

* S(t) and S[n] are even functions. 8(+) = 8(-+)S[n] = S[-n] $\int x(+) S(t-t_0) dt = x(t_0)$ (*) $\sum_{n=-\infty}^{+\infty} \chi[j \dot{s}[r-n_{\bullet}] = \chi(n_{\bullet})$ * Time-s_a inc property $\delta(\alpha -) = \frac{1}{\alpha} \delta(+) , \alpha > 0$ $\lim_{\Delta \to 0} \chi_{\Delta}(+) = \delta(+)$ $\frac{1}{\Delta} = \frac{1}{\Delta} = \frac{1}$ 4) Ramp Function CT Unit ramp function sl = Pe = 1 $r(t) = \begin{cases} t, t > 0 \end{cases}$ $r[n] = n \cdot \upsilon(n)$ $r(+) = + \cdot \upsilon(+)$ (5) Sinusoidal Signals. $x(t) = H \cdot \cos(\omega t + \emptyset)$ amplitude angular phase (rad) (rad/sec) angle (rad) CT sinusoidal signals are periodic. Period $T = \frac{2 \pi}{\omega}$ $\times [n] = H \cdot \cos(-\pi n + \emptyset)$ f(equency) amplitude ansle07. DT sinusoidal signals MA7 or MA7 NOT be periodic. In order for x[n] to be periodic there must be an integer N which satisfy the following for all n $x[n] = x[n + N] \forall n$ $2[n + N] = A \cdot cos(-2n + [2N] + \beta)$ x = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) + b = cos(a) x = cos(a) + b = cos(a) + b = cos(a) + b = cos(a)IN must be an integer multiple of $\left(-2N = 2 \times m \quad m \in \mathbb{Z}^+ \right)$ Ther should at least be one (m, N) integer pairs in order for x [n] to be Periodic. $n = 2\pi \left(\frac{m}{N}\right)$ EX x[n] = sin[5xn] $-n = 5\pi$ $-n = 5\pi$ -n =The equation is satisfied. x[n] = sin [2n] $\mathcal{L}=2 \qquad 2=2\pi \cdot \left(\frac{m}{N}\right)$ we cannot find an intege pair (m, N) that satisfies the equation. So, 2 [n] is NOT periodic. Relation Between Sinusoidal and Complex Exponential Signals. Euler's Identity Re $e^{i\theta} = \cos \theta + i \sin \theta$ $x(t) = A \cdot e^{iwt}$ $= A \left[\cos \left(\omega t \right) + j \sin \left(\omega t \right) \right]$ $Re\{x(+)\} = A - \cos(w+)$ Im {x(+)} = A - sin (w+) \times [n] = A e^{j-2}n DT Re{x[n]}= A cos (-1.n) Im { x[n]}= A sin (-2n) Exponentially Damped Sinusidal Signal $x(+) = A e^{-\alpha t} \sin(\omega t + \phi)$ A/Am <>0