

HiC Data Visualization and Statistical Analysis

Amal Agarwal Advisors: Dr. Yu Zhang and Dr. Lingzhou Xue

> Department of Statistics Pennstate University

> > May 25, 2018

2 Methodology

2 Methodology

HiC data structure:

- Two Cell types, "Gm12878" and "K562".
- 22 chromosomes and X chromosome in each cell type.
- Intensity matrix for each chromosome with 10K b.p. granularity.

Challenge:

Intensity matrix is big!

HiC data structure:

- Two Cell types, "Gm12878" and "K562".
- 22 chromosomes and X chromosome in each cell type.
- Intensity matrix for each chromosome with 10K b.p. granularity.

Challenge:

Intensity matrix is big!

2 Methodology

Regression Model

Notation:

- N: size of HiC matrix for one chromosome.
- \blacksquare n_b observations (banded values) for bandwidth parameter b.
- Consider only upper triangular elements (i.e. $j \ge i$).

Penalized Lasso Regression Model:

Intensity_{ij} = $\alpha + \beta \times |i - j| + \sum_{k=1}^{N} \gamma_k \mathcal{I}(i \le k \le j) + \epsilon$ subject to $\beta \le 0, \gamma_k \le 0, \ \forall k \ \text{and} \ \sum_{k=1}^{N} \gamma_k \ge t$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Notation:

- N: size of HiC matrix for one chromosome.
- \blacksquare n_b observations (banded values) for bandwidth parameter b.
- Consider only upper triangular elements (i.e. $j \ge i$).

Penalized Lasso Regression Model:

Intensity_{ij} = $\alpha + \beta \times |i - j| + \sum_{k=1}^{N} \gamma_k \mathcal{I}(i \le k \le j) + \epsilon$ subject to $\beta \le 0, \gamma_k \le 0, \ \forall k \ \text{and} \ \sum_{k=1}^{N} \gamma_k \ge t$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Regression Model

Equivalent formulation as Penalized Least Squares (PLS):

$$\min \left(\sum_{i=1}^{N} \sum_{j=i}^{\min(N,i+n_b)} \left[\left(\text{Intensity}_{ij} - \alpha - \beta - \sum_{k=1}^{N} \gamma_k \mathcal{I}(i \leq k \leq j) \right)^2 - \lambda \left(\sum_{k=1}^{N} \gamma_k \right) \right] \right)$$

Challenges due to large N:

- For $N \sim 25 K$ and $b \sim 200$, we have $n_b \sim 10 M$.
- The design matrix becomes $\sim 10M \times 25K \implies 25B$ elements. Memory problem!
- Solving the PLS function is computationally expensive

Equivalent formulation as Penalized Least Squares (PLS):

$$\min \left(\sum_{i=1}^{N} \sum_{j=i}^{\min(N,i+n_b)} \left[\left(\text{Intensity}_{ij} - \alpha - \beta - \sum_{k=1}^{N} \gamma_k \mathcal{I}(i \leq k \leq j) \right)^2 - \lambda \left(\sum_{k=1}^{N} \gamma_k \right) \right] \right)$$

Challenges due to large N:

- For $N \sim 25 K$ and $b \sim 200$, we have $n_b \sim 10 M$.
- The design matrix becomes $\sim 10M \times 25K \implies 25B$ elements. Memory problem!
- Solving the PLS function is computationally expensive.

Coordinate Descent (CD) Algorithms:

- Used by "glmnet"
- Convergence is fast
- Closed form updates
- Active set strategy

Objective (generalized notation):

$$f_{\lambda}(\alpha, \beta, \gamma) = \sum_{i=1}^{n} \left[(y_i - \alpha - \beta z_i - \gamma^T x_i)^2 - \lambda \sum_{j=1}^{p} \gamma_j \right]$$

$$(\hat{\alpha}, \hat{\beta}, \hat{\gamma}) = \arg\min (f_{\lambda}(\alpha, \beta, \gamma))$$
 $\beta \leq 0,$ $\gamma \leq 0$

Note: Tuning parameter λ is assumed to be known here.

Naive CD Algorithm

Algorithm 1: Naive Coordinate Descent

Input: Tuning Parameter λ , Convergence threshold ϵ

Output: $\hat{\alpha}, \hat{\beta}, \hat{\gamma}$

- 1 Initialization: Start with arbitrary $(lpha^{(1)},eta^{(1)},\gamma^{(1)})$
- 2 Compute $f_{\lambda}^{(1)} = f_{\lambda}(\alpha^{(1)}, \beta^{(1)}, \gamma^{(1)})$
- 3 Set $f_1^{(0)} \leftarrow \infty$ and $t \leftarrow 1$
- 4 while $|f_{\lambda}^{(t)} f_{\lambda}^{(t-1)}| > \epsilon$ do

5
$$\alpha^{(t+1)} \leftarrow \arg\min_{\alpha} (f_{\lambda}(\alpha, \beta^{(t)}, \gamma^{(t)}))$$

6
$$\beta^{(t+1)} \leftarrow \arg\min_{\beta} (f_{\lambda}(\alpha^{(t+1)}, \beta, \gamma^{(t)}))$$

7 for
$$j \leftarrow 1$$
 to p do

Compute
$$f_{\lambda}^{(t+1)} = f_{\lambda}(\alpha^{(t+1)}, \beta^{(t+1)}, \gamma^{(t+1)})$$
 and set $t \leftarrow t+1$

Check out the HiC report for:

- Active Set coordinate descent algorithm.
- Details about the closed form updates.

2 Methodology

Future Directions

In process...

- Coding the Coordinate Descent algorithms.
- Exploring other stopping criteria.

Questions:

■ How to design simulations that mimick HiC data?

