UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

INTRODUCCIÓN A LAS FUNCIONES RECURSIVAS Y COMPUTABILIDAD

SEMESTRE: Séptimo u octavo

CLAVE: **0351**

HORAS A LA SEMANA/SEMESTRE		
TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Lógica Matemática II.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Presentar la teoría de la computabilidad desde la perspectiva de las funciones recursivas.

NUM. HORAS	UNIDADES TEMÁTICAS	
10	1. Máquinas de Turing	
	1.1 Función de transición y diagramas.	
	1.2 El problema de castor atareado. Funciones no computables.	
15	2. Funciones parciales computables	
	2.1 Definición y ejemplos.	
	2.2 Funciones recursivas parciales.	
	2.3 Turing-computabilidad de las funciones recursivas parciales.	
15	3. Enumerabilidad efectiva	
	3.1 Conjuntos recursivos y conjuntos recursivamente enumerables.	
	3.2 Codificación de las máquinas de Turing.	
	3.3 Máquinas universales y el teorema s-m-n de Kleene.	
25	4. El problema de la decisión. Números y funciones compu-	
	tables	
	4.1 El predicado $T(i, x, z)$ de Kleene.	
	4.2 Recursividad de las funciones parciales Turing-computables.	
	4.3 Problemas de la detención, de la equivalencia y de la decidibilidad.	
	4.4 Indecidibilidad e incomplitud de la aritmética de Peano. Teorema	
	de Church.	
	4.5 Números reales computables y no computables.	

15	5. Teorema de Rice y teorema de la recursión	
	5.1 Conjuntos no recursivos de números naturales. Teorema de Rice.	
	5.2 Teorema de la recursión.	

BIBLIOGRAFÍA BÁSICA:

- 1. Bridges, D.S., Computability. A Mathematical Sketchbook, New York: Springer-Verlag, 1994.
- 2. Dunne, P.E., Computability Theory. Concepts and Applications, Ellis Horwood, 1991.
- 3. Kleene, S.C., *Introduction to Metamathematics*, Amsterdam: D. Van Nostrand Company, Inc., 1952.
- 4. Kleene, S.C., Mathematical Logic, New York: John Wiley & Sons, Inc., 1967.
- 5. Rogers, H. Jr, *Theory of Recursive Functions and Effective Computability*, New York: McGraw-Hill, 1967.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Gruska, J., Foundations of Computing, International Thompson Computer Press, 1997.
- 2. Pippinger, N., *Theories of Computability*, Cambridge: Cambridge University Press, 1997.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.