IP ** Important & Some Theory Questions PAGENO.
3). Why median filter is better than to mean
Ane Median filter is normally used to reduce mediate
House it attacks to the mean title
mean filter in preserving useful details in
Median filter has & main Advantages.
1. The median is a more vobust, average than
the 'mean' and 30 a single very un-report sentative sexel in a neighbordood will not
affect the median value significantly.
2 since the median value must actally be the
value of one of the sixel in the neighborhood the median filter does not create new
Un realistic pixel values when the filter
Straddles an edge. Therefore, it is much better at preserving "shorp edges" them the
mean filter.
Note: - Mean fitter is better at dealing with
- Median filter is better at dealing with
Salt and Depper noise than mean filters

1	Strarpening Sportial tilter
112	DATE: JA, OR
1 =	
	the Principal objective of chargening is highlight Transitions in intensity.
	* Blurring -> Pixel averaging.
4	* sharperning -> Sparetial Differentiation
4	
1.	First - order derivotive et a one-dimensional
2 allowers	function t(re);
	$\frac{\partial t}{\partial n} = t(x+1) - t(x).$
2.	Second - order derivative of a one-dimensional fund
F	f(n):-
	0°t - t (se+1) + t (se-1) - 2 t(se)
4	
*	Laplacian filter
-	

Scanned by TapScanner

Un shorp Masking & High boost Un 8 horp Masking:-\$(x,y) = \$(x,y) - \$(x,y). charpened - original - blurred image image. * subtracting a blurred version of on image from the original produces a sharpened image * Highboast filtering: tho (2, y) = Af (2, y) - f(2, y) = At (n,y) - [t(x,y) - to (x,y)] thb(n,y) = (A-1) t(n,y) - ts(n,y). This is the generalized form of the unsharp masking where [A] , A Specifies the amount of Sharpening of the image. It we use Laplacian filter to create the sharpened image to (n,y) with addition of the original image:-

		First-Orden Denivative												
		Filter DATE:												
					Ce.		24				1			
					(Per	19 0	-	+ 11	1		111		-	1
														1
1.		Rob	ert	Ope	rate	es.	(6	¥ 6	mage.	- gro	dien	+)		1
	-				(6-6)	4-7		=X	The w	red da				1
		-7	0		,	-1				red to	C-1-	bront	is diag	ral
	#1	0	1	17		9			- :) Island				THE REAL PROPERTY.
			144				34		0			06	6 8	la
	-		1-				PE		A			[]	1 (2)	
D		1					1	Can			1	: 0) visite	
	11		ems											
	0		2/0	at	700	al	2.00	re	not	ore	M	UN	plem	ent
	0.3									8 P				
			· V	00,)	1	0	00017	0	in	AND	go are	lau
4	Jo		olve	thes	e P	nobl	Lem	۵.	we	Mak				
64	Cl	one	28:-	J.	cha	mee		in	the	lize	ok	the	Mas	K
1-	1	0		2).	cha	nge	· C	n t	he	No.	of	neig	Lbori	ne
	64	16(Ö	(-)	1-	1-	Pi	rels	00	nside	ered
*	80	bel	oper	0106	\$ °-						264	m)	199	-
	10	4卷户	1 01											_
			2 -			0		A Th	100	-8)	At !			_
	0		0) 0		-2,	0	2,							1
	7		8 1		-1	0	7				17 (1			1
ملہ														1
*	Pa	le h	itt	Opera	a ton	b:-			143					1
	T-	1 -	-1 -											
		0	0 5		-1	0	1							
		1	1 1		1-7	0	1							
	1				1-1	0	1							

DFT
PAGE NO.:
DATE: 18 108 18
g). L. Compute DFT of the Sequence of (x) = Sizaga
N-J
F[k] = $\sum_{k=0}^{N-1} f(x)e^{-32x3Tkxk/xy}$; where $k=0,1,2N_1$
Here re=0; N=4
$F[N] = \sum_{n=0}^{\infty} y(n) e^{-j2\pi k n} x/4$
$\mathcal{R}=0$ $ \boxed{n=1} $
$= 6(0)e^{0} + 6(1)e^{-32\pi k/4} + 6(2)e^{-3\pi k} + 6(3)e^{-33\pi k}$
-6(0) e + 6(3) e + 6(3) e
$=1+0+0+6(3)e^{-j3\pi\kappa/2}$
(2) 004 + (2) (2 1/2) (2 1/2) (2 1/2) (2 1/2) (2 1/2) (2 1/2)
$= \int 1 + e^{-J3\pi k/2}$
When $K=0$ $F[0] = 1 + e^{0} + 1 = [2]$
When K=1 = 1 + 0 - 33 T/2 = 1+j
FC1J
When $K = 2$ = 1 + $e^{-j3\pi}$
2-3 -0
When $K=3$ = $1 + e^{-j9\pi/2}$ = $1 - j \Rightarrow 0$
* $F[K] = \{2, 1+j, 0, 1-j\}$ Final Answer.

Scanned by TapScanner

* * Exam					PAGE NO.: 40	RINE
we know,	* Kenn	el of	Pa	4- point	DET	0).(0
	1 1	1 1	1	333000		
	1 1 3	-1	j			
	1 9	1 7 -	1	Ke	mel.	100
		J -1 -	j			
* 1D T	OFT: FU		m -1	111	C1551	
		1-1	, Lai	f(x).		
* 2D D	FT: F[x	, [] = K	remal	x the	1) × Kom	0 (-100
				7 6 67) / / / / /	
		1 1	2 2	1/1/1	1 1	
calcus	late 4-p	point o	DET	in or	e to	the
Sequence	» se(n) =	= 80	, 1, 2	,3}	using m	natrix
		4 4	111	1.1- 1	Q W	ethod.
			F			
2 The L	1- Point	DFT	in	000	dimension	1 -
					ut Beque	
			Kerne			
= 1	1 1 1			l x Ing		
= 1	1 1 1 -j -1 j	X	Kerne	l x Ing		
	1 1 1 1 3 -1 5 -1 -j -j -j -j	X	Kerne	l x Ing	ut Beque	
	1 1 1 -j -1 j	X	Kerne 0. 1	l x Ing	ut Beque	
	1 1 1 3 -1 5 -1 -j -1 -j	3	Kerne 0. 1	l x Ing	ut Beque	
	1 1 1 3 -1 5 -1 -j -1 -j	1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	Kerne 0. 1	l x Ing	et Seque	
	1 1 1 3 -1 5 -1 -j -1 -j	3	Kerne 0. 1	ex In	et Seque	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Kerne 0. 1	ex In	et Seque	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2, +3 +3j -3	Kerne 0. 1	ex In	et Seque	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2, +3 +3j -3	Kerne 0. 1	ex In	et Seque	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2, +3 +3j -3	Kerne 0. 1	ex In	et Seque	

Scanned by TapScanner

PAGE NO.: DATE:
* Discrete Cosine Transform:-
Expresses a finite seguence et oaton.
in terms of a sum of cosine tunction
in terms of a sum of cosine functions oscillating at different brequencies
Represents on image as a sum of
tu sinusoids of Vonging magnitudes of
* One Dimensional DCT
$\times [K] = \alpha(K) \sum_{n=0}^{N-1} n(n) \cos \left(\frac{(2n+1)\pi K}{2N}\right)$
Where $0 \le K \le N-1$;
$\frac{\alpha(\kappa)}{\sqrt{2}} = \int \frac{1}{\sqrt{2}} i i k = 0$ $\int \frac{2}{\sqrt{2}} i k \neq 0$
practised *Basies or Kernel of a 4-point DCT *
0.5 0.5 0.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.5 -0.5 -0.5
0.2706 -0.6532 0:6533 -0.2706 06
DCT:- F[k]-Kernel x & (n)
DCT:- F[K,L]=[Kernel x of (x,y) x Kernel]
Questons

PAGE NO. (42) [PAGE N	1
ex: Find the DET of f(x) = (1,2,4,4)	7
Basis tunction x 6 (sc).	-
	F
0.5 0.5 0.5	
F = 0.6532 0.2706 -0.2706 -0.6532 X 2 2	
0.5 -05 -0.5 0.5 4	
	-
- 7 - 7	
-4.45	
1 Ann	
[-0.370] <u>Ane</u>	
great Find $2-D$, DCT of $f(n,y) =$	
9/- Find	
(2, y) = 2 1 21	
1 2 2 1	
m he have:	
F= Remel x & (x,y) x Kernal T	
1 2 2 1	
0.5 0.5 0.5 21 21	×
-0.5 -0.5	V13 7
0.5 0.2706 -0.6533 0.6533 -0.2706	
10.5 0.6532 0.5 0.2706	
0.5 0.2706 -0.5 -0.6533	
0.5 -0.2706 -0.5 0.633	
0.5 -0.6532 0.5 -0.2706	

Scanned by TapScanner