Last name	
First name	

LARSON—MATH 610—HOMEWORK WORKSHEET h16 Test 2 Review.

Write up a careful, complete test review and turn it in before our Test 2 on Thurs., May 11, 12:30-3:20. **Explain** everything.

- 1. What is a linear transformation T from a vector space V into a vector space W? What is the null space of T? What is the range of T?
- 2. Consider the function $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x_1, x_2) = (2x_1, 0, 0)$?
 - (a) Show T is a linear transformation.
 - (b) Find the null space of T.
 - (c) What is the *nullity* of T?
 - (d) Find the range of T.
 - (e) What is the rank of T?
- 3. Let T be a linear transformation from a vector space V to a vector space W. Show that T(0) = 0.
- 4. **Show:** If $\alpha_1, \ldots, \alpha_n$ are a basis for a finite-dimensional vector space V and β_1, \ldots, β_n are any vectors in a vector space W then there is a *unique* linear transformation T with $T(\alpha_1) = \beta_1, \ldots, T(\alpha_n) = \beta_n$.
- 5. Show: Every n-dimensional vector space over a field \mathbb{F} is isomorphic to \mathbb{F}^n .
- 6. Explain how to make the *collection* L(V, W) of linear transformations from a vector space V to a vector space W into a vector space. (What needs to be shown?)
- 7. State and **prove** the Rank-Nullity Theorem.
- 8. Let T be an isomorphism from a vector space V to a vector space W. Let $\{\alpha_i : i \in \mathcal{I}\}$ be a basis for V. Show that $\{T(\alpha_i) : i \in \mathcal{I}\}$ is a basis for W.
- 9. What is an *invertible* linear transformation $T: V \to W$? Give an example.
- 10. What is a singular linear transformation $T: V \to W$? Give an example.
- 11. **Prove:** If V and W are finite-dimensional vector spaces over a field \mathbb{F} with dim $V = \dim W$, and $T: V \to W$ is a linear transformation then the following are equivalent:
 - (a) T is invertible,
 - (b) T is non-singular,
 - (c) T is onto (that is, the range of T is W).

- 12. What is a linear functional on a vector space V over a field \mathbb{F} ? Give an example.
- 13. What is \mathbb{F}^{∞} ?
- 14. Let $f, g \in \mathbb{F}^{\infty}$. How is fg defined? Give an example.
- 15. Let \mathbb{F} be a field.
 - (a) Define $\mathbb{F}[x]$.
 - (b) Explain why $\mathbb{F}[x]$ is a vector space.
 - (c) Explain why $\mathbb{F}[x]$ is a linear algebra.
- 16. What is a *monic* polynomial? Give an example.
- 17. What is an *ideal* in $\mathbb{F}[x]$?
- 18. What is a *principal* ideal in $\mathbb{F}[x]$? Give an example.
- 19. What is an n-linear function?
- 20. What is the "big" determinant formula?
- 21. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ Use this definition to find det A.
- 22. Show: If A has a zero row then $\det A = 0$.
- 23. Suppose $A \in \mathbb{F}^{n \times n}$. Show: There is a $n \times 1$ matrix α (not all-zero), and $c \in \mathbb{F}$ with $A\alpha = c\alpha$ iff $\det(A cI) = 0$.
- 24. What is a *characteristic value* and a *characteristic vector* of a linear operator T from a vector space V over a field \mathbb{F} to itself?
- 25. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x_1, x_2) = (x_1, 2x_2)$. Find the characteristic values and corresponding characteristic vectors of T.
- 26. Consider $T: \mathbb{R}^2 \to \mathbb{R}^2$ from the previous example. Find det T by choosing a "nice" basis for \mathbb{R}^2 . Explain.
- 27. What is the *characteristic polynomial* of a matrix A? What does it tell us?
- 28. Find the characteristic polynomial for $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Find its roots. What do these roots tell us?
- 29. What is the Cayley-Hamilton Theorem?