CS2040S: Data Structures and Algorithms

Discussion Group Problems for Week 5

For: Sept. 12, 2019

Problem 1. Ranking and Selecting

In the previous Discussion Group, we figured out a data structure for the contestants on planet Kronos. In today's DG, consider that all the contestants are stored in a Binary Search Tree (BST) and not a heap. Your employers now want two other operations to be included:

- select(int i) which finds the i'th smallest element.
- rank(contestant x) which returns the rank of element x, i.e., its index in the sorted list of all the elements.

Problem 1.a. Discuss how you can augment the BST to efficiently perform select(int i) and rank(contestant x) queries.

Hint: In AVL trees, we stored the balance factor at each node to help us rebalance the tree. What information can you store at each node that can help you quickly determine a node's rank? Can the information also be useful to perform a select?

Problem 1.b. Give pseudocode for select(int i) and rank(contestant x) and state their asymptotic time complexities.

Problem 2. Circle Intersections (Optional)

Suppose you are given two sets of 2-dimensional points $P = \{p_1, p_2, \dots, p_n\}$ and $Q = \{q_1, q_2, \dots, q_n\}$. Connect each point p_i to the corresponding q_i . What is the most efficient algorithm you can think of for determining how many pairs of these line segments intersect? In the example below, there are two intersections; the line formed by (p_1, q_1) intersects with (p_2, q_2) and (p_3, q_3) , but the lines formed by (p_2, q_2) and (p_3, q_3) do not intersect with one another.

Hint: Can you find a $O(n \log n)$ algorithm? Perhaps you can re-use the solution in Problem 1?

Problem 3. Tree Insertion (Optional)

Next, we will attempt the *Tree Insertion* problem on Kattis:

https://open.kattis.com/problems/insert

Note: For this problem, the numbers involved can get very large and you'll need BigInteger: https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html