DCS 530: Final Project

"Are marriages made in heaven?"

Aniruddha Joshi

Date: Aug 07, 2023

Data set Reference : https://gssdataexplorer.norc.org/ (https://gssdataexplorer.norc.org/)

A few months ago, one of my friends got engaged, and we celebrated with an engagement party at a nice restaurant. "It looks like your marriage is created in heaven," said one of my friends. This sentence made me wonder: Why do people say things like that? Are marriage truly created in heaven? If so, why do relationships end in divorce? Is it possible to foresee whether a couple will be happy together forever? I choose to conduct some data analysis to find out. The link to the General Social Survey information found at https://gssdataexplorer.norc.org/adfdsf (https://gssdataexplorer.norc.org/adfdsf).

```
In [44]: #Download the required files for execution
from os.path import basename, exists

def download(url):
    filename = basename(url)
    if not exists(filename):
        from urllib.request import urlretrieve

        local, _ = urlretrieve(url, filename)
        print("Downloaded " + local)

download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkstats2.py")
download("https://github.com/AllenDowney/ThinkStats2/raw/master/code/thinkplot.py")
```

Import the required libraries

```
In [45]: #import the required libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import thinkstats2
         import thinkplot
         import IPython.display
         import seaborn as sns
         from sklearn.preprocessing import MinMaxScaler
         from scipy.stats import pearsonr
         from scipy.stats import chi2_contingency
         import statsmodels.api as sm
         from sklearn.linear_model import LogisticRegression
         from sklearn.impute import SimpleImputer
         from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import train_test_split
```

Import the dataset

In [47]: # A quiick review of the data dataset_gss

Out[47]:

	year	id_	hrs1	wrkslf	marital	divorce	spwrksta	childs	age	educ	spdeg	sex	race	family16	income	re
0	1972	1	.i: Inapplicable	Someone else	Never married	.i: Inapplicable	.i: Inapplicable	0	23	16	.i: Inapplicable	FEMALE	White	FATHER	.i: Inapplicable	Inappli
1	1972	2	.i: Inapplicable	Someone else	Married	NO	KEEPING HOUSE	5	70	10	HIGH SCHOOL	MALE	White	M AND F RELATIVES	.i: Inapplicable	Inappli
2	1972	3	.i: Inapplicable	Someone else	Married	NO	WORKING FULLTIME	4	48	12	.n: No answer	FEMALE	White		.i: Inapplicable	
3	1972	4	.i: Inapplicable	Someone else	Married	NO	WORKING FULLTIME	0	27	17	GRADUATE	FEMALE	White	MOTHER & FATHER	.i: Inapplicable	Inappli
4	1972	5	.i: Inapplicable	Someone else	Married	NO	TEMP NOT WORKING	2	61	12	HIGH SCHOOL	FEMALE	White		.i: Inapplicable	
72385	2022	3541	48	Someone else	Never married	.i: Inapplicable	.x: Not available in this release	0	22	12	.x: Not available in this release	FEMALE	White	MOTHER & STPFATHER	\$25,000 or more	.) availa this re
72386	2022	3542	50	Someone else	Married	YES	.x: Not available in this release	2	29	19	.x: Not available in this release	FEMALE	White	MOTHER & FATHER	\$25,000 or more	.) availa this re
72387	2022	3543	38	Someone else	Never married	.i: Inapplicable	.x: Not available in this release	1	32	15	.x: Not available in this release	MALE	White	MOTHER & STPFATHER	\$25,000 or more	.) availa this re
72388	2022	3544	40	Someone else	Married	NO	.x: Not available in this release	0	49	17	.x: Not available in this release	FEMALE	White	MOTHER & FATHER	\$25,000 or more	.) availa this re
72389	2022	3545	40	Someone else	Married	NO	.x: Not available in this release	1	50	20	.x: Not available in this release		White	MOTHER & FATHER	\$25,000 or more	.) availa this re
72390	rows ×	19 co	lumns													
		.0 00														
4																P

In [48]: # Listing the available columns data=dataset_gss.columns df = pd.DataFrame(data) df

Out[48]:

0 year 1 id_ 2 hrs1 3 wrkslf marital 5 divorce spwrksta childs 8 age 9 educ 10 spdeg 11 12 race 13 family16 14 income 15 relig16 16 17 ballot 18 incomeUSD

Vailable Definations

To find out if the couple will stay together happily forever lets analyze different sets of parametersm. Below is the explanation of each variable

```
-ballot : ballot used for interview
-hrs1 : number of hours worked last week. To check if couples have a time for each other.
-wrkslf : self-emp or works for somebody. To check if they work for someone else.
-marital : marital status. The dependent varilable 1.
-divorce : ever been divorced or separated. The dependent varilable 2.
-spwrksta: spouse labor force status
-childs : number of children. Checking the number of childrens helps couple to stay together.
        : age of respondent. Is there any age factor in divorce.
       : highest year of school completed. Is education playing any role for couple to stay together.
-educ
-spdeg : spouse's highest degree.
        : respondents sex. Are more males divorced than females?
-sex
      : race of respondent. Are divorce % larger in any specific race?
-race
-family16: living with parents when 16 yrs old. Staying long with parents helps achieve family bonding?
-income : total family income. Is there a role of income in happy marriages?
-relig16: religion in which raised. Do certain religions having lesser % of divorce?
-hapmar : happiness of marriage. Dependant variable 3.
-year : GSS year for this respondent
-incomUSD: Income in USD
```

Clean up the Database

```
In [49]: #Clean up the database
#Replaced invalid/incorrect strings with NaN
#This makes replacement in the complete database
dataset_gss.replace('.i: Inapplicable', np.nan, inplace=True)
dataset_gss.replace('.d: Do not Know/Cannot Choose', np.nan, inplace=True)
dataset_gss.replace('.f: Missing Birthdate Information', np.nan, inplace=True)
dataset_gss.replace('.i: Inapplicable', np.nan, inplace=True)
dataset_gss.replace('.i: DK, NA, IAP', np.nan, inplace=True)
dataset_gss.replace('.m: DK, NA, IAP', np.nan, inplace=True)
dataset_gss.replace('.n: No answer', np.nan, inplace=True)
dataset_gss.replace('.p: Not applicable (I have not faced this decision)/Not imputable', np.nan, inplace=True)
dataset_gss.replace('.r: Refused', np.nan, inplace=True)
dataset_gss.replace('.s: Skipped on Web', np.nan, inplace=True)
dataset_gss.replace('.s: Uncodable', np.nan, inplace=True)
dataset_gss.replace('.v: Not available in this release', np.nan, inplace=True)
dataset_gss.replace('.v: Vot available in this release', np.nan, inplace=True)
dataset_gss.replace('.v: Variable-specific reserve code', np.nan, inplace=True)
dataset_gss.replace('8 or more', int(8), inplace=True)
dataset_gss.replace('80 or older', int(89), inplace=True)
dataset_gss.replace('No formal schooling', int(0), inplace=True)
```

Converting the columns to appropriate data format

```
In [50]: #Convert fields to appropriate format
          dataset_gss['hrs1'] = pd.to_numeric(dataset_gss['hrs1'], errors='coerce')
dataset_gss['wrks1f'] = dataset_gss['wrks1f'].astype('category')
          dataset_gss['marital'] = dataset_gss['marital'].astype('category')
dataset_gss['divorce'] = dataset_gss['divorce'].astype('category')
          dataset_gss['spwrksta'] = dataset_gss['spwrksta'].astype('category')
          dataset_gss['childs'] = pd.to_numeric(dataset_gss['childs'], errors='coerce')
          dataset_gss['age'] = pd.to_numeric(dataset_gss['age'], errors='coerce')
          dataset_gss['educ'] = pd.to_numeric(dataset_gss['educ'], errors='coerce')
          dataset_gss['spdeg'] = dataset_gss['spdeg'].astype('category')
          dataset_gss['sex'] = dataset_gss['sex'].astype('category')
          dataset_gss['race'] = dataset_gss['race'].astype('category')
          dataset_gss['family16'] = dataset_gss['family16'].astype('category')
          dataset_gss['income'] = dataset_gss['income'].astype('category')
          dataset_gss['relig16'] = dataset_gss['relig16'].astype('category')
          dataset_gss['hapmar'] = dataset_gss['hapmar'].astype('category')
          dataset_gss['incomeUSD'] = pd.to_numeric(dataset_gss['incomeUSD'], errors='coerce')
          dataset_gss['ballot'] = dataset_gss['ballot'].astype('string')
```

In [51]: #QUick review of numeric fields
#descriptive characteristics about the variables: Mean, Mode, Spread, and Tail
dataset_gss.describe()

Out[51]:

```
childs
                                                                                          incomeUSD
                              id
                                          hrs1
                                                                                   educ
               vear
                                                                       age
count 72390.000000
                    72390.000000 41266.000000
                                                72129.000000 71621.000000
                                                                           72127.000000 63439.000000
                                                                 46.555982
                                                                               13.034633 25948.477378
mean
        1997.715541
                     1241.796395
                                     40.843285
                                                     1.916538
  std
          15.109995
                      912.273245
                                      13.584545
                                                     1.759511
                                                                 17.600417
                                                                                3.182372
                                                                                          9403.188921
  min
        1972.000000
                        1.000000
                                      0.000000
                                                    0.000000
                                                                 18.000000
                                                                                0.000000
                                                                                          1011.392793
        1985.000000
                      534.000000
                                     37.000000
                                                    0.000000
                                                                 32.000000
                                                                               12.000000 19058.115660
 25%
 50%
        1998.000000
                     1083.000000
                                      40.000000
                                                    2.000000
                                                                 44.000000
                                                                               12.000000 30941.325100
 75%
        2010.000000
                     1722.000000
                                      48.000000
                                                    3.000000
                                                                 60.000000
                                                                               16.000000 33203.877585
 max
        2022.000000
                     4510.000000
                                      88.000000
                                                    8.000000
                                                                 89.000000
                                                                               20.000000 35499.895520
```

```
In [94]:
    from tabulate import tabulate
    data_calc = dataset_gss[['hrs1', 'age', 'educ','incomeUSD', 'childs']]
    mean = data_calc.mean()
    mode = data_calc.mode().iloc[0]  # Get the first row as mode
    spread = data_calc.describe().loc[['mean', 'std', 'min', '25%', '50%', '75%', 'max']]
    tails = data_calc.quantile([0.05, 0.95])

# Create a DataFrame to display the results in a tabular format
    result_table = pd.DataFrame({
        'Statistic': ['Mean', 'Mode', 'Standard Deviation', 'Minimum', '25th Percentile', 'Median (50th Percentile)', '75th Percentile', 'Hours Worked (hrs1)': [mean['hrs1'], mode['hrs1'], spread.loc['std', 'hrs1'], spread.loc['min', 'hrs1'], spread.loc['25%', 'Age': [mean['age'], mode['age'], spread.loc['std', 'age'], spread.loc['td', 'age'],
```

Out[94]:

	Statistic	Hours Worked (hrs1)	Age	Education (educ)	Income (USD)	Number of Children (childs)
0	Mean	40.843285	46.555982	13.034633	25948.477378	1.916538
1	Mode	40.000000	30.000000	12.000000	32322.542030	0.000000
2	Standard Deviation	13.584545	17.600417	3.182372	9403.188921	1.759511
3	Minimum	0.000000	18.000000	0.000000	1011.392793	0.000000
4	25th Percentile	37.000000	32.000000	12.000000	19058.115660	0.000000
5	Median (50th Percentile)	40.000000	44.000000	12.000000	30941.325100	2.000000
6	75th Percentile	48.000000	60.000000	16.000000	33203.877585	3.000000
7	Maximum	88.000000	89.000000	20.000000	35499.895520	8.000000
8	5th Percentile	15.000000	22.000000	8.000000	7085.611358	0.000000
9	95th Percentile	64.000000	78.000000	18.000000	35034.412535	5.000000

```
In [52]: # Print unique categorical values for each column
           unique_values = {}
for column in dataset_gss.columns:
                if dataset_gss[column].dtype == 'category':
    unique_values[column] = dataset_gss[column].cat.categories.tolist()
           max_len = max(len(val) for val in unique_values.values())
           for col in unique_values:
    unique_values[col] += [' '] * (max_len - len(unique_values[col]))
           strPrint=(pd.DataFrame(unique_values).transpose())
           strPrint
```

	0	1	2	3	4	5	6	7	8	9
wrkslf	Self-employed	Someone else								
marital	Divorced	Married	Never married	Separated	Widowed					
divorce	NO	YES								
spwrksta	KEEPING HOUSE	OTHER	RETIRED	SCHOOL	TEMP NOT WORKING	UNEMPL, LAID OFF	WORKING FULLTIME	WORKING PARTTIME		
spdeg	ASSOCIATE/JUNIOR COLLEGE	BACHELOR	GRADUATE	HIGH SCHOOL	LT HIGH SCHOOL					
sex	FEMALE	MALE								
race	Black	Other	White							
family16	FATHER	FATHER & STPMOTHER	FEMALE RELATIVE	M AND F RELATIVES	MALE RELATIVE	MOTHER	MOTHER & FATHER	MOTHER & STPFATHER	OTHER	
income	1,000to2,999	10, 000 <i>to</i> 14,999	15, 000 <i>to</i> 19,999	20, 000to 24,999	\$25,000 or more	3,000 <i>to</i> 3,999	4, 000to4,999	5, 000 <i>to</i> 5,999	6, 000to 6,999	7, 000to 7,999
relig16	BUDDHISM	CATHOLIC	CHRISTIAN	HINDUISM	INTER- NONDENOMINATIONAL	JEWISH	MUSLIM/ISLAM	NATIVE AMERICAN	NONE	ORTHODOX- CHRISTIAN
hapmar	NOT TOO HAPPY	PRETTY HAPPY	VERY HAPPY							
4										•

Plotting Histograms of general polulation

Identifying the outliers

```
In [54]: #Plotting the outliers of 5 numeric variables
         # Load the dataset
         dataset = dataset_gss[['hrs1', 'age', 'educ', 'incomeUSD','childs']]
         df = dataset
         scaler = MinMaxScaler()
         df_normalized = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
         # Create box plots for each normalized numerical variable
         plt.figure(figsize=(25, 5))
         sns.set(style="whitegrid")
         plt.subplot(1, 2,2)
         box_plot = sns.boxplot(data=df_normalized, palette="Set2")
         plt.title('Outliers')
         # Adding Legend
         # Create a custom Legend
         legend_labels = ['hrs1', 'age', 'educ', 'incomeUSD', 'childs']
         legend_handles = [plt.Line20([0], [0], marker='o', color='w', markerfacecolor=sns.color_palette("Set2")[i], markersize=10) for
         #plt.legend(legend_handles, legend_labels, loc='right')
         plt.show()
         # Create scatter plots for each normalized numerical variable
         #plt.subplot(1, 2, 2)
         #sns.pairplot(dataset_gss)
         #plt.title('Scatter Plot of Normalized Numerical Variables')
         #plt.tight_layout()
         #plt.show()
```


Plotting histogram of divorced population

```
In [55]: # Filtering the dataset based on fivorce status
ds_divorced = dataset_gss[dataset_gss.divorce == 'YES']
```

0

o_ʻo

25

100

125

150

15

50

20,0

17.5

Two scenario comparison by using PMF

```
In [57]:
    ds_divorced = dataset_gss[dataset_gss.divorce == 'YES']
    ds_NOTdivorced = dataset_gss[dataset_gss.divorce != 'YES']

    first_pmf = thinkstats2.Pmf(ds_divorced['hrs1'], label="Divorced")
    other_pmf = thinkstats2.Pmf(ds_NOTdivorced['hrs1'], label="Not Divorced")

width = 0.45
    axis = [27, 46, 0, 0.6]
    thinkplot.PrePlot(2, cols=2)
    thinkplot.Hist(first_pmf, align="right", width=width)
    thinkplot.Hist(other_pmf, align="left", width=width)
    thinkplot.Config(xlabel="Number of Hours Worked(hrs)", ylabel="PMF", axis=axis)

thinkplot.PrePlot(2)
    thinkplot.SubPlot(2)
    thinkplot.Pmfs([first_pmf, other_pmf])
    thinkplot.Config(xlabel="Number of Hours Worked(hrs)", axis=axis)
```


Calculating PMF and CDF

```
In [58]: def PlotCDFAndPMF(dataset, xlabel):
              cdf = thinkstats2.Cdf(dataset)
                     Calculate PMF
              pmf = thinkstats2.Pmf(dataset)
              # Create a figure with two subplots
              fig, (ax1) = plt.subplots(1, 1, figsize=(8, 5))
              # Plot CDF on the first subplot
              thinkplot.Cdf(cdf, label='CDF')
              ax1.set_xlabel(xlabel)
              ax1.set_title("CDF + PMF")
              ax1.set_ylabel("Probability")
              # Plot PMF on the second subplot
              thinkplot.Pmf(pmf, label='PMF', color='green')
              # Adjust layout and display the plots
              lines, labels = ax1.get_legend_handles_labels()
              #lines2, Labels2 = ax2.get_legend_handles_labels()
ax1.legend(lines , labels , loc="upper right")
              plt.tight_layout()
              plt.show()
```

In [59]: PlotCDFAndPMF(ds_divorced['hrs1'],"Hours Worked")


```
In [60]: #['hrs1', 'wrkslf', 'spwrksta', 'childs', 'age', 'educ', 'sex', 'race', 'family16', 'income']
PlotCDFAndPMF(ds_divorced['childs'], "Number of Childrens")
#cdf = thinkstats2.Cdf(ds_divorced['childs'])
#thinkplot.Cdf(cdf)
#thinkplot.Show(xlabel="Number of Childrens")
```



```
In [61]: #['hrs1', 'wrkslf', 'spwrksta', 'childs', 'age', 'educ', 'sex', 'race', 'family16', 'income']

#cdf = thinkstats2.Cdf(ds_divorced['age'])
#thinkplot.Cdf(cdf)
#thinkplot.Show(xlabel="Age")
PlotCDFAndPMF(ds_divorced['age'], "Age")
```



```
In [62]: #['hrs1', 'wrkslf', 'spwrksta', 'childs', 'age', 'educ', 'sex', 'race', 'family16', 'income']
PlotCDFAndPMF(ds_divorced['educ'],"Education")
```


In [63]: PlotCDFAndPMF(ds_divorced['incomeUSD'],"Income USD")

Analytical distribution

In [65]: PlotCDFAnalytical(ds_divorced['hrs1'],"Hours(log)")

<Figure size 800x600 with 0 Axes>

In [66]: PlotCDFAnalytical(ds_divorced['age'], "Age (log)")

<Figure size 800x600 with 0 Axes>

In [67]: PlotCDFAnalytical(ds_divorced['educ'], "Education(log)")

<Figure size 800x600 with 0 Axes>

```
Scatter plot of different variables
In [68]: #Plotting scatter plot of different variables
        #the blue shows not divorced, the orange shows the divorce
        # Load the dataset
       df = dataset.copy()
        # Set the style for the plots (optional, just for aesthetics)
       sns.set(style='whitegrid')
        # Create a pair plot
       sns.pairplot(df, diag_kind='kde', hue='divorce', plot_kws={'alpha': 0.2})
        # Show the plot
       plt.show()
            80
            60
          LSTI
40
            20
             0
            80
            60
           age
            40
            20
            20
            15
```


NO


```
In [72]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import pearsonr
import statsmodels.api as sm

# Load the dataset
dataset = ds_divorced[[ 'hrs1', 'age', 'educ', 'incomeUSD', 'childs']]

# Compute Pearson's correlation matrix
correlation_matrix = dataset.corr()

# Display the correlation matrix as a heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title("Pearson's Correlation Heatmap")
plt.show()
```


Running OLS regression

```
In [73]: # Perform regression analysis to assess relationships

dataset_analysis=dataset_gss.copy()
# Convert 'divorce' to integer

# Convert 'divorce' to numeric type and fill NaN with a placeholder value
dataset_analysis['divorce'] = pd.to_numeric(dataset_analysis['divorce'], errors='coerce')
dataset_analysis['divorce'] = dataset_analysis['divorce'].fillna(-999).astype(int)

# Perform regression analysis to assess relationships
y = dataset_analysis['divorce']

X = dataset_analysis['hrs1', 'age', 'educ', 'incomeUSD', 'childs']]
X = X.replace([np.inf, -np.inf], np.nan).fillna(0)
X = sm.add_constant(X) # Add a constant term for the intercept

model = sm.OLS(y, X).fit()
print(model.summary())
```

```
OLS Regression Results
______
Dep. Variable: divorce R-squared:
                                                                -inf

        Model:
        OLS
        Adj. R-squared:
        -IIIT

        Method:
        Least Squares
        F-statistic:
        -1.448e+04

        Date:
        Sat, 12 Aug 2023
        Prob (F-statistic):
        1.00

        Time:
        11:50:28
        Log-Likelihood:
        1.8772e+06

        No. Observations:
        72390
        AIC:
        -3.754e+06

        Df Residuals:
        72384
        BIC:
        -3.754e+06

Covariance Type: nonrobust
_____
           coef std err t P>|t| [0.025 0.975]
______
const -999.0000 2.65e-14 -3.78e+16 0.000 -999.000 -999.000
_____
Omnibus: 35.174 Durbin-Watson: Prob(Omnibus): 0.000 Jarque-Bera (JB):
                                                                 0.565
                                                                38.698
Skew:
                            0.013 Prob(JB):
                                                              3.95e-09
                            3.110 Cond. No.
Kurtosis:
                                                              1.39e+05
______
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.39e+05. This might indicate that there are strong multicollinearity or other numerical problems.

 $\label{limited} C: \PogramData\anconda3\lib\site-packages\statsmodels\regression\linear_model.py: 1752: RuntimeWarning: divide by zero encountered in double_scalars$

return 1 - self.ssr/self.centered_tss

The Null Hypothesis

The Null hypothesis 1: There is no co-rellation between divorce and the number of childrens

```
In [74]: # Create a DataFrame
         df = dataset_gss.copy()
         # Create a contingency table
         contingency_table = pd.crosstab(df['divorce'], df['childs'])
         # Perform the Chi-Square test
         chi2, p, dof, expected = chi2_contingency(contingency_table)
         # Define significance level
         alpha = 0.05
         # Print the results
         print("\nChi-Square:", chi2)
         print("p-value:", p)
         print("Degrees of Freedom:", dof)
         # Compare p-value with significance level
         if p < alpha:</pre>
             print("\nReject the null hypothesis. There is a significant correlation between divorce and the number of children.")
             print("\nFail to reject the null hypothesis. There is no significant correlation between divorce and the number of children
```

Chi-Square: 212.3517343739779 p-value: 1.5873059852030754e-41 Degrees of Freedom: 8

Reject the null hypothesis. There is a significant correlation between divorce and the number of children.

Reject the null hypothesis. There is a significant correlation between divorce and the number of children.

The Null hypothesis 2: There is no co-rellation between divorce and the number of hours worked in a week

```
In [75]: # Create a DataFrame
         #[ 'hrs1', 'age', 'educ', 'incomeUSD', 'childs']
         # Create a DataFrame
         df = dataset_gss.copy()
         # Create a contingency table
         contingency_table = pd.crosstab(df['divorce'], df['hrs1'])
         # Perform the Chi-Square test
         chi2, p, dof, expected = chi2_contingency(contingency_table)
         # Define significance level
         alpha = 0.05
         # Print the results
         print("\nChi-Square:", chi2)
         print("p-value:", p)
         print("Degrees of Freedom:", dof)
         # Compare p-value with significance level
         if p < alpha:</pre>
             print("\nReject the null hypothesis. There is a significant correlation between divorce and the number of hours worked.")
         else:
             print("\nFail to reject the null hypothesis. There is no significant correlation between divorce and the number of hours w
```

Chi-Square: 103.43880050111484 p-value: 0.12476633823367769 Degrees of Freedom: 88

Fail to reject the null hypothesis. There is no significant correlation between divorce and the number of hours worked.

Fail to reject the null hypothesis. There is no significant correlation between divorce and the number of hours worked.

Logistic Regression

```
In [76]: # Check if the column is numeric
         def is_numeric(column):
             return pd.api.types.is_numeric_dtype(column)
         # Impute the missing values
         def impute_missing_values(df):
             for column in df.columns:
                 if is_numeric(column):
                     imputer = SimpleImputer(missing_values='NaN', strategy='mean')
                     df[column] = imputer.fit_transform(df[column].values.reshape(-1, 1))
                     #df[column] = df[column].fillna('missing')
                     a=2
         # Impute the missing values in the dataset
In [77]: dataset_gss
```

Out[77]:

	year	id_	hrs1	wrkslf	marital	divorce	spwrksta	childs	age	educ	spdeg	sex	race	family16	income	relig16	hapmar	bi
0	1972	1	NaN	Someone else	Never married	NaN	NaN	0.0	23.0	16.0	NaN	FEMALE	White	FATHER	NaN	NaN	NaN	<
1	1972	2	NaN	Someone else	Married	NO	KEEPING HOUSE	5.0	70.0	10.0	HIGH SCHOOL	MALE	White	M AND F RELATIVES	NaN	NaN	NaN	<
2	1972	3	NaN	Someone else	Married	NO	WORKING FULLTIME	4.0	48.0	12.0	NaN	FEMALE	White	MOTHER & FATHER	NaN	NaN	NaN	<
3	1972	4	NaN	Someone else	Married	NO	WORKING FULLTIME	0.0	27.0	17.0	GRADUATE	FEMALE	White	MOTHER & FATHER	NaN	NaN	NaN	<
4	1972	5	NaN	Someone else	Married	NO	TEMP NOT WORKING	2.0	61.0	12.0	HIGH SCHOOL	FEMALE	White	MOTHER & FATHER	NaN	NaN	NaN	<
72385	2022	3541	48.0	Someone else	Never married	NaN	NaN	0.0	22.0	12.0	NaN	FEMALE	White	MOTHER & STPFATHER	\$25,000 or more	NaN	NaN	В
72386	2022	3542	50.0	Someone else	Married	YES	NaN	2.0	29.0	19.0	NaN	FEMALE	White	MOTHER & FATHER		NaN	VERY HAPPY	В
72387	2022	3543	38.0	Someone else	Never married	NaN	NaN	1.0	32.0	15.0	NaN	MALE	White	MOTHER & STPFATHER		NaN	NaN	В
72388	2022	3544	40.0	Someone else	Married	NO	NaN	0.0	49.0	17.0	NaN	FEMALE	White	MOTHER & FATHER		NaN	VERY HAPPY	В
72389	2022	3545	40.0	Someone else	Married	NO	NaN	1.0	50.0	20.0	NaN	MALE	White	MOTHER & FATHER	\$25,000 or more	NaN	PRETTY HAPPY	В
72390	rows ×	19 co	lumns	;														
4																		•
1																		,

```
In [78]: # Create the dependent variable
         df = dataset_gss.copy()
         # Create the independent variables
         df = df.drop('id_', axis=1)
         df = df.drop('ballot', axis=1)
         df = df.drop('year', axis=1)
         #df = df.drop('marital', axis=1)
         data = df
         # Impute NaN values with the mean for numeric columns and the mode for categorical columns
         for col in data.columns:
             if data[col].dtype.name == "float64":
                 data[col].fillna(data[col].mean(), inplace=True)
             elif not pd.api.types.is_numeric_dtype(data[col]):
                 data = pd.get_dummies(data, columns=[col])
                 #print(col)
                 # Split the data into training and testing sets
         data = data.drop('divorce_NO', axis=1)
         #X_train, X_test, y_train, y_test = train_test_split(data.drop(columns="marital_Divorced"), data["marital_Divorced"], test_siz
         X_train, X_test, y_train, y_test = train_test_split(data.drop(columns="divorce_YES"), data["divorce_YES"], test_size=0.25)
         # Create a Logistic regression model
         log_reg = LogisticRegression(max_iter =10000)
         # Fit the model to the training data
         result= log_reg.fit(X_train, y_train)
         # Make predictions on the testing data
         predictions = log_reg.predict(X_test)
         # Calculate the accuracy of the model
         accuracy = np.mean(predictions == y_test)
         print("The accuracy of the model is:", accuracy)
```

The accuracy of the model is: 0.8681622278704829

```
In [79]: import statsmodels.api as sm
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear_model import Ridge
         # Scale the input features using StandardScaler
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
         # Create a Ridge regression model with alpha parameter for regularization
         ridge_reg = Ridge(alpha=1.0)
         ridge_reg.fit(X_train_scaled, y_train)
         # Print coefficients and summary
         #print("Ridge Regression Coefficients:")
         #for col, coef in zip(X_train.columns, ridge_reg.coef_):
             print(f"{col}: {coef:.4f}")
         # Using statsmodels to fit the Ridge regression model and print summary
         X_train_scaled_with_const = sm.add_constant(X_train_scaled)
         ridge_reg_sm = sm.OLS(y_train, X_train_scaled_with_const)
         result_sm = ridge_reg_sm.fit()
         # Print the summary including coefficients and p-values
         print(result_sm.summary())
         # Make predictions on the testing data
         X_test_scaled_with_const = sm.add_constant(X_test_scaled)
         y_pred = result_sm.predict(X_test_scaled_with_const)
         y_pred_binary = np.round(y_pred) # Convert predicted probabilities to binary predictions
         # Calculate accuracy
         accuracy = np.mean(y_pred_binary == y_test)
         print("Accuracy:", accuracy)
         # Calculate precision
         precision = np.sum((y_pred_binary == 1) & (y_test == 1)) / np.sum(y_pred_binary == 1)
         print("Precision:", precision)
         # List column names with their p-values
         #p_values = result_sm.pvalues[1:] # Exclude the constant term
         #print("\nColumn Names with P-values:")
         #for col, p_value in zip(X_train.columns, p_values):
              print(f"{col}: p-value={p_value:.4f}")
```

OLS Regression Results

Dep. Variable:	divorce_YES	R-squared:	0.116						
Model:	OLS	Adj. R-squared:	0.115						
Method:	Least Squares	F-statistic:	106.3						
Date:	Sat, 12 Aug 2023	<pre>Prob (F-statistic):</pre>	0.00						
Time:	11:50:30	Log-Likelihood:	-14430.						
No. Observations:	54292	AIC:	2.900e+04						
Df Residuals:	54224	BIC:	2.960e+04						
Df Model:	67								
Covariance Type:	nonrohust								

Df Model:		544	67			2.3000+04
Covariance		nonrobi				
=======	_					
	coef	std err	t	P> t	[0.025	0.975]
const	0.1295	0.001	95.526	0.000	0.127	0.132
x1	0.0055	0.001	3.956	0.000	0.003	0.008
x2	0.0133	0.002	8.299	0.000	0.010	0.016
x3	0.0211	0.002	11.360	0.000	0.017	0.025
x4 x5	-0.0081 0.0076	0.002 0.009	-4.875 0.859	0.000 0.391	-0.011 -0.010	-0.005 0.025
x6	0.0207	0.002	9.018	0.000	0.016	0.025
x7	0.0195	0.002	8.553	0.000	0.015	0.024
x8	-0.0203	0.017	-1.196	0.232	-0.053	0.013
x9 x10	0.0954 -0.0082	0.026	3.693 -0.392	0.000	0.045 -0.049	0.146 0.033
x10	-0.0100	0.021 0.009	-1.095	0.695 0.273	-0.028	0.008
x12	0.0425	0.015	2.902	0.004	0.014	0.071
x13	-0.0157	0.005	-3.204	0.001	-0.025	-0.006
x14	0.0069	0.002	3.282	0.001	0.003	0.011
x15	-0.0105	0.004 0.002	-2.377	0.017	-0.019	-0.002
x16 x17	-0.0020 -1.436e-05	0.002	-1.095 -0.007	0.274 0.995	-0.006 -0.004	0.002 0.004
x18	0.0043	0.002	1.937	0.053	-5.03e-05	0.009
x19	-0.0036	0.008	-0.467	0.641	-0.019	0.011
x20	-0.0056	0.004	-1.493	0.135	-0.013	0.002
x21 x22	-0.0034 -0.0185	0.003 0.004	-1.309 -4.784	0.190 0.000	-0.008 -0.026	0.002 -0.011
x23	-0.0121	0.003	-3.918	0.000	-0.018	-0.006
x24	-0.0047	0.006	-0.775	0.438	-0.016	0.007
x25	-0.0121	0.004	-2.912	0.004	-0.020	-0.004
x26	-0.0527	0.017	-3.032	0.002	-0.087	-0.019
x27 x28	-0.0508 0.0016	0.017	-2.916 0.135	0.004	-0.085 -0.022	-0.017
x29	-0.0024	0.012 0.008	-0.282	0.893 0.778	-0.022	0.026 0.014
x30	0.0044	0.014	0.314	0.754	-0.023	0.032
x31	-0.0005	0.002	-0.219	0.826	-0.005	0.004
x32	0.0004	0.002	0.209	0.835	-0.004	0.005
x33 x34	0.0007 0.0028	0.002 0.002	0.328 1.255	0.743 0.209	-0.003 -0.002	0.005 0.007
x35	-0.0008	0.002	-0.509	0.611	-0.004	0.007
x36	0.0030	0.004	0.688	0.492	-0.006	0.011
x37	-0.0101	0.006	-1.751	0.080	-0.021	0.001
x38 x39	0.0073	0.003	2.409	0.016	0.001	0.013 0.015
x40	0.0100 0.0037	0.002 0.003	4.257 1.171	0.000 0.242	0.005 -0.002	0.013
x41	0.0007	0.003	0.249	0.803	-0.005	0.007
x42	0.0028	0.002	1.476	0.140	-0.001	0.006
x43	0.0016	0.002	0.907	0.364	-0.002	0.005
x44 x45	0.0156 0.0038	0.004 0.003	3.675 1.275	0.000 0.202	0.007 -0.002	0.024 0.010
x46	0.0007	0.003	0.254	0.799	-0.005	0.006
x47	0.0009	0.003	0.337	0.736	-0.004	0.006
x48	0.0030	0.003	1.194	0.232	-0.002	0.008
x49	0.0009	0.002	0.347	0.728	-0.004	0.006
x50 x51	0.0007 0.0039	0.003 0.003	0.259 1.382	0.796 0.167	-0.005 -0.002	0.006 0.010
x52	-0.0004	0.001	-0.308	0.758	-0.003	0.002
x53	-0.0068	0.003	-2.290	0.022	-0.013	-0.001
x54	0.0008	0.001	0.588	0.556	-0.002	0.004
x55	-0.0024	0.001	-1.699	0.089	-0.005	0.000
x56 x57	0.0006 -0.0026	0.001 0.002	0.404 -1.632	0.686 a 1a3	-0.002 -0.006	0.003
x57	0.0005	0.002	0.391	0.103 0.696	-0.002	0.001 0.003
x59	0.0009	0.001	0.639	0.523	-0.002	0.004
x60	0.0028	0.002	1.480	0.139	-0.001	0.007
x61	0.0006	0.001	0.445	0.656	-0.002	0.003
x62 x63	-0.0017 -0.0012	0.001 0.001	-1.153 -0.847	0.249 0.397	-0.005 -0.004	0.001 0.002
x64	0.0104	0.001	3.215	0.001	0.004	0.002
x65	0.0100	0.002	6.249	0.000	0.007	0.013
x66	0.0044	0.003	1.511	0.131	-0.001	0.010
x67	0.0008	0.003	0.229	0.819	-0.006	0.008
Omnibus		15050	:=====================================	-Matcon:		2 006
Omnibus:		15858.6	Joo Duro1r	n-Watson:		2.006

localhost:8890/notebooks/OneDrive - Emerson/Personal/MS Data Science Emerson/DCS 530/Project/DCS530-Project.ipynb#

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 34941.170

 Skew:
 1.740
 Prob(JB):
 0.00

 Kurtosis:
 4.825
 Cond. No.
 60.3

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Accuracy: 0.8709249640844292

Precision: nan

precision = np.sum((y_pred_binary == 1) & (y_test == 1)) / np.sum(y_pred_binary == 1)

```
In [80]: from tabulate import tabulate

# ... (previous code) ...

# List column names with their p-values, coefficients, and R-squared
p_values = result_sm.pvalues[1:] # Exclude the constant term
coefficients = result_sm.params[1:] # Exclude the constant term
r_squared = result_sm.rsquared

# Prepare data for tabular format
table_data = []
for col, coef, p_value in zip(X_train.columns, coefficients, p_values):
    table_data.append([col, coef, p_value])

# Add R-squared to the table
table_data.append(['R-squared', r_squared, ''])

# Print column names, coefficients, p-values, and R-squared in tabular format
headers = ["Column Name", "Coefficient", "P-value"]
print("\nSummary:")
print(tabulate(table_data, headers=headers, floatfmt=(".4f", ".4f", ".4f")))
```

Summary: Column Name	Coefficient	P-value
hrs1	0.0055	7.620459765753077e-05
childs	0.0133	
age	0.0211	
educ	-0.0081	1.0892364007125017e-06
incomeUSD	0.0076	
wrkslf_Self-employed	0.0207	
<pre>wrkslf_Someone else marital_Divorced</pre>	0.0195 -0.0203	
marital_bivorced marital_Married	0.0954	
marital Never married	-0.0082	
marital_Separated	-0.0100	
marital_Widowed	0.0425	0.003707304727193523
spwrksta_KEEPING HOUSE	-0.0157	
spwrksta_OTHER	0.0069	
spwrksta_RETIRED	-0.0105	
spwrksta_SCHOOL spwrksta_TEMP NOT WORKING	-0.0020 -0.0000	
spwrksta_UNEMPL, LAID OFF	0.0043	
spwrksta_WORKING FULLTIME	-0.0036	
spwrksta_WORKING PARTTIME	-0.0056	0.13543520459486624
spdeg_ASSOCIATE/JUNIOR COLLEGE	-0.0034	
spdeg_BACHELOR	-0.0185	
spdeg_GRADUATE	-0.0121	
<pre>spdeg_HIGH SCHOOL spdeg LT HIGH SCHOOL</pre>	-0.0047 -0.0121	
sex_FEMALE	-0.0527	
sex_MALE	-0.0508	
race_Black	0.0016	
race_Other	-0.0024	
race_White	0.0044	
family16_FATHER	-0.0005	
<pre>family16_FATHER & STPMOTHER family16_FEMALE RELATIVE</pre>	0.0004 0.0007	
family16_FEMALE RELATIVE	0.0028	
family16_MALE RELATIVE	-0.0008	
family16_MOTHER	0.0030	
family16_MOTHER & FATHER	-0.0101	
family16_MOTHER & STPFATHER	0.0073	
family16_OTHER	0.0100	
income_\$1,000 to \$2,999	0.0037	
<pre>income_\$10,000 to \$14,999 income_\$15,000 to \$19,999</pre>	0.0007 0.0028	
income_\$10,000 to \$15,999	0.0016	
income_\$25,000 or more	0.0156	
income_\$3,000 to \$3,999	0.0038	
income_\$4,000 to \$4,999	0.0007	
income_\$5,000 to \$5,999	0.0009	
income_\$6,000 to \$6,999	0.0030	
income_\$7,000 to \$7,999 income_\$8,000 to \$9,999	0.0009 0.0007	0.7283643349741542 0.79563483944189
income Under \$1,000	0.0039	0.1669678928170715
relig16 BUDDHISM	-0.0004	0.7584393042582245
relig16_CATHOLIC	-0.0068	0.021997904747485846
relig16_CHRISTIAN	0.0008	0.5562945876407357
relig16_HINDUISM	-0.0024	0.08935492394359891
relig16_INTER-NONDENOMINATIONAL	0.0006	0.6859964983459588
relig16_JEWISH	-0.0026	0.10274141372535493
relig16_MUSLIM/ISLAM	0.0005	0.6955463804879863
relig16_NATIVE AMERICAN	0.0009 0.0028	0.5225048231474876 0.13895096742026966
relig16_NONE relig16 ORTHODOX-CHRISTIAN	0.0028	0.6560301866995284
relig16 OTHER	-0.0017	0.24892654177831486
relig16_OTHER EASTERN	-0.0012	0.3971148018798719
relig16_PROTESTANT	0.0104	0.0013031136007823194
hapmar_NOT TOO HAPPY	0.0100	4.15132086125714e-10
hapmar_PRETTY HAPPY	0.0044	0.13066791693248
hapmar_VERY HAPPY	0.0008	0.818735067547654
R-squared	0.1161	