

European Research Council
Established by the European Commission

Ensuring unbiased sampling of HMC schemes for non separable Hamiltonian systems

Régis SANTET

(CERMICS, École des Ponts & MATHERIALS Team, Inria Paris)

1st year PhD student, Supervisors: G. Stoltz, T. Lelièvre

MCQMC 2022

R. Santet (CERMICS) MCQMC 2022 July 20 2022 1/16

• Aim: Unbiased estimation of $\mathbb{E}_{\pi}[f] = \int_{\mathcal{X}} f(q)\pi(q)\mathrm{d}q, \quad \pi \propto \mathrm{e}^{-\beta V}$ with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

• Aim: Unbiased estimation of $\mathbb{E}_{\pi}[f] = \int_{\mathcal{X}} f(q)\pi(q)\mathrm{d}q, \quad \pi \propto \mathrm{e}^{-\beta V}$ with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

• Difficulty: explore anisotropic potentials with multiple minima

• Aim: Unbiased estimation of $\mathbb{E}_{\pi}[f] = \int_{\mathcal{X}} f(q)\pi(q)\mathrm{d}q, \quad \pi \propto \mathrm{e}^{-\beta V}$ with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

- Difficulty: explore anisotropic potentials with multiple minima
- Solution: Position dependent positive definite symmetric matrix D¹

$$dq_t = (-D(q_t)\nabla V(q_t) + \beta^{-1} \operatorname{div} D(q_t)) dt + \sqrt{2\beta^{-1}D(q_t)} dW_t$$

¹Bou-Rabee/Donev/Vanden-Eijnden (2014)

• Aim: Unbiased estimation of $\mathbb{E}_{\pi}[f] = \int_{\mathcal{X}} f(q)\pi(q)\mathrm{d}q, \quad \pi \propto \mathrm{e}^{-\beta V}$ with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

- Difficulty: explore anisotropic potentials with multiple minima
- Solution: Position dependent positive definite symmetric matrix D¹

$$dq_t = (-D(q_t)\nabla V(q_t) + \beta^{-1} \operatorname{div} D(q_t)) dt + \sqrt{2\beta^{-1}D(q_t)} dW_t$$

• Challenge: Efficient unbiased numerical integration

¹Bou-Rabee/Donev/Vanden-Eijnden (2014)

Which diffusion coefficient? Metastable case

- Approach mainly used in Bayesian Inference²: $D \equiv (\nabla^2 V)^{-1}$
- ullet Various works 3 suggest $D \propto \mathrm{e}^{eta V} \mathrm{I}_d$

²Girolami/Calderhead (2011)

³Roberts/Stramer (2002), Lelièvre/Pavliotis/Robin/Stoltz (In prep.)

Which diffusion coefficient? Metastable case

- Approach mainly used in Bayesian Inference²: $D \equiv (\nabla^2 V)^{-1}$
- ullet Various works 3 suggest $D \propto \mathrm{e}^{eta V} \mathrm{I}_d$
- \Rightarrow Helps to **cross energy barriers**: if $V \uparrow$, then $D \uparrow$

²Girolami/Calderhead (2011)

³Roberts/Stramer (2002), Lelièvre/Pavliotis/Robin/Stoltz (In prep.)

Which diffusion coefficient? Anisotropic case

- Anisotropic diffusion coefficient $D_{\mathsf{Tan}}(q) = \varepsilon \mathbf{I}_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/\|q\|^2, \ \tilde{q} = (-y\ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $D_{\mathsf{One}} \equiv (1+\varepsilon)\mathrm{I}_2, \ \varepsilon = 0.1$

Computing: after fixed number of iterations, distance to the invariant measure of the angle distribution (uniform on $[0,2\pi]$)

Which diffusion coefficient? Anisotropic case

- Anisotropic diffusion coefficient $D_{\mathsf{Tan}}(q) = \varepsilon \mathbf{I}_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/\|q\|^2, \ \tilde{q} = (-y\ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $D_{\mathsf{One}} \equiv (1+\varepsilon)\mathrm{I}_2, \; \varepsilon = 0.1$

Computing: after fixed number of iterations, distance to the invariant measure of the angle distribution (uniform on $[0,2\pi]$)

⇒ Compromise: small/large time steps (exploration vs rejection)

R. Santet (CERMICS) MCQMC 2022 July 20 2022 4 / 16

Unbiased sampling with Metropolis schemes

 $\bullet \ \, \text{Metropolis-Hastings: accept/reject with proba} \ \, \min \left(1, \frac{\pi(q')T(q',\mathrm{d}q)}{\pi(q)T(q,\mathrm{d}q')} \right)$

Unbiased sampling with Metropolis schemes

- Metropolis-Hastings: accept/reject with proba $\min\left(1,\frac{\pi(q')T(q',\mathrm{d}q)}{\pi(q)T(q,\mathrm{d}q')}\right)$
- ullet Natural candidate: Large rejection rates 4 $\mathcal{O}\left(\Delta t^{1/2}\right)$

$$q' = q + (-D(q)\nabla V(q) + \beta^{-1} \operatorname{div} D(q)) \Delta t + \sqrt{2\Delta t \beta^{-1} D(q)} G$$

⁴Rossky/Doll/Friedman (1978), Fathi/Stoltz (2017)

Unbiased sampling with Metropolis schemes

- Metropolis-Hastings: accept/reject with proba $\min\left(1, \frac{\pi(q')T(q',\mathrm{d}q)}{\pi(q)T(q,\mathrm{d}q')}\right)$
- ullet Natural candidate: Large rejection rates 4 ${\cal O}\left(\Delta t^{1/2}\right)$

$$q' = q + \left(-D(q)\nabla V(q) + \beta^{-1}\operatorname{div}\,D(q)\right)\Delta t + \sqrt{2\Delta t\beta^{-1}D(q)}G$$

• Better choice: (Generalized) Hamiltonian Monte Carlo⁵ based on

$$\begin{cases} dq_t = \nabla_p H(q_t, p_t) dt \\ dp_t = -\nabla_q H(q_t, p_t) dt - \gamma \nabla_p H(q_t, p_t) dt + \sqrt{2\gamma\beta^{-1}} dW_t \end{cases}$$

with

$$H(q,p) = V(q) - \frac{1}{2} \ln \left(\det D(q) \right) + \frac{1}{2} p^{\mathsf{T}} D(q) p$$

- $p \sim \mathcal{N}(0, D(q)^{-1})$, marginal in position of $\mathrm{e}^{-\beta H}$ is π
- Consistent approximation of overdamped Langevin dynamics

⁴Rossky/Doll/Friedman (1978), Fathi/Stoltz (2017)

⁵Duane/Kennedy/Pendleton/Roweth (1987), Neal (1993)

Riemann Manifold HMC⁷

- i) Sample momenta (Ornstein-Uhlenbeck or direct sampling)
- ii) Integrate Hamiltonian dynamics
- ⇒ Generalized Störmer–Verlet⁶ (time-reversible, symplectic but implicit)

$$\begin{cases} p^{n+1/2} = p^n - \frac{\Delta t}{2} \nabla_q H(q^n, p^{n+1/2}) \\ q^{n+1} = q^n + \frac{\Delta t}{2} \left(\nabla_p H(q^n, p^{n+1/2}) + \nabla_p H(q^{n+1}, p^{n+1/2}) \right) \\ p^{n+1} = p^{n+1/2} - \frac{\Delta t}{2} \nabla_q H(q^{n+1}, p^{n+1/2}) \end{cases}$$

iii) Apply M-H procedure

⁶Hairer/Lubich/Wanner (2006)

⁷Girolami/Calderhead (2011)

Riemann Manifold HMC⁷

- i) Sample momenta (Ornstein-Uhlenbeck or direct sampling)
- ii) Integrate Hamiltonian dynamics
- ⇒ Generalized Störmer–Verlet⁶ (time-reversible, symplectic but implicit)

$$\begin{cases} p^{n+1/2} = p^n - \frac{\Delta t}{2} \nabla_q H(q^n, p^{n+1/2}) \\ q^{n+1} = q^n + \frac{\Delta t}{2} \left(\nabla_p H(q^n, p^{n+1/2}) + \nabla_p H(q^{n+1}, p^{n+1/2}) \right) \\ p^{n+1} = p^{n+1/2} - \frac{\Delta t}{2} \nabla_q H(q^{n+1}, p^{n+1/2}) \end{cases}$$

- iii) Apply M-H procedure
- (Effective) Rejection rates scale as $\mathcal{O}(\Delta t^{3/2})$

⁶Hairer/Lubich/Wanner (2006)

⁷Girolami/Calderhead (2011)

Bias arising with standard RMHMC implementation

Bias arising with standard RMHMC implementation

Implicit methods ⇒ convergence and numerical reversibility issues⁸

⁸Brofos/Lederman (2021)

RMHMC with enforced numerical reversibility⁹

⁹Zappa/Holmes-Cerfon/Goodman (2018)

HMC: canonical measure preservation

Theorem

HMC algorithm preserves the probability measure

$$\mu = \exp(-H(q, p)) / Z_{\mu} \,\mathrm{d}q \,\mathrm{d}p$$

Proof

$$T_{\Delta t}((q,p), \mathrm{d}q'\,\mathrm{d}p') = r_{\Delta t}\delta_{\varphi_{\Delta t}(q,p)}(\mathrm{d}q'\,\mathrm{d}p') + (1 - r_{\Delta t}(q,p))\delta_{(q,p)}(\mathrm{d}q'\,\mathrm{d}p')$$
If $f: \mathbb{R}^d \to \mathbb{R}^d \to \mathbb{R}$ measurable & bounded, [x=(q,p), S(q,p)=(q,-p)]

$$\int r_{\Delta t}(x) f(\varphi_{\Delta t}(x)) \mu(\mathrm{d}x) = \int r_{\Delta t}(\varphi_{\Delta t}^{-1}(y)) f(y) \frac{\mathrm{e}^{-\beta \left[H \circ \varphi_{\Delta t}^{-1}\right](y)}}{Z_{\mu}} \mathrm{d}y$$

$$[|\nabla \varphi_{\Delta t}| = 1] = \int r_{\Delta t}((S \circ \varphi_{\Delta t})(z)) f(z) \frac{\mathrm{e}^{-\beta \left[H \circ S \circ \varphi_{\Delta t}\right](z)}}{Z_{\mu}} \mathrm{d}z$$

$$[S \circ \varphi_{\Delta t} \circ S = \varphi_{\Delta t}^{-1}] = \int r_{\Delta t}(z) f(z) \mu(\mathrm{d}z)$$

Define $\psi_{\Delta t} = S \circ \varphi_{\Delta t}$ and

$$\psi_{\Delta t}^{\text{REV}} = \psi_{\Delta t} \mathbf{1}_{\mathcal{B}} + \text{id} \mathbf{1}_{\mathcal{B}^c}$$

where

$$\mathcal{B} = \left\{ (q, p) \,\middle|\, \psi_{\Delta t}^2(q, p) = (q, p) \right\}$$

Proposition

 $\psi_{\Delta t}^{\rm REV}$ is a globally defined measure preserving involution. RMHMC algorithm performed with $\psi_{\Delta t}^{\rm REV}$ yields an unbiased estimator.

Define $\psi_{\Delta t} = S \circ \varphi_{\Delta t}$ and

$$\psi_{\Delta t}^{\text{REV}} = \psi_{\Delta t} \mathbf{1}_{\mathcal{B}} + \text{id} \mathbf{1}_{\mathcal{B}^c}$$

where

$$\mathcal{B} = \left\{ (q, p) \mid \psi_{\Delta t}^2(q, p) = (q, p) \right\}$$

Proposition

 $\psi_{\Delta t}^{\rm REV}$ is a globally defined measure preserving involution. RMHMC algorithm performed with $\psi_{\Delta t}^{\rm REV}$ yields an unbiased estimator.

Define $\psi_{\Delta t} = S \circ \varphi_{\Delta t}$ and

$$\psi_{\Delta t}^{\text{REV}} = \psi_{\Delta t} \mathbf{1}_{\mathcal{B}} + \text{id} \mathbf{1}_{\mathcal{B}^c}$$

where

$$\mathcal{B} = \left\{ (q, p) \mid \psi_{\Delta t}^2(q, p) = (q, p) \right\}$$

Proposition

 $\psi_{\Delta t}^{\rm REV}$ is a globally defined measure preserving involution. RMHMC algorithm performed with $\psi_{\Delta t}^{\rm REV}$ yields an unbiased estimator.

Show that \mathcal{B} is measurable (even open)

• Whole space is a topological manifold, hence locally path connected

Define $\psi_{\Delta t} = S \circ \varphi_{\Delta t}$ and

$$\psi_{\Delta t}^{\text{REV}} = \psi_{\Delta t} \mathbf{1}_{\mathcal{B}} + \text{id} \mathbf{1}_{\mathcal{B}^c}$$

where

$$\mathcal{B} = \left\{ (q, p) \mid \psi_{\Delta t}^2(q, p) = (q, p) \right\}$$

Proposition

 $\psi_{\Delta t}^{\rm REV}$ is a globally defined measure preserving involution. RMHMC algorithm performed with $\psi_{\Delta t}^{\rm REV}$ yields an unbiased estimator.

- Whole space is a topological manifold, hence locally path connected
- Show that each path connected component of \mathcal{B} is open

Define $\psi_{\Delta t} = S \circ \varphi_{\Delta t}$ and

$$\psi_{\Delta t}^{\text{REV}} = \psi_{\Delta t} \mathbf{1}_{\mathcal{B}} + \text{id} \mathbf{1}_{\mathcal{B}^c}$$

where

$$\mathcal{B} = \left\{ (q, p) \middle| \psi_{\Delta t}^2(q, p) = (q, p) \right\}$$

Proposition

 $\psi_{\Delta t}^{\rm REV}$ is a globally defined measure preserving involution. RMHMC algorithm performed with $\psi_{\Delta t}^{\rm REV}$ yields an unbiased estimator.

- Whole space is a topological manifold, hence locally path connected
- ullet Show that each path connected component of ${\cal B}$ is open
- ullet Then $arphi_{\Delta t}^{
 m REV}$ is a \mathcal{C}^1 -measure preserving local diffeomorphism on \mathcal{B}

Define $\psi_{\Delta t} = S \circ \varphi_{\Delta t}$ and

$$\psi_{\Delta t}^{\text{REV}} = \psi_{\Delta t} \mathbf{1}_{\mathcal{B}} + \text{id} \mathbf{1}_{\mathcal{B}^c}$$

where

$$\mathcal{B} = \left\{ (q, p) \mid \psi_{\Delta t}^2(q, p) = (q, p) \right\}$$

Proposition

 $\psi_{\Delta t}^{\rm REV}$ is a globally defined measure preserving involution. RMHMC algorithm performed with $\psi_{\Delta t}^{\rm REV}$ yields an unbiased estimator.

- Whole space is a topological manifold, hence locally path connected
- \bullet Show that each path connected component of ${\cal B}$ is open
- ullet Then $arphi_{\Delta t}^{
 m REV}$ is a \mathcal{C}^1 -measure preserving local diffeomorphism on \mathcal{B}
- ullet Coming from its definition on \mathcal{B}^c , it is a involution

Sampling results with $\Delta t = 0.28$. Left histogram: reversibility checks.

R. Santet (CERMICS) MCQMC 2022 July 20 2022 11 / 16

Sampling results with $\Delta t = 0.44$.

Sampling results with $\Delta t = 0.69$.

Sampling results with $\Delta t = 0.86$.

Sampling results with $\Delta t = 1.08$.

Conclusion and perspectives

Conclusions

- Overdamped Langevin with position dependent diffusion can dramatically accelerate convergence
- Care is required in numerical integration

Conclusion and perspectives

Conclusions

- Overdamped Langevin with position dependent diffusion can dramatically accelerate convergence
- Care is required in numerical integration

Perspectives

ullet Higher dimension case: use free energy ${\sf F}$, reaction coordinate ξ $D(q) \propto {
m e}^{\beta {
m F}(\xi(q))}$

 \bullet Extension to **non-equilibrium** systems, F non-gradient force

$$dq_t^{\eta} = \left(D(q_t)\left[-\nabla V(q_t^{\eta}) + \eta F(q_t^{\eta})\right] + \beta^{-1} \operatorname{div} D(q_t^{\eta})\right) dt + \sqrt{2\beta^{-1} D(q_t^{\eta})} dW_t$$

Thank you!