Hands-on Activity 7.1 Data Collection and Wrangling

Intended Learning Outcomes:

- 1. Demonstrate how to gather sensor data, image data and voice data
- 2. Demonstrate how to gather data (text and images) from web
- 3. Demonstrate how to prepare data using different data preprocessing techniques

Resources:

- Personal Computer
- Jupyter Notebook
- Internet Connection

Instruction:

- 1. Download the following datasets: aapl.csv, amzn.csv, fb.csv, goog.csv, nflx.csv
- 2. Accomplish the notebook for this activity and submit as a pdf file: Data Wrangling HOA.pdf

Exercise 1

We want to look at data for the Facebook, Apple, Amazon, Netflix, and Google (FAANG) stocks, but we were given each as a separate CSV file. Combine them into a single file and store the dataframe of the FAANG data as faang for the rest of the exercises:

- 1. Read each file in.
- 2. Add a column to each dataframe, called ticker, indicating the ticker symbol it is for (Apple's is AAPL, for example). This is how you look up a stock. Each file's name is also the ticker symbol, so be sure to capitalize it.
- 3. Append them together into a single dataframe.
- Save the result in a CSV file called faang.csv.

read each file in

import pandas as pd

filepathFB= pd.read_csv("content/fb.csv")
filepathAmz= pd.read_csv("content/amzn.csv")
filepathApp= pd.read_csv("content/aapl.csv")
filepathNet= pd.read_csv("content/nflx.csv")
filepathGoog= pd.read_csv("content/goog.csv")

add a column to each dataframe called ticker

filepathFB['ticker'] = 'FB'
filepathFB

→ *		date	open	high	low	close	volume	ticker	
	0	2018-01-02	177.68	181.58	177.5500	181.42	18151903	FB	ılı
	1	2018-01-03	181.88	184.78	181.3300	184.67	16886563	FB	+/
	2	2018-01-04	184.90	186.21	184.0996	184.33	13880896	FB	_
	3	2018-01-05	185.59	186.90	184.9300	186.85	13574535	FB	
	4	2018-01-08	187.20	188.90	186.3300	188.28	17994726	FB	
	246	2018-12-24	123.10	129.74	123.0200	124.06	22066002	FB	
	247	2018-12-26	126.00	134.24	125.8900	134.18	39723370	FB	
	248	2018-12-27	132.44	134.99	129.6700	134.52	31202509	FB	
	249	2018-12-28	135.34	135.92	132.2000	133.20	22627569	FB	
	250	2018-12-31	134.45	134.64	129.9500	131.09	24625308	FB	
	251 rc	ws × 7 colum	ns						

Next steps:

Generate code with filepathFB

View recommended plots

filepathAmz['ticker'] = 'AMZN'
filepathAmz

- e	_	_
		_
_	7	-
- 1	_	_

	date	open	high	low	close	volume	ticker	
0	2018-01-02	1172.00	1190.00	1170.51	1189.01	2694494	AMZN	ılı
1	2018-01-03	1188.30	1205.49	1188.30	1204.20	3108793	AMZN	+//
2	2018-01-04	1205.00	1215.87	1204.66	1209.59	3022089	AMZN	
3	2018-01-05	1217.51	1229.14	1210.00	1229.14	3544743	AMZN	
4	2018-01-08	1236.00	1253.08	1232.03	1246.87	4279475	AMZN	
246	2018-12-24	1346.00	1396.03	1307.00	1343.96	7219996	AMZN	
247	2018-12-26	1368.89	1473.16	1363.01	1470.90	10411801	AMZN	
248	2018-12-27	1454.20	1469.00	1390.31	1461.64	9722034	AMZN	
249	2018-12-28	1473.35	1513.47	1449.00	1478.02	8828950	AMZN	
250	2018-12-31	1510.80	1520.76	1487.00	1501.97	6954507	AMZN	
251 rc	we x 7 colum	ne						

251 rows × 7 columns

Next steps:

Generate code with filepathAmz

View recommended plots

filepathApp['ticker'] = 'AAPL' filepathApp

	date	open	high	low	close	volume	ticker	
0	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934	AAPL	ılı
1	2018-01-03	169.2521	171.2337	168.6929	168.9578	29517899	AAPL	+/
2	2018-01-04	169.2619	170.1742	168.8106	169.7426	22434597	AAPL	
3	2018-01-05	170.1448	172.0381	169.7622	171.6751	23660018	AAPL	
4	2018-01-08	171.0375	172.2736	170.6255	171.0375	20567766	AAPL	
246	2018-12-24	147.5173	150.9027	145.9639	146.2029	37169232	AAPL	
247	2018-12-26	147.6666	156.5585	146.0934	156.4987	58582544	AAPL	
248	2018-12-27	155.1744	156.1004	149.4291	155.4831	53117065	AAPL	
249	2018-12-28	156.8273	157.8430	153.8899	155.5627	42291424	AAPL	
250	2018-12-31	157.8529	158.6794	155.8117	157.0663	35003466	AAPL	
251 rd	ows × 7 colum	ns						

Next steps:

Generate code with filepathApp

View recommended plots

filepathNet['ticker'] = 'NFLX' filepathNet

→		date	open	high	low	close	volume	ticker	\blacksquare
	0	2018-01-02	196.10	201.6500	195.4200	201.070	10966889	NFLX	ılı
	1	2018-01-03	202.05	206.2100	201.5000	205.050	8591369	NFLX	+/
	2	2018-01-04	206.20	207.0500	204.0006	205.630	6029616	NFLX	_
	3	2018-01-05	207.25	210.0200	205.5900	209.990	7033240	NFLX	
	4	2018-01-08	210.02	212.5000	208.4400	212.050	5580178	NFLX	
	246	2018-12-24	242.00	250.6500	233.6800	233.880	9547616	NFLX	
	247	2018-12-26	233.92	254.5000	231.2300	253.670	14402735	NFLX	
	248	2018-12-27	250.11	255.5900	240.1000	255.565	12235217	NFLX	
	249	2018-12-28	257.94	261.9144	249.8000	256.080	10987286	NFLX	
	250	2018-12-31	260.16	270.1001	260.0000	267.660	13508920	NFLX	
	251 rc	ows × 7 colum	ns						

Next steps:

Generate code with filepathNet

View recommended plots

filepathGoog['ticker'] = 'GOOG' filepathGoog

-		_
	4	_
	→	4
	*	-

	date	open	high	low	close	volume	ticker	\blacksquare
0	2018-01-02	1048.34	1066.94	1045.23	1065.00	1237564	GOOG	ılı
1	2018-01-03	1064.31	1086.29	1063.21	1082.48	1430170	GOOG	+/
2	2018-01-04	1088.00	1093.57	1084.00	1086.40	1004605	GOOG	
3	2018-01-05	1094.00	1104.25	1092.00	1102.23	1279123	GOOG	
4	2018-01-08	1102.23	1111.27	1101.62	1106.94	1047603	GOOG	
246	2018-12-24	973.90	1003.54	970.11	976.22	1590328	GOOG	
247	2018-12-26	989.01	1040.00	983.00	1039.46	2373270	GOOG	
248	2018-12-27	1017.15	1043.89	997.00	1043.88	2109777	GOOG	
249	2018-12-28	1049.62	1055.56	1033.10	1037.08	1413772	GOOG	
250	2018-12-31	1050.96	1052.70	1023.59	1035.61	1493722	GOOG	
251 rd	ows × 7 colum	ns						

Next steps:

Generate code with filepathGoog

View recommended plots

append together in single dataframe

faang = pd.concat([filepathFB, filepathAmz, filepathApp, filepathNet, filepathGoog]) print(faang)

\rightarrow		date	open	high	low	close	volume	ticker
	0	2018-01-02	177.68	181.58	177.5500	181.42	18151903	FB
	1	2018-01-03	181.88	184.78	181.3300	184.67	16886563	FB
	2	2018-01-04	184.90	186.21	184.0996	184.33	13880896	FB
	3	2018-01-05	185.59	186.90	184.9300	186.85	13574535	FB
	4	2018-01-08	187.20	188.90	186.3300	188.28	17994726	FB
		• • •	• • •			• • •		
	246	2018-12-24	973.90	1003.54	970.1100	976.22	1590328	GOOG
	247	2018-12-26	989.01	1040.00	983.0000	1039.46	2373270	GOOG
	248	2018-12-27	1017.15	1043.89	997.0000	1043.88	2109777	GOOG
	249	2018-12-28	1049.62	1055.56	1033.1000	1037.08	1413772	GOOG
	250	2018-12-31	1050.96	1052.70	1023.5900	1035.61	1493722	GOOG

[1255 rows x 7 columns]

print("New Dataframe 'faang.csv' ")
print(filepathFaang)

\rightarrow	New Dataframe 'faang.csv'										
		Unnamed: 0	date	open	high	low	close	volume	\		
	0	0	2018-01-02	177.68	181.58	177.5500	181.42	18151903			
	1	1	2018-01-03	181.88	184.78	181.3300	184.67	16886563			
	2	2	2018-01-04	184.90	186.21	184.0996	184.33	13880896			
	3	3	2018-01-05	185.59	186.90	184.9300	186.85	13574535			
	4	4	2018-01-08	187.20	188.90	186.3300	188.28	17994726			
						• • •					
	1250	246	2018-12-24	973.90	1003.54	970.1100	976.22	1590328			
	1251	247	2018-12-26	989.01	1040.00	983.0000	1039.46	2373270			
	1252	248	2018-12-27	1017.15	1043.89	997.0000	1043.88	2109777			
	1253	249	2018-12-28	1049.62	1055.56	1033.1000	1037.08	1413772			
	1254	250	2018-12-31	1050.96	1052.70	1023.5900	1035.61	1493722			

ticker 0 FB FΒ 1 2 FB 3 FB 4 FB 1250 G00G 1251 GOOG 1252 G00G 1253 GOOG 1254 G00G

[1255 rows x 8 columns]

Exercise 2

- With faang, use type conversion to change the date column into a datetime and the volume column into integers. Then, sort by date and ticker.
- · Find the seven rows with the highest value for volume.
- Right now, the data is somewhere between long and wide format. Use melt() to make it
 completely long format. Hint: date and ticker are our ID variables (they uniquely identify
 each row). We need to melt the rest so that we don't have separate columns for open, high,
 low, close, and volume.

```
# Convert 'date' column - datetime
faang['date'] = pd.to_datetime(faang['date'])
# Convert 'volume' column - integers
faang['volume'] = faang['volume'].astype(int)
# Sort 'date' and 'ticker'
faang = faang.sort_values(by=['date', 'ticker'])
print(filepathFaang)
\rightarrow
           Unnamed: 0
                             date
                                       open
                                                high
                                                            low
                                                                    close
                                                                             volume
                       2018-01-02
                                     177.68
                                              181.58
                                                       177.5500
                                                                   181.42
                                                                           18151903
     1
                    1
                       2018-01-03
                                     181.88
                                              184.78
                                                       181.3300
                                                                   184.67
                                                                           16886563
     2
                    2
                       2018-01-04
                                     184.90
                                              186.21
                                                       184.0996
                                                                   184.33 13880896
     3
                    3
                       2018-01-05
                                     185.59
                                              186.90
                                                       184.9300
                                                                   186.85 13574535
                                                                   188.28 17994726
     4
                    4
                       2018-01-08
                                     187.20
                                              188.90
                                                       186.3300
                                        . . .
                                                             . . .
                                                                      . . .
                                                                                . . .
     . . .
                  . . .
                               . . .
                                                 . . .
                                                                   976.22
     1250
                  246
                       2018-12-24
                                     973.90 1003.54
                                                       970.1100
                                                                            1590328
     1251
                  247
                       2018-12-26
                                   989.01 1040.00
                                                       983.0000
                                                                 1039.46
                                                                            2373270
     1252
                  248
                       2018-12-27 1017.15 1043.89
                                                       997.0000
                                                                 1043.88
                                                                            2109777
     1253
                  249
                       2018-12-28
                                   1049.62 1055.56 1033.1000
                                                                 1037.08
                                                                            1413772
     1254
                  250
                       2018-12-31 1050.96 1052.70 1023.5900
                                                                 1035.61
                                                                            1493722
          ticker
     0
              FB
     1
              FB
     2
              FB
     3
              FB
     4
              FΒ
             . . .
     . . .
     1250
            G00G
     1251
            GOOG
     1252
            G00G
     1253
            G00G
     1254
            GOOG
     [1255 rows x 8 columns]
# find seven rows with highest value for volume
top seven volume = faang.nlargest(7, 'volume')
# using pd.melt()
faangLong = pd.melt(faang, id_vars=['date', 'ticker'], var_name='variable', value_name='value']
# saving to a new csv file
faangLong.to csv("content/faang long format.csv")
filepathLong= pd.read_csv("content/faang_long_format.csv")
print(filepathLong)
```

```
\rightarrow
          Unnamed: 0
                            date ticker variable
                                                         value
                      2018-01-02
                                   AAPL
                                            open 1.669271e+02
                                   AMZN
    1
                      2018-01-02
                                            open
                                                  1.172000e+03
    2
                   2
                      2018-01-02
                                     FB
                                            open
                                                  1.776800e+02
    3
                                            open 1.048340e+03
                   3
                      2018-01-02
                                   GOOG
    4
                   4
                      2018-01-02
                                   NFLX
                                            open 1.961000e+02
    . . .
                 . . .
                                   . . .
                                             . . .
    6270
                6270
                      2018-12-31
                                   AAPL
                                          volume 3.500347e+07
    6271
                      2018-12-31
                                   AMZN
                                          volume 6.954507e+06
                6271
    6272
                6272
                      2018-12-31
                                     FB
                                          volume 2.462531e+07
    6273
                      2018-12-31
                                   GOOG
                                          volume 1.493722e+06
                6273
                                          volume 1.350892e+07
    6274
                6274
                      2018-12-31
                                   NFLX
```

[6275 rows x 5 columns]

Exercise 3

- Using web scraping, search for the list of the hospitals, their address and contact information. Save the list in a new csv file, hospitals.csv.
- Using the generated hospitals.csv, convert the csv file into pandas dataframe. Prepare the data using the necessary preprocessing techniques.

```
# creating hospitals.csv
import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
url = 'https://en.wikipedia.org/wiki/List_of_hospitals_in_South_Korea' # list of hospitals i
# send a get requests
         .________
# convert csv file into pandas dataframe and prepare the data for pre-processing
import pandas as pd
# Read the CSV file into a Pandas DataFrame
hospitals_df = pd.read_csv('content/hospitals.csv')
# Check for missing values
missing values = hospitals df.isnull().sum()
# Drop rows with missing values
hospitals df = hospitals df.dropna()
# Reset the index
hospitals_df = hospitals_df.reset_index(drop=True)
            iname = cors[a].rexr.sr.th()
# show table hospitals
print(hospitals df.to string())
    Empty DataFrame
     Columns: [Name, Location, Contact]
     Index: []
```

Conclusion

In conclusion, I applied the previous learnings in other modules in this activity. The pandas and numpy, as well as the new library which is BeautifulSoup and requests can be helpful in future topics. Using these libraries will be important for data collection and wrangling. Additionally, I have learned web scraping is also useful since it helps you scrape data from the internet and web pages like the one I did in Exercise 3. Lastly, it is important we need to learn different data collection techniques because these will help us in the near future for Data Science.