О размерах компонент связности в случайном гиперграфе

Мирмоминов Руслан МГУ им. М. В. Ломоносова Кафедра теории вероятностей, группа 609 Научный руководитель: Д. А. Шабанов, профессор, д.ф.-м.н.

Случайный гиперграф

Гиперграф — пара множеств H=(V,E), где V=V(H) — некоторое конечное множество, называемое множеством вершин гиперграфа, а E=E(H) есть некоторая совокупность подмножеств множества V, называемых рёбрами гиперграфа. Гиперграф является k-однородным, если каждое его ребро содержит ровно k вершин. В работе рассматривается случайный гиперграф биномиальной модели $H_k(n,p)$ — схемы Бернулли на ребрах полного k-однородного гиперграфа на n-вершинах: каждое k-подмножество вершин включается в качестве ребра в $H_k(n,p)$ независимо от других с вероятностью p. Нас интересует случай

$$p = p(n) = \lambda(k-2)!n^{1-k},$$

где $\lambda = \lambda(n) \sim 1$ при $n \to +\infty$, а k не зависит от n.

4 мая 2022 г. 2 / 10

Сложность компоненты связности

Будем считать, что рёбра гиперграфа H=(V,E) связаны, если их пересечение непусто. Если гиперграф является k-однородным и $W\subset V$ — его компонента связности, имеющая m ребер и t вершин, то сложностью W (также используют термин циклический индекс) называется величина

$$\ell(W) = (k-1)m - t + 1.$$

Пусть $C_i(n)$ обозначает i-й по величине размер компоненты случайного гиперграфа $H_k(n,p)$. Сложность соответствующей компоненты обозначим $\sigma_i(n)$.

4 мая 2022 г. 3 / 10

История

Теорема (Эрдеш, Реньи)

Рассмотрим модель Эрдеша Реньи G(n,p). Пусть p=c/n, где c>0 — фиксировано и не зависит от n.

1) Если c < 1, то имеет место следующая сходимость по вероятности

$$\frac{C_1(n)}{\ln n} \stackrel{\mathbb{P}}{\longrightarrow} \alpha(c) = \frac{1}{c - \ln c - 1}, \quad n \to \infty.$$

2) Если же c>1, то имеет место следующая сходимость по вероятности

$$\frac{C_1(n)}{n} \xrightarrow{\mathbb{P}} \beta(c), \quad n \to \infty,$$

где eta(c) — это единственное решение уравнения $eta+e^{-eta c}=1$ на интервале (0,1). При этом

$$\frac{C_2(n)}{\ln n} \xrightarrow{\mathbb{P}} \alpha(c) = \frac{1}{c - \ln c - 1}, \quad n \to \infty.$$

Экскурсии винеровского процесса

Пусть $(W_t)_{t\geq 0}$ — винеровский процесс, $lpha\in\mathbb{R}.$ Тогда положим

$$W_t^{\alpha} = W_t + \alpha \cdot t - \frac{1}{2}t^2, \quad A_t^{\alpha} = W_t^{\alpha} - \min_{0 \le s \le t} W_s^{\alpha}, \quad t \ge 0.$$

Рассмотрим $\Gamma = \{\gamma_j, j \in \mathbb{N}\}$ — упорядоченный по убыванию длин набор интервалов, на которых A_t^{α} положителен. Далее, введем точечный процесс $N = N(A^{\alpha}) = (N_t, t \geq 0)$, который удовлетворяет уравнению

$$\mathbb{P}\left(extit{N}_{t} ext{ имеет точку на } [t,t+dt] | A_{u}^{lpha},u\leq t
ight) = A_{t}^{lpha}\cdot dt.$$

Пусть μ_j — это число точек N_t внутри интервала γ_j , $j\in\mathbb{N}$. Последовательность $(\gamma_j,\mu_j)_{j\in\mathbb{N}}$ называется экскурсиями процесса A_t^{α} .

4□ > 4□ > 4□ > 4 = > = 90

4 мая 2022 г. 5 / 10

Случайный граф

В случае графов, k=2, модель $H_2(n,p)$ совпадает с классической моделью Эрдеша—Реньи G(n,p).

Напомним, что $\sigma_j(n)$ — это сложность j-й по размеру компоненты, $C_j(n)$ — её размер. Имеет место следующий результат, доказанный Олдосом.

Теорема

При
$$p(n) = n^{-1} + \alpha n^{-\frac{4}{3}}$$
 выполнена сходимость

$$\left((n^{-2/3}\cdot \mathit{C}_{j}(\mathit{n}),\sigma_{j}(\mathit{n})),j\in\mathbb{N}
ight)\stackrel{d}{\longrightarrow}\left((|\gamma_{j}|,\mu_{j}),j\in\mathbb{N}
ight)$$
 при $\mathit{n}\to+\infty,$

где сходимость по распределению понимается, как слабая сходимость в метрическом пространстве

$$\ell_2 = \left\{ (x,y) \in \mathbb{R}^{+\infty} \times \mathbb{R}^{+\infty} : \sum_{k=1}^{+\infty} x_k^2 + \sum_{k=1}^{+\infty} y_k^2 < +\infty \right\}.$$

4 мая 2022 г.

Случайный гиперграф

В модели $H_k(n,p)$ при $k \ge 3$ Боллобашем и Риорданом получено обобщение результата Олдоса для размера компонент.

Теорема

Пусть
$$k\geq 3$$
, и $p=p(n)=\lambda(k-2)!n^{-k+1}$, где $\lambda=\lambda(n)$ удовлетворяет $(\lambda-1)^3n \to (k-1)^2\alpha, \ n\to +\infty,$

для некоторого $\alpha \in \mathbb{R}$. Пусть $C_i(n)$ — размеры компонент связности $H_k(n,p)$, отсортированные по невозрастанию. Тогда для любого $r \in \mathbb{N}$

$$(k-1)^{\frac{1}{3}}n^{-\frac{2}{3}}\cdot (C_i(n))_{i=1}^r \stackrel{d}{\longrightarrow} (|\gamma_i|)_{i=1}^r, \quad n \to +\infty.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

4 мая 2022 г.

7 / 10

Результат работы

В дипломной работе получен результат про сложность компонент, аналогичный результату Олдоса для модели G(n,p).

Теорема

Пусть
$$k \geq 3$$
, и $p = p(n) = \lambda(k-2)! n^{-k+1}$, где $\lambda = \lambda(n)$ удовлетворяет $(\lambda-1)^3 n \to (k-1)^2 \alpha, \ n \to +\infty.$

для некоторого $\alpha \in \mathbb{R}$. Пусть $\sigma_i(n)$ – сложности компонент связности $H_k(n,p)$, отсортированных по невозрастанию размеров. Тогда для любого $r \in \mathbb{N}$

$$(\sigma_i(n))_{i=1}^r \stackrel{d}{\longrightarrow} (\xi_i)_{i=1}^r, \quad n \to +\infty,$$

где ξ_i – число точек $N((A^{\alpha})^{k-1})$ внутри интервала $\gamma_i,\ i\in\mathbb{N}.$

4 мая 2022 г. 8 / 10

Идея доказательства

Доказательство основано на алгоритме обхода в ширину, согласно которому вершины гиперграфа просматриваются в некотором порядке. Вводится ассоциированный с ним случайный процесс X_t , где $t\in\overline{0,n}$ — номер шага алгоритма. Оказывается, что процесс

$$X_t^* := \frac{X_{t(k-1)^{-\frac{1}{3}}n^{\frac{2}{3}}}}{((k-1)n)^{\frac{1}{3}}}$$

сходится по распределению к A_t^{lpha} . Утверждение теоремы получается из этого факта применением двух технических лемм.

4 мая 2022 г. 9 / 10

Спасибо за внимание.