(a) To do this, we build a graph H as follows. H has the same nodes as all the G_i , and it consists precisely of those edges that occur in every one of G_0, \ldots, G_b . In this graph H, we simply perform breadth-first search to find the shortest path from s to t (if any s-t path exists).

Note that this idea, generalized to any sequence of graphs G_i, \ldots, G_j , will be useful in part (b).

(b) We are given graphs G_0, \ldots, G_b . While trying to find the last path P_b , we have several choices. If G_b contains P_{b-1} , then we may use P_{b-1} , adding $l(P_{b-1})$ to the cost function (but not adding the cost of change K.) Another option is to use the shortest s-t path, call it S_b , in G_b . This adds $l(S_b)$ and the cost of change K to the cost function. However, we may want to make sure that in G_{b-1} we use a path that is also available in G_b so we can avoid the change penalty K. This effect of G_b on the earlier part of the solution is hard to anticipate in a greedy-type algorithm, so we'll use dynamic programming.

We will use subproblems Opt(i) to denote minimum cost of the solution for graphs G_0, \ldots, G_i .

To compute Opt(n) it seems most useful to think about where the last changeover occurs. Say the last changeover is between graphs G_i and G_{i+1} . This means that we use the path P in graphs G_{i+1}, \ldots, G_b , hence the edges of P must be in every one of these graphs.

Let G(i,j) for any $0 \le i \le j \le b$ denote the graph consisting of the edges that are common in G_i, \ldots, G_j ; and let $\ell(i,j)$ be the length of the shortest path from s to t in this graph (where $\ell(i,j) = \infty$ if no such path exists).

If the last change occurs between graphs G_i and G_{i+1} then we get that $Opt(b) = Opt(i) + (b-i)\ell(i+1,b) + K$. We have to deal separately with the special case when there are no changes at all. In that case $Opt(b) = (b+1)\ell(0,b)$.

So we get argued that Opt(b) can be expressed via the following recurrence:

$$Opt(b) = \min[(b+1))\ell(0,b), \min_{1 \le i \le b} Opt(i) + (b-i)\ell(i+1,b) + K].$$

Our algorithm will first compute all G(i,j) graphs and $\ell(i,j)$ values for all $1 \le i \le j \le b$. There are $O(b^2)$ such pairs and to compute one such subgraph can take $O(n^2b)$ time, as there are up to $O(n^2)$ edges to consider in each of at most b graphs. We can compute the shortest path in each graph in linear time via BFS. This is a total of $O(n^2b^3)$ time, polynomial but really slow. We can speed things up a bit to $O(b^2n^2)$ by computing the graphs G(i,j) and $\ell(i,j)$ for a fixed value of i in order of $j=i\ldots b$.

Once we have precomputed these values the algorithm to compute the optimal values is simple and takes only $O(b^2)$ time. We will use M[0...b] to store the optimal values.

For i=0,...,b
$$M[i]=\min((i+1)\ell(0,i);\min_{1\leq j< i}M[j]+(i-j)\ell(j+1,i))$$
 EndFor

 $^{^{1}}$ ex377.520.504