Teórico-prática: EQUILÍBRIO QUÍMICO

1- Escreva as expressões das constantes de equilíbrio das seguintes decomposições térmica:

a) 2 NaHCO₃(s)
$$\leftarrow$$
 Na₂CO₃(s) + CO₂(g) + H₂O(g)

b)
$$2 \text{ CO}_2(g)$$
 \longrightarrow $2 \text{ CO}(g) + \text{O}_2(g)$

c)
$$3 O(g)$$
 \longrightarrow $2 O_3(g)$

2- A constante de equílibrio da reacção seguinte é 4,17x10⁻³⁴ a 25°C.

$$2 \text{ HCl}(g) \iff H_2(g) + \text{Cl}_2(g)$$

Qual a constante de equilíbrio para a reacção seguinte à mesma temperatura.

$$H_2(g) + Cl_2(g)$$
 \longrightarrow 2 $HCl(g)$

3- Considere o seguinte sistema em equilíbrio a 700°C:

$$2 H_2(g) + S_2(g)$$
 \longrightarrow $2 H_2S(g)$

A análise da mistura em equilíbrio mostra que num recipiente de 12L de capacidade há 2,50 moles de H₂, 1,35x10⁻⁵ moles de S₂ e 8,70 moles de H₂S. Calcule a constante de equilíbrio K_c para a reacção.

4- O valor de Kc para o equilíbrio $CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$ a 600K é 302. Um recipiente de 1L contém em equilíbrio 0,10 moles de CO, 0,20 moles de H_2O e 0,30 moles de CO_2 a 600K. Calcule a concentração de H_2 .

5- A 600K o valor de Kc para $CO(g) + H_2O(g)$ \longrightarrow $CO_2(g) + H_2(g)$ é 302. Suponha que são adicionados, a um recipiente de 1,0L a 600K, 2,0 moles de CO e 2,0 moles de H_2O . Qual será a concentração de equílibrio de:

- **a)** CO₂
- **b)** H₂
- c) CO
- **d)** H₂O

6- Considere o seguinte equilíbrio:

2C (s) + O₂(g)
$$\longrightarrow$$
 2 CO(g) Δ H° = - 221 KJ

Explique o efeito sobre a concentração de O₂ no equilíbrio se for:

- a) adicionado CO
- b) adicionado C
- c) aumentado o volume do recipiente
- d) aumentada a temperatura