Théorie des probabilités — Cours

Ivan Lejeune

10 octobre 2024

Table des matières

Chapit	re 1 —	- Bases de la théorie des probabilités	-
1.1	Espace	es probabilisés	
	1.1.1	Probabilité	
	1.2.1	Exemples d'espaces probabilisés	4

Chapitre 1 — Bases de la théorie des probabilités

1.1 Espaces probabilisés

1.1.1 Probabilité

Définition 1.1. Soit (Ω, \mathscr{F}) un espace mesurable. Une **mesure** sur (Ω, \mathscr{F}) est une application

$$\mu: \mathscr{F} \to [0, +\infty]$$

$$A \mapsto \mu(A)$$

qui vérifie les propriétés suivantes :

- 1. $\mu(\emptyset) = 0$
- 2. μ est σ -additive, c'est-à-dire que pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments 2 à 2 disjoints de \mathscr{F} , on a

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$$

On dit alors que $(\Omega, \mathcal{F}, \mu)$ est un **espace mesuré**.

Si de plus $\mu(\Omega) = 1$, on dit que $(\Omega, \mathcal{F}, \mu)$ est un **espace probabilisé** et μ est une **probabilité**. On notera alors $\mu = \mathbb{P}$.

Remarque. Comme $\mathbb{P}(\Omega) = 1$, une mesure de probabilité est une mesure dans [0,1]. Un événement A est dit **presque sûr** si $\mathbb{P}(A) = 1$.

Exemples 1.2.

1. Soit (Ω, \mathscr{F}) un espace mesurable et ω un élément fixé dans Ω . La mesure (ou masse) de Dirac en ω est la mesure définie pour tout $A \in \mathscr{F}$ par

$$\delta_{\omega}(A) = \begin{cases} 1 & \text{si } \omega \in A \\ 0 & \text{sinon} \end{cases} = \mathbb{1}_{A}(\omega)$$

On vérifie facilement que c'est bien une probabilité.

- 2. Sur le segment [0,1] muni de sa tribu borélienne, la mesure de Lebesgue est une probabilité.
- 3. Si $(\Omega, \mathcal{F}, \mu)$ est un espace mesuré avec $0 < \mu(\Omega) < +\infty$, alors on obtient une probabilité

en considérant la mesure

$$\mathbb{P} = \frac{\mu(\cdot)}{\mu(\Omega)}$$

Interprétation. Un espace probabilisé est donc un cas particulier d'espace mesuré pour lequel la masse totale de la mesure est égale à 1. En fait, le point de vue diffère de la théorie de l'intégration : dans le cadre de la théorie des probabilités, on cherche à fournir un modèle mathématique pour une "expérience aléatoire".

- L'ensemble Ω est appelé univers : il représente l'ensemble de toutes les éventualiés possibles, toutes les déterminations du hasard dans l'expérience considérée. Les éléments ω de Ω , parfois appelés événements élémentaires, correspondent donc aux issues possibles de l'expérience aléatoire.
- La tribu \mathscr{F} correspond à l'ensemble des **événements** : ce sont les parties de Ω dont on peut évaluer la probabilité. Il faut voir un événement A de \mathscr{F} comme un sous-ensemble de Ω contenant toutes les éventualités ω pour lesquelles une certaine propriété est vérifiée.
- On associe à chaque événement $A \in \mathscr{F}$ un réel $\mathbb{P}(A) \in [0,1]$ qui donne la plausibilité que le résultat de l'expérience soit dans A.

1.2.1 Exemples d'espaces probabilisés

Suivent quelques exemples classiques d'espaces probabilisés.

Exemples 1.1. fin