CSE4006 DEEP LEARNING

Dr K G Suma

Associate Professor

School of Computer Science and Engineering

Module No. 2 Practical Deep Networks 8 Hours

- Multilayer Perceptron
- Gradient based Learning
- Backpropagation Algorithm
- Regularization for Deep Learning
- Optimization for training deep models

BACKPROPAGATION SOLVED EXERCISE - 1

Assume that the neurons have a Sigmoid Activation function, perform a forward pass and a backward pass on the network. Assume that the actual output of y is 0.5 and learning rate is 1. Perform another forward pass.

Forward Pass: Compute output for y3, y4 and y5.

$$a_j = \sum_i (w_{i,j} * x_i)$$
 $y_j = F(a_j) = \frac{1}{1 + e^{-a_j}}$

$$a_1 = (w_{13} * x_1) + (w_{23} * x_2)$$

= $(0.1 * 0.35) + (0.8 * 0.9) = 0.755$
 $y_3 = f(a_1) = 1/(1 + e^{-0.755}) = 0.68$

$$a_2 = (w_{14} * x_1) + (w_{24} * x_2)$$

= $(0.4 * 0.35) + (0.6 * 0.9) = 0.68$
 $y_4 = f(a_2) = 1/(1 + e^{-0.68}) = 0.6637$

Error =
$$y_{\text{target}} - y_5 = -0.19$$

$$a_3 = (w_{35} * y_3) + (w_{45} * y_4)$$

= $(0.3 * 0.68) + (0.9 * 0.6637) = 0.801$
 $y_5 = f(a_3) = 1/(1 + e^{-0.801}) = 0.69$ (Network Output)

Each weight changed by:

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\delta_j = o_j (1 - o_j)(t_j - o_j) \quad \text{if } j \text{ is an output unit}$$

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj} \quad \text{if } j \text{ is a hidden unit}$$

- where η is a constant called the learning rate
- tj is the correct teacher output for unit j
- δj is the error measure for unit j

Backward Pass: Compute $\delta 3$, $\delta 4$ and $\delta 5$.

For output unit:

$$\frac{\delta_{.5}}{0.69} = y(1-y) (y_{\text{target}} - y)$$

= 0.69*(1-0.69)*(0.5-0.69)= -0.0406

For hidden unit:

$$\delta_3 = y_3(1-y_3) w_{35} * \delta_5$$

= 0.68*(1 - 0.68)*(0.3 * -0.0406) = -0.00265

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\delta_j = o_j (1 - o_j) (t_j - o_j) \qquad \text{if } j \text{ is an output unit}$$

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj} \qquad \text{if } j \text{ is a hidden unit}$$

$$\delta_4 = y_4(1-y_4)w_{45} * \delta_5$$

= 0.6637*(1 - 0.6637)* (0.9 * -0.0406) = -0.0082

Compute new weights

$$\Delta w_{ji} = \eta \delta_{j} o_{i}$$

$$\Delta w_{45} = \eta \delta_{5} y_{4} = 1 * -0.0406 * 0.6637 = -0.0269$$

$$w_{45} \text{ (new)} = \Delta w_{45} + w_{45} \text{(old)} = -0.0269 + (0.9) = 0.8731$$

$$\Delta w_{14} = \eta \delta_{4} x_{1} = 1 * -0.0082 * 0.35 = -0.00287$$

$$w_{14} \text{ (new)} = \Delta w_{14} + w_{14} \text{(old)} = -0.00287 + 0.4 = 0.3971$$

Similarly, update all other weights

i	j	Wij	δ	x _i	η	Updated w _{ij}
1	3	0.1	-0.00265	0.35	1	0.0991
2	3	0.8	-0.00265	0.9	1	0.7976
1	4	0.4	-0.0082	0.35	1	0.3971
2	4	0.6	-0.0082	0.9	1	0.5926
3	5	0.3	-0.0406	0.68	1	0.2724
4	5	0.9	-0.0406	0.6637	1	0.8731

 $Error = y_{target} - y_5 = -0.182$

Forward Pass: Compute output for y3, y4 and y5.

$$a_j = \sum_j (w_{i,j} * x_i)$$
 $y_j = F(a_j) = \frac{1}{1 + e^{-a_j}}$

$$a_1 = (w_{13} * x_1) + (w_{23} * x_2)$$

= $(0.0991 * 0.35) + (0.7976 * 0.9) = 0.7525$
 $y_3 = f(a_1) = 1/(1 + e^{-0.7525}) = 0.6797$

$$a_2 = (w_{14} * x_1) + (w_{24} * x_2)$$

= (0.3971 * 0.35) + (0.5926 * 0.9) = 0.6723
 $y_4 = f(a_2) = 1/(1 + e^{-0.6723}) = 0.6620$

$$a_3 = (w_{35} * y_3) + (w_{45} * y_4)$$

= $(0.2724 * 0.6797) + (0.8731 * 0.6620) = 0.7631$
 $y_5 = f(a_3) = 1/(1 + e^{-0.7631}) = 0.6820$ (Network Output)

BACKPROPAGATION SOLVED EXERCISE- 2

Assume that the neurons have a sigmoid activation function, perform a forward pass and a backward pass on the network. Assume that the actual output of y is 1 and learning rate is 0.9. Perform another forward pass.

 $Error = y_{target} - y_6 = 0.526$

Forward Pass: Compute output for y4, y5 and y6.

$$a_j = \sum_j (w_{i,j} * x_i)$$
 $y_j = F(a_j) = \frac{1}{1 + e^{-a_j}}$

$$a_4 = (w_{14} * x_1) + (w_{24} * x_2) + (w_{34} * x_3) + \theta_4$$

= $(0.2 * 1) + (0.4 * 0) + (-0.5 * 1) + (-0.4) = -0.7$
 $O(H_4) = y_4 = f(a_4) = 1/(1 + e^{0.7}) = 0.332$

$$a_5 = (w_{15} * x_1) + (w_{25} * x_2) + (w_{35} * x_3) + \theta_5$$

= $(-0.3 * 1) + (0.1 * 0) + (0.2 * 1) + (0.2) = 0.1$
 $O(H_5) = y_5 = f(a_5) = 1/(1 + e^{-0.1}) = 0.525$

$$a_6 = (w_{46} * H_4) + (w_{56} * H_5) + \theta_6$$

= (-0.3 * 0.332) + (-0.2 * 0.525) + 0.1 = -0.105
O(O₆) = y₆ = f(a₆) = 1/(1 + e^{0.105}) = **0.474**

Each weight changed by:

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\delta_j = o_j (1 - o_j)(t_j - o_j) \qquad \text{if } j \text{ is an output unit}$$

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj} \qquad \text{if } j \text{ is a hidden unit}$$

- where η is a constant called the learning rate
- · tj is the correct teacher output for unit j
- δj is the error measure for unit j

Compute new weights

$$\Delta w_{ji} = \eta \delta_j o_i$$

 $\Delta w_{46} = \eta \ \delta_6 \ y_4 = 0.9 * 0.1311 * 0.332 = 0.03917$ $w_{46} \ (\text{new}) = \Delta w_{46} + w_{46} \ (\text{old}) = 0.03917 + (-0.3) = -0.261$

 $\Delta w_{14} = \eta \, \delta_4 \, x_1 = 0.9 * -0.0087 * 1 = -0.0078$ $w_{14} \, (\text{new}) = \Delta w_{14} + w_{14} \, (\text{old}) = -0.0078 + 0.2 = 0.192$

Backward Pass: Compute δ4, δ5 and δ6.

For output unit:

$$\delta_6 = y_6(1-y_6) (y_{target} - y_6)$$

= 0.474*(1-0.474)*(1-0.474)= 0.1311

For hidden unit:

$$\delta_5 = y_5(1-y_5) w_{56} * \delta_6$$

= 0.525*(1 - 0.525)*(-0.2 * 0.1311) = -0.0065

=
$$y_4(1-y_4)$$
 $w_{46} * \delta_6$
= 0.332*(1 - 0.332)* (-0.3 * 0.1331) = -0.0087

Similarly, update all other weights

i	j	\mathbf{w}_{ij}	δ	x _i	η	Updated w _{ij}
4	6	-0.3	0.1311	0.332	0.9	-0.261
5	6	-0.2	0.1311	0.525	0.9	-0.138
1	4	0.2	-0.0087	1	0.9	0.192
1	5	-0.3	-0.0065	1	0.9	-0.306
2	4	0.4	-0.0087	0	0.9	0.4
2	5	0.1	-0.0065	0	0.9	0.1
3	4	-0.5	-0.0087	1	0.9	-0.508
3	5	0.2	-0.0065	1	0.9	0.194

Similarly, update bais weights

$\theta_{\mathbf{j}}$	Previous θ_j	δ_{j}	η	Updated $\theta_{\rm j}$
Θ_6	0.1	0.1311	0.9	0.218
Θ_5	0.2	-0.0065	0.9	0.194
Θ_4	-0.4	-0.0087	0.9	-0.408

Error
$$=$$
 $y_{target} - y_6 = 0.485$

Forward Pass: Compute output for y4, y5 and y6.

$$a_j = \sum_{i} (w_{i,j} * x_i)$$
 $y_j = F(a_j) = \frac{1}{1 + e^{-a_j}}$

$$a_4 = (w_{14} * x_1) + (w_{24} * x_2) + (w_{34} * x_3) + \theta_4$$

= $(0.192 * 1) + (0.4 * 0) + (-0.508 * 1) + (-0.408) = -0.724$
 $O(H_4) = y_4 = f(a_4) = 1/(1 + e^{0.724}) = 0.327$

$$a_5 = (w_{15} * x_1) + (w_{25} * x_2) + (w_{35} * x_3) + \theta_5$$

= (-0.306 * 1) + (0.1 * 0) + (0.194 * 1) + (0.194)=0.082
O(H₅) = y₅= f(a₅) = 1/(1 + e^{-0.082}) = 0.520

$$a_6 = (w_{46} * H_4) + (w_{56} * H_5) + \theta_6$$

= (-0.261 * 0.327) + (-0.138 * 0.520) + 0.218 = 0.061
 $O(O_6) = y_6 = f(a_6) = 1/(1 + e^{-0.061}) = 0.515$ (Network Output)