```
import numpy as np
lst1=[1,2,3]
array1 = np.array(list)
print("list = ",lst1)
print("array =",array1)
type(lst1)
type(array1)
     list = [1, 2, 3]
array = <class 'list'>
     numpy.ndarray
type(lst1)
     list
import numpy as np
array1=np.array([10,20,30])
array2=np.array([2,2,2])
print("array2 multiplied by array1: ",array1*array2)
print("array2 divided by array1: ",array2/array1)
print("array2 raised to the power of array1: ",array2**array1)
print("Adding two numpy arrays {array1} and {array2} together: ",array1+array2)
     array2 multiplied by array1: [20 40 60]
     array2 divided by array1: [0.2 0.1 array2 raised to the power of array1: [
                                                          0.06666667]
                                                     1024 1048576 1073741824]
     Adding two numpy arrays {array1} and {array2} together: [12 22 32]
import numpy as np
array1=np.array([10,20,30])
print("Sine: ",np.sin(array1))
print("Natural logarithm: ",np.log(array1))
print("Base-10 logarithm: ",np.log10(array1))
print("Base-2 logarithm: ",np.log2(array1))
print("Exponential: ",np.exp(array1))
     Sine: [-0.54402111 0.91294525 -0.98803162]
     Natural logarithm: [2.30258509 2.99573227 3.40119738]
     Base-10 logarithm: [1.
                                    1.30103 1.47712125]
     Base-2 logarithm: [3.32192809 4.32192809 4.9068906 ]
     Exponential: [2.20264658e+04 4.85165195e+08 1.06864746e+13]
people = ['Ann','Brandon','Chen','David','Emily','Farook','Gagan','Hanish','Imran','Julio','Katherne','Lily']
age = [21,12,32,45,37,18,28,52,5,40,48,15]
weight = [55,35,77,68,70,60,72,69,18,65,82,48,]
height = [160,135,170,165,173,168,175,159,105,171,155,158]
import matplotlib.pyplot as plt
# scatter plot
plt.scatter(weight,height)
plt.title("relationship between weight and height")
plt.ylabel("Height in meters")
plt.xlabel("Weight in kgs")
plt.show()
```



```
# bar chart
plt.figure(figsize=(7, 6))
plt.bar(people, age, color='blue')
plt.xlabel('People')
plt.ylabel('Age')
plt.title('Age Distribution')
plt.show()
```



```
#Histogram
plt.figure(figsize=(7, 6))
plt.hist(age, bins=10, color='blue', edgecolor='black')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.title('Age Distribution Histogram')
plt.show()
```


import pandas as pd data1=pd.read_excel("data.xlsx") data1

No		Name	Age	Weight	Height	
0	1	Harish	21	65	172	
1	2	Ram	19	55	168	
2	3	Rajesh	25	63	155	
3	4	Krishna	38	69	169	
4	5	Hemanth	19	55	160	

 ${\tt import\ pandas\ as\ pd}$ data2=pd.read_csv("data.csv") data2

No		Name	Age Weight		Height	
0	1	Harish	21	65	172	
1	2	Ram	19	55	168	
2	3	Rajesh	25	63	155	
3	4	Krishna	38	69	169	
4	5	Hemanth	19	55	160	

import pandas as pd data3=pd.read_table("data.txt") data3

\supseteq		No	Name	Age	Weight	Height	
	0	1	Harish	21	65	172	ıl.
	1	2	Ram	19	55	168	+/
	2	3	Rajesh	25	63	155	
	3	4	Krishna	38	69	169	
	4	5	Hemanth	19	55	160	

import pandas as pd
url = 'https://drive.google.com/file/d/13ijmcf_uPQRwS5XyfJ0pn5DpAczRhWY_/view?usp=drive_link'

df_url = pd.read_csv("data.csv")

df_url

	No	Name	Age	Weight	Height	Ħ
0	1	Harish	21	65	172	ılı
1	2	Ram	19	55	168	+//
2	3	Raiesh	25	63	155	