- 3.1 પ્રસ્તાવના
- 3.2 કાઇનેમેટિક્સ અને ડાઇનેમિક્સ
- 3.3 ક્શની સંકલ્પના
- 3.4 નિર્દેશફ્રેમ
- 3.5 સ્થાન, પથલંબાઈ અને સ્થાનાંતર
- 3.6 સરેરાશ ઝડપ અને સરેરાશ વેગ
- 3.7 ગતિ માટે સ્થાન-સમય (x t) આલેખો
- 3.8 તત્કાલીન (અથવા તાત્ક્ષણિક) વેગ અને તત્કાલીન ઝડપ
- 3.9 પ્રવેગ
- 3.10 પ્રવેગી ગતિ માટે x t અને v t ના આલેખો
- 3.11 નિયમિત પ્રવેગી ગતિનાં સમીકરણો
- 3.12 સાપેક્ષ વેગ
 - સારાંશ
 - સ્વાધ્યાય
 પરિશિષ્ટ 3.1 વિકલન
 પરિશિષ્ટ 3.2 સંક્લન

3.1 પ્રસ્તાવના (Introduction)

વિશ્વમાં ગતિનો ખ્યાલ એ સર્વસામાન્ય છે. રોજિંદા જીવનમાં જોવા મળતી ક્રિયાઓ જેવી કે ચાલવું, દોડવું, સાઇકલસવારી, શરીરમાં ભ્રમણ કરતું લોહી, નદીમાં વહેતું પાણી, આકાશમાં ઊડતાં પક્ષીઓ વિગેરે ગતિનાં ઉદાહરણો છે. કેટલીક ગતિ દશ્યમાન હોતી નથી. દા.ત., વાયુના અશુઓની અસ્તવ્યસ્ત ગતિ, વાહક તારમાં ઇલેકટ્રૉનની ગતિ. સ્થિર લાગતી વસ્તુઓ જેમકે રસ્તાઓ, ઝાડ, મકાનો વિગેરે પૃથ્વીના ભ્રમણ સાથે, પૃથ્વી સૂર્યની આસપાસ અને સૂર્ય પોતે પણ આકાશગંગામાં ગતિમાન છે. વિશ્વમાં રહેલી બીજી ગેલેક્સીઓની સાપેક્ષે આકાશગંગા ગતિમાં છે. આમ, વિશ્વમાં રહેલી દરેક વસ્તુઓ ગતિમાન છે.

જપારે કોઈ પદાર્થ બીજા કોઈ પદાર્થની સાપેક્ષે સમય સાથે પોતાનું સ્થાન બદલે છે, ત્યારે તે પદાર્થ બીજા પદાર્થની સાપેક્ષમાં ગતિ કરે છે તેમ કહેવાય. ગતિ ઘણા પ્રકારની હોઈ શકે, જેમકે રેખીય ગતિ (Linear motion), ચાક-ગતિ (Rotational motion), દોલનગતિ (Oscillatory motion) વગેરે. પ્રસ્તુત પ્રકરણમાં આપણે ગતિનો અભ્યાસ સુરેખપથ પર ગતિ કરતાં પદાર્થ, જેને સુરેખગતિ (Rectilinear motion) પણ કહે છે, તે પૂરતું સીમિત રાખીશું. આ માટે આપણે સ્થાનાંતર, વેગ, પ્રવેગ જેવી ભૌતિક રાશિઓનો ખ્યાલ મેળવીશું.

3.2 કાઇનેમેટિક્સ અને ડાઇનેમિક્સ (Kinematics and Dynamics)

ભૌતિકવિજ્ઞાનની જે શાખામાં ગતિની ચર્ચા, તે માટેનાં કારણોની ચિંતા કર્યા સિવાય કરવામાં આવે છે, તેને <mark>કાઇનેમેટિક્સ (શુદ્ધ ગતિશાસ્ત્ર)</mark> કહે છે.

ભૌતિકવિજ્ઞાનની જે શાખામાં ગતિની ચર્ચા, તે માટેનાં કારણો તથા ગતિ કરતી વસ્તુના ગુણધર્મ સહિત કરવામાં આવે છે, તેને ડાઇનેમિક્સ (ગતિશાસ્ત્ર) કહે છે.

કાઇનેમેટિક્સ અને ડાઇનેમિક્સને સંયુક્ત રીતે મિકેનિક્સ (Mechanics) કહે છે. પ્રસ્તુત પ્રકરણમાં આપણે ફક્ત કાઇનેમેટિક્સનો અભ્યાસ કરીશું. 3.3 ક્શની સંકલ્પના (Concept of a Particle)

ગતિના અભ્યાસમાં ગતિમાન પદાર્થોને આપશે ક્લા તરીકે ધારીશું. કલા એટલે દળ ધરાવતો બિંદુવત્ પદાર્થ. વાસ્તવમાં આવો કોઈ પદાર્થ મળી શકે જ નહિ, કારણ કે પદાર્થને કંઈક ને કંઈક પરિમાણો તો હોવાનાં જ, પરંતુ અમુક સંજોગોમાં આપેલ પદાર્થને ક્લા તરીકે લઈ શકાય છે. આ સંજોગો નીચે મુજબ છે :

(i) માત્ર સુરેખગતિ કરતાં કોઈ પણ ઘનપદાર્થના બધા જ કર્ણો સમાન સમયમાં સમાન અંતર કાપે છે, માટે આ પદાર્થની ગતિની ચર્ચા તેના કોઈ એક પ્રતિનિધિ ક્રણની ગતિ પરથી કરી શકાય છે.

(ii) જ્યારે બે પદાર્થો વચ્ચેના અંતરની સરખામણીમાં તે પદાર્થોનાં પરિમાણો અવગણ્ય હોય, તે સંજોગોમાં તે પદાર્થોને કણ તરીકે ગણી શકાય. દા. ત., પૃથ્વી અને સૂર્ય વચ્ચે લાગતા ગુરુત્વાકર્ષણ બળની ગણતરી વખતે પૃથ્વી અને સૂર્ય એ બંનેને કણ તરીકે લઈ શકાય.

3.4 નિર્દેશફ્રેમ (Frame of Reference)

કોઈ પણ પદાર્થ ગતિ કરે છે કે તે સ્થિર છે, તે કઈ રીતે જાણી શકાય ? આ પ્રશ્નનો જવાબ આપણે એક ઉદાહરણ પરથી સમજીશું. અચળ વેગથી ગતિ કરતી તમારી ટ્રેનમાં રહેલી બૅગ તમને સ્થિર લાગશે. પરંતુ જો આ બૅગનું અવલોકન રોડ પર ઊભેલી વ્યક્તિ દ્વારા કરવામાં આવે, તો તેને તે જ બૅગ ગતિમાં દેખાશે. આમ, બૅગ તો તેની તે જ સ્થિતિમાં છે, પરંતુ જો તમે ટ્રેનમાંથી અવલોકન કરો, તો તે બૅગ સ્થિર જણાશે અને રસ્તા પરથી અવલોકન કરતાં બૅગ ગતિ કરતી જણાશે. રસ્તા પર આપણને દેખાતાં ઝાડ, મકાન વગેરે સ્થિર દેખાય છે, પરંતુ જો તેમનું ચંદ્ર પરથી અવલોકન કરવામાં આવે, તો તે ગતિમાન જણાશે. આમ, કોઈ પદાર્થની ગતિ એ તે પદાર્થ અને અવલોકનકારનો સંયુક્ત ગુણધર્મ છે અથવા બીજા શબ્દોમાં કહીએ, તો ગતિ એ સાપેક્ષ ખ્યાલ છે.

અવલોકનકાર જે સ્થળેથી જે પરિસ્થિતિમાંથી અવલોકન કરે છે, તેને નિર્દેશકેમ કહે છે. ઉપર્યુક્ત ઉદાહરણમાં ટ્રેનમાં બેઠેલ વ્યક્તિ માટે અચળવેગી ટ્રેન એ નિર્દેશ કેમ છે, જ્યારે રોડ પર ઊભેલી વ્યક્તિ માટે 'સ્થિર' પૃથ્વી નિર્દેશક્રેમ છે. નિર્દેશક્રેમ બે પ્રકારની હોય છે : જડત્વીય નિર્દેશક્રેમ (Inertial frame of reference) અને અજડત્વીય નિર્દેશફ્રેમ (Non-inertial frame of reference). આ વિશે આપણે પ્રકરણ 5માં અભ્યાસ કરીશું. 3.5 સ્થાન, પથલંબાઈ અને સ્થાનાંતર (Position,

Pathlength and Displacement)

કોઈ પણ કણની ગતિનું વર્શન કરવા માટે સમયની દરેક ક્ષણે તે ક્શનું સ્થાન જાણવું પડે. કણનું સ્થાન નક્કી કરવા માટે નિર્દેશફ્રેમની જરૂર પડે છે. કઈ નિર્દેશફ્રેમ લેવી તે માટેના કોઈ જ નિયમો નથી. આપણને સરળ પડે તેવી કોઈ પણ નિર્દેશફ્રેમ લેવાની છૂટ છે. સામાન્ય રીતે, પરસ્પર લંબ હોય તેવી ત્રણ અક્ષો પસંદ કરી તેમને X, Y અને Z (અનુક્રમે વિષમ ઘડી દિશામાં) અક્ષ એવું નામ આપી શકાય. આ અક્ષોનું છેદનબિંદુ (ઊગમબિંદુ) O ને સંદર્ભબિંદુ (Reference point) તરીકે

લઈ શકાય. આ ઊગમબિંદુની સાપેક્ષે ક્શના યામો (x, y, z) તે ક્શનું, તે નિર્દેશફ્રેમની સાપેક્ષે સ્થાન દર્શાવે છે તેમ કહેવાય. સમય માપવા માટે આ યામપદ્ધતિમાં ઘડિયાળ ઉમેરી દઈએ.

આકૃતિ 3.1માં t_1 સમયે ગતિમાન ક્શના સ્થાનયામ (x_1, y_1, z_1) છે અને t_2 સમયે સ્થાનયામ (x_2, y_2, z_2) છે, જે આપેલ નિર્દેશફ્રેમની સાપેક્ષે સ્થાન દર્શાવે છે.

હવે જો સમય સાથે કણના બધા જ યામો અફર રહેતા હોય, તો તે નિર્દેશફ્રેમની સાપેક્ષે કણ સ્થિર છે, તેમ કહેવાય, અને જો તેમાંના કોઈ એક કે વધુ યામો બદલાતા હોય, તો તે કણ નિર્દેશફ્રેમની સાપેક્ષમાં ગતિ કરે છે, તેમ કહેવાય.

ગતિ કરતાં ક્શના સ્થાનના યામોમાં ફક્ત કોઈ એક યામ સમય સાથે બદલાતો હોય, તો તે ક્શની એક પારિમાશિક ગતિ અથવા સુરેખગતિ કહેવાય. દા. ત., ટાવરની ટોચ પરથી મુક્તપતન કરતો પદાર્થ, સીધી સડક પર ચાલતી કાર.

કણની ગતિ દરમિયાન તેના સ્થાનયામોમાંથી કોઈ પણ બે યામો સમય સાથે બદલાતા હોય, તો દ્વિ-પારિમાણિક અને ત્રણ યામો બદલાતા હોય, તો તેને ત્રિ-પારિમાણિક ગતિ કહે છે. સૂર્યની આસપાસ ભ્રમણ કરતી પૃથ્વી, કેરમબોર્ડની ફૂકરીની ગતિએ દ્વિ-પારિમાણિક ગતિ છે. જયારેબગીચામાં ઊડતા પતંગિયાં એ ત્રિ-પારિમાણિક ગતિનું ઉદાહરણ છે.

કણની સુરેખપથની ગતિ માટે આપણે અક્ષ (દા. ત., X—અક્ષ) એવી રીતે પસંદ કરી શકીએ, જેથી તે કણના પથ પર સંપાત થાય. આકૃતિ 3.2માં દર્શાવ્યા અનુસાર સરળતા ખાતર કણનું સ્થાન ધારો કે ઊગમબિંદુ Oની સાપેક્ષે નક્કી કરવામાં આવે છે. બિંદુ Oની જમણી બાજુનાં સ્થાનો ધન અને ડાબી બાજુનાં સ્થાનોને ઋણ લેવામાં આવે છે.

પથલંબાઈ (Pathlength) : કોઈ સમયગાળામાં કરો કાપેલા અંતરને પથલંબાઈ અથવા કુલ અંતર કહે છે.

સ્થાનાંતર (Displacement) : કોઈ સમયગાળામાં કણના સ્થાનમાં થતાં ફેરફારને સ્થાનાંતર કહે છે. જો t_1 સમયે પદાર્થનું પ્રારંભિક સ્થાન x_1 અને t_2 સમયે અંતિમ સ્થાન x_2 હોય, તો $\Delta t = t_2 - t_1$ સમયગાળામાં સ્થાનાંતર = અંતિમસ્થાન - પ્રારંભિક સ્થાન

$$\Delta x = x_2 - x_1$$

પથલંબાઈ અને સ્થાનાંતરનો SI પદ્ધતિમાં એકમ મીટર (m) છે. હવે, આપશે આ બંને રાશિઓ વચ્ચેનો ભેદ નીચેના ઉદાહરણ દ્વારા સમજીએ.

ધારો કે એક કાર X-અક્ષની દિશામાં ગતિ કરે છે. આકૃતિ 3.2 માં દર્શાવ્યા મુજબ કાર t_1 સમયે A પર છે અને તે બિંદુ B પર જઈને સમય t_2 એ બિંદુ C પર આવે છે.

અહીં
$$\Delta t = t_2 - t_1$$
, જેટલા સમયગાળામાં, પથલંબાઈ = AB + BC = $(80 - 20)$ + $(80 - 40)$ = $+100$ km સ્થાનાંતર = અંતિમ સ્થાન – પ્રારંભિક સ્થાન

(બિંદુ C) (બિંદુ A)
=
$$40 - 20 = +20 \text{ km}$$

આ કિસ્સામાં પથલંબાઈ અને સ્થાનાંતર બંને ધન છે.

સ્થાનાંતરની દિશા ધન X—અક્ષની દિશામાં છે. જો કાર B બિંદુએથી ગતિની શરૂઆત કરી C બિંદુએ આવે તો, પથલંબાઈ = 80 – 40 = 40 km થશે અને સ્થાનાંતર = 40 – 80 = -40 km થશે. આમ, સ્થાનાંતર ઋણ પણ હોઈ શકે. અહીં, કારનું સ્થાનાંતર X—અક્ષની દિશામાં છે. ઉપરના ઉદાહરણમાં કાર A બિંદુએથી ગતિ કરી B બિંદુએ જઈ પાછી A બિંદુ પર આવે, તો પથલંબાઈ + 120 km પરંતુ કારે કરેલું સ્થાનાંતર શૂન્ય થશે. આ ઉદાહરણથી સ્પષ્ટ છે કે પથલંબાઈ હંમેશાં ધન હોય છે, પરંતુ સ્થાનાંતર ધન, ઋણ કે શૂન્ય પણ હોઈ શકે છે. સ્થાનાંતર પરથી કારની ગતિના ગતિપથની માહિતી મળતી નથી, તે તો કારની ગતિની માત્ર પરિણામી અસર દર્શાવે છે.

સ્થાનાંતરને મૂલ્ય અને દિશા બંને છે. આવી ભૌતિક રાશિઓનું નિરૂપણ સદિશો દ્વારા કરવામાં આવે છે. સદિશો વિશેનો અભ્યાસ આપણે પ્રકરણ 4માં કરીશું. એક પરિમાણમાં કણ ફક્ત બે દિશાઓ (આગળની તરફ અને પાછળની તરફ અથવા ઉપરની તરફ અને નીચેની તરફ)માં ગતિ કરી શકે છે. સરળતા ખાતર આ બંને દિશાઓને + અને – સંજ્ઞાઓ દ્વારા વ્યક્ત કરી શકાય.

ઉદાહરણ 1 : એક કણ, r ત્રિજ્યાવાળા વર્તુળાકાર પથ પર વિષમઘડી દિશામાં ગતિ કરે છે. આકૃતિ 3.3માં દર્શાવ્યા અનુસાર તે ગતિની શરૂઆત બિંદુ Aથી કરે છે. નીચે દર્શાવેલા કણની ગતિના કિસ્સાઓમાં કણે કાપેલું કુલ અંતર (પથલંબાઈ) અને કરેલ સ્થાનાંતરનું મૂલ્ય શોધો.

(i) Aથી B (ii) Aથી C (iii) Aથી D (iv) ક્શનું એક પરિભ્રમણ.

આકૃતિ 3.3

ઉકેલ :

(i) Aથી B સુધી કર્ણ કાપેલ અંતર એ વર્તુળના પરિધના ચોથા ભાગ જેટલું છે. આથી,

પથલંબાઈ
$$=rac{2\pi r}{4}=rac{\pi r}{2}$$

સ્થાનાંતર $=$ $|$ AB $|$ $=$ $\sqrt{\mathrm{OA}^2+\mathrm{OB}^2}$
 $=\sqrt{r^2+r^2}=\sqrt{2}\,r$

(ii) Aથી C સુધી કશે કાપેલું કુલ અંતર.

પથલંબાઈ
$$=\frac{2\pi r}{2}=\pi r$$

સ્થાનાંતર =
$$|AC| = r + r = 2r$$

(iii) Aથી D સુધી કરો કાપેલું અંતર,

પથલંબાઈ
$$=2\pi r imes rac{3}{4} = rac{3}{2}\pi r$$

સ્થાનાંતર = I AD I =
$$\sqrt{r^2 + r^2}$$
 = $\sqrt{2} r$

(iv) એક પરિભ્રમણ દરમિયાન કર્ણ કાપેલું અંતર, વર્તુળના પરિઘ જેટલું હશે. આથી પથલંબાઈ $=2\pi r$

એક પરિભ્રમણ બાદ કણ મૂળ સ્થાન A પર પાછો આવતો હોવાથી સ્થાનાંતર શૂન્ય થશે.

3.6 સરેરાશ ઝડપ (Average Speed) અને સરેરાશ વેગ (Average Velocity)

જ્યારે કોઈ પદાર્થ ગતિ કરતો હોય, ત્યારે સમય સાથે તેનું સ્થાન સતત બદલાતું જતું હોય છે. ગતિનો અભ્યાસ કરવા માટે સૌપ્રથમ એ જાણવું જરૂર બને છે કે પદાર્થ સમય સાથે પોતાનું સ્થાન કેટલી ત્વરાથી બદલે છે. આ માટે સરેરાશ ઝડપ નામની રાશિ વ્યાખ્યાયિત કરવામાં આવે છે.

પદાર્થની પથલંબાઈ (એટલે કે કાપેલ કુલ અંતર) અને તે માટે લાગતા સમયના ગુશોત્તરને **સરેરાશ ઝડપ** કહે છે. તેને સંકેતમાં < v > અથવા \overline{v} વડે દર્શાવવામાં આવે છે. આમ, આપેલ સમયગાળામાં,

સરેરાશ ઝડપ =
$$\frac{\text{પથ લંબા $}6}{\text{સમય ગાળો}}$$$

જો કોઈ પદાર્થ Δt જેટલા સમયગાળામાં Δx જેટલું અંતર કાપ્યું હોય તો આ સમયગાળામાં સરેરાશ ઝડપ,

$$\langle v \rangle = \frac{\Delta x}{\Delta t}$$
 (3.6.1)

હવે, પ્રશ્ન એ ઉદ્દ્ભવે કે, પદાર્થ કેટલી ત્વરાથી અને કઈ દિશામાં પોતાનું સ્થાન બદલે છે ? આ માટે આપણે સરેરાશ વેગ નામની ભૌતિક રાશિ વ્યાખ્યાયિત કરીશું.

પદાર્થના સ્થાનાંતર અને તે માટે લાગતા સમયના ગુણોત્તરને સરેરાશ વેગ કહે છે.

સરેરાશ વેગ =
$$\frac{\text{સ્થાનાંતર}}{\text{સમયગાળો}}$$
 (3.6.2)

સરેરાશ ઝડપ અને સરેરાશ વેગનો SI એકમ ms^{-1} છે, વ્યવહાર ઉપયોગો માટે તેનો એકમ kmh^{-1} પણ વપરાય છે. સરેરાશ ઝડપમાં દિશાનું મહત્ત્વ નથી, પરંતુ સરેરાશ વેગમાં દિશાનું મહત્ત્વ છે. આગળ આપણે સ્પષ્ટ કરી ચૂક્યા છીએ કે સુરેખપથ પર ગતિની દિશા + અથવા – સંજ્ઞા વડે વ્યક્ત કરી શકાય છે. આથી પ્રસ્તુત પ્રકરણમાં આપણે વેગ માટે સદિશ સંજ્ઞાનો ઉપયોગ કરીશું નહિ. આ હકીકત સમજવા માટે આપણે એક ઉદાહરણ લઈએ. આકૃતિ 3.1માં દર્શાવ્યા મુજબ ધારો કે કાર t=0, સમયે A પર છે અને તે બિંદુ B પર જઈને 2 કલાકમાં બિંદુ C પર આવે છે. આ સમયગાળા માટે કારની સરેરાશ ઝડપ,

$$\overline{v} = \frac{\text{પથ લંબાઈ}}{\text{સમયગાળો}} = \frac{100}{2} = +50 \text{ kmh}^{-1}$$

સરેરાશ વેગ =
$$\frac{\text{સ્થાનાંતર}}{\text{સમયગાળો}}$$
 = $\frac{40 - 20}{2}$ = +10 kmh $^{-1}$

'+' સંજ્ઞા સૂચવે છે કે કારનો સરેરાશ વેગ ધન X દિશામાં છે.

હવે, જો કાર 3 કલાકમાં A–B–C–O માર્ગ ગતિ કરીને બિંદુ O પર આવે, તો

સરેરાશ ઝડપ =
$$\frac{140}{3}$$
 = +46.6 kmh⁻¹

સરેરાશ વેગ =
$$\frac{0-20}{3}$$
 = -6.66 kmh⁻¹

અહીં, કારનો સરેરાશ વેગ ઋણ X દિશામાં છે.

આમ, સરેરાશ વેગ ધન, ઋણ અથવા શૂન્ય હોઈ શકે છે, જે સ્થાનાંતરની સંજ્ઞા પર આધારિત છે. પદાર્થની સરેરાશ ઝડપ, પદાર્થના સરેરાશ વેગના મૂલ્ય જેટલી અથવા તેના કરતાં વધુ હોય છે.

અહીં, સરેરાશ શબ્દ વાપરવા પાછળનું કારણ એક ઉદાહરણ દ્વારા સમજીશું. ધારો કે એક કાર અમદાવાદથી સવારે 10 વાગે ઊપડીને બપોરે 12 વાગે વડોદરા પહોંચે છે. અમદાવાદ અને વડોદરા વચ્ચેનું અંતર 100km છે. આ પરથી કારની સરેરાશ ઝડપ 50 kmh⁻¹ થાય. આનો અર્થ એવો નથી કે અમદાવાદથી નીકળેલી કારની ઝડપ વડોદરા પહોંચે ત્યાં સુધી 50 kmh⁻¹ રહી હશે. રસ્તો ખુલ્લો મળ્યો હોય, તો તેની ઝડપ 80 kmh⁻¹ પણ થઈ હોય અને રેલવેનું ફાટક બંધ હોય, તો ઝડપ શૂન્ય પણ થશે. હવે સ્પષ્ટ થઈ ગયું હશે કે આ 50 kmh⁻¹ એ તો કારની સરેરાશ ઝડપ થઈ.

ઉદાહરણ 2 : કોઈ એક વાહન જુદી-જુદી ઝડપોથી જુદાં-જુદાં અંતરો એક જ દિશામાં કાપે છે. આ વાહન માટે સરેરાશ ઝડપનું સૂત્ર મેળવો.

ઉકેલ : ધારો કે વાહન v_1 , v_2 , v_3 , જેટલી ઝડપોથી અનુક્રમે d_1 , d_2 , d_3 , અંતરો એક જ દિશામાં કાપે છે.

 \therefore વાહને કાપેલ કુલ અંતર $D = d_1 + d_2 + d_3 + \dots$ આ માટે લીધેલો કુલ સમય $t = t_1 + t_2 + t_3 + \dots$

$$= \frac{d_1}{v_1} + \frac{d_2}{v_2} + \frac{d_3}{v_3} + \dots$$

 \therefore સરેરાશ ઝડપ $=rac{\mathrm{D}}{t}$

$$= \frac{d_1 + d_2 + d_3 + \dots}{\frac{d_1}{v_1} + \frac{d_2}{v_2} + \frac{d_3}{v_3} + \dots}$$

ખાસ કિસ્સો : જો વાહન બે જુદી-જુદી ઝડપો v_1 અને v_2 થી સમાન અંતરો $(d_1=d_2=d)$ કાપે, તો

સરેરાશ ઝડપ =
$$\frac{d + d}{\frac{d}{v_1} + \frac{d}{v_2}} = \frac{2v_1v_2}{v_1 + v_2}$$

ઉદાહરણ 3: એક વ્યક્તિ પોતાને ચાલવાના કુલ અંતરમાંથી અડધું અંતર v_0 , જેટલી ઝડપથી ચાલે છે. બાકીનું અડધું અંતર ચાલવા માટે લાગતા સમયના અડધા સમય દરમિયાન તેની ઝડપ v_1 અને તે પછીના અડધા સમય દરમિયાન તેની ઝડપ v_2 હોય, તો આટલું કુલ ચાલવા દરમિયાન વ્યક્તિની સરેરાશ ઝડપ શોધો.

63લ : ધારો કે ચાલવાનું કુલ અંતર d છે. પ્રથમ

અડધું અંતર $\left(\frac{d}{2}\right)$ ચાલતાં લાગતો સમય $=t_1$ અને

બાકીનું અડધું અંતર ચાલતાં લાગતો સમય 2t છે.

∴ કાપેલ અંતર = સરેરાશ ઝડપ × સમયનો ઉપયોગ

કરતાં,
$$\frac{d}{2} = v_0 t_1$$
 અને તેથી $t_1 = \left(\frac{d}{2v_0}\right)$

અને
$$\frac{d}{2} = v_1 t + v_2 t = (v_1 + v_2)t$$

$$\therefore 2t = \left(\frac{d}{v_1 + v_2}\right)$$

આમ, d જેટલું કુલ અંતર કાપતાં લાગતો કુલ સમય $= t_1 + 2t$ થશે.

$$\therefore$$
 વ્યક્તિની સરેરાશ ઝડપ $< v> = rac{d}{t_1 + 2t}$

$$= \frac{d}{\left(\frac{d}{2v_0}\right) + \left(\frac{d}{v_1 + v_2}\right)}$$

$$= \frac{2v_0(v_1 + v_2)}{v_1 + v_2 + 2v_0}$$

3.7 ગતિ માટે સ્થાન-સમય (x - t) આલેખો

આગળ આપશે અભ્યાસ કરી ચૂક્યા છીએ કે પદાર્થની ગિત, સ્થાન-સમયના આલેખ દ્વારા વ્યક્ત કરી શકાય છે. આલેખ જેવા Powerful tool દ્વારા પદાર્થની ગતિનાં અલગ અલગ પાસાંઓનું નિરૂપણ તેમજ વિશ્લેષણ સરળતાથી કરી શકાય છે. પદાર્થની X—અક્ષ પરની ગિત દરમિયાન સમયની સાથે ફક્ત x—યામ બદલાતો હોય છે. આ પરથી આપણને x-t આલેખ મળે છે. આ **આલેખનો ઢાળ** = $\frac{\Delta x}{\Delta t} = tan\theta$ આપેલા સમયગાળા માટે પદાર્થનો સરેરાશ વેગનું મૂલ્ય આપે છે. જ્યાં, θ એ સમય-અક્ષ સાથે આલેખનો કોણ છે. જુદા-જુદા પ્રકારની ગિત માટે x-t આલેખો આકૃતિ 3.4 માં દર્શાવ્યા છે.

જુદા-જુદા પ્રકારની ગતિ માટે x-t આલેખો આકૃતિ 3.4

(i) જો x-t આલેખ સમય-અક્ષને સમાંતર રેખા મળે, તો પદાર્થ સ્થિર સ્થિતિમાં છે, તેમ કહેવાય. આકૃતિ 3.4(a), માં આલેખના ઢાળનું મૂલ્ય શૂન્ય મળતું હોવાથી પદાર્થ x_0 આગળ સ્થિર (વેગ શૂન્ય) છે.

(ii) સુરેખપથ પર ગતિ કરતો પદાર્થ, સમાન સમયગાળામાં સમાન અંતર કાપે, તો પદાર્થ પથ પર નિયમિત ગતિ (અચળવેગી) (Uniform motion) કરે છે તેમ કહેવાય. આ પ્રકારની ગતિ માટે આકૃતિ 3.4 (b)માં દર્શાવ્યા અનુસાર

સુરેખા મળે છે. આ સુરેખાનો ઢાળ $\left(=\frac{x_2-x_1}{t_2-t_1}\right)$ ધન હોવાથી કહી શકાય કે પદાર્થનો સરેરાશ વેગ ધન છે અને

તે + X દિશામાં ગતિ કરે છે. જો સુરેખાનો ઢાળ ઋષા મળે, તો પદાર્થનો સરેરાશ વેગ ઋષા થશે અને પદાર્થ ઋષા X દિશામાં ગતિ કરે છે, તેમ કહેવાય. (જુઓ આકૃતિ 3.4 (c),

(iii) જો x - t આલેખ સળંગ રેખાને બદલે ચઢાવ-ઉતારવાળો કે વક્ર મળે તો પદાર્થ **અનિયમિત ગતિ (Non– uniform motion)** કરે છે, તેમ કહેવાય, (જુઓ આકૃતિ 3.4 (d)).

ઉદાહરણ: 4 એક મોટરસાઇકલસવાર તેના ઘરેથી નિયમિત ગતિથી પૂર્વ દિશામાં સીધી રેખા પર 120 m દૂર આવેલા પેટ્રોલ પંપ પર 60 s, માં પહોંચે છે. તે પેટ્રોલ પુરાવવા માટે 120 s ઊભો રહે છે. ત્યાર બાદ મોટરસાઇકલસવાર 90 s માં તે નિયમિત ગતિથી જ રસ્તે ઘરે આવે છે. 90 s બાદ તે મોટરસાયકલ પર ઘરેથી ઑફિસ જવા નીકળે છે. ઑફિસ તેના ઘરથી પશ્ચિમ દિશામાં સીધી રેખા પર 300 m ના અંતરે આવેલી છે. આ માટે તે 120 s જેટલો સમય લે છે. આ મોટરસાઇકલ માટે સ્થાન-સમયનો આલેખ દોરો અને તેના જુદા-જુદા સમયગાળા માટે સરેરાશ વેગ શોધો.

ઉકેલ :

આકૃતિ 3.5

ઘરને ઊગમબિંદુ (O) તરીકે લઈ, પૂર્વ દિશાનાં અંતરો ધન (+Yની દિશા) અને પશ્ચિમ દિશાનાં અંતરો ઋણ (–Y દિશા) લેતાં, મોટરસાઇકલ માટે સ્થાન-સમયનો આલેખ (આકૃતિ 3.5) માં દર્શાવ્યા મુજબ મળશે.

OA વિભાગમાં મોટરસાઇકલનો સરેરાશ વેગ

$$= \frac{\Delta x}{\Delta t} = \frac{120 - 0}{60 - 0} = +2m \text{ s}^{-1}$$

AB વિભાગમાં મોટરસાઇકલ પેટ્રોલપંપ આગળ સ્થિર છે. આથી આ સમયગાળામાં તેનો સરેરાશ વેગ શુન્ય થશે.

BC વિભાગમાં સરેરાશ વેગ

$$=\frac{\Delta x}{\Delta t} = \frac{0-120}{270-180} = -1.33 \text{m s}^{-1}$$

CD વિભાગમાં મોટરસાઇકલ ઘરે હોવાથી તેનો વેગ શુન્ય થશે.

DE વિભાગમાં સરેરાશ વેગ

$$= \frac{\Delta x}{\Delta t} = \frac{-300 - 0}{480 - 360} = -2.5 \text{m s}^{-1}$$

અહીં, '+' અને '–' સંજ્ઞા દર્શાવે છે કે મોટરસાઇકલનો સરેરાશ વેગ અનુક્રમે પૂર્વ અને પશ્ચિમ દિશામાં છે.

3.8 તત્કાલીન (અથવા તાત્કાણિક) વેગ અને તત્કાલીન ઝડપ (Instantaneous Velocity and Instantaneous Speed)

સરેરાશ વેગ (સરેરાશ ઝડપ)ની ચર્ચામાં આપણે જોઈ ગયા કે કોઈ પણ સમયગાળામાં મળતો વેગ ફક્ત એટલી માહિતી આપે છે કે તે સમયગાળામાં પદાર્થે કેટલી ઝડપથી ગતિ કરી. પરંતુ આ સમયગાળાની જુદી-જુદી ક્ષણે તેનો વેગ કેટલો છે, તે માહિતી તેના પરથી મળતી નથી.

ધારો કે એક-પારિમાણિક ગતિ કરતો કોઈ ક્શ t સમયે x અને $t+\Delta t$ સમયે $x+\Delta x$ પાસે છે. આ સંજોગોમાં સમીકરણ (3.6.2)માં દર્શાવ્યા મુજબ Δt સમયગાળા દરમિયાન તે ક્શનો વેગ મેળવી શકાય, પરંતુ આ બે ક્ષણો વચ્ચે આવેલી (સૈદ્ધાંતિક રીતે અનંત) ક્ષણો દરમિયાન ક્શના વેગમાં વધારો કે ઘટાડો થયો હોય તેની માહિતી મળતી નથી. પરંતુ એટલું તો સ્પષ્ટ છે કે ક્શને પોતાનો વેગ બદલવા માટે જેમ ઓછો ને ઓછો સમયગાળો Δt આપીએ તેમ તેના વેગ વિશે વધુ ને વધુ ચોક્કસ માહિતી મળતી જાય. આ હકીકત સ્પષ્ટ કરવા માટે આપણે નીચેનું ઉદાહરણ સમજીએ.

ધારો કે કોઈ કાર સ્થિર સ્થિતિમાંથી t=0 સમયે શરૂ કરી સુરેખપથ પર +X દિશામાં ગતિ કરે છે. કારનો વેગ સમય સાથે વધતો જાય છે. કારમાં બેઠેલી વ્યક્તિ દર

સેકન્ડે સ્પીડોમીટરનું અવલોકન અને કાપેલ અંતરનું અવલોકન નોંધતો જાય છે. સ્પીડોમીટર એ જે-તે ક્ષણે કારની ઝડપ દર્શાવે છે, પરંતુ આપણી કાર એક જ દિશામાં ગતિ કરતી હોવાથી ઝડપ અને વેગનાં મૂલ્યો સરખાં મળશે. સામાન્ય રીતે સ્પીડોમીટરનું અવલોકન kmh^{-1} માં હોય છે. પણ ધારો કે આપણી (કલ્પિત) કારમાં તે m s⁻¹માં છે. આ અવલોકનો ટેબલ 3.1 માં દર્શાવ્યા છે.

ટેબલ 3.1

સમય <i>t</i> (s)	ઉદ્ ગમબિંદુ થી સ્થાનાંતર	સ્પીડોમીટરનું અવલોકન
	<i>x</i> (m)	v (ms ⁻¹)
0	0	0
1	1.5	3
2	6	6
3	13.5	9
4	24	12
5	37.5	15
6	54	18

ધારો કે આપણે t=3 સેકન્ડે કારનો વેગ શોધવો છે. વેગની ગણતરી કરવા માટે કારે કરેલ સ્થાનાંતર અને આ સ્થાનાંતર માટે કંઈક સમય આપવો પડે. ધારો કે t=3 s થી $t+\Delta t=6$ s એટલે કે $\Delta t=3$ s લઈએ, તો આ સમયગાળા દરમિયાન,

સરેરાશ વેગ =
$$\frac{54 - 13.5}{3}$$
 = +13.5m s⁻¹

પરંતુ ટેબલ પરથી જોઈ શકાય છે કે, t=3 s સેકન્ડે કારનું સ્પીડોમીટર 9m s $^{-1}$ દર્શાવે છે. આ સમયગાળામાં મળતાં સરેરાશ વેગનું મૂલ્ય સાચા મૂલ્ય કરતાં ઘણું દૂર છે.

હવે, આપણે સમયગાળો નાનો કરીને $\Delta t=1$ s, લઈએ. આ સમયગાળામાં,

સરેરાશ વેગનું મૂલ્ય =
$$\frac{24 - 13.5}{4 - 3}$$
 = 10.5m s⁻¹

અહીં, કારની ગતિ સ્થાન સમીકરણ $x=1.5t^2$. અનુસાર ગતિ કરે છે. આ પરથી t=3 s અને t=3.1 s સેકન્ડે કારનું સ્થાન અનુક્રમે x=13.5m અને x=14.415m મળશે. હવે, $\Delta t=0.1$ s જેટલા નાના સમયગાળામાં સરેરાશ વેગનું મૂલ્ય મેળવીએ તો,

સરેરાશ વેગનું મૂલ્ય =
$$\frac{14.415 - 13.5}{3.1 - 3}$$
$$= 9.15 \text{m s}^{-1}$$

સમયગાળો હજુ નાનો $\Delta t = 0.05$ s, લેતાં સરેરાશ વેગ $9.07 \, \mathrm{ms}^{-1}$ છે.

આમ, જેમજેમ આ સમયગાળો ઓછો ને ઓછો કરતાં જઈશું તેમતેમ મળતા સરેરાશ વેગનું મૂલ્ય અને ખરેખર મૂલ્ય વચ્ચેનો તફાવત ઘટતો જશે. હવે પ્રશ્ન એ થાય કે કેટલા ઓછા સમયગાળાને પૂરતો ઓછો સમયગાળો ગણવો. તમે ધોરણ 12 માં ગણિતમાં ભણશો કે સમયગાળો શૂન્યવત્ નાનો (પણ શૂન્ય નહિ) લેવો

હોય, તો તેની સંજ્ઞા $\Delta t \to 0$ છે. આનો અર્થ એ થાય કે t અને $t + \Delta t$ એ સમયની બે જુદી-જુદી ક્ષણો ન ગણતાં લગભગ એક જ ક્ષણ ગણી શકાય. આ સંજોગોમાં મેળવેલ સરેરાશ વેગના મૂલ્યને t સમય તત્કાલીન વેગનું મૂલ્ય અથવા વેગનું મૂલ્ય કહે છે. આ હકીકતને સંકેતમાં નીચે મુજબ દર્શાવી શકાય,

$$t$$
 સમયે તત્કાલીન વેગ $v=\sum_{t=0}^{lim} \frac{\Delta x}{\Delta t}=\frac{dx}{dt}$ (3.7.1)

અહીં, સંકેત $\frac{dx}{dt}$ ને x નું t પ્રત્યે (કે tની સાપેક્ષમાં) વિકલિત કહે છે. જે સ્થાન x નો સમયની સાપેક્ષે બદલવાનો દર દર્શાવે છે. $\frac{dx}{dt}$ ને \dot{x} વડે પણ દર્શાવાય છે. (વિકલનની સમજૂતી પ્રકરણના અંતમાં આપેલી છે.)

x-t આલેખ પરથી તત્કાલીન વેગ

હવે, આપણે x-t આલેખ પરથી તત્કાલીન વેગનું મૂલ્ય કઈ રીતે મેળવી શકાય તે જોઈશું. આ માટે આપણે ઉપર ચર્ચેલા ઉદાહરણ માટે સ્થાન-સમયનો આલેખ દોરીશું, જે આકૃતિ 3.6માં દર્શાવ્યા મુજબનો મળે છે.

ધારો કે આપશે t=3 સેકન્ડે આ કારનો તત્કાલીન વેગ મેળવવો છે. આ માટે આપશે સમયની બે ક્ષણો t=3 s અને $t+\Delta t=6$ s ને અનુરૂપ આલેખ પરનાં બિંદુઓ P અને Qને જોડતી રેખા PQનો ઢાળ શોધીએ, તો આ ઢાળનું મૂલ્ય $\Delta t=6-3=3$ s દરમિયાન મળતા કારના સરેરાશ વેગ જેટલું હોય છે.

ત્યાર બાદ t=3 s અને $t+\Delta t=5$ s, એટલે કે $\Delta t=2$ s દરમિયાન કારનો સરેરાશ વેગ PQ' ના ઢાળ પરથી મળશે. આ, રીતે t=3 સેકન્ડ પછીનો સમયગાળો Δt નાનો ને નાનો કરતા જઈએ તેમ બિંદુ Pમાંથી પસાર થતી રેખા, બિંદુ P પાસે આલેખને દોરેલા સ્પર્શક તરફ ઢળતી જાય છે અને જયારે $\Delta t \to 0$ લઈએ, ત્યારે તે સ્પર્શક સાથે એકરાર થઈ જશે.

બિંદુ Pમાંથી પસાર થતી હોય તેવી અનેક રેખાઓ હોઈ શકે પરંતુ Pમાંથી પસારી થતી અને P પાસે આલેખને સ્પર્શક હોય તેવી એક અને માત્ર એક જ રેખા દોરી શકાય છે. આ સ્પર્શકનો ઢાળ t=3 s કારનો (તત્કાલીન) વેગ આપે છે.

યાદ રાખો કે નિયમિત ગતિ માટે x - t આલેખ સુરેખા હોય છે આથી કોઈ પણ ક્ષણે વેગનું મૂલ્ય અને સરેરાશ વેગ સમાન હોય છે.

તત્કાલીન ઝડપ અથવા ઝડપ એ ગતિમાન પદાર્થના વેગનું મૂલ્ય છે. દા.ત., +5.0 m s⁻¹ તથા -5.0 m s⁻¹ ના બંને વેગો માટે ઝડપ 5.0 m s⁻¹ થશે. કારનું સ્પીડોમિટર એ જે-તે ક્ષણે કારની ઝડપ એટલે કે તત્કાલીન ઝડપ દર્શાવે છે. અહીં, ધ્યાન રાખવા જેવી બાબત એ છે કે નિશ્ચિત સમયગાળા પર મેળવેલ સરેરાશ ઝડપ, એ સરેરાશ વેગના મૂલ્ય કરતાં વધુ અથવા સમાન હોઈ શકે છે. પરંતુ, કોઈ પણ ક્ષણે મેળવેલ તત્કાલીન ઝડપ અને તત્કાલીન વેગનાં મૃલ્યો સમાન હોય છે.

ઉદાહરણ 5 : ગતિ કરતાં એક પદાર્થનું સ્થાનસૂત્ર $x(t) = (4.2t^2 + 2.6) \text{m}$ વડે મળતું હોય, તો (i) t = 0 થી t = 3 સેકન્ડના ગાળા દરમિયાન તેનો સરેરાશ વેગ શોધો. તથા (ii) t = 3 સેકન્ડે તેનો

તત્કાલીન વેગ શોધો.
$$\left[\frac{d(x^n)}{dt} = nx^{n-1}\right]$$

ઉંકેલ : (i)
$$x(t) = 4.2t^2 + 2.6$$

 $t = 0$ માટે પદાર્થનું સ્થાન
 $x(0) = 4.2(0)^2 + 2.6$
 $= 2.6 \text{m}$ (પ્રારંભિક સ્થાન)
 $t = 3 \text{s}$ માટે પદાર્થનું સ્થાન
 $x(3) = 4.2(3)^2 + 2.6$
 $= 40.4 \text{m}$ (અંતિમ સ્થાન)

સરેરાશ વેગ
$$=$$
 $\frac{$ અંતિમ સ્થાન $-$ પ્રારંભિક સ્થાન સમયગાળો

$$= \frac{x(3) - x(0)}{3 - 0} = \frac{40.4 - 2.6}{3} = 12.6 \text{m s}^{-1}$$

(ii) તત્કાલીન વેગ શોધવા માટે આપેલ સ્થાન સૂત્રનું
't' ની સાપેક્ષે વિકલન કરવું પડે.

તત્કાલીન વેગ
$$v = \frac{dx}{dt} = \frac{d}{dt}(4.2t^2 + 2.6)$$

$$\therefore v = 4.2 \frac{d}{dt}(t^2) + \frac{d}{dt}(2.6)$$

$$= 4.2(2t) + 0$$

$$= 8.4t \text{ m s}^{-1}$$
હવે, આમાં $t = 3s$ મૂકતાં,
$$v = 8.4(3)$$

$$= 25.2 \text{m s}^{-1}$$

3.9 પ્રવેગ (Acceleration)

ક્શની ગતિ દરમિયાન જો તેનો વેગ સમયની સાથે અચળ રહેતો હોય, તો તેને અચળવેગી ગતિ કહે છે. પરંતુ, જો તેનો વેગ બદલાતો હોય તો ક્શ પ્રવેગી ગતિ કરે છે, તેમ કહેવાય વેગમાં થતાં ફેરફારના સમયદરને પ્રવેગ કહે છે.

ધારો કે સુરેખપથ પર ગતિ કરતાં કણનો t_1 સમયે વેગ v_1 અને t_2 સમયે વેગ v_2 છે. આથી, $\Delta t = t_2 - t_1$ સમયગાળામાં કણના વેગમાં થતો ફ્રેસ્કાર $v_2 - v_1$ થશે. સરેરાશ પ્રવેગની વ્યાખ્યા અનુસાર,

$$\langle a \rangle = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$
 (3.9.1)

સરેરાશ પ્રવેગ એ સદિશ રાશિ છે. તેની દિશા વેગના કેરફાર (Δv) ની દિશામાં હોય છે. તેનો SI એકમ m s $^{-2}$ છે.

સરેરાશ પ્રવેગ જાણવાથી t_1 અને t_2 બે ક્ષણો વચ્ચેના પથ પર ક્ષણે-ક્ષણે વેગ કઈ રીતે બદલાય છે, તેની માહિતી મળતી નથી. સમીકરણ (3.9.1)માં $\Delta t \to 0$ લેતાં, t સમયે તત્કાલીન પ્રવેગ a મળે છે. તત્કાલીન પ્રવેગને વ્યવહારમાં પ્રવેગ પણ કહે છે. t સમયે તત્કાલીન પ્રવેગ

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$
 (3.9.2)

હવે,
$$v = \frac{dx}{dt} = \dot{x}$$
 છે.

$$\therefore a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right)$$

$$\therefore a = \frac{d^2x}{dt^2} = \ddot{x} \tag{3.9.3}$$

બીજા શબ્દોમાં કહીએ, તો ક \mathfrak{g} નો કોઈ પ \mathfrak{g} ક્ષણે પ્રવેગ એટલે સ્થાન(x) નું સમય(t) ની સાપેક્ષે બે વાર વિકલન.

જો $\frac{dv}{dt}$ ધન હોય, તો કણના પ્રવેગની દિશા ધન

X—અક્ષ અને જો $\frac{dv}{dt}$ ઋણ હોય, તો પ્રવેગ ઋણ X—અક્ષ તરફ હોય છે. જો વેગ અને પ્રવેગ બંને ધન અથવા બંને ઋણ હોય, તો કણની ઝડપમાં વધારો થાય છે. આવા કિસ્સામાં કણ પ્રવેગિત ગતિ કરે છે, તેમ કહેવાય. અહીં પ્રવેગની દિશા વેગની દિશામાં જ હોય છે. પરંતુ વેગ અને પ્રવેગ વિરુદ્ધ સંજ્ઞાના હોય, તો કણની ઝડપમાં ઘટાડો થાય છે. આવા કિસ્સામાં કણને પ્રતિપ્રવેગી ગતિ હોય છે. આ પ્રતિપ્રવેગ (Deceleration)ની દિશા વેગની દિશાથી વિરુદ્ધ હોય છે, કોઈ પ્રવેગ પૂર્વ દિશામાં 2.5 m s $^{-2}$ છે, તેને બદલે કણનો પ્રતિપ્રવેગ પશ્ચિમ દિશામાં 2.5 m s $^{-2}$ છે તેમ પણ કહી શકાય. બંને બાબતો સમાન છે.

ઉદાહરણ 6 : સુરેખપથ પર ગતિ કરતાં ક્શ માટેનું સ્થાનસૂત્ર $x(t) = 2 - 5t + t^3$ છે. t = 2 સેકન્ડે ક્શનો પ્રવેગ શોધો. x મીટરમાં છે.

ઉકેલ : સ્થાનસૂત્ર, $x(t) = 2 - 5t + t^3$

સ્થાન પરથી પ્રવેગ મેળવવા માટે x નું tની સાપેક્ષે બે વાર વિકલન કરવું પડે.

$$\therefore \frac{dx}{dt} = \frac{d}{dt}(2 - 5t + t^3) = -5 + 3t^2$$

∴ t સમયે ક્શનો પ્રવેગ

$$a = \frac{d^2x}{dt^2} = \frac{d}{dt} (-5 + 3t^2) = 6t$$

$$t = 2$$
 સેકન્ડ મૂકતાં, $a = 6(2) = 12 \text{m s}^{-2}$

ઉદાહરણ 7: એક ગતિમાન ક્રણ માટે સમય અને સ્થાન વચ્ચેનો સંબંધ $t = Ax^2 + Bx$ છે, જ્યાં A અને B અચળાંકો છે. આ ક્રણનો પ્રવેગ તેના વેગના વિધેય રૂપે મેળવો.

 $\mathbf{G} \mathbf{g} \mathbf{g} : t = \mathbf{A} x^2 + \mathbf{B} x$

$$\therefore \frac{dt}{dx} = 2Ax + B$$

$$\therefore v = \frac{dx}{dt} = (2Ax + B)^{-1} \tag{1}$$

હવે પ્રવેગ
$$a = \frac{dv}{dt} = \frac{dv}{dx} \times \frac{dx}{dt}$$
$$= \left[\frac{d}{dx} (2Ax + B)^{-1} \right] (v)$$

(સમી. (1) પરથી)

∴
$$a = (-1) (2A) (2Ax + B)^{-2} \cdot v$$

= $-2Av^3$ (સમી. (1) પરથી)

3.10 પ્રવેગી ગતિ માટે x - t અને v - t ના આલેખો

સ્થાન (x)નું tની સાપેક્ષે દ્વિતીય વિકલન એટલે પ્રવેગ (a). કોઈ પણ વિધેયનું દ્વિતીય વિકલન તે વિધેયના આલેખની વક્રતા સાથે સીધો સંબંધ ધરાવે છે. x-t આલેખના જે બિંદુ આગળ આલેખની વક્રતા વધુ હશે તે

બિંદુએ
$$\frac{d^2x}{dt^2}=a$$
 નું મૂલ્ય વધુ અને ઓછી વકતાવાળા બિંદુએ તે ઓછું હોય છે. $x-t$ આલેખમાં વક્ર જો ઉપરની

તરફ અંતર્ગોળ આકાર (ઉપરની તરફ વક્ર) હોય, તો પ્રવેગ

સુરેખ્યથ પર ગતિ 43

ધન હોય છે અને તે સ્થાન આગળ ક્શનો વેગ વધતો હોય છે. જો વક નીચેની તરફ અંતર્ગોળ આકારનો (નીચેની તરફ વકતા) હોય, તો પ્રવેગ ૠજ હોય છે. આ સ્થાન આગળ ક્શનો વેગ ઘટતો હોય છે. x – t આલેખ સુરેખા અથવા જે બિંદુ આગળ વક ન હોય તે સમયે અને તે સ્થાને ક્શનો પ્રવેગ શૂન્ય અને વેગ અચળ હોય છે. આકૃતિ 3.7માં આ ત્રણેય કિસ્સા દર્શાવ્યા છે.

ગતિમાન ક્યા માટેનો x - t આલેખ આકૃતિ 3.7

આમ, x - t આલેખ પરથી પ્રવેગની સંજ્ઞા કે દિશા સરળતાથી નક્કી થઈ શકે છે, પરંતુ પ્રવેગનું મૂલ્ય સરળતાથી મેળવી શકાતું નથી. આ માટે કજ્ઞની ગતિના તત્કાલીન વેગ વિરુદ્ધ સમય v - t આલેખ ઉપયોગી છે.

v-t આલેખ પરથી સરેરાશ પ્રવેગ અને તત્કાલીન પ્રવેગ મેળવી શકાય છે. આ આલેખનો ઢાળ $\left(= \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t} \right)$ એ Δt સમયગાળા પર સરેરાશ પ્રવેગનું મૂલ્ય દર્શાવે છે. આલેખના કોઈ બિંદુ આગળ વકને દોરેલા સ્પર્શકનો ઢાળ તે ક્ષણનો તત્કાલીન પ્રવેગ દર્શાવે છે.

- (i) જો ગતિમાન ક્શનો v t આલેખ, સમય-અક્ષને સમાંતર સુરેખા હોય, તો આ આલેખ માટે ઢાળ શૂન્ય થશે. આથી તેનો પ્રવેગ પણ શૂન્ય થશે. એટલે કે ક્શ અચળ વેગથી ગતિ કરતો હશે. આવી ગતિને ક્શની નિયમિત ગતિ કહે છે, (જુઓ આકૃતિ 3.8 (a))
- (ii) જો v-t આલેખ સમય-અક્ષને સમાંતર સુરેખાને બદલે આકૃતિ 3.8 (b), (c) અને (d)માં દર્શાવ્યા મુજબ નો કે અન્ય કોઈ સ્વરૂપનો મળે, તો પદાર્થ અનિયમિત ગતિ (Non-uniform motion) કરે છે, તેમ કહેવાય. આકૃતિ 3.8 (b)માં દર્શાવેલ આલેખનો ઢાળ ધન મળશે, આથી ક્શનો પ્રવેગ પણ ધન થશે. આલેખ સુરેખા હોવાથી કોઈ પણ સમયગાળા પર મેળવેલ ઢાળ સમાન હોય છે. આવા

ગતિમાન ક્**ય** માટે *v – t* આલેખો **આકૃતિ 3.8**

પ્રકારની ગતિને અથળપ્રવેગી ગતિ અથવા નિયમિતપ્રવેગી ગતિ કહે છે. આવી ગતિ માટે કોઈ સમયગાળા પરનો સરેરાશ પ્રવેગ અને કોઈ ક્ષણે તત્કાલીન પ્રવેગ સમાન હોય છે.

(iii) આકૃતિ 3.8 (c)માં દર્શાવેલ ગતિ માટે આલેખનો ઢાળ ઋણ હોવાથી કણ પ્રતિપ્રવેગી ગતિ કરે છે, તેમ કહેવાય. આ પણ અચળપ્રવેગી ગતિ છે.

(iv) જો કણનો વેગ આકૃતિ 3.8 (d)માં દર્શાવ્યા મુજબ સતત બદલાતો હોય, તો આલેખના જુદા-જુદા સમયગાળા પર ઢાળનું મૂલ્ય જુદું-જુદું મળવાથી તેનો સરેરાશ પ્રવેગ પણ જુદો-જુદો મળે છે આવી ગતિને અનિયમિત પ્રવેગી ગતિ કહે છે. આ પ્રકારના આલેખમાં કોઈ બિંદુ (P) આગળનો પ્રવેગ તે બિંદુ આગળ વક્કને દોરેલ સ્પર્શકના ઢાળ બરાબર હોય છે.

પ્રસ્તુત પ્રકરણમાં આપણે અભ્યાસ અચળપ્રવેગી ગતિ પ્રતો સીમિત રાખીશું.

કોઈ ગતિમાન કણના વેગ વિરુદ્ધ સમયના આલેખ પરથી કોઈપણ સમયગાળામાં કણે કરેલું સ્થાનાંતર તેમજ કાપેલ અંતર શોધી શકાય છે. કોઈ પણ સમયગાળામાં ગતિમાન કણે કરેલું સ્થાનાંતર તે સમયગાળામાં v - t આલેખ નીચે ઘેરાતા પ્રદેશના ક્ષેત્રફળ જેટલું હોય છે. આ કથન કોઈ પણ પ્રકારની ગતિ માટે સત્ય છે. v - t આલેખમાં X—અક્ષની ઉપરના ભાગનું ક્ષેત્રફળ ધન અને નીચેના ભાગનું ક્ષેત્રફળ ઋણ હોય છે. આથી, ચોખ્ખું (net) સ્થાનાંતર શોધવા માટે આ બંને ક્ષેત્રફળનો બૈજિક સરવાળો કરવો જોઈએ, પરંતુ કાપેલું અંતર શોધવા માટે ઋણ ક્ષેત્રફળને ધન ગણીને સરવાળો કરવો. આ બાબત આપણે નીચેના ઉદાહરણ દ્વારા સમજીએ.

ઉદાહરણ 8: સુરેખપથ પર ગતિ કરતાં એક કશ માટે v-t આલેખ આકૃતિ 3.9માં દર્શાવ્યો છે. (a) પહેલી બે સેકન્ડમાં કશે કાપેલ અંતર શોધો. (b) 0 થી 4 કના સમયગાળામાં કશે કરેલું સ્થાનાંતર અને કાપેલું કુલ અંતર શોધો. (c) t=0.5 s અને t=2 s આગળ કશનો પ્રવેગ શોધો.

(a) 0થી 2 s સમયગાળામાં કણે કાપેલું અંતર $x_1 = \Delta {
m OAB}$ નું ક્ષેત્રફળ

=
$$\frac{1}{2}$$
 (AE) (OB)
= $\frac{1}{2}$ (+10)(2) = 10 m
(b) 0થી 4 s સમયગાળામાં કણે કાપેલું અંતર
$$\Delta x = \Delta OAB - i \quad \text{ક્ષેત્રફળ} + \Delta BCD - i \quad \text{ક્ષેત્રફળ}$$
= $\frac{1}{2}$ (AE)(OB) + $\frac{1}{2}$ (CF)(BD)

$$= \frac{1}{2}(+10)(2) + \frac{1}{2}(-10)(2)$$
$$= 10 - 10 = 0$$

0 થી 4 s, સમયગાળામાં કર્ણ કાપેલું અંતર $= \Delta OAB \ \, \vec{q} \ \, \hat{a} \ \, \mbox{λ} + \Delta BCD \ \, \vec{q} \ \, \hat{a} \ \, \mbox{λ} \ \, \mbox{λ} = 10 + 10 \ \, (\Delta BCD \ \, \vec{q} \ \, \hat{a} \ \, \mbox{λ} \$

(c)
$$t=0.5$$
 s આગળ કણનો પ્રવેગ, $a_1=\mathrm{OA}$ સુરેખાનો ઢાળ
$$=\frac{10-0}{1-0}=10\mathrm{m s}^{-2}$$
 $t=2$ s, આગળ કણનો પ્રવેગ, $a_2=\mathrm{AC}$ સુરેખાનો ઢાળ
$$=\frac{(-10)-(+10)}{3-1}$$

3.11 નિયમિત પ્રવેગી ગતિનાં સમીકરણો (આલેખની રીતે) (Kinematic Equation for Uniformly Accelerated Motion) (Graphical Method)

ધારો કે કોઈ કણ x—િદશામાં અચળ પ્રવેગ 'a' થી સુરેખ ગતિ કરે છે t=0 સમયે તેનો વેગ v_0 અને t=t સમયે વેગ v છે. આ ગતિ માટે નો v-t આલેખ આકૃતિ 3.10માં દર્શાવ્યો છે.

અચળપ્રવેગી ગતિનાં સમીકરણોની આલેખ પરથી તારવણી આકૃતિ 3.10

પ્રવેગ અચળ હોવાથી કોઈ પણ સમયગાળામાં કણનો સરેરાશ પ્રવેગ અને પ્રવેગ સમાન હશે.

$$\therefore$$
 પ્રવેગ $a=$ રેખા ABનો ઢાળ
$$= \frac{v-v_0}{t-t_0} = \frac{v-v_0}{t}$$

$$\therefore at = v-v_0 \tag{3.11.1}$$
 અથવા

(3.11.2)

 $v = v_0 + at$ હવે, t સમયમાં કહો કરેલું સ્થાનાંતર, v-t ના

આલેખ નીચે દોરાતા પ્રદેશ OABCD જેટલું હોય.

 $\therefore x =$ લંબચોરસ OACD નું ક્ષેત્રફળ + △ACBનું ક્ષેત્રફળ

$$= v_0 t + \frac{1}{2} (v - v_0) t \tag{3.11.3}$$

$$x = v_0 t + \frac{1}{2} a t^2$$
 (3.11.4)

(સમીકરણ (3.11.1) પરથી $v - v_0 = at$ મૂકતાં) સમીકરણ (3.11.3) પરથી,

$$x = v_0 t + \frac{1}{2} v t - \frac{1}{2} v_0 t$$

$$x = \frac{v + v_0}{2} t = \overline{v} t$$
(3.11.5)

જ્યાં સરેરાશ વેગ = \overline{v} = $\frac{v + v_0}{2}$

(ફક્ત અચળ પ્રવેગ માટે)

સમીકરણ (3.11.5)માં સમીકરણ (3.11.1) પરથી

$$t = \frac{v - v_0}{a}$$
 મૂકતાં

$$x = \left(\frac{v + v_0}{2}\right) \left(\frac{v - v_0}{a}\right) = \frac{v^2 - v_0^2}{2a}$$

$$\therefore 2ax = v^2 - v_0^2 \qquad (3.11.6)$$

અહીં, સમીકરણ (3.11.2), (3.11.4) અને (3.11.6) અચળપ્રવેગી રેખીય ગતિનાં સમીકરણો છે.

ઉપરોક્ત સમીકરણો મેળવતી વખતે આપણે માની લીધું છે કે t=0 સમયે ક્શ x=0 સ્થાન પર છે, પરંતુ જો t=0 સમયે ક્શ x_0 સ્થાન આગળ હોય તો આ સમીકરણોને વ્યાપક સ્વરૂપે નીચે મુજબ લખી શકાય. (અહીં, x ને સ્થાને $x - x_0$ મૂકતાં)

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} at^2$$

$$2a(x - x_0) = v^2 + v_0^2$$

ઉપર્યુક્ત સમીકરણોમાં v_{0} , v અને aની સંજ્ઞાઓ તેઓ ગતિપથ પર ધન કે ત્રણ દિશામાં છે, તે મુજબ લેવા જોઈએ.

ઉદાહરણ 9 : એક ક્ષ 🗸 જેટલા પ્રારંભિક વેગથી સુરેખપથ પર અચળપ્રવેગી ગતિ કરે છે. n મી સેકન્ડ દરમિયાન તેણે કાપેલું અંતર $v_0 + \frac{a}{2}(2n-1)$ છે, તેમ દર્શાવો.

ઉકેલ : n મી સેકન્ડમાં કાપેલું અંતર

d = n સેકન્ડમાં કાપેલું અંતર -(n-1) સેકન્ડમાં કાપેલું અંતર

$$= (v_0 n + \frac{1}{2} a n^2) - (v_0 (n-1) + \frac{1}{2} a (n-1)^2)$$

$$= (v_0 n + \frac{1}{2} a n^2) - (v_0 n - v_0 + \frac{a}{2} (n^2 - 2n + 1))$$

$$= (v_0 n - \frac{1}{2} a n^2 - v_0 n + v_0 - \frac{1}{2} a n^2 + a n - \frac{a}{2})$$

$$= v_0 + a n - \frac{a}{2}$$

$$= v_0 + \frac{a}{2} (2n - 1)$$

ઉદાહરણ 10 : અચળપ્રવેગી ગતિ કરતી એક ટ્રેનના બે છેડા કોઈ એક બિંદુ પાસેથી પસાર થાય છે, ત્યારે તેમની ઝડપ અનુક્રમે u અને v છે, તો આ જ બિંદુ પાસેથી પસાર થતી વખતે ટ્રેનના મધ્યબિંદુની ઝડપ કેટલી હશે ?

63લ : ધારો કે ટ્રેનની લંબાઈ l છે. હવે કોઈ એક બિંદુ પાસેથી પસાર થતી વખતે એન્જિનના આગળના બિંદુની ઝડપ (ટ્રેનને દઢ પદાર્થ ગણતાં તેના દરેક બિંદુની કોઈ પણ સમયે ઝડપ સમાન હોય છે.) *u* છે અને તે જ બિંદુ પાસેથી પસાર થતી વખતે ગાર્ડના ડબાના પાછળના બિંદુની ઝડપ v છે, એટલે કે l જેટલું અંતર કાપતાં દ્રેનની ઝડપ uમાંથી v થઈ માટે ગતિના સમીકરણ $v^2 - v_0^2 = 2ax$ પરથી,

$$\therefore v^2 - u^2 = 2al \tag{1}$$

હવે ધારો કે તે બિંદુ પાસેથી પસાર થતી વખતે ટ્રેનના મધ્યબિંદુની ઝડપ ν છે

આનો અર્થ એ થયો કે $\frac{1}{2}$ જેટલું અંતર કાપતાં ઝડપ u માંથી v' થઈ.

$$\therefore v^{\prime 2} - u^2 = 2a \left(\frac{l}{2}\right) = al \tag{2}$$

સમી. (1) અને (2) નો ગુણોત્તર લેતાં,

$$\frac{v^2 - u^2}{v^{2} - u^2} = 2$$

$$\therefore v' = \sqrt{\frac{u^2 + v^2}{2}}$$

ઉદાહરણ 11 : બે બિંદુઓ A અને B પાસેથી અનુક્રમે 252kmh^{-1} અને 144kmh^{-1} ના વેગથી શરૂ કરી બે કશો, Aથી B તરફની દિશામાં અનુક્રમે -4m s^{-2} અને 8m s^{-2} જેટલા પ્રવેગથી ગતિ કરે છે. સાબિત કરો કે આ કશો બે વખત એકબીજાને મળશે. તેઓ કયા-કયા સમયે અને ક્યાં-ક્યાં મળશે તે ગણો AB = 36 m છે.

634:
$$v_1 = 252 \frac{\text{km}}{\text{h}} = 70 \text{m s}^{-1}, \ v_2 = 144$$

$$\frac{km}{h} = 40m \text{ s}^{-1},$$

 $a_{_1}=-4 {
m m~s^{-2}}$ and $a_{_2}=8 {
m m~s^{-2}}$ ધારો કે બંને આ કર્ણો t સમયે બિન્દુ ${
m A}$ થી x

જેટલા અંતરે મળે છે. સૂત્ર $x=v_0t+rac{1}{2}at^2$ પરથી

બિંદુ A પરથી ગતિ કરતાં કણો માટે

$$x = 70t + \frac{1}{2}(-4)t^{2}$$

$$\therefore x = 70t - 2t^{2}$$
(1)

બિંદુ B પરથી ગતિ કરતા કણો માટે

$$x - 36 = 40t + \frac{1}{2}(8)t^2$$

$$\therefore x - 36 = 40t + 4t^2 \tag{2}$$

સમીકરણ (1)માંથી સમીકરણ (2) બાદ કરતાં,

$$t^2 - 5t + 6 = 0$$

 $\therefore t = 2$ અથવા t = 3 s

આમ, આ કર્ણો આ બે સમયે એકબીજાને મળે છે. t=2 s સમીકરણ (1)માં મૂકતાં, x=132m અને t=3 s મૂકતાં x=192m.

આમ, બંને ક્રણો એકબીજાને 132m અને ત્યાર બાદ 192m ના અંતરે મળશે.

ઉદાહરણ 12: stopping distance of vehicle: જ્યારે ગતિમાન વાહનને બ્રેક મારવામાં આવે, ત્યારે તે ઊભું રહે તે પહેલાં અમુક અંતર કાપે છે. જેને stopping distance કહે છે. stopping distance એ વાહનના પ્રારંભિક વેગ v_0 અને બ્રેકની ક્ષમતા અથવા બ્રેક લગાવવાથી વાહનમાં ઉત્પન્ન થતાં પ્રતિપ્રવેગ (-a) પર આધારિત છે. વાહન માટે stopping distance નું સૂત્ર મેળવો.

ઉકેલ : ધારો કે v_0 જેટલા વેગથી ગતિ કરતાં વાહનને બ્રેક મારતાં તે $d_{\rm S}$ જેટલું અંતર કાપીને ઊભું રહે છે. સમીકરણ $v^2-v_0^{\ 2}=2ax$ પરથી

$$0 - v_0^2 = 2(-a)d_S$$

$$\therefore d_{\rm S} = \frac{{v_0}^2}{2a}$$

આમ, stopping distance એ વાહનની ઝડપના વર્ગના સમપ્રમાણમાં હોય છે. વાહનની ઝડપ બમણી કરવામાં આવે, તો તે પ્રતિપ્રવેગ માટે stopping distance ચાર ગણું મળે છે. શાળા, હૉસ્પિટલ જેવા વિસ્તારોમાં વાહન માટે speed limit નિર્ધારિત કરવા માટે stopping distance અગત્યનું પરિબળ છે.

મુક્તપતન કરતાં પદાર્થો માટે ગતિનાં સમીકરણો (Kinematic equations for freely fallingbody): પૃથ્વીના ગુરૂત્વાકર્ષણ બળને કારણે પદાર્થમાં અધોદિશામાં ઉદ્દભવતા પ્રવેગને ગુરૂત્વપ્રવેગ (g) કહે છે. હવાના અવરોધને અવગણવામાં આવે તો પદાર્થ મુક્તપતન કરે છે તેમ કહેવાય. પતન કરતાં પદાર્થ કાપેલું અંતર, પૃથ્વીની ત્રિજયાની સરખામણીમાં અવગણી શકાય, તો g નું મૂલ્ય 9.8m s⁻² જેટલું અચળ લઈ શકાય. આમ, મુક્તપતન કરતો પદાર્થ નિયમિત પ્રવેગી ગતિનું ઉદાહરણ છે.

પદાર્થને મુક્ત કરવામાં આવે તે સ્થળેથી ઊર્ધ્વ દિશાને ધન Y–અક્ષ તરીકે લેતાં ગુરુત્વપ્રવેગની દિશા ઋણ Y–અક્ષ થશે. આથી, ગતિનાં સમીકરણોમાં a=-g મૂકતાં,

$$v = v_0 - gt 3.11.7$$

$$y = v_0 t - \frac{1}{2} g t^2 3.11.8$$

$$v^2 - v_0^2 = -2gy$$
 3.11.9
 $(y_0 = 0 \text{ ext})$

મુક્તપતન માટે ઉપર્યુક્ત સમીકરણમાં $v_0=0$ થશે. ક્યારેક સરળતા ખાતર અધોદિશાને ધન Y–અક્ષ અને ઊર્ધ્વ દિશાને ઋણ Y–અક્ષ તરીકે લઈ શકાય, ત્યારે ગતિનાં સમીકરણોમાં a=g લેવું.

મુકતપતન કરતાં પદાર્થ માટે, y - t, v - t અને a - t આલેખો આકૃતિ 3.11માં દર્શાવ્યા છે.

મુક્તપતન કરતાં પદાર્થ માટે ગતિના આલેખો આકૃતિ 3.11

ઉદાહરણ 13 : એક પદાર્થને ઊર્ધ્વ દિશામાં v_0 વેગથી ફેંકવામાં આવે છે. (a) મહત્તમ ઊંચાઈએ પહોંચતાં લાગતો સમય શોધો. (b) તેણે પ્રાપ્ત કરેલી મહત્તમ ઊંચાઈ શોધો.

ઉકેલ : (a) ઊર્ધ્વ દિશાને ધન ગણતાં, v_0 ધન થશે અને ગુરુત્વપ્રવેગ (-g) થશે. મહત્તમ ઊંચાઈએ વેગ v=0 હોય છે.

આથી,
$$v = v_0 + at$$
 પરથી
$$0 = v_0 - gt$$

$$\therefore t = \frac{v_0}{g}$$

(b) પદાર્થ પ્રાપ્ત કરેલી મહત્તમ ઊંચાઈ h હોય, તો

$$y = v_0 t + \frac{1}{2} a t^2$$
, $y = h$, $t = \frac{v_0}{g}$ અને

a = -g મૂકતાં

$$\therefore h = v_0 \frac{v_0}{g} - \frac{1}{2} g \left(\frac{v_0}{g}\right)^2$$

$$= \frac{v_0^2}{g} - \frac{1}{2} \frac{v_0^2}{g}$$

$$h = \frac{v_0^2}{2g}$$

ઉદાહરણ 14: ગુરુત્વપ્રવેગની અસર હેઠળ મુક્ત-પતન કરતો પત્થર, 6 s ની ગતિ બાદ જમીનની સપાટીથી h ઊંચાઈએ સમિક્ષિતિજ રાખેલ ગ્લાસની તકતીને અથડાય છે. તે ગ્લાસની તકતીને તોડીને 2 s માં જમીન પર પહોંચે છે. તકતીને અથડાયા બાદ તે $\frac{2}{3}$ જેટલો વેગ ગુમાવે છે. આ ગ્લાસની તકતીની જમીનથી ઊંચાઈ શોધો.

6કેલ : પથ્થર ગ્લાસની તકતીને અથડાય તે સમયનો વેગ શોધવા

$$v=v_0+gt$$
 માં અહીં, $v_0=0,\;g=-9.8 {
m m~s^{-2}},$ અને $t=6~{
m s}$ મૂકતાં

$$\therefore v = 0 + (-9.8) (6) = -58.8 \text{m s}^{-1}$$

અથડામણ બાદ પથ્થર $\frac{2}{3}$ જેટલો વેગ ગુમાવે છે. આથી, અથડામણ બાદ પથ્થરનો વેગ

$$v_0 = \frac{v}{3} = -\frac{58.8}{3} = -19.6 \text{m s}^{-1}$$

ધારો કે ગ્લાસની તકતી, જમીનની સપાટીથી h જેટલી ઊંચાઈએ છે

∴
$$h = v_0 t + \frac{1}{2} g t^2$$

 $v_0 = -19.6 \text{m s}^{-1}, t = 2 \text{s}, g = -9.8 \text{m s}^{-2},$
 $h = -h$ મુક્તાં

$$-h = (-19.6 \times 2) + \frac{1}{2} (-9.8) (2)^2$$

∴ $h = 58.8$ m

ઉદાહરણ 15: એક બલૂન 12m s^{-1} ના નિયમિત વેગથી ઉપર જઈ રહ્યું છે. જ્યારે બલૂન 81m ની ઊંચાઈએ છે, ત્યારે તેમાંથી એક સિક્કાને પડતો મૂકવામાં આવે છે. જ્યારે સિક્કો જમીન પર પહોંચે, ત્યારે બલૂન કેટલી ઊંચાઈએ હશે ? $g = 10\text{m s}^{-2}$

ઉકેલ: t = 0 સમયે 12 m s^{-1} ના વેગથી સિક્કો ઉપર જઈ રહ્યો છે. ત્યાર બાદ તે મુક્તપતન કરે છે. ધારો કે તે t સમયે જમીન પર પહોંચે છે. ઊર્ધ્વદિશાને ધન લેતાં,

$$y = -81 \text{m}, \ v_0 = 12 \text{m s}^{-1}, \ a = g = -10 \text{m s}^{-2}$$

$$y = v_0 t + \frac{1}{2} g t^2$$

$$-81 = (12)t + \frac{1}{2} (-10)t^2$$

$$\therefore 5t^2 - 12t - 81 = 0$$

$$\therefore t = \frac{12 \pm \sqrt{(12)^2 - 4(5)(-81)}}{2(5)}$$

$$= \frac{12 \pm 42}{10}$$

 $\therefore t = 5.4 \text{ s}$ અથવા t = -3 s જે શક્ય નથી. એટલે કે 5.4 s બાદ સિક્કો જમીન પર આવશે. આ સમય દરમિયાન બલુને કાપેલ અંતર,

 $y_1 = ($ વેગ \times સમય) = (12) (5.4) = 64.8 mઆથી સિક્કો જમીન પર પહોંચે ત્યારે બલૂનની ઊંચાઈ 81m + 64.8m = 145.8m હશે.

3.12 સાપેક્ષ વેગ (Relative Velocity)

ગતિ એ સાપેક્ષ ખ્યાલ છે. આગળ આપણે જોયું કે અલગ-અલગ નિર્દેશ ફ્રેમોની સાપેક્ષે પદાર્થનો વેગ અલગ અલગ હોય છે. આપણો સામાન્ય અનુભવ એમ કહે છે કે ગતિમાન ટ્રેનમાં ટ્રેનની ગતિની દિશામાં ઊડી રહેલી માખીની ઝડપ, ટ્રેનમાં બેઠેલી વ્યક્તિને ઓછી લાગે છે, પરંતુ જમીન પર સ્થિર ઊભી રહેલી વ્યક્તિને તે ટ્રેનની ઝડપ કરતાં વધુ લાગે છે. ટ્રેનની ગતિની વિરૂધ્ધ દિશામાં ટ્રેનની અંદર ઊડી રહેલી માખીની ઝડપ ટ્રેનની ઝડપ કરતાં ઓછી લાગે છે. આવા અનુભવોને સમજવા માટે આપણે સાપેક્ષ વેગનો ખ્યાલ મેળવીશું.

ધારો કે જમીન પર ઊભી રહેલી વ્યક્તિ સાથે સંકળાયેલ નિર્દેશફ્રેમ A છે. X-દિશામાં અચળ વેગથી ગિત કરતી ટ્રેન સાથે સંકળાયેલ નિર્દેશફ્રેમ B છે. આ બંને નિર્દેશફ્રેમો જડત્વીય નિર્દેશફ્રેમો છે. માખીને P વડે દર્શાવીએ તો t સમયે નિર્દેશફ્રેમ Aના ઉદ્દગમબિંદુ Oની સાપેક્ષે Pનું સ્થાન x_{PA} અને નિર્દેશફ્રેમ Bના ઉદ્દગમબિંદુ O'ની સાપેક્ષે X_{PB} થશે. Oની સાપેક્ષે O'નું સ્થાન X_{PB} છે.

આકૃતિ 3.12 પરથી

$$x_{PA} = x_{PB} + x_{BA}$$

' t ' ની સાપેક્ષે વિકલન કરતાં

$$\frac{d(x_{PA})}{dt} = \frac{d(x_{PB})}{dt} + \frac{d(x_{BA})}{dt}$$

$$\therefore v_{PA} = v_{PB} + v_{BA} \qquad (3.12.1)$$

અથવા
$$v_{\rm BA} = v_{\rm PA} - v_{\rm PB}$$
 (3·12· 2)

અહીં, $u_{\rm PA} =$ નિર્દેશફ્રેમ ${
m A}$ (જમીન)ની સાપેક્ષે ${
m P}$ (માખી) નો વેગ

ઉપરના ઉદાહરણમાં ધારો કે ટ્રેનનો જમીનની સાપેક્ષે વેગ $v_{\rm BA}=+~10{\rm m~s^{-1}},$ માખીનો ટ્રેનની સાપેક્ષે વેગ $v_{\rm PB}=+~2{\rm m~s^{-1}}$ (ટ્રેનની ગતિની દિશામાં) હોય, તો સમીકરણ ($3\cdot12\cdot1$), પરથી જમીનની સાપેક્ષે માખીનો વેગ $v_{\rm PA}=10+2=+12{\rm m~s^{-1}}$ થશે, જે ટ્રેનના વેગ કરતાં વધુ છે. જો માખી ટ્રેનની ગતિની વિરુદ્ધ દિશામાં ઊડતી હોય, તો $v_{\rm PB}=-2{\rm m~s^{-1}}$ થશે અને જમીનની સાપેક્ષે તેનો વેગ $v_{\rm PA}=10-2=8{\rm m~s^{-1}}$ થશે.

હવે, જો P એ જમીન (G) સાથે સંકળાયેલ નિર્દેશફ્રેમ, A અને B એ કોઈ બે ક્શો સાથે સંકળાયેલ નિર્દેશફ્રેમ હોય, તો સમીકરણ (3·12·2), પરથી ક્રણ Bનો ક્રણ Aની સાપેક્ષે વેગ.

$$v_{\rm BA} = v_{\rm GA} - v_{\rm GB}$$

$$v_{\rm BA} = v_{\rm BG} - v_{\rm AG} = v_{\rm B} - v_{\rm A}$$
 (3.12.3) આ જ રીતે કણ A નો કણ Bની સાપેક્ષે વેગ,

$$v_{AB} = v_{AG} - v_{BG} = v_A - v_B$$

(જમીન / પૃથ્વીની સાપેક્ષેના વેગો $v_{
m AG}$ અથવા $v_{
m BG}$ ને ફક્ત $v_{
m A}$ અથવા $v_{
m B}$ વડે દર્શાવી શકાય.)

સાપેક્ષ સ્થાનાંતર (Relative Displacement)

ધારો કે બે કણો A અને B અનુક્રમે અચળ વેગ $v_{\rm A}$ અને $v_{\rm B}$ થી +x દિશામાં ગતિ કરે છે. t=0 સમયે તેઓ અનુક્રમે $x_{\rm AO}$ અને $x_{\rm BO}$ સ્થાને છે. (જુઓ આકૃતિ $3\cdot 13$) અને t=t સમયે તેઓ અનુક્રમે $x_{\rm A}$ અને $x_{\rm B}$ સ્થાને છે. આથી,

સાપેક્ષવેગ આકૃતિ 3.13

 $x_{
m A} = x_{
m AO} + v_{
m A}t, \, x_{
m B} = x_{
m BO} + v_{
m B}t$ t=t સમયે, કશ A ની સાપેક્ષે કશ B નું સ્થાનાંતર, $x_{
m B} - x_{
m A} = (x_{
m BO} - x_{
m AO}) + (v_{
m B} - v_{
m A})t$ (3·12·4)

જ્યાં, $x_{\rm BO}-x_{\rm AO}$ એ t=0 સમયે કણ Bનું કણ Aની સાપેક્ષે સ્થાનાંતર છે. $v_{\rm B}-v_{\rm A}=v_{\rm BA}$ એ કણ Aની સાપેક્ષે કણ Bનો વેગ છે.

- (1) જ્યારે $v_{\rm A}=v_{\rm B}$ હશે, ત્યારે $x_{\rm B}-x_{\rm A}=x_{\rm BO}$ $-x_{\rm AO}$ થશે. એટલે કે કોઈ પણ સમયે બંને કણો વચ્ચેનું અંતર પ્રારંભિક સ્થાનાંતર જેટલું જ હશે. (જુઓ આકૃત્તિ $3\cdot 14$ (a)) અહીં બંને કણોનો સાપેક્ષ વેગ $v_{\rm AB}=v_{\rm BA}=0$ છે.
- (2) જો $v_{\rm A}>v_{\rm B}$, હશે. ત્યારે બંને કર્શો કોઈ એક સમય t આગળ ભેગા થશે (જુઓ આકૃતિ $3\cdot 14$ (b)).

આ સમયે ક્શોનું સાપેક્ષ સ્થાન $x_{\rm B}-x_{\rm A}=0$ થશે. ત્યાર બાદ, ક્શ A એ ક્શ Bથી આગળ નીકળી જશે.

(3) જ્યારે $v_{\rm B}>v_{\rm A}$ હશે, ત્યારે બંને કણો વચ્ચેનું સાપેક્ષ સ્થાનાંતર $x_{\rm B}-x_{\rm A}$ સમયની સાથે વધતું જશે અને તેમના ગતિપથ પર ક્યારેય મળશે નહિ.

ઉદાહરણ $16: v_1$ જેટલી ઝડપથી ગતિ કરતી શતાબ્દી એક્સપ્રેસનો ડ્રાઇવર તે જ ટ્રેક પર તે જ દિશામાં v_2 ઝડપથી (જ્યાં $v_2 < v_1$) જતી એક માલગાડીને પોતાનાથી x અંતરે જોતાં બ્રેક મારે છે. તો બ્રેક વડે કેટલો પ્રતિપ્રવેગ ઉત્પન્ન કરવો જોઈએ કે જેથી અકસ્માત નિવારી શકાય ?

ઉકેલ: અહીં સ્પષ્ટ છે કે માલગાડીની સાપેક્ષે શતાબ્દી એક્સપ્રેસનો સાપેક્ષ વેગ $v_1 - v_2$ થશે. જો x અંતરમાં આ સાપેક્ષ વેગ શૂન્ય થાય, તો અકસ્માત નિવારી શક્યય. ધારો કે આ માટે જરૂરી પ્રતિપ્રવેગ a છે. હવે $2ax = v^2 - v_0^2$ પરથી,

$$-2ax = 0 - (v_1 - v_2)^2$$

$$\therefore a = \frac{(v_1 - v_2)^2}{2x}$$

ઉદાહરણ 17 : t=0 સમયે કાર A અને B ઉદ્દગમબિંદુથી અનુક્રમે 100m અને 200m અંતરે છે. બંને કાર એકસાથે અનુક્રમે $10\text{m}\text{ s}^{-1}$ અને $5\text{m}\text{ s}^{-1}$ ના અચળ વેગથી એક જ દિશામાં ગતિની શરૂઆત કરે છે. આ બંને કાર કયા સમયે અને કયા સ્થાન આગળ એકબીજાને overtake કરશે ?

ઉदेख :

$$x_{\rm BO} = 200 {\rm m}, \ x_{\rm AO} = 100 {\rm m}$$
 $v_{\rm A} = 10 {\rm m} \ {\rm s}^{-1}, \ v_{\rm B} = 5 {\rm m} \ {\rm s}^{-1}$ હવે, $x_{\rm B} - x_{\rm A} = (x_{\rm BO} - x_{\rm AO}) \ + (v_{\rm B} - v_{\rm A}) t$ ધારો કે, t સમયે બંને કાર એકબીજાને overtake કરે

છે. આથી
$$x_{\rm B} = x_{\rm A}$$
 થશે અને $x_{\rm B} - x_{\rm A} = 0$
 $0 = (200 - 100) + (5 - 10) t$

$$\therefore t = \frac{100}{5} = 20s$$

હવે ધારો કે બંને કાર $x_{\rm AO}$ સ્થાનથી x જેટલા અંતરે મળે છે.

$$\therefore x = x_{AO} + v_{A}t = 100 + (10) (20)$$
$$= 300 \text{m}$$

ઉદાહરણ 18: અમદાવાદ અને વડોદરા વચ્ચેનું અંતર 100km છે. અમદાવાદ અને વડોદરા બંને રેલવે સ્ટેશનોથી એક જ સમયે બંને ટ્રેન ઊપડે છે. આ ટ્રેનોની ઝડપ અનુક્રમે 45kmh⁻¹ અને 30kmh⁻¹ છે. કયા સમયે આ બંને ટ્રેનો એકબીજાને ક્રોસ કરશે ?

ઉકેલ:

અમદાવાદથી ઊપડતી ટ્રેનનો વેગ $v_{\rm A}=45{\rm kmh}^{-1}$ વડોદરાથી ઊપડતી ટ્રેનનો વેગ $v_{\rm B}=-30{\rm kmh}^{-1}$ (વિરુદ્ધ દિશામાં ગતિ કરતી હોવાથી)

$$x_{\rm BO} - x_{\rm AO} = 100 \rm km$$

જયારે બંને ટ્રેન એકબીજાને ક્રૉસ કરશે ત્યારે એકબીજાની સાપેક્ષે સ્થાનાંતર શૂન્ય થશે.

$$x_{\rm B} - x_{\rm A} = 0.$$

$$\therefore x_{\rm B} - x_{\rm A} = (x_{\rm BO} - x_{\rm AO}) + (v_{\rm B} - v_{\rm A})t$$

$$0 = 100 + (-30 - 45)t$$

$$\therefore t = \frac{100}{75} = \frac{4}{3} \text{ hour}$$

સારાંશ

- 1. નિર્દેશફ્રેમ: અવલોકનકાર જે સ્થળેથી જે પરિસ્થિતિમાંથી અવલોકન કરે છે, તેને નિર્દેશફ્રેમ કહે છે.
- 2. **પથલંબાઈ** : કોઈ સમયગાળામાં કશે કાપેલા અંતરને પથલંબાઈ કહે છે. પથલંબાઈ હંમેશાં ધન હોય છે.
- સ્થાનાંતર : કોઈ સમયગાળામાં કણના સ્થાનમાં થતાં ફેરફારને સ્થાનાંતર કહે છે.
 સ્થાનાંતર = અંતિમ સ્થાન પ્રારંભિક સ્થાન.

સ્થાનાંતર ધન, ઋષા કે શૂન્ય હોઈ શકે છે. પથલંબાઈનું મૂલ્ય સ્થાનાંતર કરતાં વધુ અથવા તેના જેટલું હોઈ શકે છે.

4. **સરેરાશ ઝડપ અને સરેરાશ વેગ :** પદાર્થની પથલંબાઈ અને તે માટે લાગતા સમયના ગુણોત્તરને સરેરાશ ઝડપ કહે છે.

પદાર્થના સ્થાનાંતર અને તે માટે લાગતા સમયગાળાના ગુણોત્તરને **સરેરાશ વેગ** કહે છે.

સરેરાશ વેગ =
$$\frac{\text{સ્થાનાંતર}}{\text{સમયગાળો}} = \frac{\Delta x}{\Delta t}$$

સરેરાશ ઝડપમાં દિશાનું મહત્ત્વ નથી. તે હંમેશાં ધન હોય છે. સરેરાશ વેગ એ સ્થાનાંતરની દિશામાં હોય છે. તે ધન અથવા ઋણ હોઈ શકે છે. આપેલા સમયગાળા માટે કણની સરેરાશ ઝડપ, સરેરાશ વેગના મૂલ્ય જેટલું અથવા વધુ હોઈ શકે છે.

51

5. તત્કાલીન વેગ : સરેરાશ વેગ પરથી સમયગાળાની જુદી-જુદી ક્ષણે પદાર્થનો વેગ કેટલો છે, તેની $\lim_{\Delta t \to 0}$ લેતાં t સમયે મળતા સરેરાશ વેગને તત્કાલીન વેગ કહે છે.

તત્કાલીન વેગ,
$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

તત્કાલીન વેગના મૂલ્યને **તત્કાલીન ઝડપ** કહે છે.

- 6. સુરેખ પથ પર ગતિ કરતો ક્રષ્ટ, સમાન સમયગાળામાં સમાન અંતર કાપે, તો ક્રષ્ટ નિયમિત ગતિ કરે છે, તેમ કહેવાય.
- 7. x-t આલેખમાં કશના અંતિમ સ્થાન અને પ્રારંભિક સ્થાનને જોડતી રેખાનો ઢાળ તે સમયગાળામાં કશના સરેરાશ વેગનું મૂલ્ય દર્શાવે છે. x-t આલેખના કોઈ બિંદુએ વક્કને દોરેલા સ્પર્શકનો ઢાળ તે સમયે કશના તત્કાલીન વેગનું મૂલ્ય દર્શાવે છે.
- 8. **સરેરાશ પ્રવેગ અને તત્કાલીન પ્રવેગ :** Δt સમયગાળામાં પદાર્થના વેગમાં થતો ફેરફાર Δv હોય, તો

t સમયે પદાર્થનો તત્કાલીન પ્રવેગ,

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$
 અથવા $a = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2}$

પ્રવેગ એ સિંદશ રાશિ છે, તે વેગના ફેરફારની દિશામાં હોય છે. તેનો SI એકમ m s $^{-2}$ છે.

- 9. વેગ વિરુદ્ધ tના આલેખનો ઢાળ આપેલા સમયગાળા માટે સરેરાશ પ્રવેગનું મૂલ્ય આપે છે. આલેખના વક્કના કોઈ બિંદુએ દોરેલા સ્પર્શકનો ઢાળ તે ક્ષણે કણના પ્રવેગનું મૂલ્ય આપે છે. વેગ અને પ્રવેગ એક જ દિશામાં હોય, તો ક્ષ્યની ઝડપમાં વધારો થાય છે. જો વિરુદ્ધ દિશામાં હોય, તો તેની ઝડપમાં ઘટાડો થાય છે. તેને ક્ષ્યાનો પ્રતિપ્રવેગ કહે છે.
- 10. v t આલેખની નીચે ઘેરાતું ક્ષેત્રફળ આપેલા સમયગાળામાં કરેલું સ્થાનાંતર / કુલ અંતર દર્શાવે છે. અંતર મેળવવા માટે ઋણ ક્ષેત્રફળને પણ ધન લઈ ગણતરી કરવી.
- 11. અચળપ્રવેગી ગતિનાં સમીકરણો

$$v=v_0+at$$
 જ્યાં, $x_0=$ કણાનું પ્રારંભિક સ્થાન
$$x=x_0+v_0t+\frac{1}{2}at^2 \qquad \qquad x=$$
 સમયે કણાનું સ્થાન
$$v^2-v_0^2=2a(x-x_0) \qquad \qquad v_0=$$
 કણાનો પ્રારંભિક વેગ $v=$ કણાનો t સમયે વેગ

12. ક્શ Aની સાપેક્ષે ક્શ Bનો વેગ, $v_{\rm BA} = v_{\rm B} - v_{\rm A}$, ક્શ Bની સાપેક્ષે ક્શ Aનો વેગ $v_{\rm AB} = v_{\rm A} - v_{\rm B}$ તથા $[v_{\rm AB} = -v_{\rm BA}]$

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

1. એક કાર r ત્રિજ્યાના અર્ધવર્તુળાકાર પથ પર એક છેડેથી બીજા છેડે જાય છે. આ કાર માટે પથલંબાઈ અને સ્થાનાંતરનાં મૂલ્યનો ગુણોત્તર થશે.

- (A) $\frac{\pi}{2}$
- (B) π
- (C) $\frac{3\pi}{2}$
- (D) 2π

 એક વ્યક્તિ સુરેખપથ પર ઉત્તર દિશામાં 3 km, ત્યાર બાદ પશ્ચિમ દિશામાં 2 km અને દક્ષિણમાં 5 km ચાલે છે. આ વ્યક્તિએ કરેલ સ્થાનાંતર મૂલ્ય

- (A) $2\sqrt{2}$ km
- (B) $3\sqrt{2} \, \text{km}$
- (C) $4\sqrt{2} \text{ km}$
- (D) 10 km

3. આકૃતિ 3.15માં દર્શાવ્યા અનુસાર એક કીડી 1m ત્રિજ્યાવાળા વર્તુળાકાર માર્ગ પર બિંદુ Pથી O પર જાય છે. આ માટે તે 1 મિનિટ જેટલો સમય લે છે. આ સમયગળામાં કીડીનો સરેરાશ વેગ કેટલો હશે ?

આકૃતિ 3.15

- (C) $\frac{3\pi}{160}$ m s⁻¹ (D) $\frac{1}{60}$ m s⁻¹

 એક પદાર્થને ઊર્ધ્વ દિશામાં ફેંકવામાં આવે છે, તો નીચેનામાંથી ક્યો આલેખ તેના વેગ-સમયનો યોગ્ય ગ્રાફ છે ?

5. આકૃતિ 3.17માં બે કલાકની મુસાફરી દરમિયાન કોઈ કારની ઝડપમાં સમય સાથે થતો ફેરફાર દર્શાવ્યો છે. આ કારનો મહત્તમ પ્રવેગ વિભાગમાં છે.

- (A) OA
- (B) BC
- (C) CD
- (D) DE

- આકૃતિ 3.18માં કઈ ગતિમાન ખટારા માટે ઝડપ વિરુદ્ધ સમયનો આલેખ દર્શાવેલ છે. આ ખટારાએ છેલ્લી બે સેકન્ડમાં કેટલું અંતર કાપ્યું હશે ?
 - (A) 60 m
 - (B) 90 m
 - (C) 20 m
 - (D) 40 m
- 7. આકૃતિ 3.19 માં કોઈ ગતિમાન કણ માટે વેગ વિરુદ્ધ સમયનો આલેખ દર્શાવેલ છે. 0થી 20 સેકન્ડના સમયગાળામાં કણનું થતું સ્થાનાંતર છે.

- (B) 60 m
- (C) 120 m
- (D) -120 m

10

 $\overrightarrow{t}(s)$

20

8. આકૃતિ 3.20 કોઈ એક ગતિમાન પદાર્થ માટે વેગ (v) વિરુદ્ધ સ્થાન (x) નો આલેખ દર્શાવે છે. આકૃતિ 3.20.a માં દર્શાવેલ કયો વિકલ્પ (આલેખ) આ પદાર્થ માટે પ્રવેગ (a) વિરુદ્ધ સ્થાન (x) નો આલેખ દર્શાવે છે

0

-12

v (m/s)

નોંધ : આલેખ પરથી સુરેખનો ઢાળ $m=-\frac{v_0}{x_0}$ અને આંતરચ્છેદ $c=v_0$ થશે. આથી સુરેખાનું સમીકરણ $v=(-\frac{v_0}{x_0})$ $x+v_0$ થશે. આ પરથી પ્રવેગનું સૂત્ર મેળવો.

> 乳 કોઈ એક પદાર્થ માટે વેગ વિરુદ્ધ સમયનો આલેખ આકૃતિ 3.21માં દર્શાવ્યાં છે. પદાર્થના OA અને AB સમયગાળામાં મળતા સરેરાશ પ્રવેગનો OA અને OB ગુણોત્તર કેટલો થશે ?

- (A) 1
- (C) $\frac{1}{3}$
- (D) 3

આકૃતિ 3.21

10. એક કશનું સ્થાનાંતર $y(t) = a + bt + ct^2 - dt^4$ વડે માપવામાં આવે છે. કશના પ્રારંભિક વેગ અને પ્રવેગ અનુક્રમે છે. (a, b, c) અને d અચળાંકો છે.)

- (A) b, -4d
- (B) -b, 2c
- (C) b, 2c
- (D) 2c, -4d

11. આકૃતિ 3.22 માં x–અક્ષ પર ગતિ કરતાં એક કણ માટેનો સ્થાનાંતર વિરુદ્ધ સમયનો ગ્રાફ દર્શાવ્યો છે. આ ગ્રાફ પરથી કહી શકાય કે,

(A) કશ ધન x-દિશામાં સતત ગતિ કરે છે.

- (B) ક્શનો વેગ t, સમય સુધી વધે છે અને પછી અચળ થઈ જાય છે.
- (C) કણ સ્થિર છે.
- ગતિ કહે છે અને પછી તેનો વેગ શુન્ય થાય છે.

આકૃતિ 3.22

12. એક પદાર્થનું સ્થનાંતર (મીટરમાં) સમય (સેકન્ડમાં) સાથે નીચેના સૂત્ર મુજબ બદલાય છે : $y = -\frac{2}{3}t^2 + 16t + 2$ આ પદાર્થને સ્થિર થવા માટે કેટલો સમય લાગશે ?

- (B) 8 s
- (C) 16 s

13. પદાર્થનું સ્થાન સમય સાથે $x = at^2 - bt^3$ અનુસાર બદલાય છે. પદાર્થનો પ્રવેગ કયા સમયે શૂન્ય થશે ? (જ્યાં a અને b અચળાંકો છે.)

- (A) $\frac{2a}{3b}$
- (B) $\frac{a}{b}$
- (C) $\frac{a}{3h}$
- (D) શૂન્ય

14. પદાર્થનું સ્થાન સમય સાથે $x = at + bt^2 - ct^3$ અનુસાર બદલાય છે. જ્યાં a, b અને c ગતિના અચળાંકો છે, જ્યારે પદાર્થનો પ્રવેગ શૂન્ય હશે, ત્યારે તેનો વેગ હશે.

- (A) $a + \frac{b^2}{c}$

- (B) $a + \frac{b^2}{2c}$ (C) $a + \frac{b^2}{3c}$ (D) $a + \frac{b^2}{4c}$

15. અમુક ઊંચાઈ પરથી એક પદાર્થને પડતો મૂકવામાં આવે, ત્યારે 'h' જેટલું અંતર કાપીને તેનો વેગ v થાય છે. તેનો વેગ બમણો થાય તે માટે પદાર્થે વધારાનું અંતર કાપ્યું હશે.

- (A) 4h
- (B) 3h
- (C) 2h
- (D) h

55

16. એક બૉલ A ને વેગ $v_{
ho}$ થી ઊર્ધ્વ દિશામાં ફેંકવામાં આવે છે. આ જ ક્ષણે બીજો એક બૉલ Bઊંચાઈ h પરથી મુક્તપતન શરૂ કરે છે, તો t ક્ષણે ${
m B}$ ની સાપેક્ષે ${
m A}$ નો વેગ છે.

(A)
$$v_0$$

(B)
$$v_0 - 2gt$$

(C)
$$v_0 - gt$$

(B)
$$v_0 - 2gt$$
 (C) $v_0 - gt$ (D) $\sqrt{{v_0}^2 - 2gh}$

17. અચળ પ્રવેગથી એક સુરેખપથ પર ગતિ શરૂ કરતાં કશે ચોથી અને ત્રીજી સેકન્ડમાં કાપેલ અંતરનો ગુણોત્તર

(A)
$$\frac{7}{5}$$

(B)
$$\frac{5}{7}$$
 (C) $\frac{7}{3}$ (D) $\frac{3}{7}$

(C)
$$\frac{7}{3}$$

(D)
$$\frac{3}{7}$$

f 18, સ્થિર સ્થિતિમાંથી શરૂ કરીને એક કાર x જેટલા અચળ પ્રવેગથી ગતિ કરે છે. પછી તે yપ્રતિપ્રવેગથી ગતિ કરે છે અને સ્થિર થાય છે. જો આ દરમિયાન લાગતો કુલ સમય t હોય, તો કારનો મહત્તમ વેગ કેટલાં થશે ?

(A)
$$\frac{xy}{x-y}$$

(B)
$$\frac{xy}{x + y}$$

(C)
$$\frac{x^2y^2}{x^2 + y^2}$$

(A)
$$\frac{xy}{x-y}t$$
 (B) $\frac{xy}{x+y}t$ (C) $\frac{x^2y^2}{x^2+y^2}t$ (D) $\frac{x^2y^2}{x^2-y^2}t$

 $oxdot{19.}$ એક કાર સુરેખ માર્ગ પર $oldsymbol{v}_1$ જેટલી અચળ ઝડપથી x જેટલું અંતર કાપે છે. ત્યાર બાદ તેટલું જ અંતર v_2 જેટલી અચળ ઝડપથી કાપે છે. કારનો સરેરાશ વેગ

(A)
$$\overline{v} = \frac{v_1 + v_2}{2}$$
 (B)

$$\overline{v} = \sqrt{v_1 v_2}$$

(C)
$$\frac{2}{\overline{\nu}} = \frac{1}{\nu_1} + \frac{1}{\nu_2}$$
 (D)

$$\frac{1}{\overline{v}} = \frac{1}{v_1} + \frac{1}{v_2}$$

20. સુરેખપથ પર ગતિ કરતા પદાર્થ માટે x - t આલેખ આકૃતિ 3.23માં દર્શાવ્યો છે. આકૃતિ 3.24માં દર્શાવેલ વિકલ્પોમાંથી કયો આલેખ આ ગતિમાન પદાર્થ માટે v-t આલેખ દર્શાવે છે ?

આકૃતિ 3.24

21. એક દડાને ઊર્ધ્વ દિશામાં ઉછાળવામાં આવે છે. હવાના અવરોધને અવગણતાં, હવામાં દડાનો પ્રવેગ

(A) શૂન્ય હશે.

(B) સતત વધતો હશે.

(C) અચળ હશે.

(D) ઊપરની તરફ જતાં વધશે અને નીચે તરફ આવતાં ઘટશે.

22. સ્થિર અવસ્થામાંથી બલૂન જમીનથી ઉપરની તરફ $1.25 \mathrm{m}\ \mathrm{s}^{-2}$ ના અચળ પ્રવેગથી ઊડવાની શરૂઆત કરે છે. 8 સેકન્ડ બાદ બલૂનમાંથી એક પથ્થરને મુક્તપતન કરાવવામાં આવે છે. પથ્થર કેટલા સમયમાં જમીન પર આવશે ? ($\mathrm{g}=10\ \mathrm{m}\ \mathrm{s}^{-1}$ લો.)

(A) 2 s

(B) 4 s

(C) 6 s

(D) 10 s

23. આકૃતિ 3.25માં કાર A અને કાર B માટે x-t આલેખ દર્શાવ્યો છે. કાર Aનો કાર Bની સાપેક્ષે વેગ હશે.

x (m) \(\)
25 20 15 -----

 $(A) +5m s^{-1}$

(B) -2.5m s^{-1}

(C) -5m s^{-1}

(D) $+2.5 \text{m s}^{-1}$

25-20-15-10-5-0 2 3 4 6 8 10 t(s)

આકૃતિ 3.25

24. પ્રશ્ન 23ના અનુસંધાનમાં t=0 સમયે, કાર Aની સાપેક્ષે કાર B કયા સ્થાને હશે ? (t=0) સમયે કાર B નિયમિત ગતિથી શરૂઆત કરે છે.)

(A) +15 m

(B) -15 m

(C) -10 m

(D) -25 m

જવાબો

1. (A)	2. (A)	3. (D)	4. (D)	5. (B)	6. (C)
7. (A)	8. (D)	9. (D)	10. (C)	11. (D)	12. (A)
13. (C)	14. (C)	15. (B)	16. (A)	17. (A)	18. (B)
19. (C)	20. (D)	21. (C)	22. (B)	23. (B)	24. (B)

નીચેના પ્રશ્નોના જવાબ ટૂંકમાં આપો :

- 1. સરેરાશ ઝડપ અને સરેરાશ વેગ વચ્ચેનો ભેદ જણાવો.
- 🛂 પ્રવેગ એટલે શું ? તે કઈ દિશામાં હોય છે ?
- 3. stopping distance કોને કહે છે ?
- $m{4}$ શું કોઈ ગતિમાન પદાર્થ માટે x-t આલેખ સ્થાન-અક્ષને સમાંતર હોઈ શકે ?
- ગતિમાન એવી બે કારનો સાપેક્ષ વેગ શૂન્ય ક્યારે થાય ?
- 6. એક પદાર્થને ગુરુત્વાકર્ષણ બળની અસર નીચે પડતો મૂકવામાં આવે છે, તો 1 સેકન્ડના અંતે તેણે કાપેલું અંતર કેટલું હશે ?
- 7. v-t આલેખનો ઢાળ અને તે આલેખ દ્વારા ઘેરાતું ક્ષેત્રફળ શું દર્શાવે છે ?
- 8. ઊર્ધ્વ દિશામાં ફેંકેલા દડાની મહત્તમ ઊંચાઈએ વેગ અને પ્રવેગ કેટલો હશે ?
- એક પરિમાણમાં ગિત કરતાં પદાર્થને શું કોઈ એક ક્ષણે શૂન્ય વેગ અને અશૂન્ય પ્રવેગ હોઈ શકે ? ઉદાહરણ આપો.
- 10. મુક્તપતન કરતાં પદાર્થ માટે વેગ વિરુદ્ધ સમય અને પ્રવેગ વિરુદ્ધ સમયનો આલેખ દોરો.
- 11. આપેલા સમયગાળા માટે પ્રવેગ વિરુદ્ધ સમયના આલેખ નીચે ઘેરાતું ક્ષેત્રફળ શું દર્શાવે છે ?

નીચેના પ્રશ્નોના જવાબ લખો :

- 1 પથલંબાઈ અને સ્થાનાંતર વચ્ચેનો ભેદ ઉદાહરણ સહિત સ્પષ્ટ કરો.
- તત્કાલીન વેગની સમજૂતી આપો.
- 3. નિયમિત ગતિ માટે x-t અને v-t આલેખો સમજાવો.
- અચળપ્રવેગી ગતિનાં સમીકરણો આલેખની રીતથી મેળવો.
- સાપેક્ષ વેગ સમજાવો.

નીચેના દાખલાઓ ગણો :

1. એક મોટરસાઇકલ સવાર તેણે કાપવાના કુલ અંતરના $\frac{1}{3}$ જેટલું અંતર $10~{\rm kmh^{-1}}$, ત્યાર બાદનું $\frac{1}{3}$ અંતર $20~{\rm kmh^{-1}}$ અને બાકીનું $\frac{1}{3}$ અંતર $30~{\rm kmh^{-1}}$ ની ઝડપે કાપે છે. મોટરસાઇકલની સરેરાશ ઝડપ શોધો.

[**જવાબ**: 16.36kmh⁻¹]

બે સ્ટેશન વચ્ચેનું અંતર 40km છે. એક ટ્રેનને આ અંતર કાપતાં 1 કલાક લાગે છે. પહેલા સ્ટેશનથી ટ્રેન પોતાની ગતિની શરૂઆત કરી પ્રથમ 5km તે અચળપ્રવેગી ગતિ કરે છે. પછીના 20km સુધી તેનો વેગ અચળ રહે છે અને છેવટના 15km તેનો વેગ નિયમિતપણે ઘટતો રહે છે અને બીજા સ્ટેશને ઊભી રહે છે, તો આ ટ્રેનનો મહત્તમ વેગ ગણો.

[**જવાબ**: 60kmh⁻¹]

3. જમીન પર રહેલો વાંદરો 13m ઊંચા થાંભલા પર ચઢવાનો નિયમિત વેગથી પ્રયત્ન કરી રહ્યો છે. તે 1 સેકન્ડમાં 5m જેટલો ઉપર ચઢે છે અને ત્યાર બાદની 1 સેકન્ડમાં 3m જેટલો સરકી જાય છે. ફરીથી તે 1 sમાં 5m જેટલો ઉપર જાય છે અને ત્યાર બાદની 1 સેકન્ડમાં 3m જેટલો સરકી જાય છે. વાંદરાની આ ગતિ માટે x-t આલેખ દોરો. તે કેટલા સમયમાં થાંભલાની ટોચ પર પહોંચશે.

[**જવાબ** : 9 s]

4. એક મોટરસાઇકલ સ્થિર સ્થિતિમાંથી શરૂ કરીને $+2.6 \text{m s}^{-2}$ ના પ્રવેગથી ગતિ કરે છે. 120 mનું અંતર કાપ્યા પછી તે -1.5m s^{-2} ના પ્રવેગથી જ્યાં સુધી તેનો વેગ $+12 \text{m s}^{-1}$ નો થાય ત્યાં સુધીમાં મોટરસાયકલે કાપેલ કુલ અંતર શોધો.

[**%** quo : 280m]

5. ઊર્ધ્વ દિશામાં ફેંકેલ એક બૉલ 16mની મહત્તમ ઊંચાઈ પ્રાપ્ત કરે છે, તો કઈ ઊંચાઈએ તેનો વેગ તેના પ્રારંભિક વેગથી અડધો થતો હશે ?

[**જવાબ** : 12m]

6. એક ટાવરની ઊંચાઈ 39.2m છે. કોઈ એક ક્ષણે ટાવર પરથી એક પદાર્થને મુક્તપતન કરવા દેવામાં આવે છે. બરાબર તે જ ક્ષણે ટાવરના તિળયેથી બીજા પદાર્થને ઊર્ધ્વ દિશામાં 19.6m s^{-1} ના વેગથી ફેંકવામાં આવે છે. તો તે બન્ને ક્યાં અને ક્યારે મળશે ?

[**જવાબ**: 2 s, 19.6m]

7. કોઈ એક ગતિમાન પદાર્થનું સ્થાનાંતર (m માં) સમય (s માં) સાથે નીચેના સૂત્ર મુજબ બદલાય છે :

$$x = t^3 + 4t^2 - 2t + 5$$

- (a) t = 4s સેકન્ડે પદાર્થનો વેગ અને પ્રવેગ
- (b) t = 0 થી t = 4s ના સમયગાળામાં પદાર્થનો સરેરાશ વેગ અને સરેરાશ પ્રવેગ શોધો.

[894] : (a) $v = 78 \text{m s}^{-1}$; $a = 32 \text{m s}^{-2}$ (b) $< v > = 30 \text{m s}^{-1}$, $< a > = 20 \text{m s}^{-2}$]

8. 30m s^{-1} ની ઝડપે જતી ટ્રેન Aનો ડ્રાઇવર, બીજાં એક ટ્રેન Bને તે જ પાટા પર તે જ દિશામાં 10m s^{-1} ની ઝડપથી જતી જોતાં બ્રેક મારે છે અને પરિશામે ટ્રેન પર 2m s^{-2} નો પ્રતિપ્રવેગ લાગે છે. ઍક્સિડન્ટ નિવારવા માટે બંને ટ્રેન વચ્ચેનું અંતર ઓછામાં ઓછું કેટલું હોવું જોઈએ ?

[**%વાબ**: 100m]

9. એક પદાર્થ અચળ પ્રવેગથી ગતિ કરે છે. 10 સેકન્ડના અંતે તેનો વેગ 48m s^{-1} તથા 15 સેકન્ડના અંતે તેનો વેગ 68m s^{-1} થાય છે, તો 15 સેકન્ડમાં કેટલું અંતર કાપ્યું હશે ?

10. સુરેખપથ પર ગતિ કરતાં કણ માટે v-t આલેખ આકૃતિ 3.26માં દર્શાવ્યો છે. (a) t=0થી t=10s સુધીમાં કણે કાપેલું અંતર શોધો. (b) t=2 sથી 6 s જેટલા સમયગાળામાં કણે કાપેલું અંતર શોધો.

[**%વા**બ : 60m, 36m]

11. 120m લાંબી એક ટ્રેન પૂર્વથી પશ્ચિમ તર $= 10 \text{m s}^{-1}$ ની ઝડપથી ગતિ કરે છે. એક પક્ષી પૂર્વ તર $= 5 \text{m s}^{-1}$ ના વેગથી ઊડતું-ઊડતું આ ટ્રેન ક્રૉસ કરે છે. આ ટ્રેન ક્રૉસ કરવા માટે પક્ષીને લાગતો સમય કેટલો હશે ?

[**જવાબ** : 8 s]

12. કોઈ એક ક્શનો વેગ v=4t અનુસાર બદલાય છે. આ ક્શે t=2 કથી t=4 s જેટલા સમયગાળામાં કાપેલું અંતર શોધો. v એ ${\rm m~s^{-1}}$ માં છે.

[**%**ql\(\text{q}\) : 24m]

પરિશિષ્ટ 3.1 વિકલન (Differentiation)

જ્યારે કોઈ રાશિમાં ફેરફાર થતો હોય ત્યારે આ ફેરફાર માટે અમુક સમય લાગતો હોય છે. દા.ત., સગડી પર મૂકેલા પાણીનું તાપમાન (T) 30°Cથી 75°C સુધી વધવા માટે 5 મિનિટનો સમય લે છે. અહીં, તાપમાનમાં વધવાનો સરેરાશ દર 9°C/min છે. સંજ્ઞામાં,

તાપમાનમાં ફેરફારનો સરેરાશ દર =
$$\frac{\Delta T}{\Delta t} = \frac{75^{\circ} \text{C} - 30^{\circ} \text{C}}{5 \text{ min}} = 9^{\circ} \text{C/min}$$

9°C/min ને તાપમાનના ફેરફારનો સમયદર કહે છે, પરંતુ કોઈ એક ક્ષણે તાપમાનના ફેરફારનો દર (તત્કાલીન ફેરફારનો દર) જાણવો હોય, તો લક્ષ (limit) નામના એક વિભાવનાનો ઉપયોગ કરવો પડે.

ધારો કે t સમયે તાપમાન T અને $t+\Delta t$ સમયે તાપમાન $T+\Delta T$ છે. આમ, Δt જેટલા સમયગાળામાં તાપમાનમાં થતો ફેરફાર ΔT જેટલો છે. તાપમાનના ફેરફારનો (સરેરાશ) દર દર્શાવતા ગુણોત્તર $\frac{\Delta T}{\Delta t}$ માં સમયગાળો Δt જેમ નાનો લઇએ તેમ આ ફેરફારનો દર, સમયની ક્ષણ tની નજીકનો મળે છે અને $\Delta t \to 0$ લક્ષ લેતાં t સમયે તાપમાનના ફેરફારનો દર મળે છે અને તેને સંકેત $\frac{dT}{dt}$ વડે દર્શાવાય છે.

$$\therefore \ \frac{\lim}{\Delta t \to 0} \ \frac{\Delta T}{\Delta t} = \frac{dT}{dt}$$

 $\frac{d\Gamma}{dt}$ ને સમય (t)ની સાપેક્ષે તાપમાન (Γ)નું વિકલિત(derivative) કહે છે. વિકલિત મેળવવાની ક્રિયા (operation) ને વિકલન કહે છે.

ધારો કે, કોઈ રાશિ y એ બીજી કોઈ રાશિ xનું વિધેય છે. અર્થાત્ y = f(x) જયારે xમાં સતત ફેરફાર થતો હોય, ત્યારે f(x) વિધેય અનુસાર yમાં પણ સતત ફેરફાર થાય છે. આ ફેરફારનો દર (x ની સાપેક્ષે) xના કોઈ મૂલ્ય પાસે કેટલો છે તે જાણવું હોય,

તો xના તે મૂલ્ય પાસે $\frac{dy}{dx}$ મેળવવું જોઈએ. $\frac{dy}{dx}$ એ y વિરુદ્ધ xના વક્કનો x=x પાસે દોરેલા સ્પર્શકનો ઢાળ આપે છે.

આકૃતિ A

આકૃતિ Aમાં દર્શાવેલ વક્ર માટે,

બિંદુ P પાસે દોરેલા સ્પર્શકનો ઢાળ =
$$tan\theta_1 = \frac{dy}{dx}\Big|_{x=x_1}$$

બિંદુ R પાસે દોરેલા સ્પર્શકનો ઢાળ =
$$tan\theta_2 = \left. \frac{dy}{dx} \right|_{x=x_2}$$

બિંદુ Q અને બિંદુ S પાસે સ્પર્શકનો ઢાળ
$$= tan$$
 $0^\circ = \frac{dy}{dx} = 0$

આકૃતિ પરથી સ્પષ્ટ છે કે જે બિંદુ પાસે $\frac{dy}{dx}=0$ હોય ત્યાં yનું મૂલ્ય મહત્તમ (બિંદુ Q)

અથવા ન્યૂનતમ (બિંદુ S) હોય છે. જો $\frac{d^2y}{dx^2}$ < 0 હોય, તો y નું મૂલ્ય મહત્તમ અને

$$\frac{d^2y}{dx^2} > 0 હોય, તો yનું મૂલ્ય ન્યૂનતમ હોય છે. અહીં, $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = y નું x$$$

ની સાપેક્ષે દ્વિતીય વિકલન કહેવાય છે.

જો y વિરુદ્ધ xનો આલેખ આપેલો હોય, તો વક્ક પરના બિંદુ પાસે સ્પર્શક દોરી તેનો ઢાળ મેળવીને તે બિંદુ પાસે $\frac{dy}{dx}$ શોધી શકાય છે, પરંતુ આલેખને બદલે y અને x વચ્ચે સંબંધ

દર્શાવતું સમીકરણ હોય, તો ગાણિતીય રીતે $\frac{dy}{dx}$ મેળવી શકાય. આ માટે નીચેનું ઉદાહરણ સમજો :

ધારો કે L લંબાઈ ધરાવતા ચોરસનું ક્ષેત્રફળ A છે.

આથી, $A = L^2$ થાય.

હવે જો લંબાઈમાં ΔL જેટલો વધારો થાય, તો ક્ષેત્રફળમાં ΔA જેટલો વધારો થશે. એટલે કે ચોરસની નવી લંબાઈ $L+\Delta L$ અને ક્ષેત્રફળ $A+\Delta L$ થશે.

$$A + \Delta A = (L + \Delta L)^2 = L^2 + 2L \Delta L + (\Delta L)^2$$

$$\therefore \Delta A = 2 L\Delta L + (\Delta L)^2 (\therefore A = L^2) \, \dot{\Theta}.$$

$$\therefore \frac{\Delta A}{\Delta L} = 2L + \Delta L$$

હવે, જો ΔLને સૂક્ષ્મ કરતાં જઈએ, તો 2L + ΔLનું મૂલ્ય 2Lની નજીક મળશે.

આમ,
$$\frac{d\mathbf{A}}{d\mathbf{L}} = \lim_{\Delta \mathbf{L} \to 0} \frac{\Delta \mathbf{A}}{\Delta \mathbf{L}} = 2\mathbf{L}$$

અમુક પ્રામાણિક વિધેયોનાં વિકલિત નીચે ટેબલમાં દર્શાવ્યા છે :

у	$\frac{dy}{dx}$	у	$\frac{dy}{dx}$
x^n	nx^{n-1}	sec x	sec x tan x
sin x	cos x	cosec x	-cosec x cot x
cos x	-sin x	lnx	$\frac{1}{x}$
tan x	sec ² x		
cot x	-cosec ² x	e ^x	e ^x
sin kx	k cos x	a^x	a ^x ln a
cos kx	−k sin x		

વિકલિતના કાર્ય-નિયમો :

$$1. \quad \frac{d}{dx}(k) = 0 \text{ (જ્યાં, } k \text{ અચળ છે.)}$$

$$2. \quad \frac{d}{dx}(x) = 1$$

3.
$$\frac{d}{dx}(ky) = k\frac{dy}{dx}$$
 (જ્યાં, k અચળ છે.)

4. જો
$$y = u \pm v$$
, હોય, તો $\frac{dy}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$

5. જો
$$y = uv$$
 હોય, તો $\frac{dy}{dx} = u\frac{dv}{dx} \pm v\frac{du}{dx}$

6. જો
$$y = \frac{u}{v}$$
 હોય, તો $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

7.
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

ઉદાહરણ :
$$y = x^3 + \frac{4}{\sqrt{x}} - \frac{3}{x^2}$$
 માટે $\frac{dy}{dx}$ મેળવો.
$$y = x^3 + \frac{4}{\sqrt{x}} - \frac{3}{x^2}$$

$$= x^3 + 4x^{\frac{-1}{2}} - 3x^{-2}$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx} (x^3) + \frac{d}{dx} (4x^{-\frac{1}{2}}) + \frac{d}{dx} (-3x^{-2})$$

$$= 3x^{3-1} + 4\left(\frac{-1}{2}\right)x^{-\frac{1}{2}-1} + (-3) = [(-2)x^{-2-1}]$$

$$= 3x^2 - 2x^{-\frac{3}{2}} + 6x$$

પરિશિષ્ટ 3.2

સંકલન (Integration)

ત્રિકોણ, ચોરસ, લંબચોરસ, વર્તુળ જેવી નિયમિત આકૃતિઓનું ક્ષેત્રફળ શોધવા માટેનાં પ્રમાણિત સૂત્રો છે. હવે આપણે અનિયમિત આકૃતિનું ક્ષેત્રફળ કઈ રીતે મેળવી શકાય તે જોઈશું અને તે દરમિયાન સાહજિક રીતે સંકલનનો અછડતો પરિચય મેળવીશું.

ધારો કે કોઈ રાશિ y એ કોઈ ચલરાશિ xનું વિધેય છે, અર્થાત્ y = f(x). ધારો કે $y \to x$ નો આલેખ આકૃતિ (B)માં દર્શાવ્યા મુજબનો મળે છે.

હવે ધારો કે આપણે $x=x_0$ થી $x=x_N$ ની વચ્ચે ઘેરાતા આલેખની નીચેના ભાગનું ક્ષેત્રફળ (PQRS) શોધવું છે.

આ માટે x_0 થી x_N વચ્ચેના અંતરાલ(interval)ને Δx જેટલી સૂક્ષ્મ પહોળાઈની N પટ્ટીઓ(strips)માં વહેંચીશું.

આકૃતિ (B) પરથી સ્પષ્ટ છે કે આ બધી જ પટ્ટીઓનાં ક્ષેત્રફળનો સરવાળો જરૂરી છે.

પ્રથમ પટ્ટી $(x_1$ થી $x_2=x_1+\Delta x)$ માટે $f(x)=f(x_1)$ લેતાં, પ્રથમ પટ્ટીનું ક્ષેત્રફળ $\Delta A_1=f(x_1)\Delta x.$

બીજી પટ્ટી $(x_2$ થી $x_3=x_2+\Delta x)$ માટે $f(x)=f(x_2)$.

 \therefore બીજી પદ્દીનું ક્ષેત્રફળ $\Delta A_2 = f(x_2) \Delta x$.

આ રીતે દરેક પટ્ટીનું ક્ષેત્રફળ મેળવી સરવાળો કરતાં મળતું કુલ ક્ષેત્રફળ

$$A' = f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_N)\Delta x$$

$$= \sum_{i=1}^{N} f(x_i) \Delta x$$

(1)

પરંતુ આ રીતે મળતું ક્ષેત્રફળ (A') એ આપશે જે શોધવું છે, તે ક્ષેત્રફળ (A) કરતાં થોડું જુદું હશે. આમ થવાનું કારણ નીચે મુજબ છે :

 $\Delta A_1 = f(x_1)\Delta x$ એ લંબચોરસ PQUVનું ક્ષેત્રફળ આપશે, જ્યારે આપશે જોઈતો ભાગ PQTV છે. આમ, પ્રથમ stepમાં જ Q-U-T-Q ના ક્ષેત્રફળ જેટલું ક્ષેત્રફળ ઓછું ગણાઈ ગયું છે. આ જ રીતે દરેક પટ્ટી માટે થયું છે.

એ સ્પષ્ટ છે કે જેમજેમ આવી પટ્ટીઓની સંખ્યા (N) વધારતા (એટલે કે પહોળાઈ (Δx) ઘટાડતાં) જઈશું. તેમતેમ આ રીતે મેળવેલ મૂલ્ય અને સાચા મૂલ્ય વચ્ચેનો તફાવત ઘટતો જશે, અને પટ્ટીની પહોળાઈ (Δx) શૂન્યવત્ નાની લેતાં સંપૂર્ણપણે ચોક્કસ મેળવી શકાય છે. સંકેતમાં

$$A = \lim_{\Delta x \to 0} \sum_{i=1}^{N} f(x_i) \Delta x$$
$$= \int_{x_0}^{x_N} f(x) dx$$

આમ, કહી શકાય તે સરવાળાનું લક્ષ એટલે સંકલન.

 $\int\limits_{x_0}^{x_N} f(x) dx \ \vartheta \ f(x) \ \text{th} \ x = x_0 \text{થી } x = x_N \text{ સુધીનો } x \text{ પરનો (સતત) સરવાળો છે. તેને}$

f(x)નું x_0 થી x_N સુધીનું x પરનું (નિયત) સંકલન કહે છે. સંકલન એ વિકલનની પ્રતિ (inverse) પ્રક્રિયા છે.

અમુક પ્રમાણિત વિધેયોનાં સંકલિતો :

f(x)	$\mathbf{F}(x) = \int f(x)dx$	f(x)	$\mathbf{F}(x) = \int f(x)dx$
x^{n} $(n \neq -1)$	$\frac{x^{n+1}}{n+1}+c$	$(ax + b)^n$	$\frac{1}{a}\frac{(ax+b)^{n+1}}{n+1}+c$
$\frac{1}{x}$	$ln \ x + c$	sin x	$-\cos x + c$
e ^x	$e^x + c$	cos x	sin x + c
e^{kx}	$\frac{1}{k}e^{kx}+c$	sin kx	$-\frac{1}{k}\cos x + c$
a ^x	$\frac{a^x}{lna} + c$	cos kx	$\frac{1}{k}\sin kx + c$

ઉપર્યુક્ત ટેબલમાં cને સંકલન-અચળાંક કહે છે. ચોક્કસ સીમાઓ (limits)ની વચ્ચે કરેલ સંકલન (નિયત)ને ચોક્કસ મૂલ્ય હોય છે. જેમકે,

$$\int_{1}^{4} x^{3} dx = \left[\frac{x^{4}}{4} \right]_{1}^{4} = \frac{1}{4} \left[(4)^{4} - (1)^{4} \right]$$
$$= \frac{1}{4} (256 - 1)$$
$$= 63.75$$

ઉદાહરણ : $\int_{0}^{t} A \sin \omega t \ dt$ નું મૂલ્ય મેળવો જયાં, A અને ω અચળાંક છે.

Gea:
$$\int_{0}^{t} A \sin \omega t \ dt = A \left[\frac{-\cos \omega t}{\omega} \right]_{0}^{t} = \frac{A}{\omega} (1 - \cos \omega t)$$

ઉદાહરણ : $\int\limits_{R}^{\infty} \frac{GMm}{x^2} dx$ નું મૂલ્ય મેળવો જ્યાં, G અચળ છે.

વિકલન અને સંકલનની આટલી સમજણ મેળવ્યા બાદ હવે આપણે અચળપ્રવેગી ગતિનાં સમીકરણો કલનશાસ્ત્રની મદદથી મેળવીશું.

ઉદાહરણ : કલનશાસ્ત્ર (Calculus)ની મદદથી સુરેખપથ પર નિયમિત (અચળ) પ્રવેગી ગતિ કરતાં પદાર્થ માટે ગતિનાં સમીકરણો મેળવો.

ઉકેલ :

(1) વેગ-સમય વચ્ચેનો સંબંધ :

તત્કાલીન પ્રવેગની વ્યાખ્યા અનુસાર,

$$a = \frac{dv}{dt}$$

dv = adt

હવે, t=0 સમયે $v=v_0$ અને t=t સમયે v=v છે. બન્ને બાજુ સંકલન કરતાં,

$$\int_{v_0}^{v} dv = \int_{0}^{t} a dt$$

$$[v]_{v_0}^{v} = a \ [t]_{0}^{t}$$
 (a અચળ છે.)

$$\therefore v - v_0 = at$$

or
$$v = v_0 + at$$
 (1)

(2) સ્થાન-સમય વચ્ચેનો સંબંધ :

તત્કાલીન વેગની વ્યાખ્યા અનુસાર,

$$v = \frac{dx}{dt}$$

$$\therefore dx = vdt$$

t=0 સમયે પદાર્થ x_0 સ્થાન પર અને t=t સમયે x સ્થાન પર છે. બન્ને બાજુ સંકલન કરતાં,