Логическо програмиране

Лектор: Тинко Тинчев

Свойства

Булева еквивалентност на съждителни формули

Свойство 1 (Логическа еквивалентност).

- 1. $\varphi \models \varphi$;
- 2. $\varphi \models \psi \rightarrow \psi \models \varphi$ симетричност;
- 3. $\varphi \models \psi, \psi \models \chi \rightarrow \varphi \models \chi$ транзитивност;

4.
$$\varphi \models \varphi' \rightarrow \neg \varphi \models \neg \varphi';$$

4. $\varphi \models \varphi' \to \neg \varphi \models \neg \varphi';$ 5. $\varphi \models \varphi', \psi \models \psi' \to (\varphi \sigma \psi) \models (\varphi' \sigma \psi'), \sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\}.$ $\}$ устойчивост на съждителните съюзи

Забележка. Формулите образуват алгебрична система и 🗎 разбива това множество на класове, за които алгебричните операции са съгласувани.

Свойство 2 (Полезни еквивалентности).

- 1. $(\varphi \lor \varphi) \models \varphi$, $(\varphi \& \varphi) \models \varphi udeмnomeнmнocm на <math>\lor$, &;
- 2. $(\varphi \lor \psi) \models (\psi \lor \varphi), (\varphi \& \psi) \models (\psi \& \varphi) \kappa o My mamu B H o c m H a \lor, \&;$
- 3. $(\varphi \lor (\psi \lor \chi)) \models ((\varphi \lor \psi) \lor \chi), (\varphi \& (\psi \& \chi)) \models ((\varphi \& \psi) \& \chi) acouuamus nocm na \lor, \&;$
- 4. $(\varphi \lor (\psi \& \chi)) \models ((\varphi \lor \psi) \& (\varphi \lor \chi));$ 5. $(\varphi \& (\psi \lor \chi)) \models ((\varphi \& \psi) \lor (\varphi \& \chi));$ $\}$ ducmpubymuben закон за \lor , &
- 6. $\neg \neg \varphi \models \varphi$ класическа логика: двойното отрицание пада;
- 7. $\neg(\varphi \lor \psi) \models (\neg \varphi \& \neg \psi);$ 8. $\neg(\varphi \& \psi) \models (\neg \varphi \lor \neg \psi);$ $\partial e Mopean$

9. $(\varphi \Rightarrow \psi) \vDash (\neg \varphi \lor \psi);$ 10. $(\varphi \Rightarrow \psi) \vDash (\varphi \& \neg \psi)$ 11. $(\varphi \Leftrightarrow \psi) \vDash ((\varphi \& \psi) \lor (\neg \varphi \& \neg \psi));$ $\begin{cases} abpeauamypu \ 3a \Rightarrow, \Leftrightarrow \end{cases}$

- 13. Нека φ е съждителна тавтология, тогава за всяка формула ψ имаме следните логически еквивалентности:
 - $(\varphi \lor \psi) \models \varphi$;
 - $(\varphi \& \psi) \models \psi$.

Заместване на съждителни променливи със съждителни формули Свойство 3.

- 1. $\varphi \models \psi$ тогава и само тогава, когато $\varphi \Rightarrow \psi$ е булева тавтология;
- 2. ако φ е противоречие, то за всяка формула ψ , $\varphi \models \psi$;
- 3. ако ψ е съждителна тавтология, то за всяка формула φ , $\varphi \models \psi$;
- 4. ако φ не е противоречие и ψ не е тавтология, и $\varphi \models \psi$, то φ и ψ имат поне една обща съждителна променлива.

Забележка. Можем да разглеждаме едновременно модели за $\varphi_1 \& \varphi_2 \& \dots \& \varphi_n \ u \ \{\varphi_1, \varphi_2, \dots, \varphi_n\}.$

Свойство 4 (Логическо следване).

- 1. $\psi \in \Gamma \longrightarrow \Gamma \models \psi$;
- 2. Нека Γ и Δ са множества от съждителни формули. Нека всеки път, когато $\varphi \in \Delta, \Gamma \models \varphi$. Нека $\Delta \models \psi$. Тогава $\Gamma \models \psi$;
- 3. $\Gamma' \subseteq \Gamma$ u $\Gamma' \models \psi \longrightarrow \Gamma \models \varphi$ монотонност;
- 4. Семантична дедукция: От $\Gamma \cup \{\varphi\} \models \psi \longleftrightarrow \Gamma \models \varphi \Rightarrow \psi$. Означаваме: $\Gamma, \varphi \models \psi, m.e. c$ добавянето на аксиомата φ към Γ, Γ става модел за ψ .
- 5. $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi \longleftrightarrow \models (\varphi_1 \& \varphi_2 \& \dots \& \varphi_n) \Rightarrow \psi$
- 6. $\Gamma \models \varphi \longleftrightarrow \Gamma \cup \{\neg \varphi\}$ е неизпълнимо множество
- 7. Компактност на логическото следване: $\Gamma \models \varphi \longleftrightarrow u$ ма крайно $\Gamma_0 \subseteq \Gamma, \Gamma_0 \models \varphi \models \Gamma$ е неизпълнимо $\longleftrightarrow u$ ма крайно $\Gamma_0 \subseteq \Gamma, \Gamma_0$ е неизпълнимо $\models \Gamma$ е изпълнимо \longleftrightarrow всяко крайно $\Gamma_0 \subseteq \Gamma, \Gamma_0$ е изпълнимо.
- 8. $\varnothing \models \psi \longleftrightarrow \models \psi$ вярна при всяка булева интерпретация (тавтология).
- 9. Ако Γ е неизпълнимо, то за всяка формула $\psi, \Gamma \models \psi$ (от лъжата следва всичко).
- 10. Нека $\models \psi$, тогава за всяко множество $\Gamma, \Gamma \models \psi$.

Предикатно смятане от първи ред

Свойство 5. Ако φ е затворена формула, то $\mathcal{A} \models \varphi$ или $\mathcal{A} \models \neg \varphi$

Забележка. $A\not\models\varphi$ и оценка ν , за която $A\models\neg\varphi$, тогава за всяка оценка ω е в сила $A\models_{\omega}\neg\varphi$, $A\models\neg\varphi$.

Забележка. Винаги е вярно едно от двете $\mathcal{A} \models_{\nu} \varphi$ или $\mathcal{A} \models_{\nu} \neg \varphi$, но $\underline{\mathcal{A}} \models \varphi$ или $\mathcal{A} \models \neg \varphi$ е вярно само ако формулата φ е затворена.

Семантика на език от първи ред

Свойство 6.

- $\mathcal{A} \models_{\nu} p(\tau_1, \tau_2, \dots, \tau_n) \leftrightharpoons <\tau_1, \tau_2, \dots, \tau_n > \in p^{\mathcal{A}};$
- $\mathcal{A} \models_{\nu} (\tau_1 \doteq \tau_2) \leftrightharpoons \tau_1^{\mathcal{A}}[\nu] = \tau_2^{\mathcal{A}}[\nu];$
- $\mathcal{A} \models_{\nu} \neg \varphi \leftrightharpoons \mathcal{A} \not\models \varphi$;
- $\mathcal{A} \models_{\nu} (\varphi \& \psi) \leftrightharpoons \mathcal{A} \models \varphi \ u \ \mathcal{A} \models \psi$;
- $\mathcal{A} \models_{\nu} (\varphi \lor \psi) \leftrightharpoons \mathcal{A} \models \varphi \text{ unu } \mathcal{A} \models \psi;$
- $\mathcal{A} \models_{\nu} (\varphi \Rightarrow \psi) = a\kappa o \mathcal{A} \models \varphi, mo \mathcal{A} \models \psi;$
- $\mathcal{A} \models_{\nu} (\varphi \Leftrightarrow \psi) \leftrightharpoons \mathcal{A} \models \varphi$ тогава и само тогава, когато $\mathcal{A} \models \psi$;
- $\mathcal{A} \models_{\nu} \forall x \varphi \leftrightharpoons \mathfrak{s} a \text{ } \mathsf{e} \mathsf{c} \mathsf{s} \mathsf{k} \mathsf{k} o \ a \in A, \mathcal{A} \models_{\nu_a^x} \varphi;$
- $\mathcal{A} \models_{\nu} \exists x \varphi \leftrightharpoons c \sigma u e c m e y e a \ a \in A, \mathcal{A} \models_{\nu_a^x} \varphi;$

Свойство 7.

- \varnothing е определимо във всяка структура при всеки език: $\varphi[x], \varphi \& \neg \varphi$ определя \varnothing ;
- A е определимо във всяка структура при всеки език: $\varphi[x], \varphi \vee \neg \varphi$ определя A;
- A^2 е определимо във всяка структура при всеки език: $\varphi[x], \varphi[x,y], \varphi \vee \neg \varphi$ определя A^2 ;
- ako B e определимо и $B \subseteq A^n$, то $A^n \setminus B$ е също определимо. $\langle a_1, a_2, \dots, a_n \rangle \in B \longleftrightarrow A \models \varphi \llbracket a_1, a_2, \dots, a_n \rrbracket$ $A \not\models \varphi \llbracket a_1, a_2, \dots, a_n \rrbracket \longleftrightarrow \langle a_1, a_2, \dots, a_n \rangle \not\in B \longleftrightarrow \langle a_1, a_2, \dots, a_n \rangle \not\in A^n \setminus B$
- ако $B_1, B_2 \subseteq A^n$ са определими, то $B_1 \cup B_2, B_1 \cap B_2, B_1 \setminus B_2, B_1 \Delta B_2$ също са определими. Щом B_1 е определимо, т.е. $\exists \varphi[x_1, x_2, \dots x_n]$, която определя B_1 и щом B_2 е определимо, т.е. $\exists \psi[x_1, x_2, \dots x_n]$, която определя B_2 .

 Тогава $(\varphi \lor \psi)[x_1, x_2, \dots x_n]$ определя $B_1 \cup B_2$, $(\varphi \& \psi)[x_1, x_2, \dots x_n]$ определя $B_1 \cap B_2$, $(\varphi \& \neg \psi)[x_1, x_2, \dots x_n]$ определя $B_1 \setminus B_2$, $[(\varphi \& \neg \psi) \lor (\neg \varphi \& \psi)][x_1, x_2, \dots x_n]$ определя $B_1 \Delta B_2$. Ако $\{x_1, x_2, \dots, x_n\} \cap \{y_1, y_2, \dots, y_n\} = \emptyset$ и $\psi'[y_1, y_2, \dots, y_n]$ определя B_2 , то $\varphi \lor \psi'$ оп-

Хомоморфизми и изоморфизми.

ределя $(B_1 \times A^n) \cup (B_2 \times A^n)$.

Свойство 8 (Изоморфизъм).

- $\mathcal{A}\cong\mathcal{B}\longrightarrow\mathcal{B}\cong\mathcal{A}$, ако h е изоморфизъм на \mathcal{A} върху \mathcal{B} , то h^{-1} е изоморфизъм на \mathcal{B} върху \mathcal{A}
- $\mathcal{A} \cong \mathcal{B}$ и $\mathcal{B} \cong \mathcal{C} \longrightarrow \mathcal{A} \cong \mathcal{C}$, нека h_1, h_2 са изоморфизми съответно на \mathcal{A} върху \mathcal{B} и на \mathcal{B} върху \mathcal{C} . Тогава $h(a) = h_1 \circ h_2 = h_2(h_1(a))$ е изоморфизъм на \mathcal{A} върху \mathcal{C} .
- $\mathcal{A}\cong\mathcal{A}$, $Id_{\mathcal{A}}$ е изоморфизъм на \mathcal{A} върху \mathcal{A}

Свойство 9 (Автоморфизъм). Ако A = B и h е изоморфизъм на A върху B, то h се нарича автоморфизъм в A.

- Id_A е автоморфизъм;
- ullet h e $aвтоморфизъм, то <math>h^{-1}$ e aвтоморфизъм;
- h_1 и h_2 са автоморфизми в A, то $h_2 \circ h_1$ е автоморфизъм в A.

Логически еквивалентни формули

Свойство 10. Верни са всички еквивалентности за съждителни формули.

- $\exists x \varphi \models \neg \forall x \neg \varphi$
- $\forall x \varphi \models \neg \exists x \neg \varphi$
- $\neg \exists x \varphi \models \forall x \neg \varphi$
- $\neg \forall x \varphi \models \exists x \neg \varphi$
- $\forall (\varphi \& \psi) \models \forall x \varphi \& \forall x \psi$
- $\exists x(\varphi \lor \psi) \models (\exists x\varphi \lor \exists x\psi)$
- $\forall (\varphi \lor \psi) \not\models (\forall \varphi \lor \forall \psi)$
- $\exists (\varphi \& \psi) \not\models (\exists \varphi \& \exists \psi)$
- Hera $x \in Var^{free}[\varphi]$. Torasa $\forall x (\varphi \lor \psi) \models \forall x \varphi \lor \psi$, $\exists x (\varphi \& \psi) \models \exists x \varphi \& \psi$, $(\mathcal{A} \models_{\nu} \exists x \psi \longleftrightarrow \mathcal{A} \models_{\nu} \psi)$;
- Heka x $\not\in Var^{free}[\varphi]$. Torasa $\varphi \models \forall x \varphi, \varphi \models \exists x \varphi \ u \ \|\varphi\|^{\mathcal{A}}[\nu] = \|\varphi\|^{\mathcal{A}}[\nu_a^x]$ sa $\nu, a \in A$.

Преименуване на свързани променливи

Свойство 11. Ако $Qy\varphi[x/y]$ е вариант на $Qx\varphi$, то $Qx\varphi$ е вариант на $Qy\varphi[x/y]$.

Логическо следване

Свойство 12.

- $A\kappa o \varphi \in \Gamma$, $mo \Gamma \models \varphi$;
- $A\kappa o \Gamma \subseteq \Delta \ u \Gamma \models \varphi, \ mo \ \Delta \models \varphi;$
- $\Gamma \cup \{\varphi\} \models \psi \longleftrightarrow \Gamma \models \varphi \Rightarrow \psi$;
- $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi \longleftrightarrow (\varphi_1 \& \varphi_2 \& \dots \& \varphi_n) \Rightarrow \psi.$

Затворени универсални формули

Свойство 13.

- Нека \mathcal{A} е структура, в която е вярна затворената универсална формула φ . Тогава в \mathcal{A} е верен всеки затворен частен случай на φ .
- Ако Γ е множество от затворени универсални формули, то $CSI(\Gamma) \leftrightharpoons \bigcup_{\varphi \in \Gamma} CSI(\varphi)$
- $\mathcal{A} \models \Gamma \longrightarrow \mathcal{A} \models CSI(\Gamma)$.

Съждителна резолюция

Правило на съждителната резолюция

Свойство 14.

- Ако $\mathbb{D}_1, \mathbb{D}_2, ..., \mathbb{D}_n$ е резолютивен извод от S и $k \leq n$, то $\mathbb{D}_1, \mathbb{D}_2, ..., \mathbb{D}_k$ също е резолютивен извод;
- Ако α и β са резолютивни изводи от S, то α, β също е резолютивен извод от S;
- Ако S е разпознаваемо (рекурсивно) множество и $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_k$ е крайна редица от дизюнкти, то можем алгоритмично да разпознаем дали $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_k$ е рекурсивен извод от S:
- Нека I е булева интерпретация, S е множество от дизюнкти и $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_k$ е резолютивен извод от S. Ако $I \models S$, то за всяко $k \leq n, I \models \mathbb{D}_k$.

Трансверзали за фамилии от множества

Свойство 15. А има трансверзала \longleftrightarrow за всяко множество $x \in A, x \neq \emptyset$.

Хорнови дизюнкти

Свойство 16.

- Ако \mathbb{D}_1 и \mathbb{D}_2 са хорнови дизюнкти и ! $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$, то $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$ е също хорнов дизюнкт;
- Нека S е множество от хорнови дизюнкти и $\blacksquare \mathscr{E}S$. Ако S е неизпълнимо, то S съдържа поне един факт и поне една цел;
- \bullet Ако S е хорнова програма, то S има модел.

Свойство 17 (Формално равенство).

- $\forall x Eq(x,x)$;
- $\forall x \forall y (Eq(x,y) \Leftrightarrow Eq(y,x));$
- $\forall x \forall y \forall z ((Eq(x,y)\&Eq(y,z)) \Rightarrow Eq(x,z);$
- $\forall x_1 \dots \forall x_n \forall x_1' \dots \forall x_n' (Eq(x_1, x_1') \& \dots \& Eq(x_n, x_n')) \Rightarrow (f(x_1, \dots, x_n) \doteq f(x_1', \dots, x_n'))$
- $\forall x_1 \dots \forall x_n \forall x_1' \dots \forall x_n' (Eq(x_1, x_1') \& \dots \& Eq(x_n, x_n')) \Rightarrow (p(x_1, \dots, x_n) \Leftrightarrow p(x_1', \dots, x_n'))$