Test 2

Parvesh Adi Lachman

November 2023

1 Problem 1

2 Problem 2

Recall the following definitons from lecture about a function $g:A\to B$:

one to one: $\forall n, m \in A : (n \neq m) \implies (g(n) \neq g(m))$

onto: $\forall b \in B : \exists a \in A : g(a) = b$

Let $f: \mathbb{N} \to \mathbb{Z}$ be defined by $f(n) := \sum_{v \in K_n} deg(v)$, where K_n is the complete graph on n nodes.

- (a) Suppose you are trying to prove a statement of the form $\forall x \in S: [P(x) \Longrightarrow Q(x)]$. What is the first line of this "for all" proof, as we've seen in this courses?
- (b) Suppose you are trying to prove a statement of the form $P(x) \implies Q(x)$. What is the contrapositive of this claim?

$$\neg Q(x) \implies \neg P(x).$$

3 Problem 3

Consider the following sequence of numbers similar to (But not the same as) the Sharp numbers.

$$d_1 = 2$$

 $d_2 = 4$
 $d_n = d_{n-1} + 2 \cdot d_{n-2}$, for $n \ge 3$

Claim: For all $n \ge 1$, $d_n = 2^n$

Step 0: For all $n \ge 1$, we want to show that $d_n = 2^n$.

Step 1: For any $n \ge 1$, let P(n) be the property that $d_n = 2^n$. We want to show $\forall n \ge 1 : P(n)$.

Step 2: As base cases consider when

n=1. We will show that P(1) is true: that is, that $d_1=2^1$. Fortunately,

left hand side = $d_1 = 2 = 2^1 = \text{right hand side}$

n=2. We will show that P(2) is true: that is, that $d_2=2^2$. Fortunately,

left hand side = $d_2 = 4 = 2^2 = \text{right hand side}$

Step 3: Let $k \geq 2$. For the induction hypothesis, suppose that P(1), ..., P(k) are true, or equivalently, that for all $1 \leq k' \leq k : P(k')$. That is, suppose that

$$\forall 1 < k' < k : d_{k'} = 2^{k'}$$

Step 4: Now we prove that P(k+1) is true, using our induction assumptions that P(1), ..., P(k+1) are true. That is, we prove that

$$d_{k+1} = 2^{k+1}$$

Step 5: The proof that P(k+1) is true (given that P(1),...,P(k) are true) is as follows:

Left hand side of P(k) = d_{k+1} = $d_k + 2 \cdot d_{k-1}$ By def of sequence = $2^k + 2 \cdot 2^{k-1}$ By IH = $2^k + 2^k$ By algebra = $2 \cdot 2^k$ By algebra = 2^{k+1} By algebra = Right hand side of P(k+1) **Step 6:** The steps above have shown that for any $k \geq 2$, if P(1), ..., P(k) are true, then P(k+1) is also true. Combined with the base cases which show that P(1) and P(2) are true, we have shown that for all $n \geq 1$, P(n) is true, as desired.