



# On the VHF Source Retrieval Errors Associated with Lightning Mapping Arrays (LMAs)

W. Koshak<sup>1</sup>

<sup>1</sup>Earth Science Office, NASA Marshall Space Flight Center, Huntsville, AL USA.

Paper #  
AE23A-0401

## 1. OVERVIEW

This presentation examines in detail the *standard retrieval method*: that of retrieving the  $(x, y, z, t)$  parameters of a lightning VHF point source from multiple ground-based Lightning Mapping Array (LMA) time-of-arrival (TOA) observations. The solution is found by minimizing a chi-squared function via the Levenberg-Marquardt algorithm. The associated forward problem is examined to illustrate the importance of signal-to-noise ratio (SNR). Monte Carlo simulated retrievals are used to assess the benefits of changing various LMA network properties. A *generalized retrieval method* is also introduced that, in addition to TOA data, uses LMA electric field amplitude measurements to retrieve a transient VHF dipole moment source.

## 2. FORWARD PROBLEM: SNR ANALYSES

Performing the forward problem illustrates how well the measurements (TOA, or difference in TOA) track changes in the VHF point source. The sensitivity of 1 sensor (or 2 sensor) systems to various source displacements is examined.



The **SNR associated with a single sensor** when a source a horizontal distance  $D_i$  away is displaced vertically (left plot), and horizontally (right plot).



Basic geometry (top), vertical displacement (middle), horizontal displacement (bottom)..

## 3. BASELINE MONTE CARLO SIMULATION



The baseline run showing the **mean altitude retrieval error** as a function of source altitude (given at the top of each plot) and horizontal source location relative to the fixed (3x3) Cartesian LMA network.

## 4. MORE SIMULATIONS: EFFECT OF ALTERING CERTAIN LMA NETWORK PARAMETERS



Elevating the north east sensor.



Expanding the horizontal extent of the network.



Increasing the number of measurements.



Improving the measurement accuracy.

## 4. GENERALIZED RETRIEVAL METHOD

The vertical field  $E_z$  from He et al (2000) due to a transient dipole source is generalized so that it expresses the field at the  $i^{\text{th}}$  LMA sensor. The amplitude measurement  $a_i$  and the associated model  $\mu_i$  are identified, and the generalized chi-squared is minimized to obtain a solution [note:  $\beta_i$  is a function of the spatial variables ( $\mathbf{r}, \mathbf{r}_i$ ) and the orientation angles of the dipole source;  $\tau_i$  is the TOA observation at  $i^{\text{th}}$  sensor]:

$$E_{zi}(t') = \frac{1}{2\pi\epsilon_0 c^2 R_i} \left\{ (\beta_i - \frac{2}{3} \cos\Theta) [\vec{p}] + \frac{3c\beta_i}{R_i} [\vec{p}] + \frac{3c^2\beta_i}{R_i^2} [p] \right\} ,$$

$$\beta_i = \sin\theta_i \cos\theta_i \sin\Theta \cos(\lambda_i - \Lambda) - \sin^2\theta_i \cos\Theta + \frac{2}{3} \cos\Theta .$$

$$a_i \equiv 2\pi\epsilon_0 c^2 E_{zi}(t_i)$$

$$\mu_i = \mu_i(\mathbf{r}, \Lambda, \Theta, \mathbf{w}) = \frac{1}{R_i} \left\{ w_1(\beta_i - \frac{2}{3} \cos\Theta) + w_2 \frac{3c\beta_i}{R_i} + w_3 \frac{3c^2\beta_i}{R_i^2} \right\} ; \quad \mathbf{w} \equiv ([\vec{p}], [\vec{p}], [p]) .$$

$$\chi^2(\mathbf{r}, t, \Lambda, \Theta, \mathbf{w}) = \sum_{i=1}^m \frac{(\tau_i - \{t + R_i/c\})^2}{\sigma_i^2} + \sum_{i=1}^m \frac{(a_i - \mu_i)^2}{\tilde{\sigma}_i^2} .$$



## 5. REFERENCES