HW_2

Nathan Laroy

2023-11-04

0) prepare data

1) graphing and exploratory data analysis

```
# standard scatterplot with LS line
plot(CBF_data$NB, CBF_data$EFB)
abline(lm(CBF_data$EFB ~ CBF_data$NB))
```


GRAPHS

```
# scatterplot of differences with smoother (ideally about zero)
diff <- CBF_data$EFB - CBF_data$NB
plot(diff)
lines(x = 1:15, y = rep(0, times=15))
lines(lowess(diff), col = "red")</pre>
```



```
# boxplot of differences with horizontal about mean
boxplot(diff)
abline(h = mean(diff), col = "red", lwd = 3)
```



```
#### EXPLORATORY DATA ANALYSIS
# central Q: explore data wrt association
mean(diff)

## [1] 0.3533333

sd(diff)

## [1] 0.9085834
# other: in reference to graphs
```

2) Estimate Spearman Rank Correlation

The Spearman rank correlation is estimated at: 0.8771332.

The Spearman rank correlation coefficient is calculated as follows: first, both variables are ordered from least to greatest and ranked accordingly. Potential ties for each batch of observations are resolved via mid-ranks (i.e., the 'normal' ranks of the ties are averaged across the number of constituents of the respective tie). The coefficient is then mathematically defined as:

$$r_{s} = \frac{12\sum_{i=1}^{n} \left(\left[R_{i} - \frac{n+1}{2} \right] \left[S_{i} - \frac{n+1}{2} \right] \right)}{n(n^{2} - 1)}$$

with R_i the ranks of the first variable's observations, S_i the ranks of the second variable's observations, and n the number of paired observations.

3) Permutation test based on Spearman's rank statistic

What does H_0 imply?

Under H_0 , if there is no correlation between the NB and EFB measurements, then any observed value of NB can co-occur with any observed value of EFB.

To perform a permutation test, we first construct a permutation null distribution. What is to be permuted exactly? Given that under H_0 any NB value may co-occur with any EFB value, it is easiest to permute the NB vector, and calculate iteratively the Spearman correlation coefficient for each combination of EFB and permuted NB.

Histogram of spearman.r.star


```
print(c(max(spearman.r.star), obs.cor))

## [1] 0.8923799 0.8771332

sum(spearman.r.star >= obs.cor)

## [1] 1

mean(spearman.r.star >= obs.cor)

## [1] 1e-04
```

4) Asymptotic approximation

standardized coefficients (with ties!)

```
n < -15
NB_ranked <- rank(NB) # 1 tie: 5.5 (2)
EFB_ranked <- rank(EFB) # 4 ties:</pre>
                                 2.5 (2)
                                 4.5 (2)
#
                                 6.5(2)
                                 11.5 (2)
Diff_ranked <- NB_ranked - EFB_ranked</pre>
g <- 1
t_i <- 2
h <- 4
u_i <- 2
## r.star == obs.cor, because R calculates tie-corrected by default
r.star \leftarrow (n*(n^2 - 1) - 6*sum(Diff_ranked^2) - 0.5*(g*(t_i*(t_i^2 - 1)) +
                                                           h*(u_i*(u_i^2 - 1)))) /
  (((n*(n^2 - 1) - g*(t_i*(t_i^2 - 1))) * (n*(n^2 - 1)))
                                              -h*(u_i*(u_i^2 - 1)))^0.5)
r.standard \leftarrow (n-1)^(0.5) * r.star
(p.value <- 1 - pnorm(r.standard))</pre>
```

[1] 0.0005154923

```
# can be doublechecked via perm.cor.test from "jmuOutlier" package)
```

5) Compare two distributions

```
probabilities <- seq(0.0001, 0.9999, by = 0.01)
probabilities[1:5]</pre>
```

[1] 0.0001 0.0101 0.0201 0.0301 0.0401

```
perm.Quantiles <- quantile(spearman.r.star, probabilities)
n.Quantiles <- qnorm(probabilities)

plot(n.Quantiles, perm.Quantiles)
qqline(perm.Quantiles)</pre>
```



```
# or
qqnorm(perm.Quantiles)
qqline(perm.Quantiles)
```

Normal Q-Q Plot

