

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

FORMUŁA OD 2015 ("NOWA MATURA")

MATEMATYKA POZIOM ROZSZERZONY

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R1

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

Zadanie 1. (0-1)

Wymagania ogólne	Wymagania szczegółowe	Poprawna odp. (1 p.)
II. Wykorzystanie i interpretowanie reprezentacji.	1. Liczby rzeczywiste. Zdający wykorzystuje pojęcie wartości bezwzględnej i jej interpretację geometryczną, zaznacza na osi liczbowej zbiory opisane za pomocą równań i nierówności typu: $ x-a =b$, $ x-a >b$, $ x-a < b$ (R1.1).	D

Zadanie 2. (0-1)

II. Wykorzystanie	3. Równania i nierówności. Zdający rozwiązuje	
i interpretowanie	równania i nierówności z wartością	A
reprezentacji.	bezwzględną (R3.9).	

Zadanie 3. (0-1)

II. Wykorzystanie	2. Wyrażenia algebraiczne. Zdający używa	
i interpretowanie	wzorów skróconego mnożenia na $(a\pm b)^3$ oraz	C
reprezentacji.	$a^3 \pm b^3$ (R2.1).	

Zadanie 4. (0-1)

II. Wykorzystanie i interpretowanie reprezentacji.	6. Trygonometria. Zdający rozwiązuje równania i nierówności trygonometryczne (R6.6).	A
--	--	---

Zadanie 5. (0-1)

II. Wykorzystanie i interpretowanie reprezentacji.	8. Geometria na płaszczyźnie kartezjańskiej. Zdający oblicza odległość punktu od prostej (R8.4).	В	
--	--	---	--

Zadanie 6. (0-2)

Oblicz granicę $\lim_{n\to\infty} \left(\frac{11n^3 + 6n + 5}{6n^3 + 1} - \frac{2n^2 + 2n + 1}{5n^2 - 4} \right)$. W poniższe kratki wpisz kolejno cyfrę jedności i pierwsze dwie cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

II. Wykorzystanie i interpretowanie reprezentacji.

5. Ciągi. Zdający oblicza granice ciągów, korzystając z granic ciągów typu $\frac{1}{n}$, $\frac{1}{n^2}$ oraz z twierdzeń o działaniach na granicach ciągów (R5.2).

Odpowiedź

Zadanie 7. (0-2)

Liczby (-1) i 3 są miejscami zerowymi funkcji kwadratowej f. Oblicz $\frac{f(6)}{f(12)}$.

II. Wykorzystanie i interpretowanie reprezentacji.

4. Funkcje. Zdający interpretuje współczynników występujących we wzorze funkcji kwadratowej w postaci kanonicznej, w postaci ogólnej i w postaci iloczynowej (4.10).

Rozwiązanie (I sposób)

Zapisujemy trójmian kwadratowy w postaci iloczynowej

$$f(x) = a(x+1)(x-3)$$
, gdzie $a \neq 0$.

Stąd zaś wynika, że

$$\frac{f(6)}{f(12)} = \frac{a \cdot 7 \cdot 3}{a \cdot 13 \cdot 9} = \frac{7}{39} .$$

Schemat oceniania

Zdający otrzymuje......1 p.

gdy wykorzysta postać iloczynową funkcji kwadratowej i zapisze $f(6) = a \cdot 7 \cdot 3$ lub $f(12) = a \cdot 13 \cdot 9$ i na tym zakończy lub dalej popełni błędy.

Zdający otrzymuje......2 p.

gdy obliczy wartość $\frac{f(6)}{f(12)} = \frac{7}{39}$.

Rozwiązanie (II sposób)

Z wzorów Viète'a otrzymujemy $-\frac{b}{a} = 2$ oraz $\frac{c}{a} = -3$. Stąd b = -2a oraz c = -3a. Wzór funkcji f możemy zapisać w postaci $f(x) = ax^2 - 2ax - 3a$. Obliczamy wartości funkcji dla argumentów 6 i 12

$$f(6) = 36a - 12a - 3a = 21a$$
 oraz $f(12) = 144a - 24a - 3a = 117a$.

Zatem
$$\frac{f(6)}{f(12)} = \frac{21a}{117a} = \frac{7}{39}$$
.

Schemat oceniania

Zdający otrzymuje 1 p. gdy wykorzysta wzory Viète'a i zapisze f(6) = 36a - 12a - 3a lub f(12) = 144a - 24a - 3a i na tym zakończy lub dalej popełni błędy.

Zadanie 8. (0-3)

Udowodnij, że dla każdej liczby rzeczywistej x prawdziwa jest nierówność

$$x^4 - x^2 - 2x + 3 > 0$$
.

	2. Wyrażenia algebraiczne. Zdający dodaje, odejmuje, mnoży
V. Rozumowanie	i dzieli wyrazenia wymierne; rozszerza i (w łatwych
i argumentacja	przykładach) skraca wyrażenia wymierne; używa wzory
	skróconego mnożenia na $(a \pm b)^2$, $a^2 - b^2$. (R2.6, 2.1).

Rozwiązanie (I sposób)

Przekształćmy nierówność równoważnie w następujący sposób

$$x^4 - 2x^2 + 1 + x^2 - 2x + 1 + 1 > 0$$
,
 $(x^2 - 1)^2 + (x - 1)^2 + 1 > 0$.

Lewa strona tej nierówności jest sumą trzech składników, z których dwa pierwsze są nieujemne, a trzeci dodatni, więc suma ta jest dodatnia dla każdej liczby rzeczywistej x.

Schemat oceniania I sposobu rozwiązania

gdy zapisze nierówność w postaci: $(x^2-1)^2+(x-1)^2+1>0$ i nie uzasadni prawdziwości tej nierówności.

Rozwiązanie (II sposób)

Przekształćmy nierówność równoważnie w następujący sposób

$$x^{4} - x^{2} - 2x + 2 + 1 > 0,$$

$$x^{2} (x^{2} - 1) - 2(x - 1) + 1 > 0,$$

$$x^{2} (x - 1)(x + 1) - 2(x - 1) + 1 > 0,$$

$$(x - 1)(x^{2} (x + 1) - 2) + 1 > 0,$$

$$(x - 1)(x^{3} + x^{2} - 2) + 1 > 0,$$

$$(x - 1)(x^{3} - x^{2} + 2x^{2} - 2) + 1 > 0,$$

$$(x - 1)(x^{2} (x - 1) + 2(x^{2} - 1)) + 1 > 0,$$

$$(x - 1)(x^{2} (x - 1) + 2(x - 1)(x + 1)) + 1 > 0,$$

$$(x - 1)^{2} (x^{2} + 2(x + 1)) + 1 > 0,$$

$$(x - 1)^{2} (x^{2} + 2x + 1 + 1) + 1 > 0,$$

$$(x - 1)^{2} ((x + 1)^{2} + 1) + 1 > 0.$$

Ponieważ $(x-1)^2 \ge 0$ oraz $(x+1)^2 + 1 > 0$ dla każdej liczby rzeczywistej x, więc iloczyn $(x-1)^2 \left((x+1)^2 + 1\right)$ jest nieujemny. Stąd wynika, że lewa strona nierówności jest dodatnia dla każdej liczby rzeczywistej x.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje......3 p. gdy przeprowadzi pełne rozumowanie.

Rozwiązanie (III sposób)

Rozważmy wielomian $f(x) = x^4 - x^2 - 2x + 3$.

Pochodna tego wielomianu jest równa $f'(x) = 4x^3 - 2x - 2$ dla każdej liczby rzeczywistej x. Ponieważ f'(1) = 4 - 2 - 2 = 0, więc wielomian f' jest podzielny przez dwumian x - 1. Wykorzystując schemat Hornera, otrzymujemy

	4	0	-2	-2
1	4	4	2	0

Zatem $f'(x) = (x-1)(4x^2+4x+2)$. Wyróżnik trójmianu kwadratowego $4x^2+4x+2$ jest równy $\Delta = 4^2 - 4 \cdot 4 \cdot 2 < 0$, współczynnik przy x^2 jest dodatni, więc $4x^2 + 4x + 2 > 0$ dla każdej liczby rzeczywistej x. Wynika stad, że f'(x) = 0 wtedy i tylko wtedy, gdy x = 1, f'(x) > 0 wtedy i tylko wtedy, gdy x > 1, f'(x) < 0 wtedy i tylko wtedy, gdy x < 1. To oznacza, że w punkcie x = 1 wielomian f osiąga minimum lokalne, które jest jednocześnie jego najmniejsza wartością, gdyż w przedziale $(-\infty,1)$ wielomian f jest funkcją malejącą, a w przedziale $\langle 1, +\infty \rangle$ rosnącą. Ponieważ $f(1) = 1^4 - 1^2 - 2 \cdot 1 + 3 = 1$, więc $f(x) \ge f(1) = 1 > 0$, czyli $x^4 - x^2 - 2x + 3 > 0$ dla każdej liczby rzeczywistej x. To kończy dowód. Schemat oceniania III sposobu rozwiązania gdy obliczy pochodną wielomianu $f(x) = x^4 - x^2 - 2x + 3$, zapisze, że liczba 1 jest pierwiastkiem pochodnej: $f'(x) = 4x^3 - 2x - 2$, f'(1) = 4 - 2 - 2 = 0. Zdający otrzymuje 2 p. gdy zapisze pochodną w postaci : $f'(x) = (x-1)(4x^2+4x+2)$ i zbada znak pochodnej, ale nie przeprowadzi rozumowania do końca lub przeprowadzi je z błędem.

Zdający otrzymuje 3 p.

gdy przeprowadzi pełne rozumowanie.

Zadanie 9. (0-3)

Dwusieczne czworokąta ABCD wpisanego w okrąg przecinają się w czterech różnych punktach: P, Q, R, S (zobacz rysunek).

Wykaż, że na czworokącie PQRS można opisać okrąg.

V. Rozumowanie	
i argumentacja.	

7. Planimetria. Zdający stosuje twierdzenia charakteryzujące czworokąty wpisane w okrąg i czworokąty opisane na okręgu (R7.1).

Rozwiązanie (I sposób)

Oznaczmy $| \langle BAP | = | \langle PAD | = \alpha \text{ oraz } | \langle CBP | = | \langle ABP | = \beta |$.

Ponieważ czworokąt ABCD jest wpisany w okrąg, więc

$$\left| \angle BCR \right| = \frac{180^{\circ} - 2\alpha}{2} = 90^{\circ} - \alpha \text{ oraz } \left| \angle ADR \right| = \frac{180^{\circ} - 2\beta}{2} = 90^{\circ} - \beta.$$

Zauważmy, że

$$\left| \sphericalangle AQD \right| = 180^{\circ} - \left(\left| \sphericalangle DAQ \right| + \left| \sphericalangle ADQ \right| \right) = 180^{\circ} - \left(\alpha + \left(90^{\circ} - \beta \right) \right) = 90^{\circ} - \alpha + \beta$$

oraz

$$\big| \sphericalangle BSC \big| = 180^{\circ} - \big(\big| \sphericalangle BCR \big| + \big| \sphericalangle CBP \big| \big) = 180^{\circ} - \big(\big(90^{\circ} - \alpha \big) + \beta \big) = 90^{\circ} + \alpha - \beta$$

Zatem

$$| \angle PQR | + | \angle PSR | = (90^{\circ} - \alpha + \beta) + (90^{\circ} + \alpha - \beta) = 180^{\circ}.$$

Suma wszystkich kątów czworokąta jest równa 360°, więc suma pozostałych dwóch kątów czworokąta *PQRS* także jest równa 180°. To oznacza, że na czworokącie *PQRS* można opisać okrąg, co kończy dowód.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie (II sposób)

Oznaczmy $| \langle BAP | = | \langle PAD | = \alpha \text{ oraz } | \langle CBP | = | \langle ABP | = \beta |$.

Ponieważ czworokąt ABCD jest wpisany w okrąg, więc

$$\left| \angle BCR \right| = \left| \angle DCR \right| = \frac{180^{\circ} - 2\alpha}{2} = 90^{\circ} - \alpha \text{ oraz } \left| \angle CDR \right| = \left| \angle ADR \right| = \frac{180^{\circ} - 2\beta}{2} = 90^{\circ} - \beta.$$

Zauważmy, że

$$| \ll SPQ | = | \ll APB | = 180^{\circ} - (| \ll ABP | + | \ll BAP |) = 180^{\circ} - (\alpha + \beta)$$

oraz

$$| \ll SRQ | = | \ll CRD | = 180^{\circ} - (| \ll DCR | + | \ll CDR |) = 180^{\circ} - ((90^{\circ} - \alpha) + (90^{\circ} - \beta)) = \alpha + \beta.$$

Zatem

$$| \langle SPQ | + | \langle SRQ | = 180^{\circ} - (\alpha + \beta) + \alpha + \beta = 180^{\circ}.$$

Suma wszystkich kątów czworokąta jest równa 360°, więc suma pozostałych dwóch kątów czworokąta *PQRS* także jest równa 180°. To oznacza, że na czworokącie *PQRS* można opisać okrag, co kończy dowód.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie (III sposób)

Oznaczmy: $| \langle BAP | = | \langle DAP | = \alpha, | \langle CBP | = | \langle ABP | = \beta, | \langle DCR | = | \langle BCR | = \gamma, | \langle ADR | = | \langle CDR | = \delta.$

Suma katów czworokata ABCD jest równa

$$2\alpha + 2\beta + 2\gamma + 2\delta = 360^{\circ}$$
.

Stad

(1)
$$\alpha + \beta + \gamma + \delta = 180^{\circ}.$$

Z bilansu katów w trójkatach ADQ i BCS otrzymujemy

$$| \angle AQD | = 180^{\circ} - (\alpha + \delta) \text{ oraz } | \angle BSC | = 180^{\circ} - (\beta + \gamma).$$

Suma przeciwległych kątów PQR i PSR czworokąta PQRS jest więc równa

$$| \angle PQR | + | \angle PSR | = 180^{\circ} - (\alpha + \delta) + 180^{\circ} - (\beta + \gamma) = 360^{\circ} - (\alpha + \beta + \gamma + \delta).$$

Stad i z (1) otrzymujemy

$$| \angle PQR | + | \angle PSR | = 360^{\circ} - 180^{\circ} = 180^{\circ}.$$

To oznacza, że suma pozostałych dwóch kątów czworokąta *PQRS* także jest równa 180°. Zatem na czworokącie *PQRS* można opisać okrąg. To kończy dowód.

Rozwiązanie (IV sposób)

Oznaczmy: $| \sphericalangle BAP | = | \sphericalangle DAP | = \alpha$, $| \sphericalangle CBP | = | \sphericalangle ABP | = \beta$, $| \sphericalangle DCR | = | \sphericalangle BCR | = \gamma$, $| \sphericalangle ADR | = | \sphericalangle CDR | = \delta$.

Suma katów czworokata ABCD jest równa

$$2\alpha + 2\beta + 2\gamma + 2\delta = 360^{\circ}$$
.

Stad

$$(1) \alpha + \beta + \gamma + \delta = 180^{\circ}.$$

Z bilansu katów w trójkatach ABP i CDR otrzymujemy

$$| \angle BPA | = 180^{\circ} - (\alpha + \beta) \text{ oraz } | \angle CRD | = 180^{\circ} - (\gamma + \delta).$$

Kąty BPA i SPQ są wierzchołkowe, podobnie jak kąty CRD i SRQ. Zatem

$$| \angle SPQ | = 180^{\circ} - (\alpha + \beta) \text{ oraz } | \angle SRQ | = 180^{\circ} - (\gamma + \delta).$$

Suma przeciwległych kątów SPQ i SRQ czworokąta PQRS jest więc równa

$$| \langle SPQ | + | \langle SRQ | = 180^{\circ} - (\alpha + \beta) + 180^{\circ} - (\gamma + \delta) = 360^{\circ} - (\alpha + \beta + \gamma + \delta).$$

Stąd i z (1) otrzymujemy

$$| \ll SPQ | + | \ll SRQ | = 360^{\circ} - 180^{\circ} = 180^{\circ}.$$

To oznacza, że suma pozostałych dwóch kątów czworokąta PQRS także jest równa 180° . Zatem na czworokącie PQRS można opisać okrąg. To kończy dowód.

Schemat oceniania III i IV sposobu rozwiązania

• że ich suma jest równa 360° : $2\alpha + 2\beta + 2\gamma + 2\delta = 360^{\circ}$

albo

• wyznaczy dwa przeciwległe kąty PQR i PSR czworokąta PQRS w zależności od α , β , γ i δ : $| \langle PQR | = 180^{\circ} - (\alpha + \delta)$, $| \langle PSR | = 180^{\circ} - (\beta + \gamma)$

albo

• wyznaczy dwa przeciwległe kąty *SPQ* i *SRQ* czworokąta *PQRS* w zależności od α , β , γ i δ : $| < SPQ | = 180^{\circ} - (\alpha + \beta)$, $| < SRQ | = 180^{\circ} - (\gamma + \delta)$.

• wyznaczy dwa przeciwległe kąty PQR i PSR czworokąta PQRS w zależności od α , β , γ i δ : $| \langle PQR | = 180^{\circ} - (\alpha + \delta)$, $| \langle PSR | = 180^{\circ} - (\beta + \gamma)$

albo

• wyznaczy dwa przeciwległe kąty SPQ i SRQ czworokąta PQRS w zależności od α , β , γ i δ : $| \langle SPQ | = 180^{\circ} - (\alpha + \beta)$, $| \langle SRQ | = 180^{\circ} - (\gamma + \delta)$.

Zadanie 10. (0-4)

Długości boków czworokąta ABCD są równe: |AB| = 2, |BC| = 3, |CD| = 4, |DA| = 5. Na czworokącie ABCD opisano okrąg. Oblicz długość przekątnej AC tego czworokąta.

IV. Użycie i tworzenie strategii.	7. Planimetria. Zdający stosuje twierdzenia charakteryzujące czworokąty wpisane w okrąg i czworokąty opisane na okręgu; znajduje związki miarowe w figurach płaskich z zastosowaniem twierdzenia sinusów i twierdzenia cosinusów (R7.1, R7.5).
-----------------------------------	--

Rozwiązanie (I sposób)

Przyjmijmy oznaczenia a = |AB| = 2, b = |BC| = 3, c = |CD| = 4, d = |DA| = 5, x = |AC|, $\alpha = | \not ABC|$ jak na rysunku.

Ponieważ na czworokącie ABCD jest opisany okrąg, więc $| \angle CDA | = 180^{\circ} - \alpha$.

Z twierdzenia cosinusów zastosowanego do trójkąta ABC otrzymujemy:

(1)
$$|AC|^2 = |AB|^2 + |BC|^2 - 2 \cdot |AB| \cdot |BC| \cdot \cos \alpha,$$

$$|AC|^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos \alpha.$$

Teraz ponownie zastosujemy twierdzenie cosinusów, tym razem do trójkąta ACD:

$$|AC|^{2} = |CD|^{2} + |DA|^{2} - 2 \cdot |CD| \cdot |DA| \cdot \cos(180^{\circ} - \alpha),$$

$$|AC|^{2} = 4^{2} + 5^{2} + 2 \cdot 4 \cdot 5 \cdot \cos \alpha.$$
(2)

Porównujemy prawe strony równań (1) i (2):

$$2^{2} + 3^{2} - 2 \cdot 2 \cdot 3 \cdot \cos \alpha = 4^{2} + 5^{2} + 2 \cdot 4 \cdot 5 \cdot \cos \alpha,$$

$$13 - 12 \cdot \cos \alpha = 41 + 40 \cdot \cos \alpha$$

$$\cos \alpha = -\frac{28}{52} = -\frac{7}{13}$$
.

Podstawiamy otrzymaną wartość do równania (1) i otrzymujemy:

$$|AC|^2 = 13 - 12 \cdot \left(-\frac{7}{13}\right) = 13 + \frac{84}{13} = \frac{169 + 84}{13} = \frac{253}{13}$$
.

Stąd wynika, że długość przekątnej AC jest równa:

$$|AC| = \sqrt{\frac{253}{13}}$$
.

Uwaga

Układ równań (1) i (2) możemy rozwiązać rugując $\cos \alpha$. Wtedy mnożymy obie strony równania (1) przez 10, a obie strony równania (2) przez 3 i mamy

$$10x^2 = 10.4 + 10.9 - 120 \cdot \cos \alpha$$
 oraz $3x^2 = 3.16 + 3.25 + 120 \cdot \cos \alpha$.

Dodajac stronami otrzymane równania mamy

$$13x^2 = 253$$
.

Stad

$$x = |AC| = \sqrt{\frac{253}{13}}$$
.

Schemat oceniania I sposobu rozwiazania

Zdający zapisze równanie wynikające z twierdzenia cosinusów zastosowanego do trójkąta *ABC* albo do trójkąta *CDA*:

$$x^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos \alpha$$
 albo $x^2 = 4^2 + 5^2 - 2 \cdot 4 \cdot 5 \cdot \cos \beta$

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie, w którym jest istotny postęp...... 2 p.

Zdający zapisze

• równanie z jedną niewiadomą, np.: $2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos \alpha = 4^2 + 5^2 - 2 \cdot 4 \cdot 5 \cdot \cos (180^\circ - \alpha)$

albo

• układ równań w postaci:

$$10x^2 = 10 \cdot 4 + 10 \cdot 9 - 120 \cdot \cos \alpha$$
 i $3x^2 = 3 \cdot 16 + 3 \cdot 25 + 120 \cdot \cos \alpha$.

i na tym zakończy lub dalej popełni błedy.

• obliczy cosinus kąta *ABC*: $\cos a = -\frac{7}{13}$

albo

• zapisze równanie z niewiadoma x, np.: $13x^2 = 253$.

Rozwiązanie (II sposób)

Przyjmijmy oznaczenia x = |AC| y = |BD| jak na rysunku i niech R oznacza promień okręgu opisanego na czworokącie ABCD.

Z twierdzenia Ptolemeusza otrzymujemy równanie

$$xy = 2 \cdot 4 + 5 \cdot 3,$$
$$xy = 23.$$

Okrąg opisany na czworokącie *ABCD* jest jednocześnie okręgiem opisanym na każdym z trójkątów *ABC*, *BCD*, *CDA* i *ABD*. Pole czworokąta *ABCD* możemy zapisać na dwa sposoby

$$P_{ABCD} = P_{ABC} + P_{CDA} = P_{BCD} + P_{ABD}.$$

Stąd i ze wzoru na pole trójkąta $P = \frac{abc}{4R}$ otrzymujemy równanie

$$\frac{2 \cdot 3 \cdot x}{4R} + \frac{4 \cdot 5 \cdot x}{4R} = \frac{2 \cdot 5 \cdot y}{4R} + \frac{3 \cdot 4 \cdot y}{4R},$$
$$26x = 22y,$$
$$y = \frac{13}{11}x.$$

Stad i z równości xy = 23 otrzymujemy

$$x \cdot \frac{13}{11}x = 23,$$
$$x^{2} = \frac{23 \cdot 11}{13},$$
$$x = \sqrt{\frac{253}{13}}.$$

Schemat oceniania II sposobu rozwiązania

Zdający zapisze

• równanie wynikające z twierdzenia Ptolemeusza: $xy = 2 \cdot 4 + 5 \cdot 3$

albo

• pole czworokąta ABCD na dwa sposoby i zapisze $P_{ABC} + P_{CDA} = P_{BCD} + P_{ABD}$ lub $\frac{2 \cdot 3 \cdot x}{4R} + \frac{4 \cdot 5 \cdot x}{4R} = \frac{2 \cdot 5 \cdot y}{4R} + \frac{3 \cdot 4 \cdot y}{4R} \, .$ i na tym zakończy lub dalej popełni błędy.

Zadanie 11. (0-4)

W pierwszej urnie umieszczono 3 kule białe i 5 kul czarnych, a w drugiej urnie 7 kul białych i 2 kule czarne. Losujemy jedną kulę z pierwszej urny, przekładamy ją do urny drugiej i dodatkowo dokładamy do urny drugiej jeszcze dwie kule tego samego koloru, co wylosowana kula. Następnie losujemy dwie kule z urny drugiej. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że obie kule wylosowane z drugiej urny będą białe.

IV. Użycie i tworzenie strategii.	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający korzysta z twierdzenia o prawdopodobieństwie całkowitym (R10.3).
-----------------------------------	---

Rozwiązanie (I sposób)

Przyjmijmy następujące oznaczenia zdarzeń:

A - zdarzenie polegające na tym, że z drugiej urny wylosujemy dwie kule białe,

 B_1 - zdarzenie polegające na tym, że z pierwszej urny wylosujemy kulę białą.

 B_2 - zdarzenie polegające na tym, że z pierwszej urny wylosujemy kulę czarną.

Wówczas $B_1 \cap B_2 = \emptyset$ oraz $B_1 \cup B_2 = \Omega$. Następnie

$$P(B_1) = \frac{3}{8} > 0 \text{ oraz } P(B_2) = \frac{5}{8} > 0.$$

Zatem spełnione są założenia twierdzenia o prawdopodobieństwie całkowitym. Obliczamy teraz prawdopodobieństwa warunkowe:

$$P(A | B_1) = \frac{\binom{10}{2}}{\binom{12}{2}} = \frac{15}{22} \text{ oraz } P(A | B_2) = \frac{\binom{7}{2}}{\binom{12}{2}} = \frac{7}{22}.$$

Z twierdzenia o prawdopodobieństwie całkowitym otrzymujemy

$$P(A) = P(A | B_1) \cdot P(B_1) + P(A | B_2) \cdot P(B_2) = \frac{15}{22} \cdot \frac{3}{8} + \frac{7}{22} \cdot \frac{5}{8} = \frac{45 + 35}{8 \cdot 22} = \frac{80}{8 \cdot 22} = \frac{5}{11}.$$

Schemat oceniania I sposobu rozwiązania

• obliczy prawdopodobieństwa $P(B_1) = \frac{3}{8}$ oraz $P(B_2) = \frac{5}{8}$

albo

• obliczy prawdopodobieństwa $P(A|B_1) = \frac{15}{22}$, $P(A|B_2) = \frac{7}{22}$

albo

• obliczy prawdopodobieństwa $P(B_1) = \frac{3}{8}$ oraz $P(A \mid B_1) = \frac{15}{22}$

albo

obliczy prawdopodobieństwa $P(B_2) = \frac{5}{8}$ oraz $P(A|B_2) = \frac{7}{22}$.

Pokonanie zasadniczych trudności zadania......

Zdający obliczy prawdopodobieństwa: $P(B_1) = \frac{3}{8}$, $P(B_2) = \frac{5}{8}$, $P(A|B_1) = \frac{15}{22}$,

$$P(A \mid B_2) = \frac{7}{22}.$$

Rozwiązanie pełne.....

Zdający obliczy prawdopodobieństwo: $P(A) = \frac{5}{11}$.

Rozwiązanie (II sposób)

Przyjmijmy, że A to zdarzenie polegające na tym, że z drugiej urny wylosujemy dwie kule białe. Rysujemy drzewo z istotnymi gałęziami

Losowanie kuli z pierwszej urny

Losowanie dwóch kul z drugiej urny

lub

Losowanie kuli z pierwszej urny

Losowanie pierwszej kuli z drugiej urny

Losowanie drugiej kuli z drugiej urny

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{15}{22} \cdot \frac{3}{8} + \frac{7}{22} \cdot \frac{5}{8} = \frac{45 + 35}{8 \cdot 22} = \frac{80}{8 \cdot 22} = \frac{5}{11}$$

Strona 16 z 36

$$P(A) = \frac{\cancel{5}^{1}}{\cancel{8}^{4}} \cdot \frac{\cancel{10}^{5}}{\cancel{12}^{4}} \cdot \frac{9}{11} + \frac{5}{8} \cdot \frac{7}{\cancel{12}^{2}} \cdot \frac{\cancel{6}^{1}}{11} = \frac{45 + 35}{16 \cdot 11} = \frac{80}{176} = \frac{5}{11}.$$

Schemat oceniania II sposobu rozwiązania

Zdający narysuje drzewo ilustrujące losowanie (na rysunku muszą wystąpić wszystkie istotne gałęzie).

Rozwiązanie, w którym jest istotny postęp2 p.

Zdający zapisze prawdopodobieństwa przynajmniej na wszystkich istotnych odcinkach jednego z etapów lub na jednej z istotnych gałęzi.

Pokonanie zasadniczych trudności zadania3 p.

Zdający zapisze prawdopodobieństwa na wszystkich istotnych gałęziach: $\frac{3}{8}$, $\frac{10}{12}$, $\frac{9}{11}$

oraz
$$\frac{5}{8}$$
, $\frac{7}{12}$, $\frac{6}{11}$ lub $\frac{3}{8}$, $\frac{\binom{10}{2}}{\binom{12}{2}}$ oraz $\frac{5}{8}$, $\frac{\binom{7}{2}}{\binom{12}{2}}$.

Rozwiązanie pełne4 p.

Zdający obliczy prawdopodobieństwo: $P(A) = \frac{5}{11}$.

Uwaga

Jeżeli zdający rozwiąże zadanie do końca i otrzyma prawdopodobieństwo ujemne lub większe od 1, to za całe rozwiązanie otrzymuje **0 punktów**.

Zadanie 12. (0-4)

Funkcja f określona jest wzorem $f(x) = x^3 - 2x^2 + 1$ dla każdej liczby rzeczywistej x. Wyznacz równania tych stycznych do wykresu funkcji f, które są równoległe do prostej o równaniu y = 4x.

11 Dachunals rámiczkowy. Zdający karzysta z gaamatrycznaj

	11. Rachunek rozniczkowy. Zdający korzysta z geometrycznej
	i fizycznej interpretacji pochodnej (R11.3).
IV. Użycie i tworzenie	8. Geometria na płaszczyźnie kartezjańskiej. Zdający
strategii.	wyznacza równania prostej, która jest równoległa lub
	prostopadła do prostej danej w postaci kierunkowej
	i przechodzi przez dany punkt (8.3).

Rozwiązanie

Aby styczne były równoległe do prostej o równaniu y = 4x, ich współczynnik kierunkowy musi być równy 4. Obliczamy pochodną funkcji f: $f'(x) = 3x^2 - 4x$.

Współczynnik kierunkowy stycznej jest równy wartości pierwszej pochodnej funkcji w punkcie styczności. Stąd $4 = f'(x_0)$. Wówczas

$$3x_0^2 - 4x_0 = 4,$$

$$3x_0^2 - 4x_0 - 4 = 0,$$

$$\Delta = 64,$$

$$x_0 = -\frac{2}{3} \text{ lub } x_0 = 2.$$

Istnieją zatem dwie styczne do wykresu funkcji f równoległe do prostej o równaniu y = 4x w punktach $P_1 = \left(-\frac{2}{3}, -\frac{5}{27}\right)$ oraz $P_2 = (2,1)$. Styczne mają zatem równania postaci $y + \frac{5}{27} = 4\left(x + \frac{2}{3}\right)$ oraz $y - 1 = 4\left(x - 2\right)$, czyli $y + 4x + \frac{67}{27}$ oraz y = 4x - 7.

Odp. Równania prostych stycznych mają postać: $y = 4x + \frac{67}{27}$ oraz y = 4x - 7.

Schemat oceniania

Zdający

- obliczy pochodną funkcji f: $f'(x) = 3x^2 4x$ albo
 - zapisze warunek $f'(x_0) = 4$.

<u>Uwaga</u>

Jeżeli zdający korzysta ze wzoru $y = f'(x_0)x + b$, gdzie $b = f(x_0) - f'(x_0) \cdot x_0$, to obliczenie współczynnika b traktujemy jak obliczenie drugiej współrzędnej punktu styczności.

Rozwiązanie pełne 4 p. Wyznaczenie równań stycznych: $y = 4x + \frac{67}{27}$ i y = 4x - 7.

Uwaga

Jeżeli zdający wyznaczy poprawnie współrzędne tylko jednego punktu styczności i w konsekwencji wyznaczy poprawnie równanie jednej stycznej, to otrzymuje **3 punkty**.

Zadanie 13. (0-5)

Dany jest trójmian kwadratowy $f(x) = (m+1)x^2 + 2(m-2)x - m + 4$. Wyznacz wszystkie wartości parametru m, dla których trójmian f ma dwa różne pierwiastki rzeczywiste x_1 , x_2 , spełniające warunek $x_1^2 - x_2^2 = x_1^4 - x_2^4$.

	3. Równania i nierówności. Zdający stosuje wzory Viète'a
matematyczne.	(R3.1).

Rozwiązanie

Z treści zadania wynika, że $m+1 \neq 0$, czyli $m \neq -1$.

Trójmian f ma dwa różne pierwiastki rzeczywiste, gdy jego wyróżnik jest dodatni, czyli

$$\Delta = (2(m-2))^{2} - 4 \cdot (m+1) \cdot (-m+4) > 0,$$

$$8m^{2} - 28m > 0,$$

$$4m(2m-7) > 0.$$

Stąd $m \in (-\infty, 0) \cup (\frac{7}{2}, +\infty)$.

 $D = (-\infty, -1) \cup (-1, 0) \cup (\frac{7}{2}, +\infty)$ jest zbiorem wszystkich wartości parametru m, dla których funkcja f jest trójmianem kwadratowym i ma dwa różne pierwiastki.

Warunek $x_1^2 - x_2^2 = x_1^4 - x_2^4$ możemy zapisać w postaci równoważnej

$$x_1^2 - x_2^2 = (x_1^2 + x_2^2)(x_1^2 - x_2^2),$$

$$(x_1 - x_2)(x_1 + x_2)(1 - (x_1^2 + x_2^2)) = 0.$$

Stąd

$$x_1 - x_2 = 0$$
 lub $x_1 + x_2 = 0$ lub $1 - (x_1^2 + x_2^2) = 0$.

Równość $x_1 - x_2 = 0$ przeczy założeniu $x_1 \neq x_2$.

Ze wzoru Viète'a na sumę pierwiastków trójmianu kwadratowego możemy równanie $x_1 + x_2 = 0$ zapisać w postaci $\frac{-2(m-2)}{m+1} = 0$. Stąd $m = 2 \notin D$.

Równanie $1 - (x_1^2 + x_2^2) = 0$ możemy zapisać w postaci równoważnej

$$(x_1 + x_2)^2 - 2x_1x_2 = 1.$$

Ze wzorów Viète'a otrzymujemy

$$\left(\frac{-2(m-2)}{m+1}\right)^{2} - 2 \cdot \frac{-m+4}{m+1} = 1,$$

$$\frac{4\left(m^{2} - 4m + 4\right)}{\left(m+1\right)^{2}} + \frac{2m-8}{m+1} - 1 = 0,$$

$$4m^{2} - 16m + 16 + \left(2m-8\right)\left(m+1\right) - \left(m+1\right)^{2} = 0,$$

$$5m^{2} - 24m + 7 = 0.$$

Rozwiązaniami tego równania są liczby

$$m_1 = \frac{12 - \sqrt{109}}{5} \notin D \text{ oraz } m_2 = \frac{12 + \sqrt{109}}{5} \in D.$$

Istnieje zatem jedna wartość parametru $m = \frac{12 + \sqrt{109}}{5}$, dla której trójmian f ma dwa różne pierwiastki rzeczywiste spełniające warunek $x_1^2 - x_2^2 = x_1^4 - x_2^4$.

Schemat oceniania

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy z nich polega na rozwiązaniu nierówności $\Delta > 0$: $m \in (-\infty, 0) \cup (\frac{7}{2}, +\infty)$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 1 punkt.

Uwaga

Jeżeli zdający zapisze $\Delta \ge 0$, to za tę część otrzymuje **0 punktów**.

Drugi etap polega na rozwiązaniu równania $x_1^2 - x_2^2 = x_1^4 - x_2^4$. Za tę część rozwiązania zdający otrzymuje **3 punkty**.

Podział punktów za drugi etap rozwiązania:

1 punkt zdający otrzymuje za zapisanie równania w postaci:

$$(x_1 - x_2)(x_1 + x_2)(1 - (x_1^2 + x_2^2)) = 0$$
 lub równoważnej.

2 punkty zdający otrzymuje za:

- zapisanie równości $x_1 x_2 = 0$ i stwierdzenie, że przeczy ona założeniu $x_1 \neq x_2$ albo
 - rozwiązanie równania $\frac{-2(m-2)}{m+1} = 0$: m = 2

albo

• zapisanie równania $1 - (x_1^2 + x_2^2) = 0$ w postaci, np.: $\left(\frac{-2(m-2)}{m+1}\right)^2 - 2 \cdot \frac{-m+4}{m+1} = 1$.

3 punkty zdający otrzymuje za:

• rozwiązanie równania $\frac{-2(m-2)}{m+1} = 0$: m=2

oraz

• rozwiązanie równania $\left(\frac{-2(m-2)}{m+1}\right)^2 - 2 \cdot \frac{-m+4}{m+1} = 1$: $m_1 = \frac{12 - \sqrt{109}}{5}$, $m_2 = \frac{12 + \sqrt{109}}{5}$.

Trzeci etap polega na wyznaczeniu szukanej wartości parametru m: $m = \frac{12 + \sqrt{109}}{5}$. Za ten etap zdający otrzymuje **1 punkt**, o ile poprawnie wykona etapy I i II rozwiązania albo poprawnie wykona etap I i popełnia błędy w rozwiązaniu równania z etapu II, albo gdy popełnia błędy w etapie I i dobrze rozwiąże równanie z etapu II.

Uwagi:

- 1. Akceptujemy rozwiązania, w których zdający nie zapisuje założenia $m+1 \neq 0$, które wynika ze sformułowania zadania.
- 2. Zdający nie musi rozwiązywać nierówności $\Delta > 0$, o ile sprawdzi czy dla m = 2, $m = \frac{12 \sqrt{109}}{5}$, $m = \frac{12 + \sqrt{109}}{5}$ trójmian ma dwa różne pierwiastki rzeczywiste.
- 3. Jeżeli zdający podzieli obie strony równania $x_1^2 x_2^2 = x_1^4 x_2^4$ przez $x_1^2 x_2^2$ bez stosownego założenia i rozwiąże równanie $1 = x_1^2 + x_2^2$, otrzymując $m = \frac{12 \sqrt{109}}{5}$ lub $m = \frac{12 + \sqrt{109}}{5}$, to otrzymuje co najwyżej **3 punkty** za całe rozwiązanie, przy czym **1 punkt** może otrzymać za rozwiązanie nierówności $\Delta > 0$, **1 punkt** za zapisanie równania $1 = x_1^2 + x_2^2$ w postaci równania wymiernego z jedną niewiadomą, np.: $\left(\frac{-2(m-2)}{m+1}\right)^2 2 \cdot \frac{-m+4}{m+1} = 1$ oraz **1 punkt** za wyznaczenie tego rozwiązania równania, które spełnia nierówność $\Delta > 0$.
- 4. Jeżeli zdający nie rozwiązywał nierówności $\Delta > 0$, ale rozwiązał równanie $\left(\frac{-2(m-2)}{m+1}\right)^2 2 \cdot \frac{-m+4}{m+1} = 1$ i sprawdził, dla której z otrzymanych wartości m trójmian ma pierwiastki rzeczywiste, to otrzymuje **3 punkty**.

Zadanie 14. (0-5)

Podstawą ostrosłupa *ABCDS* jest kwadrat *ABCD*. Krawędź boczna *SD* jest wysokością ostrosłupa, a jej długość jest dwa razy większa od długości krawędzi podstawy. Oblicz sinus kąta między ścianami bocznymi *ABS* i *CBS* tego ostrosłupa.

IV. Użycie i tworzenie strategii.	9. Stereometria. Zdający stosuje trygonometrię do obliczeń długości odcinków, miar kątów, pól powierzchni i objętości (9.6).
-----------------------------------	--

Rozwiązanie (I sposób)

Przyjmijmy oznaczenia jak na rysunku.

Długość przekątnej podstawy ostrosłupa jest równa $|AC| = a\sqrt{2}$.

Trójkąty ADS i CDS są przystające (oba są prostokątne, mają wspólną przyprostokątną DS oraz |AD| = |CD|), więc krawędzie boczne AS i CS ostrosłupa mają tę samą długość. Z twierdzenia Pitagorasa

$$|SA| = |SC| = \sqrt{(2a)^2 + a^2} = a\sqrt{5}$$
.

Trójkąt ABS jest prostokątny, więc z twierdzenia Pitagorasa

$$|SB| = \sqrt{\left(a\sqrt{5}\right)^2 + a^2} = a\sqrt{6}.$$

Odcinek AE jest wysokością ściany bocznej ABS. Jego długość możemy wyznaczyć zapisując np. pole trójkąta ABS na dwa sposoby

$$\frac{1}{2}a \cdot a\sqrt{5} = \frac{1}{2}a\sqrt{6} \cdot |AE|, \text{ stad } |AE| = a\sqrt{\frac{5}{6}} = |CE|.$$

Z twierdzenia cosinusów dla trójkąta AEC otrzymujemy

$$2a^2 = \frac{5}{6}a^2 + \frac{5}{6}a^2 - 2 \cdot \frac{5}{6}a^2 \cos \alpha.$$

Stąd $\cos \alpha = -\frac{1}{5}$. Zatem $\sin \alpha = \frac{2\sqrt{6}}{5}$.

Rozwiązanie (II sposób)

Przyjmijmy oznaczenia jak na rysunku.

Długość przekątnej podstawy ostrosłupa jest równa $|AC| = |BD| = a\sqrt{2}$.

Trójkąty ADS i CDS są przystające (oba są prostokątne, mają wspólną przyprostokątną DS oraz |AD| = |CD|), więc krawędzie boczne AS i CS ostrosłupa mają tę samą długość. Z twierdzenia Pitagorasa

$$|SA| = |SC| = \sqrt{(2a)^2 + a^2} = a\sqrt{5}$$
.

Trójkat BDS jest prostokatny, więc z twierdzenia Pitagorasa

$$|SB| = \sqrt{(2a)^2 + (a\sqrt{2})^2} = a\sqrt{6}$$
.

Odcinek AE jest wysokością ściany bocznej ABS. Jego długość możemy wyznaczyć zapisując np. pole trójkąta ABS na dwa sposoby

$$\frac{1}{2}a \cdot a\sqrt{5} = \frac{1}{2}a\sqrt{6} \cdot |AE|, \text{ stad } |AE| = a\sqrt{\frac{5}{6}} = |CE|.$$

Z twierdzenia cosinusów dla trójkąta AEC otrzymujemy

$$2a^2 = \frac{5}{6}a^2 + \frac{5}{6}a^2 - 2 \cdot \frac{5}{6}a^2 \cos \alpha.$$

Stąd $\cos \alpha = -\frac{1}{5}$. Zatem $\sin \alpha = \frac{2\sqrt{6}}{5}$.

Rozwiązanie (III sposób)

Przyjmijmy oznaczenia jak na rysunku.

Długość przekątnej podstawy ostrosłupa jest równa $|AC| = |BD| = a\sqrt{2}$.

Trójkąty ADS i CDS są przystające (oba są prostokątne, mają wspólną przyprostokątną DS oraz |AD| = |CD|), więc krawędzie boczne AS i CS ostrosłupa mają tę samą długość. Z twierdzenia Pitagorasa

$$|SA| = |SC| = \sqrt{(2a)^2 + a^2} = a\sqrt{5}$$
.

Trójkat BDS jest prostokatny, więc z twierdzenia Pitagorasa

$$|SB| = \sqrt{(2a)^2 + (a\sqrt{2})^2} = a\sqrt{6}$$
.

Odcinek AE jest wysokością ściany bocznej ABS. Jego długość możemy wyznaczyć zapisując np. pole trójkąta ABS na dwa sposoby

$$\frac{1}{2}a \cdot a\sqrt{5} = \frac{1}{2}a\sqrt{6} \cdot |AE|, \text{ stad } |AE| = a\sqrt{\frac{5}{6}} = |CE|.$$

$$\sin\frac{\alpha}{2} = \frac{a\sqrt{2}}{a\sqrt{\frac{5}{6}}} = \sqrt{\frac{3}{5}}.$$

Zatem cosinus.

$$\cos\frac{\alpha}{2} = \sqrt{1 - \sin^2\frac{\alpha}{2}} = \sqrt{1 - \frac{3}{5}} = \sqrt{\frac{2}{5}}.$$

$$\sin\alpha = 2\sin\frac{\alpha}{2} \cdot \cos\frac{\alpha}{2} = 2 \cdot \sqrt{\frac{3}{5}} \cdot \sqrt{\frac{2}{5}} = \frac{2\sqrt{6}}{5}.$$

Rozwiązanie (IV sposób)

Przyjmijmy oznaczenia jak na rysunku.

Długość przekątnej podstawy ostrosłupa jest równa $|AC| = |BD| = a\sqrt{2}$.

Trójkąty ADS i CDS są przystające (oba są prostokątne, mają wspólną przyprostokątną DS oraz |AD| = |CD|), więc krawędzie boczne AS i CS ostrosłupa mają tę samą długość.

Z twierdzenia Pitagorasa

$$|SA| = |SC| = \sqrt{(2a)^2 + a^2} = a\sqrt{5}$$
.

Trójkąt BDS jest prostokątny, więc z twierdzenia Pitagorasa

$$|SB| = \sqrt{(2a)^2 + (a\sqrt{2})^2} = a\sqrt{6}$$
.

Odcinek AE jest wysokością ściany bocznej ABS. Jego długość możemy wyznaczyć zapisując np. pole trójkąta ABS na dwa sposoby

$$\frac{1}{2}a \cdot a\sqrt{5} = \frac{1}{2}a\sqrt{6} \cdot |AE|, \text{ stad } |AE| = a\sqrt{\frac{5}{6}} = |CE|.$$

Odcinek OE jest wysokością trójkąta *AEC*, więc $|OE| = a \frac{\sqrt{3}}{3}$.

Pole trójkata AEC możemy zapisać na dwa sposoby

$$\frac{1}{2}|AE|\cdot|CE|\cdot\sin\alpha = \frac{1}{2}|AC|\cdot|OE|,$$

czyli

$$\frac{1}{2} \cdot a \sqrt{\frac{5}{6}} \cdot a \sqrt{\frac{5}{6}} \cdot \sin \alpha = \frac{1}{2} \cdot a \sqrt{2} \cdot a \frac{\sqrt{3}}{3} .$$

Stad

$$\sin\alpha = \frac{\sqrt{6}}{3} \cdot \frac{6}{5} = \frac{2\sqrt{6}}{5}.$$

Schemat oceniania

Zdajacy

- wyznaczy długości krawędzi bocznych SA, SC i SB ostrosłupa ABCDS: $|SA| = |SC| = a\sqrt{5}$, $|SB| = a\sqrt{6}$ i na tym poprzestanie lub dalej popełnienie błędów.
- zaznaczy poprawnie kąt między ścianami ABS i CBS.

• wyznaczy długość odcinka AE: $|AE| = |CE| = a\sqrt{\frac{5}{6}}$

albo

• zapisze jedną z funkcji trygonometrycznych połowy kąta α : np. $\sin \frac{\alpha}{2} = \frac{|AO|}{|AE|}$.

Pokonanie zasadniczych trudności zadania3 p.

Zdający

• zapisze równanie wynikającego z twierdzenia cosinusów dla trójkąta AEC:

$$2a^2 = \frac{5}{6}a^2 + \frac{5}{6}a^2 - 2 \cdot \frac{5}{6}a^2 \cos \alpha$$

albo

• obliczy sinus połowy kąta α : $\sin \frac{\alpha}{2} = \sqrt{\frac{3}{5}}$

albo

albo

• obliczy wysokość *OE* trójkąta *ACE*: $|OE| = \frac{a\sqrt{3}}{3}$.

• obliczy cosinus kąta AEC: $\cos \alpha = -\frac{1}{5}$

• zapisze równanie, z którego można obliczyć $\sin \alpha$: $\frac{1}{2}a\sqrt{\frac{5}{6}}\cdot a\sqrt{\frac{5}{6}}\sin \alpha = \frac{1}{2}a\sqrt{2}\cdot \frac{a\sqrt{3}}{3}$

Rozwiązanie pełne 5 p.

Wyznaczenie sinusa kąta AEC: $\sin \alpha = \frac{2\sqrt{6}}{5}$.

Uwaga

Jeżeli zdający błędnie interpretuje kąt między ścianami bocznymi *ABS* i *BCS*, to może otrzymać co najwyżej **1 punkt** za wyznaczenie długości krawędzi bocznych.

Zadanie 15. (0-6)

Suma wszystkich czterech współczynników wielomianu $W(x) = x^3 + ax^2 + bx + c$ jest równa 0. Trzy pierwiastki tego wielomianu tworzą ciąg arytmetyczny o różnicy równej 3. Oblicz współczynniki a, b i c. Rozważ wszystkie możliwe przypadki.

IV. Użycie i tworzenie strategii.	5. Ciągi. Zdający stosuje wzór na <i>n</i>-ty wyraz i na sumę<i>n</i> początkowych wyrazów ciągu arytmetycznego (5.3).13. Równania i nierówności. Zdający korzysta z własności	
	iloczynu przy rozwiązywaniu równań typu $x(x+1)(x-7) = 0$ (3.7).	

Rozwiązanie (I sposób)

Suma współczynników wielomianu $W(x) = x^3 + ax^2 + bx + c$ jest równa 1 + a + b + c = 0. Niech p oznacza najmniejszy pierwiastek wielomianu W. Ponieważ pierwiastki wielomianu tworzą ciąg arytmetyczny o różnicy 3, więc pozostałe dwa pierwiastki są równe p+3 oraz p+6.

a) Wielomian możemy więc zapisać w postaci iloczynowej

$$W(x) = (x-p)(x-p-3)(x-p-6)$$
.

Stąd

$$W(x) = (x^{2} - px - 3x - px + p^{2} + 3p)(x - p - 6),$$

$$W(x) = x^{3} - px^{2} - 6x^{2} - px^{2} + p^{2}x + 6px + p^{2}x - p^{3} - 6p^{2} + 3px - 3p^{2} - 18p,$$

$$W(x) = x^{3} + (-3p - 9)x^{2} + (3p^{2} + 18p + 18)x + (-p^{3} - 9p^{2} - 18p).$$

Porównujemy współczynniki wielomianu, otrzymując układ równań:

$$\begin{cases} a = -3p - 9 \\ b = 3p^2 + 18p + 18 \\ c = -p^3 - 9p^2 - 18p \end{cases}$$

b) Możemy zapisać układ równań

$$\begin{cases} p^3 + ap^2 + bp + c = 0\\ (p+3)^3 + a(p+3)^2 + b(p+3) + c = 0\\ (p+6)^3 + a(p+6)^2 + b(p+6) + c = 0 \end{cases}$$

Stad po przekształceniach, otrzymujemy układ równań:

$$\begin{cases} a = -3p - 9 \\ b = 3p^2 + 18p + 18 \\ c = -p^3 - 9p^2 - 18p \end{cases}$$

c) Korzystając ze wzorów Viète'a $\begin{cases} x_1+x_2+x_3=-a\\ x_1\cdot x_2+x_1\cdot x_3+x_2\cdot x_3=b\\ x_1\cdot x_2\cdot x_3=-c \end{cases}$, możemy zapisać układ x₁·x₂·x₃=-c

równań, otrzymując kolejno

$$\begin{cases} p+p+3+p+6 = -a \\ p \cdot (p+3) + p \cdot (p+6) + (p+3) \cdot (p+6) = b \\ p \cdot (p+3) \cdot (p+6) = -c \end{cases}$$

$$\begin{cases} a = -3p - 9 \\ b = 3p^2 + 18p + 18 \\ c = -p^3 - 9p^2 - 18p \end{cases}$$

Stad i z równości 1+a+b+c=0, otrzymujemy

$$(-3p-9)+(3p^2+18p+18)+(-p^3-9p^2-18p)+1=0$$
,
 $p^3+6p^2+3p-10=0$.

Liczba 1 jest pierwiastkiem tego równania, więc z twierdzenia Bézouta wynika, że wielomian $p^3 + 6p^2 + 3p - 10$ jest podzielny przez dwumian p - 1.

Wykonujemy dzielenie, stosując np. schemat Hornera.

	1	6	3	-10
1	1	7	10	0

Równanie możemy więc zapisać w postaci $(p-1)(p^2+7p+10)=0$.

Pozostałe rozwiązania równania $p^3 + 6p^2 + 3p - 10 = 0$ to pierwiastki trójmianu

kwadratowego $p^2 + 7p + 10$, czyli liczby p = -5, p = -2.

Gdy p = 1, to wtedy a = -12, b = 39, c = -28.

Gdy p = -5, to wtedy a = 6, b = 3, c = -10.

Gdy p = -2, to wtedy a = -3, b = -6, c = 8.

Odpowiedź: Współczynniki a, b, c są równe: $\begin{cases} a = -12 \\ b = 39 \\ c = -28 \end{cases}$ lub $\begin{cases} a = -3 \\ b = -6 \\ c = 8 \end{cases}$ $\begin{cases} a = 6 \\ b = 3 \\ c = -10 \end{cases}$

Rozwiązanie (II sposób)

Z równości 1+a+b+c=0 otrzymujemy c=-1-a-b. Wielomian W możemy zapisać w postaci

$$W(x) = x^{3} + ax^{2} + bx - 1 - a - b,$$

$$W(x) = x^{3} - 1 + ax^{2} - a + bx - b,$$

$$W(x) = (x - 1)(x^{2} + x + 1) + a(x^{2} - 1) + b(x - 1),$$

$$W(x) = (x - 1)(x^{2} + (a + 1)x + a + b + 1).$$

Stad wynika, że liczba x = 1 jest pierwiastkiem wielomianu W.

Dalszą część rozwiązania możemy przeprowadzić na dwa sposoby

a) Pierwiastki tego wielomianu tworzą ciąg arytmetyczny o różnicy równej 3, więc mamy trzy takie ciągi (1,4,7), (-2,1,4), (-5,-2,1). Wielomian możemy wówczas zapisać

w postaci iloczynowej, odpowiednio:

$$W(x) = (x-1)(x-4)(x-7)$$
, $W(x) = (x+2)(x-1)(x-4)$, $W(x) = (x+5)(x+2)(x-1)$.

Po doprowadzeniu do postaci uporzadkowanej mamy

$$W(x) = x^3 - 12x^2 + 39x - 28$$
, $W(x) = x^3 - 3x^2 - 6x + 8$, $W(x) = x^3 + 6x^2 + 3x - 10$.

Wyznaczamy odpowiednio współczynniki wielomianu W:

$$(a = -12, b = 39, c = -28)$$
 lub $(a = -3, b = -6, c = 8)$ lub $(a = 6, b = 3, c = -10)$.

b) Niech x_1 i x_2 oznaczają pierwiastki trójmianu $T(x) = x^2 + (a+1)x + a + b + 1$. Możemy założyć, że $x_1 \le x_2$. Pierwiastki wielomianu W tworzą ciąg arytmetyczny, więc z własności ciagu arytmetycznego otrzymujemy np.:

$$(x_1 = 4, x_2 = 7)$$
 lub $(x_1 = -2, x_2 = 4)$ lub $(x_1 = -5, x_2 = -2)$

Korzystając ze wzorów Viète'a, otrzymujemy trzy układy równań

$$\begin{cases} 4+7 = -(a+1) \\ 4\cdot 7 = a+b+1 \end{cases} \text{ lub } \begin{cases} -2+4 = -(a+1) \\ -2\cdot 4 = a+b+1 \end{cases} \text{ lub } \begin{cases} -5-2 = -(a+1) \\ -5\cdot (-2) = a+b+1 \end{cases}$$

$$\begin{cases} 11 = -(a+1) \\ 28 = a+b+1 \end{cases} \text{ lub } \begin{cases} 2 = -(a+1) \\ -8 = a+b+1 \end{cases} \text{ lub } \begin{cases} -7 = -(a+1) \\ 10 = a+b+1 \end{cases}$$

$$\begin{cases} a = -12 \\ b = 39 \end{cases} \text{ lub } \begin{cases} a = -3 \\ b = -6 \end{cases} \text{ lub } \begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\text{any odpowiednio } c = -1-a-b :$$

Obliczamy odpowiednio c = -1 - a - b:

$$\begin{cases} a = -12 \\ b = 39 \\ c = -28 \end{cases} \quad \text{lub} \quad \begin{cases} a = -3 \\ b = -6 \\ c = 8 \end{cases} \quad \text{lub} \quad \begin{cases} a = 6 \\ b = 3 \\ c = -10 \end{cases}$$

Rozwiązanie (III sposób)

Suma współczynników wielomianu $W(x) = x^3 + ax^2 + bx + c$ jest równa 1 + a + b + c = 0. Z równości 1+a+b+c=0 wynika, że liczba 1 jest pierwiastkiem wielomianu W.

Ponieważ pierwiastki wielomianu tworzą ciąg arytmetyczny o różnicy 3, to możemy zapisać trzy ciągi arytmetyczne, których jednym z wyrazów jest liczba 1: (1,4,7), (-2,1,4), (-5,-2,1).

Stąd wielomian W możemy więc zapisać w postaci:

$$W(x) = (x-1)(x-4)(x-7)$$
 lub $W(x) = (x+2)(x-1)(x-4)$,

lub
$$W(x) = (x+5)(x+2)(x-1)$$

Po doprowadzeniu do postaci uporządkowanej mamy

$$W(x) = x^3 - 12x^2 + 39x - 28$$
 lub $W(x) = x^3 - 3x^2 - 6x + 8$, lub $W(x) = x^3 + 6x^2 + 3x - 10$.

Wyznaczamy współczynniki wielomianu W:

$$(a=-12, b=39, c=-28)$$
 lub $(a=-3, b=-6, c=8)$, lub $(a=6, b=3, c=-10)$.

Schemat oceniania

Zdający

• zapisze wielomian W w postaci iloczynowej, np.: W(x) = (x-p)(x-p-3)(x-p-6), gdzie p jest pierwiastkiem wielomianu

albo

• zapisze układ równań, gdzie p jest pierwiastkiem wielomianu

$$\begin{cases} p^3 + ap^2 + bp + c = 0\\ (p+3)^3 + a(p+3)^2 + b(p+3) + c = 0\\ (p+6)^3 + a(p+6)^2 + b(p+6) + c = 0 \end{cases}$$

albo

zapisze układ równań, korzystając ze wzorów Viète'a

$$\begin{cases} p+p+3+p+6 = -a \\ p \cdot (p+3) + p \cdot (p+6) + (p+3) \cdot (p+6) = b \\ p \cdot (p+3) \cdot (p+6) = -c \end{cases}$$

albo

• wyznaczy c = -1 - a - b i zapisze wielomian W w postaci $W(x) = x^3 - 1 + a(x^2 - 1) + b(x - 1)$

Rozwiązanie, w którym jest istotny postęp....... 2 p.

Zdający zapisze

• układ równań:
$$\begin{cases} a = -3p - 9 \\ b = 3p^2 + 18p + 18 \\ c = -p^3 - 9p^2 - 18p \end{cases}$$

albo

• wielomian W w postaci iloczynu: $W(x) = (x-1)(x^2+(a+1)x+a+b+1)$

albo

• zapisze, że z równości 1+a+b+c=0 wynika, że liczba 1 jest pierwiastkiem wielomianu W

albo

• zapisze układ czterech równań z 4 niewiadomymi, np.

$$\begin{cases} p+p+3+p+6 = -a \\ p \cdot (p+3) + p \cdot (p+6) + (p+3) \cdot (p+6) = b \\ p \cdot (p+3) \cdot (p+6) = -c \\ 1+a+b+c = 0 \end{cases}$$

Pokonanie zasadniczych trudności4 p.

Zdający

wyznaczy wszystkie rozwiązania równania $p^3 + 6p^2 + 3p - 10 = 0$: 1, -2, -5

albo

zauważy, że liczba 1 jest pierwiastkiem wielomianu W i zapisze trzy ciągi arytmetyczne o różnicy 3, których jednym z wyrazów jest liczba 1:
 (1,4,7), (-2,1,4), (-5,-2,1)

albo

zauważy, że liczba 1 jest pierwiastkiem wielomianu W i zapisze jeden ciąg arytmetyczny o różnicy 3, w którym jednym z wyrazów jest liczba 1:
 np. (1,4,7) lub (-2,1,4), lub (-5,-2,1) i dla tego ciągu obliczy współczynniki a, b, c wielomianu, to otrzymuje 4 punkty.

Uwagi:

- Jeżeli zdający wyznaczy jeden z pierwiastków wielomianu W i wykorzystuje informację, że pierwiastki wielomianu są kolejnymi wyrazami ciągu arytmetycznego, to otrzymuje 3 punkty.
- Jeżeli zdający zapisze równanie z jedną niewiadomą, np. $p^3 + 6p^2 + 3p 10 = 0$, to otrzymuje **3 punkty**.

Zdajacy

- rozwiąże zadanie do końca, popełniając błędy rachunkowe albo
 - zapisze, że z równości 1+a+b+c=0 wynika, że liczba 1 jest pierwiastkiem wielomianu W, zapisze trzy ciągi arytmetyczne o różnicy 3, których jednym z wyrazów jest liczba 1: (1,4,7), (-2,1,4), (-5,-2,1) oraz zapisze, że W(x) = (x-1)(x-4)(x-7) lub W(x) = (x+2)(x-1)(x-4), lub W(x) = (x+5)(x+2)(x-1).

albo

• wyznaczy współczynniki a, b, c wielomianu tylko dla dwóch ciągów

Rozwiązanie pełne6 p.

Zdający wyznaczy współczynniki wielomianu W: (a=-12, b=39, c=-28) lub (a=-3, b=-6, c=8), lub (a=6, b=3, c=-10).

Zadanie 16. (0-7)

Rozpatrujemy wszystkie stożki, których przekrojem osiowym jest trójkąt o obwodzie 20. Oblicz wysokość i promień podstawy tego stożka, którego objętość jest największa. Oblicz objętość tego stożka.

III. Modelowanie
matematyczne.

11. Rachunek różniczkowy. Zdający stosuje pochodne do rozwiązywania zagadnień optymalizacyjnych (R11.6).

Rozwiązanie (I sposób)

Przyjmijmy oznaczenia jak na rysunku.

Objętość stożka wyraża się wzorem

$$V = \frac{1}{3} \cdot \pi r^2 h.$$

Przekrój osiowy stożka jest trójkątem równoramiennym, którego obwód jest równy 20, więc

$$2r + 2l = 20,$$

$$r + l = 10$$
,

$$l = 10 - r$$
.

Stad i z twierdzenia Pitagorasa otrzymujemy

$$r^2 + h^2 = l^2$$
.

$$r^2 = l^2 - h^2$$

$$r^2 = (10-r)^2 - h^2$$

$$h^2 = 100 - 20r$$
.

Zatem $h = \sqrt{100 - 20r}$.

Z geometrycznych warunków zadania otrzymujemy 0 < r < 5.

Zapisujemy objętość stożka w zależności od zmiennej r

$$V(r) = \frac{1}{3} \cdot \pi r^2 \cdot \sqrt{100 - 20r}$$
,

Wzór tej funkcji zapiszemy w postaci $V(r) = \frac{1}{3} \cdot \pi \sqrt{100r^4 - 20r^5}$ dla 0 < r < 5.

Rozważmy funkcję pomocniczą określoną wzorem $f(r) = 100r^4 - 20r^5$ dla 0 < r < 5.

Z faktu, że funkcja $g(t) = \sqrt{t}$ jest rosnąca w $(0, +\infty)$ wynika, że funkcje V oraz f są rosnące (malejące) w tych samych przedziałach oraz mają ekstrema lokalne (tego samego rodzaju) dla tych samych argumentów.

Wyznaczamy wartość największą funkcji f w przedziale (0,5).

Obliczamy pochodną funkcji f:

$$f'(r) = 400r^3 - 100r^4$$

W przedziale (0,5) pochodna ma jedno miejsce zerowe r = 4. Ponadto

$$f'(r) > 0$$
 dla $r \in (0,4)$,

$$f'(r) < 0$$
 dla $r \in (4,5)$.

Wynika stąd, że dla x = 4 funkcja f ma maksimum lokalne, które jest jednocześnie największą wartością funkcji V, bo w przedziale (0,4) funkcja f jest rosnąca, a przedziale (4,0) funkcja f jest malejąca.

Gdy r = 4, to $h = \sqrt{100 - 20 \cdot 4} = \sqrt{20} = 2\sqrt{5}$, natomiast objętość stożka jest wówczas równa:

$$V(4) = \frac{1}{3} \cdot \pi \cdot 4^2 \cdot \sqrt{100 - 20 \cdot 4} = \frac{32\pi\sqrt{5}}{3}.$$

Odp.: Największą objętość równą $\frac{32\pi\sqrt{5}}{3}$ ma stożek o promieniu podstawy 4 i wysokości $2\sqrt{5}$.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy etap składa się z trzech części:

- oznaczenia promienia podstawy stożka, np. r i wyznaczenia wysokości stożka w zależności od zmiennej r: $h = \sqrt{100 20r}$.
- zapisania objętości V stożka jako funkcji jednej zmiennej $V(r) = \frac{1}{3} \cdot \pi r^2 \cdot \sqrt{100 20r}$,
- zapisania dziedziny funkcji $V(r) = \frac{1}{3} \cdot \pi r^2 \cdot \sqrt{100 20r}$: 0 < r < 5.

Za drugą część tego etapu zdający może otrzymać punkt, o ile pierwszą cześć wykona bezbłędnie. Punkt za cześć trzecią otrzymuje niezależnie od realizacji dwóch pierwszy części tego etapu.

Drugi etap składa się z trzech części:

- wyznaczenia wzoru pochodnej funkcji $f(r) = 100r^4 20r^5$: $f'(r) = 400r^3 100r^4$,
- obliczenia miejsc zerowych pochodnej: $r_1 = 0$, $r_2 = 4$,
- zbadania znaku pochodnej funkcji f: f'(r) > 0 dla $r \in (0,4)$, f'(r) < 0 dla $r \in (4,5)$ i zapisania, że dla r = 4 funkcja V osiąga największą wartość.

Uwagi:

1. Znak pochodnej zdający może zaznaczyć w inny sposób, np. na rysunku szkicując krzywą zbliżoną do wykresu pochodnej.

2. Jeśli zdający nie wyznaczy dziedziny funkcji V lub określi funkcję f na zbiorze szerszym od dziedziny funkcji V, to punkt za tę cześć może otrzymać jedynie wtedy, gdy wskazuje jako największą wartość funkcji tylko to maksimum, które funkcja f osiąga dla argumentu z dziedziny funkcji V.

Za poprawne rozwiązanie **każdej** z części tego etapu zdający otrzymuje **1 punkt**, o ile poprzednia część etapu została zrealizowana bezbłędnie.

Trzeci etap

Zapisanie, że promień stożka o największej objętości jest równy r=4, wysokość $h=\sqrt{20}=2\sqrt{5}$ i obliczenie największej objętości stożka $V(4)=\frac{32\pi\sqrt{5}}{3}$. Za realizację tego etapu zdający otrzymuje **1 punkt**.

Rozwiązanie (II sposób)

Przyjmijmy oznaczenia jak na rysunku.

Objętość stożka wyraża się wzorem

$$V = \frac{1}{3} \cdot \pi r^2 h.$$

Przekrój osiowy stożka jest trójkątem równoramiennym, którego obwód jest równy 20, więc

$$2r + 2l = 20,$$

$$r + l = 10,$$

$$l = 10 - r.$$

Stąd i z twierdzenia Pitagorasa otrzymujemy

$$r^{2} + h^{2} = l^{2}$$
,
 $r^{2} = l^{2} - h^{2}$,
 $r^{2} = (10 - r)^{2} - h^{2}$,
 $h^{2} = 100 - 20r$.

Zatem
$$r = \frac{100 - h^2}{20} = 5 - \frac{1}{20}h^2$$
.

Z geometrycznych warunków zadania otrzymujemy 0 < h < 10. Zapisujemy objętość stożka w zależności od zmiennej h

$$V(h) = \frac{1}{3} \cdot \pi \left(5 - \frac{1}{20} h^2 \right)^2 h,$$

$$V(h) = \frac{1}{3} \cdot \pi \left(25 - \frac{1}{2} h^2 + \frac{1}{400} h^4 \right) \cdot h = \frac{\pi}{3} \cdot \left(25h - \frac{1}{2} h^3 + \frac{1}{400} h^5 \right) \text{ dla } 0 < h < 10.$$

Zauważamy, że wystarczy zbadać funkcję $f(h) = 25h - \frac{1}{2}h^3 + \frac{1}{400}h^5$ określoną w przedziale (0,10). Funkcje V oraz f są rosnące (malejące) w tych samych przedziałach oraz mają ekstrema lokalne (tego samego rodzaju) dla tych samych argumentów. Wyznaczamy pochodną funkcji f:

$$f'(h) = 25 - \frac{3}{2}h^2 + \frac{1}{80}h^4$$
.

Następnie obliczamy miejsca zerowe pochodnej:

$$25 - \frac{3}{2}h^{2} + \frac{1}{80}h^{4} = 0 \text{ i } t = h^{2}$$

$$\frac{1}{80}t^{2} - \frac{3}{2}t + 25 = 0$$

$$\Delta = \left(-\frac{3}{2}\right)^{2} - 4 \cdot \frac{1}{80} \cdot 25 = \frac{9}{4} - \frac{5}{4} = 1$$

$$t_{1} = \frac{\frac{3}{2} - 1}{2 \cdot \frac{1}{80}} = 20, \quad t_{2} = \frac{\frac{3}{2} + 1}{2 \cdot \frac{1}{80}} = 100$$

$$h^{2} = 20 \text{ lub } h^{2} = 100,$$

$$h = -2\sqrt{5}, h = 2\sqrt{5}, h = -10, h = 10.$$

Jedynym miejscem zerowym pochodnej funkcji f, które należy do przedziału (0,10) jest $h=2\sqrt{5}$.

Ponadto:

$$f'(h) > 0 \text{ gdy } h \in (0, 2\sqrt{5}),$$

 $f'(h) < 0 \text{ gdy } h \in (2\sqrt{5}, 10).$

Stąd wynika, że dla $h = 2\sqrt{5}$ funkcja f osiąga maksimum lokalne i jest to jednocześnie wartość największa, bo w przedziale $\left(0, 2\sqrt{5}\right)$ funkcja f jest rosnąca, a przedziale $\left(2\sqrt{5}, 10\right)$ funkcja f jest malejąca.

Gdy $h = 2\sqrt{5}$, to $r = 5 - \frac{1}{20}(2\sqrt{5})^2 = 4$ i objętość stożka jest wówczas równa:

$$V(2\sqrt{5}) = \frac{1}{3} \cdot \pi \cdot 4^2 \cdot 2\sqrt{5} = \frac{32\pi\sqrt{5}}{3}$$
.

Odp.: Największą objętość równą $\frac{32\pi\sqrt{5}}{3}$ ma stożek, którego promień jest równy 4, a wysokość $2\sqrt{5}$.

Schemat oceniania II sposobu rozwiązania

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy etap składa się z trzech części:

- oznaczenia wysokości stożka, np. h i wyznaczenia promienia podstawy stożka w zależności od zmiennej h: $r = \frac{100 h^2}{20} = 5 \frac{1}{20}h^2$,
- zapisania objętości V stożka jako funkcji jednej zmiennej

$$V(h) = \frac{1}{3} \cdot \pi \left(25 - \frac{1}{2}h^2 + \frac{1}{400}h^4\right) \cdot h = \frac{\pi}{3} \cdot \left(25h - \frac{1}{2}h^3 + \frac{1}{400}h^5\right),$$

• zapisania dziedziny funkcji $V(h) = \frac{\pi}{3} \cdot \left(25h - \frac{1}{2}h^3 + \frac{1}{400}h^5\right)$: 0 < h < 10.

Za drugą część tego etapu zdający może otrzymać punkt, o ile pierwszą część wykona bezbłędnie. Punkt za część trzecią otrzymuje niezależnie od realizacji dwóch pierwszy części tego etapu.

Drugi etap składa się z trzech części:

• wyznaczenia wzoru pochodnej funkcji $f(h) = 25h - \frac{1}{2}h^3 + \frac{1}{400}h^5$:

$$f'(h) = 25 - \frac{3}{2}h^2 + \frac{1}{80}h^4$$

- obliczenia miejsc zerowych pochodnej: $h = -2\sqrt{5}$, $h = 2\sqrt{5}$, h = -10, h = 10,
- zbadania znaku pochodnej funkcji f: f'(h) > 0 dla $h \in (0, 2\sqrt{5}), f'(h) < 0$ dla $h \in (2\sqrt{5}, 10)$ i zapisania, że dla $h = 2\sqrt{5}$ funkcja V osiąga największą wartość.

Uwagi:

- 1. Znak pochodnej zdający może zaznaczyć w inny sposób, np. na rysunku szkicując krzywą zbliżoną do wykresu pochodnej.
- 2. Jeśli zdający nie wyznaczy dziedziny funkcji V lub określi funkcję f na zbiorze szerszym od dziedziny funkcji V, to punkt za tę cześć może otrzymać jedynie wtedy, gdy wskazuje jako największą wartość funkcji tylko to maksimum, które funkcja f osiąga dla argumentu z dziedziny funkcji V, przy czym konieczne jest uzasadnienie, że jest to największa wartość funkcji V lub że funkcja V nie przyjmuje wartości dla liczb większych od 10.

Za poprawne rozwiązanie **każdej** z części tego etapu zdający otrzymuje **1 punkt**, o ile poprzednia część etapu została zrealizowana bezbłędnie.

Trzeci etap

Zapisanie, że promień stożka o największej objętości jest równy r = 4, wysokość

 $h = \sqrt{20} = 2\sqrt{5}$ i obliczenie największej objętości stożka $V(4) = \frac{32\pi\sqrt{5}}{3}$. Za realizację tego etapu zdający otrzymuje **1 punkt**.