[ЦПМ, кружок по математике, 7 класс]
 Морозов Д. А., Рябов Е., Коршунов И.

 [2018–2019]
 группа: Убегающие
 9 февраля 2019 г.

Сравнения

Определение. Если два числа дают одинаковые остатки при делении на число n, то говорят, что они сравнимы по модулю m.

Записывают это так: $a \equiv b$ или $a \equiv b \pmod{m}$.

Упражнение. Числа a и b сравнимы по модулю n тогда и только тогда, когда число a-b сравнимо с 0 по модулю n.

Свойства сравнений.

- 1. если $a \equiv b$, $b \equiv c$, то $a \equiv c$;
- 2. $a \equiv a + km$, где k целое число;
- 3. если $a \equiv b$, то $a + c \equiv b + c$;
- 4. если $a \equiv b$ и $c \equiv d$, то $a + c \equiv b + d$;
- 5. если $a \equiv b$, то $ac \equiv bc$;
- 6. если $a \equiv b$ и $c \equiv d$, то $ac \equiv bd$;
- 7. если $a \equiv b$, то $a^k \equiv b^k$, где k натуральное число.
- 1. Найдите остаток от деления:
 - (a) $2015 \cdot 2016 \cdot 2017 \cdot 2018 \cdot 2019$ Ha 11.
 - (b) $1001 \cdot 1002 \cdot 1003 + 2001 \cdot 2002 \cdot 2003 \cdot 2004$ Ha 1000.
 - (c) $2016 \cdot 2017 \cdot 2018 + 2020 \cdot 2021 \cdot 2022$ Ha 2019.
- **2.** Пусть a, b, c, d и n натуральные числа, причем a + b и c + d делятся на n. Докажите, что ac bd делится на n.
- 3. Найдите остаток от деления:
 - (a) $9^{2019} + 13^{2019}$ на 11.
 - $(\mathbf{b}) 9^{2018} + 13^{2018}$ на 11.
- 4. Докажите, что (а) $2^{2018} \equiv 3^{2018}$; (b) $2^{2016} \equiv 3^{2016}$; (c) найдите еще хотя бы одно простое число p, для которого $2^{2016} \equiv 3^{2016}$.
- **5.** Пусть A произведение всех нечётных чисел от 1 до 2017, а B произведение всех чётных чисел от 2 до 2018. Докажите, что A+B делится на 2019.

- **6.** Вася выписал в тетрадку числа вида 100...01 (иными словами, числа вида $10^k + 1$), меньшие 10^{2019} . Докажите, что простых из них не более 1% от общего числа.
- 7. Натуральные числа a и b таковы, что $a^{12}+b^{12}$ и $a^{125}+b^{125}$ делятся на 257. Докажите, что $a^{2019}+b^{2019}$ делится на 257.
- **8.** Число 1 $\underbrace{33...33}_{h}$ простое. Докажите, что k нечетное.
- **9.** Дано четное число a. Докажите, что существует бесконечно много нечетных натуральных чисел n таких, что $a^n + n$ составное число.
- 10. В ряду чисел 1, 501, 751, 876, 438, ... каждое число, кроме первого, равно половине предыдущего, если предыдущее четно, и половине предыдущего числа, увеличенного на 1001, в противном случае. Верно ли, что в этом ряду встретятся все натуральные числа от 1 до 1000?
- **11.** Найдите все натуральные m, такие что число $(2^{2m+1})^2 + 1$ имеет не более двух различных простых делителей.