

DEEP SETS ARE VIABLE GRAPH LEARNERS

Gerrit Großmann

28.11.2023

Toxic vs Non-Toxic

In many ways, graphs are the main modality of data we receive from nature.

- Petar Veličković

Kinase vs Phosphatase

In many ways, graphs are the main modality of data we receive from nature.

- Petar Veličković

Attentive vs Distracted

In many ways, graphs are the main modality of data we receive from nature.

- Petar Veličković

Stable vs Endangered

In many ways, graphs are the main modality of data we receive from nature.

- Petar Veličković

5

https://mlurgi.github.io/networks_for_r/

Part I

MESSAGE PASSING

- Input graphs of arbitrary size.
- Isomorphic graphs are guaranteed to produce the same results.

- Pair-wise relations expensive.
- Not very powerful (in their vanilla form)

Do we really need *message passing* to capture the topology of a graph?

Part II

DEEP SETS

Deep Sets are neural networks that operate on (multi)sets.

{1,2,3,4}

Contains the Number 5

Deep Sets are neural networks that operate on (multi)sets.

[4,3,1,2]

Guaranteed to produce the same results.

MLP₁

1 \Leftrightarrow [1,1] Aggregation

2 \Leftrightarrow [2,4] \longrightarrow \longrightarrow [10,30] \Leftrightarrow [3,9]

4 \Leftrightarrow [4 16]

Input Latent Vector

Part III

DEEP SETS ON GRAPHS

Deep Sets on Graphs

Centrality

Do we really need *message passing* to capture the topology of a graph?

Maybe centrality measures are enough?

Graph with node features (red, blue)

Centrality measures

Concatenate

Deep Set Neural Network

Part IV

EXPRESSIVENESS

Expressiveness of GNNs is measured by their ability to distinguish non-isomorphic graphs

Expressiveness of GNNs is measured by their ability to distinguish non-isomorphic graphs

Guaranteed to produce the same results.

Deep Sets can distinguish graphs that GNNs cannot:

GNNs can distinguish graphs that Deep Sets cannot:

Deep Sets can distinguish graphs that GNNs cannot:

GNNs can distinguish graphs that Deep Sets cannot:

Yellow node with three red neighbors exists only in one of them.

Deep Sets can distinguish graphs that GNNs cannot:

GNNs can distinguish graphs that Deep Sets cannot:

Same centralities for both graphs

Deep Sets can distinguish graphs that GNNs cannot:

GNNs can distinguish graphs that Deep Sets cannot:

Same multiset for both graph

Deep Sets can distinguish graphs that GNNs cannot:

GNNs can distinguish graphs that Deep Sets cannot:

Potential solution:

Make centrality aware of node-features

Deep Sets can distinguish graphs that GNNs cannot:

GNNs can distinguish graphs that Deep Sets cannot:

Open Problem: Exact position in the Weisfeiler-Lehman hierarchy

Part V RESULTS

Results

Dataset	DSNN	GCN	GIN	PNA	SOTA	⊘ # N	⊘# <i>E</i>	# G
PROTEIN	0.74 ± 0.01	0.65 ± 0.01	0.61 ± 0.02	0.59 ± 0.04	0.85	39.1	145.6	1113
MUTAG	0.80 ± 0.06	0.55 ± 0.06	0.79 ± 0.04	0.52 ± 0.00	1.0	17.9	39.6	188
ENZYMES	0.40 ± 0.10	0.25 ± 0.01	0.34 ± 0.04	0.28 ± 0.04	0.78	32.6	124.2	600
IMBD-BINARY	0.72 ± 0.02	0.49 ± 0.44	0.52 ± 0.08	0.63 ± 0.02	0.96	19.8	193.1	1000

Concluding Remarks

Method:

Expressiveness:

Different graphs with same multiset representation

- **Open Problems:**
- Expressive power of centralities?
- Which centrality measures work best and why?
- Use set of edges instead?