Study guide for qualifying exams

Cody L. Petrie

June 16, 2015

1 Classical Mechanics

- 1. Newtonian Mechanics
 - (a) Newton's Laws/Kinematics
 - (b) Energy
 - (c) Momentum/Angular Momentum
- 2. Lagrangian Mechanics
 - (a) Calculous of Variations
 - (b) Principle of Least Action/Lagranges Equation
 - (c) Generalized Coordinates
 - (d) Holonomic/Non-Holonomic Constraints
 - (e) Noether's Theorem
 - (f) Rigid Body Motion
 - i. Inertia Tensor
 - ii. Euler's Equations
- 3. Hamiltonian Formalism
 - (a) Legendre Transformation/Hamilton's Equations
 - (b) Generalized Momenta/Cyclic Coordinates/Conserved Quantities
 - (c) Liouville's Theorem
 - (d) Poisson Brackets
 - (e) Canonical Transformations

2 Statistical Mechanics

- 1. Thermodynamics Review
 - (a) Laws of Thermodynamics
 - (b) Intensive vs Extensive Variables
 - (c) Thermodynamic Potentials and Ensembles
 - (d) Maxwell's Relations
 - (e) Various Definitions
 - i. Compressibility
 - ii. Heat Capacity etc.

2. Statistical Mechanics

- (a) Statistical Review
- (b) Partition Function/Trace
- (c) Thermodynamic Limit
- (d) Density Matrix
- (e) Ideal Gas
- (f) Ideal Bose Gas
- (g) Ideal Fermi Gas
- (h) Cluster Expansion

3 Quantum Mechanics

- 1. Shankar Math Review
- 2. Postulates
- 3. Free Particle
- 4. Particle in a Box
- 5. Harmonic Oscillator
- 6. Angular Momentum
- 7. Hydrogen Atom
- 8. Spin
- 9. Angular Momentum Addition
- 10. Time-Independent Perturbation Theory

- 11. Time-Dependent Perturbation Theory
 - (a) Einstein A and B Coefficients
- 12. Scattering
- 13. WKB Formula
- 14. Dirac Equation

4 Electricity and Magnetism

- 1. Electrostatics
 - (a) Coulomb's Law
 - (b) Electrostatic Potentials
 - i. Poisson/Laplace's Equations
 - (c) Boundary Conditions
 - (d) Method of Images
 - (e) Multipole Expansion
 - (f) Work and Energy
 - (g) Electric Fields in Matter
- 2. Magnetostatics
 - (a) Lorentz Force Law
 - (b) Biot-Savart Law
 - (c) Vector Potential
 - (d) Magnetic Fields in Matter
- 3. Electrodynamics
 - (a) Ohm's Law
 - (b) Maxwell's Equations
 - (c) Boundary Conditions to Maxwell's Equations
 - (d) Continuity Equation
 - (e) Poynting's Theorem
 - (f) Maxwell Stress Tensor
 - (g) Electromagnetic Waves
 - i. The Wave Equation from Maxwell's Eq.
 - ii. EM Waves in Matter

iii. Wave Guides

- 4. Scalar and Vector Potentials
- 5. Coulomb and Lorentz Gauge
- 6. Retarted Potentials
- 7. Lienard-Wiechert Potentials
- 8. Radiation
 - (a) Electric/Magnetic Dipole Radiation
- 9. Helmholtz Theorem
- 10. Special Relativity
 - (a) Einstein's Postulates
 - (b) Lorentz Transformation
 - (c) 4-Vectors
 - (d) Field Tensor and Transformation
 - (e) Relativistic Potentials

5 Classical Mechanics Equations

Newtonian Mechanics

Newton's Laws:

- 1. An object will maintain it's current motion unless acted upon by an external force.
- $2. \ \vec{F} = m\vec{a}$
- 3. All forces occur in equal but directionally opposite pairs.

Second Law: $\vec{F} = m\vec{a} = \dot{\vec{p}}$

Angular Position/Velocity/Acceleration: $\theta = s/r, \, \omega = v/r, \, \alpha = a/r$

Angular Momentum: $\vec{L} = \vec{r} \times \vec{p}$

Torque: $\vec{\tau} = \vec{r} \times \vec{F} = \dot{\vec{L}}$

Centripital Acceleration: $a_c = v^2/r$

Centrifugal/Coriolis Forces: $\vec{F}_{cent} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r'}), \vec{F}_{cor} = -2m\vec{\omega} \times \dot{\vec{r'}}$

Work to go from positions \vec{a} to \vec{b} : $W_{ab} = \int_{\vec{a}}^{b} \vec{F} \cdot d\vec{s}$ Conservative Force Field (2

eq): W_{ab} is the same regardless of path so $\oint \vec{F} \cdot d\vec{s} = 0$, and thus we can write the force as $\vec{F} = -\nabla V(\vec{r})$.

Lagrangian Formalism

Functional Derivative: $\frac{\delta F}{\delta u}[x_0] = \lim_{\epsilon \to 0} \frac{F[x_0 + \epsilon u] - F[x_0]}{\epsilon} \to \frac{\delta F}{\delta x(t)}[x(t')] = \lim_{\epsilon \to 0} \frac{F[x(t') + \epsilon \delta(t'-t)] - F[x(t')]}{\epsilon}$

Principle of Least Action: $\delta S = 0$, where $S = \int_{t_i}^{t_f} L(\vec{q}, \dot{\vec{q}}, t) dt$

Lagranges Equation: $\frac{d}{dt}\frac{\partial L}{\partial \dot{x}^A} - \frac{\partial L}{\partial x^A} = 0$ Holonomic Constraints: $f_{\alpha}(x^A,t) = 0$, $L' = L(x^A,\dot{x}^A) + \lambda_{\alpha}f_{\alpha}(x^A,t) \rightarrow \frac{d}{dt}\frac{\partial L}{\partial \dot{x}^A} - \frac{\partial L}{\partial x^A} = 0$

Noether's Theorem: A continuous symmetry in the Action (and thus Lagrangian) result in a conserved quantity.

Moment of Inertia Tensor: $\vec{L} = \overrightarrow{I} \vec{\omega}$, $T = \frac{1}{2}\omega_a I_{ab}\omega_b$, $I_{ab} = \sum_i m_i ((\vec{r}_i \cdot \vec{r}_i)\delta_{ab} - (\vec{r}_i)_a (\vec{r}_i)_b$ Euler's Equations: Only look at rotation, not translation. Conservation of Angular Momentum gives $I_i\dot{\omega}_i + \omega_i\omega_k(I_k - I_j) = 0$, for i,j,k being cyclic permutations of 1,2,3.

Hamiltonian Formalism

Generalized Momenta: $p_i = \frac{\partial L}{\partial \dot{q}_i}, \, \dot{p}_i = \frac{\partial L}{\partial q_i}$

Hamiltonian: $H(q_i, p_i, t) = \sum_{i=1}^n p_i \dot{q}_i - L(q_i, \dot{q}_i, t)$

Hamilton's Equations:

1.
$$\dot{p}_i = -\frac{\partial H}{\partial q_i}$$

2.
$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

3.
$$-\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$$

Cyclic/Ignorable Coordinates: q is ignorable if $\frac{\partial L}{\partial q} = 0$, i.e. if q does not appear in L. Thus $p = \frac{\partial L}{\partial \dot{a}}$ is conserved.

Liousille's Theorem: A volume of a region of phase space remains the same, even when the refion changes. $V = dq_1 \dots dq_n dp_1 \dots dp_n$. Poisson Bracket: $f, g = \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}$.

Constant of Motion from Poisson Bracket: $\frac{df}{dt} = f, H + \frac{\partial f}{\partial t}$. If I, H = 0, then I is a constant of motion.

Canonical Transformation: Transformation $(q_i \to Q_i(q, p), p - I \to P_i(q, p))$ that leaves Hamilton's equations invariant.

Statistical Mechanics Equations 6

Laws of Thermodynamics:

1. Energy conservation. dE = dQ - pdV. dQ just means that the heat is an inexact differential and the integral depends on the path.

5

- 2. $\Delta S \ge \int \frac{dQ}{T}$, where equality is for a process that is reversible (never leaves equilibrium).
- 3. Entropy at zero temperature is zero. In stat mech this means that the ground state is nondegenerate and $S \propto \ln(W)$, where W is the number of available states.

Intensive vs Extensive Variables: Intensive variables do NOT scale with system size (T, p, μ) , while extensive do scale (E, S, V, N).

Thermodynamic Potentials:

- Internal Energy: U(S, V, N)
- Helmholtz Free Energy: F(T, V, N) = U TS
- Enthalpy: H(S, p, N) = U + pV
- Gibbs Free Energy: G(T, p, N) = U TS + pV
- Landau(Grand) Potential: $\Omega(T, V, \mu) = U TS \mu_i N_i$

Thermodynamic Ensembles:

- 1. Microcanonical: Does not exchange energy or particles with environment. Fixed E, N
- 2. Canonical: Does not exchange particles, but can exchange energy (heat bath). Fixed N, T
- 3. Grand canonical: Can exchange energy and particles with environment. Fixed T, μ .

Maxwell's Relations (4 main):

- $\frac{\partial^2 U}{\partial S \partial V} = -\left(\frac{\partial p}{\partial S}\right)_V = \left(\frac{\partial T}{\partial V}\right)_S$
- $\frac{\partial^2 F}{\partial T \partial V} = \left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$
- $\frac{\partial^2 H}{\partial S \partial p} = \left(\frac{\partial V}{\partial S}\right)_p = \left(\frac{\partial T}{\partial p}\right)_S$
- $\frac{\partial^2 G}{\partial T \partial p} = \left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T$

Engine Efficience: $\eta = \frac{Q_{in} - Q_{out}}{Q_{in}} = 1 - \frac{T_{out}}{T_{in}}$ Isobaric Thermal Expansion Coefficient: $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$, How much the volume changes with a change in termperature.

Isothermal Compressibility: $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$, How much the volume changes when the pressure changes.

Isentropic(Adiabatic) Compressibility: $\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S$, Same as above.

Specific Heat at Constant V: $C_V = \left(\frac{\partial Q}{\partial T}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V$, Amount of heat per unit mass to raise the temp by 1 degree.

Specific Heat at Constant p: $C_p = \left(\frac{\partial Q}{\partial T}\right)_p = \left(\frac{\partial H}{\partial T}\right)_p$, Same as above.

Fermi Energy/Temperature: Chemical potential at T=0. $\epsilon_F=\mu(T=0)$

- 7 Quantum Mechanics Equations
- 8 Electricity and Magnetism Equations
- 9 Miscellaneous Physics

Taylor Expansion: $f(\vec{x} + \vec{a}) = f(\vec{x}) + a_i \partial_i f(\vec{x}) + \mathcal{O}(\vec{a}^2)$