

Day2 Content

- Pandas Data Frame and Series
- Data Analysis using Pandas
- Linear Regression using Ordinary Least Square
- Azure ML Studio Basics
- Linear Regression Model using Azure ML Studio

Data Storage Formats in Pandas

The different data storage formats available to be manipulated by Pandas library are text, binary and SQL.

Format Type	Data Description	Reader	Writer
text	CSV	read_csv	to_csv
text	JSON	read_json	to_json
text	HTML	read_html	to_html
text	Local clipboard	read_clipboard	to_clipboard
binary	MS Excel	read_excel	to_excel
binary	HDF5 Format	read_hdf	to_hdf
binary	Feather Format	read_feather	to_feather
binary	Parquet Format	read_parquet	to_parquet
binary	Msgpack	read_msgpack	to_msgpack
binary	Stata	read_stata	to_stata
binary	SAS	read_sas	1
binary	Python Pickle Format	read_pickle	to_pickle
SQL	SQL	read_sql	to_sql
SQL	Google Big Query	read_gbq ps://blos	Losd to gbg on 42642945

Reference: https://www.programmersought.com/article/4943826582

What is CSV file?

A CSV is a commaseparated values file, which allows data to be saved in a tabular format.

Reference: https://www.goanywhere.com/managed-file-transfer/more/tutorials/how-to-import-csv-file-into-database

What is a JSON file?

A JSON file is a file that stores simple data structures and objects in JavaScript Object Notation (JSON) format, which is a standard data interchange format.

```
"Product": {
   "0": "Desktop Computer",
"1": "Tablet",
   "2": "iPhone",
   "3": "Laptop"
         250,
   "2": 800,
```

Reference: https://datatofish.com/export-pandas-dataframe-json

Reading data from files

Reference: https://realpython.com/pandas-read-write-files

Load CSV files to Python Pandas

The basic process of loading data from a CSV file into a Pandas DataFrame is achieved using the "read_csv" function in Pandas.

Reference: https://www.geeksforgeeks.org/python-read-csv-using-pandas-read_csv

Groupby Methods

Pandas dataframe.groupby() function is used to split the data into groups based on some criteria. pandas objects can be split on any of their axes.

Reference: https://towardsdatascience.com/pandas-groupby-explained-453692519d0

Groupby output format – Series or DataFrame?

As a rule of thumb, if you calculate more than one column of results, your result will be a Dataframe. For a single column of results, the agg function, by default, will produce a Series.

Reference: https://www.shanelynn.ie/summarising-aggregation-and-grouping-data-in-python-pandas

Pivot Tables

It's a table of statistics that helps summarize the data of a larger table by "pivoting" that data.

https://pandas.pydata.org/pandas-docs/version/0.25.3/user_guide/reshaping.html

How to Build a Pivot Table in Python

In Pandas, we can construct a pivot table using the following syntax:

pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False)

Pandas Plotting

Plotting in pandas utilises the matplotlib API so in order to create visualisations, you will need to also import this library alongside pandas.

https://towardsdatascience.com/the-best-pandas-plotting-features-c9789e04a5a0

Plot a Scatter Diagram using Pandas

Scatter plots are used to depict a relationship between two variables.

Step 1: Prepare the data

Unemployment_Rate	Stock_Index_Price
6.1	1500
5.8	1520
5.7	1525
5.7	1523
5.8	1515
5.6	1540
5.5	1545
5.3	1560
5.2	1555
5.2	1565

Plot a Scatter Diagram using Pandas

Step 2: Create the DataFrame

	Unemployment_Rate	Stock_Index_Price
0	6.1	1500
1	5.8	1520
2	5.7	1525
3	5.7	1523
4	5.8	1515
5	5.6	1540
6	5.5	1545
7	5.3	1560
8	5.2	1555
9	5.2	1565

Plot a Scatter Diagram using Pandas

Step 3: Plot the DataFrame using Pandas

Plot a Line Chart using Pandas

Line charts are often used to display trends overtime.

Step 1: Prepare the data

Year	Unemployment_Rate
1920	9.8
1930	12
1940	8
1950	7.2
1960	6.9
1970	7
1980	6.5
1990	6.2
2000	5.5
2010	6.3

Plot a Line Chart using Pandas

Step 2: Create the DataFrame

	Year	Unemployment	Rate
0	1920		9.8
1	1930		12.0
2	1940		8.0
3	1950		7.2
4	1960		6.9
5	1970		7.0
6	1980		6.5
7	1990		6.2
8	2000		5.5
9	2010		6.3

Plot a Line Chart using Pandas

Step 3: Plot the DataFrame using Pandas

Plot a Bar Chart using Pandas

Bar charts are used to display categorical data.

Step 1: Prepare the data

Country	GDP_Per_Capita
USA	45000
Canada	42000
Germany	52000
UK	49000
France	47000

Plot a Bar Chart using Pandas

Step 2: Create the DataFrame

	Country	GDP_Per_Capita
0	USA	45000
1	Canada	42000
2	Germany	52000
3	UK	49000
4	France	47000

Plot a Bar Chart using Pandas

Step 3: Plot the DataFrame using Pandas

Plot a Pie Chart using Pandas

A pie chart (or a circle chart) is a circular statistical graphic, which is divided into slices to illustrate numerical proportion.

Step 1: Prepare the data

Tasks Pending	300
Tasks Ongoing	500
Tasks Completed	700

Plot a Pie Chart using Pandas

Step 2: Create the

DataFrame

		lasks
Tasks	Pending	300
Tasks	Ongoing	500
Tasks	Completed	700

Plot a Pie Chart using Pandas

Step 3: Plot the DataFrame using Pandas

Machine Learning

https://miro.medium.com/max/629/1*_HoMKjrWahRil-JmwYW6zg.png

List of Popular Dataset Websites

- Data Government of India https://www.data.gov.in
- 2. Earth Data https://earthdata.nasa.gov/
- 3. Amazon and Microsoft Datasets, Azure and AWS

https://registry.opendata.aws/

https://azure.microsoft.com/en-us/services/open-datasets/catalo

- Data World https://data.world/
- 5. Lionbridge AI Datasets https://lionbridge.ai/datasets/
- 6. UCI Machine Learning Repository https://archive.ics.uci.edu/ml/datasets.php
- 7. Kaggle Datasets https://www.kaggle.com/datasets

data.gov

Supervised Learning

https://cdn-images-1.medium.com/max/1600/1*Iz7bCLrPTImnBDOOEyE3LA.png

Regression vs Classification

Regression

What is the temperature going to be tomorrow?

https://www.javatpoint.com/regression-vs-classification-in-machine-learning

Regression vs Classification

- Regression algorithms are used to predict the continuous values.
- Classification algorithms are used to predict or Classify the discrete values.

https://www.javatpoint.com/regression-vs-classification-in-machine-learning

Regression Analysis

https://www.javatpoint.com/regression-vs-classification-in-machine-learning

Least Square Method

To find the best fit line that represents the relationship between an independent and dependent variable.

https://medium.com/analytics-vidhya/ordinary-least-square-ols-method-for-linear-regression-ef8ca10aadfc

Linear Regression

It shows a linear relationship between a dependent (y) and one or more independent (y) variables.

https://www.javatpoint.com/linear-regression-in-machine-learning

Mathematical Intuition

- Cost function: It measures how a linear regression model is performing.
- Gradient Descent: To minimize the MSE by calculating the gradient of the cost function.
- Model Performance: Process of finding the best model out of various models.

Ordinary Least Square Method

Estimates the parameters in a regression model by minimizing the sum of the squared residuals.

https://statisticsbyjim.com/glossary/ordinary-least-squares/ #:~:text=Ordinary%20least%20squares%2C%20or%20linear,and%20the%20corresponding%20fitted%20values

Linear Regression Implementation

Import the Libraries

```
# importing the Linear Regression Model from Scikit Learn
from sklearn.linear_model import LinearRegression
```

Initialize our Linear Regression model

```
# initialize the Linear Regression model
regression= LinearRegression()
```

Fitting the Linear Regression Model

```
# fit the linear regression model
regression.fit(X_train,y_train)
```

Predict the test set Result

```
# Predict the Regression model
y_pred = regression.predict(X_test)
```


Linear Regression Evaluation Techniques

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Where,
$$\hat{y}$$
 - predicted value of y \bar{y} - mean value of y

https://www.datatechnotes.com/2019/02/regression-model-accuracy-mae-mse-rmse.html

Azure ML No Code Platform

A cloud service that allows building no-code machine learning models through a drag and drop visual interface.

Set of Azure Cloud Services

Python SDK

That enables you to:

- √ Prepare Data
- ✓ Build Models
- √ Train Models

- ✓ Manage Models
- √ Track Experiments
- ✓ Deploy Models

Practical - Azure ML Studio Briefing

Web-based integrated development environment (IDE) for developing data experiments.

https://studio.azureml.net/

Microsoft Azure workspace

Training a ML model

Regression model with Azure ML Studio

REFERENCES

- https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
- https://www.bigcommerce.com/ecommerce-answers/what-csv-file-and-what-does-it-mean-my-ecommerce-business/#:~:text=A%20CSV%20is%20a%20comma,Microsoft%20Excel%20or%20Google%20Spreadsheets.
- 3. https://fileinfo.com/extension/json
- 4. https://www.w3resource.com/JSON/structures.php
- 5. https://www.shanelynn.ie/python-pandas-read-csv-load-data-from-csv-files/

THANK YOU