- Cauchy family, summable family.
- Bessel inequality.
- The Hilbert space $\ell^2(K)$.
- Parseval identity.
- Zorn's lemma.
- Riesz–Fischer theorem.
- Legendre polynomials.

A.4 Problems

Problem A.1. Prove that the subspace consisting of sequences $(z_k)_{k\in K}$ such that $z_k=0$ except perhaps for finitely many k is a dense suspace of $\ell^2(K)$.

Problem A.2. If V is any nonempty subset of E, prove that V^{\perp} is closed (even if V is not) and that $V^{\perp \perp}$ is the closure of V (see the remarks following Proposition A.5).