

Exercice 1 – Moteur à courant continu* B2-07

Question 1 Réaliser le schéma-blocs.

Question 2 *Mettre le schéma-blocs sous la forme suivante.*

En utilisant le schéma-blocs proposé, on a $\Omega(p) = (C_r(p)A(p) + U(p)B(p))C(p)$.

D'autre part,
$$\Omega(p) = \left(C_r(p) + \frac{K}{R + Lp} \left(U(p) - K\Omega(p)\right)\right) \frac{1}{f}$$

On a donc $(f + Jp)\Omega(p) = C_r(p) + U(p)\frac{K}{R + Lp}$
 $\iff (f + Jp)\Omega(p) + \frac{K^2}{R + Lp}\Omega(p) = C_r(p) + U(p)\frac{K}{R + Lp}$

$$\Leftrightarrow (f+Jp)\Omega(p) + \frac{K^2}{R+Lp}\Omega(p) = C_r(p) + U(p)\frac{K}{R+Lp}$$

$$\Leftrightarrow \left((f+Jp) + \frac{K^2}{R+Lp}\right)\Omega(p) = C_r(p) + U(p)\frac{K}{R+Lp}$$

$$K^2 + (f+Jp)(R+Lp)$$

$$\iff \frac{K^2 + (f + Jp)(R + Lp)}{R + Lp} \Omega(p) = C_r(p) +$$

$$U(p)\frac{K}{R+Lp}$$

$$\Leftrightarrow \Omega(p) = \left(C_r(p) + U(p)\frac{K}{R+Lp}\right)\frac{R+Lp}{K^2 + (f+Jp)(R+Lp)}.$$

Dés lors plusieurs schéma-blocs peuvent répondre à la question. Par exemple, A(p)=1, $B(p)=\frac{K}{R+Lp}$,

$$C(p) = \frac{R + Lp}{K^2 + (f + Jp)(R + Lp)}.$$

En poursuivant, on a aussi: $\Omega(p) = (C_r(p)(R+Lp) + U(p)K)$

On a donc aussi,
$$A(p) = R + Lp$$
, $B(p) = K$, $C(p) = \frac{1}{K^2 + (f + Jp)(R + Lp)}$

Exercice 2 – Diagramme de Bode*

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p) = \frac{15}{1+10p}$.

Tracer asymptotique

	$\omega \rightarrow 0$	$\omega = \frac{1}{10}$	rad/s	$\omega o \infty$
$H(p) = \frac{15}{1 + 10p}$	0 dB/- 0°	décade	-20 dB -90°	/décade

Positionnement du diagramme de gain Lorsque que ω tend vers 0, le gain tend vers $20 \log 15 = 23,5 \, dB$.

Question 2 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_2(p) = \frac{10}{(1+10p)(10+p)}$.

Tracer asymptotique

$$F_2(p) = \frac{1}{(1+10p)(1+\frac{p}{10})}$$

1							
`+	J p	$\omega \rightarrow 0$ $\omega_1 = \frac{1}{2}$		$\frac{1}{0}$ rad/s $\omega_2 = 1$		0 rad/s	$\omega o \infty$
	$H_1(p) = \frac{1}{1 + 10p}$	0 dB/décade 0° 0 dB/décade 0° 0 dB/décade 0°		−20 dB −90°	/décade	−20 dB −90°	/décade
	$H_2(p) = \frac{1}{1 + \frac{p}{10}}$			0 dB/e 0°	lécade	−20 dB −90°	/décade
	$F_2(p)$			−20 dB/décade −90°		−40 dB/décade −180°	

Positionnement du diagramme de gain Lorsque que ω tend vers 0, le gain tend vers $20 \log 1 = 0$ dB.

Question 3 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_3(p) = \frac{40}{p(1+300p)}$.

Tracer asymptotique

	$\omega \rightarrow 0$	$\omega = \frac{1}{30}$	0 rad/s	$\omega o \infty$	
$H_1(p) = \frac{40}{p}$	-20 dB -90°	−20 dB/décade −90°		−20 dB/décade −90°	
$H_2(p) = \frac{1}{1 + 300p}$	0 dB/e 0°	décade	e -20 dB/décade -90°		
$F_3(p)$	-20 dB -90°	/décade	-40 dB -180°	/décade	

Positionnement du diagramme de gain Lorsque que ω tend vers 0, $F_3(p) \simeq \frac{40}{p}$. Cette asymptote de pente $-20\,\mathrm{dB/decade}$ passe par le point (40,0).

Exercice 3 - Schéma d'Euler*

C3-02 Pas de corrigé pour cet exercice.

Question 1 Donner la méthode de résolution numérique des équations différentielles suivantes en utilisant le schéma d'Euler explicite.

$$\begin{cases} y'(t) = -t y^{2}(t) & \text{si } t > 0 \\ y(0) = \alpha \end{cases}$$
 (1)

Exercice 4 - Vérin*

B2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le schéma-blocs.

•
$$U_c(p) = \frac{1}{K_a}I(p) + U_s(p)$$

- $Q(p) = \stackrel{K_a}{SpX}(p)$ $U_S(p) = K_C \cdot X(p)$ $F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + Tp}$

Exercice 5 - Diagramme de Bode *

C2-02 Pas de corrigé pour cet exercice.

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p)$

$$\overline{p(1+20p+100p^2)}.$$

On a
$$\frac{1}{\omega_0^2}$$
 = 100 et ω_0 = 0,1 rad s⁻¹.

On a
$$\frac{1}{\omega_0^2} = 100$$
 et $\omega_0 = 0.1$ rads⁻¹.
On a $\frac{2\xi}{\omega_0} = 20$ soit $\xi = \frac{20 \times \omega_0}{2} = 1$.
(On a donc une racine double et on pourrait remarance)

quer que:
$$F_1(p) = \frac{200}{p(1+10p)^2}$$
).

	$\omega \rightarrow 0$	$\omega = 0$,	1 rad/s	$\omega \to \infty$
$H_1(p) = \frac{200}{p}$	$H_1(p) = \frac{1}{p}$ $0 dR/décade$		−20 dB/décade −90°	
$H_2(p) = \frac{1}{(1+10p)}$			−40 dB/décade −90°	
$F_1(p)$			−60 dB/décade −270°	

Lorsque
$$\omega << 0.1$$
, $F_1(p) \simeq \frac{200}{p}$ et $G_{dB}(0,1) = 20\log 200 - 20\log 0, 1 = 66 dB$?

Exercice 6 - Schéma d'Euler*

Pas de corrigé pour cet exercice. C3-02

Question 1 Donner la méthode de résolution numérique des équations différentielles suivantes en utilisant le schéma d'Euler explicite.

$$\ddot{\theta}(t) + \frac{g}{l}\sin\theta = 0$$

$$\theta(0) = 0 \quad \dot{\theta}(0) = 0$$

On pose $y_0(t) = \theta(t)$ et $y_1(t) = \dot{\theta}(t) = y_0'(t)$. On a donc

$$\begin{cases} y_0'(t) = y_1(t) \\ y_1'(t) + \frac{g}{l} \sin y_0(t) = 0 \end{cases}$$

Par ailleurs, $y_0(t) = 0$ et $y_1(t) = 0$. En discrétisant, on a donc :

Exercice 7 - Banc d'épreuve hydraulique *

B2-07 Pas de corrigé pour cet exercice.

Question 1 Déduire de la relation précédente l'équation reliant Z(p), $P_e(p)$, $P_h(p)$, et Poids(p) = Mg/p, transformées de Laplace de z(t), $P_e(t)$, $P_h(t)$ et du poids perçu comme une perturbation. Les conditions initiales sont supposées nulles.

$$Mp^{2}Z(p) = S_{h}P_{h}(p) - S_{e}P_{e}(pt) - \frac{Mg}{p} - fpZ(p)$$

Question 2 En déduire, en tenant compte de l'équation du débit, deux équations liant L(p), $P_e(p)$ et $Q_e(p)$, transformées de Laplace de L(t), $P_e(t)$ et $Q_e(t)$. Les conditions initiales sont supposées nulles.

$$Q_e(p)=(S_a-S_b)pL(p)+\frac{V_t}{B_e}pP_e(p) \text{ et } mp^2L(p)=-rL(p)+(S_a-S_b)P_e(p)-f'pL(p).$$

Question 3 Compléter le schéma-blocs de l'ensemble (sans le distributeur hydraulique), l'entrée étant la pression d'huile régulée $P_r(p)$ et la sortie la pression d'épreuve dans le tube $P_e(p)$.

Exercice 8 - Schéma d'Euler*

C3-02 Pas de corrigé pour cet exercice.

Question 1 Donner la méthode de résolution numérique des équations différentielles suivantes en utilisant le schéma d'Euler explicite.

$$\begin{cases} y'(t) + \alpha y(t) = \beta \\ y(0) = \gamma \end{cases}$$
 (2)

Équation 1

On a:

$$y'(t) \simeq \frac{y(t+h) - y(h)}{h}$$

En discrétisant le problème, on a $y_k = y(kh) = y(t)$; donc :

$$\frac{y(t+h)-y(h)}{h} + \alpha y(t) = \beta \Longrightarrow \frac{y_{k+1}-y_k}{h} + \alpha y_k = \beta \Longleftrightarrow y_{k+1} = \beta h - \alpha y_k$$