CS 254: Computability and Complexity

Problem Set #04

Anonymous submission

October 8, 2019

5. The language L cat enablerⁿ fancier^m o cat enable^p fancier^q \mid n,m,p,q \geq 1 and n = p and m = q

Proof by contradiction: Assume that L is a CFL we will use cat enabler^p fancier^p o cat enable^p fancier^p Since this is greater than p and string $S \in L$ we know we can pump and follow these conditions: i. for each $i \geq 0$, $uv^i xy^i z \in L$,

ii. |vy| > 0, and

iii. $|vxy| \le p$

There are a few conditions for the layout of $s = uv^i xy^i z$

Case one: $u = \epsilon$ vxy = cat enabler^p z = 0 cat enabler^p fancier^p. if we pump S where i = 2 we will end up with more enablers than fanciers which breaks the condition that n = p and is not in L which means we break the first case of the pumping lemma.

Case two: u = cat enabler, $vxy = fancier^p$, z = o cat enabler fancier. Again if we pump S where i = 2 we will end up with more fanciers than enablers and given the condition that m = n we know this is not in L and therefore breaks condition 1 of the pumping lemma.

Case three: $u = cat \, enabler^{p/2}$, $v = enabler^{p/2}$ xy = fancier^{p/2}, $z = o \, cat \, enabler^p$ fancier ^p If we pump S where i = 2 we will end up with $n \neq p$ and $m \neq q$ therefore it is not in L for any i and we have broken the first condition of the pumping lemma

Through all of these cases we have shown any layout for uvxyz will break a condition for the pumping lemma therefore L is not a CFL by our proof by contradiction