Spatio-temporal generation of precipitations using a spatially correlated Bernoulli and hidden Markov model

Caroline Cognot (EDF & MIA-PS)

Supervision: Liliane Bel (MIA-PS), Sylvie Parey (EDF) David Métivier (INRAE - MISTEA)

Cognot Caroline

Contents

- Introduction
- 2 Multisite Rainfall SWG
- Stimation
- 4 Evaluation

Climate change impact

- Extremes and risks: impact on agriculture, health, energy...
- Climate change: impact on frequency, intensity,...

CLIMATE PREDICTION CENTER, NOA Computer generated contours

Goal: Estimate (future) risks quantitatively

→ In particular large scales extremes

Cognot Caroline 3/2

Climate (physical) models

Climate models grid size

- + Used in climate projection global and regional models
- + Complex phenomena, physical equations
- + Many variables
- + High spatiotemporal resolution
- Computationally expensive
- Not very good for extremes

Stochastic Weather Generators

- Trained on observations or climate model outputs
- Simulations: same statistical properties as observations
- Spatio-temporal resolution depends on the model and the data
- Monovariate/Multivariate e.g. (temperature and precipitation)

Fast

Multisite Rainfall Weather Generators

Objective: Build a stochastic weather generator

- For the multisite rain occurrence $Y^{(t)} = (Y_1^{(t)}, \dots, Y_S^{(t)})$
- → Reproduce the spatial-temporal structure of the data.
 - In particular large scales dry/wet episodes

First question: Should we separate rain occurrence from rain amount?

- e.g. Benoit et al. (2018) with Censored Gaussian models
- \rightarrow In this talk only rainfall occurrence

Single-site weather types model

Initial idea of Richardson 1981: 2 weather types.

Single-site weather types model

Initial idea of Richardson 1981: 2 weather types.

• The weather states/regimes/types Z_t are a Markov chain of order r:

$$P(Z_t|Z_{t-1},\ldots,Z_{t-r}) \tag{1}$$

• Observed meteorological variables Y_t are generated conditionally on Z_t :

$$P(Y_t|Z_t) \tag{2}$$

Separates the complexity of the model into several categories Latent models are very common in Machine Learning

Cognot Caroline 7/2

Spatial weather types

Weather types derived from atmospheric circulation or predefined

Atlantic weather types

→ Not data-centered

Spatial weather types

Atlantic weather types

 \rightarrow Not data-centered

Hidden Markov chain

→ Weather types learned from the data

→This work

Multisite HMM based model

Rain occurrence $Y^{(t)}=(Y_1^{(t)},\ldots,Y_S^{(t)})\in\{0,1\}^S$ Unobserved weather type $Z^{(t)}\in\{1,\ldots,K\}$

Multisite HMM based model

Rain occurrence $Y^{(t)}=(Y_1^{(t)},\ldots,Y_S^{(t)})\in\{0,1\}^S$ Unobserved weather type $Z^{(t)}\in\{1,\ldots,K\}$

Conditional independence (Zucchini et al. 1991, Gobet et al. 2024)

$$\mathbb{P}\left(Y = y \mid Z = z^{(t)}\right) = f_{z^{(t)},t}(y) = \prod_{s=1}^{S} \left(y_s \lambda_{Z^{(t)},t,s} + (1 - y_s)(1 - \lambda_{Z^{(t)},t,s})\right)$$

Multisite HMM based model

Rain occurrence $Y^{(t)} = (Y_1^{(t)}, \dots, Y_S^{(t)}) \in \{0, 1\}^S$ Unobserved weather type $Z^{(t)} \in \{1, \dots, K\}$

Conditional independence (Zucchini et al. 1991, Gobet et al. 2024)

$$\mathbb{P}\left(Y = y \mid Z = z^{(t)}\right) = f_{z^{(t)},t}(y) = \prod_{s=1}^{S} \left(y_s \lambda_{Z^{(t)},t,s} + (1 - y_s)(1 - \lambda_{Z^{(t)},t,s})\right)$$

- Stations must be "far apart enough": 10 stations in the paper
- Correlations between stations are captured by the weather types Z

Large scale weather types

Figure: Pressure map $\Delta P = \mathbb{E}\left(P \mid Z = k\right) - \mathbb{E}\left(P\right)$ for winter months

Cognot Caroline 10

Multisite Pair correlation model

ullet At each station: Y_s follows a high order Markov chain $\mathbb{P}\left(Y_s^{(t)} \mid Y_s^{(t-1)}, \dots
ight)$

Multisite Pair correlation model

- ullet At each station: Y_s follows a high order Markov chain $\mathbb{P}\left(Y_s^{(t)} \mid Y_s^{(t-1)}, \ldots
 ight)$
- Multisite:

Each correlation coefficient of Σ has to be estimated

- A lot of parameters to estimate $O(S^2)$ vs $O(K^2)$ for the HMM
- + They can be estimated separately
- Not restriction on the stations distance

Multisite mixed model

Multisite mixed model

Spatial conditional dependence

ullet Covariance function $\Sigma = C_{ heta}(h)$ of distance h between stations

Multisite mixed model

Spatial conditional dependence

- Covariance function $\Sigma = C_{\theta}(h)$ of distance h between stations
- $\begin{array}{l} \bullet \ \ \mathbb{P}\left(Y=y\mid Z=z^{(t)}\right)=\int_{a_1}^{b_1}\cdots\int_{a_S}^{b_S}f_X^{(\theta)}((x_1,...,x_S))\,\mathrm{d}(x_1,...,x_S)\\ \mathrm{With}\ a_s=-\infty\ \mathrm{if}\ Y_s=1,\Phi^{-1}(\lambda_s)\ \mathrm{else},\ b_i=\infty\ \mathrm{if}\ Y_i=0,\Phi^{-1}(\lambda_i)\ \mathrm{else}\\ \to \mathrm{Looks\ like\ CDF\ of\ multivariate\ Gaussian} ... \end{array}$
- + Spatial structure o less parameters than $O(\mathcal{S}^2)$
- + Not restriction on the stations distance
- They **cannot** be estimated independently
- \pm Correlations between stations are captured by the weather types Z and $C_{ heta}$

Cognot Caroline 12

Maximum likelihood estimation

- ullet Hidden states o Expectation-Maximization (EM) algorithm
- Seasonal parameters $\theta(t)$
- !! High dimensional integrals

Maximum likelihood estimation

- ullet Hidden states o Expectation-Maximization (EM) algorithm
- Seasonal parameters $\theta(t)$
- !! High dimensional integrals
- → Tricks make the problem computable

Example: Maximize pairwise likelihood instead of full likelihood during the **M** step of the EM algorithm.

Maximum likelihood estimation

- ullet Hidden states o Expectation-Maximization (EM) algorithm
- Seasonal parameters $\theta(t)$
- !! High dimensional integrals
- \rightarrow Tricks make the problem computable

Example: Maximize pairwise likelihood instead of full likelihood during the **M** step of the EM algorithm.

Spatiotemporal evaluation

Rain Occurrence Rate (ROR) =
$$\frac{\sum_{s \in \mathcal{S}} Y_s^{(t)}}{|\mathcal{S}|}$$

Spatiotemporal evaluation

K=1: no hidden states, only pairwise correlations

Autocorrelation

What has been done

- Seasonal Multisite rain occurrence model with hidden weather regimes
- No restriction on the distance between stations
- Evaluation with the spatiotemporal indicator ROR

What has been done

- Seasonal Multisite rain occurrence model with hidden weather regimes
- No restriction on the distance between stations
- Evaluation with the spatiotemporal indicator ROR

What is left to do

- ullet Finalize the model selection, analyze the new weather regimes Z
- Add rainfall amounts + other weather variables

What has been done

- Seasonal Multisite rain occurrence model with hidden weather regimes
- No restriction on the distance between stations
- ullet Evaluation with the spatiotemporal indicator ROR

What is left to do

- ullet Finalize the model selection, analyze the new weather regimes Z
- Add rainfall amounts + other weather variables

Other works

High resolution large scale temperature model

Multivariate SWG with applications for agronomy

Julia package StochasticWeatherGenerators.jl

What has been done

- Seasonal Multisite rain occurrence model with hidden weather regimes
- No restriction on the distance between stations
- Evaluation with the spatiotemporal indicator ROR

What is left to do

- ullet Finalize the model selection, analyze the new weather regimes Z
- Add rainfall amounts + other weather variables

Other works

High resolution large scale temperature model

Multivariate SWG with applications for agronomy

Julia package StochasticWeatherGenerators.jl

Thank you for your attention!

Parameterization: periodic parameters

- $\lambda_{k,t,s}$: rain probability at site s, time t, for state k
- ullet $ho_{k,t}$: latent spatial covariance parameter in exponential covariance model

$$\begin{split} P_c(t) &= c_0 + \sum_{j=1}^d \left(c_{2j-1} \cos(2\pi j t/T) + c_{2j} \sin(2\pi j t/T) \right) \\ Q_t(k,l) &= \frac{\exp(P_{c_{k,l}}(t))}{1 + \sum_{l=1}^{K-1} \exp(P_{c_{k,l}}(t))} \text{ for } l < K, \ Q_t(k,K) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp(P_{c_{k,l}}(t))} \\ \lambda_{k,t,s,y_s^{(t-1)}} &= \frac{1}{1 + \sum_{l=1}^{K-1} \exp(P_{c_{k,s,y_s^{(t-1)}}}(t))} \\ \rho_{k,t} &= \exp\left(P_{c_k(t)}\right) \end{split}$$

Case rain probability= $\lambda_{k,t,s}$: no marginal local memory. Can replace by $\lambda_{k,t,s,y}$ ^(t-1) = marginal local memory.

Seasonal large scales properties

- Seasonal effects
 Proposal : Periodic, time-varying parameters.
- Long, dry/wet episodes
- Spatially large episodes

Spatio-temporal indicator to evaluate models :

Rain Occurence Ratio

$$ROR(t) = \frac{\sum_{s \in \mathcal{S}} Y_s^{(t)}}{|\mathcal{S}|}$$

Temporal univariate series: distribution, autocorrelation function,...

- Suited for latent models : observed $Y_1,...,Y_N$, latent $Z_1,...,Z_N$, parameter θ
- Objective : find $\hat{\theta} \in \operatorname{argmax}(\log(L_{\theta}(y)))$
- Algorithm :
 - θ_0 initial.
 - At each step q:
 - E step: Compute $R(\theta, \theta^{(q)}) = E_{Z \sim p(:Y, \theta^{(q)})}(Log(L(\theta, Z, Y))|Y)$
 - $\bullet \; \; \mathsf{M} \; \mathsf{step} : \mathsf{find} \; \theta^{(q+1)} \in \operatorname{argmax} R(\theta, \theta^{(q)})$

$$R(\theta, \theta^{(q)}) = \sum_{k=1}^{K} \sum_{t=1}^{n} \pi_{t|n}^{(q)}(k) \log(L(y_1^{(t)}, \dots, y_d^{(t)}; \theta_{t,k}))$$

$$+ \sum_{k=1}^{K} \pi_{1|n}^{(q)}(k) \log(\pi(k))$$

$$+ \sum_{k,l=1}^{K} \sum_{t=1}^{n-1} \pi_{t,t+1|n}^{(q)}(k, l) \log(Q_t(k, l))$$

E step : classic Forward-Backward Baum-Welch algorithm, to compute the $\pi_{t|n}^{(q)}(k), \ \pi_{t|t+1|n}^{(q)}(k,l)$ where

$$\pi_{t|n}^{(q)}(k) = \mathbb{P}_{\theta^{(q)}} \left[Z^{(t)} = k | \left(Y^{(1)}, \dots, Y^{(n)} \right) = \left(y^{(1)}, \dots, y^{(n)} \right) \right]$$

$$\pi_{t,t+1|n}^{(q)}(k,\ell) = \mathbb{P}_{\theta^{(q)}} \left[Z^{(t)} = k, Z^{(t+1)} = \ell | \left(Y^{(1)}, \dots, Y^{(n)} \right) = \left(y^{(1)}, \dots, y^{(n)} \right) \right]$$

Cognot Caroline 20 / 24

$$\begin{split} \theta^{(q+1)} &= \operatorname{argmax} \left(R(\theta, \theta^{(q)}) \right) \\ &= \operatorname{argmax} (\Sigma_{k=1}^K \Sigma_{t=1}^n \pi_{t|n}^{(q)}(k) \log(L(y_1^{(t)}, \dots, y_d^{(t)}; \theta_{t,k})) &= R_1 \\ &+ \Sigma_{k=1}^K \pi_{1|n}^{(q)}(k) \log(\pi(k)) &= R_2 \\ &+ \Sigma_{k,l=1}^K \Sigma_{t=1}^{n-1} \pi_{t,t+1|n}^{(q)}(k, l) \log(Q_t(k, l))) &= R_3 \end{split}$$

M step: maximise R_1, R_2, R_3 (parameters are independent) Issue for R_1 : maximize a high-dimensional integral!

How to maximise a sum of type $\Sigma_{t=1}^n w_t \log(L(y_1^{(t)},...,y_d^{(t)};\theta_t))$? = weighted likelihood

$$\begin{split} \theta^{(q+1)} &= \operatorname{argmax} \left(R(\theta, \theta^{(q)}) \right) \\ &= \operatorname{argmax} (\Sigma_{k=1}^K \Sigma_{t=1}^n \pi_{t|n}^{(q)}(k) \log(L(y_1^{(t)}, \dots, y_d^{(t)}; \theta_{t,k})) \\ &+ \Sigma_{k=1}^K \pi_{1|n}^{(q)}(k) \log(\pi(k)) \\ &+ \Sigma_{k,l=1}^K \Sigma_{t=1}^{n-1} \pi_{t,t+1|n}^{(q)}(k, l) \log(Q_t(k, l))) \end{split} \qquad = R_1 \end{split}$$

M step: maximise R_1, R_2, R_3 (parameters are independent) Issue for R_1 : maximize a high-dimensional integral!

How to maximise a sum of type $\Sigma_{t=1}^n w_t \log(L(y_1^{(t)},...,y_d^{(t)};\theta_t))$? = weighted likelihood

Solution: composite likelihood

Composite likelihood, Varin, Reid, and Firth 2011

For $Y \sim f_{\theta}$ of high dimension m where $L(y,\theta)$: complicated to compute :

Definition

For A_1,\dots,A_K marginal or conditional events with $L_k(\theta;y)\propto f(y\in A_k;\theta)$, and $w_k\geq 0$ some weights

$$L_C(\theta; y) = \prod_{k=1}^K L_k(\theta; y)^{w_k},$$

 L_k are easier to compute!!

Cognot Caroline 22 / 24

Composite likelihood, Varin, Reid, and Firth 2011

For $Y \sim f_{\theta}$ of high dimension m where $L(y,\theta)$: complicated to compute :

Definition

For A_1,\ldots,A_K marginal or conditional events with $L_k(\theta;y)\propto f(y\in A_k;\theta)$, and $w_k\geq 0$ some weights

$$L_C(\theta; y) = \prod_{k=1}^K L_k(\theta; y)^{w_k},$$

 L_k are easier to compute!!

Convergence

For n iid realizations of Y, $L_C(\theta; (y^1...y^n)) = \prod_{t=1}^n L(\theta; y^t)$

$$\sqrt{n}(\hat{\theta}_{CL} - \theta) \xrightarrow{d} N_p(0, G^{-1}(\theta)).$$
 (3)

with G the Godambe matrix.

So, asymptotically, maximizing the composite likelihood gives the true parameter.

Cognot Caroline 22 / 2

Pairwise likelihood: back to my case

- For many iid samples, maximizing $\Sigma_{t=1}^n \log(L(y_1^{(t)},...,y_d^{(t)};\theta_t))$ or $\Sigma_{t=1}^n \Sigma_{i,j} w_{ij} \log(L(y_i^{(t)},y_j^{(t)};\theta_t))$ give same estimate.
- We have dependent data in time with weights from the E step
- Want to maximise $\Sigma_{t=1}^n w_t \log(L(y_1^{(t)},...,y_d^{(t)};\theta_t))$
- Replace by $\Sigma_{t=1}^n \Sigma_{i,j} w_{ij} w_t \log(L(y_i^{(t)}, y_j^{(t)}; \theta_t))$
- Hope for the best.

Cognot Caroline 23 / 24

Implementation

Choices: how to approximate integral of the multivariate normal distribution?

- Dimension S: Quasi-Monte-Carlo, julia package MvNormalCDF https://github.com/PharmCat/MvNormalCDF.jl.
- Other options: approximations, unfortunately bad for highly correlated model.
- Dimension 2 (pairwise maximization): Expression from Tsay and Ke 2023 translated from https://github.com/david-cortes/approxcdf in Julia by David Métivier.

Cognot Caroline 24 / 24

Implementation

Choices: how to approximate integral of the multivariate normal distribution?

- Dimension S: Quasi-Monte-Carlo, julia package MvNormalCDF https://github.com/PharmCat/MvNormalCDF.jl.
- Other options: approximations, unfortunately bad for highly correlated model.
- Dimension 2 (pairwise maximization): Expression from Tsay and Ke 2023 translated from https://github.com/david-cortes/approxcdf in Julia by David Métivier.

If you have any clever idea for computing or maxizing integral

$$Pr(X_1 < x_1, ..., X_d < x_d) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_S} f_X((x_1', ..., x_S')) d(x_1', ..., x_S')$$

Please tell!

Cognot Caroline 24 /