

Superposisi

Hendrik Santoso Sugiarto

IBDA4221 – Selected Topic in Computer Technology

Quantum Computing

Capaian Pembelajaran

- Superposisi
- Pengukuran
- Interpretasi
- Single Qubit Gate

Superposisi

Superposisi

• Salah satu sifat wavefunction dalam persamaan schordinger adalah superposisi

$$H|\Psi\rangle = i\hbar \frac{d}{dt}|\Psi\rangle$$

- Jika $|\Psi_1\rangle$ dan $|\Psi_2\rangle$ adalah solusi dari persamaan schrodinger, maka $a|\Psi_1\rangle+b|\Psi_2\rangle$ dengan nilai a dan b berapapun juga adalah solusi
- $a|\Psi_1\rangle + b|\Psi_2\rangle$ adalah superposisi dari $|\Psi_1\rangle$ dan $|\Psi_2\rangle$

Uji Pemahaman

- Jika $|\Psi_1\rangle$ dan $|\Psi_2\rangle$ adalah solusi dari persamaan schrodinger $H|\Psi\rangle=i\hbar\frac{d}{dt}|\Psi\rangle$
- Buktikan bahwa $a|\Psi_1\rangle + b|\Psi_2\rangle$ juga adalah solusi dari persamaan schrodinger

$$|4\rangle = a|4\rangle + b|4\rangle$$
 $+ b|4\rangle$
 $+ b|4\rangle$

Superposisi bersifat relatif

• Misalkan $|\Psi_3\rangle$ dan $|\Psi_4\rangle$ merupakan superposisi dari $|\Psi_1\rangle$ dan $|\Psi_2\rangle$:

$$|\Psi_{3}\rangle = \frac{1}{\sqrt{2}}(|\Psi_{1}\rangle + |\Psi_{2}\rangle)$$

$$|\Psi_{4}\rangle = \frac{1}{\sqrt{2}}(|\Psi_{1}\rangle - |\Psi_{2}\rangle)$$

• Maka $|\Psi_1\rangle$ dan $|\Psi_2\rangle$ juga merupakan superposisi dari $|\Psi_3\rangle$ dan $|\Psi_4\rangle$:

$$|\Psi_1\rangle = \frac{1}{\sqrt{2}}(|\Psi_3\rangle + |\Psi_4\rangle)$$

$$|\Psi_2\rangle = \frac{1}{\sqrt{2}}(|\Psi_3\rangle - |\Psi_4\rangle)$$

Uji Pemahaman

• Tunjukan bahwa $|0\rangle$ dan $|1\rangle$ juga merupakan superposisi dari $|+\rangle$ dan $|-\rangle$.

Dimana|+
$$\rangle$$
 = $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ dan |- \rangle = $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$ |+ γ + |- γ = $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ | γ (|+ γ +|- γ) = γ (2|0 γ + γ =|1 γ)

Physical Meaning

• Suatu fenomena kuantum dapat direpresentasikan oleh persamaan berikut:

Eigenket

• Setiap ket apapun dapat direpresentasikan sebagai superposisi dari eigenket

$$H|\psi\rangle = H \sum_{i} |\psi_{i}\rangle = \sum_{i} \lambda_{i} |\psi_{i}\rangle$$

$$= \lambda_{1} |\psi\rangle + \lambda_{2} |\psi\rangle + \lambda_{3} |\psi\rangle + \cdots$$

Uji Pemahaman

• Apakah hasil operasi dari X-gate $(X = |0\rangle\langle 1| + |1\rangle\langle 0|)$ terhadap state:

•
$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 (10) (11) + (10) (10) 点 (10) + (10) = 1+)

$$\cdot \mid - \rangle = \frac{1}{\sqrt{2}} (\mid 0 \rangle - \mid 1 \rangle) \quad \left(\mid 0 \rangle \langle 1 \mid + \mid 1 \rangle \langle 0 \mid \rangle \right) \frac{1}{12} \left(\mid 0 \rangle - \mid 0 \rangle \right) = - \mid - \rangle$$

•
$$|\psi\rangle = a|+\rangle + b|-\rangle \times |\psi\rangle = a \times |+\rangle + b \times |-\rangle = a + b - b - b$$

$$X|0\rangle = (10)(11+11)(01)(10) = (11)$$

Pengukuran

Pengukuran

- Di dalam sistem kuantum:
 - Eigenvalue adalah nilai-nilai yang **mungkin** diperoleh ketika mengukur sebuah sistem (postulat 4)

 Mustahil memprediksi hasil pengukuran suatu sistem > Sebelum mengukur, hanya bisa memprediksi peluangnya saja (postulat 5)

• Physical quantity $A \rightarrow$ Observable A:

$$P(\lambda_n) = \frac{\lambda_n |u_n\rangle}{|\langle u_n | \Psi \rangle|^2}$$

$$P(\lambda_n) = \frac{|\langle u_n | \Psi \rangle|^2}{\langle \Psi | \Psi \rangle}$$

- Untuk normalized wavefunction $(\langle \Psi | \Psi \rangle = 1) \rightarrow P(\lambda_n) = |\langle u_n | \Psi \rangle|^2$
- Jika kita mengukur variable A, maka kita akan memperoleh nilai $\lambda_1, \lambda_2, ...$ dengan peluang $P(\lambda_1), P(\lambda_2), ...$

Perubahan Fase

Scale forse $\text{dalah } P_{\psi}(\lambda_m) = \frac{|\langle u_m | \Psi \rangle|}{\langle \Psi | \Psi \rangle}$

- Peluang untuk mengukur λ_m pada ket $|\Psi\rangle$ adalah $P_{\psi}(\lambda_m) = \frac{|\langle u_m | \Psi \rangle|^2}{\langle \Psi | \Psi \rangle}$
- Peluang untuk mengukur λ_m pada ket $|\Psi'\rangle = re^{i\theta} |\Psi\rangle$ adalah:

•
$$P_{\Psi'}(\lambda_m) = \frac{\left|\left\langle u_m \middle| \Psi' \right\rangle\right|^2}{\left\langle \Psi' \middle| \Psi' \right\rangle} = \frac{\left|\left\langle u_m \middle| re^{i\theta} \middle| \Psi \right\rangle\right|^2}{\left\langle \Psi \middle| re^{-i\theta} re^{i\theta} \middle| \Psi \right\rangle} = \frac{\left|\left\langle u_m \middle| \Psi \right\rangle\right|^2}{\left\langle \Psi \middle| \Psi \right\rangle}$$

- $|\Psi\rangle$ dan $|\Psi'\rangle$ menghasilkan pengukuran yang sama
- Pengukuran bersifat independent terhadap scaling and phase change pada ket

State Collapse

• Sebuah operator dan sistem memenuhi relasi eigen:

$$A|u_n\rangle = \lambda_n|u_n\rangle$$

- Jika pengukuran A pada state $|\Psi\rangle$ menghasilkan eigenvalue λ_n maka state dari sistem tersebut setelah diukur akan berubah ke $|u_n\rangle$
- Kegiatan mengukur merubah state dari sebuah system:

$$|\Psi\rangle \xrightarrow{A:\lambda_n} |u_n\rangle$$

 x_0

Copyright 2020 Calvin Institute of Technology.

e information contained herein shall not be used, copied, published, quoted, and/or released without prior approval

Uji Pemahaman

- Berapa peluang mengukur 1 pada state $|\psi\rangle = |0\rangle$?
- Berapa peluang mengukur 1 jika kita mengoperasikan Hadamard terlebih dahulu pada state $|\psi\rangle = |0\rangle$?

$$P(1) = |\langle 1|\Psi \rangle|^{2} = \langle 1|\Psi \rangle \langle \Psi | 1 \rangle = \langle 1|\omega \rangle \langle 0|1 \rangle = 0$$

$$|\Psi \rangle = H|\Psi \rangle = H|\omega \rangle = \frac{1}{12} (|\omega \rangle + |1 \rangle)$$

$$P(1) = |\langle 1|\Psi \rangle|^{2} = \langle 1|\Psi \rangle \langle \Psi | 1 \rangle = \langle 1|\frac{1}{12} (|\omega \rangle + |1 \rangle) \frac{1}{12} \langle 0| + \langle 1| \rangle |1 \rangle$$

$$= \frac{1}{12} \frac{$$

Expectation Values

- Expectation value ≠ measurement outcome
- Expectation values → Rata-rata dari N pengukuran independent

$$\langle \Psi | A | \Psi \rangle = \langle \Psi | IAI | \Psi \rangle = \left(\Psi \left| \left(\sum_{n} |u_{n}\rangle\langle u_{n}| \right) A \left(\sum_{m} |u_{m}\rangle\langle u_{m}| \right) \right| \Psi \right)$$

$$= \sum_{n,m} \langle \Psi | u_{n}\rangle\langle u_{n} | A | u_{m}\rangle\langle u_{m} | \Psi \rangle = \sum_{n,m} \langle \Psi | u_{n}\rangle\langle u_{n} | \lambda_{m} | u_{m}\rangle\langle u_{m} | \Psi \rangle$$

$$= \sum_{n,m} \lambda_{m} \langle \Psi | u_{n}\rangle\delta_{nm}\langle u_{n} | \Psi \rangle = \sum_{n} \lambda_{n} |\langle u_{n} | \Psi \rangle|^{2} = \sum_{n} \lambda_{n} P(\lambda_{n})$$

• Expectation values → weighted mean

Mean Square Deviation

(AL)

How far from the average:

$$\sigma_A = A - \langle A \rangle$$

Mean square deviation:

$$\langle \sigma_A^2 \rangle = \langle (A - \langle A \rangle)^2 \rangle$$
$$\langle \sigma_A^2 \rangle = \langle A^2 + \langle A \rangle^2 - 2A \langle A \rangle \rangle = \langle A^2 \rangle - \langle A \rangle^2$$

Root mean square deviation:

$$\Delta A = \sqrt{\langle \sigma_A^2 \rangle} = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$$

Uji Pemahaman

• Operator $M_0 = |0\rangle\langle 0|$ mengukur output dari $H|0\rangle$, dimana operator Hadamard $H = \frac{1}{\sqrt{2}}|0\rangle\langle 0| + \frac{1}{\sqrt{2}}|0\rangle\langle 1| + \frac{1}{\sqrt{2}}|1\rangle\langle 0| - \frac{1}{\sqrt{2}}|1\rangle\langle 1|$. Apakah nilai dari $\langle M_o\rangle$ dan $\langle M_0^2\rangle$?

$$\langle M_0 \rangle = \langle \Psi | M_0 | \Psi \rangle = \frac{1}{12} (\langle 0 | + \langle 1 | \rangle) | 10 \rangle \langle 0 | \frac{1}{12} (\langle 0 \rangle + | 10 \rangle)$$

$$= \frac{1}{2} (\langle 1 + 0 \rangle) (\langle 1 + 0 \rangle) = \frac{1}{2}$$

$$M_{0}^{2} = 10 \times (0110) \times (0) = 10 \times (01) = 100$$
 $(M_{0}^{2}) = \frac{1}{2}$

Relasi 2 Operator

Pengukuran 2 operator berbeda terhadap |Ψ⟩:

$$\begin{array}{ccc}
A|u_n\rangle = \lambda_n|u_n\rangle, & |\Psi\rangle = \sum_n c_n|u_n\rangle, & c_n = \langle u_n|\Psi\rangle \\
B|v_m\rangle = \mu_m|v_m\rangle, & |\Psi\rangle = \sum_n d_m|v_m\rangle, & d_m = \langle v_m|\Psi\rangle
\end{array}$$

Deviation Operator:

$$|\Psi_{A}\rangle = \sigma_{A}|\Psi\rangle \rightarrow \langle \Psi_{A}|\Psi_{A}\rangle = \langle \Psi|\sigma_{A}^{\dagger}\sigma_{A}|\Psi\rangle = \langle \sigma_{A}^{2}\rangle$$

$$|\Psi_{B}\rangle = \sigma_{B}|\Psi\rangle \rightarrow \langle \Psi_{B}|\Psi_{B}\rangle = \langle \Psi|\sigma_{B}^{\dagger}\sigma_{B}|\Psi\rangle = \langle \sigma_{B}^{2}\rangle$$

$$\langle \Psi_{A}|\Psi_{B}\rangle = \langle \sigma_{A}\sigma_{B}\rangle$$

Heisenberg Uncertainty Principle Revisited

• Relasi komutator operator deviasi:

$$[\sigma_A, \sigma_B] = \sigma_A \sigma_B - \sigma_B \sigma_A = (A - \langle A \rangle)(B - \langle B \rangle) - (B - \langle B \rangle)(A - \langle A \rangle) = AB - BA$$

= [A, B]

Komutator+antikomutator:

$$[\sigma_{A}, \sigma_{B}] + \{\sigma_{A}, \sigma_{B}\} = \sigma_{A}\sigma_{B} - \sigma_{B}\sigma_{A} + \sigma_{A}\sigma_{B} + \sigma_{B}\sigma_{A} = 2\sigma_{A}\sigma_{B}$$

$$\sigma_{A}\sigma_{B} = \frac{1}{2}[\sigma_{A}, \sigma_{B}] + \frac{1}{2}\{\sigma_{A}, \sigma_{B}\} = \frac{1}{2}[A, B] + \frac{1}{2}\{\sigma_{A}, \sigma_{B}\}$$

$$|\langle \sigma_{A}\sigma_{B}\rangle|^{2} = \left|\frac{1}{2}\langle[A, B]\rangle + \frac{1}{2}\langle\{\sigma_{A}, \sigma_{B}\}\rangle\right|^{2}$$

$$\text{elspelliss} \qquad \text{elspelliss}$$

$$\text{tomath to} \qquad \text{cut} - \text{lumitator}$$

Heisenberg Uncertainty Principle

Schwars inequality:

$$\langle \Psi_{A} | \Psi_{A} \rangle \langle \Psi_{B} | \Psi_{B} \rangle \ge |\langle \Psi_{A} | \Psi_{B} \rangle|^{2}$$
$$\langle \sigma_{A}^{2} \rangle \langle \sigma_{B}^{2} \rangle \ge |\langle \sigma_{A} \sigma_{B} \rangle|^{2}$$
$$\Delta A \Delta B \ge \frac{1}{2} |\langle [A, B] \rangle + \langle \{\sigma_{A}, \sigma_{B} \} \rangle|$$

• Imaginary & real component:

$$[A, B]^{\dagger} = -[A, B] \rightarrow antiHermitian \rightarrow imaginary$$

 $\{A, B\}^{\dagger} = \{A, B\} \rightarrow Hermitian \rightarrow real (+ve or 0)$

• Heisenberg uncertainty principle:

$$\Delta A \Delta B \ge \frac{1}{2} |\langle [A, B] \rangle|$$

Position-Momentum Uncertainty

Heisenberg Uncertainty Principle:

$$\Delta A \Delta B \ge \frac{1}{2} |\langle [A, B] \rangle|$$

Position-momentum uncertainty:

$$\Delta x \Delta p \ge \frac{1}{2} |\langle [x, p] \rangle| = \frac{1}{2} |\langle i\hbar \rangle| = \frac{\hbar}{2}$$

• Position projection on $|\Psi\rangle$:

$$\psi(x) = \langle x | \Psi \rangle$$

• Momentum projection on $|\Psi\rangle$:

$$\phi(p) = \langle p | \Psi \rangle$$

Fourier transform:

$$\phi(p) = f(\psi(x)) \leftrightarrow \psi(x) = f(\phi(p))$$

Uji Pemahaman

• Apakah kita dapat mengukur qubit dengan $M_0 = |0\rangle\langle 0|$ dan $M_+ = |+\rangle\langle +|$ sekaligus?

komutator

$$M_0 M_+ - M_+ M_0 = |0 \times 0| + > < + |-|+ \times + |0 \times 0|$$
 $= \frac{1}{12} |0 > < + |-|+ > < |0|$
 $= \frac{1}{12} (|0 > < +|-|+ > < 0|)$
 $= \frac{1}{2} (|0 > < |-|+ |0 > < |-|+ |0 > < |-|+ > < |0|)$
 $= \frac{1}{2} (|0 \times ||-|| \times |0|)$

+ that comute |

Interpretasi

Schrodinger Cat

- Tahun 1035 Schrodinger membuat sebuah thought experiment yang menggambarkan masalah dari interpretasi kopenhagen:
 - Seekor kucing di ruang baja yang terkunci yang berisi atom radioaktif yang dapat mengaktifkan suatu mekanisme pelepasan asam beracun
 - Proses peluruhan radioaktif mengikuti probabilitas kuantum
 - Penafsiran Kopenhagen: kucing itu dalam keadaan hidup dan mati sampai peristiwa itu telah diamati.
- Wavefunction dari kucing tersebut adalah:

$$|\Psi\rangle = a|dead\rangle + b|alive\rangle$$

Apakah teori kuantum meniadakan realita objektif?

Apakah kucing tersebut benar-benar mati sekaligus hidup?

Philosophical Interpretation

- Copenhagen Interpretation Mayorite
- Consciousness interpretation
- Pilot-wave interpretation of cuttive
- Many world interpretation
- Superdeterminism
- Etc

Neutral Good

Chaotic Good

Lawful Neutral

Superdeterminism

everything is predetermined Bell's theorem loophole quantum fuzziness is not real

True Neutral

Ensamble Interpretation

probabilities in groups minimalist statistics go bm

Chaotic Neutral

Quantum Mystiaism

consciousness causes collapse spooky Philosophy > Physics

Lawful Evil Reddit User

Neutral Evil

Jay-C-A-I

Chaotic Evil

Single Qubit Gate

Qubit

- Unit dalam pemrosesan informasi kuantum:
 - Sebelum mengukur, kita memiliki qubit (収) こべし ナタリ)
 - Setelah mengukur, kita memiliki statistik pengukuran yang diukur dalam bit (0 atau 1)
- Untuk dapat melakukan komputasi dalam bit, kita memerlukan sistem kuantum dalam ruang Hilbert 2 dimensi
- State qubit dapat ditulis sebagai: $|\psi\rangle \in \mathcal{H}_2 = span\{|0\rangle, |1\rangle\}$
- $|\psi\rangle = \underline{\alpha}|0\rangle + \underline{\beta}|1\rangle$, $dimana \underline{\alpha}, \underline{\beta} \in \mathbb{C}$, $dengan \ basis \ |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Operator untuk mengukur 0: $M_0 = |0\rangle\langle 0|$, mengukur 1: $M_1 = |1\rangle\langle 1|$
- Peluang mengukur 0: $\langle \psi | M_0 | \psi \rangle = |\alpha|^2$, Peluang mengukur 1: $\langle \psi | M_1 | \psi \rangle = |\beta|^2$

Sifat Qubit

- Qubit adalah benda kuantum yang memiliki superposisi state 0 dan 1:
- $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$), dimana $\alpha,\beta\in\mathbb{C}$ (homplehs)
- Kita dapat menggunakan parameter real dengan relative phase:
- $|\psi\rangle = e^{i\phi_1}\alpha|0\rangle + e^{i\phi_2}\beta|1\rangle$), dimana $\alpha,\beta,\phi_1,\phi_2 \in \mathbb{R}$
- $|\psi\rangle = \alpha |0\rangle + e^{i\phi}\beta |1\rangle$), dimana $\phi = \phi_1 \phi_2 \in \mathbb{R}$
- Qubit ternormalisasi: $1 = \langle \psi | \psi \rangle = |\alpha|^2 \langle 0|0 \rangle + |\beta|^2 e^{-i\phi} e^{i\phi} \langle 1|1 \rangle = |\alpha|^2 + |\beta|^2 = |\beta|^2$
- $|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$, dimana $\phi,\theta\in\mathbb{R}$
- Ketika diukur, qubit akan collapse ke salah satu pilihan state

Bloch Sphere

((0)4

- Qubit dapat direpresentasikan oleh bloch sphere: $r = \begin{cases} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{cases}$
- $|0\rangle$: $\theta = 0 \rightarrow r = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
- $|1\rangle: \theta = \pi \rightarrow r = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$
- $|+\rangle: \theta = \frac{\pi}{2}, \phi = 0 \rightarrow r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
- $|-\rangle: \theta = \frac{\pi}{2}, \phi = \pi \rightarrow r = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$
- $|i+\rangle: \theta = \frac{\pi}{2}, \phi = \frac{\pi}{2} \rightarrow r = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
- $|i-\rangle: \theta = \frac{\pi}{2}, \phi = \frac{3\pi}{2} \rightarrow r = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$

Pole states:

$$|i+
angle = rac{1}{\sqrt{2}}(|0
angle + i|1
angle) \ |i-
angle = rac{1}{\sqrt{2}}(|0
angle - i|1
angle)$$

rsnow

Hadamard Gate

•
$$H = \frac{1}{\sqrt{2}} |0\rangle\langle 0| + \frac{1}{\sqrt{2}} |0\rangle\langle 1| + \frac{1}{\sqrt{2}} |1\rangle\langle 0| - \frac{1}{\sqrt{2}} |1\rangle\langle 1|$$

$$\bullet \ H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

•
$$|\psi'\rangle = e^{-\frac{i}{\hbar}\delta H}|\psi\rangle$$

Aktivitas

- Eksplorasi state qubit di qiskit
- https://learn.qiskit.org/course/ch-states/representing-qubit-states

Bloch Sphere Coordinate

•
$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

•
$$\rho = |\psi\rangle\langle\psi| = \begin{bmatrix} \cos^2\frac{\theta}{2} & e^{-i\phi}\sin\frac{\theta}{2}\cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2}\cos\frac{\theta}{2} & \sin^2\frac{\theta}{2} \end{bmatrix}$$

• Bloch vector:
$$r = \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}$$

- X basis: $|+\rangle$, $|-\rangle$
- Y basis: $|i + \rangle$, $|i \rangle$
- Z basis (computational basis): $|0\rangle$, $|1\rangle$

Copyright 2020 Calvin Institute of Technology.

Measurement Operator

• Measure-0:
$$M_0 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = |0\rangle\langle 0|$$

• Measure-0:
$$M_0 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = |0\rangle\langle 0|$$

• Measure-1: $M_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = |1\rangle\langle 1|$

Pauli Operator

• Identity:
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |0\rangle\langle 0| + |1\rangle\langle 1|$$

• Pauli-x:
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = |+\rangle\langle +|-|-\rangle\langle -|$$

• Pauli-y:
$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = |i+\rangle\langle i+|-|i-\rangle\langle i-|$$

• Pauli-z:
$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = |0\rangle\langle 0| - |1\rangle\langle 1|$$

•
$$X = X^{\dagger} \rightarrow XX^{\dagger} = X^{\dagger}X = XX = I$$

•
$$\rho = \frac{1}{2}(I + r \cdot \sigma) = \frac{1}{2}(I + r_x X + r_y Y + r_z Z) = |\Psi\rangle\langle\psi|$$

$$\bullet \ \rho = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{r_{x}}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \frac{r_{y}}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + \frac{r_{z}}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 + r_{z} & r_{x} - ir_{y} \\ r_{x} + ir_{y} & 1 - r_{z} \end{bmatrix}$$

•
$$\rho = \frac{1}{2} \left[\frac{1 + \cos \theta}{\sin \theta \cos \phi + i \sin \theta \sin \phi} \right]$$

$$\begin{array}{l} \bullet \text{ Pauli-y: } Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = |i+\rangle\langle i+|-|i-\rangle\langle i-| \\ \bullet \text{ Pauli-z: } Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = |0\rangle\langle 0|-|1\rangle\langle 1| \\ \bullet X = X^\dagger \to XX^\dagger = X^\dagger X = XX = I \\ \bullet \rho = \frac{1}{2}(I+r\cdot\sigma) = \frac{1}{2}(I+r_xX+r_yY+r_zZ) = \boxed{\Psi} \checkmark \Psi \\ \bullet \rho = \frac{1}{2}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{r_x}{2}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \frac{r_y}{2}\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + \frac{r_z}{2}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1+r_z & r_x-ir_y \\ r_x+ir_y & 1-r_z \end{bmatrix} \\ \bullet \rho = \frac{1}{2}\begin{bmatrix} 1+\cos\theta & \sin\theta\cos\phi-i\sin\theta\sin\phi \\ \sin\theta\cos\phi+i\sin\theta\sin\phi & 1-\cos\theta \end{bmatrix} = \begin{bmatrix} \cos^2\frac{\theta}{2} & e^{-i\phi}\sin\frac{\theta}{2}\cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2}\cos\frac{\theta}{2} & \sin^2\frac{\theta}{2} \end{bmatrix}$$

 $XX^{+} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} = I$

Not GATE

$$\binom{0}{0}\binom{1}{0}=\binom{0}{0}=\binom{0}{1}=\binom{0}{1}\binom{0}{1}=\binom{0}{0}=\binom{0}{0}$$

- Apakah hasil dari $X|0\rangle$ dan $X|1\rangle$? $\chi|0\rangle=|1\rangle$ $\chi|1\rangle=|0\rangle$ \longrightarrow Not
- Apakah hasil dari $Y|0\rangle$ dan $Y|1\rangle$?
- Apakah hasil dari $Z|0\rangle$ dan $Z|1\rangle$?

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ i \end{pmatrix} = i \begin{pmatrix} 0 \\ 1 \end{pmatrix} = i \begin{pmatrix} 0 \\ 1 \end{pmatrix} = i \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Hadamard Operator

- Hadamard: $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} |0\rangle\langle 0| + \frac{1}{\sqrt{2}} |0\rangle\langle 1| + \frac{1}{\sqrt{2}} |1\rangle\langle 0| \frac{1}{\sqrt{2}} |1\rangle\langle 1|$
- $H = H^{\dagger} \to HH^{\dagger} = H^{\dagger}H = HH = I$

$$\frac{1}{12}(10)(0)+10)(1)+11)(0)-11)(1)\frac{1}{12}(10)(0)+10)(1)+11)(0)-11)(1)$$

$$\frac{1}{12}(10)(0)+10)(1)+10)(0)-10)(1)+11)(1)-11)(0)+11)(1)$$

$$\frac{1}{12}(210)(0)+211)(1)=10)(0)+11)(1)=1$$

- Apakah hasil dari $H|0\rangle$ dan $H|1\rangle$?
- Apakah hasil dari $H|+\rangle$ dan $H|-\rangle$?

$$\frac{1}{2}$$
 (10×01+10×11+10×01-11×11) $\frac{1}{2}$ (10>-10)= $\frac{1}{2}$ (10>+10)+ $\frac{1}{2}$ (10>-10)= 10> $\frac{1}{2}$ (10>0+10×11+10>01-11×11) $\frac{1}{2}$ (10>+10)= $\frac{1}{2}$ (10>+10)+ $\frac{1}{2}$ (10>+10)+ $\frac{1}{2}$ (10>+10)= 10> $\frac{1}{2}$ (10>+10×11+10>01-11×11) $\frac{1}{2}$ (10>+10)= $\frac{1}{2}$ (10>+10) = $\frac{1}{2$

Multiple Gates

Z

X=112H Z= HXH

HIDCIH - HIDCIH

- $X = |+\rangle\langle +|-|-\rangle\langle -|= H(|0\rangle\langle 0|-|1\rangle\langle 1|)H^{\dagger} = HZH$
- HXH = HHZHH = IZI = Z

Start

Apply H-gate

Apply Z-gate

Apply H-gate

• Apakah hasil dari $HZH|0\rangle$ dan $HZH|1\rangle$?

Operator apakah yang ekuivalen dengan ZYZ dan ZXZ?

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix} = -X$$

Phase Operator

• Phase-
$$\alpha: P(\alpha) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{bmatrix} = |0\rangle\langle 0| + e^{i\alpha}|1\rangle\langle 1|$$

•
$$P(\pi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = Z$$

•
$$P\left(\frac{\pi}{2}\right) = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = S = \sqrt{Z}$$

•
$$P\left(\frac{\pi}{4}\right) = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{i} \end{bmatrix} = T = \sqrt{S} = \sqrt[4]{Z}$$

$$HP(\alpha)H=\frac{1}{2}\left(1+e^{i\alpha}+e^{i\alpha}\right)$$

- Apakah peluang pengukuran qubit 0 dan 1 pada $H|0\rangle$?
- Apakah peluang pengukuran qubit 0 dan 1 pada $HP(\alpha)H|0\rangle$?
- Apakah hasil dari $S|+\rangle$ dan $S|-\rangle$?

$$| \Psi \rangle = H | 0 \rangle = 点 (| 0 \rangle + | 1 \rangle)$$

 $P(0) = \langle \Psi | 0 \rangle \langle 0 | \Psi \rangle = 起 to^{-\frac{1}{2}}$
 $P(1) = \langle \Psi | 1 \rangle \langle 1 | \Psi \rangle = to^{-\frac{1}{2}}$

$$\begin{array}{l} (1+e^{i\alpha})(0)+(1-e^{i\alpha})(1) \\ P(0)=(1+e^{i\alpha})(1+e^{-i\alpha})=2+e^{i\alpha}e^{i\alpha} \\ =(1+(0)\alpha)/2 \\ P(1)=(1-(0)\alpha)/2 \end{array}$$

Rotation Operator

$$\begin{split} \bullet \text{ Rotation-X: } R_{\chi}(\alpha) &= \begin{bmatrix} \cos\frac{\alpha}{2} & -i\sin\frac{\alpha}{2} \\ -i\sin\frac{\alpha}{2} & \cos\frac{\alpha}{2} \end{bmatrix} \\ \bullet \text{ Rotation-Y: } R_{\chi}(\alpha) &= \begin{bmatrix} \cos\frac{\alpha}{2} & -\sin\frac{\alpha}{2} \\ \sin\frac{\alpha}{2} & \cos\frac{\alpha}{2} \end{bmatrix} \\ \bullet \text{ Rotation-Z: } R_{\chi}(\alpha) &= \begin{bmatrix} e^{-\frac{i\alpha}{2}} & 0 \\ 0 & e^{\frac{i\alpha}{2}} \end{bmatrix} \\ \end{split}$$

• Rotation-Y:
$$R_y(\alpha) = \begin{bmatrix} \cos\frac{\alpha}{2} & -\sin\frac{\alpha}{2} \\ \sin\frac{\alpha}{2} & \cos\frac{\alpha}{2} \end{bmatrix}$$

• Rotation-Z:
$$R_z(\alpha) = \begin{bmatrix} e^{-\frac{i\alpha}{2}} & 0 \\ 0 & e^{\frac{i\alpha}{2}} \end{bmatrix}$$

• Bagaimana merepresentasikan Z-gate dengan rotation operator?

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} e^{-\frac{1}{2}} & 0 \\ 0 & e^{+\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

$$R_{A} = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{1}{2}} \end{pmatrix}$$

U-gate Operator

• U-gate:
$$U(\theta, \phi, \alpha) = \begin{bmatrix} \cos \frac{\theta}{2} & -e^{i\alpha} \sin \frac{\theta}{2} \\ e^{i\phi} \sin \frac{\theta}{2} & e^{i(\phi+\alpha)} \cos \frac{\theta}{2} \end{bmatrix}$$

•
$$U\left(\frac{\pi}{2},0,\pi\right) = \frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\1&-1\end{bmatrix} = H$$

•
$$U(0,0,\alpha) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{bmatrix} = P(\alpha)$$

• U-gate apapun dapat dibentuk dengan hanya rotasi 2-axis apapun

Apakah parameter U-gate yang dapat merepresentasikan X-gate dan Y-gate?

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = U(\pi_1, 0, \pi)$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = U(\pi_1, \frac{\pi_2}{2}, \frac{\pi_2}{2})$$

$$U = \begin{pmatrix} \cos \frac{1}{2} & -e^{1} & \sin \frac{1}{2} \\ e^{1} & \sin \frac{1}{2} & e^{1} & \cos \frac{1}{2} \end{pmatrix}$$

Aktivitas

- Operasi single qubit gates di qiskit
- https://learn.qiskit.org/course/ch-states/single-qubit-gates
- https://quantum-computing.ibm.com/composer/docs/iqx/guide/introducing-qubitphase
- https://quantum-computing.ibm.com/composer/docs/iqx/guide/advanced-singlequbit-gates

Tuhan Memberkati

