This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-361334

(43) Date of publication of application: 14.12.1992

(51)Int.CI.

GOGF 11/28

G06F 11/22 G06F 15/78

(21)Application number: 03-136418

(71)Applicant: NEC IC MICROCOMPUT SYST LTD

(22)Date of filing:

07.06.1991

(72)Inventor: KANAZAWA MASAYA

(54) MICROCOMPUTER

(57)Abstract:

PURPOSE: To enable real-time trace at the terminal level of a microcomputer.

CONSTITUTION: This microcomputer is equipped with a main bus 101, chip select terminal 102, output permit signal terminal 103, spare signal terminal 104 and power supply terminal 105 for forming a terminal to connect a PROM storing the program of a debugging object, a CPU core 5 to execute an operation processing, peripheral I/O 10 and discrimination circuit 2 to discriminate either the PROM or an incircuit emulator is connected to the terminal for connecting the PROM. Further, selectors 7 and 8 are provided to control the operation of the CPU core 5 and connection between the peripheral I/O 10 and the CPU core 5 and to control connection between the incircuit emulator and the peripheral I/O 10 as well, and a bus control circuit 9 for real-time trace is provided to perform access from the incircuit emulator to the peripheral I/O 10 regardless of a program instruction.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19) 🛘 本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出級公則番号

特開平4-361334

(43)公開日 平成4年(1992)12月14日

(51)Int.CI.*		类别配	5	庁内急程委号	FI	技模表示临所
G06F	11/28		L	8725-5B		
	11/22	310	A	9072-5B		
	15/78	510	ĸ	7530-5L		

容支請求 未請求 請求項の数3(全 7 頁)

(21)出贈書号	仲以平 3 - 136418	(71)出席人	000232036
		i	日本電気アイシーマイコンシステム株式会
(22)出版日	平成3年(1991)6月7日		2 ±
			神奈川県川崎市中原区小杉町1丁目403番
			53
		(72) 発明者	金沢 正徳
			神奈川県州崎市中原区小杉町一丁目403四
		1	53日本配気アイシーマイコンシステム株式
		1	会社内
		(74) (Name A	弁理士 内原 晋
		10010-0	THE PUR H

(54) 【免明の名称】 マイクロコンピュータ

(57) 【養約】 (修正者)

【目的】マイクロコンピュータの電子レベルにおけるリアルタイム・トレースを可能とする。

「特成」デバッグ対象のプログラムが格納されているPROMを基込む第子を申成するメイン・バス101.テップ選択44子102、出力許可信号44子103、子俗信号44子104 および電資用網子105と、資料処理を行うCPUコア5と、周辺『/O10と、前配PROMを基込む場子に、PROMまたは前記インサーキット・エミュレータの何れが接続されたかを判別する中間回路2と、CPUコア5との接続を制御しインサーキット・エミュレータと周辺「/Oとの接続をも制御するセレクタ7、8と、プログラム命令とは関係なく前記インサーキット・エミュレータより周辺『/O10にアクセスするリアルタイム・トレース用バス制列回路8とを信える。

!… マイクロコンピューテ ?… リアルナイム・トレース明パス制・特色及・10・・・ 単心り/0

(2)

特闘平4-361334

【特許請求の範囲】

【湖水項1】 デバッグ対象の装置に取付けて用いられ るマイクロコンピュータにおいて、デバック対象となる プログラムが格納されている普込み可能な銃出し専用の PROMを差込むための帽子と、斡記PROMからプロ グラムを設出し、当該プログラムの命令を解釈して資算 等の処理を行う処理回路と、前記処理回路または所定の インサーキット・エミュレータに接続されることにより 動作する! / O回路と、前記PROMを差込むための娘 子に対して、PROMが差込まれたか、または前記イン サーキット・エミュレータが挫続されたかを利別する利 別回路と、時記判別回路から出力される前記インサーキ ット・エミュレータが接続されていることを示す信号に より、前記処理回路の動作を禁止して、前記!/O国路 と朝記処理回路の接続を切り離す第1の選択回路と、前 記利別回路から出力される前記インサーキット・エミュ レータが接続されていることを示す信号により、動記処 種画路に後久て、前記PROMを遊込むための種子に彼 彼された前記インサーキット・エミュレータを前記!/ 〇回路に接続する第2の選択回路と、前配命令とは毎回 20 係に、前記インサーキット・エミュレータから首記!/ 〇回路に対するアクセスを行うリアルタイム・トレース 用パス創即回路と、を貸え、約記命令の実行により。所 定のインサーキット・エミュレータから前記!/O回路 に対するアクセスを行う複雑をも伴せ有することを特徴 とするマイクロコンピュータ。

【辞未項2】 前記処理回路が、CPUコアにより形成 される耐水吸1 記載のマイクロコンピュータ。

【菊泉项3】 前記1/O回路が、ポート、A/D交換 踏およびタイマ等の何れか、または、これらの任意の組 30 合せにより形成される請求項1および2記載のマイクロ コンピュータ.

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、マイクロコンピュータ に向する。

[0002]

【従来の技術】従来のマイクロコンピュータの使用例を 図6に、従来のマイクロコンピュータの基本プロック図 を図7に、マイクロコンピュータの菓子をインサーキッ ト・エミュレータでリアルタムトレースする何を図8に 录す。

【0003】一般に、図6に示されるように、マイクロ コンピュータ41は、ターゲット・ポード43に固定さ れており、上部にPROM44を登込むためのPROM 党込み用端子42を持ち、PROM44家たはPRON 難了と同じ形状の猶予を持った技能器(以降プローブと 称す) 45によりインサーキット・エミュレータと接続 する事が可能である。

基本動作を図りて説明する。 抑記PROMを差込むため のPROM差込み用稿子42は、メイン・パス115、 **チップ選択仗号指于(以降チップ・イネーブル供号指于** と称す)117、出力許可は号紹子118、予賞信号編 子119及び健康用稿子116で構成される。 忠ず、P RONまたはインサーキット・エミュレータのどちらか が接続されるかは、電波用端チ116より検出層低号2 26を介して判別回路47で判別し、PROM/インサ -キット・エミュレータの切り換え信号230をアクテ ィブにする。もしPROMが接続された場合、CPUコ ア50が動作し、チップ・イネーブル信号231 および **出力許可信号232が、セレクタ52を介して増予とつ** ながっているチップ・イネーブル保号227および出力 許可信号228に出力され、1/0アクセス用のアドレ ス・ストロープ信号233、データ・ストロープ信号2 34およびリード/ライト信号235が、セレクタ53 を介してポート55、UART56、A/D変換器57 およびタイマ58を含む何辺1/054とつながってい るアドレス・ストロープ信号237、データ・ストロー プは今238およびリード/ライト信号236に出力さ れる。また、メイン・パス115はPROMアクセス形 のアドレス及びデータのパスとなっており、パス接続用 のパス・パッファ48によりCPUコナ50と鉄統さ れ、パス・パッファ49により1/〇パス]20とは切 り縫され、パス、パッファ 5 1 によりCPUコア 5 0 と 1/0パス120が推続される。

【0005】マイクロコンピュータ46のPROM兼込 み用端子42 (図6参照) にプローブ45 (図6参照) を並込み、インサーキット・エミュレータを挟続した場 合は、PROM/インサーキット・エミュレータ切り換 え信号230により、CPUコア50はメイン・パス1 15と切り取され、プローブ45(回6参照)を介して チップ・イネーブル信号端子117、山力砕可信号端子 118及び予備信号組予119より入ってきた信号を、 セレクタ52及びセレクタ53を介して、何辺1/〇5 4と接続されているアドレス・ストローブ信号237及 び、データ・ストローブ保号238及びリードノライト 信号236に擁す。また、CPUコア50は動作を停止 し、パス・パッファ48およびパス・パッファ51によ カメイン・パス115及びI/Oパス120とは切り降 され、パス・パッファ48によりメイン・パス115と 1/Oパス120が接続される。この時プローブ45 (図6参照) と検続されているメイン・パス118は、 I/Oアクセス用のアドレス及びデータのパスとなって おり、図3に示すように、前紀PROMのアドレス空間 を4キロバイト、前記1/〇のアドレス空間を512パ イトとすると、前記PROMと協範した場合、メモリ・ アクセスには、メイン・パス 3 1 5 のパス値はアドレス ・パスに12ピット及びデータ・パス303に8ピット 【0004】次に、従来のマイクロコンピュータ41の 50 で計20ピット必要となり、個3における $50\sim519$

までのメイン・パス115全体を使用するのに対して、 インサーキット・エミュレータを接続した場合は、【/ Oアクセスには、メイン・パス115のパス幅は1/O アドレス・パス302に9ピット及び1/0データ・パ ス303に8ピットの計17ピットで、617~619 の部分301の3ビットが象る。また、図& (a), (b). (c) および (d) に示すように、メイン・パ ス116は、1/Oアクセス401専用となっているた め、パス使用時間にも、PROMと接続した場合と比較 して空き402がある。一方、回8に示すように、イン 10 対するアクセスを行う機能をも併せ有することを特徴と サーキット・エミュレータる9においては、リアルタイ ム・トレースを、プロープ121およびリアルタイム・ トレース用パス123を介してリアルタイム・トレーサ 61で行っている。この時、マイクロコンピュータ64 の様子入力信号243のリアルタイム・トレースを行う にあたって、プローブ121とは別に紹子入力信号24 3のリアルタイム・トレース用のケーブル122をマイ クロコンピュータ64の雑子に技統し、インサーキット ・エミュレータ59に内蔵されたコンパータ62を介 し、リアルタイム・トレーサ61でリアルタイム・トレーの 一スを行っている。

【発明が解決しようとする課題】上述した従来の構成の マイクロコンピュータにおいて、インサーキット・エミ ュレータを接続し、端子信号をリアルタイム・トレース しようとした時、信号レベルが低い端子信号の場合、ケ ーブルを狙る過程においてノイズの影響で使が不正確と なり、また、リアルタイム・トレーサ自身の配竜圧より も高い電圧を持つ始子に呼については、レベル変換を行 ってからでないとトレースできないという欠点がある。 さらに、インサーキット・エミュレーク専用のレベル変 集団路で変換したディジタル・データをトレースしてい るため、マイクロコンピュータ内部で変換したデータと は異なる可能性があるという欠点がある。

[0007]

[0006]

【英服を解決するための手後】本発明のマイクロコンピ ュータは、デバッグ対象の製匠に取付けて用いられるマ イクロコンピュータにおいて、デバック対象となるプロ グラムが移納されている否込み可能な設出し専用のPR OMを差込むための端子と、前記PROMからプログラーの ムを放出し、当該プログラムの命令を解釈して復算等の 処理を行う処理回路と、前記処理回路または所定のイン サーキット・エミュレ…タに依続されることにより動作 する【/O回路と、前記PROMを養込むための菓子に 対して、PROMが最込まれたか、または前配インサー キット・エミュレータが接続されたかを利別する判別回 除と、触記製別同路から出力される触胞インサーキット ・エミュレータが接続されていることを示す信号によ り、前記処理回路の助作を禁止して、前記(/〇回路と 前記処理回路の技統を示り私事第1の選択回路と、前記 50 トローブは号2.11に流れる。また、予備信号総子1.0

判別回路から出力される前記インサーキット・エミュレ ータが接続されていることを示す信号により、前記処理 回路に換えて、約起PROMを差込むための場子に接続 された前記インサーキット・エミュレータを前記!/O 回路に接続する第2の選択屈路と、前記命令とは無関係 に、前記インサーキット・エミュレータから前記1/0 回路に対するアクセスを行うリアルタイム・トレース用 パス制御回路と、を備え、前配命令の実行により、所定 のインサーキット・エミュレータから離記1ノ〇回鉄に している.

【0008】なお、前紀処理回路は、CPUコアにより 形成してもよく、また、前記 I /O回路は、ポート、A /D変換器およびタイマ等の何れか、または、これちの 任意の組合せにより形成してもよい。 [0009]

【実施例】次に、本発明について西面を参照して説明す

【0010】本発明のマイクロコンピュータの一実施研 の基本プロック図を図1に、周辺 (/Oデータをリアル ダイム・トレースするためのパス制御団路の国路図を図 2に、マイクロコンピュータにインサーキット・エミュ レータを接続した場合の!/Oアクセス時とリアルタイ ム・トレース時のパス共有手段を図るに、本発明のマイ クロコンピュータの端子は号のリアルタイム・トレース する例を図4に、本発明におけるエミュレート時のタイ ミング・チャートを図5 (a), (b), (c), (d), (e) および (f) に示す。尚、関7の従来の マイクロコンピュータの基本プロック頃に対して、図1 の木発明のマイクロコンピュータの基本プロック図で は、リアルタイム・トレースのためのリアルタイム・ト レース用バス制御風路9が追加されている点が重なる。 【0011】次に本発明のマイクロコンピュータの一実 箱例における、エミュレート時の動作について説明す る。 図 1 において、マイクロコンピュータ 1 は、PRO M/インサーキット・エミュレータの切り替え信号20 5により、PROMが接続されている時はCPUコア5 が動作し、リアルタイム・トレース用パス制御回路9は 1/0パス106に対して出力を行わない。また、イン サーキット・エミュレータが技験さている時、CPじコ ア5はメイン・パス101及び1/0パス106から切 り触され、リアルタイム・トレース用パス制御回路 9が 1/0パス106に対して命令実行による1/0アクセ スを行っていない時に出力を行なう。前記インサーキッ ト・エミュレータ動作時に、チップ・イネーブル信号域 子103及び出力許可信号104より入力された信号は セレクタ1及びセレクタ8を介して、リアルタイム・ト レース用パス制御回路9及び周辺1/010と接続され ているアドレス・ストロープ信号212及びデータ・ス

5から入力された信号はセレクタ8を介して周辺]/O 10と接続されているリード/ライト信号213へ出力 される。

【0013】一方、メイン・パス101は、1/0アク セス時には1プロアドレス・パスまたは1ノロデータ・ パスとして使用され、この間はリアルタイム・トレース 用パスが同日数9はI/Oパス106に対しての出力は 行わず、周辺1/010より1/0データが1/0パス 106に引して出力される。1/0アクセスが行われて いない時は、リアルタイム・トレース用パス制御回路9 10 なくなっている。 では、周辺エ/O10より、リアルタイム・トレース用 データ・パス107, 108, 109および110を介 して取り込んだ1/〇データを、「/〇パス106に対 して出力する。間5は、その時のタイミング・チャート で、1/ロアクセス時間401以外の間をリアルタイム ・トレース時間402に使用している。この様に、従来 はマイクロコンピュータの端子から直接、端子信号をり アルタイム・トレースしていたのに対し、ボート用端子 信号2 1 4 が入力の場合を例にとると、ポート用地子信 号214からの入力データはポート11の内部でレベル 要換され保持される。この保持されたデータは、ポート 11がリードされた時にポート11から1/0パス10 6に出力される。また、その変変多数データはリアルタ イム・トレース用データ・パス107に出力され、リア ルタイム・トレース用パス制御回路9に入力される。上 記のボート端子信号214以外の他の場子信号(21 5. 216および217) も. 各1/0を介してリアル タイム・トレースしているので、アナログ官号216の 様に電圧の低いものでも、いったんリアルタイム・トレ ース用データパス109に対するディジタル信号に受換 30 されたり、またリアルタイム・トレーサの耐電圧を触え る高気圧の信号214に対してもレベル交換されるの で、幅広い希子信号についてリアルタイム・トレースす る事が可能になっている。更に、前述の変換されたリア ルタイム・トレース用パス107, 108, 109およ び110は、マイクロコンピュータ内部で変換されたも のなので、実際にCPUが取り込む端子信号と同様のリ アルタイム・トレースのデータとして信頼することがで ŧ5.

【0013】ここで、阿辺I/O10の内、どの1/O のについてリアルタイム・トレースを行うかは、因3に示している様に、前記PROMのアドレス空間を4キロパイト、前記I/Oのアドレス空間を512パイトとすると、インサーキット・エミュレータを検験した場合、I/Oアクセスには、メイン・パス101のパス幅はI/Oアドレス・パス302に9ピット及びI/Oデータ・パス303に8ピットの計17ピットが必要となり、b17~b19の部分301が命るので、前記の部分301で利用してリアルタイム・トレースする対象となるI/Oを指定する。上述のI/Oアクセスとリアルタイム が

・トレースでパスを共有する等によって、図4に示す儀に、稿子信号222、223、224名よび226のリアルタイムトレースを行うに当って、マイクロコンピュータ39からプロープ113名よびリアルタイム・トレース用パス114を介して、リアルタイム・トレーサ37でリアルタイム・トレースを行う事ができ、図8に示す役次の方法に比較して、リアルタイム・トレース用のケーブルを使用して、マイクロコンピュータ39の端子とインサーキット・エミュレータ36を接続する必要がなくなっている。

【0014】リアルタイム・トレース用バス制御回路9 では、因2に示すように、1/0アクセスを行っている かどうかを、アドレス・ストロープ信号212及びPR OM/インサーキット・エミュレータの切り換え信号 2 0 5によって判断を行っている。図2の例の場合は、) **/〇パス106のパス幅を20ピット、リアルタイム・** トレース用データ・パス107、108、109および 110の各パス幅を8ピット、1/0の個数を4個とし ているので、【/Oパス】06の下位8ピットを】/O データ・パス112に、余った上位12ビットの内、3 ピットをリアルタイム・トレースする対象 I /〇の選択 用バスの上位3ピット・バス111に使用している。ド ROM/インサーキット・エミュレータの切り換え信号 205次ぴアドレス・ストローブ位号212より各られ た空き時間依号221がハイレベルの場合、I/Qの基 权用パスの上位 3 ピット・パス 1 1 1 をアドレスデコー ダ15で取り込み、リアルタイム・トレースする対象1 /Oから取り込んでいる、リアルタイム・トレース用デ 一夕・パス107、108、109および110より選 択した各ピット年のリアルタイム・トレース団号21 8. 219. ···. 220 €. AND 国路 16~19, 2 2~25, …, 28~31. およびこれらのAND回路 に対応するOR回路20およびゲート回路21、OR回 終2 6およびゲート回路27、…、OR回路3 2および ゲート同路33と、上記のゲート回路21、22, …, 23に対して、PRON/インサーキット・エミュレー 夕切り換え信号205およびアドレス・ストローブ信号 212の論理機をとり、前述の空き時間信号221を生 成して送出するAND回路34を介して、1/Oデータ ・パス112に対して出力する。

[0015]

【発明の効果】以上説明したように、本発明は、インサーキット・エミュレータをマイクロコンピュータに接続した場合に、【/Oアクセス以外の空を時間に、編字信号をリアルタイム・トレースすることができ、かつ、電圧が低い選子信号から、リアルタイム・トレーサ自身の場所によりも高い選圧を持つ場下信号まで、リアルタイム・トレースする多が可能となり、前配の端子信号に、実際にCPUが取り込む孩子信号と同様のリアルタイム・トレースのデータとしての信頼快を保持することがで

(5)

特別平4-361334

きるという効果がある。

【図面の簡単な説明】

【図1】本発明の一実施例を示す基本プロック図である。

【図2】 本実施例のリアルタイム・トレース用パス制御 歯詰のブロック図である。

【図3】エミュレータ被縮時の1/Oアクセス時とリアルタイム・トレース時のパス共有手段を示す図である。

【図4】本実施例における端子入力信号のリアルタイム ・トレースを示す図である。

【図5】本実施例におけるエミュレート時のタイミング・チャートを示す図である。

【図6】 マイクロコンピュータの使用例を示す図である。

【凶?】従来何を示す基本プロック凶である。

【図8】 従来例における塩子入力信号のリアルタイム・トレースを示す図である。

【図9】従来例におけるエミュレート時のタイミング・ チャートを示す図である。

【符号の説明】

1, 39, 41, 46, 64 マイクロコンピューダ

2,47 判別回路

3, 4, 6, 48, 49, 51 パス・パッファ

8 5, 50 CPU⊐7

7. 8. 52, 53 セレクタ

9 リアルタイム・トレース用バス制御回路

10,54 周辺1/0

11,55 ポート

12, 56 UART

13,57 A/D変換器

14.58 917

15 アドレス・デコーダ

10 16~19, 22~25, 28~31, 34 AND

20, 26, 32 OR@#

・21、27、33 ゲート資路

35, 59 インサーキット・エミュレータ

36. 60 エミュレーションCPU

37.61 リアルタイム・トレーサ

38, 43, 63 ターゲット・ポード

40,65 ユーザ周辺国路

42 PROM差込み用端子

20 44 PROM

45 プローブ

62 コンパータ

(**2**1)

[图3]

(6)

特與平4-361334

(7)

特別平4~361334

