УДК 621.317.733.011.4 (076) ББК 3 221.132-5 (Я73-4) У75

У75 Услугии Н.Ф. ИЗМЕРЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА: Практикум. – Нижний Новгород: Нижегородский госуниверситет, 2012. – 12 с.

Рецензент: к.ф.-м.н., доцент И.Ю. Демин

В практикуме исследуется работа RC моста, применительно к измерению неизвестной емкости конденсатора.

Практикум предназначен для студентов радиофизического факультета ННГУ в качестве пособия при подготовке и проведении лабораторных работ по курсу «Общий физический практикум».

Ответственные за выпуск: председатель методической комиссии радиофизического факультета ННГУ, к.ф.-м.н., доцент **Н.Д. Миловский**, д.ф.-м.н., профессор **Е.З. Грибова**

УДК 621.317.733.011.4 (076) ББК 3 221.132-5 (Я73-4)

© Нижегородский государственный университет им. Н.И. Лобачевского, 2012

Для измерения сопротивлений, емкостей и индуктивностей часто применяют мостовые схемы. В таких схемах элементы цепи соединяют "четырехугольником", в одну диагональ которого включают источник напряжения, а в другую — измерительный прибор. При определенном соотношении между параметрами элементов измерительный прибор показывает отсутствие напряжения в диагонали (баланс моста).

В данной лабораторной работе измерительный мост используется для измерения емкости конденсатора.

В схеме, изображенной на рис. 1, R_1 и R_2 — магазины сопротивлений, C_1 — конденсатор известной емкости, C_X —измеряемая емкость, G —прибор для измерения напряжений, E — источник напряжения. Ключ К может быть замкнут на контакт Т (при этом конденсаторы C_1 и C_X заряжаются от источника напряжения) или на контакт S (при этом конденсаторы разряжаются через сопротивления R_1 и R_2).

Рассмотрим процесс зарядки конденсаторов после замыкания ключа К на контакт Т.

Для упрощения выкладок будем считать Внутреннее сопротивление измерительного прибора ($R_{\rm G}$) бесконечно большим, а источника напряжения (r) – пренебрежимо малым. Такие предположения справедливы, если выполняются неравенства:

$$R_{\rm G} >> R_1, R_2 >> r$$
.

Применяя к контуру DATD второе правило Кирхгофа, получаем

$$i_1 R_1 + \frac{q_1}{C_1} = E \,, \tag{1}$$

где i_1 – ток, текущий через сопротивление R_1 , а q_1 – заряд конденсатора C_1 . Поскольку ток через измерительный прибор пренебрежимо мал ($R_{\rm G}$ велико), то $i_1 = \frac{dq_1}{dt}$ и уравнение (1) принимает вид

$$\frac{dq_1}{dt} + \frac{q_1}{R_1 C_1} = \frac{E}{R_1} \,. \tag{2}$$

Разделяя переменные

$$\frac{dq_1}{q_1 - EC_1} = -\frac{dt}{R_1 C_1}$$

и интегрируя с учетом начального условия q_1 =0 при t=0, находим

$$q_1(t) = C_1 E \cdot \left(1 - e^{-\frac{t}{R_1 C_1}}\right).$$
 (3)

Произведение R_1C_1 в показателе экспоненты имеет размерность времени и называется постоянной времени RC-цепи. Величина постоянной времени определяет, насколько быстро заряжается конденсатор. Как видно из формулы (3), за время $\tau = R_1 C_1$ заряд конденсатора достигает значения $q_1(\tau) = C_1 E \cdot (1 - e^{-1})$, что составляет примерно 0.63 значения $C_1 E$, к которому заряд стремиться при $t \to \infty$.

Из (3) следует выражение для напряжения U_1 на конденсаторе C_1

$$U_1(t) = E \cdot \left(1 - e^{-\frac{t}{R_1 C_1}}\right). \tag{4}$$

Напряжение на втором конденсаторе находим аналогичным образом из рассмотрения контура DBTD:

$$U_X(t) = E \cdot \left(1 - e^{-\frac{t}{R_2 C_X}}\right). \tag{5}$$

Напряжение $U_{\rm G}$ на измерительном приборе (между точками A и B) равно разности напряжений на конденсаторах:

$$U_G(t) = U_1(t) - U_X(t) = E \cdot \left(e^{-\frac{t}{R_2 C_X}} - e^{-\frac{t}{R_1 C_1}} \right). \tag{6}$$

Из (6) следует, что при выполнении равенства

$$R_1C_1 = R_2C_X \quad \text{and} \quad \delta \quad \text{MOCO} \qquad (7)$$

напряжение $U_{\rm G}$ все время равно нулю. Условие (7) называется условием баланса моста. Если условие (7) нарушено, то в процессе зарядки конденсаторов напряжение $U_a(t)$ будет отлично от нуля, что может быть обнаружено при достаточной чувствительности и быстродействии измерительного прибора. На рис. 2 приведеграфики напряжений $U_1(t), U_X(t), U_G(t)$ в отсутствие

баланса моста.

После замыкания ключа К на клемму S происходит разряд конденсаторов, в ходе которого напряжения $U_1(t), U_X(t), U_G(t)$ изменяются следующим образом:

$$U_1(t) = E \cdot e^{-\frac{t}{R_1 C_1}}, \qquad U_X(t) = E \cdot e^{-\frac{t}{R_2 C_X}}, \tag{8}$$

$$U_{G}(t) = E \cdot e^{-t}, \qquad U_{X}(t) = E \cdot e^{-t}, \qquad U_{G}(t) = U_{$$

При балансе моста напряжение на измерительном приборе, как и при зарядке, также равно нулю.

Для измерения емкости конденсатора $C_{\rm X}$ следует, подбирая значения сопротивлений R_1 и (или) R_2 , добиться равенства нулю показаний измерительного прибора при переключении ключа К, т.е. баланса моста. При этом из условия (7) измеряемая емкость находится как

$$C_X = C_1 \frac{R_1}{R_2}. (10)$$

При реализации данного метода следует учитывать, что времена зарядки (разрядки) конденсаторов, а, следовательно, и длительность импульса $U_{
m G}$, оказываются достаточно малыми и поэтому отклик измерительного прибора будет зависеть не только от чувствительности прибора, но и от его инерционных свойств. В данной лабораторной работе предусмотрено проведение измерений в двух режимах: безынерционном и инерционном.

При безынерционном (малоинерционном) наблюдении прибор успевает "отслеживать" все изменения измеряемой величины. В качестве такого прибора в работе используется осциллограф, обладающий достаточным быстродействием для наблюдения формы импульсов $U_{\rm G}(t)$. О величине разбаланса моста можно судить по максимальному значению напряжения $U_{\rm G}(t)$.

При инерпионном наблюдении прибор не обладает достаточным быстродействием для отслеживания изменений измеряемой величины. Высокочувствительный нуль-гальванометр, установленный в диагональ моста, является типичным прибором, реализующим инерционное наблюдение. Время установления стрелки в таком гальванометре существенно больше времени зарядки/разрядки конденсаторов. Процесс измерения в этом случае можно представить в виде двух последовательных этапов: сначала, изза проходящего через гальванометр кратковременного тока, рамка гальванометра получает некоторый момент импульса (приобретает угловую скорость), а затем, когда ток уже прекратился, эта рамка отклоняется на некоторый угол. Такой режим измерений называется баллистическим. В баллистическом режиме отклонение стрелки гальванометра пропорционально прошедшему через гальванометр заряду (см. Приложение 1).

При анализе работы схемы в данном режиме следует учитывать, что у чувствительных гальванометров условие $R_G >> R_{1,2}$ как правило, не выполняется. Однако, если между точками A и B разность потенциалов отсутствует, то ток через измерительный прибор будет равен нулю при любом значении R_G и, следовательно, величина R_G на условие (7) баланса моста влиять не будет.

Экспериментальная часть

1. Собрать схему, приведенную на рис. 3. На вход измерительного моста с генератора подать напряжение типа "меандр".

Подключив осциллограф к точкам A, D схемы, наблюдать осциллограммы напряжения $U_l(t)$ при разных значениях R_1 (Значение R_2 при этом установить максимально возможным). Измерить соответствующие времена заряда (разряда) конденсатора.

Построить график зависимости времени заряда (разряда) конденсатора от постоянной времени R_1C_1 .

- 2. Наблюдать на осциллографе и зарисовать несколько осциллограмм напряжений $U_I(t)$ и $U_{AB}(t)$ (при одинаковых скоростях развертки осциллографа и "почти" сбалансированном мосте).
- 3. Измерить неизвестную емкость C_X , используя в диагонали моста осциллограф в качестве измерительного прибора. Измерения провести несколько раз с различными R_1 .
 - При всех измерениях фиксировать диапазон изменений R_2 (ΔR_2), для которого отклонение луча осциллографа от нулевого уровня не превышает некоторого фиксированного значения, выбираемого в зависимости от уровня шумов.
- 4. Собрать схему, приведенную на рис. 1, с гальванометром в качестве измерительного прибора. Измерить емкость конденсатора C_X . Измерения провести несколько раз с различными R_1 (от $R_1 << R_G$ до $R_1 >> R_G$). При всех измерениях фиксировать диапазон изменений R_2 (ΔR_2), для которого отклонение стрелки гальванометра от нуля не превышает некоторого фиксированного значения (например, не превышает половины деления шкалы гальванометра).
- 5. По результатам, полученным в п. 1 и п. 4, построить графики зависимостей погрешностей измерений от величины R_1 .

Литература

- 1. Сивухин Д.В.. Общий курс физики. Электричество. М.: Наука. Главная редакция физико-математической литературы, 1983. 688с.
- 2. Овсянникова И.А.. "Определение емкости конденсатора". Описание к лабораторной работе. ГГУ им. Н.И. Лобачевского, Горький, 1960.

Приложение 1. Баллистический режим работы гальванометра.

Гальванометр — это магнитоэлектрический прибор для измерения малых токов. Рамка, состоящая из большого числа витков тонкого провода, помещена в магнитное поле постоянного магнита и может поворачиваться вокруг своей оси. Положение рамки фиксируется пружинками специальной формы, по которым, как правило, к ней и подводится измеряемый ток. На рамку с током действуют момент сил Ампера, пропорциональный току $I_{\rm G}$ в рамке, и момент упругих сил пружинок, пропорциональный углу отклонения этой рамки от положения равновесия.

Запишем уравнение моментов относительно оси вращения рамки:

$$J\frac{d\omega_z}{dt} = I_G NSB - D \cdot \alpha \,. \tag{11}$$

Здесь J- момент инерции рамки, $\omega_z=\frac{d\alpha}{dt}-$ ее угловая скорость вращения, N — число витков, а S — площадь рамки, В — индукция магнитного поля, создаваемого постоянным магнитом, D — коэффициент, характеризующий упругость пружинок.

В уравнении (11) не учтено вязкое трение, оказывающее демпфирующее действие на рамку.

При кратковременном протекании тока рамка практически не успевает отклониться. В этом случае уравнение (11) легко интегрируется:

$$J d\omega_z = I_G NSB dt$$
, $\omega_{z0} = \frac{NSB}{J} \cdot \int I_G dt = \frac{NSB}{J} Q$,

где ω_{z0} – угловая скорость, полученная рамкой, а Q – заряд, прошедший через гальванометр. После прекращения действия сил Ампера рамка гальванометра, продолжая вращаться, отклоняется на некоторый угол, который можно найти, используя закон сохранения энергии

$$\frac{J\omega_{z0}^2}{2} = \frac{D\alpha_{\max}^2}{2}$$
, откуда $\alpha_{\max} = \frac{NSB}{\sqrt{JD}}Q$.

На практике, из-за вязкого трения, отклонение стрелки гальванометра будет несколько меньше, но оно все равно пропорционально заряду, прошедшему через гальванометр.

Приложение 2. Расчет погрешности, вносимой конечной чувствительностью нуль-индикатора

Баланс моста невозможно определить абсолютно точно. Измерительный прибор, стоящий в диагонали моста, имеет конечную чувствительность и поэтому не будет реагировать на очень малые токи. Ошибку,

вносимую в процесс измерения емкости конечной чувствительностью прибора G, можно оценить, определив вариацию (изменение) сопротивления (например R_2), при которой уже можно заметить "ненулевые" показания прибора.

В случае слабого "разбаланса" измерительного моста сопротивление R_2 удобно представить в виде

$$R_2 = R_2^* + \Delta R_2 = R_2^* \cdot \left(1 + \frac{\Delta R_2}{R_2^*}\right) = R_2^* \cdot \left(1 + \delta R_2\right),\tag{12}$$

где $R_2^*=\frac{R_1C_1}{C_X}$ соответствует условию баланса моста, а $\frac{\Delta R_2}{R_2^*}=\delta R_2$ — будет

характеризовать относительное отклонение R_2 от R_2^* (погрешность определения R_2).

Расчет погрешности, вносимой конечной чувствительностью осциллографа (безынерционное измерение)

При малоинерционном наблюдении о величине разбаланса измерительного моста можно судить по максимальному значению напряжения $U_{\rm G}(t)$. Максимум функции $U_{\rm G}(t)$ находится дифференцированием выражения (6). С учетом малости δR_2 в (12), можно получить

$$\max |U_G| \approx \left| E \cdot \frac{\delta R_2}{\left(1 + \delta R_2\right) \frac{1}{\delta R_2}} \right| \approx \left| \frac{E}{e} \cdot \delta R_2 \right|,$$

где e – основание натурального логарифма.

Пусть U_{\min} минимальное напряжение, которое уверенно регистрируется прибором как не нулевое. Тогда условие обнаружения разбаланса можно записать, как $\max |U_G| \ge |U_{\min}|$ и, следовательно, относительная ошибка, связанная с конечной чувствительностью измерительного прибора, пересчитанная в погрешность определения R_2 , равна $\delta R_2^G \approx \frac{e \cdot U_{\min}}{E}$, уменьшается при увеличении E и не зависит от значений R_1 и R_2 .

Расчет погрешности, вносимой конечной чувствительностью гальванометра (инерционное измерение)

У чувствительных гальванометров условие $R_G >> R_{I,2}$ как правило не выполняется. Поэтому проведем анализ работы схемы, показанной на рис. 2, в предположении конечности сопротивления измерительного прибора. Пользуясь правилами Кирхгофа, запишем систему уравнений:

$$\begin{cases} I_1 R_1 + \frac{q_1}{C_1} = E, \\ I_2 R_2 + \frac{q_X}{C_X} = E, \\ I_1 R_1 + I_G R_G - I_2 R_2 = 0, \\ I_1 - I_G - \frac{dq_1}{dt} = 0, \\ I_2 + I_G - \frac{dq_X}{dt} = 0. \end{cases}$$

Исключая токи $I_{1,2}$ и I_G , эту систему можно свести к системе из двух уравнений для напряжений на конденсаторах:

$$\begin{cases}
\frac{dU_1}{dt} + \frac{U_1}{R_1 C_1} = \frac{E}{R_1 C_1} - \frac{U_1 - U_X}{R_G C_1}, \\
\frac{dU_X}{dt} + \frac{U_X}{R_2 C_X} = \frac{E}{R_2 C_X} + \frac{U_1 - U_X}{R_G C_X}.
\end{cases} (13)$$

Так же как и при безынерционном измерении, рассмотрим случай слабого разбаланса моста.

Используя (12) и малость величины δR_2 , второе уравнение системы (13) сводится к следующему виду:

$$\frac{dU_X}{dt} + \frac{U_X}{R_1 C_1} (1 - \delta R_2) = \frac{E}{R_1 C_1} (1 - \delta R_2) + \frac{U_1 - U_X}{R_G C_X}.$$

Вычитая полученное уравнение из первого в (13) и, учитывая, что $U_1 - U_X = U_G$, получаем:

$$\frac{dU_G}{dt} + U_G \cdot \left(\frac{1}{R_1 C_1} + \frac{1}{R_G} \left(\frac{1}{C_1} + \frac{1}{C_X}\right)\right) = \frac{\delta R_2}{R_1 C_1} (E - U_X). \tag{14}$$

Подставим в правую часть выражения (14) в качестве нулевого приближения $U_X(t)$ из (5) и найдем $U_G(t)$:

$$U_G(t) = \frac{E \cdot \delta R_2 \cdot \tau}{R_1 \cdot C_1} \cdot e^{-\frac{t}{R_1 C_1}} \cdot \left(1 - e^{-\frac{t}{\tau}}\right),\tag{15}$$

где
$$\tau = \frac{R_G \cdot C_1 \cdot C_X}{C_1 + C_X} = \frac{R_G \cdot C_1 \cdot R_1}{R_1 + R_2^*}.$$

Заряд, прошедший через гальванометр, можно подсчитать, интегрируя по времени выражение (15) (поделенное на R_G):

$$Q = \frac{R_1 \cdot C_1}{R_1 + R_2^* + R_G} \cdot E \cdot \delta R_2.$$
 (16)

Пусть Q_{min} – это минимальный заряд, прохождение которого через гальванометр мы еще можем обнаружить. Тогда соответствующая относительная ошибка, "пересчитанная" в ошибку определения R_2 , составит:

$$\delta R_2 = Q_{\min} \frac{R_1 + R_2^* + R_G}{R_1 C_1 E} = Q_{\min} \frac{1 + \frac{C_1}{C_X} + \frac{R_G}{R_1}}{C_1 E}.$$
 (17)

Как видно из выражения (17), относительная ошибка должна уменьшаться при увеличении R_1 .