Lagrangian density
$-t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$rac{1}{3}t_2\;\omega_{\kappa\lambda}^{\prime}\;\omega^{\kappa\lambda}_{\prime}+rac{2}{3}r_2\partial^eta\omega^{etalpha}_{\kappa}\partial_eta\omega^{\kappa}_{\beta}-rac{1}{3}r_2\partial_eta\omega^{\kappa}_{\beta}\partial_\kappa\omega^{lphaeta}_{eta}-$
$rac{2}{3}r_{2}\partial_{ heta}\omega_{lphaeta}^{\kappa}\partial_{\kappa}\omega^{ hetalphaeta}-rac{1}{3}t_{1}\partial^{lpha}f_{eta\kappa}\partial^{\kappa}f_{}^{}+rac{1}{6}t_{2}\partial^{lpha}f_{eta\kappa}\partial^{\kappa}f_{}^{}-$
$\frac{2}{3}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\ \kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{6}t_2\partial^{\alpha}f^{\lambda}_{\ \kappa}\partial^{\kappa}f_{\alpha\lambda} +$
$t_1\;\omega_{\kappa\alpha}^{\;\;\alpha}\partial^\kappa f'_{\;\;\prime} + t_1\;\omega_{\kappa\lambda}^{\;\;\lambda}\partial^\kappa f'_{\;\;\prime} + 2t_1\partial^\alpha f_{\;\kappa\alpha}\partial^\kappa f'_{\;\;\prime} - t_1\partial_\kappa f^\lambda_{\;\;\lambda}\partial^\kappa f'_{\;\;\prime} +$
$\frac{1}{3}t_{1}\ \omega_{,\theta\kappa}\ \partial^{\kappa}f^{'\theta} + \frac{1}{3}t_{2}\ \omega_{,\theta\kappa}\ \partial^{\kappa}f^{'\theta} + \frac{4}{3}t_{1}\ \omega_{,\kappa\theta}\ \partial^{\kappa}f^{'\theta} - \frac{2}{3}t_{2}\ \omega_{,\kappa\theta}\ \partial^{\kappa}f^{'\theta} -$
$\frac{1}{3}t_{1}\ \omega_{\theta/K}\ \partial^{K}f'^{\theta} - \frac{1}{3}t_{2}\ \omega_{\theta/K}\ \partial^{K}f'^{\theta} + \frac{2}{3}t_{1}\ \omega_{\theta K'}\ \partial^{K}f'^{\theta} + \frac{2}{3}t_{2}\ \omega_{\theta K'}\ \partial^{K}f'^{\theta} -$
$t_1\;\omega_{_{I}\alpha}^{\alpha}\partial^{\kappa}f_{_{K}}^{}-t_1\;\omega_{_{I}\lambda}^{\lambda}\partial^{\kappa}f_{_{K}}^{}+\frac{1}{3}t_1\partial^{\alpha}f_{_{A}}^{}\partial^{\kappa}f_{_{A}\alpha}^{}-\frac{1}{6}t_2\partial^{\alpha}f_{_{A}}^{}\partial^{\kappa}f_{_{A}\alpha}^{}+$
$\frac{1}{3}t_1\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} - \frac{1}{6}t_2\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} + \frac{2}{3}t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} +$
$rac{1}{6}t_2\partial_{\kappa}f^{\lambda}_{ heta}\partial^{\kappa}f_{\lambda}^{}-t_1\partial^{lpha}f^{\lambda}_{\lambda}\partial^{\kappa}f_{\lambda\kappa}^{}+rac{1}{3}r_2\partial_{\kappa}\omega^{lphaeta heta}\partial^{\kappa}\omega_{lphaeta heta}^{}$
$rac{2}{3} r_2 \partial_\kappa \omega^{ heta lpha eta} \partial^\kappa \omega_{lpha eta eta} - rac{2}{3} r_2 \partial^eta \omega_{}^{$
Added source term: $\left f^{lphaeta} \ au_{lphaeta} + \omega^{lphaeta\chi} \ \sigma_{lphaeta\chi} ight $

$\sigma_{1}^{\#1} +^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{2ik}{t_1 + 2k^2t_1} - \frac{i\sqrt{2}k}{(1 + 2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$

$f_{1^-}^{\#2}\alpha$		0	0	t_1	0	0	0
$\alpha f_1^{\#}$				$ ikt_1 $))	
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{lpha}\;\omega_{1^{-}}^{\#2}{}_{lpha}\;f_{1^{-}}^{\#1}{}_{lpha}\;f$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{\text{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}$	$-\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	$\frac{1}{3}$ \bar{l} k $(t_1 + t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1 + t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$\omega_{1}^{#1} + \alpha^{\beta}$	$\omega_1^{#2} + \alpha \beta$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} + \alpha$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}_{lpha eta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints	
SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik \sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	16

	Massive par
?	Pole residue
$J^P = 0^-$	Polarisation
k^{μ}	Square mas
?	Spin:
	Parity:

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2} > 0$
/ \	Polarisations:	1
;	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

$r_2 < 0 \&\& t_2 > 0$	Unitarity conditions	(No massless particles)
		es)

0
massl
5
less
pa
ticl
les
s)

 $\tau_{1^{-}\alpha}^{\#2}$

 $t_{1}^{\#1}$

 $\sigma_{1}^{\#2}{}_{lpha}$

 $\sigma_{1^-}^{\#1}{}_{lpha}$

0

0

0

0

 $\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$

 $\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$

 $\frac{2\left(t_1+t_2\right)}{3t_1t_2}$

 $\sigma_1^{\#1} +^{\alpha\beta}$

0

0

0

0

 $\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$

 $\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$

 $\sigma_1^{\#2} +^{\alpha\beta}$

0

0

0

0

 $\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$

 $-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$

 $\tau_1^{\#1} + ^{\alpha\beta}$

 $\frac{\sqrt{2} (t_1 - 2t_2)}{3(1+k^2)t_1t_2}$ $-\frac{i \sqrt{2} k(t_1 - 2t_2)}{3(1+k^2)t_1t_2}$