Temporal Interest Network for User Response Prediction

 Authors: Haolin Zhou* (SJTU), Junwei Pan* (Tencent), Xinyi Zhou (SJTU), Xihua Chen (Tencent), Jie Jiang (Tencent),, Xiaofeng Gao (SJTU), Guihai Chen (SJTU)

User Response Prediction

Tencent 腾讯

➤ User Interest Modeling

Recommend items based on his history behavior sequence.

> Existing Work

DIEN

SASRec

Semantic-Temporal Correlation

Semantic-Temporal Correlation

- ➤ Intuitively, there should be both semantic and temporal correlation between behaviors and target. But there is no study on them together.
- ➤ We propose to measure the **ground truth semantic-temporal correlation (STC)** by **Mutual Information** between behaviors and the target at the category level.

Category-wise Target-aware Correlation
$$Cor = MI(X_{c(X)=c_i} \Lambda P(x)=p, Y_{c(Y)=c_t})$$

- ➤ We observe strong Semantic-Temporal Patterns
- **Semantic** pattern: behaviors belonging to the same category as the target (3rd row in red box) are, in general, more informative than behaviors of the other categories.
- **Temporal** pattern: there are strong temporal decaying patterns on these behaviors along the position
- Existing methods, including DIN, SASRec, and BST, fail to learn such patterns.

Target category: 674

Temporal Interest Network (TIN)

In order to learn the **semantic-temporal correlation** between behaviors and the target, a model should be able to capture the correlation between **the quadruplet**:

(behavior semantics, target semantics, behavior temporal, target temporal).

We propose Temporal Interest Network (TIN). Given a behavior e_i and the target v_t , TIN consists of:

- Target-aware Attention $\alpha(\tilde{e}_i, \tilde{v}_t)$ and Target-aware Representation $(\tilde{e}_i \odot \tilde{v}_t)$. We multiply them to conduct 4-way interaction explicitly between behaviors and the target.
- Target-aware Temporal Encoding, which learns a temporal embedding for each behavior according to their relative position or time interval regarding the target.

Performance Evaluation

All three components in TIN are critical.

- Without Target-aware Temporal Encoding, the model **loses temporal information** of each behavior regarding the target.
- Without either Target-aware Attention or Target-aware Representation, the model can't learn the 4-way interaction.

Model	Code	Amazon				Alibaba			
		Logloss	Δ%	GAUC	Δ%	Logloss	Δ%	GAUC	Δ%
Avg Pooling & Concat	XXX	0.4908 (1E-3)	-	0.8445 (2E-3)	-	0.1969 (1E-3)	-	0.6074 (5E-4)	-
Avg Pooling & Product	XX.	0.4824 (5E-4)	-1.71	0.8523 (8E-4)	+0.92	0.1960 (1E-3)	-0.46	0.6106 (9E-4)	+0.53
DIN'	X/X	0.4803 (9E-4)	-2.14	0.8536 (4E-4)	+1.08	0.1962 (1E-3)	-0.36	0.6096 (6E-4)	+0.36
DIN	XVV	0.4703 (2E-3)	-4.18	0.8590 (1E-3)	+1.72	0.1963 (1E-3)	-0.30	0.6113 (4E-4)	+0.64
GRU4Rec	√X√	0.4766 (2E-3)	-2.89	0.8574 (2E-3)	+1.53	0.1972 (1E-3)	+0.15	0.6091 (4E-4)	+0.28
SASRec	√X√	0.4837 (7E-3)	-1.45	0.8497 (4E-3)	+0.62	0.1959 (8E-4)	-0.51	0.6091 (4E-4)	+0.28
BERT4Rec	√×√	0.4833 (5E-3)	-1.53	0.8501 (2E-3)	+0.66	0.1961 (1E-3)	-0.41	0.6096 (9E-4)	+0.36
DIEN	√√X	0.4807 (8E-3)	-2.06	0.8590 (1E-3)	+1.72	0.1973 (9E-4)	+0.20	0.6108 (6E-4)	+0.56
DSIN	J J X	0.4726 (2E-3)	-3.71	0.8592 (1E-3)	+1.74	0.1964 (2E-3)	-0.25	0.6106 (9E-4)	+0.53
BST	√ √X	0.4850 (5E-4)	-1.18	0.8500 (9E-4)	+0.65	0.1959 (2E-3)	-0.51	0.6096 (6E-4)	+0.36
TIN	///	0.4636 (3E-3)	-5.54	0.8629 (9E-4)	+2.18	0.1954 (2E-3)	-0.76	0.6144 (4E-4)	+1.15
TIN w/o TTE	XVV	0.4752 (2E-3)	-3.18	0.8544 (8E-4)	+1.17	0.1963 (1E-3)	-0.30	0.6135 (7E-4)	+1.00
TIN w/o TA	\X\	0.4758 (3E-3)	-3.06	0.8566 (1E-3)	+1.43	0.1960 (7E-4)	-0.46	0.6094 (8E-4)	+0.33
TIN w/o TR	√ √X	0.4743 (2E-3)	-3.36	0.8576 (9E-4)	+1.55	0.1965 (2E-3)	-0.20	0.6127 (1E-3)	+0.87

TIN outperforms the AUC of best-performing baselines by 0.43% and 0.29% on two public datasets.

Code: denoting which of the three components (Temporal Information, Target-aware Attention and Target-aware Representation) each method has.

Models with the same background color have the same code.

Online Deployment at Tencent

- Production model: MoE architecture [1], consisting of feature encoding and feature interaction experts.
- Add TIN as an additional expert on the sequence features.

Online A/B Testing

- During online A/B testing in pCTR prediction of WeChat Moments, TIN achieved a 1.65% cost lift, and a 1.93% GMV (Gross Merchandise Value) lift over the base model.
- TIN has been successfully deployed to pCTR and pLTV prediction tasks of many scenarios at Tencent.
- [1]. Ad Recommendation in a Collapsed and Entangled World. Under Review, Tencent.

Visualization

- Measurement of Learned Semantic Temporal Correlation of all Models
 - Definition of the learned correlation of a given model:

$$\overline{Cor}(f(X_i), e_i, v_t) = e^z \cdot ||r||_2$$

• For TIN, which is formulated as

$$u_{\text{TIN}} = \sum_{i \in \mathcal{H}} \alpha(\tilde{\boldsymbol{e}}_i, \tilde{\boldsymbol{v}}_t) \cdot (\tilde{\boldsymbol{e}}_i \odot \tilde{\boldsymbol{v}}_t)$$

Its learned correlation can be measured by:

Attention: Dot Product

Norm of Embedding

(a) Ground truth STC

Learned correlation given target category ID 674 $\frac{9}{10} = \frac{1}{10} - 0.08 = 0.05 = 0.05 = 0.03 = 0.01 = 0.01 = 0.03 = 0.02 = 0.01 = 0.02 = 0.03 = 0.05 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 = 0.03 = 0.04 =$

Connections to Existing Methods

$$oldsymbol{u}_{\mathsf{TIN}} = \sum_{i \in \mathcal{H}} \underbrace{\overbrace{lpha(ilde{oldsymbol{e}}_i, ilde{oldsymbol{v}}_t)}^{\mathsf{TA}} \cdot \underbrace{\overbrace{(ilde{oldsymbol{e}}_i \odot ilde{oldsymbol{v}}_t)}^{\mathsf{TR}}}_{\mathsf{TTE}}$$

- Summary of existing methods regarding the existence of three components: Temporal Information (TI), Target-aware Attention (TA), and Target-aware Representation (TR).
- All existing methods lack one or several of these three components, making them fail to capture the 4-way semantic-temporal correlation.

Model	Temporal Information?	How	TA	Attention	TR	Representation
Avg Pooling & Concat	×	·-	X	-	X	$g_{\mathrm{MLP}}([oldsymbol{e}_i,oldsymbol{v}_t])$
Avg Pooling & Product	×	:-	X	-	1	$g_{\mathrm{MLP}}([\boldsymbol{e}_i, \boldsymbol{v}_t, \boldsymbol{e}_i \odot \boldsymbol{v}_t])$
DIN' [45]	×	-	1	$\sigma(\langle \boldsymbol{e}_i, \boldsymbol{v}_t \rangle)$	X	$g_{\mathrm{MLP}}([\boldsymbol{e}_i, \boldsymbol{v}_t])$
DIN [45]	X	-	1	$\sigma(\langle \boldsymbol{e}_i, \boldsymbol{v}_t \rangle)$	1	$g_{\mathrm{MLP}}([\boldsymbol{e}_i, \boldsymbol{v}_t, \boldsymbol{e}_i \odot \boldsymbol{v}_t])$
SIM [21]	✓	TTE-T	1	$\sigma(\langle \boldsymbol{e}_i, \boldsymbol{v}_t \rangle)$	X	$g_{\mathrm{MLP}}([oldsymbol{e}_i,oldsymbol{v}_t])$
GRU4Rec [7]	✓	GRU	X	-	1	$\langle m{h}_i, m{v}_t angle$
SASRec [10]	✓	COE	X	-	✓	$\langle ilde{m{e}}_i^V, m{v}_t angle$
BERT4Rec [29]	✓	COE	X	-	1	$\langle ilde{m{e}}_i^V, m{v}_t angle$
ExtLayer [44]	✓	AUGRU	X	-	X	-
EvoLayer [44]	✓	AUGRU	1	$\sigma(\langle \boldsymbol{h}_i, \boldsymbol{v}_t \rangle)$	X	$g_{\mathrm{MLP}}([\boldsymbol{h}_i, \boldsymbol{v}_t])$
DSIN [5]	✓	Bi-LSTM & COE	1	$\sigma(\langle ilde{m{e}}_i^K, m{v}_t^Q angle)$	X	$g_{ ext{MLP}}([ilde{m{e}}_i^V,m{v}_t])$
BST [3]	✓	COE	1	$\sigma(\langle \tilde{\pmb{e}}_i^K, \tilde{\pmb{v}}_t^Q \rangle)$	X	$g_{\mathrm{MLP}}([ilde{m{e}}_i^V,m{v}_t])$
TIN	1	TTE	1	$\sigma(\langle ilde{m{e}}_i, ilde{m{v}}_t angle)$	1	$g_{\mathrm{MLP}}([\tilde{\boldsymbol{e}}_i, \tilde{\boldsymbol{v}}_T, \tilde{\boldsymbol{e}}_i \odot \tilde{\boldsymbol{v}}_t])$
TIN w/o TTE	×	-	1	$\sigma(\langle \tilde{\pmb{e}}_i, \tilde{\pmb{v}}_t \rangle)$	1	$g_{\mathrm{MLP}}([\tilde{\pmb{e}}_i, \tilde{\pmb{v}}_t, \tilde{\pmb{e}}_i \odot \tilde{\pmb{v}}_T])$
TIN w/o TA	✓	TTE	X	-	1	$g_{\mathrm{MLP}}([\tilde{\pmb{e}}_i, \tilde{\pmb{v}}_t, \tilde{\pmb{e}}_i \odot \tilde{\pmb{v}}_t])$
TIN w/o TR	1	TTE	1	$\sigma(\langle \tilde{\pmb{e}}_i, \tilde{\pmb{v}}_t \rangle)$	X	$g_{\mathrm{MLP}}([\tilde{m{e}}_i, \tilde{m{v}}_t])$

Summary

- We propose to measure the semantic-temporal correlation between behaviors and the target by Mutual Information and observe strong semantic and temporal patterns simultaneously.
- We find that all existing models **fail to** capture such strong semantic-temporal patterns.
- We propose TIN, which consists of three key components: Target-aware Temporal Encoding, Target-aware Attention, and Target-aware Representation. All existing methods lack one or several of these three components.
- We demonstrated TIN's effectiveness on public datasets and deployed it on Tencent's Ads Platform.
- By measuring the learned correlation, we confirm TIN captures the semantic-temporal pattern decently.

Q & A

Code: https://github.com/zhouxy1003/TIN

Contact: jonaspan@tencent.com

Github QR Code