1 Foundations

Language Model

A language model is a distribution over Σ^* , where Σ is a non-empty alphabet.

Globally Normalized Model

For an *energy fct* $\hat{p}: \Sigma^* \to \mathbb{R}$, a GNM is defined as $p(x) = e^{-\hat{p}(x)} / \sum_{v \in \Sigma^*} e^{-\hat{p}(y)}$.

Locally Normalized Language Model

Given the cond. probabilities $p(y \mid y_{< t})$, the corresponding LNLM is

$$p_{LN}(y) = p_{SM}(EOS \mid y) \prod_{t=1}^{|y|} p_{SM}(y_t \mid y_{< t}).$$

Characterizing Tightness

$$E_{\text{COS}}(t) = rac{\sum_{\omega \in \Sigma^{t-1}} p_{LN}(\omega) p_{LN}(\text{EOS} \mid \omega)}{\sum_{\omega \in \Sigma^{t-1}} p_{LN}(\omega)}.$$
 Then,

 $p_{\mathrm{EOS}}(t) = \frac{\sum_{\omega \in \Sigma^{t-1}} p_{LN}(\omega) p_{LN}(\mathrm{EOS} \mid \omega)}{\sum_{\omega \in \Sigma^{t-1}} p_{LN}(\omega)}.$ Then, $p_{LN} \text{ is } \mathbf{tight} \text{ iff } p_{\mathrm{EOS}}(t) = 1 \text{ for some } t \geq 1 \text{ or } \sum_{t=1}^{\infty} p_{\mathrm{EOS}}(t) = \infty.$ In particular, if $p_{LN}(\mathrm{EOS} \mid y) \geq f(t)$ for all $y \in \Sigma^t$ and $\sum_{t=1}^{\infty} f(t) = \infty$, then $w(\pi) = \lambda(q_1) \qquad w_i \rho(q_N).$ p_{IN} is tight.

Softmax

$$\operatorname{softmax}(x)_i = \frac{\exp(\frac{x_i}{\tau})}{\sum_{j=1}^n \exp(\frac{x_j}{\tau})}$$

As $\tau \to \infty$, becomes uniform and as $\tau \to 0$, becomes spiked. We have

$$\operatorname{softmax}(x) = \operatorname{argmax}_{p \in \Delta^{n-1}} p^{\top} x - \tau \sum_{i=1}^{n} p_i \log p_i.$$

Representation-based Language Model

An embedding matrix $\mathbf{E} \in \mathbb{R}^{|\overline{\Sigma}| \times D}$ and an ecoding fct. enc : $\Sigma^* \to \mathbb{R}^d$ define a LNLM as

$$p(y_t \mid y_{< t}) = \operatorname{softmax} \left(\operatorname{Eenc}(y_{< t}) \right)_{y_t}.$$

Tightness of Softmax RBLMs

If $sz(t) \leq \log t$ for all $t \geq N$ for some N, then the induced model is **tight**. Here, $s = \max_{y \in \Sigma} ||e(y) - e(EOS)||_2$ and z(t) = $\max_{\omega \in \Sigma^t} \|\operatorname{enc}(\omega)\|_2$. In particular, if enc is bounded, then the model is **tight**.

2 Finite State LMs

Finite State Automaton

A FSA is a tuple $A = (Q, \Sigma, \delta, I, F)$, where Q is a finite set of states, Σ is an alphabet, $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ are the transitions, and $I, F \subseteq Q$ are the sets of initial/final states.

Weighted FSA

A WFSA is a tuple $A = (Q, \Sigma, \delta, \lambda, \rho)$, where $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times \mathbb{R} \times Q$ are the weighted transitions and $\lambda, \rho: Q \to \mathbb{R}$ are the initial/final weights.

Probabilistic FSA

A WFSA is probabilistic if λ, ρ and the weights are non-negative, $\sum_{q \in Q} \lambda(q) = 1$ and for all $q \in Q$ we have

$$\rho(q) + \sum_{\substack{q \xrightarrow{a/w} q'}} w = 1.$$

Path Weights

$$w(\pi) = \lambda(q_1) \prod_{i=1}^{N} w_i \rho(q_N).$$

WFSA Allsum

The allsum of a WFSA A is

$$Z(\mathcal{A}) = \sum_{y \in \Sigma^*} \mathcal{A}(y) = \sum_{y \in \Sigma^*} \sum_{\pi \in \Pi(A, y)} w(\pi).$$

We have

$$Z(A) = \vec{\lambda} \sum_{d=0}^{\infty} T^{d} \vec{\rho} = \vec{\lambda} (I - T)^{-1} \vec{\rho}$$

where *T* is the transition matrix of *A*. Tightness of PFSA

A state $q \in Q$ is accessible if there exists a nonzero weighted path from an initial state to q. It is co-accessible if there exists a non-zero weighted path from *q* to a final state. A PWFSA is **tight** if and only if all accessible

states are co-accessible. 3 Pushdown LMs

Context Free Grammar

A CFG is a tuple $\mathcal{G} = (\Sigma, \mathcal{N}, S, \mathcal{P})$, where Σ is an alphabet of terminals, N is a set of non-terminals with $\mathcal{N} \cap \Sigma = \emptyset$, $S \in \mathcal{N}$ is the start symbol and P is a set of production rules of the form $X \to \alpha$ where $X \in \mathcal{N}$ and $\alpha \in (\Sigma \cup \mathcal{N})^*$.

Weighted CFG

A WCFG is a CFG with an associated weight function $W: \mathcal{P} \to \mathbb{R}$.

Probabilistic CFG

A WCFG is probabilistic if W is non-negative and for all $X \in \mathcal{N}$ we have $\sum_{X \to \alpha \in \mathcal{P}} \mathcal{W}(X \to X)$ α) = 1.

WCFG Allsum

The allsum of a WCFG \mathcal{G} is

$$Z(\mathcal{G}) = \sum_{d \in \mathcal{D}_{\mathcal{G}}} w(d)$$
$$= \sum_{d \in \mathcal{D}_{\mathcal{G}}} \prod_{(X \to \alpha) \in d} \mathcal{W}(X \to \alpha),$$

where $\mathcal{D}_{\mathcal{C}}$ is the set of all possible derivations in \mathcal{G} .

Tightness of PCFG

For a PCFG \mathcal{G} with $|\mathcal{N}| = N$ we define for each $X_n \in \mathcal{N}$ its production generating fct.

$$g_n((s_i)_{i=1}^N) = \sum_{X_n \to \alpha} \mathcal{W}(X_n \to \alpha) s_1^{r_1(\alpha)} \cdots s_N^{r_N(\alpha)}$$

where $r_i(\alpha)$ is the number of times X_i appears in α . Then we set $E \in \mathbb{R}^{N \times N}$ to have entries $E_{nm} = \frac{\partial}{\partial s_m} g_n(s_1,...,s_N) \Big|_{s_1,...,s_N=1}$. Then \mathcal{G} is **tight** if $\lambda < 1$ and non-tight if $\lambda > 1$, where $\lambda = \max\{|\lambda'| \mid \lambda' \in \sigma(E)\}.$

Pushdown Automaton

A language is context-free if and only if it is recognized by some PDA.

Multi-Stack PDA

Any (probabilistic) 2-stack PDA is Turing complete. Hence, the tightness of a probabilistic 2-stack PDA is undecidable.

4 RNNs

RNN

A RNN is given by an initial state $h_0 \in \mathbb{R}^d$ and a dynamics map $h_t = f(h_{t-1}, y_t)$. An RNN-LM uses $\operatorname{enc}(y_{< t+1}) = h_t$.

Elman RNN

An Elman RNN is an RNN with $f(h_{t-1}, y_t) =$ $\sigma(Uh_{t-1} + Ve'(y_t) + b)$, where $U \in \mathbb{R}^{d \times d}$, $V \in \mathbb{R}^{d \times R}$ and $b \in \mathbb{R}^d$ and $e' : \Sigma \to \mathbb{R}^R$ is an input embedding function.

Jordan RNN

A Jordan RNN is an RNN with

$$f(h_{t-1}, y_t) = \sigma(U\sigma'(Eh_{t-1}) + Ve'(y_{t-1}) + b).$$

Tightness of RNN-LMs

If the LM uses the softmax and $s||h_t|| \le \log t$ (in particular if f is bounded, e.g. if f uses a bounded activation function), then the induced LM is **tight**.

Expressiveness of RNNs

Heaviside Elman RNNs (over ℝ) are equivalent to deterministic PFSAs. The argument generalizes to any activation function with finite image, in particular any activation implemented on a computer. Minsky's construction encodes any dPFSA using $U \in \mathbb{R}^{|\Sigma||Q| \times |\Sigma||Q|}$ to encode which states are reachable from h_{t-1} and $V \in \mathbb{R}^{|\Sigma||Q| \times |\Sigma|}$ to encode which states can be transitioned to using y_t . It is possible to reduce the hidden state dimensionality to $\Omega(|\Sigma|\sqrt{|Q|})$

Saturated Sigmoid Elmann RNNs are Turing complete (because they can encode two-stack PDAs). It is thus undecidable whether an RNN-LM is **tight**.

Cosine Similarity

 $\forall x, y \in \mathbb{R}^d$, $\cos\text{-sim}(x, y) = \frac{x^\top y}{\|x\|_2 \|y\|_2}$

5 Transformers

Soft Attention

Given queries $Q \in \mathbb{R}^{n \times d}$, keys $K \in \mathbb{R}^{t \times d}$ and values $V \in \mathbb{R}^{t \times d}$, soft attention is

$$\operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d}}\right)V.$$

Time/Space compl.: $O(t^2d)$, $O(t^2+ld)$ Kernelized attention is O(rtd) and O(rl + rd +ld) with feature map dimension r.

Multi-head Attention

Given a context $C \in \mathbb{R}^{t \times d}$ and a query $x \in \mathbb{R}^d$, we set

$$MHA(x) = Concat(head_1, ..., head_N)W_o$$

$$head_i = Att(xW_q^{(i)}, CW_k^{(i)}, CW_v^{(i)}),$$

where $W_q^{(i)}$, $W_k^{(i)}$, $W_v^{(i)} \in \mathbb{R}^{d \times d_h}$, $W_o \in \mathbb{R}^{d \times d}$ and usually $d_h = d/N$.

Transformer Laver

A transformer layer (without layer-norm) is a function $T: \mathbb{R}^{T \times d} \to \mathbb{R}^{T \times d}$ that maps $\mathbf{X} =$

$$(x_1,...,x_T)$$
 to $(z_1,...,z_T)$, where

$$a_t = \text{Att}(q(x_t), K(\mathbf{X}_t), V(\mathbf{X}_t)) + x_t$$

$$z_t = \text{FFN}(a_t) + a_t.$$

Transformer

A transformer is a rep.-based LM with $\operatorname{enc}(y_{\leq t+1}) = h_t$, where

$$\mathbf{X}_1 = (e'(y_0), ..., e'(y_t))$$

$$\mathbf{X}_{l+1} = T_l(\mathbf{X}_l)$$

$$h_t = F(x_t^L)$$

for some $F: \mathbb{R}^d \to \mathbb{R}^d$, $e': \Sigma \to \mathbb{R}^d$ and transformer layers $T_1,...,T_L$.

Tightness of Transformers

Any transformer using soft attention is **tight** (because its layers are continuous and the set of possible inputs to the first layer is compact, making enc bounded).

Expressiveness of Transformers

Let p_{LN} be an n-gram language model. Then, there exists a transformer \mathcal{T} with $L(p_{IN}) =$ $L(\mathcal{T})$.

Sinusoidal Positional Encodings

For the *k*-th token and dimensionality *d*:

even:
$$P(k, 2i) = \sin\left(\frac{k}{n^{2i/d}}\right)$$

odd:
$$P(k, 2i + 1) = \cos\left(\frac{k}{n^{2i/d}}\right)$$

n is user-defined (= 10000) and *i* is the index.

6 Sampling

Ancestral Sampling

- 1. Locally normalize.
- 2. Sample $y_t \sim p(\cdot \mid y_{< t})$, stop when $y_t = EOS$. May not halt \rightarrow set max string length.

Sampling Adaptors

To calibrate p we can postprocess probabilities by a function $\alpha: \Delta^{|\Sigma|-1} \to \Delta^{|\Sigma|-1}$.

Top-K Sampling

Set $p(y_t \mid y_{< t}) = 0$ for all but the K most probable tokens, and renormalize.

Nuclues Sampling

Only take top p% of probability mass.

7 Transfer Learning

ELMo

Assume we have a forward and a backward LM using L LSTM layers. The ELMo representation for a token y_t is

$$\gamma^{\mathrm{task}} \sum_{l=0}^{L} s_{l}^{\mathrm{task}} h_{tl}^{LM}$$
,

where $s_l^{\text{task}} \geq 0$, $h_{tl}^{LM} = (\overrightarrow{h}_{tl}^{LM}, \overleftarrow{h}_{tl}^{LM})$, $\overrightarrow{h}_{tl}^{LM}$ and h_{tl}^{LM} are the hidden states of the LM layers.

BERT

BERT is an encoder transformer pre-trained using masked language modelling and next sentence prediction.

Adapters

For $h \in MHA(C, x)$, FFN(x), we set $h \leftarrow h + f(hW_1 + b_1)W_2 + b_2$. $N_{\text{param}} = 2N(2dm + d + m)$

LoRA

Replace weight matrices $W \in \mathbb{R}^{d \times r}$ with $W \leftarrow$ $W + \frac{\beta}{L}AB$ where $A \in \mathbb{R}^{d \times b}$ and $B \in \mathbb{R}^{b \times r}$ are random matrices and β is a constant in b. $N_{\text{param}} = NH(3b(d+r) + 2bd)$

Prefix Tuning

Prepending each layer with *l* embedding vectors results in $N_{\text{param}} = Nld$.

8 Parameter Efficient Fine-Tuning BitFit

Only optimize (a subset of) bias terms.

Diff Pruning

Learn (sparse) δ in $\theta_{\rm FT} = \theta_{\rm LM} + \delta$.

Adapters

Insert bottleneck MLPs after each sublayer (MHA and FFN).

9 Knowledge Enhancement **kNN-LM**

Store all embedded prefixes and their following words in a database. At inference time, retrieve the *k* nearest neighbors of a prefix and normalize the exponentiated distances to a probability distribution p_{ξ} over words. Then sample from a convex combination of p_{ξ} and the LM.

Dynamic Gating: Set the weighting of distributions depending on the prefix.

10 RLHF

1. Collect a dataset of instructions+answers and train a supervised baseline model.

- 2. Produce a dataset of comparisons of diffe- 14 Math Brushup rent answers given by the baseline model, **Probabilities** score them manually and train a reward model.
- 3. Use PPO to fine-tune a LM (the policy) **Probability Space**: (Ω, \mathcal{F}, P) where P: using the reward model.

11 Data Quality **Importance Measures**

LOO, Uniform Weights, Shapley Value

12 Security

Adversarial Examples

Perturb example with noise δ to force misclassification:

maximize
$$L(f_{\theta}(x+\delta), y)$$

subject to $\|\delta\|_{\infty} \le 1\%$

Solve with projected Gradient Descent. Doesn't work for text as $x + \delta$ is highly unlikely to be a token embedding. We can instead solve $\operatorname{arg\,max}_{v}(E_{v}-x_{i})^{\top}\nabla_{x_{i}}L$ and replace x_{i}

13 Privacy **Data Secrecy**

Central server sees all training data. Gold Standard Solutions: Secure multiparty computation, fully homomorphic encryption \rightarrow slow & expensive.

Federated Learning. Clients send gradients. Can be attacked with optimization. Weight-trap attack: Server sends model s.t. $\nabla_{\theta} L(f_{\theta}(x_i)) = x_i$.

Data Memorization

Can generate lots of text and filter text where model is abnormally confident. Defenses:

1. Filter memorized outputs. Problem: Exact matches are not enough.

2. Deduplicate training data.

Differential Privacy

An algorithm M is ε -differentially private if for any "neighboring" databases D_1, D_2 that differ in a single element, and any output S we have:

$$P[M(D_1) \in S] \le \exp(\varepsilon)P[M(D_2) \in S].$$

Post-Processing: If *M* is ε -DP, then f(M) for any function f is also ε -DP. Composition: If M_1 is ε_1 -DP and M_2 is ε_2 -DP then $f(M_1, M_2)$ is $(\varepsilon_1 + \varepsilon_2)$ -DP.

 σ -algebra: $\Omega \in \mathcal{F}$; $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$; $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$

 $\mathcal{F} \to [0,1]$ s.t. $P(\Omega) = 1$ and $P(\bigcup_{i=1}^{\infty} A_i) =$ $\sum_{i=1}^{\infty} P(A_i)$ for disjoint A_i .

Binomial Distrubution: $X \sim Bin(n, p)$, $\mu = \mathbb{E}[X] = np \text{ and } \sigma^2 = \text{Var}[X] = np(1-p)$

Calculus

Geom. Sum: $\sum_{i=0}^{n} ar^{i} = a \frac{1-r^{n+1}}{1-r}$

Triangle Inequality: $|a-b| \le |a+b| \le |a| + |b|$

Useful Results

Cross-Entropy: $H(p,q) = -\sum_{x} p(x) \log q(x)$

KL Divergence: $D_{KL}(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$