Implementation of the Lagrangian Relaxation Algorithm for Network Revenue Management

Hongzhang "Steve" Shao May 18, 2025

1 The NRM Problem

Consider a network revenue management problem with:

- A set of resources (flight legs) \mathcal{L} , each with capacity c_i for $i \in \mathcal{L}$.
- A set of products (itineraries) \mathcal{J} , each with revenue f_j for $j \in \mathcal{J}$.
 - Each purchase of product j consumes a_{ij} units of capacity from resource i for each i.
- Discrete time horizon $\mathcal{T} = \{1, \dots, \tau\}$.

In each period t:

- At most one customer arrives
- The customer requests product j with probability p_{jt}
- $\sum_{j \in \mathcal{J}} p_{jt} \leq 1$

Note that, by adding a dummy itinerary ψ with

$$f_{\psi} = 0$$
 $a_{i\psi} = 0$
 $\forall i \in \mathcal{L}$
 $p_{\psi t} = 1 - \sum_{j \in \mathcal{J}} p_{jt}$
 $\forall t \in \mathcal{T}$

It can be assumed that in each period t:

- One customer arrives
- The customer requests product j with probability p_{it}
- $\sum_{j \in \mathcal{J}} p_{jt} = 1$

Let x_{it} be the remaining capacity of resource i at the start of period t. Let $x_t = (x_{1t}, x_{2t}, \dots, x_{|\mathcal{L}|, t})$ be the state vector. Let

$$C = \max_{i \in \mathcal{L}} c_i$$
$$C = \{0, 1, \dots, C\}$$

and let $\mathcal{C}^{|\mathcal{L}|}$ be the state space.

2 The LR Algorithm

Dynamic Programming Formulation:

- Let $u_{it} \in \{0,1\}$ indicate whether to accept (1) or reject (0) a request for product j.
- Let $V_t(x_t)$ be the maximum expected revenue from period t to τ given capacities x_t :

$$V_t(x_t) = \max_{u_t \in \mathcal{U}(x_t)} \left\{ \sum_{j \in \mathcal{J}} p_{jt} \left\{ f_j u_{jt} + V_{t+1} \left(x_t - u_{jt} \sum_{i \in \mathcal{L}} a_{ij} e_i \right) \right\} \right\}$$
 (DP1)

where

$$\mathcal{U}(x_t) = \left\{ u_t \in \{0, 1\}^{|\mathcal{J}|} : a_{ij} u_{jt} \le x_{it} \ \forall i \in \mathcal{L}, \ j \in \mathcal{J} \right\}$$

and e_i is the unit vector with a 1 in the *i*-th position and 0 elsewhere.

Equivalent Dynamic Program:

- Let $y_{ijt} \in \{0, 1\}$ indicate whether to accept (1) or reject (0) **resource** i when a **request for product** j arrives (e.g., it is allowed to partially accept some flight legs when an itinerary uses multiple legs).
- Let ϕ be a **fictitious resource** with infinite capacity.
- Let $y_t = \{y_{ijt} : i \in \mathcal{L} \cup \{\phi\}, j \in \mathcal{J}\}.$
- Then, $V_t(x_t)$ can be computed as:

$$V_{t}(x_{t}) = \max_{y_{t} \in \mathcal{Y}(x_{t})} \left\{ \sum_{j \in \mathcal{J}} p_{jt} \left\{ f_{j} y_{\phi jt} + V_{t+1} \left(x_{t} - \sum_{i \in \mathcal{L}} y_{ijt} a_{ij} e_{i} \right) \right\} \right\}$$
subject to $y_{ijt} = y_{\phi jt} \quad \forall i \in \mathcal{L}, \ j \in \mathcal{J}$

where

$$\mathcal{Y}_{it}(x_t) = \left\{ y_{it} \in \{0, 1\}^{|\mathcal{J}|} : a_{ij}y_{ijt} \leq x_{it} \ \forall j \in \mathcal{J} \right\} \quad i \in \mathcal{L}$$

$$\mathcal{Y}_{\phi t}(x_t) = \left\{ y_{\phi t} \in \{0, 1\}^{|\mathcal{J}|} \right\}$$

$$\mathcal{Y}(x_t) = \mathcal{Y}_{\phi t}(x_t) \prod_{i \in \mathcal{L}} \mathcal{Y}_{it}(x_t) \quad \text{(Cartesian product)}$$

Lagrangian Relaxation:

- Let $\lambda = \{\lambda_{ijt} : i \in \mathcal{L}, j \in \mathcal{J}, t \in \mathcal{T}\}$ denote the Lagrangian multiplier.
- The Lagrangian relaxation $V_t^{\lambda}(x_t)$ is defined as:

$$V_t^{\lambda}(x_t) = \max_{y_t \in \mathcal{Y}(x_t)} \left\{ \sum_{j \in \mathcal{J}} p_{jt} \left[f_j y_{\phi jt} + \sum_{i \in \mathcal{L}} \lambda_{ijt} (y_{ijt} - y_{\phi jt}) + V_{t+1}^{\lambda} \left(x_t - \sum_{i \in \mathcal{L}} y_{ijt} a_{ij} e_i \right) \right] \right\}$$
 (LR)

Lagrangian Relaxation Algorithm:

- Goal: The Lagrangian relaxation algorithm aims to find an optimal multiplier λ^* that solves

$$\min_{\lambda} V_1^{\lambda}(c_1)$$

As shown in [Topaloglu, 2009],

$$V_t(x_t) \le V_t^{\lambda}(x_t) \quad \forall x_t \in \mathcal{C}^{|\mathcal{L}|}, \ t \in \mathcal{T}$$

Therefore, $V_1^{\lambda^*}(c_1)$ provides a tight bound to $V_1(c_1)$.

- Solving $V_1^{\lambda}(c_1)$ for a given λ : It has been shown in [Topaloglu, 2009] that $V_1^{\lambda}(c_1)$ can be solved by concentrating on one resource at a time. Specifically, if $\{\vartheta_{it}^{\lambda}(x_{it}): x_{it} \in \mathcal{C}, t \in \mathcal{T}\}$ is a solution to the optimality equation

$$\vartheta_{it}^{\lambda}(x_{it}) = \max_{y_{it} \in \mathcal{Y}_{it}(x_{it})} \left\{ \sum_{j \in \mathcal{J}} p_{jt} \left[\lambda_{ijt} y_{ijt} + \vartheta_{i,t+1}^{\lambda}(x_{it} - a_{ij} y_{ijt}) \right] \right\}$$
 (SDP)

for all $i \in \mathcal{L}$, then

$$V_t^{\lambda}(x_t) = \sum_{t'=t}^{\tau} \sum_{j \in \mathcal{J}} p_{jt'} \left[f_j - \sum_{i \in \mathcal{L}} \lambda_{ijt'} \right]^+ + \sum_{i \in \mathcal{L}} \vartheta_{it}^{\lambda}(x_{it}), \tag{1}$$

where $[z]^+ = \max\{z, 0\}.$

- **Minimizing** $V_1^{\lambda}(c_1)$ **over** λ : It has also been shown in [Topaloglu, 2009] that the Lagrangian relaxation $V_1^{\lambda}(c_1)$ is convex in λ . Thus, the optimal multiplier λ^* can be found by using classical subgradient methods.

Control Policy:

- The control policy is to accept a request for product j at time t if and only if:

$$f_j \ge \sum_{i \in \mathcal{L}} \sum_{r=1}^{a_{ij}} \left[\vartheta_{i,t+1}^{\lambda^*}(x_{it} - r + 1) - \vartheta_{i,t+1}^{\lambda^*}(x_{it} - r) \right]$$

That is, a product is accepted if its revenue exceeds the opportunity cost of consumed resources. Specifically, the term $\vartheta_{i,t+1}^{\lambda^*}(x_{it}) - \vartheta_{i,t+1}^{\lambda^*}(x_{it}-1)$ represents the bid price of resource i at time t.

3 The subgradient of $V_1^{\lambda}(\mathbf{c}_1)$

Computing the subgradient is important for updating λ_{ijt} when minimizing $V_1^{\lambda}(c_1)$. However, [Topaloglu, 2009] does not explicitly provide the subgradient of $V_1^{\lambda}(c_1)$. In this section, we show how to compute the subgradient of $V_1^{\lambda}(c_1)$ with respect to a specific Lagrange multiplier λ_{ijt} .

Single-Resource Value Function and Optimal Policy: Recall that the value function $\vartheta_{it}^{\lambda}(x_{it})$ for resource i with capacity x_{it} at time t is given by the Bellman equation:

$$\vartheta_{it}^{\lambda}(x_{it}) = \max_{y_{ijt} \in \{0,1\}} \left\{ \sum_{j \in \mathcal{J}} p_{jt} \left[\lambda_{ijt} y_{ijt} + \vartheta_{i,t+1}^{\lambda} (x_{it} - a_{ij} y_{ijt}) \right] \right\}$$

Let $y_{ijt}^{*\lambda}(x_{it})$ be the optimal decision for product j given capacity x_{it} . Then,

$$\vartheta_{it}^{\lambda}(x_{it}) = \sum_{j \in \mathcal{I}} p_{jt} \left[\lambda_{ijt} y_{ijt}^{*\lambda}(x_{it}) + \vartheta_{i,t+1}^{\lambda}(x_{it} - a_{ij} y_{ijt}^{*\lambda}(x_{it})) \right]$$

with terminal condition $\vartheta_{i,\tau+1}^{\lambda}(\cdot) = 0$. Thus, the value function $\vartheta_{i1}^{\lambda}(c_i)$ can be written as the expected sum of λ -weighted accepted products:

$$\vartheta_{i1}^{\lambda}(c_i) = \mathbb{E}\left[\sum_{t'=1}^{\tau} \sum_{j \in \mathcal{J}} p_{jt'} \lambda_{ijt'} y_{ijt'}^{*\lambda}(X_{it'}) \mid X_{i1} = c_i\right]$$

where $X_{it'}$ is the random capacity at time t'.

Capacity State Probability $\mu_{it}(x)$: To see the effect of λ_{ijt} on $\vartheta_{i1}^{\lambda}(c_i)$, define $\mu_{it}(x)$ as the probability that resource i has capacity x at time t, starting from c_i at t=1 and following the optimal policy $y^{*\lambda}$. This probability mass function is computed recursively:

- Base case (t = 1): $\mu_{i1}(x) = \mathbb{I}\{x = c_i\}.$
- Recursive step (for $s = 1, ..., \tau 1$):

$$\mu_{i,s+1}(x') = \sum_{x=0}^{c_i} \mu_{is}(x) \sum_{j \in \mathcal{J}} p_{js} \mathbb{I} \left\{ x' = x - a_{ij} y_{ijs}^{*\lambda}(x) \right\}$$

The subgradient of $\vartheta_{i1}^{\lambda}(c_i)$ with respect to λ_{ijt} : As we can see, the change in $\vartheta_{i1}^{\lambda}(c_i)$ due to λ_{ijt} is the sum of local effects at time t, weighted by the probability $\mu_{it}(x_{it})$ of being in state x_{it} :

$$\frac{\partial \vartheta_{i1}^{\lambda}(c_i)}{\partial \lambda_{ijt}} = \sum_{x_{it}=0}^{c_i} \mu_{it}(x_{it}) \left(p_{jt} y_{ijt}^{*\lambda}(x_{it}) \right) = p_{jt} \sum_{x_{it}=0}^{c_i} \mu_{it}(x_{it}) y_{ijt}^{*\lambda}(x_{it})$$

Intuitively, the sum $\sum_{x_{it}=0}^{c_i} \mu_{it}(x_{it}) y_{ijt}^{*\lambda}(x_{it})$ is the expected optimal decision for product j at time t, given initial capacity c_i .

The subgradient of $V_1^{\lambda}(c_1)$ with respect to λ_{ijt} : Using (1), we have:

$$\frac{\partial V_1^{\lambda}(c_1)}{\partial \lambda_{ijt}} = \frac{\partial \vartheta_{i1}^{\lambda}(c_i)}{\partial \lambda_{ijt}} - p_{jt} \mathbf{1} \left\{ f_j - \sum_{k \in \mathcal{L}} \lambda_{kjt} \ge 0 \right\}$$

4 Implementation

Note: [Topaloglu, 2009] did not provide any specific implementation details or the choice of algorithms. Thus, I need to do my own implementation. What follows are my own implementation steps.

4.1 Subroutine: Solving the Single-Resource Dynamic Program

We solve the single-resource optimality equation using tabular backward induction:

```
Algorithm 1 Subroutine: Tabular Backward Induction for Single-Resource Dynamic Program
Require: Resource i, capacities C, time periods T, probabilities p_{jt}, consumption a_{ij}, multipliers
Ensure: Value functions \vartheta_{it}^{\lambda}(x_{it}) and optimal decisions y_{ijt}^{*}(x_{it})
  1: Initialize \vartheta_{i,\tau+1}^{\lambda}(x_{i,\tau+1}) \leftarrow 0 for all x_{i,\tau+1} \in \mathcal{C}
                                                                                                                             ▶ Terminal condition
  2: for t = \tau down to 1 do
                                                                                                                            ▶ Backward recursion
            for x_{it} = 0 to C do
                                                                                                                       ▶ For each capacity level
  3:
                 \vartheta_{it}^{\lambda}(x_{it}) \leftarrow 0
  4:
                 y_{ijt}^*(x_{it}) \leftarrow 0 \text{ for all } j \in \mathcal{J}
                                                                                                                 ▶ Initialize decision variables
  5:
  6:
                 for j \in \mathcal{J} do
                                                                                                                                 ▶ For each product
                       if a_{ij} \leq x_{it} then
                                                                                                             ▶ Check if capacity is sufficient
  7:
                            v_0 \leftarrow \vartheta_{i,t+1}^{\lambda}(x_{it})
                                                                                                                                     ▶ Value if reject
                            v_1 \leftarrow \lambda_{ijt} + \vartheta_{i,t+1}^{\lambda}(x_{it} - a_{ij})
                                                                                                                                    ▶ Value if accept
  9:
                            if v_1 > v_0 then
 10:
                            y_{ijt}^*(x_{it}) \leftarrow 1 end if
                                                                                    \triangleright Accept product j at time t with capacity x_{it}
 11:
 12:
                       end if
 13:
                 end for
 14:
                 \vartheta_{it}^{\lambda}(x_{it}) \leftarrow \sum_{j \in \mathcal{J}} p_{jt} \left[ \lambda_{ijt} \, y_{ijt}^*(x_{it}) + \vartheta_{i,t+1}^{\lambda} (x_{it} - a_{ij} y_{ijt}^*(x_{it})) \right]
 15:
            end for
 16:
 17: end for
18: return \{\vartheta_{it}^{\lambda}(x_{it}): x_{it} \in \mathcal{C}, t \in \mathcal{T}\}\ and \{y_{ijt}^{*}(x_{it}): j \in \mathcal{J}, x_{it} \in \mathcal{C}, t \in \mathcal{T}\}\
```

4.2 Subroutine: Computing State Probabilities

This subroutine is executed for each resource $i \in \mathcal{L}$. It computes the state occupancy probabilities $\mu_{is}(x)$ for resource i at each time $s \in \mathcal{T}$ and capacity level $x \in \mathcal{C}$. These probabilities indicate the likelihood of resource i having x units of capacity at the beginning of period s, given an initial capacity $c_{i,1}$ at s = 1 and following the optimal single-resource policies $y_{ijs}^{*\lambda}(x)$ derived from Algorithm 1.

Algorithm 2 Compute State Probabilities $\mu_{is}(x)$ for Resource i

17: **return** μ array (containing $\mu_{is}(x)$)

Require: Resource i, initial capacity $c_{i,1}$, maximum capacity C, time periods \mathcal{T} , product set \mathcal{J} , arrival probabilities p_{is} , consumption a_{ij} , optimal policies $y_{iis}^{*\lambda}(x)$ **Ensure:** State probabilities $\mu_{is}(x)$ for $s \in \mathcal{T}, x \in \{0, \dots, C\}$ 1: Initialize array $\mu_{i\cdot(\cdot)}: (\mathcal{T} \times \mathcal{C}) \to \mathbb{R}$ with all entries 0.0. 2: $\mu_{i1}(c_{i,1}) \leftarrow 1.0$ \triangleright At s=1, capacity is $c_{i,1}$ with prob. 1 3: **for** s = 1 **to** $\tau - 1$ **do** \triangleright Forward in time for $x_{curr} = 0$ to C do 4: \triangleright For each capacity at s if $\mu_{is}(x_{curr}) > 10^{-9}$ then \triangleright If x_{curr} is reachable 5: for $j \in \mathcal{J}$ do \triangleright For each product j6: $y^*_{curr} \leftarrow y^{*\lambda}_{i,j,s}(x_{curr})$ \triangleright Optimal decision at (i, s, x_{curr}) 7: $x_{next} \leftarrow x_{curr} - a_{i,j} \cdot y_{curr}^*$ 8: if $x_{next} < 0$ then 9: ▶ Negative capacity should not actually occur! $x_{next} \leftarrow 0$ 10: end if 11: $\mu_{i,s+1}(x_{next}) \leftarrow \mu_{i,s+1}(x_{next}) + \mu_{is}(x_{curr}) \cdot p_{i,s}$ 12: end for 13: end if 14: end for 15: 16: **end for**

4.3 Subroutine: Computing ϑ -Subgradient

This subroutine uses the state probabilities and the optimal policies to calculate the subgradient of the single-resource total expected λ -weighted value $\vartheta_{i1}^{\lambda}(c_{i,1})$ with respect to each relevant Lagrange multiplier λ_{ijs} .

Algorithm 3 Compute ϑ -Subgradient G_{ijs} for Resource i

```
Require: State probabilities \mu_{is}(x), optimal policies y_{ijs}^{*\lambda}(x), arrival probabilities p_{js}, product set
\mathcal{J}, time periods \mathcal{T}, maximum capacity C

Ensure: Subgradients G_{ijs} = \frac{\partial \vartheta_{i1}^{\lambda}(c_{i,1})}{\partial \lambda_{ijs}} for j \in \mathcal{J}, s \in \mathcal{T}

1: Initialize array G_{i..}: (\mathcal{J} \times \mathcal{T}) \to \mathbb{R} with all entries set to 0.0.
  2: for s = 1 to \tau do
                                                                                                                                          \triangleright For each time period s
             for j \in \mathcal{J} do
                                                                                                                                                 \triangleright For each product j
  3:
                    \texttt{expected\_y\_star}_{ijs} \leftarrow 0
  4:
                    for x = 0 to C do
                                                                                                                   \triangleright For each capacity level x at time s
  5:
                          if \mu_{is}(x) > 10^{-9} then
                                                                                                                                 \triangleright If state (i, s, x) is reachable
  6:
                                expected_y_star<sub>ijs</sub> \leftarrow expected_y_star<sub>ijs</sub> + \mu_{is}(x) \cdot y_{i,j,s}^{*\lambda}(x)
  7:
  8:
                    end for
  9:
                    G_{i,j,s} \leftarrow p_{j,s} \cdot \text{expected\_y\_star}_{ijs}
 10:
 11:
 12: end for
 13: return G array (containing G_{ijs})
```

4.4 Final Subgradient Optimization

Note that as a Lagrangian multiplier, $\lambda_{ijt} \geq 0$. Thus, here we use a projected subgradient descent algorithm to optimize λ .

Algorithm 4 Projected Subgradient Descent for Lagrangian Multiplier Optimization

Require: Initial multipliers λ^0 , step size α_0 , tolerance ϵ , maximum iterations K

```
Ensure: Optimized multipliers \lambda^*
  1: k \leftarrow 0
  2: V_{\text{prev}} \leftarrow \infty
  3: while k < K do
             Compute V_1^{\lambda^k}(c_1)

if |V_1^{\lambda^k}(c_1) - V_{\text{prev}}| < \epsilon then break
  5:
  6:
              end if
  7:
             V_{\text{prev}} \leftarrow V_1^{\lambda^k}(c_1)
             Compute subgradient g^k of V_1^{\lambda^k}(c_1) with respect to \lambda.
  9:
             \begin{array}{l} \alpha_k \leftarrow \frac{\alpha_0}{\sqrt{k+1}} \\ \lambda^{k+1} \leftarrow \max\{0, \lambda^k - \alpha_k g^k\} \end{array}
10:
                                                                                                                                            ▷ Project onto feasible set
11:
              k \leftarrow k+1
13: end while
14: return \lambda^k
```

4.5 Algorithm: Computing Total Expected Revenue using Bid Prices

After obtaining optimal Lagrangian multipliers λ^* (e.g., via Algorithm 4), we define a bid price control policy. To evaluate this policy, we estimate total expected revenue through Monte Carlo simulation of customer arrivals and decisions. The algorithm below details this process.

```
Algorithm 5 Estimate Total Expected Revenue using Bid Price Policy (Monte Carlo Simulation)
Require: Precomputed value functions \vartheta_{i,t'}^{\lambda^*}(x), initial capacities c, product set \mathcal{J} (incl. dummy \psi),
     revenues f_j, resource consumptions a_{ij}, arrival probabilities p_{jt}, time horizon \mathcal{T} = \{1, \ldots, \tau\},
     number of simulations N_{sim}
Ensure: Estimated total expected revenue E[R]
 1: Initialize total\_rev \leftarrow 0.0
 2: for s = 1 to N_{sim} do
                                                                                            \triangleright For each simulation run s
         run\_rev \leftarrow 0.0
         cap \leftarrow copy of c
                                                                                         ▶ Reset capacities for this run
 4:
         for t = 1 to \tau do
                                                                                                \triangleright For each time period t
 5:
 6:
              Sample product j using probabilities \{p_{jt}\}_{j\in\mathcal{J}} for time t.
              if f_j > 0 then
                                                        \triangleright Process non-dummy products (dummy \psi has f_{\psi} = 0)
 7:
                  opp\_cost \leftarrow 0.0
 8:
                  enough\_cap \leftarrow true
 9:
                                                     \triangleright Assess j: check capacity and calculate opportunity cost
                                                                                \triangleright For each resource i consumed by j
10:
                  for i \in \mathcal{L} such that a_{ij} > 0 do
                       if cap[i] < a_{ij} then
11:
                           enough\_cap \leftarrow false
12:
                           break
                                                                           \triangleright Insufficient capacity for j on resource i
13:
                       end if
14:
                       for r = 1 to a_{ij} do
                                                                     \triangleright Sum bid prices for each unit of i consumed
15:
                           bp \leftarrow \vartheta_{i,t+1}^{\lambda^*}(cap[i] - r + 1) - \vartheta_{i,t+1}^{\lambda^*}(cap[i] - r)
16:
                           opp\_cost \leftarrow opp\_cost + bp
17:
                       end for
18:
                  end for
19:
20:
                  if enough\_cap and f_i \ge opp\_cost then
                                                                                                                  \triangleright Accept i
                       run\_rev \leftarrow run\_rev + f_i
21:
                       for i \in \mathcal{L} such that a_{ij} > 0 do
                                                                                        ▶ Update consumed capacities
22:
                           cap[i] \leftarrow cap[i] - a_{ii}
23:
                       end for
24:
                  end if
25:
              end if
                                                               \triangleright Capacities cap are now updated for period t+1
26:
                                                                                   \triangleright End of time horizon \mathcal{T} for run s
27:
         end for
28:
         total\_rev \leftarrow total\_rev + run\_rev
29: end for
                                                                                        \triangleright End of N_{sim} simulation runs
30: E[R] \leftarrow total\_rev/N_{sim}
31: return E[R]
```

5 Numerical Results

The exact results depend on the tuning of algorithm parameters, such as step length and other settings. Below is a comparison of our final results with those reported in [Topaloglu, 2009].

Problem	Upper Bound	Upper Bound	Mean Revenue	Mean Revenue	Std (Our Impl
1 Toblem	(Huseyin)	(Our Impl.)	(Huseyin)	(Our Impl.)	1000 Samples)
rm_200_4_1.0_4.0	20,439	20,436	20,018	20,049	31.31
rm_200_4_1.0_8.0	33,305	33,261	32,226	32,821	62.70
rm_200_4_1.2_4.0	18,938	18,885	18,374	18,510	28.49
rm_200_4_1.2_8.0	31,737	31,651	30,852	31,271	64.73
rm_200_4_1.6_4.0	16,600	16,541	15,981	16,186	27.72
rm_200_4_1.6_8.0	29,413	29,247	28,381	28,978	63.80
rm_200_5_1.0_4.0	21,298	21,296	21,181	20,973	34.79
rm_200_5_1.0_8.0	34,393	34,377	34,271	34,068	69.42
rm_200_5_1.2_4.0	20,184	20,112	19,818	19,677	33.06
rm_200_5_1.2_8.0	33,165	33,051	32,766	32,620	68.80
rm_200_5_1.6_4.0	17,704	17,654	17,318	17,218	30.93
rm_200_5_1.6_8.0	30,594	30,492	30,107	29,980	66.84
rm_200_6_1.0_4.0	21,128	21,113	20,709	20,729	33.13
rm_200_6_1.0_8.0	34,178	34,102	33,466	33,664	66.86
rm_200_6_1.2_4.0	19,649	19,636	19,156	19,165	31.25
rm_200_6_1.2_8.0	32,566	32,520	31,808	31,993	67.36
rm_200_6_1.6_4.0	17,304	17,256	16,269	16,837	30.08
rm_200_6_1.6_8.0	30,170	30,061	29,320	29,599	65.70
rm_200_8_1.0_4.0	18,975	18,778	18,217	18,268	31.10
rm_200_8_1.0_8.0	30,490	30,275	29,453	29,716	66.44
rm_200_8_1.2_4.0	17,472	17,501	16,941	16,915	29.44
rm_200_8_1.2_8.0	28,908	28,889	28,130	28,236	61.56
rm_200_8_1.6_4.0	15,295	15,297	14,720	14,764	27.34
rm_200_8_1.6_8.0	26,661	26,555	25,701	25,988	63.75
rm_600_4_1.0_4.0	30,995	30,994	30,640	30,575	49.25
rm_600_4_1.0_8.0	50,444	50,406	49,862	49,872	107.31
rm_600_4_1.2_4.0	28,668	28,615	28,145	28,167	44.65
rm_600_4_1.2_8.0	48,054	47,947	47,162	47,541	101.67
rm_600_4_1.6_4.0	25,148	25,084	24,540	24,596	43.50
rm_600_4_1.6_8.0	44,555	44,357	43,547	44,003	102.95
rm_600_5_1.0_4.0	32,254	32,272	32,112	31,775	56.33
rm_600_5_1.0_8.0	52,071	52,056	51,275	51,668	118.57
rm_600_5_1.2_4.0	30,004	30,552	30,308	30,100	51.57
rm_600_5_1.2_8.0	50,282	50,162	49,899	49,629	114.59
rm_600_5_1.6_4.0	26,936	26,880	26,605	26,441	44.95
rm_600_5_1.6_8.0	46,497	46,355	46,070	45,858	107.20
rm_600_6_1.0_4.0	25,541	25,559	25,310	25,044	47.32
rm_600_6_1.0_8.0	41,412	41,262	40,849	40,753	102.27
rm_600_6_1.2_4.0	23,687	23,708	23,306	23,191	42.77
rm_600_6_1.2_8.0	39,307	39,270	38,704	38,799	100.42
rm_600_6_1.6_4.0	20,817	20,788	20,273	20,229	41.46
rm_600_6_1.6_8.0	36,381	36,261	35,631	35,867	101.19
rm_600_8_1.0_4.0	22,960	22,798	22,269	22,206	44.93
rm_600_8_1.0_8.0	36,933	36,718	36,046	36,071	95.73
rm_600_8_1.2_4.0	21,102	21,172	20,633	20,431	39.54
rm_600_8_1.2_8.0	34,831	34,939	34,277	34,168	88.63
rm_600_8_1.6_4.0	18,500	18,553	17,830	17,888	35.95
rm_600_8_1.6_8.0	32,247	32,180	31,317	31,411	90.19
	J 22,2 11	52,100	01,011	V-,	1 00.10

Table 1: Comparison of bounds and revenues. Green: our value is better; Red: our value is worse.

6 Resources

This project is based on [Topaloglu, 2009]. Both the paper and its dataset are publicly available on Prof. Huseyin Topaloglu's <u>website</u>. You can access the paper directly <u>here</u>. The dataset can be downloaded from this page.

References

[Topaloglu, 2009] Topaloglu, H. (2009). Using lagrangian relaxation to compute capacity-dependent bid prices in network revenue management. *Operations Research*, 57(3):637–649.