### Ch 3.1: Linear Regression

Lecture 4 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Weds Sep 6, 2023

#### Announcements

Last time:

• 2.2 Assessing Model Accuracy

Announcements:

2/17

Office Hours

. Munch (MSU-CMSE) Weds Sep 6, 2023

#### Covered in this lecture

- Least squares coefficient estimates for linear regression
- Residual sum of squares (RSS)
- Confidence interval, hypothesis test, and p-value for coefficient estimates
- Residual standard error (RSE)
- R squared

Or. Munch (MSU-CMSE) Weds Sep 6, 2023

### Section 1

# Simple Linear Regression

r. Munch (MSU-CMSE) Weds Sep 6, 2023

# Setup

 Predict Y on a single predictor variable X

$$Y \approx \beta_0 + \beta_1 X$$

• "≈" .... "is approximately modeled as"

Dr. Munch (MSU-CMSE

# Example

| 1  |    | TV    | Radio | Newspaper | Sales |
|----|----|-------|-------|-----------|-------|
| 2  |    | 230.1 | 37.8  | 69.2      | 22.1  |
| 3  | 2  | 44.5  | 39.3  | 45.1      | 10.4  |
| 4  |    | 17.2  | 45.9  | 69.3      | 9.3   |
| 5  |    | 151.5 | 41.3  | 58.5      | 18.5  |
| 6  | 5  | 180.8 | 10.8  | 58.4      | 12.9  |
| 7  | 6  | 8.7   | 48.9  | 75        | 7.2   |
| 8  |    | 57.5  | 32.8  | 23.5      | 11.8  |
| 9  | 8  | 120.2 | 19.6  | 11.6      | 13.2  |
| 10 | 9  | 8.6   | 2.1   |           | 4.8   |
| 11 | 10 | 199.8 | 2.6   | 21.2      | 10.6  |
| 12 | 11 | 66.1  | 5.8   | 24.2      | 8.6   |

Dr. Munch (MSU-CMSE) Weds Sep 6, 2023

### Least squares criterion: Setup

How do we estimate the coefficients?



# Least squares criterion: RSS





Residual sum of squares RSS is

$$RSS = e_1^2 + \dots + e_n^2 = \sum_{i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

8 / 17

sales 
$$\approx \beta_0 + \beta_1 TV$$

#### Least squares criterion

Find  $\beta_0$  and  $\beta_1$  that minimize the RSS.

Dr. Munch (MSU-CMSE) Weds Sep 6, 2023

# Least squares coefficient estimates

$$\min_{\beta_0,\beta_1} \sum_i (\hat{\beta}_0 + \hat{\beta}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \beta_0} = -2 \sum_{i} (y_i - \beta_0 - \beta_1 x_i) = 0$$
$$\frac{\partial RSS}{\partial \beta_1} = -2 \sum_{i} x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

# Coding group work

Dr. Munch (MSU-CMSE)

### Section 2

### Assessing Coefficient Estimate Accuracy

Or. Munch (MSU-CMSE) Weds Sep 6, 2023

### Bias in estimation

Analogy with mean

- ullet Assume a true value  $\mu^*$
- An estimate from training data  $\hat{\mu}$
- The estimate is unbiased if  $E(\hat{\mu} = \mu^*)$

Sample mean is unbiased for population mean:

$$E(\hat{\mu}) = E\left(\frac{1}{n}\sum_{i}X_{i}\right) = \mu$$

Standard variance estimate is biased

$$E(\hat{\sigma}^2) = E\left[\frac{1}{n}\sum_i (X_i - \overline{X})^2\right] \neq \sigma^2$$

# Linear regression is unbiased



### Variance in estimation

#### Continuing analogy with mean

- True value  $\mu^*$
- ullet Estimate from training data  $\hat{\mu}$
- Variance of sample mean  $Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{n}$

# Variance of linear regression estimates

Variance of linear regression estimates:

$$SE(\hat{\beta}_0) = \sigma^2 \left[ \frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

where  $\sigma^2 = \operatorname{Var}(\varepsilon)$ 

ullet Residual standard error is an estimate of  $\sigma$ 

$$RSE = \sqrt{RSS/(n-2)}$$

Dr. Munch (MSU-CMSE)

# Coding group work

Run the section titled "Simulating data"

Or. Munch (MSU-CMSE) Weds Sep 6, 2023

### Next time

| Lec# | Date |        |                                                                   | Reading                 |
|------|------|--------|-------------------------------------------------------------------|-------------------------|
| 1    | Mon  | Aug 28 | Intro / First day stuff / Python Review<br>Pt 1                   | 1                       |
| 2    | Wed  | Aug 30 | What is statistical learning?                                     | 2.1                     |
|      | Fri  | Sep 1  | Assessing Model Accuracy                                          | 2.2.1, 2.2.2            |
| 3    | Mon  | Sep 4  | No class - Labor day                                              |                         |
| 4    | Wed  | Sep 6  | Linear Regression                                                 | 3.1                     |
| 5    | Fri  | Sep 8  | More Linear Regression                                            | 3.1/3.2                 |
| 6    | Mon  | Sep 11 | Even more linear regression                                       | 3.2.2                   |
| 7    | Wed  | Sep 13 | Probably more linear regression                                   | 3.3                     |
| 8    | Fri  | Sep 15 | Intro to classification, Logisitic<br>Regression                  | 2.2.3, 4.1,<br>4.2, 4.3 |
| 9    | Mon  | Sep 18 | More logistic regression                                          |                         |
| 10   | Wed  | Sep 20 | Multiple Logistic Regression /<br>Multinomial Logistic Regression |                         |
| 11   | Fri  | Sep 22 | Overflow/Project day?                                             |                         |
|      | Mon  | Sep 25 | Review                                                            |                         |
|      | Wed  | Sep 27 | Midterm #1                                                        |                         |
|      | Fri  | Sep 29 | No class - Dr Munch out of town                                   |                         |
| 12   | Mon  | Oct 2  | Leave one out CV                                                  | 5.1.1, 5.1.2            |
| 13   | Wed  | Oct 4  | k-fold CV                                                         | 5.1.3                   |
| 14   | Fri  | Oct 6  | More k-fold CV,                                                   | 5.1.4-5                 |
| 15   | Mon  | Oct 9  | k-fold CV for classification                                      | 5.1.5                   |
| 16   | Wed  | Oct 11 | Resampling methods: Bootstrap                                     | 5.2                     |
| 17   | Fri  | Oct 13 | Subset selection                                                  | 6.1                     |

#### **Announcements**

- We had a quiz last time!
- Homework 2
  - ▶ Due Mon, Sep 11
  - Need to upload individual file for EACH QUESTION