空戦AIチャレンジ概要説明

戦闘場面の定義

以降、水色の文字で示す値は自由に設定可能なものであり、 その基準値(評価用の値)は本資料の末尾に示すとおり

【戦闘場面】

戦闘機編隊どうしがお互いに目視できない遠方において レーダで相手を追尾しつつ、中距離空対空誘導弾を射撃し あうことにより行われる戦闘

 $2 \times D_{line}$

【初期条件】

速度 V_{init}

針路 :各陣営の進攻方向正面

高度 h_{init}

東西位置:各防衛ライン上

南北位置:中心からD_{init}北に1機、D_{init}南に1機

$2 \times D_{out}$

【AIが使える観測情報】

- ・自分と味方の機体諸元(位置、速度、残弾数)
- ・自分と味方の誘導弾諸元(位置、速度、目標ID、誘導状態)
- ・レーダで捉えている相手の機体諸元(位置と速度のみ)
- ・MWSが捉えている相手の誘導弾諸元(方向のみ)
- ・戦闘開始からの経過時間

【行動判断の周期】

- ・シミュレーションの1tickは0.1秒

勝敗に関するルール

【終了条件】

- (1)いずれかの陣営が全滅(2機とも被撃墜または墜落)したとき
- (2)いずれかの陣営が相手の防衛ラインを突破したとき
- (3)制限時間 t_{limit} が経過したとき
- (4)いずれかの陣営の得点が p_{Disg} 点以下となったとき

終了条件を満たしたときの得点が高い陣営を勝者とする

【得点計算】

- ・相手を1機撃墜するごとに $+p_{Down}$ 点(撃墜された側は増減なし)
 - ・終了条件(2)を満たしたとき、突破した陣営に $+p_{Break}$ 点
 - ・終了条件(3)を満たしたとき、進出度合い(図中の d_p)に応じ、より進出している側に $+p_{Adv}$ 点/km
 - ・ペナルティとして、随時以下の減点を与える
 - (c)墜落(地面に激突)したとき $-p_{Down}$ 点
 - (d)南北方向の場外に出ているとき、 $-p_{out}$ 点/(km・秒)

機体モデル(本体)

運動・制御モデル

①運動モデル

- ・空力、重力、推力は、公刊文献から得られるF-16相当の性能値を使用
- ・制御を簡単にするため、横滑りの無い、"Coordinated Flight"を仮定した質点モデルとする
- ・推力T、迎角lpha及びバンク角 $oldsymbol{\phi}$ の3つの変数を瞬時に操作できるものとする

[Stevens 15] Stevens, Brian L., et al. "Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems." John Wiley & Sons, 2015.

[Krus 19] Krus, Petter, and Abdallah, Alvaro. "Modelling of Transonic and Supersonic Aerodynamics for Conceptual Design and Flight Simulation." Proceedings of the 10th Aerospace Technology Congress, 2019.

[Hendrick 08] Hendrick, P., Bourdiaudhy, K., and Herbiet, J. F. "A Flight Thrust Deck for the F100 Turbofan of the F-16 Aircraft." 26th Congress of International Council of the Aeronautical Sciences (ICAS), 2008.

[Webb 77] Webb, T. S., Kent, D. R., and Webb, J. B. "Correlation of F-16 aerodynamics and performance predictions with early flight test results." Agard Conference Proceedings. N 242, 1977.

②制御モデル

- ・AIは「飛びたい速さ」と「飛びたい方向」を出力するものとする
- ・簡易な飛行制御則によって、この出力の通りに飛べるようなT,lpha, $oldsymbol{\phi}$ を計算し、飛行させる $^{-4}$

機体モデル(ペイロード)

● センサ(レーダ)モデル

- ・ ①覆域、②探知距離の2つの値で性能を表現
- ・戦闘が成立するように「キリのよい値」を設定
- 誤警報・誤相関は発生させない目えたら本物で、必ず識別できる
- ・探知誤差は発生させない
- ・探知範囲内ならば必ず探知できる
- ・AWACS、地上レーダはなし

● データリンクモデル

- 一切の制約なく完全な情報共有を可能
- ・遅延、切断は発生しない
- ・通信可能距離の制限もなし
- ・情報量の制限もなし

● 武装モデル

- ・誘導弾は1機あたり*N_{msl}*発
- ・A I は「射撃有無」と「目標ID(1機)」を出力
- ・人間による承認を模した遅延時間として 射撃操作から発射までに $\Delta t_{h,delay}$ 秒の遅延

誘導弾モデル(本体)

■ 運動・制御モデル

- ①運動モデル
 - ・空力、推力は、米海軍大学院(Naval Postgraduate School)の論文として公開されているもの(AMRAAM相当)を使用
 - ・回転については、迎角αと舵角δを瞬時に操作できるものとする [Ekker 94] Ekker, David A. Missile Design Toolbox. Diss. Monterey, California. Naval Postgraduate School, 1994.

[Redmon 80] Redmon, Danny Ray. Tactical Missile Conceptual Design. Naval Postgraduate School Monterey CA, 1980.

②制御モデル

・ロフト飛翔はせず、単純な比例制御で旋回

誘導弾モデル(ペイロード)

● センサ(シーカ)モデル

- ・①覆域、②視野、③探知距離の3つの値で性能を表現
- ・戦闘が成立するように「キリのよい値」を設定
- ・範囲内に目標が存在した場合は必ず真の諸元を取得可能
- ・シーカで目標を捉えると、相手のMWSに検出される

・目標から d_{hit} 以内に接近したら命中、撃墜とする

基準値の一覧(本資料中に登場したもののみ)

大項目	小項目	本資料中の変数名	値	単位	備考
戦域の広さ	南北	D_{out}	75,000	m	
	東西	D_{line}	100,000	m	
初期速度	速さ	V_{init}	300	m/s	
	向き(針路)	_	270 (青側) 90 (赤側)	deg	真北が0、東側が正
初期位置	高度	h_{init}	10,000	m	
	東西	_	100,000	m	それぞれの防衛ライン上
	南北	D_{init}	10,000	m	中央から南北に一機ずつ
得点計算	最大戦闘時間	t_{limit}	1,200	S	
	失格となる点数	p_{Disq}	-100		
	撃墜・墜落時の増減	p_{Down}	5		
	防衛ライン突破時の増減	p_{Break}	10		
	進出度合いに応じた増減	p_{Adv}	0.1	km ^{−1}	
	場外のペナルティ	p_{Out}	0.1	$(km \cdot s)^{-1}$	
機体モデル	覆域	$ heta_{FOR,radar}$	90	deg	
	探知距離	$L_{ref,radar}$	100,000	m	
	搭載弾数	N_{msl}	10	発	
	射撃遅延時間	$\Delta t_{h,delay}$	3	S	
誘導弾モデル	覆域	$ heta_{FOR,seeker}$	60	deg	
	視野	$ heta_{FOV,seeker}$	15	deg	
	探知距離	L_{seeker}	10,000	m	
	命中判定距離	d_{hit}	300	m	