Report and Results

By: AYUSH ISHAN

Content:

- 1. Introduction
- 2. Model Architecture
- 3. Purpose
- 4. Training Details
- 5. Results

Introduction: Semantic Segmentation: (A type under image segmentation)

Semantic Segmentation is the process of assigning a label to every pixel in the image. This is in stark contrast to classification, where a single label is assigned to the entire picture. Semantic segmentation treats multiple objects of the same class as a single entity.

Model Architecture:

Here, I used the pretrained

VGG-16 network as the

Pre-Trained Model.

1X1 convolution in place of FCNs.

Purpose:

The main reason behind using VGG-16 as the pretrained model (which combines which 1X1 convolution to form encoder network) is that I have worked on projects related to Style Transfers and there I have witnessed that VGG-16 are good at extracting the features of an image and learn from them pretty smoothly. Also this paper confirms the use of VGG-16 is good in semantic segmentation related works - paper.

Datasets Used in experiment:

- 1. Kitti Dataset
- 2. Plain Road Dataset
- 3. Garden Dataset
- 4. Forest Dataset
- 5. Agro-field Dataset
- 6. Gravel Road
- 7. Snow Road
- 8. Desert Road
- 9. Rainy Season Road
- 10. Pathways
- 11. And many other miscellaneous categories

Training Details:

Number of Epochs: 4

Batch Size: 8

Learning Rate: 0.001

Optimizer: Adam

Random Initializer with Std. Deviation = 0.01

L2 regularization parameter = 0.0001

Training Logs:

Number	Of Epochs Average Loss	
	10	
	20	0.240
		0.141
	30	
	40	0.119
	40	

0.075

Results (older):

Final Results: (Plain Road)

MAGE MASKS

Final Results: (Garden Dataset)

Final Results: (Agro field)

IMAGE **MASKS** OUTPUT

Final Results (Forest):

IMAGE MASKS OUTPUT

Final Results (Gravel Road):

Final Results (Snow Road):

Final Results (Rainy Season Roads):

Final Results (Desert Road):

Final Results (Pathways including valleys):

Some more Results:

Some more results:

Some more results:

IMAGE

OUTPUT MASKS

Thank You!