Greedy-Algorithmen

Algorithmen und Datenstrukturen VU 186.866, 5.5h, 8 ECTS, 2023S Letzte Änderung: 23. März 2023 Vorlesungsfolien

Einleitung

Algorithmen: Paradigmen

Greedy: Erstelle inkrementell eine Lösung, bei der nicht vorausschauend ein lokales Kriterium zur Wahl der jeweils nächsten hinzuzufügenden Lösungskomponente verwendet wird.

Divide-and-Conquer: Teile ein Problem in Teilprobleme auf. Löse jedes Teilproblem unabhängig und kombiniere die Lösung für die Teilprobleme zu einer Lösung für das ursprüngliche Problem.

Greedy: Einführendes Beispiel

Geld wechseln: Gegeben sei eine Stückelung von Münzen (z.B. Euromünzen in Cent): 1, 2, 5, 10, 20, 50, 100, 200.

Gesucht: Methode, um einen Betrag mit der kleinstmöglichen Anzahl an Münzen herauszugeben.

Beispiel:

- 37 Cent
- Optimale Lösung: 1×20 , 1×10 , 1×5 , 1×2

Hinweis: Es kann auch mehr als eine Lösung geben.

- Stückelung von Münzen: 1, 5, 10, 20, 25, 50
- Betrag: 30
- 1×20 und 1×10 sowie 1×25 und 1×5 sind optimale Lösungen.

Geld wechseln: Greedy-Algorithmus

Greedy-Ansatz: Für Betrag S.

```
while S \neq 0 Finde die Münze mit größtem Wert x, sodass x \leq S Benutze \lfloor S/x \rfloor Münzen von Wert x S \leftarrow S \mod x
```

Geld wechseln: Greedy-Algorithmus

Greedy-Ansatz konkreter:

- Werte von m Münzen in einem Array w.
- Es gilt $w[0] > w[1] > \ldots > w[m-1] = 1$.
- \blacksquare Betrag S gegeben.
- lacktriangle Anzahl jeder einzelnen Münze, um S zu wechseln, wird in einem Array num gespeichert.
- num[i] enthält Anzahl der Münzen von Wert w[i].

$$\begin{array}{c} \textbf{for} \ i \leftarrow 0 \ \text{bis} \ m-1 \\ \ \text{num}[i] \leftarrow \left\lfloor \frac{S}{\mathsf{w}[i]} \right\rfloor \\ S \leftarrow S \ \text{mod} \ \mathsf{w}[i] \end{array}$$

Greedy-Algorithmus: Allgemeines

Greedy-Algorithmus:

- Eine Lösung wird schrittweise aufgebaut, in jedem Schritt wird das Problem auf ein kleineres Problem reduziert.
- Greedy-Prinzip: Füge jeweils eine lokal am attraktivsten erscheinende Lösungskomponente hinzu.
- Einmal getätigte Entscheidungen werden nicht mehr zurückgenommen.
- Meist einfach zu konstruieren und zu implementieren.
- Kann eine optimale Lösung liefern, muss es i.A. aber nicht.

Greedy-Algorithmus: Optimalität

Optimale Lösung: Für eine Stückelung von 1, 5 und 10 kann gezeigt werden, dass der Greedy-Algorithmus eine optimale Lösung liefert.

Beweis:

- Wir gehen von irgendeiner optimalen Lösung aus.
- Die Lösung kann nicht mehr als vier 1er haben, da fünf davon durch einen 5er ersetzt werden können.
- Die Lösung kann auch nicht mehr als einen 5er haben, da zwei davon durch einen 10er ersetzt werden können.
- Daher muss die Anzahl der 10er im Greedy-Algorithmus und in einem optimalen Algorithmus gleich sein.
- Die Anzahl der restlichen Münzen kann dann maximal 9 ergeben.
- Daher muss man nur den Fall ≤ 9 betrachten.

Greedy-Algorithmus: Optimalität

Beweis (Fortsetzung):

- Jeder Betrag < 5 kann nur durch 1er abgedeckt werden und der optimale Algorithmus und der Greedy-Algorithmus benutzen die gleiche Anzahl von 1er.
- Wenn der Betrag zwischen 5 und 9 (beide inklusive) ist, dann haben der optimale Algorithmus und der Greedy-Algorithmus genau einen 5er und der Rest wird mit 1ern aufgefüllt.
- Der Greedy-Algorithmus liefert daher die gleiche Anzahl an Münzen wie der optimale Algorithmus.

Hinweis: Für Euromünzen kann ähnlich gezeigt werden, dass der Greedy-Algorithmus optimal ist.

Greedy-Algorithmus: Optimalität

Nicht optimal:

- Gegeben sei eine Stückelung von 1, 5, 10, 20, 25.
- Bei dieser Stückelung liefert der Greedy-Algorithmus nicht immer eine optimale Lösung.

Beispiel: Mit S=40.

- Greedy-Algorithmus liefert 1×25 , 1×10 , 1×5 .
- Optimale Lösung ist 2×20 .

Zeitplanung von Jobs (Interval Scheduling)

Interval Scheduling

Interval Scheduling:

- Gegeben: Jobs $j = 1, \dots, n$.
- Job j startet zum Zeitpunkt s_j und endet zum Zeitpunkt f_j .
- Zwei Jobs sind kompatibel, wenn sie sich nicht überlappen.
- Ziel: Finde größte Teilmenge von paarweise kompatiblen Jobs.

Beispiele: Job 2 und 5 sind kompatibel, Job 2 und 3 sind nicht kompatibel.

Greedy-Ansatz: Betrachte die Jobs in einer natürlichen Ordnung. Wähle einen Job wenn er kompatibel (nicht überlappend) mit den bisher gewählten Jobs ist.

Mögliche Greedy-Strategien:

- [Früheste Startzeit] Berücksichtige Jobs in aufsteigender Reihenfolge von s_j .
- lacktriangle [Früheste Beendigungszeit] Berücksichtige Jobs in aufsteigender Reihenfolge von f_j .
- [Kleinstes Intervall] Berücksichtige Jobs in aufsteigender Reihenfolge von $f_j s_j$.
- [Wenigste Konflikte] Zähle für jeden Job j die Anzahl c_j der nicht kompatiblen Jobs. Berücksichtige Jobs in aufsteigender Reihenfolge von c_j .

Greedy-Ansatz: Betrachte die Jobs in einer natürlichen Ordnung. Wähle einen Job wenn er kompatibel (nicht überlappend) mit den bisher gewählten Jobs ist.

Früheste Beendigungszeit: Gegenbeispiel? Nein!

Greedy-Algorithmus: Berücksichtige Jobs in aufsteigender Reihenfolge der Beendigungszeit.

Wähle einen Job, wenn er kompatibel mit den bisher gewählten Jobs ist.

```
Sortiere Jobs nach Beendigungszeit, sodass f_1 \leq f_2 \leq \cdots \leq f_n A \leftarrow \emptyset for j \leftarrow 1 bis n if Job j ist kompatibel zu A A \leftarrow A \cup \{j\} return A
```

■ Menge der ausgewählten Jobs

Greedy-Algorithmus: Pseudocode mit angepassten Indexwerten und Array.

```
Sortiere Jobs nach Beendigungszeit, sodass f_1 \leq f_2 \leq \cdots \leq f_n A \leftarrow \emptyset t \leftarrow 0 for j \leftarrow 1 bis n if t \leq s_j A \leftarrow A \cup \{j\} t \leftarrow f_j return A
```

Implementierung: Laufzeit in $O(n \log n)$.

- Jobs werden nach Beendigungszeit sortiert und nummeriert. Wenn $f_i \leq f_j$, dann i < j. Die Sortierung läuft in $O(n \log n)$.
- Jobs werden vom ersten Job beginnend in der Reihenfolge ansteigender Werte für f_i ausgewählt.
- Sei die Beendigungszeit des aktuellen Jobs *t*:
 - Dann wird in den nachfolgenden Jobs der erste Job j gesucht, für den gilt: $s_j \geq t$.
 - Dieser Job wird der neue aktuelle Job und die Suche wird von diesem Job aus fortgesetzt.
- Der Greedy-Algorithmus kann in einem Durchlauf realisiert werden, d.h. die Laufzeit ohne Sortieren liegt in O(n).
- Somit liegt die Gesamtlaufzeit in $O(n \log n)$.

Interval Scheduling: Beispiel

Jobs: Nach Beendigungszeit sortiert

Job i	2	3	1	5	4	6	7	8
s_i	1	3	0	4	3	5	6	8
f_i	4	5	6	7	8	10	10	11

Lösung: Jobs 2, 5 und 8

Interval Scheduling: Analyse

Theorem: Der Greedy-Algorithmus liefert immer eine optimale Lösung.

Beweis: (durch Widerspruch)

- Angenommen, der Algorithmus liefert keine optimale Lösung.
- Sei i_1, i_2, \dots, i_k die Menge von Jobs, die vom Algorithmus ausgewählt wird.
- Sei j_1, j_2, \ldots, j_m die Menge von Jobs in einer optimalen Lösung mit $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ für größtmögliches r.

Interval Scheduling: Analyse

Theorem: Der Greedy-Algorithmus liefert immer eine optimale Lösung.

Beweis: (durch Widerspruch)

- Angenommen, der Algorithmus liefert keine optimale Lösung.
- Sei i_1, i_2, \dots, i_k die Menge von Jobs, die vom Algorithmus ausgewählt wird.
- Sei j_1, j_2, \ldots, j_m die Menge von Jobs in einer optimalen Lösung mit $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ für größtmögliches r.

Lösung ist noch immer möglich und optimal, aber widerspricht Maximalität von r.

Minimaler Spannbaum

Minimaler Spannbaum

Gegeben: Ein zusammenhängender schlichter Graph G=(V,E) mit reellwertigen Kantengewichten $c_e=c_{uv}=c_{vu}$ für $e=(u,v)\in E$.

Minimaler Spannbaum: Ein minimaler Spannbaum (Minimum Spanning Tree, MST) ist ein Teilgraph $G_T=(V,T)$ von G mit gleicher Knotenmenge und einer Teilmenge der Kanten $T\subseteq E$, sodass er ein aufspannender Baum mit minimaler Summe der Kantengewichte ist.

MST-Problem

MST-Problem: Finde in einem zusammenhängenden schlichten Graph G=(V,E) mit reellwertigen Kantengewichten c_e einen minimalen Spannbaum, d.h. einen zusammenhängenden, zyklenfreien Untergraphen $G_T=(V,T)$ mit $T\subseteq E$, dessen Kanten alle Knoten aufspannen und für den $cost(T)=\sum_{e\in T}c_e$ so klein wie möglich ist.

Aufwand: Es gibt exponentiell viele Spannbäume und daher wäre ein Brute-Force-Durchprobieren aller Spannbäume nicht effizient.

Lösung: Algorithmen, die in diesem Abschnitt vorgestellt werden.

Anwendungen

Das MST-Problem ist ein fundamentales Problem mit vielen unterschiedlichen Anwendungen:

- Basis für den Entwurf von Netzwerken.
 - Telefonie, Elektrizität, Kabelfernsehen, Computernetze, Straßenverkehrsnetze
- Approximationsalgorithmen f
 ür schwere Probleme.
 - Problem des Handlungsreisenden (Travelling Salesman Problem), Steinerbaum Problem

Greedy-Algorithmen

Algorithmen:

- Algorithmus von Prim: Starte mit einem beliebigen Startknoten s. Füge in jedem Schritt eine billigste Kante e zu T hinzu, die genau einen noch nicht angebundenen Knoten mit dem bisherigen Baum verbindet.
- Algorithmus von Kruskal: Starte mit $T = \emptyset$. Betrachte die Kanten in aufsteigender Reihenfolge ihrer Kosten. Füge Kante e nur dann zu T hinzu, wenn dadurch kein Kreis erzeugt wird.

Beide Algorithmen erzeugen immer einen MST.

Greedy-Algorithmen: Lemmata

Kantenschnittlemma: Sei S eine beliebige Teilmenge von Knoten und sei e die minimal gewichtete Kante mit genau einem Endknoten in S. Dann enthält der MST die Kante e.

Kreislemma: Sei C ein beliebiger Kreis und sei f die maximal gewichtete Kante in C. Dann enthält der MST f nicht.

Vereinfachende Annahme: Alle Kantengewichte sind unterschiedlich, dadurch ist der MST eindeutig.

Kreise und Schnitte

Kreis: Ein Kreis ist ein Kantenzug $v_1, v_2, \ldots, v_{k-1}, v_k$ in dem $v_1 = v_k$, $k \ge 4$, und die ersten k-1 Knoten alle unterschiedlich sind. Alternativ kann ein Kreis als Menge E(C) von Kanten der Form a-b, b-c, c-d, \ldots , y-z, z-a gesehen werden.

$$\mathsf{Kreis}\; E(C) = \{ \text{1-2, 2-3, 3-4, 4-5, 5-6, 6-1} \}$$

Kantenschnittmenge: Sei S eine Teilmenge der Knoten. Die dazugehörige Kantenschnittmenge D ist die Menge jener Kanten, die genau einen Endpunkt in S haben.

$$S = \{\text{4,5,8}\}$$
 Schnittmenge $D = \{\text{5-6, 5-7, 3-4, 3-5, 7-8}\}$

Kreise und Schnitte: Paritätslemma

Behauptung: Ein beliebiger Kreis und eine beliebige Kantenschnittmenge haben eine gerade Anzahl von Kanten gemeinsam.

Kreis $E(C) = \{1\text{-}2, 2\text{-}3, 3\text{-}4, 4\text{-}5, 5\text{-}6, 6\text{-}1\}$ Schnittmenge $D = \{3\text{-}4, 3\text{-}5, 5\text{-}6, 5\text{-}7, 7\text{-}8\}$ Durchschnitt $= \{3\text{-}4, 5\text{-}6\}$

Beweis: (durch Bild)

Beweis des Kantenschnittlemmas

Kantenschnittlemma: Sei S eine beliebige Teilmenge von Knoten und sei e die minimal gewichtete Kante mit genau einem Endknoten in S. Dann enthält der MST T^* die Kante e.

Annahme für Beweis: Alle Kantengewichte c_e sind unterschiedlich, vereinfacht Beweis.

Hinweis: Man kann zu allen Kosten kleine Störwerte hinzufügen, um die Annahme, dass alle Kanten unterschiedliches Gewicht haben müssen, zu vermeiden.

Beweis des Kantenschnittlemmas

Beweis: (Austauschargument)

- Angenommen e gehört nicht zu T^* .
- Das Hinzufügen von e zu T^* erzeugt einen Kreis E(C) in T^* .
- Kante e ist sowohl im Kreis E(C) als auch in der Schnittmenge D von S.
- Paritätslemma \Rightarrow es existiert eine andere Kante, sagen wir f, die sich sowohl in E(C) als auch in D befindet.
- $lacksquare T' = T^* \cup \{e\} \{f\}$ ist auch ein aufspannender Baum.
- Da $c_e < c_f$, $cost(T') < cost(T^*)$.
- Das ist ein Widerspruch zur Annahme, dass T^* minimal ist. \square

Beweis des Kreislemmas

Kreislemma: Sei E(C) ein beliebiger Kreis in G und sei f die maximal gewichtete Kante in E(C). Dann enthält kein MST die Kante f.

Annahme für Beweis: Alle Kantengewichte c_e sind unterschiedlich, vereinfacht Beweis.

Hinweis: Man kann zu allen Kosten kleine Störwerte hinzufügen, um die Annahme, dass alle Kanten unterschiedliches Gewicht haben müssen, zu vermeiden.

Beweis des Kreislemmas

Beweis: (Austauschargument)

- lacksquare Angenommen f gehört zu T^*
- Löschen von f aus T^* erzeugt eine Teilmenge S von Knoten in T^* .
- Kante f ist sowohl im Kreis E(C) als auch in der Schnittmenge D von S.
- Paritätslemma \Rightarrow es existiert eine andere Kante, sagen wir e, die sich sowohl in E(C) als auch in D befindet.
- lacksquare $T' = T^* \cup \{e\} \{f\}$ ist auch ein aufspannender Baum.
- Da $c_e < c_f$, $cost(T') < cost(T^*)$.
- Das ist ein Widerspruch zur Annahme, dass T^* minimal ist. \square

Algorithmus von Prim

Algorithmus von Prim: [Jarnìk 1930, Dijkstra 1957, Prim 1959]

- Initialisiere *S* mit einem beliebigen Knoten.
- \blacksquare Wende das Kantenschnittlemma auf S an.
- lacktriangle Füge die minimal gewichtete Kante e in der Schnittmenge von S zu T hinzu und füge den Knoten u (Endknoten von e der sich noch nicht in S befindet) zu S hinzu.

Algorithmus von Prim: Implementierung

Annahme: Alle Kantengewichte sind unterschiedlich.

```
Prim(G,c):
foreach (v \in V)
    A[v] \leftarrow \infty
Initialisiere eine leere Priority Queue Q
foreach (v \in V)
     Füge v in Q ein
S \leftarrow \emptyset
while Q ist nicht leer
     u \leftarrow entnehme minimales Element aus Q
     S \leftarrow S \cup \{u\}
     foreach Kante e = (u, v) inzident zu u
          if v \notin S und c_e < A[v]
               Verringere die Priorität A[v] auf c_e
```

Algorithmus von Prim: Beispiel

Start:

- Start bei A (willkürlich gewählt, alle Knoten gleiche Priorität)
- Priority Queue zu Beginn: A, B, C, D, E, F, G, H

Ausgewählt	Resultierende Priority Queue	Knotenmenge S	Gewicht
Α	B, D, C, E, F, G, H	A	0
В	D, C, E, F, G, H	A, B	4
D	F, C, E, G, H	A, B, D	10
F	C, G, H, E	A, B, D, F	15
С	G, H, E	A, B, D, F, C	23
G	H, E	A, B, D, F, C, G	34
Н	E	A, B, D, F, C, G, H	41
E		A, B, D, F, C, G, H, E	50

Algorithmus von Prim: Analyse

Implementierung: Benutze eine Priority Queue wie bei Dijkstra.

- \blacksquare Verwalte eine Menge von bearbeiteten Knoten S.
- Verwalte jeden unbearbeiteten Knoten v mit Kosten A[v] in der Priority Queue.
- ullet A[v] sind die Kosten der billigsten Kante von v zu einem Knoten in S.
- Laufzeit in $O(n^2)$, wenn die Priority Queue mit einem Array implementiert ist.
- Laufzeit in $O(m \log n)$ mit einem binären Heap (Min-Heap).

Algorithmus von Kruskal

Algorithmus von Kruskal: [Kruskal, 1956]

- Bearbeite Kanten in aufsteigender Reihenfolge der Kantengewichte.
- Fall 1: Wenn das Hinzufügen von e zu T einen Kreis erzeugt, verwerfe e gemäß des Kreislemmas.
- Fall 2: Sonst füge e = (u, v) in T gemäß des Kantenschnittlemmas ein.

Fall 1

Fall 2

Algorithmus von Kruskal: Implementierung

Implementierung:

```
Kruskal(G,c):
Sortiere Kantengewichte so, dass c_1 < c_2 < \cdots < c_m
T \leftarrow \emptyset
foreach (u \in V) erzeuge eine einelementige Menge mit u
for i \leftarrow 1 bis m
     (u,v)=e_i
     if u und v sind in verschiedenen Mengen
         T \leftarrow T \cup \{e_i\}
         Vereinige die Mengen mit u und v
return T
```

- sind u und v in unterschiedlichen Zusammenhangskomponenten?
- Vereinige zwei Komponenten

Algorithmus von Kruskal: Implementierung

Sind u und v in verschiedenen Zusammenhangskomponenten?

Einfache Möglichkeit: Verwende Tiefen- oder Breitensuche

Effizienter: Benutze die sogenannte Union-Find-Datenstruktur.

- Verwalte die Teilmenge aller Knoten für jede Zusammenhangskomponente.
- $O(m \log n)$ für die Sortierung $(m \le n^2 \Rightarrow \log m \text{ ist } O(\log n))$.

Union-Find-Datenstruktur: Abstrakter Datentyp

Abstrakter Datentyp: Dynamische Disjunkte Mengen (DDM)

Familie $S = \{S_1, S_2, \dots, S_k\}$ disjunkter Teilmengen einer Menge M. Jedes S_i hat einen Repräsentanten.

- makeset(v): Erzeugt eine Menge $\{v\} = S_v$; v ist Repräsentant von S_v
- union(v, w): Vereinigt Mengen S_v und S_w deren Repräsentanten v und w sind; neuer Repräsentant ist ein beliebiges $u \in S_v \cup S_w$
- findset(v): Liefert Repräsentanten der Menge S mit $v \in S$

Die Union Find Datenstruktur

v	$\mid a \mid$	b	c	d	_	f	g	h	i
parent[v]	a	b	i	d	e	h	h	h	\overline{h}

Die Union Find Datenstruktur: Implementierung

Einfache Implementierung:

 \blacksquare makeset (v):

$$\mathsf{parent}[v] = v$$

 \blacksquare union (v, w):

$$\mathsf{parent}[v] = w$$

 \blacksquare findset (v):

```
\begin{split} h &= v \\ \text{while } \mathsf{parent}[h] \neq h \\ h &= \mathsf{parent}[h] \\ \text{return } h; \end{split}
```

Laufzeit: Mit einer verbesserten Implementierung kann eine in der Praxis nahezu konstante Laufzeit für jede der drei Operationen erreicht werden.

Algorithmus von Kruskal: Beispiel

Start: Kanten sortiert nach Gewicht (kleinstes zuerst): (A,B), (D,F), (A,D), (G,H), (C,D), (E,G), (C,F), (F,G), (F,H), (A,C) ...

Mengen	Kante	Hinzu?	Т
{ A },{ B },{C},{D},{E},{F},{G},{H}	(A,B)	Ja	{(A,B)}
{A,B},{C},{ D },{E},{ F },{G},{H}	(D,F)	Ja	{(A,B), (D,F)}
{ A ,B},{C},{ D ,F},{E},{G},{H}	(A,D)	Ja	{(A,B), (D,F), (A,D)}
{A,B,D,F},{C},{E},{ G },{ H }	(G,H)	Ja	{(A,B), (D,F), (A,D), (G,H)}
{A,B, D ,F},{ C },{E},{G,H}	(C,D)	Ja	{(A,B), (D,F), (A,D), (G,H), (C,D)}
{A,B,C,D,F},{ E },{ G ,H}	(E,G)	Ja	{(A,B), (D,F), (A,D), (G,H), (C,D), (E,G)}
{A,B, C ,D, F },{E,G,H}	(C,F)	Nein	{(A,B), (D,F), (A,D), (G,H), (C,D), (E,G)}
$\{A,B,C,D,F\},\{E,G,H\}$	(F,G)	Ja	{(A,B), (D,F), (A,D), (G,H), (C,D), (E,G), (F,G)}
$\{A,B,C,D,E,F,G,H\}$			

■ Ab jetzt werden keine weiteren Kanten mehr aufgenommen!

Kruskal und Prim im Vergleich

Laufzeit von Kruskal:

- Union-Find-Operation ist praktisch in konstanter Zeit möglich, d.h. der zweite Teil des Kruskal-Algorithmus hat nahezu lineare Laufzeit.
- Der Gesamtaufwand wird nun durch das Kantensortieren bestimmt und ist somit $O(m \log n)$.

Laufzeit von Prim:

- Wird als Priority Queue ein klassischer Heap verwendet, dann ist der Gesamtaufwand $O(m \log n)$.
- Wird ein sogenannter Fibonacci-Heap verwendet, so reduziert sich die Laufzeit auf $O(m + n \log n)$.

Anwendung in der Praxis:

- Für dichte Graphen $(m = \Theta(n^2))$ ist Prims Algorithmus besser geeignet.
- Für dünne Graphen $(m = \Theta(n))$ ist Kruskals Algorithmus besser geeignet.