

Diego Bertolini

diegobertolini@utfpr.edu.br
http://www.inf.ufpr.br/diegob/

Aula 002

- Aula Anterior:
 - Histórico e Princípios de IA;
- Aula de Hoje:
 - Agentes Inteligentes;

Objetivo

O que vocês devem saber ao final da aula:

Discutiremos a natureza dos agentes, perfeitos ou não, a diversidade de ambientes, e a consequente variedade de tipos de agentes.

Bibliografia e Materiais.

Estes slides foram adaptados do Livro:

Russell, S. and Norvig, P. Artificial Intelligence: a Modern Approach, 2nd Edition, Prentice-Hall, 2003. Capítulo 2: Agents;

Adaptado das Aulas do Professor: Ederley – PUC-RIO;

Agentes Inteligentes

Um agente é algo capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por meio de atuadores.

Exemplos

Agente humano

Sensores: Olhos, ouvidos e outros órgãos.

Atuadores: Mãos, pernas, boca e outras partes do corpo.

Agente robótico

Sensores: câmeras e outros sensores.

Atuadores: vários motores.

Agente de software

Sensores: entrada do teclado, conteúdo de arquivos e pacotes vindos da rede.

Atuadores: tela, disco rígido, envio de pacotes pela rede.

Agentes Inteligentes

Agentes são diferente de meros programas, pois operam sob controle autônomo, percebem seu ambiente, adaptam-se a mudanças e são capazes de assumir metas.

Mapeando Percepções em Ações

O comportamento de um agente é dado abstratamente pela função do agente;

$$f = P A$$

onde é a P é uma sequência de percepções e A é uma ação.

Sequência de percepções: histórico completo de tudo que o agente percebeu.

Exemplo: O Mundo do Aspirador de Pó

Percepções: Local e conteúdo.

Exemplo: [A, sujo]

Ações: Esquerda, Direita, Aspirar, NoAsp

O que torna um agente inteligente ou estúpido?

R: Racionalidade

Exemplo: O Mundo do Aspirador de Pó

Sequência de Percepções	Ação
[A, Limpo]	Direita
[A, Sujo]	Aspirar
[B, Limpo]	Esquerda
[B, Sujo]	Aspirar
[A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Sujo]	Aspirar
•••	
[A, Limpo], [A, Limpo], [A, Limpo]	Direita

Comportamento de resperte se o quadrado atual estiver sujo, então aspirar, caso contrário mover para o outro lado.

Medindo o Desempenho do Agente

O agente deve sempre executar a ação "correta" baseado no que ele percebe para ter sucesso.

O conceito de sucesso do agente depende de uma medida de desempenho objetiva.

Exemplos: quantidade de sujeira aspirada, gasto de energia, gasto de tempo, quantidade de barulho gerado, etc.

A medida de desempenho deve refletir o resultado realmente desejado.

Como os agentes devem agir?

Racionalidade x Onisciência são coisas diferentes.

Onisciência: poder saber os resultados de suas ações antecipadamente e com precisão.

Impossível de se atingir na realidade.

Racionalidade: maximiza o desempenho esperado.

Perfeição: maximiza o desempenho real.

Exemplo: Ao atravessar uma rua...

Não podemos condenar um agente que falha por não levar em conta algo que ele não pode perceber ou por uma ação que ele não é capaz de fazer.

Como os agentes devem agir?

- Um agente racional é aquele que faz tudo certo.
- Mas como saber se a ação é a correta?

Ação correta é aquela que leva o agente ao maior sucesso.

Como "medimos" o sucesso? - Medida de desempenho.

- Medidas de desempenho (MD) critérios para se medir o sucesso do comportamento do agente.
- Devem ser baseadas no resultado desejado no ambiente.
- Exemplo de MD para um agente que limpa uma sala:
- □MD₁: m² limpos por hora de trabalho.
- D₂: m² limpos por hora de trabalho descontadas a energia gasta e o nível de ruído produzido.

A racionalidade depende de quatro fatores:

- A medida de desempenho que define o grau de sucesso.
- O conhecimento anterior que o agente tem sobre o ambiente.
- Que ações o agente pode realizar.
- O histórico da percepção do agente, i.e., tudo que já foi percebido pelo agente.
- Estes 4 fatores nos levam a definição de racionalidade ideal.

Agentes Racionais

Agente racional:

Para cada sequência de percepções possíveis deve-se selecionar uma ação que espera-se que venha a maximizar sua medida de desempenho, dada a evidência fornecida pela sequência de percepções e por qualquer conhecimento interno do agente.

Qual seria a medida de desempenho ideal para o agente aspirador de pó racional?

Agentes Racionais

Os agentes podem (e devem!) executar ações para coleta de informações.

Um tipo importante de coleta de informação é a exploração de um ambiente desconhecido.

Os agentes também podem (e devem!) aprender, ou seja, modificar seu comportamento dependendo do que ele percebe ao longo do tempo.

Nesse caso o agente é chamado de autônomo.

Um agente que aprende pode ter sucesso em uma ampla variedade de ambientes.

Modelagem de um Agente

O processo de modelagem de um agente envolve a definição de:

Medida de Desempenho
Ambiente
Atuadores
Sensores

Ambiente de Tarefas

Agente Motorista de Taxi

<u>Desempenho</u>

- chegar no lugar certo
- minimizar o consumo de combustível e desgaste
- minimizar o tempo de percurso, custo da viagem
- minimizar as infrações de leis de trânsito
- minimizar os distúrbios aos outros motoristas
- maximizar a segurança e conforto do passageiro
- Obs.: alguns destes objetivos são conflitantes...

Ambiente

- estradas locais ou *rodovias*, tipo de tráfego, neve, Inglaterra, Brasil, ...
- o ambiente irá determinar a dificuldade da implementação.

<u>Atuadores</u>

Prear, acelerar, virar, falar com o passageiro, se comunicar com outros motoristas...

Sensores

- Sensores de velocidade, aceleração, estado (mecânico) do veículo
- GPS para saber onde esta num mapa
- Sensores infra-vermelhos para detectar a distância dos outros carros
- Microfone ou teclado para o passageiro informar o destino

Exemplo - Motorista de Táxi Automatizado

Medida de desempenho: viagem segura, rápida, sem violações às leis de trânsito, confortável para os passageiros, maximizando os lucros.

Ambiente: ruas, estradas, outros veículos, pedestres, clientes.

Atuadores: direção, acelerador, freio, embreagem, marcha, seta, buzina.

Sensores: câmera, velocímetro, GPS, acelerômetro, sensores do motor, teclado ou microfone.

Exemplo - Sistema de Diagnóstico Médico

Medida de desempenho: paciente saudável, minimizar custos, processos judiciais.

Ambiente: paciente, hospital, equipe.

Atuadores: exibir perguntas na tela, testes, diagnósticos, tratamentos.

Sensores: entrada pelo teclado para sintomas, descobertas, respostas do paciente.

Exemplo - Robô de seleção de peças

Medida de desempenho: porcentagem de peças em bandejas corretas.

Ambiente: correia transportadora com peças; bandejas.

Atuadores: braço e mão articulados.

Sensores: câmera, sensores angulares articulados.

Determinístico:

O próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada pelo agente.

Não-Determinístico:

O próximo estado do ambiente é desconhecido. Não se tem certeza do que pode acontecer com o ambiente ao executar uma ação.

Estático:

O ambiente não muda enquanto o agente pensa.

<u>Dinâmico:</u>

O ambiente pode mudar enquanto o agente pensa ou está executando uma ação.

Discreto:

Um número limitado e claramente definido de percepções, ações e estados.

Contínuo:

Um número possivelmente infinito de percepções, ações e estados.

Agente Único:

Um único agente operando sozinho no ambiente.

<u>Multi-Agente</u>

Vários agentes interagindo ambiente.

Multi-agente cooperativo

Multi-agente competitivo

Exemplos

	Xadrez	Taxista Automático	Poker	Diagnostico Medico
Completamente observável				
	Sim	Não	Não	Não
Determinístico	Sim	Não	Não	Não
Estático	Sim	Não	Sim	Não
Discreto	Sim	Não	Sim	Não
Agente único	Não	Não	Não	Sim

Tipos Básicos de Agentes

Existem cinco tipos básicos de agentes:

Agentes reativos simples.

Agentes reativos baseados em modelos.

Agentes baseados em objetivos.

Agentes baseados na utilidade.

Agentes com aprendizagem.

Agentes reativos selecionam ações com base somente na percepção atual.

Exemplo: agente aspirador de pó

Fim

```
Função AGENTE-ASPIRADOR-REATIVO ([posição, estado])
retorna ação
Inicio
   se estado = sujo então
     retorna aspirar
   senão se posição = A então
     retorna direita
   senão se posição = B então
     retorna esquerda
```


Então podemos fazer conexões entre as condições de entrada e as ações correspondentes.

Se carro_da_frente_está_freando

então começar_a_frear

Estas regras são chamadas de regras de condição-ação.

Conexões nos seres humanos:

Aprendidas: dirigir

Reflexos inatos: tirar a mão do fogo, ou piscar quando algo se aproxima do olho.

Projeto do agente baseado em regras:

Construir um interpretador de uso geral para regras de condiçãoação.

Criar um conjuntos de regras para cada ambiente de tarefa.

O funcionamento do agente reativo é baseado em regras de condição-ação: if condição then ação.

São simples, porém limitados:

Funcionará somente se a decisão correta puder ser tomada com base apenas na percepção atual.

A tabela de regras condição-ação pode se tornar muito grande em problemas complexos.

Ambiente completamente observável.

Exemplos de alguns problemas:

Talvez somente uma imagem não é suficiente para determinar se o carro da frente esta dando sinal de mudança de direção, alerta ou freio.

Agentes Reativos Baseados em Modelos

- Um agente reativo baseado em modelo pode lidar com ambientes parcialmente observáveis.
 - O agente deve controlar as partes do mundo que ele não pode ver.
- O agente deve manter um estado interno que dependa do histórico de percepções e reflita os aspectos não observados no estado atual.
- Agente baseado em modelo é um agente que usa um modelo de mundo.
 - Como o ambiente evoluí independente do agente?
 - Como as ações do próprio agente afetam o mundo?

Agentes Reativos Baseados em Modelos

Agentes Reativos Baseados em Modelos

Conhecer um modelo do mundo nem sempre é suficiente para tomar uma boa decisão.

Exemplo:

Um agente Motorista de Táxi chega a um cruzamento com três caminhos, qual direção tomar?

Simplesmente reagir? mas existem três reações possíveis.

Examinar o modelo de mundo? não ajuda a decidir qual o caminho.

A decisão depende de onde o táxi está tentando chegar.

Agentes Baseados em Objetivos

Agentes baseados em objetivos expandem as capacidades dos agentes baseados em modelos através de um "objetivo".

O objetivo descreve situações desejáveis.

Exemplo: estar no destino

A seleção da ação baseada em objetivo pode ser:

Direta: quando o resultado de uma única ação atinge o objetivo.

Mais complexa: quando será necessário longas sequências de ações para atingir o objetivo.

Agentes Baseados em Objetivos

Para encontrar sequências de ações que alcançam os objetivos são utilizados algoritmos de Busca e Planejamento.

A tomada de decisão envolve a consideração do futuro, o que não acontece com o uso de regras de condição-ação.

"O que acontecerá se eu fizer isso ou aquilo?"

"O quanto isso me ajudará a atingir o objetivo?"

Agentes Baseados em Objetivos

Agentes Baseados em Objetivos

O agente que funciona orientado a objetivos é mais flexível do que um agente reativo.

Entretanto, o objetivo não garante o melhor comportamento para o agente, apenas a distinção entre estados objetivos e não objetivos.

Agentes Baseados na Utilidade

Agentes baseados na utilidade buscam definir um grau de satisfação com os estados. O quanto "bom" é para o agente um determinado estado.

Se um estado do mundo é mais desejável que outro, então ele terá maior utilidade para o agente.

Utilidade é uma função que mapeia um estado para um número real que representa o grau de satisfação com este estado.

Agentes Baseados na Utilidade

Agentes com aprendizado podem atuar em ambientes totalmente desconhecidos e se tornar mais eficientes do que o seu conhecimento inicial poderia permitir.

Em agentes sem aprendizagem, tudo o que o agente sabe foi colocado nele pelo projetista.

Turing (1950) propõe construir máquinas com aprendizagem e depois ensiná-las.

Quatro componentes conceituais de uma agente com aprendizagem:

- Elemento de aprendizado
- Crítico
- Elementos de desempenho
- Gerador de problemas

Elemento de desempenho: conhecimento e procedimentos para dirigir.

Crítico: observa o mundo e repassa para o elemento de aprendizagem a reação dos outros motoristas a uma ação do agente.

Elemento de aprendizagem:

- É capaz de formular uma regra afirmando que a ação foi boa/ruim.
- Modifica o elemento de desempenho pela instalação da nova regra.

Gerador de problemas:

- Identifica áreas que precisam de melhorias.
- Sugere experimentos: testar os freios em diferentes superfícies.

- 1) Defina uma medida de desempenho, o ambiente, os atuadores e os sensores para os seguintes casos:
 - a) Robô jogador de futebol.
 - b) Agente para uma livraria online.
 - c) Assistente matemático para prova de teoremas.

Robô jogador de futebol

Medida de desempenho:

Número de gols do time ou do jogador, ganhar o jogo.

Ambiente:

Campo de futebol, bola, outros jogadores.

Atuadores:

Motores para controle das pernas, cabeça e corpo.

Sensores:

Câmera, sensores de orientação, comunicação entre os outros jogadores, sensores de toque.

Agente para uma livraria online

Medida de desempenho:

Minimizar custos, informação sobre livros de interesse.

Ambiente:

Internet e navegador.

Atuadores:

Realizar uma nova compra, exibir informação de compras antigas.

Sensores:

Páginas, botões ou links clicados pelo usuário.

Assistente matemático para prova de teoremas

Medida de desempenho:

Tempo gasto, grau de precisão.

Ambiente:

Teorema a ser provado.

Atuadores:

Aceitar teoremas corretos, rejeitar teoremas incorretos, inferir fatos.

Sensores:

Dispositivo de entrada para ler o teorema.

2) Ambas as funções de medida de desempenho e utilidade em agentes baseados na utilidade servem para mensurar o quão bem o agente está atuando. Qual a diferença entre essas duas funções?

A <u>função</u> <u>de</u> <u>desempenho</u> é utilizado externamente para medir o desempenho do agente. A <u>função</u> <u>de</u> <u>utilidade</u> é utilizado internamente pelo agente para estimar o seu desempenho. Todos os tipos de agentes tem uma função de desempenho, mas nem sempre uma função de utilidade.

Leitura Complementar

 Russell, S. and Norvig, P. Artificial Intelligence: a Modern Approach,

3nd Edition, Prentice-Hall, 2003.

Capítulo 2: Intelligent Agents

