

□ (+44 / 0) 7774 528 671 | ■ aditya.ravuri@gmail.com | ★ www.falmity.com

Education

University of Cambridge Cambridge, UK

PHD IN COMPUTER SCIENCE

Oct. 2021 - Present

• Focus: Probabilistic Machine Learning. Supervised by Prof. Neil Lawrence and funded by the Accelerate Programme for Scientific Discovery.

University of Cambridge

Cambridge, UK

MPHIL IN MANAGEMENT Oct. 2016 - Jun. 2017

- Commendation (70%). Focus: Strategic Valuation (top prize), Economics. Audits: Measure Theory, Philosophy of Science, Physics. • Jaguar Land Rover consulting project: Modeled the contribution of JLR to the UK economy in a highly collaborative setting. Conducted original research on improving the accuracy of input-output multipliers. Highly commended for the work and presentation.
- · Coloplast Internship (Aug. '17): Aided implementation of a time series forecasting model (involving splines, linear filters and ARIMA error processes) and automated model fitting.

Heriot-Watt University Edinburgh, UK

BSc Hons in Actuarial Science, Statistics Major

Sep. 2013 - Jun. 2016

- Awards: Distinction (83%) (top 3%), CT1-8, Volunteering Bronze (ChessSoc President, Student Union Exec, Mentor). Obtained BSc at age 18.
- Focus: Statistics, Quantitative Risk Management, Mathematical Finance. Project Areas: GARCH models, copulas, extreme value theory, stochastic calculus, liquidity risk, economic scenario generators and advanced statistical inference. Published in the actuarial magazine.

Skills

Code

Programming R, Python, C/C++ (basic), SQL (basic), Stan, PyTorch, Tensorflow

English, Japanese (basic), French (basic), Hindi, Telugu Languages

Others Other probabilistic programming languages, ggplot, data.table, git, LaTeX, astrophotography

Side Projects

falmity.com: Personal projects (e.g. speech synthesis using Gaussian processes) and minimal examples (e.g. MGCV GAMs as GPs, Web the Griffin-Lim algorithm, sparse GPs, state-space models). Cross Validated: (Stats Stack Exchange) top 2% contributor in 2018.

Contributed to SciPy (added an efficient Toeplitz matrix-vector product function), SymPy (fixed a bug in the symbolic multivariate normal density calculation), GPyTorch (added a missing data likelihood class). Co-wrote the code for the paper below, in pyro and

gpytorch for running variational GPLVMs with encoders and normalizing flows.

Papers Lalchand, V., Ravuri, A. and Lawrence, N. D. (2020). Variational Gaussian Process Latent Variable Models with Normalising Flows. A

smaller part of the work titled "GPLVFs for Massively Missing Data" was accepted at AABI 2021.

Employment

Barclays London, UK

QUANT ANALYST + DEVELOPER

Dec. 2018 - Sep. 2021

- · Designed and productionized large-scale statistical models for balance sheet simulation of term deposits and loans, accounting for customer behavior and economic trends. Modeling mainly involved Markovian models, GAMs and time series models.
- In addition to this, I assisted with and reviewed other model implementations (e.g. for current accounts, savings and mortgages). I also piloted new tools, created knowledge-bases, worked on automation and performed exploratory work to identify areas of efficiency (e.g. with Spark, Rcpp, Docker). In some cases, I reduced execution times from days to seconds.

Sciemus London, UK

DATA SCIENTIST + STATISTICIAN

Sep. 2017 - Dec. 2018

- · Was involved with building and maintaining end-to-end stats/tech related solutions, particularly in the space, weather and power business areas. This involved data cleaning, analysis, modeling, documentation, web-app development and deployment (using Shiny, Dash, Flask), basic server and database maintenance (using postgres), research and development of infrastructure (e.g. aiding development of a distributed computing cluster on AWS).
- On the modeling side, I've worked with GLMs for assessing risk probabilities, Hidden Markov models & sparse Gaussian Processes to model rates based on large-scale weather data, importance sampling & subset simulation to accelerate simulations and other ideas in Bayesian statistics.