CSL 101- Discrete Mathematics Indian Institute of Technology Bhilai Tutorial Sheet 7

- 1. Give an example of a non abelian group with 6 elements.
- 2. Let (G, *), and (H, #) be two groups. Consider the set $G \times H$ and a binary operation Δ on $G \times H$ defined as $(g_1, h_1)\Delta(g_2, h_2) = (g_1 * g_2, h_1 \# h_2)$. Show that $(G \times H, \Delta)$ is a group.
- 3. Let p, q, and r be the propositions: p: You have the flu. q: You miss the final examination. r: You pass the course. Express each of these propositions as an English sentence. Also, find the contra-positive, converse, and inverse of each applicable proposition.
 - (a) $p \to q$
 - (b) $\neg q \rightarrow r$
 - (c) $q \rightarrow \neg r$
 - (d) $p \lor q \lor r$
 - (e) $(p \to \neg r) \lor (q \to \neg r)$
 - (f) $(p \wedge q) \vee (\neg q \wedge r)$
- 4. Explain, without using a truth table, why $(p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$ is true when p, q, and r have the same truth value and it is false otherwise.
- 5. Explain, without using a truth table, why $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$ is true when at least one of p, q, and r is true and at least one is false, but is false when all three variables have the same truth value.
- 6. Show that each of these conditional statements is a tautology by using truth tables and developing a series of logical equivalences.
 - (a) $[\neg p \land (p \lor q)] \to q$
 - (b) $[(p \to q) \land (q \to r)] \to (p \to r)$
 - (c) $[p \land (p \rightarrow q)] \rightarrow q$
 - (d) $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$

- (e) $(p \land q) \rightarrow p$
- (f) $p \to (p \lor q)$
- (g) $\neg p \to (p \to q)$
- (h) $(p \land q) \rightarrow (p \rightarrow q)$
- (i) $\neg (p \to q) \to p$
- (j) $\neg (p \to q) \to \neg q$
- 7. Show that the following are logically equivalent:
 - (a) $p \leftrightarrow q$ and $(p \land q) \lor (\neg p \land \neg q)$
 - (b) $\neg (p \land q)$ and $p \rightarrow \neg q$
 - (c) $(p \to q) \to (r \to s)$ and $(p \to r) \to (q \to s)$
 - (d) $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$
 - (e) $\neg (p \oplus q)$ and $p \leftrightarrow q$
 - (f) $\neg (p \leftrightarrow q)$ and $\neg p \leftrightarrow q$
 - (g) $(p \to q) \land (p \to r)$ and $p \to (q \land r)$
 - (h) $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$
 - (i) $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$
 - (j) $(p \to r) \lor (q \to r)$ and $(p \land q) \to r$
 - (k) $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$
 - (l) $p \leftrightarrow q$ and $\neg p \leftrightarrow \neg q$
- 8. Determine whether each of these compound propositions is satisfiable.
 - (a) $(p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$
 - (b) $(p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q)$
 - (c) $(p \leftrightarrow q) \land (\neg p \leftrightarrow q)$
 - (d) $(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg s) \land (p \lor \neg q \lor \neg s) \land (p \lor q \lor \neg r) \land (p \lor \neg r \lor \neg s)$
 - (e) $(p \lor q \lor r) \land (p \lor \neg q \lor \neg s) \land (q \lor \neg r \lor s) \land (\neg p \lor r \lor s) \land (\neg p \lor q \lor \neg s) \land (\neg p \lor \neg q \lor \neg r)$