## Generation of DFA Minimization Problems

Gregor Sönnichsen

Universität Bayreuth

31. Mai 2020

#### Introduction

Automata theory is a classical topic in computer science curricula. Minimization of DFAs is a typical task for students:

- sufficiently easy to understand
- practical applications
- understanding can be tested easily

Consequently, studying automatized generation of DFA minimization problems is interesting because it could...

- ...free up precious time for exercise constructors (if a generator is implemented)
- ...yield a deeper insight in the nature of such problems

5 6 3

1 https://www.rindlerwahn.de/zeitdiebe-besiegen-und-mehr-lebenszeit-gewinnen

### Outline

Introduction

Problem definition and approach

Generating Minimal DFAs

Extending Minimal DFAs

Live Demonstration

Conclusion

Preliminaries (1/2)

A tuple  $A = (Q, \Sigma, \delta, s, F)$  with  $Q, \Sigma$  being a finite,  $\delta \colon Q \times \Sigma \to Q$ ,  $s \in Q$  and  $F \subseteq Q$  is called *deterministic finite automaton*.

We define the extended transition function  $\delta^*: Q \times \Sigma^* \to Q$  as:

- lacksquare  $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$  for all  $q \in Q$ ,  $w \in \Sigma^*$ ,  $\sigma \in \Sigma$

The *language* of DFA is defined as  $L(A) = \{ w \mid \delta^*(w) \in F \}$ .

We call a DFA *minimal*, if there exists no other DFA with the same language having less states.

Preliminaries (2/2)

We say a state q is *unreachable*, iff there is no word  $w \in \Sigma^*$  such that  $\delta^*(s, w) = q$ .

A state pair  $q_1,q_2\in Q$  is called *equivalent*, iff  $\sim_A (q_1,q_2)$  is true, where

$$q_1 \sim_A q_2 \Leftrightarrow_{def} \forall z \in \Sigma^* \colon (\delta^*(q_1, z) \in F \Leftrightarrow \delta^*(q_2, z) \in F)$$

#### Example



#### Theorem

A DFA is minimal, iff it has neither unreachable nor equivalent states.

#### Hopcroft's Minimization Algorithm

- 1. Compute all unreachable states
- 2. Remove all unreachable states and their transitions
- 3. Compute all inequivalent state pairs  $(\not\sim_A)$

```
1: function FindEquivPairs(A)
          i \leftarrow 0
2.
         m(0) \leftarrow \{(p,q),(q,p) \mid p \in F, q \notin F\}
3:
4:
         do
               i \leftarrow i + 1
5:
               m(i) \leftarrow \{(p,q), (q,p) \mid (p,q) \notin \bigcup m(\cdot) \land
6:
                                             \exists \sigma \in \Sigma : (\delta(p, \sigma), \delta(q, \sigma)) \in m(i-1)
7:
          while m(i) \neq \emptyset
8:
          return | | m(\cdot) |
9:
```

4. Merge all equivalent state pairs

A sample DFA minimization problem...

<u>Task:</u> Consider the below shown deterministic finite automaton A:



Apply the minimization algorithm and illustrate for each state pair of A during which FindEquivPairs-iteration it was marked. Draw the resulting automaton.

... and its solution

#### **Solution**:

Step 1: Detect and eliminate unreachable states.

State 5 is unreachable.

Step 2: Apply FindEquivPairs to A and merge equivalent state pairs:

|   | 0 | 1 | 2 | 3 | 4 | 6 |
|---|---|---|---|---|---|---|
| 0 |   | 1 | 0 |   | 0 | 2 |
| 1 |   |   | 0 | 1 | 0 | 1 |
| 2 |   |   |   | 0 |   | 0 |
| 3 |   |   |   |   | 0 | 2 |
| 4 |   |   |   |   |   | 0 |
| 6 |   |   |   |   |   |   |



# Approach

"Reversing Hopcroft's Algorithm" Modular Pipeline-Architecture

### Outline

Introduction

Problem definition and approach

Generating Minimal DFAs

Extending Minimal DFAs

Live Demonstration

Conclusion

## Generating Minimal DFAs

Rejection Algorithm

Approach: Generate test DFAs until they match the demanded properties.

```
1: function GenNewMinDFA (n_s, k, n_F, d, p)
 2:
         I \leftarrow \text{all DFAs in DB}_{found} \text{ matching } n_s, k, n_F
        while True do
 3.
             generate DFA A_{test} with |Q|, |\Sigma|, |F| matching n_s, k, n_F
 4:
             if A_{test} not minimal or d \neq \mathfrak{D}(A_{test}) then
 5:
                 continue
 6.
             if p = 1 and A_{test} is not planar then
 7.
                 continue
 8.
             if A_{test} is isomorph to any DFA in / then
 9:
                 continue
10:
             save A_{test} and its respective properties in DB<sub>found</sub>
11.
12:
             return Atact
```

# Generating Minimal DFAs

Test DFA Generation

We will restrict ourselves to the following DFAs:

$$Q=\mathbb{N}_0^{n_s-1}, \Sigma=\mathbb{N}_0^{k-1}, s=0$$

Generation by Randomization:

$$extit{F} = extit{random\_subset}(Q) \ orall q \in Q, \sigma \in \Sigma \colon \delta(q,\sigma) = extit{choose\_one}(Q)$$

Generation by Enumeration:

An enumeration state  $s_{n_s,k,n_F} = (F_F, F_\delta)$  consists of two arrays of length  $n_s, n_s * k$ , respectively.

$$F_F[i] = 1 \Leftrightarrow_{def} i \in F$$
 $F_{\delta}[i * k + j] = q \Leftrightarrow_{def} \delta(i, j) = q$ 

# Generating Minimal DFAs

Incrementing Enumeration States

Short demo how the associated DFA changes, when an enumeration state is incremented

### Outline

Introduction

Problem definition and approach

Generating Minimal DFAs

Extending Minimal DFAs

Live Demonstration

Conclusion

## Extending Minimal DFAs

Adding Equivalent States (1)

Let the added states be  $r_1, \ldots, r_{n_e}$ , such that  $Q_{re} = Q_{sol} \cup \{r_1, \ldots, r_{n_e}\}$  and each of the added states is equivalent to a distinct state in  $Q_{re}$ .

Observation: Each  $r_i$  will be equivalent to a state e of  $A_{sol}$ :

$$\forall i \in [1, n_e]$$
:  $\exists e \in Q_{sol}$ :  $r_i \sim_A e$ 

We will first choose an  $e \in Q_{sol}$  for each state  $r_i$  we create, then we add its transitions.

## Extending Minimal DFAs

Adding Equivalent States (2)

#### Outgoing transitions. Observation:

$$r_i \sim_A e$$

$$\Rightarrow \forall \sigma \in \Sigma : [\delta(r_i, \sigma)]_{\sim_A} = [\delta(e, \sigma)]_{\sim_A}$$

We see that  $\delta(r_i, \sigma) = q$  must be in the same equivalency class as  $\delta(e, \sigma) = p$ .

#### Consequently:

R1: For each symbol  $\sigma \in \Sigma$  choose exactly one state  $q \in [\delta(e, \sigma)]_{\sim_A}$  and set  $\delta(r_i, \sigma) = q$ .

#### The rule is always fulfillable:

- $ightharpoonup A_{sol}$  is complete
- every r<sub>i</sub> gets an out. transition for every alphabet symbol

Ingoing transitions. Observations:

 $ightharpoonup r_i$  must be reachable  $\Rightarrow in(r_i) >= 1$ 

Let q be a state that gets an in. transition to  $r_i$ .

q must remain in its equivalence class

- $\Rightarrow$  q has to have a transition to some state in  $[r_i]_{\sim_A} = [e]_{\sim_A}$
- $\Rightarrow$  given  $\delta(q,\sigma)=p$  and  $p\in[e]_{\sim_A}$ , we can set  $\delta(q,\sigma)=r_i$

We see that p must have at least 2 ingoing transitions.

R2: Choose at least one  $((q, \sigma), p) \in \delta$  with [p] = [e] and  $out(p) \ge 2$ . Remove  $((q, \sigma), p)$  from  $\delta$  and add  $((q, \sigma), r_i)$ .

General requirement regarding the choice of a state e for an  $r_i$ :

$$duplicatable(q) \Leftrightarrow_{def} (\exists p \in [q]_{\sim_A} : out(p) \geq 2)$$

## Extending Minimal DFAs

Adding Equivalent States (4)

Example

## Extending Minimal DFAs

#### Adding Unreachable States

Reminder: We say a state q is *unreachable*, iff there is no word  $w \in \Sigma^*$  such that  $\delta^*(s, w) = q$ .

- 1: **function** AddUnrStates  $(A, n_u, c)$
- 2: *U* ← ∅
- 3: for  $n_u$  times do
- 4: let q be the new state
- 5: add ingoing tr. from a random subset of  $U \times \Sigma$
- 6:  $\Sigma' \leftarrow \text{if } c = 1 \text{ then } \Sigma \text{ else } \text{random subset of } \Sigma$
- 7: add outgoing tr. to  $|\Sigma'|$  random states
- 8: add q to U
- 9: **return** A

### Outline

Introduction

Problem definition and approach

Generating Minimal DFAs

Extending Minimal DFAs

Live Demonstration

Conclusion

# Live Demonstration

Module overview

# Live Demonstration

Command-Line Options

## Conclusion

This work has...

Lookout...

## References