Отчет по лабораторной работе №7

Модель распространения рекламы - вариант 67

Камила Мухтарова НПИбд-01-20

Содержание

1 Цель работы		4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Теоретические сведения	6 6 8
4	Выводы	15
Сп	писок литературы	16

List of Figures

3.1	График решения уравнения модели Мальтуса	7
3.2	График логистической кривой	8
3.3	График для случая 1 OpenModelica	Ç
3.4	График для случая 2 OpenModelica	10
3.5	График для случая 3 OpenModelica	11
3.6	График для случая 1 Julia	13
3.7	График для случая 2 Julia	14
3.8	График для случая 3 Julia	14

1 Цель работы

Изучить модель эффективности рекламы

2 Задание

- 1. Изучить модель эфеективности рекламы
- 2. Построить графики распространения рекламы в заданных случайх
- 3. Определить для случая 2 момент времени, в который скорость распространения рекламы будет максимальной

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, N - общее число потенциальных платежеспособных покупателей, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей,

еще не знающих о нем, это описывается следующим образом $\alpha_1(t)(N-n(t))$, где $\alpha_1>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$. эта величина увеличивается с увеличением потребителей узнавших о товаре.

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кривой

Figure 3.2: График логистической кривой

3.2 Задача

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

```
 \begin{aligned} &1. \ \ \frac{dn}{dt} = (0.133 + 0.000033n(t))(N-n(t)) \\ &2. \ \ \frac{dn}{dt} = (0.0000132 + 0.32n(t))(N-n(t)) \\ &3. \ \ \frac{dn}{dt} = (0.8t + 0.15\sin ttn(t))(N-n(t)) \end{aligned}
```

3.
$$\frac{dn}{dt} = (0.8t + 0.15\sin ttn(t))(N - n(t))$$

При этом объем аудитории N=1670, в начальный момент о товаре знает 12 человек.

Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Решение в OpenModelica

```
model pr7
parameter Real a = 0.133;
parameter Real b = 0.000033;
parameter Real N = 1670;
Real n(start=12);
```

```
equation der(n) = (a+b*n) * (N-n); end pr7;
```


Figure 3.3: График для случая 1 OpenModelica

```
model pr7
parameter Real a = 0.0000132;
parameter Real b = 0.32;
parameter Real N = 1670;

Real n(start=12);

equation
  der(n) = (a+b*n) * (N-n);
end pr7;
```


Figure 3.4: График для случая 2 OpenModelica

максимальная скорость распространения достигается при t=0

```
model pr7
parameter Real a = 0.8;
parameter Real b = 0.15;
parameter Real N = 1670;

Real n(start=12);

equation
  der(n) = (a*time+b*sin(time)*n) * (N-n);
end pr7;
```


Figure 3.5: График для случая 3 OpenModelica

Решение в Julia

using Plots

using DifferentialEquations

1032203686%70+1

```
a = 0.133
```

b = 0.000033

N = 1670

function syst(dy, y, p, t)
$$dy[1] = (a+b*y[1])*(N-y[1])$$
 end

```
prob = ODEProblem(syst, [n], tspan)
sol = solve(prob, saveat = t)
plot(sol)
savefig("04.png")
a = 0.0000132
b = 0.32
N = 1670
tspan = (0, 0.1)
t = collect(LinRange(0, 0.1, 500))
n = 12
function syst(dy, y, p, t)
   dy[1] = (a+b*y[1])*(N-y[1])
end
prob = ODEProblem(syst, [n], tspan)
sol = solve(prob, saveat = t)
plot(sol)
savefig("05.png")
a = 0.8
b = 0.15
N = 1670
```

```
tspan = (0, 0.3)
t = collect(LinRange(0, 0.3, 500))
n = 12

function syst(dy, y, p, t)
    dy[1] = (a*t+b*sin(t)*y[1])*(N-y[1])
end

prob = ODEProblem(syst, [n], tspan)
sol = solve(prob, saveat = t)

plot(sol)

savefig("06.png")
```


Figure 3.6: График для случая 1 Julia

Figure 3.7: График для случая 2 Julia

Figure 3.8: График для случая 3 Julia

4 Выводы

В ходе выполнения лабораторной работы была изучена модель эффективности рекламы и построены графики.

Список литературы

- 1. Модель Мальтуса
- 2. Логистическая модель роста