CH246 手册 1 http://wch.cn

无线充电管理芯片 CH246

手册 版本: 1C http://wch.cn

1. 概述

无线充电管理芯片 CH246,单芯片集成无线充电收发模块及小信号解码电路,外加部分客户自定义软件可轻松实现 WPC Qi 等各类无线充电方案。支持 PD2.0、BC1.2 多种协议快充输入,支持 5W、苹果 7.5W、三星 10W 无线充电输出。CH246 片内集成 FSK/ASK 解码,过压过流过温检测保护,集成度高,外部器件少,可广泛应用于各类无线充电底座支架等设计。

2. 功能特点

- 支持5V-12V输入电压
- 支持5W无线充电模式,苹果7.5W、三星10W
- 输入支持PD2.0、BC1.2等多种快充协议
- 支持半桥、全桥输出模式
- 内部集成硬件过压、欠压、过温保护
- 内部集成电流检测差分运放,硬件过流保护
- 内部集成FSK/ASK解调模块,外部器件只需少量阻容
- 支持动态F0D检测
- 支持NPO和CBB电容,使用NPO电容时效率可达85%
- 独立2路LED状态指示灯
- 典型静态功耗25mW

3. 应用场合

- 无线充底座
- 无线充支架
- 车载无线充

4. 封装

5. 引脚

引脚号	引脚名称	类型	引脚说明		
0	GND	电源	公共接地端		
2	VHV	高压电源	高压正电源输入端,外接 1uF 退耦电容		
3	HV1	单向输出	PWM 输出,输出为 VHV 电平		
4	HV0P	单向输出	PWM 输出,输出为 VHV 电平,需外部短接 HVON		
5	HVON	单向输出	PWM 输出,输出为 VHV 电平,需外部短接 HVOP		
7	VDD	电源	外接 1uF 退耦电容		
8	UDP	双向三态	USB 总线 D+数据线		
9	UDM	USB双向	USB 总线 D-数据线		
10	CC1	双向三态	Type-C CC1 输入输出		
11	CCO	模拟双向	Type-C CCO 输入输出		
12	LV1	单向输出	PWM 输出,输出为 VDD 电平		
13	LV0	单向输出	PWM 输出,输出为 VDD 电平		
14	IS+	模拟输入	电流检测差分运放同向输入端		
15	IS-	模拟输入	电流检测差分运放反向输入端		
16	QII	模拟输入	无线充电通讯数据输入端,内部放大后解码		
17	LED1	开漏输出	正常工作指示灯引脚		
18	NTC	模拟输入	外置温度检测脚		
19	OSC	模拟输入	线圈电压检测引脚		
20	LED0	模拟输出	异常工作指示灯引脚		
1, 6	NC	NC	保留引脚		

6. 引脚功能描述

6.1. LEDO 引脚和 LED1 引脚

LEDO 引脚连接异常工作指示灯,LED1 引脚连接正常工作指示灯。待机时,两个引脚均输出高电平,灯不亮。充电过程中,LED1 引脚输出低电平,充满后 LED1 引脚以 1 秒为周期翻转。如果检测到 FOD 异常,LEDO 引脚输出低电平。

6.2. VHV 引脚和 VDD 引脚

VHV 引脚支持高压输入,输入电压范围 5~12V。VDD 引脚为内部 LDO 输出。要求靠近这两个引脚分别接 1uF 退耦电容。

6.3. H 桥驱动引脚 HV0/1&LV0/1

HVOP 和 HVON 引脚需要外部并联后输出, 其等效于 HVO 输出, HVO 和 HV1 引脚是高压驱动脚, 用来驱动 H 桥的上管 PMOS, LVO 和 LV1 引脚是低压驱动脚, 用来驱动 H 桥的下管 NMOS。其中 HVO 和 LVO 是对管, HV1 和 LV1 是对管。

6.4. UDP/UDM 引脚

UD+/UD-引脚用于 BC1.2 快速充电协议握手。

6.5. CCO/CC1 引脚

CCO/CC1 引脚用于 PD 快速充电协议握手。如外部连接 USB Type-C 母座,则要求 CCO 和 CC1 分别对地接 5. 1K Ω 下拉电阻。

6.6. IS+/IS-引脚

电流采样差分输入引脚。为保证电流采样准确度,要求在布线时按照差分输入设计。

6.7. NTC 引脚

外部 NTC 过温保护引脚,如果该引脚电压大于 2V,则触发过温保护,关闭 PWM,LEDO 输出低电平。直到温度恢复后,将会继续工作。如不使用外部 NTC 功能,该引脚需外接低电平。

6.8. OSC 引脚

线圈电压检测引脚。

7. 应用参考电路

CH246D 参考电路 R1 33K C1 10uF 10uF Q1 Q2 VGND C3 400nF 100V CBB Coil R3 R4 2R └─ Q4 2R LV1 LV0 Q3 3420 3420 C4 10nF 10nF VGND C6 6.8nF R8 R7 R9 3K3 100 1N4148 **R**11 1uF C8 C7. 15nF OSC ADC L €9 R12 47nF 3K3 GND U1 IS+ LV0 LV1 CC0 V<u>D</u>D 100K b=3950K **VBUS** SBU2 Dn2 CC1 Dp1 Dn1 B6 Dp2 Dp2 CC2 VBUS R6 5.1K Ω CC1 UDM UDP LED1 NTC SBU CH246D R10 _ OSC VDD 5.1K Ω LED R - 6 LED0 R16-C10: В1 GND 10K 1uF GND NC VHV HV1 HV0P HV0N TYPE-C-Receptacle-2.0 VDD 1K R13 **-**| VHV 1K R14 Red

8. PCB设计注意事项

下图(左)为 CH246D 芯片电流差分采样输入设计参考。R7 为 0 欧姆电阻,R7 只是为了更好的表示 GND 网络的取样点。

下图(右)为 H 桥电流回路参考设计,要求电流回路越短越好,走线尽可能粗。C1、C2 放置在电流回路输入端。

CH246D (QFN20) PCB 参考设计

9. 参数

9.1. 绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度(VHV<16V)	-40	110	$^{\circ}\mathbb{C}$
TA	工作时的环境温度(VHV>=16V)	-40	100	$^{\circ}$
TS	储存时的环境温度	-55	125	$^{\circ}$
VDD	工作电源电压(VDD 引脚接电源,GND 引脚接地)	-0. 5	6. 0	٧
VHV	高压电源电压(VHV 引脚接电源,GND 引脚接地)	-0. 5	25. 0	٧
VIO	非高压引脚上电压	-0. 5	VDD+0. 5	٧
VIOCC	CC1, CC2 引脚上的电压	-0. 5	20. 0	٧
VIOHV	HVOP, HVON, HV1, LEDO, OSC 引脚上的电压	-0. 5	25. 0	٧
PD	整个芯片的最大功耗(VHV 电压*电流)		300	mW
ESD	人体模型(HBM)		2	K۷

10. 封装信息

封装形式	塑体宽度	引脚间距		封装型号
QFN20	3*3mm	0. 40mm	15.7mil	CH246D

说明: 封装信息图中标注的单位均为 mm (毫米)。

