2.7 Dual-Simplex-Verfahren

Lösen Sie das folgende Problem zur Minimum-Optimierung rechnerisch:

Für den Transport einer Ware in eine Stadt stehen zwei Auslieferungslager zur Verfügung. Es werden täglich x_1 Stück vom 1. Lager, x_2 Stück vom 2. Lager geliefert, wobei folgende Nebenbedingungen zu erfüllen sind:

- 1. $x_1 \ge 100$
- 2. $x_2 \ge 100$
- 3. $x_1 + x_2 \ge 500$
- 4. $x_1 + 3x_2 \ge 900$
- 5. $3x_1 + 2x_2 \ge 1200$

Bei welchen Anzahlen x_1 und x_2 sind die Transportkosten minimal, wenn für den Transport aus dem 1. Lager 2 EUR pro Stück, für den Transport aus dem 2. Lager 8 EUR pro Stück anzusetzen sind? Zielfunktion:

Da eine Kostenminimierung immer einer Gewinnmaximierung entspricht, gilt nach dem "Dualitätssatz": Besitzen zwei zueinander duale Modelle zulässige Lösungen, dann ist der Minimalwert der Zielfunktion der Minimierungsaufgabe gleich dem Maximalwert der Zielfunktion der Maximierungsaufgabe: $G_{\max} = K_{\min}$ Es existiert daher ein Beweis, dass dem vorgegebenen Minimierungsproblem folgendes Dualproblem entspricht – und es mit der Dual-Simplex-Methode zu lösen ist.

Duales Problem:

Aus den Zeilen des primalen Gleichungssystems werden die Spalten des dualen Gleichungssystems und aus \geq wird \leq .

Tableau I

BV	\mathbf{u}_1	u ₂	\mathbf{u}_3	u ₄	\mathbf{u}_{5}	\mathbf{S}_1	s_2	RS
\mathbf{s}_1								
 S_2								
 -G								