Getting Started

Contents

Sorting problem

- 2 sorting algorithms
 - Insertion sort
 - Merge sort

Sorting problem

keys

Input

• A sequence of *n* number $\langle a_1, a_2, ..., a_n \rangle$.

Output

- A permutation (reordering) $< a'_1, a'_2, \ldots, a'_n >$ of the input sequence such that $a'_1 \le a'_2 \le \ldots \le a'_n$.
- Ex>
 - Input: < 5, 2, 4, 6, 1, 3>
 - Output: < 1, 2, 3, 4, 5, 6>

Insertion sort

Insertion sort

- Description
- Correctness
- Performance

Description

- What is insertion sort?
 - A sorting algorithm using insertion.

- What is insertion?
 - Given a key and a sorted list of keys, insert the key into the sorted list preserving the sorted order.
 - ex> Insert 3 into <1, 2, 4, 5, 6>

Description

- Insertion sort uses insertion incrementally.
 - Let A[1..n] denote the array storing keys.
 - Insert A[2] into A[1].
 - Insert A[3] into A[1..2].
 - Insert A[4] into A[1..3].

• Insert A[n] into A[1..n-1].

Description: example

• 5 2 4 6 1 3

• 2 4 5 6 1 3

• 5 2 4 6 1 3

• 1 2 4 5 6 3

- 2 5 4 6 1 3 1 2 3 4 5 6

• 2 4 5 6 1 3

Description: pseudo code

INSERTION-SORT(A)

Pseudocode conventions are given in p. 19 - 20 of the textbook.

```
1 for j = 2 to A.length p

2 key = A[j]
3 // Insert A[j] into the sorted sequence A[1..j-1].
4 i = j-1
5 while i > 0 and A[i] > key
6 A[i+1] = A[i]
7 i = i-1
8 A[i+1] = key
```

n-1 iterations of insertion.

Insert A[j] into A[1..j-1].

Find a place to put A[j].

Put A[j].

Insertion sort

- Insertion sort
 - Description
 - Correctness
 - Performance
 - Running time
 - Space consumption

- How to analyze the running time of an algorithm?
 - Consider running the algorithm on a specific machine and measure the running time.
 - We cannot compare the running time of an algorithm on a machine with the running time of another algorithm on another machine.
 - So, we have to measure the running time of every algorithm on a specific machine, which is impossible.
 - Hence, we count the number of instructions used by the algorithm.

Instructions

- Arithmetic
 - Add, Subtract, Multiply, Divide, remainder, floor, ceiling
- Data movement
 - Load, store, copy
- Control
 - Conditional branch
 - Unconditional branch
 - Subroutine call and return

• The running time of an algorithm grows with the input size, which is the number of items in the input.

• For example, sorting 10 keys is faster than sorting 100 keys.

• So the running time of an algorithm is described as a function of input size n, for example, T(n).

INSERTION-SORT(A)		cost	times
1	for $j = 2$ to $A.length$	c_1	n
2	key = A[j]	c_2	n - 1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n - 1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	n
8	A[i+1] = key	c_8	$\sum_{j=2}^{n} (t_j - 1) $ n - 1

T(n): The sum of product of cost and times of each line.

cost

times

$$T(n) = c_{1}n + c_{2}(n-1) + c_{4}(n-1)$$

$$+ c_{5} \sum_{j=2}^{n} t_{j} + c_{6} \sum_{j=2}^{n} (t_{j}-1)$$

$$+ c_{7} \sum_{j=2}^{n} (t_{j}-1) + c_{8}(n-1)$$

$$c_{1} \quad n$$

$$c_{2} \quad n-1$$

$$c_{4} \quad n-1$$

$$c_{5} \quad \sum_{j=2}^{n} t_{j}$$

$$c_{5} \quad \sum_{j=2}^{n} (t_{j}-1)$$

$$c_{7} \quad \sum_{j=2}^{n} (t_{j}-1)$$

$$c_{8} \quad n-1$$

• T(n): The sum of product of cost and times of each line.

• t_j : The number of times the **while** loop test is executed for j.

• Note that **for**, **while** loop test is executed one time more than the loop body.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- Although the size of the input is the same, we have
 - best case
 - average case, and
 - worst case.

- Best case
 - If A[1..n] is already sorted, $t_i = 1$ for j = 2, 3, ..., n.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1)$$

$$+ c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

$$= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

• This running time can be expressed as an+b for constants a and b; it is thus a *linear function* of n.

- Worst case
 - If A[1..n] is sorted in reverse order, $t_j = j$ for j = 2, 3, ..., n.

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \quad \text{and} \quad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - \left(c_2 + c_4 + c_5 + c_8\right)$$

• This running time can be expressed as $an^2 + bn + c$ for constants a, b, and c; it is thus a *quadratic function* of n.

- Only the degree of leading term is important.
 - Because we are only interested in the rate of growth or order of growth.
 - For example, a quadratic function grows faster than any linear function.
- The degree of leading term is expressed as Θ -notation.
 - The worst-case running time of insertion sort is $\Theta(n^2)$.

Space consumption of insertion sort

 $\Theta(n)$ space.

- Moreover, the input numbers are sorted in place.
 - n + c space for some constant c.

Self-study on Insertion Sort

• Exercise 2.1-1

Exercise 2.1-2

Content

• Sorting problem

- Sorting algorithms
 - Insertion sort $\Theta(n^2)$.
 - Merge sort $\Theta(n \lg n)$.

- What is merge sort?
 - A sorting algorithm using merge.
- What is merge?
 - Given two sorted lists of keys, generate a sorted list of the keys in the given sorted lists.
 - \bullet <1, 5, 6, 8> < 2, 4, 7, 9> \to < 1, 2, 4, 5, 6, 7, 8, 9>

Merging example

```
MERGE(A, p, q, r)
          n_1 = q - p + 1
          n_2 = r - q
          let L[1 ... n_1 + 1] and R[1 ... n_2 + 1] be new arrays
          for i = 1 to n_1
               L[i] = A[p+i-1]
6
          for j = 1 to n_2
               R[j] = A [q + j]
          L[n_1+1]=\infty
         R[n_2+1]=\infty
10
      i = 1
          j = 1
11
12
          for k = p to r
                if L[i] \leq R[j]
13
                    A[k] = L[i]
14
15
                    i = i + 1
                else A[k] = R[j]
16
                    j = j + 1
17
```

- Running time of merge
 - Let n_1 and n_2 denote the lengths of two sorted lists.
 - \bullet $\Theta(n_1 + n_2)$ time.
 - Main operations: compare and move
 - #comparison ≤ #movement
 - Obviously, #movement = $n_1 + n_2$
 - So, #comparison $\leq n_1 + n_2$
 - Hence, #comparison + #movement $\leq 2(n_1 + n_2)$
 - which means $\Theta(n_1 + n_2)$.

Merge sort

- A divide-and-conquer approach
 - **Divide:** Divide the n keys into two lists of n/2 keys.
 - Conquer: Sort the two lists recursively using merge sort.
 - Combine: Merge the two sorted lists.

Merge sort

Merge sort

Pseudo code

```
MERGE-SORT(A, p, r)
```

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 MERGE-SORT(A, p, q)
- 4 MERGE-SORT(A, q + 1, r)
- 5 MERGE(A, p, q, r)

- Divide: $\Theta(1)$
 - The divide step just computes the middle of the subarray, which takes constant time.
- Conquer: 2T(n/2)
 - We recursively solve two subproblems, each of size $\sim n/2$.
- Combine: $\Theta(n)$
 - We already showed that merging two sorted lists of size n/2 takes $\Theta(n)$ time.

• T(n) can be represented as a recurrence.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

• where the constant c represents the time required to solve problems of size 1 as well as the time per array element of the divide and combine steps.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & \text{if } n=1, \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Total : $cnlgn + cn = \Theta(nlgn)$

Self-study

- Merge sort
 - Exercise 2.3-1
 - Exercise 2.3-2
- Horner's rule
 - Problem 2-3 (a) (b)

More (sorting) algorithms

- Binary Search
 - Exercise 2.3-5

- Selection sort
 - Exercise 2.2-2