INTRO TO DATA SCIENCE LECTURE 3: MACHINE LEARNING

LEARNING?

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."

"The core of machine learning deals with representation and generalization..."

source: http://en.wikipedia.org/wiki/Machine learning

from Wikipedia:

"Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data."

"The core of machine learning deals with representation and generalization..."

- representation extracting structure from data
- generalization making predictions from data

YOU ARE HERE 7

source: http://www.dataists.com/2010/09/the-data-science-venn-diagram/

YOU WANT TO GO HERE 9

ANSWER: PROBLEM SOLVING!

ANSWER: PROBLEM SOLVING!

NOTE

Implementing solutions to ML problems is the focus of this course!

II. MACHINE LEARNING PROBLEMS

Observations: "Rows" of your data. May not be unique, but each observation should represent one single representation of the feature space.

Observations: "Rows" of your data. May not be unique, but each observation should represent one single representation of the feature space.

Algorithm: A "predetermined set of rules." We will talk about a wide variety of algorithms throughout the next few weeks!

Observations: "Rows" of your data. May not be unique, but each observation should represent one single representation of the feature space.

Algorithm: A "predetermined set of rules." We will talk about a wide variety of algorithms throughout the next few weeks!

Model = Algorithm + Features + Observations

supervised unsupervised

making predictions extracting structure

generalization

supervised unsupervised

making predictions extracting structure

representation

continuous	categorical
quantitative	qualitative

categorical continuous qualitative quantitative NOTE The space where data live is called the feature space. Each point in this space is called a record.

TYPES OF ML SOLUTIONS

	continuous	categorical
supervised unsupervised	regression dimension reduction	classification clustering

TYPES OF ML SOLUTIONS

continuous categorical supervised classification regression unsupervised clustering dimension reduction NOTE

We will implement solutions using models and algorithms.

Each will fall into one of these four buckets.

WHAT IS THE GOAL

MACHINE LEARNING?

supervised unsupervised

making predictions extracting structure

ANSWER

The goal is determined by the type of problem.

HOW DO YOU DETERMINE THE RIGHT APPROACH?

desired solution.

	continuous	cat	egorical
supervised unsupervised	regression dimension reduction	classification clustering	
			ANSWER
			The right approach is determined by the

	continuous	categorical	
supervised unsupervised	regression dimension reduction	classification clustering	
		ANSWER The NOTE is d des All of this depends on your data!	

WHAT DO YOU WITH YOUR RESULTS?

THE DATA SCIENCE WORKFLOW

ANSWER

Interpret them and react accordingly.

THE DATA SCIENCE WORKFLOW

ANSWER

NOTE

This also relies on your problem solving skills!

IIL 'CLASS' IFICATION ACTIVITY

KNN functions like this:

KNN functions like this:

1. Pick an observation to predict a classification

KNN functions like this:

- 1. Pick an observation to predict a classification
- 2. Use a distance formula for neighbors k to find the nearest neighbors

CLASS ACTIVITY: KNN IN THE CLASSROOM

One of the simplest machine learning algorithms is K-Nearest Neighbors (KNN for short)

KNN functions like this:

- 1. Pick an observation to predict a classification
- 2. Use a distance formula for neighbors k to find the nearest neighbors
- 3. Whichever neighbors have the highest representation of a class decide how to classify the unknown observation!

KNN CLASSIFICATION - BASICS

Suppose we want to predict the color of the grey dot.

Suppose we want to predict the color of the grey dot.

1) Pick a value for k.

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

OPTIONAL NOTE

Our definition of "nearest" implicitly uses the Euclidean distance function.

EXERCISE - K NEAREST NEIGHBORS CLASSIFICATION IN R

KEY OBJECTIVES	R FUNCTIONS
- knn classification using train/test sets	- knn {class}

KEY OBJECTIVES

Extend the script we used in class to implement knn classification on the iris dataset using n-fold cross-validation.

(bonus: split code into functions)

for example:

```
knn.nfold <- function(n, ...) {
    # create n-fold partition of dataset
    # perform knn classification n times
    # n-fold generalization error = average over all iterations
}</pre>
```

As a class, consider our values as a feature space with 3 features:

1. On a scale of 1 to 10 (10 being most important), how important is it for you to work at a company where the product sells and brings in revenue?

CLASS ACTIVITY: KNN IN THE CLASSROOM

As a class, consider our values as a feature space with 3 features:

- 1. On a scale of 1 to 10 (10 being most important), how important is it for you to work at a company where the product sells and brings in revenue? (continuous)
- 2. On a scale of 1 to 10 (10 being most important), how important is it for you to work at a company where the goal is to create an amazing product for everyone? (continuous)
- 3. Which region of the United States (or country) that you've spent the majority of your life.

Final thoughts/Reflection:

- 1. What worked well with that approach to classifying people?
- 2. What didn't work well with that approach to classifying people?
- 3. What other challenges could have came up with this approach?