Lecture 7 (Huffman Encoding cotd)

1 Theorem

Let $F = (f_1, f_2 \cdots, f_n)$ represent frequencies of symbols (a_1, a_2, \cdots, a_n) and i, j be such that \exists an optimal tree in which a_i, a_j are siblings. Then $F^* = (F \setminus \{f_i, f_j\}) \cup \{f^*\}$ where $f^* = f_i + f_j$ satisfies

$$opt(F) = f_i + f_j + opt(F^*)$$

2 Proof

$$2.1 \quad opt(F) \le opt(F^*) + f_i + f_j$$

This is obvious from construction (too lazy to write it formally here)

$$3 \quad opt(F^*) \le opt(F) - (f_i + f_j)$$

Consider the optimal tree for F, i, j are siblings and the total length of string of F^* will be $f_i + f_j$ lesser than the length of F since we have *atleast* one level lesser for f^* . Thus, we have an upper bound for $opt(F^*)$.

4 BFS

Discussed in the later half of the lecture