MIT INSTITUTE FOR DATA, SYSTEMS, AND SOCIETY

Applied Data Science Program

TIME SERIES

Munther A. Dahleh

Learning Time-Series

- Time Series are everywhere
 - Finance, weather, control systems
- Questions:
 - Modeling
 - Forecasting
 - Decisions and policy

Learning Time-Series: Outline

- Part I: Introduction to Time Series
 - Stationarity
 - Trends

Part II: Models of Time Series

Part 3: Learning Time Series

Introduction

Johnson & Johnson quarterly earnings per share

Exchange Rates Against the Dollar

Economist.com

House Prices

Consumer Price Index (billion Prices)

...What is new here?

- What you measure today depends on yesterday
 - Could be simple or complicated dependence
 - Memory can be high
 - Memory is typically unknow
- The variation in the data can be due to a time-varying average: trends
 - Linear, quadratic (deterministic)
 - Periodic (seasonal)
- Transformation of the data may help

Stationarity

- Time series need to have some structure
- Stationarity: Some variables are 'constant' over time
 - Mean
 - Covariance
- What happens if such variables are changing
 - Transform to a stationary series
 - Assume slow variation

Mean and Autocovariance: Stationarity

 Mean of process is constant over time

$$\mathbf{E}(X_t) = \mu$$

 Autocovariance is a function of the time difference

$$R_X(t_1 - t_2) = R_X(t_2 - t_1)$$

• Sample Mean (constant over. λ)

$$\hat{\mu} = \frac{1}{N - \lambda} \sum_{i=\lambda}^{N-1} X_i$$

Sample Autocovariance

$$\hat{R}_X(\tau) = \frac{1}{N - \lambda} \sum_{i=\lambda}^{N-1} (X_i - \hat{\mu})(X_{i+\tau} - \hat{\mu})$$

Testing Stationarity

Demonstrate: 100 samples

Demonstrate: 1000 samples

Trends in the Consumer Price Index (CPI) data

De-trended

Empirical Autocovariance

Removing Seasonality

- $X_t = S_t + Y_t$
- Estimate S_t using a periodic regression
- Smoothing: $\hat{Y}_t = \sum_{h=-k}^k \gamma_h X_{t+h}$.

End

Models of time series

Models of Time-Series

- White noise
- Auto-regressive (AR)
- Moving Average (MA)
- Auto-regressive moving average (ARMA)
- Autocovariance of these examples

White noise

Process $X_t = w$

$$X_t = w$$

$$\mathbf{E}(w_t) = 0$$

Autocovariance =

$$\mathbf{E}(w_{t_1}w_{t_2}) = \sigma^2 \,\delta(t_1 - t_2)$$

Random Walk

$$X_t = X_{t-1} + w_t$$

Autoregressive Process AR(p)

Process

$$X_{t} = \sum_{i=1}^{p} a_{i} X_{t-i} + w_{t}$$

• w_t is white

Interpretation

Example AR(1)

Example: AR(1)

$$X_t = 0.7X_{t-1} + w_t$$

Example: AR(2)

$$X_t = 0.7X_{t-1} + 0.1X_{t-2} + w_t$$

Example: AR(2)

$$X_t = 0.7X_{t-1} + 0.1X_{t-2} + w_t$$

Example: AR(2)—argue it is an exponential

• Recall: $R_X(\tau) = R_X(-\tau)$

• Solve for $R_X(0), R_X(1), R_X(2)$ from

$$R_X(0) = a_1 R_X(1) + a_2 R_X(2) + \sigma^2$$

$$R_X(1) = a_1 R_X(0) + a_2 R_X(1)$$

$$R_X(2) = a_1 R_X(1) + a_2 R_X(0)$$

Compute the rest

$$R_X(\tau) = \sum_{i=1}^{p} a_i R_X(\tau - i), \tau \ge 3$$

Geometric Shape of ACF for AR(p)

Moving Average MA(q)

Process

$$X_t = \sum_{i=0}^q b_i w_{t-i}$$

• w_t is white

Interpretation

Example MA(2)

Sample vs Actual

$$X_t = w_t + 0.5w_{t-1} - 0.7w_{t-2}$$

More Samples

$$X_t = W_t + 0.5W_{t-1} - 0.7W_{t-2}$$

Autocovariance of MA—finite (remove proof)

How do you compute the exact Autocovariance of

$$X_t = \sum_{i=0}^q b_i w_{t-i}$$

It follows that:

$$\mathbf{E}(X_t X_{t+\tau}) = \sum_{i=0}^{q} \sum_{j=0}^{q} b_i b_j \mathbf{E}(w_{t-i} W_{t+\tau-j})$$

Conclusion: simple convolution with finite support

$$R_X(\tau) = \sigma^2 \sum_{j=0}^q b_j b_{j-\tau}$$

Finite lag Shape of ACF for MA

Series (arma\$residuals)^2

Autoregressive Moving Average Process (ARMA)

We can combine the two processes

$$X_{t} = \sum_{i=1}^{p} a_{i} X_{t-i} + \sum_{j=0}^{q} b_{j} w_{t-j}$$

Superposition of different processes

Example: ARMA

ARMA: More Samples

 $X_t = 0.7X_{t-1} + 0.1X_{t-2} + w_t + 0.5w_{t-1} - 0.7w_{t-2}$

End

Learning Time Series

Learning a Time Series Model

- Data to Models
 - Autoregressive (AR) models
 - Moving Average (MA)
- AR learning Looks like a standard Least Squares
 - What's the catch?
 - What can we learn?
- How about other models
- Example: Consumer Price Data

Example

Generate 100 data points according to

$$x_t = .7 x_{t-1} + .1 x_{t-2} + w_t$$

- Fit an AR(1) model
 - Answer: a = .8704
- Fit an AR(2) model
 - Answer $a_1 = 0.7448$ and $a_2 = .1742$
- Observations?

Order Estimation

- Example highlights the importance of order estimation
- Derive multiple estimates and choose based on error on cross validation data
- Add penalty to model complexity (MDL, AIC)
- Use the Autocovariance function (ACF) as a guidance!
 - Can we do better than ACF?

Partial Autocovariance Function (PACF)

•
$$X_t \mid X_{t+1}, X_{t+2}, ..., X_{t+k-1} \mid X_{t+k}$$

• Project X_{t+1} and X_{t+k} on the variables in between: $P_t \quad and \quad P_{t+k}$

In the case of ARX, the new PACF is zero outside p

Use to estimate order!

Example: AR(3)

$$X_t = .7 X_{t-1} + .2 X_{t-2} - .1 X_{t-3}$$

Example: AR(3)

$$X_t = -.7 X_{t-1} + .2 X_{t-2} + .1 X_{t-3}$$

Geometric Shape of ACF for AR(p)

Example: MA(2)

$$X_t = .7 W_{t-1} + W_t$$

Example: MA(3)

$$X_t = W_t - .7 W_{t-1} + .2 W_{t-2} + .1 W_{t-3}$$

Example: ARMA(3)

$$X_t = .7 X_{t-1} + .2 X_{t-2} + .7 W_t + .2 W_{t-1}$$

ACF vs PACF

	ACF	PACF
AR(p)	decays	zero for $h > p$
MA(q)	zero for $h > q$	decays
ARMA(p,q)	decays	decays

Billion Price Data

- The goal of this problem is to analyze the PriceStats data from the MIT Billion Prices Project, provided by Professor Rigobon.
- Consumer Price Index Data: (consumer price index, the price of a "market basket of consumer goods and services" - a proxy for inflation)

Consumer Price Index

Identify Trends in the CPI data

Empirical Autocovariance

Empirical Partial Autocovariance

AR(1) or AR(2)

Prediction of AR(2)

Thank You

