Transformation des colimites en limites par un foncteur contravariant

1 Énoncé du résultat

Soit $F: \mathcal{C} \to \mathcal{D}$ un foncteur **contravariant** entre deux catégories \mathcal{C} et \mathcal{D} . Alors, si X est une **colimite** dans \mathcal{C} , alors F(X) est une **limite** dans \mathcal{D} , c'est-à-dire :

$$F(\varinjlim X_i) = \varprojlim F(X_i).$$

2 Définitions et preuve

2.1 Colimite dans C

Un système inductif dans \mathcal{C} est une famille (X_i, f_{ij}) où les objets X_i sont indexés par un ensemble ordonné I, et où les $f_{ij}: X_i \to X_j$ sont des morphismes satisfaisant :

- $f_{ii} = id_{X_i}$ (identité),
- $f_{jk} \circ f_{ij} = f_{ik}$ pour $i \leq j \leq k$.

La colimite de ce système, notée $X = \varinjlim X_i$, est un objet X de $\mathcal C$ muni de morphismes $u_i: X_i \to X$ tels que :

- 1. Pour tout $i \leq j$, on a $u_j \circ f_{ij} = u_i$.
- 2. Si un autre objet Y et des morphismes $v_i: X_i \to Y$ satisfont $v_j \circ f_{ij} = v_i$, alors il existe un unique morphisme $v: X \to Y$ tel que $v \circ u_i = v_i$.

Autrement dit, X est **universel** parmi les objets recevant des morphismes compatibles depuis les X_i .

2.2 Application du foncteur contravariant

Puisque F est contravariant, il applique chaque morphisme $f_{ij}: X_i \to X_j$ à un morphisme inversé $F(f_{ij}): F(X_j) \to F(X_i)$ dans \mathcal{D} . Ainsi, $(F(X_i), F(f_{ij}))$ forme un système projectif dans \mathcal{D} .

Nous voulons montrer que l'objet F(X) est la **limite** de ce système projectif.

2.3 Limite dans \mathcal{D}

Un système projectif dans \mathcal{D} est une famille (Y_i, g_{ij}) où les $g_{ij}: Y_j \to Y_i$ sont des morphismes satisfaisant:

- $g_{ii} = \mathrm{id}_{Y_i}$,
- $g_{ij} \circ g_{jk} = g_{ik}$ pour $i \leq j \leq k$.

Une **limite projective** de ce système, notée $Y = \varprojlim Y_i$, est un objet muni de morphismes $v_i: Y \to Y_i$ tels que :

- 1. Pour tout $i \leq j$, on a $g_{ij} \circ v_j = v_i$.
- 2. Si un autre objet Z et des morphismes $w_i: Z \to Y_i$ satisfont $g_{ij} \circ w_j = w_i$, alors il existe un unique morphisme $w: Z \to Y$ tel que $v_i \circ w = w_i$.

Autrement dit, Y est universel parmi les objets recevant des morphismes compatibles vers les Y_i .

2.4 Preuve que $F(X) = \varprojlim F(X_i)$

En appliquant F à la propriété universelle de la colimite $X = \varinjlim X_i$, on obtient :

- Pour chaque i, le morphisme $u_i: X_i \to X$ devient $F(u_i): F(X) \to F(X_i)$.
- La compatibilité $u_j \circ f_{ij} = u_i$ devient $F(u_i) = F(f_{ij}) \circ F(u_j)$, ce qui signifie que les morphismes $F(u_i)$ forment une famille compatible de morphismes sur le système projectif $(F(X_i), F(f_{ij}))$.
- L'unicité du morphisme v dans la propriété universelle de X garantit que F(X) est bien l'objet universel pour cette famille compatible.

Donc, F(X) satisfait exactement la **définition d'une limite projective**, et on conclut que :

$$F(\varinjlim X_i) = \varprojlim F(X_i).$$

3 Conclusion

Un foncteur contravariant échange systématiquement limites inductives (colimites) et limites projectives (limites). Cette propriété découle directement de la définition des colimites et limites via leurs propriétés universelles.

Lemme 1. Soit $(V_i)_{i\in I}$ une famille non vide de vecteurs de dimension finie sur le même corps F et soit $\underset{i\in I}{\otimes}V_i$ le produit tensoriel infini des espaces vectoriels $(V_i)_{i\in I}$ où chaque V_i $(i\in I)$ est un espace vectoriel non nul. Soit $\mathcal{F}(I)$ l'ensemble des sous-ensembles finis de I. Alors,

$$\underbrace{\lim_{J \in \mathcal{F}(I)}} GL \left(\underset{i \in J}{\otimes} V_i \right) = GL \left(\lim_{\longrightarrow J \in \mathcal{F}(I)} \left(\underset{i \in J}{\otimes} V_i \right) \right)$$