7	A nı	nucleus of bismuth-212 ($^{212}_{83}$ Bi) decays by the emission of an $lpha$ -particle and γ -radiation.	
	(a)	State the number of protons and the number of neutrons in the nucleus of bismuth-212.	
		number of protons =	
		number of neutrons =[1]	
	(b)	The γ -radiation emitted from the nucleus has a wavelength of 3.8 pm.	
		Calculate the frequency of this radiation.	
		frequency = Hz [3]	
	(c)	Explain how a single beam of α -particles and γ -radiation may be separated into a beam of α -particles and a beam of γ -radiation.	
		[2]	
	(d)	The α -particle emitted from the bismuth nucleus has an initial kinetic energy of 9.3 × 10 ⁻¹³ J.	
	()	As the α -particle moves through air it causes the removal of electrons from atoms. The α -particle loses energy and is stopped after removing 1.8 \times 10 ⁵ electrons as it moved through the air.	
		Determine the energy, in eV, needed to remove one electron.	