

www.vishay.com

N-Channel 40 V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	40			
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 10 \text{ V}$	0.009			
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 4.5 \text{ V}$	0.0135			
Q _g typ. (nC)	5.3			
I _D (A)	36 ^g			
Configuration	Single			

FEATURES

- TrenchFET® Gen IV power MOSFET
- \bullet Tuned for the lowest R_{DS} Q_{oss} FOM
- 100 % Rq and UIS tested
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · Primary side switch
- DC/DC converter
- · Motor drive switch
- Boost converter
- LED backlighting

N-Channel MOSFET

ORDERING INFORMATION	
Package	PowerPAK 1212-8S
Lead (Pb)-free and halogen-free	SiSS4410DN-T1-GE3

ABSOLUTE MAXIMUM RATINO	3S (T _A = 25 °C, u	ınless other	wise noted)	
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-source voltage		V_{DS}	40	V
Gate-source voltage		V _{GS}	+20 / -16	V
Continuous drain current (T _J = 150 °C)	T _C = 25 °C		36	
	T _C = 70 °C	Ι.	29	
	T _A = 25 °C	l _D	14 b, c	
	T _A = 70 °C	1	11.3 ^{b, c}	
Pulsed drain current (t = 100 µs)		I _{DM}	70	A
Continuous durin diada aument	T _C = 25 °C		18 ^a	
Continuous source-drain diode current	T _A = 25 °C	- I _S	2.9 ^{b, c}	
Single pulse avalanche current L = 0.1 mH		I _{AS}	12	
Single pulse avalanche energy		E _{AS}	9.2	mJ
	T _C = 25 °C		19.8	
Maximum power dissipation	T _C = 70 °C	T .	12.7	w
	T _A = 25 °C	P _D	3.2 b, c	vv
	T _A = 70 °C	1	2.1 ^{b, c}	
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +150	°C
Soldering recommendations (peak temperature) d, e			260	

THERMAL RESISTANCE RAT	INGS				
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT
Maximum junction-to-ambient b, f	t ≤ 10 s	R _{thJA}	31	39	°C/W
Maximum junction-to-case (drain)	Steady state	$R_{th,IC}$	5	6.3	C/VV

- a. Package limited
- b. Surface mounted on 1" x 1" FR4 board
- t = 10 s
- See solder profile (www.vishay.com/doc?73257). The PowerPAK 1212-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

 Rework conditions: manual soldering with a soldering iron is not recommended for leadless components

 Maximum under steady state conditions is 81 °C/W

- g. $T_C = 25$ °C

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static						
Drain-source breakdown voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	40	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	I _D = 10 mA	-	25	-	\//00
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	-	-4.4	-	mV/°C
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.1	-	2.4	V
Gate-source leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = +20 \text{ / } -16 \text{ V}$	-	-	100	nA
7		V _{DS} = 40 V, V _{GS} = 0 V	-	-	1	
Zero gate voltage drain current	I _{DSS}	V _{DS} = 40 V, V _{GS} = 0 V, T _J = 70 °C	-	-	10	μΑ
Duta a successful and the second	-	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	-	0.0067	0.009	Ω
Drain-source on-state resistance ^a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 5 \text{ A}$	-	0.0096	0.0135	
Forward transconductance a	9 _{fs}	$V_{DS} = 15 \text{ V}, I_D = 25 \text{ A}$	-	45	-	S
Dynamic ^b						
Input capacitance	C _{iss}		-	850	-	pF
Output capacitance	C _{oss}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	168	-	
Reverse transfer capacitance	C _{rss}		-	20	-	
	0	$V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	-	11.5	18	nC
Total gate charge	Qg		-	5.3	8	
Gate-source charge	Q _{qs}	$V_{DS} = 20 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 10 \text{ A}$	-	2.9	-	
Gate-drain charge	Q _{qd}		-	0.9	-	
Output charge	Q _{oss}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	-	6.4	-	1
Gate resistance	R _q	f = 1 MHz		3.2	6.4	Ω
Turn-on delay time	t _{d(on)}		-	7	15	
Rise time	t _r	$V_{DD} = 20 \text{ V. R}_1 = 2 \Omega. \text{ In } \approx 10 \text{ A}.$	-	3	10	nA μA Ω S
Turn-off delay time	t _{d(off)}	$V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	-	16	30	
Fall time	t _f	$\begin{array}{c c} S & V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 70 \text{ °C} \\ V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ V_{GS} = 4.5 \text{ V}, I_{D} = 5 \text{ A} \\ V_{DS} = 15 \text{ V}, I_{D} = 25 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 10 \text{ A} \\ \hline SS & V_{DS} = 20 \text{ V}, I_{D} = 10 \text{ A} \\ \hline SS & V_{DS} = 10 \text{ A} \\ \hline SS & V_{DS} = 10 \text{ A} \\ \hline SS & V_{DS} = 10 \text{ A} \\ \hline SS & V_{DS} = 10 \text{ A} \\ \hline SS & V_{DS} = 10$		3	10	1
Turn-on delay time	t _{d(on)}		-	14	30	ns
Rise time	t _r	$V_{DD} = 20 \text{ V. } R_1 = 2 \Omega. \text{ In } \cong 10 \text{ A.}$	-	8	170	
Turn-off delay time	t _{d(off)}	$V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	-	13	30	
Fall time	t _f		-	6	15	1
Drain-Source Body Diode Characteristic	cs					
Continuous source-drain diode current	Is	T _C = 25 °C	-	-	18	
Pulse diode forward current	I _{SM}		-	-	70	A
Body diode voltage	V _{SD}	$I_{S} = 10 \text{ A}, V_{GS} = 0 \text{ V}$	-	0.82	1.1	V
Body diode reverse recovery time	t _{rr}		-	12	30	ns
Body diode reverse recovery charge	Q _{rr}	1 10 A 11/11 100 A/ T 07 00	-	4.1	10	nC
Reverse recovery fall time	t _a	IF = 10 A. di/dt = 100 A/us. Li = 25 °C		-		
Reverse recovery rise time	t _b		-	5	-	ns

Notes

- a. Pulse test: pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$
- b. Guaranteed by design, not subject to production testing

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Output Characteristics

Transfer Characteristics

On-Resistance vs. Drain Current and Gate Voltage

Capacitance

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

Power, Junction-to-Case

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62241.

www.vishay.com

Case Outline for PowerPAK® 1212-8S

DIM.		MILLIMETERS			INCHES		
DIM.	MIN.	NOM.	NOM. MAX.		NOM.	MAX.	
Α	0.67	0.75	0.83	0.026	0.030	0.033	
A1	0.00	-	0.05	0.000	-	0.002	
A3		0.20 ref.			0.008 ref		
b	0.25	0.30	0.35	0.010	0.012	0.014	
D	3.20	3.30	3.40	0.126	0.130	0.134	
D1	2.15	2.25	2.35	0.085	0.089	0.093	
E	3.20	3.30	3.40	0.126	0.130	0.134	
E1	1.60	1.70	1.80	0.063	0.067	0.071	
е		0.65 bsc.			0.026 bsc.		
K		0.76 ref.			0.030 ref.		
K1	0.41 ref.		0.016 ref.				
L	0.33	0.43	0.53	0.013	0.017	0.021	
Z	0.525 ref.			0.021 ref.			

ECN: C20-0862-Rev. B, 20-Jul-2020

DWG: 6008

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.