

Mecánica Intermedia (LFIS 312)

Licenciatura en Física

Profesor: J. R. Villanueva Semestre I 2024

Nombr	e:				RUT:	
PD:	P1:	P2:	P3:	P4:	NF:	

- 1. Explique que entiende por (a) partícula, (b) sistema inercial de referencia, (c) fuerza conservativa, (d) cantidad conservada, (e) principio de relatividad de Galileo.
- 2. Considere la función

$$K(x, y, u, v) = \frac{1}{2}m(u^2 + v^2) + bx^2y + cxy^2 - k\ln\left(\frac{x^2 + y^2}{xy}\right),\tag{1}$$

donde x, y, u, v son variables independientes, y b, c, m, k son constantes.

(a) Determine las cantidades

$$X = \frac{\partial K}{\partial x}; \ Y = \frac{\partial K}{\partial y}; \ U = \frac{\partial K}{\partial u}; \ V = \frac{\partial K}{\partial v}.$$

- (b) Si $Q = K \frac{1}{2}m(u^2 + v^2)$, ¿Tiene extremos esta función en el plano xy?
- (c) Si u = dx/dt y v = dy/dt, escriba la función (1) en coordenadas polares.
- 3. Una partícula de masa m y carga q se mueve con velocidad \vec{v} en una región donde existe un campo eléctrico homogéneo de intensidad \vec{E} y un campo magnético homogéneo de inducción \vec{B} . Determine el trabajo realizado por el campo electromagnético para mover la partícula desde el punto A hacia el punto B (ambos dentro de la región)
- 4. El vector posición de una partícula de masa m viene dado por $\vec{r} = R(\cos \omega t \, \hat{i} + \sin \omega t \, \hat{j})$, donde R, ω son constantes. Determine el momentum lineal \vec{p} , el momentum angular \vec{L} y el torque $\vec{\tau}$.