CLAIMS

1	1.	A system for attenuation of acoustic waves traveling through a longitudinal		
2	member capable of transmitting said acoustic waves therethrough comprising:			
3		a plurality of spaced-apart masses firmly attached to an adjacent outer wall of said		
4		longitudinal member, each said plurality of masses having a predetermined		
5		spacing and a predetermined magnitude for attenuation of acoustic pulses in a		
6		predetermined frequency range.		
1	2.	The system for attenuation of acoustic waves according to claim 1 wherein said		
2	prede	edetermined frequency range comprises 10 khz to 20 khz.		
1	3.	The system for attenuation of acoustic waves according to claim 2 wherein said		
2	plurality of masses comprises a material selected from (i) steel rings, and, (ii) tungsten			
3	rings			
1	4.	The system for attenuation of acoustic waves according to claim 3 wherein said		
2	plurality of masses is between six and ten.			

- 1 5. The system according to claim 1 wherein said spacing of the masses is within the
- 2 range of twelve to fourteen centimeters.
- 1 6. The system according to claim 1 wherein the masses comprise metal rings
 414-13238-CIP 28

2	attached to the outer wall of the longitudinal member by neck pieces extending inward				
3	from an inner circumference of the rings.				
1 2	7.		estem according to claim 1 wherein each of said plurality of masses is elongitudinal member by at least one neck piece.		
1	8. attache	·	stem according to claim 1 wherein the masses comprise metal rings houlder on the longitudinal member.		
1	9. attache	•	stem according to claim 8 wherein the metal rings are asymmetrically shoulder on the longitudinal member.		
1	10.		paratus for performing acoustic investigations of a subsurface geological etrated by a borehole comprising:		
3		(a)	a longitudinally extending body conveyed in said borehole;		
4		(b)	an acoustic transmitter supported by the body, said transmitter generating		
5			acoustic signals in the body, the borehole and the subsurface formations;		
6		(c)	an acoustic receiver spaced apart from the transmitter and supported by		
7			the body for receiving said acoustic signals; and		
8		(d)	an attenuator located on a substantially cylindrical portion of the body		
9			having an inner diameter and an outer diameter, between said acoustic		
0			transmitter and said acoustic receiver for attenuating said acoustic signals		

11

in the body within a predetermined frequency range;

1

2

3

12	wherein said attenuator comprises a plurality of spaced-apart masses having a
13	predetermined spacing, mass and length firmly attached to an outer wall of the
14	cylindrical portion of the body.

- 1 11. The apparatus of claim 10 wherein the longitudinally extending body is conveyed 2 on a drilling tubular having a drillbit therein for drilling the borehole, said drilling tubular 3 selected from the group consisting of (i) a drillstring, and, (ii) coiled tubing.
- 1 12. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced apart masses wherein said predetermined frequency range comprises 10 khz to 20 khz.
- 1 13. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced
 2 apart masses wherein material of said masses is selected from the group consisting of (i)
 3 steel rings, and, (ii) tungsten rings.
- 1 14. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced apart masses wherein said plurality of masses is between six and ten.
 - 15. The apparatus of claim 10 wherein the attenuator comprises a plurality of spaced apart masses and wherein said spacing of the masses is within the range of twelve to fourteen centimeters.
- 1 16. A method of performing acoustic investigations of a subsurface geological
 414-13238-CIP 30

2	iomi	ation penetrated by a borenote comprising:	
3		(a) conveying a logging tool having a substantially cylindrical body	
4		into the borehole;	
5		(b) activating a transmitter on the body for generating acoustic signals	
6		in the formation, borehole and the body;	
7		(c) attenuating signals passing through the body using an attenuator	
8		comprising a plurality of spaced-apart masses firmly attached on an	
9		outside adjacent wall of the body, said masses being spaced apart a	
10		preselected distance to attenuate signals within a specified frequency	
11		range;	
12		(d) using a receiver on a side of the attenuator opposite the transmitter	
13		for receiving signals through the formation and the attenuated signals	
14		through the body.	
1	17.	The method of claim 16 wherein said specified frequency range comprises 10 khz	
2	to 20 khz.		
1	18.	The method of claim 16 wherein said plurality of masses comprises a material	
2	select	ed from (i) steel rings, and, (ii) tungsten rings.	
1	19.	The method of claim 16 further comprising conveying the logging tool on a	
2		drilling tubular.	

- 1 20. The method of claim 16 further comprising performing said acoustic
- 2 investigations during drilling of the wellbore.
- 1 21. A system for attenuation of acoustic waves traveling through a longitudinal
- 2 member capable of transmitting said acoustic waves therethrough, comprising a plurality
- 3 of spaced-apart masses firmly and asymmetrically attached to an adjacent outer wall of
- 4 said longitudinal member, each said plurality of masses having a predetermined spacing
- and a predetermined magnitude for attenuation of acoustic pulses in a predetermined
- 6 frequency range.
- 1 22. The system according to claim 21 wherein the plurality of masses comprises a
- 2 material selected from (i) steel rings, and (ii) tungsten rings.
- 1 23. The system according to claim 21 wherein the predetermined frequency range
- 2 comprises 10khz to 20 khz.
- 1 24. The system for attenuation of acoustic waves according to claim 21 wherein said
- 2 plurality of masses is between six and ten.
- 1 25. The system according to claim 21 wherein said spacing of the masses is within the
- 2 range of twelve to fourteen centimeters.
- 1 26. A method of performing acoustic investigations of a subsurface geological

2	forma	rmation penetrated by a borehole comprising:		
3		(a) conveying a logging tool having a substantially cylindrical body		
4		into the borehole;		
5		(b) activating a transmitter on the body for generating acoustic signals		
6		in the formation, borehole and the body;		
7		(c) preferentially attenuating signals passing through the body in a		
8		predetermined direction using an attenuator comprising a plurality of		
9		spaced-apart masses firmly and asymmetrically attached on an outside		
10		adjacent wall of the body, said masses being spaced apart a preselected		
11		distance to attenuate signals within a specified frequency range;		
12		(d) using a receiver on a side of the attenuator opposite the transmitter		
13		for receiving signals through the formation and the attenuated signals		
14		through the body.		
1	27.	The method of claim 26 wherein said specified frequency range comprises 10 khz		
2	to 20	khz.		
1	28.	The method of claim 26 wherein said plurality of masses comprises a material		
2	select	ed from (i) steel rings, and, (ii) tungsten rings.		
1	29.	The method of claim 26 further comprising conveying the logging tool on a		
2		drilling tubular.		

- 1 30. The method of claim 26 further comprising performing said acoustic
- 2 investigations during drilling of the wellbore.