STATISTISCH REDENEREN

Lab 2

April	10	201	6
Δ DIII	10,	401	U

Students: Maico Timmerman 10542590	Lecturer Rein van de Boomgaard
Tim van Zalingen 10784012	Course Statistisch Redenerer

Contents

1	Kar	ısrekening	2																2
	1.1	Opgave 1					 												2
		Opgave 2																	9

1 Kansrekening 2

1.1 Opgave 1

(a) De lineaire functie F(x) stijgt op dit interval van 0 naar 1. Dit geeft ons:

$$F(x) = \frac{x-3}{9-3} = \frac{x-3}{6} \tag{1}$$

Voor $2 \le x \le 8$.

(b)
$$P([-10,3]) = F(-10) - F(3) = 0 - \frac{3-3}{6} = 0$$
 (2)

(c) $P([a,b]) = F(a) - F(b) = \frac{a-3}{6} - \frac{b-3}{6} = \frac{a-3-b+3}{6} = \frac{a-b}{6}$ (3)

1.2 Opgave 2

- (a) $U = \{\text{'kop'}, \text{'munt'}\}$
- (b) $P(k) = \binom{n}{k} p^{k} (1-p)^{n-k}$ (4)
- (c) Dit is de binomiale verdeling, met paramters n en p.

```
# Authors: Tim van Zalingen (10784012)
          Maico Timmerman (10542590)
# Date: 7 April 2016
# File: 2d.py
from scipy.misc import comb
def chance(n, p):
    Calculate the total chance given the number of throws (n)
    and the probability (p).
    total = 0.0
    for k in range(n+1):
        total += comb(n, k, exact=False) * p**k * (1-p) ** (n-k)
    return total
def main():
    for n in range(1, 20):
        for p in [.0, .2, .25, .33, .5, .66, .75, .8, 1.]:
            print('(n,p):(%d,%f) \rightarrow %f' % (n, p, chance(n, p)))
```

```
if __name__ == '__main__':
    main()
```