Recap of CNNs

Filters!

A small example where a 4x4 image is filtered by a 2x2 kernel

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} * \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} (-1+2+0+6) & (-2+3+0+7) & (-3+4+0+8) \\ (-5+6+0+10) & (-6+7+0+11) & (-7+8+0+12) \\ (-9+10+0+14) & (-10+11+0+15) & (-11+12+0+16) \end{bmatrix}$$

$$= \begin{bmatrix} 7 & 8 & 9 \\ 11 & 12 & 13 \\ 15 & 16 & 17 \end{bmatrix}$$

Original image

Box average filter

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Emboss

$$\begin{bmatrix} -2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}$$

Top Sobel

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

In CNNs we **train** filters of various sizes!

$$\begin{bmatrix} w & w_2 \\ w_3 & w_4 \end{bmatrix} \quad \begin{bmatrix} w & w_2 & w_3 \\ w_4 & w_5 & w_6 \\ w_7 & w_8 & w_9 \end{bmatrix} \quad \begin{bmatrix} w & w_2 & w_3 & w_4 \\ w_5 & w_6 & w_7 & w_8 \\ w_9 & w_{10} & w_{11} & w_{12} \\ w_{13} & w_{14} & w_{15} & w_{16} \end{bmatrix} \dots$$

12) + (6)

CNNs from a **sparse connectivity** and weight sharing perspective

Fully connected input-to-hidden layer in an MLP. h₃ is receiving inputs from all input nodes.

The same MLP but with fewer weights. h_3 is receiving inputs from only three input nodes.

receptive field

But we also need weight sharing to simulate the filter process.

Same color = shared weights

Dramatic reduction of trainable weights, compared to a fully connected network

Here, 25 (unique) weights (excluding bias)

Here, 3 (unique) weights (excluding bias)

2D images have 2D kernels

Note: each hidden node share the weights with all other hidden nodes.

CNN building blocks

Pooling layer

Max pooling layer

Hidden layer

Average pooling layer

Hidden layer

No downsampling!

Max pooling, with downsampling

Hidden layer

With downsampling!

Some details of the filter process

Example: 7x7 image, with a 3x3 kernel moving 1 pixel each time (**stride=1**) gives a 5x5 filtered image

Example: 7x7 image, with a 3x3 kernel moving 2 pixel each time (**stride=2**) gives a 3x3 filtered image

Keep the original size by using zero padding

Example: 7x7 image, with a 3x3 kernel stride=1, zero padding gives a 7x7 filtered image

$$\mbox{output width } = \frac{W - F_w + 2P}{S_w} + 1 \qquad \qquad \mbox{P = padding S = stride} \label{eq:Sw}$$

output height
$$=\frac{H-F_h+2P}{S_h}+1$$

F = filter size

With multichannel images we just add one (2D) filter for each channel

Remember: Filters always extend to the full dept of the input image

Regardless of input depth, the output has depth = 1

We have 27 weights in the filter + 1 bias weight!!

Example where 5 filters will result in a 5-channel filtered image.

LeNet! One of the very first CNNs

Explore Download Challenges Publications CoolStuff About

Not logged in. Login | Signup

ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns), in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have an average of over five hundred images per node. We hope ImageNet will become a useful resource for researchers, educators, students and all of you who share our passion for pictures.

Click here to learn more about ImageNet, Click here to join the ImageNet mailing list.

What do these images have in common? Find out!

Check out the ImageNet Challenge on Kaggle!

ImageNet classification (ILSVRC) Large Scale Visual Recognition Challenge (2012)

- 1000 objects
- 1.2 million training images
- 100 000 test images

Winner: AlexNet

AlexNet single GPU equivalent

First convolutional layer

• Images: 227x227x3

• Filter size: 11x11

• Stride: 4

• Conv layer output: 55x55x**96**

First convolutional layer

Images: 227x227x3

• Filter size: 11x11

• Stride: 4

• Conv layer output: 55x55x96

Why this output size?

$$(227-11)/4 + 1 = 55$$

First convolutional layer

• Images: 227x227x3

• Filter size: 11x11

• Stride: 4

• Conv layer output: 55x55x96

How many weights?

(11*11*3+1) weights per filter 96 filters

(11*11*3+1)*96 = 34944 weights

Size / Operation	Filter	Depth	Stride	Padding	Number of Parameters
3* 227 * 227					
Conv1 + Relu	11 * 11	96	4		(11*11*3 + 1) * 96=34944
96 * 55 * 55					
Max Pooling	3 * 3		2		
96 * 27 * 27					
Norm					
Conv2 + Relu	5 * 5	256	1	2	(5 * 5 * 96 + 1) * 256=614656
256 * 27 * 27					
Max Pooling	3 * 3		2		
256 * 13 * 13					
Norm					
Conv3 + Relu	3 * 3	384	1	1	(3 * 3 * 256 + 1) * 384=885120
384 * 13 * 13					
Conv4 + Relu	3 * 3	384	1	1	(3 * 3 * 384 + 1) * 384=1327488
384 * 13 * 13					
Conv5 + Relu	3 * 3	256	1	1	(3 * 3 * 384 + 1) * 256=884992
256 * 13 * 13					
Max Pooling	3 * 3		2		
256 * 6 * 6					
Dropout (rate 0.5)					
FC6 + Relu					256 * 6 * 6 * 4096=37748736
4096					
Dropout (rate 0.5)				•	
FC7 + Relu					4096 * 4096=16777216
4096					
FC8 + Relu					4096 * 1000=4096000
1000 classes					
Overall					62369152=62.3 million
Conv VS FC					Conv:3.7million

4M	FULL CONNECT
16M	FULL 4096/ReLU
37M	FULL 4096/ReLU
	MAX POOLING
442K	CONV 3x3/ReLU 256fm
1.3M	CONV 3x3ReLU 384fm
884K	CONV 3x3/ReLU 384fm
	MAX POOLING 2x2sub
	LOCAL CONTRAST NORM
307K	CONV 11x11/ReLU 256fm
	MAX POOL 2x2sub
	LOCAL CONTRAST NORM
35K	CONV 11x11/ReLU 96fm

The 96 filters from the first conv. Layer.

(11x11x3)

Remember the idea of deep learning:

Basic features → features → more advanced features → advanced features → classification

Recurrent Neural Networks

(Common google images when searching for RNN)

Long-Short Term Memory module: LSTM

But these are also recurrent networks

Hopfield model

Echo state network

Recurrent Neural Networks

- Common for all neural network models we have studied so far is the lack of feedback connections. We will now study networks with such connections!
- Recurrent networks are typically used when we are dealing with sequence data. It can be text data, speech data, image data or numerical times series data coming from eg. sensors or stock markets. And combinations of all these!
- The feedback connections are used to capture the short and long term temporal dependencies in the data.

What is it that recurrent networks offer?

Sofar, one-to-one problems!

classification

With recurrent networks

many-to-one

one-to-many

many-to-many

many-to-many

