

UNIVERSIDAD DEL BÍO BÍO

SIMULACRO N°1 ÁLGEBRA Y TRIGONOMETRÍA (220143) - MÓDULO 1

1. Complete la tabla de verdad de la proposición compuesta: $(p \land q) \lor \neg (p \lor q)$.

	p	q	$\bigcap_{p \land q}$	$\bigcap_{p \vee q}^2$	$\overbrace{\neg (p \lor q)}^{3}$	$\underbrace{\frac{1}{(p \wedge q)} \vee \frac{3}{\neg (p \vee q)}}^{4}$
	V	V				
_	V	F				
	F	V				
-	F	F				

2. a) Relacione las proposiciones equivalentes, escribiendo en el cuadro de la primera columna, el número de la segunda columna que corresponda.

1)
$$\neg (p \wedge r)$$

$$\neg r \lor \neg p$$

$$2) \quad \neg r \longrightarrow p$$

$$p \longrightarrow q$$

$$\neg p \longrightarrow r$$

4)
$$(p \longrightarrow q) \land (q \longrightarrow p)$$

$$\neg p \longleftrightarrow \neg q$$

$$\neg p \longleftrightarrow \neg q \qquad 5) \quad \neg p \lor q$$

b) Marque la alternativa correcta. Dada la proposición $p: \forall x \in \mathbb{R}, x^2 \geq x$, su valor de verdad y su negación es:

$$ii) F y \neg p: \exists x \in \mathbb{R}, x^2 < x$$

c) Dado el conjunto $A = \{0, 1, \{1\}\}\$, determine si cada una de las siguientes afirmaciones es Verdadera (V) o Falsa (F).

1)
$$0 \in A$$

3)
$$\{0\} \subset A$$

5)
$$\{1\} \subset A$$

2)
$$\{0\} \in A$$

4)
$$\{1\} \in A$$

3. Considere el conjunto universal $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ y los subconjuntos $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 2, 4, 8\}$, $C = \{1, 2, 3, 5, 7\}$ y $D = \{2, 4, 6, 8\}$. Determine

a)
$$(A \cup B) \cap C$$

c)
$$C' \cap D'$$

b)
$$A \cup (B \cap C)$$

c)
$$C' \cap D'$$

d) $B - (C - D)$

4. En el Departamento de Formación Integral donde hay 110 alumnos, las clases de inglés tienen 63 inscritos, las de alemán 30 y las de francés 50. Se sabe que 7 alumnos estudian los tres idiomas, 30 sólo estudian inglés, 13 sólo estudian alemán y 25 sólo estudian francés.

a) ¿Cuántos alumnos estudian exactamente dos idiomas?

b) ¿Cuántos inglés y alemán pero no francés?

c) ¿Cuántos estudian sólo francés?