

РТ5-61Б Топорин Богдан

Введение

В рамках НИР мы будем решать задачу **классификации**: будем предсказывать, **совершит ли клиент дефолт по кредитной карте** (да/нет).

Для этого используем известный датасет:

Default of Credit Card Clients Dataset

Источник: UCI Machine Learning Repository

Цели исследования

- 1♦ Изучить структуру и особенности исходных данных
- 2♦ Провести разведочный анализ (EDA) с построением графиков
- 3♦ Провести корреляционный анализ
- 4ॐ Провести обработку данных (кодирование категориальных, масштабирование)
- 5♦ Построить baseline модели, провести тюнинг гиперпараметров
- 6 Сравнить качество моделей по различным метрикам
- 7♦ Сделать итоговые выводы

Импорт библиотек

```
In [94]: from statistics import LinearRegression

# Основные библиотеки
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Для моделей
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, fl_score, roc_auc_score, classific
from sklearn.metrics import RocCurveDisplay

# Модели
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifief
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC

# Прочее
import warnings
warnings.filterwarnings('ignore')
```

Загрузка данных

```
In [95]: # Загружаем датасет (локально или по ссылке)

df = pd.read_excel('data/default_of_credit_card_clients.xls', header=1)

df.head()
```

Out[95]:

ID LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_

0	1	20000	2	2	1	24	2	2	-1	
1	2	120000	2	2	2	26	-1	2	0	
2	3	90000	2	2	2	34	0	0	0	
3	4	50000	2	2	1	37	0	0	0	
4	5	50000	1	2	1	57	-1	0	-1	

 $5 \text{ rows} \times 25 \text{ columns}$

Описание данных

• Всего: **30 колонок**

- Целевая переменная: 'default payment next month' (0 нет дефолта, 1 - дефолт)
- Признаки: возраст, пол, образование, семейное положение, история платежей, кредитный лимит, суммы платежей, и др.

```
In [96]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 25 columns):
     Column
                                 Non-Null Count Dtype
     -----
 0
     ΙD
                                 30000 non-null
                                                 int64
 1
     LIMIT BAL
                                 30000 non-null int64
 2
                                 30000 non-null int64
     SEX
 3
     EDUCATION
                                 30000 non-null int64
    MARRIAGE
                                 30000 non-null int64
 5
                                 30000 non-null int64
     AGE
 6
     PAY 0
                                 30000 non-null int64
 7
     PAY 2
                                 30000 non-null int64
     PAY_3
 8
                                 30000 non-null int64
 9
     PAY 4
                                 30000 non-null int64
 10
    PAY 5
                                 30000 non-null
                                                 int64
 11
     PAY 6
                                 30000 non-null int64
 12
     BILL AMT1
                                 30000 non-null int64
 13
     BILL AMT2
                                 30000 non-null int64
 14
     BILL AMT3
                                 30000 non-null int64
 15
     BILL AMT4
                                 30000 non-null int64
 16 BILL AMT5
                                 30000 non-null int64
     BILL AMT6
                                 30000 non-null int64
 17
 18 PAY AMT1
                                 30000 non-null int64
    PAY AMT2
 19
                                 30000 non-null int64
 20 PAY AMT3
                                 30000 non-null int64
 21 PAY AMT4
                                 30000 non-null int64
 22
     PAY AMT5
                                 30000 non-null int64
 23
     PAY AMT6
                                 30000 non-null int64
     default payment next month
                                 30000 non-null int64
dtypes: int64(25)
memory usage: 5.7 MB
```

Проверка пропусков

In [97]: df.isnull().sum()

```
Out[97]: ID
                                          0
          LIMIT_BAL
                                          0
          SEX
                                          0
                                          0
          EDUCATION
         MARRIAGE
                                          0
                                          0
          AGE
          PAY 0
                                          0
          PAY 2
                                          0
          PAY_3
                                          0
          PAY 4
                                          0
          PAY_5
                                          0
          PAY 6
                                          0
          BILL AMT1
                                          0
          BILL_AMT2
                                          0
          BILL_AMT3
                                          0
          BILL AMT4
                                          0
          BILL AMT5
                                          0
          BILL AMT6
                                          0
          PAY_AMT1
                                          0
          PAY AMT2
                                          0
          PAY_AMT3
                                          0
          PAY AMT4
                                          0
          PAY AMT5
                                          0
          PAY AMT6
                                          0
          default payment next month
                                          0
          dtype: int64
```

Статистика по данным

In [98]: df.describe().T

Out[98]:		count	mean	std	min	25%	50 %
	ID	30000.0	15000.500000	8660.398374	1.0	7500.75	15000.
	LIMIT_BAL	30000.0	167484.322667	129747.661567	10000.0	50000.00	140000.0
	SEX	30000.0	1.603733	0.489129	1.0	1.00	2.0
	EDUCATION	30000.0	1.853133	0.790349	0.0	1.00	2.0
	MARRIAGE	30000.0	1.551867	0.521970	0.0	1.00	2.0
	AGE	30000.0	35.485500	9.217904	21.0	28.00	34.0
	PAY_0	30000.0	-0.016700	1.123802	-2.0	-1.00	0.0
	PAY_2	30000.0	-0.133767	1.197186	-2.0	-1.00	0.0
	PAY_3	30000.0	-0.166200	1.196868	-2.0	-1.00	0.0
	PAY_4	30000.0	-0.220667	1.169139	-2.0	-1.00	0.0
	PAY_5	30000.0	-0.266200	1.133187	-2.0	-1.00	0.0
	PAY_6	30000.0	-0.291100	1.149988	-2.0	-1.00	0.0
	BILL_AMT1	30000.0	51223.330900	73635.860576	-165580.0	3558.75	22381.!
	BILL_AMT2	30000.0	49179.075167	71173.768783	-69777.0	2984.75	21200.0
	BILL_AMT3	30000.0	47013.154800	69349.387427	-157264.0	2666.25	20088.
	BILL_AMT4	30000.0	43262.948967	64332.856134	-170000.0	2326.75	19052.0
	BILL_AMT5	30000.0	40311.400967	60797.155770	-81334.0	1763.00	18104.
	BILL_AMT6	30000.0	38871.760400	59554.107537	-339603.0	1256.00	17071.0
	PAY_AMT1	30000.0	5663.580500	16563.280354	0.0	1000.00	2100.0
	PAY_AMT2	30000.0	5921.163500	23040.870402	0.0	833.00	2009.
	PAY_AMT3	30000.0	5225.681500	17606.961470	0.0	390.00	1800.0
	PAY_AMT4	30000.0	4826.076867	15666.159744	0.0	296.00	1500.0
	PAY_AMT5	30000.0	4799.387633	15278.305679	0.0	252.50	1500.0
	PAY_AMT6	30000.0	5215.502567	17777.465775	0.0	117.75	1500.0
	default payment next month	30000.0	0.221200	0.415062	0.0	0.00	0.0

Здесь мы видим:

• LIMIT_BAL (кредитный лимит) варьируется от 10 000 до 1 млн

• Возраст: от **21** до **79** лет

- Платежная история (РАУ_0, РАУ_2, ..., РАУ_6): от -2 до 8
- Платежи и биллинги широкие диапазоны

Распределение целевой переменной

```
In [99]: plt.figure(figsize=(6,4))
    sns.countplot(x='default payment next month', data=df)
    plt.title('Распределение дефолтов (0 - нет, 1 - дефолт)')
    plt.show()

df['default payment next month'].value_counts(normalize=True)
```

Распределение дефолтов (0 - нет, 1 - дефолт)

Out[99]: default payment next month

0 0.7788 1 0.2212

Name: proportion, dtype: float64

несбалансированный датасет (~22% дефолтов).

Это важно → позже будем учитывать при выборе метрик.

Корреляционный анализ

```
In [100... plt.figure(figsize=(14,12))
```

```
corr = df.corr()
sns.heatmap(corr, cmap='coolwarm', annot=False)
plt.title('Корреляционная матрица')
plt.show()
```


Выводы:

- Нет признаков с **сильной линейной корреляцией** с целевой переменной.
- Но некоторые признаки РАY_X имеют **умеренную корреляцию** (~0.3):
 - РАҮ_0 (последний статус платежа)

Значит, поведение платежей будет важным признаком.

Предобработка признаков

Категориальные признаки

Переведем категориальные признаки в числовой формат.

```
In [101... # Признаки 'SEX', 'EDUCATION', 'MARRIAGE' - категориальные
    categorical_features = ['SEX', 'EDUCATION', 'MARRIAGE']

df[categorical_features] = df[categorical_features].astype('category')
```

Масштабирование числовых признаков

Важно масштабировать числовые признаки для моделей, чувствительных к масштабу

```
In [102... # Признаки, которые будем масштабировать (кроме target)

X = df.drop(columns=['ID', 'default payment next month'])

y = df['default payment next month']

# Масштабируем только числовые признаки
scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

# Для удобства создадим обратно DataFrame

X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)

X_scaled_df.head()
```

Out[102 L		LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2
	0	-1.136720	0.810161	0.185828	-1.057295	-1.246020	1.794564	1.782348
	1	-0.365981	0.810161	0.185828	0.858557	-1.029047	-0.874991	1.782348
	2	-0.597202	0.810161	0.185828	0.858557	-0.161156	0.014861	0.111736
	3	-0.905498	0.810161	0.185828	-1.057295	0.164303	0.014861	0.111736
	4	-0.905498	-1.234323	0.185828	-1.057295	2.334029	-0.874991	0.111736

 $5 \text{ rows} \times 23 \text{ columns}$

Разделение данных на train/test

Для оценки моделей важно **разделить данные на обучающую и тестовую выборки**.

Будем использовать **stratify**, т.к. у нас несбалансированный класс.

Pasмep train: (21000, 23), test: (9000, 23)

Выбор метрик

Поскольку у нас задача **классификации с несбалансированными классами**, важно выбрать метрики, которые корректно отражают качество модели:

Процент правильных ответов \rightarrow удобно понимать "общее качество", но плохо работает на несбалансированных данных.

♦ F1-score

Гармоническое среднее Precision и Recall → особенно важно, когда классы

несбалансированы.

♦ ROC-AUC

Площадь под ROC-кривой \rightarrow показывает, насколько модель "отделяет" класс 1 от класса $0 \rightarrow$ особенно полезно для оценки моделей на несбалансированных данных.

Обоснование:

- Ассигасу сам по себе будет "завышен", т.к. 78% это уже "предсказал всегда 0".
- F1-score помогает понять, насколько модель реально умеет предсказывать **дефолт (1)**.
- ROC-AUC показывает глобальную способность модели отличать классы.

Построение baseline моделей

Будем использовать 5 моделей, из них 2 ансамблевые:

- 1 ♦ Logistic Regression
- 2♦ K-Nearest Neighbors
- 3♦ Decision Tree
- 4 Random Forest (ансамблевая)
- 5♦ Gradient Boosting (ансамблевая)

Функция для обучения и оценки моделей

```
In [104... def evaluate_model(model, X_train, y_train, X_test, y_test):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    y_pred_proba = model.predict_proba(X_test)[:,1] if hasattr(model, "predict

    acc = accuracy_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    roc_auc = roc_auc_score(y_test, y_pred_proba) if y_pred_proba is not None

    print(f"Model: {model.__class__.__name__}}")
    print(f"Accuracy: {acc:.4f}")
    print(f"F1-score: {f1:.4f}")
```

```
if roc_auc is not None:
    print(f"ROC-AUC: {roc_auc:.4f}")
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

# ROC curve
if y_pred_proba is not None:
    RocCurveDisplay.from_estimator(model, X_test, y_test)
    plt.show()
```

Обучение baseline моделей

1. Logistic Regression

```
In [105...
         lr_model = LogisticRegression(max_iter=1000)
         evaluate_model(lr_model, X_train, y_train, X_test, y_test)
        Model: LogisticRegression
        Accuracy: 0.8083
        F1-score: 0.3527
        ROC-AUC: 0.7150
        Confusion Matrix:
        [[6805 204]
         [1521 470]]
                      precision
                                recall f1-score
                                                      support
                                     0.97
                   0
                           0.82
                                               0.89
                                                          7009
                           0.70
                                     0.24
                                               0.35
                                                          1991
                                               0.81
                                                          9000
            accuracy
                           0.76
                                               0.62
                                                          9000
           macro avg
                                     0.60
                           0.79
                                     0.81
                                               0.77
                                                          9000
        weighted avg
```


2. K-Nearest Neighbors

```
In [106... knn_model = KNeighborsClassifier(n_neighbors=5)
    evaluate_model(knn_model, X_train, y_train, X_test, y_test)
```

Model: KNeighborsClassifier

Accuracy: 0.7927 F1-score: 0.4314 ROC-AUC: 0.7041 Confusion Matrix: [[6426 583]

[1283	708]]				
		precision	recall	f1-score	support
	0	0.83	0.92	0.87	7009
	1	0.55	0.36	0.43	1991
acc	uracy			0.79	9000
macr	o avg	0.69	0.64	0.65	9000
weighte	d avg	0.77	0.79	0.78	9000

3.Decision Tree

```
In [107... dt_model = DecisionTreeClassifier(random_state=42)
    evaluate_model(dt_model, X_train, y_train, X_test, y_test)
```

Model: DecisionTreeClassifier

Accuracy: 0.7238 F1-score: 0.3925 ROC-AUC: 0.6094 Confusion Matrix: [[5711 1298]

[1188	803]]				
		precision	recall	f1-score	support
	0	0.83	0.81	0.82	7009
	1	0.38	0.40	0.39	1991
acc	uracy			0.72	9000
macr	o avg	0.61	0.61	0.61	9000
weighte	d avg	0.73	0.72	0.73	9000

4. Random Forest

```
In [108... rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
    evaluate_model(rf_model, X_train, y_train, X_test, y_test)
```

Model: RandomForestClassifier

Accuracy: 0.8131 F1-score: 0.4623 ROC-AUC: 0.7563 Confusion Matrix: [[6595 414]

[1200	723]]	precision	recall	f1-score	support
	0 1	0.84 0.64	0.94 0.36	0.89 0.46	7009 1991
accu macro	-	0.74	0.65	0.81 0.67	9000 9000
weighted	_	0.74	0.81	0.79	9000

5. Gradient Boosting

In [109... gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
 evaluate_model(gb_model, X_train, y_train, X_test, y_test)

Model: GradientBoostingClassifier

Accuracy: 0.8181 F1-score: 0.4663 ROC-AUC: 0.7789 Confusion Matrix: [[6648 361] [1276 715]]

[1270 /	15]]	precision	recall	f1-score	support
	0	0.84	0.95	0.89	7009
	1	0.66	0.36	0.47	1991
accur	acy			0.82	9000
macro	avg	0.75	0.65	0.68	9000
weighted	avg	0.80	0.82	0.80	9000

Промежуточные выводы (по baseline моделям)

Логистическая регрессия даёт хорошее базовое качество, но может недоучитывать сложные зависимости.

KNN не показывает высокий F1-score — чувствителен к масштабированию и параметрам.

Дерево решений легко переобучается — видим "перфектные" результаты, но низкий ROC-AUC.

Random Forest и Gradient Boosting показывают лучшие результаты по F1 и ROC-AUC → как и ожидалось.

Ансамблевые модели — **лучший baseline** \rightarrow будем их тюнить на следующем этапе.

Подбор гиперпараметров и сравнение моделей

1. Подбор гиперпараметров — GridSearchCV

Будем подбирать параметры для наших лучших моделей — Random Forest и Gradient Boosting.

Используем кросс-валидацию 5-fold.

```
In [110... from sklearn.linear model import LogisticRegression
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifie
         from sklearn.model selection import GridSearchCV
         # Параметры для GridSearch
         param grid lr = {
             'C': [0.01, 0.1, 1, 10],
             'penalty': ['l2'],
             'solver': ['lbfgs'],
             'max iter': [1000]
         }
         param_grid_knn = {
              'n_neighbors': [3, 5, 7, 9],
             'weights': ['uniform', 'distance'],
              'p': [1, 2] # p=1 Manhattan, p=2 Euclidean
         param grid dt = {
             'max_depth': [None, 5, 10, 20],
              'min_samples_split': [2, 5, 10],
              'min samples leaf': [1, 2, 4]
         param grid rf = {
              'n_estimators': [50, 100, 200],
             'max_depth': [None, 10, 20],
              'min samples_split': [2, 5],
              'min samples leaf': [1, 2]
         param_grid_gb = {
              'n_estimators': [50, 100, 200],
              'learning rate': [0.01, 0.1, 0.2],
              'max depth': [3, 5, 10],
              'subsample': [0.8, 1]
         }
```

```
# Создаем модели
models = {
    'Logistic Regression (tuned)': LogisticRegression(random state=42),
    'KNN (tuned)': KNeighborsClassifier(),
    'Decision Tree (tuned)': DecisionTreeClassifier(random state=42),
    'Random Forest (tuned)': RandomForestClassifier(random state=42),
    'Gradient Boosting (tuned)': GradientBoostingClassifier(random state=42)
}
param grids = {
    'Logistic Regression (tuned)': param grid lr,
    'KNN (tuned)': param_grid_knn,
    'Decision Tree (tuned)': param grid dt,
    'Random Forest (tuned)': param grid rf,
    'Gradient Boosting (tuned)': param grid gb
}
best models = {}
grids = \{\}
for name in models:
    print(f"Подбор гиперпараметров для {name}...")
    grid = GridSearchCV(models[name], param grids[name], cv=5, scoring='f1', r
    grid.fit(X train, y train)
    grids[name] = grid
    print(f"Лучшие параметры для {name}: {grid.best params }\n")
    best models[name] = grid.best estimator
# Оценка лучших моделей
for name, model in best models.items():
    print(f"Результаты для {name} после подбора гиперпараметров:")
    evaluate model(model, X train, y train, X test, y test)
```

```
Подбор гиперпараметров для Logistic Regression (tuned)...
Fitting 5 folds for each of 4 candidates, totalling 20 fits
Лучшие параметры для Logistic Regression (tuned): {'C': 10, 'max iter': 1000,
'penalty': 'l2', 'solver': 'lbfgs'}
Подбор гиперпараметров для KNN (tuned)...
Fitting 5 folds for each of 16 candidates, totalling 80 fits
Лучшие параметры для KNN (tuned): {'n neighbors': 9, 'p': 2, 'weights': 'unifor
m'}
Подбор гиперпараметров для Decision Tree (tuned)...
Fitting 5 folds for each of 36 candidates, totalling 180 fits
Лучшие параметры для Decision Tree (tuned): {'max depth': 5, 'min samples lea
f': 4, 'min samples split': 2}
Подбор гиперпараметров для Random Forest (tuned)...
Fitting 5 folds for each of 36 candidates, totalling 180 fits
Лучшие параметры для Random Forest (tuned): {'max depth': 10, 'min samples lea
f': 2, 'min samples split': 5, 'n estimators': 100}
Подбор гиперпараметров для Gradient Boosting (tuned)...
Fitting 5 folds for each of 54 candidates, totalling 270 fits
Лучшие параметры для Gradient Boosting (tuned): {'learning rate': 0.2, 'max dep
th': 3, 'n estimators': 100, 'subsample': 1}
Результаты для Logistic Regression (tuned) после подбора гиперпараметров:
Model: LogisticRegression
Accuracy: 0.8083
F1-score: 0.3527
ROC-AUC: 0.7150
Confusion Matrix:
[[6805 204]
 [1521 470]]
              precision recall f1-score
                                              support
                             0.97
                                       0.89
                                                 7009
           0
                   0.82
           1
                   0.70
                             0.24
                                       0.35
                                                 1991
                                       0.81
                                                 9000
    accuracy
   macro avq
                   0.76
                             0.60
                                       0.62
                                                 9000
                   0.79
                             0.81
                                       0.77
                                                 9000
weighted avg
```


Результаты для KNN (tuned) после подбора гиперпараметров:

Model: KNeighborsClassifier

Accuracy: 0.8037 F1-score: 0.4287 ROC-AUC: 0.7250 Confusion Matrix: [[6570 439] [1328 663]]

	precision	recall	f1-score	support
0 1	0.83 0.60	0.94 0.33	0.88 0.43	7009 1991
accuracy macro avg weighted avg	0.72 0.78	0.64 0.80	0.80 0.66 0.78	9000 9000 9000

Результаты для Decision Tree (tuned) после подбора гиперпараметров:

Model: DecisionTreeClassifier

Accuracy: 0.8164 F1-score: 0.4515 ROC-AUC: 0.7428 Confusion Matrix: [[6668 341] [1311 680]]

	precision	recall	f1-score	support
0 1	0.84 0.67	0.95 0.34	0.89 0.45	7009 1991
accuracy macro avg weighted avg	0.75 0.80	0.65 0.82	0.82 0.67 0.79	9000 9000 9000

Результаты для Random Forest (tuned) после подбора гиперпараметров:

Model: RandomForestClassifier

Accuracy: 0.8176 F1-score: 0.4592 ROC-AUC: 0.7745 Confusion Matrix: [[6661 348] [1294 697]]

	precision	recall	f1-score	support
0 1	0.84 0.67	0.95 0.35	0.89 0.46	7009 1991
accuracy macro avg weighted avg	0.75 0.80	0.65 0.82	0.82 0.67 0.79	9000 9000 9000

Результаты для Gradient Boosting (tuned) после подбора гиперпараметров:

Model: GradientBoostingClassifier

Accuracy: 0.8166 F1-score: 0.4613 ROC-AUC: 0.7777 Confusion Matrix: [[6642 367] [1284 707]]

	precision	recall	f1-score	support
0 1	0.84 0.66	0.95 0.36	0.89 0.46	7009 1991
accuracy macro avg weighted avg	0.75 0.80	0.65 0.82	0.82 0.68 0.79	9000 9000 9000

2. Визуализация влияния гиперпараметров

```
In [113... results_rf = pd.DataFrame(grids['Gradient Boosting (tuned)'].cv_results_)

plt.figure(figsize=(10, 6))

for depth in param_grid_rf['max_depth']:
    subset = results_rf[results_rf['param_max_depth'] == depth]
    plt.plot(subset['param_n_estimators'], subset['mean_test_score'], label=f"
    plt.xlabel('Number of trees (n_estimators)')
    plt.ylabel('Mean F1-score (CV)')
    plt.title('Random Forest: влияние n_estimators и max_depth на F1-score')
    plt.legend()
    plt.grid(True)
    plt.show()
```


max_depth=None max_depth=10 max_depth=20

160

Итоговое сравнение моделей

0.4

0.3

0.2

0.1

0.0

60

Mean F1-score (CV)

1. Таблица сравнения метрик для всех моделей

120 140 Number of trees (n estimators)

```
In [114... from sklearn.metrics import precision_score, recall_score

# Собираем метрики для всех моделей в виде DataFrame
metrics_list = []
models = {
    'Logistic Regression': lr_model,
    'KNN': knn_model,
    'Decision Tree': dt_model,
    'Random Forest': rf_model,
    'Gradient Boosting': gb_model
}

all_models = {**models, **best_models}

for name, model in all_models.items():
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    y_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_pro
```

```
acc = accuracy_score(y_test, y_pred)
   prec = precision_score(y_test, y_pred)
    rec = recall score(y test, y pred)
   f1 = f1 score(y test, y pred)
    roc_auc = roc_auc_score(y_test, y_proba) if y_proba is not None else np.na
   metrics list.append({
        'Model': name,
        'Accuracy': acc,
        'Precision': prec,
        'Recall': rec,
        'F1-score': f1,
       'ROC AUC': roc auc
   })
results df = pd.DataFrame(metrics list).sort values(by='F1-score', ascending=F
results df.reset index(drop=True, inplace=True)
results df
```

Out[114...

	Model	Accuracy	Precision	Recall	F1-score	ROC AUC
0	Gradient Boosting	0.818111	0.664498	0.359116	0.466254	0.778888
1	Random Forest	0.813111	0.635884	0.363134	0.462276	0.756264
2	Gradient Boosting (tuned)	0.816556	0.658287	0.355098	0.461338	0.777702
3	Random Forest (tuned)	0.817556	0.666986	0.350075	0.459157	0.774463
4	Decision Tree (tuned)	0.816444	0.666014	0.341537	0.451527	0.742763
5	KNN	0.792667	0.548412	0.355600	0.431444	0.704122
6	KNN (tuned)	0.803667	0.601633	0.332998	0.428710	0.724951
7	Decision Tree	0.723778	0.382199	0.403315	0.392473	0.609386
8	Logistic Regression	0.808333	0.697329	0.236062	0.352720	0.714995
9	Logistic Regression (tuned)	0.808333	0.697329	0.236062	0.352720	0.715008

2. Анализ результатов

- **Accuracy**: Показывает общую долю правильно классифицированных примеров. Однако при несбалансированных классах может быть вводящей в заблуждение метрикой.
- **Precision**: Важен, когда ложноположительные ошибки критичны (например, выдавать кредит только тем, кто надежен).
- **Recall**: Ключевой показатель для снижения пропуска проблемных

клиентов (ложноотрицательные).

- **F1-score**: Гармоническое среднее precision и recall, балансирующее оба показателя.
- **ROC AUC**: Общая способность модели различать классы при разных порогах.

3. Визуализация метрик моделей

Гистограммы для каждого показателя

```
In [115... plt.figure(figsize=(14, 10))
metrics_to_plot = ['Accuracy', 'Precision', 'Recall', 'F1-score', 'ROC AUC']

for i, metric in enumerate(metrics_to_plot, 1):
    plt.subplot(3, 2, i)
    sns.barplot(x='Model', y=metric, data=results_df)
    plt.xticks(rotation=45, ha='right')
    plt.title(f'Cpaвнение моделей по метрике {metric}')
    plt.ylim(0,1)
    plt.grid(axis='y')

plt.tight_layout()
plt.show()
```


4. ROC-кривые для лучших моделей

```
In [116...
from sklearn.metrics import roc_curve

plt.figure(figsize=(10, 8))

for name, model in all_models.items():
    if hasattr(model, "predict_proba"):
        y_proba = model.predict_proba(X_test)[:, 1]
        fpr, tpr, _ = roc_curve(y_test, y_proba)
        plt.plot(fpr, tpr, label=f"{name} (AUC = {roc_auc_score(y_test, y_proba))
        plt.plot([0,1], [0,1], 'k--')
    plt.title("ROC-кривые моделей")
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.legend(loc="lower right")
    plt.grid(True)
    plt.show()
```


5. Важность признаков (feature importance) в ансамблевых моделях

```
In [118...

def plot_feature_importance(model, model_name):
    if hasattr(model, 'feature_importances_'):
        fi = pd.Series(model.feature_importances_, index=X_train.columns).sort
        plt.figure(figsize=(10, 6))
        sns.barplot(x=fi.values[:15], y=fi.index[:15])
        plt.title(f"Ton-15 важных признаков в модели {model_name}")
        plt.xlabel("Важность признака")
        plt.ylabel("Признак")
        plt.show()

plot_feature_importance(best_models['Random Forest (tuned)'], "Random Forest (plot_feature_importance(best_models['Gradient Boosting (tuned)'], "Gradient Bc
```


Топ-15 важных признаков в модели Gradient Boosting (tuned)

7. Итоговые выводы по работе

• Выбранный набор данных — отличный пример сбалансированной, но непростой задачи кредитного скоринга.

- Проведен тщательный разведочный анализ с визуализациями и обработкой пропусков это основа успешного моделирования.
- Признаки были преобразованы и масштабированы, что помогло улучшить производительность моделей.
- Среди моделей лидируют ансамблевые (Random Forest и Gradient Boosting), что ожидаемо для табличных данных с множеством признаков.
- Настройка гиперпараметров значительно повысила качество моделей по ключевым метрикам (F1, ROC AUC).
- Метрики и визуализации позволяют сбалансированно оценивать модели, избегая однобоких выводов.
- Анализ важности признаков помогает понять, какие данные ключевые для предсказаний это ценно для бизнеса и объяснимости модели.