Phase 1

Data Cleaning

```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.simplefilter("ignore")
In [2]: df =pd.read_csv("AviationData.csv",encoding = "latin1")
In [3]: |df.head()
Out[3]:
                    Event.Id Investigation.Type Accident.Number Event.Date
                                                                              Location Country
                                                                               MOOSE
                                                                                         United
          0 20001218X45444
                                     Accident
                                                  SEA87LA080
                                                               1948-10-24
                                                                             CREEK, ID
                                                                                         States
                                                                          BRIDGEPORT,
                                                                                         United
          1 20001218X45447
                                     Accident
                                                  LAX94LA336
                                                               1962-07-19
                                                                                         States
                                                                                         United
          2 20061025X01555
                                     Accident
                                                  NYC07LA005
                                                              1974-08-30
                                                                            Saltville, VA
                                                                                         States
                                                                                         United
          3 20001218X45448
                                     Accident
                                                  LAX96LA321
                                                              1977-06-19
                                                                           EUREKA, CA
                                                                                         States
                                                                                         United
             20041105X01764
                                     Accident
                                                   CHI79FA064 1979-08-02
                                                                            Canton, OH
                                                                                         States
         5 rows × 31 columns
```

In [4]: df.tail()

Out[4]:

	Event.ld	Investigation.Type	Accident.Number	Event.Date	Location	Country
88884	20221227106491	Accident	ERA23LA093	2022-12-26	Annapolis, MD	United States
88885	20221227106494	Accident	ERA23LA095	2022-12-26	Hampton, NH	United States
88886	20221227106497	Accident	WPR23LA075	2022-12-26	Payson, AZ	United States
88887	20221227106498	Accident	WPR23LA076	2022-12-26	Morgan, UT	United States
88888	20221230106513	Accident	ERA23LA097	2022-12-29	Athens, GA	United States
5 rows × 31 columns						
→						•

In [5]: df.sample(5)

Out[5]:

	Event.ld	Investigation.Type	Accident.Number	Event.Date	Location	Country
56400	20040331X00405	Accident	LAX04LA170	2004-03-25	Planada, CA	United States
40906	20001208X07000	Accident	CHI97FA030	1996-11-18	GRAND RAPIDS, MI	United States
84170	20191107X55010	Accident	WPR20FA019	2019-11-07	Upland, CA	United States
27909	20001212X16974	Accident	DEN91FA067	1991-05-06	HARTLEY, TX	United States
57183	20040830X01320	Accident	CHI04CA210	2004-07-31	Plymouth, MI	United States
5 rows × 31 columns						

```
In [6]: | df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 88889 entries, 0 to 88888
Data columns (total 31 columns):
```

Data	cordinis (cocar or cordini	13).				
#	Column	Non-Null Count	Dtype			
0	Event.Id	88889 non-null	object			
1	Investigation.Type	88889 non-null	object			
2	Accident.Number	88889 non-null	object			
3	Event.Date	88889 non-null	object			
4	Location	88837 non-null	object			
5	Country	88663 non-null	object			
6	Latitude	34382 non-null	object			
7	Longitude	34373 non-null	object			
8	Airport.Code	50132 non-null	object			
9	Airport.Name	52704 non-null	object			
10	Injury.Severity	87889 non-null	object			
11	Aircraft.damage	85695 non-null	object			
12	Aircraft.Category	32287 non-null	object			
13	Registration.Number	87507 non-null	object			
14	Make	88826 non-null	object			
15	Model	88797 non-null	object			
16	Amateur.Built	88787 non-null	object			
17	Number.of.Engines	82805 non-null	float64			
18	Engine.Type	81793 non-null	object			
19	FAR.Description	32023 non-null	object			
20	Schedule	12582 non-null	object			
21	Purpose.of.flight	82697 non-null	object			
22	Air.carrier	16648 non-null	object			
23	Total.Fatal.Injuries	77488 non-null	float64			
24	Total.Serious.Injuries	76379 non-null	float64			
25	Total.Minor.Injuries	76956 non-null	float64			
26	Total.Uninjured	82977 non-null	float64			
27	Weather.Condition	84397 non-null	object			
28	Broad.phase.of.flight	61724 non-null	object			
29	Report.Status	82505 non-null	object			
30	Publication.Date	75118 non-null	object			
<pre>dtypes: float64(5), object(26)</pre>						
moment usage 21 At MP						

memory usage: 21.0+ MB

In [7]: df.describe()

Out[7]:

	Number.of.Engines	Total.Fatal.Injuries	Total.Serious.Injuries	Total.Minor.Injuries	Total.
count	82805.000000	77488.000000	76379.000000	76956.000000	8297
mean	1.146585	0.647855	0.279881	0.357061	
std	0.446510	5.485960	1.544084	2.235625	2
min	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	0.000000	0.000000	0.000000	
50%	1.000000	0.000000	0.000000	0.000000	
75%	1.000000	0.000000	0.000000	0.000000	
max	8.000000	349.000000	161.000000	380.000000	69
4					•

```
df.describe(include = "0")
 In [8]:
 Out[8]:
                          Event.Id Investigation.Type Accident.Number Event.Date
                                                                                   Location Cor
                            88889
                                             88889
                                                             88889
                                                                        88889
                                                                                      88837
                                                                                              8
            count
                                                             88863
           unique
                            87951
                                                 2
                                                                        14782
                                                                                      27758
                                                                               ANCHORAGE,
                                                                                              U
              top
                   20001212X19172
                                           Accident
                                                       CEN22LA149
                                                                    1984-06-30
                                                                                              S
                                                                                        ΑK
                                             85015
              freq
                                3
                                                                 2
                                                                           25
                                                                                        434
                                                                                              8
          4 rows × 26 columns
 In [9]:
          #column name
          df.columns = df.columns.str.lower().str.replace(r'\.', ' ', regex=True)
In [10]: | df.columns
                   'location', 'country', 'latitude', 'longitude', 'airport_code',
```

```
In [11]:
         df.dtypes
Out[11]: event_id
                                      object
          investigation type
                                      object
          accident number
                                      object
          event_date
                                      object
          location
                                      object
          country
                                      object
          latitude
                                      object
          longitude
                                      object
          airport_code
                                      object
          airport_name
                                      object
          injury_severity
                                      object
          aircraft_damage
                                      object
          aircraft_category
                                      object
          registration_number
                                      object
                                      object
          make
          model
                                      object
          amateur_built
                                      object
                                     float64
          number_of_engines
          engine_type
                                      object
          far_description
                                      object
          schedule
                                      object
          purpose_of_flight
                                      object
                                      object
          air_carrier
          total_fatal_injuries
                                     float64
                                     float64
          total_serious_injuries
                                     float64
          total minor injuries
          total_uninjured
                                     float64
          weather_condition
                                      object
          broad_phase_of_flight
                                      object
          report_status
                                      object
                                      object
          publication_date
          dtype: object
```

Checking Missing Values and Correcting It.

```
In [12]:
        df.isnull().sum()
Out[12]: event id
                                      0
                                      0
         investigation type
         accident number
                                      0
         event_date
                                      0
         location
                                     52
         country
                                    226
         latitude
                                  54507
         longitude
                                  54516
         airport code
                                  38757
         airport name
                                  36185
         injury_severity
                                   1000
         aircraft_damage
                                   3194
         aircraft_category
                                  56602
         registration number
                                   1382
         make
                                     63
         model
                                     92
         amateur_built
                                    102
         number_of_engines
                                   6084
         engine_type
                                   7096
         far description
                                  56866
         schedule
                                  76307
         purpose_of_flight
                                   6192
         air_carrier
                                  72241
         total_fatal_injuries
                                  11401
         total_serious_injuries
                                  12510
         total minor injuries
                                  11933
         total_uninjured
                                   5912
         weather_condition
                                   4492
         broad_phase_of_flight
                                  27165
         report_status
                                   6384
         publication_date
                                  13771
         dtype: int64
In [13]: | df.columns
'airport_name', 'injury_severity', 'aircraft_damage',
                'aircraft_category', 'registration_number', 'make', 'model',
                'amateur built', 'number of engines', 'engine type', 'far descripti
         on',
                'schedule', 'purpose of flight', 'air carrier', 'total fatal injuri
         es',
                'total serious injuries', 'total minor injuries', 'total uninjure
         ď',
                'weather_condition', 'broad_phase_of_flight', 'report_status',
                'publication date'],
               dtype='object')
```

```
In [14]: | df = df[['event_id', 'event_date',
                  'location', 'country','airport_code',
                 'airport_name', 'injury_severity', 'aircraft_damage',
                 'aircraft_category','make', 'model',
                 'amateur_built', 'number_of_engines', 'engine_type',
'purpose_of_flight', 'air_carrier', 'total_fatal_injuries',
                 'total_serious_injuries', 'total_minor_injuries', 'total_uninjured',
                 'weather_condition', 'broad_phase_of_flight',
                  ]]
In [15]: df.columns
Out[15]: Index(['event_id', 'event_date', 'location', 'country', 'airport_code',
                  'airport_name', 'injury_severity', 'aircraft_damage',
                 'aircraft_category', 'make', 'model', 'amateur_built',
                  'number_of_engines', 'engine_type', 'purpose_of_flight', 'air_carri
          er',
                 'total_fatal_injuries', 'total_serious_injuries',
                 'total_minor_injuries', 'total_uninjured', 'weather_condition',
                 'broad_phase_of_flight'],
                dtype='object')
In [16]: # Forward fill, then backward fill
         df['event_date'] = df['event_date'].fillna(method='ffill').fillna(method='b
In [17]: # Impute using mode (for categorical data)
          for col in df.select_dtypes(include = ["0"]):
              mode_value = df[col].mode()[0]
              df[col].fillna(mode_value, inplace=True)
In [18]: for col in df.select_dtypes(include = ["number"]):
              mean value = df[col].mean()
              df[col].fillna(mean_value, inplace=True)
```

```
In [19]: | df.isnull().sum()
Out[19]: event_id
                                     0
          event date
                                     0
          location
                                     0
          country
                                     0
          airport_code
                                     0
          airport_name
                                     0
          injury_severity
                                     0
                                     0
          aircraft damage
          aircraft_category
                                     0
         make
                                     0
         model
                                     0
          amateur_built
                                     0
          number_of_engines
                                     0
          engine_type
                                     0
                                     0
          purpose of flight
                                     0
          air_carrier
          total_fatal_injuries
                                     0
          total_serious_injuries
                                     0
         total_minor_injuries
                                     0
         total_uninjured
                                     0
         weather_condition
                                     0
          broad_phase_of_flight
                                     0
          dtype: int64
In [20]: | for col in df.select_dtypes(include = ["0"]):df[col] = df[col].str.lower()
In [21]: df.duplicated().sum()
Out[21]: 25
In [22]: df.drop_duplicates(inplace=True)
In [23]: df.duplicated().sum()
Out[23]: 0
```

Out[24]:

	number_of_engines	total_fatal_injuries	total_serious_injuries	total_minor_injuries	tota
0	1.000000	2.0	0.000000	0.000000	
1	1.000000	4.0	0.000000	0.000000	
2	1.000000	3.0	0.279881	0.357061	
3	1.000000	2.0	0.000000	0.000000	
4	1.146585	1.0	2.000000	0.357061	
88884	1.146585	0.0	1.000000	0.000000	
88885	1.146585	0.0	0.000000	0.000000	
88886	1.000000	0.0	0.000000	0.000000	
88887	1.146585	0.0	0.000000	0.000000	
88888	1.146585	0.0	1.000000	0.000000	
88864	88864 rows × 5 columns				

Checking for Outliers

```
In [25]: # Grid Layout
    rows, cols = 2, 3
    fig, axes = plt.subplots(rows, cols, figsize=(21, 13))

# FLatten
    axes = axes.flatten()

for i, column in enumerate(numeric_df):
        sns.boxplot(x=df[column], ax = axes[i])
        axes[i].set_title(f"Box plot for {column}")
        axes[i].set_xlabel(column)
        axes[i].set_ylabel('Value')

# Hide empty subplots
for j in range(i + 1, rows * cols):
        axes[j].axis('off')

plt.tight_layout()
    plt.show()
```



```
In [26]:
         # Select only numeric columns
         numeric_data = df.select_dtypes(include=['number'])
         # Calculate q1, q3, and IQR for numeric data only
         q1 = numeric data.quantile(0.25) # .25
         q3 = numeric_data.quantile(0.75) # .75
         IQR = q3 - q1
         # Lower and upper bounds for identifying outliers
         lower bound = q1 - (1.5 * IQR)
         upper bound = q3 + (1.5 * IQR)
         # Identify outliers in numeric columns
         outliers_ = set()
         for col in numeric_data.columns:
             outliers = numeric_data[(numeric_data[col] < lower_bound[col]) | (numeri</pre>
             outliers .update(outliers.index)
         # Count number of rows before removing outliers
         num_rows_before = len(df)
         # Remove rows with outliers from the original DataFrame (important!)
         df = df.drop(index=outliers )
         # Num of rows after removing outliers
         num_rows_after = len(df)
         # Number of rows removed
         rows_removed = num_rows_before - num_rows_after
         # Print the results
         print(f"Number of rows before removing outliers: {num_rows_before}")
         print(f"Number of rows after removing outliers: {num_rows_after}")
         print(f"Number of rows removed: {rows removed}")
         Number of rows before removing outliers: 88864
```

Number of rows before removing outliers: 88864 Number of rows after removing outliers: 42604 Number of rows removed: 46260

```
In [27]: rows, cols = 2, 3
    fig, axes = plt.subplots(rows, cols, figsize=(21, 13))

# Flatten
axes = axes.flatten()

for i, column in enumerate(numeric_df):
        sns.boxplot(x=df[column], ax = axes[i])
        axes[i].set_title(f"Box plot for {column}")
        axes[i].set_xlabel(column)
        axes[i].set_ylabel('Value')

# Hide empty subplots
for j in range(i + 1, rows * cols):
        axes[j].axis('off')

plt.tight_layout()
plt.show()
```


Saving the cleaned data.

```
In [28]: df.to_csv("Project_1R.csv",index = False)
```

```
In [31]: make_count = df["make"].value_counts().iloc[:20]
    make_count
    #visual using matplotlib bar
    plt.figure(figsize=(6,4))
    make_count.plot(kind="bar", color='g')
    plt.title("make bar plot")
    plt.ylabel("number of aircraft")
    plt.show()
```



```
In [32]: model_count = df["model"].value_counts().iloc[:20]
model_count
#visual using matplotlib bar
plt.figure(figsize=(6,4))
model_count.plot(kind="bar", color='g')
plt.title("model bar plot")
plt.ylabel("number of aircraft")
plt.show()
```



```
In [38]: purpose_of_flight_count = df["purpose_of_flight"].value_counts().reset_inde
    purpose_of_flight_count
    #visual using matplotlib bar
    plt.figure(figsize=(6,4))
    sns.barplot(x = purpose_of_flight_count["purpose_of_flight"],y = purpose_of
    plt.title("purpose_of_flight bar plot")
    plt.ylabel("number of aircraft")
    plt.xticks(rotation = 90)
    plt.show()
```



```
In [59]: df = df[df['aircraft_category'] != 'unknown']
    aircraft_category = df["aircraft_category"].value_counts().reset_index().il
    aircraft_category
    #visual using matplotlib bar
    plt.figure(figsize=(6,4))
    sns.barplot(data = aircraft_category, x = "aircraft_category",y = "count",p
    plt.title("aircraft_category")
    plt.ylabel("number of aircraft")
    plt.xticks(rotation = 90)
    plt.show()
```



```
In [70]: # Remove 'unknown', 'unk' to exclude

df = df[df['aircraft_damage'] != 'UNK']

df = df[df['aircraft_damage'] != 'Unknown']

# Aggregating the data by aircraft category

df1= df['country'].value_counts().head(10).index

#df1 = df[df['country'] != 'Unknown']

df1 = df[df['country'].isin(df1)]

df2= df1['country'].value_counts().tail(9).index

#df = df[df['country'] != 'Unknown']

df2 = df[df['country'].isin(df2)]
```

```
In [69]: # Plot the bar plot
    damage_data = df1.groupby(['country', 'aircraft_damage']).size().unstack().
    # Plot grouped bar chart
    damage_data.plot(kind='bar', figsize=(12, 6), colormap='viridis')
```

Out[69]: <Axes: xlabel='country'>


```
In [71]: # Plot the bar plot
    damage_data = df2.groupby(['country', 'aircraft_damage']).size().unstack().
    # Plot grouped bar chart
    damage_data.plot(kind='bar', figsize=(12, 6), colormap='viridis')
```

Out[71]: <Axes: xlabel='country'>


```
In [74]: # Extract the year from the event.date column for temporal analysis.
    df['event_year'] = pd.to_datetime(df['event_date']).dt.year
    df['event_year'].head()
```

```
Out[74]: 7 1982
10 1982
11 1982
13 1982
14 1982
```

Name: event_year, dtype: int32


```
In []: from wordcloud import WordCloud
# Remove rows where airport.name contains 'Unknown' or 'None'
df = df[~df['airport.name'].str.contains('Unknown|None', case=False, na=Fal
# Filter data for high-risk airports
high_risk_airports = df[df['risk.category'] == 'High Risk']['airport.name']
# Generate word cloud
wordcloud = WordCloud(width=800, height=400, background_color='white').gene
# Plot
plt.figure(figsize=(12, 8))
plt.imshow(wordcloud, interpolation='lanczos')
plt.axis('off')
plt.title('High-Risk Airports', fontsize=16, fontweight='bold')
plt.show()
```

```
In [82]: df1= df['make'].value_counts().head(3).index
#df1 = df[df['make'] != 'Unknown']
    df1 = df[df['make'].isin(df1)]
    damage_data = df1.groupby(['make', 'broad_phase_of_flight']).size().unstack
# Plot grouped bar chart
    damage_data.plot(kind='bar', figsize=(12, 6), colormap='viridis')
```

Out[82]: <Axes: xlabel='make'>

