制御工学Ⅱ(第11回 2019年12月9日)、

学籍番号 🔭

伝達関数が不明な制御要素のステップ応答波形が下図のように得られた. 波形から制御要素の伝達関 数を推定して、立ち上がり時間T、遅れ時間T ψ 整定時間Tを求めよ.

推定:一次逐本零率、

1)(t): k(1-e-t)
(\$\frac{1}{2}\tau_{1}\tau_{1}\tau_{2}\tau_{1}

$$\begin{cases}
T_r = 2.20T = 2.2 \times 2.0 = 4.40
\end{cases}$$

$$T_d = 0.69T = 0.69 \times 2.0 = 1.38$$

$$T_s = 3T = 3 \times 2.0 = 6.0$$

$$(T_s = \frac{2}{5} = \frac{2}{5} \times \frac{2}{5} \frac{$$

T=1.4407".

Ajla G(ju) = K

- のりうつのなきから、 スたいかかをうは形に 排练化儿
- 回振幅 0.63 压模探视(,
- 3. 0,0 #37 tote 2350 晓放T
- (9) Tr, Td, Ts Settentia 化人口部集