

Wojciech Mioduszewski

Klasyfikacja danych opisanych za pomocą szeregów czasowych

Master's Thesis

Supervisor: dr inż. Jerzy Błaszczyński

Poznań, 2015

Contents

1	Wst	ęp	3
2	Bac	kground	5
	2.1	Definicja szeregu czasowego	5
	2.2	Przykładowe metody analizy danych czasowych	
		2.2.1 Regresja liniowa	5
		2.2.2 Wygładzanie ("Smoothing")	5
		2.2.3 Modele ARIMA	6
		2.2.4 Analiza spektrum	7
	2.3	Inline formatting	7
	2.4	Special characters	8
	2.5	Figures	8
	2.6	Tables	9
	2.7	Source code examples	10
	2.8	Math	11
	2.9	Algorithms	11
3	Con	cept and Design of the System	13
4	Imp	lementation	15
5	Peri	formance Evaluation	17
6	Con	aclusions	19
\mathbf{A}	Use	rs Guide	21
Bil	oliogr	raphy	23

Wstęp

Cel i zakres pracy

Cel: Opracowanie i implementacja różnych podejść do klasyfikacji danych czasowych. Zadania:

- Zapoznać się z literaturą tematu.
- Opracować wybrane podejścia do klasyfikacji danych czasowych.
- Zaimplementować i udokumentować zaproponowan rozwiązania.
- Przeprowadzić eksperyment obliczeniowy

Początkowo celem niniejszej pracy była analiza szeregów czasowych zawierających dane ciśnienia w oku pacjentów zdrowych, oraz tych ze zdiagnozowaną jaskrą. Ponadto zamiarem było użycie do tego celu metody SAX, a następnie zbudowanie klasyfikatora potrafiącego sklasyfikować dane wytworzone przez tą metodę. Równie ważne było to, aby nie testować sposobów klasyfikacji tylko i wyłącznie na danych zebranych w celu oceny jaskry, lecz również sprawdzić jak wybrane i stworzone metody poradzą sobie w odniesieniu do innych szeregów czasowych.

The goal and the scope of the thesis

Background

2.1 Definicja szeregu czasowego

Szereg czasowy jest to seria pewnych obserwacji osadzonych w czasie. Można powiedzieć, że jest to przyporządkowanie danych liczbowych do odpowiadających im punktów w czasie, najczęściej z jednakowymi odstępami między kolejnymi wartościami.

http://www.cs.put.poznan.pl/jstefanowski/aed/TPtimeseries.pdf

2.2 Przykładowe metody analizy danych czasowych

Tak obszerny problem jak analiza danych czasowych musi nieść za sobą rozmaite metody przeprowadzania tej analizy. Poniżej przedstawiono kilka z nich.

2.2.1 Regresja liniowa

Regresja w odniesieniu do danych czasowych sprowadza się do estymowania liniowego trendu jaki prezentuje badany szereg[fav]. Koncepcyjnie metoda polega na stworzeniu funkcji liniowej, która w najbardziej dokładny sposób przybliża wartości na kolejnych obserwacjach. Matematyczny model regresji ma zatem następującą postać:

$$y = ax + b$$

Jako miarę błędu przyjmuje się sumę kwadratów różnicy między oszacowaniami, a wartościami właściwymi.

$$S = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

http://www.cs.put.poznan.pl/jstefanowski/aed/TPDregresjawieloraka.pdf

2.2.2 Wygładzanie ("Smoothing")

Wygładzanie to metoda starająca się zniwelować ponadprzeciętne różnice wartości między kolejnymi pomiarami. Dzięki temu podejściu można dokładniej przyjrzeć się ogólnemu zarysowi funkcji, czy jej okresowymi trendami, rezygnując z precyzji. Podejście to pozwala

6 2 Background

wyeliminować ewentualne szumy z badanego zbioru. Metoda ta jako argument przyjmuje szerokość okna k, w ramach którego będą uśredniane wartości. W pierwszym kroku liczy się średnią z k pierwszych wartości szeregu, następnie przesuwa okno o jeden element i znów liczy średnią z k wartości. Wyjściowy zbiór dla n-elementowego zbioru będzie miał n-k wartości.

Poniżej dla porównania zaprezentowano wykres miary TFADJ w przeciągu doby 2.1, oraz jego wygładzony odpowiednik2.2. Jak widać operacja wygładzania zredukowała skrajne wychylenia szeregu i wyklarowała paraboliczną tendencję tego zbioru.

Figure 2.1: Czysty sygnał TFADJ

2.2.3 Modele ARIMA

Model ARIMA (ang. Autoregressive Integrated Moving Average) koncepcyjnie składają się z trzech części - jest to autoregresja, zintegrowanie oraz średnia ruchoma.

Autoregresja jest to idea, która skupia się na wyrażeniu bieżącej wartości na podstawien poprzednich. Funkcja dla n=2 wygląda w ten sposób:

$$x_t = \omega_{t-2} x_{t-2} - \omega_{t-1} x_{t-1} + \omega_t$$

Średnia ruchoma ideowo jest bardzo zbliżona do autoregresji, jednak skupia się na zaburzeniach (ang. lags) w szeregu, a nie bezpośrednio na wartościach. Wzór przedstawia się analogicznie jak w autoregresji.

Integracja z kolei pozwala na zastosowanie modelu ARIMA do procesów niestacjonarnych, które da się sprowadzić do procesów stacjonarnych za pomocą różnic (ang. difference equations) pomiędzy wartością obecną, a poprzednią.

2.3 Inline formatting 7

Figure 2.2: Wygładzony sygnał TFADJ

Podsumowując, modele ARIMA doskonale spisują się w prognozowaniu wartości, bazując na danych historycznych szeregu, jednak nie są najlepszym wyborem jako metoda klasyfikacji. Ponadto metoda nie jest najłatwiejsza matematycznie. Biorąc pod uwagę te argumenty, metoda ta została odrzucona.

2.2.4 Analiza spektrum

Paragraph

Subparagraph

2.3 Inline formatting

We suggest using *Insets*, like:

strong for strong emphasizing some text.

emph for emphasizing some text.

Code for formatting of names of modules, procedures, class names, variables, etc.

for formatting of file names and directories, like /usr/share/doc/packages/texlive-latex. The names are properly broken at the ends of lines. However, path names containing special LATEX characters must be typeset using ERT and the \dcspath command, e.g. sample_file.

kbd for formatting of shortcuts, e.g.: **Ctrl-c**.

8 2 Background

cmd for formatting system commands.

name for formatting other special names.

2.4 Special characters

- 1. Non-breaking space can be inserted using Ctrl-space. It produces "~" in LATEX code.
- 2. A normal, inter-word space can be inserted using Ctrl-Alt-space. It produces "\" in LaTeX code. This type of space is useful for formatting spacing after dots, e.g. here. By default LaTeX produces here a longer space used for separating whole sentences.
- 3. A thin space can be produced by Ctrl-Shift-space, e.g. here. It produces "\," in LATEX code.
- 4. Sentence-ending space can be inserted using Ctrl., which produces "\@." in LATEX code. This type of space is useful in sentences ending with a capital letter. In such cases LATEX recognizes the last word as a acronym and places a regular inter-word space instead of inter-sentence space. Consider the following example:

This can be achieved by using HTTP. This protocol...

5. Hyphenation indicator can be inserted using Ctrl--, which is used for marking possible places of hyphenation, e.g. democracy.

2.5 Figures

The figures should be put in floats, like Fig. 2.3. You can also reference figures using prettyref package like this: Fig. 2.3.

Figure 2.3: Example figure

It is possible to combine several pictures inside one float. Just insert a float inside a float. See Fig. 2.4 for example. Please note the horizontal spacing between subfigures.

2.6 Tables 9

Figure 2.4: Example figure

2.6 Tables

Tables should have captions above like Table 2.1. Use small sans-serif fonts inside tables.

Table 2.1: Example table

Column 1	Column 2	Column 3
One	1	4
Two	2	5
Three	3	6

10 2 Background

2.7 Source code examples

There are a few different methods of including sample codes:

1. Using standard LyX-Code style:

```
#include <stdio.h>
int main() {
  printf("Hello world!\n");
  return 0;
}
```

Note 1: Empty lines must contain at least one single space to remain visible.

Note 2: There is no way to activate automatic syntax highlighting inside LyX-Code. However, you can use normal inline formatting inside.

Note 3: Lyx-Code can contain special characters, so it can be used to produce some ASCII art, e.g.:

2. By inserting *Program Listing*:

```
#include <stdio.h>
int main() {
  printf("Hello world!\n");
  return 0;
}
```

Note: By default the lstlisting environment does not add any left margin. You can change it by adding xleftmargin in the $Settings \triangleright Advanced$ dialog box, e.g.:

```
procedure sayHello()
```

3. By inserting LATEX Code (ERT block) and using codeblock environment:

```
#include <stdio.h>
int main() {
  printf("Hello world!\n");
  return 0;
}
```

- 4. The listings package can produce floats by itself. See Listing. 2.1 for example.
- 5. And finally, You can include code from external file:

```
\documentclass[11pt,a4paper,polish,thesis]{dcsbook}
\usepackage[utf8]{inputenc}
\usepackage{babel}
\setcounter{secnumdepth}{4}
```

2.8 Math 11

Listing 2.1: The Hello World program in C

```
#include <stdio.h>

int main() {
  printf("Hello world!\n");
  return 0;
}
```

\setcounter{tocdepth}{3}

\begin{document}

2.8 Math

Can be put in line like this: $S = \sum_{i=1}^{i=K} x_i^2$ or in dedicated lines:

$$S = \sum_{i=1}^{i=K} x_i^2$$

The equations can be also numbered like equation 2.1.

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 (2.1)

2.9 Algorithms

Use dcsalg package or directly algorithmicx package.

Chapter 3	

Concept and Design of the System

Chapter 4

Implementation

Chapter 5	

Performance Evaluation

Ch	apter 6		

Conclusions

Appendix A	
P P	

Users Guide

Bibliography