Conjecturing Some Number Theory Results Pre-class, Week 8

Recall the following corollary from Week 6 class activity:

Corollary: If gcd(a, n) = 1 and $ax \equiv ab \pmod{n}$, then $x \equiv b \pmod{n}$.

In other words, we can "cancel" a from an equation such as $ax \equiv ab \pmod{n}$ as long as a is relatively prime to n. If a is not relatively prime to n, then the cancellation does not necessarily hold, as the above problem shows. Similarly, we saw how to define the inverse a^{-1} of an element a as long as a is relatively prime to n. In all these cases the relative primeness makes it work.

Recall how we defined the Euler ϕ -function to count all these nice a's that worked with a fixed mod n:

Given n, the number of positive integers that are less or equal to than n and relatively prime to n is denoted by $\phi(n)$. More specifically,

$$\phi(n) = |\{x : 1 \le x \le n \text{ and } \gcd(x, n) = 1\}|.$$

Therefore, for any given n there are $\phi(n)$ many nice a's. The question is then how big is $\phi(n)$ for an arbitrary n?

1. We already know that $\phi(p) = p - 1$ if p is prime. We also found that $\phi(pq) = (p - 1)(q - 1)$ for p, q two distinct primes. Does this formula work if p = q? If yes, justify. If no, can you guess the correct formula for $\phi(p^2)$? What about $\phi(p^k)$ for an unknown k?

$$\phi(4) = 2 \neq (2-1)(2-1) \qquad \phi(p'') = p'''(p-1)$$

$$\phi(p^2) = p(p-1) = p^2 - \frac{p^2}{p}$$

2. For each of the following n, find $(n-1)! \pmod{n}$.

a.
$$n = 5$$
 $9! = 29 \equiv 9 \pmod{5}$ b. $n = 7$ $6! \equiv 6 \pmod{7}$

c.
$$n=10$$
 $\%$ $\stackrel{!}{=}$ 0 (mod 10) d. $n=15$ $14! \stackrel{?}{=}$ 0 (mod 15)

Thus
$$(n-1)! = pq K = n K = 0 \pmod{n}$$
 for some K .

If n is a square then $(n-1)!$ will contain \sqrt{n} and $\frac{over}{n} + 2\sqrt{n}$ since $n \ge 2\sqrt{n}$ because $n \ge q$. Thus $(n-1)! = 2\sqrt{n}\sqrt{n} + 2\sqrt{n} = 0$ $(mod n)$

for some K.

Recall how we defined the *order* of an element modulo n with $\gcd(a,n)=1$: If k is the smallest positive integer such that $a^k\equiv 1\pmod n$, we call k the *order* of a modulo n. For example, if a=4, then

$$4^1 \equiv \pmod{9}, 4^2 \equiv 7 \pmod{9}, 4^3 \equiv 1 \pmod{9}$$

so the order of $a=4 \mod 9$ is 3. If we let a=2, the order of 2 will be 6 because $2, 2^2, 2^3, 2^4, 2^5$ are not congruent to 1 mod 9.

4. Find the order of all non-zero $a \pmod{7}$ (by hand or using a code). Any property common to all orders? (If you wrote a code, you can also try finding the orders for all $a \pmod{13}$ to get another example to help with the conjecturing.)

example to help with the conjecturing.										1		
A		2	3	4	5	6	7	8	9	10	11	12
O(Je(1.7	l	3	6	3	6	2						
O(Jer 7.13		(2	3	6	4	2	(2	4	3	6	12	2
1			1	_								

order of a mod P divides P-1