6. [D,G,H]

- T1. [A]
- T2. [B,C,F]
- T3. [C,F,E]

T6. [D,G,H]

- T7. [G,H]
- T8. [H]

- T1. [A]
- T2. [B,C,F]
- T3. [C,F,E]

- T4. [F,E,D] T5. [E,D,G]
- T6. [D,G,H]

- T7. [G,H]
- T8. [H]
- T9. []

BFS with distances and layers

BFS with distances

```
BFS(s)
    Mark all vertices as unvisited; for each v set dist(v) = \infty
    Initialize search tree T to be empty
    Mark vertex s as visited and set dist(s) = 0
    set Q to be the empty queue
    enqueue(s)
    while Q is nonempty do
        u = dequeue(Q)
        for each vertex v \in Adi(u) do
             if v is not visited do
                 add edge (u,v) to T
                 Mark v as visited, enqueue(v)
                 and set dist(v) = dist(u) + 1
```

Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon <u>termination</u> of BFS(s)

- (A) Search tree contains exactly the set of vertices in the connected component of s.
- (B) If dist(u) < dist(v) then u is visited before v.
- (C) For every vertex u, dist(u) is the length of a shortest path (in terms of number of edges) from s to u.
- (D) If u, v are in connected component of s and $e = \{u, v\}$ is an edge of G, then $|\operatorname{dist}(u) \operatorname{dist}(v)| \le 1$.

Properties of BFS: <u>Directed</u> Graphs

Theorem

The following properties hold upon termination of BFS(s):

- (A) The search tree contains exactly the set of vertices reachable from s
- (B) If dist(u) < dist(v) then u is visited before v
- (C) For every vertex u, dist(u) is indeed the length of shortest path from s to u
- (D) If u is reachable from s and e = (u, v) is an edge of G, then $\operatorname{dist}(v) \operatorname{dist}(u) \leq 1$. Not necessarily the case that $\operatorname{dist}(u) \operatorname{dist}(v) \leq 1$.

BFS with Layers

```
BFSLayers(s):
    Mark all vertices as unvisited and initialize T to be empty
    Mark s as visited and set L_0 = \{s\}
    i = 0
    while L<sub>i</sub> is not empty do
             initialize L_{i+1} to be an empty list
             for each u in L do
                  for each edge (u, v) \in Adi(u) do
                  if v is not visited
                           mark v as visited
                           add (u,v) to tree T
                           add v to L_{i+1}
             i = i + 1
```

BFS with Layers

```
BFSLayers(s):
    Mark all vertices as unvisited and initialize T to be empty
    Mark s as visited and set L_0 = \{s\}
    i = 0
    while L<sub>i</sub> is not empty do
             initialize L_{i+1} to be an empty list
             for each u in L do
                  for each edge (u, v) \in Adi(u) do
                  if v is not visited
                           mark v as visited
                           add (u,v) to tree T
                           add v to L_{i+1}
             i = i + 1
```

Running time: O(n + m)

Example

Layer 0: 1

Layer 1: 2, 3

Layer 2: 4, 5, 7, 8

Layer 3: 6

BFS with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).

- BFSLayers(s) outputs a BFS tree
- \cdot L_i is the set of vertices at distance exactly i from s
- If G is undirected, each edge $e = \{u, v\}$ is one of three types:
 - tree edge between two consecutive layers
 - non-tree forward/backward edge between two consecutive layers
 - non-tree <u>cross-edge</u> with both u, v in same layer
 - \Longrightarrow Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.

Example

Layer 0: A

Layer 1: *B*, *F*, *C*

Layer 2: *E*, *G*, *D*

Layer 3: H

BFS with Layers: Properties for directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if G is directed.

For each edge e = (u, v) is one of four types:

- a <u>tree</u> edge between consecutive layers, $u \in L_i, v \in L_{i+1}$ for some $i \ge 0$
- · a non-tree <u>forward</u> edge between consecutive layers
- · a non-tree <u>backward</u> edge
- · a <u>cross-edge</u> with both u, v in same layer

Shortest Paths and Dijkstra's

Algorithm

Problem definition

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- · Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- · Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
 - Given nodes *s*, *t* find shortest path from *s* to *t*.
 - Given node s find shortest path from s to all other nodes.

Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
 - Given nodes s, t find shortest path from s to t.
 - Given node s find shortest path from s to all other nodes.
- Restrict attention to directed graphs
 - · Undirected graph problem can be reduced to directed graph problem how?

Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
 - Given nodes s, t find shortest path from s to t.
 - Given node s find shortest path from s to all other nodes.
- Restrict attention to directed graphs
 - Undirected graph problem can be reduced to directed graph problem how?
 - Given undirected graph G, create a new directed graph G' by replacing each edge $\{u,v\}$ in G by (u,v) and (v,u) in G'.
 - set $\ell(u,v) = \ell(v,u) = \ell(\{u,v\})$
 - Exercise: show reduction works. Relies on non-negativity!

Shortest path in the weighted case

using BFS

• Special case: All edge lengths are 1.

- Special case: All edge lengths are 1.
 - Run BFS(s) to get shortest path distances from s to all other nodes.
 - O(m+n) time algorithm.

- Special case: All edge lengths are 1.
 - Run BFS(s) to get shortest path distances from s to all other nodes.
 - O(m+n) time algorithm.
- Special case: Suppose ℓ(e) is an integer for all e?
 Can we use BFS?

- Special case: All edge lengths are 1.
 - Run BFS(s) to get shortest path distances from s to all other nodes.
 - O(m+n) time algorithm.
- Special case: Suppose $\ell(e)$ is an integer for all e?

 Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e)-1$ dummy nodes on e.

Example of edge refinement

Example of edge refinement

Example of edge refinement

Shortest path using BFS

Let $L = \max_{e} \ell(e)$. New graph has O(mL) edges and O(mL + n) nodes. **BFS** takes O(mL + n) time. Not efficient if L is large.

On the hereditary nature of shortest

paths

You can not shortcut a shortest path

Lemma

G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If
$$s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$$
 shortest path from s to v_k then for any $0 \le i < j \le k$:

$$v_i \rightarrow v_{i+1} \rightarrow \ldots \rightarrow v_j$$
 is shortest path from v_i to v_j

A proof by picture

A proof by picture

A proof by picture

What we really need...

Corollary

G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ shortest path from s to v_k then for any $0 \le i \le k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is shortest path from s to v_i
- · $dist(s, v_i) \le dist(s, v_k)$. Relies on non-neg edge lengths.

The basic algorithm: Find the *i*th

closest vertex

A Basic Strategy

Explore vertices in increasing order of distance from s: (For simplicity assume that nodes are at different distances from s and that no edge has zero length)

```
Initialize for each node v, \operatorname{dist}(s,v) = \infty

Initialize X = \{s\},

for i = 2 to |V| do

(* Invariant: X contains the i-1 closest nodes to s *)

Among nodes in V-X, find the node v that is the ipclosest to s

Update \operatorname{dist}(s,v)

X = X \cup \{v\}
```

A Basic Strategy

Explore vertices in increasing order of distance from s: (For simplicity assume that nodes are at different distances from s and that no edge has zero length)

```
Initialize for each node v, \operatorname{dist}(s,v) = \infty

Initialize X = \{s\},

for i = 2 to |V| do

(* Invariant: X contains the i-1 closest nodes to s *)

Among nodes in V-X, find the node v that is the ipclosest to s

Update \operatorname{dist}(s,v)

X = X \cup \{v\}
```

How can we implement the step in the for loop?

Finding the ith closest node

- X contains the i-1 closest nodes to s
- Want to find the i^{th} closest node from V X.

What do we know about the i^{th} closest node?

Finding the ith closest node

- X contains the i-1 closest nodes to s
- Want to find the i^{th} closest node from V X.

What do we know about the i^{th} closest node?

Claim

Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.

Finding the ith closest node

- X contains the i-1 closest nodes to s
- Want to find the i^{th} closest node from V X.

What do we know about the *i*th closest node?

Claim

Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the i^{th} closest node to s - recall that X already has the i-1 closest nodes.

Finding the ith closest node repeatedly

Finding the ith closest node repeatedly

Finding the ith closest node repeatedly

Finding the ith closest node repeatedly

Finding the ith closest node repeatedly

Finding the ith closest node

Corollary

The ith closest node is adjacent to X.

Algorithm

```
Initialize for each node v: dist(s, v) = \infty
Initialize X = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
     (* Invariant: X contains the i-1 closest nodes to s *)
     (* Invariant: d'(s, u) is shortest path distance from u to s
      using only X as intermediate nodes*)
     Let v be such that d'(s,v) = \min_{u \in V-X} d'(s,u)
     dist(s, v) = d'(s, v)
     X = X \cup \{v\}
     for each node u in V-X do
          d'(s, u) = \min_{t \in X} \left( \operatorname{dist}(s, t) + \ell(t, u) \right)
```

Algorithm

```
Initialize for each node v: dist(s, v) = \infty
Initialize X = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
     (* Invariant: X contains the i-1 closest nodes to s *)
     (* Invariant: d'(s, u) is shortest path distance from u to s
      using only X as intermediate nodes*)
     Let v be such that d'(s,v) = \min_{u \in V-X} d'(s,u)
     dist(s, v) = d'(s, v)
     X = X \cup \{v\}
     for each node u in V-X do
          d'(s, u) = \min_{t \in X} \left( \operatorname{dist}(s, t) + \ell(t, u) \right)
```

```
Initialize for each node v: dist(s, v) = \infty
Initialize X = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
     (* Invariant: X contains the i-1 closest nodes to s *)
     (* Invariant: d'(s, u) is shortest path distance from u to s
      using only X as intermediate nodes*)
     Let v be such that d'(s,v) = \min_{u \in V-X} d'(s,u)
     dist(s, v) = d'(s, v)
     X = X \cup \{v\}
     for each node u in V-X do
          d'(s, u) = \min_{t \in X} \left( \operatorname{dist}(s, t) + \ell(t, u) \right)
```

Running time:

Algorithm

```
Initialize for each node v: dist(s, v) = \infty
Initialize X = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
     (* Invariant: X contains the i-1 closest nodes to s *)
     (* Invariant: d'(s, u) is shortest path distance from u to s
      using only X as intermediate nodes*)
     Let v be such that d'(s,v) = \min_{u \in V-X} d'(s,u)
     dist(s, v) = d'(s, v)
     X = X \cup \{v\}
     for each node u in V-X do
          d'(s, u) = \min_{t \in X} \left( \operatorname{dist}(s, t) + \ell(t, u) \right)
```

Running time: $O(n \cdot (n + m))$ time.

• *n* outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in X; O(m + n) time/iteration.

Dijkstra's algorithm

Improved Algorithm

- Main work is to compute the d'(s, u) values in each iteration
- d'(s, u) changes from iteration i to i + 1 only because of the node v that is added to X in iteration i.

Improved Algorithm

- Main work is to compute the d'(s, u) values in each iteration
- d'(s, u) changes from iteration i to i + 1 only because of the node v that is added to X in iteration i.

```
Initialize for each node v, dist(s,v) = d'(s,v) = \infty
Initialize X = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
     // X contains the i-1 closest nodes to s,
                and the values of d'(s, u) are current
     Let v be node realizing d'(s,v) = \min_{u \in V-X} d'(s,u)
     dist(s, v) = d'(s, v)
     X = X \cup \{v\}
     Update d'(s, u) for each u in V - X as follows:
         d'(s,u) = min(d'(s,u), dist(s,v) + \ell(v,u))
```

Running time: 31

Improved Algorithm

```
Initialize for each node v, dist(s, v) = d'(s, v) = \infty
Initialize X = \emptyset, d'(s,s) = 0
for i = 1 to |V| do
     // X contains the i-1 closest nodes to s.
                and the values of d'(s, u) are current
     Let v be node realizing d'(s, v) = \min_{u \in V - X} d'(s, u)
    dist(s, v) = d'(s, v)
    X = X \cup \{v\}
    Update d'(s, u) for each u in V - X as follows:
         d'(s,u) = min(d'(s,u), dist(s,v) + \ell(v,u))
```

Running time: $O(m + n^2)$ time.

- *n* outer iterations and in each iteration following steps
- updating d'(s, u) after v is added takes O(deg(v)) time so total work is O(m) since a node enters X only once
- Finding v from d'(s, u) values is O(n) time

Dijkstra's Algorithm

- eliminate d'(s, u) and let dist(s, u) maintain it
- update dist values after adding v by scanning edges out of v

```
Initialize for each node v, \operatorname{dist}(s,v) = \infty

Initialize X = \emptyset, \operatorname{dist}(s,s) = 0

for i = 1 to |V| do

Let v be such that \operatorname{dist}(s,v) = \min_{u \in V - X} \operatorname{dist}(s,u)

X = X \cup \{v\}

for each u in \operatorname{Adj}(v) do

\operatorname{dist}(s,u) = \min(\operatorname{dist}(s,u), \operatorname{dist}(s,v) + \ell(v,u))
```

Priority Queues to maintain dist values for faster running time

Dijkstra's Algorithm

- eliminate d'(s, u) and let dist(s, u) maintain it
- update dist values after adding v by scanning edges out of v

```
Initialize for each node v, \operatorname{dist}(s,v) = \infty

Initialize X = \emptyset, \operatorname{dist}(s,s) = 0

for i = 1 to |V| do

Let v be such that \operatorname{dist}(s,v) = \min_{u \in V - X} \operatorname{dist}(s,u)

X = X \cup \{v\}

for each u in \operatorname{Adj}(v) do

\operatorname{dist}(s,u) = \min(\operatorname{dist}(s,u), \operatorname{dist}(s,v) + \ell(v,u))
```

Priority Queues to maintain dist values for faster running time

- · Using heaps and standard priority queues: $O((m+n)\log n)$
- Using Fibonacci heaps: $O(m + n \log n)$.

Dijkstra using priority queues

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- · makePQ: create an empty queue.
- findMin: find the minimum key in S.
- extractMin: Remove $v \in S$ with smallest key and return it.
- insert(v, k(v)): Add new element v with key k(v) to S.
- delete(v): Remove element v from S.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- · makePQ: create an empty queue.
- findMin: find the minimum key in S.
- extractMin: Remove $v \in S$ with smallest key and return it.
- insert(v, k(v)): Add new element v with key k(v) to S.
- delete(v): Remove element v from S.
- decreaseKey(v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: $k'(v) \le k(v)$.
- meld: merge two separate priority queues into one.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- · makePQ: create an empty queue.
- findMin: find the minimum key in S.
- extractMin: Remove $v \in S$ with smallest key and return it.
- insert(v, k(v)): Add new element v with key k(v) to S.
- delete(v): Remove element v from S.
- decreaseKey(v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: $k'(v) \le k(v)$.
- meld: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time.

decreaseKey is implemented via delete and insert.

Dijkstra's Algorithm using Priority Queues

```
O \leftarrow \mathsf{makePQ}()
insert(Q, (s, 0))
for each node u \neq s do
      insert(Q, (u, \infty))
X \leftarrow \emptyset
for i = 1 to |V| do
       (v, dist(s, v)) = extractMin(Q)
      X = X \cup \{v\}
       for each u in Adj(v) do
             decreaseKey(Q, (u, \min(\operatorname{dist}(s, u), \operatorname{dist}(s, v) + \ell(v, u)))).
```

Priority Queue operations:

- O(n) insert operations
- O(n) extractMin operations
- · O(m) decreaseKey operations

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

• All operations can be done in $O(\log n)$ time

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

• All operations can be done in $O(\log n)$ time

Dijkstra's algorithm can be implemented in $O((n+m)\log n)$ time.

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in O(1) amortized time:

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: **decreaseKey** in *O*(1) worst case time but at the expense of **meld** (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: **decreaseKey** in *O*(1) worst case time but at the expense of **meld** (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps,
- Boost library implements both Fibonacci heaps and rank-pairing heaps.

Shortest path trees and variants

Shortest Path Tree

Dijkstra's alg. finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

Shortest Path Tree

Dijkstra's alg. finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

```
O = makePO()
insert(Q, (s, 0))
prev(s) \leftarrow null
for each node u \neq s do
      insert(Q, (u, \infty))
      prev(u) \leftarrow null
X = \emptyset
for i = 1 to |V| do
      (v, dist(s, v)) = extractMin(Q)
      X = X \cup \{v\}
      for each u in Adi(v) do
            if (\operatorname{dist}(s, v) + \ell(v, u) < \operatorname{dist}(s, u)) then
                   decreaseKey(Q, (u, dist(s, v) + \ell(v, u)))
                   prev(u) = v
```

Shortest Path Tree

Lemma

The edge set (u, prev(u)) is the reverse of a shortest path tree rooted at s. For each u, the reverse of the path from u to s in the tree is a shortest path from s to u.

Proof Sketch.

- The edge set $\{(u, \operatorname{prev}(u)) \mid u \in V\}$ induces a directed in-tree rooted at s (Whv?)
- Use induction on |X| to argue that the tree is a shortest path tree for nodes in V.

38

Shortest paths to s

Dijkstra's alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

Shortest paths to s

Dijkstra's alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of *V* to *s*?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra's algorithm in *G*^{rev}!