CLAIMS

What is claimed is:

. 1	1.	A method for reducing the contact resistance of
2		metal silicide contacts comprising the steps
3		of:
4		
5.		(a) forming a metal germanium alloy layer over
6		a silicon-containing substrate, wherein said
7 .		metal is Co, Ti, Ni or mixtures thereof;
8		,
9		(b) annealing said metal germanium alloy layer
10		at a temperature sufficient to convert at least
11		a portion of said metal germanium alloy layer
12		into a metal silicide layer that is
13		substantially non-etchable compared to the
14		unreacted metal germanium alloy layer, while
15		forming a Si-Ge interlayer between said
16		silicon-containing substrate and said
17	-	substantially non-etchable metal silicide
18	·	layer;
19		
20		(c) removing any remaining metal germanium
21		alloy layer, with the proviso that when Ti or
22		Co are employed a second annealing step follows
23		step (c) that is capable of converting the
24		substantially non-etchable Ti or Co silicide
25		phase into Co disilicide or C54 phase of TiSi2.
1	. 2.	The method of Claim 1 further comprising pre-
2		annealing the metal germanium alloy layer prior

3 to step (b) at a temperature sufficient to form 4 . a metal rich germanium silicide layer. 1 3. The method of Claim 1 wherein said metal . 2 germanium alloy layer is formed by a deposition 3 process selected from the group consisting of chemical vapor deposition (CVD), plasma-5 assisted CVD, sputtering and evaporation, or 6 said metal germanium alloy layer is formed by 7 first depositing said metal to form a metal 8 layer and then doping said metal layer with 9 germanium. 1 4. The method of Claim 1 further comprising 2 forming an optional barrier layer over said metal germanium alloy layer prior to step (b), 3 4 wherein said optional barrier layer is removed 5 by step (c). The method of Claim 1 wherein said metal ⁻ 1 5. 2 germanium alloy layer further includes at least 3 one additive selected from the group consisting of C, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, 5 Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, In, Sn, La, Hf, 6 Ta, W, Re, Ir, Pt, Ce, Pr, Nd, Sm, Eu, Gd, Tb, 7 Dy, Ho, Er, Tm, Yb, Lu and mixtures thereof. 1 The method of Claim 5 wherein said additive is 6. 2 C, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 3 Y, Zr, Nb, Mo, Ru, Rh, Pd, In, Sn, La, Hf, Ta, 4

W, Re, Ir, Pt or mixtures thereof

1 2 3	7.	The method of Claim 6 wherein said additive is Si, Ti, V, Cr, Ni, Nb, Rh, Ta, Re, Ir or mixtures thereof.
1	8.	The method of Claim 1 wherein said metal
2		germanium alloy layer contains from about 0.01- to about 50 atomic % Ge.
1	9.	The method of Claim 8 wherein said metal .
2		germanium alloy layer contains from about 0.1
3		to about 20 atomic % Ge.
1	10.	The method of Claim 1 wherein said metal of
2	10.	said metal germanium alloy layer is Co.
_		data modal germaniam arroy rayer is eo.
1	11.	The method of Claim 4 wherein said optional
2		oxygen barrier layer is composed of TiN.
1	12.	The method of Claim 1 wherein said silicon-
2		containing substrate comprises a single crystal
<i>3</i>		Si, polycrystalline Si, SiGe, amorphous Si, or
7		a silicon-on-insulator (SOI).
1	13.	The method of Claim 2 wherein said pre-
2		annealing step is carried out using rapid
3		thermal annealing (RTA).
•		
1	14.	The method of Claim 13 wherein said RTA is
2		carried out at a temperature of from about 350°
<i>3</i>		to about 450°C for a time period of about 300 seconds or less
7		seconds of 1622

1 2	15.	The method of Claim 1 wherein said annealing
۷		step (b) is carried out by RTA.
1	16.	The method of Claim 15 wherein said RTA is
2		carried out at a temperature of from about 400°
3		to about 700°C for a time period of about 300^{-}
4		seconds or less.
1	17.	The method of Claim 1 wherein said remaining
2		metal germanium alloy layer is removed
3		utilizing a wet etch step that includes the use
4		of an etchant that is selective for removing
5		said layer.
1	18.	The method of Claim 1 wherein said second
2		annealing step is carried out by RTA.
_		amouting step is carried out by KiA.
l	19.	The method of Claim 18 wherein said RTA is
2		carried out at a temperature of from about 700°
3		to about 900°C for a time period of about 300
4		seconds or less.
1	20.	The method of Claim 1 wherein said metal is Ni
2		and Ni monosilicide is formed after step (b).
1	21.	The method of Claim 1 wherein said metal is Co
2	*	and Co monosilicide is formed after step (b).
1	22.	The method of Claim 1 wherein said metal is Ti
2		and C49 phase of $TiSi_2$ is formed after step
3		(b).

i	23.	An electrical contact to a region of a silicon-
.2		containing substrate comprising:
3	•	a substrate having an exposed region of a
4		silicon-containing semiconductor material; and
5		a first layer of metal disilicide, wherein said
6.		metal of said disilicide is selected from the
7		group consisting of Ti, Co and mixtures
8		thereof, and said substrate and said first
9		layer are separated by a Si-Ge interlayer.
1	24.	An electrical contact to a region of a silicon-
2		containing substrate comprising:
3		
4		a substrate having an exposed region of a
5		silicon-containing semiconductor material; and
6		
7	•	a first layer of Ni monosilicide, wherein said
8		substrate and said first layer are separated by
9		a Si-Ge interlayer.