APPLIED MECHANISM DESIGN FOR SOCIAL GOOD

JOHN P DICKERSON

Lecture #11 - 3/3/2020

CMSC828M Tuesdays & Thursdays 2:00pm – 3:15pm

THIS CLASS: STACKELBERG & SECURITY GAMES

SIMULTANEOUS PLAY

Previously, assumed players would play simultaneously

- Two drivers simultaneously decide to go straight or divert
- Two prisoners simultaneously defect or cooperate
- Players simultaneously choose rock, paper, or scissors
- Etc ...

No knowledge of the other players' chosen actions

What if we allow sequential action selection ...?

LEADER-FOLLOWER GAMES

Heinrich von Stackelberg

Two players:

- The leader commits to acting in a specific way
- The follower observes the leader's mixed strategy

NE, iterated strict dominance

What is the Nash equilibrium ????????

- Social welfare: 2
- Utility to row player: 1

Row player = leader; what to do ????????

- Social welfare: 3
- Utility to row player: 2

Commit to "Bottom"					
0, 0	2, 1				

ASIDE: FIRST-MOVER ADVANTAGE (FMA)

From the econ side of things ...

- Leader is sometimes called the Market Leader
- Some advantage allows a firm to move first:
 - Technological breakthrough via R&D
 - Buying up all assets at low price before market adjusts

By committing to a strategy (some amount of production), can effectively force other players' hands.

Things we won't model:

 Significant cost of R&D, uncertainty over market demand, initial marketing costs, etc.

These can lead to Second-Mover Advantage

Atari vs Nintendo, MySpace (or earlier) vs Facebook

COMMITMENT AS AN EXTENSIVE-FORM GAME

For the case of committing to a pure strategy:

COMMITMENT TO MIXED STRATEGIES

What should Column do ????????

Sometimes also called a Stackelberg (mixed) strategy

COMMITMENT AS AN EXTENSIVE-FORM GAME...

For the case of committing to a mixed strategy:

- Economist: Just an extensive-form game ...
- Computer scientist: Infinite-size game! Representation matters

WHAT SHOULD THE LEADER COMMIT TO?

2-P Z-S

Special case: 2-player zero-sum normal-form games

Recall: Row player plays Minimax strategy

Minimizes the maximum expected utility to the Col

Doesn't matter who commits to what, when

Minimax strategies = Nash Equilibrium

= Stackelberg Equilibrium

(not the case for general games)

Polynomial time computation via LP – earlier lectures

WHAT SHOULD THE LEADER COMMIT TO?

Separate LP for every column c*:

maximize Σ_r p_r u_R(r, c*)

Row utility

s.t.

for all c, Σ_r p_r u_c(r, c*) $\geq \Sigma_r$ p_r u_c(r, c) Column optimality

$$\Sigma_r p_r = 1$$

for all r, $p_r \ge 0$

Distributional constraints

Choose strategy from LP with highest objective

RUNNING EXAMPLE

maximize 1x + 0y

s.t.

$$1x + 0y \ge 0x + 1y$$

$$x + y = 1$$

$$x \ge 0$$

maximize 3x + 2y

s.t.

$$0x + 1y \ge 1x + 0y$$

$$x + y = 1$$

$$x \ge 0$$

IS COMMITMENT ALWAYS GOOD FOR THE LEADER?

Yes, if we allow commitment to mixed strategies

Always weakly better to commit [von Stengel & Zamir, 2004]

What about only pure strategies?

Expected utility to Row by playing mixed Nash: ?????????

$$E_{R}[<1/3,1/3,1/3>]=0$$

Expected utility to Row by any pure commitment: ?????????

$$E_R[<1,0,0>] = -1$$

 $E_R[<0,1,0>] = -1$
 $E_R[<0,0,1>] = -1$

WHAT SHOULD THE LEADER COMMIT TO?

Bayesian 2-P G-S

Bayesian games: player *i* draws type θ_i from Θ

Special case: follower has only one type, leader has type θ

Like before, solve a separate LP for every column c*:

$$\begin{split} &\textit{maximize} \ \Sigma_{\theta} \, \pi(\theta) \ \Sigma_{r} \ p_{r,\theta} \ u_{R,\theta}(r,\,c^{*}) \\ &\textit{s.t.} \\ &\textit{for all } c, \ \Sigma_{\theta} \, \pi(\theta) \, \Sigma_{r} \ p_{r,\theta} \ u_{C}(r,\,c^{*}) \geq \Sigma_{\theta} \, \pi(\theta) \, \Sigma_{r} \ p_{r,\theta} \ u_{C}(r,\,c) \\ &\textit{for all } \theta, \ \Sigma_{r} \ p_{r,\theta} = 1 \\ &\textit{for all } r,\theta, \ p_{r,\theta} \geq 0 \end{split}$$

Choose strategy from LP with highest objective

WHAT SHOULD THE LEADER COMMIT TO?

So, we showed polynomial-time methods for:

- 2-Player, zero-sum
- 2-Player, general-sum
- 2-Player, general-sum, Bayesian with 1-type follower

In general, NP-hard to compute:

- 2-Player, general-sum, Bayesian with 1-type leader
 - Arguably more interesting ("I know my own type")
- 2-Player, general-sum, Bayesian general
- N-Player, for N > 2:
 - 1st player commits, N-1-Player leader-follower game, 2nd player commits, recurse until 2-Player leader-follower

STACKELBERG SECURITY GAMES

Leader-follower → **Defender-attacker**

- Defender is interested in protecting a set of targets
- Attacker wants to attack the targets

The defender is endowed with a set of resources

Resources protect the targets and prevent attacks

Utilities:

- Defender receives positive utility for preventing attacks, negative utility for "successful" attacks
- Attacker: positive utility for successful attacks, negative otherwise
- Not necessarily zero-sum

SECURITY GAMES: A FORMAL MODEL

Defined by a 3-tuple (N, U, M):

- N: set of n targets
- U: utilities associated with defender and attacker
- M: all subsets of targets that can be simultaneously defended by deployments of resources
 - A schedule $S \subseteq 2^N$ is the set of target defended by a single resource r
 - Assignment function A : R → 2^S is the set of all schedules a specific resource can support
- Then we have m pure strategies, assigning resources such that the union of their target coverage is in M
- Utility $u_{c,d}(i)$ and $u_{u,d}(i)$ for the defender when target i is attacked and is covered or defended, respectively

SIMPLE EXAMPLE

Targets	Defender	Attacker Type θ_1	Attacker Type θ_2
			-

i	u _{c,d} (i)	u _{u,d} (i)	u _{c,a} (i)	$\mathbf{u}_{u,a}(i)$	u _{c,a} (i)	u _{u,a} (i)
1	0	-1	0	+1	0	+1
2	0	-2	0	+5	0	+1

REAL-WORLD SECURITY GAMES

- Checkpoints at airports
- Patrol routes in harbors
- Scheduling Federal Air Marshalls
- Patrol routes for anti-poachers

Carnegie Mellon

Typically solve for strong Stackelberg Equilibria:

- Tie break in favor of the defender; always exists
- Can often "nudge" the adversary in practice

Two big practical problems: computation and uncertainty