คู่มือปฏิบัติการ ชุดสาธิตการทดลองพลังงานลมผลิตไฟฟ้า

รายการอุปกรณ์ชุดทดลอง

- 1. กังหันลม (Wind turbine)
- 2. พัดลม
- 3. เซนเซอร์วัดความเร็วลม
- 4. ตู้ควบคุม
- 5. หน้าจอแสดงผลแรงดันกระแสไฟและกำลังไฟฟ้าจากกังหันลม
- 6. สวิตซ์เปิด-ปิด เครื่อง
- 7. Emergency Switch

<u>หน้าจอแสดงผลและควบคุม</u>

- 1. ปรับระดับความเร็วลม
- 2. สถานะการเชื่อมต่อ
- 3. ส่วนควบคุมการ เริ่ม หยุด และรีเซต
- แสดงผลค่าทางไฟฟ้า
 แรงดันไฟฟ้า (โวลต์)
 กระแสไฟฟ้า (แอมป์)
 กำลังไฟฟ้า (วัตต์)
 พลังงานไฟฟ้า (วัตต์ ชั่วโมง)
- 5. แสดงผลความเร็วลม
- 6. แสดงผลอุณหภูมิและความชื้น
- 7. แสดงผลความเร็วกังหันลม

Web application

- 1. ปุ่มปรับระดับความเร็วลม
- 2. ปุ่มกดเชื่อมต่อกับชุดแลปสาธิต เริ่ม หยุด และแสดงผลเวลา
- 3. แสดงผลความเร็วรอบกังหัน
- 4. แบบทดสอบ
- 5. แสดงผลอุณหภูมิและความชื้น
- 6. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 7. คู่มือปฏิบัติการ
- 8. คีย์แสดงผลการจับคู่
- 9. ข้อมูลโรงไฟฟ้าพลังงานแสงอาทิตย์
- 10. แสดงผลความเร็วลม

หลักการและทฤษฏี

"พลังงานลม" เป็นพลังงานจากธรรมชาติที่สามารถนำมาใช้ประโยชน์ได้ โดยอาศัยเครื่องมือที่เรียกว่า "กังหันลม" (Wind Mill) เป็นตัวสกัดกั้นพลังงานจลน์ของกระแสลม แล้วเปลี่ยนเป็นพลังงานกล จากนั้นจึงนำ พลังงานกลที่ได้ไปใช้ประโยชน์ เช่น สูบน้ำหรือใช้ผลิตไฟฟ้า เป็นต้น กังหันลมที่ใช้กันมากในประเทศไทยตั้งแต่ อดีตถึงปัจจุบัน ได้แก่ กังหันลมแบบใบกังหันไม้ ใช้สำหรับวิดน้ำเข้านาข้าว กังหันใบเสื่อลำแพนใช้วิดน้ำเค็มเข้า นาเกลือบริเวณจังหวัดสมุทรสงคราม และกังหันลมแบบใบกังหันหลายใบทำด้วยแผ่นเหล็กใช้สำหรับสูบน้ำลึก เช่น น้ำบาดาล น้ำบ่อ ขึ้นไปเก็บในถังกักเก็บ

หลักการทำงาน

การผลิตกระแสไฟฟ้าโดยพลังงานลมสามารถผลิตกระแสไฟฟ้าได้โดยกังหันลมจะรับพลังงานจลน์จาก การเคลื่อนที่ของลม(จากพัดลม)และเปลี่ยนให้เป็นพลังงานกล(มอเตอร์ไฟฟ้า)โดยตรง จากนั้นจึงนำพลังงานกล ที่ได้มาขับเครื่องกำเนิดไฟฟ้า ซึ่งต่อเพลาเข้ากับแกนของกังหันลมผลิตเป็นพลังงานไฟฟ้า ดังแสดงในรูปการ ผลิตไฟฟ้าด้วยพลังงานลม

รูปที่ 1. การผลิตไฟฟ้าจากกังหันลม

ระบบผลิตไฟฟ้าด้วยพลังงาน ประกอบด้วย ส่วนประกอบที่สำคัญ 3 ส่วน คือ

- 1) กังหันลม เป็นอุปกรณ์ที่เปลี่ยนพลังงานจลน์ของกระแสลมให้เป็นพลังงานกล กังหันลมแบ่ง ออกเป็นประเภทใหญ่ ๆ ได้ 2 แบบ คือ
- 1.1) กังหันลมชนิดแกนหมุนแนวตั้ง (Vertical Axis Wind Turbine) เป็นกังหันลมที่มีแกนหมุนตั้ง ฉากกับพื้นราบหรือตั้งฉากรับทิศทางการเคลื่อนที่ของลม โดยมีใบพัดยึดติดขนานกับแกนหมุน ทำหน้าที่รับ แรงลมที่เคลื่อนตัวมากระทบทำให้เกิดการหมุนของใบพัด โดยสามารถรับแรงลมในแนวนอนได้ทุกทิศทาง อย่างไรก็ดีกังหันลมชนิดนี้ไม่ค่อยได้รับความนิยมใช้ในเชิงพาณิชย์ โดยมีการใช้งานอยู่ประมาณร้อยละ 25 ของ กังหันลมที่มีใช้งานอยู่ในปัจจุบัน

1.2) กังหันลมชนิดแกนหมุนแนวนอน (Horizontal Axis Wind Turbine) เป็นกังหันลมที่มีแกน หมุนขนานกับพื้นราบหรือขนานกับทิศทางการเคลื่อนที่ของลม โดยมีใบพัดยึดติดตั้งฉากกับแกนหมุน ทำหน้าที่ รับแรงลมที่เคลื่อนตัวมากระทบทำให้เกิดการหมุนของใบพัด โดยกังหันลมชนิดแกนหมุนแนวนอนแบบสาม ใบพัดซึ่งมีการพัฒนามาอย่างต่อเนื่อง เป็นกังหันลมที่ได้รับความนิยมใช้งานในเชิงพาณิชย์อย่างแพร่มากที่สุด ถึง ร้อยละ 75 ของกังหันลมที่มีการใช้งานในปัจจุบัน

รูปที่ 2. กังหันลมแนวแกนนอนและแนวแกนตั้ง

- 2) เครื่องกำเนิดไฟฟ้า (Generator) ทำหน้าที่แปลงพลังงานกลที่ได้รับเป็นพลังงานไฟฟ้า มีใช้ 2 ประเภท คือ
- 2.1) เครื่องกำเนิดไฟฟ้ากระแสตรง (DC Generator) เป็นเครื่องกำเนิดไฟฟ้าที่ผลิตกำลังไฟฟ้าใน รูปแบบของกระแสตรง แบ่งออกเป็น 4 ประเภท ได้แก่ เครื่องกำเนิดไฟฟ้ากระแสตรงแบบอนุกรม แบบขนาน แบบผสม และแบบกระตุ้นแยก เป็นต้น
- 2.2) เครื่องกำเนิดไฟฟ้ากระแสสลับ (AC Generator) แบ่งออกเป็น 2 ประเภทใหญ่ๆ คือ เครื่อง กำเนิดไฟฟ้าแบบกระแสสลับแบบซิงโครนัส (Synchronous Generator) และเครื่องกำเนิดไฟฟ้ากระแสสลับ แบบเหนี่ยวนำ (Induction generator)
- 3) อุปกรณ์ไฟฟ้า (Electrical equipment) คืออุปกรณ์สายส่งกระแสไฟฟ้านับจากเครื่องกำเนิดไฟฟ้า ลงไปตามเสาสูง ตลอดไปจนถึงกล่องควบคุมจากกังหันไปจนถึงผู้ใช้ไฟฟ้า กระบวนการของการกำเนิดไฟฟ้ามา จากลมและแปรเปลี่ยนไปเป็นกระแสไฟฟ้าไปสู่บ้านเรือน ร้านค้า ธุรกิจ อุตสาหกรรม ฯลฯ

ประสิทธิภาพของกังหันลม

กำลังไฟฟ้าและพลังงานที่ผลิตได้จากพลังงานลมเป็นสัดส่วนกับความเร็วกระแสลมยกกำลังสาม ดังสมการ

$$P(kW) = \frac{1}{2}\rho A V^3 \tag{1}$$

$$W(kWh) = \frac{1}{2}\rho A V^3 \times h \tag{2}$$

โดยที่

P คือ กำลังงานจากกังหันลม หน่วยเป็น kW
 W คือ ปริมาณพลังงานไฟฟ้าที่ผลิตได้ หน่วยเป็น kWh
 ρ (rho) คือ ความหนาแน่นของอากาศ ซึ่งมีค่า 1.165 kg/m³ ที่อุณหภูมิ 30°C และระดับน้ำทะเลปานกลาง

V คือ ความเร็วของกระแสลม

คือ พื้นที่หน้าตัดของกังหันลม

h คือ จำนวนชั่วโมงที่ผลิตไฟฟ้าได้

ข้อดี-ข้อจำกัดของการผลิตไฟฟ้าจากพลังงานลม

ข้อดีและข้อจำกัดของการผลิตไฟฟ้าจากพลังงานลม สามารถสรุปได้ดังตารางดังนี้

	ข้อดี	ข้อจำกัด			
1.	เป็นแหล่งพลังงานที่ได้จากธรรมชาติ ไม่มีต้นทุน	1. ลมในประเทศไทยมีความเร็วค่อนข้างต่ำ			
2.	เป็นพลังงานสะอาด และเป็นแหล่งพลังงานที่ไม่ มีวันหมดสิ้น	 พื้นที่ที่เหมาะสมมีจำกัด ขึ้นอยู่กับสภาวะอากาศ บางฤดูอาจไม่มีลม 			
	ไม่กินเนื้อที่ ด้านล่างยังใช้พื้นที่ได้อยู่ มีแค่การลงทุนครั้งแรก ไม่มีค่าเชื้อเพลิง	4. ต้องใช้แบตเตอรี่ราคาแพงเป็นแหล่งเก็บ พลังงาน			
5.	สามารถใช้ระบบไฮบริดเพื่อให้เกิดประโยชน์ สูงสุด คือ กลางคืนใช้พลังงานลมกลางวันใช้ พลังงานแสงอาทิตย์	5. ขาดเทคโนโลยีที่เหมาะสมกับศักยภาพลมใน ประเทศ และขาดบุคคลากรผู้เชี่ยวชาญ			

ขั้นตอนการใช้งาน

- 1. เสียบปลั๊กแหล่งจ่ายไฟฟ้ากระแสสลับ 220 โวลต์ให้กับชุดแลปสาธิต
- 2. ดำเนินการเปิดเบรกเกอร์ตัดต่อไฟฟ้าไปอยู่ตำแหน่ง ON

- 3. บิดสวิชท์ไปยังตำแหน่ง ON ด้านขวา
- 4. เข้า Web application URL : https://encamppowerplant.com/lablite/wind/

และกดปุ่มเชื่อมต่อ กรณีมีการเชื่อมต่ออยู่จะมีหน้าต่างแจ้งเตือน

เมื่อเชื่อมต่อได้แล้วจะแสดงผลค่าต่าง ๆ และคีย์การเชื่อมต่อ

และสถานะการเชื่อมต่อที่หน้าจอแสดงผลที่ชุดแลปสาธิตขึ้นสถานะ connect

5. กดปุ่มควบคุม On line เพื่อให้ควบคุมการทำงานผ่าน web application

6. เริ่มการทดลองโดยกดปุ่มเริ่มการทำงาน เวลาการทำการทดลองจะเริ่มจับเวลา

7. เมื่อทำการทดลองเสร็จให้กดหยุด และกดยกเลิกการเชื่อมต่อ

วัตถุประสงค์

- 1. เพื่อศึกษาการทำงานของพลังงานลม
- 2. เพื่อศึกษาความสัมพันธ์ระหว่างความเร็วลมกับกำลังไฟฟ้าที่ผลิตได้จากพลังงานลม

วิธีการทดลอง

- 1. เปิดพัดลม เลือกระดับความเร็วลมของพัดลมเพื่อจำลองกระแสลมพัดไปยังกังหัน
- 2. ในขณะที่กังหันลมหมุน เครื่องกำเนิดไฟฟ้าในกังหันลมทำงานและจ่ายกระแสไฟฟ้าออกมา กระแสไฟฟ้าไหลเข้าเครื่องวัดค่าแรงดัน กระแสไฟและกำลังไฟฟ้า ทำการบันทึกค่า
- 3. กระแสไฟฟ้าที่ได้จะถูกประจุลงแบตเตอรี่ที่อยู่ภายในตู้ควบคุม

4. ทำตามข้อ 1, 2 และ 3 โดยการปรับระดับความเร็วลมเพิ่มขึ้น กำหนดระยะเวลาในการทดลอง เพิ่มขึ้น ทำการทดลองครั้งละ 3 ซ้ำ และบันทึกผลการทดลอง

ตารางบันทึกผลการทดลอง

0.04	ความเร็ว	1000	เวลา	กำลังไฟฟ้าที่ ผลิตได้ (W)	พลังงานไฟฟ้า ที่ผลิตได้ (kW-h)	กำลังลม (W)	ประสิทธิภาพ
ลำดับ	ลม (m/s)	(นาที)	(ชั่วโมง)				ของระบบ (%)
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							

หมายเหตุ: ปริมาณพลังงานไฟฟ้าที่ผลิตได้ = กำลังไฟฟ้า (กิโลวัตต์) x เวลา (ชั่วโมง)

การวิเคราะห์ผลการทดลอง
สรุปผลการทดลอง

.....