Introduction to Lexing and Parsing

ECE 351: Compilers

Jon Eyolfson

University of Waterloo

June 18, 2012

Riddle Me This, Riddle Me That

What is a compiler?

Riddle Me This, Riddle Me That

What is a compiler?
It's a specific kind of language processor.

Terminology

We can think of a language processor as a **black box translator**.

 $Input\ Language \longrightarrow Magic \longrightarrow Output\ Language$

Terminology

We can think of a language processor as a **black box translator**.

$$Input\ Language \longrightarrow \overline{Magic} \longrightarrow Output\ Language$$

A **compiler** is a translator whose input language is a programming language and outputs machine or assembly language.

More Specific Translators

Assembler

Transliterator (or Preprocessor)

Intermediate Code

 How the input is represented (usually internally) before generating output (e.g. AST, LLVM IR, Bytecode)

Interpreter (or Simulator)

More Specific Translators

Assembler

Transforms assembly language to machine language

Transliterator (or Preprocessor)

Transforms one high level language to another

Intermediate Code

 How the input is represented (usually internally) before generating output (e.g. AST, LLVM IR, Bytecode)

Interpreter (or Simulator)

· Directly executes intermediate code

Inside the Black Box

The Lexer

Also known as a scanner/screener.

Goal

Break up input characters into groups (tokens)

Why?

- Ignores whitespace
- Provides a nice abstraction

The Lexer

Also known as a scanner/screener.

Goal

Break up input characters into groups (tokens)

Why?

- Ignores whitespace
- Provides a nice abstraction

Example

• In F, we don't care that the input is "a" or "blahlblahblah", they're both identifiers

Language Definition

Let's revisit some more terminology.

Alphabet - a finite set of symbols

• $\{a, b, c, d, ...\}$

String - any finite sequence of symbols in the alphabet

Empty String - a sequence with no symbols

• ε

Language Definition

Let's revisit some more terminology.

Alphabet - a finite set of symbols

• $\{a, b, c, d, ...\}$

String - any finite sequence of symbols in the alphabet

Empty String - a sequence with no symbols

ε

Language - a subset of strings in a particular alphabet

Example Language for Identifiers (1)

Alphabet - letters and numbers

- $\{a, b, c, d, ...\}$
- {0, 1, 2, 3, ..}

Strings

- X
- bbjl15
- 1monaway
- got1

Example Language for Identifiers (1)

Alphabet - letters and numbers

- $\{a, b, c, d, ...\}$
- {0, 1, 2, 3, ..}

Strings

- X
- bbjl15
- 1monaway
- got1

Which of these strings should belong to our language?

Example Language for Identifiers (1)

Alphabet - letters and numbers

- $\{a, b, c, d, ...\}$
- {0, 1, 2, 3, ..}

Strings

- X
- bbjl15
- 1monaway
- got1

Which of these strings should belong to our language? Why?

Expressing a Language Using Regular Expressions

Recall a **regular expression** over an alphabet is made up of symbols (in the alphabet) and the following operators:

*	repetition (zero or more)
	alternation (or)
•	sequence (implied)
()	grouping
	character sets

Expressing a Language Using Regular Expressions

Recall a **regular expression** over an alphabet is made up of symbols (in the alphabet) and the following operators:

*	repetition (zero or more)
	alternation (or)
	sequence (implied)
()	grouping
	character sets

Notes:

- $a+ \equiv a \cdot a*$ (one or more)
- $a?b \equiv b \mid (a \cdot b)$ (zero or one)

Example Language for Identifiers (2)

If our language for identifiers should begin with a letter followed by any number of letters and numbers, what should our regular expression be?

Hint: [A-Z], [a-z] and [0-9] may be useful.

Example Language for Identifiers (2)

If our language for identifiers should begin with a letter followed by any number of letters and numbers, what should our regular expression be?

Hint: [A-Z], [a-z] and [0-9] may be useful.

Answer: ([A-Z]|[a-z])([A-Z]|[a-z]|[0-9])*

Using Regular Expressions

So, how do we use regular expressions (or what does grep do)?

One way is to convert the regular expression to a **finite state automaton** (FSA) and follow it for each input character.

Using Regular Expressions

So, how do we use regular expressions (or what does grep do)?

One way is to convert the regular expression to a **finite state automaton** (FSA) and follow it for each input character.

Finite State Automaton

- A set of states and state transitions
- Contains a start state and one or more final states

States can be arbitrarily numbered, state transitions are for individual symbols in the alphabet (characters)

Finite State Automaton Notation

State transitions are represented by labeled arrows

Finite State Automaton Usage

To see if a sentence is in our language we do the following:

- 1 Start a the starting state(!)
- 2 Follow the state transition for each character
 - No transition, reject
- 3 Accept if we're in a final state, reject otherwise

Finite State Automaton Example

Consider the simplest language, represented by the regular expression a. Implicitly our alphabet is the set of keyboard characters.

This corresponds to the following FSA:

Finite State Automaton Example

Consider the simplest language, represented by the regular expression a. Implicitly our alphabet is the set of keyboard characters.

This corresponds to the following FSA:

Do we accept or reject these sentences?

- a
- 6
- bob

Finite State Automaton Example

Consider the simplest language, represented by the regular expression a. Implicitly our alphabet is the set of keyboard characters.

This corresponds to the following FSA:

Do we accept or reject these sentences?

- a
- 8
- bob

Answer: we only accept a

Finite State Automaton Basic Conversions

Finite State Automaton Basic Conversions

Regular Expression: a|b

Finite State Automaton Basic Conversions

Regular Expression: a|b

Regular Expression: a*

Finite State Automaton for Identifiers

What does the FSA look like for identifiers?

Recall: ([A-Z]|[a-z])([A-Z]|[a-z]|[0-9])*

Finite State Automaton for Identifiers

What does the FSA look like for identifiers?

Recall: ([A-Z]|[a-z])([A-Z]|[a-z]|[0-9])*

Finite State Automaton for Identifiers

What does the FSA look like for identifiers?

Recall: ([A-Z]|[a-z])([A-Z]|[a-z]|[0-9])*

This accepts "bbjl15" and rejects "1monaway"

Regular Languages

It is known all regular expressions can be converted to a FSA

 Any language which can be expressed using a regular expression or a FSA is a regular language

Regular Languages

It is known all regular expressions can be converted to a FSA

 Any language which can be expressed using a regular expression or a FSA is a regular language

For example, W is a regular language, F is not. Why?

Regular Languages

It is known all regular expressions can be converted to a FSA

 Any language which can be expressed using a regular expression or a FSA is a regular language

For example, W is a regular language, F is not. Why?

Regular languages cannot handle:

- Nesting
- Indefinite counting
- Balancing of symbols

Illustration of Regular Language Limitations

Can we write a FSA for $(^n a)^n$ (simple parenthesis matching)?

Illustration of Regular Language Limitations

Can we write a FSA for $(^n a)^n$ (simple parenthesis matching)?

This is as close as we can get (in this amount of space)

Illustration of Regular Language Limitations

Can we write a FSA for $(^n a)^n$ (simple parenthesis matching)?

This is as close as we can get (in this amount of space)

We need an FSA of infinite size (contradiction!)

Real Regular Expressions

While this is technically correct (the best kind of correct) most regular expression implementations are somewhere in the grey area

Can you write a regular expression to match: $a^n b^n$?

Real Regular Expressions

While this is technically correct (the best kind of correct) most regular expression implementations are somewhere in the grey area

Can you write a regular expression to match: $a^n b^n$?

With Perl Regular Expressions, we can use: ^(a(?1)?b)\$

Real Regular Expressions

While this is technically correct (the best kind of correct) most regular expression implementations are somewhere in the grey area

Can you write a regular expression to match: $a^n b^n$? With Perl Regular Expressions, we can use: $^(a(?1)?b)$ \$

 Basically, (?1) matches (a(?1)?b) and recurses to match the same number of a's and b's

...

This is just for general interest, no need to worry

Source: http://tinyurl.com/6rayj5a

Push Down Automata

We can modify our FSA to be able to match $(^n a)^n$ as follows:

- Add a push down stack
- Add another condition for a transition
 - 1 The input symbol (as before)
 - 2 The top symbol on the stack
- Allow transitions to push and pop from the stack

Push Down Automata

We can modify our FSA to be able to match $(^n a)^n$ as follows:

- Add a push down stack
- Add another condition for a transition
 - 1 The input symbol (as before)
 - 2 The top symbol on the stack
- Allow transitions to push and pop from the stack

The modified FSA is called a finite state control

The stack and the FSC together form a push down automata

Push Down Automata Example

Notation:

- ε means the top of the stack is empty
- α means the top of the stack may be anything
- Transitions are: symbol, top of stack, optional push/pop

Push Down Automata Example

Notation:

- ε means the top of the stack is empty
- ullet α means the top of the stack may be anything
- Transitions are: symbol, top of stack, optional push/pop

Theoretically there is no stack limit, so this works

Examples: (a), (((a))) are accepted and (a)) is rejected

Context-Free Language

 Any language which can be expressed using a push down automata or context-free grammar is a context-free language

We haven't used a push down automata, and neither have any of our tools, how did express a grammar for F?

Context-Free Language

 Any language which can be expressed using a push down automata or context-free grammar is a context-free language

We haven't used a push down automata, and neither have any of our tools, how did express a grammar for F?

We used a context-free grammar, which is specified in **Extended Backus-Naur Form (BNF)**

Backus-Naur Form

BNF is a 4-tuple (T, N, S, P), where

- T is a set of terminal symbols (tokens)
- N is a set of **nonterminal** symbols (rule names)
- ullet S is the starting rule, which is a member of N
- *P* is a set of **rules** (or productions)

Backus-Naur Form

BNF is a 4-tuple (T, N, S, P), where

- T is a set of **terminal** symbols (tokens)
- N is a set of nonterminal symbols (rule names)
- S is the starting rule, which is a member of N
- P is a set of **rules** (or productions)

All rules have the form: $A \rightarrow \gamma$

 $A \in N$ (A is a nonterminal) $\gamma \in (N \cup T)*$ (γ is a string of terminals/nonterminals or ε)

Note: $B \to C|D$ is shorthand for $B \to C, B \to D$

Backus-Naur Form Example

Consider the grammar G = (T, N, S, P), where

•
$$T = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, + \}$$

- $N = \{ E \}$
- \bullet S = E
- $P = E \rightarrow E + E$ $E \rightarrow 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 0$

Backus-Naur Form Derivations

Consider x and y such that $x, y \in (N \cup T)*$

• x and y are strings of terminals/nonterminals or ε

We say x derives y in one step $(x \Rightarrow y)$ if we can apply a **single** rule (in P) to x and get y

Backus-Naur Form Derivations

Consider x and y such that $x, y \in (N \cup T)*$

• x and y are strings of terminals/nonterminals or ε

We say x derives y in one step $(x \Rightarrow y)$ if we can apply a **single** rule (in P) to x and get y

$$\mathtt{E} \,+\, \mathtt{E} \Rightarrow \mathtt{E} \,+\, \mathtt{E} \,+\, \mathtt{E} \, \mathrm{since} \, \mathtt{E} \to \mathtt{E} \,+\, \mathtt{E} \in P$$

Backus-Naur Form Derivations

Consider x and y such that $x, y \in (N \cup T)*$

• x and y are strings of terminals/nonterminals or ε

We say x derives y in one step $(x \Rightarrow y)$ if we can apply a **single** rule (in P) to x and get y

$$\mathtt{E} \,+\, \mathtt{E} \Rightarrow \mathtt{E} \,+\, \mathtt{E} \,+\, \mathtt{E} \, \mathrm{since} \,\, \mathtt{E} \to \mathtt{E} \,+\, \mathtt{E} \in P$$

We say x derives y ($x \Rightarrow^* y$) if we can apply one or more steps to x to get y

Backus-Naur Form Usage

Now that we have a grammar ${\cal G}$, we want to know what's in our language ${\cal L}$

Our strings in this case are a sequence of terminals (or tokens)

Backus-Naur Form Usage

Now that we have a grammar G, we want to know what's in our language ${\cal L}$

Our strings in this case are a sequence of terminals (or tokens)

 ${\cal L}(G)$ is the set of all strings of terminals that can be derived from the starting rule ${\cal S}$

In other words (CS): $L(G) = \{s \mid S \Rightarrow^* s \text{ and } s \in T^*\}$

Note: L(G) is likely an infinite set (all possible valid programs)

Backus-Naur Form Derivation Example

Consider the string 1 + 2 + 3, is it in L(G)?

Yes, since:

$$E \Rightarrow E + E$$

$$\Rightarrow E + E + E$$

$$\Rightarrow E + E + 3$$

$$\Rightarrow E + 2 + 3$$

$$\Rightarrow 1 + 2 + 3$$

Backus-Naur Form Derivation Example

Consider the string 1 + 2 + 3, is it in L(G)?

Yes, since:

$$E \Rightarrow E + E$$

$$\Rightarrow E + E + E$$

$$\Rightarrow E + E + 3$$

$$\Rightarrow E + 2 + 3$$

$$\Rightarrow 1 + 2 + 3$$

Note: if our derivation contains terminals and nonterminals, we call it a **sentential form** of G

BNF Leftmost Derivation (1)

Consider the string 1 + 2 + 3 again, we can do a **leftmost derivation** by replacing the leftmost nonterminal in every step

$$E \Rightarrow E + E$$

$$\Rightarrow E + E + E$$

$$\Rightarrow 1 + E + E$$

$$\Rightarrow 1 + 2 + E$$

$$\Rightarrow 1 + 2 + 3$$

BNF Leftmost Derivation (1)

Consider the string 1 + 2 + 3 again, we can do a **leftmost derivation** by replacing the leftmost nonterminal in every step

$$E \Rightarrow E + E$$

$$\Rightarrow E + E + E$$

$$\Rightarrow 1 + E + E$$

$$\Rightarrow 1 + 2 + E$$

$$\Rightarrow 1 + 2 + 3$$

This corresponds to the following parse tree...

Parse Tree (1)

BNF Leftmost Derivation (2)

Again, considering 1 + 2 + 3 again, there's another leftmost derivation, what is it?

BNF Leftmost Derivation (2)

Again, considering 1 + 2 + 3 again, there's another leftmost derivation, what is it?

If there's more than one leftmost derivation the grammar is **ambiguous** (that's bad)

BNF Leftmost Derivation (2)

Again, considering 1 + 2 + 3 again, there's another leftmost derivation, what is it?

If there's more than one leftmost derivation the grammar is **ambiguous** (that's bad)

This corresponds to the following parse tree...

Parse Tree (2)

Summary

 Definitions for string, language, regular language and context-free language

Creating and using finite state automaton

Using BNF grammars and detecting ambiguous grammars

Lab 7

Use EOI in the expansion of your starting rule

This makes sure parboiled tries to parse the entire input

Common Problems:

- Your output AST is missing a bunch of input
- You're recognizing strings you shouldn't be

Solution: Sequence(ZeroOrMore(DesignUnit()), EOI)

Next Lecture

Removing ambiguity using precedence and associativity

• Extended Backus-Naur Form (EBNF)

Other sources of ambiguity

Methods of parsing