Al	oderra	ahmen Rakez	Einfürung in die Elektronik						
Jo	Jonas Steinebrunner Praktikumsversuch 3					Gruppe			e 9
Ir	nha	ltsverzeichr	nis						
1	Ein	gangskennlinie							2
	1.1	Experimentelle 1	Durchführung						2
	1.2		Diskussion						2
2	Str	omsteuerkennli	nie						5
	2.1	Experimentelle 1	Durchfürung						5
	2.2		Diskussion						6
3	Aus	sgangskennlinie	nfeld						8
	3.1	Experimentelle	Durchführung						8
	3.2		Diskussion						8

1 Eingangskennlinie

1.1 Experimentelle Durchführung

Zuächst wir die Schaltung wie in der Abbildung 1 auf dem Steckbrett aufgebaut. In diesem Versuch wird die Eingangskennlinie $\mathbf{I}_B = \mathbf{f}(\mathbf{U}_{BE})$ des NPN-Transistors BC 547C aufgenommen. Aus dieser Kennlinie wird auschlißend der Großsignalwiderstand \mathbf{R}_{BE} sowie der Kleinsignalwiderstand \mathbf{r}_{BE} für verschiedene Arbeitspunkte ermittelt.

Abbildung 1: Der Versuchsaufbau zur Bestimmung der Eingangskennlinie des Transistors

1.2 Ergebnisse und Diskussion

In Tabelle 1 befinden sich die Ergebnisse der Messung und der Simulation für die Spannung \mathbf{U}_{BE} in Abhängigkeit von dem Basisstrom $\mathbf{I}_{B}\mathbf{B}$.

Tabelle 1: Aufgenommene Messwerte von \mathbf{U}_{BE} in Abhängigkeit von \mathbf{I}_{B} für $\mathbf{U}_{2}=\mathbf{5}~V$

I _B	/ μ A	0,05	0,1	0,25	0,5	0,75	1	3	5	7	9	
Messung	U _{BE}											600 mV
Simulation	U BE											X

Abbildung 2: Graphische Darstellung der simulierten Ergebnisse

Abbildung (2) zeigt den Verlauf des Basisstrom in Abhängigkeit der Basisemitterspannung. Es zeigt sich, dass der Basisstrom mit dem Verlauf einer üblichen Diodenkennlinie übereinstimmt.

$$\mathbf{R}_{RE} = \frac{\mathbf{U}_{BE}}{\mathbf{I}_{B}} \tag{1}$$

$$\mathbf{r}_{RE} = \frac{\Delta \mathbf{U}_{BE}}{\Delta \mathbf{I}_{B}} \tag{2}$$

In der Gleichung (1) bzw. (2) kann der Groß- bzw. Kleinsignalwiderstand bestimmt werden.

Um den Großsignalwiderstand bestimmen zu können, muss die Spannung U $_{BE}$ über alle drei Arbeitspunkte bestimmt werden: $I_{B_{i_{\{1,2,3\}}}}$.

Messreihe	$U_{BE_{\mathbf{Simulation}}}/mV$	$U_{BE_{\mathbf{Messung}}}/mV$
I_{B_1}	574	588
I_{B_2}	673	672
I_{B_3}	659	688

	$R_{BE_{simulation}}$	$R_{BE_{Messung}}$
I_{B_1}		
I_{B_2}		
I_{B_3}		

	$\mathbf{r}_{BE_{simulation}}$	$r_{BE_{Messung}}$
I_{B_1}		
I_{B_2}		
I_{B_3}		

Wegen des nicht linearen Kurvenverlauf ist der Eingangswiderstand \mathbf{r}_{RB} bei unterschiedlichen Kennlinienpunkten nicht gleich, da je größer der Basisstrom ist, desto größer wird der Widerstand

Für den Kleinsignalwiderstand gilt folgende Formal:

$$\mathbf{r}_{BE} = rac{U_{Temp}}{I_B}, \;\; \mathbf{I}_B \; \mathbf{am} \; \mathbf{Arbeitspunkt}$$

2 Stromsteuerkennlinie

2.1 Experimentelle Durchfürung

In diesem Versuch wird die Stromsteuerkennlinie $I_C = f(I_B)$ des NPN-Transistors BC 547C aufgenommen. Aus dieser Kennlinie wird anschließend die Großsignalstromverstärkung B sowie die Kleinsignalstromverstärkung β für verschiedene Arbeitspunkte ermittelt.

Abbildung 3: Der Versuchsaufbau zur Bestimmung der Stromsteuerkennlinie des Transistors

2.2 Ergebnisse und Diskussion

In Tabelle 2 sind die Ergebnisse der Messung und der Simulation des Kollektorstroms ${\cal I}_C$ in Abhängigkeit des Basisstroms ${\cal I}_B$ bestimmt.

Tabelle 2: Aufgenommene Messwerte von \mathbf{I}_C in Abhängigkeit von \mathbf{I}_B für $\mathbf{U}_2=\mathbf{5}\ V$

I _B	/ μΑ	1	2	3	4	5	6	7	8	9	10
Messung	I c										
Simulation	I c										

Abbildung 4: Graphische Darstellung der simulierten Ergebnisse

Die Abbildung (4) zeigt einen linearen Anstieg des Kollektorstroms über den Basisstrom. Eine charakteristische Größe für einen bestimmten Transistor ist sein Stromverstärkungsfaktor **B**, also das Verhältnis, dass in Abbildung (3) angegeben ist. Genaugenomen ist die Stromverstärkung abhängig vom Kollektorstrom und von der Kollektor-Emitterspannung, sodass sie nur für einen bestimmten Arbeitspunkt bestimmt werden kann.

$$\mathbf{B} = \frac{\mathbf{I}_C}{\mathbf{I}_B} \tag{3}$$

$$\beta = \frac{\Delta \mathbf{I}_C}{\Delta \mathbf{I}_B} \tag{4}$$

Die Klein- bzw Großsignalverstärkung lassen sich durch die Gleichungen (3) und (4) bestimmen, die Ergebnisse siehe Tabelle (mit $I_B=3~\mu A$):

Messreihe	Simulation	Messung
В		
β		

Es zeigt sich, dass die Kleinsignal- β bzw Gleichsignalstromverstärkung ${\bf B}$ sich sehr ähneln :

$$\beta \approx \mathbf{B}$$

3 Ausgangskennlinienfeld

3.1 Experimentelle Durchführung

In dem letzten Versuch wird das Ausgangskennlinienfeld, $I_C = f(U_{CE})$ in Abhängigkeit des Parameters I_B , des NPN-Transistors BC 547C aufgenommen. Aus den Kennlinien wird anschließend der Kleinsignalwiderstand r_{CE} sowie die Early-Spannung U_A ermittelt.

Abbildung 5: Der Versuchsaufbau zur Bestimmung des Ausgangskennlinienfeld des Transistors

3.2 Ergebnisse und Diskussion

In Tabelle 3 ist der Kollektorstrom in Abhängigkeit zu der Kollektorbasisspannung angegeben.

Tabelle 3: Aufgenommene Messwerte von \mathbf{I}_C in Abhängigkeit von \mathbf{U}_{CE}

	U _{CE}	/ V	0	0,1	0,2	0,4	0,6	0,8	1	3	5
		<i>I</i> _B = 1 μA									
	Messung	<i>I</i> _B = 3 μA									
ပ္	Mes	<i>I</i> _Β = 5 μA									
1)n	<i>I</i> _Β = 1 μA									
	Simulation	<i>I</i> _Β = 3 μA									
	Sim	<i>I</i> _Β = 5 μΑ									

Abbildung 6: Graphische Darstellung der simulierten Ergebnisse

Das Ausgangkennlinienfeld stellt die Abhängigkeit des Kollektorstroms \mathcal{I}_C von der Kollektor-Emitterspannung \mathcal{U}_{CE} bei ausgewählten Basissteuerströmen \mathcal{I}_B dar. Der Kleinsignalwiderstand wird wie folgt definiert

$$\mathbf{r}_{CE} = \frac{\Delta U_{CE}}{\Delta I_C}$$

Wir wählen die Arbeitspunkt bei einer Spannung $\mathbf{U}_{CE}=\frac{\mathbf{U}_{CC}}{2}$

Messreihe	$r_{CE_{f Simulation}}/mV$	$r_{CE_{\mathbf{Messung}}}/mV$
$I_{B_1} = 1 uA$		
$I_{B_2} = 3 uA$		
$I_{B_3} = 5 uA$		

Die Early-Spannung U_A lässt sich aus folgender Formel herleiten

$$\mathbf{r}_{CE} = \frac{\mathbf{U}_A}{\mathbf{I}_C} \Rightarrow \mathbf{U}_A = \mathbf{r}_{CE} \cdot \mathbf{I}_C$$

Messreihe	$\mathrm{U}_{A_{\mathbf{Simulation}}}$	$U_{A_{Messung}}$
U_{A_1}	9	

Die Early-Spannung soll möglichst großsein $U_A \to \infty$, also wäre der Transistor eine ideale Stromquelle d.h bei der Abbildung (6) wird der Strom I_C so gut wie konstant.