# Машинное обучение, ФКН ВШЭ Семинар 13

29 января 2021 г.

# 1 Оптимизационные задачи и теорема Куна-Таккера

Рассмотрим задачу минимизации

$$\begin{cases}
f_0(x) \to \min_{x \in \mathbb{R}^d} \\
f_i(x) \leqslant 0, \quad i = 1, \dots, m, \\
h_i(x) = 0, \quad i = 1, \dots, p.
\end{cases}$$
(1.1)

Если ограничения в этой задаче отсутствуют, то имеет место  $neo6xodumoe\ ycnoeue\ экстремума$ : если в точке x функция  $f_0$  достигает своего минимума, то ее градиент в этой точке равен нулю. Значит, для решения задачи безусловной оптимизации

$$f_0(x) \to \min$$

достаточно найти все решения уравнения

$$\nabla f_0(x) = 0,$$

и выбрать то, в котором достигается наименьшее значение. Для решения условных задач оптимизации требуется более сложный подход, который мы сейчас и рассмотрим.

### §1.1 Лагранжиан

Задача условной оптимизации (1.1) эквивалентна следующей безусловной задаче:

$$f_0(x) + \sum_{i=1}^m I_-(f_i(x)) + \sum_{i=1}^p I_0(h_i(x)) \to \min_x,$$

где  $I_{-}(x)$  — индикаторная функция для неположительных чисел:

$$I_{-}(x) = \begin{cases} 0, & x \leqslant 0 \\ \infty, & x > 0, \end{cases}$$

а  $I_0(x)$  — индикаторная функция для нуля:

$$I_0(x) = \begin{cases} 0, & x = 0 \\ \infty, & x \neq 0, \end{cases}$$

Такая переформулировка, однако, не упрощает задачу — индикаторные функции являются кусочно-постоянными и могут быть оптимизированы лишь путем полного перебора решений.

Заменим теперь индикаторные функции на их линейные аппроксимации:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x),$$

где  $\lambda_i \geqslant 0$ . Полученная функция называется лагранжианом задачи (1.1). Числа  $\lambda_i$  и  $\nu_i$  называются множителями Лагранжа или двойственными переменными.

Конечно, линейные аппроксимации являются крайне грубыми, однако их оказывается достаточно, чтобы получить необходимые условия на решение исходной задачи.

#### §1.2 Двойственная функция

 $\mathcal{L}$ войственной функцией для задачи (1.1) называется функция, получающаяся при взятии минимума лагранжиана по x:

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu).$$

Можно показать, что данная функция всегда является вогнутой.

Зачем нужна двойственная функция? Оказывается, она дает нижнюю оценку на минимум в исходной оптимизационной задаче. Обозначим решение задачи (1.1) через  $x_*$ . Пусть  $x'-\partial onycmumas$  точка, т.е.  $f_i(x')\leqslant 0,\, h_i(x')=0$ . Пусть также  $\lambda_i>0$ . Тогда

$$L(x', \lambda, \nu) = f_0(x') + \sum_{i=1}^{m} \lambda_i f_i(x') + \sum_{i=1}^{p} \nu_i h_i(x') \leqslant f_0(x').$$

Если взять в левой части минимум по всем допустимым x, то неравенство останется верным; оно останется верным и в случае, если мы возьмем минимум по всем возможным x:

$$\inf_{x} L(x, \lambda, \nu) \leqslant \inf_{x \text{--gonyer.}} L(x, \lambda, \nu) \leqslant L(x', \lambda, \nu).$$

Итак, получаем

$$\inf_{x} L(x, \lambda, \nu) \leqslant f_0(x').$$

Поскольку решение задачи  $x_*$  также является допустимой точкой, получаем, что при  $\lambda \geqslant 0$  двойственная функция дает нижнюю оценку на минимум:

$$q(\lambda, \nu) \leqslant f_0(x_*).$$

#### §1.3 Двойственная задача

Итак, двойственная функция для любой пары  $(\lambda, \nu)$  с  $\lambda > 0$  дает нижнюю оценку на минимум в оптимизационной задаче. Попробуем теперь найти наилучшую нижнюю оценку:

$$\begin{cases} g(\lambda, \nu) \to \max_{\lambda, \nu} \\ \lambda_i \geqslant 0, \quad i = 1, \dots, m. \end{cases}$$
 (1.2)

Данная задача называется  $\partial so \tilde{u} cm s e n + o \tilde{u}$  к задаче (1.1). Заметим, что функционал в двойственной задаче всегда является вогнутым.

Разберём несколько примеров построения двойственных задач.

Задача 1.1. Постройте двойственную к оптимизационной задаче:

$$\begin{cases} ||x||^2 \to \min_x \\ Ax = b. \end{cases}$$

Отметим, что это задача поиска решения системы линейных уравнений с наименьшей нормой.

Решение. Запишем лагранжиан:

$$L(x, \nu) = ||x||^2 + \nu^T (Ax - b).$$

Найдем градиент:

$$\nabla_x L(x, \nu) = 2x + \nu^T A = 2x + A^T \nu.$$

Приравняв градиент нулю, найдем минимум лагранжиана при данном  $\nu$ :

$$x = -\frac{1}{2}A^T\nu.$$

Значит, двойственная функция равна

$$g(\nu) = L\left(-\frac{1}{2}A^{T}\nu, \nu\right) = -\frac{1}{4}\nu^{T}AA^{T}\nu - b^{T}\nu.$$

Поскольку ограничений-неравенств в исходной задаче нет, в двойственной задаче не будет ограничений. Получаем двойственную задачу

$$-\frac{1}{4}\nu^T A A^T \nu - b^T \nu \to \max_{\nu}.$$

**Задача 1.2.** Постройте двойственную к задаче линейного программирования в стандартном виде:

$$\begin{cases} \langle c, x \rangle \to \min_{x} \\ Ax = b, \\ x \geqslant 0. \end{cases}$$

Решение. Запишем лагранжиан:

$$L(x, \lambda, \nu) = \langle c, x \rangle - \lambda^T x + \nu^T (Ax - b).$$

Отметим, что ограничения-неравенства вошли с минусом, мы привели их к стандартному виду  $-x \le 0$ . Немного преобразуем лагранжиан:

$$L(x, \lambda, \nu) = -b^T \nu + (c + A^T \nu - \lambda)^T x.$$

Двойственная функция имеет вид

$$g(\lambda, \nu) = -b^T \nu + \inf_x (c + A^T \nu - \lambda)^T x.$$

Заметим, что выражение  $(c+A^T\nu-\lambda)^Tx$  линейно по x и не ограничено, если  $c+A^T\nu-\lambda\neq 0$ . Таким образом, условие  $c+A^T\nu-\lambda=0$  является ограничением в двойственная задаче.

Получаем, что двойственная задача имеет вид

$$\begin{cases} -b^T \nu \to \max_{\nu} \\ c + A^T \nu - \lambda = 0, \\ \lambda \ge 0. \end{cases}$$

Ограничения можно объединить, избавившись от  $\lambda$ :

$$\begin{cases} -b^T \nu \to \max_{\nu} \\ c + A^T \nu \geqslant 0. \end{cases}$$

### §1.4 Сильная и слабая двойственность

Пусть  $(\lambda^*, \nu^*)$  — решение двойственной задачи. Значение двойственной функции всегда не превосходит условный минимум исходной задачи:

$$g(\lambda^*, \nu^*) \leqslant f_0(x_*).$$

Это свойство называется слабой двойственностью. Разность  $f_0(x_*) - g(\lambda^*, \nu^*)$  называется зазором между решениями прямой и двойственной задач.

Если имеет место равенство

$$g(\lambda^*, \nu^*) = f_0(x_*),$$

то говорят о *сильной двойственности*. Существует много достаточных условий сильной двойственности. Одним из таких условий для выпуклых задач является условие Слейтера. *Выпуклой* задачей оптимизации называется задача

$$\begin{cases} f_0(x) \to \min_{x \in \mathbb{R}^d} \\ f_i(x) \leqslant 0, \quad i = 1, \dots, m, \\ Ax = b. \end{cases}$$

где функции  $f_0, f_1, \ldots, f_m$  являются выпуклыми. Условие Слейтера требует, чтобы существовала такая допустимая точка x', в которой ограничения-неравенства выполнены строго:

$$\begin{cases} f_i(x) < 0, & i = 1, \dots, m, \\ Ax = b. \end{cases}$$

Условие Слейтера можно ослабить: достаточно, чтобы ограничения-неравенства были строгими только в том случае, если они не являются линейными (т.е. не имеют вид Ax - b).

#### §1.5 Условия Куна-Таккера

Пусть  $x_*$  и  $(\lambda^*, \nu^*)$  — решения прямой и двойственной задач. Будем считать, что имеет место сильная двойственность. Тогда:

$$f_0(x_*) = g(\lambda^*, \nu^*)$$

$$= \inf_x \left( f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leqslant f_0(x_*) + \sum_{i=1}^m \lambda_i^* f_i(x_*) + \sum_{i=1}^p \nu_i^* h_i(x_*)$$

$$\leqslant f_0(x_*)$$

Получаем, что все неравенства в этой цепочке выполнены как равенства. Отсюда можно сделать несколько выводов.

Во-первых, если подставить в лагранжиан решение двойственной задачи  $(\lambda^*, \nu^*)$ , то его минимум будет достигаться на решении прямой задачи  $x_*$ . Иными словами, решение исходной задачи (1.1) эквивалентно минимизации лагранжиана  $L(x, \lambda^*, \nu^*)$  с подставленным решением двойственной задачи.

Во-вторых, из последнего неравенства получаем, что

$$\sum_{i=1}^{m} \lambda_i^* f_i(x_*) = 0.$$

Каждый член неположителен, поэтому

$$\lambda_i^* f_i(x_*) = 0, \quad i = 1, \dots, m.$$

Эти условия называются условиями дополняющей нежесткости. Они говорят, что множитель Лагранжа при *i*-м ограничении может быть не равен нулю лишь в том случае, если ограничение выполнено с равенством (в этом случае говорят, что оно является активным).

Итак, мы можем записать условия, которые выполнены для решений прямой и двойственной задач  $x_*$  и  $(\lambda^*, \nu^*)$ :

$$\begin{cases} \nabla f_0(x_*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x_*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x_*) = 0 \\ f_i(x_*) \leq 0, & i = 1, \dots m \\ h_i(x_*) = 0, & i = 1, \dots p \\ \lambda_i^* \geq 0, & i = 1, \dots m \\ \lambda_i^* f_i(x_*) = 0, & i = 1, \dots m \end{cases}$$
(KKT)

Данные условия называются *условиями Куна-Таккера* (в зарубежной литературе их принято называть условиями Каруша-Куна-Таккера) и являются необходимыми условиями экстремума. Их можно сформулировать несколько иначе:

**Теорема 1.1.** Пусть  $x_*$  — решение задачи (1.1). Тогда найдутся такие векторы  $\lambda^*$  и  $\nu^*$ , что выполнены условия (ККТ).

Если задача (1.1) является выпуклой и удовлетворяет условию Слейтера, то условия Куна-Таккера становятся *необходимыми* и *достаточными*.

Посмотрим на примере, как из условий Куна-Таккера можно найти решение задачи оптимизации.

Задача 1.3. Решите следующую задачу условной оптимизации:

$$\begin{cases} (x-4)^2 + (y-4)^2 \to \min_{x,y} \\ x+y \leqslant 4, \\ x+3y \leqslant 9. \end{cases}$$

Решение. Выпишем лагранжиан:

$$L(x, y, \lambda_1, \lambda_2) = (x - 4)^2 + (y - 4)^2 + \lambda_1(x + y - 4) + \lambda_2(x + 3y - 9).$$

Условия Куна-Таккера запишутся в виде:

$$\begin{cases} 2(x-4) + \lambda_1 + \lambda_2 = 0, \\ 2(y-4) + \lambda_1 + 3\lambda_2 = 0, \\ x+y \leqslant 4, \ \lambda_1 \geqslant 0, \ \lambda_1(x+y-4) = 0, \\ x+3y \leqslant 9, \ \lambda_2 \geqslant 0, \ \lambda_2(x+3y-9) = 0. \end{cases}$$

Решая их, рассмотрим 4 случая:

•  $x+y=4, \ x+3y=9, \ \lambda_1>0, \ \lambda_2>0.$  Два эти уравнения дают ( $x=\frac{3}{2},y=\frac{5}{2}$ ). После подстановки в первые два уравнения условий Куна–Таккера, получаем

$$\begin{cases} 2(\frac{3}{2} - 4) + \lambda_1 + \lambda_2 = 0; \\ 2(\frac{5}{2} - 4) + \lambda_1 + 3\lambda_2 = 0, \end{cases}$$

откуда  $\lambda_2 = -1$ , что противоречит принятым условиям.

- $x+y=4,\ x+3y<9,\ \lambda_1>0,\ \lambda_2=0.$  Подстановка  $\lambda_2=0$  в первые два уравнения условий Куна–Таккера вместе с уравнением x+y=4 дают решение ( $x=2,y=2,\lambda_1=4,\lambda_2=0$ ). Эти решения удовлетворяют всем условиям Куна–Таккера.
- Два оставшихся случая, как и первый, ведут к противоречиям.

Поскольку задача выпуклая и удовлетворяет ослабленным условиям Слейтера, найденная точка является решением.

#### §1.6 Экономическая интерпретация двойственной задачи

Предположим, что мы хотим открыть фирму. В нее мы можем нанимать программистов и менеджеров — обозначим их количество через  $x_1$  и  $x_2$  соответственно. При этом каждый программист будет приносить  $c_1$  рублей в месяц, а каждый менеджер —  $c_2$  рублей. Труд каждого сотрудника должен оплачиваться. Наша фирма может платить в двух формах — акциями и картошкой, причем в месяц каждому программисту нужно выдать  $a_{11}$  акций и  $a_{21}$  килограммов картошки; для менеджеров эти числа обозначим через  $a_{12}$  и  $a_{22}$ . Разумеется, наши возможности ограничены: мы можем тратить не больше  $b_1$  акций и  $b_2$  килограммов картошки в месяц. Запишем формально все эти соотношения:

$$\begin{cases} c_1 x_1 + c_2 x_2 \to \max_{x_1, x_2} \\ a_{11} x_1 + a_{12} x_2 \leqslant b_1 \\ a_{21} x_1 + a_{22} x_2 \leqslant b_2 \\ x_1 \geqslant 0, x_2 \geqslant 0 \end{cases}$$

Это задача линейного программирования, для которой легко найти двойственную:

$$\begin{cases} b_1 y_1 + b_2 y_2 \to \min_{y_1, y_2} \\ a_{11} y_1 + a_{21} y_2 \geqslant c_1 \\ a_{12} y_1 + a_{22} y_2 \geqslant c_2 \\ y_1 \geqslant 0, y_2 \geqslant 0 \end{cases}$$

Двойственную задачу можно проинтерпретировать следующим образом. Допустим, что у нас появились другие дела, и вместо открытия фирмы мы решили продать все ресурсы (т.е. акции и картошку). Разумеется, наши покупатели будут стремиться установить максимально низкую цену — иными словами, они будут минимизировать общую сумму сделки  $b_1y_1 + b_2y_2$ , где через  $y_1$  и  $y_2$  обозначены цены на одну акцию и на один килограмм картошки соответственно. При этом у нас есть ограничение: мы не хотим продавать ресурсы дешевле, чем могли бы на них заработать, если бы все же открыли фирму. Это означает, что суммарная стоимость  $a_{11}$  акций и  $a_{21}$  килограммов картошки (т.е. размер оплаты одного программиста) не должна быть меньше, чем доход от одного программиста  $c_1$ . Это требование, вкупе с аналогичным

требованием к размеру оплаты менеджера, как раз соответствует ограничениям в двойственной задаче.

Поскольку для данных задач имеет место сильная двойственность, их решения будут совпадать. Это означает, что оптимальная прибыль, которую можно получить при открытии фирмы, совпадает с оптимальной выгодой от продажи всех ресурсов.

## Список литературы

[1] Boyd, S., Vandenberghe, L. Convex Optimization. // Cambridge University Press, 2004.