Homework 2

Intro to Robotics

Due Date: March 31st, 2023

1 Frames, translations and rotations

Given frames: Frame $\{A\}$ = universe,

Frame {B} = {
$${}_{B}^{A}R_{Z'Y'X'}(45^{\circ}, 100^{\circ}, 75^{\circ}), {}_{A}^{A}P_{Borg} = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}$$
},

Frame {C} = {
$$_C^B R_{Z'Y'X'}(90^{\circ}, 0^{\circ}, 15^{\circ}) =, {}^B P_{Corg} = \begin{bmatrix} -4 \\ 4 \\ 4 \end{bmatrix}$$
}

Given points:
$${}^{A}P_{1} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$
, ${}^{C}P_{2} = \begin{bmatrix} -5 \\ 7 \\ 2 \end{bmatrix}$, ${}^{B}P_{3} = \begin{bmatrix} 3.14 \\ -7.77 \\ 2.718 \end{bmatrix}$

- Find ^C_BT.
 Find ^AP₂.
- 3. Find BP_1 .
- 4. Find ${}^{C}P_{3}$.
- 5. Given AP_1 rotate the point by ${}^A_BR_{Z'Y'X'}(50^\circ, 150^\circ, 200^\circ)$ and translate by

vector
$$\begin{bmatrix} -2\\ -3\\ -4 \end{bmatrix}$$

Solve for angles

Given frames: Frame $\{A\}$ = universe

Frame {B} = {
$$_{B}^{A}R$$
 = $\begin{bmatrix} .15 & .18 & -.97 \\ .09 & -.98 & -.16 \\ -.98 & -.06 & -.16 \end{bmatrix}$, ${}_{A}P_{Borg} = \begin{bmatrix} 2 \\ 4 \\ -6 \end{bmatrix}$ }

- 1. Find the eulerian angles for ${}_{B}^{A}R_{Z'Y'X'}$.

 2. Solve for the angle between $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} .5\\.5\\.71 \end{bmatrix}$

3 Complex

1. rotate the 2d vector $P_1 = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$ by 110° using a complex rotation.

4 Coding Portion

- **1.)** Modify your frame class from homework 1, to also create 3d frames then check your answers for part 1.
- **2.)** Write a function that takes a rotation matrix as input and solves for the angles in $R_{z'y'x'}(\alpha, \beta, \gamma)$
- 3.) Write a function to solve for the angle between two 3d vectors.