INTRO TO DATA SCIENCE CLASS 5: MODEL EVALUATION

LAST TIME:

- INTRO TO MACHINE LEARNING
- OVERVIEW OF K NEAREST NEIGHBORS

QUESTIONS?

INTRO TO DATA SCIENCE

QUESTIONS?

WHAT WAS THE MOST INTERESTING THING YOU LEARNED?

WHAT WAS THE HARDEST TO GRASP?

I. QUICK REVIEW OF CLASSIFICATION PROBLEMS II. ERRORS, UNDERFITTING & OVERFITTING III. CROSS VALIDATION

IV. LAB: CROSS VALIDATION IN SCIKIT-LEARN

I. QUICK REVIEW OF CLASSIFICATION PROBLEMS

	continuous	categorical
supervised	???	???
unsupervised	???	???

supervised
unsupervisedregression
dimension reductionclassification
clustering

Here's (part of) an example dataset:

Fisher's Iris Data

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

Here's (part of) an example dataset:

Fisher's Iris Data

features

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

Here's (part of) an example dataset:

Fisher's Iris Data

features

Sepal length \$	Sepal width ♦	Petal length \$	Petal width \$	Species ¢
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa
_				

class labels (qualitative)

Q: What does "supervised" mean?

Q: What does "supervised" mean?

A: We know the labels.

Fisher's <i>Iris</i> Data				
Sepal length \$	Sepal width ◆	Petal length \$	Petal width	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

class labels (qualitative)

Q: How does a classification problem work? A: Data in, predicted labels out.

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

1) split dataset

- 1) split dataset
- 2) train model

- 1) split dataset
- 2) train model
- 3) test model

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

II. ERRORS, UNDERFITTING & OVERFITTING

1) training error

- 1) training error
- 2) generalization error

- 1) training error
- 2) generalization error
- *3) 00S error*

- 1) training error
- 2) generalization error
- *3) 00S error*

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

Thought experiment:

Suppose instead, we train our model using the entire dataset.

- Q: How low can we push the training error?
- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

 We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called *overfitting*.

FIGURE 18-1. Overfitting: as a model becomes more complex, it becomes increasingly able to represent the training data. However, such a model is overfitted and will not generalize well to data that was not used during training.

Underfitting and Overfitting

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

 We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called *overfitting*.

A: Training error is not a good estimate of OOS accuracy.

Suppose we do the train/test split.

Q: How well does generalization error predict 00S accuracy?

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

A: On its own, not very well.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

A: On its own, not very well.

NOTE

The generalization error gives a *high-variance estimate* of OOS accuracy.

BIAS-VARIANCE

Q: How can we do better?

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

A: Cross-validation.

III. CROSS VALIDATION

1) Randomly split the dataset into n equal partitions.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.
- 5) Take the average generalization error as the estimate of OOS accuracy.

5-Fold Generalization Error = $(k_1 + k_2 + k_3 + k_4 + k_5) / 5$

1) More accurate estimate of OOS prediction error.

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split
- 4) Can be used for model selection.

Last time:

- Types of machine learning problems / algorithms
- Generalization

This time:

- Train / Test Split
- Errors, Overfitting and underfitting
- Cross validation

LAB: CROSS VALIDATION WITH KIN