Avaliação de Desempenho Modelagem e Simulação Lista #2

Albert De La Fuente Vigliotti - NUSP: 8489827 Prof. Wilson Ruggiero

Entrega: sem data

1 Problema 01

Parte I: Redes Aberta de Filas:

Considere a rede aberta de filas da figura 1 com M=4 estações de serviço. Todos os tempos de serviço são distribuídos exponencialmente com os seguintes valores médios:

$$ts_1 = 1/\ \mu_1 = 0,04\ segundos; \\ ts_3 = 1/\ \mu_3 = 0,06\ segundos\ e \\ ts_4 = 1/\ \mu_4 = 0,05\ segundos.$$

O intervalo entre chegadas também é distribuído exponencialmente com valor médio $\lambda_0 = 4$ jobs/segundo.

As probabilidades de roteamento são dadas a seguir:

$$p_{12} = p_{13} = 0.5$$
, $p_{41} = p_{21} = 1$, $p_{31} = 0.6$, $p_{30} = 0.4$.

Pergunta-se:

- O fator de utilização de cada uma das estações de serviço da rede. Identifique a estação "gargalo";
- 2) O **número médio de jobs** em cada estação;
- 3) O **tempo médio de resposta** da rede;
- 4) O valor de tráfego externo λ_0 que satura a rede;
- 5) A **probabilidade** de se ter 3 **jobs** na estação 1, 2 na estação 2, 4 na estação 3 e 1 na estação 4.

Figura 1: Problema 01a - Enunciado

Figura 1: Rede Aberta de Filas

Figura 2: Problema 01b - Rede

Conhecemos os valores dos **tempo de serviço** S_i conforme o enunciado:

$$S_1 = 0.04$$
 (1a)

$$S_2 = 0.03$$
 (1b)

$$S_3 = 0.06$$
 (1c)

$$S_4 = 0.05$$
 (1d)

Como a vazão $X = X_4 = 4 = \lambda$ (assumindo fluxo balanceado), e conhecemos $S_4 = 0.05$, podemos calcular os demais valores na estação 4 da seguinte forma:

$$X_4 = 4 \tag{2a}$$

$$S_4 = 0.05$$
 (2b)

$$U_4 = X_4 S_4 = 0.20 \tag{2c}$$

$$V_4 = \frac{X_4}{X} = 1$$
 (2d)

$$D_4 = V_4 S_4 = 0.05 \tag{2e}$$

Agora vamos construir a matriz de probabilidade de roteamento P conforme a rede

Para calcular o **numero de visitas** V_i devemos resolver o sistema de equações derivado de:

De onde surgem as seguintes equações:

$$V_1 = V_2 + 0.6V_3 + V_4 \tag{3a}$$

$$V_2 = 0.5V_1$$
 (3b)

$$V_3 = 0.5V_1$$
 (3c)

Deixando as equações 3b e 3c em função de V_1 e substituindo em 3a temos que

$$V_1 = 0.5V_1 + 0.6 \times 0.5V_1 + 1$$

$$V_1 = V_1(0.5 + 0.6 \times 0.5) + 1$$

$$V_1 = 0.8V_1 + 1$$

$$0.2V_1 = 1$$

$$V_1 = 5$$

$$V_2 = V_3 = 2.5$$

Agora que conhecemos os valores dos **números de visitas** V_i para cada estação podemos calcular os valores da vazão X_i para cada estação:

$$X_i = X \times V_i$$
 Equação geral da vazão (throughput) X_i (4a)

$$X_1 = 20 \tag{4b}$$

$$X_2 = 10 (4c)$$

$$X_3 = 10 \tag{4d}$$

Questão 1:

Para responder a pergunta precisamos calcular os valores da **utilização** U_i para cada estação:

$$U_i = X_i \times S_i$$
 Equação geral da utilização (utilization) U_i (5a)

$$U_1 = 0.80$$
 (5b)

$$U_2 = 0.30$$
 (5c)

$$U_3 = 0.60$$
 (5d)

O gargalo do sistema e a estação 1, com 80% de utilização.

Questão 2:

Para responder a pergunta precisamos calcular os valores do **numero médio de usuários** Q_i para cada estação:

$$Q_i = \frac{U_i}{1 - U_i} \quad \Big| \text{ Equação geral do numero médio de usuários (average number of requests/users) } Q_i$$
(6a)

(01)

$$Q_1 = 4 (6b)$$

$$Q_2 = 0.42856$$
 (6c)

$$Q_3 = 1.5 \tag{6d}$$

$$Q_4 = 0.25$$
 (6e)

Questão 3:

Para responder a pergunta precisamos calcular o tempo médio de resposta (residence time) R_s como o produto de $R \times V'$, para isso primeiro calculamos o tempo médio de resposta de cada

estação R_i :

$$R_i = \frac{S_i}{1 - U_i} \qquad \qquad \text{Equação geral do tempo médio de resposta } R_i \qquad (7a)$$

$$R_1 = 0.20$$
 (7b)

$$R_2 = 0.0428$$
 (7c)

$$R_3 = 0.15$$
 (7d)

$$R_4 = 0.0625$$
 (7e)

E agora calculamos o tempo médio de resposta (residence time) da seguinte forma: $R_s =$ $R \times V'$:

$$R_s = \begin{bmatrix} 0.20 & 0.0428 & 0.15 & 0.0625 \end{bmatrix} \times \begin{bmatrix} 5 \\ 2.5 \\ 2.5 \\ 1 \end{bmatrix}$$
 (8a)

$$R_s = 1.54 \tag{8b}$$

Questão 4:

Para responder a pergunta precisamos calcular as **demandas** D_i para cada estação:

$$D_i = V_i \times S_i$$
 Equação geral de D_i (9a)

$$D_1 = 0.20$$
 (9b)

$$D_2 = 0.075$$
 (9c)

$$D_3 = 0.15$$
 (9d)

$$D_4 = 0.05$$
 (9e)

O valor de λ que satura a rede e $1/max\{D_i\}$, ou seja 1/0.20=5, por tanto $\lambda=5$ seria a demanda máxima

Questão 5:

Para responder a pergunta precisamos calcular os fatores de utilização ρ_i , ou seja:

$$\rho_i = \frac{\lambda}{\mu_i} \qquad \qquad \Big| \text{ Equação geral de } \rho_i \qquad (10a)$$

$$\rho_1 = 0.16$$
(10b)

$$\rho_2 = 0.12 \tag{10c}$$

$$\rho_3 = 0.24 \tag{10d}$$

$$\rho_4 = 0.20$$
(10e)

Agora vamos calcular a probabilidade usando
$$p_i(n_i) = (1 - \rho_i)\rho_i^{n_i}$$

$$p_i(n_i) = (1 - \rho_i)\rho_i^{n_i} \qquad \qquad | \text{Equação geral de } p_i(n_i) \qquad \qquad (11a)$$

$$p_1(1) = 0.13440 \qquad \qquad (11b)$$

$$p_1(1) = 0.13440 \tag{11b}$$

$$p_2(3) = 0.00152 \tag{11c}$$

$$p_3(2) = 0.04377 \tag{11d}$$

$$p_4(4) = 0.00128 \tag{11e}$$

 $P(1,3,2,4) = p_1(1) \times p_2(3) \times p_3(2) \times p_4(4) = 1.14453577728000e - 8$

2 Problema 02

Parte II: Rede fechada de filas:

Considere uma rede de fechada de filas com a topologia mostrada na figura 2 e com $\mathbf{K} = 3$ jobs. Na primeira estação de serviço tem-se $\mathbf{m_1} = 2$ servidores idênticos com o tempo de serviço distribuído exponencialmente com valor médio:

$$ts_1 = 1/\mu_1 = 0.5$$
 segundos.

As estações 2 e 3 possuem também tempo de serviço distribuído exponencialmente com valores médios:

$$ts_2 = 1/\mu_2 = 0.6$$
 segundos; $ts_3 = 1/\mu_3 = 0.8$ segundos.

Na quarta estação, que representa um conjunto de terminais, não existe fila, somente um tempo de serviço que corresponde ao tempo de pensamento de um usuário, com valor médio:

$$ts_4 = 1/\mu_4 = 1$$
 segundo.

Existem terminais em número suficiente para que todos os jobs sempre encontrem um terminal disponível quando necessitarem. As probabilidades de roteamento são especificadas a seguir:

$$p_{12} = p_{13} = 0.5$$
, $p_{24} = p_{34} = p_{41} = 1$.

Pergunta-se:

- Número de visitas a cada estação por ciclo entre dois acessos consecutivos a estação dos terminais;
- 2) **Número médio de jobs** em cada estação de serviço;
- Tempo médio de resposta da rede (tempo entre dois acessos consecutivos a estação dos terminais);
- 4) Vazão da rede:
- 5) Fator de utilização de cada estação da rede;
- 6) **Probabilidade** de se ter 2 ou mais jobs na estação 1.

Figura 3: Problema 02a

Antes vamos relembrar o algoritmo do MVA para redes fechadas:

Questão 1:

Numero de visitas. Fila V_i . Não tenho certeza

Questão 2:

Numero médio de jobs. Fila Q_i .

Questão 3:

Tempo de resposta. Fila R_i .

Questão 4:

Vazão da rede. Fila X_i se for para cada estação ou fila X se for a global.

Questão 5:

	Iter	0	1	2	3	
	N	3	3	3	3	
Known values	S1	0.5000	0.5000	0.5000	0.5000	
	S2	0.6000	0.6000	0.6000	0.6000	
	S3	0.8000	0.8000	0.8000	0.8000	
	S4	1.0000	1.0000	1.0000	1.0000	
Known values	V1	1.0000	1.0000	1.0000	1.0000	
	V2	0.5000	0.5000	0.5000	0.5000	
	V3	0.5000	0.5000	0.5000	0.5000	
	V4	1.0000	1.0000	1.0000	1.0000	
R=S(1+Q(n-1))	R1		0.5000	0.6136	0.7528	CF (Finite Cap)
	R2		0.6000	0.6818	0.7685	
	R3		0.8000	0.9455	1.1116	
R=S	R4		1	1	1	CI
sum(Ri*Vi)	R	0.00	2.2000	2.4273	2.6929	
#Iter / R	X		0.4545	0.8240	1.1140	
X/V_i	X1		0.4545	0.8240	1.1140	
	X2		0.2273	0.4120	0.5570	
	Х3		0.2273	0.4120	0.5570	
	X4		0.4545	0.8240	1.1140	
X_{-i}/S_i	U1		0.2273	0.4120	0.5570	
	U2		0.1364	0.2472	0.3342	
	U3		0.1818	0.3296	0.4456	
	U4		0.4545	0.8240	1.1140	
$R \times X_i$	Q1	0	0.2273	0.5056	0.8387	
	Q2	0	0.1364	0.2809	0.4281	
	Q3	0	0.1818	0.3895	0.6192	
	Q4	0	0.4545	0.8240	1.1140	
$\frac{\lambda}{\mu_i}$	Rho1		0.2273	0.4120	0.5570	
, ,	Rho2		0.2727	0.4944	0.6684	
	Rho3		0.3636	0.6592	0.8912	
	Rho4		0.4545	0.8240	1.1140	
$(1-\rho_i)*\rho_i^{n_i}$	P1(2)		0.0399	0.0998	0.1374	
	P1(3)		0.0091	0.0411	0.0766	
p1(2) + p1(3)	Р		0.0490	0.1409	0.2140	

Tabela 1: MVA

Figura 4: Problema 02b

Utilização da rede. Fila U_i .

Questão 6:

Probabilidade de ter dois ou mais jobs na estação 1 e $\approx 21.40\%$. Fila p1(2)+p1(3). Não tenho certeza

```
Inicialização:
Para i = 1 até M faça:
               Q_i(0)=0;
End;
Iterações:
Para n=1 até N faça:
     Para i=1 até M faça:
                Se {Servidor = CF} faça: R_i(n) = S_i^*(1+Q_i(n-1));
               Se {Servidor = IF} faça: R_i(n) = S_i;
               R(n) = \sum_{j=1}^{M} V_j^* R_j(\mathbf{n}) \; ; \label{eq:reconstruction}
               X(n) = \frac{n}{R(n)};
               X_i(n) = X(n)*V_i;
               \mathbf{U}_{\mathrm{i}}(\mathbf{n}) = \mathbf{X}_{\mathrm{i}}(\mathbf{n})^*\mathbf{S}_{\mathrm{i}};
               Q_i(n) = X_i(n) * R_i(n) ;
     End;
End;
```

Figura 5: Algoritmo MVA para redes fechadas