Lecture 3: Planning by Dynamic Programming

1. Introduction

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem

Programming optimising a "program", i.e. a policy

- c.f. linear programming
- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure
 - Principle of optimality applies
 - o Optimal solution can be decomposed into subproblems
- Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision processes satisfy both properties
 - Bellman equation gives recursive decomposition
 - Value function stores and reuses solutions

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
- It is used for planning in an MDP
- For prediction:
 - Input: MDP $< S, A, P, R, \gamma >$ and policy π
 - \circ or: MRP $S, P^{\pi}, R^{\pi}, \gamma$
 - \circ Output: value function v_{π}
- Or for control:
 - Input: MDP $< S, A, P, R, \gamma >$
 - $\circ~$ Output: optimal value function v_{st}
 - and: optimal policy π_*

Other Applications of Dynamic Programming

Dynamic programming is used to solve many other problems, e.g.

- Scheduling algorithms
- String algorithms (e.g. sequence alignment)
- Graph algorithms (e.g. shortest path algorithms)
- Graphical models (e.g. Viterbi algorithm)
- Bioinformatics (e.g. lattice models)

2. Policy Evaluation

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- ullet $v_1
 ightarrow v_2
 ightarrow \cdots
 ightarrow v_\pi$
- Using synchronous backups,
 - \circ At each iteration k+1
 - \circ For all states $s \in S$
 - \circ Update $v_{k+1}(s) from v_k(s')$
 - \circ where s' is a successor state of s
- We will discuss asynchronous backups later
- Convergence to v_{π} will be proven at the end of the lecture

Iterative Policy Evaluation (2)

$$egin{aligned} \mathbf{v}_{k+1}(s) &= \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}|s) \left(\mathcal{R}_s^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} \mathbf{v}_k(s')
ight) \\ \mathbf{v}^{k+1} &= \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k \end{aligned}$$

Evaluating a Random Policy in the Small Gridworld

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- \blacksquare Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation in Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

3. Policy Iteration

How to Improve a Policy

- Given a policy π
 - **Evaluation** the policy π

$$v_{\pi}(s) = E[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

 \circ Improve the policy by acting greedily with respect to v_{π}

$$\pi' = greedy(v_{\pi})$$

- In Small Gridworld improved policy was optimal, $\pi'=\pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of **policy iteration** always converges to π^*

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Jack's Car Rental

States: Two locations, maximum of 20 cars at each

Actions: Move up to 5 cars between locations overnight

■ Reward: \$10 for each car rented (must be available)

Transitions: Cars returned and requested randomly

■ Poisson distribution, n returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$

■ 1st location: average requests = 3, average returns = 3

2nd location: average requests = 4, average returns = 2

Policy Iteration in Jack's Car Rental

Policy Improvement

- Consider a deterministic policy, $a=\pi(s)$
- We can improve the policy by acting greedily

o
$$\pi'(s) = rg \max_{a \in A} q_\pi(s,a)$$

• This improves the value from any state s over one step,

o
$$q_\pi(s,\pi'(s)) = \max_{a\in A} q_\pi(s,a) \geq q_\pi(s,\pi(s)) = v_\pi(s)$$

• It therefore improves the value function, $v_{\pi'} \geq v_{\pi}(s)$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = E_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

$$\leq E_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_t = s]$$

$$\leq E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2}, \pi'(S_{t+2})) | S_t = s]$$

$$\leq E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s] = v_{\pi'}(s)$$

• If improvements stop

o
$$q_\pi(s,\pi'(s))=\max_{a\in A}q_\pi(s,a)=q_\pi(s,\pi(s))=v_\pi(s)$$

• Then the Bellman optimality equation has been satisfied

o
$$v_\pi(s) = \max_{a \in A} q_\pi(s,a)$$

- ullet Therefore $v_\pi(s)=v_*(s)$ for all $s\in S$
- so π is an optimal policy

Extensions to Policy Iteration

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - \circ e.g. ϵ -convergence of value function

- Or simply stop after *k* iterations of iterative policy evaluation?
- ullet For example, in the small gridworld k=3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k=1
 - This is equivalent to value iteration (next section)

Generalised Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm

Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

4. Value Iteration

Value Iteration in MDPs

Principle of Optimality

Any optimal policy can be subdivided into two components:

- An optimal first action A_{st}
- Followed by an optimal policy from successor state S'

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if

- For any state s' reachable from s
- π achieves the optimal value from state s' , $v_\pi(s') = v_*(s')$

Deterministic Value Iteration

- If we know the solution to subproblems $v_*(s')$
- ullet Then solution $v_st(s)$ can be found by one-step lookahead

o
$$v_*(s) \leftarrow \max_{a \in A} R_S^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

Example: Shortest Path

g					0	0	0	0		0	-1	-1	-1		0	-1	-2	-2
					0	0	0	0		-1	-1	-1	-1		-1	-2	-2	-2
					0	0	0	0		-1	-1	-1	-1		-2	-2	-2	-2
					0	0	0	0		-1	-1	-1	-1		-2	-2	-2	-2
	Problem				V ₁					V_2					V ₃			
0	-1	-2	-3		0	-1	-2	-3		0	-1	-2	-3		0	-1	-2	-3
-1	-2	-3	-3		-1	-2	-3	-4		-1	-2	-3	-4		-1	-2	-3	-4
-2	-3	-3	-3		-2	-3	-4	-4		-2	-3	-4	-5		-2	-3	-4	-5
									1									
-3	-3	-3	-3		-3	-4	-4	-4		-3	-4	-5	-5		-3	-4	-5	-6

Value Iteration

ullet Problem: find optimal policy π

• Solution: iterative application of Bellman optimality backup

 $\bullet \quad v_1 \to v_2 \to \cdots \to v_*$

• Using synchronous backups

 \circ At each iteration k+1

 \circ For all states $s \in S$

 \circ Update $v_{k+1}(s)$ from $v_k(s')$

ullet Convergence to v_* will be proven later

• Unlike policy iteration, there is no explicit policy

• Intermediate value functions may not correspond to any policy

$$egin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

Summary of DP Algorithms

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s,a)$ or $q_{*}(s,a)$
- Complexity $O(m^2n^2)$ per iteration

5. Extensions to Dynamic Programming

Asynchronous Dynamic Programming

- DP methods described so far used synchronous backups
- i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected

Three simple ideas for asynchronous dynamic programming:

- In-place dynamic programming
- Prioritised sweeping
- Real-time dynamic programming

In-Place Dynamic Programming

- Synchronous value iteration stores two copies of value function
 - \circ for all s in S

o
$$v_{new}(s) \leftarrow \max_{a \in A} (R^a_s + \gamma \sum_{s' \in S} P^a_{ss'} v_{old}(s'))$$

- o $v_{old} \leftarrow v_{new}$
- In-place value iteration only stores one copy of value function
 - \circ for all s in S

o
$$v(s) \leftarrow \max_{a \in A} (R^a_s + \gamma \sum_{s' \in S} P^a_{ss'} v(s'))$$

Prioritised Sweeping

• Use magnitude of Bellman error to guide state selection, e.g.

o
$$|\max_{a\in A}(R^a_s)+\gamma\sum_{s'\in S}P^a_{ss'}v(s')-v(s)|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t, A_t, R_{t+1}
- Backup the state S_t

o
$$v(S_t) \leftarrow \max_{a \in A} (R_{S_t}^a + \gamma \sum_{s' \in S} P_{S_t s'}^a v(s'))$$

Full-width and sample backups

Full-Width Backups

- DP uses full-width backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
 - Number of states n = |S| grows exponentially with number of state variables
- Even one backup can be too expensive

Sample Backups

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$
- Instead of reward function $\mathcal R$ and transition dynamics $\mathcal P$
- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - lacksquare Cost of backup is constant, independent of $n=|\mathcal{S}|$

Approximate Dynamic Programming

- Approximate the value function
- Using a function approximator $\hat{v}(s, w)$
- Apply dynamic programming to $\hat{v}(\cdot, w)$
- e.g. Fitted Value Iteration repeats at each iteration k,
 - \circ Sample states $ilde{S} \subseteq S$
 - \circ For each state $s \in \tilde{S}$, estimate target value using Bellman optimality equation,

$$ilde{v}_k(s) = \max_{a \in A} (R^a_s + \gamma \sum_{s' \in S} P^a_{ss'} \hat{v}(s', w_k))$$

6. Contraction Mapping

Some Technical Questions

- How do we know that value iteration converges to v_* ?
- Or that iterative policy evaluation converges to v_{π} ?
- And therefore that policy iteration converges to v_* ?
- Is the solution unique?
- How fast do these algorithms converge?
- These questions are resolved by contraction mapping theorem

Value Function Space

- ullet Consider the vector space V over value functions
- There are |S| dimensions
- Each point in this space fully specifies a value function v(s)
- What does a Bellman backup do to points in this space?
- · We will show that it brings value functions closer
- And therefore the backups must converge on a unique solution

Value Function ∞-Norm

- We will measure distance between state-value functions u and v by the ∞ -norm
- i.e. the largest difference between state values,

o
$$||u-v||_{\infty} = \max_{s \in S} |u(s)-v(s)|$$

Bellman Expectation Backup is a Contraction

• Define the Bellman expectation backup operator T^{π} ,

$$T^\pi(v) = R^\pi + \gamma P^\pi v$$

• This operator is a γ -construction, i.e. it makes value functions closer by at least γ ,

$$\begin{aligned} \left|\left|T^{\pi}(u)-T^{\pi}(v)\right|\right|_{\infty} &=\left|\left|\left(R^{\pi}+\gamma P^{\pi}u\right)-\left(R^{\pi}+\gamma P^{\pi}v\right)\right|\right|_{\infty} \\ &=\left|\left|\gamma P^{\pi}(u-v)\right|\right|_{\infty} \\ &\leq \left|\left|\gamma P^{\pi}|\left|u-v\right|\right|_{\infty}\right|_{\infty} \\ &\leq \gamma |\left|u-v\right|\right|_{\infty} \end{aligned}$$

Contraction Mapping Theorem

For any metric space V that is complete (i.e. closed) under an operator T(v), where T is a γ -contraction,

- T converges to a unique fixed point
- At a linear convergence rate of γ

Convergence of Iter. Policy Evaluation and Policy Iteration

- The Bellman expectation operator T^π has a unique fixed point
- v_{π} is a fixed point of T^{π} (by Bellman expectation equation)
- By contraction mapping theorem
- Iterative policy evaluation converges on v_π

ullet Policy iteration converges on v_*

Bellman Optimality Backup is a Contraction

- ullet Define the Bellman optimality backup operator T^* ,
- $T^*(v) = \max_{a \in A} R^a + \gamma P^a v$
- This operator is a γ -contraction, i.e. it makes value functions closer by at least γ (similar to previous proof)

$$ullet$$
 $\left|\left|T^*(u)-T^*(v)
ight|
ight|_{\infty}\leq \gamma \left|\left|u-v
ight|
ight|_{\infty}$

Convergence of Value Iteration

- ullet The Bellman optimality operator T^* has a unique fixed point
- v_* is a fixed point of T^* (by Bellman optimality equation)
- By contraction mapping theorem
- Value iteration converges on v_{st}