CS/ISyE 719: Stochastic Programming Modeling

Jim Luedtke

Department of Industrial and Systems Engineering University of Wisconsin-Madison

September 7, 2016

Module Outline

Stochastic Programming Modeling

- A little about stochastic modeling
- Crop planning example
- (Expected) Value of stochastic solution
- Expected value of perfect information
- Facility location example

Stocastic Programming Modeling

Optimization Modeling + Stochastic Modeling

• In this course, we tend to focus more on optimization modeling

Stochastic Modeling

- Deriving the models of the random variables in the model
- Heavily problem/context dependent

Data-Driven Stochastic Modeling

In short to medium-term problems, might be possible to use past data to construct stochastic model

- Forecasting, predictive modeling
- Ideally, build point and distribution estimates

Data-Driven Stochastic Modeling

Many (most) stochastic programming methods only require ability to sample random variables appearing in model

- Used to construct a scenario approximation that is what is actually solved
- Or integrated into a stochastic algorithm
- Surprisingly "few" scenarios needed (relative to dimension of random vector)
- ⇒ Random variables can be generated from (possibly complicated) simulation models
 - Key assumption: Simulation needs to be independent of decisions
 - E.g., Weather simulation yields (correlated) wind power scenarios

Example: Linear Regression

Example model for random demand of doughnuts:

Assume you have estimated a linear regression model:

$$X = \sum_{i=1}^{p} w_i Y_i + \epsilon$$

- Assume that at time decision is made, independent variables $Y_i, i=1,\ldots,t$ are known as \hat{Y}_i (e.g., current temperature, etc.)
- Other independent variables are unknown, but distribution estimates can readily be constructed from data (e.g., number of students who will attend the lecture)
- Obtaining random observation of *X*:
 - Sample \tilde{Y}_i from estimated distrition of Y_i , $i=t+1,\ldots,p$ and $\tilde{\epsilon}$ from the error distribution

•
$$\tilde{X} = \sum_{i=1}^{t} w_i \hat{Y}_i + \sum_{i=t+1}^{p} w_i \tilde{Y}_i + \tilde{\epsilon}$$

What you should (usually) NOT do

Some people use the term Sample Average Approximation for the following approach:

 Use past observations of demand directly as the scenarios in your stochastic model

This is not (generally) Sample Average Approximation!

- SAA uses scenarios generated from a stochastic model (which ideally is based on all available data)
- Key difference is the ability to use information that is known when making decision to build a better stochastic model (e.g., current weather conditions, most recent demand, etc.)

"Expert" / case driven stochastic modeling

In some (many?) situations (e.g., long-term models), there may be no reasonable data to justify a stochastic model

What to do?

- Robust optimization: Just assume uncertain data lies in an "uncertainty set", and optimize the worst-case
 - Better than assuming deterministic, but may be overly conservative
 - Also, two-stage robust models are generally intractable
- Constructed scenarios with subjective probability estimates:
 - Demand for a product is "low, medium, or high".
 - Weather is "dry" or "wet".
 - The market will go "up" or "down"

George Box (Yes, again!)

"All models are wrong. Some models are useful."

- Surely a subjectively constructed set of scenarios is WRONG
- But, the resulting stochastic programming model might be USEFUL in making better decisions

Key insight (again)

Comparing solution expected values is easier than estimating each solution's individual expected value.

Back to a Concrete Example

Farmer Ted

- In this example, the farmer has (real) recourse that is, he can do after observing random outcome. Not just sell his newspapers.
- Farmer Ted can grow Wheat, Corn, or Beans on his 500 acres.
- Farmer Ted requires 200 tons of wheat and 240 tons of corn to feed his cattle
- These can be grown on his land or bought from a wholesaler.

More Constraints

- Any excess production can be sold for \$170/ton (wheat) and \$150/ton (corn)
- Any shortfall must be bought from the wholesaler at a cost of \$238/ton (wheat) and \$210/ton (corn).
- Farmer Ted can also grow beans
 - Beans sell at \$36/ton for the first 6000 tons
 - Due to economic quotas on bean production, beans in excess of 6000 tons can only be sold at \$10/ton

The Data

• 500 acres available for planting

	Wheat	Corn	Beans
Yield (T/acre)	2.5	3	20
Planting Cost (\$/acre)	150	230	260
Selling Price	170	150	36 (≤ 6000T)
			10 (>6000T)
Purchase Price	238	210	N/A
Minimum Requirement	200	240	N/A

Formulate the LP – Decision Variables

- $x_{W,C,B}$ Acres of Wheat, Corn, Beans Planted
- $w_{W,C,B}$ Tons of Wheat, Corn, Beans sold (at favorable price).
- ullet e_B Tons of beans sold at lower price
- $y_{W,C}$ Tons of Wheat, Corn purchased.
- Note that Farmer Ted has recourse. After he observes the weather event, he can decide how much of each crop to sell or purchase!

Formulation

$$\max -150x_W - 230x_C - 260x_B - 238y_W + 170w_W$$
$$-210y_C + 150w_C + 36w_B + 10e_B$$

subject to

$$x_W + x_C + x_B \leq 500$$

$$2.5x_W + y_W - w_W = 200$$

$$3x_C + y_C - w_C = 240$$

$$20x_B - w_B - e_B = 0$$

$$w_B \leq 6000$$

$$x_W, x_C, x_B, y_W, y_C, e_B, w_W, w_C, w_B \geq 0$$

Solution with (expected) yields

Wheat	Corn	Beans
120	80	300
300	240	6000
100	0	6000
0	0	0
	120 300	120 80 300 240

• Profit: \$118,600

It's the Weather, Stupid!

• Farmer Ted knows well enough to know that his yields aren't always precisely Y=(2.5,3,20). He decides to run two more scenarios

• Good weather: 1.2Y

• Bad weather: 0.8Y.

Creating a Stochastic Model

Here is a general procedure for making a (scenario-based) 2-stage stochastic optimization problem

- For a "nominal" state of nature (scenario), formulate an appropriate (deterministic) optimization model
- Decide which decisions are made before uncertainty is revealed, and which are decided after
- All second stage variables get "scenario" index
- Constraints with scenario indices must hold for all scenarios
- Second stage variables in the objective function should be summed and weighted by the probability of the scenario occurring

What does this mean in our case?

- First stage variables are the x (or planting variables)
- Second stage variables are the y, w, e (purchase and sale variables)
- We have one copy of the y, w, e for each scenario!
- ullet Attach a scenario subscript s=1,2,3 to each of the purchase and sale variables.
 - 1: Good, 2: Average, 3: Bad
- ullet w_{C2} : Tons of corn sold at favorable price in scenario 2
- e_{B3} : Tons of beans sold at unfavorable price in scenario 3.

Expected Profit

 The second stage cost for each submodel appears in the overall objective function weighted by the probability that scenario will happen

$$-150x_W - 230x_C - 260x_B$$

+1/3(-238 y_{W1} + 170 w_{W1} - 210 y_{C1} + 150 w_{C1} + 36 w_{B1} + 10 e_{B1})
+1/3(-238 y_{W2} + 170 w_{W2} - 210 y_{C2} + 150 w_{C2} + 36 w_{B2} + 10 e_{B2})
+1/3(-238 y_{W3} + 170 w_{W3} - 210 y_{C3} + 150 w_{C3} + 36 w_{B3} + 10 e_{B3})

Constraints

$$x_W + x_C + x_B \leq 500$$

$$3x_W + y_{W1} - w_{W1} = 200$$

$$3.6x_C + y_{C1} - w_{C1} = 240$$

$$24x_B - w_{B1} - e_{B1} = 0$$

Constraints (cont.)

$$\begin{array}{rclcrcl} 2.5x_W + y_{W2} - w_{W2} & = & 200 \\ 3x_C + y_{C2} - w_{C2} & = & 240 \\ 20x_B - w_{B2} - e_{B2} & = & 0 \\ 2x_W + y_{W3} - w_{W3} & = & 200 \\ 2.4x_C + y_{C3} - w_{C3} & = & 240 \\ 16x_B - w_{B3} - e_{B3} & = & 0 \\ w_{B1}, w_{B2}, w_{B3} & \leq & 6000 \\ & & \text{All vars} & \geq & 0 \end{array}$$

Optimal Solution

		Wheat	Corn	Beans
S	Plant (acres)	170	80	250
1	Production	510	288	6000
1	Sales	310	48	6000
1	Purchase	0	0	0
2	Production	425	240	5000
2	Sales	225	0	5000
2	Purchase	0	0	0
3	Production	340	192	4000
3	Sales	140	0	4000
3	Purchase	0	48	0

The Value of the Stochastic Solution (VSS)

- Suppose we just replaced the "random" quantities (the yields) by their mean values and solved that problem.
- Would we get the same expected value for the Farmer's profit?
- How can we check?
 - ullet Solve the "mean-value" problem to get a first stage solution x.
 - Fix the first stage solution at that value x, and solve all the scenarios to see Farmer Ted's profit in each.
 - Take the weighted (by probability) average of the optimal objective value for each scenario
- ullet Alternatively (and simpler), we can fix the x variables and solve the stochastic programming problem we created.

Computing FT's VSS

- Mean yields Y = (2.5, 3, 20)
- (We already solved this problem).
- $x_W = 120, x_C = 80, x_B = 300$

Fixed Policy – Average Yield Scenario

maximize

$$-150x_W - 230x_C - 260x_B - 238y_W + 170w_W - 210y_C + 150y_C + 36w_B + 10e_B$$
 subject to

$$\begin{array}{rcl} x_W & = & 120 \\ x_C & = & 80 \\ x_B & = & 300 \\ x_W + x_C + x_B & \leq & 500 \\ 2.5x_W + y_W - w_W & = & 200 \\ 3x_C + y_C - w_C & = & 240 \\ 20x_B - w_B - e_B & = & 0 \\ w_B & \leq & 6000 \\ x_W, x_C, x_B, y_W, y_C, e_B, w_W, w_C, w_B & \geq & 0 \end{array}$$

Fixed Policy – Average Yield Scenario Solution

Wheat	Corn	Beans
120	80	300
300	240	6000
100	0	6000
0	0	0
	120 300	120 80 300 240

• Profit: \$118,600

Fixed Policy - Bad Yield Scenario

maximize

$$-150x_W - 230x_C - 260x_B - 238y_W + 170w_W - 210y_C + 150y_C + 36w_B + 10e_B$$
 subject to

$$\begin{array}{rcl} x_W & = & 120 \\ x_C & = & 80 \\ x_B & = & 300 \\ x_W + x_C + x_B & \leq & 500 \\ 2x_W + y_W - w_W & = & 200 \\ 2.4x_C + y_C - w_C & = & 240 \\ 16x_B - w_B - e_B & = & 0 \\ w_B & \leq & 6000 \end{array}$$

Objective Value: \$55,120

Fixed Policy – Good Yield Scenario

maximize

$$-150x_W - 230x_C - 260x_B - 238y_W + 170w_W - 210y_C + 150y_C + 36w_B + 10e_B$$
 subject to

$$\begin{array}{rcl} x_W & = & 120 \\ x_C & = & 80 \\ x_B & = & 300 \\ x_W + x_C + x_B & \leq & 500 \\ 3x_W + y_W - w_W & = & 200 \\ 3.6x_C + y_C - w_C & = & 240 \\ 24x_B - w_B - e_B & = & 0 \\ w_B & \leq & 6000 \end{array}$$

Objective Value: \$148,000

What's it Worth to Model Randomness?

- If Farmer Ted implemented the policy based on using only "average" yields, he would plant $x_W = 120, x_C = 80, x_B = 300$
- He would expect in the long run to make an average profit of...
 - 1/3(118600) + 1/3(55120) + 1/3(148000) = 107240
- If Farmer Ted implemented the policy based on the solution to the stochastic programming problem, he would plant $x_W=170, x_C=80, x_B=250.$
 - From this he would expect to make 108390

VSS

 The difference of the values 108390-107240 is the Value of the Stochastic Solution: \$1150.

- On average, it would pay off \$1150 per growing season for Farmer Ted to use the "stochastic" solution rather than the "mean value" solution.
- \$1150 is precisely the (expected) "value" of implementing a planting policy based on the "stochastic solution", rather than the mean-value solution.

EVPI – Expected Value of Perfect Information

- The EVPI measures the maximum amount a decision maker would be willing to pay in return for complete and accurate information about the future.
- How much could Farmer Ted make if he could "wait and see" what the weather was going to be before deciding on how to plant?

Formulation – Good yields

$$\max -150x_W - 230x_C - 260x_B - 238y_W + 170w_W - 210y_C + 150w_C + 36w_B + 10e_B$$

subject to

$$x_W + x_C + x_B \leq 500$$

$$3x_W + y_W - w_W = 200$$

$$3.6x_C + y_C - w_C = 240$$

$$24x_B - w_B - e_B = 0$$

$$w_B \leq 6000$$

$$x_W, x_C, x_B, y_W, y_C, e_B, w_W, w_C, w_B \geq 0$$

Solution with good yields

	Wheat	Corn	Beans
Plant (acres)	183.33	66.67	250
Production	550	240	6000
Sales	350	0	6000
Purchase	0	0	0

• Profit: \$167,667

Formulation - Bad Yields

$$\max -150x_W - 230x_C - 260x_B - 238y_W + 170w_W - 210y_C + 150w_C + 36w_B + 10e_B$$

subject to

$$x_W + x_C + x_B \leq 500$$

$$2x_W + y_W - w_W = 200$$

$$2.4x_C + y_C - w_C = 240$$

$$16x_B - w_B - e_B = 0$$

$$w_B \leq 6000$$

$$x_W, x_C, x_B, y_W, y_C, e_B, w_W, w_C, w_B \geq 0$$

Solution - Bad Yields

Wheat	Corn	Beans
100	25	375
200	60	6000
0	0	6000
0	180	0
	100	100 25 200 60 0 0

• Profit: \$59,950

Computing Farmer Ted's EVPI

- With perfect information, Farmer Ted's Long Run Profit/Year would be:
 - (1/3)(167667) + (1/3)(118600) + (1/3)(59950) = 115406
 - The numbers 167667, 118600, 59950 are the optimal amounts of money he would make if he knew the yields beforehand.
- Without perfect information, using the stochastic programming solution, Farmer Ted can expected to make 108390.
- EVPI = 115406 108390 = 7016.

Perfect information solution value is sometimes a useful bound on optimal stochastic programming value

Farmer Ted: Final Thoughts

Model was obviously simple for illustrative purposes

- How might model of random yields be improved?
- What other types of uncertainty might Farmer Ted need to add to his model?
- Would you expect correlation between the different uncertain parameters?

(General) Stochastic Programming

General Stochastic Program

$$\min_{x \in X} \mathbb{E}_{\xi}[F(x,\xi)]$$

- ξ : Random r-vector defined on some probability space $(\Omega, \mathbb{P}, \Sigma)$, i.e., $\xi: \Omega \to \mathbb{R}^r$
- Cumulative distribution function (cdf) of ξ : $H_{\xi}(y) = \mathbb{P}[\xi \leq y]$
- Expected value¹: $\mathbb{E}_{\xi}[F(x,\xi)] = \int_{\Omega} F(x,\xi(\omega))d\mathbb{P}$
- X: Given set of deterministic constraints

¹Can just think of it as a weighted sum

Two-stage Stochastic Programming

Two-Stage Stochastic Program w/Recourse

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi}[Q(x, \xi)]$$

where:

$$Q(x,\xi) := \min \ q(\xi)^{\top} y$$
 s.t.
$$W(\xi)y = h(\xi) - T(\xi)x$$

$$y \ge 0$$

- x: First-stage decisions (most important output of model)
- y: Recourse decisions (implicitly depend on ξ)
- $Q(x,\xi)$: Recourse function (AKA "value function")

Fits general SP model with $F(x,\xi) = c^{T}x + Q(x,\xi)$

Some Challenges in Stochastic Programming

Two-Stage Stochastic Program w/Recourse

$$\min_{x \in X} c^{\top} x + \mathbb{E}_{\xi}[Q(x, \xi)] \qquad (\text{here } F(x, \xi) = c^{\top} x + Q(x, \xi))$$

where:

$$Q(x,\xi) := \min \ q(\xi)^{\top} y$$

s.t. $W(\xi)y = h(\xi) - T(\xi)x$
 $y \ge 0$

- ullet Evaluating $\mathbb{E}_{\xi}[Q(x,\xi)] \Rightarrow$ Potentially high-dimensional integral
- Working with "implicit" definition of $Q(x,\xi)$

Discrete r.v.'s: The easy life!

- Assume $\xi \in \{\xi^1, \dots, \xi^K\} \subseteq \mathbb{R}^r$ with $\mathsf{P}(\xi = \xi^k) = p_k, k = 1, \dots, K$
- $T_k \stackrel{\text{def}}{=} T(\xi^k), h_s \stackrel{\text{def}}{=} h(\xi^k), q_k \stackrel{\text{def}}{=} q(\xi^k), W_k = W(\xi^k)$

$$\begin{aligned} & \text{min } c^\top x + \sum_{k=1}^K p_k Q_k(x) \\ & \text{s.t. } Ax = b \\ & x \in \mathbb{R}^{n_1}_+ \end{aligned}$$

where for
$$k = 1, \ldots, K$$

$$Q_k(x) \stackrel{\text{def}}{=} Q(x, \xi^k) = \min \ q_k^\top y$$

s.t. $W_k y = h_k - T_k x$
 $y \in \mathbb{R}^{n_2}_+$

Extensive Form

 When we have a finite number of scenarios, or if we approximate the problem with a finite number of scenarios², we can write an equivalent extensive form linear program:

$$\min_{x,y} c^{\top}x + \sum_{k=1}^{K} p_k q_k^{\top} y_k$$

$$\text{s.t.} Ax = b$$

$$T_k x + W_k y_k = h_k, \quad \forall k = 1, \dots, K$$

$$x > 0, \ y_k > 0, \quad \forall k = 1, \dots, K$$

Note: Model works same with integer restrictions on any of the variables

²Stay Tuned for Sample Approximation Module

Extensive Form: Structure

The Upshot

- This is just a larger linear program (or linear integer program)
- Might be VERY large, but it has special structure
- Stochastic programming algorithms exploit this structure

Building the Extensive Form

- Write a nominal (one scenario) model
- Decide which variables are first stage, and second stage
- ullet Give s scenario index to all second stage variables and random parameters
- Give context to all scenarios

Facility Location and Distribution

- Facilities: *I*
- ullet Customers: J
- Fixed cost f_i , capacity u_i for facility $i \in I$
- Demand d_j : for $j \in J$
- Per unit Delivery cost: $c_{ij} \ \forall i \in J, j \in J$

$$\min \sum_{i \in I} f_i x_i + \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij}$$

$$\sum_{i \in I} y_{ij} \ge d_j \quad \forall j \in J$$

$$\sum_{j \in J} y_{ij} - u_i x_i \le 0 \quad \forall i \in I$$

$$x_i \in \{0, 1\}, y_{ij} \ge 0 \quad \forall i \in I, \ j \in J$$

Evolution of Information

- Build facilities now
- ② Demand becomes known. One of the scenarios $d^k, k = 1, \dots, K$ happens
- Meet demand from open facilities
 - First stage variables: x_i
- Second stage variables: y_{ijk}

The Extensive Form

$$\min \sum_{i \in I} f_i x_i + \sum_{k=1}^K p_k \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ijk}$$

$$\sum_{i \in I} y_{ijk} \ge d_{jk} \quad \forall j \in J \ k = 1, \dots, K$$

$$\sum_{j \in J} y_{ijk} - u_i x_i \le 0 \quad \forall i \in I, \ k = 1, \dots, K$$

$$x_i \in \{0, 1\}, y_{ijk} \ge 0 \quad \forall i \in I, j \in J, k = 1, \dots, K$$

Modeling Discussion

- Do we always need to meet demand?
 - Regardless of the outcome d^k ?
- What happens on the off chance that our product is so popular that we can't possibly meet demand, even if we opened all of the facilities?
 - ullet Does the world end? (Recourse problem is infeasible o infinite cost!)

Two Ideas

- We could penalize not meeting demand of customers.
- We only want to meet demand "most of the time". (Chance constraint)

SP Definitions

Let Ξ be the support³ of random vector ξ

 A 2-stage stochastic optimization problem has complete recourse if for every possible outcome, there always exists a feasible recourse solution:

$$Q(x,\xi) < +\infty \ \forall x \in \mathbb{R}^n, \ \xi \in \Xi$$

 A 2-stage stochastic optimization problem has relatively complete recourse if for every outcome, and for every feasible first stage solution, there is always feasible recourse:

$$Q(x,\xi) < +\infty \ \forall x \in X, \ \xi \in \Xi$$

Good modeling practice: Include sufficiently flexible recourse to ensure model has relatively complete recourse.

³Support of ξ : smallest set Ξ such that $\mathbb{P}[\xi \in \Xi] = 1$

Penalize Shortfall: A Recourse Formulation

New parameter: $\lambda_j = \text{Per unit "cost" of not meeting demand of customer type } j$

$$\min \sum_{i \in I} f_i x_i + \sum_{k=1}^K p_k \left[\sum_{i \in I} \sum_{j \in J} c_{ij} y_{ijk} + \sum_{j \in J} \lambda_j z_{jk} \right]$$

$$\sum_{i \in I} y_{ijk} + z_{jk} \ge d_{jk} \quad \forall j \in J, \ k = 1, \dots, K$$

$$\sum_{j \in J} y_{ijk} - u_i x_i \le 0 \quad \forall i \in I, \ k = 1, \dots, K$$

$$x_i \in \{0, 1\}, y_{ijk} \ge 0 \quad \forall i \in I, j \in J, \ k = 1, \dots, K$$

VSS: Value of the Stochastic Solution

• Let $z_{\rm S}$ be the optimal solution value to

$$z_{\mathbf{S}} \stackrel{\text{def}}{=} \min_{x \in X} \mathbb{E}[F(x, \xi)]$$

• Let $x_{\rm MV}$ be an optimal solution to the "mean-value" problem:

$$x_{\text{MV}} \in \arg\min_{x \in X} F(x, \mathbb{E}[\xi])$$

• Let $z_{\rm MV}$ be the long run cost if you plan based on the policy obtained from the 'average' scenario:

$$z_{\text{MV}} \stackrel{\text{def}}{=} \mathbb{E}[F(x_{\text{MV}}, \xi)]$$

Value of Stochastic Solution

$$VSS \stackrel{\text{def}}{=} z_{MV} - z_{S}$$

• Simple HW: Prove VSS > 0

EVPI

ullet Let $z_{
m S}$ be the optimal solution value to a stochastic program

$$z_{\rm S} = \min_{x \in X} \mathbb{E}[F(x, \xi))]$$

 Let z_{PI} be the expected value of the optimal "wait and see" solution(s)

$$z_{\text{PI}} = \mathbb{E}[\min_{x \in X} F(x, \xi))]$$

Expected Value of Perfect Information

EVPI =
$$z_{\rm S} - z_{\rm PI} \ge 0$$

• Simple HW: Prove EVPI ≥ 0