MPAKTUYECKUE 3AHATUA №8-9

<u>Тема занятий</u>. Полугруппы. Моноиды. Группы. Подгруппы. Циклические группы.

I. <u>Бинарные алгебраические операции</u>. Пусть X — произвольное множество. Бинарной алгебраической операцией (или законом композиции) на X называется отображение $T: X \times X \longrightarrow X$. Таким образом, любой упорядоменной паре $<\alpha, \ell> \in X^2$ ставится в соответствие однозначно определённый элемент $T(\alpha, \ell) \in X$. Вместо $T(\alpha, \ell)$ часто пишут $AT\ell$, и при этом бинарную операцию T часто обозначают каким-нибудь символом из *, \circ , *, *, * Будем, кроме того, писать $a\ell$ без всякого значка. Пусть * — бинарная операция на X, тогда говорят, что * определяет на X алгебраическую структуру, или, что (X, *) — алгебраическая система.

<u>Примеры.</u> 1. Пусть $X = \mathbb{Z}$ (множество целых чисел). Тогда + (сложение чисел), • (умножение чисел), – (вычитание чисел) – бинарные операции на \mathbb{Z} , так как эти операции не выводят из класса целых чисел.

- 2. Более экзотические примеры бинарных операций на Ж:
 - a) $x \circ y = xy + x + y$,
 - $\mathsf{d}) \ \mathsf{x} \circ \mathsf{y} = \ \mathsf{x} \mathsf{y},$
 - $B) x \circ y = x$
 - r) $x \circ y = y$.
- 3. С другой стороны операция $x \circ y = \sqrt{x + y^7}$

не является бинарной операцией на \mathbb{Z} , так как эта операция выводит из класса целых чисел: $1 \circ 2 = \sqrt{3} \notin \mathbb{Z}$. Введённая операция является бинарной операцией на $\mathbb{R}_{\geq} = \{t \in \mathbb{R} \mid t \geq 0\}$.

П. Полугруппы. Моноиды. Бинарная операция ж на X называется ассоциативной, если $(\alpha*\ell)*C = \alpha*(\ell*C)$ для всех $\alpha, \ell, c \in X$; она называется коммутативной, если $\alpha*\ell = \ell*\alpha$ для всех $\alpha, \ell \in X$. Те же названия присваиваются и алгебраической системе (X, *). Множество X с заданной на нём ассоциативной бинарной операцией называется полугруппой.

Примера 2 является коммутативной, а в случаях а), б) из примера 2 является коммутативной, а в случаях а), в), г) — ассоциативной. При этом в случае б) имеем коммутативную, но не являющуюся ассоциативной

бинарную операцию на \mathbb{Z} , а в служаях в), г) — ассоциативные, но не являющиеся коммутативными бинарные операции на \mathbb{Z} , откуда следует независимость этих понятий. Покажем, что операция о из б) не является ассоциативной

$$(102)03 = -(-1-2)-3 = 0 \neq 4 = -1-(-2-3) = 10(203).$$

Покажем, что операция о из в) не является коммутативной

$$102 = 1 \neq 2 = 201$$
.

Покажем ассоциативность операции о из а)

$$(x \circ y) \circ z = (xy + x + y) z + (xy + x + y) + z = xyz + xy + xz + yz + x + y + z,$$

 $x \circ (y \circ z) = x(yz + y + z) + x + (yz + y + z) = xyz + xy + xz + yz + x + y + z.$

Покажем ассоциативность операции о из в)

 $(x \circ y) \circ z = x \circ y = x = x \circ (y \circ z).$

Пример 5. Пусть $X = \mathbb{Z}$. Тогда (X, \circ) , где a) $x \circ y = x + y$, б) $x \circ y = xy$, в) $x \circ y = xy + x + y$, г) $x \circ y = x$, д) $x \circ y = y$ — полугруппы.

Пример 6. Пусть $X = \{0; 1\}$. Тогда $(X, \&), (X, \lor), (X, \sim), (X, + (mod 2))$ — полугруппы.

Элемент $e \in X$ называется <u>единичным</u> (<u>нейтральным</u>) относительно рассматриваемой бинарной операции *, если e * x = x * e = Xдля всех элементов $x \in X$. Если e^1 – ещё один единичный элемент, то $e^1 = e^1 * e = e \implies e$ – единственный.

Полугруппу с единичным элементом е принято называть моноидом. Задача 1. Локазать, что а) $(\{0;1\},\mathcal{L})$, б) $(\{0;1\},\vee)$, в) $(\{0;1\},\vee)$, г) $(\{0;1\},+)$ – моноиды. Найти единичные элементы в указанных моноидах.

Решение. а) $\forall x \in \{0; 1\}$ выполняется $1 \& x = x \& 1 = x \Rightarrow 1$ - единичный элемент, следовательно, $(\{0; 1\}, \&)$ - моноид.

б) $\forall x \in \{0; 1\}$ выполняется $0 \lor x = x \lor 0 = x \Rightarrow 0$ — единичный элемент, следовательно, $(\{0; 1\}, \lor)$ — моноид.

в) $\forall x \in \{0; 1\}$ выполняется $1 \sim x = x \sim 1 = x \implies 1$ – единичный элемент, следовательно, $(\{0; 1\}, \sim)$ – моноид.

г) $\forall x \in \{0; 1\}$ выполняется $0+x = x+0 = x \Rightarrow 0$ — единичный элемент, следовательно, ($\{0; 1\}, +$) — моноид.

Задача 2. Показать, что (\mathbb{Z} , \circ), где х \circ у = ху + х + у - моноид. Найти единичный элемент в этом моноиде.

 $\frac{\text{Решение}}{\mathbf{x} \circ \mathbf{0}} = 0 \circ \mathbf{x} = \mathbf{x} \quad (\mathbf{x} \cdot \mathbf{0} + \mathbf{x} + \mathbf{0} = 0 \cdot \mathbf{x} + \mathbf{0} + \mathbf{x} = \mathbf{x}),$ откуда 0 — единичный элемент.

Задача 3. Является ли полугруппа (\mathbb{Z}, \bullet) , где $x \circ y = x$ моноидом? Решение. Предположим, что в этой полугруппе существует единичный элемент е, т.е. удовлетворяющий условию $e \circ x = x \circ e = x$ $\forall x \in \mathbb{Z}$. Тогда

 $e = e \circ x = x \quad \forall x \in \mathbb{Z}$, а следовательно, множество \mathbb{Z} состоит из единственного элемента e. По-лученное противоречие показывает, что указанная полугруппа не является моноидом.

Моноиды принято обозначать тройками (М , *, е), где М — множество элементов моноида, * — бинарная операция на М , е — единичный элемент на М относительно * . В случае, когда бинарная операция в моноиде обозначается через + , такой моноид называется аддитивным (в силу выбора обозначения +) и в этом случае единичный элемент обычно обозначается через 0 . В случае же, когда бинарная операция в моноиде обозначается через * , такой моноид называется мультипликативным и при этом единичный элемент обычно обозначается черех е . Аддитивная запись используется преимущественно в коммутативных моноидах.

Если бинарная операция • на X ассоциативна, то результат её последовательного применения к N элементам множества X не зависит от расстановки скобок. Поэтому можно вводить символы $\prod_{i=1}^{n} x_i$, $x^N = \underbrace{x_{i-1} x_i}_{N \text{ page}}$. Очевидно, что

(I) $(x^m)^n = x^{mn}$, $x^m x^n = x^{m+n}$

для всех m , n > 0 . Кроме того, в случае существования единичного элемента е обычно полагают $\mathbf{x}^0 = \mathbf{e}$. При таком обозначении (1) будет справедливо и для всех m , $n \ge 0$.

Если используется обозначение + для бинарной операции на X, то совершенно аналогично предыдущему можно использовать символы $\sum_{i=1}^{n} x_i$, $n = \frac{x + \dots + x}{n}$. При этом аналогично (1) при всех n = 1 выполняется

(2) n(mx) = (nm)x, mx + nx = (m+n)x.

В случае существования единичного элемента 0 обычно по определению полагают 0x = 0 (следует различать $0 \in \mathbb{Z}$ слева от $0 \in \mathbb{X}$ справа). При таком обозначении, очевидно, (2) сохраняет силу и для всех $m, n \ge 0$.

1У. Обратимые элементи. Элемент α моноида (М , • , е) называется обратимым, если существует элемент $\ell \in M$ такой, что

(3) al = e = la.

Понятно, что элемент ℓ тоже тогда будет обратимым. Кроме того, если $a\ell' = \ell' \ell \ell'$. то

 $\ell' = e\ell' = (\ell a)\ell' = \ell(a\ell') = \ell e = \ell,$

т.е. элемент ℓ определяется из (3) единственным образом. Это даёт основание говорить о единственном обратном элементе для α , который обозначается α^{-1} . Очевидно, что $(\alpha^{-1})^{-1} = \alpha$.

Вадача 4. Локазать, что если х,у - обратимы, то ху - обратим и $(xy)^{-1} = y^{-1}x^{-1}$.

Решение. Имеем

 $(xy)(y^{-1}x^{-1}) = ((xy)y^{-1})x^{-1} = (x(yy^{-1}))x^{-1} = (xe)x^{-1} = xx^{-1} = e.$ Аналогично и наоборот $(y^{-1}x^{-1})(xy) = e.$

Задача 5. Найти все обратимые элементы в моноиде $(\mathbb{Z}, \circ, 0)$, где $x \circ y = xy + x + y$ (см. задачу 2).

Решение. Имеем

 $x \circ y = y \circ x = 0 \iff xy + x + y = 0 \iff y(x+1) = -x,$

откуда при $x \neq -1$ (очевидно, что элемент -1 необратим, так как при x = -1 уравнение y(x + 1) = -x переходит в y0 = -1, которое не имеет решений) получаем

 $y = -\frac{x}{x+1}$. (в правой части равенства (4).

Из условия $y \in \mathbb{Z}$ следует, что знаменатель x + 1 может принимать лишь значения ± 1 , откуда x = 0, либо x = -2. При этом, соответственно, y = 0, либо y = -2. Таким образом, обратимыми элементами являются 0, -2, причём обратные к этим элементам совпедают с самими элементами, т.е.

$$0^{-1} = 0$$
 , $(-2)^{-1} = -2$.

Задача 6. Найти все обратимые элементы в моноидах а) ($\{0;1\}, \mathcal{L}$), б) ($\{0;1\}, \mathcal{V}$), в) ($\{0;1\}, \sim$), г) ($\{0;1\}, +$).

Решение. а) В этом случае единичным элементом является 1 (см. задачу 1), Единичный элемент всегда имеет обратный, совпадающий с ним самим. Элемент 0 необратим, так как 0&x=0 $\forall x\in \{0,1\}$, а следовательно, ни при каком x не может быть 0&x=1.

о) В этом случае единичным элементом является 0 (см. задачу 1). Элемент 1 необратим, так как $1 \lor x = 1 \quad \forall x \in \{0 ; 1\}$, а следовательно, ни при каком $x \in \{0 ; 1\}$ не может быть $1 \lor x = 0$.

в) В этом случае единичным элементом является 1 (см. задачу 1), следовательно, этот элемент обратим. Обратным к 0 является 0, так как $0 \sim 0$ =1.

г) В этом случае единичным элементом является 0 (см. задачу 1), следовательно, этот элемент обратим. Обратным к I является I, так как I+I=0.

Задача 7. Показать, что всякий двухэлементный моноид $M = \{a, b\}$ является коммутативным.

Решение. Пусть для определённости $\alpha = 0$ — единичный элемент. Тогда $\alpha = 0$ = 0 , откуда и следует, что 0 — коммутативный моноид.

<u>Задача 8.</u> Определить количество попарно различных моноидов с двумя элементами a , b .

<u>Решение</u>. Во-первых, можно двумя способами указать единичный элемент. Пусть, например, α - единичный элемент. Тогда

aa = a, ab = b, ba = bи остаётся неопределённым лишь результат bb. Возможны два случая: bb = bb, bb = ab. В обоих случаях бинарная операция на bb оказывается полностью заданной и как нетрудно вйдеть она является ассоциативной. Таким образом, существуют ровно два моноида в случае, когда единичным элементом является ab и, очевидно, столько же, когда единичным элементом является ab и, очевидно, столько же, когда единичным элементом является ab и птого четыре моноида.

у. <u>Группы</u>. Моноид G, все элементы которого обратимы, называется <u>группой</u>. Таким образом, группа удовлетворяет следующим условиям:

(G1) на G определена бинарная операция: $(x,y) \mapsto xy$.

(G2) Эта операция ассоциативна: $(xy) \ge = x(y \ge)$ для всех $x,y,z \in G$.

- (G3) G обладает единичным элементом е : хе=ех=х для всех х $\in G$.
- (G4) Для каждого элемента $x \in G$ существует обратный x^{-1} , удовлетворяющий условию $xx^{-1} = x^{-1}x = e$.

Группа с коммутативной бинарной операцией называется абелевой.

Подмножество $H \subset G$ называется подгруппой $B \subset G$, если $e \in H$; $h_1, h_2 \in H \Rightarrow h_1 h_2 \in H$; $h \in H \Rightarrow h^{-1} \in H$. Подгруппа $H \subset G$ называется собственной, если $H \neq \{e\}$, $H \neq G$.

Число элементов конечной группы С называется её порядком.

Задача 9. Привести примеры групп на {0 : 1} .

Указание. См. задачу 6, в), г).

Задача 10. Определить количество попарно различных групп с двумя элементами а, в . элемент. Пусть, например,

Решение. Можно двумя способами указать единичный α – единичный элемент, откуда $\alpha \alpha = \alpha$, $\alpha \ell = \ell$, $\ell \alpha = \ell$ и остаётся неопределённым лишь результат $\ell \ell$. Заметим, что элемент α не может быть обратным к ℓ , так как $\alpha \ell = \ell \neq \alpha$, а следовательно, обратным к ℓ является элемент ℓ , откуда $\ell \ell = \alpha$. Таким образом существует единственная группа с заданным единичным элементом ℓ , очевидно, единственная группа с заданным элементом ℓ , итого две группы (непосредственной проверкой нетрудно убедиться, что указанные две алгебраические системы являются группами).

Задача 11. Доказать, что любая группа G порядка З является коммутативной.

Решение. Пусть $G = \{a, b, c\}$ и для определённости A -единичный элемент. Тогда ab = ba, ac = ca, осталось доказать, что bc = cb. Очевидно, что $bc \neq b$. Очевидно, что $bc \neq b$, так как в случае bc = b имеем $b^{-1}bc = b^{-1}b = a$, откуда c = a. Совершенно аналогично получаем $bc \neq c$. Таким образом, остаётся единственная возможность bc = a, а следовательно, $b^{-1} = c$, откуда cb = a = bc.

Задача I2. Доказать, что любая группа C_r' порядка 4 является коммутативной.

<u>Решение</u>. Пусть $G = \{a, \ell, c, d\}$ и для определённости Q - единич-

ный элемент. Предположим, что группа G не является коммутативной. Пусть для определённости выполняется ℓ с ℓ с ℓ . Заметим, что ℓ с ℓ ℓ , ℓ с ℓ с , а следовательно, ℓ с ℓ ℓ ℓ , аналогично с ℓ с ℓ ℓ . Пусть для определённости ℓ с = ℓ с ℓ . Из ℓ с = ℓ следует, что ℓ с ℓ с , откуда ℓ с ℓ с ℓ , а это противоречит равенству с ℓ е ℓ .

Задача 13. Определить количество попарно различных групп с тремя элементами d , f , c .

Решение. Можно тремя способами указать единичный элемент. Пусть, например, α – единичный элемент, откуда α α = α , α ℓ = ℓ , α c = c, ℓ ℓ = ℓ , ϵ ϵ = ϵ , ϵ ϵ = ϵ . Совершенно аналогично получаем ϵ ℓ = ϵ . В силу ℓ = ϵ имеем ℓ = ϵ , a, используя ℓ = ϵ . Получаем ℓ = ℓ = ℓ , откуда ℓ = ℓ . Аналогично имеем ℓ = ℓ . Таким образом, бинарная операция полностью определена и при этом получаемая в результате алгебраическая система является группой (это доказывается непосредственной проверкой), а следовательно, существует ровно одна группа в случае, когда ℓ — единичный элемент и, очевидно, столько же в случамх, когда единичными являются элементы ℓ , ϵ , итого три группы.

Задача I4. Для любого целого числа $\kappa \geqslant 2$ привести пример группы порядка κ .

Решение. Рассмотрим алгебраическую систему

({0,1,..., K-1}, + (mod K)).

Очевидно, что $+(mod\ k)$ — бинарная операция на $\{0,1,\ldots, k-1\}$. Эта операция ассоциативна. Единичным элементом является 0. Для каждого числа $i\in\{1,2,\ldots, k-1\}$ обратным k i является k-i. Таким образом, приведённая алгебраическая система удовлетворяет всем свойствам группы.

Задача I5. Доказать, что если α^2 = е для любого элемента α группы C , то эта группа абелева.

Решение. Из условия $a^2 = e$ $\forall a \in G$ имеем $a^{-1} = a$ $\forall a \in G$, откуда ℓ $\alpha = \ell^{-1}a^{-1} = (a\ell)^{-1} = a\ell$ для любых $a, \ell \in G$, а следовательно, группа G абелева.

3адача 16. Доказать, что множество G , на котором определена ассоци-

ативная бинарная операция и каждое из уравнений $\alpha x = \ell$, $y = \ell$ для любых α и ℓ из G имеет в G не более одного решения, будет группой.

Решение. По условиям для любого элемента $a \in G$ имеем

(5)
$$a x_1 = a x_2 \implies x_1 = x_2,$$
$$y_1 a = y_2 a \implies y_1 = y_2.$$

I. Рассмотрим для каждого элемента $\alpha \in G$ элементи e_{α}^{Λ} , e_{α}^{Π} , удовлетворяющие равенствам $\alpha e_{\alpha}^{\Pi} = \alpha$, $e_{\alpha}^{\Pi} \alpha = \alpha$. По условиям задачи такие элементы могут быть определены для каждого $\alpha \in G$ и при том единственным образом. Покажем, что $e_{\alpha}^{\Pi} = e_{\alpha}^{\Pi}$. Используя (5), имеем

$$(\mathbf{a} e_{a}^{\Pi}) a = a a = a(e_{a}^{\Lambda} \mathbf{a}) = (a e_{a}^{\Lambda}) a \Rightarrow a e_{a}^{\Pi} = a e_{a}^{\Lambda} \Rightarrow e_{a}^{\Pi} = e_{a}^{\Lambda}.$$

В дальнейшем уже обозначаем $e_q = e_q^{\pi} = e_q^{\Pi}$.

2. Покажем теперь, что для любых α , $\ell \in G$ выполняется $e_{\alpha} = e_{\ell}$. Используя (5), имеем

 $ae_{\alpha} \ell = a\ell = a e_{\ell} \ell \Rightarrow ae_{\alpha} = ae_{\ell} \Rightarrow e_{\alpha} = e_{\ell}$. Таким образом, показано существование элемента $e \in G$ такого, что $e = e_{\alpha}$ для всявого $a \in G$, откуда $ae = e_{\alpha} = a$ для любого $a \in G$, а следовательно, e - eдиничный элемент и при этом G - моноид.

3. Покажем, что для всякого элемента $\alpha \in \mathcal{C}$ выполняется

$$ax=e, ya=e \Rightarrow x=y.$$

Действительно, используя (5), имеем

 $\alpha \, \chi \, \alpha = e \, \alpha = \alpha = a \, e = a \, y \, a \Rightarrow \alpha \, \times = a \, y \Rightarrow \times = y$ Таким образом, для каждого элемента $\alpha \in G$ существует единственный элемент $\chi \in G$, удовлетворяющий условиям $\alpha \, \chi = \chi \, \alpha = e$, т.е. χ — обратный к α . Но моноид, в котором для каждого элемента существует обратный, является группой.

УІ. Системы образующих. Для любого непустого подмножества S группы G всегда можно указать минимальную подгруппу $H \subseteq G$, содержащую S (т.е. всякая другая подгруппа $H' \subset G$, содержащая S, содержит и H). Такую подгруппу будем обозначать через $S \subset S$. Очевидно, что

< S> = 0 H.

Будем называть $\langle S \rangle$ подгруппой, порождённой множеством S, а S - множеством образующих подгруппы $\langle S \rangle$. Нетрудно показать, что подгруппа $\langle S \rangle$ совпадает с множеством T, состоящим из единичного элемента е и всевозможных произведений

 $t_1t_2\cdots t_n$, $n=1,2,\ldots$, где лисо $t_i\in S$, $1\leq i\leq n$.

Если множество S состоит из одного элемента, т.е. $S = \{g\}$, где

 $g \in G$, то подгруппа $\langle g \rangle$ называется циклической.

Будем в дальнейшем под x^{-K} понимать $(x^{-I})^{K}$. Тогда, как нетрудно видеть, $\forall m,n\in\mathbb{Z}$ выполняется (I). Соответственно, будем в аддитивной группе G через -x обозначать элемент, обратный к $x\in G$ и под -x будем понимать K(-x). Тогда, как нетрудно видеть, $\forall m,n\in\mathbb{Z}$ справедливо (2).

Из сказанного следует, что любая циклическая группа $<\alpha>$ с образующей α является абелевой группой вида $<\alpha>=\{\alpha^n\mid n\in\mathbb{Z}\}$ — в случае мультипликативной формы записи бинарной операции, или, соответственно, $<\alpha>=\{n\alpha\mid n\in\mathbb{Z}\}$ — в случае аддитивной формы записи бинарной операции.

Действительно, в мультипликативной группе G любой элемент $g \in \langle a \rangle$, отличный от $e = a^0$ представим в виде

 $g=\alpha^{i_1}\dots\alpha^{i_K}$, где $k\geqslant 1$, $i_1,\dots,i_K\in\{1;-1\}$. Пусть среди i_1,\dots,i_K ℓ_1 раз встречается 1 и ℓ_2 раз встречается -1 , тогда в силу (1) $g=\alpha^{\ell_1-\ell_2}$, т.е. имеет вид α^n , где $n\in\mathbb{Z}$.

Пример 7. В группе $(\mathbb{Z}, +, 0)$ имеем $\langle 1 \rangle = \{n1 \mid n \in \mathbb{Z}\} = \mathbb{Z}$, $\langle 2 \rangle = \{n2 \mid n \in \mathbb{Z}\}$ — множество всех чётных чисел из \mathbb{Z} , т.е. приведены примеры бесконечных циклических группы и подгруппы.

Пример 8. Для группы ($\{0;1\}$,+,0) имеем $\langle 1 \rangle = \{0;1\}$ – пример конечной циклической подгруппы.

Пример 9. Пример циклической группы порядка N (где N > 2) получится, если рассмотреть все вращения на плоскости вокруг некоторой точки 0, совмещающие с собой правильный N—угольник P_N с центром в точке 0.

Очевидно, что эти вращения образуют группу; под их произведением следует понимать последовательное выполнение преобразований. Указанная группа С п содержит вращения $\Psi_0, \Psi_1, \dots, \Psi_{N-1}$ против часовой стрелки на углы 0 , $2\frac{\pi}{h}$,..., $(n-1)\frac{2\pi}{h}$. При этом $\Psi_S=\Psi_1^S$, $0\le S\le n-1$, а из геометрических соображений видно, что $\Psi_S^{-1}=\Psi_1^{n-S}$ и $\Psi_1^n=\Psi_0$ (единичное преобразование). Итак $|C_n| = n$, ж $C_n = \langle \varphi_i \rangle$.

 $\varphi_1 = \frac{2\pi}{5}$, n = 5

УП. Порядок элемента. Пусть G — произвольная группа, $\alpha \in G$. Возмож ны два случая: 1) все степени с различны, т.е. $m \neq n \implies a^m \neq a^m$. В этом случае говорят, что элемент а имеет бесконечный порядок. 2) Имеются совпадения $a^{m} = a^{n}$ при м ≠ и . Тогда в случае м > и (иначе переставим $a^m c a^n$) имеем $a^{m-n} = e$, где m-n > 0, т.е. \exists положительные степени элемента $\alpha \in \mathcal{C}$, равные е . Пусть ϕ - наименьший положительный показатель, для которого $a^{\psi} = e$. Тогда говорят, что α - элемент конечного порядка ф.

Пример 10. В группе (\mathbb{Z} , +, 0) элементи 1,2 имеют бесконечный порядок (см. пример 7).

Пример II. В группе $\{0; 1\}$, +, $0\}$ I – элемент конечного порядка 2 (см. пример 8).

Заметим, что в конечной группе G , где $|G| \leq N$, все элементы будут, очевидно, конечного порядка $\leqslant N$.

Утверждение. Если α - элемент конечного порядка q_{ϵ} , то

 $\langle a \rangle = \{e, a, ..., a^{q-1}\}$; $a^{k} = e \iff \kappa = e^{q}, \ell \in \mathbb{Z}$; Задача 17. Определить порядок элементов в группе $G = (\{0,1,2,3,4,5\},$ + (mod 6). 0).

Решение. Используя (6), имеем $\langle 1 \rangle = \{0,1,2,3,4,5\}$

(последовательно прибавляем к очередному элементу, начиная с 0, жлемент 1 до первого получения элемента 0).

$$\langle 2 \rangle = \{0,2,4\}$$

Задача 18. Определить порядок элементов в группах

- a) C+ = ({0,1,2,3,4}, + (mod 5), 0);
- 6) $G = (\{0,1,2,3,4,5,6,7\}, + (mod 8), 0).$

Задача 19. Доказать, что если элементы a и ℓ в группе G перестановочны (т.е. $a\ell = \ell a$) и имеют конечные взаимно простые порядки ℓ и s (т.е. $\text{НОД}(\ell,s) = 1$), то их произведение $a\ell$ имеет порядок ℓs .

<u>Решение</u>. Пусть % - порядок элемента $a \ell$. Очевидно, что

Задача 10. Показать, что если элементы α и β в группе G перестановочных $\alpha > 0$ до $\alpha > 0$ равен наименьшему общему кратному $\alpha > 0$ и $\beta = 0$, то порядок $\alpha > 0$ равен наименьшему общему

Решение. Обозначим через g порядок элемента al, а через k наименьшее общее кратное l и s. Тогда $(al)^k = a^k l^k = e$, откуда s силу (7) выполняется s = lg, где $l \in \mathbb{Z}$, l > 0, а следовательно, $g \leq k$. Из $(al)^{l} = e$ получаем $a^{l} b^{l} = e$, откуда $a^{l} = b^{-l}$. Используя то, что (a > 1) < b > e, из последнего равенства имеем $a^{l} = e = b^{-l}$, откуда $a^{l} = b^{l} = e$. Получаем, что $a^{l} = b^{l} = e$.

чисел ℓ , s , а следовательно, $\kappa \leqslant g$. Таким образом, получили, что $\kappa \leqslant g$ $g \leqslant \kappa$, а следовательно, $\kappa = g$.

Задача 20. Показать, что если порядки $\mathcal U$ и s элементов α и ℓ группи $\mathcal C_\ell$ взаимно просты, то $<\alpha>\Lambda<\ell>=\{e^{\ell}\}$

Решение. Предположим, что $<\alpha> n < \ell> \neq \{e\}$, т.е. найдутся числа κ_1 , $\kappa_2 \in \mathbb{Z}$ такие, что $\alpha^{k_1} = \ell^{k_2}$, $1 \le \kappa_1 \le \ell - 1$, $1 \le \kappa_2 \le s - 1$. Но тогда $\alpha^{k_1} s = \ell^{k_2} s = (\ell^s)^{k_2} = e$, откуда в силу (7) получаем, что $\kappa_1 s$ делится нацело на ℓ , и поскольку НОД $(\ell^s, s) = 1$, то это возможно лишь в случае, когда κ_1 делится нацело на ℓ , что невозможно, поскольку $\ell s = \ell^s$, $\ell s = \ell^s$.

Задача 22. Показать, что для любых элементов ф, в, с группы 🧲 :

- а) элементы ав и ва имеют одинавовые порядки;
- б) элементы авс, вса и сав имеют одинаковые порядки.

Решение. а) Пусть κ_1 и κ_2 — порядки элементов at и ta. Тогда at at at ... at κ_1 раз κ_2 раз κ_3 раз няя в рассуждениях at и ta местами, получаем противоположное неравенство, откуда и следует, что κ_4 = κ_2 .

о) Пусть κ_1 и κ_2 - порядки элементов авс и вса . Тогда авсавс ...авс = е , откуда а-гавсавс...авса = $\alpha^{-1}\alpha$ = е , в следовательно, вса вса ...вса = е . Таким образом, (вса) κ_1 раз κ_2 раз

откуда $\kappa_1 \ge \kappa_2$. Из ℓ са. ℓ с