Modelos de Linguagem Neurais Semântica vetorial e embeddings estáticos

Profa Aline Paes alinepaes@ic.uff.br

Modelo de Linguagem Neural

Como representar palavras no computador?

- Um algoritmo para processar um texto : uma sequência de caracteres (strings)
- Um vocabulário: uma lista de strings

1	а
2	ab
3	aba
11494	lugar

Indexação de palavras

Eu	fui	ao	cinema
1235	2456	20	459

Eu	fui	ao	cinema
1235	2456	20	459

20	
459	
1235	
2456	

Eu	fui	ao	cinema
1235	2456	20	459

20	
459	
1235	
2456	

Eu	fui	ao	cinema
1235	2456	20	459

20	
459	
1235	
2456	

Eu	fui	ao	cinema
1235	2456	20	459

20	
459	
1235	
2456	

Semântica de palavras

 Como representar "significado" de palavras no computador?

Semântica de palavras

- Como representar "significado" de palavras no computador?
 - Recuperando de um recurso linguístico

Semântica de palavras

Wordnet

```
noun: good, goodness
noun: good, goodness
noun: commodity, trade_good, good
adj: good
adj: good
adj: good
adj: good
adj: good
adj: sat): estimable, good, honorable, respectable
adj (sat): beneficial, good
adj (sat): good
```

```
from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01")
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))
```

```
[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('whole.n.02'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]
```

Wordnet

Problemas

- Não aborda contexto e contextoS
 - Commodity é sinônimo de good
 - Só é correto em alguns contextos
- Não é adaptada automaticamente
 - Novas palavras ou novos significados podem não estar lá
- Não dispõe de mecanismos para computar similaridade
 - Não apenas para sinônimos
 - Gato e cachorro

- One hot
 - Vetor de dimensão |V| que associa '1' para apenas uma posição e o resto é '0'
 - Cada palavra terá '1' em uma posição diferente
- hotel = $[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0]$
- pousada = [0 0 0 0 0 0 0 1 0 0 0 0 0 0]
 - Vetores ortogonais
 - Não capturam similaridade ou semântica
 - Representação esparsa

Você sabe o que é um tezgüino?

Você sabe o que é um tezgüino?

Uma garrafa de tezgüino está na mesa. Todo mundo gosta de tezgüino. Tezgüino te faz ficar bêbado. Tezgüino é feito de milho.

Você sabe o que é um tezgüino?

Uma garrafa de tezgüino está na mesa. Todo mundo gosta de tezgüino. Tezgüino te faz ficar bêbado. Tezgüino é feito de milho.

E agora? Você sabe?

Que outras palavras cabem aqui?

Uma garrafa de _____ está na mesa.
Todo mundo gosta de ____.

te faz ficar bêbado.

é feito de milho.

	(1)	(2)	(3)	(4)
tezgüino	1	1	1	1
água	1	0	0	0
Óleo de motor	0	0	0	1
bolo	0	1	0	1
vinho	1	1	1	0

Contextos

Que outras palavras cabem aqui?

Uma garrafa de _____ está na mesa.
Todo mundo gosta de ____.

te faz ficar bêbado.

é feito de milho.

	(1)	(2)	(3)	(4)
tezgüino	1	1	1	1
água	1	0	0	0
Óleo de motor	0	0	0	1
bolo	0	1	0	1
vinho	1	1	1	0

Contextos

Qual é o mais parecido?

Que outras palavras cabem aqui?

Uma garrafa de _____ está na mesa.
Todo mundo gosta de ____.

te faz ficar bêbado.

é feito de milho.

	(1)	(2)	(3)	(4)
tezgüino	1	1	1	1
água	1	0	0	0
Óleo de motor	0	0	0	1
bolo	0	1	0	1
vinho	1	1	1	0

Contextos

Qual é o mais próximo?

Hipótese distribucional

Capturar significado e capturar contexto são essencialmente a mesma coisa

Semântica distribucional

- "The meaning of a word is its use in the language" (Wittgenstein, 1953).
- "You shall know a word by the company it keeps" (Harris, 1954)
- Palavras que ocorrem em contextos similares tendem a ter significados similares: hipótese distribucional (Joos, 1950; Harris, 1954; Firth, 1957)

Contexto e valor

O que é o contexto?

Como atribuir valor para a palavra que reflita contextos?

Matriz de coocorrência (termo-documento)

Documentos

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Termos

Matriz de coocorrência (termo-documento)

Documentos

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Contexto: palavras que aparecem juntas em um documento d da Coleção D

Termos

Valor: quantas vezes elas aparecem juntas

Documentos como vetores

Documentos

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Vetor de *Julius*Caesar, dim |V| = 4

Termos

Espaço vetorial: coleção de vetores, caracterizado pela dimensão

Visualização em 2D

Palavras como vetores

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Matriz de coocorrência (termo-termo)

- Matriz |V| X |V|
 - Cada célula representa quantas vezes as palavras na [linha,coluna] aparecem juntas
 - No mesmo documento
 - Ou em uma janela

Matriz de coocorrência (termo-termo)

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Visualização em 2D

	torta	dados	computador
maçã	442	8	2
digital	5	1683	1670
informação	5	3982	3325

Calculando similaridade

$$dot \operatorname{product}(\mathbf{v}, \mathbf{w}) = \mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

- Tende a ser alto apenas quando os dois vetores têm valores altos nas mesmas dimensões
- Vetores que têm zeros em diferentes dimensões (ortogonais) terão um produto escalar de 0, representando sua forte dissimilaridade.

Calculando similaridade

$$dot \operatorname{product}(\mathbf{v}, \mathbf{w}) = \mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

- Tende a ser alto apenas quando os dois vetores têm valores altos nas mesmas dimensões
- Vetores que têm zeros em diferentes dimensões (ortogonais) terão um produto escalar de 0, representando sua forte dissimilaridade.
- Favorece vetores longos

Calculando similaridade

$$dot \operatorname{product}(\mathbf{v}, \mathbf{w}) = \mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

- O produto interno bruto será maior para palavras frequentes
 - Palavras mais frequentes têm vetores maiores
 - Tendem a coocorrer com mais palavras
 - Têm valores de coocorrência mais altos

Similaridade de cosseno

 Produto interno normalizado = cosseno do ângulo entre os dois vetores

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \cos \theta$$

$$cosine(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Similaridade de cosseno

 Produto interno normalizado = cosseno do ângulo entre os dois vetores

https://www.learndatasci.com/glossary/cosine-similarity/

Pergunta

- A similaridade de cosseno dos valores vistos até agora estarão entre -1 e 1?
 - o SIM
 - o Não
 - Depende

Similaridade de cosseno

	torta	dados	computador
maçã	442	8	2
digital	5	1683	1670
informação	5	3982	3325

Similaridade de cosseno

	torta	dados	computador
maçã	442	8	2
digital	5	1683	1670
informação	5	3982	3325

$$\cos(\text{maçã,informação}) = \frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .017$$

$$\cos(\text{digital,informação}) = \frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

Matriz de coocorrência (termo-termo)

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Vetores esparsos e com valores absolutos distantes, alta dimensionalidade e contexto longo

TF-IDF

Contexto: palavras que aparecem juntas em um documento d, dada uma coleção D

Valor: tf-idf (w,d,D) = tf(w,d) * idf(w,D)

$$tf\text{-}idf(w,d,D) = tf(w,d) * idf(w,D) = N(w,d) * idf(w,D)$$

$$tf\text{-}idf(w,d,D) = N(w,d) * \log \frac{|D|}{|d \in D : w \in d|}$$

TF-IDF

Contexto: palavras que aparecem juntas em um documento d, dada uma coleção D

Valor: tf-idf (w,d,D) = tf(w,d) * idf(w,D)

tf-idf(w)

Vetores ainda podem ser esparsos, com uma janela longa de contexto, e alta dimensionalidade

* idf(w, D)

 $v \in d$

tf-

Positive Pointwise Mutual Information (PPMI)

Contexto: palavras que aparecem juntas em uma janela de tamanho L

PPMI(w,c) = max(0,PMI(w,c))

$$PMI(w,c) = \log \frac{P(w,c)}{P(w)P(c)} = \log \frac{N(w,c)|V|}{N(w)N(c)}$$

Positive Pointwise Mutual Information (PPMI)

Contexto: palavras que aparecem juntas em uma janela de tamanho L

PPMI(w,c) = max(0,PMI(w,c))

Vetores ainda podem ser esparsos, e com alta dimensionalidade

$$rac{V(w,c)|V|}{V(w)N(c)}$$

Semântica vetorial

- Matrizes baseadas em contagem são esparsas e com alta dimensionalidade
 - Ruim para usar com algoritmos de ML
 - Mais difícil verificar similaridades

Semântica vetorial

- Matrizes baseadas em contagem são esparsas e com alta dimensionalidade
 - Ruim para usar com algoritmos de ML
 - Mais difícil verificar similaridades
- Como obter um vetor denso de baixa dimensionalidade?
- E que ainda capture contexto?

0.286 0.792 -0.177 -0.107 0.109 -0.542 0.349 0.271

Espaço de similaridades

- Palavras
similares são
representados
por vetores que
estão próximos
no espaço
vetorial criado

Word similarity according to word2vec

Word2Vec

- Pacote de SW com dois algoritmos
 - Continuous BOW (CBOW)
 - SkipGram
- Ao invés de contar quantas vezes cada palavra ocorre perto de outra, treinamos um classificador em uma tarefa de previsão binária : "a palavra X é provável de aparecer com a palavra Y"?
- A predição não é importante -- os pesos do classificador, sim -- serão os embeddings

De onde vêm os vetores?

Slides originais: https://www.cs.ubc.ca/~lsigal/532L/Lecture7.pdf

De onde vêm os vetores?

De onde vêm os vetores?

Word2Vec

Ideia geral

- A partir de um corpus grande
- Todas as palavras do vocabulário são representadas como um vetor (embeddings)
- Vá em cada posição t do texto, que tem uma palavra alvo e palavras no contexto
 - Exemplo positivo: (alvo, contexto)
 - Exemplo negativo: amostra de outras palavras
- Use a similaridade dos vetores para calcular a probabilidade da palavra x dada a palavra y
 - com um classificador binário
- Continue ajustando os vetores para maximizar essa probabilidade

Word2vec

- Como computar P(contexto | alvo)?
 - $\circ P(w_{t+j} | w_t)$

Word2vec

- Como computar P(contexto | alvo)?
 - $\circ P(w_{t+j} | w_t)$

Objetivo (SkipGram)

Para cada posição t = 1, ..., T, predizer o contexto dentro de uma janela de tamanho m, dada a palavra central w_t

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$

Objetivo

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$

- Objetivo: minimizar log-verossimilhança negativa (média)
- Equivale a maximizar a acurácia preditiva

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m} \log P(w_{t+j} \mid w_t; \theta)$$

Objetivo da função

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} \mid w_t; \theta)$$

transportar ao verso doce amenas sensações

$$J_{t,j}(\theta) = -\log P(transportar|verso) = \log \frac{u_{\text{transportar}}^\intercal v_{\text{verso}}}{\sum_{w \in V} u_{\text{w}}^\intercal v_{\text{verso}}} = -u_{\text{transportar}}^\intercal v_{\text{verso}} + \log \sum_{w \in V} u_{\text{w}}^\intercal v_{\text{verso}}$$

aumenta similaridade entre v_{verso} e u_{transportar} e diminui a similaridade entre todas as outras

Como treinar os vetores?

- Os parâmetros θ são os vetores v_w e u_w para cada palavra no vocabulário
- Tais vetores serão aprendidos a partir de um grande volume de textos, com o objetivo de otimizar a função de custo
- O método de otimização será o gradiente descendente

$$\theta^{t+1} = \theta^t - \alpha \nabla_{\theta} J(\theta)$$

Como treinar os vetores?

Os parâmetros θ são os vetores v_w e u_w para cada palavra no vocabulário

- Tais vet grande otimizar

 Essencialmente, tivo de tivo de otimizar
- O método de otimização será o gradiente descendente

$$\theta^{t+1} = \theta^t - \alpha \nabla_{\theta} J(\theta)$$

Gradiente descendente

Gradiente descendente

Voltando ao word2vec: uma palavra por vez

1 - produto interno de v_{verso}

Amostragem de negativos

Exemplos positivos : (target, contexto) na janela

```
o verso, ao
o verso, transportar
o verso, doce
o verso, amenas
```

transportar ao	verso	doce	amenas	sensações
----------------	-------	------	--------	-----------

Exemplos negativos: (target, palavra fora da janela)

```
o verso, sensações
o verso, mais
o verso, ninho
o verso, que
```

Amostragem de negativos

Fator de normalização é muito custoso

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Amostragem de negativos

- Exemplos negativos: (target, palavra aleatória)
 - Para cada exemplo positivo, são criados K exemplos negativos
- Palavra aleatória
 - o não pode ser a target
 - escolhida de acordo com sua frequência unigrama ponderada
 - Para evitar que uma palavra muito frequente seja muito mais escolhida

```
o P(a) = 0.99; P(b) = 0.01
o P_{0.75}(a) = 0.97; P_{0.75}(b) = 0.03
```

Word2Vec: skipgram e CBOW

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} log p(w_t | w_{t+j})$$

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} log p(w_{t+j}|w_t)$$

Skipgram vs CBOW

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} log p(w_t | w_{t+j})$$

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} log p(w_{t+j}|w_t)$$

Intrínseca

- Avaliar em uma tarefa intermediária
- Não fica claro o comportamento em uma tarefa real

Extrínseca

- Avaliação em uma tarefa real
- Pode ser complicado de obter métricas rapidamente
- Não fica claro se o problema era da tarefa alvo ou do modelo de linguagem

Avaliação intrínseca

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence Rohde et al. ms., 2005

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence Rohde et al. ms., 2005

Relações sintáticas e semânticas capturadas com similaridade de cosseno

a:b :: c:?

man:woman :: king:?

Avaliação - Notebook 1

E as sentenças?

Como resolver uma tarefa (extrínseca)?

A praia está linda.

texto

fastText

- Baseado na geração de subpalavras
 - Limites são parâmetros
 - Ex. explorando -> <explorando>
 - Suponha limites de 3 a 6

tamanho	Caracteres n-grams
3	<ex, and,="" do="" exp,="" lor,="" ndo,="" ora,="" plo,="" ran,="" xpl,=""></ex,>
4	<exp, ando,="" expl,="" lora,="" ndo="" oran,="" plor,="" rand,="" xplo,=""></exp,>
5	<expl, ando="" explo,="" loran,="" orand,="" plora,="" rando,="" xplor,=""></expl,>
6	<explo, explor,="" lorand,="" orando,="" ploran,="" rando="" xplora,=""></explo,>

 Nem todos os embeddings obtidos são aprendidos, define-se um bucket size de tamanho B e cada caracter n-gram cai em um inteiro de 1 a B (usando uma função hash)

GloVe

 Combina as estatísticas globais dos métodos baseados em contagem com a predição de vetores

GloVe

https://lena-voita.github.io/nlp_course/word_embeddings.html

Skipgram com negative sampling (fastText)

Considera-se contexto e palavra alvo

 O embedding da palavra alvo é calculado a partir da soma dos vetores dos caracteres n-grams e a palavra inteira

<exp expl xplo plor lora oran rand ando ndo> explorando

Skipgram com negative sampling (fastText)

- Para as palavras de contexto, consideramos o embedding da palavra completa apenas
- Para os exemplos negativos, é o mesmo processo do Skipgram com negative sampling
- Calcula-se o produto interno dos embeddings da palavra de contexto e alvo, e aplica-se sigmóide
- Atualiza os embeddings

Modelos de linguagem neurais

- O contexto é representado pelos embeddings das palavras
 - Palavras não vistas, com embeddings similares podem ser a próxima palavra
 - Modelo de linguagem probabilístico torna isso mais difícil
 - Por favor, certifique-se de alimentar o XXX
 - Suponha que 'gato' não tenha aparecido no treinamento, apenas 'cão'
 - PLM vai sugerir apenas 'gato'
 - NLM pode sugerir ambos (embeddings similares)

Neural Language Model (embeddings pré-treinados)

Neural Language Model (embeddings treinados)

