

Recursion

Question

What is a recursive equation in Math?

What is Recursion?

- Recursion: The calling of a function within the function until a specific goal is reached.
- Recursion is used in Object-Oriented Programming Languages to allow the coder to write more complex code

When is Recursion used?

- MergeSorts and QuickSort
- Binary Search
- Algorithms that require a loop that decreases in repetitions every completion

What it looks like (Pseudocode)

```
Method a {
Method b(parameters)
Method b (parameters){
If (base case)
Return number
Else
Return method b(parameters)
```

When to and when not use recursion

- Use when dealing with large sets of data, where the approach must be simple and it can use as much memory as necessary
- Don't use when dealing with small sets of data or sets that require more logic and memory.

Neural Networks

How does Recursion fit into Machine Learning?

- Deep NN created by applying the same set of weights recursively over a structured input,
- Produces a structured prediction over variable-size input structures
 - Topological order, deep tree structure.
 - Requiring complete sentence parsing
 - Predicting Stock Markets
 - Generating Pokemon Names

Recursive Neural Network

Model

- RNN Name Generator
 - To simulate real people
 - Given n inputs, iterates for each one to compute n outputs
- n inputs are letters, model tries to predict next letter
- Main Methods
 - Forward Prop
 - Loss Calc
 - Back Prop
 - Clip Gradients

Forward Prop

- For each
 Epoch, iterate
 with formulas
 for each letter
 in word
- 'a' = hidden state

Loss Calc

$$l_t(y_{pred,t}, y_t) = y_t * \log(y_{pred,t}) + (y_t - 1) * \log(1 - y_{pred,t})$$

Loss =
$$L(y_{pred}, y) = \Sigma(l_t(y_{pred}, y_t))$$

Back Prop