

HP 64000 Logic Development System

Model 64621A State Analysis Control Board

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and workmanship for a period of 90 days from date of installation. During the warranty period, HP will, at its option, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's facility at no charge within HP service travel areas. Outside HP service travel areas, warranty service will be performed at Buyer's facility only upon HP's prior agreement and Buyer shall pay HP's round trip travel expenses. In all other cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environment specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

ISSUE A

SERVICE MANUAL CHANGES

	4 A	MI	JAI	IDE	ENI"	rici	C A	TI	ON	•
n	7 PA	. ru	JAI	1175	- 174				L JR	

Model Number: 64621A

Date Printed: June 1983

Part Number: 64621-90903

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:

Make all ERRATA corrections.

Make all appropriate serial number related changes indicated in the tables below.

Serial Prefix or Number	Make Manual Changes	Serial Prefix or Number	Make Manual Changes
ALL			

▲ NEW ITEM

Model 64621A is now supported by the Bluestripe program, which means you should no longer perform component level troubleshooting on the board whose part number is listed here. The Bluestripe pipeline contains replacement boards for 64000 options made by Hewlett-Packard (replacement boards for this instrument are available at the factory). The part number for the replacement board is:

64621-69503

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

Date: 7 March 1984

Page: 1 of 1

HEWLETT PACKARD

INESS F

COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

LOGIC PRODUCT SUPPORT DEPT. Attn: Technical Publications Manager Centennial Annex - D2

P.O. Box 617

Colorado Springs, Colorado 80901-0617

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form will be greatly appreciated. Thank you.

READER COMMENT SHEET

Service Manual, Model 64621A State Analysis Control Board 64621-90903, June 1983

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best describes your answer in questions 1 through 7. Thank you.

1. The information i	n this book is complete:						
Doesn't cov (what more do		1	2	3	4	5	Covers everything
2. The information i	n this book is accurate:						
Too man	y errors	1	2	3	4	5	Exactly right
3. The information i	n this book is easy to find:						
I can't find th	nings I need	1	2	3	4	5	I can find info quickly
4. The Index and Ta	ble of Contents are useful:						
Help	oful	1	2	3	4	5	Missing or inadequate
5. What about the "	how-to" procedures and exa	mp	les:				
No h	nelp	1	2	3	4	5	Very helpful
Too ma	ny now	1	2	3	4	5	I'd like more
6. What about the v	vriting style:						
Confu	using	1	2	3	4	5	Clear
7. What about orga	nization of the book:						
Poor	order	1	2	3	4	5	Good order
8. What about the s	size of the book:						
too big	/small	1	2	3	4	5	Right size
Comments:							

Particular pages wit	th errors?						
Name (optional): _							
	P ** 11 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1						
Addrace.							

Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

BUSINESS FIRST CLASS PERMIT NO. 1303

COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

LOGIC PRODUCT SUPPORT DEPT. Attn: Technical Publications Manager Centennial Annex - D2 P.O. Box 617 Colorado Springs, Colorado 80901-0617

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form will be greatly appreciated. Thank you.

READER COMMENT SHEET

Service Manual, Model 64621A State Analysis Control Board 64621-90903, June 1983

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best describes your answer in questions 1 through 7. Thank you.

1.	The information in this book is complete:						
	Doesn't cover enough (what more do you need?)	1	2	3	4	5	Covers everything
2.	The information in this book is accurate:						
	Too many errors	1	2	3	4	5	Exactly right
3.	The information in this book is easy to find:						
	I can't find things I need	1	2	3	4	5	I can find info quickly
4.	The Index and Table of Contents are useful:						
	Helpful	1	2	3	4	5	Missing or inadequate
5.	What about the "how-to" procedures and exa	ımp	les:				
	No help	1	2	3	4	5	Very helpful
	Too many now	1	2	3	4	5	I'd like more
6.	What about the writing style:						
	Confusing	1	2	3	4	5	Clear
7.	What about organization of the book:						
	Poor order	1	2	3	4	5	Good order
8.	What about the size of the book:						
	too big/small	1	2	3	4	5	Right size
С	omments:						
-							
-							
Pi	articular pages with errors?						
N	ame (optional):						
	ob title:						
С	ompany:						
Δ	ddress:						

Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

SERVICE MANUAL

MODEL 64621A STATE ANALYSIS CONTROL BOARD

REPAIR NUMBERS

This manual applies to 64621A State Analysis Control Boards with a repair number prefix of 2311A. For further information on repair numbers refer to "Instruments Covered by This Manual" in Section I, and Section VII for Backdating to earlier Models.

© COPYRIGHT HEWLETT-PACKARD COMPANY 1982, 1983
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

Manual Part No. 64621-90903

PRINTED: June 1983

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GROUND THE INSTRUMENT.

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with the power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification of the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

Table of Contents

Paragraph Pag	ge
Section I General Information	
1-1. INTRODUCTION	-1 -3 -4
Section II Installation	
2-1. INTRODUCTION. 2 2-3. INITIAL INSPECTION. 2 2-5. PREPARATION FOR USE. 2 2-7. INSTALLATION INSTRUCTIONS. 2 2-8. MAINFRAME CONFIGURATION. 2 2-13. CARDCAGE SLOT IDENTIFICATION. 2 2-19. SYNCHRONOUS EXPANSION BUS (SEB). 2 2-21. INTER MODULE BUS (IMB). 2 2-23. STORAGE AND SHIPMENT. 2 2-24. ENVIRONMENT. 2 2-26. PACKING. 2	-1 -1 -1 -1 -2 -2 -5
Section III Operation	
3-1. INTRODUCTION	-1
4-1. INTRODUCTION. 4 4-7. OPERATION VERIFICATION. 4 4-8. PERFORMANCE VERIFICATION. 4 4-11. MANUAL TESTS. 4 4-12. TEST 1. INPUT THRESHOLD and MINIMUM SWING. 4 4-13. TEST 2. INPUT THRESHOLD RANGE. 4	-1 -1 -2 -2
4-14. TEST 3. MIN CLOCK WIDTH & QUAL SETUP & HOLD TIME4	-2
4-15. TEST 4. DATA SETUP & HOLD TIME & QUAL CLOCK RATE	
4-17. TROUBLESHOOTING4-	16
4-25. TEST 1: MAINFRAME INTRFC. and STIMULUS. LOOP A4-31. TEST 2: CONTROL IC - SHIFT REGISTER. LOOP B4-3	
4-31. TEST 2: CONTROL IC - SHIFT REGISTER. LOOP B4-36. TEST 3: CLOCK IC - SHIFT REGISTER. LOOP C4-3	
4-41. TEST 4: SEQUENCER. LOOP D4-	22
4-50. TEST 5: STATE COUNT. LOOP E	
4-50. TEST 6: TRACE MEMORY. LOOPS F & G	
4-71. TEST 8: INTERMODULE BUS4-	30
4-75. TEST 9: STROBE GENERATOR CALIBRATION	
4-77. TEST 10: THRESHOLD CIRCUIT CALIBRATION	
4-84. TEST 12: REAR PANEL PORT STIMULUS. LOOP I4-	

Model 64621A - Table of Contents

Section	V	Adjustments
	5-4.	INTRODUCTION
	5-9.	5-7. TEST EQUIPMENT
Section	VI	Replaceable parts
	6-3. 6-5. 6-7. 6-10	INTRODUCTION. 6- ABBREVIATIONS. 6- REPLACEABLE PARTS LIST. 6- ORDERING INFORMATION. 6- SPARE PARTS KIT. 6- DIRECT MAIL ORDER SYSTEM. 6-
Section	VII	Manual Backdating
		INTRODUCTION
Section	VIII :	Service
	8-9. 8-31 8-36	INTRODUCTION. 8- STATE ANALYZER SUBSYSTEM BLOCK DIAGRAM. 8- 8-13. DESCRIPTION. 8- CONTROL BOARD BLOCK DIAGRAM. 8- CONTROL BOARD BLOCK DIAGRAM THEORY. 8- DETAILED CIRCUIT THEORY. 8-1 8-47. CLOCK TERM GENERATOR. 8-1 8-58. STROBE GENERATOR. 8-1 8-76. SEQUENCER. 8-1 8-95. ANALYSIS CONTROLLER. 8-1 8-16. STATE/TIME COUNTER. 8-2
	8-13	O. MNEMONICS

List of Figures and Tables

Figure or T	able Page
Section I	General Information
Table 1 Table 1	1-1. Model 64621A State Analysis Control Board
Section II	Installation
	2-1. State Subsystem With 20 Channel Acquisition2-3 2-2. State Subsystem, No 20 Channel Acquisition2-4
Section III	Operation
Section IV	Performance Verification
Figure	4-1. Clock Width Test Configuration. 4-3 4-2. Clock Width Rising Edge Waveform. 4-3 4-3. Clock Width Falling Edge Waveform. 4-4 4-4. Clock Probe Test Connector. 4-5 4-5. Setup and Hold Time Test Configuration 4-7 4-6. Setup and Hold Time Waveforms. 4-9 4-7. Data Probe Test Connector. 4-11 4-8. BNC Port Output Test Configuration 4-13 4-9. BNC Port 1 Waveform. 4-14 4-10. BNC Port 2 Waveform. 4-15 4-11. Automatic Tests. 4-16 4-12. Mainframe Interface. 4-18 4-13. Stimulus. 4-18 4-14. Control IC - Shift Register 4-20 4-15. Clock IC - Shift Register 4-21 4-16. Sequencer. 4-23 4-17. State Count. 4-25 4-18. Trace Memory. 4-27 4-19. Other Counter Tests. 4-29 4-20. Intermodule Bus. 4-30 are Tables. 4-32
Section V	Adjustments
	5-1. Adjustment Locations5-5
Section VI	Replaceable Parts
Figure Table 6	6-1. Reference Designators and Abbreviations

Model 64621A - List of Figures and Tables

Section VII Manual Backdating

Table 7-1. Manual Changes7-	-1
Section VIII Service	
Figure 8-1. State Analyzer Subsystem Block Diagram8-	-5
Figure 8-2. State Analysis Control Board Block Diagram8-	
Figure 8-3. Clock Term Generator Block Diagram8-1	1
Figure 8-4. Strobe Generator Block Diagram8-1	
Figure 8-5. Strobe Timing Relationship8-1	
Figure 8-6. Sequencer Functions8-1	
Figure 8-7. Sequencer Block Diagram8-1	
Figure 8-8. Analysis Controller Summary8-1	
Figure 8-9. Analysis Controller Block Diagram8-2	
Figure 8-10. State/Time Counter Block Diagram8-2	
Table 8-1. Mnemonics8-2	
Table 8-2. Schematic Diagram Notes8-1	•
Table 8-3. Logic Symbology8-1	
Figure 8-11. Probe/Preprocessor Interface8-1	
Figure 8-12. Strobe Generator8-1	
Figure 8-13. Sequencer8-1	
Figure 8-14. Sequence Occurrence Counter/Memory8-1	
Figure 8-15. Analysis Controller8-5	
Figure 8-16. Trace State/Time Counter8-5	
Figure 8-17. Trace Count/Status Memory8-5	
Figure 8-18. Mainframe Write Interface8-5	
Figure 8-19. Mainframe Read Interface	

Figure 1-1. Model 64621A State Analysis Control Board

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

- 1-2. This Service Manual contains information required to install, test and service the Hewlett-Packard Model 64621A State Analysis Control Board (SAC). Operating instructions are provided in a separate Operating Manual supplied with the instrument. It should be kept with the instrument for use by the operator.
- 1-3. Shown on the title page is a microfiche part number. This number can be used to order 4x6-inch microfilm transparencies of the manual. Each microfiche contains up to 96 photoduplicates of the manual pages.

1-4. SPECIFICATIONS.

1-5. Instrument specifications are listed in table 1-1. These specifications are the performance standards or limits against which the instrument is tested. Table 1-2. lists supplemental characteristics. Supplemental characteristics are not specifications but are typical characteristics included as additional information for the user.

Table 1-1. Specifications

Includes Models 64621A Control Board, 64622A 40 Channel Acquisition, and 64623A 20 Channel Acquisition Boards with General Purpose Probes.

Unqualified Clock Rate: 25 MHz max.

Qualified Clock Rate: 10 MHz max.

Time Count: Accuracy 0.1% or 40 ns, whichever is greater.

Pulse Widths, Setup and Hold Times: all polarities.

Clock Pulse Width - 20 ns min.

Clock Qualifier Setup Time - time qualifier must be present prior to active edge of clock - 20 ns max.

Clock Qualifier Hold Time - time qualifier must remain present and stable after active edge of clock - 0 ns.

Data Setup Time - time data must be present prior to active edge of clock - 30 ns max.

Data Hold Time - time data must remain present and stable after active edge of clock - 0 ns.

BNC Port Outputs (Mainframe Rearpanel): programmable polarity.

Stimulus (Port 1) - TTL pulse output into 50 Ohms.

Occurs at each recognized event.

Trigger Events,

Pulse Width 50 ns +/- 20 ns.

Delay from clock 225 ns +/- 25 ns.

Sequencer Events,

Pulse Width 50 ns +/- 20 ns.

Table 1-1. Specifications (Cont'd)

Delay from clock 200 ns +/- 25 ns.

Halt (Port 2) - TTL level output into 50 Ohms.

False at execute, true at event recognition or halt.

Measurement Complete,

Delay from clock 225 ns +/- 25 ns.

Trace Point,

Delay from clock 225 ns +/- 25 ns.

Table 1-2. Supplemental Characteristics

Memory Size:

Width - expandable to 120 channels in combinations of 20 and/or 40 channel acquisition boards (max 3 ACQ boards).

Depth - Trace Storage - 256 locations.

Overview (Model 64623A only) - 4096 locations.

Sequence: Multiple function control with windows and qualifiers, occurrence, and restart.

Clocks: 8 ORed clocks and/or qualifiers.

Interactive Read of Trace Data: up to 4.75 MHz qualified clock rate.

Run Status:

Waiting for trigger. Trace in process. Overview in process. Slow clock. Measurement complete.

Overview Functions: (Model 64623A only).

Sequencer Windowed/Controlled.

3 Modes,

State Data.

Time Count, start to stop, 8.0 hrs max time within 40 ns or 0.1%.

Event Count, start to stop, count by one from 0 to 611,670; max count 750 X 10e+9.

3 Displays,

Overview Histogram.

Overview List.

Overview Graph.

IMB Functions (interconnection with other modules):

Master Enable (drive, receive).

Storage Enable (drive, receive).

Trigger Enable (drive, receive).

Trigger (drive, receive).

Delay Clock (drive only).

Table 1-2. Supplemental Characteristics (Cont'd)

20 Bit Ranging (Model 64623A only):

Applicable to trace or overview functions.

Four trace ranges or up to 15 overview ranges.

Range on a contiguous subset of the 20 bits (right justified).

Trace Count Measurement:

Windowing of time or state count.

Stored State to Stored State,

Time Count - 8.0 hrs max time within 40 ns or 0.1%.

Event Count - count by one from 0 to 611,670, max count 750 X 10e+9.

Symbol Entry and Output:

Definition of symbol maps in format specification.

Use of symbols in Trace specification.

Trace list uses symbols to present symbolic display.

Each label may have its own or use another symbol map.

Probing Versatility:

General Purpose Probes (Models 64635A and 64636A).

General Purpose Preprocessor with dedicated interfaces.

See Model 64650A General Purpose Preprocessor Manual.

1-6. INSTRUMENTS COVERED BY THIS MANUAL.

- 1-7. Attached to the instrument or printed on the printed circuit board is the repair number. The repair number is in the form: 0000A0000. It is in two parts; the first four digits and the letter are the repair prefix, and the last five are the suffix. The prefix is the same for all identical instruments. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the repair number prefix(es) listed under REPAIR NUMBERS on the title page.
- 1-8. An instrument manufactured after the printing of this manual may have a repair number prefix that is not listed on the title page. This unlisted repair number prefix indicates that the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual for the newer instrument.
- 1-9. In addition to change information, the supplement contains information for correcting errors in the manual. To keep this manual as current as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page. Complimentary copies of the supplement are available from Hewlett-Packard.
- 1-10. For information concerning a repair number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard Office.

1-11. RECOMMENDED TEST EQUIPMENT.

1-12. Equipment required to maintain the Model 64621A is listed in Table 1-3. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

Table 1-3. Recommended Test Equipment

4 1/2 Digit Multimeter accurate to +/-1 mV. (Hewlett-Packard Model 3466A or equivalent.)

Hewlett-Packard Model 5005A Signature Multimeter.

Dual Channel 100 MHz Oscilloscope with delta time measurement accurate to 0.5 ns. (Hewlett-Packard Model 1743A with probes or equivalent.)

1-13. DESCRIPTION.

- 1-14. The State Analyzer is used to monitor information flow in the data domain. The information may be a software program, the actions of a hardware state machine, or random logic signals.
- 1-15. The State Analyzer consists of one Model 64621A State Analysis Control Board, and from one to three State Data Acquisition Boards. The State Data Acquisition Boards may be the 40 Channel State Data Acquisition Board, the 20 Channel State Data Acquisition Board, or a combination of the two Acquisition Boards. The State Analyzer will have the necessary number of Data and Clock Probes for the Acquisition Boards used (Models 64635A and 64636A).
- 1-16. Up to three Acquisition Boards may be combined to form a State Analyzer with as many as 120 channels.
- 1-17. Logic Analyzers within one Mainframe may be connected together using the Inter Module Bus (IMB). One possible use of the IMB is to allow a State Analyzer to trigger a Timing Analyzer, or another State Analyzer.

SECTION II

INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains information for installing and removing the Model 64621A. Included are initial inspection procedures, preparation for use, and instructions for repacking the instrument for shipment.

2-3. INITIAL INSPECTION.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. Procedures for checking electrical performance are given in Section IV. If the contents are not complete, if there is mechanical damage or defect, or if the instrument does not pass the Performance Tests, notify the nearest Hewlett-Packard Office. If the shipping container is damaged, or if the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard Office. Keep the shipping materials for carrier's inspection. The HP office will arrange for repair or replacement at HP option without waiting for claim settlement.

2-5. PREPARATION FOR USE.

2-6. There are no specific preparation for use procedures except the actual installation of the boards in the Mainframe cardcage.

2-7. INSTALLATION INSTRUCTIONS.

2-8. MAINFRAME CONFIGURATION.

- 2-9. Depending on the number of channels required, the State Analysis Subsystem will use two or more card slots of the Mainframe cardcage.
- 2-10. Due to the way the Mainframe CPU identifies the boards installed in the cardcage, the State Control Board (64621A) should be installed in the lowest numbered card slot available.
- 2-11. The 64622A 40 Channel State Data Acquisition Boards (if any) must be installed in the next higher numbered card slots. See Figures 2-1 and 2-2.
- 2-12. The 64623A 20 Channel State Data Acquisition Board (if any) is installed in the next higher numbered slot. See Figures 2-1 and 2-2.

2-13. CARDCAGE SLOT IDENTIFICATION.

- 2-14. When the CPU finds a State Analysis Control Board in the cardcage, the CPU then expects to find either a 20 Channel Acquisition Board or a 40 Channel Acquisition Board in the next higher numbered slot.
- 2-15. The concept of the Control Board being in a lower numbered slot and Acquisition Boards in the higher slots is due to the system assigning labels (Pod 1, Pod 2, etc.) to the 20 bit groups of information stored in the Acquisition board's

- memory. This is important when connecting the Pods to the User's System, and in Preprocessor applications (the software assumes that the information on Pod 1 is the Addresses from the User's System).
- 2-16. When connecting the Pod Cables to the State Analysis Boards, the Pods should be labeled as indicated in Figures 2-1 or 2-2, i.e., Pod 1 to Pod 1, etc.
- 2-17. Up to three Acquisition Boards may be installed with one Control Board forming one State Analysis Subsystem.
- 2-18. The State Analysis Subsystem configuration must not interfere with the Emulation Subsystem (if any) in the highest numbered card slots (some Mainframes may not have room for both a State Analysis Subsystem and an Emulation Subsystem).

2-19. SYNCHRONOUS EXPANSION BUS (SEB).

2-20. The State Control and Acquisition Boards must be grouped together to allow the Synchronous Expansion Bus (SEB) cable (W3) to connect the Control Board to the Acquisition Boards (J2). See Figures 2-1 and 2-2.

2-21. INTER MODULE BUS (IMB).

2-22. Some systems may contain more than one State Analysis Subsystem or a combination of a State Analyzer and another type of Analysis Subsystem. If this is the case, the second State Subsystem is installed in the same manner as the first one. If the second Analyzer is not a State Analyzer, refer to that Analyzer's Service Manual for installation information. The Inter Module Bus (IMB) Cable, W4, is installed accross the top of the boards (J1). See Figures 2-1 and 2-2.

Figure 2-1. State Subsystem With 20 Channel Acquisition

Figure 2-2. State Subsystem, No 20 Channel Acquisition

2-23. STORAGE AND SHIPMENT.

2-24. ENVIRONMENT.

2-25. This instrument may be stored or shipped in environments within the following limits:

	40 Deg C to +75 Deg C
Humidity	5% to 80%
	15000 M (50000 ft)

The instrument should also be protected from temperature extremes which cause condensation within the instrument.

2-26. PACKING.

- 2-27. Tagging for Service. If the instrument is to be shipped to a Hewlett-Packard Sales/Service Office for service or repair, attach a tag showing owner (with address), complete instrument repair number, and a description of the service required.
- 2-28. Original Packing. Containers and materials identical to those used in factory packing are available through Hewlett-Packard Offices. Mark the container FRAGILE to ensure careful handling. In any correspondence, refer to the instrument by model number and complete repair number.
- 2-29. Other Packing. The following general instructions should be used for repacking with commercially available materials:
 - a. Wrap instrument in heavy plastic or paper. (If shipping to Hewlett-Packard Office or Service Center, attach a tag indicating type of service required, return address, model number, and complete repair number.
 - b. Use a strong shipping container. A double wall carton made of 350 pound test material is adequate.
 - c. Use a layer of shock-absorbing material 70 to 100 mm (3 to 4 inches) thick around all sides of the instrument to provide firm cushioning and prevent movement inside container.
 - d. Seal shipping container securely.
 - e. Mark shipping container FRAGILE to ensure careful handling.
 - f. In any correspondence, refer to instrument by model number and complete repair number.

NOTES

SECTION III

OPERATION

3-1. INTRODUCTION.

3-2. The operation of the Model 64621A is a function of the system software. Complete operation from the keyboard of the system is beyond the scope of the Service Manual. Please refer to the Operator's Manuals for the procedure.

NOTES

SECTION IV

PERFORMANCE VERIFICATION

4-1. INTRODUCTION.

- 4-2. This section describes the Performance Verification (opt_test) for Model 64621A State Analysis Control Board. This Section consists of three parts; 1. Operation Verification, 2. Performance Verification, and 3. Troubleshooting.
- 4-3. The Operation Verification tests are all automatic and require no test equipment or dissassembly of the Mainframe. The Operation Verification provides a 90% assurance that the Model 64621A meets all specifications.
- 4-4. The Performance Verification tests require test equipment and disassembly of the Mainframe. The Performance Verification tests involve manual testing and verification of specifications. Therefore, the Performance Verification Tests should be run only by a qualified service person.
- 4-5. The Performance Verification tests are divided into two parts; 1. automated tests, and 2. manual tests. The automated test must all pass before performing the manual tests.

NOTE

Before running the following tests, insure the boards are installed as indicated in Section II of this manual. Both Operation Tests and Performance Tests must be run to insure that the Model 64621A meets all specifications after repair.

4-6. The Troubleshooting portion of this Section describes the tests, shows the displays for the tests, decodes the displays, and tells how to use the tests with Signature Analysis for troubleshooting.

4-7. OPERATION VERIFICATION.

- a. Press opt-test. RETURN.
- b. Enter SLOT # of State Control Board. RETURN.
- c. Press run all boards. RETURN.
- d. The status line near the bottom should read "STATUS: 10MHz Verification PASSED".
- e. Run the continuity tests as outlined in Section IV of the Model 64635A General Purpose Data Probe, and the Model 64636A General Purpose Clock Probe Service Manuals.

4-8. PERFORMANCE VERIFICATION.

- 4-9. Automated Tests.
 - a. Press opt test, RETURN.
 - b. Enter SLOT# of State Control Board , RETURN.

c. Press run all boards, RETURN.

4-10. The status line near the bottom of the display should read "Status: 10MHz Verification Passed". If a failure occurred, refer to the paragraph on Troubleshooting in Section IV of this manual. This manual covers only the tests for the Control Board.

4-11. MANUAL TESTS.

4-12. TEST 1. INPUT THRESHOLD and MINIMUM SWING.

Refer to the Model 64635A and 64636A Service Manuals for the procedure.

4-13. TEST 2. INPUT THRESHOLD RANGE.

Refer to the Model 64635A and 64636A Service Manuals for the procedure.

4-14. TEST 3. MIN CLOCK WIDTH & QUAL SETUP & HOLD TIME.

Specifications:

Clock Width: 20 nS at threshold level.

Qualifier Setup Time: 20 nS.

Qualifier Hold Time: 0 nS.

Description:

This Test verifies that the clock input circuitry functions properly with an input signal having a minimum clock width.

Equipment:

Pulse	Generator.	• • • • •	• • •	 • •	• • • • • • • •	• • •	.HP8013B	
Oscili	loscope			 	.HP1722B	or	HP1743A	

Figure 4-1. Clock Width Test Configuration

Figure 4-2. Clock Width Rising Edge Waveform

Procedure: (Need Control Board and at least one Acquisition Board with General Purpose Probes.)

- a. Setup Pulse Generator for waveform in Figure 4-2.
- b. Press meas_sys (only if more than one measurement system is installed).
- c. Press state x.
- d. Press format_specification.
- e. Press clock_is rising_edge channel_0 and low_level channel_1 and low_level channel_2 and low_level channel_7.
- f. Press execute.
- g. Verify on trace list that "time count rel" column is .16 uS, .20 uS, or .24 uS.
- h. Repeat for rising edge of channel 1 through 7. Set all other clock channels to low level.

Figure 4-3. Clock Width Falling Edge Waveform

- i. Setup Pulse Generator for the waveform in Figure 4-3.
- j. Press clock_is falling_edge channel_0 and high_level channel_1 and high_level channel_2 and high_level channel_7.
- k. Press execute.
- 1. Verify on trace list that "time count rel" column is .16 uS, .20 uS, or .24 uS.
- m. Repeat for falling edge of channel 1 through channel 7. Set all other clock channels to high level.

Jumper wire on RS232 connector. Signal on pins 16, 17, 18, 19, 20, 21, 22, and 23. Signal ground pin 15.

Connecting BNC to RS232 connector.

DBM-25P TRW cinch	1251-0063
BNC connector	1250-1032

Figure 4-4. Clock Probe Test Connector

4-15. TEST 4. DATA SETUP & HOLD TIME & QUAL CLOCK RATE.

Specifications:

Data Setup Time: 30 nS maximum.

Data Hold Time: 0 nS.

Description:

Since the data inputs are sampled with selected transitions of the clock, they must remain stable at the time of the clock to ensure that the desired input state is sampled. Data setup and hold time specifications define the time period that data inputs must remain stable. Data setup time is the time prior to the clock that data inputs must begin to be stable; data hold time is the time after the clock when data inputs are no longer required to remain stable. This test is to verify that the correct state is sampled when data inputs with minimum setup and hold time requirements are presented to the State Analyzer.

Equipment:

Pulse Generators	(2)HP8013E	3
Oscilloscope		L

Figure 4-5. Setup and Hold Time Test Configuration

Model 64621A - Performance Verification

Procedure:

- a. Press meas_sys (only if more than one measurement system is installed.)
- b. Press state_x.
- c. Press format_specification.
- d. Adjust Pulse Generators 1 and 2 for waveforms A and B respectively as in Figure 4-6.

Figure 4-6. Setup and Hold Time Waveforms

Model 64621A - Performance Verification

- e. Press execute.
- f. Verify "11111H" for data probe under test.
- g. Change Pulse Generator 2 to waveform C.
- h. Press execute.
- i. Verify "00000H" for data probe under test.
- j. Change Pulse Generator 1 to waveform D.
- k. Press format specification.
- 1. Press clock is falling edge channel 0.
- m. Press execute.
- n. Verify "00000H" for data probe under test.
- o. Change Pulse Generator 2 to waveform B.
- p. Press execute.
- q. Verify "11111H" for data probe under test.
- r. Press clock_is both_edges channel_0.
- s. Press execute.
- t. Verify alternating "00000H" and "11111H" for data probe under test and "time count rel" column is .08 uS or .12 uS.

Back view, looking at solder cups. Jumper wire on RS232 solder connector. Signal on pins 2-6, 8-12, 15-24. Signal ground on pin 25.

Side view, connecting BNC to RS232 connector.

DBM-25P TRW cinch	
RNC connector	1250 1032

Figure 4-7. Data Probe Test Connector

4-16. TEST 5. BNC PORT OUTPUTS.

```
Specifications:
    Stimulus (Port 1):
         Pulse Width:
             Trigger Events: 50 nS +/-20 nS.
             Sequencer Events: 50 nS +/- 20 nS.
         Delay From Clock:
             Trigger Events: 225 nS +/-25 nS.
             Sequencer Events: 200 nS +/-25 nS.
    Halt (Port 2):
        Delay From Clock:
             Measurement Complete: 225 nS +/-25 nS.
             Trace Point: 225 nS +/-25 nS.
Description :
    Input clock, measure delay to BNCs using an Oscilloscope.
Equipment:
```


Figure 4-8. BNC Port Output Test Configuration

Procedure for Stimulus (BNC Port 1):

- a. adjust Pulse Generator for 100 KHz (10 uS) square wave, with amplitude from 0 V. to +2.8 V. (Clock Threshold is automatically set for TTL = +1.4 V.)
- b. Press meas_system (only if more than one measurement system is installed).
- c. Press state_x.
- d. Press assert bnc_port_1 on all_triggers.
- e. Press execute repetitively.
- f. Press trace specification.
- g. Set Oscilloscope to measure td and tw, as shown in Figure 4-9.

Figure 4-9. BNC Port 1 Waveform

- h. Verify that Port 1 output for Trigger Events has a time delay (td) of 225 nS +/-25 nS, and a pulse width (tw) of 50 nS +/-20 nS measured at TTL levels (+1.4 V. threshold).
- i. Press halt.
- j. Press sequence term number 1 find any state enable.
- k. Press sequence term number 2 find any state disable.
- 1. Press assert bnc port 1 on sequence enable and disable.
- m. Press trigger on nothing.
- n. Press execute repetitively.
- o. Press trace specification.
- p. Using the Pulse Generator set up of previous measurement, measure td and tw with the Oscilloscope.
- q. Verify that Port 1 output for Sequence Events has a time delay (td) of 200 nS +/-25 nS and a pulse width (tw) of 50 nS +/-20 nS measured at TTL levels (+1.4 V. threshold).

Procedure for Halt (BNC Port 2):

- a. Move channel A of the Oscilloscope to Port 2.
- b. Adjust Pulse Generator for square wave of 50 Hz with amplitude from 0 V. to +2.8 V. (Clock Threshold is automatically set for TTL = 1.4 V.)
- c. Press halt.
- d. Press trigger on any state.
- e. Press trigger position is end of trace.

- f. Press assert bnc port 2 on measurement_complete.
- g. Press execute repetitively.
- h. Press trace_specification.
- i. Set Oscilloscope to measure td. (Turn Intensity up to see channel A.)

Figure 4-10. BNC Port 2 Waveform

- j. Verify that Port 2 output for Measurement Complete has a time delay (td) of 225 nS +/-25 nS.
- k. Press halt.
- 1. Press assert bnc port 2 on trace_point.
- m. Press execute repetitively.
- n. Press trace specification.
- o. Using Oscilloscope set up of previous measurement, measure time delay (td).
- p. Verify that Port 2 output for Trace Point has a time delay (td) of 225 nS +/-25 nS.

10 MHz State Test: Board in Slot 2

4-17. TROUBLESHOOTING.

11

12

4-18. General Comments. If the operation verification failed, troubleshoot the first test that failed, then re-run operational verification. The automatic tests listed in Figure 4-11 are interdependent so that all tests preceeding a given test must pass for the given test to pass.

Pass Tested: 1

Failed:

0

Failed Slot 2: State Control and Clock Tested Automatic Tests a Mainframe interface and stimulus 1 Control IC - shift register 0 1 1 0 3 Clock IC - shift register 0 1 4 Sequencer Ü 5 State count 1 1 0 6 Trace memory 1 0 7 Other counter tests 1 Intermodule Bus Manual Tests 0 Strobe generator calibration 0 Threshold circuit calibration 10

Figure 4-11. Automatic Tests

4-19. Tests 9 and 10 are used in Chapter V, Adjustments.

Rear panel PORT stimulus

Preproc interface data bus stimulus

NOTE

There are many TTL-ECL and ECL-TTL Translators in this product. A bad TTL level can be mistaken for a good ECL level! Please pay close attention to the levels when troubleshooting using the schematics. Also, a bad TTL input level can cause the entire TTL chip to output bad information.

- 4-20. Each automatic test is now described, and a signature analysis path provided. Each SA path works its way from the test output back towards the inputs. To run a particular test, press opt_test then RETURN. Press "SLOT #" of the State Control board, then RETURN. Finally, press run, "SLOT #", test, "test # (of first failing test)", repeat, then RETURN. Examples of valid commands while operating the State Analysis Performance verification are as follows:
 - a. "run 1 test 3 repeat RETURN". This runs test 3 repeatedly on the board in slot 1, and allows signatures to be taken.
 - b. "display 2 test 9 RETURN". This displays the results of test 9 for the board in slot 2. It does not cause test 9 to run. Various other commands are prompted by the softkeys, e.g., "stop" stops the test in progress; "list file_name" writes the display to the designated file; "end" causes the program to leave State Analysis PV and go to option test PV.
- 4-21. When a bit pattern is given (e.g. data 00000100) the 1 indicates that bit 2 has failed. In all cases, a 0 indicates pass and a 1 indicates failure; the msb is to the extreme left; all patterns start with bit 0 unless otherwise noted.

4-22. The Synchronous Expansion Bus (SEB) connects the State Control board to State Acquisition boards. The SEB is not tested here; it is tested by the automatic tests for the State Acquisition boards. Also, the overview functions for the Analysis Controller chip are not tested here.

4-23. Configuration. For the purpose of running P.V. during fault isolation, the State Analysis Subsystem can be run in a minimum configuration. The minimum configuration for the various boards is shown in the following table:

Table 4-1. Troubleshooting Configurations

	Во	ard Under Te	est
Need	64621A	64622A	64623A
64621 A	YES	YES	YES
64622 A	NO	YES	YES
64623A	NO	NO	YES
Clock Probe	NO	NO	NO
Data Probe	N/A	NO	NO
SEB	NO	YES	YES
IMB	NO	NO	NO
Other Boards	NO	NO	NO

4-24. After repairing individual boards, the system must be configured to a standard configuration per Section II and pass the "run_all_boards" test. This will uncover system interaction problems or failures if they exist. Note that the IMB test using a Timing (64600S) Subsystem will pass only if the Timing Subsystem is completely installed and correctly cinfigured.

4-25. TEST 1: MAINFRAME INTRFC. and STIMULUS. LOOP A

4-26. Purpose -the purpose is two-fold, to verify that the mainframe can control the State Control board, and to stimulate the Sequencer and the Clock Threshold D/A Converters (DACs). The Strobe Generator is also exercised.

4-27. How -the Slow Clock Dectector is reset, then a Performance Verification Strobe (PPVSTB) is written to the Strobe Generator. This triggers the Slow Clock Detector monostable and its status is read at the Analysis Status Buffer.

4-28. Results -Strobe Request passes if the monostable is read high. Release data bus is a read of the mainframe data bus when nothing is addressed. Failure indicates that a card in the cardcage is causing problems on the data bus. The stimulus portion of this test is write only, therefore, no results are given for it.

10 MHz State Test: Board in Slot 2 Pass Tested: 1 Failed: 0

Slot 2: State Control and Clock

Test 1: Mainframe interface and stimulus

Strobe Request Pass

Release data bus 0000000000000000

Figure 4-12. Mainframe Interface

4-29. Stimulus -A staircase ramp is produced by the DACs (TP11 & TP12) during this test. See Figure 4-13. The DACs are also stimulated by test 10. The Sequencer is exercised in a write-only mode during this test in order to break its feedback loops. This test loads the Sequence Transition Memories and the Sequence Occurrence Counter Memories, then stimulates the Sequencer by operating the Sequence State Latch/Counter in the count mode (HLD asserted). Loopback occurs when the State Latch/Counter latch the next state from their parallel inputs (HLD is not asserted).

Figure 4-13. Stimulus

4-30. Loop A Signature Path for Strobe Request: U121, U122, U117, U65.

Loop A signature Path for Release Data Bus: U121, U122.

Loop A Signature Path for Strobe Generator: U24, U52, U8, U101.

Loop A Signature Path for DACs: U55, U54, U102, U121.

Loop A Signature Path for Sequencer: U16, U80, Occurrence Counter, Occurrence Count Memories, Transition Memories, Sequence State Latch/Counter, Mainframe Interface.

4-31. TEST 2: CONTROL IC - SHIFT REGISTER, LOOP B

4-32. Purpose - to verify that the shift register within the Analysis Controller, U1, can be loaded correctly.

4-33. How -Serial Data is loaded into U1 through pin 20. Pin 18 is the enable and pin 19 is the clock. Pin 17, NMC, outputs the same data 59 clock cycles later.

4-34. Results -Register data passes if the shift register overflowed correctly. The data is read by the Analysis Status Buffer as the signal NMC (memory complete). Shift control refers to the testing of the signal LLD.

10 MHz State Test: Board in Slot 2 Pass Tested: 1 Failed: 0

Slot 2: State Control and Clock Test 2: Control IC - shift register

Register data

All 0's Pass All 1's Pass Patterns Pass

Shift control Pass

NOTE: This tests only the shift register.

Figure 4-14. Control IC - Shift Register

4-35. Loop B Signature Path - U121, U122, U1, U103, U102.

4-36. TEST 3: CLOCK IC - SHIFT REGISTER. LOOP C

4-37. Purpose - to verify that the Clock Term Generator, U25, can be loaded correctly.

4-38. How - Serial Data is loaded into U25 pins 13 and 15. Pin 14 is the clock. Pins 26 and 28 output the same data several clock cycles later, and the results are read at the Status Buffer.

4-39. Results -Register input bits passes if the shift register overflowed correctly. The bits are read as HCDO and HCD1 at the Analysis Status Buffer. External Clocks is an indirect test which shows that U25 is not activating the Strobe Generator.

10 MHz State Test: Board in Slot 2 Pass Tested: 1 Failed: (

Slot 2: State Control and Clock Test 3: Clock IC - shift register

Register input bits 10

All 0's 00 (1 = Error)

All 1's 00

Patterns 00

External Clocks Pass

Figure 4-15. Clock IC - Shift Register

4-40. Loop C Signature Path - U121, U122, U25, U102.

4-41. TEST 4: SEQUENCER, LOOP D

4-42. Purpose - to verify operation of the Sequencer.

NOTE

This test contains two feedback loops -U16 pin 3 to U17 pin 11 (LOCCRY) and U42 outputs to U18 parallel inputs. Signature Analysis of feedback loops might fail to isolate the failed component. In that case, use Test 1 which stimulates the Sequencer without allowing loopback. Also, all locations of the Sequence Transition Memories are not tested. If a Transition Memory failure is suspected, use Test 1 because it exercises all memory locations.

4-43. How -With the Sequence State Latch/Counter in the count (load) mode, Transition Memories and the Occurrence Memories are loaded. The Analysis Controller and the Sequence State Latch/Counter are then put into the run mode, and strobes are generated via PPVSTB. The events that follow are complex and only an overview is given here. The Sequence State Latch/Counter is clocked by PPLS (pipeline strobe) which is enabled by the Analysis Controller at U5. The Sequence State is the output of the Sequence State Latch/Counter, and is read as TSSO-7 (Trace Sequence State) by the Sequence Read Register.

4-44. Next, the Sequence Occurrence Counter and Counter Memories are tested. The Counter is clocked by PSOCINC. PSOCINC in the run mode is enabled by the Analysis Controller at U5. The only output of the Occurrence Counter is Occurrence Carry (LOCCRY) it is latched by the Pipeline Latch/Counter and read as TSS4, using the Sequence Read Register. RAM address in Figure 4-16 refers to the output of U42; it is also latched by the Pipeline Latch/Counter and then read as TSS4-7 by the Sequence Read Register.

4-45. Now the plot thickens. The Trace Count/Status Memory Address Counter (MAC) and Trace Point bit (LTRCP) are needed to test the outputs of memories U36 and U38 which are processed by the Analysis Controller. The MAC is cleared, incremented by HQWRITE, and read by the Trace MAC Read Register; Figure 4-16 reports this as Memory Address. Trace Point is tested by clearing U98, then setting it by having the Analysis Controller issue an NTRIG (Trigger). The result, LTRCP, is read by the Analysis Status Buffer.

4-46. Sequence Addressing in Figure 4-16 is a test of the address lines of the Transition Memories. RAM U36 and the Analysis Controller are loaded so that a walking ones address pattern causes U36 to output Sequence Store Qualify (LSSQ). This causes the Analysis Controller to enable HQWRT, provided other Analysis Controller inputs are good. Also, HBOTF can cause failures in HSTR signal. HQWRT increments the MAC. Now that the Transition Memories and the MAC and LTRCP are known to work, additional functions of the Analysis Controller can be tested. The Analysis Controller inputs tested are HSTR (Sequencer Trigger), LSTE (Sequencer Trigger Enable), LSSE (Sequencer Store Enable), and LSME (Sequencer Master Enable). The results are obtained from the NTRIG and HQWRITE outputs of the Analysis Controller.

4-47. Results - all results of this test are read at one of three places: the Sequence Read Register, the Trace MAC Read Register, or LTRCP at the Analysis Status Buffer.

10 MHz State Test: Board in Slot 2 Pass Tested: 1 Failed: 0

Slot 2: State Control and Clock

Test 4: Sequencer

54321 9876543210

State Register Count 00000000 Load 00000000

Occur Counter Bits True 0000000000000000

False 0000000000000000

RAM Address 0000

Memory Address 00000000, Trace Point Pass

Sequence Addressing Pass

Functions 0000 (HSTR, LSTE, LSSE, LSME)

Figure 4-16. Sequencer

4-48. Figure 4-16 Interpretation.

State Register Count 00000000

(eight bit Sequence State output by U17 and U18 when clocked by NINCSS)

Load 00000000

(eight bit Sequence State latched by U17 and U18 when HLD is not asserted)

Occur Counter Bits True 000000000000000 *(No Carry Load)

False 00000000000000000

(sixteen bits loaded from U58-U61 into U78, U79, U81, U82, then unloaded through each pin 4 and gated by U80 and U16 to become LOCCRY)

RAM Address 0000 (four bit input to U58-U61 on lines A0-A3)

Memory Address 00000000, Trace Point

(outputs of U104 and U105 read at U68, Trace Point is the output of U98 read at U122)

Sequence Addressing Pass

(bits AO-A7 of U36 tested by output at pin 4, LSSQ)

Functions 0000 (HSTR,LSTE,LSSE,LSME)
(U1 input pins 2,37,36,38 tested at U1 output pins 4,35)

* appears on failure of c arry bit on U78 pin 4 only.

4-49. Loop D Signature Path for State Register: U121, U89, U83, U84, U17, U18, U85, U52, U101.

Model 64621A - Performance Verification

Loop D Signature Path for Occurrence Counter: U16, U78-U82, U58-U61, U42, U62-U64, U17, U18. (Note: go to Test 1 for test without loopback)

Loop D Signature Path for Memory Address: U121, U122, U68, U98, U104, U105, U5, U1.

Loop D Signature Path for Sequence Addressing and Functions: U1, U36, U38.

4-50. TEST 5: STATE COUNT, LOOP E

- 4-51. Purpose verify operation of the Trace State/Time Counter U112 in the state count mode.
- 4-52. How -The Counter temporarily stores data in location 00(Hex) of the Trace Count/Status Memory. That location is read at the Trace Data Read Register.
- 4-53. One difficulity with this test is that it requires the Trace Count/Status Memory to work before it is tested (Test 6). In particular, the address used to write data to the RAMs is not sampled in Test 5 because RAM outputs are sampled at read time. If Test 5 fails and only RAM outputs are bad, test the Trace Count/Status Memory Address Selector and the Memory Address Counter using signature analysis, or run Test 6 and take signatures in both the main loop and the write loop.
- 4-54. The Counter uses the following controls: HQWRT which resets the Counter; PINC which increments the count states; LSTATE which puts the Counter in the count states mode; HCTST which selects between a 20 bit mode and two 10 bit modes; HCQ which enables the Counter; and 25MHz which is used internally by the Counter.
- 4-55. Results -all results for this test are read by the Trace Data Read Register. That register receives data from the memory bank selected by the signals LTCSMSO-3 (Low Trace Count/Status Memory Select). U70, U73 and U90 are not used by this test.

10 MHz State Test: Board in Slot 2 Pass Tested: 1 Failed:
Slot 2: State Control and Clock
Test 5: State count
98765432109876543210

Figure 4-17. State Count

4-56. Figure 4-17 Interpretation.

```
Reset to 0
            (twenty output bits of U112 read from memory: b19 - b16 = U93
                                         b15 - b12 = U72
                                         b11 - b8 = U92
                                         b7 - b4 = U71
                                         b3 - b0 = U91
Count enable
              Pass
  (test of HCOUNTQUAL)
10/10 count
              Pass
  (two ten bit counter mode, selected by HCTST)
20 bit count
             Pass (20 bit counter mode)
Output test
  0's
            1's
            (same outputs as Reset to O above)
```

4-57. Loop E Signature Path: U69, U87, U88, U104, U105, U106, memory RAM's, ECL/TTL translators, U112, U1, U120, U100, U102.

4-58. TEST 6: TRACE MEMORY, LOOPS F & G

- 4-59. Purpose -test Trace Counter/Status Memory, Tracepoint Register, Wrap bit, and Post Trace Point Counter which is a circuit internal to the Analysis Controller.
- 4-60. How -The Memory is 32 bits wide. 20 bits are Counter data, 8 bits are Sequence State data and the remaining 4 bits are for flags. In addition to the RAMs, the Memory contains an Address Counter (MAC), and an Address Selector. The MAC can be read through the Tracepoint Register and the Trace MAC Read Register.
- 461. Write Loop. The main loop, loop F, of this test takes signatures when the RAMs are being read, and while the RAM addresses are being selected from the CPU via U86 and a high on the select line of the Trace Count/Status Memoery Address selector. The write loop, loop G, allows the RAM addresses to be tested when the Memory Address Counter is selected.
- 4-62. Previous tests have verified the functioning of the MAC and its associated Trace MAC Read Register. Test 5 used the Address Selector and location 00 Hex of the memory. Therefore, the most likely failures detected by this test are the remaining memory locations, particularly U70, U73, and U90 which were not tested in Test 5.
- 4-63. Other circuitry tested for the first time include U67 Tracepoint Register, U98 -Wrap bit, and Post Trace Point Counter function of U1.
- 4-64. Results all testing results are read at the Analysis Status Buffer U122 and the CPU Data Buffer U121.

10 MHz State Test: Board in Slot 2 Pass Tested: 1 Failed: (

Slot 2: State Control and Clock Test 6: Trace memory

Index Counter

(1 = Error)Address Bit Memory Channel 76543210 10987654321098765432109876543210 00000000 Address Counter Trace Point Reg 00000000 00Trace Point, Wrap Store seq state 00000000 mostly 1's mostly 0's 00000000 Address Test

Figure 4-18. Trace Memory

Pass

4-65. Figure 4-18 Interpretation.

```
00000000
Address Counter
   (outputs of U104 and U105 read at U68)
Trace Point Reg
                  00000000
   (U67)
Trace Point, Wrap
                       00
   (U98 pin 7 and U103 pin 9 respectively)
                                                00000000
Store seg state
                             mostly 1's
                             mostly 0's
   (32 bit memory read at U69. Bit pattern: b31 - b28 = U71
                                      b27 - b24 = U91
                                      b23 - b20 = U72
                                      b19 - b16 = U92
                                      b15 - b12 = U73
                                      b11 - b8 = U93
                                      b7 - b4 = U70
                                      b3 - b0 = U90
Address Test
                  00000000
                             (indirect test of RAM address bits AO-A7)
*Index Counter
                  Pass
   (strobe inputs to U1 cause counter to overflow at U1 pin 17)
```

4-66. Loop F Signature Path: U121, U122, U67-U69, U98, U103-U105, U86-U88.

Loop F signature Path for Trace Count/Status Memory: U112, U1.

^{*}The Index Counter is shown as the Post Trace Point Counter on the Block Diagram.

4-67. TEST 7: OTHER COUNTER TESTS.

- 4-68. Purpose verify operation of prescale function and count time mode of Trace State/Time Counter.
- 4-69. How The Counter is incremented by the 25 MHz clock and the count is stored in the Trace Count/Status Memory location 00 Hex.
- 4-70. Results Signature Analyis is impractical because the interval is greater than 9 seconds. The only untested signals are HTIMS and LSTATE. HTIMS is a Strobe Generator output. LSTATE should oscillate. If all other tests pass, replace the Counter, U112, and rerun the test.
- 10 MHz State Test: Board in Slot 2 Pass Tested: 1 Failed: 0

Slot 2: State Control and Clock

Test 7: Other counter tests

Prescale 1 Pass

2 Pass

3 Pass

Time enable Pass

Time reset Pass

Prescale 4 Pass

Figure 4-19. Other Counter Tests

4-71. TEST 8: INTERMODULE BUS.

4-72. This test has two parts: internal test using loopback in the Analysis Controller, and external test which requires that another system be connected via the Intermodule Bus (IMB).

4-73. Assuming all cables, connections and configurations are correct and working properly, failure of this test indicates that the Analysis Controller of one of the systems is failing. If no external system is connected, the test will still indicate pass, provided the internal test passes.

4-74. The State Analysis PV software provides the test IMB softkey for IMB testing. It selects the board that is to be the Intermodule Bus Driver.

10 MHz State Test: Board in Slot 3 Pass Tested: 1 Failed: 0
Slot 3: State Control and Clock
Test 8: Intermodule Bus
Internal tests

Master Enable Pass Trigger Enable Pass Storage Enable Pass

Tests with IMB test board No IMB test board (1 = Error)
Receive (ME,TE,SE,TR)
Drive (Port1 pulses,DClk,Port2,Port1,ME,TE,SE,TR)

IMB test board limitations (1 = Not tested)

Drive (ME,TE,SE,TR)

Receive (Port1 pulses,DClk,Port2,Port1,ME,TE,SE,TR)

Figure 4-20. Intermodule Bus

4-75. TEST 9: STROBE GENERATOR CALIBRATION.

4-76. This test is a stimulus to the Control Board only. It is used in Section V for calibration of the Strobe Generator. See Section V.

4-77. TEST 10: THRESHOLD CIRCUIT CALIBRATION.

4-78. This test is a stimulus to the Control Board only. It is used in Section V for calibration of the Threshold Circuit. See Section V.

4-79. TEST 11: PREPROCESSOR INTRFC. STIMULUS. LOOP H

4-80. Purpose - to verify that the Control Board can write to the Preprocessor. No data is read from the Preprocessor.

4-81. How -When LMS is activated, the address and data information on the CPU bus is loaded into U26 and U53 and read at the outputs of U26 and U53. At the same time the control signals are read at the outputs of U129.

4-82. Results - All results of this test are read at the Address Latch U118, or the CPU Data Buffer U121.

483. Loop H Signature Paths:

U26, U118, U127, U53

U1, U123, U65, U116, U96, U119, U127, U120, U99, U129.

4-84. TEST 12: REAR PANEL PORT STIMULUS. LOOP I

485. Purpose - to verify that the control board writes to PORT1 and PORT2 on the rear panel of the Mainframe.

486. How - there are two sections to this test:

- 1. The PHALT signal is activated and sent to BNC2 when the control signal, PWRUN, goes high. This latches LAB1, Low Address Bus 1, into the Port Latches (U97).
- 2. The PSTIM signal is activated and sent to PORT1 when NTRIG, Negative Trigger, from U1 goes low. This occurrs each time the trigger event is encountered.
- 4-87. Loop I Signature Path:

U1, U97, U123, U116, U126.

Start -	- Positive - Positive - Negative	_	CONNECTIONS: ST/SP/Start - Qual/Stop - TP Clock - U99 pi Ground - GND (19 n 3	
** = levels are	TTL excep	ot where noted.			
U 1-7 PH15	ECL	U 18- 2 62FC		U 21-10 0000	ECL
U 1-30 PH15	ECL	U 18- 3 65A6		TOTLZ = 1	
U 1-36 PH15	ECL	U 18-5 high		U 21-11 0000	ECL
U 1-37 4778	ECL	U 18-6 1A92		TOTLZ = 1	Ear
U 1-38 4778 U 1-39 high	ECL ECL	U 18- 7 7FCH U 18- 9 9946		U 21-13 0000 TOTLZ = 1	ECL
U 1-40 4778	ECL	U 18-10 0820		U 21-14 8U24	ECL
0 1 40 4110	ПОВ	U 18-11 PHAC		TOTLZ = 1	БСП
		U 18-12 22F4		U 21-15 0000	ECL
U 6-3 72CO	ECL	U 18-13 PP34			
и 6-6 ин94	ECL	U 18-14 762F			
ช 6- 7 0000	ECL	U 18-15 HO2H	ECL	บ 22- 2 0000	ECL
TOTLZ = 1				U 22- 3 8U24	ECL
и 6-9 8нг9	ECL			U 22- 4 0000	ECL
U 6-12 0000	ECL	U 19- 9 1A92		TOTLZ = 1	
u 6-13 8HF9	ECL	U 19-11 080P		U 22- 6 0000	ECL
		U 19-12 low	ECL	TOTLZ = 1	=
U 8-1 UF8C		U 19-14 PCHO		U 22- 7 0000	ECL
U 8-2 UF8C		U 19-15 high	ECL	TOTLZ = 1 U 22-10 0000	ECL
U 8-3 73AU				TOTLZ = 1	ECD
U 8- 4 73AU		บ 20- 9 8บ24	ECL	U 22-11 0000	ECL
U 8-5 73AU		U 20-10 0000		TOTLZ = 1	
U 8-6 UF8C		TOTLZ = 1		U 22-13 0000	ECL
		U 20-11 0000	ECL	TOTLZ = 1	
		TOTLZ = 1		U 22-14 8U24	ECL
U 16- 3 18F3	ECL	U 20-12 8U24	ECL	ช 22-15 0000	ECL
U 16- 6 0965	ECL	TOTLZ = 1			
U 16- 7 P4F6	ECL	U 20-13 0000	ECL		
		TOTLZ = 1	FIGT	U 23- 2 0000	ECL
U 17- 2 03P7	ECL	U 20-14 8U24 U 20-15 0000		U 23- 3 8U24 U 23- 4 0000	ECL
U 17- 3 C427	ECL	0 20-15 0000	ECD	TOTLZ = 1	ECL
U 17- 4 1A92	ECL			U 23- 6 0000	ECL
U 17-5 high	ECL	U 21- 2 0000	ECL	TOTLZ = 1	поп
U 17- 6 low	ECL	U 21- 3 8U24		U 23- 7 high	ECL
U 17- 7 low	ECL	U 21- 4 0000		TOTLZ = 1	
U 17- 9 low	ECL	TOTLZ = 1		U 23-10 high	ECL
U 17-10 high	ECL	U 21- 6 0000	ECL	U 23-11 73AU	ECL
U 17-11 18F3	ECL	TOTLZ = 1		U 23-13 0000	ECL
U 17-12 22F4	ECL	U 21- 7 0000	ECL	U 23-14 8U24	ECL
U 17-13 PP34	ECL	TOTLZ = 1		TOTLZ = 1	
U 17-14 F61U	ECL			U 23-15 0000	ECL
U 17-15 78AA	ECL				

MODE: Normal	Start -	Positive	THRESHOLDS: Data - High Data - Low Clock - TTL ST-SP-QL -	**	CONNECTIONS: ST/SP/Start - Qual/Stop - TP Clock - U99 pi Ground - GND (19 n 3		
** = le	vels are	TTL excep	t where note	d.				
U 24- 2 U 24- 4 U 24- 5 U 25-13 U 25-15	73AU high 508P	ECL ECL	U 38-15 U 38-16 U 38-17 U 38-18 U 38-19 U 38-21 U 38-23	78AA F61U 65A6 99F7 357P 4778 PH15	ECL ECL ECL ECL ECL	U 52- 5 U 52- 7 U 52-10 U 52- 1 U 52- 2	high high high 73AU	ECL ECL
U 26-19 TOTLZ =	0		U 40- 2 U 40- 4 U 40- 6 U 40- 7	PPHP 5HA1 A59P 4871	ECL ECL ECL ECL	U 52- 3 U 52- 4 U 52-12 U 52-15	high 73AU high	ECL ECL ECL
U 36- 2 U 36- 6 U 36- 7 U 36- 8 U 36- 9 U 36-10 U 36-11 U 36-15 U 36-15 U 36-16 U 36-17 U 36-18 U 36-21 U 36-23	PH15 A59P 4871 9U0H 62FC H02H 762F C427 03P7 78AA 165A 65A6 8PC9 048C 9U0H PCH0	ECL	U 40-8 U 40-9 U 40-10 U 40-11 U 40-13 U 40-15 U 40-16 U 40-17 U 40-18 U 40-19 U 40-21 U 40-23 U 42- 2 U 42- 4 U 42- 7	508P 6302	ECL ECL	U 54- 2 U 54- 5 U 54- 5 U 54- 6 U 54- 8 U 54- 12 U 54- 12 U 55- 4 U 55- 4 U 55- 6 U 55- 6 U 55- 7 U 55- 8 U 55	8PC9 4871 A59P 357P 99F7 6302 508P 2FF1 048C 8PC9 4871 A59P 357P 99F7 6302 508P	
U 38- 2 U 38- 4 U 38- 6 U 38- 7 U 38- 8 U 38- 9 U 38-10 U 38-11 U 38-13 U 38-14	4778 PH15 508P 6302 9U0H 62FC H02H 762F C427 03P7	ECL	U 42- 8 U 42- 9 U 42-10 U 42-11 U 42-13 U 42-14 U 42-15 U 42-16 U 42-17 U 42-18 U 42-19 U 42-21 U 42-23	FFU9 62FC H02H 762F C427 03P7 78AA F61U 65A6 99F7 357P 082C PHAC	ECL	U 55-12 U 58- 1 U 58- 2 U 58- 4 U 58- 5 U 58- 6 U 58- 7 U 58- 9	9153 1C85 42C2 4871 A59P PHAC 082C 9946	ECL ECL ECL ECL ECL ECL

MODE: Normal	Start -	Positive Positive Negative	Data - Low **	Qual/Sto Clock - N	art - TP19	
** = le	vels are	TTL excep	t where noted.			
U 58-10 U 58-11 U 58-12 U 58-13	8PC9 048C	ECL ECL ECL	บ 61-12 3 บ 61-13 2	9F7 ECL 57P ECL 5HU ECL 5C3 ECL	บ 67- 1 บ 68- 1	_
บ 58-14 บ 58-15	1c85	ECL ECL	_	FH9 ECL		_
ช 59- 1	U5C3	ECL		FU9 UOH	บ 69- 1	high
U 59- 2 U 59- 4 U 59- 5 U 59- 6	PFH9 4871 A59P	ECL ECL ECL		A59 5HU	บ 78- 4 บ 78- 5 บ 78- 6 บ 78- 7	PPHP ECI P4F6 ECI
U 59- 7 U 59- 9 U 59-10	082C 9946	ECL ECL	U 62- 2 F	UOH ECL FU9 ECL 5HU ECL	U 78- 9 U 78-10 U 78-11	1C85 ECI 42C2 ECI
U 59-11 U 59-12 U 59-13	048С 25НU	ECL ECL ECL		A59 ECL	บ 78-12 บ 78-13	low ECI 080P ECI
U 59-14	•	ECL	บ 63-7 6 บ 63-10 3	57P	บ 79- 3 บ 79- 4	P4F6 ECI
U 60- 1 U 60- 4 U 60- 5 U 60- 6	508P	ECL ECL ECL		9F7 302 ECL	บ 79- 5 บ 79- 6 บ 79- 7 บ 79- 9	PFH9 ECI
U 60- 7 U 60- 9 U 60-10	082C 9946 7FCH	ECL ECL	บ 63- 2 5 บ 63-14 9	08P ECL 9F7 ECL 57P ECL	บ 79-10 บ 79-11 บ 79-12	PFH9 ECI U5C3 ECI low ECI
U 60-11 U 60-12 U 60-13 U 60-14	99F7 357P 5A59 1C85	ECL ECL ECL		59 P 8 71	U 79-13 U 80- 2	080P ECI P4F6 ECI
U 60-15		ECL	U 64-10 0	48c PC9	U 80- 2 U 80- 3 U 80- 4 U 80- 5	P4F6 ECI P4F6 ECI P4F6 ECI 5HA1 ECI
U 61- 1 U 61- 2 U 61- 4 U 61- 5 U 61- 6 U 61- 7 U 61- 9	U5C3 PFH9 6302 508P PHAC 082C 9946	ECL ECL ECL ECL ECL ECL	U 64-2 A U 64-14 8	871 ECL 59P ECL PC9 ECL 48C ECL	U 80- 6 U 80- 7 U 80-10 U 80-11 U 80-12 U 80-13	P4F6 ECI 4CC2 ECI P4F6 ECI 4CC2 ECI 4CC2 ECI 5HA1 ECI
U 61-10	7FCH	ECL	U 65-13 0 TOTLZ = 1	000		

MODE: Normal	Start -	Positive Positive Negative	THRESHOLDS: Data - High Data - Low Clock - TTL ST-SP-QL -	**	CONNECTIONS: ST/SP/Start - TP19 Qual/Stop - TP19 Clock - U99 pin 3 Ground - GND (TP)	
** = le	vels are	TTL excep	t where note	d.		
บ 80-14 บ 80-15	4CC2	ECL ECL	U 99-11 U 99-12 TOTLZ = U 99-13	70347	U102-11 U102-12 U102-13 U102-14	high high 9153
U 81- 4 U 81- 5 U 81- 6	P4F6 PPHP high	ECL ECL	U100- 1	1UPP	U102-15	2FF1
U 81- 7 U 81- 9 U 81-10	42C2 1C85	ECL ECL ECL	U100- 2 U100- 3 U100- 4	C4F8 A192	U103- 2 TOTLZ = U103- 3	OFLO
U 81-11 U 81-12 U 81-13	•	ECL ECL ECL	U100- 5 U100- 7 U100- 9	8877	U103- 4 U103- 6 U103- 7	high
U 82- 4	4CC2	ECL	U100-10 U100-11 U100-12		U106- 2	8877
U 82- 5 U 82- 6 U 82- 7	PPHP 5 HA1	ECL ECL	U101- 1	1UPP	U106- 3 TOTLZ = U106- 4	8U24 OFLO
U 82- 9 U 82-10 U 82-11		ECL ECL	U101- 2 U101- 3 U101- 4	C4F8 A192	TOTLZ = U106- 5 TOTLZ =	4641 8U24
U 82-12 U 82-13	low 080P	ECL ECL	U101- 5 U101- 6 U101- 7 U101- 9	U871 1407 AHP0	U106- 6 U106- 7	8877
บ 85- 5 บ 85-10 บ 85-11	AHP0 872 A 6110		U101-10 U101-11 U101-12 U101-13 U101-14	FFU9 9U0H 25HU	U115- 8 U115- 9 U115-12 U115-13	7755 1407
บ 85- 4 บ 85-12 บ 85-13	080P	ECL ECL ECL	U101-15		U117- 2 TOTLZ =	
ប 89- 1	high		U102- 1 U102- 2 U102- 3 U102- 4	C4F8 A192 0753	U117- 3 U117-13	\$\$\$\$
U 96-11 U 96-12 U 96-13	U871		U102- 5 U102- 6 U102- 7 U102- 9 U102-10	9C23 7H09 high	U118- 2 U118- 3 TOTLZ = U118-11 TOTLZ =	8U24 0FL0 0000

Test 1: Loop A - VH = 8U24

MODE:	EDGES:	THRESHOLDS:	CONNECTIONS:
Normal	Clock - Positive	Data - High **	ST/SP/Start - TP19
	Start - Positive	Data - Low **	Qual/Stop - TP19
	Stop - Negative	Clock - TTL	Clock - U99 pin 3
		ST-SP-QL - TTL	Ground - GND (TP)

** = levels are TTL except where noted.

U119- 2 U119- 3 U119- 4 U119- 5	1UPP 1UPP C4F8 C4F8	U120-18 U120-19	508P low	U122-11 U122-12 U122-13 U122-14	high 357P high 99F7
บ119- 6	A192	U121- 1	7755	U122-15	low
U119- 7	A192	U121- 2	508P	V122-16	6302
U119- 8	9023	U121- 3	6302	U122-17	high
บ119- 9		U121- 4		V122-18	508P
U119-11	0000	U121- 5	357P	U122-19	8877
U119-12	8877	U121- 6	A59P		
U119-13		U121- 7	4871		
U119-14	8U24	U121- 8	8PC9	บ123- 1	high
TOTLZ =		U121- 9		U123- 2	low
U119-15		U121-11		U123- 3	high
U119-16		U121-12	•	U123- 4	5401
U119-17	U871	U121-13	*	U123- 5	5704
U119-18	_	U121-14	A59P	U123-6	low
U119-19	high	U121-15	- ·	U123- 7	high
		U121-16		U123- 9	high
1111.00		U121-17		U123-11	high
U120- 2	high	U121-18	-	U123-12	C3HA
U120- 3	048C	U121-19	0000	U123-13 U123-14	9361
U120- 4	8PC9			0123-14	high
U120- 5 U120- 6	low low	U122- 1	8877		
U120- 7	4871	U122- 1	high	U125- 4	0000
U120- 7	4571 A59P	U122- 2	048C	012)- 4	0000
U120-11	high	U122- 4	high		
U120-13	357P	U122- 5	8PC9	U127- 4	0000
U120-14	99 F 7	U122- 6	low	TOTLZ =	
U120-16	high	U122- 7	4871	U127- 5	U871
U120-17	6302	U122- 8	\$\$ \$ \$	U127- 6	U871
	-3	U122- 9	A59P	,	

Test 2: Loop B - VH = 0418

Star Stop	k - Positive 1 t - Positive 1 - Negative (Data - Low Clock - TTL ST-SP-QL -	** ** TTL	CONNECTIONS: ST/SP/Start - TP19 Qual/Stop - TP19 Clock - U99 pin 3 Ground - GND (TP)		
** = levels a	are TTL except	where note	d.			
U 1-17 99C U 1-18 A22I U 1-19 F513 U 1-20 3833 U102- 1 820I U102- 2 PP46 U102- 3 F513 U102- 4 A959 U102- 5 A959 U102- 6 0416 TOTLZ = 6027	F 5 5 9 9 9 3 3	U102-10 U102-12 U103- 2 U103- 3 U103- 4 U103- 7 U118- 2 U118- 3 U118-11 TOTLZ =	F513 2H4F 2H4F PP46 A22H 2H4F 2H4F 0000	U121 U121 U121 U121 U122 U122	1- 2 1- 4 1-16 1-18 1-19	AH41 3831 ACHH ACHH 3831 0000 AH41 99CA ACHH

Test 3: Loop C - VH = C811

MODE:	EDGES:	THRESHOLDS:	CONNECTIONS:
Normal	Clock - Positive	Data - High **	ST/SP/Start - TP19
	Start - Positive	Data - Low **	Qual/Stop - TP19
	Stop - Negative	Clock - TTL	Clock - U99 pin 3
		ST-SP-QL - TTL	Ground - GND (TP)

** = levels are TTL except where noted.

U 25-13 U 25-14 U 25-15 U 25-16	993U 6H99 92PC 0F97		U 52-12 U 52-15	C851 C80P	ECL ECL	U121-8 U121-9 U121-11 U121-12	6нн9 1861 1861 6нн9
บ 25-26	0F97		U102- 1	09H2		U121-17	92PC
บ 25-28	A384		U102- 2	0A7F		บ121-18	993U
			U102- 3	6нн9		บ 121-19	0000
			U102- 4	CC76		TOTLZ =	213
ช 25- 9	high	ECL	บ 102- 5	CC76			
			บ102- 6	C851			
			U102-13	6н99		U122- 1	0367
ช 52- 5	C851					ช122- 3	1861
บ 52-10	C80P					ช122- 5	6нн9
			U121- 1	0367		U122-15	A384
			U121- 2	993U		U122-17	0F97
บ 52- 2	C851	ECL	U121- 3	92PC			
ช 52- 4	C80P	ECL					

Test 4: Loop D - VH = AU30

Normal Clo	GES: ock - Positive art - Positive op - Negative	Data - Low **	CONNECTIONS: ST/SP/Start - TP19 Qual/Stop - TP19 Clock - U99 pin 3 Ground - GND (TP)	
** = level:	s are TTL excep	t where noted.		
U 1-18 C	AUH	U 6-11 low	ECL U 20- 3	B PCCF ECL
U 1-19 0	U6H	U 6-14 high	ECL U 20- 6	5 448F ECL
U 1-20 6	297	_	บ 20- ว	7 0000 ECL
U 1-34 2	277	U 16- 2 492F	ECL TOTLZ =	= 67701
U 1-35 A	U30	U 16- 3 F6UC	ECL	
TOTLZ = 28		U 16-5 low	ECL U 36- 2	2 3U78 ECL
		U 16- 6 A60A	. ECL U 36-1	+ AU88 ECL
U 1-1 U	613 ECL	U 16- 7 UH44	ECL U 36-6	5 5U93 ECL
U 1-2 49	92F ECL		ช 36- 7	7 70CH ECL
U 1-3 0	000 ECL	U 17- 2 94FH	ECL U 36-8	B PF6C ECL
TOTLZ = 67	701	U 17- 3 741A	. ECL U 36-9	H772 ECL
U 1-4 7	UC4 ECL	บ 17- 4 8505	ECL U 36-10	FF08 ECL
บ 1-5 8	OC7 ECL	U 17- 5 15FH	ECL U 36-11	1 7933 ECL
U 1-6 F	H4A ECL	U 17-6 CAUH	ECL U 36-13	3 741A ECL
U 1-7 A	U88 ECL	U 17- 7 low	ECL U 36-11	4 94FH ECL
U 1-8 1	4CU ECL	U 17- 9 low	ECL U 36-15	5 4F4F ECL
U 1-9 H	026 ECL	U 17-10 high	ECL U 36-16	6 0837 ECL
U 1-10 1	164 ECL	U 17-11 F6UC	ECL U 36-17	7 3500 ECL
U 1-11 1	26C ECL	U 17-12 7CC8	ECL U 36-18	3 6U93 ECL
U 1-12 H	026 ECL	ช 17-13 5451	ECL U 36-19	9 8401 ECL
U 1-16 00	000 ECL	U 17-14 0837	ECL U 36-21	492F ECL
TOTLZ = 67	701	U 17-15 4F4F	ECL U 36-23	high ECL
U 1-21 7	F2F ECL			
บ 1-30 31	U78 ECL	U 18- 2 H772	ECL U 38- 2	2 2020 ECL
U 1-33 00	000 ECL	บ 18- 3 3500	ECL U 38- 1	FP73 ECL
TOTLZ = 67	701	U 18- 4 AU30	ECL U 38- 6	6297 ECL
U 1-36 FI	P73 ECL	TOTLZ = 0	ប 38- 7	H410 ECL
U 1-37 PA	A12 ECL	บ 18- 5 15FH	ECL U 38-8	PF6C ECL
	020 ECL	ช 18- 6 8505	ECL U 38- 9	H772 ECL
บ 1-39 69	9P1 ECL	U 18- 7 PC61	ECL U 38-10	FF08 ECL
บ 1-40 3เ	U78 ECL	U 18- 9 7F78	ECL U 38-11	. 7933 ECL
		U 18-10 A2UF	ECL U 38-13	741A ECL
U 5-2 00	000 ECL	и 18-11 нз1н	ECL U 38-11	94FH ECL
TOTLZ = 663	382	U 18-12 7CC8	ECL U 38-15	5 4F4F ECL
ช 5-3 00		บ 18-13 5451	ECL U 38-16	0837 ECL
TOTLZ = 663	382	บ 18-14 7933	ECL U 38-17	3500 ECL
	000 ECL	U 18-15 FF08	ECL U 38-18	FP49 ECL
	026 ECL		U 38-19	OC9C ECL
	000 ECL	ช 19- 9 8505	ECL U 38-21	PA12 ECL
	026 ECL	U 19-12 CAUH		3078 ECL
•	000 ECL	U 19-15 69P1	ECL	
•	JC4 ECL		Մ 40- 2	•
	000 ECL		Մ 40- 4	
TOTLZ = 531	L		Մ 40- 6	5U93 ECL

Test 4: Loop D - VH = AU30

MODE: EDGES: THRESHOLDS: CONNECTIONS:

Normal Clock - Positive Data - High ** ST/SP/Start - TP19
----- Start - Positive Data - Low ** Qual/Stop - TP19
----- Stop - Negative Clock - TTL Clock - U99 pin 3
----- ST-SP-QL - TTL Ground - GND (TP)

** = levels are TTL except where noted.

U 40- 7 U 40- 8 U 40- 9 U 40-10 U 40-13 U 40-14 U 40-15 U 40-16 U 40-17 U 40-18 U 40-19 U 40-21 U 40-23	70CH 5388 H772 FF08 7933 741A 94FH 4F4F 0837 3500 6U93 8401 4F3F 3HA7	ECL	U 58- 1 U 58- 2 U 58- 3 U 58- 4 U 58- 5 U 58- 6 U 58- 7 U 58- 9 U 58-10 U 58-11 U 58-12 U 58-13 U 58-14 U 58-15	88U0 7038 low 70CH 5U93 H31H A2UF 7F78 PC61 6U93 8401 58C9 H7U0 6261	ECL	U 61- 1 U 61- 2 U 61- 3 U 61- 4 U 61- 5 U 61- 6 U 61- 7 U 61- 9 U 61-10 U 61-11 U 61-12 U 61-13 U 61-14 U 61-15	19UP 8CCC low H410 6297 H31H A2UF 7F78 PC61 FP49 0C9C 4022 2A78 113C	ECL
U 42- 2 U 42- 4 U 42- 6 U 42- 7 U 42- 8	PC61 7F78 6297 H410 5388	ECL ECL ECL ECL ECL	U 59- 1 U 59- 2 U 59- 3 U 59- 4 U 59- 5	FC55 4685 1ow 70CH 5U93	ECL ECL ECL ECL ECL	U 62- 5 U 62- 7 U 62-10 U 62-11	5388 PF6C 58C9 4022	
ប 42- 9	H772	ECL	ช 59- 6	H31H	ECL	บ 62- 1	PF6C	ECL
Մ 42-10	FF08	ECL	ช 59- 7	A2UF	ECL	บ 62- 2	5388	ECL
Մ 42-11	7933	ECL	บ 59- 9	7F78	ECL	บ 62-14	4022	ECL
Մ 42-13	741A	ECL	Մ 59-10	PC61	ECL	บ 62-15	58c9	ECL
Մ 42-14	94FH	ECL	Մ 59-11	6U93	ECL			
Մ 42-15	4 F 4 F	ECL	บ 59-12	8401	ECL	ช 63- 5	6297	
U 42-16	0837	ECL	Մ 59-13	4022	ECL	ช 63- 7	H410	
Մ 42-17	3500	ECL	บ 59-14	82P0	ECL	บ 63-10	0C9C	
Մ 42-18	FP49	ECL	υ 59 -15	FP66	ECL	บ 63-11	FP49	
Մ 42-19	0C9C	ECL						
Մ 42-21	A2UF	ECL	U 60- 1	A2H9	ECL	บ 63- 1	H410	ECL
Մ 42-23	H31H	ECL	U 60- 2	нр6а	ECL	บ 63- 2	6297	ECL
			ช 60- 3	low	ECL	บ 63-14	FP49	ECL
Մ 43- 3	PCCF	ECL	U 60- 4	H410	ECL	ช 63-15	OC9C	ECL
Ծ 43- 5	0000	ECL	ช 60- 5	6297	ECL			
TOTLZ =			U 60- 6	н31н	ECL	บ 64- 5	5U93	
ប 43- 6	0000	ECL	บ 60- 7	A2UF	ECL	บ 64- 7	70CH	
TOTLZ =	67701		บ 60- 9	7F78	ECL	บ 64-10	8401	
Ծ 43- 7	448F	ECL	U 60-10	PC61	ECL	บ 64-11	6U93	
			Մ 60-11	FP49	ECL			
ช 52- 7	15FH		บ 60-12	0C9C	ECL	บ 64- 1	70СН	ECL
			บ 60-13		ECL	บ 64- 2	5U93	ECL
ឋ 52- 1	15FH	ECL	Մ 60-14	2708	ECL	Մ 64-14	6U93	ECL
บ 52- 3	CAUH	ECL	บ 60-15	F7P6	ECL	ช 64-15	8401	ECL

CONNECTIONS:

THRESHOLDS:

Board # 64621-66503

EDGES:

MODE:

Test 4: Loop D - VH = AU30

Normal	Clock	- Positive	Data -		**	ST/SP/Start -	TP19		
		- Positive				Qual/Stop - I	-		
			Clock	- TTL		Clock - U99 p	in 3		
	•	J	ST-SP-	QL - :	TTL	Ground - GND	(TP)		
** = le	vels ar	e TTL excep	t where	note	d.				
ช 65- 5	PCCF			9-11	82P0	ECL	U 84- 4		
, ,			U 7	9-13	1628	ECL	ช 84- 5		
ช 65- 6	448F	ECL	_		٠.		บ 84-12		
ช 65- 7	PCCF	ECL			0F48	ECL	บ 84-13	7933	
// \				_	UH44	ECL	0\ -		
บ 66- 4					UH44	ECL	บ 84- 3		ECL
บ 66- 5					3357	ECL	บ 84- 7		ECL
บ 66-12	AU30				8390	ECL	U 84-11		ECL
(0 .					4F98	ECL	บ 84-15	7933	ECL
บ 68- 1	CA14			0- 9	AU30	ECL	0	1 00	
U 68- 2				LZ = (ช 85- 5	H488	
บ 68- 3					8390	ECL	ช 85- 7		
บ 68- 4					0H42	ECL	U 85-10	-	
บ 68- 5	-				4F98	ECL	ช 85-11	UC61	
บ 68- 6	•			0-13	3357	ECL	0		
U 68- 7					U46F		U 85- 1	448F	ECL
U 68-8	65U9		UB	0-15	0H42	ECL	ช 85- 4		ECL
U 68- 9	5U93		0.	. \	1	201	U 85-12		ECL
U 68-11	PCCF			1- 4	UH44	ECL	ช 85-13	5451	ECL
บ 68-12	0C9C			-	U15C	ECL	0	. 0	
U 68-13	19PU			1-6	U46F	ECL	บ 89- 1		
U 68-14	83H3			1- 7	нр6а	ECL	บ 89- 2		
U 68-15	FP49			1- 9	A2H9	ECL	U 89- 3	7933	
U 68-16	H410			1-10	F7P6	ECL	U 89- 4	FF08	
U 68-17	0C71			1-11	2708	ECL	บ 89- 5	6U93	
U 68-18	07H0		U 0.	1-13	1628	ECL	บ 89- 6	70CH	
บ 68-19	6297		77 0	o).	1.770	Dar	บ 89- 7		
77 72O).	4604	Dat			4F98	ECL	บ 89- 8		
U 78- 4		ECL			U15C	ECL	บ 89- 9		
U 78-5		ECL		2-6	3357	ECL	U 89-11	PCCF	
U 78-6				2- 7			U 89-12		
U 78- 7	7038	ECL		2- 9	19UP	ECL	U 89-13	0837	
U 78- 9	88U0	ECL		2-10	113C	ECL	U 89-14	4F4F	
U 78-10	6261	ECL		2-11	2A78	ECL	U 89-15	FP49	
U 78-11	H7U0	ECL	UO	2-13	1628	ECL	U 89-16	H410	
บ 78-13	1628	ECL	TT 0	a 1.	77).7 A		U 89-17	94FH	
11 70 h	9200	Dat		3- 4	741A		U 89-18	741A	
U 79- 4	8390	ECL		3-5	94FH		บ 89-19	6297	
U 79-5	U15C	ECL		3-12	4F4F		11 00 4	0011).	
U 79-6	он42 4685	ECL	U O,	3-13	0837		U 98- 1		
U 79- 7	-	ECL	TT 0	2_ 2	7):1 4	Tre T	U 98- 5		
U 79- 9	FC55 FP66	ECL		3-3	741A 94FH	ECL	TOTLZ =		
ህ 79-10	r P00	ECL		3- 7 3-11	94F H	ECL ECL	ช 98- 7	c6U5	
				3-11 3-15					
			U O	フーエン	0837	ECL			

Test 4: Loop D - VH = AU30

MODE:	EDGES:	THRESHOLDS:	CONNECTIONS:
Normal	Clock - Positive	Data - High **	ST/SP/Start - TP19
	Start - Positive	Data - Low **	Qual/Stop - TP19
	Stop - Negative	Clock - TTL	Clock - U99 pin 3
	_	ST-SP-QL - TTL	Ground - GND (TP)

** = levels are TTL except where noted.

	_				
บ 98-10	2277	U102- 3	F89F	V118-11	0000
บ 98-12	9339	U102- 4	6F58	TOTLZ =	98693
บ 98-13	664F	U102- 5	28H4		
บ 98-14	664 F	U102- 6	HF93	U121- 1	87P4
		U102- 7	29H4	U121- 2	6291
U100- 1	PAC5	U102- 9	9339	U121- 3	H410
U100- 2	9147			U121- 4	FP49
U100- 3	F89F	Մ104- 1	29H4	ช121- 5	0C9C
U100- 4	87P4	Մ104- 2	AU30	U121- 6	5U93
U1 00- 5	87P4	TOTLZ =	531	U121- 7	70CH
U100- 7	25A2	U104-11	19PU	U121- 8	6U93
U1 00- 9	1852	U104-12	83н3	บ 121- 9	
U100-10	high	Մ104-13		V121-11	
U100-11		U104-14	•	U121-12	, -
U100-12	CA14	Մ104-15	P17F	U121-13	
				U121-14	5U93
U101- 1	~	U105- 1	29H4	V121-15	OC9C
U101- 2	9147	บ105- 2	AU30	V121-16	FP49
U101- 3	F89F	U105-10	P17F	U121-17	H410
U101- 4		U105-11		U121-18	
U101- 5	28н4	บ105-12		บ 121-19	0000
U101- 6	73A3	Մ105-13			
U101- 7		Մ105-14		U122- 1	
U101- 9		U105-15	FOH5	U122- 4	
U101-10		_		U122-16	H410
U101-11	5388	U106- 2			
U101-12	PF6C	U106- 3	PCCF	ช125- 1	448F
U101-13	4022	U106- 4	PCCF	U125- 2	
U101-14	58c9	_	4.0	ชา25- 3	PCCF
U101-15	422A	U118- 2	664F		- 01
		U118- 3	664 F	U127- 6	28 H 4
U102- 1	PAC5				
U102- 2	9147				

Test 5: Loop E - VH = U16U

Normal	Start	- Positive - Positive - Negative	Data - Low **	CONNECTIONS: ST/SP/Start - TP19 Qual/Stop - TP19 Clock - U99 pin 3 Ground - GND (TP)
** = lev	els ar	e TTL excep	t where noted.	
U 1-17	C330		U 20- 2 6852	•
บ 1-18	low		U 20- 5 993F	
U 1-19	3113		77 \ \ 5 40 0000	U 71- 9 6536
	60FU		U 45-12 0000	
_	3401		TOTLZ = 6550 U 45-13 6852	U 71-11 9U15 P ECL U 71-12 C234
ช 1-35	high		U 45-15 0000	
U 1-2	low	ECL	TOTLZ = 6531	U 71-14 5380
U 1-3		ECL	101111 0751	U 71-15 POUH
TOTLZ =			บ 66- 4 38บร	
U 1- 4		ECL	บ 66-13 บา6เ	
Մ 1-7		ECL	-	U 71-20 U16U
U 1-8	3178	ECL	U 66- 2 F996	ECL TOTLZ = 6510
u 1-16		ECL	บ 66- 3 38บ9	
TOTLZ =			บ 66-14 0000	
U 1-21	81F1	ECL	บ 66-15 _บ16เ	_
U 1-30		ECL	TOTLZ = 6550	U 72- 2 high
U 1-33	0000	ECL	** (0 4 0004	U 72- 3 high
TOTLZ =		Dar	U 69- 1 830A	
_	87AF	ECL	U 69- 2 0049	· · · · · · · · · · · · · · · · · · ·
U 1-37 U 1-38	9064 9064	ECL ECL	บ 69- 3 9PAU บ 69- 4 5380	
	high	ECL	U 69- 5 040F	
U 1-39	9U64	ECL	U 69- 6 3797	
0 1 40	9004	HOD	U 69- 7 C23L	
ช 5-10	0000	ECL	U 69- 8 7620	
ช 5-11	993H	ECL	U 69- 9 P7U2	
ช 5-12	บ16บ	ECL	บ 69-11 38บ9	
TOTLZ =	6550		U 69-12 00PH	
บ 5-13	บ16บ	ECL	บ 69-13 9054	U 72-16 9PAU
ช 5-14	0000	ECL	U 69-14 FCCF	
TOTLZ = 3			U 69-15 717H	
ช 5-15	U16U	ECL	บ 69-16 3บ21	
_	_		U 69-17 8U36	
	บ16บ	ECL	U 69-18 A483	
U 16-12	0000	ECL	U 69-19 60FU	
TOTLZ = 0		ECI	II 73 4 1 ' '	U 77- 5 7190
U 16-13 TOTLZ = 0	0000 6550	ECL	U 71-1 high	
TOTPT = (U))U		U 71- 2 high U 71- 3 high	
บ 19- 3	38U9	ECL	U 71- 4 U16U	
		ECL	TOTLZ = 6510	U 77- 7 7190 ECL
U 19- 7		ECL	U 71-5 high	
, 1	- //-		- 1- 7 11-611	U 77-15 CPC6 ECL
				2 11 -2 2223 202

MODE: EDGES:

Test 5: Loop E - VH = U16U

Normal Clock - Pos	itive Data - High **	ST/SP/Start - TP19	
	itive Data - Low **	Qual/Stop - TP19	
Stop - Neg		Clock - U99 pin 3	
Stop - Neg	ST-SP-QL - TTL	Ground - GND (TP)	
	21-21-60 - 110	GIOGIA - GND (II)	
** = levels are TTL	except where noted.		
u 85- 7 F996	U 91-11 99U4 U 91-12 8U36		
U 85-1 F996 ECL	U 91-12 0030 U 91-13 2HP6		
0 05- 1 F990 ECD	U 91-13 ZHFO		
u 87- 1 u16u	U 91-15 1H31	U 93-18 POU5	
TOTLZ = 6550	U 91-16 9054		
U 87- 2 F9PC	U 91-18 9U7P		
U 87-3 low	U 91-10 90/F		
U 87- 4 U16U	TOTLZ = 19	0 93-21 High	
U 87- 5 5CF3	U 91-21 high	U 94- 4 796A	
U 87-6 low	0 91-21 High	U 94- 4 790A U 94- 5 6872	
U 87-7 high	U 92- 1 high	U 94-12 028P	
U 87- 9 high	U 92- 2 high	U 94-13 8173	
U 87-10 low	U 92- 3 high	0 94 13 0113	
U 87-11 low	U 92- 4 U16U	U 94- 3 796A ECL	
U 87-12 high	TOTLZ = 6510	U 94- 7 6872 ECL	
U 87-13 low	U 92- 5 high	U 94-11 028P ECL	
U 87-14 low	U 92- 6 high	U 94-15 8173 ECL	
0 0 1 1 10 4	U 92- 7 high	0 94 1) 0113 101	
บ 88- 1 บา6บ	U 92- 9 66P4	U100-1 67UC	
U 88- 2 low	U 92-10 A483	U100- 2 56U3	
U 88-3 low	U 92-11 U4UP	U100- 3 OC1C	
U 88- 4 high	U 92-12 8U36	U100- 4 67F1	
U 88-5 low	U 92-13 1U75	U100- 5 67F1	
U 88- 6 low	U 92-14 FCCP	U100-10 830A	
U 88-7 high	U 92-15 16C2		
U 88-9 high	U 92-16 9054	U102- 1 67UC	
U 88-10 low	U 92-18 U35F	U102- 2 56U3	
U 88-11 low	บ 92-20 บา6บ	U102- 3 OC1C	
U 88-12 high	TOTLZ = 19	U102- 4 5U38	
U 88-13 low	U 92-21 high		
U 88-14 low	, J	U102- 6 CH62	
	U 93-1 high	U102- 7 U023	
U 91- 1 high	U 93-2 high	U102-11 F37F	
U 91- 2 high	U 93-3 high	•	
U 91-3 high	ช 93- 4 บา6ับ	U104- 1 U023	
บ 91- 4 บา6บ	TOTLZ = 6510	U104- 2 U16U	
TOTLZ = 6510	U 93-5 high	TOTLZ = 19	
U 91-5 high	U 93-6 high	U104-11 low	
U 91-6 high	U 93-7 high	U104-12 low	
U 91-7 high	U 93- 9 796A	U104-13 5CF3	
U 91- 9 354P	U 93-10 A483	U104-14 F9PC	
U 91-10 A483	U 93-11 6872	U104-15 low	
-	u 93-12 8u36	•	
	-		

THRESHOLDS:

CONNECTIONS:

Test 5: Loop E - VH = U16U

MODE: EDGES: THRESHOLDS: CONNECTIONS:
Normal Clock - Positive Data - High ** ST/SP/Start - TP19
----- Start - Positive Data - Low ** Qual/Stop - TP19
----- Stop - Negative Clock - TTL Clock - U99 pin 3
----- ST-SP-QL - TTL Ground - GND (TP)

บ105- 1	U023		U109- 3	6536	ECL	TOTLZ =	6531	
ช105- 2	บ16บ		U109- 7		ECL	U112-32	81F1	ECL
ช105-10	low		U109-11	6960	ECL	บ112-36		ECL
U105-11	low		U109-15	POUH	ECL	U112-37		ECL
บ105-12	low					U112-38	7020	ECL
ช105-13	low		U110- 4	66P4		U112-39	7190	ECL
V105-14	low		U110- 5	Մ4 Մ P		U112-40	4FAU	ECL
			U110-12	1U75				
U106- 9	7нс8		U110-13	16C2		U120-11	F37F	
U106- 10	POU5					U120-16	A14F	
U106-11	U35 F		U110- 3	66P4	ECL	U120-17		
U106-12	9U7P		U110- 7	U4UP	ECL	U120-18	60FU	
U106-13	9н4н		U110-11	1U75	ECL	U120-19	low	
U106-14	8PP4		U110-15	16C2	ECL			
						U121- 1	67F1	
U107- 2	6085		ຫ112- 8	low		U121- 2	60FU	
U107- 3	6085		U112- 9	A14F		U121- 3	3U21	
U107- 4	F996					U121- 4	717H	
U107- 6	8PP4		U112- 2	CPC6	ECL	U121- 5	OOPH	
U107-10	9Н4Н		U112- 3	796A	ECL	U121- 6	P7U2	
U107-12	F996		U112- 4	6872	ECL	U121- 7	3797	
U107-13	79H2	•	U112- 5	028P	ECL	U121- 8	040P	
U107-14	79H2		U112- 6	8173	ECL	บ121- 9	0049	
			U112~14	354P	ECL	U121-11	0049	
U108- 4	354P		U112-15	99U4	ECL	U121-12	040P	
U108- 5	99U4		U112-16	2HP6	ECL	U121-13	3797	
U108-12	2HP6		U112-17	1H31	ECL	U121-14		
U108-13	1H31		U112-18	6536	ECL	U121-15	OOPH	
			U112-19	9U15	ECL	U121-16	717H	
U108- 3	354P	ECL	U112-20	6960	ECL	U121-17	3U21	
U1.08- 7	99U4	ECL	U112-21	POUH	ECL	U121-18	60FU	
U108-11	2HP6	ECL	U112-22	66P4	ECL	U121-19	0000	
U108-15	1H31	ECL	U112-23	U4UP	ECL	TOTLZ =	34488	
•			U112-25	0000	ECL			
U109- 4	6536		TOTLZ =	19		ช125- 1	F996	
U109- 5	9U15		U112-26	0000	ECL	ช125- 2	96AP	
U109-12	6960		TOTLZ =	6550		ช125- 3	38U9	
U109-13	POUH		U112-27	0000	ECL			
, ,			•					

Test 6: Loop F - VH = 894H; QUAL - VH = PFA4

MODE: EDGES: THRESHOLDS: CONNECTIONS:
Normal Clock - Positive Data - High ** ST/SP/Start - TP19
---- Start - Positive Data - Low ** Qual/Stop - TP19
QUAL: Stop - Negative Clock - TTL Clock - U99 pin 3

QUAL: Stop - Negative Clock - TTL Clock - U99 pin 3
High ST-SP-QL - TTL Ground - GND (TP)
----- Qual - U100 pin 7

U 1-4 low U 1-17 2362 U 1-18 CAHC		U 16-13 0000 TOTLZ = 0FL0	ECL	U 67-11 TOTLZ = U 67-12	894H 0FL0 1U1A	QUAL
บ 1-19 6192		U 19- 2 FF68	ECL	บ 67-13	H219	·
U 1-20 FF34		บ 19- 3 4525	ECL	บ 67-14	91¢3	
U 1-34 34F8		บ 19- 4 4525	ECL	บ 67-15	6412	
U 1-35 A336		บ 19- 5 4525	ECL	บ 67-16	A10C	
•,		U 19- 6 FF68	ECL	บ 67-17	COUF	
U 1-2 3174	ECL	U 19- 7 FF68	ECL	บ 67-18	7753	
U 1-3 0000	ECL	·		ช 67-19	FF34	
TOTLZ = OLFO		U 20- 2 4C77	ECL	. ,	•	
U 1- 4 F23A	ECL	U 20- 5 F23A	ECL	บ 68- 1	190C	
U 1-7 4314	ECL			บ 68- 2		
U 1-8 FUOC	ECL	U 45-12 0000	ECL	บ 68- 3	4P69	
U 1-9 HC41	ECL	U 45-13 4C77	ECL	บ 68- 4	F989	
U 1-12 HC41	ECL	U 45-15 0000	ECL	บ 68- 5	1108	
U 1-16 0000	ECL	TOTLZ = OFLO		บ 68- 6	F789	
U 1-21 74P2	ECL			บ 68- 7	OUHO	
U 1-30 19F2	ECL	U 65-13 0000		บ 68-8	7233	
U 1-33 0000	ECL	TOTLZ = OFLO		บ 68- 9	8PU8	
TOTLZ = OFLO				บ 68-11	4525	
U 1-36 5AH6	ECL	U 66- 4 4525		บ 68-12	1U1A	QUAL
U 1-37 5AH6	ECL	U 66- 5 4525		บ 68-13	H219	•
U 1-38 5AH6	ECL	U 66-12 894H		บ 68-14	91C3	
U 1-39 3396	ECL	TOTLZ = 1796		บ 68-15	6412	
U 1-40 5AH6	ECL	U 66-13 894H		บ 68-16	A10C	
, , , , , , , , , , , , , , , , , , , ,				บ 68-17	COUF	
U 5-3 0000	ECL	U 66- 2 FF68	ECL	บ 68-18	7753	
TOTLZ = OFLO		บ 66- 3 4525	ECL	บ 68-19	FF34	
ช 5-6 0000	ECL	U 66- 6 FF68	ECL			
U 5-7 HC41	ECL	U 66- 7 4525	ECL	บ 69- 1	U274	
U 5-10 0000	ECL	U 66-15 894H	ECL	บ 69- 2	80U7	
U 5-11 F23A	ECL	TOTLZ = OFLO		บ 69- 3	AC8P	
U 5-12 894H	ECL			บ 69- 4	9520	
TOTLZ = OFLO		U 67- 1 416P		ช 69- 5	1108	
U 5-13 894H	ECL	U 67- 2 80U7		บ 69- 6	F789	
บ 5-14 0000	ECL	U 67-3 4P69		ช 69- 7	F82Ú	
TOTLZ = OFLO		U 67- 4 F989		ช 69- 8	641C	
U 5-15 894H	ECL	U 67- 5 1108		ช 69- 9	8PU8	
7 - 7 - 7 - 7	_	U 67- 6 F789		ช 69-11	4525	
и 16-9 894н	ECL	U 67- 7 OUHO		ช 69-12	1U1A	QUAL
U 16-12 0000	ECL	บ 67- 8 7233		บ 69-13	FFFP	V
TOTLZ = OFLO	_	U 67- 9 8PU8		ช 69-14	U87C	
·		. , ,		- ·	1 -	

Test 6: Loop F - VH = 894H; QUAL - VH = PFA4

MODE: EDGES: THRESHOLDS: CONNECTIONS: Normal Clock - Positive Data - High ** ST/SP/Start - TP19 ----- Start - Positive Data - Low ** Qual/Stop - TP19 Stop - Negative Clock - TTL Clock - U99 pin 3 QUAL: Ground - GND (TP) ST-SP-QL - TTL High ____ Qual - U100 pin 7

U 69-15 6412 TOTLZ = 1796 U 74- 5 FU U 69-16 A10C U 71-21 3781 U 74-12 UH U 69-17 PUC6 U 74-13 hi U 69-18 0F8U	
U 69-19 FF34 U 72- 1 8989 U 74- 7 FU	
U 72- 2 50P9 U 74-10 74	
U 70- 1 8989 U 72- 3 93A5 U 74-14 10	4 ECL
U 70- 2 50P9 U 72- 4 APF4	• .
U 70- 3 93A5 U 72- 5 C6H0 U 77- 4 8F	
U 70- 4 APF4 U 72- 6 FP41 U 77- 5 1F	
U 70- 5 C6H0 U 72- 7 6HF0 U 77-12 HU	
U 70- 6 FP41 U 72- 9 8F6A U 77-13 A0 U 70- 7 6HF0 U 72-10 641C	<i>31</i>
	A ECL
U 70- 9 AAF2 U 72-11 1F56 U 77- 3 8F U 70-10 641C U 72-12 F82U U 77- 7 1F	
U 70-11 9501 U 72-13 HU5A U 77-11 HU	
U 70-12 F82U U 72-14 9520 U 77-15 A0	
U 70-13 3733 U 72-15 AOC7) BOD
U 70-14 9520 U 72-16 AC8P U 83- 4 H9	12
U 70-15 POAU U 72-18 05C7 U 83- 5 5A	
U 70-16 AC8P U 72-20 894H U 83-12 88	
U 70-18 63PH TOTLZ = 1796 U 83-13 H2	
U 70-20 894H U 72-21 3781	
TOTLZ = 1796 U 84- 4 AA	'2
U 70-21 3781 U 73- 1 8989 U 84- 5 95	1
U 73- 2 50P9 U 84-12 37	3
U 71- 1 8989 U 73- 3 93A5 U 84-13 PO	U
U 71- 2 50P9 U 73- 4 APF4	
U 71- 3 93A5 U 73- 5 C6H0 U 85- 7 FF	8
U 71- 4 APF4 U 73- 6 FP41	
U 71- 5 C6HO U 73- 7 6HFO U 85- 1 FF	8 ECL
U 71- 6 FP41 U 73-10 641C	
U 71- 7 6HF0 U 73-11 FUOC U 86- 2 P4	
U 71- 9 HU5A U 73-12 F82U U 86- 3 8A U 71-10 641C U 73-13 UHAU U 86- 4 79	
U 71-10 641C U 73-13 UHAU U 86- 4 79 U 71-11 AOC7 U 73-14 9520 U 86- 5 47	
U 71-12 F82U U 73-15 high U 86- 6 3U	
U 71-13 4214 U 73-16 AC8P U 86- 7 89	
U 71-14 9520 U 73-18 PP9C U 86- 8 80	
U 71-15 16U4 U 73-20 894H U 86- 9 CP	-
U 71-16 AC8P TOTLZ = 1796 U 86-11 FF	
U 71-18 018F U 73-21 3781 U 86-12 001	
U 71-20 894H	

Test 6: Loop F - VH = 894H; QUAL - VH = PFA4

MODE: EDGES: THRESHOLDS: CONNECTIONS:

Normal Clock - Positive Data - High ** ST/SP/Start - TP19

----- Start - Positive Data - Low ** Qual/Stop - TP19

QUAL: Stop - Negative Clock - TTL Clock - U99 pin 3

High ST-SP-QL - TTL Ground - GND (TP)

----- Qual - U100 pin 7

U 86-13 P82F	U 90- 6 FP41	U 92-10 OF8U
U 86-14 49F1	U 90-7 6HF0	บ 92-11 3U98
U 86-15 H9A4	U 90- 9 H9C2	U 92-12 PUC6
U 86-16 1AP8	U 90-10 OF8U	U 92-13 0A05
U 86-17 4C7F	U 90-11 5AP4	บ 92-14 บ87C
U 86-18 6F4C	U 90-12 PUC6	U 92-15 UAFH
บ 86-19 2789	U 90-13 884A	U 92-16 FFFP
	U 90-14 U87C	บ 92-18 0507
U 87- 1 894H	U 90-15 H244	U 92-20 894H
TOTLZ = OFLO	U 90-16 FFFP	TOTLZ = 1796
บ 87- 2 7753	U 90-18 63РН	บ 92-21 3781
บ 87- 3 2789	U 90-20 894 н	•
U 87- 4 APF4	TOTLZ = 1796	บ 93- 1 8989
U 87-5 COUF	U 90-21 3781	บ 93- 2 50P9
U 87-6 1AP8	•	บ 93- 3 93A5
U 87- 7 93A5	บ 91- 1 8989	U 93- 4 APF4
U 87- 9 50P9	U 91- 2 50P9	U 93-5 с6но
U 87-10 H9A4	U 91- 3 93A5	บ 93- 6 FP41
U 87-11 91C3	U 91- 4 APF4	и 93-7 6нго
บ 87-12 8989	U 91- 5 С6 но	บ 93- 9 4214
U 87-13 00F4	U 91-6 FP41	U 93-10 OF8U
U 87-14 H219	и 91-7 бнго	บ 93-11 16บ4
	U 91- 9 0A05	U 93-12 PUC6
и 88-1 894н	U 91-10 OF8U	U 93-13 UOFP
TOTLZ = OFLO	U 91-11 UAFH	U 93-14 U87C
บ 88- 2 7233	U 91-12 PUC6	U 93-15 934P
U 88-3 CPFF	u 91-13 8 F6A	U 93-16 FFFP
U 88- 4 3781	U 91-14 U87C	U 93-18 PP9C
U 88- 5 оино	U 91-15 1F56	и 93-20 894н
и 88-6 зи9н	U 91-16 FFFP	TOTLZ = 1796
и 88-7 с6но	U 91-18 018F	ช 93-21 3781
U 88- 9 FP41	U 91-20 894 н	
U 88-10 470F	TOTLZ = 1796	U 94- 4 4214
U 88-11 F989	บ 91-21 3781	Ծ 94- 5 16Ծ4
и 88-12 бнго		U 94-12 UOFP
U 88-13 Р48H	บ 92- 1 8989	U 94-13 934P
Մ 88-14 4Р69	U 92- 2 50P9	
	U 92- 3 93A5	U 94- 3 4214 ECL
บ 90- 1 8989	U 92- 4 APF4	U 94-7 16U4 ECL
U 90- 2 50P9	U 92- 5 Сбно	U 94-11 UOFP ECL
U 90- 3 93A5	U 92- 6 FP41	U 94-15 934P ECL
U 90- 4 APF4	и 92- 7 бнго	
и 90- 5 сбно	U 92- 9 UOFP	

Test 6: Loop F - VH = 894H; QUAL - VH = PFA4

CONNECTIONS: MODE: EDGES: THRESHOLDS: Normal Clock - Positive Data - High *** ST/SP/Start - TP19 ----- Start - Positive Data - Low ** Qual/Stop - TP19 Clock - U99 pin 3 Stop - Negative Clock - TTL QUAL: Ground - GND (TP) ST-SP-QL - TTL High ----Qual - U100 pin 7

U 96-8 894H TOTLZ = OFLO	บ105- 1 บ105- 2			105 1FH
U 96- 9 AF2A	U105-10		0110 1) 0	
U 96-10 0000	U105-11		U110- 3 U	FP ECL
TOTLZ = OFLO	U105-12		_	198 ECL
10167 - OLPO	U105-13			190 ECL
บ 98- 1 5บบ6	U105-14			FH ECL
U 98- 5 A336	U105-15		0110-17 0	TH ECL
U 98- 7 AF2A	0105-15	FONI	U112-8 1	
U 90- AF 2A	U106- 9	63РН		.gh
U100-1 80H9	U106-10		0112- 9 111	gn
	U106-11		U112- 2 A	C7 ECL
U100- 2 8965	U106-11			14 ECL
U100- 3 7920	U106-12		_	SU4 ECL
U100- 4 489A				FP ECL
U100- 5 489A	U106-14	665 A		
U100-6 high	111.07	сбан	-	
U100-7 6CF6	U107- 2			105 ECL
U100-9 high	U107- 3			FH ECL
U100-10 U274	U107- 4			6A ECL
U100-11 416P	U107-6			'56 ECL
U100-12 190C	U107-10	· · · · · · · · · · · · · · · · · · ·		ISA ECL
	U107-12			C7 ECL
U102- 1 80H9	U107-13			14 ECL
U102- 2 8965	U107-14	CHOP		U4 ECL
U102- 3 7920				FP ECL
U102- 4 OHCU	U108- 4		_	198 ECL
U102- 5 F1H7	U108- 5		_	000 ECL
U102- 6 8A99	U108-12		TOTLZ = 179	
U102- 7 5UU6	U108-13	1F56		000 ECL
			TOTLZ = 179	
U103- 9 HA7A	U108- 3	OAO5 ECL		000 ECF
U103-12 894H	U108- 7		TOTLZ = 179	
TOTLZ = 1796	U108-11			P2 ECL
U103-14 F6H1	V108-15	1F56 ECL		05 ECL
บ103-15 5บบ6				FH ECL
	U109- 4			6A ECL
U104- 1 5UU6	บ109- 5			'56 ECL
U104-2 894H	U109-12		U112-40 H	I5A ECL
TOTLZ = 1796	ຫ109-13	1604		
U104-11 H219				AH
U104-12 91C3	U110- 4	UOFP		AH
U104-13 COUF	บ110- 5	3U98		10P
U104-14 7753			U118- 5 CH	IOP
บ104-15 9518				

Test 6: Loop F - VH = 894H; QUAL - VH = PFA4

MODE:	EDGES:	THRESHOLDS:	CONNECTIONS:
Normal	Clock - Positive	Data - High **	ST/SP/Start - TP19
	Start - Positive	Data - Low **	Qual/Stop - TP19
QUAL:	Stop - Negative	Clock - TTL	Clock - U99 pin 3
High		ST-SP-QL - TTL	Ground - GND (TP)
			Qual - U100 pin 7

U118-11 0000		U121-11	80U7		U122- 4	AF2A
TOTLZ = OFLO		U121-12	1108		บ122- 6	2362
		U121-13	F789		U122- 9	8PU8
U121- 1 489A		U121-14	8PU8		U122-11	4525
U121- 2 FF34		U121-15	1U1A	QUAL	U122-14	6412
U121- 3 A10C		U121-16	6412		U122-16	A10C
U121- 4 6412		U121-17	A10C		U122-18	FF34
U121- 5 1U1A	QUAL	U121-18	FF34			
U121-6 8PU8		U121-19	0000		ช125- 1	FF68
U121- 7 F789		TOTLZ =	OFLO		U125- 2	F1H7
U121-8 1108					บ 125- 3	4525
U121- 9 80U7		U122- 1	6cf6			
		U122- 2	HA7A			

Test 6: Loop G - VH=62A5

MODE: EDGES: THRESHOLDS: CONNECTIONS:
Normal Clock - Positive Data - High ** ST/SP/Start - TP19
----- Start - Positive Data - Low ** Qual/Stop - TP19
----- Stop - Negative Clock - TTL Clock - U66 pin 13
----- ST-SP-QL - TTL Ground - GND (TP)

บ 70- 1	87P8	U 87- 1 0000	ช 90- 9	030C
บ 70- 2	4040	TOTLZ=OFLO	บ 90-11	н896
บ 70- 3	7702	U 87- 2 6ACH	บ 90-13	HAHA
บ 70- 4	0818	U 87- 3 62A5	บ 90-15	5HC6
บ 70- 5	н473	TOTLZ=640	บ 90-18	564A
บ 70- 6	8P84	U 87- 4 0818		
บ 70- 7	62H4	U 87- 5 15A7	ช 91- 9	C830
บ 70- 9	5206	U 87- 6 62A5	บ 91-11	7391
U 70-11	848ប	TOTLZ=320	บ 91-13	21AC
บ 70-13	966c	บ 87- 7 7702	บ 91-15	H173
Մ 70-15	C49U	U 87- 9 4040	บ 91-18	34PU
บ 70-18	564A	U 87-10 62A5		
บ 70-20	736C	TOTLZ=160	ช 92- 9	FA68
U 70-21	995U	U 87-11 22P5	บ 92-11	2UUA
		U 87-12 87P8	บ 92-13	C830
ช 71- 9	H62P	U 87-13 62A5	บ 92-14	FH56
U 71-11	H23C	TOTLZ=80	ช 92-15	7391
U 71-13	1444	U 87-14 P54H	บ 92-18	
ช 71-15	A2HC		TOTLZ=76	58
บ 71-18	34PU	Մ 88- 1 0000		
		TOTLZ=OFLO	ឋ 93- 1	87P8
ช 72- 9	21AC	U 88- 2 UCUA	ช 93- 2	4040
U 72-11	H173	U 88- 3 62A5	บ 93- 3	7702
ህ 72-13	H62P	TOTLZ=40	ប 93- 4	0818
ช 72-15	H23C	บ 88- 4 995บ	ช 93- 5	H473
บ 72-18	62A5	и 88- 5 с6н6	ช 93- 6	8P84
TOTLZ=76	58	U 88- 6 62A5	บ 93- 7	62Н4
		TOTLZ=20	ช 93- 9	1444
ช 73- 9	low	U 88- 7 H473	บ 93-11	A2HC
บ 73-11	3254	U 88- 9 8P84	บ 93-13	FA68
บ 73-12	oc49	U 88-10 62A5	บ 93-15	FFAH
ህ 73-13	61P7	TOTLZ=10	บ 93-18	62A5
บ 73-15	high	U 88-11 PF21	TOTLZ=76	58 ·
บ 73-18	62 A 5	U 88-12 62Н4	บ 93-20	736C
TOTLZ=76	58	U 88-13 62A5	บ 93-21	995U
		TOTLZ=5		
		U 88-14 0071		

Test 11: Loop H - VH = 7339

MODE: EDGES: THRESHOLDS: CONNECTIONS:
Normal CLOCK - Positive Data - High ** ST/SP/Start - TP19
----- START - Positive Data - Low ** Qual/Stop - TP19
----- STOP - Negative Clock - TTL Clock - U99 pin 3
----- ST-SP-QL - TTL Ground - GND (TP)

NOTE: Remove the clock pod connector from J3. ** = levels are TTL except where noted.

		U 65-3 high U 65-4 high	ECL ECL	U120- 5	733C low low	
U 26- 2 73	338	U 96- 4 73F7 U 96- 5 00UP U 96- 6 7339		U120- 7	733H high	
U 26- 4 73 U 26- 5 73	33н 331	TOTLZ = 24 U 97- 2 3FU9		U123- 2	high low high	
U 26-8 73 U 26-9 73	379 3¢8	U 97- 4 high U 97- 5 high U 97- 7 low		U123-7	low high high	
U 26-12 73 U 26-13 73	379 319	U 97- 9 low U 97-11 low		U127- 1 TOTLZ = 2	ነ	
U 26-15 73 U 26-16 73	331 33Н	U 99- 4 low U 99- 5 high U 99- 6 high		TOTLZ = 20 U127- 3	0000	
U 26-18 73	338 000	U 99-8 high U 99-9 low U 99-10 low		TOTLZ = 2 U127- 8 TOTLZ = 2 U127- 9	0000 14	
U 53- 2 73	3 F 7	U116-6 high U116-8 low U116-9 high		TOTLZ = 2	74	ECI
U 53- 5 65 U 53- 7 3F	59P FU9	U118- 2 A285		U129- 2 TOTLZ = 2	0000 4	ECL ECL
U 53-11 A2 U 53-13 3F	285 FU9	U118- 5 3FU9 U118- 6 659P U118-11 0000 TOTLZ = 24		U129-4 $TOTLZ = 2$	7339 4	ECL ECL
U 53-17 8F	H4A	U119-16 73F7		U129-6 I	high low	ECL ECL ECL

Test 12: Loop I - VH = 9524

MODE:	EDGES:	THRESHOLDS:	CONNECTIONS:
Normal	Clock - Positive	Data - High **	ST/SP/Start - TP19
	Start - Positive	Data - Low **	Qual/Stop - TP19
	Stop - Negative	Clock - TTL	Clock - U99 pin 3
	-	ST-SP-QL - TTL	Ground - GND (TP)

U 1-3 9524 U 1-4 high U 1-17 8741	ECL ECL	U 97-11 U 97-12 U 97-14	F8C7	U123- 3 U123- 4 U123- 5	AFFP HC26
U 1-35 9524 TOTLZ = 400		U116- 1	գեջև	U123- 6 U123- 7	
10182 - 400		TOTLZ =		U123- 9	-
U 97- 2 0505		U116- 6	9524	U123-11	C6F4
U 97- 4 F8C7		TOTLZ =	200	U123-12	126F
U 97- 5 9524		U116- 8	0000	U123-13	
TOTLZ = 400		TOTLZ =		U123-14	C6F4
U 97- 7 0000		U116- 9	high		
TOTLZ = 200				V126- 5	52 F 8
U 97- 9 0000		U123- 1	high	U126- 7	F7PF
TOTLZ = 1		U123- 2	low	U126-11	F7PF

NOTES

SECTION V

ADJUSTMENTS

5-1. INTRODUCTION.

- 5-2. This section describes adjustments and checks required to return the instrument to peak operating capability after repairs have been made.
- 5-3. The Strobe Generator Adjustment procedure is Test 9 of the Performance Verification, and the Threshold Adjustments procedure is Test 10.

5-4. SAFETY REQUIREMENTS.

5-5. Although this instrument has been designed in accordance with international safety standards, general safety precautions must be observed during all phases of operation, service, and repair of the instrument. Failure to comply with precautions listed in the Safety Summary at the front of this manual or with specific warnings given throughout the manual could result in serious injury or death or damage to equipment. Service adjustments should be performed only by qualified service personnel.

5~6. EQUIPMENT REQUIRED.

5-7. TEST EQUIPMENT.

- 1. 4 1/2 Digit Multimeter accurate to +/-1 mV. (Hewlett-Packard Model 3466A or equivalent.)
- 2. Dual Channel 100 MHz bandwidth Oscilloscope with delta time measurement capabilities accurate to 0.5 ns. (Hewlett-Packard Model 1743A with probes.)

5-8 ACCESSORIES

1. Hewlett-Packard Model 64000 series Mainframe with extender board and SEB Extender Cable.

5~9. PROCEDURE.

5-10. This procedure assumes that all other modules of this system are working properly, and are calibrated and meet or exceed their respective specifications.

NOTE

Installation and removal of P.C. Boards must be done with the AC Power for the Mainframe turned off.

5-11. STROBE GENERATOR ADJUSTMENTS. (TEST 9)

- a. Place the State Analysis Control Board on an extender board. The SEB Bus Cable must be connected to the Acquisition Boards. Use the extreme ends of the cable to avoid reflections.
- b. Select opt_test , press RETURN . The display will indicate the option modules present and the card slot number in which they are located.

- c. Press "slot number", RETURN. "Slot number" is a number from 0 to 9 equal to the location of the State Analysis Control Board.
- d. Press run , "slot number" , test , 9 , repeat , RETURN . The CRT should now display "Test 9: Strobe Generator Calibration".

NOTE

All of the following Strobe Generator measurements must be made within +/-0.5 ns of the indicated value. All transitions are measured at the 50% level (ECL Level).

e. Connect channel A of the scope to TP2 (State Recognition Strobe), and trigger on channel A. Connect channel B to TP3 (Pipeline Strobe). Using adjustment T1, (R8), adjust the rising edge of channel B as indicated in the following diagram:

f. Connect channel A to TP3 (Pipeline Strobe), and trigger on channel A. Connect channel B to TP10 (Overview Strobe). Using adjustment T2 (R7), adjust the falling edge of channel B as indicated in the following diagram:

g. Connect channel B to TP5 (Qualified Write Strobe). Channel A remains on TP3, and is the trigger for the scope. Using adjustment T3, (R6), adjust the rising edge of channel B as indicated in the following diagram:

h. Connect channel A and B to TP5 (Qualified Write Strobe). Trigger on channel A. Using adjustment T4, (R5), adjust the pulse width as indicated in the following diagram:

i. Connect channel B to TP9 (data Valid Strobe). Channel A remains on TP5, and is also the trigger. Using adjustment T5 (R4), adjust the falling edge of channel B as indicated in the following diagram:

- j. Pressing stop, end, RETURN, end will end the Strobe Generator Calibration Performance Verification.
- k. This completes the Strobe Generator Calibration.

5-12. THRESHOLD ADJUSTMENTS. (TEST 10)

- a. Place the State Analysis Control Board on an extender board. The IMB and SEB Bus Cables do not need to be connected.
- b. If it is not already disconnected, disconnect the Clock Probe Cable from J3.
- c. Connect the ground lead of the DMM to the GND TP near U70. See Figure 5-1.
- d. Using a jumper wire, connect TP11 and TP12 together.
- e. Connect the positive lead of the DMM to Testpoint 11.
- f. Select opt_test , press RETURN . The display will indicate the option modules present and the card slot number they are located in.
- g. Press "slot number", RETURN . "Slot number" is a number from 1 to 9 equal to the location of the State Analysis Control Board.
- h. Press run , "slot number" , test , 1 , 0 , RETURN . The CRT should now display "Test 10:Threshold Circuit Calibration".
- i. Each time the RETURN key is pressed, the D/A Converter will be set to a new value. Press RETURN until "Reference = -4.267 V Negative Limit" is displayed.

- j. Adjust -FS, R24, to -4.267 V +/- 1 mV. See Figure 5-1.
- k. Remove the jumper from TP11 and TP12. Positive lead of the DMM remains on TP11.
- 1. Continue pressing RETURN until "Reference = +433 mV ECL (-1.3 V)" is displayed.
- m. Adjust +FS2, R25, to +433 mV. See Figure 5-1.
- n. Each time RETURN is pressed, the D/A Converter will be set to a different value. Press RETURN six times and verify that the value measured on the DMM is within +/-33 mV of the value displayed for all six DAC levels.(If the voltages are not correct, there is most likely a problem in the DAC and must be corrected using the Performance Verification.)
- o. Connect the positive lead of the DMM to TP12.
- p. Continue pressing RETURN until "Reference = +433 mV ECL (-1.3 V)" is displayed.
- q. Adjust +FS1, R23, to +433 mV. See Figure 5-1.
- r. Each time RETURN is pressed, the D/A Converter will be set to a different value. Press RETURN six times and verify that the value measured on the DMM is within +/-33 mV of the value displayed for all six DAC levels.(If the voltages are not correct, there is most likely a problem in the DAC and must be corrected using the Performance Verification.)
- s. Press end, RETURN, end to exit the State Analysis Control Performance Verification.

Figure 5-1. Adjustment Locations

NOTES

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designator order. Table 6-3 contains the names and addresses that correspond to the manufacturers' five-digit code numbers.

6-3. ABBREVIATIONS.

6-4. Table 6-1 lists abbreviations used in the parts list, the schematics and throughout the manual. In some cases, two forms of the abbreviation are used: one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lowercase and uppercase letters.

6-5. REPLACEABLE PARTS LIST.

- 6-6. Table 6-2 is the list of replaceable parts and is organized as follows:
 - a. Chassis-mounted parts in alphanumerical order by reference designation.
 - b. Electrical assemblies and their components in alphanumerical order by reference designation.
 - c. Miscellaneous parts.

The information given for each part consists of the following:

- a. The Hewlett-Packard part number and the check digit.
- b. The total quantity (Qty) in the instrument.
- c. The description of the part.
- d. A five-digit code that indicates the manufacturer.
- e. The manufacturers' part number.

The total quantity for each part is given only once - at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION.

- 6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number and check digit, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.
- 6-9. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument repair number, the description and function of

the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-10. SPARE PARTS KIT.

6-11. A spare parts kit is not available at this time.

6-12. DIRECT MAIL ORDER SYSTEM.

- 6-13. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:
 - a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
 - b. No Maximum or minimum on any mail order (there is a minimum order amount, for parts ordered through a local HP office when the orders require billing and invoicing).
 - c. Prepaid transportation (there is a small handling charge for each order).
 - d. No invoices -to provide these advantages, a check or money order must accompany each order.
- 6-14. Mail-order forms and specific ordering information are available through your local HP office. Addresses and phone numbers are located at the back of this manual.

Table 6-1. Reference Designators and Abbreviations

			REFERENCE DESIG	GNATORS			
A	= assembly	F	= fuse	MP	- mechanical part	U	integrated circuit
В	= motor	FL	= filter	Р.	- plug	v	vacuum, tube, neo
ВТ	= battery	ic	= integrated circuit	Q.	= transistor	•	bulb, photocell, etc
C	= capacitor	j	= jack	R	= resistor	VR	voltage regulator
CP		K	= relay	RT	= thermistor	W	- cable
-	= coupler		*				
CR	= diode	L	= inductor	S	= switch	X	socket
DL	= delay line	LS	= loud speaker	T	- transformer	Y	crystal
DS	- device signaling (lamp)	M	= meter	ТВ	- terminal board	Z	tuned cavity netwo
E	= misc electronic part	мк	= microphone	TP	= test point		
			ABBREVIATI	ONS			
A	= amperes	н	- henries	N/O	normally open	RMO	rack mount only
AFC	 automatic frequency control 	HDW	= hardware	NOM	- nominal	RMS	root-mean square
AMPL	amplifier	HEX	= hexagonal	NPO	= negative positive zero	RWV	- reverse working
		HG	= mercury		(zero temperature		voltage
BFO	= beat frequency oscillator	HR	= hour(s)		coefficient)		
BE CU	beryllium copper	HZ	= hertz	NPN	- negative-positive-	S-B	slow-blow
вн	= binder head				negative	SCR	screw
BP	bandpass			NRFR	not recommended for	SE	selenium
BRS	= brass	IF	 intermediate freq 		field replacement	SECT	section(s)
BWO	backward wave oscillator	IMPG	impregnated	NSR	not separately	SEMICON	semiconductor
		INCD	- incandescent		replaceable	SI	silicon
ccw	- counter-clockwise	INCL	= include(s)		•	SIL	silver
CER	ceramic	INS	insulation(ed)	OBD	= order by description	SL	slide
СМО	= cabinet mount only	INT	= internal	он	oval head	SPG	spring
COEF	= coeficient			ox	= oxide	SPL	- special
COM	= common	К	- kilo1000			SST	stainless steel
COMP	= composition					SR	split ring
COMPL	composition	LH	= left hand	Р	- peak	STL	steel
CONN	= connector	LIN	= linear taper	PC	- printed circuit	J.L	
CP	= cadmium plate	LK WASH	= lock washer	PF	= picofarads= 10-12	TA	tantalum
CRT	= cathode-ray tube	LOG	= logarithmic taper	FI	farads	TD	time delay
CW	= clockwise	LPF	= low pass filter	PH BRZ		TGL	toggle
C 17	- CIOCKWISE	LPF	- low pass litter		phosphor bronze	THD	thread
DEPC	- deposited earlier		= milli=10-3	PHL PIV	- phillips		titanium
	- deposited carbon	M			= peak inverse voltage	TI	
DR	= drive	MEG	= meg=106	PNP	positive-negative-	TOL	tolerance
O-T	-111-1	MET FLM	- metal film	5.0	positive	TRIM	trimmer
ELECT	- electrolytic	MET OX	= metallic oxide	P/O	= part of	TWT	traveling wave tub
ENCAP	encapsulated	MFR	= manufacturer	POLY	 polystyrene 		
EXT	external	MHZ	- mega hertz	PORC	porcelain	U	- micro10 6
_		MINAT	= miniature	POS	- position(s)		
F	= farads	MOM	= momentary	POT	= potentiometer	VAR	variable
FH	= flat head	MOS	= metal oxide substrate	PР	= peak-to-peak	VDCW	dc working volts
FIL H	= fillister head	MTG	= mounting	PT	= point		
FXD	– fixed	MY	= "mylar"	PWV	= peak working voltage	W/	· with
						w	watts
G	= giga (109)	N	= nano (10-9)	RECT	= rectifier	WIV	working inverse
GE	= germanium	N/C	= normally closed	RF	= radio frequency		voltage
GL	glass	NE	- neon	RH	= round head or	ww	- wirewound
GRD	= ground(ed)	NI PL	- nickel plate		right hand	W/O	without

Figure 6-1. Probe Cable Breakdown

Table 6-2. Replaceable Parts List

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
	6 4 621A	3		STATE ANALYSIS CONTROL	28480	64621A
A1	64621-66503	7	1	10MHZ STATE ANALYSIS CONTROL BOARD	28480	64621-66503
A1C1 A1C2 A1C3 A1C4 A1C5	0160-2055 0160-2055 0160-2055 0160-2055 0160-3793	9 9 9 9	50 3	CAPACITOR-FXD .010F +80-20% 1000VDC CCR CAPACITOR-FXD .010F +80-20% 1000VDC CFR CAPACITOR-FXD .010F +80-20% 1000VDC CFR CAPACITOR-FXD .010F +80-20% 1000VDC CFR CAPACITOR-FXD .680PF +-1% 1000VDC MICA	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-3793
A106 A107 A108 A109 A1010	0140-0149 0140-0149 0160-3067 0160-3793 0140-0149	6 6 5 4 6	4	CAPACITOR-FXD 470PF +-5% 300VDC MICA CAPACITOR-FXD 470PF +-5% 300VDC MICA CAPACITOR-FXD 200PF +-5% 300VDC MICA CAPACITOR-FXD 680PF +-1% 100VDC MICA CAPACITOR-FXD 470PF +-5% 300VDC MICA	72136 72136 28480 28480 72136	DM15F471J0300WV1CR DM15F471J0300WV1CR 0160-3067 0160-3793 DM15F471J0300WV1CR
A1C11 A1C12 A1C13 A1C14 A1C15	0160-2055 0160-3508 0160-2055 0160-2055 0160-2055	9 9 9 9	5	CAPACITOR-FXD .91UF +80-20% 100VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER	28480 28480 28480 28480 28480	0160-2055 0160-3508 0160-2055 0160-2055 0160-2055
A1016 A1017 A1018 A1019 A1020	0160-2055 0160-3793 0160-2055 0160-2055 0160-2055	9 4 9 9		CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .680PF +-1% 100VDC MICA CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITUR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER	28480 28480 28480 28480 28480	0160-2055 0160-3793 0160-2055 0160-2055 0160-2055
A1021 A1022 A1023 A1024 A1025	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055	9 9 9 9		CAPACITOR-EXD .01UF +80-20% 1900VD CER CAPACITOR-EXD .01UF +80-20% 100VDC CER CAPACITOR-EXD .01UF +80-20% 100VDC CER CAPACITOR-EXD .01UF +80-20% 1000VDC CER CAPACITOR EXD .01UF +80-20% 100VDC CER	28480 28480 28480 29480 28480	3160-2055 0160-2055 3160-2055 0160-2055 9160-2055
A1026 A1027 A1028 A1029 A1030	0160-2055 9160-2055 0160-2055 9160-2055 0160-2055	9 9 9 9		CAPACITOR-FXD .01UF +80-20% 100VDC CFR CAPACITOR-FXD .01UF +80-20% 100VDC CFR CAPACITOR-FXD .01UF +80-20% 100VDC CFR CAPACITOR FXD .01UF +80-20% 100VDC CFR CAPACITOR-FXD .01UF +80-20% 100VDC CFR	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A1031 A1032 A1033 A1034 A1035	8160-2055 0160-2055 0160-2055 0160-2055 0160-2055	9 9 9 9		CAPACITOR-FXD .010F +80-20% 1000VDC CER CAPACITOR-FXD .010F +80-20% 1000VDC CER CAPACITOR-FXD .010F +80-20% 1000VDC CER CAPACITOR-FXD .010F +80-20% 1000VDC CER CAPACITOR-FXD .010F +80-20% 1000VDC CER	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A1036 A1037 A1038 A1039 A1040	0160-0178 0160-0178 0160-2055 0160-2055 0160-2055	3 3 9 9	2	CAPACITOR-FXD 27PF +-5% 300VDC MICA CAPACITOR-FXD 27PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER	28486 28480 28480 28480 28480	0160-0178 0160-0178 0160-2055 0160-2055 0160-2055
A1C41 A1C42 A1C43 A1C44 A1C45	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055	9 9 9 9		CAPACITOR-FXD .01UF +80-20% 1000VDC CER CAPACITOR-FXD .01UF +80-20% 1000VDC CER CAPACITOR-FXD .01UF +80-20% 1000VDC CER CAPACITOR-FXD .01UF +80-20% 1000VDC CER CAPACITOR-FXD .01UF +80-20% 1000VDC CER	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A1C46 A1C47 A1C48 A1C49 A1C50	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055	9 9 9 9		CAPACITOR-FXD .01UF +80-20% 100VDC CFR CAPACITOR-FXD .01UF +80-20% 100VDC CFR	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A1051 A1052 A1053 A1054 A1055	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055	9 9 9 9		CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITUR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A1C56 A1C57 A1C58 A1C59 A1C60	0160-2055 0160-2055 0180-1746 0180-1746 0180-1746	99555	6	CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA	28490 28480 56289 56289 56289	0160-2055 0160-2055 1500156X9020B2 1500156X9023B2 1500156X9020B2
A1C61	0140-0149	6		CAPACITOR-FXD 470PF +-5% 300VDC MICA	72136	DM15F471J0300WV1CR
A1062 A1063 A1064	0160-3508 0160-2055 0180-1746	9 9 5		CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA	28480 28480 56289	0160-3508 0160-2055 150D156X9020B2
A1C65 A1C66 A1C67 A1C68	0180-1746 0180-1746 0180-1746 0160-2055 0160-2055	55599		CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER	56289 56289 56289 28480 28480	1500156X9020B2 1500156X9020B2 1500156X9020B2 0160-2055 0160-2055

Table 6-2. Replaceable Parts List (Cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A10R1 A10R2 A10R3	1901-0050 1901-0050 1901-0050	3 3	3	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480	1901-0050 1901-0050 1901-0050
A1J3	1251-7005	3	1	CONNECTOR 50-PIN M POST TYPE	28480	1251-7005
A1MP1 A1MP2 A1MP3	64621-85001 64621-85002 1480-0116	0 1 8	1 1 1	EXTRACTOR-P.C. WOARD EXTRACTOR-P.C. BUARD PIN-GRV .062-IN DIA .25-TN-LG STL	28480 28480 28480	64621-85001 64621-85002 1480-0116
A1Q1	1854-0215	1	1	TRANSISTOR NPN ST PD=350MW FT=300MHZ	04713	2N3904
A1R1 A1R2 A1R3 A1R4 A1R5	0757-0394 0698-6612 0698-6612 2100-3123 2100-3123	0 1 1 0 0	12 20 8	RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 2K .1% .125W F TC=0+-100 RESISTOR 2K .1% .125W F TC=0+-100 RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN	24546 28480 28480 02111 02111	C4 1/8-10-51R1-F 0698-6612 0698-6612 43P501 43P501
A1R6 A1R7 A1R8 A1R9 A1R10	2100-3123 2100-3123 2100-3123 0698-6612 0698-6612	0 0 0 1		RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 500 10% C STDE-ADJ 17-TRN RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR 2K .1%.125W F JC=0+-100 RESISTOR 2K .1%.125W F JC=0+-100	02111 02111 02111 02111 28480 28480	43P501 43P501 43P501 0698-6612 0698-6612
A1R11 A1R12 A1R13 A1R14 A1R15	0757-0394 0757-0394 0698-3447 0757-0346 0757-0346	0 0 4 2 2	1 4	RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-51R1-F C4-1/8-T0-51P1-F C4-1/8-T0-422R-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F
A1R16 A1R17 A1R18 A1R19 A1R20	0757-0346 0698-3445 0757-0346 0698-3455 0698-3154	20240	1 2 2	RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 348 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 261K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-10R0-F C4-1/8-T0-348R-F C4-1/8-T0-10R0-F C4-1/8-T0-2613-F C4-1/8-T0-4221-F
A1R21 A1R22 A1R23 A1R24 A1R25	0698-3152 0698-3154 2100-3123 2100-3123 2100-3123	8 0 0 0	1	RESISTOR 3.46K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR-1RMR 500 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN	24546 24546 02111 02111 02111	C4-1/8-10-3481-F C4-1/8-T0-4221-F 43P501 43P501 43P501
A1R26 A1R27 A1R28 A1R29 A1R30	0757-0394 0757-0437 0757-0437 0757-0437 0757-0283 0757-0283	0 22 23 60	2	RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 4.75K 1% .125W F TC=0+-100 RESISTOR 4.75K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-5181-F C4-1/8-T0-4751-F C4-1/8-T0-4751-F C4-1/8-T0-2001-F C4-1/8-T0-2001-F
A1R31 A1R32 A1R33 A1R34 A1R35	0698-6612 0757-0394 0757-0438 0757-0438 0757-0394	1 0 3 3	3	RESISTOR 2K .1%.125W F TC=0+-100 RESISTOR 51.1 1%125W F TC=0+-100 RESISTOR 5.11K 1%125W F TC=0+-100 RESISTOR 5.11K 1%125W F TC=0+-100 RESISTOR 51.1 1%125W F TC=0+-100	28480 24546 24546 24546 24546	0698-6612 C4-1/8-T0-51R1-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-51R1-F
A1R36 A1R37 A1R38 A1R39 A1R40	0698-6612 0698-6612 0698-6612 0698-6612 0698-6612	1 1 1 1		RESISTOR 2K .1%.125W F TC=0+-100 RESISTOR 2K .1%.125W F TC=0+-100 RESISTOR 2K .1%.125W F TC=0+-100 RESISTOR 2K .1%.125W F TC=0+-100 RESISTOR 2K .1%.125W F TC=0+-100	28480 28480 28480 28480 28480	0698-6612 0698-6612 0698-6612 0698-6612 0698-6612
A1R41 A1R42 A1R43 A1R44 A1R45	0698-6612 0757-0726 0698-6612 0698-6612 0698-6612	1 2 1 1	1	RESISTOR 2K .1%.125W F TC=0+-100 RESISTOR 511 1% .25W F TC=0+-100 RESISTOR 2K .1%.125W F TC=0+-100	28480 24546 28480 28480 28480	0698-6612 C51/4-T0-511RF 0698-6612 0698-6612 0698-6612
A1R46 A1R47 A1R48 A1R49 A1R50	0698-6612 0698-6612 0757-0394 0757-0394 0757-0438	1 0 0 3		RESISTOR 2K .1%.125W F TC=0+-100 RESISTOR 2K .1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100	28480 28480 24546 24546 24546	0698-6612 0698-6612 C4-1/8-T0-51R1-F C4-1/8-T0-51R1-F C4-1/8-T0-5111-F
A1R51 A1R52 A1R53 A1R54 A1R55	0698-3455 0698-3455 0698-6612 0757-0394 0757-0394	1 4 1 0		RESISTOR 2K .12 .125W F TC=0+-100 RESISTOR 261K 1% .125W F TC=0+-100 RESISTOR 2K .1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100	28480 24546 28480 24546 24546	0698-6612 C4-1/8-T0-2613-F 0698-6612 C4-1/8-T0-51R1-F C4-1/8-T0-51R1-F
A1R56 A1R57	0757-0394 0757-0394	0		RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-51R1-F C4-1/8-T0-51R1-F
A1TP2 A1TP3 A1TP5 A1TP9 A1TP10	0360-0535 0360-0535 0360-0535 0360-0535 0360-0535	0 0 0 0	1.3	TERMINAL TEST POINT PCB	00000 00000 00000 00000	ORDER BY DESCRIPTION
A1TP11 A1TP12 A1TP14 GND GND GND A1TP18 A1TP19	0360-0535 0360-0535 0360-0535 0360-0535 0360-0535 0360-0535 0360-0535	0 0 0 0 0 0 0		TERMINAL TEST POINT PCB	00000 00000 00000 00000 00000 00000	ORDER BY DESCRIPTION URBER BY DESCRIPTION

Table 6-2. Replaceable Parts List (Cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1U1 A1U2 A1U3 A1U4 A1U5	1NB4-5010 1810-0273 1810-0298 1820-2359 1820-1400	3 9 8 7 7	1 9 12 2 3	IC. STATE ANALYZER CONTRULLER NETWORK-RES 10-SIP470.0 OHM X 9 NETWORK-RES 10-SIP240.0 OHM X 9 IC MISC ECL 14-INP IC GATE ECL AND QUAD 2-INP	28480 01121 01121 07263 04713	1NB4-5010 210A471 210A241 F10014PC MC10104P
A1U6 A1U7 A1U8 A1U9 A1U10	1820-0802 1820-2359 1820-0269 1810-0298 1810-0280	1 7 4 8 8	4 2 3	IC GATE ECL NOR QUAD 2-INP IC MISC ECL 14-INP IC GATE TIL NAND QUAD 2-INP NEIWORK-RES 18-SIP240.0 GHM X 9 NEIWORK-RES 18-SIP10.0K OUM X 9	04713 07263 01295 01121 01121	MC10102P F10014PC SNZ403N 210A241 210A103
A1011 A1012 A1013 A1014 A1015 A1016 A1017 A1018 A1019 A1019 A1021	1810-0280 1810-0302 1810-0298 1820-1201 1810-0273 1820-1831 1820-1788 1820-1788 1820-0802 1820-0802 1820-1944	8 5 8 6 9 8 4 4 1 1	2 1 2 6	NEIWORK-RES 10-STP10.9K GIM X 9 NETWORK-RES 8-SIP47.0 OHM X 4 NEIWORK-RES 10-SIP240.0 OHM X 9 IC GATE TTL AND QUAD 2-INP NETWORK-RES 10-SIP470.0 OHM X 9 IC GATE ECL OR QUAD 2-INP IC CATE ECL BIN SYNCHRO POS-EDGE-TRIG IC CATE ECL BIN SYNCHRO POS-EDGE-TRIG IC GATE ECL NOR QUAD 2-INP IC GATE ECL NOR QUAD 2-INP IC GATE FCL NOR QUAD 2-INP IC LCH ECL D-TYPF POS-EDGE-TRIG DUAL	01121 01121 01121 01125 01121 04213 07263 04713 04713 04713	210A103 208U470 210A241 5N74L5USHN 210A471 MC10103L F10C16DC HC1010CP MC1010CP MC1010CP MC1010CP
A1022 A1023 A1024 A1025 A1026	1820-1944 1820-0817 1820-1400 1NB4-5018 1820-2075	4 8 7 1 4	1 1 2	IC LEH ECL D-TYPE POS-EDGE-TRIG DUAL IC FF ECL D-M/S DUAL IC GATE ECL AND QUAD 2-INP IC, CLUCK GEMEKATUR IC MISC TIL LS	0.4713 0.4713 0.4713 28480 01295	MC10130L MC10131P MC10104P 1NPA-5018 SN74LS245N
A1U27 A1U28 A1U29 A1U30 A1U31	1810-0280 1826-0271 1826-0271 1826-0544 1810-0298	0 0 8	2	NETWORK-RES 10-SIP10.0K OHM X 9 IC OP AMP CP 8 DIP-P PKG IC OP AMP CP 8-DIP-P PKG V REF 8-DIP-C NETWORK-RES 10-SIP240.0 OHM X 9	01121 91295 01295 04713 01121	2186103 5N72741P 5N72741P MC1403U 2186241
A1U32 A1U33 A1U34 A1U35 A1U36	1810-0298 1810-0298 1810-0298 1810-0298 1816-1462	8 8 8 2	4	NETWORK-RES 10-SIP2A0.0 0HM X 9 IC ECL/10K 1024 (1K) STAT RAM. 10-NS 0-E	01121 01121 01121 01121 01121 50167	210A241 210A241 210A241 210A241 MSM10422H
A1U37 A1U38 A1U39 A1U40 A1U41	1810-0298 1816-1462 1810-0298 1816-1462 1810-0298	8 2 8 2 8		NETWORK-RES 10-SIP240.0 OHM X 9 IC ECL/19K 1024 (1K) STAT RAM 10-NS D-E NETWORK-RES 10-SIP240.0 OHM X 9 IC ECL/19K 1024 (1K) STAT RAM 10-NS O-E NETWORK-RES 10-SIP240.0 OHM X 9	01121 50167 01121 50167 01121	210A241 MEM10422H 210A241 MEM10422H 210A241
A1842 A1843 A1844 A1845 A1846	1816-1462 1820-0806 1820-0802 1820-1400 1810-0219	2 5 1 7 3	1	IC ECL/18K 1824 (1K) STAT RAM 10-NS D-E IC GATE ECL OR-NOR DUAL 4-5-INP IC GATE ECL NOR QUAD 2-INP IC GATE ECL AND QUAD 2-INP NEIWORK-RES 8-SIP220.0 OHM X 4	S0167 04713 04713 04713 01121	MBM10422H MC10109P MC10102P MC10104P 208B221
A1047 A1048 A1049 A1050 A1051	1820~0809 1810~0219 1810~0219 1820~0809 1810~0219	8 3 3 8 3	5	IC ROVE ECL LINE ROVE QUAD 2-INP NETWORK-RES 8-SIP220.0 OHM X 4 NETWORK-RES 8-SIP220.0 OHM X 4 IC ROVE ECL LINE ROVE QUAD 2-INP NETWORK-RES 8-SIP220.0 OHM X 4	04713 01121 01121 04713 01121	MC10115P 2088221 2088221 MC10115P 2088221
A1U52 A1U53 A1U54 A1U55 A1U56	1820-1173 1820-2024 1826-0856 1826-0856 1810-0273	1 3 7 7 9	6 2 2	IC XLIR ECL TIL-TO-ECL QUAD 2-INP IC DRVR TIL LS LINE DRVR OCTL IC CONV 8-B-D/A 20-DIP-P PKG IC CONV 8-B-D/A 20-DIP-P PKG NETWORK-RES 10-SIP470.0 DHM X 9	0.4713 01295 34335 34335 01121	MC10124L SN74LS244N AM6080APC AM6080APC 210A471
A1U57 A1U58 A1U59 A1U60 A1U61	1810-0302 1816-1338 1816-1338 1816-1338 1816-1338	5 1 1 1	4	NETWORK-RES 8-SIP47.0 OHM X 4 TO FCL/10K 64-BIT STAT RAM 6-NS IC ECL/10K 64-BIT STAT RAM 6-NS IC ECL/10K 64-BIT STAT RAM 6-NS IC ECL/10K 64-BIT STAT RAM 6-NS	01121 07263 07263 07263 07263	2088470 10145APC 10145APC 10145APC 10145APC
A1U62 A1U63 A1U64 A1U65 A1U66	1820-1173 1820-1173 1820-1173 1820-1052 1820-1052	1 1 5 5	18	IC XLTR ECL TIL-TO-ECL QUAD 2-INP IC XLTR ECL TIL-TO-ECL QUAD 2-INP IC XLTR ECL TIL-TO-ECL QUAD 2-INP IC XLTR ECL ECL-TO-TIL QUAD 2-INP IC XLTR ECL ECL-TO-TIL QUAD 2-INP IC XLTR ECL ECL-TO-TIL QUAD 2-INP	04713 04713 04713 04713 04713	MC10124L MC10124L MC10124L MC10125L MC10125L
A1U67 A1U6B A1U69 A1U70 A1U71	1820-1997 1820-1997 1820-1997 1816-1308 1816-1308	7 7 7 5 5	6 8	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC TTL L 1024 (1K) STAT RAM 75-NS 3-S IC TTL L 1024 (1K) STAT RAM 75-NS 3-S	01295 01295 01295 07263 07263	SN74LS374N SN74LS374N SN74LS374N 93L422PC 93L422PC
A1U72 A1U73 A1U74 A1U75 A1U76	1816-1308 1816-1308 1820-1052 1810-0273 1810-0273	55599		IC TTL L 1024 (1K) STAT RAM 75-NS 3-S IC TTL L 1024 (1K) STAT RAM 75-NS 3-S IC XLIR ECL ECL-TD-TTL QUAD 2-INP NETWORK-RES 10-SIP470.0 OHM X 9 NETWORK-RES 10-SIP470.0 OHM X 9	07263 07263 04713 01121 01121	93L422PC 93L422PC MC10125L 210A471 210A471

Table 6-2. Replaceable Parts List (Cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1U77 A1U78 A1U79 A1U80 A1U81	1820-1052 1820-1788 1820-1788 1820-1831 1820-1788	5 4 4 8 4		TC XLIR FCL ECL-TO-TIL QUAD 2-INP IC CNTR ECL BIN SYNCHRO POS-EDGE-TRIG IC CNTR ECL BIN SYNCHRO POS-EDGE-TRIG IC GATE ECL OR QUAD 2-INP IC CNTR ECL BIN SYNCHRO PGS-EDGE-TRIG IC CNTR ECL BIN SYNCHRO PGS-EDGE-TRIG	0.4713 07263 07263 07263 04713 07263	MC10125L F18016DC F10016DC MC18103L F10016DC
A1U82 A1U83 A1U84 A1U85 A1U86	1820-1788 1820-1052 1820-1052 1820-1173 1820-1997	4 5 5 1 7		IC CNTR ECL BIN SYNCHRO POS-EDGE-TRIC IC XLTR ECL FCL-TD-TIL QUAD 2-INP IC XLTR ECL ECL-TD-TIL QUAD 2-INP IC XLTR ECL TIL-TO-ECL QUAD 2-INP IC XLTR ECL TIL-TO-ECL QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG PRIIN	07263 04713 04713 04713 04713	F10016DC MC10125L MC10125L MC10124L SN74LS374N
A1U87 A1U88 A1U89 A1U90 A1U91	1820-1428 1820-1428 1820-1997 1816-1308 1816-1308	9 9 7 5 5	2	IC MUXR/DATA-SEL TIL LS 2-TO-1-LINE QUAD IC MUXR/DATA-SEL TIL LS 2-TO-1-LINE QUAD IC FF TIL LS D-TYPE POS-EDGE-IRIG PRL-IN IC TIL L 1024 (IK) STAT RAM 75-NS 3-S IC IIL L 1024 (IK) STAT RAM 75-NS 3-S	01295 01295 01295 07263 07263	SN74LS158N SN74LS158N SN74LS374N 93L422PC 93L422PC
A1U92 A1U93 A1U94 A1U95 A1U96	1816-1308 1816-1308 1820-1052 1810-0273 1820-1197	55599	2	IC TTL L 1024 (1K) STAT RAM 75-NS 3-S IC TTL L 1024 (1K) STAT RAM 75-NS 3-S IC XLTR ECL ECL-TO-TTL QUAD 2-INP NETWORK-RES 10-STP470.0 0HM X 9 IC GATE TTL LS NAND QUAD 2-INP	07263 07263 04713 047121 01295	93L422PC 93L422PC MG10125L 210A47T SN74LS00N
A1U97 A1U98 A1U99 A1U100 A1U101	1820-1282 1820-1282 1820-1197 1820-1216 1820-1216	3 9 3 3	4 3	IC FF TTL LS J-K BAR POS-EDGE-TRIG IC FF TTL LS J-K BAR POS-EDGE-TRIG IC GATE TTL LS NAND QUAD 2-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP	01295 01295 01295 01295 01295	SN74LS109AN SN74LS109AN SN74LS03N SN74LS138N SN74LS138N
A1U102 A1U103 A1U104 A1U105 A1U106	1820-1216 1820-1282 1820-1430 1820-1430 1820-1281	3 3 3 2	2	IC DCDR TTL LS 3-TO-8-LINE 3-INP IC FF TTL LS J-K BAR POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNIR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC DCDR TTL LS 2-TO-4-LINE DUAL 2-INP	01295 01295 01295 01295 01295	SN74LS138N SN74LS109AN SN74LS161AN SN74LS161AN SN74LS139N
A1U107 A1U108 A1U109 A1U110 A1U111	1820-1282 1820-1052 1820-1052 1820-1052 1820-1052	3 5 5 5 9		IC FF TIL LS J-K BAR POS-EDGE-TRIG IC XLTR ECL ECL-TO-TTL QUAD 2-INP IC XLTR ECL ECL-TO-TIL QUAD 2-INP IC XLTR ECL ECL-TO-TTL QUAD 2-INP NETWORK-RES 10-SIP470.0 OHM X 9	01295 04713 04713 04713 04713	SN74LS109AN MC10125L MC10125L MC10125L 210A471
A1U112 A1U113 A1U115 A1U116 A1U117	1NB4-5009 1810-0273 1820-1199 1820-1210 1820-1423	0 9 1 7 4	1 1 1	IC. COUNTER 20 BIT GRAY CODE NETWORK-RES 10-SIP470.0 OHM X 9 IC INV TTL LS HCX 1-INP IC GATE TTL LS AND-OR-INV DUAL 2-INP IC MV TTL LS AND-OR-INV DUAL 2-INP IC MV TTL LS MONOSTBL RETRIG DUAL	28480 01121 01295 01295 01295	1N84-5009 210A471 SN74LS04N SN74LS51N SN74LS123N
A1U118 A1U119 A1U120 A1U121 A1U122	1820-2102 1820-2102 1820-1997 1820-2075 1820-2024	8 8 7 4 3	s	IC LCH ITL LS D-TYPE OCTL IC LCH TTL LS D-TYPE OCTL IC FF ITL LS D-TYPE PGS-EDGE-TRIG PRL-IN IC MISC TTL LS IC DRVR ITL LS LINE DRVR OCTL	01295 01295 01295 01295 01295	SN74LS373N SN74LS373N SN74LS374N SN74LS245N SN74LS244N
A10123 A10124 A10125 A10126 A10127	1820-1195 1820-0269 1820-1144 1820-0780 1820-1208	7 4 6 4 3	1 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC CATE TTL NAND QUAD 2-INP IC CATE TTL LS NOR QUAD 2-INP IC DRVR TTL LINE DRVR QUAD IC GATE TTL LS OR QUAD 2-INP	01295 01295 01295 27014 01295	SN74LS175N SN7403N SN74LS02N DS831N SN74LS32N
A1U128 A1U129 A1U130	1810-0298 1820-1173 1810-0273	8 1 9		NETWORK-RES 10-SIP240.0 OHM X 9 IC XLTR ECL TTL-TO-ECL QUAD 2-INP NETWORK-RES 10-SIP470.0 OHM X 9	01121 04713 01121	210A241 MC10124L 210A471
A1XU1 A1XU25 A1XU26 A1XU28 A1XU29	1200-0654 1200-0654 1200-0639 1200-0796 1200-0796	7 8 8	3 2 2	SOCKET-IC 40-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP-SLDR SOCKET-IC 20-CONT DIP DIP-SLDR SOCKET-IC 8-CONT DIP DIP-SLDR SOCKET-IC 8-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480	1200-0654 1200-0654 1200-0639 1200-0796 1200-0796
A1XU47 A1XU50 A1XU53 A1XU70 A1XU71	1200-0607 1200-0607 1200-0639 1200-0612 1200-0612	0 0 8 7 7	4 8	SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 20-CONT DIP DIP-SLDR SOCKET-IC 22-CONT DIP DIP-SLDR SOCKET-IC 22-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480	1200-0607 1200-0607 1200-0639 1200-0612 1200-0612
A1XU72 A1XU73 A1XU90 A1XU91 A1XU92	1200-0612 1200-0612 1200-0612 1200-0612 1200-0612	7 7 7 7 7		SOCKET-IC 22-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480	1200-0612 1200-0612 1200-0612 1200-0612 1200-0612
A1XU93 A1XU112 A1XU117 A1XU126 A1XU127	1200-0612 1200-0654 1200-0607 1200-0607 1200-0638	7 7 0 0 7	1	SOCKET-IC 22-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP-SLDR SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 14-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480	1200-0612 1200-0654 1200-0607 1200-0607 1200-0638

Table 6-2. Replaceable Parts List (Cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
MP1 MP2 MP3 MP4 MP5	2200-0147 2200-0151 64620-67601 64620-67602 7121-2158	4 0 7 8 8	2 2 1 1	SCREW-MACH 4-40 .5-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .75-IN-LG PAN-HD-POZI HOOD-CONNECTOR ASSEMBLY (TOP) HOOD-CONNECTOR ASSEMBLY (BOTTOM) LABLE-CLOCK PROBE	00000 00000 28480 28480 28480	GRDER BY DESCRIPTION ORDER BY DESCRIPTION 64620-67601 64620-67602 7121-2158
W1	64620-61602	6	1	CABLE-CLOCK ASSEMBLY NOTE	28490	64620-61602
. w2	* *	*	*	IF THE CABLE IS DAMAGED, THE ENTIRE WI CABLE-CLOCK ASSY MUST BE REPLACED. CABLE-DATA ASSEMBLY ** DEPENDS ON THE NUMBER OF ACQUISITION BOARDS BEING USED IN THE SYSTEM. SEE THE ACQUISITION MANUALS.	28480	× ×
พ3 พ4	64620-61605 64620-61620	9 8	1 1	CABLE-SYNCHRONOUS EXPANSION BUS (SEB) CABLE - INTERMODULE BUS (IMB)	28480 28480	64620-61605 64620-61620

Model 64621A - Replaceable Parts

Table 6-3. List of Manufacturers' Codes

Mfr No.	Manufacturer Name	Address	Zip Code
\$0167 \$4013 00000 01121 01295 02111 04713 07263 11236 12932 24546 25403 27014 27167 28480 3L585 34335 56289 72136 75042	FUJITSU LTD HITACHI ANY SATISFACTORY SUPPLIER ALLEN-BRADLEY CO TEXAS INSTR INC SEMICOND CMPNT DIV SPECTROL ELECTRONICS CORP HOTOROLA SEMICONDUCTOR PRODUCTS FAIRCHILD SEMICONDUCTOR DIV CTS OF BERNE INC MEPCO/ELECTRA CORP EMCON DIV ITW CORNING GLASS WORKS (BRADFORD) AMPEREX ELEK CORP SEMICON & MC DIV NATIONAL SEMICONDUCTOR CORP CORNING GLASS WORKS (WILMINGTON) HEWLETT-PACKARD CO CORPORATE HQ RCA CORP SOLID STATE DIV ADVANCED MICRO DEVICES INC STETTINER-TRUSH INC SPRAGUE ELECTRIC CO ELECTRO MOTIVE CORP TRW INC PHILADELPHIA DIV	TOKYO JP TOKYO JP MILWAUKEE WI DALLAS TX CITY OF IND CA PHOENIX AZ MOUNTAIN VIEW CA BERNE IN MINERAL WELLS TX SAN DIEGO CA BRADFORD PA SLATERSVILLE RI SANTA CLARA CA WILMINGTON NC PALO ALTO CA SOMERVILLE NJ SUNNYVALE CA CAZENOVIA NY NORTH ADAMS MA FLORENCE SC PHILADELPHIA PA	53204 75222 91745 85008 94042 46711 76067 92129 16701 02876 95051 28401 94086 13035 01247 06226

See introduction to this section for ordering information

SECTION VII

MANUAL BACKDATING

7-1. INTRODUCTION.

7-2. This section contains information required to backdate or update this manual for a specific repair number prefix.

7-3. MANUAL CHANGES.

7-4. This manual applies directly to the instrument having the repair number prefix shown on the manual title page. If the repair prefix is not the same as the one on the title page, find your repair number prefix in Table 7-1 and make the changes to the manual that are listed for that repair number prefix. When making changes listed in table 7-1, make the change with the highest number first. Example: if backdating changes 1,2 and 3 are required for your repair number, do change 3 first, then change 2, and finally change 1.

7-5. If the repair number of your instrument is not listed either on the title page or in table 7-1, refer to an enclosed MANUAL CHANGES sheet for updating information. Also, if a MANUAL CHANGES sheet is supplied, make all indicated ERRATA corrections.

Table 7-1. Manual Changes

PREFIX	MAKE CHANGES
2144A	1 and 2
2246A	2

CHANGE 1

Section VI,

Page SAC 6-4, Table 6-2. Replaceable Parts List,

Change A1 part number from 64621-66502 to 64621-66501. Check digit from 6 to 5.

Page SAC 6-5, Table 6-2. Replaceable Parts List,

Change A1R2, R3, R9, R10, R29-31, R36-41, R43-47, R51, R53 part numbers from 0698-6612 to 0757-0283 (20 places). Check digit from 1 to 6 (20 places). Tolerance from 0.1% to 1% (20 places). Mfr Code from 28480 to 24546. Mfr Part Number from 0698-6612 to C4-1/8-TO-2001-F.

Delete last line -A1TP18, 0365-0535, 0, Terminal Test Point PCB, 00000, Order by Description.

Change A1TP2 QTY from 12 to 11.

CHANGE 2

Section VI,

Page SAC 6-4, Table 6-2. Replaceable Parts List,

Change A1 to read: A1, 64621-66502, 6, 1, 10MHZ STATE ANALYSIS CONTROL BOARD, 28480, 64621-66502.

Delete A1C68, 0160-2055, 9, -, CAPACITOR-FXD .01UF +80-20% 100VDC CER, 28480, 0160-2055.

Change A1C1 QTY from 50 to 49.

Page SAC 6-5, Table 6-2. Replaceable Parts List,

Delete A1TP19, 0360-0535, 0, -, TERMINAL TEST POINT PCB, 00000, ORDER BY DESCRIPTION.

Change A1TP2 QTY from 13 to 12.

Page SAC 6-6, Table 6-2. Replaceable Parts List,

Delete A1U14, 1820-1201, 6, 1, IC GATE TTL AND QUAD 2-INP, 01295, 1820-1201.

Section VIII,

Delete TP19 from the eight component locators facing the schematics.

Service Sheet 5,

Remove U14C.

Disconnect U1 pin 17 from U14C pins 9 and 10.

Disconnect U14C pin 8 from J2 pin 43. Show pin 43 as NC.

Disconnect J2 pins 42 and 44 from ground. Show them as NC.

Service Sheet 7,

Show U98A pins 2, 3, and 4 as no connection (NC).

Disconnect U73 pin 9 from U73 pin 17 (+5V).

Connect U73 pin 9 to U73 pin 11 (LSFLGB).

Service Sheet 8,

Delete C68 from the list of +5 Volt bypass caps (.01UF).

Delete TP19, SA START/STOP, test point from P1 pin 69.

SECTION VIII

SERVICE

8-1. INTRODUCTION.

- 8-2. This section contains information for troubleshooting and repairing the Model 64621A State Analysis Control Board.
- 8-3. The block diagram, schematic, component location figure, and other service information are provided on fold-out service sheets to help you in servicing the Model 64621A.
- 8-4. Because the State Analysis Control is software dependent, it becomes very difficult to discuss the Theory of Operation at the bit level. Therefore, the following discussion is at the concept level of various functions.
- 8-5. The following five areas of the State Analyzer are discussed in detail: 1. Clock Term Generator, 2. Strobe Generator, 3. Sequencer, 4. Analysis Controller, and 5. State/Time Counter.
- 8-6. The Clock Term Generator, Analysis Controller, and the State/Time Counter are custom integrated circuits manufactured by Hewlett Packard. How the ICs work is presented to help you understand how the State Analyzer works, rather than a "black box" approach.
- 8-7. The Strobe Generator is discussed because it must be repaired using conventional methods instead of Signature Analysis.
- 8-8. The Sequencer is discussed because it is not apparent from the schematics how it works, due to feedback loops.

8-9. STATE ANALYZER SUBSYSTEM BLOCK DIAGRAM.

- 8-10. The State Analysis Subsystem Block Diagram, Figure 8-1, is designed to give an overview of the State Analysis System. The block diagram is divided into two sections, the Control Board and the Data Acquisition Board. The Data Acquisition Board is also divided into two sections, the Overview block, which is only on the 20 channel board, and the rest of the blocks which are on both the 20 channel and 40 channel boards.
- 8-11. The shaded blocks on the Control Board are all parts of the Analysis Controller (U1) a hybrid chip. Other hybrids are the Clock Term Generator (U25), the Trace State/Time Counter (U112) on the Control Board, and the Counter (U23) in the Overview State/Time Counter on the 20 channel board.
- 8-12. The Block Diagram is also divided into six sections shown by the red lines. These six secitons represent time. There are six time periods; 1. Clock Qualification, 2. Input Data Sampled, 3. Decode Trigger Terms and Bucket Generation, 4. Pipeline Registers, 5. Data Storage/Count Enable Determination, and 6. Store Data and Output.

8-13. DESCRIPTION.

8-14. Time Period 1.

8-15. Clock Qualification consists of all the circuitry for setting up the threshold levels for the clock. The Data Threshold block sets up the threshold levels for the 20 channels of data. In addition to the clock threshold circuitry, the Control Board portion of this section contains the interfaces to the general purpose preprocessor, the interface to the Inter Module Bus (IMB), and the Clock Term Generator. The Clock Term Generator is loaded by the CPU when the clock is specified in the format specification. When that specification is satisfied the Clock Term Generator sends out a 15ns pulse to the Strobe Generator which initiates a timing sequence in the rest of the state analyzer.

8-16. Time Period 2.

- 8-17. The key to the State Analysis System is the Strobe Generator. It provides all the timing signals for the system to insure the proper sequence of events.
- 8-18. The Strobe Generator, in Time Period 2, is where the input data is latched into the acquisition cards. The signals from the Strobe Generator, P/NBSRS (Positive/Negative Bus State Recognition Strobe), are sent across the SEB (Synchronous Expansion Bus) to strobe in the data on the acquisition cards. The PBSRS signal is also used in the Overview State/Time Counter (only on the 20 channel acquisition board) to increment the overview counter every time a valid clock term is encountered.

8-19. Time Period 3.

- 8-20. The Resource Pattern, Sequence Pattern and Event Generation is where the State Analyzer's resources are allocated and the Sequencer patterns determined. The Acquisition Board detects specified combinations of trigger, storage, and count information, and sends that information on LBRPO-7 (Low Bus Resource Pattern) over the SEB to the Resource Allocation portion of the Analysis Controller. This section of the Analysis Controller determines, from the data on the LBRO-7 lines, how to allocate the set number of resources available to the state analyzer among the trigger, storage, and count specifications.
- 8-21. The Resource Pattern, Sequence Pattern and Event Generation block also determines when the Data Acquisition boards have found the sequence state(s) requested by the user. If no sequence events were specified, then the Low Bus Sequence Pattern 0-3 (LBSP 0-3) lines would always be high.

8-22. Time Period 4.

8-23. Time Period 4, Pipeline Registers, is where the State Analyzer latches all the data so that the front end can bring in new data, and the rest of the analyzer can process the current data. The latching is done by the Positive Pipeline Strobe (PPLS) which occurs 95ns after the Strobe Generator is started. This allows the state boards to work on 2 different sets of input data at the same time. The timing for PPLS is critical.

8-24. Time Period 5.

8-25. The Data Storage/Count Enable Determination continues the resource allocation and gating that was started in time period 4. All this is done on the control board in the Analysis Controller. These control signals are output by the Analysis Controller gating functions:

HOVCQ - (High Overview Count Qualify)

HOVCQ, when high, enables the overview counter in the 20 channel Data Acquisition Board. It is derived from the internal Overview Count Signal or LSOCE (Low Sequence Overview Count Enable) from the Sequencer.

HCQ - (High Count Qualify)

When high, HCQ enables the Trace State/Timing Counter allowing it to increment. It is derived by the internal Trace Count signal or the LSCE (Low Sequence Counter Enable) signal from the Sequencer.

LSFLG - (Low Store Flag)

This active low signal indicates to the Trace Count/Status Memory that storage is enabled. LSFLG is enabled by the internal storage signal, or LSE (Low Storage Enable) from the IMB (Inter Module Bus), if active, or either of the signals from the Sequencer, LSSE/Q (Low Sequence Store Enable/Qualify).

NTRIG - (Negative Trigger)

This signal goes from a high to a low each time a user specified trigger event occurs. It is used to latch signals into the trace point latch internal to the Analysis Controller, and into the BNC Port latch. It is derived from the internal Trigger Signal, or LSTE/HSRS (Low Sequence Trigger Enable/High State Recognition Strobe) signals from the Sequencer, or either LTE/HTR (Low Trigger Enable/High Trigger) from the IMB.

LTE - (Low Trigger Enable)

This active low bidirectional signal is the IMB signal that is sent to the other modules when a trigger is recognized by the control board. It is derived from the same signals NTRIG output is derived from.

8-26. The Trace State/Time Counter in Time Period 5 is used whenever that function is turned on in the trace specification. It is another of the hybrid chips designed for this instrument. Its function is to count the number of states between two states or periods of time between two states. When LSTATE (Low State) is low the counter counts the number of states between two stored states. The counter is incremented by PINC (Positive Increment) which is developed from HWQ (High Write Qualify) and HWRT (High Write). HWQ is generated by the Analysis Controller, and is used to disable the counter when the output of the Counter is being stored in the Trace Count/Status Memory. HWRT is developed in the Strobe Generator each time a qualified clock is detected.

8-27. When LSTATE is high the Counter counts the time between two states. The L25 MHz (Low 25 Megahertz) signal is used to clock the Counter in this mode.

8-28. Time Period 6.

- 8-29. Time Period 6 is the Store Data and Output block. This is the last stage before the captured data and count information is sent to CPU for display. There are three separate operations that occur in this block.
- 8-30. The first is on the 64623A (the 20 channel acquisition board) where the Overview events are stored in the Overview memory. The CPU unloads Overview Memory using LRDL (Low Read Data Latch), for the Overview Event Data Latch, and LRDOV (Low Read Overview), for the Overview Memory Address Counter Latch.
- 8-31. The second operation that occurs in this block is on both the 64622A (40 channel acquisition board) and the 64623A (20 channel acquisition board). The 20 channels of data on each half of the board are latched into the Trace Pod Data Memory by HBQWRT (High Bus Qualified Write). HBQWRT synchronizes the data storage with the Trace Counter/Status Memory on the control board. The data is read from the Trace Pod Data Latch onto the CPU Data Bus by LRDL (Low Read Data Latch) which is developed on the acquisition board from CPU control signals.
- 8-32. The third operation takes place on the control board. The Trace Count/Status Memory section of the Control Board stores the 8 outputs of the Sequence State Latch/Counter (TSS0-7), the 20 outputs of the Trace State/Time Counter (CNT0-19) and three control signals HOTFB (High Overview Trigger Flag Buffered), HCQB (High Count Qualify Buffered), and LSFLGB (Low Store Flag Buffered). The CPU needs these control signals to interpret the data from the state system.
- 8-33. The final section is the five registers that hold the information to be read onto the CPU Data Bus. These five registers are enabled by control signals developed in the CPU Read Decoder on the Control Board from the CPU Address Bus signals. The five signals are:

LRSQRG - (Low Read Sequence Register)

This active low signal allows the output of the Sequence State Latch/Counters (TSS 0-7) to be read onto the CPU Data Bus.

LRTDR - (Low Read Trace Data Register)

When low, LRTDR enables the Trace Point Register allowing the value of the Trace Count/Status Memory to be read by the CPU.

LRTPRG - (Low Read Trace Point Register)

This active low signal allows the Trace Point address to be read over the CPU Data Bus. The Trace Point address was latched by LTRCP when the trace point was found.

LRSTS - (Low Read Status)

When low, LRSTS enables the Analysis Status Buffer to allow eight different signals to be read by the CPU.

Figure 8-1.
State Analyzer Subsystem Block Diagram
SAC 8-5

Model 64621A - Service

8-34. CONTROL BOARD BLOCK DIAGRAM.

8-35. The Model 64621A State Analysis Control Board consists of the following nine basic functional groups:

- * Clock Probe Interface
- * Preprocessor Interface Bus
- * Strobe Generator
- * Sequencer
- * Analysis Controller
- * BNC Control
- * Trace State/Time Counter
- * Trace Count/Status Memory
- * Mainframe Interface

8-36. CONTROL BOARD BLOCK DIAGRAM THEORY.

8-37. CLOCK PROBE INTERFACE.

- * The Clock Probe Interface consists of the Clock Term Generator chip, U25, and the D/A Converters, U54 and U55.
- * The Clock Term Generator allows eight different clocks to be input to the State Analyzer.
- * The eight clocks may be used in various qualification patterns.
- * The Clock Term Generator outputs a master clock to the Strobe Generator.
- * The D/A Converters provide threshold levels for the Clock Probe. The threshold levels are set by the operator through the keyboard.

8-38. PREPROCESSOR INTERFACE BUS.

- * The Preprocessor Interface Bus provides the communications path from the Mainframe to the General Purpose Probes and the General Purpose Preprocessor.
- * The clock for the State Analyzer is provided by the Preprocessor when it is being used instead of the Clock Probe.

8-39. STROBE GENERATOR.

- * The Strobe Generator converts the output of the Clock Term Generator, U25, into the various strobes needed throughout the State Analyzer (including the Acquisition Boards).
- * The amounts of delay for each strobe and the pulse widths are adjustable.
- * The Strobe Generator can also be activated by the Mainframe Interface for Performance Verification using signals PPVSTB or PBSRQ.

8-40. SEQUENCER.

* The Sequencer is a group of counters, memories, and gates that allow the State Analyzer to find events in various sequences and occurrences.

SAC 8-6

* The Sequencer is programmed by the Mainframe for each Trace to be performed. Variables are entered from the keyboard.

8-41. ANALYSIS CONTROLLER.

- * The Analysis Controller, U1, is the heart of the State Analyzer.
- * The Analysis Controller recognizes events occurring on the Acquisition Boards and in general provides the handshaking between the Acquisition Boards and the Control Board.
- * The Analysis controller is programmed by the Mainframe CPU.
- * The Analysis Controller controls the Intermodule Bus (IMB).

8-42. BNC CONTROL.

- * The BNC Control circuit drives signals of correct polarity to the Mainframe's Rearpanel.
- * The polarity is selected by software.

8-43. TRACE STATE/TIME COUNTER.

- * The Trace State/Time Counter, U112, is a 20 bit floating point gray code counter.
- * The State/Time Counter accumulates the time between two stored states, or the number of states between two stored states.
- * The State/Time Counter is referenced to a 25 MHz crystal when measuring time, and to the qualified count states as input in the trace specification when counting states.
- * The 25 MHz crystal is located in the Mainframe.

8-44. TRACE COUNT/STATUS MEMORY.

- * The Trace Count/Status Memory stores the values output from the Trace State/Time Counter for each measurement.
- * The Trace Count/Status Memory can store values for each of the 256 locations in the Trace Pod Data Memory on the Acquisition Boards.
- * The values are read from the memories over the Mainframe's Data Bus and formatted by the CPU for display on the CRT.
- * The Trace Count/Status Memory stores sequence states and flags associated with each counter value.

8-45. MAINFRAME INTERFACE.

* The Mainframe Interface consists of various latches and buffers (wire ORed) for interfacing the State Analyzer's circuits to the Mainframe.

* Through the use of read and write decoders, the Mainframe can select various groups of circuitry on the Control Board and write to (program) or read from (verify, interrogate) them over the Mainframe's Data Bus.

Figure 8-2.
State Analysis Control Board Block Diagram
SAC 8-9

Model 64621A - Service

8-46. DETAILED CIRCUIT THEORY.

8-47. CLOCK TERM GENERATOR.

- 8-48. The Clock Term Generator, U25, is a custom designed clock decoder. It converts eight clock channel inputs into a single master clock.
- 8-49. Each clock input can be programmed by loading two internal shift registers. The shift register outputs set up the channel to be edge sensitive or level sensitive, but not both at once. The level sensitive inputs are called clock qualifiers and are wire ANDed internally. Any combination of inputs can be made edge sensitive, and any input can trigger on a positive edge, a negative edge, or both edges.
- 8-50. The eight clock channel inputs are differential at approximately ECL levels, and the master clock output (HMCLK) is ECL. The two shift registers and their clock are TTL levels.

8-51. Clock Term Generator Timing.

- 8-52. Inputs used as clock qualifiers have a set-up time of 20 nS and hold time of 0 nS. Inputs used as clocks must have a pulse width of 20 nS minimum. Due to system restrictions, the master clock rate is 10 MHz maximum. Propagation delay is approximately 8 nS from clock input to master clock output.
- 8-53. Clock Term Generator Block Diagram.
- 8-54. Prior to execution of a trace, the Edge Detect Register and Level Select Register are loaded from lines DBO and DB1 using Positive Write Clock (PWCLK). Two bits per clock channel control the channel's Level Select Gate. The channel can be made "don't care" by programming both bits high. The outputs of all eight Level Select Gates are ANDed, so that all qualifiers must be true before the data input to the Edge Detect filp-flops go true.
- 8-55. Two more programmable bits per clock channel are needed to control which clock edge, if any, will produce a High Master Clock (HMCLK). A high output by the Edge Detect Register to any flip-flop will prevent that detector from toggling. All filp-flop outputs are ORed to produce HMCLK. Therefore, all possible combinations of channels and edges are allowed. The only restriction is that HMCLK pulses must be at least 100 nS apart.
- 8-56. HMCLK drives Pulse Width Output (PWO) which is connected externally to Pulse Width Input (PWI). After a delay, PWI resets the edge detector responsible for the master clock. This results in a pulse width of 15 nS maximum for HMCLK.
- 8-57. The Edge Detect Shift Register and Level Detect Shift Register can be made to overflow during performance verification. These registers output High Clock Data 0 and 1 (HCDO-1).

SAC 8-10

Figure 8-3.
Clock Term Generator Block Diagram
SAC 8-11

Model 64621A - Service

8-58. STROBE GENERATOR.

8-59. The Strobe Generator develops seven major strobes from HMCLK or PPVSTB and PBSTBRQ (see Figure 8-4);

1. HSRS 2.HTIMS 3. HOVS 4. HPLS 5. HWRT 6. LMV 7. LDV

HMCLK is used to drive the Strobe Generator in the Analyzer's run mode. PPVSTB and PBSTBRQ are used in the Performance Verification mode.

8-60. Strobe Uses.

- 8-61. HSRS is used to clock the IMB State Recognition Register in the Analysis Control Chip. P/NBSRS clocks data into the State Recognition Latch/Counters on the Data Acquisition Boards.
- 8-62. HTIMS is used to transfer information to the outputs of the Trace State/Time Counter.
- 8-63. HOVS is used to develop LBOVEN and PBOVRST. LBOVEN and PBOVRST are used on the 20 Channel Data Acquisition Board only. LBOVEN allows the Overview section to look for its trigger events. PBOVRST is used to reset the Overview State/Time Counter.
- 8-64. HPLS is used to latch information into the Pipeline Registers on the Control Board and the Data Acquisition Boards.
- 8-65. HWRT is used to time write commands to Trace and Overview Memories. These write commands store data in the Memories.
- 8-66. LMV develops P/NMACRS. P/NMACRS is used to latch information from the Trace Count/Status Memory Address Counter into the Trace Memory Address Counter Read Register.
- 8-67. LDV is used to indicate the point in time that the Trace Memory outputs are stable.

Figure 8-4. Strobe Generator Block Diagram

8-68. How A Strobe Is Generated.

- 8-69. Figure 8-4 is a simple block diagram of the Strobe Generator, and Figure 8-5 shows the timing relationship of the seven major strobe signals. The time periods indicated are approximate values and should not be used for calibration purposes.
- 8-70. Six of the seven stages work very much the same. Therefore, only the first stage will be discussed. The seventh stage is built using OR gates.
- 8-71. At time zero, U23 pin 11 goes from a low to a high (the same in the run mode or Performance Verification mode). Because U23 pin 10 is connected to a high level, U23 pin 15 goes high when the positive edge on pin 11 occurs. At the same time, U23 pin 14 begins to go low. Pin 14 cannot go low instantly due to the charge in C10 and the currents in R18, R8 and the 240 ohms in U9. The amount of time it takes pin 14 to reach a low state is determined by these components.
- 8-72. The hysteresis of U50 pin 13 is set to -1.55 V by U50 pin 9, two 220 ohm resistors in U51, and one 240 ohm resistor in U35. As U50 pin 13 (U23 pin 14) goes negative (the hysteresis level being crossed), U50 pin 15 goes positive, changing the hysteresis level. This action is fed back to U50 pin 12 and enhances U50 pin 13 going negative, causing U50 pin 15 to change to a high state very quickly.
- 8-73. The output of stage one, U50 pin 15, is fed to the next stage, providing U23 pin 6 with a positive going clock. The same action as in stage one now begins in stage two. This effect ripples through the remaining stages.
- 8-74. The output of U50 pin 15 is also sent back to the reset input, of U23B pin 13. When U50 pin 15 goes high, U23B is reset, causing U23 pin 15 to go low. This action defines the pulse width of HSRS.
- 8-75. At the same time, U23 pin 14 is going high at the rate defined by the RC network. When U50 pin 13 reaches the positive hysteresis U50 pin 15 goes low. The reset mode (U23 pin 13) is now removed and stage one is ready to begin the cycle again.

Figure 8-5. Strobe Timing Relationship

8-76. SEQUENCER.

8-77. Description.

8-78. The Sequencer consists of memories, counters and latches. Its purpose is to enable various functions of the State Analyzer Subsystem when a series of states or events have occurred in the system under test. The Sequencer hardware contains feedback circuitry which combines the sequence state with incoming data to form the next sequence state. The Sequencer is a good example of a synchronous state machine.

8-79. Functions.

8-80. The Sequencer can enable and disable all functions of the State Analysis Subsystem. See Figure 8-6. It can also cause the State Analyzer to trigger, store, and drive the IMB master enable. It must be loaded before execution of a trace or overview. To operate the Sequencer, the operator must specify a series of terms and/or windows. The terms usually represent states (e.g. an address or a data value) and the windows are an enable/disable pair of terms. Then the operator specifies the order in which these terms must occur, how many times each must occur (occurrence), and whether the next term must occur immediately or eventually. The operator must specify which sequence term will enable a function, and which term will disable a function. The operator may also specify which terms will restart the sequencer. Further details are available in the operator's manual.

Figure 8-6. Sequencer Functions

8-81. Sequencer Specifications.

Depth 3 choices: 15 terms with restarts, no windows

7 terms with restarts, one window

3 terms without restarts, two windows

Occurrence 1 to 65535 times

Enable/Disable separately

Immediately/Eventually qualification

8-82. The depth is due to the feedback signals, Bus Sequence State (BSSO-3). Four signals allow only sixteen permutations, and one cannot be used. A window uses a signal, and it cannot be used by the terms. The Sequence Occurrence Counter is a sixteen bit counter.

8-83. Sequencer Block Diagram.

- 8-84. The major components of the Sequencer are the Sequence Pattern Trigger Memory, the Sequence State Latch/Counter, the Sequence Transistion Memories, the Sequence Occurrence Counter Memories, and the Sequence Occurrence Counter. All of these components are located on the Control Board except the Trigger Memories which are located on the Data Acquisition Boards. All the Memories must be loaded with information from the Mainframe before a trace begins.
- 8-85. During a trace, synchronous data (e.g. SYNDO-19 on a 20 Channel Acquisition Board) from the State Recognition Latch/Counter provides part of an address to the Sequence Pattern Trigger Memory. The remainder of the address is provided by Bus Sequence State (BSSO-3), the last sequence state. The Trigger Memories output a sequence pattern (LBSPO-3). All Trigger Memories are wire ORed, and will drive a sequence pattern signal true (low) if all the Memories were loaded with a true state at the address supplied by the incoming data and the sequence state.
- 8-86. The sequence pattern is applied to the Sequence State Latch (this register is used as a counter only to load memories before a trace) after modification by the DME Gate. The DME, disjoint minterm event, is formed by inverting LBSP3 and ORing the result with LBSP2. This allows the operator to specify one term which has the form "ADDRESS <> OFE5H". In other words, the operator can specify one "not equal to" term. Only LBSP0-2 are left as inputs to the Sequence State Latch.
- 8-87. BSSO-3 supplies four more inputs to the Sequence State Latch. BSSO-3 is output by the Sequence Transition Memories and forms the major feedback path for the Sequencer. The fourth input to the Latch is low Occurrence Carry (LOCCRY). LOCCRY is output by the Occurrence Counter when it has found a term the required number of times.
- 8-88. At Positive Pipeline Strobe (PPLS), these inputs are latched and applied to the Transition Memories, forming a new sequence state, named Trace Sequence State (TSSO-7). TSSO-7 is stored in Trace Memory and can be used by the operator to debug code. During performance verification, the CPU can read TSSO-7 from trace memory to verify proper functioning of the Sequencer.

Model 64621A - Service

8-89. The Sequence Transition Memories use TSSO-7 as address lines, and outputs 16 control signals. These signals include BSSO-3 used to change from one sequence state to the next, as well as function enables for count, trigger, store and master enable functions, a trigger signal (HSTR), and a store signal (LSSQ). The Memories also output Low Overview Enable (LOVEN) and Low Overview Reset (LOVRST) which control Overview on the 20 Channel Board. The Memories output two control signals to the Sequence Occurrence Counter; Low Sequence Occurrence Counter Load (LSOCLD) and Low Sequence Occurrence Counter Enable (LSOCEN).

8-90. Function Enables. The Sequencer will enable an Analyzer function only when all specified sequence terms have been found. The enabling signals serve as inputs to the Analysis Controller, except for LOVEN, and are as follows:

LSOCE	Low Sequence Overview Count Enable
LSCE	Low Sequence Count Enable
LSSE	Low Sequence Store Enable
LSTE	Low Sequence Trigger Enable
LOVEN	Low Overview Enable
LSME	Low Sequence Master Enable

The Sequencer can disable the above functions by driving any of them high.

8-91. Sequence Occurrence Counter/Memories. This part of the Sequencer controls the Occurrence, or, the number of times a sequence state must be found before the Sequencer moves on to the next specified state.

8-92. An Example. Suppose a state must occur 10 times before the Sequencer looks for the next state. Before the trace started, the Transition memories were loaded so that when the term prior to the 10 times term was found, the Transition Memories output Low Sequence Occurrence Counter Load (LSOCLD). At that time, BSSO-3 will cause the Occurrence Memories to output terminal count, 65535, minus 10, or 65525. LSOCLD will load the Occurrence Counter with 65526. The next time the sequence pattern goes true, the Transition Memories will output Low Sequence Occurrence Counter Enable, enabling the Occurrence Counter. The Occurrence Counter will be incremented by Positive Sequence Occurrence Counter Increment (PSOCINC) due to HWRT strobe. This will continue until the Counter reaches terminal count. Then the Counter outputs Low Occurrence Carry (LOCCRY), which will be latched into the Sequence State Latch and will change the sequence state.

8-93. Sequencer Troubleshooting.

8-94. Performance verification on the Control Board tests the Sequencer using Test 4. The loop includes the feedback paths of LOCCRY and BSSO-3. If signature analysis shows that multiple signatures are bad, it is due to the propogation of a bad signature around the loop. Test 1 has been provided to break the feedback. It is a stimulus test for the Sequencer which writes to all locations of the Transition Memories and the Occurrence Memories, and tests the Occurrence Counter, but does not latch the next sequence state into the Sequence State Latch.

SAC 8-17

8-95. ANALYSIS CONTROLLER.

8-96. Description.

8-97. The Analysis Controller, U1, is a custom designed IC which controls the master enable, count, store, and trigger functions of the State Analysis Subsystem. Figure 8-8 is a summary of the Analysis Controller.

8-98. The Analysis Controller decodes inputs from the Resource Patterns, the Sequencer and the Inter Module Bus (IMB), and outputs control signals to all cards in the State Analysis Subsystem and to other Analysis Subsystems over the IMB. programmed (loaded) before Analysis Controller must be each execution. Electrically, the inputs and outputs are at ECL levels, with the exception of the following TTL signals: NTR, NMC, LLOAD, SERDATA, PLCLK, and LRUN. Internally, the part is emitter functional logic (EFL), similar in design to ECL.

Figure 8-8. Analysis Controller Summary

8-99. Modes.

8-100. The Analysis Controller has two primary modes, run mode and load mode, controlled by LRUN and LLD. The load mode is used to program a 58 bit shift register inside the Analysis Controller. The parallel outputs of the register initialize and determine which of the various inputs will control the Analysis Controller during a trace execution. The 58 bits are grouped as follows:

Storage Function	3 bits
Trigger Function	6 bits
Master Enable Function	4 bits
Resource Pattern Allocation	30 bits
Initialize Poststore	10 bits
Initialize Sequencer Enables	5 bits

The run mode is used while executing a trace.

8-101. Two secondary modes are used during performance verification: run_load mode with both LRUN and LLD low, and not run_not load mode with both LRUN and LLD high. Run_load mode allows the Analysis Controller to run but excludes external clocks. Not run _not load mode is used while testing the Sequencer.

8-102. Block Diagram.

8-103. The Block Diagram shows a time progression from the arrival of resource patterns to output of control signals including write control. First there is Resource Allocation, then Resource Gating, then Write Qualification. Additional major sub-blocks include Analyzer Enable, and IMB Receive and Drive.

8-104. The 58 bit shift register selects which of these sub-blocks or inputs will actively be used to produce an output. Finally, the Sequencer plays a major role in controlling the State Analysis Subsystem and is referenced in the Block Diagram even though it is not physically part of the Analysis Controller.

8-105. Resource Allocation. On the Acquisition Boards, trace data addresses the Resource Pattern Trigger Memories, and the Memories output an 8 bit pattern (wire ORed accross all boards) which forms the Resource Pattern input (LBRPO-7) for the Analysis Controller. Inside the Analysis Controller, these eight signals are allocated to various functions, with the following limitations: the sum of the resources cannot exceed eight; trigger and store can use up to eight resources; count can use up to four resources (LBRP2,3,6,7); overview count can use up to four resources (LBRP0,1,4,5); four resources can be ranges provided a 20 channel board is present; a "not" condition requires two resources. The 58 bit shift register uses 30 bits to specify which terms will be used by which function. The following table shows an example for resource allocation:

STATE RECOGNITION RESOURCES

trigger	or	ADDRESS	=	4000H and STATUS = Mem_read 4000H and DATA <> 0 range OH thru OFFH	#1 #2,#3 #4
store		ADDRESS ADDRESS		range 4000H thru 4135H 0F000H	#5 #6
count		ADDRESS STATUS			#7 #8

8-106. The table shows 4 resources used by trigger, 2 by store and 2 by count. Because of the "DATA <> 0", the second specification line for trigger required 2 resources. Internally, this is done by DME (disjoint minterm event) gating, which requires one resource to find DATA = 0, and a second resource to invert it. Pipeline Strobe (HPLS) latches the count, store and trigger resources, and they are applied to Resource Gating.

8-107. Resource Gating. The count, storage and trigger resources are gated with the Sequencer, IMB, and Analyzer Enable, and output as Overview Count Qualify (HOCQ), Store Flag (LSFLG) and Trigger (NTR). The 58 bit shift register uses 18 bits (Storage Function, Trigger Function, Analyzer Enable Function, Initialize Sequencer enables) to specify which inputs to Resource Gating will be looked at. The default state for these bits cause the Analysis Controller to count everything, store always, and trigger on anything.

8-108. Write Qualification. Write Qualify Gating determines which trace data will be written into the Trace Pod Data Memories. Low Strobe Enable (LSE) is directly produced by Storage Qualify Gating, and can be modified by the Trace Point Latch and the Measurement Complete Latch. The Trace Point Latch is set by the first trigger (NTR), then it enables the Post-Trace Point Counter to count each time data is

stored in the Trace Memories. The Post-Trace Point Counter counts the number of states to be stored after trace point, then sets the Measurement Complete (NMC) Latch, which disables the Write Qualify Gating (forces HWQ to go low). The 58 bit shift register uses 10 bits (Initialize Poststore) to initialize the two latches and the PostTrace Point Counter.

NOTE

Writing to the Overview Event Memory is not controlled by the Write Qualification function. Overview writing is controlled directly by the Sequencer and Analyzer Enable.

8-109. NTR produces a pulse each time the trigger event occurs, and can be used to trigger external test equipment. NMC can be routed to external test equipment, and also serve as an overflow for the 58 bit shift register. The overflow function is used during performance verification to test the loading of the Analysis Controller. Data is input on bit 0 of the data bus (LDB0) and clocked by Positive Write Analysis Controller (PWAC). Low Load (LLD) must be low to clock in data.

8-110. Analyzer Enable. This is the master enable for the entire State Analyzer. Master Enable (LME) can be set low by Run (LRUN) which is a keyboard command to begin execution, or it can be received from the IMB. When LME is strobed by State Recognition Strobe (HSRS), it latches Analyzer Enable 1 (HAE1). When HAE1 is strobed by Pipeline Strobe (HPLS), it produces Positive Pipeline Strobe (PPLS) which is used to strobe the Sequencer, the Data Pipeline Registers, and Analyzer Enable 2 (HAE2). When HAE2 is strobed by Write (HWRT), it produces High Bus Overview Write Strobe (HBOWRT) and Positive Sequence Occurence Counter Increment (PSOCINC). HBOWRT is used to write to the Overview Event Memories on the 20 Channel Acquisition Board.

8-111. Another source of master enable is the Sequencer. When the Sequencer finds all of the required states in the order specified, it can drive Sequence Master Enable (LSME) low. LSME then enables the trigger and store functions in the Analysis Controller. LSME can also be programmed to drive LME on the IMB. The 58 bit shift register uses 4 bits to specify whether or not the IMB or Sequencer will control Master Enable.

8-112. IMB Receive and Drive. Master Enable, Trigger and Store functions can be received by the Analysis Controller from the IMB. The Analysis Controller can transmit (drive) Delayed Clock (PDC), as well as Master Enable (LME), Trigger (HTR), Trigger Enable (LTE), and Store Enable (LSE). When the Analysis Controller is receiving IMB signals, the signals are latched with the State Recognition Strobe (HSRS) and applied to the Resource Gating after Pipeline Strobe (HPLS). When the Analysis Controller is driving the IMB, they are strobed out by Write (HWRT). The 58 bit shift register is responsible for determining which IMB signals are active.

8-113. Sequencer. The Sequencer is an integral part of the Control Board and should be considered an extension of the Analysis Controller. The inputs to the Resource Gating from the Sequencer are similar to the inputs from the IMB Receiver. It is the 58 bit shift register which determines which circuitry will actively control the State Analyzer during a particular run. The Sequencer can perform a master enable function by setting Sequence Master Enable (LSME) low. The Sequencer alone controls Overview Enable (LOVEN) and Overview Reset (LOVRST).

8-114. Timing of Analysis Controller.

8-115. The Strobe Generator controls timing of the Analysis Controller by use of State Recognition Strobe (HSRS), Pipeline Strobe (HPLS) and Write Strobe (HWRT).

Prior to Resource Allocation, the Resource Patterns, Analyzer Enable, and IMB are clocked by HSRS. After Resource Allocation, HPLS clocks the Sequencer and all other inputs, so that Resource Gating is valid. Finally, HWRT clocks out write signals, and HWRT going low clocks the IMB Drive. Internal delays are in the several nanosecond range due to the EFL logic design.

Figure 8-9.

Analysis Controller Block Diagram
SAC 8-23

Model 64621A - Service

8-116. STATE/TIME COUNTER.

8-117. Description.

8-118. The State/Time Counter is a custom designed 20 bit Gray Code counter with prescale. The prescaler allows it to count up to 750,000,000,000 states in the count states mode, and 8+ hours at a 25 MHz rate in the count time mode. Externally, the Counter is ECL except for three TTL inputs. Internally, it is emitter-functional-logic (EFL). Chip delay from clock edge to counter outputs is approximately 25 nS without prescale. With prescale, chip delay can exceed 100 nS. There are 5 prescale factors: 1. divide by 1, 2. divide by 8, 3. divide by 2 e10, 4. divide by 2 e17, and 5. divide by 2 e24.

8-119. Where Used.

8-120. The counter is used on both the 64621A Control Board and the 64623A 20 Channel Acquisition Board.

8-121. On the Control Board, the Counter is used during trace (256 states), and is used during Overview on the 20 Channel Board. Pin 35 controls the Trace/Overview modes. On the Control Board pin 35 is tied low, the Trace mode. On the 20 Channel Board pin 35 is tied high for the Overview mode.

8-122. LSTATE, pin 8, makes the decision to count either qualified states or time intervals. When LSTATE is low, states between stored qualified states will be counted. When LSTATE is high, time between stored qualified states will be counted.

8-123. Function.

8-124. Modes. The counter has two modes, the load mode and the normal mode. The load mode is used during Performance Verification. It forces the Counter to act like two ten-bit counters without prescale, which greatly improves loading and testing efficiency. The normal mode is described in the Block Diagram description.

8-125. Block diagram. The Block Diagram shows inputs on the left and outputs on the right. The three major sections are counter control, 20 bit counter, and the output latch.

8-126. Counter Control. The counter control section controls the count, reset, and latch functions. The counter's versatility is shown by the triple 2 to 4 selector, one selector for each function. Using the count function as an example, if pin 8 is a logic high and pin 35 is a logic high, then overview on time is selected, which is input 3 to all functions of the selector. This means that the control section will count using 25 MHz as input (PINC is used to count states); it will reset when PSET goes high, and it will latch the count when PLATCH goes high. The count pulse must be enabled by a high counter enable (HCE) in order to reach the prescale circuitry. The prescaler will pass pulses directly to the 20 bit counter until the count exceeds 611,000. Then the 3 bit exponent will cause the prescaler to divide by 8 before allowing a count pulse. As the count increases, the prescaler will divide by 2 e10, 2 e17 and finally 2 e24.

8-127. PSET (Positive Set). PSET is an edge sensitive input which resets the counter to a known state. The counter is locked in that state until the reset function is clocked by 25 MHz. The half -way AND gate does not allow PSET to reset the counter until it has counted to at least half-way through the divide-by-1 range.

SAC 8-24

Model 64621A - Service

8-128. 20 Bit Counter. The counter provides a 20 bit output consisting of 3 bit exponent and a 17 bit mantissa. It operates either as a time counter or as a state counter. The time count mode provides a minimum resolution of 40 nS with a minimum 3 digit accuracy from 100 nS to 30 kS (8 hours). The state count mode provides single state resolution to 611,670 states, and prescaled counts up to 750,000,000,000 states. Because it counts in Gray Code (only one bit changes for each new state), the outputs appear to change without a pattern. The counter outputs are reset after each storage event (an exception is > halfway restriction in time count), which produces a relative count.

8-129. Output Latch. The Output Latch is controlled by a gate and an output enable. When PLATCH goes high, the counter outputs are latched. The exception is PSET. When PSET is low and trace state is selected, the latch is transparent; when PSET goes high, the counter outputs are latched. Low output enable (LOE) enables the output drivers. The counter outputs will be low when LOE is high, or when the counter is reset, latched and LOE goes low.

SAC 8-25

Figure 8-10.
State/Time Counter Block Diagram
SAC 8-26

-GND -GND -GND

8-130. MNEMONICS.

8-131. The signals in this product have been assigned mnemonics that indicate the true state, and the function of the signal line. In general the first character indicates the true state, H for high, I for low. If the signal is used with an edge sensitive device, P for positive, and N for negative is used to indicate the edge that the signal becomes true on. No indication of the voltage levels is given, i.e., TTL, ECL, MOS. This information is given on the schematic using the newer type of Logic Symbology.

Table 8-1. Mnemonics

Mnemonic

- BSSO-3 Bus Sequence State 0-3 --a feed back path within the Sequencer that enables it to change from one state to the next. A state may require that an event occur only once, or it may require the event to occur many times before changing to the next state.
- CDO-7 Counter Data 0-7 -- outputs of the Trace Counter/Status Memories. The information stored in the Memories represents the time between two stored states, or the number of states between two stored states. A value for each measurement is stored and returned to the CPU (CDO-7, LDBO-7) over the CPU's Data Bus for formatting and display on the CRT. The sequence state for each measurement is also returned to the CPU by CDO-7.
- CNTO-19 Count 0-19 --outputs of the Trace State/Time Counter. CNTO-19 represents the time between two stored states, or the number of states between two stored states. The value (CNTO-19) for each measurement is stored in the Trace Count/Status Memory.
- GNDSEN Ground Sense -- the return path from the Clock Probe for the Clock Threshold Digital to Analog Converters.
- HBOTF High Bus Overview Trigger Flag -- from the ACQ Board. When high, indicates that the 20 Channel Acquisition Board has seen a qualified trigger event. (A trigger event is a single occurrence of an event decoded from input data or from the Overview State/Time Counter.) HBOTF comes from the 20 Channel ACQ Board only.
- HBOVCQ High Bus Overview Count Qualify -- sent only to the 20 Channel Data Acquisition Board. When high, HBOVCQ allows the Overview Counter to increment. HBOVCQ may be driven by the Analysis Controller or HOVCQ.
- HBOWRT High Bus Overview Write -- sent to the 20 Channel Acquisition Board only. When high, HBOWRT enables write circuits on the 20 Channel ACQ Board for writing to the Overview Event Memories. HBOWRT is also used to increment the Overview Trace State/Time Counter, and can drive PSOCINC due to a wire OR connection (see PSOCINC). When enabled on the 20 Channel Data Acquisition Board, HBOWRT allows the Overview Event Memories to be written to and increments the Overview Memory Address Counters.
- HBQWRT High Bus Qualified Write -- when high, HBQWRT synchronizes the Trace Pod Data Memories in the Acquisition Boards with the Trace Counter/Status

Mnemonic

Description

Memories in the Control Board. When low, HBQWRT increments the Trace Pod Data Memory Address Counters in the Data Acquisition Boards. HBQWRT is enabled by HWQ, and is derived from HWRT.

- HCDO-1 High Clock Data 0-1 -- outputs from the Clock Term Generator, U25, returned to the Mainframe. Used in Performance Verification to indicate that the Term Generator can respond to the various combinations of clocks and qualifiers input from the Clock Probe or Preprocessor.
- HCLKO-7 High Clock 0-7 -- differential (LCLKO-7) clock signals or qualifier bits from the user's equipment. The eight bits are defined to be clocks or qualifiers by keyboard entry. HCLKO-7 may come from either the Clock Probe or the Preprocessor.
- HCQ High Count Qualify -- when high, HCQ enables the Trace State/Time Counter to increment. HCQ develops HCQB. The status of HCQ is stored in the Trace Count/Status Memory. When a high is stored for HCQ, the software will add the value one to the stored value in the Trace Count/Status Memory.
- HCQB High Count Qualify Buffered -- a flag returned to the CPU. When high, HCQB indicates that the Trace State/Time Counter may have been counting when the user's information was stored.
- HCTST High Count Test -- used when testing the Trace State/Time Counter. When high, HCTST divides the Counter into two ten bit counters. HCTST is controlled by the CPU.
- HDVLD High Data Valid -- derived from the Strobe Generator. When high, HDVLD has latched CDO-7 into the Trace Data Read Register. When LRTDR is low, the latched information is presented to the CPU over the Data Bus. HDVLD is also returned to the CPU through the Analysis Status Buffer indicating that information has been latched into the Trace Data Read Register.
- HENHLT High Enable Halt -- when high, HENHLT allows PHALT to be sent to the Preprocessor. HENHLT is CPU controlled.
- HENSTIM High Enable Stimulus -- when high, HENSTIM allows PSTIM to be sent to the Preprocessor. HENSTIM is CPU controlled.
- HINV High Invert -- when high, inverts the two signals going to PORT1 and PORT2. The inversion may be selected by a keyboard command.
- HLD High Load -- when high, HLD switches the Sequence State Latches/Counter to the count mode. The outputs of the Counter are used to address the Sequence Transition Memories while loading information from the CPU (LDBO-7/LSEQDO-7). HLD and LLD are asserted at the same time.
- HMCLK High Master Clock when going from a low to a high, HMCLK indicates that the eight clock inputs have satisfied the requirements that have been programmed into the Clock Term Generator by the CPU and has started the Strobe Generator Cycle. HMCLK is wire ORed with PPVSTB and PBSTBRQ.

Mnemonic

- HOTFB High Overview Trigger Flag Buffered -- from the ACQ Board. When high, indicates that the 20 Channel Acquisition Board has seen a qualified trigger event. (A trigger event is a single occurrence of an event decoded from input data or from the Overview State/Time Counter.) HOTFB comes from the 20 Channel ACQ Board only.
- HOVCQ High Overview Count Qualify -- HOVCQ becomes HBOVCQ. When high, HOVCQ allows the Overview Counter on the 20 Channel Data Acquisition Board to increment. HOVCQ is derived from the Analysis Controller or HLD.
- HOVS High Overview Strobe -- generated in the Strobe Generator. Develops LBOVEN and PBOVRST. These two signals are used on the 20 Channel Data Acquisition Board only.
- HPLS High Pipeline Strobe -- developed in the Strobe Generator. HPLS is used by the Control Board and both Data Acquisition Boards for latching information into the Pipeline Reqisters at the correct time in the Analyzer's timing cycle (PBPLS).
- HQWRITE High Qualified Write --when high, HQWRITE is used to write to the Trace Counter/Status Memories, and to internally reset the Trace State/Time Counter. HQWRITE going low increments the Trace Count/Status Memory Address Counter. HQWRITE is derived from HWRT and enabled by HWQ.
- HSRS High State Recognition Strobe -- developed in the Strobe Generator. HSRS is used to clock the State Recognition Register in the Analysis Control chip. The purpose of the register is to store information received on the Intermodule Bus (IMB). HSRS also clocks LRUN.
- HSTR High Sequence Trigger -- when high, indicates that a Sequence Trigger has been found.
- HTCLK High Transfer Clock -- a differential clock (LTCLK) used in the Preprocessor. When HTCLK goes from a low state to a high state, data is transferred to/from the State Analyzer and the Preprocessor.
- HTIMS High Time Strobe -- developed in the Strobe Generator. Used in the Trace State/Time Counter (PLATCH). When HTIMS goes from a low to a high, the information inside the Trace State/Time Counter is latched into its output latches.
- HTR High Trigger -- HTR is one of the bidirectional signals that make up the Intermodule Bus (IMB). HTR is used to indicate to other modules connected to the IMB that a trigger event has been found. Being bidirectional, the State Analyzer can tell other modules that it has found a trigger, or observe that another module has found a trigger event. HTR is wire ORed with other modules.
- HWQ High Write Qualify -- generated by the Analysis Controller. HWQ is used to enable HBQWRT, and stops the Trace State/Time Counter when the output of the Counter is being stored in the Trace Counter/Status Memories.

Mnemonic

- HWRT High Write -- developed in the Strobe Generator. HWRT is used to transfer storage commands from the inputs to the outputs of the Analysis Controller at the correct time in the data acquisition cycle, and to provide timing for other write signals.
- L25MHZ Low 25 Megahertz -- a high accuracy crystal controlled clock originating in the Mainframe. L25MHZ is used to clock the Trace State/Time Counter when in the time mode for measuring time between states.
- LAO-13 Low Address 0-13 -- a 16 bit address bus generated by the CPU and used to address various devices in the system. Only bits 0-13 are used in this model.
- LABO-13 Low Address Buffered 0-13 -- same as LAO-13 with additional buffering. LABO-13 may also be latched from the Address Bus.
- LBCLR Low Bus Clear -- same as LCLR except buffered. LBCLR is sent to the 20 and 40 Channel Data Acquisition Boards to clear various counters and registers.
- LBMACS Low Bus Memory Address Counter Select -- developed in the Strobe Generator. Used in the 20 and 40 Channel Data Acquisition Boards. When low LBMACS allows the Memory Address Counters (on the ACQ Boards) to address the Trace Pod Data Memories. When high, the CPU can address the Memories over the CPU Address Bus.
- LBOVEN Low Bus Overview Enable -- developed from HOVS. LBOVEN is used only on the 20 Channel Data Acquisition Board. When low, LBOVEN allows the Overview section to look for its trigger events and enables overview storage.
- LBRPO-7 Low Bus Resource Pattern 0-7 -- eight signals coming from the Data Acquisition Boards. When low, indicates to the Analysis Controller that combinations of Trigger, Storage, and Count information have been detected.
- LBSPO-3 Low Bus Sequence Pattern 0-3 -- four signals coming from the Data Acquisition Boards. When low, they indicate to the Sequencer that the Data Acquisition Boards have found the Sequence State(s) requested by the user.
- LCLKO-7 Low Clock 0-7 -- differential (HCLKO-7) clock signals or qualifier bits from the user's equipment. The eight bits are defined to be clocks or qualifiers by keyboard entry. LCLKO-7 may come from either the Clock Probe or the Preprocessor.
- LCLR Low Clear -- used to clear various counters and registers on the Control Board. Derived from the CPU Address Bus and other Mainframe control lines. LCLR is also used on the 20 and 40 Channel Data Acquisition Boards (LBCLR) to clear various counters and registers.
- LDO-12 Low Data 0-12 -- a 16 bit bidirectional bus used to transfer data to and from the CPU. When LSTB is low, the data on the bus is valid. Only bits 0-12 are used in this model.

Mnemonic

- LDB0-7 Low Data Buffered 0-7 -- same as LD0-7 with additional buffering. LDB0-7 is distributed throughout the State Analyzer Control Board.
- LDV Low Data Valid -- developed by the Strobe Generator. When low, LDV indicates that the Trace Memory outputs are stable and the CPU may read them.
- LDVTTL Low Data Valid TTL -- LDVTTL is used to clock the Trace Point Register.

 LDVTTL is derived from LDV in the Strobe Generator.
- LIAO-3 Low Interface Address 0-3 -- signals used for reading and writing information in the Preprocessor. LIAO-3 are derived from the CPU's Address Bus.
- LID Low Identification -- a signal originating in the Mainframe. When low, the CPU is requesting that the Board Identification be sent from the State Analyzer Control Board to the CPU over the Data Bus on data bits 8 and 12.
- LIDB Low Identification Buffered -- a signal originating in the Mainframe and buffered on the State Analyzer Control Board. See LID.
- LIDO-7 Low Interface Data 0-7 -- a bidirectional data bus between the Preprocessor and the Control Board. LIDO-7 are derived from the CPU's bidirectional Data Bus.
- LIWRT Low Interface Write -- one of the control lines from the Control Board to the Preprocessor. When low, the Control Board is writing to the addressed device, i.e., the Preprocessor. LIWRT is the same as LWRT except buffered two times (LWRTB).
- LLD Low Load -- when low, LLD allows the internal registers of the Analysis Controller to be loaded with serial data (LBDO) from the CPU. LLD and HLD are asserted at the same time.
- LMACS Low Memory Address Counter Select -- developed in the Strobe Generator. When low, LMACS allows the Trace Count/Status Memory Address Counters (on the Control Board) to address the Trace Counter/Status Memories. When high, the CPU can address the Memories over the CPU Address Bus.
- LMAP2 Low Map 2 -- a signal developed by the CPU. LMAP2 is used as the Start/Stop Pulse in Signature Analysis and appears only on the extender card.
- LMC Low Measurement Complete -- when low, LMC indicates that the State Analyzer has stored all the information requested by the user in the Trace Memories.
- LME Low Measurement Enable -- LME is one of the bidirectional signals that make up the Intermodule Bus (IMB). When LME is low, the State Analyzer is allowed to operate in a normal mode without waiting for other modules. If the State Analyzer is operating in the Measurement Enable Mode and LME is high, it may not drive or receive any IMB functions. LME is wire ORed with other modules.

Mnemonic

- LMS Low Memory Select -- developed from LSEL and LSTM. When low, LMS latches the CPU Address Bus (LAO-13), LWRT, and LID into the Address Latches. At the same time, LMS enables the CPU Data Buffer (bidirectional). If LRSTB is low, the CPU can send information to the Control Board over the CPU Data Bus (LDO-12). If LRSTB is high, the CPU can read information from the Control Board.
- LMSYN Low Memory Synchronize -- a signal sent to the CPU. When low, the CPU is forced to wait until the Control Board can complete a read or write operation.
- LMV Low Memory Valid -- developed by the Strobe Generator. When low, LMV generates PMACRS and NMACRS if PBRSTB has occurred.
- LOCCRY Low Occurrence Carry -- when low, LOCCRY indicates that the Sequence Occurrence Counters have reached terminal count.
- LOVEN Low Overview Enable -- LOVEN is sent only to the 20 Channel Data Acquisition Board. When low, LOVEN allows the Overview section to look for its Trigger Events. LOVEN is strobed to the 20 Channel Board with HOVS. LOVEN is developed in the Sequencer.
- LOVRST Low Overview Reset -- developed in the Sequencer and used only in the 20 Channel Data Acquisition Board. LOVRST is used to reset the Overview Counter.
- LPOP Low Power On Preset -- when low (during Mainframe power-up or during A.C. power line disturbances), LPOP resets various latches, counters, and registers to a known state. When LPOP returns to a high state, the Mainframe begins executing software.
- LPPBEN Low Preprocessor Buffer Enable -- when low, LPPBEN enables the Preprocessor Data and Address Buffers to allow information to be transferred to/from the Preprocessor.
- LPPSTB Low Preprocessor Strobe -- developed in the Mainframe Interface Circuits.

 LPPSTB develops HTCLK/LTCLK. LPPSTB transfers data to/from the State
 Analyzer and the Preprocessor.
- LRC Low Register Clock -- a clock developed from the CPU's Address Bus and LWRT. LRC is used to latch information from the CPU's Data Bus into Control Registers U120 and U123, generating various control signals for the State Analyzer Control Board.
- LRDEN Low Read Enable -- developed in the Mainframe Interface Address Decoder. When low, LRDEN enables the CPU Read Decoder. The CPU Read Decoder in turn selects one of five registers or buffers to place information from the Control Board onto the CPU Data Bus.

Mnemonic

- LRMACR Low Read Memory Address Counter Register -- when low, LRMAC enables the Trace Memory Address Counter Read Register allowing the value of the Trace Count/Status Memory Address Counters to be read over the CPU's Data Bus.
- LRSQRG Low Read Sequence Register -- when low, LRSQRG enables the Sequence Read Register allowing the value of the Sequence State Latch/Counters (TSS0-7) to be read over the CPU's Data Bus.
- LRSTB Low Read Strobe -- developed in the Mainframe Interface from LWRTB and LIDB, LSTB and LSEL. When low, LRSTB allows information to be placed on the CPU Data Bus.
- LRSTS Low Read Status -- when low, LRSTS enables the Analysis Status Buffer allowing the states of eight different signals to be read over the CPU's Data Bus.
- LRSTSS Low Reset Sequence State Counter -- when low, LRSTSS resets the Sequence State Counter to zero. The Counters cannot begin counting until LRSTSS returns to a high state. LRSTSS is developed from the CPU's Address Bus and other control lines from the CPU.
- LRTDR Low Read Trace Data Register -- when low, LRTDR enables the Trace Data Read Register allowing the contents of the Trace Counter/Status Memories (CDO-7) to be read over the CPU's Data Bus.
- LRTPRG Low Read Trace Point Register -- when low, LRTPRG enables the Trace Point Register allowing the value of the Trace Count/Status Memory Address Counters to be read over the CPU's Data Bus.
- LRUN Low Run -- master enable for the Control Board generated by the CPU. When low, LRUN enables the Analysis Controller and is returned to the CPU through the Analysis Status Buffer.
- LSCE Low Sequence Counter Enable -- a Sequencer output used by the Analysis Controller to determine when the Trace State/Time Counter should be enabled.
- LSCLK Low Slow Clock -- when low, LSCLK indicates that it has been at least 100 mS since the last HMCLK. The status of LSCLK is returned to the CPU through the Analysis Status Buffer over the CPU Data Bus.
- LSE Low Storage Enable -- LSE is one of the bidirectional signals that make up the Intermodule Bus (IMB). When LSE is low, the Storage Qualify function is enabled in the State Analyzer and will store information when another module tells it to. LSE is wire ORed with other modules.
- LSEL Low Select -- a signal originating in the Mainframe. When low, LSEL allows the State Analyzer Identification Code to be returned over the CPU's Data Bus. This allows the CPU to identify if there is a State Analyzer Control Board installed in the Mainframe, and if so which slot of the Card Cage it

Mnemonic

- is installed in. LSEL is also used to enable the State Analyzer Control Board.
- LSEQDO-7 Low Sequence Data 0-7 -- the data path the CPU uses to load information into the Sequence Transition and Sequence Occurrence Memories prior to a measurement (LDO-7, LDBO-7, and LSEQDO-7).
- LSFLG Low Store Flag -- an Analysis Controller output. LSFLG is used as a flag in the Trace Counter/Status Memories. When low, LSFLG indicates when storage is enabled.
- LSFLGB Low Store Flag Buffered -- LSFLGB is the same as LSFLG except translated from an ECL level to a TTL level. When low, LSFLG indicates when storage is enabled.
- LSME Low Sequence Master Enable -- an Analysis Controller input. When low, LSME enables the LRUN portion of the Analysis Controller. LSME is an output of the Sequence Transition Memory.
- LSOCE Low Sequence Overview Count Enable -- an Analysis Controller input. When low, LSOCE enables LBRPO-7 to generate HOVCQ. LSOCE is an output of the Sequence Transition Memory.
- LSOCEN Low Sequence Occurrence Counter Enable -- when low, LSOCEN allows the Sequence Occurrence Counters to count up. The command to enable is stored in the Sequencer by the CPU (LDBO-7, LSEQDO-7). LSOCEN is an output of the Sequence Transition Memory.
- LSOCLD Low Sequence Occurrence Counter Load -- when low, LSOCLD allows the value stored in the Sequence Occurrence Memories to be loaded into the Sequence Occurrence Counters. The command to load the Counters is stored in the Sequencer by the CPU (LDBO-7, LSEQDO-7). LSOCLD is an output of the Sequence Transition Memory.
- LSSE Low Sequence Store Enable -- an Analysis Controller input. When low, LSSE enables LBRO-7 to generate LSFLG. LSSE also enables HWQ. LSSE is and output of the Sequence Transition Memory.
- LSSQ Low Sequence Store Qualify -- an Analysis Controller input. When low, LSSQ qualifies LBRPO-7. When qualified, LBRPO-7 generates LSFLG. LSSQ also qualifies HWQ. LSSQ is an output of the Sequence Transition Memory.
- LSTATE Low State -- LSTATE controls the two modes of the Trace State /Time Counter. When LSTATE is low, the Counter counts the number of states between two stored states. PINC is used to increment the counter in the state mode. When LSTATE is high, the Counter counts time using L25MHZ as a reference.
- LSTB Low Strobe -- a signal orginating in the Mainframe. When low and the CPU is in the write mode (LWRT low), LSTB indicates the Data Bus has valid

Mnemonic

- information on it. When low and in the read mode, LSTB indicates that the CPU is not driving the Data Bus, and the device addressed may now drive it.
- LSTE Low Sequence Trigger Enable -- a Sequencer output used by the Analysis Controller. When LSTE is low, the Analysis Controller enables NTRIG.
- LSTM Low Start Memory -- a signal originating in the Mainframe. When low, LSTM indicates that the information on the CPU's Address Bus is valid.
- LTCLK Low Transfer Clock -- a differential clock (HTCLK) used in the Preprocessor. When LTCLK goes from a high state to a low state, data is transferred between the State Analyzer and the Preprocessor.
- LTCSMS0-3 Low Trace Count/Status Memory Select 0-3 -- LTCSMS is used to enable (chip select) the Trace Counter/Status Memories.
- LTE Low Trigger Enable -- LTE is one of the bidirectional signals that make up the Intermodule Bus (IMB). When LTE is low, the Trigger Recognition function is enabled in the State Analyzer. LTE is wire ORed with other modules.
- LTP Low Trace Point -- LTP is normally high. The transition from high to low indicates that the State Analyzer has found the Trigger Event requested by the user.
- LTRCP Low Trace Point -- LTRCP is normally high. The transition from high to low indicates that the State Analyzer has found the Trigger Event requested by the user. LTRCP is returned to the CPU through the Analysis Status Buffer.
- LWOCML Low Write Occurrence Memory Lower -- when low, the CPU can load information into the Lower Sequence Occurrence Memories (LSEQD0-7).
- LWOCMU Low Write Occurrence Memory Upper -- when low, the CPU can load information into the Upper Sequence Occurrence Memories (LSEQD0-7).
- LWRAP Low Wrap -- a status signal returned to the CPU at the CPU's request. When low, LWRAP indicates that the Trace Counter/Status Memories are full of information.
- LWRT Low Write -- one of the control lines from the Mainframe. When low, the CPU is writing to the addressed device, i.e., the State Analyzer Control Board.
- LWRTB Low Write Buffered -- one of the control lines from the Mainframe with additional buffering. When low, the CPU is writing to the addressed device, i.e., the State Analyzer Control Board.
- LWRTSTB Low Write Strobe -- CPU controlled. When low, LWRTSTB enables the Mainframe Interface Write Decoders when the CPU wants to do a write cycle on the Control Board.

Mnemonic

- LWSEQML Low Write Sequence Memory Lower -- when low, the CPU can load information into the Lower Sequence Transition Memories (LSEQD0-7). LWSEQML is developed in the Write Decoders.
- LWSEQMU Low Write Sequence Memory Upper -- when low, the CPU can load information into the Upper Sequence Transition Memories (LSEQD0-7). LWSEQMU is developed in the Write Decoders.
- LWTHS1 Low Write Threshold 1 -- when LWTHS1 goes from a high to a low, information from the CPU is latched into the Digital to Analog Converter. The output current is proportional to the binary value latched. ((Full Scale Current X Binary Value Latched)/256 = Output Current.)
- LWTHS2 Low Write Threshold 2 -- when LWTHS2 goes from a high to a low, information from the CPU is latched into the Digital to Analog Converter. The output current is proportional to the binary value latched. ((Full Scale Current X Binary Value Latched)/256 = Output Current.)
- NBDSTB Negative Bus Data Strobe -- a differential signal (PBDSTB), developed in the Strobe Generator. Used to latch the outputs of the Trace Pod Data Memories into the Trace Pod Data Latch on the Data Acquisition Boards.
- NBSRS Negative Bus State Recognition Strobe -- a differential strobe (PBSRS) developed in the Strobe Generator, and sent to the Data Acquisition Boards. At the beginning of a data acquisition cycle, NBSRS goes from a high state to a low state. NBSRS is used to latch user information into the State Recognition Latches/Counters.
- NDSTB Negative Data Strobe -- a differential signal (PDSTB) developed in the Strobe Generator. NDSTB and PDSTB are used to develop HDVLD (see HDVLD).
- NIHALT Negative Interface Halt -- a differential signal (PIHALT) sent to the Preprocessor that can be used to halt the user's system.
- NINCSS Negative Increment Sequence State -- when NINCSS goes from a high to a low state, the Sequence State Latch/Counter will be incremented one state when in the count mode. NINCSS is developed by the CPU and is wire ORed with PPLS.
- NISTIM Negative Interface Stimulus -- a differential signal (PISTIM) sent to the Preprocessor. NISTIM is developed from PSTIM when enabled by HENSTIM. NISTIM goes from a high to a low state when a Trigger Event or Sequence Event occurs if enabled by the user.
- NMACRS Negative Memory Address Counter Register Strobe -- a differential signal (PMACRS) developed in the Strobe Generator. NMACRS is used to latch information from the Trace Count/Status Memory Address Counters into the Trace Memory Address Counter Read Register. The information in the Register is placed on the CPU Data Bus when LRMACR goes low.

Mnemonic

- NMC Negative Measurement Complete -- an output from the Analysis Controller. When low, NMC indicates to the CPU that the information requested by the user has been stored in the Trace Memories. NMC also latches LMC into the Port Latch.
- NOCSTB Negative Occurrence Counter Strobe -- NOCSTB is developed from the CPU's Address Bus and other control lines from the CPU. NOCSTB is used to develop PSOCINC. NOCSTB is used only during performance verification.
- NSEQEV Negative Sequence Event -- when going from a high state to a low state, NSEQEV indicates that either a Sequence Event has been found, or the Sequence Occurrence Counters have been incremented. NSEQEV can develop PSTIM, a State Analyzer output.
- NSQRGS Negative Sequence Register Strobe -- a differential signal (PSQRGS) developed in the Strobe Generator. NSQRGS is used to latch information from the Sequence State Latch/Counters into the Sequence Read Register. The information in the Register is placed on the CPU Data Bus when LRSQRG goes low.
- NTRIG Negative Trigger -- an Analysis Controller output. NTRIG goes from a high state to a low state each time the Trigger Event specified by the user occurs. NTRIG latches LTP into the Port Latch and LTRCP into the Trace Point Latch.
- PBDSTB Positive Bus Data Strobe -- a differential signal (NBDSTB), developed in the Strobe Generator. Used to latch the outputs of the Trace Pod Data Memories into the Trace Pod Data Latch on the Data Acquisition Boards.
- PBOVRST Positive Bus Overview Reset -- developed from HOVS. PBOVRST is used only on the 20 Channel Data Acquisition Board. When PBOVRST goes from a low state to a high state, the 20 Bit Overview Counter is reset.
- PBPLS Positive Bus Pipeline Strobe -- same as HPLS except buffered. Used in the 20 and 40 Channel Data Acquisition Boards for latching information into Pipeline Registers at the correct time in the Analyzer's timing cycle.
- PBRSTB Positive Bus Read Strobe -- a CPU generated signal. When PBRSTB goes from a low state to a high state, P(N)DSTB, P(N)MACRS and P(N)SQRGS are enabled in the Strobe Generator. These strobes are used to latch internal information into various data registers/memories as it moves from the input of the State Analyzer to the its outputs and then to the CPU.
- PBSRS Positive Bus State Recognition Strobe -- a differential strobe (NBSRS) developed in the Strobe Generator, and sent to the Data Acquisition Boards. At the beginning of a data acquisition cycle, PBSRS goes from a low state to a high state. PBSRS is used to latch user information into the State Recognition Latches/Counters.

Mnemonic

- PBSTBRQ Positive Bus Strobe Request -- a signal coming from the Data Acquisition Boards during Performance Verification only. PBSTBRQ when going from a low to a high state, begins a strobe generator cycle. PBSTBRQ is wire ORed with PPVSTB and HMCLK.
- PDC Positive Delayed Clock -- an IMB signal driven by the State Analyzer. PDC is a delayed version of HMCLK. When enabled, PDC may be used by other Modules using the IMB.
- PDSTB Positive Data Strobe -- a differential signal (NDSTB) developed in the Strobe Generator. PDSTB and NDSTB are used to develop HDVLD (see HDVLD).
- PHALT Positive Halt -- PHALT goes from a low to a high state when Trace Point or Measurement Complete occurs, if enabled by the user. PHALT is used in the Preprocessor (if enabled) and becomes PORT2.
- PIHALT Positive Interface Halt -- a differential signal (NIHALT) sent to the Preprocessor that can be used to halt the user's system. PIHALT is derived from PHALT when enabled by HENHLT.
- PISTIM Positive Interface Stimulus -- a differential signal (NISTIM) sent to the Preprocessor. PISTIM is developed from PSTIM when enabled by HENSTIM. PISTIM goes from a low to a high state when a Trigger Event or Sequence Event occurs if enabled by the user.
- PMACRS Positive Memory Address Counter Register Strobe -- a differential signal (NMACRS) developed in the Strobe Generator. PMACRS is used to latch information from the Trace Count/Status Memory Address Counter into the Trace Memory Address Counter Read Register. The information in the Register is transferred to the CPU Data Bus when LRMACR goes low.
- PORT1 Port 1 -- a signal from the Card Cage to the Rear Panel Connector PORT 1. In the case of the State Analyzer Control Board, PORT1 is used for Positive Stimulus (see PSTIM).
- PORT2 Port 2 -- a signal from the Card Cage to the Rear Panel Connector PORT 2. In the case of the State Analyzer Control Board, PORT2 is used for Positive Halt (see PHALT).
- PPLS Positive Pipeline Strobe -- same as NINCSS but inverted. When PPLS goes from a low to a high state, the Sequence Pipeline Latch/Counter is incremented one state when in the count mode.
- PPVSTB Positive Performance Verification Strobe -- PPVSTB is developed in the Write Decoders from the CPU. PPVSTB when going from a low state to a high state begins a strobe generator cycle. PPVSTB is used only during Performance Verification. PPVSTB is wire ORed with HMCLK and PBSTBRQ.
- PSOCINC Positive Sequence Occurrence Counter Increment -- developed from NOCSTB.

 When PSCINC goes from a low to a high, the Sequence Occurrence Counters

Mnemonic

- will be incremented one state when in the count mode. PSOCINC may also be driven by HBOWRT, they are wire ORed. PSOCINC never drives HBOWRT.
- PSQRGS Positive Sequence Register Strobe -- a differential signal (NSQRGS) developed in the Strobe Generator. PSQRGS is used to latch information from the Sequence Pipeline Latch/Counters into the Sequence Read Register. The information in the Register is placed on the CPU Data Bus when LRSQRG goes low.
- PSTIM Positive Stimulus -- PSTIM goes from a low to a high state when a Trigger Event or a Sequence Event occurs if enabled by the user. PSTIM is used in the Preprocessor (if enabled), and also becomes PORT1.
- PWAC Positive Write Analysis Controller -- a CPU controlled signal developed in the Write Decoders. When the Analysis Controller is in the load mode (LLD low), PWAC writes LDBO into the Controller.
- PWCLK Positive Write Clock -- a CPU controlled signal developed in the Write Decoders. PWCLK writes LDBO and LDB1 into the Clock Term Generator.
- PWLOAD Positive Write Load -- a CPU controlled signal developed in the Write Decoders. When going from a low state to a high state, PWLOAD latches LABO into the Load Latch asserting or negating HLD and LLD.
- PWRUN Positive Write Run -- a CPU controlled signal developed in the Write Decoders. When going from a low state to a high state PWRUN latches LABO into the Run Latch producing LRUN and latches LAB1 into the Port Latches negating LTP and LMC.
- TSSO-7 Trace Sequence State 0-7 -- outputs of the Sequence State Latch/Counters used in either the load mode or the run mode. TSSO-7 represent the present sequence state.
- VTHSH1-2 Voltage, Threshold 1-2 -- a voltage that is programmable by the user and sent to the Clock Probe as a reference voltage for the Comparators.

Table 8-2. Schematic Diagram Notes

	Tuble 6 2. Schematic Die				
	ETCHED CIRCUIT BOARD	(925)	WIRE COLORS ARE GIVEN BY NUMBERS IN PARENTHESES		
	FRONT PANEL MARKING		USING THE RESISTOR COLOR CODE [(925) IS WHT-RED-GRN		
[]	REAR-PANEL MARKING		0 · BLACK 5 · GREEN 1 · BROWN 6 · BLUE 2 · RED 7 · VIOLET 3 · ORANGE 8 · GRAY 4 · YELLOW 9 · WHITE		
P	MANUAL CONTROL	*	OPTIMUM VALUE SELECTED AT FACTORY, TYPICAL VALUE SHOWN; PART MAY HAVE BEEN OMITTED.		
	SCREWDRIVER ADJUSTMENT				
● TP1	ELECTRICAL TEST POINT TP (WITH NUMBER)		UNLESS OTHERWISE INDICATED: RESISTANCE IN OHMS CAPACITANCE IN PICOFARADS INDUCTANCE IN MICROHENRIES		
☆	NUMBERED WAVEFORM NUMBER CORRESPONDS TO ELECTRICAL TEST POINT NO.	μP = P/O = NC =	PART OF		
☆	LETTERED TEST POINT NO MEASUREMENT AID PROVIDED	CW =			
	COMMON CONNECTIONS. ALL LIKE-DESI	GNATED POINT	S ARE CONNECTED.		
① 3	NUMBER ON WHITE BACKGROUND = OI LARGE NUMBER ADJACENT = SERVICE				
•	CIRCLED LETTER = OFF-PAGE CONNECT SHEET.	ION BETWEEN I	PAGES OF SAME SERVICE		
INDICATES SINGLE SIGNAL LINE					
NUMBER OF LINES ON A BUS					
	4 111	l			
		•			
			STD-20-09-81		

Table 8-3. Logic Symbology

GENERAL

All signals flow from left to right, relative to the symbol's orientation with inputs on the left side of the symbol, and outputs on the right side of the symbol (the symbol may be reversed if the dependency notation is a single term.)

All dependency notation is read from left to right (relative to the symbol's orientation).

An external state is the state of an input or output outside the logic symbol.

An internal state is the state of an input or output inside the logic symbol. All internal states are True = High.

SYMBOL CONSTRUCTION

Some symbols consist of an outline or combination of outlines together with one or more qualifying symbols, and the representation of input and output lines.

Some have a common Control Block with an array of elements:

CONTROL BLOCK - All inputs and dependency notation affect the array elements directly. Common outputs are located in the control block. (Control blocks may be above or below the array elements.)

ARRAY ELEMENTS -All array elements are controlled by the control block as a function of the dependency notation. Any array element is independent of all other array elements. Unless indicated, the least significant element is always closest to the control block. The array elements are arranged by binary weight. The weights are indicated by powers of 2 (shown in []).

LS-04-08-83 - 1

Table 8-3. Logic Symbology (Cont'd)

INPUTS - Inputs are located on the left side of the symbol and are affected by their dependency notation.

Common control inputs are located in the control block and control the inputs/outputs to the array elements according to the dependency notation.

Inputs to the array elements are located with the corresponding array element with the least significant element closest to the control block.

OUTPUTS - Outputs are located on the right side of the symbol and are effected by their dependency notation.

Common control outputs are located in the control block.

Outputs of array elements are located in the corresponding array element with the least significant bit closest to the control block.

CHIP FUNCTION - The labels for chip functions are defined, i.e., CTR - counter, MUX - multiplexer.

DEPENDENCY NOTATION

Dependency notation is always read from left to right relative to the symbol's orientation.

Dependency notation indicates the relationship between inputs, outputs, or inputs and outputs. Signals having a common relationship will have a common number, i.e., C7 and 7D....C7 controls D. Dependency notation 2,3,5,6+/1,C7 is read as when 2 and 3 and 5 and 6 are true, the input will cause the counter to increment by one count....or (/) the input (C7) will control the loading of the input value (7D) into the D flip-flops.

The following types of dependencies are defined:

- a. AND (G), OR (V), and Negate (N) denote Boolean relationship between inputs and outputs in any combination.
- b. Interconnection (Z) indicates connections inside the symbol.
- c. Control (C) identifies a timing input or a clock input of a sequential element and indicates which inputs are controlled by it.
- d. Set (S) and Reset (R) specify the internal logic states (outputs) of an RS bistable element when the R or S input stands at its internal 1 state.
- e. Enable (EN) identifies an enable input and indicates which inputs and outputs are controlled by it (which outputs can be in their high impedance state).
- f. Mode (M) identifies an input that selects the mode of operation of an element and indicates the inputs and outputs depending on that mode.
- g. Address (A) identifies the address inputs.
- h. Transmission (X) identifies bi-directional inputs and outputs that are connected together when the transmission input is true.

DEPENDENCY NOTATION SYMBOLS

- Address (selects inputs/outputs) (indicates binary range) N N
- C Control (permits action)
- EN Enable (permits action)
- G AND (permits action)
- Mode (selects action)

- N Negate (complements state)
- R Reset Input S Set Input
- V OR (permits action)
- Z Interconnection
- C Transmission

LS-04-08-83 - 2

Table 8-3. Logic Symbology (Cont'd)

	ОТНЕ	ER SYMBOLS					
Analog Signal	1 Inversion		-	Shift	Right (or	down)	
& AND O	Negation		/		lus (allows	s an input or output to	have
} { Bit Grouping -X	Nonlogic Input/Output		∇		e than one	tunction)	
Buffer	Open Circuit (external r	resistor)	V			on and symbols to	offoct
! Compare $ riangle$	Open Circuit (external re	esistor)	,	inpu	ts/outputs	in an AND relationship, and read from left to rig	and to
Dynamic ≥1	OR		<i>(</i>)			oring terms using alg	
=1 Exclusive OR	Passive Pull Down (inter	rnal resistor)	()		niques.	oving torino doing dig	551410
TL Hysteresis	Passive Pull Up (interna	I resistor)	[]	Infor	mation no	t defined.	
? Interrogation	Postponed		Φ	Logi	c symbol r	not defined due to comp	lexity.
— Internal Connection —	- Shift Left (or up)						
BG Borrow Generate		LABELS Output				Lipput	
BI Borrow Input BO Borrow Propagate CG Carry Generate CI Carry Input	CP Carry CT Conte D Data I	Propagate ent Input sion (input or outpu	ut)		J k F 1 -	K Input Operand	
	MATH	H FUNCTIONS					
Adder ALU Arithmetic COMP Comparate DIV Divide By = Equal To			> < CF π P-		Greater Less Tha Look Ah Multiplie Subtract	n ead Carry Generator r	
	СНІ	PFUNCTIONS					
BCD Binary Coded Decid BIN Binary BUF Buffer CTR Counter DEC Decimal	mal DIR DMUX FF MUX OCT	Directional Demultiplexer Flip-Flop Multiplexer Octal			RAM RCVR ROM SEG SRG	Random Access Mem Line Receiver Read Only Memory Segment Shift Register	ory
	DELAY and	d MULTIVIBRATOF	RS				
Л . Astable			N۱	/	Nonvola	tile	
100 ns Delay			ı		State of	initial power up	
¹∏ Nonretrigg	erable Monostable			l	Retrigge	rable Monostable	
						LS-04-08-	33 - 3

64621A STATE CONTROL

Component Locator

SAC 8-42

Block Diagram

ICs ON THIS SCHEMATIC

REF. DES.	HP PART NO.	MFG. PART NO.
U25	INB4-5011	INB4-5011
U26	1820-2075	74LS245
U28-29	1826-0271	SN72741P
U53	1820-2024	74LS244
U54-55	1826-0856	AM6080APC
U99	1820-1197	74LS00
U129	1820-1173	10124

PARTS ON THIS SCHEMATIC

C12,36,37 CR1,2 J3 R19-34,48,49,54-57 TP11,12 U10,11,25-30,35,53-55,99,128,129 W1

POWER SUPPLY CONFIGURATION

64621A STATE CONTROL

Component Locator

SAC 8-44

Block Diagram

REF. DES.	HP PART NO.	MFG. PART NO.
U5,24,45	1820-1400	10104
U6,19,20,44	1820-0802	10102
U8	1820-0269	7403
U16	1820-1831	10103
U21,22	1820-1944	10130
U23	1820-0817	10131
U43	1820-0806	10109
U47,50	1820-0809	10115
U52,85	1820-1173	10124
U65	1820-1052	10125
U117	1820-1423	74LS123
	1	

PARTS ON THIS SCHEMATIC

C5-10,17,31,33,62 R4,5,7-18,36,52 TP1,2,6,9,13,15 U2,4-6,8,9,12,13,16,19-24,31-35,43-52,57,65,85,117

IMB TO/FROM OTHER

-BOARDS-

TEST 8

HQWRITE,HWQ

TSS0-7

TRACE

STATE/TIME

COUNTER

TEST 5, 7

PDC LME LTE LSE HTR

TRACE

COUNT/STATUS

MEMORY

TEST 6

SEB TO/FROM ACQUISITION BOARDS

STROBES

CONTROL

LINES

HWRT, HTIMS

CONTROL

MAINFRAME INTERFACE TEST 1

Block Diagram

SEQUENCER

TEST 4

ANALYSIS

CONTROLLER

TO/FROM CLOCK PROBE/ - PREPROCESSOR -

PREPROCESSOR

INTERFACE

TEST 11

CLOCK PROBE

INTERFACE

TEST 3, 10

HMCLK

STROBES

PSTIM/PHALT

STROBE

GENERATOR

CONTROL

ADDRESS

DATA

TEST 1, 9

64621A STATE CONTROL

Component Locator

REF. DES.	HP PART NO.	MFG. PART NO.
U6,19	1820-0802	10102
U17,18	1820-1718	10016
U36,38,40,42	1816-1462	10422
U52,85	1820-1173	10124
U65,83,84	1820-1052	10122

PARTS ON THIS SCHEMATIC

R36 U3,6,17-19,31,32,36-42,52,65,83-85

64621A STATE CONTROL

Component Locator

64621A STATE CONTROL

Component Locator

MAINFRAME INTERFACE TEST 1

Block Diagram

REF. DES.	HP PART NO.	MFG. PART NO.
U1	INB4-5010	INB4-5010
U5	1820-1400	10104
U6	1820-0802	10102
U14	1820-1201	74LS08
U16	1820-1831	10103
U18	1820-1788	10016
U97	1820-1282	74LS109
U116	1820-1210	74LS51
U123	1820-1195	74LS175
U126	1820-0780	AM8831

PARTS ON THIS SCHEMATIC

	C15
	CR3
	J1,2
	01
	R1,35,42,43,45
ì	TP3-5,7,8,10
	U1-7,12,13,14,15,16,18,31,41,97,116,123,126

64621A STATE CONTROL

Component Locator

SAC 8-52

Block Diagram

ICs ON THIS SCHEMATIC

REF. DES.	HP PART NO.	MFG. PART NO.
U20	1820-0802	10102
U45	1820-1400	10104
U74,77,94,		
108,109,110	1820-1052	10125
U127	1920-1208	74LS32
U129	1820-1173	10124

PARTS ON THIS SCHEMATIC

U13,20,35,45,57,74,77,94,108-113,127-130

Model 64621A - Service

64621A STATE CONTROL

Component Locator

SAC 8-54

Block Diagram

ICs ON THIS SCHEMATIC

100 0	1 11110 00	TILIMATIO		
REF. DES.	HP PART NO.	MFG. PART NO.		
U8	1820-0269	7403		
U66	1820-1052	10125		
U67,68,86	1820-1997	74LS374		
U70-73				
90-93	1816-1308	93LS422		
U87,88	1820-1428	74LS158		
U96	1820-1197	74LS00		
U98,103	1820-1282	74LS109		
U104,105	1820-1430	744LS161		

PARTS ON THIS SCHEMATIC

U8,66-68,70-73,86-88,90-93,96,98,103-105

64621-66501 STATE CONTROL BOARD REV A -----C58-----

64621A STATE CONTROL

Component Locator

103 ON THIS SCHEWATIC				
REF. DES.	HP PART NO.	MFG. PART NO.		
U62	1820-1173	10124		
U96,99	1820-1197	74LS00		
U98,103	1820-1282	74LS109		
U101,102	1820-1216	74LS138		
U106	1820-1281	74LS139		
U115	1820-1199	74LS04		
U117	1820-1423	74LS123		
U118,119	1820-2102	74LS373		
U120	1820-1997	74LS374		
U121	1820-2075	74LS245		
U124	1820-0269	7403		
U125	1820-1144	74LS02		
U127	1820-1208	74LS32		

PARTS ON THIS SCHEMATIC

C1-4,11,13,14,16,18-30,32,34,35,38-59,61,63,65-67 P1 R36,38,39,43,44,50,51 TP17,18 U37,41,62,75,76,96,98,99,101-103,106, 115,117-121,124,125,127

Component Locator

SAC 8-58

Block Diagram

REF. DES.	HP PART NO.	MFG. PART NO.		
U65,66	1820-1052	10125		
U69,89	1820-1997	74LS374		
U100	1820-1216	74LS138		
U106	1820-1281	74LS139		
U107	1820-1282	74LS109		
U122	1820-2024	74LS244		

PARTS ON THIS SCHEMATIC

R37,40,47 U65,66,69,89,100,106,107,122

Arranged alphabetically by country

Product Line Sales/Support Key

Key Product Line

A Analytical

CM Components

- C Computer Systems
- E Electronic Instruments & Measurement Systems
- M Medical Products
- P Personal Computation Products
- * Sales only for specific product line
- ** Support only for specific product line

IMPORTANT:These symbols designate general product line capability. They do not insure sales or support availability for all products within a line, at all locations. Contact your local sales office for information regarding locations where HP support is available for specific products.

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these headquarters offices.

NORTH/CENTRAL AFRICA

Hewlett-Packard S.A.
7, rue du Bois-du-Lan
CH-1217 MEYRIN 1, Switzerland
Tel: (022) 83 12 12
Telex: 27835 hmea
Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd. 47/F, 26 Harbour Rd., Wanchai, HONG KONG G.P.O. Box 863, Hong Kong Tel: 5-8330833 Telex: 76793 HPA HX Cable: HPASIAL TD

CANADA

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (416) 678-9430 Telex: 610-492-4246

EASTERN EUROPE

Hewlett-Packard Ges.m.b.h. Lieblgasse 1 P.O.Box 72 A-1222 **VIENNA,** Austria Tel: (222) 2500-0 Telex: 1 3 4425 HEPA A

NORTHERN EUROPE

Hewlett-Packard S.A. Uilenstede 475 P.O.Box 999 NL-1183 AG **AMSTELVEEN** The Netherlands Tel: 20 437771

Tel: 20 437771 Telex: 18 919 hpner nl

SOUTH EAST EUROPE

Hewlett-Packard S.A. World Trade Center 110 Avenue Louis Casai 1215 Cointrin, **GEMEYA**, Switzerland Tel: (022) 98 96 51

Telex: 27225 hpser

MEDITERRANEAN AND MIDDLE EAST

Hewlett-Packard S.A

Mediterranean and Middle East Operations Atrina Centre 32 Kifissias Ave. Paradissos-Amarousion, **ATHENS** Greece Tel: 682 88 11

Cable: HEWPACKSA Athens UNITED KINGDOM

Telex: 21-6588 HPAT GR

Hewlett-Packard Ltd. Nine Mile Ride Easthampstead, **WOKINGHAM** Berkshire, IRGII 3LL Tel: 0344 773100 Telex: 848805

EASTERN USA

Hewlett-Packard Co. 4 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 258-2000

MIDWESTERN USA

Hewlett-Packard Co. 5201 Tollview Drive ROLLING MEADOWS, IL 60008 Tel: (312) 255-9800

SOUTHERN USA

Hewlett-Packard Co. 2000 South Park Place P.O. Box 105005 **ATLANTA,** GA 30348 Tel: (404) 955-1500

WESTERN USA

Hewlett-Packard Co. 3939 Lankershim Blvd. P.O. Box 3919 LOS ANGELES, CA 91604 Tel: (213) 506-3700

OTHER INTERNATIONAL AREAS

Hewlett-Packard Co. Intercontinental Headquarters 3495 Deer Creek Road PALO ALTO, CA 94304 Tel: (415) 857-1501 Telex: 034-8300 Cable: HEWPACK

ANGOLA

Telectra Angola LDA
Empresa Tecnica de Equipamentos
Rua Conselheiro Julio de Vilhema, 16
Caixa Postal 6487 **LUANDA**Tel: 35515,35516
Telex: 3134

ARGENTINA

Hewlett-Packard Argentina S.A. Montanesse 2140/50 1428 BUENOS AIRES Tel: 783-4886/4836/4730 Cable: HEWPACKARG A.C.CM.E.P Biotron S.A.C.I.e.I. Av. Paso Colon 221, Piso 9 1399 BUENOS AIRES

Laboratorio Rodriguez Corswant S.R.L. Misiones, 1156 - 1876 Bernal, Oeste **BUENOS AIRES** Tel: 252-3958, 252-4991

Argentina Esanco S.R.L. Avasco 2328 1416 **BUENOS AIRES** Tel: 541-58-1981, 541-59-2767

AUSTRALIA

Adelaide, South Australia Office

Hewlett-Packard Australia Ltd. 153 Greenhill Road PARKSIDE, S.A. 5063 Tel: 272-5911 Telex: 82536 Cable: HEWPARD Adelaide A*.C.CM.E.M.P

Brisbane, Queensland Office

Hewlett-Packard Australia Ltd. 10 Payne Road THE GAP, Queensland 4061 Tel: 30-4133 Telex: 42133 Cable: HEWPARD Brisbane A,C,CM,E,M,P

Canberra, Australia Capital Territory Office

Hewlett-Packard Australia Ltd. 121 Wollongong Street FYSHWICK, A.C.T. 2609 Tel: 80 4244 Telex: 62650 Cable: HEWPARD Canberra C.CM.E.P

Melbourne, Victoria

Hewlett-Packard Australia Ltd. 31-41 Joseph Street BLACKBURN, Victoria 3130 Tel: 895-2895 Telex: 31-024 Cable: HEWPARD Melbourne A.C.CM.E.M.P

Perth, Western Australia Office

Hewlett-Packard Australia Ltd. 261 Stirling Highway CLAREMONT, W.A. 6010 Tel: 383-2188 Telex: 93859 Cable: HEWPARD Perth A.C.CM.E.M.P

Sydney, New South Wales Office

Hewlett-Packard Australia Ltd. 17-23 Talavera Road P.O. Box 308 NORTH RYDE, N.S.W. 2113 Tel: 888-4444 Telex: 21561 Cable: HEWPARD Sydney A,C,CM,E,M,P

AUSTRIA

Hewlett-Packard Ges.m.b.h. Verkauisbūro Graz Grottenhofstrasse 94 A-8052 **GRAZ** Tei: (0316) 291 56 60 Telex: 32375 C.F.

Hewlett-Packard Ges.m.b.h. Lieblgasse 1 P.O. Box 72 A-1222 VIENNA Tel: (0222) 2500-0 Telex: 134425 HEPA A A.C.CM.F.M.P

BAHRAIN Green Salon

P.O. Box 557 **MANAMA** Tel: 255503-255950 Telex: 8441

Wael Pharmacy P.O. Box 648 MANAMA Tel: 256123 Telex: 8550 WAEL BN

Zayani Computer Systems 218 Shaik Mubarak Building Government Avenue P.O. Box 5918

MANAMA

Tel: 276278 Telex: 9015

BELGIUM

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal B-1200 **BRUSSELS** Tel: (02) 762-32-00 Telex: 23-494 paloben bru A,C,CM,E,M,P

BERMUDA

Applied Computer Technologies Atlantic House Building Par-La-Ville Road Hamilton 5 Tel: 295-1616

BRAZIL

Hewlett-Packard do Brasil I.e.C. Ltda. Alameda Rio Negro, 750 Alphaville 06400 **BARUERI SP** Tel: (011) 421.1311 Telex: (011) 33872 HPBR-BR Cable: HEWPACK Sao Paulo A C.CM F M P

Hewlett-Packard do Brasil I.e.C. Ltda. Praia de Botafago 228 6° Andar-conj 614 Edificio Argentina - Ala A 22250 RIO DE JANEIRO Tel: (02I) 552-6422 Telex: 21905 HPBR-BR Cable: HEWPACK Rio de Janeiro A.C.CM.E.P*

Convex/Van Den Rua Jose Bonifacio 458 Todos Os Santos CEP 20771

RIO DE JANEIRO, RJ Tel: 591-0197 Telex: 33487 EGLB BR

ANAMED I.C.E.I. Ltda. Rua Bage, 103 04012 **\$A0 PAULO,** SP Tel: (011) 572-6537 Telex: 24720 HPBR-BR

Datatronix Electronica Ltda. Av. Pacaembu 746-C11 **\$AO PAULO**, SP Tel: (118) 260111

CAMEROON

Beriac B. P. 23 **DOUALA** Tel: 420153 Telex: 5351 C,P

CANADA

Alberta

Hewlett-Packard (Canada) Ltd. 3030 3rd Avenue N.E. CALGARY, Alberta T2A 6T7 Tel: (403) 235-3100 A,C,CM,E*,M,P*

Hewlett-Packard (Canada) Ltd. 11120-178th Street EDMONTON, Alberta T5S 1P2 Tel: (403) 486-6666 A,C,CM,E,M,P

Arranged alphabetically by country

CANADA (Cont'd)

British Columbia

Hewlett-Packard (Canada) Ltd. 10691 Shellbridge Way RICHMOND.

British Columbia V6X 2W7 Tel: (604) 270-2277 Telex: 610-922-5059 A,C,CM,E*,M,P*

Hewlett-Packard (Canada) Ltd. 121 - 3350 Douglas Street VICTORIA, British Columbia V8Z 3L1 Tel: (604) 381-6616

Manitoba

Hewlett-Packard (Canada) Ltd. 1825 Inkster Blvd. WINNIPEG, Manitoba R2X 1R3 Tel: (204) 694-2777 A.C.CM.E.M.P*

New Brunswick

Hewlett-Packard (Canada) Ltd. 814 Main Street MONCTON, New Brunswick E1C 1E6 Tel: (506) 855-2841 C.

Nova Scotia

Hewlett-Packard (Canada) Ltd. Suite 111 900 Windmill Road **DARTMOUTH,** Nova Scotia B3B 1P7 Tel: (902) 469-7820 C.CM.E*,M.P*

Ontario

Hewlett-Packard (Canada) Ltd. 3325 N. Service Rd., Unit 3 BURLINGTON, Ontario L7N 3G2 Tel: (416) 335-8644 C,M*

Hewlett-Packard (Canada) Ltd. 496 Days Road KINGSTON, Ontario K7M 5R4 Tel: (613) 384-2088 C

Hewlett-Packard (Canada) Ltd. 552 Newbold Street LONDON, Ontario N6E 2S5 Tel: (519) 686-9181 A,C,CM,E*,M,P*

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive MISSISSAÜGA, Ontario L4V 1M8 Tel: (416) 678-9430 A,C,CM,E,M,P

Hewlett-Packard (Canada) Ltd. 2670 Queensview Dr. OTTAWA, Ontario K2B 8K1 Tel: (613) 820-6483 A,C,CM,E*,M,P*

Hewlett-Packard (Canada) Ltd. The Oaks Plaza, Unit #9 2140 Regent Street **SUDBURY**, Ontario, P3E 5S8 Tel: (705) 522-0202 C

Hewlett-Packard (Canada) Ltd. 3790 Victoria Park Ave. WILLOWDALE, Ontario M2H 3H7 Tel: (416) 499-2550

Quebec

Hewlett-Packard (Canada) Ltd. 17500 Trans Canada Highway South Service Road KIRKLAND, Quebec H9J 2X8 Tel: (514) 697-4232 A.C.C.M.E.M.P*

Hewlett-Packard (Canada) Ltd. 1150 rue Claire Fontaine QUEBEC CITY, Quebec G1R 5G4 TC (418) 648-0726

Hewlett-Packard (Canada) Ltd. 130 Robin Crescent SASKATOON, Saskatchewan S7L 6M7 TEI: (306) 242-3702

CHILE

ASC Ltda. Austria 2041 SANTIAGO

Tel: 223-5946, 223-6148 Telex: 340192 ASC CK

Isical Ltda. Av. Italia 634 Santiago Casilla 16475 **SANTIAGO** 9 Tel: 222-0222 Telex: 440283 JCYCL CZ CM.E.M

Metrolab S.A.
Monjitas 454 of. 206
SANTIAGO
Tol: 205752, 209206

Tel: 395752, 398296 Telex: 340866 METLAB CK

Olympia (Chile) Ltda. Av. Rodrigo de Araya 1045 Casilla 256-V **SANTIAGO** 21 Tel: 225-5044

Tel: 225-5044
Telex: 340892 OLYMP
Cable: Olympiachile Santiagochile

CHINA, People's

Republic of

China Hewlett-Packard, Ltd. 47/F China Resources Bldg. 26 Harbour Road HONG KONG

Tel: 5-8330833 Telex: 76793 HPA HX Cable: HP ASIA LTD A* M*

China Hewlett-Packard, Ltd. P.O. Box 9610, Beijing 4th Floor, 2nd Watch Factory Main Bldg. Shuang Yu Shu, Bei San Huan Rd. Hai Dian District BELINIG

Tel: 28-0567
Telex: 22601 CTSHP CN
Cable: 1920 Beijing
A,C,CM,E,M,P

COLOMBIA

Instrumentación
H. A. Langebaek & Kier S.A.
Carrera 4A No. 52A-26
Apartado Aereo 6287
BOGOTA 1, D.E.
Tel: 212-1466
Telex: 44400 INST CO
Cable: AARIS Bogota
CM,E,M

Nefromedicas Ltda. Calle 123 No. 9B-31 Apartado Aereo 100-958 BOGOTA D.E., 10 Tel: 213-5267, 213-1615 Telex: 43415 HEGAS CO A

Compumundo Avenida 15 # 107-80 BOGOTA D.E. Tel: 214-4458 Telex: 45466 MARICO

Carvajal, S.A.
Calle 29 Norte No. 6A-40
Apartado Aereo 46
CALI
Tel: 368-1111
Telex: 55650
C.F.P.

CONGO

Seric-Congo B. P. 2105 BRAZZAVILLE Tel: 815034 Telex: 5262

COSTA RICA

Cientifica Costarricense S.A. Avenida 2, Calle 5 San Pedro de Montes de Oca Apartado 10159 SAN JOSÉ Tel: 24-38-20, 24-08-19 Telex: 2367 GALGUR CR

CYPRUS

Telerexa Ltd.
P.O. Box 4809
14C Stassinos Avenue
MICOSIA
Tel: 62698
Telex: 2894 LEVIDO CY
F M P

DENMARK

Hewlett-Packard A/S Datavej 52 DK-3460 **BIRKEROD** Tel: (02) 81-66-40 Telex: 37409 hpas dk A,C,CM,E,M,P

Hewlett-Packard A/S Rolighedsvej 32 DK-8240 **RISSKOV**, Aarhus Tel: (06) 17-60-00 Telex: 37409 hpas dk C.E

DOMINICAN REPUBLIC Microprog S.A.

Juan Tomás Mejía y Cotes No. 60 Arroyo Hondo **SANTO DOMINGO** Tel: 565-6268 Telex: 4510 ARENTA DR (RCA)

ECUADOR

CYEDE Cia. Ltda. Avenida Eloy Alfaro 1749 y Belgica Casilla 6423 CCI QUITO Tel: 450-975, 243-052 Telex: 22548 CYEDE ED CM.E.P

Medtronics Valladolid 524 Madrid P.O. 9171, **QUITO** Tel: 223-8951 Telex: 2298 ECKAME ED

Hospitalar S.A.

Robles 625 Casilla 3590 **QUITO** Tel: 545-250, 545-122 Telex: 2485 HOSPTL ED Cable: HOSPITALAR-Quito

Ecuador Overseas Agencies C.A. Calle 9 de Octubre #818 P.O. Box 1296, Guayaquil **autro** Tel: 306022 Telex: 3361 PBCGYE ED

EGYPT

Sakrco Enterprises 70, Mossadak Str. Dokki, Giza **CAIRO** Tel: 706440 Telex: 93146

International Engineering Associates 24 Hussein Hegazi Street Kasr-el-Ain

CAIRO

Tel: 23829, 21641 Telex: 93830 IEA UN Cable: INTEGASSO E.M*

S.S.C. Medical 40 Gezerat El Arab Street Mohandessin CAIRO

Tel: 803844, 805998, 810263 Telex: 20503 SSC UN M*

EL SALVADOR

IPESA de El Salvador S.A. 29 Avenida Norte 1223 **SAN SALVADOR** Tel: 26-6858, 26-6868 Telex: 20539 IPESA SAL A,C,CM,E,P

ETHIOPIA Seric-Ethiopia P.O. Box 2764

ADDIS ABABA Tel: 185114 Telex: 21150 C.P

FINLAND Hewlett-Packard Oy

Piispankalliontie 17 02200 **ESPOO** Tel: 00358-0-88721 Telex: 121563 HEWPA SF A,C,CM,E,M,P

FRANCE

Hewlett-Packard France Z.I. Mercure B Rue Berthelot 13763 Les Milles Cedex AIX-EN-PROYENCE Tel: (42) 59-41-02 Telex: 410770F A.C.E.M.P*

Hewlett-Packard France 64, rue Marchand Saillant 61000 **ALENCON** Tel: (33) 29 04 42

Hewlett-Packard France 28 rue de la Republique Boite Postale 503 25026 BESANCON Cedex Tel: (81) 83-16-22 Telex: 361157 C.M

Hewlett-Packard France Chemin des Mouilles Boite Postale 162 69130 **ECULLY** Cedex (Lyon) Tel: (78) 833-81-25 Telex: 310617F A,C,E,M

Hewlett-Packard France Parc d'activités du Bois Briard 2, avenue du Lac 91040 **EVRY** Cedex Tei: 6 077-96 60 Telex: 692315F

Hewlett-Packard France 5, avenue Raymond Chanas 38320 **EYBENS** (Grenoble) Tel: (76) 62-57-98 Telex: 980124 HP GRENOB EYBE C.

Hewlett-Packard France Rue Fernand. Forest Z.A. Kergaradec 29239 **GOUESNOU** Tel: (98) 41-87-90

Hewlett-Packard France Centre d'affaires Paris-Nord Bâtiment Ampère Rue de la Commune de Paris Boite Postale 300 93153 LE BLANC-MESNIL Tei: (1) 865-44-52 Telex: 211032F C.F.M

Hewlett-Packard France Parc d'activités Cadera Quartier Jean-Mermoz Avenue du Président JF Kennedy F-33700 **MÉRIGNAC** (Bordeaux) Tel: (56) 34-00-84 Telex: 550105F C.E.M

Hewlett-Packard France Immueble "Les 3 B" Nouveau chemin de la Garde ZAC du Bois Briand 44085 NANTES Cedex Tel: (40) 50-32-22 Telex: 711085F

Hewlett-Packard France 125, rue du Faubourg Bannier 45000 **ORLEANS** Tel: (38) 68 01 63

FRANCE (Cont'd)

Hewlett-Packard France Zone Industrielle de Courtaboeuf Avenue des Tropiques 91947 Les Ulis Cedex **ORSAY** Tel: (6) 907-78-25 Telex: 600049F A,C,CM,E,M,P

Hewlett-Packard France Paris Porte-Maillot 15, boulevard de L'Amiral-Bruix 75782 **PARIS** Cedex 16 Tel: (1) 502-12-20 Telex: 613663F C.M.P

Hewlett-Packard France 124, Boulevard Tourasse 64000 **PAU** Tel: (59) 80 38 02

Hewlett-Packard France 2 Allée de la Bourgonnette 35100 **RENNES** Tel: (99) 51-42-44 Telex: 740912F C,CM,E,M,P*

Hewlett-Packard France 98 avenue de Bretagne 76100 **ROUEN** Tel: (35) 63-57-66 Telex: 770035F

Hewlett-Packard France 4, rue Thomas-Mann Boite Postale 56 67033 **STRASBOURG** Cedex Tel: (88) 28-56-46

Tel: (88) 28-56-46 Telex: 890141F C,E,M,P*

Tel: (61) 40-11-12 Telex: 531639F A,C,E,P*

Hewlett-Packard France 9, rue Baudin 26000 **VALENCE** Tel: (75) 42 76 16

Hewlett-Packard France Carolor ZAC de Bois Briand 57640 **VIGY** (Metz) Tel: (8) 771 20 22 C

Hewlett-Packard France Parc d'activité des Prés 1, rue Papin

59658 **VILLENEUVE D'ASCQ** Cedex Tel: (20) 47 78 78 Telex: 160124F C,E,M,P*

GABON

Sho Gabon P.O. Box 89 **LIBREVILLE** Tel: 721 484 Telex: 5230

GERMAN FEDERAL REPUBLIC

Hewlett-Packard GmbH Geschäftsstelle Keithstrasse 2-4 D-1000 **BERLIN** 30 Tel: (030) 21 99 04-0 Telex: 018 3405 hpbln d A,C,E,M,P

Hewlett-Packard GmbH Vertriebszentrun Südwest Schickardstrasse 2 D-7030 **BÖBLINGEN** Tel: (07031) 645-0 Telex: 7265 743 hep A,C,CM,E,M,P

Hewlett-Packard GmbH Vertriebszentrum West Berliner Strasse III D-4030 **RATINGEN** 3 Tel: (02102) 494-0 Telex: 589 070 hprad

Hewlett-Packard GmbH Geschäftsstelle Schleefstr. 28a D-4600 **DORTMUND**-41 Tel: (0231) 45001 Telex: 822858 hepdad

A,C,E,M,P

A.C.E

Hewlett-Packard GmbH Vertriebszentrum Mitte Hewlett-Packard-Strasse D-6380 BAD HOMBURG Tel: (06172) 400-0 Telex: 410 844 hpbhg A.C.E.M.P

Hewlett-Packard GmbH Vertriebszentrum Nord Kapstadtring 5 D-2000 **HAMBURG** 60 Tel: (040) 63804-1 Telex: 021 63 032 hphh d

Hewlett-Packard GmbH Geschäftsstelle Heidering 37-39 D-3000 HANNOVER 61 Tel: (0511) 5706-0 Telex: 092 3259 A,C,CM,E,M,P

Hewlett-Packard GmbH Geschäftsstelle Rosslauer Weg 2-4 D-6800 MANNHEIM Tel: (0621) 70 05-0 Telex: 0462105 A.C.F

Hewlett-Packard GmbH Geschäftsstelle Messerschmittstrasse 7 D-7910 NEU ULM Tel: (0731) 70 73-0 Telex: 0712816 HP ULM-D A,C.E*

Hewlett-Packard GmbH Geschäftsstelle Emmericher Strasse 13 D-8500 NÜRNBERG 10 Tel: (0911) 5205-0 Telex: 0623 860 hpnbg C.CM.E.M.P Hewlett-Packard GmbH Vertriebszentrum S0d Eschenstrasse 5 D-8028 **TAUFKIRCHEN** Tel: (089) 61 20 7-0 Telex: 0524985 A,C,CM,E,M,P

Hewlett-Packard GmbH Geschäftsstelle Ermlisallee 7517 **WALDBRONN** 2 Tel: (07243) 602-0 Telex: 782 838 hepk A,C,E

GREAT BRITAIN

See United Kingdom

GREECE
Hewlett-Packard A.E.
178, Kifissias Avenue
6th Floor
Halandri-ATHENS
Greece
Tei: 6471543, 6471673, 6472971
Telex: 221 286 HPHLGR
A,C,C,M**,E,M,P

Kostas Karaynnis S.A. 8, Omirou Street ATHENS 133 Tel: 32 30 303, 32 37 371 Telex: 215962 RKAR GR A.C*.CM.E

Impexin Intelect Div. 209 Mesogion 11525 **ATHENS** Tel: 6474481/2 Telex: 216286

Haril Company 38, Mihalakopoulou ATHENS 612 Tel: 7236071 Telex: 218767

Hellamco P.O. Box 87528 18507 **PIRAEUS** Tel: 4827049 Telex: 241441

GUATEMALA

IPESA Avenida Reforma 3-48, Zona 9 **GUATEMALA CITY** Tel: 316627, 314786 Telex: 3055765 IPESA GU A,C,CM,E,M,P

HONG KONG

Hewlett-Packard Hong Kong, Ltd. G.P.O. Box 795 5th Floor, Sun Hung Kai Centre 30 Harbour Road HONG KONG Tel: 5-8323211 Telex: 66678 HEWPA HX Cable: HEWPACK Hong Kong

CET Ltd.
10th Floor, Hua Asia Bldg.
64-66 Gloulester Road
HONG KONG
Tel: (5) 200922
Telex: 85148 CET HX

Schmidt & Co. (Hong Kong) Ltd. 18th Floor, Great Eagle Centre 23 Harbour Road **HONG KONG** Tel: 5-8330222

Telex: 74766 SCHMC HX A,M

ICELAND

Hewlett-Packard Iceland Hoefdabakka 9 110 **Reykjavik** Tel: (1) 67 1000 A,C,CM,E,M,P

INDIA

Computer products are sold through Blue Star Ltd.All computer repairs and maintenance service is done through Computer Maintenance Corp.

Blue Star Ltd.
Sabri Complex 2nd Floor
24 Residency Rd.
BANGALORE 560 025
Tel: 55660, 578881
Telex: 0845-430
Cable: BLUESTAR
A,C*,CM,E

Blue Star Ltd.
Band Box House
Prabhadevi
BOMBAY 400 025
Tel: 4933101, 4933222
Telex: 011-71051
Cable: BLUESTAR
A,M

Sahas 414/2 Vir Savarkar Marg Prabhadevi BOMBAY 400 025 Tel: 422-6155, 422-6556 Telex: 011-71193 BSSS IN Cable: FROSTBLUE A,C*,CM,E,M

Blue Star Ltd.

Blue Star Ltd. Kalyan, 19 Vishwas Colony Alkapuri, **BORODA**, 390 005 Tel: 65235, 65236 Cable: BLUE STAR A

Blue Star Ltd. 7 Hare Street CALCUTTA 700 001 Tel: 230131, 230132 Telex: 021-7655 Cable: BLUESTAR A.M

Blue Star Ltd. 133 Kodambakkam High Road MADRAS 600 034 Tel: 472056, 470238 Telex: 041-379 Cable: BLUESTAR A,M

Blue Star Ltd. 13 Community Center New Friends Colony NEW DELHI 110 065 Tel: 633773, 634473 Telex: 031-61120 Cable: BLUEFROST A,C*,CM,E,M Blue Star Ltd. 15/16 C Wellesley Rd. PUNE 411 011 Tel: 22775 Cable: BLUE STAR A

Blue Star Ltd. 2-2-47/1108 Bolarum Rd. **SECUNDERABAD** 500 003 Tel: 72057, 72058 Telex: 0155645 Cable: BLUEFROST A.E

Blue Star Ltd. T.C. 7/603 Poornima Maruthunkuzhi TRIYANDRUM 695 013 Tel: 65799, 65820 Telex: 0884-259 Cable: BLUESTAR F

Computer Maintenance Corporation Ltd. 115, Sarojini Devi Road **SECUNDERABAD** 500 003 Tel: 310-184, 345-774 Telex: 031-2960

INDONESIA

BERCA Indonesia P.T. P.O.Box 496/Jkt. JI. Abdul Muis 62 **JAKARTA** Tel: 21-373009

Telex: 46748 BERSAL IA Cable: BERSAL JAKARTA P

BERCA Indonesia P.T. P.O.Box 2497/Jkt Antara Bidg., 12th Floor Jl. Medan Merdeka Selatan 17 JAKARTA-PUSAT Tel: 21-340417, 341445 Telex: 46748 BERSAL IA A,C,E,M

BERCA Indonesia P.T. Jalan Kutai 24 **SURABAYA** Tel: 67118 Telex: 31146 BERSAL SB Cable: BERSAL-SURABAYA A*.E.M.P

IRAQ

Hewlett-Packard Trading S.A. Service Operation AI Mansoor City 9B/3/7 **BAGHDAD** Tel: 551-49-73 Telex: 212-455 HEPAIRAQ IK

IRELAND

Hewlett-Packard Ireland Ltd. 82/83 Lower Leeson Street **DUBLIN** 2 Tel: 0001 608800 Telex: 30439 A.C.CM.E.M,P

Cardiac Services Ltd.
Kilmore Road
Artane
DUBLIN 5
Tel: (01) 351820
Telex: 30439

Arranged alphabetically by country

ISRAEL

Eldan Electronic Instrument Ltd. P.O.Box 1270

JERUSALEM 91000 16, Ohaliav St. JERUSALEM 94467

Tel: 533 221, 553 242 Telex: 25231 AB/PAKRD IL A.M

Computation and Measurement Systems (CMS) Ltd. 11 Masad Street 67060 TEL-AVIV

Tel: 388 388 Telex: 33569 Motil IL C,CM,E,P

ITALY

Hewlett-Packard Italiana S.p.A Traversa 99C Via Giulio Petroni, 19 I-70124 BARI Tel: (080) 41-07-44 C.M

Hewlett-Packard Italiana S.p.A. Via Emilia, 51/C I-40011 **BOLOGNA** Anzola Dell'Emilia Tel: (051) 731061 Telex: 511630 C.E.M

Hewlett-Packard Italiana S.p.A. Via Principe Nicola 43G/C I-95126 CATAMIA Tel: (995) 37-10-87 Telex: 970291

Hewlett-Packard Italiana S.p.A. Via G. Di Vittorio 9 I-20063 **CERNUSCO SUL**

NAVIGLIO

(Milano) Tel: (02) 4459041 Telex: 334632 A,C,CM,E,M,P

Hewlett-Packard Italiana S.p.A. Via C. Colombo 49 I-20090 **TREZZANO SUL**

NAVIGLIO

(Milano) Tel: (02) 4459041 Telex: 322116

Hewlett-Packard Italiana S.p.A. Via Nuova San Rocco a Capodimonte, 62/A I-80131 NAPOLI Tel: (081) 7413544 Telex: 710698 A**,C,E,M

Hewlett-Packard Italiana S.p.A. Viale G. Modugno 33 I-16156 **GENOVA PEGLI** Tel: (010) 68-37-07 Telex: 215238 C.E

Hewlett-Packard Italiana S.p.A. Via Pelizzo 15 I-35128 PADOVA Tel: (049) 664888 Telex: 430315 A,C,E,M Hewlett-Packard Italiana S.p.A. Viale C. Pavese 340 I-00144 ROMA EUR Tel: (06) 54831 Telex: 610514 A.C.E.M.P*

Hewlett-Packard Italiana S.p.A. Via di Casellina 57/C I-50018 **SCANDICCI-FIRENZE**

Tel: (055) 753863 C,E,M

Corso Svizzera, 185 I-10144 **TORINO** Tel: (011) 74 4044 Telex: 221079 A*,C,E

Hewlett-Packard Italiana S.p.A.

IVORY COAST

S.I.T.E.L.
Societe Ivoirienne de
Telecommunications
Bd. Giscard d'Estaing
Carrefour Marcory
Zone 4.A.
Boite postale 2580
ABIDJAN 01

Tel: 353600 Telex: 43175 E

S.I.T.I. Immeuble "Le General" Av. du General de Gaulle 01 BP 161

ABIDJAN 01 Tel: 321227 C,P

JAPAN

Yokogawa-Hewlett-Packard Ltd. 152-1, Onna **ATSUGI**, Kanagawa, 243 Tel: (0462) 25-0031 C,CM,E

Yokogawa-Hewlett-Packard Ltd. Meiji-Seimei Bldg. 6F 3-1 Hon Chiba-Cho CHIBA, 280 Tel: 472 25 7701

Yokogawa-Hewlett-Packard Ltd. Yasuda-Seimei Hiroshima Bldg. 6-11, Hon-dori, Naka-ku HIROSHIMA, 730 Tel: 82-241-0611

Yokogawa-Hewlett-Packard Ltd. Towa Building 2-3, Kaigan-dori, 2 Chome Chuo-ku KOBE, 650 Tel: (078) 392-4791

Yokogawa-Hewlett-Packard Ltd. Kumagaya Asahi 82 Bldg 3-4 Tsukuba

KUMAGAYA, Saitama 360 Tel: (0485) 24-6563 C.CM.E

Yokogawa-Hewlett-Packard Ltd. Asahi Shinbun Daiichi Seimei Bldg. 4-7, Hanabata-cho KUMAMOTO, 860 Tel: (096) 354-7311 Yokogawa-Hewlett-Packard Ltd. Shin-Kyoto Center Bldg. 614, Higashi-Shiokoji-cho Karasuma-Nishiiru Shiokoji-dori, Shimogyo-ku **KYOTO**, 600 Tel: 075-343-0921

Yokogawa-Hewlett-Packard Ltd. Mito Mitsui Bldg 4-73, Sanno-maru, 1 Chome **MITO**, Ibaraki 310 Tel: (0292) 25-7470 C,CM,E

C.E

Yokogawa-Hewlett-Packard Ltd. Meiji-Seimei Kokubun Bldg. 7-8 Kokubun, 1 Chome, Sendai MIYAGI, 980

Tel: (0222) 25-1011 C,E

Yokogawa-Hewlett-Packard Ltd. Nagoya Kokusai Center Building 47-1, Nagono, 1 Chome Nakamura-ku NAGOYA, 450

Tel: (052) 571-5171 C,CM,E,M

Yokogawa-Hewlett-Packard Ltd. Saikyoren Building 1-2 Dote-machi, **OHMIYA** Saitama 330 Tel: (0486) 45-8031

Yokogawa-Hewlett-Packard Ltd. Chuo Bldg., 4-20 Nishinakajima, 5 Chome Yodogawa-ku **OSAKA.** 532

Tel: (06) 304-6021 Telex: YHPOSA 523-3624 A,C,CM,E,M,P*

Yokogawa-Hewlett-Packard Ltd. 27-15, Yabe, 1 Chome **SAGAMIHARA** Kanagawa, 229 Tel: 0427 59-1311

Yokogawa-Hewlett-Packard Ltd. Daiichi Seimei Bldg. 7-1, Nishi Shinjuku, 2 Chome Shinjuku-ku,**TOKYO** 160 Tel: 03-348-4611

Yokogawa-Hewlett-Packard Ltd. 29-21 Takaido-Higashi, 3 Chome Suginami-ku **TOKY0** 168 Tel: (03) 331-6111 Telex: 232-2024 YHPTOK A.C.CM.E.M.P*

Yokogawa Hokushin Electric Corp. 9-32 Nokacho 2 Chome 2 Chome Musashino-shi **TOKYO**, 180 Tel: (0422) 54-1111 Telex: 02822-421 YEW MTK J

Yokogawa-Hewlett-Packard Ltd. Meiji-Seimei Utsunomiya Odori Building 1-5 Odori, 2 Chome **UTSUNOMIYA**, Tochigi 320 Tel: (0286) 33-1153 C.E Yokogawa-Hewlett-Packard Ltd. Yasuda Seimei Yokohama Nishiguchi Bldg. 30-4 Tsuruya-cho, 3 Chome YOKOHAMA 221 Tel: (045) 312-1252 C.E

JORDAN

Scientific and Medical Supplies Co. P.O. Box 1387 AMMAN

Tel: 24907, 39907 Telex: 21456 SABCO JO C.E.M.P

KENYA

ADCOM Ltd., Inc., Kenya P.O.Box 30070 NAIROBI Tel: 331955 Telex: 22639

KOREA

Samsung Hewlett-Packard Co. Ltd. Dongbang Yeoeuido Building 12-16th Floors 36-1 Yeoeuido-dong Yongdeungpo-ku SEOUL

Tel: 784-2666, 784-4666 Telex: 25166 SAMSAN K A,C,CM,E,M,P

Young In Scientific Co., Ltd. Youngwha Building 547 Shinsa Dong, Kangnam-ku **SEOUI.** 135 Tel: 5467771 Telex: K23457 GINSCO

KUWAIT

Al-Khaldiya Trading & Contracting P.O. Box 830 SAFAT

Tel: 424910, 411726 Telex: 22481 AREEG KT Cable: VISCOUNT E.M.A

Gulf Computing Systems P.O. Box 25125 **SAFAT** Tel: 435969 Telex: 23648 P

Photo & Cine Equipment P.O. Box 270 **8AFAT** Tel: 2445111 Telex: 22247 MATIN KT Cable: MATIN KUWAIT P

W.J. Towell Computer Services P.O. Box 5897 **SAFAT** Tel: 2462640 Telex: 30336 TOWELL KT

LEBANON

Computer Information Systems S.A.L. Chammas Building
P.O. Box 11-6274 Dora
BEIRUT
Tel: 89 40 73
Telex: 42309
C.E.M.P

LIBERIA

Unichemicals Inc. P.O. Box 4509 MONROVIA Tel: 224282 Telex: 4509 E

MADAGASCAR

Technique et Precision 12, rue de Nice P.O. Box 1227 101 ANTANANARIVO Tel: 22090 Telex: 22255 P

LUXEMBOURG

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal B-1200 **BRUSSELS** Tel: (02) 762-32-00 Telex: 23-494 paloben bru A.C.CM.E.M.P

MALAYSIA

Hewlett-Packard Sales (Malaysia) Sdn. Bhd. 9th Floor Chung Khiaw Bank Building 46, Jalan Raja Laut KUALA LUMPUR Tel: 03-986555 Telex: 31011 HPSM MA A.C.E.M.P*

Protel Engineering P.O.Box 1917 Lot 6624, Section 64 23/4 Pending Road Kuching, **SARAWAK** Tel: 36299 Telex: 70904 PROMAL MA Cable: PROTELENG

MALTA

Philip Toledo Ltd. Birkirkara P.O. Box 11 Notabile Rd. MRIE: 447 47, 455 66 Telex: 1649 E.M.P

MAURITIUS

Blanche Birger Co. Ltd. 18, Jules Koenig Street PORT LOUIS Tel: 20828 Telex: 4296

MEXICO

Hewlett-Packard de Mexico, S.A. Francisco J. Allan #30 Colonia Nueva Los Angeles 27140 **COAHUILA,** Torreon Tay 37220 P.

Hewlett-Packard de Mexico, S.A. Monti Morelos 299 Fraccionamiento Loma Bonita 45060 GUADALAJARA, Jalisco Tel: 316630/314600 Telex: 0684 186 ECOME

MEXICO (Cont'd)

Microcomputadoras Hewlett-Packard, Monti Pelvoux 115

LOS LOMAS, Mexico, D.F. Tel: 520-9127

Hewlett-Packard Mexicana, S.A. Av. Periferico Sur No. 6501

Tepepan, Xochimilco 16020 MEXICO D.F.

Tel: 6-76-46-00 Telex: 17-74-507 HEWPACK MEX

A.C.CM.E.M.P

Hewlett-Packard De Mexico (Polanco) Avenida Ejercito Nacional #579 2day3er piso

Colonia Granada 11560

MEXICO D.F.

Tel: 254-4433

Hewlett-Packard De Mexico, S.A.

de C.V. Czda. del Valle 409 Ote. 4th Piso Colonia del Valle Municipio de Garza Garciá 66220 MONTERREY, Nuevo León

Tel: 78 42 41 Telex: 038 410

MOROCCO

Etablissement Hubert Dolbeau & Fils 81 rue Karatchi B.P. 11133

CASABLANCA

Tel: 3041-82, 3068-38 Telex: 23051, 22822

Gerep

2, rue Agadir Boite Postale 156 **CASABLANCA** 01

Tel: 272093, 272095 Telex: 23 739

Dept. Seric 6. rue Lapebie CASARI ANCA Tel: 260980 Telex: 21641 C.P

Sema-Maroc

NETHERLANDS

Hewlett-Packard Nederland B.V. Startbaan 16 1187 XR AMSTELVEEN P.O. Box 667 NL1180 AR AMSTELVEEN

Tel: (020) 547-6911 Telex: 13 216 HEPA NL A,C,CM,E,M,P

Hewlett-Packard Nederland B.V. Bongerd 2 NL 2906VK CAPELLE A/D USSEL

P.O. Box 41 NL 2900AA CAPELLE A/D IJSSEL

Tel: (10) 51-64-44 Telex: 21261 HEPAC NL CF

Hewlett-Packard Nederland B.V. Pastoor Petersstraat 134-136 NL 5612 LV EINDHOVEN P.O. Box 2342 NL 5600 CH EINDHOVEN Tel: (040) 326911 Telex: 51484 hepae nl A.C.F.M.P

NEW ZEALAND

Hewlett-Packard (N.Z.) Ltd. 5 Owens Road P.O. Box 26-189 Epsom, AUCKLAND Tel: 687-159 Cable: HEWPAK Auckland C CM F P*

Hewlett-Packard (N.Z.) Ltd. 4-12 Cruickshank Street Kilbirnie, WELLINGTON 3 P.O. Box 9443 Courtenay Place, WELLINGTON 3

Tel: 877-199 Cable: HEWPACK Wellington C.CM.E.P

Northrop Instruments & Systems Ltd. 369 Khyber Pass Road P.O. Box 8602

AUCKLAND Tel: 794-091 Telex: 60605

Northrop Instruments & Systems Ltd. 110 Mandeville St. P.O. Box 8388

CHRISTCHURCH Tel: 488-873

Telex: 4203 A.M

Northrop Instruments & Systems Ltd. Sturdee House 85-87 Ghuznee Street P.O. Box 2406

WELLINGTON

Tel: 850-091 Telex: NZ 3380 A.M

NIGERIA

Elmeco Nigeria Ltd. 46. Calcutta Crescent Apapa P.O. Box 244and LAGOS

NORTHERN IRELAND See United Kingdom

NORWAY

C,E,M

Hewlett-Packard Norge A/S Folke Bernadottes vei 50 P.O. Box 3558

N-5033 FYLLINGSDALEN (Bergen) Tel: 0047/5/16 55 40 Telex: 76621 hpnas n

Hewlett-Packard Norge A/S Osterndalen 16-18 P.O. Box 34 N-1345 OSTERÁS Tel: 0047/2/17 11 80 Telex: 76621 hpnas n A.C.CM.E.M.P

OMAN

Khimjil Ramdas P.O. Box 19

MUSCAT/SULTANATE OF OMAN

Tel: 745601

Telex: 5289 BROKER MB MUSCAT

Suhail & Saud Bahwan P.O.Box 169

MUSCAT/SULTANATE OF OMAN

Tel: 734201 Telex: 5274 BAHWAN MB

Imtac LLC

P.O. Box 8676 **MUTRAH/SULTANATE OF OMAN**

Tel: 601695 Telex: 5741 Tawoos On A,C,M

PAKISTAN

Mushko & Company Ltd. House No. 16, Street No. 16 Sector F-6/3

ISLAMABAD

Tel: 824545 Cable: FEMUS Islamabad A,E,M,P*

Mushko & Company Ltd. Oosman Chambers Abdullah Haroon Road KARACHI 0302

Tel: 524131, 524132 Telex: 2894 MUSKO PK Cable: COOPERATOR Karachi A.E.M.P*

PANAMA

Electronico Balboa, S.A. Calle Samuel Lewis, Ed. Alfa Apartado 4929

PANAMA 5

Tel: 64-2700 Telex: 3483 ELECTRON PG A.CM.E.M.P

PERU

Cía Electro Médica S.A. Los Flamencos 145, Ofc. 301/2 San Isidro Casilla 1030

LIMA 1

Tel: 41-4325, 41-3705 Telex: Pub. Booth 25306 PEC PISIDR CM,E,M,P

Arenida Republica de Panama 3534 San Isidro, LIMA Tel: 419928/417108 Telex: 20450 PE LIBERTAD

A,C,P

A,C,E,M,P

PHILIPPINES

The Online Advanced Systems Corp. 2nd Floor, Electra House 115-117 Esteban Street Legaspi Village, Makati P.O. Box 1510 Metro MANILA Tel: 815-38-10 (up to 16) Telex: 63274 ONLINE PN

PORTUGAL

Mundinter Intercambio Mundial de Comércio S.A.R.L. Av. Antonio Augusto Aguiar 138 Apartado 2761

LISBON

Tel: (19) 53-21-31, 53-21-37 Telex: 16691 munter p

Soquimica Av. da Liberdade, 220-2 1298 LISBOA Codex Tel: 56-21-82

Telex: 13316 SABASA

Telectra-Empresa Técnica de Equipmentos Eléctricos S.A.R.L. Rua Rodrigo da Fonseca 103 P.O. Box 2531

LISBON 1 Tel: (19) 68-60-72 Telex: 12598 CM,E

C.P.C.S.I. Rua de Costa Cabral 575 4200 **PORTO** Tel: 499174/495173 Telex: 26054 C.P

PUERTO RICO

Hewlett-Packard Puerto Rico 101 Muńoz Rivera Av Esu. Calle Ochoa HATO REY, Puerto Rico 00918 Tel: (809) 754-7800 A.C.CM.M.E.P

QATAR

Computer Arabia P.O. Box 2750 **DOHA** Tel: 428555 Telex: 4806 CHPARB

Nasser Trading & Contracting P.O.Box 1563

DOHA

Tel: 422170 Telex: 4439 NASSER DH

SAUDI ARABIA

Modern Electronics Establishment Hewlett-Packard Division P.O. Box 281 Thougbah

AL-KHOBAR 31952 Tel: 895-1760, 895-1764 Telex: 671 106 HPMEEK SJ Cable: ELECTA AL-KHOBAR C.E.M

Modern Electronics Establishment Hewlett-Packard Division P.O. Box 1228

JEDDAH Tel: 644 96 28 Telex: 4027 12 FARNAS SJ Cable: ELECTA JEDDAH

A.C.CM.F.M.P.

Modern Electronics Establishment Hewlett-Packard Division P.O.Box 22015 **RIVADH** 11495 Tel: 476-3030 Telex: 202049 MEERYD SJ A,C,CM,E,M,P

Abdul Ghani El Ajou Corp. P.O. Box 78 RIYADH Tel: 40 41 717 Telex: 200 931 EL AJOU

SCOTLAND

See United Kingdom

SENEGAL

Societe Hussein Ayad & Cie. 76, Avenue Georges Pompidou B.P. 305 DAKAR Tel: 32339 Cable: AYAD-Dakar

Moneger Distribution S.A. 1 Rue Parent B.P. 148 DAKAR Tel: 215 671

Systeme Service Conseil (SSC) 14. Avenue du Parachois DAKAR FTOUF Tel: 219976 Telex: 577

SINGAPORE

C,P

Telex: 587

Hewlett-Packard Singapore (Sales) Pte. Ltd. 08-00 Inchcape House 450-2 Alexandra Road Alexandra P.O. Box 58 SINGAPORE, 9115 Tel: 4731788 Telex: 34209 HPSGSO RS Cable: HEWPACK, Singapore A,C,E,M,P

Dynamar International Ltd. Unit 05-11 Block 6 Kolam Ayer Industrial Estate SINGAPORE 1334 Tel: 747-6188

Telex: 26283 RS

SOUTH AFRICA

Hewlett-Packard So Africa (Pty.) Ltd. P.O. Box 120 Howard Place CAPE PROVINCE 7450 Pine Park Center, Forest Drive, Pinelands

CAPE PROVINCE 7405 Tel: (021) 53 7954 Telex: 57-20006 A.C.CM.E.M.P

Hewlett-Packard So Africa (Pty.) Ltd. 2nd Floor Juniper House 92 Overport Drive **DURBAN 4067** Tel: (031) 28-4178 Telex: 6-22954

Hewlett-Packard So Africa (Pty.) Ltd. 6 Linton Arcade 511 Cape Road Linton Grange PORT ELIZABETH 6001 Tel: 041-301201

Telex: 24-2916

Arranged alphabetically by country

SOUTH AFRICA (Cont'd)

Hewlett-Packard So Africa (Pty.) Ltd. Fountain Center Kalkden Str. Monument Park Ext 2 PRETORIA 0105

Tel: (012) 45 57258 Telex: 3-21063

Hewlett-Packard So Africa (Pty.) Ltd. Private Bag Wendywood SANDTON 2144 Tel: 802-5111, 802-5125 Telex: 4-20877 SA Cable: HEWPACK Johannesburg

SPAIN

A,C,CM,E,M,P

Hewlett-Packard Española S.A. Calle Entenza, 321 08029 BARCELONA Tel: 3/322 24 51 321 73 54

Telex: 52603 hpbee A,C,E,M,P

Hewlett-Packard Española S.A. Calle San Vicente S/N Edificio Albia II-7B 48001 BILBAO Tel: 4/423 83 06 A.C.E.M

Hewlett-Packard Española S.A. Crta. de la Coruña, Km. 16, 400 Las Rozas

E-MADRID

Tel: (1) 637.00.11 Telex: 23515 HPE C.M

Hewlett-Packard Española S.A. Avda. S. Francisco Javier, S/N Planta 10. Edificio Sevilla 2 41005 SEVILLA Tel: 54/64 44 54 Telex: 72933

Hewlett-Packard Española S.A. Isabel La Catolica, 8 46004 VALENCIA Tel: 0034/6/351 59 44 C.P

SWEDEN

A,C,M,P

Ostra Tullgatan 3 S-21128 MALMÖ Tel: (040) 70270 Telex: (854) 17886 (via Spånga office)

Hewlett-Packard Sverige AB

Hewlett-Packard Sverige AB Skalholtsgatan 9, Kista Box 19 S-16393 SPÅNGA

Tel: (08) 750-2000 Telex: (854) 17886 Telefax: (08) 7527781 A,C,CM,E,M,P

Hewlett-Packard Sverige AB Frötallsgatan 30 S-42132 VÄSTRA-FRÖLUNDA (Gothen-

bura) Tel: (031) 49-09-50

Telex: (854) 17886 (via Spånga office) A,C,CM,E,M,P

SUDAN

Mediterranean Engineering & Trading Co Itd P.O. Box 1025 KHARTOUM Tel: 41184 Telex: 24052

SWITZERLAND

Hewlett-Packard (Schweiz) AG Clarastrasse 12 CH-4058 BASEL Tel: (61) 33-59-20

Hewlett-Packard (Schweiz) AG 7. rue du Bois-du-Lan Case postale 365 CH-1217 MEYRIN 1 Tel: (0041) 22-83-11-11 Telex:27333 HPAG CH

Hewlett-Packard (Schweiz) AG Allmend 2 CH-8967 WIDEN Tel: (0041) 57 31 21 11 Telex: 53933 hpag ch Cable: HPAG CH A,C,CM,E,M,P

SYRIA

General Electronic Inc. Nuri Basha Ahnaf Ebn Kays Street P.O. Box 5781 DAMASCUS Tel: 33-24-87 Telex: 411 215

Cable: ELECTROBOR DAMASCUS

Middle East Electronics P.O.Box 2308 Abu Rumaneh DAMASCUS Tel: 33 45 92 Telex: 411 771

TAIWAN

Hewlett-Packard Taiwan Kaohsiung Office 11/F, 456, Chung Hsiao 1st Road KAOHSIUNG Tel: (07) 2412318 C.F

Hewlett-Packard Taiwan 8th Floor, Hewlett-Packard Building 337 Fu Hsing North Road

TAIPEI Tel: (02) 712-0404 Telex: 24439 HEWPACK Cable: HEWPACK Taipei A,C,CM,E,M,P

Ing Lih Trading Co. 3rd Floor, 7 Jen-Ai Road, Sec. 2 TAIPEI 100 Tel: (02) 3948191 Cable: INGLIH Taipei

THAILAND

A.C.E.M

Unimesa Co. Ltd. 30 Patpong Ave., Suriwong **BANGKOK** 5 Tel: 235-5727 Telex: 84439 Simonco TH Cable: UNIMESA Bangkok

Bangkok Business Equipment Ltd. 5/5-6 Dejo Road

BANGKOK

Tel: 234-8670, 234-8671 Telex: 87699-BEQUIPT TH Cable: BUSIQUIPT Bangkok

TOGO

Societe Africaine De Promotion Immeuble Sagap 22. Rue d'Atakpame **BP 4150** LOME Tel: 21-62-88 Telex: 5304

TRINIDAD & TOBAGO

Caribbean Telecoms Ltd. Corner McAllister Street & Eastern Main Road, Laventille P.O. Box 732

PORT-OF-SPAIN Tel: 624-4213

Telex: 22561 CARTEL WG Cable: CARTEL, PORT OF SPAIN CM.E.M.P

Computer and Controls Ltd. P.O. Box 51 66 Independence Square

PORT-OF-SPAIN

Tel: 62-279-85 Telex: 3000 POSTLX WG. ACCT LOO9O AGENCY 1264

Feral Assoc. 8 Fitzgerald Lane PORT-OF-SPAIN Tel: 62-36864, 62-39255 Telex: 22432 FERALCO Cable: FERALCO

TUNISIA

Precision Electronique S.A.R.L. 31 Avenue de la Liberte **TUNIS**

Tel: 893937 Telex: 13238

Telex: 13238

Tunisie Electronique S.A.R.L. 94, Av. Jugurtha, Mutuelleville 1002 TUNIS-BELVEDERE Tel: 280144

C.E.P Corema S.A. 23, bis Rue de Marseille **TUNIS** Tel: 253-821

Telex: 14812 CABAM TN

TURKEY F.M.A

Mediha Eldem Sokak No. 41/6 Yenisehir **ANKARA** Tel: 319175 Telex: 46912 KTX TR Cable: EMATRADE ANKARA

Teknim Company Ltd. Iran Caddesi No. 7 Kavaklidere ANKARA Tel: 275800 Telex: 42155 TKNM TR

Saniva Bilgisayar Sistemleri A.S. Buyukdere Caddesi 103/6 Gayrettene

ISTANBUL Tel: 1727030

F CM

Telex: 26345 SANI TR C.P

Best Inc. Esentepe, Gazeteciler Sitesi Keskin Kalemy Sokak 6/3, Gayrettepe ISTANBUL Tel: 1721328

Telex: 42490

UNITED ARAB EMIRATES

Fmitac Ltd P.O. Box 1641 SHARJAH Tel: 591181

Telex: 68136 EMITAC EM Cable: EMITAC SHARJAH E,C,M,P,A

Emitac Ltd. P.O. Box 2711 ABU DHABI

Tel: 820419-20 Cable: EMITACH ABUDHABI

Emitac Ltd. P.O. Box 8391 DUBAI, Tel: 377591 Emitac Ltd. P.O. Box 473 RAS AL KHAIMAH Tel: 28133, 21270

UNITED KINGDOM

GREAT BRITAIN

Hewlett-Packard Ltd. Trafalgar House Navigation Road ALTRINCHAM Cheshire WA14 1NU Tel: 061 928 6422

Telex: 668068 A,C,E,M,P Hewlett-Packard Ltd.

Miller House The Ring, BRACKNELL Berks RG12 1XN Tel: 0344 424898 Telex: 848733

Hewlett-Packard Ltd. Elstree House, Elstree Way BOREHAMWOOD, Herts WD6 1SG Tel: 01 207 5000 Telex: 8952716 C.E

Hewlett-Packard Ltd. Oakfield House, Oakfield Grove Clifton BRISTOL, Avon BS8 2BN Tel: 0272 736806 Telex: 444302 C,E,P

Hewlett-Packard Ltd. Bridewell House 9 Bridewell Place **LONDON EC4V 6BS** Tel: 01 583 6565 Telex: 298163

Hewlett-Packard Ltd. Pontefract Road

NORMANTON, West Yorkshire WF6 1RN Tel: 0924 895566 Telex: 557355

Hewlett-Packard Ltd. The Quadrangle 106-118 Station Road REDHILL, Surrey RH1 1PS Tel: 0737 68655 Telex: 947234 C.E.P

Hewlett-Packard Ltd. Avon House 435 Stratford Road Shirley, SOLIHULL, West Midlands B90 4BI Tel: 021 745 8800 Telex: 339105 C.E.P

Hewlett-Packard Ltd. West End House 41 High Street, West End SOUTHAMPTON Hampshire S03 3DQ Tel: 0703 476767 Telex: 477138

Hewlett-Packard Ltd. Harmon House No. 1 George Street UXBRIDGE, Middlesex UX8 1YH Tel: 895 720 20 Telex: 893134/5 C,CM,E,M,P

Hewlett-Packard Ltd. King Street Lane Winnersh, WOKINGHAM Berkshire RG11 5AR Tel: 0734 784774 Telex: 847178 A,C,E,M,P

IRELAND

NORTHERN IRELAND

Hewlett-Packard (Ireland) Ltd. Carrickfergus Industrial Centre 75 Belfast Road, Carrickfergus BELFAST BT38 8PH Tel: 09603 67333 Telex: 747626

SCOTLAND

Hewlett-Packard Ltd. 8 Woodside Place GLASGOW, G3 7QF Tel: 041 332 6232 Telex: 779615 C.E

Hewlett-Packard Ltd. **SOUTH QUEENSFERRY** West Lothian, FH30 9TG

Tel: 031 331 1188 Telex: 72682 C,CM,E,M,P

UNITED STATES

Alabama

Hewlett-Packard Co. 700 Century Park South, Suite 128 BIRMINGHAM, AL 35226 Tel: (205) 822-6802 A.C.M.P*

Hewlett-Packard Co. 420 Wynn Drive **HUNTSVILLE**, AL 35805 Tel: (205) 830-2000 C,CM,E,M*

Alaska

Hewlett-Packard Co. 3601 C St., Suite 1416 **ANCHORAGE**, AK 99503 Tel: (907) 563-8855 C.E

Arizona

Hewlett-Packard Co. 8080 Pointe Parkway West PHOENIX, AZ 85044 Tel: (602) 273-8000 A.C.CM.E.M.P

Hewlett-Packard Co. 3400 East Britannia Dr. Bldg. C, Suite 124 **TUCSON**, AZ 85706 Tel: (602) 573-7400 C.E.M**

California

Hewlett-Packard Co. 99 South Hill Dr. BRISBANE, CA 94005 Tel: (415) 330-2500

Hewlett-Packard Co. 5060 E. Clinton Avenue, Suite 102 FRESNO, CA 93727 Tel: (209) 252-9652 C. M

Hewlett-Packard Co. 1421 S. Manhattan Av. FULLERTON, CA 92631 Tel: (714) 999-6700 C.CM.E.M

Hewlett-Packard Co. 7408 Hollister Ave. #A **GOLETA,** CA 93117 Tel: (805) 685-6100

Hewlett-Packard Co. 5400 W. Rosecrans Blvd. LAWNDALE, CA 90260 Tel: (213) 643-7500 Telex: 910-325-6608 C.M

Hewlett-Packard Co. 2525 Grand Avenue Long Beach, CA 90815 Tel: (213) 498-1111

Hewlett-Packard Co. 3155 Porter Drive PALO ALTO, CA 94304 Tel: (415) 857-8000 C.F.

Hi-wlett-Packard Co. 4244 So. Market Court, Suite A SACRAMENTO, CA 95834 Tel: (916) 929-7222 A*.C.E.M Hewlett-Packard Co. 9606 Aero Drive SAN DIEGO, CA 92123 Tel: (619) 279-3200 C.CM.F.M

Hewlett-Packard Co. 5725 W. Las Positas Blvd. Pleasanton, CA 94566 Tel: (415) 460-0282

Hewlett-Packard Co. 3003 Scott Boulevard SANTA CLARA, CA 95054 Tel: (408) 988-7000 Telex: 910-338-0586 A,C,CM,E

Hewlett-Packard Co. 2150 W. Hillcrest Dr. **THOUSAND OAKS,** CA 91320 (805) 373-7000 C,CM,E

Colorado

Hewlett-Packard Co. 2945 Center Green Court South Suite A BOULDER, CO 80301 Tel: (303) 938-3005

Hewlett-Packard Co. 24 Inverness Place, East ENGLEWOOD, CO 80112 Tel: (303) 649-5000 A,C,CM,E,M

Connecticut

Hewlett-Packard Co. 500 Sylvan Av. BRIDGEPORT, CT 06606 Tel: (203) 371-6454

Hewlett-Packard Co. 47 Barnes Industrial Road South **WALLINGFORD,** CT 06492 Tel: (203) 265-7801 A,C,CM,E,M

Florida

Hewlett-Packard Co. 2901 N.W. 62nd Street FORT LAUDERDALE, FL 33309 Tel: (305) 973-2600 C.E,M,P*

Hewlett-Packard Co. 6800 South Point Parkway Suite 301 JACKSONVILLE, FL 32216 Tel: (904) 398-0663

Hewlett-Packard Co. 6177 Lake Ellenor Drive ORLANDO, FL 32809 Tel: (305) 859-2900 A.C.CM.E.P*

Hewlett-Packard Co. 4700 Bayou Blvd. Building 5 PENSACOLA, FL 32503 Tel: (904) 476-8422 A.C.M

Hewlett-Packard Co. 5550 W. Idlewild, 150 **TAMPA**, FL 33614 Tel: (813) 884-3282 C.E.M.P

Georgia

Hewlett-Packard Co. 2000 South Park Place ATLANTA, GA 30339 Tel: (404) 955-1500 Telex: 810-766-4890 A.C.CM.F.M.P*

Hewlett-Packard Co. 3607 Parkway Lane Suite 300 NORCROSS, GA 30092 Tel: (404) 448-1894 C.E.P

Hawaii

Hewlett-Packard Co. Kawaiahao Plaza, Suite 190 567 South King Street **HONOLULU**, HI 96813 Tel: (808) 526-1555 A,C,E,M

Idaho

Hewlett-Packard Co. 11309 Chinden Blvd. **BOISE**, ID 83707 Tel: (208) 323-2700

Illinois

Hewlett-Packard Co. 304 Eldorado Road P.O. Box 1607 **BLOOMINGTON,** IL 61701 Tel: (309) 662-9411 C,M**

Hewlett-Packard Co. 525 W. Monroe, 1308 CHICAGO, IL 60606 Tel: (312) 930-0010

Hewlett-Packard Co. 1200 East Diehl Road NAPERVILLE, IL 60566 Tel: (312) 357-8800

Hewlett-Packard Co. 5201 Tollview Drive ROLLING MEADOWS, IL 60008 Tel: (312) 255-9800 Telex: 910-687-1066 A,C,CM,E,M

Indiana

Hewlett-Packard Co. 11911 N. Meridian St. CARMEL, IN 46032 Tel: (317) 844-4100 A,C,CM,E,M

Hewlett-Packard Co. 3702 Rupp Drive FT. WAYNE, IN 46815 Tel: (219) 482-4283 C.F.

low

Hewlett-Packard Co. 4070 22nd Av. SW CEDAR RAPIDS, IA 52404 Tel: (319) 390-4250 C.F.M

Hewlett-Packard Co. 4201 Corporate Dr. **WEST DES MOINES**, IA 50265 Tel: (515) 224-1435 A**,C,M**

Kansas

Hewlett-Packard Co. 7804 East Funston Road, 203 WICHITA, KS 67207 Tel: (316) 684-8491 C,E

Kentucky

Hewlett-Packard Co. 10300 Linn Station Road, 100 LOUISVILLE, KY 40223 Tel: (502) 426-0100 A,C,M

Louisiana

Hewlett-Packard Co. 160 James Drive East **ST. ROSE**, LA 70087 P.O. Box 1449 **KENNER**, LA 70063 Tel: (504) 467-4100 A,C,E,M,P

Maryland

Hewlett-Packard Co. 3701 Koppers Street BALTIMORE, MD 21227 Tel: (301) 644-5800 Telex: 710-862-1943 A,C,CM,E,M

Hewlett-Packard Co. 2 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 948-6370 A,C,CM,E,M

Massachusetts

Hewlett-Packard Co. 1775 Minuteman Road ANDOYER, MA 01810 Tel: (617) 682-1500 A,C,CM,E,M,P*

Hewlett-Packard Co. 32 Hartwell Avenue LEXINGTON, MA 02173 Tel: (617) 861-8960 C.E

Michigan

Hewlett-Packard Co. 4326 Cascade Road S.E. GRAND RAPIDS, MI 49506 Tel: (616) 957-1970 C. M

Hewlett-Packard Co. 39550 Orchard Hill Place Drive NOVI, MI 48020 Tel: (313) 349-9200 A,C,E,M

Hewlett-Packard Co. 1771 W. Big Beaver Road **TROY,** MI 48084 Tel: (313) 643-6474

Minnesota

Hewlett-Packard Co. 2025 W. Larpenteur Ave. 8T. PAUL, MN 55113 Tel: (612) 644-1100 A,C,CM,E,M

Missouri

Hewlett-Packard Co. 1001 E. 101st Terrace Suite 120 KANSAS CITY, MO 64131-3368 Tel: (816) 941-0411 A,C,CM,E,M Hewlett-Packard Co. 13001 Hollenberg Drive BRIDGETON, MO 63044 Tel: (314) 344-5100 A.C.E.M

Nebraska

Hewlett-Packard 10824 Old Mill Rd., Suite 3 **OMAHA,** NE 68154 Tel: (402) 334-1813 C.E.M

New Jersey

Hewlett-Packard Co. 120 W. Century Road PARAMUS, NJ 07653 Tel: (201) 265-5000 A,C,CM,E,M

Hewlett-Packard Co. 20 New England Av. West PISCATAWAY, NJ 08854 Tel: (201) 562-6100 A,C,CM,E

New Mexico

Hewlett-Packard Co. 7801 Jefferson N.E. **ALBUQUERQUE**, NM 87109 Tel: (505) 292-1330 C.E,M

New York

Hewlett-Packard Co. 5 Computer Drive South **ALBANY**, NY 12205 Tel: (518) 458-1550 A.C.E.M

Hewlett-Packard Co. 9600 Main Street CLARENCE, NY 14031 Tel: (716) 759-8621 C.E

Hewlett-Packard Co. 200 Cross Keys Office Park FAIRPORT, NY 14450 Tel: (716) 223-9950 A,C.C.M.E.M

Hewlett-Packard Co. 7641 Henry Clay Blvd. LIVERPOOL, NY 13088 Tel: (315) 451-1820 A.C.CM.E.M

Hewlett-Packard Co. No. 1 Pennsylvania Plaza 55th Floor 34th Street & 8th Avenue MANHATTAN NY 10119 Tel: (212) 971-0800 C.M*

Hewlett-Packard Co. 15 Myers Corner Rd. Hollowbrook Park, Suite 20 WAPPINGER FALLS, NY 12590 CM,E

Hewlett-Packard Co. 250 Westchester Avenue **WHITE PLAINS,** NY 10604 Tel: (914) 684-6100 C,CM,E

Hewlett-Packard Co. 3 Crossways Park West WOODBURY, NY 11797 Tel: (516) 682-7800 A,C,CM,E,M

Arranged alphabetically by country

UNITED STATES (Cont'd)

North Carolina

Hewlett-Packard Co. 305 Gregson Dr. CARY, NC 27511 Tel: (919) 467-6600 C.CM.F.M.P*

Hewlett-Packard Co. 9600-H Southern Pine Blvd. CHARLOTTE, NC 28210 Tel: (704) 527-8780 C*

Hewlett-Packard Co. 5605 Roanne Way **GREENSBORO**, NC 27420 Tel: (919) 852-1800 A,C,CM,E,M,P*

Ohio

Hewlett-Packard Co. 2717 S. Arlington Road **AKRON,** OH 44312 Tel: (216) 644-2270 C.E

Hewlett-Packard Co. 23200 Chagrin Blvd #100 **BEACHWOOD,** OH 44122 Tel: (216) 292-4677 C.P

Hewlett-Packard Co. 9920 Carver Road CINCINNATI, OH 45242 Tel: (513) 891-9870 C.M

Hewlett-Packard Co. 16500 Sprague Road CLEVELAND, OH 44130 Tel: (216) 243-7300 A.C.CM.E.M

Hewlett-Packard Co. 9080 Springboro Pike **MIAMISBURG**, OH 45342 Tel: (513) 433-2223 A,C,CM,E*,M

Hewlett-Packard Co. One Maritime Plaza, 5th Floor 720 Water Street **TOLEDO**, OH 43604 Tel: (419) 242-2200 C

Hewlett-Packard Co. 675 Brooksedge Blvd. **WESTERVILLE**, OH 43081 Tel: (614) 891-3344 C,CM,E*

Oklahoma

Hewlett-Packard Co. 3525 N.W. 56th St. Suite C-100 **OKLAHOMA CITY,** OK 73112 Tel: (405) 946-9499 C,E*.M

Hewlett-Packard Co. 3840 S. 103rd E. Ave., 100 **TULSA,** OK 74146 Tel: (918) 665-3300 A**,C,E,M*,P*

Oregon

Hewlett-Packard Co. 9255 S. W. Pioneer Court WILSONVILLE, OR 97070 Tel: (503) 682-8000 A,C,E*,M

Pennsylvania

Hewlett-Packard Co. 50 Dorchester Rd. HARRISBURG, PA 17112 Tel: (717) 657-5900 C

Hewlett-Packard Co. 111 Zeta Drive PITTSBURGH, PA 15238 Tel: (412) 782-0400 A,C,E,M

Hewlett-Packard Co. 2750 Monroe Boulevard VALLEY FORGE, PA 19482 Tel: (215) 666-9000 A,C,CM,E,M

South Carolina

Hewlett-Packard Co. Brookside Park, Suite 122 1 Harbison Way COLUMBIA, SC 29210 Tel: (803) 732-0400 C M

Hewlett-Packard Co. 555 N. Pleasantburg Dr. Suite 107 GREENVILLE, SC 29607 TC. (803) 232-8002

Tennessee

Hewlett-Packard Co. One Energy Centr. 200 Pellissippi Pkwy. KNOXVILLE, TN 37932 Tel: (615) 966-4747

Hewlett-Packard Co. 3070 Directors Row Directors Square **MEMPHIS**, TN 38131 Tel: (901) 346-8370

Hewlett-Packard Co. 220 Great Circle Road, Suite 116 NASHVILLE, TN 37228 Tel: (615) 255-1271

Texas

Hewlett-Packard Co. 1826-P Kramer Lane **AUSTIN,** TX 78758 Tel: (512) 835-6771 C.E.P*

Hewlett-Packard Co. 5700 Cromo Dr EL PASO, TX 79912 Tel: (915) 833-4400 C.E*.M**

Hewlett-Packard Co. 3952 Sandshell Drive FORT WORTH, TX 76137 Tel: (817) 232-9500

Hewlett-Packard Co. 10535 Harwin Drive **HOUSTON,** TX 77036 Tel: (713) 776-6400 A,C,E,M,P*

Hewlett-Packard Co. 511 E. John W. Carpenter Fwy. Royal Tech. Center 100 IRVING, TX 75062 Tel: (214) 556-1950 C.E

Hewlett-Packard Co. 109 E. Toronto, Suite 100 McALLEN, TX 78503 Tel: (512) 630-3030 C

Hewlett-Packard Co. 930 E. Campbell Rd. RICHARDSON, TX 75081 Tel: (214) 231-6101 A,C,CM,E,M,P*

Hewlett-Packard Co. 1020 Central Parkway South **SAN ANTONIO**, TX 78216 Tel: (512) 494-9336 A,C,E,M,P*

Utah

Hewlett-Packard Co. 3530 W. 2100 South **SALT LAKE CITY,** UT 84119 Tel: (801) 974-1700 A,C,E,M

Virginia Hewlett-Packard Co.

4305 Cox Road GLEN ALLEN, VA 23060 Tel: (804) 747-7750 A C F M P*

Hewlett-Packard Co. Tanglewood West Bldg. Suite 240 3959 Electric Road **ROANOKE**, VA 24018 Tel: (703) 774-3444 C.E.P

Washington

Hewlett-Packard Co. 15815 S.E. 37th Street **BELLEYUE**, WA 98006 Tel: (206) 643-4000 A,C,CM,E,M

Hewlett-Packard Co. 708 North Argonne Road **SPOKANE,** WA 99212-2793 Tel: (509) 922-7000 C.

West Virginia

Hewlett-Packard Co. 501 56th CHARLESTON, WV 25304 Tel: (304) 925-0492 A,C,M

Wisconsin

Hewlett-Packard Co. 275 N. Corporate Dr. BROOKFIELD, WI 53005 Tel: (414) 784-8800 A,C,E*,M

URUGUAY

Pablo Ferrando S.A.C. e I. Avenida Italia 2877 Casilla de Correo 370 MONTEVIDEO Tel: 80-2586 Telex: 802586 A,CM,E,M

Olympia de Uruguay S.A. Maquines de Oficina Avda. del Libertador 1997 Casilla de Correos 6644 **MONTEVIDEO** Tel: 91-1809, 98-3807 Telex: 6342 OROU UY

VENEZUELA

Hewlett-Packard de Venezuela C.A. 3A Transversal Los Ruices Norte Edificio Segre 2 & 3 Apartado 50933 CARACAS 1071 Tel: 239-4133 Telex: 251046 HEWPACK A.C.CM,E.M,P

Hewlett-Packard de Venezuela, C.A. Centro Civdad Comercial Tamanaco Nivel C-2 (Nueva Etapa) Local 53H05 Chuao, **CARACAS** Tel: 928291 P.

Albis Venezolana S.R.L. Av. Las Marias, Ota. Alix, El Pedregal Apartado 81025 CARACAS 1080A Tel: 747984, 742146 Telex: 24009 ALBIS VC

Tecnologica Medica del Caribe, C.A. Multicentro Empresarial del Este Ave. Libertador Rucleo "C" - Oficina 51-52 CARACAS Tel: 339867/333780 Hewlett-Packard de Venezuela C.A. Residencias Tia Betty Local 1 Avenida 3 y con calfe 75 MARACAIBO, Estado Zulia Apartado 2646 Tel: (061) 75801-75805-75806-80304 Telex: 62464 HPMAR

Hewlett-Packard de Venezuela C.A. Urb. Lomas de Este Torre Trebol — Piso 11 VALENCIA, Estado Carabobo Apartado 3347 Tel: (041) 222992/223024 C.P.

YUGOSLAVIA

C.E*

Do Hermes General Zdanova 4 YU-11000 **BEOGRAD** Tel: 340 327, 342 641 Telex: 11433 A,C,E,P

Hermes Titova 50 YU-61000 **LJUBLJANA** Tel: 324 856, 324 858 Telex: 31583 C,E,M,P

Elektrotehna Titova 51 YU-61000 **LJUBLJANA** CM

ZAIRE

Computer & Industrial Engineering 25, Avenue de la Justice B.P. 12797 KINSHASA, Gombe Tel: 32063 Tel: 21552

ZAMBIA

R.J. Tilbury (Zambia) Ltd. P.O. Box 32792 **LUSAKA** Tel: 215590 Telex: 40128 E

ZIMBABWE

Field Technical Sales (Private) Limited 45, Kelvin Road North P.O. Box 3458 HARARE Tel: 705 231 Telex: 4-122 RH E.P

