

金属的实验

日期:	时间:	姓名:
Date:	Time:	Name:

初露锋芒

学习目标

&

重难点

1. 掌握几个重要的金属有关的实验:

2. 金属冶炼、炼铁与炼钢、氢氧化亚铁的制备、铝热反应、从铝土矿中提取铝等

上述几个实验的原理、操作细节、各注意点等。

根深蒂固

一、金属的冶炼

金属冶炼的方法有很多, 其实质使用还原的方法, 使金属化合物中的金属离子得到电子变成金 属原子。按照金属活动性顺序表进行以下分类:

(1) 电解法: 适用范围	<u></u>		
例:制备金属镁:	<u> </u>	<u> </u>	
制备金属铝:			
(2) 还原法: 适用范围	<u></u>		
(3) 热分解法:适用范围			
(4) 物理方法			
【练一练】			
1. 热还原法冶炼金属的反应一定	是()		
A. 氧化还原反应 E	3. 置换反应	C. 分解反应	D. 复分解反应
2. 下列反应原理不符合工业冶炼	金属事实情况的是()	
A. $2\text{HgO} \xrightarrow{\triangle} 2\text{Hg+O}_2 \uparrow$	B. 4Al+3MnO ₂	\longrightarrow 2Al ₂ O ₃ +3Mn	
通电		Δ	
C. $2MgO \longrightarrow 2Mg+O_2 \uparrow$	D. 4CO+Fe ₃ O ₄	\longrightarrow 3Fe+4CO ₂	

二、炼铁与炼钢

- 1. 炼铁
 - (1) 原理:利用氧化还原反应,在高温条件下,用还原剂从铁矿石中将铁还原出来。
 - (2) 设备: 高炉
 - (3) 原料:铁矿石、焦炭、空气、石灰石
 - (4) 冶炼过程:
 - a. 还原剂(CO)生成

C+O₂→CO₂+热量 CO₂+C→2CO -热量

b. 生铁的形成

 $Fe_2O_3+3CO \rightarrow 2Fe+3CO_2$

c. 造渣

除去铁矿石里难熔的脉石(SiO₂):

CaCO₃→CaO+CO₂ CaO+SiO₂→CaSiO₃

高炉炼铁

2. 炼钢

- (1) 原理: 利用氧化还原反应, 在高温下, 用氧化剂把生铁里过多的碳和其他杂质氧化成 气体或炉渣除去。
- (2) 设备: 转炉、电炉、平炉
- (3) 原料: 生铁、氧气、生石灰(造渣)、脱氧剂(硅铁、锰铁或铝)
- (4) 冶炼过程:
 - a. 杂质的氧化

 $2Fe+O_2\rightarrow 2FeO+$ 热量 $2FeO+Si\rightarrow 2Fe+SiO_2$

FeO+C→Fe+CO↑

FeO+Mn→Fe+MnO

- b. 除硫、磷(造渣)
- c. 脱氧
- (5) 炼钢目的: 降碳、调硅锰、除硫磷

三、氢氧化亚铁的制备

(1) 实验原理:
(2) 要制得白色的 Fe(OH)2沉淀, 要注意以下几点:
①硫酸亚铁溶液中不能含有 Fe3+, 因此, 硫酸亚铁溶液应是。
②实验用的氢氧化钠溶液,溶解亚铁盐的蒸馏水应煮沸,原因。
③为了防止硫酸亚铁中的 Fe ²⁺ 被空气中的氧气氧化,可以在溶液中加入少量的。
④实验时,用长胶头滴管吸取氢氧化钠溶液后,把滴管插入硫酸亚铁溶液的,再
轻轻挤胶头滴管的胶头,逐滴加入氢氧化钠溶液,这时就会析出 Fe OH 2白色絮状沉淀。
【练一练】Fe(OH)2为白色絮状物,易被空气中 O2氧化。在设计制取 Fe(OH)2时,要注意防止它氧
化。请你根据所提供的实验用品,设计制取较纯净的 Fe(OH)2 的方法。实验用品除图中所示外,还
有玻璃棒、药匙、普通漏斗及滤纸、滴管、试管、酒精灯、石棉网(其他固定用品略)、小铁棒、石
墨棒、久置绿矾、NaOH 溶液、久置蒸馏水、苯、CCl4、无水乙醇等。
方法一:隔绝空气的复分解反应法(完成填空)。
(1)将 NaOH 溶液煮沸并冷却后待用。
(2) 配置较为纯净的 FeSO4溶液的方法为
(3) 制较纯的 Fe(OH)₂沉淀的方法: 取适量 FeSO₄溶液,加入少量,保证起油膜作用。
再将吸有 $NaOH$ 的胶头滴管悬垂于试管上方,逐滴加入 $NaOH$ 溶液,即可观察到有白色的 $Fe(OH)_2$
沉淀生成。

方法二: 还原性气氛中复分解反应法。

如图一,为Fe(OH)2制备实验的改进装置。请回答:

(1) 如下操作能较长时间观察到白色絮状沉淀。

装入药品后, 先打开铁夹, 反应生成的 (填化学式) 经导管入 B 管, 将 B 中的空气从侧管导出, 反应变较缓时, (填操作方法),产生的气体将含 Fe^{2+} 的溶液由

A压入B的NaOH溶液中,产生白色的Fe(OH)2沉淀。

(2) 为何能在较长时间内观察到 Fe(OH)2 白色沉淀?

方法三:	隔绝空气	司电	解法。

应用如图二所示的电解实验可制得白色纯净的 Fe(OH)2沉淀。

- (1) a 电极上的电极反应式为
- (2) 电解液 c 可以是()

A. 蒸馏水 B. NaOH 溶液 C. 无水乙醇 D. 稀 H₂SO₄溶液

(4) 液体 d 的作用为

(5) 当电解一段时间看到白色沉淀后,再反接电源(b棒为石墨棒),除了电极上看到气泡外, 混合物中另一明显变化为

四、铝热反应

- 1. 基础知识
- (1) 铝粉和氧化铁在高温条件下反应方程式:

(2) 现象: _____

2. 注意点

- (1) 铝粉和氧化铁的混合物叫做。
- (2) 还有一些金属氧化物和氧化铁相似也能发生铝热反应,这些氧化物有

(3) 工业上常利用铝热反应冶炼某些。

(4) 铝热反应中氯酸钾、镁条的作用是什么?

【练一练】某教科书对"铝热反应"实验的现象有这样的描述: "反应放出大量的热,并发出耀眼的光芒","纸漏斗的下部被烧穿,有熔融物落入沙中"。已知: Al、Fe 的熔点、沸点数据如下:

物质	Al	Fe
熔点(℃)	660	1535
沸点(℃)	2467	2750

(1) 某同学猜测,	铝热反应所得到的熔融物	物是铁铝合金。	理由是:	该反应放热能	使铁熔化,	而
铝的熔点比铁低,	所以铁和铝能形成合金。	你认为他的解	释是否含	合理?	(填"合	理,
或"不合理")。						

(2)	根据已有知识找出一	一种验证产物中有	Fe 的最简.	单	方法	

(3) 设计一个简单的实验方案,证明上述所得的熔融物中含有金属铝。请填写下列表格:

所用试剂	
实验操作及现象	
有关反应的化学方程式	

五、从铝土矿中提取铝

铝是地壳中含量最多的金属元素,在自然界主要以化合态形式存在于氧化铝中。铝土矿的主要成分是 Al_2O_3 ,此外还含有少量 SiO_2 、 Fe_2O_3 等杂质,冶炼金属铝很重要的一个过程是 Al_2O_3 的提纯。由于 Al_2O_3 是两性氧化物,而杂质 SiO_2 是酸性氧化物, Fe_2O_3 是碱性氧化物,因而可设计出两种提纯氧化铝的方案。

方案一: 碱溶法

讨论回答下列问题:

(1)写出①、③两步骤中可能发生反应的离子方程式。

(2)步骤③中不用盐酸(或 H ₂ SO ₄)酸化的理由是	
	o
(3)步骤④中得到较纯的 Al ₂ O ₃ ,可能含有	杂质,在电解时它不会影响铝的纯度的原因:

方案二: 酸溶法

讨论回答下列问题:

(1)写出①、②中可能发生反应的离子方程式。

(2)步骤②中不用氨水沉淀 Fe³⁻的原因:

枝繁叶茂

知识点 1: 从铝土矿中提取铝

【例 1】铝是一种重要的金属,在生产、生活中具有许多重要的用途,下图是从铝土矿中制备铝的工艺流程:

己知:

- (1)铝土矿的主要成分是 Al₂O₃, 此外还含有少量 SiO₂、Fe₂O₃等杂质;
- (2)溶液中的硅酸钠与偏铝酸钠反应,能生成硅铝酸盐沉淀,化学反应方程式为:

2Na₂SiO₃+2NaAlO₂+2H₂O → Na₂Al₂Si₂O₈↓+4NaOH 回答下列问题:

(1)写出向铝土矿中加入足量氢氧化钠溶液后,该步操作中发生反应的离子方程式:

(2)滤渣 A 的主要成分	为	A的用途是	(只写一种);	实验室过滤
时使用玻璃棒,其作用是_				
(3)在工艺流程第三步	中,选用二氧化碳作酸	化剂的原因是		
(4)若将铝溶解,下列	试剂中最好选用	(填编号).		-
A. 浓硫酸	B. 稀硫酸	C. 稀硝酸		
理由是				

变式 1: I.从铝土矿中提取氧化铝的流程如下图所示: (铝土矿的主要杂质为 Fe₂O₃、SiO₃、SiO₂和一些不溶性杂质)

变式 2: 工业上用铝土矿(主要成分为氧化铝,含少量氧化铁)制取铝的过程如图所示:

请回答:

式).

- (5) ②中发生反应的离子方程式为

知识点 2: 综合实验

【例 1】某课外活动小组拟用下列装置做炼铁原理的实验,同时检测氧化铁的纯度(假设矿石不含其它与之反应的成分),并除去尾气,CO 用 $H_2C_2O_4 \rightarrow CO_2\uparrow + CO\uparrow + H_2O$ 来制取,与 Fe_2O_3 反应的 CO 需纯净、干燥。

(1) 若所制的气	体的流向为从左向右时,下列仪器组装连接的	的顺序是(用 a、b表示)
接	_,接,接,	
(2) 装置乙的作用	用是	的是
(3) 实验结束后,	, 先熄灭戊处的酒精灯, 再熄灭甲处的酒精灯,	其主要原因是
4		

(4) 实验前氧化铁矿粉末的质量为 x g, 实验后测的乙和丙的质量分数增加了 y g 和 z g, 则氧

化铁矿粉末中氧化铁的质量分数为____。
变式 1: 在一定条件下用普通铁粉和水蒸气反应,可以得到铁的氧化物。该氧化物又可以经过此反应的你反应,生成颗粒状很细的铁粉。这种铁粉具有很高的反应活性,在空气中受热撞击或受热时会燃烧,所以俗称"引火铁"。请分别用下图中示意的两套装置,制取上述铁的氧化物和"引火铁"。

实验中必须使用普通铁粉、6mol/L 盐酸, 其他试剂自选(装置中必要的铁架台、铁夹、铁圈、石棉网、加热设备等在图中均已略去)。

填写下列空白:

5 5 3						
(1)	实验进行时试管 A 中应加入的试剂是		;	烧杯 B 的作用是		
烧瓶	C 的作用是;	在试管	章 D	中收集到的是		0
(2)	实验时, U 形管 G 中应加入的试剂是	;	长	颈漏斗 H 中应加入	o	
(3)	两套装置中,要实验时需要加热的仪器是_			(填该仪器对应的字母)。		
(4)	烧瓶I中发生的反应有时要加入少量硫酸铜	洞溶液,	其	目的是		-

- (5) 试管 E 中发生反应的化学方程式是____。 (6) 为了安全,在 E 管中的反应发生前,在 F 出口处必须___。E 管中的反应开始后,在 F 出口处应___。
- 变式 2: 实验室用如图所示的装置测定 FeO 和 Fe_2O_3 固体混合物中的 Fe_2O_3 的质量,D 装置的硬质玻璃管中的固体是 FeO 和 Fe_2O_3 的混合物。

(1) 检查装置的气密性后,为了实验的安全,在点燃 D 处的酒精灯之前,必须检验整套装置
中的气体的纯度,其检验方法是:
(2) 装置 A 中的盐酸能否改为硝酸, 原因是。
(3) 装置 B 的作用是, 装置 C 中所盛装的液体是。
(4) 若 FeO 和 Fe ₂ O ₃ 固体混合物的质量为 23.2g, 反应完全后 U 形管的质量增加了 7.2g, 则混
合物中 Fe ₂ O ₃ 的质量为g。
(5) U 形管 E 右边又连接干燥管 F 的目的是, 若无干燥
管 F, 测得 Fe ₂ O ₃ 的质量可能(填"偏大"、"偏小"或"无影响")。

瓜熟蒂落

1.	我国古代的湿法冶金术是世界闻名的,我国在世界上最先应用湿法冶金的金属是()	
	A. Fe B. Cu C. Ag D. Hg	
2.	西汉刘安晋记载:"曾青得铁则化为铜",已知"曾青"指硫酸铜溶液,那么"曾青得铁则化为铜"	
	中的"铜"是指()	
	A. 铜元素 B. 铜单质 C. 氧化铜 D. 铜原子	
3.	能用热分解法制得的金属是()	
	A. Fe B. Ag C. Mg D. Na	
4.	下列制备金属单质的方法或原理正确的是()	
	$A.$ 在高温条件下,用 H_2 还原 MgO 制备单质 Mg	
	B. 在通电条件下, 电解熔融 Al ₂ O ₃ 制备单质 Al	
	C. 在通电条件下, 电解饱和食盐水制备单质 Na	
	D. 加强热, 使 CuO 在高温条件下分解制备单质 Cu	
5.	工业上由含钒、铬和锰的矿物冶炼难熔的金属钒、铬和锰,通常采用的方法是()	
	A. 炭还原法 B. 铝热还原法	
	C. 直接加热法 D.盐的水溶液与活泼金属置换法	
6.	工业上制备下列金属,采用的化学反应原理正确的是 ()	
	A. 镁: 2MgO (熔融) <u>通直流电</u> Mg+O ₂ ↑	
	高温	
	B. 钙: CaO+C 高温 Ca+CO↑	
	C. 锰: 3MnO ₂ +4Al 高温 3Mn+2Al ₂ O ₃	
	D. 汞: HgS 加热 Hg+S	
0	工列大学队 阿勒拉拉的光计点 工作的目 /)	
8.	下列有关铁、铝的冶炼的说法中,正确的是 ()	
	A. 冶金工业中,金属铁的冶炼主要采用电解法	
	B. 炼铁过程中铁的氧化物被焦炭还原生成单质铁,电解冶炼铝的过程中,阳极生成铝单质,阴	
	极生成氧气	
	C. 炼铁的主要原料是铁矿石、焦炭、生石灰和空气,电解冶炼铝的原料是氧化铝和冰晶石	
	D. 铁、铝冶炼设备分别是炼铁高炉和铝电解槽	

- 9. 下列操作可得到纯净 Al₂O₃的是()
 - A. 向 NaAlO₂溶液中加入适量稀 H₂SO₄蒸干并灼烧
 - B. 向 NaAlO₂溶液中通入过量 CO₂后蒸干并灼烧
 - C. 向 AlCl₃溶液中加入过量氨水后蒸干并灼烧
 - D. 向 AlCl₃溶液中加入适量 NaAlO₂溶液,蒸干并灼烧
- 10. 用铝热法冶炼难熔的金属,其优越性有下列的 ()
 - A. 铝有很强的还原性, 在高温下可将难熔的金属从其氧化物中还原出来
 - B. 氧化铝熔点很低,容易与难熔金属分离
 - C. 氧化铝熔点高,可与难熔金属一起熔化
 - D. 反应放出大量的热, 使还原出来的金属融化, 便于分离
- 11. 用铝热法从下列氧化物中还原出物质的量相同的金属,耗铝最少的是()
 - A. Cr_2O_3
- B. MnO
- C. V₂O₅
- D. WO₃
- 12. 下列各图示中能较长时间看到 Fe(OH)2白色沉淀的是 (填序号)。

13. 工业上以铝土矿(主要成分是 Al₂O₃, 含杂质 Fe₂O₃和 SiO₂)为原料生产铝,其生产流程如下:

)

下列叙述错误的是 (

- A. 沉淀 A 主要是 SiO₂
- B. 步骤②的目的是分离 Fe3+和 Al3+
- C. 溶液 E 溶质主要有碳酸钠和硫酸钠
- D. ⑤主要是把电能转化为化学能

14. 工业上用铝土矿(主要成分为 Al₂O₃, 含 Fe₂O₃杂质)为原料冶炼铝的工艺流程如下:

下列叙述正确的是()

- A. 试剂 X 可以是氢氧化钠溶液,也可以是盐酸
- B. 反应①过滤后所得沉淀为氢氧化铁
- C. 图中所示转化反应都不是氧化还原反应
- D. 反应②的化学方程式为 NaAlO₂+CO₂+2H₂O→Al(OH)₃↓+NaHCO₃

上也常用这一原理,使铝与金属氧化物反应,冶炼钒、铬、锰等.如:

Al+ $MnO_2 \rightarrow$

15.	常见金属的冶炼方法
	(1) 热分解法:适用于冶炼金属活动性较差的金属(金属活动顺序表中及其以后的金
	属),如:
	(2) 电解法:适合冶炼活动性很强的金属(一般在金属活动性顺序表中排在及其以前
	的金属). 如:;;;
	(3) 热还原法: 用还原剂 (C 、 CO 、 H_2 、 Al 等) 还原金属氧化物,适用于金属活动性顺序表
	中的
	铝热反应实验现象及化学方程式:
	现象
	铝与氧化铁反应的化学
	方程式
	实验说明:
	a. Al 与 Fe_2O_3 能发生铝热反应,与其它较不活泼金属氧化物也能发生铝热反应.
	b. 铝热反应的最大特点是放出大量的热,在生产上利用这一特点,可用于焊接钢轨,冶金工业

物质	Al	Al ₂ O ₃	Fe	Fe ₂ O ₃
熔点/℃	660	2 054	1 535	1 462
沸点/℃	2 467	2 980	2 750	

	DP/M/ C 2	107 2 300	2 /50			
(1)该同学推测,铝	热反应所得到的	的熔融物应是	铁铝合金。	这种推测有一	定的道理,	理由是
<u> </u>					5000	
Victoria de la companya del companya de la companya del companya de la companya d					0	To Carrett William
(2)设计一个简单的	实验方案,证明	上述所得的均	央状熔融物 ^中	中含有金属铝。	该实验所用	试剂是
当观察到			的现象时,	说明熔融物中含	有金属铝。	
(3)实验室溶解该熔	融物, 最好选用	下列试剂中的		(填序号)	0	
A. 浓硫酸		B. 稀硫酸				
C. 稀硝酸		D. 氢氧化钴	内溶液			
17. 用不含 Fe³+的	FeSO4溶液与不	含 O ₂ 的蒸馏力	K配制的 Nac	OH 溶液反应制	备。	
(1)用硫酸亚铁	晶体配制上述 F	eSO4溶液时还	需要加入_	o		
(2)除去蒸馏水	中溶解的 O2常是	采用	的方法。			
(3)生成 Fe(OH)2白色沉淀的操	作是用长滴管	吸取不含 Oz	2的 NaOH 溶液,	插入FeSO4	溶液液面下,
再挤出 NaOH 溶液	,这样操作的理	!由是				
	0					
18. 铁与水蒸气反应	. 通常有以下两	丙种装置,请 思	思考以下问题	见:		
		装置一		装置二		
		还原铁粉		还原铁粉		
	实验装置	*	火柴	B		
(1)方法一中,装	是置 A 的作用		2.14. 25.15		0	
方法二中,	装湿棉花的作用		i.			o
(2)实验完毕后,	取出装置一的少	>量固体,溶于	F 足量稀盐酸	俊,再滴加 KSC	N 溶液,溶剂	夜颜色无明
显变化,试解释	原因:			o		

19. 铝土矿的主要成分是 Al_2O_3 ,此处还含有少量 SiO_2 、 Fe_2O_3 等杂质,从铝土矿中提纯净 Al_2O_3 的 工艺流程如下:

讨论回答下列问题:

(1)写出①、②中可能发生反应的离子方程式:

2______

(2)步骤②中不用氨水沉淀 Fe³⁻的原因: _____

20. 铝是一种应用广泛的金属,工业上用 Al₂O₃和冰晶石(Na₃AlF₆)混合熔融电解制得。 ①铝土矿的主要成分是 Al₂O₃和 SiO₂等。从铝土矿中提炼 Al₂O₃的流程如下:

②以萤石(CaF₂)和纯碱为原料制备冰晶石的流程如下:

回答下列问题:

- (1) 写出反应 1 的化学方程式;
- (2)滤液 I 中加入 CaO 生成的沉淀是 , 反应 2 的离子方程式为

(3) E 可作为建筑材料, 化合物 C 是_____, 写出由 D 制备冰晶石的化学方程式_____