Permutation routing in the hypercube

Scribe: Muhan Li

Introduction

Suppose there is a network N, and a list of sending node pairs:

$$[s_1
ightarrow t_1, s_2
ightarrow t_2, \ldots, s_n
ightarrow t_n], \ s.t. \ s_1\ldots s_n\in N, t_1\ldots t_n\in N$$

And we view the routing process as a continuous sequence of unified time windows, which satisfies:

- 1. In each time window, an edge (information channel) $e \in N$ can forward 1 message.
- 2. If there are multiple messages sharing the same edge in their routes, only 1 message will pass through e, while other messages will be queued on senders for 1 unit of time.

Routing in hypercube topology

Suppose there is a d dimension hyper cube, with $n=2^d$ nodes, each node has a binary index $i\in\{0,1\}^d$.

In such an environment, we usually use the **bit fixing** strategy to find the shortest route from some node n^i to some node n^j (note we use superscripts here to represent index):

In order to send packet from n^i to n^j , each time send to next node by correcting one bit (usually from left to right) of current encoding (initial value = i) to a bit value in j.

Eg:

```
let i=01000, let j=00101, the shortest route is 01000 	o 00000 	o 00100 	o 00101
```

There are several interesting observations we can make if we use the bit fixing strategy to create all routes:

- 1. Nodes n^i and n^j are connected if only 1 bit of their encoding is different.
- 2. If no collision happens, the longest one of all (shortest) paths has size d, because by using the bit fixing strategy there are only d bits to flip to send message from n^i to n^j .

Suppose routing is oblivious (each node chooses a path on its own), there are two types of strategy we can use to create routes for all routing pairs:

- 1. Deterministic strategy, directly apply the bit fixing strategy without considering collisions, delay $\sim~O(\sqrt{n})=2^{d/2}$
- 2. Randomized scheduling, also known as the Valiant-Brebner algorithm:

For routing $n^i \to n^j$, first choose a random intermediate destination n_k , then establish paths $n^i \to n_k$ and $n_k \to n^j$ using the bit fixing strategy.

Which performs much better and only has delay $\sim O(d)$.

Deterministic delay proof

(Problem 1 in homework 2, the basic idea is first proving that there are $C\sqrt{n}$ pairs sharing some edge $a\to b$, then conclude that this edge will cause $O(\sqrt{n})$ delay.)

Lemma 1

Let d=2k+1, let binary sequences of length k $P,Q\in\{0,1\}^k$, and define two adjacent nodes in the hypercube as a=(P,0,Q), b=(P,1,Q), there exists at least 2^k pairs of source and target (s_i,t_i) in the hypercube such that all paths (s_i,t_i) routed according to the bit fixing strategy contain the edge $a\to b$.

Lemma 1 proof

let $P^*=\{0,1\}^k-P, Q^*=\{0,1\}^k-S$, then $|P^*|=|Q^*|=2^k-1$, we will then define the source set and the target set as:

$$\mathcal{S} = \{s_j | s_j = (p_j, 0, Q), p_j \in_u P^*, j = 0, \dots, 2^{k/2} \} \ \mathcal{T} = \{t_k | t_k = (P, 1, q_k), q_k \in_u Q^*, k = 0, \dots, 2^{k/2} \}$$

Where \in_u means uniquely select, since $|P^*|=|Q^*|=2^k-1$ and $2^k-1>2^{k/2}$ when $k\geq 1$, we can always select such two sets.

There are $2^{k/2}*2^{k/2}=2^k$ unique combinations of source and targets if we select a source node with index from $\mathcal S$ and a target node with index from $\mathcal T$.

Finally, according to the bit fixing strategy, the routing policy will correct each bit of the source node to the target node from left to right, therefore after correcting the first k bits, reached node index will always be a, and then correcting the k+1 bit will let us reach b. So routes of all 2^k (s_i,t_i) pairs will always contain the edge $a\to b$.

With lemma 1, we can make the following claim:

Theorem

There exists a case where the regular bit fixing strategy has a maximum packet traveling time of $\Omega(\sqrt{n})$, and therefore this strategy is inferior to randomized routing, which has a maximum packet traveling time of O(d).

Theorem proof

With the routing case defined in the proof of lemma \ref{lemma-1.1}, all 2^k messages have to go through edge $a \to b$, and since an edge can pass 1 message in 1 time unit, the total routing time will be at least $2^k = C\sqrt{n}$, where C is a constant factor, in this case, the maximum delay of the bit fixing strategy is equal to the total length of the routing time, $\Omega(\sqrt{n})$.

Randomized delay proof

Theorem

W.h.p. the maximum delay $\max_i delay(s_i, t_i) \leq O(d)$.

Theorem proof

We need to prove $P\{delay(s_i,t_i)\geq cd\}\ll 1$ $(e.\ g.: \frac{1}{n})$ for all routes, where c is a constant value

Select and fix a random route $s_i o t_i$, denote the route between $s_i o t_i$ by R_i .

For other routes R_j , R_i and R_j only interfere if they intersect or share at least one edge, and cannot share more than 1 edge (because one packet is going to be delayed by one time unit, and there is no shortcut, because between and point A and B, all paths have the same length, this is determined by the bit difference number between A and B).

Therefore:

$$delay(R_i) \leq \# \{R_i, R_i \ interfere\}$$

Let X_j represent event $\mathbb{I}\{R_i \text{ and } R_j \text{ interfere}\}$ for all other routes, we would like to know $\mathbb{E}[\sum X_j | R_i]$ and use the Chernoff bound to prove our target probability $P\{\sum X_i > cd | R_i\}$ is extremely small for some constant c. In order to analyze the total number of interfering R_j s, we can enumerate all edges $e \in R_i$ and count the number of R_j which contain e, then sum these numbers up (multiply expectation with d since there are d edges).

Since e could be represented as:

$$(P,1,S) \rightarrow (P,0,S)$$

when the route $s_j \to t_j$ goes over e, v_j has prefix P, s_j has suffix S, since:

$$\#\{s_j \text{ with suffix } S\}: 2^{d-|S|} = 2^{|P|+1}$$

$$P\{t_j \text{ that has prefix } P\} = 2^{d-|P|}/2^d \$$$

Therefore:

$$egin{aligned} \mathbb{E}[\#j \ s. \ t. \ e \in R_j | R_i] & \leq 2 \ \mathbb{E}[\#R_j \ ext{interfere}] & \leq 2d \Rightarrow \mathbb{E}[\sum X_j] & \leq 2d \end{aligned}$$

With above observations, we can prove that:

$$P\{\sum X_j > 10d\}$$
 by chernoff bound:
$$\leq e^{-u}*(\frac{eu}{10d})^{10d}, s.t. u = \mathbb{E}[\sum X_j] \leq 2d$$

$$\leq e^{-2d}(\frac{2e}{10})^{10d}$$

$$\leq (e^{-2}*(\frac{2e}{10})^{10})^d$$
 $\ll 1$