Normalni uvjeti tlaka i temperature (n.u.): p=101 325 Pa T=273,15 KStandardni uvjeti tlaka i temperature(s.u.): p=100 000 Pa T=298,15 KAvogadrova konstanta $N_A=L=6,022*10^{23} \text{ mol}^{-1}$

Opća plinska konstanta R=8,314 Pa m³ mol⁻¹ K⁻¹

Molarni volumen pri s.u. V°_m=22,4 mol⁻¹ dm³

FIZIKALNA VELIČINA		OSNOVNA SI JEDINICA	
NAZIV	SIMBOL	NAZIV	SIMBOL
Duljina	1	Metar	M
Masa	m	Kilogram	kg
Vrijeme	T	Sekunda	S
Električna struja	I	Amper	A
Termodinamičk a temperatura	Т	Kelvin	K
Množina tvari	n	Mol	mol

Fizikalna veličina	Oznaka	Formula	Jedinica
Množina	n(X)	$n = \frac{m(X)}{M(X)} = \frac{N(X)}{L} = \frac{V^{\circ}(X)}{V^{\circ}m(X)}$	mol
Molarna masa	M		g mol ⁻¹
Gustoća	ρ	$\rho \text{ (otopine)} = \frac{m(otopine)}{V(otopine)}$	g cm ⁻³
Molalitet ili molalnost	b(X)	$b(X) = \frac{n(X)}{m(otapala)}$	mol kg-1
Množinska koncentracija	c(X)	$c(x) = \frac{n(x)}{V(otopine)}$	mol dm ⁻³

Masena koncentracija	γ (Χ)	$\gamma(x) = \frac{m(X)}{V(otopine)}$	g dm ⁻³
Množinski udio	x(X)	$x(X) = \frac{n(X)}{n(ukupna)}$	1
Maseni udio	w(X)	$w(X) = \frac{m(X)}{m(ukupna)}$	1
Volumni udio	φ(X)	$\varphi(X) = \frac{V(X)}{V(ukupni)}$	1

m(ukupna)=m(otopine)=m(smjese)=m(otopljena tvar)+m(otapalo)

m(otapalo)>m(otopoljena tvar)

X=otopljena tvar

$$C(x) = \frac{n(x)}{V(otopine)} = \frac{m(x)}{M(x)*V(otopine)} = \frac{w(x)*m(otopine)}{M(x)*V(otopine)} = \frac{w(x)*\rho(otopine)}{M(x)}$$

$$C(x) = \frac{n(x)}{V(otopine)} = \frac{m(x)}{M(x)*V(otopine)} = \frac{\gamma(x)}{M(x)}$$

Opća plinska jednadžba: p(X)V(X)=n(X)RT

Osmotski tlak: Π =c(X)RT

Tlak para otopine: p(tlak para otapala iznad otopine)=x(otapala u otopini)*p°(tlak para čistog otapala)

Povišenje vrelišta: ΔT=T_v(otopine)-T_v(otapalo)=K_{eb}*b(X)*i

Sniženje tališta (ledišta): $\Delta T = T_t(\text{otapalo}) - T_t(\text{otopine}) = K_{kr}*b(X)*i$

i=1 za organske tvari (saharoza, glukoza, naftalen)

i≠1 za tvari koje disociraju (anorganske soli)

$$\Delta T = K_{kr} * b(X) * i = K_{kr} * \frac{n(X)}{m(otapala)} * i = K_{kr} * \frac{m(X)}{m(otapala) * M(X)} * i$$

$$\Delta T = K_{\mathrm{eb}} * b(X) * i = K_{\mathrm{eb}} * \frac{n(X)}{m(otapala)} * i = K_{\mathrm{eb}} * \frac{m(X)}{m(otapala) * M(X)} * i$$