

Impianti Informatici

Affidabilità dei Componenti: Sistemi Riparabili

Il ciclo di vita dei guasti

- X₁, X₂ ... X_n : tempi di funzionamento
 - Variabili casuali con distribuzione F(t) = unreliability
- Y₁, Y₂ ... Y_n: tempi di guasto
 - Variabili casuali con distribuzione M(t) = maintainability

Mantenibilità (Maintainability)

- Mantenibilità M(t): probabilità che il componente venga riparato nell'intervallo 0...t, sapendo che per t=0 il componente era guasto
- M(t) è una funzione di distribuzione cumulativa
 - ha una densità di probabilità

$$m(x) = \frac{\mathrm{d}M(t)}{\mathrm{d}t}$$

Repair Rate

- Repair rate μ(t): velocità delle riparazioni
 - $\mu(t)dt =$ probabilità che il componente venga riparato nell'intervallo (t, t+dt) sapendo che all'istante t il componente era ancora guasto
 - $\mu(t)dt \equiv \mathbf{P}(t < T \le t + dt \mid T > t)$
 - T = istante in cui avviene la riparazione

Repair Rate e Maintainability

Repair rate e mantenibilità sono legati tra loro dalla relazione

$$\mu(t) = \frac{m(t)}{1 - M(t)} = -\frac{\mathrm{d}\ln[1 - M(t)]}{\mathrm{d}t}$$

Integrando rispetto al tempo si ottiene l'espressione fondamentale

$$\lambda(t) = \frac{f(t)}{1 - F(t)} = -\frac{\mathrm{d}\ln[1 - F(t)]}{\mathrm{d}t}$$

• Se $\mu =$ costante la mantenibilità ha distribuzione esponenziale

$$M(t) = 1 - e^{-\int_0^t \mu(x) dx}$$

$$M(t) = 1 - e^{-\mu t}$$

$$MTTF = E[X] = \int_{0}^{+\infty} tf dt = \int_{0}^{+\infty} t[1 - F] dt$$

$$MTTR = E[Y] = \int_{0}^{+\infty} tmdt = \int_{0}^{+\infty} [1 - M] dt$$

$$MTTF = \frac{1}{\lambda}$$

$$MTTR = \frac{1}{\mu}$$

 λ e μ costanti

Disponibilità (Availabilty)

- Availability A(t): probabilità che il componente stia funzionando al tempo t
 - A(0)=1

Reliability

A vailability

- Unvailability U(t): probabilità che il componente sia guasto al tempo t
- A(t) + U(t) = 1

Disponibilità stazionaria

 La disponibilità stazionaria A è la percentuale di tempo in cui il sistema funziona correttamente

Disponibilità stazionaria

La disponibilità stazionaria si calcola come

•
$$A = \lim_{t \to \infty} A(t)$$

Se μ e λ sono costanti

$$A = \frac{1/\lambda}{1/\lambda + 1/\mu} = \frac{\mu}{\mu + \lambda} \text{ jests questa relazione vale solo r qu per reliability e maintainability reliable esponenziali}$$

$$A = \frac{MTTF}{MTTF + MTTR}$$

A(t)

Calcolo della disponibilità

Disponibilità e Downtime

- Una notazione tipica per l'affidabilità e quella "dei nove"
 - un'affidabilità a 3-nove corrisponde al 99.9%
 - un'affidabilità a 5-nove corrisponde al 99.999%
- Downtime = $(1-A) \cdot (365 \cdot 24 \cdot 60)$
 - [min/anno]

Availability	Downtime
99.99% (4-nines)	52 minutes/year
99.999% (5-nines)	5 minutes/year