	F 328: Segunda Prova	3)
	Diurno/ 2S - 01/12/2010	4)
		Nota:
RA:_	XX Nome: GABARITO	_Turma:X
Quest A	ao 01 pobina da figura abaixo conduz uma corrente i = 2,00 A no sentido	ndicado, e é paralela ao plano yz. Fl
ten	espiras, uma área de $4.0 \times 10^{-3} m^2$ e está submetida	a um campo magnético uniform
\vec{B}	$=(2,0\vec{i}-3,0\vec{j}-4,0\vec{k})$ mT. Determine:	
	O vetor momento de dipolo magnético da bobina. (1,0 ponto)	
c)	A energia potencial magnética do sistema bobina-campo magnético; O torque magnético (em termos dos vetores unitários) a que está suj	
		10 10 10 10 10 10 10 10 10 10 10 10 10 1
	a) momento de dipole	, magnetico
	II - NLA	
2	N = 25, $i = 2,0$, A = 4,0x10-3m2
	$\mu = 25 \times 2 \times 4.0 \times 10$	53. A. M2
	2	
	To momento a	aipolo mognetico.
	oneute ho	ana J
	1 =- M3	(1,0 pouts)
\sim		
(p)	Um=-ガ·茵 シ Um=-ル3·12,0元-3.	09-4.0)MT.A.M
	(m = 0,8m]),5) pouls
0	ゼ= A×B=- H3×(2,0 元-	(09-4.03) m Nx metro
	= (-0,4 g-062) mili N. metro	
	=-(0,6 x +0,4 y) milineur	uxmetro
	1 3/	(Lo ponto)
		V

1) ____

2) _____

Questão 02

Um fio muito longo e fino, carregando uma corrente I₁, é parcialmente envolto por uma espira, conforme a figura. A espira tem comprimento L e raio R, e transporta uma corrente I2. O eixo da espira coincide com o fio.

- 31
 - a) Calcule o campo magnético gerado pelo fio em qualquer ponto da espira. (1,0 ponto)
 - b) Qual força que o fio exerce sobre a parte retilínea da espira? (1,0 ponto)
 - c) Qual a força que o fio exerce sobre a parte circular da espira? (0,5 ponto)

(a) Campo magnetico do fio
$$\emptyset$$
 $\overrightarrow{B}d\overrightarrow{\ell} = \mathcal{U}_0 \overrightarrow{I}_1 \longrightarrow B(r) = \frac{\mathcal{U}_0 \overrightarrow{I}_1}{2\pi r}$

$$B(R) = \frac{MoI_1}{2\pi R}$$

$$\begin{array}{c|c}
\hline
F_{21}^{(a)} = i_2 \text{ file } B_{1}(R) (-3x\hat{y}) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = i_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = i_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_{1}(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_1(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_1(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_1(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_1(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_1(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_1(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_1(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_1(R) (\hat{3} \times (\hat{4})) = \frac{I_1 I_2 I_0 L_2}{2\pi R} \hat{x} \\
\hline
F_{211}^{(b)} = I_2 \text{ file } B_1(R) (\hat{3} \times (\hat{4})) =$$

$$C$$
 $d\vec{F} = i_2 d\vec{l} \times \vec{B}_1(R)$ $d\vec{l} = i_2 d\vec{l} \times \vec{B}_1(R)$ $d\vec{l} = i_2 d\vec{l} \times \vec{B}_1(R)$

Questão 03

Uma espira quadrada com 2,00 m de lado é mantida perpendicular a um campo magnético uniforme, com metade da área da espira na região onde existe campo, conforme figura. A espira contém uma fonte ideal de força eletromotriz ε = - 20,0V. Se o módulo do campo varia de acordo com a equação B = 0.042 - 0.670t, com B em Tesla e t em segundos.

Determine:

- a) A força eletromotriz total aplicada à espira; (1,0 ponto)
- b) A corrente, se a resistência da espira for de $R = 2\Omega$; (1,0 ponto)
- c) O sentido da corrente (explicar). (0,5 ponto)

$$\vec{B} = B(t)\vec{3}$$

$$\mathcal{E}_{1}ud = 1.34 \text{ M} = D$$
 $\mathcal{E}_{1} = \mathcal{E}_{1} + \mathcal{E}_{1}ud$ from a $(\mathcal{E}_{1}ud)$

mema polaridode de $\mathcal{E}_{1} = 21.34 \text{ V}$ (0.5 pour b)

$$i = \frac{\mathcal{E}_{\xi}}{|\mathcal{E}|} \Rightarrow [i = 10,67] = 0.5 \text{ pouts}$$

Soutido ANTI-HORARIO - Diminii copo de BUI comt

no sentido 3 - torg Eind no manno
suntido da polaridade de E. 11 0,5 pour 10

Questão 04

Um circuito RLC em série tem uma resistência $R = 100\Omega$. A corrente é dada por $i(t) = 2\sqrt{3}$ sen $(200t - \phi)$ e a f.e.m. é de $\varepsilon = 400\sqrt{3}$ sen (200t). A reatância capacitiva é igual a $X_c = 100\sqrt{3}$ Ω .

- (a) Qual é a impedância do circuito? (0,5 ponto)
- (b) Qual o valor da indutância?
- (0,5 ponto)
- (c) Qual é a constante de fase φ?
- (0.5 ponto)
- (d) Qual a potência média dissipada no resistor?
 - resistor? (0,5 ponto)
- (e) Qual é a expressão da diferença de potencial entre os extremos do indutor, em função do tempo? (0,5 ponto).

$$\frac{2}{2} = R^{2} + (X_{L} - X_{C})^{2} = (100 \Omega)^{2} + (X_{L} - 100 \sqrt{3}\Omega)^{2}$$

$$(200 \Omega)^{2} = (100 \Omega)^{2} = (X_{L} - 100 \sqrt{3}\Omega)^{2}$$

$$4 \times 10^{4} \Omega^{2} - 1 \times 10^{2} = (X_{L} - 100 \sqrt{3}\Omega)^{2}$$

$$\Rightarrow \times 10^{4} \Omega^{2} = (X_{L} - 100 \sqrt{3}\Omega)^{2} \Rightarrow \pm \sqrt{3} \cdot 10^{2}\Omega = \pm (X_{L} - 100 \sqrt{3}\Omega)$$

$$\Rightarrow \times 10^{4} \Omega^{2} = (X_{L} - 100 \sqrt{3}\Omega)^{2} \Rightarrow \pm \sqrt{3} \cdot 10^{2}\Omega = \pm (X_{L} - 100 \sqrt{3}\Omega)$$

$$\Rightarrow X_{L} = 0 \qquad X_{L} = 2\sqrt{3} \times 10^{2}\Omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

$$\downarrow \omega = 0 \Rightarrow \downarrow = 0 \qquad \omega$$

 $\cos \phi = \frac{R}{2} = \frac{100R}{200R} = \frac{1}{2} \Rightarrow \phi = 60^{\circ}$

$$P_d = R I_{rws}^2 = 100 \Omega \times \left(\frac{213}{12}\right)^2 = 600 W$$

V_L= L·di, di=+400/3 ω(2001-β)= 400/3 μμ(2001-β-1/2) V_L=0 αμ V_L= 1200 seμ(2001-β-1/2) volls