FMI, Info, Anul I

Logică matematică și computațională

Seminar 10

(S10.1) Fie \mathcal{L} un limbaj de ordinul I, \mathcal{A} o \mathcal{L} -structură şi $e:V\to A$ o interpretare a lui \mathcal{L} în \mathcal{A} . Să se demonstreze că pentru orice formule φ, ψ și orice variabilă x:

- (i) $(\varphi \vee \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \vee \psi^{\mathcal{A}}(e);$
- (ii) $(\varphi \wedge \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e);$
- (iii) $(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e);$
- (iv) $(\exists x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1, & \text{dacă există } a \in A \text{ a.î. } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1; \\ 0, & \text{altfel.} \end{cases}$

(S10.2) Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$.

- (i) Fie $x, y \in V$ cu $x \neq y$, şi $t = \dot{S}x \dot{\times} \dot{S}\dot{S}y = \dot{\times}(\dot{S}x, \dot{S}\dot{S}y)$. Să se calculeze $t^{\mathcal{N}}(e)$, unde $e: V \to \mathbb{N}$ este o evaluare ce verifică e(x) = 3 şi e(y) = 7.
- (ii) Fie $\varphi = x \dot{<} \dot{S}y \rightarrow (x \dot{<} y \vee x = y) = \dot{<} (x, \dot{S}y) \rightarrow (\dot{<} (x, y) \vee x = y)$. Să se arate că $\mathcal{N} \models \varphi[e]$ pentru orice $e: V \rightarrow \mathbb{N}$.

(S10.3) Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{\mathbf{c}}; \dot{+}, \dot{\mathbf{x}}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$. Fie formula $\varphi = \forall v_4(v_3 \dot{<} v_4 \lor v_3 = v_4)$. Să se caracterizeze
acele $e: V \to \mathbb{N}$ ce au proprietatea că $\varphi^{\mathcal{N}}(e) = 1$.