

IN1006 Systems Architecture (PRD1 A 2022/23)

🔏 | My Moodle | IN1006 PRD1 A 2022-23 | COURSEWORK 1: Weekly Assessed Quiz | Quiz 3 Weekly Assessed Quiz 2022

Started on Thursday, 17 November 2022, 5:12 PM

State Finished

Completed on Thursday, 17 November 2022, 5:22 PM

Time taken 10 mins 2 secs

Grade 10.00 out of 10.00 (**100**%)

Question 1

orrect

Mark 1.00 out of 1.00

Which of the following equations correctly reflects the truth table shown below? A,B and C are inputs and F is the output.

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Select one:

- a. F = AB'C + A'BC' + A'BC' + A'B'C + A'B'C'
- b. F = A'BC' + A'BC + AB'C' + ABC' + ABC
- o. F = (A'BC' + A'BC + AB'C' + ABC' + ABC)'
- \bigcirc d. F = (AB'C + A'BC' + A'BC' + A'B'C + A'B'C')'
- e. None of these expressions
- f. Don't know/no answer

The F output is given as a sum-of-products expression where each product (AND) should correspond to a row where F = 1.

The correct answer is: F = A'BC' + A'BC + AB'C' + ABC' + ABC

Given the logic circuit and table below (with output Q), which line of the table does **not** correspond to the behaviour of the logic circuit?

Row	Α	В	U	Q
1	0	0	0	1
2	0	0	1	1
3	0	1	0	1
4	0	1	1	1
5	1	0	0	0
6	1	0	1	0
7	1	1	0	0
8	1	1	1	1

Select one:

- a. Row 6
- b. Row 8
- oc. Row 1
- d. All rows are correct
- e. Don't know/no answer
- f. Row 3
- g. Row 5
- h. Row 4
- i. Row 7
- j. Row 2

Row 3 is in error as the output of the NOR-gate (D) and AND-gate (E) are zero, leading to an output of the OR-gate (Q) of zero.

The correct answer is: Row 3

Given the logic circuit (with output W) and table below, which line of the table does *not* correspond with the behaviour of the logic circuit?

Row	Α	В	С	D	Z
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	0
4	0	0	1	1	0
5	0	1	0	0	0
6	0	1	0	1	0
7	0	1	1	0	0
8	0	1	1	1	1
9	1	0	0	0	0
10	1	0	0	1	0
11	1	0	1	0	0
12	1	0	1	1	0
13	1	1	0	0	0
14	1	1	0	1	0
15	1	1	1	0	0
16	1	1	1	1	0

Select one:

- a. Row 7
- o b. Row 10
- oc. Row 1
- d. Row 8
- e. Row 15
- f. Row 3
- g. Don't know/no answer
- h. Row 5
- i. Row 12

Row 8 is in error as all inputs to the AND gate must be one for W to be one, and this only occurs when the conditions in row two are met.

The correct answer is: Row 8

Which of the following equations correctly reflects the truth table shown below? A,B and C are inputs and F is the output.

Α	В	С	F	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	1	

Select one:

- a. F = (A'BC ' + A'BC + AB'C' + ABC' + ABC)'
- b. Don't know/no answer
- oc. None of these expressions
- \bigcirc d. F = A'BC' + A'BC + AB'C' + ABC' + ABC
- e. F = (AB'C + A'BC' + A'BC' + A'B'C + A'B'C')'
- \bigcirc f. F = AB'C + A'BC' + A'BC' + A'B'C + A'B'C'

Your answer is correct.

The F output is given as a sum-of-products expression where each product (AND) should correspond to a row where F = 1.

The correct answer is: F = A'BC' + A'BC + AB'C' + ABC' + ABC

Which of the following is the correct Boolean expression for the logic circuit below (with output Q).

Select one:

- \bigcirc a. Q = (AB)' + (B+C)
- b. Q = (A+B)'(BC)
- \odot c. Q = (A+B)' + (BC)
- d. Don't know/no answer
- e. Q = (A+B) + (BC)

Output Q is OR of a NOR-gate (D) with inputs A, B and an AND-gate (E) with inputs B, C. This gives the expression: Q = (A+B)' + (BC)

The correct answer is: Q = (A+B)' + (BC)

Question 6

Correct

Mark 1.00 out of 1.00

Which of the following statements is the most accurate description for the sum-of-products expression below?

F = A'BC + ABC' + AB'C'

Select one:

- a. The truth table has three rows where F = 1 and at least one zero must be in the inputs to return one.
- b. The truth table has three rows where F = 1 and B must be one to return one.
- c. The truth table has two rows where F = 1 and no zeros need to be in the inputs to return one.
- d. Don't know/no answer.
- e. The truth table has three rows where F = 1 and no zeros need to be in the inputs to return one.
- f. The truth table has four rows where F = 1 and no zeros need to be in the inputs to return one.

The number of OR-ed terms above specifies the number of input cases that lead to a true expression (rows of truth table that give F = 1). Each of the inverted variables shows where the input needs to be zero for that input case.

The correct answer is: The truth table has three rows where F = 1 and at least one zero must be in the inputs to return one.

Mark 1.00 out of 1.00
What is the effect of a bitwise-OR operation on the following 12-bit words: 1000 1010 1101, 0110 1110 0101?
Select one:
○ a. 0000 1100 0101
O b. 1111 0011 1010
○ c. 1110 0100 1000
○ d. Don't know/no answer
● e. 1110 1110 1101
O f. 0001 0001 0010
Your answer is correct.
The OR operation is applied to each of the pairs of bits at the same position in each word, moving from left to right.
The correct answer is: 1110 1110 1101
Question 8
Correct
Mark 1.00 out of 1.00
What is the effect of a bitwise-NAND operation on the following two 12-bit words: 1000 1010 1101, 0110 1110 0101?
Select one:
a. Don't know/no answer
O b. 0000 1100 0101
O c. 1110 1110 1101
O d. 1110 0100 1000
◎ e. 1111 0101 1010 ~
O f. 0001 0001 0010
Your answer is correct.
The NAND operation is applied to each of the pairs of bits at the same position in each word, moving from left to right.
The correct answer is: 1111 0101 1010

Question **7**Correct

Correct	
Mark 1.00 out of 1.00	
What is the effect of a bitwise-NAND operation on the following two 12-bit words: 1000 1010 1101, 0110 1110 0101?	
Select one:	
○ a. 0000 1100 0101	
○ b. Don't know/no answer	
○ c. 0001 0001 0010	
O d. 1110 0100 1000	
○ e. 1110 1110 1101	
◎ f. 1111 0101 1010	*
The NAND operation is applied to each of the pairs of bits at the same position in each word, moving from left to right.	
The correct answer is: 1111 0101 1010	
Question 10	
Correct Mark 4.00 and a fd.00	
Mark 1.00 out of 1.00	
What is the effect of a bitwise-OR operation on the following 12-bit words: 1000 1010 1101, 0110 1110 0101?	
Select one:	
a. 1110 1110 1101	~
○ b. 1111 0011 1010	
○ c. Don't know/no answer	
Od. 0000 1100 0101	
○ e. 1110 0100 1000	
O f. 0001 0001 0010	
The OR operation is applied to each of the pairs of bits at the same position in each word, moving from left to right.	
The correct answer is: 1110 1110 1101	
■ Quiz 2 _ Weekly Assessed Quiz 2022	
Jump to	
Quiz 4 _ Weekly Assessed Quiz 202	2 -
Ouiz navigation	

10

Show one page at a time Finish review

Question **9**