

BUNDESREPUBLIK DEUTSCHLAND
**PRIORITY
DOCUMENT**

 SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**
Aktenzeichen: 102 32 094.2

REC'D	17 NOV 2003
WIPO	PCT

Anmeldetag: 15. Juli 2002

Anmelder/Inhaber: Gesellschaft für Biotechnologische Forschung
mbH (GBF), Braunschweig/DE

Erstanmelder: Professor Dr. Gerhard Höfle,
Braunschweig/DE

Bezeichnung: 5-Thiaepothilone und 15-disubstituierte Epothilone

IPC: C 07 D, A 61 K

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

 München, den 28. Juli 2003
 Deutsches Patent- und Markenamt

 Der Präsident
 Im Auftrag

Sieck

15. Juli 2002/ch

Unser Zeichen: 13171

Neue Deutsche Patentanmeldung

Hoefle

5-Thiaepothilone und 15-disubstituierte Epothilone

Die vorliegende Erfindung betrifft 5-Thiaepothilone und 15-disubstituierte Epothilone, bei denen es sich um 16-gliedrige cytotoxische Makrolide der Formel I mit einem Anwendungspotential in der Krebstherapie und bei der Behandlung anderer Zellwachstumsstörungen handelt.

Epothilone sind bekannt. Sie sind zugänglich durch Fermentation des Myxobakteriums *Sorangium cellulosum* (GBF), durch Semisynthese (GBF, BMS), durch Genetic Engineering und heterologe Expression (Kosan Biosciences),

durch Totalsynthese (Danishefsky, Nicolaou, Schinzer, Novartis, Schering).

Allen bisher bekannt gewordenen Epothilonen ist gemeinsam, dass sie in 5-Position eine Ketogruppe ($X = \text{Carbonyl}$) und am C15-Atom einen Wasserstoff tragen ($R^3 = \text{H}$). Die vorliegende Erfindung betrifft nun Epothilone, die im Unterschied zum bekannten Stand der Technik entweder

- (1) für X eine Sulfoxidgruppe oder
- (2) am C15-Kohlenstoffatom mit R^3 eine Alkyl- oder Alkenylgruppe oder
- (3) sowohl eine Sulfoxidgruppe X als auch eine Alkyl- oder Alkenylgruppe als Rest R^3 aufweisen.

Die Erfindung betrifft also Epothilone der folgenden allgemeinen Formel I:

mit den folgenden Bedeutungen:

X = >C=O oder >S=O

R¹ = C₁₋₆-Alkyl oder C₂₋₆-Alkenyl

R² = H oder C₁₋₆-Alkyl

Y-Z = >C=C< oder >CO-C< (Epoxidring)

R³ = H, C₁₋₆-Alkyl oder C₂₋₆-Alkenyl

R⁴ = Bicycloaryl, Bicycloretoaryl oder -C(R⁵)=CH-R⁶,
wobei

R⁵ = H oder CH₃ und

R⁶ = Aryl oder Heteroaryl

wobei X nicht >C=O bedeutet, wenn R³ = H ist.

Eine Verbindung der allgemeinen Formel I mit Z-Y = >C=C<
kann aus einer Verbindung der Formel 1 durch Aldolreaktion
mit einer Verbindung der Formel 2 hergestellt werden. In
dem nachfolgenden Reaktionsschema bedeutet P eine in der
Epothilon-Chemie übliche Schutzgruppe, beispielsweise eine
Silylgruppe. Danach setzt man die erhaltene Verbindung der
Formel 3 unter Ringschluss (Lakton-Bildung) zu einer
Verbindung der Formel 4 um.

Eine Verbindung der allgemeinen Formel I mit Y-Z = >CO-C<
(Epoxidring) kann man dadurch herstellen, dass man eine
Verbindung der Formel 5 mit einer Verbindung der Formel 6
in einer Aldolreaktion umsetzt. Die resultierende
Verbindung der Formel 7 kann man nach Freisetzung der
Aldehydgruppe aus dem Acetal in einer Aldolreaktion
zyklisieren, wonach man das erhaltene Lakton in 12,13-
Stellung einer Epoxydierung unterwirft.

4

1

3

4

5

Nachstehend wird die Erfindung durch 2 Synthesebeispiele
näher erläutert.

Synthesebeispiel Ia: $X = \text{SO}$, $R^1, R^2 = \text{CH}_3$

mit $\text{R}^5 = \text{CH}_3$, $\text{R}^6 = 4\text{-}(2\text{-Methylthiazolyl})$

$(\text{Me}_3\text{Si})_2\text{NLi}$

P = Schutzgruppen, z.B. Silyl

= 5-Thiaepokilon D

Synthesebeispiel Ib: $X = \text{C=O}$, $R^1, R^2 = \text{CH}_3$,

$Z-Y = >\text{C}=\text{C}<$, $R^3 = \text{CH}_3$, $R^4 = \text{---S---N---C=C---}$

Unser Zeichen: 13171

Neue Deutsche Patentanmeldung
Hoefle

Patentansprüche

1. Epothilon der allgemeinen Formel (I):

mit den folgenden Bedeutungen

X = >C=O oder >S=O und/oder

R¹ = C₁₋₆-Alkyl oder C₂₋₆-Alkenyl und/oder

R² = H oder C₁₋₆-Alkyl und/oder

Y-Z = >C=C< oder >C-O-C< (Epoxidring) und/oder

R³ = H, C₁₋₆-Alkyl oder C₂₋₆-Alkenyl und/oder

R⁴ = Bicycloaryl, Bicycloheteroaryl oder -C(R⁵)=CHR⁶, wobei

R⁵ = H oder CH₃ und

R⁶ = Aryl oder Heteroaryl,

wobei für X = >C=O nicht R³ = H ist,

sowie eine, mehrere oder alle denkbaren Kombinationen der Reste X, R¹, R², R³, R⁴, R⁵, R⁶ und Y-Z.

2. Epothilon nach Anspruch 1, wobei es sich bei R⁴ um einen in der Epothilon-Chemie üblichen Bicycloaryl- oder Bicycloheteroarylrest handelt.

3. Epothilon nach Anspruch 1, wobei es sich bei R⁶ um einen in der Epothilon-Chemie üblichen Aryl- oder Heteroarylrest handelt.

4. Epothilon nach Anspruch 3, wobei es sich bei dem Heteroarylrest um einen monocyclischen 5- oder 6-gliedrigen Heteroaromat handelt, der ein oder mehrere O- und/oder N- und/oder S-Atome im Ring aufweisen kann.

5. Epothilon nach Anspruch 3, wobei es sich bei dem Arylrest um einen Heteroaromaten mit einem oder mehreren und insbesondere 1, 2, 3 oder 4 Heteroatomen handelt.
6. Mittel zur Krebstherapie und/oder zur Behandlung sonstiger Zellwachstumsstörungen, bestehend aus oder enthaltend ein oder mehrere Epothilone gemäß einem der vorhergehenden Ansprüchen neben üblichen Hilfsstoffen.

Zusammenfassung

Die Erfindung betrifft 5-Thiaepothilone und 15-disubstituierte Epothilone gemäß Formel I

mit den folgenden Bedeutungen:

X = $>\text{C}=\text{O}$ oder $>\text{S}=\text{O}$

R¹ = C₁₋₆-Alkyl oder C₂₋₆-Alkenyl

R² = H oder C₁₋₆-Alkyl

Y-Z = $>\text{C}=\text{C}<$ oder $>\text{C}-\text{O}-\text{C}<$ (Epoxidring)

R³ = H, C₁₋₆-Alkyl oder C₂₋₆-Alkenyl

R⁴ = Bicycloaryl, Bicycloheteroaryl oder -C(R⁵)=CH-R⁶,

wobei

R⁵ = H oder CH₃ und

R⁶ = Aryl oder Heteroaryl

wobei X nicht $>\text{C}=\text{O}$ bedeutet, wenn R³ = H ist.