Joint Probability Distributions

Two discrete R.Vs.

In the discrete case, f(x, y) = P(x) = x and y = y; that is, the values f(x, y) give the probability that outcomes x and y occur at the same time.

Definition: The function f(x, y) is a **joint probability distribution** or **joint probability mass function** of the discrete random variables X and Y if

- 1. $f(x, y) \ge 0$ for all (x, y),
- 2. $\sum_{x} \sum_{y} f(x, y) = 1$,
- 3. P(X = x, Y = y) = f(x, y).

For any region A in the xy plane, $P[(X, Y) \in A] = \sum_{A} f(x, y)$.

Definition: The <u>marginal distributions</u> of *X* alone and of *Y* alone are

$$g(x) = \sum_{y} f(x, y)$$
 and $h(y) = \sum_{x} f(x, y)$

for the discrete case.

Statistical Independence

Definition: Let X and Y be two random variables, discrete or continuous, with joint probability distribution f(x, y) and marginal distributions g(x) and h(y), respectively.

The random variables X and Y are said to be <u>statistically independent</u> if and only if f(x, y) = g(x)h(y)

for all (*x*, *y*) within their range.

Definition: Let X_1, X_2, \ldots, X_n be n random variables, discrete or continuous, with joint probability distribution $f(x_1, x_2, \ldots, x_n)$ and marginal distribution $f_1(x_1), f_2(x_2), \ldots, f_n(x_n)$, respectively. The random variables X_1, X_2, \ldots, X_n are said to be **mutually statistically independent** if and only if

$$f(x_1, x_2, \ldots, x_n) = f_1(x_1)f_2(x_2) \cdots f_n(x_n)$$

for all (x_1, x_2, \ldots, x_n) within their range.

Example: The joint probability density function of two discrete random variables *X* and *Y* is given by:

$$f(x, y) = \begin{cases} c(x+y), & x = 0,1,2 \quad y=0,1,2,3, \\ 0, & \text{otherwise.} \end{cases}$$

Find

- (a) c.
- (b) $P(X \ge 1, Y \le 2)$.
- (c) g(x) and h(y)
- (d) Check independence of the two random variables *X* and *Y*.

f(x, y)			х	Row Totals	
		0	1	2	
	0	0	С	2c	3c(y = 0)
١	1	С	2c	3c	6c (<i>y</i> = 1)
y	2	2c	3c	4c	9c (<i>y</i> = 2)
	3	3c	4c	5c	12c (<i>y</i> = 3)
Column Totals		6c	10c	14c	$\sum \sum f(x,y) = 30c$
	Jiulilli Totals	(x=0)	(x = 1)	(x=2)	x y

Solution: (a)
$$\sum_{x} \sum_{y} f(x, y) = 1 \Rightarrow \sum_{x=0}^{2} \sum_{y=0}^{3} c(x + y) = 1 \Rightarrow c = \frac{1}{30}$$

(b)
$$P(X \ge 1, Y \le 2) = \frac{15}{30}$$

(c)
$$g(x) = \sum_{y} f(x, y) = \sum_{y=0}^{3} c(x + y) = \frac{1}{15} (2x + 3), \quad x = 0, 1, 2$$

$$h(y) = \sum_{x} f(x, y) = \sum_{x=0}^{2} c(x + y) = \frac{1}{10}(y + 1), \quad y = 0, 1, 2, 3$$

(d)
$$f(0,0) \neq g(0) h(0)$$

 $\begin{array}{c|c}
\hline
0 & \frac{6}{30} & \frac{3}{30} \\
\hline
\end{array}$

 \Rightarrow X and Y are not independent.

Also, independence of the two random variables X and Y can be checked as follows:

$$f(x,y) \neq g(x) \ h(y)$$

$$\frac{1}{30}(x+y)$$

$$\frac{1}{15}(2x+3)$$

$$\frac{1}{10}(y+1) \Rightarrow X \text{ and } Y \text{ are not independent.}$$

Definition: Let X and Y be random variables with joint probability distribution f(x, y). The mean, or expected value, of the random variable g(X, Y) is

$$\mu_{g(X,Y)} = E[g(X, Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y)$$
 if X and Y are discrete.

Note that if g(X, Y) = X, we have

$$E(X) = \sum_{x} \sum_{y} xf(x, y) = \sum_{x} xg(x)$$
 (discrete case), where $g(x)$ is the marginal distribution of X .

Similarly, we define

$$E(Y) = \sum_{x} \sum_{y} y f(x, y) = \sum_{x} y h(y)$$
 (discrete case), where $h(y)$ is the marginal distribution Y.

Definition: Let X and Y be random variables with joint probability distribution f(x, y). The <u>covariance of X and Y is</u>

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f(x, y)$$

if X and Y are discrete.

Theorem: The covariance of two random variables X and Y with means μ_X and μ_Y , respectively, is given by

$$Cov(X, Y) = \sigma_{XY} = E(XY) - \mu_X \mu_Y = E(XY) - E(X)E(Y).$$

- Cov(X, Y) = Cov(Y, X)
- Cov(X, c) = 0
- Cov(X, X) = Var(X)
- Cov(aX, bY) = ab Cov(X, Y)
- $Cov(X \pm a, Y \pm b) = Cov(X, Y)$

$$\operatorname{Var}(aX+bY+c) = \sigma_{aX+bY+c}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}.$$

- $\bullet \quad \boldsymbol{\sigma}_{aX+c}^2 = a^2 \boldsymbol{\sigma}_X^2 = a^2 \boldsymbol{\sigma}^2$
- $\bullet \quad \boldsymbol{\sigma}_{X+c}^2 = \boldsymbol{\sigma}_X^2 = \boldsymbol{\sigma}^2$
- $\bullet \quad \boldsymbol{\sigma}_{aX}^2 = a^2 \boldsymbol{\sigma}_X^2 = a^2 \boldsymbol{\sigma}^2$

If X and Y are independent random variables, then

$$\boldsymbol{\sigma}_{ax+by}^2 = a^2 \boldsymbol{\sigma}_x^2 + b^2 \boldsymbol{\sigma}_y^2.$$

Theorem: Let X and Y be two independent random variables. Then E(XY) = E(X)E(Y).

Corollary: Let *X* and *Y* be two independent random variables. Then $\sigma_{XY} = 0$.

Definition: Let X and Y be random variables with covariance σ_{XY} and standard deviations σ_{XY} and σ_{YY} , respectively. The <u>correlation coefficient of X and Y</u> is

$$\boldsymbol{\rho}_{XY} = \frac{\boldsymbol{\sigma}_{XY}}{\boldsymbol{\sigma}_{X}} \boldsymbol{\sigma}_{Y} - 1 \le \boldsymbol{\rho}_{XY} \le 1$$

$$\boldsymbol{\sigma}_{XY} = \sqrt{E(X^{2}) - E^{2}(X)}$$

$$\boldsymbol{\sigma}_{XY} = E(XY) - E(X)E(Y)$$

$$\boldsymbol{\sigma}_{Y} = \sqrt{E(Y^{2}) - E^{2}(Y)}$$

- $\rho(X,Y) = \rho(Y,X)$
- $\rho(X,X)=1$
- $\rho(aX,bY) = \rho(X,Y)$

Example 12.1: Two ballpoint pens are selected at random from a box that contains 3 blue pens, 2 red pens, and 3 green pens. If <u>X</u> is the number of blue pens selected and <u>Y</u> is the number of red pens selected, find

- (a) the joint probability function f(x, y),
- (b) $P[(X, Y) \in A]$, where A is the region $\{(x, y)|x + y \le 1\}$.
- (c) g(x) and h(y) then check independence of the two random variables X and Y.
- (d) the correlation coefficient between X and Y.

Solution: The possible pairs of values (x, y) are (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), and (2, 0).

(a) Now, <u>f(0,1)</u>, for example, represents the probability that <u>a red</u> and a green pens are selected:

$$f(0, 1) = \frac{2}{8} \times \frac{3}{7} + \frac{3}{8} \times \frac{2}{7} = \frac{6}{28} = \frac{3}{14}.$$

Similar calculations yield the probabilities for the other cases.

(b) The probability that (X, Y) fall in the region A is

f(x, y)		х			Row Totals
		0	1	2	
у	0	3	9	3	15
		$\overline{28}$	$\overline{28}$	$\overline{28}$	$\overline{28}$
	1	3	3	^	3
		$\frac{\overline{14}}{14}$	$\frac{\overline{14}}{14}$	0	$\frac{\overline{7}}{7}$
	2	1	Λ	6	1
		$\overline{28}$	0	0	$\overline{28}$
Column		5	15	3	$\sum \sum f(x,y) = 1$
Totals		14	28	28	x y

$$P[(X, Y) \in A] = P(X + Y \le 1) = f(0, 0) + f(0, 1) + f(1, 0)$$
$$= \frac{3}{28} + \frac{3}{14} + \frac{9}{28} = \frac{9}{14}.$$

(c) For the random variable X, we see that

$$g(0) = f(0, 0) + f(0, 1) + f(0, 2) = \frac{3}{28} + \frac{3}{14} + \frac{1}{28} = \frac{5}{14},$$

$$g(1) = f(1, 0) + f(1, 1) + f(1, 2) = \frac{9}{28} + \frac{3}{14} + 0 = \frac{15}{28},$$

and

$$g(2) = f(2, 0) + f(2, 1) + f(2, 2) = \frac{3}{28} + 0 + 0 = \frac{3}{28},$$

which are just the column totals of the table. In a similar manner we could show that the values of h(y) are given by the row totals. In tabular form, these marginal distributions may be written as follows:

From the table, we find the three probabilities f(0, 1), g(0), and h(1) to be

$$f(0, 1) = \frac{3}{14},$$

$$g(0) = \sum_{y=0}^{2} f(0, y) = \frac{3}{28} + \frac{3}{14} + \frac{1}{28} = \frac{5}{14},$$

$$h(1) = \sum_{x=0}^{2} f(x, 1) = \frac{3}{14} + \frac{3}{14} + 0 = \frac{3}{7}.$$

$$f(0, 1) \neq g(0)h(1),$$

Clearly,

and therefore, X and Y are not statistically independent.

(d)
$$E(X) = \mu_X = \sum_{x=0}^{2} xg(x) = (0)(\frac{5}{14}) + (1)(\frac{15}{28}) + (2)(\frac{3}{28}) = \frac{3}{4}$$
, and
$$E(Y) = \mu_Y = \sum_{y=0}^{2} yh(y) = (0)(\frac{15}{28}) + (1)(\frac{3}{7}) + (2)(\frac{1}{28}) = \frac{1}{2}.$$

$$E(X^2) = (0^2)(\frac{5}{14}) + (1^2)(\frac{15}{28}) + (2^2)(\frac{3}{28}) = \frac{27}{28}$$
 and
$$E(Y^2) = (0^2)(\frac{5}{14}) + (1^2)(\frac{3}{14}) + (2^2)(\frac{1}{14}) = \frac{4}{12}.$$

$$E(Y^{2}) = (0^{2}) \left(\frac{5}{28}\right) + (1^{2}) \left(\frac{3}{7}\right) + (2^{2}) \left(\frac{1}{28}\right) = \frac{4}{7},$$

$$\Rightarrow \sigma_{X}^{2} = \frac{27}{28} - \left(\frac{3}{4}\right)^{2} = \frac{45}{112} \text{ and } \sigma_{Y}^{2} = \frac{4}{7} - \left(\frac{1}{2}\right)^{2} = \frac{9}{28}.$$

$$E(XY) = \sum_{x=0}^{2} \sum_{y=0}^{2} xy f(x,y)$$

$$= (0)(0)f(0,0) + (0)(1)f(0,1) + (0)(2)f(0,2) + (1)(0)f(1,0) + (1)(1)f(1,1) + (1)(2)f(1,2) + (2)(0)f(2,0) + (2)(1)f(2,1) + (2)(2)f(2,2)$$

$$= f(1,1) = \boxed{\frac{3}{14}}.$$

f(x, y)			x		Row Totals
		0	1	2	
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$
y	1	3 14	$\frac{3}{14}$	0	$\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
Colu	Column		15	3	$\sum \sum f(x,y) = 1$
Totals		14	28	28	x y

Therefore,

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y = \frac{3}{14} - (\frac{3}{4})(\frac{1}{2}) = -\frac{9}{56}.$$

Therefore, the correlation coefficient between X and Y is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}} = \frac{-\frac{9}{56}}{\sqrt{(\frac{45}{112})(\frac{9}{28})}} = -\frac{1}{\sqrt{5}}.$$

Example 12.14: If X and Y are random variables with variances $\underline{\sigma_X^2 = 2}$ and $\underline{\sigma_Y^2 = 4}$ and covariance $\underline{\sigma_{XY} = -2}$, find the variance of the random variable $\underline{Z = 3X - 4Y + 8}$.

Solution:

$$\sigma_Z^2 = \sigma_{3X-4Y+8}^2 = \sigma_{3X-4Y}^2$$

$$= 9\sigma_X^2 + 16\sigma_Y^2 - 24\sigma_{XY}$$

$$= 9(2) + 16(4) - 24(-2) = 130.$$

Example 12.15: Let *X* and *Y* denote the amounts of two different types of impurities in a batch of a certain chemical product. Suppose that *X* and *Y* are independent random variables with variances $\sigma_X^2 = 2$ and $\sigma_Y^2 = 3$. Find the variance of the random variable Z = 3X - 2Y + 5.

Solution:

$$\sigma_Z^2 = \sigma_{3X-2Y+5}^2 = \sigma_{3X-2Y}^2$$

$$= 9\sigma_X^2 + 4\sigma_Y^2$$

$$= 9(2) + 4(3) = 30.$$