Implementing a Multilayer Perceptron from Scratch

```
In [1]: %matplotlib inline
   import d21
   from mxnet import nd
   from mxnet.gluon import loss as gloss
```

Load the Fashion-MNIST data set

```
In [2]: batch_size = 256
   train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
```

Initialize Model Parameters

```
In [3]: num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nd.random.normal(scale=0.01, shape=(num_inputs, num_hiddens))
b1 = nd.zeros(num_hiddens)
W2 = nd.random.normal(scale=0.01, shape=(num_hiddens, num_outputs))
b2 = nd.zeros(num_outputs)
params = [W1, b1, W2, b2]

for param in params:
    param.attach_grad()
```

Activation Function

```
In [4]: def relu(X):
    return nd.maximum(X, 0)
```

The model

The Loss Function

```
In [6]: loss = gloss.SoftmaxCrossEntropyLoss()
```

Training

epoch 8, loss 0.3236, train acc 0.880, test acc 0.878 epoch 9, loss 0.3129, train acc 0.886, test acc 0.883 epoch 10, loss 0.3067, train acc 0.886, test acc 0.882

Evaluation

