1), element
$$x: \times (=) \gcd(x, 28) = 1$$

2). Z_{28}^{\times}

$$x: \times (\longrightarrow gcd(x, 28) = 1$$

3),
$$\phi(28) = 28 = 2^2 \times 7$$

 $\phi(28) = 28 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{7}\right)$
 $= 28 \times \frac{1}{2} \times \frac{1}{7} = 12$

INT202 Complexity of Algorithms

- 1. Let us consider Z_{28} the set of integers modulo 28.
 - 1) Give the necessary and sufficient condition required for an element of Z₂₈ to have an inverse in \mathbb{Z}_{28} .
 - 2) Determine all the elements of Z_{28} that have a multiplicative inverse in Z_{28} .
 - 3) Evaluate $\varphi(28)$ wherein φ is the Euler totient function.
 - 4) Evaluate 4⁻¹ and 5⁻¹ if they exist.
- 2. In the RSA method, suppose that p = 5, q = 17, and e = 13. First find the private key d corresponding to these parameters. Then decrypt the ciphertext messages, C, below to find the original (plaintext) messages.

a.
$$C = 12$$
 47
b. $C = 9$ an , $3 - SA7$ is in NP, if given an assignment of Bool variables, we can check CNT formula C , if $C = 1$, $C = (C_1 \vee C_2) \wedge (C_3 \vee C_4)$ in polyeline

- 3. Alice and Bob are using the RSA algorithm to communicate. Bob's public key is e = 3and n = 187.
 - a. What is Bob's secret key?
 - b. Alice wants to send the message M to Bob. Bob receives 9. What was the message M sent by Alice?
- 4. a. Show that 3-SAT belongs to the class NP;

2,

$$P = 5$$
, $Q = 17$, $e = 13$
 $N = P \cdot Q = 85$
 $\beta(n) = (P - 1)(2 - 1) = 64$
 $ed = 1 \pmod{p(n)}$
 $d = 5$
 $M = Cd \mod n$
a), $M = 12^5 \mod 85 = 37$
b). $M = 95 \mod 85 = 59$

b. Reduce the CNF-SAT problem to 3-SAT;
c. Deduce that 3-SAT is NP-Complete.

2)
$$P = 5, P = 17, C = 13$$

$$N = P \cdot 2 = 85$$

$$P = 17, P = 11$$

$$P = 17, P = 17, P = 17, P = 17, P = 15$$

$$P = 17, P = 15$$

$$P = 17, P = 15$$

$$P = 17, P = 17,$$