Nhập Môn Công Nghệ Thông Tin

Bài 04

HỆ THỐNG ĐẾM TRONG MÁY TÍNH

Giảng viên: ...

Email: ...

Nội Dung

- Giới thiệu về hệ thống đếm
- Hệ thống đếm thập phân
- Biểu diễn dữ liệu bằng hệ nhị phân
- Thao tác toán học trên hệ nhị phân
- Cách phần cứng lưu trữ dữ liệu
- Thao tác ALU trên hệ nhị phân

Giới thiệu về hệ thống đếm

- Hệ đếm là tập hợp các kí hiệu và qui tắc sử dụng tập kí hiệu đó để biểu diễn và xác định giá trị các số
- Mỗi hệ đếm có một số ký tự hữu hạn
- Tổng số ký tự của mỗi hệ đếm được gọi là cơ số (base hay radix), ký hiệu là b
- Có 2 loại hệ đếm:
 - Hệ đếm không phụ thuộc vị trí: hệ đếm La Mã
 - Hệ đếm phụ thuộc vào vị trí: hệ nhị phân, hệ thập phân,...

Hệ đếm La Mã

Bảng kí hiệu

Kí hiệu	I	\mathbf{V}	X	L	C	D	M
Giá trí	1	5	10	50	100	500	1000

• Quy tắc

- Số La Mã được biểu diễn bằng cách viết các kí hiệu cạnh nhau
- Chữ số IXCM được lặp lại không quá 3 lần và VLD xuất hiện 1 lần

$$\circ$$
 VD: $I = 1$ $II = 2$ $III = 3$

• Giá trị được tính theo qui tắc "Phải cộng, trái trừ"

$$MLVI = 1000 + 50 + 5 + 1 = 1056$$

 $MLIV = 1000 + 50 + 5 - 1 = 1054$

Hệ đếm thập phân

- Ký hiệu: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Sử dụng 10 ký số này để biểu diễn 1 số
- Qui tắc: mỗi đơn vị ở 1 hàng bất kì có giá trị bằng 10 đơn vị của hàng kế cận bên phải

Hệ đếm nhị phân

- Ký hiệu: {0, 1}
- Qui tắc: vị trí 1 ở một hàng bất kì có giá trị bằng 2
 đơn vị của hàng kế cận bên phải

Hệ đếm nhị phân – Phép cộng

 Cộng có nhớ các cặp số cùng vị trí từ phải sang trái

Bảng cộng

+	0	1
0	0	1
1	1	10

Ví dụ

	1	1	1	0
+	1	0	0	0
1	0	1	1	0

Trừ dùng quy tắc "mượn" từ chữ số bên trái

Bảng trừ

_	0	1
0	0	1
1	1 (mượn 10)	0

Ví dụ

- Số bù 1
 - Đảo tất cả các ký số của 1 số nhị phân ta sẽ có được số bù 1 của nó
- Số bù 2
 - Lấy số bù 1 cộng 1 ta được số bù 2 của số nhị phân ban đầu
- Ví dụ: x = 1010
 - Số bù 1 của x : 0101
 - Số bù 2 của x : 0110

· Số bù 1 và số bù 2

Số 5 (1 byte) 0 0 0 0 1 0 1

Số bù 1 của 5 1 1 1 1 1 0 1 0

+

Số bù 2 của 5 1 1 1 1 1 0 1 1

 $+ S\hat{0} 5$ 0 0 0 0 1 0 1

Kết quả 1 0 0 0 0 0 0 0

• Cho hai số nhị phân x và y

$$x - y = x + s\delta$$
 bù 2 của y = $x + s\delta$ bù 1 của $y + 1$

• Ví dụ

- x = 1010, y = 0101
- Số bù 1 của y : 1010
- Số bù 2 của y : 1011 (y2)
- x-y = x + y2 = 1010 + 1011 = 0101

Hệ đếm nhị phân – Phép nhân

• Nhân từ phải qua trái theo cách nhân tay thông thường

Bảng nhân

X	0	1
0	0	0
1	0	1

Ví dụ

	1	0	1	1
X			1	0
	0	0	0	0
1	0	1	1	
1	0	1	1	0

Hệ đếm nhị phân – Phép chia

• Thực hiện tương tự như phép chia trong hệ cơ số 10

Hệ đếm thập lục phân

- Ký hiệu: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E}
- Qui ước: A = 10, B=11, C=12, D=13, E=14, F=15
 - VD:

$$6654733_d$$
=0110-0101-1000-1011-0000-1101_b= $658B0D_h$

- Dùng tiếp đầu ngữ **0**x để đánh dấu sự khác biệt giữa hệ thập phân và thập lục phân
 - VD: $0x658B0D = 6654733_d$, $0x123 = 291_d$

Biểu diễn cơ số bất kỳ

- Có b ký tự để thể hiện giá trị của số
- Ký tự nhỏ nhất là 0, lớn nhất là b-1
- Số $N_{(b)}$ trong hệ đếm cơ số b được biểu diễn như sau

$$N_{(b)} = a_n a_{n-1} ... a_0 a_{-1} ... a_{-m}$$

và có giá trị

$$N_{(b)} = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b^1 + a_0 b^0$$

 $a_{-1} b^{-1} + ... + a_{-m} b^{-m}$

Biểu diễn cơ số bất kỳ

Trong đó

- b là cơ sở của biểu diễn, $b \in N$, $b \ge 2$
- a_i là các ký số và $a_i \in N$, $0 \le i \le n$, $0 \le a_i \le b$
- Cách viết trên được gọi là biểu diễn cơ sở b của a
- Chiều dài của biểu diễn bằng n+1
- Nếu có số lẻ thì vị trí đầu tiên sau dấu phẩy là -1, các vị trí tiếp theo là -2, -3, ..., -m

Nhân xét

- Máy tính sử dụng số được mã hóa trong hệ cơ số 2,
 8, 16
- Con người quen thuộc với số được mã hóa trong $h\hat{e}$ $\cos s\hat{o}$ 10
- Chuyển đổi qua lại giữa các hệ cơ số
 - Từ hệ cơ số 10 sang hệ cơ số 2
 - Từ hệ cơ số 16 sang hệ cơ số 10

Chuyển base-b → base-10

- Triển khai biểu diễn và tính giá trị biểu thức
- Ví dụ

$$1011.01_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 + 0x2^{-1} + 1x2^{-2}$$

= 8 + 0 + 2 + 1 + 0 + 0.25
= 11.25₁₀

Chuyển base-10 → base-b

• Đổi phần nguyên

- Chia phần nguyên cho b và tiếp tục lấy phần nguyên của kết quả chia cho b. Thực hiện cho đến khi thương của phép chia là 0.
- Dãy các số dư ở mỗi lần chia là a0, a1, ..., an
- Phần nguyên của số hệ cơ sở b là (an...a1a0)

• Đổi phần lẻ

- Nhân phần lẻ cho b và tiếp tục lấy phần lẻ của kết quả nhân cho b. Tiếp tục cho tới khi nào phần lẻ của tích là 0.
- Dãy các số nguyên ở mỗi lần nhân là a-1, a-2, ..., a-m tạo thành phần lẻ ở hệ cơ sở b

Chuyển base-10 → base-b

• Ví dụ chuyển 21.125₁₀ sang hệ nhị phân

Đổi phần nguyên

Đổi phần lẻ

$$0.125 \times 2 = 0.25$$

 $0.25 \times 2 = 0.5$
 $0.5 \times 2 = 1.0$

Kêt quả: 21.125 = 10101.001

Chuyển base-2 → base-b

• Từ base-2 sang base-16

 Nhóm từng bộ 4 ký số trong biểu diễn nhị phân rồi chuyển sang ký số tương ứng trong hệ 16

Bit pattern	Hexadecimal representation
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	А
1011	В
1100	С
1101	D
1110	E
1111	F

Chuyển base-2 → base-b

- Từ base-2 sang base-8
 - Nhóm từng bộ 3 ký số trong biểu diễn nhị phân rồi chuyển sang ký số tương ứng trong hệ bát phân

8	2
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Chuyển đổi các hệ số

Biểu diễn thông tin

• Có 2 cách lưu trữ và quản lí thông tin

Analog

- Liên tục, có nhiều cường độ khác nhau và tương đồng với dữ liệu trình bày
- VD: âm thanh, nhiệt độ, cường độ, ánh sáng,...

Digital

- Rời rạc, chỉ gồm 2 mức cao (1) và thấp (0)
- Thông tin được chia nhỏ thành từng phần và lưu trữ bằng hệ đếm nhị phân
- VD: compact disc

Digital information

- Mọi thông tin trên máy tính được lưu trữ dạng digital
 - Số
 - Chuỗi
 - Hình ảnh
 - Âm thanh
 - Video
 - Chỉ thị lệnh
 - •
- Thông tin được số hóa bằng cách chia nhỏ và biểu diễn dạng số

Digital information

- Mỗi ký tự nhị phân (0,1) được gọi là 1 bit (Binary Digit)
- Mỗi bit có thể nhận 1 trong 2 trạng thái 0 hoặc 1
- Tổ hợp các bit => thông tin

<u>1 bit</u>	2 bits	3 bits	<u>4 k</u>	<u>oits</u>
0	00	000	0000	1000
1	01	001	0001	1001
	10	010	0010	1010
	11	011	0011	1011
		100	0100	1100
		101	0101	1101
		110	0110	1110
		111	0111	1111

Digital information

```
1 bit ? 2^{1} = 2
2 bits ? 2^{2} = 4
3 bits ? 2^{3} = 8
```

2 bits?
$$2^2 = 4$$

3 bits?
$$2^3 = 8$$

4 bits?
$$2^4 = 16$$

4 bits?
$$2^4 = 16$$

5 bits? $2^5 = 32$

N bits \Rightarrow 2^N

Đơn vị lưu trữ thông tin

Biển diễn văn bản

- Mỗi ký tự được mã hóa bởi một số.
- Ký tự gồm: số, chữ, khoảng trắng, dấu câu

• ASCII

- Dùng mã hóa văn bản không dấu
- Được biểu diễn bằng 7 bít $(0 \rightarrow 127)$
- Bảng mã ASCII mở rộng chứa 256 mô tả cặp ký tự số.
 - o 128 ký tự đầu giống ASCII ban đầu.
 - 128 ký tự sau bao gồm 1 số ký hiệu tiếng Hy Lạp ('α', 'β', 'π', ...), các biểu diễn tiền tệ ('£', '¥', ...), ...
- Bảng mã ASCII không thể biểu diễn các ký tự của các ngôn ngữ khác như tiếng Việt (có dấu), Nga, Nhật, ...

Biểu diễn văn bản

0	NUL	16	DLE	32	SPC	48	0	64	@	80	P	96	•	112	р
1	SOH	17	DC1	33	!	49	1	65	Α	81	Q	97	а	113	q
2	STX	18	DC2	34	11	50	2	66	В	82	R	98	b	114	r
3	ETX	19	DC3	35	#	51	3	67	С	83	S	99	С	115	S
4	EOT	20	DC4	36	\$	52	4	68	D	84	T	100	d	116	t
5	ENQ	21	NAK	37	%	53	5	69	E	85	U	101	e	117	u
6	ACK	22	SYN	38	&	54	6	70	F	86	V	102	f	118	V
7	BEL	23	ETB	39	ı	55	7	71	G	87	W	103	og Og	119	W
8	BS	24	CAN	40	(56	8	72	Н	88	X	104	h	120	X
9	HT	25	EM	41)	57	9	73	1	89	Υ	105	Ĭ	121	у
10	LF	26	SUB	42	*	58		74	J	90	Z	106	j	122	Z
11	VT	27	ESC	43	+	59	•	75	K	91]	107	k	123	{
12	FF	28	FS	44	,	60	>	76	L	92	1	108	1	124	
13	CR	29	GS	45	. +	61	= 7	77	M	93]	109	m	125	}
14	SO	30	RS	46		62	^	78	N	94	٨	110	n	126	N
15	SI	31	US	47	/	63	?	79	0	95	_	111	0	127	DEL

"Hello" = 72 101 108 108

111

1001000 1100101 1101100 1101100 1101111

Biểu diễn văn bản

- Bảng mã Unicode (UTF-8):https://unicode-table.com/en/00C1/
 - Dùng mã hóa chuỗi có dấu
 - O Gồm 1,114,112 kí tự và được biểu diễn theo 4 mẫu như hình

Number of bytes	Bits for code point	First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
1	7	U+0000	U+007F	0xxxxxxx			
2	11	U+0080	U+07FF	110xxxxx	10xxxxxx		
3	16	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
4	21	U+10000	U+10FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

_	Code point		UTF-8		
	naracter	Binary	Binary		
\$	U+0024	010 0100	00100100		
¢	U+00A2	000 1010 0010	11000010 10100010		
ह	U+0939	0000 1001 0011 1001	11100000 10100100 10111001		
0	U+10348	0 0001 0000 0011 0100 1000	11110000 10010000 10001101 10001000		

- UTF-8 encoding có nhiều kích thước khác nhau để trình bày code point trong bộ nhớ. Nghĩa là code point được trình bày = 1,2,3,4 bytes phụ thuộc vào kích thước của chúng
- UTF-8 = 1 byte encoding 0xxxxxxx (bit 0 cho biết 1 byte encoding)
 - VD: A \rightarrow codepoint = U+0041 = 1000001
 - Trình bày UTF-8 = 01000001
- UTF-8 = 2 byte encoding $\frac{110}{2}$ $\frac{10}{2}$ $\frac{10}{2}$
 - Vd: codepoint U+00F1 = 1111 0001. Điền vào định dạng 2 byte như sau
 - **11000011 10110001**
- UTF-8 = 3 byte encoding 1110xxx 10xxxxxx 10xxxxxx
 - VD: code point 0x1E4D = 1111001001101
 - 11100001 10111001 10001101
- UTF-8 = 4byte encoding 1110xxx 10xxxxxx 10xxxxxx 10xxxxxx
 - Vd: codepoint U+1F62D = 11111011000101101
 - 11110000 10011111 10011000 10101101

Biểu diễn văn bản

• Sự khác biệt giữa ASCII và Unicode

ASCII	Unicode
7 bít biểu diễn 1 kí tự	8,16, 24, 32 bít biểu diễn 1 kí tự
Biểu diễn được 128 kí tự khác nhau	Biểu diễn được 1,114,112 kí tự khác nhau
Chữ cái tiếng Anh, số và kí hiệu	Hỗ trợ tất cả kí tự thuộc ngôn ngữ khác nhau
Yêu cầu ít không gian	Yêu cầu nhiều không gian

Trục số nguyên không dấu 8-bit

• Trục số học

• Trục số học máy tính

Biểu diễn dữ liệu số

- Biểu diễn số nguyên không dấu
 - Biểu diễn các đại lương luôn dương. Ví dụ: chiều cao, cân nặng, mã ASCII...
 - Tất cả bit được sử dụng để biểu diễn giá trị.
 - Số nguyên không dấu 1 byte lớn nhất là $1111 \ 1111_2 = 2^8 1 = 255_{10}$.
 - Số nguyên không dấu 1 word lớn nhất là $1111 \ 1111 \ 1111 \ 1111_2 = 2^{16} 1 = 65535_{10}$.
 - Tùy nhu cầu có thể sử dụng số 2, 3... word.

Biểu diễn dữ liệu số

- Biểu diễn số nguyên có dấu
 - Lưu các số dương hoặc âm.
 - Bit cao nhất dùng để biểu diễn dấu
 - Ví dụ: đối với số nguyên sử dụng 8 bit lưu trữ (gọi tắt là số nguyên 8 bits)
 - ○0 biểu diễn số dương. VD: 0101 0011
 - 01 biểu diễn số âm. VD: 1101 0011
 - Số âm trong máy tính được biểu diễn ở dạng số bù 2.

Biểu diễn dữ liệu số

- Biểu diễn số nguyên có dấu
 - Số bù 2 của x cộng với x là một dãy toàn bit 0 (không tính bit 1 cao nhất do vượt quá phạm vi lưu trữ). Do đó số bù 2 của x chính là giá trị âm của x hay – x.
 - Đổi số thập phân âm −5 sang nhị phân?
 - => Đổi 5 sang nhị phân rồi lấy số bù 2 của nó.

Biểu diễn dữ liệu số

- Tính giá trị không dấu và có dấu của 1 số?
 - Ví dụ số word (16 bit): 1100 1100 1111 0000
 - Số nguyên không dấu?
 - oTất cả 16 bit lưu giá trị.
 - => giá trị là 52464.
 - Số nguyên có dấu?
 - \circ Bit cao nhất = 1 do đó số này là số âm.
 - => độ lớn là giá trị của số bù 2.
 - \circ Số bù 2 = 0011 0011 0001 0000 = 13072.
 - \Rightarrow giá trị là -13072.

Biếu diễn dữ liệu số

- Biểu diễn số thực
 - Sử dụng dấu chấm động (floating-point).
 - Ví dụ:

$$\circ$$
 Số thực hệ 10: -123.4_d = -12.34 x 10¹ = -1.234 x 10² = -0.1234 x 10³

- Biểu diễn khoa học: -1.234 x 10²
- Chia làm 3 phần:
 - ○1 bit để biểu diễn dấu.
 - OMột chuỗi bit để biểu diễn số mũ.
 - OMột chuỗi bit để biểu diễn phần định trị

Biểu diễn dữ liệu số

- Biểu diễn số thực
 - Với ví dụ trên: -1.234 x 10²
 - OBit biểu diễn dấu là 1 (ứng với giá trị âm)
 - OBiểu diễn số mũ là 2
 - oBiểu diễn phần trị là 1234
 - ➤ Quy ước bên trái dấu chấm là 1 ký số khác không

Biểu diễn hình ảnh

· Biểu diễn hình ảnh

Hình ảnh được mã hóa thành dãy nhị phân từ trái qua

phải, từ trên xuống dưới

0	0	0	0	0	0	000000
0		0		1	0	010010
ō		ŏ		1	ŏ	010010
0	0	0	0	0	0	000000
0	1	1	1	1	0	011110
0	0	0	0	0	0	000000

■ Hình màu (4 màu) cần 2 biết cho mỗi điểm ảnh (pixel).

00 – màu trắng

01 – màu đen

10 – màu vàng

11 – màu xanh

10	10	10	10	10	10
10	00	10	10	00	10
10	11	10	10	11	10
10	10	10	10	10	10
10	01	01	01	01	10
10	10	10	10	10	10

101010101010 100010100010 101110101110 101010101010 1001010101010 101010101010

Biểu diễn âm thanh

• Biểu diễn âm thanh

Khả năng lưu trữ

- Mỗi thiết bị có một khả năng lưu trữ cho biết số bytes có thể lưu
- Khả năng lưu trữ được tính bằng đơn vị:

Đơn vị	Ký hiệu	Số byte
kilobyte	KB	$2^{10} = 1,024$
megabyte	MB	2 ²⁰ (1,048,576)
gigabyte	GB	2 ³⁰ (1,073,741,824)
terabyte	TB	2 ⁴⁰ (1,099,511,627,776)
petabyte	PB	2 ⁵⁰ (1,125,899,906,842,624)
exabyte	EB	2 ⁶⁰ (1,125,921,504,606,846,976)
zettabyte	ZB	2 ⁷⁰ (1,180,591,620,717,411,303,424)
 yottabyte	YB	280 (1,208,925,819,614,629,144,706,176)

- Gồm nhiều đĩa tròn bằng nhôm được phủ từ tính
- Giữa ổ đĩa có động cơ quay để đọc/ghi dữ liệu,
 được điểu khiển bởi bo mạch điện tử. Tốc độ quay
 5,400 → 15,000 (vòng/phút)
- Khả năng lưu trữ 160GB → 1.5TB

· Thành phần

- Platter đường kính ~ 3.5 inch, dùng ghi dữ liệu
- Track là rãnh hẹp chạy hết 1 vòng đĩa
- Sector là 1 phần track
- Cluster là đơn vị lưu trữ thông tin nhỏ nhất = 4 sector

· Định dạng

Là quá trình chia đĩa thành các track và sector để OS có thể lưu trữ và định vị dữ liệu và thông tin trên đĩa

 Có 3 cách bố trí dữ liệu: chiều ngang, chiều dọc và mẫu

• Chiều của hạt từ tính quyết định giá trị của nó

• VD: lưu trữ kí tự $\mathbf{k} = \mathbf{01011}$

• Đọc/ ghi dữ liệu

49

Flash memory

NAND Flash Memomy

Flash memory

- Là phương thức lưu trữ trạng thái rắn (Solid-state storage)
- Lữu trữ và truy xuất thông tin bằng mạch điện tử
- Thông tin được lưu trong một mảng các Memory Cell

Floating gate transistor

Floating Gate Transistor

- Gồm 5 thành phần
 - Control gate tắt mở kênh truyền
 - Floating gate lưu trữ điện tích
 - Insulator (Oxide layer)
 - P-Sunstrate (Poly-Silicon)
 - Source và Drain

Cơ chế hoạt động

- Control gate mở và đóng bằng cách tăng giảm điện áp.
 - Nếu cell tích điện = FG chứa electron → 0
 - Ngược lại = FG không chứa electron → 1

Optical disc

Compact disc

• CD là đĩa quang kích thước 12 cm, dày 1.2 mm, lưu được 650MB

• Bề mặt CD có các rãnh (pit = 1) và mặt phẳng

(land = 0)

Compact disc

- Dữ liệu được đọc bằng cách chiếu tia laser có cường độ thấp khi gặp:
 - Land ánh sáng sẽ bị phản xạ

■ Pit ánh sáng sẽ bị phân tán

56

Disc

Kiến trúc máy tính

ALU (Arithmetic Logic Unit)

- ALU là sức mạnh của máy tính
- Hàm
 - Số học: add, sub
 - Logic: AND, OR, NOT, MUX
 - Xoay (rotate) và dịch (shift)
 - Circular shift (rotation)
 - Logical shift
 - Arithmetic shift
- MIPS dùng 32-bit, cần ALU 32-bit
 - 1-bit ALU
 - 32-bit ALU

Hàm logic

• AND $(c = a \cdot b)$

а	b	c = a . b
0	0	0
0	1	0
1	0	0
1	1	1

• OR (c = a + b)

а	b	c = a + b
0	0	0
0	1	1
1	0	1
1	1	1

• NOT $(c = \bar{a})$

а	c = a
0	1
1	0

• Multiplexor (MUX)

• (if
$$d==0$$
, $c = a$; else $c = b$)

d	С
0	а
1	b

• 1-bit Addition

• Full adder

• Bảng chân trị

Input		nput	Outpu	ıt	comment
а	b	CarryIn	CarryOut	Sum	
0	0	0	0	0	0 + 0 + 0 = 00
0	0	1	0	1	0 + 0 + 1 = 01
0	1	0	0	1	0 + 1 + 0 = 01
0	1	1	1	0	0 + 1 + 1 = 10
1	0	0	0	1	1+0+0=01
1	0	1	1	0	1+0+1=10
1	1	0	1	0	1 + 1 + 0 = 10
1	1	1	1	1	1 + 1 + 1 = 11

• Bản chân trị → hàm logic

• Hàm logic → cổng logic

• 1-bit Sub

$$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = \mathbf{a} + \mathbf{b} + \mathbf{1}$$
complement: invert each bit of b

Circular shift

Logical shift

Arithmetic shift

Bài tập

- 1. Một đĩa CD có dung lượng 650MB lưu trữ được 2000 trang văn bản. Vậy nếu dùng một ổ đĩa cứng có dung lượng 10GB thì lưu giữ được bao nhiều trang văn bản?
- 2. Chuyển xâu ký tự sau thành mã nhị phân: **Khoa Cong Nghe Thong Tin**
- 4. Viết các số thực sau dưới dạng dấu phẩy động: 11005; 25,879; 0,000984
- 5. Đổi các số sau sang hệ nhị phân và hệ cơ số 16: 7; 15; 22; 127; 97; 123.75
- Đổi các số sau sang hệ cơ số 10: 5D1616; 7D71616; 1111111; 10110101
- 7. Đối từ hệ hexa sang hệ nhị phân 5E; 2A; 4B; 6C.
- 8. Đối từ hệ nhị phân sang hệ hexa 1101011; 10001001; 1101001; 10110

