CHAPTER

6

वैद्युत मापक यंत्र (ELECTRICAL MEASURING INSTRUMENT)

- वैद्युत मापक यंत्र (Electrical Measuring Instrument) :
- वह यंत्र जो 'वैद्युतिक राशि जैसे voltage, current resistance, ऊर्जा इत्यादि को मापता है, वैद्युत मापक यंत्र कहलाता है।
- ये यंत्र विद्युत धारा के विभिन्न प्रभावों पर कार्य करते हैं।
- वैद्युत मापक यंत्रों की कमानी के निर्माण के लिए सबसे उपयुक्त धातु फॉस्फर ब्रोंज है।
- िकसी वैद्युत प्रभाव से िकसी वैद्युतिक राशि को मापने के लिए यंत्र में जो युक्ति लगी होती है, उसे सेन्सर (Sensor) कहते हैं।
- विद्युतमापक यंत्र दो प्रकार के होते हैं।
- 1. प्राथमिक यंत्र (Primary Instrument) :—
- यह यंत्र किसी सूचक युक्ति के द्वारा किसी वैद्युतिक राशि की केवल उपस्थिति दर्शाता है जैसे—चुम्बकीय सूई।
- 2. द्वितीयक यंत्र (Secondary Instrument) :—
- वह युक्ति जिसके द्वारा वैद्युतिक राशि को मापा जाता है। जैसे-आमीटर, वोल्टमीटर इत्यादि।
- ये तीन प्रकार के होते हैं-
 - (a) सूचक या इंडीकेटिंग यंत्र
 - वह यंत्र जो किसी वैद्युतिक राशि के तात्कालिक मान को एक संकेतक के द्वारा एक पूर्वांकित पैमाने पर दर्शाता है। जैसे-अमीटर, वोल्टमीटर, मेगर, वाटमीटर।
 - (b) रिकॉर्डिंग यंत्र
 - वह यंत्र जो किसी वैद्युतिक राशि के तात्कालिक मान को एक ग्राफ पेपर पर अंकित करता जाता है। जैसे-रिकॉर्डिंग वोल्टमीटर।
 - (c) इन्टीग्रेटिंग यंत्र
 - वह यंत्र जो किसी वैद्युतिक राशि के प्रेक्षण काल के अंतर्गत कुल मान को दर्शाता है। जैसे-Kwh मीटर, ऊर्जामीटर।
- विद्युत परिपथ के सांकेतिक यंत्र की आवश्यकताएँ निम्नलिखित है :—
 - 1. विक्षेपक टार्क (Deflecting Torque)
 - 2. नियंत्रक टार्क (Controlling Torque)
 - 3. अवमन्दन टार्क (Damping Torque)
- 1. विक्षेपक टार्क (Deflecting Torque) :—
- सूचक को शून्य की स्थिति से विक्षेपित करने के लिए विक्षेपक टार्क की आवश्यकता होती है।

- इसे चुम्बकत्व के द्वारा उत्पन्न किया जाता है।
- इसे विद्युतीय प्रेरण तथा विद्युत के उष्मीय प्रभाव से भी उत्पन्न किया जाता है।

- 2. नियंत्रक टार्क (Controlling Torque) :—
- विक्षेपक टार्क उत्पन्न होने के बाद सूचक की गित को नियंत्रित करने के लिए नियंत्रक टार्क की आवश्यकता होती है।
- नियंत्रक टार्क, विक्षेपक टार्क का विरोध करता है और विक्षेपण के साथ बढता है।
- इसे स्प्रिंग नियंत्रण प्रणाली तथा गुरुत्वीय नियंत्रण प्रणाली द्वारा उत्पन्न किया जाता है।

स्प्रिंग नियंत्रण प्रणाली

गरूत्व नियंत्रण प्रणाली

- इसकी कमानी फॉस्फर ब्रॉंज की बनी होती है।
- यह Light weight (हल्का वजन) का होता है।
- इसका उपयोग PMMC और dynometer type यंत्र में करते हैं।
- इसका स्केल uniform होता है।

 $I \propto \theta$

- गुरूत्व नियंत्रण प्रणाली उपयंत्र को केवल ऊर्ध्वाधर स्थिति में रखने पर ही प्रभावी होता है।
- यह वजन में भारी होता है।
- इसका स्केल प्रारम्भ में सघन तथा बाद में विरल अर्थात् क्रैम्प्ड स्केल कहलाता है।
- इसका स्केल non uniform होता है।
- तापमान का इस पर कोई प्रभाव नहीं पडता है।
- 3. डैम्पिंग टार्क (Damping Togrue) :—
- जब सूचक पर विक्षेपक और नियंत्रक टार्क लगता है, तो उसमें कंपन उत्पन्न हो जाता है जिसे डैम्पिंग टार्क रोकता है।
- यह सूचक को विरामावस्था में लाता है।
- इसे वायु घर्षण, एडी धारा तथा द्रव घर्षण द्वारा उत्पन्न किया जाता है।
- वायु घर्षण अवमन्दन प्रणाली (Air friction damping system) :

- इसमें Air chamber में स्थित piston पर लगने वाला वायु दबाव सदा ही इसकी गति का विरोध करता है।
- इसका प्रयोग छोटे instrument में करते हैं।

भाँवर धारा अवमन्दन प्रणाली (Eddy current damping system) :

- यह अवमन्दन की बहुत ही प्रभावपूर्ण विधि है।
- विद्यत चम्बकीय प्रेरण के सिद्धान्त पर कार्य करता है।
- इसमें ऐलुमीनियम या ताँबे की चकती का प्रयोग करते हैं।
- इसमें jewell bearing का प्रयोग करते हैं।
- द्रव घर्षण अवमन्दन प्रणाली (Fluid friction damping system):

- इसका प्रयोग बड़े instrument में अधिक Damping torque उत्पन्न करने के लिए करते हैं।
- इसमें उच्च श्यानता वाले द्रव का प्रयोग करते हैं।
- द्रव प्रयोग करने से इसका वजन बढ़ जाता है। इस कारण इसका उपयोग अत्यन्त सीमित है।

कुछ महत्त्वपूर्ण यंत्र (Some Important Instruments)

- मूर्विंग क्वायल यंत्र (Moving Coil Instrument) :
- इसमें Coil घुमता है।
- यह DC motor के सिद्धांत अर्थात् विद्युत चुम्बकीय प्रेरण पर कार्य करता है।
- इसमें स्केल एक समान होता है।
- इसमें स्थायी चुम्बक भी प्रयोग होता है।
- ये स्थायी चुम्बक और डायनेमोमीटर प्रकार के होते हैं।
- ये दूसरे मीटरों की तुलना में महँगे होते हैं।

- इसमें शिक्त खपत कम होती है।
- ये बहुत शुद्ध और विश्वसनीय होते हैं।
- ये मजबूत भी होते हैं।
- स्थायी चुम्बक वाले मूर्विंग क्वायल यंत्र केवल DC पर तथा डायनेमोमीटर वाले मूर्विंग क्वायल यंत्र AC तथा DC दोनों पर कार्य करते हैं।
- मूर्विंग आयरन यंत्र (Moving Iron Instrument) :
- इसमें coil स्थिर रहता है।
- यह AC तथा DC दोनों को मापता है।
- इसमें विद्युत चुम्बक का प्रयोग होता है।
- M.I. प्रकार के उपकरण में औरखिक पैमाना प्रयोग किया जाता है।
- ये दो प्रकार के होते हैं-
- (a) आकर्षण प्रकार (Attraction type) :
- ये विद्युत चुम्बकीय आकर्षण के सिद्धांत पर कार्य करता है।

Attraction type

- (b) विकर्षण प्रकार (Repulsion type):
- यह यंत्र समान ध्रुवता वाले विद्युत चुम्बकीय ध्रुवों में 'विद्यमान' विकर्षण के सिद्धांत पर कार्य करता है।

कुछ महत्वपूर्ण मापक यंत्र

■ गैल्वेनोमीटर (Galvanometer):

- यह एक प्रकार का धारामापी यंत्र है जो बहुत कम (लगभग 10⁻⁶)
 धारा को माप सकता है।
- संकेत में इसे G से दर्शाया जाता है।

■ अमीटर (Ammeter) :

- इसका प्रयोग भी विद्युत धारा को मापने के लिए किया जाता है।
- इसे विद्युत परिपथ में श्रेणी क्रम में जोडा जाता है।

इसमें विपेक्षक टॉर्क धारा से उत्पन्न होता है।

• गैल्वेनोमीटर को अमीटर से बदलने के लिए एक शंट (कम प्रतिरोध वाला तार) को समानांतर क्रम में लगाया जाता है।

$$(I - I_g)S = I_gg$$

$$S = rac{I_g \cdot g}{I - I_g}$$
 ; जहाँ $S =$ शंट का प्रतिरोध,

g = galvanometer का प्रतिरोध

- आदर्श अमीटर का प्रतिरोध शून्य होता है।
- अमीटर का प्रतिरोध शंट के प्रतिरोध से कम होता है।
- एक अमीटर में शंट का कार्य—करेंट को गुजारना।
- यह एक द्वितीयक उपकरण है।
- वोल्टमीटर (Voltmeter):

- इसका उपयोग Voltage को मापने के लिए किया जाता है।
- Voltmeter को परिपथ से समांतर क्रम में लगाया जाता है।

- इसमें विपेक्षक टॉर्क मापने वाली वोल्टेज के समानुपाती धारा से उत्पन्न होता है।
- गैल्वेनोमीटर को वोल्टमीटर में बदलने के लिए एक उच्च प्रतिरोध (Multiplier) को श्रेणीक्रम में लगाया जाता है। इससे इसकी रेंज भी बढ़ाई जाती है।

$$V = V_{m} + V_{g}$$

$$V = I_{g}R + I_{g}g$$

$$I_{g}R = V - I_{a}g$$

$$R = \frac{V}{I_{g}} - g$$

जहाँ R = उच्च प्रतिरोध

g = galvanometer का प्रतिरोध

- आदर्शे voltmeter का प्रतिरोध अनंत होता है।
- मल्टीप्लायर का प्रतिरोध उच्च होता है।

Note: Ammeter को High Resistance series में जोड़कर Voltmeter की तरह प्रयोग किया जा सकता है तथा Voltmeter को Low Resistance Parallel में जोड़कर Ammeter की तरह use किया जा सकता है।

■ वाट मीटर (Watt Meter):

- यह शक्ति मापने वाला यंत्र है।
- DC की शिक्त P = VI
- AC की शक्ति $P = VI \cos \phi$ जहाँ $\cos \phi = \text{पावर फैक्टर तथा } \phi$ फेज angle है।
- इसका वर्गीकरण विक्षेपी उपकरण के रूप में किया गया है।
- यह डायनेमोमीटर प्रकार, इन्डक्शन प्रकार तथा स्थिर वैद्युत प्रकार का होता है परन्तु प्राय: डायनेमोमीटर प्रकार ही प्रयुक्त होता है क्योंकि यह AC तथा DC दोनों को मापता है।
- इन्डक्शन प्रकार केवल AC को ही मापता है।

■ ऊर्जामापी (Energy Meter):

- ये परिपथ की विद्युत ऊर्जा मापता है।
- इसे kwh मीटर भी कहते हैं।
- इस यंत्र में एक चक्कर काटने वाली चकती होती है जिसकी घूर्णन गित,
 िकलोवाट में विद्युत खपत के अनुक्रमानुपाती होती है।
- यदि किसी ऊर्जामापी के फेज तथा न्यूट्रल संयोजनों को अंत: बदल कर दिया जाए तो चकती की घर्णन दिशा परिवर्तित नहीं होगी।
- यदि चकती बिना लोड संयोजित किए भी धीमी गति पर गतिमान रहती
 हैं. तो यंत्र का यह दोष क्रीपिंग दोष कहलाता है।
- इसके निवारण के लिए डिस्क में छिद्र बना दिये जाते हैं।
- A.C. ऊर्जामीटर में डिस्क (चकती) के कंपन नियंत्रित करने के लिए एडी करंट द्वारा डैंपिंग टार्क उत्पन्न किया जाता है।
- प्राय: उपयोग होने वाले सिंगल फेज ऊर्जा मीटर इंडक्शन प्रकार के होते हैं।
- किसी D.C. परिपथ की ऊर्जा मापने के लिए प्रयुक्त होने वाले ऊर्जा मीटर एम्पियर-घंटा प्रकार के होते हैं।
- ऊर्जामीटर का मीटर स्थिरांक rev./kwh द्वारा व्यक्त किया जाता है।
- सिंगल फोज ऊर्जामीटर का श्रेणी चुम्बक मोटी वायर की कुछ लपेटों की कुंडली बनी होती है।
- ऊर्जामीटर की गित ब्रेकिंग चुंबक के द्वारा नियंत्रित की जा सकती है।
- दाब कुंडली महीन वायर की अधिक लपेटों की संख्या की बनी होती है।
- जर्जा घटक बढ़ाने के लिए ऊर्जामापी के धारा कॉइल में ताँबे की बनी
 शेडिंग रिंग लगाई जाती है।
- यह (ऊर्जामापी) समाकलन यंत्र प्रारूपी होता है।
- 🔳 ओह्ममीटर (Ohmmeter) :

- इसके द्वारा चालक का प्रतिरोध मापा जाता है।
- ओह्ममीटर को उपयोग में लाने से पूर्व यह आवश्यक है कि
 - → उपयुक्त माप-सीमा का चयन कर लें।
 - → संकेतक को शुन्य प्रतिरोध हेत समायोजित कर लें।
 - → उसके प्रोब्स को शॉर्ट सिर्कट कर लें।
- अनंत प्रतिरोध दर्शाने वाला वैद्युतिक परिपथ खुला परिपथ कहलाता है।

■ मेगर (Megger) :

- इसके द्वारा अर्थ तथा इन्सुलेशन का प्रतिरोध मापा जाता है।
- यह मेगा ओम में मापता है।
- मेगर की सहायता से ध्रुवता टेस्ट, लघु परिपथ टेस्ट तथा भू-परीक्षण किया जाता है।
- मेगर में नियंत्रित आघूर्ण Coil (कॉइल) द्वारा प्रदान किया जाता है।
- 250V स्थापनाओं के परीक्षण के लिए मेगा वोल्टेज 500 होनी चाहिए।
- I.E. नियमों के अनुसार अर्थ और चालक के बीच इंसुलेशन प्रतिरोध

50 मेगा ओह्य निर्गमों की सख्या से कम नहीं होना चाहिए।

- एक विद्युत केतली के अर्थ दोष के परीक्षण पर मैगर की रीडिंग शून्य है तो यह शरीर से छूने पर न्यूट्ल टर्मिनल दर्शाता है।
- मल्टीमीटर (Multimeter) :
- मल्टीमीटर से आवृत्ति नहीं मापा जा सकता है।

- इसे Avo meter भी कहा जाता है।
 - A Ampere (Ammeter)
 - V Voltge (Voltmeter)
 - O (Ohmeter)
- इसके द्वारा धारा, विभव तथा प्रतिरोध तीनों को मापा जा सकता है।
- यह AC तथा DC दोनों को मापता है।
- इसके प्रचालन के लिए 9 volts DC स्रोत की जरूरत होती है।
- इसके सेलेक्टर स्वीच की स्थिति प्रतिरोध के मान के अनुसार बदली जाती है।
- इंटोग्रेटेड परिपथ प्रकार का मल्टीमीटर अधिक संवेदनशील एवं शुद्ध होता है।
- यह एक electronic तकनीशियन के लिए सबसे आवश्यक यंत्र है।
- यदि इसकी बैटरी कमजोर हो, तो यह कम रीडिंग देगा।

■ फ्रीक्वेन्सी मीटर (Frequency Meter) :

- इसके द्वारा A.C. स्रोत की फ्रीक्वेन्सी मापी जाती है।
- यह यंत्र स्रोत वोल्टेज परिवर्तनों से अप्रभावित रहता है।
- यह यंत्र, ½ चक्र से कम फ्रीक्वेन्सी अंतर को नहीं पढ सकता।

■ CRO (Cathode Ray Oscilloscope):

- यह एक ऐसा इलेक्ट्रॉनिक यंत्र है जिसके द्वारा डी.सी. अथवा ए.सी.
 वैद्यतिक राशियों की तरंग आकृति पर्दे पर स्पष्टत: देखी जा सकती है।
- 🕨 यह बहुत सुग्राही (sensitive) होते हैं।

 CRO से सीधे शिक्त नहीं मापा जा सकता है तथा वोल्टेज, धारा और आवृत्ति को सीधे मापा जा सकता है।

कुछ महत्वपूर्ण तथ्य

- इंडक्शन मीटर की रेंज 100A होती है।
- एक BOT इकाई 746 वाट-घंटे के बराबर होती है।
- यदि चल कुंडली धारामापी को DC परिपथ में संयोजित करके उसके संयोजनों को अंत: बदल कर दिया जाए, तो यंत्र विपरीत दिशा में विक्षेप दर्शायेगा।
- स्थायी चुंबक चल कुंडली यंत्र में अवमंदक बल पैदा करने के लिए एडी करंट अवमंदन विधि प्रयोग की जाती है।
- डायनेमोमीटर प्रकार के यंत्र में धारा कुंडलियों में स्थिर रखा जाता है।
- वोल्टमीटर में विक्षेपक टार्क उत्पन्न करने के लिए विद्युत स्थैतिक प्रभाव का उपयोग किया जाता है।
- आमीटर में विक्षेपक टार्क उत्पन्न करने के लिए उष्मीय प्रभाव का उपयोग किया जाता है।
- एम्पियर घंटा मीटर के संचालन के लिए रासायनिक प्रभाव का उपयोग किया जाता है।
- स्प्रिंग नियंत्रित मीटर सुग्राह्य होता है।
- स्प्रिंग नियंत्रित यंत्रों में नियंत्रित टार्क समायोजन आसानी से नहीं किया जा सकता है।
- पिजोमीटर का उपयोग बहुत कम दाब मापने के लिए करते हैं।
- नियंत्रण टार्क के लिए स्प्रिंग नियंत्रण विधि का प्राय: प्रयोग होता है।
- ग्रेविटी नियंत्रण विधि पर तापमान का कोई प्रभाव नहीं पडता।
- ग्रेविटी नियंत्रण विधि का दोष है कि इसे उर्ध्वाधर स्थिति में रखना पड़ता है।
- प्राय: डायनेमो प्रकार के वाटमीटर में डैपिंग टार्क वायु घर्षण द्वारा लगाये जाते हैं।

- शिक्तगणक मापी की कार्य-प्रणाली में नियंत्रण प्रणाली नहीं होती है।
- PMMC मीटर मल्टीमीटर में लगाया जाता है।
- धारिता मापने के लिए निम्न ब्रीज का प्रयोग किया जाता है।

- वीन ब्रीज का उपयोग आवित्त मापने के लिए भी करते हैं।
- प्रेरकत्व मापने के लिए निम्न ब्रीज का प्रयोग किया जाता है।

प्रतिरोध को सटीकता से मापने के लिए केल्विन ब्रीज का प्रयोग करते हैं।

Objective Questions -

- 1. निम्न में से कौन प्राथमिक यंत्र है ?
 - (A) चुम्बकीय सुई
- (B) आमीटर
- (C) वोल्टमीटर
- (D) kwh मीटर
- 2. वह यंत्र जो किसी वैद्युतिक राशि के तात्कालिक मान को एक ग्राफ पेपर पर अंकित करता है।
 - (A) सूचक यंत्र
- (B) रिकार्डिंग यंत्र
- (C) इंटीग्रेटिंग यंत्र
- (D) इनमें से कोई नहीं
- 3. वह यंत्र जो किसी वैद्युतिक राशि के प्रेक्षणकाल के अंतर्गत कुल मान को दर्शाता है।
 - (A) सूचक यंत्र
- (B) रिकार्डिंग यंत्र
- (C) इंटीग्रेटिंग यंत्र
- (D) इनमें से कोई नहीं
- 4. वैद्युत मापक यंत्र विद्युत धारा के पर कार्य करते हैं-
 - (A) ऊष्मीय प्रभाव
- (B) चुम्बकीय प्रभाव
- (C) प्रकाशीय प्रभाव
- (D) उपरोक्त सभी
- िकसी वैद्युत प्रभाव से किसी वैद्युतिक राशि को मापने के लिए यंत्र
 में जो युक्ति लगी होती है, उसे कहते हैं।
 - (A) सूचक
- (B) सेन्सर
- (C) चम्बक
- (D) स्केल
- **6.** सूचक को शून्य की स्थिति से विक्षेपित करने के लिए की आवश्यकता होती है।
 - (A) विक्षेपिक टार्क
- (B) नियंत्रण टार्क
- (C) डैम्पिंग टार्क
- (D) उपरोक्त सभी
- 7. नियंत्रण टार्क, विक्षेपक टार्क का करता है।
 - (A) सहयोग
- (B) विरोध
- (C) दोनों
- (D) कोई संबंध नहीं
- 8. मुविंग आयरन यंत्र में स्थित रहता है-
 - (A) आयरन
- (B) क्वॉयल
- (C) मचक
- (D) इनमें से कोई नहीं
- 9. निम्न में किसकी शुद्धता और विश्वसनीयता अधिक होती है ?
 - (A) मुविंग क्वॉयल यंत्र
- (B) मुविंग आयरन यंत्र
- (C) दोनों की समान होती है (D) इनमें ये कोई नहीं
- 10. गैल्वेनोमीटर को आमीटर में बदलने के लिए जोडते हैं-
 - (A) निम्न प्रतिरोध की श्रेणी क्रम में
 - (B) उच्च प्रतिरोध की श्रेणी क्रम में
 - (C) निम्न प्रतिरोध की समांतर क्रम में
 - (D) उच्च प्रतिरोध की समांतर क्रम में
- 11. गैल्वेनोमीटर को वोल्टमीटर में बदलने के लिए जोड़ते हैं-
 - (A) निम्न प्रतिरोध को श्रेणी क्रम में
 - (B) उच्च प्रतिरोध की श्रेणी क्रम में
 - (C) निम्न प्रतिरोध की समांतर क्रम में
 - (D) उच्च प्रतिरोध की समांतर क्रम में

- 12. AC की शक्ति मापी जाती है-
 - (A) W = VI
- (B) $W = VI. \cos \phi$
- (C) $W = VI. \sin \phi$
- (D) $R = \frac{V}{I}$
- 13. ओह्ममीटर मापता है-
 - (A) धारा
- (B) विभवांतर
- (C) प्रतिरोध
- (D) चालकता
- 14. CRO का विस्तृत रूप है-
 - (A) Cathode Ring Oscilloscope
 - (B) Crystal Ring Oscilloscope
 - (C) Cathode Ray Oscilloscope
 - (D) Crystal Ray Oscilloscope
- 15. फ्रीक्वेन्सी मीटर के द्वारा मापी जाती है-
 - (A) केवल A.C. की फ्रीक्वेन्सी
 - (B) केवल D.C. की फ्रीक्वेन्सी
 - (C) धारा की गति
 - (D) प्रतिरोधकता
- 16. स्थायी चुंबक चल कुंडली यंत्र में अवमंदक बल पैदा करने के लिए कौन-सी विधि प्रयोग की जाती है ?
 - (A) वाय अवमंदन
- (B) कमानी अवमंदन
- (C) एडी करंट अवमंदन
- (D) द्रव आवमंदन
- 17. एक वैद्युतिक मापक यंत्र का संकेतक बिना कंपन किए शीघ्र ही अपनी अंतिम विक्षेप अवस्था प्राप्त कर लेता है, यदि—
 - (A) उसमें उचित अवमंदन उपस्थित हो
 - (B) उसमें अवमंदन उपस्थित न हो
 - (C) उसमें निम्न अवमंदन उपस्थित हो
 - (D) उसमें उच्च अवमंदन उपस्थित हो
- **18.** वैद्युतिक मापक यंत्रों की कमानी के निर्माण के लिए सबसे उपयुक्त धातु है ?
 - (A) इस्पात
- (B) नाइक्रोम
- (C) यूरेका
- (D) फॉस्फर ब्रोंज
- 19. किसी वैद्युतिक मापक यंत्र के सचल भाग पर कार्यरत घुमाव बल है ?
 - (A) विक्षेपक घुमाव बल
- (B) नियंत्रक घुमाव बल
- (C) डेपिंग घुमाव बल
- (D) ये सभी
- 20. यदि चल-कुंडली धारामापी को D.C. परिपथ में संयोजित करके उसके संयोजनों को अंत: बदल कर दिया जाए, तो यंत्र—
 - (A) का पाठ्यांक अपरिवर्तित रहेगा
 - (B) कोई विक्षेप नहीं दर्शाएगा
 - (C) विपरीत दिशा में विक्षेप दर्शाएगा
 - (D) गलत पाठ्यांक दर्शाएगा

21 .	डायनेमोमीटर प्रकार के यंत्र का उपयोग क्या नापने के लिए किया	34.	विद्युत शक्ति को मापने वाला मीटर कहलाता है।
	जाता है ?		(A) kWh मीटर (B) टेकोमीटर
	(A) केवल D.C. राशियाँ		(C) अमीटर (D) वाटमीटर
	(B) केवल A.C. राशियाँ	35 .	परिपथ का विभवांतर मापने वाला मीटर कहलाता है।
	(C) केवल पल्सेटिंग A. C. राशियाँ		(A) वोल्टमीटर (B) अमीटर
	(D) A.C. एवं D.C. दोनों प्रकार की राशियाँ		(C) ऊर्जा मीटर (D) स्फेरोमोटर
22 .	ओह्म मीटर को उपयोग में लाने से पूर्व यह आवश्यक है, कि-	36.	विद्युतीय परिपथ की धारा मापने के लिए प्रयुक्त मीटर
	(A) उसकी प्रोब्स को शॉर्ट-सर्किट कर लें		कहलाता है।
	(B) उपयुक्त माप-सीमा का चयन कर लें		(A) वोल्टमीटर (B) अमीटर
	(C) संकेतक को शून्य प्रतिरोध हेतु समायोजित कर लें		(C) टेकोमीटर (D) हाइड्रोमीटर
0.0	(D) उपरोक्त सभी	37 .	उपभोगता की विद्युत ऊर्जा मापने के लिए प्रयुक्त मीटर
23 .	अनंत प्रतिरोध दर्शाने वाला वैद्युतिक परिपथ, कहलाता है।		कहलाता है।
	(A) शॉर्ट-परिपथ (B) खुला-परिपथ (C) ग्राउंड-परिपथ (D) इनमें से कोई नहीं		(A) वाटमीटर (B) एंपीयर घंटा-मीटर
0.4			(C) kWh मीटर (D) माइक्रोमीटर
24.	एक BOT इकाई के तुल्य होती है। (A) 746 वाट-घंटे (B) 764 वाट-घंटे	38.	मापन यंत्र की जरूरी आवश्यकताएँ हैं।
		00.	(A) विक्षेपक टॉर्क (B) नियंत्रक टॉर्क
95	(C) 1000 वार-घंरे (D) 3600 वार-घंरे वैद्युत ऊर्जा खपत नापने की सर्वोत्तम विधि है ?		(C) डेपिंग टॉर्क (D) उपरोक्त सभी
25 .	9 .	20	(b) उपराधा समा विक्षेपक टॉर्क को द्वारा उत्पन्न किया जा सकता है।
	(A) वोल्टमापी तथा धारामापी (B) वोल्टमापी, धारामापी तथा स्टॉप–वॉच	39.	
	(C) वाट मीटर तथा स्टॉप-वॉच		(A) ग्रेविटी नियंत्रण (B) स्प्रिंग नियंत्रण
	(D) एनर्जी मीटर	40	(C) वायु घर्षण (D) चुंबकीयतः
26.	यदि किसी ऊर्जामापी की चकती 1kWh ऊर्जा खपत दर्शाने में 3000	40.	नियंत्रण टॉर्क को उत्पन्न किया जा सकता है।
20.	घूर्णन करती है, तो उसके 1 चक्कर द्वारा दर्शाई गई ऊर्जा खपत होगी ?		(A) विद्युत स्थैतिकीय
	(A) 20 arz-मिनट (B) 60 arz-मिनट		(B) तरल दर्षण द्वारा
	(C) 80 वाट-मिनट (D) 120 वाट-मिनट		(C) हेयर स्प्रिंग का प्रयोग करके
27 .	यदि किसी ऊर्जामापी के फेज तथा परिवर्तित संयोजनों को अंत: बदल		(D) तापीय विधि द्वारा
	कर दिया जाए, तो–	41.	डैपिंग टॉर्क को द्वारा उत्पन्न किया जा सकता है।
	(A) चकती की घूर्णन दिशा परिवर्तित नहीं होगी।	<i>y</i>	(A) eddy current (B) ग्रेविटी नियंत्रण
	(B) चकती की घूर्णन दिशा परिवर्तित हो जाएगी।		(C) विद्युत स्थैतिकीय (D) तापीय
	(C) चकती रूक जाएगी।	42 .	विक्षेपक टॉर्क उत्पन्न करने के लिए में विद्युत स्थैतिक
	(D) चकती की घूर्णन गति घट जाएगी।		प्रभाव का उपयोग किया जाता है।
28 .	यदि किसी ऊर्जामापी की चकती, बिना लोड संयोजित किए भी धीमी		(A) अमीटर (B) वोल्टमीटर
	गति पर गतिमान रहती है, तो यंत्र यह दोष कहलाता है ?		(C) वाटमीटर (D) ऊर्जामीटर
	(A) गति दोष (B) शॉर्ट सिर्कट दोष	43 .	में विक्षेपक टॉर्क उत्पन्न करने के लिए ऊष्मीय प्रभाव का
	(C) क्रीपिंग दोष (D) तापमान दोष		प्रयोग किया जाता है।
29 .	ऊर्जामापी के एल्युमीनियम चकती में छिद्र बनाने का प्रयोजन है ?		(A) वाटमीटर (B) ऊर्जा मीटर
	(A) जंग लगने से बचाना		(C) अमीटर (D) मल्टीमीटर
	(B) क्रीपिंग दोष को दूर करना	44 .	के संचालन के लिए रासायनिक प्रभाव का उपयोग किया
	(C) घर्षण दोष को दूर करना		जाता है।
20	(D) चकती के भार को कम करना		(A) स्फेरोमीटर (B) अमीटर
30 .	एक kWh मापी यंत्र को निम्न में से किस वर्ग में रखा जा सकता है ?		(C) एंपीयर घंटा मीटर (D) टेकोमीटर
	(A) विक्षेपक (B) रिकॉर्डिंग	45 .	स्प्रिंग नियंत्रित मीटर होता है।
31.	(C) इंटीग्रेटिंग (D) इंडिकेटिंग वाटमीटर का वर्गीकरण के रूप में किया गया है।		(A) सुग्राह्य नहीं
31.	(A) विक्षेपी उपकरण (B) रिकॉर्डिंग यंत्र		(B) सुगाह्य
	(A) विद्याप उपकरण (B) विद्याचित्र पत्र (C) स्चक यंत्र (D) समाकलन उपकरण		(C) एक निश्चित स्थिति में लगा
32 .			(D) इनमें से कोई नहीं
JZ.	विद्युतीय राशियों को मापने के लिए प्रयुक्त मीटर कहलाते हैं। (A) हाइग्रोमीटर (B) माइक्रोमीटर	46.	स्प्रिंग नियंत्रित यंत्रों में नियंत्रित टॉर्क—
	(A) हाइग्रामाटर (B) माइक्रामाटर (C) मापन यंत्र (D) स्फेरोमीटर		(A) समायोजन आसानी से किया जा सकता है
33.	(D) स्फरामाटर वोल्टमीटर को परिपथ में जोड़ते हैं—		(B) समायोजन आसानी से नहीं किया जा सकता है
JJ.	वाल्टमाटर का पारपथ म जाड़त ह— (A) श्रेणी क्रम में (B) समांतर क्रम में		(C) समान रहता है
	(C) मिश्रित क्रम में (D) क्रम सीमा तय नहीं		(D) लोड के साथ परिवर्तित होता है
	(C) THAN SOLD (D) SEE CHAING NO.	1	

नियंत्रक टॉर्क के लिए. स्प्रिंग नियंत्रण विधि का-अमीटर की रेंज बढाने के लिए-47. 60. (A) प्राय: प्रयोग होता है (B) कभी-कभी प्रयोग होता है (A) अमीटर कॉयल के साथ श्रेणी में उच्च मान का प्रतिरोध जोड़ो (B) अमीटर कॉयल के साथ श्रेणी में उच्च मान का प्रतिरोध समांतर (C) हमेशा प्रयोग होता है (D) कभी भी प्रयोग नहीं होता है स्प्रिंग नियंत्रण यंत्र के लाभ हैं ? 48. (C) अमीटर कॉयल के साथ समांतर में निम्न मान का प्रतिरोध जोडो (A) इस पर फैटींग का असर होता है (D) अमीटर कॉयल के साथ श्रेणी में निम्न मान का प्रतिरोध जोड़ो (B) नियंत्रक टॉर्क आसानी से समायोजित किया जा सकता है वोल्टमीटर की रेंज बढाने के लिए-(C) क्योंकि स्प्रिंग भार में हल्की होती है, इसलिए गतिमान निकाय **61**. (A) वोल्टमीटर के साथ उच्च मान का प्रतिरोध श्रेणी में जोडो के भार में कोई वृद्धि नहीं होती है (B) वोल्टमीटर के साथ निम्न मान का प्रतिरोध श्रेणी में जोडो (D) तापमान बढने से नियंत्रक टॉर्क पर कोई प्रभाव नहीं पडता (C) वोल्टमीटर के साथ उच्च मान का प्रतिरोध समांतर में जोड़ो ग्रेविटी नियंत्रण विधि के लाभ ये हैं ? 49. (A) ये देखने में संदर होते हैं (D) वोल्टमीटर के साथ निम्न मान का प्रतिरोध समांतर में जोडो द्वारा परिपथ की वोल्टेज तथा धारा मापने के लिए (B) यह सरल नहीं होती है 62. (C) तापमान से प्रभावित नहीं होती है गैल्वेनोमीटर का उपयोग किया जाता है। (A) केवल शंट (D) फैटींग का असर नहीं होता (B) केवल उच्च मान के प्रतिरोध को श्रेणी में जोडकर **50**. ग्रेविटी नियंत्रण विधि का दोष हैं ? (C) धारा मापने के लिए शंट और वोल्टेज के लिए श्रेणी में उच्च (A) इसे ऊर्ध्वाधर स्थिति में रखना पडता है प्रतिरोध (B) यह भार में हल्की होती है (D) बिना शंट और श्रेणी प्रतिरोध (C) स्केल एकसमान बँटी होती है 63. वोल्टमीटर की तुलना में अमीटर की लागत-(D) यह आकार में बड़ा होता है (B) अधिक होती है (A) कोई तलना नहीं A.C. ऊर्जामीटर की डिस्क की कंपन नियंत्रित करने के लिए **51**. द्वारा डैंपिंग टॉर्क उत्पन्न किया जाता है। (C) कम होती है (D) समान होती है 64. आप कैसे पहचानेंगे, कि मीटर M.I. टाईप का है या M.C. टाईप का? (A) एडी करंट (B) रासायनिक प्रभाव (A) स्केल के प्रकार से (C) विद्युत स्थैतिक प्रभाव (D) चंबकीय प्रभाव (B) टर्मिनल की मार्किंग से **52**. मृविंग आयरन यंत्र होते हैं। (C) मीटर प्लेट पर दिये गए चिह्न द्वारा (A) आकर्षण प्रकार के (D) उपरोक्त सभी से (B) विकर्षण प्रकार के परिपथ की शक्ति मापने के लिए प्रयुक्त मीटर कहलाता है। (C) आकर्षण व विकर्षण प्रकार के 65. (A) kWh मीटर (B) वाटमीटर (D) डाइनेमोमीटर प्रकार के (C) आमीटर (D) वोल्टमीटर 53. मविंग कॉयल यंत्र-विद्युत ऊर्जा को मापने वाला मीटर कहलाता है। (A) स्थायी चुंबकीय प्रकार के होते हैं 66. (B) डायनेमोमीटर प्रकार के होते हैं (A) kWh मीटर (B) स्फेरोमीटर (C) इंडक्शन प्रकार के होते हैं (C) टेकोमीटर (D) वाटमीटर (D) स्थायी चुंबक और डायनेमोमीटर प्रकार के होते हैं प्राय: उपयोग किये जाने वाले वाटमीटर होते हैं। **67**. मृविंग कॉयल यंत्र पर प्रयोग किये जा सकते हैं। (B) विद्यत स्थैतिक प्रकार के 54. (A) इंडक्शन प्रकार के (D) चल लौह प्रकार के (A) A.C. और D.C. दोनों (B) केवल D.C. (C) डायनेमोमीटर प्रकार के डायनेमोमीटर प्रकार के वाटमीटर पर प्रयुक्त होते हैं। (C) केवल A.C. (D) अर्द्ध तरंग परिशोधित A.C. 68. **55**. मूर्विंग कॉयल स्थायी चुंबक यंत्र पर प्रयोग किये जा सकते हैं। (A) केवल A.C. (B) क्रेवल D.C. (A) A.C. और D.C. दोनों (B) केवल D.C. (C) A.C. और D.C. दोनों (D) अर्द्ध तरंग परिशोधित A.C. प्राय: उपयोग होने वाले सिंगल फेज ऊर्जा मीटर के होते हैं। (C) केवल A.C. (D) अर्द्ध तरंग परिशोधित A.C. M.C. यंत्रों की तुलना में M.I. यंत्रों की लागत-(A) डायनेमोमीटर प्रकार (B) रासायनिक प्रकार के **56**. (A) अधिक होती है (B) कम होती है (C) इंडक्शन प्रकार (D) चल कुंडली प्रकार (D) कोई तुलना नहीं किसी D.C. परिपथ की ऊर्जा मापने के लिए प्रयुक्त होने वाले ऊर्जा (C) समान होती है 70. मीटर के होते हैं। **57**. M.C. यंत्रों की शुद्धता M.I. यंत्रों की तुलना में-(A) एम्पियर-घंटा प्रकार (B) इंडक्शन प्रकार (A) अधिक होती है (B) समान होती है (C) कम होती है (C) विद्यत स्थैतिक प्रकार (D) डायनेमोमीटर प्रकार (D) बदलती रहती है ऊर्जामीटर का मीटर स्थिरांक द्वारा किया जाता है। M.C. यंत्र-**71**. **58**. (B) rev/kWh (A) rev/kW (B) शुद्ध होते हैं (A) मजबृत होते हैं (C) कम शक्ति खर्च करते हैं (D) उपरोक्त तीनों गुण मौजूद होते हैं (C) rev./W (D) rev. kWh सिंगल फेज मीटर की जरूरी आवश्यकताएँ है। M.C. यंत्रों की तुलना में M.I. यंत्र की खपत होती है। **72**. **59**. (A) अभिलेखन यंत्रावली (B) प्रचालन यंत्रावली (B) अधिक (A) बराबर (C) चल यंत्रावली (D) उपरोक्त सभी (C) कम (D) बहुत कम

73 .	दाब कुंडली की बनी होती है।	85 .	A.C. वाल्टेज के लिए मल्टीमीटर की लीड जोड़ी जाती है यदि
	(A) महीन वायर की अधिक लपेटों की संख्या		प्रतिरोध मापना हो, तो यह आवश्यक होगा ?
	(B) महीन वायर की लपेटों की कम संख्या		(A) एक लीड को दूसरी जैकेट पर बदलना
	(C) मोटी वायर की लपेटों की कम संख्या		(B) दोनों लीडों को दूसरी जैकेट को बदलना (C) एक लीड उभयनिष्ठ रखी जाती है और दूसरी जैकेट को बदल
7.4	(D) मोटी वायर की अधिक लपेटों की संख्या		दी जाती है
74 .	ऊर्जा मीटर की गति द्वारा नियंत्रित की जा सकती है।		पा जाता है (D) लीड में कोई परिवर्तन नहीं किया जाता है
	(A) शंट चुंबक (B) ब्रेकिंग चुंबक	86.	(D) लांड न काई नारवारा गृहा क्यांचा जाता है कौन-सा मल्टीमीटर अधिक संवेदनशील और शुद्ध है ?
	(C) भारी चुंबक (D) श्रेणी चुंबक मैगर का प्रयोग मापने के लिए होता है।	80.	(A) इंटीग्रेटेड परिपथ प्रकार का(B) डिजिटल प्रकार का
75 .			(C) सूचक प्रकार का (D) इनमें से कोई नहीं
	(A) निम्न प्रतिरोध (B) उच्च प्रतिरोध	87 .	अर्थ या इंसुलेशन का प्रतिरोध के द्वारा मापा जाता है।
	(C) मध्यम प्रतिरोध (D) बहुत निम्न प्रतिरोध	07.	(A) ह्वीटस्टोन ब्रीज (B) वोल्टमीटर
76 .	मैगर की गति पर रखी जाती है।		(C) मल्टीमीटर (D) मेगर
	(A) 1000 r.p.m. (B) 1500 r.p.m.	88.	(D) मणर यदि मल्टीमीटर की बैटरी कमजोर हो, तो यह—
	(C) 140 r.p.m. (D) 160 r.p.m.	00.	(A) शुद्ध रीडिंग देगा (B) अधिक रीडिंग देगा
77 .	250 V स्थापनाओं के परीक्षण के लिए मैगर वोल्टेज होनी		(C) कम रीडिंग देगा (D) कोई रीडिंग नहीं देगा
	चाहिए।	89.	वह यंत्र जो किसी वैद्युतिक राशि के तात्कालिक मान को एक ग्राफ
	(A) 1000 V (B) 25V	67.	पेपर पर ऑकित करता है।
	(C) 500 V (D) 2050V		
78 .	I.E. नियमों के अनुसार अर्थ और चालक के बीच इंसुलेशन प्रतिरोध		(A) सूचक यंत्र (B) रिकार्डिंग यंत्र (C) इंटीग्रेटिंग यंत्र (D) इनमें से कोई नहीं
	से कम नहीं होना चाहिए।	90.	वह यंत्र जो किसी वैद्युतिक राशि के प्रेक्षणकाल के अंतर्गत कुल मान
	(A) 80 मेगा ओह्य (B) 75 मेगा ओह्य	70.	की दर्शाता है।
	(A) $\frac{80 मेगा ओह्म}{ निर्गमों की सख्या }$ (B) $\frac{75 मेगा ओह्म}{ निर्गमों की सख्या$		(A) सूचक यंत्र (B) रिकार्डिंग यंत्र
			(C) इंटीग्रटिंग यंत्र (D) इनमें से कोई नहीं
	(C) $\frac{50 \text{ मेगा ओह्य}}{\text{निर्गमों की सख्या}}$ (D) $\frac{25 \text{ मेगा ओह्य}}{\text{निर्गमों की सख्या}}$	91.	वैद्युत मापक यंत्र विद्युत धारा के पर कार्य करते हैं।
79 .	मैगर पर विद्युत इस्त्री का परिक्षण करने पर मैगर की रीडिंग अनंत है,		(A) उष्मीय प्रभाव (B) चुम्बकीय प्रभाव
	यह दर्शाता है ?		(C) प्रकाशीय प्रभाव (D) उपरोक्त सभी
	(A) हीटिंग एलीमेंट का शॉर्ट सर्किट	92.	किसी वैद्युत प्रभाव से किसी वैद्युतिक राशि को मापने के लिए यंत्र
	(B) सप्लाई टर्मिनल का शॉर्ट सर्किट		में जो युक्ति लगी रहती होती है, उसे कहते हैं।
	(C) टर्मिनल के ढीले कनेक्शन		(A) सूचक (B) सेन्सर
	(D) हीटिंग एलीमेंट का खुला परिपथ		(C) चुम्बक (D) स्केल
80 .	एक विद्युत-केतली के अर्थ दोष के परिक्षण पर मैगर की रीडिंग शून्य	93.	निम्न में से किसकी शुद्धता और विश्वसनीयता अधिक होती है ?
	है। यह दर्शाता है ?		(A) मूविंग क्वॉयल यंत्र (B) मूविंग आयरन यंत्र
	(A) खुला परिपथ		(C) दोनों की समान होती है (D) इनमें से कोई नहीं
	(B) शरीर से छूने पर लाइव टर्मिनल	94.	गैल्वेनोमीटर को वोल्टमीटर में बदलने के लिए जोड़ते हैं-
	(C) शरीर से छूने पर न्यूट्रल टर्मिनल		(A) निम्न प्रतिरोध को श्रेणीक्रम में
	(D) इनमें से कोई नहीं		(B) उच्च प्रतिरोध को श्रेणीक्रम में
81.	एक व्यक्ति 500 V मैगर के दोनों टर्मिनलों को पकड़े हैं, परंतु		(C) निम्न प्रतिरोध को समांतर क्रम में
	के कारण फिर भी सुरक्षित है।		(D) उच्च प्रतिरोध को समांतर क्रम में
	(A) उच्च वोल्टेज (B) बहुत कम धारा	95 .	मेगर की रीडिंग होती है-
00	(C) निम्न आर्द्रता (D) शरीर के निम्न प्रतिरोध		(A) किलो ओहम में (B) मेगा ओहम में
82 .	मल्टीमीटरमाप सकता है।	0.5	(C) डेका ओहम में (D) मिली ओह्म में
	(A) प्रतिरोध (B) धारा	96.	फ्रीक्वेन्सी मीटर किस अंतर को नहीं पढ़ सकता ?
00	(C) वोल्टेज (D) उपरोक्त सभी		(A) 10 वक्र से कम (B) 5 चक्र से कम
83 .	मापने के लिए मल्टीमीटर का उपयोग किया जा सकता है (A) A.C. परिमाण	0.	(C) ½ चक्र से कम (D) 2 चक्र से कम
	(A) A.C. परिमाण (B) D.C. परिमाण	97.	किसी A.C. या D.C. की तरंग आकृति पर्दे पर देखने के लिए प्रयोग
	(b) D.C. पारमाण (C) A.C. तथा D.C. दोनों परिमाण		करते हैं-
	(C) A.C. तथा D.C. प्रामाण (D) स्पंदित D.C. परिमाण		(A) kwh मीटर (B) फ्रीक्वेंसी मीटर
84.	(b) स्थापत D.C. पारमाण एक निश्चित मल्टीमीटर के लिए प्रचालित वोल्टेज होती है—	0.0	(C) C.R.O (D) मल्टीमीटर
OT.	(A) 230 V.A. C. (B) 230 V.D.C.	98.	चुम्बक के असमान ध्रुवों के बीच होता है— (A) अपूर्वाण (B) विकर्षण
	(C) 9 V.D.C. (D) 9 V.A.C.		(A) आकर्षण (B) विकर्षण (C) अकर्षण व विकर्षण दोनों (D) दनमें में कोई नहीं
	(b) y v.n.c.	<u> </u>	(C) आकर्षण व विकर्षण दोनों(D) इनमें से कोई नहीं
THE	PLATFORM Join online test series : w	ww.platfo	rmonlinetest.com ITI TRADE THEORY, VOL2 ■ 67

99.	नई स्थापनाओं के विद्युत-रोधन प्रतिरोध को मापने के लिए कौन-से उपकरण का प्रयोग किया जाता है ?	112.	निम्नलिखित प्रतिरोध को सटीकता से किसके द्वारा मापा जा सकता है ? (A) वेन ब्रिज (B) ह्वीटस्टोन ब्रिज
	(A) मल्टीमीटर (B) मेगर		(B) बोल्वन ब्रिज (D) स्कोरिंग ब्रिज
	(C) ओममीटर (D) ऊर्जा मीटर	113	वोल्टमीटर का परास बढ़ाने के लिए निम्नलिखित में से किसका प्रयोग
100.	ईएमएफ जेनरेट किया जा सकता है, द्वारा—	110.	किया जाता है ?
	(A) रासायनिक परिवर्तन		(A) मल्टीप्लायर प्रतिरोधक (B) शन्ट
	(B) इलेक्ट्रो मैग्नेटिक इन्डक्शन		(C) कैपेसिटर (D) इनमें से कोई नहीं
	(C) दो असमान धातुओं के जंक्शन को गरम करने से	114.	पीजोमीटर का प्रयोग निम्नलिखित मापने के लिए किया जाता है—
	(D) इनमें से सभी		(A) संरचनाओं में विकृति (B) अति निम्न दाब
101.	'वॉट-मीटर' क्या होता है ?		(C) अति उच्च दाब (D) क्षरण प्रतिघात
	(A) किसी वैद्युतिक परिपथ के शक्ति व्यय को मापने वाला यंत्र	115.	ट्रांसफॉर्मर की कोर के निर्माण के लिए सबसे उपयुक्त सामग्री है—
	(B) वाट-मीटर विद्युत् धारा की दिशा को बताता है		(A) हॉट रोल्ड दाना व्यवस्थित स्टील
	(C) वाट-मीटर विद्युत् धारा के परिमाण को बताता है		(B) कास्ट स्टील
	(D) इनमें से सभी		(C) कूल्ड रोल्ड दाना व्यवस्थित स्टील (CRGO)
102 .			(D) कास्ट आयरन
	(A) डिफ्लेक्टिंग टार्क (B) ग्रेविटी कंट्रोल	116.	'विसर्पण' (क्रीपिंग) परिघटना निम्नलिखित में होती है—
	(C) (A) और (B) दोनों (D) इनमें से कोई नहीं		(A) अमीटर (B) वोल्टमीटर
103 .	आदर्श एमीटर (ideal ammeter) का प्रतिरोध कितना होना चाहिए ?		(C) वाटमीटर (D) वाट-आवर मीटर
	(A) कम (B) ज्यादा	117.	अमीटर एक है।
	(C) अनन्त (D) शून्य		(A) एक सेकेंडरी उपकरण (B) संपूर्ण उपकरण
104.	मापयंत्र की सुग्राहिता है-	110	(C) रिकॉर्डिंग उपकरण (D) एकीकृत उपकरण
	(A) आउटपुट में वह अल्पतम वृद्धि जिसे निश्चिंततापूर्वक संसूचित	118.	एक अमीटर में शंट का कार्य होता है—
	किया जा सकता है।		(A) करेंट को गुजारना (B) अमीटर की संवेदनशीलता को बढ़ाना
	(B) इनपुट में वह अधिकतम परिवर्तन जिसके प्रति मापयंत्र अनुक्रिया करने में असमर्थ रहता है।		(C) अमीटर का संवर्षशाला का बढ़ाना
			(D) अमीटर की संवेदनशीलता को बढ़ाना या करंट से गुजारना
	(C) आउटपुट के परिमाण में परिवर्तन का इनपुट के परिमाण में संगत परिवर्तन से अनुपात	110	M.I. प्रकार के उपकरण में कौन-से यंत्र का उपयोग होता है ?
	पारवतन स अनुपात (D) स्थिर इनपुट के बार-बार अनुप्रयोगों के लिए आउटपुट मानों की	119.	(A) लघुगुणीय पैमाना (B) रैखिक पैमाना
	समीपता		(C) अरैखिक पैमाना (D) घातीय पैमाना
105	निम्नलिखित में से किस/किन युक्ति/युक्तियों पर जमा (+) और घटा	120.	PMMC मीटर में लगाया जाता है।
100.	(-) के चिह्न अंकित होते हैं ?	120.	(A) मल्टीमीटर (B) वोल्टमीटर
	(A) अमीटर (B) वोल्टमीटर		(C) अमीटर (D) वाटमीटर
	(C) बैटरी (D) इनमें से सभी	121.	गैस्केट के गलने या क्षतिग्रस्त हो जाने पर निम्नलिखित में से कौन-सा
106 .	धारिता का मान मापने के लिए निम्नलिखित ब्रिज का प्रयोग किया		दोष उत्पन्न हो सकता है ?
	जाता है-		(A) भूसंपर्क की ओर उत्स्फुरण (स्पार्किंग)
	(A) वीन ब्रीज (B) ह्वीटस्टोन ब्रिज		(B) लेमिनेशन का जलना
	(C) एण्डरसन ब्रीज (D) हेज ब्रिज		(C) तेल रिसना
107.	Q मीटर किस सिद्धान्त पर कार्य करता है ?	100	(D) शून्य भार धारा में वृद्धि
	(A) आपसी अधिष्ठापन (B) शृंखला गूंज	122.	यदि नापी जाने वाली धारा के मान का अनुमान न हो, तो मापन
100	(C) आत्म अधिष्ठापन (D) समानांतर गूंज		से प्रारंभ करना चाहिए। (A) किसी भी माप सीमा (B) उच्चतम माप सीमा
108.	एक एनर्जी मीटर में क्रीपिंग का मुख्य कारण क्या होता है ? (A) अत्यधिक घर्षण (B) वोल्टेज का अत्यधिक प्रवाह		(C) मध्य माप सीमा (D) न्यूनतम माप सीमा
	(A) अत्यायक वर्षण (B) वाल्ट्य का अत्यायक प्रवाह (C) यांत्रिक कंपन (D) चुम्बकीय क्षेत्र	193	ऊर्जा मीटर के धारा कॉइल में ताँबे से बनी शेडिंग रिंग किसलिए
109.	पिजोविद्युतीय (piezoelectric) सामग्री का एक उदाहरण है।	120.	लगाई जाती है ?
10).	(A) कोरंडम (B) क्वार्ड		(A) स्पीड डिस्क बढ़ाने के लिए
	(C) नियोप्रीन (D) कांच		(B) शक्ति बढ़ाने के लिए
110.	मल्टीमीटर से क्या नहीं मापा जा सकता ?		(C) आवृत्ति बढा़ने के लिए
	(A) प्रतिरोधक क्षमता (B) वोल्टता		(D) ऊर्जो घटक बढ़ाने के लिए
	(C) धारा (D) आवृत्ति	124 .	दो चुंबकीय ध्रुवों के बीच की दूरी दुगुनी की जाती है और उनका ध्रुव
111.	इंडक्शन मीटर कितनी धारा का संचालन कर सकता है ?		बल भी दुगुना किया जाता है। उनके बीच का सामर्थ्य—
	(A) 30 A (B) 100 A		(A) चौगुना बढ़ेगा (B) चौगुना घटेगा
	(C) 10 A (D) 60 A		(C) अपरिवर्तित रहेगा (D) इनमें से कोई नहीं

- 125. चंबकीय परिपथ का प्रतिष्टम्भ (रिलक्टेंस) इस पर निर्भर होता है-
 - (A) कण्डल (कॉइल) में स्थित करेंट
 - (B) क्णडल के लपेटों (टर्न्स) कर संख्या
 - (C) A और B दोनों
 - (D) इनमें से कोई नहीं
- 126. किसी पीएमएमसी (PMMC) उपकरण में, बलाघुर्ण/भार अनुपात क्या होगा?
 - (A) अनंत
- (B) उच्च
- (C) श्रन्य
- (D) निम्न
- 127. एक गतिशील कुंडल वोल्टमापी किस प्रकार के वोल्टेज को मापता है ?
 - (A) AC से DC रूपांतरण वोल्टेज
 - (B) केवल AC वोल्टेज
 - (C) केवल DC वोल्टेज
 - (D) AC और DC वोल्टेज दोनों
- 128. चिलत लौह मीटर का परिचालन निम्नलिखित में से किस पर आधारित है ?
 - (A) स्थिर वैद्युत प्रभाव
- (B) ताप प्रभाव
- (C) वैद्युत चुंबकीय प्रभाव
- (D) प्रेरण प्रभाव
- 129. स्थायी चुंबक चल कुंडली उपकरण निम्नलिखित में से किसे पढ सकेगा ?
 - (A) स्पंदन मापन
- (B) केवल डी.सी. मापन
- (C) क्रेवल ए.सी. मापन
- (D) ए.सी. व डी.सी. दोनों मापन
- 130. निम्न में से कौन-सा मीटर समाकलन प्रकार का मापक यंत्र है-
 - (A) Ammeter
- (B) Voltmeter
- (C) Wattmeter
- (D) Energy meter
- 131. यदि आपको केवल DC का मापन करना हो तो आप कौन-सा उपकरण/मीटरका प्रयोग करेंगे—
 - (A) चल लौह प्रकार
- (B) स्थायी चुंबक प्रकार
- (C) विद्युत गतिक प्रकार
- (D) ऊष्ण तार प्रकार
- 132. यदि नापी जाने वाली धारा के मान का अनुमान न हो तो मापन से प्रारंभ करना चाहिए—
 - (A) मध्य माप सीमा
- (B) न्यूनतम माप सीमा
- (C) किसी माप सीमा
- (D) उच्चतम माप सीमा
- 133. सुचक यंत्रों में स्प्रिगों का प्रयोग किया जाता है मुख्यत:—
 - (A) धारा को कुंडलियों तक ले जाने के लिए
 - (B) संकेतक गति के नियंत्रण के लिए
 - (C) संकेतक के कंपन को कम करने के लिए
 - (D) किलक स्थिति बनाये रखने के लिए
- 134. विभवमापी मुलत: एक—
 - (A) मापन उपकरण है
- (B) संयोजक उपकरण है
- (C) अंशांकन उपकरण है
- (D) संकेतक उपकरण है
- 135. विक्षेपक बलाघुर्ण उत्पन्न किया जाता है-
 - (A) गुरूत्व नियंत्रण
- (B) स्प्रिंग नियंत्रण
- (C) वायु घर्षण
- (D) चुम्बकीयकरण
- 136. वाट-घण्टा यंत्र किस प्रकार का होता है?
 - (A) इन्डीकेटिंग
- (B) इन्टीग्रेटिंग
- (C) रिकार्डिंग
- (D) इनमें से कोई नहीं
- 137. इन्डक्शन टाइप यंत्र कहाँ प्रयोग करते हैं ?
 - (A) AC
- (B) DC
- (C) AC एवं DC
- (D) इनमें से कोई नहीं
- 138. कौन-सा अवमंदक सबसे अधिक दक्ष होता है—
 - (A) वाय अवमन्दक
- (B) द्रव्य अवमन्दक
- (C) भंवर धारा अवमन्दक
- (D) सभी अवमन्दक

- 139. वोल्टमीटर के मकाबले पोटेन्शियोमीटर को अधिक पसंद किया जाता है, क्योंकि—(विभवांतर मापन के कार्य में)
 - (A) विभवमापी, वोल्टमीटर के मुकाबले अधिक सुग्राहक होता है।
 - (B) विभवमापी का प्रतिरोध वोल्टमीटर से कम होता है।
 - (C) विभवमापी, वोल्टमीटर से सस्ता होता है।
 - (D) विभवमापी, परिपथ से विद्युत नहीं लेता।
- 140. गलती से वोल्टमीटर एवं एमीटर, जैसा कि चित्र में दर्शाया गया है, आबद्ध है—

- (A) केवल वोल्टमीटर जलेगा (B) केवल एमीटर जलेगा
- (C) दोनों जल जाएगा
- (D) कोई नहीं जलेगा
- 141. एक वोल्टमीटर का उपयोग कर थर्मोकपल क्या मापता है—
 - (A) RMS मान
- (B) उच्चतम मान
- (C) औसत मान
- (D) उच्च से उच्च मान
- 142. एक परिशुद्ध ऐमीटर के प्रतिरोध का मान होना चाहिए—
 - (A) उच्च
- (B) निम्न
- (C) बहुत निम्न
- (D) बहुत उच्च
- 143. 3-ф 4 wire परिपथ में शक्ति मापन हेतू उपयोग होता है—
 - (A) 1 वाटमीटर
- (B) 2 वाटमीटर
- (C) 3 वाटमीटर
- (D) 4 वाटमीटर
- 144. निम्न में से किस उपकरण में एक डिस्क होती है—
 - (A) एमीटर
- (B) वोल्टमीटर (D) ऊर्जामापी
- (C) वाटमीटर
- 145. घरेलू प्रदाय ऊर्जामापी की डिस्क किस पदार्थ की बनी होती है?
 - (A) Zinc (जस्ता)
 - (B) Copper (ताँबा)
 - (C) Aluminium (एल्युमीनियम)
 - (D) Silver (चाँदी)
- 146. घरेलु ऊर्जामापी कैसा होता है?
 - (A) समाकलन यंत्र
- (B) अभिलेखन यंत्र
- (C) सूचक यंत्र
- (D) इनमें से कोई नहीं
- 147. मेगर में, नियंत्रित आघूर्ण किसके द्वारा प्रदान किया जाता है—
 - (A) स्प्रिंग द्वारा
- (B) गुरूत्व द्वारा
- (C) कॉइल द्वारा
- (D) एडी करंट द्वारा
- 148. पिजोमीटर का प्रयोग किसे मापने के लिए किया जाता है?
 - (A) अति उच्चदाब
- (B) बहत कम दाब
- (C) विस्थापन
- (D) घनत्व
- 149. मेगर (Maggar) वह उपकरण है जो मापता है-
 - (A) किसी कुण्डली coil का Q

150. CRO से सीधे नहीं मापा जा सकता है—

- (B) किसी कुण्डली का प्रेरण
- (C) अत्यधिक निम्न प्रतिबल
- (D) रोधन प्रतिबल
 - (A) वोल्टेज (B) धारा
 - (C) आवृत्ति
- (D) शक्ति
- 151. मल्टीमीटर से क्या नहीं मापा जा सकता है— (A) आवृत्ति
 - (B) धारा
 - (C) प्रतिरोधक क्षमता
- (D) वोल्टता

ANSWERS KEY									
1. (A)	2 . (B)	3. (C)	4. (D)	5. (B)	6. (A)	7 . (B)	8. (B)	9 . (A)	10 . (C)
11 . (B)	12 . (B)	13. (C)	14. (C)	15 . (A)	16 . (C)	17 . (A)	18 . (D)	19 . (D)	20 . (C)
21 . (D)	22 . (D)	23 . (B)	24 . (A)	25 . (D)	26 . (A)	27 . (A)	28 . (C)	29 . (B)	30 . (C)
31 . (A)	32 . (C)	33 . (B)	34 . (D)	35 . (A)	36 . (B)	37 . (C)	38 . (D)	39 . (D)	40 . (C)
41 . (A)	42 . (B)	43 . (C)	44 . (C)	45 . (B)	46 . (B)	47 . (A)	48 . (C)	49 . (C)	50 . (A)
51 . (A)	52 . (C)	53 . (D)	54 . (A)	55 . (B)	56 . (B)	57 . (A)	58 . (D)	59 . (B)	60 . (C)
61 . (A)	62 . (C)	63 . (C)	64 . (D)	65 . (B)	66 . (A)	67 . (C)	68 . (C)	69 . (C)	70 . (A)
71 . (B)	72 . (D)	73 . (A)	74 . (B)	75 . (B)	76 . (D)	77 . (C)	78 . (C)	79 . (D)	80 . (C)
81 . (B)	82 . (D)	83 . (C)	84 . (C)	85 . (C)	86 . (A)	87 . (D)	88. (C)	89 . (B)	90 . (C)
91 . (D)	92 . (B)	93 . (A)	94 . (B)	95 . (B)	96 . (C)	97 . (C)	98 . (A)	99 . (B)	100 . (D)
101 . (A)	102 . (A)	103 . (D)	104 . (C)	105 . (D)	106 . (A)	107 . (B)	108 . (A)	109 . (B)	110 . (D)
111 . (B)	112 . (C)	113 . (A)	114. (C)	115 . (C)	116 . (D)	117 . (A)	118 . (A)	119. (C)	120 . (A)
121 . (C)	122 . (B)	123 . (D)	124 . (C)	125 . (C)	126 . (B)	127 . (C)	128 . (C)	129 . (B)	130 . (D)
131 . (B)	132 . (D)	133 . (B)	134 . (A)	135 . (D)	136 . (B)	137 . (A)	138. (C)	139 . (B)	140 . (B)
141 . (A)	142 . (C)	143 . (C)	144 . (D)	145 . (C)	146 . (A)	147 . (C)	148 . (B)	149 . (D)	150 . (D)
151 . (A)									

000

JOIN ONLINE TEST FOR UPCOMING EXAM.

VACANCIES	No. of Test	FEE	TEST DAY	DISCUSSION**
► SSC CGL TIER-I	10	500/-	Everyday	Printed Material & PDF E-mail
► SSC CGL TIER-II	10	800/-	Everyday	Printed Material & PDF E-mail
► RAILWAY ALP/TECH.	10	500/-	Everyday	Printed Material & PDF E-mail
► RAILWAY TC/CC.	10	500/-	Everyday	Printed Material & PDF E-mail
► RAILWAY GROUP-D	10	500/-	Everyday	Printed Material & PDF E-mail
▶ IBPS/SBI Bank Clerk	10	500/-	Everyday	Printed Material & PDF E-mail
► IBPS/SBI Bank PO	10	500/-	Everyday	Printed Material & PDF E-mail
► IBPS/RRB PO	15	500/-	Everyday	Printed Material & PDF E-mail
▶ Jharkhand Droga	10	500/-	Everyday	Printed Material & PDF E-mail

Associate Partners

Address: Musallahpur Hat, Sahganj, Post-Mahendru, Patna, Bihar, PIN - 800006,

Mobile: 7079212121, 7091491411, email: platformonlinetest@gmail.com, support@platformonlinetest.com, website: www.platformonlinetest.com