RESUMO DE ANÁLISE FUNCIONAL

Aula 1 - Espaço de Banach (parte 1)

Observação 1.1. Um espaço vetorial é um um \mathbb{F} -espaço vetorial, onde $\mathbb{F} = \mathbb{C}$ ou $\mathbb{F} = \mathbb{R}$.

Definição 1.2. Uma **norma** em um espaço vetorial X é uma função $\|\cdot\|: X \to \mathbb{R}$ tal que

(a)
$$\|\xi\| \ge 0, \forall \xi \in X$$
;

(c)
$$\|\xi + \eta\| \le \|\xi\| + \|\eta\|, \, \forall \, \xi, \eta \in X$$
;

(b)
$$\|\alpha\xi\| = |\alpha|\|\xi\|$$
, $\forall \alpha \in \mathbb{F} \ \text{e} \ \forall \xi \in X$; (d) $\|\xi\| = 0$ se, e somente se, $\xi = 0$.

(d)
$$\|\xi\| = 0$$
 se, e somente se, $\xi = 0$

Se $\|\cdot\|$ satisfizer apenas as condições (a), (b) e (c), então dizemos que $\|\cdot\|$ é uma **seminorma**. Se X é um espaço vetorial munido de uma norma, então dizemos que $(X, \|\cdot\|)$ (ou, simplesmente, *X*) é um **espaço vetorial normado**.

Proposição 1.3. Seja $(X, \|\cdot\|)$ um espaço vetorial normado. Então

(a)
$$\psi_1: X \times X \to X$$
, $(\xi, \eta) \mapsto \xi + \eta$ é contínua;

(b)
$$\psi_2 : \mathbb{F} \times X \to X$$
, $(\alpha, \eta) \mapsto \alpha \eta$ é contínua.

Exemplo 1.4. Abaixo seguem exemplos de espaços vetoriais normados.

(a)
$$(\mathbb{R}^n, \|\cdot\|_2)$$
, onde $\|(\xi_1, \dots, \xi_n)\|_2 := \sqrt{\sum_{i=1}^n \xi_i^2}$.

- (b) O conjunto $C([0,1]) \coloneqq \{\varphi : [0,1] \to \mathbb{R} \mid \varphi \text{ \'e contínua}\}$ mais a norma $\|\varphi\|_{\infty} \coloneqq$ $\sup |\varphi(x)|$. $x \in [0,1]$
- (c) Se $(X, \|\cdot\|)$ é um espaço vetorial normado e S é um subespaço fechado de X, então X/S, junto da norma $\|\xi + S\| := \inf_{\eta \in S} \|\xi - \eta\|$ é um espaço vetorial normado.

Definição 1.5. Um espaço vetorial normado é dito espaço de Banach, quando for um espaço métrico completo com a métrica induzida pela norma.

Exemplo 1.6.

- (a) $(\mathbb{R}^n, \|\cdot\|_2)$ é um espaço de Banach.
- (b) $(C([0,1]), \|\cdot\|_{\infty})$ é um espaço de Banach.

- (c) $(C([0,1]), \|\cdot\|_1)$, onde $\|\varphi\|_1 \coloneqq \int_0^1 |\varphi(x)| dx$, não é um espaço de Banach.
- (d) Seja $1 \le p < \infty$. Então $\ell^p(\mathbb{N}) \coloneqq \{(\xi_1, \dots, \xi_n, \dots) \mid \xi_i \in \mathbb{F} \text{ e } \sum_{i=1}^{\infty} |\xi_i|^p < \infty\}$ junto da norma $\|\xi\|_p = \left(\sum_{i=1}^{\infty} |\xi_i|^p\right)^{\frac{1}{p}}$ é um espaço de Banach.
- (e) Seja $1 \leq p < \infty$ e $(\Omega, \mathcal{A}, \mu)$ um espaço de medida. Então $L^p(\Omega, \mu) \coloneqq \{\varphi : \Omega \to \mathbb{R} \mid \varphi \text{ é mensurável e } \int_{\Omega} |\varphi|^p d\mu < \infty\}$ munido da norma $\|\varphi\|_p \coloneqq \left(\int_{\Omega} |\varphi|^p d\mu\right)^{\frac{1}{p}}$ é um espaço de Banach.

Definição 1.7. Sejam X um espaço vetorial e $\|\cdot\|_1$ e $\|\cdot\|_2$ normas em X. Dizemos que $\|\cdot\|_1$ e $\|\cdot\|_2$ são **normas equivalentes** se elas induzem a mesma topologia.

Proposição 1.8. Sejam X um espaço vetorial e $\|\cdot\|_1$ e $\|\cdot\|_2$ normas em X. Então $\|\cdot\|_1$ e $\|\cdot\|_2$ são normas equivalentes se, e somente se, existem A, B > 0 tais que $A\|\xi\|_1 \le \|\xi\|_2 \le B\|\xi\|_1$, $\forall \xi \in X$.

Exemplo 1.9.

- (a) Considere o espaço vetorial \mathbb{R}^n . Então as normas $\|\xi\|_{\infty} := \max_{1 \le i \le n} |\xi_i|$ e $\|\xi\|_1 := \sum_{i=1}^n |\xi_i|$ são equivalentes.
- (b) Em C([0,1]), as normas $\|\cdot\|_{\infty}$ e $\|\cdot\|_{1}$ não são equivalentes.

Teorema 1.10. Se X é um espaço vetorial de dimensão finita, então todas as normas são equivalentes.

Corolário 1.11. Se X é um espaço vetorial normado de dimensão finita, então X é um espaço de Banach.

Aula 2 - Espaço de Banach (parte 2)

Observação 2.1. Se X é um espaço vetorial normado de dimensão finita, então $S(0,1) = \{\xi \in X \mid ||\xi|| = 1\}$ é compacto.

Proposição 2.2. Sejam X um espaço vetorial normado de dimensão finita e K um subconjunto de X. Então K é compacto se, e somente se, K é fechado e limitado.

Lema 2.3. Sejam X um espaço vetorial normado de dimensão finita e $S \subseteq X$ um subespaço. Se $\dim(X) < \infty$, então S é fechado.

Lema 2.4 (Lema de Riesz). Se X é um espaço vetorial normado de dimensão finita e $S \subsetneq X$ é um subespaço fechado e próprio, então, para todo $a \in (0,1)$, existe $\xi \in X \setminus S$ tal que $\|\xi\| = 1$ e $d(\xi,S) := \inf_{\eta \in S} \|\xi - \eta\| \ge a$.

Teorema 2.5. Sejam X um espaço vetorial normado e $\overline{B(0,1)} = \{\xi \in X \mid ||\xi|| \le 1\}$. Então $\dim(X) < \infty$ se, e somente se, $\overline{B(0,1)}$ é compacta.

Proposição 2.6. Seja X um espaço vetorial normado de dimensão finita e $S \subsetneq X$ um subespaço. Então S = X se, e somente se, int $S \neq \emptyset$.

Proposição 2.7. Se *X* é um espaço de Banach de dimensão infinita, então *X* não tem base enumerável.

Aula 3 - Transformações lineares contínuas

Proposição 3.1. Sejam X e Y espaços vetoriais normados e $T: X \to Y$ uma transformação linear. Então são equivalentes:

- (a) T é contínua;
- (b) *T* é contínua em 0;
- (c) existe c > 0 tal que $||T(\xi)|| \le c||\xi||$, para todo $\xi \in X$ (uma transformação linear que satisfaz essa propriedade é dita *transformação limitada*).

Exemplo 3.2.

- (a) Sejam X e Y espaços métricos compactos. Defina $C(X) := \{\varphi : X \to \mathbb{F} \mid \varphi \text{ \'e contínua}\}$ e defina também $\|\varphi\|_{\infty} := \sup_{x \in X} |\varphi(x)|$. Pode-se provar que $(C(X), \|\cdot\|_{\infty})$ é um espaço de Banach. Seja $u: Y \to X$ uma transformação linear contínua. Defina a transformação linear $T_u: C(X) \to C(Y), \ \varphi \mapsto T_u(\varphi)(y) = \varphi(y)$. Então T_u é uma transformação linear contínua.
- (b) Seja $S = \{(\xi_n) \in \ell^p(\mathbb{N}) \mid \sum_{n=1}^{\infty} |n^2 \xi_n|^p < \infty \}$ um subespaço de $\ell^p(\mathbb{N})$. Então $T : S \to \ell^p(\mathbb{N})$, $(\xi) \mapsto (n^2 \xi_n)$ é uma transformação linear que não é contínua.

Definição 3.3. Sejam X e Y espaços vetoriais normados. Definimos $L(X,Y) := \{T : X \to Y \mid T \text{ \'e transformação linear e limitada}\}$. Também \acute{e} comum denotar esse conjunto por B(X,Y). Escrevemos L(X) no lugar de L(X,X) e escrevemos X^* no lugar de $L(X,\mathbb{F})$ o qual \acute{e} chamado de **espaço dual de X**.

Observação 3.4.

- (a) L(X,Y) é um espaço vetorial.
- (b) $||T|| := \sup_{\substack{\xi \in X \\ ||\xi|| \le 1}} ||T(\xi)||$ é uma norma em L(X, Y).
- (c) Podemos escrever

$$||T|| = \inf\{c > 0 \mid ||T(\xi)|| \le c||\xi||, \forall \xi \in X\} = \sup_{\substack{\xi \in X \\ ||\xi|| = 1}} ||T(\xi)|| = \sup_{\substack{\xi \in X \\ \xi \neq 0}} \frac{||T(\xi)||}{||\xi||}$$

Exemplo 3.5. Considere $T_u: C(X) \to C(Y)$ conforme definido no Exemplo 3.2. Então $||T_u|| = 1$.

Proposição 3.6. Sejam X um espaço vetorial normado e Y um espaço de Banach. Então L(X,Y) é um espaço de Banach. Em particular, X^* é um espaço de Banach.

Aula 4 - Teorema de Hahn-Banach

Definição 4.1.

- (a) Uma **ordenação parcial** em um conjunto X é um relação binária \prec que é:
 - i) *reflexiva*: $x \prec x$, para todo $x \in X$;
 - ii) antissimétrica: dados $x, y \in X$, se $x \prec y$ e $y \prec x$, então x = y;
 - iii) transitiva: dados $x, y, z \in X$, se $x \prec y$ e $y \prec z$, então $x \prec z$.

Dizemos que (X, \prec) é um conjunto **parcialmente ordenado**.

- (b) Um conjunto **totalmente ordenado** é um conjunto parcialmente ordenado, se quaisquer dois elementos são comparáveis segundo a ordenação parcial dada.
- (c) Dado um (X, \prec) um conjunto parcialmente ordenado, dizemos que $\gamma \in X$ é um **elemento maximal**, se para todo $\eta \in X$, com $\gamma \prec \eta$, temos que $\eta = \gamma$.
- (d) Dado um (X, \prec) um conjunto parcialmente ordenado e $Y \subseteq X$, dizemos que $\eta \in X$ é um **limite superior de Y**, se $\xi \prec \eta$, para todo $\xi \in Y$.

Lema 4.2 (Lema de Zorn). Se (X, \prec) é conjunto não vazio parcialmente ordenado no qual todo subconjunto totalmente ordenado possui um limite superior, então X tem um elemento maximal.

Teorema 4.3 (Hahn-Banach real). Sejam X um espaço vetorial sobre \mathbb{R} , $S\subseteq X$ um subespaço e $p:X\to\mathbb{R}$ uma função tal que

- i) $p(\xi + \eta) \le p(\xi) + p(\eta)$, para todo $\xi, \eta \in X$;
- ii) $p(\alpha \xi) = \alpha p(\xi)$, para todo $\xi \in X$ e para todo $\alpha \ge 0$.

Se $\varphi: S \to \mathbb{R}$ é um funcional linear tal que $\varphi(\xi) \le p(\xi)$, para todo $\xi \in S$, então existe $\hat{\varphi}: X \to \mathbb{R}$ funcional linear tal que $\hat{\varphi}|_S = \varphi$ e $\hat{\varphi}(\xi) \le p(\xi)$, para todo $\xi \in S$.

Teorema 4.4 (Hahn-Banach complexo). Sejam X um espaço vetorial (lembre-se da Observação 1.1), $S \subseteq X$ um subespaço e $p: X \to \mathbb{R}$ uma seminorma. Se $\varphi: S \to \mathbb{F}$ é um funcional linear tal que $|\varphi(\xi)| \le p(\xi)$, para todo $\xi \in S$, então existe $\hat{\varphi}: X \to \mathbb{F}$ funcional linear tal que $\hat{\varphi}|_S = \varphi$ e $|\hat{\varphi}(\xi)| \le p(\xi)$, para todo $\xi \in S$.

Aula 5 - Aplicações do teorema de Hahn-Banach

Corolário 5.1. Sejam X um espaço vetorial normado e $S \subseteq X$ um subespaço. Se $\varphi \in S^*$, então existe $\hat{\varphi} \in X^*$ tal que $\|\hat{\varphi}\| = \|\varphi\|$.

Corolário 5.2. Seja X um espaço vetorial normado. Se $\xi, \eta \in X$, com $\xi \neq \eta$, então existe $\hat{\varphi} \in X^*$ tal que $\hat{\varphi}(\xi) \neq \hat{\varphi}(\eta)$.

Observação 5.3. Considerando a demonstração do Corolário 5.2, se tomarmos $\eta = 0$ e $\xi \neq 0$, teremos que existe $\hat{\varphi} \in X^*$ tal que $\|\hat{\varphi}\| = 1$ e $\hat{\varphi}(\xi) = \|\xi\|$.

Corolário 5.4. Sejam X um espaço vetorial normado e $S \subseteq X$ um subespaço. Se $\eta \in X \setminus S$, com $d(\eta, S) > 0$, então existe $\hat{\varphi} \in X^*$ tal que $\|\hat{\varphi}\| = 1$, $\hat{\varphi}(\eta) = d(\eta, S)$ e $\hat{\varphi}|_S = 0$.

Corolário 5.5. Sejam X um espaço vetorial normado, com $\mathbb{F} = \mathbb{R}$, e $C \subseteq X$ um subconjunto não vazio, aberto e convexo (isto é, dados $a, b \in C$, para todo $t \in [0, 1]$, temos que $ta + (1-t) \in C$). Se $\eta \in X \setminus C$, então existe $\hat{\varphi} \in X^*$ tal que $\hat{\varphi}(\xi) < \hat{\varphi}(\eta)$, para todo $\xi \in C$.

Corolário 5.6. Sejam X e Y espaços vetoriais normados, com $X \neq \{0\}$. Se L(X,Y) é um espaço de Banach, então Y é um espaço de Banach (observe que esse resultado é a recíproca da Proposição 3.6).

Aula 6 - Princípio da limitação uniforme

Teorema 6.1 (Princípio da limitação uniforme). Sejam

- (a) X um espaço de Banach,
- (b) *Y* um espaço vetorial normado e
- (c) $\{T_i\}_{i\in I}$ uma família em L(X,Y) tal que $\sup_{i\in I} ||T_i(\xi)|| < \infty$, para todo $\xi \in X$.

Então $\sup_{i\in I} ||T_i|| < \infty$.

Corolário 6.2 (Teorema de Banach-Steinhaus). Sejam X um espaço de Banach, Y um espaço vetorial normado e $\{T_n\}$ uma sequência em L(X,Y) tal que, para todo $\xi \in X$, existe $\lim_{n\to\infty} T_n(\xi)$. Se definirmos $T(\xi) = \lim_{n\to\infty} T_n(\xi)$, então $T \in L(X,Y)$.

Observação 6.3. O Corolário 6.2 nos garante que se uma sequência $\{T_n\}$ em L(X,Y), com X um espaço de Banach, Y um espaço vetorial normado, converge pontualmente para alguma função T, então $T \in L(X,Y)$. Uma pergunta que surge é: será que $\{T_n\}$ converge uniformemente para T? A resposta é não. Um contraexemplo é tomar a sequência $T_n: \ell^1(\mathbb{N}) \to \ell^1(\mathbb{N}), (x_i) \mapsto (x_1, x_2, \dots, x_n, 0, 0, \dots)$. Então $T_n((x_i)) \xrightarrow{n \to \infty} (x_i) = \mathrm{id}((x_i)),$ mas $\|T_n - \mathrm{id}\| = \sup_{\|(x_i)\|=1} \|T_n((x_i)) - \mathrm{id}((x_i))\| \ge 1$.

Corolário 6.4. Seja X um espaço de Banach. Então $A \subseteq X^*$ é limitado (isto é, $\sup_{\varphi \in A} \|\varphi\| < \infty$) se, e somente se, para todo $\xi \in X$, $\sup_{\alpha \in A} |\varphi(\xi)| \le \infty$.

Aula 7 - Teorema da aplicação aberta

Teorema 7.1 (Teorema da Aplicação Aberta). Sejam X e Y espaços de Banach, $T \in L(X,Y)$ tal que $Y = \operatorname{im}(T)$. Então existe c > 0 tal que $B_Y(0,c) \subseteq T(B_X(0,1))$.

Observação 7.2. O Teorema 7.1 implica que T é uma transformação aberta.

Corolário 7.3 (Teorema da Função Inversa). Sejam X e Y espaços de Banach e $T \in L(X, Y)$. Se T é bijetora, então $T^{-1} \in L(X, Y)$.

Corolário 7.4. Sejam X espaço vetorial normado e $\|\cdot\|_1$ e $\|\cdot\|_2$ normas em X tais que $(X,\|\cdot\|_1)$ e $(X,\|\cdot\|_2)$ são espaços de Banach. Se existe a>0 tal que $\|\xi\|_2\leq a\|\xi\|_1$, para todo $\xi\in X$, então as normas são equivalentes.

Definição 7.5. Dizemos que $T \in L(X,Y)$ é uma **aplicação fechada**, se o gráfico de T, isto é, $G(T) := \{(\xi, T(\xi)) \in X \times Y\}$ é um conjunto fechado. Aqui, consideramos $X \times Y$ com a topologia induzida pela norma $\|(\xi, \eta)\| := \|\xi\|_X + \|\eta\|_Y$.

Observação 7.6. O gráfico de $T \in L(X,Y)$ ser fechado, significa que dadas sequências convergentes (ξ_n) em X e $(T(\xi_n))$ em T, com $\xi_n \to \xi$ e $T(\xi_n) \to \eta$, temos que $\eta = T(\xi)$. Note que isso é diferente de dizer que T é contínua, pois dizer que T é contínua, significa que se $\xi_n \to \xi$, então $T(\xi_n) \to T(\xi)$. Nesse caso, não é preciso supor inicialmente que $(T(\xi_n))$ é convergente.

Corolário 7.7 (Teorema do Gráfico Fechado). Sejam X e Y espaços de Banach e $T: X \to Y$ linear tal que G(T) é fechado. Então $T \in L(X,Y)$.

Aula 8 - Espaço reflexivo (parte 1)

Definição 8.1. Sejam $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ espaços normados. Uma **isometria linear bijetora** (ou isomorfismo isométrico) entre X e Y é uma aplicação linear $\varphi: X \to Y$ bijetora tal que $\|\varphi(\xi)\|_Y = \|\xi\|_Y$, para todo $\xi \in X$.

Exemplo 8.2. Existe uma isometria linear bijetora entre:

- (a) $\ell^p(\mathbb{N})^* \in \ell^q(\mathbb{N})$, se $p, q \in \mathbb{R}$ tais que 1 ;
- (b) $L^p(\Omega, \mu)^*$ e $L^q(\Omega, \mu)$, se $p, q \in \mathbb{R}$ tais que 1 < p e $\frac{1}{p} + \frac{1}{q}$;
- (c) $\ell^1(\mathbb{N})^*$ e $\ell^\infty(\mathbb{N})$;
- (d) $L^1(\Omega, \mu)^*$ e $L^{\infty}(\Omega, \mu)$, se μ é σ -aditiva;
- (e) $c_0^* \in \ell^1(\mathbb{N})$, onde $c_0 = \{(\alpha_1, \dots, \alpha_n, \dots) \mid \alpha_n \in \mathbb{F}, \lim_n \alpha_n = 0\}$;
- (f) $C_0(X)^*$ e M(X), onde $C_0(X) = \{\varphi : X \to \mathbb{F} \mid \varphi \text{ \'e continua e sup } |\varphi(X)| < \infty\}$ e M(X) é o conjunto das medidas bolerianas regulares com valores em \mathbb{F} .

Definição 8.3. Seja X um espaço vetorial normado. Para cada $\xi \in X$, defina $J_{\xi} : X^* \to \mathbb{F}$, $f \mapsto f(\xi)$. Pode-se provar que $J_{\xi} \in X^{**}$. Defina

$$J: X \to X^{**}$$
$$\xi \mapsto J_{\xi}$$

Pode-se provar também que J é uma isometria (isto é, $\|\xi\| = \|J_{\xi}\|$) e é uma aplicação linear contínua. Observe que J é injetiva. Se tal aplicação for sobrejetiva, dizemos que X é **reflexivo**. Nesse caso, J é um isomorfismo isométrico entre X e X^{**} . Apesar de X e X^{**} serem conjuntos com objetos diferentes (em um temos vetores, no outro, funcionais lineares), normalmente se escreve $X \subseteq X^{**}$ e $X = X^{**}$, se X for reflexivo.

Aula 9 - Espaço reflexivo (parte 2)

Proposição 9.1.

- (a) Se X é reflexivo, então X é Banach.
- (b) Se X é reflexivo, então X^* é reflexivo.
- (c) Se X é reflexivo, então dado $\varphi \in X^*$, existe $\xi \in X$ tal que $\|\xi\| = 1$ e $|\varphi(\xi)| = \|\varphi\|$. Observações:
 - A recíproca também é verdadeira.
 - Como consequência desse resultado, temos que $\ell^1(\mathbb{N})$ não é reflexivo: tome $\beta = (\beta_n) = (1 \frac{1}{n}) \in \ell^{\infty}(\mathbb{N})$ e considere $\varphi : \ell^1(\mathbb{N}) \to \mathbb{F}$, $\alpha = (\alpha_n) \mapsto \sum_{n \in \mathbb{N}} \alpha_n \beta_n$; nesse caso, não existe $\alpha \in \ell^1(\mathbb{N})$, com $\|\alpha\| = 1$ tal que $|\varphi(\alpha)| = \|\varphi\|$.
- (d) Se X é reflexivo e $S \subseteq X$ é um subespaço fechado, então S é reflexivo.
 - Corolário: se X é Banach e X^* é reflexivo, então X é reflexivo.

Aula 10 - Topologia fraca (parte 1)

Observação 10.1.

- (a) Se $(X, \|\cdot\|)$ é um espaço vetorial normado, então a topologia em X induzida pela norma é denotada por $\tau_{\|\cdot\|}$.
- (b) Lembre-se de que $X^* = \{ \varphi : X \to \mathbb{F} \mid \varphi \text{ \'e linear e contínua} \}$. A continuidade nessa definição pressupõem que X está munido da topologia $\tau_{\|\cdot\|}$. Assim, dados $\varphi \in X^*$ e $U \subseteq \mathbb{F}$ aberto, temos que $\varphi^{-1}(U)$ é aberto em $\tau_{\|\cdot\|}$. Acontece que $\tau_{\|\cdot\|}$ pode ter muito

mais abertos do que o necessário para tornar todos os funcionais em X^* contínuos. Esse pensamento nos leva à Definição 10.2 a seguir.

Definição 10.2. Seja $(X, \|\cdot\|)$ é um espaço vetorial normado. Definimos em X a **topologia fraca**, denotada por $\sigma(X, X^*)$, como sendo a menor topologia para a qual todo $\varphi \in X^*$ é contínua. Nessa topologia, temos que $\{\varphi^{-1}(B(r, \varepsilon))\}_{r \in \mathbb{F}, \varepsilon > 0, \varphi \in X^*}$ é sub-base, logo $\{\bigcap_{i=1}^n \varphi^{-1}(B(r, \varepsilon))\}$ é base, onde $\bigcap_{i=1}^n \varphi^{-1}(B(r, \varepsilon)) = \{\xi \in X \mid |\varphi_i(\xi) - r_i| < \varepsilon_i, i = 1, ..., n\}$.

Observação 10.3. Fixados $\varepsilon > 0$, $\eta \in X$ e $\varphi_1, \dots, \varphi_n \in X^*$, considere

$$\omega_{\varepsilon,\varphi_1,\cdots,\varphi_n}(\eta) := \{ \xi \in X \mid |\varphi_i(\xi) - \varphi_i(\eta)| < \varepsilon, i = 1,\ldots,n \}.$$

Para simplificar a notação, omitimos os símbolos ε e $\varphi_1, \dots, \varphi_n$ e escrevemos apenas $\omega(\eta)$. Podemos mostrar que o conjunto formado pelos $\omega(\eta)$ forma uma base para $\sigma(X, X^*)$.

Proposição 10.4.

- (a) Se dim(X) < ∞ , então as topologias $\tau_{\|\cdot\|}$ e $\sigma(X,X^*)$ coincidem.
- (b) Se dim $(X) = \infty$, então $B(0,1) = \{\xi \in X \mid ||\xi|| < 1\}$ não é aberto em $\sigma(X, X^*)$.
- (c) $\sigma(X, X^*)$ é Hausdorff.
- (d) $\eta_n \xrightarrow{\omega} \eta$ se, e somente se, $\varphi(\eta_n) \to \varphi(\eta)$, para todo $\varphi \in X^*$.
- (e) $\sigma(X,X^*)$ não está determinada por sequência (ou seja, para obter resultados nessa topologia é preciso usar abertos e não somente sequências; em outras palavras, $\sigma(X,X^*)$ não é metrizável).
 - Por exemplo, se $X = \ell^2(\mathbb{N})$ e $A = \{e_m + me_n \mid m < n\}$, onde e_i é a sequência com 1 na i-ésima coordenada e zero nas demais, então $0 \in \overline{A}^{\omega}$ (fecho de A na topologia fraca), mas não existe sequência em A convergindo a 0 em $\sigma(X, X^*)$.

(f)
$$S_X = \{\xi \in X \mid ||X|| = 1\}$$
 é fechado em $\tau_{\|\cdot\|}$, mas $\overline{S_X}^{\omega} = \{\xi \in X \mid ||\xi|| \le 1\} = \overline{B(0,1)}$.

Definição 10.5. Seja $(X, \|\cdot\|)$ é um espaço vetorial normado. Definimos em X^* a **topologia fraca***, denotada por $\sigma(X^*, X)$, como sendo a menor topologia para a qual todo $J_{\xi} \in X^{**}$ é contínua (ver Definição 8.3).

Observação 10.6. Podemos mostrar que o conjunto formado pelos conjuntos

$$\omega^*(\varphi) = \{ \psi \in X^* \mid |J_{\xi_i}(\psi) - J_{\xi_i}(\varphi)| < \varepsilon, i = 1, \dots, n \} =$$

$$= \{ \psi \in X^* \mid |\psi(\xi_i) - \varphi(\xi_i)| < \varepsilon, i = 1, \dots, n \}$$

forma uma base para $\sigma(X^*, X)$.

Proposição 10.7.

- (a) Se X é reflexivo, então $\sigma(X^*, X^{**}) = \sigma(X^*, X)$.
- (b) $\sigma(X^*, X)$ é Hausdorff.
- (c) $\varphi_n \xrightarrow{\omega^*} \varphi$ se, e somente se, $\varphi_n(\xi) \to \varphi(\xi)$, para todo $\xi \in X$.

Aula 11 - Topologia fraca (parte 2)

Teorema 11.1 (Teorema de Aloglu). O conjunto $B^* := \overline{B_{X^*}(0,1)} = \{ \varphi \in X^* \mid ||\varphi|| \le 1 \}$ é ω^* -compacta, isto é, é compacta na topologia fraca*, $\sigma(X^*,X)$.

Corolário 11.2. Se X é reflexivo, então $B := \overline{B_X(0,1)} = \{\xi \in X \mid ||\xi|| \le 1\}$ é ω -compacta, isto é, é compacta na topologia fraca, $\sigma(X, X^*)$.

Teorema 11.3. B^* é ω^* -metrizável se, e somente se, X é separável.

Corolário 11.4. Se X é separável, então toda sequência limitada em X^* tem subsequência ω^* -convergente.

Aula 12 - Espaço de Hilbert

Definição 12.1. Seja X um espaço vetorial. Um **produto interno** em X é uma função $u: X \times X \to \mathbb{F}$ tal que

- (a) $u(\alpha \xi + \eta, \gamma) = \overline{\alpha}u(\xi, \gamma) + u(\eta, \gamma)$, para todo $\alpha \in \mathbb{F}$ e para todo $\xi, \eta, \gamma \in X$;
- (b) $u(\xi, \eta) = \overline{u(\eta, \xi)}$, para todo $\xi, \eta \in X$;
- (c) $u(\xi, \xi) \ge 0$, para todo $\xi \in X$, e $u(\xi, \xi) = 0 \iff \xi = 0$.

Notação: $u(\xi, \eta) = \langle \xi, \eta \rangle$.

Exemplo 12.2.

(a)
$$\mathbb{R}^n, \mathbb{C}^n$$
: $\langle \xi, \eta \rangle = \sum_{i=1}^n \overline{\xi_i} \eta_i$. (c) $L^2(\Omega)$: $\langle f, g \rangle = \int \overline{f} g d\mu$.

(b)
$$\ell^2(\mathbb{N})$$
: $\langle \alpha, \beta \rangle = \sum_{i=1}^{\infty} \overline{\alpha_i} \beta_i$. (d) $C^0([a, b])$: $\langle f, g \rangle = \int \overline{f} g d\mu$.

Proposição 12.3 (Cauchy-Schwarz). Seja X um espaço vetorial munido de um produto interno $\langle \cdot, \cdot \rangle$. Então, para todo $\xi, \eta \in X$,

$$|\langle \xi, \eta \rangle| \le \sqrt{\langle \xi, \xi \rangle} \sqrt{\langle \eta, \eta \rangle}.$$

Proposição 12.4. $\|\xi\| \coloneqq \sqrt{\langle \xi, \xi \rangle}$ é norma em X.

Definição 12.5. Um espaço vetorial *X* com produto interno é um **espaço de Hilbert**, se ele é completo com a norma induzida do produto interno.

Exemplo 12.6. No Exemplo 12.2, temos que (a), (b) e (c) são Hilbert, mas (d) não é Hilbert.

Observação 12.7. Se $\xi_n \to \xi$ e $\eta_n \to \eta$, então $\langle \xi_n, \eta_n \rangle \to \langle \xi, \eta \rangle$.

Teorema 12.8 (Lei do paralelogramo). Seja $(X, \|\cdot\|)$ um espaço vetorial normado. A norma $\|\cdot\|$ é induzida por um produto interno se, e somente se, para todo $\xi, \eta \in X$,

$$||\xi + \eta||^2 + ||\xi - \eta||^2 = 2||\xi||^2 + 2||\eta||^2.$$

Exemplo 12.9.

- (a) A norma $\|\cdot\|_p$ em $\ell^p(\mathbb{N})$ é induzida de um produto interno se, e somente se, p=2.
- (b) A norma $\|\cdot\|_{\infty}$ em $C^0([-1,1])$ não é induzida de um produto interno.

Definição 12.10. Seja *X* um espaço vetorial com produto interno.

- (a) Dizemos que $\xi, \eta \in X$ são **ortogonais**, se $\langle \xi, \eta \rangle = 0$. Notação: $\xi \perp \eta$.
- (b) Sejam $E, F \subseteq X$. Denotamos $E \perp F$ para indicar que $\langle \xi, \eta \rangle = 0$, para todo $\xi \in E$ e $\eta \in F$.
- (c) Denotamos $E^{\perp} = \{ \xi \in X \mid \langle \xi, \eta \rangle = 0, \forall \eta \in E \}.$

Observação 12.11. Note que $\|\xi + \eta\|^2 = \|\xi\| + 2\operatorname{Re}(\langle \xi, \eta \rangle) + \|\eta\|^2$. Assim, se $\xi \perp \eta$, então $\|\xi + \eta\|^2 = \|\xi\|^2 + \|\eta\|^2$.

Teorema 12.12. Sejam X um espaço vetorial com produto interno, S um subespaço de X, $\xi \in X$ e $\eta_0 \in S$. Então $\xi - \eta_0 \perp S$ se, e somente se, $\|\xi - \eta_0\| = d(\xi, S)$.

Teorema 12.13. Se X é um espaço de Hilbert e S é um subespaço fechado de X, então para todo $\xi \in X$, existe único $\eta_0 \in S$ tal que $\|\xi - \eta_0\| = d(\xi, S)$.

Corolário 12.14. Se X é um espaço de Hilbert e S é um subespaço fechado de X, então para todo $\xi \in X$, existe único $\eta \in S$ tal que $\xi - \eta \perp S$. Consequentemente, $X = S \oplus S^{\perp}$.

Proposição 12.15. Sejam X um espaço de Hilbert e S um subespaço fechado de X. Defina $P: X \to X$, $\xi \mapsto P_{\xi}$, onde P_{ξ} é o único elemento em S tal que $\xi - P_{\xi} \perp S$ (tal operador é chamado de *operador projeção*). Então

(c)
$$P^2 = P$$
,

(b)
$$||P|| = 1 \implies ||P_{\xi}|| \le ||\xi||, \forall \xi \in X$$
,

(d)
$$\ker(P) = S^{\perp} \operatorname{eim}(P) = S$$
.

Aula 13 - Operadores em espaços de Hilbert

Observação 13.1. Vimos na Proposição 12.4 que se X é um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$, então X é um espaço vetorial normado, onde $\|\xi\| = \sqrt{\langle \xi, \xi \rangle}$. Assim, se X é um espaço vetorial com produto interno, então está bem definido X^* . Dado $\xi \in X$, defina $\langle \xi, \cdot \rangle : X \to \mathbb{F}$, $\eta \mapsto \langle \xi, \eta \rangle$. Então $\langle \xi, \cdot \rangle$ é linear e contínua, ou seja, $\langle \xi, \cdot \rangle \in X^*$. Além disso, $\|\langle \xi, \cdot \rangle\| = \|\xi\|$.

Teorema 13.2 (Teorema de Representação de Riesz). Seja X um espaço de Hilbert. Para todo $\varphi \in X^*$, existe único $\xi \in X$ tal que $\varphi(\eta) = \langle \xi, \eta \rangle$, para todo $\eta \in X$.

Exemplo 13.3. Seja $X = \{$ subespaço de $\ell^2(\mathbb{N})$ cujos elementos têm uma quantidade finita de coordenadas não nulas $\}$. Então X é um espaço vetorial com produto interno, mas não é um espaço de Hilbert. Nesse caso, $\varphi: X \to \mathbb{F}$, $\alpha = (\alpha_n) \mapsto \sum_n \frac{\alpha_n}{n}$, pertence a X^* , mas não existe $\beta = (\beta_n) \in X$ tal que $\varphi(\alpha) = \langle \beta, \alpha \rangle = \sum_n \overline{\beta}_n \alpha_n$.

Observação 13.4. A aplicação

$$\Phi: X \to X^*$$

$$\xi \mapsto \langle \xi, \cdot \rangle : X \to \mathbb{F}$$

$$\eta \mapsto \langle \xi, \eta \rangle$$

é uma isometria ($\|\langle \xi, \cdot \rangle\| = \|\xi\|$), é sobrejetora (Teorema 13.2) e é antilinear ($\Phi(\alpha \xi) = \overline{\alpha}\Phi(\xi)$).

Corolário 13.5. Se X é um espaço de Hilbert, então X^* é um espaço de Hilbert.

Corolário 13.6. Se X é um espaço de Hilbert, então X é reflexivo.

Definição 13.7. Sejam X e Y espaços vetoriais normados. Uma aplicação $b: X \times Y \to \mathbb{F}$ é uma **aplicação sesquilinear**, se é antilinear na primeira entrada e linear na segunda, isto é, se

(a)
$$b(\alpha \xi + \eta, \gamma) = \overline{\alpha}b(\xi, \gamma) + b(\eta, \gamma)$$
 (b) $b(\xi, \alpha \eta + \gamma) = \alpha b(\xi, \eta) + b(\xi, \gamma)$.

Uma aplicação sesquilinear é limitada, se existe M>0 tal que $|b(\xi,\eta)|\leq M\|\xi\|\|\eta\|$, para todo $\xi\in X$ e para todo $\eta\in Y$.

Exemplo 13.8. Sejam X e Y espaços com produto interno.

- (a) Se $A \in L(X, Y)$, então $\langle A(\xi), \eta \rangle_Y$ é uma aplicação sesquilinear limitada.
- (b) Se $B \in L(X, Y)$, então $\langle \xi, B(\eta) \rangle_Y$ é uma aplicação sesquilinear limitada.

Teorema 13.9. Sejam X e Y espaços de Hilbert e b uma aplicação sesquilinear e limitada pelo número M. Então existem $A \in L(X,Y)$ e $B \in L(Y,X)$ tais que $b(\xi,\eta) = \langle A(\xi),\eta \rangle = \langle \xi,B(\eta)\rangle$, para todo $\xi \in X$ e para todo $\eta \in Y$. Além disso, ||A||, $||B|| \leq M$.

Definição 13.10. Sejam X e Y espaços de Hilbert e $T \in L(X,Y)$. Denote por $T^* \in L(Y,X)$ o único operador tal que $\langle T(\xi), \eta \rangle = \langle \xi, T^*(\eta) \rangle$. Tal operador é dito **operador adjunto de Hilbert**.

Observação 13.11. Sejam X e Y espaços vetoriais normados e $T \in L(X,Y)$. O operador

$$T^a: Y^* \to X^*$$

$$\varphi \mapsto T^a(\varphi): X \to \mathbb{F}$$

$$\eta \mapsto \varphi(\xi)$$

é chamado de **operador adjunto de T**. Pode-se provar que $T^a \in L(Y^*, X^*)$.

Proposição 13.12. Sejam X e Y espaços de Hilbert e $T \in L(X,Y)$. Considere $\Phi_1 : X \to X^*$, $\xi \mapsto \langle \xi, \cdot \rangle$ e $\Phi_2 : Y \to Y^*$, $\eta \mapsto \langle \eta, \cdot \rangle$, conforme a Observação 13.4. Então $T^* = \Phi_1^{-1} \circ T^a \circ \Phi_2$, ou seja, que comuta o diagrama abaixo.

$$Y \xrightarrow{T^*} X$$

$$\Phi_2 \downarrow \qquad & \downarrow \Phi_1$$

$$Y^* \xrightarrow{T^a} X^*$$

Aula 14 - Operadores compactos (parte 1)

Observação 14.1. Lembremos, de Álgebra Linear, que, dado $A \in \mathcal{M}_{n \times n}(\mathbb{F})$, uma matriz quadrada $n \times n$ com entradas no corpo \mathbb{F} , dizemos que $\lambda \in \mathbb{F}$ é um autovalor de A se existe $v \in \mathbb{F}^n \setminus \{0\}$, chamado de autovetor de A, tal que $Av = \lambda v$. Observe que, identificando A com o operador linear $A : \mathbb{F}^n \to \mathbb{F}^n$, dizer que λ é um autovalor de A, com v sendo o autovetor associado, equivale a dizer que $0 \neq v \in \ker(Av - \lambda \operatorname{id})$. Disso segue que o operador A não é injetivo, por conseguinte, não é invertível. Reciprocamente, como \mathbb{F}^n é um espaço vetorial de dimensão finita, se $Av - \lambda$ id não é invertível, então $Av - \lambda$ id não é injetiva, ou seja, existe $0 \neq v \in \ker(Av - \lambda \operatorname{id})$. Logo, λ é um autovalor de A, com v sendo o autovetor associado se, e somente se, $Av - \lambda$ id não é invertível. Portanto, estudar os valores λ para os quais o operador $Av - \lambda$ id não é invertível, no caso de dimensão finita, é a mesma coisa que estudar quais são os autovalores da matriz A.

Definição 14.2. Sejam X um espaço vetorial normado e $T:X\to X$ um operador linear e contínuo. Definimos o **espectro pontual de T** como sendo

$$\sigma_p(T) := \{ \lambda \in \mathbb{C} \mid \ker(T - \lambda \operatorname{id}_X) \neq \{0\} \}.$$

Observação 14.3. Note que $\sigma_p(T)$ nada mais é do que os autovalores de T. Se $\dim(X) = \infty$, pode acontecer de $\ker(T - \lambda \operatorname{id}_X) = \{0\}$, mas $\operatorname{im}(T - \lambda \operatorname{id}_X) \neq X$. Assim, para o caso de dimensão infinita, a noção de autovalores, diferentemente do caso de dimensão finita, pode não ser suficiente para caracterizar o operador que estamos interessados. Contudo, para essa última parte da disciplina, vamos nos restringir a um caso específico, colocando condições no espaço X e no operador T para que $\sigma_p(T)$ seja suficiente para conseguir uma teoria espectral análoga a que acontecia em matrizes, mas especificamente, vamos estudar a teoria espectral de operadores autoadjuntos e compactos, para o caso onde X é um espaço

de Hilbert.

Definição 14.4. Sejam X e Y espaços vetoriais normados. Dizemos que $T: X \to Y$ um operador linear é **compacto**, se para todo $A \subseteq X$ é limitado, $\overline{T(A)}$ é compacto. Notação: $L_0(X,Y) = \{T: X \to Y \mid T \text{ é linear e compacto}\}.$

Exemplo 14.5.

- (a) Se $\dim(X) < \infty$, então $\mathrm{id}_X : X \to X$ é limitado, mas não é compacto, pelo Teorema 2.5. Esse exemplo mostra que existem operadores limitados que não são compactos.
- (b) Sejam $(C[0,1], \|\cdot\|_{\infty})$ e $K: [0,1] \times [0,1] \to \mathbb{F}$ um operador contínuo. Defina $T: X \to X$, $T(\varphi)(t) = \int_0^1 K(t,s)\varphi(s)ds$. Então T é um operador linear, limitado e compacto.
- (c) Se $T \in L(X,Y)$ e dim(im(T)) $< \infty$, então T é compacto. Notação: $L_f(X,Y) = \{T \in L(X,Y) \mid \dim(\operatorname{im}(T)) < \infty\}$. Operadores em $L_f(X,Y)$ são ditos **operadores de posto finito**.

Proposição 14.6. $L_0(X,Y)$ é um subespaço de L(X,Y).

Proposição 14.7. $L_0(X,Y)$ é um espaço de Banach, se Y é Banach.

Proposição 14.8. Seja $T \in L_0(X,Y)$. Se $\xi_n \xrightarrow{\omega} \xi$, então $T(\xi_n) \to T(\xi)$ em norma.

Proposição 14.9. Sejam X um espaço reflexivo e $T \in L(X,Y)$. Então $T \in L_0(X,Y)$ se, e somente se, $\xi_n \xrightarrow{\omega} \xi \Rightarrow T(\xi_n) \to T(\xi)$ em norma.

Aula 15 - Operadores compactos (parte 2)

Definição 15.1.

- (a) Seja X um espaço vetorial. Se $A \subseteq X$ é um conjunto linearmente independente maximal, isto é,
 - (i) qualquer subconjunto finito de A é linearmente independente, quer dizer, dados $\xi_1, \ldots, \xi_n \in A$, se sempre que $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ satisfizerem $\lambda_1 \xi_1 + \cdots + \lambda_n \xi_n = 0$, então $\lambda_1 = \cdots = \lambda_n = 0$,
 - (ii) dado qualquer $\xi \in X$, temos que $A \cup \{\xi\}$ não satisfaz o item (i),

então A é dito base de Hamel.

- (b) Seja X um espaço de Hilbert. Se $B \subseteq X$ é um conjunto ortonormal maximal, isto é,
 - (i) para todo $\eta \in B$, temos que $\|\eta\| = 1$ e para todo $\eta_{\alpha}, \eta_{\beta} \in X$, com $\eta_{\alpha} \neq \eta_{\beta}$, temos que $\eta_{\alpha} \perp \eta_{\beta}$.
 - (ii) se $\xi \in X$ tal que $\xi \perp \eta$, para todo $\eta \in B$, então $\xi = 0$,

então *B* é dito **base ortonormal**.

Exemplo 15.2.

- (a) Em \mathbb{R}^n , $\{e_i\}_{i=1}^n$ é base de Hamel e também é base ortonormal.
- (b) Em $\ell^2(\mathbb{N})$, $\{e_i\}_{i=1}^n$ é base ortonormal, mas não é base de Hamel.

Teorema 15.3. Seja E um conjunto ortonormal de X. Então E é uma base ortonormal se, e somente se, $X = \overline{\operatorname{span}(E)}$.

Proposição 15.4. *X* possui base ortonormal enumerável se, e somente se, *X* é separável.

Teorema 15.5. Se X possui uma base ortonormal enumerável $\{e_1, \ldots, e_n, \ldots\}$, então, para todo $\xi \in X$, temos que $\xi = \sum_{i=1}^{\infty} \langle e_i, \xi \rangle e_i$.

Corolário 15.6. Se $\{e_1, \ldots, e_n, \ldots\}$ é base ortonormal de X, $S_n = \text{span}(\{e_1, \ldots, e_n\})$ e P_n é a projeção ortogonal em S_n , então, para todo $\xi \in X$, temos que $\|P_n(\xi) - \xi\| \xrightarrow{n \to \infty} 0$.

Observação 15.7. Seja X um espaço vetorial normado. Se Y é um espaço de Banach, então $L_0(X,Y)$ também é Banach (Proposição 14.7). Como $L_0(X,Y) \subseteq L(X,Y)$ (Proposição 14.6), em particular, $L_0(X,Y)$ é fechado em L(X,Y). Sabemos também que $L_f(X,Y) \subseteq L_0(X,Y)$ (Exemplo 14.5). Assim, se Y é um espaço de Banach, $T_n \in L_f(X,Y)$ tal que $T_n \to T$ em L(X,Y), então $T \in L_0(X,Y)$.

Teorema 15.8. Sejam X e Y espaços de Hilbert e $T \in L(X,Y)$. São equivalentes:

- (a) *T* é compacto.
- (b) Existe $T_n \in L_f(X, Y)$ tal que $T_n \to T$ em L(X, Y).

Aula 16 - Operadores autoajuntos

Definição 16.1. Seja X um espaço de Hilbert. Dizemos que $T \in L(X)$ é **autoadjunto** se $T = T^*$, ou seja, se $\langle T(\xi), \eta \rangle = \langle \xi, T(\eta) \rangle$, para todo $\xi, \eta \in X$.

Exemplo 16.2. Seja $(\alpha_i) \in \ell^2(\mathbb{N})$ e considere $T : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$, $(\xi_i) \mapsto (\alpha_i \xi_i)$. Então $T = T^*$ se, e somente se, $\alpha_i \in \mathbb{R}$, para todo i.

Proposição 16.3. Sejam X um espaço de Hilbert sobre o corpo \mathbb{C} e $T \in L(X)$. Então $T = T^*$ se, e somente se, $\langle T(\xi), \xi \rangle \in \mathbb{R}$, para todo $\xi \in X$.

Proposição 16.4. Se $T=T^*$, então $||T||=\sup_{\|\xi\|=1}|\langle T(\xi),\xi\rangle|$.

Corolário 16.5. Se $T=T^*$ e $\langle T(\xi),\xi\rangle=0$, para todo $\xi\in X$, então T=0.

Proposição 16.6. Se $T: X \to X$ é linear tal que $\langle T(\xi), \eta \rangle = \langle \xi, T(\eta) \rangle$, para todo $\xi, \eta \in X$, então $T \in L(X)$ e $T = T^*$.

Aula 17 - Espectro de operadores compactos

Observação 17.1. O interesse é acha uma solução para uma equação da forma $(T - \lambda \operatorname{id}_X)(\xi) = \eta$, onde $T \in L(X)$, $\lambda \in \mathbb{F}$ e $\eta \in X$ estão fixos, ou seja, queremos responder se existe $\xi \in X$ que é solução da equação. A resposta se torna simples se $(T - \lambda \operatorname{id}_X)$ é um operador invertível, pois, nesse caso $\xi = (T - \lambda \operatorname{id}_X)^{-1}(\eta)$.

Definição 17.2. Sejam X um espaço vetorial normado e $T \in L(X)$. Definimos o **espectro de T**, como sendo

$$\sigma(T) := \{ \lambda \in \mathbb{C} \mid T - \lambda \operatorname{id}_X \text{ não \'e invertível} \}.$$

Observação 17.3.

- (a) $\sigma_p(T) \subseteq \sigma(T)$ (ver Definição 14.2).
- (b) Se dim $(X) < \infty$, então $\sigma_p(T) = \sigma(T)$.
- (c) Se X é um espaço de Hilbert sobre o corpo \mathbb{C} de dimensão infinita e $T \in L_0(X)$, então $0 \in \sigma(T)$, pois pelo Teorema da Aplicação Aberta (Teorema 7.1), T não é sobrejetiva.

Exemplo 17.4. Seja $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}), (\xi_1, \dots, \xi_n, \dots) \mapsto (0, \xi_1, \dots, \xi_n, \dots)$. Pode-se provar que $S \in L(\ell^2(\mathbb{N}))$. Também temos que $\ker(S) = \{0\}$, o que implica que $0 \notin \sigma_p(S)$. Note que S não é sobrejetiva, logo não é invertível. Disso segue que $0 \in \sigma(S)$. Portanto, nesse exemplo, temos que $\sigma_p(S) \subsetneq \sigma(S)$.

Observação 17.5. Se X é um espaço de Banach de dimensão infinita e $T \in L_0(X)$, então $0 \in \sigma(T)$.

Lema 17.6. Sejam X um espaço de Hilbert sobre o corpo $\mathbb C$ de dimensão infinita, $T \in L_0(X)$ e $\lambda \neq 0$. Se $\lambda \notin \sigma_p(T)$, então $T - \lambda \operatorname{id}_X$ é limitado inferiormente.

Lema 17.7. Sejam X um espaço de Hilbert sobre o corpo $\mathbb C$ de dimensão infinita, $T \in L_0(X)$ e $\lambda \neq 0$. Então $\ker(T - \lambda \operatorname{id}_X) = \{0\}$ se, e somente se, $\operatorname{im}(T - \lambda \operatorname{id}_X) = X$.

Teorema 17.8. Sejam X um espaço de Hilbert sobre o corpo $\mathbb C$ de dimensão infinita e $T \in L_0(X)$. Então $\sigma(T) \setminus \{0\} = \sigma_p(T) \setminus \{0\}$.

Exemplo 17.9. Sejam $X = \ell^2(\mathbb{N})$ e $\alpha = (\alpha_n) \in \ell^\infty(\mathbb{N})$. Defina $T : X \to X$, $(\xi_n) \mapsto (\alpha_n \xi_n)$. Pode-se provar que $T \in L(X)$ e que $\sigma_p(T) = \{\alpha_n\}$. Assim,

$$0 \in \sigma_p(T)$$
, se $\alpha_n = 0$, para algum n , $0 \notin \sigma_p(T)$, se $\alpha_n \neq 0$, para todo n .

Além disso, também pode-se provar que se $\alpha_n \to 0$, então $T \in L_0(X)$. Nesse caso, temos que $0 \in \sigma(T)$. O que o Teorema 17.8 nos diz é que qualquer outro elemento em $\sigma(T)$ diferente do zero, vai estar em $\sigma_p(T)$. Tal teorema não infere nada sobre o zero, conforme esse exemplo mostra.

Lema 17.10. Sejam X um espaço de Hilbert sobre o corpo $\mathbb C$ de dimensão infinita, $T \in L_0(X)$ e $\lambda_n \in \sigma_p(T)$, com $\lambda_n \neq \lambda_m$, se $n \neq m$. Então $\lambda_n \to 0$.

Lema 17.11. Sejam X um espaço de Hilbert sobre o corpo $\mathbb C$ de dimensão infinita, $T \in L_0(X)$ e $0 \neq \lambda \in \sigma(T)$. Então λ é isolado em $\sigma(T)$.

Teorema 17.12. Sejam X um espaço de Hilbert sobre o corpo $\mathbb C$ de dimensão infinita e $T \in L_0(X)$. Então

(a)
$$\sigma(T) = \{0\}$$
 ou

(b)
$$\sigma(T) = \{0, \lambda_1, \dots, \lambda_k\}$$
, com $\lambda_i \neq 0$ e $\lambda_i \in \sigma_p(T)$, ou

(c)
$$\sigma(T) = \{0, \lambda_1, \dots, \lambda_n, \dots\}, \text{ com } \lambda_i \neq 0, \lambda_i \in \sigma_p(T) \text{ e } \lim_{n \to \infty} \lambda_n = 0.$$

Aula 18 - Espectro de operadores compactos autoadjuntos

Proposição 18.1. Sejam X um espaço de Hilbert sobre o corpo $\mathbb C$ de dimensão infinita e $T \in L(X)$ autoadjunto. Então $\sigma_p(T) \subseteq \mathbb R$.

Observação 18.2. Se $T \in L(X)$ e $T^*T = TT^*$, então $\lambda \in \sigma_p(T)$ se, e somente se, $\overline{\lambda} \in \sigma_p(T^*)$.

Teorema 18.3. Sejam X um espaço de Hilbert sobre o corpo $\mathbb C$ de dimensão infinita e $T \in L_0(X)$ autoadjunto. Então $||T|| \in \sigma_p(T)$ ou $-||T|| \in \sigma_p(T)$.

Teorema 18.4 (Teorema espectral). Sejam

- (a) X um espaço de Hilbert sobre o corpo $\mathbb C$ de dimensão infinita,
- (b) $T \in L_0(X)$ autoadjunto,
- (c) $\{\lambda_1, \lambda_2, \dots, \lambda_n, \dots\} \subseteq \mathbb{R}$ os autovalores não nulos de T e
- (d) P_n a projeção ortogonal em $\ker(T \lambda_n \operatorname{id}_X)$.

Então
$$T \xrightarrow{n \to \infty} \sum_{i=1}^n \lambda_i P_i$$
 em $L(X)$, ou seja, $\sup_{\substack{\xi \in X \\ \|\xi\| = 1}} \left\| \left(T - \sum_{i=1}^n \lambda_i P_i \right) (\xi) \right\|_X \xrightarrow{n \to \infty} 0$.