

PLANO ANALÍTICO DA UNIDADE CURRICULAR

Faculdade: Ciências
Departamento: Física

Curso: Física

Ano lectivo de 2023

Unidade Curricular: Espectroscopia Semestre: IV

Nome dos) docente(s)

Regente: Alexandre M. Maphossa, PhD

Assistentes: Enoque Malate, MSc

Belarmino Matsinhe, Lic.

Horas e créditos:

	Práticas	Teóricas	laboratoriais	Seminários	Avaliação	Outras	Total
Horas de							
contacto	16	45	14	5	6	12	98
directo por	1.0	45	14	3	0	12	90
semestre							
Horas de							
contacto	2	3	2	2	3	1	13
directo por		3			3	1	13
semana							
Horas de							
estudo	20	10	25	5	10		70
independente		10	25		10		/ 0
por semestre							
Créditos ¹							6.0

I. INTRODUÇÃO

Características gerais da UC

A UC usa o regime de disciplina, é leccionada em contacto directo, de acordo com as horas plasmadas no Plano Temático.

Objectívo Geral

• Conhecer a teoria básica e experimental de alguns métodos espectroscópicos.

Na UEM, o crédito académico corresponde a um total de 30 horas de trabalho.

Objectívos Específicos

- Identificar os métodos espectroscópicos usados na investigação científica:
- Utilizar as técnicas espectroscópicas para resolução de problemas práticos.

Resultados de aprendizagem

- A disciplina pretende fornecer conhecimentos na área da espectroscopia, tal que espera-se:
 - i. Construir conhecimento que possibilita a interpretação de fenómenos moleculares, usando técnicas espectroscópicas.
 - ii. Capacitar a extensão de técnicas e metodologias noutras áreas que tem relação com a Espectroscopia;
 - iii. Capacitar na aplicação, os conhecimentos adquiridos como base para desenvolvimento de novos projetos.

II. ESTRATÉGIAS DE ENSINO E DE APRENDIZAGEM

- a) Tipo de aulas e formas de leccionação
 - A UC tem como suporte aulas teóricas, laboratoriais e exercícios práticos. Cabe ao corpo de docentes da disciplina transformar algumas aulas em seminários ou introduzir novos trabalhos laboratoriais sempre que haja disponibilidade de equipamento.
- b) Actividades de frequência obrigatória
 - É obrigatória a participação em todas as actividades da disciplina.

III. ESTRATÉGIAS DE AVALIAÇÃO

O sistema de avaliação da UC é constituído por quatro (4) testes escritos, quatro (4) trabalhos laboratoriais, (3) três TPC's sobre métodos espectroscópicos não abordados formalmente nas aulas teóricas e um exame final. A realização dos trabalhos laboratoriais é obrigatória. Ninguém será admitido ao exame final sem ter concluído os trabalhos laboratoriais. A nota de frequência é igual a média ponderada das notas dos testes, média dos trabalhos laboratoriais e do TPC e calculada de acordo com a formula:

$MF = 0.10 x T_1 + 0.20 x T_2 + 0.20 x T_3 + 0.20 x T_4 + 0.05 x TPC + 0.25 x Lab$

A nota final é a média aritmética da nota de frequência e da nota de exame final.

IV. TEMÁTICAS²

TEMAS		HORAS									
			Contac	cto Dire	cto			Estudo	o Indene	endente	TOTAL
		AT	AP	AL	S	CD	L	G	Р	EI	1
1	1 Conceitos gerais		4	0		8				6	14
2	Espectroscopia molecular		6	8		24				18	42
3	Espectroscopia electrónica	10	4	8		22				18	40
4	Espectroscopia nuclear	4	4	8		16				10	26
5	5 Espectroscopia de radio-frequência		6	8		24				18	42
Tota	Total: Horas		24	32		96				70	166

V. CALENDÁRIO DAS AULAS TEÓRICAS

			Material de
aula	semana	Tema da aula	apoio para
			aula
		1.1 Interação da Radiação Electromagnética com a matéria	notas de aula
	_	1.1.1 quantificação de energia	teóricas
1	1	1.1.2 transições energéticas	e Danie e
		1.1.3 espectrómetro 1.1.4 sinais espectrais	Demonstrações
			práticas
		1.2 operações do sinal espectral	Notas de aulas Teóricas
		1.2.1 operações de Fourier 1.2.2 convolução	Teoricas E
3	2	1.2.3 correlação	Video
		1.2.4 auto-correlação	(15 minutos)
		1.2.5 teorema de wiener-Khintchine	(13 minutos)
		2.1 Espectroscopia do Microondas	notas de aula
		2.1.1 Rotação de moléculas	teóricas
5	3	2.1.2 Classificação geométrica de moléculas	Leolicas
		2.1.3 Moléculas diatómicas	
		2.1.4 Moléculas Poliatómicas	notas de aula
		2.1.5 Instrumentação básica(Espectroscopia Rotacional)	teóricas
7	4	2.1.6 Efeito stark	teoricas
		2.1.7 Análises químicas por Espectroscopia Rotacional	
		2.2 Espectroscopia do Infravermelho	(MT 50minutos)
		2.2.1 Vibração de Moléculas	notas de aula
9	5	2.2.2 Energia vibracional de Moléculas diatómicas	teóricas
		2.2.1 2	00011000
		2.2.3 Vibração e rotação de Moléculas diatómicas	notas de aula
11	6 2.2.4 Espectro vibra-rotacional CO		teóricas
11	6	2.2.5 Interação da rotação e Vibração	
		2.2.6 Vibração de moléculas poliatómicas	
		2.2.7 Frequências harmômicas e de combinação	notas de aula
13	7	2.2.8 Influência rotacional nos espectros poliatómicos	teóricas
		2.2.9 vibração de moléculas lineares e não lineares	
15	8	2.2.10 Instrumentação básica do Infravermelho	(MT 50minutos)
13		2.2.11 Análises químicas por espectroscopia IV	
		3. Espectroscopia Electrónica	notas de aula
		3.1 Conceitos gerais	teóricas
21	11	3.1.1 Configuração electrónica do átomo	
		3.1.2 Momento angular de um único electrão	
		3.1.3 Momento angular de um sistema de electrões	
		3.2 Espectroscopia dos raios X	notas de aula
		3.2.1 Fontes dos raios X	teóricas
23	12	3.2.2 Lei de Mosley	
		3.2.3 Espectroscopia de emissão dos raios X	
		3.2.4 Espectroscopia de Absorção dos raios X	
27	14	3.2.8 Momento angular de moléculas diatómicas	notas de aula
		3.2.9 Espectros electrónicos	teóricas

 $^{^{2}}$ De acordo com o plano temático em vigor. Embora tenha sofrido ajustes.

3

		4. Espectroscopia de Radio Frequência	
		4.1 Espectroscopia de Ressonância Magnética	
		4.1.1 Fundamentos Físicos de ressonância Magnética	
		4.1.2 Métodos de onda contínua e pulsada	
		4.1.3 Interações nucleares	notas de aula
29	15	4.1.4 Tempos de relaxação e sua medição	teóricas
29	15	4.1.5 deslocamento químico e suas aplicações	
		4.1.6 Instrumentação básica e aplicações de RM	
31	17	Resultados de frequência	5 dias depois
31	/	resultados de llequencia	Do Teste 4
		0.0.0 Exame Normal	(3h)
33	18	0.1.0 Pauta de exame normal	5 dias depois
		U.I.U Paula de exame normal	Do Exame
	19	0.0.0 Exame de Recorrência	(3h)
35		0.1.0 Pauta Final	5 dias depois
		U.I.U Paula Finai	Do Exame

VI. CALENDÁRIO DAS AULAS PRÁTICAS, LABORATÓRIOS E DAS AVALIAÇÕES

aula	semana	Tema da aula	Material de apoio para aula
2	1	1. conceitos Gerais	Ficha e guia de exercícios
4	2	0.1 Laboratório ("Influência do Tempo Morto do Tubo Detector na Distribuição de Pulsos").	notas de aulas Experimentais
6	3	2.1 Análise de espectros:Transformadas de Fourier	Ficha e guia de exercícios
8	4	Realização do Teste I	
10	5	2.2 Espectroscopia do Rotacional de moléculas diatómicas	Ficha e guia de exercícios
12	6	2.3 Espectroscopia do Rotacional de moléculas poliatómicas	Ficha e guia de exercícios
14	7	Realização do Teste II	
16	8	3.1 Espectroscopia vibracional de moléculas	Ficha e guia de exercícios
18	9	3.2 Espectroscopia vibra-rotacional de moléculas	Ficha e guia de exercícios
20	10	Realização do Teste III	
22	9	0.2 Laboratório (Estrutura Fina e o Espectro de um Sistema de um Electrão usando Rede de Difração)	notas de aulas Experimentai
24	10	4.1 Espectroscopia de Radio Frequência(Conceitos gerais)	Ficha e guia de exercícios
26	11	4.2 Espectroscopia de Ressonância Magnética de Núcleos	Ficha e guia de exercícios
26	12	0.3 Laboratório (Espectroscopia Beta)	notas de aulas Experimentais
26	13	Realização do Teste IV	
28	14	0.4 Laboratório (Ressonância do Spin do Electão)	notas de aulas Experimentais
30	15	Defesa de Laboratórios	Geral
32	16	Preparação dos Exames	Geral

VII. BIBLIOGRAFIA E RECURSOS

1. Banwell, C. (1983). Fundamentals of Molecular Spectroscopy (3rd ed.). London: McGraw-Hill Book Company.

- 2. Gauglitz, G., & Vo-Dinh, T. (2003). Handbook of Spectroscopy. Weinheim: Wiley VCH.
- 3. Hollas, J. M. (2004). Modern Spectroscopy (4th ed.). Chichester: John Wiley & Sons.
- 4. Livitt, M. (2008). Spin Dynamics: Basic of NMR (2nd ed.). Chichester: Wiley.
- 5. Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2009). *Introduction to Spectroscopy* (4th ed.). Belmont: Books/Cole.