Listen to your Heart:

Heartbeat Sound Segmentation & Classification

September 11, 2019

Boikanyo Radiokana & Elias Sepuru

School of Electrical & Information Engineering
University of the Witwatersrand
South Africa

Agenda

Introduction

Objectives

Background

Heartbeat Sounds Categories

Related Work

Project Setting

Methodology

Data Acquisition

System Overview

Preprocessing

Segmentation

Feature Extraction

Classification

Testing & Results

 CVDs are the leading causes of death globally - WHO.

Annual Number of Deaths by Cause

- CVDs are the leading causes of death globally - WHO.
- Currently used method to check for CVDs is Cardiac Auscultation (CA).

- CVDs are the leading causes of death globally - WHO.
- Currently used method to check for CVDs is Cardiac Auscultation (CA).
- ► CA is a difficult skill to acquire.

Correct diagnosis using CA in USA, Canada & UK respectively.

- CVDs are the leading causes of death globally - WHO.
- Currently used method to check for CVDs is Cardiac Auscultation (CA).
- ► CA is a difficult skill to acquire.
- ► People are not aware of their heart conditions.

Awarness of Heart Condition

America - 2016

- Know Their Heart Condition
- Don't Know Their Heart Condition

Easily accessible & reliable heart diagnosis systems would help reduce deaths due to CVDs.

Objectives

➤ To segment Heartbeat sounds (HSs) based on the location of S1 (lub) S2 (dub) in Normal HSs.

Objectives

➤ To segment Heartbeat sounds (HSs) based on the location of S1 (lub) S2 (dub) in Normal HSs.

► Create models that will enable preliminary screening of CVDs

This project deals with classifying HSs into the following categories:

- 1. Normal HSs
- 2. Murmur HSs
- 3. Extra Heartsounds
- 4. Exrasystole HSs
- 5. Artifact

Normal HSs

lub...dub.....lub...dub....

Murmur HSs

```
lub...***..dub.....lub...***..dub......

or

lub....dub...***...lub....dub...***...
```


Extra HS

```
lub.lub...dub.....lub.lub...dub.....

or

lub...dub.dub.....lub...dub.dub.....
```


Extrasytole HSs

```
lub....dub.....lub.lub....dub.....lub.....

or
lub....dub.dub.....lub...dub.....lub.....
```


Background Heartbeat Sounds Categories

Artifact Sound Not an actual HSs.

Can you guess the categories?

Strunic's attempt to classify HSs with ANN.

85±7.4%

Accuracy when classifying simulated HSs with no noise.

Accuracy when classifying real life HSs with noise.

Background Project Setting

To make this project applicable to real world situations, two datasets recorded in real life settings will be used. Both datasets contain excessive background noise.

Dataset A

- Recorded by the general public
- Device iStethoscope Pro lphone app
- ► Sampling Freq 44100Hz
- Contains excessive background noise

Methodology Data Acquisition

Dataset B

- Recorded from a hospital by Medical Practitioners
- ▶ Device Digital Stethoscope
- ► Sampling Freq 4000Hz
- Contains background noise

Methodology System Overview

Methodology Preprocessing

- 1. Downsample to 2kHz
- Bandpass Chebyshev filter [30Hz-195Hz]
- 3. Normalization [-1 1]
- Wavelet Decomposition (db7 level 5)
- 5. Refilter with LPF [195Hz]

Methodology Segmentation

- 1. Envelope Detection
- 2. Peak Detection
- 3. Extra Peak Rejection
- 4. Peak Correction & Optimization
- 5. Location of S1 and S2

Methodology Feature Extraction

- 1. Time Domain
- 2. Frequency Domain
- 3. Wavelet
- 4. Ceptrum

Methodology Classification

- 1. ANN (Atrificial Neural Network)
- 2. SVM (Support Vector Machine)
- 3. XGBoost (XGradient Boost)

Segmentation

Correct Location Accuracy for S1 and S2 - Normal Heart Sounds

Dataset A - ANN Performance

Dataset B - ANN Performance

Classification

Table: Classification Performance Dataset-A

Class	ANN	SVM	XGB	Literature
(A)	(%)	(%)	(%)	(%)
Normal	27	80	71	45
Murmur	88	78	86	31
ExtraHS	67	25	57	11
Artifact	100	57	50	58
Overall	81	64	68	46
Accuracy	01	04	00	40

Classification

Table: Classification Performance Dataset-B

Class	ANN	SVM	XGB	Literature
(B)	(%)	(%)	(%)	(%)
Normal	80	77	89	78
Murmur	90	87	75	37
Extrasys	15	0	17	17
Overall	80	78	79	77
Accuracy	50	70	19	11