MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40: . . . with Data Gathering, 9 hp Lecture 5, spring 2023 Regression diagnostics

Mathematical Statistics / Centre for Mathematical Sciences Lund University

3/4-23

Problem areas in least squares

We assume:

- 1. additive errors ϵ_i
- 2. Normally distributed errors
- 3. independent errors
- 4. homoscedastic errors (constant variance)
- ▶ When (3)–(4) hold and $\hat{\beta}$ from OLS, then $Var(\hat{\beta})$ minimal among all unbiased estimators of β .
- ▶ When (2) holds: least squares ≡ maximum likelihood
- ▶ We do not need (2)–(4) to prove that $E(\hat{\beta}) = \beta$.
- ▶ What is tricky is to verify (2)–(4).
- Assumptions allow construction of inference procedures but are not necessary in order to numerically compute least squares estimates.

Non-normal ϵ_i

- \blacktriangleright $\hat{\beta}$ can be OK if n is large.
- Confidence intervals will be more or less wrong, particularly with skewed distributions.
- Prediction intervals will be wrong,

Found by: Q-Q-plots, histogram, etc., of residuals.

Solutions:

- ▶ Transformations, e.g. $ln(Y_i)$
- Use other methods that can handle the true distribution (maximum-likelihood, bootstrap, etc.)

Heterogenous variance

- ▶ $V(\epsilon_i) \neq \sigma^2$ for all ϵ_i . Often larger variance with larger mean.
- Uncertain observations have too much influence on the estimates.
- Prediction intervals will be wrong.

Found by: Plot of residuals against \hat{Y} . Solutions:

- ▶ Transformations, e.g. $ln(Y_i)$
- Weighted least squares (less weight to observations with larger variance).

Missing *x*-variables

Both non-normal residuals and heterogenous variance might be due to potential *x*-variables missing from the model!

Correlated errors

- ▶ $C(\epsilon_i, \epsilon_j) \neq 0$ for some $i \neq j$ (e.g. for j = i + 1). Often in time-series data.
- ▶ Variance estimates $(V(\hat{\beta}_i))$ will be biased: too small (if positive correlation) or too large (if negative correlation).
- Confidence (and prediction) intervals will be too narrow or too wide.

Found by: Plot residuals against next residual. Autocorrelation plots.

Solutions (not in this course):

- ► Time-series, e.g. AR-model, MA-model,
- generalized least squares.

In our model, we have assumed that $\epsilon_i \sim N(0, \sigma^2)$ and independent, i.e.

$$\boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix} \sim N(\mathbf{0}, \, \sigma^2 \mathbf{I}) = N(\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \, \begin{pmatrix} \sigma^2 & 0 & \dots & 0 \\ 0 & \sigma^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma^2 \end{pmatrix})$$

- Is this true? How can we find out, since we cannot observe ϵ_i ?
- ▶ When normality holds, residuals $e_i = Y_i \hat{Y}_i$ should behave in a certain way. Check this instead.

Projection matrix and leverage

For the multiple regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ it is possible to write the fitted values as a projection of the observations onto the fitted plane:

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{PY}$$

where

$$\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$
 is the projection (hat) matrix.

Denote with v_{ij} , for i, j = 1, ..., n a generic element of \mathbf{P} .

We can then write
$$\hat{Y}_i = v_{i1}Y_1 + \cdots + v_{ii}Y_i + \cdots + v_{in}Y_n$$
 were

$$v_{ii}$$
 = the leverage of Y_i ,

measures the impact of Y_i on its own estimated value \hat{Y}_i .

Properties of the residuals, e_i

If $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$ then the observed residuals

$$\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{Y} - \mathbf{P}\mathbf{Y} = (\mathbf{I} - \mathbf{P})\mathbf{Y}$$

have the following property:

$$\mathbf{e} \sim N_n(\mathbf{0}, \, \sigma^2(\mathbf{I} - \mathbf{P}))$$

where
$$\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = (v_{ij}).$$

Thus they will have unequal variances and be dependent (Var(e)) is not a diagonal matrix), the unequality and dependence determined by the structure of X.

Because of different variances it is tricky to compare the residuals e_i .

So let's standardize them ... (we'll see there are issues ...)

Proofs

- ▶ Normality: Since e are linear combinations of Y, which are multivariate normal, e will also be multivariate normal.
- ► Zero mean

$$E(\mathbf{e}) = E((\mathbf{I} - \mathbf{P})\mathbf{Y}) = (\mathbf{I} - \mathbf{P})E(\mathbf{Y})$$
$$= (\mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{X}\boldsymbol{\beta} = (\mathbf{X} - \mathbf{X})\boldsymbol{\beta} = \mathbf{0}$$

Covariance matrix

Since $P' = (X')'((X'X)^{-1})'X' = X(X'X)^{-1}X' = P$ and $PP = X(X'X)^{-1}X'X(X'X)^{-1}X' = X(X'X)^{-1}X' = P$ we get

$$Var(\mathbf{e}) = Var((\mathbf{I} - \mathbf{P})\mathbf{Y}) = (\mathbf{I} - \mathbf{P})Var(\mathbf{Y})(\mathbf{I} - \mathbf{P})'$$
$$= (\mathbf{I} - \mathbf{P})\sigma^2\mathbf{I}(\mathbf{I} - \mathbf{P}) = \sigma^2(\mathbf{I} - 2\mathbf{P} + \mathbf{P}) = \sigma^2(\mathbf{I} - \mathbf{P})$$

Standardized residuals

Since $e_i \in N(0, \sigma^2(1-v_{ii}))$ we standardize them by subtracting the mean (=0) and dividing by the (estimated) standard deviation, to have variance approximately equal to 1:

$$r_i = \frac{e_i}{s\sqrt{1 - v_{ii}}}$$

where $v_{ii} = i$:th diagonal element of **P** and

$$s^2 = \hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n - (p+1)}.$$

- ▶ The r_i have similar variances ($\simeq 1$) but are still dependent.
- ▶ While e_i is normal and $(n (p + 1))s^2/\sigma^2$ is χ^2 they are not independent so r_i will not be t-distributed.

Studentized residuals

All e_i are included in s^2 so a large residual will contribute to a large s^2 affecting all the other standardized residuals. Reduce this influence by using the studentized residuals

$$r_i^* = \frac{e_i}{s_{(i)}\sqrt{1 - v_{ii}}}$$

where $s_{(i)}^2$ is the variance estimate from a regression where observation i is excluded. Now e_i and $s_{(i)}$ are independent so that

$$r_i^* \sim t(n-1-(p+1))$$
 when $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

Since $t(f) \to N(0,1)$ when $f \to \infty$, we can consider a studentized residual as unusually large when $|r_i^*| > 2$ ($\approx \lambda_{0.05/2} = 1.96$) and suspiciously large when $|r_i^*| > 3$.

Note: The r_i^* are still not independent of each other, though.

Constant variance?

- \blacktriangleright We assume that $V(\epsilon_i) = \sigma^2$.
- ► Then $V(e_i) = \sigma^2(1 v_{ii})$ is not constant.
- ▶ But the studentized residuals r_i^* have constant variance since they all have the same t-distribution.
- ▶ The t-distribution is symmetrical around 0 so the median of $|r_i^*|$ is the upper quartile $t_{0.25}(f) \approx \lambda_{0.25}$ for large f = n - 1 - (p + 1).
- ▶ The distribution of $|r_i^*|$ is skewed so it is better to look at $\sqrt{|r_i^*|}$ with median $\approx \sqrt{\lambda_{0.25}} \approx 0.82$.
- ▶ If $V(\epsilon_i)$ is constant then $\sqrt{|r_i^*|}$ should vary randomly around 0.82 without systematic trends.
- ▶ Plot $\sqrt{|r_i^*|}$ against \hat{Y}_i and the x-variables to find trends. For visual aide, add horizontal lines at $\sqrt{\lambda_{0.25}}$, $\sqrt{2}$ and $\sqrt{3}$.

Problems Residuals Influence Effect Summary Projection Properties Standardized Studentized Cod

Example: Atlantic cod (from Lecture 2)

The relationship between weight and length in 1045 individual Atlantic cod (Gadus morhua = Torsk) in Sweden (Halland and Gotland).

https://commons.wikimedia.org/w/index.php?curid=8399498

Let's fit a linear model and see what happens...

Using the model where Y = weight and x = length we get

- Systematic non-linear pattern in the residuals.
- Many outliers in the residuals ($|r_i^*| > 3$) when Y_i is large.
- Residual variance is not constant.

Problems Residuals Influence Effect Summary Projection Properties Standardized Studentized Cod

Atlantic cod: the right model. Studentized residuals

Using the model where Y = In weight and x = In length we get

- No systematic pattern in the residuals.
- ▶ A few outliers in the residuals $(|r_i^*| > 3)$ for mid-sized \hat{Y}_i .
- ▶ Residual variance is constant.

Influential observations and outliers

Individual observations, far from the others, can have a large influence on the estimates of β and σ^2 , and thus on predictions and statistical conclusions.

- ▶ Outlier: in some sense inconsistent with the rest (*Y*-wise).
- lacktriangle Outlier in residual: Unexpectedly large (\pm) residual
- ▶ Potentially influential observation: outlier in the space spanned by the columns of **X**.

Causes (and remedies):

- ► Faulty measurement equipment (correct it or leave it out)
- Coding error (correct it or leave it out)
- Wrong or inadequate model (refine the model)
- ➤ an "interesting" (and unexpected) measurement result escaping conventional models (revise theory/knowledge of the phenomenon at study). Might lead to a discovery!

Leverage (outliers w.r.t. X)

- Potentially influential observations are those far from the centre of gravity of X-space. The distance is measured by the leverage v_{ii} , the diagonal elements of \mathbf{P} .
- ▶ It holds that $\frac{1}{n} \le v_{ii} \le \frac{1}{c}$ where $c \ (\ge 1)$ is the number of observations with identical x-values.
- ▶ v_{ii} is smallest when \mathbf{x}_i is the centre of gravity. $\mathbf{p} = \mathbf{1}$: $v_{ii} = \frac{1}{n} \cdot \frac{\sum_{j=1}^{n} (x_j - x_i)^2}{\sum_{i=1}^{n} (x_j - \bar{x})^2}$ with minimum when $x_i = \bar{x}$.
- ▶ If $v_{ii} = 1/c$ then observation i will force the estimated line through itself.
- Leverage above 2(p+1)/n can be considered high.
- An observation having high leverage may not be actually influential!

The relationship between weight and length in 530 individual Northern pike ($Esox\ lucius = G\"{a}dda$) in Sweden (Halland).

Data: IVL Svenska Miljöinstitutet, ivl.se

There is a strange observation of one pike that is claimed to be 478 cm long (the Swedish record is approx 2 meters) that only weighs 708 g. There is something fishy (pun intended) here!

Pike: fit a (log-log) relationship

- Both outlier and potentially influential observation.
 More difficult to spot in higher dimensions.
 Use a combination of plots and influence measures.
- A gigantic studentized residual.
- A linear pattern in all the other residuals.
- Larger residuals for both large and small fitted values.
- ► A gigantic leverage.

Conclusions

- ► The strange fish has a potentially large influence on the estimates.
- ▶ It has a large residual, i.e., it didn't quite manage to make the model fit itself.
- But still made it bad at fitting all the other fish.
- ► How much influence did it actually have?

Cook's distance

Do the potentially influential observations actually have an influence? What happens to the estimates if an observation is removed?

Denote with $\hat{\boldsymbol{\beta}}_{(i)}$ the estimate of $\boldsymbol{\beta}$ when observation i is excluded, and the corresponding prediction as $\hat{\mathbf{Y}}_{(i)} = \mathbf{X}\hat{\boldsymbol{\beta}}_{(i)}$.

Cook's Distance, D_i measures the effect of observation i on β .

$$D_i = \frac{(\hat{\beta}_{(i)} - \hat{\beta})' \cdot (\hat{\text{Var}}(\hat{\beta}))^{-1} \cdot (\hat{\beta}_{(i)} - \hat{\beta})}{(p+1)} = \frac{(\hat{\mathbf{Y}}_{(i)} - \hat{\mathbf{Y}})'(\hat{\mathbf{Y}}_{(i)} - \hat{\mathbf{Y}})}{(p+1)s^2}$$

- No unanimous consensus on how to use D_i . Observation i could be considered to have a large influence on the estimates if $D_i > F_{0.5,\,p+1,\,n-(p+1)}$. If $D_i < 4/n$ it is not a problem. Also, observations that have D_i considerably higher than the rest may be problematic.
- Plot D_i with the limits added for a visual indication.

Caution

- Don't be overzealous in comparing a quantity to an empirical threshold, e.g. automatically classifying an observation according to a limit.
- ▶ Do not take the threshold as absolute truth, when these are coming out of empirical experience.
- Advice: use graphics to examine in closer details the points with values of D that are substantially larger than the rest. Thresholds should only be used to enhance graphical displays.

The strange fish has a gigantic Cook's distance!

Pike: Cook's distance and effect on fitted line

Large impact on the fitted line.

Removing the observation solves the problem! (except for the larger variability for small pike)

A handful of fish still have more impact than the others.

Influence on a specific parameter

The impact of an observation i on a specific element $\hat{\beta}_j$ of vector $\hat{\beta}$ can be assessed using DFBETAS:

$$\mathsf{DFBETAS}_{j(i)} = \frac{\hat{\beta}_j - \hat{\beta}_{j(i)}}{s_{(i)} \sqrt{(\mathbf{X}'\mathbf{X})_{jj}^{-1}}}$$

The change in $\hat{\beta}_j$ $(j=0,\ldots,p)$ caused by observation i can be considered large if $|\mathsf{DFBETAS}_{j(i)}| > 2/\sqrt{n}$ (or $\sqrt{F_{0.5,\,p+1,\,n-(p+1)}}$). With the same words of caution as for D_i .

The long heavy fish has increased the slope, the short heavy fish has decreased it.

Summary

- Model validation, model diagnostics (influence analysis, residual analysis) is more like an art.
- We can't check for any possible thing that can go wrong. In particular, large datasets always have some "strange observation".
- Our model might be correct even if some observation is not well represented/fitted.
- What is important is to be aware of model assumptions, try to verify those, try to fix what can be fixed, spot anomalous/suspicious observations that might (badly) affect inferences and results.
- ► The previous methods are some "recipes" more than formal tests. Use them as a guiding tool but ultimately follow your judgement.