Econ7115: Structural Models and Numerical Methods in Economics Assignment W4 (Comprehensive)

February 11, 2025

Due 23 April 2025 Zi Wang HKBU Spring 2025

1. Consider N countries in the world. We index countries by n = 1, 2, ..., N. Country n includes S_n internal regions. We denote the set of regions in country n by \mathcal{L}_n . We denote countries by i and n and regions by ℓ and m. Country n is endowed with \bar{L}_n labors. Labors are immobile across countries but mobile within country.

Each region produces a distinctive variety of goods. In region $\ell \in \mathcal{L}_n$, the representative consumer has a CES preference over varieties from all regions:

$$U_{\ell} \equiv B_{\ell} \left[\sum_{i=1}^{N} \sum_{m \in \mathcal{L}_{i}} C_{m\ell}^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}, \quad \sigma > 1,$$
 (1)

where $C_{m\ell}$ is the quantity of variety m consumed by the representative consumer in region ℓ and B_{ℓ} is the amenity in region ℓ that can be expressed as

$$B_{\ell} \equiv \bar{B}_{\ell} L_{\ell}^{-\mu_n}, \quad \mu_n \ge 0, \tag{2}$$

where L_{ℓ} is the labor in region ℓ .

Variety ℓ is produced by labor under perfect competition. The unit cost of variety ℓ is

$$c_{\ell} = \frac{w_{\ell}}{A_{\ell}}, \quad A_{\ell} \equiv \bar{A}_{\ell} L_{\ell}^{\alpha}$$
 (3)

where w_{ℓ} is the wage in region ℓ , \bar{A}_{ℓ} is the exogenous productivity, and $\alpha \geq 0$ represents local agglomeration externality.

Trade from region ℓ to region m incurs an iceberg trade cost $\tau_{\ell m} \geq 1$ with $\tau_{\ell \ell} = 1$. Notice that $\tau_{\ell m}$ represents both domestic and international trade costs. Moreover, trade from region $\ell \in \mathcal{L}_i$ to $m \in \mathcal{L}_n$ also incurs import tariffs $t_{in} \geq 0$ with $t_{ii} = 0$.

1. Denote $X_{\ell m}$ as the trade value from region $\ell \in \mathcal{L}_i$ to $m \in \mathcal{L}_n$. Denote X_m as the total expenditure in region m. Please derive the expressions for $\lambda_{\ell m} \equiv \frac{X_{\ell m}}{X_m}$.

- 2. Please derive the expressions for the aggregate price index in region m, P_m .
- 3. Please derive the expressions for equilibrium labor allocation within each country i, $(L_{\ell})_{\ell \in \mathcal{L}_i}$.
- 4. Suppose that tariff revenues are distributed evenly to all workers in the importing country. Please derive the equilibrium system.
- 5. Please define the problem for country 1 to choose its import tariffs in order to maximize its national welfare.
- 6. Please derive the equilibrium in relative changes. Which parameters are required to conduct this "exact-hat" algebra?
- 7. Please define the optimal import tariffs in country 1 utilizing the "exact-hat" algebra above.
- 2. Consider the following special case of the model above: there are two countries, N=2. Each country has two regions. Denote $\mathcal{L}_1=\{1,2\}$ and $\mathcal{L}_2=\{3,4\}$. Domestic trade costs are assumed to be $\tau_{12}=\tau_{21}=\tau_{34}=\tau_{43}=1.5$. We assume that region 1 and 3 are coastal regions and region 2 and 4 are inland regions. We assume that coastal regions are directly connected via international trade, whereas inland regions are engaged into international trade through coastal regions. In particular, $\tau_{14}=\tau_{41}=\tau_{13}\tau_{34}, \ \tau_{23}=\tau_{32}=\tau_{31}\tau_{12}$ and $\tau_{24}=\tau_{42}=\tau_{21}\tau_{13}\tau_{34}$. We set $\tau_{13}=\tau_{31}=1.2$. Moreover, there is no tariff initially, i.e. $t_{\ell m}=0$ for all (ℓ,m) .

Countries and regions are symmetric in size, technology and amenity: $\bar{L}_1 = \bar{L}_2 = 1$, $\bar{A}_{\ell} = \bar{B}_{\ell} = 1$ for any region ℓ . Moreover, we assume that $\theta = 4$ and $\alpha = 0.1$. In our baseline case, we set $\mu_1 = \mu_2 = 0.5$. We take the following numeraire: $\sum_{i=1}^{N} \sum_{\ell \in \mathcal{L}_i} w_{\ell} = 1$.

- 1. Please compute the equilibrium outcomes under zero tariffs.
- 2. Please derive the unilaterally optimal import tariffs for country 1, assuming country 2 imposes zero import tariffs.
- 3. Please derive the Nash tariffs for country 1 and 2.
- 4. Reduce μ_1 from 0.5 to 0.4 and recompute the above three exercises. Discuss the computational results.