УДК 556.555.8

ЗАГРЯЗНЕНИЕ СТРОНЦИЕМ-90 ВОДНЫХ ЭКОСИСТЕМ В ЗАПАДНЫХ РАЙОНАХ БРЯНСКОЙ ОБЛАСТИ, ПОСТРАДАВШИХ ОТ ЧЕРНОБЫЛЬСКОЙ АВАРИИ

М.Н. Каткова, Я.И.Газиев, Г.И.Петренко, А.М.Полухина

В 1997-1999 гг. в западных районах Брянской области проведен мониторинг водных экосистем, загрязненных чернобыльскими выпадениями. В рамках этих исследований оценен текущий уровень загрязнения водных объектов радиоизотопом 90 Sr. Сделаны основные выводы и даны рекомендации по их использованию в дальнейшем с учетом полученных результатов.

ВВЕДЕНИЕ

В результате аварии на Чернобыльской АЭС в атмосферу было выброшено большое количество радиоактивных веществ. Атмосферный перенос и оседание их на земную поверхность привели к долговременному радиоактивному загрязнению местности. На территории Российской Федерации наиболее пострадавшими оказались юго-западные районы Брянской области. Схема района исследований показана на рис.1.

В рамках Проекта РФ-ПРООН РУС/95/004 в 1997-1999 гг. и на основе предыдущих наблюдений был проведен радиоэкологический мониторинг поверхностных водных экосистем, расположенных в загрязненных чернобыльскими радионуклидами районах Брянской области. Авторы настоящей статьи приняли участие в работах по этому проекту. Одной из подзадач крупномасштабного мониторинга являлась оценка текущего уровня загрязнения водных экосистем долгоживущим радиоизотопом ⁹⁰Sr. Нами были опробованы и проанализированы на содержание ⁹⁰Sr следующие компоненты водных экосистем: вода, донные отложения и, частично, гидробионты (рыба).

На территории юго-западных районов Брянской области расположено семь естественных водоемов; Наиболее крупные из них — озеро Кожановское объемом 5460 тыс.м³ и озеро Заломенье объемом 750 тыс.м³.

Помимо естественных водоемов на исследуемой территории находится 209 водохранилищ и прудов, 14 наиболее крупных из них отнесены к федеральной собственности, остальные — областного и внутрихозяйственного значения. Назначение искусственных водоемов различное: от хозяйственно-бытового до рыбоводческого, причем два водоема в Гордеевском районе и один в Климовском частично используются для питьевого водоснабжения.

Озера, пруды и водохранилища имеют слабопроточный характер и повышен-

[©] М.Н. Каткова, Я.И.Газиев, Г.И.Петренко, А.М.Полухина, 2002

Рис.1. Схема сети наблюдений НПО «Тайфун» в рамках проекта РФ-ПРООН РУС/95/004 (1997-2000 гг.) в юго-западных районах Брянской области: ○ - пункты отбора проб; ⊘ - гидрологические посты

ные уровни загрязнения сельскохозяйственными и бытовыми стоками. Некоторые из них после чернобыльских событий накопили определенный запас радионуклидов, влияющий на экологическую обстановку местности, самого водоема и, как следствие, на здоровье населения.

Степень загрязнения местности 90 Sr определялась путем проведения радиохимических анализов почвенных проб. На основе полученных результатов было проведено распределение количества населенных пунктов в Брянской области по уровню загрязнения 90 Sr и построена карта загрязнения 90 Sr с шагом сетки 0,03 градуса по широте и долготе. Указанное выше распределение населенных пунктов и карта загрязнения стронцием-90 представлены в табл. 1 и на рис. 2.

Наиболее загрязненными 90Sr оказались семь пунктов в Злынковском районе, в

Распределение населенных пунктов в Брянской области по уровню загрязнения стронцием-90 (ГБк/км²) по состоянию на август 1995 г.

Интервал значений	<4	4-19	19-37	37-56
Количество пунктов	163	281	40	7

Рис.2. Карта-схема загрязнения 90Sr территории Брянской области на 01.07.86 г.

которых средние по населенному пункту значения изменялись в пределах 37-56 $\Gamma \mathsf{Б} \kappa / \kappa \mathsf{m}^2$.

Отбор проб поверхностных вод для определения ⁹⁰Sr производился в полиэтиленовые 10-литровые канистры. При опробовании слабозагрязненных водоемов использовались дополнительно 25-литровые бидоны с крышками.

Для отбора проб донных отложений использовались пробоотборники четырех типов:

- пробоотборник с большой площадью поперечного сечения пробы в виде дюралевой трубы диаметром 12 и длиной 70 см, насаживаемой на разборную штангу длиной до 10 м; внутри трубы помещался мешок из ткани для забора керна донных отложений;
- пробоотборник с малой площадью отбора (S=0,1 м²), который использовался для сильно загрязненных и мощных (до 1,5 м) донных отложений с большой пористостью (80-97%);
- укороченный вариант пробоотборника 2-го типа (длина 1м), предназначаемый для отбора проб донных отложений на небольшой глубине (до 0,8 м); опробование производится так же, как и пробоотборником 2 типа;
- ковшовый пробоотборник (экскаваторный тип) предназначен для отбора поверхностных донных отложений.

Рыба является биоаккумулятором радионуклидов и, следовательно, индикатором радиоактивного загрязнения среды обитания. В рамках Проекта РФ-ПРООН РУС/95/004 оценка загрязнения радионуклидами гидробионтов и рыбы не являлась основной задачей, поэтому их опробование имело эпизодический характер.

Радиохимическое определение 90 Sr в пробах воды (V=5-25 л) определялось стандартным методом карбонатного осаждения с последующим выделением дочернего изотопа 90 Y. В пробах донных отложений и почвы стронций переводился в раствор из прокаленной при $550-600^{\circ}$ C навески (30-50 г) пробы двукратным выщелачиванием 6н соляной кислотой $\sim 1:3$.

Таблица 2 Концентрация ⁹⁰Sr в воде озер и прудов (сентябрь-октябрь 1998 г., август-сентябрь 1999 г.)

Водный объект	Год	№ на рис.1	Концентрация, Бк/л
О.Кожановское	1998	1	1,5±0,2
О.Кожановское	1999	1	0,8±0,2
Пруд Яловка	1998	18	0,9±0,2
Пруд Яловка	1999	18	0,8±0,2
Иск.водоем Карьер	1998	2	0,9±0,3
Иск.водоем Карьер	1999	2	0,6±0,2
О.Заозерье	1998	26	0,7±0,2
О.Святое на Беседи	1998	7	0,4±0,2
О.Святое на Беседи	1999	7	0,4±0,1
Пруд Ковали	1999	16	0,8±0,2
Пруд Николаевка	1999	23	0,4±0,1
Пруд Заборье	1999	12	0,2±0,1
О.Верещакские разливы	1999	25	0,4±0,1

Погрешности измерений содержания 90 Sr в пробах поверхностных вод и донных отложений лежали в пределах ± 15 -30% для доверительной вероятности p=0,95. Эти погрешности оценивались с учетом определения химических выходов 90 Sr и 90 Y.

В результате проведенных процедур пробоотбора и радиохимического анализа проб воды и донных отложений был получен ряд результатов, которые отражают степень загрязнения 90 Sr водных экосистем.

В табл. 2 представлены концентрации ⁹⁰Sr в воде поверхностных водоемов, исследованных в сентябре-октябре 1998 г. и августе-сентябре 1999 г.

Из табл.2 видно, что максимальное содержание ⁹⁰Sr наблюдалось в воде о.Кожановского в сентябре-октябре 1998 г. и оказалось равным 1,5 Бк/л. В то же самое время примерно в полтора раза меньшей оказалась активность ⁹⁰Sr в воде о.Карьер и пруда в Яловке — по 0,9 Бк/л. В августе-сентябре 1999 г. активность ⁹⁰Sr в воде озер уменьшилась до 0,9 Бк/л в о. Кожановском и до 0,6 Бк/л в о. Карьер. Это, по всей видимости, было следствием поступления в озера значительного количества паводковых вод с меньшим содержанием ⁹⁰Sr, чем в озерных водах, во время весеннего паводка в 1999 г. Также из табл. 2 видно, что подобного эффекта в пруде Яловке и о. Святом на Беседи не наблюдалось, что, вероятно, связано с ландшафтными особенностями районов, в которых находятся эти водоемы.

Относительно небольшим в 1999 г. оказалось содержание 90 Sr в воде пруда в д. Заборье (0,2 Бк/л), где оно оказалось в 3 раза меньше, чем в воде о. Карьер, хотя согласно табл. З удельная активность 90 Sr в верхнем слое донных отложений пруда в 1,4 раза превышала таковую в таком же слое донных отложений озера.

В настоящее время основным источником загрязнения 90 Sr вод и водоемов типа пруда в д.Заборье и о.Карьер являются донные отложения. На основе полученных данных был оценен коэффициент распределения 90 Sr в системе "вода-донные отложения", равный отношению удельной активности в верхнем слое донных отложений к активности в воде. В пруде д.Заборье этот коэффициент значительно больше, чем в о.Карьер — 10^3 л/кг и $2,6\cdot10^2$ л/кг соответственно.

Согласно данным, приведенным в табл. 3, удельные активности ⁹⁰Sr в донных отложениях рассматриваемых водоемов практически не изменялись с глубиной.

Таблица 3

Концентрация ⁹⁰Sr в донных отложениях озера Карьер и пруда в д. Заборье

Водный объект	№ на рис.1	Дата отбора	Толщина слоя	Концентрация, Бк/кг с.в.	Погрешность для p=0,95, Бк/кг
Пруд д. Заборье	12	20.08.99	0-4	210	32
			4-8	300	45
Иск.водоем Карьер	2	19.08.99	0-4	154	23
			4-8	147	22
			8-12	157	24
			12-16	136	20

Как уже отмечалось выше, в рамках Проекта РФ-ПРООН РУС/95/004 не ставилась задача оценки радиоактивного загрязнения водной биоты чернобыльскими радионуклидами. В связи с этим были получены только единичные результаты по загрязнению ⁹⁰Sr рыбы (щука (Esox lucius) из о.Кожановское — 110 Бк/кг; карась (Carassius carassius) из искусственного водоема Карьер — 40 Бк/кг).

ЗАКЛЮЧЕНИЕ

На основе полученных результатов можно сделать следующие основные заключения о степени загрязнения ⁹⁰Sr поверхностных водоемов Брянской области, пострадавших от аварии на ЧАЭС.

- 1. В ходе полевых работ на трех полигонах («Кожаны», «Деменка», «Заборье») в 1999 г. получены новые базовые данные о содержании ⁹⁰Sr в поверхностных водоемах и донных отложениях.
- 2. Исследованные поверхностные водоемы составляют примерно 90% всех поверхностных водных ресурсов загрязненных районов Брянской области (Гордеевский, Злынковский, Клинцовский, Красногорский, Новозыбковский) и представляют все их основные типы: пойменные и водораздельные озера, пруды, водохранилища и искусственные водоемы, образовавшиеся на месте торфоразработок.
- 3. Из семи естественных озер на территории проекта были изучены на предмет загрязнения 90 Sr два: Святое на Беседи, Кожановское.
- 4. В 1998-1999 гг. в воде о.Святое на Беседи содержание 90 Sr составляло примерно одну десятую от уровня вмешательства (УВ) воды, равного 5 Бк/л по НРБ-99.
- 5. В воде о.Кожановское в 1998-1999 гг. средняя концентрация 90 Sr составляла приблизительно 0,25 от значения УВ воды для 90 Sr.
- 6. Уровни загрязнения ⁹⁰Sr поверхностных вод в большинстве изученных водных объектов были меньше нескольких десятых долей от УВ воды по НРБ-99.
 - 7. Ограничения на водопользование объектов в настоящее время отсутствуют.
- 8. Необходимо продолжить исследования с целью оценки загрязнения чернобыльскими радионуклидами, в частности ⁹⁰Sr, каждого трофического уровня цепи вода - донные отложения - гидробионт в замкнутых слабопроточных водоемах Брянской области типа о.Кожановского, а также увеличить статистику измерений по каждому отдельному трофическому уровню.
- 9. Существует необходимость оценки дозовых нагрузок на население, потребляющее загрязненные рыбопродукты из озер с большой степенью загрязнения продуктами аварии на ЧАЭС.

Работа подготовлена по материалам окончательного отчета по проекту РФ-ПРООН РУС/95/004 «Оценка и прогноз качества воды на территориях, пораженных в результате аварии на Чернобыльской АЭС (Брянская область)»/ Ред.В.Т.Дубинчук.- М.: «ИНФОКОМ-ГЕО», 113105, Варшавское шоссе, 39-а; 2001.

Поступила в редакцию

УДК 621.039.586

Analysis of Failure of a Fast Reactor Runaway in Approach of Zero Lifetime of Prompt Neutrons \N.M. Kadjuri; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 5 pages, 2 illustrations. – References, 2 titles.

The estimations of the limit introducing of reactivity $\rho_{_m}$ conducting to destruction of fuel in approach of zero lifetime of prompt neutrons are carried out.

УДК 536.24:621.039.553.34

Influence of Geometrical Parameters of Surface Spheriodical Elements and the Scheme of Their Arrangement on Heat Efficiency of Heat-Exchange Plate Surface \ V.T. Buglaev, A.A.Anisin; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 11 pages, 5 illustrations. – References, 11 titles.

The reseach results of heat-aerodynamic characteristics of heat-exchange profile plate surface experimental patterns with different geometrical parameters of flow sections of adjustable passages are given and their heat efficiency is estimated.

УДК 621.039.6

Magnetohydrodynamic Resistance Reduction by Forming Oxide Electroinsulated Coatings on Channels with Heavy Liquid Metal Coolants of TOKAMAK Reactor\A.V. Beznosov, S.S. Pinaev, M.A. Kamnev, A.V. Nazarov, P.V.Romanov; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) — Obninsk, 2002. — 3 pages, 1 table, 1 illustration. — References, 8 titles.

The article includes experimental data received in investigations of magnetohydrodynamic resistance reduction by forming oxide electroinsulated coatings on internal surfaces of channels of tokamak blanket and divertor.

УДК 556.555.8

⁹⁰Sr Contamination of Water Ecosystems in Bryansk Regions Damaged after Chernobyl Accident \M.N. Katkova, Ya.I. Gaziev, G.I. Petrenko, A.M. Polukhina; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 6 pages, 3 tables, 2 illustrations.

In 1997-1999 the monitoring of water ecosystems in Bryansk regions contaminated after Chernobyl fallout have been conducted. In the framework of these investigations the present ⁹⁰Sr level in water bodies was evaluated. Taking into accounts the obtained result the basic conclusions and recommendations for their future use were done.

УДК 631.42

Distribution of ¹³⁷Cs on ""grain-size" fractions in soils at the 30 km restricted zone around Chernobyl NPP\S.M. Rudaya, O.V. Chistik, I.I. Matveenko; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 8 pages, 2 tables, 2 illustrations. – References, 8 titles.

The results of investigation of ¹³⁷Cs distribution on "grain-size" fractions in soils contaminated by Chernobyl catastrophe products are presented. The mathematical description of radiocaesium distribution on fractions >0,01 mm, 0,01-0,001 mm, <0,001 mm is given. Is shown that "grain-size" and mineralogy composition of researched soils substantially determines a sorption of a radionuclide on soil particles and influences vertical migration.

УДК 574:621.039.542.4

Ecological Aspects of Mass Production of Motor Fuels from Brown Coals and Heavy Petroleum Residuals by Hydrogenation with the Use of Nuclear Technologies \ G.I. Sidorov, V.M. Poplavsky, A.A. Kritchko, A.S. Maloletnev; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 10 pages, 5 tables. – References, 28 titles.