Verifying Bit-vector Invertibility Conditions in Coa

Burak Ekici, Arjun Viswanathan, Yoni Zohar, Clark Barrett, Cesare Tinelli

Introduction

- Bit-vectors are useful for many verification tasks
- Many applications require reasoning about quantified bit-vectors

- SMT solvers deal with quantified formulas using quantifierinstantiation techniques
- CVC4 uses invertibility conditions as part of a quantifier instantiation technique for bit-vectors

$$\forall s, t : BV_n. \ IC[s, t] \iff \exists x : BV_n. \ \ell[x, s, t]$$

Previous Work

 Niemetz et al. [CAV 2018] generated
 162 invertibility equivalences and verified them automatically for bit-widths up to 65

 Niemetz et al. [CADE 2019] encoded these equivalences in UFNIA to verify 75% of the equivalences for arbitrary bitwidth

 We proved 11 equivalences from the rest of the 25% of the equivalences in the Coq proof assistant for arbitrary bitwidth

• We used a Coq library originally used for SMTCoq developed by Ekici et al. [CAV 2017] and extended its signature

Contributions

Invertibility Conditions

An *invertibility condition* for a variable x in a bit-vector literal

$$\ell [x, s, t]$$

is a formula

s.t. the following *invertibility equivalence* is valid in the theory of bit-vectors:

$$\forall s, t : BV_n. \ IC[s, t] \iff \exists x : BV_n. \ \ell[x, s, t]$$

Result Summary

$\ell[x]$	=	\neq	$<_u$	$>_u$	\leq_u	\geq_u
$-x \bowtie t$	√ √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\sim x\bowtie t$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x \& s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x \mid s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x \ll s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$s <\!\!< x \bowtie t$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x >\!\!> s \bowtie t$	√ √	\checkmark	\checkmark	X	\checkmark	\checkmark
$s >\!\!> x \bowtie t$	√ √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x \gg_a s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$s \gg_a x \bowtie t$	√ √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$x + s \bowtie t$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- √ Verified in Coq
- √ Verified in SMT
- √ Verified in Coq and SMT
- × Verified in neither Coq nor SMT

Future Work

 $s \mod x \bowtie t$

$s \gg_a x \bowtie t \qquad \checkmark \checkmark \qquad \checkmark$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\ell[x]$	=	\neq	$<_u$	$>_u$	\leq_u	\geq_u	$\langle s \rangle_s$	$\leq_s \geq_s$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-x \bowtie t$	√ √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sim x\bowtie t$	√ √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$x \ll s \bowtie t $	$x \& s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$s \ll x \bowtie t $	$x \mid s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	•••	•••
$s \ll x \bowtie t $	$x \ll s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$s \gg x \bowtie t \qquad \checkmark \checkmark \qquad \checkmark$	$s <\!\!< x \bowtie t$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	•••	•••
$x \gg_a s \bowtie t $	$x >\!\!> s \bowtie t$	$\checkmark\checkmark$	\checkmark	\checkmark	×	\checkmark	\checkmark	•••	•••
$s \gg_a x \bowtie t \qquad \checkmark \checkmark \qquad \checkmark$	$s >\!\!> x \bowtie t$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x \gg_a s \bowtie t$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$x \cdot s \bowtie t$ $x \operatorname{div} s \bowtie t$ $s \operatorname{div} x \bowtie t$	$s \gg_a x \bowtie t$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$x \operatorname{div} s \bowtie t$ $x \operatorname{div} s \bowtie t$	$x + s \bowtie t$	√ √	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
$s \operatorname{div} x \bowtie t$	$x \cdot s \bowtie t$								\checkmark
$s \text{ div } x \bowtie t$	$x \operatorname{div} s \bowtie t$				•••		•••	•••	.(.(
$s \mod s \bowtie t$	$s \operatorname{div} x \bowtie t$				•••		• • •	•••	
	$x \mod s \bowtie t$								X