Deep Semantic Architecture with discriminative feature visualization for neuroimage analysis

Anonymous Author(s)

Affiliation Address email

Supplementary Material

2 1 Network Architecture

(a) Basic Architecture without adversary

(b) Modified Architecture with adversary to avoid subject discrimination

Figure S1: Deep Network Architecture. The initial choice of architecture (without any adversary) gives good subject prediction accuracy from features extracted by the Base CNN. Therefore, a subject discriminator of roughly the same model capacity as the Top NN is added. The subject discrimination acts as a regularizer while training and avoids the Base CNN from learning subject specific features.

- Notation:- Conv denotes the 2D Spatial Convolutional layer. ReLU denotes the Rectified Linear Unit
- 4 Layer that adds non-linearity to the network. *MaxPool* denotes the 2D Spatial Max Pooling layer.
- *FullyConn* denotes a Fully Connected layer, also known as the linear layer of the network.

6 **1.1 TF maps**

Layer	Type	Maps and Neurons	Filter Size
0	Input	$1M \times 64 \times 55N$	-
1	Conv	$6M \times 64 \times 28N$	1×5
2	ReLU	$6M \times 64 \times 28N$	-
3	MaxPool	$6M \times 64 \times 14N$	1×2
4	Conv	$16M \times 64 \times 14N$	1×5
5	ReLU	$16M \times 64 \times 14N$	-
6	MaxPool	$16M \times 64 \times 7N$	1×2

Table S1: Network architecture used for EEG feature extraction network (Base CNN). The output of the network is a tensor of dimensions $16 \times 64 \times 7$.

Layer	Type	Maps and Neurons	Filter Size
0	Input	$16M \times 64 \times 7N$	-
1	Flatten	7168N	-
2	Dropout (p=0.5)	=	-
3	FullyConn	8N	1×1
4	ReLU	8N	-
5	FullyConn	2N	1×1

Table S2: Network architecture used for group discrimination network (Top NN). The output of the network is a vector of dimension 2, values corresponding to the probability that the data tuple belongs to particular class.

Layer	Туре	Maps and Neurons	Filter Size
0	Input	$16M \times 64 \times 7N$	-
1	Flatten	7168N	-
2	Dropout (p=0.5)	=	-
3	FullyConn	8N	1×1
4	ReLU	8N	-
5	FullyConn	25N	1×1

Table S3: Network architecture used for subject discrimination network (adversary). The output of the network is a vector of dimension 25, values corresponding to the probability that the data tuple belongs to particular subject.

7 1.2 Topographical maps

Layer	Type	Maps and Neurons	Filter Size
0	Input	$3M \times 64 \times 64N$	-
1	Conv	$16M \times 32 \times 32N$	5×5
2	ReLU	$16M \times 32 \times 32N$	-
3	MaxPool	$16M \times 16 \times 16N$	2×2
4	Conv	$32M \times 16 \times 16N$	5×5
5	ReLU	$32M \times 16 \times 16N$	-
6	MaxPool	$32M \times 8 \times 8N$	2×2
7	Conv	$64M \times 8 \times 8N$	3×3
8	ReLU	$64M \times 8 \times 8N$	-
9	MaxPool	$64M \times 4 \times 4N$	2×2

Table S4: Network architecture used for EEG feature extraction network (Base CNN). The output of the network is a tensor of dimensions $64 \times 4 \times 4$.

Layer	Type	Maps and Neurons	Filter Size
0	Input	$64M \times 4 \times 4N$	-
1	Flatten	1024N	-
2	Dropout (p=0.5)	=	-
3	FullyConn	8N	1×1
4	ReLU	8N	-
5	FullyConn	2N	1×1

Table S5: Network architecture used for group discrimination network (Top NN). The output of the network is a vector of dimension 2, values corresponding to the probability that the data tuple belongs to particular class.

Layer	Type	Maps and Neurons	Filter Size
0	Input	$64M \times 4 \times 4N$	-
1	Flatten	1024N	-
2	Dropout (p=0.5)	=	-
3	FullyConn	8N	1×1
4	ReLU	8N	-
5	FullyConn	25N	1×1

Table S6: Network architecture used for subject discrimination network (adversary). The output of the network is a vector of dimension 25, values corresponding to the probability that the data tuple belongs to particular subject.

8 2 Training curves

9 2.1 Time-Frequency Maps

Hyperparameter	Value
Learning Rate	0.001
Learning Rate Decay	0.0001
Weight Decay	0.001

Table S7: List of hyperparameters used for training the networks on TF maps.

Figure S2: Time-Frequency Maps Training curves for three different weight values to the subject predictor regularizer.

o 2.2 Topographical Maps

Hyperparameter	Value
Learning Rate	0.001
Learning Rate Decay	0.001
Weight Decay	0.03

Table S8: List of hyperparameters used for training the networks on Topographical maps.

Figure S3: Topographical Maps Training curves for three different weight values to the subject predictor regularizer.