自由落体法测重力加速度

姓名: 王冬雪 学号: PB22511902 班级: 核科学技术学院 2 班 日期: 2023 年 3 月 31 日

实验目的

利用自由落体测量本地的重力加速度g。

实验原理

根据牛顿运动定律,自由落体的运动方程为:

$$h = \frac{1}{2}gt^2 \tag{1}$$

其中 h 为下落距离, t 为下落时间。在实际工作中 t 测量精度不高, 利用 (1) 很难精确测量重力加速度 g。

本实验采用卷尺测量 h,采用双光电门法测 t,原理见右图。光电门 1 的位置固定,即小球通过光电门 1 时速度 v_0 保持不变,小球通

过光电门 1 与光电门 2 的高度差为 h_i ,时间差为 t_i ,改变光电门 2 的位置,可得到系列式:

$$h_i = v_0 t_i + \frac{1}{2} g t_i^2$$

两端同除以 t_i :

$$\overline{v}_i = \frac{h_i}{t_i} = v_0 + \frac{1}{2}gt_i$$

测出系列 h_i 、 t_i ,利用线性拟合即可求出当地的重力加速度 g。

实验仪器

自由落体实验装置见上图,立柱底座的调节螺栓用于调节竖直,立柱上端有一电磁铁,用于吸住小钢球。电磁铁一旦断电,小球即做自由落体运动。由于电磁铁有剩磁,因此小球下落的初始时间不准确(最大不确定度约 20ms)。

立柱上装有两个可以上下移动的光电门,其位置可以利用立柱上的刻度测量。数字毫秒计显示 3 个值,分别对应:从电磁铁断电到小球通过光电门 1 的时间差、从电磁铁断电到小球通过光电门 2 的时间差,小球通过两个光电门的时间差,单位为 ms。

测量记录 (原始数据及签字见附录)

编号	光电门2位置/cm	小球过光电门1时间/ms	小球过光电门2时间/ms	小球过光电门1、2时间差/ms	
1		175. 8	320. 4	144. 6	
2	50. 0	175. 7	320. 4	144. 7	
3		175. 8	320. 5	144. 7	
4		175. 9	336. 2	160. 3	
5	55. 0	175.8	336. 1	160. 3	
6		175. 7	336. 0	160. 3	
7	60. 0	175. 7	351. 1	175. 4	
8		175. 8	351. 1	175. 3	
9		175.8	351. 1	175. 3	
10		175. 9	365. 5	189. 6	
11	65. 0	175.8	365. 3	189. 5	
12		175. 8	365. 4	189. 6	
13	70. 0	175. 4	378. 7	203. 3	
14		175. 6	378. 8	203. 2	
15		175. 7	379. 0	203. 3	
16		175. 7	392. 2	216. 5	
17	75. 0	176. 1	392. 6	216. 5	
18		175. 7	392. 2	216. 5	
19	80. 0	175. 9	405. 3	229. 4	
20		175. 4	404. 5	229. 1	
21		175. 7	175. 7 405. 1 229. 4		
22	85. 0	175. 4	417. 3	241.9	
23		176. 0	417. 9	241. 9	
24		175. 3	417. 3	242. 0	

分析与讨论

数据处理

如下图:

可得 $g = 0.004889 \times 10^3 \times 2 \text{m/s}^2 = 9.7778 \text{m/s}^2$

由于相关系数 r = R = 0.99995 大于相关系数阈值 0.404,故可以用最小二乘法回归。

斜率 $\frac{1}{2}g$ 的标准差:

$$S_{\frac{1}{2}g} = \frac{1}{2}g\sqrt{(\frac{1}{r^2} - 1)/(24 - 2)} = 0.01$$
m/s²

斜率 $\frac{1}{2}g$ 的扩展不确定度:

$$u_{\frac{1}{2}g} = t_{0.95} S_{\frac{1}{2}g} = 0.02 \text{m/s}^2$$

则
$$u_g = 2u_{\frac{1}{2}g} = 0.04$$
m/s²

$$g = (9.78 \pm 0.04) \text{m/s}^2$$

误差分析

相比于合肥地区标准参考值 9.7947m/s²略小,误差可能来源于立柱上量尺精度略小导致,通过使用更高精度的测量尺可以更为精确。

思考题

- 1,在实际工作中,由于电磁铁断电后仍有剩磁,因此小球下落的初试时间不准确(最大不确定度约 20ms),故利用(1)式很难精确测量重力加速度 g。
- 2,光电门之间距离应当适当远一些,因为 Δh 越大,测量 h,t 时产生的误差对实验的影响越小。

附录

细的客	老电门2位置/cm	在 (h, = 15.0	34.2日本1日16	目打到差加多
1	50.0	175.8	320.4	144.6.
2		175.7	320.4	144.7
3		175.8	2,20.5	144.7
4	55.0.	175.9	336.2	160-3
_5		174.8	336.	160.3
6		175.7	336.0	160.3
7	60.0	175.7 (1758)	351.1 801.17	175.4475
3		+75.6 175.4	351. 661.1)	175.4
9		175.8	351.1	175.3
10	65.0	175-9	365.5	189.6
1.1		175.8	365.3	189.5
12		175.8	365-4	189.6
13	70.0	1754-76.0	378.7	203.3
14		175-6	378.8	203.2
15		175-7	379.0	203.3
16	75.0	175.7	392.2	216.5
17		176-1	392.6	216.5
18		175.7	392.2	216.5
19	. 30.0	175-9	405.3	229.4
20		- 175-4	404.5	229.5
22		175-7	405-1	229,4
23	90.0	176.0	417.9	241.9
24	85-0	175-3	417.3	242.0