

Studying leptonic and semileptonic B decays at the Belle II experiment

Ethan Cross, Chia-Ling Hsu and Kevin Varvell USyd-UNSW Workshop 03-May-2019

Particle Physics Group, The University of Sydney

The first decade of this century was the "Age of the B-factories"

PEP-II/BABAR

On resonances:

 433 fb^{-1} $\Upsilon(4S)$: $30 \; {\rm fb}^{-1}$ $\Upsilon(3S)$: $14 \; {\rm fb}^{-1}$ $\Upsilon(2S)$:

Off reson./scan: 54 fb^{-1}

Total:

$\Upsilon(5S)$:

On resonances:

KEKB/Belle

 121 fb^{-1} $\Upsilon(4S)$: 711 fb^{-1} 3 fb^{-1} $\Upsilon(3S)$: 25 fb^{-1} $\Upsilon(2S)$:

Off reson./scan:

 100 fb^{-1} $> 1 \text{ ab}^{-1}$

 6 fb^{-1}

Total:

 $\Upsilon(1S)$:

PEP-II/BABAR (1999-2008)

KEKB/Belle (1999-2010)

 550 fb^{-1}

B-factories exploit the $\Upsilon(4S)$ resonance ($b\bar{b}$ bound state)

Image from arXiv:0901.1443 [hep-ex]

$$e^{+} + e^{-} \rightarrow \Upsilon(4S) \rightarrow B^{0} + \overline{B}^{0}$$
 (51.4 ± 0.6)% ($B^{0} : d\bar{b}$)
 $e^{+} + e^{-} \rightarrow \Upsilon(4S) \rightarrow B^{+} + B^{-}$ (48.6 ± 0.6)% ($B^{+} : u\bar{b}$)

Belle: $772 \times 10^6 \ B\bar{B}$ pairs

Now in operation - SuperKEKB and Belle II

Belle II is an improved version of Belle, largely to handle higher luminosity

- Aiming for 50 $ab^{-1} = 50000 \text{ fb}^{-1} \approx 50 \times \text{Belle data}$
- 2018: "Phase II" commissioning run no vertex detector 0.5 fb⁻¹
- 2019: "Phase III" full Physics run commenced

Belle II has a number of physics aims relating to "Flavour Physics"

Here are three:

• *CP* violation in *B* decays (continue the Belle legacy)

• Explore the CKM matrix governing weak transitions e.g. $B^0 \to \pi^- \ell^+ \nu_\ell$

 Search for deviations from the Standard Model using rare B decays
 e.g. B⁺ → ℓ⁺ν_ℓ, e.g. B → D^(*)τ⁺ν_τ

We would like to test unitarity of CKM matrix more precisely

 ${\sf Currently}$

Belle II 50 ab^{-1}

Leptonic and semileptonic decays are cleaner than hadronic decays, both theoretically and experimentally

From J. Dingfelder, FPCP 2018 talk

More complicated form factors \Rightarrow

In many cases, ideally we would like a beam of B mesons ...

. . . but

- ullet not all collisions produce a $Bar{B}$ pair
- we get two B mesons when they do which decay products came from which?

• Use "tagging"

There are three approaches to "tagging"

Example signal: $B^0 o \pi^- e^+ \nu_e$

Untagged Pros Signal initial 4-momentum known High efficiency Cons missing 4-momentum = vReconstruct B $\rightarrow \pi^- \ell \nu$ cand v resolution problematic using m_B (beam-constrained) Rest used to reconstruct v • Rel. high backgrounds (rel. low purity) and $\Delta E = E_R - E_{beam}$ Pros Semileptonic (SL) Tag Sianal Lower backgrounds One B reconstructed in a selection of D(*) & v (higher purity) Cons modes ExampleTag Two missing v in event Rel. low efficiency side Use kinematic constraints Full Recon Tag Pros Sianal One B reconstructed Very good v resolution completely in known e.a. Very low backgrounds $b \rightarrow c mode$. Cons ExampleTag Many modes used. Very low efficiency

Full Recon Tagging is cleaner

Example signal: $B^0 \to \pi^- \ell^+ \nu_\ell$, $\ell = e, \mu$

Belle Untagged 605 fb^{-1} $0 < q^2 < 16 \text{ GeV}^2/c^2$ $q^2 > 16 \text{ GeV}^2/c^2$ (a) 2000 Events / 125 MeV 3000 1500 2000 1000 1000 ∆E (GeV) ΔE (GeV) 2000 Events / 6.25 MeV/c² 3000 M_{bc} (GeV/c²) M_{bc} (GeV/c²)

Phys. Rev. D83 (2011) 071101R

Belle Full Recon Tag (FR) $711 \; {\rm fb}^{-1}$

Phys. Rev. D88 (2013) 032005

The Belle II Full Recon scheme is called Full Event Interpretation (FEI)

Hierarchical reconstruction of tags using machine-learning techniques

Image from arXiv:1807.08680 [hep-ex]

- Can do both hadronic and semileptonic tagging (Belle FR hadronic only)
- Provides a list of potential tags with associated "Signal Probability" which allows the purity of the selected decays to be controlled

The FEI has been validated using Belle MC and data

Details can be found in Comput.Softw.Big Sci. 3 (2019) no.1, 6.

Maximum tag efficiency

B^{\pm}	B^0
nic	
$0.53~\% \\ 0.76~\%$	0.33 % 0.46 %
onic	
1.80 %	2.04 %
	0.76 % sonic

Charged tags 0.50 © 0.40 © 0.40 © 0.35 © 0.30 © 0.15 © 0.10 © 0.10 0.00 0.

Purity in %

Belle II has "rediscovered" hadronic B decays in Phase II running using the FEI

Based on the Phase II dataset of 0.5 fb⁻¹

Ongoing work USyd/UAdel - validate FEI for semileptonic and hadronic tagging, early Phase III data Ethan Cross, Philip Grace, Chia-Ling Hsu, Paul Jackson, Kevin Varvell

Semileptonic B decays can be extracted by exploiting kinematics

Example: $\overline{B^0} \to D^{*+} e^- \bar{\nu}_e$ based on 0.25 fb⁻¹ of the Belle II Phase II dataset

This result was verified by Bernanda Telalovic in a 2018 honours project.

Conclusions

 Belle II is commissioned, running and ready to study rare B-meson decays and Flavour Physics

 A superior method of tagging B-meson decays (Full Event Interpretation) has been developed

 Our focus is currently to validate the method and help to "rediscover" B-mesons using early Phase III data from Belle II

