СЕКЦИЯ 4. «Теоретическое и системное программирование»

Бабина Е. (4 курс 3 гр.)

Научный руководитель – асс. Заставной Д.А.

(Кафедра информатики и вычислительного эксперимента)

В докладе представляются результаты исследования влияния денормализации таблиц на эффективность выполнения запросов с операциями соединения в SQL-базах данных.

Бондарев И. В. (маг. 1 г.) Генератор IL-кода для языка программирования PascalABC.NET.

Научный руководитель -доц. Михалкович С. С.

(Кафедра алгебры и дискретной математики)

Создан генератор кода, переводящий семантическое дерево программы в код на языке Intermediate Language (.NET), а также в машинный код. По существу, написан ИНСТРУМЕНТАРИЙ РАЗРАБОТЧИКА КОМПИЛЯТОРОВ для .NET, заменяющий закрытую библиотеку ССІ. Проведен анализ времени генерации кода по сравнению с библиотекой ССІ. Решен ряд вопросов перевода в ІL-код "неудобных" для .NET конструкций – глобальных подпрограмм, вложенных подпрограмм, массивов с нессылочной семантикой и структур, содержащих такие массивы, строк с нессылочной семантикой. Реализован эффективный интерфейс доступа к сущностям во внешних сборках, позволяющий ссылаться на них узлам семантического дерева.

Бушков М.А. (студент, 4 к.) Кэширующий демон cached и его применение в ОС FreeBSD

Научный руководитель – доц. Букатов А.А.

Представлена реализация кэширующего демона (cached), встраиваемого в подсистему nsswitch OC FreeBSD. Рассмотрены различные принципы организации кэширования данных, а также вопросы использования cached в задаче централизованного хранения информации о пользователях и группах.

Водолазов Н. Н. (маг. 1 г.) Middle-end компилятор языка программирования PascalABC.NET.

Научный руководитель -доц. Михалкович С. С.

(Кафедра алгебры и дискретной математики)

Создан интерфейс семантического дерева программы, не зависящий от конкретного языка программирования, а также от целевой платформы. Реализован перевод из синтаксического дерева программы на языке PascalABC.NET в семантическое дерево. Семантическое дерево может сериализовывать себя в файл с последующим восстановлением в различные форматы, а также может быть преобразовано с помощью специализированных Visitopoв в другие внутренние представления. Реализована также сменная прослойка между семантическим деревом и генератором кода, помогающая генерации целевого кода.

Воробьев Д.С. (маг., 2 г.) Исследования по развитию сетевых файловых систем Научный руководитель — доц. Букатов А.А.

Проведено структурное исследование различных распределенных файловых систем (РФС). Представлены критерии применимости систем для решения различных задач хранения данных. Реализована программа, упрощающая задачи установки, настройки РФС PVFS2, а также сбора и анализа информации о ее работе.

Гуфан К. Ю. (4 курс, 1 группа) Преобразования программных циклов содержащих условные операторы.

Научный руководитель – проф. Штейнберг Б. Я.

(Кафедра алгебры и дискретной математики)

Разработано семейство преобразований циклов содержащих в своём теле условные операторы. После применения преобразования пространство итераций разбивается на независимые подпространства, что позволяет ускорить обработку цикла на параллельной вычислительной системе. Преобразования реализованы для линейного класса программ и являются частью разработанной на кафедре алгебры «Открытой Распараллеливающей Системы (OPC)».

Елисеев А.С., (3к., 2гр.). Программная поддержка ментального программирования

Научный руководитель - к.т.н. доцент Литвиненко А.Н.

(Кафедра «Информатики и вычислительного эксперимента»)

В 1995 году Чарльз Саймони — ведущий разработчик таких проектов Microsoft как Word и Excel - озвучил доклад, где описывалась принципиально новая среда разработки, основа которой — отказ от традиционного плоского представления программного кода. В данном докладе предлагается способ использования полезных качеств новой среды с сохранением преимуществ традиционного представления программы.

Колоколов И.А., (2 г. маг.). Модульное расширение языков программирования на примере VFP

Научный руководитель – к.т.н. доцент Литвиненко А.Н.

Предлагается использовать модульные расширения языков программирования при разработке семейств программных систем для автоматизации и упрощения создания и сопровождения этих систем. Приводятся примеры модульных расширений для VFP.

Крайнов Е. А. (маг. 1 г.) Разработка дистрибутива операционной системы QNX для целевых систем промышленного назначения функционирующих на основе микрокомпьютеров Fastwell.

Научный руководитель – доц. Букатов А.А.

(Кафедра информатики и вычислительного эксперимента)

Задачей и и результатом работы является разработка средств построения дистрибутив операционной системы QNX, работающих на аппаратной платформе Fastwell (т.е. удовлетворяющий всем требованиям предоставляемым этой платформой: емкости флеш-карты, оперативной памяти, поддержка сетевых и сот интерфейсов), обеспечивающих необходимую надежность и функциональность, но в тоже время обладающих лишь необходимым минимальным набором функций необходимых для конкретной задачи. При этом должен обеспечиваться некоторый уровень универсальности, т.е. возможность самоконфигурироваться в зависимости от наличия или отсутствия различных аппаратных ресурсов. Должна поддерживаться возможность установки на целевую систему из ОС Windows посредством сетевых и сот интерфейсов.

Морылев Р.Иг. (4 курс, 1 группа) Динамический граф информационных зависимостей и его применение для распараллеливания программ.

Научный руководитель –проф. Штейнберг Б. Я.

(Кафедра алгебры и дискретной математики)

Разработано и реализовано построение динамического графа информационных зависимостей программ. Для каждой дуги обычного графа информационных зависимостей строится предикат, зависящий от внешних переменных гнезда цикла (внешние переменные – переменные значения которых неизвестны во время компиляции). Построенный предикат позволяет во время выполнения программы определить наличие или отсутствие дуги зависимости. Это невозможно сделать в момент компиляции, из-за неопределенности значений

внешних переменных. Создано преобразование программ, позволяющее использовать динамический граф для выполнения других преобразований.

Прокопенко А. (5 к., 2 гр.). Обнаружение сетевых атак и низкоуровневое блокирование пакетов средствами ОС Windows

Научный руководитель – доц. Нестеренко В.А.

Петькиева Татьяна Анатольевна. Разработка системы тестирования в Web - среде Научный руководитель — доц. Крицкий С. П.

Шилов М. В. (маг. 2 г.) Преобразование программных циклов с помощью неунимодулярных преобразований.

Научный руководитель – проф. Штейнберг Б. Я.

(Кафедра алгебры и дискретной математики)

Представлена программная реализация неунимодулярные преобразования для Открытой распараллеливающей системы. Данное преобразование используется как базовое для ряда оптимизирующих преобразований.

Ширшин И.С., (2 г. маг.). Моделирование сложных программных объектов на примере БД MS SQL

Научный руководитель – к.т.н. доцент Литвиненко А.Н.

Предлагается использовать специализированную модель для построения базы данных, повышающую качество ее разработки и сопровождения. Описывается пример xml-модели для БД MS SQL и возможности работы с такой моделью.