Announcements

> HW1 is slightly updated

CS6161: Design and Analysis of Algorithms (Fall 2020)

Probability Basics and Randomized Algorithms

Instructor: Haifeng Xu

Outline

- ➤ Probability Basics
- ➤ Randomized Quick Sort

Random Events

- > Capture events with uncertainty
 - E.g., raining or not tomorrow, you will get A or not for CS 6161...

Definition. Random variables are variables with random uncertainty.

For example, your algorithm may terminate in n steps with probability $\frac{1}{2}$ and in n^2 steps with probability $\frac{1}{2}$

Expected Time =
$$\frac{1}{2}(n+n^2)$$

Calculating expectation is an important skill in randomized algorithm design and analysis

Expected Time =
$$\frac{1}{n}(1 + 2 + \dots + n)$$

= $\frac{1}{n} \times \frac{n(n+1)}{2}$
= $\frac{(n+1)}{2}$

Q: Your algorithm may terminate in i steps with probability $\frac{1}{n}$, where $i = 1, 2, \dots, n$. What is its expected running time?

➤ If only care about order but not exact time, using relaxation and inequalities can make your calculation much easier

Expected Time
$$\leq \frac{1}{n}(n+n+\cdots+n)$$

= n
Expected Time $\geq \frac{1}{n}(0+\cdots 0+\frac{n}{2}+\cdots \frac{n}{2})$

Q: Your algorithm may terminate in i steps with probability $\frac{1}{n}$, where $i = 1, 2, \dots, n$. What is its expected running time?

➤ If only care about order but not exact time, using relaxation and inequalities can make your calculation much easier

Expected Time
$$\leq \frac{1}{n}(n+n+\dots+n)$$

 $= n$
Expected Time $\geq \frac{1}{n}(0+\dots 0+\frac{n}{2}+\dots \frac{n}{2})$
 $= \frac{1}{n} \times \frac{n}{2} \times \frac{n}{2} = \frac{n}{4}$

Expected Time
$$=\frac{1}{n}\sum_{i=1}^{n}i\log i$$

 $=\frac{1}{n}\sum_{i=1}^{n}\int_{i}^{i+1}i\log i\ dx$

Since
$$i \log i = \int_{i}^{i+1} i \log i \ dx$$

Q: Your algorithm may terminate in $i \log i$ steps with probability $\frac{1}{n}$, where $i = 1, 2, \dots, n$. What is its expected running time?

Expected Time
$$=\frac{1}{n}\sum_{i=1}^{n}i\log i$$

 $=\frac{1}{n}\sum_{i=1}^{n}\int_{i}^{i+1}i\log i\ dx$
 $\leq \frac{1}{n}\sum_{i=1}^{n}\int_{i}^{i+1}x\log x\ dx$

Since $i \log i \le x \log x$, $\forall x \in [i, i+1]$

Expected Time
$$= \frac{1}{n} \sum_{i=1}^{n} i \log i$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{i}^{i+1} i \log i \ dx$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \int_{i}^{i+1} x \log x \ dx$$

$$= \frac{1}{n} \int_{1}^{n+1} x \log x \ dx$$

Since
$$\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$$

Expected Time
$$= \frac{1}{n} \sum_{i=1}^{n} i \log i$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{i}^{i+1} i \log i \ dx$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \int_{i}^{i+1} x \log x \ dx$$

$$= \frac{1}{n} \int_{1}^{n+1} x \log x \ dx$$

$$= \frac{n}{2} \log n - \frac{n}{4}$$
 By standard calculus (omitted)

Conditional Probabilities/Expectation

- > Two random variables are correlated
 - E.g., *X* = # weekly hours spent on CS 6161, *Y* = your point grade

	X = 3	X = 6
Y = 80	0.4	0.1
Y = 90	0.1	0.4

Joint Probability Table

- Marginal probability: Pr(Y = 90) = 0.1 + 0.4 = 0.5
- Figure Given X = 6, can more accurately estimate Pr(Y = 90)
 - Condition probability: Pr(Y = 90 | X = 6) = 0.4/0.5 = 0.8
 - Condition expectation: $E(Y | X = 6) = 0.8 \times 90 + 0.2 \times 80 = 88$
 - Useful equations: Pr(X,Y) = Pr(Y|X) Pr(X)

- \triangleright Input: numbers 1,2,..., n
- \triangleright Output: a permutation of 1,2,..., n generated uniformly at random

```
RandomPermute(1,2,...,n)

1

2

3

4

5
```

- \triangleright Input: numbers 1,2,..., n
- \triangleright Output: a permutation of 1,2,..., n generated uniformly at random

```
RandomPermute(1,2,\cdots,n)
```

```
1 List A = \{1, 2, \dots, n\} and B = \{\}
```

2

3

4

5

- \triangleright Input: numbers 1,2,..., n
- \triangleright Output: a permutation of 1,2,..., n generated uniformly at random

```
RandomPermute(1,2,\cdots,n)
```

- 1 List $A = \{1, 2, \dots, n\}$ and $B = \{\}$
- 2 **While** *A* not empty
- Sample i from A at random
- 4 Remove i from A
- 5 Insert i into B

- \triangleright Input: numbers 1,2,..., n
- \triangleright Output: a permutation of 1,2,..., n generated uniformly at random

```
RandomPermute(1,2,\cdots,n)
```

- 1 List $A = \{1, 2, \dots, n\}$ and $B = \{\}$
- 2 **While** *A* not empty
- Sample i from A at random
- 4 Remove i from A
- 5 Insert i into B
- 6 Return B

O(n) time

Why B Is a Uniform Random Permutation?

➤ Need to prove

$$\Pr(B = \{b_1, b_2, \dots, b_n\}) = \frac{1}{n!}, \text{ for any permutation } \{b_1, b_2, \dots, b_n\}.$$

Proof idea: conditioning on selected numbers in the past

```
RandomPermute(1,2,\cdots,n)

List A = \{1,2,\cdots,n\} and B = \{\}

While A not empty

Sample i from A at random

Remove i from A

Insert i into B
```

Why B Is a Uniform Random Permutation?

➤ Need to prove

$$\Pr(B = \{b_1, b_2, \dots, b_n\}) = \frac{1}{n!}, \text{ for any permutation } \{b_1, b_2, \dots, b_n\}.$$

Proof

- $ightharpoonup \Pr(\text{first sampled number is } b_1) = 1/n$
- $ightharpoonup \Pr(\text{second sampled number is } b_2 \mid b_1 \text{ removed}) = 1/(n-1)$
- **>** . . .
- $ightharpoonup \Pr(i' \text{th sampled number is } b_i \mid \text{previous numbers}) = 1/(n-i+1)$

Conditional probability equality implies

$$\Pr(B = \{b_1, b_2, \dots, b_n\}) = \frac{1}{n} \cdot \frac{1}{n-1} \cdot \dots \cdot \frac{1}{1}$$

Outline

- ➤ Probability Basics
- ➤ Randomized Quick Sort

QuickSort: Another D-and-C Algorithm

Recall MergeSort

- (1) Divide into L and R \rightarrow easy
- (2) Sort L and R
- (3) Merge them into a globally sorted sequence $\rightarrow O(n)$

QuickSort uses a smarter way for partition in O(n) time, but does not require merge

QuickSort: Another D-and-C Algorithm

Recall MergeSort

- (1) Divide into L and R $\rightarrow O(n)$
- (2) Sort L and R
- (3) Merge them into a globally sorted sequence

After Step (2), the array will be automatically sorted

QuickSort uses a smarter way for partition in O(n) time, but does not require merge

How to Divide in QuickSort?

- \triangleright Pick any "pivot" element q, e.g., $q = a_n$
- \succ Divide input into L and R side based on whether elements are smaller or larger than q

How to Divide in QuickSort?

- \triangleright Pick any "pivot" element q, e.g., $q = a_n$
- \blacktriangleright Divide input into L and R side based on elements are smaller or larger than q

How to Divide in QuickSort?

- \triangleright Pick any "pivot" element q, e.g., $q=a_n$
- \blacktriangleright Divide input into L and R side based on elements are smaller or larger than q

Afterwards, sort L and R separately, entire array is automatically sorted after inserting q between L and R

Pseudo-Code

QuickSort-Deterministic(a_1, \dots, a_n)

- 1 $(L,R) = Partition(\{a_1, \dots, a_n\}, q)$
- 2 L = QuickSort-Deterministic(L)
- 3 R = QuickSort-Deterministic(R)
- 4 Return (L, q, R)

Running Time Analysis

QuickSort-Deterministic(a_1, \dots, a_n)

```
1 (L,R) = \text{Partition}(\{a_1, \dots, a_n\}, q) \longrightarrow O(n)
```

- 2 $L = QuickSort-Deterministic(L) \longrightarrow T(i)$
- 3 $R = \text{QuickSort-Deterministic}(R) \longrightarrow T(n-1-i)$
- 4 Return (L, q, R)

i =length of L really depends on our choice of pivot $q \dots$

Running Time Analysis

$$T(n) = O(n) + T(i) + T(n-1-i)$$

i =length of L really depends on our choice of pivot $q \dots$

- ightharpoonup If $q=a_n$ is always the last element, what is the worst-case running time?
- \triangleright A bad instance is to sort $n, n-1, n-2, \cdots, 1$
 - $\succ i = 0$ always since no element smaller than the right most

$$T(n) = O(n) + T(n-1) + T(0)$$

= $O(n) + [O(n-1) + T(n-2) + T(0)] + T(0)$
...
= $O(n^2)$ See your first HW

Running Time Analysis

$$T(n) = O(n) + T(i) + T(n - 1 - i)$$

i =length of L really depends on our choice of pivot $q \dots$

- > What about q being the first element? Middle element?
 - Does not work neither
- ➤ There is a sophisticated way of choosing *q* that can make it work, but it turns out that randomization is a much easier choice

That is, simply pick q from a_1, \dots, a_n uniformly at random!

- ➤ Intuition: when worst cases make your algorithm bad, you can use randomization to "escape from" worst cases
- ➤ Common in algorithm analysis: Yao's principle, minimax theory, zero-sum games

Randomized Quick Sort

QuickSort-Randomized (a_1, \dots, a_n)

- 1 Pick $q \in \{a_1, \dots, a_n\}$ uniformly at random
- 2 $(L,R) = \text{Partition}(\{a_1, \dots, a_n\}, q) \longrightarrow O(n)$
- 3 $L = QuickSort-Deterministic(L) \longrightarrow T(i)$
- 4 $R = \text{QuickSort-Deterministic}(R) \longrightarrow T(n-1-i)$
- 5 Return (L, q, R)
- $\succ T(n)$ now is also random, depending on our choice of q
- Expected running time

$$T(n) = O(n) + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 1: guess $T(n) \le c(n+1)\log(n+1)$
- >Prove by induction
 - If our guess is true for i < k, then

$$T(k) = c_1 k + \frac{1}{k} \sum_{i=0}^{k-1} [T(i) + T(k-1-i)]$$

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 1: guess $T(n) \le c(n+1)\log(n+1)$
- > Prove by induction
 - If our guess is true for i < k, then

$$T(k) = c_1 k + \frac{1}{k} \sum_{i=0}^{k-1} [T(i) + T(k-1-i)]$$

$$\leq c_1 k + \frac{1}{k} \sum_{i=1}^{k} [c \ i \log i + c(k-i) \log(k-i)]$$

Plug in induction hypothesis

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 1: guess $T(n) \le c(n+1)\log(n+1)$
- ➤ Prove by induction
 - If our guess is true for i < k, then

$$T(k) = c_1 k + \frac{1}{k} \sum_{i=0}^{k-1} [T(i) + T(k-1-i)]$$

$$\leq c_1 k + \frac{1}{k} \sum_{i=1}^{k} [c \ i \log i + c(k-i) \log(k-i)]$$

$$\leq c_1 k + \frac{2}{k} \sum_{i=1}^{k} c \ i \log i$$

Rearrange sums

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 1: guess $T(n) \le c(n+1)\log(n+1)$
- ➤ Prove by induction
 - If our guess is true for i < k, then

$$T(k) = c_1 k + \frac{1}{k} \sum_{i=0}^{k-1} [T(i) + T(k-1-i)]$$

$$\leq c_1 k + \frac{1}{k} \sum_{i=1}^{k} [c \ i \log i + c(k-i) \log(k-i)]$$

$$\leq c_1 k + \frac{2}{k} \sum_{i=1}^{k} c \ i \log i$$

$$\leq c_1 k + \frac{2}{k} c (\frac{k^2}{2} \log k - \frac{k^2}{4})$$

From our calculations in Part 1

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 1: guess $T(n) \le c(n+1)\log(n+1)$
- ➤ Prove by induction
 - If our guess is true for i < k, then

$$\begin{split} T(k) &= c_1 k + \frac{1}{k} \sum_{i=0}^{k-1} [T(i) + T(k-1-i)] \\ &\leq c_1 k + \frac{1}{k} \sum_{i=1}^{k} [c \ i \log i + c(k-i) \log(k-i)] \\ &\leq c_1 k + \frac{2}{k} \sum_{i=1}^{k} c \ i \log i \\ &\leq c_1 k + \frac{2}{k} c (\frac{k^2}{2} \log k - \frac{k^2}{4}) \\ &= ck \log k + \left(c_1 - \frac{c}{2}\right) k \end{split} \qquad \text{Algebraic manipulations}$$

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 1: guess $T(n) \le c(n+1)\log(n+1)$
- ➤ Prove by induction
 - If our guess is true for i < k, then

$$T(k) = c_1 k + \frac{1}{k} \sum_{i=0}^{k-1} [T(i) + T(k-1-i)]$$

$$\leq c_1 k + \frac{1}{k} \sum_{i=1}^{k} [c \ i \log i + c(k-i) \log(k-i)]$$

$$\leq c_1 k + \frac{2}{k} \sum_{i=1}^{k} c \ i \log i$$

$$\leq c_1 k + \frac{2}{k} c (\frac{k^2}{2} \log k - \frac{k^2}{4})$$

$$= ck \log k + (c_1 - \frac{c}{2}) k$$

$$\leq c(k+1) \log(k+1)$$
By picking $c > 2c_1$

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 1: guess $T(n) \le c(n+1)\log(n+1)$
- ▶Prove by induction
 - If our guess is true for i < k, then

$$T(k) = c_1 k + \frac{1}{k} \sum_{i=0}^{k-1} [T(i) + T(k-1-i)]$$

Not the most ideal as we have to guess the correct answer...

$$\leq c_1 k + \frac{2}{k} \sum_{i=1}^k c i \log i$$

$$\leq c_1 k + \frac{2}{k} c \left(\frac{k^2}{2} \log k - \frac{k^2}{4}\right)$$

$$= ck \log k + \left(c_1 - \frac{c}{2}\right) k$$

$$\leq c(k+1) \log(k+1)$$
By picking $c > 2c_1$

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 2: direct calculation by examining whether a_i , a_j are ever compared
- ▶ Let $b_1 \le b_2 \le \cdots \le b_n$ be the sorted sequence
- \triangleright Random var $X_{ij} = 1$, if b_i , b_j are ever compared; and 0 otherwise

Running time =
$$\sum_{i,j: i \neq j} X_{ij}$$

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 2: direct calculation by examining whether a_i , a_j are ever compared
- ▶ Let $b_1 \le b_2 \le \cdots \le b_n$ be the sorted sequence
- > Random var $X_{ij} = 1$, if b_i , b_j are ever compared; and 0 otherwise

$$\mathbf{E}(\text{Running time}) = \mathbf{E}[\sum_{i,j: i \neq j} X_{ij}]$$
$$= \sum_{i,j: i \neq j} \mathbf{E}(X_{ij})$$

By linearity of expectation

$$T(n) = c_1 n + \frac{1}{n} \sum_{i=0}^{n-1} [T(i) + T(n-1-i)]$$

- ► Idea 2: direct calculation by examining whether a_i , a_j are ever compared
- ▶ Let $b_1 \le b_2 \le \cdots \le b_n$ be the sorted sequence
- > Random var $X_{ij} = 1$, if b_i , b_j are ever compared; and 0 otherwise

$$\mathbf{E}(\mathsf{Running time}) = \mathbf{E}[\sum_{i,j:\,i\neq j} X_{ij}]$$

$$= \sum_{i,j:\,i\neq j} \mathbf{E}(X_{ij})$$

$$= \sum_{i,j:\,i\neq j} \mathbf{Pr}(b_i,b_j \text{ are compared})$$

> First of all, some pairs are indeed not compared

- $\rightarrow b_i, b_j$ will not be compared
 - They are compared to q, after which they are separate forever

> First of all, some pairs are indeed not compared

 $\rightarrow b_i, b_i$ will be compared

> First of all, some pairs are indeed not compared

 $\rightarrow b_i, b_j$ will be also compared

> First of all, some pairs are indeed not compared

- Cannot tell depending on what happens later when we sort the right side of the pivot q
- So, what really matters is the first picked pivot within $b_i, ..., b_j$ is b_i/b_j or any number at the middle

$$\Rightarrow \Pr(b_i, b_j \text{ are compared}) = \frac{2}{j - i + 1}$$

Back to Computing T(n)

E(Running time) =
$$\sum_{i,j: i \neq j} \mathbf{Pr}(b_i, b_j \text{ are compared})$$

= $\sum_{j>i} \frac{2}{j-i+1}$
= $\sum_{k=1}^{n-1} (n-k) \frac{2}{k+1}$

Counting how many i, j pairs have gap k for $k = 1, \dots, n - 1$

Back to Computing T(n)

E(Running time) =
$$\sum_{i,j: i \neq j} \mathbf{Pr}(b_i, b_j \text{ are compared})$$

= $\sum_{j>i} \frac{2}{j-i+1}$
= $\sum_{k=1}^{n-1} (n-k) \frac{2}{k+1}$
= $\Theta(n \log n)$

Standard calculation (omitted)

Worst-Case vs Average-Case Analysis

- > Typically we do worst-case analysis
 - E.g., QuickSort-Deterministic has worst run time n^2
- ➤ Randomization can help to "interpolate" between bad and good instance, leading to better expected time
 - Randomness is introduced by algorithm designer
- > Alternatively, can think of input as random instead of worst case
 - Why? Because as algorithm designer, you can preprocess input by randomize it first
- Randomization is a powerful technique in Algo design

Thank You

Haifeng Xu
University of Virginia

hx4ad@virginia.edu