COL703: Logic for Computer Science

Problem 1

Let us introduce a new connective \leftrightarrow which should abbreviate $\phi \to \psi \land \psi \to \phi$. Design introduction and elimination rules (like the ones we had in natural deduction) for \leftrightarrow and show that they are derived rules.

Solution: The introduction and elimination rules for double implication can be designed as follows:

Introduction Rule:

$$\begin{array}{cc} [\phi] & [\psi] \\ \frac{\psi & \phi}{\phi \leftrightarrow \psi} \leftrightarrow_i \end{array}$$

Elimination Rules

$$\frac{\phi \leftrightarrow \psi \quad \phi}{\psi} \leftrightarrow_{e_1}$$

$$\frac{\phi \leftrightarrow \psi \quad \psi}{\phi} \leftrightarrow_{e_2}$$

$$\frac{\phi \leftrightarrow \psi \quad \neg \phi}{\neg \psi} \leftrightarrow_{e_3}$$

$$\frac{\phi \leftrightarrow \psi \quad \neg \psi}{\neg \phi} \leftrightarrow_{e_4}$$

We will now prove that these rules are derived rules. First, we prove that \leftrightarrow_i is derived.

7.

1.	φ	assumption
2.	ψ	premise
3.	$\phi \to \psi$	\rightarrow_i 1-2
4.	ψ	assumption
5.	ϕ	premise
6.	$\psi o \phi$	$\rightarrow_i 4-5$

Since $\phi \leftrightarrow \psi$ abbreviates $(\phi \to \psi) \land (\psi \to \phi)$, therefore, \leftrightarrow_i is derived. Now, we will prove that \leftrightarrow_{e_1} and \leftrightarrow_{e_3} are also derived rules. The other two follow without loss of generality. First: \leftrightarrow_{e_1} :

 $(\phi \to \psi) \land (\psi \to \phi) \land_i 3, 6$

1.
$$(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$$
 premise
2. ϕ premise
3. $\phi \rightarrow \psi$ $\land_{e_1} 1$
4. ψ MP(3,2)

Now, \leftrightarrow_{e_3} :

1.
$$(\phi \to \psi) \land (\psi \to \phi)$$
 premise
2. $\neg \phi$ premise
3. $\phi \to \psi$ $\land_{e_1} 1$
4. $\neg \psi$ MT(3,2)

We can get the other two rules by using \wedge_{e_2} instead of \wedge_{e_1} in the above proofs. Hence proved that the rules for \leftrightarrow are derived.

Problem 2

Prove the validity of the following sequents using natural deduction proof rules:

(a)
$$(p \to r) \land (q \to r) \vdash p \land q \to r$$

(b)
$$p \to q \land r \vdash (p \to q) \land (p \to r)$$

Solution:

(a)

1.
$$(p \rightarrow r) \land (q \rightarrow r)$$
 premise
2. $(p \rightarrow r)$ $\land_{e_1} 1$
3. $p \land q$ assumption
4. p $\land_{e_1} 3$
5. r MP(2,4)

6.

 $p \wedge q \rightarrow$

 $\rightarrow_i 3-5$

(b)

1.	$p \to q \wedge r$	premise
2.	p	assumption
3.	$q \wedge r$	MP(1,2)
4.	q	$\wedge_{e_1} 3$
5.	r	$\wedge_{e_2} 3$
6.	$p \to q$	$\rightarrow_i 2-4$
7.	$p \to r$	\rightarrow_i 2-5
8.	$(p \to q) \land (p \to r)$	\wedge_i 6, 7

Problem 3

An adequate set of connectives for propositional logic is a set such that for every formula of propositional logic there is an equivalent formula with only connectives from that set. For example, $\{\neg, \lor\}$ is adequate. Is $\{\neg, \leftrightarrow\}$ adequate? Justify your answer.

Solution: We will approach this problem as follows: We will show that any boolean formula build using $\{\neg, \leftrightarrow\}$ will have a certain property which a general formula in propositional logic will not have. This will prove the inadequacy of this set of connectives. We make the following claim.

Claim 1. Any boolean formula ϕ using both and only the atoms p,q and connectives from the set $\{\neg,\leftrightarrow\}$ satisfies that the truth table for formula ϕ has even number of rows with truth value T.

Proof. We will prove this by induction on the length of the formula ϕ . Note that the minimum length of a formula involving two connectives p, q is 3, i.e. the formula $p \leftrightarrow q$. It is simple to observe that the truth table has two rows with the truth value T. Therefore the before case is proven.

In the inductive step, suppose all formulas with length $\leq n$ have an even number of rows with truth value T. Consider a formula ϕ of length n. Since we know that we only have the connectives $\{\neg, \leftrightarrow\}$, the formula ϕ can either be:

1. $\phi = \neg \psi$: By the inductive hypothesis, we know ψ has an even number of rows with truth value T. Since the number of rows in the truth table is also even, we must know that ψ has an even number of rows with truth value F. By semantics of \neg , we know that the number of rows with truth value T for $\neg \psi$ is the number of rows with truth value F for ψ , which is even.

- 2. $\phi = \psi \leftrightarrow \xi$: By the inductive hypothesis, we know ψ and ξ have an even number of rows with truth value T. It is useful to recall that there are *only* 4 rows in the truth table of ϕ since there are only two atoms p, q. Further, by semantics of \leftrightarrow , ϕ will be T wherever ψ and ξ are both T or both F. Now there are a few cases:
 - Case I: Both ψ and ξ have 0 or 4 rows with T. Then ϕ has T in all four rows.
 - Case I: ψ has 0 rows with T and ξ has 4 rows with T. Then ϕ has T in zero rows. The symmetric case follows.
 - Case III: ψ has 2 rows with T and ξ has 0 with T. Then ϕ has T in the 2 rows in which both ψ and ξ are F. The symmetric case follows.
 - Case IV: ψ has 2 rows with T and ξ has 4 with T. Then ϕ has T in the 2 rows in which both ψ and ξ are T. The symmetric case follows.
 - Case V: Both ψ and ξ have 2 rows each with T, and the two rows are exactly the same or totally disjoint. In this case, it is easy to see that ϕ will have 2 or 0 rows with T respectively (using the semantics of \leftrightarrow).
 - Case VI: Both ψ and ξ have 2 rows each with T, and if there is exactly one row in common where both have T, i.e. $\phi = T, \xi = T$. Then, there *must* exist a row in where both have a F. This is because, two of the other rows could possibly look like $\phi = T, \xi = F$ and $\phi = F, \xi = T$. However, the 4th row cannot contain any more Ts (since both ψ and ξ have only two rows with T). So, there are two rows, one in which both ψ and ξ are T, and one in which both are F. So, by semantics of \leftrightarrow there are exactly 2 rows in the truth table of ϕ which are T.

Thus, the claim is proven. Further, note that formulas of propositional logic such as $p \lor q$ and $p \land q$ have T in an odd number of rows. Thus, these cannot be represented using the connectives $\{\neg, \leftrightarrow\}$ and thus they are inadequate.

Problem 4

Show that the following sequents are not valid by finding a valuation in which the truth values of the formulas to the left of \vdash are T and the truth value of the formula to the right of \vdash is F.

(a)
$$\neg r \to (p \lor q), r \land \neg q \vdash r \to q$$

(b)
$$p \to (q \to r) \vdash p \to (r \to q)$$

Solution:

- (a) The valuation is: p = F, q = F, r = T. Then, $\neg r \to (p \lor q) = F \to F \lor F = T$, and $r \land \neg q = T \land T = T$. For the RHS, $r \to q = T \to F = F$.
- (b) The valuation is: p = T, q = F, r = T. Then, the LHS is $p \to (q \to r) = T \to (F \to T) = T \to T = T$, and the RHS is $p \to (r \to q) = T \to (T \to F) = T \to F = F$.

Problem 5

Let X be a set of propositional logic formulas. X is said to be a finitely satisfiable set (FSS) if every $Y \subseteq_{fin} X$ is satisfiable. Equivalently, X is an FSS if there is no finite subset $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ of X such that $\neg(\alpha_1 \land \alpha_2 \land \cdots \land \alpha_n)$ is valid. (Note that if X is an FSS we are not promised a single valuation v which satisfies every finite subset of X. Each finite subset could be satisfied by a different valuation.) Show that:

- (a) Every FSS can be extended to a maximal FSS.
- (b) If X is a maximal FSS then for every formula $\alpha, \alpha \in X$ iff $\neg \alpha \notin X$.
- (c) If X is a maximal FSS then for all formulas $\alpha, \beta, \alpha \vee \beta \in X$ iff $\alpha \in X \vee \beta \in X$.
- (d) Every maximal FSS X generates a valuation v_X such that for every formula α , $v_X \models \alpha$ iff $\alpha \in X$.

From these facts, conclude that:

- (e) Any FSS X is simultaneously satisfiable (that is, for any FSS X, there exists v_X such that $v_X \models X$)
- (f) For all X and all α , $X \models \alpha$ iff there exists $Y \subseteq_{fin} X$ such that $Y \models \alpha$.

Solution:

(a) Let X be an arbitrary FSS. Let q_0, q_1, q_2, \ldots be an enumeration of Φ , as defined in class. We define an infinite sequence of sets X_0, X_1, X_2, \ldots as follows: $X_0 = X$, and for $i \geq 0$,

$$X_{i+1} = \begin{cases} X_i \cup \{q_i\} & \text{if } X_i \cup \{q_i\} \text{ is an FSS} \\ X_i & \text{otherwise} \end{cases}$$

We observe that each set in this sequence of sets is an FSS, by construction. Now let us define $W = \bigcup_{i \geq 0} X_i$. We claim that W is a maximal FSS extending X. We prove this as follows:

- If W is not an FSS, then there is a subset $Z \subseteq_{\text{fin}} W$ which is not satisfiable. Let |Z| = n and let $Z = \{p_1, p_2, \ldots, p_n\}$. We can write Z as $\{q_{i_1}, q_{i_2}, \ldots, q_{i_n}\}$ where the indices correspond to our enumeration of Φ . Then we see that $Z \subseteq_{\text{fin}} X_{j+1}$ in the sequence $X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq W$, where $j = \max(i_1, i_2, \ldots, i_n)$. This implies that X_{j+1} is not an FSS, which violates our construction. Therefore W is an FSS.
- Now we show that W is maximal. Suppose it is not, i.e. $W \cup \{p\}$ is an FSS for some formula $p \notin W$. Let $p = q_j$ in our enumeration of Φ . Since $q_j \notin W, q_j$ was not added at step j+1 in our construction. This means that $X_j \cup \{q_j\}$ is not an FSS. In other words, there exists $Z \subseteq_{\text{fin}} X_j$ such that $Z \cup \{q_j\}$ is not an FSS, or exists a finite subset which is unsatisfiable. Since $X_j \subseteq W$, we must have $Z \subseteq_{fin} W$ as well, which contradicts the assumption that $W \cup \{q_j\}$ is an FSS, since there exists a finite unsatisfiable subset. So, W must be maximal. \blacksquare
- (b) $[\Leftarrow]$ Note that $\{\alpha, \neg \alpha\}$ is not satisfiable. Therefore, $\{\alpha, \neg \alpha\} \not\subseteq X$. Therefore, $\alpha \in X$ only if $\neg \alpha \notin X$.

 $[\implies]$ Suppose that a maximal FSS X does not contain either of α and $\neg \alpha$. Therefore, $X \cup \{\alpha\}$ and $X \cup \{\neg \alpha\}$ both have finite subsets which are unsatisfiable, and therefore inconsistent. Let these finite subsets be named P and Q respectively. Note that P must contain α , since if not, then $P \setminus \{\alpha\} \subseteq_{fin} X$ itself is unsatisfiable, which contradicts the fact that X is an FSS. Symmetrically, Q must contain $\neg \alpha$.

Let $P \setminus \{\alpha\} = \{\beta_1, \beta_2, \dots, \beta_n\}$ and $Q \setminus \{\neg \alpha\} = \{\gamma_1, \gamma_2, \dots, \gamma_m\}$. Let $p = \beta_1 \land \beta_2 \land \dots \land \beta_n$ and $q = \gamma_1 \land \gamma_2 \land \dots \land \gamma_m$. Then, we have $\vdash \neg(\alpha \land p)$ and $\vdash \neg(\neg \alpha \land q)$. This is equivalent to $\vdash \neg \alpha \lor \neg p$ and $\vdash \neg \neg \alpha \lor \neg q$. Using the fact that $\neg a \lor b \equiv a \to b$ and $\neg \neg a \equiv a$, we get $\vdash \alpha \to \neg p$ and $\vdash \neg \alpha \to \neg q$.

Further, we have that $\vdash (\alpha \to \beta) \to ((\delta \to \gamma) \to ((\alpha \lor \delta) \to (\beta \lor \gamma)))$ (proved in class). Substituting $\alpha = \alpha, \delta = \neg \alpha, \beta = \neg p$ and $\gamma = \neg q$ we get $\vdash (\alpha \lor \neg \alpha) \to (\neg p \lor \neg q)$. Since $\vdash \alpha \lor \neg \alpha$, we get $\vdash \neg p \lor \neg q$. By rewriting \lor in terms of \land , we can get $\neg (p \land q)$.

However, this implies that $(P \setminus \{\alpha\} \cup Q \setminus \{\neg \alpha\}) \subseteq_{\text{fin}} X$ is inconsistent, and therefore unsatisfiable (since $p \wedge q$ represents the formula for $P \setminus \{\alpha\} \cup Q \setminus \{\neg \alpha\}$). And since both $P \setminus \{\alpha\} \subseteq X$ and $Q \setminus \{\neg \alpha\} \subseteq X$ and so $P \setminus \{\alpha\} \cup Q \setminus \{\neg \alpha\} \subseteq X$. But this is a contradiction to the fact that X is an FSS. Therefore, X must contain at least one of $\{\alpha, \neg \alpha\}$.

(c) $[\implies]$ Suppose that $\alpha \in X \vee \beta \in X$ but $\alpha \vee \beta \notin X$. Since X is maximal, there exists a finite subset of $X \cup \{(\alpha \vee \beta)\}$ that is not satisfiable. However, note that if $\alpha \in X$. This means $X \cup \{\alpha\}$ is satisfiable, and so $X \cup \{(\alpha \vee \beta)\}$ should also be satisfiable. A similar argument for β . Therefore, if $\alpha \in X \vee \beta \in X$ then $\alpha \vee \beta \in X$

[\Leftarrow] Suppose a maximal FSS X contains $\alpha \vee \beta$ but does not contain either of α and β . Therefore, $X \cup \{\alpha\}$ and $X \cup \{\beta\}$ both have finite subsets which are unsatisfiable, and therefore inconsistent. Let these finite subsets be named P and Q respectively. Note that P must contain α , since if not, then $P \setminus \{\alpha\} \subseteq_{fin} X$

itself is unsatisfiable, which contradicts the fact that X is an FSS. Symmetrically, Q must contain β .

Let $P \setminus \{\alpha\} = \{\xi_1, \xi_2, \dots, \xi_n\}$ and $Q \setminus \{\beta\} = \{\gamma_1, \gamma_2, \dots, \gamma_m\}$. Let $p = \xi_1 \land \xi_2 \land \dots \land \xi_n$ and $q = \gamma_1 \land \gamma_2 \land \dots \land \gamma_m$. Then, we have $\vdash \neg(\alpha \land p)$ and $\vdash \neg(\beta \land q)$. This is equivalent to $\vdash \neg \alpha \lor \neg p$ and $\vdash \neg \beta \lor \neg q$. Using the fact that $\neg a \lor b \equiv a \to b$, we get $\vdash \alpha \to \neg p$ and $\vdash \beta \to \neg q$.

Further, we have that $\vdash (\alpha \to \xi) \to ((\delta \to \gamma) \to ((\alpha \lor \delta) \to (\xi \lor \gamma)))$ (proved in class). Substituting $\alpha = \alpha, \delta = \beta, \xi = \neg p$ and $\gamma = \neg q$ we get $\vdash (\alpha \lor \beta) \to (\neg p \lor \neg q)$. By deduction theorem, we may also write $(\alpha \lor \beta) \vdash (\neg p \lor \neg q)$, or $(\alpha \lor \beta) \land (p \land q)$ is inconsistent, and therefore unsatisfiable.

However, this is exactly the formula for the set $(P \setminus \{\alpha\} \cup Q \setminus \{\neg\alpha\} \cup \{\alpha \vee \beta\})$, and since both $P \setminus \{\alpha\} \subseteq_{fin} XX$ and $Q \setminus \{\neg\alpha\} \subseteq_{fin} X$, and $\{\alpha \vee \beta\} \subseteq_{fin} X$, we have that $(P \setminus \{\alpha\} \cup Q \setminus \{\neg\alpha\} \cup \{\alpha \vee \beta\}) \subseteq_{fin} X$, and it is unsatisfiable, which is a contradiction. Therefore, X must contain at least one of $\{\alpha, \beta\}$.

(d) Let us define the valuation v_X as the following. Suppose $\mathcal{P} = \{p_1, p_2 ...\}$ is the set of all atomic propositions. The valuation v_X has the following form:

$$p_i = \begin{cases} T & \text{if } p_i \in X \\ F & \text{otherwise} \end{cases}$$

We claim that v_X satisfies the property that $v_X \models \alpha$ iff $\alpha \in X$. We will prove this by induction on the length of the formula α .

Base case: α has a length of 1, so it must be an atom, and the property follows by definition of v_X . Inductive Step: Suppose the hypothesis is true for all formulas of length < n. Consider a formula α with $|\alpha| = n$. Then, there are only two structural possibilities for α :

- $\alpha = \neg \beta$: Note that $v_X \models \neg \beta$ iff $v_X \not\models \beta$. Further, by inductive hypothesis, this can occur iff $\beta \notin X$. Finally, $\beta \notin X$ iff $\beta \in X$ (by Part (b) above) and so, $v_X \models \neg \beta$ iff $\neg \beta \in X$
- $\alpha = \beta \vee \gamma$: Note that $v_X \models \beta \vee \gamma$ iff $v_X \models \beta \vee v_X \models \gamma$. Further, by inductive hypothesis, this can occur iff $\beta \in X \vee \gamma \in X$. Finally, $\beta \in X \vee \gamma \in X$ iff $\beta \vee \gamma \in X$ (by Part (c) above) and so, $v_X \models \beta \vee \gamma$ iff $\beta \vee \gamma \in X$.
- (e) First, let us consider a maximal FSS X. Then, we claim that v_X as defined in Part (d) above simultaneously satisfies X. If this is not true, then there exists some $\beta \in X$ such that $v_X \not\models \beta$, however, by definition, this can occur iff $\beta \notin X$. Therefore, v_X simultaneously satisfies X.

So, for a general FSS Y, we can define the valuation $v_Y = v_{Y_{max}}$, where Y_{max} is the maximal FSS obtained by extending Y. Then v_Y simultaneously satisfies Y, because it also simultaneously satisfies Y_{max} , and $Y \subseteq Y_{max}$.

[\Longrightarrow] If $Y \subseteq_{fin} X$ and $Y \models \alpha$ then $X \models \alpha$, since if a valuation v satisfies X then it also satisfies Y. Therefore, $Y \models \alpha \Longrightarrow v \models \alpha$ for every valuation satisfying X. Therefore, $X \models \alpha$.

 $[\Leftarrow]$ There are two cases we need to consider:

• X is an FSS: Let us consider the set $Z = X \cup \{\neg \alpha\}$. Suppose that Z is an FSS: Then, there must exist a valuation v which simultaneously satisfies Z, i.e. $v \models Z$. In other words, $v \models X$ and $v \models \neg \alpha$. However, since $X \models \alpha$, any valuation satisfying X must satisfy α , i.e. $v \models \alpha$. This is a contradiction, so Z must not be an FSS. Therefore, there must exist $W \subseteq_{fin} X \cup \{\neg \alpha\}$ such that W is not satisfiable, by definition of Finitely Satisfiable Sets. Further, W must contain $\neg \alpha$, else $Y \subseteq X$, and therefore X could not have been an FSS. So, we have that $W = Y \cup \{\neg \alpha\}$ is unsatisfiable, and therefore we get $Y \models \alpha$, as required.

• If X is not an FSS: By definition, $\exists Y \subseteq_{fin} X$ such that Y is not satisfiable, and therefore X is not satisfiable. Since no valuation satisfies Y, we can trivially say that $Y \models \alpha$.

Hence, we conclude that $X \models \alpha$ iff $\exists Y \subseteq_{fin} X$ such that $Y \models \alpha$.