ECE 3030 Spring 2025 HOMEWORK ASSIGNMENT NO. 3

Due: Monday, February 3th 11:59 pm upload to Carmen 3030 SpeedGrader

- 1. (10 pt) Using the Fermi function, determine the probability that an energy level is occupied by an electron if the state is above the Fermi level by (a) kT, (b) 4 kT, and (c) 9 kT. For (a), what is the probability that the energy level is unoccupied?
- 2. (25 pt) Silicon at T=300~K is doped with arsenic atoms such that the concentration of electrons is $n_0=7~x~10^{15}~cm^{-3}$. (a) Find E_c-E_F . (b) Determine E_F-E_v . (c) Using the result in (b), calculate p_0 . (d) Which carrier is the minority carrier? (e) Find E_F-E_i . For Si, use $E_G=1.12~eV$, $n_i=1.5~x~10^{10}~cm^{-3}$, $N_C=2.8~x~10^{19}~cm^{-3}$ and $N_V=1.04~x~10^{19}~cm^{-3}$. Show your work.
- 3. (20pt) Determine the equilibrium electron and hole concentrations in silicon for the following conditions:

(a)
$$T = 300 \text{ K}$$
, $N_d = 10^{15} \text{ cm}^{-3}$, $N_a = 4 \times 10^{15} \text{ cm}^{-3}$

(b)
$$T = 300 \text{ K}$$
, $N_d = 3 \text{ x } 10^{16} \text{ cm}^{-3}$, $N_a = 0$

(c)
$$T = 300 \text{ K}$$
, $N_d = N_a = 2 \text{ x } 10^{15} \text{cm}^{-3}$

(d)
$$T = 375 \text{ K}$$
, $N_d = 0$, $Na = 4 \times 10^{15} \text{cm}^{-3}$

(e)
$$T = 450 \text{ K}$$
, $N_d = 10^{14} \text{ cm}^{-3}$, $N_a = 0$.

4. (15 pt) (a) Determine the concentration of donor impurity atoms that must be added to a Si crystal so that the Fermi level is 0.20 eV below the conduction band edge. The Si band gap is 1.11 eV and $n_i = 1.5 \times 10^{10}$ cm⁻³, (b) Suppose that the Si crystal already has 10^{16} cm⁻³ acceptor impurity concentration. What concentration of donors must be added now to achieve the same result?

band

Energy (eV)

 $\Delta E = 0.31$

Valence band

0

[100]

Χ

- 5. (15 pt) Since the effective mass of electrons in a conduction band decreases with increasing band curvature, comment on the electron effective mass in the Γ valley of GaAs compared with the indirect X or L valleys. How is this effective mass difference reflected in the electron mobility for GaAs vs. the indirect X valley electron mobility in GaP (see Appendix III, S&B.) What would you expect to happen to the conductivity of GaAs if Γ-valley electrons drifting in an electric field were suddenly promoted to the L valley?
- 6. (15 pt) A 2 cm long piece of Si with cross –sectional area of 0.1 cm² is doped with donors at 10¹⁵ cm⁻³ and has a resistance of 90 ohms. The saturation velocity of electrons in Si is 10⁷ cm/s for fields above 10⁵ V/cm. Calculate the electron drift velocity if we apply a voltage of 100 V across the piece. What is the current through the piece if we apply a voltage of 100 V across it? What is the current for 200V? What about 10⁶ V? Is current still proportional to applied voltage?

10 Point Bonus: The maximum intrinsic carrier concentration in a silicon device must be limited to 5×10^{11} cm⁻³ thermally stimulated carriers. Assume $E_g = 1.12$ eV. Determine the maximum temperature allowed for the device. (b) Repeat part (a) if the maximum intrinsic carrier concentration is limited to 5×10^{12} cm⁻³. Hint: Trial and error temperatures needed. Show your work.