Clases de Valores en el Lenguaje M

Valores Primitivos, Valores Estructurados y Valores Abstractos

Clases de Valores en M

Numéricos (number)

Valores Atómicos

- Fecha (date)
- Hora (time)
- Fecha y Hora (datetime)
- F,H y Z (datetimezone)
- Duración (duration)
- Texto (text)
- Nulo (null)
- Binarios (binary)
- Lógico (logical)

Valores Estructurados

Valores Compuestos

- Lista (list)
- Registro (record)
- Table (table)

Valores Abstractos

Valores Compuestos

- Functiones (function)
- Tipos (types)

ELEMENTOS DE VALORES

A cada valor se les asocia un conjunto de elementos para poder trabajar con ellos

- . Una sintaxis "literal"
- 2. Un conjunto de valores
- 3. Un conjunto de operadores
- . Un valor intrínseco

Clases de Valores en el Lenguaje M

Valores Primitivos, Valores Estructurados y Valores Abstractos

		Literales y Sintax	kis de Inicialización
	Tipo	Literal	Función
	Nulo	null	
	Lógico	true flase	
	Numérico	0 I -I I.5 2.3e-5	
	Hora		#time (09, 15, 00)
Primitivos	Fecha		#date (2019, 04, 27)
Primi	Fecha y Hora		#datetime (2019, 04, 27, 09,15,00)
	Fecha, Hora y Zona		#datetime (2019, 04, 27, 09,15,00, 00)
	Duración		#duration (0, 1, 30, 0)
	Texto	"Escuela de Inteligencia"	
	Binario		#binary("AQID")
	Lista	{ 1, 2, 3 }	
Estructurados	Registro (Record)	[X = I, Y = 2]	
	Tabla		#table({"X","Y"},{{0,1},{1,0}})
	Función		(x) => x + 1
	Tipo		type { number } type table [$A = any$, $B = text]$

Clases de Valores en el Lenguaje M

Valores Primitivos, Valores Estructurados y Valores Abstractos

Familia de	Funciones Nativas
ipo	Familia de Funciones
Nulo	
Lógico	=Logical.X
Numérico	=Number.X
Hora	=Time.X
Fecha	=Date.X
Fecha y Hora	=DateTime.X
Fecha, Hora y Zona	=DateTimeZone.X
Duración	=Duration.X
Texto	=Text. X
Binario	=Binary.X
Lista	=List.X
Registro (Record)	=Record.X
Tabla	=Table.X
Función	=Function.X
Tipo	=Type.X

Documentación

1

MSN Online: En la siguiente web: https://docs.microsoft.com/en-us/powerquery-m/table-columnnames encontramos la documentación online de Microsoft de las funciones M.

2

Función #shared: La función #shared retorna un registro con todos los valores del Power Query actual, esto incluye no sólo nuestras consultas, sino todas las funcione disponibles nativas y personalizadas.

3

Intellisense: El propio menú de autocompletado y resaltado de sintaxis nos brindar la lista filtra según unas letras, donde mediante el tootltip nos podemos hacer una buena idea inicial de las funciones.

£2000

100 P

= Table.SelectRows (t, (x as record) =>
$$x[Precio] > 50$$
)

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

100 P

= Table.SelectRows (t, (x as record) =>
$$x[Precio] > 50$$
)

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

$$40 > 50 \times 60 > 50 \checkmark$$

= Table.SelectRows (t, (x as record) =>
$$x[Precio] > 50$$
)

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power Bl	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

40 > 50	X
60 > 50	/
70 > 5 0	/

= Table.SelectRows (t, (x as record) =>
$$x[Precio] > 50$$
)

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

40 > 50	×
60 > 50	/
70 > 50	/
60 > 50	/

= Table.SelectRows (t, (x as record) =>
$$x[Precio] > 50$$
)

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

40 > 50	×
60 > 50	/
70 > 50	/
60 > 50	/
70 > 50	/

La Syntax Sugar each la definción de Función Personalizada


```
( Registro as record ) as logical => Registro[Precio] >= 50 ,

Logical_EsMayorA50yMenorA70 =

( R as record ) as logical =>

let

sI = R[Precio] > 50 ,
```

s2 = R[Precio] < 60,

s3 = s1 and s2

Logcail_EsMayorA50 =

let

in

/*

Para que se una función válida para Table. SelectRows debe ser un función que recibe un registro (record) y retorna un valor booleano (logical)

Por otra parte, como la función puede constar más de un paso, entonces, cuando se así, no olvidar que varios pasos de trabajo se indican en un let ... in

Logical_EsMayorA50yNenorA60

53

in

La Syntax Sugar each la definción de Función Personalizada

= Table.SelectRows (t ,
$$(x \text{ as record}) => x[Precio] > 50$$
)

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

40 > 50	X
60 > 50	/
70 > 50	/
60 > 50	/
70 > 50	/

Nota de Creación de Función

Nótese que al crear la función directamente dentro del argumento función (segundo argumento) de Table. Select Rows no existe la necesidad de señalar un identificador, puesto que el ambiente del argumento ya sabe para que será utilizando.

Es por ello que se dice que la definición e funciones dentro argumento de función en funciones son anónimas, por que o tiene identificador.

Si la función tiene varios de transformación el let ... In es inevitable así se encuentre en una función anónima


```
MyFuncion =

let
Operacion = ( x ) => x + 1

in
Operacion
```

```
MyFuncion =

let
Operacion = ( _ ) => _ + 1
in
Operacion
```

```
MyFuncion =

let
Operacion = each _ + 1
in
Operacion
```

```
\begin{array}{l} \text{MyFuncion} = \\ \textbf{each} \, \_ \, + \, \textbf{1} \end{array}
```

Función Anónima eacha para syntax sugar de función personalizada

La Syntax Sugar each

RESERVED

La palabra reservada each es una expresión en syntax sugar para definición o construcción de una función personalizada.

- La expresión each no es un iterador, la iteración lo dicta la función en particular, ejemplo: Table.SelectRows
- La función each se puede implementar por fuera de argumentos de funciones que reciben funciones.
- El identificador _ se puede omitir cuando se llama a un registro a cuando se llama fila de una tabla.


```
Table.AddColumn
                             <u>Tabla</u> como valor table ,
                              (i) ITERADOR
                             NombreDeNuevaColumna como valor text,
                             GeneradorDeColumna como valor function,
                                      ( IteraciónActual como valor record ) como valor any
                             [ TipoDeColumna ] como valor type ,
  como valor table
```

La Syntax Sugar each la definción de Función Personalizada

Ejercicio I — Table.AddColumn:

Sin apoyarse de la interfaz, y escribir todo desde cero en el editor avanzado: un nuevo paso de transformación que cree una nueva columna en la table t, la cual incremente el valor del precio en un 3% si es un libro ya publicado de lo contrario que devuelva el valor definido sin cambio.

La Syntax Sugar each la definción de Función Personalizada

Solución B: Ejercicio I

```
let
    tI =
    Table.AddColumn (
      t,
      "Precio Nuevo",
       ( x ) =>
          if x[Publicado] then
            x[Precio] * 1.03
          else
            x[Precio]
in
    tl
```


La Syntax Sugar each la definción de Función Personalizada

Solución A: Ejercicio I

```
let
    tI =
    Table.AddColumn (
      t,
      "Precio Nuevo",
      each
           if [Publicado] then
             [Precio] * 1.03
           else
             [Precio]
in
    tl
```


Función Anónima eacha para syntax sugar de función personalizada

No todas las funciones de iteración del Lenguaje M se comportan igual


```
Table.CombineColumns
                               <u>Tabla</u> como valor table ,
                               (i) ITERADOR
                              Columnas como valor list ,
                               (i) TRANSFORMACIÓN A...
                              Combinador como valor function,
                                    ( IteraciónActual como valor list ) como valor any
                              NombreDeColumna como valor text,
  como valor table
```

La Syntax Sugar each la definción de Función Personalizada

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) => $x\{1\}$ & $x\{1\}$,"Nueva Columna")

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power Bl	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

La Syntax Sugar each la definción de Función Personalizada

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) => $x\{1\}$ & $x\{1\}$,"Nueva Columna")

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power Bl	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) =>
$$x\{1\}$$
 & $x\{1\}$,"Nueva Columna")

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power Bl	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) =>
$$x\{1\}$$
 & $x\{1\}$,"Nueva Columna")

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) =>
$$x\{1\}$$
 & $x\{1\}$,"Nueva Columna")

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

La Syntax Sugar each la definción de Función Personalizada

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) => $x\{1\}$ & $x\{1\}$,"Nueva Columna")

List						
Tablas	Dinámicas	la	Quinta	Dimensión		
2015						

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

£2.00

La Syntax Sugar each la definción de Función Personalizada

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) => $x\{1\}$ & $x\{0\}$,"Nueva Columna")

	List
El ADN de Power	Pivot
2016	

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power Bl	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

100 P

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) =>
$$x\{1\}$$
 & $x\{1\}$,"Nueva Columna")

			List			
Int.de	Neg.	Con	Excel	y	Power	BI
2018						

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

£2.

La Syntax Sugar each la definción de Función Personalizada

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) => $x\{1\}$ & $x\{1\}$,"Nueva Columna")

				List			
El	ADN	de	Power	Query			
20	19						

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

£2.2

La Syntax Sugar each la definción de Función Personalizada

= Table.CombineColumns (t , {"Libro" , "Año"} , (x as list) => $x\{1\}$ & $x\{1\}$,"Nueva Columna")

			List			
Power	BI	para	Reportes	e	Informes	
2020						

Libro	Año	Precio
Tablas Dinámicas la Quinta Dimensión	2015	40
El ADN de Power Pivot	2016	60
Inteligencia de Negocios con Excel y Power BI	2018	70
El ADN de Power Query	2019	60
Power BI Reportes e Informes	2020	70

La Syntax Sugar each la definción de Función Personalizada

Ejercicio I — Table.CombineColumn:

Combinar las columnas Libro y Precio de la siguiente forma: 60: Power BI para Reportes e Informes, etc, es decir, en al combinación de los valores deben quedar invertidos

La Syntax Sugar each la definción de Función Personalizada

Solución A: Ejercicio I

Funciones de la Categoría Combiner

Función	Descripción
Combiner.CombineTextByDelimiter	Retorna una función que combina una lista de textos en una sola cadena de textos utilizando el delimitador especificado.
Combiner.CombineTextByEachDelimiter	Retorna una función que combina una lista de textos en una sola cadena de textos utilizando cada delimitador especificado. Es ve reflejado en la combinación de tres a más cadenas de texto.
Combiner.CombineTextByLengths	Retorna una función que combina una lista de textos en una sola cadena de textos utilizando una longitud determinada.
Combiner.CombineTextByPositions	Retorna una función que combina una lista de textos en una sola cadena de textos utilizando las posiciones especificadas.
Combiner.CombineTextByRanges	Retorna una función que combina una lista de textos en una sola cadena de textos utilizando las longitudes y posiciones especificadas.

Funciones de la Categoría Combiner

Solución B: Ejercicio I

£2.23

Funciones de la Categoría Splitter

```
Table.SplitColumn (
                                <u>Tabla</u> como valor table ,
                                (i) ITERADOR
                               ColumnaFuente como valor text ,
                                (i) TRANSFORMACIÓN A...
                               Divisor como valor function,
                                    ( IteraciónActual como valor list ) como valor any
                               NombreDeColumna como valor text,
  como valor table
```

Funciones de la Categoría Splitter

Ejercicio I — Table.SplitColumn:

Dividir la columna <u>Libro y Precio</u> del ejercicio: <u>Ejerico 1 — Table.CombineColumns</u> por el carácter ":", sin apoyo de la interfaz directamente de la interfaz.

Funciones de la Categoría Splitter

Solución A: Ejercicio I

```
let
    Table.CombineColumns (
        { "Libro", "Precio" },
        Combiner.CombineTextByDelimiter (":")
    Table.SplitColumn (
        "Libro y Precio",
        (x) =>
            Text.Split ( x , ":" )
in
    t2
```


Funciones de la Categoría Splitter

Función	Función
Splitter.SplitByNothing	Splitter.SplitTextByAnyDelimiter
Splitter.SplitTextByCharacterTransition	Splitter.SplitTextByDelimiter
Splitter.SplitTextByEachDelimiter	Splitter.SplitTextByLengths
Splitter.SplitTextByPositions	Splitter.SplitTextByRanges

£26.

Función Anónima eacha para syntax sugar de función personalizada

Función del Lenguaje M que Itera en Grupos

Función Anónima eacha para syntax sugar de función personalizada

```
400 P
```

```
Table.Pivot
                            <u>Tabla</u> como valor table ,
                            (i) ITERADOR
                           ValoresPivot como valor list,
                           NombreDeColumnaPivot como valor text ,
                           NombreDeColumnaDeValores como valor text ,
                            FunciónDeAgregación como valor function,
                                   ( GrupoPivot como valor list ) como valor any
  como valor table
```


Funciones de la Categoría Splitter

Ejemplo — Stacked Table:

Crear la función personalizada para transformar una tabla con el formato apilado (Stacked Table) donde todos los nombres de campos son coincidentes, y luego utilizarla para integrar k tablas con el formato apilado en el archivo de Excel: 5 - StackedToTabular de K Tablas

Limpieza de Datos de 2º — Técnicas de Dinamización por Transposición

Stacked Table: Generalización Campos Coincidentes

¡Algoritmo!

- 1. Agregar Columna de Índice
- 2. Columna dinámica con columna 1 como dinámica y columna 2 como valor
- 3. Rellenar arriba de la columna tres en adelante
- 4. Remover null de la columna número dos.
- 5. Remover columna de índice
- 6. Aplicar tipo de datos a todas las columnas

Funciones de la Categoría Splitter

Ejercicio I —Pivot Table NxM:

Crear la función personalizada para transformar una tabla con el formato de tabla dinámica Nx,M (Pivot Table) donde todos, y luego utilizarla para integrar k tablas con el formato de tabla dinámica en el archivo de Excel: 8 - PivotNxMToTabular de K Tablas.

Limpieza de Datos de 2º – Técnicas de Dinamización por Transposición

Formato Pivot Table NxM — Pseudo-Generalización

¡Algoritmo!

- 2. Combinar la n primeras columnas
- 3. Transponer
- 4. Rellenar abajo m-1 primeras columnas
- 5. Promover encabezado
- 6. Anular dinamización de otras columnas con m seleccionadas
- 7. Dividir columna Atributo por delimitador asociado
- 8. Renombras Columnas

Parámetros y Metadatos en el Lenguaje M

Tipo especial de identificador y Datos sobre un Dato

Meta datos

Los meta datos son datos acerca de un valor, y en el lenguaje M esos datos asociados se representan con un valor de tipo registro, denominado registro de meta dato. Todo valor en M tiene meta datos, si no ha sido especificado dicho registro simplemente esta vació.


```
let
  a = "El ADN de Power Query" meta [Precio=60, publiacion=2019,edicion=1]
in a
```



```
a = "El ADN de Power Query" meta [Precio=60, publiacion=2019,edicion=1]
```

Acceder a un valor de los matados se debe hacer con la función: Value. Meta Data


```
let
    a = "El ADN de Power Query" meta [Precio=60, publiacion=2019,edicion=1]
in
    Value.MetaData ( a ) [Precio]
```

Parámetros y Metadatos en el Lenguaje M

400 E

Tipo especial de identificador y Datos sobre un Dato

Parámetro

Los parámetros en el lenguaje M son un tipo especial de identificador que tiene como fin dar facilidad en la inserción de valores estáticos de forma amigable mediante cuadro de diálogo o similar si la necesidad de un enter.

MuestraBinaria meta [IsParameterQuery=true, BinaryIdentifier=MuestraBinaria, Type="Binary", IsParameterQueryRequired=true]

Cuando se crea una función a partir de un parámetro estas se retroalimentan entre si automáticamente.

MuestraTabla meta [IsParameterQuery=true, IsParameterQueryRequired=false]