PSALTer results panel

Wave operator and propagator

	${}^2\mathcal{A}_{a}{}^{\parallel}{}_{aeta\chi}$ ${}^2\mathcal{A}_{s}{}^{\parallel}{}_{aeta\chi}$	0 0	0	0 0	0 0	$\frac{1}{4}(a_0^2 - 2a_1 - a_2^2)$ $-\frac{1}{4}\sqrt{3}(2a_1 + a_2 + a_3)$	$-\frac{1}{4}\sqrt{3}(2\ a_{1}+a_{2}+a_{3})\left \frac{3}{4}(a_{0}-4\ a_{1}-2\ a_{2}-3\ a_{3}+16\ a_{6}-4\ a_{7}-2\ a_{9})\right $	$\parallel \boldsymbol{\mathcal{A}} \parallel $
4	$^{2^{+}}\mathcal{A}_{5}^{}$ as	0	$-\frac{1}{4}\sqrt{3}(2\ a_1+a_1+a_9)$	0	$\frac{3}{4}(a_0-4a_1-2a_2-3a_3+16a_3-4a_1-2a_3)$	0	0	$0 = \mathbb{I}^*\mathcal{E}_{+0} = \mathbb{I}^{\mathcal{H}_{+0} \to \mathcal{H}_{+0}}$
-1	$^{2^{+}}\mathcal{A}_{\mathrm{s}}^{\parallel}{}_{lphaeta}$		0	$-3(a_0 + 4a_0 - 4a_7)$	0	0	0	S
-1	$^{2^{+}}\mathcal{A}_{a}{}^{\parallel}{}_{lphaeta}$	0 0	$\frac{1}{4}(a_0-2a_1-a_1)$	0	${}^{2^{+}}\mathcal{A}_{5}^{\perp}+\alpha^{\beta}$ 0 ${}^{-\frac{1}{4}}\sqrt{3}(2\ a_{1}+a_{2}+a_{9})$	0	0	S — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$^{2^{+}}h^{\parallel}_{\alpha\beta}$	$\frac{a.k^2}{0}$	0	0	0	0	0	
		$\frac{2^{+}h^{\parallel}+^{\alpha\beta}}{\frac{a\cdot k^{2}}{8}}$	$^{2^+}\mathcal{A}_{\mathrm{a}}$ †	$^{2^{+}}\mathcal{A}_{s}^{\parallel} +^{\alpha\beta}$	$^{2^{+}}\mathcal{A}_{\mathrm{s}}^{\perp} +^{\alpha\beta}$	$^{2}\mathcal{A}_{\mathrm{a}}^{\dagger}\dagger^{\alpha\beta\chi}$	$^{2}\mathcal{A}_{s}^{\parallel}+^{\alpha\beta\chi}$	T

´ 🖵			_		_		J. W _S T	U	U	U		U	ν		,
$^{\scriptscriptstyle op}\!$	$\ \boldsymbol{\mu}_{+0}$	**************************************	0+ SAs ⊥t.	=°,0	$^{0+}\mathcal{A}_{\mathrm{s}}^{\mathrm{th}}$.	0 R2 =_e	⁰ W _a [∥] †	0	0	0		0	0		(
Spin-parity form Covariant form										Multiplicitie	es				
$0^{+}W_{s}^{\perp h} == 0$ 2				$\partial_{\alpha}W^{\alpha\beta}_{\ \beta} = \partial_{\beta}W^{\alpha\beta}_{\ \alpha} + \partial_{\beta}W^{\alpha\beta}_{\ \alpha}$									1		
0+Ws	${}^{\dagger}W_{s}^{\parallel} + 3 {}^{0}{}^{\dagger}W_{s}^{\perp t} = 0 \qquad \partial_{\alpha}W^{\alpha\beta}_{ \beta} + \partial_{\beta}W^{\alpha\beta}_{ \alpha} + \partial_{\beta}W^{\alpha\beta}_{ \alpha} = 0$								1						
0 ⁺ T ⁺ =	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} = 0$ $\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} = 0$							1	_						
${}^{1}\mathcal{W}_{s}{}^{\parallel n}{}^{\alpha} + {}^{1}\mathcal{W}_{s}{}^{\perp n}{}^{\alpha} == 0 \ 2 \ \partial_{\beta}\partial^{\alpha}\mathcal{W}^{\beta\chi}{}_{\chi} + \partial_{\chi}\partial^{\chi}\mathcal{W}^{\beta\alpha}{}_{\beta} + \partial_{\chi}\partial^{\chi}\mathcal{W}^{\beta}{}_{\beta}{}^{\alpha} ==$									3	_					
				$\partial_{\chi}\partial$	$^{lpha}\mathcal{W}^{eta}$	$_{\beta}^{X}+\partial$	$_{\chi}\partial^{lpha}\mathcal{W}^{eta\chi}_{eta}$ -	+2 ∂ _χ ι	∂ ^x W ^c	ιβ β					
$^{1}\mathcal{W}_{s}$	${}^{1}\mathcal{W}_{s}^{\parallel t^{\alpha}} + {}^{1}\mathcal{W}_{s^{\perp t^{\alpha}}} = 0 \partial_{\beta}\partial^{\alpha}\mathcal{W}_{X}^{\beta\chi} + \partial_{\chi}\partial^{\alpha}\mathcal{W}_{\beta}^{\beta\chi} + \partial_{\chi}\partial^{\alpha}\mathcal{W}_{\beta}^{\beta\chi} = 0$							3	_						
				$\partial_{\chi}\partial$	$^{\chi}W^{\alpha}$	$\beta_{\beta} + \hat{c}$	$\partial_{\chi}\partial^{\chi}\mathcal{W}^{etalpha}_{eta}$	+ ∂ _χ ∂ ^χ	W^{β}_{β}	α					
$^{1}\mathcal{T}^{_{\perp}}^{\alpha}$	== 0			$\partial_{\chi}\partial_{\beta}\partial$	$^{\alpha}\mathcal{T}^{\beta\chi}$	== ∂ _x ∂	$\partial^{\chi}\partial_{\beta}\mathcal{T}^{-lphaeta}$							3	_
Total expected gauge generators:								12	_						

 $^{0^{+}}\mathcal{T}^{\parallel}$ †

 $^{0^+}W_a^{\parallel}$

^{)†}Ws^{⊥t} †

 ${}^{0^+}\mathcal{W}_a{}^{\parallel}$

2a.+2a.+a.+3a.

0

 $^{0^+}W_s^{\perp t}$

6(a.+4a.)+24a

6a.+24a.-24a.

 ${}^{0^+}\mathcal{W}_s{}^{\parallel}$

0

6(a.+4a.-4a.)

-6(a.+4a.)+24a

 ${}^{0^+}\mathcal{W}_s{}^{\perp h}$

 $^{0}W_{a}^{\parallel}$

0

0

0

0

0

 $a + 4(a - a + 3c k^2)$

 $\frac{a}{2}$ -2 a +2 a -6 c k^2

0 0

0

0

0

 $\frac{2}{2}(a_0 + 4a_0 - 4a_1)$ $\frac{3}{2}(a_0 + 4a_0 - 4a_1)$

 $\frac{3}{2}(a_0 + 4 a_0 - 4 a_1)$ $\frac{3}{2}(a_0 + 4 a_0 - 4 a_1)$

0

0

0 0

0 0

Massive and massless spectra

Parity:	Spin:	Square mass:	Poleresidue:	Massive particle
Odd	0	$\frac{a + 4a - 4a}{0 - \frac{0}{12c}} > 0$	$\frac{1}{6c.} > 0$	particle

Unitarity conditions

$$a_{1} \in \mathbb{R} \&\& a_{0} < 0 \&\& a_{2} > \frac{1}{4} (a_{0} + 4a_{1}) \&\& c_{1} > 0$$