Big Data Analytics Assignment 3

Due: Monday April 14th @ 11:59PM

Introduction

You will work with a large-scale dataset: the McAuley-Lab/Amazon-Reviews-2023 dataset, hosted on Hugging Face at:

https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023

The uncompressed size is roughly 200GB across 34 categories. You will complete a series of tasks spanning data ingestion, cleaning, exploratory data analysis (EDA), sentiment classification, recommender systems, and clustering.

All methods and algorithms are **fixed** (no substitutions), but you may implement these steps in any environment (local machine, cluster, or cloud). Work in groups of 3–4, dividing tasks as you see fit.

Dataset Fields:

For User Reviews ("review" data):

- rating (float): User's rating of the product (1.0–5.0)
- title (str): Title of the user review
- text (str): Text body of the user review
- images (list): URLs or metadata of images in different sizes
- asin (str): ID of the product
- parent_asin (str): Parent ID of the product (products with different colors/sizes can share the same parent)
- user_id (str): ID of the reviewer
- timestamp (int): Time of the review (Unix time)
- verified_purchase (bool): Whether the purchase was verified

- helpful_vote (int): Number of helpful votes the review received

 For Item Metadata ("meta" data):
- main_category (str): The domain or top-level category
- title (str): Name of the product
- average_rating (float): Rating shown on the product page
- rating_number (int): Number of ratings for the product
- features (list): Bullet-point features of the product
- description (list): Descriptions of the product (often multi-line)
- price (float): Price in US dollars (at time of crawling)
- images (list): Product images (thumb, large, hi_res)
- videos (list): Videos of the product (with title, URL)
- store (str): Store name (where the product is sold)
- categories (list): Hierarchical categories
- details (dict): Product details (materials, brand, sizes, etc.)
- parent_asin (str): Parent ID of the product
- bought_together (list): Bundles or recommended items often bought together

Note: To link a user review with its product metadata, you typically use parent_asin as the join key. Some of the additional fields (like helpful_vote, verified_purchase, or price) can be incorporated into your analysis or EDA if you wish; however, the core tasks below are mandatory.

Assignment Specification

1. Data Acquisition

a) Obtain the Entire Dataset

You must download or otherwise access *all categories* (34) from McAuley-Lab/Amazon-Reviews-2023. The direct link is: https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023. Use either:

- load_dataset("McAuley-Lab/Amazon-Reviews-2023", ...)
- The provided download_all_amazon_reviews function
- Or any other method, as long as you include all categories.

b) Deliverable Proof

Provide logs or screenshots verifying the successful acquisition of all categories (compressed or uncompressed).

c) Deliverables (Data Acquisition):

- Report: Evidence (screenshots, console output) showing you obtained all categories.
- Code: Scripts/notebooks demonstrating how you downloaded and organized the data.

2. Data Cleaning & Preprocessing

Perform these steps **exactly**:

a) Merge on parent_asin

Join review data with its matching metadata on parent_asin so each record combines user ID, product ID (asin), star rating, review text, verified purchase, helpful votes, brand/category info, etc.

b) Handle Invalid / Missing Values

- Drop rows where *star_rating* is missing or not in [1–5].
- Drop rows if *text* (the review body) is empty.
- If brand cannot be found in the metadata (e.g., missing in details or store), set brand = "Unknown".

c) Remove Duplicates

If (user_id, product_id, review_text) repeats, keep only the first occurrence.

d) Derived Columns:

- **Review Length** = integer count of tokens in the text field (split on whitespace/punctuation).
- Year = extracted from timestamp if available (if there's no timestamp, you may skip time-based EDA).

e) Unified Output

Consolidate all categories into a single large dataset (or partitioned store) for further tasks.

3. Exploratory Data Analysis (EDA)

Perform the following analyses on the *entire cleaned dataset* (all categories combined):

- a) Star Rating Histogram: Show a histogram for ratings 1–5.
- b) **Top 10 Categories**: Bar chart of categories by total review count (use the final brand or main_category if it is clearly identified).
- c) **Top 10 Brands**: Bar chart of brand by total review count (exclude "Unknown" from the top 10).
- d) Time-Based Trend: a line chart of average star rating per year.
- e) **Correlation**: Compute Pearson correlation between *review_length* and *star_rating*; state the numeric result and interpret briefly.
- f) (Optional) Additional EDA Ideas:
 - Distribution of helpful_vote counts.
 - Relationship between verified_purchase and star rating.

(These are not strictly required but may enrich your insights.)

4. Binary Sentiment Prediction (Logistic Regression)

Transform rating into:

Positive if rating > 3, Negative if rating < 3.

- a) Train/Test Split: 80% train, 20% test, randomly shuffled.
- b) **Text Vectorization**: *TF-IDF* on review text (lowercase, split on whitespace/punctuation), discarding tokens in fewer than 5 reviews or in over 80% of reviews.
- c) Classifier: Logistic Regression (default hyperparameters).
- d) Evaluation:
 - Accuracy
 - F1 Score
 - Confusion Matrix $(2 \times 2: TP, FP, TN, FN)$

5. Recommender System (ALS)

Create a collaborative filtering model using Alternating Least Squares (ALS):

- a) **Data Setup**: Retain (user_id, product_id, rating). Drop users with fewer than 5 total reviews.
- b) **Split**: 80% train, 20% test.
- c) **ALS**: Use any library that supports ALS (Spark MLlib, etc.). Minimal tuning is acceptable.
- d) **Evaluation**: RMSE on the test set (predicted rating vs. actual).
- e) **Demo**: Show top 5 recommendations for 3 random users in the test set, including predicted ratings.

6. Clustering / Segmentation (k-means)

Segment products using **k-means** with k = 5:

a) **Features** (per product):

(mean_rating, total_reviews, brand_id, category_id)

- mean_rating: Average user rating per product (based on your merged data, not necessarily average_rating from metadata, though you could compare them.)
- total_reviews: Count of all reviews for that product
- brand_id: Map each distinct brand string to an integer
- category_id: Map each main category or top-level category string to an integer
- b) **k-means**: Exactly k = 5, default initialization, until convergence.
- c) Cluster Analysis: For each cluster, report:
 - Size: number of products in the cluster
 - Average mean_rating, average total_reviews
 - Average brand_id and category_id
 - A short interpretation (e.g., high-rating electronics, unknown-brand items, etc.)

7. Final Report (8–15 pages)

Must have these sections in **exact** order:

- a) Introduction
- b) Data Acquisition (Task 1)
- c) Data Cleaning & Preprocessing (Task 2)
- d) EDA (Task 3)
- e) Binary Sentiment (Logistic Regression) (Task 4)
- f) Recommender (ALS) (Task 5)
- g) Clustering (k-means) (Task 6)
- h) Conclusion (mention hardware/resources used, challenges, etc.)

Code Repository: Organize notebooks/scripts clearly.

Grading Breakdown

Section	Weight
Data Acquisition (Task 1)	5%
Data Cleaning & Preprocessing (Task 2)	15%
EDA (Task 3)	10%
Binary Sentiment (Logistic Regression) (Task 4)	20%
Recommender (ALS) (Task 5)	20%
Clustering (k-means) (Task 6)	15%
Final Report (Task 7)	15%
Total	100%

Notes:

- All Categories: Ensure you eventually use all categories (~200GB total).
- Resource Planning: At least 16GB RAM is recommended and enough disk space or a streaming or distributed setup to handle large data.

Example Data Acquisition Workflows

These examples illustrate different ways to download/load data from McAuley-Lab/Amazon-Reviews-2023. Feel free to mix/modify to fit your environment.

Option A: Directly Use load_dataset

```
from datasets import load_dataset
# Example: Load "Automotive" reviews and metadata
auto_review = load_dataset(
    "McAuley-Lab/Amazon-Reviews-2023",
    "raw_review_Automotive",
    trust_remote_code=True
)
auto_meta = load_dataset(
    "McAuley-Lab/Amazon-Reviews-2023",
    "raw_meta_Automotive",
    trust_remote_code=True
)
Pros: Simple for smaller subsets or prototyping.
Cons: Repeated loads can be slow for the entire 200GB.
Option B: save_to_disk / load_from_disk
from datasets import load_dataset, load_from_disk
from pathlib import Path
# Download + save
auto_review = load_dataset(
    "McAuley-Lab/Amazon-Reviews-2023",
    "raw_review_Automotive",
    trust_remote_code=True
save_path = Path("/path/to/data/raw_review_Automotive")
auto_review.save_to_disk(str(save_path))
# Reload later
loaded_review = load_from_disk(str(save_path))
print(loaded_review)
Pros: One-time download, faster local reloads.
```

Cons: Requires storing all uncompressed data locally.

Option C: download_all_amazon_reviews (No Compression)

```
from bigdata_a3_utils import download_all_amazon_reviews

download_all_amazon_reviews(
    base_save_path="/path/to/data",
    categories=None, # all categories
    compress=False
)
# Creates folders: raw_review_<CATEGORY>/, raw_meta_<CATEGORY>/, etc.
Then you can use load_from_disk on the created folders.
```

Option D: download_all_amazon_reviews (With Compression)

```
from \ bigdata\_a3\_utils \ import \ download\_all\_amazon\_reviews, \ load\_compressed\_dataset
```

```
download_all_amazon_reviews(
    base_save_path="/path/to/data_compressed",
    categories=None, # all
    compress=True,
    compression_format="gz", # or "bz2", "xz"
    compression_level=6
)
```

After downloading, you'll have .tar.gz files like raw_review_Automotive.tar.gz
dataset = load_compressed_dataset("/path/to/data_compressed/raw_review_Automotive.tar.gz

Pros: Saves disk space.

Cons: More CPU/time overhead for compress/decompress.

Note: If using options **A** or **B**, load_dataset(), data is stored in your HuggingFace cache directory, so you do not need to redownload it each time you call load_dataset(). However, this directory is not cleared automatically. Use functions from bigdata_a3_utils to locate and/or clear your HuggingFace cache when you are finished with the data.