MEC8211 – Hiver 2025 Devoir 2 – Vérification de code – MMS – 8,33% Vérification et Validation en Modélisation Numérique

Date de remise sur Moodle : 10/03 à midi

Directives:

- À réaliser en équipe de 3 (même équipe que le Devoir 1);
- Le langage de programmation est laissé à votre discrétion parmi les langages suivants :
 Python, MATLAB, C/C++ ou Fortran. Nous recommandons toutefois l'utilisation d'un langage
 de prototypage interprété vu la faible demande en calcul et les possibilités de post-traitement
 disponibles. Commentez votre code de façon approprié et en suivant les bonnes pratiques de
 programmation abordées en classe;
- Les résultats aux diverses questions seront à rapporter au moyen d'une présentation de type PowerPoint (10 slides maximum). Faites des réponses courtes aux questions;
- Créer un projet public sur le GitHub et démonter l'utilisation de Git durant la phase d'écriture du code et <u>fournir l'adresse du dépôt dans votre présentation PowerPoint</u>;
- Apporter une attention particulière à qualité de vos graphiques. Tracer vos analyses de convergence sur un graphique log-log tel que mentionné en classe;
- Remettre un fichier zip par équipe (Devoir2-Matricule1-Matricule2-Matricule3.zip) sur Moodle contenant la présentation PowerPoint des résultats et le code source (et éventuellement les directives pour le compiler et une version compilée);
- Noter que l'énoncé de ce devoir fait suite à celui du Devoir 1.

Barème d'évaluation :

Item	État				
Programme	Non-fonctionnel	Fonctionnel	Fonctionnel	Fonctionnel	Fonctionnel
Résultats et directives	Inexistant	La plupart des résultats manquants ou erronés	Environ la moitié des résultats corrects	Presque tous les résultats corrects	La totalité des résultats corrects
Note	0-30%	40-50%	60-70%	80-90%	100%

Enoncé (suite):

Mme D'AVIGNON s'est montrée satisfaite de la vérification effectuée précédemment (Devoir 1). Toutefois, elle vous fait remarquer que la vérification n'a pu être réalisée que sur la solution à l'état stationnaire avec un terme source S constant et que l'équation d'intérêt (Eq.(1) du Devoir 1) contient en fait une réaction du première ordre telle que S = kC avec $k = 4 \times 10^{-9}$ s⁻¹ et une évolution dans le temps. Comme il n'existe pas de solution analytique triviale et finie pour tester le schéma numérique²

¹ Dans les faits, il existe une solution analytique (non-triviale) à ce problème, mais qui fait intervenir une sommation à l'infini de fonctions de Bessel (cf. p. 294 de *Handbook of Linear Partial Differential Equations for Engineers and Scientists*

pour l'équation complète, elle vous demande, en considérant une concentration initiale de sel nulle dans le pilier de béton, de réaliser une vérification de code à l'aide de la méthode des solutions manufacturées (MMS)³. Elle vous demande en particulier de :

- a. de modifier votre code stationnaire en différences finies du Devoir 1 pour résoudre maintenant le problème instationnaire pour n'importe quel nombre de nœuds et n'importe quel pas de temps (c-à-d écrire un code générique). Préciser entre autres sur vos diapos:
 - i. l'équation obtenue <u>en chacun des nœuds</u> (incluant les nœuds frontières) pour un schéma temporel implicite au pas de temps t et un nombre total de nœuds $N_{tot} = 5$;
 - ii. la procédure générale pour résoudre le problème.
- b. préciser et tracer sur un graphique votre solution manufacturée;
- c. préciser les développements vous permettant d'obtenir le terme source additionnel et les conditions frontières appropriées et tracer sur un graphique le terme source;
- d. fournir tous les graphiques d'analyse de convergence (comme au Devoir 1) appropriés pour vérifier <u>en espace</u> et <u>en temps</u> votre code de différences finies à l'aide de la MMS^{4,5} et discuter <u>brièvement</u> des résultats obtenus;
- e. fournir tous les codes nécessaires à l'obtention des résultats;

Le code étant vérifié, Mme D'AVIGNON vous demande maintenant :

f. d'obtenir et de tracer la solution du problème originel pour $N_{tot} = 11$ et pour t allant de 0 à 4 $\times 10^9$ s ⁶.

par Andrei D. Polyanin, Vladimir E. Nazaikinskii, https://doi.org/10.1201/b19056).

² Discrétisation donc à réaliser au moyen du schéma de la question E du Devoir 1, c-à-d Eq.(4) et un schéma de Gear pour la condition frontière de symétrie.

³ Seule contrainte, on vous demande ici d'utiliser une solution manufacturée (variant dans le temps et l'espace) <u>différente</u> de celle utilisée dans les diapos du cours ou au labo 3 et de faire en sorte que votre solution manufacturée fasse intervenir une condition de Neumann au centre du pilier et de Dirichlet en périphérie (c-à-d de préserver les types de conditions du problème originel).

⁴ Notez qu'ici il vous faudra vérifier les ordres de convergence en espace et en temps. Attention pour mesurer l'un, il faudra s'assurer que le pas relié à l'autre soit assez fin pour que son erreur ne domine pas l'erreur de l'autre, et vice-versa. Par ailleurs, vous n'êtes pas obligé d'utiliser la MMS avec les propriétés physiques du problème originel (c-à-d D_{eff} et k données) vu que cette étape consiste juste à s'assurer que votre code marche bien. On veillera toutefois à les choisir de telle sorte que les différents mécanismes physiques soient grosso-modo du même ordre de grandeur, par exemple en vous assurant que le nombre adimensionnel de Damköhler Da soit entre 0.1 et 10, où Da peut être défini comme : $Da = kC_e^{n-1}L^2/D_{eff} = réaction/diffusion$, avec n l'ordre de la réaction (ici n = 1) et L une longueur caractéristique du problème (p.ex. le rayon du pilier). Précisez les propriétés éventuellement choisies pour cette question.

⁵ Attention : pour calculer des erreurs L_1 , L_2 et L_∞ , l'intégrale/sommation/maximum sur Ω (voir définition diapo 7 sur la partie Vérification de code) est en fait une intégrale/sommation/maximum double en temps et en espace !

⁶ ~126 ans pour attendre l'état stationnaire car le processus diffusif du sel est très long et ralenti grandement par la réaction. Choisissez un pas de temps en conséquence !

Finalement, elle vous demande de faire le point d selon cette directive :

g. [Question BONUS : +4 pts sur le total de vos devoirs]: réaliser l'analyse de convergence en temps ou en espace en écrivant un script Bash automatisé inspiré largement ou adapté de celui vu au Labo 2⁷.

⁷ Pour cela, votre code de différences finies ne devra résoudre que pour \underline{un} Δx ou Δt (et non en utilisant une boucle sur ces derniers à l'intérieur du code lui-même) et votre script Bash devra :

a) changer ces valeurs automatiquement directement dans votre code source comme vu en labo (pour rappel, la chaine de caractère YYYY y était changée dans le fichier trapezoidal.cpp par le nombre d'intervalle);

b) exécuter les différents cas;

c) collecter tous les données;

d) et faire tracer l'analyse de convergence par le script python analyse..de..convergence.py.