

IIC2143 - INGENIERÍA DE SOFTWARE 2023 - 1º SEMESTRE

UNIDAD 0:

Información general del curso

Alison Fernandez Blanco

UNIDAD O:

Información general del curso

PROFESORES DE CÁTEDRA:	Juan Pablo Sandoval Alison Fernandez Blanco
AYUDANTES COORDINADORES:	Martin Orrego
	Nicole Caballero

Horarios y calendario académico

Lunes y Miércoles, M3, 11:30 - 12:50 **CLASES DE CÁTEDRA: A**1 Viernes, M3, 11:30 - 12:50 **CLASES DE** AYUDANTÍA: **K203** Semana 6 de Marzo **INICIO CLASES:** Semana 30 de Junio FIN CLASES: 1 al 12 de Julio **EXAMEN:**

Realizar un trabajo como ingeniero de software...

- Resolver un problema real a través de un producto de software.
- Desarrollar un producto trabajando en equipo.
- Desempeñar un rol dentro del equipo.
- Lidiar con el cliente y los miembros del equipo.
- Desarrollar la solución y evaluar su impacto.

- Estructurar ideas
- Funciones
- Algoritmos, etc.

Aspectos funcionales

- Estructurar ideas
- Funciones
- Algoritmos, etc.

- Extensible
- ❖ Mantenible
- ❖ Legible
- Rendimiento, etc

No es suficiente escribir un código que funcione. El software también debe ser de calidad: mantenible, extensible, legible...

Objetivos de aprendizaje

Realizar un trabajo como ingeniero de software...

- Comprender los desafíos de desarrollar software en forma profesional:
 - No se trata solo de programas más grandes.
 - No se trata de aprender nuevos lenguajes.
 - Se trata de elaborar un producto confiable en forma predecible (planificación) que satisfaga las necesidades de los usuarios.
- Vivir la experiencia del desarrollo de un proyecto Web siendo parte de un equipo usando un proceso ágil.

Objetivos (Estudiante)

Aprovechar al máximo los recursos a su disposición.

Contenido del curso

- Unidad 1: Introducción a Ingeniería de Software
- Unidad 2: Procesos de desarrollo de Software
- Unidad 3: Requisitos
- Unidad 4: Diseño
- Unidad 5: Arquitectura
- Unidad 6: Gestión de Proyecto
- Unidad 7: Aseguramiento de Calidad (QA)

Evaluación

Interrogaciones (50%)

- > 1º Interrogación (N1), 2º Interrogación (N2), Examen final (EF).
- \rightarrow NI = I1 * 0.5 + I2 * 0.5

Proyecto (50%)

- Sprints (50%)
- Revisión final (20%)
- Presentación final (20%)
- Una tarea individual (10%)

Evaluación

Interrogaciones (50%)

1º Interrogación: 24 de Abril

2º Interrogación: 9 de Junio

Recuperatorio I1 e I2: 10 de Julio

Consideraciones:

- Este semestre no habrá examen final como tal, el día designado al examen final se tomará el recuperatorio de la 11 e 12.
- Quien debidamente justifique la inasistencia a una interrogación, podrá tomar el recuperatorio que le corresponda I1 o I2.
- Las personas que quieran mejorar su nota pueden asistir a dar el examen recuperatorio l1 o l2, sin embargo, deben considerar que cómo es un recuperatorio la nota que saquen reemplazará su nota de la l1 o l2.
- La nota de interrogaciones (NI) será el promedio simple de la I1 y I2.

Evaluación

♦ Proyecto (50%)

- Una tarea individual con plazo de entrega de 2 semanas.
- Un total de 4 sprints (tercera semana del semestre).
- Los equipos para los sprints son de tres personas por afinidad.
- Cada sprint tiene asociado un entregable y una rúbrica de evaluación.
- La nota del proyecto será calculada usando los porcentajes mencionados anteriormente.

Normativas adicionales

Consideración de notas: Tome en cuenta las notas NI (nota de interrogación) y P (nota de proyecto). Para aprobar P y NI deben ser mayores o iguales a 3.95.

- Si P y NI son mayores o iguales a 4:
 NF = 0.5 * NI + 0.5 * P
- \rightarrow Si P y NI son menores a 4: NF = Min(NI, P)

Metodología

Clases conceptuales:

- Conceptos, ejemplos, casos de estudio.
- > Ejercicios, participación en clase, actividades.

Clases de Ruby on Rails:

- Ejemplos, demostraciones, conceptos básicos.
- > Ejercicios.

Clases de ayudantía:

- Mesas de ayuda, repaso de lo avanzado en la semana.
- Ejemplos adicionales a la cátedra, útiles para el proyecto.

Participación en clases

Para motivar la participación en clase y resolución de ejercicios, se podrán ganar décimas extras mediante un **sistema de cartas**.

Cualquier estudiante del curso puede ganar cartas al participar en clase. Cada carta agrega una décima a una de las actividades evaluativas del curso (tarea, proyecto, presentación final, revisión final, interrogación).

La décima ganada a través de una carta es individual. Por ejemplo, si alguien gana una décima para la presentación final, esa décima solo se le agregara al estudiante que participó y no así a todo el grupo.

Reglas del sistema de cartas

- Durante la clase, se indicará si una actividad, ejercicio o participación servirá para ganar una carta.
- Al final de la clase el docente registrará el nombre del estudiante y el tipo de carta que ganó. El estudiante puede llevarse la carta de recuerdo.
- Independientemente del tipo de carta, cada estudiante podrá acumular un máximo de 5 cartas antes de cada interrogación (I1, I2).
- No está permitido intercambiar cartas entre estudiantes.
- En caso de obtener la máxima puntuación en una actividad evaluativa, se permitirá utilizar las décimas extras en otra actividad evaluativa.

Política de integridad académica

Se debe respetar la política de Integridad Académica en relación a la copia y plagio.

Si un alumno comete una falta a la integridad académica en una evaluación, se le calificará con nota 1.0 en dicha evaluación y dependiendo de la gravedad de sus acciones podrá tener un 1.0 en todo ese ítem de evaluaciones o un 1.1 en el curso.

Plataforma del curso

Canvas

Github para el proyecto

Recomendaciones

- Solo leer las diapositivas y los apuntes no es suficiente.
 - Investiga, pregunta, explora.
- Asiste a clases y toma notas.
- Para las clases prácticas se recomienda llevar el computador para resolver ejercicios sencillos en clase y ganar puntos extra.

No tengan miedo de hacer preguntas