

Affordable Security Or Big Guy vs. Small Guy

Does the depth of your pockets impact your protocols?

Daniele Friolo Università di Roma La Sapienza

joint work with Daniele Venturi¹, Chan Nam Ngo², Fabio Massacci²

Multi-party Computation

Multi-party Computation

Commitment Schemes

COMMIT PHASE

Security properties: Binding and Hiding

Penalties as solution to unfairness

- Security guarantees of MPC
 - Privacy, correctness, independence of inputs, guaranteed output delivery,...
 - Fairness: corrupted parties receive the output if and only if the honest parties do as well
 - Big issue in digital auctions, digital exchanges, on-line gambling (Poker, lottery)
 - Impossible to achieve for dishonest majority [Cleve86]
 - Achieved for specific functionalities, relaxing security definitions, using public bulletin board..
 - Penalties using Bitcoin [ADMM14] [KB14] [KVV16] ...

Penalties as the universal cure

 Idea originated by Andrychowicz et al. [ADMM14] implemented in Bitcoin (only for lottery functionality)

Extended by Bentov et al. to general purpose MPC with penalties

Penalties as the universal cure

 Idea originated by Andrychowicz et al. [ADMM14] implemented in Bitcoin (only for lottery functionality)

• Extended by Bentov et al. to general purpose MPC with penalties

Penalties as the universal cure

 Idea originated by Andrychowicz et al. [ADMM14] implemented in Bitcoin (only for lottery functionality)

Extended by Bentov et al. to general purpose MPC with penalties

Pocket depth's and financial fairness

- Discount rate. Measure dependent on
 - the level of risk aversions
 - the confidence in the certainty of future payments
 - life expectancy.
- Say that \mathbf{q} is the penalty amount, δ a measure of the discount rate, and assume that Pi deposits at time 0, then the loss of Pi at time t is defined as

$$\Delta_i = d_i - d_i(1 - \delta(t))$$

• A protocol with a common reward is financially fair iff for every pair of parties i,j $\Delta_i = \Delta_j$ at the end of the protocol

Ladder mechanism of Kumaresan et al. vs other constructions

- Kumaresan et al. for MPC with penalties, using the *ladder mechanism* to achieve fairness.
 - iq deposit for player player Pi
 - O(n) rounds of communication
 - Not financially fair.
- Andrychowicz et al. for secure MPC lottery and Bentov et. al. for secure MPC with penalties
 - Each party deposits q(n-1)
 - O(1) rounds of communication
 - Financially Fair.

Share reconstruction protocol (Kumaresan et al) First step: unfair MPC

 N-out-of-N secret sharing: an attacker learns no information about y if he possess less than N shares

$$(y_1, ..., y_n) \leftarrow Share(y)$$

 $y \leftarrow Recon(y_1, ..., y_n)$

Claim-Or-Refund functionality

DEPOSIT PHASE

Ps

"Deposit coins(x) redeemable by P_r"

(deposit, $s, r, \phi_{s,r}, \tau$, coins(x))

CLAIM PHASE

"Claim that I possess a witness w for x" (claim, $s, r, \phi_{s,r}, \tau, x, \mathbf{w}$)

"if the check passes send coins(x) to the receiver"

REFUND PHASE

"If the deposit hasn't been claimed before τ refund coins(x) to Ps"

 $(\texttt{refund}, s, r, \phi_{s,r}, \tau, \texttt{coins}(x))$

Share reconstruction ladder mechanism for 2 parties:

NAIVE IDEA

Share reconstruction ladder mechanism for 3 parties:

ROOF DEPOSIT

LADDER DEPOSITS

Share reconstruction ladder mechanism for n parties:

ROOF DEPOSIT

LADDER DEPOSITS: For j=N-1 to 1

3-party ladder

- Withdrawals
- Deposits

Loss for each player in case of q = 100\$ (3 parties)

Party	0%	0,1%	0,25%	0,75%	1%	3%
P ₁	0\$	-0,4\$	-1,0\$	-2,9\$	-3,9\$	-10,8\$
P ₂	0\$	-1,2\$	-3,0\$	-8,7\$	-11,4\$	-31,3\$
P ₃	0\$	-1,3\$	-3,2\$	-9,4\$	-12,3\$	-33,1\$

Conclusions and ongoing work

- Kumaresan et al. ladder mechanism is not Financially Fair, while other protocols, and Andrychowicz et al for lottery is
- Defined a new measure to calculate money loss in escrow protocols
- Standard abstraction for every escrow protocol and loss function defined for more general cases
- Bentov et al. protocol for secure MPC with penalties proved in a stronger model and implemented more efficiently in Bitcoin