23. 8. 2004

REC'D 15 OCT 2004

PCT

WIPO

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 8月12日

出 願 番 号 Application Number:

特願2003-207236

[ST. 10/C]:

W. Au

[JP2003-207236]

出 願 人
Applicant(s):

三井化学株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 9月30日

i) 11]

ページ: 1/E

【書類名】 特許願

【整理番号】 P0002510

【提出日】 平成15年 8月12日

【あて先】 特許庁長官 殿

【発明者】

【住所又は居所】 千葉県袖ヶ浦市長浦580-32 三井化学株式会社内

【氏名】 山本 祐五

【発明者】

【住所又は居所】 千葉県袖ヶ浦市長浦580-32 三井化学株式会社内

【氏名】 水田 康司

【発明者】

【住所又は居所】 千葉県袖ヶ浦市長浦580-32 三井化学株式会社内

【氏名】 伊東 祐一

【特許出願人】

【識別番号】 000005887

【住所又は居所】 東京都千代田区霞が関三丁目2番5号

【氏名又は名称】 三井化学株式会社

【代表者】 中西 宏幸

【手数料の表示】

【予納台帳番号】 005278

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】明細書

【発明の名称】光硬化型樹脂組成物

【特許請求の範囲】

【請求項1】

- (A) 環状ポリオキシエチレン化合物
- (B) カチオン重合性化合物
- (C) 光カチオン開始剤

を含有することを特徴とする光硬化型樹脂組成物。

【請求項2】

前記光硬化性樹脂組成物の(A)環状ポリオキシエチレン化合物が、光硬化型樹脂組成物の合計を100重量%としたとき、0.1~10重量%の割合で含まれることを特徴とする請求項1に記載の光硬化型樹脂組成物。

【請求項3】

前記光硬化型樹脂組成物の(B)カチオン重合性化合物が(B-1)エポキシ基を有する化合物及び/または(B-2)オキセタン基を有する化合物であることを特徴とする請求項1または請求項2に記載の光硬化型樹脂組成物。

【請求項4】

前記光硬化性樹脂組成物が(D)シランカップリング剤を含有することを特徴とする請求項1ないし請求項3のいずれかに記載の光硬化型樹脂組成物。

【請求項5】

前記光硬化性樹脂組成物が(E)微粒子無機フィラーを含有することを特徴とする請求項1ないし請求項4のいずれかに記載の光硬化型樹脂組成物。

【請求項6】

光硬化型樹脂組成物の合計を100重量%とするとき、

- (A) 環状ポリオキシエチレン化合物 0.1~10 重量%、
- (B) カチオン重合性化合物 1~97.7 重量%、
- (C) 光カチオン開始剤 0.1~10 重量%、
- (D) シランカップリング剤 0.1~30 重量%、
- (E) 微粒子無機フィラー 1~90 重量%、

を含有する請求項1ないし請求項5に記載の光硬化型樹脂組成物。

【請求項7】

請求項1ないし請求項6のいずれかの光硬化型樹脂組成物を含有していること を特徴とするエレクトロルミネッセンスディスプレイ用シール材。

【請求項8】

請求項7に記載のシール材を用いたエレクトロルミネッセンスディスプレイのシール方法。

【請求項9】

請求項8に記載のシール方法で得られるエレクトロルミネッセンスディスプレイ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、(A)環状ポリオキシエチレン化合物、(B)カチオン重合性化合物、(C)光カチオン開始剤を含有し、耐透湿性、接着性に優れ、生産性が良好な光硬化型樹脂組成物、及びこの光硬化型樹脂を用いたエレクトロルミネッセンスディスプレイのシール方法に関するものである。

[0002]

【従来の技術】

近年、電子、電気業界において種々の表示素子を利用したフラットパネルディスプレイの開発、製造が行われている。これらのディスプレイの多くはガラスやプラスチックなどのセルに表示素子を封止したものである。その代表として、液晶(LC)ディスプレイ、エレクトロルミネッセンス(EL)ディスプレイ等が挙げられる。それらの中でELディスプレイは、高輝度、高効率、高速応答性などの点で優れ、次世代のフラットパネルディスプレイとして注目を集めている。素子には、無機EL素子、有機EL素子がある。無機EL素子は時計のバックライト等で実用化されているが、フルカラー化にはまだ技術的課題があるとされている。有機EL素子は、高輝度、高効率、高速応答性、多色化の点で無機EL素子より優れているが、耐熱性が低く、耐熱温度は80~120℃程度といわれて

いる。このため、有機ELディスプレイのシール材において、熱硬化型エポキシ 樹脂では十分に加熱硬化できない問題があった。

[0003]

これらの問題を解決するため、低温速硬化が可能な光硬化型シール材の検討が行われている。光硬化型シール材は、大きく分け、光ラジカル硬化型シール材と光カチオン硬化型シール材がある。光ラジカル硬化型シール材は、多様なアクリレートモノマー、オリゴマーを使用できるという利点をもっているが、硬化時の体積収縮率が高く、接着力が低いという欠点を有している。体積収縮率を低く抑えるためにはシール材の単位重量あたりの官能基数を少なくしなければならず、様々な物性に制約が加わってしまう。 一方、光カチオン硬化型シール材は開環重合を用いており(特開2001−139933号公報)、光ラジカル硬化型シール材に比較して硬化収縮率が低く、接着力が優れているが、実用性を考慮すると更なる改良が必要とされている。

[0004]

フラットパネルディスプレイを製造する際には、生産効率の向上のため、大きなガラス基板内に数個のパネルを形成し、張り合わせ後にガラス基板を切り離す工程が設けられる。この操作の際に、ガラス基板には大きな応力が加わり、シール材の接着力が十分でない場合には剥離してしまうことが問題とされている。また、有機ELディスプレイのシールには、耐透湿性が要求されるが、接着界面からパネル内に水分が浸入することも防がねばならず、有機ELディスプレイに用いられる様々な部材に対する界面密着性が要求される。

[0005]

光カチオン重合を使用した光カチオン樹脂組成物で環状ポリオキシエチレン化合物を使用して可使時間を延長させている報告(特開2000-72853号公報)がなされているが、エレクトロルミネッセンス用のシール材としては接着強度、遅い硬化性による位置合わせ精度の不良が問題である。さらに、エポキシ樹脂とアミン系硬化剤との組み合わせによる液晶表示用シール材料としての提案(特開平09-241603号公報)があるが、熱硬化材料であるため120-150℃の温度で硬化させるためエレクトロルミネッセンス用のシール材としては

使用できない。

[0006]

【特許文献1】

特開2001-139933号公報

[0007]

【特許文献2】

特開2000-72853号公報

[0008]

【特許文献3】

特開平09-241603号公報

[0009]

【発明が解決しようとする課題】

従来の技術では、フラットパネルディスプレイに用いるシール材の接着強度が不十分であるために、生産工程においてセル作成後の切り出し工程での問題や実用上の性能として、ディスプレイを長期使用中に落下により剥離するという問題点が発生する。本発明は、ディスプレイに用いるシール材として、耐透湿性、接着性に優れ、生産性が良好な光硬化型樹脂組成物を提供することである。

[0010]

【課題を解決するための手段】

本発明者らは上記課題を解決するために鋭意検討した結果、(A)環状ポリオキシエチレン化合物、(B)カチオン重合性化合物、(C)光カチオン開始剤を含有する光硬化型樹脂を用いることで、上記課題を解決できることを見出し本発明を完成した。即ち、前記光硬化型樹脂組成物の(A)環状ポリオキシエチレン化合物が、光硬化型樹脂組成物の合計を100重量%とするとき、0.1~10重量%の割合で含まれることを特徴とする光硬化型樹脂組成物。

[0011]

前記光硬化型樹脂組成物の(B)カチオン重合性化合物が(B-1)エポキシ基を有する化合物及び/または(B-2)オキセタン基を有する化合物であることを特徴とする光硬化型樹脂組成物。

[0012]

前記光硬化性樹脂組成物が(D)シランカップリング剤を含有することを特徴とする光硬化型樹脂組成物。

[0013]

前記光硬化性樹脂組成物が(E)微粒子無機フィラーを含有することを特徴と する光硬化型樹脂組成物。

[0014]

前記光硬化型樹脂組成物の合計を100重量%としたとき、(A)環状ポリオキシエチレン化合物 0.1~10 重量%、(B)カチオン重合性化合物 1~97.7 重量%、(C)光カチオン開始剤 0.1~10 重量%、(D)シランカップリング剤 0.1~30 重量%、(E)微粒子無機フィラー 1~90 重量%、を含有する光硬化型樹脂組成物。

[0015]

前記光硬化型樹脂組成物を含有していることを特徴とするエレクトロルミネッセンスディスプレイ用シール材。

[0016]

前記載のシール材を用いてエレクトロルミネッセンスディスプレイのシールを することを特徴とするディスプレイのシール方法。

[0017]

前記載のシール方法で得られるエレクトロルミネッセンスディスプレイ。 である。

[0018]

【発明の実施の形態】

以下、本発明を詳細に説明する。

「(A)環状ポリオキシエチレン化合物]

本発明における環状ポリオキシエチレン化合物は、下記式(1) [化1] に示される化合物が挙げられる。

[0019]

【化1】

$$\left\{ \begin{array}{c} c - c - o \end{array} \right\}_{x}$$

 $\overline{}$ (1)

一般式(1)において、xは2以上の整数である。

環状ポリオキシエチレン化合物のより具体的な例としては、12ークラウンー4ーエーテル、15ークラウンー5ーエーテル、18ークラウンー6ーエーテル、21ークラウンー7ーエーテル等があげられる。また、類似する構造を有する化合物として、ジベンゾー18ークラウンー6ーエーテル、シクロヘキサノー18ークラウンー6ーエーテル、ジシクロヘキシルー18ークラウンー6ーエーテル、2ーヒドロキシメチルー18ークラウンー6ーエーテル、2ーアミノメチルー18ークラウンー6ーエーテル、シクロヘキサノー15ークラウンー5ーエーテル、2ーヒドロキシメチルー15ークラウンー5ーエーテル、2ーヒドロキシメチルー15ークラウンー5ーエーテル、2ーヒドロキシメチルー15ークラウンー5ーエーテル、2,3ービスー(2ークロローフェニル)ー1,4,7,10,13ーペンタオキサーシクロペンタデカン、シクロヘキサノー12ークラウンー4ーエーテル、2ーヒドロキシメチルー12ークラウンー4ーエーテル、クリプタンドなど、構造の一部分に環状ポリオキシエチレン化合物を含むものが挙げられる。

[0020]

環状ポリオキシエチレン化合物は、本発明に係わる光硬化型樹脂組成物中に、 0.1~10 重量%、好ましくは0.3~7重量%、より好ましくは0.5~ 5重量%の量で含まれることが望ましい。環状ポリオキシエチレン化合物が上記 範囲内にあると、硬化性が低下せず、接着強度を向上させることができる。これ ら化合物は、単独で使用しても2種類以上組み合わせて使用しても良い。

[0021]

[(B)カチオン重合性化合物]

本発明におけるカチオン重合性化合物(B)は、(B-1)エポキシ基を有する化合物、(B-2)オキセタン環を有する化合物、オキソラン化合物、環状アセタール化合物、環状ラクトン化合物、チイラン化合物、チエタン化合物、スピロオルソエステル化合物、ビニルエーテル化合物、エチレン性不飽和化合物、環状エーテル化合物、環状チオエーテル化合物、ビニル化合物等が挙げられる。これらは、1種単独でも複数種を組み合わせて使用してもよい。

[0022]

「(B-1) エポキシ基を有する化合物]

エポキシ基を少なくとも1つ有する化合物であればいずれでも使用することができる。エポキシ基を有する化合物(B-1)としては以下のものが例示できる。例えばエポキシ基を1ないし15含有する化合物が挙げられ好ましくは1ないし10含有する化合物である。

[0023]

<エポキシ基を1個含有する化合物>

エポキシ基を1個有する化合物としては、エポキシ基を1個含有する化合物であればいずれでも用いることが出来る。エポキシ基を1個有する化合物のより具体的な例としては、フェニルグリシジルエーテル、4ーフルオローフェニルグリシジルエーテル、イソブトキシメタングリシジルエーテル、イソボルニルオキシエチルグリシジルエーテル、イソボルニルオキシエチルグリシジルエーテル、イソボルニルグリシジルエーテル、エチルジエチレングリコールグリシジルエーテル、ジシクロペンタジエングリシジルエーテル、ジシクロペンテニルオキシエチルグリシジルエーテル、ジシクロペンテニルオキシエチルグリシジルエーテル、デトラブロモフェニルグリシジルエーテル、2ーテトラブロモフェノキシエチルグリシジルエーテル、トリブロモフェニルグリシジルエーテル、2ートリブロモフェノキシエチルグリシジルエーテル、2ーヒドロキシプロピルグリシジルエーテル、プトキシエチルグリシジルエーテル、スーヒドロキシプロピルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ポンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロモフェニルグリシジルエーテル、ペンタブロエフェニルグリシジルエーテル、ペンタブロエフェニルグリシジルエーテル、ペンタブロエフェニルグリシジルエーテル、ペンタブロエフェニルグリシ

[0024]

<エポキシ基を2個有する化合物>

2個のエポキシ基を有する化合物としては、エポキシ基を2個含有する化合物で あればいずれでも用いることが出来る。具体的なエポキシ基を2個有する化合物 としては、ハイドロキノンジグリシジルエーテル、レゾルシンジグリシジルエー テル、エチレングリコールジグリシジルエーテル、トリエチレングリコールジグ リシジルエーテル、テトラエチレングリコールジグリシジルエーテル、ポリエチ レングリコールジグリシジルエーテル、1,4ーブタンジオールジグリシジルエ ーテル、1.6-ヘキサンジオールジグリシジルエーテル、シクロヘキサンジオ ールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル 、ジシクロペンタジエンジオールジグリシジルエーテル、1.6-ナフタレンジ オールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフ ェノール F ジグリシジルエーテル、水添ビスフェノール A ジグリシジルエーテル 、水添ビスフェノールFジグリシジルエーテル、EO変性ビスフェノールAビス ジグリシジルエーテル、PO変性ビスフェノールAジグリシジルエーテル、EO 変性水添ビスフェノールAジグリシジルエーテル、PO変性水添ビスフェノール Aジグリシジルエーテル、EO変性ビスフェノールFジグリシジルエーテル等が 挙げられる。

[0025]

<エポキシ基を3個以上有する化合物>

3個以上のエポキシ基を有する化合物としては、具体的にトリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ジペンタエリスリトールへキサグリシジルエーテル、ジペンタエリスリトールペンタグリシジルエーテル、ジペンタエリスリトールテトラグリシジルエーテルカプロラクトン変性ジペンタエリスリトールへキサグリシジルエーテル、ジトリメチロールプロパンテトラグリシジルエーテル、フェノールノボラック型エポキシ、クレゾールノボラック型エポキシ等が挙げられる。

また、脂環式エポキシ基を有する化合物として、例えば、下記式(2) [化2] 、(3) [化3]、(4) [化4]、(5) [化5] で表される化合物等も挙げ られる。

[0026]

【化2】

R11は酸素原子、硫黄原子や、メチレン基、エチレン基、プロピレン基、ブチレン基等の線状あるいは分枝状の炭素原子数1~20のアルキレン基、ポリ(エチレンオキシ)基、ポリ(プロピレンオキシ)基等の線状あるいは分枝状の炭素原子数1~120のポリ(アルキレンオキシ)基、プロペニレン基、メチルプロペニレン基、ブテニレン基等の線状あるいは分枝状の不飽和炭素水素基、カルボニル基、カルボニル基を含むアルキレン基、分子鎖の途中にカルバモイル基を含むアルキレン基である。

[0027]

【化3】

---- (3)

[0028]

【化4】

—— (4)

R1は、水素原子、フッ素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素原子数1~6個のアルキル基、トリフルオロメ チル基、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル 基等の炭素原子数1~6個のフルオロアルキル基、フェニル基、ナフチル基等の炭素数6~18のアリール基、フリル基またはチエニル基である。一般式(4)中のR1は互いに同じでも異なっていてもよい。

[0029]

【化5】

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

---- (5)

R1は一般式(4)と同様に水素原子、フッ素原子、メチル基、エチル基、プロ

ピル基、ブチル基、ペンチル基、ヘキシル基等の炭素原子数1~6個のアルキル基、トリフルオロメチル基、パーフルオロアルオロエチル基、パーフルオロプロピル基等の炭素原子数1~6個のフルオロアルキル基、フェニル基、ナフチル基等の炭素数6~18のアリール基、フリル基またはチエニル基である。一般式(5)中のR1は互いに同じでも異なっていてもよい。R12は酸素原子、硫黄原子や、メチレン基、エチレン基、プロピレン基、ブチレン基等の線状あるいは分枝状の炭素原子数1~20のアルキレン基、ポリ(エチレンオキシ)基、ポリ(プロピレンオキシ)基等の線状あるいは分枝状の炭素原子数1~120のポリ(アルキレンオキシ)基、プロペニレン基、メチルプロペニレン基、ブテニレン基等の線状あるいは分枝状の不飽和炭素水素基、カルボニル基、カルボニル基を含むアルキレン基、分子鎖の途中にカルバモイル基を含むアルキレン基である。これらの(B-1)成分は、1種単独であるいは2種以上を組み合わせて使用することができる。

[0030]

本発明の樹脂組成物における(B-1)成分の含有割合は、通常 $0\sim97.7$ 重量%であり、好ましくは、 $20\sim90$ 重量%であり、特に好ましくは $30\sim7$ 0 重量%である。(B-1)成分がこの範囲にあれば、シール材の接着性、耐熱性を改良させるのに好適である。

[0031]

[(B-2) オキセタン環を有する化合物]

本発明におけるオキセタン環を有する化合物(B-2)は、一般式(6)[化 6]で表されるオキセタン環を少なくとも1つ有する化合物であればいずれでも 使用することができる。例えばオキセタン環を1ないし15含有する化合物が挙 げられ好ましくは1ないし10含有する化合物である。

[0032]

 $\overline{}$ (6)

<オキセタン環を1個有する化合物>

オキセタン環を1個有する化合物としてはオキセタン環を1個有する化合物で あればいずれでも用いることができる。オキセタン環を1個有する化合物のより 具体的な例としては、3-エチル-3-ヒドロキシメチルオキセタン、3-(メ タ)アリルオキシメチルー3ーエチルオキセタン、(3ーエチルー3ーオキセタ ニルメトキシ)メチルベンゼン、4-フルオロー「1-(3-エチルー3-オキ セタニルメトキシ) メチル] ベンゼン、4-メトキシー [1-(3-エチルー3 ーオキセタニルメトキシ)メチル]ベンゼン、[1-(3-エチル-3-オキセ タニルメトキシ) エチル] フェニルエーテル、イソブトキシメチル(3-エチル -3-オキセタニルメチル)エーテル、イソボルニルオキシエチル(3-エチル -3-オキセタニルメチル)エーテル、イソボルニル(3-エチルー3-オキセ タニルメチル)エーテル、2-エチルヘキシル(3-エチル-3-オキセタニル メチル) エーテル、エチルジエチレングリコール (3-エチルー3-オキセタニ ルメチル) エーテル、ジシクロペンタジエン (3-エチル-3-オキセタニルメ チル) エーテル、ジシクロペンテニルオキシエチル (3-エチル-3-オキセタ ニルメチル) エーテル、ジシクロペンテニルエチル (3-エチル-3-オキセタ ニルメチル) エーテル、テトラヒドロフルフリル (3-エチル-3-オキセタニ ルメチル) エーテル、テトラブロモフェニル(3-エチル-3-オキセタニルメ チル) エーテル、2ーテトラブロモフェノキシエチル (3ーエチルー3ーオキセ タニルメチル) エーテル、トリブロモフェニル(3-エチル-3-オキセタニル メチル) エーテル、2ートリブロモフェノキシエチル(3ーエチルー3ーオキセタニルメチル)エーテル、2ーヒドロキシプロピル(3ーエチルー3ーオキセタニルメチル)エーテル、2ーヒドロキシプロピル(3ーエチルー3ーオキセタニルメチル)エーテル、ブトキシエチル(3ーエチルー3ーオキセタニルメチル)エーテル、ペンタクロロフェニル(3ーエチルー3ーオキセタニルメチル)エーテル、ペンタブロモフェニル(3ーエチルー3ーオキセタニルメチル)エーテル、ボルニル(3ーエチルー3ーオキセタニルメチル)エーテル、ボルニル(3ーエチルー3ーオキセタニルメチル)エーテル、ボルニル(3ーエチルー3ーオキセタニルメチル)エーテル等が挙げられる。

[0033]

<オキセタン環を2個有する化合物>

2個のオキセタン環を有する化合物としては、下記一般式 (7) [化7]で示される化合物等が挙げられる。

- (一般式(7)で表される化合物)
- 一般式(7)[化7]で表される化合物とは以下の通りである。

[0034]

【化7】

R18は水素原子、フッ素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素原子数1~6個のアルキル基、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基等の炭素原子数1~6個のフルオロアルキル基、フェニル基、ナフチル基等の炭素数6~18のアリール基、フリル基またはチエニル基である。一般式(7)中のR20は互いに同じでも異なっていてもよい。R20は、エチレン基、プロピレン基、ブチレン基等の線状あるいは分岐状の炭素原子数1~20のアルキレン基、ポリ(エチレンオキシ)基、ポリ(プロピレンオキシ)基等の線状あるいは分枝状の炭素原子数1~120のポリ(アルキレンオキシ)基、プロペニレ

ン基、メチルプロペニレン基、ブテニレン基等の線状あるいは分枝状の不飽和炭素水素基、カルボニル基、カルボニル基を含むアルキレン基、分子鎖の途中にカルバモイル基を含むアルキレン基である。具体的なオキセタン環を2個有する化合物としては下記式(8)[化8]、(9)[化9]、(10)[化10]が挙げられる。

[0035]

----- (8)

[0036]

【化9】

--- (9)

[0037]

$$\begin{array}{c|c}
 & CH_3 \\
 & Si \\
 & CH_3
\end{array}$$

$$\begin{array}{c}
 & CH_3 \\
 & Si \\
 & CH_3
\end{array}$$

$$\begin{array}{c}
 & CH_3 \\
 & CH_3
\end{array}$$

--- (10)

さらに、3, 7ービス(3ーオキセタニル)--5ーオキサーノナン、1, 4ービ ス [(3-エチル-3-オキセタニルメトシキ)メチル] ベンゼン、1, 2-ビ ス〔(3-エチルー3-オキセタニルメトキシ)メチル〕エタン、1,2-ビス [(3-エチル-3-オキセタニルメトキシ)メチル]プロパン、エチレングリ コールビス (3-エチル-3-オキセタニルメチル) エーテル、ジシクロペンテ ニルビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリ コールビス (3-エチル-3-オキセタニルメチル) エーテル、テトラエチレン グリコールビス (3-エチル-3-オキセタニルメチル) エーテル、トリシクロ デカンジイルジメチレンピス (3-エチル-3-オキセタニルメチル) エーテル 、1,4-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕ブタン、 6 ービス〔(3ーエチルー3ーオキセタニルメトキシ)メチル〕ヘキサン、 ポリエチレングリコールビス (3-エチル-3-オキセタニルメチル) エーテル 、EO変性ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エー テル、PO変性ビスフェノールAビス(3-エチルー3-オキセタニルメチル) エーテル、EO変性水添ビスフェノールAビス(3-エチルー3-オキセタニル メチル)エーテル、PO変性水添ビスフェノールAビス(3-エチルー3ーオキ セタニルメチル) エーテル、EO変性ビスフェノールFビス (3-エチル-3-オキセタニルメチル)エーテル等が挙げられる。

[0038]

<オキセタン環を3個以上有する化合物>

3個以上のオキセタン環を有する化合物としては、下記一般式(11)、(1

2)で示される化合物等が挙げられる。

(一般式(11)で表される化合物)

一般式(11)[化11]で表される化合物とは以下の通りである。

[0039]

【化11】

---- (11)

R18は水素原子、フッ素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素原子数1~6個のアルキル基、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基等の炭素原子数1~6個のフルオロアルキル基、フェニル基、ナフチル基等の炭素数6~18のアリール基、フリル基またはチエニル基である。一般式(11)中のR18は互いに同じでも異なっていてもよい。

R 2 6 は、3~10価の有機基を示し、炭素原子数1~30の分枝状または線状のアルキレン基、分枝状ポリ(アルキレンオキシ)基または線状または分枝状ポリシロキサン含有基等が挙げられる。

jは、R26の価数に等しい3~10の整数を示す。

[0040]

(一般式(12)で表される化合物)

一般式(12)[化12]で表される化合物とは $1\sim10$ 個のオキセタン環を有し以下の通りである。

ページ: 17/

kは1~10の整数を示す。

[0041]

【化12】

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{29}$$

$$\mathbb{R}^{18}$$

$$\mathbb{R}^{29}$$

$$\mathbb{R}^{18}$$

---- (12)

R18は水素原子、フッ素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素原子数1~6個のアルキル基、トリフルオロメ チル基、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル 基等の炭素原子数1~6個のフルオロアルキル基、フェニル基、ナフチル基等の炭素数6~18のアリール基、フリル基またはチエニル基である。一般式(12)中のR18は互いに同じでも異なっていてもよい。

また、R 2 9 はメチレン基、エチレン基、プロピレン基、ブチレン基等の炭素原子1~6のアルキレン基のほか、下記式(13)[化13]、(14)[化14]、(15)[化15]、(16)[化16]に示す構造のものが用いられる。

[0042]

[0043]

【化14】

(14)

[0044]

【化15】

(15)

[0045]

—— (16)

3個以上のオキセタン環を有する化合物のより具体的な例は、下記式(17) [化17] が挙げられる。

[0046]

【化17】

$$\begin{array}{c|c}
CH_3 \\
Si \\
CH_3
\end{array}$$

---- (17)

さらに、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールトリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールへキサキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールペンタキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、カプロラクトン変性ジペンタエリスリトールへキサキス(3-エチル-3-オキセタニルメチル)エーテル、ジトリメチロールプロパンテトラキス(3-エチル-3-オキセタニルメチル)エ

ーテル等が挙げられる。

これらのオキセタン環を有する化合物は、1種単独であるいは2種以上を組み合わせて使用することができる。

[0047]

本発明の樹脂組成物における(B-2)成分の含有割合は、通常 $0\sim97.7$ 重量%であり、好ましくは $10\sim80$ 重量%であり、より好ましくは $20\sim70$ 重量%である。(B-2)成分をこの範囲で含有することにより、感光性、速硬化性等に優れ好適である。

[0048]

[(C)光カチオン開始剤]

本発明の光カチオン開始剤(C)は、光により、(B)成分の樹脂のカチオン 重合を開始する化合物であれば特に限定はなく、いずれでも使用することができ る。光カチオン開始剤の好ましい例として下記一般式(18)[式18]で表され る構造を有するオニウム塩を挙げることができる。このオニウム塩は、光反応し 、ルイス酸を放出する化合物である。

[0049]

【式18】

[R14aR15bR16cR17dW]m+[MXn+m]m- (18)

(式中、カチオンはオニウムイオンであり、Wは、.S、Se、Te、P、As、Sb、Bi、O、I、Br、Cl、またはN \equiv Nであり、R14、R15、R16、およびR17は同一または異なる有機基であり、a、b、cおよびdはそれぞれ0~3の整数であって、(a+b+c+d)は((Wの価数)+m)に等しい。Mは、ハロゲン化錯体 [MXn+m] の中心原子を構成する金属またはメタロイドであり、例えば、B、P、As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Co等である。

Xは例えば、F、C1、B r 等のハロゲン原子であり、mはハロゲン化物錯体イオンの正味の電荷であり、n はMの原子価である。)

一般式(18)においてオニウムイオンの具体例としては、ジフェニルヨード

ニウム、4-メトキシジフェニルヨードニウム、ビス(4-メチルフェニル)ヨードニウム、ビス(4-tertープチルフェニル)ヨードニウム、ビス(ドデシルフェニル)ヨードニウム、トリフェニルスルホニウム、ジフェニルー4-チオフェノキシフェニルスルホニウム、ビス〔4-(ジフェニルスルフォニオ)ーフェニル〕スルフィド、ビス〔4-(ジ(4-(2-ヒドロキシエチル)フェニル)スルホニオ)ーフェニル〕スルフィド、75-2, 4-(シクロペンタジェニル)〔1, 2, 3, 4, 5, 6- $\eta-$ (メチルエチル)ベンゼン〕-鉄(1+)等が挙げられる。

[0050]

一般式(18)において陰イオンの具体例としては、テトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート、ヘキサクロロアンチモネート等が挙げられる。

また、一般式(18)において陰イオンとしてハロゲン化錯体 [MXn+m] の代わりに、過塩素酸イオン、トリフルオロメタンスルホン酸イオン、トルエンスルホン酸イオン、トリニトロトルエンスルホン酸イオン等であってもよい。

さらに、一般式(18)において陰イオンとしてハロゲン化錯体 [MXn+m] の代わりに芳香族陰イオンであってもよい。具体例としては、テトラ(フルオロフェニル)ボレート、テトラ(ジフルオロフェニル)ボレート、テトラ(トリフルオロフェニル)ボレート、テトラ(テトラフルオロフェニル)ボレート、テトラ(ペンタフルオロフェニル)ボレート、テトラ(パーフルオロフェニル)ボレート、テトラ(トリフルオロメチルフェニル)ボレート、テトラ(ジ(トリフルオロメチル)フェニル)ボレートなどを挙げることができる。

これらの光カチオン開始剤は、1種単独であるいは2種以上を組み合わせて使用 することができる。

[0051]

本発明の樹脂組成物における(C)成分の含有割合は、通常0.1~10重量%であり、好ましくは、0.3~3重量%である。(C)成分の含有割合0.1 重量%以上とすることにより樹脂組成物の硬化状況が良好となり好ましく、又硬化後に光カチオン開始剤が溶出するのを予防する観点からは10重量%以下が好

ましい。

[0052]

「(D) シランカップリング剤]

シランカップリング剤とは、エポキシ基、カルボキシル基、メタクリロイル基 、イソシアネート基等の反応性基を有するシラン化合物が挙げられる。

具体的には、トリメトキシシリル安息香酸、 $\gamma-$ メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、 $\gamma-$ イソシアナトプロピルトリエトキシシラン、 $\gamma-$ グリシドキシプロピルトリエト シキシラン、 $\beta-$ (3,4-エポキシシクロヘキシル)エチルトリメトシキシラン等が挙げられる。これらの(D)成分は、1種単独であるいは2種以上を組み合わせて使用することができる。本発明の樹脂組成物における(D)成分の含有割合は、通常0.1~30重量%であり、好ましくは、0.3~20重量%である。(D)成分を含有すると無機材料に対する接着力が向上し好ましい。

[0053]

「(E) 微粒子無機フィラー]

本願発明の樹脂組成物は微粒子無機フィラー(E)を含有することが好ましい。微粒子無機フィラーとは、一次粒子の平均径が0.005~10μmの無機フィラーである。 具体的には、シリカ、タルク、アルミナ、ウンモ、炭酸カルシウム等が挙げられる。微粒子無機フィラーは、表面未処理のもの、表面処理したものともに使用できる。表面処理した微粒子無機フィラーとして、例えば、メトキシ基化、トリメチルシリル基化、オクチルシリル基化、又はシリコーンオイルで表面処理した微粒子無機フィラー等が挙げられる。これらの(E)成分は、1種単独であるいは2種以上を組み合わせて使用することができる。本発明の樹脂組成物における(E)成分の含有割合は、通常1~90重量%であり、好ましくは、10~80重量%である。(E)成分は、耐透湿性、接着力、揺変性付与等に効果がある。

[0054]

[その他の成分]

本発明の樹脂組成物には、本発明の効果を損なわない範囲においてその他樹脂

成分、充填剤、改質剤、安定剤等その他成分を含有させることができる。

[0055]

<他の樹脂成分>

他の樹脂成分としては、例えば、ポリアミド、ポリアミドイミド、ポリウレタン、ポリブタジェン、ポリクロロプレン、ポリエーテル、ポリエステル、スチレンーブタジェンースチレンブロック共重合体、石油樹脂、キシレン樹脂、ケトン樹脂、セルロース樹脂、フッ素系オリゴマー、シリコン系オリゴマー、ポリスルフィド系オリゴマー等が挙げられる。これらは、1種単独でも複数種を組み合わせて使用してもよい。

[0056]

<充填剤>

充填剤としては、例えば、ガラスビーズ、スチレン系ポリマー粒子、メタクリレート系ポリマー粒子、エチレン系ポリマー粒子、プロピレン系ポリマー粒子等が挙げられる。これらは、1種単独でも複数種を組み合わせて使用してもよい。

[0057]

<改質剤>

改質剤としては、例えば、重合開始助剤、老化防止剤、レベリング剤、濡れ性 改良剤、界面活性剤、可塑剤等が挙げられる。 これらは、1種単独でも複数種 を組み合わせて使用してもよい。

[0058]

<安定剤>

安定剤としては、例えば、紫外線吸収剤、防腐剤、抗菌剤等が挙げられる。これ らは、1種単独でも複数種を組み合わせて使用してもよい。

[0059]

「樹脂組成物の調整】

本発明の光硬化型樹脂組成物は、各組成物を均一に混合するように調製する。 0.01~300Pa·sの粘度範囲は塗布作業が効率的に実施でき、各組成の 混合安定性が良い。さらに1~200Pa·sの粘度範囲であれば塗布作業がよ り効率的に実施できる。粘度は、樹脂の配合比やその他の成分を添加することに より調整すれば良い。また、粘度が高い場合は、3本ロール等を使用する常法により混練すれば良い。

[0060]

[シール方法]

シール材のディスプレイ基材への塗布方法は、均一にシール材が塗布できれば 塗布方法に制限はない。例えばスクリーン印刷やディスペンサーを用いて塗布す る方法等公知の方法により実施すればよい。 シール材を塗布後、ディスプレイ 基材を貼り合わせ、光を照射し、シール材を硬化させる。ここで使用できる光源 としては、所定の作業時間内で硬化させることができるものであればいずれでも 良い。通常、紫外線光、可視光の範囲の光が照射できる光源を用いる。より具体 的には、低圧水銀灯、高圧水銀灯、キセノンランプ、メタルハライド灯等が挙げ られる。 また、通常、照射光量は、照射光量が過少である場合には、樹脂組成 物の未硬化部が残存しない範囲又は、接着不良が発生しない範囲で適宜選定でき るが、通常500~9000mJ/cm2である。照射量の上限は特にはないが 過多である場合には不要なエネルギーを浪費し生産性が低下するので好ましくな い。

[0061]

【実施例】

以下、本発明の実施例について説明するが、かかる実施例によって本発明が限 定されるものではない。

<測定法>

得られた樹脂組成物及び硬化物について以下の評価を行った。

(粘度)

樹脂組成物の粘度を25℃でE型粘度計(東機産業製 RC-500)によって測定した。

(硬化性)

硬化性は、ガラス板に樹脂組成物をアプリケータで、膜厚100μm塗布し、光照射をメタルハライドランプにて3000mJ照射後、塗膜の硬化性を指触により評価した。

○:硬化、△:一部硬化、×:未硬化

(接着強度)

接着強度は、1 枚のガラス板に対し、ガラス板、透明電極(ITO)を表面に施したガラス板、もしくはステンレス板(SUS430)を組み合わせて樹脂組成物(厚み 20μ m)ではさみ、光照射し、接着させた。これら2 枚の基材を引き剥がすときの接着強度を引っ張り速度は2mm/minで測定した。

(フィルム透湿量)

JIS Z0208に準じて光硬化させた樹脂組成物フィルム(厚み100μm)の透湿量を40℃90%RH条件で測定した。

[0062]

<原材料>

(環状オキシエチレン化合物(A))

18-クラウン-6-エーテル(東京化成(株)製)

(エポキシ基を有する化合物 (B-1))

エポキシ基を有する化合物: ビスフェノールFジグリシジルエーテル (商品名EXA-830LVP、大日本インキ工業 (株) 製)

(オキセタン環を有する化合物 (B-2))

オキセタン化合物: 1, 4-ビス [(3-エチルー3-オキセタニルメトキシ)メチル] ベンゼン(商品名OXT-121、東亞合成(株)製)

(光カチオン開始剤(C))

光開始剤: [化18]で表される化合物。(商品名RHODORSIL PHOTOINITIATOR2074、RHODIA製)

[0063]

【化18】

----- (19)

(シランカップリング剤 (D))

シランカップリング剤: γ ーグリシドキシプロピルトリメトシキシラン (商品名SH6040、東レダウ・コーニングシリコーン (株) 製)

(微粒子無機フィラー (E))

[0064]

【実施例1】

(樹脂組成物の調製)

(光硬化)

樹脂組成物の硬化は、メタルハライドランプで $3000 \,\mathrm{m}\,\mathrm{J/c\,m^2}$ の光照射により行なった。その評価結果を表3に示す。

[0065]

【表1】

表1

		実施例				
		1	2	3	4	
(A)成分	18-クラウンー6-エーテル	2. 0	1. 0	5.0	9.0	
(B)成分	ヒ [*] スフェノールFシ [*] ク [*] リシシ [*] ルエーテル	48.0	49.0	45.0	41.0	
	1, 4-ピス [(3-エチル-3-	20. 2	20.2	20.2	20. 2	
	オキセタニルメトキシ) メチル] ペンセ゚ン					
(C)成分	C - 1	2.1	2. 1	2. 1	2.1	
(D)成分	γ ーク*リシト*キシフ*ロヒ*ルトリメトキシシ	0.3	0.3	0.3	0.3	
	ラン					
(E)成分	微粒子タルク	27.4	27.4	27.4	27. 4	

[0066]

【表2】

表 2

· · · · · · · · · · · · · · · · · · ·		比較例	
		1	2
(A)成分	18ークラウンー6ーエーテル		11
(B)成分	ピスフェノールFジグリシジルエーテル	48.8	37.8
	1,4-ピス [(3-エチル-3-	20.9	20.9
	オキセタニルメトキシ) メチル] へ゛ンセ゛ン		
(C)成分	C - 1	2. 1	2. 1
(D)成分	γ グリシト゚キシプロピルトリメトキ	0.3	0.3
_	シシラン		
(E)成分	微粒子タルク	27.9	27.9

[0067]

【実施例2~4、比較例1~2】

表1に示す組成の成分を表1に示す量で用いた以外は、実施例1と同様にして、 表1及び表2に示す配合処方により樹脂組成物を調製した。

表 1 および表 2 に示す樹脂組成物について、各種の評価を行った。結果を表 3 に示す。

[0068]

【表3】

表3

	実施例				比較例	
	1	2	3	4	1	2
粘度 (Pa·s)	40	35	80	120	9	45
硬化性	0	0	0	0	0	×
接着強度(MPa)	25	24	23	21	11	4
ガラス/ガラス					6	
接着強度 (MPa)	25	23	24	22	5	3
ガラス/ITO	1					
接着強度 (MPa)	24	23	24	21	4	4
ガラス/SUS430						
透湿性	24	28	27	32	28	90
40℃90%RH				:		
(g/m ² ·24hr)						

[0069]

【発明の効果】

本発明の光硬化型樹脂は、光硬化性が良好であり、各部材に対する接着強度に優れているため、エレクトロルミネッセンスディスプレイの生産性及び実用上の物性に対し好適である。

ページ: 29/E

【書類名】要約書

【要約】

【課題】本発明は、エレクトロルミネッセンスディスプレイに用いるシール材で耐透湿性、接着性に優れ、生産性が良好な光硬化性樹脂組成物、及びにこの光硬化型樹脂を用いたディスプレイのシール方法を提供することである。

【解決手段】環状ポリオキシエチレン化合物(A)、カチオン重合性化合物(B)、光カチオン開始剤(C)、シランカップリング剤(D)及び微粒子無機フィラー(E)を含有する光硬化性樹脂を用いてディスプレイをシールすることである。

特願2003-207236

出 願 人 履 歴 情 報

識別番号

[000005887]

1. 変更年月日

1997年10月 1日

[変更理由]

名称変更

住 所 氏 名

東京都千代田区霞が関三丁目2番5号

三井化学株式会社

2. 変更年月日

2003年11月 4日

[変更理由]

住所変更

住 所

東京都港区東新橋一丁目5番2号

氏 名 三井化学株式会社