23 Топологія, що породжена сім'єю відображень

§23.1 Топологія, у якій задані функції неперервні

Нехай на множині X задано сім'я відображень F, де відображення $f \in F$ діють у топологічні простори f(X), які, взагалі кажучи, можуть бути різними. Для будьякої точки $x \in X$, будь-якого скінченного сім'ї відображень $\{f_k\}_{k=1}^n \subset F$ і відкритих околів V_k точок $f_k(x)$ в просторі $f_k(X)$ визначимо множини

$$U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x) = \bigcap_{k=1}^n f_k^{-1}(V_k).$$

Як відомо, якщо для кожної точки $x \in X$ задане непорожнє сім'я підмножин U_x , що має такі властивості:

- 1. якщо $U \in U_x$, то $x \in U$;
- 2. якщо $U_1, U_2 \in U_x$, то існує таке $U_3 \in U_x$, що $U_3 \subset U_1 \cap U_2$;
- 3. якщо $U \in U_x$ і $y \in U$, то існує така множина $V \in U_y$, що $V \subset U$,

то існує топологія au на X, для якої сім'ї U_x будуть базами околів відповідних точок.

Таким чином, на X існує топологія, для якої множини $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ утворюють базу околів точки x при всіх точках $x \in X$. Позначимо цю топологію як $\sigma(X,F)$. Зокрема, околами точок $x \in X$ в топології $\sigma(X,F)$ будуть всі множини $f^{-1}(V)$, де $f \in F$, а V — окіл точки f(x) в топологічному просторі f(X). Отже, усі відображення сім'ї F є неперервними в топології $\sigma(X,F)$.

Теорема 23.1

 $\sigma(X,F)$ — найслабкіша топологія серед усіх топологій на X, в яких усі відображення сім'ї F є неперервними.

Доведення. Нехай τ — довільна топологія, в якій усі відображення сім'ї F є неперервними. Доведемо, що будь-яка множина $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ є околом точки x в топології τ . Звідси випливатиме, що $\tau \succ \sigma(X,F)$. За умовою, усі відображення $f_k: X \to F_k(X)$ є неперервними в топології τ . Отже, $f_k^{-1}(V_k)$ — це відкриті околи точки x в топології τ . Відкритим околом буде і скінченний перетин $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ таких множин.

Означення 23.1. Топологія $\sigma(X, F)$ називається топологією, породженою сім'єю відображень F, або слабкішою топологією, в якій усі відображення сім'ї F є неперереними.

§23.2 Породжена топологія і віддільність

Означення 23.2. Кажуть, що сім'я відображень F **розділяє** точки множини X, якщо $\forall x_1, x_2 \in X, x_1 \neq x_2, \exists f \in F : f(x_1) \neq f(x_2).$

Теорема 23.2

Нехай усі простори f(X), $f \in F$ є хаусдорфовими. Для того щоб топологія $\sigma(X,F)$ була віддільною за Хаусдорфом необхідно і достатнью, щоб сім'я відображень F розділяла точки множини X.

Доведення. Достатність. Припустимо, що сім'я відображень F розділяє точки множини X. Тоді

$$\forall x_1, x_2 \in X, x_1 \neq x_2 \quad \exists f \in F : \quad f(x_1) \neq f(x_2).$$

Оскільки f(X) — хаусдорфів простір, існують околи V_1, V_2 точок $f(x_1)$ і $f(x_2)$ відповідно. Множини $f^{-1}(V_1)$ і $f^{-1}(V_2)$ є шуканими околами в топології $\sigma(X, F)$, що розділяють точки x_1 і x_2 .

Необхідність. Нехай сім'я відображень F не розділяє точок множини X. Тоді

$$\exists x_1, x_2 \in X, x_1 \neq x_2 \quad \forall f \in F: \quad f(x_1) = f(x_2).$$

Візьмемо довільний окіл $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x_1)$ точки x_1 в топології $\sigma(X,F)$. Оскільки $f_k(x_1)=f_k(x_2)$ для всіх $k=1,2,\ldots,n$, то й точка x_2 лежить у тому ж околі $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x_1)$. Отже, в топології $\sigma(X,F)$, не виконується навіть аксіома про віддільність, а не лише властивість Хаусдорфа.

§23.3 Породжена топологія і фільтри

Теорема 23.3

Для того щоб фільтр \mathfrak{F} на X збігався в топології $\sigma(X,F)$ до елемента x, необхідно і достатньо, щоб умова $\lim_{\mathfrak{F}} f = f(x)$ виконувалася для всіх $f \in F$.

Доведення. **Необхідність.** З огляду на неперервність усіх $f \in F$ в $\sigma(X, F)$, необхідність випливає з теореми 3.3.

Достатність. Нехай $\lim_{\mathfrak{F}} f = f(x)$ для всіх $f \in F$. Доведемо, що будь-який окіл $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ є елементом фільтра \mathfrak{F} . За умовою, $\lim_{\mathfrak{F}} f_k = f_k(x)$, отже $f_k^{-1}(V_k) \in \mathfrak{F}$ для усіх $k=1,2,\ldots,n$. Оскільки фільтр є замкненим відносно скінченого перетину елементів

$$U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x) = \bigcap_{k=1}^n f_k^{-1}(V_k) \in \mathfrak{F}.$$

§23.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 492–495).