Crossover.

Jesus Alberto Beato Pimentel 2023-1283 Energía Renovable ITLA La Caleta,

Santo Domingo 20231283@itla.edu.do

Resumen— En esta práctica, se realizó un circuito que utiliza capacitores y bobinas para formar un filtro de frecuencias. El objetivo principal fue separar las frecuencias en altas, medias y bajas, empleando componentes específicos para filtrar cada rango deseado. Además, realizaremos el laboratorio #9, tal como se detalla en el manual de laboratorio.

Abstract— In this practice, a circuit was made that uses capacitors and coils to form a frequency filter. The main objective was to separate the frequencies into high, medium and low, using specific components to filter each desired range. Additionally, we will perform lab #9, as detailed in the lab manual.

Keywords— Voltaje pico (Vpp), Voltaje pico (Vp), Time Division (TD), frecuencia, entre otros...

1- Introducción

En esta práctica, nos enfocaremos en la elaboración de un crossover para separar las frecuencias de un amplificador que se conectará a un altavoz. Comenzaremos con los cálculos teóricos, usando fórmulas para determinar las reactancias capacitivas e inductivas necesarias. Luego, construiremos físicamente el circuito para observar su funcionamiento y comparar los resultados obtenidos. Esta tarea corresponde a la práctica número 9 del manual de laboratorio, donde abordaremos aspectos teóricos, realizaremos simulaciones en Multisim.

II. Marco teórico

A. ¿Qué es un amplificador?

Un amplificador es un dispositivo electrónico que aumenta la amplitud de una señal eléctrica. Su función principal es tomar una señal de entrada, que puede ser débil o de baja potencia, y aumentar su amplitud para producir una señal de salida más fuerte. Los amplificadores se utilizan en una variedad de aplicaciones, como sistemas de audio, comunicaciones, instrumentación y electrónica en general.

B. ¿Qué es un crossover?

Un crossover es un dispositivo electrónico utilizado en sistemas de audio para dirigir las frecuencias específicas de una señal de audio a componentes específicos del sistema de reproducción de sonido, como altavoces o subwoofers. Su objetivo principal es dividir la señal de audio en bandas de frecuencia distintas y enviar cada banda a los componentes correspondientes, optimizando así la reproducción del sonido.

1. Componentes utilizados:

- Capacitor cerámico de diferentes valores
- Bobina de diferentes valores
- Amplificador
- Resistencias de diferentes valores
- Bocina
- Fuente de 12V

2. Programas de simulación utilizados:

- Multisim
- 3. Circuito para realizar establecido en el capítulo 9.

El circuito de la Figura 9.1 puede considerarse como un par de divisores de voltaje dependientes de la frecuencia. SG aumenta con la frecuencia, atenuando así las señales de alta frecuencia que llegan a R2. De manera similar, XC aumenta con una disminución en la frecuencia, atenuando así las señales de baja frecuencia que llegan a R1. (R2 toma el lugar del woofer mientras que R1 ocupa el lugar del tweeter). La frecuencia de cruce es la frecuencia donde R1=XC y R2=XL (normalmente la misma frecuencia para ambos). Usando C=.25 $\mu F,\,L=100$ mH y R1=R2=620 Ω , determine las frecuencias de cruce y regístrelas en la Tabla 9.1.

Usando la regla del divisor de voltaje y Ein=2 V p-p, determine y registre el voltaje teórico en la salida. uno (R1) para cada frecuencia enumerada en la Tabla 9.2. Asegúrese de incluir tanto la magnitud como la fase.

L= 100mH, C= 0.25MF,	R1, R1 = 620 s
Freevencies de corte	
+ Fc = 27PC Fc = 27 (620)(0.25pr)	$ \begin{array}{ccc} * & & & & & & \\ * & & & & & \\ * & & & & & \\ FC & = & & & & \\ \hline FC & = & & & & \\ \end{array} $
Fc= 1026. 8 HZ Circuito RC	FC = 986,76 Hz
Frecorn 5042 Vin XC = 277C XC = 27(5042)(0.25 pF)	21: 620-j12732-36A
XC = - 1/2732.36.A.	
$V_0 = \frac{V_{em} \times P_1}{2V_{ep}} \times \frac{626\Lambda}{620 - j(2732) 36\Lambda}$ $V_0 = 0.00473 + j \cdot 0.09716$	- D VRAMS: 0 034 39 L 21 21 V = 34.39 L 27.21 MV

```
XC= THEC
                           Zt = 620 - j9094.57.2
 XC = ZTY (70HZ) (0. 25 MF)
 XC= - 1 9094.571
Voot = 2000 x 620.7
Vout = 0 00925 + 30.13571 -> VRMS = 0.04809 2 861 V
                      = 48.1 L86.1 mV
Freezencia 100 HZ
XC = ZAFC
Xc = 20 (100Hz)(0.25MF) Zt= 620 - j6366. ZA
xc = - j 6366. 2.1
Veut = 620 - 163665
Vout= 0.01879 + 1 0.1929 + URMS = 0.06854284.94 V
                      = 68 54 C 74.44mV
XC = TOFC
XC = Zm (200H2)(0.25 MF)
                           Zt= 620 - 13183.19
XC= -13183.0982
Vout= 20PD x 620.7
Vout = 0.0731+j0.37532 - VRMS = 0.1352278.98 V
                              = 135.2 L 78 98 mV
```

Freezencia 500 Hz
XC TOFC
76: 27 (500 AZ)(0. 25 MF) 2+= 670-1/273. 241
xc = - j1273. 242
Veut= 2000 x 620A
Vout = 0.38334 + j 0.787 23 \$ VRMS = 0.30957 644 V
= 309.57269mV
Frequencia, 1kHz
XC= 20 FC 1 31 (72) 1/2/ (72
XL = 27 (1KHz)(0.25 pF) Zt = 620 - 1636.62 n
xc=-j636 62 n
Vort = 200 - 1636.622
Vout = 0.973 95+ j 0.99965 + VRMS = 0.49334245.76V
Vout = 0.47555+ j c. 1/100 = 493.34 645.76 mV
Freevencia, 2KHZ
V
X = 21712 (0.2544) Zt = 620- 1318.309
X = - j 318.309
Vost = 620-1318.309
Voot = 620-1312.309 Voot = 1.582901 + jo. 212 - DVRMS = 0.629047 227.176 MV
- 629.04+2

Fig. simulación de frecuencia de 50HZ

Fig. simulación de frecuencia de 70HZ

Fig. simulación de frecuencia de 100HZ

Fig. simulación de frecuencia de 200HZ

Fig. simulación de frecuencia de 500HZ

Fig. simulación de frecuencia de 1KHZ

Fig. simulación de frecuencia de 2KHZ

Fig. simulación de frecuencia de 5KHZ

Fig. simulación de frecuencia de 10KHZ

Fig. simulación de frecuencia de 15KHZ

Fig. simulación de frecuencia de 20KHZ

Tabla de datos obtenidos.

Frequency (Hz)	V1 mag. Calculo (mV)	V1 mag. Calculo (Ø)	V1 exp. (mV)	Ø Exp.
50	34.4	87.21	29.5	86.4
70	48.09	86.1	40.5	84.5
100	68.53	84.4	52.5	82.8
200	135.2	79	113	79.2
500	309.52	64	264	57.6
1000	493.27	45.7	442	50.4
2000	628.95	27.2	600	36
5000	692.5	11.6	678	14.4
10000	703	5.8	692	10.8
15000	705	3.9	700	7.2
20000	706	2.9	705	3.6

Próximo mandato.

Fig. simulación de frecuencia de 70HZ

Fig. simulación de frecuencia de 100HZ

Fig. simulación de frecuencia de 200HZ

Fig. simulación de frecuencia de 500HZ

Fig. simulación de frecuencia de 1KHZ

Fig. simulación de frecuencia de 1KHZ

Fig. simulación de frecuencia de 5KHZ

Fig. simulación de frecuencia de 10KHZ

Fig. simulación de frecuencia de 15KHZ

Fig. simulación de frecuencia de 20KHZ

Tabla de datos obtenidos.

Frequency (Hz)	V1 mag. Calculo (mV)	V1 mag. Calculo (Ø)	V1 exp. (mV)	Ø Exp.
50	706.1	-2.9	705	-3.6
70	705.2	-4.06	700	-7.2
100	703.4	-5.8	692	-10.8
200	693	-11.9	678	-14.4
500	630.7	-27	600	-36
1000	496.6	-45.4	442	-50.4
2000	312.8	-63.7	264	-57.6
5000	1336.9	-78.83	113	-79.2
10000	69.43	-84.4	52.5	-82.8
15000	34.9	-87.2	29.5	-86.4
20000	34.9	-87.2	29.5	-86.4

IV. CONCLUSION

Gracias a esta práctica, he aprendido a utilizar capacitores e inductores para la filtración de audio. He conocido los distintos tipos de filtros, como los pasa bajos, pasa banda y pasa altos, y he observado cómo la variación de la frecuencia influye en un filtro diseñado para un woofer y otro para un tweeter.

REFERENCES

https://es.wikipedia.org/wiki/Amplificador

https://www.ntxdistribution.com/post/qu%C3%A9-es-un-amplificador-de-audio-y-para-qu%C3%A9-sirve

https://www.youtube.com/watch?v=mzcTQB3DIIM

https://www.etsist.upm.es/estaticos/ingeniatic/index.ph p/tecnologias/item/428-crossover-filtro-decruce.html#:~:text=Se%20trata%20de%20un%20tipo, el%20fin%20de%20reproducirlas%20eficientemente.

https://www.etsist.upm.es/estaticos/ingeniatic/index.ph p/tecnologias/item/428-crossover-filtro-decruce.html#:~:text=Se%20trata%20de%20un%20tipo, el%20fin%20de%20reproducirlas%20eficientemente.

https://www.youtube.com/watch?v=ITeKKLZF-UI

https://www.youtube.com/watch?v=GzKBgtS9koI