2013 VCAA Specialist Math Exam 2 Solutions © 2013 itute.com

Free download from www.itute.com

SECTION 1

1	2	3	4	5	6	7	8	9	10	11
D	A	Е	D	В	D	Е	C	В	D	С
12	13	14	15	16	17	18	19	20	21	22
Е	A	В	Е	A	В	D	С	A	С	Е

Q1
$$-1 \le 3x \le 1, -\frac{1}{3} \le x \le \frac{1}{3}$$

Q2
$$x = 2 \csc(t) + 1$$
, $\csc(t) = \frac{x-1}{2}$

$$y = 3\cot(t) - 1$$
, $\cot(t) = \frac{y+1}{3}$

$$\csc^2(t) - \cot^2(t) = 1$$
, .: $\frac{(x-1)^2}{4} - \frac{(y+1)^2}{9} = 1$

Q3
$$y = \frac{1}{ax^2 + bx + c} = \frac{1}{a(x+5)(x-3)} = \frac{1}{ax^2 + 2ax - 15a}$$

$$x = \frac{-5+3}{2} = -1$$
, and $y = -\frac{1}{8}$, $\therefore -\frac{1}{8} = \frac{1}{a-2a-15a}$
 $\therefore a = \frac{1}{2}$, $b = 2a = 1$ and $c = -15a = -\frac{15}{2}$

Q4
$$y = \tan^{-1}(bx)$$
, $\frac{dy}{dx} = \frac{b}{1 + (bx)^2} = b$ at $x = 0$

To intersect exactly 3 times, gradient of $y = \tan^{-1}(bx)$ at x = 0must be greater than the gradient of y = ax for positive gradients,

OR $y = \tan^{-1}(bx)$ at x = 0 must be less than the gradient of y = ax for negative gradients.

: Either
$$b > a > 0$$
 or $b < a < 0$

Q5
$$x^2 + y^2 > b^2$$
, $|z|^2 > b^2$, $|z| > b$

Q6 The complete set is
$$\left(-\frac{\pi}{2}, -\frac{\pi}{3}\right) \cup \left(\frac{\pi}{6}, \frac{\pi}{3}\right) \cup \left(\frac{5\pi}{6}, \pi\right)$$
.

The best choice is

Q7
$$z = rcis(\theta), \frac{z^2}{\overline{z}} = \frac{r^2 cis(2\theta)}{rcis(-\theta)} = rcis(3\theta)$$

Q8
$$z^2 = 1 + i$$
, $z^2 = \sqrt{2}cis\left(\frac{\pi}{4} + 2k\pi\right)$, $z = 2^{\frac{1}{4}}cis\left(\frac{\pi}{8} + k\pi\right)$

C

C

E

Principal arguments are $-\frac{7\pi}{8}$ and $\frac{\pi}{8}$.

Q9
$$u = \log_e(x)$$
, $\frac{du}{dx} = \frac{1}{x}$. $x = e^3$, $u = 3$; $x = e^4$, $u = 4$

$$\int_{a}^{e^4} \frac{1}{x \log_e(x)} dx = \int_{3}^{4} \frac{1}{u} du, :: a = 3 \text{ and } b = 4$$

Q10
$$V = \int_{0}^{3} \pi x^{2} dy = \pi \int_{0}^{3} y^{\frac{3}{2}} dy = \frac{18\pi 3^{\frac{1}{2}}}{5}$$

Q11
$$y_{n+1} \approx y_n + h \times \frac{dy}{dx}$$

$$x_0 = 0$$
 $y_0 = 1$
$$\frac{dy}{dx} = \frac{1}{3}$$

$$x_0 = 0$$
 $y_0 = 1$ $\frac{dy}{dx} = \frac{1}{3}$
 $x_1 = 0.1$ $y_1 \approx 1 + 0.1 \times \frac{1}{3} = \frac{31}{30}$ $\frac{dy}{dx} = 0.302115$

$$x_2 = 0.2$$
 $y_2 \approx \frac{31}{30} + 0.1 \times 0.302115 \approx 1.064$

Q12 The solution curves are of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm 1$.

By implicit differentiation, $\frac{2x}{a^2} - \frac{2y}{b^2} \times \frac{dy}{dx} = 0$, $\therefore \frac{dy}{dx} = \frac{b^2x}{a^2y}$

Q13 At time t min., amount of salt = Q grams, volume of solution = 50 + 4t litres,

.: $concentration = \frac{Q}{50 + At}$ grams per litre

Rate of inflow = 20 grams per min

Rate of outflow = $\frac{6Q}{50+4t} = \frac{3Q}{25+2t}$ grams per min

$$\therefore \frac{dQ}{dt} = 20 - \frac{3Q}{25 + 2t}$$

Q14
$$|\overrightarrow{OP}| = \sqrt{7^2 + (-1)^2 + (5\sqrt{2})^2} = 10$$

Q15
$$|\widetilde{u}| = \sqrt{18}$$
, $|\widetilde{v}| = \sqrt{18}$, $|-\widetilde{w}| = \sqrt{18}$, $\widetilde{u}.\widetilde{v} = 0$
 $(\widetilde{u} + \widetilde{w}).\widetilde{v} = 6$

Q16

$$Q = \sqrt{5^2 + 7^2 - 2(5)(7)\cos 70^\circ}$$

D

Q17 Three vectors on the same plane are always linearly dependent. \tilde{a} , \tilde{c} and \tilde{d} are on the same plane.

Q18
$$\frac{1}{2} \frac{d(v^2)}{dx} = \sqrt{(v^2)-1}, \frac{dx}{d(v^2)} = \frac{1}{2\sqrt{(v^2)-1}},$$

$$x = \int \frac{1}{2\sqrt{(v^2) - 1}} d(v^2) = \sqrt{v^2 - 1} + c$$

$$v = \sqrt{2}$$
 when $x = 0$, .: $c = -1$

$$\therefore 1 + x = \sqrt{v^2 - 1}, \ v^2 = 1 + (1 + x)^2, \ \therefore \ v = \sqrt{1 + (1 + x)^2}$$

Q19
$$u = +2$$
, $a = -9.8$, $s = -100$, $s = ut + \frac{1}{2}at^2$, .: $t \approx 4.7$ s C

Q20 Let *R* be the reaction force of the floor on the 5kg parcel. Resultant force = $5g - R = 5 \times 3$, .: R = -15 + 5g

Q21
$$u = +20$$
, $v = +2$, $t = 4$, $v = u + at$, $a = -4.5 \text{ m s}^{-2}$
|Resultant force| = $m|a| = 9.0 \text{ N}$

Q22
$$ma = mg - kv^2$$
, $mv \frac{dv}{dx} = mg - kv^2$, :: $\frac{dv}{dx} = \frac{g}{v} - \frac{kv}{m}$

SECTION 2

Q1a
$$x = 1 + 3\cos(t)$$
, $\cos(t) = \frac{x - 1}{3}$
 $y = -2 + 2\sin(t)$, $\sin(t) = \frac{y + 2}{2}$
 $\sin^2(t) + \cos^2(t) = 1$, .: $\frac{(x - 1)^2}{9} + \frac{(y + 2)^2}{4} = 1$

Q1b
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
, $2\cos(t) = -\frac{2\sqrt{3}}{3} \times (-3\sin(t))$

$$\therefore \tan(t) = \frac{1}{\sqrt{3}} \text{ and } 0 \le t \le 2\pi$$

$$\therefore t = \frac{\pi}{6} \,,\, \frac{7\pi}{6}$$

Q1c
$$\frac{(x-1)^2}{9} + \frac{y^2}{4} = 1$$

x-intercepts:
$$y = 0$$
, $(x-1)^2 = 9$, $x-1 = \pm 3$, .: $x = -2$, 4

y-intercepts:
$$x = 0$$
, $y^2 = \frac{32}{9}$, $y = \pm \frac{4\sqrt{2}}{3}$

Q1di Volume =
$$\int_{1}^{3} \pi y^{2} dx = \int_{1}^{3} 4\pi \left(1 - \frac{(x-1)^{2}}{9}\right) dx$$

Q1dii Volume =
$$4\pi \left[x - \frac{(x-1)^3}{27} \right]^3 = \frac{184\pi}{27}$$
 cubic units

Q2a
$$z\overline{z} = 4$$
, $x^2 + y^2 = 4$; $|z - \overline{z}| = |z + \overline{z}|$, $|y| = |x|$

Q2b In the first quadrant:
$$x = 2\cos\frac{\pi}{4} = \sqrt{2}$$
, $y = 2\sin\frac{\pi}{4} = \sqrt{2}$

$$z = \sqrt{2} + i\sqrt{2}$$

The others are:
$$z = -\sqrt{2} + i\sqrt{2}$$
, $z = -\sqrt{2} - i\sqrt{2}$, $z = \sqrt{2} - i\sqrt{2}$

Q2c
$$z_1 = \sqrt{2} + i\sqrt{2}$$

 $z_2 = -\sqrt{2} + i\sqrt{2}$, $z_3 = -\sqrt{2} - i\sqrt{2}$, $z_4 = \sqrt{2} - i\sqrt{2}$

Q2d
$$z^4 + 16 = (z - z_1)(z - z_2)(z - z_3)(z - z_4)$$

= $(z - \sqrt{2} - i\sqrt{2})(z + \sqrt{2} - i\sqrt{2})(z + \sqrt{2} + i\sqrt{2})(z - \sqrt{2} + i\sqrt{2})$

Q2e

Q2f Area of shaded segment = area of sector – area of triangle = area of quarter circle – area of triangle

$$= \frac{1}{4} \times \pi 2^2 - \frac{1}{2} \times 2 \times 2 = \pi - 2$$
 square units

Q3a
$$\log_e(N) = 6 - 3e^{-0.4t}, t \ge 0$$

$$\frac{d}{dt}\log_{e}(N) = \frac{d}{dt}(6 - 3e^{-0.4t}), \ \frac{d}{dN}\log_{e}(N) \times \frac{dN}{dt} = \frac{d}{dt}(6 - 3e^{-0.4t})$$

$$\frac{1}{N} \frac{dN}{dt} = 1.2e^{-0.4t}$$

$$\therefore \frac{1}{N} \frac{dN}{dt} + 0.4 \log_e(N) - 2.4 = 1.2e^{-0.4t} + 0.4(6 - 3e^{-0.4t}) - 2.4 = 0$$

Q3b When
$$t = 0$$
, $\log_e(N) = 3$, $N = e^3 \approx 20$

Q3c When
$$t \to \infty$$
, $\log_e(N) \to 6$, $N \to e^6 \approx 403$

Q3di
$$\frac{dN}{dt} = 0.4N(6 - \log_e(N))$$

$$\frac{d^{2}N}{dt^{2}} = 0.4 \frac{dN}{dt} (6 - \log_{e}(N)) + 0.4N \left(-\frac{1}{N}\right) \frac{dN}{dt}$$

$$= \frac{dN}{dt} \left(2 - 0.4 \log_e(N) \right) = 0.4 \frac{dN}{dt} \left(5 - \log_e(N) \right)$$

$$= 0.16N(6 - \log_e(N))(5 - \log_e(N))$$

Q3dii Let $\frac{d^2N}{dt^2} = 0$ to find the point of inflection.

$$5 - \log_e(N) = 0$$
, $N = e^5 \approx 148$ when $t \approx 2.7$

Q3e

Q4a
$$\tilde{b} = \tilde{i} + \sqrt{3}\tilde{j} + 2\sqrt{3}\tilde{k}$$
, $|\tilde{b}| = \sqrt{1^2 + (\sqrt{3})^2 + (2\sqrt{3})^2} = 4$
$$\hat{b} = \frac{\tilde{b}}{|\tilde{b}|} = \frac{1}{4} (\tilde{i} + \sqrt{3}\tilde{j} + 2\sqrt{3}\tilde{k})$$

Q4b Component of \tilde{a} parallel to \tilde{b} :

$$(\tilde{a}\,\tilde{b})\hat{b} = \left(-\frac{4\sqrt{3}}{3}\right)\frac{1}{4}\left(\tilde{i}+\sqrt{3}\,\tilde{j}+2\sqrt{3}\tilde{k}\right)$$

$$= -\frac{\sqrt{3}}{3} \left(\tilde{i} + \sqrt{3} \, \tilde{j} + 2\sqrt{3} \, \tilde{k} \right) = -\left(\frac{\sqrt{3}}{3} \, \tilde{i} + \tilde{j} + 2\tilde{k} \right)$$

Component of \tilde{a} perpendicular to \tilde{b}

$$\widetilde{a} - \left(\widetilde{a}\,\widetilde{b}\right)\widehat{b} = \left(-\frac{7\sqrt{3}}{3}\,\widetilde{i} + \widetilde{j} - 2\widetilde{k}\right) + \left(\frac{\sqrt{3}}{3}\,\widetilde{i} + \widetilde{j} + 2\widetilde{k}\right)$$
$$= -2\sqrt{3}\,\widetilde{i} + 2\,\widetilde{j}$$

Q4c
$$\tilde{c}.\tilde{b} = |\tilde{c}| |\tilde{b}| \cos \frac{2\pi}{2}$$

$$m + \sqrt{3} - 4\sqrt{3} = \sqrt{m^2 + 1 + 4} \times 4 \times \left(-\frac{1}{2}\right)$$

.:
$$3m^2 + 6\sqrt{3}m - 7 = 0$$
 and given $\tilde{c} \neq \tilde{a}$, i.e. $m \neq -\frac{7\sqrt{3}}{3}$

$$m = \frac{\sqrt{3}}{3}$$

Q4d
$$\tilde{c}.\tilde{a} = |\tilde{c}||\tilde{a}|\cos\theta$$
, $\cos\theta = \frac{\tilde{c}.\tilde{a}}{|\tilde{c}||\tilde{a}|} = \frac{1}{4}$, .: $\theta \approx 75.5^{\circ}$

Q4ei
$$\overrightarrow{AN} = \widetilde{u} + \frac{1}{2}\widetilde{v}$$

Q4eii
$$\overrightarrow{CM} = \overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB} = -\widetilde{u} + \frac{1}{2}(\widetilde{u} + \widetilde{v}) = \frac{1}{2}\widetilde{v} - \frac{1}{2}\widetilde{u}$$

$$\overrightarrow{BP} = -\frac{1}{2}\widetilde{u} - \widetilde{v}$$

Q4eiii

$$\overrightarrow{AN} + \overrightarrow{CN} + \overrightarrow{BP} = \left(\widetilde{u} + \frac{1}{2}\widetilde{v}\right) + \left(\frac{1}{2}\widetilde{v} - \frac{1}{2}\widetilde{u}\right) + \left(-\frac{1}{2}\widetilde{u} - \widetilde{v}\right) = \widetilde{0}$$

Q5a

$$\widetilde{r}(t) = 7.5t\widetilde{i} + \left(50 - 10\sin\left(\frac{\pi t}{6}\right)\right)\widetilde{j}, \ \dot{r}(t) = 7.5\widetilde{i} - \frac{5\pi}{3}\cos\left(\frac{\pi t}{6}\right)\widetilde{j}$$

Speed =
$$|\dot{r}(t)| = \sqrt{7.5^2 + \left(-\frac{5\pi}{3}\cos\left(\frac{\pi t}{6}\right)\right)^2} \approx \sqrt{56.25 + 27.42\cos^2\left(\frac{\pi t}{6}\right)}$$

Minimum speed = $\sqrt{56.25}$ = 7.5 m s⁻¹

Maximum speed $\approx \sqrt{56.25 + 27.42} \approx 9.1 \,\mathrm{m \ s^{-1}}$

Q5b Let
$$\ddot{r}(t) = \frac{5\pi^2}{18} \sin\left(\frac{\pi}{6}\right) \tilde{j} = \tilde{0}$$
, .: $\frac{\pi}{6} = 0$, π , 2π , 3π

.: $t = 0, 6, 12, 18, \dots$ i.e. t = 6n where n is an integer ≥ 0 .

Q5c Vertical component of initial velocity = $15 \sin 30^{\circ} = 7.5$ Height of ramp = $10 \sin 30^{\circ} = 5$

$$u = +7.5$$
, $s = -5$, $a = -9.8$, $s = ut + \frac{1}{2}at^2$

$$4.9t^2 - 7.5t - 5 = 0$$
, $t \approx 2.03$ s

Q5d Horizontal component of initial velocity = $15\cos 30^{\circ} \approx 12.99$ Distance $\approx 12.99 \times 2.03 \approx 26$ m

Q5e

$$N = 9.8M \cos 30^{\circ}, \ f = \mu N = \frac{1}{8\sqrt{3}} \times 9.8M \cos 30^{\circ} = \frac{9.8M}{16}$$

$$a = \frac{net.force}{mass} = \frac{-9.8M \sin 30^{\circ} - \frac{9.8M}{16}}{M} = -5.5125$$

$$u = +10$$
, $v = 0$, $a = -5.5125$, $v^2 = u^2 + 2as$, $s \approx +9.1$ m
: distance up the plane = 9.1 m

Q5f Friction required = $9.8M \sin 30^{\circ} = 4.9M$

$$f = \mu N$$
, $4.9M = \mu \times 9.8M \cos 30^{\circ}$, $4.9M = \mu \times 9.8M \times \frac{\sqrt{3}}{2}$

$$\mu = \frac{1}{\sqrt{3}}$$
 which is $\mu = \tan 30^{\circ}$.

Please inform mathline@itute.com re conceptual and/or mathematical errors