Lung Disease X-ray Classifier

By: Greg Fatouras

Business Problem

- How can we leverage automation to reduce diagnostic time?
- How can we ensure early detection and accurate diagnosis of lung diseases like COVID-19 and pneumonia?
- How can we lower the costs associated with diagnosing lung diseases while ensuring timely and effective patient care?

Dataset

• Thousands of labeled X-ray images

Normal: $10,192 \rightarrow 2,000$

○ Covid-19: 3,616 \rightarrow 2,000

 \circ Pneumonia: 1,345 \rightarrow 1,345

Covid-19

Pneumonia

Normal

Methods of tackling problem

- Convert the 3 image classes to pixel arrays
- Apply Masks to X-ray images
- Create neural network to classify each image
- Hypertune parameters, include image manipulation

Baseline Architecture

Baseline Model Train: 0.78 Test: 0.76

ReduceLROnPlateau

Train: 0.83 Test: 0.81

Convolutional Neural Network

CNN Train: 0.84 Test: 0.82

CNN + DataGen Train: 0.81 Test: 0.86

CNN + DataGen

Classification Report:				
	precision	recall	f1-score	support
اد قادم د	0.05	0.70	0.01	026
covid	0.85	0.78	0.81	836
normal	0.77	0.83	0.80	775
viral_pneumonia	0.96	0.97	0.97	789
accuracy			0.86	2400
macro avg	0.86	0.86	0.86	2400
weighted avg	0.86	0.86	0.86	2400

Image Classification Pneumonia Example:

Conclusion

- CNN model with DataGen performed the best, with a test accuracy of 86%.
- Still struggles with normal/covid differentiation
- F1 scores of 80, 81, and 96 show a good balance between precision and recall.

Future Steps

- Additional Normal and Covid data
- Using pre-trained CNN models
- Model evaluation and real-world testing
- Additional Lung disease images for greater classification coverage

Thank You

Greg Fatouras

- https://github.com/Gfatouras
- https://www.linkedin.com/in/gfatouras/
- fatourasg@gmail.com