# Elliptic Curve Cryptography

Le chiffrement asymétrique version moderne

### Sommaire

- 1. Préambule mathématique
- 2. Les courbes elliptiques
- 3. DHKE
- 4. ECDHKE
- 5. Pohlig-Hellman

## Préambule mathématique

- Fonction à trappe:
  - Multiplication entière != Factorisation

-> RSA

Multiplication dans Z/nZ!= Problème du logarithme discret -> Diffie-Hellman

Bases du chiffrement asymétrique

## Préambule mathématique

- La théorie des groupes G=(E, ●):
  - loi de composition interne à E
  - Associativité de :  $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
  - Existence d'un élément neutre e tel que (x e)=x pour tout x dans E
  - Existence d'un unique inverse:  $(a \cdot b) = (b \cdot a) = e$
  - Commutativité non obligatoire mais présente ici (a b)=(b a)

## Préambule mathématique

- La théorie des groupes G=(E, ●) (pt2):
  - Peuvent être fini ou non
  - Existence de sous-groupes
  - Soit f dans E, il existe un sous groupe minimal F de G qui contient f => f engendre F
  - |F| divise |G| si G fini
  - G est cyclique ⇔ il existe g dans G tel que g engendre G

Un exemple très classique: Z/nZ aka F<sub>n</sub>

## Les courbes elliptiques

En tant qu'objet mathématique

Un sujet d'actualité tant en cryptographie qu'en mathématiques et dans la théorie des nombres (th. de Fermat)

### Les courbes

•  $Y^2 = X^3 + aX + b$ 

•  $4a^3 + 27b^2 \neq 0$ 





#### L'addition



- (a) If P = O, then P + Q = Q.
- (b) Otherwise, if Q = O, then P + Q = P.
- (c) Otherwise, write  $P = (x_1, y_1)$  and  $Q = (x_2, y_2)$ .
- (d) If  $x_1 = x_2$  and  $y_1 = -y_2$ , then P + Q = O.
- (e) Otherwise:

(e1) if P 
$$\neq$$
 Q:  $\lambda = (y_2 - y_1) / (x_2 - x_1)$ 

(e2) if P = Q: 
$$\lambda = (3x_1^2 + a) / 2y_1$$

(f) 
$$x_3 = \lambda^2 - x_1 - x_2$$
,  $y_3 = \lambda(x_1 - x_3) - y_1$ 

(g) P + Q = 
$$(x_3, y_3)$$

#### Un set de points

E = {(x,y) : x,y 
$$\in$$
 R tq y<sup>2</sup> = x<sup>3</sup> + a x + b} => les réels c'est pas pratique  
E = {(x,y) : x,y  $\in$  N tq y<sup>2</sup> = x<sup>3</sup> + a x + b} => les entiers trop grands c'est pas pratique  
E(F<sub>n</sub>) = {(x,y) : x,y  $\in$  F<sub>n</sub> tq y<sup>2</sup> = x<sup>3</sup> + a x + b} => II manque le neutre  
E(F<sub>n</sub>) = {(x,y) : x,y  $\in$  F<sub>n</sub> tq y<sup>2</sup> = x<sup>3</sup> + a x + b}  $\cup$  O

Donc si  $P \in E(F_n)$ , on peut calculer n\*P avec n\*P  $\in E(F_n)$  de manière efficace (double and add)

## Le protocole Diffie-Hellman

(version facile pour commencer)

Révélé dans "New Directions in Cryptography", W.Diffie, M.E.Hellman, 1976 => Prix Turing en 2015

## L'échange de clé de Diffie-Hellman (DHKE)

Principe: établir une connection sécurisé sur un canal compromis

Fonction à trappe: Problème du logarithme discret

## **Principe**



#### Concrètement

- 1) Alice et Bob se mettent d'accord et choisissent (g,n)=(3,17)
- 2) Alice choisit 9 comme secret et Bob 6
- 3) Alice calcule sa clé publique 3° mod 17 = 14. De même, Bob obtient 15
- 4) Alice envoie 14 à Bob, Bob envoie 15 à Alice
- 5) Alice calcule 15^9 mod 17 = 15. Bob calcule 14^6 mod 17 = 15
- 6) Alice et Bob possèdent un secret commun.

## Elliptic Curve Diffie-Hellman Exchange

**TLSv1.3** 

C'est l'heure de fusionner les deux parties précedentes

#### DHKE but different

On adapte l'algorithme qu'on vient de voir:

Problème du log discret : Trouver n / k =  $G^n$  mod p => Trouver n / k = nG dans  $E(F_p)$ 

Le groupe: [[1,p]] => sous-groupe engendré par G

Complexité de l'inverse en O(√n)

### Dans la pratique

- 1) Alice et Bob se mettent d'accord pour choisir une courbe E sur un champ  $F_p$  et un générateur G
- 2) Alice choisit sa clé privée n<sub>a</sub>, et Bob la sienne (n<sub>в</sub>)
- 3) Alice calcule sa clé publique n<sub>A</sub>G, et l'envoie à Bob, qui fait de même et envoie n<sub>B</sub>G à Alice
- 4) Alice calcule  $n_{\Delta}^*(n_{B}G)$ , et Bob  $n_{B}^*(n_{\Delta}G)$  qui sont égaux
- 5) Alice et Bob possèdent maintenant un secret commun

#### **Standardisation**

Les courbes ayant de "bonnes propriétés" sont nommées pour être identifié:

#### Ex: prime192v1

## Pohlig-Hellman

**Attaquer DHKE** 



### **Baby Step Giant Step**

La force brute



Jn bon compromis temps/mémoire ( O(√n) dans les 2)

$$Q = xP$$

$$Q = (am + b)P$$

$$Q = amP + bP$$

$$Q - amP = bP$$



#### **CRT Chinese Remainder Theorem**

• Soit  $x = a \mod n1$ ,  $x = b \mod n2$  et

 L'équation d'inconnue y: x = y mod ab possède une unique solution

Généralisation immédiate par récurrence

Let r and s be positive integers which are relatively prime and let a and b be any two integers. Then there is an integer N such that  $N \equiv a \pmod{r}$  and  $N \equiv b \pmod{s}$ 

For a ring R, consider two comaximal ideals I,J (i.e. I+J=R), then  $\forall a,b\in R,\exists x\in R$  s.t.  $x\equiv a \pmod{I}$  and  $x\equiv b \pmod{J}$ 

For a ring A, let  $I_1, \ldots, I_n$  be ideals of the ring A. Consider the map  $\pi: A \to A/I_1 \times \cdots \times A/I_n$  defined as  $\pi(a) = (a \mod I_1, \ldots, a \mod I_n)$ . Then  $\ker \pi = I_1 \bigcap \cdots \bigcap I_n$ , i.e. it is surjective iff  $I_1, \cdots I_n$  are pairwise comaximal. If  $\pi$  is a surjection we have,  $A/\bigcap I_k \cong A/\bigcap I_k \cong \prod (A/I_k)$ 



#### **Pohlig Hellman**

Soit N l'ordre d'un sous groupe engendré par g. On cherche n tel que  $k = g^n$ 

- 1. On décompose N en produit de facteurs premiers (N = ∏pi<sup>ei</sup>)
- 2. On résout une équation approchée sur chaque piei <= BSGS optimisé
- 3. On utilise le CRT pour rassembler nos morceaux d'équations

