Cloud Atlas An LstmEncoder for UHECR AirShowers

G. Becuzzi L. Papalini

July 2022

Table of Contents

Introduction

2 Preprocessing

Neural Network building

Table of Contents

Introduction

2 Preprocessing

Neural Network building

UHECR Airshower

When *Ultra High Energy Cosmic Rays* (UHECR) enters the atmosphere they produce a particle cascade.

Detection: grid of water-Cherenkov ground based detectors.

Prediction: X_0 height at which the shower forms.

Dataset, first glance

Dataset: 10⁵ simulated events:

- 9x9 grid of detectors
- most intense at center
- 80 frames of time series (40 MHz sampling rate)
- 1 frame of times of first arrival

Single record shape: (80 + 1, 81)

pd4ml package splits by default in 70% train 30% test

Table of Contents

Introduction

2 Preprocessing

Neural Network building

Split the dataset

Dataset was already split in test and train.

We put it all back together, shuffled it and divided with the following percentage:

- 70% train
- 20% test
- 10% validation

For the design of the net it is convenient using numpy structured arrays

Split the dataset: funky_dtype

All data relative to a single event is clustered in a single numpy object, transformation is:

$$(80+1,81) \longrightarrow [("toa",(9,9,1)),("timeseries",(80,9,9))]$$

Data can be accessed "as a dictionary", depending on what is needed.

DataFeeder class

Ensures an easy way to train the subnets separately Class DataFeeder main features:

- shuffles data randomly
- input fields can be specified
- can be extended to more complex training strategies
- returns a generator

Using a generator (keras.utils.Sequence)

- inherit multiprocessing features
- has default callbacks
- avoids memory overload

FeederProf(DataFeeder) class

Curriculum learning

Using a pre-trained network data can be "scored" and then sorted in ascending order of difficulty

(work in progress) This can lead to a learning speed-up and improvements in resolution

Caveat: this training strategy is not well suited (conceptually at least) for regression tasks, since it is not clear what a "difficult" sample would look like.

Data Augmentation

Dataset has a lack of high events (X > 850m) so a first network training showed a worse resolution for samples corresponding to this range

Strategy

Increase the number of samples that overcome a certain height threshold using the symmetries of the problem

Data is augmented using

- flip up-down
- flip left-right
- diagonal flip
- rotation of 90°

Resolution

The reference article suggests using the resolution:

Resolution

defined as the standard deviation of the distribution given by the difference between the predictions and the actual values of X_{max}

We point out that

$$\sigma^2 = \frac{1}{N} \sum_{i} (\delta_i - \bar{\delta})^2$$

is a sensible estimator of "how much the net has gone wrong" only if $\bar{\delta}=0$, for which the adopted resolution is equal to the *RMSE* of the distribution

$$RMSE^2 = \frac{1}{N} \sum_{i} (x_i - \hat{x}_i)^2$$

Since (on a typical train) $\bar{\delta} \approx 10 \text{m}$ we preferred the RMSE.

Table of Contents

Introduction

2 Preprocessing

Neural Network building

Overview on the network

The assumption that lead to this design is that from the time of arrival matrix it is possible to infer some kind of "homogeneous" shower parameters (incidence angle, spread, etc.) while the time series can be processed by a recurrent network.

Encoder for time of arrivals

LSTM

LSTM (Long Short Term Memory) cell is a variant of a typical recurrent RNN cell. It is able to learn long-term dependencies that brings along in a hidden state.

LSTM for the time series

Subnets performance

Concatente + dense layers

Subnets train freezing

Subnets train freezing

Network's output

```
import numpy as np

def incmatrix(genl1,genl2):
    m = len(genl1)
    n = len(genl2)
    M = None #to become the incidence matrix
    string = "ciao"
```

Hyperparameters tuning

Whole Network performance

Test setup on CircleCl

Danke e bibliography

Danke Schon