Homework Assignment 6

Deadline: March 11, 11:59 pm

- 1. Consider three separate AR(1) models: $\phi = 0.1$, $\phi = 0.5$, and $\phi = 0.8$.
 - (a) For each model, calculate ρ_1 and ρ_7 .
 - (b) For each model, calculate $Var(r_1)$ and $Var(r_7)$.
 - (c) For each model, use the arima.sim function to simulate a time series of length n = 60. Then use the acf function to calculate r_1 and r_7 . Remember to set up a random seed for your simulation.
 - (d) Based on your results in parts (a) and (b), are r_1 and r_7 from part (c) within 2 standard deviations of ρ_1 and ρ_7 respectively?
 - (e) Repeat part (c) for 1000 times. Draw histograms for r_1 's and r_7 's for each model. What proportion of r_1 's and r_7 's are within 2 standard deviations of ρ_1 and ρ_7 ?
- 2. Consider an AR(1) model with $\phi = 0.6$.
 - (a) Use the arima. sim function to simulate three time series of lengths n = 15, 75, and 150.
 - (b) For each set of simulated data, calculate r_1 .
 - (c) For each n, what is $Var(r_1)$? Is r_1 within 2 standard deviations of ρ_1 for each sample?
 - (d) Repeat part (a) for 1000 times. For each n, draw a histogram of the 1000 r_1 's, and find what proportion of r_1 's are within 2 standard deviations of ρ_1 .
- 3. Consider an MA(1) model with $\theta = 0.6$.
 - (a) Use the arima.sim function to simulate three time series of lengths n = 15, 75, and 150.Note that R uses the negative of the MA coefficients.
 - (b) For each set of simulated data, calculate r_1 .
 - (c) For each n, what is $Var(r_1)$? Is r_1 within 2 standard deviations of ρ_1 for each sample?
 - (d) Repeat part (a) for 1000 times. For each n, draw a histogram of the 1000 r_1 's, and find what proportion of r_1 's are within 2 standard deviations of ρ_1 .
- 4. The dataset days contains accounting data. The data is the number of days it took to receive payment for 130 consecutive orders from a particular distributor.
 - (a) Plot the times series. Are there any unusual values?
 - (b) Draw the sample ACF and sample PACF plots. What do you find?
 - (c) Replace the unusual values with a value of 35 days. Redraw the sample ACF and sample PACF plots. Are they different from part (b)?
 - (d) What ARMA model would you specify for this series after removing the outliers? Explain.