Summary Report for Assignment 3

Henghui Qi

1. EDA

1.1 Dataset

The dataset has 14987 rows and 10 columns. Besides "DATETIME", which is of type "d atetime", we care about "HB_NORTH (RTLMP)", "ERCOT (WIND_RTI)", "ERCOT (GE NERATION_SOLAR_RT)", and "ERCOT (RTLOAD)", which are all float.

```
<class 'pandas. core. frame. DataFrame'>
RangeIndex: 14987 entries, 0 to 14986
Data columns (total 10 columns):
DATETIME
                             14987 non-null datetime64[ns]
HB NORTH (RTLMP)
                            14987 non-null float64
ERCOT (WIND_RTI)
                            14982 non-null float64
ERCOT (GENERATION_SOLAR_RT) 14983 non-null float64
ERCOT (RTLOAD)
                            14987 non-null float64
HOURENDING
                             14987 non-null int64
MARKETDAY
                             14987 non-null datetime64[ns]
PEAKTYPE
                             14987 non-null object
MONTH
                             14987 non-null object
                             14987 non-null int64
dtypes: datetime64[ns](2), float64(4), int64(2), object(2)
```

From the count of "PEAKTYPE", "WDPEAK" accounts for the biggest part, then "OFFPEAK", and "WEPEAK" has the smallest number. From the count of "MONTH", we can tell that the data is mainly from January to August.

				AUGUST JANUARY MAY JULY MARCH JUNE	1488 1488 1488 1488 1486 1440
WDPEAK OFFPEAK WEPEAK	6966 4997 3024			APRIL FEBRUARY SEPTEMBER DECEMBER OCTOBER NOVEMBER	1440 1344 1116 744 744 721
Name: PEAKT	YPE,	dtype:	int64		dtype: int64

From the summary of numeric data, "HB_NORTH (RTLMP)" and "ERCOT (WIND_RTI)" have relatively large standard deviations and imbalanced distributions.

	HB_NORTH (RTLMP)	ERCOT (WIND_RTI)	ERCOT (GENERATION_SOLAR_RT)	ERCOT (RTLOAD)	HOURENDING	YEAR
count	14987.000000	14982.000000	14983.000000	14987.000000	14987.000000	14987.000000
mean	25.766417	7532.436283	291.989714	42371.673703	12.495763	2017.415493
std	46.361945	3992.884834	370.914596	9874.339631	6.922309	0.492823
min	-17.860000	54.440000	0.000000	25566.511248	1.000000	2017.000000
25%	18.041250	4135.630000	0.000000	35431.636526	6.000000	2017.000000
50%	20.057500	7281.445000	22.150000	39934.007113	12.000000	2017.000000
75%	25.030000	10851.647500	608.635000	47873.100786	18.000000	2018.000000
max	2809.357500	20350.400000	1257.540000	73264.662123	24.000000	2018.000000

1.2 Duplicates and NaNs

There is no duplicate in the data.

```
df.iloc[:,1:5].duplicated().sum()#check duplicates
0
```

There are five NaNs in "ERCOT (WIND_RTI)" and four NaNs in "ERCOT (GENERATION_SOLAR_RT)".

```
HB_NORTH (RTLMP) 0
ERCOT (WIND_RTI) 5
ERCOT (GENERATION_SOLAR_RT) 4
ERCOT (RTLOAD) 0
dtype: int64
```

Fill NaN values with previous data and now there is no NaN left in the data.

1.3 Plots

Plot the four variables we care about, with "DATETIME" as x-axis. Seasonal patterns are seen in these four plots.

Histograms and normal probability plots of these four variables indicate the data is far from normally distributed, especially "HB_NORTH (RTLMP)" and "ERCOT (GENERATION_SOLAR_RT)".

The correlation plot of these four variables shows that they are not highly correlated. The largest correlation coefficient is 0.47 between "ERCOT (GENERATION_SOLAR_RT)", and "ERCOT (RTLOAD)".

2. Modeling and Prediction

2.1 Splitting Data

In order to test the prediction, dataset was split into "train" and "test".

```
# create train and test data
train, test = data.iloc[:-24,:], data.iloc[-24:,:]#predict 24 hours
print(train.shape, test.shape)

(14963, 4) (24, 4)
```

2.2 Checking Before Fitting

2.2.1 Checking Stationarity

For Time Series modeling, data needs to be stationary. Use Augmented Dickey-Fuller (ADF) test to check whether data is stationary. From the result, all four variables are stationary series.

RTLMP:		WIND_RTI:	
Test Statistic	-1.828574e+01	Test Statistic	-1.158489e+01
p-value	2. 303118e-30	p-value	2.883379e-21
# Lags	2. 400000e+01	# Lags	4. 100000e+01
# Observations	1. 493800e+04	# Observations	1. 492100e+04
Critical Value (1%)	-3. 430788e+00	Critical Value (1%)	-3. 430788e+00
Critical Value (5%)	-2.861734e+00	Critical Value (5%)	-2.861734e+00
Critical Value (10%)	-2. 566873e+00	Critical Value (10%)	-2. 566873e+00
dtype: float64		dtype: float64	
Series is Stationary		Series is Stationary	

	RTLOAD:	
-7.584895e+00	Test Statistic	-5. 077353
2.622485e-11	p-value	0.000016
4. 200000e+01	# Lags	42.000000
1. 492000e+04	# Observations	14920. 000000
-3. 430788e+00	Critical Value (1%)	-3. 430788
-2.861734e+00	Critical Value (5%)	-2.861734
-2.566873e+00	Critical Value (10%)	-2. 566873
	dtype: float64	
	Series is Stationary	
	2. 622485e-11 4. 200000e+01 1. 492000e+04 -3. 430788e+00 -2. 861734e+00	-7. 584895e+00 Test Statistic 2. 622485e-11 p-value 4. 200000e+01 # Lags 1. 492000e+04 # Observations -3. 430788e+00 Critical Value (1%) -2. 861734e+00 Critical Value (5%) -2. 566873e+00 Critical Value (10%) dtype: float64

2.2.2 Checking Causality

Use Granger Causality Test to investigate causality of data. From the result that all values are all below 0.05 except the diagonal, we can reject the null hypothesis that x does not cause y.

	HB_NORTH	(RTLMP)_x	ERCOT	(WIND_RTI)_x ERCOT	(GENERATION_SOLAR_RT)_x	ERCOT	(RTLOAD)_x
HB_NORTH (RTLMP)_y		1. 0		0. 0	0. 0		0.0
ERCOT (WIND_RTI)_y		0.0		1. 0	0. 0		0.0
ERCOT (GENERATION_SOLAR_RT)_y		0.0		0. 0	1. 0		0.0
ERCOT (RTLOAD)_y		0.0		0. 0	0.0		1.0

2.3 Building the model

Vector Auto Regression (VAR) is one of the commonly used methods for multivariate time series forecasting. In a VAR model, each variable is a linear function of the past values of itself and the past values of all the other variables, which enables it to understand and use the relationship between several variables. This is useful for describing the dynamic behavior of the data and it also provides better forecasting results. Here I fitted the VAR model on the train and the summary is as shown below. The AIC is 41.3467. The biggest correlations are 0.072 ("HB_NORTH (RTLMP)" & "ERCOT (RTLOAD)") and 0.055 ("ERCOT (WIND_RTI)" & "ERCOT (RTLOAD)", which are small enough to ignore in this case.

8	Summary of	Results	=				
	Model: Method: Date: Time:	Mon, 16	VA OL , May, 202 12:52:5	S 2			
	No. of Equati Nobs: Log likelihoo AIC:			HQIC: FPE:	ga_mle)	41.5117 41.4014 9.04956e+17 : 8.85597e+17	
Correlation man HB_NORTH (RTLMM ERCOT (WIND_RT: ERCOT (GENERAT: ERCOT (RTLOAD)	I)	HB_NORTH (F 1.0 -0.0 -0.0	CTLMP) ERCC 1000000 152043 103273 172442	-0. 052043 1. 000000	ERCOT	(GENERATION_SOLAR_RT) -0.003273 -0.003859 1.000000 0.117179	0. 072442 0. 054809

2.4 Plotting and Testing the Residuals

Plot the residuals of "HB_NORTH (RTLMP)" against fitted values of "HB_NORTH (RTLMP)". The residual plot looks normal with constant mean.

Do the Durbin-Watson statistic test to see whether there is a correlation in the residuals in the fitted result. The result of residuals in the model are around 2, between 1.5 and 2.5, which means autocorrelation is likely not a cause for concern.

HB_NORTH (RTLMP) : 2.0011419602169327 ERCOT (WIND_RTI) : 2.000349301082866

ERCOT (GENERATION_SOLAR_RT) : 2.1028136039062484

ERCOT (RTLOAD) : 1.9975613354295998

2.5 Predicting and Evaluating

Predict the next 24 hours data. The data frame of first five hours prediction of four variables and the plot of 24 hours prediction of "HB_NORTH (RTLMP)" are shown as below.

	HB_NORTH (RTLMP)	ERCOT (WIND_RTI)	ERCOT (GENERATION_SOLAR_RT)	ERCOT (RTLOAD)
0	38.154912	2041.531283	493.162012	51483.342245
1	43.729823	2107.651186	474.903818	53837.209191
2	55.497889	2316.037021	503.228542	55347.101220
3	58.509814	2725.733864	551.013823	55944.077449
4	56.336830	3156.737245	570.187119	55502.552441

The bias of prediction of "HB_NORTH (RTLMP)" is 2.473 and the RMSE of it is 8.808. The bias and RMSE are low here, indicating the right fit of the model is obtained.

Bias: 2.472717

RMSE: 8.808111851099788