U.S.A. Doctoral Respondents Estimation Analysis ACS 2022*

Steven Li Tim Chen Xinxiang Gao John Zhang Tommy Fu Sandy Yu

October 4, 2024

This paper provides an analysis of the total number of doctoral respondents in the 2022 American Census Survey (ACS) using data from IPUMS USA. The authors use a Laplace ratio estimation method, where the ratio of doctoral respondents to the total population in California is applied to other states to estimate their respondent counts. The study highlights a mean difference of 19.56% between the estimated and actual respondent counts, pointing to potential discrepancies. These discrepancies are attributed to variations in educational attainment across states, emphasizing the limitations of using a single ratio estimator.

^{*}Code and data are available at: https://github.com/stevenli-uoft/US_Doctoral_Respondents_Analysis

1 Introduction

This paper outlines the number of doctoral respondent by state in 2022 American Census Survey and proceeds to estimate the total number of respondents using California's doctoral respondents count. The data used in this paper is collected from IPUMS USA (2022).

The remainder of this paper is structured as follows. Section 2 provides a sample look at the data. Section 3 discusses the LaPlace estimation methods. Section 4 presents the LaPlace estimation results. Section 5 dives into the explanation and reasoning behind differences.

The dataset was cleaned and processed using R (R Core Team 2023), with additional support from the tidyverse (Wickham et al. 2019) packages. The cleaning process involved removing any unnecessary variables, and calculating the LaPlace estimations.

2 Data

Table 1 is a sample of the downloaded data from IPUMS USA (2022), and the columns needed for our analysis.

STATEICP	EDUCD	SEX
32	26	2
3	26	2
40	12	2
13	22	2
49	63	1

Table 1: Sample Data

3 Brief Overview of the Ratio Estimators Approach

The ratio estimators approach, also known as the Laplace ratio estimator, is a statistical method used to estimate population parameters when only partial information is available. In this case, we're using it to estimate the total number of respondents in each state based on the known number of respondents with doctoral degrees.

The basic idea behind this approach is to use a known ratio from one population (in this case, California) and apply it to other populations to estimate their total size. The steps involved are:

1. Calculate the ratio of doctoral degree holders to total respondents in California. (Assume this ratio is constant across all states)

2. For each state, divide the number of doctoral degree holders by this ratio to estimate the total number of respondents.

This method relies on the assumption that the proportion of doctoral degree holders is relatively consistent across states, which may not always be true in practice.

4 Estimates and Actual Number of Respondents

Table 3 in the appendix presents the total doctoral count, total respondents, and estimated respondent count for every state. Table 2 shows the summary statistics of Table 3, presenting a mean difference of 19.56% between estimated and actual respondents.

Table 2: Laplace Estimation Summary Statistics

Mean Difference	Median Difference	Mean Percent Difference	Median Percent Difference
12785.06	10122	19.56	28.26

5 Explanation of Differences

Our estimates using the Laplace ratio estimator show some notable differences from the actual numbers of respondents in each state. Here are the key points to consider:

- Magnitude of differences: On average, our estimates differed from the actual numbers by about 12,785 respondents (mean difference), with a median difference of 10,122. This suggests that while some states had larger discrepancies, the typical difference was around 10,000 respondents.
- Variation in education levels: The primary reason for these differences is likely the variation in educational attainment across states. Our method assumed a constant ratio of doctoral degree holders to total population based on California's data. However, this ratio almost certainly varies between states due to differences in economic structures, presence of research institutions, and demographic compositions.

These findings highlight the limitations of applying a single ratio estimator across diverse populations and emphasize the need for more nuanced approaches when estimating population parameters across different regions.

6 Appendix

6.1 Instructions on how to obtain the data:

- 1. Go to https://usa.ipums.org/usa/
- 2. Create an account or log in
- 3. Select the 2022 ACS sample
- 4. Choose the following variables: STATEICP, EDUC, SEX
- 5. Submit the extract request
- 6. Download the data and save it as "usa_00001.csv" in a "data" folder in your project directory gunzip usa_00001.csv.gz
- 7. If you have problems opening the zip file:
 - 1. Open your terminal
 - 2. Navigate to the folder containing the zip file
 - 3. Paste gunzip usa $_00001.$ csv.gz into the terminal, and click enter
- 8. Move the usa_00001.csv to the folder "data/"

6.2 Processed Data

Table 3: State Doctoral and Respondant Counts, and Estimates

Actual Doctoral Total Estima STATEICP Count Respondent Respondent Correction 71 6336 391171 3913 49 3216 292919 1983 13 2829 203891 1746 43 2731 217799 1686 3 2014 73077 1243 14 1620 132605 1000		e Difference
49 3216 292919 1983 13 2829 203891 1746 43 2731 217799 1686 3 2014 73077 1243	171 0	
13 2829 203891 1746 43 2731 217799 1686 3 2014 73077 1243	111 0	0.00
43 2731 217799 1686 3 2014 73077 1243	549 94370	32.22
3 2014 73077 1243	356 29235	14.34
	606 49193	22.59
14 1690 139605 1000	-51263	-70.15
14 1020 132003 1000	015 32590	24.58
52 1608 62442 995	-36832	-58.99
40 1531 88761 948	521 -5760	-6.49
21 1457 128046 899	952 38094	29.75
44 1451 109349 898	582 19767	18.08
12 1438 93166 88	779 4387	4.71
47 1421 109230 87	729 21501	19.68
24 1213 120666 748	888 45778	37.94
73 1195 80818 73'	777 7041	8.71
62 1031 59841 630	352 -3811	-6.37
23 991 101512 613	182 40330	39.73
61 896 74153 555		000

Table 3: State Doctoral and Respondant Counts, and Estimates

%		Estimated	Total	tual Doctoral	
Difference	Difference	Respondent Count	Respondent	Count	STATEICP
28.26	20452	51922	72374	841	54
26.91	14707	39944	54651	647	48
8.61	3764	39944	43708	647	72
40.61	26212	38339	64551	621	34
45.20	31566	38277	69843	620	22
0.87	326	37043	37369	600	1
40.13	23670	35314	58984	572	33
48.89	30295	31672	61967	513	25
44.94	23181	28399	51580	460	41
38.32	17258	27782	45040	450	45
40.65	18946	27659	46605	448	51
25.64	9113	26424	35537	428	67
-6.74	-1365	21608	20243	350	66
33.81	10122	19818	29940	321	32
-185.80	-12482	19200	6718	311	98
43.38	13339	17410	30749	282	65
56.02	22097	17348	39445	281	53
45.51	13559	16237	29796	263	46
52.58	17658	15928	33586	258	31
50.47	15792	15496	31288	251	42
-7.01	-987	15064	14077	244	4
11.89	1783	13212	14995	214	82
-5.07	-527	10928	10401	177	5
45.66	9080	10804	19884	175	63
29.86	4336	10187	14523	165	2
45.87	8319	9816	18135	159	56
52.74	10543	9446	19989	153	35
2.67	257	9384	9641	152	11
-17.90	-1228	8088	6860	131	6
37.24	4140	6976	11116	113	64
25.44	1517	4445	5962	72	68
52.85	4913	4383	9296	71	37
54.31	4403	3704	8107	60	36
54.83	3823	3149	6972	51	81

References

- IPUMS USA, University of Minnesota. 2022. "IPUMS USA: Version 12.0 [Dataset]." https://usa.ipums.org/usa/.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, Alex Hayes, et al. 2019. "Welcome to the tidyverse." Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.