A Book of Abstract Algebra (2nd Edition)

Chapter 24, Problem 2EI

Bookmark

Show all steps: ON

Problem

Let A be an integral domain. By the closing part of Chapter 20, every integral domain can be extended to a "field of quotients." Thus, A[x] can be extended to a field of polynomial quotients, which is denoted by A(x). Note that A(x) consists of all the fractions a(x)/b(x) for a(x) and $b(x) \neq 0$ in A[x], and these fractions are added, subtracted, multiplied, and divided in the customary way.

Using part 1, explain why there is an infinite field of characteristic p, for every prime p.

Step-by-step solution

Step 1 of 1

Let p is prime then

$$_{p}(X) = \left\{ \frac{f(X)}{g(X)} : f, g \in _{p}[X], g \neq 0 \right\}$$

Rational functions in X with coefficients in $_{p}$ (we can assume $_{p}=/p$)

The field $_{p}(X)$ is infinite because, it contains $1, X, X^{2},...$ all distinct and characteristic of $_{p}(X)$ is p because $_{p}$ has characteristic p

 \Rightarrow There is an infinite field of characteristic p, for every prime p.

Comment