勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

International TOR Rectifier

PD - 91437B

IRF9540N

HEXFET® Power MOSFET

- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

-01	W. 100. 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N. 2 CO 22	
	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ -10V	-23	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ -10V	-16	Α
I _{DM}	Pulsed Drain Current ①	-76	
P _D @T _C = 25°C	Power Dissipation	140	W
	Linear Derating Factor	0.91	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy②	430	mJ
I _{AR}	Avalanche Current①	100-11	А
E _{AR}	Repetitive Avalanche Energy①	14	mJ
dv/dt	Peak Diode Recovery dv/dt 3	-5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range	TWW.IV COM	°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.1	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.T **IRF9540N**

IQR

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-100		XI-	V	$V_{GS} = 0V, I_{D} = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	301	-0.11	-	V/°C	Reference to 25°C, I _D = -1m _A
R _{DS(on)}	Static Drain-to-Source On-Resistance		_	0.117	Ω	V _{GS} = -10V, I _D = -11A ④
V _{GS(th)}	Gate Threshold Voltage	-2.0	DAT.	-4.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 _{fs}	Forward Transconductance	5.3	-	17.	S	$V_{DS} = -50V, I_{D} = -11A$
i ov C	Drain-to-Source Leakage Current	A-1-C	(A)	-25		$V_{DS} = -100V, V_{GS} = 0V$ $V_{DS} = -80V, V_{GS} = 0V, T_{J} = 15$
DSS	Diali-10-Source Leakage Current	90-		-250	μA	
1007	Gate-to-Source Forward Leakage	002		100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage		(.C\	-100	nA	V _{GS} = -20V
Qg	Total Gate Charge	Inn	-	97		I_D = -11A V_{DS} = -80V V_{GS} = -10V, See Fig. 6 and 13
Q _{gs}	Gate-to-Source Charge	10	Y	15	nC	
Q _{gd}	Gate-to-Drain ("Miller") Charge	V-	3	51	-01	
t _{d(on)}	Turn-On Delay Time	111	15	<u>an</u> 1	V.r.	V_{DD} = -50V I_D = -11A R_G = 5.1 Ω R_D = 4.2 Ω , See Fig. 10 \circledast
t _r	Rise Time	<u> </u>	67		T.2.	
t _{d(off)}	Turn-Off Delay Time	- 1	51	o C	ns	
tf	Fall Time	X	51	Jr	Mo	
L _D	Internal Drain Inductance		4.5	07.C	~QM	Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance	W. A.	7.5	001	nH CO	from package and center of die contact
C _{iss}	Input Capacitance		1300	700	-1 ($V_{GS} = 0V$
Coss	Output Capacitance	4	400	1 10	pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		240	10-	~ 1 C	f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			-23	V.100	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①	W-		-76	A	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage	-3N		-1.6	V	$T_J = 25$ °C, $I_S = -11A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time	1.	150	220	ns	$T_J = 25$ °C, $I_F = -11A$
Q _{rr}	Reverse RecoveryCharge	1	830	1200	nC	di/dt = -100A/µs ④
t _{on}	Forward Turn-On Time	Intr	insic tu	irn-on ti	me is ne	egligible (turn-on is dominated by L _S +L _D)

- Repetitive rating; pulse width limited by max. junction temperature / Saz "
- ② Starting $T_J = 25$ °C, L = 7.1mH $R_G = 25\Omega$, $I_{AS} = -11A$. (See Figure 12)
- $\ensuremath{ \begin{tabular}{l} \ensuremath{ \begin{tabular$ $T_J\!\leq 175^{\circ}C$
- 4 Pulse width \leq 300µs; duty cycle \leq 2%.

性特力电子(深圳) 86-755-Http://www.100y.co

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF9540N

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

I**⇔**R

IRF9540N

 $\begin{array}{c|c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

RF9540N ISPR

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

IRF9540N

WWW.100Y.COM.TW WWW.

Peak Diode Recovery dv/dt Test Circuit

^{*} Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

IRF9540N IQR

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-220AB

International
Rectifier