Université de Bretagne-Sud

STA2111 - Statistique Bayésienne

Loi Gamma – Loi Bêta

Exercice 1 – Soit la fonction appelée fonction gamma qui, à tout réel strictement positif α , associe l'intégrale :

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx.$$

- 1. Montrer que :
 - (a) $\Gamma(1) = 1$
 - (b) $\Gamma(1/2) = \pi$
 - (c) $\forall x > 0$, $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$. Que devient ce résultat si α est un entier?
- 2. On dit qu'une variable aléatoire continue X suit une **loi Gamma** de paramètres (α, β) si elle admet pour densité de probabilité la fonction f définie par :

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$
 pour $x > 0$, $f(x) = 0$ sinon.

- (a) Vérifier qu'il s'agit bien d'une densité.
- (b) Calculer E(X), l'espérance mathématique et Var(X), la variance de X.

Exercice 2 – On considère l'intégrale :

$$I(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx \quad , \quad \alpha,\beta \in \mathbb{N}^*$$

- 1. En intégrant par partie, écrire la relation qui existe entre $I(\alpha, \beta)$ et $I(\alpha 1, \beta + 1)$.
- 2. Exprimer $I(\alpha, \beta)$ en fonction de $\Gamma(\alpha)$, $\Gamma(\beta)$ et $\Gamma(\alpha + \beta)$.

Rappel: si α est un entier, $\Gamma(\alpha) = (\alpha - 1)!$ (voir exercice 1).

3. Soit X une v.a. à valeurs dans [0,1], dont la loi a pour densité

$$\frac{1}{I(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$
, où α et β sont des réels positifs.

On dit que X suit une **loi bêta** de paramètres (α, β) .

(a) Vérifier que l'on a bien une densité. Indication : on calculera $\Gamma(\alpha)\Gamma(\beta)$ en effectuant le changement de variables : $x = r^2 \cos^2 \theta$ et $y = r^2 \sin^2 \theta$.

1

(b) Calculer E(X) et Var(X).