МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Высшая школа общей и прикладной физики

Отчет по лабораторной работе № 116

«Определение вязкости воздуха»

Выполнил:

студент 1 курса ВШ ОПФ

Тарханов Андрей Алексеевич

Цель работы: определить экспериментально коэффициент вязкости воздуха

Оборудование: стеклянный сосуд с мерной шкалой, пробка с плотно вставленным капилляром, секундомер

Теоретическая часть

Между слоями жидкости или газа, движущимися друг относительно друга с разными скоростями, возникают силы вязкого трения:

$$F = \eta S \left| \frac{dv_x}{dy} \right|, \quad (1)$$

где η - коэффициент вязкости жидкости (газа), S- площадь взаимодействующих слоев, а скорость потока направлена вдоль оси х и зависит от координаты у.

Для ламинарных течений связь между разностью давлений Δp на концах капилляра и объемом Q жидкости (газа), протекающим через поперечное сечение в единицу времени (расходом жидкости), определяется формулой Пуазейля (R- радиус капилляра, L – его длина):

$$Q = \frac{\pi R^4}{8\eta L} \Delta p, \quad (2)$$

Экспериментальная установка

Экспериментальная установка для определения вязкости воздуха представляет собой большой сосуд, который закрывается сверху пробкой с плотно вставленным в нее капилляром. Сосуд заполняется водой, которая вытекает через отверстие в дне сосуда. Объем воздуха, втекающего через капилляр в сосуд, равен объему воды, вытекающей из сосуда. При достаточно медленном вытекании воды перепад давлений на концах капилляра равен статическому давлению столба воды высотой h(t), $\Delta p = \rho g h$, где ρ - плотность воды, ρ - ускорение свободного падения.

Объем втекающего воздуха Q, или вытекающей воды равен скорости понижения уровня воды, умноженной на площадь сечения сосуда:

$$Q = -S\frac{dh}{dt}, (3)$$

Тогда получим
$$S\frac{dh}{dt} = -\frac{\pi R^4}{8\eta L} \rho g h \ (4)$$

Отсюда следует, что понижение уровня воды происходит по экспоненциальному закону:

$$h(t) = h_0 e^{-\frac{t}{\tau}} \tag{5}$$

где $au = \frac{8\eta LS}{\pi R^4 \rho g}$ — характерное время вытекания воды, h_0 - начальная высота уровня воды.

Результаты измерений и расчёты

Вынем пробку с капилляром и, закрыв нижнее отверстие, нальем в сосуд воду. Затем плотно вставим пробку и откроем нижнее отверстие. При $h_0=59\ cm$ скорость истечения воды из сосуда станет малой, начнем измерения, занося в таблицу моменты времени t исоответствующие уровни воды h. Сосчитаем t_{cp} и $\ln\frac{h_0}{h}$ для каждой высоты

метки	h, см	t _{cp} , c	$\ln \frac{h_0}{h}$
2	57	16	0,034
4	55	32,7	0,07
6	53	50,1	0,107
8	51	68,9	0,146
10	49	87,9	0,186
12	47	107,6	0,227
14	45	127,9	0,271
16	43	149,2	0,316
18	41	171,6	0,364
20	39	195,7	0,414
22	37	220,2	0,467
24	35	245,8	0,522
26	33	274,6	0,581
28	31	302,7	0,644
30	29	334,4	0,71
32	27	366,9	0,782
34	25	402,2	0,859
36	23	440,9	0,942
38	21	483,3	1,033
40	19	529,8	1,133
42	17	581,4	1,244
44	15	638,1	1,369
46	13	706,2	1,513
1			

Используя полученную таблицу, построим график зависимости $\ln \frac{h_0}{h}$ от времени.

Можно убедиться, что график линеен.

Определим коэффициент τ по наклону прямой на графике и рассчитаем коэффициент вязкости по формуле $\eta = \frac{\pi R^4 \rho g \tau}{8LS}$ (6)

Из графика $\tau=460$ с. Так как $R=1,62*10^{-2}$ см, L=3,4 см, S=18,5 см 2 , $\rho=1\frac{\Gamma}{\text{см}^3}$, то $\eta=1,94*10^{-4}$ П.

Задания

1. Оценим число Рейнольдса для условий эксперимента по формуле:

$$Re = \frac{\rho_e vR}{n} (7)$$

где $\rho_{\rm g}$ и η —плотность и коэффициент вязкости воздуха, υ — характерная скорость течения воздуха в капилляре, R — радиус капилляра.

Зная, что $Q=\frac{\pi R^4}{8\eta L}\Delta p$ (2) и $\Delta p=\rho gh$ получаем, что:

$$v = \frac{Q}{S} = \frac{\frac{\pi R^4 \Delta p}{8\eta L}}{\pi R^2} = \frac{R^2 \Delta p}{8\eta L} = \frac{\rho g h R^2}{8\eta L}$$

Значит, что $Re = \frac{\rho g h R^2}{8 \eta L} * \frac{\rho_6 R}{\eta} = \frac{\rho g h \rho_6 R^3}{8 L \eta^2}$. После подсчёта оказалось, что число Рейнольдса равно $Re \approx 274 \ll 1100$, а значит, течение в капилляре было ламинарным.

2. Оценим величину ошибки, допускаемой при определении давления, считая воду идеальной жидкостью.

Согласно уравнению Бернулли: $\rho gh + \rho \frac{v^2}{2} + p = const$

Сумма для верхней части будет составлять $\rho gh + \rho \frac{v_2^2}{2} + p_2$, а для нижней $\rho \frac{v_1^2}{2} + p_1$. Значит: $\rho gh + \rho \frac{v_2^2}{2} + p_2 = \rho \frac{v_1^2}{2} + p_1$. Тогда $p_1 - p_2 = \rho gh + \rho \frac{v_2^2}{2} - \rho \frac{v_1^2}{2}$. По нашему предположению для расчёта коэффициента вязкости воздуза мы пренебрегли скоростью движения воды и приняли $p_1 - p_2 = \rho gh$. Значит величина ошибки составляет $\rho \frac{v_2^2}{2} - \rho \frac{v_1^2}{2}$. Рассчитаем величину ошибки для начального момента времени, когда скорость была максимальна. Учтём, что $v_2 = \frac{2 \text{ см}}{16 \text{ с}} = 0,125 \text{ см/c}$, а $v_1 = \frac{S_2}{S_1} v_2$ (так как жидкость несжимаема) $S_2 = 18,5 \text{ см}^2$, $S_1 = 0,25 \text{ см}^2$ Получаем величина ошибки равна $\Delta = 43 \text{ г/см}$. Тогда $\frac{\Delta}{\rho gh} = 7,7 * 10^{-4}$, что очень мало, а значит возникающая ошибка не существенна.

3. Оценим среднюю длину свободного пробега и диаметр молекул воздуха. Согласно формуле $\lambda=\frac{3\eta}{\rho\overline{v}}$, где λ - среднюю длину свободного пробега молекул, $\overline{v}=\sqrt{\frac{3RT}{\mu}}$ - средняя скорость молекул. Значит $\lambda=\frac{3\eta}{\rho}\sqrt{\frac{\mu}{3RT}}=9,55*10^{-6}\,\mathrm{cm}$.

Также длину свободного пробега молекул воздуха можно рассчитать по формуле $\lambda = \frac{1}{\sqrt{2}\pi d^2 n} \text{ так как } p = nKT, \text{ то } d = \sqrt{\frac{kT}{\lambda\sqrt{2}\pi p_0}} = 0.98*10^{-7} \text{см}.$

4. Оценим, на сколько должен опуститься уровень воды после открытия нижнего отверстия, чтобы в свободной от воды части сосуда установилось давление воздуха на ρgh ниже атмосферного.

Так как температура в ходе процесса не меняется, то для воздуха в верхней части сосуда верен изотермический закон pV=const. Тогда верно равенство $p_0V_0=(p_0-\rho gh)(V_0+\Delta V).$ Так как $V_0=S(h_0-h_1), \Delta V=S(h_1-h),$ то $\frac{V_0}{\Delta V}=\frac{p_0}{\rho gh}$

 $\frac{h_0-h_1}{h_1-h}=\frac{p_0}{\rho gh}$. Откуда $h=\frac{p_0h_1}{\rho g(h_0-h_1)+p_0}=58,1$ см. Значит уровень должен опуститься на 59-58,1=0,9 (см).

Вывод: в ходе проведения эксперимента установлен коэффициент вязкости воздуха для температуры 24°C - 1,94*10⁻⁴ П. Оценили число Рейнольдса для условий эксперимента - 274, величину ошибки, допускаемой при определении давления, среднюю длину свободного пробега - 9,55*10⁻⁶ см и диаметр молекул воздуха - 0,98*10⁻⁷см.