Estimation of ATE in Causal Survival: Comparison, Applications and Practical Recommendations

Julie Josse (Inria) & Bernard Sebastien (Sanofi R&D)

Charlotte VOINOT May 30, 2024

Causal Survival analysis: example of questions

Survival analysis

Causal inference

 \Rightarrow Effect of a policy/intervention/treatment A on an time to event outcome T

What is the impact of an oncology medicine on long term mortality ?

What is the impact of a medecine all along the time (it can be beneficial in the short term but harmful in the long term)?

Causal Survival analysis: example of questions

Survival analysis

Causal inference

 \Rightarrow Effect of a policy/intervention/treatment A on an time to event outcome T

What is the impact of an oncology medicine on long term mortality ?

What is the impact of a medecine all along the time (it can be beneficial in the short term but harmful in the long term)?

Potential outcomes

Let's say that in our example $X_1 = \text{sex}$ and $X_2 = \text{age}$.

Covariates		Treatment	Censoring	Status	Outcomes		
X_1	X_2	Α	С	Δ	T(0)	T(1)	Ť
1	24	1	?	1	?	200	200
2	52	0	?	1	100	?	100
1	33	1	200	0	?	?	200

In grey, the observed data : $(X_i, A_i, \Delta_i, \widetilde{T}_i)$ with $\widetilde{T}_i = min(T_i, C_i)$

 \Rightarrow T is not directly observed

Causal effect in survival analysis

Difference in RMST : Average treatment effect in survival analysis

$$heta_{RMST}(au) = E[min(T(1), au) - min(T(0), au)] \ = \int_0^ au (S_1(t) - S_0(t)) dt$$

RMST can be defined as a measure of average survival from time 0 to time τ a **fixed time horizon**

 $\theta_{RMST}(\tau=50)=10$ means that on average the treatment increases the survival time by 10 days at 50 days.

Figure 1: Plot of stratified kaplan meier survival function and the representation of $\theta_{RMST}(\tau=50)$ (in yellow)

S.T.U.V.A.
$$T = AT(1) + (1 - A)T(0)$$

RCT & Independent censoring

- Random treatment assignment $A \perp \!\!\! \perp (T(0), T(1), C, X)$
- Independent censoring $C \perp \!\!\! \perp T(0), T(1), X, A$

S.T.U.V.A.
$$T = AT(1) + (1 - A)T(0)$$

RCT & Independent censoring

- Random treatment assignment
 A ⊥⊥ (T(0), T(1), C, X)
- Independent censoring $C \perp \!\!\! \perp T(0), T(1), X, A$

RCT & Dependent censoring

- Random treatment assignment
 A ⊥⊥ (T(0), T(1), C, X)
- Conditionally independent censoring

$$C \perp \!\!\! \perp T(0), T(1)|X, A$$

S.T.U.V.A.
$$T = AT(1) + (1 - A)T(0)$$

RCT & Independent censoring

- Random treatment assignment
 A ⊥⊥ (T(0), T(1), C, X)
- Independent censoring
 C ⊥⊥ T(0), T(1), X, A

RCT & Dependent censoring

- Random treatment assignment $A \perp \!\!\!\perp (T(0), T(1), C, X)$
- Conditionally independent censoring
 C ⊥ T(0), T(1)|X, A
- Positivity for censoring
 0 < P(C > t | X = x, A = a) < 1

Obs & Independent censoring

- Unconfoundedness $A \perp \!\!\!\perp (T(0), T(1))|X$
- Positivity for treatment $1 > P(A = a \mid X = x) > 0$
- Independent censoring C ⊥⊥ T(0), T(1), X, A

S.T.U.V.A.
$$T = AT(1) + (1 - A)T(0)$$

RCT & Independent censoring

- Random treatment assignment
 A ⊥⊥ (T(0), T(1), C, X)
- Independent censoring $C \perp \!\!\! \perp T(0), T(1), X, A$

RCT & Dependent censoring

- Random treatment assignment $A \perp \!\!\!\perp (T(0), T(1), C, X)$
- Conditionally independent censoring
 C ⊥ T(0), T(1)|X, A
- Positivity for censoring
 0 < P(C > t | X = x, A = a) < 1

Obs & Independent censoring

- Unconfoundedness $A \perp \!\!\! \perp (T(0), T(1))|X$
- Positivity for treatment $1 > P(A = a \mid X = x) > 0$
- Independent censoring $C \perp \!\!\! \perp T(0), T(1), X, A$

Obs & Dependent censoring

- Unconfoundedness $A \perp \!\!\!\perp (T(0), T(1))|X$
- Positivity for treatment $1 > P(A = a \mid X = x) > 0$
- Conditionally independent censoring
 C ⊥ T(0), T(1)|X, A
- Positivity for censoring
 0 < P(C > t | X = x, A = a) < 1

RCT & Independent censoring

$$\begin{array}{l} \theta_{RMST} = \mathbb{E}[T(1) \wedge \tau - T(0) \wedge \tau] \\ \\ = \int_0^\tau \mathbb{E}[I\{T(1) > t\} - I\{T(0) > t\}] dt & \text{(By definition)} \\ \\ = \int_0^\tau \mathbb{E}[I\{T(1) > t\}] - \mathbb{E}[I\{T(0) > t\}] dt & \text{(By linearity)} \\ \\ = \int_0^\tau \mathbb{E}[I\{T(1) > t|A = 1\}] - \mathbb{E}[I\{T(0) > t|A = 0\}] dt & \text{(Random treatment assignment)} \\ \\ = \int_0^\tau \mathbb{E}[I\{T > t|A = 1\}] - \mathbb{E}[I\{T > t|A = 0\}] dt & \text{(By consistency)} \\ \\ = \int_0^\tau \mathbb{P}(T > t|A = 1) - \mathbb{P}(T > t|A = 0) dt \\ \\ = \int_0^\tau S(t|A = 1) - S(t|A = 0) dt \end{array}$$

Non-adjusted Kaplan-Meier estimator [1]

It corresponds to a simple Kaplan meier estimator:

$$\hat{S}_{KM}(t \mid a) = \prod_{j=1, t_j < = t} \left(1 - rac{\sum_i I\left\{ ilde{T}_i = t_j, \Delta_i = 1, A_i = a
ight\}}{\sum_k I\left\{ ilde{T}_k \geq t_j, A_i = a
ight\}}
ight)$$

$$\theta_{RMST}(\tau) = \int_0^{\tau} (S_1(t) - S_0(t)) dt$$

RCT & Dependent censoring

Non-adjusted Kaplan-Meier is biased in this context:

Figure 2: Plot of stratified kaplan meier survival function (A=1 and A=0) and the true survival function

⇒ The probability of survival is overestimated in using Non adjusted KM [3].

RCT & Dependent censoring

 $E[T \wedge \tau | X]$ is no longer straightforwardly identifiable \Rightarrow But $E(T \wedge \tau | X, A)$ can be writen as $E(T^* | X, A)$:

$$T^*(\tau) = \frac{\widetilde{T} \wedge \tau * \Delta^{\tau}}{S_c(\widetilde{T} \wedge \tau | X, A)}$$

with $\Delta^{\tau} = I\{T \land \tau < C | A = 1\}$ and $\hat{S}_c(t|X_i, A_i)$ is the probability of remain uncensored given the covariates.

IPCW adjusted Kaplan-Meier estimator [2]

$$\hat{S}_{IPCW}(t \mid A = a) = \prod_{j=1, t_j \leq t} \left(1 - \frac{\sum_i \hat{w}_i(t_j, X_i) \cdot I\left\{\widetilde{T}_i = t_j, C_i \geq t_j, A_i = a\right\}}{\sum_k \hat{w}_k(t_j, X_k) \cdot I\left\{\widetilde{T}_k \geq t_j, C_k \geq t_j, A_k = a\right\}} \right)$$
 with $\hat{w}_i(t, X_i) = \frac{\Delta_i^T}{\hat{S}_c(t \mid X_i, A_i)}$: every uncensored observation is weighted by the inverse of the probability of remain uncensored given the covariates.

$$\theta_{RMST} = \int_0^{\tau} \hat{S}_{IPCW}(t, A = 1) - \hat{S}_{IPCW}(t, A = 0) dt$$

Risk of confounding bias

 \Rightarrow Need for balancing differences between the two groups.

IPTW adjusted Kaplan-Meier estimator [4]

$$\widehat{S}_{IPTW}(t \mid A = a) = \prod_{j=1, t_j \leq t} \left(1 - \frac{\sum_i \widehat{w}_i(t_j, X_i) \cdot I\left\{\widetilde{T}_i = t_j, C_i \geq t_j, A_i = a\right\}}{\sum_k \widehat{w}_k(t_j, X_k) \cdot I\left\{\widetilde{T}_k \geq t_j, C_k \geq t_j, A_k = a\right\}} \right)$$

with $\hat{w}_i(t, X_i) = \frac{A_i}{\hat{e}(X_i)} + \frac{1-A_i}{1-\hat{e}(X_i)}$: every observation is weighted by the inverse of the propensity score (probability of being treated) given the covariates.

$$heta_{\mathsf{RMST}} = \int_0^ au \hat{\mathsf{S}}_{\mathsf{IPTW}}(t,A=1) - \hat{\mathsf{S}}_{\mathsf{IPTW}}(t,A=0) dt$$

Risk of censoring bias & confounding bias

IPTW-IPCW adjusted Kaplan-Meier estimator

$$\hat{S}_{IPTW-IPCW}(t \mid A = a) = \prod_{j=1, t_j < = t} \left(1 - \frac{\sum_{i} \hat{w}_i(t, X_i) * I \left\{ T_i = t_j, C_i \ge t_j, A_i = a \right\}}{\sum_{i} \hat{w}_i(t, X_i) * I \left\{ T_i \ge t_j, C_i \ge t_j, A_i = a \right\}} \right)$$

with $\hat{w}_i(t, X_i) = \frac{\Delta_i^i}{\hat{s}_C(\tilde{T} \wedge \tau | A_i, X_i)} * (\frac{A_i}{\hat{e}(X_i)} + \frac{1 - A_i}{1 - \hat{e}(X_i)})$: every uncensored observation is weighted by the inverse of remain uncensored and by the inverse propensity score given the covariates.

$$heta_{\mathit{RMST}} = \int_0^{ au} \hat{S}_{\mathit{IPTW-IPCW}}(t,A=1) - \hat{S}_{\mathit{IPTW-IPCW}}(t,A=0) dt$$

9

```
\begin{split} \theta &= \mathbb{E}\left[T(1) \wedge \tau - T(0) \wedge \tau\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[T(1) \wedge \tau - T(0) \wedge \tau \mid X\right]\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[T(1) \wedge \tau \mid X, A = 1\right] - \mathbb{E}\left[T(0) \wedge \tau \mid X, A = 0\right]\right] \\ &(\text{Uncounfoundedness}) \\ &= \mathbb{E}\left[\mathbb{E}\left[T \wedge \tau \mid X, A = 1\right] - \mathbb{E}\left[T \wedge \tau \mid X, A = 0\right]\right] \\ &(\text{Consistency}) \end{split}
```


G-formula estimator

$$\widehat{\theta}_{\text{g-formula}}(\tau) = \frac{1}{n} \sum_{i=1}^{n} \left(\widehat{F}\left(X_{i}, 1\right) - \widehat{F}\left(X_{i}, 0\right) \right)$$
 with $\widehat{F}(x, a) \triangleq \mathbb{E}[T \land \tau \mid X = x, A = a]$

 $\hat{F}(x,a)$ can be obtained by fitting a parametric model (e.g., Weibull distribution), a semi-parametric model (e.g., Cox model), or a non-parametric model (e.g., survival random forest).

Augmented estimator

$$\begin{split} \hat{\theta}_{\mathsf{AIPTW-AIPCW}} &= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{A_i}{\hat{e}\left(X_i\right)} - \frac{1-A_i}{1-\hat{e}\left(X_i\right)} \right) \, \hat{T}_{\mathsf{DR}}^* \\ &+ \hat{F}\left(X_i, A = 1\right) \left(1 - \frac{A_i}{\hat{e}\left(X_i\right)}\right) - \hat{F}\left(X_i, A = 0\right) \left(1 - \frac{1-A_i}{1-\hat{e}\left(X_i\right)}\right) \\ \text{with } \hat{\tau}_{\mathsf{DR}}^* &= \frac{\tilde{\tau}_i \wedge \tau \cdot \Delta^\tau}{\hat{s}_{\mathsf{C}}\left(\tilde{\tau}_i \wedge \tau \mid X_i\right)} + \frac{Q_{\check{\mathsf{S}}}\left(\tilde{\tau}_i \wedge \tau \mid X, A\right) \cdot (1-\Delta^\tau)}{\hat{s}_{\mathsf{C}}\left(\tilde{\tau}_i \wedge \tau \mid X_i\right)} - \int_{0}^{\tilde{\tau}_i \wedge \tau} \frac{Q_{\check{\mathsf{S}}}\left(c \mid X_i, A_i\right)}{\hat{s}_{\mathsf{C}}^2\left(c \mid X_i, A_i\right)} d\mathring{s}_{\mathsf{C}}\left(c \mid X_i, A_i\right) \text{ and} \\ Q_{\mathsf{S}}\left(t \mid X_i, A\right) &= \mathbb{E}\left[T \wedge \tau \mid X = X, A = a, T \wedge \tau > t\right] \end{split}$$

\Rightarrow 3 nuisance parameters to compute :

- Censoring model : $C \sim A + X$
- Propensity score model : $A \sim X$
- Conditional survival : $T \sim A + X$

Augmented estimator

$$\begin{split} \hat{\theta}_{\mathsf{AIPTW-AIPCW}} &= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{A_i}{\hat{e}\left(X_i\right)} - \frac{1-A_i}{1-\hat{e}\left(X_i\right)} \right) \, \hat{T}_{\mathsf{DR}}^* \\ &+ \hat{F}\left(X_i, A = 1\right) \left(1 - \frac{A_i}{\hat{e}\left(X_i\right)}\right) - \hat{F}\left(X_i, A = 0\right) \left(1 - \frac{1-A_i}{1-\hat{e}\left(X_i\right)}\right) \\ \text{with } \hat{\tau}_{\mathsf{DR}}^* &= \frac{\tilde{\tau}_i \wedge \tau \cdot \Delta^{\mathsf{T}}}{\hat{S}_{\mathsf{C}}\left(\tilde{\tau}_i \wedge \tau \mid X_i\right)} + \frac{Q_{\mathsf{S}}\left(\tilde{\tau}_i \wedge \tau \mid X, A\right) \cdot (1-\Delta^{\mathsf{T}})}{\hat{S}_{\mathsf{C}}\left(\tilde{\tau}_i \wedge \tau \mid X_i\right)} - \int_{0}^{\tilde{\tau}_i \wedge \tau} \frac{Q_{\mathsf{S}}\left(c \mid X_i, A_i\right)}{\hat{S}_{\mathsf{C}}\left(c \mid X_i, A_i\right)} d\hat{S}_{\mathsf{C}}\left(c \mid X_i, A_i\right) \text{ and} \\ Q_{\mathsf{S}}\left(t \mid X_i, A\right) &= \mathbb{E}\left[T \wedge \tau \mid X = X, A = a, T \wedge \tau > t\right] \end{split}$$

 T_{DR}^* corresponds to the augmented censoring transformation (AIPCW):

- The first term : IPCW (it weights the uncensored observation by the inverse probability of remain uncensored)
- The second term: it weights in the same way the censored observation by using an estimation of survival
- The third one is an augmentation term

Estimator	mis. S	mis. S _C	mis. e	mis. S and S _C	mis. S and e	mis. S _C and e
G-formula		✓	✓			✓
IPTW-IPCW	√					
AIPTW-AIPCW	✓	✓	✓			✓

Table 1: Consistency under model mis-specification. When all the nuisances models are mis-specified none of the estimators is consistent. \checkmark indicates consistency of the estimator.

Good specification of nuisance model

- As expected 'Naive' is still completely biased
- KM and IPTW estimators are biased because of dependent censoring
- All estimator with censoring transformation converge
- Surprisingly, causal survival forest from grf is biased (maybe with more sample size)
- G-formula seems to be the best estimators

Figure 3: Boxplot of RMST estimation in the context of RCT and dependent censoring for 150 simulations ($\tau=25$)

Good specification of nuisance model:

- 'Naive' still biased
- All estimators without both censoring transformation and inverse propensity weighting are biased: 'KM', 'IPTW KM', 'IPCW KM'.
- grf biased
- G-formula is the best estimator

Figure 4: Boxplot of RMST estimation in the context of Observational study and dependent censoring for 150 simulations ($\tau=25$)

Conclusions

- Few packages: implementation of estimators from scratch.
- RMST is one extension of causal inference in survival analysis.
- Robust estimators such as AIPCW-AIPTW converge for all setup but sometimes G-formula outperforms this DR estimator.
- But AIPCW-AIPTW needs more data due to its complexity.

Perspectives

- Publication in Computo.
- Non parametric setting.
- Importance in variable selections : variables which influences censoring and time to event not necessary the same.

References

- E. L. Kaplan and Paul Meier. "Nonparametric Estimation from Incomplete Observations". In: Journal of the American Statistical Association (1958).
- [2] James M. Robins and Dianne M. Finkelstein. "Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests". In: Biometrics (2000).
- [3] SJW Willems et al. "Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator". In: Statistical Methods in Medical Research (2018).

[4] Jun Xie and Chaofeng Liu. "Adjusted Kaplan—Meier estimator and log-rank test with inverse probability of treatment weighting for survival data". In: Statistics in Medicine (2005).

Appendix

RMST and survival probability

Why
$$\theta_{RMST}(\tau) = E[\min(T(1), \tau) - \min(T(0), \tau)]$$
 and $\theta_{RMST}(\tau) = \int_0^{\tau} (S_1(t) - S_0(t)) dt$ are equal ? $E(T \wedge \tau) = E(\int_0^{T \wedge \tau} 1 dt) = E(\int_0^{\tau} I\{T > t\} dt) = \int_0^{\tau} E(I\{T > t\}) dt = \int_0^{\tau} S(t) dt$

Non adjusted Kaplan meier

$$\begin{array}{l} \theta_{\mathit{RMST}} = \mathbb{E}[T(1) \wedge \tau - T(0) \wedge \tau] \\ = \int_0^\tau \mathbb{E}[I\{T(1) > t\} - I\{T(0) > t\}] dt & \text{(By definition)} \\ = \int_0^\tau \mathbb{E}[I\{T(1) > t\}] - \mathbb{E}[I\{T(0) > t\}] dt & \text{(By linearity)} \\ = \int_0^\tau \mathbb{E}[I\{T(1) > t | A = 1\}] - \mathbb{E}[I\{T(0) > t | A = 0\}] dt & \text{(Random treatment assignment of the problem)} \\ = \int_0^\tau \mathbb{E}[I\{T > t | A = 1\}] - \mathbb{E}[I\{T > t | A = 0\}] dt & \text{(By consistency)} \\ = \int_0^\tau \mathbb{P}(T > t | A = 1) - \mathbb{P}(T > t | A = 0) dt \\ = \int_0^\tau S(t | A = 1) - S(t | A = 0) dt \end{array}$$

IPCW Kaplan meier

$$\begin{split} \theta_{RMST} &= \mathbb{E}[T(1) \wedge \tau - T(0) \wedge \tau] \\ &= \int_{0}^{\tau} \mathbb{E}[I\{T(1) > t\}] - \mathbb{E}[I\{T(0) > t\}] dt \\ &= \int_{0}^{\tau} \mathbb{E}\left[\mathbb{E}[I\{T > t\} | A = 1, X]\right] - \mathbb{E}\left[\mathbb{E}[I\{T > t\} | A = 0, X]\right] \\ &= \int_{0}^{\tau} \mathbb{E}\left[\frac{\mathbb{E}[I\{T > t | A = 1, X\}] * \mathbb{E}[I\{T \wedge \tau < C | A = 1, X\}]}{S_{c}(T(1) \wedge \tau | X, A = 1)}\right] - \\ &\mathbb{E}\left[\frac{\mathbb{E}[I\{T > t | A = 0, X\}] * \mathbb{E}[I\{T \wedge \tau < C | A = 0, X\}]}{S_{c}(T(0) \wedge \tau | X, A = 0)}\right] dt \\ &= \int_{0}^{\tau} \mathbb{E}\left[\frac{\mathbb{E}[I\{T > t | A = 1, X\} * I\{T \wedge \tau < C | A = 1, X\}]}{S_{c}(T \wedge \tau | X, A = 1)}\right] - \\ &\mathbb{E}\left[\frac{\mathbb{E}[I\{T > t | A = 0, X\} * I\{T \wedge \tau < C | A = 0, X\}]}{S_{c}(T \wedge \tau | X, A = 0)}\right] dt \\ &= \int_{0}^{\tau} \mathbb{E}\left[\frac{I\{T > t | A = 1\} * \Delta^{\tau}}{S_{c}(T \wedge \tau | X, A = 0)}\right] - \mathbb{E}\left[\frac{I\{T > t | A = 0\} * \Delta^{\tau}}{S_{c}(T \wedge \tau | X, A = 0)}\right] dt \end{split}$$

IPTW Kaplan meier

$$\theta = \mathbb{E}[T(1) \land \tau - T(0) \land \tau]$$

$$= \int_{0}^{\tau} \mathbb{E}[I\{T(1) > t\}] - \mathbb{E}[I\{T(0) > t\}]dt$$
(By linearity)
$$= \int_{0}^{\tau} \mathbb{E}\left[\mathbb{E}[I\{T(1) > t\} | X]\right] - \mathbb{E}\left[\mathbb{E}[I\{T(0) > t\} | X]\right]$$
(Law of total probability and Consistency)
$$= \int_{0}^{\tau} \mathbb{E}\left[\frac{\mathbb{E}[I\{T(1) > t] X]\right] * \mathbb{E}[A|X\}}{e(X)} - \mathbb{E}\left[\frac{\mathbb{E}[I\{T(0) > t|X\}] * \mathbb{E}[1 - A|X\}]}{1 - e(X)}\right]dt$$
(In color, the terms are equal)
$$= \int_{0}^{\tau} \mathbb{E}\left[\frac{\mathbb{E}[I\{T(1) > t\} * A|X\}}{e(X)}\right] - \mathbb{E}\left[\frac{\mathbb{E}[I\{T(0) > t\} * (1 - A)|X]]}{1 - e(X)}\right]dt$$
(By unconfoundedness)
$$= \int_{0}^{\tau} \frac{\mathbb{E}[I\{T(1) > t\} * A]}{e(X)} - \frac{\mathbb{E}[I\{T(0) > t\} * (1 - A)]}{1 - e(X)}dt$$
(Law of total probability)
$$= \int_{0}^{\tau} \frac{\mathbb{E}[I\{T(1) > t|A = 1\} * A]}{e(X)} - \frac{\mathbb{E}[I\{T(0) > t|A = 0\} * (1 - A)]}{1 - e(X)}dt$$

$$= \int_{0}^{\tau} \frac{\mathbb{E}[I\{T > t|A = 1\} * A]}{e(X)} - \frac{\mathbb{E}[I\{T(0) > t|A = 0\} * (1 - A)]}{1 - e(X)}dt$$
(By consistency)
$$= \int_{0}^{\tau} \rho(T \ge t|A = 1) * \left(\frac{A}{e(X)}\right) - \rho(T \ge t|A = 0) * \left(\frac{1 - A}{1 - e(X)}\right)dt$$

RCTs simulations

For the simulation, 2000 samples $(X_i, A_i, C, T_i(0), T_i(1))$ are generated in the following way:

-
$$X \sim \mathcal{N}\left(\mu = [1, 1, -1, 1]^{\top}, \Sigma = I_4\right)$$

- e(X) = 0.5 (constant) for the propensity score (A)
- $\lambda(0)(X) = 0.01 \cdot \exp{\{0.5X_1 + 0.5X_2 0.5X_3 + 0.5X_4\}}$ hazard for the event time $\mathcal{T}(0)$
- The hazard for the censoring time C:
 - For scenario $1:\lambda_c=0.09$.
 - For scenario $2:\lambda_c(X) = 0.03 \cdot \exp\{0.1X_1 + 0.1X_2 0.2X_3 0.2X_4\}.$
- -T(1) = T(0) + 10
- the event time is T = AT(1) + (1 A)T(0)
- The observed time is $\widetilde{T} = \min(T, C)$
- The status is $\Delta = 1(T \leq C)$

Obs simulations

For the simulation, 2000 samples $(X_i, A_i, C, T_i(0), T_i(1))$ are generated in the following way:

- $X \sim \mathcal{N}\left(\mu = [1, 1, -1, 1]^{\top}, \Sigma = \mathit{I}_{4}\right)$
- logit $\{e(X)\}=-1X_1-0.5X_2+2X_3+1X_4$ for the propensity score (A)
- $\lambda(0)(X)=0.1\cdot\exp\left\{0.5X_1-0.1X_2+0.3X_3+0.2X_4\right\}$ hazard for the event time $\mathcal{T}(0)$
- The hazard for the censoring time C:
 - For scenario $1:\lambda_c=0.09$.
 - For scenario $2:\lambda_c(X) = 0.03 \cdot \exp\{0.1X_1 + 0.1X_2 0.2X_3 0.2X_4\}.$
- -T(1) = T(0) + 10
- the event time is T = AT(1) + (1 A)T(0)
- The observed time is $\widetilde{T} = \min(T, C)$
- The status is $\Delta = 1(T \leq C)$

Good specification of nuisance model: RCT + independent censoring

- All estimators converge except 'naive'
- Convergence starting from 2,000 observations
- Small bias even for small sample size
- The best estimators (smaller variance + smaller bias at small sample size) is AIPCW-AIPTW estimator

Figure 5: Boxplot of RMST estimation in the context of RCT and independent

Good specification of nuisance model

- 'Naive' is still biased
- Estimators without inverse propensity weighting are biased
 KM, IPCW KM.
- Causal survival forest is biased also (too small sample size)
- G-formula seems to be the best estimator

Figure 6: Boxplot of RMST estimation in the context of Observational study and independent censoring for 150 simulations ($\tau = 25$)