Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided. You have 1 hour and 30 minutes to complete this

1. (10 pts.) Determine if $P \Leftrightarrow Q$ and $\sim P \Leftrightarrow \sim Q$ are logically equivalent. Use a truth table or other means to explain your conclusion.

P Q $\sim P$ $\sim Q$ $P>Q$ $Q>P$ $Q>P$	means	to expi	am your	conclusio)II. •	1	120	1 - D -> - (1)	1-12=77	71071
T F F T F T F T T F T	P	a \	~Pl	~@	P >>Q	Q=P	QQP	7	T	T
1	1444	THT F	FFTT	FTFT	TFT T	TTFT	7 F F T	TFT	FTT	FFT

Because the columns for QEP and IPET-Q are identical, the statements are logically equivalent.

2. (10 pts.) Determine if $P\Rightarrow Q$ and $P\vee\sim Q$ are logically equivalent. Use a truth table or other means to explain your conclusion.

P	Q	PAQ	-Q	PV-Q
1-1-44	1++F	TFTT	FTFT	TTET

Because the columns for P => Q and PV ¬Q differ, the statements are not logically equivalent.

3. (15 pts.) Write the contrapositive, converse, and negation of the following statement:

If x is a real number, then x > 0 of $x \le 0$.

Contrapositive:

If
$$x \neq 0$$
 and $x > 0$, then x is not a real number.

Or (If $x \neq 0$ and $x \neq 0$, then x is not a real number.)

Negation:

4. (5 pts.) Suppose we have the following statements:

A = I believe everything I read.

B = All fish have eyelids.

Express the statement: "If I do not believe some of what I read, then some fish do not have eyelids," using the letter **A** and **B** and the connectives $\lor, \land, \sim, \Rightarrow, \Leftrightarrow$.

Cont.

5. (5 pts.) Suppose we have the following statements.

P = All politicians are honest.

Q = I don't have two brain cells to rub together..

R = The pie is in the sky.

There exists a dishonest politician if and offly if the pie in the sky implies that have two brain alls to rub together.

6. (10 pts.) Prove that if $\sqrt{x} \in \mathbb{Q}$, then $x \in \mathbb{Q}$.

If √x ∈ D, then there exist pig∈ Z, g ≠0 Such that IX = f. squaring both sides gives $\chi = \frac{p^2}{q^2}$. Be cause $p^2, q^2 \in \mathbb{Z}$ and $q^2 \neq 0$, $x \in \mathbb{D}$ by dofinition.

7. (15 pts.) Prove that if $x \in \mathbb{Z}$, then $x^2 + x$ is even. Do this by cases. (You may prove using some other method for partial credit.)

Proof.

First suppose
$$X = 2k$$
 is even.
Then $x^2 + x = (2k)^2 + 2k$
 $= 4k^2 + 2k$
 $= 2(2k^2 + k)$.
Hence $x^2 + x$ is even.
Now suppose $X = 2k+1$ is odd.
Then $X^2 + X = (2k+1)^2 + (2k+1)$
 $= 4k^2 + 6k + 2k + 1$
 $= 2(2k^2 + 3k + 1)$.
Hence $x^2 + X$ is even.

8. (15 pts.) Prove by induction that the sum of the first n odd integers is n^2 . That is, show the

$$\sum_{i=1}^{n} (2\mathbf{1} - 1) = n^2$$

We proceed by intuction. Clearly

$$\sum_{i=1}^{l} 2i - 1 = 2(1) - 1 = 1 = 1^{2}.$$

Now assume that

$$\sum_{i=1}^{k} 2i - 1 = k^2.$$

Adding the next odd number ZK+1
gives:

$$2k+1 + \sum_{i=1}^{k} 2i-1 = k^{2}+(2k+1)$$

$$[2(k+1)-1] + \sum_{i=1}^{k} 2i-1 = k^{2}+2k+1$$

$$\sum_{i=1}^{k} 2i-1 = (k+1)^{2}$$

completing the proof.

9. (15 pts.) Prove that $\sqrt{2}$ is irrational.

Proof.

Spz not. Then there exist pige Q such that g ≠0, p and q have no common divisors, and II = g. Squaring gives!

So, $2 = \frac{p^2}{q^2}$; $2q^2 = p^2$

Therefore, p^2 is even implying P is even. Hence p=2k for some $k \in \mathbb{Z}$. Then

$$2g^2 = (2k)^2 = 4k^2$$

50

 $g^2 = 2k^2$

implying of is exen. This contradicts

the fact that p and q had no of

Common divisors