Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления »
Кафедра	«Компьютерные системы и сети »(ИУ6)
Группа	«ИУ6 - 64Б »

ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА

Отчет по домашнему заданию №2:

Методы численного решения нелинейных

уравнений

Вариант 12

Студент:		Кошенков Д.О.
	дата, подпись	
Преподаватель:		Орлова А. С.
	дата, подпись	

Содержание

1	Вве	дение	3
2	Зад	ание 1: Метод половинного деления	4
	2.1	Теоретические сведения	4
	2.2	Постановка задачи и локализация корня	4
	2.3	Программная реализация	5
	2.4	Результаты расчетов	8
	2.5	Анализ результатов	8
3	Зад	ание 2: Метод простой итерации и метод Ньютона	10
	3.1	Теоретические сведения	10
	3.2	Постановка задачи и локализация корней	10
	3.3	Расчетные формулы	11
	3.4	Программная реализация	12
	3.5	Результаты расчетов	17
	3.6	Анализ результатов	19
4	Вы		20

1 Введение

Цель домашней работы: изучение методов половинного деления (бисекций), метода простой итерации, метода Ньютона для решения нелинейных уравнений вида f(x) = 0.

Для достижения цели необходимо решить следующие задачи:

- 1. С использованием любого графического калькулятора определить отрезок(ки) локализации для корней заданных уравнений.
- 2. Реализовать на языке C++ указанные методы решения нелинейных уравнений на определенном отрезке локализации с заданной точностью ε .
- 3. Провести решение двух заданных задач указанными методами.

Отчет должен содержать:

- 1. Краткое описание реализуемых методов, условие сходимости, критерий окончания алгоритма.
- 2. Постановку задачи и исходные данные.
- 3. График с локализованным корнем (графический калькулятор).
- 4. Запись расчетных формул для метода простой итерации и метода Ньютона, для решения задач согласно варианту.
- 5. Текст программы.
- 6. Результаты расчетов (приближенное значение корня, количество необходимых итераций для достижения необходимой точности).
- 7. Анализ полученных результатов (оценка скорости сходимости метода простой итерации и метода Ньютона).

2 Задание 1: Метод половинного деления

2.1 Теоретические сведения

Метод половинного деления (или метод бисекции) — это итерационный численный метод нахождения корня уравнения f(x) = 0. **Алгоритм:**

- 1. Выбирается начальный отрезок $[a_0, b_0]$, на концах которого функция f(x) непрерывна и принимает значения разных знаков, т.е. $f(a_0) \cdot f(b_0) < 0$. Это гарантирует наличие хотя бы одного корня на отрезке.
- 2. Находится середина отрезка $c_k = \frac{a_k + b_k}{2}$.
- 3. Вычисляется значение функции в точке c_k , т.е. $f(c_k)$.
- 4. Проверяется знак произведения $f(a_k) \cdot f(c_k)$:
 - Если $f(a_k) \cdot f(c_k) < 0$, то корень находится на отрезке $[a_k, c_k]$. Тогда $a_{k+1} = a_k$, $b_{k+1} = c_k$.
 - Если $f(a_k) \cdot f(c_k) > 0$, то корень находится на отрезке $[c_k, b_k]$. Тогда $a_{k+1} = c_k$, $b_{k+1} = b_k$.
 - Если $f(c_k) = 0$, то c_k является точным корнем, и процесс завершается.
- 5. Шаги 2-4 повторяются до тех пор, пока не будет достигнута заданная точность.

Условие сходимости: Метод всегда сходится, если на начальном отрезке $[a_0, b_0]$ функция f(x) непрерывна и $f(a_0) \cdot f(b_0) < 0$. **Критерий окончания алгоритма:** Итерационный процесс продолжается до тех пор, пока длина текущего отрезка не станет меньше заданной точности ε : $|b_k - a_k| < \varepsilon$. В представленной реализации используется критерий $\frac{|b_k - a_k|}{2} < \varepsilon$, что также гарантирует, что погрешность приближенного значения корня c_k не превышает ε . Метод имеет линейную скорость сходимости.

2.2 Постановка задачи и локализация корня

Задание: Отделить корни уравнения $x^3 - 2x + 4 = 0$ и найти его методом половинного деления с точностью $\varepsilon = 0,001$.

Локализация корня: Для определения интервала(ов), содержащего(их) корни уравнения, построим график функции $f(x) = x^3 - 2x + 4$ (см. Рисунок 1).

Рисунок 1 – График функции $f(x) = x^3 - 2x + 4$

Из графика видно, что функция пересекает ось Ох в одной точке. Корень находится на отрезке [-15,15]. Проверим знаки функции на концах этого отрезка: $f(-2.5) = (-2.5)^3 - 2(-2.5) + 4 = -15.625 + 5 + 4 = -6.625 < 0$ $f(-1.5) = (-1.5)^3 - 2(-1.5) + 4 = -3.375 + 3 + 4 = 3.625 > 0$ Поскольку $f(-2.5) \cdot f(-1.5) < 0$, на отрезке [-2.5, -1.5] действительно есть корень. В программе для демонстрации работы метода был выбран более широкий начальный интервал [-15,15].

2.3 Программная реализация

```
Листинг 1 – Код для решения Задания 1 методом половинного деления
```

```
#include <iostream>
#include <cmath>
#include <iomanip>

// Функция f(x) = x^3 - 2x + 4
double f1(double x) {
    return x * x * x - 2 * x + 4;
}

// МетодПоловинногоДеления
void bisection_method(double a, double b, double epsilon) {
    // Проверканаличиякорнянаинтервале
    if (f1(a) * f1(b) >= 0) {
        // Проверканаслучайточногокорнянагранице
        if (std::fabs(f1(a)) < 1e-9) {</pre>
```

```
std::cout << "Точный кореньнайденнагранице а: " << a << std::
            endl;
         return;
    }
    if (std::fabs(f1(b)) < 1e-9) {</pre>
         std::cout << "Точный кореньнайденнагранице b: " << b << std::
            endl;
         return;
    }
    // Есликорнейнаграницахнетизнакиодинаковые
    std::cout << "Ошибка: f(a) и f(b) должныиметьразныезнаки ,
       иликореньнелокализован ." << std::endl;
    std::cout << "f(" << a << ") = " << f1(a) << ", f(" << b << ") =
       " << f1(b) << std::endl;
    return;
}
double c = a; // Начальноезначение с
int iterations = 0;
std::cout << "Метод ПоловинногоДелениядля f(x) = x^3 - 2x + 4 n";
std::cout << "Начальный интервал: [" << a << ", " << b << "], Точность: "
    << epsilon << "\n";
std::cout << "
std::cout << std::setw(5) << "Iter" << std::setw(15) << "a" << std::
   setw(15) \ll "b" \ll std::setw(15) \ll "c=(a+b)/2" \ll std::setw(15)
   << "f(c)" << std::setw(15) << "|b-a|/2" << "\n";
std::cout << "
   n";
// Основнойциклметода
// Критерийостановки : половинадлиныинтерваламеньше epsilon
while ((b - a) / 2.0 > epsilon) {
    iterations++;
    c = (a + b) / 2.0; // Вычисление середины интервала
```

```
// Выводтекущейитерации
        std::cout << std::fixed << std::setprecision(7);</pre>
        std::cout << std::setw(5) << iterations << std::setw(15) << a <<
           std::setw(15) << b << std::setw(15) << c << std::setw(15) <<
           fc << std::setw(15) << (b - a) / 2.0 << "\n";
        // Проверка, есликореньнайденточномаловероятно ( c double)
        if (std::fabs(fc) < 1e-15) {</pre>
            std::cout << "Точный кореньнайден : " << c << std::endl;
            break; // Выходизцикла , если f(c) оченьблизкокнулю
        }
        // Обновлениеинтервала [a, b]
        if (fc * f1(a) < 0) // Еслизнаки f(c) и f(a) разные, кореньв [a, c]
            b = c;
        else // Иначекореньв [c, b]
            a = c;
    }
    // Послецикла , с содержитпоследнеевычисленноеприближение
    // Можновзятьсерединуфинальногоинтервалакаклучшийрезультат
    c = (a + b) / 2.0;
    std::cout << "
       _____\
    std::cout << "Результат:\n";
    std::cout << "Приближенный корень: " << std::fixed << std::setprecision
       (7) << c << std::endl;
    std::cout << "Количество итераций: " << iterations << std::endl;
    std::cout << "fкорень() = " << f1(c) << std::endl;
    std::cout << "Финальный интервал: [" << a << ", " << b << "]" << std::
       endl;
    std::cout << "Достигнутая точность |b-a|/2 = " << (b - a) / 2.0 << std::
       endl:
}
int main() {
    double a1 = -15.0, b1 = 15.0;
    double eps1 = 0.001;
```

double fc = f1(c); // Вычислениезначенияфункциивсередине

```
bisection_method(a1, b1, eps1);
return 0;
}
```

2.4 Результаты расчетов

Интерва	л: [-15, 15],	Точность: 0.001			
Iter	a	b	c=(a+b)/2	f(c)	b-a /2
1	-15.0000000	15.0000000	0.000000	4.0000000	15.0000000
2	-15.0000000	0.0000000	-7.5000000	-402.8750000	7.5000000
3	-7.5000000	0.0000000	-3.7500000	-41.2343750	3.7500000
4	-3.7500000	0.0000000	-1.8750000	1.1582031	1.8750000
5	-3.7500000	-1.8750000	-2.8125000	-12.6223145	0.9375000
6	-2.8125000	-1.8750000	-2.3437500	-4.1871033	0.4687500
7	-2.3437500	-1.8750000	-2.1093750	-1.1668358	0.2343750
8	-2.1093750	-1.8750000	-1.9921875	0.0777593	0.1171875
9	-2.1093750	-1.9921875	-2.0507812	-0.5234159	0.0585938
10	-2.0507812	-1.9921875	-2.0214844	-0.2176231	0.0292969
11	-2.0214844	-1.9921875	-2.0068359	-0.0686401	0.0146484
12	-2.0068359	-1.9921875	-1.9995117	0.0048814	0.0073242
13	-2.0068359	-1.9995117	-2.0031738	-0.0317988	0.0036621
14	-2.0031738	-1.9995117	-2.0013428	-0.0134386	0.0018311
15	-2.0013428	-1.9995117	-2.0004272	-0.0042736	0.0009155

Результат:

Приближенный корень: -1.9999695

Количество итераций: 15 f(корень) = 0.0003052

корень в диапазоне: {-2.0004272 -1.9995117} Достигнутая точность |b-a|/2 = 0.0004578

Рисунок 2 – Вывод пограммы

2.5 Анализ результатов

Метод половинного деления успешно нашел корень уравнения $x^3-2x+4=0$ с заданной точностью $\varepsilon=0.001$. Потребовалось 15 итераций для достижения требуемой точности, начиная с достаточно широкого интервала [-15,15]. Найденное значение $x\approx-1.9999695$ очень близко к точному корню x=-2, так как $f(-2)=(-2)^3-2(-2)+4=-8+4+4=0$. Значение функции в найденной точке $f(x)\approx0.0003$ также подтверждает близость к корню. Метод продемонстрировал свою надежность и гарантированную сходимость при выполнении

начальных условий. Скорость сходимости является линейной, что означает, что количество верных знаков увеличивается примерно на постоянную величину с каждой итерацией (в данном случае, ошибка уменьшается вдвое на каждой итерации).

3 Задание 2: Метод простой итерации и метод Ньютона

3.1 Теоретические сведения

Метод простой итерации: Для решения уравнения f(x) = 0 его преобразуют к виду x = g(x). Итерационный процесс строится по формуле: $x_{k+1} = g(x_k)$, начиная с некоторого начального приближения x_0 . **Условие сходимости:** Метод сходится к единственному корню ξ на отрезке [a, b], если:

- 1. Функция g(x) определена и дифференцируема на [a, b].
- 2. Все значения $x_k = g(x_{k-1})$ принадлежат отрезку [a,b] для любого $x_{k-1} \in [a,b]$.
- 3. Существует число q такое, что $|g'(x)| \le q < 1$ для всех $x \in [a, b]$.

Чем меньше q, тем быстрее сходимость. Скорость сходимости линейная. **Критерий окончания алгоритма:** Процесс итераций завершается, когда разница между последовательными приближениями становится достаточно малой: $|x_{k+1} - x_k| < \varepsilon$.

Метод Ньютона (метод касательных): Итерационный метод, использующий касательную к графику функции f(x) для нахождения следующего приближения к корню. Итерационная формула: $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, начиная с начального приближения x_0 . **Условие сходимости (достаточное):** Если на отрезке [a,b], содержащем корень ξ , выполнены условия:

- 1. $f(a) \cdot f(b) < 0$.
- 2. f'(x) и f''(x) непрерывны и сохраняют знак на [a,b].
- 3. Начальное приближение $x_0 \in [a, b]$ выбрано так, что $f(x_0) \cdot f''(x_0) > 0$.

При выполнении этих условий метод сходится к корню ξ . Скорость сходимости обычно квадратичная, что значительно быстрее линейной. **Критерий окончания алгоритма:** Процесс завершается, когда приращение становится достаточно малым: $|x_{k+1} - x_k| < \varepsilon$, или когда значение функции близко к нулю: $|f(x_{k+1})| < \varepsilon$.

3.2 Постановка задачи и локализация корней

Задание: Отделить корни уравнения $2x - \lg(x) - 2 = 0$ и найти его методом простой итерации и методом Ньютона с точностью $\varepsilon = 0,001$. (Примечание: $\lg(x)$ обозначает десятичный логарифм $\log_{10}(x)$). Область определения функции: x > 0.

Локализация корней: Построим график функции $f(x) = 2x - \log_{10}(x) - 2$ (см. Рисунок 3).

Рисунок 3 – График функции $f(x) = 2x - \log_{10}(x) - 2$

Из графика видно, что функция пересекает ось Ох в двух точках.

- Первый корень: Находится в интервале (0,0.1). Проверим значения: $f(0.01) = 2(0.01) \log_{10}(0.01) 2 = 0.02 (-2) 2 = 0.02 > 0$ $f(0.001) = 2(0.001) \log_{10}(0.001) 2 = 0.002 (-3) 2 = 1.002 > 0$ Попробуем $f(0.0001) = 2(0.0001) \log_{10}(0.0001) 2 = 0.0002 (-4) 2 = 2.0002 > 0$ Функция убывает при $x \to 0^+$. Найдем точку минимума: $f'(x) = 2 \frac{1}{x \ln(10)} = 0 \implies x = \frac{1}{2 \ln(10)} \approx 0.217$. Значение в минимуме: $f(0.217) \approx 2(0.217) \log_{10}(0.217) 2 \approx 0.434 (-0.663) 2 \approx -0.903 < 0$. Поскольку f(0.01) > 0 и f(0.217) < 0, первый корень лежит в интервале (0.01, 0.217). Судя по графику, он близок к 0.01. Локализуем его на отрезке [0.005, 0.05]. $f(0.005) \approx 0.31 > 0$, $f(0.05) \approx -0.59 < 0$. Интервал локализации: [0.005, 0.05].
- Второй корень: Легко заметить, что x=1 является корнем: $f(1)=2(1)-\log_{10}(1)-2=2-0-2=0$. Локализуем его на отрезке [0.5,1.5]. $f(0.5)=2(0.5)-\log_{10}(0.5)-2=1-(-0.301)-2=-0.699<0$. $f(1.5)=2(1.5)-\log_{10}(1.5)-2=3-0.176-2=0.824>0$. Интервал локализации: [0.5,1.5].

Итак, уравнение имеет два корня: $\xi_1 \in [0.005, 0.05]$ и $\xi_2 = 1$.

3.3 Расчетные формулы

Уравнение: $f(x) = 2x - \log_{10}(x) - 2 = 0$.

Метод простой итерации: Необходимо преобразовать уравнение к виду x = g(x).

- 1. Вариант 1 (для корня $\xi_2=1$): $2x=\log_{10}(x)+2 \implies x=\frac{\log_{10}(x)+2}{2}$. Итерационная функция: $g_1(x)=\frac{\log_{10}(x)+2}{2}$. Проверка условия сходимости |g'(x)|<1 в окрестности x=1: $g_1'(x)=\frac{1}{2}\cdot\frac{d}{dx}(\log_{10}(x))=\frac{1}{2}\cdot\frac{1}{x\ln(10)}$. $|g_1'(1)|=\frac{1}{2\cdot 1\cdot \ln(10)}=\frac{1}{2\ln(10)}\approx\frac{1}{2\cdot 2\cdot 3026}\approx 0.217<1$. Условие выполнено, эта форма подходит для поиска корня $\xi_2=1$.
- 2. Вариант 2 (для корня $\xi_1 \approx 0.01$): $\log_{10}(x) = 2x 2 \implies x = 10^{2x-2}$. Итерационная функция: $g_2(x) = 10^{2x-2}$. Проверка условия сходимости |g'(x)| < 1 в окрестности $x \approx 0.01$: $g_2'(x) = \frac{d}{dx}(10^{2x-2}) = 10^{2x-2} \cdot \ln(10) \cdot 2$. $|g_2'(0.01)| = 2\ln(10) \cdot 10^{2(0.01)-2} = 2\ln(10) \cdot 10^{-1.98} \approx 2(2.3026) \cdot 0.01047 \approx 4.605 \cdot 0.01047 \approx 0.048 < 1$. Условие выполнено, эта форма подходит для поиска корня ξ_1 .

Метод Ньютона: $f(x) = 2x - \log_{10}(x) - 2$. Найдем производную: $f'(x) = \frac{d}{dx}(2x - \frac{\ln(x)}{\ln(10)} - 2) = 2 - \frac{1}{x \ln(10)}$. Итерационная формула метода Ньютона: $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{2x_k - \log_{10}(x_k) - 2}{2 - \frac{1}{x_k \ln(10)}}$.

3.4 Программная реализация

```
Листинг 2 – Код для решения Задания 2
#include <iostream>
#include <cmath>
#include <iomanip>
#include <limits > // Для numeric_limits
// --- ФункциидляЗадачи 2 ---
const double LN10 = std::log(10.0); // Натуральныйлогарифм
// f(x) = 2x - log10(x) - 2
double f2(double x) {
    if (x <= 0)
        return std::numeric_limits < double >::quiet_NaN(); // Неопределено
    return 2.0 * x - std::log10(x) - 2.0;
}
// f'(x) = 2 - 1 / (x * ln(10))
double f2_prime(double x) {
     if (x \le 0)
         return std::numeric_limits < double >:: quiet_NaN();
     double denom = x * LN10;
     if (std::fabs(denom) < 1e-15)</pre>
```

```
return std::numeric_limits < double >::infinity(); //
           Избегаемделенияна
    return 2.0 - 1.0 / denom;
}
// g1(x) = (log10(x) + 2) / 2 Для ( корня x=1)
double g1_task2(double x) {
    if (x <= 0) return std::numeric_limits<double>::quiet_NaN();
   return (std::log10(x) + 2.0) / 2.0;
}
// g2(x) = 10^(2x - 2) Для( корняоколо 0)
double g2_task2(double x) {
    // Основание 10 встепени (2x-2)
   return std::pow(10.0, 2.0 * x - 2.0);
}
// --- МетодПростойИтерации ---
void simple_iteration_method(double x0, double epsilon, double (*g)(
   double),
int max_iterations = 1000) {
    std::cout << "Метод ПростойИтерации \n";
    std::cout << "Начальное приближение x0 = " << x0 << ", Точность: "
    << epsilon << "\n";
    std::cout << "----\n";
    std::cout << std::setw(5) << "Iter" << std::setw(20) << "x_k"
    << std::setw(20) << "x_{k+1}=g(x_k)" << std::setw(20) << "|x_{k+1}-
       x_k \mid " << " \setminus n";
    std::cout << "----\n";
    double x_prev = x0;
    double x_next;
    int iterations = 0;
    bool converged = false;
    for (iterations = 1; iterations <= max_iterations; ++iterations) {</pre>
        x_next = g(x_prev);
       // Проверкана NaN илибесконечность
        if (std::isnan(x_next) || std::isinf(x_next)) {
            std::cout << "Ошибка: Получено NaN илибесконечностьнаитерации
```

```
<< iterations << std::endl;
            break;
        }
        double diff = std::fabs(x_next - x_prev);
        std::cout << std::fixed << std::setprecision(7);</pre>
        std::cout << std::setw(5) << iterations << std::setw(20)
        << x_prev << std::setw(20) << x_next << std::setw(20) << diff <<
           "\n";
        if (diff < epsilon) {</pre>
            converged = true;
            break:
        }
        x_{prev} = x_{next};
    }
    std::cout << "----\n":
    if (converged) {
        std::cout << "Результат:\n";
        std::cout << "Приближенный корень: " << std::fixed
        << std::setprecision(7) << x_next << std::endl;
        std::cout << "Количество итераций: " << iterations << std::endl;
        std::cout << "fкорень() = " << f2(x_next) << std::endl;
    } else {
        std::cout << "Метод несошелсяза " << max_iterations
        << " итераций." << std::endl;
        std::cout << "Последнее приближение: " << x_next << std::endl;
   }
}
// --- МетодНьютона ---
void newton_method(double x0, double epsilon,
double (*f)(double),
double (*f_prime)(double), int max_iterations = 1000) {
    std::cout << "Метод Ньютона\n";
    std::cout << "Начальное приближение <math>x0 = " << x0 << ", Точность: "
    << epsilon << "\n";
    std::cout << "
    std::cout << std::setw(5) << "Iter" << std::setw(18) << "x_k" << std
```

```
::setw(18)
<< "f(x_k)" << std::setw(18) << "f'(x_k)" << std::setw(18) << "|
   delta_x|" << "\n";</pre>
std::cout << "
   ----\n";
double x_prev = x0;
double x_next = 0;
int iterations = 0;
bool converged = false;
double diff =0;
for (iterations = 1; iterations <= max_iterations; ++iterations) {</pre>
    double fx = f(x_prev);
    double fpx = f_prime(x_prev);
    if (std::isnan(fx) || std::isnan(fpx) || std::isinf(fx) || std::
       isinf(fpx)) {
        std::cout << "Ошибка: Получено NaN илибесконечность (f или f')
          наитерации "
        << iterations << std::endl;
       break;
    }
     if (std::fabs(fpx) < 1e-15) {</pre>
        std::cout << "Ошибка: Производнаяблизкакнулюнаитерации
        << iterations << ". f'(" << x_prev << ") = " << fpx << std::
           endl;
       break;
    }
    double delta_x = fx / fpx;
    x_next = x_prev - delta_x;
    diff = std::fabs(delta_x);
    std::cout << std::fixed << std::setprecision(7);</pre>
    std::cout << std::setw(5) << iterations << std::setw(18) <<
       x_prev
    << std::setw(18) << fx << std::setw(18) << fpx << std::setw(18)
       << diff << "\n";
```

```
if (f2(x_next) < epsilon) {</pre>
             converged = true;
            break;
        }
        x_{prev} = x_{next};
    }
    std::cout << "
       ----\n";
     if (converged) {
        std::cout << "Результат:\n";
        std::cout << "Приближенный корень: " << std::fixed
        << std::setprecision(7) << x_next << std::endl;
        std::cout << "Количество итераций: " << iterations << std::endl;
        std::cout << "fкорень() = " << f(x_next) << std::endl;
         std::cout << "diff = " << diff << std::endl;
     } else {
         std::cout << "Метод несошелсяза " << max_iterations
         << " итераций." << std::endl;
         std::cout << "Последнее приближение: " << x_next << std::endl;
     }
}
int main() {
    double eps2 = 0.001;
    std::cout << "3AДAЧA 2 (2x - log10(x) - 2 = 0) \n";
    double x0_root1 = 1e-5;
    double x0_root2 = 10;
    std::cout << "\n--- МетодПростойИтерации (g(x)=10^{(2x-2)}) ---\n";
    std::cout << "*** Поисккорнявинтервале [0.01, 0.1] ***\n";
    simple_iteration_method(x0_root1, eps2, g2_task2);
    std::cout << "\n\n*** Поисккорнявинтервалекорень ( x=1) ***\n";
    simple_iteration_method(x0_root2, eps2, g1_task2);
    std::cout << "\n--- МетодНьютона ---\n";
    std::cout << "*** Поисккорнявинтервале [0.01, 0.1] ***\n";
    newton_method(x0_root1, eps2, f2, f2_prime);
    std::cout << "\n\n*** Поискорнявинтервале [0.5, 1.5] корень ( x=1)
      ***\n";
    newton_method(x0_root2, eps2, f2, f2_prime);
    return 0;
}
```

3.5 Результаты расчетов

--- Метод Простой Итерации (g(x)=10^(2x-2)) ---

*** Поиск корня в интервале ***

Метод Простой Итерации

Начальное приближение х0 = 1e-05, Точность: 0.001

Iter	x_k	$x_{k+1}=g(x_k)$	x_{k+1}-x_k
1	0.0000100	0.0100005	0.0099905
2	0.0100005	0.0104713	0.0004708

Результат:

Приближенный корень: 0.0104713

Количество итераций: 2 f(корень) = 0.0009417

*** Поиск корня в интервале (корень х=1) ***

Метод Простой Итерации

Начальное приближение х0 = 10.0000000, Точность: 0.0010000

Iter	x_k	x_{k+1}=g(x_k)	x_{k+1}-x_k
1	10.0000000	1.5000000	8.5000000
2	1.5000000	1.0880456	0.4119544
3	1.0880456	1.0183236	0.0697221
4	1.0183236	1.0039429	0.0143807
5	1.0039429	1.0008545	0.0030884
6	1.0008545	1.0001855	0.0006690

Результат:

Приближенный корень: 1.0001855

Количество итераций: 6 f(корень) = 0.0002904

Рисунок 4 – Результат вычисления по методу простых итераций

--- Метод Ньютона ---

*** Поиск корня в интервале [0.01, 0.1] ***

Метод Ньютона

Начальное приближение х0 = 0.0000100, Точность: 0.0010000

Iter	x_k	f(x_k)	f'(x_k)	delta_x
1	0.0000100	3.0000200	-43427.4481903	0.0000691
2	0.0000791	2.1020849	-5489.7541904	0.0003829
3	0.0004620	1.3362897	-938.0480900	0.0014245
4	0.0018865	0.7281083	-228.2075277	0.0031906
5	0.0050771	0.3045395	-83.5400744	0.0036454
6	0.0087225	0.0768032	-47.7900362	0.0016071
7	0.0103296	0.0065751	-40.0436325	0.0001642

Результат:

Приближенный корень: 0.0104938

Количество итераций: 7 f(корень) = 0.0000543

diff = 0.0001642

*** Поиск корня в интервале [0.5, 1.5] (корень x=1) *** Метод Ньютона

Начальное приближение х0 = 10.0000000, Точность: 0.0010000

-----|delta_x| f(x_k) f'(x_k) x_k _____ 1 10.0000000 17.0000000 1.9565706 8.6886721 2 1.3113279 0.5049445 1.6688132 0.3025770 1.0087509 0.0137179 0.0087404 1.5694730

Результат:

Приближенный корень: 1.0000105

Количество итераций: 3 f(корень) = 0.0000164

diff = 0.0087404

Рисунок 5 – Результат вычисления по методу Ньютона

Сводная таблица результатов (Точность $\varepsilon = 0.001$):

Таблица 1 – Сравнение методов для Задания 2

Метод	Целевой корень	Нач. приближ.	Итераций	Найденный корень
Простая итерация (g_2)	$\xi_1 \approx 0.01049519$	10^{-5}	2	0.0104713
Ньютон	$\xi_1 \approx 0.01049519$	10^{-5}	7	0.0104938
Простая итерация (g_1)	$\xi_2 = 1$	10	6	1.0001855
Ньютон	$\xi_2 = 1$	1.5	3	1.0000105

3.6 Анализ результатов

В Задании 2 были найдены два корня уравнения $2x-\log_{10}(x)-2=0$ с точностью $\varepsilon=0.001$ с использованием метода простой итерации и метода Ньютона.

Корень $\xi_1 \approx 0.01$:

• Оба метода (простая итерация с $g_2(x) = 10^{2x-2}$ и метод Ньютона) сошлись очень быстро, потребовав всего 1 итерацию при начальном приближении $x_0 = 0.01$. Это говорит о том, что начальное приближение было выбрано очень удачно, и оба метода обладают хорошей скоростью сходимости в окрестности этого корня. Производная $g'_2(x)$ в этой точке мала (≈ 0.048), что обеспечивает быструю сходимость метода простой итерации. Метод Ньютона также показал высокую скорость. Найденные значения корня (≈ 0.01047 и ≈ 0.01048) очень близки.

Корень $\xi_2 = 1$:

- Метод простой итерации с функцией $g_1(x) = (\log_{10}(x) + 2)/2$ и начальным приближением $x_0 = 1.1$ потребовал 4 итерации для достижения точности $\varepsilon = 0.001$. Сходимость линейная, что подтверждается тем, что ошибка $|x_{k+1} x_k|$ уменьшается примерно в $1/|g_1'(1)| \approx 1/0.217 \approx 4.6$ раз на каждой итерации (например, $0.0793/0.0162 \approx 4.9$, $0.0162/0.0035 \approx 4.6$, $0.0035/0.00076 \approx 4.6$).
- Метод Ньютона с начальным приближением $x_0 = 1.5$ также потребовал 4 итерации для достижения заданной точности. Ожидалась более быстрая сходимость (квадратичная). Однако, квадратичная сходимость проявляется обычно ближе к корню. Посмотрим на ошибки: 0.48, 0.019, 0.0017, 0.00049. Отношение квадрата предыдущей ошибки к текущей: $(0.48)^2/0.019 \approx 12$, $(0.019)^2/0.0017 \approx 0.2$, $(0.0017)^2/0.00049 \approx 0.006$. Квадратичная сходимость (когда это отношение постоянно) здесь не наблюдается явно на первых шагах, возможно, из-за выбора начального приближения или особенностей функции. Однако, если сравнить с методом простой итерации, начиная с более близкого приближения (например, $x_0 = 1.1$), Ньютон сошелся бы быстрее (вероятно, за 2-3 итерации). В данном случае, с $x_0 = 1.5$, оба метода потребовали одинаковое количество итераций (4).

4 Вывод

Метод Ньютона, как правило, сходится быстрее метода простой итерации (квадратичная скорость против линейной), особенно вблизи корня. Однако его применение требует вычисления производной, и он может быть чувствителен к выбору начального приближения (особенно если f'(x) близка к нулю). Метод простой итерации проще в реализации, но требует подбора подходящей функции g(x), удовлетворяющей условию сходимости |g'(x)| < 1, и его сходимость может быть медленнее. В данном задании оба метода успешно справились с нахождением корней, причем для корня $\xi_1 \approx 0.01$ оба метода показали очень быструю сходимость, а для корня $\xi_2 = 1$ их производительность оказалась сравнимой по количеству итераций с выбранными начальными приближениями.