In [123]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
from sklearn.metrics import confusion_matrix,classification_report
```

In [124]:

```
birds=pd.read_csv('/home/anudeep/Downloads/bird.csv')
birds.head()
```

Out[124]:

	id	huml	humw	ulnal	ulnaw	feml	femw	tibl	tibw	tarl	tarw	type
0	0	80.78	6.68	72.01	4.88	41.81	3.70	5.50	4.03	38.70	3.84	SW
1	1	88.91	6.63	80.53	5.59	47.04	4.30	80.22	4.51	41.50	4.01	SW
2	2	79.97	6.37	69.26	5.28	43.07	3.90	75.35	4.04	38.31	3.34	SW
3	3	77.65	5.70	65.76	4.77	40.04	3.52	69.17	3.40	35.78	3.41	SW
4	4	62.80	4.84	52.09	3.73	33.95	2.72	56.27	2.96	31.88	3.13	SW

In [125]:

```
plt.scatter(birds['ulnaw'],birds['huml'])
```

Out[125]:

<matplotlib.collections.PathCollection at 0x7f0c614c6890>

In [126]:

```
import seaborn as sns
sns.heatmap(birds.isnull(),yticklabels=False)
```

Out[126]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f0c6147b610>

In [127]:

```
birds=birds.drop(['humw','ulnal','feml','femw','tibl','tibw','id','type','tarw','tarl'],axis=1)
birds.head()
```

Out[127]:

	huml	ulnaw
0	80.78	4.88
1	88.91	5.59
2	79.97	5.28
3	77.65	4.77
4	62.80	3.73

In [128]:

birds.describe()

Out[128]:

	huml	ulnaw
count	419.000000	418.000000
mean	64.650501	3.597249
std	53.834549	2.186747
min	9.850000	1.000000
25%	25.170000	1.870000
50%	44.180000	2.945000
75%	90.310000	4.770000
max	420.000000	12.000000

In [129]:

birds.isnull()

Out[129]:

	huml	ulnaw
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
415	False	False
416	False	False
417	False	False
418	False	False
419	False	False

420 rows × 2 columns

In [130]:

```
import seaborn as sns
sns.heatmap(birds.isnull(),yticklabels=False)
```

Out[1301:

<matplotlib.axes._subplots.AxesSubplot at 0x7f0c6142c8d0>

In [131]:

birds=birds.dropna() # removes rows having any single null value
sns.heatmap(birds.isnull(),yticklabels=False)

Out[131]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f0c613a1510>

In [132]:

plt.scatter(birds['ulnaw'],birds['huml'])

Out[132]:

<matplotlib.collections.PathCollection at 0x7f0c612f0e10>

In [133]:

```
km=KMeans(n_clusters=3)
km
```

Out[133]:

In [134]:

```
1, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
dtype=int32)
```

In [136]:

```
scaler = MinMaxScaler()
birds = pd.DataFrame(scaler.fit_transform(birds), columns=birds.columns)
birds
```

Out[136]:

	huml	ulnaw
0	0.172937	0.352727
1	0.192759	0.417273
2	0.170962	0.389091
3	0.165305	0.342727
4	0.129099	0.248182
413	0.019773	0.030000
414	0.022821	0.044545
415	0.021797	0.048182
416	0.025674	0.045455
417	0.019603	0.009091

418 rows × 2 columns

In [137]:

```
birds['cluster']=y_predicted
birds.head()
```

Out[137]:

	huml	ulnaw	cluster
0	0.172937	0.352727	1
1	0.192759	0.417273	1
2	0.170962	0.389091	1
3	0.165305	0.342727	1
4	0.129099	0.248182	0

In [138]:

```
df1=birds[birds.cluster==0]
df2=birds[birds.cluster==1]  # 5 different data frames each belonging to one cluster
df3=birds[birds.cluster==2]
#df4=birds[birds.cluster==3]
#df5=birds[birds.cluster==4]
#df6=birds[birds.cluster==5]

plt.scatter(df1.ulnaw,df1['huml'],color='green')
plt.scatter(df2.ulnaw,df2['huml'],color='red')
plt.scatter(df3.ulnaw,df3['huml'],color='black')

plt.xlabel('huml')
plt.ylabel('ulnaw')
plt.legend()
```

No handles with labels found to put in legend.

Out[138]:

<matplotlib.legend.Legend at 0x7f0c6120b7d0>

In [139]:

```
birds.head()
```

Out[139]:

	huml	ulnaw	cluster
0	0.172937	0.352727	1
1	0.192759	0.417273	1
2	0.170962	0.389091	1
3	0.165305	0.342727	1
4	0.129099	0.248182	0

In [140]:

```
km=KMeans(n_clusters=3)
y_predicted=km.fit_predict(birds[['huml','ulnaw']])
y_predicted
```

Out[140]:

```
1, 0, 0, 0, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
                                     1, 1,
   1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0, 1, 1,
    0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
    1, 0, 0, 0, 0, 1, 0, 1,
                     1, 0, 0, 1,
                 1,
                   1,
                           1,
                             0, 1,
                                2, 1,
                                    1,
    1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 2, 1,
    0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,
    1, 0, 0, 1, 2, 0, 1, 1,
                   Θ,
                 1,
                    1,
                      1,
                        1,
                          2,
                           1,
                             1,
                               1,
                                1,
                                  1,
                                    1,
    2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 2, 2, 2, 0, 0, 1, 1, 1, 1,
    0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    dtype=int32)
```

In [141]:

```
birds['cluster1']=y_predicted
birds.drop('cluster',axis='columns',inplace=True)
birds
```

Out[141]:

	huml	ulnaw	cluster1
0	0.172937	0.352727	1
1	0.192759	0.417273	1
2	0.170962	0.389091	1
3	0.165305	0.342727	1
4	0.129099	0.248182	1
413	0.019773	0.030000	0
414	0.022821	0.044545	0
415	0.021797	0.048182	0
416	0.025674	0.045455	0
417	0.019603	0.009091	0

418 rows × 3 columns

In [148]:

```
df1=birds[birds.cluster1==0]
df2=birds[birds.cluster1==1]  # 5 different data frames each belonging to one cluster
df3=birds[birds.cluster1==2]
#df4=birds[birds.cluster==3]
#df5=birds[birds.cluster==4]
#df6=birds[birds.cluster==5]

plt.scatter(df1.ulnaw,df1['huml'],color='green')
plt.scatter(df2.ulnaw,df2['huml'],color='red')
plt.scatter(df3.ulnaw,df3['huml'],color='black')
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',label='centroid')

plt.xlabel('huml')
plt.ylabel('ulnaw')
plt.legend()
```

Out[148]:

<matplotlib.legend.Legend at 0x7f0c611c1c90>

In [146]:

```
km.cluster_centers_
```

Out[146]:

In [149]:

```
k_rng =range(1,10)
sse=[]
for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit_predict(birds[['huml','ulnaw']])
    sse.append(km.inertia_)
```

In [150]:

sse

Out[150]:

```
[23.68097920799888,
8.114806978881068,
4.4002670800893675,
2.9674484389170788,
2.311481571446346,
1.7951443360064623,
1.4252434557499394,
1.229590458446783,
```

1.0516941849447923]

In [151]:

```
plt.xlabel('k')
plt.ylabel('sum of squared error')
plt.plot(k_rng,sse)
```

Out[151]:

[<matplotlib.lines.Line2D at 0x7f0c61153190>]

In []: