Physikpraktikum für Naturwissenschaftler

Versuch: Kennlinien

Durchgeführt am 17. Januar 2019 Betreuer: Johannes Fendt

Gruppe 13
Felix Burr: felix.burr@uni-ulm.de
Johannes Spindler: johannes.spindler@uni-ulm.de

Wir bestätigen hiermit, das Protokoll selbstständig erarbeitet zu haben und in genauer Kenntnis über dessen Inhalt zu sein.

Felix Burr

Johannes Spindler

Inhaltsverzeichnis

1	Einl	eitung	3			
2	Ken	Kennlinien von Metallfaden- und Kohlefadenlampe				
	2.1	Versuchsaufbau und Durchführung	4			
	2.2	Messwerte und Ergebnisse	4			
	2.3	Ergebnisdiskussion	7			
3	Kennlinie einer Halbleiter-Diode					
	3.1	Versuchsaufbau und Durchführung	8			
	3.2	Messwerte und Ergebnisse				
	3.3	Ergebnisdiskussion	9			
4	Hall	bleiter-Diode bei Wechselspannung	10			
	4.1	Versuchsaufbau und Durchführung	10			
	4.2	Messwerte und Ergebnisse	10			
	4.3	Ergebnisdiskussion	10			
5	Kennlinie eines MOS-FET					
	5.1	Versuchsaufbau und Durchführung	11			
	5.2	Messwerte und Ergebnisse				
	5.3	Ergebnisdiskussion				

1 Einleitung

Die Stromstärke I eines elektrischen Stroms ist definiert als die Ladungsmenge ΔQ , die pro Zeitintervall Δt durch einen Querschnitt des Stromkreises fließt:

$$I = \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt} \tag{1}$$

Das bedeutet, der in einem Material fließende Strom bei einer gegebenen Spannung hängt von der Fähigkeit des Materials ab, Ladungen zu transportieren. Diese mikroskopische Eigenschaft wird als elektrische Leitfähigkeit σ des Materials bezeichnet. Es besteht folgender Zusammenhang mit makroskopischen Größen:

$$\sigma = G \frac{l}{A} = \frac{I}{U} \cdot \frac{l}{A} \tag{2}$$

Hier bezeichnet $G = \frac{I}{U}$ den Leitwert, l die Leiterlänge und A die Querschnittsfläche. Diese makroskopischen Größen sind leicht messbar.

Das makroskopisch messbare elektrische Verhalten des Stromkreises wird in Form von Kennlinien dargestellt. Dazu wird eine Spannung angelegt, schrittweise variiert und jeweils der Stromfluss gemessen. Die Wertepaare werden in einem U-I-Diagramm aufgetragen. In diesem Versuch werden so die Bauteile Metallfaden- und Kohlefadenlampe, Halbleiter-Diode und MOS-FET untersucht.

2 Kennlinien von Metallfaden- und Kohlefadenlampe

2.1 Versuchsaufbau und Durchführung

Abbildung 1: Schaltbild zur Messung an einer Lampe (aus der Versuchsanleitung)

Wie in Abbildung 1 gezeigt, wird die Lampe an ein Netzgerät angeschlossen, mit welchem Spannungen U zwischen -40V und +40V in 2,5V-Schritten angelegt werden (zwischen -5V und +5V aber 1V-Schritte). Mithilfe eines parallel-geschalteten Voltmeters kann die Spannung noch genauer eingestellt werden. Das in Reihe geschaltete Amperemeter dient zur Messung des Stroms I.

Anschließend werden für jede Spannung die Verlustleistung P und der Widerstand R berechnet:

$$P = U \cdot I \tag{3}$$

$$R = \frac{U}{I} \tag{4}$$

Für U=0V muss der Widerstand stattdessen als Inverses der Steigung in der Kennlinie bestimmt werden:

$$R(0V) = \frac{1V - (-1V)}{I(1V) - I(-1V)} = \frac{2V}{I(1V) - I(-1V)}$$
 (5)

Damit werden die Kennlinie und das P-R-Diagramm erstellt.

2.2 Messwerte und Ergebnisse

Tabelle 1: Messwerte für I und daraus errechnete Werte für P und R bei schrittweise variierter Spannung U für eine Metallfadenlampe.

U [V]	I [mA]	P [W]	$R [\Omega]$		
-40,0	-24,6	0,984	1630		
-37,5	-22,9	0,859	1640		
-35,0	-21,1	0,739	1660		
-32,5	-19,5	0,634	1670		
-30,0	-17,9	0,537	1680		
-27,5	-16,2	0,446	1700		
-25,0	-14,6	0,365	1710		
-22,5	-13,1	0,295	1720		
-20,0	-11,5	0,230	1740		
-17,5	-9,9	0,173	1770		
-15,0	-8,4	0,126	1790		
-12,5	-7,0	0,087	1790		
-10,0	-5,5	0,055	1820		
-7,5	-4,0	0,030	1880		
-5,0	-2,6	0,013	1920		
-4,0	-2,1	0,0084	1900		
-3,0	-1,6	0,0048	1880		
-2,0	-1,0	0,0020	2000		
-1,0	-0,5	0,0005	2000		
0	0	0	2000		
+1,0	+0,5	0,0005	2000		
+2,0	+1,0	0,0020	2000		
+3,0	+1,6	0,0048	1880		
+4,0	+2,2	0,0088	1820		
+5,0	+2,7	0,014	1850		
+7,5	+4,1	0,031	1830		
+10,0	+5,5	0,055	1820		
+12,5	+7,0	0,088	1790		
+15,0	+8,5	0,128	1760		
+17,5	+10,0	0,175	1750		
+20,0	+11,5	0,230	1740		
+22,5	+13,0	0,293	1730		
+25,0	+14,6	0,365	1710		
+27,5	+16,2	0,446	1700		
+30,0	+17,8	0,534	1690		
+32,5	+19,5	0,634	1670		
+35,0	+21,1	0,739	1660		
+37,5	+22,8	0,855	1640		
+40,0	+24,5	0,980	1630		
6					

Tabelle 2: Messwerte für I und daraus errechnete Werte für P und R bei schrittweise variierter Spannung U für eine Kohlefadenlampe.

U [V]	I [mA]	P [W]	$R [\Omega]$
-40,0	-24,5	0,980	1630
-37,5	-23,5	0,881	1600
-35,0	-22,5	0,788	1560
-32,5	-21,5	0,699	1510
-30,0	-20,5	0,615	1460
-27,5	-19,3	0,531	1420
-25,0	-18,3	0,458	1370
-22,5	-17,1	0,385	1320
-20,0	-15,9	0,318	1260
-17,5	-14,6	0,256	1200
-15,0	-13,3	0,200	1130
-12,5	-11,8	0,148	1060
-10,0	-10,3	0,103	970
-7,5	-8,6	0,065	870
-5,0	-6,7	0,034	750
-4,0	-6,2	0,025	650
-3,0	-5,3	0,016	570
-2,0	-4,2	0,0084	480
-1,0	-2,4	0,0024	420
0	0	0	410
+1,0	+2,5	0,0025	400
+2,0	+3,2	0,0064	630
+3,0	+4,9	0,015	610
+4,0	+6,0	0,024	670
+5,0	+6,6	0,033	760
+7,5	+8,6	0,064	870
+10,0	+10,3	0,103	970
+12,5	+11,9	0,149	1050
+15,0	+13,2	0,198	1140
+17,5	+14,6	0,256	1200
+20,0	+15,9	0,318	1260
+22,5	+17,0	0,383	1320
+25,0	+18,2	0,455	1370
+27,5	+19,3	0,531	1420
+30,0	+20,4	0,612	1470
+32,5	+21,4	0,696	1520
+35,0	+22,5	0,788	1560
+37,5	+23,4	0,878	1600
+40,0	+24,4	0,976	1640

3 Kennlinie einer Halbleiter-Diode

3.1 Versuchsaufbau und Durchführung

Abbildung 2: Schaltbild zur Messung an einer Halbleiter-Diode (aus der Versuchsanleitung)

3.2 Messwerte und Ergebnisse

Tabelle 3: Messwerte für I bei variierter Spannung U für eine np-Diode.

I [mA]
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,1
0,4
1,1
5,2
10,6
16,9
27,2
66,7
107,8
138,0
175,0

Abbildung 3: Kennlinie einer pn-Diode (aus der Versuchsanleitung)

4 Halbleiter-Diode bei Wechselspannung

4.1 Versuchsaufbau und Durchführung

Abbildung 4: Schaltbild zur Messung mit Oszillator an einer Halbleiter-Diode (aus der Versuchsanleitung)

4.2 Messwerte und Ergebnisse

5 Kennlinie eines MOS-FET

5.1 Versuchsaufbau und Durchführung

Abbildung 5: Schaltbild zur Messung an einem MOS-FET (aus der Versuchsanleitung)

5.2 Messwerte und Ergebnisse

Abbildung 6: Steuerkennlinie eines selbstleitenden n-Kanal-MOS-FET (aus der Versuchsanleitung)

Abbildung 7: Arbeitskennlinie eines selbstleitenden n-Kanal-MOS-FET (aus der Versuchsanleitung)