

工科数学分析下册答案过程

6. 计算 $\iint (x^2 + y^2 + z^2) dS$, 其中:

(1) S 为两圆柱面 $x^2 + y^2 = a^2$ 与 $x^2 + z^2 = a^2$ 及三个坐标面在第一卦限所围成立体的边界曲面;

(2) S 为圆锥面 $x^2 + y^2 = z^2 (-1 \le z \le 2)$.

(1) (1) 2/5;

\(\sigma_2 \frac{2}{3}\) ols = \(\sigma_2 \frac{2}{3}\) ols = \(\sigma_3 \frac{2}{3}\) ols = \(\sigma_4 \frac{2}{3}\) ols =

204. 4 2. \$\left\(\text{Cx24y24}\) ols = \frac{1}{9}\au^4\text{2} + \frac{3}{8}\au^4 + \frac{7}{8}\au^4 +

(2).

! Ols: To drowy.

: [[cx24222] ols: [2024) clx by T [2022940xdy

= [3200] 200 pdp + [20000 [0 20. pdp]. Tz.

= [3200] 200 pdp + [32000 [0 20. pdp]. Tz.

= 172.Tz.

8. 计算 1 = ∯(x+2y+4z+5)²dS, 其中 S 是八面棒|x|+|y|+|z|≤1的表面.

表方有 |x|t|y|+|z|-|.

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):|

(-2/3):

9. 求拋物面
$$z = \frac{1}{2}(x^2 + y^2)(0 \le z \le 1)$$
的质量,其面密度为 $\mu = z$.

(3) $\frac{1}{3}$ ($\frac{1}{3}$) $\frac{1}{3}$ ($\frac{1}{3}$

10.
$$\sqrt{n}$$
 \sqrt{n} $\sqrt{n$

11. 试求面密度 $\mu=1$,半径为 R 的球壳对与球心距离为 a(a>R) 处的单位质点的引力.

