Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 5

- 1. Пусть $z=2+2\sqrt{3}i$. Вычислить значение $\sqrt[5]{z^3}$, для которого число $\frac{\sqrt[5]{z^3}}{\frac{3}{2}-\frac{3\sqrt{3}i}{2}}$ имеет аргумент $-\frac{16\pi}{15}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(14-13i) + y(12+2i) = 224+104i \\ x(-5-2i) + y(-11+2i) = 8+93i \end{cases}$$

- 3. Найти корни многочлена $3x^6 + 30x^5 + 90x^4 + 150x^3 + 1227x^2 + 5040x + 3900$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 2 3i$, $x_2 = -4 2i$, $x_3 = -1$.
- 4. Даны 3 комплексных числа: -20-14i, 7-13i, 5-10i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -4$, $z_2 = -2 2\sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 6 + 6i| < 1\\ |arg(z - 2 + 2i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, 1, 0), b = (2, 7, 9), c = (1, -4, 7). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-7,12,-11) и плоскость P:-20x-2y-18z+50=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(11, -6, -15), $M_1(1, -14, -14)$, $M_2(12, -3, -14)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 19x - 22y - 15z - 485 = 0 \\ 8x - 10y - 5z - 198 = 0 \end{cases} \qquad L_2: \begin{cases} 11x - 12y - 10z + 1173 = 0 \\ 11x - 12y + 2z + 837 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .