

3D Reconstruction from Single Image Using Occupancy Network with Vision Transformer Architecture

Machine Learning for 3D Geometry SS23

Supervisor: Prof. Dr. Angela Dai

Students: Van Cuong Dam, Volkan Özer, Furkan Yakal, Kaan Özgen

Outline

- Introduction
- Motivation
- Method Primary Idea
- Method Final Approach
- Experiment & Evaluation
- Conclusion
- References

Introduction

- 3D reconstruction takes a set of 2D images or collection of 3D point clouds and outputs the shape and structure of the object or scene
- There have been many architectures proposed in recent years, such as Conv.
 Occupancy Networks [1], DeepSDF [2], and Pix2Vox [3]

Figure 1. Input and output sample

Figure 2. Conv. Occupancy Network[1]

Figure 3. Pix2Vox[3]

Occupancy Networks [4]

- 3D Geometry as the decision boundary of a classifier
- Takes 3D point clouds and 2D as input and outputs their occupancy probability
- 3D reconstruction from point clouds, single images and voxel grids

Figure 4. Decision boundary representing the surface of the reconstructed shape

Figure 5. Occupancy Network architecture

Motivation

Vision Transformer (ViT) [5]

- Split an image into a sequence of image patches
- Patch embeddings mixed with positional embeddings
- Transformer Encoder
- Multi-layer perceptron (MLP)

Figure 6. ViT architecture

Detection Transformer (DETR) [6]

- CNN backbone
- Positional encoding
- Transformer Encoder-Decoder
- Feed-forward networks

Figure 7. DETR pipeline

Figure 8. DETR Transformer architecture

Method - Primary Idea

DeTrOcNet and Problem

Method Final Approach

ViTOcNet

Experiment & Evaluation

Dataset | ShapeNet [7]

- A repository of shapes represented by 3D models of objects
- Mesh-fusion repository for preprocessing [8]
- shape.obj files to form watertight meshes in pointcloud.npz and points.npz
- OpenGL dependent libraries "glew.h", "gl.h", "glu.h", "glut.h"
- Permission not given to install the libraries

Input 3D-R2N2 **PSGN** Pix2Mesh AtlasNet Ours **OcNet**

Qualitative Results

Quantitative Results

Table 1: Metrics for Different Objects

Object	IoU	Chamfer-L1	Normal Consistency
airplane	0.310	0.410	0.708
bench	0.117	0.687	0.603
cabinet	0.549	0.344	0.752
car	0.582	0.232	0.766
chair	0.311	0.529	0.706
display	0.296	0.598	0.670
lamp	0.189	0.809	0.520
loudspeaker	0.511	0.504	0.712
rifle	0.255	0.321	0.656
sofa	0.401	0.430	0.666
table	0.222	0.508	0.715
telephone	0.515	0.304	0.828
vessel	0.289	0.394	0.617
mean	0.350	0.467	0.686

			IoU				Chamfer-1	Chamfer- L_1	1			Non	mal Consistence	cy	
	3D-R2N2	PSGN	Pix2Mesh	AtlasNet	ONet	3D-R2N2	PSGN	Pix2Mesh	AtlasNet	ONet	3D-R2N2	PSGN	Pix2Mesh	AtlasNet	ONet
category															
airplane	0.426	100	0.420	.50	0.571	0.227	0.137	0.187	0.104	0.147	0.629	(0)	0.759	0.836	0.840
bench	0.373	_	0.323	-	0.485	0.194	0.181	0.201	0.138	0.155	0.678	-	0.732	0.779	0.813
cabinet	0.667	-	0.664	-	0.733	0.217	0.215	0.196	0.175	0.167	0.782	-	0.834	0.850	0.879
car	0.661	-	0.552	-	0.737	0.213	0.169	0.180	0.141	0.159	0.714	-	0.756	0.836	0.852
chair	0.439	-	0.396	2.0	0.501	0.270	0.247	0.265	0.209	0.228	0.663	32	0.746	0.791	0.823
display	0.440	10	0.490	-	0.471	0.314	0.284	0.239	0.198	0.278	0.720	17	0.830	0.858	0.854
lamp	0.281	_	0.323	-	0.371	0.778	0.314	0.308	0.305	0.479	0.560	-	0.666	0.694	0.731
loudspeaker	0.611		0.599	201	0.647	0.318	0.316	0.285	0.245	0.300	0.711	2	0.782	0.825	0.832
rifle	0.375	(0)	0.402	.50	0.474	0.183	0.134	0.164	0.115	0.141	0.670	100	0.718	0.725	0.766
sofa	0.626	_	0.613	-	0.680	0.229	0.224	0.212	0.177	0.194	0.731	-	0.820	0.840	0.863
table	0.420	-	0.395	-	0.506	0.239	0.222	0.218	0.190	0.189	0.732	-	0.784	0.832	0.858
telephone	0.611	-	0.661	-	0.720	0.195	0.161	0.149	0.128	0.140	0.817	-	0.907	0.923	0.935
vessel	0.482	_	0.397	-23	0.530	0.238	0.188	0.212	0.151	0.218	0.629	12	0.699	0.756	0.794
mean	0.493	-	0.480	1-11	0.571	0.278	0.215	0.216	0.175	0.215	0.695	17	0.772	0.811	0.834

Conclusion

The original network is indeed a more powerful model for 3D reconstruction

Our approach provides a different view w.r.t preprocessing 2D images and dealing with points clouds.

Due to the limitation of hardware resources, the limit performance of the model could not be tested.

We obtain experience in dealing with 3D points

References

- 1. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., & Geiger, A. (2020, August 1). *Convolutional Occupancy Networks*. arXiv.org. https://arxiv.org/abs/2003.04618
- 2. Park, J. J., Florence, P., Straub, J., Newcombe, R., & Lovegrove, S. (2019, January 16). *DEEPSDF: Learning continuous signed distance functions for shape representation*. arXiv.org. https://arxiv.org/abs/1901.05103
- 3. Xie, H., Yao, H., Sun, X., Zhou, S., & Zhang, S. (2019, July 29). *Pix2Vox: Context-aware 3D reconstruction from single and Multi-view images.* arXiv.org. https://arxiv.org/abs/1901.11153v2
- 4. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. (2019, April 30). *Occupancy networks: Learning 3D reconstruction in Function Space*. arXiv.org. https://arxiv.org/abs/1812.03828
- 5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021, June 3). *An image is worth 16x16 words: Transformers for image recognition at scale*. arXiv.org. https://arxiv.org/abs/2010.11929
- 6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020, May 28). *End-to-end object detection with Transformers*. arXiv.org. https://arxiv.org/abs/2005.12872
- 7. Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015, December 9). *ShapeNet: An information-rich 3D model repository*. arXiv.org. https://arxiv.org/abs/1512.03012
- 8. D. Stutz and A. Geiger, "Learning 3D Shape Completion under Weak Supervision," CoRR, vol. abs/1805.07290, 2018, [Online]. Available: http://arxiv.org/abs/1805.07290

Vision Transformer (ViT) [5]

- Split an image into a sequence of image patches
- Patch embeddings mixed with positional embeddings
- Transformer Encoder
- Multi-layer perceptron (MLP)

Figure 6. ViT architecture

Detection Transformer (DETR) [6]

- CNN backbone
- Positional encoding
- Transformer Encoder-Decoder
- Feed-forward networks

Figure 7. DETR pipeline

Figure 8. DETR Transformer architecture