

## Grundlagen Datenbanken

Benjamin Wagner

13. Dezember 2018





## Allgemeines

- Folien von mir sollen unterstützend dienen. Sie sind nicht von der Übungsleitung abgesegnet und haben keinen Anspruch auf Vollständigkeit (oder Richtigkeit).
- Bei Fragen oder Korrekturvorschlägen: wagnerbe@in.tum.de
- Vorlesungsbegleitendes Buch von Professor Kemper (Chemiebib)
- Mein Foliensatz ist online: https://github.com/wagjamin/GDB2018



## Funktionale Abhängigkeiten

- Betrachte Schema  $\mathscr{R}$  bestehend aus Relationen  $\mathscr{R}_1, \mathscr{R}_2, ..., \mathscr{R}_n$  mit Ausprägung R
- Betrachte funktionale Abhängigkeit lpha 
  ightarrow eta
- Das heißt:  $r,t \in R$  :  $r.\alpha = t.\alpha \Rightarrow r.\beta = r.\beta$
- Frage: Was bedeutet das in Worten?
- Zu einer Menge funktionaler Abhängigkeiten F kann die Hülle  $F^+$  bestimmt werden



## Schlüssel

- Wir erinnern uns: Schlüssel identifizieren Tupel eindeutig
- In der Relation  $\mathscr{R}$  ist  $\alpha \subseteq \mathscr{R}$  ein **Superschlüssel**, falls:  $\alpha \to \mathscr{R}$
- Volle funktionale Abhängigkeit:  $\alpha$  kann nicht weiter verkleinert werden
- ullet Dann heißt lpha Kandidatenschlüssel



## Warum machen wir das alles?!

- Wir wollen quantifizieren, ob Schemata gut oder schlecht sind
- Dafür braucht es etwas Theorie
- Ziel: Schöne Schemata entwerfen können
- Ab jetzt: Zerlege Relationenschema  $\mathscr{R}$  in Schemata  $\mathscr{R}_1, \mathscr{R}_2, ..., \mathscr{R}_n$
- Invariante: Abhängigkeitserhaltung, Verlustlosigkeit
- Abhängigkeitserhaltung:  $F_{\mathscr{R}}^+ = (F_{\mathscr{R}_1} \cup ... \cup F_{\mathscr{R}_n})^+$



## Verlustlosigkeit

• Eine Zerlegung von  $\mathcal{R}$  in  $\mathcal{R}_1, \mathcal{R}_2$  heißt verlustlos, wenn mindestens eine der folgenden funktionalen Abhängigkeiten herleitbar ist:

$$\mathscr{R}_1 \cap \mathscr{R}_2 \to \mathscr{R}_1 \in F_R^+ \text{ oder } \mathscr{R}_1 \cap \mathscr{R}_2 \to \mathscr{R}_2 \in F_R^+$$

Beispiel: Pizaesser

| Pizzaesser                                  |                       |                           |  |
|---------------------------------------------|-----------------------|---------------------------|--|
| Restaurant                                  | Gast                  | Pizza                     |  |
| Bella Italia<br>Pizza Huber<br>Bella Italia | Ben<br>Jonas<br>Jonas | Funghi<br>Salami<br>Tonno |  |

Frage: Kann man die Relation verlustlos in {[Restaurant, Gast]} und {[Gast, Pizza]} zerlegen?



## Attributhülle

• Bestimme maximales  $\beta \subseteq \mathcal{R}$ , sodass  $\alpha \to \beta$  gilt

```
Algorithmus 1: Attributhülle
Data: Funktionale Abhägigkeiten F, \alpha \subseteq \mathcal{R}
Result: \beta \subseteq \mathscr{R} maximal, sodass \alpha \to \beta
abhängig = \{\alpha\};
repeat
  abhängig alt = abhängig;
  for \beta \rightarrow \gamma \in F do
      if \beta \subseteq abhängig then
        abhängig = abhängig \cup \gamma;
      end
  end
until abhängig_alt == abhängig;
```

return abhängig



•  $F_c$  heißt kanonische Überdeckung von F, wenn gilt:

\* 
$$F_c^+ = F^+$$

\* 
$$(\alpha \rightarrow \beta) \in F : \forall A \in \alpha : (F_c \setminus \{\alpha \rightarrow \beta\} \cup \{(\alpha \setminus \{A\}) \rightarrow \beta\})^+ \neq F_c^+$$

\* 
$$(\alpha \rightarrow \beta) \in F : \forall B \in \beta : (F_c \setminus \{\alpha \rightarrow \beta\} \cup \{\alpha \rightarrow (\beta \setminus \{B\})\})^+ \neq F_c^+$$

- \* Jede linke Seite einer FD in  $F_c$  ist einzigartig
- Frage: was bedeuten Bedingung zwei & drei in Worten?



Linksreduktion macht linke Seiten der FDs so klein wie möglich

```
Algorithmus 2: Linksreduktion

Data: Funktionale Abhägigkeiten F

Result: Linksreduktion F' von F

F' = F;

for \alpha \to \beta \in F do

| \text{ for } A \in \alpha \text{ do } |

| \text{ if } \beta \subseteq \text{Attribut\_H\"{u}lle}(F', \alpha \setminus \{A\}) \text{ then } |

| F' = F' \setminus \{\alpha \to \beta\} \cup \{(\alpha \setminus \{A\}) \to \beta\} ;

end

end
```

end



Rechtsreduktion macht rechte Seiten der FDs so klein wie möglich

```
Algorithmus 3: Rechtsreduktion

Data: Funktionale Abhägigkeiten F

Result: Rechtsreduktion F' von F

F' = F;

for \alpha \to \beta \in F do

| for B \in \beta do
| if B \in Attribut\_H\"ulle(F' \setminus \{\alpha \to \beta\} \cup \{\alpha \to (\beta \setminus \{B\})\}, \alpha) then
| F' = F' \setminus \{\alpha \to \beta\} \cup \{\alpha \to (\beta \setminus \{B\})\};
| end
| end
```



Nun können wir kanonische Überdeckung bestimmen

```
Algorithmus 4: Kanonische Überdeckung bestimmen Data: Funktionale Abhägigkeiten F
Result: Kanonische Überdeckung F_c von F
F_c = F;
F_c = \text{Linksreduktion}(F_c);
F_c = \text{Rechtsreduktion}(F_c);
for \alpha \to \emptyset \in F_c do
\mid F_c = F_c \setminus \{\alpha \to \emptyset\};
end
F_c = \text{Gleiche\_Linke\_Seiten\_Zusammenfassen}(F_c);
```



### Normalformen

- Quantifizieren Qualität der Relation
- Erste Normalform: bei uns immer eingehalten: Attribute müssen atomare Werte haben
- **Zweite Normalform:** Eine Relation  $\mathscr{R}$  mit FDs F ist in 2NF, falls jedes Nichtschlüssel-Attribut  $A \in \mathscr{R}$  von jedem Kandidatenschlüssel in  $\mathscr{R}$  voll funktional abhängig ist
- Dritte Normalform: Nichtschlüssel-Attribute dürfen nur Fakten von Schlüsseln darstellen
- Boyce-Codd Normalform: Informationseinheiten werden nicht mehrmals gespeichert



#### **Dritte Normalform**

- Relationenschema  $\mathscr R$  ist in 3NF, wenn für jede FD  $\alpha \to B$  mit  $\alpha \subseteq \mathscr R$  und  $B \in \mathscr R$  gilt:
- \*  $B \in \alpha$ , d.h. FD trivial, oder
- $* \alpha$  ist Superschlüssel von  $\mathscr{R}$ , oder
- \* B in Kandidatenschlüssel von  $\mathscr{R}$  enthalten
- Synthesealgorithmus berechnet verlustlose, abhängigkeitsbewahrende Zerlegung von  $\mathscr{R}$  in 3NF
- Kanonische Überdeckung: möglichst redundanzfreie Darstellung der FDs einer Relation



### **Dritte Normalform**

#### **Algorithmus 5:** Synthesealgorithmus

**Data:** Relationenschema  $\mathcal{R}$ , FDs F

**Result:** Zerlegung  $\mathcal{R}_1,...,\mathcal{R}_n$  in 3NF

 $F_c$  = kanonische\_überdeckung(F);

for 
$$(\alpha \rightarrow \beta) \in F_c$$
 do

$$\mathcal{R}_{\alpha} = \alpha \cup \beta ;$$

$$F_{a} = \{\alpha \prime \to \beta \prime | \alpha \prime \cup \beta \prime \in \mathcal{R}_{\alpha}\} ;$$

#### end

if Kein  $\mathcal{R}_{\alpha}$  enthält Kandidatenschlüssel then

$$\kappa = \text{kandidatenschlüssel}(\mathcal{R});$$

$$\mathcal{R}_{\kappa} = \kappa;$$

$$F_{\kappa} = \emptyset;$$

#### end

Teilschemata eliminieren;



## **Boyce-Codd Normalform**

- Relationenschema  $\mathscr R$  ist in BCNF, wenn für jede FD  $\alpha \to \beta$  mit  $\alpha, \beta \subseteq \mathscr R$  gilt:
- \*  $\beta \subseteq \alpha$ , d.h. FD trivial, oder
- $* \alpha$  ist Superschlüssel von  $\mathscr R$
- Achtung: es kann nicht garantiert werden, dass die Zerlegung abhängigkeitsbewahrend ist



## **Boyce-Codd Normalform**

#### Algorithmus 6: Dekompositionsalgorithmus BCNF

```
Data: Relationenschema \mathcal{R}, FDs F
Result: Zerlegung Z = \{\mathcal{R}_1, ..., \mathcal{R}_n\} in BCNF
Z = \{\mathscr{R}\};
while \exists \mathcal{R}_i \in Z : \mathcal{R}_i nicht in BCNF do
    for (\alpha \rightarrow \beta) \in F_{\mathcal{R}_i} nicht trivial do
         if (\alpha \cap \beta = \emptyset) \wedge !(\alpha \rightarrow \mathcal{R}_i) then
             break;
         end
    end
    \mathscr{R}_{i_1} = \alpha \cup \beta;
    \mathscr{R}_{i_2} = \mathscr{R}_i \setminus \beta;
    Z = Z \setminus \mathcal{R}_i;
    Z = Z \cup \mathcal{R}_{i_1} \cup \mathcal{R}_{i_1};
```

end



## Mehrwertige Abhängigkeiten

- MVDs verallgemeinern funktionale Abhängigkeiten
- Für  $\alpha, \beta \subseteq \mathcal{R}$ , schreiben wir:  $\alpha \to \beta$
- Das heißt: für Tupel mit gleichem  $\alpha$  kann man  $\beta$  vertauschen und die Tupel bleiben in R
- Frage: warum ist das nicht immer erfüllt?

| Fähigkeiten |          |             |  |
|-------------|----------|-------------|--|
| Name        | Sprache  | ProgSprache |  |
| Benjamin    | Deutsch  | Java        |  |
| Benjamin    | Englisch | C++         |  |
| Benjamin    | Deutsch  | C++         |  |
| Benjamin    | Englisch | Java        |  |
| Kanye       | Englisch | LOLCAT      |  |



## Mehrwertige Abhängigkeiten

• Eine Zerlegung von  $\mathscr{R}$  in  $\mathscr{R}_1, \mathscr{R}_2$  ist verlustlos, genau dann wenn mindestens eine der folgenden MVDs herleitbar ist:

$$\mathscr{R}_1 \cap \mathscr{R}_2 \to \to \mathscr{R}_1 \text{ oder } \mathscr{R}_1 \cap \mathscr{R}_2 \to \to \mathscr{R}_2$$

- Gibt Regeln, mit denen man aus einer Menge D von MVDs die Hülle D<sup>+</sup> berechnen kann
- MVD lpha o eta eta heißt trivial, wenn  $eta \subseteq lpha$  oder  $eta = \mathscr{R} \setminus lpha$
- Frage: welche MVDs gelten in der Relation zuvor?



#### Vierte Normalform

- Hier wird zusätzlich zur BCNF noch die Redundanz durch MVDs ausgeschlossen
- Schema  $\mathscr{R}$  ist in 4NF, wenn für jede MVD  $\alpha \to \beta \in D^+$  gilt:
- $* \alpha \rightarrow \rightarrow \beta$  ist trivial, oder
- st lpha ist Superschlüssel von  ${\mathscr R}$
- Dekompositionsalgorithmus kann wieder verwendet werden, um verlustlose Zerlegung in 4NF zu berechnen
- Frage: warum ist eine Relation in 4NF immer auch in BCNF?



## Vierte Normalform

#### Algorithmus 7: Dekompositionsalgorithmus 4NF

end

 $Z = Z \cup \mathcal{R}_{i_1} \cup \mathcal{R}_{i_1}$ ;

 $Z = Z \setminus \mathscr{R}_i$ ;