Définition : Une variable aléatoire réelle généralement notée X est une fonction qui associe à chaque élément d'un univers Ω un nombre réel.

- $\{X=1\}$ est l'événement "la variable aléatoire X prend la valeur 1".
- On note P(X=1) la probabilité de l'événement $\{X=1\}$.
- $\{X\leqslant 1\}$ ets l'événement "la variable aléatoire X prend une valeur inférieure ou égale à 1".
- On note $P(X\leqslant 1)$ la probabilité de l'événement $\{X\leqslant 1\}$.

Une urne contient 3 boules rouges et 2 boules vertes. On tire deux boules simultanément. On note X la variable aléatoire qui associe le nombre de boules rouges tirées.

 ${\bf a.}$ Résumez l'univers Ω de l'expérience aléatoire dans un tableau à double entrée.

On pourra noter R_1 la boule rouge n°1, R_2 la boule rouge n°2, R_3 la boule rouge n°3, V_1 la boule verte n°1 et V_2 la boule verte n°2.

b. Calculez P(X=0), P(X=1) et P(X=2).

0n tire simultanément 5 cartes d'un jeu de 32 cartess. On note X la variable aléatoire qui associe le nombre de rois tirés.

a. Décrire les événements suivants : $\{X=1\}$ $\{X<2\}$

b. Déterminez P(X=5).

Définition : On appelle loi de probabilité d'une variable aléatoire X la donnée de l'ensemble des valeurs possibles de X et des probabilités associées.

Lors d'un jeu, il est possible de perdre $1 \in \mathbb{C}$ avec une probabilité de 0,3, de ne rien gagner ni perdre avec une probabilité de 0,4 et de gagner $2 \in \mathbb{C}$ avec une probabilité de 0,3. Considérons une variable aléatoire X. Complétez le tableau suivant de sa loi de probabilité :

x_i		
$P(X=x_i)$		

Déterminez les probabilités suivantes :

a. P(X < 0).

b. $P(X\geqslant 0)$.

On considère la loi de probabilité résumée dans le tableau suivant :

a	0	1	2	3	4
P(X = a)) 0,2	0,3	0,1	0,2	p

a. Calculez p. **b.** Calculez P(X=5).

c. Calculez $P(X\geqslant 2)$.

on considère une variable aléatoire X prenant les valeurs 0 à 10 et telle que pour n de 0 à 9, $P(X=n)=\left(\frac{1}{2}\right)^{i+1}$. Montrez que $u_n=P(X=n)$ est une suite géométrique. En déduire P(X=10).

Un jeu d'argent consiste à miser $2 \in$ puis à tirer une carte au hasard dans un jeu de 32 cartes :

- si la carte est un As, on récupère 5€ ;
- si la carte est une figure, on récupère $3 \in \mathfrak{f}$
- \bullet dans les autres cas, on perd sa mise. On note X la variable aléatoire qui associe le gain en euros.

Dressez le tableau de la loi de probabilité de $X\,.$

Le temps d'écoute d'un morceau enregistré dans un smartphone est résumé ci-dessous.

Morceau	A	B	C	D	E
Temps (min)	2'30	3'	2'30	4'45	3'

On note X la variable aléatoire qui associe le temps d'écoute en minutes d'un morceau choisi au hasard.

Dresser le tableau de la loi de probabilité de $X\,.$

Un sac contient les 26 lettres de l'alphabet. On tire deux lettres au hasard. On gagne $5\mathfrak{C}$ par voyelle tirée et on perd $1\mathfrak{C}$ par consonne tirée. On note X la variable aléatoire qui associe le gain obtenu.

- a. Construire un arbre pondéré décrivant l'expérience aléatoire.
- ${f b.}$ Déterminez la loi de probabilité de X.

Définition : On appelle espérance mathématique de la variable aléatoire X le nombre réel E(X) défini par

 $E(X)=x_1 imes P(X=x_1)+x_2 imes P(X=x_2)+\ldots+x_n imes P(X=x_n)$ où les x_i sont les valeurs possibles de X .

on considère une variable aléatoire X prenant les valeurs $1,\ 2,\$ et 3 et telle que $P(X=1)=0.2,\ P(X=2)=0.3,\ P(X=3)=0.5$.

a. Calculez $P(X\geqslant 2)$. **b.** Calculez E(X).

Une urne contient 3 boules rouges et 2 boules vertes. On tire une boule au hasard. On note X la variable aléatoire qui associe le gain obtenu : si on tire une boule rouge, on perd $10\,\mathrm{c}$, sinon on gagne $a\,\mathrm{c}$. Le jeu est dit équitable si l'espérance mathématique de X est nulle. Combien doit valoir a pour que le jeu soit équitable ?

Dans un jeu de loterie, une roue est divisée en quatre secteurs de même angle. Un secteur rapporte $60\,\mathrm{c}$, un autre $10\,\mathrm{c}$, et les deux autres rapportent $5\,\mathrm{c}$. La mise est de $20\,\mathrm{c}$. On note X la variable aléatoire qui associe le gain obtenu. Le jeu est-il équitable ?