The Data Science Process

Polong Lin

Big Data University Leader & Data Scientist IBM

polong@ca.ibm.com

"Every day,

we create **2.5 quintillion bytes** of data — so much that **90% of the data** in the world today has been created in the **last two years** alone."

Data science

The interest in data science

- Solve problems and answer questions using data
- Goal to improve future outcomes

What is the data science process?

CRISP-DM Methodology diagram

1. Business understanding

Every project begins with business understanding.

- Project objective?
- Business sponsors play the most critical role
- What are we trying to do what is the goal?
- How do you define "success" and how can you measure it?

1. Business understanding

Traffic:

Problem: Traffic congestion wastes time and money

Clear question: How can we optimize traffic light duration using data on traffic patterns, weather, and pedestrian traffic?

Measurable outcomes:

- % decrease in commute time
- % decrease in length/duration of traffic jams

2. Analytic Approach

- Express problem in context of statistical and machine learning techniques
 - Regression:
 - "Predicting revenue in the next quarter?"
 - Classification:
 - "Does this patient have cancer A, cancer B, or are they healthy?"
 - Clustering:
 - "Are there groups of users that seem to behave similarly to each other?"
 - Recommendation/Personalization:
 - "How can I target discounts to specific customers?"
 - Outlier Detection

Statistical / machine learning technique(s)

- Linear regression
- Logistic regression
- Clustering
 - K-means
 - Hierarchical
 - Density-based
- Classification Trees
- Random Forests
- Neural networks

- Text mining (natural language processing)
- Principal component analysis
- Support Vector Machines
- Hidden Markov Models
- •____

Data compilation

- The chosen analytic approach determines the data requirements.
 - Content, formats, representations
- Initial data collection is performed.
 - Available Data?
 - · Obtain data?
 - Revise data requirements or collect more data?
- Then data understanding is gained.
 - Initial insights about data
 - Descriptive statistics and visualization
 - Additional data collection to fill gaps, if needed

#1 What can you tell me about this data?

#2 What can you tell me about this data?

#3 What can you tell me about this data?

#4 What can you tell me about this data?

Importance of Visualization

Same properties:

mean(x) = 9

mean(y) = 7.5

y = 3.00 + 0.500x

corr(x,y) = 0.816

Anscombe's Quartet

CRISP-DM Methodology diagram

Data preparation

- Data preparation encompasses all activities to construct and clean the data set.
 - Data cleaning
 - Missing or invalid values
 - Eliminating duplicate rows
 - Formatting properly
 - Combining multiple data sources
 - Transforming data
 - Feature engineering
 - Text analysis
- Accelerate data preparation by automating common steps

- Arguably the most time-consuming step
- "80% of the entire DS process is in data cleaning and preparation"

Modeling

• Modeling:

- Developing predictive or descriptive models
- May try using multiple algorithms
- Highly iterative process

Example: Clustering

Group similar cuisines together into *k* number of clusters.

Example: Clustering

Group similar cuisines together into *k* number of clusters.

Example: Clustering

```
[Age: 18, Sex: M, BMI: 23, Exercise: Frequent, Hobbies: Golf, ...]
                                                                              CLUSTER A
       [Age: 45, Sex: F, BMI: 28, Exercise: Frequent, Hobbies: Baseball, ...]
                                                                              CLUSTER B
       [Age: 83, Sex: F, BMI: 25, Exercise: Sedentary, Hobbies: Gymnastics, ...] CLUSTER C
       [Age: 28, Sex: M, BMI: 23, Exercise: Normal,
                                                     Hobbies: Softball, ...]
                                                                              CLUSTER B
       [Age: 30, Sex: F, BMI: 25, Exercise: Normal,
                                                     Hobbies: Golf, ...]
                                                                              CLUSTER A
       [Age: 15, Sex: M, BMI: 22, Exercise: Frequent, Hobbies: Golf, ...]
                                                                              CLUSTER A
                                                  Model
BIG DATA
UNIVERSITY
```

Example: Classification

Model evaluation

- Model evaluation is performed during model development and before model deployment.
 - Understand the model's quality
 - Ensure that it properly addresses the business problem
- Diagnostic measures
 - Suitable to the modeling technique used
 - Training/Testing set
 - Refine model as needed
- Statistical significance tests

Deployment and feedback

- Once finalized, the model is **deployed** into a production environment.
 - May start in a limited / test environment
 - Involves other roles:
 - Solution owner
 - Marketing
 - Application developers
 - IT administration
- Getting Feedback:
 - How well did the model perform?
 - Iterative process for model refinement and redeployment
 - A/B testing

Inactive -> Active

CRISP-DM Methodology diagram

"All models are wrong but some are useful" – George Box, Statistician

