Problem F Count on the path

bobo has a tree, whose vertices are conveniently labeled by 1, 2, ..., n. Let f(a, b) be the minimum of vertices **not** on the path between vertices a and b. There are q queries (u_i, v_i) for the value of $f(u_i, v_i)$. Help that bobo answer them.

Input

The first line contains 2 integers n, q ($4 \le n \le 10^6, 1 \le q \le 10^6$). Each of the following (n-1) lines contain 2 integers a_i, b_i denoting an edge between vertices a_i and b_i ($1 \le a_i, b_i \le n$). Each of the following q lines contains 2 integer u_i', v_i' ($1 \le u_i, v_i \le 10^5$).

The queries are encrypted in the following manner.

```
• u_1 = u_1', v_1 = v_1'.
```

• For
$$i \ge 2$$
, $u_i = u_i' \oplus f(u_{i-1}, v_{i-1}), v_i = v_i' \oplus f(u_{i-1}, v_{i-1}).$

Note \oplus denotes bitwise exclusive-or.

It is guaranteed that f(a, b) is defined for all a, b.

Output

For each queries, a single number denotes the value.

Sample input 1

- 4 1
- 1 2
- 1 3
- 1 4
- 2 3

Sample output 1

4

Sample input 2

- 5 2
- 1 2
- 1 3
- 2 4
- 2 5
- 1
 7
 6

Sample output 2

3

1