PC1: Modèles Statistiques

Dernière modification 4 septembre 2023

Exercice 1 : Transformation de variables aléatoire

Soit un n-échantillon $(X_1,...,X_n)$ du modèle statistique

$$(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k), \{p_{\theta} \cdot Leb^{\otimes k} : \theta \in \Theta\})$$
.

On suppose qu'il existe un ouvert \mathcal{O} de \mathbb{R}^k tel que $\int_{\mathcal{O}} p_{\theta} dLeb^{\otimes k} = 1$ pour tout $\theta \in \Theta$. Soit $\phi_{\theta} : \mathcal{O} \to \mathbb{R}^k$ une application continûement différentiable, injective sur \mathcal{O} et dont le jacobien ne s'annule pas sur \mathcal{O} .

- **1.** Sous $p_{\theta} \cdot Leb^{\otimes k}$, quelle est la loi de $\phi_{\theta}(X_i)$?
- **2.** On se place dans le cas $k=1, \theta=(a_1,b_1,...,a_n,b_n)$ et $\Theta=(\mathbb{R}\times\mathbb{R}_*)^n$. Quel est le modèle statistique induit par $(a_1+b_1X_1,...,a_n+b_nX_n)$? Il est d'usage d'appeller a_i le paramètre de translation et b_i le paramètre d'échelle.

Exercice 2 : Modèle de translation et d'échelle

Soit g une densité par rapport à Leb. On considère le modèle statistique

$$(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k), \{p_{n,\theta} \cdot Leb^{\otimes n} : \theta \in \Theta = \mathbb{R} \times \mathbb{R}_+^*\})$$

οù

$$p_{n,\theta}(x_1,...,x_n) = \sigma^{-n} \prod_{k=1}^n g\left(\frac{x_k - \mu}{\sigma}\right), \quad \theta = (\mu, \sigma).$$

On note $(X_1,...,X_n)$ les variables canoniques : pour tout $i \in \{1,...,n\}$ et $(x_1,...,x_n) \in \mathbb{R}^n$, on a $X_i(x_1,...,x_n)=x_i$.

1. Montrer que sous $p_{n,\theta} \cdot Leb^{\otimes n}$, les statistiques $(X_1,...,X_n)$ sont i.i.d. et identifier leur loi.

2. Soit $\theta=(\mu,\sigma)\in\Theta$. Montrer que sous $p_{n,\theta}\cdot Leb^{\otimes n}$, les variables aléatoires réelles

$$\frac{X_i - \mu}{\sigma}, \quad i \in \{1, ..., n\}$$

sont i.i.d de loi de densité g par rapport à Leb.

Supposons que g est une densité gaussienne centrée réduite. On définit les statistiques

$$S_n = \sum_{i=1}^n X_i, \quad K_n = \sum_{k=1}^n (X_k - n^{-1} S_n)^2.$$

- **3.** Proposer un estimateur de μ puis de σ^2 .
- 4. Déterminer le modèle statistique induit par les statistiques (S_n, K_n) .