research_apprx_computing

Post-Layout Based Comparison of InXA Adder Cell

A Comparative Study on Pass Gate-Based Adder Cell Structures for Approximate Computing

Circuits and System Laboratory, Inha University
Jun Yeong Chang (jjy1019@inha.edu)

2025-05-09

Contents

#	Contetns	Details
1	연구 배경 및 기존 논문 한계	#1. Approximate Computing #2. 기존 InXA 논문의 한계 (Logic Simulation Only)
2	연구 방법 (설계 방식)	#1. Pass Gate #2. Simulation 환경
3	성능 비교 결과 요약 (표)	#1. 지표 : - Tr. 개수 - 면적 - 소비 전력 - 지연 시간 - 출력 전압 스윙범위
4	결론 및 시사점	#1. InXA1~3 각각의 특징 #2. 향후 연구 계획

1. 연구 배경 및 기존 논문 한계

연구 배경

1. 정확하지 않아도 괜찮은 연산, 왜 필요할까?

Accurate Adder

In-exact Adder

기존 InXA Cell 연구의 한계

2. 실제 회로 구현 후 검증 미흡

Inputs		Exact		Proposed Inexact Adder Cells						
		Outputs		InXA1		InXA2		InXA3		
X	Y	C_{in}	Sum	C_{out}	Sum	C_{out}	Sum	C_{out}	Sum	C_{out}
0	0	0	0	0	0✓	0✓	0✓	0✓	1 ×	0✓
0	0	1	1	0	1✓	1 ×	1✓	0~	1✓	0✓
0	1	0	1	0	1 🗸	0✓	1✓	0✓	1✓	0✓
0	1	1	0	1	0✓	1✓	1 ×	1 🗸	0✓	1✓
1	0	0	1	0	1 🗸	0✓	1✓	0~	1✓	0✓
1	0	1	0	1	0✓	1✓	1×	1 🗸	0✓	1✓
1	1	0	0	1	0✓	0×	0√	1 🗸	0✓	1✓
1	1	1	1	1	1✓	1✓	1✓	1✓	0 ×	1✓

VS.

2. 연구 방법 (설계 방식)

Pass Gate

1. 왜 Pass Gate로 구현했는가?

- 1) Pros
 - 적은 트랜지스터 개수
 - 고속 저전력 회로에 유리

- 2) Cons
 - Output Voltage Drop

시뮬레이션 환경

2. Post-Layout Simulation

[설계 및 시뮬레이션, 공정 조건]

- 설계 / 시뮬레이션 Tool : Cadence Virtuoso / Spectre
- PDK: GPDK 90nm
- Supply Voltage : $V_{DD} = 1.2(V)$, $V_{SS} = 0(V)$

[동작 조건]

- 온도:25℃
- Corner: NN (Normal-Normal)
- Input signal : $A(T_A = 4ns)$, $B(T_B = 2ns)$, $C_{in}(T_{C_{in}} = 1ns)$ / Rising&Falling time = 10(ps)

[측정 항목]

- Transistor 개수
- Layout 면적
- 소비 전력
- 전파 지연
- 출력 전압 스윙

1. Transistor 개수

Accurate InXA1 InXA2 InXA3

2. Layout 면적

Accurate InXA1 InXA2 InXA3

3. 소비 전력

200	Expression	Value		
1	average(getData	22.50E-6	_	

20	Expression	Value		
1	average(getData	10.61E-6		

Expression	Value	
1 average(getData	20.08E-6	

Accurate InXA1 InXA2 InXA3

4. 지연 시간

Accurate InXA1 InXA2 InXA3

5. 출력 스윙

Accurate

InXA1

InXA3

6. Post-Layout Simulation 결과 비교

구조	Transistor 개수	면적($\mu m imes \mu m$)	소비 전력(μW)	지연 시간(<i>ps</i>)	출력 스윙(V)
Accurate	10	7.22 × 5.67	21.84	28.81	• Sum : 0.24 ~ 0.82 • Cout : 0.3 ~ 0.85
InXA1	8	5.68 × 5.28	22.50	26.48	• Sum : 0.29 ~ 1.06 • Cout : 0.0 ~ 1.2
InXA2	8	5.61 × 5.85	10.61	5.61	• Sum : 0.29 ~ 1.2 • Cout : 0.38 ~ 0.95
InXA3	8	5.58 × 4.54	20.08	49.96	• Sum : 0.01 ~ 1.2 • Cout : 0.22 ~ 0.93

4. 결론 및 시사점

결론 및 시사점

1. 직접 설계해 보니...

[연구 요약]

- InXA1~3 구조를 동일한 Pass Gate 방식으로 설계 및 Layout
- Post-Layout 시뮬레이션으로 실제 회로 수준 성능 비교

[시사점]

- Logic Simulation만으로는 실제 회로 성능 판단이 불가능.
- Approximate Computing Adder Cell도 실제 회로 수준에서의 성능 검증 필요.

[향후 계획]

- 새로운 Approximate Computing Adder Cell 탐색 : Transistor 개수를 감소시키는 방향.

