

"Made available under NASA sponsorship
in the interest of early and wide dis-
semination of Earth Resources Survey
Program information and without liability
for any use made thereof."

JSC-12941
80-10170
NASA CR-
160680

"AS-BUILT" DESIGN SPECIFICATION
FOR THE
YIELD ESTIMATION SUBSYSTEM (YES)
OPERATIONAL ROBERTSON PHENOLOGICAL
MODEL

Job Order 74-963
AD 63-1347-4963-11

(E80-10170) AS-BUILT DESIGN SPECIFICATION
FOR THE YIELD ESTIMATION SUBSYSTEM (YES)
OPERATIONAL ROBERTSON PHENOLOGICAL MODEL
(Lockheed Electronics Co.) 118 p
HC A06/MF A01

N80-28771
Unclas
CSCL 02C G3/43 00170

Prepared By
Lockheed Electronics Company, Inc.
System and Services Division
Houston, Texas
Contract NAS 9-15200
For
EARTH OBSERVATIONS DIVISION
SPACE AND LIFE SCIENCES DIRECTORATE

National Aeronautics and Space Administration
LYNDON B. JOHNSON SPACE CENTER

Houston, Texas

June 1977

LEC-10743

JSC-12941

"AS-BUILT" DESIGN SPECIFICATION
FOR THE
YIELD ESTIMATION SUBSYSTEM (YES)
OPERATIONAL ROBERTSON PHENOLOGICAL
MODEL

Job Order 74-963
AD 63-1347-4963-11

PREPARED BY

K. Williams

APPROVED BY

P.J. Krumm, Supervisor
Software Development Section

Prepared By

Lockheed Electronics Company, Inc.

For

Earth Observations Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

June 1977

CONTENTS

Section	Page
1. SCOPE	1-1
2. APPLICABLE DOCUMENTATION	2-1
3. SYSTEM DESCRIPTION	3-1
3.1 <u>HARDWARE DESCRIPTION</u>	3-2
3.2 <u>SOFTWARE DESCRIPTION</u>	3-2
3.2.1 TAPE AND DISK DATASETS AND ATTRIBUTES	3-7
3.2.2 SUBROUTINE INIT	3-10
3.2.3 SUBROUTINE SWAP	3-13
3.2.4 SUBROUTINE TERM	3-20
3.2.5 PROGRAM CLEAR	3-23
3.2.6 JCL FILE CLEAR	3-26
3.2.7 PROGRAM CAPTURE	3-27
3.2.8 JCL FILE CAPTURE	3-34
3.2.9 SUBROUTINE CVB	3-35
3.2.10 PROGRAM PRINT	3-38
3.2.11 JCL FILE LIST	3-41
3.2.12 PROGRAM EDITOR	3-42
3.2.13 JCL FILE EDIT	3-48
3.2.14 SUBROUTINE CHECK	3-49
3.2.15 SUBROUTINE REPLAC	3-59
3.2.16 PROGRAM CROPCALN	3-67
3.2.17 JCL FILE SUZYQ	3-74

Section	Page
3.2.18 SUBROUTINE START	3-76
3.2.19 SUBROUTINE PHENO	3-79
3.2.20 FUNCTION DL	3-84
3.2.21 PROGRAM INSDEL	3-87
3.2.22 JCL FILE INSERT	3-93
3.2.23 PROGRAM DRECOVER	3-94
3.2.24 PROGRAM JSCTAPE	3-97
4. OPERATION	
4.1 <u>USER DOCUMENTATION</u>	4-1
4.2 <u>PROCEDURES</u>	4-1
4.2.1 CONSTRUCTING THE INDEX FILE (DRECOVER) . . .	4-2
4.2.2 CROP CALENDAR PROCEDURES	4-2
4.3 <u>FLOWCHART</u>	4-12

1. SCOPE

This document describes the Yield Estimation Subsystem (YES) operational implementation of Robertson's Phenological Model for small grains. Specifically, this document describes the software established to compute Robertson's biometeorological time scale for all LACIE weather stations from approximations to daily maximum and minimum temperatures. This document does not describe the software at NMC that extracts the weather data or the software at JSC that writes the AI crop calendar reports.

2. APPLICABLE DOCUMENTATION

- 1) Operating Procedures for the LACIE/YES Gridded Crop Calendar Report Writer by D.D. Wilcox. LEC-9955, Dec., 1976.
- 2) System Description of the LACIE/YES Gridded Crop Calendar Report Writer by D.D. Wilcox, LEC-10004, Jan., 1977.
- 3) AD 63-1347-4963-11 Documentation of Automated Crop Calendar Operation.
- 4) "A Biometeorological Time Scale for a Cereal Crop Involving Day and Night Temperatures and Photoperiod". G.W. Robertson, Intl. J. Biomet., 12#3 (191-223), (1968).
- 5) Level 3 Baseline
Yield Estimation Subsystem (YES)
Requirements
LACIE C00200 Sept., 1976
- 6) Level 3 Baseline
NOAA/NASA/USDA
Interface Control Document
LACIE C00710 Sept., 1976
- 7) A FORTRAN Implementation of the Robertson Phenological Model, D.D. Wilcox, G. Champagne, R. Baskett, S. Wooley.
LEC Tech. Memo, LEC-5974.

3. SYSTEM DESCRIPTION

The Robertson Phenological Model is an algorithm for converting point estimates of daily maximum and minimum temperature and daylength to a point estimate of Robertson's Biometeorological Time Scale, a numerical scale describing the development of wheat. Knowledge of the stage of wheat development is useful to analyst interpreters (AI) in the estimation of wheat acreages. The Robertson Model has been implemented to make this knowledge available.

The Robertson Scale ranges continuously from 1.0, called planting, to 6.0, called ripe. The Robertson Model assigns to each integral range 1.0 to 2.0, ..., 5.0 to 6.0, an equation $f_{1.0-2.0}(t_{\max}, t_{\min}, \text{daylength}), \dots, f_{5.0-6.0}(t_{\max}, t_{\min}, \text{daylength})$. To advance the model one day, let $D_{\text{yesterday}}$ be the development yesterday. From $D_{\text{yesterday}}$ select one of $f_{1.0-2.0}, \dots, f_{5.0-6.0}$, as $f_{\text{yesterday}}$. Obtain yesterday's t_{\max}, t_{\min} , and daylength, and compute:

$$D_{\text{today}} = D_{\text{yesterday}} + f_{\text{yesterday}}(t_{\max}, t_{\min}, \text{daylength}).$$

Clearly t_{\max} and t_{\min} are observations at the weather stations. It is most useful to have D_{today} at the sample segments (LACIE modelling region, for example). Therefore, some method of extending the weather station developments to the sample segments is necessary.

It should now be unequivocal that any implementation of the Robertson Model must have three major components:

- 1) A weather data collecting component,
- 2) a crop modelling component, and
- 3) a component that extends the output of (2) to the sample segments and writes a report.

This document describes the structure and operation of component 2. Component 3 is described in documents 1 and 2 of section 2.0 of this report. Component 1 is in the implementation stage. However, some software is described here which performs data collection and editing. It is anticipated these functions of component 2 will be abandoned when the final version of component 1 is put to use. From this point, component 2 will be referred to as 'the system'.

3.1 HARDWARE DESCRIPTION

These programs and datasets are resident on the IBM 360/195 complex at Suitland, Maryland. They should be transferable to any IBM 360-370 series machine with sufficient disk to handle the datasets and main memory to support the PL/I optomizing compiler.

3.2 SOFTWARE DESCRIPTION

The software consists of eight programs: one to prepare the station index file, six to prepare the crop calendar output, and one to copy this output from disk to tape. The program to prepare the station index file, DRECOVER, is input by cards at CCEA/Columbia. The six crop calendar preparation source programs are kept on cards at CCEA/Columbia and are listed in executable form on the partitioned dataset W.EDS. CCEA.PHASE3.LOAD; the executable programs are called by the following JCL files maintained on card decks at CCEA/Columbia:

- 1) CLEAR, used to initialize disk file CROPDATA,
- 2) CAPTURE, used to build the file,
- 3) LIST, which lists CROPDATA and can be accessed at any time during preparation of the file.
- 4) EDIT, which edits the file for mistakes and missing data,
- 5) SUZYQ, which performs crop modelling, and
- 6) INSERT, used to enter corrections into CROPDATA.

JSCTAPE, the program copying the crop calendar output to tape, is input by cards at CCEA/Columbia each time it is executed.

In general, a crop calendar update will require CLEAR, followed by several runs of CAPTURE, followed by LIST. At this point, EDIT is run to correct for missing data and mistakes. SUZYQ is run producing updates; any errors not corrected by EDIT are detected by SUZYQ. INSERT is then used to complete editing of the weather dataset and SUZYQ is rerun. After the final run of SUZYQ, JSCTAPE is run to produce a tape for transmittal to JSC.

Two (logical) files are maintained by SUZYQ to record the last predicted crop stage at each update, these files being in an Old Master/New Master relationship. In this way an error in

the preparation of the data (ex., incorrect data captured, not enough data captured) can be handled by going back to the Old Master and beginning the process anew. See Section 3.2.1.6 for further discussion. Data flow and file usage are shown in Figure 3-1.

Figure 3-1.- Data Flow and File Useage in Crop Calendar System

Figure 3-1 (continued)

DATASET NAMES AND FLOWCHART REFERENCES

Flowchart Box #	DSN
1	CCEA.xxx.SRTD (see Section 3.2.1.1)
2	CCEA.DAILY.xxx (see 3.2.1.2)
3	W.EDS.CCEA.DAILY (see 3.2.1.3)
4	W.EDS.CCEA.DAYDATA (see 3.2.1.4)
5	W.EDS.CCEA.GROUPi.CROPDATA (see 3.2.1.7)
6	W.EDS.CCEA.GROUPi.INDEX (see 3.2.1.5)
7	W.EDS.CCEA.GROUPi.MASTER1 (see 3.2.1.6)
8	W.EDS.CCEA.GROUPi.MASTER2 (see 3.2.1.6)
9	W.EDS.CCEA.GROUPi.GRIDINFO (see 3.2.1.8)
10	W.EDS.CCEA.GRCUPi.ARNO (see 3.2.1.9)

xxx = month of interest, 3 letter abbreviation; ex. JAN,FEB,MAR

i = I for Group I countries(U.S.A., INDIA, CHINA)
= II for Group II countries(U.S.S.R., CANADA)

The software components are divided into four classes:

- 1) Weather Data Access Routines:
These are a set of routines, INIT, SWAP, and TERM which provide a uniform method of reading and writing data to the weather data files.
- 2) File Manipulation Routines:
These routines include the main programs CLEAR, which initializes the weather data file, CAPTURE, which builds it, EDITOR, which edits out most mistakes and missing values, INSDEL, which makes card-input changes in the file, and PRINT which lists it.

Also included is the program DRECOVER which sets up the INDEX file, the supporting routine CVB located in the PDS W.EDS.CCEA.PROD.LOAD and called by CAPTURE, and the JCL files which are needed for invocation of the main programs.

The following is a list of the JCL files and their corresponding main programs:

<u>File Name</u>	<u>Program</u>
CLEAR	CLEAR
CAPTURE	CAPTURE
EDIT	EDITOR
INSERT	INSDEL
LIST	PRINT

- 3) Crop Modelling Routine:
This includes the main program CROPCALN, supporting routines START and PHENO, function DL, and the JCL file SUZYQ, necessary for invocation.
- 4) Output Tape to JSC:
This is a deck of JCL and the program JSCTAPE that produces the interface tape for shipment to JSC.

3.2.1 TAPE AND DISK DATASETS AND ATTRIBUTES

The following datasets will be referred to in subsequent descriptions of programs and subroutines.

3.2.1.1 CCEA.xxx.SRTD

North American data for past months on tape, where 'xxx' is the month abbreviation (ex., Jan. Feb., etc.)

RECFM = FB	UNIT = TAPE 9
LRECL = 560	VOL = Eyyyyy, where 'yyyyy'
BLKSIZE = 5600	is the tape number

This dataset is accessed through the CAPTURE routine; a separate tape exists at Suitland for each month of past data and is differentiated from the others by both the DSN and the tape number.

3.2.1.2 CCEA.DAILY.xxx

Non-North American data for past months on tape, where 'xxx' is the month abbreviation.

LRECL = 384
BLKSIZE = 12672

All other information is identical to CCEA.xxx.SRTD discussed in 3.2.1.1.

3.2.1.3 W.EDS.CCEA.DAILY

North American temperature data for the current month on disk.

RECFM = FB
LRECL = 560
BLKSIZE = 5600

This dataset is accessed during CAPTURE.

3.2.1.4 W.EDS.CCEA.DAYDATA

Non-North American temperature data for the current month on disk.

CRECL = 384
BLKSIZE = 12672

██████████

4

All other information is identical to W.EDS.CCEA.DAILY discussed in 3.2.1.3.

3.2.1.5 W.EDS.CCEA.{GROUP I } .INDEX
{GROUP II}

RECFM = FB
LRECL = 1024
BLKSIZE = 10240
DSORG = PS

The INDEX file for each group contains the number of stations on the file, followed by a list of station World Meteorological Organization (WMO) numbers and each station's three closest neighbor stations.

INDEX is created by the program DRECOVER.

3.2.1.6 W.EDS.CCEA.{GROUP I } .{MASTER 1}
{GROUP II} {MASTER 2}

RECFM = FB
LRECL = 80
BLKSIZE = 12960
DSORG = PS

Each crop calendar group must have two master files. The files are reversed each new two-week crop calendar period, such that during one two-week period MASTER 1 will be used as input and MASTER 2 as output; the next 14-day period will use MASTER 2 as input and MASTER 1 as output. This procedure is necessary to avoid loss of previously acquired data.

The master used as input contains information on either the last day of the previous crop period or the winter wheat planting date if it has not yet been reached (winter wheat stations only).

If an error is encountered during execution of SUZYQ (ex., inverted or missing temperatures), the mistake must be corrected and SUZYQ resubmitted, using the master files in the same order as the first run.

MASTER 1 is initially created with an IEBGENER IBM utility program, using master cards on file at CCEA/Columbia as the SYSUT1 input.

3.2.1.7 W.EDS.CCEA.{GROUP I } ,CROPDATA {GROUP II }

RECFM = F
LRECL = 1024
BLKSIZE = 1024
DSORG = PS

This dataset contains the maximum and minimum daily air temperatures (or approximations thereto) for the 14 days for each station listed in INDEX. The CLEAR program is executed to change the starting day of the 14-day period, and also to initialize all values to '9999'. The CAPTURE program fills CROPDATA, and SUZYQ utilizes the file.

3.2.1.8 W.EDS.CCEA.{GROUP I } ,GRIDINFO {GROUP II }

RECFM = FB
LRECL = 80
BLKSIZE = 12960
DSORG = PS

The GRIDINFO dataset is created or modified as output during execution of SUZYQ. The record contents are in the same format as those of the output master file; while the output master file contains information on only the last day of a two-week period, GRIDINFO contains similar information for every day in the two-week period. GRIDINFO contains only information on stations with successful crop calendar executions; as a result, it is necessary to complete an error-free run of SUZYQ before this dataset is copied to tape using program JSCTAPE.

3.2.1.9 W.EDS.CCEA.{GROUP I } .ARNO {GROUP II }

RECFM = VBS
LRECL = 796
BLKSIZE = 800
DSORG = PS

This dataset is created by an IEBPTPCH step after SUZYQ is successfully run, and contains basically the same information as the output master file. It is accessed by JSC via a dial-up telephone line using the IBM Time Sharing Operation (TSO).

3.2.2 SUBROUTINE INIT

INIT is called by CLEAR, CAPTURE, PRINT, EDITOR, INSDEL, and CROPCALN; INIT prepares the weather data file, CROPDATA, for direct access and initializes several variables used in SWAP.

3.2.2.1 Linkages

INIT defines COMMON blocks TALK, INDEX, DATA, and CLOSE, which are used by other subroutines and programs.

3.2.2.2 Interfaces

INIT must be called before SWAP.

3.2.2.3 Inputs

INIT assumes that Unit 2 is attached to the INDEX file and that Unit 4 is attached to file CROPDATA.

3.2.2.4 Outputs

After ejecting one page on the printer, INIT writes a heading for all output produced by subsequent subroutines and main program statements.

3.2.2.5 Description

INIT opens file CROPDATA for direct access, reads part of the INDEX file into the COMMON block INDEX and part into COMMON block CLOSE, prints a heading, creates COMMON block DATA, and initializes variables in COMMON block TALK, which is used in SWAP.

3.2.2.6 Flowchart

Next page.

3.2.2.7 Listing

Follows flowchart.

~~3.2.2.7~~

RUN NO. 73

DATE 05/04/77 TIME 1820

LISTING OF MODULE INIT

DESCRIPTION INIT'S AUTOMATION FILE ACCESS

MASTER FILE W,EDC,CCEA.GVM.MASTER
 ADDED TO MASTER 07/25/76
 LAST DATE COPIED NONE
 LAST UPDATE 07/25/76 1809

PASSWORD DGL.J
 PROGRAMMER VONHOLT
 LANGUAGE FOR
 PROC PARAMETER SNOJCL

```
SUBROUTINE INIT
REAL*8 BUFFER(128),BUF2(128)
INTEGER WMO(511),STATN(511,3)
INTEGER ACCE55,CHANGE,PAGEI,PAGE0
INTEGER#2 NUMSTA,FILLER,CCDATA(12,15,16)
COMMON /TALK/INCORE,ACCE55,CHANGE,PAGEI,PAGE0
COMMON /INDEX/NUMSTA,FILLER,WMO
COMMON /DATA/CCDATA
COMMON /CLOSE/STATN
EQUIVALENCE (CCDATA(1,1,:),BUFFER())
EQUIVALENCE (NUMSTA,BUF2())
```

C

```
DEFINE FILE 4T200,1024,L10UMMY
READ(2,1001)NUMSTA,(WM0(I)),(STATN(I,J),J=1,3),I=1,511
1001 FORMAT(A2,2X,255A4,/,10(2(12BA4),/))
REWIND 2
```

07/25/76

```
WRITE(6,15)
15 FORMAT(100 CCEA PGM CC76-COU-02-02, CROP CALENDAR DATA CAPTURE
      S VERSION OF JULY, 1976 //,-,-)
INCOPE=-1
ACCE55=0
CHANGE=0
PAGEI=0
PAGE0=0
```

07/25/76

C

```
RETURN
END
```

RECORDED
POOR
PAGE 15
QUALITY

3.2.3 SUBROUTINE SWAP

SWAP is the entry point used by all crop calendar preparation routines to read from or write to file CROPDATA. The 'in' version of SWAP reads from CROPDATA, and the 'out' version writes to CROPDATA.

3.2.3.1 Linkages

SWAP uses the COMMON blocks TALK, INDEX, and DATA, which were declared by subroutine INIT.

3.2.3.2 Interfaces

INIT must be called before SWAP.

3.2.3.3 Inputs and Outputs

INIT assumes Unit 4 is attached to file CROPDATA.

ACTION	if 1, then read from CROPDATA, with TEMPS and JULIAN as outputs to the main program; if 2, then write to CROPDATA, with TEMPS and JULIAN as inputs from the main program.
WMONUM	station number of requested station.
TEMPS	array of 14 days' maximum and minimum temperatures associated with WMONUM.
JULIAN	first date of the 14-day period.
RCODE	if -1, then ACTION was other than 1 or 2; if 0, then transaction was successful; if 10, then WMONUM was not in the INDEX file.

3.2.3.4 Description

SWAP maintains a BUFFER in COMMON block DATA to contain a 16-station block of file CROPDATA; it also maintains a list of crop calendar stations in COMMON INDEX. The list of WMO numbers is in the same order as the data on CROPDATA. To access a WMO station, SWAP sequentially searches INDEX for the requested number. If the number is found, its position in INDEX is used to determine the block address (i.e., in which 16-station block of CROPDATA the station is located). If the station number is not found, RCODE is set to 10. At this point it is determined whether the requested block is in core. If the block is in core, it is read from or written

to; if the necessary block is not in core, it is swapped with the block currently in core.

3.2.3.5 Flowchart

Next page.

3.2.3.6 Listing

Follows flowchart.

~~SECRET~~

SUBROUTINE SWAP, CON'T

SUBROUTINE SWAP, CINIT

~~3007~~

19

ORIGINAL PAGE IS
OF POOR QUALITY

RUN NO. 73

DATE 05/04/77 TIME 1820

LISTING OF MODULE SWAP

DESCRIPTION SWAPS MET DATA FOR AUTOMATION

MASTER FILE W.EDS.CCEA.GVM.MASTER
ADDED TO MASTER 07/25/76
LAST DATE COPIED NONE
LAST UPDATE 07/25/76 1719PASSWORD PDXS
PROGRAMMER VONHOLT
LANGUAGE FOR
PROC PARAMETER SNOJCL

```
SUBROUTINE SWAP(ACTION,WMONUM,TFMPS,JULIAN,IER)
REAL*8 BUFFER(128)
INTEGER ACTION,WMONUM,TEMPS(14,2),WMO(511),POSIT
INTEGER ACCESS,CHANGE,PAGEI,PAGEO
INTEGER BLOCK,OFFSET
INTEGER*2 NUMSTA,FILLER,CCDATA(2,16,16)
COMMON /TALK/INCORE,ACCESS,CHANGE,PAGEI,PAGEO
COMMON /INDEX/NUMSTA,FILLER,WMO
COMMON /DATA/CCDATA
EQUIVALENCE (CCDATA(1,1,1),BUFFER(1))
```

```
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000400
00000410
00000420
00000430
```

07/25/76

```
C
IFR = 0
IF ((ACTION.LT.1).OR.(ACTION.GT.2)) GO TO 3000
GO TO (1000,2000), ACTION
1000 SWAP IN
1000 DO 800 J = 1 , NUMSTA
800 IF (WMO(J) .EQ. WMONUM) GO TO 900
800 CONTINUE
900 GO TO 4000
900 POSIT = J
900 BLOCK = (POSIT-1) / 16 + 1
900 OFFSET=POSIT-(BLOCK-1)*16
900 IF (INCORE .EQ. BLOCK) GO TO 1050
900 IF (CHANGE) 1040 : 1040 : 1030
1030 WRITE(4!INCORE,1001) BUFFER
1001 FORMAT(128AB)
1001 PAGEO=PAGEDO.1
1040 READ(4!BLOCK,1001) BUFFER
1040 INCORE=BLOCK
1040 PAGEI=PAGEI+1
C
1050 DO 1060 J = 1 . 14
1050 TEMPS(J,1)=CCDATA(1,J,OFFSET)
1060 TEMPS(J,2)=CCDATA(2,J,OFFSET)
1060 JULIAN=CCDATA(1,1,OFFSET)
1060 ACCESS=ACCESS+1
1060 RETURN
2000 SWAP OUT
2000 DO 1800 J = 1 . NUMSTA
1800 IF (WMO(J) .EQ. WMONUM) GO TO 1900
1800 CONTINUE
1900 GO TO 4000
1900 POSIT=J
```

ORIGINAL PAGE IS
POOR QUALITY

RUN NO. 73 DATE 05/04/77 TIME 1820

LISTING OF MODULE SWAP

BLOCK = (POSIT-1) / 16 + 1

OFFSET=POSIT-(BLOCK-1)*16

IF (INCORE .EQ. BLOCK) GO TO 2050

IF (CHANGE) 2040, 2040, 2030

2030 WRITE(4*INCORE,1001)BUFFER

PAGE0=PAGE0+1

2040 READ(4*BLOCK,1001)BUFFER

INCORE=BLOCK

PAGE1=PAGE1+1

C 2050 DO 2060 J = 1 , 14

CCDATA(1,J+2,OFFSET)=TEMPS(J,1)

2060 CCDATA(2,J+2,OFFSET)=TEMPS(J,2)

CCDATA(1,1,OFFSET)=JULIAN

ACCESS=ACCESS+1

CHANGE=1

RETURN

C 3000 WRITE(6,3010)ACTION

3010 FORMAT('0INVALID ACTION CODE:',17)

CALL ERRTRA

STOP

C 4000 IER = 1

RETURN

C END

00000440

00000450

00000460

00000470

00000480

00000490

00000500

00000510

00000520

00000530

00000540

00000550

00000560

00000570

00000580

00000590

00000600

00000610

00000620

00000630

00000640

00000650

00000660

00000670

00000680

00000690

00000700

07/25/76
07/25/76

8/2

3.2.4 SUBROUTINE TERM

TERM is used by all crop calendar preparation routines to close the weather file and print statistics accumulated during the running of SWAP.

3.2.4.1 Linkages

TERM utilizes COMMON blocks TALK and DATA.

3.2.4.2 Interfaces

SWAP must be called before TERM. TERM is the last subroutine called before the end of any crop calendar preparation program.

3.2.4.3 Inputs

TERM uses COMMON blocks TALK and DATA.

3.2.4.4 Outputs

TERM may write a block to CROPTDATA, assumed on Unit 4. The subroutine also prints out SWAP 'IN'/SWAP 'OUT' statistics and a closing message.

3.2.4.5 Description

If a 16-station block remains in BUFFER, TERM writes the block to CROPTDATA. Statistics accumulated during the execution of SWAP and a closing message are written to the printer.

3.2.4.6 Flowchart

Next page.

3.2.4.7 Listing

Follows flowchart.

3-20

22

RUN NO. 73 DATE 05/04/77 TIME 1820

LISTING OF MODULE TERM

DESCRIPTION TERM AUTOMATION FILE

MASTER FILE W.EDS.CCEA.GVH.MASTER
ADDED TO MASTER 07/25/76
LAST DATE COPIED NONE
LAST UPDATE NONE

PASSWORD HLSK
PROGRAMMER VONHOLT
LANGUAGE FOR
PROC PARAMETER \$NOJCL

SUBROUTINE TERM	00000010
REAL*8 BUFFER(128)	00000020
INTEGER ACCESS,CHANGE,PAGEI,PAGEO	00000030
COMMON /TALK/INCORE,ACCESS,CHANGE,PAGEI,PAGEO	00000040
COMMON /DATA/BUFFER	00000050
C	00000060
IF (CHANGE) 200, 200, 100	00000070
100 WRITE(4,INCORE,110)BUFFER	00000080
110 FORMAT(12HAB)	00000090
PAGEO=PAGE0+1	00000100
200 WRITE(6,210)ACCESS,PAGEI,PAGEO	00000110
210 FORMAT(1-- PAGING STATISTICS --,/-ACCESES/,115,/,	00000120
* PAGE INS/,115,/,-- PAGE OUTS/,114)	00000130
WRITE(6,1)	00000140
1 FORMAT(1--,/-,/,1-- END OF CAPTURE ROUTINE EXECUTION --)	00000150
RETURN	00000160
END	00000170

24

ORIGINAL PAGE IS
OF POOR QUALITY

3.2.5 PROGRAM CLEAR

CLEAR resets all entries in CROPDATA to missing values (9999) and calculates the starting Julian date for the 14-day period about to be processed.

3.2.5.1 Linkages

CLEAR calls subroutines INIT, SWAP, AND TERM and uses COMMON block INDEX.

3.2.5.2 Interfaces

CLEAR is the first crop calendar preparation routine to be run for any given 14-day period.

3.2.5.3 Inputs

The INDEX file is on Unit 2, CROPDATA is on Unit 4, and optional card input (date -reset value) on Unit 5.

3.2.5.4 Outputs

The CROPDATA file is initialized.

3.2.5.5 Description

CLEAR calls INIT to load COMMON block INDEX and open CROPDATA to direct access. An attempt is made to read a date-reset value from Unit 5; if no value is present, the reset value defaults to 14 days. The starting date of the 14-day period to be processed is reset and all temperatures in CROPDATA are set to '9999', using SWAP. The file is then closed by subroutine TERM.

3.2.5.6 Flowchart

Next page.

3.2.5.7 Listing

Follows flowchart.

RUN NO. 73 DATE 05/04/77 TIME 1820

LISTING OF MODULE CLEAR

DESCRIPTION CLEAR AUTOMATION FILE

MASTER FILE WEDS.GCEA.GVM.MASTER

ADDED TO MASTER 07/25/76

LAST DATE COPIED NONE

LAST UPDATE 07/25/76 2129

PASSWORD SLFH

PROGRAMMER VONHOLT

LANGUAGE FOR

PROC PARAMETER SNOJCL

INTEGER WMO(511),TEMPS(14,2),JULIAN,IER,IN/I/,OUT/2/,MISSNG/9999/ 00000010
INTEGER DELTA/14/
INTEGER 2 NUMSTA,FILLER
COMMON /INDEX/NUMSTA,FILLER,WMO

27 C CALL INIT
READ(5,*,END=2)DELTA
CONTINUE
DO 10 I = 1 , NUMSTA
CALL SWAP(IN,WMO(I),TEMPS,JULIAN,IER)
JULIAN = JULIAN + DELTA
DO 5 J = 1 : 14
DO 5 K = 1 : 2
5 TEMPS(J,K) = MISSNG
CALL SWAP(OUT,WMO(I),TEMPS,JULIAN,IER)
10 CONTINUE
CALL TERM
C
STOP
END

00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200

07/25/76

07/25/76

07/25/76

ORIGINAL
DE POOR
PAGE
QUALITY

3.2.6 JCL FILE CLEAR

Executing JCL file CLEAR invokes the CLEAR program.

3.2.6.1 Linkages

None.

3.2.6.2 Interfaces

None.

3.2.6.3 Inputs

See Sections 3.2.5.3 and 4.2.2.1.

3.2.6.4 Outputs

None.

3.2.6.5 Description

JCL file CLEAR binds the files referenced by program CLEAR to that program and requests that the program be executed.

3.2.6.6 Listing

```
//CLEARPROC  
//CLEAREXEC PGM=CLEAR  
//STEPLIB DD DSN=W.EDS.CCEA.PHASE3.LOAD DISP=SHR  
//FT02F001 DD DSN=W.EDS.CCEA. {GROUP1}.INDEX DISP=SHR  
//FT04F001 DD DSN=W.EDS.CCEA. {GROUP1}.CROPTDATA DISP=SHR  
//FT06F001 DD SYSOUT=A  
//FT05F001 DD DDNAME=SYSIN  
//END
```

3.2.7 PROGRAM CAPTURE

CAPTURE reads the tape and disk temperature data files built at CCEA/Washington and loads them into CROPDATA.

3.2.7.1 Linkages

CAPTURE calls subroutines INIT, CVB, SWAP, and TERM.

3.2.7.2 Interfaces

CLEAR must be run before CAPTURE.

3.2.7.3 Inputs

CAPTURE assumes the INDEX file is on Unit 2, the tape or disk data file on Unit 3, CROPDATA on Unit 4, and an optional card input file on Unit 5. This latter file is used with North American data only; it contains the Julian date of the first day of the month being processed, and the new year if the 2-week period spans two years.

3.2.7.4 Outputs

CAPTURE loads CROPDATA with temperature data for the 14-day period being processed.

3.2.7.5 Description

CAPTURE reads the eleventh record from Unit 3 to determine if the data is "North American" or "non-North American". Unit 3 is rewound and INIT is called. For North American data, the Julian date of the first day of the month is read from Unit 5 and the array JULIAN is filled. North American data also requires that CAPTURE call subroutine CVB. For each new station SWAP(in) is called; CAPTURE determines what portion of the 14-day crop calendar is being accessed by this run of the program. CAPTURE makes the necessary adjustments if the 2-week period spans two years, including reading another card from Unit 5 for North American data to obtain the new year. Using SWAP(out), CAPTURE updates the CROPDATA file with the new weather data. After all stations have been processed, TERM is called and processing ceases.

3.2.7.6 Flowchart

Next page.

3.2.7.7 Listing

Follows flowchart.

PROGRAM CAPTURE, CON'T

PROGRAM CAPTURE, CON'T

RUN NO. 70 DATE 04/24/77 TIME 1633

LISTING OF MODULE CAPTURE

DESCRIPTION AUTOMATION CAPTURE RTV.

MASTER FILE 4.FUS.CCF.A.GVH.MASTER

ADDED TO MASTER 07/25/76

LAST DATE COPIED 10/10/76

LAST UPDATE 01/10/77 1632

PASSWORD KLHS

PROGRAMMER VONNHOLT

LANGUAGE FOR

PROG PARAMETER S10.JCL

ORIGINAL
OR
POOR
PAGE
QUALITY

1	INTEGER A7200,17200,17439,17499,1,WM0(2)	00000010	07/25/76
	INTEGER HIGH(31),LOW(31),TEMPS(14,2),IN/1/,OUT/2/	00000020	
	INTEGER I+WM0N1,IER,JDAY,LDAY,OTOUAY,IEG,IEU,ITOUAY,VREG,VEND	00000030	
	INTEGER P+2 HI(31),LO(31),JULIAN(31),IYR	00000040	01/10/77
		00000050	
1	READ(3,1)ITEST	00000060	07/25/76
	FORMAT(14X,A4,4X,A4)	00000070	12/15/76
	ITYPE = 0	00000080	07/25/76
	IF ((ITEST.GE.A7200).AND.(ITEST.LE.A7499)) ITYPE = 1	00000090	07/25/76
	RFWINDU 3	00000100	07/25/76
	CALL INIT	00000110	
C		00000120	07/25/76
16	IF (ITYPE.EQ.0) GO TO 25	00000130	
	LEAD(5,1)JULIAN(1)	00000140	
	FORMAT(14)	00000150	
11	DO 13 I = 2, 31	00000160	
13	JULIAN(I) = JULIAN(I-1) + 1	00000170	
C		00000180	
20	20 IF (ITYPE.EQ.0) GO TO 25	00000190	07/25/76
	FORMAT(3,2,E1,2) = (0,0)WW,(1,0N(1),HIGH(I)+I=1,31)	00000200	10/18/76
21	FORMAT(4X,A4,A1,11X,31(2A2,4X,A2,2X))	00000210	
	IF ((WM0(1).LT.A7200).OR.(WM0(1).GT.A7499)) GO TO 20	00000220	
	CALL CVR1(WM0,2,WM0NM)	00000230	
	GO TO 29	00000240	
25	FORMAT(3,26,E1,2) = (0,0)WM0NM,IYR,(LO(I),HI(I),JULIAN(I),I=1,31)	00000250	07/25/76
26	FORMAT(4X,A4,A2,31(2A2,4X,A2,2X))	00000260	01/10/77
	DO 27 I = 1, 31	00000270	01/10/77
27	LOW(I) = LO(I)	00000280	07/25/76
	HIGH(I) = HI(I)	00000290	07/25/76
29	CALL SHAP(IN,WM0NM,TEMPS,JDAY,IER)	00000300	07/25/76
	IF (IER.EQ.20 .OR. 30) 20	00000310	07/25/76
30	LDAY = JDAY + 13	00000320	
C	C CHECK IF PERIOD SPANS TWO YEARS AND IF DATA IS FROM BEGINNING OF	00000330	
	C THE SECOND YEAR	00000340	01/10/77
	C THEN CHECK IF DATA IS FROM NORTH AMERICA. IF SO, READ IN SECOND YEAR	00000350	01/10/77
		00000360	01/10/77
		00000370	01/10/77
		00000380	01/10/77
		00000390	01/10/77
	J=0	00000400	01/10/77
	IF (LDAY.LE.365 .OR. JULIAN(1).GE.335) GO TO 35	00000410	01/10/77
32	IF (ITYPE.EQ.1) READ(5,32)IYR	00000420	01/10/77
	FORMAT(14)	00000430	01/10/77
	IYR=IYR		

RUN NO. 70 DATE 04/28/77 TIME 1633

LISTING OF MODULE CAPTURE

```

C C4FCK FOR LEAP YEAR          00000440 01/10/77
C CHECK=(YR-1.0)/4            00000450 01/10/77
C ICHECK=CHECK                00000460 01/10/77
IF (CHECK.EQ.1)ICHECK)J=1      00000470 01/10/77
IF (J.EQ.1 .AND. LDAY.LE.366160 TO 35  00000480 01/10/77
C ADJUST JULIAN DATE        00000490 01/10/77
C
DO 36 I=1,31                 00000500 01/10/77
JULIAN(I)=JULIAN(I)+365+J    00000510 01/10/77
36 CONTINUE                   00000520 01/10/77
00000530 01/10/77
00000540 01/10/77
00000550 01/10/77
00000560 01/10/77
35 CONTINUE                   00000570 01/10/77
IF ((LDAY.LT.JULIAN(1)).OR.(JDAY.GT.JULIAN(1)+30)) GO TO 20  00000580 07/25/76
V-EG = -1                     00000590 07/25/76
VF-VI = -1                     00000600 07/25/76
IF (JDAY.LE.JULIAN(1)) GO TO 40  00000610
IHEG = JDAY + 1 - JULIAN(1)   00000620
OTODAY = 1                     00000630
IEND = VEND(31,IHEG+13)       00000640 07/25/76
40 GO TO 50                   00000650
IHEG = 1                       00000660
OTODAY = JULIAN(1) + 1 - JDAY  00000670
IEND = 15 - OTODAY             00000680
50 DO 60 ITODAY = IHEG , IFND  00000690
IF ((LOW(ITODAY).EQ.9999).AND.(HIGH(ITODAY).EQ.9999)) GO TO 60  00000700
IF (VREG.EQ.-1)VREG = JULIAN(ITODAY)  00000710
IF (JULIAN(ITODAY).GT.VEND)VEND=JULIAN(ITODAY)  00000720 07/25/76
TEMPS(OTODAY,1) = LO,(ITODAY)  00000730
TEMPS(OTODAY,2) = HIGH(ITODAY)  00000740
60 OTODAY = OTODAY + 1         00000750
IF (VREG.EQ.-1) GO TO 65      00000760
WHITE(5,53)W4.14V4,VHEG,VEND  00000770 07/25/76
63 FORMAT(IX,15.14,13.14,13.14)
CALL SWAP(DUT,WMONM,TFMS,JDAY,IFR)
WRIT(1,64)WM,NM,JDAY,(TEMPS(J,2),J=1,14),NM,NM,JDAY,
      (TEMPS(J,1),J=1,14)  00000780 07/25/76
64 FORMAT(15.14,I4,14,14,16,15,1,MN,I4,14,14,16)  00000790 07/25/76
GO TO 20                      00000800
65 WRITE(5,67)WMONM           00000810 07/25/76
67 FORMAT(16,(NONE))
GO TO 20                      00000820 07/25/76
100 CALL TFPM                  00000830
STOP                         00000840 07/25/76
ENU                          00000850 07/25/76
                                00000860
                                00000870
                                00000880
                                00000890

```

3.2.8 JCL FILE CAPTURE

Executing JCL file CAPTURE involves the CAPTURE program.

3.2.8.1 Linkages

None.

3.2.8.2 Interfaces

None.

3.2.8.3 Inputs

Direct card inputs to this file are necessary only with North American data. See Sections 3.2.7.3 and 4.2.2.2.

3.2.8.4 Outputs

None.

3.2.8.5 Description

JCL file CAPTURE binds the files referenced by program CAPTURE to that program and requests invocation of program CAPTURE.

3.2.8.6 Listing

```
//CAPTURE//PROC//UNIT=,VOL=,DSN='W.EDS.CCEA.DAYDATA'
//CAPTURE//EXEC//PGM=CAPTURE
//STEPLIB//DD//DSN=W.EDS.CCEA.PHASE3.LOAD,DISP=SHR
//FT01F001//DD//SYSOUT=A,DCB=(LRECL=100,BLKSIZE=1500,RECFM=FB)
//FT02F001//DD//DSN=W.EDS.CCEA.{GROUP I }.INDEX,DISP=SHR
{GROUP II}
//FT03F001//DD//DSN=&DSN.,DISP=SHR,UNIT=&UNIT.,VOL=SER=&VOL,
//LABEL=(,,,IN)
//FT04F001//DD//DSN=W.EDS.CCEA.{GROUP I },CROPTDATA,DISP=SHR
{GROUP II}
//FT06F001//DD//SYSOUT=A
//PEND
```

3.2.9 SUBROUTINE CVB

CVB is called by CAPTURE to convert WMO numbers from zoned decimal to binary (North American data only).

3.2.9.1 Linkages

None.

3.2.9.2 Interfaces

None.

3.2.9.3 Inputs and Outputs

FROM the input WMO number (zoned decimal)
NCHAR number of bytes in FROM (in this case, NCHAR=5)
TO the output WMO number (binary)

3.2.9.4 Description

North American WMO numbers exist as zoned decimal and need to be converted to binary before processing can take place. CVB accomplishes this conversion.

3.2.9.5 Flowchart

Next page.

3.2.9.6 Listing

Follows flowchart.


```

//STEP1 EXEC NASHMC
//ASM.SYSIN DD ??
CVR      TITLE 1 - CONVERTS FROM ZONED DECIMAL TO BINARY!
CVB      CSECT
SPACE
*****  

* SUBROUTINE CVR(FROM,NCHAR,TO)
*
* PURPOSE   CONVERT NCHAR CHARACTERS(BYTES) FROM ZONED DECIMAL
*           (FHCDIC) TO BINARY, STORING FULLWORD RESULT AT
*           LOCATION TO.   NCHAR MUST BE BETWEEN 1 AND 16,
*           INCLUSIVE.
*
* LANGUAGE ASSEMBLER
*
* WRITTEN BY G VON HOLT, JULY 1975
* FORTRAN X + H COMPATIBLE
*
* SPACE 2
* USING 8,15
* R BEGIN
* DC AL1(3)
* DC CL3'CVH'
* BEGIN STM 14.12.12(13)          ADDRESSABILITY
*       LM 3.7,0(1)                BRANCH AROUND NAME
*       L 4.0(4)                  LENGTH OF NAME
*       ACTR 4.0                   NAME OF SUBROUTINE
*       XC DBL,DBL                SAVE CALLEE'S REGISTERS
*       EX 4,PACK                 GET ADDRESS OF PARM'S
*       CVB 6,DBL                 GET NUMBER OF CHARACTERS
*       ST 6,0(5)                 SUBTRACT 1 FOR FX INST.
*       LM 14.12.12(13)            CLEAR RESULT FIELD
*       RR 14                     CONVERT TO PACKED DECIMAL
*       SPACE 2                  CONVERT PACKED DEC TO BINARY
*                               AND PLACE IN RESULT AREA
*                               RESTORE CALLER'S REGISTERS
*                               RETURN
*
* OBJECT OF EX INST.
*
* PACK    PACK DBL+4(4),0(0,3)      CONVERTS TO PACKED DECIMAL
*       SPACE 2
*
* SPACE FOR PACKED DECIMAL NUMBER
*
* DBL    DS 0
*       SPACE 2
* END
*/
```

ORIGINALLY PAGE 6
OF POOR QUALITY

3.2.10 PROGRAM PRINT

PRINT lists the contents of the CROPDATA file. It may be run at any time.

3.2.10.1 Linkages

PRINT calls INIT, SWAP, and TERM and uses COMMON block INDEX.

3.2.10.2 Interfaces

None.

3.2.10.3 Inputs

PRINT assumes the INDEX file is on Unit 2 and the CROPDATA file is on Unit 4.

3.2.10.4 Outputs

PRINT lists each of the stations on file INDEX and the corresponding temperature data from file CROPDATA.

3.2.10.5 Description

PRINT calls INIT and proceeds to call SWAP for each station on the INDEX file, printing the station number, starting Julian date of the current 2-week period, and the maximum and minimum temperatures in the 2-week period. After information for all stations on INDEX has been listed, TERM is called.

3.2.10.6 Flowchart

Next page.

3.2.10.7 Listing

Follows flowchart.

~~2009~~
H1

RUN NO. 73 DATE 05/04/77 TIME 1820
DESCRIPTION PRINTS OUT AUTOMATION FILE
MASTER FILE W.EDS.CCEA.GVM.MASTER
ADDED TO MASTER 07/25/76
LAST DATE COPIED NONE
LAST UPDATE 07/25/76 2014

LISTING OF MODULE PRINT

PASSWORD HXFM
PROGRAMMER VONHOLT
LANGUAGE FOR
PROC PARAMETER SNOJCL

INTEGER WMO(511),IN(1),TEMPS(14,2),JULTAN,IER	00000010
INTEGER,NUMSTA,FILLFH	00000020
COMMON /INDEX/NUMSTA,FILLER,WMO	00000030
CALL INIT	00000040
WRITE(16,5)	00000050
5 FORMAT(1I1)	00000060
DO 10 I = 1 , NUMSTA	00000070
CALL SWAP(IN,WMO)(I),TEMPS,JULTAN,IER)	00000080
10 WRITE(6,20)WMO(I),JULIAN,(TEMPS(J,2),J=1,14),	00000090
5 WMO(I),JULIAN,(TEMPS(J,1),J=1,14)	00000100
20 FORMAT(16,1MAX1,5.2X,14(6//,	00000110
6 MIN1,5.2X,14(6//)	00000120
WRITE(6,5)	00000130
CALL TERM	00000140
STOP	00000150
END	00000160

07/25/76

ER
1
CHANNEL PAGE
POOR QUALITY

3.2.11 JCL FILE LIST

Executing JCL file LIST invokes the PRINT program.

3.2.11.1 Linkages

See Section 3.2.10.1.

3.2.11.2 Interfaces

None.

3.2.11.3 Inputs

None.

3.2.11.4 Outputs

None.

3.2.11.5 Description

JCL file LIST binds the files referenced by program PRINT to that program and requests execution of program PRINT.

3.2.11.6 Listing

```
//LIST&PROC  
//LIST&EXEC&PGM=PRINT  
//STEPLIB&DD&DSN=W.EDS.CCEA.PHASE3.LOAD,DISP=SHR  
//FT02F001&DD&DSN=W.EDS.CCEA.{GROUP I } .INDEX,DISP=SHR  
//FT04F001&DD&DSN=W.EDS.CCEA.{GROUP I } .CROPTDATA,DISP=SHR  
//FT06F001&DD&SYSOUT=A  
//&P&P&P&PEND
```

3.2.12 PROGRAM EDITOR

EDITOR checks for inverted temperatures of missing data and attempts to replace bad values by substituting data from a given station's three closest neighbor stations.

3.2.12.1 Linkages

EDITOR calls, INIT, SWAP, CHECK, REPLAC, and TERM and uses COMMON blocks INDEX, VALL, and CLOSE.

3.2.12.2 Interfaces

EDITOR is not executed until all runs of CAPTURE have been completed and is run before the CROPCALN program is executed.

3.2.12.3 Inputs

EDITOR assumes that the INDEX file is on Unit 2, CROPDATA on Unit 4, and card input on Unit 5, containing the variables IP, IC, IE, and IS.

These four variables attain the following values:

IP = 0	no listing
= 1	list the file CROPDATA
IC = 0	do not call CHECK or REPLAC
= 1	call CHECK but do not print results
= 2	call CHECK and print results
IE = 0	do not call REPLAC
= 1	call REPLAC
IS = 0	do not rewrite CROPDATA
= 1	rewrite CROPDATA

3.2.12.4 Outputs

EDITOR produces corrections for CROPDATA and writes messages to the printer.

3.2.12.5 Description

Program EDITOR calls INIT and, using SWAP, fills arrays IAP and XTEMP. IAP contains the portion of the INDEX file contained in COMMON block CLOSE (the three closest neighbor stations for each station on the INDEX file); XTEMP contains

file CROPDATA. EDITOR then reads a card, obtaining values for variables IP, IC, IE, and IS. Each time a card is read, EDITOR increments the variable IL and checks for end-of-file. The edit process is executed three times. The first time, the contents of CROPDATA are listed; CHECK is called to identify values that need to be replaced; REPLAC is called and messages are written to the printer. The second execution of the edit process calls both CHECK and REPLAC. During the third pass through the program, CHECK is called and CROPDATA is rewritten from XTEMP. TERM is called after the completion of the third execution.

3.2.12.6 Flowchart

Next page.

3.2.12.7 Listing

Follows flowchart.

PROGRAM EDITOR, CON't

~~SECRET~~

1996-07-26 08:45:45

MAIN PROGRAM FOR CROP CALENDAR EDITING

of Poor Quality

C CALL SWAP(DIJT,WMO(K),TE MPS,JULIAN)
10007 WRITE(5,10007) WMO(K)
FORMAT(101,15,1 REWRITTEN TO FILE*)
320 CONTINUE
GOTO 60
6000 CALL TFM
STOP
END

bA

3.2.13 JCL FILE EDIT

Executing JCL file EDIT invokes the EDITOR program.

3.2.13.1 Linkages

None.

3.2.13.2 Interfaces

EDIT should not be executed until CAPTURE has successfully filled file CROCDATA.

3.2.13.3 Inputs

Direct card input to this file is necessary. See Section 4.2.2.3 for further discussion and input format.

3.2.13.4 Outputs

None.

3.2.13.5 Description

PROC EDIT binds the files referenced by program EDITOR to that program and requests the invocation of EDITOR.

3.2.13.6 Listing

```
//EDITPROC
//EDITEXEC PGM=EDITOR,TIME=(,15)
//STEPLIB DDD DSN=W.EDS.CCEA.PHASE3.LOAD,DISP=SHR
//FT02F001 DDD DSN=W.EDS.CCEA.{GROUP I }.INDEX,DISP=SHR
//FT04F001 DDD DSN=W.EDS.CCEA.{GROUP I }{GROUP II }.CROCDATA,DISP=SHR
//FT05F001 DDD DUMMY
//FT06F001 DDD SYSOUT=A
//P P P PEND
```

3.2.14 SUBROUTINE CHECK

CHECK determines which data in CROCDATA should be replaced.

3.2.14.1 Linkages

CHECK uses COMMON block INDEX and VALL.

3.2.14.2 Interfaces

None.

3.2.14.3 Inputs

IC = 1 do not print results;
= 2 print results
IL the number of times through the edit procedure for
this station.
XTEMP(I,14,3) an array containing the information on
file CROCDATA, as well as space for the
daily difference between maximum and
minimum temperature, where I is the
number of crop calendar stations.
IAP(I,3) an array containing the positions in
array WMO of the three closest neighbor
stations for each crop calendar station,
where I is the number of stations.

3.2.14.4 Outputs

Outputs from CHECK contained in COMMON block VALL and where
I is the number of stations involved:

XBAR(I,3) mean of each station's max,min temperatures
and their differences.
XSD(I,3) standard deviations of each station's three
temperature types.
LOWB(I,3) lower confidence bounds of each station's
three temperature types.
HIGHB(I,3) upper confidence bounds of each station's
three temperature types.
NT(I,3) number of acceptable values of each station's
three temperature types.
TFLAG(I,15,2) a logical array indicating "good" or "bad"
temperatures; the 15th position is flagged
"good" if all values for that temp. type are
"good" and "bad" if at least one temp. is "bad".

CDAY(14,2) array for printed output indicating values
that should be manually checked and edited.

3.2.14.5 Description

CHECK begins by counting reasonable temperatures and flagging unreasonable ones. When a station has at least 5 "good" max temps, and/or 5 "good" min temps, for the two-week period, the mean temperature, variance, standard deviation, and upper and lower confidence bounds of the temperature type are calculated. When both max and min are present for a day, differences between the two are calculated and summed; provided at least 5 differences for a station exist, the same statistics as for the max and/or min are calculated. CHECK attempts to find and calculate similar data for a station's three closest neighbor stations; 4-station averages of the mean temperature, standard deviation, lower and upper confidence bounds are figured. Whenever a large variation occurs between the mean of a temperature type and the corresponding 4-station mean, the 4-station mean is substituted.

Temperatures falling outside of the upper and lower confidence bounds are flagged. Then the maximum of one day is compared to the minimum of the next; whenever too much or no variation between the two are encountered, temperatures are flagged according to the type of variation. After all temperatures for a particular station have been checked, an array CDAY, denoting acceptable vs. not acceptable temperatures is filled. Beginning with the checks outside the upper and lower confidence bounds, the entire process is repeated. After the second pass through this part of CHECK, the value of IC is checked. For IC=1, no printout is generated, but for IC=2, the following is printed: a listing of max and min temperatures and their differences, the number of values of each, the mean, standard deviation, and lower and upper confidence bounds of each temperature, as well as the array CDAY indicating values that should be manually checked and edited before procedure SUZYQ is run.

3.2.14.6 Flowchart

Next page.

3.2.14.7 listing

Follows flowchart.

SUBROUTINE CHECK, con't

SUBROUTINE CHECK, CON IT

SUBROUTINE CHECK, CON'T


```

      SUBROUTINE CHECK(IG,IL)
      REAL XTEM(15,1),X744R(511,3),XSU(511,3),ABAR(3),ASD(3),RN(3),
     & SX(3)
      DATA ZKT(1)/1.565,1.95,2.126,2.749,3.291,3.891/
      DATA ZK2(1)/1.36,2.326,2.744,3.291,3.841,4.411/
      DATA ZD(1)/0.21,1.4,3.2,X/
      INTEGER ITYPE(3),IMIN,IMAX,IF,ITYPE(3),IMIN,IMAX,IF,ITYPE(3),
     & IFLAG(3),IHWAT(3),IHWHAT(3)
      INTEGER ITYPE(3),IMIN,IMAX,IF,ITYPE(3),IMIN,IMAX,IF,ITYPE(3),
     & IFLAG(3),IHWAT(3),IHWHAT(3)
      LOGICAL TFLAG(15,2)
      COMMON /VAL/ XTEMP,XHAR,XSU,LOWH,HIGHB,NT,TAP,JULTAN,IFLAG
      DO 70 K=1,NUMSTA
      DO 10 J=1,3
      SX(1)=0.0
      SX(2)=0.0
      SX(3)=0.0
      XSU(K,J)=0.0
      XSU(K,J)=0.0
      NT(K,J)=0
      L244(K,J)=0
      HIGHB(K,J)=0
 10  CONTINUE
      DO 20 J=1,2
      TFLAG(K,J)=.FALSE.
      DO 11 J=1,4
      TFLAG(K,J)=.TRUE.
      TFLAG(K,J)=.TRUE.
      TFLAG(K,J)=.TRUE.
 12  IF (ITEMPS(J,1)-HIGH) 10,10,10
 13  IF (ITEMPS(J,1)-LOW) 10,10,10
 14  RN(1)=RN(1)+1
      SX(1)=SX(1)+XTEMP(K,J,1)
      TFLAG(K,J)=.FALSE.
 15  CONTINUE
 20  CONTINUE
      DO 25 J=1,2
      IF (RN(1)-2.0) 55,52,52
 52  XHAR(K,1)=SX(1)/RN(1)
      NT(K,1)=RN(1)
      XD=0.0
      IF (J=1) 14
      IF (TFLAG(K,J)) GOTO 54
      XZ=XTEMP(K,J)-X744R(K,J)
      XZ=XZ/0.012
 54  CONTINUE
      XSU(K,1)=SQRT(XZ/(RN(1)-1.0))
      Z4=XSU(K,1)/(K,1)
      L244(K,1)=L244(K,1)-Z4
      HTEMP(K,1)=X744R(K,1)+240.5
 55  CONTINUE
      DO 56 J=1,4
      IF ((TFLAG(K,J,1)) .EQ. 1 .AND. (TFLAG(K,J,2))) GOTO 52
      RN(1)=RN(1)+1
      TEMP(K,1,1)=ITEMPS(J,2)-ITEMPS(J,1)
      SX(3)=SX(3)+XTEMP(K,J,3)
 56  CONTINUE
      IF (TFLAG(3)-5.0) 70,54,54
 54  X744R(1,1)=SX(1)/RN(1)
      XZ=XSU(K,1)
      XD=0.0

```

```

100 DO J = 1,14
101 IF ((TFLAG(K,J,1)) .OR. (TFLAG(K,J+2))) GOTO 66
102 X=XTMP(X,J,31)-YB&R(K,J)
103 X=XPAZ
104 CONTINUE
105 X=X(3)=SIN(T10/(RN(3)-1.0))
106 Z=XSIN(X,3)=COS(T10/(RN(3)-1.0))
107 L=1.0/(X,3)=1.0/(X,3)-74
108 M=LN(X,3)=LN(X,3)+2.31724005
109 T10=1.0
110 DO 110 X = 1.0001,STA
111 IF (INT(X,3).EQ.0) GOTO 100
112 Z=Z-1.0
113 T10=INT(X,3)+51 74,72,78
114 I=1
115 A4401(1)=X*X44(1)(I,1)
116 A4411(1)=X55(1)(I,1)
117 L0=4411(1)=LN(X44(1)(I,1))
118 M0=M44(1)=LN(X55(1)(I,1))
119 GOTO 116
120 I=1
121 A4401(1)=0
122 A4411(1)=0.0
123 AG0(1)=0.0
124 L0=4411(1)=0
125 M0=M44(1)=0
126 GOTO 116
127 K=1
128 DO 128 I = 1,3
129 X=X(I,1)
130 IF (X(I,1).LT.0) GOTO 86
131 I=I+1
132 N0=1.0
133 T=INT(X(I,1))-51 44,42,62
134 S=1
135 D=1
136 C=1
137 E=1
138 F=1
139 G=1
140 H=1
141 I=1
142 J=1
143 K=1
144 L=1
145 M=1
146 N=1
147 O=1
148 P=1
149 Q=1
150 R=1
151 S=1
152 T=1
153 U=1
154 V=1
155 W=1
156 X=1
157 Y=1
158 Z=1
159 A=1
160 B=1
161 C=1
162 D=1
163 E=1
164 F=1
165 G=1
166 H=1
167 I=1
168 J=1
169 K=1
170 L=1
171 M=1
172 N=1
173 O=1
174 P=1
175 Q=1
176 R=1
177 S=1
178 T=1
179 U=1
180 V=1
181 W=1
182 X=1
183 Y=1
184 Z=1
185 A=1
186 B=1
187 C=1
188 D=1
189 E=1
190 F=1
191 G=1
192 H=1
193 I=1
194 J=1
195 K=1
196 L=1
197 M=1
198 N=1
199 O=1
200 P=1
201 Q=1
202 R=1
203 S=1
204 T=1
205 U=1
206 V=1
207 W=1
208 X=1
209 Y=1
210 Z=1
211 A=1
212 B=1
213 C=1
214 D=1
215 E=1
216 F=1
217 G=1
218 H=1
219 I=1
220 J=1
221 K=1
222 L=1
223 M=1
224 N=1
225 O=1
226 P=1
227 Q=1
228 R=1
229 S=1
230 T=1
231 U=1
232 V=1
233 W=1
234 X=1
235 Y=1
236 Z=1
237 A=1
238 B=1
239 C=1
240 D=1
241 E=1
242 F=1
243 G=1
244 H=1
245 I=1
246 J=1
247 K=1
248 L=1
249 M=1
250 N=1
251 O=1
252 P=1
253 Q=1
254 R=1
255 S=1
256 T=1
257 U=1
258 V=1
259 W=1
260 X=1
261 Y=1
262 Z=1
263 A=1
264 B=1
265 C=1
266 D=1
267 E=1
268 F=1
269 G=1
270 H=1
271 I=1
272 J=1
273 K=1
274 L=1
275 M=1
276 N=1
277 O=1
278 P=1
279 Q=1
280 R=1
281 S=1
282 T=1
283 U=1
284 V=1
285 W=1
286 X=1
287 Y=1
288 Z=1
289 A=1
290 B=1
291 C=1
292 D=1
293 E=1
294 F=1
295 G=1
296 H=1
297 I=1
298 J=1
299 K=1
300 L=1
301 M=1
302 N=1
303 O=1
304 P=1
305 Q=1
306 R=1
307 S=1
308 T=1
309 U=1
310 V=1
311 W=1
312 X=1
313 Y=1
314 Z=1
315 A=1
316 B=1
317 C=1
318 D=1
319 E=1
320 F=1
321 G=1
322 H=1
323 I=1
324 J=1
325 K=1
326 L=1
327 M=1
328 N=1
329 O=1
330 P=1
331 Q=1
332 R=1
333 S=1
334 T=1
335 U=1
336 V=1
337 W=1
338 X=1
339 Y=1
340 Z=1
341 A=1
342 B=1
343 C=1
344 D=1
345 E=1
346 F=1
347 G=1
348 H=1
349 I=1
350 J=1
351 K=1
352 L=1
353 M=1
354 N=1
355 O=1
356 P=1
357 Q=1
358 R=1
359 S=1
360 T=1
361 U=1
362 V=1
363 W=1
364 X=1
365 Y=1
366 Z=1
367 A=1
368 B=1
369 C=1
370 D=1
371 E=1
372 F=1
373 G=1
374 H=1
375 I=1
376 J=1
377 K=1
378 L=1
379 M=1
380 N=1
381 O=1
382 P=1
383 Q=1
384 R=1
385 S=1
386 T=1
387 U=1
388 V=1
389 W=1
390 X=1
391 Y=1
392 Z=1
393 A=1
394 B=1
395 C=1
396 D=1
397 E=1
398 F=1
399 G=1
400 H=1
401 I=1
402 J=1
403 K=1
404 L=1
405 M=1
406 N=1
407 O=1
408 P=1
409 Q=1
410 R=1
411 S=1
412 T=1
413 U=1
414 V=1
415 W=1
416 X=1
417 Y=1
418 Z=1
419 A=1
420 B=1
421 C=1
422 D=1
423 E=1
424 F=1
425 G=1
426 H=1
427 I=1
428 J=1
429 K=1
430 L=1
431 M=1
432 N=1
433 O=1
434 P=1
435 Q=1
436 R=1
437 S=1
438 T=1
439 U=1
440 V=1
441 W=1
442 X=1
443 Y=1
444 Z=1
445 A=1
446 B=1
447 C=1
448 D=1
449 E=1
450 F=1
451 G=1
452 H=1
453 I=1
454 J=1
455 K=1
456 L=1
457 M=1
458 N=1
459 O=1
460 P=1
461 Q=1
462 R=1
463 S=1
464 T=1
465 U=1
466 V=1
467 W=1
468 X=1
469 Y=1
470 Z=1
471 A=1
472 B=1
473 C=1
474 D=1
475 E=1
476 F=1
477 G=1
478 H=1
479 I=1
480 J=1
481 K=1
482 L=1
483 M=1
484 N=1
485 O=1
486 P=1
487 Q=1
488 R=1
489 S=1
490 T=1
491 U=1
492 V=1
493 W=1
494 X=1
495 Y=1
496 Z=1
497 A=1
498 B=1
499 C=1
500 D=1
501 E=1
502 F=1
503 G=1
504 H=1
505 I=1
506 J=1
507 K=1
508 L=1
509 M=1
510 N=1
511 O=1
512 P=1
513 Q=1
514 R=1
515 S=1
516 T=1
517 U=1
518 V=1
519 W=1
520 X=1
521 Y=1
522 Z=1
523 A=1
524 B=1
525 C=1
526 D=1
527 E=1
528 F=1
529 G=1
530 H=1
531 I=1
532 J=1
533 K=1
534 L=1
535 M=1
536 N=1
537 O=1
538 P=1
539 Q=1
540 R=1
541 S=1
542 T=1
543 U=1
544 V=1
545 W=1
546 X=1
547 Y=1
548 Z=1
549 A=1
550 B=1
551 C=1
552 D=1
553 E=1
554 F=1
555 G=1
556 H=1
557 I=1
558 J=1
559 K=1
560 L=1
561 M=1
562 N=1
563 O=1
564 P=1
565 Q=1
566 R=1
567 S=1
568 T=1
569 U=1
570 V=1
571 W=1
572 X=1
573 Y=1
574 Z=1
575 A=1
576 B=1
577 C=1
578 D=1
579 E=1
580 F=1
581 G=1
582 H=1
583 I=1
584 J=1
585 K=1
586 L=1
587 M=1
588 N=1
589 O=1
590 P=1
591 Q=1
592 R=1
593 S=1
594 T=1
595 U=1
596 V=1
597 W=1
598 X=1
599 Y=1
600 Z=1
601 A=1
602 B=1
603 C=1
604 D=1
605 E=1
606 F=1
607 G=1
608 H=1
609 I=1
610 J=1
611 K=1
612 L=1
613 M=1
614 N=1
615 O=1
616 P=1
617 Q=1
618 R=1
619 S=1
620 T=1
621 U=1
622 V=1
623 W=1
624 X=1
625 Y=1
626 Z=1
627 A=1
628 B=1
629 C=1
630 D=1
631 E=1
632 F=1
633 G=1
634 H=1
635 I=1
636 J=1
637 K=1
638 L=1
639 M=1
640 N=1
641 O=1
642 P=1
643 Q=1
644 R=1
645 S=1
646 T=1
647 U=1
648 V=1
649 W=1
650 X=1
651 Y=1
652 Z=1
653 A=1
654 B=1
655 C=1
656 D=1
657 E=1
658 F=1
659 G=1
660 H=1
661 I=1
662 J=1
663 K=1
664 L=1
665 M=1
666 N=1
667 O=1
668 P=1
669 Q=1
670 R=1
671 S=1
672 T=1
673 U=1
674 V=1
675 W=1
676 X=1
677 Y=1
678 Z=1
679 A=1
680 B=1
681 C=1
682 D=1
683 E=1
684 F=1
685 G=1
686 H=1
687 I=1
688 J=1
689 K=1
690 L=1
691 M=1
692 N=1
693 O=1
694 P=1
695 Q=1
696 R=1
697 S=1
698 T=1
699 U=1
700 V=1
701 W=1
702 X=1
703 Y=1
704 Z=1
705 A=1
706 B=1
707 C=1
708 D=1
709 E=1
710 F=1
711 G=1
712 H=1
713 I=1
714 J=1
715 K=1
716 L=1
717 M=1
718 N=1
719 O=1
720 P=1
721 Q=1
722 R=1
723 S=1
724 T=1
725 U=1
726 V=1
727 W=1
728 X=1
729 Y=1
730 Z=1
731 A=1
732 B=1
733 C=1
734 D=1
735 E=1
736 F=1
737 G=1
738 H=1
739 I=1
740 J=1
741 K=1
742 L=1
743 M=1
744 N=1
745 O=1
746 P=1
747 Q=1
748 R=1
749 S=1
750 T=1
751 U=1
752 V=1
753 W=1
754 X=1
755 Y=1
756 Z=1
757 A=1
758 B=1
759 C=1
760 D=1
761 E=1
762 F=1
763 G=1
764 H=1
765 I=1
766 J=1
767 K=1
768 L=1
769 M=1
770 N=1
771 O=1
772 P=1
773 Q=1
774 R=1
775 S=1
776 T=1
777 U=1
778 V=1
779 W=1
780 X=1
781 Y=1
782 Z=1
783 A=1
784 B=1
785 C=1
786 D=1
787 E=1
788 F=1
789 G=1
790 H=1
791 I=1
792 J=1
793 K=1
794 L=1
795 M=1
796 N=1
797 O=1
798 P=1
799 Q=1
800 R=1
801 S=1
802 T=1
803 U=1
804 V=1
805 W=1
806 X=1
807 Y=1
808 Z=1
809 A=1
810 B=1
811 C=1
812 D=1
813 E=1
814 F=1
815 G=1
816 H=1
817 I=1
818 J=1
819 K=1
820 L=1
821 M=1
822 N=1
823 O=1
824 P=1
825 Q=1
826 R=1
827 S=1
828 T=1
829 U=1
830 V=1
831 W=1
832 X=1
833 Y=1
834 Z=1
835 A=1
836 B=1
837 C=1
838 D=1
839 E=1
840 F=1
841 G=1
842 H=1
843 I=1
844 J=1
845 K=1
846 L=1
847 M=1
848 N=1
849 O=1
850 P=1
851 Q=1
852 R=1
853 S=1
854 T=1
855 U=1
856 V=1
857 W=1
858 X=1
859 Y=1
860 Z=1
861 A=1
862 B=1
863 C=1
864 D=1
865 E=1
866 F=1
867 G=1
868 H=1
869 I=1
870 J=1
871 K=1
872 L=1
873 M=1
874 N=1
875 O=1
876 P=1
877 Q=1
878 R=1
879 S=1
880 T=1
881 U=1
882 V=1
883 W=1
884 X=1
885 Y=1
886 Z=1
887 A=1
888 B=1
889 C=1
890 D=1
891 E=1
892 F=1
893 G=1
894 H=1
895 I=1
896 J=1
897 K=1
898 L=1
899 M=1
900 N=1
901 O=1
902 P=1
903 Q=1
904 R=1
905 S=1
906 T=1
907 U=1
908 V=1
909 W=1
910 X=1
911 Y=1
912 Z=1
913 A=1
914 B=1
915 C=1
916 D=1
917 E=1
918 F=1
919 G=1
920 H=1
921 I=1
922 J=1
923 K=1
924 L=1
925 M=1
926 N=1
927 O=1
928 P=1
929 Q=1
930 R=1
931 S=1
932 T=1
933 U=1
934 V=1
935 W=1
936 X=1
937 Y=1
938 Z=1
939 A=1
940 B=1
941 C=1
942 D=1
943 E=1
944 F=1
945 G=1
946 H=1
947 I=1
948 J=1
949 K=1
950 L=1
951 M=1
952 N=1
953 O=1
954 P=1
955 Q=1
956 R=1
957 S=1
958 T=1
959 U=1
960 V=1
961 W=1
962 X=1
963 Y=1
964 Z=1
965 A=1
966 B=1
967 C=1
968 D=1
969 E=1
970 F=1
971 G=1
972 H=1
973 I=1
974 J=1
975 K=1
976 L=1
977 M=1
978 N=1
979 O=1
980 P=1
981 Q=1
982 R=1
983 S=1
984 T=1
985 U=1
986 V=1
987 W=1
988 X=1
989 Y=1
990 Z=1
991 A=1
992 B=1
993 C=1
994 D=1
995 E=1
996 F=1
997 G=1
998 H=1
999 I=1
1000 J=1
1001 K=1
1002 L=1
1003 M=1
1004 N=1
1005 O=1
1006 P=1
1007 Q=1
1008 R=1
1009 S=1
1010 T=1
1011 U=1
1012 V=1
1013 W=1
1014 X=1
1015 Y=1
1016 Z=1
1017 A=1
1018 B=1
1019 C=1
1020 D=1
1021 E=1
1022 F=1
1023 G=1
1024 H=1
1025 I=1
1026 J=1
1027 K=1
1028 L=1
1029 M=1
1030 N=1
1031 O=1
1032 P=1
1033 Q=1
1034 R=1
1035 S=1
1036 T=1
1037 U=1
1038 V=1
1039 W=1
1040 X=1
1041 Y=1
1042 Z=1
1043 A=1
1044 B=1
1045 C=1
1046 D=1
1047 E=1
1048 F=1
1049 G=1
1050 H=1
1051 I=1
1052 J=1
1053 K=1
1054 L=1
1055 M=1
1056 N=1
1057 O=1
1058 P=1
1059 Q=1
1060 R=1
1061 S=1
1062 T=1
1063 U=1
1064 V=1
1065 W=1
1066 X=1
1067 Y=1
1068 Z=1
1069 A=1
1070 B=1
1071 C=1
1072 D=1
1073 E=1
1074 F=1
1075 G=1
1076 H=1
1077 I=1
1078 J=1
1079 K=1
1080 L=1
1081 M=1
1082 N=1
1083 O=1
1084 P=1
1085 Q=1
1086 R=1
1087 S=1
1088 T=1
1089 U=1
1090 V=1
1091 W=1
1092 X=1
1093 Y=1
1094 Z=1
1095 A=1
1096 B=1
1097 C=1
1098 D=1
1099 E=1
1100 F=1
1101 G=1
1102 H=1
1103 I=1
1104 J=1
1105 K=1
1106 L=1
1107 M=1
1108 N=1
1109 O=1
1110 P=1
1111 Q=1
1112 R=1
1113 S=1
1114 T=1
1115 U=1
1116 V=1
1117 W=1
1118 X=1
1119 Y=1
1120 Z=1
1121 A=1
1122 B=1
1123 C=1
1124 D=1
1125 E=1
1126 F=1
1127 G=1
1128 H=1
1129 I=1
1130 J=1
1131 K=1
1132 L=1
1133 M=1
1134 N=1
1135 O=1
1136 P=1
1137 Q=1
1138 R=1
1139 S=1
1140 T=1
1141 U=1
1142 V=1
1143 W=1
1144 X=1
1145 Y=1
1146 Z=1
1147 A=1
1148 B=1
1149 C=1
1150 D=1
1151 E=1
1152 F=1
1153 G=1
1154 H=1
1155 I=1
1156 J=1
1157 K=1
1158 L=1
1159 M=1
1160 N=1
1161 O=1
1162 P=1
1163 Q=1
1164 R=1
1165 S=1
1166 T=1
1167 U=1
1168 V=1
1169 W=1
1170 X=1
1171 Y=1
1172 Z=1
1173 A=1
1174 B=1
1175 C=1
1176 D=1
1177 E=1
1178 F=1
1179 G=1
1180 H=1
1181 I=1
1182 J=1
1183 K=1
1184 L=1
1185 M=1
1186 N=1
1187 O=1
1188 P=1
1189 Q=1
1190 R=1
1191 S=1
1192 T=1
1193 U=1
1194 V=1
1195 W=1
1196 X=1
1197 Y=1
1198 Z=1
1199 A=1
1200 B=1
1201 C=1
1202 D=1
1203 E=1
1204 F=1
1205 G=1
1206 H=1
1207 I=1
1208 J=1
1209 K=1
1210 L=1
1211 M=1
1212 N=1
1213 O=1
1214 P=1
1215 Q=1
1216 R=1
1217 S=1
1218 T=1
1219 U=1
1220 V=1
1221 W=1
1222 X=1
1223 Y=1
1224 Z=1
1225 A=1
1226 B=1
1227 C=1
1228 D=1
1229 E=1
1230 F=1
1231 G=1
1232 H=1
1233 I=1
1234 J=1
1235 K=1
1236 L=1
1237 M=1
1238 N=1
1239 O=1
1240 P=1
1241 Q=1
1242 R=1
1243 S=1
1244 T=1
1245 U=1
1246 V=1
1247 W=1
1248 X=1
1249 Y=1
1250 Z=1
1251 A=1
1252 B=1
1253 C=1
1254 D=1
1255 E=1
1256 F=1
1257 G=1
1258 H=1
1259 I=1
1260 J=1
1261 K=1
1262 L=1
1263 M=1
1264 N=1
1265 O=1
1266 P=1
1267 Q=1
1268 R=1
1269 S=1
1270 T=1
1271 U=1
1272 V=1
1273 W=1
1274 X=1
1275 Y=1
1276 Z=1
1277 A=1
1278 B=1
1279 C=1
1280 D=1
1281 E=1
1282 F=1
1283 G=1
1284 H=1
1285 I=1
1286 J=1
1287 K=1
1288 L=1
1289 M=1
1290 N=1
1291 O=1
1292 P=1
1293 Q=1
1294 R=1
1295 S=1
1296 T=1
1297 U=1
1298 V=1
1299 W=1
1300 X=1
1301 Y=1
1302 Z=1
1303 A=1
1304 B=1
1305 C=1
1306 D=1
1307 E=1
1308 F=1
1309 G=1
1310 H=1
1311 I=1
1312 J=1
1313 K=1
1314 L=1
1315 M=1
1316 N=1
1317 O=1
1318 P=1
1319 Q=1
1320 R=1
1321 S=1
1322 T=1
1323 U=1
1324 V=1
1325 W=1
1326 X=1
1327 Y=1
1328 Z=1
1329 A=1
1330 B=1
1331 C=1
1332 D=1
1333 E=1
1334 F=1
1335 G=1
1336 H=1
1337 I=1
1338 J=1
1339 K=1
1340 L=1
1341 M=1
1342 N=1
1343 O=1
1344 P=1
1345 Q=1
1346 R=1
1347 S=1
1348 T=1
1349 U=1
1350 V=1
1351 W=1
1352 X=1
1353 Y=1
1354 Z=1
1355 A=1
1356 B=1
1357 C=1
1358 D=1
1359 E=1
1360 F=1
1361 G=1
1362 H=1
1363 I=1
1364 J=1
1365 K=1
1366 L=1
1367 M=1
1368 N=1
1369 O=1
1370 P=1
1371 Q=1
1372 R=1
1373 S=1
1374 T=1
1375 U=1
1376 V=1
1377 W=1
1378 X=1
1379 Y=1
1380 Z=1
1381 A=1
1382 B=1
1383 C=1
1384 D=1
1385 E=1
1386 F=1
1387 G=1
1388 H=1
1389 I=1
1390 J=1
1391 K=1
1392 L=1
1393 M=1
1394 N=1
1395 O=1
1396 P=1
1397 Q=1
1398 R=1
1399 S=1
1400 T=1
1401 U=1
1402 V=1
1403 W=1
1404 X=1
1405 Y=1
1406 Z=1
1407 A=1
1408 B=1
1409 C=1
1410 D=1
1411 E=1
1412 F=1
1413 G=1
1414 H=1
1415 I=1
1416 J=1
1417 K=1
1418 L=1
1419 M=1
1420 N=1
1421 O=1
1422 P=1
1423 Q=1
1424 R=1
1425 S=1
1426 T=1
1427 U=1
1428 V=1
1429 W=1
1430 X=1
1431 Y=1
1432 Z=1
1433 A=1
1434 B=1
1435 C=1
1436 D=1
1437 E=1
1438 F=1
1439 G=1
1440 H=1
1441 I=1
1442 J=1
1443 K=1
1444 L=1
1445 M=1
1446 N=1
1447 O=1
1448 P=1
1449 Q=1
1450 R=1
1451 S=1
1452 T=1
1453 U=1
1454 V=1
1455 W=1
1456 X=1
1457 Y=1
1458 Z=1
1459 A=1
1460 B=1
1461 C=1
1462 D=1
1463 E=1
1464 F=1
1465 G=1
1466 H=1
1467 I=1
1468 J=1
1469 K=1
1470 L=1
1471 M=1
1472 N=1
1473 O=1
1474 P=1
1475 Q=1
1476 R=1
1477 S=1
1478 T=1
1479 U=1
1480 V=1
1481 W=1
1482 X=1
1483 Y=1
1484 Z=1
1485 A=1
1486 B=1
1487 C=1
1488 D=1
1489 E=1
1490 F=1
1491 G=1
1492 H=1
1493 I=1
1494 J=1
1495 K=1
1496 L=1
1497 M=1
1498 N=1
1499 O=1
1500 P=1
1501 Q=1
1502 R=1
1503 S=1
1504 T=1
1505 U=1
1506 V=1
1507 W=1
1508 X=1
1509 Y=1
1510 Z=1
1511 A=1
1512 B=1
1513 C=1
1514 D=1
1515 E=1
1516 F=1
1517 G=1
1518 H=1
1519 I=1
1520 J=1
1521 K=1
1522 L=1
1523 M=1
1524 N=1
1525 O=1
1526 P=1
1527 Q=1
1528 R=1
1529 S=1
1530 T=1
1531 U=1
1532 V=1
1533 W=1
1534 X=1
1535 Y=1
1536 Z=1
1537 A=1
1538 B=1
1539 C=1
1540 D=1
1541 E=1
1542 F=1
1543 G=1
1544 H=1
1545 I=1
1546 J=1
1547 K=1
1548 L=1
1549 M=1
1550 N=1
1551 O=1
1552 P=1
1553 Q=1
1554 R=1
1555 S=1
1556 T=1
1557 U=1
1558 V=1
1559 W=1
1560 X=1
1561 Y=1
1562 Z=1
1563 A=1
1564 B=1
1565 C=1
1566 D=1
1567 E=1
1568 F=1
1569 G=1
1570 H=1
1571 I=1
1572 J=1
1573 K=1
1574 L=1
1575 M=1
1576 N=1
1577 O=1
1578 P=1
1579 Q=1
1580 R=1
1581 S=1
1582 T=1
1583 U=1
1584 V=1
1585 W=1
1586 X=1
1587 Y=1
1588 Z=1
1589 A=1
1590 B=1
1591 C=1
1592 D=1
1593 E=1
1594 F=1
1595 G=1
1596 H=1
1597 I=1
1598 J=1
1599 K=1
1600 L=1
1601 M=1
1602 N=1
1603 O=1
1604 P=1
1605 Q=1
1606 R=1
1607 S=1
1608 T=1
1609 U=1
1610 V=1
1611 W=1
1612 X=1
1613 Y=1
1614 Z=1
1615 A=1
1616 B=1
1617 C=1
1618 D=1
1619 E=1
1620 F=1
1621 G=1
1622 H=1
1623 I=1
1624 J=1
1625 K=1
1626 L=1
1627 M=1
1628 N=1
1629 O=1
1630 P=1
1631 Q=1
1632 R=1
1633 S=1
1634 T=1
1635 U=1
1636 V=1
1637 W=1
1638 X=1
1639 Y=1
1640 Z=1
1641 A=1
1642 B=1
1643 C=1
1644 D=1
1645 E=1
1646 F=1
1647 G=1
1648 H=1
1649 I=1
1650 J=1
1651 K=1
1652 L=1
1653 M=1
1654 N=1
1655 O=1
1656 P=1
1657 Q=1
1658 R=1
1659 S=1
1660 T=1
1661 U=1
1662 V=1
1663 W=1
1664 X=1
1665 Y=1
1666 Z=1
1667 A=1
1668 B=1
1669 C=1
1670 D=1
1671 E=1
1672 F=1
1673 G=1
1674 H=1
1675 I=1
1676 J=1
1677 K=1
1678 L=1
1679 M=1
1680 N=1
1681 O=1
1682 P=1
1683 Q=1
1684 R=1
1685 S=1
1686 T=1
1687 U=1
1688 V=1
1689 W=1
1690 X=1
1691 Y=1
1692 Z=1
1693 A=1
1694 B=1
1695 C=1
1696 D=1
1697 E=1
1698 F=1
1699 G=1
1700 H=1
1701 I=1
1702 J=1
1703 K=1
1704 L=1
1705 M=1
1706 N=1
1707 O=1
1708 P=1
1709 Q=1
1710 R=1
1711 S=1
1712 T=1
1713 U=1
1714 V=1
1715 W=1
1716 X=1
1717 Y=1
1718 Z=
```

100 CONTINUE
 100 200 K = 1,NUMSTA
 100 J = 1,2
 IF (IT(K+1)=5) 110,102,102
 102 105 J = 1,14
 IF (TFLAG(K,J,I)) GOTO 108
 T=XTM(K,J,I)+0.5
 IF (IT-L)<0.5 106,104,104
 IF (IT-H)>H(K,I)) 108,108,106
 TFLAG(K,J,I)=.TRUE.
 110 C1,T1,I
 IF (IT(I+3)=5) 130,112,112
 112 115 J = 1,14
 IF (IT(K,J,I)+0.5,TFLAG(K,J,I)) GOTO 126
 T=XTM(K,J,I)
 IF (IT-L)<0.5 114,114,114
 114 IF (IT-H)>H(K,I)) 115,26,126
 115 T=XTM(K,J,I)-XH(K,I)
 Q=AB5(ATEMP(K,J,I)-XH(K,I))
 P=(10-I)*120+122,124
 TFLAG(K,J,I)=.TRUE.
 121 T1,I
 122 TFLAG(K,J,I)=.TRUE.
 TFLAG(K,J,I)=.TRUE.
 123 T1,I
 124 TFLAG(K,J,I)=.TRUE.
 125 IF (IT(I+1)<1).LT.S1.OR.(IT(K+2).LT.S1) GOTO 140
 J=2+I
 T=XTM(K,J,I)+0.5,TFLAG(K,J,I)) GOTO 138
 T=XTM(K,J,I)+0.5
 132 T=XTM(K,J,I)-XH(K,I)
 Q=AB5(ATEMP(K,J,I)-XH(K,I))
 P=(10-I)*120+122,124
 TFLAG(K,J,I)=.TRUE.
 134 T1,I
 135 TFLAG(K,J,I)=.TRUE.
 TFLAG(K,J,I)=.TRUE.
 137 TFLAG(K,J,I)=.TRUE.
 138 C1,T1,I
 139 J=2+I = 1,2
 C1,T1,I
 IF (IT(K,J,I)+0.5,TFLAG(K,J,I)) GOTO 148
 C1,T1,I
 TFLAG(K,J,I)=.TRUE.
 144 CONTINUE
 145 150 IF (IT(K,J,I)+0.5,TFLAG(K,J,I)+NOT,TFLAG(K,J,I)) GOTO 200
 J=3-1
 150 IT(K,J,I)+0.5,TFLAG(K,J,I)+TYPEF(J)+JULIAN+(XTEMP(K,J,I)+[M=1,14],
 C1,T1,I)+XH(K,J,I)+XSD(K,J,I)+LVMH(K,J,I)+H13MB(K,J,I),
 C1,T1,I)+14
 151 IT(K,J,I)+0.5,TFLAG(K,J,I)+NOT,TFLAG(K,J,I)+TYPEF(J)+JULIAN+(XTEMP(K,J,I)+[M=1,14],
 C1,T1,I)+XH(K,J,I)+XSD(K,J,I)+LVMH(K,J,I)+H13MB(K,J,I)

ORIGINAL PAGE IS
 OF POOR QUALITY

10015 FORMATT(IX,X,1X,A4,I3,I4F6.0,I5,2FB,2,2I5)
200 CONTINUE
RETURN
END

60

3.2.15 SUBROUTINE REPLAC

REPLAC attempts to find and insert replacement values for temperatures flagged as unacceptable by CHECK.

3.2.15.1 Linkages

REPLAC uses COMMON blocks INDEX and VALL.

3.2.15.2 Interfaces

None.

3.2.15.3 Inputs

IE = 1 edit but do not print results

= 2 edit and print results

JULIAN ending date of the previous 2-week period

where I is the number of stations involved,

XTEMP(I,14,3)

IAP(I,3)

XBAR(I,3)

XSD(I,3)

LOWB(I,3)

HIGHB(I,3)

NT(I,3)

TFLAG(I,J5,2)

See sections 3.2.14.3 and 3.2.14.4 for descriptions of these variables.

3.2.15.4 Outputs

Replacement values inserted into array XTEMP (I,14,3), where I is the number of stations, as well as messages indicating a successful substitution or the inability to make a substitution.

3.2.15.5 Description

This subroutine is executed twice each time it is called. REPLAC determines if any values for a particular station need to be replaced. When substitutions need to be made, several algorithms are available:

- A) At least seven temperatures of the station and type in**

- question are available, as well as data from alternate stations;
- B) at least seven temps are available, but no alternate station data;
 - C) fewer than seven temps are available.

Algorithm A will utilize up to four days of data from the primary station and up to five days of data from each alternate station, provided the stations also meet the criterion of at least seven "good" temperatures. For each station involved, the temperatures are standardized and averaged. A weighting factor is also calculated for each station, as well as an average weighting factor. The replacement value is the sum of the standardized value for the primary station and the average weighting factor.

Algorithm B will first attempt to find a replacement value using the other temperature of the day if it is available (i.e., the max to find the min or vice versa). If this is not successful, REPLAC will try to use the average of up to four days of data for the replacement temperature. If no alternate days are available within a prescribed vicinity of the day in question, the replacement value will be the mean max or min value of the entire 14-day period.

Algorithm C will use the average temperature of the alternate stations for the day in question as the replacement. If Algorithm C does not generate a replacement value, a message to that effect will be printed.

After substitutions for all stations needing them have been made and the subroutine has been executed twice, control returns to program EDITOR.

3.2.15.6 Flowchart

Next page.

3.2.15.7 Listing

Follows flowchart.

SUBROUTINE REPLAC, CON'T

SUBROUTINE REPLAC, CON't

3.2.15.7
SUBROUTINE

SUBROUTINE DEPLAC(IE)
REAL ATEND(511,14,3), XBAR(511,3), XSD(511,3), SX(3), DN(3)

REAL ZD(71,14,3)

INTEGER I, INT(511,3), HIGHR(511,3), NM0(511), TEMPST(4,2)

INTEGER J, JULIAN, MLL, I

INTEGER K, NT(511,3), AP(511,3), NALT(3)

INTEGER L, NUSTA, FILLER, NMO

COMMON /INDEX/ NUSTA, FILLER, NMO

COMMON /VAL/ ATEND, XBAR, AS1, LOWR, HIGHR, NT, TAP, JULIAN, TFLAG

DN 5000 RR = 1.2

DO 4000 STA = 1, NMSTA

IF (.NOT. TFLAG(1,STA,1)) .AND. (.NOT. TFLAG(1,IS,1)) GOTO 4000

DAY = 1.14

IF (.NOT. TFLAG(1,STA,1)) GOTO 3000

IF (INT(1,STA,1M)) LT. 7) GOTO 2200

C * REPLACE MISSING VALUE USING MEANS AND STANDARD DEVIATIONS

C CHECK FOR ALTERNATE STATIONS

ZD=0.0

RR=0.0

IF ((AP(1,STA,1)).LT.1) GOTO 2040

K=1.0 (NSTA,1)

IF (TFLAG(1,K,1).LT.1) GOTO 2040

IF (INT(1,1M).LT.7) GOTO 2040

N=1.1

NALT(1,1)

ZD=ZD*(ATEND(K,1,1)-XBAR(K,1M))/XSD(K,1M)

2040 CONTINUE

IF (N.LT.1) GOTO 2110

C * ALT-MATE STATIONS AVAILABLE

ZD=ZD/FLOAT(N)

ZD=ZD*(NSTA,1M)-XBAR(NSTA,1M)

C CHECK FOR ALTERNATE STATION BIAS

JDAY=1DAY

ZD=0.0

2050 JDAY=JDAY-1

IF ((JDAY.LT.1).OR.(JDAY.LT.((1DAY-3))) GOTO 2070

IF (TFLAG(1,STA,JDAY,1)) GOTO 2050

ZD=0.0

M=0

NN 2050 J = 1,N

K=N,ALT(1)

IF (TFLAG(K,JDAY,1)) GOTO 2060

MM=N+1

ZD=ZD*(ATEND(K,JDAY,1M)-XBAR(K,1M))/XSD(K,1M)

2060 CONTINUE

IF (MM.LT.1) GOTO 2065

XZ=ZD/FLOAT(MM)*XSD(NSTA,1M)+XBAR(NSTA,1M)

ZD=ZD*(XTE 49((NSTA,JDAY,1))-XZ)

NN=NN+1

2065 IF (NN.LT.2) GOTO 2050

2070 JDAY=JDAY+1

2080 JDAY=JDAY+1

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22
Q23
Q24
Q25
Q26
Q27
Q28
Q29
Q30
Q31
Q32
Q33
Q34
Q35
Q36
Q37
Q38
Q39
Q40
Q41
Q42
Q43
Q44
Q45
Q46
Q47
Q48
Q49
Q50
Q51
Q52
Q53
Q54
Q55
Q56
Q57
Q58
Q59
Q60
Q61
Q62
Q63
Q64
Q65
Q66
Q67
Q68
Q69
Q70
Q71
Q72
Q73
Q74
Q75
Q76
Q77
Q78
Q79
Q80
Q81
Q82
Q83
Q84
Q85
Q86
Q87
Q88
Q89
Q90
Q91
Q92
Q93
Q94
Q95
Q96
Q97
Q98
Q99
Q100
Q101
Q102
Q103
Q104
Q105
Q106
Q107
Q108
Q109
Q110
Q111
Q112
Q113
Q114
Q115
Q116
Q117
Q118
Q119
Q120
Q121
Q122
Q123
Q124
Q125
Q126
Q127
Q128
Q129
Q130
Q131
Q132
Q133
Q134
Q135
Q136
Q137
Q138
Q139
Q140
Q141
Q142
Q143
Q144
Q145
Q146
Q147
Q148
Q149
Q150
Q151
Q152
Q153
Q154
Q155
Q156
Q157
Q158
Q159
Q159
Q160
Q161
Q162
Q163
Q164
Q165
Q166
Q167
Q168
Q169
Q170
Q171
Q172
Q173
Q174
Q175
Q176
Q177
Q178
Q179
Q179
Q180
Q181
Q182
Q183
Q184
Q185
Q186
Q187
Q188
Q189
Q189
Q190
Q191
Q192
Q193
Q194
Q195
Q196
Q197
Q198
Q199
Q199
Q200
Q201
Q202
Q203
Q204
Q205
Q206
Q207
Q208
Q209
Q209
Q210
Q211
Q212
Q213
Q214
Q215
Q216
Q217
Q218
Q219
Q219
Q220
Q221
Q222
Q223
Q224
Q225
Q226
Q227
Q228
Q229
Q229
Q230
Q231
Q232
Q233
Q234
Q235
Q236
Q237
Q238
Q239
Q239
Q240
Q241
Q242
Q243
Q244
Q245
Q246
Q247
Q248
Q249
Q249
Q250
Q251
Q252
Q253
Q254
Q255
Q256
Q257
Q258
Q259
Q259
Q260
Q261
Q262
Q263
Q264
Q265
Q266
Q267
Q268
Q269
Q269
Q270
Q271
Q272
Q273
Q274
Q275
Q276
Q277
Q278
Q278
Q279
Q279
Q280
Q281
Q282
Q283
Q284
Q285
Q286
Q287
Q288
Q288
Q289
Q289
Q290
Q291
Q292
Q293
Q294
Q295
Q296
Q297
Q297
Q298
Q298
Q299
Q299
Q300
Q301
Q302
Q303
Q304
Q305
Q306
Q307
Q308
Q308
Q309
Q309
Q310
Q311
Q312
Q313
Q314
Q315
Q316
Q317
Q318
Q318
Q319
Q319
Q320
Q321
Q322
Q323
Q324
Q325
Q326
Q327
Q328
Q328
Q329
Q329
Q330
Q331
Q332
Q333
Q334
Q335
Q336
Q337
Q338
Q338
Q339
Q339
Q340
Q341
Q342
Q343
Q344
Q345
Q346
Q347
Q348
Q348
Q349
Q349
Q350
Q351
Q352
Q353
Q354
Q355
Q356
Q357
Q358
Q358
Q359
Q359
Q360
Q361
Q362
Q363
Q364
Q365
Q366
Q367
Q368
Q368
Q369
Q369
Q370
Q371
Q372
Q373
Q374
Q375
Q376
Q377
Q378
Q378
Q379
Q379
Q380
Q381
Q382
Q383
Q384
Q385
Q386
Q387
Q388
Q388
Q389
Q389
Q390
Q391
Q392
Q393
Q394
Q395
Q396
Q397
Q397
Q398
Q398
Q399
Q399
Q400
Q401
Q402
Q403
Q404
Q405
Q406
Q407
Q408
Q408
Q409
Q409
Q410
Q411
Q412
Q413
Q414
Q415
Q416
Q417
Q418
Q418
Q419
Q419
Q420
Q421
Q422
Q423
Q424
Q425
Q426
Q427
Q428
Q428
Q429
Q429
Q430
Q431
Q432
Q433
Q434
Q435
Q436
Q437
Q438
Q438
Q439
Q439
Q440
Q441
Q442
Q443
Q444
Q445
Q446
Q447
Q448
Q448
Q449
Q449
Q450
Q451
Q452
Q453
Q454
Q455
Q456
Q457
Q458
Q458
Q459
Q459
Q460
Q461
Q462
Q463
Q464
Q465
Q466
Q467
Q468
Q468
Q469
Q469
Q470
Q471
Q472
Q473
Q474
Q475
Q476
Q477
Q478
Q478
Q479
Q479
Q480
Q481
Q482
Q483
Q484
Q485
Q486
Q487
Q488
Q488
Q489
Q489
Q490
Q491
Q492
Q493
Q494
Q495
Q496
Q497
Q497
Q498
Q498
Q499
Q499
Q500
Q501
Q502
Q503
Q504
Q505
Q506
Q507
Q508
Q508
Q509
Q509
Q510
Q511
Q512
Q513
Q514
Q515
Q516
Q517
Q518
Q518
Q519
Q519
Q520
Q521
Q522
Q523
Q524
Q525
Q526
Q527
Q528
Q528
Q529
Q529
Q530
Q531
Q532
Q533
Q534
Q535
Q536
Q537
Q538
Q538
Q539
Q539
Q540
Q541
Q542
Q543
Q544
Q545
Q546
Q547
Q548
Q548
Q549
Q549
Q550
Q551
Q552
Q553
Q554
Q555
Q556
Q557
Q558
Q558
Q559
Q559
Q560
Q561
Q562
Q563
Q564
Q565
Q566
Q567
Q568
Q568
Q569
Q569
Q570
Q571
Q572
Q573
Q574
Q575
Q576
Q577
Q578
Q578
Q579
Q579
Q580
Q581
Q582
Q583
Q584
Q585
Q586
Q587
Q588
Q588
Q589
Q589
Q590
Q591
Q592
Q593
Q594
Q595
Q596
Q597
Q597
Q598
Q598
Q599
Q599
Q600
Q601
Q602
Q603
Q604
Q605
Q606
Q607
Q608
Q608
Q609
Q609
Q610
Q611
Q612
Q613
Q614
Q615
Q616
Q617
Q618
Q618
Q619
Q619
Q620
Q621
Q622
Q623
Q624
Q625
Q626
Q627
Q628
Q628
Q629
Q629
Q630
Q631
Q632
Q633
Q634
Q635
Q636
Q637
Q638
Q638
Q639
Q639
Q640
Q641
Q642
Q643
Q644
Q645
Q646
Q647
Q648
Q648
Q649
Q649
Q650
Q651
Q652
Q653
Q654
Q655
Q656
Q657
Q658
Q658
Q659
Q659
Q660
Q661
Q662
Q663
Q664
Q665
Q666
Q667
Q668
Q668
Q669
Q669
Q670
Q671
Q672
Q673
Q674
Q675
Q676
Q677
Q678
Q678
Q679
Q679
Q680
Q681
Q682
Q683
Q684
Q685
Q686
Q687
Q688
Q688
Q689
Q689
Q690
Q691
Q692
Q693
Q694
Q695
Q696
Q697
Q697
Q698
Q698
Q699
Q699
Q700
Q701
Q702
Q703
Q704
Q705
Q706
Q707
Q708
Q708
Q709
Q709
Q710
Q711
Q712
Q713
Q714
Q715
Q716
Q717
Q718
Q718
Q719
Q719
Q720
Q721
Q722
Q723
Q724
Q725
Q726
Q727
Q728
Q728
Q729
Q729
Q730
Q731
Q732
Q733
Q734
Q735
Q736
Q737
Q738
Q738
Q739
Q739
Q740
Q741
Q742
Q743
Q744
Q745
Q746
Q747
Q748
Q748
Q749
Q749
Q750
Q751
Q752
Q753
Q754
Q755
Q756
Q757
Q758
Q758
Q759
Q759
Q760
Q761
Q762
Q763
Q764
Q765
Q766
Q767
Q768
Q768
Q769
Q769
Q770
Q771
Q772
Q773
Q774
Q775
Q776
Q777
Q778
Q778
Q779
Q779
Q780
Q781
Q782
Q783
Q784
Q785
Q786
Q787
Q788
Q788
Q789
Q789
Q790
Q791
Q792
Q793
Q794
Q795
Q796
Q797
Q797
Q798
Q798
Q799
Q799
Q800
Q801
Q802
Q803
Q804
Q805
Q806
Q807
Q808
Q808
Q809
Q809
Q810
Q811
Q812
Q813
Q814
Q815
Q816
Q817
Q818
Q818
Q819
Q819
Q820
Q821
Q822
Q823
Q824
Q825
Q826
Q827
Q828
Q828
Q829
Q829
Q830
Q831
Q832
Q833
Q834
Q835
Q836
Q837
Q838
Q838
Q839
Q839
Q840
Q841
Q842
Q843
Q844
Q845
Q846
Q847
Q848
Q848
Q849
Q849
Q850
Q851
Q852
Q853
Q854
Q855
Q856
Q857
Q858
Q858
Q859
Q859
Q860
Q861
Q862
Q863
Q864
Q865
Q866
Q867
Q868
Q868
Q869
Q869
Q870
Q871
Q872
Q873
Q874
Q875
Q876
Q877
Q878
Q878
Q879
Q879
Q880
Q881
Q882
Q883
Q884
Q885
Q886
Q887
Q888
Q888
Q889
Q889
Q890
Q891
Q892
Q893
Q894
Q895
Q896
Q897
Q897
Q898
Q898
Q899
Q899
Q900
Q901
Q902
Q903
Q904
Q905
Q906
Q907
Q908
Q908
Q909
Q909
Q910
Q911
Q912
Q913
Q914
Q915
Q916
Q917
Q918
Q918
Q919
Q919
Q920
Q921
Q922
Q923
Q924
Q925
Q926
Q927
Q928
Q928
Q929
Q929
Q930
Q931
Q932
Q933
Q934
Q935
Q936
Q937
Q938
Q938
Q939
Q939
Q940
Q941
Q942
Q943
Q944
Q945
Q946
Q947
Q948
Q948
Q949
Q949
Q950
Q951
Q952
Q953
Q954
Q955
Q956
Q957
Q958
Q958
Q959
Q959
Q960
Q961
Q962
Q963
Q964
Q965
Q966
Q967
Q968
Q968
Q969
Q969
Q970
Q971
Q972
Q973
Q974
Q975
Q976
Q977
Q978
Q978
Q979
Q979
Q980
Q981
Q982
Q983
Q984
Q985
Q986
Q987
Q988
Q988
Q989
Q989
Q990
Q991
Q992
Q993
Q994
Q995
Q996
Q997
Q998
Q998
Q999
Q999
Q1000
Q1001
Q1002
Q1003
Q1004
Q1005
Q1006
Q1007
Q1008
Q1008
Q1009
Q1009
Q1010
Q1011
Q1012
Q1013
Q1014
Q1015
Q1016
Q1017
Q1018
Q1018
Q1019
Q1019
Q1020
Q1021
Q1022
Q1023
Q1024
Q1025
Q1026
Q1027
Q1028
Q1028
Q1029
Q1029
Q1030
Q1031
Q1032
Q1033
Q1034
Q1035
Q1036
Q1037
Q1038
Q1038
Q1039
Q1039
Q1040
Q1041
Q1042
Q1043
Q1044
Q1045
Q1046
Q1047
Q1048
Q1048
Q1049
Q1049
Q1050
Q1051
Q1052
Q1053
Q1054
Q1055
Q1056
Q1057
Q1058
Q1058
Q1059
Q1059
Q1060
Q1061
Q1062
Q1063
Q1064
Q1065
Q1066
Q1067
Q1068
Q1068
Q1069
Q1069
Q1070
Q1071
Q1072
Q1073
Q1074
Q1075
Q1076
Q1077
Q1078
Q1078
Q1079
Q1079
Q1080
Q1081
Q1082
Q1083
Q1084
Q1085
Q1086
Q1087
Q1088
Q1088
Q1089
Q1089
Q1090
Q1091
Q1092
Q1093
Q1094
Q1095
Q1096
Q1097
Q1098
Q1098
Q1099
Q1099
Q1100
Q1101
Q1102
Q1103
Q1104
Q1105
Q1106
Q1107
Q1108
Q1108
Q1109
Q1109
Q1110
Q1111
Q1112
Q1113
Q1114
Q1115
Q1116
Q1117
Q1118
Q1118
Q1119
Q1119
Q1120
Q1121
Q1122
Q1123
Q1124
Q1125
Q1126
Q1127
Q1128
Q1128
Q1129
Q1129
Q1130
Q1131
Q1132
Q1133
Q1134
Q1135
Q1136
Q1137
Q1138
Q1138
Q1139
Q1139
Q1140
Q1141
Q1142
Q1143
Q1144
Q1145
Q1146
Q1147
Q1148
Q1148
Q1149
Q1149
Q1150
Q1151
Q1152
Q1153
Q1154
Q1155
Q1156
Q1157
Q1158
Q1158
Q1159
Q1159
Q1160
Q1161
Q1162
Q1163
Q1164

IF ((JDAY+GT+14) > 00 . (JDAY+GT+ (JDAY+3))) GOTO 2100
IF ((FLAG(ISTA,JDAY+IM)) GOTO 2080

N1=0

NN 20>0 I = 1.N

IF ((FLAG(K,JDAY+IM)) GOTO 2090
Z1=21-(XTEMP(ISTA,JDAY+IM)-XBAR(IX,IM))/XSD(IX,IM)

2090 CONTINUE

IF ((N1<LT+1)) GOTO 2095

Z2=21/FLAG(ISTA,JDAY+IM)*XSN(ISTA,JDAY+IM)+XBAR(ISTA,JDAY+IM)

Z3=70-(XTEMP(ISTA,JDAY+IM)-Z2)

N2=N1+1

2095 IF ((N2.LT.0)) GOTO 2080

Z100 IF ((N2.GT.0)) Z1=2H/LOAT(NZ)

GOTO 2500

C ** NO STATION TEMP STATIONS AVAILABLE

C CHECK FOR OTHER TEMP WITHIN PRIMARY STATION

2110 I0=1

IF ((I0.LT.10)) LT,SI GOTO 2120

IF ((FLAG(ISTA,JDAY+I0)) GOTO 2120
Z1=21-TEMP(ISTA,JDAY+I0)-XBAR(ISTA,I0))
ASD(ISTA,I0)

GOTO 2500

C ** NOT OTHER TEMP AVAILABLE

C CHECK SAME TEMPS WITHIN PRIMARY STATION

2120 JDAY=JDAY

Z1=0.U

N2=0

2130 JDAY=JDAY-1

IF ((JDAY+LT+1).NE.(JDAY-LT-(JDAY-3))) GOTO 2135

IF ((FLAG(ISTA,JDAY+IM)) GOTO 2130

Z1=21-TEMP(ISTA,JDAY+1)

N3=1

IF ((N3.LT.2)) GOTO 2130

2135 JDAY=JDAY

Z1=0.U

IF ((JDAY+LT+1).NE.(JDAY-GT+(JDAY+3))) GOTO 2145

IF ((FLAG(ISTA,JDAY+IM)) GOTO 2140

Z1=21-TEMP(ISTA,JDAY+1)

N3=1

IF ((N3.LT.2)) GOTO 2140

IF ((N3.LT.1)) GOTO 2150

Z1=21/LOAT(NZ)

GOTO 2500

C ** NO TEMP WITHIN PRIMARY STATION USEABLE

C USE PRIMARY STATION MEAN

2150 XBAR(IX,IM)

GOTO 2500

C *** NO STATION MEANS AND STANDARD DEVIATIONS

C CHECK FOR ALTERNATE STATIONS

2200 Z0=0.0

N1=0

IF ((I0.LT.1)) LT,SI GOTO 2210

IF ((FLAG(K,JDAY+IM)) GOTO 2210

N=N+1
70=70+XTEMP(K,1DAY,IM)
2210 CONTINUE
IF (N.LT.1) GOTO 2600
C C ** ALTERNATE STATION AVAILABLE
C X0=70/FLOAT(N)
C **** REPLACE MISSING VALUE WITH SUBSTITUTE VALUE
C 2500 XTEMP(ISTA,1DAY,1)=X0
TFLAG(ISTA,1DAY,1)=FALSE.
IF (IE.NE.2) GOTO 3000
JULL=JULIAN+1DAY-1
WRITE (6,10021) WMO(ISTA),JULL,ITYPE(IM),XR
10021 FMT='(I5,I5,I5,I4,I4,A4,
' 'TEMP WAS MISSING. A VALUE OF ''F5.0'' HAS BEEN SUBSTITUTED. '')
GOTO 3000
C C ***** NO VALUE FOUND FOR SUBSTITUTION
C 2600 JULL=JULIAN+1DAY-1
WRITE (6,10022) WMO(ISTA),JULL,ITYPE(IM)
10022 FMT='(I5,I5,I5,I4,I4,A4,
' 'TEMP WAS MISSING. NO VALUE AVAILABLE FOR SUBSTITUTION. ****)
3000 CONTINUE
4000 CONTINUE
5000 RETURN
END

89

3.2.16 PROGRAM CROPCALN

CROPCALN reads the weather data and models the crop progress.

3.2.16.1 Linkages

CROPCALN calls subroutines INIT, SWAP, START, PHENO and TERM.

3.2.16.2 Interfaces

CROPCALN is run after file CROPDATA has been edited.

3.2.16.3 Inputs

The old master file is assumed on Unit 1, INDEX on Unit 2, and CROPDATA on Unit 4.

3.2.16.4 Outputs

Unit 6 is the printer, GRIDINFO is on Unit 8, the new master file is on Unit 9, and ARNO is on Unit 11.

3.2.16.5 Description

CROPCALN begins by writing a header to the printer and calling INIT. The program then enters a loop and reads a station. SWAP is called to obtain weather data from CROPDATA; CROPCALN checks and adjusts for a two-week period that spans two years and verifies the data obtained from CROPDATA, writing error messages ceasing operations for that particular station when errors are encountered. If the crop stage has not yet reached 1.0, START is called. If STAGE is between 1.0 and 6.0, CROPCALN goes into an inner loop; the daily crop progress for the two-week period is calculated via the subroutine PHENO and written to file GRIDINFO. Information is also written to file ARNO and the new master file. After all stations have been processed, ending messages are written to ARNO, the new master file, and the printer. TERM is called to print messages and close CROPDATA.

3.2.16.6 Flowchart

Next page.

3.2.16.7 Listing

Follows flowchart.

PROGRAM CHURCHILL, CON'T

more

PROGRAM (CHART), CON'T

~~3-275~~

PROGRAM CROPCALN

3.2.16.7
Phoenician

PAGE IS
DE POOR
QUALITY

75

ORIGINAL PAGE IS
OF POOR QUALITY

3.2.17 JCL FILE SUZYQ

Executing JCL file SUZYQ invokes the crop calendar model.

3.2.17.1 Linkages

None.

3.2.17.2 Interfaces

None.

3.2.17.3 Inputs

None.

3.2.17.4 Outputs

None.

3.2.17.5 Description

JCL file SUZYQ binds the files referenced by CROPCALN to that program and request the invocation of CROPCALN.

3.2.17.6 Listing

```
//SUZYQPROCOLD=,NEW=,DSP=MOD
//TRACKEXECPGM=CROPCALN
//STEPLIBDDDSN=W.EDS.CCEA.PHASE3.LOAD,DISP=SHR
//FT01F001DDDSN=W.EDS.CCEA.{GROUP I }.MASTER&OLD.,DISP=SHR,
{GROUP II }
//DCB=BUFNO=1
//FT02F001DDDSN=W.EDS.CCEA.{GROUP I }.INDEX,DISP=SHR,DCB=BUFNO=1
{GROUP II }
//FT04F001DDDSN=W.EDS.CCEA.{GROUP I }.CROCDATA,DISP=SHR,
{GROUP II }
//DCB=BUFNO=1
//FT06F001DDDSYSOUT=A
//FT08F001DDDSN=W.EDS.CCEA.{GROUP I }.GRIDINFO,DISP=&DSP.,
{GROUP II }
//DCB=BUFNO=1
//FT09F001DDDSN=W.EDS.CCEA.{GROUP I }.MASTER&NEW., DISP=SHR,
{GROUP II }
//DCB=BUFNO=1
//FT11F001DDDSN=W.EDS.CCEA.{GROUP I }.ARNO,DISP=SHR,DCB=BUFNO=1
{GROUP II }
```

```
//REPORT EXEC PGM=IEBPTPCH
//SYSUT1 DD DSN=W.EDS.CCEA.{GROUP I } .ARNO,DISP=SHR
//SYSIN DD DSN=W.EDS.CCEA.DATALIB(PREFORM),DISP=SHR
//SYSPRINT DD DUMMY
//SYSUT2 DD SYSOUT=A
//DD DD PEND
```

3.2.18 SUBROUTINE START

START accumulates temperature data to determine the planting date for individual spring wheat crop calendar stations.

3.2.18.1 Linkages

None.

3.2.18.2 Interfaces

None.

3.2.18.3 Inputs and Outputs

CDEV	cumulative development variable
STAGE	value of Robertson Scale
CROP	winter wheat = 11, spring wheat = 12
MIN	minimum temperature for a given day
MAX	maximum temperature for a given day

3.2.18.4 Description

Subroutine START automatically sets STAGE to 1.0 for winter wheat stations. Spring wheat stations must reach a CDEV>35.5 before STAGE is set to 1.0. For average daily temperatures greater than 42°F, CDEV is increased by the value of 1.0. When average daily temperatures fall between 32°F and 42°F, CDEV is increased by one tenth the difference between the day's average and 32°F.

3.2.18.5 Flowchart

Next page.

3.2.18.6 Listing

Follows flowchart.

SUBROUTINE START(CDEV,V,STAGE,CROP,MIN,MAX)

INTEGER CDEV,MIN,MAX

REAL CDEV,STAGE,AVG

IF(CDEV<=0.1)GOTO 100

100>LOAD(MIN+MAX)/2.0

IF(AVG>LF*32.0)GOTO 200

IF(AVG<LF*12.0)GOTO 300

AVG=V/CDEV*0.1+(AVG-SF*0.0)

GOTO 400

300 CDEV=CDEV*1.0

400 IF((URV*1.0-32.5)>0)GOTO 200

200 SF=SF*1.0

END

108

3.2.19 SUBROUTINE PHENO

PHFNO is the routine which converts max and min temperatures and daylength into crop progress via Robertson's model with Feyerherm's modifications.

3.2.19.1 Linkages

PHENO calls real function DL.

3.2.19.2 Interfaces

None.

3.2.19.3 Inputs and Outputs

TODAY	Julian day being considered
STAGE	value of Robertson Scale
CROP	winter wheat = 11, spring wheat = 12
MIN	minimum temperature for a given day
MAX	maximum temperature for a given day
MULT	an array of 5 stage- and station-specific multipliers
ALAT	station latitude in hundredths of degrees
ALONG	station longitude in hundredths of degrees

3.2.19.4 Description

Subroutine PHENO calls function DL to compute the daylength of the day in question. The daylength, maximum and minimum temperatures are adjusted according to the stage of the previous day. Three stage advance factors are calculated using stage-specific coefficients: V1 uses daylength, V2 maximum temperature, and V3 minimum temperature. AINCR, the day's crop progress, is computed using the three stage advance factors and a station- and stage-specific multiplier; this is added to STAGE. If the crop stage is advancing too quickly during the fall, STAGE is held constant until a certain Julian date is reached. A check is made to see if the integer portion of STAGE has changed during the above calculations. If no change has occurred, operations return to the main program. When change in the integer portion of STAGE does occur, the amount of change (VT) is calculated, and the day's progress

is refigured. The value of STAGE to be returned to the main program is then calculated, adding the integer portion of STAGE to the product of the PCNT and AINCR.

3.2.19.5 Flowchart

Next page.

3.2.19.6 Listing

Follows flowchart.

SURVEYING PHENOMENON

3.2.20 FUNCTION DL

DL converts latitude and date to daylength in hours.

3.2.20.1 Linkage

None.

3.2.20.2 Interfaces

None.

3.2.20.3 Inputs

**XLAT station latitude in hundredths of degrees
DATE Julian day being considered**

3.2.20.4 Outputs

Daylength in hours.

3.2.20.5 Description

After initializing constants, the function calculates the angle of the sun on the equator for the date and then adjusts the angle according to the station's latitude. The daylength is computed using the product of the arc cosine of this angle and a constant value.

3.2.20.6 Flowchart

Next page.

3.2.20.7 Listing

Follows flowchart.

~~3-20~~

84

~~302~~

```
REAL FUNCTION D1(XLAT,DATF)
REAL XLAT, DAY, FPH, COH
INTFCDF DATF
DAY = DATF
FPH = 23.5 * SIN((7.99 - 30 * (DATF - 80.0)) * PI)
COH = -TAN(XLAT) * TAN(FPH)
CLEARCOST(COH) = 7.6408787
RETURN
END
```

88

ORIGINAL
PAGE IS
POOR
QUALITY

3.2.21 PROGRAM INSDEL

INSDEL is the main routine of the data replacement module. It allows the individual replacement of data in the weather file.

3.2.21.1 Linkages

Program INSDEL call subroutines INIT, SWAP and TERM.

3.2.21.2 Interfaces

INSDEL is run only when the EDIT procedure cannot satisfactorily edit the entire contents of CROPPDATA. If needed, INSDEL is executed before program JSCTAPE can be run.

3.2.21.3 Inputs

The INDEX file is on Unit 2, CROPPDATA on Unit 4, and the card input containing data corrections is on Unit 5.

3.2.21.4 Outputs

Corrections are made in CROPPDATA. Some error messages may appear.

3.2.21.5 Description

After calling INIT, INSDEL reads a card and scans it to see if it is an 'INS'ert or a 'DEL'ete card. Using SWAP, INSDEL then reads the span of days and type of temperature to be changed. If 'DEL' was indicated, the appropriate temperatures are set to missing (9999); if INS was called for, a card containing the new temperatures is read and then temperatures are inserted into CROPPDATA. Any time problems are encountered with the card input, an error message is printed and the program proceeds to the next card. After all cards have been processed, TERM is called.

3.2.21.6 Flowchart

Next page.

3.2.21.7 Listing

Follows flowchart.

PROGRAM INSDEL, CON'IT

488

PROGRAM INSDEL, CON'T

~~2-10~~

**INDIVIDUAL PAGE IS
DE-FOOD QUALITY**

100 5.1 INS COMMAND IGNORED 1.1
100 5.1 INITIATE
CALL TEA4
STOP
END

ORIGINAL
OF PAGE
NUMBER IS

94

3.2.22 JCL FILE INSERT

Executing JCL file **INSERT** invokes the **INSDEL** program.

3.2.22.1 Linkages

None.

3.2.22.2 Interfaces

None.

3.2.22.3 Inputs

Cards containing the information necessary to correct CROPTDATA must be inserted. See Section 4.2.2.5 for formats.

3.2.22.4 Outputs

None.

3.2.22.5 Description

JCL file **INSERT** binds the files referenced by **INSDEL** to that program and requests the execution of **INSDEL**.

3.2.22.6 Listing

```
//INSERT&PROC  
//INS&EXEC&PGM=INSDEL  
//STEPLIB&DD&DSN=W.EDS.CCEA.PHASE3.LOAD,DISP=SHR  
//FT02F001&DD&DSN=W.EDS.CCEA.{GROUPI } INDEX,DISP=SHR  
//FT04F001&DD&DSN=W.EDS.CCEA.{GROUPI }.CROPTDATA,DISP=SHR  
//FT05F001&DD&DDNAME=SYSIN  
//FT06F001&DD&SYSOUT=A  
//&&&PEND
```

3.2.23 PROGRAM DRECOVER

This program fills the INDEX file from card input.

3.2.23.1 Linkages

None.

3.2.23.2 Interfaces

Whenever changes are to be made in the INDEX file, DRECOVER is run to reconstruct the entire file.

3.2.23.3 Inputs

Input to DRECOVER is by cards; the first card contains the number of stations to be in the INDEX file, punched in columns 1-3. Each subsequent card contains a station to be in the file, and its three closest neighbor stations, in 4(I5,1X) format.

3.2.23.4 Outputs

The INDEX file is created.

3.2.23.5 Description

DRECOVER reads all input cards, sorting the data into NUMSTA (number of stations) and two arrays: WMO, containing all stations on the INDEX file, and STATN, containing the three closest stations to each station in array, WMO. DRECOVER then writes all data to the INDEX file.

3.2.23.6 Flowchart

Next page.

3.2.23.7 Listing

Follows flowchart.

~~97~~

```
//DRECOVER JOB ('DD10008E1HEA  ', 'COLUM'),VONHOLT,REGION=256K,TIME=1
//SF EXEC NCDGOCGO
//SYSIN DD *
  INTEGER WMO(511),STATN(511,3)
  INTEGER*2 NUMSTA
  READ(5,1,END=2)NUMSTA,(WMO(I),(STATN(I,J),J=1,3),I=1,511)
  1 FORMAT(I3,/,255(4(I5,1X),/),255(4(I5,1X),/))
  2 WRITE(8,3)NUMSTA,(WMO(I),(STATN(I,J),J=1,3),I=1,511)
  3 FORMAT(A2.2X,255A4,/,10(2(128A4),/))
  STOP
  END
/*
//SYSGO DD *
```

96

3.2.24 PROGRAM JSCTAPE

JSCTAPE is a PL/I program transferring data from disk file GRIDINFO to a tape to be sent to Houston.

3.2.24.1 Linkages

None.

3.2.24.2 Interfaces

JSCTAPE should not be executed until an error-free run of CROPCALN has been processed.

3.2.24.3 Inputs

Disk file GRIDINFO and a card containing header information for the tape. See Section 4.2.3 for card format.

3.2.24.4 Outputs

JSCTAPE outputs a tape copy of file GRIDINFO preceded by a header indicating the countries and Julian dates involved.

3.2.24.5 Description

The program reads the card with header information and copies this information both to tape and to the printer. JSCTAPE proceeds to read each record of GRIDINFO and write the data to both the tape and the printer. When end-of-file is encountered, a closing message is written to the printer and operation ceases.

3.2.24.6 Flowchart

Next page.

3.2.24.7 Listing

Follows flowchart.

3

```
JSCTAPE: PROC OPTIONS(MAIN);
  DCL INSTR CHAR(20);
  DCL SYSIN FILE STREAM INPUT;
  DCL SYSPRINT FILE PRINT OUTPUT;
  DCL IN FILE RECORD INPUT;
  DCL OUT FILE RECORD OUTPUT;
  DM FILE(1) GOTO EXIT;
  OPEN FILE(SYSPRINT) • FILE(IN) • FILE(OUT);
  INSTR='';
  GET FILE(SYSPRINT) EDIT(INSTR)(COL(1),A(80));
  WRITE FILE(OUT) FROM(INSTR);
  PUT FILE(SYSPRINT) EDIT(INSTR)(SKIP,A(80));
  1,100: READ FILE(1) INTO(INSTR);
  WRITE FILE(1) FROM(INSTR);
  PUT FILE(SYSPRINT) EDIT(INSTR)(SKIP,A(80));
  GOTO 1,100;
  EXIT: PUT FILE(SYSPRINT) EDIT(1000 END OF FILE IN 0000)(SKIP(3),A);
  CLOSE FILE(SYSIN) • FILE(SYSPRINT) • FILE(IN) • FILE(OUT);
END JSCTAPE;
```

101

ORIGINAL
PAGE IS
ROOF QUALITY

4. OPERATION

Operation of the Robertson Phenological Model is a mixed human/machine procedure. This document describes the mechanical procedures.

4.1 USER DOCUMENTATION

Most of the work involved in operating the crop calendar is in the preparation of meteorological (met) data. To do this properly requires a knowledge of the organization of the crop calendar and met data files.

Crop calendar countries are separated into two sets: Group I - the U.S., China, and India, and Group II - Canada and the U.S.S.R. Each set is run every two weeks with any given 14-day period ending on a Sunday, and the groups are run in alternating weeks (Group I one week, Group II the next). Therefore the 14-day periods comprising each crop calendar run for each group are not identical. For example, the 2-week periods in Julian days for Group I may be 52-65, 66-79, and 80-93, while the 14-day periods for Group II may be 59-72, 73-86, and 87-100.

Met data input is divided by months and by area (North America and non-North America). Previous months' data are on tape, while the current month's data are on disk. For each group there is a maximum of four met data collection runs per two-week period. (last month, this month) x (North America, non-North America).

4.2 PROCEDURES

In total, eight procedures are involved: one to construct the INDEX file, six to prepare data and run the Robertson Phenological Model, and one to prepare a tape of crop calendar data for use in Houston.

4.2.1 CONSTRUCTING THE INDEX FILE (DRECOVER)

Whenever changes are to be made in the INDEX file, DRECOVER is run to reconstruct the entire file. Card input follows the program cards as in the example below:

```
//FT08F001DDSNS=W.EDS.CCEA.{GROUPI }.INDEX,DISP=SHR
{GROUPII}
//SYSGODDS*
235
42809|42971|42798|42492
43003|43192|43014|43117
etc.
/*
//
```

4.2.2 CROP CALENDAR PROCEDURES

There are two sets of Job Control Language (JCL) PROC's; one for the Group I countries and one for Group II. The JCL accesses the partitioned dataset W.EDS.CCEA.PHASE3.LOAD containing all crop calendar programs in executable form. The deck for the appropriate group is input each time any crop calendar program is run. The EXEC card (or cards) for each program in the following sections of explanation refers to a PROC contained in these JCL decks, and is placed after the final //PEND card in the JCL deck.

The JCL decks for Group I and Group II are found on the following two pages.

JCL PROCEDURES FOR

GROUP I

```
//LIST PROC
//LIST EXEC PGM=PRINT
//STEPLIB DD DSN=W.EDS.CCEA.PHASE3.LOAD DISP=SHR
//FT02F001 DD DSN=W.EDS.CCEA.GROUP1 INDEX DISP=SHR
//FT04F001 DD DSN=W.EDS.CCEA.GROUP1.CRODATA DISP=SHR
//FT06F001 DD SYSOUT=A
// PEND
//FDIT PROC
//EDIT EXEC PGM=EDITOR,TIME=(.15)
//STEPLIB DD DSN=W.EDS.CCEA.PHASE3.LOAD DISP=SHR
//FT02F001 DD DSN=W.EDS.CCEA.GROUP1 INDEX DISP=SHR
//FT04F001 DD DSN=W.EDS.CCEA.GROUP1.CRODATA DISP=SHR
//FT05FC01 DD DUMMY
//FT06F001 DD SYSOUT=A
// PEND
//SUZYQ PROC ODE=.NEW=.DSP=MOD
//TPACK EXEC PGM=CROPCALN
//STEPLIB DD DSN=W.EDS.CCEA.PHASE3.LOAD DISP=SHR
//FT01F001 DD DSN=W.EDS.CCEA.GROUP1.MASTER&OLD.. DISP=SHR DCB=BUFNO=1
//FT02F001 DD DSN=W.EDS.CCEA.GROUP1 INDEX DISP=SHR DCB=BUFNO=1
//FT04F001 DD DSN=W.EDS.CCEA.GROUP1.CRODATA DISP=SHR DCB=BUFNO=1
//FT06F001 DD SYSOUT=A
//FT08F001 DD DSN=W.EDS.CCEA.GROUP1.GRIDINFO DISP=&DSP.,DCB=BUFNO=1
//FT09F001 DD DSN=W.EDS.CCEA.GROUP1.MASTER&NEW.. DISP=SHR DCB=BUFNO=1
//FT11F001 DD DSN=W.EDS.CCEA.GROUP1.ARNO DISP=SHR DCB=BUFNO=1
//REPORT EXEC PGM=IEPTPTCH
//SYSUT1 DD DSN=W.EDS.CCEA.GROUP1.ARNO DISP=SHR
//SYSIN DD DSN=W.EDS.CCEA.DATAT18(PRFFORM),DISP=SHR
//SYSPRINT DD DUMMY
//SYSUT2 DD SYSOUT=A
// PEND
//CLEAR PROC
//CLEAR EXEC PGM=CLEAR
//STEPLIB DD DSN=W.EDS.CCEA.PHASE3.LOAD DISP=SHR
//FT02F001 DD DSN=W.EDS.CCEA.GROUP1 INDEX DISP=SHR
//FT04F001 DD DSN=W.EDS.CCEA.GROUP1.CRODATA DISP=SHR
//FT06F001 DD SYSOUT=A
//FT05F001 DD DDNAME=SYSIN
// PEND
//INSERT PROC
//IIS EXEC PGM=INSDEL
//STEPLIB DD DSN=W.EDS.CCEA.PHASE3.LOAD DISP=SHR
//FT02F001 DD DSN=W.EDS.CCEA.GROUP1 INDEX DISP=SHR
//FT04F001 DD DSN=W.EDS.CCEA.GROUP1.CRODATA DISP=SHR
//FT05F001 DD DDNAME=SYSIN
//FT06F001 DD SYSOUT=A
// PEND
//CAPTURE PROC UNIT=&VOL=&DSN=W.EDS.CCEA.DAYDATA
//CAPTURE EXEC PGM=CAPTURE
//STEPLIB DD DSN=W.EDS.CCEA.PHASE3.LOAD DISP=SHR
//FT01F001 DD SYSOUT=A DCB=(LRECL=100,BLKSIZE=1500,RECFM=FB)
//FT02F001 DD DSN=&DSN.GROUP1 INDEX DISP=SHR
//FT03F001 DD DSN=&DSN.,DISP=SHR,UNIT=&UNIT.,VOL=SER=&VOL,LABEL=(,,IN)
//FT04F001 DD DSN=W.EDS.CCEA.GROUP1.CRODATA DISP=SHR
//FT06F001 DD SYSOUT=A
// PEND
```

ORIGINAL PAGE IS
OF POOR QUALITY

JCL PROCEDURES FOR

GROUP II

```
//LIST PROC
//LIST EXEC PGM=PRINT
//STEPL18 DD DSN=W.EDS.CCEA.PHASE3.LOAD.DISP=SHR
//FT02F001 DD DSN=W.EDS.CCEA.GROUPII.INDEX.DISP=SHR
//FT04F001 DD DSN=W.EDS.CCEA.GROUPII.CROPDATA.DISP=SHR
//FT05F001 DD SYSOUT=A
// PEND
//EDIT PROC
//EDIT EXEC PGM=EDITOR,TIME=(.15)
//STEPL18 DD DSN=W.EDS.CCEA.PHASE3.LOAD.DISP=SHR
//FT02F001 DD DSN=W.EDS.CCEA.GROUPII.INDEX.DISP=SHR
//FT04F001 DD DSN=W.EDS.CCEA.GROUPII.CROPDATA.DISP=SHR
//FT06F001 DD SYSOUT=A
// PEND
//SUZYQ PROC OLD=.NEW=.DSP=MOD
//TRACK EXEC PGM=CROPCALN
//STEPL18 DD DSN=W.EDS.CCEA.PHASE3.LOAD.DISP=SHR
//FT01F001 DD DSN=W.EDS.CCEA.GROUPII.MASTER&OLD..DISP=SHR.DCB=BUFN0=1
//FT02F001 DD DSN=W.EDS.CCEA.GROUPII.INDEX.DISP=SHR.DCB=BUFN0=1
//FT04F001 DD DSN=W.EDS.CCEA.GROUPII.CROPDATA.DISP=SHR.DCB=BUFN0=1
//FT06F001 DD SYSOUT=A
//FT08F001 DD DSN=W.EDS.CCEA.GROUPII.GRIDINFO.DISP=&DSP..DCB=BUFN0=1
//FT09F001 DD DSN=W.EDS.CCEA.GROUPII.MASTER&NEW..DISP=SHR.DCB=BUFN0=1
//FT11F001 DD DSN=W.EDS.CCEA.GROUPII.ARNO.DISP=SHR.DCB=BUFN0=1
//REPORT EXEC PGM=IEBPTPCH
//SYSUT1 DD DSN=W.EDS.CCEA.GROUPII.APNO.DISP=SHR
//SYSIN DD DSN=W.EDS.CCEA.DATALIB(PREFORM).DISP=SHR
//SYSPPNT DD DUMMY
//SYSUT2 DD SYSOUT=A
// PEND
//INSEPT PROC
//INS EXEC PGM=INSDEL
//STEPL18 DD DSN=W.EDS.CCEA.PHASE3.LOAD.DISP=SHR
//FT02F001 DD DSN=W.EDS.CCEA.GROUPII.INDEX.DISP=SHR
//FT04F001 DD DSN=W.EDS.CCEA.GROUPII.CROPDATA.DISP=SHR
//FT05F001 DD DDNAME=SYSIN
//FT06F001 DD SYSOUT=A
// PEND
//CLEAR PROC
//CLEAR EXEC PGM=CLEAR
//STEPL18 DD DSN=W.EDS.CCEA.PHASE3.LOAD.DISP=SHR
//FT02F001 DD DSN=W.EDS.CCEA.GROUPII.INDEX.DISP=SHR
//FT04F001 DD DSN=W.EDS.CCEA.GROUPII.CROPDATA.DISP=SHR
//FT05F001 DD DDNAME=SYSIN
//FT06F001 DD SYSOUT=A
// PEND
//CAPTURE PROC UNIT=,VOL=,DSN='W.EDS.CCEA.DAYDATA'
//CAPTURE EXEC PGM=CAPTURE
//STEPL18 DD DSN=W.EDS.CCEA.PHASE3.LOAD.DISP=SHR
//FT01F001 DD SYSOUT=A,DCB=(LRECL=100,BLKSIZE=1500,RECFM=FB)
//FT02F001 DD DSN=W.EDS.CCEA.GROUPII.INDEX.DISP=SHR
//FT03F001 DD DSN=W.EDS.CCEA.GROUPII.CROPDATA,DISP=SHR
//FT04F001 DD DSN=W.EDS.CCEA.GROUPII.CROPDATA,DISP=SHR
//FT05F001 DD SYSOUT=A
// PEND
```

4.2.2.1 INITIALIZING FILE CROPDATA (CLEAR)

The CLEAR program is called by the CLEAR procedure. This sets all temperatures in W.EDS.CCEA.~~{GROUPI }~~.CROPDATA to ~~{GROUPII}~~ '9999'. The starting date for the crop calendar period being run is also determined by CLEAR. The default option will add 14 to the starting date of the last period to get the new starting date for the period being run. This may be overridden by user input, which is required if the previous two-week period spans two years. Examples are given below:

- A. The default option.

```
//>EXEC>CLEAR
```

- B. Setting the starting date 28 days after the last period.

```
//>EXEC>CLEAR  
//FT05F001>DD>*  
28  
/*
```

- C. Setting the starting date for a new year (in this example, the previous starting date is 362 and the next one is 010; the change is a -352 and the following input is used).

```
//>EXEC>CLEAR  
//FT05F001>DD>:  
-352  
/*
```

4.2.2.2 FILLING FILE CROPDATA (CAPTURE)

The CAPTURE program is called by the CAPTURE procedure. This obtains maximum (MX) and minimum (MN) temperature data from catalogued disk files in the current month and from tape in past months. Four datasets can be accessed by CAPTURE:

1. W.EDS.CCEA.DAILY - to access North American data in the current month (disk file).
2. CCEA.xxx.SRTD - to access North American data in a past month (tape access) where 'xxx' is the month abbreviation (ex., CCEA.JAN.SRTD).

~~106~~

106

3. W.EDS.CCEA.DAYDATA - for non-North American data in the current month (disk file).
4. CCEA.DAILY.xxx - for non-North American data in a past month (tape access), where 'xxx' is the month abbreviation (ex., CCEA.DAILY.JAN.).

Data for past months is put on tape at Suitland, Maryland. The appropriate dataset name (and unit and tape number, if needed) is input on the EXEC card. When accessing North American data (W.EDS.CCEA.DAILY or CCEA.xxx.SRTD) the Julian date of the first day of the month that is being run must be input. This is not needed for non-North American data (W.EDS.CCEA.DAYDATA or CCEA.DAILY.xxx). See examples below:

A. GROUP I (China, India, and the U.S.)

To CAPTURE data entirely within the current month, the following input is used:

```
//>EXEC>CAPTURE,DSN='W.EDS.CCEA.DAYDATA'  
//>EXEC>CAPTURE,DSN='W.EDS.CCEA.DAILY'  
//FT05F001>DDM*  
001      (eg., for January)  
/*
```

To CAPTURE data which spans a two-month period, the following input is used:

```
//>EXEC>CAPTURE,DSN='CCEA.JAN.SRTD',UNIT=TAPE9,VOL=Exxxxx  
//FT05F0C1>DDM*  
001  
/*  
//>EXEC>CAPTURE,DSN='W.EDS.CCEA.DAILY'  
//FT05F001>DDM*  
032  
/*  
//>EXEC>CAPTURE,DSN='CCEA.DAILY.JAN',UNIT=TAPE9,VOL=Exxxxx  
//>EXEC>CAPTURE,DSN='W.EDS.CCEA.DAYDATA'  
/*
```

B. GROUP II (U.S.S.R. and Canada)

When running Group II the CAPTURE program that accesses W.EDS.CCEA.DAYDATA is on the CAPTURE procedure card in the JCL set-up; therefore the EXEC card need only read:
//>EXEC>PGM=CAPTURE. See examples below.

To CAPTURE data entirely within the current month, the following input is used:

```
//>EXEC>PGM=CAPTURE
//>EXEC>CAPTURE,DSN='W.EDS.CCEA.DAILY'
//FT05F001>DD>*
001    (eg., for January)
/*
```

To CAPTURE data which spans a two-month period, the following input is used:

```
//>EXEC>CAPTURE,DSN='CCEA.JAN.SRTD',UNIT=TAPE9,VOL=Exxxxxx
//FT05F001>DD>*
001    (eg., for January as a past month)
/*
//>EXEC>CAPTURE,DSN='W.EDS.CCEA.DAILY'
//FT05F001>DD>*
032    (for February)
/*
//>EXEC>CAPTURE,DSN='CCEA.DAILY.JAN',UNIT=TAPE9,VOL=Exxxxxx
//>EXEC>PGM=CAPTURE
/*
```

C. Spanning two years

Two runs of the CAPTURE program are needed; one will capture data for the end of the first year and the other will capture data for the beginning of the new year.

When CAPTURE is used on North American datasets for the end of the first year, the Julian date for December 1 is input as it was for previous December runs. Nothing else is required.

When CAPTURE is used on North American datasets for the beginning of the new year, the Julian date for January 1, 001, is input as expected. On the next input card the value of the new year is punched:

```
//>EXEC>CAPTURE,DSN='appropriate name'
//FT05F001>DD>*
335
/*
//>EXEC>CAPTURE,DSN='appropriate name'
//FT05F001>DD>*
001
1977
/*
```

When CAPTURE is used on non-North American datasets, no input

is needed on either run because both the year and the Julian date can be read from the dataset.

In all cases when two years are spanned, the year is needed to determine if the first year is a leap year so that the Julian dates greater than 365 can be adjusted correctly.

4.2.2.3 EDITING FILE CROCDATA (EDIT)

The EDITOR program is called by the procedure EDIT, and checks for inverted temperatures or missing data. There are three checks and two edits in this procedure. EDITOR scans the data twice and replaces or corrects missing data either by using data from the three closest stations or statistics generated by the primary station to find a substitute. The third time EDITOR checks the data and prints it out indicating the stations it could not correct, and stations where there are days with an unusually large or small gap between the MX and MN. The input for both GROUP I and GROUP II is as follows:

```
//>EXEC>EDIT
//FT05F001>DD0*>
>>>0>>1>>0>>0
>>>0>>1>>1>>0
>>>0>>2>>0>>1
/*
```

The EDIT PROC needs 250K.

To correct the data through input, use the INSERT procedure, explained in Section 4.2.2.5

4.2.2.4 RUNNING THE ROBERTSON PHENOLOGICAL MODEL (SUZYQ)

SUZYQ is the Crop Calendar procedure. It executes program CROPCALN which uses the daily temperatures to compute how much the crop should have progressed each day for the 14-day period. SUZYQ prints out to three files: GRIDINFO, which contains the daily increments of the crop stage and is subsequently put onto tape; ARNO, which allows the summary data (the last day of the period) to be accessed from a remote terminal in Houston; and MASTER, which has two files, 1 and 2, that writes the daily increments to the "old" file and the stage of the 14th day to the "new" file. The input is as follows:

```
//>EXEC>SUZYQ,OLD=1,NEW=2,DISP=OLD
or //>EXEC>SUZYQ,OLD=2,NEW=1,DISP=OLD
```

A record must be kept of which Master file (1 or 2) is used for input and output for each period (i.e., for OLD and NEW). The 14th (or last) day of the period is written onto the "new" file each run, which on the next run becomes the "old" file. The Crop Calendar procedure will begin incrementing at the correct date, using the 14th day of the "old" file to calculate the new starting date. The Master files are reversed each time SUZYQ is run. The SUZYQ procedure produces a summary output which prints out the last day of the period at the crop's stage.

It is easiest and most expedient to run EDIT and SUZYQ together. The EDIT "checker" Subroutine prints MX and MN, the difference between them, and indicates the days containing inverted temperatures or a wide or small gap between MX and MN by an 'XX'. SUZYQ prints the stations that have inverted temperatures and the day(s)on which this occurs (day 1, day 2, etc) in the 14-day period. These error messages appear in summary form as part of the crop calendar output. The input would be:

```
//BEXEC&EDIT
//FT05F001&DD&*
&&&0&&&1&&&1&&&0
&&&0&&&1&&&1&&&0
&&&0&&&2&&&0&&&1
/*          (2)    (1)
//BEXEC&SUZYQ,OLD=1,NEW=2,DISP=OLD
/*
```

When the two-week period spans two years, regardless of country, the value of the first year must be input:

```
(2)    (1)
//BEXEC&SUZYQ,OLD=1,NEW=2,DISP=OLD
//FT05F001&DD&*
1976
/*
```

As in the CAPTURE routine, the year is needed to determine if the first year is a leap year, so Julian dates in January can be adjusted correctly.

4.2.2.5 MANUAL EDITING OF FILE CROPDATA (INSERT)

If corrections need to be made for inverted temperatures or missing data, they are made with the INSERT procedure, which calls the program INSDEL. INSDEL will both insert and delete information; the two options are discussed separately.

~~scribble~~

A. To insert data.

```
//BEXEC BINSERT  
//FT05F001BDDB*  
INSBXXXXXBMXB000B000  
aaaaabbbbbccccddddd....  
/*
```

where: XXXXX is the station number
mx,mn indicates whether the maximum or minimum
temperature is to be changed
000 the range of days, by Julian date, to be
changed. If only one day is changed, the
second field may be omitted.
aaaaaa.. the actual change. in fields of 5 (14I5)

An example -- changing the maximum temperature for station
43758 to 61 and 63 on days 79 and 80 respectively:

```
INSB43758BMXB079B080  
B61B63
```

If only one day for a station is changed, the input would be:

```
INSB43758BMXB079  
B61
```

Any number of INSERT change cards may be run at the same
time, in groups of two as shown in the above examples.

When the INSERT procedure is run, SUZYQ should be run as
a separate step after INSERT to be sure the changes were
made and SUZYQ calculated the increments for those stations.
One way to make a quick check is to make sure the last day
of the period is the same Julian date printed out on the
SUZYQ crop calendar summary output. The INSERT program
also indicates if the correction was successful by messages
routed to the printer.

B. To delete data.

```
//BEXEC BINSERT  
//FT05F001BDDB*  
DELBXXXXXBMXB000B000  
/*
```

where: XXXXX is the station number
mx,mn indicates whether maximum or minimum tempera-
ture is to be deleted
000 the range of days, by Julian date to be
deleted. If only one day is deleted, the

///

second field may be omitted.

An example:

```
DEL\043758\MMN\083\085  
DEL\043758\MMX\083\085
```

This example would replace the maximum and minimum temperature values on days 83 to 85 with '9999' (indicating missing values).

As with the INS option, any number of delete cards may be run at the same time.

4.2.2.6 LISTING OF FILE CROCDATA (LIST)

The LIST procedure calls program PRINT and can be executed at any time to list the contents of the CROCDATA file. In all the procedures that are run for the Crop Calendar (CLEAR, CAPTURE, EDIT, SUZYQ, INSERT) the LIST procedure produces the listing of the data on CROCDATA and should be run with each program.

The input would be: //EXEC\LIST

4.2.3 COPYING FILE GRIDINFO TO TAPE (DSJSCTAPE)

This procedure, using program JSCTAPE, is run to put the crop calendar daily increments from file GRIDINFO onto tape to be sent to Houston. The JCL for DJSCTAP1 (for GROUP I) or DJSCTAP2 for (GROUP II) follows:

```
job card  
//PTIME=1,CLASS=C  
//EXEC\NPLIXCLG  
//PLI.SYSIN\DD\*  
//GO.IN\DD\DSN=W.EDS.CCEA.{GROUP I}.GRIDINFO,DISP=SHR  
{GROUP II}  
//GO.OUT\DD\UNIT=TAPE7,DISP=(NEW,KEEP),LABEL=(1,BLP,,OUT),  
//DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,DEN=2,TRTCH=ET),  
//VOL=SER=Exxxxx  
//GO.SYSIN\DD\*  
label card  
/*
```

On each run the VOL=SER='tape number' must be changed and the appropriate date for the period must be put on the label card

following the card //GO.SYSIN\DD**. The format for this card is as follows:

columns 1-6	CCCOOUT
7-8	year of first day of the run period
9-11	Julian date of first day of run period
13-14	year of last day of run period
15-17	Julian date of last day of run period
19-80	commentary - used to indicate the GROUP and countries on the tape

example: CCCOUT77101\77114\GROUPII-COUNTRIES:USSR,CANADA*

After the DJSCTAP job has been successfully run, the tape must be sent to Houston. CCEA/Columbia calls Suitland and gives Mr. Pennington the tape number, the group number, and the Julian dates for that run period. This information is for the outside label.

4.3 FLOWCHART

A flowchart showing the sequence of the crop calendar procedures is found on the following page.

