Final Project Report

I. Data description

1. General information

Dataframe is taken from wage1.csv (data 1 folder). It contains 526 rows and 6 column, which are: wage, educ, exper, nonwhite, female, married.

2. Dataframe structure

No.	Atrribute	Description
1	wage	Worker's average hourly earnings
2	educ	Worker years of education
3	exper	Worker's years potential experience
4	nonwhite	Worker's ace (=1 if nonwhite, =0 if white)
5	female	Worker's gender(=1 if female, =0 if male)
6	married	Worker's marriage status (=1 if married, =0
		if single

II. Descriptive statistics

1. Data overview

```
wage
                       educ
                                                            nonwhite
                                       exper
Min.
       : 0.530
                  Min.
                         : 0.00
                                   Min.
                                          : 1.00
                                                    0 (White)
                                                                :472
1st Qu.: 3.330
                                   1st Qu.: 5.00
                                                    1 (Nonwhite): 54
                  1st Qu.:12.00
Median: 4.650
                  Median :12.00
                                   Median :13.50
       : 5.896
                                   Mean
                  Mean
                         :12.56
                                          :17.02
3rd Qu.: 6.880
                  3rd Qu.:14.00
                                   3rd Qu.:26.00
       :24.980
                  Max.
                         :18.00
                                          :51.00
                                   Max.
                         married
       female
0 (Male)
                  0 (Single):206
          :274
1 (Female):252
                  1 (Married):320
```

2. "nonwhite" attribute

White to nonwhite worker

Overrall, white workers outnumber the nonwhite workers.

3. <u>"female' attribute</u>

workers' gender

Overrall, the amount of female workers is almost the same to the amount of male workers

4. "married" attribute

worker's marriage status

Overrall, there are more married workers than single workers.

5. <u>"wage" attribute</u> Boxplot of "wage"

Histogram of wage

As can be seen, the median of the workers' hourly earning is about 5

6. "exper" attribute Boxplot of "exper"

As can be seen, the median of the workers' years of experience is about 12.

7. "educ attribute"

Histogram of educ

As can be seen, the median of the workers' years of eduction is about 12.

III. Inference statistics

1. Wage and marriage status

We will test if the single workers have the same wage than the married workers.

Since the p-value is almost unnoticeable, we reject the null hypothesis at 90%, 95%, 99% test and conclude that the average wage of single worker is not equal to the wage of married worker

2. Year of education and ethnicity

We will test if the white workers have greater average years of eduction than the married workers.

We accept the null hypothesis at 95% test and conclude that the average years of eductions of white worker is not greater to that of nonwhite worker

3. Marriage status and gender

We will test if the proportion of male that is married is equal to the proportion of married women that is married.

```
2-sample test for equality of proportions without continuity correction

data: marriedgender
X-squared = 14.517, df = 1, p-value = 0.0001389
alternative hypothesis: two.sided
95 percent confidence interval:
-0.25630404 -0.08374451
sample estimates:
    prop 1    prop 2
0.4174757 0.5875000
```

Since p-value is small(< 0.001) we reject the null hypothesis and conclude that the proportion of male that is married is not equal to the proportion of women that is married.

4. Race and gender

We will test if the proportion of male that is white is equal to the proportion of married women that is white.

Since p-value is large, we accept the null hypothesis at 90%, 95%, and 99% test and conclude that the proportion of male that is white is equal to the proportion of women that is white.

IV. Regression models

We will construct a multiple regession model for "wage" with "educ" and "exper" with the formula:

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \varepsilon$$

```
summary(model)
call:
lm(formula = wage ~ educ + exper)
Residuals:
   Min
             1Q Median
                             3Q
                                    Max
-5.5532 -1.9801 -0.7071 1.2030 15.8370
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.39054
                        0.76657
                                 -4.423 1.18e-05
educ
             0.64427
                        0.05381
                                 11.974
                                         < 2e-16 ***
exper
             0.07010
                        0.01098
                                  6.385 3.78e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.257 on 523 degrees of freedom
Multiple R-squared: 0.2252,
                               Adjusted R-squared:
F-statistic: 75.99 on 2 and 523 DF, p-value: < 2.2e-16
```

- The estimate for the intercept β_0 is -3.39054, which means when the average educ is 0 and exper is 0, average wage is -3.39054.
- The estimate for educ coefficient β_1 is 0.64427, which means whenever the average educ increase by 1, the average wage increase by 0.64427
- The estimate for educ coefficient β_2 is 0.07010, which means whenever the average educ increase by 1, the average wage increase by 0.07010

The 95% confident intervals of three cofficients:

```
2.5 % 97.5 % (Intercept) -4.89646645 -1.88461261 educ 0.53856950 0.74997466 exper 0.04852972 0.09166107
```

V. Goodness of fit test

We will categorize the "wage" attribute into 3 categories: Low (below 3.5), Med(from 3.5 to 10), High(above 10):

```
type.wage
1. Low 2. Med 3. High
161 313 52
```

We will test if the distribution of those 3 categories are equal to 1/3, 1/2 and 1/6 respectively. Null hypothesis: the distribution of 3 categories are equal to 1/3, 1/2 and 1/6 respectively Alternative hypothesis: the distribution of 3 categories are not equal to 1/3, 1/2 and 1/6 respectively

Since p-value is insignificant, we reject the null hypothesis and conclude that the distribution of 3 categories are not equal to 1/3, 1/2 and 1/6 respectively