In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: df=pd.read_csv("10_USA_Housing.csv")
df

Out[2]:

Adı	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferr 674\nLaurabur 3	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson \ Suite 079\r Kathleen,	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eliz Stravenue\nDaniel WI 06	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFP 4	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\ı AE (6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
USNS Williams\r AP 30153	1.060194e+06	22837.361035	3.46	6.137356	7.830362	60567.944140	4995
PSC 9258 8489\nAPO AA 4;	1.482618e+06	25616.115489	4.02	6.576763	6.999135	78491.275435	4996
4215 Tracy Ga Suite 076∖nJoshua V/	1.030730e+06	33266.145490	2.13	4.805081	7.250591	63390.686886	4997
USS Wallace\nFP 7	1.198657e+06	42625.620156	5.44	7.130144	5.534388	68001.331235	4998
37778 George R Apt. 509∖nEast N	1.298950e+06	46501.283803	4.07	6.792336	5.992305	65510.581804	4999

5000 rows × 7 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [4]: df.describe()

Out[4]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x2925af8cc40>

In [6]: sns.displot(df['Avg. Area Income'])

Out[6]: <seaborn.axisgrid.FacetGrid at 0x2925727f880>

In [7]: df1=df.drop(['Address'],axis=1)
 df1

Out[7]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06

5000 rows × 6 columns

In [8]: sns.heatmap(df1.corr())

Out[8]: <AxesSubplot:>

In [9]: from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression

```
In [11]: y=df['Avg. Area Income']
          x=df1.drop(['Avg. Area Income','Price'],axis=1)
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
          print(x_train)
                Avg. Area House Age Avg. Area Number of Rooms
          4754
                            5.748358
                                                        7.027627
          3297
                            5.653511
                                                        6.690172
          1019
                            5.608290
                                                        6.107279
          292
                            7.647151
                                                        9.086808
          831
                            5.205825
                                                        7.748964
          . . .
          4864
                            6.697178
                                                        7.018083
          1965
                            7.722146
                                                        5.791958
          2792
                            7.432324
                                                        6.770586
          1112
                            5.379707
                                                        7.309722
          2142
                            5.870558
                                                        5.728607
                Avg. Area Number of Bedrooms Area Population
          4754
                                          3.29
                                                   33026.124336
                                         2.50
          3297
                                                   45828.215282
                                         2.28
          1019
                                                   48649.610385
          292
                                         3.21
                                                   33196.059837
                                         4.33
          831
                                                   43703.777582
          . . .
                                           . . .
                                                             . . .
          4864
                                         3.22
                                                   36950.451212
                                         4.33
          1965
                                                   64566.687380
          2792
                                         3.33
                                                   31225.123268
          1112
                                         6.25
                                                   41872.643278
          2142
                                         2.45
                                                   24511.819985
          [3500 rows \times 4 columns]
In [12]:
         model=LinearRegression()
          model.fit(x_train,y_train)
          model.intercept_
Out[12]: 69052.51662953071
         coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
In [13]:
          coeff
Out[13]:
                                      Coefficient
                                      194.762835
                   Avg. Area House Age
```

```
Avg. Area House Age 194.762835

Avg. Area Number of Rooms -385.067352

Avg. Area Number of Bedrooms 429.256596

Area Population -0.021906
```

```
In [14]: prediction=model.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[14]: <matplotlib.collections.PathCollection at 0x2925fb545b0>


```
In [15]: model.score(x_test,y_test)
```

Out[15]: -0.0074141058159631346

```
In [16]: from sklearn.linear_model import Ridge,Lasso
```

Out[17]: Ridge(alpha=10)

```
In [18]: rr.score(x_test,y_test)
```

Out[18]: -0.0073878183105444695

```
In [19]: la = Lasso(alpha=10)
    la.fit(x_train,y_train)
```

Out[19]: Lasso(alpha=10)

```
In [20]: la.score(x_test,y_test)
```

Out[20]: -0.007124242133762504

In []: