Pendelsimulation

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

Mathematisches Pendel

Abbildung 1: Mathematisches Pendel der Länge L und der Masse m

Auf das Pendel der Länge L und mit der Masse m (siehe Abbildung 1) wirkt zunächst mit der Erdbeschleunigung g die Gewichtskraft $F_G = mg$. Man kann sie in einen radialen Anteil F_R und einen tangentialen Anteil F_T zerlegen. Für die Dynamik des Pendels ist nur die tangentiale Komponente relevant. Es gilt für sie

$$F_T = F_G \sin \phi$$
.

Mit den Newtonschen Gesetzen gilt

$$F_T = -mL \frac{d^2\phi}{d^2t}.$$

Damit folgt für den Auslenkungswinkel $\phi(t)$ als Funktion der Zeit t die Differentialgleichung

$$\frac{d^2\phi(t)}{dt^2} + \omega^2 \sin\phi(t) = 0 \tag{1}$$

mit

$$\omega = \sqrt{\frac{g}{L}}. (2)$$

Phasenraumdarstellung

Mit den Definitionen

$$x_1(t) = \phi(t)$$

$$x_2(t) = \frac{d}{dt}\phi(t)$$
(3)

folgt aus (1) die Phasenraumdarstellung

$$\frac{d}{dt}x_1(t) = x_2(t)
\frac{d}{dt}x_2(t) = -\omega^2 \sin x_1(t).$$
(4)

Aus (3) und (4) folgt

$$\frac{d^2}{dt^2}x_1(t) = -\omega^2 \sin x_1(t)$$

und durch Anwendung der Kettenregel (siehe dazu z.B. [2])

$$\frac{d}{d\phi} \left[f\left(g\left(\phi\right)\right) \right] = \frac{df\left(g\right)}{dg} \frac{dg\left(\phi\right)}{d\phi} \tag{5}$$

ergibt sich daraus

$$\frac{d^2}{dt^2}x_1(t) = -\omega^2 \sin x_1(t).$$

Beschreibung als dynamisches System

In Anlehnung an [1] wird ein dynamisches System (Fluss) auf X durch

- ullet einen metrischen Raum X mit der Metrik d
- eine additive Halbgruppe I über den reellen Zahlen, d.h. es gilt $I \subseteq \mathbb{R}$ und mit $0 \in I$ und $r, s, t \in I$ besitzt die Addition $+: I \times I \to I$ die beiden Eigenschaften

Kommutativgesetz:
$$r + s = s + r$$

Assoziativgesetz: $(r + s) + t = r + (s + t)$

 \bullet eine stetige Abbildung $\pi:X\times I\to X$ mit den für alle $x\in X$ geltenden Eigenschaften

Identitätseigenschaft: $\pi(x,0) = x$ Halbgruppeneigenschaft: $\pi(\pi(x,t),s) = \pi(x,t+s)$

definiert.

Definitionen

Trajektorie durch Punkt $x \in X$

$$\gamma_{I}(x) = \bigcup_{t \in I} \left\{ \pi\left(x, t\right) \right\}$$

Limitmenge Punkt $x \in X$

$$L_{I}(x) = \bigcap_{t \in I} \overline{\gamma_{I}(\pi(x,t))}$$

Im folgenden wird auf I die Existenz von Ordnungsrelationen \leq und \geq vorausgesetzt. Aus diesem Grund wird nur noch der Spezialfall $I = \mathbb{R}$ betrachtet.

Positive und negative Halbtrajektorien

$$\gamma_{-}(x) = \{\pi(x,t) \mid t \leq 0\}$$

 $\gamma_{+}(x) = \{\pi(x,t) \mid t \geq 0\}$

Alpha- und Omegalimits

$$A(x) = \bigcap_{t \in I} \overline{\gamma_{-}(\pi(x,t))}$$

$$\Omega(x) = \bigcap_{t \in I} \overline{\gamma_{+}(\pi(x,t))}$$

Invarianz

 $A \subseteq X$ ist invariant, falls $\gamma_{\mathbb{R}}(x) \subseteq A$ für alle $x \in A$.

Sätze

- A ist genau dann invariant, falls $A = \bigcup_{x \in A} \gamma_{\mathbb{R}}(x)$ gilt.
- Mit A ist auch \overline{A} invariant.
- Für alle x ist $\Omega(x)$ invariant. $\Omega(x)$ ist abgeschlossen.

Beispiel

Es sei $X = \mathbb{R}^2$ und $I = \mathbb{R}$. Für die Abbildung π gelte $\pi(x,t) = x_0$, die Trajektorie $\gamma_{\mathbb{R}}(x)$ besteht also nur aus dem isolierten Punkt x_0 .

- Die Abbildung $\pi(x,t)$ ist stetig.
- Die Identitätseigenschaft der Abbildung $\pi(x,t)$ ist erfüllt.
- Die Halbgruppeneigenschaft der Abbildung $\pi(x,t)$ ist erfüllt.
- \bullet Die Trajektorie ist nicht offen, denn ihr Punkt x_0 ist kein innerer Punkt.
- Die Trajektorie ist abgeschlossen, denn ihr Komplement $\mathbb{R}^2 \setminus \{x_0\}$ ist offen.

Literatur

- [1] Dynamical Systems Stability, Controllability and Chaotic Behaviour; Werner Krabs, Stefan Pickl; Springer-Verlag, 2010
- [2] https://de.wikipedia.org/wiki/Kettenregel