09. час - Електромагнетска компатибилност

1. У програмском пакету LTspice направити модел усмерача чија је шема приказана на слици 1.1. Амплитуда напона на улазу је $E_{\rm m}=20~{\rm V}$, учестаност $f=50~{\rm Hz}$ (мрежни напон иза улазног трансформатора), отпорност потрошача $R=1~{\rm k}\Omega$ и капацитивност кондензатора $C=100~{\rm \mu F}$. Подесити анализу у временском домену (transient analysis) за временски интервал $0 \le t \le 200~{\rm ms}$ са кораком 0,01 ms. Нацртати дијаграме: (а) напона потрошача у временском домену, (б) струју напонског генератора у временском домену и (в) струју напонског генератора у фреквенцијском домену. (г) На основу спектра струје напонског генератора, добијеног у тачки (в), одредити на којим учестаностима се генеришу хармоници струје мреже за напајање.

Слика 1.1 Упрошћена шема усмерача са једном диодом.

2. Направити модел DC/DC претварача (buck converter) чија је шема приказана на слици 2.1. Подаци: електромоторна сила једносмерног напајања $E=20\,\mathrm{V}$ (напон на излазу усмерача), индуктивност калема $L=100\,\mathrm{\mu H}$, капацитивност кондензатора $C=25\,\mathrm{\mu F}$ и отпорност потрошача $R=100\,\Omega$. Користити напонски контролисани прекидач са следећим параметрима: напон прага $V_{\rm t}=0.5\,\mathrm{V}$, отпорност отвореног прекидача $R_{\rm off}=1\,\mathrm{M}\Omega$ и отпорност затвореног прекидача $R_{\rm on}=0.1\,\Omega$. Прекидач побудити поворком правоугаоних импулса амплитуде $1\,\mathrm{V}$, учестаности $f=20\,\mathrm{kHz}$ (периода импулса $T=50\,\mathrm{\mu s}$), трајања импулса $p_{\rm w}=10\,\mathrm{\mu s}$ и трајања узлазне и силазне ивице импулса $t_{\rm r}=t_{\rm f}=1\,\mathrm{ns}$. Подесити анализу прелазних режима (transient analysis) за временски интервал $0\le t\le 10\,\mathrm{ms}$. Нацртати дијаграме: (а) напона потрошача у временском домену, (б) струју напонског генератора у временском домену и (в) спектар струје напонског генератора. (г) На основу спектра струје напонског генератора, добијеног у тачки (в), одредити на којим се учестаностима генеришу сметње ка јавној мрежи за напајање.

Слика 2.1. Упрошћена шема прекидачког DC/DC претварача (buck converter).

3. Направити модел ЕМІ филтра према слици 3.1. (а) Побудити филтар напонским генератором наизменичне емс амплитуде 1 V и унутрашње отпорности $R_{\rm g}=50\,\Omega$. На излаз филтра поставити потрошач $R_{\rm p}=50\,\Omega$. Снимити напон на излазу филтра у фреквенцијском опсегу 1 kHz $\leq f \leq$ 1 GHz (опција АС sweep). (б) Побудити филтар експоненцијалним напонским генератором, унутрашње отпорности $R_{\rm g}=330\,\Omega$, тако да је максимална вредност напона 15 kV, минимална вредност напона 0 V, временска константа при успостављању $\tau_1=1\,\mathrm{ns}$ и временска константа при укидању $\tau_2=100\,\mathrm{ns}$. Почетак импулса поставити у тренутак $t_0=50\,\mathrm{ns}$, а успон импулса је трајања $t=10\,\mathrm{ns}$. Оваква побуда одговара апроксимацији импулса који настаје при електростатичком пражњењу (ESD). Снимити напон на улазу и излазу филтра у интервалу $0\leq t\leq 1\,\mathrm{\mu s}$. Уколико се захтева да напон потрошача у случају електростатичког пражњења не сме прећи $10\,\mathrm{V}$, да ли се додавањем овог филтра постиже прописана заштита за потрошач $R_{\rm p}=50\,\Omega$?

Слика 3.1. ЕМІ филтар.