Course No:	ourse No: NA Course Name: Applied Mathematics III					Course Code: BMAS 0109						
Batch:	Programme:	Semester:	L	T	P	J	Credits	Contact H	rs.			
	B. Tech. (CSE- AIML) II Year	III/IV						Per Wee	k: 4			
2023-2027		·	4	0	0	0	4	Total Hou	ırs: 40			
	B. Tech. (CSE - Hons.) II year											
Total Evalu	ation Marks: 100	Examination Duration:										
3617-		Mid Term (2 hours), End Term (3 hours)										
Mid Term:												
End Term:	Pre-requisite of course: NIL											
Internal Assessment: 20 Marks Course To make the students understand the concepts of calculus and ordinary differential												
Course Objective		-						-				
objective	equations by giving more emphasis to the			111	111C	,ue	umg and	problem (ouvillg.			
	After studying these topics, the students will be able to: CO1: Understand partial differentiation and its applications											
Course	CO1: Onderstand partial differentiation and its applications CO2: Expand a real valued function of several variables in Taylor's series											
Outcomes	CO3: Calculate Jacobian and know its applications											
	CO4: Use Lagrange's method of multipliers in determining the extrema of functions											
	CO5: Evaluate double and triple integrals and study their applications											
	CO6: Apply numerical integration to solve definite integrals											
	CO7: Find the gradient of a scalar field and divergence, curl of a vector field											
	CO8: Know various integral theorems r	_										
	CO9: Solve ordinary differential equations of first and higher orders											
	CO10: Numerically solve the initial value problems using Runge-Kutta IV order method								hod			
	COURSE SY	_										
Module No	. Co	ntent							Hours			
	[Course Outcome(s) No.: 1, 2, 3, 4, 5 and 6]											
	=	Calculation of higher order derivatives,										
I	· ·	ion in multiple dimensions, Euler's theorem, 20										
_		Expansion of function of several variables by										
		's series, Jacobian and its applications, Extrema of functions of several										
	variables, Lagrange's method of multipli											
		functions, Double and Triple Integrals in										
		ns, Errors and their analysis, types of error,										
	Numerical integration by Trapezoidal											
		[Course Outcome(s) No.: 7, 8, 9 and 10]										
	Vector Calculus: Scalar and vector point functions, Gradient, divergence, curl and											
II	their applications, Line, surface and volume Integrals, Green's, Gauss' divergence											
	and Stokes' theorems.								20			
	Ordinary Differential Equations: Introd	luction, Line	ar c	diff	ere	enti	al equat	ion of first				
	order, Exact and reducible to exact differential equations, Linear differential											
	equation of n th order with constant of		-									
	particular integral, Simultaneous differential equations, Numerical solution of											
	first order initial value problems by Ru							3/				
	Applications of calculus and ordinary	_						elling and				
	problem solving.		-	1	- ~	_	5 34	<i>G</i> 0				
	пО-											

Text Books:

- Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 2011.
- M. K. Jain, S. R. K. Iyengar and R. K. Jain, Advanced Engineering Mathematics, Narosa Publishing House, New Delhi, 2002.
- W. E. Boyce and R. D. Prima, Elementary Differential Equations, John Wiley & Sons, 2009.
- B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, New Delhi, 2014.
- S. S. Sastry, Introductory Methods of Numerical Analysis, PHI, 2012.

Reference Books:

- T. M. Apostol, Calculus, Volume I, John Wiley & Sons, Inc., USA, 1967.
- T. M. Apostol, Calculus, Volume II, Xerox Corporation, USA, 1969.
- G. B. Thomas and R. Finney, Calculus and Analytic geometry, Addison Wesley, USA, 1995.