

Cahier des charges projet Java V1.00

Table des matières

1.		Préambule	. 3
		Cahier des charges	
		Description du projet Java	
2	2.	Description de l'interface Java imaginée	. 3
3.		Brève description du projet initial Python	. 3
4.		Macro-planning	. 5

1. Préambule

Ce document décrit le cahier des charges du projet Java demandé pour l'obtention du module CAS-IDD de la formation MAS-RAD.

2. Cahier des charges

1. Description du projet Java

Ce projet Java complète le développement réalisé pour la partie « Développement et conception orientés objet avec Python » effectué avec Monsieur Amiguet et rendu le 10/04/2025 (??? CDC et présentation joint au dépôt GIT de ce projet ???).

Ce projet Java se concentrera donc essentiellement sur le GUI de ce précédent projet Python.

2. Brève description du projet initial Python

Ce développement Python permet d'analyser un programme G-Code de machine à commande numérique et d'en extraire différents fichiers CSV (3 fichiers au total) contenant les données suivantes :

Données de progamme :	Données d'opération :	Données d'outils :
Nom du programme	Nom de l'opération	Numéro de l'outil
Durée totale d'usinage	Durée d'usinage de l'opération	Durée d'utilisation
Liste des opérations	Numéro d'outil	Distance parcourue dans la matière
Liste des outils		Fréquence de rotation
		Vitesse d'avance

L'interface Python récupère les données les plus pertinentes à afficher :

Figure 1 - Vue de l'interface Python

Une autre partie d'interface permet également la visualisation de la pièce usinée en 3D (au format STL) ainsi que les trajectoires filaires de tous les outils :

Figure 2 - Vue de l'interface Python

3. Description de l'interface Java imaginée

Cette interface se découperait en 4 zones (JSplitPane), qui regrouperait les données suivantes :

- Sélection des fichiers (G-Code & 3D STL).
- Programme G-Code chargé. ► Affichage des chemins des fichiers sélectionnés et données de base relatives au programme G-Code chargé.
- Affichage du programme G-Code chargé avec possibilité de visualiser les données analysées par l'application associées à la ligne sélectionnée.
- ♣ Affichage des données d'outils de coupe analysées par l'application.
- 5 ► Affichage de la vue 3D (pièce et trajectoires outils).
- 6 ► Optionnel : prévisualisation du fichier STL.
- 7 ▶ Optionnel: visualisation sous forme de diagramme de Gantt des outils de coupe avec interactions permettant l'affichage des analyses d'outils.

3. Macro-planning

