Лекция 10

Тема: Условна вероятност.

Формула за пълната вероятност.

Формула на Бейс.

Биномна вероятност.

Основни понятия и формули

Условна вероятност p(A/B) на случайното събитие A по отношение на случайното събитие B е вероятността да настъпи A при условие, че е настъпило B и е

$$(9.1) p(A/B) = \frac{p(A \cap B)}{p(B)}, \quad p(B) > 0.$$

Умножение на вероятности

(9.2)
$$p(A \cap B) = p(A) p(B/A) = p(B) p(A/B).$$

Зависими случайни събития А и В са, ако е изпълнено

$$(9.3) p(A \cap B) \neq p(A)p(B).$$

Независими случайни събития А и В са, ако е изпълнено

$$(9.4) p(A \cap B) = p(A)p(B).$$

Случайните събития $A_1,A_2,...A_n$ са две по две независими, ако е изпълнено $p\left(A_i \cap A_j\right) = p\left(A_i\right).p\left(A_j\right), \ \left(i \neq j,i,j = 1,2,...n\right).$

Случайните събития $A_1, A_2, ... A_n$ са *независими в съвкупност*, ако всяко от тях и произволна комбинация от останалите събития са независими или

(9.5)
$$p(A_1 \cap A_2 \cap ... \cap A_n) = p(A_1) p(A_2) ... p(A_n).$$

Формула за пълната вероятност на случайно събитие А

$$(9.6) p(A) = \sum_{i=1}^{n} p(H_i) p(A/H_i),$$

при условие, че A се явява съвместно с поне едно от събитията $H_1, H_2, ... H_n$, които образуват пълна група несъвместими събития, наречени *хипотези*. Формула на Бейс (теорема за хипотезите)

(9.7)
$$p(H_k/A) = \frac{p(H_k)p(A/H_k)}{\sum_{i=1}^n p(H_i)p(A/H_i)},$$

където $p(H_1), p(H_2), ..., p(H_n)$ са вероятностите на хипотезите до опита, а в резултата от опита се появява събитието A.

Вероятността $p(H_k)$ в (9.6) и (9.7) се нарича доопитна (априорна) вероятност на хипотезата H_k и $p(H_k/A)$ се нарича следопитна (апостериорна) вероятност на хипотезата H_k .

Нека даден опит се повтаря последователно краен брой пъти, т. е. правят се последователни опити. Последователните опити са *независими*, ако резултатът от всеки опит не зависи от резултатите на другите опити.

Схема на Бернули е система от краен брой последователни и независими опити, ако вероятността на случайното събитие A е една и съща във всеки от опитите, т.

e.
$$p(A) = p, p(\overline{A}) = q = 1 - p$$
.

Биномна вероятност е вероятността на събитието A, което се реализира κ пъти при n броя опити от схемата на Бернули. Пресмята се по

(9.8)
$$p(A) = p_n(k) = C_n^k p^k q^{n-k},$$

където
$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}, \ 0 \le k \le n, \ p+q=1, \ \sum_{k=0}^n p_n(k) = 1.$$

Правила за решаване на задачи

- І. Задачи от условна вероятност:
 - Определят се случайните събития в дадената задача като се установява дали те са зависими или независими.
 - Определят се възможните хипотези и техните вероятности.
 - Определя се по коя формула трябва да се пресметне търсената вероятност.

II. При задачите от биномна вероятност се пресмятат най-често :

Най-вероятностното число $\,k_{\scriptscriptstyle 0}\,$ за появявяне на събитието A при $\,n\,$ броя опити е

(9.9)
$$np - q \le k_0 \le np + p$$
.

Вероятността на събитието A да не се появи нито веднъж при n броя опити е (9.10) $p_{_{n}}(0) = q^{^{n}}.$

Вероятността на събитието A да се появи поне веднъж при n броя опити е (9.11) $p_n \left(k \ge 1 \right) = 1 - q^n \, .$

Вероятността на събитието A да се появи не по-малко от k_1 и не повече от k_2 пъти при n броя опити е

(9.12)
$$p_n(k_1 \le k \le k_2) = \sum_{k=k_1}^{k_2} {n \choose k} p^k q^{n-k}.$$

Ако събитието A във всеки опит се появява с вероятност p, то броят n на опитите, които трябва да се направят, така че с вероятност p да се появи поне веднъж събитието p

$$(9.13) n \ge \frac{\lg(1-P)}{\lg(1-p)}.$$

Задачи и въпроси

- 9.1. Хвърлят се едновременно два зара. Да се намери вероятността, че:
- а) сумата от точките в двата зара да е число не по-голямо от числото 4;
- б) сумата от точките в двата зара да е четно число;
- в) сумата от точките в двата зара да не е по-голяма от 4 в случай, че сумата от точките при хвърлянето на двата зара е четно число.

Решение: а) Нека с A означим случайното събитие $A=\{cymama\ om\ moчките\ в\ deama\ sapa\ e\ не\ по-голяма\ om\ 4\}$. Тогава вероятността $p(A)=\frac{m}{n}$, където общият брой случаи е $n=\tilde{V}_6^2=6^2=36$, а благоприятните за A случаи са тези от множеството $\{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\}$, т.е. m=6. Търсената вероятност е $p(A)=\frac{6}{36}=\frac{1}{6}$.

- б) Нека с B означим случайното събитие $B=\{$ сумата от точките в двата зара е четно число $\}$. Тогава вероятността $p(B)=\frac{m}{n}$, като n=36 е както в a), а благоприятните случаи за B са m=3.6=18, Търсената вероятност е $p(B)=\frac{18}{36}=\frac{1}{2}$. в) В този случай трябва да се пресметне условната вероятност p(A/B) по (9.1). От б) имаме $p(B)=\frac{1}{2}$ и пресмятаме за $p(A\cap B)=\frac{m}{n}$. Отново n=36, а благоприятните случаи за $A\cap B$ са $\{(1,1),(1,3),(2,2),(3,1)\}$, т.е. m=4 или $p(A\cap B)=\frac{4}{36}=\frac{1}{9}$. Търсената вероятност е $p(A/B)=\frac{p(A\cap B)}{p(B)}=\frac{2}{9}$.
- **9.2.** Да се докаже, че $p(A \cap B \cap C) = p(A).p(B/A).p(C/A \cap B)$. **Решение:** Използваме последователно (9.2) както следва $p(A \cap B \cap C) = p((A \cap B) \cap C) = p(A \cap B).p(C/A \cap B) = = p(A).p(B/A).p(C/A \cap B)$.
- **9.3.** Да се докаже, че ако A и B са независими събития, то и събитията \overline{A} и \overline{B} са независими.

Решение: От даденото по (9.4) имаме $p(A \cap B) = p(A).p(B)$ и като използваме свойствата $\overline{A} \cap \overline{B} = \overline{A \cup B}$ и $p(\overline{A}) = 1 - p(A)$ последователно преобразуваме $p(\overline{A} \cap \overline{B}) = p(\overline{A \cup B}) = 1 - p(A \cup B) = 1 - [p(A) + p(B) - p(A \cap B)] = 1 - p(A) - p(B) + p(A).p(B) = p(\overline{A}) - p(B).[1 - p(A)] = 1 - p(A) - p(B).p(\overline{A}) = p(\overline{A}).[1 - p(B)] = p(\overline{A}).p(\overline{B}).$

Следователно $p(\overline{A} \cap \overline{B}) = p(\overline{A}).p(\overline{B})$ и събитията \overline{A} и \overline{B} са независими.

9.4. Да се докаже, че ако A и B са независими събития, то е в сила равенството $p(A \cup B) = 1 - p(\overline{A}).p(\overline{B})$.

Решение: От даденото по (8.4) имаме $p(A \cap B) = p(A).p(B)$ и като използваме свойството $p(\bar{A}) = 1 - p(A)$ последователно преобразуваме

$$p(A \cup B) = p(A) + p(B) - p(A \cap B) = p(A) + p(B) - p(A) \cdot p(B) =$$

$$= 1 - p(\overline{A}) + p(B) \cdot [1 - p(A)] = 1 - p(\overline{A}) + p(B) \cdot p(\overline{A}) =$$

$$= 1 - p(\overline{A}) \cdot [1 - p(B)] = 1 - p(\overline{A}) \cdot p(\overline{B}).$$

- **9.5.** Да се докаже, че ако за несъвместимите събития A и B е изпълнено p(A) > 0 и p(B) > 0, то събитията A и B са зависими.
- **9.6.** Три от страните на правилен тетраедър са оцветени съответно с бял, зелен и червен цвят, а четвъртата стена е оцветена и с трите цвята. При хвърляне на тетраедъра той пада на:
- 1) стена, където има бял цвят случайно събитие А;
- 2) стена, където има зелен цвят случайно събитие В;
- 3) стена, където има червен цвят случайно събитие С.

Да се докаже, че събитията А, В и С са две по две независими, но трите са зависими в съвкупност.

Решение:Тъй като страните на тетраедъра са 4, а на две от тях има по два еднакви цвята, то $p(A) = p(B) = p(C) = \frac{2}{4} = \frac{1}{2}$. Благоприятният изход за всяко от събитията $A \cap B, B \cap C, A \cap C$ е един, а общият брой случаи са 4 и като пресметнем получаваме

$$p(A \cap B) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = p(A) \cdot p(B),$$

$$p(B \cap C) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = p(B) \cdot p(C),$$

$$p(A \cap C) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = p(A) \cdot p(C).$$

По (9.4) следва, че две по две събитията са независими.

За събитието $A \cap B \cap C$, благоприятният случай е един и тогава $p(A \cap B \cap C) = \frac{m}{n} = \frac{1}{4} \neq \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = p(A) \cdot p(B) \cdot p(C)$.

Тъй като не е изпълнено условие (9.5), то трите събития не са независими в съвкупност.

Вероятността $p(A \cap B \cap C)$ може да се пресметне и по формулата от зад. 9.2. или

$$p(A \cap B \cap C) = p(A).p(B/A).p(C/(A \cap B)) = \frac{1}{2}.\frac{1}{2}.1 = \frac{1}{4}.$$

9.7. В склад се съхраняват детайли, произведени от три завода. Първият завод произвежда 30% от общото количество детайли, а 25% произвежда вторият завод. Качествените детайли съответно от първия завод са 99%, от втория 98,8% и от третия 98%. От склада е взет случайно един детайл. Да се определи вероятността, че взетия детайл е некачествен.

Решение: Означаваме с A събитието, че е взет некачествен детайл. Нека хипотезите H_1, H_2, H_3 са съответно, че взетия детайл е от първия, втория и третия завод, като $p(H_1) = 0, 3, p(H_2) = 0, 25, p(H_3) = 1 - 0, 3 - 0, 25 = 0, 45$. Условните вероятности са $p(A/H_1) = 0, 01, p(A/H_2) = 0, 012, p(A/H_3) = 0, 02$. По (9.6) пресмятаме пълната вероятност:

$$p(A) = p(H_1)p(A/H_1) + p(H_2)P(A/H_2) + p(H_3)p(A/H_3) = 0,3.0,01 + 0,25.0,012 + 0,45.0,02 = 0,015.$$

9.8. Две автоматични машини произвеждат детайли, които след това постъпват в общия конвейер. Вероятността за получаване на нестандартен детайл на първия автомат е равна на 0,075, а за втория е 0,09. Производителността на втория автомат два пъти превишава тази на първия. Да се определи вероятността случайно взет от конвейера детайл да се окаже нестандартен.

Отг. 0,085

9.9. В една кутия има 9 бели и 11 черни топки. От кутията последователно два пъти се изважда без връщане по 1 топка . Да се намери вероятността поне една от двете извадени топки да е бяла.

Решение: Означаваме с A събитието: $A = \{ \text{поне една от извадените топки е бяла} \}.$ Пресмятане броя на хипотезите $\binom{2}{0} + \binom{2}{1} + \binom{2}{2} = 4$, т.е. това са възможните комбинации от два елемента и k = 0.1, 2. Определяме хипотезите:

$$H_{\scriptscriptstyle 1}$$
- и двете топки са бели, $p\left(H_{\scriptscriptstyle 1}\right) = \frac{9}{20}.\frac{8}{19} = \frac{72}{360};$

 H_2 - първата топка е бяла, а втората черна, $p(H_2) = \frac{9}{20} \cdot \frac{11}{19} = \frac{99}{360}$;

 H_3 - първата топка е черна, а втората бяла, $p(H_3) = \frac{11}{20} \cdot \frac{9}{19} = \frac{99}{360}$;

$$H_4$$
- и двете топки са черни, $p(H_4) = \frac{11}{20}.\frac{10}{19} = \frac{110}{360}$.

Условните вероятности са $p\left(A/H_1\right) = p\left(A/H_2\right) = p\left(A/H_3\right) = 1, p\left(A/H_4\right) = 0$ и по (9.6) пресмятаме $p\left(A\right) = \sum_{i=1}^4 p\left(H_i\right)p\left(A/H_i\right) = \frac{72 + 99 + 99}{360} = \frac{27}{38}$.

9.10. Дадени са две кутии. В първата кутия са поставени 2 бели и 3 черни топки, във втората – 3 бели и 5 черни. От първата и втората кутия са взети по една топка и без да бъдат гледани са поставени в трета кутия. След разбъркване от третата кутия е извадена една от топките. Да се намери вероятността тази топка да е бяла.

ОТГ. $\frac{31}{80}$

9.11. В три еднакви кутии съответно има 20 бели топки в първата , във втората 10 бели и 10 черни , а в третата 20 черни топки. Случайно от една кутия е взета една бяла топка. Да се намери вероятността топката да е взета от първата кутия.

Решение: Означаваме с A събитието: $A = \{esema\ e\ бяла\ moпкa\}$. Нека H_1, H_2, H_3 са хипотезите, че взетата бяла топка е съответно взета от първатар втората и третата кутии. Хипотезите са равновъзможни и $p(H_1) = p(H_2) = p(H_3) = \frac{1}{3}$.

Пресмятаме условните вероятности $p(A/H_1) = 1$, $p(A/H_2) = \frac{10}{20} = \frac{1}{2}$, $p(A/H_3) = 0$.

По (9.7) пресмятаме търсената вероятност

$$p(H_1/A) = \frac{p(H_1)p(A/H_1)}{p(H_1)p(A/H_1) + p(H_2)p(A/H_2) + p(H_3)p(A/H_3)} = \frac{\frac{1}{3}.1}{\frac{1}{3}(1 + \frac{1}{2} + 0)} = \frac{2}{3}.$$

9.12. Вероятността даден стрелец да улучи една мишена е $\frac{2}{3}$. Ако улучи мишената при първия изстрел, той получава право на втори изстрел по втора мишена. Вероятността за улучване и на двете мишени при два изстрела е 0,5. Да се пресметне вероятността за улучване на втората мишена, ако стрелецът е получил право на втори изстрел.

Отг. 0.75

9.13. Дадени са три партиди от електрически крушки. Вероятностите една крушка да принадлежи на съответната партида са $p_1 = 0.25$, $p_2 = 0.5$ и $p_3 = 0.25$. Да се определи вероятността случайно взета крушка да е изправна, ако се знае, че вероятностите за безотказна работа на всяка партида са съответно 0.1, 0.2 и 0.4.

Отг. 0,225

9.14. Една от две урни съдържа 8 бели и 5 черни топки, а друга – 6 бели и 10 черни топки. От всяка урна случайно се изважда по една топка, а след това от

тези две топки случайно се избира едната. Каква е вероятността тази топка да е бяла?

Отг.
$$\frac{270}{416} \approx 0,649$$

9.15. Апарат може да се изработи от висококачествени детайли и от обикновени детайли. 40% от апаратите са изготвени от висококачествени детайли. В този случай вероятността за безотказна работа на апарата за време $t \in 0,95$. Ако детайлите са обикновени, надеждността за същото време е 0,7. Даден апарат е изпробван и за време t е работил безотказно. Да се намери вероятността той да е изработен от висококачествени детайли.

Отг. 0,475

- **9.16.** Машините за болтове M_1 , M_2 и M_3 произвеждат съответно 25%, 35% и 40% от цялото производство. Знае се, че всяка машина дава съответно 5%, 4% и 2% дефектна продукция. Случайно избран болт се оказал дефектен. Да се намери вероятността той да е произведен от:
- а) машината M_1 ;
- б) машината M_2 ;
- в) машината M_3 .

Отг. a)
$$\frac{25}{69}$$
; б) $\frac{28}{69}$; в) $\frac{16}{69}$

- **9.17.** В един цех има шест двигателя. Вероятността за всеки двигател да е включен е равна на 0,8. Да се намери вероятността в даден момент:
- а) да са включени 4 двигателя;
- б) да са включени всички двигатели;
- в) да са изключени всички двигатели.

Otr. a)
$$\approx 0.246$$
; б) ≈ 0.262 ; в) 0.000064

- **9.18.** Ако се приеме, че вероятностите за раждане на момче и момиче са равни на 0,5, да се пресметне вероятността в семейство с шест деца да има:
- а) точно три момчета;
- б) не по-малко от едно и не повече от пет момчета.

Отг. a) 0, 3125; б) 0,96875

9.19. В една библиотека има книги само по техника и математика. Всеки читател избира книга по математика с вероятност 0,7 и по техника с вероятност 0,3 и му се позволява да избира само по една книга. Да се пресметне вероятността пет читатели подред да изберат книги или само по математика или само по техника.

Отг. 0,1705

- **9.20.** Вероятността, че лампа ще остане изправна след като е работила 1000 часа е 0,2. Включени са 3 лампи. Да се намери вероятността след 1000 часа :
- а) две лампи да са изправни;
- б) поне две лампи да са изправни;
- в) да няма нито една изправна лампа.

Решение: От условието на задачата n = 3, p = 0, 2, q = 1 - 0, 2 = 0, 8.

- а) По формулата за биномна вероятност получаваме, че $p_3\left(2\right) = \binom{3}{2}0, 2^2.0, 8 = \frac{3!}{2!.1!}.0, 02.0, 8 = 0,096 \,.$
 - $6) p_3(2 \le k \le 3) = {3 \choose 2} 0, 2^2.0, 8 + {3 \choose 3} 0, 2^3 = 3.0, 04.0, 8 + 0, 008 = 0, 184.$
 - B) $p_3(0) = 0.8^3 = 0.512$.
- **9.21.** При установен технологичен процес 99% от цялата продукция от изработените изделия е бездефектна.
- а) Да се намери най-вероятностният брой бездефектни изделия в партида от 250 броя изделия.
- б) Да се намери броят на изделията, за които с вероятност P=0,952 да се твърди, че ще се появи поне едно дефектно изделие.

Решение: а) Тъй като за производството на бездефектно изделие е изпълнено $p=0.99, \quad q=1-0.99=0.01$, то по формула (9.9) пресмятаме

$$250.0,99 - 0,01 \le k_0 \le 250.0,99 + 0,99 \Longrightarrow 247,49 \le k_0 \le 248,49$$
.

Най-вероятностният брой бездефектни изделия в партида от 250 броя изделия е $k_{\rm o} = 248$.

б) По формула (9.13) пресмятаме

$$n \ge \frac{\lg\left(1 - 0,952\right)}{\lg\left(1 - 0,01\right)} = \frac{\lg 0,048}{\lg 0,99} \approx \frac{-1,318758}{-0,00436} \approx 302,467 \ .$$

Поне едно дефектно изделие ще има при брой опити n > 302 и това ще се твърди с вероятност P = 0.952 .

9.22. Известно е, че вероятността за раждане на еднополови близнаци е два пъти по-голяма от тази да бъдат разнополови, като вероятностите за раждане на близнаци от различен пол във всяка последователност са еднакви. Да се определи вероятността вторият от близнаците да е момче при условие, че първият е момиче. Вероятността въобще да се роди момче при близнаци е равна на 0,51.

Отг.
$$\frac{103}{153}$$

9.23. Трима стрелци последователно стрелят по една и съща мишена. Всеки стрелец има два патрона. При първо попадение стрелбата се прекратява. Вероятността за попадение при един изстрел за първия стрелец е 0,2, за втория—

0,3, за третия— 0,4. Да се определи вероятността и тримата стелци да изразходват своя запас.

Отг. 0,188

9.24. Обработката на един детайл преминава през четири операции. Вероятността за получаване на брак при първата операция е равна на 0,01, при втората— 0,02, при третата— 0,03 и при последната— 0,02. Да се намери вероятността за получаване на годни детайли след изпълнение на четири операции, предполагайки, че събитията получаване на брак на отделна опрация се явяват независими.

ОТГ. ≈ 0.93

9.25. Вероятностите за точно попадение при всеки изстрел на трима стрелци са съответно 0,2, 0,4 и 0,6. При едновременна стрелба се е получило едно попадение. Да се определи вероятността да е улучил първият стрелец.

ОТГ. ≈ 0.103

9.26. Един от трима стрелци заема позиция по заповед и произвежда два изстрела. Вероятността за точно попадение при първият стрелец е равна на 0,3, за втория е 0,5 и за третия – 0,8. Ако в мишената няма попадение, да се определи вероятността изстрелите да са произведени от първия стрелец.

ОТГ.
$$\frac{49}{78}$$

9.27. В група от двадесет стрелци има четири с отлични умения, десет се оценяват като добри, а останалите имат слаби постижения. Вероятността за попадение в целта при един изстрел за отличния стрелец е равна на 0,9, за добрия е 0,7 и за слабия е 0,5. Двама от стрелците са извикани да заемат позиция, след което произвеждат по един изстрел. Да се определи вероятността и двамата да имат точно попадение в мишената.

Отг. 0,46

9.28. Трима стрелци произвеждат по един изстрел по една и съща мишена. Вероятността за попадение за първия стрелец е равна на 0,6, за втория – 0,5, за третия – 0,4. В резултат на изстрелите в мишената се получили две попадения. Да се намери вероятността, мишената да е улучена от втория и третия стрелец.

ОТГ.
$$\frac{4}{19}$$

9.29. Покрай пропускателен пункт минават три превозни средства от I група с по двама мъже и две жени в тях. След определено време минават две превозни средства от II група, всяко с един мъж и две жени в тях. Проверяват се документите на жена от произволно превозно средство. Да се определи вероятността жената да е избрана от превозно средсво от I група.

ОТГ.
$$\frac{8}{17}$$

9.30. Една монета се хвърля последователно четири пъти. Да се определи вероятността броят на падналите се гербове да бъде точно два.

ОТГ.
$$\frac{3}{8}$$

- **9.31.** Търговска фирма предлага 2% отстъпка за всяка фактура, платена не покъсно от 30 дни след изпращането й на купувача. Опитът на фирмата е показал, че 20% от фактурите се изплащат в срок до тридесет дни. Ако фирмата е изпратила 12 фактури и плащанията на тези фактури са независими, да се пресметнат вероятностите, от изпратените фактури:
- а) всички да получат отстъпка;
- б) поне половината да получат отстъпка;
- в) никоя от тях да не получи отстъпка;
- г) не повече от две фактури да бъдат с отстъпка.

OTT. a)
$$5^{-12}$$
; б) $\approx 0,0002$; в) $(0.8)^{12} \approx 0,0687$; г) $\approx 0,5583$

- **9.32.** Строителна предприемаческа фирма участва в търгове за изграждане на пет обекти. Фирмата оценява своите шансове да спечели търг за всеки от обектите като еднакви и равни на 0,2. Да се намери вероятността фирмата да спечели:
- а) само един търг;
- б) поне два търга;
- в) не повече от три търга.

- 9.33. Оръдие стреля 6 пъти по обект. Вероятността за точно попадение при един изстрел е 0,3. Да се пресметне вероятността в случаите:
- а) Да се разруши обекта, ако за това са достатъчни поне две попадения.
- б) Да се разруши обекта, ако за това е достатъчен най-вероятностният брой попадения.

Отг. a) 0,587; б)
$$p_6(2) = 0,324$$

9.34. Три оръдия стрелят по дадена цел. Вероятността за точно попадение е съответно на първото оръдие 0,8, на второто 0,85 и на третото 0,9. Да се намери вероятността, че при едновременна стрелба да има поне едно попадение.

9.35. Да се намери броят на независимите опити, които трябва да се направят, за да може събитието A във всеки опит да се яви с вероятност 0,4, ако найвероятностният брой за появяване на A е 25.

OTF. $n \in \{62, 63, 64\}$

9.36. Вероятността за изготвяне на нестандартен детайл е равна на 0,05. Колко детайли трябва да има в партидата, така че най-вероятният брой нестандартни детайли в нея да бъде равен на 55.

OTF. $n \in [1099, 1119]$

- **9.37.** Един човек чака свой приятел, който закъснява за уговорената среща. За да разнообрази чакането си той решава да се поразходи по улицата като хвърля монета и ако се падне герб прави десет крачки в едната посока, а ако се падне лице, изминава пак 10 крачки, но в другата посока. Каква е вероятността след 100 извървени крачки човекът да се намира:
- а) на мястото, откъдето е тръгнал;
- б) на разстояние съответно 20, 40, 80, 100 крачки от мястото на срещата;
- в) на разстояние 50 крачки от мястото на срещата?

Може ли да се направи изводът, че възприетият начин за разходка осигурява с по-голяма вероятност човекът да се движи в близост до мястото на срещата?

9.38. В една работилница има десет мотора. При съществуващия режим на работа, вероятността за това един мотор да работи в даден момент на пълно натоварване е равна на 0,8. Да се пресметне вероятността за това, в даден момент на пълно натоварване да работят не повече от 8 мотора.

Отг. 0,678

9.39. Провеждат се изпитания на уред. При всяко изпитване уредът отказва с вероятност 0,1. След първия отказ уреда се ремонтира, а при втория се определя като негоден. Да се определи вероятността за това уредът окончателно да откаже точно при шестия опит.

OTF. 0,0328

9.40. Да се определи вероятността за настъпването на събитието *A* при всеки опит, ако най–вероятният брой сбъдвания на *A* в течение на 160 опити е равен на 40.

Отг. 0,25

- **9.41.** Вероятността за отказ на всяко едно от четири устройства при независими изпитвания е различна и равна съответно на: $p_1 = 0.1$, $p_2 = 0.2$, $p_3 = 0.3$, и $p_4 = 0.4$. Да се намери вероятността в резултат на изпитванията:
- а) да не откаже нито едно от устройствата;
- б) да откажат две, три, четири устройства;
- в) да откаже поне едно от тях;
- г) да откажат по-малко от две устройства.
- **9.42.** Вероятността за сглобяване на стандартно изделие е равна на 0,95. Да се определи вероятността сред десет изделия да има не повече от едно нестандартно.

OTF.
$$1,45.0,95^9 \approx 0.91386$$

9.43. Вероятността за точно попадение в мишена при един изстрел е равна на 0,4. По мишената са произведени шест независими изстрели. Да се определи вероятността, че да има поне едно точно попадение в мишената.

Отг. 0,95296

9.44.Технологична система се състои от 7 части. Вероятността за нарушение на работния режим за всяка от частите в течение на интервал от време t е равна на $\frac{1}{3}$. Системата стига до отказ, ако възникнат нарушения в режима на работа при поне 3 от частите. Да се пресметне вероятността за отказ на тази система за време t, ако нарушаването на работния режим за всяка част не зависи от работното състояние на другите части.

OTT.
$$\frac{1100}{2187} \approx 0,50297$$

9.45. По цел се стреля три пъти като всеки от изстрелите не зависи от останалите. Вероятността за попадение съответно при първия изстрел е равна на 0,1, при втория е 0,2 и при третия е 0,3. За поразяване на целта са необходими две попадения. При едно попадение целта е поразена с вероятност 0,6. Да се намери вероятността за поражение на целта.

OTF. 0,3368