SIEMENS

操作指南•1月2017年

SENTRON WL 断路器

MODBUS 通讯指南

目录

1	SENTRO	DN WL 断路器与 MODBUS RTU 的通讯概述
	1.1	SENTRON WL 断路器通讯简介
	1.2	MODBUS RTU 通讯简介3
	1.3	CubicleBUS 介绍
	1.4	COM16 和 BSS 模块介绍5
2	SENTRO	N WL 断路器与 MODBUS RTU 的通讯的硬件及软件
	2.1	硬件需求6
	2.2	Powerconfig 软件介绍6
	2.3	COM16 与断路器的连接6
	2.4	设置 COM16 MODBUS 通讯地址及通讯参数7
	2.4.1	COM16 模块与 PC 连接7
	2.4.2	Powerconfig 使用过程8
	2.4.3	基本数据类型的设置11
3	SENTRO	N WL 断路器与 MODBUS RTU 的通讯典型应用举例
	3.1	如何读取 3WL 断路器状态信息(遥信)12
	3.2	如何读取 3WL 断路器测量数据(遥测)14
	3.3	如何读取基本数据组17
	3.4	如何通过通讯控制 3WL 断路器动作(遥控)18
	3.5	如何通过通讯设置 3WL 断路器参数(遥调)21
附录		

1 SENTRON WL 断路器与 MODBUS RTU 的通讯概述

1.1 SENTRON WL 断路器通讯简介

当前工业自动化发展,对工业设备及元件的数据传输,故障诊断,远程操作能力的要求持续增加。应对这种需求,工业通讯网络及智能开关设备的大量推广不可避免。西门子 SENTRON WL(后简称 3WL)是一款可以支持工业通讯功能的高性能智能断路器。3WL 断路器可支持 PROFIBUS-DP,MODBUS RTU,Ethernet, Cubicle BUS 通讯(如图 1 所示),为用户提供了多种选择。本文将主要讲述 3WL 如何通过 Modbus RTU 通讯。

图 1 SENTRON 产品的通讯构架

1.2 MODBUS RTU 通讯简介

MODBUS RTU 通信协议以主从方式进行数据传输,在传输的过程中主站是主动方,即主站发送数据请求报文到从站,从站返回响应报文。MODBUS 系统间的数据交换以功能码来控制。

表 1 Modbus RTU 报文格式

地址	功能代码	数据	CRC
Byte	Byte	n 个字节	2个字节

3WL MODBUS 通讯字符帧的有 8O1,8E1,8N2 三种数据格式,如图 2 所示。

图 2-a 1 个起始位, 8 个数据位, 1 个校验位(奇/偶), 1 个停止位

图 2-b 1 个起始位, 8 个数据位, 2 停止位

表 2 3WL MODBUS RTU 通讯使用的功能码及数据存储区

数据区 功能码		功能	地址范围
	01 (0x01)	读断路器输出状态	
控制位区	05 (0x05)	写控制位	0(0x0000)-15(0x000F)
	15 (0x0F)	同时写多个位	
状态位区	02 (0x02)	读断路器状态	0(0x0000)-15(0x000F)
基本数据类型区	04 (0x04)	读基本数据类型	0(0x0000)-21(0x0015)
<i>施夫</i> 米· · · · · · · · · · · · · · · · · · ·	03 (0x03)	读缓存数据	0(0,0000) 42226(0,4560)
缓存数据区	16 (0x10)	写多个缓存数据	0(0x0000)-42336(0xA560)

1.3 CubicleBUS 介绍

CubicleBUS 可以理解为 SENTRON WL 断路器的内部通讯总线。ETU 单元、测量模块、状态传感器、COM15/16 模块及 3WL 拓展的外部功能模块均可连接至

CubicleBUS 总线系统中,ETU 单元可以通过 CubicleBUS 获得断路器的状态及测量信号,同时通过 CubicleBUS 送出对相关模块的控制信号。

1.4 COM16 和 BSS 模块介绍

通过 COM16 模块, SENTRON WL 断路器可以通过 MODBUS RTU 传送数据至上层自动化网络。COM16 需要通过 CubicleBUS 由 BSS(断路器状态传感器)模块取得一些断路器的重要信息(分合闸状态,弹簧储能状态,合闸准备就绪状态等),这就是通讯模块为何必须同 BSS 传感器一起订购的原因(附加订货号F12 选项包括 BSS 传感器)。 COM16 本质上是一个 CubicleBUS 同 MODBUS RTU 转换的网关,可以将 CubicleBUS 网络中的断路器信号转换为符合 MODBUS 规约的信号。

2 SENTRON WL 断路器与 MODBUS RTU 的通讯的硬件及软件

2.1 硬件需求

- 3WL 脱扣器需选择 ETU45B 或 ETU76B
- BSS 传感器(一般通过附加订货号的方式与通讯模块一同订购)
- COM16 通讯模块
- 24VDC 电源
- SUB D 9 针接头、RS485-RS232 转换器、RS232 转 USB 转换器(如 PC 有 串行接口可省略)
- MODBUS 主站
- 安装有 Powerconfig 软件的 PC

2.2 Powerconfig 软件介绍

通过 Powerconfig 软件,用户可以设置 SENTRON 系列产品的参数。SENTRON 系列产品主要包括 3WL,3VL 断路器,PAC 系列电能表。截止至 2017 年 1 月,Powerconfig 软件版本更新至 V3.7。

用户可以通过如下下载链接免费下载 Powerconfig 软件:

https://support.industry.siemens.com/cs/ww/en/view/63452759

通过如下链接免费下载 Powerconfig 软件动态使用教程:

https://support.industry.siemens.com/cs/cn/en/view/109480256

2.3 COM16 与断路器的连接

■ 将 COM16 模块正确的安装在断路器的顶部,对抽出式断路器保证模块下面的微动开关被激活。

- 检查 COM16 模块的四根黑线接到 X8-1, X8-2, X8-3 和 X8-4, 同时 X8-3, X8-4 端子要引入外部 24V DC 电源。
- 短接 COM16 模块端子 1, 2, 将 Write Enable 使能。
- 将终端电阻加到 COM16 模块上,如图 2-1,或最后一个 CubicleBus 模板。

图 2-1 COM16 模块终端电阻

此时, COM16 模块上的 CubicleBUS 指示灯应亮绿色,如不是,请检查上述步骤。

2.4 设置 COM16 MODBUS 通讯地址及通讯参数

COM16 MODBUS 地址的设置可通过如下方式设置:

- 如果断路器的脱扣器为 ETU76B,可直接通过 ETU 76B 的显示屏设置 COM16 通讯地址;
- 通过断路器数据适配器(BDA)设置。(BDA 需额外订购);
- 通过 Powerconfig 软件设置;

本文主要介绍通过 Powerconfig 软件设置 COM16 通讯地址的方法。

2.4.1 COM16 模块与 PC 连接

通过 Powerconfig 软件设置 COM16 通讯地址,需要先建立 COM16 与安装有 Powerconfig 软件的 PC 连接,如图 2-2 所示:

图 2-2 COM16 模块与 PC 的连接

图 2-3 COM 16 针脚定义

PIN1—Common;

PIN5 —B, Tx/Rx +:

PIN9 A, Tx/Rx-

* RS232/RS485 转换器通讯线的+、一端标识国际公认为 B+、A-,但有些厂家的产品标识为 A+、B-,这种情况下保证+/-分别与 SUB D9 接头的 PIN5/PIN9 连接即可。

2.4.2 Powerconfig 使用过程

正确安装 Powerconfig 软件后,会在桌面上出现图标 powerconfig 软件后,会在桌面上出现图标 powerconfig ya. 双击打开。

或者通过 Start→All Program→SENTRON→Powerconfig, 打开软件。

软件安装后的默认语言为英文,用户可以通过选项 **Options**→**Language**→中文(简体),将软件语言调整为中文。

详细的软件介绍及使用方法请参考前文所述软件使用教程。

本文中仅就与 3WL 的通讯相关的 Powerconfig 软件操作做简要说明。

如果已知断路器及通讯模块的各种参数,可以直接通过拖拽的方式建立新项目,如图 **2-4**,下载或上载断路器参数。

图 2-4 拖拽建立新项目

如果 3WL 通讯模块的通讯参数未知,如通讯地址,波特率,校验位等信息,可通过搜索可用设备功能(快捷键 F11)寻找当前与 PC 连接的 COM16 及 3WL 信息,如图 2-5。

图 2-5 搜索可用设备

- 打开搜索可用设备选项卡后,选择"串口"选项卡;
- 设置搜索条件,如设备类型,通讯地址,波特率,数据格式等。COM16 模块的出厂默认参数为:地址—126,波特率—19200bit/s,数据格式—8N2。如不确定通讯参数,可设置为范围查询。例如,设置地址搜索范围 1-126;

设置搜索波特率为 9600bit/s,19200bit/s; 数据格式设置为 8N2,8O1,8E1。 需要注意的是条件设置的越模糊,则搜索的时间会越久,可能会达到数分钟之久;

- 设置好搜索条件后,点击"开始搜索"按钮开始搜索;
- 搜索完成后,会将已经搜索到的 3WL 断路器列于搜索结果栏目中,选中该元件条目,点击"将所选设备加载到 PC",即会在 Powerconfig 软件中生成一个新的 3WL 项目。

生成的新项目默认视图为参数视图,通过菜单→视图→通信,切换至通信视图,如图 2-6。

图 2-6 项目视图切换

在通信视图中,如图 2-7,可以看到 COM16 当前的通讯信息。如需要更改 COM16 的通讯参数,可以

- 点击解锁图标(图中位置 1),将通讯参数调整界面调整为解锁状态;
- 根据项目需求,调整通讯参数;
- 点击 图标,将更改的通讯参数加载至设备;
- 加载成功后,模块的通讯参数便会更新为更新后的参数。

图 2-7 更改 COM16 的通讯参数

2.4.3 基本数据类型的设置

所有具有通讯功能的 3WL 可以提供基本的电流测量,如果选用测量功能模块同时配备电压互感器,3WL 便可以测量电压、功率、电能等参数。自动化系统可以通过通信方式读取这些测量数据。3WL 将这些数据"打包"存储于"基本数据"存储区,如图 2-8 所示。3WL 提供三种不同组合的"基本数据",3WL 采取哪种基本数据方案,以及每种数据类型中包括哪些测量数据,可以通过 Powerconfig自由组态。在参数视图→通信模块→循环数据选项中,调整组态后下装参数。

图 2-8 调整基本数据类型

3 SENTRON WL 断路器与 MODBUS RTU 的通讯典型应用举例

下面篇幅列举断路器通讯的基本数据格式及程序实例,以 Modscan32 作为 MODBUS 主站模拟器与断路器通讯。

3.1 如何读取 3WL 断路器状态信息(遥信)

使用功能码(FC)02 读取断路器状态信息,FC02 的数据格式见表 3-1 及表 3-2。

表 3-1 FC02 主站请求码格式

Bytes	Name of byte	Description	
0x07	Node address	MODBUS address 7	从站地址
0x02	Function code	"02 - Read input"	功能码
0x00	Start address (high)	Address 0 onwards 起始地址	
0x00	Start address (low)		
0x00	Number of bits (high)	Read 16 bits 读取数据位数	
0x10	Number of bits (low)		
0x3D	CRC check code "low"	Check calculation value (CRC16) 校验码	
0xA0	CRC check code "high"		

表 3-2 FC02 断路器应答码格式

Bytes	Name of byte	Description		
0x07	Node address	MODBUS address 7 从站地址		
0x02	Function code	"02 - Read input" 功能码		
0x02	Number of bytes	2 bytes => 16 bits 返回数据长度		
0x¤¤	Data byte 1	Bit 07 返回数据内容0-7位		
0x00	Data byte 2	Bit 8 15 返回数据内容8-15位		
0x==	CRC check code "low"	Check calculation value 校验码		
0x==	CRC check code "high"	(CRC16)		

表 3-2 中的 Data byte 1/Data byte 2 即为断路器应答的断路器状态位,其含义见表 3-3。

表 3-3 断路器状态字含义

按 2.4.1 建立好 PC 与 COM16 的硬件连接,打开 ModScan 软件,填入断路器 通讯地址(本例为 2),设置功能码 02,首地址 0001,数据长度 16bits,如图 3-1。返回数据 10001~10016 分别对应断路器状态字的第 0~15 位。

图 3-1 使用 FC02 读取断路器状态字

图 3-2 断路器状态字分析

断路器的操作位置及断路器分合闸状态均通过两个位表示。如上例中,位

10002/10001=0/1 (CLJHNI) =1 (+JHNI) 表示当前断路器处于连接位置;位

10004/10003=1/0 (三进制) =2 (十进制) 表示当前断路器处于合闸状态。

3.2 如何读取 3WL 断路器测量数据(遥测)

使用功能码 03 读取断路器数据缓存区, FC03 的数据格式见表 3-3 及表 3-4。

表 3-3 FC03 主站请求码格式

Bytes	Name of byte	Description		
0x07	Node address	MODBUS address 7 从立		
0x03	Function code	"03 - Read value buffer area" 功能码		
0x00	Start address (high)	Address 0 onwards		
0x00	Start address (low)			
0x00	Number of registers (high)	Read 2 registers (4 bytes)	读取的寄	
0x02	Number of registers (low)	存器数		
0xC4	CRC check code "low"	Check calculation value (CRC16) 校验		
0x6D	CRC check code "high"			

表 3-4 FC03 从站应答码格式

Bytes	Name of byte	Description		
0x07	Node address	MODBUS address 7	从站地址	
0x03	Function code	"03 – Read value buffer are	ea" 功能码	
0x04	Number of bytes	2 bytes => 16 bits	数据长度	
0x00	Data byte 1 (high)	1stregister 返回的		
0x□□	Data byte 2 (low)			
0x¤¤	Data byte 3 (high)	2nd register 返回自		
0x00	Data byte 4 (low)			
0x¤¤	CRC check code "low"	Check calculation value		
0x□□	CRC check code "high"	(CRC16)	校验码	

读取断路器的测量数据,需要在断路器的通讯手册中找到相应数据的寄存器地址,数据长度,数据格式等参数。以读取 3WL 系统时间为例,通过手册中可以得到该数据地址为 13154,数据格式为"Time",如表 3-5,可知 Time 格式数据长度为 8Byte,即为 4 个寄存器。

表 3-5 Time 格式数据含义

Byte Bit		Meaning
0	_	Year
1	_	Month
2	_	Day
3	_	Hour
4	-	Minute
5	-	Seconds
6	-	Low-order digits of milliseconds
7	4 - 7	Higher-order digits of milliseconds (4MSB)
7	0 - 3	Weekday (1 =Sunday,, 7 = Saturday)

打开 ModScan 软件,填入断路器通讯地址(本例为 2),设置功能码 03,数据地址填入 13154,数据长度 4 寄存器,如图 3-3。返回数据对照 Time 数据格式可知,当前系统时间为: 2017 年 1 月 17 日 14 时 32 分 08 秒。

图 3-3 使用 FC03 读取断路器缓存区数据

使用频率较高的断路器测量数据的地址,数据类型,数据长度等信息见表 3-6。

表 3-6 部分断路器测量数据的缓存区信息

地址 (DEC)	地址 (HEX)	英文	描述	数据类型	数据 长度 (bits)
24070	0x5E06	Current in phase L1	L1 运行电流	unsigned int	16
24071	0x5E07	Current in phase L2	L2 运行电流	unsigned int	16
24072	0x5E08	Current in phase L3	L3 运行电流	unsigned int	16
24080	0x5E10	Neutral point voltage phase L1	L1 运行相电压	unsigned int	16
24081	0x5E11	Neutral point voltage phase L2	L2 运行相电压	unsigned int	16
24082	0x5E12	Neutral point voltage phase L3	L3 运行相电压	unsigned int	16
24114	0x5E32	Mean value of the power factor	功率因数	signed int	16
24115	0x5E33	Power factor in phase L1	L1 功率因数	signed int	16
24116	0x5E34	Power factor in phase L2	L2 功率因数	signed int	16
24117	0x5E35	Power factor in phase L3	L3 功率因数	signed int	16
24086	0x5E16	Total active power	总有功功率	signed int	16
24090	0x5E1A	Total reactive power	总无功功率	signed int	16
24106	0x5E2A	Active energy in normal direction (MWh)	正向有功电度 (MWh)	unsigned long	32
24108	0x5E2C	Active energy in reverse direction (MWh)	反向有功电度 (MWh)	unsigned long	32
24110	0x5E2E	Reactive energy in normal direction (MWh)	正向无功电度 (MVarh)	unsigned long	32
24112	0x5E30	Reactive energy in reverse direction (MWh)	反向无功电度 (MVarh)	unsigned long	32
24123	0x5E3B	Active energy in normal direction (kWh)	正向有功电度 (kWh)	unsigned long	32
24125	0x5E3D	Active energy in reverse direction (kWh)	反向有功电度 (kWh)	unsigned long	32
24127	0x5E3F	Reactive energy in normal direction (kWh)	正向无功电度 (kVarh)	unsigned long	32
24129	0x5E41	Reactive energy in reverse direction (kWh)	反向无功电度 (kVarh)	unsigned long	32
24118	0x5E36	Frequency	频率	unsigned int	16
13057	0x3301	Trip log of the last 5 tripping operations with time	最后5次脱扣记录	Format(15)*	480
13087	0x331F	Event log of the last 10 events with time	最后 10 次事件记录	Format(16)*	960
23298	0x5B02	Number of switching operations caused by trips	脱扣次数	unsigned int	16
23306	0x5B0A	Number of short-circuit trips (SI)	短路速断动作次数	unsigned int	16
23307	0x5B0B	Number of overload trips (L)	过载保护动作次数	unsigned int	16
13151	0x335F	Time until presumed overload trip	预期过载脱扣时间	unsigned int	16

^{*}特别的数据格式类型,请参考 3WL 通讯手册说明

3.3 如何读取基本数据组

基本数据类型包括断路器的状态字及若干可自由定义的测量数据,如表 3-7 所示为基本数据类型 1,通过读取基本数据组获得断路器状态字及断路器测量数据。自由定义测量数据的方法请参考章节 2.4.3。基本数据类型 2,3 分别包含 8 个及 14 个数据,具体格式请参考断路器通讯手册。

表 3-7 基本数据类型 1

Byte	Definition	Default	Data point
0/1	Binary status information	Binary status information	
2/3	Data block 1	Current in phase 1	380
4/5	Data block 2	Current in phase 2	381
6/7	Data block 3	Current in phase 3	382
8/9	Data block 4	Max. current in phase under highest load	374
10	PB of data block 1	PB of current phase 1	
11	PB of data block 2	PB of current phase 2	
12	PB of data block 3	PB of current phase 3	
13	PB of data block 4	PB of maximum current in phase under highest load	

使用功能码 04 获得基本数据组,FC04 的数据格式见表 3-8 及表 3-9。

表 3-8 FC04 主站请求码格式

Bytes	Name of byte	Description		
0x07	Node address	MODBUS address 7	-	— 从站地址
0x04	Function code	"04 – Read basic type data"	-	一 功能码
0x00	Start address (high)	Address 0 onwards		起始地址
0x00	Start address (low)			
0x00	Number of registers (high)	Read 22 registers (44 bytes)	-	- 读取寄存器数量
0x16	Number of registers (low)			
0x71	CRC check code "low"	Check calculation value (CRC16)		校验码
0xA2	CRC check code "high"			1文501号

表 3-9 FC04 断路器应答码格式

Bytes	Name of byte	Description	5 8 18 9 19 19 19
0x07	Node address	MODBUS address 7	从站地址
0x04	Function code	"04 – Read basic type data"	→ 功能码
0x2C	Number of bytes	44 bytes	◆ 数据数量
0x□□	Data byte 1 (high)	1st register	<u> </u>
0x□□	Data byte 2 (low)	(Fig. 1)	
***	***		返回的数据
0x¤¤	Data byte 43 (high)	22nd register	1084114 8-42564
0x¤¤	Data byte 44 (low)	6779	J
0x==	CRC check code "low"	Check calculation value	拉拉拉
0x==	CRC check code "high"	(CRC16)	◆ 校验码

打开 ModScan 软件,填入断路器通讯地址(本例为 2),设置功能码 04,数据地址填入 0001,数据长度 5 个寄存器,如图 3-4。

图 3-4 FC04 读取断路器基本数据组

基本数据类型中的第一个寄存器内容为断路器状态字,对于状态字的解析解析可参考章节 3.1。后面若干字即为可通过 Powerconfig 软件设置的数据块,设置方法可参考章节 2.4.3。

3.4 如何通过通讯控制 3WL 断路器动作(遥控)

每个 COM16 模块均有 Free,Close,Open 三个可通过通讯控制的输出端,如图 3-5 所示。

图 3-5 COM16 端子示意图

分别通过 Open 及 Close 输出端,可以控制断路器的分闸及合闸线圈,接线图 如图 3-6 所示,断路器分闸及合闸线圈需要选 DC24V 线圈;如果断路器分合闸线圈选用非 DC24V 线圈,需要使用中间继电器进行转换,参考接线如图 3-7。

图 3-6 COM16 与 24VDC 线圈配合

图 3-7 COM16 与非 24VDC 线圈配合

通过功能码 05 可以控制断路器动作, FC05 的数据格式见表 3-10 及表 3-11。

表 3-10 FC05 主站请求码格式

Bytes	Name of byte	Description		
0x07	Node address	MODBUS address 7	从站地址	
0x05	Function code	"05 – Write individual output"	功能码	
0x00	Bit address (high)	Bit 10:	控制字	
0x0A	Bit address (low)	"Delete logbooks"	37.63.7	─ FF00置位
0xFF	Control code (high)	0xFF00 = Set bit (0x0000 = Reset bit)	控制码 _	and the second s
0x00	Control code (low)			K
0xAC	CRC check code "low"	Check calculation value (CRC16)	校验码	0000复位
0x5E	CRC check code "high"			

表 3-11 FC05 从站返回码格式

Bytes	Name of byte	Description		
0x07	Node address	MODBUS address 7	从站地址	
0x05	Function code	"05 – Write individual output"	功能码	
0x00	Bit address (high)	Bit 10:	控制字	← FF00置位
0x0A	Bit address (low)	"Delete logbooks"	177,61 1	
0xFF	Control code (high)	0xFF00 = Bit set (0x0000 = Bit not set)	控制码	
0x00	Control code (low)			5
0xAC	CRC check code "low"	Check calculation value (CRC16)	校验码	0000复位
0x5E	CRC check code "high"			

表 3-12 3WL 通讯控制字

使用 05 功能码,需要向目标从站按照数据格式发送主站请求命令串,数据格式 见表 3-11。在 ModScan 软件中,通过 Setup→Extended→User Msg 调出用户 自定义命令窗口。以激活 COM16 上的 Free Output 为例:由表 3-12 可知,激

活 Free 输出端的控制字为 00,04,对该位的操作的命令串为 07 (从始通讯地址), 05

图 3-8 通过 FC05 控制断路器动作

注意:由于分闸及合闸命令为互斥的两个动作,如果通过通讯执行这两个命令,某一命令置位后,需要先将其复位后,才能再执行另一命令。例如,执行分闸命令(FF00)后,需先向断路器发送复位命令(0000)后,对合闸控制位发送的置位命令(FF00)方可生效。

用户也可以通过功能码 **15**,同时操作多个控制位,具体命令格式可参考断路器通讯手册 **6.2.5.10** 章节。

3.5 如何通过通讯设置 3WL 断路器参数(遥调)

通过功能码 16,可以改写数据缓存区的数据。通过此方法即可更改断路器参数。改写数据缓存区前需要了解数据缓存区的读写属性,具有"可写"属性的数据方可改写。如寄存区 RB131,属性为"读写",该寄存区的数据可以改写;而寄存区 RB94,属性为"只读",故对该数据区执行改写命令无效。寄存区的读写属性可参考 3WL 通讯手册 8.7 章节。

与断路器保护整定相关的数据,如断路器额定电流 I_R ,瞬时脱扣电流 I_i 等,仅当断路器脱扣单元为 ETU76B 时,方可通过通讯更改。

表 3-12 FC16 主站请求码格式

Bytes	Name of byte	Description		
0x07	Node address	MODBUS address 7	-	一 从站地址
0x10	Function code	"16 – Write value buffer area"	←	一功能码
0x44	Register start address (high)	Write from system time		±7 46 116 1.1
0x02	Register start address (low)	DS 68 (0x44); Offset 2nd register		起始地址
0x00	Register number (high)	Number to be written		寄存器数量
0x04	Register number (low)	Register (4 - system time only)	Register (4 - system time only)	
0x08	Number of bytes:	Number of data bytes (8)	-	一字节数量
0x09	Data byte 1 (low) -> year	Register 1		
0x05	Data byte 2 (high) -> month			
0x27	Data byte 3 (low) -> day	Register 2		
0x11	Data byte 4 (high) -> hour			数据内容
0x15	Data byte 5 (low) -> minute	Register 3	\neg	双1/6 [1] 任
0x30	Data byte 6 (high) -> second			
0x00	Data byte 7 (low) ->	Register 4		
0x04	Data byte 8 (high) ->		V	
0x00	CRC check code "low"	Check calculation value		
0x00	CRC check code "high"	(CRC16)		- 校验码

使用 16 功能码,需要向目标从站按照数据格式发送主站请求命令串,数据格式见表 3-12。在 Modscan 中,通过 Setup→Extended→User Msg 调出用户自定义命令窗口。以更改系统时间为例,系统时间的系统时间的 Modbus 地址为17411—0x4403(H),如图 3-9 所示。

图 3-9 通过 FC16 设置断路器系统时间

上例中将系统时间更改为 2011 年 11 月 22 日, 11 时 22 分 33 秒。

注意: 系统时间的 Modbus 地址为 17411——0x4403(H),而报文地址要比 Modbus 地址小 1,故发送数据中的报文地址要填 4402!

附录

常用链接:

《SENTRON WL 空气断路器产品样本》:

http://www.infrastructure-

<u>cities.siemens.com.cn/powerdistribution/DownloadCenter/DocList.aspx?dept=LV&pfid=9&c</u> ateld=3

《SENTRON WL 空气断路器 操作手册》:

http://www.infrastructure-

<u>cities.siemens.com.cn/powerdistribution/DownloadCenter/DocList.aspx?dept=LV&pfid=9&c</u> ateld=4

《SENTRON WL 空气断路器 MODBUS 通讯手册》:

https://support.industry.siemens.com/cs/cn/en/view/39850157

Powerconfig 软件:

https://support.industry.siemens.com/cs/ww/en/view/63452759

Powerconfig 软件动态使用教程:

https://support.industry.siemens.com/cs/cn/en/view/109480256