FAET630004: Computer & AI Architecture

(Due: 03/23/19)

Homework Assignment #1

Instructor: Chixiao Chen Name: , FudanID:

- This HW counts 15% of your final score, please treat it carefully.
- Please submit the electronic copy via mail: cxchen@fudan.edu.cn before 03/23/2019 11:59pm.
- It is encouraged to use LATEX to edit it, the source code of the assignment is available via: https://www.overleaf.com/read/fgtznxwhfrss
- You can also open it by Office Word, and save it as a .doc file for easy editing. Also, you can print it out, complete it and scan it by your cellphone.
- Problem 2 needs verilog/SV simulation. If you do not have a local verilog simulator, please use an online tool: https://www.edaplayground.com/, you need register for save.
- You can answer the assignment either in Chinese or English

Problem 1: Translation from C code to Assembly Code

(20+20=40 points)

- (a) Please translate the following C code into assembly language, using the RV32I instruction set shown in Appendix I.
- (b) When using the compressed version in Appendix II, how many bytes will be saved?

```
int b;  // b is a global variable

void multiplier (int a){
  int i, result;
  for (i = 0; i<b; i++){
    result=result+a;
  }
}</pre>
```

Solution:

Problem 2: Verilog/System Verilog for a Register File

(20+20+20=60 points)

As the R-type, I-type, and S-type indicate, the RISC-V has a uniform register file (RF) design. If you are the verilog engineer who is asked to design a VERY **SIMPLE** version of the RV32I RF, please complete the problems below.

- (a) How many ports should the RF have? What about their direction (input/output/inout)? Please use a table to illutrate it.
- (b) Write a verilog/SV RTL for the RF. (hint: 32 32-bit integer registers and zero register is always zero.)
- (c) Write a testbench for the RF in verilog/SV to perform the following assembly code. Please also include the simulated waveform in your solution.

```
addi x11, x0, 31
addi x12, x0, -60
add x15, x11, x12
```

Solution:

Appendix I:

RV32I Base Instruction Set

		im	m[31:12]	rd	0110111	LUI		
		im	m[31:12]			rd	0010111	AUIPC
	imı	m[20]	$\frac{10:1 11 1}{10:1 11 1}$	9:12]		rd	1101111	JAL
i	mm[11:	0]		rs1	000	rd	1100111	JALR
imm[12 1]	imm[12 10:5] rs2			rs1	000	imm[4:1 11]	1100011	BEQ
imm[12 1]		rs2		rs1	001	imm[4:1 11]	1100011	BNE
imm[12 1]	0:5]		rs2	rs1	100	imm[4:1 11]	1100011	BLT
imm[12 1	0:5]	rs2		rs1	101	imm[4:1 11]	1100011	BGE
imm[12 1	0:5]	rs2		rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 1	0:5]		rs2	rs1	111	imm[4:1 11]	1100011	BGEU
i	imm[11:0]				000	rd	0000011	LB
imm[11:0]			rs1	001	rd	0000011	LH	
i	imm[11:0]				010	rd	0000011	LW
	mm[11:			rs1	100	rd	0000011	LBU
	mm[11:	[0]		rs1	101	rd	0000011	LHU
imm[11:			rs2	rs1	000	imm[4:0]	0100011	SB
imm[11:			rs2	rs1	001	imm[4:0]	0100011	SH
imm[11:			rs2	rs1	010	imm[4:0]	0100011	SW
	mm[11:			rs1 rs1	000	rd	0010011	ADDI
	imm[11:0]				010	rd	0010011	SLTI
	imm[11:0]				011	rd	0010011	SLTIU
	mm[11:			rs1 rs1	100	rd	0010011	XORI
	imm[11:0]				110	rd	0010011	ORI
	imm[11:0]				111	rd	0010011	ANDI
000000		shamt		rs1	001	rd	0010011	SLLI
	0000000		hamt	rs1	101	rd	0010011	SRLI
1	0100000		hamt	rs1	101	rd	0010011	SRAI
000000		rs2		rs1	000	rd	0110011	ADD
	0100000		rs2	rs1	000	rd	0110011	SUB
1	0000000		rs2	rs1	001	rd	0110011	SLL
1	0000000		rs2	rs1	010	rd	0110011	SLT
	0000000		rs2	rs1	011	rd	0110011	SLTU
	0000000		rs2	rs1	100	rd	0110011	XOR
1	0000000		rs2	rs1	101	rd	0110011	SRL
	0100000		rs2	rs1	101	rd	0110011	SRA
			rs2	rs1	110	rd	0110011	OR
000000		<u> </u>	rs2	rs1	111	rd	0110011	AND
0000	pre		succ	00000	000	00000	0001111	FENCE
0000	000		0000	00000	001	00000	0001111	FENCE.I
00000000000				00000	000	00000	1110011	ECALL
00000000001				00000	000	00000	1110011	EBREAK
csr				rs1	001	rd	1110011	CSRRW
csr				rs1	010	rd	1110011	CSRRS
csr				rs1	011	rd	1110011	CSRRC
csr				zimm	101	rd	1110011	CSRRWI
csr			zimm	110	rd	1110011	CSRRSI	
csr			zimm	111	rd	1110011	CSRRCI	

Figure 1: RV32I RISC-V Instruction Set

Appendix II:

15 14 13	12 11 10	9 8 7	6 5	4 3 2	1 0			
000		0		0 00		Illegal instruction		
000	nzuin	1m[5:4 9:6]	5[2[3]	rd'	00	C.ADDI4SPN (RES, nauimm=0)		
001	uimm[5:3]	rs1'	uimm[7:6]	rd'	00	C.FLD (RV32/64)		
001	uimm[5:4 8]	rs1'	uimm[7:6]	rd'	00	C.LQ (RV128)		
010	uimm[5:3]	rs1'	uimm[2 6]	rd'	00	C.LW		
011	uimm[5:3]	rs1'	uimm[2 6]	rd'	00	C.FLW (BV32)		
011	uimm[5:3]	rs1'	uimm[7:6]	rd'	00	C.LD (RV64/128)		
100		-			00	Reserved		
101	uimm[5:3]	rs1'	uimm[7:6]	rs2'	00	C.FSD (RV32/64)		
101	uimm[5:4 8]	rs1'	uimm[7:6]	rs2'	00	C.SQ (RV128)		
110	uimm[5:3]	rs1'	uimm[2 6]	rs2'	00	C.SW		
111	uimm[5:3]	rs1'	uimm[2 6]	rs2'	00	C.FSW (RV32)		
111	uimm[5:3]	rs1'	uimm[7:6]	rs2'	00	C.SD (RV64/128)		

Figure 2: Compressed RISC-V Instruction Set