CLAIMS:

- 1. A binder resin (A) for a toner which comprises a styrene-acrylic resin having a structure derived from a carboxyl group and a structure derived from a glycidyl group, wherein the content (A_{IS}) of a gel component is 1 mass $\% \le A_{IS} \le 50$ mass % and the content (A_{VO}) of a volatile component in the resin is A_{VO} ≤ 200 ppm.
- 2. A toner for electrophotography comprising the binder resin (A) for a toner as described in claim 1.

10

15

5

3. A method for producing the binder resin (A) for a toner as described in claim 1 comprising the following processes (I), (II) and (III) in this order:

Process (I): A process comprising melt-mixing a carboxyl group-containing vinyl resin (B) and an epoxy group-containing vinyl resin (C) at a temperature (T_R) satisfying $120^{\circ}C \leq T_R \leq 230^{\circ}C$ in a twin screw extruder for the reaction;

Process (II): A process comprising introducing water into the twin screw extruder, and mixing water with the resin composition obtained in the Process (I) under the conditions satisfying a pressure (P_{EX}) of 1 MPa $\leq P_{EX} \leq$ 2.7 MPa and a temperature (T_M) of 120°C $\leq T_M \leq$ 230°C; and

20

- Process (III): A process comprising reducing the pressure inside the twin screw extruder for removing water and the volatile component.
- 4. The method for producing the binder resin (A) for a toner according to claim 3, wherein the carboxyl group-containing vinyl resin (B) has a glass transition temperature

 (Tg_B) of 40°C $\leq Tg_B \leq$ 70°C, and the epoxy group-containing vinyl resin (C) has a weight-average molecular weight (C_{Mw}) of 10,000 $< C_{Mw} \leq$ 100,000 and has the epoxy equivalent (C_{EP}) of 1,000 g/Eq $\leq C_{EP} \leq$ 20,000 g/Eq.