

MAT1320 LINEAR ALGEBRA EXERCISES II

1911		
	Name Surname:	Group No:
	Student No:	Duration:
	1 <u> </u>	
	Department:	Date: 10 October 2022
	l —— —— —— —— —— —— —— —— —— —— —— —— ——	
	Lecturer: Dr. Mustafa SARI	Signature:
	· ·	

1. Let $A = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ be an involut matrix, let $B = \begin{pmatrix} y & 0 \\ y & 0 \end{pmatrix}$ be a nonzero dempetent matrix and let $C = \begin{pmatrix} 1 \\ z \end{pmatrix}$ be a singular matrix (not invertible). Then, which of the followings is the value x - y - z? d) -2(b) 0 c) 1 e) 2

3. Let A be $n \times n$ skew-symmetric matrix and let x be a vector with n components. Which of the followings is equal to $x^T A x$ for all $x \in \mathbb{R}^n$?

a)
$$\mathbf{0} \in \mathbb{R}^n$$

b)
$$x^T$$

$$(c)$$
 $0 \in \mathbb{R}$

e)
$$-x^2$$

Toking
$$n=2$$
, let $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $X = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

Then,
$$x^TAx = \begin{bmatrix} 2 \end{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} -3 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$= 0 \in \mathbb{R}.$$

be seen that the result to 0

$$A^{T} = \begin{pmatrix} 0 & a & b \\ a_{t}b & 2 & a_{t}b \\ c+2 & c & b \end{pmatrix} = \begin{pmatrix} 0 & a_{t}b & c_{t}c \\ a & 2 & c \\ b & a_{t}b & b \end{pmatrix}$$

$$a+b=a + a + b + b + c_{t}c$$

$$c+2=b + a + c_{t}c$$

$$c+2=b + a + c_{t}c$$

$$c=1$$

is a symmetric matrix, then which of the followings is true for the matrix B =

I. *B* is a skew-symmetric matrix. \mathbb{K} . B^2 is a symmetric matrix.

 $I_{\underline{M}} \operatorname{Tr}(B) = \operatorname{Tr}(A).$

a) Only I d) I and III b) I and II

e) All of them

$$\vec{B} = \begin{pmatrix} -3 & 5 & 3 \\ 5 & 0 & -2 \\ 3 & -2 & 3 \end{pmatrix} \begin{pmatrix} -3 & 5 & 3 \\ 5 & 0 & -2 \\ 3 & -2 & 3 \end{pmatrix} = \begin{pmatrix} 43 & -21 & -10 \\ -21 & 29 & 9 \\ -10 & 9 & 22 \end{pmatrix}$$

$$= 8^{2} \vec{B} \quad \text{symmetric} \quad -$$

= B2 is symmetric -

$$-1 = -2 + c = 1$$

$$-b = 0$$

$$-$$

then which of the followings is true for the matrix B =

I. B is a symmetric matrix. Tr(B) = 0 = Tr(A)

 $\coprod B^2$ is a symmetric matrix.

III. Tr(B) = Tr(A).

- a) Only I
- b) I and II
- c) II and III
- e) All of them d) I and III

5. Let
$$A = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$$
 be an involut matrix, let $B = \begin{bmatrix} y & 0 \\ y & 0 \end{bmatrix}$ be a nonzero idempotent matrix and let $C = \begin{bmatrix} 1 & -2 \\ z & 2 \end{bmatrix}$ be a noninvertible matrix. Then, which of the followings is equal to the value $x + y + z$?

a)
$$-1$$
 b) 1 c) 0 d) -2 e) 2

$$A^{2} = 1 = 1 \quad \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2x \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \qquad = \begin{pmatrix} 2 - 2 \end{pmatrix} = -1 \begin{pmatrix} 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & 3 \end{pmatrix} = A^{2}$$

$$A^{3} = A^{1}A = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} =$$

6. Which of the followings is true for the matrix
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
?

a) Idempotent

d) Nilpotent

- b) Involut c) Orthogonal
- e) None of them

- 7. Which of the followings is true for the matrix B =
 - a) Involut c) Idempotent
 - d) Hermitian

$$B^{2} = \begin{bmatrix} ab & -a^{2} \\ b^{2} & -ab \end{bmatrix} \begin{bmatrix} ab & -a^{2} \\ b^{2} & -ab \end{bmatrix}$$

$$= \begin{pmatrix} a^{3}b^{3} + -a^{3}b^{3} & -a^{3}b + a^{3}b \\ ab^{3} - ab^{3} & -a^{3}b^{3} + a^{2}b^{3} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- - which of the followings is the value a+b+c?

 a) 3-2ib) -3c) -3d) 2e) -3+i

9. Let A and B be 3×3 real nonzero matrices and $(AB)^T + B^{-1}A = 0$. If B is an orthogonal matrix, then which of the followings is true for the matrix A?

a) Symmetric

b) Idempotent

c) Nilpotent

 $(AB)^{T} + B^{T}A = 0 , B^{T} = B^{-1}$

BTAT + BTA-O) Since BT= BT

= B'AT+B'A=0 = B'(AT+A)=0) Smce B is moretible

=) AT+A=0 =1 AT=-A=1 A is skew-symmetris. d) Orthogonal (e) Skew-symmetric