Introductory Course on Non-smooth Optimisation Lecture 01 - Gradient method

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Convexity

Definition (Convex set)

A set $S \subset \mathbb{R}^n$ is convex if for any $\theta \in [0,1]$ and two points $x,y \in S$,

$$\theta x + (1 - \theta)y \in S$$
.

Definition (Convex function)

Function $F : \mathbb{R}^n \to \mathbb{R}$ is convex if dom(F) is convex and for all $x, y \in dom(F)$ and $\theta \in [0, 1]$,

$$F(\theta x + (1 - \theta)y) \le \theta F(x) + (1 - \theta)F(y).$$

Proper convex: $F(x) < +\infty$ at least for one x and $F(x) > -\infty$ for all x.

First-order condition: *F* is continuous differentiable

$$F(y) \ge F(x) + \langle \nabla F(x), y - x \rangle, \ \forall x, y \in \text{dom}(F).$$

Second-order condition: if *F* is twice differentiable $\nabla^2 F(x) \succeq 0$, $\forall x \in \text{dom}(F)$.

Unconstrained smooth optimisation

Problem

Unconstrained smooth optimisation

$$\min_{x\in\mathbb{R}^n}F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

Optimality condition: let x^* be an minimiser of F(x), then

$$0 = \nabla F(x^*).$$

Example: quadratic minimisation

Example (Quadratic programming)

General quadratic programming problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x + b^T x + c,$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Optimality condition:

$$0=Ax^{\star}+b.$$

Special case: LSE

$$||Ax - b||^2 = x^T (A^T A)x - 2(A^T b)^T x + b^T b.$$

Optimality condition

$$A^T A x^* = A^T b.$$

Example: geometric programming

Example (Geometric programming)

General quadratic programming problem

$$\min_{x \in \mathbb{R}^n} \log \left(\sum_{i=1}^m \exp(a_i^T x + b_i) \right).$$

Optimality condition:

$$0 = \frac{1}{\sum_{i=1}^{m} \exp(a_i^T x^* + b_i)} \sum_{i=1}^{m} \exp(a_i^T x^* + b_i) a_i.$$

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

II: Descent methods 8/43

Problem

Problem (Unconstrained smooth optimisation)

Consider minising

$$\min_{x\in\mathbb{R}^n} F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

II: Descent methods 9/43

Problem

Problem (Unconstrained smooth optimisation)

Consider minising

$$\min_{x\in\mathbb{R}^n}F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

• The set of minimisers, i.e.

$$Argmin(F) = \{x \in \mathbb{R}^n : F(x) = \min_{x \in \mathbb{R}^n} F(x)\},\$$

is non-empty

- However, given $x^* \in Argmin(F)$, no closed form expression
- Iterative strategy to find one $x^* \in Argmin(F)$: start from x_0 and generate a train of sequeence $\{x_k\}_{k \in \mathbb{N}}$ such taht

$$\lim_{k\to\infty}x_k=x^\star\in \mathsf{Argmin}(F)$$

II: Descent methods 9/43

Problem

Problem (Unconstrained smooth optimisation)

Consider minising

$$\min_{x\in\mathbb{R}^n}F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

II: Descent methods 9/43

Descent methods

Iterative scheme

For each k=1,2,..., find $\gamma_k>0$ and $d_k\in\mathbb{R}^n$ and then

$$x_{k+1} = x_k + \gamma_k d_k,$$

where

- d_k is called search/descent direction
- γ_k is called step-size

Definition (Descent methods)

An algorithm is called descent method, if there holds

$$F(x_{k+1}) < F(x_k).$$

NB: if $x_k \in Argmin(F)$, then $x_{k+1} = x_k...$

II: Descent methods

Conditions

From convexity of F, we have

$$F(x_{k+1}) \ge F(x_k) + \langle \nabla F(x_k), x_{k+1} - x_k \rangle,$$

which gives

$$\langle \nabla F(x_k), x_{k+1} - x_k \rangle \geq 0 \implies F(x_{k+1}) \geq F(x_k).$$

Since $x_{k+1} - x_k = \gamma_k d_k$, the direction d_k should be such that $\langle \nabla F(x_k), d_k \rangle < 0$.

II: Descent methods 11/43

General descent method

General descent method

initial: $x_0 \in \text{dom}(F)$;

repeat:

- 1. Find a descent direction d_k
- 2. Choose a step-size γ_k : line search
- 3. Update $x_{k+1} = x_k + \gamma_k d_k$

until: stopping criterion is satisfied.

Stopping criterion: $\epsilon > 0$ is the tolerance,

- Function value: $F(x_{k+1}) F(x_k) \le \epsilon$ (can be time consuming)
- Sequence: $||x_{k+1} x_k|| < \epsilon$
- Optimality condition: $\|\nabla F(x_k)\| \le \epsilon$

II: Descent methods

Exact line search

Exact line search

Choose γ_k such that F(x) is minimised along the ray $x_k + \gamma d_k, \gamma > 0$:

$$\gamma_k = \operatorname{argmin}_{\gamma > 0} F(x_k + \gamma d_k).$$

II: Descent methods

Exact line search

Exact line search

Choose γ_k such that F(x) is minimised along the ray $x_k + \gamma d_k, \gamma > 0$:

$$\gamma_k = \operatorname{argmin}_{\gamma > 0} F(x_k + \gamma d_k).$$

- Useful when the minimistion problem for γ_k is simple
- γ_k can be found analytically for special cases

13/43 II: Descent methods

Backtracking/inexact line search

Backtracking line search

Choose $\delta \in]0, 0.5[$ and $\beta \in]0, 1[$, let $\gamma = 1$

while
$$F(x_k + \gamma d_k) > F(x_k) + \delta \gamma \langle \nabla F(x_k), d_k \rangle$$
: $\gamma = \beta \gamma$.

Since d_k is a descent direction

$$\langle \nabla F(x_k), d_k \rangle < 0.$$

Stopping criterion for backtracking:

$$F(x_k + \gamma d_k) \leq F(x_k) + \delta \gamma \langle \nabla F(x_k), d_k \rangle.$$

When γ is small enough

$$F(x_k + \gamma d_k) \approx F(x_k) + \gamma \langle \nabla F(x_k), d_k \rangle < F(x_k) + \delta \gamma \langle \nabla F(x_k), d_k \rangle,$$

which means backtracking eventually will stop.

II: Descent methods 14/43

Backtracking/inexact line search

Backtracking line search

Choose $\delta \in]0,0.5[$ and $\beta \in]0,1[$, let $\gamma = 1$

while
$$F(x_k + \gamma d_k) > F(x_k) + \delta \gamma \langle \nabla F(x_k), d_k \rangle$$
: $\gamma = \beta \gamma$.

II: Descent methods 14/43

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Monotonicity

Lemma (Monotonicity of gradient)

Let $F: \mathbb{R}^n \to \mathbb{R}$ be proper convex and smooth differentiable, then

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge 0, \ \forall x, y \in \text{dom}(F).$$

 C^1 : proper convex and smooth differentiable functions on \mathbb{R}^n .

III: Gradient of convex functions

Monotonicity

Lemma (Monotonicity of gradient)

Let $F: \mathbb{R}^n \to \mathbb{R}$ be proper convex and smooth differentiable, then

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge 0, \ \forall x, y \in \text{dom}(F).$$

 C^1 : proper convex and smooth differentiable functions on \mathbb{R}^n .

Proof Owing to convexity, given $x, y \in dom(F)$, we have

$$F(y) \ge F(x) + \langle \nabla F(x), y - x \rangle$$

and

$$F(x) \ge F(y) + \langle \nabla F(y), x - y \rangle.$$

Summing them up yields

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge 0.$$

NB: Let $F \in C^1$, F is convex if and only if $\nabla F(x)$ is monotone.

Lipschitz continuous gradient

Definition (Lipschitz continuity)

The gradient of F is L-Lipschitz continuous if there exists L > 0 such that

$$\|\nabla F(x) - \nabla F(y)\| \le L\|x - y\|, \ \forall x, y \in \text{dom}(F).$$

 C_L^1 : proper convex functions with L-Lipschitz continuous gradient on \mathbb{R}^n .

III: Gradient of convex functions

Lipschitz continuous gradient

Definition (Lipschitz continuity)

The gradient of F is L-Lipschitz continuous if there exists L > 0 such that

$$\|\nabla F(x) - \nabla F(y)\| \le L\|x - y\|, \ \forall x, y \in \text{dom}(F).$$

 C_L^1 : proper convex functions with L-Lipschitz continuous gradient on \mathbb{R}^n .

If $F \in C^1_I$, then

$$H(x) \stackrel{\text{def}}{=} \frac{L}{2} ||x||^2 - F(x)$$

is convex.

Hint: monotonicity of $\nabla H(x)$, *i.e.*

$$\langle \nabla H(x) - \nabla H(y), x - y \rangle = L \|x - y\|^2 - \langle \nabla F(x) - \nabla F(y), x - y \rangle$$

$$\geq L \|x - y\|^2 - L \|x - y\|^2$$

$$= 0.$$

III: Gradient of convex functions 17/43

Descent lemma

Lemma (Descent lemma, quadratic upper bound)

Let $F \in C_L^1$, then there holds

$$F(y) \le F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \ \forall x, y \in \text{dom}(F).$$

Descent lemma

Lemma (Descent lemma, quadratic upper bound)

Let $F \in C^1$, then there holds

$$F(y) \le F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \ \forall x, y \in \text{dom}(F).$$

Proof. Define H(t) = F(x + t(y - x)), then

$$F(y) - F(x) = H(1) - H(0) = \int_0^1 \nabla H(t) dt = \int_0^1 (y - x)^T \nabla F(x + t(y - x)) dt$$

$$\leq \int_0^1 (y - x)^T \nabla F(x) dt + \int_0^1 |(y - x)^T (\nabla F(x + t(y - x)) - \nabla F(x))| dt$$

$$\leq (y - x)^T \nabla F(x) + \int_0^1 ||y - x|| ||\nabla F(x + t(y - x)) - \nabla F(x)|| dt$$

$$\leq (y - x)^T \nabla F(x) + ||y - x|| \int_0^1 t L ||y - x|| dt$$

$$= (y - x)^T \nabla F(x) + \frac{L}{2} ||y - x||^2.$$

NB: first-order condition of convexity for $H(x) \stackrel{\text{def}}{=} \frac{L}{2} ||x||^2 - F(x)$.

Descent lemma: consequences

Corollary

Let
$$F \in C_L^1$$
 and $x^* \in Argmin(F)$, then

$$\frac{1}{2L}\|\nabla F(x)\|^2 \leq F(x) - F(x^\star) \leq \frac{L}{2}\|x - x^\star\|^2, \forall x \in \mathsf{dom}(F).$$

III: Gradient of convex functions

Descent lemma: consequences

Corollary

Let $F \in C_L^1$ and $x^* \in Argmin(F)$, then

$$\frac{1}{2L} \|\nabla F(x)\|^2 \le F(x) - F(x^*) \le \frac{L}{2} \|x - x^*\|^2, \forall x \in \text{dom}(F).$$

Proof. Right-hand inequality: $\nabla F(x^*) = 0$,

$$F(x) \leq F(x^*) + \langle \nabla F(x^*), x - x^* \rangle + \frac{L}{2} ||x - x^*||^2, \forall x \in \text{dom}(F).$$

Left-hand inequality:

$$F(x^*) \leq \min_{y \in \text{dom}(F)} \left\{ F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2} \|y - x\|^2 \right\}$$
$$= F(x) - \frac{1}{2L} \|\nabla F(x)\|^2.$$

The corresponding y is $y = x - \frac{1}{I}\nabla F(x)$.

Co-coercivity of gradient

Lemma (Co-coercivity)

Let $F \in C_L^1$, then

$$\langle x - y, \nabla F(x) - \nabla F(y) \rangle \ge \frac{1}{I} \|\nabla F(x) - \nabla F(y)\|^2.$$

• Co-coercivity implies Lipschitz continuity

• For
$$F \in C_L^1$$
, $H(x) \stackrel{\text{def}}{=} \frac{L}{2} ||x||^2 - F(x)$
Lipschitz continuity of $\nabla F \implies$ Convexity of $H(x)$
 \implies Co-coercivity of $\nabla F(x)$
 \implies Lipschitz continuity of ∇F

III: Gradient of convex functions 20/43

Co-coercivity of gradient

Lemma (Co-coercivity)

Let $F \in C^1$, then

$$\langle x - y, \nabla F(x) - \nabla F(y) \rangle \ge \frac{1}{L} \|\nabla F(x) - \nabla F(y)\|^2.$$

Proof. Define $R(z) = F(z) - \langle \nabla F(x), z \rangle$, then $\nabla R(x) = 0$.

Recall the lemma

$$F \in C_L^1$$
 and $x^* \in \text{Argmin}(F)$: $\frac{1}{2L} \|\nabla F(x)\|^2 \le F(x) - F(x^*) \le \frac{L}{2} \|x - x^*\|^2$.

Then we have

$$F(y) - F(x) - \langle \nabla F(x), y - x \rangle = R(y) - R(x) \ge \frac{1}{2L} \|\nabla R(y)\|^2$$
$$= \frac{1}{2L} \|\nabla F(y) - \nabla F(x)\|^2.$$

Similarly, define $S(z) = F(z) - \langle \nabla F(y), z \rangle$, then

$$F(x) - F(y) - \langle \nabla F(y), x - y \rangle = S(y) - S(x) \ge \frac{1}{2I} \|\nabla F(x) - \nabla F(y)\|^2.$$

III: Gradient of convex functions 20/43

Strongly convex function

Definition (Strongly convex function)

Function $F: \mathbb{R}^n \to \mathbb{R}$ is strongly convex if dom(F) is convex and for all $x, y \in dom(F)$ and $\theta \in [0,1]$, there exists $\alpha > 0$ such that

$$F(\theta x + (1-\theta)y) \le \theta F(x) + (1-\theta)F(y) - \frac{\alpha}{2}\theta(1-\theta)\|x - y\|^2.$$

Strongly convex function

Definition (Strongly convex function)

Function $F: \mathbb{R}^n \to \mathbb{R}$ is strongly convex if dom(F) is convex and for all $x, y \in dom(F)$ and $\theta \in [0, 1]$, there exists $\alpha > 0$ such that

$$F(\theta x + (1 - \theta)y) \le \theta F(x) + (1 - \theta)F(y) - \frac{\alpha}{2}\theta(1 - \theta)\|x - y\|^2.$$

F is strongly convex with parameter $\alpha > 0$ if

$$G(x) \stackrel{\text{def}}{=} F(x) - \frac{\alpha}{2} ||x||^2$$

is convex.

Monotonicity:

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge \alpha ||x - y||^2, \, \forall x, y \in \mathsf{dom}(F).$$

Second-order condition for strong convexity: if $F \in C^2$,

$$\nabla^2 F(x) \succeq \alpha \operatorname{Id}, \ \forall x \in \operatorname{dom}(F).$$

Quadratic lower bound

Lemma (Quadratic lower bound)

Let $F \in C^1$ and strongly convex, then

$$F(y) \ge F(x) + \langle \nabla F(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2, \ \forall x, y \in \text{dom}(F).$$

Proof. first-order condition of convexity for $G(x) \stackrel{\text{def}}{=} F(x) - \frac{\alpha}{2} ||x||^2$.

III: Gradient of convex functions 22/43

Quadratic lower bound

Lemma (Quadratic lower bound)

Let $F \in C^1$ and strongly convex, then

$$F(y) \ge F(x) + \langle \nabla F(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2, \ \forall x, y \in \text{dom}(F).$$

Proof. first-order condition of convexity for $G(x) \stackrel{\text{def}}{=} F(x) - \frac{\alpha}{2} ||x||^2$.

Corollary

Let $F \in C^1$ be α -strongly convex and $x^* \in Argmin(F)$, then

$$\frac{\alpha}{2}\|x-x^{\star}\|^{2} \leq F(x) - F(x^{\star}) \leq \frac{1}{2\alpha}\|\nabla F(x)\|^{2}, \forall x \in \text{dom}(F).$$

Proof. Left-hand inequality: quadratic lower bound. Right-hand inequality:

$$F(x^*) \ge \min_{y \in \text{dom}(F)} \left\{ F(x) + \langle \nabla F(x), y - x \rangle + \frac{\alpha}{2} \|y - x\|^2 \right\}$$
$$= F(x) - \frac{1}{2\alpha} \|\nabla F(x)\|^2.$$

III: Gradient of convex functions 22/43

Extension of co-coercivity

If $F \in C^1_L$ and α -strongly convex, then

$$G(x) \stackrel{\text{def}}{=} F(x) - \frac{\alpha}{2} ||x^2||$$

is convex, and ∇G is $L - \alpha$ -Lipschitz continuous.

The co-coercivity of ∇G yields

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge \frac{\alpha L}{\alpha + L} \|x - y\|^2 + \frac{1}{\alpha + L} \|\nabla F(x) - \nabla F(y)\|^2$$
 for all $x, y \in \text{dom}(F)$.

 $S_{\alpha,L}^1$: functions in C_L^1 that are α -strongly convex.

23/43

Rate of convergence

Sequence x_k converges linearly to x^* if

$$\lim_{k \to +\infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \rho$$

holds for $\rho \in]0,1[$, and ρ is called the rate of convergence.

If
$$x_k$$
 converges, let $\rho_k = \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|}$,

- if $\lim_{k\to+\infty} \rho_k = 0$: super-linear convergence
- if $\lim_{k\to+\infty} \rho_k = 1$: sub-linear convergence

Rate of convergence

Sequence x_k converges linearly to x^* if

$$\lim_{k \to +\infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \rho$$

holds for $\rho \in]0,1[$, and ρ is called the rate of convergence.

If
$$x_k$$
 converges, let $\rho_k = \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|}$,

- if $\lim_{k\to+\infty} \rho_k = 0$: super-linear convergence
- if $\lim_{k\to +\infty} \rho_k = 1$: sub-linear convergence

Superlinear convergence: q > 1

$$\lim_{k \to +\infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^q} < \eta$$

for some $\eta \in]0,1[$.

- *q* = 2: quadratic convergence
- q = 3: cubic convergnce

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Unconstrained smooth optimisation

Problem (Unconstrained smooth optimisation)

Consider minising

$$\min_{x\in\mathbb{R}^n} F(x),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

Assumtions:

- $F \in C^1$ is convex
- $\nabla F(x)$ is *L*-Lipschitz continuous for some L > 0
- Set of minimisers is non-empty, *i.e.* Argmin $(F) \neq \emptyset$

Gradient descent

Descent direction: let $d = -\nabla F(x)$, then

$$\langle \nabla F(x), d \rangle = -\|\nabla F(x)\|^2 \leq 0.$$

Gradient descent

initial: $x_0 \in dom(F)$;

repeat:

- 1. Choose step-size $\gamma_k > 0$
- 2. Update $x_{k+1} = x_k \gamma_k \nabla F(x_k)$

until: stopping criterion is satisfied.

• Owing to the quadratic upper bound

$$F(x_{k+1}) \leq F(x_k) + \langle \nabla F(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$$

$$= F(x_k) - \gamma ||\nabla F(x_k)||^2 + \frac{\gamma^2 L}{2} ||\nabla F(x_k)||^2$$

$$= F(x_k) - \gamma (1 - \frac{\gamma L}{2}) ||\nabla F(x_k)||^2.$$

Hence

$$F(x_k) - F(x_{k+1}) \ge \gamma (1 - \frac{\gamma L}{2}) \|\nabla F(x_k)\|^2.$$

Owing to the quadratic upper bound

$$F(x_{k+1}) \leq F(x_k) + \langle \nabla F(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$$

$$= F(x_k) - \gamma ||\nabla F(x_k)||^2 + \frac{\gamma^2 L}{2} ||\nabla F(x_k)||^2$$

$$= F(x_k) - \gamma (1 - \frac{\gamma L}{2}) ||\nabla F(x_k)||^2.$$

Hence

$$F(x_k) - F(x_{k+1}) \ge \gamma (1 - \frac{\gamma L}{2}) \|\nabla F(x_k)\|^2.$$

• Let $\gamma \in]0, 2/L[$,

$$\gamma(1-\frac{\gamma L}{2})\sum_{i=0}^{k}\|\nabla F(x_i)\|^2 \leq F(x_0)-F(x_{k+1}) \leq F(x_0)-F(x^*),$$

- $F(x^*) > -\infty$, rhs is a positive constant
- for lhs, let $k \to +\infty$,

$$\lim_{k\to+\infty}\|\nabla F(x_k)\|^2=0.$$

NB: convexity is not required here.

• Let
$$\gamma \in]0, 1/L]$$
, then $\gamma(1 - \frac{\gamma L}{2}) \ge \frac{\gamma}{2}$, and
$$F(x_{k+1}) \le F(x_k) - \frac{\gamma}{2} \|\nabla F(x_k)\|^2$$
 (cvx of F at x_k) $\le F(x^*) + \langle \nabla F(x_k), x_k - x^* \rangle - \frac{\gamma}{2} \|\nabla F(x_k)\|^2$
$$= F(x^*) + \frac{1}{2\gamma} (\|x_k - x^*\|^2 - \|x_k - x^* - \gamma \nabla F(x_k)\|^2)$$

$$= F(x^*) + \frac{1}{2\gamma} (\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2).$$

• Let $\gamma \in]0, 1/L]$, then $\gamma(1 - \frac{\gamma L}{2}) \ge \frac{\gamma}{2}$, and $F(x_{k+1}) \le F(x_k) - \frac{\gamma}{2} \|\nabla F(x_k)\|^2$ (cvx of F at x_k) $\le F(x^*) + \langle \nabla F(x_k), x_k - x^* \rangle - \frac{\gamma}{2} \|\nabla F(x_k)\|^2$ $= F(x^*) + \frac{1}{2\gamma} (\|x_k - x^*\|^2 - \|x_k - x^* - \gamma \nabla F(x_k)\|^2)$ $= F(x^*) + \frac{1}{2\gamma} (\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2).$

• Summability of $F(x_k) - F(x^*)$,

$$\begin{split} \sum_{i=1}^{k} \left(F(x_k) - F(x^*) \right) &\leq \frac{1}{2\gamma} \sum_{i=1}^{k} \left(\|x_{i-1} - x^*\|^2 - \|x_i - x^*\|^2 \right) \\ &= \frac{1}{2\gamma} \left(\|x_0 - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) \\ &\leq \frac{1}{2\gamma} \|x_0 - x^*\|^2. \end{split}$$

• Let $\gamma \in]0, 1/L]$, then $\gamma(1 - \frac{\gamma L}{2}) \ge \frac{\gamma}{2}$, and

$$\begin{split} F(x_{k+1}) &\leq F(x_k) - \frac{\gamma}{2} \|\nabla F(x_k)\|^2 \\ (\text{cvx of } F \text{ at } x_k) &\leq F(x^\star) + \langle \nabla F(x_k), \, x_k - x^\star \rangle - \frac{\gamma}{2} \|\nabla F(x_k)\|^2 \\ &= F(x^\star) + \frac{1}{2\gamma} \big(\|x_k - x^\star\|^2 - \|x_k - x^\star - \gamma \nabla F(x_k)\|^2 \big) \\ &= F(x^\star) + \frac{1}{2\gamma} \big(\|x_k - x^\star\|^2 - \|x_{k+1} - x^\star\|^2 \big). \end{split}$$

• Summability of $F(x_k) - F(x^*)$,

$$\begin{split} \sum_{i=1}^{k} \left(F(x_k) - F(x^*) \right) &\leq \frac{1}{2\gamma} \sum_{i=1}^{k} \left(\|x_{i-1} - x^*\|^2 - \|x_i - x^*\|^2 \right) \\ &= \frac{1}{2\gamma} \left(\|x_0 - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) \\ &\leq \frac{1}{2\gamma} \|x_0 - x^*\|^2. \end{split}$$

• Since $F(x_k) - F(x^*)$ is decreasing

$$F(x_k) - F(x^*) \le \frac{1}{k} \left(\sum_{i=1}^k (F(x_k) - F(x^*)) \right) \le \frac{1}{2\gamma k} ||x_0 - x^*||^2.$$

Besides the basic assumptions, let's further assume $F \in S^1_{\alpha,L}$.

Recall that, for all
$$x, y \in dom(F)$$

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge \frac{\alpha L}{\alpha + L} \|x - y\|^2 + \frac{1}{\alpha + L} \|\nabla F(x) - \nabla F(y)\|^2.$$

Besides the basic assumptions, let's further assume $F \in \mathcal{S}^1_{lpha,L}$

Recall that, for all $x, y \in dom(F)$

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge \frac{\alpha L}{\alpha + L} \|x - y\|^2 + \frac{1}{\alpha + L} \|\nabla F(x) - \nabla F(y)\|^2.$$

Analysis for constant step-size: let $\gamma \in]0, 2/(\alpha + L)[$

$$\begin{aligned} \|x_{k+1} - x^{\star}\|^{2} &= \|x_{k} - \gamma \nabla F(x_{k}) - x^{\star}\|^{2} \\ &= \|x_{k} - x^{\star}\|^{2} - 2\gamma \langle \nabla F(x_{k}), x_{k} - x^{\star} \rangle + \gamma^{2} \|\nabla F(x_{k})\|^{2} \\ (\nabla F(x^{\star}) &= 0) \leq \left(1 - \frac{2\gamma\alpha L}{\alpha + L}\right) \|x_{k} - x^{\star}\|^{2} + \gamma \left(\gamma - \frac{2}{\alpha + L}\right) \|\nabla F(x_{k})\|^{2} \\ &\leq \left(1 - \frac{2\gamma\alpha L}{\alpha + L}\right) \|x_{k} - x^{\star}\|^{2}. \end{aligned}$$

Distance to minimiser:
$$\rho=1-\frac{2\gamma\alpha L}{\alpha+L}$$

$$\|x_k-x^\star\|^2\leq \rho^k\|x_0-x^\star\|^2.$$

- linear covnergence
- for $\gamma = \frac{2}{\alpha + L}$,

$$\rho = \left(\frac{L-\alpha}{L+\alpha}\right)^2.$$

Distance to minimiser: $\rho = 1 - \frac{2\gamma\alpha L}{\alpha + L}$ $\|x_k - x^\star\|^2 \le \rho^k \|x_0 - x^\star\|^2.$

- linear covnergence
- for $\gamma = \frac{2}{\alpha + L}$,

$$\rho = \left(\frac{L - \alpha}{L + \alpha}\right)^2.$$

Convergence rate of objective function value:

$$F(x_k) - F(x^*) \le \frac{L}{2} ||x_k - x^*||^2 \le \frac{\rho^k L}{2} ||x_0 - x^*||^2.$$

Numer of iterations k needed for $F(x_k) - F(x^*) \le \epsilon$

- $F \in C_l^1$: $O(1/\epsilon)$
- $F \in S^1_{\alpha,L}$: $O(\log(1/\epsilon))$

Limits on convergence rate of gradient descent

First-order method: x_k is an element from the set

$$x_0 + \text{span}\{\nabla F(x_0), ..., \nabla F(x_i), ..., \nabla F(x_{k-1})\}.$$
 (4.1)

Problem class: C_l^1

Limits on convergence rate of gradient descent

First-order method: x_k is an element from the set

$$x_0 + \text{span}\{\nabla F(x_0), ..., \nabla F(x_i), ..., \nabla F(x_{k-1})\}.$$
 (4.1)

Problem class: C_l^1

Theorem (Nesterov)

For every integer $k \le (n-1)/2$ and every x_0 , there exist functions in the problem class such that for any first-order method satisfies (4.1),

$$F(x_k) - F(x^*) \ge \frac{3}{32} \frac{L \|x_0 - x^*\|^2}{(k+1)^2},$$

 $\|x_k - x^*\|^2 \ge \frac{1}{8} \|x_0 - x^*\|^2.$

- Suggests O(1/k) is not the optimal rate
- Accelerated gradient methods can achieve $O(1/k^2)$ rate

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

V: Heavy-ball method 31/43

Observations

Gradient descent:

$$-\gamma \nabla F(x_k) = x_{k+1} - x_k.$$

Consider the angle:
$$\theta_k \stackrel{\text{def}}{=} \operatorname{angle}(\nabla F(x_{k+1}), \nabla F(x_k)),$$

$$\lim_{k \to +\infty} \theta_k = 0.$$

Prove this claim.

Let a > 0 be some constant,

$$-\nabla F(x_{k+1}) \approx a(x_{k+1} - x_k).$$

V: Heavy-ball method 32/43

Heavy-ball method

Heavy-ball method (Polyak)

Initial: $x_0 \in \text{dom}(F)$ and $\gamma \in]0, 2/L[$;

$$y_k = x_k + a_k(x_k - x_{k-1}), \ a_k \in [0, 1],$$

 $x_{k+1} = y_k - \gamma \nabla F(x_k).$

V: Heavy-ball method 33/43

Heavy-ball method

Heavy-ball method (Polyak)

Initial: $x_0 \in \text{dom}(F)$ and $\gamma \in]0, 2/L[$;

$$y_k = x_k + a_k(x_k - x_{k-1}), \ a_k \in [0, 1],$$

 $x_{k+1} = y_k - \gamma \nabla F(x_k).$

- $x_k x_{k-1}$ is called the inertial term or momentum term
- a_k is called the inertial parameter
- Convergence can be proved by studying the Lyapunov function

$$\mathcal{E}(x_k) \stackrel{\text{def}}{=} F(x_k) + \frac{a_k}{2\gamma} \|x_k - x_{k-1}\|^2.$$

ullet In general, no convergence rate for $F\in \mathcal{C}^1_L$. Local rate for $F\in \mathcal{S}^2_{lpha,L}$

V: Heavy-ball method 33/43

Convergence rate

Theorem

Let x^* be a (local) minimiser of F such that $\alpha \text{Id} \preceq \nabla^2 F(x^*) \preceq L \text{Id}$ and choose a, γ with $a \in [0, 1[, \gamma \in]0, 2(1+a)/L[$. There exists $\underline{\rho} < 1$ such that if $\underline{\rho} < \rho < 1$ and if x_0, x_1 are close enough to x^* , one has

$$||x_k - x^*|| \le C\rho^k.$$

Moreover, if

$$a = \left(\frac{\sqrt{L} - \sqrt{\alpha}}{\sqrt{L} + \sqrt{\alpha}}\right)^2, \ \gamma = \frac{4}{(\sqrt{L} + \sqrt{\alpha})^2} \ \ then \ \ \underline{\rho} = \frac{\sqrt{L} - \sqrt{\alpha}}{\sqrt{L} + \sqrt{\alpha}}.$$

- Starting points need to close enough to x^*
- Almost the optimal rate can be achieve by gradient method (or first-order method)
- Gradient descent

$$\underline{\rho} = \frac{L - \alpha}{L + \alpha}.$$

V: Heavy-ball method 34/43

Convergence rate: proof

• Taylor expansion

$$x_{k+1} = x_k + a(x_k - x_{k-1}) - \gamma \nabla^2 F(x^*)(x_k - x^*) + o(||x_k - x^*||).$$

• Let $z_k = (x_k - x^*, x_{k-1} - x^*)^T$ and $H = \nabla^2 F$, then

$$z_{k+1} = \underbrace{\begin{bmatrix} (1+a)\operatorname{Id} - aH & -a\operatorname{Id} \\ \operatorname{Id} & 0 \end{bmatrix}}_{M} z_k + o(\|z_k\|).$$

• Spectral radius ho(M), $\eta=1-\gamma lpha$ $0=
ho^2-(a+\eta)
ho+a\eta.$

• $\rho(M)$ is a function of a and η (essentially γ).

V: Heavy-ball method 35/43

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

Convergence rate of gradient descent

Gradient descent with constant step-size:

• $F \in C_L^1$

$$F(x_k) - F(x^*) \leq \frac{L\|x_0 - x^*\|^2}{k+4}.$$

• $F \in S^1_{\alpha,L}$

$$F(x_k) - F(x^*) \leq \frac{L}{2} \left(\frac{L-\alpha}{L+\alpha}\right)^2 ||x_0 - x^*||^2.$$

Nesterov's optimal scheme

Optimal scheme with constant step-size

initial: Choose $x_0 \in \mathbb{R}^n$, $\phi_0 \in]0,1[$; Let $y_0 = x_0$ and $q = \alpha/L$.

repeat:

1. Compute $\phi_k \in]0,1[$ from equation

$$\phi_{k+1}^2 = (1 - \phi_{k+1})\phi_k^2 + q\phi_{k+1}.$$

Let $a_k = rac{\phi_k(1-\phi_k)}{\phi_k^2+\phi_{k+1}}$ and

$$y_k = x_k + a_k(x_k - x_{k-1}).$$

2. Update x_{k+1} by

$$x_{k+1} = y_k - \frac{1}{L} \nabla F(y_k).$$

until: stopping criterion is satisfied.

Convergence rate

Theorem (Convergence rate)

Let
$$\phi_0 \geq \sqrt{\alpha/L}$$
, then
$$F(x_k) - F(x^\star) \leq \min\left\{\left(1 - \sqrt{\frac{\alpha}{L}}\right)^k, \frac{4L}{(2\sqrt{L} + k\sqrt{\nu})^2}\right\} \\ \times \left(F(x_0) - F(x^\star) + \frac{\nu}{2}\|x_0 - x^\star\|^2\right),$$
 where $\nu = \frac{\phi_0(\phi_0L - \alpha)}{1 - \phi_0}$.

Convergence rate

Theorem (Convergence rate)

Let
$$\phi_0 \geq \sqrt{\alpha/L}$$
, then

$$\begin{split} F(x_k) - F(x^\star) &\leq \min\left\{\left(1 - \sqrt{\frac{\alpha}{L}}\right)^k, \frac{4L}{(2\sqrt{L} + k\sqrt{\nu})^2}\right\} \\ &\times \left(F(x_0) - F(x^\star) + \frac{\nu}{2}\|x_0 - x^\star\|^2\right), \end{split}$$

where $\nu = \frac{\phi_0(\phi_0 L - \alpha)}{1 - \phi_0}$.

Parameter choices:

•
$$F \in C_I^1$$
: $\phi_0 = 1$,

$$q=0, \;\; \phi_kpprox rac{2}{k+1} o 0 \quad ext{ and } \;\; a_kpprox rac{1-\phi_k}{1+\phi_k} o 1.$$

•
$$F \in S^1_{\alpha,L}$$
: $\phi_0 = \sqrt{\alpha/L}$

$$q=\sqrt{rac{lpha}{L}},~\phi_k\equiv\sqrt{rac{lpha}{L}}~~{
m and}~~a_k\equivrac{\sqrt{L}-\sqrt{lpha}}{\sqrt{L}+\sqrt{lpha}}.$$

Outline

- 1 Unconstrained smooth optimisation
- 2 Descent methods
- 3 Gradient of convex functions
- 4 Gradient descent
- 5 Heavy-ball method
- 6 Nesterov's optimal schemes
- 7 Dynamical system

VII: Dynamical system 40/43

Dynamical system of gradient descent

From gradient descent

$$\frac{x_{k+1}-x_k}{\gamma}=-\nabla F(x_k).$$

Let γ be small enough

$$\dot{X}(t) + \nabla F(X(t)) = 0.$$

Dynamical system of gradient descent

From gradient descent

$$\frac{x_{k+1}-x_k}{\gamma}=-\nabla F(x_k).$$

Let γ be small enough

$$\dot{X}(t) + \nabla F(X(t)) = 0.$$

Discretisation

Explicit Euler method

$$\dot{X}(t) = \frac{X(t+h) - X(t)}{h}.$$

Implicit Euler method

$$\dot{X}(t) = \frac{X(t) - X(t-h)}{h}.$$

Given a 2nd order dynamical system

$$\ddot{X}(t) + \lambda(t)\dot{X}(t) + \nabla F(X(t)) = 0.$$

Given a 2nd order dynamical system

$$\ddot{X}(t) + \lambda(t)\dot{X}(t) + \nabla F(X(t)) = 0.$$

Discretisation:

• 2nd order term

$$\ddot{X}(t) = \frac{X(t+h)-2X(t)+X(t-h)}{h^2}.$$

Implicit Euler method

$$\dot{X}(t) = \frac{X(t) - X(t-h)}{h}.$$

VII: Dynamical system 42/43

Given a 2nd order dynamical system

$$\ddot{X}(t) + \lambda(t)\dot{X}(t) + \nabla F(X(t)) = 0.$$

Discretisation:

2nd order term

$$\ddot{X}(t) = \frac{X(t+h)-2X(t)+X(t-h)}{h^2}.$$

Implicit Euler method

$$\dot{X}(t) = \frac{X(t) - X(t-h)}{h}.$$

Combine together:

$$X(t+h) - X(t) - (1-h\lambda(t))(X(t) - X(t-h)) + h^2 \nabla F(X(t)) = 0.$$

VII: Dynamical system 42/43

Given a 2nd order dynamical system

$$\ddot{X}(t) + \lambda(t)\dot{X}(t) + \nabla F(X(t)) = 0.$$

Discretisation:

• 2nd order term

$$\ddot{X}(t) = \frac{X(t+h)-2X(t)+X(t-h)}{h^2}.$$

Implicit Euler method

$$\dot{X}(t) = \frac{X(t) - X(t-h)}{h}.$$

Combine together:

$$X(t+h) - X(t) - (1-h\lambda(t))(X(t) - X(t-h)) + h^2 \nabla F(X(t)) = 0.$$

Choices:

- Heavy-ball: $h\lambda(t) \in]0,1[$.
- Nesterov: $\lambda(t) = \frac{d}{t}, d > 3.$

Reference

- S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
- B. Polyak. Introduction to optimization. Optimization Software, 1987.
- Y. Nesterov. Introductory lectures on convex optimization: A basic course. Vol. 87. Springer Science & Business Media, 2013.