컴퓨터과학기초

7주차 논리식의 간소화(2)

인하공업전문대학 컴퓨터정보과

이수정 교수

차례

Ch.6 논리식의 간소화

- 1. 2변수 카르노 맵
- 2. 3변수 카르노 맵
- 3. 4변수 카르노 맵

■ 3변수 카르노 맵 표현 방법

A	$C \overline{BC}$	$\overline{B}C$	ВС	$B\overline{C}$
\overline{A}	\overline{ABC}	\overline{ABC}	- ABC	$\left \overline{ABC} \right $
\boldsymbol{A}	$A\overline{BC}$	ABC	ABC	$AB\overline{C}$

A	00	01	11	10
0	0	1	3	2
1	4	5	7	6

C^{AE}	$\frac{B}{AB}$	$\overline{A}B$	AB	$A\overline{B}$
\overline{C}	\overline{ABC}	\overline{ABC}	$AB\overline{C}$	$A\overline{B}\overline{C}$
C	\overline{ABC}	- ABC	ABC	\overline{ABC}

C^{AE}	00	01	11	10
0	0	2	6	4
1	1	3	7	5

행과 열을 바꾸어도 상관없다. 설계자가 선호하는 방법을 선택하면 된다.

C	\overline{C}	C
$\frac{1}{AB}$	\overline{ABC}	\overline{ABC}
$\overline{A}B$	ABC	_ ABC
AB	$AB\overline{C}$	ABC
$A\overline{B}$	$A\overline{BC}$	\overline{ABC}

AB	0	1
00	0	1
01	2	3
11	6	7
10	4	5

■ 간소화 예 1

■ 간소화예2

■ 간소화 예 3

■ 간소화 예 4

다른 묶음에 모두 포함되어 있으 므로 중복하여 묶지 않는다.

$$F = \overline{A}C + AB$$

■ 간소화 예 5

■ 간소화예6

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$F = \sum m(3,5,6,7) = AB + BC + AC$$

■ 간소화 예 7

모두 0이면 논리식은 F=0이다.

$$F = 0$$

모두 1이면 논리식은 F=1이다.

$$F = 1$$

■ 4변수 카르노 맵 표현 방법

CI AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

상하 좌우는 연결 되어 있다.

- 2, 3변수 카르노 맵과 같은 방법으로 간소화
- 8개나 16개도 묶을 수 있음
- 16개 모두 묶으면 *F*=1

AB CI	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

F=1

차례

Ch.6 논리식의 간소화

- 1. 선택적 카르노 맵
- 2. 논리식의 카르노 맵 작성
- 3. 5변수, 6변수 카르노 맵
- 4. 퀸-맥클러스키 간소화 알고리즘

1. 선택적 카르노 맵

▶ 카르노 맵에서 선택적으로 묶을 수 있는 경우

$$F = \overline{AB} + A\overline{B} + AC$$

<2가지 답이 가능한 경우>

1. 선택적 카르노 맵

AB 00

 $F = \overline{A}\overline{B} + AB + \overline{A}\overline{D}$

01 11

10

Χ

Χ

<5가지 답이 가능한 경우>

2. 논리식의 카르노 맵 작성

■ 논리식에서 생략된 부분을 찾아서 최소항(Minterm)으로 변경

$$F(A, B, C) = ABC + \overline{A}B + \overline{A}\overline{B}$$

$$= ABC + \overline{A}B(C + \overline{C}) + \overline{A}\overline{B}(C + \overline{C})$$

$$= ABC + \overline{A}BC + \overline{A}B\overline{C} + \overline{A}\overline{B}C + \overline{A}\overline{B}C$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + ABC$$

$$= \sum m(0, 1, 2, 3, 7)$$

2. 논리식의 카르노 맵 작성

$$F(A,B,C,D) = AB + ABC + \overline{A}CD + \overline{A}\overline{C}D + \overline{A}BC\overline{D}$$

$$= AB(C + \overline{C})(D + \overline{D}) + ABC(D + \overline{D}) + \overline{A}(B + \overline{B})CD$$

$$+ \overline{A}(B + \overline{B})\overline{C}D + \overline{A}BC\overline{D}$$

$$= (ABC + AB\overline{C})(D + \overline{D}) + ABCD + ABC\overline{D} + \overline{A}BCD + \overline{A}BCD$$

$$+ \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}BC\overline{D}$$

$$= ABCD + ABC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABCD + ABC\overline{D} + \overline{A}BCD$$

$$+ \overline{A}BCD + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}BC\overline{D}$$

$$= \sum m(15,14,13,12,7,3,5,1,6) = \sum m(1,3,5,6,7,12,13,14,15)$$

3. 5변수, 6변수 카르노 맵

■ 5변수인 경우

<5변수 카르노 맵>

3. 5변수, 6변수 카르노 맵

• 예제) $F(A,B,C,D,E) = \sum m(4,5,6,7,9,11,13,15,16,18,27,28,31)$ 의 카르노 맵

3. 5변수, 6변수 카르노 맵

■6변수인 경우

∖ <i>EI</i>	7	AB	=00																
CD	00	01	11	10			4.5	0.4											
00	0	1-	-3-	_2_	EI CD	7	$-\frac{AB}{01}$		- 10_										
01	4	5	7	6	00	16	17	- 49-	_18_	CD E	00	$\frac{AB}{01}$		- 10_					
11	12	13	15	14	01	20	21	23	22	00	48	49	-51.	_50_	CD.	7	$\frac{AB}{01}$		- 10_
10	8	9	11	10	11	28	29	31	30	01	52	53	55	54	00	32	33	35	34
					10	24	-25-	_27_	26	11	60	61	63	62	01	36	37	39	38
										10	56	-57.	_59_	58	11	44	45	47	46
															10	40	- 41.	<u>. 43</u>	42

<6변수 카르노 맵>

1) QM 알고리즘

- 퀸-맥클러스키(Quine-McCluskey) 간소화 알고리즘
 - 퀸(Willard Van Orman Quine)과 맥클러스키(Edward J. McCluskey)가 1956년에 개발
 - 컴퓨터 알고리즘으로 개발하기에 적합
 - 입력변수가 4개 이하 : 카르노 맵을 이용하는 것이 편리
 - 입력변수가 5개 이상: 퀸-맥클러스키(이하 QM) 알고리즘이 유용

❖용어정리

- Implicant: 간소화되거나 최소화될 항
- Pl(Prime Implicant) : 최종적으로 남아있는 곱의 항. 더 이상 간단히 되지 않는 항목
- EPI(Essential Prime Implicant) : 미중에서 유일한 미

■ Quine-McCluskey 방법

- QM 방법은 최소 SOP 식으로 만들어 진다.
- QM 방법의 과정
 - 1 진리표에서 최소항을 모두 찾는다.
 - ② 최소항 중에서 입력변수에 1이 나타나는 개수에 따라서 인덱스(index)를 매겨 그룹을 만든다.
 - ❸ 각 그룹내의 항들을 모두 비교하여 한 비트만 다른 항들을 찾아서 간소화하고, 간소화에 사용된 항들을 표시한다.
 - 4 3의 과정을 반복하여 더 이상 간소화되지 않을 때까지 계속한다.
 - ⑤ 간소화 과정이 끝나고 표시되지 않은 항들이 PI(prime implicants, 주항)가 된다.
 - ⑥ 중복된 PI를 찾기 위하여 차트를 만들고, EPI(essential prime implicants, 필수주항)를 찾는다.
 - TEPI에 포함되는 PI들을 제거한다.
 - ❸ EPI에 포함되지 않은 항들에 대해서 최소 개수의 SOP 식을 찾는다.

- QM 방법은 크게 2단계로 이루어진다.
 - 단계 1 : 인덱스별로 구분하고 $AB + A\overline{B} = A(B + \overline{B}) = A$ 를 적용하여 가능한 변수들을 제거한다. 결과 항들은 PI가 된다.
 - 단계 2: PI 차트를 이용하여 함수를 PI의 최소 집합들로 표현한다.
- QM 방법을 이용한 간소화 과정

AB + AB = A규칙을 이용하여 PI 들을 구한다.

PI 차트를 이용하여 PI 집합을 구한다.

■기본 규칙

- QM 방법은 규칙 $A+\overline{A}=1$ 을 반복 적용하여 최소화한다.
- 함수의 각 항들은 2진 형태(0과 1)로 표현하고, 변수가 제거된 곳은 대시 (-)를 사용한다.

ABC: 101로 표현 (A=1, B=0, C=1)

ĀBC: 010로 표현 (A=0, B=1, C=0)

AB: 10-로 표현 (A=1, B=0, C=×)

AC: 1-1로 표현 (A=1, B=x, C=1)

QM 방법을 이용한 간소화 과정

A	В	C	D	
	_	1 1	7	
_		1		

<변수가 결합되는 경우>

$$F(A, B, C, D) = \sum m(0011, 1011)$$
$$= \overline{ABCD} + \overline{ABCD} = \overline{BCD}$$

두 자리가 다르기 때문에 결합될 수 없다.

<변수가 결합되지 못하는 경우>

$$F(A, B, C, D) = \sum m(0111, 1011)$$
$$= \overline{ABCD} + \overline{ABCD}$$

QM 방법을 이용한 간소화 과정

- 두 항을 결합하기 위한 QM 방법의 첫 번째 규칙은 오직 한 비트만 다를 때 제거된다는 것이다.
- 첫 번째 규칙을 적용하기 위해서 minterm 항들을 1의 개수에 따라서 서로 재배열한다.
- minterm 항을 2진 형태로 표현하여 1의 개수에 따라서 인덱스를 매기며, 인덱스 0, 인덱스 1, 인덱스 2 등으로 나열한다.

QM 방법에서의 인덱스 분류

	A	В	C	D	10진 표기
index 0	0	0	0	0	0
	0	0	0	1	1
index 1	0	0	1	0	2
IIIUEX I	0	1	0	0	4
	1	0	0	0	8
	0	0	1	1	3
	0	1	0	1	5
index 2	0	1	1	0	6
index 2	1	0	0	1	9
	1	0	1	0	10
	1	1	0	0	12
	0	1	1	1	7
index 3	1	0	1	1	11
IIIUEX 3	1	1	0	1	13
	1	1	1	0	14
index 4	1	1	1	1	15

■ 다음 식을 인덱스로 분류하면 표와 같다.

 $F(A, B, C) = \sum m(0, 1, 2, 3, 4, 6) = \sum m(000,001,010,011,100,110)$

ABC	F
000	1
001	1
010	1
011	1
100	1
101	0
110	1
111	0

인덱스	10진수	A B C
0	0	000
	1	001
1	2	010
	4	100
2	3	011
2	6	110

^{*} 출력이 1인 항만 표시한다.

2) QM 알고리즘을 이용한 간소화

$$F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}\overline{C} + A\overline{B}C$$
$$= \sum m(0, 1, 4, 5)$$
$$= \sum m(000, 001, 100, 101)$$

minterm	10진	2진	index		
\overline{ABC}	0	000	0		
\overline{ABC}	1	0 0 1	1		
$A\overline{BC}$	4	100	1		
\overline{ABC}	5	101	2		

■ 인덱스 표 만들기

Column 1							
index	decimal	ABC					
0	(0)	000					
1	(1) (4)	0 0 1 1 0 0					
2	(5)	101					

■ 첫 번째 과정

	Colun	nn 1	Column 2					
index	decimal ABC			index	decimal	ABC		
0	(0)	000	✓	0	0	0 (0,1)	00-	
1	(1)	001	✓		(0,4)	- 0 0		
	(4)	100	✓	1	(1,5)	- 0 1		
2	(5)	101	✓		(1,5) (4,5)	10-		

$\mathcal{B}C$,			
A	00	01	11	10
0	1	1		
1	1	1		

$$F(A,B,C) = \overline{AB} + \overline{BC} + \overline{BC} + \overline{AB}$$

■ 두 번째 과정

Column 1					Column 2			Column 3			
	index	decimal	ABC		index	decimal	ABC		decimal	ABC	
	0	(0)	000	✓	0	(0,1)	00-	✓			
	1	(1)	001	✓		(0,4)	- 0 0	√	(0 1 4 5)	- 0 -	
•	(4)	100	√	1	(1,5)	- 0 1	✓	(0,1, 4,5)	- 0 -		
	2	(5)	101	✓	1	(4,5)	10-	✓			

$$F(A,B,C) = B$$

