Системи за управление на бази от данни (СУБД)□

Съдържание

- 1. Видове бази данни
 - Релационни БД
 - Нерелационни БД
- 2. Типове данни
- 3. Какво е СУБД?

Видове бази данни

SQL vs. NoSQL

Видове бази данни (БД)

- Работим с два вида бази данни:
 - Релационни БД
 - Съдържат данни в таблици + релации (връзки)
 - Използват езика SQL за заявки
 - NoSQL (нерелационни) БД
 - Имат колекции от документи или двойки ключ-стойност

Примери за SQL и NoSQL бази данни

• SQL бази данни:

- MySQL
- PostgreSQL
- Oracle
- Microsoft SQL
- SQLite and Web SQL

NoSQL бази данни:

- MongoDB
- Redis
- Google BigTable
- Amazon DynamoDB
- Azure Cosmos DB
- Cassandra

Релационни бази данни

Таблици, релации и SQL

Релационни бази данни (1)

- Релационните (SQL) бази данни организират данните в таблици
 - Таблиците имат строга структура (колони със зададени типове на данни)
 - Могат да имат връзки към други таблици

Релационни бази данни (2)

- Релационните бази данни използват езика SQL за дефиниране и манипулиране на данни.
 - Изключително мощен за сложни заявки
 - Релационните бази данни са най-използваната технология за управление на данни.

Таблици

• Таблиците са основният градивен елемент на релационните бази

- Всеки ред се нарича запис или обект
- Колоните (полета) определят вида на данните

Релационният модел на БД

- Релационните данни се съхраняват в една или повече таблици, които може да имат:
 - Уникален ключ, идентифициращ всеки ред
 - Външни ключове, определящи връзки

Релационният модел на БД – пример

Предмети

ID	Order ID	Name	Quantity	Price
5	1	Table	1	200.00
6	1	Chair	1	123.12

Клиенти

ID	Name	Email
5	Peter	peter@gmail.com
6	Jayne	jayne@gmail.com

ID	Customer ID	Date	Total Price
1	5	11/1/17	323.12
2	1	11/15/17	13.99

Нерелационни бази данни

NoSQL бази данни и JSON документи

Нерелационни (NoSQL) бази данни

- Нерелационните бази данни имат динамична схема за неструктурирани данни
- Данните могат да се съхраняват по няколко начина:
 - Документен (JSON store)
 - Чрез колони (table store)
 - Базиран на граф
 - Двойки ключ-стойност

NoSQL бази данни

- NoSQL бази данни не използват таблици и SQL
 - Вместо това използват колекции от документи или двойки ключ-стойност
- Мащабируеми и с висока производителност
- Примери: MongoDB, Cassandra, Redis, etc.

Типове данни в SQL Server

Типове данни в SQL Server (1)

- Числови
 - Целочислени типове данни:
 - BIT (1-bit), TINYINT (8-bit), SMALLINT (16-bit)
 - **INT** (32-bit), **BIGINT** (64-bit)
 - Типове данни с плаваща запетая:
 - FLOAT, REAL, DECIMAL
- Текстови
 - CHAR(size) низ с фиксиран размер
 - VARCHAR(size) символен низ с променлив размер
 - NCHAR(size) Unicode низ с фиксиран размер
 - NVARCHAR(size) Unicode символен низ с променлив размер
- NULL празна стойност

Типове данни в SQL Server (2)

- Двоични/бинарни данни
 - BINARY(size) поредица от битове с фиксирана дължина
 - VARBINARY(size) поредица от битове, 1-8000 байта или МАХ (2GB)
- Дата и време (типове данни за дата и час)
 - DATE дата в диапазона от 0001-01-01 до 9999-12-31
 - **DATETIME** дата и час с точност 1/300 сек
 - DATETIME2 тип, който има по-голям период от време
 - **SMALLDATETIME** дата и час (с точност до 1 минута)
 - TIME определя час от деня (без часова зона)
 - DATETIMEOFFSET дата и час, които имат часова зона

Дата и време в SQL Server

1 RANGE OF VALUES	2 ACCURACY	3 STORAGE SPACE
01/01/1900 to 06/06/2079	1 minute	4 bytes
01/01/ <u>1753</u> to 12/31/9999	0.00333 seconds	8 bytes
01/01/ <u>0001</u> to 12/31/9999	100 <u>nano</u> seconds	6 to 8 bytes
01/01/0001 to 12/31/9999	100 nanoseconds	8 to 10 bytes
01/01/0001 to 12/31/9999	1 day	3 bytes
00:00:00.0000000 to 23:59:59.999999	100 nanoseconds	3 to 5 bytes
	01/01/1900 to 06/06/2079 01/01/1753 to 12/31/9999 01/01/0001 to 12/31/9999 01/01/0001 to 12/31/9999 01/01/0001 to 12/31/9999 00:00:00.000000000 to	01/01/1900 to 06/06/2079 1 minute 01/01/1753 to 12/31/9999 0.00333 seconds 01/01/0001 to 12/31/9999 100 nanoseconds 01/01/0001 to 12/31/9999 100 nanoseconds 01/01/0001 to 12/31/9999 1 day 00:00:00.000000000 to 100 nanoseconds

Системи за управление на бази данни субд

Системи за управление на бази данни (СУБД) 🕸 Foundation

- СУБД е софтуер, използван за дефиниране, манипулиране, извличане и управление на данни в база данни
 - СУБД съхранява и управлява самите данни, формата им, имената на полетата и типовете данни, структурата на записа и файловата структура
 - Източник / доставчик на данни

СУБД и поток от данни (схема на база от данни)

СУБД използват модела клиент-сървър:

Пример за СУБД

- СУБД примери (сървъри за бази данни):
 - MySQL, MS SQL Server, Oracle, PostgreSQL
 - MongoDB, Cassandra, Redis, HBase
 - Amazon DynamoDB, Azure Cosmos DB

СУБД сървърна архитектура

Процедура на СУБД

- Създаване на базата данни
- Създаване на таблици
- Вмъкване на данни
- Модифициране на данни
- Извличане на данни
- Управление на транзакции
- Оптимизация на производителността
- Сигурност и резервно копие

Файлов сървър

- Управлява съхранението и достъпа до файлове, които съдържат бази данни и свързаната с тях информация
- Централизиран ресурс, който осигурява:
 - Централизирано съхранение
 - Контрол на достъпа
 - Ефективност и производителност
 - Споделяне на данни
 - Мащабируемост

Разпределена система

- Разпределена система == СУБД, която:
 - Не се съхранява на едно място, а е разпределена между различни узли
 - Узлите се свързват чрез мрежа
 - Позволява на базата данни да бъде разпределена или репликирана между различни точки в мрежата
 - Подобрява достъпността, надеждността и мащабируемостта

Абстракция в СУБД

- Абстракцията в СУБД е ключова концепция, която улеснява взаимодействието между потребителите и самите бази данни
- Скрива сложността на физическото съхранение на данните
- Представя само необходимата информация на различните нива:
 - Външно
 - Концептуално
 - Вътрешно

Външно ниво на абстракция

- Начин, по който потребителят вижда данните
- Това е най-високото ниво от трите нива на абстракция
- Външните нива на абстракция могат да представляват различни "изгледи" (views) на базата данни
 - Например таблица с данни, която е специфична за нуждите на отдел в организацията

Концептуално ниво на абстракция

- Посредник между външните и вътрешните нива на абстракция
- Описва структурата на цялата база данни за всички потребители
- Определя какви данни се съхраняват в базата данни и връзките между тях, но без да влиза в детайли как точно тези данни се съхраняват физически

Вътрешно ниво на абстракция

- Най-ниското ниво и описва физическото съхранение на данните в базата
- Включва физическите пътища за достъп до данните, както и структурите за съхранение като индекси и хеш-таблиците
- Занимава се с оптимизирането на производителността на базата данни и ефективното използване на хардуерните ресурси

Какво е клиентско приложение на бази от данни?

- Софтуер, който позволява на крайните потребители да взаимодействат с база данни
- Такова приложение служи като посредник между потребителя и системата за управление на бази данни

Предоставя интерфейс за извършване на различни операции над

данните:

- Търсене
- Създаване
- Промяна
- Изтриване

Обобщение

- Релационни бази данни: таблици и релации със строга структура
- Нерелационни бази данни: колекции от документи
- Типове данни:
 - Числови

Бинарни

Текстови

- Дати
- СУБД: съхранява и управлява данните

Въпроси?