MT-104 Linear Algebra

National University of Computer and Emerging Sciences

Fall 2020

December 17, 2020

Lecture On Orthogonal Projections

Orthogonality

Orthonormal Basis

Definition

A set of vectors in \mathbb{R}^n is called an **orthonormal set** if it is an orthogonal set of unit vectors.

Theorem

Let $\{x_1, x_2, ..., x_k\}$ be an orthonormal basis for a subspace W of \mathbb{R}^n and let w be any vector in W. Then the unique scalars $c_1, c_2, ..., c_k$ such that

$$w = c_1 x_1 + c_2 x_2 + ... + c_k x_k$$

are given by

$$c_i = w \cdot x_i, i = 1, 2, ..., k.$$

Theorem

The matrix Q (square or rectangular) has orthonormal columns if and only if $Q^TQ=I$

Proof.

If Q has orthonormal columns then,

$$(Q^TQ)_{ij}=q_i\cdot q_j=I.$$

Conversely,

If $Q^TQ = I$, then

$$q_i \cdot q_j = \begin{cases} 1, & \text{if } i \neq j \\ 0, & \text{if } i = j. \end{cases}$$

Theorem

Any square matrix ${\it Q}$ whose columns form an orthonormal set is called ${\it Orthogonal Matrix}$.

Theorem

Let Q be an $n \times n$ matrix. Then the following statements are equivalent:

- 1. Q is orthogonal.
- 2. $Q^T = Q^{-1}$.
- 3. ||Qx|| = ||x||.
- 4. $Q\mathbf{x} \cdot Q\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$.

where \mathbf{x} and \mathbf{y} are from \mathbb{R}^n .

Theorem

Let Q be an orthogonal matrix.

- 1. Q^{-1} is orthogonal.
- 2. $det(Q) = \pm 1$
- 3. If λ is an eigenvalue of Q, then $|\lambda| = 1$.
- 4. Product of orthogonal matrices of same size is another orthogonal matrix.
- 5. Rows of Q forms an orthonormal set.

Examples

$$\qquad \qquad \left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right].$$

$$\qquad \qquad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Definition

Let W be a subspace of R^n . Its **orthogonal complement** is

$$W^{\perp} = \left\{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \right\} \qquad \text{read "} W \text{ perp"}.$$

$$W^{\perp} \text{ is orthogonal complement}$$

Pictures:

The orthogonal complement of a line in R^2 is

[5] The orthogonal complement of a line in \mathbb{R}^3 is

[7] The orthogonal complement of a plane in R^3 is

Definition

Let W be a subspace of R^n . Its **orthogonal complement** is

$$W^{\perp} = \left\{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \right\} \qquad \text{read "} W \text{ perp"}.$$

$$W^{\perp} \text{ is orthogonal complement}$$

Pictures:

The orthogonal complement of a line in R^2 is

[5] The orthogonal complement of a line in \mathbb{R}^3 is

[7] The orthogonal complement of a plane in R^3 is

Definition

Let W be a subspace of R^n . Its **orthogonal complement** is

$$W^{\perp} = \left\{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \right\} \qquad \text{read "} W \text{ perp"}.$$

$$W^{\perp} \text{ is orthogonal complement}$$

Pictures:

The orthogonal complement of a line in R^2 is

[5] The orthogonal complement of a line in \mathbb{R}^3 is

[7] The orthogonal complement of a plane in R^3 is

Definition

Let W be a subspace of \mathbb{R}^n . Its **orthogonal complement** is

$$W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \}$$
 read "W perp".

Pictures:

The orthogonal complement of a line in R² is the perpendicular line.

[5] The orthogonal complement of a line in R³ is

Definition

Let W be a subspace of \mathbb{R}^n . Its **orthogonal complement** is

$$W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \}$$
 read "W perp".

Pictures:

The orthogonal complement of a line in R² is the perpendicular line.

[5] The orthogonal complement of a line in R³ is

Definition

Let W be a subspace of \mathbb{R}^n . Its **orthogonal complement** is

$$W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \}$$
 read "W perp".

Pictures:

The orthogonal complement of a line in R² is the perpendicular line.

[5] The orthogonal complement of a line in R³ is the perpendicular plane.

Definition

Let W be a subspace of \mathbb{R}^n . Its **orthogonal complement** is

$$W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \}$$
 read "W perp".

Pictures:

The orthogonal complement of a line in R² is the perpendicular line.

[5] The orthogonal complement of a line in R³ is the perpendicular plane.

Definition

Let W be a subspace of \mathbb{R}^n . Its **orthogonal complement** is

$$W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \}$$
 read "W perp".

Pictures:

The orthogonal complement of a line in R² is the perpendicular line.

[5] The orthogonal complement of a line in R³ is the perpendicular plane.

[7] The orthogonal complement of a plane in R³ is the perpendicular line.

Let W be a plane in R^4 . How would you describe W^{\perp} ?

- A. The zero space $\{0\}$.
- B. A line in R⁴.
- C. A plane in R⁴.
- D. A 3-dimensional space in R⁴.
- E. All of R⁴.

Basic properties

Let W be a subspace of \mathbb{R}^n .

Facts:

- 1. W^{\perp} is also a subspace of \mathbb{R}^n
- 2. $(W^{\perp})^{\perp} = W$
- 3. dim $W + \dim W^{\perp} = n$
- 4. If $W = \text{Span}\{v_1, v_2, \dots, v_m\}$, then

$$W^{\perp} = \text{all vectors orthogonal to each } v_1, v_2, \dots, v_m$$

$$= \left\{ x \text{ in } \mathbb{R}^n \mid x \cdot v_i = 0 \text{ for all } i = 1, 2, \dots, m \right\}$$

$$= \text{Nul} \begin{pmatrix} \mathbf{-} v_1^T \mathbf{-} \\ \mathbf{-} v_2^T \mathbf{-} \\ \vdots \\ \mathbf{-} v_n^T \mathbf{-} \end{pmatrix}.$$

Let's check 1

- ls 0 in W^{\perp} ? Yes: $0 \cdot w = 0$ for any w in W.
- ▶ Suppose x, y are in W^{\perp} . So $x \cdot w = 0$ and $y \cdot w = 0$ for all w in W. Then $(x + y) \cdot w = x \cdot w + y \cdot w = 0 + 0 = 0$ for all w in W. So x + y is also in W^{\perp} .
- Suppose x is in W^{\perp} . So $x \cdot w = 0$ for all w in W. If c is a scalar, then $(cx) \cdot w = c(x \cdot 0) = c(0) = 0$ for any w in W. So cx is in W^{\perp} .

Orthogonality

General procedure

Problem: Find all vectors orthogonal to some number of vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n .

This is the same as finding all vectors x such that

$$0 = v_1^T x = v_2^T x = \cdots = v_m^T x.$$

Putting the *row* vectors
$$v_1^T, v_2^T, \dots, v_m^T$$
 into a matrix, this is the same as finding all x such that
$$\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix} x = \begin{pmatrix} v_1 \cdot x \\ v_2 \cdot x \\ \vdots \\ v_m \cdot x \end{pmatrix} = 0.$$

Important

The set of all vectors orthogonal to some vectors v_1, v_2, \dots, v_m in \mathbb{R}^n is the *null space* of the $m \times n$ matrix $\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_n^T \end{pmatrix}.$

is
$$v_1, v_2, \dots, v_m$$
 in \mathbb{R}^n is the *null space* of $\begin{bmatrix} -v_2' - \\ \vdots \\ -v_m^T - \end{bmatrix}$

In particular, this set is a subspace!

Row space, column space, null space

Definition

The **row space** of an $m \times n$ matrix A is the span of the *rows* of A. It is denoted Row A.

Equivalently, it is the column span of A^T :

$$Row A = Col A^T$$
.

It is a subspace of R-.

[5] We showed before that if A has rows $v_1^T, v_2^T, \dots, v_m^T$, then

$$\mathsf{Span}\{v_1,v_2,\ldots,v_m\}^{\perp}=\mathsf{Nul}\,A.$$

Hence we have shown:

Fact: $(Row A)^{\perp} = Nul A$.

Replacing A by A^T , and remembering Row $A^T = \text{Col } A$:

Fact: $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.

Using property 2 and taking the orthogonal complements of both sides, we get:

Row space, column space, null space

Definition

The **row space** of an $m \times n$ matrix A is the span of the *rows* of A. It is denoted Row A.

Equivalently, it is the column span of A^T :

$$Row A = Col A^T$$
.

It is a subspace of R-.

[5] We showed before that if A has rows $v_1^T, v_2^T, \dots, v_m^T$, then

$$\mathsf{Span}\{v_1,v_2,\ldots,v_m\}^{\perp}=\mathsf{Nul}\,A.$$

Hence we have shown:

Fact: $(Row A)^{\perp} = Nul A$.

Replacing A by A^T , and remembering Row $A^T = \text{Col } A$:

Fact: $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.

Using property 2 and taking the orthogonal complements of both sides, we get:

Row space, column space, null space

Definition

The **row space** of an $m \times n$ matrix A is the span of the *rows* of A. It is denoted Row A.

Equivalently, it is the column span of A^T :

$$Row A = Col A^T$$
.

It is a subspace of R-.

[5] We showed before that if A has rows $v_1^T, v_2^T, \dots, v_m^T$, then

$$\mathsf{Span}\{v_1,v_2,\ldots,v_m\}^{\perp}=\mathsf{Nul}\,A.$$

Hence we have shown:

Fact: $(Row A)^{\perp} = Nul A$.

Replacing A by A^T , and remembering Row $A^T = \text{Col } A$:

Fact: $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.

Using property 2 and taking the orthogonal complements of both sides, we get:

Row space, column space, null space

Definition

The **row space** of an $m \times n$ matrix A is the span of the *rows* of A. It is denoted Row A.

Equivalently, it is the column span of A^T :

$$Row A = Col A^T$$
.

It is a subspace of R^n .

[5] We showed before that if A has rows $v_1^T, v_2^T, \dots, v_m^T$, then

$$\mathsf{Span}\{v_1,v_2,\ldots,v_m\}^{\perp}=\mathsf{Nul}\,A.$$

Hence we have shown:

Fact: $(Row A)^{\perp} = Nul A$.

Replacing A by A^T , and remembering Row $A^T = \text{Col } A$:

Fact: $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.

Using property 2 and taking the orthogonal complements of both sides, we get:

Orthogonal Complements of Most of the Subspaces We've Seen

For any vectors v_1, v_2, \ldots, v_m :

$$\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul} \begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

For any matrix A:

$$Row A = Col A^T$$

and

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \qquad \operatorname{Row} A = (\operatorname{Nul} A)^{\perp}$$

 $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T} \qquad \operatorname{Col} A = (\operatorname{Nul} A^{T})^{\perp}$

Computation

We have to find the null space of the matrix whose rows are $\begin{pmatrix} 1 & 1 & -1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \end{pmatrix}$, which we did before:

$$\operatorname{\mathsf{Nul}} \left(\begin{matrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{matrix} \right) = \operatorname{\mathsf{Span}} \left\{ \left(\begin{matrix} -1 \\ 1 \\ 0 \end{matrix} \right) \right\}.$$

$$\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul} \begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

Example

Problem Let W be the subspace of R^5 spanned by

$$w_1 = \begin{bmatrix} 1 \\ -3 \\ 5 \\ 0 \\ 5 \end{bmatrix}, \ w_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ -2 \\ 3 \end{bmatrix}, \ w_3 = \begin{bmatrix} 0 \\ -1 \\ 4 \\ -1 \\ 5 \end{bmatrix}.$$

Find a basis for W^{\perp} .

Solution. There are two obvious approaches. We can construct a matrix whose column space is W and can easily construct a matrix whose row space is W.

Let
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -3 & 1 & -1 \\ 5 & 2 & 4 \\ 0 & -2 & -1 \\ 5 & 3 & 5 \end{bmatrix}$$

As W = col(A) so, $W^{\perp} = null(A^{T})$. Solving the homogenous system $A^{T}x = 0$ will gives us W^{\perp} .

Suppose you measure a data point ${\bf x}$ which you know for theoretical reasons must lie on a subspace ${\bf W}.$

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W.

Suppose you measure a data point ${\bf x}$ which you know for theoretical reasons must lie on a subspace ${\bf W}.$

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W.

Suppose you measure a data point ${\bf x}$ which you know for theoretical reasons must lie on a subspace ${\bf W}.$

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W.

Suppose you measure a data point ${\sf x}$ which you know for theoretical reasons must lie on a subspace ${\sf W}.$

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W.

Orthogonal Projection onto a Line

Theorem

Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n , and let x be in \mathbb{R}^n . The closest point to x on L is the point

$$\operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u.$$

This point is called the **orthogonal projection of** x **onto** L.

Why? Let $y = \text{proj}_L(x)$. We have to verify that x - y is in L^{\perp} . This means proving that $u \cdot (x - y) = 0$.

$$u \cdot (x - y) = u \cdot \left(x - \frac{x \cdot u}{u \cdot u}u\right) = u \cdot x - \frac{x \cdot u}{u \cdot u}(u \cdot u) = u \cdot x - x \cdot u = 0.$$

Orthogonal Projection onto a Line

Example

Compute the orthogonal projection of $x = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ onto the line L spanned by

$$u=\binom{3}{2}$$
.

$$y = \operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u = \frac{-18 + 8}{9 + 4} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Orthogonal Bases

Geometric reason

Theorem

Let $\mathcal{B} = \{u_1, u_2, \dots, u_m\}$ be an orthogonal set, and let x be a vector in $W = \operatorname{Span} \mathcal{B}$. Then

= Span *B*. Then
$$x = \sum_{i=1}^{m} \frac{x \cdot u_i}{u_i \cdot u_i} u_i = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \underbrace{\frac{x \cdot u_2}{u_2 \cdot u_2} u_2}_{\text{proj}_{L_2}(u_2)} + \dots + \underbrace{\frac{x \cdot u_m}{u_m \cdot u_m} u_m}_{\text{proj}_{L_2}(u_2)}.$$

If L_i is the line spanned by u_i , then this says

$$x = \operatorname{proj}_{L_1}(x) + \operatorname{proj}_{L_2}(x) + \cdots + \operatorname{proi}_{L_2}(x).$$

$$\operatorname{proj}_{L_1}(x)$$

$$\operatorname{proj}_{L_1}(x)$$

$$\operatorname{proj}_{L_1}(x) + \operatorname{proj}_{L_2}(x)$$

Orthogonal Bases

Example

Problem: Find the \mathcal{B} -coordinates of $x = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, where

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ \begin{pmatrix} -4 \\ 2 \end{pmatrix} \right\}.$$

Old way: $\begin{pmatrix} 1 & -4 & | & 0 \\ 2 & 2 & | & 3 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & | & 6/5 \\ 0 & 1 & | & 6/20 \end{pmatrix} \implies [x]_{\mathcal{B}} = \begin{pmatrix} 6/5 \\ 6/20 \end{pmatrix}.$

New way: note \mathcal{B} is an *orthogonal* basis.

$$x = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 = \frac{3 \cdot 2}{1^2 + 2^2} u_1 + \frac{3 \cdot 2}{(-4)^2 + 2^2} u_2 = \frac{6}{5} u_1 + \frac{6}{20} u_2.$$

So the $\mathcal{B}\text{-coordinates}$ are $\frac{6}{5},\frac{6}{20}.$

Orthogonal Bases

Example

Problem: Find the \mathcal{B} -coordinates of x = (6, 1, -8) where

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}.$$

Answer:

$$\begin{split} [x]_{\mathcal{B}} &= \left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \ \frac{x \cdot u_2}{u_2 \cdot u_2}, \ \frac{x \cdot u_3}{u_3 \cdot u_3}\right) \\ &= \left(\frac{6 \cdot 1 + 1 \cdot 1 - 8 \cdot 1}{1^2 + 1^2 + 1^2}, \ \frac{6 \cdot 1 + 1 \cdot (-2) - 8 \cdot 1}{1^2 + (-2)^2 + 1^2}, \ \frac{6 \cdot 1 + 1 \cdot 0 + (-8) \cdot (-1)}{1^2 + 0^2 + (-1)^2}\right) \\ &= \left(-\frac{1}{3}, \ -\frac{2}{3}, \ 7\right). \end{split}$$

Check:

$$\begin{pmatrix} 6 \\ 1 \\ -8 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + 7 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Idea Behind Orthogonal Projections

If x is not in a subspace W, then y in W is the closest to x if x - y is in W^{\perp} :

Reformulation: Every vector x can be decompsed uniquely as

$$x = x_W + x_{W^{\perp}}$$

where $x_W = y$ is the closest vector to x in W, and $x_{W^{\perp}} = x - y$ is in W^{\perp} .

Example: Let $u = \binom{3}{2}$ and let $L = \operatorname{Span}\{u\}$. Let $x = \binom{-6}{4}$.

Then the closest point to x in L is $\text{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u$, so

$$x_L = \operatorname{proj}_L(x) = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad x_{L^\perp} = x - \operatorname{proj}_L(x) = \begin{pmatrix} -6 \\ 4 \end{pmatrix} + \frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Idea Behind Orthogonal Projections

If x is not in a subspace W, then y in W is the closest to x if x - y is in W^{\perp} :

Reformulation: Every vector x can be decompsed uniquely as

$$x = x_W + x_{W^{\perp}}$$

where $x_W = y$ is the closest vector to x in W, and $x_{W^{\perp}} = x - y$ is in W^{\perp} .

Example: Let $u = \binom{3}{2}$ and let $L = \operatorname{Span}\{u\}$. Let $x = \binom{-6}{4}$.

Then the closest point to x in L is $\text{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u$, so

$$x_L = \operatorname{proj}_L(x) = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad x_{L^\perp} = x - \operatorname{proj}_L(x) = \begin{pmatrix} -6 \\ 4 \end{pmatrix} + \frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Idea Behind Orthogonal Projections

If x is not in a subspace W, then y in W is the closest to x if x - y is in W^{\perp} :

Reformulation: Every vector x can be decompsed uniquely as

$$x = x_W + x_{W^{\perp}}$$

where $x_W = y$ is the closest vector to x in W, and $x_{W^{\perp}} = x - y$ is in W^{\perp} .

Example: Let $u = \binom{3}{2}$ and let $L = \text{Span}\{u\}$. Let $x = \binom{-6}{4}$.

Then the closest point to x in L is $\text{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u$, so

$$x_L = \mathrm{proj}_L(x) = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad x_{L^\perp} = x - \mathrm{proj}_L(x) = \begin{pmatrix} -6 \\ 4 \end{pmatrix} + \frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Orthogonal Projections

Definition

Let W be a subspace of \mathbb{R}^n , and let $\{u_1, u_2, \dots, u_m\}$ be an *orthogonal* basis for W. The **orthogonal projection** of a vector x onto W is

$$\operatorname{proj}_{W}(x) \stackrel{\text{def}}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}.$$

Question: What is the difference between this and the formula for $[x]_{\mathcal{B}}$ from before?

Theorem

Let W be a subspace of \mathbb{R}^n , and let x be a vector in \mathbb{R}^n . Then $\operatorname{proj}_W(x)$ is the closest point to x in W.

Therefore

$$x_W = \operatorname{proj}_W(x)$$
 $x_{W^{\perp}} = x - \operatorname{proj}_W(x)$.

Why? Let $y = \text{proj}_W(x)$. We need to show that x - y is in W^{\perp} . In other words, $u_i \cdot (x - y) = 0$ for each i. Let's do u_1 :

$$u_1 \cdot (x - y) = u_1 \cdot \left(x - \sum_{i=1}^m \frac{x \cdot u_i}{u_i \cdot u_i} u_i \right) = u_1 \cdot x - \frac{x \cdot u_1}{u_1 \cdot u_1} (u_1 \cdot u_1) - 0 - \dots = 0.$$

Orthogonal Projections

Easy example

What is the projection of $x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ onto the xy-plane?

Answer: The xy-plane is $W = \text{Span}\{e_1, e_2\}$, and $\{e_1, e_2\}$ is an orthogonal basis.

$$x_W = \operatorname{proj}_W \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \frac{x \cdot e_1}{e_1 \cdot e_1} e_1 + \frac{x \cdot e_2}{e_2 \cdot e_2} e_2 = \frac{1 \cdot 1}{1^2} e_1 + \frac{1 \cdot 2}{1^2} e_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

So this is the same projection as before.

Orthogonal Projections

More complicated example

What is the projection of
$$x = \begin{pmatrix} -1.1 \\ 1.4 \\ 1.45 \end{pmatrix}$$
 onto $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1.1 \\ -.2 \end{pmatrix} \right\}$?

Answer: The basis is orthogonal, so

$$x_{W} = \operatorname{proj}_{W} \begin{pmatrix} -1.1\\ 1.4\\ 1.45 \end{pmatrix} = \frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$$

$$= \frac{(-1.1)(1)}{1^{2}} \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \frac{(1.4)(1.1) + (1.45)(-.2)}{1.1^{2} + (-.2)^{2}} \begin{pmatrix} 0\\1.1\\-.2 \end{pmatrix}$$

This turns out to be equal to $u_2 - 1.1u_1$.

Orthogonal Projections Picture

Let W be a subspace of \mathbb{R}^n , and let $\{u_1, u_2, \dots, u_m\}$ be an orthogonal basis for W. Let $L_i = \operatorname{Span}\{u_i\}$. Then

$$\operatorname{proj}_{W}(x) = \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} = \sum_{i=1}^{m} \operatorname{proj}_{L_{i}}(x).$$

So the orthogonal projection is formed by adding orthogonal projections onto perpendicular lines.

Orthogonal Projections Properties

First we restate the property we've been using all along.

Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , and let x be a vector in \mathbb{R}^n . Then $y = \operatorname{proj}_W(x)$ is the closest point in W to x, in the sense that

$$dist(x, y') \ge dist(x, y)$$
 for all y' in W .

We can think of orthogonal projection as a *transformation*:

$$\operatorname{proj}_W \colon R^n \longrightarrow R^n \qquad x \mapsto \operatorname{proj}_W(x).$$

Theorem

Let W be a subspace of \mathbb{R}^n .

- 1. $proj_W$ is a *linear* transformation.
- 2. For every x in W, we have $proj_W(x) = x$.
- 3. For every x in W^{\perp} , we have $\text{proj}_{W}(x) = 0$.
- 4. The range of $proj_W$ is W.