# Regular Expressions and Languages

Yo-Sub Han CS, Yonsei University

### Overview of Unit

- Regular expressions
- Regular expressions into FAs: "automata construction"
- FAs into regular expressions: state elimination

2

### Regular Expressions

- Many applications require pattern matching

  - keyword search/replace
- A regular expression is
  - ⇒ a pattern that defines a set of strings
  - special syntax used to represet a set:
    e.g.: \*.c—a set of patterns that end with .c

# Regular Expressions vs FAs

- Regular expressions and FAs are equivalent
- Regular expressions are patterns that can be recognized by FAs (and vice versa)

# Regular Expressions

- A regular expression defines a set of patterns:
- Regular expressions are useful in unix/linux (and also OSX): grep, awk, sed etc.
- Lots of applications
  - DNA pattern matching
  - Compiler construction
  - Virus detection
  - **⇔** ...

### Regular Expression Engines

- Regular expression engines is basically an FA
- A software that can process a text to find regular expression matches
- Regular expression softwares are a part of a larger piece of softwares e.g.: grep, awk, sed, php, python, perl, java etc
- ⇒ We can write our own regex engine that recognizes all 'yonsei' in a text
- Different regular expression engines may not be compatible with each other e.g.: Perl 5 is a popular one to learn
- One of the best regular expression machines was written in C by Ken Thompson in the 60's
  - superior to perl, python and other implementations when working with real world ap-

plications

⇒ 400 lines of C code

### Regular Expressions

Consider the language L of all strings that consist of a's and b's and have abb as a substring. We can formally define L as follows:

- 1.  $L = \{w \mid w \in \{a, b\}^* \text{ and } w \text{ has } abb \text{ as a substring}\}$
- 2. L = L(A), where A is an NFA given as follows:



Both definitions are lengthy. It can also be expressed by

$$L((a+b)^*abb(a+b)^*).$$

### Regular Expressions

A finite method of specifying/expressing languages

The inductive definition of regular expressions over an alphabet  $\Sigma$ :

- 1. The  $\emptyset$  character, the  $\lambda$  character and each character  $\sigma \in \Sigma$  are regular expressions. (Note that  $\emptyset$  and  $\lambda$  must not be in  $\Sigma$ .)
- 2. If  $\alpha$  and  $\beta$  are regular expressions, then

$$(\alpha \cdot \beta), (\alpha + \beta)$$
 and  $(\alpha^*)$ 

are regular expressions (we usually omit " $\cdot$ ")

For example, given  $\Sigma = \{a, b, c, d\}$ ,

- $\Rightarrow a, ((a+b)^* \cdot d), ((c^*) \cdot (a+(b \cdot \lambda)))$  and  $\emptyset^*$  are regular expressions
- ightharpoonup c+\* and \* are not regular expressions

### Regular Expressions and Languages

Given two regular expressions E and F,

1. E+F is a regular expression for the union of L(E) and L(F). That is,

$$L(E+F) = L(E) \cup L(F).$$

2. EF is a regular expession of the catenation of L(E) and L(F). That is,

$$L(EF) = L(E)L(F).$$

3.  $E^*$  is a regular expression of the closure of L(E). That is

$$L(E^*) = (L(E))^*.$$

4. (E), a parenthesized E, is a regular expression for the same language. That is,

$$L((E)) = L(E).$$

### Precedence of Regular Expressions

The regular expression operators have an assumed order of "precedence"; operators are associated with their operands in a particular order.

- 1. The star operator is of highest precedence
- 2. The catenation operator is next in precedence.
- 3. The union operator is of lowest precedence

Note that we do not always want the grouping in a regular expression to be as required by the precedence rule. If so, we can use parentheses to group as we want.

$$\{\},() \rightarrow^* \rightarrow \cdot \rightarrow +$$

## **Expression Trees**

Given a regular expression E, we can display the *parsing* by an expression tree based on the precedence rule.



$$E = ((a+b)a)^*$$

$$E' = a + ba^*$$

### Regular Expression: Algebraic Laws

Given regular expressions E, F and G,

- $\triangleright$  Commutative law for union: E + F = F + E
- $\triangleright$  Commutative law for catenation:  $EF \neq FE$
- ightharpoonup Associate law for union: (E+F)+G=E+(F+G)
- ightharpoonup Associative law for catenation: (EF)G = E(FG)
- ightharpoonup Left distributive law of catenation over union: E(F+G)=EF+EG
- ightharpoonup Right distributive law of catenation over union: (E+F)G=EG+FG

### Regular Expression: Algebraic Laws

Given a regular expression E,

ightharpoonup Identities ( $\emptyset$  and  $\lambda$ )

$$\emptyset + E = E + \emptyset = E.$$
$$\lambda E = E\lambda = E.$$

 $\Rightarrow$  Annihilator ( $\emptyset$ )

$$\emptyset E = E\emptyset = \emptyset$$

Idempotent

$$E + E = E$$

We define an operator to be idempotent if multiple applications of the operation do not change the result. Note that common arithmetic operators are not idempotent. e.g.,  $x+x \neq x, x \times x \neq x$ 

# Regular Expression: Algebraic Laws

Given a regular expression E,

- $(E^*)^* = E^*$
- $\Rightarrow \emptyset^* = \lambda \neq \emptyset$
- $\Rightarrow \lambda^* = \lambda$
- $ightharpoonup E^+ = EE^* = E^*E$  (Kleene plus or Plus closure)
- $\triangleright E^* = E^+ + \lambda$

### Regular Languages

We define a language L to be a regular language if and only if there is a regular expression E such that L = L(E). The family of (all) regular languages is denoted by  $\mathcal{L}_{REG}$ .

**Example:** Let  $E=(b^*ab^*a)^*b^*$  and  $L_{even}=\{w\mid w\in\{a,b\}^* \text{ and } w \text{ has an even number of } a\text{'s; namely, } |w|_a=2i \text{ for } i\geq 0\}.$ 

Claim:  $L(E) = L_{even}$ 

**Proof:** 

- 1.  $L(E) \subseteq L_{even}$  since every string in L(E) has an even number of a's
- 2. Let  $w \in L_{even}$ . Then, we can write w as

$$w = b^{i_0} a b^{i_1} a b^{i_2} \cdots a b^{i_{2n}} \text{ for } i_0, i_1, \dots, i_{2n} \ge 0.$$

This implies that  $w=(b^{i_0}ab^{i_1}a)(b^{i_2}ab^{i_3}a)\cdots(b^{i_{2n-2}}ab^{i_{2n-1}}a)b^{i_{2n}}$  and, therefore,

$$w \in L((b^*ab^*a)^*)L(b^*) = L(E).$$

### Regular Expressions Example

Given 
$$\Sigma = \{a, b\}$$
,

- 1.  $L_1 = \{ w \mid w = au \text{ and } u \in \Sigma^* \}$
- 2.  $L_2 = \{ w \mid |w|_a \equiv 0 \mod 3 \}$
- 3.  $L_3 = \{w \mid w \text{ has 2 or 3 } a \text{'s with the last two appearances nonconsecutive}\}$
- 4.  $L_4 = \{w \mid w = a^i b^i, i \ge 1\}$

# Regular Expressions into FAs

Given a regular expression E over  $\Sigma$ , we can construct a  $\lambda$ -NFA A such that L(E) = L(A) using the following inductive construction:



 $R_1: E = \emptyset$  $L(A) = \emptyset$ 



 $R_2: E = \lambda$  $L(A) = \{\lambda\}$ 



 $R_3: E = \sigma$  $L(A) = \{\sigma\}$ 



 $R_4: E = F + G$  $L(A) = L(F) \cup L(G)$ 



 $R_5: E = FG$ L(A) = L(F)L(G)



 $R_6: E = F^*$ L(A) = L(E)

### Thompson Construction Example

We call this FA construction Thompson construction named after the inventor, "Ken Thompson". We can call such FAs *Thompson automata*.

Given 
$$\Sigma = \{a, b\}$$
,

1. 
$$E_1 = (a+b)^*(\lambda + a)$$

2. 
$$E_2 = (a + b^*)^*$$

3. 
$$E_3 = (aa + ba)(b^* + a)$$

4. 
$$E_4 = b^*(a + ab^*)^*$$

### Regular Expressions into FAs

**Claim:** Given E, the Thompson automaton A for E satisfies L(E) = L(A).

**Proof:** Let  $\mathbb{OP}(E)$  be the total number of operators(\*,·,+) in E. We prove this claim by induction on  $\mathbb{OP}(E)$ .

Basis:  $\mathbb{OP}(E)=0$ . Then,  $E=\emptyset,\lambda$  or  $\sigma\in\Sigma$  and the claim is true by  $R_1,R_2$  and  $R_3$ . Hypothesis: Assume that the claim holds for all E with  $\mathbb{OP}(E)\leq k$  for some  $k\geq 0$ . Induction: Consider E such that  $\mathbb{OP}(E)=k+1$ . Since  $k+1\geq 1$ , E must have at least one operator. We have three cases:

- 1. E = F + G. Note that  $\mathbb{OP}(F) \leq k$  and  $\mathbb{OP}(G) \leq k$ . Let  $A_F$  and  $A_G$  be the corresponding FAs. Then, by the hypothesis,  $L(A_F) = L(F)$  and  $L(A_G) = L(G)$ . Because of  $R_4$ ,  $L(A) = L(A_F) \cup L(A_G)$  and  $L(E) = L(F) \cup L(G)$ . Therefore, L(A) = L(E).
- 2. E = FG.
- 3.  $E = F^*$ .

### FAs into Regular Expressions

We now prove that for every FA A, there is a regular expression E such that L(A) = L(E).

An expression automaton (EA): An EA A is an FA with regular expressions as transition labels. Formally, A is specified by a tuple  $(Q, \Sigma, \delta, s, f^{\dagger})$ , where

- 1.  $Q, \Sigma, s$  are the same as in  $\lambda$ -NFA
- $2. \ s$  does not have any in-transitions
- 3. f is the only final state such that  $f \neq s$  and f has no out-transitions
- 4.  $\delta$  is a set of  $(Q, R_{\Sigma}, Q)$  (in  $\lambda$ -NFA, it is  $(Q, \sigma, Q)$ )



 $<sup>^{\</sup>dagger}$ : To be presice, it has to be  $\{f\}$ . But we use f for short if not confused.

### Computations for EAs

#### Single-step configuration in an EA A:

- 1. Let (p, w) be a current configuration, where w = uv and  $u, v \in \Sigma^*$
- 2.  $(p, E, q) \in \delta$  and  $u \in L(E)$ , where E is a regular expression
- 3. We say that (p, w) yields (q, v) in one step. Namely,  $(p, w) \vdash (q, v)$
- 4. We can define  $\vdash^*,\vdash^+$  in a similar way: multiple-step configuration

In other words, a transition (p, E, q) is applied to A if p is the current state and there is a string  $u \in L(E)$  such that u is a prefix of the unread portion of w of the input string, then A moves into the next state q and the reader consumes u leaving v as the unread input.

21

### Nondeterminism and Acceptance for EAs

Given an EA A and its transition (p, E, q) with the unread input w = uv:

- 1. There may be many strings that satisfy the condition, so A may be highly nondeterministic!
- 2. If  $E=a^*$  and  $w=a^kb$ , say, where  $k\gg 0$ , then  $u=\lambda,a,aa,aaa,\ldots,a^k$ , are all possible choices
- 3. We define acceptance as we did for normal NFAs:

A string w is acceptyed by an EA A if there is a computation for w that begins at the start state and ends at the final state such that w has been completely consumed.

22

### Nondeterminism and Acceptance for EAs Example



Determine if the following strings are in L(A).

- $1. \ caaabcbaa$
- 2. *aaaab*
- 3. *baa*
- 4. *ac*

### FAs and EAs

**Claim:** Given an FA A, there is an EA A' such that L(A) = L(A')

**Proof:** It is left for an exercise. Here is an intuition:



24

### State Elimination

We are now ready to work on state elimination, a very simple idea for computing a regular expression from an FA. At each step, we bypass a nonstart, nonfinal state to give an equivalent automaton (which will be an EA) that has one less state.

Goal of the technique:



### State Elimination

How does state elimination work?

- 1. First, consider a state q, which we wish to eliminate, that has an in-transition  $(p, \alpha, q)$ , a self-looping transition  $(q, \beta, q)$  and an out-transition  $(q, \gamma, r)$ . (It may have other in/out-transitions.)
- 2. When we eliminate q, we replace the transition sequence

$$(p, \alpha, q), (q, \beta, q), \ldots, (q, \beta, q), (q, \gamma, r)$$

by

$$(p, \alpha \beta^* \gamma, r)$$



and, since q is not final, we can see that this new transition emulates the previous transition sequence

- 3. Finally, we union the new expression and the original expression  $\eta$  between p and r:  $(p, \alpha\beta^*\gamma + \eta, r)$
- 4. This observation holds for all shortcuts that we have made to avoid q, so we no longer need q after we have bypassed it

### State Elimination Example









27

# Summary of State Elimination

- 1. Add a new start state if the original one has an in-transition
- 2. Add a new final state if there are more than one final states originally or if there is a single final state but it has an out-transition. Old final states become nonfinal states.
- 3. Eliminate states in  $Q \setminus \{s, f\}$  one by one

### Summary of State Elimination

From state elimination, we know that

- 1. Given an FA A, we can compute a regular expression E such that L(A)=L(E) using state elimination
- 2. EAs have the same expressive power as FAs
- 3. Both regular expressions and FAs define the same set of languages, regular languages



29

# Applications of Regular Expressions

Regular expressions in UNIX

- extended regular expressions—have additional features
- ⇒ allow to write character classes to represent large sets of characters as succinctly as possible
  - **◇** {0, 1} vs {a,b,c,d,e, . . . , y, z}

The rules for character classes are

- The symbol . (dot): "any character"
- ightharpoonup The sequence  $[a_1a_2\cdots a_k]$ :  $a_1+a_2+\cdots+a_k$
- ightharpoonup A range of the form x–y: all the chracters from x to y in the ASCII sequences
  - **○** [0–9]

  - **○** [0–9a–zA–Z]

# Applications of Regular Expressions

The most common classes of characters

- $\Rightarrow$  [:digit:] is the set of ten digits, the same as [0-9]
- [:alpha:] is the set of any alphabetic character, the same as [A–Za–z]
- $\Rightarrow$  [:alnum:] stands for the digits and letters (alphabetic and numeric characters), the same as [A–Za–z0–9]

#### Several UNIX operators

- ightharpoonup The operator | is used to denote union (+)
- $\triangleright$  The operator ? means "zero or one of." e.g.: R? =  $\lambda + R$
- ightharpoonup The operator  $\{n\}$  means " n copies of.". e.g.:  $R\{3\} = \text{shorhand for } RRR$

### Application: Lexical Analyzer in Compiler



- 1. A program that translates a program in one language to another language
- 2. The essential interface between applications and architectures

### Application: Lexical Analyzer



#### Lexical analyzer

- 1. A scanner groups sequence of characters into tokens—smallest meaningful entity in a language (keywords, identifiers or constants)
- 2. Makes use of regular languages and FAs

### Application: Lexical Analyzer

#### A scanner

- 1. Recognizes the keywords of the languages (these are the reserved words that have a special meaning such as *if*, *else* or *switch* in C)
- 2. Recognizes special characters such as ( and ) or groups of special characters such as := and ==
- 3. Recognizes identifiers, integers, reals, decimals, strings, etc
- 4. Ignores whitespaces (tabs and blanks) and comments
- 5. Recognizes and processes special directives (such as the #include "file" directive in C) and macros

34

# Application: Lexical Analyzer

An example of some tokens:

```
for-keyword = for letter = [a-zA-Z] digit = [0-9] identifier = letter (letter + digit)* sign = + |-|\lambda| integer = sign (0+[1-9]\text{digit*}) decimal = integer . digit* real = (integer + decimal ) E sign digit+
```

Bio sequences such as DNA, amino-acid sequences often have regular patterns.

ATATATGC ATACCTGC ATAGGTGC ATACGTGC

 $ATA[A \mid T \mid G \mid C]^2TGC$ 



New Domains: WEB, Bioinformatics, Intrusion Detection and so on









- Text Search: grep in UNIX/LINUX, preg\_match in php, matches in java
- Network Intrusion Detection: Snort www.snort.org
- Antivirus: ClamAV www.clamav.net
- Bioinformatics: PHI-BLAST blast.ncbi.nlm.nih.gov/Blast.cgi



Grep in Unix



**Exported Snort rules** 

- Often use NFAs for finding keywords in text
- An NFA to recognize occurrences of the words web and ebay



 $\mathsf{T} = AGCTAA \underline{TCCCT} GAGAG \underline{TCCAGT} \underline{\Gamma AGT} \underline{CCCAT}$ 

$$\mathsf{P} = T \cdot (AG + C)^* \cdot T$$