Модификация групп

Павел Соколов, Илья Давиденко, Семён Вац

Сириус 2024

Определения

Definition

Группой Гупты-Фабриковского Γ_3 будем называть группу, порождённую двумя действиями a,t, действующую на бесконечном 3-регулярном дереве. Действия a,t задаются следующим образом: $t(0w)=1w,\ t(1w)=2w,\ t(2w)=0w$ $a(0w)=0t(w),\ a(1w)=2w,\ a(2w)=2a(w)$

Definition

Будем называть бесконечное корневое дерево, в котором у любой вершины на уровнях с чётным номером по 2 потомка, а на нечётном по 3 потомка — $T_{(23)^\infty}$.

Группа Гупты-Фабриковского

Дерево $T_{(23)^\infty}$

Некоторые свойства

Lemma

Порядок любого элемента группы Γ_3 равен ∞ или 3^N .

Lemma

Пусть есть $\varphi: \Gamma_3 \longrightarrow Aut(T_{(23)^\infty})$ - инъективный гомоморфизм. $\Gamma_3 = \langle a, t \rangle$. Тогда или $\varphi(a)$, или $\varphi(t)$ можно задать рекурсивно.

Леммы о самоподобии

Lemma

При инъективном гомоморфизме образ самоподобной группы будет являться самоподобной группой.

Lemma

При инъективном гомоморфизме образ Γ_3 действует тривиально на первом уровне, а на втором действуем как Γ_3 или тривиально.

Порождающая структура

- Повороты
- Спуск
- Растягивание
- Накладывания

Образующие

$$r(00w) = 01w, \ r(01w) = 02w, \ r(02w) = 00w$$

 $g(00w) = 00r(w), \ g(01w) = 01w, \ g(02w) = 02g(w)$

Построение изоморфизмов

Теорема

Пусть имеется инъективный гомоморфизм $\varphi: \Gamma_3 \longrightarrow Aut(T_{(23)^\infty})$, тогда при помощи обратных действий можно свести $\varphi(a)$ или $\varphi(t)$, к g или к r.

Спуск

$$\forall \tau \in p(\Gamma_3) \ \tau \longrightarrow \tau' \in p'(\Gamma_3), \ \tau'(00w) = 00\tau(w)$$

Повороты

$$H \cong C_2 \times S_3 \times C_2 \times S_3 \times \dots$$

Растягивание

$$\forall q \in \sigma q \longrightarrow q' \in \sigma', \ q'(u00x) = q'(u)00q(x),$$
$$q'(xy) = q(xy) \ x, y \in 0, 1, 2$$

Накладывание

Тип А:

Накладывание

Тип В:

Накладывание

СПАСИБО ЗА ВНИМАНИЕ!