Multivariate Statistics

Lecture 10

Fudan University

1 The Density of the Wishart Distribution

- 1 The Density of the Wishart Distribution
- Properties of the Wishart Distribution

- 1 The Density of the Wishart Distribution
- Properties of the Wishart Distribution
- The Generalized Variance

- The Density of the Wishart Distribution
- Properties of the Wishart Distribution
- 3 The Generalized Variance
- 4 Distribution of the Set of Correlation Coefficients

- The Density of the Wishart Distribution
- Properties of the Wishart Distribution
- The Generalized Variance
- 4 Distribution of the Set of Correlation Coefficients
- 5 The Inverted Wishart Distribution

- The Density of the Wishart Distribution
- 2 Properties of the Wishart Distribution
- 3 The Generalized Variance
- 4 Distribution of the Set of Correlation Coefficients
- 5 The Inverted Wishart Distribution

We shall obtain the distribution of

$$\mathbf{A} = \sum_{lpha=1}^N (\mathbf{x}_lpha - ar{\mathbf{x}}) (\mathbf{x}_lpha - ar{\mathbf{x}})^ op,$$

where $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent, each with the distribution $\mathcal{N}_p(\mu, \mathbf{\Sigma})$ and N > p.

We have shown that **A** is distributed as $\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$ where n=N-1 and $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ are independent, each with the distribution $\mathcal{N}_{p}(\mathbf{0}, \mathbf{\Sigma})$.

We shall show that the density of **A** for **A** positive definite is

$$\frac{\left(\det(\boldsymbol{\mathsf{A}})\right)^{\frac{n-p-1}{2}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\boldsymbol{\Sigma}^{-1}\boldsymbol{\mathsf{A}}\right)\right)}{2^{\frac{np}{2}}\pi^{\frac{p(p-1)}{4}}\left(\det(\boldsymbol{\Sigma})\right)^{\frac{n}{2}}\prod_{i=1}^{p}\Gamma\left(\frac{1}{2}(n+1-i)\right)}.$$

We shall first consider the case of $\Sigma = I$. Let

$$egin{bmatrix} \left[\mathbf{z}_1 & \dots & \mathbf{z}_n
ight] = egin{bmatrix} \mathbf{v}_1^{ op} \ dots \ \mathbf{v}_p^{ op} \end{bmatrix} \in \mathbb{R}^{p imes n}.$$

Then the (i,j)-th elements of **A** can be written as

$$a_{ij} = \mathbf{v}_i^{\top} \mathbf{v}_j$$

and vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ are independently distributed according to $\mathcal{N}_n(\mathbf{0}, \mathbf{I})$.

Applying Gram-Schmidt orthogonalization on $\mathbf{v}_1, \dots, \mathbf{v}_p$.

- **1** Let $\mathbf{w}_1 = \mathbf{v}_1$ and $\mathbf{w}_i = \mathbf{v}_i \sum_{i=1}^{i-1} \frac{\mathbf{w}_j^{\top} \mathbf{v}_i}{\|\mathbf{w}_j\|_2^2} \cdot \mathbf{w}_j$ for i = 2, ..., p.
- ② We can prove by induction that \mathbf{w}_k is orthogonal to \mathbf{w}_i for k < i.
- 3 We can show that $\Pr(\|\mathbf{w}_i\|_2 = 0) = \Pr(\operatorname{rank}(\mathbf{A}) < p) = 0$.

Define the $p \times p$ lower triangular matrix T $(t_{ij} = 0 \text{ for } i < j)$ with

$$egin{aligned} t_{ii} &= \|\mathbf{w}_i\|_2 & ext{for } i = 1, \dots, p; \ t_{ij} &= rac{\mathbf{w}_j^{ op} \mathbf{v}_i}{\|\mathbf{w}_i\|_2} & ext{for } j = 1, \dots, i-1, \quad i = 2, \dots, p. \end{aligned}$$

Then we have

$$\mathbf{v}_i = \sum_{j=1}^i \frac{t_{ij} \mathbf{w}_j}{\|\mathbf{w}_j\|_2}, \quad \begin{bmatrix} | & & | \\ \mathbf{v}_1 & \dots & \mathbf{v}_p \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|_2} & \dots & \frac{\mathbf{w}_p}{\|\mathbf{w}_p\|_2} \end{bmatrix} \mathbf{T}^\top \quad \text{and} \quad \mathbf{A} = \mathbf{T}\mathbf{T}^\top.$$

The formula

$$\mathbf{v}_i = \sum_{j=1}^i rac{t_{ij}}{\left\|\mathbf{w}_j
ight\|_2} \cdot \mathbf{w}_j$$

means t_{ij} for $j=1,\ldots,i-1$ are the first i-1 coordinates of \mathbf{v}_i in the coordinate system with $\mathbf{w}_1,\ldots,\mathbf{w}_{i-1}$.

The sum of the other n - i + 1 coordinates squared is

$$\|\mathbf{v}_i\|_2^2 - \sum_{i=1}^{i-1} t_{ij}^2 = t_{ii}^2 = \|\mathbf{w}_i\|_2^2.$$

There exist $\mathbf{w}_i', \dots, \mathbf{w}_n'$ and t_{ii}', \dots, t_{in}' such that

$$\mathbf{v}_i = \sum_{j=1}^{i-1} \frac{t_{ij}}{\|\mathbf{w}_j\|_2} \cdot \mathbf{w}_j + \sum_{j=i}^{n} \frac{t'_{ij}}{\|\mathbf{w}_j'\|} \cdot \mathbf{w}_j' = \mathbf{W}_i \mathbf{t}_i'$$

where

$$\mathbf{t}_i' = \begin{bmatrix} t_{i1} \\ \vdots \\ t_{ii-1} \\ t_{ii}' \\ \vdots \\ t_{in}' \end{bmatrix} \text{ and } \mathbf{W}_i = \begin{bmatrix} \frac{1}{\|\mathbf{w}_1\|} & \dots & \frac{1}{\|\mathbf{w}_{i-1}\|} & \frac{\mathbf{w}_i'}{\|\mathbf{w}_i'\|} & \dots & \frac{\mathbf{w}_n'}{\|\mathbf{w}_n'\|} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

is orthogonal. Then we have $\mathbf{t}_i' = \mathbf{W}_i^{\top} \mathbf{v}_i$.

Lemma 1

Conditional on $\mathbf{w}_1, \ldots, \mathbf{w}_{i-1}$ (or equivalently on $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}$), then random variables t_{i1}, \ldots, t_{ii-1} are independently distributed and t_{ij} is distributed according to $\mathcal{N}(0,1)$ for i>j; and t_{ii}^2 has the χ^2 -distribution with n-i+1 degrees of freedom.

The sketch of the proof:

- **①** Conditional on $\mathbf{w}_1, \dots, \mathbf{w}_{i-1}$, the matrix \mathbf{W}_i is fixed.
- ② We have $\mathbf{t}_i' = \mathbf{W}_i^{\top} \mathbf{v}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ since $\mathbf{v}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\mathbf{W}^{\top} \mathbf{W} = \mathbf{I}$.
- **3** We have $t_{ii}^2 = \|\mathbf{v}_i\|_2^2 \sum_{j=1}^{i-1} t_{ij}^2 = \sum_{j=i}^n t_{ij}'^2$, where each t_{ij}' are independently distributed according to $\mathcal{N}(0,1)$ for $j=i,\ldots,n$.

Since the conditional distribution of t_{i1}, \ldots, t_{ii} does not depend on $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}$, they are distributed independently of $t_{11}, t_{21}, t_{22}, \ldots, t_{i-1,i-1}$.

Corollary 1

Let $\mathbf{z}_1, \dots, \mathbf{z}_n$ be independently distributed, each according to $\mathcal{N}_p(\mathbf{0}, \mathbf{I})$, where $n \geq p$; let

$$\mathbf{A} = \sum_{lpha=1}^n \mathbf{z}_lpha \mathbf{z}_lpha^ op = \mathbf{T} \mathbf{T}^ op,$$

where $t_{ij}=0$ for i< j, and $t_{ii}>0$ for $i=1,\ldots,p$. Then $t_{11},t_{21},\ldots,t_{pp}$ are independently distributed; t_{ij} is distributed according to $\mathcal{N}(0,1)$ for i>j; and t_{ii}^2 has the χ^2 -distribution with n-i+1 degrees of freedom.

Theorem 2

Let $\mathbf{z}_1, \dots, \mathbf{z}_n$ be independently distributed, each according to $\mathcal{N}_p(\mathbf{0}, \mathbf{\Sigma})$, where $n \geq p$; let

$$\mathbf{A} = \sum_{lpha=1}^n \mathbf{z}_{lpha} \mathbf{z}_{lpha}^{ op} = \mathbf{T}^* \mathbf{T}^{* op},$$

where $t_{ij}^* = 0$ for i < j, and $t_{ii}^* > 0$ for $i = 1, \dots, p$. Then the density of \mathbf{T}^* is

$$\frac{\prod_{i=1}^{p} t_{ii}^{*n-i} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{\Sigma}^{-1} \mathbf{T}^{*} \mathbf{T}^{*\top}\right)\right)}{2^{\frac{p(n-2)}{2}} \pi^{\frac{p(p-1)}{4}} \left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)}.$$

Theorem 3

Let $\mathbf{z}_1, \dots, \mathbf{z}_n$ be independently distributed, each according to $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, where $n \geq p$. Then the density of $\mathbf{A} = \sum_{\alpha=1}^n \mathbf{z}_\alpha \mathbf{z}_\alpha^\top$ is

$$\frac{\left(\det(\mathbf{A})\right)^{\frac{n-\rho-1}{2}}\exp\left(-\frac{1}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{A}\right)\right)}{2^{\frac{n\rho}{2}}\pi^{\frac{\rho(\rho-1)}{4}}\left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}}\prod_{i=1}^{\rho}\Gamma\left(\frac{1}{2}(n+1-i)\right)}$$
(1)

for **A** positive definite, and 0 otherwise.

Corollary 2

Let $\mathbf{x}_1,\ldots,\mathbf{x}_N$ be independently distributed, each according to $\mathcal{N}_p(\boldsymbol{\mu},\boldsymbol{\Sigma})$, where N>p; Then the density of $\mathbf{A}=\sum_{\alpha=1}^N(\mathbf{x}_\alpha-\bar{\mathbf{x}})(\mathbf{x}_\alpha-\bar{\mathbf{x}})^{\top}$ is (1), where n=N-1 and $\mathbf{x}=\frac{1}{N}\sum_{\alpha=1}^N\mathbf{x}_\alpha$.

The multivariate gamma function is defined as

$$\Gamma_{\rho}(t) = \pi^{\frac{\rho(\rho-1)}{4}} \prod_{i=1}^{\rho} \Gamma\left(t - \frac{1}{2}(i-1)\right).$$

Then the Wishart density can be written as

$$\frac{\left(\text{det}(\boldsymbol{A})\right)^{\frac{n-\rho-1}{2}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\boldsymbol{\Sigma}^{-1}\boldsymbol{A}\right)\right)}{2^{\frac{n\rho}{2}}\left(\text{det}(\boldsymbol{\Sigma})\right)^{\frac{n}{2}}\Gamma_{p}\left(\frac{n}{2}\right)}.$$

We denote the density of the Wishart distribution as

$$w(\mathbf{A} \mid \mathbf{\Sigma}, n) = \frac{\left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}} \exp\left(-\frac{1}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{A}\right)\right)}{2^{\frac{np}{2}}\left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}}\Gamma_{p}\left(\frac{n}{2}\right)}$$

and the associated distribution will be termed

$$\mathbf{A} \sim \mathcal{W}(\mathbf{\Sigma}, n)$$
.

If n < p, then **A** does not have a density, but its distribution is nevertheless defined, and we shall refer to it as $\mathcal{W}(\mathbf{\Sigma}, n)$.

Corollary 3

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be independently distributed, each according to $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where N > p. Then the distribution of $\mathbf{S} = \frac{1}{n} \sum_{\alpha=1}^N (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$ is $\mathcal{W}\left(\frac{1}{n}\boldsymbol{\Sigma}, n\right)$.

- The Density of the Wishart Distribution
- Properties of the Wishart Distribution
- 3 The Generalized Variance
- 4 Distribution of the Set of Correlation Coefficients
- 5 The Inverted Wishart Distribution

The Characteristic Function of the Wishart Distribution

Lemma 2

Given **B** positive semidefinite and **A** positive definite, there exists a non-singular matrix **F** such that $\mathbf{F}^{\top}\mathbf{BF} = \mathbf{D}$ and $\mathbf{F}^{\top}\mathbf{AF} = \mathbf{I}$, where **D** is diagonal.

Lemma 3

The characteristic function of chi-square distribution with the degree of freedom n is

$$\phi(t) = (1 - 2it)^{-\frac{n}{2}}.$$

The Characteristic Function of the Wishart Distribution

Theorem 4

If $\mathbf{z}_1,\ldots,\mathbf{z}_n$ are independent, each with distribution $\mathcal{N}(\mathbf{0},\mathbf{\Sigma})$, then the characteristic function of $a_{11},\ldots,a_{pp},\ 2a_{12},\ldots,2a_{p-1,p}$, where a_{ij} is the (i,j)-th element of

$$\mathbf{A} = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$$

is given by

$$\mathbb{E}\left[\exp(\mathrm{i}\,\mathrm{tr}(\mathbf{A}\mathbf{\Theta}))\right] = \left(\det\left(\mathbf{I} - 2\mathrm{i}\mathbf{\Theta}\mathbf{\Sigma}\right)\right)^{-\frac{n}{2}}.$$

The Sum of Wishart Matrices

If $\mathbf{A}_1, \dots, \mathbf{A}_q$ are independently distributed with $\mathbf{A}_i \sim \mathcal{W}(\mathbf{\Sigma}, n_i)$ for $i = 1, \dots, q$, then

$$\mathbf{A} = \sum_{i=1}^{q} \mathbf{A}_i \sim \mathcal{W}\left(\mathbf{\Sigma}, \sum_{i=1}^{q} n_i\right).$$

If p=1 and $\mathbf{\Sigma}=1$, then $\mathcal{W}(\mathbf{\Sigma},n)$ is a χ^2 -distribution with n degrees of freedom.

Certain Linear Transformation

We shall frequently make the transformation

$$\mathbf{A} = \mathbf{C}\mathbf{B}\mathbf{C}^{-1},$$

where $\mathbf{C} \in \mathbb{R}^{p \times p}$ is non-singular.

If the random matrix **A** is distributed according to $\mathcal{W}(\mathbf{\Sigma}, n)$, then **B** is distributed according to $\mathcal{W}(\mathbf{\Phi}, n)$ where

$$\mathbf{\Phi} = \mathbf{C}^{-1} \mathbf{\Sigma} \left(\mathbf{C}^{\top} \right)^{-1}.$$

Marginal Distributions

Let **A** and Σ be partitioned into q and p-q rows and columns,

$$\textbf{A} = \begin{bmatrix} \textbf{A}_{11} & \textbf{A}_{12} \\ \textbf{A}_{21} & \textbf{A}_{22} \end{bmatrix}, \qquad \textbf{\Sigma} = \begin{bmatrix} \textbf{\Sigma}_{11} & \textbf{\Sigma}_{12} \\ \textbf{\Sigma}_{21} & \textbf{\Sigma}_{22} \end{bmatrix}$$

If **A** is distributed according to $\mathcal{W}(\mathbf{\Sigma}, n)$, then \mathbf{A}_{11} is distributed according to $\mathcal{W}(\mathbf{\Sigma}_{11}, n)$.

Marginal Distributions

Let **A** and Σ be partitioned into p_1,\ldots,p_q rows and p_1,\ldots,p_q columns as

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1q} \ dots & \ddots & dots \ \mathbf{A}_{q1} & \cdots & \mathbf{A}_{qq} \end{bmatrix} \qquad ext{and} \qquad \mathbf{\Sigma} = egin{bmatrix} \mathbf{\Sigma}_{11} & \cdots & \mathbf{\Sigma}_{1q} \ dots & \ddots & dots \ \mathbf{\Sigma}_{q1} & \cdots & \mathbf{\Sigma}_{qq}. \end{bmatrix}$$

If $\Sigma = \mathbf{0}$ for $i \neq j$ and if $\mathbf{A} \sim \mathcal{W}(\Sigma, n)$, then $\mathbf{A}_{11}, \ldots, \mathbf{A}_{qq}$ are independently distributed and $\mathbf{A}_{jj} \sim \mathcal{W}(\Sigma_{jj}, n)$ for $j = 1, \ldots, q$.

Conditional Distributions

Let **A** and Σ be partitioned into q and p-q rows and columns as

$$\label{eq:local_problem} \textbf{A} = \begin{bmatrix} \textbf{A}_{11} & \textbf{A}_{12} \\ \textbf{A}_{21} & \textbf{A}_{22} \end{bmatrix} \qquad \text{and} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}.$$

If **A** is distributed according to $\mathcal{W}(\mathbf{\Sigma}, n)$, then the distribution of

$$\mathbf{A}_{11.2} = \mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}$$

is distributed according to $\mathcal{W}(\mathbf{\Sigma}_{11.2}, n)$, where $\mathbf{\Sigma}_{11.2} = \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}$ and $n \geq p - q$.

Follow the analysis in the section of partial correlation coefficient.

- The Density of the Wishart Distribution
- 2 Properties of the Wishart Distribution
- The Generalized Variance
- 4 Distribution of the Set of Correlation Coefficients
- 5 The Inverted Wishart Distribution

The Generalized Variance

The multivariate analog of the variance of the univariate distribution:

- Covariance matrix Σ.
- ② The scalar $det(\Sigma)$, which is called the generalized variance.

The generalized variance of the sample of vectors $\mathbf{x}_1, \dots, \mathbf{x}_N$ is

$$\det(\mathbf{S}) = \det\left(\frac{1}{\mathit{N}-1}\sum_{\alpha=1}^{\mathit{N}}(\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{\alpha})(\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{\alpha})^{\top}\right)$$

The Generalized Variance

Let

$$\mathbf{A} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \mathbf{ar{x}}_{lpha}) (\mathbf{x}_{lpha} - \mathbf{ar{x}}_{lpha})^{ op} = (N-1)\mathbf{S}$$

and

$$\mathbf{X} - \bar{\mathbf{x}} \mathbf{1} = \begin{bmatrix} | & | & | \\ \mathbf{x}_1 - \bar{\mathbf{x}} & \cdots & \mathbf{x}_N - \bar{\mathbf{x}} \\ | & | & \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_p^\top \end{bmatrix} = \mathbf{V} \in \mathbb{R}^{p \times N}.$$

The sample generalized variance comes p rows of $\mathbf{V} = \mathbf{X} - \bar{\mathbf{x}}\mathbf{1}$ as p vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ in N-dimensional space.

We have
$$\det(\mathbf{S}) = \det(\mathbf{A})/(N-1)^p = (\det(\mathbf{V}))^2/(N-1)^p$$
.

Consider that $\mathbf{x}_1,\ldots,\mathbf{x}_N$ are independently sampled from $\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$, then

$$\mathbf{A} = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$$

where $\mathbf{z}_1, \dots, \mathbf{z}_n$ are distributed independently according to $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, and n = N - 1.

Let $\mathbf{z}_{\alpha} = \mathbf{C}\mathbf{y}_{\alpha}$ for $\alpha = 1, ..., n$, where $\mathbf{C}\mathbf{C}^{\top} = \mathbf{\Sigma}$. Then $\mathbf{y}_1, ..., \mathbf{y}_n$ are independently distributed, each with distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$. Let

$$\mathsf{B} = \sum_{\alpha=1}^n \mathsf{y}_\alpha \mathsf{y}_\alpha^\top = \sum_{\alpha=1}^n \mathsf{C}^{-1} \mathsf{z}_\alpha \mathsf{z}_\alpha^\top (\mathsf{C}^{-1})^\top = \mathsf{C}^{-1} \mathsf{A} (\mathsf{C}^{-1})^\top,$$

then $\det(\mathbf{A}) = \det(\mathbf{C}) \det(\mathbf{B}) \det(\mathbf{C}^{\top}) = \det(\mathbf{B}) \det(\mathbf{\Sigma})$.

We have shown that $\det(\mathbf{B}) = \prod_{i=1}^p t_{ii}^2$, where $t_{11}^2, \ldots, t_{pp}^2$ are independent and t_{ii}^2 are distributed according to χ^2 -distribution with N-i degrees of freedom.

$$\det(\mathbf{S}) = \det(\mathbf{B})\det(\mathbf{\Sigma})/(N-1)^p$$
 equals to
$$\frac{\det(\mathbf{\Sigma})\prod_{i=1}^p t_{ii}^2}{(N-1)^p},$$

where t_{11}^2,\ldots,t_{pp}^2 are independent and t_{ii}^2 are distributed according to χ^2 -distribution with N-i degrees of freedom.

Let $\det(\mathbf{B})/n^p = \prod_{i=1}^p V_i(n)$, where $V_1(n), \ldots, V_p(n)$ are independently distributed and $nV_i(n)$ is distributed according to χ^2 -distribution with n-p+i degrees of freedom.

Since $nV_i(n)$ is distributed as $\sum_{\alpha=1}^{n-p+i} w_{\alpha}^2$ where the w_{α} are independent, each with distribution $\mathcal{N}(0,1)$, the central limit theorem states that

$$\frac{nV_i(n) - (n-p+i)}{\sqrt{2(n-p+i)}} = \sqrt{n} \cdot \frac{V_i(n) - 1 + \frac{p-1}{n}}{\sqrt{2}\sqrt{1 - \frac{p-i}{n}}}$$

is asymptotically distributed according to $\mathcal{N}(0,1)$.

Then $\sqrt{n}(V_i(n)-1)$ is asymptotically distributed according to $\mathcal{N}(0,2)$.

Theorem 5 [Serfling (1980), Section 3.3]

Let $\{\mathbf{u}(n)\}$ be a sequence of m-component random vectors and \mathbf{b} a fixed vector such that

$$\lim_{n\to\infty}\sqrt{n}(\mathbf{u}(n)-\mathbf{b})\sim\mathcal{N}(\mathbf{0},\mathsf{T}).$$

Let $\mathbf{f}(\mathbf{u})$ be a vector-valued function of \mathbf{u} such that each component $f_j(\mathbf{u})$ has a nonzero differential at $\mathbf{u} = \mathbf{b}$, and let

$$\frac{\partial f_j(\mathbf{u})}{\partial u_i}\Big|_{\mathbf{u}=\mathbf{b}}$$

be the (i,j)-th component of $\Phi_{\mathbf{b}}$. Then $\sqrt{n}(\mathbf{f}(\mathbf{u}(n)) - f(\mathbf{b}))$ has the limiting distribution $\mathcal{N}(\mathbf{0}, \Phi_{\mathbf{b}}^{\top} \mathbf{T} \Phi_{\mathbf{b}})$.

Let
$$\det(\mathbf{B})/n^p = f(\mathbf{u}) = \prod_{i=1}^p u_i$$
,

$$\mathbf{u}(n) = \begin{bmatrix} V_1(n) \\ \vdots \\ V_p(n) \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{T} = 2\mathbf{I}.$$

Then we have

$$\left. \frac{\partial f}{\partial u_i} \right|_{\mathbf{u} = \mathbf{b}} = 1, \quad \phi_{\mathbf{b}} = \mathbf{1} \quad \text{and} \quad \phi_{\mathbf{b}}^{\top} \mathbf{T} \phi_{\mathbf{b}} = 2 \rho,$$

which implies

$$\sqrt{n}\left(\frac{\det(\mathbf{S})}{\det(\mathbf{\Sigma})} - 1\right) = \sqrt{n}\left(\frac{\det(\mathbf{B})}{n^p} - 1\right)$$

is asymptotically distributed according to $\mathcal{N}(0,2p)$.

- The Density of the Wishart Distribution
- 2 Properties of the Wishart Distribution
- The Generalized Variance
- 4 Distribution of the Set of Correlation Coefficients
- 5 The Inverted Wishart Distribution

Distribution of the Set of Correlation Coefficients

Recall that

$$r_{ij}=\frac{a_{ij}}{\sqrt{a_{ii}}\sqrt{a_{jj}}}.$$

When the covariance matrix is diagonal, that is

$$\mathbf{\Sigma} = egin{bmatrix} \sigma_{11} & 0 & \cdots & 0 \ 0 & \sigma_{22} & \cdots & \cdots \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \sigma_{pp} \end{bmatrix} \quad ext{and} \quad ext{det}(\mathbf{\Sigma}) = \prod_{i=1}^p \sigma_{ii},$$

then the density of $\{r_{ij} : i < j, i, j = 1, ..., p\}$ is

$$\frac{\left(\Gamma\left(\frac{n}{2}\right)\right)^{p}\left(\det\left(\left[r_{ij}\right]_{ij}\right)\right)^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right)}.$$

Distribution of the Set of Correlation Coefficients

Sketch of the proof:

We consider the transformation

$$\begin{cases} a_{ij} = \sqrt{a_{ii}} \sqrt{a_{jj}} r_{ij} & i < j, \\ a_{ii} = a_{ii} & i = j, \end{cases}$$

which is from $\{r_{ij}: i < j, i, j = 1, ..., p\} \cup \{a_{ii}: i = 1, ..., p\}$ to $\{a_{ij}: i < j, i, j = 1, ..., p\} \cup \{a_{ii}: i = 1, ..., p\}.$

2 The joint density of $\{r_{ij}: i < j, i, j = 1, \dots, p\} \cup \{a_{ii}: i = 1, \dots, p\}$ is

$$\frac{\left(\det\left(\left[r_{ij}\right]_{ij}\right)\right)^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right)}\frac{\prod_{i=1}^{p}a_{ii}^{\frac{n}{2}-1}\exp\left(-\frac{a_{ii}}{2\sigma_{ii}}\right)}{\prod_{i=1}^{p}2^{\frac{n}{2}}\sigma_{ii}^{\frac{n}{2}}}.$$

Integrate out aii.

- The Density of the Wishart Distribution
- 2 Properties of the Wishart Distribution
- 3 The Generalized Variance
- 4 Distribution of the Set of Correlation Coefficients
- 5 The Inverted Wishart Distribution

The Inverted Wishart Distribution

If **A** has the distribution $\mathcal{W}(\mathbf{\Sigma}, m)$, then $\mathbf{B} = \mathbf{A}^{-1}$ has the density is

$$w^{-1}(\mathbf{B}\mid\mathbf{\Psi},m) = \frac{\left(\det(\mathbf{\Psi})\right)^{\frac{m}{2}}\left(\det(\mathbf{B})\right)^{-\frac{m+\rho+1}{2}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\mathbf{\Psi}\mathbf{B}^{-1}\right)\right)}{2^{\frac{m\rho}{2}}\Gamma_{p}\left(\frac{m}{2}\right)}.$$

for **B** positive definite and 0 elsewhere, where $\Psi = \Sigma^{-1}$.

- **1** We call **B** has the inverted Wishart distribution with m degrees of freedom and denote $\mathbf{B} \sim \mathcal{W}^{-1}(\Psi, m)$.
- ② We call Ψ the precision matrix or concentration matrix.
- **3** The derivation of $w^{-1}(\Psi, m)$ are based on the determinant for Jacobian of transformation $\mathbf{A} = \mathbf{B}^{-1}$ is $(\det(\mathbf{B}))^{-(p+1)}$.

The Inverted Wishart Distribution

If the posterior distribution $p(\theta \mid \mathbf{x})$ is in the same probability distribution family as the prior probability distribution $p(\theta)$, the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior.

Theorem 6

If **A** has the distribution $\mathcal{W}(\mathbf{\Sigma},n)$ and $\mathbf{\Sigma}$ has the a prior distribution $\mathcal{W}^{-1}(\mathbf{\Psi},m)$, then the conditional distribution of $\mathbf{\Sigma}$ given **A** is the inverted Wishart distribution $\mathcal{W}^{-1}(\mathbf{A}+\mathbf{\Psi},n+m)$.

Corollary 4

If $n\mathbf{S}$ has the distribution $\mathcal{W}(\mathbf{\Sigma},n)$ and $\mathbf{\Sigma}$ has the a prior distribution $\mathcal{W}^{-1}(\mathbf{\Psi},m)$, then the conditional distribution of $\mathbf{\Sigma}$ given \mathbf{S} is the inverted Wishart distribution $\mathcal{W}^{-1}(n\mathbf{S} + \mathbf{\Psi}, n+m)$.

The Inverted Wishart Distribution

Theorem 7

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be observations from $\mathcal{N}(\mu, \mathbf{\Sigma})$. Suppose μ and $\mathbf{\Sigma}$ have the a prior density

$$n\left(\mu \mid \nu, \frac{\mathbf{\Sigma}}{K}\right) \times w^{-1}(\mathbf{\Sigma} \mid \mathbf{\Psi}, m),$$

where n = N - 1. Then the posterior density of μ and Σ given

$$ar{\mathbf{x}} = rac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad ext{and} \quad \mathbf{S} = rac{1}{N-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - ar{\mathbf{x}}) (\mathbf{x}_{\alpha} - ar{\mathbf{x}})^{ op}$$

is

$$\textit{n}\left(\mu \; \Big| \; \frac{\textit{N}\bar{\mathbf{x}} + \textit{K}\nu}{\textit{N} + \textit{K}}, \frac{\mathbf{\Sigma}}{\textit{N} + \textit{K}}\right) \cdot \textit{w}^{-1}\left(\mathbf{\Sigma} \; | \; \mathbf{\Psi} + \textit{n}\mathbf{S} + \frac{\textit{N}\textit{K}(\bar{\mathbf{x}} - \nu)(\bar{\mathbf{x}} - \nu)^{\top}}{\textit{N} + \textit{K}}, \textit{N} + \textit{m}\right).$$