6 APRIL 2023-1

EE24BTECH11011 - PRANAY

1)	The straight lines l_1 and l_2 pass through	the origin ar	nd trisect the line	segment of the	e line L: 9x + 5y =
	45 between the axes. If m_1 and m_2 are	e slopes of th	e lines l_1 and l_2	then the point	of intersection of
	line $y = (m_1 + m_2) x$ with L lies on :	-		-	
	2) 6		.) 2 5		

a)
$$6x + y = 10$$

c)
$$y - 2x = 5$$

b)
$$6x - y = 15$$

c)
$$y - 2x = 5$$

d) $y - x = 5$

2) Let the position vectors of the points $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} be $5\hat{i} + 5\hat{j} + 2\lambda\hat{k}, \hat{i} + 2\hat{j} + 3\hat{k}, -2\hat{i} + \lambda\hat{j} + 4\hat{k}$ and $-\hat{i} + 5\hat{j} + 6\hat{k}$. Let the set $\mathbf{S} = \{\lambda \in \mathbb{R} : \text{the points } \mathbf{A}, \mathbf{B}, \mathbf{C} \text{ and } \mathbf{D} \text{ are coplanar}\}$. Then $\sum_{\lambda \in \mathbf{S}} (\lambda + 2)^2$ is equal to:

a)
$$\frac{37}{2}$$

$$\mathbf{I}(x) = \int \frac{x^2 \left(x \sec^2 x + \tan x\right)}{\left(x \tan x + 1\right)^2} dx \tag{1}$$

If $\mathbf{I}(0) = 0$, then $\mathbf{I}\left(\frac{\pi}{4}\right)$ is equal to :

a)
$$\log_e \frac{(\pi+4)^2}{16} + \frac{\pi^2}{4(\pi+4)}$$

c)
$$\log_e \frac{(\pi+4)^2}{16} - \frac{\pi^2}{4(\pi+4)}$$

b)
$$\log_e \frac{(\pi+4)^2}{32} - \frac{\pi^2}{4(\pi+4)}$$

d)
$$\log_e \frac{(\pi+4)^2}{32} + \frac{\pi^2}{4(\pi+4)}$$

4) The sum of the first 20 terms of the series $5 + 11 + 19 + 29 + 41 + \dots$ is

a) 3450

c) 3520

b) 3420

d) 3250

5) A pair of dice is thrown 5 times. For each throw, a total of 5 is considered a success. If probability of a least 4 success is $\frac{k}{3^{11}}$, the k is equal to :

a) 164

c) 82

b) 123

d) 75

6) Let $\mathbf{A} = (a_{ij})_{2\times 2}$, where $a_{ij} \neq 0$ for all i, j and $\mathbf{A}^2 = \mathbf{I}$. Let a be the sum of all diagonal elements of \mathbf{A} and b = |A| Then $3a^2 + 4b^2$ is equal to :

(2)

9) Let $A = \{x \in \mathbb{R}: [x+3] + [x+4] \le 3\}$, $B = \{x \in \mathbb{R}: 3^x \left(\sum_{r=1}^{\infty} \frac{3}{10^r}\right) < 3^{-3x}\}$, where [t] denotes greatest integer function. Then,

a)
$$A \subset B, A \neq B$$

c)
$$A = B$$

b)
$$A \cap B = \emptyset$$

d)
$$B \subset C, A \neq B$$

10) One vertex of a rectangular parallelopiped is at the origin **O** and the length of its edges along x, y and z axes are 3,4 and 5 respectively. Let **P** be the vertex (3,4,5). Then the shortest distance between the diagonal **OP** and an edge parallel to z axis, not passisng through **O** or **P** is

a)
$$\frac{12}{5\sqrt{5}}$$

c)
$$\frac{12}{5}$$

b)
$$12\sqrt{5}$$

d)
$$\frac{12}{\sqrt{5}}$$

11) If the equation of the plane passing through the line of intersection of planes 2x - y + z = 3,4x - 43y + 5z + 9 = 0 and parallel to the line

$$\frac{x+1}{-2} = \frac{y+3}{4} = \frac{z-2}{5} \tag{3}$$

is ax + by + cz + 6 = 0 then a + b + c is equal to

c) 13

d) 12

12) If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{x} + \frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}$: 1, then the third term from the beggining is

a)
$$30\sqrt{2}$$

b)
$$60\sqrt{2}$$

c)
$$30\sqrt{3}$$

d)
$$60\sqrt{3}$$

13) The sum of all the roots of the equation $|x^2 - 8x + 15| - 2x + 7 = 0$ is

a)
$$11 - \sqrt{3}$$

b) $9 - \sqrt{3}$

c)
$$9 + \sqrt{3}$$

d) $11 + \sqrt{3}$

d)
$$11 + \sqrt{3}$$

14) From the top A of a vertical wall AB of height 30m, the angles of depression of the top P and bottom Q of a vertical tower PQ are 15° and 60° respectively , B and Q are on the same horizontal level . If C is a point on AB such that CB = PQ, then the area (in m^2) of the quadrilateral BCPQ is equal

a)
$$200(3 - \sqrt{3})$$

b) $300(\sqrt{3} + 1)$

c)
$$300(\sqrt{3}-1)$$

b)
$$300(\sqrt{3}+1)$$

c)
$$300 \left(\sqrt{3} - 1 \right)$$

d) $600 \left(\sqrt{3} - 1 \right)$

15) Let $\mathbf{a} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{k}$, $\mathbf{b} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 2\hat{k}$ and $\mathbf{c} = -\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 3\hat{k}$. If \mathbf{d} is a vector perpendicular to both \mathbf{b} and \mathbf{c} , and $\mathbf{a} \cdot \mathbf{d} = 18$ then $[\mathbf{a} \times \mathbf{d}]^2$ is equal to