

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9701/22

Paper 2 Structured Questions AS Core

May/June 2010

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs, or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE ON ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.

At the end of the examination, fasten all your work securely together.

For Exam	iner's Use
1	
2	
3	
4	
5	
Total	

This document consists of 12 printed pages.

Answer all the questions in the spaces provided.

For Examiner's Use

1 In the 19th and 20th centuries, experimental results showed scientists that atoms consist of a positive, heavy nucleus which is surrounded by electrons.

Then in the 20th century, theoretical scientists explained how electrons are arranged in orbitals around atoms.

- (a) The diagram below represents the energy levels of the orbitals present in atoms of the second period (Li to Ne).
 - (i) Label the energy levels to indicate the principal quantum number **and** the type of orbital at each energy level.

(ii) On the axes below, draw a sketch diagram of **one** of each **different type (shape)** of orbital that is occupied by the electrons in a second-period element.

Label each type.

(iii)	Complete the electronic configurations of nitrogen atoms and oxygen atoms on the energy level diagrams below. Use arrows to represent electrons.	For Examiner's Use
	energy — — — — — — — — — — — — — — — — — — —	
	nitrogen	
	energy ————————————————————————————————————	
	oxygen	
(b) (i)	[6] Use the <i>Data Booklet</i> to state the value of the first ionisation energy of nitrogen and	
	of oxygen. NkJ mol ⁻¹ OkJ mol ⁻¹	
(ii)	Explain, with reference to your answer to (a)(iii), the relative values of these two ionisation energies.	
	[3]	
	[Total: 9]	

2 Copper, proton number 29, and argon, proton number 18, are elements which have different physical and chemical properties.

For Examiner's Use

In the solid state, each element has the same face-centred cubic crystal structure which is shown below.

(a) Which types of particle are present in the copper and argon crystals? In each case, give their formula.

element	particle	formula
copper		
argon		

ı	っ	ı
L	_	J

At room temperature, copper is a solid while argon is a gas.

ALI	oon temperature, copper is a solid wrille argori is a gas.
(b)	Explain these observations in terms of the forces present in each solid structure.
	[4]

© UCLES 2010 9701/22/M/J/10

Although copper is a relatively unreactive element, when it is heated to a high temperature in an excess of chlorine, copper(II) chloride is formed. When a mixture of argon and chlorine is heated to a high temperature, no reaction occurs. How does chlorine behave in its reaction with copper? (ii) Suggest a reason for the lack of a reaction between argon and chlorine. [2] The melting points of the noble gases neon to xenon are given below. Ar Kr Xe Ne melting point/K 25 84 116 161 **(d)** Explain why there is an increase in melting point from neon to xenon.

[Total: 10]

For

Examiner's Use **3** The table below gives data for some of the oxides of Period 3 elements.

For Examiner's Use

oxide	Na ₂ O	MgO	Al_2O_3	SiO ₂	P ₄ O ₆	SO ₂
melting point/°C	1275	2827	2017	1607	24	- 75
bonding						
structure						

	bonding								
	struc	cture							
(a)	Cor	nplete the	table by filli	ng in					-
	(i)	the 'bond	ling' row by	using only t	the words 'ic	onic' or 'cov	alent',		
	(ii)	the 'struc	cture' row by	using only	the words 's	simple' or 'g	iant'.		[2]
(b)		m the tabl oluble in w		above, sug	gest the for	mula of on	e oxide tha	at is comple	tely
									[1]
(c)	Sep	arate sam	nples of Na ₂	O and SO ₂	were added	to water.			
	(i)		oxide, write al value for th				on with wate	er and sugge	est a
		Na ₂ O							
		equation							
		рН							
		SO ₂							
		equation							
		рН							
	(ii)		et a balanced reacts with a				urs when a	solution of N	a ₂ O
									 [5]

© UCLES 2010 9701/22/M/J/10

(d)	Separate samples of the oxides MgO and ${\rm SiO_2}$ are melted. Each molten sample is then tested to see whether or not it conducts electricity.	For Examiner's Use
	Suggest what would be the results in each case. Explain your answers.	
	MgO	
	SiO ₂	
	[4]	
	[Total: 12]	

				8		
4		organic compour 18.7%; H, 8.1%; (g composition by mass:		
	(a)	Calculate the er	mpirical formula of E .			
					[2	2]
	(b)	When vaporised 127°C and 1.00	J in a suitable apparat	us, 0.130 g of E occupied	d a volume of 58.0 cm ³ a	at
		(i) Use the exp	pression $pV = \frac{mRT}{M_r}$ to	calculate \emph{M}_{r} of E ,		
		where <i>m</i> is	the mass of E .			
		(ii) Hence calc	ulate the molecular for	rmula of E .		
					[4	4]
	(c)	Compound F , is	an ester with the mol	ecular formula $C_4H_8O_2$.		
		F is one of four	isomers, S , T , U , and '	V , that are all esters.		
			ow, the structural form	-		
		Draw the structu	ıral formulae of the oth	ner three isomers of F th	at are esters.	
	НС	CO ₂ CH(CH ₃) ₂				

[3]

٧

For Examiner's Use

© UCLES 2010 9701/22/M/J/10

T

U

S

(d)	Whe	en the ester F is hydrolysed, an alcohol G is produced.
	(i)	What reagent can be used to hydrolyse an ester to an alcohol?
	(ii)	What other type of organic compound is produced at the same time?
		[2]
(e)		mild oxidation, the alcohol G gives a compound H which forms a silver mirror with ens' reagent.
	(i)	What functional group does the reaction with Tollens' reagent show to be present in compound \mathbf{H} ? Give the name of this group.
	(ii)	What type of alcohol is G ?
	(iii)	What could be the structural formula of the alcohol G ?
		[3]
(f)	(i)	Which of the four isomers, S , T , U , or V , could not be F ?
	(ii)	Explain your answer.
		[2]
		[Total: 16]

For Examiner's Use **5** Alkenes such as propene can be readily prepared from alcohols in a school or college laboratory by using the apparatus below.

For Examiner's Use

	water >
(a) (i)	Give the name of an alcohol that can be used in this apparatus to prepare propene.
(ii)	Draw the skeletal formula of the alcohol you have named in (i) .
(iii)	What type of reaction occurs in this case?
` ,	[3]
(b) (i)	During the reaction, the material X becomes black in colour. Suggest the identity of the black substance and suggest how it is produced during the reaction.

© UCLES 2010 9701/22/M/J/10

	(ii)	At the end of the experiment, when no more propene is being produced, the delivery tube is removed from the water before the apparatus is allowed to cool.	For Examiner's
		Suggest why this done.	Use
	(iii)	The material labelled X can be broken crockery, broken brick or pumice.	
		Give the chemical formula of a compound that is present in one of these materials.	
	(iv)	State another reagent that could be used to produce propene from an alcohol.	
		[5]	
(c)		e the structural formula of the organic product formed when propene reacts separately each of the following substances.	
	(i)	bromine	
	/::\		
	(ii)	cold, dilute manganate(VII) ions	
	/:::\	hat concentrated management (VIII) in a	
	(iii)	hot, concentrated manganate(VII) ions	
		[0]	
		[3]	
			1

1)	Pro	pene may be polymerised.	For
	(i)	What is the essential condition for such a polymerisation?	Examiner's Use
	(ii)	The disposal of waste poly(propene) is very difficult. Give one important reason for this.	
		[2]	
		[-]	
		[Total: 13]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2010