

Introduction to organic chemistry IOC

Topics included:

- (I) Nomenclature
- (2) GOC-I (Electronic displacement effects)
- (3) GOC- II (Stability of intermediates)
- (3) GOC-III (Acidity & Basicity)
- (4) Isomerism

Acidity / Acidic strength -

Acid
$$\frac{-H^{+}}{}$$
 conjugate base

Acidic strength & stab. of conjugate base

stab. of conjugate base can be Increased by $E\omega G = -M > Reso > -I$

Conjugate base can be destabilise by EDG \Rightarrow +M > H·C· > +I

 \Rightarrow stab. of conjugate base \uparrow * In a group \Rightarrow T \Rightarrow B \Rightarrow size \uparrow

(19) HCI
$$F_3C-COOH$$
 $Ph-C-OH$ CH_3-COOH $A > b > C > d$

(20) $F_3C-COOH$ $C \downarrow C-COOH$ $BYC-COOH$ $A \downarrow C-COOH$ $A \downarrow C-$

Steric Inhibition of Resonance (SIR) -> G, and G2 are bulky groups. 92 G1, G2 =-H,-D,-T,-CN,-NH2,-F, -c=cH,-oHIf Gi, Gz are bulky => Repulsion b/w Gi and Gz =) Planarity of P-orbitals of G1, G2 with benzene ring lost => Resonance of G1 and G2 with benzene ring cut off. SIR < size of groups Orthoeffect - o-substituted benzoic acid are more acidic than its meta and Para isomers and benzoic acid itself irrespective of electronic effect of any group (+m,-m, H.C.,+I, $\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{$ Effective (b>a) cross conjugation of (=0)

(25)
$$COOH$$
 $COOH$ CO

(30)
$$C = \frac{C}{-I}$$

a>b>d>c

COOH

COOH

COOH

COOH

(33)

CH3

et

O

Acidity

SIR

Size of group

2>c>6>a

COOH

(36) COOH
$$COOH$$

COOH

503H - Acidic group

b > a

COOH

(37)

COOH COOH COOH COOH OCOCH3 COOH OH +M

(38)
$$(38)$$

$$(38)$$

$$(39)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(30)$$

$$(3$$

COOH

COOH

(46)
$$R-COOH$$
(a) $-M$
(b) NO_2-M
 NO_2-M
 NO_2-M
 NO_2-M
(c) NO_2-M
 NO_2-M

(52)
$$H_{3}0^{+}$$
 $H_{2}0$ NH_{4}^{+} NH_{3} $A > b > C > d$

(53) $R - NH_{3}$ NH_{3} NH_{4} NH_{3} NH_{4} NH_{4} NH_{5} NH_{5}

Toluene > benzene > CH2= CH2 > CH3-CH3