Awake Networks Challenge

Ramkishore Swaminathan

Overview

- Problem Statement
- Data Preprocessing
- Intuition
- Multi Layer Perceptron
- LSTM

Problem Statement

- FizzBuzz
 - Divisible by 3 Fizz
 - Divisible by 5 Buzz
 - o Divisible by 15 FizzBuzz
- Build a Machine Learning Model to generate FizzBuzz for numbers from 1-1000
 - Features of ML model cannot test divisibility by 3 or 5
 - Training Data
 - 800 random numbers between 1 and 1000
 - Testing Data
 - Remaining 200 numbers

Data Preprocessing

- Input Representation
 - Fix number of digits based on maximum number (1000)
 - Convert numbers to binary representation
 - Prepend with 0s if less than 10 digits
 - Eg: Representation of 3 will be 0000000011
- Output Class Representation
 - One Hot Encoding
 - FizzBuzz (0, 0, 0, 1)
 - Buzz (0, 0, 1, 0)
 - Fizz (0, 1, 0, 0)
 - Others (1, 0, 0, 0)

Intuition

- Divisibility cannot be used as a feature
 - Most obvious feature
- Not possible to hand-pick features for numbers
- Utilize Supervised Feature Learning
 - o Relationship between input and output learnt by the model on its own
- Multilayer Perceptron (Feed Forward Neural Network)
- LSTM (Recurrent Neural Network)

Multi Layer Perceptron

Combination of Hyper Parameters experimented

of Hidden Layers 1, 2, 3, 4, 5
of Hidden Nodes 100, 200
of Epochs 10000
Batch Size 100

o Dropout 0, 0.5

Optimizer
 RMSProp, AdaGrad, SGD

Activation Function tanh, ReLU

Cost Function
 Softmax Cross Entropy

- None of the combinations were able to make out the differences between the different classes
 - Every model predicted one class for all the test instances as shown in the confusion matrix - (next slide)

Multi Layer Perceptron

Model Configuration

- 5 Layers
- 100 Hidden Nodes
- 10000 Epochs
- 100 Batch Size
- No Dropout
- SGD Optimizer
- tanh Activation
- Softmax Cross Entropy Cost Function

LSTM

- Long Short Term Memory Recurrent Neural Networks
 - Learn long term dependencies
 - Remove or add information to the Cell state based on gates
- Combination of Hyper Parameters experimented

```
    # of Hidden Layers
    # of Hidden Nodes
    1, 2, 3, 4, 5, 6
    100, 200, 300
```

of Epochs 10000
 Batch Size 100

o Dropout 0, 0.25, 0.5

Optimizer
 RMSProp, AdaGrad, SGD

Activation Function tanh, ReLU

LSTM outperformed Multi Layer Perceptron by a huge margin

LSTM

Model Configuration

- 5 Layers
- 300 Hidden Nodes
- 10000 Epochs
- 100 Batch Size
- 0.25 Dropout
- RMSProp Optimizer
- tanh Activation
- Softmax Cross Entropy Cost Function

Accuracy - 100%