专题5-核心初始化

一、异常向量表

1.1、异常定义

异常由内部环内部来源产生,以使处理器处理事件,如外部产生的中断或尝试执行未定义的指令。 在处理异常之前的处理器状态通常被保留,以便在异常例程完成时可以恢复原始程序。 同时可以出现不止一个异常。

ARM架构支持七种类型的异常。表A2-4列出了用于处理每种类型的异常类型和处理器模式。当发生异常时,强制执行从与异常类型相对应的固定内存地址。这些固定地址称为异常向量。

Table A2-4 Exception processing modes

Exception type	Mode	VEa	Normal address	High vector address
Reset	Supervisor		0×00000000	0xFFFF0000
Undefined instructions	Undefined		0×00000004	0xFFFF0004
Software interrupt (SWI)	Supervisor		0×00000008	0xFFFF0008
Prefetch Abort (instruction fetch memory abort)	Abort		0×0000000C	0xFFFF000C
Data Abort (data access memory abort)	Abort		0x00000010	0xFFFF0010
IRQ (interrupt)	IRQ	0	0x00000018	0xFFFF0018
		1	IMPLEMENTATIO	N DEFINED
FIQ (fast interrupt)	FIQ	0	0x0000001C	0xFFFF001C
		1	IMPLEMENTATIO	N DEFINED

a. VE = vectored interrupt enable (CP15 control); RAZ when not implemented.

1.2、代码编写

1.2.1、start.S

```
4 b reset
5 Idr pc, _undifined_instrution
6
7
8 _undifined_instrution: .word undifined_intruction
9
10
11
12 undifined_intruction:
13 nop
```

使用一个内存存储单元异常处理程序的地址,使用LDR装载而不是伪指令来跳转到异常处理程序。

1.2.2 gboot.lds

```
1 OUTPUT ARCH(arm)
2 ENTRY( start)
3 SECTIONS{
      . = 0x50008000;
4
5
6
      . = ALIGN(4);
7
      .text:
8
9
           start.o(.text)
10
            *(.text)
11
12
       . = ALIGN(4);
13
14
       .data:
```

```
15
16
          *(.data)
17
18
19
    . = ALIGN(4);
20 bss_start = .;
21
     .bss:
22
     {
23
          *(.bss)
24
25
      bss_end = .;
26
27 }
   1.2.3、Makefile
1 all: start.o
      arm-linux-ld -Tgboot.lds -o gboot.elf $^
3
      arm-linux-objcopy -O binary gboot.elf gboot.bin
4
5 %.o: %.S
    arm-linux-gcc -g -c $^
6
7
8 $.o: %.c
   arm-linux-gcc -g -c $^
   1.2.4、210头文件的添加
     V210会对BL1进行校验(根据头文件里的BL1大小信息和实际信息进行校验)
./mkv210_image led.bin 210.bin
二、设置SVC32模式
 通过汇编操作CPSR改变工作模式。在设置SVC32模式的时候也禁止中断和快速中断。
42 reset:
43
      bl set svc
44
45 set_svc:
46 mrs r0, cpsr
47
   bic r0, r0, #0x1f
48 orr r0, r0, #0xd3
49 msr cpsr, r0
```

三、关闭看门狗

通过看门狗寄存器关闭看门狗复位功能。

34.4 SPECIAL FUNCTION REGISTER

34.4.1 MEMORY MAP

Register	Address	R/W	Description	Reset Value
WTCON	0x7E004000	R/W	Watchdog timer control register	0x8021
WTDAT	0x7E004004	R/W	Watchdog timer data register	0x8000
WTCNT	0x7E004008	R/W	Watchdog timer count register	0x8000
WTCLRINT	0x7E00400C	W	Watchdog timer interrupt clear register	-

Register	Address	R/W	Description	Reset Value
WTCON	0x7E004000	R/W	Watchdog timer control register	0x8021

WTCON	Bit	Description	Initial State
Prescaler value	[15:8]	Prescaler value. The valid range is from 0 to (2 ⁸ -1).	0x80
Reserved	[7:6]	Reserved. These two bits must be 00 in normal operation.	00
Watchdog timer	[5]	Enable or disable bit of Watchdog timer. 0 = Disable 1 = Enable	1
Clock select	[4:3]	Determine the clock division factor. 00: 16	00
		10: 64 11 : 128	
Interrupt generation	[2]	Enable or disable bit of the interrupt. 0 = Disable 1 = Enable	0
Reserved	[1]	Reserved. This bit must be 0 in normal operation.	0
Reset enable/disable	[0]	Enable or disable bit of Watchdog timer output for reset signal. 1: Assert reset signal of the S3C6410 at watchdog time-out 0: Disable the reset function of the watchdog timer.	1

53 #define WTCON 0x7E004000

54 disable watchdog:

55 Idr r0, =WTCON

56 mov r1, #0x0

57 str r1, [r0]

58 mov pc, Ir

四、关闭中断

因为前面在程序状态寄存器已经关闭了总的IRQ和FIQ,但对于独立的中断,也可以单独使能,所以通过 Interrupt Enable Clear Register来禁止中断(操作掩码)。

12.6.6 INTERRUPT ENABLE CLEAR, VICINTENCLEAR

REGISTER	ADDRESS	R/W	DESCRIPTION	RESET VALUE
VIC0INTENCLEAR	0x7120_0014	W	Interrupt Enable Clear Register (VIC0)	-
VIC1INTENCLEAR	0x7130_0014	W	Interrupt Enable Clear Register (VIC1)	-

Name	BIT	DESCRIPTION	RESET VALUE
IntEnable Clear	[31:0]	Clears corresponding bits in the VICINTENABLE Register:	
		0 = no effect	_
		1 = interrupt disabled in VICINTENABLE Register.	-
		There is one bit of the register for each interrupt source.	

61 #define ELFIN VICO BASE ADDR (0x71200000)

62 #define ELFIN VIC1 BASE ADDR (0x71300000)

63 disable_interrupt:

64 Idr r0, =ELFIN_VIC0_BASE_ADDR

65 | Idr r1, =ELFIN_VIC1_BASE_ADDR

66 mvn r3, 0x0

67 str r3, [r0, #0x14]

68 str r3, [r1, #0x14]

69 mov pc, lr

五、关闭MMU与Cache

5.1、MMU定义与作用

MMU是Memory Management Unit的缩写,中文名是内存管理单元,它是中央处理器(CPU)中用来管理虚拟存储器、物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件机制的内存访问授权,多用户多进程操作系统。

5.2、Cache的定义与作用

慢速的内存交互数据来提高数据的访问速率。

5.3、关闭MMU和Cache操作

5.3.1、刷新 I/D cache

74 flush_cache:

75 mov r0, #0

76 mcr p15, 0, r0, c7, c7, 0

77 mcr p15, 0, r0, c8, c7, 0

78 mov pc, Ir

5.3.2、关闭MMU和Cache

Table 3-39 Control Register bit functions (continued)

Bits	Field name	Access	Function
[2]	C bit	Banked	Enables level one data cache. 0 = Data cache disabled, reset value. 1 = Data cache enabled.
[1]	A bit	Banked	Enables strict alignment of data to detect alignment faults in data accesses. The A bit setting takes priority over the U bit. 0 = Strict alignment fault checking disabled, reset value. 1 = Strict alignment fault checking enabled.
[0]	M bit	Banked	Enables the MMU. 0 = MMU disabled, reset value. 1 = MMU enabled.

Attempts to read or write the Control Register from Secure or Non-secure User modes results in an Undefined exception.

Attempts to write to this register in Secure Privileged mode when **CP15SDISABLE** is HIGH result in an Undefined exception, see *TrustZone write access disable* on page 2-9.

Attempts to write Secure modify only bit in Non-secure privileged modes are ignored.

Attempts to read Secure modify only bits return the Secure bit value. Table 3-40 lists the actions that result from attempted access for each mode.

80 disable_mmu_cache:

- 81 mrc p15, 0, r0, c1, c0, 0
- 82 bic r0, r0, #0x00000007
- 83 mcr p15, 0, r0, c1, c0, 0
- 84 mov pc, Ir