

LAYERING

- · managing system complexity-layering
- · minimizes interactions
- · 2 modes -> user & privileged

- · 1st interface ISA boundary blue slware & h/ware processor's set of instructions
- · ABI (App Binary Int.) Howare access to the app's & library modules. Doesn't include privileged instructions.
- · API defines set of instr the howare was designed to execute gives apphaces to the ISA.

CONDITIONS FOR EFFICIENT VIRTUALIZATION

- D A program running under the VMM must exhibit behaviour essentially similar to that demonstrated when the approuns directly on an equivalent machine.
- ? The VMM should be in complete control of the virtualized resources.
- 3) A statistically significant fraction of the machine instructions should be executed without the intervention of the VMM.

TRADITIONAL

- Thin layer of slware that runs directly on the host machine's howere
- Main adv. is performance

Application
Guest Os-n
VM-n

Virtual Machine Monitor

Hardware

HYBRID

· Shares the hiware will the existing OS.

HOSTED

 The VM runs directly on top of the existing DS.

FULL VIRTUALIZATION

PARAVIRTUALIZATION

- · Each VM runs on an exact copy of the actual hiware.
- Requires a fully virtualizable
 architecture; the howare is fully exposed to the guest OS, that runs unchanged.

- VM runs on a modified copy of the actual himage.
- It is done as some architectures are not easily virtualizable.
- Demands that the guest OS be modified to run under the VMM.

Hypervisor

Hardware

PROBLEMS FACED BY VIRTUALIZATION OF THE X86 ARCHITECTURE

() RING DEPRIVILEGING

VMM forces the guest slware, the OS, & the app's to run at a privilege level > Onorin (ca bir) solns -> (0/1/3) mode

-> (0/3/3) mode

(4) INTERRUPT VIRTUALIZATION

vmm generates a "virtual interrupt in response to a physical interrupt & delivers it to the target guest 0s. Guest 0s. have the ability to mark interrupts - complicates the vmm & increases overhead

@ RING AUASING

Problem when a guest os is forced to run at a privilege level that it wasn't designed for.

5 ACCESS TO HIDDEN

Elements of the system state are hidden; there is no mechanism for saving & restoring hidden components after a context switch from 1 VM to another

3 ADDRESS SPACE COMPRESSION

ymm uses parts of the guest address space to store system DSs. These DS must be protected, but the guest slware must have access to them.

© FREQUENT ACCESS TO PRIVILEGED RESOURCES INCREASES VMM OVERHEAD

the TPR is frequently used by a guest DS.

the VMM must protect access to this reg. & trap all ottempts to access it. This can cause performance degradation.

XEN ARCHITECTURE

ORIGINAL

OPTIMIZED

XEN NETWORK OPTIMIZATIONS

1) THE VIRTUAL INTERFACE

- The original ""network provides the guest domain we the abstraction of a simple low-level network interface supporting sending & receiving primitives.
- This design supports a
 wide range of physical
 devices attached to the
 driver domain but doesn't
 take advantage of the
 capabilities of some
 physical devices.
- These features are supported by the high-level virtual interface of the optimized system

(2) THE I/O CHANNEL

- Rather than copying a
 data buffer holding a
 packet; each packet is
 allocated in a new page
 & this physical page is
 remapped to the guest
 domain.
- This strategy contributes to a better than Ax increase in the send data rate.

3 VIRTUAL MEMORY

- " " in Xen 2.0 takes advantage of superpage & global page-mapping hardware features.
- A superpage increases the granularity of dynamic address translation— a superpage entry covers 1024 pages of physical memory, & address translation maps a set of contiguous pages to a set of contiguous pages to a set of contiguous physical pages
- This reduces the no. of #TLB misses.
- The optimized version uses a special memory allocator to avoid the problem where the system is forced to use traditional page-mapping rather than superpage mapping

*Translation lookaside buffer:

memory cache used to

reduce the time taken to

access a uses memory

location.

XEN ZERO-COPY SEMANTICS FOR DATA TRANSFER USING I/O RINGS

CIRCULAR RING OF BUFFERS

* IR → Instruction Register
* RSE → Register Stack Engine

vBlades project

- The Itanium processor supports
 4 privilege rings PLO, PL1,
 PL2, PL3.
- · Privileged instructions can only be executed by the kernel at PLO.
- ·App's run at PL3 & can execute only non-privileged instructions.
- The VMM uses ring compression & runs itself at PLD & PL1 while forcing a guest OS to run at PL2.
- · A problem privilege leaking several nonprivileged instructions allow an app to determine the current privilege level (CPL)
- Itanium was selected because of its multiple functional units & multithreading support,
- · CPU Virtualization:

when a guest OS attempts to execute a privileged instruction the VMM traps & emulates the instruction.

*Complication - Itanium doesn't have an *IR & the VMM has to use state info to determine whether an instr.

ocomplication - caused by RSE, which operates concurrently will the processor & may attempt to access memory & generate a page fault.

A no. of privileged-sensitive instr. behave differently as a function of the privilege level.

The VMM replaces each one of them will a privileged instr. during the dynamic transformation of the instruction stream.

contd.

contd.

- Memory virtualization is guided by the realization that a VMM should not be involved in most read & write operations to prevent a significant degradation of performance, but at the same time the VMM should exercise tight control & prevent a guest OS from acting maliciously.
- The vBlades VMM doesn't allow a guest 0s to acess memory directly. It inserts an additional layer of indirection called metaphysical addressing blw virtual & real addressing.

 A guest 0s is placed in
- *A quest 03 is placed in metaphysical addressing mode. If the address is virtual, the VMM first checks if the quest 05 is allowed to access that address, & if it is, it provides the regulal address translation If the address is physical, the VMM is not involved.

