Regression Example:

Suppose you receive a table of prices for houses along with their respective house sizes.

House number	Area (100 sq. feet)	Price (1000 USD)	Hind Chen http://www.math.ntii.edii.tw
1	20	89.5	4
2	14.8	79.9	t t
3	20.5	89.1	E S
4	12.5	56.9	X
5	18.0	96.6	<u>~</u>
6	14.3	72.5	ŧ
7	27.5	116.3	hen
8	16.5	79.3	טטכ
9	24.3	119.9	Ī
10	20.2	87.6	U
11	22.0	112.6	modified from.
12	19	100.8	difi
13	12.3	78.5	Ξ
14	14	74.3	
15	16.7	92.8	

Regression Example:

Suppose you receive a table of prices for houses along with their respective house sizes.

Exercise:

Predict the price for a house with 2300 square feet area!

Regression:

If the target space L consists of real numbers (continuous values), then the learning task is a *regression* problem.

"Given an input value, predict the function value."

A function $f: F \to L$ is called a *regression function* in this case.

If f is a linear function (i.e., $f(x) = \theta_0 + \theta_1 x$), the problem is also called *linear regression*.

WS 2017/18

Recapitulation:

We can find the "best" parameters $\hat{\theta}_0$ and $\hat{\theta}_1$ by minimizing the squared error between the model prediction and the actual housing prices:

$$Loss(\hat{\theta}_0, \hat{\theta}_1) = \sum_{i=1}^{n} (y_i - f_{\hat{\theta}_0, \hat{\theta}_1}(x))^2 = \sum_{i=1}^{n} (y_i - (\hat{\theta}_0 + \hat{\theta}_1 x_i))^2$$

The loss is minimized when its partial derivatives w.r.t. $\hat{\theta}_0$ and $\hat{\theta}_1$ are 0:

$$\frac{\delta}{\delta \widehat{\theta}_0} \sum_{i=1}^n (y_i - (\widehat{\theta}_0 + \widehat{\theta}_1 x_i))^2 = 0 \text{ and } \frac{\delta}{\delta \widehat{\theta}_1} \sum_{i=1}^n (y_i - (\widehat{\theta}_0 + \widehat{\theta}_1 x_i))^2 = 0$$

WS 2017/18

Recapitulation:

These equations have a unique solution:

$$\hat{\theta}_1 = \frac{n \sum_{j=1}^n x_j y_j - (\sum_{j=1}^n x_j)(\sum_{j=1}^n y_j)}{n(\sum_{j=1}^n x_j^2) - (\sum_{j=1}^n x_j)^2}$$

and

$$\hat{\theta}_0 = \frac{(\sum_{j=1}^n y_j) - \hat{\theta}_1(\sum_{j=1}^n x_j)}{n}$$

In our "housing" example, the method of least squares (least squares regression) leads to the optimal parameters

$$\hat{\theta}_1 = 3.547$$
 and $\hat{\theta}_0 = 25.306$

Homework:

Use the formula for simple linear regression to verify the values of $\hat{\theta}_0$ and $\hat{\theta}_1$!

Exercise:

WS 2017/18

Suppose you're running a company, and you want to develop learning algorithms to address each of two problems.

- 1. You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months.
- 2. You'd like software to examine individual customer accounts, and for each account decide if it has been hacked.
- 3. You'd like to run a spam filter for your employees' email accounts.

Should you treat these as classification or regression problems?

