GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Electrical Power Generation and Transmission

(Course Code: 4330903)

Diploma programmer in which this course is offered	Semester in which offered
Electrical Engineering	Third

1. RATIONALE

Generation of Electric Power is most important activity in power system. With growing demand for electric power, it has become more necessary to generate electric power more efficiently. It is possible with advanced technology. This course deals in detail about generation of electric power using thermal (coal) hydro and nuclear sources. These types of power plants need highly skilled technocrats who are capable of operating and maintaining various equipment and auxiliaries to generate uninterrupted power.

The bulk electrical power is generated at power plants which are quite away from load center, transmitted to different load center by transmission system and then supplied to consumers through distribution system. This course deals in detail with elements & performance of overhead transmission line and HVDC transmission systems. The skilled technocrats are required to operate and maintain power transmission system so that uninterrupted electrical power supply is made available at consumer end. Essential efforts are made in this course to develop basic skills required to maintain power generation and transmission system.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Operate and maintain various types of electrical power generating plants and transmission systems.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Supervise functioning of Thermal power plant, Hydro power plant and Nuclear power plant.
- b) Solve problems related to load curve and load duration curve.
- c) Apply mechanical and electrical design aspects of various types of conductor, support and insulator to maintain overhead line.
- d) Analyze performance of transmission line.

e) Differentiate various types of HVDC transmission system.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Sc	heme	Total Credits	Examination Scheme				
(In	1 Hou	rs)	(L+T+P/2)	Theory Marks		Theory Marks Practical Marks		Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks
4	0	2	6	30*	70	25	25	150

^{(*):} Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T** – Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** – Credit, **CA** - Continuous Assessment; **ESE** - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the Course Outcomes (Cos). Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Sketch and interpret the schematic diagram of thermal power station (T.P.S.) and its main cycles.	-	4*
2	Prepare technical report of visit to a nearby T.P.S.	1	2
3	Sketch and interpret the various schemes of hydro power plant(H.P.S.)	I	2*
4	Prepare technical report of visit to a nearby H.P.S.	I	2
5	Sketch and interpret the schematic diagram of nuclear power station (N.P.S.)	I	2*
6	Prepare and interpret load curve for given data/data collected from nearby power station	II	4*
7	Demonstrate various types of conductors used in overhead transmission lines.	Ш	2*
8	Demonstrate different types of line supports employed in transmission system and distribution system.	III	4*
9	Demonstrate different types of insulators used in overhead transmission and distribution system	III	4*
10	Calculate sag in overhead transmission line for given data.	III	2
11	Determine string efficiency of suspension type insulator for given data.	III	2

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
12	Determine voltage regulation and transmission efficiency of short transmission line.	IV	4
13	Determine voltage regulation and transmission efficiency of medium transmission line.	IV	4
14	Prepare technical report on load dispatch center.	IV	2*
15	Prepare report on HVDC transmission systems.	V	2*
	Minimum 10 Practical Exercises		28

Note

- i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Understanding of concepts	20
2	Explanation of conclusion	20
3	Student attitude towards learning	20
4	Quality of term work	20
5	Timely completion of term work	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to user in uniformity of practical's in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Demonstration piece of ACSR conductors, Bundle Conductor etc	7
2	Demonstration piece of Pin insulator, Disc of suspension insulator, Shackle insulator, Silicon rubber insulator	9
3	Transmission line trainer kit	12,13

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a) Work as a leader/a team member(while doing a micro-project)
- b) Follow safety practices while using Electrical supply and electrical equipment.
- c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

COs and compet	· · · · · · · · · · · · · · · · · · ·	
Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit -I	1a.Explain energy conversion	1.1 Energy conversion process of
Generation	process in thermal, hydro	thermal, hydro and nuclear
of	and nuclear power plant.	power plant
Electrical	1b.Identify appropriate site for	1.2 Factors of site selection for
Power	thermal, hydro and nuclear	thermal, hydro and nuclear
1 000001	power plant.	power plant
	1c.Describe schematic	1.3 Schematic diagram of thermal,
	diagram, major equipment,	hydro and nuclear power
	accessories used in	plant.
	thermal, hydro and nuclear	1.4 Schematic diagram of different
	power station.	cycles of thermal power plant.
	1d.State the critical safe	1.5 Major equipment, accessories
	practices, and precautions	used in thermal power plant.
	to be followed while	1.6 Classification of hydro power
	operation and maintenance	plant
	of thermal, hydro and	1.7 Different schemes and
	nuclear power plant.	elements of Hydro Power Plant
		1.8 Nuclear fission, nuclear fusion
		and chain reaction
		1.9 Nuclear reactor and fuels used
		1.10 Nuclear waste in its disposal
		1.11Advantages and disadvantages
		of thermal, hydro and nuclear
		power plant.
		1.12Safe practices, environmental
		effect and precautions for
		thermal, hydro and nuclear

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
		power plant 1.13Major thermal, hydro and nuclear power plant of Gujarat- state
Unit-II Variable Load on Power Station	 2a. Distinguish between load curve and load duration curve. 2b. Differentiate between base load and peak load power plants. 2c. Solve numerical related to load curve and load duration curve. 	 2.1 Types of loads 2.2 Types and importance of load curve 2.3 Terms and factors regarding load curve 2.4 Load duration curve 2.5 Base load and peak load power plants
Unit-III Elements of Overhead Transmission Lines	3a.Compare features of different transmission systems. 3b.State effect of system voltage and load power factor 3c.Differentiate features of various types of line conductors, line supports and line insulators. 3d.Explain voltage distribution across string of suspension insulator and method of improving string efficiency. 3gDescribe factors to be considered while erecting lines and factors affecting sag of lines. 3h Solve numerical based on string efficiency and sag.	 3.1 Single line diagram of typical power supply system. 3.2 Classification of transmission lines 3.3 Comparison between AC & DC and overhead & underground system. 3.4 Effect of system voltage and load power factor and Selection of voltage of transmission. 3.5 Line Conductors: requirements, materials & types of conductors for overhead lines, types of ACSR conductors and features of optical fiber ground wire. 3.6 Line Supports: requirements & types of line supports and classification of transmissions line towers Line 3.7 Line Insulators: requirements, materials, types & failure of line insulators and features of silicon rubber insulators. 3.8 String efficiency and methods of improving string efficiency. 3.9 Sag calculation , spacing between conductors and ground clearance
Unit-IV Performance of Transmission Lines	4a.Explain effect of line parameters (constants) and their representation in short & medium transmission line. 4b. Differentiate the features of	 4.1 Transmission line parameters: effect and representation of line parameters 4.2 Transposition of line conductors 4.3 Classification of transmission lines 4.4 Skin effect, proximity effect,

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
	short, medium and long	ferranti effect and corona effects
	transmission lines.	4.5 Voltage regulation and
	4c.Discriminate between skin	transmission efficiency
	effect, proximity effect,	4.6 Performances of short
	Ferranti effect and corona	transmission lines.
	effect.	4.7 Performances of medium
	4d.Explain effect of load power	transmission lines
	factor on performance of	4.8 Load dispatch center; grid system
	short transmissions lines.	in India and it's hierarchy
	4e.Differentiate various	
	methods of determining	
	performance of medium	
transmissions lines.		
	4f.Describes importance and	
	functions of LDC.	
	4g.Solve numerical based on	
	line parameters and	
	performance of short &	
	medium transmission lines.	
Unit-IV	5a.State need for EHV	5.1 Requirements of EHV transmission
HVDC	transmission.	system.
Transmission	5b.Compare features of HVAC	5.2 Advantage and limitations of EHV
System	and HVDC transmission	AC transmission system
	system.	5.3 Single diagram of HVDC
	5c.Explain concepts and types	transmission
	of HVDC transmission	5.4 Types of HVDC transmission
	system.	systems
	5d. State application of HVDC	5.5 Merits, demerits and application
	transmission system.	of HVDC transmission system
		5.6 Comparison between HVDC and
		HVAC transmission systems

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Hait Hait		Linit Tooching		Distribution of Theory Marks			
No.	Unit Title	Teaching Hours	R Level	U Level	A Level	Total Marks		
I	Generation of Electrical Power	24	8	14	6	28		
Ш	Variable load on Power Station	04	2	2	4	08		
III	Elements of Overhead	14	4	6	4	14		

	Transmission System					
IV	Performance of Transmission System	10	4	4	4	12
V	HVDC Transmission System	04	2	4	2	08
	Total	56	20	30	20	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

<u>Note</u>: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course. Students should perform following activities in group (or individual) and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

- a) Present seminar on various topics from course content
- b) Present seminar on recent technologies used for power generation and transmission
- c) Solve numerical problems regarding course contents.

The student should be encouraged to get their work assessed by the concerned teacher progressively during the term and at the end of the term the whole work should be submitted to the concerned teacher.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No. 4means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) Show animation/video related to course content.
- e) Visit to a nearby power plant and load dispatch center.
- f) Co-relating the importance of content of this course with other courses and practical applications.
- g) Introduce methods to reduce pollution in Thermal power plant.
- h) Introduce E-waste recycling technology among the students.
- i) Guide students on how to address issues on environment and sustainability.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the micro project should be about 14-16 (fourteen to sixteen) student engagement hours during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Build model to demonstrate layout of Thermal Power Plant.
- b) Build working model to demonstrate working or Hydro Power Plant.
- c) Prepare charts of various cycles of Thermal Power Plant.
- d) Prepare charts of various schemes of Hydro Power Plant.
- e) Prepare chart of schematic diagram of Nuclear Power Plant.
- f) Prepare chart of single line diagram of Electrical power system.
- g) Prepare chart of various types of line insulators,
- h) Prepare chart of various types of line conductors.
- i) Prepare chart of various types of line supports.
- j) Prepare chart of various types of HVDC systems.
- k) Prepare chart of representation of line parameters of medium transmission line.
- I) Prepare chart of equivalent circuit and vector diagram of short transmission line.
- m) Prepare a report on various power plants in Gujarat by collecting data from internet.
- n) Prepare a report on disasters occurred in Thermal, Hydro or Nuclear Power Plant.

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication with place, year and ISBN
1	Principles of Power system	Mehta, V.K.	S. Chand & Co., New Delhi, 2020 ISBN: 978-8121924962
2	Power plant Engineering	Nag, P K	Tata McGraw Hill, New Delhi, 2011 ISBN:978-0-07-064815-9
3	Electrical Power Systems	Uppal S.L.	Khanna publication, New Delhi, 2011 ISBN:978-8174092380
4	Generation and Utilization of Electrical Energy	S. Sivanagaraju	Pearson, New Delhi, 2011 ISBN:978-81-317-33325
5	A course in Power Systems	J.B.Gupta	S K Kataria & sons,2013 ISBN:978-9350143735

			New Age, New Delhi, sixth	
6	Electrical Power Systems	C.L.Wadhwa	edition	
			ISBN:978-8122424683	
7	A Textbook on Power System Engineering	P.V. Gupta, M.L. Soni, U.S. Bhatnagar,	Dhanpat Rai & Co., New Delhi, Latest edition	
		A. Chakrabarti		

14. SOFTWARE/LEARNING WEBSITES

- https://nptel.ac.in/courses/108/105/108105112/
- https://nptel.ac.in/courses/108/105/108105053/
- https://lectures.gtu.ac.in/(related to course content)
- https://www.electrical4u.com/electrical-engineering-articles/basic-electrical/
- https://www.electricaltechnology.org/
- www.vlab.co.in
- www.khanacademy.org
- https://ndl.iitkgp.ac
- http://www.nhpcindia.com/hydro-technology.htm
- http://www.mnre.gov.in/
- http://www.ntpc.co.in/index.php?option=com content&view=article&id=64&Itemid=3
 4&lang=en
- https://www.youtube.com/user/EnergyShouldBe

15. PO-COMPETENCY-CO MAPPING:

Semester III	Electrical Power Generation and Transmission (Course Code: 4330903)						
	POs						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ develop ment of solution	PO4 Engineering Tools, Experimentation &Testing		PO 6 Project Management	PO 7 Life-long learning
<u>Competency</u>	Operate and maintain various types of Electrical power generating plants and transmission systems.					wer	
Course Outcomes CO1 Supervise functioning of Thermal power plant, Hydro power plant and Nuclear power plant.	3	2	2	-	2	1	
CO2 Solve problems related to load curve and load duration curve.	2	3					
CO3 Apply mechanical and electrical design aspects of various types of conductors, supports and insulators to	3	3	2				

maintain overhead lines.					
CO4 Analyze performance of transmission lines	3	3	2	 	
CO4 Differentiate various types of HVDC transmission systems	3	2	1	 	

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No	Name and Designation	Institute	Contact No.	Email
1.	Shailesh M. Kanani	AVPTI, Rajkot	9904651807	smkanani2013@gmail.com
	Lecturer Electrical Engg.			
2.	Mrs.Punita V. Ladani	AVPTI, Rajkot	9428037788	punitaladani@gmail.com
	Lecturer Electrical Engg.			