Relatório 02 - Operação do Gerador Síncrono Isolado da Rede

Batista, H.O.B.¹, Alves, W. F. O.²
Matriculas: 96704¹, 96708²
Departamento de Engenharia Elétrica,
Universidade Federal de Viçosa, Viçosa - MG.
e-mails: hiago.batista@ufv.br¹, werikson.alves@ufv.br²

I. Introdução

O gerador síncrono quando é utilizado para fornecer energia elétrica em situações de emergência, onde o mesmo opera isolado da rede elétrica, a tensão nos seus terminais depende da impedância da carga e do seu fator de potência. A velocidade deve ser mantida sempre constante porque a frequência deve ser constante. Portanto, se a excitação do enrolamento de campo for constante a tensão nos seus terminais varia quando a impedância da carga varia. A Figura 1 mostra de forma sucinta o diagrama de um gerador operando isolado, suprindo uma carga que pode demandar potência ativa, reativa ou uma combinação das duas.

Figura 1. Gerador síncrono operando isolado [3]

Mantendo a excitação do enrolamento de campo e a velocidade de acionamento do eixo constantes, para um mesmo fator de potência da carga, à medida que a carga aumenta as corrente nos enrolamentos do estator aumentam. Os diagramas fasoriais abaixo mostram as variações da carga para fator de potência atrasado, unitário e adiantado, mantendo sempre o mesmo fator de potência.

Figura 2. Fator de potência atrasado [3]

Figura 3. Fator de potência unitário [3]

Figura 4. Fator de potência adiantado [3]

Para as cargas com o fator de potência atrasado e o fator de potência unitário a tensão terminal V_T diminui à medida que a carga aumenta e, para cargas com fator de potência adiantado, a tensão aumenta. Como a frequência deve ser sempre mantida constante, a velocidade deve ser constante, portanto para controlar a tensão, a corrente no enrolamento de campo deve ser ajustada.

A regulação de tensão de um gerador síncrono isolado da rede elétrica é dada pela Eq 1, na qual RT é regulação de tensão, V_{T_O} é a Tensão terminal em vazio e V_T é a Tensão terminal a plena carga, sendo estes valores dados em módulos.

$$RT = \frac{V_{t_O} - V_T}{V_T} \times 100 \tag{1}$$

II. Objetivos Gerais e Específicos

[3] Este relatório tem por objetivo levantar as características da variação da tensão nos terminais do gerador em função da corrente de carga, para fatores de potência atrasado, unitário e adiantado, mantendo constante a velocidade e a excitação do enrolamento de campo. [3]

III. Materiais

- Uma máquina de corrente contínua funcionando como motor, ligada com excitação independente;
- Uma máquina síncrona que irá funcionar com gerador;
- Duas fontes de tensão contínua de 220 V, 10 A e uma de 220 V, 1 A;
- Três bobinas de 220 V ou 127 V, 5 A;
- Três capacitores de 25 μ F, 220 V ou 127 V, 5 A;
- 18 lâmpadas de potências variáveis, 220 ou 127 V;
- Multímetros;
- Tacômetro;

IV. Desenvolvimento

Para a realização do ensaio será montado um protótipo no laboratório utilizando uma máquina de corrente contínua e uma máquina síncrona, mais acessórios, conforme a Figura 5. Esta montagem possui um motor de corrente contínua ligado com excitação independente, uma máquina síncrona (gerador) e uma carga, ambos, ligados em estrela. Portanto, inicialmente, foram coletados os dados de placa, apresentados na Tabela I.

Figura 5. Esquema de ligação para o ensaio [3]

Tabela I Dados da máquina síncrona.

Potência Aparente	2 kVA
Tensão (V_T)	230 V
Corrente (I_A)	5 A
FP	0,8 Indutivo
Velocidade	1800 RPM
Tensão (E_f)	220 V
Corrente (I_f)	0,6 A
Rotor	Polos Salientes
Ligação	Estrela

Em seguida, acionando o eixo do gerador síncrono na velocidade nominal (síncrona, em 1800 RPM, pelo motor de corrente contínua) e em seguida excitando o circuito de campo do gerador síncrono até que a tensão nos seus terminais atinja 220 V.

Depois foi ligado uma carga resistiva variável nos terminais do estator e foi medido para cada variação a corrente no estator e a tensão terminal, para então na última carga ser calculada a regulação de tensão, mantendo a velocidade e a excitação do enrolamento de campo constantes.

Feito isto, o ensaio foi repetido para uma carga de fator de potência atrasado e uma de fator de potência adiantado.

Prosseguindo, baseando-se nos parâmetros do circuito equivalente, determinados na prática 1 [2], para cada variação da carga, (fator de potência atrasado) foi determinado teoricamente a tensão no terminal do estator.

Por fim, para as últimas cargas do fator de potência unitário, atrasado e adiantado foi ajustado a corrente de campo I_F do gerador síncrono para manter a tensão constante.

V. Resultados e Discussões

Após realizado todas as medições, foi obtida a Tabela II e III contendo os dados para uma carga unitária e adiantada, e em seguida, foi traçado o gráfico para esses dados, Figura 6 e 7.

Tabela II Gerador síncrono isolado para uma carga R.

I_F	I_A	V_T
0	0	12
0,35	0	220
0,35	0,47	217
0,34	0,7	214
0,34	0,93	214
0,34	1,17	212
0,34	1,41	204
0,34	1,57	200

Figura 6. Gráfico de $V_T=f(I_A)$ para uma carga unitária.

Tabela III GERADOR SÍNCRONO ISOLADO PARA UMA CARGA RC-SÉRIE.

I_F	I_A	V_T
0,35	0	220
0,35	0,46	224
0,35	0,63	225
0,35	0,81	226
0,35	1,21	242

Figura 7. Gráfico de $V_T = f(I_A)$ para uma carga adiantada.

Partindo da Equação 1, as regulações de tensão para as últimas cargas, unitária e adiantada, respectivamente são

$$RT_{un} = \frac{230 - 200}{200} \times 100 = +15\%$$

$$RT_{ad} = \frac{230 - 242}{242} \times 100 = -4,96\%$$

Utilizando as equações e resultados obtidos do circuito equivalente da prática 01 [2], podemos determinar a tensão terminal teórica para cada variação de carga, logo:

$$V_T = 220 - |I_A|(1, 8 + 18, 15j)(1 < -36, 87)$$

Tabela IV Tensão terminal teórica para uma carga R.

I_F	I_A	$ V_T $
0	0	0
0,35	0	220
0,35	0,47	214,30
0,34	0,7	211,58
0,34	0,93	208,91
0,34	1,17	206,17
0,34	1,41	203,50
0,34	1,57	201,75

VI. Conclusões

Comparando os resultados teóricos com os obtidos experimentalmente, percebe-se que o comportamento foi o mesmo para uma resistiva, ou seja, com o aumento de I_A , V_T diminui. Além disto, no experimento pratico, a diminuição não foi "constante", havendo alguns momentos no qual V_T se manteve constante ou teve uma variação na sua taxa de diminuição, sendo que a maior diferença foi de 2,83 % para $I_A = 1,17$ A e a menor foi de 0,25 % para $I_A = 1,41$ A.

Uma forma de se manter a tensão nos terminais do gerador constante é variar a excitação do enrolamento de campo.

Por fim, observa-se que o relatório atingiu o objetivos de determinar as característica da variação da tensão nos terminais do gerador em função da corrente de carga, para fatores de potência unitário e adiantado, mantendo constante a velocidade e a excitação do enrolamento de campo.

Referências

- [1] Stephen J Chapman. Fundamentos de máquinas elétricas. AMGH editora, 2013.
- [2] J. T. Resende. Laboratorio de Máquinas Elétricas 2 Pratica 01.
 D.E.L.-UFV, 2022.
- [3] J. T. Resende. Laboratorio de Máquinas Elétricas 2 Pratica 02.
 D.E.L.-UFV, 2022.