т. е. имеет место равенство (8.37). К этому можно лишь добавить, что из существования предела $\lim_{x \to x_0} \psi(x) = 1$ следует, что окрестность $U = U(x_0)$ можно выбрать таким образом, что для всех точек $x \in X \cap U$ будет выполняться неравенство $\psi(x) \neq 0$, а из существования по множеству X предела $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ следует, что окрестность U может быть выбрана еще и так, что для всех $x \in X \cap U$ будет выполняться неравенство $g(x) \neq 0$, так как частное $\frac{f(x)}{g(x)}$ должно быть определено на пересечении $X \cap U$ множества X с некоторой окрестностью U точки x_0 . Поэтому все написанные выше выражения имеют смысл. \square

Обе части равенства (8.37) равноправны, поэтому из доказанной теоремы следует, что предел, стоящий в левой части, существует тогда и только тогда, когда существует предел в правой части, причем в случае их существования они совпадают. Это делает очень удобным применение теоремы 2 на практике: ее можно использовать для вычисления пределов, не зная заранее, существует или нет рассматриваемый предел.

8.4. Метод выделения главной части функции и его применение к вычислению пределов

Пусть заданы функции $\alpha: X \to \mathbf{R}$ и $\beta: X \to \mathbf{R}$. Если функция β для всех $x \in X$ представима в виде

$$\beta(x) = \alpha(x) + o(\alpha(x)), x \to x_0,$$

то функция α называется *главной частью* функции β при $x \to x_0$.

Примеры. 1. Главная часть функции $\sin x$ при $x \to 0$ равна x, ибо $\sin x = x + o(x)$ при $x \to 0$.

2. Если $P_n(x) = a_n x^n + \ldots + a_1 x + a_0, \ a_n \neq 0$, то функция $a_n x^n$ является главной частью многочлена $P_n(x)$ при $x \to \infty$, так как $P_n(x) = a_n x^n + o(x^n)$ при $x \to \infty$.

Если задана функция β : $X \to R$, то ее главная часть при $x \to x_0$ не определяется однозначно: согласно теореме 1, любая функция α , эквивалентная β при $x \to x_0$, является ее главной частью при $x \to x_0$.

Например, пусть $\beta = x + x^2 + x^3$. Так как, с одной стороны, $x^2 + x^3 = o(x)$ при $x \to 0$, то $\beta = x + o(x)$ при $x \to 0$, а с другой стороны, $x^3 = o(x + x^2)$ при $x \to 0$, поэтому

$$\beta = x + x^2 + o(x + x^2)$$
 при $x \to 0$.

В первом случае главной частью можно считать $\alpha = x$, во втором $\alpha = x + x^2$. Однако если задаваться определенным видом главной части, то при его разумном выборе можно добиться того, что главная часть указанного вида будет определена однозначно.

В частности, справедлива следующая лемма.

ЛЕММА 5. Пусть $X \subseteq R$, $x_0 \in R$ и x_0 — предельная точка множества X. Если функция $\beta: X \to R$ обладает при $x \to x_0$ главной частью вида $A(x-x_0)^k$, $A \neq 0$, где A и k — постоянные, то среди всех главных частей такого вида она определяется единственным образом.

Действительно, пусть при $x \to x_0$

$$\beta(x) = A(x - x_0)^k + o((x - x_0)^k), A \neq 0,$$

И

$$\beta(x) = A_1(x - x_0)^{k_1} + o((x - x_0)^{k_1}), A_1 \neq 0.$$

Тогда $\beta(x)\sim A(x-x_0)^k$ и $\beta(x)\sim A_1(x-x_0)^{k_1}$ при $x\to x_0,\ x\in X.$ Поэтому $A(x-x_0)^k\sim A_1(x-x_0)^{k_1},\ x\to x_0,\ x\in X,$ т. е.

$$1 = \lim_{x \to x_0} \frac{A(x - x_0)^k}{A_1(x - x_0)^{k_1}} = \frac{A}{A_1} \lim_{x \to x_0} (x - x_0)^{k - k_1},$$

что справедливо лишь в случае $A=A_1$ и $k=k_1$. \square

Понятие главной части функции полезно при изучении бесконечно малых и бесконечно больших и с успехом используется при решении разнообразных задач математического анализа. Довольно часто удается бесконечно малую

сложного аналитического вида заменить в окрестности данной точки с точностью до бесконечно малых более высокого порядка более простой (в каком-то смысле) функцией. Например, если $\beta(x)$ удается представить в виде $\beta(x) = A(x-x_0)^k + o((x-x_0)^k)$, то это означает, что с точностью до бесконечно малых более высокого порядка, чем $(x-x_0)^k$ при $x \to x_0$, бесконечно малая $\beta(x)$ ведет себя в окрестности точки x как степенная функция $A(x-x_0)^k$.

Покажем на примерах, как метод выделения главной части бесконечно малых применяется к вычислению пределов функций. При этом будем широко использовать полученные соотношения эквивалентности (8.26).

Пусть требуется найти предел (а значит, и доказать, что он существует)

$$\lim_{x \to 0} \frac{\ln(1+x+x^2) + \arcsin 3x - 5x^3}{\sin 2x + \tan^2 x + (e^x - 1)^5}.$$

Используя доказанную выше (см. соотношения (8.26)) эквивалентность $\ln(1+u) \sim u$ при $u \to 0$, имеем $\ln(1+x+x^2) \sim x+x^2$ при $x\to 0$, поэтому (см. теорему 1) $\ln(1+x+x^2)=x+x^2+o(x+x^2)$. Однако $o(x+x^2)=o(x)$ (почему?) и $x^2=o(x)$ при $x\to 0$, следовательно,

$$\ln (1 + x + x^2) = x + o(x)$$
 при $x \to 0$.

Далее, $\arcsin 3x \sim 3x$, поэтому

$$\arcsin 3x = 3x + o(3x) = 3x + o(x).$$

Очевидно также, что $5x^3=o(x)$. Из асимптотического равенства $\sin 2x \sim 2x$ получаем

$$\sin 2x = 2x + o(2x) = 2x + o(x),$$

из $tg^2 x \sim x^2$ будем иметь

$$tg^2 x = x^2 + o(x^2) = o(x),$$

а из $(e^x - 1)^5 \sim x^5$, аналогично,

$$(e^x - 1)^5 = x^5 + o(x^5) = o(x).$$