Honors Calculus, Sample Final - Solution

(1) Given
$$\sum_{N=0}^{\infty} a_N (x-a)^N$$
, R is its radius of convergence, $\sum_{N=0}^{\infty} a_N (x-a)^N$ Converges.

(i) This statement is true since $\lim_{n\to\infty} \frac{|a_n|}{|b_n|} = 0$ implies $|a_n| < |b_n|$ as n is large enough and $\lim_{n\to\infty} |b_n|$ converges. So do $\lim_{n\to\infty} |a_n|$ (since $|a_n| < |a_n|$)

Example: $a_n = \frac{\ln(n)}{n^3}$ and $b_n = \frac{1}{n^2}$, $|a_n| < |b_n|$ and $|a_n| < \frac{\ln(n)}{\ln(n)} = \frac{\ln(n)}{n^3} = \frac{\ln(n)}{\ln(n)} = \frac{\ln(n)}{\ln(n)$

(ii) This statement is folse.

Counterexample: Let $a_n = \frac{1}{n^2}$, $b_n = \frac{1}{n}$, we have $\frac{|a_n|}{|b_n|} = \frac{|b_n|}{|b_n|} =$

2. (iii) This statement is false. Counterexample: lot an= 1 $\lim_{n \to \infty} a_n^2 = \lim_{n \to \infty} \frac{1}{n^2} = 0 \quad \text{but } \Sigma a_n = \Sigma \frac{1}{h} \text{ diverges}$ 3, (a) \(\sum_{\text{N}} \) \(\sum_{\text{N}} \) Lot $a_n = \frac{h^2}{5n}$, then $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{N^2}\right| = \left|\frac{1}{2} \cdot \frac{(n+1)^2}{N^2}\right| \neq \frac{1}{2} < 1$ Then, by Ratio Test, $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$ converges. (b) $\sum_{n=2}^{\infty} \frac{1}{\left(\ln(n)\right)^2}$ Since $\lim_{n\to\infty} \frac{\ln(n)}{n^{\frac{1}{2}}} = 0 \Rightarrow \ln(n) < n^{\frac{1}{2}}$ as n is large enough $\Rightarrow \frac{1}{n^{\frac{1}{2}}} < \frac{1}{2n(n)} \Rightarrow \frac{1}{n} < \frac{1}{2n(n)^{\frac{1}{2}}}$ Then, since $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges, we have $\sum_{n=2}^{\infty} (\ln(n))^2$ diverges by B.C.T. $(c) \sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$

(c) $\frac{2^{n} n!}{n^{n}}$ we have $\frac{2^{n} n!}{a^{n}} = \frac{2^{n} n!}{(n+1)^{n+1}} = \frac{2^{n} n!}{(n+1)^{n}} = \frac{2^{n} n!}{(n+1)^{n}}$

3 (c) (conti.) $\left|\frac{a_{n+1}}{a_n}\right| = \left|2\cdot\left(\frac{n}{n+1}\right)^n\right| \to \frac{2}{e} < 1$ as $n \to \infty$. So, by ratio Test, Sonn converges. (d). $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \frac{1}{4\cdot 5} + 111 = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ Let an= $\frac{1}{n(1+n)}$, $bn=\frac{1}{n^2}$, $\frac{an}{bn}=\frac{n^2}{n(1+n)} \Rightarrow 1$ as $n \Rightarrow \infty$ Since I is finite and positive, then, by L.C.T. (Limit Comparison Test), 5 nonverges. Ti (i) lot for= excos(x), Find T4 of for), We have $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + 111111$ and $COS(X) = |-\frac{X^2}{2!} + \frac{X^4}{4!} + |||||$ Then $f(x) = (1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+111)(1-\frac{x^2}{2!}+\frac{x^4}{4!}+111)$ $= \left(1 - \frac{\chi^2}{2!} + \frac{\chi^4}{4!} + \chi - \frac{\chi^3}{2!} + \frac{\chi^5}{3!} + \frac{\chi^2}{2!} - \frac{\chi^4}{2!^2!} + \frac{\chi^3}{3!} + \frac{\chi^4}{4!} + 111\right)$ $=1+X+\left(-\frac{1}{2!}+\frac{1}{3!}\right)\chi^{3}+\left(\frac{2}{4!}-\frac{1}{2!2!}\right)\chi^{4}+111$

 $= |+ \times - \frac{\times^3}{3} - \frac{\gamma 4}{6} + ||$

3

f. (ii) By formula, we have IRn (x) \le \frac{M | X-a|^n+1}{(n+1)!} where If(n+1)(x) | < M Let for=ex, and fint(x)=ex, a=0 (a) as n=3, we have |x|<1 $|x|<1 < \frac{e' \times 3+1}{1}| \leq \frac{e' \cdot 14}{(3+1)!}| \leq \frac{e' \cdot 14}{4!} = \frac{e}{24}$ Since $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ and , let $a_{n} = \frac{x^{n}}{n!}$, We have $\left|\frac{antl}{an}\right| = \left|\frac{x^{n\tau_1}}{x^n}\right| = \left|\frac{x}{n\tau_1}\right| \neq \delta^{-1}as n \neq \infty$ So, by Ratio Test, the radius of convergence is is. and $\chi \in (-\infty, \infty)$ such that $\sum_{i \in \mathbb{N}} \frac{\chi^{ij}}{n!}$ converges. and ex= xn for all xell (or Xe(-xx))

5. (i)
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 for $|x| < 1$.

(ii) Let $f(x) = \frac{1}{(1-x)^2}$. We have $\frac{1}{0x}(\frac{1}{1-x}) = \frac{1}{(1-x)^2}$.

Then $\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n x^{n-1}$.

For $g(x) = \frac{1}{(1-x)^3}$ we have $\frac{1}{0x}(\frac{1}{(1-x)^2}) = \frac{1}{(1-x)^3}$.

Then $\frac{1}{(1-x)^2} = \frac{1}{2} \frac{1}{0x} \frac{1}{(1-x)^2} = \frac{1}{2} \cdot \sum_{n=2}^{\infty} n(n-1) x^{n-2}$.