Bayesian Networks

Problem 1: Host's Console Crash (modeling, storage size, inference, independence)

The host's game console crashes (C=1) only due to either a power problem (P) or a buggy game build (G). The music playlist app (M) keeps playing if power is fine. Assume P and G are a priori independent.

- P(P=1) = 0.97 (power OK with prob. 0.97);
- P(G=1) = 0.35 (game is buggy with prob. 0.35);
- $P(M=1 \mid P=1) = 0.92$, $P(M=1 \mid P=0) = 0.12$;
- Crash distribution $P(C=1 \mid P, G)$:

\overline{P}	G	$P(C=1 \mid P,G)$
0	1	0.98
1	1	0.45
0	0	0.88
1	0	0.08

- a) Draw a BN over $\{P, G, M, C\}$ matching the story and write the factorization of P(P, G, M, C).
- b) **Storage:** How many numbers in the *full joint* over four binary variables? How many *parameters* in your factorization?
- c) **Inference (use** 0/1): Compute by hand:
 - (i) $P(G=1 \mid C=1)$;
 - (ii) $P(G=1 \mid C=1, M=1)$.
- d) **Independence:** List all pairs among $\{P, G, M, C\}$ that are independent; and all pairs that are conditionally independent *given exactly one* other variable.

Problem 2: Party Noise Network

We use the following network:

• h: Hot weather; w: Windows open;

• s: Loud guest; l: Loud music set;

• e: Major noise source (deterministic OR of w or l);

• b: Beer pong running; d: Noise complaint; x: Noise meter peaks.

Parameters (binary, shown for = 1; otherwise use complement):

Deterministic node: e=1 iff w=1 or l=1 (logical OR).

\overline{e}	b	$P(d=1 \mid e, b)$
1	1	0.90
1	0	0.80
0	1	0.70
0	0	0.10

- a) True/False using d-separation (no numbers):
 - (i) $h \perp s$; (ii) $h \perp l$; (iii) $h \perp x$; (iv) $w \perp s$; (v) $x \perp b \mid e$.
- b) Compute (by enumeration or grouped terms):
 - (i) P(d=1), (ii) $P(d=1 \mid s=1)$, (iii) $P(d=1 \mid s=0)$.

Problem 3: D-Separation Quick Test

For each tiny network, decide whether $X \perp Y$ and whether $X \perp Y \mid Z$. Give a one-line reason.

- (1) $X \to Z \to Y$ chain
- (2) $X \leftarrow Z \rightarrow Y$ common cause
- (3) $X \to Z \leftarrow Y$ collider
- (4) $X \leftarrow Z \leftarrow Y$ chain