

Curso:	Ciência da Computação		
Disciplina:	Fundamentos Teóricos da Computação	Valor	0.0
Professor (a):	João Paulo C. Aramuni		0,0
Nome:		Nota	
Nº da Atividade/Nome:	Lista 02	ž	
Data:			
Valor:	0,0 pts		

Assuntos: AFD; AFN; TRANSFORMAÇÃO DE AFN PARA AFD.

- 1. Construa AFNs para as seguintes linguagens sobre {a,b,c}:
- a) o conjunto das palavras com, no mínimo, três ocorrências de "abc";

AFN

AFNE (Para economizar estados)

b) o conjunto das palavras com sufixo "abc" ou "bca";

AFN

AFNE (Para economizar estados)

c) o conjunto das palavras em que o último símbolo seja idêntico ao primeiro.

Página 2 / 12

Reduzindo os estados finais para um único estado:

- 2. Construa AFDs para as linguagens:
- **a)** $\{w \in \{0,1\}^* \mid w \text{ não contém } 000 \text{ nem } 111\};$

b) $\{w \in \{0,1\}^* \mid \text{os últimos três símbolos de } w \text{ não são } 000\};$

AFD MÍNIMO

c) $\{w \in \{0,1,2\}^* \mid w \text{ tem um número par de 0s, par de 1s e par de 2s}\}.$

3. Construa um AFN para a linguagem:

 $L = \{w \in \{0,1\}^* \mid w \text{ tem pelo menos uma subpalavra constituída de dois 1's separados por um número par de símbolos}.$

Desafio: $L = \{w \in \{0,1,2\}^* \mid \text{entre dois 1's há sempre um número par de 0's} \}.$

AFD MÍNIMO

Página 6 / 12

UNIVERSIDADE FUMEC

- **4**. Construa AFDs para as linguagens: **a)** $L_I = \{w \in \{0,1\}^* \mid |w| \text{ é divisível por 3}\};$

b) $L_2 = \{0w0 \mid w \in \{0,1\}^*\};$

AFD MÍNIMO

c) $L_1 \cup L_2$

Projeto de AFD's – Aula 06

Tabela de Função de Transição:

8	0	1
{0,i}	$\{1, m\}$	{1,e}
{1,m}	{2,f}	{2,m}
{1,e}	{2,e}	{2,e}
{2,f}	{0,f}	{0,m}
{2,m}	{0,f}	{0,m}
{2,e}	{0,e}	{0,e}
{0,f}	{1,f}	{1,m}
{0,m}	{1,f}	{1,m}
{1,f}	{2,f}	{2,m}
{0,e}	{1,e}	{1,e}

$L_1 \cup L_2$

Resultado esperado: Todas as palavras que são divisíveis por 3 ou todas as palavras que começam e terminam com 0.

Definição: $F_3 = (F_1 \times E_2) \cup (E_1 \times F_2)$

Resultado:

i = (0, i)

 $F = \{(0, i), (2,f), (0,f), (0, m), (1, f), (0, e)\}$

Página 8 / 12

$e L_1 \cap L_2$?

Resultado esperado: Todas as palavras que são divisíveis por 3 *e ao mesmo tempo* começam e terminam com 0.

Definição: $F_3 = F_1 \times F_2$

Resultado:

i = (0, i)

 $F = \{(0, f)\}$

5. Construa um AFD mínimo para a linguagem $L=\{w\in\{0,1\}^*\mid w$ não contém subpalavras da forma '011' nem '100'}.

Página 9 / 12

- 6. Construa AFDs a partir dos AFNs dados a seguir
- a) ATENÇÃO: O AFN abaixo é um único AFN com dois estados iniciais!

AFN

Transformação de AFN em AFD

AFN

8	0	1
2	{2'}	{}
2'	{2}	{}
1	{}	{3}
3	{}	{3'}
31	{}	{3}

AFD

8	0	1
[2,1]	{2'}	{3}
{2'}	{2}	{}
{3}	{}	{3'}
{2}	{2'}	{}
{3'}	{}	{3}

ATENÇÃO: O AFD deve ter um único estado inicial que represente os estados iniciais do AFN.

b) AFN

Transformação de AFN em AFD

AFN

AFIN			
	8	0	1
	p0	{i0}	{p0, p1}
	iO	${p0,p1}$	{i0}
	p1	{p1}	{ i1 }
	i1	{i1}	{p1}

AFD

8	0	1
{p0,p1}	{i0, p1}	{p0,p1,i1}
{i0,p1}	{p0,p1}	{i0, i1}
$\{p0,p1,i1\}$	{i0,p1,i1}	{p0,p1,i1}
{i0, i1}	{p0,p1,i1}	{i0, p1}
$\{i0,p1,i1\}$	{p0,p1,i1}	{i0, i1, p1}

ATENÇÃO: O AFD deve ter <u>um único estado inicial</u> que represente os estados iniciais do AFN.

AFD COM 5 ESTADOS

AFD COM 4 ESTADOS (MÍNIMO)

Página 12 / 12