Assignment Project Exam Help Data Cleansing — 2

https://powcoder.com

Faculty of Information Technology, Monash University, Australia

Add We@hatepowcoder


```
Assignment, Portolect, Exam Help

36,1,4,110,0,?,0,125,1,1,2,?,6,1

38,0,4,105,0,?,0,166,0,2.8,1,?,?,2

38,0,4,110,0,0,0,156,0,0,2,?,3,1

http, 8,10000, 1700ct, 700ct, 700

38,1,4,135,0,?,0,150,0,0,?,?,3,2

38,1,4,150,0,?,0,150,0,0,?,?,3,2

38,1,4,150,0,?,0,120,1,?,?,3,1

40,1,4,95,0,?,1144,0,0,1,?,?,2

Missin also the wise and lease passers in the content of the
```

Reasons for Missing Values

- Equipment errors
- Assing of survey articipartoject Exam Help
 - Change of circumstances: Such as death, graduation, etc.
 - Filter question when a set of questions in a survey that is only asked to participal the Sindication World Com

Consequences of Missing Values

• Why is missing data a problem in data analysis?

Assignment a statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistical reshods presume complete information for all the particular statistics and th

- Consequences: Ignoring or inappropriately handling missing data may lead to
 - biased estimation; over/under estimated sample mean and variance
 - ► In retain the order/levelts the condition of reach out OM
- "The only really good solution to the missing data problem is not to have any. So in the design and execution of research projects, it is essential to put great effort into minimising the occurrence of missing data. Statistical adjustments that never make up for scopy preservity C Patro Alison

Assisgnate Project Exam Help

- Missing Data Pattern https://powcoder.com
- Methods for Handling Missing Values
 - Add WeChat powcoder
- Summary

Missing Data Mechanisms

- Describe relationships between measured variables and the probability of missing data

 Strangupur mental of the probability of the data for the missing observations.

 Describe relationships between measured variables and the probability of the probability
 - Three different missingness mechanisms der.com
 - Missing completely at random
 - Missing not at random

Mechanisms: Missing at Random (MAR)

MAR: the probability of missing data on a variable is related to some other measured variable (or variables) in the analysis model but not to the values are properly an interprolect Exam Herronal Prolect Exa

- \triangleright B. a binary $n \times p$ matrix indicating the missingness of the data
- $Y = (Y_{obs}, Y_{miss})$
 - Y_{obs} : observed part of Y
- http://paper.com

$$p(B \mid Y_{obs}, Y_{miss}, \eta) = p(B \mid Y_{obs}, \eta)$$

which says he trabability of missingless depends on the his readportion of data via some parameter in that relates obs to R.

Practical issue: no way to confirm that the probability of missing data on Y
is solely a function of other measured variables.

Mechanisms: Missing at Random (MAR)

- Examples
- A psychologist is studying quality of life in a group of cancer patients and SSIfinistration patients and patients with less edycatoriave and properties to refuse the quality of life questionnaire.
 - The missingness in the quality of life is related to the age and education
 - - The missingness in reading achievement is related to the ethic groups of students.

- MCAR: the probability of missing data on a variable is unrelated to other measured variables and is unrelated to the values of the variable itself. Interis indicated the missing respectations a Hel
 - Y_{obs} : observed part of Y
 - Y_{mis} : missing part of Y
 - Institute unknown parmete w.coder.com

$$p(B \mid Y_{obs}, Y_{miss}, \eta) = p(B \mid \eta)$$

which says hat sayle mame en still governs the probability than Retakes on a value of zero or one, but missingless is no longer related to the data.

- MCAR is a more restrictive condition than MAR.
- Both MAR and MCAR could be ignorable.

Example:

Assumption would be violated if people who did not report their income (such seage). The MSAR p

than people who reported it. This can be tested by dividing the sample into those who did and did not report their income, and then testing a difference in mean age. If we fail to reject the null hypothesis, their we can conclude that the MCAR is mostly fulfilled (there could still be some relationship between mistingness of and the value sory).

Example adopted from "Dealing with missing data: Key assumptions and methods for applied analysis" by Marina Soley-Bori.

• Effect of MCAR:

ASS İ	Table 6.1 S		Mean Math IRT Score	SD Math IRT Score	Skw, Skw, Kurtosis Math IRT Score	Man earlin Scores— Not Missing ¹	Reading IRT Scores— Missing ²	ievenen Scr	Average Error of Estimates (SD)	Correlation With Reading IRT Score	Effect Size (r²)
]	Original Daty To ulation Missing Completely at Random (MCAR)	15,163 S 12,099	38,03 38,06	11.94 D.(11.97	-0.02, -0.85 -0.03, -0.86	7€ €)de	2r (COI	.77 1	.59
	Missing Not Random (A NAP), Lo	12,134	43.73	9.89 e	-0.50, 0. 7	33.63 1at	23.09	5,442.49, p < .0001,	CO	de	.49
_	Missing Not at Random (MNAR), Extreme	7,578	38.14	8.26	-0.01, 0.89	30.26	2).74	10.84, $p < .001$, $\eta^2 = .001$.61*	.37
	Missing Not at Random (MNAR), Inverse	4,994	37.60	5.99	0.20, 0.60	29.59	30.20	13.35, p < .001, $\eta^2 = .001$		20*	.04

Figure is from "Dealing with missing or incomplete data" .

Test MCAR: separate the missing and the complete cases on a particular variable and examine group mean differences on other variables in the data
 Assignment Project Exam Help

cases on a particular variable and uses a T-test to examine group mean differences on other variables in the data set.

h-Amon-significant t test: the data are MEAR (Asignificant T/stable) (Weller hit) II Carge (CarO) feelce): the data are MAR or MNAR.

 Little's MCAR Test: A multivariate extension of the t-test approach that simultaneously evaluates mean differences on every variable in the data set

Add tweethat poweoder

Mechanisms: Missing Not at Random (MNAR)

• MNAR: the probability of missing data on a variable is related to the values of the variable itself, even after controlling for other variables

ASSI Galaran Controlling for other variables

Help

- Y_{obs} : observed part of Y
- Y_{mis} : missing part of Y
- Anstruction of the propabilistically as oder.com

 $p(B \mid Y_{obs}, Y_{miss}, \eta)$

Mechanisms: Missing Not at Random (MNAR)

- Examples
- Students with poor reading skills have missing test scores because they a students with poor reading skills have missing test scores because they the students with poor reading skills have missing test scores because they a student students with poor reading skills have missing test scores because they are students with poor reading skills have missing test scores because they are students with poor reading skills have missing test scores because they are students with poor reading skills have missing test scores because they are students with poor reading skills have missing test scores because they are students with poor reading skills have missing test scores because they are students with poor reading skills have missing test scores because they are students with the stud
 - A number of patients in the cancer trial become so ill (e.g., their quality of life becomes so poor) that they can no longer participate in the study.

 The pissingness in the quality of life is eleted to the quality of life itself.

Mechanisms: Missing Not at Random (MNAR)

Effects of MNAR

Assi	Table 6.1 S		Mean Math IRT Score	of Missi SD Math IRT Score	Skw, Kurtosis Math IRT Score	Mar ea lin Scores— Not Missing ¹	Mear Reading IRT Scores— Missing ²	ievenen Sc	Average Error of Estimates (SD)	Correlation With Reading IRT Score	Effect Size (r²)
]	Original Date Original Missing Completely at Random (MCAR)	15,163 S 12,099	38.06	11.94 11 .97	-0.02, -0.85 -0.03, -0.86	7C C)de	21, ns	COI	.77 1	.59
	Missing Not Random (A NAP),	12,134	43.73	9.89 e	-0.50, 0. 7	33.63 1at	23.09	5,442.49, p < .0001,	CO	de	.49
•	Missing Not at Random (MNAR), Extreme	7,578	38.14	8.26	-0.01, 0.89	30.26	2).74	10.84, p < .001, η ² = .001		.61*	.37
	Missing Not at Random (MNAR), Inverse	4,994	37.60	5.99	0.20, 0.60	29.59	30.20	$13.35,$ $p < .001,$ $\eta^2 = .001$		20*	.04

Figure is from "Dealing with missing or incomplete data" .

MAR, MCAR v.x. MNAR?

			Job performar	nce ratings		
	IQ	Complete	Test and			
Assign		ent P	rojec	ct E	xam	Heli
\mathcal{O}	84	10	<u>J</u>	_	10	
	85 87	7	7	_	_	
1_4	91	1/7	7	7	_	
nt		://po	WCO	uer.	com	
	94	<u>#</u>	11	11	11	
	96 99	7 7		7 7	_	
A	05	TT 70	10	10	10	- 40
\mathbf{A}	ULL		nat	PQW	'C#U	er
	108	10	10	10	10	
	112 113	10 12	— 12	10 12	10 12	
	115	14	14	14	14	
	118	16	16	16	16	
	134	12	_	12	12	

MAR, MCAR v.x. MNAR?

			Job performan	ice ratings		
	IQ	Complete	MCAR	MAR	MNAR	
A gaias	78	m t ⁹ D	wod 00	√ 10√	9	11.1
Assign			rogec		Xalli	пец
	85	8	8	_	_	_
	87	7	7	_	_	
	91	7	7	7	_	
h t	+ ⁹²	· //20	TI OO	dog .	oom	
111		://p̊o	WYU	나다.		
	96	7	_	7	_	
	99	7	7	7	_	
A	105	10	10	10	10	
Δ	C_{0}^{05}		`hង្គt ា	ndu	r C \Diamond C \Diamond	2p
1 1	108	10	1161		10	
	112	10	_	10	10	
	113	12	12	12	12	
	115	14	14	14	14	
	118	16	16	16	16	
	134	12	_	12	12	

Example adopted from "Applied Missing Data Analysis" by Craig K. Enders.

A **missing data pattern** refers to the configuration of observed and missing values in a data set.

A **missing data pattern** refers to the configuration of observed and missing values in a data set.

ASSIONION THE INTERIOR SELECTION OF THE PROPERTY OF THE PROPER

A **missing data pattern** refers to the configuration of observed and missing values in a data set.

values in a data set.

ASSITE A PITATE IN This PROVIDE CONTROL THE CONTROL TO THE CONTROL

A **missing data pattern** refers to the configuration of observed and missing values in a data set.

Knowledge of their asthma. It is interested in examining how a measure of a student's self efficacy beliefs about controlling their asthma symptoms

relates to a number of predictors.

Variable Definite 111 Position | Proposition | Pro

Asthma belief Survey	Level of confidence in controlling asthma	Range from 1, little confidence to 5, lots of confidence	4.057	(0.713)	154						
Group	Treatment or control	0 = Treatment	0.558	(0.498)	154	Symsev	Reading	Age	Allergy	# of cases	% of cases
Symsev	group Severity of A. tima symptoms of vec period p. st-tre; ne.	1 = Control 0 = 0 symptoms = r ild symptoms 1 = r siderate symptoms 3 = severe symptoms	e ((0.370)	Ϊ	at	ро	₩°C	ood	er	12.3 0.6 35.1 36.4
Reading	Standardized state reading test score	Grade equivalent scores, ranging from 1.10 to 8.10	3.443	(1.636)	79	M M	— м О	0	O M	9 1	5.8 0.6
A			10.596	(1,605)	152	O	M	O	M	10	6.5
Age	Age of child in years	Range from 8 to 14	10.586			U	O	M	M	2	1.3
Gender	Gender of child	0 = Male	0.442	(0.498)	154	M	M	O	M	2	1.3
Allergy	Number of allergies reported	1 = Female Range from 0 to 7	2.783	(1.919)	83	# missing 13 (8.4%)	# missing 75 (48.7%)	# missing 2 (1.3%)	# missing 71 (46.1)	154	

Figures are from "A review of methods for missing data" by Pigott

Outline

Assignment Project Exam Help

- https://powcoder.com
- Methods for Handling Missing Values
- SumAdd WeChat powcoder

Methods for handling missing values

• Listwise deletion (also known as complete-case analysis) discards the Assignment Project Exam Help

https://powcoder.com

• Listwise deletion (also known as complete-case analysis) discards the

Assignment Project Exam Help

	IQ	pertormance	Pertormance	
	78	9	_	
	84	13		
1 4 4 /	84	10	.1	
nttnc./	1 6		a <u>ar</u> (nom
https://	87	VV U	uu.	ヘルコ
	91	• • •		<u> </u>
_	92	9	_	
	94	9	_	
	94	11	_	
	96	7	_	
A 1 1 TT	99	7	7	1
		' b 8+		$\alpha \alpha d \alpha r$
Add W	15		1 1 (!) \	coder
1100	100	TIUL		COGCI
	108	10	10	
		10		
	113	12	12	
	115	14	14	
	118	16	16	
	134	12	12	

Figure is from "Applied Missing Data Analysis"

Listwise deletion (also known as complete-case analysis) discards the

data for any case that has pe or more missing values. Salamment Project Exam Help ► The primary benefit of list-wise deletion is convenience, producing a common

- set of cases for all analyses. 1 assumes MCAR data and can produce distorted parameter estimates when
- hsty(n) Non ploes (n) (n) (N) C() (1 e r . c o 1)
- Deleting the incomplete data records can produce a dramatic reduction in the total sample size, the magnitude of which increases as the missing data rate or number of variables increases

Deletion method: Pairwise Deletion

Pairwise deletion (also known as available-case analysis) attempts to

mitigate the loss of data by diminating cases of an analysis-by-analysis 1.51.2011.

Deletion method: Pairwise Deletion

Pairwise deletion (also known as available-case analysis) attempts to
mitigate the loss of data by pliminating cases on an analysis-by-analysis
SI-2NMENT PROJECT EXAM HELD

Example: compute covariance

$$\begin{array}{c}
x_{11} \\
x_{12} \\
x_{13} \\
x_{14} \\
x_{15} \\
x_{15} \\
x_{15} \\
x_{16} \\
x_{17} \\
x_{17} \\
x_{18} \\
x_{18} \\
x_{18} \\
x_{19} \\
x_{1$$

Figure are from "A Review of Methods for Missing Data" by Therese D. Pigott

Deletion method: Pairwise Deletion

 Pairwise deletion (also known as available-case analysis) attempts to mitigate the loss of data by liminating cases of an analysis-by-malysis BINMENT Project Exam He

- Considerations:
 - It requires MCAR data and can produce distorted parameter estimates when this assumption does not hold.
 - tepenlest on the lad not de of collections that exist between variables.
 - It can produce estimated covariance matrices are outside of the range of 1.0 to 1.0, which causes estimation problems for multivariate analyses that use a covariance matrix as input data.
 - ample of control of the standard

Single Imputation methods

• Single imputation: generates a single replacement value for each missing data point.

- SSIGNMENT Project Exam Help
 - Underestimates standard errors
 - Methods
 - https://powcoder.com

 - Stochastic Regression Imputation

Arithmetic mean imputation (also referred to as mean substitution) takes the seemingly appealing tack of filling in the missing values with the arithmetic mean are project Exam Help

 $\mu_{complete} = 10.35$, $\mu_{miss} = 11.7$, $\mu_{impute} = 11.7$

Regression imputation replaces missing values with predicted scores from a regression equation.

Assicen in the principal of the big and the principal of
- Two steps:
 - Estimate a set of regression equations that predict the incomplete variables for the Solere/virible WCOCET. COM
 - Generate predicted values for the incomplete variables

Regression imputation replaces missing values with predicted scores from a regression equation.

ASEISCORENT 1891 Permation Portuge Prolitic Pariagres 1991 in the elpinocompete variables.

Example

Regression imputation replaces missing values with predicted scores from a regression equation.

Stascoren 1991 Complete Pariagraphi in the elpinocomplete variables.

Example

IQ Con	nplete data	Alissing data / Jo Purformance	wcoder	Job performand	Predicted score
78	-			_	7.53
84	13	_	84	_	8.27
84	10	_	84	_	8.27
	10	_	85	_	8.39
85	8	_	87	_	8.64
87	11. 1	TTT /	91	_	9.13
91 92 94	\dd	Wec	Chat pov	VEO	der
94	11	_	96	_	9.74
96	7	-	99	7	_
99	7	7	105	10	_
105	10	10	105	11	_
105	11	11	106	15	_
106	15	15	108	10	_
108	10	10	112	10	_
112	10	10	113	12	
113	12	12	115	14	_
115	14	14			_
118	16	16	118	16	_
	12	12	134	12	

Regression imputation replaces missing values with predicted scores from a regression equation.

Assign memtion refer to the reparation in the lp incomplete variables.

Example

Effects of mean and regressing imputation

Figures are from "Dealing with missing or incomplete data"

Stochastic regression imputation add random residuals to the predicate values generated by standard regression imputation.

ASSICATION OF THE TRIBUTE OF THE LANGE THE PROPERTY OF THE PRO

- Two steps:
 - Estimate a set of regression equations that predict the incomplete variables for the Ospiete variables WCOCET.COM
 - Generate predicted values for the incomplete variables
 - Add a normally distributed residual term to each predicted score

Stochastic regression imputation add random residuals to the predicate values generated by standard regression imputation.

Segretary to the bases associated with standard egression imputation methods.

Example:

Stochastic regression imputation add random residuals to the predicate values generated by standard regression imputation.

Sesson in the best associated with standard egression imputation methods.

Example:

4 C	plete data	Missing data			-		
Comp	Dete nata		TTTOO	pe format ce	Predicted	Random	Stochastic
- 11	Jb	Jo	10	pe <mark>lformati</mark> ce	scor	residual	imputation
IQ 👢 👢	promance	• / Purformand	78	TOT (7.53	-0.35	7.18
78	- 9	_	84	_	8.27	2.70	10.97
84	13	_	84	_	8.27	-0.59	7.68
84	10	_	85	_	8.39	2.39	10.78
85	8	_	87	_	8.64	1.64	10.28
87	7		91	_	9.13	5.77	14.90
91	7		Chat 1	6 O T	9.25	2.47	11.72
92	9	VV-HI	9	nev	9. 0	- 4	8.46
94				\mathcal{O}	V 1	2.69	11.19
94	11	_	96	_	9.74	-3.58	6.16
96	7	-	99	7	_	_	_
99	7	7	105	10	_	_	_
105	10	10	105	11	_	_	_
105	11	11	106	15	_	_	_
106	15	15	108	10	_	_	_
108	10	10	112	10	_	_	_
112	10	10	113	12	_	_	_
113	12	12	115	14	_	_	_
115	14	14	118	16	_	_	_
118	16	16	134	12	_	_	_
134	12	12					

Stochastic regression imputation add random residuals to the predicate values generated by standard regression imputation.

SESSIC FOR 101 CONTROL OF THE PROPERTY OF THE

Example:

Stochastic regression imputation add random residuals to the predicate values generated by standard regression imputation.

Assign ments Printer Latence that Income to the bases associated with standard egression imputation methods.

The only procedure in this chapter that gives unbiased parameter estimates under an MAR missing/data mechanism. https://powcoder.com

Imputation with K-Nearest Neighbour

• The idea: use value of the K-Nearest neighbours to impute the missing value.

Assignment Projecte Exam Help

- ightharpoonup Select K observations whose attribute values are similar to y_i
- the missing value is estimated as

hines values: the most common values among all neighbours to the property of the common values among all neighbours.

weighted KMNI

$$Add We^{y_{\hat{j},t}} = \frac{\sum_{j \in I_{Kih}} s_i(y_j)y_{j,h}}{\sum_{i} t_{Kih}} v_i(y_i) v_{j,h}$$

Other imputation methods

• Hot-deck imputation: a collection of techniques that impute the missing values with scores from "similar" respondents.

SS1 Example Parsol ragereral populate Sulvey in Wichsing respondents.

 classifies respondents into cells based on demographic characteristics such as gender, age, race, and marital status

replaces the missing values with a random draw from the income distribution to the depts that have the same outel tion of deposit phic characteristics as the individual with missing data.

• Last observation carried forward: specific to longitudinal designs

Assignamene drivor of et Exam Help

		Observ	ed data	Las	t observation	carried forw	ard	
ID	Wave 1	Wave 2	Wave 3	Wave 4	Wave 1	Wave 2	Wave 3	Wave 4
1	501	S 53	าคง	VEO	der	C (1)	11 53	53
2	47	46	49	Y S1 C	47	46	49	51
3	43	_		_	43	43	43	43
4	55	_	56	59	55	55	56	59
5	45	45	47	46	45	45	47	46
	Ada	1 W	eC	hat	pov	VCC	der	•

Evaluate a missing-data method

• Minimise bias: Although it is well-known that missing data can introduce bias into parameter estimates a good method hould make that his as produced Exam Help

- Maximise the use of available information: We want to avoid discarding any data, and we want to use the available data to produce parameter estimates that are efficient (i.e. have minimum sampling variability).
- Yield good estimates of uncertainty. We want accurate estimates of standard errors, confidence intervals and p-values.

Summary

- What we discussed
- Assimissing value patterns Project Exam Help
 - Acknowledgement: this content of those slides are based on
 - ► Chapters 1 and 2 in "Applied Missing Data Analysis" by Craig K. Enders
 - 'A review of methods or insering data' (b) therese I. Piggt
 - Dealing with missing data: Key assumptions and methods for applied analysis" by Marina Soley-Bori
 - ► Chapters 2 and 3 in "Missing data" by Paul D. Allison
 - Assessment deleve Chat powcoder
 - Due date: Wednesday 3 Oct.