Definition

Given vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{u} \neq \mathbf{0}$, the *orthogonal projection* of \mathbf{v} onto \mathbf{u} is the vector $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ such that

- 1) $\operatorname{proj}_{\mathbf{u}}\mathbf{v} = c\mathbf{u}$ for some $c \in \mathbb{R}$
- 2) the vector $\mathbf{v} \text{proj}_{\mathbf{u}} \mathbf{v}$ is orthogonal to \mathbf{u} .

Proposition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $\mathbf{u} \neq \mathbf{0}$. For any $c \in \mathbb{R}$ we have

$$||v - \mathsf{proj}_{\mathsf{u}} v|| \leq ||v - c \mathsf{u}||$$

Proposition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $\mathbf{u} \neq \mathbf{0}$. Then $\mathrm{proj}_{\mathbf{u}} \mathbf{v} = c \mathbf{u}$ where

$$c = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$$

In particular, if $\|\mathbf{u}\| = 1$ then $\text{proj}_{\mathbf{u}}\mathbf{v} = c\mathbf{u}$ where

$$c = \mathbf{v} \cdot \mathbf{u}$$

Example.

$$\mathbf{u} = \begin{bmatrix} 1/3 \\ 2/3 \\ -2/3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Corollary

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $||\mathbf{u}|| = 1$ then

$$||proj_{u}v|| = |v \cdot u|$$