Technische Universität Darmstadt

TK1: Distributed Systems Programming & Algorithms

Chapter 2: Distributed Programming

Section 4: Formal Approaches, Process Calculi

Lecturer: Prof. Dr. Max Mühlhäuser

Copyrighted material – for TUD student use only

IoS example: Service Composition of Business Services

Internet-of-Services example:

Business idea: Deliver fruit juice concentrate directly to end users. → less expensive than buying it in bottles

A small business process composed of 5 (external!) business services:

- 1. Manufacturer of fruit juice concentrate
- 2. Filling station for fruit juice concentrate
- 3. Virtual office
- 4. External accounting service
- 5. Delivery service

IoS example: Systems Modeled via Fundamental Modeling Concepts Notation

- common ways to model "entire distributed sytems":
 - business process models / notations (coarse grained)
 - control/data flow models, e.g., FMCN (see above)
 - formal models → check properties, "equivalence": this is (briefly) discussed in this subchapter

Formal Approaches.

- Why using formal approaches for distributed systems?
 - Get the ability to specify unambiguous models of distributed systems. If many different teams are supposed to interpret the model, the result should always be the same.
 - Formal descriptions enable automated verification and therefore, developers can be supported finding and fixing errors, even for highly complex systems.

Labeled Transition Systems

Definition 1 (Labeled Transition System) Let Act be a fixed set of actions. A labeled transition system $T = (S, Act, \rightarrow)$ over Act consists of

- A set S of states and
- $a \ set \rightarrow \subseteq S \times Act \times S$ of transition between states.
- A transition system is called finite if the state set as well as the set of transitions is finite.
- $s \stackrel{a}{\rightarrow} s'$ is written instead of $(s, a, s') \in \rightarrow$.
- If |Act| = 1, then T is equivalent to an unlabeled transition system.

Hint: A LTS is very similar to a finite state automata. Two differences exist:

- In a LTS the set of states and transitions are not necessarily finite, or even countable.
- A finite-state automaton distinguishes a special "start" state and a set of special "final" states.

LTS Example: Simple vending machine

- •A classical example: the vending machine
 - Aim is to model a very simple machine that
 - takes a coin
 - Outputs tea or coffee after pressing a button
 - May potentially behave nondeterministically
 - May output only one coffee or one tea

Labeled Transition System Example

- A simple vending machine that outputs tea or coffee
- Overlined actions are outputs
- Other actions are inputs

Labeled Transition System. Example

Non-deterministic

 Vending machine that makes a choice of beverages for the user

Labeled Transition System. Example

- A vending machine that outputs exactly one coffee and exactly one tea
- It already has 11 states

Labeled Transition System. Example

- Machine that outputs two coffees
- Then it orders new supplies
- After refilling, two more coffees available
- •Ordering and supplying is not observable (τ)

Summary: Labeled Transition Systems

- Transition systems represent states and transitions between states
- Parallelism is not directly represented
- Strong similarity to automata
- Hard to model complex systems manually
- Good for algorithmic analysis like:
 - Does action a take place before action b?
 - Are there deadlocks in the system? (deadlocks: nodes without outgoing edges)

Process Algebras

- Process algebras are formalisms to model distributed systems
 - A process algebra consists of a set of actions and a set of operations defined on these actions
 - A process is a system with a specified behaviour
 - A typical process algebra
 - Consists of three types of actions: Send, Receive and Hidden
 - Operations like: sequence, exclusive or, parallel, restriction , ...
 - Does not consists of data types, function
- Popular process algebras are
 - CCS (Calculus of communicating systems)
 - CSP (Communicating sequential processes)
 - Pi-Calculus
 - mCRL

Calculus of Communicating Systems (CCS). Informal Introduction.

Approach: Write transition systems in textual form.

A := a.'b. τ .0

Where

- A is called a process
- a is a receive action
- 'b is a send action
- defines a sequence of actions
- $\blacksquare \tau$ is a hidden action
- 0 is the nil operator

Calculus of Communicating Systems (CCS). Informal Introduction.

A := a.B

B := 'b.0 + 'c.d.A

Where

- A, B are process identifiers
- + is an exclusive or operator

Calculus of Communicating Systems (CCS). Informal Introduction

 $A := a.0 \mid b.0$

Where

is is the parallel operator

A can receive messages a and b

Remark: Simplified graphical LTS notation used.

Calculus of Communicating Systems (CCS). Informal Introduction

$$A := a.0 \mid 'a.0$$

The system A can receive a message a and send a message a and can synchronize itself by performing a τ action:

The left subsystem receives a message "a" send by the right subsystem.

Calculus of Communicating Systems (CCS) Informal Introduction

 $A := (a)(a.0 \mid 'a.0)$

Where

(a) is the restriction operator

The system A can only synchronize itself by performing a τ action because the action a is restricted to internal communications.

Calculus of Communicating Systems (CCS). Informal Introduction

 \blacksquare A := (a.b.**0**)[a/c, b/d]

Where

[...] is the renaming operator

Actions ≠ the **τ** action can be renamed before performing them

Calculus of Communicating Systems (CCS). Informal Introduction

Remarks concerning the **renaming operator**

- Renamings of the form [a/b, b/c] are done independently.
 Specifically, all a are renamed to b and not to c.
- Renamings of the form [a/b][b/c] are done sequentially from left to right. → All a are renamed to c.

A process identifier (K := P) is used to define an arbitrary behavior of a process.

Example

```
Counter<sub>0</sub> := up.Counter<sub>1</sub>

Counter<sub>n</sub> := up.Counter<sub>n+1</sub> + down.Counter<sub>n-1</sub> (n > 0)
```


Calculus of Communicating Systems (CCS) Syntax

Definition 2 (CCS Syntax) Let \mathcal{L} be a set of labels and let $Act = \{\tau\} \cup \mathcal{L} \cup \{'a|a \in \mathcal{L}\}\$ be the set of all actions. Then the syntax of process P is given by:

Processes
$$P,Q$$
 ::= 0 Inactive Process (NIL)

| $a.P$ Action (ACT),

| $\sum_{i \in I} P_i$ Non-deterministic choice (CHO)

| $P \mid Q$ Parallel (PAR)

| $(a_1, a_2, \dots, a_n)P$ Restriction (RES), $a_i \in \mathcal{L}$

| K Identifier (IDE)

| $P[f]$ Renaming (REN) $f: \mathcal{L} \to \mathcal{L}$

Table 1: Syntax of the Calculus of Communicating Systems (CCS)

with $a, a_i \in Act, f : \mathcal{L} \to \mathcal{L}$, and $P, P_i \in \mathcal{P}$ where \mathcal{P} is the set of processes.

Calculus of Communicating Systems (CCS) Example

- ■B := 'tea.A
- ■C := 'coffee.A

Calculus of Communicating Systems (CCS) Example

Non deterministic behavior

A := coin.B + coin.C

B := tea-button.'tea.A

C := coffee-button.'coffee.A

Calculus of Communicating Systems (CCS) Example

Vendor:= coin.cb.'co.coin.cb.'co.V1

V1 := 'onc.gnc.Vendor

Supplier := onc.'gnc.Supplier

System := (gnc, onc)(**Vendor**|**Supplier**)

- The System is the composition of Vendor and Supplier
- r(order-new-coffee) (gnc, onc) keeps the message exchange inside of System (restriction)
 - External observers see restricted messages as τ operations

Structural, Operational Semantics

Definition 3 (SOS rules) Structural Operational Semantics (SOS) rules are rules of the type:

$$\frac{Pre_i, \dots, Pre_n}{Imp}$$
 $Cond_j, \dots, Cond_k$

The Pre_i are the premises and the $Cond_i$ are the conditions that are met if the implication Imp is satisfied. If n = 0 and k = 0 then there are no premises and conditions and Imp holds always. Rules without premises are called **axioms**.

Calculus of Communicating Systems (CCS) Semantics

Definition 4 (CCS Semantics) The semantics of CCS is specified by the following rules:

Name	Sym.	Structural Operational Semantic
$egin{array}{l} { m Action} \ ({ m Act}) \end{array}$		${a.P \xrightarrow{a} P} (1)$
Process Identifier (IDE)	:=	$\frac{P \stackrel{a}{\to} P'}{A \stackrel{a}{\to} P'} if \ A := P \ (2)$
Choice (Cho)	\sum	$\frac{P_j \stackrel{a}{\to} P'_j}{\sum_{i \in I} P_i \stackrel{a}{\to} P'_j} j \in I (3)$
Parallel Composit (PAR)	 ion	$\frac{P \stackrel{a}{\rightarrow} P'}{P \mid Q \stackrel{a}{\rightarrow} P' \mid Q} (4) \frac{Q \stackrel{a}{\rightarrow} Q'}{P \mid Q \stackrel{a}{\rightarrow} P \mid Q'} (5) \frac{P \stackrel{a}{\rightarrow} P', \ Q \stackrel{a}{\rightarrow} Q'}{P \mid Q \stackrel{\tau}{\rightarrow} P' \mid Q'} (6)$
Restrictio (RES)	$\operatorname{n}\left(a_{j} ight)$	$\frac{P \xrightarrow{a_i} P'}{(a_j)P \xrightarrow{a_i} (a_j)P'} \text{ if } a_i \neq a_j \tag{7}$
Renaming (REN)	f	$\frac{P \xrightarrow{a} P'}{P[f] \xrightarrow{f(a)} P'[f]} where f(\tau) = \tau, f(\bar{a}) = \overline{f(a)} \tag{8}$

Table 2: Semantics of CCS

Calculus of Communicating Systems (CCS). Semantics [1].

A CCS process P can always be associated with its transition system LTS(P).

Definition 5 (Labeled Transition System of a Process [2]) Let P be a CCS process. The transition system of P consists of:

- ullet the set S of states which contains P itself and all processes which are reachable from P via transitions, and
- the transition relation \longrightarrow between processes in S, which is specified by derivation rules given above.

Remark: the transition system of a process may be infinite. An example is the process A := a.(b.0|A).

Inferring LTS from CCS Terms by Applying SOS Rules. Example

$$A := (b)(a.'b.0 \mid 'a.b.0)$$

The labeled transition system of the process A is inferred by applying the structural operational semantics rules. The "number" of each rule given above are written next to the action labels.

Calculus of Communicating Systems (CCS). Summary

- CCS is a simple process algebra with a formal SOS semantics.
- It consists of three different types of action: Send, Receive, Hidden /Internal Action.
- CCS consists of 6 operators defined on the actions: Sequence, nondeterministic choice, parallel operator, restriction, renaming, process identifier.
- Because of the actions and the operations it is suitable for modeling distributed systems.
- The semantics is defined by Structural Operational Semantics (SOS) rules.
- A Labeled Transition System (LTS) can be inferred out of CCS terms and can be used for system analysis.
- Although CCS is simple it has a high expressiveness. Nevertheless it is not expressive enough for most practical problems, it is suitable for educational purposes.

Behavioral Equivalences. Motivation.

$$S1 = a.\tau.'e.'f.0$$

$$S2 = a.(\tau.'e.0 + \tau.'f.0)$$

$$P = a.'b.(c.'e.0 + d.'f.0)$$

$$Q = b.\tau.('c.0 + 'd.0)$$

$$S3 = (b, c, d)(P|Q)$$

$$S1 = a.\tau.'e.'f.0$$

$$-a + c.'f.0$$

$$-a + c.'f.0$$

$$-a + c.f.0$$

$$-a +$$

- The services {S1, S2, S3} have the same static interface: receive a, send e,f
- But do they have the same dynamic interface (i.e. the internal behavior, or just behavior) hence one can be substituted by another?
- Remark: Service-compositions are also services. Therefore arbitrary complex services can be build by service compositions.
 - → Finding services with the same behavior manually is not trivial.

- Let P be a set of processes P with |P| > 1.
 - How to figure out if two or more processes have an equivalent behavior although they might be syntactically different?
 - How to define a behavioral equivalence ?

Definition 6 (Strong Bisimulation) A binary relation R over the set of states of an LTS is a bisimulation iff whenever $(s_1, s_2) \in R$ and $\alpha \in Act$ is an action:

- if $s_1 \xrightarrow{\alpha} s'_1$, then there is a transition $s_2 \xrightarrow{\alpha} s'_2$ such that $(s'_1, s'_2) \in \mathbb{R}$;
- if $s_2 \xrightarrow{\alpha} s'_2$, then there is a transition $s_1 \xrightarrow{\alpha} s'_1$ such that $(s'_1, s'_2) \in \mathbb{R}$.

Two states s and s' are bisimilar, written $s \sim s'$, iff there is a bisimulation that relates them. Henceforth the relation \sim will be referred to as strong bisimulation equivalence or strong bisimulation.

Definition 7 (Strong Bisimilarity of Processes) Two CCS processes P, Q are called strongly bisimilar (in symbols: $P \sim Q$) whenever their states in the transition systems of P and Q are strongly bisimilar.

To prove that two processes are related by \sim it suffices to exhibit a strong bisimulation that relates them.

Examples

• More examples for strong bisimilarity

- Strong bisimilarity takes every τ into consideration.
- Therefore it holds for example: $a.0 \nsim a.\tau.0 \nsim a.\tau.\tau.0$
- t is an unobservable behavior and should not always be taken into account for behavioral equivalences checks
- → A coarser equivalence is needed, i.e. more states are related to each other

Definition 8 (Weak transition relation) For a set Act of actions we define the following relations:

- $s_1 \stackrel{\epsilon}{\Longrightarrow} s_2$ if and only if $s_1(\stackrel{\tau}{\longrightarrow})^*s_2$, i.e., $s_1 \stackrel{\tau}{\longrightarrow} \dots \stackrel{\tau}{\longrightarrow} s_2$.
- For an $\alpha \in Act$ we have $s_1 \stackrel{\alpha}{\Longrightarrow} s_2$ iff $s_1 \stackrel{\epsilon}{\Longrightarrow} \stackrel{\alpha}{\Longrightarrow} \stackrel{\epsilon}{\Longrightarrow} s_2$.

Standard transitions will in the following also be called strong transitions in order to distinguish them from weak transitions.

Definition 9 (Weak Bisimulation) A binary relation R over the set of states of an LTS is a weak bisimulation iff whenever $(s_1, s_2) \in R$ and $\alpha \in Act$ is an action:

- if $s_1 \xrightarrow{\alpha} s'_1$, then there is a transition $s_2 \Longrightarrow s'_2$ such that $(s'_1, s'_2) \in \mathbb{R}$;
- if $s_2 \xrightarrow{\alpha} s'_2$, then there is a transition $s_1 \Longrightarrow s'_1$ such that $(s'_1, s'_2) \in \mathbb{R}$.

Where $\hat{\alpha} = \alpha$, whenever $\alpha \in Act \setminus \{\tau\}$, and $\hat{\tau} = \epsilon$.

Two states s and s' are weakly bisimilar, written $s \approx s'$, iff there is a weak bisimulation that relates them. Henceforth the relation \approx will be referred to as weak bisimilarity.

Definition 10 (Weak Bisimilarity of Processes) Two CCS processes P, Q are called weakly bisimilar (in symbols: $P \approx Q$) whenever their states in the transition systems of P and Q are weakly bisimilar.

Example: Every process of P, Q, R, S is pairwise weakly equivalent!

Example 2 weak bisimulation

$$P = a.(b.P + c.P)$$

$$Q = \tau.a.Q_1 + \tau.a.Q_1$$

$$Q_1 = b.\tau.Q + c.\tau.Q$$

$$P \approx Q$$

$$R = \{(1,3), (1,4), (1,5), (2,6), (1,7), (1,8)\}$$

Example 3: not a weak bisimulation

System P can perform a strong transition $1 \stackrel{a}{\longrightarrow} 2$ that can be simulated by system Q with $3 \stackrel{a}{\Longrightarrow} 7$ (not only!). Then in system P a transition can take place $2 \stackrel{c}{\longrightarrow} 1$ and state 7 does not allow any further weak c-transition.

- Weak bisimulation example 4:
- ■Why not just ignore all *τ* 's?

 $Q = a.0 + \tau.b.0$

 $R = \tau.a.0 + \tau.b.0$

No process of D \cap D is

equivalent!

It can be shown that strong bisimilarity is preserved by the CCS operators, i.e., it is a congruence.

Proposition 1 (\sim is a congruence)

Assume that $P_1 \sim P_2$. This implies:

$$a.P_1 \sim a.P_2$$

$$P_1 + Q \sim P_2 + Q$$

$$P_1|Q \sim P_2|Q$$

$$(L)P_1 \sim (L)P_2$$

$$P_1[f] \sim P_2[f]$$

Weak bisimulation is not preserved by non-deterministic choice.

It holds
$$a.\mathbf{0} \approx \tau.a.\mathbf{0}$$

but $a.\mathbf{0} + b.\mathbf{0} \not\approx \tau.a.\mathbf{0} + b.\mathbf{0}$

- Problem: The behavior of the overall system can be modified by substituting one subsystem (process) by another one.
- Solution: Refine weak bisimilarity so that it becomes a congruence, i.e., it is preserved by CCS operators.
 - The resulting equivalence is called observational congruence

Definition 11 (Observational Congruence).

• Let
$$P \stackrel{\tau}{\Longrightarrow} Q$$
 iff $P \stackrel{\tau}{\longrightarrow} (\stackrel{\tau}{\longrightarrow})^*Q$

Two CCS processes P, Q are called observationally congruent (in symbols: $P \approx^c Q$) whenever $\alpha \in Act \cup \{\tau\}$ is an action and:

- if $P \xrightarrow{\alpha} P'$, then there is a transition $Q \xrightarrow{\alpha} Q'$ and $P' \approx Q'$;
- if $Q \xrightarrow{\alpha} Q'$, then there is a transition $P \xrightarrow{\alpha} P'$ and $Q' \approx P'$.

Hint: Only the first τ of one process has to be simulated by an τ of the other process. The remaining subprocesses only have to satisfy the weak bisimulation $(P' \approx Q')$.

■ Do not mix it up with observational equivalence which is a common synonym for weak bisimulation.

Synchronous vs. asynchronous communication.

- Synchronous vs. asynchronous communication
- Communication in CCS is synchronous. The communication partners wait for each other and send and receive take place at once P := 'a,b,P'

Synchronous communication

$$Q := a.Q'$$

$$(a)(P \mid Q) \xrightarrow{\tau} (a)(b.P' \mid Q')$$

- Asynchronous communication can be carried out in several ways:
 - 1) Asynchronous communication by a parallel split of the send operation. Capacity is infinite.

$$P := ('a.0 \mid b.P')$$

$$Q := a.Q'$$

$$(a)(P \mid Q) \xrightarrow{b} (a)(('a.0|P') \mid a.Q)$$

Summary and Context

- There are currently no wide-spread programming languages that support holistic specification of a distributed system
 - such languages were more wide spread, may become wide spread again
 - on the other hand: push paradigm / decoupling is a counter trend!
- "holistic models" and "formal checking"are relevant
 - distributed systems difficult to understand (parallel activities vs. brain!)
 - business processes → Internet-of-Services: "inside" of foreign service?
 - required: formal description of the "semantics" of processes
- LTLs good for checking properties, but difficult to read/use
- calculi have been around "forever", are still relevant
 - CCS, CSP, alpha, pi, ... (we just looked at CCS)
 - supported: checking of properties (via LTL), checking of "equivalence" (strong / weak bisimulation, observational congruence)