Nicht-Unterlegenheitstests

Aufgabe m4 (Teilaufgabe c). Statistik-Praktikum

Dauren Tursynbek

Mathematik Student Ruhr-Universität Bochum

31. Januar 2022

Overview

- 1. Aufgabenstellung
- 2. Methode
- 3. Ergebnisse
- 4. Fazit

Aufgabenstellung

Hypothese

- Zwei unabhängige Stichproben $x \sim B(N, p_1)$ und $y \sim B(M, p_2)$ aus einer Binomialverteilung.
- Ziel: auf Nicht-Unterlegenheit (für Erfolg in der zweiten Stichprobe im Vergleich zur Ersten) zu testen
- Nullhypothese: $H_0: p_1-p_2 \geq s_0$, Alternative: $H_1: p_1-p_2 < s_0$. In unserem Fall $s_0=0.1$
- In anderen Worten: Wir behaupten (in der Hypothese H_0), dass Stichproben aus $B(N, p_1)$, im Allgemeinen, nicht äquivalent zu Stichproben aus $B(M, p_2)$ sind.
- **Beispiel:** Die neue Version Medikaments wird mit einer alten Version Medikaments getestet, ob das Unterschied zwischen den signifikant ist.

Methode

Schätzung von p_1 und p_2

- Die Likelihood-Funktion unter der Nebenbedingung $\tilde{p}_1 = \tilde{p}_2 + s_0$ (d.h. daß die Schätzer auf dem Rand von H_0 liegen) maximiert wird.
- Also, der Schätzer für \tilde{p}_1 ist ein Polynom $P(x, y, N, M, s_0)$ mit $\tilde{p}_1 = P(x, y, N, M, s_0)$ und $\tilde{p}_2 = \tilde{p}_1 s_0$.

Polynom $P(x, y, N, M, s_0)$

$$\tilde{p}_{1}^{*} = 2\frac{\sqrt{r^{2} - 3z}}{3}\cos\left[\frac{1}{3}\arccos\left(-\frac{\frac{2r^{3}}{27} - \frac{rz}{3} + t}{2\left(\frac{\sqrt{r^{2} - 3z}}{3}\right)^{3}}\right) + \frac{4}{3}\pi\right] - \frac{r}{3}, \quad \tilde{p}_{2}^{*} = \tilde{p}_{1}^{*} - s_{0},$$

mit

$$r = -\frac{x + y + N(1 + s_0) + M(1 + s_0)}{N + M}, \quad z = \frac{y + x(1 + 2s_0) + s_0(N + M(1 + s_0))}{N + M}$$

und

$$t=\frac{-xs_0(1+s_0)}{N+M}.$$

Figure: Schätzer für p_1 und p_2

Ergebnis

	Methode a	Methode c (ML-Schätzer)
Anteil Verworfener Proben	0.92155	0.57052
Konfidenzintervall	[0.07679, 0.08013]	[0.42641, 0.43256]
0.05 im Konfidenzintervall?	Nein	Nein

Table: Tabelle der Ergebnisse für $s_0 = 0.1$

	Methode a	Methode c (ML-Schätzer)
Anteil Verworfener Proben	0.8349	0.33067
Konfidenzintervall	[0.1628, 0.16742]	[0.6664, 0.67225]
0.05 im Konfidenzintervall?	Nein	Nein

Table: Tabelle der Ergebnisse für $\emph{s}_0 = 0.05$

Zusammenfassung/Fazit

- Da die Signifikanz des Unterschieds zwischen zwei Binomialverteilungen $p_1-p_2=0.1$ in Praxis unterschiedlich ist, ist es wichtig, optimale Schätzer für p_1 und p_2 zu wählen.
- Methode (c) mit ML-Schätzer ist starker als Methode(a) und kann auch viel zu stark sein.
- Wir hatten die Probengröße n=100000. Für kleinere Probengröße wird das Konfidenzintervall großer.
- Obwohl die Ergebnisse unsere Hypothese bestätigen, die zeigen auch, dass das Kofidenzintervall von der Methode (a) sehr nah zur Alternative liegt.
- Es ist auch wichtig, ein optimales Niveau (s_0) für die Nicht-Unterlegenheit zu wählen. Zu kleines $s_0 \Rightarrow$ zu kleine Verwerfung.

Ende