KI in Bridge

GIB: Imperfect Information in a Computationally Challenging Game

Inhalt

- Eckdaten von Bridge
- Der Suchbaum
- Monte Carlo Ansatz
- ■SWO Ansatz
 - Achievable Sets
 - Selection order
- Performance
- Fazit & Ausblick
- Quellen

Eckdaten von Bridge

- Vier Spieler in zwei Teams
- Französisches Kartenspiel (52 Karten ohne Joker)
 - 13 Karten pro Spieler
- Stichspiel mit Farbzwang
- Zwei Phasen
 - Bietphase: Vertrag wird ausgehandelt;
 - Spielphase: Declarer vs. Defender
- Nullsummenspiel

Der Suchbaum

- Average case ca. 2,3 * 10²⁴ Blätter im Suchbaum
- Reduktion der Informationen

Der Suchbaum

- Average case ca. 2,3 * 10²⁴ Blätter im Suchbaum
- Reduktion der Informationen

Der Suchbaum – Partition Search

Suche nach Sets mit "ähnlichen" Situationen

- 1. $P: G \to 2^G$ maps positions into sets of positions such that for any position $p, p \in P(p)$.
- 2. $R: G \times 2^G \to 2^G$ accepts as arguments a position p and a set of positions S. If $p \in R_0(S)$, so that p can reach S, then $p \in R(p,S) \subseteq R_0(S)$.
- 3. $C: G \times 2^G \to 2^G$ accepts as arguments a position p and a set of positions S. If $p \in C_0(S)$, so that p is constrained to reach S, then $p \in C(p, S) \subseteq C_0(S)$.
- Branchingfaktor von b auf b^{0,76} reduziert
- Ca. 18.000 Knoten

Monte Carlo Ansatz

- Monte Carlo um perfekte Informationen zu simulieren
- Nachteile:
 - Keine Züge um Informationen zu erhalten
 - Probleme beim kombinieren von Gewinnstrategien

Beispiel:

- Strategie 1 gewinnt wenn West die Pik Dame hat
- Strategie 2 gewinnt wenn Ost die Pik Dame hat
- Strategie 3 entscheidet später zwischen 1 & 2
- Strategie 4 gewinnt egal wer die Pik Dame hat
 - → Monte Carlo bewertet 3 & 4 gleich stark.

- Eine Situation ist "achievable" wenn es eine Taktik zum Sieg gibt
- Mit MC werden Sets von aussichtsreichen Situationen gesucht
- Was wenn sie sich gegenseitig ausschließen?
 - → Möglichst viele Situationen zu einem "Achievable Set" vereinen und dieses spielen.

Min/Max Baum für Situation S

Werte für Situation S

Min/Max Baum für Set {S, T}

Werte für Set {S, T}

SWO Ansatz - Selection order

 Die Reihenfolge in der das Achievable Set erstellt wird kann suboptimal sein

Beispiel:

- <s1, t1, t2, t3, t4> wurden von MC gefunden
- Taktiken für S schließen Taktiken für T aus
- Das Achievable Set ist {s1}; nur 20% der Taktiken
- Nicht zum AS hinzugefügten Taktiken werden nach vorne geschoben und das AS erneut gebildet <t4, t2, s1, t1, t3>
- Neues AS ist ganz T; 80% der Taktiken

Performance (1)

GIB verglichen mit Bridge Baron 6 & Menschen

Source	size	BB	$\mathrm{Gib}_{\mathbf{MC}}$	$\mathrm{Gib}_{\mathbf{SWO}}$	composer	ambiguous
BM level 1	36	16	31	36	35	0
level 2	36	8	23	34	34	1
level 3	36	2	12	34	34	2
level 4	36	1	21	31	34	4
level 5	36	4	13	28	34	5
1998 par contest	12	0	5	11	12	2
1990 par contest	18	0	8	14	17	3

Nach mehreren Tausend Spielen auf OKBridge wurde GIB als "durchschnittlich" eingestuft.

Performance (2)

Computer Bridge im Jahr 2000

	GIB	WB	Micro	$_{\mathrm{Buff}}$	Q-Plus	Снір	Baron	$\mathrm{M'lark}$	Total
GIB	_	14	11	16	7	19	16	17	100
WBridge	6	_	19	13	16	7	18	20	99
Micro	9	1	_	18	15	15	13	20	91
Buff	4	7	2	_	12	20	5	20	70
Q-Plus	13	4	5	8	_	11	14	11	66
Blue Chip	1	13	5	0	9	_	11	20	59
Baron	4	2	7	15	6	9	_	14	57
Meadowlark	3	0	0	0	9	0	6	_	18

Fazit & Ausblick

- GIB war 2001 die weltweit stärkste Bridge KI
- GIB konnte es dennoch nicht mit Profis aufnehmen
- Schwachpunkte waren das Verteidigerspiel und die Bietphase
- Punkteberechnung stark vereinfacht
- Letztes Update für GIB gab es am 13.01.09
- Letzte Turnierteilnahme 2002; Platz 4
- Momentan stärkste Bridge KI: Jack
 - Fast so stark wie Profis
 - Größtes Problem ist noch immer das Bieten

Quellen

- GIB: Imperfect Information in a Computationally Challenging Game (M. Ginsberg), Journal of Artificial Intelligence Research 14:303-358
- Computer Bridge, A Big Win for AI Planning (S. J. J. Smith, D. Nau, T. Throop), AI Magazine Volume 10 Number 2 (1998)
- www.computerbridge.com
- Automated Planning, theory and practice (M. Ghallab, D. Nau, P. Traverso)

