JAiO lato 2024

notatki z ćwiczeń

KONRAD KACZMARCZYK

5 March 2024

§1 27 luty

Zadanie 1.1. Znajdź liczbę wszystkich języków na alfabetem $\{a,b\}$ o następujących własnosciach:

- 1. Wszystkie słowa są długosci c o najwyżej n
- 2. Wszystkie słowasą długosci $n \geq 2$ i każde słowo zawiera in fiksaa
- 3. Słowa nie zawierają symbolu b.
- 4. Język jest skończony.
- 1. Wystaryczy zauważyć że liczba słów to $\sum_{i=0}^n 2^i = 2^{n+1} 1$ Więc języków jest $|\alpha| = 2^{2^{n+1}-1}$
- 2. Fibonacci
- 3. Słów jest przeliczalnie nieskończenie, więc języków jest 2^{\aleph_0} .
- 4. \aleph_0 bo możemy języki możemy ustawić względem ich najdłuższego słowa

Zadanie 1.2. Udowodnij że poniższe definicje pewnego języka L nad alfabetem $\{(,)\}$ są równoważne:

- 1. Słowo puste należy do L oraz jesli $w, v \in L$ to również $wv \in L$ i $(w) \in L$.
- 2. L jest zbiorem słów w o następującej własnosci: liczby wystąpień (oraz)w słowie w sątakie same oraz w dowolnym prefiksie w liczba wystąpień (jest większa lub równa liczbie wystąpień).
- 1. $L \subset P$

$$\varepsilon \in P$$
 $w \in P$
 $(w) \in P$
 $v, w \in L$
 $vw \in B$

2. $P \subset L$ Indukcja po długosci słowa, i szukamy pierwszego miejsca gdy liczba nawiasów otwierających jest taka sama jak zamykających, i dwa przypadki które idą z założenia.

Zadanie 1.3. Słowo $w \in \sum^*$ nazwiemy *pierwotnym* jesli nie istnieje słowo

§2 5 marca

Zadanie 2.1. Reprezentujemy liczby binarne jako słowa nad alfabetem $\{0,1\}$, wyraź z pomocą wyrażenia regularnego słowa podzielne przez 3

Rozwiązaniem jest $1(01^*0) 1(1(01^*0)^*1+0)^*$, albo prosciej (jednak niepoprawnie) jako $(1(01^*0)^*1+0)^*$, gdzie wystarczy pokazać że:

- (a) wyrażenie generuje liczby podzielne przez 3
- (b) wszystkie liczby podzielne przez 3 mogą być wygenerowane przez wyrażenie

Zadanie 2.2. Roztrzygnij czy języków regularnych jest przeliczalnie czy nieprzeliczalnie wiele.

Uwaga 2.3. Nie mamy ustalonego alfabetu, ale przyjmujemy że każdy alfabet będzie skończonym podzbiorem pewnego przeliczalnego zbioru.

Każdy alfabet jest sk. podzbiorem $\{a_1,a_2,a_3,\cdots\}$ Rozważmy następujące skończone zbiory:

- 1. wszystkie wyr. reg. długosci ≤ 1 , i wykorzystujące litery $\{a_1\}$
- $2. -----||----- \le 2 \ , -----||----- \{a_1, a_2\}$
- 3. . . .

I zauważmy że każdy krok jest skończony, i każde słowo znajdzie się jakiejs kategorii.

Przykład 2.4

Jaką głębokosć gwiazdkowa ma $(a^*b^*)^*$?

Zauważmy że: $(a^*b^*)^* = (a+b)^*$, więc 1.

Zadanie 2.5. Udowodnij, że dla każdego $k \in \mathbb{N}$ istnieje język regularny o głębokości gwiazdkowej k. Czy można ograniczyć się do alfabetu z dwoma symbolami? A z jedym symbolem? Co się dzieje jeśli dopuścimy do wyrażeń regularnych dopełnienie?

Weźmy alfabet $\{a_1, a_2, a_3, \dots, a_k\}$, i rozważmy:

$$(a_k (a_{k-1} (\dots a_1^*)^*)^*)^*$$

i spróbować wykazać że ma on porządaną głębokosć gwiazdkową.