Computer **Graphics**

CSE 4303 / CSE 5365 Backface Culling, 2020 Spring

① http://www.computerhistory.org/revolution/computer-graphics-music-and-art/15/206/556 ② http://www.cs.technion.ac.il/~gershon/site/img/gallery/gallery-pic-cat3-depth-cueing-2-big.jpg ③ http://www.comnigraphica.com/gallery/maingallery/original/Utah_teapot_1.png

① http://unfold.be/assets/images/000/113/719/large-utanalog3.jpg

Backface Culling

Backface Culling...

- A triangle v_1 , v_2 , v_3 is visible iff the *front* of the triangle is *facing* the camera position.
- The *front* of a triangle is defined by its *surface normal*.
 - Equal to the cross product of a vector from v_1 to v_2 with a vector from v_1 to v_3 .
- Let θ be the angle between the *surface normal* and a vector from the camera position to \mathbf{v}_1 of the triangle.
- The *front* of the triangle is *facing* the camera position iff $\pi/2 < \theta < 3\pi/2$.

Method Summary

A Triangle ... v_1 v_2

... Has this Surface Normal ...

Compute the Vector \vec{a} from v_1 to v_2 ...

And the Vector \vec{b} from v_1 to v_3 ...

To get the Surface Normal.

\dots To make the Angle $\boldsymbol{\theta}$ more obvious.

If $\pi/2 < \theta < 3\pi/2$, then the Triangle is Visible.

If $\pi/2 < \theta < 3\pi/2$, then the Triangle is Visible.

In this case, the triangle is visible as the angle θ is clearly greater than $\pi/2$ (90°) but less than $3\pi/2$ (270°).

