Antenna pattern in free-space propagation 1. w = 1/1/1 = [ejq, ejq, ...]/sn 2. Antenna array: assume we have n receiving antenna, to simplify the question, no noise, and transmitted signal is xct). w* means pointing the main beam towards the transmitting direction, so that the amplitude of received signal yr Yr= w*+hx (2) is maximized. The optimal beam former is bringing-all the r received signal in every antenna together to the same phase, zero phase $y_s = w + h x = \frac{e}{2} ax(t) exp (j(\phi_i - \phi_{wi}))$ By assuming $W = [1,1,1,...]^T/In$ and change θ , we have antenna pattern in figure 1 W = [1,1,...] In means the main beam of receiver is pointing to broadside direction, so signal coming from that direction can have maximum amplitude, then maximum SNR among all other directions. $y_r(0) = w + hx = ax(t) = \frac{1}{2} e^{3\phi(i-1)} = ax(t)e^{\frac{1}{2}od} = \frac{\sin(\frac{1}{2}od)}{\sin \frac{1}{2}od}$ amplitude: $|\gamma_{r(0)}| = |ax(t) \frac{\sin(\frac{r}{2}o\phi)}{\sin \frac{1}{2}o\phi}|$ by normalizing the amplitude, We have antenna pattern $F(0) = \frac{|Y_r(0)|}{\max(Y_r(0))} = n$ by observing (Yr10), we can see amplitude of received signal is effected by factor sincf-sol/sintap The Foo) for n=1,2,10, d= 2/2, 7,27 and -90° <0 590° Is given below.

```
As can be seen from the figure, F(0) = \frac{\sin(n \frac{\sqrt{\pi}d}{2} \sin \theta)}{n \sin(\sqrt{\sqrt{\pi}d} \sin \theta)}
   when n=1, denominter and numerator is same, Flor=1,
  when n=2, d=\frac{2}{2}, F(\theta)=\frac{|\sin(\frac{n\pi}{2}\sin\theta)|}{|\sin(\frac{\pi}{2}\sin\theta)|}, \theta goes from
 -90° to 90°, sind goes from -1 to1, there will be two zeros where
          0 = 90° and 0 = -90°
 when n=10, d= =, inthe range [-1,1] of sino, there will be
     n points that \frac{n\pi}{2}. Sin \theta = 0, then it has 10 zeros.
     So n determines number of zeros.
   when d=\frac{\lambda}{2}, \lambda and 2\lambda, d=\lambda, F(\theta)=\left|\begin{array}{c} \sin(n\pi\sin\theta) \\ \sin(\pi\sin\theta) \end{array}\right|
    = \frac{\left| Sin\left(\frac{n\pi}{2}(2SIn\theta)\right) \right|}{\left| nSin\left(\frac{\pi}{2}(2SIn\theta)\right) \right|} \frac{period of \left| Sin\left(\frac{n\pi}{2}\varphi\right) \right|}{\left| nSin\left(\frac{\pi}{2}(2SIn\theta)\right) \right|} + is 2,
       and 2sin8 \in [-2,2] then there will be two periods
       of F(\theta) in \theta \in [-90, 90^{\circ}], if d=2\lambda, four periods.
   Beam steering i

Que impact of n and d will be same, Oo will
   shift the pattern as in figure 5
    Shift the pattern as in figure 5

Q2

Y = \frac{A^2 - A^2 w}{2}, given that w = [e^{joh_w \cdot o}, e^{joh_w \cdot i}]/fn
    Q_3 \quad \gamma_r(\theta) = \alpha \sum_{i=1}^n e^{j(i-1)(a\phi - a\phi_w)} = \alpha \sum_{i=1}^n e^{j(i-1)(\frac{2\pi}{2}d(sin\theta - sin\theta_0))}
= \alpha e^{j\frac{n-1}{2}(\frac{2\pi}{2}d(sin\theta - sin\theta_0))} \frac{sm(n\frac{\pi}{2}d(sin\theta - sin\theta_0))}{sin(n\pi \lambda^2 d(sin\theta - sin\theta_0))}
      Then F(\theta) = \frac{|\sin(n\pi d\lambda^{-1}(\sin\theta - \sin\theta_0))|}{|\sin(\pi d\lambda^{-1}(\sin\theta - \sin\theta_0))|}
```

Free-Space Propagation classical phased array: Assume the receiver is at the $h = a[1, e^{jap}, e^{jap\cdot 2}, \dots e^{jap(m-1)}]^T$ where so = 2Td sino The optimal beamforming is w* = [1, e300, e302 ... e300(m-1)] / /sm = h/1/1 It means pointing the main beam towards the receiver and the channel Capacity in this scenario: C= log(1+ 6x ht w* w*th) = log(1+ y |h|2) = log(1+ a2m2y) in this case, the channel capacity equals to the theoretical limit, so optimal Tx beamforming is optimal in the information - theoretic sense as well Isotropic signaling: Assume 62=1, then C= log(I+htRxh) = log | I+hhtRx | = log | I+ Wkx | = log II+ UW NWUNTRX 1 = log II + DW NWUNTRX UW 1 = log I + Nw Rx | Rx = mI C= log | I + /w(PI) | according to Hadamard inequality, this is already optimal, so channel capacity is C=Elog(1+ Airedi) = log(1+ Avidi) Avi= 1/12, di= fr = log(1+ f. 1612) = log(1+ Y/612/m) Y is the SNR when we have only one antenna (when using optimal strategy)

MISO Case:

Wafer Filling Properties Q1 According to the water filling algorithm, when the SNR is low, and power of noise is normalized 62=1, it shows transmitting power Pis low, and Fchis a monotically decreasing function, we have 1/7* is low, where FC7*1=p in this case, we see that only

eigen mode 1 is activated,

di>0 to the gills biggest among all gi's, and because Edi=P, only di>0 di=0, i +1 then di=P, all the power is concentrated on eigenmode 1

all other eigenmodes are not activated because 7*-9i <0, $\forall i \neq 1$ di cannot be negative so they're zero. low snp; gi < 7 ≤ g2 → g2 ≤ 7*<g. then 0<P < F (92) in High SNR case, all eigen modes are activated, it means $\frac{1}{7^*}$ - $\frac{1}{2^*}$ in this case 7* < gm $| | \rightarrow P > F(g_m)$ as Ix increases, the water filling algorithm figure,
the number the number of di's that >0

also increased, so then with it, and SNR is propositional to P, and Pis propotional to 7*,

so we have number of eigenmodes increases with SNR at low SNR, only strongest elgenmode 1 1s artivated, 7 = 7 +, and as \$ SNR increases, $\lambda^* = \lambda_2^*$, we have di= 73* 91 dz = 72 - 92 ditdz=P, but we also noticed that the difference between d, and dz is fixed as 7* increases, it's $g_2 - g_1$, it means as SNR increases, the difference between power allocated to activated eigenmodes are is sfixed, and stronger eigenmode gets more power. ay The capacity of Tx/kx beamforming is maximized by $w_t = v_1$, $w_r = u_1$, where v_1 and u_1 are right and left singular vector corresponding to largest singular value of H, $C = log(1+7i ki^2 Y_{\pm})$ where γ is $\frac{6x^2}{68}$, $6x^2$ is the transmit power. After this we normalize noise, 60°=1 Consider doing this in the MIMO cave, rank of channel is r, H= UEV+, E= diag(71, ... Ar) (= log (H 6,2 x) log (1+ 7,2 x) = log (1+ 7,2 6x2) but if we use 'waterfilling algorithm, we can achieve C'= \$ 5 log(1+ 2idi) where di is the power distributed to ith eigenmode (rcm) in this case we have r independent channels, it's easy to know the rate is better

But when the rank of channel is I, or we have low SNR, they will be equal, rank I channel, use preceding strategy optimal strategy; $\begin{array}{cccc}
\chi_1 & & & & & \\
\chi_2 & & & & \\
\chi_2 & & & & \\
\chi_2 & & & & \\
& & & & \\
& & & & \\
\end{array}$ in this case $W = V_1 \Lambda_W U_1^T$ $= \chi_1^2 V_1 V_1^T$ $= \chi_2^2 V_1 V_1^T$ normalized, 6°=1, so di=P as Edi=P, noise is Then we find that capacity is the same as beam forming capacity And when we have low SNR, we still have situation that $d_1 = P$ and $d_i = 0$, $\forall l \neq 1$, C'= log (1+ 2id1) = C = log(1+ 2i6x2) The rate of the beamforming and waterfilling is the same. Os, Referred to "Channel Capacity Estimation for MIMO systems with Correlated Noise", byknusevac, S., et al. Assume $R_x = \frac{P}{m}I$, we have capacity $C = \log \frac{|R_s| + HR_xH^+|}{|R_s|} = \log |I + R_s^-| + |R_xH^+|}{|R_s|}$ = $log | I + \frac{p}{m} R_{s}^{-1} H H^{+} |$ use singular value decomposition and EVD, $R_{s}^{-1} = U_{n} \Lambda_{n} U_{n}^{-1} U_{n}^{-1} + then R_{s}^{-1} = U_{n} \Lambda_{n}^{-1} U_{n}^{-1} + then R_{s}^{-1} = U_{n} \Lambda_{n}^{-1} U_{n}^{-1} + then we have <math>C = log | I + \frac{p}{m} U_{n} \Lambda_{n}^{-1} U_{n}^{-1} + then W = \sum_{n=1}^{\infty} \frac{1}{n} U_{n}^{-1} + then U_{n}^{-1} + th$ = bg | I + fm Ni Un+ Un En En+ Un+ Un | \ log | I+fm Ni En En+ | the equality holds iff Un = UH

	1 2HE/2
	$\frac{m}{m}$ (i.e. $\frac{p}{4m}$)
	I= C= \(\frac{m}{\infty} \left(\frac{1}{m} \frac{1}{\lambdani} \right) \) where \(\lambda_{l-1i} \cdot is \) singular value of H, and Ani is ith eigenver.
	value of H, and Ani is ith eigenver
	egenvalue of Rs
	This capacity is the limit since Rg and H is fixed.
	Q6 If rank of Rs is m, then it means some
	eigenmodes (m-m) don't have noise, for those independent
	channel we have I(X; Y) = H(Y)
	QG. If Rz is singular, it means some entries of }
	has variance 0, and this shows not some receiving
	antennas may not be working.
1 -	amanas may not be weiting.
AL.	
-1.	
194	