Helex Antenna - Azid mode

Fa=1.5 GHz in space stellik (GPS)

So, height of the contenno $h > \lambda$ (Crocomference of ontenno $\pi \lambda$) $\lambda = C = \frac{3 \times 10^8}{1.5 \times 10^9} = 0.2 m$ $2\pi a = 0.2$ So, $h = 1.5 \times \lambda = 0.3 m$ a = 0.3 a = 0.03/8 m

		•	•	5	1			
harght	Tadius (m)	Tuens	goodsbe	/ 1	2 (ex	hotel)	Z(get)	
2 24	0.035	10	0.15	0.54	143	0.	142.05	
0.35	0.07)		0.77	0,74		1	^{22.59} -j71.7	6
0.3	0.035	10/1	0.15/0.4	9/10	43.0	16	21.06	
	0.077				1119.5-340.13			
-			1<0.54	/14	3.0	94	. 79	
0.35	0-035	20 0.	/5 0)			61.8	3-371.8	7
7		1 0.15	0.51	143	.0	147	1.278	
0.35	0.035					41.1	9-541.9)
			,				_	

Usually 's' distance blu the cails is $0.25 \times \lambda$.

So, $S = 0.25 \times 0.2$ S = 0.05 m

Number of tuens, $N = \frac{H}{5} = \frac{0.35}{0.05} = \frac{7}{5}$

Plsu, another understanding is Pitch engle is taken Som 12° to 14° & selected 13°. So, for His to happen, 2 = tai (E) 13 = for (5) ton(13)= ton ton (5) S=0.23 X 2XTX0.035 (S=0.05/m Matching Nw ZL=141.19-341-9; Zo=50; f=1.56n/2 $y_1 = \frac{20}{2L} = \frac{50}{141.19} = \frac{20.325 + 0.096j}{141.19 - \frac{3}{2}41.9}$ 9 = 0.325 b = 0.096 $L = \frac{20\sqrt{g^{-1}-1}}{2\pi f} = 7.64nH$ $C = -b + \sqrt{g - g^2} = 0.79 pF$

Note: Due to ostoriction of student ression I simulated only discrete points of fogueries. f(GH2) 0.1 0.5 1 1.5 2 2.5 3 The reflection co-officient part would be come if could have somelated continues frequency According to theory, the input impedance of Helix onlenna should approx 140-2, later matched to 50-2. C = 10.8 + 106g10 (C) 2 N. (S) From, Kroaus - Antennais for all applications. Z= 150 s V 5/2 $\Omega: \lambda/\rho_i$ S: C/4 L= N. /22+52