

46 + 6 $x'-3x^{5}-0.1$ $x'-3x^{5}-0.1$

Figure 9.19 Newton's method for the problem in \mathbf{R}^2 , with objective f given in (9.20), and backtracking line search parameters $\alpha=0.1,\ \beta=0.7$. Also shown are the ellipsoids $\{x\mid \|x-x^{(k)}\|_{\nabla^2 f(x^{(k)})}\leq 1\}$ at the first two iterates.

Figure 9.20 Error versus iteration k of Newton's method for the problem in \mathbb{R}^2 . Convergence to a very high accuracy is achieved in five iterations.

Figure 9.21 Error versus iteration for Newton's method for the problem in ${\bf R}^{100}$. The backtracking line search parameters are $\alpha=0.01,\ \beta=0.5$. Here too convergence is extremely rapid: a very high accuracy is attained in only seven or eight iterations. The convergence of Newton's method with exact line search is only one iteration faster than with backtracking line search.

B=0.2

Figure 9.22 The step size t versus iteration for Newton's method with backtracking and exact line search, applied to the problem in \mathbf{R}^{100} . The backtracking line search takes one backtracking step in the first two iterations. After the first two iterations it always selects t=1.

Figure 9.23 Error versus iteration of Newton's method, for a problem in Ω^{10000} A backtracking line search with parameters $\alpha=0.01,\,\beta=0.5$ is used. Even for this large scale problem, Newton's method requires only 18 iterations to achieve very high accuracy.