Трёхмерное компьютерное зрение: вопросы

26 июня, 2025

1 Расчёт фокусного расстояния по углу обзора

Угол обзора камеры вдоль узкой части кадра $\theta = 50^\circ$ (от края до края), а ширина сенсора в узкой части: w = 36 мм. Вычислите фокусное расстояние f камеры в модели pinhole.

2 Формула Родригеса и матрица поворота

Рассмотрим трёхмерный вектор $k \in \mathbb{R}^3$ и оператор векторного умножения на этот вектор $[k]_{\times}$. Вычислите матричную экспоненту $\exp[k]_{\times}$ для этого оператора. Докажите, что полученная матрица ортогональная.

3 Параметризация существенной матрицы

Сколько независимых параметров требуется для задания существенной матрицы E? Почему это число не совпадает с числом параметров фундаментальной матрицы F?

4 Матрица перехода из системы координат камеры в мировую

Постройте матрицу перехода из системы координат камеры в мировую систему координат. Камера расположена в точке C = (1, 2, 3), её оптическая ось направлена в начало мировой системы координат (0, 0, 0), а оси камеры ориентированы следующим образом:

- \bullet Ось y камеры направлена вверх (сонаправлена с положительным направлением мировой оси Y).
- Ось х камеры направлена "вбок".

5 Задача Bundle Adjustment

Сформулируйте задачу Bundle Adjustment (BA).

- Какие параметры оптимизируются?
- Какая минимизируемая функция?
- Как решается эта задача (алгоритмически)?
- Для чего она применяется в компьютерном зрении?

6 Уравнение рендеринга для диффузной поверхности

Рассмотрим диффузную поверхность (BRDF функция константа) и точечный источник света.

- Запишите уравнение рендеринга для такой поверхности.
- Как зависит яркость поверхности от угла между нормалью n и направлением на источник света I? Расстояния до источника?

7 Непрерывный alpha-композитинг

Рассказанный на курсе алгоритм α -композитинга можно получить из физической модели, описываемой следующим дифференциальным уравнением:

$$\frac{dI}{ds} + \sigma(s)I(s) = c(s)\sigma(s).^{1}$$

- Решите уравнение для случая c(s) = 0
- Найдите общее решение для произвольного c(s).

Уточнение: Ответ должен включать интегрирующий множитель и явный вид I(s).

8 Параметризация в Gaussian Splatting

Какие параметры описывают гауссовский сплат в методе Gaussian Splatting? Сколько параметров приходится на один сплат? Какую роль играет матрица ковариации в рендеринге?

 $^{^{-1}}$ Какая интуиция за этим уравнением? Уравнение говорит, что в точке s интенсивность света становится в $(1 - \sigma(s)\Delta s)$ разменьше из-за непрозрачности среды, но сама среда в той точке в то же время излучает c(s) света. Расказанный на курсе алгоритм является дискретизацией решения этого дифференциального уравнения. Более того, эта дискретизация является точной если поле кусочно-постоянное вдоль разбиения луча.