Pós-Graduação em Ciência de Dados

Professora Cecília Pereira de Andrade

e

Professor Ricardo Sovat

Sejam A e B bases de V. Vamos relacionar as coordenadas de v na base A com as coordenadas de v na base B

► Vamos assumir dim V=3.

 $A = \{v_1, v_2, v_3\} \in B = \{w_1, w_2, w_3\}$

$$V = X_1V_1 + X_2V_2 + X_3V_3$$

$$\triangleright$$
 ou $V_A = (x_1, x_2, x_3)$

$$V = y_1 W_1 + y_2 W_2 + y_3 W_3$$

$$\triangleright$$
 ou $V_B = (y_1, y_2, y_3)$

Os vetores de A podem ser escritos em relação à B

$$V_1 = a_{11}W_1 + a_{21}W_2 + a_{31}W_3$$

$$v_2 = a_{12}W_1 + a_{22}W_2 + a_{32}W_3$$

$$V_3 = a_{13}W_1 + a_{23}W_2 + a_{33}W_3$$

Substituindo em $v = x_1v_1 + x_2v_2 + x_3v_3$

$$v = x_1(a_{11}w_1 + a_{21}w_2 + a_{31}w_3) + x_2(a_{12}w_1 + a_{22}w_2 + a_{32}w_3) + x_3(a_{13}w_1 + a_{23}w_2 + a_{33}w_3)$$

ou

$$v = w_1(a_{11}x_1 + a_{12}x_2 + a_{13}x_3) + w_2(a_{21}x_1 + a_{22}x_2 + a_{23}x_3) + w_3(a_{31}x_1 + a_{32}x_2 + a_{33}x_3)$$

Comparando

$$v = w_1(a_{11}x_1 + a_{12}x_2 + a_{13}x_3) + w_2(a_{21}x_1 + a_{22}x_2 + a_{23}x_3) + w_3(a_{31}x_1 + a_{32}x_2 + a_{33}x_3)$$

com
$$V = y_1 w_1 + y_2 w_2 + y_3 w_3$$
:

- $y_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3$
- $y_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3$
- $y_1 = a_{31}x_1 + a_{32}x_2 + a_{33}x_3$

Matricialmente:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Simbolicamente:

$$[\mathbf{v}]_{\mathsf{B}} = [\mathbf{I}]_{B}^{A} [\mathbf{v}]_{\mathsf{A}}$$

$$[I]_{B}^{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$[v_{1}]_{B} \quad [v_{2}]_{B} \quad [v_{3}]_{B}$$

é chamada matriz de mudança de base de A para B ou matriz de transição de A para B.

 $[I]_B^A$ é o operador identidade considerado nas bases A e B.

 $[I]_B^A$ leva vetores LI de A em vetores LI de B, portanto, é invertível. Logo,

De
$$[v]_B=[I]_B^A[v]_A$$

temos
$$[v]_A = ([I]_B^A)^{-1}[v]_B$$

e portanto
$$([I]_B^A)^{-1} = [I]_A^B$$

ightharpoonup Exemplo: Consideremos as bases do \mathbb{R}^2

A=
$$\{v_1, v_2\}$$
, com v_1 = $(2,-1)$, v_2 = $(-1,1)$
e B= $\{w_1, w_2\}$, sendo w_1 = $(1,0)$ e w_2 = $(2,1)$.

a) Determinar a matriz mudança de base de A para B.

b) Utilizar a matriz $[I]_B^A$ para calcular $[v]_B$, sabendo que $[v]_A = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

a)
$$[I]_{B}^{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad [v_{1}]_{B} \quad [v_{2}]_{B}$$

Expressando os vetores de A em relação à B:

$$v_1 = (2,-1) = a_{11}(1,0) + a_{21}(2,1)$$
 e portanto $[v_1]_B = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$.

$$v_2 = (-1,1) = a_{12}(1,0) + a_{22}(2,1)$$
 e portanto $[v_2]_B = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$.

Logo,
$$[I]_B^A = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix}$$
.

b) Sabendo que
$$[v]_B = [I]_B^A [v]_A$$
 e $[v]_A = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$

$$[\mathbf{v}]_{\mathsf{B}} = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Portanto,
$$[v]_B = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$$
.

Matriz-Mudança de base (outra maneira)

Considere as bases $A=\{v_1,v_2\}$, com $v_1=(2,-1)$, $v_2=(-1,1)$ e $B=\{w_1,w_2\}$, sendo $w_1=(1,0)$ e $w_2=(2,1)$ e seja $C=\{(1,0), (0,1)\}$.

$$[I]_{C}^{A} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\uparrow \qquad \uparrow$$

$$v_{1} \qquad v_{2}$$
pois $(2,-1) = 2(1,0) - 1(0,1) = (-1,1) = -1(1,0) + 1(0,1)$

Matriz-Mudança de base (outra maneira)

De maneira análoga,

$$[I]_{C}^{B} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$\uparrow \quad \uparrow$$

$$w_{1} \quad w_{2}$$
pois $(1,0) = 1(1,0) + 0(0,1)$ e $(2,1) = 2(1,0) + 1(0,1)$

► Chamemos $[I]_C^A = A e [I]_C^B = B$.

Matriz-Mudança de base (outra maneira)

$$[I]_A^B = [I \ o \ I]_A^B = [I]_B^C [I]_C^A = ([I]_C^B)^{-1} [I]_C^A = B^{-1}A$$

Para as bases A e B dadas

$$[I]_{A}^{B} = B^{-1}A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix}$$

Seja T: $V \rightarrow V$. Se A e B são bases de V e $[T]_A$ e $[T]_B$ as matrizes que representam o operador T nas bases A e B, então

$$[T]_{B} = ([I]_{A}^{B})^{-1}[T]_{A}[I]_{A}^{B}$$

As matrizes [T]_A e [T]_B são chamadas **semelhantes**.

Duas matrizes [T]_Ae [T]_B são semelhantes quando definem em V um mesmo operador linear T.

► Mais precisamente, [T]_A e [T]_B são semelhantes se existe uma matriz invertível M tal que

$$[T]_B = M^{-1}[T]_A M$$

Exemplo: Sejam T: $\mathbb{R}^2 \to \mathbb{R}^2$ e A={(3,4), (5,7)} e B={(1,1), (-1,1)}

E seja
$$[T]_A = \begin{bmatrix} -2 & 4 \\ 2 & -1 \end{bmatrix}$$

Calculemos $[T]_B$ pela relação $[T]_B = M^{-1}[T]_A M$, na qual M é a matriz-mudança de base de B para A.

$$M = [I]_A^B = A^{-1}B$$

$$M = \begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -5 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 12 \\ -1 & 7 \end{bmatrix}$$

e

$$M^{-1} = \begin{bmatrix} 7/2 & 6 \\ 1/2 & 1 \end{bmatrix}$$

Logo,

$$[T]_{B} = \begin{bmatrix} 7/2 & 6 \\ 1/2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 12 \\ -1 & 7 \end{bmatrix}$$

$$[T]_{B} = \begin{bmatrix} 5 & 8 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 12 \\ -1 & 7 \end{bmatrix}$$

$$[T]_{B} = \begin{bmatrix} 2 & -4 \\ 1 & -5 \end{bmatrix}$$

Sejam T: $V \rightarrow V$ um operador linear. Um vetor $v \in V$, $v \neq 0$, é **autovetor** (ou vetor próprio ou vetor característico) do operador T se existe $\lambda \in \mathbb{R}$ tal que

$$T(v) = \lambda v$$

O número real λ tal que T(v) = λv é denominado **autovalor** (ou valor próprio ou valor característico) de T associado ao vetor próprio v.

▶ Observações:

No \mathbb{R}^2 e \mathbb{R}^3 no diríamos que v e T(v) têm a mesma direção.

► Dependendo do valor de λ , o operador T dilata v, contrai v, inverte o sentido de v ou o anula no caso de $\lambda = 0$.

► Exemplos:

► O vetor v=(5,2) é autovetor do operador T: $\mathbb{R}^2 \to \mathbb{R}^2$, T(x,y)=(4x+5y, 2x+y) associado ao autovalor λ = 6, pois:

$$T(v)=T(5,2)=(30,12)=6(5,2)=6v.$$

Já v=(2,1) não é autovetor de T, pois $T(2,1)=(13,5)\neq \lambda(2,1), \text{ para todo } \lambda \in \mathbb{R}.$

Seja o operador T: $\mathbb{R}^3 \to \mathbb{R}^3$, cuja matriz canônica é:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

isto é, A=[T].

 \blacktriangleright A.v = λ v ou Av - λ v = 0.

► Como v=Iv, Podemos escrever Av - λ Iv = 0

ou
$$(A - \lambda I)v = 0$$

Para que

$$V = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

deve-se ter

$$\det (A - \lambda I) = 0.$$

Ou

$$\det \begin{pmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \end{pmatrix} = 0$$

ou ainda

$$\det\begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{bmatrix} = \mathbf{0}$$

A equação det (A - λI) = 0 é denominada equação característica do operador T ou da matriz A.

Suas raízes são os autovalores do operador T ou da matriz A.

▶ O determinante det (A - λ I) é um polinômio em λ denominado polinômio característico.

 A substituição de λ pelos seus valores no sistema homogêneo de equações lineares

$$(A - \lambda I)v = 0$$

permite determinar os autovetores associados.

Exemplo: Determinar os autovalores e autovetores

da matriz
$$A = \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix}$$
.

A equação característica de A é

$$\det (A - \lambda I) = \begin{vmatrix} 4 - \lambda & 5 \\ 2 & 1 - \lambda \end{vmatrix} = 0$$

isto é,
$$(4 - \lambda)(1 - \lambda)-10 = 0$$

$$4 - 4\lambda - \lambda - \lambda^2 - 10 = 0$$

$$\lambda^2 - 5 \lambda - 6 = 0$$

As raízes da equação (autovalores) são:

$$\lambda_1 = 6 e \lambda_2 = -1$$

O sistema que permite o cálculo dos autovetores é

$$(A - \lambda I)v = 0$$

Considere
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$

O sistema fica:
$$\begin{bmatrix} 4-\lambda & 5 \\ 2 & 1-\lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Substituindo λ por 6, teremos os autovetores associados ao autovalor λ_1 =6.

$$\begin{bmatrix} -2 & 5 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Isto é,
$$\begin{cases} -2x + 5y = 0\\ 2x - 5y = 0 \end{cases}$$

cuja solução é y=2/5x.

Vetores do tipo $v_1=(x,2/5x)$ ou $v_1=x(1,2/5)$, $x \ne 0$, ou ainda $v_1=x(5,2)$ são autovetores associados ao autovalor $\lambda_1=6$.

Substituindo λ por -1, teremos os autovetores associados ao autovalor λ_2 =-1.

$$\begin{bmatrix} 5 & 5 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Isto é,
$$\begin{cases} 5x + 5y = 0 \\ 2x + 2y = 0 \end{cases}$$

cuja solução é y=-x.

Vetores do tipo $v_2=(x,-x)$ ou $v_2=x(1,-1)$, $x \ne 0$, são autovetores associados ao autovalor $\lambda_2=-1$.

Se v é um autovetor associado ao autovalor λ de um operador linear T, o vetor α v, para qualquer real $\alpha \neq 0$, é também autovetor de T associado ao mesmo autovalor λ .

Tendo em vista que α v é autovetor associado ao autovalor λ , fazendo $\alpha = \frac{1}{|v|}$ pode-se obter o autovetor unitário associado ao autovalor λ .

Se λ é um autovalor de um operador linear T:V \rightarrow V, o conjunto S_{λ} de todos os vetores v ϵ V, inclusive o vetor nulo, associados ao autovalor λ é um subespaço vetorial de V.

S_{λ} = {v \in V| T(v) = λ v} é denominado subespaço associado ao autovalor λ ou espaço característico de T correspondente a λ ou *auto-espaço* associado a λ .

Matrizes semelhantes têm o mesmo polinômimo característico e, por isso, os mesmos autovalores.

Autovetores associados a autovalores distintos de um operador T: V → V são linearmente independentes.

Se T: V \rightarrow V é linear, dim V = n e T possui n autovalores distintos, o conjunto $\{v_1, v_2, ... v_n\}$, formado pelos autovetores correspondentes, é uma base de V.

A matriz quadrada A é diagonalizável se existe uma matriz P invertível tal que P-1AP seja diagonal.

Dizemos que P diagonaliza A ou que p a matriz diagonalizadora.

P é a matriz composta dos autovetores distintos.

Exemplo: Determinar uma matriz P que

diagonalize
$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
 e calcular $P^{-1}AP$.

Temos que os auvalores e autovetores são λ_1 =2 e v_1 =(1,0,-1), λ_2 =3 e v_2 =(1,1,1) e λ_3 =6 e v_3 =(1,-2,1).

Como os λ_i são distintos, o conjuto $P=\{v_1, v_2, v_3\}$ forma uma base do \mathbb{R}^3 e, portanto, a matriz

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$
 diagonaliza A.

$$\mathsf{P}^{-1}\mathsf{A}\mathsf{P} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ 1/3 & 1/3 & 1/3 \\ 1/6 & -1/3 & 1/6 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} 1/2 & 0 & -1/2 \\ 1/3 & 1/3 & 1/3 \\ 1/6 & -1/3 & 1/6 \end{bmatrix} \begin{bmatrix} 2 & 3 & 6 \\ 0 & 3 & -12 \\ -2 & 3 & 6 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix} = D$$