

ALJABAR LINEAR

Pertemuan ke-4 - Determinan dengan Ekspansi Kofaktor dan Evaluasi Determinan melalui Reduksi Baris

Oleh:

Annastya Bagas Dewantara, S.T., M.T.

(email: annastya.bagas@ui.ac.id)

Fakultas Teknik

Universitas Indonesia

Daftar Paparan

- Determinan dengan Ekspansi Kofaktor
- Determinan dengan Row Reduction
 - Properti Determinan
 - 4 Daftar Pustaka

Determinan dengan Ekspansi Kofaktor

4 Daftar Pustaka

- Determinan dengan Row Reduction
- Properti Determinan

Determinan Matriks

Teori

Matriks A adalah invertible/bukan singular jika $ad - bc \neq 0$, dan ad - bc disebut sebagai **determinan** dari matriks A.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Kemudian inverse dari matriks A dapat di notasikan sebagai:

$$det(A) = ad - bc$$
 $A^{-1} = \frac{1}{det(A)} \begin{vmatrix} d & -b \\ -c & a \end{vmatrix}$

Minor dan Kofaktor - 1

Determinan dari matriks Higher-Order di bangun secara induktif menggunakan minor dan kofaktor:

1. Determinan dari Matriks 2×2 di bangun dari determinan matriks 1×1

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}C_{11} + a_{12}C_{12}$$

2. Determinan dari Matriks 3×3 di bangun dari determinan matriks 2×2

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}.$$

3. Determinan dari Matriks 4×4 di bangun dari determinan matriks 3×3 , dan seterusnya · · ·

Minor dan Kofaktor - 2

Teori

Jika A adalah **Square Matrix**, maka minor entri a_{ij} dilambangkan dengan M_{ij} dan didefinisikan sebagai determinan submatriks yang tersisa setelah baris ke-i dan kolom ke-j dihapus dari A. Bilangan $(-1)^{i+j}M_{ij}$ dilambangkan dengan C_{ii} dan disebut kofaktor entri a_{ii}

$$M_{ij} o extbf{Minor entri } a_{ij} \ C_{ij} o extbf{Kofaktor entri } a_{ij}$$

$$C_{ij} = \underbrace{(-1)^{i+j}}_{+/-} M_{ij} \underbrace{\longrightarrow}_{\substack{\text{Contoh pada} \\ \text{Matriks}}} \begin{bmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{bmatrix}$$

Contoh:

Determinan matriks A dengan ukuran 3×3 di bangun menggunakan matriks ukuran 2×2 , sebagai berikut:

$$A = \begin{bmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{bmatrix}$$

$$a_{11} = 3$$
 $M_{11} = \begin{vmatrix} 5 & 6 \\ 4 & 8 \end{vmatrix} = 40 - 24 = 16$
 $C_{11} = (-1)^{1+1} M_{11} = 1 \cdot 16 = 16$

Ekspansi Kofaktor

Teori

Determinan suatu matriks A berukuran $n \times n$ dapat diperoleh dengan memilih baris atau kolom mana pun, mengalikan setiap entri dengan kofaktornya yang sesuai, dan menjumlahkan hasilnya.

Ekspansi Kofaktor sepanjang baris ke-i:

$$\det(A) = \sum_{j=1}^n a_{ij} \; C_{ij}$$

Ekspansi Kofaktor sepanjang kolom ke-j:

$$\det(A) = \sum_{i=1}^n a_{ij} \ C_{ij}$$

Contoh:

$$A = \begin{bmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{bmatrix}$$

Menggunakan Baris ke-1:

$$det(A) = \begin{vmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{vmatrix} = a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}$$

$$= 3 \cdot 1 \cdot \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix} + 1 \cdot -1 \cdot \begin{vmatrix} -2 & 3 \\ 5 & -2 \end{vmatrix} + 0 \cdot 1 \cdot \begin{vmatrix} -2 & -4 \\ 5 & 4 \end{vmatrix} = -1$$

Menggunakan Kolom ke-1:

$$det(A) = \begin{vmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{vmatrix} = a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13}$$

$$= 3 \cdot 1 \cdot \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix} + (-2) \cdot -1 \cdot \begin{vmatrix} 1 & 0 \\ 4 & -2 \end{vmatrix} + 5 \cdot 1 \cdot \begin{vmatrix} 1 & 0 \\ -4 & 3 \end{vmatrix} = -1$$

Strategi dalam Ekspansi Kofaktor

Determinan dengan Ekspansi Kofaktor

00000000

Strategi dalam melakukan Ekspansi Faktor adalah dengan memilih baris atau kolom yang memiliki entri zero paling banyak.

$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}, \quad \det(A) = ?$$

Dalam menentukan det(A), menggunakan Ekspansi Kofaktor menggunakan kolom ke-2, maka:

$$\det(A) = a_{12} C_{12} + a_{22} C_{22} + a_{32} C_{32} + a_{42} C_{42}$$

$$=0\cdot -1\cdot \begin{vmatrix} 3 & 2 & 2 \\ 1 & -2 & 1 \\ 2 & 0 & 1 \end{vmatrix} + 1\cdot 1\cdot \begin{vmatrix} 1 & 0 & -1 \\ 1 & -2 & 1 \\ 2 & 0 & 1 \end{vmatrix} + 0\cdot -1\cdot \begin{vmatrix} 1 & 0 & -1 \\ 3 & 2 & 2 \\ 2 & 0 & 1 \end{vmatrix} + 0\cdot 1\cdot \begin{vmatrix} 1 & 0 & -1 \\ 3 & 2 & 2 \\ 1 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 1 & -2 & 1 \\ 2 & 0 & 1 \end{vmatrix}$$

Lakukan Ekspansi Kofaktor kembali menggunakan kolom ke-2:

$$\det(A) = \begin{vmatrix} 1 & 0 & -1 \\ 1 & -2 & 1 \\ 2 & 0 & 1 \end{vmatrix} = 0 \cdot -1 \cdot \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} + (-2) \cdot 1 \cdot \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} + 0 \cdot -1 \cdot \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = (-2) \cdot (1 - (-2)) = -6$$

Determinan Pada Matriks Triangular

$$\begin{vmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & 0 & 0 \\ a_{32} & a_{33} & 0 \\ a_{42} & a_{43} & a_{44} \end{vmatrix} = a_{11} a_{22} a_{33} \begin{vmatrix} a_{44} \\ a_{11} a_{22} a_{33} a_{44} \end{vmatrix} = a_{11} a_{22} a_{33} a_{44}$$

Teori

Sehingga jika matriks $\bf A$ adalah **Triangular Matrix** $n \times n$ (Upper Triangular, Lower Triangular, or Diagonal), maka $\det(A)$ adalah hasil kali entri-entri pada diagonal utama matriks tersebut yaitu:

$$\det(A) = a_{11}a_{22}\cdots a_{nn}$$

Aturan Saarus

Aturan Saarus merupakan metode untuk menentukan determinan menggunakan arah panah diagonal sebagai penambahan atau pengurangan dari multiplikasi produk:

Pada matriks 2×2 , terdapat 2! permutasi, sehingga 2 operasi dan 2 arah panah :

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Pada matriks 3×3 , terdapat 3! = 6 permutasi, sehingga 6 operasi dan 6 arah panah:

Metode ini hanya dapat digunakan pada matriks 2×2 dan 3×3 , dan **Teknik ini tidak berlaku** pada matriks dengan ukuran n > 4. Contoh pada matriks 4×4 membutuhkan 4! = 24 permutasi, namun arah panah yang dihasilkan hanya 8 arah panah.

Determinan dengan Ekspansi
Kofaktor

Daftar Pustaka

- 2 Determinan dengan Row Reduction
- Properti Determinan

Teorema Dasar

Determinan dengan Ekspansi Kofaktor

1. Baris Nol atau Kolom Nol

Jika **A** adalah **Square matrix** dengan ukuran $n \times n$, dan jika **A** memiliki baris nol atau kolom nol, maka det(**A**) = **0**, contoh:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\det(A) = 0 \cdot C_{21} + 0 \cdot C_{22} + 0 \cdot C_{23} = 0$$

$$B = \begin{bmatrix} 0 & 7 & 8 \\ 0 & 1 & 2 \\ 0 & 4 & 5 \end{bmatrix}$$

$$\det(B) = 0 \cdot C_{11} + 0 \cdot C_{21} + 0 \cdot C_{31} = 0$$

2. Baris Nol atau Kolom Nol

Jika **A** adalah **Square matrix** dengan ukuran $n \times n$, maka det $A = \det(A^T)$, contoh:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$det(A) = (1)(4) - (2)(3) = 4 - 6 = -2$$

$$A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$\det(A^T) = (1)(4) - (3)(2) = 4 - 6 = -2$$

Elementary Row Operation

Jika A adalah matriks $n \times n$.

$$\begin{vmatrix} ka_{11} & ka_{12} & ka_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Jika **satu baris atau kolom** di kalikan dengan skalar
$$\mathbf{k}$$
 $(R_i \to kR_i)$, maka:

$$\det(B) = k \det(A)$$

Jika **dua baris atau dua kolom** di tukar **k** $(R_i \leftrightarrow R_j)$, maka:

$$\det(B) = -\det(A)$$

$$\begin{vmatrix} a_{11} + ka_{21} & a_{12} + ka_{22} & a_{13} + ka_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Jika hasil dari menambahkan atau mengurangi konstanta dikalikan satu baris terhadap baris lainnya $(R_i \rightarrow R_i + kR_j)$, maka:

$$det(B) = det(A)$$

Matriks Elementer

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 3$$

$$\begin{vmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix} = -1$$

$$\begin{vmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1$$

Jika E diperoleh dari perkalian baris I_n dengan bilangan bukan nol k, maka : det(E) = k

Jika E diperoleh dari pertukaran dua baris I_n , maka:

$$\det(E) = -1$$

Jika E diperoleh dari penjumlahan kelipatan satu baris I_n dengan baris lainnya, maka:

$$\det(E)=1$$

Teori

Determinan dengan Ekspansi Kofaktor

Jika matriks persegi A memiliki dua baris atau dua kolom yang saling proporsional, maka nilai determinannya bernilai nol.

$$\begin{vmatrix} -1 & 4 \\ -2 & 8 \end{vmatrix} = 0, \qquad \begin{vmatrix} 1 & -2 & 7 \\ -4 & 8 & 5 \\ 2 & -4 & 3 \end{vmatrix} = 0, \qquad \begin{vmatrix} 3 & -1 & 4 & -5 \\ 6 & -2 & 5 & 2 \\ 5 & 8 & 1 & 4 \\ -9 & 3 & -12 & 15 \end{vmatrix} = 0$$

Determinan dengan Row Operation

Mencari Determinan menggunakan Elementary Row Operation dapat dilakukan untuk mempermudah perhitungan:

$$A = \begin{bmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{bmatrix}$$

$$\begin{aligned} \det(A) &= \begin{vmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{vmatrix} & = (-1) \cdot (3) \cdot \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 10 & -5 \end{vmatrix} \longrightarrow \frac{R_3 \leftrightarrow R_3 - 2R_1}{\det(B) = \det(A)} \\ &= (-1) \cdot \begin{vmatrix} 3 & -6 & 9 \\ 0 & 1 & 5 \\ 2 & 6 & 1 \end{vmatrix} \longrightarrow \frac{R_1 \leftarrow R_2}{\det(B) = -\det(A)} & = (-1) \cdot (3) \cdot \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & -55 \end{vmatrix} \longrightarrow \frac{R_3 \leftrightarrow R_3 - 10R_2}{\det(B) = \det(A)} \\ &= (-1) \cdot (3) \cdot \begin{vmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & -55 \end{vmatrix} \longrightarrow \frac{R_3 \leftrightarrow R_3 - 10R_2}{\det(B) = \det(A)} \\ &= (-1) \cdot (3) \cdot (1) \cdot (1) \cdot (-55) \longrightarrow \frac{TriangularForm}{\det(A) = a_{111} \dots a_{333}} \\ &= 165 \end{aligned}$$

Determinan dengan Column Operation

Teori

Mencari Determinan menggunakan Elementary Column Operation dapat dilakukan untuk mempermudah perhitungan, namun teknik ini **tidak dapat digunakan untuk Augmented Matrix**, dan hanya digunakan untuk **Square Matriks** dengan ukuran $n \times n$:

$$A = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 2 & 7 & 0 & 6 \\ 0 & 6 & 3 & 0 \\ 7 & 3 & 1 & -5 \end{bmatrix}$$

$$\det(A) = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 2 & 7 & 0 & 6 \\ 0 & 6 & 3 & 0 \\ 7 & 3 & 1 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 7 & 0 & 0 \\ 0 & 6 & 3 & 0 \\ 7 & 3 & 1 & -26 \end{bmatrix} \longrightarrow \underbrace{C_4 \leftarrow C_4 - 3C_1}_{\det(B) = \det(A)}$$

$$= (1) \cdot (7) \cdot (3) \cdot (-26) \longrightarrow \underbrace{C_4 \leftarrow C_4 - 3C_1}_{\det(B) = \det(A)}$$

$$= (1) \cdot (7) \cdot (3) \cdot (-26) \longrightarrow \underbrace{C_4 \leftarrow C_4 - 3C_1}_{\det(A) = a_{1111} a_{2222} \dots a_{4444}}$$

$$= -546$$

Strategi dalam Ekspansi Kofaktor dengan Elementary Row Operation

$$A = \begin{bmatrix} 3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3 \end{bmatrix}, \quad \det(A) = \begin{vmatrix} 3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3 \end{vmatrix} = ?$$

$$= \begin{vmatrix} 0 & -1 & 1 & 3 \\ 1 & 2 & -1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 1 & 8 & 0 \end{vmatrix} \xrightarrow{R_1 \leftarrow R_1 - 3R_2}_{R_1 \leftarrow R_1 - 3R_2}_{R_1 \leftarrow R_1 - 3R_2}_{\text{det}(B) = \det(A)}$$

$$=$$
 a_{11} C_{11} $+$ a_{21} C_{21} $+$ a_{31} C_{31} $+$ a_{41} C_{41} \longrightarrow Ekspansi Kofaktor dengan kolom ke-1

$$=0\cdot 1\cdot \begin{vmatrix} 2 & -1 & 1 \\ 0 & 3 & 3 \\ 1 & 8 & 0 \end{vmatrix} + 1\cdot -1\cdot \begin{vmatrix} -1 & 1 & 3 \\ 0 & 3 & 3 \\ 1 & 8 & 0 \end{vmatrix} + 0\cdot 1\cdot \begin{vmatrix} -1 & 1 & 3 \\ 2 & -1 & 1 \\ 1 & 8 & 0 \end{vmatrix} + 0\cdot -1\cdot \begin{vmatrix} -1 & 1 & 3 \\ 2 & -1 & 1 \\ 0 & 3 & 3 \end{vmatrix}$$

$$= - \begin{vmatrix} -1 & 1 & 3 \\ 0 & 3 & 3 \\ 0 & 9 & 3 \end{vmatrix} \longrightarrow \begin{matrix} R_3 \leftarrow R_3 - R_1 \\ \det(B) = \det(A) \end{matrix}$$

$$=-$$
 (a_{11} C_{11} + a_{21} C_{21} + a_{31} C_{31}) \longrightarrow Ekspansi Kofaktor dengan kolom ke-1

$$= -\left(-1\cdot 1\cdot \begin{vmatrix} 3 & 3 \\ 9 & 3 \end{vmatrix} + 0\cdot -1\cdot \begin{vmatrix} 1 & 3 \\ 9 & 3 \end{vmatrix} + 0\cdot 1\cdot \begin{vmatrix} 1 & 3 \\ 3 & 3 \end{vmatrix}\right) = -\left(-1\cdot (3\cdot 3 - 3\cdot 9)\right) = \boxed{-18}$$

Determinan dengan Ekspansi
Kofaktor

4 Daftar Pustaka

- Determinan dengan Row Reduction
- Properti Determinan

Properti Dasar

Determinan dengan Ekspansi Kofaktor

$$\det(\mathbf{kA}) = \mathbf{k^n} \det(\mathbf{A})$$

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$
$$k = 2,$$
$$2A = \begin{bmatrix} 2 & 4 & 0 \\ 0 & 2 & 6 \\ 8 & 0 & 2 \end{bmatrix}.$$

$$\begin{aligned} \det(A) &= 1 \cdot (1 \cdot 1 - 3 \cdot 0) - 2 \cdot (0 \cdot 1 - 3 \cdot 4) + 0 \\ &= 1 - 2(-12) \\ &= 25 \\ \det(2A) &= 2 \cdot (2 \cdot 2 - 6 \cdot 0) - 4 \cdot (0 \cdot 2 - 6 \cdot 8) + 0 \\ &= 8 - 4(-48) \\ &= 200 \end{aligned}$$

 $det(2A) = 2^3 det(A) = 8 \cdot 25$ = 200

$$\det(\mathbf{A} + \mathbf{B}) \neq \det(\mathbf{A}) + \det(\mathbf{B})$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{aligned} \det(A) &= 1\\ \det(B) &= 1\\ \det(A) + \det(B) &= 2\\ \det(A+B) &= 2 \cdot 2 \cdot 2 = 8\\ \det(A+B) &\neq \det(A) + \det(B) \end{aligned}$$

$$det(\mathbf{AB}) \neq det(\mathbf{A}) det(\mathbf{B})$$

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

$$AB = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Properti Determinan

$$\begin{aligned} \det(AB) &= 1 \cdot 2 \cdot 3 = 6 \\ \det(A) &= 1 \\ \det(B) &= 1 \cdot 2 \cdot 3 = 6 \det(A) \det(B) = 6 \end{aligned}$$

Teori

Suatu matriks A berukuran $n \times n$ dikatakan inverse jika $det(A) \neq 0$.

Dalam menguji apakah matriks A dengan ukuran $n \times n$ dapat dilakukan inverse adalah dengan mengidentifikasi nilai determinan nya.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 2 & 4 & 6 \end{bmatrix}$$

Karena matriks A memiliki baris yang proporsional satu sama lain, yakni pada R_1 dan R_3 , maka det(A) = 0, sehingga matriks A tidak invertible.

Kofaktor dari Baris/Kolom yang berbeda

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}, \qquad \begin{matrix} C_{11} = 12 & C_{12} = 6 & C_{13} = -16 \\ C_{21} = 4 & C_{22} = 2 & C_{23} = 16 \\ C_{31} = 12 & C_{32} = -10 & C_{33} = 16 \end{matrix}$$

Nilai determinan akan selalu sama terlepas dari baris atau kolom mana yang di pilih untuk Ekspansi kofaktor:

$$\det(A) = 3C_{11} + 2C_{12} + (-1)C_{13} = 36 + 12 + 16 = 64$$

$$\det(A) = 3C_{11} + 1C_{21} + 2C_{31} = 36 + 4 + 24 = 64$$

Perkalian kofaktor pada baris atau kolom yang berbeda akan menghasilkan jumlah produk bernilai nol:

Terhadap Baris vang berbeda

Determinan dengan Ekspansi Kofaktor

- $3C_{21} + 2C_{22} + (-1)C_{23} = 12 + 4 16 = 0$
- 2. Terhadap Kolom yang berbeda $3C_{12} + 1C_{22} + 2C_{32} = 18 + 2 - 20 = 0$

Notasi untuk Matriks Kofaktor dari matriks A adalah.

$$C = \left[\begin{array}{ccc} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{array} \right]$$

Serta notasi untuk Transpose Matriks Kofaktor atau Matriks Adjoint dari matriks A adalah.

$$adj(A) = C^{T} = \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix}$$

Matriks Inverse

Determinan dengan Ekspansi Kofaktor

$$A \ adj(A) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{j1} & a_{j2} & a_{j3} & \cdots & a_{jn} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{jn} & \cdots & C_{nn} \end{pmatrix}$$

Berdasarkan perkalian kofaktor sebelumnya, di dapatkan:

Ketika
$$i = k$$
: Ketika $i \neq k$:

$$\sum_{j=1}^{n} a_{ij} C_{kj} = \sum_{j=1}^{n} a_{ij} C_{kj} = 0$$
 $\det(A)$

Atau:

$$(A \operatorname{adj}(A))_{ik} = \begin{cases} \det(A), & i = k, \\ 0, & i \neq k, \end{cases}$$

$$A \operatorname{adj}(A) = \det(A) \ I_n \longrightarrow \text{kedua sisi dikalikan } \times A^{-1}$$

$$A^{-1} \longrightarrow A^{-1} \longrightarrow A^{-1}$$

Sehingga:

$$A \ adj(A) = \begin{bmatrix} \det(A) & 0 & \cdots & 0 \\ 0 & \det(A) & \cdots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \cdots & \det(A) \end{bmatrix} = \det(A) \ I_n$$

$$A \ adj(A) = \det(A) \ I_n \longrightarrow \text{kedua sisi dikalikan} \ imes rac{1}{\det(A)}$$

$$\frac{1}{\det(A)} A \ adj(A) = I_n \longrightarrow \text{kedua sisi dikalikan } \times A$$

$$\frac{A^{-1}}{\det(A)} A \operatorname{adj}(A) = A^{-1} \rightarrow \boxed{\frac{1}{\det(A)} I_n \operatorname{adj}(A) = A^{-1}}$$

Determinan dengan Ekspansi
 Kofaktor

Daftar Pustaka

- Determinan dengan Row Reduction
- 3 Properti Determinan

Daftar Pustaka I