CONTEÚDO

DERIVADAS

QUADRATURAS

ZEROS DE FUNÇÕES

PROJETO 1 — QUANTIZAÇÃO SEMI-CLÁSSICA DAS VIBRAÇÕES DE MOLÉCULAS DIATÔMICAS

DERIVADAS

Utilizamos a serie de Taylor para expandir f em uma vizinhança de x₀

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2} f''(x_0) + \frac{(x - x_0)^3}{6} f'''(x_0) + o(x - x_0)^4$$

Em
$$x = x_0 \pm h$$
 \Rightarrow $x - x_0 = \pm h$

$$f(x_0 \pm h) = f(x_0) \pm hf'(x_0) + \frac{h^2}{2}f''(x_0) \pm \frac{h^3}{6}f'''(x_0) + o(h^4)$$

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h} + \frac{-\frac{h^2}{2}f''(x_0) - \frac{h^3}{6}f'''(x_0) + o(h^4)}{h}$$

Fórmulas de 2 pontos

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h} + o(h)$$

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h} + o(h)$$

Assumem que f pode ser bem aproximada por uma função linear no intervalo $x = x_0 e x = x_0 \pm h$

Vamos tentar melhorar a precisão:

$$f(x_0 \pm h) = f(x_0) \pm hf'(x_0) + \frac{h^2}{2}f''(x_0) \pm \frac{h^3}{6}f'''(x_0) + o(h^4)$$

$$f(x_0 + h) - f(x_0 - h) = f(x_0) - f(x_0) + hf'(x_0) + hf'(x_0) + \dots$$

$$f(x_0 + h) - f(x_0 - h) = 2hf'(x_0) + \frac{h^3}{3}f'''(x_0) + o(h^5)$$

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{h^2}{6}f'''(x_0) + o(h^4)$$

Fórmulas de 3 pontos

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h} + o(h^2)$$

Tentando melhorar ainda mais a precisão:

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f''(x_0) + \frac{(x - x_0)^3}{6}f'''(x_0) + o(x - x_0)^4$$

Em
$$x = x_0 \pm 2h$$

$$f(x_0 \pm 2h) = f(x_0) \pm 2hf'(x_0) + \frac{4h^2}{2}f''(x_0) \pm \frac{4h^3}{3}f'''(x_0) + \frac{2h^4}{3}f^{IV}(x_0) + o(h^5)$$

$$f(x_0 + 2h) - f(x_0 - 2h) = 4hf'(x_0) + \frac{8h^3}{3}f'''(x_0) + o(h^5)$$

$$f(x_0 + h) - f(x_0 - h) = 2hf'(x_0) + \frac{h^3}{3}f'''(x_0) + o(h^5)$$

Fórmulas de 5 pontos

$$f'(x_0) \approx \frac{f(x_0-2h)-8f(x_0-h)+8f(x_0+h)-f(x_0+2h)}{12h} + o(h^4)$$

SEGUNDA DERIVADA

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f''(x_0) + \frac{(x - x_0)^3}{6}f'''(x_0) + o(x - x_0)^4$$

$$f(x_0 \pm h) = f(x_0) \pm hf'(x_0) + \frac{h^2}{2}f''(x_0) \pm \frac{h^3}{6}f'''(x_0) + o(h^4)$$

$$f(x_0 + h) + f(x_0 - h) = 2f(x_0) + h^2 f''(x_0) + o(h^4)$$

$$f''(x_0) \approx \frac{f(x_0-h)-2f(x_0)+f(x_0+h)}{h^2} + o(h^2)$$

Ver Pasta

Exemplo:
$$f(x) = xe^{-x} - \ln x$$
 $f'(1) = ?$
 $f'(x) = (e^{-x} - xe^{-x} - \frac{1}{x}) \Rightarrow f'(1) = (e^{-1} - e^{-1} - 1) = -1$

Calcular a derivada até h < 000001:

float: até 7 casas decimais

double: até 15 casas decimais

Fórmulas de 3 pontos

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h} + o(h^2)$$

h = 000001
$$f(x_0 + h) = f(1.000001)$$

$$\ln(1.000001) = 0.000000999995000$$

Exemplo: $f(x) = xe^{-x} - \ln x$

$$f'(x) = (e^{-x} - xe^{-x} - \frac{1}{x}) \Rightarrow f'(1) = (e^{-1} - e^{-1} - 1) = -1$$

Calcular a derivada até $|deriv-deriv_{ant}| < 10^{-10}$

QUADRATURAS

$$\int_{a}^{b} f(x) dx$$

Todos os Métodos

Aproximar a função f(x) no intervalo a-b por uma função cuja área seja conhecida

Por exemplo: Uma função linear

$$\int_{a}^{b} f(x) \, dx = (b - a) \frac{f(a) + f(b)}{2}$$

O erro pode ser muito grande dependendo do tipo de função Veja, por exemplo, o intervalo 0 - a

Método dos trapézios (Aproximação linear)

Solução: Dividir o intervalo de integração a-b em n intervalos iguais de largura h

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \sum_{i=0}^{n-1} f(x_i) + f(x_{i+1})$$

$$\int_{a}^{b} f(x) dx = \frac{h}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n))$$

Método dos trapézios (Aproximação linear)

$$\int_{0}^{b} f(x) dx = \frac{h}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n))$$

$$\int_{a}^{b} f(x) dx = h \frac{f(a) + f(b)}{2} \sum_{i=1}^{n-1} f(a+ih)$$

Método dos trapézios (Erro da aproximação)

$$E = \int_{a}^{b} f(x) dx - h \frac{f(a) + f(b)}{2} \sum_{i=1}^{n-1} f(a+ih)$$

Existe um número "c", entre a e b, tal que:

$$E = -\frac{h^2}{12} (b - a) f''(c)$$

Como não conhecemos a priori "c", pode-se escolher o número que maximize $f^{\prime\prime}\left(c\right)$

$$E \le \left| -\frac{h^2}{12} \left(b - a \right) f'' \left(c \right) \right|$$

Ver Pasta

Método dos trapézios (Exemplo)

Calcular a integral entre 0 e 1 da função $f(x) = x^4$ com diferentes quantidades de passos.

$$f\left(x\right) = x^4$$

$$\left| \int_0^1 x^4 dx = \frac{x^5}{5} \right|_0^1 = \frac{1}{5} = 0.2$$

$$E \le \left| -\frac{h^2}{12} \left(b - a \right) f'' \left(c \right) \right|$$

$$f'(x) = 4x^3$$

$$f'(x) = 4x^{3}$$
$$f''(x) = 12x^{2}$$

$$c = 1$$

$$f''(c) = 12$$

$$E \leq h^2$$

Método dos trapézios (Exemplo)

Calcular a integral entre 0 e 1 da função $f(x) = x^4$ com diferentes quantidades de passos (o valor exato deve ser 0,2)

Passos	Integral	E real	E _{max}
1	0.500000000000000	-3.00000000000000e-001	1.000000000000000e+000
2	0.281250000000000	-8.12499999999999e-002	2.50000000000000e-001
4	0.220703125000000	-2.07031249999999e-002	6.25000000000000e-002
8	0.205200195312500	-5.200195312499989e-003	1.56250000000000e-002
16	0.201301574707031	-1.301574707031239e-003	3.90625000000000e-003
32	0.200325489044189	-3.254890441894420e-004	9.76562500000000e-004
64	0.200081378221512	-8.137822151182972e-005	2.441406250000000e-004
128	0.200020344927907	-2.034492790697895e-005	6.103515625000000e-005
256	0.200005086255260	-5.086255259800776e-006	1.525878906250000e-005
512	0.200001271565270	-1.271565270133390e-006	3.814697265625000e-006
1024	0.200000317891408	-3.178914084744910e-007	9.536743164062500e-007

Voltar Simpson

Método de Simpson (Aproximação parabólica)

Método de Simpson (Aproximação parabólica)

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}-h}^{x_{i}+h} f(x) dx$$

Interessa o valor de cada uma dessas integrais em função do valor da função nos pontos x_i, x_i-h e x_i+h

Método de Simpson (Aproximação parabólica)

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Expandindo em série de Taylor

$$f(x) = f(x_0) + (x - x_0) f'(x_0) + \frac{(x - x_0)^2}{2} f''(x_0) + \frac{(x - x_0)^3}{6} f'''(x_0) + \dots$$

$$\int_{x_0-h}^{x_0+h} f(x) dx = f(x_0) x \Big|_{x_0-h}^{x_0+h} + f'(x_0) \frac{(x-x_0)^2}{2} \Big|_{x_0-h}^{x_0+h} + f''(x_0) \frac{(x-x_0)^3}{6} \Big|_{x_0-h}^{x_0+h} + f'''(x_0) \frac{(x-x_0)^3}{6} \Big|_{x_0-h}^{x_0+h} + f'''(x_0) \frac{(x-x_0)^4}{24} \Big|_{x_0-h}^{x_0+h}$$

$$x\Big|_{x_0-h}^{x_0+h} = x_0 + h - x_0 + h = 2h$$

$$(x-x_0)^2 \Big|_{x_0-h}^{x_0+h} = (x_0+h-x_0)^2 - (x_0-h-x_0)^2 = h^2 - (-h)^2 = 0$$

$$(x-x_0)^3 \Big|_{x_0-h}^{x_0+h} = (x_0+h-x_0)^3 - (x_0-h-x_0)^3 = h^3 - (-h)^3 = 2h^3$$

$$(x-x_0)^4 \Big|_{x_0-h}^{x_0+h} = (x_0+h-x_0)^4 - (x_0-h-x_0)^4 = h^4 - (-h)^4 = 0$$

Método de Simpson (Aproximação parabólica)

$$\int_{x_0 - h}^{x_0 + h} f(x) dx = 2hf(x_0) + \frac{h^3}{3} f''(x_0)$$

Da expressão para a 2ª derivada temos:

$$f''(x_0) \approx \frac{f(x_0 - h) - 2f(x_0) + f(x_0 + h)}{h^2}$$
 Exata para polinômios de ordem 3

$$\int_{x_0-h}^{x_0+h} f(x) dx = 2hf(x_0) + \frac{h}{3} (f(x_0-h) - 2f(x_0) + f(x_0+h))$$

$$\int_{x_0-h}^{x_0+h} f(x) dx = \frac{h}{3} \left(f(x_0 - h) + 6f(x_0) - 2f(x_0) + f(x_0 + h) \right)$$

Regra de Simpson

$$\int_{x_0-h}^{x_0+h} f(x) dx = \frac{h}{3} (f(x_0-h) + 4f(x_0) + f(x_0+h))$$

Exata para polinômios de 3º ordem

Mudando de variável $x_0 = a+h$

$$\int_{a}^{a+2h} f(x) dx = \frac{h}{3} (f(a) + 4f(a+h) + f(a+2h))$$

$$\int_{a+2h}^{a+4h} f(x) dx = \frac{h}{3} (f(a+2h) + 4f(a+3h) + f(a+4h))$$

$$\int_{a+4h}^{a+6h} f(x) dx = \frac{h}{3} (f(a+4h) + 4f(a+5h) + f(a+6h))$$

Regra de Simpson

Se
$$b = a + nh$$
 n par

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \sum_{i=0}^{n-2} \left(f(a+ih) + 4f(a+ih+h) + f(a+ih+2h) \right) \qquad i = 0, 2, 4...$$

Método de Simpson (Erro da aproximação)

$$E = \int_{a}^{b} f(x) dx - \frac{h}{3} \sum_{i=0}^{n-2} (f(a+ih) + 4f(a+ih+h) + f(a+ih+2h))$$

$$i = 0, 2, 4...$$

Existe um número "c", entre a e b, tal que:

$$E = -\frac{h^4}{180} (b - a) f^{(4)} (c)$$

Como não conhecemos a priori "c", pode-se escolher o número que maximize $f^{(4)}\left(c\right)$

$$E \le \left| -\frac{h^4}{180} (b-a) f^{(4)} (c) \right|$$

Ver Pasta

Método de Simpson (Exemplo)

Calcular a integral entre 0 e 1 da função $f(x) = x^4$ com diferentes quantidades de passos.

$$f\left(x\right) = x^4$$

$$\int_0^1 x^4 dx = \frac{x^5}{5} \Big|_0^1 = \frac{1}{5} = 0.2$$

$$E \le \left| -\frac{h^4}{180} (b-a) f^{(4)} (c) \right|$$

$$f'(x) = 4x^{3}$$

$$f''(x) = 12x^{2}$$

$$f'''(x) = 24x$$

$$E \le \frac{2}{15}h^{4}$$

$$f^{(4)}(x) = 24$$

Método de Simpson (Exemplo)

Calcular a integral entre 0 e 1 da função $f(x) = x^4$ com diferentes quantidades de passos (o valor exato deve ser 0,2)

Passos	Integral	E _{real}	E _{max}
1	0.208333333333333	8.33333333333304e-03	8.3333333333333e-03
2	0.200520833333333	5.20833333333337e-04	5.20833333333333e-04
4	0.200032552083333	3.255208333330373e-05	3.255208333333333e-05
8	0.200002034505208	2.034505208303727e-06	2.034505208333333e-06
16	0.200000127156576	1.271565754912274e-07	1.271565755208333e-07
32	0.200000007947286	7.947285912690560e-09	7.947285970052083e-09
64	0.20000000496705	4.967053712778835e-10	4.967053731282552e-10
128	0.20000000031044	3.104402845899301e-11	3.104408582051595e-11

Ver Trapézios

Quadratura Gaussiana → Gauss-Legendre

Consideremos o problema de avaliar: $\int_{-1}^{1} f(x) dx$

As fórmulas discutidas anteriormente são da forma: $I \approx \sum_{n=1}^{N} w_n f(x_n)$

Método dos Trapézios:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \sum_{i=0}^{n-1} f(x_i) + f(x_{i+1})$$

Integração em um intervalo só (-1, 1) com h=1:

$$\int_{-1}^{1} f(x) dx \approx \frac{1}{2} f(-1) + f(0) + \frac{1}{2} f(1)$$

$$w_1 = \frac{1}{2}$$
; $x_1 = -1$
 $w_2 = 1$; $x_2 = 0$
 $w_3 = \frac{1}{2}$; $x_3 = 1$

Quadratura Gaussiana → Gauss-Legendre

Método de Simpson:

$$\int_{x_0-h}^{x_0+h} f(x) dx \approx \frac{h}{3} (f(x_0-h) + 4f(x_0) + f(x_0+h))$$

Integração em um intervalo só (-1, 1) \rightarrow h = 1 e $x_0 = 0$

$$\int_{-1}^{1} f(x) dx \approx \frac{1}{3} f(-1) + \frac{4}{3} f(0) + \frac{1}{3} f(1)$$

$$w_{1} = \frac{1}{3}; x_{1} = -1$$

$$w_{2} = \frac{4}{3}; x_{2} = 0$$

$$w_{3} = \frac{1}{3}; x_{3} = 1$$

Notar que x_n são pontos igualmente espaçados

Quadratura Gaussiana → Gauss-Legendre

Todas as fórmulas de quadratura baseadas em séries de Taylor que utilizam n pontos integrarão exatamente um polinômio de grau:

 $n-1 \rightarrow n$ par \longrightarrow Trapézios \rightarrow 2 pontos \rightarrow exata para polinômios de grau 1 \rightarrow n ímpar \longrightarrow Simpson \rightarrow 3 pontos \rightarrow exata para polinômios de grau 3

Pontos equidistantes

Pontos não equidistantes

Quadratura Gaussiana → Gauss-Legendre

Deixando atrás o paradigma de escolher intervalos de x igualmente espaçados vejamos como escolhendo n pontos x_n adequados, dentro do intervalo [-1, 1], podemos integrar exatamente polinômios de grau 2n - 1

Consideremos os polinômios de Legendre: $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$

```
P_n(x)
\mathbf{n}
           \frac{1}{2}(3x^2-1)
          \frac{1}{2}(5x^3-3x)
3
          \frac{1}{8}(35x^4 - 30x^2 + 3)
          \frac{1}{8}(63x^5 - 70x^3 + 15x)
5
          \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)
6
           \frac{1}{16}(429x^7 - 693x^5 + 315x^3 - 35x)
           \frac{1}{128}(6435x^8 - 12012x^6 + 6930x^4 - 1260x^2 + 35)
8
           \frac{1}{128}(12155x^9 - 25740x^7 + 18018x^5 - 4620x^3 + 315x)
           \frac{1}{256}(46189x^{10} - 109395x^8 + 90090x^6 - 30030x^4 + 3465x^2 - 63)
10
```

Quadratura Gaussiana → Gauss-Legendre

n zeros em [-1, 1]

Ortogonalidade em [-1, 1]

$$\int_{-1}^{1} P_i(x) P_j(x) dx = \frac{2}{2i+1} \delta_{ij}$$

São linermente indendentes no espaço vetorial dos polinômios de grau menor que n.

$$\int_{-1}^{1} p_s(x) P_n(x) dx = 0 \qquad s < n$$

Quadratura Gaussiana → Gauss-Legendre

Consideremos uma função f polinomial de grau m = 2n-1 e a vamos dividir pelo polinômio de Legendre de grau n (P_n).

$$2n-1-n=n-1 \qquad \qquad \frac{f_m}{P_n}=p_{n-1}$$

resto da divisão (R) Polinômio de grau n-1 ou menor

$$f_m = p_{n-1}P_n + R_{\leqslant n-1}$$

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} p(x) P_n(x) dx + \int_{-1}^{1} R(x)$$

Quadratura Gaussiana → Gauss-Legendre

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} p(x) P_n(x) dx + \int_{-1}^{1} R(x)$$

$$I \cong \sum_{i=1}^{n} w_i f(x_i)$$

$$\sum_{i=1}^{n} w_{i} f(x_{i}) = \sum_{i=1}^{n} w_{i} p(x_{i}) P_{n}(x_{i}) + \sum_{i=1}^{n} w_{i} R(x_{i})$$

Se x_i , são os zeros do $P_n \square P_n(x_i) = 0$

Escolhendo adequadamente w_i , é possível com n pontos, integrar um polinomio de grau 2n-1 (f) da mesma forma que é possível integrar um de grau n-1 (R)

Quadratura Gaussiana → Gauss-Legendre

$$w_i$$
???
$$I \cong \sum_{i=1}^{n} w_i f(x_i)$$

Vamos considerar n=3

$$P_3(x) = \frac{1}{2} (5x^3 - 3x) = \frac{1}{2}x (5x^2 - 3)$$

$$P_3(x) = 0 \quad \text{em} \quad x = 0 \quad x = \pm \sqrt{\frac{3}{5}}$$

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i)$$

$$\int_{-1}^{1} f(x)dx = w_1 f\left(-\sqrt{\frac{3}{5}}\right) + w_2 f(0) + w_3 f\left(\sqrt{\frac{3}{5}}\right)$$

Exata até polinômios de grau 5

Quadratura Gaussiana → Gauss-Legendre

$$\int_{-1}^{1} f(x)dx = w_1 f\left(-\sqrt{\frac{3}{5}}\right) + w_2 f(0) + w_3 f\left(\sqrt{\frac{3}{5}}\right)$$

$$f(x) = 1 \quad \Longrightarrow \quad \int_{-1}^{1} dx = 2$$

$$w_1 + w_2 + w_3 = 2$$
 1

$$f(x) = x \implies \int_{-1}^{1} x dx = \frac{x^2}{2} \Big|_{-1}^{1} = 0 \implies -\sqrt{\frac{3}{5}} w_1 + \sqrt{\frac{3}{5}} w_3 = 0$$

$$f(x) = x^2 \implies \int_{-1}^{1} x^2 dx = \frac{x^3}{3} \Big|_{-1}^{1} = \frac{2}{3} \implies \frac{3}{5} w_1 + \frac{3}{5} w_3 = \frac{2}{3}$$

De 2
$$w_1 = w_3$$
 \implies De 3 $\frac{3}{5}w_1 = \frac{1}{3}$ \implies $w_1 = w_3 = \frac{5}{9}$

De 1
$$w_2 = 2 - \frac{10}{9} \implies w_2 = \frac{8}{9}$$

Quadratura Gaussiana → **Gauss-Legendre**

Seja f(x) um polinômio de grau 2n-1

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i})$$

Onde x_i são os n zeros do polinômio de Legendre de grau n e w_i :

$$w_i = \frac{2}{(1 - x_i^2)(P'_n(x_i))^2}$$

Quadratura Gaussiana → **Gauss-Legendre**

	Z	\mathbf{W}
n = 2	±0,57735 02692	1,00000 00000
n = 3	±0,77459 66692	0,55555 55556
	0,00000 000000	0,88888 88889
n = 4	±0,86113 63116	0,34785 48451
	±0,33998 10436	0,65214 51549
n = 6	±0,93246 95142	0,17132 44924
	±0,66120 93865	0,36076 15730
	±0,23861 91861	0,46791 39346

Quadratura Gaussiana → Gauss-Legendre

$$\int_{a}^{b} f(x)dx \qquad \Longrightarrow \qquad z(x) = \frac{2x - (a+b)}{b-a}$$

Mudando de variável
$$z(x) = \frac{2x - (a+b)}{b-a}$$

Se
$$x=a \rightarrow z=-1$$

Se $x=b \rightarrow z=1$

$$x = \frac{z(b-a) + (b+a)}{2}$$

$$dx = \frac{b-a}{2}dz$$

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{z(b-a) + (b+a)}{2}\right) dz$$

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \sum_{i=1}^{n} w_{i} f\left(\frac{z_{i}(b-a) + (b+a)}{2}\right)$$

Onde zi são os n zeros do polinômio de Legendre de ordem n e wi, os pesos associados

Ver Pasta

Gauss Legendre (Exemplo)

Calcular a integral entre 0 e 1 da função $f(x) = x^4$ com n=3 (3pontos) (o valor exato deve ser 0,2)

DETERMINAÇÃO DE RAÍZES DE FUNÇÕES

MÉTODO DE BUSCA DIRETA

- Em todos os métodos de cálculo numérico de raízes de funções é importante conhecer analiticamente a função.
- Estabelecer o intervalo de valores de x onde as raízes podem ser encontradas ou o intervalo onde desejamos achar as raízes.
- Estabelecer um valor inicial do incremento h (ser cuidadoso com o valor inicial para não pular uma possível raiz.
- Comprovar o produto f(x)*f(x+h) < 0 ou f(x)*f(x+h) > 0 $f(x) \times f(x+h) > 0 \Rightarrow N$ ão passou pelo zero, continuar incrementando $x+h \rightarrow x$ $f(x) \times f(x+h) < 0 \Rightarrow Passou pelo zero \Rightarrow x = x-h e h = h/2 (por exemplo)$
- A sequência termina quando h ≤ tolerância

MÉTODO DE NEWTON-RAPHSON OU DA TANGENTE

MÉTODO DA SECANTE

Newton-Raphson

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h} + o(h)$$

$$x_0 = x_i$$

$$h = x_i - x_{i-1}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

Convergência quase tão rápida quanto o método de Newton-Raphson

Não se requer do conhecimento da derivada da função

Se precisam dois pontos iniciais para começar o cálculo

A sequência termina quando $|x_{i+1} - x_i| \le tolerância$

MÉTODO DA SECANTE

Ver Pasta

Determinar raízes de funções (Exemplo)

Determina as raízes da função: $f(x) = x^3 + 2x^2 - 15x + 10 - e^{\frac{x}{10}}$ $f'(x) = 3x^2 + 4x - 15 - \frac{1}{10}e^{\frac{x}{10}}$

Análise Prévia:

$$x \to -\infty$$
 $f(x) \to -\infty$

$$x = 0$$
 $f(x) = 9 \rightarrow (f(x) > 0)$ Mínimo de 2 raízes

$$x \to \infty$$
 $f(x) \to -\infty$

$$x = -10 \Rightarrow f(x) = -1000 + 200 - 150 + 10 - \frac{1}{2,718} \approx -940,37$$
 $x < -10$ x^3 prevalece

$$x = 160 \Rightarrow f(x) = 4096000 + 51200 - 2400 + 10 - 8871381 \approx -4726571$$
 $x > 160 e^{x/10}$ prevalece

PROJETO 1 – QUANTIZAÇÃO SEMI-CLÁSSICA DAS VIBRAÇÕES DE MOLÉCULAS

Problema: Moléculas diatómicas $\rightarrow H_2$, HD, O_2

2 núcleos enlaçados pelos elétrons que orbitam ao redor deles

 $m_{núcleos} >> m_{elétrons} \Rightarrow$ Assume-se que os elétrons mudam sua posição quase instantaneamente para seguir o movimento dos núcleos (Aproximação de Born-Oppenheimer)

O problema se reduz a um no qual o movimento dos núcleos é governado por um potencial V(r), onde r é a (distância entre os núcleos)

V(r) → Atrativo em longas distâncias (interação de van der Waals) Repulsivo para distâncias curtas (Interação coulombiana dos núcleos e repulsão de Pauli para os elétrons.

Um potencial comumente utilizado que apresenta estas características é o potencial de Lennard-Jones.

$$V(r) = 4V_0 \left[\left(\frac{\alpha}{r} \right)^{12} - \left(\frac{\alpha}{r} \right)^6 \right]$$

-V₀ – Profundidade do poço

 α - Cte. Unidade de distância

$$r_{Vmin} = 2^{\frac{1}{6}} \alpha$$

Os estados vibracionais com energias E_n podem ser descritos pela solução da equação de Schroedinger:

$$\left[-\frac{\hbar}{2m} \frac{d^2}{dr^2} + V(r) \right] \psi_n = E_n \psi_n$$

m – massa reduzida dos 2 núcleos

$$\frac{1}{m} = \frac{1}{m_1} + \frac{1}{m_2}$$

O objetivo do projeto é encontrar E_n para um potencial dado.

Resolver diretamente a equação → Somente após o estudo de EDO

Algumas aproximações

A grande massa dos núcleos implica que seu movimento é semi-clássico \Rightarrow $E_n \to Considerando um movimento clássico em V e aplicando "regras de quantização"$

O movimento clássico da separação entre os núcleos confinados no potencial V(r) pode ocorrer para energias $-V_0 < E_n < 0$. Assim a distância entre os núcleos oscila periodicamente entre os pontos r_i e r_f e a energia muda de cinética a potencial mantendo seu valor constante

$$E = \frac{p^2}{2m} + V(r)$$

Esse movimento clássico ocorre em alguma energia entre -V₀ e 0.

Tentar quantizar o movimento para obter aproximações dos autovalores E_n

Regra de Quantização de Bohr-Sommerfeld: A área no espaço de fases (ação em uma energia dada) é quantizada

$$S(n) = \left(n + \frac{1}{2}\right) 2\pi \hbar$$
 $n \rightarrow \text{inteiro } \ge 0$

$$\oint pdr = 2 \int_{r_i}^{r_f} pdr = \left(n + \frac{1}{2}\right) 2\pi \hbar$$

$$E = \frac{p^2}{2m} + v\left(r\right)$$

$$p = (2m)^{\frac{1}{2}} (E - v(r))^{\frac{1}{2}}$$

$$2\int_{r_i}^{r_f} p dr = \left(n + \frac{1}{2}\right) 2\pi\hbar$$

$$2\int_{r_i}^{r_f} (2m)^{\frac{1}{2}} (E_n - v(r))^{\frac{1}{2}} dr = \left(n + \frac{1}{2}\right) 2\pi \hbar$$

$$2\left(\frac{2m}{\hbar^2}\right)^{\frac{1}{2}} \int_{r_i}^{r_f} (E_n - v(r))^{\frac{1}{2}} dr = \left(n + \frac{1}{2}\right) 2\pi$$

$$n \rightarrow inteiro \geq 0$$

$$v(r) = 4V_0 \left(\left(\frac{\alpha}{r} \right)^{12} - \left(\frac{\alpha}{r} \right)^6 \right)$$

Para simplificar o trabalho podem ser definidas as seguintes quantidades:

$$x = \frac{r}{\alpha} \to dr = \alpha dx \qquad \varepsilon_n = \frac{E_n}{V_0} \qquad {}^{-V_0 < E_n < 0} \qquad \qquad \gamma = \left(\frac{2m\alpha^2 V_0}{\hbar^2}\right)^{\frac{1}{2}}$$

Dessa forma:

$$2\left(\frac{2m}{\hbar^2}\right)^{\frac{1}{2}} \int_{r_i}^{r_f} (E_n - v(r))^{\frac{1}{2}} dr = \left(n + \frac{1}{2}\right) 2\pi \qquad v(r) = 4V_0 \left(\left(\frac{\alpha}{r}\right)^{12} - \left(\frac{\alpha}{r}\right)^6\right)$$

$$\gamma \int_{x_i}^{x_f} (\varepsilon_n - v(x))^{\frac{1}{2}} dx = \left(n + \frac{1}{2}\right) \pi$$
$$v(x) = 4\left(\frac{1}{x^{12}} - \frac{1}{x^6}\right)$$

Projeto: Calcular os níveis de energia e a dependência de p vs x para diferentes moléculas diatômicas

$$p_n(x) = \pm (\varepsilon_n - v(x))^{\frac{1}{2}}$$

$$H_2 \rightarrow \gamma = 21.7$$

$$HD \rightarrow \gamma = 24.8$$

O valor de γ deve ser entrado pelo usuário

$$O_2 \rightarrow \gamma = 150$$

Verificar se o programa está correto, substituindo o potencial de Lennard Jones por um potencial parabólico do tipo:

$$v(x) = 4(x - 1.12246)^2 - 1$$

Que se esperaria com um potencial parabólico?

Exemplo de Fluxograma

$$\gamma \int_{x_i}^{x_f} \left(\varepsilon_n - v(x) \right)^{\frac{1}{2}} dx = \left(n + \frac{1}{2} \right) \pi$$

$$v(x) = 4\left(\frac{1}{x^{12}} - \frac{1}{x^6}\right)$$

$$p_n(x) = \pm (\varepsilon_n - v(x))^{\frac{1}{2}}$$

Exemplo de Resultados Esperados

