Übung 1

Max Wisniewski, Alexander Steen

Aufgabe 1.

Zeigen Sie, dass durch

 $u \sim v : \Leftrightarrow u$ und v hängen zusammen

eine Äquivalenzrelation auf den Knoten eines Graphen definiert wird.

Beweis:

Sei G(V, E) ein ungerichteter Graph.

Zwei Knoten u, v hängen zusammen, wenn ein Weg $(a_i)_{1 \le i \le n}$ existiert, mit $u = a_1$, $v = a_n$ und $\forall 1 \le i < n : a_i a_{i+1} \in E$.

Reflexivität: Sei $u \in V$, dann ist (u) ein Weg in G, da es keine Kanten gibt die nicht in E liegen und Start- und Endknoten u sind. $\Rightarrow u \sim v$.

Symmetrisch: Sei $u, v \in V$ mit $u \sim v$.

Dann existiert ein Weg $(a_i)_{1 \le i \le n}$ nach Definition. Sei $(b_i)_{1 \le i \le n}$ ein Weg mit $b_j = (a_{n-j+1})$ für alle $1 \le j \le n$. Da alle Knoten aus V kommen, liegt dieser Weg auch in G. Es gilt $b_1 = a_{n-1+1} = a_n = v$ und $b_n = a_{n-n+1} = a_1 = u$.

Nun gilt für alle $1 \le i < n$, dass

$$b_i b_{i+1} = a_{n-i+1} a_{n-i} \in E$$

da G ungerichtet ist und nach Vorraussetzung $a_{n-i}a_{n-i+1}$ in E liegt. Damit ist

$$v \sim u$$

Transitivität: Seien $u, v, w \in V$ mit $u \sim v$ und $v \sim w$ Sei $(a_i)_{1 \leq i \leq n}$ ein Weg von u nach v und $(b_i)_{1 \leq i \leq n}$ ein Weg von v nach w.

Dann ist $(c_i)_{1 \leq i \leq 2n}$ ein Weg mit

$$c_i = \begin{cases} a_i &, i \le n \\ b_{i-n} &, i > n \end{cases}$$

Es gilt $c_0 = a_0 = u$ und $c_{2n} = b_n = w$. Desweiteren gilt für alle $1 \le i \le n$, dass $c_i c_{i+1} = a_i a_{i+1} \in E$ gilt und für alle $n+1 \le i \le 2n$, dass $c_{i-n} c_{i-n+1} = b_i b_{i+1} \in E$.

 $\Rightarrow u \sim w$.

Damit ist \sim eine Äquivalenzrelation.

Aufgabe 2.

Zeigen Sie, dass in jedem Graphen die Anzahl der Knoten mit ungeradem Grad gerade ist.

Beweis:

Sei G(V, E) ein ungerichter Graph.

Wir betrachten nun $g = \sum_{v \ inV} \operatorname{grad}(v) = 2|E|$. Dies gilt, da wir für jede Kante $(u,v) \in E$ sie einmal für den Grad von u und einmal für den Grad von v zählen.

Nun wissen wir, dass die summe von

- 1. gerade und gerade ist gerade.
- 2. gerade und ungrade ist ungerade.
- 3. ungerade und ungerade ist gerade.

Da die Summe aller Grade gerade ist, müssen es eine gerade Anzahl von Knoten mit geradem Grad sein.

Aufgabe 3.

Zeigen Sie: Eine Kante ist eine Brücke genau dann, wenn sie in keinem Kreis enthalten ist.

Beweis:

```
Sei G(V, E) ein Graph und (u, v) \in E. "\Rightarrow".
```

Sei (u, v) eine Brücke und $G' = (V, E \setminus \{(u, v)\})$ der Graph nach dem Entfernen von Kante (u, v) aus G. Da (u, v) Brücke war, zerfällt die Komponente in der (u, v) lag, in zwei Komponenten K_1 und K_2 . Insbesondere gibt in G' keinen Weg von K_1 nach K_2 und umgekehrt. Damit kann (u, v) in G in keinem Kreis enthalten sein, da sonst ein solcher Weg von u nach v existieren würde und so K_1 mit K_2 verbinden würde, deshalb könnte (u, v) keine Brücke sein. " \Leftarrow ":

Sei (u, v) eine Kante die auf einem Kreis liegt. Entfernen wir (u, v) aus dem G so existiert noch der Rest des Kreises in G, der nun einen Weg von u nach v bildet. Somit kann (u, v) keine Brücke sein.

Aufgabe 4.

Zeigen Sie, dass ein Graph genau dann bipartit ist, wenn er keinen ungeraden Kreis enthält.

Beweis:

Ein Graph G(V, E) ist nun bipartit, wenn man eine Partition der Knoten findet also $V = V_0 \cup V_1$ und $V_0 \cap V_1 = \emptyset$, so dass $\forall v_1 \in V_i v_2 \in V_i : (v_1, v_2) / E$ für i = 0, 1 gilt.

Sei G(V, E) nun ein beliebiger ungerichteter Graph.

 \Rightarrow :

Sei $k = a_1 a_2 ... a_n$ ein Kreis in G. Da k ein Kreis ist, gilt $a_1 = a_n$. Sei o.B.d.A. $a_1 \in V_0$, dann wissen wir, da G bipartit ist, dass $\forall 1 \leq i < n : a_i \in V_x \Rightarrow a_{i+1} \in V_{1-x}$ gilt. Nach iterativer Anwendung ist für ungerade Indizes der Knoten in V_0 und für gerade Indizes der Knoten in V_1 . Da $a_n = a_1 \in V_0$ muss auch n ungerade sein. Daher ist der Kreis gerade.

⇐:

Sei $k = a_1..a_n$ ein ungerader Kreis. Nehmen wir an G wäre bipartit, dann existiert eine Partition von V in V_0 und V_1 wie gehabt. Sei o.B.d.A $a_1 \in V_0$. Wie gehabt sind nu alle geraden Indizes in V_1 und alle ungeraden in V_0 . Da K ungerader Kreis ist, ist n gerade. Nun wäre $a_1 \in V_0$ und $a_n \in V_1$. Da aber $a_1 = a_n$ gilt ist dies unmöglich, da $V_1 \cap V_2 = \emptyset$. (Widerspruch)