Background Substration

Diego Javier Quispe David Choqueluque Roman

Match:

- Hamming Distance: LSBP
- L1 Distance: Color

Background model

$$B(x, y) = \{B_1(x, y), ..., B_{index}(x, y), ..., B_N(x, y)\}$$

$$LSBP(x, y) \quad Int(x, y),$$

Algorithm 1 Background Subtraction for FG/BG segmentation using LSBP feature.

Initialization:

- 1: for each pixel of the first N frames do
- Extract the LSBP descriptor for each pixels using Equation (12)
- 3: Push color intensities into $BInt_{index}(x,y)$ and LS-BP features into $BLSBP_{index}(x,y)$ as the background model
- 4: Compute $\overline{d}_{min}(x,y)$ for each pixel.
- 5: end for

Mainloop:

- 6: for each pixel of newly appearing frame do
- 7: Extract Int(x, y) and LSBP(x, y)
- 8: end for
- 9: $matches \leftarrow 0$
- 10: $index \leftarrow 0$
- 11: for each pixel in current frame do
- 12: **while** $((index \le N) \&\& (matches < \sharp min))$ **do**
- 13: computer $L1dist(Int(x, y), BInt_{index}(x, y))$ and $H(LSRP(x, y), BLSRP_{int}, (x, y))$
- and $H(LSBP(x,y), BLSBP_{index}(x,y))$ 14: **if** $((L1dist(x,y) < R(x,y))\&\&(H(x,y) \le$
- H_{LSBP})) then 15: matches + = matches
- 16: end if
- index + = index
- 18: end while
- 19: **if** $(matches < \sharp min)$ **then**
- 20: Foreground
- 21: else
- 22: Background
- 23: end if
- 24: end for

Method: Update

Match:

- Hamming Distance: LSBP
- L1 Distance: Color

Background model

$$B(x, y) = \{B_1(x, y), ..., B_{index}(x, y), ..., B_N(x, y)\}$$

$$LSBP(x, y) \quad Int(x, y),$$

- R(x,y): per-pixel color intensity
- d^min(x,y): average dmin
- dmin: min color distance(L1)(matching)

Processing time per frame

Stage	Frame	Python	C++ with threads	C++ with cuda
highway	240x320	5.508s	0.864s	0.484s
Office	240x360	5.858s	0.980s	0.563s
peopleInShade	244x380	6.337s	1.096s	0.587s
streetLight	240x320	5.131s	0.874s	0.493s
Own video	270x480	-	1.652	0.836

CDNET2012 - Highway(84 - 108)

CDNET2012 - Office(95)

Input

Python

Our Implementation

CDNET2012 - StreetLight(36)

Input

Python

Our Implementation

San Pablo video

Real Image

Out Implementation

Problems with the camera movements

It generates noise when the camera is not fixed.

Observations

- When the camera have little movements this generates noise in the result.
- We obtain better results comparing with the implementation in python but no better than the results of the autor.

Conclusions

- We implemented an improvement to obtain the LSBP of a frame using threads and cuda.
- Compare with the implementation in python, our implementation in c++ reduce the time per frame in a proportion of 6:1 using threads and 11:1 using cuda.
- We reduce noise by identifying and correcting errors in the python code.

References

[1] Lili Guo, Dan Xu, Zhenping Qiang, "Background Subtraction using Local SVD Binary Pattern", 2016.

[2] M. Hofmann, P. Tiefenbacher, and G. Rigoll, "Background segmentation with feedback: The pixel-based adaptive segmenter". In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pages 38 – 43, Providence, RI, United states, 2012.