Universidad Torcuato Di Tella Maestría en Economía y Econometría 2022

Datos de Panel Problem Set 0 Repaso OLS, GLS & FGLS Lectura y resumen de datos de panel en Stata

1. Considere el siguiente modelo de regresión:

$$ltotexp_i = \beta_0 + \beta_1 suppins_i + \beta_2 phylim_i + \beta_3 actlim_i + \beta_4 totchr_i + \beta_5 age_i + \beta_6 female_i + \beta_7 income_i + u_i, i = 1, ..., N$$

- a) Use la base de datos "mus03data.dta", la cual contiene datos de corte transversal de gastos médicos, para estimar la ecuación por OLS usando comandos de matrices en Stata. Adicionalmente, reporte los errores estándar usuales de OLS y los estadísticos t asociados.
- b) Utilice el comando regress para verificar los resultados obtenidos.
- c) Implemente un test de significatividad individual para totchr.
- d) Implemente un test de significatividad conjunta para todas las variables del modelo, excluyendo el intercepto.
- 2. En este ejercicio vamos a aprender cómo setear los datos como panel en Stata y cómo generar estadísticas descriptivas del panel. Adicionalmente, veremos cómo convertir los datos de wide form a long form y cómo generar un panel para simulaciones.
 - a) Utilice la base mus08psidextract.dta y describa la base de datos de la manera usual y como un panel.
 - b) Utilice la base pigweights.dta. Los datos se encuentran en formato wide. Utilice el comando reshape para llevarlos a formato long. Luego, describa la base de la misma forma que en el inciso (a).
 - c) Genere un panel de 5000 observaciones con 10 períodos temporales y 500 unidades en el corte transversal. El panel debe estar en formato long. Genere observaciones de $x_{it} \sim \mathcal{N}(0,1)$, $u_{it} \sim \mathcal{N}(0,1)$ y además $y_{it} = 1 + x_{it} + u_{it}$. Estime por POLS.
- 3. Considere el siguiente modelo:

$$y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i, \quad i = 1, ..., N$$

 $u_i = \sqrt{\exp(-1 + 0.2 \cdot x_{2i})} \cdot \varepsilon_i, \quad i = 1, ..., N$

con $\beta_1 = 1$, $\beta_2 = 1$, $\beta_3 = 1$, $x_2 \sim \mathcal{N}(0, 25)$, $x_3 \sim \mathcal{N}(0, 25)$ y $\varepsilon \sim \mathcal{N}(0, 25)$ Luego, el error u es heterocedástico con una varianza condicional igual a $25 \cdot \exp(-1 + 0.2 \cdot x^2)$.

- a) Genere 1000 muestras de N=10 observaciones a partir del modelo presentado. Para cada muestra estime por OLS, GLS y FGLS los parámetros del modelo y realice un test de hipótesis para contrastar que $H_0: \beta_3 = 1$. Reporte tamaño del test al 1%. Adicionalmente, reporte la media, mediana y desvío estándar de las estimaciones de β_1 , β_2 y β_3 .
- b) Repita el punto anterior con N igual a 20, 30, 100, 200 y 500.
- c) Describa detalladamente las propiedades de muestra finita de FGLS de acuerdo a lo que observó de los puntos anteriores.

Trabajo Práctico N° 0: Repaso OLS, GLS y FGLS. Lectura y Resumen de Datos de Panel en Stata.

Ejercicio 1.

Considerar el siguiente modelo de regresión:

 $ltotexp_i = \beta_0 + \beta_1 suppins_i + \beta_2 phylim_i + \beta_3 actlim_i + \beta_4 totchr_i + \beta_5 age_i + \beta_6 female_i + \beta_7 income_i + u_i$, i = 1, ..., N.

(a) Usar la base de datos "mus03data.dta", la cual contiene datos de corte transversal de gastos médicos, para estimar la ecuación por OLS usando comandos de matrices en Stata. Adicionalmente, reportar los errores estándar usuales de OLS y los estadísticos t asociados.

	beta	se	t
suppins	.25564276	.04622641	5.5302312
phylim	.30205979	.05697091	5.3020003
actlim	.35600541	.06211178	5.7316894
totchr	.37582014	.01842273	20.399812
age	.00380163	.00365613	1.039797
female	08432753	.0455442	-1.8515536
income	.00254982	.0010194	2.5013046
_cons	6.7037374	.27675999	24.222206

(b) Utilizar el comando regress para verificar los resultados obtenidos.

Source	SS	df	MS	Numbe F(7,	r of obs	=	2,955 124.98
Model Residual	1264.72124 4260.16814		180.674463 1.44559489	Prob R-squ	> F	=	0.0000
+ Total	5524.88938	2 , 954	1.87030785	Adj R Root	-squared MSE	=	0.2271 1.2023
ltotexp	Coefficient	Std. err.	t 1	 P> t	[95% con:	 f.	interval]
suppins phylim actlim totchr age female income _cons	.3020598	.0462264 .0569709 .0621118 .0184227 .0036561 .0455442 .0010194 .27676	5.30 5.73 20.40 1.04 -1.85 2.50	0.000 0.000 0.000 0.000 0.299 0.064 0.012	.1650034 .190353 .2342185 .3396974 0033672 1736292 .000551 6.161075		.3462821 .4137666 .4777923 .4119429 .0109705 .0049741 .0045486 7.2464

(c) Implementar un test de significatividad individual para totchr.

(1) totchr = 0

$$F(1, 2947) = 416.15$$

 $Prob > F = 0.0000$

Por lo tanto, se puede observar que, con un nivel de significancia del 1%, estos datos aportan evidencia suficiente para indicar que la variable *totchr* es estadísticamente significativa.

(d) Implementar un test de significatividad conjunta para todas las variables del modelo, excluyendo el intercepto.

```
(1) suppins = 0
(2) phylim = 0
(3) actlim = 0
(4) totchr = 0
(5) age = 0
(6) female = 0
(7) income = 0
F( 7, 2947) = 124.98
Prob > F = 0.0000
```

Por lo tanto, con un nivel de significancia del 1%, estos datos aportan evidencia suficiente para indicar que las variables del modelo, en conjunto, son estadísticamente significativas.

Ejercicio 2.

En este ejercicio, se va a aprender cómo setear los datos como panel en Stata y cómo generar estadísticas descriptivas del panel. Adicionalmente, se verá cómo convertir los datos de wide form a long form y cómo generar un panel para simulaciones.

(a) Utilizar la base "mus08psidextract.dta" y describir la base de datos de la manera usual y como un panel.

Stata.

(b) Utilizar la base "pigweights.dta". Los datos se encuentran en formato wide. Utilizar el comando reshape para llevarlos a formato long. Luego, describir la base de la misma forma que en el inciso (a).

Stata.

(c) Generar un panel de 5000 observaciones con 10 períodos temporales y 500 unidades en el corte transversal. El panel debe estar en formato long. Generar observaciones de $x_{it} \sim \mathcal{N}$ (0, 1), $u_{it} \sim \mathcal{N}$ (0, 1) y, además, $y_{it} = 1 + x_{it} + u_{it}$. Estimar por POLS.

Source	SS	df	MS		r of obs	=	5,000
+				Τ (Τ /	,	=	4972.58
Model		1	5006.33835		> F	=	0.0000
Residual	5031.92865	4,998	1.00678844	R-squ	ared	=	0.4987
+				· Adj R	-squared	=	0.4986
Total	10038.267	4,999	2.00805501	. Root I	MSE	=	1.0034
у	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
+							
x	1.01052	.0143303	70.52	0.000	.982426	-	1.038614
_cons	1.02376	.0141901	72.15	0.000	.995941	7	1.051579

Ejercicio 3.

Considerar el siguiente modelo:

$$y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i, i = 1, ..., N.$$

 $u_i = \sqrt{e^{(-1+0.2x_{2i})}} \varepsilon_i, i = 1, ..., N.$

con β_1 = 1, β_2 = 1, β_3 = 1, $\alpha_2 \sim \mathcal{N}(0, 25)$, $\alpha_3 \sim \mathcal{N}(0, 25)$ y $\varepsilon \sim \mathcal{N}(0, 25)$. Luego, el error u es heterocedástico con un varianza condicional igual a $25e^{(-1+0,2\alpha_2)}$.

- (a) Generar 1000 muestras de N=10 observaciones a partir del modelo presentado. Para cada muestra, estimar por OLS, GLS y FGLS los parámetros del modelo y realizar un test de hipótesis para contrastar que H_0 : $\beta_3=1$. Reportar tamaño del test al 1%. Adicionalmente, reportar la media, mediana y desvío estándar de las estimaciones de β_1 , β_2 y β_3 .
- **(b)** Repetir el inciso anterior con N igual a 20, 30, 100, 200 y 500.

```
N_30
                                                                                     N_100
                                                                                                                          N 500
                                N_{10}
                                   .8
                                                                     -.8
tam_test_1~s
                                                \overline{1}.1
                                                                                       _ 1
                                                                                                        . 8
media_b1_ols 1.0054159 1.0233711
mediana_b1~s 1.0432544 1.0316013
de_b1_ols 1.4418954 .90375325
                                                                                                .99101667 1.0004401
                                                           .9913776 1.0073724
1.011929 1.000255
                                         1.03160131.0119291.000255.90375325.72169432.39574087
                                                                                                 1.0050259
                                                                                                                    1.0013884
                                                                                                 .28065068
                                                                                                                    .18146336
media b2 ols .99360726 1.0100861 1.0053778
                                                                              1.003707
                                                                                                 .99668205
                                                                                                                   1.0001666
                                                                                                .99718451
mediana b2~s 1.001702 1.0022839 1.0072177 1.001808
                                                                                                                   1.001999
     de b2 ols .37958122 .24111343 .19670063 .11009015
                                                                                                 .07716763
                                                                                                                   .05011949

      media_b3_ols
      1.0118828
      .99105405
      .98908491
      1.0008243

      mediana_b3~s
      1.0206553
      1.0012873
      .99137709
      1.0031048

      de_b3_ols
      .30943622
      .18576126
      .15294122
      .07752204

                                                                                                 .99812821
                                                                                                                    1.0005964
                                                                                                 .99734056
                                                                                                                   1.0004818
                                                                                                 .05484899
                                                                                                                   .03532914
                                                                                                            . 7
tam test 1~s
                                   . 8
                                                    1.6
media_b1_gls 1.0280305 1.0098569 .99142743 1.0028527 .99508303 1.0002454

      mediana_bl~s
      1.0521936
      1.0215993
      .99141711
      .97967514

      de_bl_gls
      1.2535653
      .78859652
      .6326124
      .34452127

      media_b2_gls
      1.0041153
      .99966412
      1.0056483
      1.0009635

                                                                                                 .99639186
                                                                                                                   1.0007963
                                                                                                 .24216176
                                                                                                                    .15728003
                                                                                                 .99825912 1.0002415
mediana b2~s 1.0016103 1.0011113 1.0057288 .99995628
                                                                                                .99866092 1.0011777
     de_b2_gls .27698551 .14838535 .10750797 .05216017
                                                                                                 .03670627
                                                                                                                   .02233929

      de_bz_gis
      .27090331
      .14030333
      .10730797
      .03210017

      media_b3_gls
      .99808488
      .99177559
      .99704105
      1.0014807

      mediana_b3~s
      1.0007759
      .99349907
      1.0007703
      1.0030935

      de_b3_gls
      .23968415
      .13024611
      .10009673
      .05074781

      tam_test_1~s
      2.6
      1.9
      1.1
      1.3

      media_b1_f~s
      1.01992
      1.01678
      .9940748
      1.0072039

                                                                                                 .99794066 1.0011461
                                                                                                 .99855053
                                                                                                                    1.0003986
                                                                                                  .03363409
                                                                                                                    .02125601
                                                                                                            . 8
                                                                                                 .99260909 1.0000234
                                                                             .98473564
                                                                                                 .99415511
mediana_b1~s 1.0103357
                                          1.023284 .98835871
                                                                                                                   .99863401
de_b1_fgls 1.3995429 .84752793 .66857393 .35431677 media_b2_f~s 1.0032334 1.0017987 1.0081194 1.0025778 mediana_b2~s 1.0093035 1.0049713 1.0057506 1.0009448
                                                                                                 .24580091
                                                                                                                    .15830694
                                                                                                 .99772954
                                                                                                                     1.000189
                                                                                                 .99776992
                                                                                                                   1.0012414
                                                                              .0558778
   de b2 fgls .33065581 .18431274 .13396221
                                                                                                  .0377256
                                                                                                                   .02264737
                                                           .99556178 1.0007816
media b3 f~s 1.006726 .99314471
                                                                                                 .99824046
                                                                                                                   1.0011263
mediana b3~s 1.0098851
                                         .99663675 .99534097 1.0025634
                                                                                                 .99817607
                                                                                                                    1.0005233
   de b3 fgls .29018109
                                                            .11601262
                                                                              .05232108
                                                                                                  .03433107
                                          .14444993
                                                                                                                    .02134511
```

(c) Describir, detalladamente, las propiedades de muestra finita de FGLS de acuerdo a lo que se observó de los puntos anteriores.

Las propiedades de muestra finita de FGLS, de acuerdo a lo que se observó de los puntos anteriores, son:

- <u>Sesgo</u>: El estimador FGLS puede estar sesgado si el modelo subyacente no se especifica correctamente o si la estructura de correlación verdadera en los datos se impone de manera incorrecta. Sin embargo, a medida que el tamaño de muestra aumenta, este sesgo tiende a disminuir.
- <u>Eficiencia relativa</u>: La eficiencia relativa del estimador FGLS en comparación con otros estimadores (como el estimador OLS) puede variar dependiendo de la estructura de correlación verdadera en los datos y del modelo. Sin embargo, en algunos casos, el estimador FGLS puede proporcionar estimaciones más precisas que el estimador OLS, especialmente cuando la estructura de correlación de los errores es ignorada por las estimaciones por OLS.
- Varianza finita: La varianza del estimador FGLS depende del tamaño de muestra y de la estructura de correlación verdadera en los datos. A diferencia de las propiedades asintóticas, en muestras finitas, la varianza del estimador FGLS puede no converger a la varianza asintótica y puede ser mayor o menor dependiendo de las características específicas de los datos y del modelo.
- Robustez: El estimador FGLS puede ser más robusto que otros estimadores en presencia de violaciones de los supuestos de homocedasticidad y de correlación serial en los datos. Esto significa que el estimador FGLS puede proporcionar estimaciones más precisas, incluso cuando los supuestos clásicos no se cumplan completamente.

Universidad Torcuato Di Tella Maestría en Economía y Econometría 2022

Datos de Panel Problem Set 1 Modelo de Regresión Lineal

- 1. Utilice la base de datos provista "cornwell.dta".
 - a) A partir de los datos de los siete años, y utilizando los logaritmos de todas las variables, estime un modelo por POLS que relacione la tasa de crimen con prbarr, prbconv, prbpris, avgsen y polpe y que incluya un conjunto de dummies de año.
 - b) Compute los errores estándar robustos a heteroscedasticidad arbitraria y a autocorrelación serial arbitraria.
 - c) Implemente un contraste de Correlación Serial.
 - d) Implemente un contraste de Heterocedasticidad.
 - e) Asuma que se cumple el supuesto de exogeneidad estricta y que u_{it} sigue un proceso AR(1). Compute el estimador de FGLS siguiendo el enfoque de Prais-Winsten. Una descripción del procedimiento puede encontrarla en Wooldridge (2010), sección 7.8.6.

Observación: GLS necesita exogeneidad estricta para conseguir estimadores consistentes.

- f) Compute los errores estándar robustos a heteroscedasticidad arbitraria y a autocorrelación serial arbitraria para el modelo con las variables transformadas del inciso previo.
 - Sugerencia de Wooldridge. "...If we have any doubts about the homoskedasticity assumption, or whether the AR(1) assumption sufficiently captures the serial dependence, we can just apply the usual fully robust variance matrix and associated statistics to pooled OLS on the transformed variables. This allows us to probably obtain an estimator more efficient than POLS (on the original data) but also guards against the rather simple structure we imposed on Ω . Of course, failure of strict exogeneity generally causes the Prais-Winsten estimator of β to be inconsistent."
- 2. En este ejercicio examinará un modelo para el costo total de producción en la industria aeronáutica a modo de ilustrar una aplicación de un modelo heteroscedástico por grupos. Considere la siguiente función de costos:

$$\begin{split} \ln \ & \mathrm{cost}_{jt} = \beta_1 + \beta_2 \ \ln \ \mathrm{output}_{jt} + \beta_3 \ \mathrm{load} \ \mathrm{factor}_{jt} + \beta_4 \ \ln \ \mathrm{fuel} \ \mathrm{price}_{jt} \\ & \delta_2 \ \mathrm{Firm}_2 + \delta_3 \ \mathrm{Firm}_3 + \delta_4 \ \mathrm{Firm}_4 + \delta_5 \ \mathrm{Firm}_5 + \delta_6 \ \mathrm{Firm}_6 + \varepsilon_{jt} \end{split}$$

- a) Utilice la base de datos provista "greene97.dta", la cual contiene datos para seis compañías aéreas observadas anualmente durante 15 años. Estime la ecuación por POLS.
- b) Ahora, asuma que dentro de cada compañía aérea se tiene que:

$$Var\left[\varepsilon_{jt} \mid \mathbf{x}_{jt}\right] = \sigma_{j}^{2}, \quad t = 1, \dots, T$$

Por lo tanto, si las varianzas fueran conocidas, el estimador de GLS sería:

$$\hat{oldsymbol{eta}} = \left[\sum_{j=1}^N \left(rac{1}{\sigma_j^2}
ight) \mathbf{X}_j' \mathbf{X}_j
ight]^{-1} \left[\sum_{j=1}^N \left(rac{1}{\sigma_j^2}
ight) \mathbf{X}_j' \mathbf{y}_j
ight]$$

donde \mathbf{X}_j es una matriz $T \times K$. Sin embargo, en este caso práctico las varianzas son desconocidas. Luego, se le solicita computar el estimador de FGLS a través de los siguientes métodos:

- 1) Estime el modelo calculando el estimador necesario para la varianza específica de la compañía aérea a partir de los residuos de OLS, es decir, $\hat{\sigma}_j^2 = \frac{\mathbf{e}_j' \mathbf{e}_j}{n_j}$.
- 2) Estimar el modelo tratándolo como una forma del modelo de heteroscedasticidad multiplicativa de Harvey (1976). Utilice el procedimiento en dos etapas.
- c) Compare los resultados obtenidos en el inciso b).
- 3. Considere la siguiente ecuación de salarios:

$$y_{jt} = \beta_0 + \beta_1 x_{jt} + u_{jt}, \quad j = 1, 2, \dots N; t = 1, 2$$
 (1)

donde
$$\beta_0=\beta_1=1,\,u_j\sim N\left(0,\Omega\right),\,\Omega=\begin{bmatrix}1&0\\0&4\end{bmatrix}$$
 y $x_j\sim U[1,20]$

Genere 1000 muestras de N=5 observaciones de corte transversal a partir del modelo (1). Para cada muestra estime por FGLS los parámetros del modelo y realice un test de hipótesis para contrastar que $H_0: \beta_1=1$. Reporte tamaño del test al 1% y el poder del test cuando $\beta_1=0.8$. Luego, repita el procedimiento con N=500. ¿Se aprecia algún cambio en el tamaño y/o en el poder del test ante el incremento de N?

<u>Trabajo Práctico Nº 1:</u> Modelo de Regresión Lineal.

Ejercicio 1.

Utilizar la base de datos provista "cornwell.dta".

(a) A partir de los datos de los siete años, y utilizando los logaritmos de todas las variables, estimar un modelo por POLS que relacione la tasa de crimen con prbarr, prbconv, prbpris, avgsen y polpc y que incluya un conjunto de dummies de año.

POLS:

Source	SS	df	MS		per of obs	=	630
Model Residual	117.644669 88.735673	11 618	10.6949699 .143585231	Prob R-so	l, 618) o > F quared	=	74.49 0.0000 0.5700
Total	206.380342	629	.328108652	_	R-squared MSE	=	0.5624
lcrmrte	Coefficient	Std. err.	t	P> t	[95% cc	nf.	interval]
lprbarr lprbconv lprbpris lavgsen lpolpc d82 d83 d84 d85	7195033 5456589 .2475521 0867575 .3659886 .0051371 043503 1087542 0780454 0420791	.0367657 .0263683 .0672268 .0579205 .0300252 .057931 .0576243 .057923 .0583244	-19.57 -20.69 3.68 -1.50 12.19 0.09 -0.75 -1.88 -1.34 -0.73	0.000 0.000 0.000 0.135 0.000 0.929 0.451 0.061 0.181 0.467	791704 597441 .115531 200502 .307024 108628 156666 22250 192583 1556	3 4 23 18 34 52 94 35	6473024 4938765 .3795728 .0269872 .4249525 .1189026 .0696601 .0049957 .0364928
d87 _cons	0270426 -2.082293	.056899	-0.48 -8.28	0.635	138781 -2.57643		.0846963

(b) Computar los errores estándar robustos a heteroscedasticidad arbitraria y a autocorrelación serial arbitraria.

POLS (con errores estándar robustos):

Linear regression	Number of obs	=	630
	F(11, 89)	=	37.19
	Prob > F	=	0.0000
	R-squared	=	0.5700
	Root MSE	=	.37893

(Std. err. adjusted for 90 clusters in county)

lprbarr 7195033	lcrmrte	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
	lprbconv	5456589	.0704368	-7.75	0.000	6856152	4057025
	lprbpris	.2475521	.1088453	2.27	0.025	.0312787	.4638255
	lavgsen	0867575	.1130321	-0.77	0.445	3113499	.1378348
	lpolpc	.3659886	.121078	3.02	0.003	.1254092	.6065681
	d82	.0051371	.0367296	0.14	0.889	0678439	.0781181
	d83	043503	.033643	-1.29	0.199	1103509	.0233448
	d84	1087542	.0391758	-2.78	0.007	1865956	0309127
	d85	0780454	.0385625	-2.02	0.046	1546683	0014224
	d86	0420791	.0428788	-0.98	0.329	1272783	.0431201
	d87	0270426	.0381447	-0.71	0.480	1028353	.0487502

(c) Implementar un contraste de Correlación Serial.

Stata.

Se rechaza la hipótesis nula de no correlación serial.

(d) Implementar un contraste de Heterocedasticidad.

Stata.

Se rechaza la hipótesis nula de homocedasticidad.

(e) Asumir que se cumple el supuesto de exogeneidad estricta y que u_{it} sigue un proceso AR(1). Computar el estimador de FGLS siguiendo el enfoque de Prais-Winsten. Una descripción del procedimiento se puede encontrar en Wooldridge (2010), sección 7.8.6. Observación: GLS necesita exogeneidad estricta para conseguir estimadores consistentes.

FGLS:

Source	SS	df	MS	Number of obs	s = =	630 2050.54
Model Residual	885.585523 22.2417551		73.7987936 .035989895	Prob > F R-squared Adj R-squarec	= =	0.0000 0.9755 0.9750
Total	907.827278	630	1.44099568	Root MSE	=	.18971
tilde_lcrmrte	Coefficient	Std. err	. t	P> t [959	conf.	interval]
tilde_lprbarr	481208	.0333124	-14.45	0.000546	56271	4157888
tilde lprbconv	3353095	.0209135	-16.03	0.000376	53796	2942395
tilde lprbpris	1624321	.0339271	-4.79	0.000229	90585	0958058
tilde lavgsen	0203981	.0289633	-0.70	0.48207	72766	.0364804
tilde lpolpc	.3806954	.0298461	12.76	0.000 .322	20834	.4393074
tilde d82	.0120433	.0222954	0.54	0.589032	17405	.0558272
tilde d83	0721363	.0288915	-2.50	0.013128	38737	0153989
tilde d84	1092092	.0333946	-3.27	0.001174	17898	0436286
tilde d85	1018016	.0364716	-2.79	0.005173	34249	0301784
tilde d86	0775719	.0381852	-2.03	0.043152	25605	0025834
tilde d87	0395482	.0394024	-1.00	0.316116	59271	.0378307
tilde_ones	-2.027131	.2099692	-9.65	0.000 -2.43	39471	-1.614792

(f) Computar los errores estándar robustos a heteroscedasticidad arbitraria y a autocorrelación serial arbitraria para el modelo con las variables transformadas del inciso previo. Sugerencia de Wooldridge: "... If we have any doubts about the homoskedasticity assumption, or whether the AR(1) assumption sufficiently captures the serial dependence, we can just apply the usual fully robust variance matrix and associated statistics to pooled OLS on the transformed variables. This allows us to probably obtain an estimator more efficient than POLS (on the original data) but also guards against the rather simple structure we imposed on Ω . Of course, failure of strict exogeneity generally causes the Prais-Winsten estimator of β to be inconsistent."

FGLS (con errores estándar robustos):

Linear regression	on			Number of F(12, 89) Prob > F R-squared Root MSE	= = = =	.18971
		(Std.	err. ad	justed for	90 clusters	in county)
tilde_lcrmrte	Coefficient	Robust std. err.	t	P> t	[95% conf	. interval]
tilde_lprbarr tilde_lprbconv tilde_lprbpris tilde_lavgsen tilde_lpolpc tilde_d82 tilde_d83 tilde_d84	3353095 1624321 0203981 .3806954 .0120433 0721363	.0718373 .0440331 .0500207 .0258077 .106039 .015186 .01852		0.000 0.002 0.431 0.001 0.430 0.000	6239471 4228023 2618222 0716774 .1699982 0181309 1089352 1521229	338468924781680630421 .0308813 .5913925 .042217603533740662956
tilde_d85 tilde_d86 tilde_d87 tilde_ones	1018016 0775719 0395482	.0213374 .0244324 .0236838 .0252489 .7465981	-3.00 -4.17 -3.28 -1.57 -2.72	0.000 0.002 0.121	1521229 1503483 1246312 0897173 -3.510606	053255 0305126 .0106209 5436569

Ejercicio 2.

En este ejercicio, se examinará un modelo para el costo total de producción en la industria aeronáutica a modo de ilustrar una aplicación de un modelo heterocedástico por grupos. Considerar la siguiente función de costos:

$$ln cost_{jt} = \beta_1 + \beta_2 ln output_{jt} + \beta_3 load factor_{jt} + \beta_4 ln fuel price_{jt} + \delta_2 Firm_2 + \delta_3 Firm_3 + \delta_4 Firm_4 + \delta_5 Firm_5 + \delta_6 Firm_6 + \varepsilon_{it}.$$

(a) Utilizar la base de datos provista "greene97.dta", la cual contiene datos para seis compañías áreas observadas, anualmente, durante 15 años. Estimar la ecuación por POLS.

Source	SS	df	MS		ber of obs = , 81) =	90
Residual	113.74827	81	.003612628	Pro R-s	b > F = quared =	0.0000 0.9974 0.9972
	114.040893			_	-	.06011
lc			t		[95% conf.	interval]
	.9192845	.0298901	30.76	0.000	.8598126	.9787565
lf	-1.070396	.20169	-5.31	0.000	-1.471696	6690961
lpf	.4174918 	.0151991	27.47	0.000	.3872503	.4477333
id						
2	0412359	.025184	-1.64	0.105	0913441	.0088722
3	2089211	.0427986	-4.88	0.000	294077	1237653
4	.1845557	.0607527	3.04	0.003	.0636769	.3054345
5	.0240547	.0799041	0.30	0.764	1349293	.1830387
6	.0870617 	.0841995	1.03	0.304	080469	.2545924
_cons	9.705942	.193124	50.26	0.000	9.321686	10.0902

(b) Ahora, asumir que, dentro de cada compañía área, se tiene que:

$$Var\left[\varepsilon_{jt} \mid x_{jt}\right] = \sigma_j^2, \ t = 1, \ \dots, \ T.$$

Por lo tanto, si las varianzas fueran conocidas, el estimador GLS sería:

$$\hat{\beta} = \left[\sum_{j=1}^{N} \frac{1}{\sigma_{i}^{2}} X_{j}^{'} X_{j}\right]^{-1} \sum_{j=1}^{N} \frac{1}{\sigma_{i}^{2}} X_{j}^{'} y_{j},$$

donde X_j es una matriz TxK. Sin embargo, en este caso práctico, las varianzas son desconocidas. Luego, se solicita computar el estimador de FGLS a través de los siguientes métodos:

(i) Estimar el modelo calculando el estimador necesario para la varianza específica de la compañía áreas a partir de los residuos de OLS, es decir, $\hat{\sigma}_j^2 = \frac{e_j^{'}e_j}{n_i}$.

Maestría en Econometría UTDT - Econometría de Datos de Panel | 5 Juan Menduiña

Source	SS	df	MS		er of ob: 81)	-	90 5526.83
Model Residual	118.222298 .216579991		14.777787	3 Prob	> F uared	=	0.0000
Total	+		1.3307739	- Adj	R-square MSE	d =	0.9980
lc	Coefficient	Std. err.	t 	P> t	[95% (conf.	interval]
lq lf lpf		.0267809 .1855858 .0125488	34.57 -6.55 32.32	0.000 0.000 0.000	.8724 -1.585 .3806	565	.9790506 8470495 .4305758
id 2	046026 2020985 .1905462 .0371723 .094588	.0237611 .0361494 .0551602 .0704438 .0743639	-1.94 -5.59 3.45 0.53 1.27	0.056 0.000 0.001 0.599 0.207	0933 2740 .0807 1029 0533	246 946 887	.0012511 1301725 .3002977 .1773334 .2425488
_cons	9.942316	.1622899	61.26	0.000	9.61	941	10.26522

(ii) Estimar el modelo tratándolo como una forma del modelo de heteroscedasticidad multiplicativa de Harvey (1976). Utilizar el procedimiento en dos etapas.

	Heteroskedastic linear regression Two-step GLS estimation				of obs =	90
Two-step GLS estimation				i2(8) = chi2 =		
lc	Coefficient		Z		[95% conf.	interval]
lc	+ 					
lf	.932333 -1.115165 .4086271	.1991174		0.000	.8744574 -1.505428 .3808999	7249023
id 2 3 4 5 6	0387054 1929047 .2082512 .0572051 .1207862		-1.60 -4.74 3.53 0.73 1.46	0.000 0.464 0.143	0862271 2726892 .0927583 0957631 0409335	1131203 .3237442 .2101733 .2825059
lnsigma2	+ I					
id	' 					
2 3 4 5 6	•		1.15 0.71 0.79 0.74 0.98	0.430	6565043 -1.014457 9503466 9856255 7909405	2.523167 2.165215 2.229325 2.194046 2.388731
_cons	-6.213752	.5735736	-10.83	0.000	-7.337935	-5.089568
Wald test of	lnsigma2=0: ch	ii2(5) = 1.5	 56		Prob > chi	2 = 0.9063

Juan Menduiña

(c) Comparar los resultados obtenidos en el inciso (b).

Los resultados obtenidos en el inciso (b) son semejantes en cuanto a valores estimados de los parámetros y a significatividad estadística.

Ejercicio 3.

Considerar la siguiente ecuación de salarios:

$$y_{jt} = \beta_0 + \beta_1 x_{jt} + u_{jt}, j = 1, 2, \dots, N; t = 1, 2$$
 (1)

$$donde\ \beta_0 = \beta_1 = 1,\ u_j \sim \mathcal{N}\ (0,\ \Omega),\ \Omega = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} y\ x_{jt} \sim U\ [1,\ 20].$$

Generar 1000 muestras de N=5 observaciones de corte transversal a partir del modelo (1). Para cada muestra, estimar por FGLS los parámetros del modelo y realizar un test de hipótesis para contrastar que H_0 : $\beta_1=1$. Reportar tamaño del test al 1% y el poder del test cuando $\beta_1=0.8$. Luego, repetir el procedimiento con N=500. ¿Se aprecia algún cambio en el tamaño y/o en el poder del test ante el incremento de N?

$$\begin{array}{cccc} & & N_5 & N_500 \\ tam_test_1 & 2.7 & 1 \\ poder tes~08 & 33.2 & 100 \end{array}$$

Por lo tanto, se puede observar que, ante el incremento de N, el tamaño del test tiende al nivel de significación del 1% y el poder del test tiende al 100%.

Universidad Torcuato Di Tella Maestría en Economía y Econometría 2022

Datos de Panel Problem Set 2 Modelos de Datos de Panel Lineales

1. Utilice nuevamente la base de datos "cornwell.dta" provista para el Problem Set 1. Considere el siguiente modelo de regresión:

 $\ln crmrte_{it} = \beta_0 + \beta_1 \ln prbarr_{it} + \beta_2 \ln prbconv_{it} + \beta_3 \ln prbpris_{it} + \beta_4 \ln avgsen_{it}$

$$+ \beta_5 \ln polpc_{it} + \sum_{\tau=82}^{87} \beta_{\tau} \cdot I\{t=\tau\} + \mu_i + \varepsilon_{it}$$

- a) Utilizando el comando egen de STATA, construya las medias individuales de las variables del modelo.
- b) Aplique la transformación within al modelo. Luego, estime el modelo transformado por POLS.
- c) Comente sobre la validez de los errores estándar del inciso previo.
- d) Utilice el comando xtreq para estimar nuevamente el modelo usando efectos fijos.
- e) Estime el modelo usando diferencias finitas de primer orden.
- 2. Utilice la base de datos provista "murder.dta". La base de datos es una muestra longitudinal de estados de EE.UU., para los años 1987, 1990 y 1993.
 - a) Estime por OLS el efecto de las ejecuciones (x) sobre la tasa de homicidios $(murder\ rates,\ m)$ controlando por desempleo (u) y año:

$$m_{i,t} = \alpha + \beta_x x_{i,t} + \beta_u u_{i,t} + \beta_{90} d_{90,t} + \beta_{93} d_{93,t} + \nu_{i,t}$$

Note que se omitió la dummy temporal para el año 1987. Interprete los resultados.

- b) ¿Por qué podría ser importante tener en consideración los efectos temporales agregados en el modelo?
- c) Ahora, considere la siguiente modificación en el modelo:

$$m_{i,t} = \alpha + \beta_x x_{i,t} + \beta_u u_{i,t} + \beta_{90} d_{90,t} + \beta_{93} d_{93,t} + c_i + e_{i,t}$$

donde c_i es un efecto individual por estado. Estime la ecuación usando efectos fijos.

- d) Repita la estimación del inciso previo usando diferencias finitas de primer orden.
- e) Brinde un ejemplo bajo el cual la variable de ejecuciones no sería estrictamente exógena (condicional en c_i). Observación. Para obtener estimaciones consistentes, el modelo de efectos fijos asume exogeneidad estricta de las variables explicativas condicionadas en c_i .
- f) Repita la estimación del inciso c) usando el estimador de GLS para diferencias finitas de primer orden. Compruebe que los coeficientes estimados son iguales a los obtenidos por FE.
- g) Reestimar el modelo del inciso c) usando efectos aleatorios. Implementar el test de Hausman. ¿Cuál es el mejor estimador?

3. Considere el siguiente modelo:

$$y_{it} = x_{it}\beta + \mu_i + \nu_{it}, \quad i = 1, 2, \dots, N, \ t = 1, 2, \dots, T$$

donde $x_{it} \stackrel{iid}{\sim} \mathcal{N}(0,1)$, $u_i \stackrel{iid}{\sim} \mathcal{N}\left(0,\sigma_{\mu}^2\right)$, $\nu_{it} \stackrel{iid}{\sim} \mathcal{N}\left(0,\sigma_{\nu}^2\right)$ y $\mu_i \perp \nu_{it}$ para todo i,t. Suponga que $\beta = \sigma_{\mu}^2 = \sigma_{\nu}^2 = 1$ y T = 10. La idea es realizar experimentos de Monte Carlo para evaluar la eficiencia de distintos estimadores de β .

- a) Caso 1: N=5. Realice un experimento de Monte Carlo con 1000 simulaciones. Reporte media, desvío estándar y RMSE de la estimación de β usando: POLS, RE y FE.
- b) Repita el punto anterior con N = 10, 30, 50, 100 y 500.
- c) Comente los resultados obtenidos y su conclusión de qué estimador debiera utilizarse en la práctica.
- 4. Basado en el Ejercicio 10.18 de Wooldridge (2010). Utilice la base de datos wagepan.dta para responder las preguntas a continuación.
 - a) Utilizando *lwage* como variable dependiente, estimar un modelo que contenga un intercepto y las variables *dummy* de año *d*81 a *d*87. Estime el modelo por POLS, RE, FE y FD. ¿Qué puede concluir acerca de los coeficientes de las variables *dummy*?
 - b) Añada las variables constantes en el tiempo educ, black e hisp al modelo, y estímelo por POLS y RE. ¿Cómo se comparan los coeficientes? ¿Qué ocurre si se estima la ecuación por FE?
 - c) ¿Son iguales los errores estándar de POLS y RE del inciso b)? ¿Cuáles son probablemente más fiables?
 - d) Obtenga los errores estándar robustos para POLS. ¿Prefiere estos o los errores estándar habituales de RE?
 - e) Obtenga los errores estándar robustos de RE. ¿Cómo se comparan con los errores estándar robustos de POLS, y por qué?

Trabajo Práctico N° 2: Modelos de Datos de Panel Lineales.

Ejercicio 1.

Utilizar, nuevamente, la base de datos "cornwell.dta" provista para el Problem Set 1. Considerar el siguiente modelo de regresión:

 $ln\ crmrte_{it} = \beta_0 + \beta_1 \ ln\ prbarr_{it} + \beta_2 \ ln\ prbconv_{it} + \beta_3 \ ln\ prbpris_{it} + \beta_4 \ ln\ avgsen_{it} + \beta_5 \ ln\ polpc_{it} + \sum_{\tau=1}^{87} \beta_{\tau} I\{t=\tau\} + \mu_i + \varepsilon_{it}.$

(a) Utilizando el comando egen de STATA, construir las medias individuales de las variables del modelo.

Stata.

(b) Aplicar la transformación within al modelo. Luego, estimar el modelo transformado por POLS.

POLS:

Source SS Model 7.81221835 Residual 10.1785214 Total 17.9907397	619 .03	MS 10201668 16443492 02855673	Number of obs F(11, 619) Prob > F R-squared Adj R-squared Root MSE	= = =	630 43.19 0.0000 0.4342 0.4242 .12823
	Std. err.			 % conf. 	interval]
within_lprbarr 3597944 within_lprbconv 2858733 within_lprbpris 1827812 within_lavgsen 0044879 within_lpolpc .4241142 within_d82 .0125802 within_d83 0792813 within_d84 1177281 within_d85 1119561 within_d86 0818268 within_d87 0404704	.0299699 .0196143 .0300086 .024449 .0243741 .0199141 .0197277 .0199815 .0201954 .0198078 .0194497	-12.01 -14.57 -6.09 -0.18 17.40 0.63 -4.02 -5.89 -5.54 -4.13 -2.08	0.00032 0.00024 0.85405 0.000 .37 0.52802 0.00011 0.00015 0.00012	43919 17122 25009 62483 65271 80225 69678 51616 07254 86657	2473547 1238502 .043525 .4719802 .0516875 04054 0784884 0722962 0429282 0022751

(c) Comentar sobre la validez de los errores estándar del inciso previo.

Los errores estándar reportados tienden a ser pequeños comparados a los verdaderos. El problema se encuentra en que los grados de libertad de aplicar OLS al modelo transformado no coinciden con el denominador del estimador consistente para σ_{ε}^2 . Por consiguiente, excepto que T sea lo suficientemente grande, se necesita corregir este denominador.

(d) Utilizar el comando xtreg para estimar, nuevamente, el modelo usando efectos fijos.

FE:

Fixed-effects Group variable	Number o	of obs = of groups =	630 90			
R-squared: Within = Between = Overall =	= 0.4066			Obs per	<pre>group: min = avg = max =</pre>	7 7.0 7
corr(u_i, Xb)	= 0.2068	(2)	,,	F(11,89) Prob > F	· =	11.49
		(Std.	err. adjı 	isted for 	90 clusters	in county)
lcrmrte	 Coefficient	Robust std. err.	t	P> t	[95% conf	. interval]
lprbconv lprbpris lavgsen lpolpc d82 d83	1827812 0044879 .4241142 .0125802 0792813 1177281 1119561 0818268		-6.05 -5.55 -4.04 -0.13 5.00 0.79 -4.05 -5.42 -4.36 -3.46 -1.67 -3.14	0.000 0.000 0.893 0.000 0.434 0.000 0.000 0.000 0.001	4779557388246427275380707535 .255409501922461181544160869162938612877450885087 -2.617904	1835001 0928085 .0617777 .592819 .044385 0404081 0745872 0609736 0348792 .0075678
sigma_u sigma_e rho		(fraction	of variar	nce due to	o u_i)	

⁽e) Estimar el modelo usando diferencias finitas de primer orden.

<u>FD:</u>

Source	SS	df	MS			= 540 = 36.66
Model Residual			.87296209 .02381167	8 Prob 4 R-sq	> F uared	= 36.66 = 0.0000 = 0.4326 = 0.4208
Total	22.1989586	540	.04110918		_	= .15431
D.lcrmrte	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
lprbarr D1.	3274942	.0299801	-10.92	0.000	3863889	2685995
lprbconv D1.		.0182341	-13.06	0.000	2739268	2022864
lprbpris D1.	1650462	.025969	-6.36	0.000	2160613	1140312
lavgsen D1.		.0220909	-0.99	0.325	0651574	.021636
lpolpc D1.	.3984264	.026882	14.82	0.000	.3456177	.451235
d82 D1.		.0170579	0.45	0.651	0257961	.0412229
d83 D1.		.0234564	-3.60	0.000	1305182	03836
d84 D1.		.0287464	-4.34	0.000	1811344	068192
d85 D1.	121561	.03315	-3.67	0.000	1866827	0564392
d86 D1.		.0366763	-2.35	0.019	1583823	0142842
d87 D1.		.0399728	-0.95 	0.345	116318	.0407316

Ejercicio 2.

Utilizar la base de datos provista "murder.dta". La base de datos es una muestra longitudinal de estados de EE.UU., para los años 1987, 1990 y 1993.

(a) Estimar por OLS el efecto de las ejecuciones (x) sobre la tasa de homicidios (murder rates, m) controlando por desempleo (u) y año:

$$m_{i,t} = \alpha + \beta_x x_{i,t} + \beta_u u_{i,t} + \beta_{90} d_{90,t} + \beta_{93} d_{93,t} + v_{i,t},$$

Notar que se omitió la dummy temporal para el año 1987. Interpretar los resultados.

POLS:

Source	SS	df	MS	Number F(4, 1	of obs	s = =	153 3.05
Model Residual	977.390644 11867.9475		244.347661 80.1888343	Prob > R-squa	F red	=	0.0190 0.0761 0.0511
Total			84.5088034	Root M	squared SE	ı – =	8.9548
mrdrte	Coefficient		t 1	 P> t	[95% (conf.	interval]
exec unem d90 d93 _cons		.1939295 .4508653 1.816934 1.774768 3.069517	3.08 (1.47 (0.91 (0.002 0.143 0.367	22047 .49982 915 -1.8998	207 515 342	.5459832 2.281751 6.26582 5.114476 4.201349

(b) ¿Por qué podría ser importante tener en consideración los efectos temporales agregados en el modelo?

Tener en consideración los efectos temporales agregados en el modelo podría ser importante si la tasa de homicidios es afectada por factores macroeconómicos externos que afectan a todos los estados de EE.UU. de la misma manera. Por lo tanto, si no se incluyen estas variables, se debe suponer que cualquier cambio en la media de la tasa de homicidios en el tiempo se debe a las ejecuciones o a la tasa de desempleo y no a factores externos. Por otra parte, controlar por estas variables hace más factible que se cumpla el supuesto de ausencia de autocorrelación serial.

(c) Ahora, considerar la siguiente modificación en el modelo:

$$m_{i,t} = \alpha + \beta_x x_{i,t} + \beta_u u_{i,t} + \beta_{90} d_{90,t} + \beta_{93} d_{93,t} + c_i + e_{i,t}$$

donde c_i es un efecto individual por estado. Estimar la ecuación usando efectos fijos.

<u>FE:</u>

Fixed-effects (within) regr Group variable: id		f obs = f groups =			
R-squared: Within = 0.0734 Between = 0.0037 Overall = 0.0108			Obs per o	min =	3.0
corr(u_i, Xb) = 0.0010			F(4,98) Prob > F		1.94 0.1098
mrdrte Coefficient	Std. err.	t	P> t	[95% conf	. interval]
exec 1383231 unem .2213158 d90 1.556215 d93 1.733242 _cons 5.822104	.1770059 .2963756 .7453273 .7004381	0.75 2.09 2.47	0.457 0.039 0.015	366832 .0771369 .3432454	.8094636 3.035293 3.123239
sigma_u 8.7527226 sigma_e 3.5214244 rho .86068589			ce due to	=	
F test that all u_i=0: F(50	, 98) = 1/.18	3		Prob >	F = 0.0000

(d) Repetir la estimación del inciso previo usando diferencias finitas de primer orden.

<u>FD:</u>

Source	SS	df	MS	Number F(4, 98		=	102 1.61
Model Residual		4 98	29.7758244 18.49272	Prob > R-squar	F red	=	0.1778 0.0617 0.0234
Total			18.9351947	_	-	=	4.3003
cmrdrte	Coefficient		t	P> t	[95% cc	onf.	interval]
cexec cunem cd90 cd93	1150682 .1630854 1.51099 1.725263	.1473871 .3079049 .6608967 .8533453	0.53 2.29	0.437 0.598 0.024 0.046	40755 447941 .199462 .031827	L9 23	.1774166 .7741126 2.822518 3.418699

(e) Brindar un ejemplo bajo el cual la variable de ejecuciones no sería, estrictamente, exógena (condicional en c_i). Observación: Para obtener estimaciones consistentes, el modelo de efectos fijos asume exogeneidad estricta de las variables explicativas condicionadas en c_i .

Un ejemplo bajo el cual la variable de ejecuciones $(x_{i,t})$ no sería estrictamente exógena (condicional en c_i) podría ser si los estados aumentan las ejecuciones futuras en respuesta a los *shocks* positivos actuales de la tasa de homicidios. Dado el tramo de tiempo relativamente corto de la base de datos, la retroalimentación de la tasa de homicidio a las

ejecuciones futuras puede no ser muy preocupante, ya que el proceso judicial en los casos de pena capital tiende a moverse lentamente. Por supuesto, si se acelerara debido a un aumento de la tasa de homicidios, eso podría violar la exogeneidad estricta. Con una serie temporal más larga, se podría añadir $x_{i,t+1}$ (e, incluso, valores de un futuro más lejano) y estimar la ecuación por FE, comprobando la significatividad estadística de la variable $x_{i,t+1}$. En el caso de que se encuentre que esta variable es estadísticamente significativa, se tendría evidencia a favor de que no se cumple el supuesto de exogeneidad estricta.

(f) Repetir la estimación del inciso (c) usando el estimador de GLS para diferencias finitas de primer orden. Comprobar que los coeficientes estimados son iguales a los obtenidos por FE.

```
bfdgls[4,1]
mrdrte
exec -.13832306
unem .22131582
d90 1.5562147
d93 1.7332421
```

(g) Reestimar el modelo del inciso (c) usando efectos aleatorios. Implementar el test de Hausman. ¿Cuál es el mejor estimador?

RE:

Random-effects Group variable	_	on			of obs of groups		153 51
R-squared: Within = Between = Overall =	= 0.0731			Obs per	group: min avg max	=	3 3.0 3
corr(u_i, X) =	= 0 (assumed)						8.52 0.0743
mrdrte	Coefficient	Std. err.	z	P> z	[95% cor	nf.	interval]
unem d90 d93	0543375 .3947507 1.732981 1.699913 4.635132	.2848133 .7478556 .7065606	1.39 2.32 2.41	0.166 0.020 0.016	1634732 .2672106 .3150796	2 5	.9529745 3.19875 3.084746
sigma_e	8.2056677 3.5214244 .84447636	(fraction	of varian	ce due to	o u_i)		

	Coeffi (b) est_fe	cients (B) est_re	(b-B) Difference	sqrt(diag(V_b-V_B)) Std. err.
exec unem d90 d93	1383231 .2213158 1.556215 1.733242	0543375 .3947507 1.732981 1.699913	0839856 1734349 1767658 .0333292	.0767503 .0819749

 $\tt b$ = Consistent under H0 and Ha; obtained from xtreg. $\tt B$ = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of HO: Difference in coefficients not systematic

```
chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 5.78
Prob > chi2 = 0.2165
(V b-V B is not positive definite)
```

Por lo tanto, se puede observar que, considerando un nivel de significación del 10%, el mejor estimador es el de efectos fijos, ya que se rechaza la hipótesis nula de no correlación entre los regresores y los efectos fijos, por lo que el estimador de efectos aleatorios no es consistente.

Ejercicio 3.

Considerar el siguiente modelo:

$$y_{it} = x_{it}\beta + \mu_i + \nu_{it}, i = 1, 2, ..., N; t = 1, 2, ..., T,$$

donde $x_{it} \sim^{iid} \mathcal{N}(0, 1)$, $\mu_i \sim^{iid} \mathcal{N}(0, \sigma_{\mu}^2)$, $v_{it} \sim^{iid} \mathcal{N}(0, \sigma_{\nu}^2)$ y $\mu_i \perp v_{it}$ para todo i, t. Suponer $\beta = \sigma_{\mu}^2 = \sigma_{\nu}^2 = 1$ y T = 10. La idea es realizar experimentos de Monte Carlo para evaluar la eficiencia de distintos estimadores de β .

- (a) Caso 1: N=5. Realizar un experimento de Monte Carlo con 1000 simulaciones. Reportar media, desvío estándar y RMSE de la estimación de β usando: POLS, RE y FE.
- **(b)** Repetir el punto anterior con N=10, 30, 50, 100 y 500.

```
N 5
                           N 10
                                     N 30
                                               N 50
                                                        N 100
                                                                  N 500
media beta~s .99804484 .99234775 1.0019568 1.0039147 1.0005582
                                                              .99963949
de beta pols .19410442 .14170935 .07988537
                                          .06148401
                                                    .04521915
                                                               .02023065
rmse beta ~s .1940172 .14184504
                                .0798694 .06157782
                                                    .04519998
                                                               .02022375
media_beta~e .99311721 .99036578 1.0021895 1.0027847 1.0005854
                                                               .99967618
                                                    .03388416
 de_beta_fe .15215654 .10712643 .06006592 .04603343
                                                               .01449802
.10750542
                                .06007579
                                           .0460946
                                                    .03387227
                                                               .01449439
                      .99075022 1.0022435 1.0029077
                                                     1.0005371
                                                               .99967278
 de_beta_re .15558624 .10656719 .05945567
                                          .04579737
                                                     .0335924
                                                               .01453039
rmse beta re .15569433 .10691477 .05946827 .04586672
                                                    .03357989
                                                               .01452681
```

(c) Comentar los resultados obtenidos y su conclusión de qué estimador debiera utilizarse en la práctica.

En primer lugar, es importante destacar que, dados los supuestos del modelo, los tres estimadores en consideración son consistentes. Por lo tanto, se debería esperar que, a medida que el tamaño muestral aumenta, la media de las estimaciones de β con los diferentes estimadores estén cerca del valor poblacional (β = 1). Ahora bien, para N < 10, el estimador FE es el que mejor funciona en términos de sesgo y de eficiencia. Luego, a partir de un tamaño de muestra de N= 30, ya se observa cómo el estimador RE es el más eficiente de todos, es decir, es el que presenta un menor desvío estándar, lo cual se vincula a que, dados los supuestos del modelo, es el estimador con la menor varianza asintótica. En resumen, si, en la práctica, se trabajara con un modelo donde se supone que se cumplen los supuestos del modelo del inciso, entonces, para N muy pequeño se optaría por utilizar el estimador FE, mientras que, a partir de N= 30, se optaría por el estimador RE.

Ejercicio 4.

Basado en el Ejercicio 10.18 de Wooldridge (2010). Utilizar la base de datos "wagepan.dta" para responder las preguntas a continuación.

(a) Utilizando lwage como variable dependiente, estimar un modelo que contenga un intercepto y las variables dummy de año d81 a d87. Estimar el modelo por POLS, RE, FE y FD. ¿Qué se puede concluir acerca de los coeficientes de las variables dummy?

POLS:

Source		df	MS			4,360 50.54
Model	92.9668229	7	13.280974	7 Prob	> F =	0.0000
Residual	1143.56282 +		.26276719	2 R-squ - Mdi P	ared = -squared =	0.0752
	1236.52964				_	.51261
	Coefficient				[95% conf.	
d81	.1193902	.0310529	3.84	0.000	.0585107	.1802697
d82	.1781901	.0310529	5.74	0.000	.1173106	.2390696
d83	.2257865	.0310529	7.27	0.000	.1649069	.286666
d84		.0310529	9.56	0.000	.2359386	.3576976
d85	.3459333	.0310529	11.14	0.000		.4068128
d86	.4062418 .4730023	.0310529 .0310529	13.08	0.000	.3453623	.4671213
					.4121228	.5338818
_cons	1.393477	.0219577	63.46	0.000	1.350429	1.436525
RE:						
Random-effects Group variable		on			f obs = ef groups =	
R-squared:				Oha nan	~~~~	
K-Squared: Within =	- 0 0000			Obs per	min =	8
Between =					avg =	
Overall =					max =	8
Overair -	- 0.0732				max –	0
corr(u_i, X) =	= 0 (assumed)			Wald chi Prob > c	2(7) = hi2 =	
lwage	Coefficient	Std. err.			[95% conf.	interval]
d81	1	.021487	5.56	0.000	.0772765	.1615039
d82	•	.021487	8.29	0.000	.1360764	.2203038
d83	.2257865	.021487	10.51	0.000	.1836728	.2679001
d84		.021487	13.81	0.000	.2547044	.3389318
d85	•	.021487	16.10	0.000	.3038196	.388047
d86		.021487	18.91	0.000	.3641281	.4483555
d87	.4730023		22.01	0.000	.4308886	.515116
_cons	1.393477	.0219577	63.46	0.000	1.350441	1.436513
siama 11	+ .37007665					
sigma_a						
rho		(fraction	of varian	ce due to	u_i)	

Juan Menduiña

\mathbf{H}	н.
T .	Ŀ,

Fixed-effects Group variable	-	ession			obs = groups =	•
R-squared: Within = Between = Overall =	· .			Obs per g	roup: min = avg = max =	
corr(u_i, Xb)	= 0.0000				= =	
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
d82 d83 d84 d85 d86 d87 _cons	.1193902 .1781901 .2257865 .2968181 .3459333 .4062418 .4730023 1.393477	.021487 .021487 .021487 .021487 .021487	8.29 10.51 13.81 16.10 18.91 22.01	0.000 0.000 0.000 0.000 0.000	.136063 .1836594 .254691 .3038063 .3641147 .4308753	.2203172 .2679135 .3389452 .3880604 .4483688 .5151294
sigma_u	.39074676 .35469771	(fraction	of varian	ice due to	u_i)	
F test that al	ll u_i=0: F(54	4, 3808) =	9.71		Prob > 1	F = 0.0000
Source	SS	df 	MS		of obs = 808) =	3,815 14.06

Source	SS .	df	MS		r of obs	=	3,815
Model	+ 19.3631642	7	 2 76616631	. ,	3808)		14.06
Residual	•				ared		0.0252
	+				-squared		0.0234
Total	768.613001	3,815	.201471298	Root	MSE	=	.44357
D.lwage	Coefficient	Std. err.	t	P> t	[95% cor	ıf.	interval]
d81	 						
D1.	.1193902	.0190006	6.28	0.000	.0821379)	.1566425
100							
d82 D1.	l I 1781901	.0268709	6 63	0.000	.1255074	1	.2308728
D1.	• • • • • • • • • • • • • • • • • • •	.0200703	0.05	0.000	.125507		.2300720
d83							
D1.	.2257865	.03291	6.86	0.000	.1612636	5	.2903093
d84	 						
D1.	.2968181	.0380011	7.81	0.000	.2223136	5	.3713226
d85		0.40.40.66	0 14	0 000	0.60.60.45		4000010
D1.	.3459333	.0424866	8.14	0.000	.2626347	/	.4292319
d86	 						
D1.	.4062418	.0465417	8.73	0.000	.3149927	7	.4974908
d87	4720022	.0502708	9.41	0.000	.3744421		5715606
D1.	.4/30023	.0302/08	9.41	0.000	.3/4442]	-	.5715626

Tabla comparativa:

	(1)	(2)	(3)	(4)
	POLS	RE	FE	FD
d81	0.119*** (0.0311)	0.119*** (0.0215)	0.119*** (0.0215)	0.119***
d82	0.178***	0.178***	0.178***	0.178***
	(0.0311)	(0.0215)	(0.0215)	(0.0269)
d83	0.226***	0.226***	0.226***	0.226***
	(0.0311)	(0.0215)	(0.0215)	(0.0329)
d84	0.297***	0.297***	0.297***	0.297***
	(0.0311)	(0.0215)	(0.0215)	(0.0380)
d85	0.346***	0.346***	0.346***	0.346***
	(0.0311)	(0.0215)	(0.0215)	(0.0425)
d86	0.406***	0.406***	0.406***	0.406***
	(0.0311)	(0.0215)	(0.0215)	(0.0465)
d87	0.473***	0.473***	0.473***	0.473***
	(0.0311)	(0.0215)	(0.0215)	(0.0503)
_cons	1.393*** (0.0220)	1.393***	1.393*** (0.0152)	
N	4360	4360	4360	3815
r2	0.0752		0.163	0.0252

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Por lo tanto, lo que se puede concluir acerca de los coeficientes de las variables *dummy* es que son numéricamente idénticos.

(b) Añadir las variables constantes en el tiempo educ, black e hisp al modelo, y estimar por POLS y RE. ¿Cómo se comparan los coeficientes? ¿Qué ocurre si se estima la ecuación por FE?

POLS:

Source	SS	df	MS		er of obs = 4349) =	-,
Model Residual			17.909165 .24314508	9 Prob 7 R-squ	> F =	0.0000 0.1448
Total	1236.52964		.28367277			
lwage	Coefficient	Std. err.	t 	P> t	[95% conf.	interval]
d81	.1193902	.029871	4.00	0.000	.0608279	.1779526
d82		.029871	5.97	0.000	.1196277	.2367524
d83		.029871	7.56	0.000	.1672241	.2843488
d84	.2968181	.029871	9.94	0.000	.2382557	.3553804
d85	.3459333	.029871	11.58	0.000	.287371	.4044957
d86	.4062418	.029871	13.60	0.000	.3476794	.4648041
d87	.4730023	.029871	15.83	0.000	.41444	.5315647
educ	.0770943	.0043766	17.62	0.000	.0685139	.0856747
black	1225637	.0237021	-5.17	0.000	1690319	0760955
hisp	.024623	.0213056	1.16	0.248	0171468	.0663928
cons	.4966384	.0566686	8.76	0.000	.3855391	.6077377
RE:						
Random-effects Group variable	s GLS regressi e: nr	on			of obs = of groups =	•
R-squared:				Obs per	aroun.	
Within =	= 0 1625			ODS PCI	min =	8
Between =					avg =	8.0
Overall =					max =	8
Overair -	- 0.1440				max -	0
corr(u_i, X) =	= 0 (assumed)			Wald chi		819.51 0.0000
lwage	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
d81	.1193902	.021487	5.56	0.000	.0772765	.1615039
d82	.1781901	.021487	8.29	0.000	.1360764	.2203038
d83	.2257865	.021487	10.51	0.000	.1836728	.2679001
d84	.2968181	.021487	13.81	0.000	.2547044	.3389318
d85	.3459333	.021487	16.10	0.000	.3038196	.388047
d86	.4062418	.021487	18.91	0.000	.3641281	.4483555
d87		.021487	22.01	0.000	.4308886	.515116
educ		.009177	8.40	0.000	.0591076	.0950809
black		.0496994	-2.47	0.014	2199728	0251546
hisp		.0446744	0.55	0.582	0629371	.1121831
_cons		.1122718	4.42	0.000	.2765897	.7166871
	+					
sigma_u						
sigma_e						
rho	.48377912	(fraction	of varian	ce due to	oui)	

FE:

Fixed-effects (within) regression Group variable: nr					obs = groups =	•
R-squared: Within = 0.1625 Between = . Overall = 0.0752				Obs per g	roup: min = avg = max =	
corr(u_i, Xb)	= 0.0000				= =	
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
d82 d83 d84 d85 d86 d87 educ black hisp	.2257865 .2968181 .3459333 .4062418 .4730023	.021487 .021487 .021487 .021487 .021487 .021487 (omitted) (omitted) (omitted)	8.29 10.51 13.81 16.10 18.91 22.01	0.000 0.000 0.000 0.000 0.000	.0772631 .136063 .1836594 .254691 .3038063 .3641147 .4308753	.2203172 .2679135 .3389452 .3880604 .4483688 .5151294
	.39074676 .35469771 .54824631	(fraction	of variar	nce due to	u_i)	
F test that all $u_i=0$: F(544, 3808) = 9.71				Prob > 1	F = 0.0000	

Tabla comparativa:

	(1)	(2)	(3)
	POLS	RE	FE
d81	0.119***	0.119***	0.119***
	(0.0299)	(0.0215)	(0.0215)
d82	0.178***	0.178***	0.178***
	(0.0299)	(0.0215)	(0.0215)
d83	0.226***	0.226***	0.226***
	(0.0299)	(0.0215)	(0.0215)
d84	0.297***	0.297***	0.297***
	(0.0299)	(0.0215)	(0.0215)
d85	0.346***	0.346***	0.346***
	(0.0299)	(0.0215)	(0.0215)
d86	0.406***	0.406***	0.406***
	(0.0299)	(0.0215)	(0.0215)
d87	0.473***	0.473***	0.473***
	(0.0299)	(0.0215)	(0.0215)
educ	0.0771*** (0.00438)	0.0771*** (0.00918)	0
black	-0.123*** (0.0237)	-0.123** (0.0497)	0
hisp	0.0246 (0.0213)	0.0246 (0.0447)	0
_cons	0.497*** (0.0567)	0.497***	1.393***
N	4360	4360	4360
r2	0.145		0.163

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Por un lado, se puede observar que las estimaciones de POLS y RE son numéricamente idénticas, ya que, si el modelo incluye sólo efectos temporales agregados y covariables específicas del individuo que no tienen variación temporal, entonces, los coeficientes de POLS son iguales a los de RE.

Por otra parte, lo que ocurre si se estima la ecuación por FE es que los coeficientes asociados a las variables constantes en el tiempo no se pueden estimar y, en consecuencia, cuando se incluyen variables constantes en el tiempo, la estimación de la constante en FE no es igual a la estimación de la constante en POLS/RE.

-.017931

.7122189

-.2271964

.2810579

(c) ¿Son iguales los errores estándar de POLS y RE del inciso (b)? ¿Cuáles son, probablemente, más fiables?

Los errores estándar de POLS y RE del inciso (b) no son iguales. Los errores estándar de POLS suponen, además de homocedasticidad, que no hay correlación serial en el error compuesto, es decir, que no considera la posible presencia de heterogeneidad individual no observable. Los errores estándar de RE, al menos, en su estructura estándar, permiten la presencia de correlación serial (en particular, la cual es igual para todos los pares de períodos (t, s)). Esto puede ser demasiado restrictivo, pero es menos restrictivo que los habituales errores estándar de POLS.

(d) Obtener los errores estándar robustos para POLS. ¿Son preferibles estos o los errores estándar habituales de RE?

POLS (con errores estándar robustos):

black | -.1225637 .0532662

.4966384 .1097474

hisp |

cons |

Linear regress	sion			Number F(10, 5 Prob > R-squar Root MS	Fed	= = = =	4,360 49.41 0.0000 0.1448 .4931
		(Sto	d. err.	adjusted	for 545	clust	ers in nr)
 lwage 	 Coefficient	Robust std. err.	t	P> t	[95%	conf.	interval]
d81 d82 d83 d84 d85 d86 d87 educ	.1193902 .1781901 .2257865 .2968181 .3459333 .4062418 .4730023	.0244086 .0241987 .0243796 .0271485 .0263181 .0273064 .025996	4.89 7.36 9.26 10.93 13.14 14.88 18.20 8.55	0.000 0.000 0.000 0.000 0.000 0.000 0.000	.0714 .1306 .1778 .2434 .2942 .3526 .4219	6558 8968 4894 2358 6029	.1673369 .2257243 .2736761 .3501468 .3976309 .4598807 .5240672

Estos errores estándar robustos son preferibles a los errores estándar habituales de RE, ya que estos errores estándar robustos permiten cualquier tipo de correlación serial y de heterocedasticidad de los disturbios que varían en el tiempo.

.024623 .0411235 0.60 0.550 -.0561573

-2.30 0.022

4.53 0.000

(e) Obtener los errores estándar robustos de RE. ¿Cómo se comparan con los errores estándar robustos de POLS y por qué?

RE (con errores estándar robustos):

-	on				4,360 545
0.1296			Obs per	group: min = avg = max =	8 8.0 8
- 0 (assumed)	(St	d. err. a	Prob >	chi2 =	494.13 0.0000 ters in nr)
Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
.1781901 .2257865 .2968181 .3459333 .4062418 .4730023 .0770943 1225637 .024623	.0241987 .0243796 .0271485 .0263181 .0273064 .025996 .0090198 .0532662 .0411235	7.36 9.26 10.93 13.14 14.88 18.20 8.55 -2.30 0.60	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.549 0.000	.0715502 .1307616 .1780033 .2436081 .2943508 .3527222 .422051 .0594157 2269636 0559775 .2815375	.1672302 .2256186 .2735696 .3500281 .3975159 .4597613 .5239536 .0947728 0181638 .1052236 .7117392
	c: nr = 0.1625 = 0.1296 = 0.1448 = 0 (assumed) Coefficient	Robust Coefficient std. err. .1193902 .0244086 .1781901 .0241987 .2257865 .0243796 .2968181 .0271485 .3459333 .0263181 .4062418 .0273064 .4730023 .025996 .0770943 .00901981225637 .0532662 .024623 .0411235 .4966384 .1097474	Robust Coefficient std. err. z .1193902 .0244086 4.89 .1781901 .0241987 7.36 .2257865 .0243796 9.26 .2968181 .0271485 10.93 .3459333 .0263181 13.14 .4062418 .0273064 14.88 .4730023 .025996 18.20 .0770943 .0090198 8.55 -1225637 .0532662 -2.30 .024623 .0411235 0.60 .4966384 .1097474 4.53	Coefficient std. err. z P> z .1193902 .0244086 4.89 0.000 .1781901 .0241987 7.36 0.000 .2257865 .0243796 9.26 0.000 .2257865 .0243796 9.26 0.000 .2968181 .0271485 10.93 0.000 .3459333 .0263181 13.14 0.000 .4062418 .0273064 14.88 0.000 .4730023 .025996 18.20 0.000 .4730023 .025996 18.20 0.000 .0770943 .0090198 8.55 0.0001225637 .0532662 -2.30 0.021 .024623 .0411235 0.60 0.549 .4966384 .1097474 4.53 0.000	Number of groups = Obs per group:

sigma_u | .34337144 sigma_e | .35469771 rho | .48377912 (fraction of variance due to u_i)

Tabla comparativa:

	(1) POLS (robu~) R	(2) E (robust)			
d81	0.119*** (0.0244)	0.119***			
d82	0.178*** (0.0242)	0.178*** (0.0242)			
d83	0.226*** (0.0244)	0.226*** (0.0244)			
d84	0.297*** (0.0271)	0.297*** (0.0271)			
d85	0.346*** (0.0263)	0.346*** (0.0263)			
d86	0.406*** (0.0273)	0.406*** (0.0273)			
d87	0.473*** (0.0260)	0.473*** (0.0260)			
educ	0.0771*** (0.00902)	0.0771*** (0.00902)			
black	-0.123** (0.0533)	-0.123** (0.0533)			
hisp	0.0246 (0.0411)	0.0246 (0.0411)			
_cons	0.497*** (0.110)	0.497*** (0.110)			
N r2	4360 0.145	4360			
Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01					

Por lo tanto, se puede observar que estos errores estándar son numéricamente idénticos a los errores estándar robustos de POLS porque se tiene un solo estimador y, entonces, hay una sola varianza robusta.

- f) Obtenga la estimación de GMM de utilizando todos los instrumentos posibles en niveles para el modelo en primeras diferencias y_{t 1} como instrumento para el modelo en niveles.
- g) Repita las estimaciones de los incisos e) y f) incluyendo efectos jos de tiempo.
- 2. En este ejercicio se ilustrata el hecho de que los estimadores de Arellano-Bond y de Blundell-Bond pueden extenderse en forma directa a modelos que incluyan regresores estrctamente exogenos y regresores secuencialmente exogenos.
 - En su paper original, Arellano y Bond modelaron el empleo de las empresas (utilizando un modelo de ajuste parcial para re ejar los costos de contratación y despido, incluyendo dos rezagos de la variable empleo. Otras variables incluidas fueron el nivel salarial actual y el rezagadow), el stock de capital actual, rezagado una y dos veces k) y la producción agregada actual, rezagada una y dos veces en el sector de la empresays). Todas las variables se expresan en logaritmos. Tambien se incluye un conjunto de variablesdummy de tiempo.
 - a) Estime el modelo por OLS. Compute los errores estandar robustos a heterocedasticidad y correlación serial.
 - b) Estime el modelo por FE. Compute los errores estandar robustos a heterocedasticidad y correlación serial.
 - c) Implemente el estimador de Anderson-Hsiao usando 2 como instrumento.
 - d) Estime la ecuacion de empleo usando el estimador de Arellano-Bond. Asuma que launica endogeneidad presente es en el rezago de la variable dependiente.
 - e) Ahora, considere como hicieron Blundell y Bond (1998) que los salarios y el stock de capital no deben tomarse como estrictamente exogenos en este contexto (como se hizo en los modelos anteriores). Reestime el modelo usando el estimador de A-B y considerando a los salarios y el stock de capital como regresores secuencialmente exogenos.
 - f) Adicionalmente, Blundell y Bond (1998) eliminan de su modelo los rezagos mas largos (de dos perodos) del empleo y el capital, y prescinden del nivel de producto agregado sectorial. Considerando esta cueston, compute el estimador de Blundell-Bond.
- 3. Cuando hay muchos instrumentos, surgen dos problemas principales:

Trabajo Práctico N° 1: Modelo de Regresión Lineal

Ejercicio 1.

8WLOL]DU OD EDVH GH GDWRV SURYLVWD 3FRUQZHOO GN

(a) A partir de los datos de los siete años, y utilizando los logaritmos de todas las variables, estimar un modelo peroLS que relacione la tasa de crimen con prbarr, prbconv, prbpris, avgsen y polpc y que incluya un conjunto de dummies de año.

POLS:

```
Source | SS df MS Number of obs = 630
                                                                             F(11, 618) = 74.49
  = 0.0000
                                                                               - squared = 0.5700
Residual | 88.735673 618 .143585231 R
                                                                               Adj R - squared = 0.5624
              +----
    Total | 206.380342 629 .328108652 Root MSE = .37893
 Icrmrte | Coefficient Std. err. t P>|t| [95% conf. interval]
                - .7195033 .0367657 - 19.57 0.000 - .7917042 - .6473024
- .5456589 .0263683 - 20.69 0.000 - .5974413 - .4938765
 lprbarr |
Iprbconv |
| Iprbpris | .2475521 .0672268 3.68 0.000 .1155314 .3795728
 lavgsen | - .0867575 .0579205 - 1.50 0.135 - .2005023 .0269872
   lpolpc | .3659886 .0300252 12.19 0.000 .3070248 .4249525
        d82 | .0051371 .057931 0.09 0.929
                                                                                       - .1086284 .1189026

      -.043503
      .0576243
      - 0.75
      0.451
      - .1566662
      .0696601

      -.1087542
      .057923
      - 1.88
      0.061
      - .222504
      .0049957

      -.0780454
      .0583244
      - 1.34
      0.181
      - .1925835
      .0364928

      -.0420791
      .0578218
      - 0.73
      0.467
      - .15563
      .0714719

      -.0270426
      .056899
      - 0.48
      0.635
      - .1387815
      .0846963

      - 2.082293
      .2516253
      - 8.28
      0.000
      - 2.576438
      - 1.588

        d84 l
        d85 |
        d86 |
        d87 |
                                                                                          - 2.576438 - 1.588149
     _cons |
```

(b) Computar los errores estándar robustos a heteroscedasticidad arbitraria y a autocorrelación serial arbitraria.

Trabajo Práctico Nº 3: Modelos de Paneles Dinámicos.

Ejercicio 1.

Considerar la base de datos "mod_abdata.dta" que fue utilizada por Arellano y Bond en su famoso paper de 1991. Se trata de un panel de 140 empresas británicas encuestadas, anualmente, entre 1976 y 1984. El panel original no es balanceado, pero la versión para este ejercicio se trata de un panel balanceado de empresas con observaciones para, exactamente, 6 años entre 1977 y 1982. La variable que identifica la empresa es id y la variable que identifica el tiempo es year. La variable n es el empleo de la empresa. Luego, considerar un modelo muy simplificado del siguiente tipo:

$$ln n_{it} = \rho ln n_{it-1} + \varepsilon_{it},$$

$$\varepsilon_{it} = c_i + \nu_{it},$$

$$E(c_i) = E(\nu_{it}) = E(c_i \nu_{it}) = 0,$$

donde n_{it} es el empleo de la empresa i en el año t.

(a) Estimar el modelo por OLS. ¿Qué sesgo se esperaría encontrar y por qué?

POLS:

Source	SS	df	MS	Number of (F(1, 768)		770 76542.09
Model Residual	1396.09073	1	1396.09073 .018239518	Prob > F R-squared	=	0.0000
+ Total			1.83367839	naj k bqua.	red = =	0.5501
	Coefficient			P> t [95	conf.	interval]
nL1	.9967362	.0036027	276.66	0.000 .989	96639 04734	1.003809 0254252

El sesgo que se esperaría encontrar es el sesgo de paneles dinámicos, el cual se desprende que ln n_{it-1} está correlacionado con los efectos fijos, c_i , que se encuentran en el término de error. En general, bajo muchos supuestos, OLS sobrestima el valor real del parámetro ρ .

(b) Estimar el modelo usando efectos fijos (FE). ¿Permite la transformación within eliminar el sesgo de paneles dinámicos?

FE:

Fixed-effects Group variable		ession			obs = groups =	770 138
R-squared: Within = Between = Overall =	= 0.9979			Obs per g	min =	5.6
corr(u_i, Xb)	= 0.9382				=	612.49 0.0000
	Coefficient				-	_
nL1 cons	.869605 .1076112	.0351375 .0405095	24.75 2.66	0.000	.8006043 .0280614	.9386056 .1871609
sigma_u sigma_e	.18358137 .1315487 .66073284					
F test that all	Ll u_i=0: F(13	7, 631) = 1.	.30		Prob >	F = 0.0194

La transformación *within* no permite eliminar el sesgo de paneles dinámicos, ya que, ahora, el problema se encuentra en que $\ln n_{it-1} = \ln n_{it-1} - \ln n_{i-1}$ está correlacionado con $\tilde{v}_{it} = v_{it} - \bar{v}_i$, aun cuando v_{it} no tiene correlación serial. En particular, el término $\ln n_{it-1}$ correlaciona negativamente con $\frac{-1}{T-1}v_{it-1}$ que se encuentra dentro de \bar{v}_i , mientras que, simétricamente, $\frac{-1}{T-1} \ln n_{it}$ y v_{it} también se encuentran correlacionados negativamente. Adicionalmente, hay otros pares de términos que correlacionan, pero su impacto es de segundo orden. Por último, cabe mencionar que Nickell mostró que, si $\rho > 0$, este sesgo es siempre negativo.

(c) Considerar una transformación de diferencias finitas de primer orden del modelo. ¿Continúa siendo la variable dependiente rezagada potencialmente endógena?

Considerando una transformación de diferencias finitas de primer orden del modelo, la variable dependiente rezagada continúa siendo potencialmente endógena, ya que el término $\Delta \ln n_{it-1} = \ln n_{it-1} - \ln n_{it-2}$ está correlacionado con v_{it-1} en $\Delta v_{it} = v_{it} - v_{it-1}$.

(d) Implementar el estimador de Anderson-Hsiao a partir del comando ivregress en Stata.

IV (Anderson-Hsiao):

Instrumental	variables 2SLS	regression			red	= = = =	632
	Coefficient				-	onf.	interval]
nL1 D1.	1		4.10	0.000	1.0528	76	2.978327
	D +1						

Instrumented: D.nL1
Instruments: nL2

(e) Ahora, obtener la estimación GMM de ρ utilizando todos los instrumentos posibles en niveles para el modelo en primeras diferencias. Para ello, utilizar el comando xtabond2.

GMM One-Step (Arellano-Bond):

Dynamic panel-data estimation, one-step diffe	erence GMM								
Group variable: id Time variable: year Number of instruments = 10 Wald chi2(0) = . Prob > chi2 = .	Number of obs = 632 Number of groups = 138 Obs per group: min = 4 avg = 4.58 max = 5								
n Coefficient Std. err. z	P> z [95% conf. interval]								
nL1 1.146045 .0865907 13.2	4 0.000 .9763309 1.31576								
Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.n									
Arellano-Bond test for AR(1) in first differ. Arellano-Bond test for AR(2) in first differ.									
Sargan test of overid. restrictions: chi2(9) (Not robust, but not weakened by many inst									

GMM Two-Step (Arellano-Bond):

Dynamic panel-data estimation, two-step	differe	nce GMM				
Group variable: id Time variable: year Number of instruments = 10 Wald chi2(0) = . Prob > chi2 = .		Number of Number of Obs per gr	group	ps = min =		4.58
n Coefficient Std. err.			[95%	conf.	inte	erval]
nL1 1.176208 .0771686			1.024	4961	1.3	327456
Warning: Uncorrected two-step standard	errors a	re unreliak	ole.			
<pre>Instruments for first differences equat. GMM-type (missing=0, separate instrume L(1/5).L.n</pre>		each perio	od uni	less c	ollar	osed)
Arellano-Bond test for AR(1) in first d. Arellano-Bond test for AR(2) in first d.						0.003
Sargan test of overid. restrictions: ch. (Not robust, but not weakened by many Hansen test of overid. restrictions: ch. (Robust, but weakened by many instrument	instrum i2(9)	ents.)				

(f) Obtener la estimación de GMM de ρ utilizando todos los instrumentos posibles en niveles para el modelo en primeras diferencias e Δy_{it-1} como instrumento para el modelo en niveles.

SGMM One-Step (Blundell-Bond):

Dynamic panel-data estimation, one-step system GMM ______ Number of obs = 770 Number of groups = 138 Obs per group: min = 5 Group variable: id Time variable : year Number of instruments = 15 avg = 5.58 Wald chi2(1) = 75831.06Prob > chi2 = 0.000max =6 n | Coefficient Std. err. z P>|z| [95% conf. interval] ______ nL1 | 1.107192 .0200965 55.09 0.000 1.067803 1.14658 _cons | -.1644167 .0233703 -7.04 0.000 -.2102216 -.1186118 Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.nInstruments for levels equation Standard cons GMM-type (missing=0, separate instruments for each period unless collapsed) Arellano-Bond test for AR(1) in first differences: z = -5.47 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -2.27 Pr > z = 0.023______ Sargan test of overid. restrictions: chi2(13) = 168.40 Prob > chi2 = 0.000(Not robust, but not weakened by many instruments.) Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels Sargan test excluding group: chi2(9) = 127.56 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(4) = 40.84 Prob > chi2 = 0.000

SGMM Two-Step (Blundell-Bond):

```
Dynamic panel-data estimation, two-step system GMM
_____
                                             Number of obs = 770
Number of groups = 138
Group variable: id
Time variable : year
Number of instruments = 15
                                              Obs per group: min =
                                                            avg =
Wald chi2(1) = 23169.14
Prob > chi2 = 0.000
                                                           max =
                                                                       6
         n | Coefficient Std. err. z P>|z| [95% conf. interval]
_______
nL1 | 1.149856 .0316392 36.34 0.000 1.087845 1.211868

_cons | -.1738829 .0370401 -4.69 0.000 -.2464801 -.1012857
Warning: Uncorrected two-step standard errors are unreliable.
Instruments for first differences equation
 GMM-type (missing=0, separate instruments for each period unless collapsed)
   L(1/5).L.n
Instruments for levels equation
  Standard
    cons
 GMM-type (missing=0, separate instruments for each period unless collapsed)
Arellano-Bond test for AR(1) in first differences: z = -3.18 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = -1.71 Pr > z = 0.087
Sargan test of overid. restrictions: chi2(13) = 168.40 Prob > chi2 = 0.000
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(13) = 56.19 Prob > chi2 = 0.000
  (Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
   Hansen test excluding group: chi2(9) = 49.15 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(4) = 7.04 Prob > chi2 = 0.134
```

(g) Repetir las estimaciones de los incisos (e) y (f) incluyendo efectos fijos de tiempo.

GMM One-Step (Arellano-Bond):

Dynamic panel-data estimation, one-step difference (
--

Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year			Number	of obs = of groups = r group: min = avg = max =	138 4 4.58
n	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
nL1 yr1977 yr1978 yr1980 yr1981 yr1982	0390927	.1114731 .0133804 .0101049 .010015 .0107307 .0194763	2.39 0.54 -0.01 -3.90 -13.42 -11.01	0.017 0.590 0.993 0.000 0.000	.0483102 0190198 0198972 0587218 1650901 2526308	.4852767 .0334304 .0197132 0194636 1230264 1762851

Instruments for first differences equation

Standard

D. (yr1977 yr1978 yr1979 yr1980 yr1981 yr1982)

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.n

Arellano-Bond test for AR(1) in first differences: z=0.30 Pr > z=0.764 Arellano-Bond test for AR(2) in first differences: z=-0.93 Pr > z=0.351Sargan test of overid. restrictions: chi2(9)=36.01 Prob > chi2=0.000 (Not robust, but not weakened by many instruments.)

GMM Two-Step (Arellano-Bond):

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 15 = .			Number	of obs of group:	os =	632 138 4 4.58
n	Coefficient	Std. err.	Z	P> z	 [95%	conf.	interval]
nL1 yr1977 yr1978 yr1980 yr1981 yr1982	.0090912 .0020047 .0313017 .1342723	.0923988 .0095385 .0051366 .0073163 .0163176 .0235447	4.43 0.95 0.39 -4.28 -8.23 -8.50	0.000 0.341 0.696 0.000 0.000	.2283 009 0080 0459 1663 2463	9604 0629 6414 2543	.5903486 .0277864 .0120723 0169621 1022903 1539855

Warning: Uncorrected two-step standard errors are unreliable.

Instruments for first differences equation Standard

D.(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982)

GMM-type (missing=0, separate instruments for each period unless collapsed)

Arellano-Bond test for AR(1) in first differences: z=-0.90 Pr > z=0.370 Arellano-Bond test for AR(2) in first differences: z=-1.22 Pr > z=0.222 Sargan test of overid. restrictions: chi2(9)=36.01 Prob > chi2=0.000 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(9) = 11.00 Prob > chi2 = 0.276
(Robust, but weakened by many instruments.)

SGMM One-Step (Blundell-Bond):

Dynamic panel-data estimation, one-step system GMM ______ Number of obs = 770
Number of groups = 138 Group variable: id Time variable : year Number of instruments = 20 Obs per group: min = avg = Wald chi2(6) = 84467.08Prob > chi2 = 0.000max =6 n | Coefficient Std. err. z P>|z| [95% conf. interval] ______ nL1 | 1.070702 .0198077 54.05 0.000 1.031879 1.109524 yr1977 | .0438478 .0151864 2.89 0.004 .0140831 .0736126 yr1978 | .0518471 .0129701 4.00 0.000 .0264261 .0772681 yr1979 | .0418566 .0129664 3.23 0.001 .0164428 .0672704 yr1981 | -.0742759 .0129883 -5.72 0.000 -.0997325 -.0488193 yr1982 | -.0521052 .0133172 -3.91 0.000 -.0782065 -.026004 _cons | -.1213363 .0250374 -4.85 0.000 -.1704086 -.072264 ______ Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.nInstruments for levels equation Standard yr1977 yr1978 yr1979 yr1980 yr1981 yr1982 cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.L.n ______ Arellano-Bond test for AR(1) in first differences: z = -6.30 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -2.36 Pr > z = 0.018______ Sargan test of overid. restrictions: chi2(13) = 79.17 Prob > chi2 = 0.000(Not robust, but not weakened by many instruments.) Difference-in-Sargan tests of exogeneity of instrument subsets: GMM instruments for levels Sargan test excluding group: chi2(9) = 21.45 Prob > chi2 = 0.011 Difference (null H = exogenous): chi2(4) = 57.72 Prob > chi2 = 0.000iv(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982, eq(level)) Sargan test excluding group: chi2(8) = 56.13 Prob > chi2 = 0.000 Difference (null H = exogenous): chi2(5) = 23.05 Prob > chi2 = 0.000

SGMM Two-Step (Blundell-Bond):

Dynamic panel-data estimation, two-step system GMM ______ Number of obs = 770 Number of groups = 138 Group variable: id Time variable : year Number of instruments = 20 Obs per group: min = Wald chi2(6) = 19554.89avg = Prob > chi2 = 0.000max =6 n | Coefficient Std. err. z P>|z| [95% conf. interval] _______ nL1 | 1.115279 .0252032 44.25 0.000 1.065881 1.164676 ______ Warning: Uncorrected two-step standard errors are unreliable. Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.nInstruments for levels equation Standard yr1977 yr1978 yr1979 yr1980 yr1981 yr1982 GMM-type (missing=0, separate instruments for each period unless collapsed) Arellano-Bond test for AR(1) in first differences: z = -3.22 Pr > z = 0.001Arellano-Bond test for AR(2) in first differences: z = -1.56 Pr > z = 0.118Sargan test of overid. restrictions: chi2(13) = 79.17 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(13) = 28.91 Prob > chi2 = 0.007 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(9) = 6.67 Prob > chi2 = 0.671 Difference (null H = exogenous): chi2(4) = 22.23 Prob > chi2 = 0.000iv(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982, eq(level))

Hansen test excluding group: chi2(8) = 22.21 Prob > chi2 = 0.005 Difference (null H = exogenous): chi2(5) = 6.69 Prob > chi2 = 0.244

Ejercicio 2.

En este ejercicio, se ilustrará el hecho de que los estimadores de Arellano-Bond y de Blundell-Bond pueden extenderse, en forma directa, a modelos que incluyan regresores estrictamente exógenos y regresores secuencialmente exógenos.

En su paper original, Arellano y Bond modelaron el empleo de las empresas (n) utilizando un modelo de ajuste parcial para reflejar los costos de contratación y despido, incluyendo dos rezagos de la variable empleo. Otras variables incluidas fueron el nivel salarial actual y el rezagado (w), el stock de capital actual, rezagado una y dos veces (k), y la producción agregada actual, rezagada una y dos veces en el sector de la empresa (ys). Todas las variables se expresan en logaritmos. También se incluye un conjunto de variables dummy de tiempo.

(a) Estimar el modelo por OLS. Computar los errores estándar robustos a heterocedasticidad y correlación serial.

POLS:

Linear regression	Number of obs	=	632
	F(14, 137)	=	15042.46
	Prob > F	=	0.0000
	R-squared	=	0.9948
	Root MSE	=	.09885

(Std. err. adjusted for 138 clusters in id) | Robust n | Coefficient std. err. t P>|t| [95% conf. interval] _______
 nL1 | 1.083681
 .0479746
 22.59
 0.000
 .9888145
 1.178548

 nL2 | -.1204015
 .0432502
 -2.78
 0.006
 -.2059257
 -.0348772

 w | -.4314672
 .1861579
 -2.32
 0.022
 -.7995817
 -.0633527
 wL1 | .3933175 .1806983 2.18 0.031 .035999 .7506359 .2133524 .4295614

MTT	.39331/5	.1806983	2.18	0.031	.035999	./506359
k	.3214569	.0546692	5.88	0.000	.2133524	.4295614
kL1	2087172	.0674584	-3.09	0.002	3421117	0753228
kL2	0811552	.030786	-2.64	0.009	1420324	020278
ys	.5156912	.1862924	2.77	0.006	.1473108	.8840716
ysL1	7065917	.2745098	-2.57	0.011	-1.249416	1637674
ysL2	.2489473	.1450994	1.72	0.088	0379767	.5358714
yr1977	0	(omitted)				
yr1978	0	(omitted)				
yr1979	.0161153	.0087992	1.83	0.069	0012845	.0335151
yr1980	.0267825	.0153105	1.75	0.082	003493	.057058
yr1981	0111743	.0255106	-0.44	0.662	0616197	.0392712
yr1982	0017447	.0217911	-0.08	0.936	044835	.0413456
_cons	1238146	.2952534	-0.42	0.676	7076579	.4600287

(b) Estimar el modelo por FE. Computar los errores estándar robustos a heterocedasticidad y correlación serial.

<u>FE:</u>

Fixed-effects Group variable		ression		Number Number	of obs of group	= s =	632 138
R-squared: Within = Between = Overall =	= 0.9706			Obs per	a	in = vg = ax =	4 4.6 5
corr(u_i, Xb)	= 0.6273			F(14,13 Prob >		= =	128.03 0.0000
		(St	d. err.	adjusted	for 138	clust	ers in id)
	 I	Robust					
n	Coefficient	std. err.	t	P> t	[95%	conf.	interval]
nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr1977 yr1978 yr1979 yr1980 yr1981 yr1982 cons	.712259 2216269 504334 .1750077 .3667223 0648159 .0287852 .5252203 5622163 .1339081 0 .0218097 .0241949 .0319888 0005961 0 .1248446	.0546499 .0557228 .1902322 .1374862 .0660277 .052492 .0412597 .1803162 .2111979 .1695363 (omitted) .0273806 .0257897 .0201233 .0168409 (omitted) .8176095	13.03 -3.98 -2.65 1.27 5.55 -1.23 0.70 2.91 -2.66 0.79 0.80 0.94 1.59 -0.04	0.000 0.000 0.009 0.205 0.000 0.219 0.487 0.004 0.009 0.431 0.427 0.350 0.114 0.972	.6041331888050968 .236116860528 .1686979820130323026800780338	149 051 619 571 152 031 574 456 383 336 024 037 978	.820325511143891281629 .4468772 .4972875 .0389834 .1103735 .88178311445871 .4691544 .0759531 .0751922 .0717813 .0327056
sigma_u sigma_e rho	.29806935 .09040774 .91575291	(fraction		ance due t			

⁽c) Implementar el estimador de Anderson-Hsiao usando n_{it-2} como instrumento.

IV (Anderson-Hsiao):

Instrumental v	variables 2SLS	S regressio	n	Wald Prob R-sq	er of obs = chi2(13) = > chi2 = uared = MSE =	14.10 0.3669
D.n	Coefficient	Std. err.			[95% conf.	interval]
nL1 D1.					-21.75353	33.40152
nL2 D1.	9846567	2.216574	-0.44	0.657	-5.329062	3.359749
w D1.	3323156	.4888956	-0.68	0.497	-1.290533	.6259022
wL1 D1.	1.433551	3.563217	0.40	0.687	-5.550226	8.417328
k D1.	 .0698672	.7653782	0.09	0.927	-1.430246	1.569981
kL1 D1.	•	4.482217	-0.38	0.703	-10.49331	7.076659
kL2 D1.	•	1.434586	-0.35	0.725	-3.317016	2.306459
ys D1.		1.935232	0.69	0.487	-2.448939	5.13703
ysL1 D1.		6.196766	-0.44	0.660	-14.86758	9.423296
ysL2 D1.		.837905	-0.18	0.857	-1.792822	1.491705
yr1977 D1.		(omitted)				
yr1978 D1.		.381059	0.18	0.859	6791328	.814591
yr1979 D1.		.3885855	0.30	0.767	6465268	.8767003
yr1980 D1.		.2766837	0.40	0.693	4329398	.6516404
yr1981 D1.		(omitted)				
yr1982 D1.	 	(omitted)				
_cons	 .1190119 	.350733	0.34	0.734	5684122	.806436

Instrumented: D.nL1

(d) Estimar la ecuación de empleo usando el estimador de Arellano-Bond. Asumir que la única endogeneidad presente es en el rezago de la variable dependiente.

GMM One-Step (Arellano-Bond):

Dynamic panel-data estimation, one-step difference GMM

Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 20 = .			Number	of obs = of groups = group: min = avg = max =	138 3 3 . 00
n	 Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
n	+ 					
L1.	.5325962	.4060438	1.31	0.190	2632351	1.328428
L2.	1678165	.108895	-1.54	0.123	3812468	.0456137
w L1.	•	.1878885	-2.89 0.22	0.004 0.829	9117894 3746976	1752799 .467706
k	1					
	.3597198	.0798932	4.50	0.000	.203132	.5163076
L1.	0203542	.1486021	-0.14	0.891	311609	.2709006
L2.	.0531949	.0564035	0.94	0.346	0573539	.1637438
ys 	.6720783	.1618321	4.15	0.000	.3548932	.9892634
L1.	•	.2155005	-1.84	0.066	818599	.0261475
L2.		.1883471	-0.33	0.744	4307746	.3075325
yr1979	0019098	.0289454	-0.07	0.947	0586417	.0548221
yr1980		.0194	0.79	0.429	0226734	.0533731
yr1982	0047222	.0199879	-0.24	0.813	0438977	.0344534
Instruments for	or first diffe	rences equa	tion			

Instruments for first differences equation

Standard

D.(w L.w k L.k L2.k ys L.ys L2.ys yr1977 yr1978 yr1979 yr1980 yr1981 yr1982)

GMM-type (missing=0, separate instruments for each period unless collapsed) $L(1/5) \cdot L \cdot n$

Arellano-Bond test for AR(1) in first differences: z=-0.93 Pr > z=0.351 Arellano-Bond test for AR(2) in first differences: z=-1.57 Pr > z=0.117

Sargan test of overid. restrictions: chi2(7) = 18.99 Prob > chi2 = 0.008 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(7) = 12.33 Prob > chi2 = 0.090
 (Robust, but weakened by many instruments.)

GMM Two-Step (Arellano-Bond):

Dynamic	panel-data	estimation,	two-step	difference	GMM
---------	------------	-------------	----------	------------	-----

Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 20 = .				of obs = of groups = group: min = avg = max =	138 3 3.00			
n	 Coefficient	Corrected std. err.	z 	P> z	[95% conf.	interval]			
n L1. L2.	.6080291	.6739661 .1688863	0.90 -0.82	0.367 0.414	7129203 468953	1.928978			
 L1.	4912924	.2335444	-2.10 0.55	0.035 0.582	949031 3231847	0335539 .5758381			
k L1. L2.	.2912765 0170639	.0889614 .219071 .0736175	3.27 -0.08 0.36	0.001 0.938 0.721	.1169154 4464351 1179608	.4656376 .4123073 .1706145			
ys L1. L2.	.5452599 307353	.1895989 .2411337 .2036039	2.88 -1.27 -0.62	0.004 0.202 0.538	.1736528 7799662 524455	.916867 .1652603 .2736577			
yr1979 yr1980 yr1982	.0244669	.0360821 .0224526 .0283143	0.24 1.09 -0.67	0.808 0.276 0.503	0619306 0195394 0744428	.0795087 .0684731 .0365472			
<pre>Instruments for first differences equation Standard D.(w L.w k L.k L2.k ys L.ys L2.ys yr1977 yr1978 yr1979 yr1980 yr1981 yr1982) GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.n</pre>									
Arellano-Bond Arellano-Bond									
Sargan test of	f overid. rest	rictions: c	hi2(7)	= 18.9	9 Prob > chi	2 = 0.008			

Hansen test of overid. restrictions: chi2(7) = 12.33 Prob > chi2 = 0.090

(Not robust, but not weakened by many instruments.)

(Robust, but weakened by many instruments.)

⁽e) Ahora, considerar, como hicieron Blundell y Bond (1998), que los salarios y el stock de capital no deben tomarse como estrictamente exógenos en este contexto (como se hizo en los modelos anteriores). Reestimar el modelo usando el estimador de A-B y considerando a los salarios y al stock de capital como regresores secuencialmente exógenos.

GMM One-Step (Arellano-Bond):

Dynamic panel-dat	a estimation.	one-step	difference	GMM

Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 33	Number of obs = 414 Number of groups = 138 Obs per group: min = 3 avg = 3.00 max = 3				
n	 Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
n L1. L2.	.8328315	.1219725	6.83 -2.13	0.000	.5937698 3150873	1.071893 0130599
w L1.	5056556	.3148758 .3347117	-1.61 0.82	0.108 0.411	-1.122801 3809867	.1114896 .931059
k L1. L2.	.3384097 2157422	.1810356 .1197218 .0481602	1.87 -1.80 -0.01	0.062 0.072 0.988	0164135 4503925 0950895	.6932329 .0189082 .0936951
ys L1. L2.	.7245478 5540143	.2528721 .4752081 .2887007	2.87 -1.17 0.19	0.004 0.244 0.850	.2289276 -1.485405 5112447	1.220168 .3773765 .6204413
yr1979 yr1980 yr1982	.0188299	.0303218 .0214161 .0217373	-0.20 0.88 -0.31	0.841 0.379 0.757	0655299 0231449 049338	.0533295 .0608046 .0358708
Standard D.(ys L.ys GMM-type (m:	or first diffe s L2.ys yr1977 issing=0, sepa .n L.w L.k)	yr1978 yr	1979 yr198			ollapsed)
	test for AR(1 test for AR(2					z = 0.000 z = 0.034
(Not robust, Hansen test of	f overid. rest, but not weak f overid. rest	ened by ma rictions:	ny instrum chi2(20)	ents.)	Rrob > chi	
iv(ys L.ys l Hansen tes	-Hansen tests L2.ys yr1977 y st excluding g e (null H = ex	r1978 yr19 roup:	79 yr1980 chi2(14)	yr1981 y = 14.8	7r1982) 84 Prob > chi	

GMM Two-Step (Arellano-Bond):

Dynamic panel	-data estimati	on, two-ste	o differe	ence GMM		
Group variable Time variable Number of inst Wald chi2(0) Prob > chi2	: year truments = 33 = .				of obs = of groups = group: min = avg = max =	3
n	 Coefficient	Corrected std. err.	Z	P> z	[95% conf.	interval]
n L1. L2.	.9403457	.1894156	4.96 -1.65	0.000	.5690979 3346062	1.311593
w L1.	4490707	.3993756 .3136958	-1.12 1.08	0.261 0.281	-1.231833 2762982	.3336911
k L1. L2.	.1701686 2258957	.2126183 .1315513 .0564683	0.80 -1.72 -0.74	0.424 0.086 0.458	2465556 4837316 1526117	.5868928 .0319401 .0687401
ys L1. L2.	.689388 5276126	.2434718 .4812107 .2419835	2.83 -1.10 0.55	0.005 0.273 0.585	.2121921 -1.470768 3421794	1.166584 .4155429 .6063786
yr1979 yr1980 yr1982	.0379698	.0342941 .0228282 .0242533	0.56 1.66 -0.85	0.573 0.096 0.394	0478977 0067727 0682285	.0865326 .0827124 .0268427
GMM-type (m:	or first diffe s L2.ys yr1977 issing=0, sepa .n L.w L.k)	yr1978 yr1	979 yr198			ollapsed)
Arellano-Bond Arellano-Bond						
Hansen test of	, but not weak	ened by man	y instrum hi2(20)	ments.)		
Hansen tes	-Hansen tests L2.ys yr1977 y st excluding o	r1978 yr197: group: cl	9 yr1980 hi2(14)	yr1981 yr = 14.8	r1982)	

(f) Adicionalmente, Blundell y Bond (1998) eliminan de su modelo los rezagos más largos (de dos períodos) del empleo y el capital y prescinden del nivel de producto agregado sectorial. Considerando esta cuestión, computar el estimador de Blundell-Bond.

SGMM One-Step (Blundell-Bond):

Dynamic panel-data estimation, one-step system GMM Number of obs = Number of groups = Group variable: id 138 Time variable : year Number of instruments = 47Obs per group: min = avg = 5.00 Wald chi2(9) = 37427.45Prob > chi2 = 0.000max = Robust n | Coefficient std. err. z P>|z| [95% conf. interval] L1. | .9025721 .0412484 21.88 0.000 .8217267 .9834175 w --. | -.5397871 .1984403 -2.72 0.007 -.928723 -.1508513 1.69 0.090 -.0480722 L1. | .3047706 .1800251 kΙ --. | .4734141 .0900715 5.26 0.000 .2968772 .6499511 L1. | -.3942878 .086912 -4.54 0.000 -.5646322 -.2239433
 yr1978 |
 .0347845
 .0217776
 1.60
 0.110
 -.0078988

 yr1979 |
 .044848
 .0173516
 2.58
 0.010
 .0108395

 yr1980 |
 .0291248
 .0171671
 1.70
 0.090
 -.004522

 yr1982 |
 .0333513
 .0144621
 2.31
 0.021
 .0050062

 _cons |
 .8194633
 .3304982
 2.48
 0.013
 .1716988
 .0774678 .0616964 .1716988 1.467228 _____ Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(L.n L.w L.k)Instruments for levels equation Standard yr1977 yr1978 yr1979 yr1980 yr1981 yr1982 cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.n L.w L.k)______ Arellano-Bond test for AR(1) in first differences: z = -4.61 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -1.18 Pr > z = 0.238._____ Sargan test of overid. restrictions: chi2(37) = 86.05 Prob > chi2 = 0.000(Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(37) = 52.82 Prob > chi2 = 0.044(Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(25) = 35.67 Prob > chi2 = 0.077 Difference (null H = exogenous): chi2(12) = 17.15 Prob > chi2 = 0.144 iv(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982, eq(level)) Hansen test excluding group: chi2(33) = 44.68 Prob > chi2 = 0.084 Difference (null H = exogenous): chi2(4) = 8.14 Prob > chi2 = 0.087

SGMM Two-Step (Blundell-Bond):

Dynamic panel-data estimation, two-step system GMM Number of obs = Number of groups = Group variable: id 138 Time variable : year Number of instruments = 47Obs per group: min = avg = 5.00 Wald chi2(9) = 30749.14Prob > chi2 = 0.000max = Corrected n | Coefficient std. err. z P>|z| [95% conf. interval] L1. | .892057 .0524149 17.02 0.000 .7893258 w | --. | -.4138471 .2405795 -1.72 0.085 -.8853744 .0576801 .23221 .1663529 1.40 0.163 -.0938358 L1. | kΙ --. | .4563271 .1222931 3.73 0.000 .2166371 .6960171 L1. | -.3582417 .1210988 -2.96 0.003 -.595591 -.1208924
 yr1978 |
 .0405244
 .0265643
 1.53
 0.127
 -.0115406
 .0925895

 yr1979 |
 .0513874
 .0198615
 2.59
 0.010
 .0124596
 .0903151

 yr1980 |
 .0296077
 .0200915
 1.47
 0.141
 -.0097708
 .0689863

 yr1982 |
 .0290802
 .014089
 2.06
 0.039
 .0014662
 .0566942

 _cons |
 .6712912
 .3744471
 1.79
 0.073
 -.0626117
 1.405194
 _____ Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(L.n L.w L.k)Instruments for levels equation Standard yr1977 yr1978 yr1979 yr1980 yr1981 yr1982 cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.n L.w L.k)______ Arellano-Bond test for AR(1) in first differences: z = -4.46 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -1.27 Pr > z = 0.203._____ Sargan test of overid. restrictions: chi2(37) = 86.05 Prob > chi2 = 0.000(Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(37) = 52.82 Prob > chi2 = 0.044(Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(25) = 35.67 Prob > chi2 = 0.077 Difference (null H = exogenous): chi2(12) = 17.15 Prob > chi2 = 0.144 iv(yr1977 yr1978 yr1979 yr1980 yr1981 yr1982, eq(level)) Hansen test excluding group: chi2(33) = 44.68 Prob > chi2 = 0.084 Difference (null H = exogenous): chi2(4) = 8.14 Prob > chi2 = 0.087

Ejercicio 3.

Cuando hay muchos instrumentos, surgen dos problemas principales:

- Sobreestimación (overfitting) de la variable endógena.
- Mala estimación de la matriz de pesos W.

En estos casos, se proponen las siguientes soluciones:

- Probar diferentes especificaciones de IV recortando el número de rezagos en la matriz de instrumentos Z.
- Colapsar/combinar instrumentos. Se modifica la matriz de instrumentos para el individuo i:

$$Z_{i} = \begin{bmatrix} y_{i1} & 0 & 0 & \cdots \\ y_{i1} & y_{i2} & 0 & \cdots \\ y_{i3} & y_{i2} & y_{i1} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Si el modelo funciona, debería dar resultados similares con distintos instrumentos. Retomar el Ejercicio 2.e para ver una aplicación de esta cuestión. Estimar el modelo de empleo restringiendo el máximo rezago a 3 y 4 períodos. Por último, estimar el modelo colapsando instrumentos. Analizar si los resultados obtenidos son robustos.

<u>Tabla comparativa:</u>

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	GMM (OS) 2	GMM (TS) 2	GMM (OS) 3	GMM (TS) 3	GMM (OS) 4	GMM (TS) 4	GMM (OS) 5	GMM (TS) 5
nL1	0.833***	0.940***	0.949***	0.900***	0.847***	0.930***	1.108***	0.877*
	(0.122)	(0.189)	(0.182)	(0.226)	(0.121)	(0.174)	(0.387)	(0.455)
N	414	414	414	414	414	414	414	414

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Ejercicio 4.

Considerar, nuevamente, el modelo del primer ejercicio. Obtener el estimador LSDVC propuesto por Kiviet (1995) a partir del comando xtlsdvc. Luego, estimar la matriz de varianzas y covarianzas de los coeficientes de Kiviet siguiendo el procedimiento explicado en clase.

LSDVC (Kiviet):

LSDVC dynamic regression (SE not computed)

n	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
n L1.	 .9890308					

LSDVC (Kiviet):

LSDVC dynamic regression (SE not computed)

n	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
n L1.	.7863675					
yr1978						
yr1979		•	•	•	•	•
yr1980 yr1981		•	•	•	•	•
ĀTIAOI	.0103706	•	•	•	•	•

Universidad Torcuato Di Tella Maestría en Economía y Econometría 2022

Datos de Panel Problem Set 4 Modelos Lineales en Paneles Desbalanceados

1. Utilice la base de datos "keane.dta" la cual contiene el historial de empleo y escolaridad de una muestra de hombres para los años 1981 a 1987. Luego, considere la siguiente ecuación de salarios:

$$\ln(wage_{it}) = \beta_0 + \beta_1 exper_{it} + \beta_2 educ_{it} + c_i + u_{it}, \quad t = 1, 2, \dots, T$$
 (1)

donde $\ln(wage_{it})$ es el logaritmo del salario por hora, $exper_{it}$ son los años de experiencia en el mercado laboral y $educ_{it}$ son los años de escolaridad. Responda las siguientes preguntas:

- a) Estime la ecuación usando efectos fijos. ¿Cuál es el sesgo potencial en este contexto?
- b) Implemente el contraste de sesgo de selección propuesto por Wooldridge (1995) bajo el enfoque de Mundlak (1978).
- c) Implemente el contraste de sesgo de selección propuesto por Wooldridge (1995) bajo el enfoque de Chamberlain (1980).
- 2. Considerando nuevamente la ecuación de salarios del ejercicio previo, realice los siguientes procedimientos:
 - a) Estime el modelo por Wooldridge (1995) bajo el enfoque de Chamberlain (1980).
 - b) Estime el modelo por Wooldridge (1995) bajo el enfoque de Mundlak (1978).
 - c) Comente sobre los errores estándar de las estimaciones anteriores.
 - d) Estime los errores estándar vía bootstrapping.
 - e) Estime los errores estándar analíticos (varianza asintótica).

<u>Trabajo Práctico Nº 4:</u> Modelos Lineales en Paneles Desbalanceados.

Ejercicio 1.

Utilizar la base de datos "keane.dta", la cual contiene el historial de empleo y escolaridad de una muestra de hombres para los años 1981 a 1987. Luego, considerar la siguiente ecuación de salarios:

$$ln(wage_{it}) = \beta_0 + \beta_1 exper_{it} + \beta_2 educ_{it} + c_i + u_{it}, t = 1, 2, ..., T,$$
(1)

donde ln ($wage_{it}$) es el logaritmo del salario por hora, $exper_{it}$ son los años de experiencia en el mercado laboral y $educ_{it}$ son los años de escolaridad. Responder las siguientes preguntas:

(a) Estimar la ecuación usando efectos fijos. ¿Cuál es el sesgo potencial en este contexto?

FE:

Fixed-effects (within) regression Group variable: id					obs = groups =	•
R-squared: Within = Between = Overall =	Obs per g	<pre>min = avg = max =</pre>	-			
corr(u_i, Xb)	= -0.3197				= =	
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
educ	.0964067 .1697764 7.270616	.0243797	6.96	0.000	.1219795	.2175732
sigma_e	.45083563 .31573611 .67092951	(fraction o	of varian	ce due to	u_i)	
F test that al	ll u i=0: F(15	30, 4304) =	5.46		Prob >	F = 0.0000

En este contexto de efectos fijos, la selección muestral por truncamiento incidental es un problema si la selección está relacionada con los errores idiosincráticos de la ecuación de interés. Por lo tanto, si se piensa que, efectivamente, lo anterior se cumple y que se están observando los salarios "más altos" (los mejores salarios que se ofrecieron), entonces, el truncamiento tendría como consecuencia una sobreestimación de los retornos a la educación.

(b) Implementar el contraste de sesgo de selección propuesto por Wooldridge (1995) bajo el enfoque de Mundlak (1978).

Se rechaza la hipótesis nula, por lo que existe evidencia suficiente de que hay sesgo de selección.

(c) *Implementar el contraste de sesgo de selección propuesto por Wooldridge (1995) bajo el enfoque de Chamberlain (1980).*

Se rechaza la hipótesis nula, por lo que existe evidencia suficiente de que hay sesgo de selección.

Ejercicio 2.

Considerando, nuevamente, la ecuación de salarios del ejercicio previo, realizar los siguientes procedimientos:

(a) Estimar el modelo por Wooldridge (1995) bajo el enfoque de Chamberlain (1980).

POLS (Chamberlain):

Source Model Residual	1241.62941 +	5,821 .2		Number of F(15, 582 Prob > F R-squared Adj R-squ	21) 1	= = = =	5,837 111.85 0.0000 0.2237 0.2217	
Total	1599.50477	5,836 .2	274075526	Root MSE		=	.46185	
	lwage	Coefficient	Std. err.	t	P> t		[95% conf.	interval]
	exper educ exper81 educ81 exper82 educ82 exper83 educ83	.101945 .1106423 .0986618 0102639 2174353 0704014	.0130844 .0187839 .0330149 .0204867 .0284707 .0366788 .0284495 .0363551	4.33 5.43 3.35 4.82 -0.36 -5.93 -2.47 2.35	0.000 0.000 0.001 0.000 0.718 0.000 0.013 0.019	 	.0310064 .0651215 .0459208 .0585003 .0660771 .2893393 .1261731	.0823071 .1387684 .1753637 .1388233 .0455492 1455313 0146298 .1568731
year#c.lambda	_chamberlain 81 82 82 83 84 85 86 87 60 60 60 60 60 60 60 6	2683315 3211014 3500805 3390861 3585597 3195615 3590845	.0873923 .0890068 .0833289 .0853207 .0887959 .09277 .0978012	-3.07 -3.61 -4.20 -3.97 -4.04 -3.44 -3.67	0.002 0.000 0.000 0.000 0.000 0.001 0.000	 	.4396528 .4955878 .5134361 .5063464 .5326328 .5014252 .5508112	0970101 1466151 1867249 1718258 1844867 1376977 1673579

(b) Estimar el modelo por Wooldridge (1995) bajo el enfoque de Mundlak (1978).

POLS (Mundlak):

Source S	df	MS		er of obs	= 5,8 = 150.	
Model 354.23 Residual 1245.2			Prob R-sq	> F uared	= 0.00 = 0.22 = 0.22	00 15
Total 1599.5	0477 5 , 836	.274075526	_	R-squared MSE	= 0.22	
lwage	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
exper educ mean_exper mean_educ	.0881093 0275146	.007649 .0296264 .0156551 .0291599	8.87 2.97 -1.76 -0.58	0.000 0.003 0.079 0.565	.0528517 .0300305 0582044 0739398	.146188
year#c.lambda_mundlak 81 82 83 84 85 86	2756566 3239156 3637717 3154769 3101603 2515261 2525642	.0778676 .0765798 .0737034 .0727725 .073666 .074834 .0770484	-3.54 -4.23 -4.94 -4.34 -4.21 -3.36 -3.28	0.000 0.000 0.000 0.000 0.000 0.001 0.001	4283059 4740404 5082579 4581381 454573 3982286 4036077	1230073 1737908 2192856 1728158 1657477 1048236 1015207
_cons	8.781247	.1284501	68.36	0.000	8.529437	9.033056

(c) Comentar sobre los errores estándar de las estimaciones anteriores.

La varianza asintótica de los estimadores de la segunda etapa necesita ser corregida por heterocedasticidad y correlación serial arbitraria, así como, además, por la estimación de la primera etapa.

(d) Estimar los errores estándar vía bootstrapping.

<mark>Stata.</mark>

(e) Estimar los errores estándar analíticos (varianza asintótica).

<mark>Stata.</mark>

Universidad Torcuato Di Tella Maestría en Economía y Econometría 2022

Datos de Panel Problem Set 5 Modelos de Variable Dependiente Discreta

- 1. El archivo wagepan.dta contiene los datos utilizados por Vella y Verbeek (1998). Estos datos contienen información para 545 hombres que trabajaron cada año de 1980 a 1987. Utilice los datos para analizar el impacto de la escolaridad $(educ_{it})$ en la probabilidad de estar afiliado a un sindicato $(union_{it})$. Las variables se describen en el conjunto de datos. Observe que la educación no cambia con el tiempo.
 - a) Use Pooled OLS para estimar el modelo:

$$P\left(union_{it} = 1 \mid educ_{it}\right) = \beta_0 + \beta_1 educ_{it} \tag{1}$$

De acuerdo a los resultados obtenidos, ¿tiene impacto un año más de escolaridad sobre la probabilidad de estar afiliado a un sindicato?

b) Use Pooled Probit para estimar el modelo:

$$P\left(union_{it} = 1 \mid educ_{it}\right) = \Phi\left(\beta_0 + \beta_1 educ_{it}\right) \tag{2}$$

Comente sobre el impacto de un año más de educación en la probabilidad de estar afiliado a un sindicato.

c) Use Pooled Logit para estimar el modelo:

$$P\left(union_{it} = 1 \mid educ_{it}\right) = \Lambda\left(\beta_0 + \beta_1 educ_{it}\right) = \frac{e^{\beta_0 + \beta_1 educ_{it}}}{1 + e^{\beta_0 + \beta_1 educ_{it}}}$$
(3)

Comente sobre el impacto de un año más de educación en la probabilidad de estar afiliado a un sindicato. Compute el error estándar para esta estimación.

d) Estime la siguiente extensión del modelo (2):

$$P\left(union_{it} = 1 \mid educ_{it}, c_i\right) = \Phi\left(\beta_0 + \beta_1 educ_{it} + c_i\right) \tag{4}$$

donde c_i son efectos no observables individuales. Use el modelo Probit de efectos aleatorios. ¿Cuál es el problema que surge al momento de estimar el efecto parcial de interés?

e) Estime la siguiente extensión del modelo (3):

$$P\left(union_{it} = 1 \mid educ_{it}, c_i\right) = \Lambda\left(\beta_0 + \beta_1 educ_{it} + c_i\right) \tag{5}$$

donde c_i son efectos no observables individuales. Use el modelo Logit de efectos aleatorios. ¿Surge el mismo problema que en el inciso anterior al momento de estimar el efecto parcial de interés?

- f) Compute el denominado estimador Logit de efectos fijos para el modelo (5). ¿Se puede computar el efecto de un año más de educación sobre la probabilidad de estar afiliado a un sindicato? Explique.
- g) Considere la siguiente extensión del modelo (4):

$$P(union_{it} = 1 \mid educ_{it}, black_{it}, married_{it}, c_i) =$$

$$\Phi(\beta_0 + \beta_1 educ_{it} + \beta_2 black_{it} + \beta_3 married_{it} + c_i)$$
(6)

donde $black_{it}$ es una variable binaria que toma valor 1 si la persona es afroamericana y $married_{it}$ es una variable binaria que toma valor 1 si la persona es casada. Asuma la siguiente versión de Mundlak (1978) del supuesto de Chamberlain (1980):

$$c_i \mid X_i \sim Normal\left(\psi + \xi \cdot \overline{married}_i, \sigma_a^2\right)$$
 (7)

El modelo dado por (6) y (7) es un caso de lo que en la literatura se denomina modelo Probit de efectos aleatorios de Chamberlain. Al asumir solamente (6) y (7) se tiene que:

$$P\left(union_{it} = 1 \mid educ_{it}, black_{it}, married_{it}\right) = \Phi\left[\left(\beta_{0} + \beta_{1}educ_{it} + \beta_{2}black_{it} + \beta_{3}married_{it} + \psi + \xi \overline{married}_{i}\right)\left(1 + \sigma_{a}^{2}\right)^{-1/2}\right] \equiv \Phi\left[\beta_{0,a} + \beta_{1,a}educ_{it} + \beta_{2,a}black_{it} + \beta_{3,a}married_{it} + \xi_{a}\overline{married}_{i}\right]$$

Use Pooled Probit para estimar el modelo. Estime el efecto de la escolaridad sobre la probabilidad de estar sindicalizado para una persona afroamericana casada.

- 2. Considere los datos del ejercicio previo para analizar la probabilidad de estar afiliado a un sindicato según la situación de afiliación sindical del año previo.
 - a) Use Pooled Probit para estimar el modelo:

$$P\left(union_{it} = 1 \mid union_{it-1}\right) = \Phi\left(\psi + \rho \cdot union_{it-1}\right) \tag{8}$$

A continuación, obtenga una estimación para

$$P(union_{it} = 1 \mid union_{it-1} = 1)$$

y para

$$P\left(union_{it}=1\mid union_{it-1}=0\right).$$

- . Comente sobre el efecto marginal de estar afiliado a un sindicato en el año t-1 en la probabilidad de estar afiliado a un sindicato en el año t.
- b) Adicione al modelo el conjunto completo de variables binarias temporales. Vuelva a estimar las probabilidades solicitadas para cada año de la muestra.
- c) Estime un modelo de efectos no observables dinámico. Use el modelo Probit de efectos aleatorios incluyendo $union_{i,80}$ como una variable explicativa adicional. Luego, promedie las probabilidades estimadas a lo largo de $union_{i,80}$ para obtener la probabilidad promedio de estar afiliado a un sindicato en el año 1987 dado que estaba afiliado en el período anterior.

<u>Trabajo Práctico Nº 5:</u> Modelos de Variable Dependiente Discreta.

Ejercicio 1.

El archivo "wagepan.dta" contiene los datos utilizados por Vella y Verbeek (1998). Estos datos contienen información para 545 hombres que trabajaron cada año de 1980 a 1987. Utilizar los datos para analizar el impacto de la escolaridad (educ_{it}) en la probabilidad de estar afiliado a un sindicato (union_{it}). Las variables se describen en el conjunto de datos. Observar que la educación no cambia con el tiempo.

(a) Usar Pooled OLS para estimar el modelo:

$$P\left(union_{it}=1 \mid educ_{it}\right) = \beta_0 + \beta_1 educ_{it} \tag{1}$$

De acuerdo a los resultados obtenidos, ¿tiene impacto un año más de escolaridad sobre la probabilidad de estar afiliado a un sindicato?

POLS:

Source	SS	df	MS		er of obs	=	4,360
Model Residual		1 4,358	.030271965	5 Prob 5 R-sq - Adj	uared R-squared	= = = =	0.6855
union + educ	Coefficient 0015092				=		interval] .0057964
_cons	.261795	.0443282	5.91 	0.000	.174889	92 	.3487009

Por lo tanto, se puede observar que un año más de escolaridad no tiene impacto sobre la probabilidad de estar afiliado a un sindicato, ya que la variable *educ* no es estadísticamente significativa.

(b) *Usar Pooled Probit para estimar el modelo:*

$$P\left(union_{it}=1 \mid educ_{it}\right) = \Phi\left(\beta_0 + \beta_1 educ_{it}\right) \tag{2}$$

Comentar sobre el impacto de un año más de educación en la probabilidad de estar afiliado a un sindicato.

Pooled Probit:

Probit regression Log likelihood = -2422.7142				Number of ob LR chi2(1) Prob > chi2 Pseudo R2	= 0.17 = 0.6758
union Coefficient				-	-
'	.0122467	-0.42 -4.35	0.676	0291273 9182429	.0188789

Efectos marginales (promedio) en Pooled Probit:

Average marginal effects Number of obs = 4,360

Model VCE: OIM

Expression: Pr(union), predict()

dy/dx wrt: educ

		Delta-method std. err.	z	P> z	[95% conf.	interval]
educ	0016074	.0038414	-0.42	0.676	0091364	.0059216

Efectos marginales (condicionales) en Pooled Probit:

Conditional marginal effects Number of obs = 4,360

Model VCE: OIM

Expression: Pr(union), predict()

dy/dx wrt: educ At: educ = 11.76697 (mean)

		Delta-method std. err.	z	P> z	[95% conf.	interval]
educ	0016074	.0038416	-0.42	0.676	0091369	.005922

Por lo tanto, se puede observar que un año más de escolaridad no tiene impacto sobre la probabilidad de estar afiliado a un sindicato, ya que la variable educ no es estadísticamente significativa.

(c) *Usar Pooled Logit para estimar el modelo:*

$$P\left(union_{it}=1 \mid educ_{it}\right) = \Lambda\left(\beta_0 + \beta_1 educ_{it}\right) = \frac{e^{\beta_0 + \beta_1 educ_{it}}}{1 + e^{\beta_0 + \beta_1 educ_{it}}}$$
(3)

Comentar sobre el impacto de un año más de educación en la probabilidad de estar afiliado a un sindicato. Compute el error estándar para esta estimación.

Pooled Logit:

Logistic regress Log likelihood =					Number of obs LR chi2(1) Prob > chi2 Pseudo R2	= 0.16
union C	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
	0081586 -1.034725	.0201411	-0.41 -4.32	0.685	0476344 -1.503852	

Efectos marginales (promedio) en Pooled Logit:

Average marginal effects Number of obs = 4,360

Model VCE: OIM

Expression: Pr(union), predict()

dy/dx wrt: educ

 		Delta-method std. err.	z	P> z	[95% conf.	interval]
educ	0015051	.0037154	-0.41	0.685	008787	.0057769

Efectos marginales (condicionales) en Pooled Logit:

Conditional marginal effects Number of obs = 4,360

Model VCE: OIM

Expression: Pr(union), predict()

dy/dx wrt: educ
At: educ = 11.76697 (mean)

	·	Delta-method std. err.	z	P> z	[95% conf.	interval]
educ	0015051	.0037155	-0.41	0.685	0087873	.0057771

Por lo tanto, se puede observar que un año más de escolaridad no tiene impacto sobre la probabilidad de estar afiliado a un sindicato, ya que la variable *educ* no es estadísticamente significativa.

(d) *Estimar la siguiente extensión del modelo (2):*

$$P\left(union_{it}=1 \mid educ_{it}, c_{i}\right) = \Phi\left(\beta_{0} + \beta_{1}educ_{it} + c_{i}\right), \tag{4}$$

donde c_i son efectos no observables individuales. Usar el modelo Probit de efectos aleatorios. ¿Cuál es el problema que surge al momento de estimar el efecto parcial de interés?

RE Probit:

	Random-effects probit regression Group variable: nr				mber of obs mber of group			
Random effect:	s u_i ~ Gaussi	an		Ob	s per group: mi av ma	n = 8 g = 8.0 x = 8		
Integration me	ethod: mvagher	mite		In	tegration pts	. = 12		
-	Log likelihood = -1672.7504				Wald chi2(1) = 1.04 Prob > chi2 = 0.3080			
	Coefficient 							
	0502723 8013208 +							
/lnsia2u	1.099022 +	.1137102			.8761544	1.32189		
	1.732406 .7500768	.0984961 .0213163			1.549725	1.936622 .789496		
Efectos margin Average margin Model VCE: OIN	nal effects M r(union=1 u_	<u>it:</u>		Prob >= chiba Number of o				
	 I D	elta-method						
	dy/dx +			P> z	[95% conf.	interval]		
educ	0076285 				02243			
Efectos margin	arginal effect		Probit:		Number of o	bs = 4,360		

| Delta-method | dy/dx std.err. z P>|z| [95% conf.interval] | educ | -.0076024 .0074781 -1.02 0.309 -.0222592 .0070543

Expression: Pr(union=1 | u_i=0), predict(pu0)

dy/dx wrt: educ

At: educ = 11.76697 (mean)

El problema que surge al momento de estimar el efecto parcial de interés es que éste depende de c_i , el cual no es estimado, por lo que no es posible estimar la magnitud del efecto parcial, a menos que se imponga el valor de c_i . Este valor impuesto puede ser c_i =

0, lo cual tiene sentido ya que se está asumiendo que la distribución de c_i es $c_i \mid X_i \sim$ Normal $(0, \sigma_c^2)$.

(e) Estimar la siguiente extensión del modelo (3):

$$P\left(union_{it}=1 \mid educ_{it}, c_{i}\right) = \Lambda\left(\beta_{0} + \beta_{1}educ_{it} + c_{i}\right), \tag{5}$$

donde c_i son efectos no observables individuales. Usar el modelo Logit de efectos aleatorios. ¿Surge el mismo problema que en el inciso anterior al momento de estimar el efecto parcial de interés?

RE Logit:

	Random-effects logistic regression Group variable: nr						4,360 545
Random effects	s u_i ~ Gaussi	an			avç	g =	8 8.0 8
Integration method: mvaghermite					Integration pts	. =	12
Log likelihooo	d = -1670.7204				Wald chi2(1) Prob > chi2		
union	Coefficient	Std. err.	Z	P> z	[95% conf.	int	erval]
					2480538 -3.452797		
/lnsig2u	2.248281	.1156237			2.021663		2.4749
_	3.077571 .7421998				2.747885 .6965274		
LR test of rho	=0: chibar2(0	1) = 1504.00)		Prob >= chiba	r2 =	= 0.000

Efectos marginales (promedio) en RE Logit:

Average margir Model VCE: OIM	Number of ol	os = 4,360					
<pre>Expression: Pr(union=1 u_i=0), predict(pu0) dy/dx wrt: educ</pre>							
	dy/dx	Delta-method std. err.	Z	P> z	[95% conf.	interval]	
educ			-0.97	0.330	0180325	.0060659	

Efectos marginales (condicionales) en RE Logit:

```
Conditional marginal effects Number of obs = 4,360 Model VCE: OIM

Expression: Pr(union=1 | u_i=0), predict(pu0) dy/dx wrt: educ At: educ = 11.76697 (mean)

| Delta-method | dy/dx std. err. z P>|z| [95% conf. interval] educ | -.0059476 .0060407 -0.98 0.325 -.0177872 .005892
```

Sí, surge el mismo problema que en el inciso anterior a la hora de estimar el efecto parcial de interés.

(f) Computar el denominado estimador Logit de efectos fijos para el modelo (5). ¿Se puede computar el efecto de un año más de educación sobre la probabilidad de estar afiliado a un sindicato? Explicar.

El efecto de un año más de educación sobre la probabilidad de estar afiliado a un sindicato no se puede computar, ya que, en este método no se identifican los coeficientes de los regresores que no varían en el tiempo, como es el caso de la variable educ en este ejercicio. Sin embargo, incluso si el coeficiente estuviera identificado (en el caso de que la variable varíe en el tiempo), sucedería lo de los incisos anteriores de que se debería imponer el valor de c_i sumado a que, en este caso, es difícil saber qué valor imponer, ya que no se está asumiendo que se conoce la distribución de c_i .

(g) *Considerar la siguiente extensión del modelo (4):*

$$P(union_{it}=1 \mid educ_{it}, black_{it}, married_{it}, c_i) = \Phi(\beta_0 + \beta_1 educ_{it} + \beta_2 black_{it} + \beta_3 married_{it} + c_i),$$
 (6)

donde blac k_{it} es una variable binaria que toma valor 1 si la persona es afroamericana y married $_{it}$ es una variable binaria que toma valor 1 si la persona es casada. Asumir la siguiente versión de Mundlak (1978) del supuesto de Chamberlain (1980):

$$c_i / X_i \sim Normal (\psi + \xi \overline{married}_i, \sigma_a^2)$$
 (7)

El modelo dado por (6) y (7) es un caso de lo que, en la literatura, se denomina modelo Probit de efectos aleatorios de Chamberlain. Al asumir sólo (6) y (7), se tiene que:

$$\begin{split} &P\left(union_{it}=1 \mid educ_{it}, \ black_{it}, \ married_{it}, \ c_{i}\right) = \\ &\Phi\left[\left(\beta_{0} + \beta_{1}educ_{it} + \beta_{2}black_{it} + \beta_{3}married_{it} + \psi + \xi \ \overline{married}_{i}\right)\left(1 + \sigma_{a}^{2}\right)^{\frac{-1}{2}}\right] = \\ &\Phi\left(\beta_{0,a} + \beta_{1,a}educ_{it} + \beta_{2,a}black_{it} + \beta_{3,a}married_{it} + \xi_{a} \ \overline{married}_{i}\right). \end{split}$$

Usar Pooled Probit para estimar el modelo. Estimar el efecto de la escolaridad sobre la probabilidad de estar sindicalizado para una persona afroamericana casada.

Pooled Probit:

,	Probit regression Log pseudolikelihood = -2389.9119					s = 4,360 = 15.55 = 0.0037 = 0.0136
		(Sto	d. err.	adjusted	for 545 clust	ers in nr)
union	 Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
educ black married mean_married _cons	.4707704	.0219937 .1297179 .0532229 .1316841 .2671794	-0.14 3.63 0.80 1.56 -3.10		0462731 .216528 0617927 0528499 -1.351654	.0399408 .7250127 .1468371 .4633423 3043298

Efectos marginales (condicionales) en Pooled Probit:

Conditional marginal effects Number of obs = 4,360

Model VCE: Robust

Expression: Pr(union), predict()

mean married = .6923077

______ | Delta-method | dy/dx std. err. z P>|z| [95% conf. interval] ______ educ | -.0012358 .0085842 -0.14 0.886 -.0180605 .0155888 ______

Ejercicio 2.

Considerar los datos del ejercicio previo para analizar la probabilidad de estar afiliado a un sindicato según la situación de afiliación sindical del año previo.

(a) Usar Pooled Probit para estimar el modelo:

$$P\left(union_{it}=1 \mid union_{it-1}\right) = \Phi\left(\psi + \rho union_{it-1}\right) \tag{8}$$

A continuación, obtener una estimación para

$$P(union_{it} = 1 \mid union_{it-1} = 1)$$

y para

$$P(union_{it}=1 \mid union_{it-1}=0).$$

Comentar sobre el efecto marginal de estar afiliado a un sindicato en el año t-1 en la probabilidad de estar afiliado a un sindicato en el año t.

Pooled Probit:

Probit regress			Number of obs LR chi2(1) Prob > chi2 Pseudo R2	= 1416.84		
union		Std. err.			[95% conf.	interval]
union L1.			35.47		1.845404	2.061263
_cons	-1.348154	.0328877	-40.99	0.000	-1.412613	-1.283695

El efecto marginal de estar afiliado a un sindicato en el año t-1 en la probabilidad de estar afiliado a un sindicato en el año t es 0,639.

(**b**) Adicionar al modelo el conjunto completo de variables binarias temporales. Volver a estimar las probabilidades solicitadas para cada año de la muestra.

Pooled Probit (con variables binarias temporales):

Probit regression

Line | Coefficient | Std. err. | Z | P | Z | [95% conf. interval] |

union | Coefficient | Std. err. | Z | P | Z | [95% conf. interval] |

union | Line | Line

- El efecto marginal de estar afiliado a un sindicato en el año 1981 en la probabilidad de estar afiliado a un sindicato en el año 1982 es 0,651.
- El efecto marginal de estar afiliado a un sindicato en el año 1982 en la probabilidad de estar afiliado a un sindicato en el año 1983 es 0,636.
- El efecto marginal de estar afiliado a un sindicato en el año 1983 en la probabilidad de estar afiliado a un sindicato en el año 1984 es 0,646.
- El efecto marginal de estar afiliado a un sindicato en el año 1984 en la probabilidad de estar afiliado a un sindicato en el año 1985 es 0,614.
- El efecto marginal de estar afiliado a un sindicato en el año 1985 en la probabilidad de estar afiliado a un sindicato en el año 1986 es 0,618.
- El efecto marginal de estar afiliado a un sindicato en el año 1986 en la probabilidad de estar afiliado a un sindicato en el año 1987 es 0,667.

(c) Estimar un modelo de efectos no observables dinámico. Usar el modelo Probit de efectos aleatorios incluyendo union $_{i,80}$ como una variable explicativa adicional. Luego, promediar las probabilidades estimadas a lo largo de union $_{i,80}$ para obtener la probabilidad promedio de estar afiliado a un sindicato en el año 1987 dado que estaba afiliado en el período anterior.

RE Probit:

Random-effects probit regression Group variable: nr					Number of obs Number of group	•
Random effects u_i ~ Gaussian				C	av	n = 7 g = 7.0 x = 7
Integration method: mvaghermite]	Integration pts	. = 12
Log likelihood = -1293.5235					Wald chi2(8) Prob > chi2	
union		Std. err.			[95% conf.	interval]
d82 d83 d84 d85	.8886017 	.0923747 .1134088 .1163085 .116519 .1192335	9.62 0.35 -0.55 -0.10 -1.88	0.000 0.725 0.584 0.918 0.060	2916524 2403185 4582554	.2620995 .1642686 .2164276 .0091315
d87 union80	2661777 .1277544 1.479094 -1.791908	.1136075 .1659071	1.12 8.92	0.261 0.000	0949122	.3504211 1.804266
/lnsig2u	.2114328	.1648497			1116665	.5345322
	1.111507 .5526622				.9456968 .4721123	
LR test of rho=0: chibar2(01) = 160.37						

La probabilidad promedio de estar afiliado a un sindicato en el año 1987 dado que estaba afiliado en el período anterior es 0,397.