ΜΑΣ026 - ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΙΙ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2019-2020 Ασκήσεις

1ο Κεφάλαιο

- **1.** Έστω $\vec{x} = (-3, -2)$ και $\vec{y} = (2, 1)$. Αν θ είναι η γωνία των $\vec{y} \vec{x}$ και \vec{y} να βρεθεί το $\cos \theta$.
- **2.** Να βρεθεί το εμβαδόν του τριγώνου με κορυφές A(1,0,0), B(1,2,-1) και C(0,2,-4).
- **3.** Να βρεθεί διάνυσμα $\vec{u} \in \mathbb{R}^2$ ώστε $\vec{u} = \lambda(4,2)$ με $\lambda > 0$ και ||u|| = 2.
- **4.** Έστω τρίγωνο με κορυφές A(1,5,3), B(3,5,5) και $\Gamma(1,9,4)$.
 - Να βρεθούν τα συνημίτονα των γωνιών του τριγώνου. Τι είδους τρίγωνο είναι;
 - Ποιο είναι το εμβαδόν του τριγώνου;
- **5.** Έστω $\vec{a} = (2, 1, 0)$ και $\vec{b} = (3, 3, 3)$.
 - i. Είναι τα γινόμενα $(\vec{a} \times \vec{b}) \times \hat{\imath}$ και $\vec{a} \times (\vec{b} \times \hat{\imath})$ ίσα;
 - ii. Να δειχθεί ότι $(\vec{a} \times \vec{b}) \times \hat{\imath} = (\vec{a} \cdot \hat{\imath}) \vec{b} (\vec{b} \cdot \hat{\imath}) \vec{a}$ και $\vec{a} \times (\vec{b} \times \hat{\imath}) = (\vec{a} \cdot \hat{\imath}) \vec{b} (\vec{a} \cdot \vec{b}) \hat{\imath}$.
- **6.** Έστω \vec{r} , \vec{s} , \vec{t} τρία μη μηδενικά διανύσματα στον \mathbb{R}^3 . Αποφασίστε αν τα παρακάτω είναι Σωστά ή Λάθος και αιτιολογήστε την απάντησή σας.
 - i. Αν το \vec{r} είναι παράλληλο με το \vec{s} και το \vec{s} παράλληλο με το \vec{t} , τότε το \vec{r} είναι παράλληλο με το \vec{t} .
 - ii. Αν το \vec{r} είναι κάθετο με το \vec{s} και το \vec{s} κάθετο με το \vec{t} , τότε το \vec{r} είναι κάθετο με το \vec{t} .
 - iii. Αν το \vec{r} είναι παράλληλο με το \vec{s} και το \vec{s} είναι κάθετο με το \vec{t} , τότε το \vec{r} είναι κάθετο με το \vec{t} .
 - iv. $\vec{r} \cdot (\vec{s} \times \vec{t}) = (\vec{t} \times \vec{s}) \cdot \vec{r}$.
 - ν. Αν $\vec{r} \cdot (\vec{s} \times \vec{t}) = 0$ και $\vec{s} \times \vec{t} \neq \vec{0}$ τότε το \vec{r} είναι κάθετο στο $\vec{s} + \vec{t}$.
 - vi. Αν $\vec{r} \times (\vec{s} \times \vec{t}) = \vec{0}$ και $\vec{s} \times \vec{t} \neq \vec{0}$ τότε το \vec{r} είναι κάθετο στα \vec{s} και \vec{t} .
- **7.** Ανήκουν τα σημεία P(1,0,1), Q(2,4,6), R(3,-1,2) και S(6,2,8) στο ίδιο επίπεδο;
- **8.** Αποδείξτε ότι η εξίσωση $\rho = \frac{3}{\sin \phi}$ σε σφαιρικές συντεταγμένες και η εξίσωση r=3 σε κυλινδρικές συντεταγμένες περιγράφουν την ίδια επιφάνεια. Ποια επιφάνεια είναι αυτή;
- * 9. Μια μάζα ενός κιλού βρίσκεται στην αρχή των αξόνων και κρέμεται από δύο νήματα καρφωμένα στα σημεία (1,1,1) και (-1,-1,1). Αν η βαρύτητα ασκείται προς την κατεύθυνση του $-\hat{k}$, να βρεθούν τα διανύσματα που περιγράφουν τις δυνάμεις που ασκούνται από τα νήματα. [Μια μάζα ενός κιλού έχει βάρος 9.8 Nt.]
- ** 10. (Διανυσματική μορφή του νόμου του Snell) Δύο υλικά με δείκτες διάθλασης n_1 και n_2 χωρίζονται από επίπεδο κάθετο στο μοναδιαίο διάνυσμα \vec{N} . Έστω \vec{a} και \vec{b} μοναδιαία διανύσματα στην

κατεύθυνση της προσπίπτουσας και διαθλώμενης ακτίνας αντίστοιχα. Να δειχθεί ότι $n_1(\vec{N} imes \vec{a}) =$ $n_2(\vec{N} \times \vec{b}).$

2ο Κεφάλαιο

11. Να υπολογίσετε τα παρακάτω όρια ή να δείξετε ότι δεν υπάρχουν.

i.
$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}$$

iii.
$$\lim_{(x,y)\to(\pi,\pi)} x \sin\left(\frac{x+y}{4}\right)$$

ii.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + xy + y^2}{x^2 - y^2}$$

iv.
$$\lim_{(x,y)\to(0,0)} \sqrt{\left|\frac{x+y}{x-y}\right|}$$

12. Να ελέγξετε αν οι παρακάτω συναρτήσεις είναι συνεχείς.

i.
$$f(x,y) = \begin{cases} \frac{xy}{|x| + |y|}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

i.
$$f(x,y) = \begin{cases} \frac{xy}{|x| + |y|} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$
ii.
$$f(x,y,z) = \begin{cases} \frac{xy - z^2}{x^2 + y^2 + z^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

- **13.** Έστω η συνάρτηση $f(x,y) = e^{2x+3y}$
 - i. Να βρεθεί η παράγωγος της f.
 - ii. Να βρεθεί η εξίσωση του εφαπτόμενου επιπέδου της f στο σημείο (0,0).
- **14.** Να βρεθεί η παράγωγος της συνάρτησης $f(x,y) = (xye^{xy}, x\sin y, 5xy^2)$.
- **15.** Έστω η συνάρτηση $T(x, y, z) = x^2 + y^2 + z^2$, όπου $x = \cos t, y = \sin t, z = t$. Να βρεθεί με δύο τρόπους η παράγωγος της T ως προς τη μεταβλήτη t.
- i. Έστω $f(x,y)=xe^{x^2+y^2}$. Αν θέσουμε $x=r\cos\theta$ και $y=r\sin\theta$, να βρεθούν οι μερικές 16. παράγωγοι $\frac{\grave{\partial} f}{\partial r}$ και $\frac{\partial f}{\partial \theta}$ με χρήση του κανόνα αλυσίδας.
 - ii. Έστω $f(x,y,z)=2x^2+2y^2+z^2$. Αν θέσουμε $x=\rho\cos\theta\sin\phi$, $y=\rho\sin\theta\sin\phi$ και $z=\rho\cos\phi$, να βρεθούν οι παράγωγοι $\frac{\partial f}{\partial \rho}$, $\frac{\partial f}{\partial \theta}$ και $\frac{\partial f}{\partial \phi}$ με χρήση του κανόνα αλυσίδας.
- **17.** Αν η y είναι συνάρτηση του x και συνδέονται με τη σχέση $x^2 + y^3 + e^y = 0$ να βρεθεί η παράγωγος \overline{dx}
- **18.** Έστω η συνάρτηση $f(x,y)=\frac{x^2-y^2}{x^2+y^2}$. Σε ποια κατεύθυνση είναι η παράγωγος της f ίση με 0 στο σημείο (1, 1);
- **19.** Αν S είναι η επιφάνεια στον \mathbb{R}^3 με εξίσωση $\cos(xy) = e^z 2$, να βρεθεί το εφαπτόμενο επίπεδο και ένα μοναδιαίο κάθετο διάνυσμα της S στο σημείο $(1, \pi, 0)$.
- **20.** Έστω $f:\mathbb{R}^2 \to \mathbb{R}$ μια συνάρτηση δύο μεταβλητών x,y. Αποφασίστε αν τα παρακάτω είναι Σωστά ή Λάθος και αιτιολογήστε την απάντησή σας.

i. Αν $\lim_{(x,y) \to (1,1)} f(x,y) = 2$ και L είναι μια ευθεία που διέρχεται από το (1,1), τότε

$$\lim_{\substack{(x,y) \to (1,1) \\ (x,y) \in L}} f(x,y) = 2.$$

- ii. Αν υπάρχουν οι μερικές παράγωγοι $\frac{\partial f}{\partial x}$ και $\frac{\partial f}{\partial y}$ τότε η f είναι παραγωγίσιμη.
- iii. Αν η f είναι παραγωγίσιμη, η παράγωγος της είναι ο πίνακας $Df = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$.
- iv. Αν η f είναι παραγωγίσιμη και \vec{u} είναι ένα μοναδιαίο διάνυσμα, τότε $D_{-\vec{u}}f(x,y)=-D_{\vec{u}}f(x,y)$.
- ν. Αν η f είναι παραγωγίσιμη και $\vec{u}=(1,2)$, τότε η παράγωγος της f σε ένα σημείο (x_0,y_0) στην κατεύθυνση του \vec{u} δίνεται από τον τύπο $\nabla f(x_0,y_0)\cdot \vec{u}$.
- **21.** Η εξίσωση ιδανικών αερίων είναι η PV = nRT, όπου το R είναι σταθερό. Να δειχθεί ότι

$$\frac{\partial V}{\partial T} \cdot \frac{\partial T}{\partial P} \cdot \frac{\partial P}{\partial V} = -1.$$

22. Το ύψος ενός θαλάσσιου ηφαιστείου στη Χαβάη δίνεται από τη συνάρτηση

$$h(x,y) = 2,59 - 0,00024y^2 - 0,00065x^2,$$

όπου h είναι το ύψος από το επίπεδο στάθμης της θάλασσας και τα x και y μετράνε απόσταση δυτικά-ανατολικά και βόρεια-νότια από την κορυφή του ηφαιστείου. Στο σημείο (x,y)=(-2,-4) του ηφαιστείου:

- Πόσο γρήγορα αυξάνεται το ύψος στην κατεύθυνση (1,1) (δηλ. BA);
- ii. Ποια κατεύθυνση δείχνει την πιο απότομη ανηφόρα;
- **23.** Έστω η συνάρτηση $f(x,y,z)=ze^{xy}+yz^3x^2$. Να δειχθεί ότι

$$\frac{\partial^3 f}{\partial x \partial y \partial z} = \frac{\partial^3 f}{\partial z \partial y \partial x}.$$

- **24.** Μια συνάρτηση λέγεται αρμονική αν $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$. Να δειχθεί ότι η $f(x,y) = e^x \sin y$ είναι αρμονική.
- 25. Βρείτε τα τοπικά μέγιστα και ελάχιστα και τα σαγματικά σημεία των παρακάτω συναρτήσεων:
 - i. $f(x,y) = 8y^3 + 12x^2 24xy$
 - ii. $f(x,y) = e^{1+x^2+y^2}$
- **26.** Να βρεθούν τα κρίσιμα σημεία και τα (απόλυτα) ακρότατα της συνάρτησης $f(x,y) = \sin x + \cos y$, ορισμένη στο σύνολο $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 2\pi, 0 \le y \le 2\pi\}$.

3

- **27.** Να βρεθούν τα ακρότατα της $f(x,y) = \frac{x^2 y^2}{x^2 + y^2}$ υπό την συνθήκη g(x,y) = x + y = 1.
- **28.** Ποιο σημείο της σφαίρας $x^2 + y^2 + z^2 = 4$ απέχει τη μικρότερη απόσταση από το σημείο (3, 1, -1);

3ο Κεφάλαιο

- **29.** Έστω C ο κύκλος ακτίνας 2 με κέντρο (0,0).
 - i. Να βρεθεί μια παραμέτρηση με αριστερόστροφη φορά ξεκινώντας από το (2,0).
 - ii. Να βρεθεί παραμέτρηση δεξιόστροφη φορά ξεκινώντας από το (0,2).
 - iii. Να βρεθεί παραμέτρηση αν το κέντρο μετακινηθεί στο (4,7).
- **30.** Έστω η καμπύλη $r(t)=(t^2,t^3-4t,0)$. Ένα σωματίδιο διατρέχει αυτήν την καμπύλη και σε χρόνο $t_0=2$ διαφεύγει και κινείται στην κατεύθυνση της εφαπτομένης της r. Βρείτε την θέση που θα έχει το σωματίδιο σε χρόνο $t_1=3$.
- **31.** Έστω η καμπύλη $r(t) = (e^t \cos t, e^t \sin t)$. Να δειχθεί ότι η γωνία μεταξύ της r και της r' είναι σταθερή.
- **32.** Ένα σωματίδιο που κινείται στον χώρο έχει επιτάχυνση a(t)=(2,-6,4), αρχική ταχύτητα v(0)=(-5,1,3) και αρχική θέση r(0)=(6,-2,1). Να βρεθούν τα σημεία τομής της τροχιάς του σωματιδίου με το yz-επίπεδο.
- **33.** Να βρεθεί το μήκος της καμπύλης $r(t) = (\log(\sqrt{t}), \sqrt{3}t, \frac{3}{2}t^2)$, για $1 \le t \le 2$.
- **34.** Να βρεθεί το μήκος της καμπύλης $r(t) = (2t, t^2, \log t)$ μεταξύ των σημείων (2, 1, 0) και $(4, 4, \log 2)$.
- **35.** Έστω $F(x,y,z) = (x^2 + y^2 + z^2)(3\hat{\imath} + 4\hat{\jmath} + 5\hat{k})$. Να βρεθούν η απόκλιση και ο στροβιλισμός του F.
- **36.** Έστω $F:\mathbb{R}^3 \to \mathbb{R}^3$ ένα δύο φορές παραγωγίσιμο διανυσματικό πεδίο. Ποιες από τις παρακάτω εκφράσεις έχουν νόημα; Αυτές που έχουν, ορίζουν βαθμωτό ή διανυσματικό πεδίο;
 - i. $\operatorname{curl}(\operatorname{grad} F)$

iv. $\operatorname{grad}(\operatorname{div} F)$

ii. $\operatorname{grad}(\operatorname{curl} F)$

 \mathbf{v} . $\operatorname{curl}(\operatorname{div} F)$

iii. $\operatorname{div}(\operatorname{grad} F)$

- vi. $\operatorname{div}(\operatorname{curl} F)$
- **37.** Έστω $F(x, y, z) = (x^2, x^2y, z + zx)$.
 - i. Να δειχθεί ότι $\nabla \cdot (\nabla \times F) = 0$.
 - ii. Υπάρχει βαθμωτή συνάρτηση $f: \mathbb{R}^3 \to \mathbb{R}$ ώστε $F = \nabla f$;
- **38.** Έστω $f,g,h:\mathbb{R}\to\mathbb{R}$ παραγωγίσιμες συναρτήσεις και F(x,y,z)=(f(x),g(y),h(z)). Να δειχθεί ότι το F είναι αστρόβιλο.

4ο Κεφάλαιο

39. Έστω D το ορθογώνιο $[0,1] \times [0,1]$. Να υπολογιστούν τα ολοκληρώματα:

i.
$$\iint_{\mathcal{D}} \sin(x+y) \, dx dy,$$

ii.
$$\iint_{D} (xy)^2 \cos(x^3) dxdy.$$

- **40.** Να υπολογιστεί το ολοκλήρωμα $\iiint\limits_W ye^{-xy}\,dxdydz$, όπου W είναι ο κύβος $[0,1]\times[0,1]\times[0,1]$.
- **41.** Υπολογίστε το ολοκλήρωμα $\int\limits_0^{\pi/2}\int\limits_0^{\cos x}y\sin x\,dydx$, αφού πρώτα σχεδιάσετε το χωρίο ολοκλήρωσης.
- **42.** Υπολογίστε το ολοκλήρωμα $\int\limits_0^1 \int\limits_{\sqrt{y}}^1 e^{x^3} \, dx dy.$
- **43.** Υπολογίστε το ολοκλήρωμα $\iiint\limits_W (1-z^2)\,dxdydz$, όπου W η πυραμίδα με άνω κορυφή (0,0,1) και κάτω κορυφές (0,0,0), (1,0,0), (0,1,0) και (1,1,0).
- **44.** Να υπολογιστεί το ολοκλήρωμα $\iint\limits_D e^{x^2+y^2}\,dxdy$, όπου D ο κυκλικός δίσκος $x^2+y^2\leq 1$.
- **45.** Έστω το ολοκλήρωμα $\iint_D \frac{1}{x+y} dx dy$, όπου D το χωρίο μεταξύ των ευθειών $x=0,\ y=0,\ x+y=1$ και x+y=4. Να υπολογιστεί η τιμή του χρησιμοποιώντας τον μετασχηματισμό x=u-uv και y=uv.
- **46.** Να υπολογιστεί το ολοκλήρωμα $\iiint\limits_W \frac{1}{(x^2+y^2+z^2)^{3/2}} dx dy dz$, όπου W το χωρίο μεταξύ των σφαιρών $x^2+y^2+z^2 \leq a^2$ και $x^2+y^2+z^2 \leq b^2$, με 0 < b < a.

5

- **47.** i. Να βρεθεί με διπλό ολοκλήρωμα το εμβαδόν της έλλειψης $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$
 - ii. Να βρεθεί με τριπλό ολοκλήρωμα ο όγκος του ελλειψοειδούς $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1.$
- 48. Αποφασίστε αν τα παρακάτω είναι Σωστά ή Λάθος και αιτιολογήστε την απάντησή σας.

i.
$$\int_{-1}^{2} \int_{0}^{6} x^{2} \sin(x-y) dx dy = \int_{0}^{6} \int_{-1}^{2} x^{2} \sin(x-y) dy dx$$
.

ii.
$$\int_{0}^{1} \int_{0}^{x} \sqrt{x^2 + y^2} dy dx = \int_{0}^{x} \int_{0}^{1} \sqrt{x^2 + y^2} dx dy$$
.

iii.
$$\int_{0}^{8} \int_{\frac{y}{2}}^{4} dx dy = \int_{0}^{4} \int_{0}^{2x} dy dx$$
.

49. Να γράψετε το ολοκήρωμα $\int\limits_0^1\int\limits_y^1\int\limits_0^y dz dx dy$ με άλλους 5 διαφορετικούς τρόπους.

5ο Κεφάλαιο

- 50. Να υπολογιστούν τα παρακάτω ολοκληρώματα.
 - i. $\int\limits_{C} xy^4\,ds$, όπου C το δεξί ημικύκλιο του κύκλου $x^2+y^2=16.$
 - ii. $\int\limits_C x \sin y \, ds$, όπου C το ευθύγραμμο τμήμα από το (0,3) στο (4,6).
 - iii. $\int\limits_C xe^{yz}\,ds$, όπου C το ευθύγραμμο τμήμα από το (0,0,0) στο (1,2,3).
- **51.** Να υπολογιστεί το ολοκλήρωμα $\int_C \sin x \, dx + \cos y \, dy$, όπου C η καμούλη που αποτελείται από το τόξο του κύκλου $x^2 + y^2 = 1$ από το (1,0) στο (-1,0) και από το ευθύγραμμο τμήμα από το (-1,0) στο (-2,3).
- **52.** Να βρεθεί το έργο του πεδίου $F=x\sin y\,\hat{\imath}+y\hat{\jmath}$ καθώς μετακινεί ένα αντικείμενο κατά μήκος της παραβολής $y=x^2$ από το (-1,1) στο (2,4).
- **53.** Να εξετάσετε αν τα παρακάτω πεδία είναι συντητηρικά και αν είναι, να βρεθεί βαθμωτή συνάρτηση f ώστε $F = \nabla f$.
 - i. $F(x,y) = (2x-3y)\hat{i} + (-3x+4y-8)\hat{j}$
 - ii. $F(x,y) = e^x \cos y \,\hat{\imath} + e^x \cos y \,\hat{\jmath}$
 - iii. $F(x,y) = e^x \sin y \,\hat{\imath} + e^x \cos y \,\hat{\jmath}$
- **54.** Επαληθεύστε το Θεώρημα Green για το πεδίο $F=\sin x\,\hat{\imath}+\cos y\,\hat{\jmath}$ στο χωρίο $D=[0,\pi/2]\times[0,\pi/2].$
- **55.** Να υπολογιστεί το $\int\limits_C y\,dx-x\,dy$, όπου C το σύνορο του τετραγώνου $[-1,1]\times[-1,1]$ χρησιμοποιώντας το Θεώρημα Green.
- **56.** Έστω $F = (x^3 2xy^3)\hat{\imath} + -3x^2y^2\hat{\jmath}$.
 - i. Να δειθχεί ότι το F είναι συντηρητικό πεδίο.
 - ii. Να βρεθεί βαθμωτή συνάρτηση f ώστε $F = \nabla f$.
 - iii. Να υπολογιστεί το ολοκλήρωμα του πεδίου F κατά μήκος της καμπύλης $x=\cos^3\theta$, $y=\sin^3\theta$, $\theta\in[0,\pi/2]$.
- 57. Αποφασίστε αν τα παρακάτω είναι Σωστά ή Λάθος και αιτιολογήστε την απάντησή σας.
 - i. Αν $F=F_1\,\hat{\imath}+F_2\,\hat{\jmath}$ και $\frac{\partial F_1}{\partial x}=\frac{\partial F_2}{\partial y}$ τότε το F είναι συντηρητικό πεδίο.
 - ii. Αν η f έχει συνεχείς μερικές παραγώγους τότε $\int\limits_{C} \mathbf{\nabla} f \, ds = 0$, όπου C μια κλειστή καμπύλη.
 - iii. Το ολοκλήρωμα $\int\limits_C F\cdot ds$ είναι αριθμός.

- iv. Αν F είναι ένα συντηρητικό πεδίο, τότε $\nabla \cdot F = 0$.
- ν. Αν $\int\limits_{C}F\cdot ds=0$ τότε η C είναι κλειστή καμπύλη.
- **58.** Έστω D ο δακτύλιος $a^2 \le x^2 + y^2 \le b^2$ (0 < a < b) και $F = (2x^3 y^3)\hat{\imath} + (x^3 + y^3)\hat{\jmath}$. Χρησιμοποιώντας το Θεώρημα Green να υπολογιστεί το $\int\limits_C F \cdot ds$.