Езици и автомати. Решения на теоретично контролно вариант 1 от 19.01.2017г.

Иво Стратев

11 януари 2018 г.

1 Задача 1.

1.1 Дайте дефиниция за контекстно-свободна граматика.

Нека $G = (V, \Sigma, P, S)$, където:

- V е крайно множество от променливи (нетерминали)
- Σ е азбука (крайно множество от терминали) и $\Sigma \cap V = \emptyset$
- $P\subseteq (V\cup\Sigma)^+\times (V\cup\Sigma)^*$ е крайно множество от правила
- \bullet $S \in V$ е началната променлива

Gе контекстно-свободна граматика, ако $P\subseteq V\times (V\cup \Sigma)^*$

1.2 Дефинирайте кога една дума $u\in (V\cup\Sigma)^*$ е изводима от думата $v\in (V\cup\Sigma)^*$ с граматиката $G\quad (v\stackrel{*}{\Longrightarrow}\ u).$

Нека $\Lambda = (V \cup \Sigma)^*$

Нека
$$R_{\overrightarrow{g}} = \{(w, w') \in \Lambda^2 \mid \exists \alpha, \beta, \beta', \gamma \in \Lambda : w = \alpha \beta \gamma \land w' = \alpha \beta' \gamma \land \exists \beta \to \beta' \in P\}$$

и нека
$$R_{\frac{n}{G}} = \begin{cases} R_{\overrightarrow{G}} &, n = 0 \\ \left\{ (\alpha, \ \gamma) \in \Lambda^2 \mid \exists \beta \in \Lambda, \ \exists m \in \mathbb{N} \ : \ m < n \land (\alpha, \ \beta), \ (\beta, \ \gamma) \in R_{\overrightarrow{G}}^m \right\} &, n > 0 \end{cases}$$

Тогава
$$R \underset{\stackrel{*}{\Longrightarrow}}{\Longrightarrow} \ = \ \{(w,\ w) \mid w \in \Lambda\} \ \cup \ \bigcup_{n \in \mathbb{N}} R_{\stackrel{n}{\hookrightarrow}}$$

тоест $R\underset{\Longrightarrow}{\Longrightarrow}$ е рефлексивното и транзитивното затваряне на $R_{\overrightarrow{G}}$

$$v \stackrel{*}{\Longrightarrow} u \iff (v, u) \in R_{\stackrel{*}{\Longrightarrow}}$$

1.3 G е контекстно-свободна граматика определете езика $\mathcal{L}(G)$

$$\mathcal{L}(G) = \{w \in \Sigma^* \mid S \implies w\}$$

1.4

Нека
$$G=(\{S,\ A,\ B\},\ \{a,\ b\},\ \{S\to ABBa,\ A\to aA\mid a,\ B\to bBb\mid b\},\ S)$$

1.4.1 Покажете, че думите abba и aabbbba са изводими от G и покажете синтактично дърво за тях.

За *abba*:

$$S \implies (S \to ABBa)$$

$$ABBa \implies (A \rightarrow a)$$

$$aBBa \implies (B \rightarrow b)$$

$$abBa \implies (B \rightarrow b)$$

abba

За *aabbbba*:

$$S \implies (S \to ABBa)$$

$$ABBa \implies (A \rightarrow aA)$$

$$aABBa \implies (A \rightarrow a)$$

$$aaBBa \implies (B \to bBb)$$

$$aabBbBa \implies (B \rightarrow b)$$

$$aabbbBa \implies (B \to b)$$

aabbbba

1.4.2 Вярно ли е, че езикът $\mathcal{L}(G) \cap \{a^{2n}b^{2k}a \mid n, k \in \mathbb{N}\}$ е контекстносвободен?

Лесно се вижда, че $\mathcal{L}(G) = \{a^n b^{2k} a \mid n, k \in \mathbb{N} \setminus \{0\}\}$ следователно

$$\mathcal{L}(G) \cap \{a^{2n}b^{2k}a \mid n, \ k \in \mathbb{N}\} = \{a^{2n}b^{2k}a \mid n, \ k \in \mathbb{N} \setminus \{0\}\}\$$

Една граматика, която описва $\{a^{2n}b^{2k}a\mid n,\ k\in\mathbb{N}\setminus\{0\}\}$ е:

$$(\{S, A, B\}, \{a, b\}, \{S \rightarrow AABBa, A \rightarrow aAa \mid a, B \rightarrow bBb \mid b\}, S)$$

Следователно $\mathcal{L}(G) \cap \{a^{2n}b^{2k}a \mid n, k \in \mathbb{N}\}$ е контекстно-свободен.

1.4.3 Вярно ли е, че езикът $\{a, b\}^* \setminus \mathcal{L}(G)$ е контекстно-свободен?

Лесно се вижда, че $\mathcal{L}(G) = \mathcal{L}(a^+(bb)^+a)$, тоест че $\mathcal{L}(G)$ всъщност е регулярен език.

Ние знаем, че допълнението на всеки регулярен език е регулярен език, тоест $\{a, b\}^* \setminus \mathcal{L}(G)$ е регулярен.

Също така знаем, че всеки регулярен език е контекстно-свободен език, тогава $\{a, b\}^* \setminus \mathcal{L}(G)$ е контекстно-свободен.

2 Задача 2.

Нека $G_1=(V_1,\ \Sigma,\ P_1,\ S_1)$ и $G_2=(V_2,\ \Sigma,\ P_2,\ S_2)$ са контекстно-свободни граматики, за които $V_1\cap V_2=\emptyset$. Опишете контрукция за построяването на контекстно-свободна граматика $G=(V,\ \Sigma,\ P,\ S)$ с език

2.1
$$\mathcal{L}(G) = \mathcal{L}(G_1).\mathcal{L}(G_2)$$

$$S \notin V_1 \cup V_2, \ S \notin \Sigma, \ G = (\{S\} \cup V_1 \cup V_2, \ \Sigma, \{S \to S_1 S_2\} \cup P_1 \cup P_2, \ S)$$

2.2
$$\mathcal{L}(G) = \mathcal{L}(G_1)^*$$

$$S \notin V_1, S \notin \Sigma, G = (\{S\} \cup V_1, \Sigma, \{S \to S_1S \mid \varepsilon\} \cup P_1, S)$$

3 Задача 3.

Постройте краен недетерминиран автомат A, за който $\mathcal{L}(A) = \mathcal{L}(G)$

за
$$G = (\{S, A, B\}, \{a, b\}, \{S \to \varepsilon \mid aB, A \to a \mid aB, B \to bS \mid bA\}, S)\})$$

3.1 Общ вид на конструкцията

Нека $G=(V,\; \Sigma,\; P,\; S)$ е регулярна граматика. Тогава

$$F \notin V, \ F \notin \Sigma, \ A = (V \cup \{F\}, \ \Sigma, \ \Delta, \ S, \ \{F\} \cup \{T \in V \mid T \to \epsilon \in P\})$$

$$\Delta = \{((T,\ a),\ \{Y \in V \mid T \rightarrow aY \in P\} \cup \{F \mid T \rightarrow a \in P\}) \mid T \in V,\ a \in \Sigma\}$$

Обратно на задачата:

$$A = (\{S, A, B, F\}, \{a, b\}, \Delta, S, \{F, S\})$$

$$\Delta = \{((S, a), \{B\}), ((A, a), \{B, F\}), ((B, b), \{S, A\})\}$$
 или

$$\Delta(S, a) = \{B\}$$

$$\Delta(S, b) = \emptyset$$

$$\Delta(A, a) = \{B, F\}$$

$$\Delta(A, b) = \emptyset$$

$$\Delta(B, a) = \emptyset$$

$$\Delta(B, b) = \{S, A\}$$

4 Задача 4.

Нека $G = (V, \Sigma, P, S)$ е контекстно-свободна граматика. Дефинирайте стеков автомат M, завърващ с празен стек, за който $\mathcal{L}(M) = \mathcal{L}(G)$.

$$M = (\{q\}, \ \Sigma, \ \Sigma \cup V, \ S, \ q, \ \Delta, \ \emptyset)$$

$$\forall A \in V \ \Delta(q, \ \varepsilon, \ A) = \{(q, \ \alpha) \mid A \to \alpha \in P\}$$

$$\forall a \in \Sigma \ \Delta(q, a, a) = \{(q, \varepsilon)\}\$$

4.1 Дефинирайте стеков автомат M с горното свойство за G от Задача 1.

$$M = (\{q\}, \{a, b\}, \{a, b, S, A, B\}, S, q, \Delta, \emptyset)$$

$$\Delta(q, \ \varepsilon, \ S) = \{(q, \ ABBa)\}$$

$$\Delta(q,\;\varepsilon,\;A)=\{(q,\;aA),\;(q,\;a)\}$$

$$\Delta(q,\;\varepsilon,\;B)=\{(q,\;bBb),\;(q,\;b)\}$$

$$\Delta(q, a, a) = \{(q, \varepsilon)\}\$$

$$\Delta(q, b, b) = \{(q, \varepsilon)\}\$$

5 Задача 5.

Формулирайте Лемата за покачването (The Pumping Lemma) за контекстно-свободни езици.

Ако L е контекстно-свободен език то

 $\exists p \in \mathbb{N} \backslash \{0\} : \forall \alpha \in L : |\alpha| \geq p \ \exists x, \ y, \ u, \ v, \ z : \alpha = xyuvz \land |yv| \geq 1 \land |yuv| \leq p \land \forall i \in \mathbb{N} \ xy^iuv^iz \in L.$

Контра позиция на лемата: Ако

 $\forall p \in \mathbb{N} \setminus \{0\} : \exists \alpha \in L : |\alpha| \geq p \ \forall x, \ y, \ u, \ v, \ z : \alpha = xyuvz \land |yv| \geq 1 \land |yuv| \leq p \land \exists i \in \mathbb{N} \ xy^iuv^iz \notin L$ то L не е контекстно-свободен език.