User Authentication for Natural User Interfaces (NUIs)

Janusz Konrad

Acknowledgments

Prof. Prakash Ishwar

Dr. Jiawei Chen (Oppo)

Prof. Nasir Memon (NYU)

Dr. Napa Sae-Bae (RMUTSB, Thailand)

This work was supported in part by the National Science Foundation, and by Boston University. This lecture has been made possible by the IEEE Signal Processing Society.

Dr. Jonathan Wu (Amazon)

What is user authentication?

The process of verifying someone's identity, for example to access a restricted device, fetch restricted data, sign a document, vote, etc.

Authentication exploits something: you have, you know, you are

Authentication yesterday

Something you have

Something you know and you are

Authentication today (frequent)

Magnetic swipe card

Proximity card (e.g., RFID)

Something you have

Authentication today (occasional)

Proof of identity

Something you have and you are

Authentication today (very frequent)

Something you know

6

Passwords: should be unique and obey hygiene

But passwords require mental effort, so

Top 100 most vulnerable passwords

NY Post, June 12, 2018 (https://nyp.st/2y8Dol3)

We need to remember more and more of them ...

but as we age, it gets more and more difficult

Is there any hope?

Authentication wish list:

- Simple
- Effortless (easy to remember)
- Secure

Natural User Interfaces (NUIs)

Touch surface

3-D camera

Multiple cameras

AR headset Smartwatch

- Emerging modes of user interaction with devices
- Natural user behavior
- Can NUIs be leveraged for user authentication?

NSF (CISE-SATC) collaborative project between BU and NYU

NUI taxonomy

N. Sae-Bae, J. Wu, N. Memon, J. Konrad, and P. Ishwar <u>"Emerging NUI-based methods for user authentication: A new taxonomy and survey,"</u> *IEEE Trans. Biometrics, Behavior, and Identity Science*, vol. 1, pp. 5-31, Jan. 2019.

Touch surface: Early attempts

Password entry on touch keyboard:

- significant effort, slow
- subject to shoulder-surfing attack

Android pattern lock:

- easier to memorize
- also subject to smudge attack

Something you know

Further attempts

Microsoft Picture Password

Something you know

Graphical passwords

How to exploit "something you are" (biometric features) on a touch surface?

Common gestures performed on a touchscreen

Swiping

Pinching

Pressing

Multi-touch swiping

Multi-touch gestures

- Biometrically rich (much richer than single-touch gestures)
- More resilient against shoulder surfing than typing a password
- Natural action (easy to memorize)
- Can be renewed if compromised (unlike fingerprint, retinal scan, face image)

Multi-touch gesture test set (NYU study)

Annotation	Palm movement	Fingertip movement	Dynamic fingertips
'CCR'	Static	Circular(CCW)	All
'CR'	Static	Circular(CW)	All
'Closed'	Static	Close	All
'Drag'	Dynamic(↓)	Parallel	All
'DDC'	Dynamic(∕₄)	Close	All
'DUO'	Dynamic(^人)	Open	All
'FBD'	Static	Parallel(\downarrow)	Fixed thumb and pinky
'FBSB'	Static	Parallel(\langle shape)	Fixed thumb and pinky
'FBSA'	Static	Parallel() shape)	Fixed thumb and pinky
'FPCCR'	Static	Circular(CCW)	Fixed pinky
'FPC'	Static	Close	Fixed pinky
'FPO'	Static	open	Fixed pinky
'FPP'	Static	$Parallel(\downarrow)$	Fixed pinky
'FTCCR'	Static	Circular(CCW)	Fixed thumb
'FTCR'	Static	Circular(CW)	Fixed thumb
'FTC'	Static	Close	Fixed thumb
'FTO'	Static	Open	Fixed thumb
'FTP'	Static	Parallel(\downarrow)	Fixed thumb
'Flick'	Dynamic(∑)	Parallel	All(Quick)
'Opened'	Static	Open	All
'Scrawl'	Dynamic(Customized)	Parallel	All
'Swipe'	$Dynamic(\rightarrow)$	Parallel	All

[Sae-Bae et al., TIFS, 2015]

Examples

Multi-touch verification

Biometric data samples are never identical, although are similar

One sample is not good enough to represent a person

Several samples need to be acquired during enrollment

Templates

Classifier

Yes/No

3 steps

Diagram courtesy of Memon

Step 1: Data alignment

Graphics courtesy of Memon

Possible Paths

- 5-4-3-2-1
- 5 3 4 2 1
- 5-3-2-4-1
- 5-3-2-1-4

- 1. Locate the thumb
- 2. Track individual touch points by minimizing the sum of distances between same-ID touchpoints so that new IDs form a simple polygon

Aligned template

Data courtesy of Memon

Step 2: Feature vectors

10 Euclidean distances between 5 touch points at time *t*

Feature vector $p_t \in R^{10}$

Additional 10 distances between each touch point k at time t+1 and touch points k-1 and k+1 at time t, to account for movement direction and speed

Feature vector $p_t \in R^{20}$

Step 3: Assessing gesture similarity

Given two feature sequences:

$$p = [p_1, p_2, ..., p_n], q = [q_1, q_2, ..., q_m]$$

are they similar?

- Gestures may be of different time duration $(m \neq n)$. How to compare ?
- Apply Dynamic Time Warping (DTW):

constrained, piece-wise linear mapping of the time axes to align the two sequences while minimizing cumulative warping cost.

DTW

$$pathcost(path, \mathbf{p}, \mathbf{q}) = \sum_{(i_k, j_k) \in path} cost(\mathbf{p}_{i_k}, \mathbf{q}_{j_k})$$

$$cost(m{p}_i, m{q}_j) = \sqrt{\sum_{k=1}^d (p_i^k - q_j^k)^2}$$
 Euclidean $cost(m{p}_i, m{q}_j) = \sum_{k=1}^d |p_i^k - q_j^k|$ Manhattan $cost(m{p}_i, m{q}_j) = 1 - \frac{m{p}_i \cdot m{q}_j}{\|m{p}_i\| \|m{q}_j\|}$ Cosine

Decision rule: The same person or not?

Cost of best alignment (smallest dissimilarity):

$$DTW(\mathbf{p}, \mathbf{q}) = \min_{\text{path}} pathcost(\text{path}, \mathbf{p}, \mathbf{q})$$

$$DTW(p,q) < \delta \rightarrow \text{accept as the same person}$$

$$DTW(\boldsymbol{p}, \boldsymbol{q}) > \delta \rightarrow \text{reject}$$

Evaluation

Unauthorized-user test

(False Acceptance Rate – FAR)

Unauthorized Group

> Equal Error Rate (EER): EER = FAR = FRR

Authorized-user test (False Rejection Rate – FRR)

Results: Distance metrics (34 participants)

EER FOR DTW DISTANCE FUNCTION OF 20 FEATURES SET WITH THREE DIFFERENT COST FUNCTIONS

Gesture	Manhattan	Euclidean	Cosine
'CCW'	5.50	4.95	8.14
'CW'	7.21	7.26	9.45
'Pinch'	8.34	9.02	9.15
'Drag'	9.50	9.56	8.69
'DDC'	4.46	4.43	8.14
'DUO'	6.80	6.53	8.70
'FBD'	11.53	11.62	13.13
'FBSB'	6.85	7.89	6.61
'FBSA'	9.96	9.84	11.27
'FPCCW'	10.60	10.60	10.63
'FPC'	8.83	8.87	11.46
'FPO'	13.32	14.45	12.42
'FPP'	11.01	10.80	13.85
'FTCCW'	4.48	4.54	5.33
'FTCW'	6.22	6.42	7.98
'FTC'	5.88	5.94	8.88
'FTO'	9.52	9.39	9.98
'FTP'	4.66	4.91	7.36
'Flick'	10.75	10.98	12.85
'Open'	6.80	8.02	9.90
'Swipe'	8.25	9.00	10.14
'User-defined'	2.98	2.85	5.86
Average EER	7.88	8.09	9.54

L1 (Manhattan) norm slightly better than Euclidean norm

[Sae-Bae et al.,TIFS, 2015]

Results: One versus two consecutive gestures

Sequence of 3 gestures better than 2 gestures which is better than 1 gesture

[Sae-Bae et al., TIFS, 2015]

3-D gestures ?

Free-space gestures performed by hands, all limbs or even the whole body:

- natural
- can be meaningful, e.g., a hand-wave (easy to memorize)
- biometrically rich

Authentication: Big Picture

Database of enrolled gesture samples

Access point

Left Black

Left B

John

Method #1: Skeletons

Kinect v1: 20 body joints

Gesture sequence (joint coordinate evolution in time):

g – gesture

t – time

j – joint number (1,...,20)

x – point coordinates

[Wu, Ishwar, Konrad, ICASSP, 2013]

How to find similarity?

Gesture-sequence 1: $X^{g_1} = (X_1^{g_1}, X_2^{g_1}, ..., X_n^{g_1})$

Gesture-sequence 2: $X^{g_2} = (X_1^{g_2}, X_2^{g_2}, ..., X_n^{g_2})$

Align them to account for variation in execution speed, and then measure the distance between aligned sequences: **Dynamic Time Warping** (DTW)

33

DTW

$$pathcost(path, \mathbf{X}^{g_1}, \mathbf{X}^{g_2}) = \sum_{(i_k, j_k) \in path} cost\left(\mathbf{X}^{g_1}_{i_k}, \mathbf{X}^{g_2}_{j_k}\right)$$

$$cost(X_i^{g_1}, X_j^{g_2}) = \sum_{p=1}^d ||x_{p,i}^{g_1} - x_{p,j}^{g_2}||$$

Cost of best alignment:

 $DTW(X^{g_1}, X^{g_2}) = \min_{\text{path}} pathcost(\text{path}, X^{g_1}, X^{g_2})$

If $DTW(X^{g_1}, X^{g_2}) < \delta$, accept as the same person

If $DTW(X^{g_1}, X^{g_2}) > \delta$, reject

 $DTW(X^{g_1}, X^{g_2})$

Method #1: Silhouettes

[Lai, Konrad, Ishwar, AVSS, 2012]

$$f_{n} = \{x, y, t, d_{E}, d_{S}, d_{W}, d_{N}, d_{N}, d_{NE}, d_{SE}, d_{SW}, d_{NW}, d_{T+}, d_{T-}\}$$

... but this expands dimensionality

Silhouette-based method

Dimensionality reduction *via* 13x13 covariance matrix:

$$C = \frac{1}{N} \sum_{n=1}^{N} (f_n - \mu)(f_n - \mu)^T, \quad \mu = \frac{1}{N} \sum_{n=1}^{N} f_n$$

Distance metric: log-covariance [Arsigny et al., MRIM, 2006]

$$D(C_1, C_2) = \left\| \log(C_1) - \log(C_2) \right\|_2$$

If $D(C_1, C_2) < \delta$, accept as the same person If $D(C_1, C_2) > \delta$, reject

Authentication performance: EER for simple gestures

\bigcirc	1 . 1	1
Ske	leton-	based

Silhouette-based

20 participants

Group Split	19/1	15/5	10/10	19/1	15/5	10/10
Right Swing	3.98%	3.98%	3.98%	4.04%	4.04%	4.01%
Right Push	2.03%	2.03%	1.98%	3.74%	3.73%	3.73%
Right Back	1.01%	1.00%	1.03%	0.00%	0.00%	0.00%
Left Swing	1.12%	1.11%	1.11%	2.01%	2.01%	2.01%
Left Push	2.02%	2.01%	1.96%	2.01%	2.01%	2.01%
Left Back	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Zoom-in	1.02%	1.02%	0.97%	2.45%	2.45%	2.45%
Zoom-out	2.59%	2.59%	2.59%	7.97%	8.02%	7.83%
All gestures	1.89%	1.89%	1.89%	2.79%	2.73%	2.73%

Skeleton-based method performs slightly better than silhouette-based method

All gestures

20 participants

Identification performance: EER for simple gestures

	Skeletoli-based Silliodette-ba			1364		
Group Split	19/1	15/5	10/10	19/1	15/5	10/10
Right Swing	6.02%	6.02%	5.28 %	7.07%	6.98%	5.74%
Right Push	3.99%	3.22%	2.91%	8.11%	8.31%	8.70%
Right Back	1.01%	1.01%	1.00%	0.00%	0.00%	0.00%
Left Swing	4.08%	4.02%	2.99%	4.03%	4.03%	3.99%
Left Push	9.05%	8.58%	7.61%	5.04%	4.99%	4.04%
Left Back	1.01%	0.99%	1.01%	0.00%	0.00%	0.00%
Zoom-in	5.02%	4.94%	4.10%	9.57%	9.05%	7.99%
Zoom-out	7.97%	6.31%	5.71%	10.95%	8.95%	7.65%

3.51%

Skeleton-hased

4.12%

4.14%

Skeleton-based method performs slightly better than silhouette-based method Identification performance worse than authentication performance (as expected)

6.92%

Silhouette-hased

6.49%

6.16%

Degradation study: More complex gestures

- 40 participants (27 males/13 females), 2 different gestures:
 - S-shaped movement of both arms
 - User-defined
- 20 repetitions of each gesture in 2 sessions:
 - Session 1: test of changing appearance:
 - 5 "clean" gestures (no coats, bags),

[Wu, Konrad, Ishwar, AVSS, 2014]

- 5 gestures with either a coat or bag,
- Session 2: to test time and memory (after 1 week):
 - 5 gestures performed from memory

S-gesture

User-defined gesture

Authentication performance

EER

S-gesture

User-defined gesture

Tuelie wille	To at:416	Silhouette	Skeleton
Train with	Test with	Log-Cov.	DTW
No degradations	No degradations	3.46%	5.26%
	Personal-effects	11.13%	6.56%
	User memory	17.62%	13.42%
No degradations	No degradations	1.12%	0.30%
	Personal-effects	2.51%	0.68%
	User memory	12.14%	2.97%

Identification performance

100% - CCR

S-gesture

User-defined gesture

Tuelle	To at:the	Silhouette	Skeleton
Train with	Test with	Log-Cov.	DTW
No degradations	No degradations	2.50%	1.00%
	Personal-effects	16.00%	5.50%
	User memory	42.50%	21.00%
No degradations	No degradations	1.00%	0.00%
	Personal-effects	3.06%	1.02%
	User memory	19.00%	5.00%

CCR = Correct Classification Rate

Silhouettes or skeletons?

- Silhouettes work well for clean data
- Heavy clothing, backpacks degrade performance of both, but skeletons are more robust
- Elapsed time degrades performance, but user-defined gesture performs better especially using skeletons
- Pre-defined gestures work well, but user-defined ones work even better (EER ≈ 1%)

Value of posture, build and dynamics

Biometric information ·

static information [body posture, build]

dynamic information [limb motion]

Approach:

- Suppress various combinations of posture, build and dynamics, and evaluate authentication performance
- Train attackers by showing a gesture video of their easiest
 "victim" (one with the most similar gesture)
 [Wu, Ishwar, Konrad, IJCB, 2014]

Suppressing user posture

Method: User-specific posture → Standard posture Standard posture = Average of all user initial postures

Suppressing user build

Method: User-specific build → Standard user build Standard user build = Average of all user limb proportions

Suppressing user dynamics

Method: Suppress limb motion

Simply discard all but the first frame

48

Results of suppression (36 participants)

EER for 3 different gestures

Information Suppressed	Left-Right	Double-handed arch	Balancing
Nothing	1.97%	0.25%	0.68%
Dynamics Build Posture	3.83% 2.09% 3.75%	3.01% 0.38% 0.61%	2.12% 1.20% 1.30%
Dynamics + Build	4.29%	4.88%	3.72%
Dynamics + Posture	8.22%	4.76%	4.39%
Posture + Build	6.91%	0.91%	3.22%

Dynamics affect performance more than posture and build

Spoofing study

- Attackers matched to their closest "victims" (similar gesture performance)
- In ``Matched-Spoof", the attacker is allowed to study ``victim's" gesture for 1 minute and practice simultaneously seeing ``victim's" and own gesture

Gesture	Matched Zero-Effort EER	Matched Spoof EER
Left-right	2.78%	2.35%
Double-handed arch	1.24%	1.13%
Balancing	2.66%	2.06%

 Surprise: EER improves after spoofing; it suggests that it is difficult to imitate someone's gesture

Learning user style

- So far, samples of a user's gesture must be enrolled
- Is it possible to recognize a user regardless of gesture?
- "Reverse" of gesture recognition
 - Gesture recognition: Learn gesture invariant of user
 - User recognition: Learn user invariant of gesture
- Method: Deep Convolutional Neural Networks

[Wu, Ishwar, Konrad CVPRW, 2016]

Deep learning

Traditional Learning

- Deep Learning Pipeline
 - Learn feature representation directly from image
 - Hidden "weight" layers are a composition of non-linear transformations

Two-Stream Convolutional Neural Network (CNN)

- Adapt a two-stream CNN architecture for identification
- Learn two separate image-based CNNs
- AlexNet used as the CNN of choice; pre-trained from ImageNet, then fine-tuned

Gesture datasets

Body Gesture Dataset (BodyLogin): 40 users, 5 gestures (1 user-defined)

Hand Gesture Dataset (HandLogin): 21 users, 4 gestures

Experiments: User identification

- Evaluate Correct Classification Error (CCE = 100% CCR)
 - 1. Training and testing with all gestures
 - 2. Testing with gestures unseen in training (left-out) to evaluate generalization performance
- Baseline: silhouette-covariance method over 3 temporal scales (7 covariance matrices concatenated together)

Results: Training and testing with all gestures

CCE

Dataset	← Spatial			Temporal	Baseline	
Dataset	(1,0)	(0.66,0.33)	(0.5,0.5)	(0.33,0.66)	(0,1)	Daseille
HandLogin	0.24%	0.24%	0.24%	0.71%	4.05%	6.43%
BodyLogin	0.05%	0.05%	0.05%	0.05%	5.01%	1.15%

Significant improvement over baseline

Results: Testing with gestures unseen in training

				CCE			
(Generalizing	← S	patial		Temporal		
	Gesture	(1,0)	(0.66,0.33)	(0.5,0.5)	(0.33,0.66)	(0,1)	Baseline
_	Compass	2.38%	2.86%	4.76%	8.57%	36.19%	82.38%
Login	Piano	1.91%	0.48%	1.43%	1.91%	12.86%	68.10%
Handl	Push	44.29%	49.05%	54.29%	67.62%	77.14%	79.52%
ž	Fist	16.67%	15.71%	17.14%	20.00%	31.43%	72.38%
	S motion	0.75%	1.00%	1.25%	1.75%	16.75%	75.75%
gin	Left-Right	0.88%	1.25%	1.50%	1.88%	11.50%	80.88%
	2-Hand Arch	0.13%	0.13%	0.13%	0.38%	6.25%	74.50%
Bod	Balancing	9.26%	10.01%	13.27%	19.52%	45.06%	77.97%
U	Jser Defined	5.28%	5.53%	6.16%	8.54%	22.49%	71.61%

- Strong generalization for similar gestures
- Baseline incapable of generalizing

Feature visualization with t-SNE

Strong user separation after fine-tuning

Final thoughts

- Authentication ``anxiety" will only grow
- Juggling hundreds of passwords is not sustainable
- Solution: Leverage renewable biometrics via Natural User Interfaces
- Bonus: Authentication using NUIs
 has been shown to increase pleasure
 and excitement for user-defined gestures
- Challenge: How to develop practical authentication systems on NUIs that are robust under a wide range of circumstances?

