09-03-NumberTheory

Created on 20220605.

Last modified on 2023 年 3 月 19 日.

目录

4 目录

Chapter 1 Introduction

a: 初等数论 b: 解析数论 c: 代数数论 d: 超越数论 e: 丢番图逼近 f: 数的几何 (几何数论) g: 概率数论 h: 计算数论 i: 组合数论 j: 算术代数几何 k: 数论其他学科

Chapter 2 初等数论

- 2.1 整数的整除性
- 2.1.1 因数和倍数
- 2.1.2 质数和合数
- 2.1.3 质数分布

不大于 x 的质数的个数 $\pi(x)$

Proposition 2.1. 质数定理

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log(x)} = 1$$

Proposition 2.2. Goldbach 猜想:大于 4的偶数都是 2个奇质数的和。

是否存在无数个形如 2^p-1 的数是质数

Fermat 数: $F_n = 2^{2^n} - 1, F_5$ 不是质数

2.1.4 最大公因数和最小公倍数

最大公因数: (a,b)

最小公倍数: $\{a,b\}$

a 能被 b 除尽,即 a 是 b 的整数倍: b|a

辗转相除法

 $a = q \cdot b + r$, prove that : (a, b) = (r, b). Mark as to prove L = R, Prove:

(1)
$$\therefore L|a, L|b$$

$$\therefore r = a - qb$$

$$\therefore L|r$$

$$\therefore L|b$$

$$\therefore L|(r, b) \Rightarrow L|R;$$
(2)
$$\therefore R|b, R|r$$

$$\therefore a = qb + r$$

$$\therefore R|a$$

$$\therefore R|b$$

$$\therefore R|(a, b) \Rightarrow R|L;$$

$$\therefore (1) and(2)$$

$$\therefore L = R$$

Proposition 2.3. $ab = (a, b) \cdot \{a, b\}$

Proposition 2.4. $(a,b) = 1, a|bc \Rightarrow a|c$

Proposition 2.5. $a | \prod a_i, (a, a_1) = \cdots = (a, a_{n-1}) = 1, \Rightarrow a | a_n$

Proposition 2.6. 算术基本定理: 不计质因数的次序, 正整数分解成质数连乘的形式是唯一的。 $a = \prod p_i = L = \prod q_i = R, \because p_1 | R$, set $p_1 = q_1$, let $L = L/p_1$, $R = R/q_1$, keep doing, $\therefore p_i = q_i$ $a = \prod p_i^{n_i}$

Proposition 2.7. 任意 4 个连续整数的乘积加 1 是一个平方数 $a(a+1)(a+2)(a+3)+1=qq \Rightarrow a(a+3)\cdot (a+1)(a+2)=(q-1)(q+1)$

Proposition 2.9. $a \nmid 2, a \nmid 3, \Rightarrow 24|a^2 + 23.$ *Proof*, 分类讨论即可。

Proposition 2.10. $(a^n, b^n) = (a, b)^n$ (na, nb) = n(a, b)

Proposition 2.11. $a, b \in \mathbb{Z}_+, \sqrt[a]{b}$ 如果不是整数,则不是有理分数。

2.2. 进制

Proposition 2.12. 代数方程 $\prod a_i x^i = 0, a_i \in \mathbb{Z}$ 如果有有理数根,根一定是整数。证明,设 $x = \frac{p}{q}$,即需要证明 q = 1. 带入 x,有 $\sum \frac{a_i p^i}{q^i} = 0$,两边乘以 q^n , $\sum a_i p^i q^{n-i} = 0$,∴ $p^n = q \times T \Rightarrow q | p^n$,∴ q = 1

Proposition 2.13. $A: \{4t-1, t \in \mathbb{Z}\}$, 证 A 中有无限质数。

假设最多有 k 个, 尝试推出矛盾。

Proposition 2.14. 证明 $F_5 = 2^32 + 1 = 641 \times 6700417$ 不是质数?

2.2 进制

二进制的加减乘除

2.3 不定方程

2.3.1 一元不定方程

 $\prod_{i=0} a_i x^i = 0, a_i \in \mathbb{Z}$, 对于整数解 α , we have $a_0 = -\prod_{i=1} a_i \alpha^i \Rightarrow \alpha | a_0$

2.3.2 二元一次不定方程

 $ax + by = c, a \neq 0, b \neq 0, a, b, c \in \mathbb{Z}$. 方程总可化简,直到 (a,b) = 1 该型方程找到特解 x_1, y_1 后,通解: $x = x_1 + bu, y = y_1 + au, u \in \mathbb{Z}$

Proposition 2.15. $(a,b) = 1 \Rightarrow \exists x, y \in \mathbb{Z}, ax + by = 1$

Prove:

(step1) for set $A : \{ax + by | a, b \text{ is fixed}\}$, we have $c_1, c_2 \in A \Rightarrow c_1 + c_2 \in A$.

(step2) a > b, let $b = r_0$, we have

$$\begin{bmatrix} a = q_1 r_0 + r_1 & (a, r_0) = (r_0, r_1) & r_1 = a - q_1 r_0 \\ r_0 = q_2 r_1 + r_2 & (r_0, r_1) = (r_1, r_2) & r_2 = r_0 - q_2 r_1 \\ \vdots & \vdots & \vdots & \vdots \\ r_n = q_{n+2} r_{n+1} + r_2 & (r_n, r_{n+1}) = (r_{n+1}, r_{n+2}) & r_2 = r_n - q_{n+2} r_{n+1} \\ r_{n+1} = q_{n+3} r_{n+2} + 0 & (r_{n+1}, r_{n+2}) = r_{n+2} & 0 = r_{n+1} - q_{n+3} r_{n+2} \end{bmatrix}$$

$$(2.2)$$

from column 2, we have $(a, r_0) = r_{n+2} = 1$. From cloumn 3, and \therefore $a, b \in A, \therefore$ $r_i \in A, \therefore$ $\exists x, y, ax + by = r_{n+2} = 1$

2.3.3 勾股数

 $x^2 + y^2 = z^2$, 做如下限定后 $x, y, z \in \mathbb{Z}_+, (x, y) = 1, 2 | x$, 有: $x = 2ab, y = a^2 - b^2, z = a^2 + b^2, a > b, (a, b) = 1, 2 \nmid (a + b)$

Proposition 2.16. 整数边长的直角三角形, 斜边与一直角边长差 1,3 个边可表示成: $2b + 1, 2b^2 + 2b, 2b^2 + 2b + 1, b \in \mathbb{Z}$

 $Proof\ x^2 + y^2 = z^2$, 改写成等式集合 $Ax = 2ab, y = a^2 - b^2, z = a^2 + b^2$, let z = x + 1, so $a^2 + b^2 - 2ab = 1 \Rightarrow a = b + 1$, 带入等式集合 A, 即得。

2.3.4 费马问题

 $x^n + y^n = z^n$,这个不定方程没有正整数解。

Proposition 2.17. $x^4 + y^4 = z^4$ 没有整数解

证明 $x^4 + y^4 = z^4$ 没有整数解。令 $u = z^2$, 即证 $x^4 + y^4 = u^2$ 没有整数解。

step1) 设存在解,即最小的正解为 u_1 ,证明 (x,y)=1

设 (x,y) = d > 1, $d^4 | x^4, d^4 | y^4, \Rightarrow (\frac{x}{d})^4 + (\frac{y}{d})^4 = (\frac{u_1}{d^2})^2$, $\frac{u_1}{d^2} < u_1$, 矛盾,即证。

step2) (x,y) = 1,so x, y 是 2 个奇数,或是 1 奇 1 偶。分类讨论都是不可能的。

step2.1)证明不可能是 2 个奇数。

假设是 2 个奇数, $x = 2m + 1, n = 2n + 1, L = x^4 + y^4 = (2m + 1)^4 + (2n + 1)^4 = 4T + 2$, so $2|L = R = u^2, 4 \nmid L = R = u^2$, 不存在这样的 u,所以不能是 2 个奇数。

step2.2)证明不可能是1奇1偶。

 $x^4 + y^4 = u_1^2$ 改写为 $(x^2)^2 + (y^2)^2 = u_1^2$, 可进一步改为: $x^2 = 2ab, y^2 = a^2 - b^2, u_1 = a^2 + b^2, a > b, (a, b) = 1, 2 \nmid (a + b)$

step2.2.1) 设 a = 2n, b = 2m + 1

 $y^2 = a^2 - b^2 \Rightarrow a^2 = b^2 + y^2 = 4U + 2$, $\therefore 4 \nmid a^2$, 与 a = 2n 矛盾。

2.4. 一次同余式 11

step2.2.2) 设 a = 2m + 1, b = 2n

 $\therefore (a,b)=1, \therefore (a,m)=1$, and $\therefore x^2=2ab, \therefore (\frac{x}{2})^2=am$, 因为 a 和 m 互质,所以 a 需要能分解 为 $a=c^2$, 即 $am=c^2d^2, (c,d)=1, \therefore 2 \nmid c, b=2m=2d^2$,

 $y^2 = a^2 - b^2 \Rightarrow b^2 + y^2 = a^2 \Rightarrow (2d^2)^2 + y^2 = (c^2)^2$,可改写为 $2d^2 = 2kl, y = k^2 - l^2, c^2 = k^2 + l^2, (k, l) = 1, d^2 = kl$

 $d^2 = kl$, 所以 k 和 l 可分解为 $k = K^2, l = L^2, :: c^2 = K^4 + L^4$

 $c \leqslant c^2 = a \leqslant a^2 < a^2 + b^2 = u_1$, 与 u_1 最小的正整数解矛盾。

step3)综上,即证不存在。

Proposition 2.18. 证明整数方程没有整数解: $x^4 - 4y^4 = z^2, x, y, z \in \mathbb{Z}$

Proof: 两边平方,有 $z^4=(x^4+4y^4)^2-16x^4y^4\Rightarrow (2xy)^4+z^4=(x^4+4y^4)^2$,此式无解,所以原式无解。

2.4 一次同余式

2.4.1 同余

Proposition 2.19. $10^n \mod 9 \equiv 1$, for example, $5874192 \mod 9 = (5 + 8 + 7 + 4 + 1 + 2) \mod 9 = 0$

Proposition 2.20. $(a \times b) \mod 9 = ((a \mod 9) \times (b \mod 9)) \mod 9$ $28997 \times 39459 \neq 1144192613, L = 8 \times 3 = 6 \neq 5 = R$, 不相等一定没有算对,但是相等却不一定算对。

Proposition 2.21. $(a,m) \nmid b \Rightarrow (ax+b) \mod (m) \neq 0$. Prove:suppose $\exists c, m | (ac+b), \therefore \exists \alpha, \alpha m = ac+b \Rightarrow b = \alpha m - ac, \because (a,m) = L, \therefore b = \alpha L, \therefore L|b, \% f, \ \mathbb{P}$ \mathbb{H} .

例: $2x \equiv 179 \pmod{562}$ 没有整数解

Proposition 2.22. $(a, m) = 1, m \nmid a \Rightarrow \exists x, m | (ax + b),$ 证明 $\exists ax + my = z, z = -b$ 例: $256x \equiv 179 \pmod{337}$ 有整数解

Proposition 2.23. $ad \equiv bd \pmod{md} \Rightarrow a \equiv b \pmod{m}$, 证明, 改写一下即显然 $md|(ad-bd) \Rightarrow m|(a-b)$

Proposition 2.24. $1935|(1296x-1125) \Rightarrow 215|144x-125, x = 80, 295, 510, 725, 940, 1155, 1370, 1585, 1800?$

2.4.2 孙子定理

解同余式组

Proposition 2.25. $x \equiv a \pmod{3}, x \equiv b \pmod{5}, x \equiv c \pmod{7} \Rightarrow x = 70a + 21b + 15c \pmod{105}$

Proposition 2.26. $\{m_k\}, \forall i, j, (m_i, m_j) = 1, \prod m_i = m_i M_i,$ 方程组 $x \equiv b_i \pmod{m_i}$ 的解 为 $x = (\sum b_i M_i' M_i) \pmod{\prod m_i}, M_i' M_i \equiv 1 \pmod{m_i}$.

Prove: $i = j, (m_i, M_j) = 1, \dots \exists n_i, M'_j, n_i m_i + M'_j M_j = 1 \Rightarrow M'_j M_j \equiv 1 \pmod{m_i}$ $i \neq j, m_i | M_j, \dots \exists b_j, b_j M'_j M_j \equiv 0 \pmod{m_i}, \dots \sum b_j M'_j M_j \equiv b_i M'_i M_i \equiv b_i \pmod{m_i}$

Proposition 2.27. $a \equiv x \mod m_1 \equiv x \mod m_2$, 所有解是 $x \equiv a \mod \{m_1, m_2\}$, 证明的话, 两边改写一下即可 $m_1 | (a - x), m_2 | (a - x), \{m_1, m_2\} | (a - x)$

Proposition 2.28. $(m_1, m_2) = d, d|(b_1, b_2)$, 方程组 $Ax \equiv b_1 \pmod{m_1}, x \equiv b_2 \pmod{m_2}$, 解为 $x = \equiv x_0 \pmod{(\{m_1, m_2\})}$, 其中 x_0 是方程组 A 的解。

Proposition 2.29. $(n_i, n_j) = 1, n_i | m_i, \{n_1, \dots, n_k\} = \{m_1, \dots, m_k\}, \therefore$, 方程组 $x \equiv b_i \pmod{m_i}$ 与方程组 $x \equiv b_i \pmod{n_i}$ 同解

Chapter 3 解析数论

Chapter 4 代数数论

Chapter 5 超越数论

Chapter 6 丢番图逼近

Chapter 7 数的几何(几何数论)

Chapter 8 概率数论

Chapter 9 计算数论

Chapter 10 组合数论

Chapter 11 算术代数几何

Chapter 12 数论其他学科