

df["Height"].describe() μ= 66-36 10000.000000 count 66.367560 mean std 3.847528 54.263133~ min 25% 63.505620 0 50% 66.318070~ 75% 69.174262 L 78.998742 max Name: Height, dtype: float64

game gue 83

My lown 150mm

My lown 150mm

Absolute 10 - 100
$$\Rightarrow$$
 10 mm

105 - 100 \Rightarrow 5 lowerm 0

95 - 100 \Rightarrow - 5 mm

90 - 100 \Rightarrow - 10 mm

100 + 25 + 25 + 100 = 250 = 62.5

Sum of Squar of environ (100-100) + (95-100) + (90-100) = 62.5

deviance =
$$\frac{z}{(n-z)^2}$$
 mm² = $\frac{z}{(n-z)^2}$ Std = $\frac{z}{(n-z)^2}$ = $\frac{z}{(n-z)^2}$ M2

Vauana = 62-5 mm²

MI

Std = 7.905 mm

Std = 45.27 mm

Distribution

math eq f(n)= y distribution aurl ((4.5) {4.5) {4.75} {5.25} (5.25) {5.5} {6.6} What fract of people blw 4.5-4.75? 6 prob. of height blw 4.5-4.75? 100 prob. of height blw. X

Normal distribution Gaussian distribution dennity Bell Cure

probability function 2001 Trya (4.5,66.36,45.9,54.23 0,1,2,3,4,5,0,1,1,1 density

MI - Nomal - Enponential - Bironial - Poisson 166 100

1)
$$P[62.5 < x < (7.5) (±10)$$
= 0.68
(2) $P[60 < x < 70] = (120)$

(3) P[57.5 (n(12.5) /±36)

(4) P[60 < x < 67.5] = 0.815 P[57.5 < x < 70] = 0.97

The height of people is Gaussian with mean 65 inches and standard deviation 2.5 inches.

What is the fraction of people whose height is between 60 and 72.5?

		41 users have participated	
	A	0.68	7%
	В	0.895	5%
②	С	0.9735	78%
	D	0.997	10%

The height of people is Gaussian with mean 65 inches and standard deviation 2.5 inches. What fraction of people are shorter than 67.5?

std der away from mean ? The

57.5= 65+ (-3) 2.5

60 = 65 + (-2)2.5

62.5 = 65 + (-1)2.5

65:65+0(2.5)

67.5: 65 + (+1) (2.5)

$$Z = \frac{69 - 65}{2.5} = \frac{4}{2.5} = \frac{1.6}{2.5}$$

-2 -1 0 +1 +2 +3 Z

pd. cosstat (margins= weamorise) Marginal Protr P[KPURI]= 800/2400 KLASI KP781 400 (00) 1200 760 400 100 1200 2) Joint Prots P[KP481 () High]= 2400 2400 160 900 800 3 Conditional Plat P[High/KP481] = 460/800 P[KP481/High]= 400/1200

* Outliers 0,2,3,5,6,7,(209)