Feed Forward Neural Networks

Machine Learning

Denis Litvinov

October 29, 2022

Denis Litvinov Feed Forward Neural Networks October 29

Table of Contents

- 1 General Architecture
- 2 Activation Functions
- 3 Weight initialization
- 4 Optimization
 - Vanilla SGD
 - SGD with momentum

- RmsProp
- Adam
- Learning Schedule
- 5 Regularization
 - Dropout
 - BatchNorm

NN as a composition of functions

 $F(x) = f_{w_n} \circ f_{w_{n-1}} \circ ... f_{w_1}(x)$

Denis Litvinov Feed Forward Neural Networks

Composition of linear functions

General Architecture

0000

$$F(x) = XW_1W_2$$

where $X \in R^{NxD_1}$ - features $W_1 \in R^{D_1 \times D_2}$, $W_2 \in R^{D_2 \times K}$ - weight matrices K - number of classes

Denis Litvinov Feed Forward Neural Networks October 29, 2022

Neuron

General Architecture

0000

$$y = \sum_{i=1}^{N} f(w_i i x_i + b)$$

where f - some non-linear activation function

w_i - learnable weights

b - learnable bias, usually incorporated into X

y - output of neuron

x - input of neuron

Activation Functions Weight initialization Optimization Regularization

Dense Layers

General Architecture

0000

It's more convenient to express the same thing in vector form

$$Y = f(XW)$$

where $X \in R^{NxD_1}$ - input of layer $Y \in R^{NxD_2}$ - output of layer $W \in R^{D_1xD_2}$ - learnable weight matrix

Denis Litvinov Feed Forward Neural Networks October 29, 2022

Activation Functions

Why we do not use linear activations?
Activation functions supposed to be nice in the sense of gradient properties.

Sigmoid

$$\sigma(z) = \frac{1}{1 + \exp^{-z}}$$

- vanishing gradient
- bad output distribution

Denis Litvinov Feed Forward Neural Networks

Tanh

vanishing gradient

Denis Litvinov Feed Forward Neural Networks October 29, 2

RELU

$$RELU(z) = \max(0, z)$$

 \blacksquare dead neurons if z < 0

Denis Litvinov Feed Forward Neural Networks

$$PRELU(z) = \begin{cases} z, & \text{if } z \ge 0\\ \alpha z, & \text{if } z < 0 \end{cases}$$

(1)

(2)

ELU

$$ELU(z) = \begin{cases} z, & \text{if } z \ge 0\\ \alpha(\exp^z - 1), & \text{if } z < 0 \end{cases}$$

little longer computation than RELU

Denis Litvinov

Weight initialization

As we train out neural network with gradient descent, it is important to have good initial point to start. Usually use use:

- I Uniform distribution in [-d, d]
- Normal distribution $N(0, \sigma^2)$
- 3 Xavier initialization $N(0, \frac{2}{d_{in}+d_{out}})$
- Why we use distributions centered around zero?
- How it is connected with activation functions?
- shared weights

Regularization

Transfer Learning

- 1 a big model is trained on a large dataset
- 2 learned weights from the model are used as a initialization for another, usually smaller, downstream task

Denis Litvinov Feed Forward Neural Networks October 29, 2022

Meta Learning

Denis Litvinov Feed Forward Neural Networks October 29, 2022

Optimization

Occosion

Loss surface Many local minima

Denis Litvinov Feed Forward Neural Networks

Loss surface

Wide local minimum

Vanilla SGD

 $\theta_0 \leftarrow \text{init}$

for **random** batch on step $t = 1..max_iter$:

$$\theta_t = \theta_{t-1} - \alpha \nabla_{\theta} J(\theta_{t-1})$$

J - loss function

 θ_t - learnable parameters at step t

 α - learning rate

- good theoretic properties
- slow convergence

SGD with momentum

$$\theta_0 \leftarrow \text{init}$$

$$m_0 \leftarrow 0$$

for **random** batch on step t = 1...max iter:

$$m_t = \beta m_{t-1} + (1 - \beta) \nabla_{\theta} J(\theta_{t-1})$$
$$\theta_t = \theta_{t-1} - \alpha m_t$$

where m_t - accumulated gradient at step t β - momentum parameter

Denis Litvinov

SGD with momentum

- Momentum cancels moves in "random" directions from stochastic nature of SGD
- Momentum inertia

RmsProp

 $\theta_0 \leftarrow \text{init } v_0 \leftarrow 0$ for random batch on step t = 1...max iter:

$$egin{aligned} g_t &=
abla_{ heta} J(heta_{t-1}) \ v_t &= eta v_{t-1} + (1-eta) g_t^2 \ heta_t &= heta_{t-1} - rac{lpha}{\sqrt{v_t} + \epsilon} g_t \end{aligned}$$

where v_t - accumulated squared components of gradient β - parameter

- $\epsilon <<$ 1 to prevent division by zero
 - gradient direction carries more information than its norm
 - adjust gradient step size

Denis Litvinov

Optimization

Adam

$$\theta_0 \leftarrow \text{init } v_0 \leftarrow 0$$
 $m_0 \leftarrow 0$

for random batch on step t = 1...max iter:

$$g_t = \nabla_{\theta} J(\theta_{t-1})$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$\theta_t = \theta_{t-1} - \frac{\alpha}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

where m_t - accumulated momentum v_t - accumulated squared components of gradient β_1, β_2 - parameters $\epsilon <<$ 1 - to prevent division by zero

eneral Architecture Activation Functions Weight initialization **Optimization** Regularization

OOO OOOOO OOOO OOOOO

Adam

- essentially SGD with momentum + RmsProp
- corrections for \hat{m}_t , \hat{v}_t are to make first optimization steps more stable. Because the calculation of m_t , v_t can be seen as geometric series

eneral Architecture Activation Functions Weight initialization Optimization Regularization

Reduce On Plateau

Reduce learning rate by some factor if loss is not decreasing enough.

- we can't converge to exact local minima
- unfortunately, we increase "sensitivity" to more narrow local minima.

eneral Architecture Activation Functions Weight initialization **Optimization** Regularization

OOO OOOOO OOOOOO OOOOOO●

Cycle LR

If weight initialization wasn't good enough, we try to increase learning rate at first few steps in a hope to jump into a better local minumum.

Denis Litvinov

Regularization

Most popular:

- 1 L₂ norm regularization through weight decay
- 2 Early stopping
- 3 Data augmentation. Create new samples from the same domain to increase size of your dataset. Remember generalization bounds.
- Dropout. Drop random nodes in a layer with probability p
- 5 Batch Normalization

Dropout

General Architecture

There are 2 interpretations for dropout:

- "Bagging" over neural networks
- Avoid feature coadaptation

Difference between bagging and dropout:

$$p(y|x) = \frac{1}{K} \sum_{i=1}^{K} p_i(y|x)$$

for bagging

$$p(y|x) = \sum_{\mu} p(\mu)p(y|x,\mu)$$

for dropout, where μ is mask on weights.

There is an exponential number of masks for fixed number of weights, that makes dropout more effective than explicit bagging.

Dropout

On training: On each batch randomly remove neurons in the previous layer with probability *p*.

On inference:

Ideally, sample all 2^n dropped-out networks and average predictions. In practice, approximate by using the full network with each node's output weighted by a factor of 1-p, so the expected value of the output of any node is the same as in the training stages.

=> Although it effectively generates 2^n neural nets, but at test time only a single network needs to be tested.

BatchNorm

On training:

on every batch t:

$$\mu_t = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma_t^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_t)$$

$$\hat{x}_i = \frac{x_i - \mu_t}{\sigma_t + \epsilon}$$

$$y_i = \gamma \hat{x}_i + \beta = BN_{\gamma,\beta}(x_i)$$

where μ_t - estimated batch mean σ_t^2 - estimated batch variance \hat{x}_i - normalized input γ - learnable scale parameter β - learnable shift parameter

Denis Litvinov

BatchNorm

On inference: we can't compute μ_t , σ_t^2 . Instead, we use some running average over μ_t , σ_t^2 that were observed during training.

- NN in theory can learn γ , β to undo batch normalization. In practice, they usually don't
- BatchNorm stabilizes training by making surface of loss function more smooth

