miRNA Differential Expression Analysis Pipeline

A comprehensive R-based pipeline for analyzing miRNA differential expression using edgeR, with enhanced visualizations and modular structure.

Overview

This pipeline provides a complete workflow for miRNA differential expression analysis, including:

- · Quality control and filtering
- Differential expression testing
- Multiple visualization types (heatmaps, volcano plots, MA plots, BCV plots)
- Statistical summaries and reports
- Modular design for easy customization
- Simplified execution via wrapper script

Requirements

R Version

• R > = 4.0.0

Required R Packages

The pipeline will automatically install missing packages, but you can install them manually:

File Structure

```
project directory/
   modules/
      📊 setup_packages.r # Package installation and loading
      📊 data_handling.r # Data loading and validation
      📊 normalization_filtering.r # Data filtering and normalization
      📊 diagnostic_module.r # BCV plots and diagnostic functions
      📊 differential expression.r # Core DE analysis functions
      📊 heatmap module.r # Heatmap generation functions
      📊 volcano plots module.r # Volcano plot functions
      📊 ma plots module.r # MA plot functions
      📊 venn diagram module.r # Venn diagram functions
      \overline{_{
m II}} summary_module.r # Summary statistics and reporting
      📊 main analysis.r # Main analysis workflow
      📊 main analysis module.r # Alternative analysis wrapper
   📊 run analysis.R # Minimal execution script (sources main analysis.R)
   sample info.csv # Sample metadata (REQUIRED)
   my merged results reorganized.tsv # Count matrix (REQUIRED)
   mirna readme.md # This file
   mirna_readme.pdf # PDF version of documentation
```

Input Files

1. Sample Information File (sample_info.csv)

Required columns:

- **Sample:** Sample identifiers (must match count matrix column names)
- **Group:** Experimental group (e.g., "Young_Leaves", "Mature_Roots")

Example format:

```
Sample, Group
Sample1, Young_Leaves
Sample2, Young_Leaves
Sample3, Mature_Leaves
Sample4, Mature_Leaves
Sample5, Young_Roots
Sample6, Mature_Roots
```

2. Count Matrix (my_merged_results_reorganized.tsv)

- Tab-separated file with miRNA names as row names
- Sample names as column headers (matching sample_info.csv)
- Raw count values

Example format:

miR-001 150 200 180 120 miR-002 300 250 400 350
miR-002 300 250 400 350
miR-003 50 80 60 45

Execution Methods

Method 1: Simple Execution (Recommended)

```
# 1. Set your working directory to the project folder
setwd("path/to/your/project")
```

```
# 2. Run the minimal execution script which sources the main analysis source("run_analysis.R")
```

Method 2: Direct Module Execution

```
# Alternatively, you can source the main analysis module directly
source("modules/main analysis.R")
```

Method 3: Custom Workflow

```
# For advanced users: Create your own workflow by combining modules
source("modules/setup_packages.r")
source("modules/data_handling.r")
source("modules/differential_expression.r")
source("modules/volcano_plots_module.r")

# Load and process data
dge_data <- load_and_validate_data("sample_info.csv", "counts.tsv")
de_results <- perform_differential_expression(dge_data)
create_volcano_plots(de_results)</pre>
```

Analysis Parameters (Configured in main_analysis.R)

```
# Statistical thresholds
STAT_THRESHOLD_TYPE <- "pvalue" # "FDR" or "pvalue"
FDR_THRESHOLD <- 0.05
PVALUE_THRESHOLD <- 0.05
LOGFC_THRESHOLD <- 1

# Filtering parameters
MIN_CPM <- 5  # Minimum CPM for filtering
MIN_SAMPLES <- 3  # Minimum samples with CPM > MIN_CPM

# Visualization
TOP_N_HEATMAP <- 500  # Top N genes for heatmaps
TOP_N_VOLCANO_LABELS <- 10  # Top genes to label in volcano plots</pre>
```

Output Files

Diagnostic Plots

- BCV plots comprehensive.png Dispersion analysis
- MA plots [threshold].png MA plots

Expression Heatmaps

- global_expression_heatmap_fixed.png Global patterns
- DEM heatmap [comparison] [threshold].png DEM-specific

Statistical Plots

- volcano [comparison] [threshold].png Volcano plots
- venn diagram DEMs.png Venn diagrams (when applicable)

Data Tables

- DE_results_[comparison].txt Detailed results
- normalized_counts_CPM.txt Normalized expression values

Reports

- session info.txt Environment details
- comprehensive results summary.txt Analysis summary

Troubleshooting

Common Issues

File not found errors

- Verify file paths in run_analysis.R
- · Check working directory is set correctly

Sample mismatch errors

- Ensure sample names match exactly between files
- Check for hidden characters or spaces

No DEMs found

- Adjust thresholds in main_analysis.R
- Reduce MIN_CPM or MIN_SAMPLES

Memory issues

- Decrease TOP_N_HEATMAP value
- Filter more aggressively before analysis

Version History

- v4.1: Simplified execution with wrapper script (June 2025)
- **v4.0:** Complete modular redesign (May 2025)
- v3.1: Added comprehensive documentation (March 2025)
- v3.0: Enhanced visualizations (January 2025)

Compatible with: $R \ge 4.0.0$, edge $R \ge 3.34.0$