Lecture Notes for

Neural Networks and Machine Learning

Vision Transformers
Self-supervised Learning
Consistency Loss

Logistics and Agenda

- Logistics
 - None!
- Agenda
 - Vision Transformers
 - Self Supervised Learning and Consistency Loss
- Next Time:
 - Paper Presentation: Language Models are Few Shot Learners
 - Multi-modal Learning
 - Techniques
 - Applications and domains
 - Multi-Task and Demo

Last Time: Transformers

Transformer: Multi-headed Attention

 $p=2, i \rightarrow$

EMBEDDINGS

 $p=1, i \rightarrow$

 $p=3, i \rightarrow$

Vision Transformers

Vision Transformers

- Divide image into patches
 - Treat each patch as something to encode separately
 - Flatten each patch
 - Put through dense layer
- Add positional encoding based on position of patch
 - for 7x7 patch, there are 49 positions
- Put into transformer. Same as text transformers ...
- But you need a lot of data
 - 14M or more images seems to be sweet spot

Vision Transformers Video

ViT Architectures

- D is size of patch embedding
- Uses skip connections (all size D)

- $\mathbf{z}_0 = [\mathbf{x}_{\text{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{\text{pos}},$ $\mathbf{z}'_{\ell} = MSA(LN(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1},$ $\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell},$ $\mathbf{y} = \mathrm{LN}(\mathbf{z}_L^0)$
- Multi-headed self attention (MSA) takes D input patch_embed + pos_embed
- Main difference in architectures
 - L blocks used (i.e., "layers")
 - H heads in each layer (i.e., "heads")
 - MLP head is final classifier

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

ResNet50: 23M

55

What is the learnable class embedding?

Do they work?

- Yes, but good luck getting weights for them or training them, even with the SuperPOD
- Less than 14M images for pre-training? Use ResNet.

Transfer Learning From Huge ViT

	VIT-H	Previous SOTA
ImageNet	88.55	88.5
lmageNet-ReaL	90.72	90.55
Cifar-10	99.50	99.37
Cifar-100	94.55	93.51
Pets	97.56	96.62
Flowers	99.68	99.63
	ı	

57

Self-Supervised Learning

Self-supervised Learning

- Problem: deep learning is not sample efficient
- Idea: learn about the world before learning the task
- New Problem: how do we learn about the world?
- Solution: transfer learning on toy problem
 - 1. train on auxiliary task that is easy to label
 - 2. throw away anything specific to auxiliary task
 - 3. train new network with task of interest, transferring knowledge (downstream task)
 - 4. profit

Examples of Self Supervised Learning

Examples of Self Supervised Learning

$$X = (W, W); Y = 3$$

Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch^{1,2} Abhinav Gupta¹ Alexei A. Efros²

² Dept. of Electrical Engiseering and Computer Science University of California, Berkeley

¹ School of Computer Science Carnegie Mellon University

Examples of Self Supervised Learning

Doesn't always work to increase performance...

Context Encoders: Feature Learning by Inpainting

Deepak Pathak

Philipp Krähenbühl Univers

henbühl Jeff Donahue Tre University of California, Berkeley

Trevor Darrell

Alexei A. Efros 62

Consistency Loss

I'm from Canada, but live in the States now.

It took me a while to get used to writing boolean variables with an "Is" prefix, instead of the "Eh" suffix that Canadians use when programming.

For example:

MyObj.IsVisible

MyObj.VisibleEh

Unsupervised Consistency Loss

$$\min_{\mathbf{w}} \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{w}} + \lambda \underbrace{\mathbf{\mathcal{D}}_{\mathit{KL}}\left(p_{\mathbf{w}}(y \,|\, \mathbf{x}) \,|\, |p_{\mathbf{w}}(y \,|\, \hat{\mathbf{x}})\right)}_{\mathsf{no} \; \mathsf{back} \; \mathsf{prop}}$$

Neural Network approximates $p(y|\mathbf{x})$ by \mathbf{w} Use labeled data to minimize network

Sample new \mathbf{x} from unlabeled pool with function q function q is augmentation procedure Minimize cross entropy of two models

Get accustomed to this notation

Update Model with Back-propagation along these paths

Unsupervised Data Augmentation (UDA) for Consistency Training, Xie et al., Neurlps 2019

Unsupervised Consistency Loss

Figure 2: Augmented examples using back-translation and RandAugment.

65

Unsupervised Consistency Loss (review)

$$\min_{\mathbf{w}} \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{w}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y$$

Neural Network approximates $p(y|\mathbf{x})$ by \mathbf{w} Use labeled data to minimize network

Sample new \mathbf{x} from unlabeled pool with function q function q is augmentation procedure Minimize cross entropy of two models

Get accustomed to this notation

Update Model with Back-propagation along these paths

Unsupervised Data Augmentation (UDA) for Consistency Training, Xie et al., Neurlps 2019

$$\min \underbrace{\overline{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}}_{\text{Cross entropy}} + \lambda \underbrace{\qquad \qquad \qquad }_{KL} \left(p_{\mathbf{w}}(y \,|\, \mathbf{x}) \,|\, |p_{\mathbf{w}}(y \,|\, \hat{\mathbf{x}}) \right)}$$

$$E[g] = \sum p(g) \cdot g$$
 definition of expected value

$$E[-\log p_{\mathbf{w}}(y\,|\,\mathbf{x})] = -\sum p(y) \cdot \log p_{\mathbf{w}}(y\,|\,\mathbf{x})$$
 insert -log probability, log likelihood

$$NLL(y, p_{\mathbf{w}}(y \mid \mathbf{x})) = -\sum_{c} p(y = c) \cdot \log p_{\mathbf{w}}(y = c \mid \mathbf{x})$$
 negative log likelihood

$$CE(f,g) = -\sum f(x) \cdot \log g(x)$$
 cross entropy of two functions

$$CE(y, p_{\mathbf{w}}(y \mid \mathbf{x})) = -\sum_{c} (y = c) \cdot \log p_{\mathbf{w}}(y = c \mid \mathbf{x})$$
 if $y = c$ is a probability, these are same equation

cce = tf.keras.losses.CategoricalCrossentropy()
cce(y_true, y_pred)

