

3

Master Humanités Numériques

Machine Learning pour les données textuelles Apprentissage automatique pour le texte

> Julien Velcin Laboratoire ERIC – Université Lyon 2 http://eric.univ-lyon2.fr/jvelcin

AUTOMATIQUE

Objectifs du « machine learning »

- L'objectif principal consiste à apprendre automatiquement à généraliser à partir d'exemples observés afin de pouvoir faire de l'inférence sur de nouveaux exemples jamais été observé auparavant (principe inductif, opposé à celui de déduction)
- Différentes familles d'algorithmes :
 - apprentissage par cœur (pas de généralisation)
 - apprentissage par cas (faibles capacités de généralisation)
 - apprentissage par renforcement (principe essais-erreurs)
 - classification non supervisée / catégorisation (clustering)
 - classification supervisée, régression
 - algorithmes génératifs (apprendre à générer des données)

Apprentissage automatique pour le texte

RAPPEL SUR L'APPRENTISSAGE

2

Positionnement vis-à-vis de l'IA

Apprentissage de représentations

Deep Learning, by I. Goodfellow, Y. Bengio and A. Courville, MIT Press, 2016: http://www.deeplearningbook.org

L'apprentissage automatique (ici, classification)

Exemple de la classification pour la reconnaissance d'objets dans des images

6

8

Robots conversationnels

7 https://www.pandorabots.com/mitsuku/

Classer des documents

- Par exemple détecter la polarité d'un tweet ou classer un article dans une thématique déterminée (ex. sport ou économie)
- De (très) nombreux algorithmes existent :

Procédure de traitement des données

9

Traduire une langue en une autre

Réseaux de neurones profonds (deep learning)

Quelques précautions à prendre

- Bien définir la tâche qu'on souhaite résoudre
- Identifier les données qui vont permettre à la machine d'apprendre (attention aux biais!)
- Préparer les données à l'apprentissage
- Apprendre à bien généraliser : méthodologie de l'apprentissage automatique et sur-apprentissage
- Souvent plusieurs critères : précision des résultats, interprétabilité, consommation et empreinte écologique...

Apprentissage automatique pour le texte

RÉSEAUX DE NEURONES ARTIFICIELS

13 14

Un panorama très riche

- Modèles simples basés sur le BoW
 - Multi-layer Perceptron (MLP)
- Modèles séquentiels avec mémoire
 - Recurrent Neural Network (RNN)
 - Long Short-Term Memory (LSTM)
- Modèles basés sur l'attention
 - Bidirectional Encoder Représentations from Transformers (BERT)

Réseaux de Neurones (RN) (Artificial Neuronal Networds -ANN-)

- Les principaux réseaux se distinguent par I 'organisation du graphe
 - = architecture ou topologie du RN:
 - o en couches
 - o complet...
- Complexité du RN:
 - o nombre de neurones
- Le type des neurones :
 - o leurs fonctions de transition

De façon très schématique, un **neurone biologique** est une cellule qui se caractérise par :

- des synapses = les points de connexion avec les autres neurones,
- des dendrites = les « entrées » du neurone,
- I 'axone = la « sortie » du neurone vers d 'autres neurones.
- le noyau qui active la sortie en fonction des stimuli présentés en entrée (dendrites).

17

19

Fonction d'activation

- Les premiers modèles de neurones étaient caractérisés par une fonction d'activation à seuil simple (ie. binaire : 0=inactif ; 1=actif).
- Le déclenchement de l'activité intervient si la somme des excitations dépasse un certain **seuil** (*threshold*) propre au neurone.
- Fonction à seuil :
 - o f(x) = 1, si x > SEUIL.
 - o f(x) = 0, sinon.

Le modèle de McCulloch et Pitts

Plusieurs types de fonctions d'activation

- o f(x) = 1, si x > SEUIL,
- o f(x) = 0 sinon.

fonction linéaire bornée :

- o f(x) = -1 ou +1 au-delà des bornes,
- o f(x) = c.x sinon.

fonction sigmoïde exponentielle :

o f(x) = 1/(1+EXP(-x))

fonction sigmoïde tangentielle :

o
$$f(x) = TANH(x) = \frac{e^x - 1}{e^x + 1}$$

Exemple d'un neurone à 2 entrées

Règle d'activation :
 Si P=w₁.x₁+w₂.x₂ > q, alors y=1
 Si P=w₁.x₁+w₂.x₂ ≤ q, alors y=0

• Géométriquement :

Cela signifie qu'on a divisé le plan en deux régions par une droite d'équation $w_1.x_1 + w_2.x_2 - q = 0$.

21

Comparaison avec les opérateurs logiques

L'une des motivations initiales était de pouvoir représenter des fonctions logiques :

Biais w₀

Poids fictif permettant de définir le seuil :

Architecture des réseaux de neurones

Aujourd'hui

Application des réseaux de neurones par connexions directes (1)

• Classification binaire:

25

Application des réseaux de neurones par connexions directes (2)

• Classification en *k* classes :

Application des réseaux de neurones par connexions directes (3)

• Régression :

Le perceptron [Rosenblatt,1960]

- Architecture: 2 couches
 - o entrées (la rétine)
 - o sorties

29

Fonctionnement du perceptron

- $x_i \in \{0,1\}$ sortie de la ième cellule de la rétine.
- w_{ij} : intensité de connexion entre la ième cellule et le jème neurone.
- f(in_i): activation de la cellule j.
- Règle d'activation : $y_i = 1$ si $in_i > \theta$, 0 sinon.
- Objectif de l'apprentissage : chercher les poids w_{ij} t.q. les entrées se traduisent par les sorties.

Le perceptron

Objectif : association de **formes** présentées en entrée à des réponses.

Exemple \$ rétine 4 x 6 éléments (image d'une lettre) ; en

30

Apprentissage avec le perceptron

• Apprentissage supervisé :

Pour apprendre, le perceptron doit savoir qu'il a commis une **erreur** et il doit connaître la réponse qu'il aurait dû donner (intervention du professeur/oracle).

• La règle est locale :

Une cellule apprend sans avoir besoin de la réponse des autres cellules.

• Règle d'apprentissage :

Si la cellule de sortie est active quand elle devait être inactive, alors elle diminue l'intensité des synapses correspondant aux cellules de la rétine qui sont actives (ou inversement).

Minimiser l'erreur empirique

Optimisation de l'erreur :

$$E = \frac{1}{2}Err^{2} = \frac{1}{2}(\Phi(x) - f_{W}(x))^{2}$$

• Utilisation de la descente du gradient :

$$\frac{\partial E}{\partial W_{j}} = Err \times \frac{\partial Err}{\partial W_{j}} = Err \times \frac{\partial}{\partial W_{j}} \left(\Phi(x) - f(\sum_{j=0}^{k} W_{j}.x_{j}) \right)$$
$$\frac{\partial E}{\partial W_{j}} = -Err \times f'(in) \times x_{j}$$

33

Algorithme du perceptron

function Perceptron-learning (examples E, network N, λ) **Input**: E is a set of examples $\{(e_1, \Phi(e_1)), (e_2, \Phi(e_2)), ..., (e_n, \Phi(e_n))\}$ N is a perceptron with weights w_{ii}, i=0..k, j=1...p and activation function f Repeat

for each e in E do for each j in {1...k} do

$$in \leftarrow \sum_{i=0}^{k} w_{ij} x_{i}(e)$$

$$err \leftarrow \Phi_{j}(e) - f(in)$$

$$w_{j} \leftarrow w_{j} + \lambda \times err \times f'(in) \times x_{i}(e)$$

until some stopping criterion is satisfied return new hypothesis W

Règle de Widrow-Hoff

- lacksquare \mathcal{X}_i : 0 ou 1, valeur de la sortie de i $^{\mathsf{ieme}}$ cellule de la rétine,

- \mathcal{Y}_j : réponse de la jème cellule de la sortie (0 ou 1), i_j : réponse théorique, idéale de la sortie (cf. fonction Φ), $\lambda \in [0,1]$: constante d'apprentissage (« pas »).

34

Algorithme du perceptron

Cas d'une fonction à seuil

function Perceptron-learning (examples E, network N, λ) **Input**: E is a set of examples $\{(e_1, \Phi(e_1)), (e_2, \Phi(e_2)), (e_n, \Phi(e_n))\}$ N is a perceptron with weights w_{ii}, i=0..k, j=1...p and activation function f Repeat

for each e in E do for each j in {1...k} do

until some stopping criterion is satisfied return new hypothesis W

Séparabilité linéaire (1)

- Le perceptron ne peut apprendre que si les catégories sont **linéairement séparables**.
- **Exemple** § apprentissage de la fonction XOR :

Xı	X ₂	Réponse
0	0	0
1	0	1
0	1	1
1	1	0

37

39

• On veut séparer les • des ○.

Séparabilité linéaire (2)

X ₁	X ₂	Réponse
0	0	0
1	0	1
0	1	1
1	1	0

• Soit un perceptron à deux cellules :

$$(1,0) \Rightarrow 1: 1^*w_1 + 0^*w_2 = 1 \Rightarrow w_1 = 1$$

$$(0,1) \Rightarrow 1: 0^*w_1 + 1^*w_2 = 1 \Rightarrow w_2 = 1$$

$$(1,1) \Rightarrow 0: 1^*w_1 + 1^*w_2 = 0 \Rightarrow ???$$

→ Il est impossible de trouver des valeurs de *W_i* pour apprendre la fonction XOR...

Séparabilité linéaire (3)

mais...

• On peut séparer les configurations si on utilise plus d'entrées au perceptron :

Analyse du perceptron (1)

Analyse du perceptron (2)

Analyse du perceptron (3)

41 42

Analyse du perceptron (4)

Limitations et réseaux multi-couches

- Les modèles précédents définissent des **modèles linéaires** avec certaines limites.
- Le perceptron multicouche (*multilayer perceptron*) est une généralisation de ces modèles :
 - en régression il permet de traiter les cas non linéaires de régression
 - en classification, il permet de déterminer des fonctions de décision non linéaire permettant de résoudre le problème "XOR" précédent par exemple
- Il consiste en l'ajout de couches de neurones dites cachées entre les données en entrée et les données en sortie.

Les réseaux multicouches

Les réseaux feed-forward

http://playground.tensorflow.org/

45

Retour sur le XOR

• On peut donc apprendre la fonction XOR à l'aide d'un réseau à 1 couche cachée.

Réseau et apprentissage

$$y = f(w_{3,5}.a_3 + w_{4,5}.a_4)$$

$$y = f(w_{3,5}.f(w_{1,3}.a_1 + w_{2,3}.a_2) + w_{4,5}.f(w_{1,4}.a_1 + w_{2,4}.a_2))$$

Posons $a_1=x_1$ et $a_2=x_2$, $\langle x_1,x_2\rangle$ étant le vecteur d'entrée.

Alors:
$$y = f_W(a_1, a_2) = f_W(x_1, x_2)$$

 \rightarrow Le réseau calcule une fonction $f_w(\vec{x})$

Modifier W équivaut à changer la fonction calculée.

Exemple de problème d'apprentissage

46

Etat C sortie

Règle d'apprentissage

 Algorithme de rétropropagation du gradient (back-propagation):

Propagation de l'erreur

- Nécessité de définir une quantité analogue à l'erreur Err, des neurones de la couche de sortie. D'où l'idée de la rétropropagation.
- Propagation de Δ_i :

$$\Delta_j = \mathbf{f'}(in_j) \sum_i w_{ji} \Delta_i$$

• Règle de mise à jour :

$$w_{kj} \leftarrow w_{kj} + (\lambda \times a_k \times \Delta_j)$$

51

Approche intuitive

cas du Single Layer Perceptron (SLP)

• Erreur des sorties : Err

• Erreur modifiée : $\Delta_i = Err_i \times f'(in_i)$ • Règle de mise à jour des poids : $w_{ii} \leftarrow w_{ii} + (\lambda \times a_i \times \Delta_i)$

> Pour la couche de sortie, la règle de mise à jour ne change pas.

Mais comment mettre à jour les poids antérieurs ?

Algorithme de rétropropagation

function BackProp-learning (examples E, network N) **Input**: E is a set of examples $\{(e_1, \Phi(e_1)), (e_2, \Phi(e_2)), (e_n, \Phi(e_n))\}$ N is a perceptron with L layers, weights W and activation function f Repeat

for each e in E do

 a_k

for each node j in the input layer **do** $a_i \leftarrow x_i[e]$

 $in_i \leftarrow \sum_i w_{ii} a_i$ for I=2 to L do $a_i \leftarrow f(in_i)$

for each node i in the output layer do

 $\Delta_i \leftarrow f'(in_i) \times (\Phi_i[e] - a_i)$

for I=L-1 to 1 do

for each node j in layer I do

 $\begin{array}{c} \Delta_j \leftarrow \mathbf{f} \; \text{'}(in_j) \! \sum_i w_{ji} \Delta_i \\ \text{for each node i in layer I+1 do} \end{array}$

 $w_{ji} \xleftarrow{\cdot} w_{ji} + (\lambda \times a_j \times \Delta_i)$ until some stopping criterion is satisfied return new hypothesis W

Algorithme de rétropropagation

Quelques remarques

- « Pas » d'apprentissage : λ
 - o trop petit: convergence lente vers la solution,
 - o trop grand: risque d'oscillation.
- Heuristiques courantes :
 - o diminuer le pas au fur et à mesure
 - o Momentum

etc.

 Un ANN avec couches cachées est capable d'approximer toute fonction booléenne existante, pourvu que l'on fixe convenablement le nombre de neurones dans la couche cachée.

Avantages des ANN

- Parallélisme: le principe et le potentiel sont clairement affichés. De nouveaux formalismes et les bénéfices à en tirer restent à étudier...
- Capacité d'adaptation : possibilités d'auto-organisation.
- Capacités de généralisation : parfois spectaculaires, notamment en reconnaissance des formes sur les images et sur le texte (mais pas seulement !)
- Simplicité de mise en oeuvre pour de nombreux problèmes.
- Intérêt général dans les problèmes pour lesquels on connaît **peu d'informations** *a priori*.

53 54

Limitations

- **Performances**: ces algorithmes demandent beaucoup de ressources
- Aspect « boîte noire » : pouvoir explicatif souvent très limité
- Choix de l'architecture du réseau (hyperparamètres)
- Problème d'optimisation complexe (taille des espaces de recherche) et difficulter de trouver l'optimum global

Des réseaux de plus en plus profonds

 $\nabla f(x)$

Direction du gradient f'(x) $\nabla f(x)$

f(x)

58

Minimum du coût (global)

 \boldsymbol{x}

Problème des optima locaux

Pour conclure

- Les ANN sont aujourd'hui la base du deep learning utilisé dans de nombreuses applications en IA :
 - reconnaissance d'objets dans des images / vidéo
 - traduction automatique
 - aide à la programmation
 - prédiction de la structure 3D de protéines
 - jeux de société et jeux vidéo
 - génération automatique d'images, de musique, de texte...