数据挖掘与数据仓库 3

1、数据库与数据仓库对比

数据库数据库	数据仓库		
细节的	综合或提炼的		
在存取时准确的	代表过去的数据		
可更新的	不更新		
一次操作数据量小	一次操作数据量大		
面向应用	面向分析		
支持管理	支持决策		
用于事务处理	主要用于分析数据		

2、DW(数据仓库)、ODS(操作型数据存储)、DM(数据集市)属性

DW (数据仓库) (侧重于计算能力)	0DS(操作型数据存储)(能够实时报表分析)
A、面向主题的	A、面向主题的
B、集成的	B、集成的
C、时变的	C、当前的
D、非易失的/稳定的	D、易失的

一独立的数据集市

DM (数据集市) (Data Mart) -

A、面向部门的数据仓库

从属的数据集市

- B、为满足用户特定需求而创建的数据仓库
- C、数据仓库的子集

附:

Data Lake (数据湖) (侧重于数据存储能力)

- A、保存原始的、细节的数据
- B、结构化数据、非结构化数据均存在(多模态)

一体化:比如湖仓一体 (Lakehouse):融合了数据湖的存储能力和数据仓

库的计算能力

发展趋势:

多模态: 既能处理关系表数据, 也能处理时序数据、图数据

云原生:数据库迁移到云上(提升数据库存储和计算的拓展性)

厂业务元数据

3、元数据:用来描述数据的数据。

上技术元数据

4、数据仓库模型和数据库模型对比

数据仓库模型

A、概念模型:分析主题(边界、 主题、维度、类别、指标、事实)

B、逻辑模型: 星型模型、雪花模型、星座模型

C、物理模型:

数据库模型

用户

系统

A、概念模型: ER(实体关系模型)

B、逻辑模型: 关系模型、网状模

型、层次模型

C、物理模型:

. .

5、 数据仓库模型 销售分析的概念模型

信息包: 销售分析

H				
日期	销售地点	销售产品	年龄组别	性别
年 (10)	国家(15)	产品类 (6)	年龄组(8)	性别组(2)
季度(40)	区域 (45)	产品组 (48)		
月(120)	城市 (280)	产品 (240)		
	☒ (880)			
	商店 (2000)			

度量和事实:

预测销售量、实际销售量、预测误差

销售分析的逻辑模型(星型模型)

