Notation and symbols

If A and B are sets, then $x \in B$ means that "x is an element of B," whereas $A \subset B$ means that "A is contained in B." For $x \notin B$ and $A \not\subset B$ substitute "is not" for "is" in these statements. Furthermore, $A \cup B = \{x : x \in A \text{ or } x \in B\}$, $A \cap B = \{x : x \in A \text{ and } x \in B\}$, $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$, and $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$, respectively, define the **union**, **intersection**, **difference**, and **Cartesian product** of two sets A and B. Symbol \emptyset denotes the **empty set**, and

$$1_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

is the characteristic (or indicator) function for set A.

When a < b the **closed interval** $[a, b] = \{x: a \le x \le b\}$, whereas the **open interval** $(a, b) = \{x: a < x < b\}$. The half-open intervals [a, b) and (a, b] are similarly defined. The **real line** is denoted by R, and the positive half-line by R^+ . If A is a set and $\alpha \in R$, then $\alpha A = \{y: x \in A \text{ and } y = \alpha x\}$.

The notation $f: A \to B$ means that "f is a function whose **domain** is A and whose **range** is in B," or "f maps A into B." Given two functions $f: A \to B$ and $g: B \to C$, then $g \circ f$ denotes the **composition** of g with f and $g \circ f: A \to C$. If f maps R (or a subset of R) into R, and b is a positive number, then

$$g(x) = f(x) \pmod{b}$$

means that g(x) = f(x) - nb, where n is the largest integer less than or equal to f(x)/b. $||f||_{L^p}$ and $\langle f, g \rangle$, respectively, denote the L^p norm of the function f, and the scalar product of the functions f and $g \cdot \bigvee_a^b f$ is used for the variation of the function f over the interval [a, b].

The following is a list of the most commonly used symbols and their meaning:

a.e. almost everywhere \mathcal{A} σ -algebra \mathcal{B} Borel σ -algebra $d(g,\mathcal{F})$ L^1 distance between function g and \mathcal{F}

d_+f/dx	right lower derivative
$D, D(X, \mathcal{A}, \mu)$	set of densities
$D^2(\xi)$	variance of random variable ξ
$\mathfrak{D}(\xi)$ $\mathfrak{D}(A)$	domain of an infinitesimal operator A
	-
$E(\xi)$	mathematical expectation of a random variable ξ
E(V f)	expected value of V with respect to f
Ei(x)	exponential integral
$\{\eta_i\}$	continuous time stochastic process
f	an element of L^p , often a density
f_*	stationary density
F	L^p set of functions, σ -algebra in probability space
₹ }	family of σ -algebras
$g_{\sigma b}(x)$	Gaussian density with variance $\sigma^2/2b$
8 y	Riemannian metric
$H_n(x)$	Hermite polynomial
H(f)	entropy of a density f
H(f g)	conditional entropy of f with respect to g
I	identity operator
K(x, y)	stochastic kernel
$L^p, L^p(X, \mathcal{A}, \mu)$	L^p space
$L^{p'}$	space adjoint to L^p
$\mu(A)$	measure of a set A
$\mu_f(A)$	measure of a set A with respect to a density f
μ_w	Wiener measure
$\{N_t\}_{t\geq 0}$	counting process
ω	an element of Ω ; angular frequency
Ω	space of elementary events
$(\Omega, \mathcal{F}, prob)$	probability space
P	Markov or Frobenius-Perron operator
$P_{\epsilon}, \overline{P}$	Markov operator
$\{\hat{P}_t\}_{t\geq 0}$	continuous semigroup generated by the linear Boltzmann
	equation
prob	probability measure
Prob	probability measure on a product space
R_{λ}	resolvent operator
S	transformation
$S^{-1}(A)$	counterimage of a set A under a transformation S
S_m	Chebyshev polynomial
S^1	unit circle
$\{S_t\}_{t\in R}, \{S_t\}_{t\geq 0}$	dynamical or semidynamical system

 $\sigma(\xi)$ standard deviation of a random variable ξ

T transformation T^d d-dimensional torus

 $\{T_i\}_{i\geq 0}$ semigroup corresponding to an infinitesimal operator A

U Koopman operator

V Liapunov function, potential function

 $\{w(t)\}_{t\geq 0}$ Wiener process (X, \mathcal{A}, μ) measure space ξ, ξ_i random variables

 $\{\xi_n\}, \{\xi_i\}$ discrete or continuous time stochastic process