Principal Component Analysis Linear Dimension Reduction Technique

PCA performs a linear mapping of the data to a lower-dimensional space in such a way that the variance of the data in the low-dimensional representation is maximized.

1 Representations of Individuals

- 1. For the standardized data, $\frac{1}{n-1}\mathbf{X^TX}$ is the correlation matrix. (If not standardized, $\frac{1}{n-1}\mathbf{X^TX}$ is the covariance matrix.)
- 2. Loadings: V is the $p \times r$ unit-norm matrix with eigenvectors of $\frac{1}{n-1}\mathbf{X}^{\mathbf{T}}\mathbf{X}$.
 - $\frac{1}{n-1}\mathbf{X}^{\mathbf{T}}\mathbf{X} = \mathbf{V}\mathbf{D}^{2}\mathbf{V}^{\mathbf{T}} = \mathbf{V}\boldsymbol{\Lambda}\mathbf{V}^{\mathbf{T}}$, where
 - • Each $\mathbf{v_k}$ reflects how much each variable $\mathbf{X_j}$ loads in the PC k.
- 3. Eigenvalues
 - **D** is the $r \times r$ diagonal matrix of $\frac{1}{n-1}\mathbf{X}$ consisting of r positive eigenvalues (descending ordered).
 - Λ is the $r \times r$ diagonal matrix of $\frac{1}{n-1}\mathbf{X}^{\mathbf{T}}\mathbf{X}$, where each λ_k captures the projected inertia (i.e. variation) on each extracted dimension.
 - $\bullet \ \Lambda = \mathbf{D}^2.$
 - r is the rank of X.
 - When X is standardized, $\sum_{k=1}^{r} \lambda_k = p$, and the proportion of variation captured by each PC is λ_k/p .
- 4. Scores or Principal Components: **Z** is the $n \times r$ matrix in which each column is the projection of all points on that axis/ PC.
 - \bullet Z = XV
 - PCs are linear combinations of the variables

2 Looking at Variables

- 1. To project the cloud of standardized variables, the projection of variable j onto an axis k, is equal to the cosine of the angle θ_{jk} , so this criteria maximizes $\sum_{i=1}^{p} cos^{2}(\theta_{jk}) = \sum_{i=1}^{p} corr^{2}(\mathbf{x_{j}}, \mathbf{z_{k}})$.
- 2. Variable Factors: **Q** is the $p \times r$ matrix in which each column is a linear combination of the objects.
 - Projection of variable j on axis H_1 generated by vector $\mathbf{u_1}$ is $\mathbf{x_j^T u_1}$.
 - $\bullet \ \mathbf{Q} = \mathbf{X^T}\mathbf{U}$
- 3. **Eigenvectors**: U is the $p \times k$ matrix.
 - Each column $\mathbf{u_1}$ is an eigenvector of $\frac{1}{n-1}\mathbf{X}\mathbf{X}^{\mathbf{T}}$
 - $\frac{1}{n-1}\mathbf{X}\mathbf{X}^{\mathbf{T}}$ is the matrix of inner products between individuals
 - $\frac{1}{n-1}XX^T = U\Lambda U^T = UD^2U^T$.

3 Relationship between the representations of Individuals and Variables

1.
$$\frac{1}{\sqrt{n-1}}\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathbf{T}} \Rightarrow \frac{1}{\sqrt{n-1}}\mathbf{X}\mathbf{V} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathbf{T}}\mathbf{V} = \mathbf{U}\mathbf{D} \Rightarrow \mathbf{U} = \frac{1}{\sqrt{n-1}}\mathbf{X}\mathbf{V}\mathbf{D}^{-1}.$$

Since $\mathbf{Z} = \mathbf{X}\mathbf{V}$, $\mathbf{U} = \frac{1}{\sqrt{n-1}}\mathbf{Z}\mathbf{D}^{-1}$

2.
$$\frac{1}{\sqrt{n-1}}\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathbf{T}} \Rightarrow \frac{1}{\sqrt{n-1}}\mathbf{U}^{\mathbf{T}}\mathbf{X} = \mathbf{U}^{\mathbf{T}}\mathbf{U}\mathbf{D}\mathbf{V}^{\mathbf{T}} = \mathbf{D}\mathbf{V}^{\mathbf{T}} \Rightarrow \mathbf{V} = \frac{1}{\sqrt{n-1}}\mathbf{X}^{\mathbf{T}}\mathbf{U}\mathbf{D}^{-1} \Rightarrow \mathbf{V} = \frac{1}{\sqrt{n-1}}\mathbf{Q}\mathbf{D}^{-1}.$$

3.
$$\mathbf{Z} = \mathbf{X}\mathbf{V} = \mathbf{X}\frac{1}{\sqrt{n-1}}\mathbf{Q}\mathbf{D}^{-1} = \frac{1}{\sqrt{n-1}}\mathbf{X}\mathbf{X}^{\mathbf{T}}\mathbf{U}\mathbf{D}^{-1} = \frac{1}{\sqrt{n-1}}\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\mathbf{T}}\mathbf{U}\boldsymbol{\Lambda}^{-1/2} = \frac{1}{\sqrt{n-1}}\mathbf{U}\boldsymbol{\Lambda}^{1/2}.$$

4 Visualize PCA Results

There is a really good article providing practical guide for PCA.

You can also use the following link: http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/112-pca-principal-component-analysis-essentials