Autonomous Vocal and Backing Track Mixing

Master Project Proposal

Kelian (Mike) Li

Music Informatics Group

Motivation

Over 10 years of research on Multitrack mixing

No significant achievements yet

How about an easier task?

Motivation

Karaoke apps

Motivation

- Karaoke apps
- Amateur music makers

- Knowledge-based:
 - Mixing rules and mix analysis

- Knowledge-based:
 - Mixing rules and mix analysis
- Data-driven:
 - The main challenge is the data collection of mixing parameters

- Knowledge-based:
 - Mixing rules and mix analysis
- Data-driven:
 - Extract mixing parameters from paired raw tracks and human-mixed tracks
 - Reverse engineering of a mix[1]
 - Differentiable signal processing chain[2]
 - Gradient approximation on black-box audio effects[3]

- Knowledge-based:
 - Mixing rules and mix analysis
- Data-driven:
 - Extract mixing parameters from paired raw tracks and human-mixed tracks
 - Reverse engineering of a mix[1]
 - Differentiable signal processing chain[2]
 - Gradient approximation on black-box audio effects[3]
 - End-to-end audio transformation[4]
 - No further control by users

- Knowledge-based:
 - Mixing rules and mix analysis
- Data-driven:
 - Extract mixing parameters from paired raw tracks and human-mixed tracks
 - Reverse engineering of a mix[1]
 - Differentiable signal processing (hair [2])
 Gradient approximation on black-box audio effects [3]
 - End-to-end audio transformation[4]
 - No further control by users

Baseline System

- Level balance
 - -3 dB vocal-to-mix ratio
- Compression
 - 14 dB loudness range
- EQ
 - Frequency masking
- Reverb
 - Linear mapping from tempo to reverb time

Proposed Method

- Data-driven
- Maps the input audio to mixing parameters
 - Outputs mixing parameters which allows human adjustment
- Requires only mixed vocal and backing tracks for training
 - Raw vocal tracks are not needed

Model Training Ground Model **Mixed Vocal & Training Truth Backing Tracks** Model Raw Vocal & **Prediction** Inference **Backing Tracks Feature ▶** Post-processing **Extraction Signal** Mixing **Processing Parameters** _____ Audio Signal Mixing Output Parameters

Ground truth is the direct or intermediate mixing parameters

Proposed Method -Level Balance and Compression

■ The model outputs intermediate audio features (relative loudness and loudness range)

Post-processing converts the intermediate features into mixing parameters

Proposed Method -Level Balance

Proposed Method -Level Balance

Model Training Loudness Model Relative Mixed Vocal & **Alteration Training** Loudness **Backing Tracks Predicted Relative** Model Raw Vocal & **Inference** Loudness **Backing Tracks Model Inference** Individual **Post-processing** Gain Gain **Parameter Audio Signal** Mixing Output Parameters 16

The model should learn to mix, instead of extracting parameters directly

Georgia Center for Music Technology

Proposed Method -Compression

Proposed Method -Compression

Proposed Method -Equalization

■ The "raw" tracks for training are self-generated by applying EQ to the mixed vocal tracks. The corrected parameters are known.

Proposed Method -Equalization

Proposed Method -Equalization

If the mixed vocal is boosted at some center frequency, we should learn to cut at that frequency.

Proposed Method -Reverberation

Extracts the reverb impulse responses by a commercial plugin

 Uses genetic optimization to approximate the reverb parameters for the impulse responses

Proposed Method -Reverberation

Proposed Method -Reverberation

Timeline

References

- [1] D. Barchiesi and J. Reiss, "Reverse engineering of a mix," *Journal of Audio Engineering Society*, vol. 58, no. 7/8, 2010.
- [2] C. J. Steinmetz, J. Pons, S. Pascual, and J. Serra, "Automatic multitrack mixing with a differentiable mixing console of neural audio effects," in *ICASSP*, IEEE, 2021.
- [3] M. A. Martinez Ramirez, O. Wang, P. Smaragdis, and N. J. Bryan, "Differentiable signal processing with black-box audio effects," in *ICASSP*, IEEE, 2021.
- [4] M. Martinez Ramirez, D. Stoller, and D. Moffat, "A deep learning approach to intelligent drum mixing with the wave-u-net," *Journal of Audio Engineering Society*, vol. 69, no. 3, 2021.

Thank you!

