Lecture 25

Classification, identification and reconstruction

- Stimulus representation
 - Pixel luminance
 - Local contrast
 - Object categories
 - Grating orientations
 - Semantics
- Type of brain activity
 - Neurons
 - Voxels
- Domains of decoding
 - Perceptual decoding
 - Cognitive decoding
 - Motor decoding (opposite of perceptual)
- Types of decoding
 - Classification
 - Object class to which individual exemplars may belong
 - Identification
 - Decoding very specific face
 - Reconstruction

Encoding vs decoding

Encoding and decoding are scientifically equivalent EXCEPT that you

Encoding, decoding and optimization

- The encoding model
- The decoding model
 - Platonic ideal cause we don't know the perfect encoder
- Optimization/estimation

Decoding: Identification

• Very precise symmetry between identification and reconstruction

Importance of the prior

Prior that is a 1/f distribution of Gabor functions (sparse Gabor prior)

Models can be combined to improve decoding

- Different brain areas represent different things
- Decode only from PVC very bad (structural model)
- Decode from PVC image edges, and then higher areas for semantic (semantic + structural)

Motion-energy decoding (early vision)

• Direct decoding: bad

• Prior: 5000 of natural video

• MAP: highest probability video clip

• AHP: average high posterior

LDA scene decoding (higher vision)

- Used in NLP
- Method for finding the intrinsic topic structure, knowing nothing about the content
- Use the same for natural images: label all the objects in the images

Decoding and reconstructing visual imagery

_

Questions

- Do you think consciousness is an emerging property of the structure of the brain
- Is your validation set of size 1