Question 13.2

In this problem you, can simulate a simplified airport security system at a busy airport. Passengers arrive according to a Poisson distribution with $\lambda 1$ = 5 per minute (i.e., mean interarrival rate $\mu 1$ = 0.2 minutes) to the ID/boarding-pass check queue, where there are several servers who each have exponential service time with mean rate $\mu 2$ = 0.75 minutes. [Hint: model them as one block that has more than one resource.] After that, the passengers are assigned to the shortest of the several personal-check queues, where they go through the personal scanner (time is uniformly distributed between 0.5 minutes and 1 minute).

Use the Arena software (PC users) or Python with SimPy (PC or Mac users) to build a simulation of the system, and then vary the number of ID/boarding-pass checkers and personal-check queues to determine how many are needed to keep average wait times below 15 minutes. [If you're using SimPy, or if you have access to a non-student version of Arena, you can use $\lambda 1 = 50$ to simulate a busier airport.]

To solve this problem, I developed a simulation using Arena. I used trial and error to land on the following model with an average wait time of 4.6 minutes.

Component	Details		
Create Block (Passenger Arrival)	 Time Between Arrivals Type: Random(Expo) 		
	 Value: 0.2 minutes 		
	Entities per Arrival: 1		
Process Block (Check ID and Boarding Pass)	Action: Seize Delay Release		
	Delay Type: Expression		
	o EXPO(0.75)		
	 Number of Resources: 1 		
	Resource Capacity: 4		
Decision Block (Choose Shortest Line)	Type: N-way by Condition		
	Conditions:		

Component	Details		
	o NQ(Queue 1.Queue) <= NQ(Queue		
	2.Queue) && NQ(Queue 1.Queue)		
	<= NQ(Queue 3.Queue) &&		
	NQ(Queue 1.Queue) <= NQ(Queue		
	4.Queue)		
	NQ(Queue 2.Queue) <= NQ(Queue		
	3.Queue) && NQ(Queue 2.Queue)		
	<= NQ(Queue 4.Queue)		
	o NQ(Queue 3.Queue) <= NQ(Queue		
	4.Queue)		
Process Block (Queue 1)	Action: Seize Delay Release		
	Delay Type: Uniform		
	o Minimum: 0.5		
	o Maximum: 1		
	Number of Resources: 1		
	Resource Capacity: 1		
Process Block (Queue 2)	Action: Seize Delay Release		
	Delay Type: Uniform		
	o Minimum: 0.5		
	o Maximum: 1		
	Number of Resources: 1		
	Resource Capacity: 1		
Process Block (Queue 3)	Action: Seize Delay Release		
	Delay Type: Uniform		
	o Minimum: 0.5		
	o Maximum: 1		
	 Number of Resources: 1 		
	Resource Capacity: 1		
Process Block (Queue 4)	Action: Seize Delay Release		
	Delay Type: Uniform		
	o Minimum: 0.5		
	o Maximum: 1		
	Number of Resources: 1		
	Resource Capacity: 1		
Dispose Block (Dispose)	N/A		

Key statistics from my simulation are included below:

Name	Туре	Source 🔻	Average Of Replication Averages
■ Entity 1	■ NVA Time	Entity	0
	■Other Tim	e Entity	0
	■Total Time	Entity	0.102624463
	■ Transfer Ti	n Entity	0
	■ VA Time	Entity	0.025185882
	■ Wait Time	Entity	0.07743858
■ Check ID and Boarding Pass.Q	■ Waiting Ti	m Queue	0.051904327
■ Queue 1.Queue	■ Waiting Ti	m Queue	0.028569461
■ Queue 2.Queue	■ Waiting Ti	m Queue	0.025940633
■ Queue 3.Queue	■ Waiting Ti	m Queue	0.024033874
■ Queue 4.Queue	■ Waiting Ti	m Queue	0.023084842

I have also included a summary of results from my other trials:

#	Check ID and Boarding Pass Resource Capacity	Number of Queues	Did the Simulation Fail?	Average Wait Time
1	3	3	Yes	N/A
2	3	4	Yes	N/A
3	4	4	No	4.6 minutes
4	5	4	No	1.8 minutes

Since the goal is to keep wait time under 15 minutes with as few resources as possible, trial #3 is the best simulation.