Esperimento di Equilibrio di un corpo appeso

Lorenzo Mauro Sabatino

Sommario

Verificare la somma vettoriale: un sistema di tre masse rimane in equilibrio se la somma vettoriale delle forze \vec{F}_1 e \vec{F}_2 esercitate delle masse laterali è equivalente alla forza \vec{P} della massa centrale. Verificare come cambia l'angolo tra le funi e la verticale variando la massa appesa al centro.

1 Introduzione

Quando un sistema è in equilibrio la somma delle forze che agiscono sul sistema è pari a zero.

Figura 1: Schema delle forze

Figura 2: Setup esperimento

La massa centrale è appesa tra le due carrucole e chiamiamo θ_1 e θ_2 gli angoli formati rispettivamente tra le congiungenti OC1 e OC2 e la verticale (vedi figura 1). Sapendo che l'angolo creato dalla fune, a cui è appesa la massa centrale (di peso P), distribuisce la tensione in due direzioni, possiamo dire, imponendo l'equilibrio in due dimensioni, che:

$$\begin{cases}
T_1 \cos \theta_1 + T_2 \cos \theta_2 &= P \\
T_1 \sin \theta_1 - T_2 \sin \theta_2 &= 0
\end{cases}$$
(1)

Sappiamo inoltre che le due tensioni sono uguali dalla forza peso delle due masse laterali e che perciò: $P_1 = T_1$ e $P_2 = T_2$, da cui segue che:

$$P = P_1 \cos \theta_1 + P_2 \cos \theta_2 \tag{2}$$

Nel caso in cui i due pesi siano uguali $(P_1 = P_2 = P')$ si ha $\theta_1 = \theta_2$, per cui:

$$P = (P_1 + P_2)\cos\theta = 2P'\cos\theta \tag{3}$$

2 Procedimento

- ☐ Tagliare un cordoncino e con le estremità formare due nodi per legare pesetti.
- ☐ Far passare il filo attorno alle due carrucole stando attenti ad evitare che il filo fuoriesca dalla guida; in caso, procedere al riallineamento.
- □ Posizionare i pesetti in modo che il sistema risulti in equilibrio. I due pesi laterali devono essere scelti uguali per facilitare i calcoli: vedi formula (3). Rimarranno uguali per tutto l'esperimento.
- □ Partire da una massa incognita da appendere all'apparato (vedi figura 1 e 2). Prima la si pesa, poi la si appende.
- ☐ Misurare con il goniometro l'angolo formato tra i fili e la verticale.

Procedere aggiungendo altre masse incognite (pesandole man mano) e ogni volta
misurare l'angolo.
Pesare con una bilancia anche i pesetti laterali.
Inserire tutti i dati in tabella.

3 Tabelle e analisi dati

I dati devono essere raccolti in tabelle ordinate. Esempio di tabella:

		$M_{centrale}[g]$	$e_{\it \Lambda}$	I_c	θ [°]
I set di dati	Mis. 1		±		
	Mis. 2		\pm		
	Mis. 3		\pm		
II set di dati	Mis. 1		±		
	Mis. 2		\pm		
	Mis. 3		\pm		
			±		

3.1 Commenti sull'analisi dati

Potete creare le tabelle nella maniera che preferite					
Disegnare il diagramma delle forze					
Dalla legge 3 si osserva una relazione lineare $(y = a \cdot x)$ tra P della massa centrale e la forza peso P' dei due pesetti laterali. Costruire un grafico $\cos \theta$ vs P. Possiamo dunque scrivere:					
$P = a \cdot \cos \theta \tag{4}$					

con $a = 2 \cdot P'$.

Verificare che il coefficiente della retta del grafico che si ottiene vale $a = 2 \cdot P'$ (tanto P', cioè il peso delle massette laterali lo si determina pesandole).

□ Importante: segnate sempre gli errori degli strumenti di misura (sensibilità). Ripetete le misure e calcolate media ed errore. Per propagare l'errore usate le formule viste a lezione. Ignorare l'errore sull'angolo.

Figura 3: Esempio analisi dati relazione lineare

4 Conclusioni e domande

- Per diversi valori della massa centrale, la legge è verificata?
- I valori di forza peso delle massette laterali, misurati e ottenuti sperimentalmente, sono compatibili?
- Come puoi verificare che l'ipotesi di trascurare l'attrito delle carrucole sia valida?
- Cosa succede all'angolo se si appende una massa molto grande? E se si appende una massa molto leggera? (Si può fare un plot di P in funzione di θ)