Advanced Machine Learning

Understand Mappings

Mappings, Eigenvectors

Outline

- 1. Mappings
- 2. Linear Maps
- 3. Eigenvectors

Transforming Data

- In the last lecture we spent time developing a sophisticate view of vector spaces and operators
- At a mathematical level machine learning can be viewed as performing an inverse mapping

 Although our mappings are not necessarily linear in either direction we learn a lot by understanding linear operators

Transforming Data

- In the last lecture we spent time developing a sophisticate view of vector spaces and operators
- At a mathematical level machine learning can be viewed as performing an inverse mapping

 Although our mappings are not necessarily linear in either direction we learn a lot by understanding linear operators

Transforming Data

- In the last lecture we spent time developing a sophisticate view of vector spaces and operators
- At a mathematical level machine learning can be viewed as performing an inverse mapping

 Although our mappings are not necessarily linear in either direction we learn a lot by understanding linear operators

- Given m observations $\{(\boldsymbol{x}_k,y_k)|k=1,\ldots,m\}$ and p unknown $\boldsymbol{w}=(w_1,w_2,\ldots w_p)$ such that $\boldsymbol{x}_k^\mathsf{T}\boldsymbol{w}=y_k$ then to find \boldsymbol{w}
- ullet Define the $design\ matrix$ as the matrix of feature vectors

$$\mathbf{X} = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} \\ \boldsymbol{x}_2^\mathsf{T} \\ \dots \\ \boldsymbol{x}_m^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mp} \end{pmatrix}$$

- and the target vector $\boldsymbol{y} = (y_1, y_2, \cdots, y_m)^\mathsf{T}$
- ullet Then if m=p we have $oldsymbol{y}=\mathbf{X}oldsymbol{w}$ or $oldsymbol{w}=\mathbf{X}^{-1}oldsymbol{y}$

- Given m observations $\{(\boldsymbol{x}_k,y_k)|k=1,\ldots,m\}$ and p unknown $\boldsymbol{w}=(w_1,w_2,\ldots w_p)$ such that $\boldsymbol{x}_k^\mathsf{T}\boldsymbol{w}=y_k$ then to find \boldsymbol{w}
- ullet Define the $design\ matrix$ as the matrix of feature vectors

$$\mathbf{X} = egin{pmatrix} oldsymbol{x}_1^\mathsf{T} \ oldsymbol{x}_2^\mathsf{T} \ \cdots \ oldsymbol{x}_m^\mathsf{T} \end{pmatrix} = egin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \ x_{21} & x_{22} & \cdots & x_{2p} \ dots & dots & \ddots & dots \ x_{m1} & x_{m2} & \cdots & x_{mp} \end{pmatrix}$$

- and the target vector $\boldsymbol{y} = (y_1, y_2, \cdots, y_m)^\mathsf{T}$
- ullet Then if m=p we have $oldsymbol{y}=\mathbf{X}oldsymbol{w}$ or $oldsymbol{w}=\mathbf{X}^{-1}oldsymbol{y}$

- Given m observations $\{(\boldsymbol{x}_k,y_k)|k=1,\ldots,m\}$ and p unknown $\boldsymbol{w}=(w_1,w_2,\ldots w_p)$ such that $\boldsymbol{x}_k^\mathsf{T}\boldsymbol{w}=y_k$ then to find \boldsymbol{w}
- ullet Define the $design\ matrix$ as the matrix of feature vectors

$$\mathbf{X} = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} \\ \boldsymbol{x}_2^\mathsf{T} \\ \dots \\ \boldsymbol{x}_m^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mp} \end{pmatrix}$$

- and the target vector $\boldsymbol{y} = (y_1, y_2, \cdots, y_m)^\mathsf{T}$
- ullet Then if m=p we have $oldsymbol{y}=\mathbf{X}oldsymbol{w}$ or $oldsymbol{w}=\mathbf{X}^{-1}oldsymbol{y}$

- Given m observations $\{(\boldsymbol{x}_k,y_k)|k=1,\ldots,m\}$ and p unknown $\boldsymbol{w}=(w_1,w_2,\ldots w_p)$ such that $\boldsymbol{x}_k^\mathsf{T}\boldsymbol{w}=y_k$ then to find \boldsymbol{w}
- ullet Define the $design\ matrix$ as the matrix of feature vectors

$$\mathbf{X} = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} \\ \boldsymbol{x}_2^\mathsf{T} \\ \dots \\ \boldsymbol{x}_m^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mp} \end{pmatrix}$$

- and the target vector $\boldsymbol{y} = (y_1, y_2, \cdots, y_m)^\mathsf{T}$
- ullet Then if m=p we have $oldsymbol{y}=\mathbf{X}oldsymbol{w}$ or $oldsymbol{w}=\mathbf{X}^{-1}oldsymbol{y}$

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

• $y_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w}$ depends on distance from separating plane

- If m>p then ${\bf X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m > p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then ${\bf X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then ${\bf X}$ isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $m{y} pprox m{X} m{w} \Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $ypprox {\sf X} w\Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m > p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $oldsymbol{y}pprox \mathbf{X}oldsymbol{w}\Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

- If m>p then **X** isn't square so doesn't have an inverse
- ullet Worse unless the data is accurate $ypprox {\sf X} w\Rightarrow$ no "solution"
- Problem solved by Gauss to predict the orbit of the asteroid Ceres

ullet The error of input pattern $oldsymbol{x}_k$ is

$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$

The squared error

$$E(\boldsymbol{w}|\mathcal{D}) = \sum_{k=1}^{P} (\boldsymbol{x}_{k}^{\mathsf{T}} \boldsymbol{w} - y_{k})^{2} = \sum_{k=1}^{P} \epsilon_{k}^{2} = \|\boldsymbol{\epsilon}\|^{2}$$

We can define the error vector

$$\epsilon = \mathsf{X} w - y$$

(note that
$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$
)

ullet The error of input pattern $oldsymbol{x}_k$ is

$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$

The squared error

$$E(\boldsymbol{w}|\mathcal{D}) = \sum_{k=1}^{P} (\boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} - y_k)^2 = \sum_{k=1}^{P} \epsilon_k^2 = \|\boldsymbol{\epsilon}\|^2$$

We can define the error vector

$$\epsilon = \mathsf{X} w - y$$

(note that
$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$
)

ullet The error of input pattern $oldsymbol{x}_k$ is

$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$

The squared error

$$E(\boldsymbol{w}|\mathcal{D}) = \sum_{k=1}^{P} (\boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} - y_k)^2 = \sum_{k=1}^{P} \epsilon_k^2 = \|\boldsymbol{\epsilon}\|^2$$

We can define the error vector

$$\epsilon = Xw - y$$

(note that
$$\epsilon_k = oldsymbol{x}_k^\mathsf{T} oldsymbol{w} - y_k$$
)

ullet The error of input pattern $oldsymbol{x}_k$ is

$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$

The squared error

$$E(\boldsymbol{w}|\mathcal{D}) = \sum_{k=1}^{P} (\boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} - y_k)^2 = \sum_{k=1}^{P} \epsilon_k^2 = \|\boldsymbol{\epsilon}\|^2$$

We can define the error vector

$$\epsilon = \mathsf{X} w - y$$

(note that
$$\epsilon_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} - y_k$$
)

Finding a Minimum

• The minima of a one dimensional function, f(x), are given by f'(x) = 0

• The minima of an n-dimensions function $f(\boldsymbol{x})$ are given by the set of equations

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i} = 0 \quad \forall i = 1, \dots n$$

Finding a Minimum

• The minima of a one dimensional function, f(x), are given by f'(x) = 0

ullet The minima of an n-dimensions function $f(oldsymbol{x})$ are given by the set of equations

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i} = 0 \quad \forall i = 1, \dots n$$

Gradients

ullet The **grad** operator $oldsymbol{
abla}$ is the gradient operator in high dimensions

$$oldsymbol{
abla} f(oldsymbol{x}) = egin{pmatrix} rac{\partial f(oldsymbol{x})}{\partial x_1} \ rac{\partial f(oldsymbol{x})}{\partial x_2} \ rac{dots}{\partial x_n} \end{pmatrix}$$

The partial derivatives (curly d's)

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i}$$

means differentiate with respect to x_i treating all other components x_j as constants

Gradients

ullet The **grad** operator $oldsymbol{
abla}$ is the gradient operator in high dimensions

$$oldsymbol{
abla} f(oldsymbol{x}) = egin{pmatrix} rac{\partial f(oldsymbol{x})}{\partial x_1} \ rac{\partial f(oldsymbol{x})}{\partial x_2} \ dots \ rac{\partial f(oldsymbol{x})}{\partial x_n} \end{pmatrix}$$

The partial derivatives (curly d's)

$$rac{\partial f(m{x})}{\partial x_i}$$

means differentiate with respect to x_i treating all other components x_j as constants

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X}
ight)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $X^+ = (X^TX)^{-1}X^T$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{w} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X}
ight)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $X^+ = (X^TX)^{-1}X^T$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X}
ight)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla \left(\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y}\right)$$

$$= 2\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}\right) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X}
ight)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X}
ight)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla \left(\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\,\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y}\right)$$

$$= 2\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\,\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}\right) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $X^+ = (X^TX)^{-1}X^T$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla \left(\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\,\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y}\right)$$

$$= 2\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\,\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}\right) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus X$$

The least squared solution is give by

$$\nabla E(\boldsymbol{w}|\mathcal{D}) = \nabla \|\boldsymbol{\epsilon}\|^2 = \nabla \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|^2$$

$$= \nabla (\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - 2\boldsymbol{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}}\boldsymbol{y})$$

$$= 2(\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{w} - \mathbf{X}^{\mathsf{T}}\boldsymbol{y}) = 0$$

$$oldsymbol{w} = \left(\mathbf{X}^\mathsf{T} \mathbf{X}
ight)^{-1} \mathbf{X}^\mathsf{T} oldsymbol{y} = \mathbf{X}^+ oldsymbol{y}$$

- $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$ is known as the pseudo inverse
- For non-square matrices Matlab uses the pseudo inverse so in Matlab we can write

$$W = X \setminus Y$$

Outline

- 1. Mappings
- 2. Linear Maps
- 3. Eigenvectors

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained

- Gauss showed us how to solve over-constrained problems (we have more observations than parameters)
- We seek a solution which isn't necessarily exact but minimises an error
- But, what if we have more parameters than observations
- That is, we are under-constrained
- Note that in some directions you might be over-constrained and in other directions under-constrained
- This is very typical of most machine learning problems

 If we have less data-points than parameters then there will be multiple solutions

What is the Inverse?

Many points can map to the same points

What is the Inverse?

Many points can map to the same points

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(m{w} = (m{X}^{\mathsf{T}}m{X})^{-1}m{X}^{\mathsf{T}}m{y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(m{w} = (m{X}^{\mathsf{T}}m{X})^{-1}m{X}^{\mathsf{T}}m{y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- Solving the inverse problem $({m w} = ({m X}^{\mathsf T}{m X})^{-1}{m X}^{\mathsf T}{m y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- ullet Solving the inverse problem $(m{w} = (m{X}^{\mathsf{T}}m{X})^{-1}m{X}^{\mathsf{T}}m{y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- Solving the inverse problem $({m w} = ({m X}^{\mathsf T}{m X})^{-1}{m X}^{\mathsf T}{m y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- The system is under-constrained
- We have more unknowns than equations
- The inverse is not unique
- Solving the inverse problem $({m w} = ({m X}^{\mathsf T}{m X})^{-1}{m X}^{\mathsf T}{m y})$ is said to be ill-posed
- The inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ doesn't exist
- If we have a complicated learning machine and not sufficient data we often end with an ill-posed inverse problem (there are lots of sets of parameters that explain the data)

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

- Singular matrices are rare (although they occur when we don't have enough data), but matrices that are close to being singular are common
- If a matrix is close to singular it is ill-conditioned
- Ill-conditioned matrices have some small eigenvalues
- All points get contracted towards a plane
- Large matrices are very often ill conditioned

III-Conditioned Matrices

- Ill-conditioning in machine learning occurs when a very small change in the learning data causes a large change in the predictions of the learning machine
- In linear regression the matrix $\mathbf{X}^T\mathbf{X}$ is ill-conditioned when we have as many data points as parameters
- Much of machine learning is concerned with making learning machines better conditioned
- Adding regularisers is one approach to achieve this

- Ill-conditioning in machine learning occurs when a very small change in the learning data causes a large change in the predictions of the learning machine
- In linear regression the matrix $\mathbf{X}^T\mathbf{X}$ is ill-conditioned when we have as many data points as parameters
- Much of machine learning is concerned with making learning machines better conditioned
- Adding regularisers is one approach to achieve this

- Ill-conditioning in machine learning occurs when a very small change in the learning data causes a large change in the predictions of the learning machine
- In linear regression the matrix $\mathbf{X}^T\mathbf{X}$ is ill-conditioned when we have as many data points as parameters
- Much of machine learning is concerned with making learning machines better conditioned
- Adding regularisers is one approach to achieve this

- Ill-conditioning in machine learning occurs when a very small change in the learning data causes a large change in the predictions of the learning machine
- In linear regression the matrix $\mathbf{X}^T\mathbf{X}$ is ill-conditioned when we have as many data points as parameters
- Much of machine learning is concerned with making learning machines better conditioned
- Adding regularisers is one approach to achieve this

Outline

- 1. Mappings
- 2. Linear Maps
- 3. Eigenvectors

- Eigen-systems help us to understand mappings
- ullet A vector $oldsymbol{v}$ is said to be an **eigenvector** if

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$

- M is square (i.e. $n \times n$)
- Where the number λ is the **eigenvalue**
- Eigenvalues play a fundamental role in understanding operators

- Eigen-systems help us to understand mappings
- ullet A vector $oldsymbol{v}$ is said to be an **eigenvector** if

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$

- M is square (i.e. $n \times n$)
- Where the number λ is the **eigenvalue**
- Eigenvalues play a fundamental role in understanding operators

- Eigen-systems help us to understand mappings
- ullet A vector $oldsymbol{v}$ is said to be an **eigenvector** if

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$

- M is square (i.e. $n \times n$)
- Where the number λ is the **eigenvalue**
- Eigenvalues play a fundamental role in understanding operators

- Eigen-systems help us to understand mappings
- ullet A vector $oldsymbol{v}$ is said to be an **eigenvector** if

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$

- M is square (i.e. $n \times n$)
- Where the number λ is the **eigenvalue**
- Eigenvalues play a fundamental role in understanding operators

- Eigen-systems help us to understand mappings
- ullet A vector $oldsymbol{v}$ is said to be an **eigenvector** if

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$

- M is square (i.e. $n \times n$)
- Where the number λ is the **eigenvalue**
- Eigenvalues play a fundamental role in understanding operators

- Eigen-systems help us to understand mappings
- ullet A vector $oldsymbol{v}$ is said to be an **eigenvector** if

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$

- M is square (i.e. $n \times n$)
- Where the number λ is the **eigenvalue**
- Eigenvalues play a fundamental role in understanding operators

- Eigen-systems help us to understand mappings
- ullet A vector $oldsymbol{v}$ is said to be an **eigenvector** if

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$

- M is square (i.e. $n \times n$)
- Where the number λ is the **eigenvalue**
- Eigenvalues play a fundamental role in understanding operators

- Eigen-systems help us to understand mappings
- ullet A vector $oldsymbol{v}$ is said to be an **eigenvector** if

$$\mathbf{M}\mathbf{v} = \lambda \mathbf{v}$$

- M is square (i.e. $n \times n$)
- Where the number λ is the **eigenvalue**
- Eigenvalues play a fundamental role in understanding operators

Symmetric Matrices

- If M is an $n \times n$ symmetric matrix then it has n real orthogonal eigenvectors with real eigenvalues
- We denote the i^{th} eigenvector by $m{v}_i$ and the corresponding eigenvalue by λ_i so that

$$\mathbf{M} \mathbf{v}_i = \lambda_i \, \mathbf{v}_i$$

• Orthogonal means that if $i \neq j$ then

$$\boldsymbol{v}_i^\mathsf{T} \boldsymbol{v}_j = 0$$

(We can always normalise eigenvectors if we want)

Symmetric Matrices

- If M is an $n \times n$ symmetric matrix then it has n real orthogonal eigenvectors with real eigenvalues
- ullet We denote the i^{th} eigenvector by $oldsymbol{v}_i$ and the corresponding eigenvalue by λ_i so that

$$\mathbf{M} \mathbf{v}_i = \lambda_i \, \mathbf{v}_i$$

• Orthogonal means that if $i \neq j$ then

$$\boldsymbol{v}_i^\mathsf{T} \boldsymbol{v}_j = 0$$

• (We can always normalise eigenvectors if we want)

Symmetric Matrices

- If M is an $n \times n$ symmetric matrix then it has n real orthogonal eigenvectors with real eigenvalues
- We denote the i^{th} eigenvector by $m{v}_i$ and the corresponding eigenvalue by λ_i so that

$$\mathbf{M} oldsymbol{v}_i = \lambda_i \, oldsymbol{v}_i$$

ullet Orthogonal means that if $i \neq j$ then

$$\boldsymbol{v}_i^\mathsf{T} \boldsymbol{v}_j = 0$$

• (We can always normalise eigenvectors if we want)

Symmetric Matrices

- If M is an $n \times n$ symmetric matrix then it has n real orthogonal eigenvectors with real eigenvalues
- We denote the i^{th} eigenvector by $m{v}_i$ and the corresponding eigenvalue by λ_i so that

$$\mathbf{M} \mathbf{v}_i = \lambda_i \, \mathbf{v}_i$$

• Orthogonal means that if $i \neq j$ then

$$\boldsymbol{v}_i^\mathsf{T} \boldsymbol{v}_j = 0$$

• (We can always normalise eigenvectors if we want)

- ullet $\left(\mathbf{M} oldsymbol{v}_i = \lambda_i oldsymbol{v}_i
 ight)^\mathsf{T}$ implies $oldsymbol{v}_i^\mathsf{T} \mathbf{M}^\mathsf{T} = \lambda_i oldsymbol{v}_i^\mathsf{T}$
- ullet When $m{M}$ is symmetric then $m{M}m{v}_i=\lambda_im{v}_i^{\mathsf{T}}m{M}=\lambda_im{v}_i^{\mathsf{T}}$
- ullet Consider two eigenvectors $oldsymbol{v}_i$ and $oldsymbol{v}_j$ of $oldsymbol{M}$

$$egin{aligned} oldsymbol{v}_i^\mathsf{T} \mathbf{M} oldsymbol{v}_j &= (oldsymbol{v}_i^\mathsf{T} \mathbf{M}) oldsymbol{v}_j &= \lambda_i oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \ &= oldsymbol{v}_i^\mathsf{T} (\mathbf{M} oldsymbol{v}_j) &= \lambda_j oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \end{aligned}$$

- So either $\lambda_i = \lambda_j$ or $\boldsymbol{v}_i^\mathsf{T} \boldsymbol{v}_j = 0$
- If $\lambda_i = \lambda_j$ then any vector in the plane spanned by ${m v}_i$ and ${m v}_j$ are eigenvectors and we can always choose two orthogonal vectors in the plane

- ullet $ig(\mathbf{M} oldsymbol{v}_i = \lambda_i oldsymbol{v}_i^{\mathsf{T}} oldsymbol{M}^{\mathsf{T}} = \lambda_i oldsymbol{v}_i^{\mathsf{T}}$ implies $oldsymbol{v}_i^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} = \lambda_i oldsymbol{v}_i^{\mathsf{T}}$
- ullet When $oldsymbol{M}$ is symmetric then $oldsymbol{M}oldsymbol{v}_i=\lambda_ioldsymbol{v}_i^{\mathsf{T}}oldsymbol{M}=\lambda_ioldsymbol{v}_i^{\mathsf{T}}$
- ullet Consider two eigenvectors $oldsymbol{v}_i$ and $oldsymbol{v}_j$ of $oldsymbol{M}$

$$egin{aligned} oldsymbol{v}_i^\mathsf{T} \mathbf{M} oldsymbol{v}_j &= (oldsymbol{v}_i^\mathsf{T} \mathbf{M}) oldsymbol{v}_j &= \lambda_i oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \ &= oldsymbol{v}_i^\mathsf{T} (\mathbf{M} oldsymbol{v}_j) &= \lambda_j oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \end{aligned}$$

- So either $\lambda_i = \lambda_j$ or $\boldsymbol{v}_i^\mathsf{T} \boldsymbol{v}_j = 0$
- If $\lambda_i = \lambda_j$ then any vector in the plane spanned by v_i and v_j are eigenvectors and we can always choose two orthogonal vectors in the plane

- ullet $ig(\mathbf{M} oldsymbol{v}_i = \lambda_i oldsymbol{v}_i^{\mathsf{T}} oldsymbol{M}^{\mathsf{T}} = \lambda_i oldsymbol{v}_i^{\mathsf{T}}$ implies $oldsymbol{v}_i^{\mathsf{T}} \mathbf{M}^{\mathsf{T}} = \lambda_i oldsymbol{v}_i^{\mathsf{T}}$
- ullet When $m{M}$ is symmetric then $m{M}m{v}_i=\lambda_im{v}_i^{\mathsf{T}}m{M}=\lambda_im{v}_i^{\mathsf{T}}$
- ullet Consider two eigenvectors $oldsymbol{v}_i$ and $oldsymbol{v}_j$ of $oldsymbol{M}$

$$egin{aligned} oldsymbol{v}_i^\mathsf{T} \mathbf{M} oldsymbol{v}_j &= (oldsymbol{v}_i^\mathsf{T} \mathbf{M}) oldsymbol{v}_j &= \lambda_i oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \ &= oldsymbol{v}_i^\mathsf{T} (\mathbf{M} oldsymbol{v}_j) &= \lambda_j oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \end{aligned}$$

- So either $\lambda_i = \lambda_j$ or $\boldsymbol{v}_i^\mathsf{T} \boldsymbol{v}_j = 0$
- If $\lambda_i = \lambda_j$ then any vector in the plane spanned by v_i and v_j are eigenvectors and we can always choose two orthogonal vectors in the plane

- ullet $ig(\mathbf{M} oldsymbol{v}_i = \lambda_i oldsymbol{v}_i ig)^\mathsf{T}$ implies $oldsymbol{v}_i^\mathsf{T} \mathbf{M}^\mathsf{T} = \lambda_i oldsymbol{v}_i^\mathsf{T}$
- ullet When $m{M}$ is symmetric then $m{M}m{v}_i=\lambda_im{v}_i^{\mathsf{T}}m{M}=\lambda_im{v}_i^{\mathsf{T}}$
- ullet Consider two eigenvectors $oldsymbol{v}_i$ and $oldsymbol{v}_j$ of $oldsymbol{M}$

$$egin{aligned} oldsymbol{v}_i^\mathsf{T} \mathbf{M} oldsymbol{v}_j &= (oldsymbol{v}_i^\mathsf{T} \mathbf{M}) oldsymbol{v}_j &= \lambda_i oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \ &= oldsymbol{v}_i^\mathsf{T} (\mathbf{M} oldsymbol{v}_j) &= \lambda_j oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \end{aligned}$$

- So either $\lambda_i = \lambda_j$ or $\boldsymbol{v}_i^\mathsf{T} \boldsymbol{v}_j = 0$
- If $\lambda_i = \lambda_j$ then any vector in the plane spanned by v_i and v_j are eigenvectors and we can always choose two orthogonal vectors in the plane

- ullet $ig(\mathbf{M} oldsymbol{v}_i = \lambda_i oldsymbol{v}_i ig)^\mathsf{T}$ implies $oldsymbol{v}_i^\mathsf{T} \mathbf{M}^\mathsf{T} = \lambda_i oldsymbol{v}_i^\mathsf{T}$
- ullet When $m{M}$ is symmetric then $m{M}m{v}_i=\lambda_im{v}_i^{\mathsf{T}}m{M}=\lambda_im{v}_i^{\mathsf{T}}$
- ullet Consider two eigenvectors $oldsymbol{v}_i$ and $oldsymbol{v}_j$ of $oldsymbol{M}$

$$egin{aligned} oldsymbol{v}_i^\mathsf{T} \mathbf{M} oldsymbol{v}_j &= (oldsymbol{v}_i^\mathsf{T} \mathbf{M}) oldsymbol{v}_j &= \lambda_i oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \ &= oldsymbol{v}_i^\mathsf{T} (\mathbf{M} oldsymbol{v}_j) &= \lambda_j oldsymbol{v}_i^\mathsf{T} oldsymbol{v}_j \end{aligned}$$

- So either $\lambda_i = \lambda_j$ or $\boldsymbol{v}_i^\mathsf{T} \boldsymbol{v}_j = 0$
- If $\lambda_i = \lambda_j$ then any vector in the plane spanned by v_i and v_j are eigenvectors and we can always choose two orthogonal vectors in the plane

$$\mathbf{V} = (\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n)$$

- Matrix V is an $n \times n$ matrix
- ullet Because of the orthogonality of the vectors $oldsymbol{v}_i$

$$\mathbf{V}^{\mathsf{T}}\mathbf{V} = \begin{pmatrix} \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{n} \\ \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{I}$$

$$\mathbf{V} = (\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n)$$

- Matrix V is an $n \times n$ matrix
- ullet Because of the orthogonality of the vectors $oldsymbol{v}_i$

$$\mathbf{V}^{\mathsf{T}}\mathbf{V} = \begin{pmatrix} \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{n} \\ \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{I}$$

$$\mathbf{V} = (\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n)$$

- Matrix V is an $n \times n$ matrix
- ullet Because of the orthogonality of the vectors $oldsymbol{v}_i$

$$\mathbf{V}^{\mathsf{T}}\mathbf{V} = \begin{pmatrix} \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{n} \\ \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{I}$$

$$\mathbf{V} = (\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n)$$

- Matrix V is an $n \times n$ matrix
- ullet Because of the orthogonality of the vectors $oldsymbol{v}_i$

$$\mathbf{V}^{\mathsf{T}}\mathbf{V} = \begin{pmatrix} \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{n} \\ \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{I}$$

$$\mathbf{V} = (\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n)$$

- Matrix V is an $n \times n$ matrix
- ullet Because of the orthogonality of the vectors $oldsymbol{v}_i$

$$\mathbf{V}^{\mathsf{T}}\mathbf{V} = egin{pmatrix} oldsymbol{v}_1^{\mathsf{T}}oldsymbol{v}_1 & oldsymbol{v}_1^{\mathsf{T}}oldsymbol{v}_2 & \cdots & oldsymbol{v}_1^{\mathsf{T}}oldsymbol{v}_n \ oldsymbol{v}_1^{\mathsf{T}}oldsymbol{v}_1 & oldsymbol{v}_2^{\mathsf{T}}oldsymbol{v}_2 & \cdots & oldsymbol{v}_1^{\mathsf{T}}oldsymbol{v}_n \ oldsymbol{v}_1^{\mathsf{T}}oldsymbol{v}_1 & oldsymbol{v}_n^{\mathsf{T}}oldsymbol{v}_2 & \cdots & oldsymbol{v}_n^{\mathsf{T}}oldsymbol{v}_n \ \end{pmatrix} = egin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{I}$$

$$\mathbf{V} = (\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n)$$

- Matrix V is an $n \times n$ matrix
- ullet Because of the orthogonality of the vectors $oldsymbol{v}_i$

$$\mathbf{V}^{\mathsf{T}}\mathbf{V} = \begin{pmatrix} \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{1}^{\mathsf{T}}\mathbf{v}_{n} \\ \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{2}^{\mathsf{T}}\mathbf{v}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{1} & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{2} & \cdots & \mathbf{v}_{n}^{\mathsf{T}}\mathbf{v}_{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \mathbf{I}$$

- ullet We have shown that ${f V}^{\sf T} \, {f V} = {f I}$
- ullet Thus multiply both sides on the left by V

$$\mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{V}$$

- ullet ${f V}$ will have an inverse, ${f V}^{-1}$, such that ${f V}{f V}^{-1}={f I}$
- ullet Multiplying the equation on the right by ${f V}^{-1}$

$$(\mathbf{V}\mathbf{V}^{\mathsf{T}})\mathbf{V}\mathbf{V}^{-1} = \mathbf{V}\mathbf{V}^{-1}$$

- ullet We have shown that ${f V}^{\sf T} \, {f V} = {f I}$
- ullet Thus multiply both sides on the left by ${f V}$

$$\mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{V}$$

- ullet ${f V}$ will have an inverse, ${f V}^{-1}$, such that ${f V}{f V}^{-1}={f I}$
- ullet Multiplying the equation on the right by ${f V}^{-1}$

$$(\mathbf{V}\mathbf{V}^{\mathsf{T}})\mathbf{V}\mathbf{V}^{-1} = \mathbf{V}\mathbf{V}^{-1}$$

- ullet We have shown that ${f V}^{\sf T} \, {f V} = {f I}$
- ullet Thus multiply both sides on the left by V

$$\mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{V}$$

- ullet V will have an inverse, ${f V}^{-1}$, such that ${f V}{f V}^{-1}={f I}$
- ullet Multiplying the equation on the right by ${f V}^{-1}$

$$(\mathbf{V}\mathbf{V}^{\mathsf{T}})\mathbf{V}\mathbf{V}^{-1} = \mathbf{V}\mathbf{V}^{-1}$$

- ullet We have shown that ${f V}^{\sf T} \, {f V} = {f I}$
- ullet Thus multiply both sides on the left by ${f V}$

$$\mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{V}$$

- ullet ${f V}$ will have an inverse, ${f V}^{-1}$, such that ${f V}{f V}^{-1}={f I}$
- ullet Multiplying the equation on the right by ${f V}^{-1}$

$$(VV^{T})VV^{-1} = VV^{-1}$$

- ullet We have shown that ${f V}^{\sf T} \, {f V} = {f I}$
- ullet Thus multiply both sides on the left by V

$$\mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{V}$$

- ullet ${f V}$ will have an inverse, ${f V}^{-1}$, such that ${f V}{f V}^{-1}={f I}$
- ullet Multiplying the equation on the right by ${f V}^{-1}$

$$(\mathbf{V}\mathbf{V}^{\mathsf{T}})\mathbf{V}\mathbf{V}^{-1} = \mathbf{V}\mathbf{V}^{-1}$$

 $\mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{I}$

- ullet We have shown that ${f V}^{\sf T}\,{f V}={f I}$
- ullet Thus multiply both sides on the left by V

$$\mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{V}$$

- ullet ${f V}$ will have an inverse, ${f V}^{-1}$, such that ${f V}{f V}^{-1}={f I}$
- ullet Multiplying the equation on the right by ${f V}^{-1}$

$$(\mathbf{V}\mathbf{V}^{\mathsf{T}})\mathbf{V}\mathbf{V}^{-1} = \mathbf{V}\mathbf{V}^{-1}$$

 $\mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{I}$

• Note that, $V^{-1} = V^{T}$ (definition of orthogonal matrix)

ullet A matrix, $oldsymbol{M}$, will be singular (uninvertible) if there exists a vector $oldsymbol{x}~(
eq oldsymbol{0})$ such that

$$\mathbf{M} x = \mathbf{0}$$

ullet Now if there exists such a vector such that ${f V}x={f 0}$ then multiply by ${f V}^{\sf T}$ we get

$$\mathbf{V}^\mathsf{T}\,\mathbf{V}\,x=\mathbf{V}^\mathsf{T}\,\mathbf{0}$$

ullet A matrix, $oldsymbol{M}$, will be singular (uninvertible) if there exists a vector $oldsymbol{x}~(
eq oldsymbol{0})$ such that

$$\mathbf{M} x = \mathbf{0}$$

ullet Now if there exists such a vector such that ${f V}x={f 0}$ then multiply by ${f V}^{\sf T}$ we get

$$\mathbf{V}^\mathsf{T} \mathbf{V} x = \mathbf{V}^\mathsf{T} \mathbf{0}$$

ullet A matrix, $oldsymbol{M}$, will be singular (uninvertible) if there exists a vector $oldsymbol{x}~(
eq oldsymbol{0})$ such that

$$\mathbf{M} x = \mathbf{0}$$

ullet Now if there exists such a vector such that ${f V}x={f 0}$ then multiply by ${f V}^{\sf T}$ we get

$$\mathbf{V}^\mathsf{T}\,\mathbf{V}\,oldsymbol{x} = \mathbf{V}^\mathsf{T}\,\mathbf{0}$$
 $oldsymbol{x} = \mathbf{0}$

since
$$V^T V = I$$

ullet A matrix, $oldsymbol{M}$, will be singular (uninvertible) if there exists a vector $oldsymbol{x}~(
eq oldsymbol{0})$ such that

$$\mathbf{M} x = \mathbf{0}$$

ullet Now if there exists such a vector such that ${f V}x={f 0}$ then multiply by ${f V}^{\sf T}$ we get

$$\mathbf{V}^\mathsf{T}\,\mathbf{V}\,oldsymbol{x} = \mathbf{V}^\mathsf{T}\,oldsymbol{0}$$
 $oldsymbol{x} = oldsymbol{0}$

since
$$V^T V = I$$

ullet Thus $oldsymbol{V}$ is invertible

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|oldsymbol{x}'\|_2^2 = oldsymbol{x}'^\mathsf{T}oldsymbol{x}' = (\mathbf{V}oldsymbol{x})^\mathsf{T}(\mathbf{V}oldsymbol{x}) = oldsymbol{x}^\mathsf{T}\mathbf{V}^\mathsf{T}\mathbf{V}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = \|oldsymbol{x}\|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = oldsymbol{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|oldsymbol{x}'\|_2^2 = oldsymbol{x}'^\mathsf{T}oldsymbol{x}' = (\mathbf{V}oldsymbol{x})^\mathsf{T}(\mathbf{V}oldsymbol{x}) = oldsymbol{x}^\mathsf{T}\mathbf{V}^\mathsf{T}\mathbf{V}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = \|oldsymbol{x}\|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\| \boldsymbol{x}' \|_2^2 = \boldsymbol{x}'^\mathsf{T} \boldsymbol{x}' = (\mathbf{V} \boldsymbol{x})^\mathsf{T} (\mathbf{V} \boldsymbol{x}) = \boldsymbol{x}^\mathsf{T} \mathbf{V}^\mathsf{T} \mathbf{V} \boldsymbol{x} = \boldsymbol{x}^\mathsf{T} \boldsymbol{x} = \| \boldsymbol{x} \|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|oldsymbol{x}'\|_2^2 = oldsymbol{x}'^\mathsf{T}oldsymbol{x}' = (oldsymbol{\mathsf{V}}oldsymbol{x})^\mathsf{T}(oldsymbol{\mathsf{V}}oldsymbol{x}) = oldsymbol{x}^\mathsf{T}oldsymbol{\mathsf{V}}^\mathsf{T}oldsymbol{\mathsf{V}}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = \|oldsymbol{x}\|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|\boldsymbol{x}'\|_2^2 = \boldsymbol{x}'^\mathsf{T} \boldsymbol{x}' = (\mathbf{V} \boldsymbol{x})^\mathsf{T} (\mathbf{V} \boldsymbol{x}) = \boldsymbol{x}^\mathsf{T} \mathbf{V}^\mathsf{T} \mathbf{V} \boldsymbol{x} = \boldsymbol{x}^\mathsf{T} \boldsymbol{x} = \|\boldsymbol{x}\|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|\boldsymbol{x}'\|_2^2 = \boldsymbol{x}'^\mathsf{T} \boldsymbol{x}' = (\mathbf{V} \boldsymbol{x})^\mathsf{T} (\mathbf{V} \boldsymbol{x}) = \boldsymbol{x}^\mathsf{T} \mathbf{V}^\mathsf{T} \mathbf{V} \boldsymbol{x} = \boldsymbol{x}^\mathsf{T} \boldsymbol{x} = \|\boldsymbol{x}\|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\| \boldsymbol{x}' \|_2^2 = \boldsymbol{x}'^\mathsf{T} \boldsymbol{x}' = (\mathbf{V} \boldsymbol{x})^\mathsf{T} (\mathbf{V} \boldsymbol{x}) = \boldsymbol{x}^\mathsf{T} \mathbf{V}^\mathsf{T} \mathbf{V} \boldsymbol{x} = \boldsymbol{x}^\mathsf{T} \boldsymbol{x} = \| \boldsymbol{x} \|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|oldsymbol{x}'\|_2^2 = oldsymbol{x}'^\mathsf{T}oldsymbol{x}' = (\mathbf{V}oldsymbol{x})^\mathsf{T}(\mathbf{V}oldsymbol{x}) = oldsymbol{x}^\mathsf{T}oldsymbol{V}^\mathsf{T}oldsymbol{V}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{T} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = old$$

ullet Similarly if additionally $oldsymbol{y}' = oldsymbol{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|oldsymbol{x}'\|_2^2 = oldsymbol{x}'^\mathsf{T}oldsymbol{x}' = (\mathbf{V}oldsymbol{x})^\mathsf{T}(\mathbf{V}oldsymbol{x}) = oldsymbol{x}^\mathsf{T}\mathbf{V}^\mathsf{T}\mathbf{V}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = \|oldsymbol{x}\|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{\mathsf{V}} oldsymbol{x}$, now

$$\|oldsymbol{x}'\|_2^2 = oldsymbol{x}'^\mathsf{T}oldsymbol{x}' = (\mathbf{V}oldsymbol{x})^\mathsf{T}(\mathbf{V}oldsymbol{x}) = oldsymbol{x}^\mathsf{T}\mathbf{V}^\mathsf{T}\mathbf{V}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = \|oldsymbol{x}\|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|oldsymbol{x}'\|_2^2 = oldsymbol{x}'^\mathsf{T}oldsymbol{x}' = (\mathbf{V}oldsymbol{x})^\mathsf{T}(\mathbf{V}oldsymbol{x}) = oldsymbol{x}^\mathsf{T}\mathbf{V}^\mathsf{T}\mathbf{V}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = \|oldsymbol{x}\|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|oldsymbol{x}'\|_2^2 = oldsymbol{x}'^\mathsf{T}oldsymbol{x}' = (\mathbf{V}oldsymbol{x})^\mathsf{T}(\mathbf{V}oldsymbol{x}) = oldsymbol{x}^\mathsf{T}oldsymbol{V}^\mathsf{T}oldsymbol{V}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{T} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = old$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle oldsymbol{x}', oldsymbol{y}'
angle = (oldsymbol{V} oldsymbol{x})^{\mathsf{T}} (oldsymbol{V} oldsymbol{y}) = oldsymbol{x}^{\mathsf{T}} oldsymbol{V}^{\mathsf{T}} oldsymbol{V} oldsymbol{y} = oldsymbol{x}^{\mathsf{T}} oldsymbol{y} = oldsymbol{$$

Rotations

- ullet Orthogonal matrices satisfy $\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{V}\,\mathbf{V}^\mathsf{T} = \mathbf{I}$
- As a consequent they define rotations (and possibly a reflection)
- ullet Consider a vector $oldsymbol{x}$ and $oldsymbol{x}' = oldsymbol{V} oldsymbol{x}$, now

$$\|oldsymbol{x}'\|_2^2 = oldsymbol{x}'^\mathsf{T}oldsymbol{x}' = (\mathbf{V}oldsymbol{x})^\mathsf{T}(\mathbf{V}oldsymbol{x}) = oldsymbol{x}^\mathsf{T}\mathbf{V}^\mathsf{T}\mathbf{V}oldsymbol{x} = oldsymbol{x}^\mathsf{T}oldsymbol{x} = \|oldsymbol{x}\|_2^2$$

ullet Similarly if additionally $oldsymbol{y}' = \mathbf{V} oldsymbol{y}$ then

$$\langle \boldsymbol{x}', \boldsymbol{y}' \rangle = (\mathbf{V}\boldsymbol{x})^{\mathsf{T}}(\mathbf{V}\boldsymbol{y}) = \boldsymbol{x}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{y} = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{y} = \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \|\boldsymbol{x}\|_{2} \|\boldsymbol{y}\|_{2} \cos(\theta)$$

Rotations and reflections preserve lengths and angles

ullet Taking the matrix of eigenvectors, $oldsymbol{V}$, then

$$\mathbf{M} \mathbf{V} = \mathbf{M}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = (\lambda_1 \mathbf{v}_1, \lambda_2 \mathbf{v}_2, \dots, \lambda_n \mathbf{v}_n) = \mathbf{V} \mathbf{\Lambda}$$

• where
$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Now

$$\mathbf{M} = \mathbf{M} \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$$

• Very important $similarity \ transform$

ullet Taking the matrix of eigenvectors, $oldsymbol{V}$, then

$$\mathbf{M} \mathbf{V} = \mathbf{M}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = (\lambda_1 \mathbf{v}_1, \lambda_2 \mathbf{v}_2, \dots, \lambda_n \mathbf{v}_n) = \mathbf{V} \mathbf{\Lambda}$$

• where
$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Now

$$\mathbf{M} = \mathbf{M} \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$$

Very important similarity transform

ullet Taking the matrix of eigenvectors, $oldsymbol{V}$, then

$$\mathbf{M} \mathbf{V} = \mathbf{M}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = (\lambda_1 \mathbf{v}_1, \lambda_2 \mathbf{v}_2, \dots, \lambda_n \mathbf{v}_n) = \mathbf{V} \mathbf{\Lambda}$$

• where
$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Now

$$\mathbf{M} = \mathbf{M} \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$$

Very important similarity transform

ullet Taking the matrix of eigenvectors, $oldsymbol{V}$, then

$$\mathbf{M} \mathbf{V} = \mathbf{M}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = (\lambda_1 \mathbf{v}_1, \lambda_2 \mathbf{v}_2, \dots, \lambda_n \mathbf{v}_n) = \mathbf{V} \mathbf{\Lambda}$$

• where
$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Now

$$\mathbf{M} = \mathbf{M} \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$$

Very important similarity transform

ullet Taking the matrix of eigenvectors, $oldsymbol{V}$, then

$$\mathbf{M} \mathbf{V} = \mathbf{M}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = (\lambda_1 \mathbf{v}_1, \lambda_2 \mathbf{v}_2, \dots, \lambda_n \mathbf{v}_n) = \mathbf{V} \mathbf{\Lambda}$$

• where
$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Now

$$\mathbf{M} = \mathbf{M} \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$$

• Very important $similarity \ transform$

ullet Taking the matrix of eigenvectors, $oldsymbol{V}$, then

$$\mathbf{M} \mathbf{V} = \mathbf{M}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = (\lambda_1 \mathbf{v}_1, \lambda_2 \mathbf{v}_2, \dots, \lambda_n \mathbf{v}_n) = \mathbf{V} \mathbf{\Lambda}$$

• where
$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Now

$$\mathbf{M} = \mathbf{M} \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$$

• Very important $similarity \ transform$

$$\mathbf{M} = \begin{pmatrix} 0.83 & -0.31 \\ -0.31 & 1.9 \end{pmatrix} = \mathbf{VSV^{\mathsf{T}}} = \begin{pmatrix} \cos(-75) & \sin(-75) \\ -\sin(-75) & \cos(-75) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 0.83 & -0.31 \\ -0.31 & 1.9 \end{pmatrix} = \mathbf{VSV^{\mathsf{T}}} = \begin{pmatrix} \cos(-75) & \sin(-75) \\ -\sin(-75) & \cos(-75) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 0.83 & -0.31 \\ -0.31 & 1.9 \end{pmatrix} = \mathbf{VSV^{\mathsf{T}}} = \begin{pmatrix} \cos(-75) & \sin(-75) \\ -\sin(-75) & \cos(-75) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 0.83 & -0.31 \\ -0.31 & 1.9 \end{pmatrix} = \mathbf{VSV^{\mathsf{T}}} = \begin{pmatrix} \cos(-75) & \sin(-75) \\ -\sin(-75) & \cos(-75) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 0.83 & -0.31 \\ -0.31 & 1.9 \end{pmatrix} = \mathbf{VSV}^{\mathsf{T}} = \begin{pmatrix} \cos(-75) & \sin(-75) \\ -\sin(-75) & \cos(-75) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 0.83 & -0.31 \\ -0.31 & 1.9 \end{pmatrix} = \mathbf{VSV^{\mathsf{T}}} = \begin{pmatrix} \cos(-75) & \sin(-75) \\ -\sin(-75) & \cos(-75) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 0.83 & -0.31 \\ -0.31 & 1.9 \end{pmatrix} = \mathbf{VSV}^{\mathsf{T}} = \begin{pmatrix} \cos(-75) & \sin(-75) \\ -\sin(-75) & \cos(-75) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 0.83 & -0.31 \\ -0.31 & 1.9 \end{pmatrix} = \mathbf{VSV}^{\mathsf{T}} = \begin{pmatrix} \cos(-75) & \sin(-75) \\ -\sin(-75) & \cos(-75) \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.75 \end{pmatrix} \begin{pmatrix} \cos(75) & \sin(75) \\ -\sin(75) & \cos(75) \end{pmatrix}$$

For any square matrix

$$\mathbf{M} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}} \qquad \mathbf{M}^{-1} = \mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}$$

• Where
$$\Lambda^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}) = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}$$

Since

$$\mathbf{M} \mathbf{M}^{-1} = (\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}) (\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}) = \mathbf{V} \boldsymbol{\Lambda} (\mathbf{V}^{\mathsf{T}} \mathbf{V}) \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}})$$
$$= \mathbf{V} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}$$

For any square matrix

$$\mathbf{M} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}} \qquad \mathbf{M}^{-1} = \mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}$$

• Where
$$\Lambda^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}) = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}$$

Since

$$\mathbf{M} \mathbf{M}^{-1} = (\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}) (\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}) = \mathbf{V} \boldsymbol{\Lambda} (\mathbf{V}^{\mathsf{T}} \mathbf{V}) \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}})$$
$$= \mathbf{V} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}$$

For any square matrix

$$\mathbf{M} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}$$
 $\mathbf{M}^{-1} = \mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}$

• Where
$$\Lambda^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}) = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}$$

Since

$$\mathbf{M} \mathbf{M}^{-1} = (\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}) (\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}) = \mathbf{V} \boldsymbol{\Lambda} (\mathbf{V}^{\mathsf{T}} \mathbf{V}) \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}})$$
$$= \mathbf{V} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}$$

For any square matrix

$$\mathbf{M} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}$$
 $\mathbf{M}^{-1} = \mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}$

• Where
$$\Lambda^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}) = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}$$

Since

$$\mathbf{M} \mathbf{M}^{-1} = (\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}) (\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}) = \mathbf{V} \boldsymbol{\Lambda} (\mathbf{V}^{\mathsf{T}} \mathbf{V}) \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}})$$
$$= \mathbf{V} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}$$

For any square matrix

$$\mathbf{M} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}$$
 $\mathbf{M}^{-1} = \mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}$

• Where
$$\Lambda^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}) = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}$$

Since

$$M M^{-1} = (\mathbf{V} \Lambda \mathbf{V}^{\mathsf{T}}) (\mathbf{V} \Lambda^{-1} \mathbf{V}^{\mathsf{T}}) = \mathbf{V} \Lambda (\mathbf{V}^{\mathsf{T}} \mathbf{V}) \Lambda^{-1} \mathbf{V}^{\mathsf{T}})$$
$$= \mathbf{V} \Lambda \Lambda^{-1} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}$$

For any square matrix

$$\mathbf{M} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}$$
 $\mathbf{M}^{-1} = \mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}$

• Where
$$\Lambda^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}) = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}$$

Since

$$\mathbf{M} \mathbf{M}^{-1} = (\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}) (\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}) = \mathbf{V} \boldsymbol{\Lambda} (\mathbf{V}^{\mathsf{T}} \mathbf{V}) \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}})$$
$$= \mathbf{V} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}$$

For any square matrix

$$\mathbf{M} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^\mathsf{T}$$
 $\mathbf{M}^{-1} = \mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^\mathsf{T}$

• Where
$$\Lambda^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}) = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}$$

Since

$$\mathbf{M} \mathbf{M}^{-1} = (\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}) (\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}) = \mathbf{V} \boldsymbol{\Lambda} (\mathbf{V}^{\mathsf{T}} \mathbf{V}) \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}})$$
$$= \mathbf{V} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}$$

For any square matrix

$$\mathbf{M} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}} \qquad \mathbf{M}^{-1} = \mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}$$

• Where
$$\Lambda^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}) = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}$$

Since

$$\mathbf{M} \mathbf{M}^{-1} = (\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathsf{T}}) (\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}}) = \mathbf{V} \boldsymbol{\Lambda} (\mathbf{V}^{\mathsf{T}} \mathbf{V}) \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}})$$
$$= \mathbf{V} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}$$

$$\mathbf{M} = \begin{pmatrix} 0.80 & 0.01 & 0.25 \\ 0.01 & 0.85 & 0.48 \\ 0.25 & 0.48 & 0.5 \end{pmatrix}$$
$$= \mathbf{V} \begin{pmatrix} 0.8 & 0 & 0 \\ 0 & 1.25 & 0 \\ 0 & 0 & 0.1 \end{pmatrix} \mathbf{V}^{\mathsf{T}}$$

$$\mathbf{M} = \begin{pmatrix} 0.80 & 0.01 & 0.25 \\ 0.01 & 0.85 & 0.48 \\ 0.25 & 0.48 & 0.5 \end{pmatrix}$$
$$= \mathbf{V} \begin{pmatrix} 0.8 & 0 & 0 \\ 0 & 1.25 & 0 \\ 0 & 0 & 0.1 \end{pmatrix} \mathbf{V}^{\mathsf{T}}$$

- Taking matrix inverses can be inherently unstable
- Any small error can be amplified by taking the inverse
- The stability of the inverse depends on the ratio of smallest eigenvalue to the largest eigenvalue (i.e. the biggest possible amplification compared to the smallest)
- Note that the Hilbert-norm of a matrix is the absolute value of the largest eigenvalue
- The condition number is given by

$$\|\mathbf{M}\|_H \times \|\mathbf{M}^{-1}\|_H = \frac{|\lambda_{\mathsf{max}}|}{|\lambda_{\mathsf{min}}|}$$

- Taking matrix inverses can be inherently unstable
- Any small error can be amplified by taking the inverse
- The stability of the inverse depends on the ratio of smallest eigenvalue to the largest eigenvalue (i.e. the biggest possible amplification compared to the smallest)
- Note that the Hilbert-norm of a matrix is the absolute value of the largest eigenvalue
- The condition number is given by

$$\|\mathbf{M}\|_H \times \|\mathbf{M}^{-1}\|_H = \frac{|\lambda_{\mathsf{max}}|}{|\lambda_{\mathsf{min}}|}$$

- Taking matrix inverses can be inherently unstable
- Any small error can be amplified by taking the inverse
- The stability of the inverse depends on the ratio of smallest eigenvalue to the largest eigenvalue (i.e. the biggest possible amplification compared to the smallest)
- Note that the Hilbert-norm of a matrix is the absolute value of the largest eigenvalue
- The condition number is given by

$$\|\mathbf{M}\|_H \times \|\mathbf{M}^{-1}\|_H = \frac{|\lambda_{\mathsf{max}}|}{|\lambda_{\mathsf{min}}|}$$

- Taking matrix inverses can be inherently unstable
- Any small error can be amplified by taking the inverse
- The stability of the inverse depends on the ratio of smallest eigenvalue to the largest eigenvalue (i.e. the biggest possible amplification compared to the smallest)
- Note that the Hilbert-norm of a matrix is the absolute value of the largest eigenvalue
- The condition number is given by

$$\|\mathbf{M}\|_H \times \|\mathbf{M}^{-1}\|_H = \frac{|\lambda_{\mathsf{max}}|}{|\lambda_{\mathsf{min}}|}$$

- Taking matrix inverses can be inherently unstable
- Any small error can be amplified by taking the inverse
- The stability of the inverse depends on the ratio of smallest eigenvalue to the largest eigenvalue (i.e. the biggest possible amplification compared to the smallest)
- Note that the Hilbert-norm of a matrix is the absolute value of the largest eigenvalue
- The condition number is given by

$$\|\mathbf{M}\|_H \times \|\mathbf{M}^{-1}\|_H = \frac{|\lambda_{\mathsf{max}}|}{|\lambda_{\mathsf{min}}|}$$

- Taking matrix inverses can be inherently unstable
- Any small error can be amplified by taking the inverse
- The stability of the inverse depends on the ratio of smallest eigenvalue to the largest eigenvalue (i.e. the biggest possible amplification compared to the smallest)
- Note that the Hilbert-norm of a matrix is the absolute value of the largest eigenvalue
- The condition number is given by

$$\|\mathbf{M}\|_H \times \|\mathbf{M}^{-1}\|_H = \frac{|\lambda_{\mathsf{max}}|}{|\lambda_{\mathsf{min}}|}$$

- Linear mappings are commonly used in machine learning algorithms such as regression
- ullet We will often meet the pseudo-inverse involving inverting $\mathbf{X}^\mathsf{T} \mathbf{X}$
- They can be inherently unstable to noise in the inputs
- We can understand symmetric operators by looking at their eigenvectors
- Function spaces can similarly be understood in terms of eigenfunctions

- Linear mappings are commonly used in machine learning algorithms such as regression
- We will often meet the pseudo-inverse involving inverting X^TX
- They can be inherently unstable to noise in the inputs
- We can understand symmetric operators by looking at their eigenvectors
- Function spaces can similarly be understood in terms of eigenfunctions

- Linear mappings are commonly used in machine learning algorithms such as regression
- We will often meet the pseudo-inverse involving inverting X^TX
- They can be inherently unstable to noise in the inputs
- We can understand symmetric operators by looking at their eigenvectors
- Function spaces can similarly be understood in terms of eigenfunctions

- Linear mappings are commonly used in machine learning algorithms such as regression
- ullet We will often meet the pseudo-inverse involving inverting X^TX
- They can be inherently unstable to noise in the inputs
- We can understand symmetric operators by looking at their eigenvectors
- Function spaces can similarly be understood in terms of eigenfunctions

- Linear mappings are commonly used in machine learning algorithms such as regression
- We will often meet the pseudo-inverse involving inverting X^TX
- They can be inherently unstable to noise in the inputs
- We can understand symmetric operators by looking at their eigenvectors
- Function spaces can similarly be understood in terms of eigenfunctions