RELAZIONE: Tetris Arduino

Enrico Ferraiolo 0001191698

Laurea Magistrale in Informatica

Corso: Laboratorio di Making a.a. 2024-2025

Indice

1	Introduzione
2	Componenti Hardware
	2.1 Microcontrollore
	2.2 Display a matrice LED - Campo di Gioco
	2.3 Display LCD - Informazioni di Gioco
	2.4 Controlli
	2.4.1 Controlli Infrarossi
	2.4.2 Encoder Rotativo
3	Il Gioco 3.1 Tetramini
4	Ambienti di Sviluppo
5	Setup Hardware
	5.1 Display a matrice LED (MAX7219)
	5.2 Display LCD 16x2
	5.3 Ricevitore Infrarossi (IR)
	5.4 Encoder Rotativo

1 Introduzione

Il gioco Tetris è uno dei puzzle game più celebri di sempre: l'utente deve ruotare e spostare pezzi geometrici ("tetramini") che cadono, completando linee orizzontali per ottenere punti.

L'obiettivo di questo progetto è realizzare una versione giocabile su Arduino di Tetris, utilizzando un display a matrice LED 8x8 (MAX7219) per il campo di gioco, un display LCD 16x2 per visualizzare punteggio e stato, mentre i controlli sono gestiti tramite telecomando IR e encoder rotativo.

Lo scopo del progetto è quello di realizzare una versione del gioco Tetris su Arduino totalmente funzionante con diversi moduli di input e output.

2 Componenti Hardware

Di seguito vengono elencati e descritti i componenti hardware utilizzati per il progetto.

2.1 Microcontrollore

Il microcontrollore utilizzato è il **Elegoo UNO R3**, esso è un'alternativa compatibile all'Arduino UNO.

2.2 Display a matrice LED - Campo di Gioco

Il display a matrice LED è un modulo **MAX7219**, nel caso specifico del progetto in questione è stato utilizzato un modulo 8x8. Ogni LED della matrice può essere acceso o spento in modo indipendente, permettendo di visualizzare il campo di gioco e i tetramini.

Ogni LED rappresenta una cella del campo di gioco.

2.3 Display LCD - Informazioni di Gioco

Il display LCD è un modulo 16x2, esso è utilizzato per visualizzare il punteggio e lo stato del gioco.

È stato utilizzato il modulo LCD 1602. A schermo vengono visualizzati:

- Punteggio: il punteggio attuale del giocatore
- Stato: lo stato del gioco (in corso, in pausa, finito)
- Velocità: la velocità attuale del gioco
- Istruzioni ausiliarie: istruzioni per il giocatore

2.4 Controlli

Il progetto prevede l'utilizzo di un telecomando IR e di un encoder rotativo per il controllo del gioco.

2.4.1 Controlli Infrarossi

Il telecomando IR è un dispositivo che consente di inviare segnali preimpostati a distanza tramite infrarossi.

Sono stati utilizzati un telecomando IR e un ricevitore IR compatibili.

Il telecomando IR è dotato di diversi tasti, ognuno dei quali invia un codice univoco quando premuto.

I tasti utilizzati nel progetto sono:

- POWER: per accendere e spegnere il gioco
- FAST BACK: per muovere il tetramino a sinistra
- FAST FORWARD: per muovere il tetramino a destra
- PAUSE: per mettere in pausa il gioco

- VOL+: per aumentare la velocità del gioco
- VOL-: per diminuire la velocità del gioco

2.4.2 Encoder Rotativo

L'encoder rotativo è utilizzato per il controllo della direzione e della velocità del gioco.

- Rotazione in senso orario: aumenta la velocità del gioco
- Rotazione in senso antiorario: diminuisce la velocità del gioco

3 Il Gioco

Il gioco Tetris è un puzzle game in cui il giocatore deve ruotare e spostare tetramini che cadono dall'alto, quest'ultimi sono composti da 4 celle e possono essere ruotati e spostati a sinistra o a destra nel campo di gioco.

Il giocatore deve completare linee orizzontali per ottenere punti e quando una linea è completata, essa scompare e il punteggio aumenta.

Il gioco termina quando i tetramini raggiungono la parte superiore del campo di gioco e non c'è quindi più spazio per far cadere nuovi tetramini.

3.1 Tetramini

Tra i tetramini presenti nel gioco implementato in questo progetto troviamo le seguenti forme presenti nella tabella 1:

Tabella 1: Rappresentazione dei tetramini

Pezzo	Codici binari	$W \times H$	Forma
I	0b1111 0b0000 0b0000 0b0000	4×1	
J	0b0111 0b0100	3×2	
${f L}$	0b1110 0b0010	3×2	
O	0b0110 0b0110	2×2	
\mathbf{S}	0b0111 0b0010	3×2	
${f T}$	0b1100 0b0110	3×2	
${f z}$	0b1110 0b1000	3×2	

4 Ambienti di Sviluppo

Il progetto è stato sviluppato per essere eseguito su:

- Hardware fisico: scheda compatibile e moduli connessi
- **Simulatore**: per testare il codice senza hardware fisico su un simulatore software

Per cambiare ambiente di sviluppo è sufficiente cambiare la variabile PRODUCTION in nel file sorgente: PRODUCTION = true per l'hardware fisico e PRODUCTION = false per il simulatore.

Questo serve perché i codici infrarossi inviati dal telecomando IR sono diversi a seconda dell'ambiente di sviluppo.

5 Setup Hardware

Questa sezione riporta e descrive come sono stati connessi i vari moduli hardware al microcontrollore.

5.1 Display a matrice LED (MAX7219)

Il modulo MAX7219 a matrice 8x8 viene utilizzato per visualizzare il campo di gioco e i tetramini.

Di seguito sono riportate le connessioni tra il modulo e il microcontrollore.

Tabella 2: Connessioni Matrix (MAX7219) - Microcontrollore

Matrix Pin	Microcontrollore Pin
VCC	5V
GND	GND
DIN	Pin 12
CS	Pin 10
CLK	Pin 11

5.2 Display LCD 16x2

Il modulo LCD 1602 serve per mostrare punteggio, stato e velocità di gioco. Di seguito sono riportate le connessioni tra il modulo e il microcontrollore.

Tabella 3: Connessioni LCD Display (16x2) - Microcontrollore

LCD Pin	Microcontrollore Pin
RS	Pin 13
E	Pin 9
D4	Pin 6
D5	Pin 5
D6	Pin 7
D7	Pin 4
VSS	GND
VDD	5V
RW	GND
A (Anodo)	5V (attraverso un resistore da 220 Ω)
K (Catodo)	GND

5.3 Ricevitore Infrarossi (IR)

Il modulo ricevitore IR decodifica i codici inviati dal telecomando per gestire i comandi di gioco.

Di seguito sono riportate le connessioni tra il modulo e il microcontrollore.

Tabella 4: Connessioni IR Receiver Module - Microcontrollore

IR Pin	Microcontrollore Pin
VCC	5V
GND	GND
$\mathrm{OUT}/\mathrm{Data}$	Pin 3

5.4 Encoder Rotativo

L'encoder rotativo serve per regolare manualmente la velocità di caduta dei tetramini.

Di seguito sono riportate le connessioni tra il modulo e il microcontrollore.

Tabella 5: Connessioni Rotary Encoder Module - Microcontrollore

Encoder Pin	Microcontrollore Pin
CLK	Pin 2
DT	Pin 8
SW (Switch)	Non usato
VCC	5V
GND	GND