线性代数 (理工)

常寅山

第五章 特征值与特征向量

- ❶ 矩阵的特征值与特征向量
 - 特征值与特征向量
 - 特征多项式
 - 求特征值与特征向量
- ② 特征值和特征向量的性质
- ③ 矩阵的相似对角化

特征值与特征向量

定义 1 (特征值与特征向量)

设 $A \neq n$ 阶复方阵. 若存在复数 λ 和非零复向量 X 使得 $AX = \lambda X$.

则称 λ 是 A 的一个特征值(eigenvalue), 称 X 是 A 的属于 (关于) 特征值 λ 的特征向量(eigenvector).

注 1

- 本章讨论的数都是复数.
- A 是方阵.
- 单位阵 E_n 的特征值是 1, 所有的 n 维非零向量都是对应的特征向量. 零矩阵的特征值是 0, 所有的 n 维非零向量都是对应的特征向量.

特征子空间

命题 1

设 λ 是 A 的特征值, $X_1, X_2, ..., X_t$ 是 A 属于 λ 的特征向量. 对任意复数 $k_1, k_2, ..., k_t$, 其非零线性组合 $k_1X_1 + k_2X_2 + \cdots + k_tX_t \neq 0$, 仍是 A 属于 λ 的特征向量.

证明.

$$A(k_1X_1 + k_2X_2 + \dots + k_tX_t) = k_1AX_1 + k_2AX_2 + \dots + k_tAX_t$$

= $k_1\lambda X_1 + k_2\lambda X_2 + \dots + k_t\lambda X_t$
= $\lambda(k_1X_1 + k_2X_2 + \dots + k_tX_t)$.

注 2

由此可知, $H := \{A$ 的属于 λ 的特征向量全体 $\} \cup \{0\}$, 则 H是子空间, 称为 A 的属于 λ 的特征子空间.

命题 2

 $设 \lambda 是 A$ 的特征值,则

- 1) 当 m 是正整数时, 有 λ^m 是 A^m 的特征值.
- 2) 当 A 可逆时, λ^{-1} 是 A^{-1} 的特征值.
- 3) 当 A 可逆, m 为任意整数时, λ^m 是 A^m 的特征值(当 m < 0 时, $A^m = (A^{-1})^{|m|}$).

证明

1) 已知 λ 为 A 的特征值,则存在非零向量 X,使得 $AX = \lambda X$. 故 $A^m X = A^{m-1}(AX) = A^{m-1}(\lambda X) = \lambda A^{m-1}X$ $= \cdots = \lambda^m X$. 故 λ^m 为 A^m 的特征值.

证明续

2) 我们首先证明, 当 A 可逆时, 0 不为 A 的特征值. 事实 上, 当 A 可逆时, 齐次线性方程组 AX = 0 只有零解, 故不存非零向量 X 满足 AX=0. 故 λ 为 A 的特征值时, $\lambda \neq 0$, 且存在非零向量 X, 使 得 $AX = \lambda X$. 两边同乘 A^{-1} 得, $X = A^{-1}\lambda X$, 故 $A^{-1}X = \lambda^{-1}X$. 所以 λ^{-1} 是 A^{-1} 的特征值.

证明续.

当 m=0 时, A=E, $\lambda^0=1$, 显然 1 是单位阵 E 的特 征值. 当 m > 0 时, 即 1). 当 m < 0 时, 由 1), 2) 可 得.

注 3

我们已经看到, 当 A 可逆时, 0 不是 A 的特征值; 反之, 当 A 不可逆时, 0 是 A 的特征值.

事实上, 当 A 不可逆时, AX = 0 有非零解 X_0 , 故 0 为特征 值, X_0 为属于特征值 0 的特征向量.

命题3

方阵 A 可逆, 当且仅当 0 不是 A 的特征值.

命题 4

已知 λ 是 A 的特征值, $\varphi(x) = a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0$ 是多项式,则 $\varphi(\lambda)$ 是 $\varphi(A)$ 的特征值.

证明.

设 $X \neq A$ 的属于 λ 的特征向量, 则

$$A^iX = \lambda^iX, (i = 1, \dots, k), \quad EX = X.$$

故
$$\varphi(A)X = (\sum_{i=0}^k a_i A^i)X = \sum_{i=1}^k (a_i A^i X) + a_0 EX$$

= $\sum_{i=1}^k a_i \lambda^i X + a_0 X = \varphi(\lambda) X$.
故 $\varphi(\lambda)$ 是 $\varphi(A)$ 的特征值.

命题 5

- $\lambda \in A$ 的特征值 $\Leftrightarrow 0 \in \lambda E A$ 的特征值;
- X_0 是 A 属于 λ 的特征向量
 - $\Leftrightarrow X_0$ 是 $\lambda E A$ 属于 0 的特征向量
 - $\Leftrightarrow X_0 \neq (\lambda E A)X = 0$ 的非零解.

定理1

 λ 是 A 的特征值 \Leftrightarrow det($\lambda E - A$) = 0.

注 4

我们要找 A 的特征值, 只需要求多项式 $f(\lambda) = \det(\lambda E - A) = 0$ 的根; 我们要求 A 关于 λ 的特征向量, 只需要求方程 $(\lambda E - A)X = 0$ 的非零解.

特征多项式

定义 2 (特征矩阵与特征多项式)

给定 n 阶方阵 A, 称含有参数 λ 的矩阵

$$\lambda E - A = \begin{bmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{bmatrix}$$

为 A 的特征矩阵; 称 A 的特征矩阵 $\lambda E - A$ 的行列式

$$f(\lambda) = |\lambda E - A| = \lambda^n + b_1 \lambda^{n-1} + b_2 \lambda^{n-2} + \dots + b_{n-1} \lambda + b_n$$

为 A 的特征多项式.

代数基本定理

定理 2 (代数基本定理)

任何 n(n) 正整数) 次多项式有且仅有 n 个复根 (重根按重数计算).

例 1

- $g(x) = x^2 1$ 有两个实根 $x_1 = 1$ 和 $x_2 = -1$.
- $g(x) = (x-1)^2$ 有两个相等的实根 $x_1 = x_2 = 1$, 此时称根 1 的代数重数为 2, 称 1 为 2 重根.
- $g(x) = x^3(x-1)(x+2)$ 有三重根 0, 两个单根 1, -2.
- $g(x) = x^2 + 1$ 没有实根, 但是有两个复根 $x_1 = i$ 和 $x_2 = -i$.

特征值与特征多项式

我们已经知道, λ 为 A 的特征值当且仅当 $\det(\lambda E - A) = 0$, 即 A 的特征值都是特征多项式的零点, 且特征多项式的零点都是 A 的特征值.

我们还知道, 特征多项式 $f(\lambda) = \det(\lambda E - A) = 0$ 的所有根, 共有 n 个 (计算重数), 故 A 有 n 个特征值 (计算重数).

特别的, 若 λ_0 是特征多项式 $\det(\lambda E - A) = 0$ 的 k 重根, 则 λ_0 为 A 特征值, 且其代数重数为 k.

给定矩阵 A, 求它的特征值和特征向量算法:

- 1) 求出特征多项式 $f(\lambda) = \det(\lambda E A)$;
- 2) 求特征多项式 $f(\lambda) = \det(\lambda E A) = 0$ 的所有根, 共有 n 个 (计算重数), 记作 $\lambda_1, \dots, \lambda_n$;
- 3) 对每个 λ_i , 解方程 $(\lambda_i E A)X = 0$, 求出其非零解, 得属于 λ_i 的特征向量. (求出基础解系 X_1, \dots, X_s , 非零解为 $X = k_1 X_1 + \dots + k_s X_s$, k_1, \dots, k_s 不全为零.)

<u>例 2</u> (P132 例 5.1.2)

求
$$A = \begin{bmatrix} -1 & 4 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$
 的特征值与特征向量.

解

$$f(\lambda) = \det(\lambda E - A) = \begin{vmatrix} \lambda + 1 & -4 & 0 \\ -1 & \lambda - 2 & 0 \\ -1 & 0 & \lambda - 3 \end{vmatrix} = (\lambda + 2)(\lambda - 3)^{2}$$
A 的特征值为 $\lambda_{1} = -2, \lambda_{2} = \lambda_{3} = 3.$

解续

对 $\lambda_1 = -2$, 解方程 (-2E - A)X = 0, 对系数矩阵 -2E - A 作初等行变换:

$$-2E - A = \begin{bmatrix} -1 & -4 & 0 \\ -1 & -4 & 0 \\ -1 & 0 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 5 \\ 0 & 4 & -5 \\ 0 & 0 & 0 \end{bmatrix}$$

-2E - A 秩为 2, 基础解系含一个向量, 取 $\xi_1 = (-20, 5, 4)$ 故 A 属于特征值 -2 的特征向量为 $k_1\xi_1, k_1 \neq 0$.

解续

对 $\lambda_2 = \lambda_3 = 3$, 解方程 (3E - A)X = 0, 对系数矩阵作初等行变换:

$$3E - A = \begin{bmatrix} 4 & -4 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

3E - A 秩为 2, 基础解系含一个向量, 取 $\xi_2 = (0, 0, 1)^T$, 故 A 属于特征值 3 的特征向量为 $k_2\xi_2, k_2 \neq 0$.

<u>例 3 (P133 例 5.1.4)</u>

$$\vec{x} A = \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$
 的特征值与特征向量.

解

$$f(\lambda) = \det(\lambda E - A) = \begin{vmatrix} \lambda + 1 & -1 & -1 \\ -1 & \lambda + 1 & -1 \\ -1 & -1 & \lambda + 1 \end{vmatrix} = (\lambda - 1)(\lambda + 2)^2$$

A 的特征值为 $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = -2$.

对 $\lambda_1 = 1$, 解方程 (E - A)X = 0, 对系数矩阵作初等行变换:

解续

$$E - A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

E - A 秩为 2, 基础解系含一个向量, 取 $\xi_1 = (1, 1, 1)^T$, 故 A 属于特征值 1 的特征向量为 $k_1\xi_1$, $k_1 \neq 0$.

解续

对 $\lambda_2 = \lambda_3 = -2$, 解方程 (-2E - A)X = 0, 对系数矩阵作 初等行变换:

-2E - A 秩为 1, 基础解系含两个向量, 取 $\xi_2 = (-1, 1, 0)^T$, $\xi_3 = (-1, 0, 1)^T$ 故 A 属于特征值 -2 的特征向量为 $k_2\xi_2 + k_3\xi_3$, k_2 , k_3 不全为 0.

<u>例 4 (P133 例 5.1.3)</u>

求
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 的特征值和特征向量

解

$$\det(\lambda E - A) = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1.$$

故 A 的特征值为 $\lambda_1 = i$ 和 $\lambda_2 = -i$.

解续

对 $\lambda_1 = i$, 解方程 (iE - A)X = 0, 对系数矩阵作初等行变换:

$$iE - A = \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix}$$

iE - A 的秩为 1, 基础解系含一个向量, 取 $\eta_1 = (-i, 1)^T$. 故 A 属于特征值 i 的特征向量为 $k_1\eta_1, k_1 \neq 0$.

解续

对 $\lambda_2 = -i$, 解方程 (-iE - A)X = 0, 对系数矩阵作初等行变换:

$$iE - A = \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -i \\ 0 & 0 \end{bmatrix}$$

-iE - A 的秩为 1, 基础解系含一个向量, 取 $\eta_2 = (i,1)^T$. 故 A 属于特征值 -i 的特征向量为 $k_2\eta_2$, $k_2 \neq 0$.

注 5

对给定方阵 A,

- 一个特征值, 可能对应多个线性无关的特征向量. 我们后面会知道, 若 λ 是特征多项式 $\lambda E A$ 的 s 重根, 则 $(\lambda E A)X = 0$ 的解空间的维数 $\leq s$. (证明见第二节)
- 一个特征向量, 只能属于一个特征值. (证明见本节末)
- 属于不同特征值的特征向量线性无关的.(证明见本节末)

第五章 特征值与特征向量

- 矩阵的特征值与特征向量
- ② 特征值和特征向量的性质
 - 特征值的性质
 - 特征向量的性质
 - 习题选讲
- ③ 矩阵的相似对角化

矩阵多项式与特征值

已知 $\varphi(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$ 是多项式, A 为 n 阶矩阵.

- 我们已经知道, 若 λ 是 A 的特征值, 则 $\varphi(\lambda)$ 是 $\varphi(A)$ 的特征值.
- 我们还将证明, 若 λ 是 $\varphi(A)$ 的特征值, 则存在 A 的特征值 t, 使得 $\varphi(t) = \lambda$.

即 $\{\varphi(A)$ 的特征值 $\} = \{\varphi(\lambda) : \lambda 为 A$ 的特征值 $\}$

注 6

这里只是特征值的对应, 不考虑重数.

矩阵多项式与特征值

证明.

考虑多项式 $\varphi(x) - \lambda$, 其为 k 次多项式, 故有因式分解 $\varphi(x) - \lambda = a_k \prod_{i=1}^k (x - x_i)$, 其中 x_1, \dots, x_k 为常数. 则 $\varphi(A) - \lambda E = a_k \prod_{i=1}^k (A - x_i E)$. 已知 $\lambda \in \varphi(A)$ 的特征值, 则

$$0 = \det(\varphi(A) - \lambda E) = a_k^n \prod_{i=1}^k \det(A - x_i E).$$

故存在 i 使得 $\det(A - x_i E) = 0$, 从而 x_i 是 A 的特征值. $\varphi(x_i) - \lambda = 0$, 故 $\varphi(x_i) = \lambda$.

矩阵多项式与特征值

例 5

已知 $A^2 - 5A + 6E = 0$, 求 A 的特征值的可能范围.

解. 设 λ 是 A 的任意特征值, $g(x) = x^2 - 5x + 6$. 所以, $g(\lambda)$ 是 g(A) 的特征值. 因为 g(A) = 0 的特征值都是 0, 所以, $g(\lambda) = 0$, 即

$$\lambda^2 - 5\lambda + 6 = 0.$$

所以, $\lambda = 2$ 或 3.

注 7

这里, 我们只求出了可能的特征值, 但并不知道特征值的重数.

定理 3

给定 n 阶方阵 A, 记它的 n 个特征值为 $\lambda_1,\lambda_2,\ldots,\lambda_n$. 则

1) A 的 n 个特征值之积等于 A 的行列式, 即

$$|A| = \prod_{j=1}^{n} \lambda_j = \lambda_1 \lambda_2 \cdots \lambda_n.$$

2) A 的 n 个特征值之和等于 A 的 n 个对角元素之和,即

$$\sum_{j=1}^{n} \lambda_j = \sum_{j=1}^{n} a_{jj} \stackrel{\text{id.} 1}{=} \text{tr} A.$$

我们称其为 A 的迹 (trace).

证明

由代数基本定理知,
$$A$$
 的特征多项式 $f(\lambda) = \det(\lambda E - A)$ 有 n 个根 $\lambda_1, \lambda_2, \dots, \lambda_n$, 记作 $f(\lambda) = \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_{n-1} \lambda + c_n$ $= (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$ 故 $c_n = (-\lambda_1)(-\lambda_2) \dots (-\lambda_n) = (-1)^n \prod_{j=1}^n \lambda_j$, $c_1 = -\lambda_1 - \lambda_2 - \dots - \lambda_n = -(\sum_{j=1}^n \lambda_j)$. $c_n = f(0) = \det(-A) = (-1)^n \det A$, 故
$$\det A = \lambda_1 \lambda_2 \dots \lambda_n$$
.

证明续.

考察 $\det(\lambda E - A)$ 中, λ^{n-1} 的系数: 观察 A 的特征多项式,

$$f(\lambda) = |\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

考虑行列式的全展开公式. 含 λ^{n-1} 的项只能来自于 $(\lambda - a_{11})(\lambda - a_{22}) \dots (\lambda - a_{nn})$, 所以 λ^{n-1} 的系数为 $-(a_{11} + a_{22} + \dots + a_{nn})$. 所以,

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \lambda_1 + \lambda_2 + \dots + \lambda_n.$$

推论 4

A 可逆当且仅当 A 没有 0 特征值.

例 6 (P136 例 5.1.5)

已知 3 阶矩阵 A 的特征值为 -1,1,2. 求 $|A^2+2A-E|$, $|A^*|$, $|A^2+A^*+2E|$

解. 记
$$\varphi(x) = x^2 + 2x - 1$$
, 则 $\varphi(-1) = -2$, $\varphi(1) = 2$, $\varphi(2) = 7$ 是 $\varphi(A)$ 的特征值, 故 $|A^2 + 2A - E| = (-2) \times 2 \times 7 = -2$. $|A| = -1 \times 1 \times 2 = -2 \neq 0$, $AA^* = (\det A)E$, 故 $|A||A^*| = |A|^3$, 即 $|A^*| = |A|^2 = 4$. 由于 $|A| = -2 \neq 0$, 所以, A 可逆并且. $A^* = |A| \cdot A^{-1} = -2A^{-1}$. 故, $A^2 + A^* + 2E = A^2 - 2A^{-1} + 2E = A^{-1}(A^3 + 2A - 2E)$. $A^3 + 2A - 2E$ 的特征值为 -5 , 1 , 10 , 故其行列式为 -50 . $|A^{-1}| = 1/|A| = -1/2$. 故 $|A^2 + A^* + 2E| = |A^{-1}||A^3 + 2A - 2E| = 25$.

练习

课堂练习

假设 p(x) 是一个复系数多项式. n 阶复矩阵 A 的特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$. 证明

$$|p(A)| = \prod_{i=1}^{n} p(\lambda_i).$$

提示. 考虑 p(x) 的因式分解 $p(x) = c \prod_{i=1}^{m} (a_i - x)$.

推论 5

$$|\lambda E - p(A)| = \prod_{i=1}^{n} (\lambda - p(\lambda_i)),$$
 即 $p(A)$ 的特征值为 $p(\lambda_1), p(\lambda_2), \dots, p(\lambda_n).$

练习

思考

假设 n 阶复矩阵 $A = (a_{ij})_{n \times n}$ 的特征值是 $\lambda_1, \lambda_2, \ldots, \lambda_n$. 证 明

$$\sum_{i < j} \lambda_i \lambda_j = \sum_{i < j} \begin{vmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{vmatrix}.$$

还可以考虑上述结果的推广.

定义 3

设 $A = (a_{ij})_{n \times n}$ 为任一 n 阶复矩阵, 复平面上的圆盘

$$G_i(A) = \{ z \in \mathbb{C} : |z - a_{ii}| \le R_i \}, \quad i = 1, 2, \dots, n$$

其中 $R_i = \sum_{j=1, j \neq i}^{n} |a_{ij}|$, 称为矩阵 A 的盖尔圆盘, 简称盖尔圆.

定理 6

给定 n 阶复矩阵 A,

- 1) A 的特征值在 n 个盖尔圆盘的并集 $\bigcup_{i=1}^{n} G_i(A)$ 内.
- 2) 考虑 A 的盖尔圆盘的并集的连通分支, 若一个连通分支由 m 个圆盘构成, 则该区域内有且仅有 A 的 m 个特征值 (计算重数).

定义4

设 $A = (a_{ij})_{n \times n}$ 为 n 阶复矩阵, 若

$$|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n$$

则称 A 为按行严格对角占优矩阵.

定理7

按行严格严格对角占优矩阵可逆.

证明.

按行严格严格对角占优矩阵的盖尔圆盘均不包含 0 点, 从 而 0 不是矩阵的特征值, 矩阵可逆.

例 7 (P136 例 5.1.6)

设

$$A = \begin{bmatrix} 1 & \frac{1}{2\times3} & \frac{1}{3\times4} & \frac{1}{4\times5} & \cdots & \frac{1}{n(n+1)} \\ \frac{1}{2\times3} & 1 & \frac{1}{2\times3} & \frac{1}{3\times4} & \cdots & \frac{1}{(n-1)n} \\ \frac{1}{3\times4} & \frac{1}{2\times3} & 1 & \frac{1}{2\times3} & \cdots & \frac{1}{(n-2)(n-1)} \\ \frac{1}{4\times5} & \frac{1}{3\times4} & \frac{1}{2\times3} & 1 & \cdots & \frac{1}{(n-3)(n-2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{n(n+1)} & \frac{1}{(n-1)n} & \frac{1}{(n-2)(n-1)} & \frac{1}{(n-3)(n-2)} & \cdots & 1 \end{bmatrix}$$

则 A 可逆.

 \mathbf{m} . 计算 A 的第 i 行的非对角元素的绝对值之和 $R_i < 1$. A 为按行严格对角占优矩阵, 故可逆.

思考

证明定理7可以推出盖尔圆盘定理的第一部分.

注 8

利用根关于多项式系数的连续性,盖尔圆盘定理的第一部分可以推出盖尔圆盘定理的第二部分.

思考

为了直接证明定理 7, 不妨假设 $a_{ii} = 1, i = 1, 2, ..., n$.

注 9

如果方阵 X 充分小, $(E-X)^{-1} = E + X + X^2 + \cdots$. 由此可以在对角元均为 1 的情况下证明定理 7.

命题 6

一个特征向量只能属于一个特征值.

证明.

设
$$X_0$$
 满足 $AX_0 = \lambda_1 X_0, AX_0 = \lambda_2 X_0, X_0 \neq 0$. 则

$$(\lambda_1 - \lambda_2) X_0 = A X_0 - A X_0 = 0.$$

所以,
$$\lambda_1 = \lambda_2$$
.

命题 7

属于不同特征值的特征向量线性无关.

证明

设 X_1, X_2, \dots, X_s 是属于不同特征值 $\lambda_1, \lambda_2, \dots, \lambda_s$ 的特征 向量. 设 k_1, k_2, \dots, k_s 是方程 $k_1 X_1 + k_2 X_2 + \dots k_s X_s = 0$ 的解. 则

$$0 = A(k_1X_1 + k_2X_2 + \dots + k_sX_s) = k_1AX_1 + \dots + k_sAX_s$$

= $k_1\lambda_1X_1 + \dots + k_s\lambda_sX_s$.

继续用 A 作用, 有

$$0 = A(k_1\lambda_1X_1 + \dots + k_s\lambda_sX_s) = k_1\lambda_1^2X_1 + \dots + k_s\lambda_s^2X_s,$$

$$0 = k_1 \lambda_1^{s-1} X_1 + \dots + k_s \lambda_s^{s-1} X_s$$

证明续.

写成矩阵形式:

$$0 = [k_1 X_1, k_2 X_2, \cdots, k_s X_s] \begin{bmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{s-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{s-1} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_s & \cdots & \lambda_s^{s-1} \end{bmatrix}$$

上式右边的矩阵行列式为范德蒙行列式 $\neq 0$, 故矩阵可逆. 故

$$[k_1 X_1, k_2 X_2, \cdots, k_s X_s] = 0.$$

故 $k_1 = k_2 = \cdots = k_s = 0$.

 X_1, X_2, \cdots, X_s 线性无关.

推论 8

不同特征值对应的特征子空间相交为 {0}.

推论 9

设 A 有不同的特征值 $\lambda_1, \lambda_2, \dots, \lambda_s$, 且 $(\lambda_i E - A)X = 0$ 的基础解系为 $\eta_{i1}, \eta_{i2}, \dots, \eta_{it_i}$, 则向量组

 $\eta_{11}, \eta_{12}, \cdots, \eta_{1t_1}, \eta_{21}, \eta_{22}, \cdots, \eta_{2t_2}, \cdots, \eta_{s1}, \eta_{s2}, \cdots, \eta_{st_s}$ 线性无关.

证明.

线性无关.

设
$$k_{11}\eta_{11} + k_{12}\eta_{12} + \cdots k_{1t_1}\eta_{1t_1} + k_{21}\eta_{21} + k_{22}\eta_{22} + \cdots + k_{2t_2}\eta_{2t_2} + \cdots + k_{s1}\eta_{s1} + k_{s2}\eta_{s2} + \cdots + k_{st_s}\eta_{st_s} = 0,$$
 记 $\beta_i = k_{i1}\eta_{i1} + k_{i2}\eta_{i2} + \cdots + k_{it_i}\eta_{it_i}, i = 1, 2, \cdots, s,$ 则 β_i 是 λ_i 的特征向量的线性组合,故要么为 0 ,要么为 λ_i 的特征向量. 而 $\beta_1 + \beta_2 + \cdots + \beta_s = 0$,若存在 $\beta_i \neq 0$,则不同特征值的特征向量线性相关(矛盾),故 $\beta_i = 0, i = 1, 2, \cdots, s.$ 由基础解系的线性无关性, $k_{ij} = 0, i = 1, 2, \cdots, s,$ $j = 1, 2, \cdots, t_i.$ 所以向量组 $\eta_{11}, \eta_{12}, \cdots, \eta_{1t_1}, \eta_{21}, \eta_{22}, \cdots, \eta_{2t_2}, \cdots, \eta_{s1}, \eta_{s2}, \cdots, \eta_{st_s}$

例 8

给定 n 阶方阵 A, B, 证明 AB 与 BA 有相同的特征值.

思路: 计算 $|\lambda E - AB| = |\lambda E - BA|$, AB = BA 有相同的特征多项式, 故特征值相同.

或者也可以构造特征向量,从而得到特征值.

思考

我们知道, 若 n > m, A 为 $n \times m$ 矩阵, B 为 $m \times n$ 矩阵, 则

$$|\lambda E_n - AB| = \lambda^{n-m} |\lambda E_m - BA|,$$

此时, AB 的特征值与 BA 的特征值有什么关系?

若 BA 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_m$, 则 AB 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_m, 0, \dots, 0$.

课堂练习

已知 A 为正交矩阵且 $\det A = -1$. 证明 -1 为 A 的特征值.

思路: 计算 |-E-A|=0, 即 |A+E|=0

证明.

$$(A + E)A^{T} = E + A^{T} = (E + A)^{T}$$

故

$$\det(A+E)\det A^{T} = \det(E+A)^{T} = \det(E+A)$$

注意到
$$\det A^T = \det A = -1$$
, 故 $\det(A + E) = 0$.

课堂练习(练习册 P79 第四题)

已知 n 阶矩阵的各行元素之和为 2,

- 1) 证明 $\lambda = 2$ 是 A 的一个特征值, $\beta = [1, 1, \dots, 1]^T$ 是对 应的特征向量.
- 2) A^{-1} 的各行元素之和为多少?
- 3) $2A^{-1} + A^2 + 2A$ 的各行元素之和为多少.

简要答案: A^{-1} 的各行之和为 $\frac{1}{2}$. $3A^{-1} + A^2 + 2A$ 的各行元素之和为 9.

注 10

方阵各行元素之和相等,当且仅当 $[1,1,\cdots,1]^T$ 为特征向量.

课堂练习

已知方阵 A 有特征值 λ , 对应的特征向量 X. 求 $P^{-1}AP$ 的一个特征值和对应的一个特征向量.

解. $AX = \lambda X$, 则

$$P^{-1}APP^{-1}X = P^{-1}AX = \lambda P^{-1}X,$$

故 $P^{-1}AP$ 有特征值 λ , 和对应的特征向量 $P^{-1}X$.

例 9

给定非零列向量 $\alpha = (a_1, a_2, \dots, a_n)^T$, $\beta = (1, b_2, \dots, b_n)^T \in \mathbb{R}^n$, 且 $\alpha^T \beta = 0$. 令 $A = \alpha \beta^T$. 求

- A^2 .
- A 的特征值和特征向量.

思路: $A^2 = 0$, 故 A 的特征值只有 0.

r(A) = 1, 故 AX = 0 的解空间为 n - 1 维的, 且 $\beta^T X = 0$ 的解也为 AX = 0 的解,且 $\beta^T X = 0$ 的解空间也为 n - 1 维的, 故 $\beta^T X = 0$ 与 AX = 0 同解. 我们求出 $\beta^T X = 0$ 的所有非零解,即为 A 关于特征值 0 的特征向量.

注 11

这里, 特征值 0 的代数重数是 n, 但特征子空间的维数只有 n-1.

第五章 特征值与特征向量

- ❶ 矩阵的特征值与特征向量
- ② 特征值和特征向量的性质
- ③ 矩阵的相似对角化
 - 矩阵的相似
 - 矩阵的相似对角化
 - 习题选讲

定义 5 (矩阵相似)

设 A, B 是两个 n 阶方阵, 若存在可逆矩阵 P 使得

$$P^{-1}AP = B,$$

则称 $A 与 B相似, 记为 <math>A \sim B$.

矩阵的相似

命题 8

矩阵相似是等价关系, 即满足

- (1) 自反性: $A \sim A$.
- (2) 对称性: 若 $A \sim B$, 则 $B \sim A$.
- (3) 传递性: 若 $A \sim B$ 且 $B \sim C$, 则 $A \sim C$.

证明.

- (1) 因为 $E^{-1}AE = A$.
- (2) 由 $P^{-1}AP = B$, 可得 $A = PBP^{-1} = (P^{-1})^{-1}BP^{-1}$.
- (3) 由 $P^{-1}AP = B$, $Q^{-1}BQ = C$, 可得 $Q^{-1}P^{-1}APQ = C$, 即 $(PQ)^{-1}APQ = C$.

矩阵相似

命题 9

若 $A \sim B$, 则 $A^m \sim B^m$, 其中 m 为正整数.

证明.

若 $A \sim B$, 则存在可逆矩阵 P 使得 $P^{-1}AP = B$. 故 $B^m = (P^{-1}AP)^m = (P^{-1}AP)(P^{-1}AP) \dots (P^{-1}AP)$ $= P^{-1}A(PP^{-1})A(PP^{-1})\dots (PP^{-1})AP = P^{-1}A^mP$. 故 $A^m \sim B^m$.

矩阵相似与特征值

命题 10

相似矩阵有相同的特征多项式, 从而有相同的特征值.

证明.

由
$$B = P^{-1}AP$$
 可得,

$$\det(\lambda E - B) = \det(\lambda E - P^{-1}AP) = \det(P^{-1}(\lambda E - A)P)$$

$$= \det(P^{-1})\det(\lambda E - A)\det P = \det(\lambda E - A).$$

注 12

反之, 矩阵有相同的特征值, 不一定相似, 如 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ 与单位阵 $E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 特征值均为 $\lambda_1 = \lambda_2 = 1$, 但它们不相似.

矩阵相似与特征值

推论 10

若
$$A$$
 与对角阵 $\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$ 相似,则 λ_1 , λ_2 , ..., λ_n 为 A 的特征值.

思考

对相似矩阵,则下列量中,哪些相同,为什么?特征值,迹,行列式,秩,奇异性.

定义 6 (矩阵的相似对角化)

若矩阵 A 相似于一个对角阵, 我们称 A 可(相似) 对角化.

注 13

若
$$A$$
 可相似对角化,即 $P^{-1}AP = \Lambda = \begin{bmatrix} \lambda_2 \\ & \ddots \\ & & \lambda_n \end{bmatrix}$

则
$$A^m = P\Lambda^m P^{-1} = P\begin{bmatrix} \lambda_1^m & & & \\ & \lambda_2^m & & \\ & & \ddots & \\ & & & \lambda_n^m \end{bmatrix} P^{-1}$$
,从而简

了计算.

例 10 (P138 例 5.2.1)

已知
$$P = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}, \Lambda = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, P^{-1}AP = \Lambda, 求 A^{100}.$$

定理 11

设 $A \neq n$ 阶方阵. 那么 A 可对角化当且仅当 A 有 n 个线性无关的特征向量.

证明

必要性: 已知 A 可对角化, 即:

$$P^{-1}AP = \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

则 $AP = P\Lambda$.

将 P 按列向量分块 $P = [\eta_1, \eta_2, \cdots, \eta_n]$, 则

$$[A\eta_1, A\eta_2, \cdots, A\eta_n] = [\lambda_1\eta_1, \lambda_2\eta_2, \cdots, \lambda_n\eta_n].$$

故 $A\eta_i = \lambda_i \eta_i, i = 1, 2, \ldots, n,$

证明续.

又 P 可逆, 故 P 的列向量非零且线性无关, 且 η_i 是 A 关于 λ_i 的特征向量, $i=1,\cdots,n$.

• 充分性:

设
$$\eta_1, \eta_2, ..., \eta_n$$
 是线性无关的特征向量. 则 $A\eta_i = \lambda_i \eta_i, i = 1, 2, ..., n$. 令 $P = (\eta_1, \eta_2, ..., \eta_n)$, 可得

$$AP = P \begin{bmatrix} \lambda_1 & & & \\ \lambda_2 & & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}.$$

注 14

由定理11, 要想将 n 阶矩阵对角化, 只需找它的 n 个线性无关的特征向量. (若没有, 则不能对角化.)

我们在上一节已经证明:

定理 12

属于不同特征值的特征向量线性无关.

推论 13

若 n 阶方阵 A 有 n 个不同的特征值, 则 A 一定可对角化.

定理 14

已知 λ_0 为 A 的 s 重特征值, 且 $(\lambda_0 - A)X = 0$ 的基础解系的向量个数为 r, 则 r < s.

证明.

取
$$(\lambda_0 - A)X = 0$$
 的基础解系 ξ_1, \dots, ξ_r , 取向量 $\eta_1, \dots, \eta_{n-r}$ 使得 $\xi_1, \dots, \xi_r, \eta_1, \dots, \eta_{n-r}$ 线性无关. 令 $P = [\xi_1, \dots, \xi_r, \eta_1, \dots, \eta_{n-r}]$, 则 P 可逆,且 $AP = P\begin{bmatrix} \lambda_0 E_r & C \\ 0 & D \end{bmatrix}$. $A = B = \begin{bmatrix} \lambda_0 E_r & C \\ 0 & D \end{bmatrix}$ 相似,故特征值相同. det $(\lambda E - B) = \det\begin{pmatrix} (\lambda - \lambda_0)E_r & -C \\ 0 & \lambda E_{n-r} - D \end{pmatrix}$ $= (\lambda - \lambda_0)^r \det(\lambda E_{n-r} - D)$, 故 λ_0 为 B 的至少 r 重特征值. 故 $r < s$.

我们知道, n 阶矩阵的特征值计算重数一共 n 个, 对每个 s 重特征值 λ_i , $(\lambda_i E - A)X = 0$ 的基础解系的向量个数 $r \le s$, 即属于 λ_i 的线性无关的特征向量最多 $r \le s$ 个, 故要想找到 n 个线性无关的特征向量,必须对每个特征值 λ_i , $(\lambda_i E - A)X = 0$ 的基础解系的向量个数 = 特征值的重数.

我们在上一节还证明了

命题 11

设 A 有不同的特征值 $\lambda_1, \lambda_2, \dots, \lambda_s$, 且 $(\lambda_i E - A)X = 0$ 的基础解系为 $\eta_{i1}, \eta_{i2}, \dots, \eta_{it}$, 则向量组

 $\eta_{11}, \eta_{12}, \cdots, \eta_{1t_1}, \eta_{21}, \eta_{22}, \cdots, \eta_{2t_2}, \cdots, \eta_{s1}, \eta_{s2}, \cdots, \eta_{st_s}$ 线性无关.

定理 15

- n 阶矩阵可对角化
- \Leftrightarrow 对 A 的每个特征值 λ_i , 记其重数为 s_i , 则 A 恰有 s_i 个 线性无关的属于 λ_i 的特征向量.
- \Leftrightarrow 对 A 的每个特征值 λ_i , 记其重数为 s_i , 则 $\lambda_i E A$ 的秩 为 $n s_i$.

- 1 求 A 的特征值 $\lambda_1, \lambda_2, \ldots, \lambda_s$ (互不相同).
- 2 对每一个 λ_i , 解 $(\lambda_i E A)X = 0$, 求出基础解系.
- 2.1 若对每个 λ_i , 基础解系向量个数与特征值重数相等, 则 A 可对角化. 我们共得到 n 个线性无关的特征向量 $\eta_1, \eta_2, \cdots, \eta_n$;
- 2.2 若对某个特征值 λ_i , 基础解系向量个数小于特征值重数, 则 A 不可对角化.
 - 3 当 A 可对角化时,令 $P = [\eta_1, \eta_2, \dots, \eta_n]$,则 $P^{-1}AP = \Lambda$ 为对角矩阵,其第 i 个对角线元素为 η_i 对应的特征值.

例 11 (P141 例 5.2.2)

设
$$A = \begin{bmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{bmatrix}$$
, 问 A 是否可对角化? 若可以, 求出

P 使得 $P^{-1}AP$ 为对角阵.

M.
$$|\lambda E - A| = \begin{vmatrix} \lambda - 4 & -6 & 0 \\ 3 & \lambda + 5 & 0 \\ 3 & 6 & \lambda - 1 \end{vmatrix} = (\lambda + 2)(\lambda - 1)^2.$$

故 A 的特征值为 $\lambda_1 = -2$, $\lambda_2 = \lambda_3 = 1$.

对 $\lambda_2 = \lambda_3 = 1$, 解方程 (E - A)X = 0,

解续. 对系数矩阵进行初等行变换得

$$E - A = \begin{bmatrix} -3 & -6 & 0 \\ 3 & 6 & 0 \\ 3 & 6 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

方程的基础解系为 $\xi_2 = (0,0,1)^T$, $\xi_3 = (-2,1,0)^T$. 对 $\lambda_1 = -2$, 解方程 (-2E - A)X = 0. 对系数矩阵进行初等行变换得

$$-2E - A = \begin{bmatrix} -6 & -6 & 0 \\ 3 & 3 & 0 \\ 3 & 6 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

方程的基础解系为 $\xi_1 = (-1, 1, 1)^T$.

解续. 故 A 可对角化, 今

$$P = [\xi_1, \xi_2, \xi_3] = \begin{bmatrix} -1 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix},$$

则
$$P^{-1}AP = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$
.

例 12 (P141 例 5.2.3)

已知
$$A = \begin{bmatrix} 3 & 0 & 1 \\ 4 & -2 & -8 \\ -4 & 0 & -1 \end{bmatrix}$$
, 问 A 是否可以对角化.

$$\mathbf{\widetilde{R}}. \ |\lambda E - A| = \begin{vmatrix} \lambda - 3 & 0 & -1 \\ -4 & \lambda + 2 & 8 \\ 4 & 0 & \lambda + 1 \end{vmatrix} = (\lambda + 2)(\lambda - 1)^2.$$

故 A 的特征值为 $\lambda_1 = -2$, $\lambda_2 = \lambda_3 = 1$. 对 $\lambda_2 = \lambda_3 = 1$, 解方程 (E - A)X = 0, 对系数矩阵进行初

$$E - A = \begin{bmatrix} -2 & 0 & -1 \\ -4 & 3 & 8 \\ 4 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 10 \\ 0 & 0 & 0 \end{bmatrix},$$

方程的基础解系只含有一个向量, 故 A 不可对角化.

例 13 (P142 例 5.2.4)

已知
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, 求 A^n .

考虑将 A 对角化.

M.
$$|\lambda E - A| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix} = (\lambda - 2)(\lambda + 1)^2$$
.

A 的特征值为 $\lambda_1 = \lambda_2 = -1, \lambda_3 = 2.$

对 $\lambda_1 = \lambda_2 = -1$, 解方程 (-E - A)X = 0. 对系数矩阵进行 初等行变换

解续. 方程的基础解系为 $\xi_1 = (-1, 1, 0)^T$, $\xi_2 = (-1, 0, 1)^T$. 对 $\lambda_3 = 2$, 解方程 (2E - A)X = 0. 对系数矩阵进行初等行变换

$$2E - A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

方程的基础解系为
$$\xi_3 = (1,1,1)^T$$
. 令 $P = [\xi_1, \xi_2, \xi_3] = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, 则 $P^{-1}AP = \Lambda = \begin{bmatrix} -1 & & \\ & -1 & \\ & & 2 \end{bmatrix}$,

解读.
$$P^{-1} = \frac{1}{3} \begin{bmatrix} -1 & 2 & -1 \\ -1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
,
$$A^{n} = P\Lambda^{n}P^{-1}$$

$$= \frac{1}{3} \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} (-1)^{n} & & \\ & (-1)^{n} & \\ & & 2^{n} \end{bmatrix} \begin{bmatrix} -1 & 2 & -1 \\ -1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 2^{n} + 2(-1)^{n} & 2^{n} + (-1)^{n+1} & 2^{n} + (-1)^{n+1} \\ 2^{n} + (-1)^{n+1} & 2^{n} + 2(-1)^{n} & 2^{n} + (-1)^{n+1} \\ 2^{n} + (-1)^{n+1} & 2^{n} + (-1)^{n+1} & 2^{n} + 2(-1)^{n} \end{bmatrix}$$

课堂练习

已知
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & a \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -1 \end{bmatrix}, A \sim B, 求 a, b.$$

思路: B 的特征值为: $2, b, -1, A \sim B$, 故 A 的特征值也应该为 2, b, -1.

故
$$trA=2+a=2+b-1$$
, det $A=2\times (-1)=2\times b\times (-1)$, 故 $a=0,\,b=1$.

课堂练习

已知
$$A = \begin{bmatrix} 0.4 & 5 & 6 \\ 0 & 0.5 & 6 \\ 0 & 0 & 0.6 \end{bmatrix}$$
, 求 $\lim_{n \to \infty} A^n$.

思路: A 有三个不同的特征值 0.4, 0.5, 0.6, 故可对角化, 即

存在可逆矩阵
$$P$$
, 使得 $A = P\Lambda P^{-1}$, $\Lambda = \begin{bmatrix} 0.4 \\ 0.5 \\ 0.6 \end{bmatrix}$.

故
$$\lim_{n\to\infty} A^n = \lim_{n\to\infty} P\Lambda^n P^{-1} =$$

故
$$\lim_{n\to\infty} A^n = \lim_{n\to\infty} P\Lambda^n P^{-1} =$$

$$\lim_{n\to\infty} P \begin{bmatrix} 0.4^n & \\ & 0.5^n \\ & & 0.6^n \end{bmatrix} P^{-1} = 0.$$

课堂练习(习题册 P86 第七题)

设
$$A = \begin{bmatrix} 3 & 2 & -2 \\ -k & -1 & k \\ 4 & 2 & -3 \end{bmatrix}$$
 求

- 1 k 为何值时, A 相似于对角阵.
- 2 求可逆阵 P, 使得 $P^{-1}AP$ 为对角阵.

思路: 计算

需考虑二重特征值 -1 对应的线性无关的特征向量个数,即 齐次线性方程组 (-E-A)X=0 的基础解系向量个数.

例5续

设 $A^2 - 5A + 6E = 0$, 我们已经知道, A 的特征值为 2 或 3. 证明 A 可对角化.

证明.

$$(2E-A)X=0$$
 的基础解系向量个数为 $n-r(2E-A)$.

$$(3E-A)X=0$$
 的基础解系向量个数为 $n-r(3E-A)$.

$$2n - r(2E - A) - r(3E - A).$$

又因为
$$(A-2E)(A-3E) = A^2 - 5E + 6E = 0$$
, 所以,

$$r(2E - A) + r(3E - A) \le n.$$

故
$$2n - r(2E - A) - r(3E - A) \ge n$$
.

又因为 A 的线性无关的特征向量的个数至多 n 个, 故恰为 n 个. 所以, A 可对角化.

例 14

设 n(n > 1) 阶矩阵 A 的秩 r(A) = 1, 求证:

- (1) A 的特征值为 0 和 tr(A).
- (2) 当 tr(A) = 0 时, A 不可对角化. 当 $tr(A) \neq 0$ 时, A 可对角化.

证明. (1) r(A) = 1, 则 AX = 0 有 n - 1 个线性无关的解, 故 0 为 A 的特征值, 且其重数 > n - 1.

设 A 的特征值为 $0, \dots, 0, \lambda_n$, 则 $\lambda_n = tr(A)$.

故 tr(A) 为 A 的特征值.

(2) 当 tr(A) = 0 时, 0 是 n 重特征值, 其特征子空间仅 n-1 维, 故 A 不可对角化.

当 $tr(A) \neq 0$ 时, 0 是 n-1 重特征值, 且我们有 n-1 个属于 0 的线性无关特征向量; $tr(A) \neq 0$ 为 A 的单特征值, 有一个属于它的特征向量. 故 A 可对角化.