EE6367: Topics in Data Storage and Communications

2023

Lecture 5: 14 September 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Deterministic Single-Bit Scalar Quantization

Suppose we have to encode $x \in [0,1]$ using a single bit $c \in \{0,1\}$. Let the decoded output be \hat{x} . We require to minimize the *distortion* which is taken to be the maximum squared error

MaxSE =
$$\max_{x \in [0,1]} (x - \hat{x})^2$$
. (5.1)

One such set of encoding and decoding functions is

$$\operatorname{Enc}(x) = \begin{cases} 0 & x \leq \frac{1}{2} \\ 1 & x > \frac{1}{2} \end{cases}$$
 (5.2)

$$Dec(c) = \begin{cases} \frac{1}{4} & c = 0\\ \frac{3}{4} & c = 1 \end{cases}$$
 (5.3)

This is called *deterministic rounding* and has a maximum squared error of $\frac{1}{16}$ as the absolute maximum error is $\frac{1}{4}$.

5.2 Random Single-Bit Scalar Quantization

Claim 5.1. The maximum MSE of a random quantizer under no shared randomness is at least $\frac{1}{16}$.

Proof. In this case, c is a Bernoulli random variable and $\hat{X} = \text{Dec}(c)$ is a random variable. Denote

$$\hat{X}_i \triangleq \text{Dec}(i), \ i \in \{0, 1\}. \tag{5.4}$$

WLOG, let $\mathbb{E}\left[\hat{X}_0\right] \leqslant \mathbb{E}\left[\hat{X}_1\right]$. Then,

$$\mathbb{E}\left[\hat{X}_{0}\right] \leqslant p_{C}\left(0\right) \mathbb{E}\left[\hat{X}_{0}\right] + p_{C}\left(1\right) \mathbb{E}\left[\hat{X}_{1}\right] \tag{5.5}$$

$$= \mathbb{E}\left[\hat{X}\right] \leqslant \mathbb{E}\left[\hat{X}_1\right]. \tag{5.6}$$

Suppose that x = 0 is encoded. Then,

$$\mathbb{E}\left[\left(x-\hat{X}\right)^2|x=0\right] = \mathbb{E}\left[\hat{X}^2|x=0\right] \tag{5.7}$$

$$\geqslant \left(\mathbb{E}\left[\hat{X}|x=0\right]\right)^2\tag{5.8}$$

$$= \left(\mathbb{E} \left[\hat{X}_0 | x = 0 \right] p_{c|x=0} (0) + \mathbb{E} \left[\hat{X}_1 | x = 0 \right] p_{c|x=0} (1) \right)^2$$
 (5.9)

$$\geqslant \left(\mathbb{E} \left[\hat{X}_0 | x = 0 \right] \right)^2. \tag{5.10}$$

If the claim is not true, then (5.10) gives

$$\mathbb{E}\left[\hat{X}_0|x=0\right] \leqslant \frac{1}{4}.\tag{5.11}$$

Similarly, if x = 1 is encoded,

$$\left(\mathbb{E}\left[1-\hat{X}|x=1\right]\right)^2 = \left(1-\mathbb{E}\left[\hat{X}|x=1\right]\right)^2 \tag{5.12}$$

$$\geqslant \left(1 - \mathbb{E}\left[\hat{X}_1 | x = 1\right]\right)^2. \tag{5.13}$$

Again, if the claim does not hold,

$$\mathbb{E}\left[\hat{X}_1|x=1\right] > \frac{3}{4}.\tag{5.14}$$

Now, choosing $x = \frac{1}{2}$, and using (5.11) and (5.14),

$$\mathbb{E}\left[\left(\hat{X} - \frac{1}{2}\right)^{2} | x = \frac{1}{2}\right] = \mathbb{E}\left[\left(\hat{X}_{0} - \frac{1}{2}\right)^{2} | x = \frac{1}{2}, \ c = 0\right] p_{c}(0) + \mathbb{E}\left[\left(\hat{X}_{1} - \frac{1}{2}\right)^{2} | x = \frac{1}{2}, \ c = 1\right] p_{c}(1)$$

$$\geqslant \left(\mathbb{E}\left[\hat{X}_{0} - \frac{1}{2} | x = \frac{1}{2}, \ c = 0\right]\right)^{2} p_{c}(0) + \left(\mathbb{E}\left[\hat{X}_{1} - \frac{1}{2} | x = \frac{1}{2}, \ c = 1\right]\right)^{2} p_{c}(1)$$

$$\geqslant \left(\frac{1}{4} - \frac{1}{2}\right)^{2} p_{c}(0) + \left(\frac{3}{4} - \frac{1}{2}\right)^{2} p_{c}(1) \geqslant \frac{1}{16}$$

$$(5.17)$$

which is a contradiction. This completes the proof.