Oppgaver MAT2500

Fredrik Meyer

5. september 2014

Oppgave 1. Bruk forrige oppgave til å vise at hvis m er orienteringsreverserende, så er m^2 en translasjon. (merk: forrige oppgave sa at alle isometrier er på formen $t_{\vec{a}}\rho_{\theta}$ eller $t_{\vec{a}}\rho_{\theta}s.$)

Løsning 1. Først, legg merke til at isometrier på den første formen er orienteringsbevarende (verken rotasjoner eller translasjoner endrer orientering). Så m må kunne skrives som $m = t_{\bar{a}} \rho_{\theta} s$. Vi viste også at

Dermed er

$$m^{2} = (t_{\vec{a}}\rho_{\theta}s)(t_{\vec{a}}\rho_{\theta}s)$$

$$= t_{\vec{a}}\rho_{\theta}st_{\vec{a}}\rho_{\theta}s$$

$$\stackrel{*}{=} t_{\vec{a}}s\rho_{-\theta}t_{\vec{a}}\rho_{\theta}s$$

$$\stackrel{**}{=} t_{\vec{a}}s\rho_{-\theta}\rho_{\theta}t_{\rho_{\theta}}(t_{\vec{a}})s$$

Litt forklaring. Første likhet er bare å fjerne parenteser. I (*) brukte vi at $\rho_{\theta}t_{\vec{a}} = t_{\rho\theta\vec{a}}\rho_{\theta}$, som vi viste i forrige oppgave. I (**) brukte vi at to translasjoner satt sammen er en translasjon ($t_{\vec{a}}t_{\vec{b}} = t_{\vec{a}+\vec{b}}$). I (***) brukte vi at $s\rho_{\theta} = \rho_{-\theta s}$, og i (****) brukte vi at $\rho_{\theta}\rho_{-\theta} = id$ og $s^2 = id$ (å rotere først $-\theta$ og så θ er det samme som å rotere ingenting, og å speile to ganger er det samme som å gjøre ingenting).

Vi ender opp med $t_{\vec{b}}$ hvor $\vec{b} = \vec{a} + \rho_{\theta}\vec{a}$, så m^2 er en translasjon.

Oppgave 2. Gi en begrunnelse for hver likhet i utregningen til slutt i beviset for Setning 2.4.

Løsning 2. Det vi har lyst å vise er at $t_{\vec{a}}s_l = t_{\vec{w_1}}s_{l'}$. La oss huske hva alle disse bokstavene betyr. Tidligere i beviset ble det vist at en orienterings**reverserende** isometri kan skrives på formen $m = t_{\vec{a}}s_l$, hvor s_l er en speiling om en linje l.

Her hjelper det veldig å tegne en tegning.

La l være linjen utspent av vektoren \vec{v} . Siden \mathbb{R}^2 er 2-dimensjonal, er $\{\vec{v}, \vec{v}^\perp\}$ en basis for \mathbb{R}^2 . Så vi kan skrive $\vec{a} = (\vec{a} \cdot \vec{v})\vec{v} + (\vec{a} \cdot \vec{v}^\perp)\vec{v}^\perp$. La $\vec{w}_1 \stackrel{def}{=} (\vec{a} \cdot \vec{v})\vec{v}$ og $\vec{w}_2 \stackrel{def}{=} (\vec{a} \cdot \vec{v}^\perp)\vec{v}^\perp$. La l' være linja $\{\frac{1}{2}\vec{w}_2 + \lambda \vec{v} \mid \lambda \in \mathbb{R}\}$.

Da påstår vi først at $s_{l'} = t_{\frac{1}{2}\vec{w}_2} s_l t_{-\frac{1}{2}\vec{w}_2}$. Skriv $\vec{x} \in \mathbb{R}^2$ som $\vec{x} = c_1 \vec{w}_1 + c_2 \vec{w}_2$. Da kan vi anvende isometriene over på \vec{x} og håpe vi får det samme:

$$s_{l'}(\vec{x}) = s_{l'}(c_1\vec{w}_1 + c_2\vec{w}_2)$$

= $c_1\vec{w}_1 + (1 - c_2)\vec{w}_2$
= $c_1\vec{w}_1 + \vec{w}_2 - c_2\vec{w}_2$

Også:

$$t_{\frac{1}{2}\vec{w}_2} s_l t_{-\frac{1}{2}\vec{w}_2} (\vec{x}) = t_{\frac{1}{2}\vec{w}_2} s_l \left(c_1 \vec{w}_1 + c_2 \vec{w}_2 - \frac{1}{2} \vec{w}_2 \right)$$

$$= t_{\frac{1}{2}\vec{w}_2} \left(c_1 \vec{w}_1 - c_2 \vec{w}_2 + \frac{1}{2} \vec{w}_2 \right)$$

$$= c_1 \vec{w}_1 - c_2 \vec{w}_2 + \vec{w}_2.$$

Så høyresiden er lik venstresiden og alt er fint.

Neste steg er å se at $s_l t_{-\frac{1}{2}\vec{w}_2} = t_{\frac{1}{2}\vec{w}_2} s_l$. Dette er ikke så vanskelig å se geometrisk. Her er en algebraisk måte å se det på:

$$s_l t_{-\frac{1}{2}\vec{w}_2}(\vec{x}) = s_l t_{-\frac{1}{2}\vec{w}_2}(c_1 \vec{w}_1 + c_2 \vec{w}_2)$$

$$= s_l \left(c_1 \vec{w}_1 + c_2 \vec{w}_2 - \frac{1}{2} \vec{w}_2 \right)$$

$$= c_1 \vec{w}_1 - c_2 \vec{w}_2 + \frac{1}{2} \vec{w}_2.$$

Dette var altså venstresiden (merk at å speile i l er det samme som å sette alle koeffisienter av \vec{w}_2 til det negative).

Så for høyresiden:

$$\begin{split} t_{\frac{1}{2}\vec{w}_2}s_l(c_1\vec{w}_1+c_2\vec{w}_2) &= t_{\frac{1}{2}\vec{w}_2}(c_1\vec{w}_1-c_2\vec{w}_2) \\ &= c_1\vec{w}_1-c_2\vec{w}_2 + \frac{1}{2}\vec{w}_2. \end{split}$$

Så venstresiden er lik høyresiden og alt er fint.

Siste likhet som ble brukt i beviset var at $t_{\vec{w}_1}t_{\frac{1}{2}\vec{w}_2}t_{\frac{1}{2}\vec{w}_2}=t_{\vec{a}}$, men dette er åpenbart når vi husker at $\vec{a}=\vec{w}_1+\vec{w}_2$.

Oppgave 3. Anta m er en isometri av planet som tar en linje l på seg selv, m(l) = l, og at $m|_{l}$ er en translasjon med en vektor \vec{a} . Gi et geometrisk argument for at m enten er en speiling, en glidespeiling eller translasjonen $t_{\vec{a}}$.

Løsning 3. For det første: vi kan bytte ut $m \mod mt_{-\vec{a}}$. Da blir $m\big|_l = id$, siden det ikke er noen translasjon langs linjen lenger. Så problemet blir nå: gitt at vi skal holde en hel linje fast, hvordan kan vi da flytte rundt på planet? Det er da "klart" at eneste mulighet er å speile om linja l (rotasjon og translasjon går ihvertfall ikke).

Konklusjon: om $\vec{a}=0$, var dette allerede en speiling eller bare identitet. Om $\vec{a}\neq 0$, var dette enten en glidespeiling eller translasjon, avhengig om vi valgte å speile.

Oppgave 4.