第1章 随机事件及其概率

随机试验和随机事件	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。
基本事件、样本空间和事件	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A , B , C , …表示事件,它们是 Ω 的子集。 Ω 为必然事件, \emptyset 为不可能事件。 不可能事件 (\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件 (Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
) 事件的关 系与运算	①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A = B$ 。 A 、 B 中至少有一个发生的事件: $A \cup B$,或者 $A + B$ 。属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 $A - B$,也可表示为 $A - AB$ 或者 AB ,它表示 A 发生而 B 不发生的事件。 A 、 B 同时发生: A B ,或者 AB 。 A $B = \emptyset$,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。 $A \cap A$ 不为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生的事件。互斥未必对立。 ②运算: 结合率: $A(BC) = (AB)C$ $A \cup (B \cup C) = (A \cup B) \cup C$ 分配率: $A \cap B = \emptyset$ A
概率的公理化定义	德摩根率: $\stackrel{i=1}{i=1}$ $\stackrel{i=1}{A \cup B} = \stackrel{i}{A} \cap \stackrel{i}{B}$, $\stackrel{i}{A} \cap \stackrel{i}{B} = \stackrel{i}{A} \cup \stackrel{i}{B}$ 设 Ω 为样本空间, $\stackrel{A}{A}$ 为事件,对每一个事件 $\stackrel{A}{A}$ 都有一个实数 $P(A)$,若满足下列三个条件: $\stackrel{1}{\circ}$ $0 \le P(A) \le 1$, 2 ° $P(\Omega) = 1$ 3 ° 对于两两互不相容的事件 $\stackrel{A_1}{A_2}$ …有

	$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$					
	常称为可列 (完全) 可加性。					
	则称 $P(A)$ 为事件 A 的概率。					
	$1 \circ \Omega = \{\omega_1, \omega_2 \cdots \omega_n\},\$					
	$2 {}^{\circ} P(\omega_1) = P(\omega_2) = \cdots P(\omega_n) = \frac{1}{n} .$					
	$m{n}$ 设任一事件 A ,它是由 $\omega_{\scriptscriptstyle 1},\omega_{\scriptscriptstyle 2}\cdots\omega_{\scriptscriptstyle m}$ 组成的,则有					
古典概型	$P(A) = \{(\omega_1) \cup (\omega_2) \cup \cdots \cup (\omega_m)\} = P(\omega_1) + P(\omega_2) + \cdots + P(\omega_m)$					
	$=\frac{m}{m}=\frac{A}{m}$					
	n 基本事件总数					
	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何					
口石拱形	問中的每一个基本事件可以使用一个有外区域未描述, 则你此随机试验为几何 概型。对任一事件 A,					
几何概型 	L(A) $L(A)$					
	$P(A) = \frac{L(A)}{L(\Omega)}$ 。其中 L 为几何度量(长度、面积、体积)。					
加法公式	P(A+B)=P(A)+P(B)-P(AB)					
	当 P(AB) = 0 时, P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)					
减法公式	当 B ⊂ A 时,P(A-B)=P(A)-P(B)					
1001A A IV						
	定义 设 A、B 是两个事件,且 P(A)>0,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,					
条件概率	事件 B 发生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。					
	例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$					
	乘法公式: $P(AB) = P(A)P(B/A)$					
)乘法公式	更一般地,对事件 A_1 , A_2 , $\cdots A_n$,若 $P(A_1A_2\cdots A_{n-1})>0$,则有 $P(A_1A_2 \dots A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1A_2) \dots P(A_n \mid A_1A_2 \dots$					
	A_{n-1}					
	①两个事件的独立性					
	设事件 $A \setminus B$ 满足 $P(AB) = P(A)P(B)$,则称事件 $A \setminus B$ 是相互独立的。					
X바 14F	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有					
独立性	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$					
	若事件 A 、 B 相互独立,则可得到 \overline{A} 与 B 、 \overline{A} 与 \overline{B} 也都相互独立。					

	必然事件 Ω 和不可能事件Ø与任何事件都相互独立。 Ø与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B); P(BC)=P(B)P(C); P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B_1, B_2, \cdots, B_n 满足 $1 \circ B_1, B_2, \cdots, B_n$ 两两互不相容, $P(B_i) > 0 (i = 1, 2, \cdots, n)$,
全概公式	$A \subset \bigcup_{i=1}^{n} B_{i}$ ② 。 则有 $P(A) = P(B_{1})P(A \mid B_{1}) + P(B_{2})P(A \mid B_{2}) + \dots + P(B_{n})P(A \mid B_{n})$ 。
贝叶斯公式	设事件 B_1 , B_2 ,, B_n 及 A 满足 1° B_1 , B_2 ,, B_n 两两互不相容, $P(Bi)_{>0}$, $i=_1$, 2 ,, n , $A \subset \bigcup_{i=1}^n B_i$, $P(A) > 0$, 则 $P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{j=1}^n P(B_j)P(A/B_j)}$, $i=_1$, 2 ,, n . 此公式即为贝叶斯公式。 $P(B_i)$, $(i=_1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=_1, 2,, n)$, 通常称为后验概率。 贝叶斯公式反映了"因果"的概率规律,并作出了"由果朔因"的推断。
伯努利概型	我们作了 n 次试验,且满足 ◆ 每次试验只有两种可能结果, A 发生或 A 不发生; ◆ n 次试验是重复进行的,即 A 发生的概率每次均一样; ◆ 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否是互不影响的。 这种试验称为伯努利概型,或称为 n 重伯努利试验。 用 p 表示每次试验 A 发生的概率,则 A 发生的概率为 $^{1-p=q}$,用 $^{P_n(k)}$ 表 示 n 重伯努利试验中 A 出现 k (0 $^{\le k}$ $^{\le n}$) 次的概率, n n n n n n n

第二章 随机变量及其分布

(1) 离散 型随机变 量的分布 律

设离散型随机变量 X 的可能取值为 $X_k(k=1,2,\cdots)$ 且取各个值的概率,即事件 (X=Xk)的概率为

 $P(X=x_k)=p_k, k=1,2,\dots,$

则称上式为离散型随机变量X的概率分布或分布律。有时也用分布列的形 式给出:

$$\frac{X}{P(X=x_k)} \mid \frac{x_1, x_2, \cdots, x_k, \cdots}{p_1, p_2, \cdots, p_k, \cdots}$$

显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$

(2) 连续 型随机变 量的分布 密度

 $p_k \ge 0$, $k = 1, 2, \cdots$, $F(x) = \int_{-\infty}^{x} f(x) dx$

则称X为连续型随机变量。f(x)称为X的概率密度函数或密度函数,简称概 率密度。

密度函数具有下面 4 个性质:

$$f(x) \ge 0$$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

(3) 离散 与连续型 随机变量 的关系

$$P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$$

积分元 f(x)dx 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离 散型随机变量理论中所起的作用相类似。

(4) 分布 设X为随机变量, x是任意实数, 则函数 函数 $F(x) = P(X \le x)$ 称为随机变量 X 的分布函数, 本质上是一个累积函数。 $P(a < X \le b) = F(b) - F(a)$ 可以得到 X 落入区间(a,b]的概率。分布 函数 F(x) 表示随机变量落入区间 $(-\infty, x]$ 内的概率。 分布函数具有如下性质: 1° $0 \le F(x) \le 1$, $-\infty < x < +\infty$; 2° F(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$; 3° $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$; 4° F(x+0) = F(x), 即 F(x) 是右连续的; 5° P(X = x) = F(x) - F(x - 0). 对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$; 对于连续型随机变量, $F(x) = \int_{0}^{x} f(x) dx$ 。 (5) 八大 0-1 分布 P(X=1)=p, P(X=0)=q分布 二项分布 在n 重贝努里试验中,设事件A 发生的概率为p。事件A 发生 的次数是随机变量,设为X,则X可能取值为 $0,1,2,\dots,n$ 。 $P(X = k) = P_n(k) = C_n^k p^k q^{n-k}$, 其 中 q = 1 - p, 0则称随机变量X服从参数为n, p的二项分布。记为 $X \sim B(n, p)$. 当 n=1 时, $P(X=k)=p^kq^{1-k}$, k=0.1 , 这就是 (0-1) 分 布, 所以 (0-1) 分布是二项分布的特例。

泊松分布	设随机变量 X 的分布律为
	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0,1,2\cdots,$
	则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或
	者 P(λ)。 泊松分布为二项分布的极限分布 (np=λ, n→∞)。
超几何分布	$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, 2 \cdots, l$ $l = \min(M, n)$
	随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
几何分布	$P(X = k) = q^{k-1}p, k = 1,2,3,\dots,$ 其中 p≥0, q=1-p.
	随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
均匀分布	设随机变量 X 的值只落在[a, b]内,其密度函数 $f(x)$ 在[a, b]
	上为常数 $\frac{1}{b-a}$,即
	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \sharp t, \end{cases}$
	则称随机变量 X 在 $[a, b]$ 上服从均匀分布,记为 $X\sim U(a, b)$ 。 分布函数为
	$ \begin{pmatrix} 0, & x < a, \\ x - a \end{pmatrix} $
	$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} \frac{a}{b-a}, & a \leq x \leq b \\ 1, & x > b. \end{cases}$
	当 a \leq x ₁ $<$ x ₂ \leq b 时, X 落在区间(x_1, x_2) 内的概率为 $P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a}.$
	b-a

指数分布 $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$ 其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。 X 的分布函数为 $F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$ 记住积分公式:

正态分布	
11.17.77.111	设随机变量 X 的密度函数为 $(x-\mu)^2$
	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$
	其中 $^{\mu}$ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 $^{\mu}$ 、 σ
	的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。
	f(x) 具有如下性质:
	$f(x)$ 的图形是关于 $x = \mu$ 对称的;
	2° 当 $x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2\pi\sigma}}$ 为最大值;
	参数 $\mu=0$ 、 $\sigma=1$ 时的正态分布称为标准正态分布,记为
	$X \sim N(0,1)$ 其密度函数记为 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, $-\infty < x < +\infty$,
	分布函数为 $1 \frac{x}{1} \frac{t^2}{2} L$
	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$
	$\Phi(-x) = 1 - \Phi(x) \perp \Phi(0) = \frac{1}{2}$.
	如果 $X \sim N(\mu, \sigma^2)$,则 $\frac{X - \mu}{\sigma} \sim N(0,1)$ 。
	$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right).$
(6) 分位 数 下分位表: P($(X \le \mu_a) = \alpha \; ;$
(7) 函数 离散型	已知 X 的分布列为
分布	$\frac{X}{P(X=x_i)} \left \frac{x_1, x_2, \cdots, x_n, \cdots}{p_1, p_2, \cdots, p_n, \cdots}, \right $
	$P(X = x_i) p_1, p_2, \dots, p_n, \dots$ $Y = g(X)$ 的分布列 $(y_i = g(x_i)$ 互不相等) 如下:
	$Y = \begin{cases} g(x_1) + g(x_2) & \cdots \\ g(x_n), & g(x_n), & \cdots \end{cases}$
	$\frac{Y}{P(Y=y_i)} \left \frac{g(x_1), \ g(x_2), \ \cdots, \ g(x_n), \ \cdots}{p_1, \ p_2, \ \cdots, \ p_n, \ \cdots}, \right.$ 若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。
连续型	先利用 X 的概率密度 $f_X(x)$ 写出 Y 的分布函数 $F_Y(y) = P(g(X) \le y)$,
	再利用变上下限积分的求导公式求出 f _Y (y)。

第三章 二维随机变量及其分布

(1) 联合	离散型	L	mate . / . =	3 F (> 11 mm		# 1 T 4	
分布		如果二维随机向量 ξ (X, Y) 的所有可能取值为至多可多						可列
		个有序对 (x,y) , 则称 ξ 为离散型随机量。						
		设 $\xi = (X, Y)$ 的所有可能取值为 $(x_i, y_j)(i, j = 1, 2, \cdots)$,						
		且事件 $\xi = (x$	且事件 $\{\xi = (x_i, y_j)\}$ 的概率为 p_{ij} ,称					
		$P\{(X,Y)\}$	$)=(x_{i},y_{i})$	(y_j) } = p	$o_{ij}(i,j=1)$	1,2,)		
		为 $\xi = (X, Y)$)的分布	7律或称	为X和Y	的联合分	·布律。联	合分
		布有时也用下	面的概率	区分布表 (来表示:	1	ı	7
		X	\mathcal{Y}_1	y_2		y_j		
		X_1	p_{11}	p_{12}	•••	p_{lj}		
		X2	p_{21}	p_{22}		p_{2j}	•••	
		:	:	:		:	:	-
		X_i	p_{i1}		•••	p_{ij}		
		:	:	÷		:	:]
		这里 p_{ij} 具有下 (1) $p_{ij} \ge 0$ (
		$(2) \sum_{i} \sum_{j}$,,				
	连续型	对于二维随	1机 向 量		(X,Y),	如果存	在非负i	
		$f(x,y)(-\infty <$	< <i>x</i> < +∞	o,−∞ < <u>j</u>	/ < +∞) ,	使对任	意一个其	邻边
		分别平行于坐	标轴的知	巨形区域	D, 即D:	={(X,Y)la<	x <b,c<y<< td=""><td>d}有</td></b,c<y<<>	d}有
		$P\{(X,Y)\in I$	$D\} = \iint_D f$	f(x,y)dx	xdy,			
		则称ξ为连续	型随机向	可量;并	称 f(x,y)为	$\xi = (X,$	Y) 的分	·布密
		度或称为 X 和 Y 的联合分布密度。 分布密度 f(x,y)具有下面两个性质: (1) f(x,y)≥0;						
		$(2) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}$	f(x,y)a	dxdy = 1				
(2) 二维 随机变量 的本质	$\xi(X=x,Y=$	$\xi(X = x, Y = y) = \xi(X = x \cap Y = y)$						

(3) 联合 设(X, Y)为二维随机变量,对于任意实数 x,y,二元函数 分布函数 $F(x, y) = P\{X \le x, Y \le y\}$ 称为二维随机向量(X, Y)的分布函数,或称为随机变量 X 和 Y 的联合分布 函数。 分布函数是一个以全平面为其定义域, 以事件 $\{(\omega_1,\omega_2)|-\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函 数。分布函数 F(x,v)具有以下的基本性质: (1) $0 \le F(x, y) \le 1$; (2) F (x,y) 分别对 x 和 y 是非减的, 即 当 $x_2>x_1$ 时,有 $F(x_2,y)$ $\geqslant F(x_1,y)$;当 $y_2>y_1$ 时,有 $F(x,y_2)$ $\geqslant F(x,y_1)$; (3) F (x,y) 分别对 x 和 y 是右连续的, 即 F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$ (5) 对于 $x_1 < x_2$, $y_1 < y_2$, $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0$. (4) 离散 $P(X = x, Y = y) \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dx dy$ 型与连续 型的关系 (5) 边缘 X的边缘分布为 离散型 分布 $P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij}(i, j = 1, 2, \cdots);$ Y的边缘分布为 $P_{\bullet j} = P(Y = y_j) = \sum_i p_{ij}(i, j = 1, 2, \dots).$ X的边缘分布密度为 连续型 $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$ Y的边缘分布密度为 $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$

(6)	条件	离散型	在已知 X=x;的条件下,Y 取值的条件分布为
分布			<i>p</i>
			$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}};$
			在已知 Y=y;的条件下,X 取值的条件分布为
			$P(X = x_i \mid Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$
		连续型	在已知 Y=y 的条件下,X 的条件分布密度为
			$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$
			在已知 X=x 的条件下,Y 的条件分布密度为
			$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$
(7) 3	独立	一般型	$F(X,Y)=F_X(x)F_Y(y)$
性		离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$
			有零不独立
		连续型	$f(x,y)=f_X(x)f_Y(y)$
			直接判断,充要条件:
			①可分离变量
		一垛工太八	②正概率密度区间为矩形
		二维正态分布	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1} \right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 \right]},$
			$\rho = 0$
		随机变量的	若 X ₁ ,X ₂ ,…X _m ,X _{m+1} ,…X _n 相互独立, h,g 为连续函数,则:
		函数	h (X ₁ , X ₂ ,…X _m) 和 g (X _{m+1} ,…X _n) 相互独立。
1			特例: 若 X 与 Y 独立, 则: h (X) 和 g (Y) 独立。
			例如: 若 X 与 Y 独立, 则: 3X+1 和 5Y-2 独立。

(8) 二维 均匀分布

设随机向量 (X, Y) 的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X, Y) 服从 D 上的均匀分布,记为 (X, Y) ~ U (D) 。

例如图 3.1、图 3.2 和图 3.3。

图 3.1

图 3.2

概率论与数理组	概率论与数理统计 公式					
(O) - 48:	近海扣 台 县 7	V V) 的八元家庄运粉斗				
(9) 二维 正态分布		设随机向量 (X, Y) 的分布密度函数为				
正池	$f(x,y) = \frac{1}{2\pi}$	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$				
	其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, \rho < 1$ 是 5 个参数,则称(X,Y)服从二维正态					
	分布,					
	记为 (X, Y)	$\sim N \ (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho).$				
	由边缘密度的布,	由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,				
	即 X ~ N (µ ₁	即 $X \sim N \ (\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$				
	但是若 X ~ N	但是若 X ~ N $(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), (X, Y)$ 未必是二维正态分布。				
(10) 函数 分布	Z=X+Y	根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$				
		对于连续型, $f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$				
		两个独立的正态分布的和仍为正态分布 ($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。				
		n 个相互独立的正态分布的线性组合,仍服从正态分布。				
		$\mu = \sum_{i} C_{i} \mu_{i} , \qquad \sigma^{2} = \sum_{i} C_{i}^{2} \sigma_{i}^{2}$				
	$Z=max,min(X_1,X_2,\cdots X_n)$	若 X ₁ , X ₂ … X _n 相 互 独 立 , 其 分 布 函 数 分 别 为				
		$F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$, 则 Z=max,min(X ₁ ,X ₂ ,···X _n)的分布				

 $F_{\max}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$

 $F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$

函数为:

 1				
χ ² 分布	\bigcup n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分			
	布,可以证明它们的平方和			
	$W = \sum_{i=1}^{n} X_i^2$			
	服从自由度为 n 的 χ^2 分布,记为 W ~ $\chi^2(n)$ 。			
	所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。			
	χ^2 分布满足可加性:设			
	$Y_i - \chi^2(n_i),$			
	则			
	$Z = \sum_{i=1}^{k} Y_i \sim \chi^2(n_1 + n_2 + \dots + n_k).$			
t 分布	设 X, Y 是两个相互独立的随机变量, 且			
	$X \sim N(0,1), Y \sim \chi^2(n),$			
	可以证明函数			
	$T = \frac{X}{\sqrt{Y/n}}$			
	服从自由度为 n 的 t 分布, 记为 T~t(n)。			
	$t_{1-a}(n) = -t_a(n)$			
F 分布	设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X 与 Y 独立, 可以证明			
	$F = \frac{X/n_1}{Y/n_2}$			
	服从第一个自由度为 n_1 , 第二个自由度为 n_2 的 F 分布, 记为 $F \sim f(n_1, n_2)$.			
	$F_{1-a}(n_1, n_2) = \frac{1}{F_a(n_2, n_1)}$			

第四章 随机变量的数字特征

(1)	离散型	连续型	

1

一随变的字征	期望就是平均值	设 X 是离散型随机变量,其分 布 律 为 P($X = x_k$) = p_k , $k=1,2,\cdots,n$, $E(X) = \sum_{k=1}^n x_k p_k$ (要求绝对收敛)	设 X 是连续型随机变量,其概率密度为 $f(x)$, $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$ (要求绝对收敛)
	函数的期望	$Y=g(X)$ $E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$Y=g(X)$ $E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$
	方差 $D(X)=E[X-E(X)]^2$, 标准差 $\sigma(X)=\sqrt{D(X)}$,	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$
	知此電土不知士	①对于正整数 k,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即 v_k = $E(X^k)$ = $\sum_i x_i^k p_i$, k =1,2, ②对于正整数 k,称随机变量 X 与 E(X)差的 k 次幂的数学期望为 X 的 k 阶中心矩,记为 μ_k ,即 μ_k = $E(X-E(X))^k$. = $\sum_i (x_i-E(X))^k p_i$, k =1,2,	
于任意正数 ε ,有 $P(X - \mu \ge \varepsilon) \le -$ 切比雪夫不等式给		于任意正数 ε ,有下列切比雪夫 $P(X - \mu \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$ 切比雪夫不等式给出了在未知 X	的分布的情况下,对概率 $-\mu \geq \varepsilon$)

(2)				
(2)	(1)	E(C)=C		
期望	(2)	E(CX)=CE(X)		
前性质	(3)	E(X+Y)=E(X)+E(Y),	$E(\sum_{i=1}^{n} C_{i} X_{i}) = \sum_{i=1}^{n} C_{i} E(X_{i})$	
	(4)	E(XY)=E(X)E(Y).	充分条件: X和Y独立;	
	(1)	2(11) 2(1), 2(1),	充要条件: X和Y不相关。	
(3)	(1)	D(C)=0; E(C)=C	703(4(1) 22 [10 2 1 147(0)	
方差	(2)	$D(aX)=a^2D(X); \qquad I$	E(aX)=aE(X)	
的性	(3)		E(aX+b)=aE(X)+b	
质	(4)		D(drive) ab(rryve	
	(5)		Y), 充分条件: X 和 Y 独立;	
	(0)	$D(X=1)$ $D(X) \cdot D(X)$	充要条件: X和Y不相关。	
		D(X + Y) = D(X) + D	(Y) ± 2E[(X-E(X))(Y-E(Y))],无条	华成立
			E(Y),无条件成立。	11 24-1-0
(4)		JII 1 (21 · 1) 1 (21) ·	期望	方差
常见				
分布	0-	1 分布 B(1, p)	p	p(1-p)
的 期望 和	<u></u> j	页分布 $B(n,p)$	пр	np(1-p)
方差	洎	松分布 $P(\lambda)$	λ	λ
	Л	.何分布 <i>G</i> (<i>p</i>)	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	超几何	「分布 $H(n,M,N)$	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$
	均	匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	推	省数分布 e(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
	正态	S 分布 $N(\mu, \sigma^2)$	μ	σ^2
		χ ² 分布	n	2n
		t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$

(5) 二维	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
随机变量		i=1	-∞ J. 9 X ()
的 数		$E(Y) = \sum_{j=1}^{n} y_j p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_{Y}(y) dy$
字特征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =
			2[0(::,:)]
		$\sum_{i} \sum_{j} G(x_i, y_j) p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x,y) f(x,y) dx dy$
	方差	$D(Y) = \sum_{i=1}^{n} F(Y_i)^2 n$	$D(X) = \int_{0}^{+\infty} [x - E(X)]^{2} f_{X}(x) dx$
		$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$	
		$D(Y) = \sum_{j} [x_{j} - E(Y)]^{2} p_{\bullet j}$	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$
	协方差	对于随机变量 X 与 Y,称它们的	二阶混合中心矩 µ11 为 X 与 Y 的协
		 方差或相关矩,记为 σ _{xy} 或 cov 	(X,Y), 即
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(X))]$	-E(Y))].
		 与记号 σ _{xy} 相对应,X 与 Y 的方 	差 D (X) 与 D (Y) 也可分别记为
		σ_{XX} 与 σ_{YY} 。	

	相关系数	对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称	
		$\frac{\sigma_{XY}}{\sqrt{D(X)}\sqrt{D(Y)}}$	
		$\sqrt{D(X)}\sqrt{D(Y)}$	
		为 X 与 Y 的相关系数,记作 ρ_{XY} (有时可简记为 ρ)。	
		$ \rho \le 1$, 当 $ \rho = 1$ 时, 称 X 与 Y 完全相关: $P(X = aY + b) = 1$	
		完全相关 $ = 1$ 时 $ (a > 0), $	
		而当 $\rho = 0$ 时,称 X 与 Y 不相关。	
		以下五个命题是等价的:	
		$\bigcirc \bigcirc \rho_{XY} = 0;$	
		②cov(X,Y)=0; ③E(XY)=E(X)E(Y); ④D(X+Y)=D(X)+D(Y); ⑤D(X-Y)=D(X)+D(Y).	
	协方差矩阵	$ \begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{pmatrix} $	
	混合矩	对于随机变量 X 与 Y , 如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的	
		$k+1$ 阶混合原点矩,记为 V_{kl} ; $k+1$ 阶混合中心矩记为:	
		$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$	
(6)	(i) cov (X, Y)=cov (Y, X);		
协方	(ii) cov(aX,bY)=ab cov(X,		
差的	(iii) $\operatorname{cov}(X_1 + X_2, Y) = \operatorname{cov}(X_1$		
性质 (7) 独立	(iv) cov(X,Y)=E(XY)-E(X (i) 若随机变量 X 与	j Y 相互独立,则 ρ _{XY} = 0 ; 反之不真。	
和不相关	(ii) 若 (X, Y) ~ N	$(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho),$	
加大	 则 X 与 Y 相互独	3立的充要条件是 X 和 Y 不相关。	
	79 A 3 X THELLOS ANTI AC AS THE X TEST TESTS.		

第五章 大数定律和中心极限定理

·		
(1) 大数定律	切比雪	设随机变量 X ₁ , X ₂ , …相互独立, 均具有有限方差, 且被同一
$\overline{X} \to \mu$	夫大数	常数 C 所界: D (X_i) <c(i=1,2,···),则对于任意的正数 <math="">\epsilon ,有</c(i=1,2,···),则对于任意的正数>
,	定律	$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$
		特殊情形: 若 X ₁ , X ₂ , …具有相同的数学期望 E (X _I) =
		μ,则上式成为
		$\left \lim_{n \to \infty} P \left(\left \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right < \varepsilon \right) = 1.$
	伯努利	设μ是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在
	大数定	每次试验中发生的概率,则对于任意的正数 ε ,有
	律 	$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$
		伯努利大数定律说明, 当试验次数 n 很大时, 事件 A 发生的频率与概率有较大判别的可能性很小, 即
		$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right \geq\varepsilon\right)=0.$
		这就以严格的数学形式描述了频率的稳定性。
	辛钦大 数定律	设 X_1, X_2, \dots, X_n , …是相互独立同分布的随机变量序列,且 $E(X_n) = \mu$,则对于任意的正数 ϵ 有
		$\left \lim_{n \to \infty} P \left(\left \frac{1}{n} \sum_{i=1}^{n} X_{i} - \mu \right < \varepsilon \right) \right = 1.$
(2) 中心极限定理	列维 – 林德伯	设随机变量 X ₁ , X ₂ , …相互独立, 服从同一分布, 且具有相 同 的 数 学 期 望 和 方 差 :
	格定理	$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots)$,则随机变量
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$		
		$\sum_{k=1}^{n} X_{k} - n\mu$
		$Y_n = \frac{\sum_{k=1}^{\infty} X_k - n\mu}{\sqrt{n}\sigma}$
		的分布函数 $F_n(x)$ 对任意的实数 x ,有
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
		此定理也称为 独立同分布 的中心极限定理。

	棣莫弗 - 拉普	设随机变量 X_n 为具有参数 n, p(0 <p<1)的二项分布,则对于任< th=""></p<1)的二项分布,则对于任<>
	拉斯定	意实数 x,有
	理	$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$
(3) 泊松定理	若当	
		$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$ $(n \to \infty).$
), 1, 2, …, n, …。 5的极限分布为泊松分布。

第六章 样本及抽样分布

(1) 数理	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全
统计的基		体称为总体 (或母体)。我们总是把总体看成一个具有分布的随
本概念		机变量 (或随机向量)。
	个体	总体中的每一个单元称为样品(或个体)。
	样本	我们把从总体中抽取的部分样品 x_1, x_2, \dots, x_n 称为样本。样本中所含的样品数称为样本容量,一般用 n 表示。在一般情况下,
		总是把样本看成是 n 个相互独立的且与总体有相同分布的随机 变量,这样的样本称为简单随机样本。在泛指任一次抽取的结
		果时, x_1, x_2, \cdots, x_n 表示 n 个随机变量 (样本);在具体的一次
		抽取之后, x_1, x_2, \cdots, x_n 表示 n 个具体的数值 (样本值)。我们
		称之为样本的两重性。
	样本函数和 统计量	设 x_1, x_2, \cdots, x_n 为总体的一个样本,称
		$\varphi = \varphi \qquad (x_1, x_2, \cdots, x_n)$
		为样本函数, 其中 φ 为一个连续函数。如果 φ 中不包含任何未
		知参数,则称 φ (x_1, x_2, \dots, x_n) 为一个统计量。

1

	常见统计量 及其性质	样本均值
		样本方差
		$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$
		样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$
		样本 k 阶原点矩
		$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots$
		样本 k 阶中心矩
		$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{k}, k = 2,3,\dots$
		$E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$
		$E(S^2) = \sigma^2, E(S^{*2}) = \frac{n-1}{n} \sigma^2,$
		其中 $S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$,为二阶中心矩。
(2) 正态 总体下的	正态分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
四大分布		本函数
		$u \stackrel{\text{def}}{=} \frac{x - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
	t 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$t = \frac{1}{s} \frac{1}{\sqrt{n}} \sim t(n-1),$
		其中 t(n-1)表示自由度为 n-1 的 t 分布。

1

	χ ² 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$w \stackrel{def}{=} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 n-1 的 χ^2 分布。
	F 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
		y_1, y_2, \cdots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本
		函数
		$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$
		其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$
		$F(n_1 - 1, n_2 - 1)$ 表示第一自由度为 $n_1 - 1$, 第二自由度为
		n ₂ -1的F分布。
(3) 正态 总体下分 布的性质	\overline{X} 与 S^2 独立	•

第七章 参数估计

(1) 点	矩估计
估计	

设总体 X 的分布中包含有未知数 $\theta_1, \theta_2, \cdots, \theta_m$,则其分布函数可以表成 $F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,\cdots,m)$ 中也包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_m$,即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。 又设 x_1,x_2,\cdots,x_n 为总体 X 的 n 个样本值,其样本的 k 阶原点矩为

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k} \quad (k=1,2,\cdots,m).$$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原则建立方程,即有

$$\begin{cases} v_1(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i, \\ v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^2, \\ \dots \\ v_m(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m. \end{cases}$$

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1}, \hat{\theta_2}, \cdots, \hat{\theta_m})$ 即为参数 $(\theta_1, \theta_2, \cdots, \theta_m)$ 的矩估计量。

 $\dot{A}\theta$ 为 θ 的矩估计,g(x)为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

	极大似	当 总 体 X 为 连 续 型 随 机 变 量 时 , 设 其 分 布 密 度 为
	然估计	$f(x;\theta_1,\theta_2,\cdots,\theta_m)$, 其中 $\theta_1,\theta_2,\cdots,\theta_m$ 为未知参数。 又设
		x_1, x_2, \dots, x_n 为总体的一个样本,称
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数,简记为 L_n . 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为
		$P{X = x} = p(x; \theta_1, \theta_2, \dots, \theta_m)$,则称
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数。
		若似然函数 $L(x_1,x_2,\cdots,x_n; heta_1, heta_2,\cdots, heta_m)$ 在 $\hat{ heta}_1,\hat{ heta}_2,\cdots,\hat{ heta}_m$ 处取
		到最大值,则称 $\hat{\theta}_1$, $\hat{\theta}_2$,, $\hat{\theta}_m$ 分别为 θ_1 , θ_2 ,, θ_m 的最大似然估计值,
		相应的统计量称为最大似然估计量。
		$\left. \frac{\partial \ln L_n}{\partial \theta_i} \right _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \dots, m$
		\hat{A} 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大似然估计。
(2) 估计量的	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若 E $(\hat{\theta}) = \theta$,则称
评选标 准		$\stackrel{\wedge}{ heta}$ 为 $ heta$ 的无偏估计量。
		$E(\overline{X}) = E(X), E(S^2) = D(X)$
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_{,2}, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_{,2}, \dots, x_n)$ 是未知参数 θ
		的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

	一致性	$\stackrel{\wedge}{\partial}_{\it n}$ 是 $ heta$ 的一串估计量,如果对于任意的正数 $arepsilon$,都有
		$\lim_{n\to\infty} P(\hat{\theta}_n - \theta > \varepsilon) = 0,$
		则称 $\overset{\wedge}{\theta}_n$ 为 θ 的一致估计量(或相合估计量)。
		\hat{A} 为 θ 的无偏估计,且 $D(\hat{\theta}) \rightarrow 0$ ($n \rightarrow \infty$),则 $\hat{\theta}$ 为 θ 的一致估计。 只要总体的 $E(X)$ 和 $D(X)$ 存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。
(3) 区 间估计	置信区间和置	设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 x_1, x_2, \dots, x_n
	信度	出发,找出两个统计量 $\theta_1 = \theta_1(x_1, x_{,2}, \dots, x_n)$ 与
		$\theta_2 = \theta_2(x_1, x_{,_2}, \dots, x_n) (\theta_1 < \theta_2) , \ \ 使 \ 得 \ 区 \ 间 \ [\theta_1, \theta_2] 以$
		$1-a(0的概率包含这个待估参数\theta,即$
		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$
		那么称区间 $[\theta_1, \theta_2]$ 为 θ 的置信区间, $1-a$ 为该区间的置信度(或置
		信水平)。
	单正态总体的	设 x_1, x_2, \dots, x_n 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-a$
	期望和方差的	下,我们来确定 μ 和 σ^2 的置信区间[θ_1, θ_2]。具体步骤如下:
	区间估计	(i) 选择样本函数;(ii) 由置信度1-α, 查表找分位数;
		(iii) 导出置信区间 $[heta_1, heta_2]$ 。
		已知方差,估计均值 (i) 选择样本函数
		$u = \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1).$
		(ii) 查表找分位数
		$P\left(-\lambda \le \frac{\bar{x} - \mu}{\sigma_0 / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
		(iii) 导出置信区间
		$\left[\overline{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \overline{x} + \lambda \frac{\sigma_0}{\sqrt{n}} \right]$

未知方差,估计均值	(i) 选择样本函数
	$t = \frac{\overline{x} - \mu}{S / \sqrt{n}} \sim t(n - 1).$
	(ii)查表找分位数
	$P\left(-\lambda \le \frac{\bar{x} - \mu}{S / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
	(iii) 导出置信区间
	$\left[\overline{x} - \lambda \frac{S}{\sqrt{n}}, \overline{x} + \lambda \frac{S}{\sqrt{n}} \right]$
方差的区间估计	(i) 选择样本函数
	$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
	(ii) 查表找分位数
	$P\left(\lambda_1 \le \frac{(n-1)S^2}{\sigma^2} \le \lambda_2\right) = 1 - \alpha.$
	(iii) 导出 σ 的置信区间
	$\left[\sqrt{\frac{n-1}{\lambda_2}}S, \sqrt{\frac{n-1}{\lambda_1}}S\right]$

第八章 假设检验

基本思想	假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是		
	不会发生的,即小概率原理。		
	为了检验一个假设 15。是否成立。我们先假定 15。是成立的。如果根据这个		
	假定导致了一个不合理的事件发生, 那就表明原来的假定 15。是不正确的, 我们		
	拒绝接受 H ₆ ;如果由此没有导出不合理的现象,则不能拒绝接受 H ₆ ,我们称		
	H ₀ 是相容的。与 H ₀ 相对的假设称为备择假设,用 H ₁ 表示。		
	这里所说的小概率事件就是事件 $\{K\in R_a\}$,其概率就是检验水平 α ,通		
	常我们取 α =0.05,有时也取 0.01 或 0.10。		
基本步骤	假设检验的基本步骤如下:		
	(i) 提出零假设 H ₀ ;		
	(ii) 选择统计量 <i>K</i> ;		
	(iii) 对于检验水平 α 查表找分位数 λ;		
	(iv) 由样本值 x_1, x_2, \cdots, x_n 计算统计量之值 K ;		
	\hat{K} 与 λ 进行比较,作出判断: 当 \hat{K} > λ (或 \hat{K} > λ)时否定 H_0 ,否则认为 H_0		
	相容。		

两类错误	第一类错误	当 H ₀ 为真时,而样本值却落入了否定域,按照我们规定的 检验法则,应当否定 H ₀ 。这时,我们把客观上 H ₀ 成立判为 H ₀ 为不成立(即否定了真实的假设),称这种错误为"以真 当假"的错误或第一类错误,记 α 为犯此类错误的概率,即 P{否定 H ₀ H ₀ 为真}= α; 此处的 α 恰好为检验水平。
	第二类错误	当 H ₁ 为真时,而样本值却落入了相容域,按照我们规定的 检验法则,应当接受 H ₆ 。这时,我们把客观上 H ₆ 。不成立 判为 H ₆ 成立 (即接受了不真实的假设),称这种错误为"以
		假当真"的错误或第二类错误,记 β 为犯此类错误的概率,即
		$P{接受 H_0 \mid H_1 为真}= \beta 。$
	两类错误的关系	人们当然希望犯两类错误的概率同时都很小。但是,当容量 n 一定时, a 变小,则 β 变大;相反地, β 变小,则 a
		变大。取定α要想使β变小,则必须增加样本容量。 在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平α。α大小的选取应根据实际情况而定。当我们宁可"以假为真"、而不愿"以真当假"时,则应把α取得很小,如 0.01,甚至 0.001。反之,则应把α取得大些。

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
已知 σ^2	H_0 : $\mu = \mu_0$	$U = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$	N (0, 1)	$ u >u_{1-\frac{a}{2}}$
	$H_0: \mu \leq \mu_0$			$u > u_{1-a}$
	$H_0: \mu \ge \mu_0$			$u < -u_{1-a}$
未知 σ²	H_0 : $\mu = \mu_0$	$T = \frac{\bar{x} - \mu_0}{S / \sqrt{n}}$	t(n-1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
	$H_0: \mu \leq \mu_0$			$t > t_{1-a} \left(n - 1 \right)$
	$H_0: \mu \ge \mu_0$			$t < -t_{1-a} \left(n - 1 \right)$
未知 σ ²	$H_0: \sigma^2 = \sigma^2$	$w = \frac{(n-1)S^2}{\sigma_0^2}$	$\kappa^2(n-1)$	$w < \kappa_{\frac{a}{2}}^{2}(n-1)$ 或
				$w > \kappa^{\frac{2}{1-\frac{\alpha}{2}}}(n-1)$

$H_0: \sigma^2 \leq \sigma_0^2$	$w > \kappa_{1-a}^2 (n-1)$
$H_0: \sigma^2 \ge \sigma_0^2$	$w < \kappa_a^2 (n-1)$