Audio Encoding and Modification

Mathieu Lagrange

February 5, 2019

Outline

Audio coding

Outline

1 Audio coding

1 Audio coding

Types of encoding

- ⊱ Pulse Code Modulation (PCM): WAV, AIFF, ...
- ⊱ lossless encoding: FLAC, Apple Lossless
- ⊱ lossy encoding: MP3, AAC, WMA, Vorbis

Pulse code modulation

- ⊱ Sampling frequency: 44.1 kHz
- ⊱ Sample resolution: 16 bits
- \succeq Bit rate: ≈ 700 kbit/s

Lossless encoding

Free Lossless Audio Coding (FLAC)

- ⊱ PCM -> FLAC -> PCM
- \succ compression rate: ≈ 55 % (ZIP PCM ≈ 15)
- ⊱ efficient streaming and decoding scheme

Lossy Encoding

- ⊱ PCM -> lossy -> PCM′
- balance bitrate reduction / perceptual distortion

Block diagram of lossy audio coders

A bit of signal processing

Need for a representation that:

- ⊱ project the input signal over the set of audible frequencies
- E invertible
- ⊱ bit wise efficient

- Short Term Fourier Transform (STFT)
- Modified Discrete Cosine Transform (MDCT)

⊱ Short Term Fourier Transform (STFT)

$$X_k = \sum_{n=0}^{N-1} x_n e^{\frac{-i2\pi kn}{N}}$$

with

$$0 \le k < N$$
 and $X_k \in \mathbb{C}$

- ⊱ Modified Discrete Cosine Transform (MDCT)

- Short Term Fourier Transform (STFT)

$$X_{k} = \sum_{n=0}^{N-1} x_{n} \cos \left[\frac{\pi}{N} \left(n + \frac{1}{2} \right) k \right]$$

with

$$0 \le k < N \text{ and } X_k \in \mathbb{R}$$

Modified Discrete Cosine Transform (MDCT)

- Short Term Fourier Transform (STFT)
- Discrete Cosine Transform (DCT)
- Modified Discrete Cosine Transform (MDCT)

$$X_{k} = \sum_{n=0}^{2N-1} x_{n} \cos \left[\frac{\pi}{N} \left(n + \frac{1}{2} + \frac{N}{2} \right) \left(k + \frac{1}{2} \right) \right]$$

with

$$0 \le k < N \text{ and } X_k \in \mathbb{R}$$

The uncertainty principle states that there is a fundamental limit to the precision with which certain pairs of complementary variables can be known simultaneously. In quantum mechanics, the variables of interest are the position x and momentum p, and:

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}$$

The uncertainty principle states that there is a fundamental limit to the precision with which certain pairs of complementary variables can be known simultaneously. In signal processing, the variables of interest are the time t and frequency F.

Example:

$$x(t) = \begin{cases} \cos(2\pi 10t); & 0 \le t < 5s \\ \cos(2\pi 25t); & 5 \le t < 10s \\ \cos(2\pi 50t); & 10 \le t < 15s \\ \cos(2\pi 100t); & 15 \le t < 20s \end{cases}$$

The uncertainty principle (Heisenberg)

A bit of psychoacoustic

⊱ Absolute threshold of hearing

⊱ Frequency masking

A bit of psychoacoustic

- Absolute threshold of hearing
- ⊱ Frequency masking

A panorama

MPEG-2 Layer III (MP3)

Life of a standard

- ⊱ Suzanne Vega: the mother of MP3

- ⊱ 1999: Napster

Advanced Audio Coding (AAC)

Replacement of MP3 (end of story?)

- pure MDCT
- Higher coding efficiency for stationary signals: blocksize of 1024 or 960 samples
- Higher coding accuracy for transient signals: blocksize of 128 or 120 samples
- ⊱ large set of tools to increase compression efficiency (SBR, TNS, ...)

Spectral Band Replication (SBR)

Spectral Band Replication (SBR)

Time Scale Modification (TSM)

Why do we want to make sound "quicker or slower"?

- to adjust durations
- ⊱ to modify pitch

Sampling rate

We can adjust the sampling rate: $x_s(t) = x(t/r)$

Time & Pitch

- E Changing the sampling rate alers time and pitch
- Preserve pitch, change time: keep local time structure but changing global time course
- E Preserve time, change pitch: analogous problem

Analog TSM

Magic is achieved trough rotating tape heads

Ancestor: the phonogene

Pierre Schafer in front of the "phonogene" (1963) at the "Groupe de Recherches Musicales" (GRM)

Digital equivalent

The Overlap and Add technique:

$$y^{m}[mL+n] = y^{m-1}[mL+n] + w[n]x[\lceil \frac{m}{r} \rceil L + n]$$

Improving OLA

- Phase interactions during overlap of frames can be heard
- Mitigate them by aligning frames prior overlap

3

$$y^{m}[mL+n] = y^{m-1}[mL+n] + w[n]x[\lceil \frac{m}{r} \rceil L + n + K_{m}]$$

⊱ find by maximizing cross-correlation

Time / Frequency approaches

- ⊱ Why not use the spectrogram?
- ⊱ STFT magnitude is not enough...
- ⊱ We need to recover the phase

Griffin & Lim algorithm

The complex values of the spectrogram S can be decomposed into polar coordinates, the magnitude spectrogram |S| and the phase spectrogram $\angle S$ under the following relation:

$$S(j,k) = |S(j,k)|e^{i\angle S(j,k)}$$
(1)

Assuming an unknown phase set to random values $\angle S_0 = rand$, the algorithm can be iterated until convergence:

- $oldsymbol{1}$ compute the time domain signal s_{m-1} as the ISTFT of S_{m-1}
- 2 compute the frequency domain representation $S' = \text{STFT}(s_{m-1})$ while enforcing the magnitude spectrogram : $S_m = |S|e^{i\angle S'_m}$

D. Griffin and J. Lim Signal estimation from modified short-time Fourier transform IEEE Tr. Acous, Speech, and Sig. Proc., 1984

Griffin & Lim performance

- slow convergence
- but considerable improvement
- Eneed significant overlap between frames

Phase interpolation

- ⊱ Principle of the phase vocoder
- \succeq Is to interpolate the phase
- ⊱ Assuming perfect periodicity of the spectral content

Assuming knowledge of the instantaneous frequency

3

$$\dot{\Phi}(k,t) = \frac{d}{dt} \angle S(k,t)$$

Approximate using the frequency of the time / frequency bin:

$$\dot{\Phi}(k,t) \approx k \frac{F_s}{N}$$

