

Games

- The decision-making process in situations where outcomes depend upon choices made by one or more players
 - ► Game is not used in conventional sense
 - ► Game describes any situation involving positive or negative outcomes determined by the players' choices and/or chances
- Requirements for a game
 - ► At least 2 players
 - ► Actions available for each player
 - ► Payoffs to each player for those actions

Games

Assumptions in Game Theory:

- 1) All players want to maximize their utility
- 2) All players are rational
- 3) It is common knowledge that all players are rational

Examples?

Prisoner's Dilemma

\otimes Two prisoners P_1, P_2 being interrogated, can either stay silent or implicate the other one

- ▶ If both stay silent, each sentenced to a year in jail
- ► If only one implicates another, he goes free and other gets 5 years in jail
- ▶ If both implicate each other, both get 3 years
- ► Even though (Silent/Silent) is best for both, each one strictly benefits from implicating the other, regardless of other's actions

$$P_2$$
's action Silent Implicate Silent $\begin{pmatrix} -1,-1&-5,0\\ P_1$'s action Implicate $\begin{pmatrix} 0,-5&-3,-3 \end{pmatrix}$

Understanding Dilemma

Related to the tragedy of the commons

- ▶ Defection is a dominant strategy
- ▶ But the players can do much better by cooperating

@ e.g. Nuclear arms race

- ► Cooperate = destroy arsenal
- ▶ Defect = build arsenal

@ e.g. Climate change

- ► Cooperate = curb CO2 emissions
- ► Defect = do not curb

Normal Form

\otimes Games in normal form defined by (N, A, u)

- N: # players, each indexed by i
- ► $A = A_1 \times \cdots \times A_N$: a set of actions, where A_i is a finite set of actions available to i
- ▶ $u: A \to \mathbb{R}^N$: utility function that maps each set of action $a \in A$ to a set of utilities N, one for each agent
- ▶ e.g. u_i(a): the utility of player i for action a

@ Games in normal form defined by (N, A, u)

- ightharpoonup N = 2: # players
- $ightharpoonup A = A_1 \times \cdots \times A_N = \{S, I\} \times \{S, I\}$: a set of actions
- ▶ $u: A \rightarrow \mathbb{R}^N$: utility function

$$u(a) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \text{ if } a = (S, S)$$
 Silent $\begin{pmatrix} -1, -1 \\ 0 \end{pmatrix}$ $= \begin{bmatrix} -5 \\ 0 \end{bmatrix} \text{ if } a = (S, I)$ Implicate $\begin{pmatrix} 0, -5 \\ 0, -5 \end{pmatrix}$ $= \begin{bmatrix} 0 \\ -5 \end{bmatrix} \text{ if } a = (I, S)$ $= \begin{bmatrix} -3 \\ -3 \end{bmatrix} \text{ if } a = (I, I)$

Zero-Sum Game

@ Game where no wealth is created or destroyed

▶ The two-player game (i.e. N=2) is zero-sum if

$$u_1(a) = -u_2(a), \quad \forall a \in A$$

- ▶ Player 1 is trying to maximize $u_1(a)$ and player 2 is trying to maximize $u_2(a) = -u_1(a)$ (i.e. minimize $u_1(a)$)
- ► e.g. rock-paper-scissors

▶ e.g. Prisoner's Dilemma is NOT!

Pure and Mixed Strategies

\otimes A strategy for player i, denoted s_i : $a_i \rightarrow [0, 1]$ is a probability distribution over actions

- $ightharpoonup s_i(a_i)$ denotes the probability that player i takes action a_i
- ► A strategy profile $s = (s_1, ..., s_N)$ is a set of strategies for all players
- ► The support of a strategy s_i is the set of actions that have non-zero probability
- ► A strategy is pure if players use the same strategy for every time
- ► A strategy is mixed if players introduce a randomness in their choice of strategy

Nash Equilibrium

- Best response: a best strategy that a player can play given the strategies of all opponents
 - ► Let $s_{\neg i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_N)$ a strategy profile except player i
 - ► The best response for player i given strategy profile $s_{\neg i}$ is the strategy s_i^* such that $u(s_i^*, s_{\neg i}) \ge u(s_i, s_{\neg i})$ for all possible s_i
- \otimes A strategy profile s is a Nash equilibrium if s_i is a best response to $s_{\neg i}$ for all players i = 1, ..., N
 - ► No agent gains an advantage by switching their strategy
 - ► Can be one or more Nash equilibria for a game
- What is Nash equilibrium for zero-sum game?

Two-player Zero-Sum Game

② Zero-sum game can be represented by the matrix

Let's generalize
$$\begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{pmatrix}$$

- ▶ Player 1 chooses the row while player 2 chooses the column
- $\triangleright x_{ij}$: the payoff (utility) for player 1 when player 1 select *i*-th row and player 2 selects *j*-th column

Pure Maxmin Strategies

$$\begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{pmatrix}$$

The maxmin strategy for player 1

- ➤ Sees what her worst outcome for each row, and then selects the row where her worst outcome is the best
- $\triangleright v_i^1 = \min\{x_{i1}, ..., x_{in}\}$ is the worst payoff that P1 selects the action i
- ► The maxmin strategy for P1 is to choose $v^1 = \max\{v_i^1, \dots, v_m^1\}$

Similarly, the minmax strategy for player 2

- ► Looks for the largest entry in each column and then chooses the column to minimize the largest entry
- $\triangleright v_j^2 = \max\{x_{1j}, ..., x_{mj}\}$ is the worst payoff for P2 with action j
- ► The minmax strategy for P2 is to choose $v^2 = \min\{v_i^2, ..., v_m^2\}$

Example of Pure Maxmin Strategies

$$\begin{pmatrix} 2 & 0 & 1 \\ 4 & -3 & 2 \\ 1 & -2 & -2 \end{pmatrix}$$

The maxmin strategy for player 1

- ▶ $v_1^1 = 0, v_2^1 = -3, v_3^1 = -2 \implies v^1 = 0$: P1's maxmin strategy is a_1
- ► since $v_i^1 = \min\{x_{i1}, ..., x_{in}\}, v^1 = \max\{v_i^1, ..., v_m^1\}$

The maxmin strategy for player 2

 $v_1^2 = 4, v_2^2 = 0, v_3^2 = 2 \implies v^2 = 0$: P1's minmax strategy is b_2

The maxmin solution

- If $v^1 = v^2 = v$, then v is called value of the game
- $\triangleright v$ and (a_i, b_i) is a maxmin (i.e. minmax) solution

Example of Pure Maxmin Strategies

$$\begin{pmatrix} 2 & 0 & 1 \\ 4 & -3 & 2 \\ 1 & -2 & -2 \end{pmatrix}$$

- \otimes Meaning of the maxmin solution ($v^1 = v^2 = v = 0$, (a_1, b_2))
 - ▶ Regardless of P2's strategy, P1's strategy (a_1) guarantees a payoff v
 - ► Regardless of P1's strategy, P2's strategy (b_2) guarantees a payoff -v
 - ► The maxmin solution is called a game saddle point, because it's minimum of its row, and the maximum of its column
- (a_i, b_j) is a maxmin solution to a zero-sum game iff (a_i, b_i) is a Nash equilibrium

Multi-player Games

A game having several players

- ▶ Players can be independent opponents or teams...
- ► Quickly difficult...

Nash equilibrium

- ► Games with several players have a stable solution provided that coalitions between players are disallowed
- ▶ If cooperation between players is allowed, then the game becomes more complex
- ► No good general theory has yet been developed

Non-Zero-Sum Games

In non-zero-sum games, there is no universally accepted solution

- ► In zero-sum games, completely competitive players are assumed
- ▶ But, here non-strictly competitive (have both competitive and cooperative elements)

Often consider some special cases only

- ► Prisoner's dilemma
- ► Stag hunt
- ► Coordination game
- ► Game of Chicken

Stag Hunt

a.k.a assurance game, coordination game, trust dilemma

- ▶ Described by Jean-Jacques Rousseau
- ► Each of two hunters individually choose to hunt a stag or a hare
- ► Each player chooses without knowing the choice of the other
- ► Stag hunt can succeed by the cooperation of two players
- ► Hare hunt can be individually, but a hare is worth less than a stag
- $\triangleright a > b \ge d > c$

$$P_2$$
's action Stag Hare Stag (a,a,c,b) P_1 's action Hare b,c,d,d

Generic symmetric stag hunt

Stag Hare Stag
$$(2,2)$$
 $(2,2)$ $(2,2)$ Hare $(1,0)$ $(2,1)$

Stag hunt example

Battle of the Sexes

An example of two-player coordination game

- ► The husband would prefer to go to the football game, while the wife would rather go to the ballet
- ▶ If they cannot communicate, where should they go?

Is there a Nash equilibrium?

► (ballet, ballet) or (football, football)

Wife					Wife		
Ball	et Football				Ballet	Football	
Ballet $\sqrt{2}$,	3 0,0			Ballet	/2,3	0,0	
Husband		or	Husband				
Football $\setminus 0$,	3,2/			Football	\1,1	3,2/	

Game of Chicken

a.k.a hawk-dove game or snowdrift game

► It is to both players' benefit if one player yields

Is there a Nash equilibrium?

(straight, chicken) or (chicken, straight)

	Straight	Chicken		Straight	Chicken
Straight	Crash, Crash	Win, Loss\	Straight	/-10, -10	1,-1
Chicken	Loss, Win	Tie, Tie	Chicken	√ −1,1	0,0

Game of Chicken

- Anti-coordinate game: it is mutually beneficial for the two players to choose different strategies
 - ► Model of escalated conflict in humans or animals

Hawk-dove game

- ► Use threat displays (play Dove) or physically attack each other (play Hawk)
- How are the players to decide what to do?
 - ► Pre-commitment or threats

	Straight	Chicken		Straight	Chicken
Straight	Crash, Crash	Win, Loss\	Straight /	'-10, -10	1,-1
Chicken	Loss, Win	Tie, Tie	Chicken	-1,1	0,0

