Exercise 16.1

(1) Show that the line segment joining the mid-points of opposite sides of a parallelogram, divides it into two equal parallelograms.

Given ABCD is parallelogram, point p is midpoint of side \overline{DC} i.e. $\overline{DP} \cong \overline{PC}$ and point Q is midpoint of side \overline{AB} i.e. $\overline{AQ} \cong \overline{QB}$.

To Prove

Parallelogram AQPD \cong parallelogram QBCP

Construction

Join P to Q and Q to C.

Proof

Statements	Reasons	
$m\overline{AB} = m\overline{DC}$		
$\frac{1}{2} m \overline{AB} = \frac{1}{2} m \overline{DC}$	Dividing by 2	
$m\overline{QB} = m\overline{PC}$		

	Now
	$\Delta PQ C \leftrightarrow \Delta QBC$
	$\overline{QC} \cong \overline{QC}$
ĺ	$\overline{QB} \cong \overline{PC}$
ĺ	∠3 ≅ ∠4
ĺ	$\Delta PQ C \cong \Delta QBC$
ĺ	$\overline{PQ} \cong \overline{CB}$ (i)
	$\overrightarrow{AD} \cong \overrightarrow{CB}$ (ii)
	$\overline{PQ} \cong \overline{AD} \cong \overline{CB}$
	∠1 ≅ ∠2
	$m \angle 1 + m \angle 3 = m \angle 2 + m \angle 4$
	$\angle PQB \cong \angle PCB$
١	$\angle A \cong \angle PCB$
ļ	$\angle A \cong \angle PQB$
	Now
į	gm AQPD and gm QBCP
ļ	$\overline{AQ} \cong \overline{QB}$
- 1	

Common

Proved

Alt. Angles AB || DC

S.A.S = S.A.S

Corresponding sides of congruent triangles

Corresponding angles of congruent triangles

Corresponding angles of || gm

 $\overrightarrow{AQ} \cong \overrightarrow{QB}$ $\overrightarrow{AD} \cong \overrightarrow{PQ}$ $\angle A \cong \angle PQB$ Thus $\|gm \ AQPD \cong \|gm \ QBCP$

10cm

and AD are respectively 7 cm and 8 cm. Find AD.

Given Parallelogram ABCD, mAB=10cm altitudes. Corresponding to the sides AB and AD are 7cm and 8cm.

To Prove: $m\overline{AD} = ?$

(2)

Construction Make Ilgm ABCD and show the given altitudes \overline{DE} = 7cm, \overline{BF} = 8cm.

Proof The area of parallelogram = base x altitude

Statements	Reasons
∴ Area of parallelogram ABCD = 10 x 7(i)	
Also area of the $\ gm ABCD = \overline{AD} \times 8 \dots$ (ii)	İ
$\therefore m \overline{AD} \times 8 = 10 \times 7$	

Given

Proved

$$m\overline{AD} = \frac{10 \times 7}{8}$$

$$m\overline{AD} = \frac{35}{4} = 8\frac{3}{4} \text{ cm}$$

(3) If two parallelograms of equal areas have the same or equal bases, their altitudes are equal.

Given Two parallelograms of same or equal bases and same areas.

To Prove Their altitudes are equal.

Construction Make the Ilgm ABCD and EFGH. Draw DL \perp AB and HM \perp EF

Proof

	Statements	Reasons
Area	of the Igm ABCD = area of the Igm EFGH	
	base x altitude = base x altitude	
	$m \overrightarrow{AB} \times m \overline{DL} = m \overrightarrow{EF} \times m \overline{HM}$	Area = base x altitude
But	$m\overline{AB} = m\overline{EF}$	
<i>∴</i>	$m\overline{EF} \times m\overline{DL} = m\overline{EF} \times m\overline{HM}$	Dividing by m \overline{EF} we get
	$mDL = m\overline{HM}$ so altitudes are equal	

Theorem Triangles on the same base and of the same (i.e., equal) altitudes are equal in area.

Given Δs ABC, DBC on the same base \overline{BC} and having equal altitudes.

To Prove Area of (ΔABC) = area of (ΔDBC)

Construction Draw BM || to CA, CN || to

BD meeting AD produced in M, N.

Proof

Statements	Reasons
\triangle ABC and \triangle DBC are between the same \parallel^s	Their altitudes are equal
Hence MADN is parallel to BC	
∴ Area (gm BCAM)=Area (gm BCND)(i)	These \mathbb{I}^{gms} are on the same base \overline{BC} and
	between the same li ^s
But $\triangle ABC = \frac{1}{2} (II^{gm} BCAM)$ (ii)	Each diagonal of a light bisects it into two
	congruent triangles

and
$$\Delta DBC = \frac{1}{2} (\|_{gm} BCND)$$
(iii)

Hence area (\triangle ABC) = Area (\triangle DBC)

From (i), (ii) and (iii)

Theorem

Triangles on equal bases and of equal altitudes are equal in area.

Given

Δs ABC, DEF on equal bases

BC, EF and having altitudes equal.

To Prove

Area (\triangle ABC) = Area (\triangle DEF)

Construction

Place the Δs ABC and DEF so that their equal bases \overline{BC} and \overline{EF} are in the same straight line BCEF and their vertices on the same side of it. Draw BX || to CA and FY || to ED meeting AD produced in X, Y respectively

Proof

	Statements	Reasons
Δ ΑΒ	C and Δ DEF are between the same	Their altitudes are equal (given)
paralle	els	
.:.	XADY is to BCEF	
∴ Are	ea (\parallel^{gm} BCAX) = Area (\parallel^{gm} EFYD)(i)	These gms are on equal bases and between
Ì		the same parallels
But	$\Delta ABC = \frac{1}{2} (^{gm} BCAX) \qquad \dots (ii)$	Diagonal of a ll ^{gm} bisects it
and	$\Delta DEF = \frac{1}{2} (\parallel_{gm} EFYD)$ (iii)	
··	area ($\triangle ABC$) = area ($\triangle DEF$)	From (i), (ii) and (iii)

Corollaries

- (1) Triangles on equal bases and between the same parallels are equal in area.
- (2) Triangles having a common vertex and equal bases in the same straight line, are equal in area.