Учебная литература:

- 1. Савельев И.В. «Курс общей физики». Т.1 Механика и молекулярная физика.
- 2. Сивухин Д.В. «Общий курс физики». Т.1 Механика. Т.2 Молекулярная физика.
- 3. Матвеев А.Н. Кн.1 Механика и теория относительности. Кн.2 Молекулярная физика.
- 4. Леденёв А.Н. «Физика». Кн.1 Механика. Кн.2. Молекулярная физика и термодинамика.
 - Иродов И.Е. «Задачи по общей физике».
 - Иродов И.Е. Основные законы механики.
 - Иродов И.Е. Физика макросистем

Дополнительная литература:

- 1. Мордкович Г.А. Алгебра и начало математического анализа 10 11 класс.
- 2. Новодворская Э.М., Дмитриев Э.М. Сборник задач для ВТУЗов с решениями.
- 3. Орир Джей. Физика. Полный курс. Примеры. Задачи и решения.

МЕХАНИКА

§1. Пространство и время. Системы отсчета

Основные определения

Материя – все, что существует в окружающем нас мире независимо от нашего сознания и наших представлений.

Движение – любое изменение в материальном мире.

Пространство – место движения материи, изменения положения тел.

Время – мера длительности существования объектов, характеристика последовательной смены их состояний.

Задача физики — создание в нашем сознании модели материального мира, наиболее точно описывающей свойства материального мира и обеспечивающей соотношения между элементами модели такие же как существуют между элементами реального материального мира.

Материя не существует без движения, движение – это неотъемлемая часть материи.

Пространство и время – это формы существования движущейся материи.

Механика – раздел физики, изучающий движение и равновесие тел.

Тело (макроскопическое тело) – макроскопическая система, состоящая из огромного количества атомов и молекул, размеры которой превышают межатомное расстояние.

- **I.** Классическая механика (изучает изменение положения тела в пространстве)
 - изучает движение макроскопических тел со скоростью $v << 299792458 \,\mathrm{m/c} \approx 3\cdot 10^8 \mathrm{m/c} = \mathbf{c}.$

II. Релятивистская механика

• изучает движение тел, скорости которых соизмеримы со скоростью света $\boldsymbol{v} \approx \boldsymbol{c}$.

III. Квантовая механика

• изучает особенности движения микроскопических тел.

Механика изучает простейший вид движения материи, а именно изменение положения тела в **пространстве**, изменение положения тела относительно других тел с течением **времени**.

Пространство проявляет себя во взаимном расположении тел.

Свойства пространства:

1) относительность (всегда определяем тело отсчета)

Например, студент в вагоне метро открыл – закрыл конспект. Необходимо определить тело отсчета (вагон или станция метро) относительно, которого происходит движение.

2) однородность (все точки пустого пространства одинаковы по своим физическим свойствам)
Пример: птичке Хоттабыча без разницы, где колебаться.

3) *изотропность* (все направления движения в пустом пространстве одинаковы по своим физическим свойствам)

Пример: фотоприемники A и B одновременно фиксируют вспышку света, произведённую источником, расположенным в точке C (расстояния от приемников A и B до места вспышки точки C равны AC=CB).

4) кривизна:

Плоское (евклидово) пространство (геометрия Евклида):

$$\alpha + \beta + \gamma = 180^{\circ}$$

$$a^2 + b^2 = c^2$$

Неплоское (кривое) пространство, необходима другая геометрия (неевклидова геометрия, геометрия Римана, Лобачевского):

$$\alpha + \beta + \gamma \neq 180^{\circ}$$

$$a^2 + b^2 \neq c^2$$

Строго говоря, наше реальное пространство неплоское. Подробнее об этом можно узнать здесь.

Солнце (тело огромной массы) прогибает 1,000000Х, где 1 пространство плоское пространство, X кривизна, создаваемая Солнцем.

Пустое пространство в диапазоне $10^{-16} \mathrm{m} < \ell < 10^{26} \mathrm{m}$ (видимая часть Вселенной) можно считать евклидовым. Если Вселенная и обладает кривизной, то ее радиус существенно больше.

Пример: муха, ползающая по гранитному шару, расположенному, например на набережной Невы, не знает, что поверхность под ней сферической формы. Её

шара. Мы для нашей вселенной – мухи ещё меньшего размера.

 $10^{26} M$

5) размерность - количество чисел, которые надо задать, чтобы описать положение тела (точки) в пространстве:

три числа достаточно, для того чтобы описать положение точки в пространстве, то есть наше пространство трехмерное.

Система координат – правило, по которому эти три числа назначаются.

Основные системы координат (СК):

Система координат – это правила, по которым задается адрес тела в пространстве.

Адрес – это набор параметров, необходимых для описания тела (точки) в пространстве.

1) одномерная СК (для движения вдоль прямой):

2) **двумерные** СК (для движения на плоскости):

3) трехмерные *CK*:

а) декартова СК (ДСК)

"Подводные камни" (особенности)

Правовинтовая система

Левовинтовая система

(пример: левая педаль велосипеда)

b) цилиндрическая CK

с) сферическая СК

Измерить значение величины, значит сравнить её (найти отношение) с однородной величиной, принятой за единицу измерения.

Эталон — средство измерений (или комплекс средств измерений), обеспечивающее воспроизведение и хранение единицы физической величины.

В международной системе СИ эталоны физических величин привязаны к фиксированным значениям фундаментальных физических постоянных (изменения вступили в силу с 20 мая 2019 года).

Фиксированные значения фундаментальных физических постоянных, устанавливающих основные физические единицы СИ:

скорость света в вакууме:	длина	Метр
$c = 299792458 \frac{M}{c}$		(M, m)
частота переходов между уровнями основного		Секунда
состояния атома Cs^{133} :	время	(c, s)
9 192 631 770 Гц		
заряд электрона (элементарный заряд):	сила электрического	Ампер
e= 1 , 602176634 · 10 ⁻¹⁹ Кл	тока	(A, A)
постоянная Больцмана:	термодинамическая температура	Кельвин
$k = 1,380649 \cdot 10^{-23} \frac{\text{Дж}}{\text{K}}$		(K, K)
число Авогадро:	количество вещества	Моль
$N_A=6,02217076\cdot 10^{-23}$ моль $^{-1}$		(моль, mol)
постоянная Планка:	масса	Килограмм
$m{h} = m{6}, m{626070} \cdot m{10^{-34}}$ Дж \cdot с		$(\kappa\Gamma, kg)$

Eдиница длины — 1 м.

Можно сказать, что 1 м – это путь, проходимый светом за $\frac{1}{299792458}$ с.

Время — это вторая форма существования движущейся материи. Оно проявляет себя в последовательности и длительности происходящих процессов.

Ещё с давних пор люди обратили внимание, что многие процессы в окружающем мире повторяются, протекают циклично: дыхание человека, смена дня и ночи, времена года, приливы и отливы. Повторяющиеся процессы с постоянной длительностью стали использовать в качестве единицы времени. В настоящий момент принято считать, что наилучшим образом постоянство длительности сохраняют атомные процессы.

Единица времени – 1 с.

Величина секунды устанавливается фиксацией численного значения частоты сверхтонкого расщепления основного состояния атома цезия-133 при температуре 0 К равным в точности 9 192 631 770, когда она выражена единицей СИ ${\rm c}^{-1}$, что эквивалентно Γ ц.

Свойства времени:

- однородность (все временные моменты одинаковы по своим физическим свойствам).
- неизотропность (время течет только в одном направлении).

Системы отсчёта.

Совокупность тела отсчёта и связанных с ним координат и синхронизованных между собой часов образует *систему отсчёта*. Понятие системы отсчёта является фундаментальным в физике. Пространственно-временное описание движения при помощи

координат и промежутков времени возможно только тогда, когда выбрана определённая система отсчёта.