Nonlinear Filters

Imaging Lab 4 - May, 2017

Kamyar Nazeri Student ID: 100633486

1. Salt & Pepper Noise, Mean and Median Filters

To load an image, add 5% Salt & Pepper noise and apply Mean and Media filters, we have created a Matlab function (Process.m) which takes the ideal image, resizes it to the specified value, adds noise, filters and computes statistics.

Figure 1 shows the Slat & Pepper noise on an image and Mean/Median filters applied on the noisy image:

Figure 1: Salt & Pepper noise, the mean filtered image and the median filtered image

2. Mean and Median filters: different image sizes

We use Matlab's *imresize* command to create 4 versions of the original noise-free image with the following sizes:

$500x500 \quad 1000x1000 \quad 2000x2000 \quad 4000x4000$

The following table shows the runtime of each filter and RMSE/SNR for each filtered image:

	Mean Filter			Median Filter		
	${f Runtime(s)}$	RMSE	SNR	${f Runtime(s)}$	RMSE	SNR
500x500	0.003286	0.0371	46.9587	0.005668	0.0272	53.1623
2000x2000	0.010378	0.0115	56.6133	0.014682	0.0062	68.8205
2000x2000	0.053689	0.0038	64.6637	0.059251	0.0011	88.7440
4000x4000	0.190688	0.0017	67.229	0.210134	0.0002	107.6343

Table 1: Mean/Median filters statistics on different image sizes

The following shows the Matlab functions to calculate SNR, RSME and a function (Process) to resize an image to the specified value, add noise, filter and compute statistics:

Student ID: 100633486

Listing 1: Matlab SNR Function

Listing 2: Matlab RMSE Function

```
1
   function [noisy, mean, mean_rmse, mean_snr, median, median_rmse,
      median_snr] = Process(img, size)
2
       % Calculates Lab4 statistics.
       % Input: Image (img). Size of the image (size)
3
4
5
       resized = imresize(img, size);
6
       median = resized;
7
       noisy = imnoise (resized, 'salt & pepper', 0.05);
8
       w = fspecial('average', [5,5]);
9
       display(['Calculating mean filter ', num2str(size(1))]);
11
       tic; mean = imfilter(noisy, w, 'replicate'); toc
12
13
       display(['Calculating median filter ', num2str(size(1))]);
14
       tic:
15
       for i = 1:3
16
           median(:,:,i) = medfilt2(noisy(:,:,i), [5,5]);
17
       end;
18
       toc
19
20
       resized_gs = rgb2gray(resized);
21
       mean_gs = rgb2gray(mean);
22
       median_gs = rgb2gray(median);
23
24
       mean_rmse = RMSE(mean_gs, resized_gs);
25
       mean_snr = SNR(mean_gs, resized_gs);
26
27
       median_rmse = RMSE(median_gs, resized_gs);
28
       median_snr = SNR(median_gs, resized_gs);
29
   end
```

Listing 3: Matlab function to resize an image to the specified value, add noise, filter and compute statistics

Runtime vs. Image Size Visualization

Figure 2 shows the runtime vs. the image size plot for mean and median filters:

Figure 2: Runtime vs. the image size for mean and median filters

Conclusions

- The median filter does a better job on removing salt & pepper noise as one can visually compare images with mean and median filters in the figure 1.
- The SNR results in the *Table 1* corroborates previous arguments, note that Signal-Noise-Ratio for Median filter is much higher compared with the results of the Mean filter.
- The RMSE error value is decreased with the increase in the size of the image; this is mainly because we applied only 5% noise on all the sample images, and 5% noise in smaller images means more noise on the image hence larger error value.
- As one can see in figure 2, the Median filter is generally slower than the Mean filter, and the difference in run-time becomes larger with larger image sizes.