Lab: Differential Expression via RNA-Seq Analysis

Genomic Technologies Workshop 2022 (PLPTH885)

Sanzhen Liu

6/8/2022

Outline

- Differential expression test using DESeq2
- Result visualization
- GO enrichment test

Course webpage

RNA-seq DE analysis

Lab co-teacher

Dr. Guifang Lin

OnDemand at Beocat

ondemand

login with eID

Select RStudio

Request resources

R version	
4.0.0 (foss-2020a)	~
This defines the version of R you want to load.	
Number of hours	
3	
Number of cores	
1	
Amount of memory	
32	
The amount of memory (in GB) needed for the whole job	
Job Type	
normal	~

Connect to RStudio

Rstudio interface

Package installation

```
if (!require("BiocManager", quietly=T))
  install.packages("BiocManager")
# to solve a version issue, install matrixStats to update the version
# suggested by Adam Tygart from Beocat
install.packages("matrixStats", repos="http://cran.us.r-project.org")
##
## The downloaded binary packages are in
       /var/folders/rk/s3y6c45d20g5y41nv62hysy40000gp/T//RtmpM6ZgPs/downloade
##
if (!require("DESeq2", quietly=T))
  BiocManager::install("DESeq2") # DESeq2
if (!require("goseq", quietly=T))
  BiocManager::install("goseq") # GOSeq
if (!require("GO.db", quietly=T))
  BiocManager::install("GO.db", force=T) # GO.db
```

preload modules

```
data_url <- "https://raw.githubusercontent.com/liu3zhenlab/teaching/r
pls <- paste0(data_url, "/utils/load.R")
source(pls)</pre>
```

- panel.cor2
- rnaseq.pca
- normalization

codes

Read expression data (Read counts per gene)

```
rc <- paste0(data_url, "/data/rc.txt")
grc <- read.delim(rc)
nrow(grc) # the number of rows/lines</pre>
```

[1] 22697

first entry:

Gene	ExonSize	ck_rep1	ck_rep2	ck_rep3	trt_rep1	trt_rep2	trt_rep
AC147602.5_FG004	483	5480	6075	5934	3370	5784	643

last entry:

	Gene	ExonSize	ck_rep1	ck_rep2	ck_rep3	trt_rep1	trt_rep2 t
22697	GRMZM5G899985	615	267	327	348	83	342

RPKM normalization

Gene	ExonSize	ck_rep1	ck_rep2	ck_rep3	trt_rep1	trt_rep2	trt_rep
AC147602.5_FG004	483	5480	6075	5934	3370	5784	643
AC148152.3_FG005	1422	187	295	377	169	158	56

data organization for DESeq2

• count information

```
geneid <- grc$Gene
in.data <- as.matrix(grc[, 3:8])</pre>
```

ck_rep1	ck_rep2	ck_rep3	trt_rep1	trt_rep2	trt_rep3
5480	6075	5934	3370	5784	6432

sample names and grouping information (treatment)

```
sample.ids <- colnames(in.data)
treatment <- c("ck", "ck", "ck", "trt", "trt", "trt")
sample.info <- data.frame(row.names=sample.ids, trt=treatment)</pre>
```

```
ck_rep1 ck
ck_rep2 ck
ck_rep3 ck
trt_rep1 trt
trt_rep2 trt
trt_rep3 trt
```

Differential expression test

DE output

```
res <- results(object = dds)
res <- data.frame(res)
res$Gene <- geneid
res <- res[,c("Gene","baseMean","log2FoldChange","pvalue","padj")]
nrow(res)</pre>
```

[1] 22697

DE + normalized data

```
### Merge the normalized result with the DE result
out <- merge(grcn, res, by = "Gene")
out <- data.frame(out)</pre>
```

Gene	ExonSize	ck_rep1 o	ck_rep2	ck_rep3	trt_rep1	trt_rep	2
AC147602.5_FG004	483	5480	6075	5934	3370	578	34
AC148152.3_FG005	1422	187	295	377	169	15	8
trt_rep3 ck_rep3	l.RPKM ck_	rep2.RPK	M ck_re	p3.RPKM	trt_rep1	.RPKM	
6432	854.123	895.76	60	904.373	Į	567.493	
563	9.900	14.77	75	19.516		9.666	
trt_rep2.RPKM ti	t_rep3.RPK	M baseMe	ean log2	2FoldChai	nge pv	alue	
915.326	916.97	71 5441.6	579	-0.1490	702 0.464	2180 0	.80
8.493	27.26	285.54	493	0.0431	574 0.925	8171 0	.98

significant gene sets at different FDRs

```
sum(!is.na(out$padj) & out$padj < 0.05)</pre>
```

[1] 1261

problem

Please revise the code to calculate the number of significant genes with the FDR smaller than 10% and 15%?

significantly DEG

```
sig <- out[!is.na(out$padj) & out$padj < 0.05, ]</pre>
```

p-value histogram

```
pvals <- out$pvalue
hist(pvals, main="Histogram",xlab="p-values",ylab="Number of genes")</pre>
```


problem

Please modify the plot code to change the figure title to "DE"

scatter plot - raw counts

scatter plot - RPKM

log of RPKM

pair-wise scatter plots

```
logrpkm <- log(out[, 9:14])
pairs(logrpkm, lower.panel=panel.smooth, upper.panel=panel.cor2)</pre>
```


Principal Component Analysis (PCA)

PCA is a mathematical algorithm that reduces the dimensionality of the data while retaining most of the variation in the data set.

Control			Tr	eatme	nt
Rep1	Rep2	Rep3	Rep1	Rep2	Rep3
2679	2360	2573	2563	3398	3012
177	161	171	154	137	152
381	371	397	541	723	635
990	1073	1236	850	672	859
	Rep1 2679 177 381	Rep1 Rep2 2679 2360 177 161 381 371	Rep1 Rep2 Rep3 2679 2360 2573 177 161 171 381 371 397	Rep1 Rep2 Rep3 Rep1 2679 2360 2573 2563 177 161 171 154 381 371 397 541	Rep1 Rep2 Rep3 Rep1 Rep2 2679 2360 2573 2563 3398 177 161 171 154 137 381 371 397 541 723

Normalized and standardized data

function / module

You can write your own function: fun_name <- function (...) { ... }

```
gpa_improve <- function(gpa, rate) {</pre>
### gpa: a numeric vector for GPAs
### rate: percentage for the improvement
    new.gpa <- gpa * (1 + rate)
    new.gpa[new.gpa > 4] <- 4</pre>
    return(new.gpa)
### running the function
our.gpa \leftarrow c(3.8, 3.3, 2.8, 3.1)
gpa_improve(our.gpa, 0.1)
[1] 4.00 3.63 3.08 3.41
gpa_improve(our.gpa, 0.2)
[1] 4.00 3.96 3.36 3.72
```

PCA function

principal component analysis and ploting

```
rnaseq.pca <- function(norm.data,
    norm.feature="RPKM",
        group.feature,
        title="",
    shape.code=NULL,
        mean.cutoff=0.1,
        colors=NULL,
        scaling=T, ...) {
        ...
}</pre>
```

PCA plotting

MA plot

Volcano plot

Gene ontology (GO) enrichment analysis

- a gene and GO association table
- a list of all genes
- a list of significant genes
- mean or total gene read counts per gene (optional)

GOSeq (I)

```
gdbf=paste0(data_url, "/data/go.txt")
godb <- read.delim(gdbf)
geneid <- as.character(out$Gene) # gene vector
# a vector to indicate if the gene is DE (0 or 1)
de.vector <- as.integer(!is.na(out$padj) & out$padj < 0.05)
names(de.vector) <- geneid
countbias <- out$baseMean # total raw reads per gene
# bias fitting
pwf.counts <- nullp(DEgenes=de.vector, bias.data=countbias)</pre>
```


GOSeq (II)

	208
category	GO:0004175
over_represented_pvalue	0.000999001
under_represented_pvalue	1
numDEInCat	16
numInCat	31
term	endopeptidase activity
ontology	MF

```
example.go <- GOTERM[["GO:0004175"]] # GO information
Definition(example.go) # return GO definition</pre>
```

[1] "Catalysis of the hydrolysis of internal, alpha-peptide bonds in a polype

Summary of the analyzing procedure

- 1. Read counts per gene
- 2. DE analysis based on the experimental design
- 3. Examine results (p-value distribution, number of significant genes)
- 4. Gene Ontology enrichment test

DESeq2 tutorial

Contact information

Sanzhen Liu Plant Pathology 4729 Throckmorton Plant Sciences Center Manhattan, KS 66506-5502 phone: 785-532-1379

liu3zhen@ksu.edu twitter: liu3zhen

Bioinformatics Applications

PLPTH813, Spring 2022