Lista 4 - Espaços Métricos - IME USP 2025

Professor: Rodrigo Rey Carvalho

Sobre as aulas de 27/01/2025 - 31/01/2025

Esta lista será utilizada para a avaliação do curso de verão. Escolha dois dos exercícios dentre os seis abaixo para entregar. O prazo para entrega é até o dia 07/02 (sexta-feira).

- 1) Vimos em sala de aula que um espaço métrico compacto é completo. Dê um exemplo de um espaço métrico que é completo mas não é compacto.
- 2) Mostre que, com a métrica usual, $[0,1] \subseteq \mathbb{R}$ é compacto. (Dica: Já fizemos boa parte desse exercício em aula. Encontre sua resolução, reescreva segundo seu entendimento e escreva com mais detalhes a parte dita ser análoga)
- 3) Dados (X,d) espaço métrico e \mathcal{U} cobertura aberta de X. Um real $\epsilon > 0$ é dito ser um número de Lebesgue da cobertura \mathcal{U} se, para todo $B \subseteq X$, tal que $diamB < \epsilon$ existe $A \in \mathcal{U}$ tal que $B \subseteq A$. Mostre que se X é compacto, então toda cobertura aberta admite um número de Lebesgue.
- **4)** Dados (X, d) espaço métrico e \mathcal{F} família de subconjuntos de X. Dizemos que \mathcal{F} tem a propriedade da intersecção finita (PIF) se, para quaisquer $n \in \mathbb{N}$ e escolha $F_1, \dots, F_n \in \mathcal{F}, \bigcap_{i=1}^n F_i \neq \emptyset$. Mostre que são equivalentes:
 - (a) X é compacto;
 - (b) Toda família de fechados \mathcal{F} com a propriedade da intersecção finita é tal que $\bigcap \mathcal{F} \neq \emptyset$.
- 5) Dados (X,d) espaço métrico e $K_1, K_2 \subseteq X$ compactos. Mostre que $K_1 \cup K_2$ é compacto. Conclua que a união finita de compactos é compacta e de um exemplo de uma união infinita de compactos que não é compacta.
- **6)** Dados (X,d) espaço métrico, $s: \mathbb{N} \to X$ sequência em X e $x \in X$ tais que $s(n) \to x$. Mostre que $s[\mathbb{N}] \cup \{x\}$ é um subconjunto compacto de X.