# $12n_{0115} \ (K12n_{0115})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle 152u^{13} - 2309u^{12} + \dots + 4348b + 7399, \ -4859u^{13} + 22201u^{12} + \dots + 4348a - 33463, \\ u^{14} - 5u^{13} + 5u^{12} + 10u^{11} - 13u^{10} - 15u^9 - 5u^8 + 77u^7 - 45u^6 - 64u^5 + 60u^4 + 21u^3 - 41u^2 + 14u - 1 \rangle \\ I_2^u &= \langle 2a^2u - a^2 + au + b - a + 2u, \ a^3 - a^2u - a^2 + 2au + 4a - 2u - 3, \ u^2 + u - 1 \rangle \\ I_3^u &= \langle u^2 + b - u - 2, \ a, \ u^3 - u^2 - 2u + 1 \rangle \end{split}$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 23 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $<sup>^2</sup>$  All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle 152u^{13} - 2309u^{12} + \dots + 4348b + 7399, \ -4859u^{13} + 22201u^{12} + \dots + 4348a - 33463, \ u^{14} - 5u^{13} + \dots + 14u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.11753u^{13} - 5.10603u^{12} + \dots - 32.0340u + 7.69618 \\ -0.0349586u^{13} + 0.531049u^{12} + \dots + 9.42157u - 1.70170 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.11753u^{13} - 5.10603u^{12} + \dots - 32.0340u + 7.69618 \\ -0.393514u^{13} + 2.11431u^{12} + \dots + 15.0465u - 2.18330 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.332567u^{13} - 1.32498u^{12} + \dots - 10.1125u + 3.24448 \\ -0.299908u^{13} + 1.56900u^{12} + \dots + 9.10350u - 1.05934 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.632475u^{13} - 2.89397u^{12} + \dots - 19.2160u + 4.30382 \\ -0.299908u^{13} + 1.56900u^{12} + \dots + 9.10350u - 1.05934 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.632475u^{13} - 2.89397u^{12} + \dots - 19.2160u + 4.30382 \\ 0.00666973u^{13} + 0.252300u^{12} + \dots + 7.25345u - 1.30198 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} + 3u^{2} - 1 \\ u^{6} - 4u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-\frac{11021}{2174}u^{13} + \frac{53061}{2174}u^{12} + \dots + \frac{369277}{2174}u \frac{54785}{2174}u^{12} + \dots$

#### (iv) u-Polynomials at the component

| Crossings                            | u-Polynomials at each crossing          |
|--------------------------------------|-----------------------------------------|
| $c_1$                                | $u^{14} + 18u^{13} + \dots + 1086u + 1$ |
| $c_2, c_4$                           | $u^{14} - 6u^{13} + \dots - 34u - 1$    |
| $c_{3}, c_{6}$                       | $u^{14} - 3u^{13} + \dots - 28u + 8$    |
| $c_5, c_9$                           | $u^{14} + 2u^{13} + \dots + 352u + 64$  |
| $c_7, c_8, c_{10} \\ c_{11}, c_{12}$ | $u^{14} - 5u^{13} + \dots + 14u - 1$    |

### (v) Riley Polynomials at the component

| Crossings                            | Riley Polynomials at each crossing          |
|--------------------------------------|---------------------------------------------|
| $c_1$                                | $y^{14} - 38y^{13} + \dots - 1163634y + 1$  |
| $c_2, c_4$                           | $y^{14} - 18y^{13} + \dots - 1086y + 1$     |
| $c_3, c_6$                           | $y^{14} - 15y^{13} + \dots - 2512y + 64$    |
| $c_5, c_9$                           | $y^{14} + 30y^{13} + \dots - 87040y + 4096$ |
| $c_7, c_8, c_{10} \\ c_{11}, c_{12}$ | $y^{14} - 15y^{13} + \dots - 114y + 1$      |

### (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.847247 + 0.340274I |                                       |                    |
| a = -1.07919 + 1.10825I   | 4.35404 + 2.18891I                    | 7.66563 + 1.41199I |
| b = -0.214655 + 0.076845I |                                       |                    |
| u = -0.847247 - 0.340274I |                                       |                    |
| a = -1.07919 - 1.10825I   | 4.35404 - 2.18891I                    | 7.66563 - 1.41199I |
| b = -0.214655 - 0.076845I |                                       |                    |
| u = 0.683451 + 0.439394I  |                                       |                    |
| a = -0.372092 - 1.119180I | -1.117970 + 0.457834I                 | 6.03602 - 2.75865I |
| b = -0.54173 - 1.61181I   |                                       |                    |
| u = 0.683451 - 0.439394I  |                                       |                    |
| a = -0.372092 + 1.119180I | -1.117970 - 0.457834I                 | 6.03602 + 2.75865I |
| b = -0.54173 + 1.61181I   |                                       |                    |
| u = 1.293890 + 0.440522I  |                                       |                    |
| a = 0.947194 - 0.804395I  | 1.31890 + 3.26489I                    | 6.50646 - 2.86357I |
| b = -0.03997 - 1.45852I   |                                       |                    |
| u = 1.293890 - 0.440522I  |                                       |                    |
| a = 0.947194 + 0.804395I  | 1.31890 - 3.26489I                    | 6.50646 + 2.86357I |
| b = -0.03997 + 1.45852I   |                                       |                    |
| u = -0.79945 + 1.23640I   |                                       |                    |
| a = 0.51219 + 1.76331I    | -13.41460 - 4.06288I                  | 3.37939 + 1.99626I |
| b = -0.10570 + 1.90296I   |                                       |                    |
| u = -0.79945 - 1.23640I   |                                       |                    |
| a = 0.51219 - 1.76331I    | -13.41460 + 4.06288I                  | 3.37939 - 1.99626I |
| b = -0.10570 - 1.90296I   |                                       |                    |
| u = 0.485579              |                                       |                    |
| a = -0.359180             | 0.739738                              | 13.5200            |
| b = 0.426392              |                                       |                    |
| u = -1.59630              |                                       |                    |
| a = 0.385525              | 7.97868                               | 20.7070            |
| b = -1.79529              |                                       |                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = 1.74684 + 0.37580I    |                                       |                    |
| a = -0.709908 + 0.913168I | -5.06340 + 10.16720I                  | 5.53186 - 3.95031I |
| b = 0.34316 + 1.93469I    |                                       |                    |
| u = 1.74684 - 0.37580I    |                                       |                    |
| a = -0.709908 - 0.913168I | -5.06340 - 10.16720I                  | 5.53186 + 3.95031I |
| b = 0.34316 - 1.93469I    |                                       |                    |
| u = 1.85818               |                                       |                    |
| a = 0.512193              | 15.4110                               | 1.86040            |
| b = 0.340829              |                                       |                    |
| u = 0.0975686             |                                       |                    |
| a = 4.86506               | -1.21825                              | -10.3270           |
| b = -0.854160             |                                       |                    |

$$I_2^u = \langle 2a^2u - a^2 + au + b - a + 2u, \ a^3 - a^2u - a^2 + 2au + 4a - 2u - 3, \ u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2a^{2}u + a^{2} - au + a - 2u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -2a^{2}u + a^{2} - 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a^{2}u \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{2}u \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a^{2}u \\ -2a^{2}u + a^{2} - 2u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $19a^2u 13a^2 + 9au a + 8u 9$

#### (iv) u-Polynomials at the component

| Crossings                | u-Polynomials at each crossing |
|--------------------------|--------------------------------|
| $c_1, c_3$               | $(u^3 - u^2 + 2u - 1)^2$       |
| $c_2$                    | $(u^3 + u^2 - 1)^2$            |
| $C_4$                    | $(u^3 - u^2 + 1)^2$            |
| $c_5, c_9$               | $u^6$                          |
|                          | $(u^3 + u^2 + 2u + 1)^2$       |
| $c_7, c_8$               | $(u^2 - u - 1)^3$              |
| $c_{10}, c_{11}, c_{12}$ | $(u^2+u-1)^3$                  |

# (v) Riley Polynomials at the component

| Crossings                            | Riley Polynomials at each crossing |
|--------------------------------------|------------------------------------|
| $c_1, c_3, c_6$                      | $(y^3 + 3y^2 + 2y - 1)^2$          |
| $c_2, c_4$                           | $(y^3 - y^2 + 2y - 1)^2$           |
| $c_5, c_9$                           | $y^6$                              |
| $c_7, c_8, c_{10} \\ c_{11}, c_{12}$ | $(y^2 - 3y + 1)^3$                 |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = 0.618034              |                                       |                    |
| a = 0.922021              | -0.126494                             | -0.918090          |
| b = -1.08457              |                                       |                    |
| u = 0.618034              |                                       |                    |
| a = 0.34801 + 2.11500I    | 4.01109 - 2.82812I                    | 3.00413 + 7.79836I |
| b = -0.075747 + 0.460350I |                                       |                    |
| u = 0.618034              |                                       |                    |
| a = 0.34801 - 2.11500I    | 4.01109 + 2.82812I                    | 3.00413 - 7.79836I |
| b = -0.075747 - 0.460350I |                                       |                    |
| u = -1.61803              |                                       |                    |
| a = -0.132927 + 0.807858I | 11.90680 + 2.82812I                   | 7.89941 - 3.17745I |
| b = 0.198308 + 1.205210I  |                                       |                    |
| u = -1.61803              |                                       |                    |
| a = -0.132927 - 0.807858I | 11.90680 - 2.82812I                   | 7.89941 + 3.17745I |
| b = 0.198308 - 1.205210I  |                                       |                    |
| u = -1.61803              |                                       |                    |
| a = -0.352181             | 7.76919                               | -21.8890           |
| b = 2.83945               |                                       |                    |

III. 
$$I_3^u = \langle u^2 + b - u - 2, \ a, \ u^3 - u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u^{2} + u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ -u^{2} + u + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u^{2} + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $-8u^2 + 7u + 30$

#### (iv) u-Polynomials at the component

| Crossings                       | u-Polynomials at each crossing |
|---------------------------------|--------------------------------|
| $c_1, c_2$                      | $(u-1)^3$                      |
| $c_3, c_6$                      | $u^3$                          |
| $c_4$                           | $(u+1)^3$                      |
| $c_5, c_7, c_8$                 | $u^3 + u^2 - 2u - 1$           |
| $c_9, c_{10}, c_{11} \\ c_{12}$ | $u^3 - u^2 - 2u + 1$           |

# (v) Riley Polynomials at the component

| Crossings                                      | Riley Polynomials at each crossing |
|------------------------------------------------|------------------------------------|
| $c_1, c_2, c_4$                                | $(y-1)^3$                          |
| $c_3, c_6$                                     | $y^3$                              |
| $c_5, c_7, c_8$ $c_9, c_{10}, c_{11}$ $c_{12}$ | $y^3 - 5y^2 + 6y - 1$              |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_3^u$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| u = -1.24698         |                                       |            |
| a = 0                | 4.69981                               | 8.83150    |
| b = -0.801938        |                                       |            |
| u = 0.445042         |                                       |            |
| a = 0                | -0.939962                             | 31.5310    |
| b = 2.24698          |                                       |            |
| u = 1.80194          |                                       |            |
| a = 0                | 15.9794                               | 16.6380    |
| b = 0.554958         |                                       |            |

IV. u-Polynomials

| Crossings                | u-Polynomials at each crossing                                              |
|--------------------------|-----------------------------------------------------------------------------|
| $c_1$                    | $((u-1)^3)(u^3-u^2+2u-1)^2(u^{14}+18u^{13}+\cdots+1086u+1)$                 |
| $c_2$                    | $((u-1)^3)(u^3+u^2-1)^2(u^{14}-6u^{13}+\cdots-34u-1)$                       |
| <i>c</i> <sub>3</sub>    | $u^{3}(u^{3} - u^{2} + 2u - 1)^{2}(u^{14} - 3u^{13} + \dots - 28u + 8)$     |
| $c_4$                    | $((u+1)^3)(u^3-u^2+1)^2(u^{14}-6u^{13}+\cdots-34u-1)$                       |
| <i>C</i> <sub>5</sub>    | $u^{6}(u^{3} + u^{2} - 2u - 1)(u^{14} + 2u^{13} + \dots + 352u + 64)$       |
| $c_6$                    | $u^{3}(u^{3} + u^{2} + 2u + 1)^{2}(u^{14} - 3u^{13} + \dots - 28u + 8)$     |
| $c_7, c_8$               | $((u^2 - u - 1)^3)(u^3 + u^2 - 2u - 1)(u^{14} - 5u^{13} + \dots + 14u - 1)$ |
| <i>c</i> <sub>9</sub>    | $u^{6}(u^{3} - u^{2} - 2u + 1)(u^{14} + 2u^{13} + \dots + 352u + 64)$       |
| $c_{10}, c_{11}, c_{12}$ | $((u^2+u-1)^3)(u^3-u^2-2u+1)(u^{14}-5u^{13}+\cdots+14u-1)$                  |

### V. Riley Polynomials

| Crossings                           | Riley Polynomials at each crossing                                              |
|-------------------------------------|---------------------------------------------------------------------------------|
| $c_1$                               | $((y-1)^3)(y^3+3y^2+2y-1)^2(y^{14}-38y^{13}+\cdots-1163634y+1)$                 |
| $c_2, c_4$                          | $((y-1)^3)(y^3-y^2+2y-1)^2(y^{14}-18y^{13}+\cdots-1086y+1)$                     |
| $c_3, c_6$                          | $y^{3}(y^{3} + 3y^{2} + 2y - 1)^{2}(y^{14} - 15y^{13} + \dots - 2512y + 64)$    |
| $c_5, c_9$                          | $y^{6}(y^{3} - 5y^{2} + 6y - 1)(y^{14} + 30y^{13} + \dots - 87040y + 4096)$     |
| $c_7, c_8, c_{10}$ $c_{11}, c_{12}$ | $((y^2 - 3y + 1)^3)(y^3 - 5y^2 + 6y - 1)(y^{14} - 15y^{13} + \dots - 114y + 1)$ |