2. TÜBİTAK LİSELER ARASI İNSANSIZ HAVA ARAÇLARI YARIŞMASI

KAVRAMSAL TASARIM RAPORU

TAKIM ADI: Hür-Kanat

KATEGORİ: DÖNER KANAT

KURUM ADI: Recep Tayyip Erdoğan Anadolu İmam Hatip Lisesi

DANIŞMAN ÖĞRETMEN: Fatih TAŞPINAR

1. ORGANIZASYON ÖZETİ:

1.1 Takım Organizasyonu:

600	FATİH TAŞPINAR Danışman Öğretmen, Proje Yöneticisi Bilişim Teknolojileri Öğretmeni	Takıma Danışmanlık Yapar, Takımın İdari ve Mali Hususları Konusunda Sorumluduı
	FURKAN KARAKETİR Takım Kaptanı Recep Tayyip Erdoğan Proje İHL 10.Sımf Öğrencisi	Başta İHA Tasrım Süreci, Takım Koordina törlüğü, Teknik Çizimler, Görev Analizi, Literatür Taraması ve Tasarımın Yapısı Özellüklerinden sorumludur. Tasarım Süreci Takım Kaptanı Kontrolünde gerçekleşmiştir. Kullandığı Programlar Fusion 360, Android Studio, Blender, Adobe illustrator, C#, Python, Unity.
	HALİT BAŞBUĞ Takım Üyesi Recep Tayyip Erdoğan Proje İHL 10.Sımf Öğrencisi	İHA'nın Elektronik ve Mekanik Sistemleri Yazılım, Tasarımın Özgünlüğü, Uygun Devre Elemanları Seçilmesi, Görev Yükü- nün Bıraklıması İçin Gereken Sistemler, Motor Seçimi ve Montajından Sorumludu Kullandığı Programlar Processing, Java, Arduino(C++), Inkscape, GIMP, Fusion 360 SketchUp.
	FURKAN KİRAZ Takım Üyesi Recep Tayyip Erdoğan Proje İHL 10.Sımf Öğrencisi	İHA'nın Maliyet Hesaplama, Uçuş Perfor mans Parametrelerini Belirlemeden sorumludur: Görev Analizi ve Literatür Taramasında Katkısı Olmuştur. Kullandığı Programlar Arduno(C++), Fusion 360, ŞketchÜp.

1.2 İş Akış Çizelgesi:

İş														A	ylar											
Paketi	İş Paketi Adı / Tanımı	Kimler Tarafından Yapılacağı	Ş	uba	at		М	art			Nisa	ın		М	ayıs		На	azir	an		Ten	nmuz		Ąį	ğust	tos
Nosu		1		2	3 4	1 1	2	3	4	1 2	2 3	4	5	1 2	3	4	1	2	3 4	1	2	3 4	5	1	2	3 4
1	Görev Analizi ve Literatür Taraması	TÜM TAKIM ÜYELERİ																								
2	Tasarım Boyutsal Parametrelerinin Belirlenmesi	HALİT BAŞBUĞ																								
3	Tasarımın Yapısal Özellikleri	FURKAN KARAKETİR-HALİT BAŞBUĞ																								
4	Kontrol ve Güç Sistemleri Tasarımı	HALİT BAŞBUĞ																								
5	Uçuş Performans Parametreleri	FURKAN KİRAZ																								
6	Hava Aracı Maliyet Hesaplama	FURKAN KİRAZ																								
7	Bileşen Modellerinin Belirlenmesi	FURKAN KARAKETİR-HALİT BAŞBUĞ																								
8	Teknik Çizimler	FURKAN KARAKETİR		T																						
9	Yapısal Üretim ve Lojistik	TÜM TAKIM ÜYELERİ												Τ											П	
10	Detaylı Tasarım Raporu Hazırlanması ve Video Gönderimi	HALİT BAŞBUĞ																								
11	Proje Yönetimi	FURKAN KARAKETİR																								

Tablo 1: İş Akış Çizelgesi

2. KAVRAMSAL TASARIM:

2.1 Görevler İçin İHA Konfigürasyonu:

Döner kanat insansız hava aracının tasarlama aşamasında,

- Otonom kontrol özelliği ile verilen görevleri gerçekleştirmek suretiyle belirlenen alana yük bırakabilmesi,
- Yük bırakma sistemi stabilizasyon ve ağırlık merkezi göz önünde bulundurularak İHA üzerinde uygun konumlandırılması ve otonom çalışmasının sağlanması,
- Görev süresince yeterli enerjiyi ve itkiyi temin edebilecek pil seçimi,
- Aerodinamik tasarım ile uçuş kalitesinin istenilen düzeyde sağlanması,
- GPS sayesinde konum verilerinin alınması amaçlanmıştır.

Verilen görevlerin gerçekleştirilmesi için tahmini parametreler Tablo 2'de gösterilmiştir.

Uçuş Parametreleri	1. Görev	2.Görev
Kalkış Ağırlığı	1000 gram	1350 gram
Uçuş Hızı	70 Km/Saat	60 Km/Saat
Yük Ağırlığı	0 gram	330 gram
Uçuş Tipi	Otonom	Otonom
Uçuş Süresi	1,5 Dakika	2 Dakika

Tablo 2: Tahmini Uçuş Parametreleri

Kalkış ağırlığının 3B yazıcı ile alınan ABS baskılar, karbon fiber şase, iniş takımı ve görev yükü ile birlikte sınır şartlarına uyacak şekilde 1,3 kg olması tahmin edilmektedir (Şekil 1).

Şekil 1: İHA'nın Tahmini Ağırlığı

No	Parça Adı	Birim Ağırlık (gr)	Adet	Toplam Ağırlık (gr)
1	Şase	74,9	1	74,9
2	Koruma Kapağı	60	1	60
3	İniş Ayakları	60,8	2	121,6
3	Fırçasız Motor (Emax RS2205)	29	4	116
4	Omnibus F4 Pro V2 Uçuş Kontrolcü	18	1	18
5	4 in 1 ESC (Racerstar REV35)	13	1	13
6	RF Alıcı (FlySky FS-I6AB)	14,9	1	14,9
7	Buzzer	0,65	1	0,65
8	Sigorta	3	1	3
9	Lityum Polimer Batarya (Profuse)	291,5	1	291,5
10	Telemetri (Xbee)	10	1	10
11	GPS Modülü (M8N)	5	1	5
12	Görev Mekanizması Motor (MG90S)	12,1	1	12,1
13	Pervaneler	5,5	4	22

Tablo 3: İHA Üzerindeki Bileşenlerin Ağırlık Tablosu

2.1.1 Olası Tipler:

İHA'nın ağırlığa etkisi, stabilizasyonu, göreve uygunluğu, üretim kolaylığı açısından karşılaştırılarak 4 kanatlı şase yapısı tercih edildi. Puanlama Tablo 4'te gösterilmiştir.

Uçuş Konfigürasyonu	Puanlama (Her Bir	Kriter 5 Puan Üzerinden D	eğerlendirilmiştir)
Oçuş Koriligurasyonu	4 Kanatlı	3 Kanatlı	6 Kanatlı
İHA Tipleri			
Ağırlığa Olumlu Etkisi	3	3	2
Stabilizasyon	4	3	5
Görevlere Uygunluk	5	2	4
Üretim Kolaylığı	5	3	3
Toplam Skor	17	11	14

Tablo 4: İHA Şase Yapılarının Karşılaştırma Tablosu

İHA tipleri dayanıklılık, hız, stabilizasyon ve üretim kolaylığı açısından puanlandırılıp (Tablo 5) belirlenen farklara göre İHA konfigürasyonu, Tip 1 olarak seçildi. Tasarlanan İHA şasesi Şekil 2'de gösterilmiştir.

Hous Konfigürosyonu	Puanlama (Her Bir Kriter 5 Pua	an Üzerinden Değerlendirilmiştir)
Uçuş Konfigürasyonu	Tip 1	Tip 2
İHA Tipleri		
Dayanıklılık	4	3
Hız	5	5
Stabilizasyon	5	5
Üretim Kolaylığı	5	5
Toplam Skor	19	18

Tablo 5: İHA Şase Tiplerinin Karşılaştırılması

Şekil 2: Tasarlanan İHA Şasesi

2.1.2 Tasarım optimizasyonları:

 Dört ayrı motor sürücüsü yerine 4'ü bir arada olan tek bir motor sürücüsü kartından tüm motorlar kontrol edilerek hem elektronik bağlantıların daha az yer kaplaması hem de diğer donanımlarla birlikte daha hafif olması amaçlandı (Şekil 3).

Şekil 3: Motor Sürücüsü Bağlantı Şeması

 Önceden tasarladığımız, ABS baskısı ile yapılması planlanan 4 parçalı iniş takımı (Şekil 4); ince fakat yeterli mukavemeti temin edebilecek 2 parçadan oluşan karbon fiber iniş takımları ile değiştirilerek yük dağılımı bozulmadan optimize edildi (Şekil 5).

Şekil 4: ABS ile Önceden Tasarlanmış İniş Sistemi

Şekil 5: Karbon Fiber ile Tasarlanan İniş Sistemi'nin Son Hali

2.1.3 Mekanik Kurgu:

 İHA üzerindeki bağlantılar krom M3 vida, karbon fiber ayaklar şase üzerine Epoksi yapıştırıcı ve M3 vidalar kullanılarak birleştirilecek şekilde tasarlandı. Parçalarına ayrıştırılmış görünümü Şekil 6'da gösterilmiştir.

Şekil 6: Parçalarına Ayrıştırılmış Görünüm

2.2 Gövde ve Mekanik Sistemler:

 Batarya şasenin üzerinde dış etkenlere karşı muhafaza edilmek üzere koruma kapağının altına yerleştirildi ayrıca kapalı alanda ısınmasının önüne geçmek için şase ürerine havalandırma delikleri tasarlandı.

Şekil 7: Gövde Şase Tasarımı

 Kontrol ünitesinin muhafazası aerodinamik bir tasarımla hava direnci oluşturması engellendi.

Şekil 8: Kontrol Ünitesinin Muhafazası

 Şase ve iniş sistemi hafif ve mukavemetli olması için karbon fiber malzemeden 2B işleme ile üretilebilecek şekilde tasarlandı.

Sekil 9: Karbon Fiber Bilesenler

 Kontrol ünitesi muhafazası ve görev mekanizması ABS malzeme ile üretilmesi planlandı.

Şekil 10: ABS Bileşenler

İHA Olası Şase Malzemeleri	Puar	Puanlama (Her Bir Kriter 5 Puan Üzerinden Değerlendirilmiştir)								
Değerlendirme Kriterleri	Sağlamlık	Kolay Tamir Edilebilir Olmak	Hafiflik	Üretim Kolaylığı	Fiyat Uygunluğu	Toplam Puan				
ABS	1	3	2	5	5	16				
Karbon Fiber	5	2	5	5	2	19				

Tablo 6: ABS ve Karbon Fiber Malzeme Karşılaştırması

Parça	Üretim Yöntemi	Üretim Materyali
Şase	Lazer Kesim	Karbon Fiber
Kontrol Ünitesinin Muhafazası	3B Baskı	ABS
İniş Takımı	Lazer Kesim	Karbon Fiber

Tablo 7: ABS ve Karbon Fiber Bileşenlerin Üretim Yöntemleri

2.3 Görev Mekanizması Sistemi:

Tasarladığımız görev mekanizması yatay silindir kafes şeklinde ana gövdenin alt kısmına ağırlık merkezini yatay konumda değiştirmeyecek şekilde montajlanmıştır. 180 derece açılabilir menteşe ile tasarlanan kafes kapağı pinyon dişli çark sistemi aracılığıyla açılabilecektir.

Şekil 11: Görev Yükünün Bırakılması

Şekil 12: Görev Mekanizması Pinyon Dişli Çark Yapısının Kapalı ve Açık Hali

2.4 Elektrik-Elektronik ve Uçuş Kontrol Sistemi:

İHA tasarlanırken ergonomik boyutu, güç dağıtıcı gerektirmemesi ve yazılım kolaylığı sebebiyle uçuş kontrolcü olarak *Omnibus F4 Pro V2* tercih edildi. Bu uçuş kontrolcüye uyumlu olarak *Racerstar 35A ESC 4 in 1* model bir motor sürücü seçildi. Yer istasyonu yazılımı olarak otonom uçuş hazırlama kolaylığı sebebiyle *Mission Planner* tercih edildi. Yüksek konum hassasiyeti ve pusula özelliklerini bulundurması sebebiyle konum bulma işlemleri için *M8N GPS Modülü* tercih edildi. Programlama kolaylığı ve fiyatının uygun olması sebebiyle RF Verici olarak *FlySky FS-I6* modeli seçildi. Vericiyle uyumlu olmasından dolayı alıcı olarak *FlySky FS-IA6B* tercih edildi. İhtiyacımızı karşılayacak kadar yüksek torklu olduğu için görev mekanizmasında *MG90S Servo Motor* tercih edildi. Genelde İHA yarışlarında kullanıldığı ve yüksek hızlara ulaşabildiği için motor olarak *Emax RS2205* modeli tercih edildi (Tablo 8). Görevler boyunca tüm elektronik sistemin enerjisini sağlayabilmek için *Profuse 4000mAh 35C 3S Lityum Polimer Batarya* tercih edildi (Tablo 9). Güvenli şifreleme teknikleri kullandığı için telemetri olarak *Xbee* marka telemetri sistemi tercih edildi. Elektrik-Elektronik ve uçuş kontrol sisteminin bağlantı şeması şekilde gösterilmiştir (Şekil 13).

Motor Marka ve Modelleri	Ağırlık	KV	Boşta Amper	En Yüksek Güç
Emax RS2205	30gr	2300	0.9A	811.44W
T-MOTOR BLACK BIRD 2207 V2	33.4gr	2800	1.8A	610W
GRATT ML 3508	105gr	700	0.5A	460w
SunnySky X3108S	81gr	900	0.6A	325W

Tablo 8: Motor Modellerinin Karşılaştırması

Batarya Marka ve Modelleri	Ağırlık	Kapasite (mAh)	Voltaj	Deşarj
Profuse – 3S	355,6gr	4000	11,1V	35C
Leopard-Power-3S	570gr	8000	11.1V	40C
TATTU-3S	455gr	6000	11.1V	70C
Giant Power – 3S	105gr	1300	11.1v	65C

Tablo 9: Batarya Modellerinin Karşılaştırması

Şekil 13: Elektrik-Elektronik ve Uçuş Kontrolü Bağlantı Şeması

2.5 İtki ve Taşıma Hesapları:

İHA bileşenlerinin adet, birim ağırlıkları ve toplam ağırlık Tablo 10'da gösterilmiştir İHA tasarlanırken dengeye önem verilmiş ve ağırlık merkezinin İHA'nın merkezine olabildiğince yakın olması hedeflenmiştir. İHA'da kullanılan bileşenlerin ağırlıkları ve ağırlık merkezine olan uzaklıkları Tablo 11'de gösterilmiştir.

No	Parça Adı	Birim Ağırlık (gr)	Adet	Toplam Ağırlık (gr)
1	Şase	74,9	1	74,9
2	Koruma Kapağı	60	1	60
3	İniş Ayakları	60,8	2	121,6
3	Fırçasız Motor (Emax RS2205)	29	4	116
4	Omnibus F4 Pro V2 Uçuş Kontrolcü	18	1	18
5	4 in 1 ESC (Racerstar REV35)	13	1	13
6	RF Alıcı (FlySky FS-I6AB)	14,9	1	14,9
7	Buzzer	0,65	1	0,65
8	Sigorta	3	1	3
9	Lityum Polimer Batarya (Profuse)	291,5	1	291,5
10	Telemetri (Xbee)	10	1	10
11	GPS Modülü (M8N)	5	1	5
12	Görev Mekanizması Motor (MG90S)	12,1	1	12,1
13	Pervaneler	5,5	4	22

Tablo 10: Bileşenlerin Adet ve Ağırlıkları

No	Parça Adı	Birim Ağırlık (gr)	X uzaklığı (mm)	Y uzaklığı (mm)	Z uzaklığı (mm)
1	Sağ Ön Motor (Emax RS2205)	29	143	86	13,5
2	Sağ Arka Motor (Emax RS2205)	29	143	86	13,5
3	Sol Ön Motor (Emax RS2205)	29	143	86	13,5
3	Sol Arka Motor (Emax RS2205)	29	143	86	13,5
4	Omnibus F4 Pro V2 Uçuş Kontrolcü	18	0	0	18
5	4 in 1 ESC (Racerstar REV35)	13	0	0	12
6	RF Alıcı (FlySky FS-I6AB)	14,9	0	63,5	16,5
7	Buzzer	0,65	0	61,7	11,8
8	Sigorta	3	19,4	44	12
9	Lityum Polimer Batarya (Profuse)	291,5	1,8	0	24
10	Telemetri (Xbee)	10	0	40	8
11	GPS Modülü (M8N)	5	0	99,6	99,8
12	Görev Mekanizması Motor (MG90S)	12,1	50,8	22,1	72,3
13	Şase	74,9	0	0	2,8
14	Koruma Kapağı	60	0	9,5	24,6
15	İniş Ayağı (Sağ)	60,8	136,2	1,5	64
16	İniş Ayağı (Sol)	60,8	136,2	1,5	64
17	Sağ Ön Pervane (5045)	5,5	143	86	31,5
18	Sağ Arka Pervane (5045)	5,5	143	86	31,5
19	Sol Ön Pervane (5045)	5,5	143	86	31,5
20	Sol Arka Pervane (5045)	5,5	143	86	31,5

Tablo 11: Bileşenlerin Ağırlıkları ve Ağırlık Merkezine Olan Uzaklıkları

İHA'da kullanılması planlanan pervanelerin özellikleri Tablo 12'de verilmiştir.

Pervane Özellikleri	
Model	5045
Çap	5"
Adım	4,5"
Göbek Çapı	5mm
Göbek Kalınlığı	7,8mm
Bıçak Sayısı	3

Tablo 12: Pervane Özellikleri

Şekil 14: Pervane Modeli (5045)

İHA'nın planlanan detaylı itki, taşıma ve güç hesapları Tablo 13'de gösterilmiştir.

İHA'nın Beklenen Uçuş Parametreleri	
Yükle Beraber Güç	17,8C
Uçuş Süresi	5 Dakika
Elektrik Gücü	182 Watt
İtki-Ağırlık	1,4
İtki	3,41 g/W

Tablo 13: İHA'nın İtki, Taşıma ve Güç Hesapları

2.6 Görsel Tasarım Konfigürasyonu:

