

Fundamentals of Computer Science (MCAC-0017)

Topic: Boolean Algebra

- ✓ Developed by English Mathematician George Boole in between 1815 - 1864.
- ✓ It is described as an algebra of logic or an algebra of two values i.e True or False.
- ✓ The term logic means a statement having binary decisions i.e True/Yes or False/No.

APPLICATION OF BOOLEAN ALGEBRA

- It is used to perform the logical operations in digital computer.
- In digital computer True represent by '1' (high volt) and False represent by '0' (low volt)
- Logical operations are performed by logical operators. The fundamental logical operators are:
 - 1. AND (conjunction)
 - 2. OR (disjunction)
 - 3. NOT (negation/complement)

It performs logical multiplication and denoted by (.) dot.

X Y X.Y

0 0 0

0 1 0

1 0 0

1 1 1

It performs logical addition and denoted by (+) plus.

X Y X+Y

0 0 0

0 1 1

1 0 1

1 1 1

It performs logical negation and denoted by (-) bar. It operates on single variable.

X X (means complement of x)

0 1

1 0

Truth Table

 Truth table is a table that contains all possible values of logical variables/statements in a Boolean expression.

No. of possible combination =

2ⁿ, where n=number of variables used in a Boolean expression.

Truth Table

The truth table for XY + Z is as follows:

Dec		X	Y	Z	XY XY+Z
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	0
3	0	1	1	0	1
4	1	0	0	0	0
5	1	0	1	0	1
6	1	1	0	1	1
7	1	1	1	1	1

If the output of Boolean expression is always True or 1 is called Tautology.

If the output of Boolean expression is always False or 0 is called Fallacy.

Exercise

- 1. Evaluate the following Boolean expression using Truth Table.
- (a) X'Y'+X'Y (b) X'YZ'+XY'
- (c) XY'(Z+YZ')+Z'

- 2. Verify that P+(PQ)' is a Tautology.
- 3. Verify that (X+Y)'=X'Y'

Boolean Algebra applied in computers electronic circuits. These circuits perform Boolean operations and these are called logic circuits or logic gates.

Basic Theorem of Boolean Algebra

T1: Properties of 0

(a)
$$0 + A = A$$

(b)
$$0 A = 0$$

T2: Properties of 1

(a)
$$1 + A = 1$$

(b)
$$1 A = A$$

Basic Theorem of Boolean Algebra

T3: Commutative Law

(a)
$$A + B = B + A$$

(b)
$$AB = BA$$

T4: Associate Law

(a)
$$(A + B) + C = A + (B + C)$$

(b)
$$(A B) C = A (B C)$$

T5: Distributive Law

(a)
$$A (B + C) = A B + A C$$

(b)
$$A + (B C) = (A + B) (A + C)$$

(c)
$$A+A'B = A+B$$

T6: Indempotence (Identity) Law

(a)
$$A + A = A$$

(b)
$$AA = A$$

T7: Absorption (Redundance) Law —

(a)
$$A + A B = A$$

(b)
$$A (A + B) = A$$

T8: Complementary Law

(a)
$$X+X'=1$$

(b)
$$X.X'=0$$

T9: Involution

(a)
$$x'' = x$$

T10: De Morgan's Theorem

(a)
$$(X+Y)'=X'.Y'$$

(b)
$$(X.Y)'=X'+Y'$$

Theorem 1
$$A \cdot B = A + B$$

$$\overline{A.B} = \overline{A} + \overline{B}$$

NAND = Bubbled OR

UNIVERSITY MATHURA Recognised by UGC Under Section 2(f) Accredited with A+ Grade by NAAC 12-B Status from UGC

Theorem 1 $A \cdot B = A + B$

NAND

Bubbled OR

$$A = A + B$$

Bubbled OR

Theorem 1 $A \cdot B = A + B$

А	В	AB	Ā	В	A+B
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Theorem 2
$$A + B = A \cdot B$$

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

NOR = Bubbled AND

Theorem 2 $A + B = A \cdot B$

Theorem 2 $A + B = A \cdot B$

Α	В	A+B	Ā	B	Ā.B
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

Thank You