Canonical Graph Shapes

Local Shape Logic

$$\xi ::= v \mid \xrightarrow{a} v \mid \xleftarrow{a} v \mid \xrightarrow{a} .$$

$$\phi ::= \mathbf{tt} \mid {}^{\mu}[\xi] \mid \neg \phi \mid \phi \lor \phi \mid \forall_{v} \phi .$$

- Only ever talk about 2 nodes at a time
- Constraints given as multiplicities

Reachability

Reachability Query

If I start from some node in T0, which/how many nodes are reachable in T2, T1, T0?

Reachability

Idea

Abstract the reachable nodes as (None | Some | All)

Reachability

Define max operator

Abstract Topology

Overview

Graph Property — Conservative Algorithm

Multiplicity Algebra

M: set of multiplicities

 \mathbb{N} : natural numbers

$$\mathbb{N}^{\mu} = \{ m \in \mathbb{N} | m : \mu \}$$

 $\sqcap: 2^M \to M$

$$m: \sqcap M \iff \forall \mu \in M, m: \mu$$

 $0 \in M$

$$1 \in M$$

$$\lfloor \mu \rfloor = \min \, \mathbb{N}^{\mu}$$

$$\lceil \mu \rceil = \max \mathbb{N}^{\mu}$$

$$\forall \mu, \mu \leq \omega$$

UML multiplicities

$$i..j$$
 for $i,j \in \mathbb{N} \cup \{*\}$
 $\omega = * i,j < *$

Graph Properties

Does each router in T0 have a path to all other routers in T0?

Is every router in X dominated by some router in Y?

Will k failures disconnect some router in X from some router in Y?

Graph Properties

Does each router in T0 have a path to all other routers in T0?

$$\forall x \in T_0, \forall y \in T_0, \exists p \in \sigma, (x..y)_p$$

Is every router in X dominated by some router in Y?

$$\forall x \in X, \exists y \in Y, \forall_{x,y} p \in \sigma, (start..y..x)_p$$

Will k failures disconnect some router in X from some router in Y?

$$^{k}[\forall x \in X, \forall y \in Y, \exists p \in \sigma, (x..y)_{p}]$$

Path Logic

$$m := \vdash \mid \dashv$$

$$\sigma ::= x <_p y \mid x \leq_p y \mid m$$

$$\phi ::= \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \forall x \in X, \phi \mid \sigma$$

$$p ::= k[\phi]$$

Start/end

Path order

Logic operators

Under k failures

Path Logic

$$m ::= \vdash \mid \dashv$$

$$\sigma ::= x <_p y \mid x \le_p y \mid m$$

$$\phi ::= \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \forall x \in X, \phi \mid \sigma$$

$$p ::= {}^k[\phi]$$

Start/end

Path order

Logic operators

Under k failures

$$(\vdash ..x..y.. \dashv)_p = (y <_p \dashv) \land (x <_p y) \land ...$$

Restrictions for now:

Consider only formulas of the form:

$$(\forall, \exists \text{ node})^* (\forall, \exists \text{ path}) (x..y..z..)_p$$

High-level Idea

Strategy: Perform the following

- Each quantifier maps to (A | S)
- Generate fixed point computation for formula
- Path quantifier determines neighbor condition
- Base case from substitution of formula

Fixed Point Computation

Family of functions: $f^i: V^i \to \{A, S\}^i$

Extend a tuple: $(x_1, ..., x_n), x = (x_1, ..., x_n, x)$

Tuple Projection: $\Pi_{i..j}(x_1,...,x_i,...x_j,...) = (x_i,...,x_j)$

 $\Pi_i = \Pi_{i..i}$

Node Multiplicity: μ_x

Edge Multiplicity: $\mu_{x,y}$

Path (3) Case:

$$f^{2}(v,v) = \{(A,S)\}$$

$$f^{n}(v_{1},...,v_{n-1},v_{n}) =$$

$$\bigcup_{a \in adj(v_{n})} \{X, lb(v_{n-1},\Pi_{n-1}) \mid X \in f^{n-1}(v_{1},...,v_{n-1})\} \quad \text{when } a = v_{n-1}$$

$$\{\Pi_{1..n-1}X, lb(a,v_{n},\Pi_{n}X) \mid X \in f^{n}(v_{1},...,v_{n-1},a)\} \quad \text{otherwise}$$

Path (3) Case:

$$f^{2}(v, v) = \{(A, S)\}$$

 $f^{n}(v_{1}, ..., v_{n-1}, v_{n}) =$
 $\bigcup_{a \in adj(v_{n})}$

Recursively defined

$$\{X, lb(v_{n-1}, \Pi_{n-1}) \mid X \in f^{n-1}(v_1, ..., v_{n-1})\}$$
 when $a = v_{n-1}$

$$\{\Pi_{1..n-1}X, lb(a, v_n, \Pi_n X) \mid X \in f^n(v_1, ..., v_{n-1}, a)\}$$
 otherwise

lower bound (A | S) between neighbors

Path (3) Case:

$$f^{2}(v, v) = \{(A, S)\}$$

 $f^{n}(v_{1}, ..., v_{n-1}, v_{n}) =$
 $\bigcup_{a \in adj(v_{n})}$

Check (v_1 .. v_{n-1}) for each node and then extend that information

What information can we infer from the neighbors

Tuple: $(\lfloor \mu_{x,y} \rfloor, \lfloor \mu_{y,x} \rfloor, \lceil \mu_y \rceil)$

○
$$(-, \ge 1, -)$$
 $(n \ge 1, -, m \le n)$ $(n \ge 1, -, m > n)$ otherwise

N N N N N

S S A S N

A A S N

$$lb(x, y, L) = max\{L, L \odot (x, y)\}\$$

Path (V) Case

Changes:

- Define a new lower bound operator
- Set union changes to set intersection

Dominators

Failures

Failures

Worst case under 1 failure