ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 3.2.5. Вынужденные колебания в электрическом контуре

Работу выполнил: Долгов Александр Алексеевич, группа Б01-106

Долгопрудный, 2022

Содержание

1	Аннотация	3
2	Теоретические сведения	3
3	Экспериментальная установка	5
4	Приборы и инструментальные погрешности	6
5	Измерения и обработка их результатов	7
	5.1 Исследование резонансных кривых	7
	5.2 Процессы установления и затухания колебаний	8
6	Вывод	8
7	Приложения	9
	7.1 Таблицы	9
	7.2 Графики	10

1 Аннотация

В данной работе исследуются вынужденные колебания, возникающие в параллельном колебательном контуре под действием внешней гармонически меняющейся ЭДС.

2 Теоретические сведения

Частота свободный гармонических колебаний в колебательном контуре:

$$\boxed{\nu_0 = \frac{1}{2\pi\sqrt{LC}}} \tag{1}$$

Добротность осциллятора (Q) - отношение энергии, запасённой в осцилляторе к взятому со знаком минус изменению энергии системы при увеличении фазы на 1 радиан.

$$Q = \frac{E_0}{-\Delta E_1} \tag{2}$$

Из уравнения затухающих колебаний можно получить следующую формулу, позволяющую вычислить добротность, зная параметры осциллятора:

$$Q = \frac{1}{1 - e^{-\frac{2\alpha}{\omega}}},\tag{3}$$

где ω - частота колебаний осциллятора, α - коэффициент в уравнении затухающих колебаний ($\ddot{x}+2\alpha\dot{x}+\omega_0^2x=0$), равный для колебательного контура $\frac{R}{2L}$. В случае $\alpha\ll\omega$ формула (3) приводится к приближённому виду:

$$Q = \frac{\omega_0}{2\alpha} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 (4)

Здесь применены разложение по формуле Тейлора до о $\left(\frac{2\alpha}{\omega}\right)$ и замена ω на ω_0 .

Ширина резонансной кривой ($\Delta \omega$) - ширина области частот, в пределах которой энергия вынужденных колебаний уменьшается вдвое

от значения энергии при резонансе. Воспользуемся формулой амплитуды установившихся вынужденных колебаний:

$$U_{m}(\omega) = \frac{\mathcal{E}_{0}}{LC} \frac{1}{\sqrt{(\omega^{2} - \omega_{0}^{2})^{2} + (2\alpha\omega)^{2}}}$$
 (5)

Из неё можно получить, что частота при резонансе равна:

$$\omega_{\rm p} = \sqrt{\omega_0^2 - 2\alpha^2} \tag{6}$$

Подставив (6) в (5), получим значение напряжения в резонансе:

$$U_{m}(\omega_{p}) = \frac{\mathcal{E}_{0}}{RC} \frac{1}{\sqrt{\omega_{0}^{2} - \alpha^{2}}}$$

Рассмотрим такие частоты ω_1 и ω_2 ($\omega_1 < \omega_2$), что

$$W(\omega_1) = W(\omega_2) = \frac{1}{2}W(\omega_p),$$

тогда

$$U_{\mathfrak{m}}(\omega_{1}) = U_{\mathfrak{m}}(\omega_{2}) = \frac{1}{\sqrt{2}}U_{\mathfrak{m}}(\omega_{\mathfrak{p}})$$

Найдём эти частоты:

$$\frac{\mathcal{E}_0}{LC} \frac{1}{\sqrt{(\omega_{1,2}^2 - \omega_0^2)^2 + (2\alpha\omega_{1,2})^2}} = \frac{1}{\sqrt{2}} \frac{\mathcal{E}_0}{RC} \frac{1}{\sqrt{\omega_0^2 - \alpha^2}}$$

$$(\omega_{1,2}-\omega_0)^2(\omega_{1,2}+\omega_0)^2+(2\alpha\omega_{1,2})^2=8\alpha^2(\omega_0^2-\alpha^2)$$

Далее предполагаем, что $\alpha \ll \omega_0$, тогда 1) $\omega_{1,2} \approx \omega_0$, 2) $\omega_0^2 - \alpha^2 \approx \omega_0^2$. С учётом этих приближений имеем:

$$(\omega_{1,2} - \omega_0)^2 (2\omega_0)^2 + (2\alpha\omega_0)^2 = 8\alpha^2\omega_0^2$$
$$(\omega_{1,2} - \omega_0)^2 = \alpha^2$$
$$\omega_1 = \omega_0 - \alpha, \ \omega_2 = \omega_0 + \alpha$$

Окончательно получаем:

$$\Delta \omega = 2\alpha \tag{7}$$

Подставив (7) в (4), получим:

$$Q = \frac{\omega_0}{\Delta \omega} = \frac{\nu_0}{\Delta \nu} \tag{8}$$

Логарифмический декремент затухания (d) - безразмерная величина, равная натуральному логарифму отношения двух последовательных амплитуд колеблющейся величины.

$$d = \ln \frac{A(t)}{A(t+T)}$$

Для произвольных затухающих колебаний:

$$d = \ln \frac{A_0 e^{-\alpha t}}{A_0 e^{-\alpha (t+T)}} = \ln \frac{1}{e^{-\alpha T}} = \alpha T$$

$$\boxed{d = \alpha T}$$
(9)

Выразив α из (9) и подставив её в (4), получим связь между логарифмическим декрементом и добротностью:

$$Q = \frac{\pi}{d}$$

Введём вспомогательную величину $d_n = \ln \frac{A(t)}{A(t+nT)}, \ n \in \mathbb{N}$. Очевидно, что $d_n = nd$. Поэтому добротность через величину d_n выражается следующим образом:

$$Q = \frac{\pi n}{d_n} \tag{10}$$

3 Экспериментальная установка

Схема установки приведена на Рисунке 1.

Рисунок 1. Схема экспериментальной установки

Синусоидальный сигнал от звукового генератора проходит через частотометр, позволяющий измерять рабочую частоту. В корпус частотометра вмонтирован генератор цугов - электронное реле, разрезающее синусоиду на периодически повторяющиеся цуги - отрезки синусоиды, содержащие 32 или 40 периодов колебаний.

Затем сигнал (цуги или непрерывный сигнал) поступает по коаксильному кабеля (по отдельным каналам) через одинаковые конденсаторы ёмкостью $C_1 \approx 600$ пкФ на клеммы "цуги" или "непр." , вмонтированные на отдельной панели П. На ней также смонтированы клеммы "синхр." (синхронизация) и " \bot " (земля). При подключении контура к клеммам "непр."и " \bot " на контур подаётся непрерывный сигнал; если контур подключён к клеммам "цуги"и " \bot " - на контур подаются отрезки синусоиды.

Для визуального наблюдения за процессом колебаний напряжение с конденсатора подаётся на вход электронного осциллографа (ЭО). Для устойчивости картины на экране ЭО его частота развёртки принудительно синхронизуется с частотой повторения цугов.

4 Приборы и инструментальные погрешности

Магазин сопротивлений:

Абсолютная погрешность: $\sigma_R = 0.005 \ \text{Ом}$

Амперметр:

Абсолютная погрешность: $\sigma_{\rm I}=0.05$ A

Вольтметр:

Абсолютная погрешность: $\sigma_U=2\ \text{MB}$

Частотометр:

Абсолютная погрешность: $\sigma_{\nu}=0,5$ Гц

Ёмкость конденсатора: $C = (0.100 \pm 0.003) \ \text{мк} \Phi$ Индуктивность катушки: $L = (100.0 \pm 0.2) \ \text{м} \Gamma \text{н}$

5 Измерения и обработка их результатов

5.1 Исследование резонансных кривых

Перед проведением измерений было получено теоретически предсказываемое значение собственной частоты колебаний в контуре. Оно находилось по формуле (1):

$$u_0^{({
m th})} = (1592 \pm 24) \, \Gamma$$
ц

Выло проведено 2 серии по 7 измерений действующих значений напряжения и силы тока в контуре при различных частотах входного напряжения. В первой серии активное сопротивление, выставленное на магазине сопротивлений, равнялось 0,01 Ом; во второй - 100 Ом. Результаты измерений представлены в Таблице 1. По этим данным также построены График 1 (в относительных единицах по осям) и График 2 (в абсолютных единицах по осям). Договоримся, что все величины, связанные с резонансной кривой, на которой R=0,01 Ом, будем указывать с индексом 1; для второй кривой - с индексом 2.

Из Графика 2 можно получить ширину резонансных кривых:

$$\Delta v_1 = 60,4 \ \Gamma$$
ц $\Delta v_2 = 223,1 \ \Gamma$ ц

и собственную частоту колебаний:

$$u_0 = (1551, 0 \pm 0, 5)$$
 Гц

Добротность колебательного контура найдём по формуле (8):

$$Q_1 = 25,6788$$
 $Q_2 = 6,952$

Теоретическое значение добротности может быть найдено по формуле (4), а погрешность по формуле:

$$\sigma_Q = Q \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_L}{2L}\right)^2 + \left(\frac{\sigma_C}{2C}\right)^2}$$

Итак, теоретически добротность данного контура равна:

$$Q_1^{(th)} = (1 \pm 0.5) \cdot 10^5$$
 $Q_2^{(th)} = 10.0 \pm 0.2$

5.2 Процессы установления и затухания колебаний

Для каждого из сопротивлений R=0,01 Ом и R=100 Ом было проведено 2 серии по 5 измерений. Каждое измерение первой серии заключалось в нахождении 2 амплитуд напряжения, разделённых некоторым числом периодов, при установлении вынужденных колебаний. Вторая серия предполагала измерение тех же величин, но уже для затухающих колебаний. Результаты приведены в Таблице 2. По этим данным можно рассчитать добротность колебательного контура, используя формулу (10). Значения добротности также представлены в Таблице 2.

Средние значения добротности для случа затухания:

$$\overline{Q_1} = 29, 2$$
 $\overline{Q_2} = 8.1$

Погрешность величину d_n находится по формуле:

$$\sigma_{d_n} = \sigma_U \sqrt{\frac{1}{U_k^2} + \frac{1}{U_{k+n}^2}}$$

Погрешность добротности находится по формуле:

$$\sigma_Q = \frac{\pi n}{d_n^2} \sigma_{d_n} = Q \sqrt{\frac{1}{U_k^2} + \frac{1}{U_{k+n}^2}} \frac{\sigma_U}{d_n}$$

6 Вывод

7 Приложения

7.1 Таблицы

Таблица 1. Исследование резонансных кривых

R	= 0,01	Ом	m R=100~Oм			
ν, Гц	I, A	U, мВ	ν, Гц	I, A	U, мВ	
1556	22,23	175	1551	21.40	54	
1566	19,48	160	1608	21.11	50	
1573	18,36	150	1652	21.41	42	
1580	17,72	130	1695	22.00	36	
1590	17,66	110	1752	22.92	30	
1606	18,23	90	1808	23.81	26	
1627	19,17	70	1888	25.07	22	
1551	23.47	175	1558	21.30	54	
1536	25.91	155	1503	21.60	48	
1528	26.08	135	1490	21.55	44	
1521	25.87	120	1466	21.34	40	
1518	25.26	95	1434	20.92	34	
1494	24.37	75	1408	20.52	30	
1487	23.94	70	1380	20.06	26	

Таблица 2. Установление и затухание колебаний

m R=0.01~Om					$ m R=100~O_{M}$					
U_k , мВ	U_{k+n} , мВ	n	d_n	Q	U_k , мВ	U_{k+n} , мВ	n	dn	Q	
Установление колебаний										
200	400	8	-0.7	36	40	100	2	-0.9	7	
100	120	1	-0.18	17	40	130	5	-1.2	13	
280	400	6	-0.36	52	100	140	6	-0.34	55	
440	480	5	-0.09	170	70	120	3	-0.54	17	
300	420	7	-0.34	65	110	130	2	-0,17	37	
Установившееся напряжение										
500 мВ					140 мВ					
Затухание колебаний										
420	380	1	0.10	30	110	70	1	0.45	7	
340	220	4	0.44	29	50	20	2	0.9	7	
300	200	4	0.41	31	70	20	3	1.3	7.3	
380	160	8	0.86	29	50	10	5	1.6	10	
200	100	6	0.7	27	10	10	7	2.4	9.2	

7.2 Графики

График 1. Резонансный кривые (относительные величины)

График 2. Резонансный кривые (абсолютные величины)

