BUNDESREPUBLIK DEUTSCHLAND

REC'D	17	NOV	2003	•
WIDC	_		PCT	

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 47 111.8

Anmeldetag:

09. Oktober 2002

Anmelder/Inhaber:

Siemens Aktiengesellschaft, München/DE

Bezeichnung:

Verfahren und Vorrichtung zur Betätigung eines

Leistungsschalters

IPC:

H 03 K, H 02 H.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

München, den 6. Oktober 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

SAL

Scholz

Pact Available Copy

09.10.2002

Beschreibung

Verfahren und Vorrichtung zur Betätigung eines Leistungsschalters.

5

10

Die Erfindung betrifft ein Verfahren zur Betätigung eines Leistungsschalters nach dem Oberbegriff von Anspruch 1, insbesondere eines zwischen zwei Energiespeichern angeordneten Halbleiter-Leistungsschalters in einem mit einem Integrierten Starter-Generator ausgerüsteten Kraftfahrzeug-Bordnetz. Sie betrifft auch eine Vorrichtung zur Durchführung dieses Verfahrens nach Anspruch 2.

Im einem Kraftfahrzeug-Bordnetz mit ISG sind Schaltvorgänge zwischen Energiespeichern - Akkumulatoren verschiedener Nennspannungen und Kondensatoren (Zwischenkreiskondensatoren, Doppelschichtkondensatoren) - über Umrichter oder Schaltregler mittels Leistungsschaltern erforderlich, die mittels der Befehle eines Steuergeräts durchgeführt werden.

20

15

Bedingung dabei ist, dass vor dem Öffnen eines Schalters der durch ihn fließende Schalterstrom auf OA gebracht wird, und dass vor dem Schließen eines Schalters die zwischen seinen Schaltkontakten liegende Schalterspannung auf OV gebracht wird, damit der Schalter leistungsfrei betätigt werden kann.

25

Ein Schalterstrom OA kann beispielsweise durch Abschalten von AC/DC-Umrichter oder DC/DC-Schaltregler erfolgen und stellt in der Praxis kein Problem dar.

30

Die Regelung auf OV Schalterspannung, d.h., keine Potentialdifferenz zwischen den Polen des (geöffneten = nicht leitenden) Schalters, erfolgt in der Regel durch gezieltes Umladen

10

15

20

25

30

eines der Energiespeicher, beispielsweise eines Zwischenkreiskondensators, da dieser in der Regel der kleinere der Energiespeicher ist. Diese Regelung kann auch prinzipiell durch einen Umrichter oder einen zwischen diesem und dem Bordnetz befindlichen Schaltregler erfolgen.

Der Zwischenkreiskondensator hat beispielsweise eine Kapazität von mehreren 10.000µF, der Doppelschichtkondensator beispielsweise eine Kapazität von 200F, die Akkumulatoren eine Kapazität von mehreren Ah. Die auszugleichende Schalterspannung kann bis zu 60V betragen.

Bedingt durch das ungünstige Verhältnis von Leistungsfähigkeit von Umrichter (z.B. 6kW) oder Schaltregler (z.B. 1kW) zu der für den Ladungsausgleich (bis 40 Joule) erforderlichen Energie sind dem Spannungsausgleich jedoch in der Praxis enge Grenzen gesetzt.

Werden nun beispielsweise aus Gründen der Zuverlässigkeit und des Platzbedarfs als Schalter Halbleiterschalter eingesetzt, so reicht die so erzielbare Genauigkeit des Spannungsausgleichs nicht aus.

Im normalen Betrieb auftretende Ströme und Leistungen erfordern die Verwendung von Bauelementen (Kondensatoren, Schaltern) mit sehr kleinen Widerständen. Entsprechend hoch fallen bei vorhandenen Spannungsdifferenzen die Ausgleichsströme über dem zu schließenden Schalter aus. Im Extremfall führt dies zur Zerstörung der Halbleiter.

Eine Begrenzung des durch den Schalter fließenden Ausgleichsstromes auf einen ungefährlichen Wert setzt eine Strommessung voraus, die bei der Höhe der auftretenden Ströme einen kostenintensiven Stromsensor erfordert. Außerdem kann der Ausgleichsvorgang nicht zeitoptimiert verlaufen, da bei großer Schalterspannung die Verlustleistung im Schalter hoch ist, was eine weitere mögliche Begrenzung darstellt.

5

Es ist Aufgabe der Erfindung, ein Verfahren und eine entsprechende Vorrichtung zur Betätigung eines Halbleiter-Leistungsschalters zu schaffen, die ohne kostenintensiven Stromsensor auskommt und bei welcher der Einschaltvorgang und der Einschaltzustand so geregelt werden, dass auch bei großer Spannungsdifferenz am Schalter eine Beschädigung der Transistoren ausgeschlossen ist.

10

15

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß den Merkmalen von Anspruch 1 und eine Vorrichtung gemäß den Merkmalen des Anspruchs 2 gelöst.

Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.

20

Das erfindungsgemäße Verfahren umfasst die technische Lehre, den Widerstand der Schaltstrecke des Halbleiter-Leistungs-schalters (S1, S2) mittels einer Steuerspannung Vst so zu steuern, dass die Temperatur in den Transistoren (Chiptemperatur) einen vorgegebenen Wert nicht übersteigt bzw. auf einen Konstantwert geregelt wird, wobei die Regelgröße als Steuersignal zur Erzeugung der Steuerspannung dient.

30

25

Bei einer Vorrichtung zur Durchführung dieses Verfahrens ist vorgesehen, den Schalter als Transfer-Gate mit speziellen Halbleiter-Transistoren auszubilden, in welche Dioden zur Erfassung der Chiptemperaturen integriert sind, und mittels einer Ladungspumpe so anzusteuern, dass die Chiptemperatur der

Transistoren geregelt und auf einen vorgegebenen Sollwert begrenzt werden kann.

Vorteilhafte Weiterbildungen der Erfindung sind den Unteran-5 sprüchen zu entnehmen.

Ein Ausführungsbeispiel nach der Erfindung wird nachstehend anhand einer schematischen Zeichnung näher erläutert. In der Zeichnung zeigen:

- 10 Figur 1 ein Prinzipschaltbild eines 14V/42V-Kraftfahrzeug-Bordnetzes,
 - Figur 2 ein Prinzipschaltbild eines als Transfer-Gate ausgebildeten Halbleiter-Leistungsschalters,
 - Figur 3 die Schaltung eines mittels einer Ladungspumpe ansteuerbaren Transfer-Gates,
 - Figur 4 eine Temperaturerfassungseinheit mit Sollvergleich und logischer Verknüpfung.
- Figur 1 zeigt ein Prinzipschaltbild eines 14V/42V-Kraftfahrzeug-Bordnetzes mit einem mit einer nicht dargestellten
 Brennkraftmaschine gekoppelten integrierten Starter-Generator
 ISG, anhand dessen die Erfindung.

Dieser ISG ist über einen bidirektionalen AC/DC-Wandler AC/DC

- 25 a) direkt mit einem Zwischenkreiskondensator C1,
 - b) über einen Leistungsschalter S2 mit einem Doppelschichtkondensator DLC,
 - c) über einen Leistungsschalter S1 mit einem 36V-Akkumulator B36 und einem 42V-Bordnetz, und
- 30 d) über einen bidirektionalen DC/DC-Wandler DC/DC mit einem 12V-Akkumulator B12 und einem 14V-Bordnetz N14 verbunden.

15

30

Erfindungsgemäß soll gemäß eines nicht näher erläuterten Programms jeder Leistungsschalter (S1 und S2) als Transfer-Gate ausgebildet sein und mittels der Befehle eines nicht dargestellten Steuergeräts von einer Ladungspumpe angesteuert werden.

Figur 2 zeigt ein Prinzipschaltbild für einen als Transfer-Gate TG ausgeführten Schalter, beispielsweise für den Schalter S2, der zwischen dem Zwischenkreiskondensator C1 und dem 10 Doppelschichtkondensator DLC angeordnet ist. Falls weitere als Transfer-Gate ausgebildete Schalter erforderlich sind, so sind diese identisch ausgebildet.

Das Transfer-Gate TG besteht aus zwei in Reihe geschalteten MOSFET-Transistoren Q1 und Q2, deren Sourceanschlüsse s und Gateanschlüsse g jeweils miteinander verbunden sind. Die Drainanschlüsse d dienen als Eingang E oder Ausgang A des Schalters.

Da im Bordnetz die Spannungsdifferenzen und Stromrichtungen am Schalter beliebiges Vorzeichen bzw. beliebige Richtung haben können, ist die Verwendung von zwei in Reihe geschalteten Transistoren bzw. Transistorgruppen erforderlich, von denen im Sperrzustand des Leistungsschalters jeweils wenigstens einer sperrt. Eine derartige Anordnung ist als Transfer-Gate bekannt, welche die eigentliche Schaltfunktion ausübt.

Die Ansteuerung eines solchen als Transfer-Gate ausgebildeten Schalters erfolgt durch Anlegen einer Steuerspannung zwischen Source- und Gateanschluß. Zum Abbau dieser Steuerspannung ist ein in Figur 2 nicht näher bezeichneter Widerstand zwischen Gate- und Sourceanschluß vorgesehen.

10

15

20

Erfindungsgemäß ist vorgesehen, wie in Figur 2 angedeutet, im Transfer-Gate TG als Halbleiter Q1 und Q2 handelsübliche Transistoren mit integrierten Temperatursensoren (D1A, D1B, D2A und D2B) einzusetzen, die beispielsweise aus "Philips Semiconductors Product Specification, Power MOS transistor Voltage clamped logic level FET with temperature sensing diodes, BUK9120-48TC, February 1998" bekannt sind. Herstellerseitig sind zur Erfassung der Chiptemperaturen pro PowerMOSFET zwei antiparallele Dioden integriert, bei dem erfindungsgemäßen Ausführungsbeispiel wird jedoch nur jeweils eine Diode pro PowerMOSFET Q1, Q2 verwendet.

In Figur 3 ist die Schaltung des mittels einer Ladungspumpe ansteuerbaren, als Transfer-Gate ausgebildeten Schalters S2, der zwischen Zwischenkreiskondensator C1 und Doppelschicht-kondensator DLC angeordnet ist, noch einmal, jedoch ohne die integrierten Temperatursensoren, dargestellt. Zusätzlich kann, mittels eines Signals Dis über einen weiteren, im Transfer-Gate angeordneten Transistor Q3 (und einen externen Transistor Q4) die Steuerspannung kurzgeschlossen werden, um das Transfer-Gate rasch zu öffnen (nichtleitend zu steuern).

Die an sich bekannte Ladungspumpe LP (Kondensatoren C2 bis C5 und Dioden D3 bis D5) baut eine Steuerspannung Vst zwischen Source- und Gateanschluß s, g des Transfer-Gates (Schalter 2) auf. Sie wird von einem Gatteroszillator (logische Schaltelemente U1 bis U4) mit Enablefunktion versorgt. So kann der Oszillator und mit ihm die Ladungspumpe LP durch ein logisches Steuersignal En (enable) ein- und ausgeschaltet werden. Die Erzeugung des Steuersignals En wird weiter unten erklärt.

Durch Einschalten der Ladungspumpe LP mittels des Signals En (En = High) wird zwischen Source- und Gateanschluß s, g eine

15

20

25

30

positive Steuerspannung Vst aufgebaut, wodurch Schalter S2 (Transfer-Gate) entsprechend leitend wird. Nach dem Abschalten des Signals En (En = Low) wird diese Spannung über den Entladewiderstand R1 abgebaut, wodurch Schalter S2 wieder nichtleitend wird. Das Ein- und Ausschalten erfolgt zeitlich kontrolliert, d.h., durch gezieltes Ein- und Ausschalten der Ladungspumpe kann das Transfer-Gate in einem analogen Leitungszustand gehalten werden.

10 Figur 4 zeigt die erfindungsgemäße Schaltung zur Erfassung der Chiptemperaturen der Transistoren Q1 und Q2 des Transfer-Gates TG mit Sollvergleich und logischer Signal-Verknüpfung.

Diese Temperatur-Erfassungseinheit besteht für jeden Transistor Q1, Q2 aus einer an den Polen einer Spannungsquelle (die eine bereits vorhandene 5V-Versorgung sein kann) liegenden Reihenschaltung aus einem Widerstand R7, R8 und der temperatursensitiven Diode DT1, DT2 (welche der Diode D1B, D2B in Figur 2 entspricht), wodurch ein Arbeitsstrom von beispielsweise 1mA durch die Dioden DT1, DT2 fließt.

Der Verbindungspunkt zwischen Widerstand R7 und Diode DT1, bzw. Widerstand R8 und Diode DT2 ist jeweils mit dem nichtinvertierenden Eingang eines Komparators K1 bzw. K2 verbunden, an dessen invertierenden Eingang eine einer Solltemperatur Tsoll zugeordnete Sollspannung VTsoll liegt. Die Ausgänge der beiden Komparatoren K1, K2 sind mit den Eingängen eines ersten Logik-Gliedes NAND verbunden, dessen Ausgang mit einem Eingang eines zweiten Logik-Gliedes NOR verbunden ist, dessen anderem Eingang ein ON/OFF-Signal zugeführt wird, auf welches weiter unten eingegangen wird. Am Ausgang des zweiten Logik-Gliedes NOR erscheint das Steuersignal En, welches dem Gatteroszillator der Ladungspumpe LP zugeführt wird.

10

15

20

25

Die Dioden DT1, DT2 zur Erfassung der Chiptemperaturen haben einen negativen Temperaturkoeffizienten, d.h., bei steigender Chiptemperatur sinkt die Flussspannung mit ca. 1.6mV/°C monoton ab. Der Wert der Flussspannung bei 25°C beträgt beispielsweise 660mV.

Bedingt durch den Aufbau des Transfer-Gates wird jeweils ein Transistor verpolt betrieben (Drain-Source-Spannung), wohingegen der andere den wesentlichen Teil der Schalterspannung trägt. Entsprechend unterschiedlich entwickeln sich auch die Chiptemperaturen während eines Einschaltvorgangs. Es ist also erforderlich, die Temperaturen der Transistoren Q1, Q2 getrennt zu erfassen und die Regelung an der jeweils höheren Temperatur auszurichten.

Den nachstehenden Tabellen ist folgendes zu entnehmen (wobei High = H und Low = L; ein unterstrichenes Bezugszeichen bedeutet, dass das Signal an dessen Ausgang gemeint ist):

А					В				С			
		<u>K1</u>	<u>K2</u>		<u>K1</u>	<u>K2</u>	NAND		NAND	ON/OFF ON = L OFF=H Dis	NOR En	
	VT1ist>VTsoll	Н	-	→	L	L	Н	→	L	L	Н	
	VT1ist <vtsoll< td=""><td>L</td><td>-</td><td></td><td>L</td><td>Н</td><td>Н</td><td></td><td>Н</td><td>L</td><td>L</td></vtsoll<>	L	-		L	Н	Н		Н	L	L	
	VT2ist>VTsoll	-	Н		Н	L	Н		L	Н	L	
	VT2ist <vtsoll< td=""><td>-</td><td>L</td><td>]</td><td>Н</td><td>Н</td><td>L</td><td></td><td>Н</td><td>Н</td><td>L</td></vtsoll<>	-	L]	Н	Н	L		Н	Н	L	

Tabelle A: Solange die von der jeweiligen Chiptemperatur
Tlist, T2ist erzeugte Diodenspannung VTlist, VT2ist größer
als ein vorgegebener, einer erhöhten, aber zulässigen
Chiptemperatur Tsoll zugeordneter Spannungs-Sollwert

VTsoll ist, liegt der Ausgang des zugeordneten Komparators K1,K2 auf High-Signal.

Tabelle B: Sobald die der jeweiligen Chiptemperatur Tlist,

T2ist zugeordnete Diodenspannung VTlist, VT2ist den vorgegebenen Spannungs-Sollwert VTsoll unterschreitet, geht der
Ausgang des zugeordneten Komparators K1, K2 auf Low-Signal
und springt das Ausgangssignal des ersten Logik-Gliedes
NAND auf High-Signal.

10

5

Tabelle C: Geht das Ausgangssignal des ersten Logik-Gliedes
NAND auf High-Signal, so springt das Ausgangssignal des
ihm folgenden zweiten Logik-Gliedes NOR (Steuersignal En)
auf Low-Signal, wodurch die Ladungspumpe LP stoppt und das
Transfer-Gate nichtleitender wird.

15

20

Aus Figur 4 und Tabelle C ist ein Signal ON/OFF entnehmbar. Dieses bereits erwähnte Signal ist ein Befehl des nicht dargestellten Steuergeräts. Es ist immer dann ON = Low, wenn der zugehörige Schalter S1, S2 leitend sein soll, und ist OFF = High, wenn dieser Schalter nichtleitend sein soll.

25

30

Dieses Signal ON/OFF ist identisch mit dem Signal Dis in Figur 3, welches den Schalter S1, S2 durch Kurzschließen der Gate-Source-Strecke rasch nichtleitend steuert und in diesem Betriebszustand hält, solange es OFF = High ist.

Aus Tabelle C ist also ersichtlich, dass die Ladungspumpe LP den Schalter nur dann leitend steuern kann, wenn einerseits das Steuergerät dazu die Erlaubnis gibt (ON = Dis = Low) und wenn andererseits das Ausgangssignal des Erste Logik-Gliedes NAND durch seinen Low-Zustand signalisiert, dass keine Chiptemperatur den Sollwert überschritten hat. Dann geht das Aus-

10

15

gangssignal En des zweiten Logik-Gliedes NOR auf High-Level und der nachfolgende Gatter-Oszillator (U1 bis U4, Figur 3) erzeugt eine steigende Gatespannung für das Transfer-Gate Q1, Q2, welches zusehends stärker leitet. Dadurch steigt der Strom durch Q1, Q2 und damit auch die Verlustleistung und die Chiptemperatur, woraufhin die Flussspannung der temperatursensitiven Dioden DT1 und DT2 sinkt. Dies geht solange, bis VT1ist oder VT2ist den Wert VTsoll unterschreitet. Steuersignal En geht auf Low und der Oszillator stoppt. Die Ladungspumpe LP liefert keine Gate-

spannung = Steuerspannung Vst mehr, und durch den Widerstand R1 entlädt sich Kondensator C1, wodurch die Gatespannung langsam abfällt. Das Transfer-Gate wird nichtleitender, die Verlustleistungen der Transistoren Q1 und Q2 sinken und damit auch die Chiptemperaturen, woraufhin die Flussspannungen der Dioden DT1 und DT2 wieder steigen und der Vorgang von neuem beginnt.

Insgesamt ist damit ein Zweipunktregler entstanden, dessen

20 Oszillatorfrequenz und -amplitude von den Verzögerungszeiten
der Regelelemente abhängen.

25

Patentansprüche

- 1. Verfahren zum Schalten eines Halbleiter-Leistungsschalters (S1, S2),
- 5 dadurch gekennzeichnet,
 dass der Widerstand der Schaltstrecke (E-A) des HalbleiterLeistungsschalters (S1, S2) so geregelt wird, dass die Chiptemperaturen Tlist, T2ist der Transistoren (Q1, Q2) des Leistungsschalters (S1, S2) eine vorgegebene Solltemperatur Tsoll
 nicht übersteigen.
- Vorrichtung zur Durchführung des Verfahrens nach Anspruch
 1, insbesondere zum Schalten eines eines zwischen zwei Energiespeichern (C1, DLC, B36) angeordneten Halbleiter-Leistungsschalters (S1, S2) in einem mit einem Integrierten Starter-Generator (ISG) ausgerüsteten Kraftfahrzeug-Bordnetz,
 d a d u r c h g e k e n n z e i c h n e t ,
 - dass der mittels einer Steuerspannung Vst leitend oder nichtleitend steuerbare Leistungsschalter (S1, S2) als Transfer-Gate (TG) ausgebildet ist,
 - welches zwei in Reihe geschaltete Transistoren (Q1, Q2) oder Transistorgruppen aufweist, von denen im Sperrzustand des Leistungsschalters (S1, S2) jeweils wenigstens eine/r sperrt, und
 - in welchem jedem Transistor (Q1, Q2) oder jeder Transistorgruppe wenigstens eine Diode (DT1, DT2) zur Erfassung der Chiptemperatur Tlist, T2ist zugeordnet ist,
- dass eine Ladungspumpe (LP) zur Erzeugung der Steuerspannung
 Vst vorgesehen ist, mittels welcher die Transistoren (Q1,
 Q2) des Leistungsschalters (S1, S2) jeweils nur soweit
 leitend gesteuert werden, dass die Chiptemperatur Tlist,
 T2ist jedes Transistors (Q1, Q2) des Leistungsschalters

15

20

(S1, S2) eine vorgegebene Solltemperatur Tsoll nicht übersteigt, und

- dass eine Temperatur-Erfassungseinheit vorgesehen ist, in wel cher der Vergleich der Chiptemperaturen mit dem Sollwert durchgeführt wird, und welche ein diesem Vergleich zugeordnetes Steuersignal En für die Ladungspumpe (LP) liefert.
- 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass dem Transfer-Gate (S1, S2, TG) ein Transistor (Q3) zugeordnet ist.
 - dessen Kollektor-Emitterstrecke zwischen den miteinander verbundenen Gateanschlüssen (g) und den miteinander verbundenen Sourceanschlüssen (s) der zwei in Reihe geschalteten Transistoren (Q1, Q2) oder Transistorgruppen angeordnet ist, und
 - welcher mittels eines externen Signals Dis in den Leitzustand versetzbar ist, um das Transfer-Gate (TG) rasch nichtleitend zu steuern.
 - 4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet,
- dass die Temperatur-Erfassungseinheit wenigstens eine für jeden Transistor (Q1, Q2) oder jede Transistorgruppe an den Polen (+5V, GND) einer Spannungsquelle liegende Reihenschaltung aus der ihm zugeordneten Diode (DT1, DT2) und einem Widerstand (R7, R8) aufweist,
- 30 dass der Verbindungspunkt zwischen Widerstand (R7, R8) und Diode (DT1, DT2), an welchem eine der Chiptemperatur Tlist, T2ist zugeordnete Spannung VT1ist, VT2ist abgreif-

15

bar ist, jeweils mit einem Eingang eines Komparators (K1,
K2) verbunden ist,

- dass an einem anderen Eingang des Komparators (K1, K2) eine der vorgegebenen Solltemperatur Tsoll zugeordnete Sollspannung VTsoll angelegt ist,
- dass der Komparator (K1, K2) den Vergleich der der Chiptemperatur Tlist, T2ist zugeordneten Spannung VTlist, VT2ist mit der der vorgegebenen Solltemperatur Tsoll zugeordneten Sollspannung Vtsoll durchführt,
- 10 dass die Ausgänge aller Komparatoren (K1, K2) mit den Eingängen eines ersten Logik-Gliedes (NAND) verbunden sind,
 - dass der Ausgang des ersten Logik -Gliedes (NAND) mit einem Eingang eines zweiten Logik-Gliedes (NOR) verbunden ist, dessen anderem Eingang ein ON/OFF-Signal Dis zugeführt wird, und
 - dass das Ausgangssignal des zweiten Logik-Gliedes (NOR) dem Gatteroszillator (U1 bis U4) der Ladungspumpe (LP) als Steuersignal En zugeführt wird.

Zusammenfassung

Verfahren und Vorrichtung zur Betätigung eines Halbleiter-Leistungsschalters

5

10

15

Verfahren zur Betätigung eines Halbleiter-Leistungsschalters, mittels welchem der Widerstand der Schaltstrecke des Halbleiter-Leistungsschalters mit einer Steuerspannung Vst so gesteuert wird, dass die Chiptemperatur des Leistungsschalters einen vorgegebenen Sollwert nicht übersteigt. Eine Vorrichtung zur Durchführung dieses Verfahrens verwendet als Halbleiter-Leistungsschalter ein Transfer-Gate, welches von einer Ladungspumpe angesteuert wird, wobei im Transfer-Gate als Halbleiter handelsübliche Transistoren mit integrierten Temperatursensoren verwendet werden.

Figur 3

2001 E 21370

Fig 1

Fig 2

2001 E 21370

q

2001 E 21370