CptS 451- Introduction to Database Systems

Overview of Database Systems (DMS ch-1)

Instructor: Sakire Arslan Ay

Database Management Systems

Introduction

Database

- What is a database?
 - A very large, integrated collection of data.

Examples of databases.

- What information databases capture?
 - Entities (e.g., students, courses)
 - Relationships (e.g., Jack is taking CptS451)

Database Management System

- What is a Database Management System (DBMS)?
 - DBMS is a software package designed to store and manage databases.
- Examples of DBMSs:
 - Oracle, IBM DB2, Microsoft SQL Server, Vertica,
 Teradata
 - Open source: MySQL (Sun/Oracle), PostgreSQL,
 CouchDB, SQLite (library)

Traditional DBMS Goals

Efficient management of
 massive amounts of (terabytes)
 persistent (outlasts creator),
 reliable (outlasts crashes)
 shared information (multiple users).

Database Management Systems

- Massive
- Efficient
- Persistent
- Reliable and safe
- Multi-user
- Convenient

Databases and File Systems

- DBMSs evolved from file systems.
- DBMSs provide many features that traditional file systems do not.
 - Data consistency in presence of concurrency
 - Reliability in presence of failures and system crashes.
 - Efficient associative access to very large amounts of data
 - A high level Query language (SQL) to define, create, access, and manipulate data.
 - Security and authorization
 - Prevention of data redundancy and inconsistencies
 - Data abstraction and support for multiple data views

Levels of Abstraction

 Hiding system complexity, physical storage details from users and application programs

Physical data independence: Physical description of data can be changed easily without affecting application programs

This course: Core Database Issues

Data Models

- Relational Model
- ER Model

DBMS Languages

- Relational Algebra (formal); SQL (commercial),
 - Data Definition Language (DDL)
 - Data Manipulation Language (DML)

Schema Design

– Normal forms : BCNF, 3NF

DBMS Internals

- Storage Management
- Indexing : B+Tree and Hash indexes
- Query Optimization and Processing (if time permits)

Transaction Processing Techniques

to support concurrent access and reliability in the presence of failures

Data Model

- A <u>data model</u> is a collection of concepts for describing data.
- The <u>relational model of data</u> is the most widely used model today.
 - Main concept: <u>relation</u>, basically a table with rows and columns.
 - Every relation has a <u>schema</u>, which describes the columns, or fields.
- Other Data Model Examples:
 - Entity-Relationship (ER) Model
 - Semi-structured Model (XML, JSON),
 - Object-Oriented Model (e.g., ODL), etc.

Schemas and Instances

- Schema:
 - overall design, structure, and constraints over the database
 - referred to as metadata
- Instance:
 - set of data currently instantiated in database

Example:

Schema:

Tables

Emp (ename, dep#)
Dept(dep#, dname, mgr)

Constraints

each department has a single manager

Instance:

Emp		
ename	dept	
John	10	
Cindy	15	
Martha	10	

БСРС				
dept	dname	mgr		
10	toy	John		
15	sales	Cindy		
		<u> </u>		

Dent

Entity-Relationship Model

A example schema in the entity-relationship model

Relational Model

Smith

019-28-3746

 Uses a collection of relations (tables) to represent data and relationships among data

Attributes Example of tabular data in the relational model Customer-Customer-id Customer-Account-Customernumber street city name 192-83-7465 Alma Seattle Johnson A-101 **Portland** 019-28-3746 Smith North A-203 Seattle 192-83-7465 Johnson Alma A-201 321-12-3123 Main Pullman A-217 Jones

North

Portland

A-201

A Sample Relational Database

customer-id	customer-name	customer-street	customer-city
192-83-7465	Johnson	12 Alma St.	Palo Alto
019-28-3746	Smith	4 North St.	Rye
677-89-9011	Hayes	3 Main St.	Harrison
182-73-6091	Turner	123 Putnam Ave.	Stamford
321-12-3123	Jones	100 Main St.	Harrison
336-66-9999	Lindsay	175 Park Ave.	Pittsfield
019-28-3746	Smith	72 North St.	Rye

(a) The customer table

account-number	balance
A-101	500
A-215	700
A-102	400
A-305	350
A-201	900
A-217	750
A-222	700

customer-id	account-number
192-83-7465	A-101
192-83-7465	A-201
019-28-3746	A-215
677-89-9011	A-102
182-73-6091	A-305
321-12-3123	A-217
336-66-9999	A-222
019-28-3746	A-201

Semi-structured Data Model

- Allows the specification of data where individual data items (instances) of the same type may have different set of attributes.
- XML (Extensible Markup Language) is widely used to represent semi-structured data
 - XML has become the basis for all new generation data interchange formats.
 - A wide variety of tools is available for parsing, browsing and querying XML documents/data

SQL

- SQL: widely used non-procedural DBMS language for relational databases
 - Example DML Query in SQL:

find the name of the customer with customer-id 192-83-7465

select customer.customer-name

from customer

where customer.customer-id = '192-83-7465'

- Basic SQL has limited expressability
 - cannot implement any arbitrary function in SQL

DBMS Languages

- Data Definition Language (DDL)
 - DDL = the language used to describe a schema
 - Data dictionary/directory = a compiled description of a schema
- Data Manipulation Language (DML)
 - DML= Language users use to ask questions about (query) the database, and to change the data in the database.

Data Definition Language (DDL)

Specification notation for defining the database schema and integrity constraints

- DDL compiler generates a set of table templates stored in a data dictionary
 - Data dictionary contains
 - Database schema
 - Integrity constraints
 - The data values stored in a database must satisfy the schema and constraints defined in the data dictionary

Data Definition Language (DDL) (cont.)

- DDL provides facilities to specify such constraints
 - Domain Constraints
 - Constraint on the value an attribute can take
 - Referential integrity
 - A value that appears in one relation for a set of attributes should appear in a certain set of attributes in another relation
 - Assertions
 - Conditions that database must always satisfy
 - E.g. every department must offer at least five courses every semester
 - Domain and referential integrity are special forms of assertions
 - Authorization
 - Users may have different access rights on various data values
 - Read, insert, update, delete, authorization

Transaction Management

- What if the system fails?
- What if more than one user is concurrently updating the same data?
- A transaction is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

Transaction Concept

• Atomicity:

all or nothing execution.

Consistency:

 execution of a transaction leaves system state as well as the state of the real world consistent.

Isolation:

partial effects of a transaction are hidden from each other.

• Durability:

transactions that have committed will survive permanently.

Structure of a DBMS

- A typical DBMS has a layered architecture.
- The figure does not show the concurrency control and recovery components.
- This is one of several possible architectures; each system has its own variations.

These layers must consider concurrency control and recovery

Structure of a DBMS

Storage Management

- Storage manager is a program module that provides the interface between the low-level data stored in the database and the queries submitted to the system.
- The storage manager is responsible to the following tasks:
 - Interaction with the file manager
 - Efficient storing, retrieving and updating of data

Issues:

- Storage access
- File organization
- Indexing and hashing

Query Processing

WSU **CptS 451**

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

People Involved with DBMSs

- Database designer
 - Establishes schema
- Application programmers
 - Write programs that operate on database
- Database administrator (DBA)
 - DBA = 'super-user' for a database, similar to a system administrator.
 - DBA can define schemas, views, authorization, indexes, tuning parameters, etc. They make sure the database keeps running smoothly.
- End users

Large number of jobs available for each of the above tasks!!