CLAIMS

5

20

- 1. Isolated photoprotein containing an amino acid sequence which:
 - a) is able to bind coelenterazine and calcium, producing bioluminescence;
 - b) is identical by at least 90% to SEQ ID NO: 1 (Clytin);
 - c) in sequence alignment with SEQ ID NO: 1 (Clytin), presents one of the following single or multiple substitutions (the residue positions are referred to SEQ ID NO: 1):
- 10 i) $C_{54} \rightarrow S$;
 - ii) $s_{132} \rightarrow C$;
 - iii) $K_{48}\rightarrow R$, $N_{195}\rightarrow D$;
 - iv) $Q_{68} \rightarrow R$, $A_{90} \rightarrow V$, $T_{184} \rightarrow I$;
 - v) $Y_{82} \rightarrow F$, $K_{110} \rightarrow N$, $F_{125} \rightarrow L$, $S_{149} \rightarrow R$;
- 15 vi) $G_{142} \rightarrow C$;
 - vii) $I_{53} \rightarrow V, S_{149} \rightarrow R;$
 - viii) $N_{18}\rightarrow D$, $I_{40}\rightarrow V$, $K_{56}\rightarrow R$;
 - ix) $Gly_{58} \rightarrow Glu$, $Asp_{69} \rightarrow Val$, $Ala_{70} \rightarrow Cys$, $Lys_{76} \rightarrow Arg$, $Lys_{77} \rightarrow Gly$, $Ile_{78} \rightarrow Cys$, $Asp_{81} \rightarrow Glu$, $Val_{86} \rightarrow Ile$, $Glu_{87} \rightarrow Ala$, $Ala_{90} \rightarrow Gln$, $Val_{92} \rightarrow Leu$, and $Glu_{97} \rightarrow Gln$

a functional derivative or fragment thereof.

- 2. The photoprotein of claim 1, containing an amino acid sequence identical by at least 95% to SEQ ID NO: 1.
- 3. The photoprotein of claim 2, containing an amino acid sequence identical by at least 98% to SEQ ID NO: 1.
 - 4. The photoprotein of claim 3, containing an amino acid sequence which is selected from the group consisting of SEQ ID NO: 2, 3, 4, 5, 6, 7, 8, 9, 10.
 - 5. A photoprotein according to claims 1-4, wherein said amino acid

sequence is fused to a mitochondrial target sequence

- 6. An isolated polynucleotide encoding a photoprotein according to claims 1-5.
- 7. The polynucleotide of claim 6, having the sequence of SEQ ID NO: 11,
- 5 12, 13, 14, ¹5, 16, 17, 18, 19.

05/01 '06 15:38 FAX +39 0278307

- 8. An expression vector containing a polynucleotide according to anyone of claims 6-7.
- 9. A prokaryotic or eukaryotic host cell containing the vector of claim 8.
- 10. A mammalian host cell according to claim 9.
- 10 11. A method in vitro for detecting changes in intracellular calcium concentration which comprises:
 - a) providing a cell expressing a photoprotein according to claims 1-5;
 - b) contacting the cell with an agent stimulating calcium influx or calcium release from intracellular stores;
- c) detecting the photoprotein bioluminescence.
 - 12. A method of screening compounds modulating intracellular calcium concentration, which comprises:
 - a) providing a cell expressing a photoprotein of claims 1-5;
 - b) contacting the cell with the candidate compound;
- 20 c) detecting the bioluminescence of the photoprotein.
 - 13. A method according to claims 11 or 12, which is carried out in a high-throughput format.
 - 14. A method according to claim 13, which is carried out with a high throughput optical screening apparatus suited for multi-sample analysis.
- 25 15. The use of a photoprotein according to claims 1-5 as intracellular calcium indicator.
 - 16. The use of a photoprotein according to claim 15 in a cell-based high throughput assay.

28

17. The use of a photoprotein according to claims 1-5 for the preparation of a diagnostic composition.

Best Available Copy	•	
		. 1000 / 1000 management
		III usaaa
	•	