Algorithmen und Datenstrukturen Klausur WS 2019/20

Angewandte Informatik Bachelor

Name	
Matrikelnummer	

Aufgabe 1	Tiefen- und Breitensuche in ungerichteten Graphen	14	
Aufgabe 2	AVL-Bäume	9	
Aufgabe 3	B-Bäume	13	
Aufgabe 4	Algorithmus von Dijkstra	11	
Aufgabe 5	Tiefensuchbaum und Artikulationspunkte	13	
Summe		60	

Aufgabe 1 Tiefen- und Breitensuche in Graphen

(14 Punkte)

Ein n*m-Manhattan-Graph ist ein ungewichteter Graph, deren Knoten und Kanten gitterförmig in der Ebene mit n Zeilen und m Spalten angeordnet werden können. Ein 3*4-Manhattan-Graph sieht beispielsweise wie folgt aus:

- a) Wieviel Knoten hat ein n*m-Manhattan-Graph ganz allgemein (1 Punkt): n*m
- b) Wieviel Kanten hat ein n*m-Manhattan-Graph ganz allgemein (3 Punkte): n*(m-1) + m*(n-1)
- c) Geben Sie für den oben abgebildeten Graphen die Reihenfolge der besuchten Knoten an, wenn der Graph mit <u>Tiefensuche</u> mit <u>Startknoten 0</u> traversiert wird. <u>Betrachten Sie die Nachbarn eines Knotens in der durch die Knotennummerierung gegebenen Reihenfolge</u> (3 Punkte).

d) Geben Sie für den oben abgebildeten Graphen die Reihenfolge der besuchten Knoten an, wenn der Graph mit <u>Breitensuche</u> mit <u>Startknoten 0</u> traversiert wird. <u>Betrachten Sie die Nachbarn eines Knotens in der durch die Knotennummerierung gegebenen Reihenfolge</u> (3 Punkte).

e) Welches Problem entsteht bei der rekursiven Tiefensuche bei einem sehr großen n*m-Manhattan-Graph? Zwei kurze Sätze genügen (4 Punkte).

Maximale Rekursiontiefe = n*m-1. Daher Stack-Overflow bei großem n, m.

Aufgabe 2 AVL-Bäume

(9 Punkte)

Gegebener ist folgender AVL-Baum B:

a) Fügen Sie im AVL-Baum B (siehe Abb. oben) die Zahl 18 ein. (4 Punkte)

b) <u>Löschen</u> Sie im <u>AVL-Baum B</u> (siehe Abb. oben) die Zahl <u>28.</u> (5 Punkte)

a) Fügen Sie in folgendem B-Baum (der Ordnung 4) den Schlüssel 47 und dann 21 ein. (6 Punkte)

b) <u>Löschen</u> Sie in folgendem B-Baum (der Ordnung 4) den Schlüssel <u>21</u> und dann <u>15.</u> (7 Punkte)

Aufgabe 4 Algorithmus von Dijkstra

(11 Punkte)

Ein gewichteter, gerichteter Graph mit der Knotenmenge $V = \{1, 2, 3, 4, 5, 6\}$ ist durch folgende Adjazenzmatrix gegeben. Bestimmen Sie mit dem Algorithmus von Dijkstra vom Startknoten s = 5 zu allen anderen Knoten jeweils einen günstigsten Weg.

	1	2	3	4	5	6
1						
2	1					
3	3	1				
4	5	3	1			
5	10			2		1
6	8	5	3			

- a) Tragen Sie in folgende Tabelle nach jedem Besuchsschritt folgendes ein:
 - der besuchte Knoten b
 - die Kosten d[v] für den günstigsten Weg von Startknoten s nach v
 - den Vorgängerknoten p[v] für den günstigsten Weg von Startknoten s nach v.

<u>Wichtig</u>: Haben mehrere Kandidaten denselben d-Wert, dann wird der Kandidat mit kleinster Nummer als nächster Knoten besucht.

<u>Hinweis:</u> Es brauchen nur die d- und p-Werte eingetragen werden, die sich geändert haben. Die endgültigen p- und d-Werte können durch Umrandung besonders gekennzeichnet werden. (8 Punkte)

b	d[1]	d[2]	d[3]	d[4]	d[5]	d[6]	p[1]	p[2]	p[3]	p[4]	p[5]	p[6]
5	10	∞	∞	2	0	1	5	-	-	5	-	5
6	9	6	4				6	6	6			
4	7	5	3				4	4	4			
3	6	4					3	3				
2	5						2					
1									·			

b) Geben Sie den gefundenen günstigsten Weg von 5 nach 1 an. (2 Punkte)

$$5 - 4 - 3 - 2 - 1$$

c) Welche Kosten hat der günstigste Weg von 5 nach 1? (1 Punkt)

5

Aufgabe 5 Tiefensuchbaum und Artikulationspunkte (13 Punkte)

Gegeben sei folgender ungerichteter Graph:

a) Geben Sie alle Artikulationspunkte an (2 Punkte).

b) Geben Sie den <u>Tiefensuchbaum mit Rückwärtskanten</u> (TR) mit <u>Wurzel 1</u> an. <u>Betrachten Sie die Nachbarn eines Knotens in der durch die Knotennummerierung gegebenen Reihenfolge.</u> Kennzeichnen Sie die Rückwärtskanten durch Beschriftung "R" oder eine andere Farbe. (6 Punkte)

- c) Begründen Sie mit Hilfe des TR, warum Knoten 1 und 9 Artikulationspunkte (APe) und Knoten 3 kein Artikulationspunkt ist? Folgender Begriff darf verwendet werden: Ein Rückwärtsweg ist ein Weg in einem Tiefensuchbaum mit einer beliebig langen Folge von Vorwärtskanten und dann genau einer Rückwärtskante. (5 Punkte)
 - Knoten 1 ist ein AP, da 1 die Wurzel ist und mehr als ein Kind hat.
 - Knoten 9 ist ein AP, da 9 im TR ein Kind hat (nämlich 7), von dem es keinen Rückwärtsweg zu einem Vorfahren von 9 gibt.
 - Knoten 3 ist kein AP, da jedes Kind (nämlich 4 und 6) einen Rückwärtsweg zu einem Vorfahren von 3 (nämlich 4 2 und 6 1) hat.