Projeto de Iniciação Científica - Relatório 1 Visualização Unidimensional do Espaço Tridimensional Prólogo para Visualização Bidimensional do Espaço Quadridimensional

Paulo Roberto Rodrigues da Silva Filho Felipe Acker (Orientador)

2023-06-28

Contents

1	Introdução	1
2	Modelo Mínimo - Ambiente Bidimensional em Tela Monodimensional2.1 Iluminação Paralela2.2 Iluminação Radial	2 2 2
3	${\it Modelo\ Ampliado\ (1)\ -\ Ambiente\ Tridimensional\ em\ Tela\ Monodimensional}$	2
4	${\it Modelo\ Ampliado\ (2)\ -\ Ambiente\ Quadridimensional\ em\ Tela\ bidimensional}$	2
5	Modelo Ampliado (3) - Ambiente N-Dimensional em Tela M-dimensional	2
6	Múltiplas fontes de Luz e tinting	2
7	Conclusões e Próximos Passos	3

1 Introdução

Atualmente, os algoritmos de Ray-Tracing, visualização e radiosidade, para projeção de espaços 3D em 2D estão dominados e tecnologicamente avançados, já tendo mesmo implementações em Hadware, através de placas de vídeo 3D [adicionar referências]. Entretanto, tais técnicas implementam a representação do espaço tridimensional no espaço bidimensional, reduzindo apenas uma dimensão de representação, e apenas para o caso particular de \mathbb{R}^3 . Entratanto, não há tecnologias consistentes que permitam a redução de \mathbb{R}^3 para \mathbb{R} , ou de \mathbb{R}^4 para \mathbb{R}^2 - objetivo final desse projeto.

Assim, foi necessário desenvolver a tecnologia e os algoritmos para essas representações da estaca zero. Esse relatório visa apresentar os cálculos necessários para prover tal renderização de objetos tridimensionais, em projeção unidimensional, utilizando o modelamento físico de olho, apresentado na proposta e na renderização de objetos quadridimensionais em projeção bidimensional.

O processo de irradiação luminosa e focalização é estendido do caso tridimensional para o caso quadridimensional, enquanto o processo de captura de imagem é reduzido do caso bidimensional para o caso unidimensional, nas projeções de \mathbb{R}^3 para \mathbb{R} , ou do caso tridimensional para o caso bidimensional, nas projeções de \mathbb{R}^4 para \mathbb{R}^2 .

Em um primeiro momento, é entendido o processo de renderização de objetos bidimensionais em uma tela monodimensional, com a utilização de sombras, com o cálculo de radiosidade, mas sem a utilização completa de *ray-tracing*, ou seja, não serão consideradas superfícies espelhadas. A partir daí, esse algoritmo é estendido para a renderização de objetos tridimensionais em tela monodimensional - que é o objetivo planejado para esse projeto - e, por último, esse algoritmo é estendido para a renderização de objetos quadridimensionais em telas bidimensionals, o que já seria o objetivo final do projeto.

2 Modelo Mínimo - Ambiente Bidimensional em Tela Monodimensional

O modelo mínimo é a renderização de objetos bidimensionais em uma tela unidimensional. Esse modelo de renderização é **inferior** ao que já é implementado atualmente em software e em hardware, pelas placas 3D, mas é a base do modelo de renderização quadridimensional - portanto, entendê-lo é fundamental para a implementação de modelos de renderização que fujam do padronizado, que é a Renderização de Ambientes Tridimensionais em Telas Bidimensionais.

Para haver renderização, é necessário haver **iluminação** e **captura**. A captura é feita pelo olho, é já é uma característica da renderização assumida por definição. A iluminação, apesar de obrigatória para a renderização, não é imediatamente considerada pelo senso comum. Entretanto, renderização sem um modelo de iluminação adequada apresentaria figuras achatadas e sem volume aparente, que permitiria discernir sobre as formas representadas na renderização.

Usamos dois modelos de iluminação: (1) Iluminação Paralela, adequada para ambientes externos e (2) Iluminação radial, adequada para ambientes internos. Em ambos os casos adicionamos um componente de iluminação difusa. Não é apresentado o algoritmo de *tinting*, então todas as fontes luminosas são brancas e não é apresentado o algoritmo para a utilização de mais de uma fonte luminosa. Essas omissões são corrigidas posteriormente, em uma seção específica para elas.

2.1 Iluminação Paralela

2.2 Iluminação Radial

Continua...

3 Modelo Ampliado (1) - Ambiente Tridimensional em Tela Monodimensional

Continua...

4 Modelo Ampliado (2) - Ambiente Quadridimensional em Tela bidimensional

Continua...

5 Modelo Ampliado (3) - Ambiente N-Dimensional em Tela Mdimensional

Continua...

6 Múltiplas fontes de Luz e *tinting*

Essa seção apresenta a implementação da importante omissão do uso de múltiplas fontes de luz e do tinting. O tinting é a aplicação de fontes de luz coloridas, que alteram as cores dos objetos iluminados segundo regras específicas diferentes do alpha-blending utilizado nas renderizações apresentadas acima. Já o uso de multiplas fontes de luz provoca um grande aumento de complexidade para a renderização de cada pixel da tela, ainda mais, considerando que cada fonte de luz pode ter uma cor diferente, alterando as regras de tinting.

Continua...

Figura 1: Identificando pontos de renderização.

7 Conclusões e Próximos Passos

Continua...