IN4320 MACHINE LEARNING

Exercise Computational Learning Theory: Boosting

Author: Milan Niestijl, 4311728

a.

Let $x \ge 0$. then $e^{-x} \ge (1-x)$.

Proof:

Note that $e^{-x} \ge 0$ and $e^0 = 1$, so that the result is trivial for $x \ge 1$ and x = 0. We assume $x \in (0,1)$. Then we have, using the Taylor series representation of e^{-x} :

$$e^{-x} - (1 - x) = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} - (1 - x)$$

$$= \sum_{n=2}^{\infty} \frac{(-x)^n}{n!}$$

$$= \sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!} - \frac{x^{(2n+1)}}{(2n+1)!}$$

$$= \sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!} \left(1 - \frac{x}{2n+1}\right)$$

$$> 0$$

Where in the last step it was used that each term of the sum is positive for $x \in (0,1)$.