Functional and logic programming - written exam -

Important:

)

- 1. Subjects are graded as follows: By default 1p; A 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- A. The following function definition in LISP is given

 (DEFUN F(L)

 (COND

 ((NULL L) 0)

 ((> (CAR L) 0)

 (COND

 ((> (CAR L) (F (CDR L))) (CAR L))

 (T (F (CDR L)))

)

 (T (F (CDR L)))

Rewrite the definition in order to avoid the repeated recursive call **(F (CDR L))**. Do NOT redefine the function. Do NOT use SET, SETQ, SETF. Justify your answer.

B. Write a PROLOG program that generates the list of all subsets of even sum, using the elements of a list. Write the mathematical models and flow models for the predicates used. For example, for the list L=[2, 3, 4] \Rightarrow [[],[2],[4],[2,4]] (not necessarily in this order).

C. Given a nonlinear list, write a Lisp function to return the list with all non-numerical atoms on even levels removed. The superficial level is assumed 1. **A MAP function shall be used.** $\underline{\textit{Example}}$ for the list (a (1 (2 b)) (c (d))) the result is (a (1 (2 b)) ((d)))