Homework 3: Problem 2 SLAM

Instructor Notes

1 Preparation

- 1. Read the assignment description carefully. Try to understand (a) components of the given data, (b) how and in what frame the data is collected (in order to understand the model), (c) how to use the given code, and (d) understanding the steps outlined in these notes.
- 2. Try mapping from the first scan and plot the map
- 3. Try dead-reckoning and plot the robot trajectory
- 4. Try prediction only and plot the robot trajectories (100 for N = 100 particles)
- 5. Try the update step with only 3-4 particles and see if the weight update makes sense

2 Notation

- $x^{(i)}$ represents a vector or a scalar x in frame i. (g), (b), (h) mean global, body, and head frames respectively.
- $R(\theta)$ is a rotation matrix: For SO(2) (special orthonormal group),

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

For SO(3), rotations with respect to z, y, x-axis, respectively,

$$\begin{bmatrix} \cos(\theta_z) & -\sin(\theta_z) & 0 \\ \sin(\theta_z) & \cos(\theta_z) & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} \cos(\theta_y) & 0 & \sin(\theta_y) \\ 0 & 1 & 0 \\ -\sin(\theta_y) & 0 & \cos(\theta_y) \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & -\sin(\theta_x) \\ 0 & \sin(\theta_x) & \cos(\theta_x) \end{bmatrix}$$

• Homogeneous transform matrix between Frame 0 and Frame 1, A_1^0 , is defined as:

$$A_1^0 = \begin{bmatrix} R_1^0 & \mathbf{d}_1^0 \\ \mathbf{0}^T & 1 \end{bmatrix}$$

where $R_1^0 \in SO(3)$ is a rotatio matrix of Frame 1 with respect to Frame 0, $\mathbf{d}_1^0 \in \mathbb{R}^3$ is a vector of the origin of Frame 1 with respect to Frame 0, and $\mathbf{0}^T = [0,0,0]$. Therefore, A_1^0 belongs to the *special Euclidean group* SE(3).

• Coordinate transformation of Frame n with respect to Frame 0, T_n^0 :

$$T_n^0 = A_1^0 A_2^1 \cdots A_n^{n-1}$$

and

$$\mathbf{v}^{(0)} = T_n^0 \mathbf{v}^{(n)}$$

for a vector **v**.

• Smart Plus

$$x_{t+1} \oplus x_t \equiv \begin{bmatrix} p_t + R(\theta_t)p_{t+1} \\ \theta_t + \theta_{t+1} \end{bmatrix}$$
$$x_{t+1} \ominus x_t \equiv x_t^{-1} \oplus x_{t+1} = \begin{bmatrix} R^T(\theta_t)(p_{t+1} - p_t) \\ \theta_{t+1} - \theta_t \end{bmatrix}$$

3 Mapping

Input

- 1. laser scan z_t
- 2. transform from head to body frame: T^b (head and neck angles) h
- 3. robot pose x_t determining transform from body to global frame: $T^g b$ (current best particle and could use laser.rpy but be careful with transform from IMU to body frame)
- 4. current log-odds map m_t

Output

1. Updated log-odds map m_{t+1}

Pseudo-code

- 1. Transform $z_t = z_t^{(h)}$ via $T_b^g * T_h^b$ to the global frame
- 2. Filter noisy scan points that are too close, too far, or hit the ground this is up to you
- 3. Obtain the cell locations y_t^o that are occupied according to the laser and y_t^f that are free according to the laser
- 4. Increase the log-odds in m_t of the occupied cells y_t^o and decrease the odds on the free cells y_t^f to obtain m_{t+1}

4 Dynamics using Odometry

Input

- 1. Current robot pose $p_t \in SE(2)$
- 2. Global frame odometry (laser.odom) o_t and o_{t+1}

Output

1. Updated robot pose $p_{t+1} \in SE(2)$

Pseudo-code

1. $p_{t+1} = p_t \oplus (o_{t+1} \ominus o_t)$

5 Localization Prediction

Input

- 1. Current particles: $p_t^n \in SE(2), n = 1, ..., N$
- 2. Global frame odometry (laser.odom) o_t and o_{t+1}

Output

1. Updated particles: $p_{t+1}^n \in SE(2), n = 1, \dots, N$

Pseudo-code

1. $p_{t+1}^n = p_t^n \oplus (o_{t+1} \ominus o_t) \oplus w_t^n$, $w_t^n \sim \mathcal{N}(0, W_{3\times 3})$

^{*} Note that some of notations may be different from notations in your reference materials.

Localization Update

Algorithm 6.1

Input

- 1. Current particle positions and weights: $(p_t^n, a_t^n), n = 1, \dots, N$
- 2. Laser scan z_t
- 3. Current map m_t
- 4. Transform from head to body: T_h^b (head and neck angles)

Output

1. Updated particle positions and weights: $(p_{t+1}^n, a_{t+1}^n), n = 1, \dots, N$

Pseudo-code

- 1. For each particle $n = 1, \ldots, N$:
 - Transform z_t via $T_b^g * T_h^b$ to the global frame, where T_b^g is determined from p_t^n (and optionally laser.rpy but be careful with transform from IMU to robot center of mass)
 - Remove scan points that are too close, too far, or hit the ground

Find the cells y_t corresponding to the global-frame scan z_t .

- Compute $corr(m_t, y_t)$ correlation between the cells for that particle vs the cells in the map.
- 2. Update the particle weights (see the below section)
- 3. If $N_{eff} < N_{threshold}$, re-sample the particles

6.2Updating Weights

There are two ways to compute the weights: one easy but slightly incorrect and one easy but correct. We define the measurement likelihood as follows:

$$p_h(z_t|x,m) = \frac{exp(corr(z_t,m))}{\sum_z exp(corr(z,m))}$$

We are interested in the following in the particle filter update step:

$$a_{t+1|t+1}^{(k)} = \eta_{t+1} a_{t+1|t}^{(k)} exp(corr(z_{t+1}, m))$$

where η_{t+1} is the normalization due to $\sum_{z} exp(corr(z,m))$ and $\sum_{j} a_{t+1|t}^{(j)} p_h(z_{t+1}|\mu_{t+1|t}^{(j)},m)$.

- 1. The easy, slightly incorrect way:

 - a) say that $p_h(z_t|x,m) \propto corr(z_t,m)$ b) update weights: $a_{t+1|t+1}^{(k)} = a_{t+1|t}^{(k)} * corr(z_{t+1},m)$ c) normalize: $a_{t+1|t+1}^{(k)} \leftarrow \frac{a_{t+1|t+1}^{(k)}}{\sum_j a_{t+1|t+1}^{(j)}}$
- 2. The easy, correct way
 - a) say that $p_h(z_t|x,m) \propto exp(corr(z_t,m))$ and define $w_{t|t}^{(k)} := log(a_{t|t}^{(k)})$

 - b) update weights: $w_{t+1|t+1}^{(k)} = w_{t+1|t}^{(k)} + corr(z_{t+1}, m)$ c) normalize: $w_{t+1|t+1}^{(k)} \leftarrow w_{t+1|t+1}^{(k)} \max_j w_{t+1|t+1}^{(j)} \log \sum_i exp(w_{t+1|t+1}^{(i)} \max_j w_{t+1|t+1}^{(j)})$

7 SLAM

Initialize $p_0^n=(0,0,0),\ a_0^n=\frac{1}{N},\ n=1,\dots,N$ Input

- 1. Current particle positions and weights: $(p_t^n, a_t^n), n=1, \dots, N$
- 2. Laser scan z_t (laser.scan)
- 3. Current map m_t
- 4. Transform from head to body: T_h^b (head and neck angles)
- 5. Global frame odometry o_t and o_{t+1} (laser.odom)

Output

- 1. Updated particle positions and weights: $(p_t^n, a_t^n), n=1,\dots,N$
- 2. Updated log-odds map m_{t+1}

Pseudo-code

- 1. Find particle p_t^* with highest weight from $(p_t^n, a_t^n), n = 1, \dots, N$
- 2. $m_{t+1} \leftarrow Mapping(z_t, p_t^*, T_h^b, m_t)$
- $3. \ p^n_{t+1} \leftarrow LocalizationPrediction(p^n_t, o_t, o_{t+1})$
- $4. \ (p^n_{t+1}, a^n_{t+1}) \leftarrow Localization Update(p^n_{t+1}, a^n_t, z_t, m_{t+1}, T^b_h)$