TP1 Promela

1. Algorithme d'exclusion mutuelle de Dekker (vu en cours)

```
#define true 1
#define false 0
#define Aturn false
#define Bturn true
bool x, y, t;
proctype A()
      x = true;
      t = Bturn;
      (y == false || t == Aturn);
      /* critical section */
      x = false
}
proctype B()
      y = true;
      t = Aturn;
      (x == false || t == Bturn);
      /* critical section */
      y = false
init { run A(); run B() }
```

Coder en Promela l'algorithme de Dekker. Vérifier à l'aide du mécanisme «assert» que cet algorithme assure bien l'exclusion mutuelle.

2. Sémaphore de Dijkstra (vu en cours)

```
#define p 0
#define v 1
chan sema = [0] of {bit};
proctype dijkstra()
do
:: sema!p ->
    sema?v;
 od
proctype user()
 do
 :: sema?p ->
    skip; /* critical section */
    sema!v;
    skip; /* non critical section */
 od
init{ atomic { run dijkstra();
               run user(); run user(); run user()} }
```

Coder en Promela le sémaphore de Dijkstra. Vérifier à l'aide du mécanisme «assert» que cet algorithme assure bien l'exclusion mutuelle.

3. Boucles en Promela

- a) Ecrire en Promela un processus qui prend en paramètre un entier n, puis affiche la somme des n premiers entiers, en émulant le comportement de la boucle «while».
- b) Ecrire en Promela un processus qui affiche la valeur maximum d'un tableau de n entiers.

4. Nombre aléatoire

- a) La conditionnelle en Promela étant non déterministe, servez-vous en pour écrire une fonction (ou un processus) générant un nombre aléatoire (soit 0 soit 1).
- b) Ecrire un processus générant un nombre aléatoire à n bits.

5. Jeu de Nim (allumettes)

Ce jeu se joue à deux. Les joueurs sont initialement devant un certain nombre d'allumettes N (qui peut varier d'une partie à l'autre). A tour de rôle, chaque joueur doit enlever 1, 2 ou 3 allumettes.

On supposera ici un tirage aléatoire du nombre d'allumettes a retirer.

Le joueur qui retire la dernière allumette gagne.

- a) Modéliser le fonctionnement du jeu et lancer une simulation.
- b) Vérifier les propriétés suivantes :
 - i) le nombre d'allumettes retiré + le nombre d'allumettes restant = N (invariant)
 - ii) à la fin, le nombre d'allumettes restant est égal à 0.

6. Arbre binaire équilibré

Définir un code Promela permettant de générer un arbre binaire équilibré de profondeur n.

Chaque nœud a un canal parent, pouvant recevoir le message « create » demandant de créer deux nœuds feuilles et sur lequel il peut écrire un message « created » indiquant que les nœuds feuilles ont été créées.

Chaque nœud non feuille a deux nœuds fils (gauche et droit) avec lesquels il peut communiquer par message.

7. Réseau de Petri en Promela

Les réseaux de Petri se modélisent de façon simple en Promela. On considère le réseau de Petri suivant :

Figure 5 — Petri Net with Hang State

```
#define Place
                 byte // assume at most 255 tokens per place
                            // file ex_4.pml
Place p1=1, p2, p3
                            // place p\overline{1} has an initial token
Place p4=1, p5, p6
                            // place p4 has an initial token
#define inp1(x) x>0 \rightarrow x--
#define inp2(x,y)
                      x>0 && y>0 -> x--; y--
\#define out1(x) x++
#define out2(x,y)
                      x++; y++
init
 do
                 -> out1(p2) // t1
 :: inp1(p1)
 :: inp2(p2,p4) -> out1(p3) // t2
  :: inp1(p3)
                 -> out2(p1,p4)
                                    // t3
  :: inp1(p4)
              -> out1(p5) // t4
  :: inp2(p1,p5) -> out1(p6) // t5
  :: inp1(p6)
                 -> out2(p4,p1) // t6
 od
}
```

Coder ce programme, puis lancer une vérification. Commenter le résultat obtenu.