DHANAMANJURI UNIVERSITY **JUNE-2022**

Name of Programme **B.A/B.Sc. Mathematics (Honours)**

Semester II

Paper Type Core III

Paper Code CMA-103

Paper Title Real Analysis

Full Marks 100

Duration: 3 Hours

The figures in the margin indicate full marks for the questions Answer all the questions:

- 1. State the completeness property of \mathbb{R} . Prove that if A and B are nonempty subsets of \mathbb{R} that satisfy the property: $a \leq b$ for all $a \in A$ and all $b \in B$, then sub $A \leq \inf B$.
- Show that the series $\frac{1.2}{3^2 4^2} + \frac{3.4}{5^2 6^2} + \frac{5.6}{7^2 8^2} + \cdots$ is convergent. 4
- 3. Prove that a sequence cannot converge to more than one limit. 5
- 4. What is an absolutely convergent series? Prove that every absolutely convergent series is convergent. 5
- 5. Prove that an upper bound u of a non empty set S in \mathbb{R} is the supremum of S if an only if for every $\varepsilon > 0$ there exists $s_{\varepsilon} \in S$ such that $u - \varepsilon < s_{\varepsilon}$. 6
- 6. Prove the following:
 - i) If $a \in \mathbb{R}$ and $a \neq 0$, then $a^2 > 0$.
 - ii) 1 > 0
 - iii) If $n \in \mathbb{N}$, then n > 0.

Page 1 of 2

6

7. Prove that the following statement are equivalent.	6
i) S is a countable set.	
ii) There exists a surjection of N into S	
111) There exists a surjection of S into N	
8. State and prove the Archimedean Property.	6
9. State and prove Sandwich Theorem for limits.	6
10. Prove that a necessary and sufficient condition for the convergen of a monotonic sequence is that it is bounded.	
11. State and prove Cantor's Theorem.	6
12. If $l_n = [a_n, b_n]$, $n \in \mathbb{N}$, is a nested sequence of closed bounded intervals, then prove that there exists a number $\xi \in \mathbb{R}$ such that $\xi \in I_n$ for all $n \in \mathbb{N}$.	7
13. If S is a subset of \mathbb{R} that contains at least two points and has the property: If $x, y \in S$ and $x < y$, then $[x, y] \subseteq S$, then prove that S an interval.	S is
State and proved by	
State and prove the Density Theorem for rational numbers.	
14. State and prove Bolzano-Weierstrass Theorem for sequences.	8
Or	
State and prove Cauchy's General Principal of Convergence.	
15. State and prove Leibnitz Test for the convergence of an alternation series.	
16. State and prove Cauchy's Root Test for the convergence of posit term series.	8 ive 8
***** 9 5 by 666. bound) .
Page 2 of 2	town