Problemas de Teoría de Circuitos

CURSO 2022/23

Índice general

1 Fundamentos. Corriente continua

1

Capítulo 1

Fundamentos. Corriente continua

1.1. Ejercicios

1. Calcular las corrientes de malla mostradas en el circuito de la Figura 1.1.

FIGURA 1.1: Ejercicio 1

Datos:
$$R_1 = 2 \Omega$$
; $R_2 = 5 \Omega$; $R_3 = 10 \Omega$, $R_4 = 4 \Omega$; $R_5 = 2 \Omega$; $E_1 = 25 \text{ V}$; $E_2 = 50 \text{ V}$ Sol.: $I_1 = -1.31 \text{ A}$; $I_2 = 3.17 \text{ A}$; $I_3 = 10.45 \text{ A}$

2. Calcular el valor de E que hace que $I_0 = 7.5$ mA en el circuito de la Figura 1.2.

FIGURA 1.2: Ejercicio 2

Datos:
$$R_1=8\,\Omega$$
; $R_2=7\,\Omega$; $R_3=4\,\Omega$, $R_4=6\,\Omega$; $R_5=6\,\Omega$; $R_6=12\,\Omega$; Sol.: $U_S=0.705\,V$

3. Calcular la intensidad I en el circuito de la Figura 1.3.

FIGURA 1.3: Ejercicio 3

Datos:
$$R_1 = 27 \,\Omega$$
; $R_2 = 47 \,\Omega$; $R_3 = 27 \,\Omega$; $E_1 = 460 \,\mathrm{V}$; $E_2 = 200 \,\mathrm{V}$ Sol.: $I = -8,77 \,A$

4. En el circuito de la Figura 1.4 obtener las intensidades de corriente señaladas primero mediante un análisis por el método de las mallas y posteriormente mediante un análisis por el método de los nudos.

FIGURA 1.4: Ejercicio 4

Datos:
$$R_1 = 2 \Omega$$
; $R_2 = 1 \Omega$; $R_3 = 4 \Omega$; $R_4 = 5 \Omega$; $R_5 = 3 \Omega$; $E_1 = 10 \text{ V}$; $E_2 = 6 \text{ V}$ Sol.: $I_1 = -3.31 \text{ A}$; $I_2 = 3.37 \text{ A}$; $I_3 = -0.06 \text{ A}$; $I_4 = 0.73 \text{ A}$; $I_5 = -0.79 \text{ A}$

5. Analizar el circuito de la Figura 1.5 mediante el método de las mallas, obteniendo la corriente de cada una de las ramas. Con este resultado, calcular la diferencia de potencial entre A y B, y realizar un balance de potencias comparando la potencia de los elementos activos y la de los elementos pasivos. Datos: $R_1 = R_2 = 1\Omega$; $R_3 = 2\Omega$; $R_4 = 3\Omega$; $R_5 = 4\Omega$; $R_1 = 118V$; $R_2 = 236V$; $R_3 = 218V$.

FIGURA 1.5: Ejercicio 5

Sol.
$$I_1 = 32A$$
; $I_2 = -86A$; $I_3 = 54A$; $I_4 = 14A$; $I_5 = 40A$; $U_{AB} = 150V$; $\sum P = 0$

- 6. En el circuito de la Figura 1.6, determinar:
 - Todas las intensidades de rama señaladas
 - Carga, polaridad y energía almacenada en los condensadores
 - Balance de potencias

FIGURA 1.6: Ejercicio 6

Datos:
$$R_i = i \Omega$$
; $C_i = i \mu F$; $E_1 = 8 V$; $E_2 = 6 V$; $E_3 = 4 V$
Sol.: $I_1 = I_2 = I_3 = -I_4 = 1 A$; $I_5 = I_6 = I_7 = 0 A$; $Q_{1\mu F} = -7 \mu C$; $Q_{2\mu F} = -4 \mu C$; $Q_{3\mu F} = 3 \mu C$; $E_{1\mu F} = 24.5 \mu J$; $E_{2\mu F} = 4 \mu J$; $E_{3\mu F} = 1.5 \mu J$

- 7. Aplicar el método de los nudos en el circuito de la Figura 1.7 para determinar:
 - Los potenciales de los nudos A, B, C y D.
 - Las intensidades de corriente señaladas.
 - Carga, polaridad y energía almacenada en los condensadores, supuestos sin carga inicial.

Datos:
$$R_i = i \Omega$$
; $C_i = i \mu F$; $E_1 = 6V$; $E_2 = 18V$; $E_3 = 6V$

FIGURA 1.7: Ejercicio 7

Sol.:
$$U_A=15V; U_B=11V; U_C=U_D=0V; I_1=I_6=0A; I_2=I_4=-1A; I_3=I_5=1A; q_1=9\mu C; q_2=30\mu C; q_3=33\mu C; E_{C1}=40,5\mu J; E_{C2}=225\mu J; E_{C2}=181,5\mu J$$

- 8. En el circuito de la Figura 1.8, donde se sabe que la carga inicial de los condensadores era de $10\,\mu C$ para C_1 y de $20\,\mu C$ para C_2 con las polaridades indicadas, se pide determinar:
 - Intensidades de corriente señaladas
 - Potenciales en los puntos A, B, C, D, E y F

Datos:
$$\epsilon_1 = 90 \text{ V}$$
; $\epsilon_2 = 60 \text{ V}$; $\epsilon_3 = 30 \text{ V}$; $R_1 = R_2 = R_3 = 10 \Omega$; $R_4 = R_5 = 30 \Omega$; $C_1 = 10 \,\mu\text{F}$; $C_2 = 20 \,\mu\text{F}$; $L_1 = 1 \,\mu\text{H}$

FIGURA 1.8: Ejercicio 8

Sol.
$$I_1 = 4A$$
; $I_2 = 5A$; $I_3 = -1A$; $I_4 = I_8 = 1A$; $I_5 = I_7 = 0A$; $U_A = 30V$; $U_B = 0V$; $U_C = 1V$; $U_D = 61V$; $U_E = 101V$; $U_F = 11V$

- 9. En el circuito de la Figura 1.9, los condensadores se conectaron sin carga. Mediante el método de las mallas determina:
 - Intensidades de corriente señaladas
 - Potenciales en los puntos A, B, C y D
 - Polaridades, cargas, y energías de los condensadores
 - Balance de potencias

Datos:
$$\epsilon_1 = 118V$$
; $\epsilon_2 = 236V$; $\epsilon_3 = 118V$; $R_1 = 4\Omega$; $R_2 = R_3 = 1\Omega$; $R_4 = 3\Omega$; $R_5 = 2\Omega$; $C_1 = C_2 = C_3 = 2\mu F$; $X_1 = X_2 = X_3 = 1\Omega$

FIGURA 1.9: Ejercicio 9

Sol.:
$$I_1=40A; I_2=-86A; I_3=32A; I_4=14A; I_5=54A; U_A=U_B=0V; U_C=41V; U_D=150V; U_{C1}=0V; q_1=0\mu F; E_{C1}=0J; U_{C2}=-42V; q_2=84\mu F; E_{C2}=1,76mJ; U_{C3}=-42V; q_3=84\mu F; E_{C3}=1,76mJ; \sum P=0$$

- 10. En el circuito de la Figura 1.10, determinar:
 - Las ecuaciones para el cálculo de las intensidades
 - Todas las intensidades indicadas
 - Potenciales en todos los nudos
 - Carga y energía almacenada en los condensadores

FIGURA 1.10: Ejercicio 10

Datos: $R_1 = 2\Omega$; $R_2 = 4\Omega$; $R_3 = 2\Omega$; $R_4 = 1\Omega$; $R_5 = 2\Omega$; $R_6 = 1\Omega$; $E_1 = 8$ V; $E_2 = 8$ V; $C_i = i\,\mu$ F Sol.: $I_1 = I_6 = -6.5A$; $I_2 = -4A$; $I_3 = -2.5A$; $I_4 = 3A$; $I_5 = 0.5A$; $U_A = -8V$; $U_B = 2V$; $U_C = 0.5V$; $U_D = 0V$; $Q_{1\mu F} = 8\mu$ C; $Q_{2\mu F} = Q_{3\mu F} = 0\mu$ C; $Q_{4\mu F} = -2\mu$ C; $E_{1\mu F} = 32\mu$ F; $E_{2\mu F} = E_{3\mu F} = 0$ F; $E_{4\mu F} = 0.5\mu$ C

- 11. En el circuito de la Figura 1.11 se debe determinar:
 - Las corrientes señaladas.
 - El balance de potencias, diferenciando entre elementos activos y elementos pasivos.
 - Los potenciales en los puntos A, B y C.
 - La carga y polaridad en los condensadores, supuestos sin carga inicial.

Datos:
$$\epsilon_1 = 1V$$
; $\epsilon_2 = 7V$; $R_i = 1\Omega$; $C_i = i\mu F$

FIGURA 1.11: Ejercicio 11

Sol.:
$$I_1 = I_2 = 1A$$
; $I_3 = I_4 = 0A$; $I_5 = -2A$; $\sum P = 0$; $U_A = -1V$; $U_B = -5V$; $U_C = -3V$; $q_1 = 0.5\mu C$; $q_2 = 1\mu F$; $q_3 = 1.5\mu F$; $q_4 = 12\mu C$

- 12. El circuito de la Figura 1.12 está funcionando en régimen estacionario. Los condensadores estaban inicialmente descargados. Resuelve el circuito mediante el método que consideres conveniente para obtener los siguientes resultados:
 - Las intensidades señaladas.

- Polaridad y energía almacenada en los condensadores.
- Balance de potencias.

Datos:
$$\epsilon_1=40V$$
; $\epsilon_2=22V$; $\epsilon_3=20V$; $C_1=C_2=C_3=2\mu F$; $R_{g1}=R_{g2}=R_{g3}=4\Omega$; $R_1=R_2=R_3=R_4=2\Omega$; $R_5=R_6=R_7=1\Omega$

FIGURA 1.12: Ejercicio 12

Sol.:
$$I_1=I_5=2A; I_2=I_3=I_8=I_{10}=-1A; I_4=I_7=I_{11}=I_{12}=I_{13}=0A; I_6=I_{14}=1A; E_{C1}=0,676mJ; E_{C2}=0,576mJ; E_{C3}=1\mu J; \sum P=0$$

13. En el circuito de la Figura 1.13, obtener las intensidades de corriente señaladas mediante un análisis por el método de las mallas y mediante un análisis por el método de los nudos.

FIGURA 1.13: Ejercicio 13

Datos:
$$R_1 = 9 \Omega$$
; $R_2 = 4 \Omega$; $R_3 = 18 \Omega$; $R_4 = R_5 = R_6 = 20 \Omega$; $E_1 = 16 \text{ V}$; $I_g = 2 \text{ A}$
Sol.: $I_1 = -0.74 \text{ A}$; $I_2 = -1.33 \text{ A}$; $I_3 = 0.07 \text{ A}$; $I_4 = -0.39 \text{ A}$; $I_5 = 0.46 \text{ A}$; $I_6 = -0.87 \text{ A}$; $I_7 = 1.26 \text{ A}$

14. Calcular la intensidad que circula por la resistencia de $30\,\Omega$ del circuito de la Figura 1.14 aplicando el principio de superposición.

FIGURA 1.14: Ejercicio 14

Datos:
$$R_1 = 20 \Omega$$
; $R_2 = 30 \Omega$; $R_3 = 20 \Omega$; $E_1 = 32 \text{ V}$; $E_2 = 64 \text{ V}$; $I_g = 4 \text{ A}$ Sol.: $I = 2,2 \text{ A}$

15. Obtener el generador equivalente de Thévenin del circuito de la Figura 1.15 respecto de A y B. A partir de este generador, calcula la resistencia a colocar en AB para obtener la máxima potencia, calculando esta potencia y la potencia entregada por el generador ϵ .

Datos:
$$\epsilon = 54 \text{ V}$$
; $R_1 = R_4 = 8 \Omega$; $R_2 = R_3 = 10 \Omega$

FIGURA 1.15: Ejercicio 15

Sol.:
$$R_{AB} = 80/9\Omega$$
; $P_R = 1,0125 \,\text{W}$; $P_{\epsilon} = 2,025 \,\text{W}$

16. Determinar el equivalente Thévenin del circuito de la Figura 1.16 entre los nudos A-B. ¿Qué resistencia habría que conectar en dichos terminales para transferir la máxima potencia? ¿Cuál sería dicha potencia?

FIGURA 1.16: Ejercicio 16

Datos:
$$R_1 = R_2 = 4 \Omega$$
; $R_3 = 2 \Omega$; $E = 10 \text{ V}$; $I_g = 8 \text{ A}$
Sol.: $\epsilon_{th} = 5 - 16 = -11 \text{ V}$; $R_{th} = 4 \Omega$; $R_L = 4 \Omega$; $P_{max} = 7,56 \text{ W}$

17. Obtener el generador equivalente de Thévenin del circuito de la Figura 1.17 respecto de A y B. Datos: $I_g=10\,A$; $R_1=1\Omega$; $\alpha=5$

FIGURA 1.17: Ejercicio 17

Sol.:
$$\epsilon_{th} = 60 V$$
; $R_{th} = 6\Omega$

- 18. En el circuito de la Figura 1.18, calcular:
 - La corriente del generador equivalente de Norton respecto de A y B, I_N .
 - La resistencia del generador equivalente de Norton respecto de A y B, R_N.
 - La resistencia de carga que se debe conectar entre A y B para conseguir la máxima potencia disponible, y el valor de esta potencia.

Datos:
$$R = 1\Omega$$
; $\epsilon_g = 10V$; $\alpha = \beta = 1$

FIGURA 1.18: Ejercicio 18

Sol.:
$$I_N = \frac{10}{3} A$$
; $R_N = 2 \Omega$; $R_L = 2\Omega$; $P_L = 5.56 W$