

Description

The VSM10N02 uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge . The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.

General Features

N-Channel

 $V_{DS} = 20V, I_{D} = 10A$

 $R_{DS(ON)}$ < 14m Ω @ V_{GS} =4.5V

 $R_{DS(ON)}$ < 18m Ω @ V_{GS} =2.5V

P-Channel

 $V_{DS} = -20V, I_{D} = -6A$

 $R_{DS(ON)}$ < 45m Ω @ V_{GS} =-4.5V

 $R_{DS(ON)} < 60 \text{m}\Omega @ V_{GS} = -2.5 \text{V}$

- High power and current handing capability
- Lead free product is acquired
- Surface mount package
- Pb free terminal plating
- RoHS compliant
- Halogen free

Application

Power Management

Schematic Diagram

P-channel

N-channel

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM10N02-S8	VSM10N02	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

7 to o o tato maxima in reating (1 A 20 o a mood o tilo moo no to a)						
Parameter Drain-Source Voltage		Symbol	N-Channel	P-Channel	Unit	
		V _{DS}	20	-20	V	
Gate-Source Voltage		V _{GS}	±12	±12	V	
Continuous Drain Current	T _A =25℃		10	-6	А	
	T _A =70°C	I _D	8	-4.8		
Pulsed Drain Current (Note 1)		I _{DM}	40	-30	Α	
Maximum Power Dissipation	T _A =25℃	P _D	2.0	2.0	W	
Operating Junction and Storage Temperature Range		T_{J} , T_{STG}	-55 To 150	-55 To 150	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient (Note2)	R _{0JA}	N-Ch	62.5	°C/W
Thermal Resistance, Junction-to-Ambient (Note2)	$R_{ heta JA}$	P-Ch	62.5	°C/W

N-CH Electrical Characteristics (T_A=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics				•		•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	0.5	0.7	1.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =10A	-	12	14	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =5A	-	13.5	18	mΩ
Forward Transconductance	g _{FS}	V _{DS} =5V,I _D =10A	10	-	-	S
Dynamic Characteristics (Note4)			•	•		•
Input Capacitance	C _{lss}	V _{DS} =10V,V _{GS} =0V,	-	691	-	PF
Output Capacitance	C _{oss}		-	128	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	115	-	PF
Switching Characteristics (Note 4)				•		•
Turn-on Delay Time	t _{d(on)}		-	9	-	nS
Turn-on Rise Time	t _r	V_{DD} =10V, R_L =2 Ω	-	13	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =4.5 V , R_{GEN} =3 Ω	-	14.5	-	nS
Turn-Off Fall Time	t _f		-	3.2	-	nS
Total Gate Charge	Qg	V _{DS} =10V,I _D =10A,	-	10.2	-	nC
Gate-Source Charge	Q _{gs}		-	1.1	-	nC
Gate-Drain Charge	Q_{gd}	V_{GS} =4.5 V	-	3.7	-	nC
Drain-Source Diode Characteristics	- '			•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-	0.8	1.2	V

P-CH Electrical Characteristics (T_A=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics				•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-20	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-20V,V _{GS} =0V	-	-	-1	μΑ
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm 12V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)				•		
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-0.5	-0.7	-1.0	V
Dunin Course On Chata Basistana	Б	V _{GS} =-4.5V, I _D =-6A	-	34	45	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-2.5V, I _D =-5A	-	44	60	mΩ
Forward Transconductance	G FS	V _{DS} =-5V,I _D =-6A	6	-	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}	V _{DS} =-10V,V _{GS} =0V, F=1.0MHz	-	550	-	PF
Output Capacitance	C _{oss}		-	93	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	64	-	PF
Switching Characteristics (Note 4)				•		
Turn-on Delay Time	t _{d(on)}		-	7	-	nS
Turn-on Rise Time	t _r	V_{DD} =-10V, R_L =5 Ω	-	13	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-4.5 V , R_{GEN} =6 Ω	-	12	-	nS
Turn-Off Fall Time	t _f		-	3	-	nS
Total Gate Charge	Qg	\/ - 40\/ I - CA	-	7	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-10V, I_{D} =-6A V_{GS} =-4.5V	-	1.1	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =-4.5V	-	1.8	-	nC
Drain-Source Diode Characteristics			· ·		•	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-6A	-	-	-1.2	V

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

N- Channel Typical Electrical and Thermal Characteristics (Curves)

Figure 1:Switching Test Circuit

Figure 3 Output Characteristics

Figure 5 Drain-Source On-Resistance

Figure 2:Switching Waveforms

Vgs Gate-Source Voltage (V)

Figure 4 Transfer Characteristics

Figure 6 Drain-Source On-Resistance

Vgs Gate-Source Voltage (V)

Figure 9 Gate Charge

Figure 11 Capacitance vs Vds

T_J-Junction Temperature(°C)

Figure 8 Power Dissipation

Figure 10 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 12 Safe Operation Area

Figure 13 Normalized Maximum Transient Thermal Impedance

P- Channel Typical Electrical and Thermal Characteristics (Curves)

-Vds Drain-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power Dissipation

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance