Logarithms 對數函數

Introduction

- If $x = a^y$, then $y = \log_a x$
- If $y = \log_a x$, then $x = a^y$

Example

Exponential form 指數形式	Logarithmic form 對數形式
$1 = 3^0$	$0 = \log_3 1$
$10000 = 10^4$	$4 = \log_{10} 10000$
$\frac{1}{16} = \left(\frac{1}{4}\right)^2$	$2 = \log_{\frac{1}{4}} \frac{1}{16}$
$\frac{1}{32} = 2^{-5}$	$-5 = \log_2 \frac{1}{32}$

Practice Round

Find the following equation in Logarithmic form.

1.
$$10000 = 10^4$$

2.
$$0.00001 = 10^{-5}$$

Find the value of the unknown in the following questions.

1.
$$7 = 10^b$$

2.
$$\log d = -0.3$$

Property

1.
$$\log_a 1 = 0$$

$$2. \, \log_a a = 1$$

$$3. \ a^{\log_a N} = N$$

$$4. \log_a(MN) = \log_a M + \log_a N$$

5.
$$\log_a(\frac{M}{N}) = \log_a M - \log_a N$$

$$6. \log_a M^n = n \log_a M$$

$$7. \log_a x = \frac{\log_b x}{\log_b a}$$

Quick Practice

Find the values of the following logarithms correct to 3 significant figures.

(a) $\log_5 30$

(b) $\log_3 0.75$

Find the values of the following expressions without using a calculator.

(a) $\log_2 48 - \log_2 3$

(b) $\log_9 27$

In the t-th year after 2012, the population P of a town is given by $P = 50000 \times 1.07^t$. 某城市在2012年後第t年的人口是以 $P = 50000 \times 1.07^t$ 估算。

- (a) Find the population of the town 3 years after 2012. 求城市A在2012年後第3年的人口。
- (b) In thich year will the population of the town first exceed 80000? 城市A的人口將於那年超過80000?

Graphs of Exponential and Logarithmic Function

Answers

Practice Round

1.

$$\log_{10} 10000 = 4$$

2.

$$\log_{10} 0.00001 = -5$$

3.

$$7 = 10^{b}$$

$$\log_{10} 7 = \log_{10} 10^{b}$$

$$\log_{10} 7 = b \log_{10} 10$$

$$\log_{10} 7 = b$$

$$b = \log_{10} 7$$

4.

$$\log d = -0.3$$

$$\log d = -0.3 \log 10$$

$$\log d = \log 10^{-0.3}$$

$$\log d = \log \frac{1}{10^{0.3}}$$

$$d = \frac{1}{10^{0.3}}$$

$$d = 10^{-0.3}$$

Quick Practice

1.

$$\log_5 30 = \frac{\log_{10} 30}{\log_{10} 5}$$
$$= 2.11$$

2.

$$\log_3 0.75 = \frac{\log_{10} 0.75}{\log_{10} 3}$$
$$= -0.263$$

3. (a)

$$P = 50000(1.07)^3$$
$$= 61252$$

The population 3 years after 2020 is 61,252.

(b)

$$P > 80000$$

$$50000 \times 1.07^{t} > 80000$$

$$1.07^{t} > \frac{80000}{50000}$$

$$\log 1.07^{t} > \log \frac{80000}{50000}$$

$$t \log 1.07 > \log \frac{80000}{50000}$$

$$t > \frac{\log \frac{80000}{50000}}{\log 1.07}$$

$$t > 6.95$$

The population will exceed 80000 in 2019.