

Exemples d'applications

Marketing : segmentation du marché en découvrant des groupes de clients distincts à partir de bases de données d'achats.

Environnement : identification des zones terrestres similaires (en termes d'utilisation) dans une base de données d'observation de la terre.

Assurance: identification de groupes d'assurés distincts associés à un nombre important de déclarations.

Planification de villes : identification de groupes d'habitations suivant le type d'habitation, valeur, localisation géographique, ...

Médecine : Localisation de tumeurs dans le cerveau

Nuage de points du cerveau fournis par le neurologue

Identification des points définissant une tumeur

Qualité d'un clustering Une bonne méthode de clustering produira des clusters d'excellente qualité avec : • Similarité intra-classe importante • Similarité inter-classe faible La qualité d'un clustering dépend de : • La mesure de similarité utilisée • L'implémentation de la mesure de similarité La qualité d'une méthode de clustering est évaluée par son habilité à découvrir certains ou tous les "patterns" cachés.

Approches de Clustering Algorithmes de Partitionnement: Construire plusieurs partitions puis les évaluer selon certains critères Algorithmes hiérarchiques: Créer une décomposition hiérarchique des objets selon certains critères Algorithmes basés sur la densité: basés sur des notions de connectivité et de densité Algorithmes de grille: basés sur un structure à multi-niveaux de granularité Algorithmes à modèles: Un modèle est supposé pour chaque cluster ensuite vérifier chaque modèle sur chaque groupe pour choisir le meilleur

Notion de proximité

Vocabulaire

Mesure de dissimilarité (DM) : plus la mesure est faible plus les points sont similaires (~ distance)

Mesure de similarité (SM) : plus la mesure est grande, plus les points sont similaires

DM = borne - SM

Distance – Données numériques

Combiner les distances : Soient x=(x1,...,xn) et y=(y1,...,yn)

Exemples numériques :

Distance euclidienne : $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)}$

Distance de Manhattan : $d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$

Distance de Minkowski : $d(x,y) = \sqrt{\frac{q}{|x|}} |x_i - y|^q$

q=1 : distance de Manhattan. q=2 : distance euclidienne

L. Jourdan - Aide à la décision

Distance données énumératives

Champs discrets :

- Données binaires : d(0,0)=d(1,1)=0, d(0,1)=d(1,0)=1
- Donnée énumératives : distance nulle si les valeurs sont égales et 1 sinon.
- Donnée énumératives ordonnées : idem. On peut définir une distance utilisant la relation d'ordre.

.. Jourdan - Aide à la décision

Distance – Données binaires

Individu *j*

 Table de concordances/discordances
 1
 0
 sum

 Individu i
 0
 c
 d
 c+d

 sum
 a+c
 b+d
 m

a= nombre de positions où i vaut 1 et j vaut 1

• Exemple oi=(1,1,0,1,0) et oj=(1,0,0,0,1) a=1, b=2, c=1, d=2

L. Jourdan – Aide à la décision

Distance – Données binaires

• % de concordance (distance euclidienne) : $d(i,j) = \frac{a+d}{m}$

Double pondération des concordances

$$d(i,j) = \frac{2(a+d)}{2(a+d)+b+c}$$

• Coefficient de correspondance simple (similarité invariante, si la variable binaire est $\underset{m}{\text{symétrique}}$): $d(i,j) = \underset{m}{\underline{b} \pm c}$

• Coefficient de Jaccard (similarité non invariante, si la variable binaire est asymétrique): $d(i,j) = \frac{b+c}{a+b+c}$

L. Jourdan – Aide à la décision

Variables binaires (I)

Variable symétrique: Ex. le sexe d'une personne, i.e coder masculin par 1 et féminin par 0 c'est pareil que le codage inverse

Variable asymétrique: Ex. Test HIV. Le test peut être positif ou négatif (0 ou 1) mais il y a une valeur qui sera plus présente que l'autre. Généralement, on code par 1 la modalité la moins fréquente

 2 personnes ayant la valeur 1 pour le test sont plus similaires que 2 personnes ayant 0 pour le test

L. Jourdan – Aide à la décision

Distance – Données binaires

Exemple : dissimilarité entre variables binaires

Table de patients

١	Nom	Sexe	Fièvre	Toux	Test-1	Test-2	Test-3	Test-4
	Jack	M	Y	N	P	N	N	N
	Mary	F	Y	N	P	N	P	N
	Jim	M	Y	P	N	N	N	N

- 8 attributs, avec
 - Sexe un attribut symétrique, et
 - Les attributs restants sont asymétriques
 - (test VIH, ...)

Distance – Données énumératives

Généralisation des variables binaires, avec plus de 2 états, e.g., rouge, jaune, bleu, vert

Méthode 1: correpondance simple

m: # de correspondances, p: # total de variables

$$d(i,j) = \frac{p-m}{p}$$

Variables Ordinales

Une variable ordinale peut être discrète ou

L'ordre peut être important, ex: classement

Peuvent être traitées comme les variables intervalles

- remplacer \mathbf{x}_{if} par son rang $r_{\text{if}} \in \{1,...,M_f\}$
- Remplacer le rang de chaque variable par une valeur dans [0, 1] en remplaçant la variable f dans l'objet l par

$$z_{if} = \frac{r_{if} - 1}{M - 1}$$

 $z_{_{I\!J}} = \frac{r_{_{I\!J}}-1}{M_{_{I\!J}}-1}$ • Utiliser une distance pour calculer la similarité

L. Jourdan – Aide à la décision

Données mixtes

Soit - transformation des variables numériques en variables catégorielles

(découpage en intervalles -> pris comme modalités)

- → distance/similarité sur tableau disjonctif
- transformation des variables catégorielles en variables numériques
- utilisation de mesures "mixtes »

Principe:
$$d^2(i,j) = \frac{1}{p} \sum_{k=1}^{p} \delta_j(i,j)$$

[0,1] Normaliser !!!!

Données mixtes

Pour une variable numérique :

$$\delta_k(i,j) = \frac{(x_{ik} - x_{jk})}{(\max-\min)}$$

L. Jourdan – Aide à la décision

Distance – Données mixtes

Exemple : (Age, Propriétaire résidence principale, montant des mensualités en cours)

x=(30,1,1000), y=(40,0,2200), z=(45,1,4000)

 $d(x,y)=sqrt((10/15)^2 + 1^2 + (1200/3000)^2) = 1.27$

 $d(x,z)= sqrt((15/15)^2 + 0^2 + (3000/3000)^2) = 1.41$

 $d(y,z)= sqrt((5/15)^2 + 1^2 + (1800/3000)^2) = 1.21$

plus proche voisin de x = y

Distances normalisées.

Sommation: d(x,y)=d1(x1,y1) + ... + dn(xn,yn)

Algorithme des k-moyennes (K-means)

Entrée : un échantillon de m enregistrements x₁, ..., x_m

Paramètre : Fixer le nombre de cluster K

1. Choisir k centres initiaux c₁, ..., c_k

2. Répartir chacun des m enregistrements dans le groupe i dont le centre ci est le plus proche.

3. Si aucun élément ne change de groupe alors arrêt et sortir les groupes

4. Calculer les nouveaux centres : pour tout i, c_i est la moyenne des éléments du groupe i (le barycentre).

Aller en 2.

Qualité

Mesurer la qualité du clustering

- · Compacité des clusters.
- · Séparation des clusters.
- · Score de la partition.

I Jourdan – Aide à la décisio

Compacité

$$wc(C) = \sum_{k=1}^{K} wc(C_k) = \sum_{k=1}^{K} \sum_{x_i \in C_k} d(x_i, c_k)$$

Autre fonction possible :

$$wc(C_k) = \max_i \min_{x_i \in C_k} \{ d(x_i, x_j) / x_i \in C_k, x_i \neq x_j \}$$

La plus grande distance minimale entre deux éléments d'un même cluster

.. Jourdan - Aide à la décision

Séparation

Distance entre les centres des clusters :

$$bc = \sum_{1 \le j < k \le K} d(r_j, r_k)$$

- Distance entre ensembles :
- Distance minimale.
- Distance maximale.
- Distance moyenne.

L. Jourdan – Aide à la décisio

Valeur de la partition

raioar ao la partition

Combiner wc (à minimiser) et bc (à maximiser).

Par exemple :

 $\frac{bc}{wc}$

ou bien :

 $\frac{\alpha bc + \beta wc}{bc + wc}$

L. Jourdan – Aide à la décision

K-moyennes: Avantages

Relativement extensible dans le traitement d'ensembles de taille importante

Relativement efficace : O(t.k.n), où n représente # objets, k $\,$ clusters, et t $\,$ # iterations. Normalement, k, t << n.

Produit généralement un optimum local ; un optimum global peut être obtenu en utilisant d'autres techniques telles que : algorithmes génétiques, ...

L. Jourdan – Aide à la décisior

K-moyennes : Désavantages

Applicable seulement dans le cas où la moyenne des objets est définie

Besoin de spécifier k, le nombre de clusters, a priori

Incapable de traiter les données bruitées (noisy).

Non adapté pour découvrir des clusters avec structures nonconvexes, et des clusters de tailles différentes

Les points isolés sont mal gérés (doivent-ils appartenir obligatoirement à un cluster ?) - probabiliste

Méthodes hiérarchiques Une méthode hiérarchique : construit une hiérarchie de clusters, non seulement une partition unique des objets. Le nombre de clusters k n'est pas exigé comme donnée Utilise une matrice de distances comme critère de clustering Une condition de terminaison peut être utilisée (ex. Nombre de clusters)

Clustering: Validation

Critères externes: utilisation de jeux de données dont on connaît le réel regroupement (ex: entropie)

Critères interne : mesure de la qualité sans connaître le réel regroupement (ex: SSE)

Critère relatif

Supervised Cluster Validation: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we compute p_{ij} , the 'probability' that a member of cluster j belongs to class i as follows: $p_{ij} = m_{ij}/m_{ij}$, where m_i is the number of values of class i and m_i is the number of values of class i in cluster j. Then using this class distribution, the entropy of each cluster j is calculated using the standard formula $e_j = \sum_{i=1}^{n} p_{ij} \log_{p_{ij}}$ where the l is the number of classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each cluster, $e_i \in \sum_{i=1}^{n} \frac{m_{ij}}{m_{ij}}$, where m_i is the number of cluster weighted by the size of each cluster, $e_i \in \sum_{i=1}^{n} \frac{m_{ij}}{m_{ij}}$, where m_{ij} is the size of cluster j, K is the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by $purity_j = \max p_{ij}$ and the overall purity of a clustering by $purity = \sum_{i=1}^{K} \frac{m_i}{m_i} purity_j$.

Pair-counting measures

Measure the number of pairs that are in:

Same class **both** in P and G.

$$a = \frac{1}{2} \sum_{i=1}^{K} \sum_{j=1}^{K} n_{ij} (n_{ij} - 1)$$

 $a = \frac{1}{2} \sum_{i=1}^{K} \sum_{j=1}^{K} n_{ij} (n_{ij} - 1)$ Same class in *P* but different in *G*.

$$b = \frac{1}{2} \left(\sum_{i=1}^{K} n_{.j}^2 - \sum_{i=1}^{K} \sum_{i=1}^{K} n_{ij}^2 \right)$$

 $b = \frac{1}{2} \left(\sum_{j=1}^{K} n_j^2 - \sum_{i=1}^{K} \sum_{j=1}^{K} n_{ij}^2 \right)$ Different classes in P but same in G.

$$c = \frac{1}{2} \left(\sum_{i=1}^{K} n_{i.}^{2} - \sum_{i=1}^{K} \sum_{j=1}^{K} n_{ij}^{2} \right)$$

 $c = \frac{1}{2} \left(\sum_{i=1}^{K} n_i^2 - \sum_{i=1}^{K} \sum_{j=1}^{K} n_{ij}^2 \right)$ Different classes **both** in *P* and *G*.

$$d = \frac{1}{2}(N^2 + \sum_{i=1}^{K} \sum_{j=1}^{K'} n_{ij}^2 - (\sum_{j=1}^{K} n_{i,j}^2 + \sum_{j=1}^{K'} n_{i,j}^2))$$

L. Jourdan – Aide à la décision

Rand and Adjusted Rand index [Rand, 1971] [Hubert and Arabie, 1985]

Agreement: a, d Disagreement: b, c

$$RI(P,G) = \frac{a+d}{a+b+c+d}$$

$$ARI = \frac{RI - E(RI)}{1 - E(RI)}$$

L. Jourdan – Aide à la décision

External indexes

If true class labels (ground truth) are known, the validity of a clustering can be verified by comparing the class labels and clustering labels.

 n_{ii} = number of objects in class i and cluster j

