

SUNLANDS ZHU GUAN TI-HUZONG

0

0

主观题汇总

0

计算机网络原理

SUNLANDS

目录

第一章	计算机网络概述	1
	网络应用	
第三章	传输层	4
	网络层	
第五章	数据链路层与局域网	10
第六章	网络层	.13
第七章	无线与移动网络	.14
第八章	网络安全基础	14

第一章 计算机网络概述

节	知识点名称	主观题				
- 1	7- W M 20 /4	简述星形拓扑结构网络的优缺点。(简答题)				
		星形拓扑结构网络的主要优点是易于监控与管理,故障诊断与隔				
第一节						
'	按拓扑结构	离容易;主要缺点是中央结点是网络的瓶颈,一旦故障,全网瘫				
计算机网	分类	疾, 网络规模受限于中央结点的端口数量。				
络基本概	*	简述总线型拓扑结构网络的优缺点。(简答题)				
念		总线型拓扑结构网络的主要优点是结构简单, 所需电缆数量少,				
		易于扩展;主要缺点是通信范围受限,故障诊断与隔离较困难,				
		容易产生冲突。				
		简述分组交换的优点。(简答题)				
第三节	分组交换的	(1) 交换设备存储容量要求低				
数据交换	优点	(2) 交换速度快				
技术	*	(3) 可靠传输效率高				
		(4) 更加公平				
		【1904】设主机 A 和主机 B 由一条带宽为 R=10^8bit/s、长度为				
		D=100m 的链路互连, 信号传播速率为 V=250000km/s。如果主机 A				
		从 t=0 时刻开始向主机 B 发送长度为 L=1024bit 的分组。试求:				
		1. 主机 A 和主机 B 间的链路传输延迟 dt。				
		2. 主机 A 发送该分组的传播延迟(时延)dp。				
		3. 该分组从主机 A 到主机 B 的延迟 T。(忽略节点处理延迟和排				
		队延迟)				
		4. 在 t=dt 时刻, 分组的第一位在何处。(说明原因)				
		5. 主机 A 与主机 B 间链路的时延带宽积 G。				
		5. 主机 A 与主机 B 内链路的可延带见标 G。 答案及解析:				
		合系及胜析: 1. dt=L/R=1024bit/10^8bit/s=1. 024*10^(-5)s				
		1. dt=L/R=1024bit/10 8bit/s=1.024*10 (-5)s 解析:				
		附析:				
笠 四 苎	n.l. 25	城巡点: 本巡引外 · 传输延迟 · 八丁。				
第四节	时延	结点处理 时延 每个分组到达交换结点时进行的 检错、检索转发表 等时间总				
计算机网	***					
络性能	(综合题)	当一个分组在输出链路发送时,从发送第一位开始,到发送完				
		时延 传输 时延 最后一位为止,所用的时间 ,称为传输时延,也称为发送时延,				
		世界				
		信号从发送端发送出来,经过一定距离的 物理链路 到达接收端				
		传播 时延 所需要的时间,称为传播时延。设物理链路长度 Dm,信号传播 速度 Vm/s,则 dp=D/V。				
		2. dp=D/V=100m/250000km/s=100m/(25*10 7 m/s)=4*10 $^(-7)$ s				
		解析:				
		破题点:本题可从"传播延迟"入手。				
		3. T=dt+dp=1. 024*10^(-5) s+4*10^(-7) s=1. 024*10^(-5) s+0. 04				
		*10^(-5) s=1.064*10^(-5) s				
		解析:				
		延迟包括4部分时间。本题忽略节点处理延迟和排队延迟,故时				
		延=传输延迟+传播延迟				
		大一rp 測 たいTrp 循たい				

		4. 分组的第一位已到达主机 B, 因为: dt>dp。
		解析:
		因为传输时延 dt>传播时延 dp,所以当在 t=dt 时刻,分组的第
		一位已经完成了传播的过程,达到了主机 B。
		5. G=dp*R=4*10^(-7)s*10^8bit/s=40bit
		解析:
		一段物理链路的传播时延 dp 与链路带宽 R 的乘积,称为时延带
		宽积,记为 G, G=dp*R, G 的单位是位(bit)。
		本题中,G=dp*R=4*10^(-7)s*10^8bit/s=40bit
第五节	0SI 参考模	简述物理层的主要功能。(简答题)
计算机网		物理层的主要功能是在传输介质上实现无结构比特流传输。另一
络体系结	型	项主要任务就是规定数据终端设备与数据通信设备之间接口的
构	*	相关特性,主要包括机械、电气、功能和规程4个方面的特性。

第二章 网络应用

节	知识点名称	カーキ 内谷应用 主观题
13	がいる名称	
		【1904】设某网页的 URL 为"http://www.abc.com/index.html",
		且该 URL 对应的 IP 地址在你的计算机上没有缓存; 文件
		index. html 引用了 8 个小图像。在域名解析的过程中,无等待
		的一次 DNS 解析请求与响应时间记为 RTTd, HTTP 请求传输 Web 对
		象过程的一次往返时间记为 RTTh。试给出:
		1. 该 URL 中的域名。
		2. 浏览器解析到该 URL 对应的 IP 地址的最短时间和最长时间。
		答案及解析:
		1. www. abc. com
	日本ルギタ	解析:
然一 ++	层次化域名 空间、域名 解析过程 ★★ (综合题)	因特网采用了层次树状结构的命名方法。域名的结构由标号序列
第三节		组成,各标号之间用点隔开,如"三级域名.二级域名.顶级
域名系统		域名",各标号分别代表不同级别的域名。
(DNS)		本题中,"www. abc. com"是主机域名,"index. html"是对象
		的路径名。
		2. 最短时间:1RTTd。
		最长时间: 4RTTd。
		解析:
		主机在进行域名查询时,若本地域名服务器有被查询域名信息,
		则直接得到被查域名的 IP 地址,即此时需要最短时间 1RTTd。
		主机在进行域名查询时、若本地域名服务器没有被查询域名信
		息,则查询根域名服务器,顶级域名服务器 abc. com, 直到查询
		到被查询域名主机的权威域名服务器 dns. abc. com, 即此时需要
		最长时间 4RTTd。
		【1904】设某网页的 URL 为"http://www.abc.com/index.html",
第四节	HTTP 连接	且该 URL 对应的 IP 地址在你的计算机上没有缓存;文件
万维网应	★★★ (综合题)	index. html 引用了 8 个小图像。在域名解析的过程中,无等待
用		
		的一次 DNS 解析请求与响应时间记为 RTTd, HTTP 请求传输 Web 对

象过程的一次往返时间记为 RTTh。试给出:

- 3. 若浏览器没有配置并行 TCP 连接,则基于 HTTP1.0 获取该 Web 页的完整内容(包括引用的图像)所需要的时间(不包括域名解析时间)。
- 4. 若浏览器配置 5 个并行 TCP 连接,则基于 HTTP1. 0 获取该 Web 页的完整内容(包括引用的图像)需要的时间(不包括域名解析时间)。
- 5. 若浏览器没有配置并行 TCP 连接,则基于非流水方式的 HTTP1.1 获取该 Web 页完整内容需要的时间以及基于流水方式的 HTTP1.1 获取该 Web 页的完整内容(包括引用的图像)需要的时间(不包括域名解析时间)。

答案及解析:

3. 18RTTh

解析:

若浏览器没有配置并行 TCP 连接,即使用非持久连接。

非持久连接的 HTTP1.0 协议每请求传输一个对象,都需要新建立一条 TCP 连接,对象传输结束,马上断开连接。故本题中,请求 Web 页和引用 8 个小图像,共需 9 次建立 TCP 连接,再加上请求 Web 页和引用 8 个小图像的 9 个 RTTh,故需 2*9=18RTTh。

4. 6RTTh

解析:

若浏览器配置5个并行TCP连接,即使用并行连接。

故本题中,请求Web页和引用8个小图像,共需3次建立TCP连接。第一次建立TCP连接是为了请求Web页;第二次并行建立5条TCP连接是为了并行请求5个图像;第三次并行建立5条TCP连接是为了并行请求剩下的3个图像。再加上请求Web页和引用5个小图像,和3个小图像的3个RTTh。故需2*3=6RTTh。

5. 基于非流水方式: 10RTTh,

基于流水方式: 3RTTh。

解析:

本题考查使用非流水方式和使用流水方式的区别。

基于非流水方式: 不断开已建立的 TCP 连接, 故共需 1 次建立 TCP 连接。请求 Web 页需 1 个 RTTh,引用 8 个小图像需 8 个 RTTh。 故共需 1+1+8=10RTTh。

		T
		基于流水方式:不断开已建立的 TCP 连接,故共需 1 次建立 TCP
		连接。请求Web页需1个RTTh,连续依次请求8个图像需1个
		RTTh。故共需 1+1+1=3 个 RTTh。
		【1904】简述典型的 HTTP 请求方法及其作用。(简答题)
	HTTP 报文	GET:请求读取由 URL 所标识的信息,是最常见的方法。
		HEAD:请求读取由 URL 所标识的信息的首部,即无须在响应报文
	•••	中包含对象。
	**	POST: 给服务器添加信息。
		OPTION:请求一些选项的信息。
		PUT: 在指明的 URL 下存储一个文档。
		【1904】简述 Cookie 的常见用途。(简答题)
		1) 网站可以利用 Cookie 的 ID 来准确统计网站的实际访问人数、
		新访问者和重复访问者的人数对比、访问者的访问频率等数据。
	Cookie ★★	2) 网站可以利用 Cookie 限制某些特定用户的访问。
		3) 网站可以存储用户访问过程中的操作习惯和偏好。
		4) 记录用户登录网站使用的用户名、密码等信息。
		5) 电子商务网站利用 Cookie 可以实现"购物车"功能。
		简述 SMTP 的特点。(简答题)
		SMTP 作为电子邮件系统的核心应用层协议, 具有如下特点:
		1)SMTP只能传送7位ASCII码文本内容。
		2) SMTP 传送的邮件内容中不能包含"CRLF. CRLF"。
		3) SMTP 是"推动"协议。
第五节		4) SMTP 使用 TCP 连接是持久的
Internet	SMTP	筒述 MIME 的组成。(简答题)
电子邮件	*	MIME 主要包括 3 个部分:
		1)5个MIME邮件首部字段,可包含在邮件首部中。
		2) 定义了多种邮件内容的格式,对多媒体电子邮件的表示方法
		进行了标准化。
		3) 定义了邮件传送编码, 可对任何内容格式进行转换, 从而适
		合通过 SMTP 进行传送
L	1	I .

第三章 传输层

节	知识点名称	主观题
第一节 传输层的 基本服务	无连接服务 与面向连接 服务 ★★ (简答题)	【1904】简述 TCP 所提供的面向连接服务。(简答题)面向连接服务是指在数据传输之前,需要双方交换一些控制信息,建立逻辑连接,然后再传输数据,数据传输结束后还需要再拆除连接。 【1804】简述传输层提供的两种传输服务及其概念。(简答题)传输层提供的服务可以分为无连接服务和面向连接服务两大类。无连接服务是指数据传输之前无需与对端进行任何信息交换(即"握手"),直接构造传输层报文段并向接收端发送;面向连接服务是指在数据传输之前,需要双方交换一些控制信息,建立逻辑连接,然后再传输数据,数据传输结束后还需要再拆除连接。
第二节	无连接的多	【1910】简述为 UDP 套接字分配端口号的两种方法。(简答题)

传输层的	路复用与多	(1) 创建一个 UDP 套接字时, 传输层自动地为该套接字分配一					
复用与分	路分解	个端口号(通常从 1024~65535 分配一个端口号), 该端口号当					
解 解	<u>₩</u>	前未被该主机中任何其他 UDP 套接字使用;					
八十	^^	(2) 在创建一个 UDP 套接字后,通过调用 bind () 函数为该套接					
		字绑定一个特定的端口号。					
		Time: Time name name name name name name name na					
		答题)					
		在 Internet 网络中,唯一标识套接字的基本信息是 IP 地址和端					
		口号。UDP 基于目的 IP 地址和目的端口号二元组唯一标识一个					
		UDP 套接字, 从而可以实现精确分解; TCP 则需要基于源 IP 地址、					
		目的 IP 地址、源端口号和目的端口号四元组唯一标识一个 TCP					
		套接字,从而实现精确分解					
		【1810】简述保证网络传输可靠性的确认与重传机制的概念。(简					
		答题)					
第三节	可靠数据传	1) 差错检测:利用差错编码实现数据包传输过程中的比特差错					
停-等协	· 新基本原理	检测 (甚至纠正)					
议与滑动	₩整本亦在	2) 确认:接收方向发送方反馈接收状态					
窗口协议	^	3) 重传: 发送方重新发送接收方没有正确接收的数据					
		4) 序号: 确保数据按序提交					
		5) 计时器: 解决数据丢失问题					
第四节		简述应用开发人员选择在 UDP 之上构建应用的原因。(简答题)					
用户数据	UDP 数据报	1)应用进程更容易控制发送什么数据以及何时发送。					
报协议	结构	2) 无需建立连接。UDP 不需要任何准备即可进行数据传输。					
(UDP)	结构	3) 无连接状态。UDP 是无连接的,因此也无需维护连接状态。					
(001)		4) 首部开销小。UDP 有 8 字节的开销					
		【1910】简述传输层实现可靠数据传输的主要措施。(简答题)					
		1. 查错检测,利用差错编码实现数据包传输过程中的比特查错检					
	TCP 可靠数	测(甚至纠正)。					
	据传输	2. 确认,接收方向发送方反馈接收状态,确认是否正确接收数据。					
	**	3. 重传,发送发重新发送接收方没有正确接收的数据。					
		4. 序号,发送方对发送的数据包进行编号,确保数据按序提交给					
		接收方。					
第五节		5. 计时器,在发送发引入计时器,解决数据丢失问题。					
传输控制		【1904】简述分组交换网中发生拥塞的原因及拥塞控制的概念。					
协议		(简答题)					
(TCP)		原因:太多主机以太快的速度向网络中发送太多的数据,超出了					
	TCP 拥塞控	网络处理能力,导致大量数据分组"拥挤"在网络中间设备队列					
	制	中等待转发,网络性能显著下降的现象。					
	***	拥塞控制: 就是通过合理调度、规范、调整向网络中发送数据的					
	(综合题)	主机数量、发送速率或数据量,以避免拥塞或尽快消除已发生的					
		拥塞。 【1510】 符述 TOD 九极户动脉终端户拥塞空口上小仙云池 (符					
		【1510】简述 TCP 在慢启动阶段确定拥塞窗口大小的方法。(简					
		答題) 左側工丛火洋粒根积产级叶 生烧烟寒空口 CanaMin 恐罢为一人					
		在刚开始发送数据报文段时, 先将拥塞窗口 CongWin 设置为一个					

TCP 最大段长度 MSS 的值。在每收到一个数据报文段的确认后,CongWin 就增加一个 MSS 的数值。这样就可以逐渐增大发送端的 拥塞窗口,使数据注入网络的速率逐渐加快。如果定义从发送端 发出一个报文段到收到对这个报文段的确认的时间间隔为往返时间 RTT,并且在 1 个 RTT 时间内,CongWin 中的所有报文段都可以发送出去,则在慢启动阶段,每经过 1 个 RTT,CongWin 的值就加倍。

【1810】下图是某个 TCP 连接(协议为 TCP-Reno)的拥塞窗口随 RTT 的变化过程。请回答如下问题:

- 1、第1个RTT时的拥塞窗口阈值是多少?
- 2、说明该过程中哪些时间段为慢启动阶段?
- 3、说明该过程中哪些时间段为拥塞避免阶段?
- 4、第10个RTT时,发生了什么事件? 拥塞窗口及其阈值大小如何变化?
- 5、第16个RTT时,发生了什么事件? 拥塞窗口及其阈值大小如何变化?

答案及解析:

1, 16MSS

解析:

阈值(Threshold):为了防止拥塞窗口增长过快引起网络阻塞,TCP设置了阈值,用以分隔慢启动阶段和拥塞避免阶段。 Threshold的初值为16MSS。故0~10RTT,阈值都为16MSS。

2、0~4和17~20时间段为慢启动阶段。

解析:

为了防止拥塞窗口增长过快而引起网络拥塞,TCP设置一个拥塞窗口阈值 Threshold, "分割"慢启动阶段和拥塞避免阶段。当拥塞窗口小于 Threshold 时,拥塞窗口按慢启动方式增长,当拥塞窗口大于等于 Threshold 时,拥塞窗口切换为按拥塞避免方式增长。

慢启动:收到一个确认, CongWin 值就加倍,即指数增长的时间段。

拥塞避免: 每经过一个 RTT, 拥塞窗口 CongWin 的值增加 1MSS, 即线性增长的时间段。

故0~4和17~20时间段为慢启动阶段。

3、4~10和11~16和20~25时间段为拥塞避免阶段。

解析:

为了防止拥塞窗口增长过快而引起网络拥塞,TCP设置一个拥塞窗口阈值 Threshold, "分割"慢启动阶段和拥塞避免阶段。当拥塞窗口小于 Threshold 时,拥塞窗口按慢启动方式增长,当拥塞窗口大于等于 Threshold 时,拥塞窗口切换为按拥塞避免方式增长。

慢启动:收到一个确认, CongWin 值就加倍,即指数增长的时间段。

拥塞避免: 每经过一个 RTT, 拥塞窗口 CongWin 的值增加 1MSS, 即线性增长的时间段。

故 4~10 和 11~16 和 20~25 时间段为拥塞避免阶段。

4、第10个RTT时,发送端连续收到3次重复确认,阈值 Threshold=22/2=11,拥塞窗口=11。

解析:

快速重传的基本思想是接收端收到 3 次重复确认时,则推断被重复确认的报文段已经丢失,于是立即发送被重复确认的报文段。 3 次重复确认可以解读为网络拥塞程度不是很严重。拥塞窗口缩减的做法,不再重新从慢启动阶段开始,而是从新的阈值开始,直接进入拥塞避免阶段,这就是快速恢复的基本思想。

快速恢复是配合快速重传使用的算法,具体做法是:当发送端连续收到3次重复确认时,将阈值Threshold 减半,并且将拥塞窗口 CongWin 的值置为减半后的Threshold,然后开始执行拥塞避免算法,使CongWin 缓慢地加性增长。

故第 10 个 RTT 时,发送端连续收到 3 次重复确认,阈值 Threshold=22/2=11,拥塞窗口=11。

5、第 16 个 RTT 时,发送端发生了计时器超时,意味着网络发生了拥塞。阈值 Threshold=16/2=8,拥塞窗口=1。

解析:

计时器超时可以解读为网络拥塞程度很严重。此时,发送端首先 将新的阈值设置为 Threshold=CongWin/2, 即当前拥塞窗口值的 一半,同时,将新的拥塞窗口设置为 CongWin=1,即重新执行慢 启动算法。

故第 16 个 RTT 时,发送端发生了计时器超时,意味着网络发生了拥塞。阈值 Threshold=16/2=8, 拥塞窗口=1。

第四章 网络层

节	知识点名称	主观题
		【1910】简述虚电路交换和数据报交换的主要差别。(简答题)
第二节	虚电路网络 ★★★ 虚	虚电路交换与数据报交换的主要差别表现为:是将顺序控制、差错控制和流量控制等功能交由网络来完成,还是由端系统来完
数据报网 络与虚电		成。 虚电路网络(如ATM 网络)通常由网络完成这些功能,向端系统
路网络		提供无差错数据传送服务,而端系统则可以很简单;
		数据报网络(如 Internet)通常网络实现的功能很简单,如基本

的路由与转发,顺序控制、差错控制和流量控制等功能则由端系 统来完成。 简述虚电路的要素构成。(简答题) 一条虚电路由3个要素构成。 从源主机到目的主机之间的一条路径。 该路径上的每条链路各有一个虚电路标识。 该路径上每台分组交换机的转发表中记录虚电路标识的接续关 输入端口 线路端接→数据链路处理(协议、拆封)→查找、 转发、排队→ 基于内存交换(性能最低,路由器价格最便宜) 交换结构 路由器 基干总线交换(独占性) *** 基于网络交换(并行交换传输,性能最高,最贵) (简答题) 输出端口 →排队、缓存管理→数据链路处理(协议、拆封) →线路端接 路由处理器 转发与路由选择是路由器两项最重要的基本功 【1904】某公司总部与其子公司 A、B、C 分别位于四个不同的地 区、总部与子公司的联网结构示意图如题图所示。假设公司拥有 的子网地址是 202. 119. 110. 0/24, 总部和子公司 A、B、C 联网的 主机数量分别是53、26、12、12,要求子公司B和C的主机位于 地址相邻的子网。请写出下表中序号处的 IP 地址和子网掩码。 路由器 交換机 子公司A 第三节 *** 网络互连 子公司B 与网络互 连设备 子公司C WEB FTP 公司总部 子公司ABC 子网划分 题 43 图 *** 主机 IP 地址范围 子网掩码 202.119.110.129~(1) 总部 255. 255. 255. 192 (综合题) 子公司A (2) ~202.119.110.94 (3) 子公司 B 202.119.110.97~(4) 255. 255. 255. 240 子公司 C 255. 255. 255. 240 (5) ~ (6) 答案: 主机 IP 地址范围 子网掩码 255. 255. 255. 192 总部 202. 119. 110. 129**~202. 119. 110. 190** 子公司 A **202. 119. 110.65**~202. 119. 110. 94 255. 255. 255. 224 子公司B 202. 119. 110. 97~202. 119. 110. 110 255. 255. 255. 240

解析:

子公司C

只有给出子网地址中的某主机的 IP 地址和子网掩码或网络前缀, 才能准确描述一个子网的规模。

255. 255. 255. 240

202. 119. 110. 113~202. 119. 110. 126

总部和子公司 A、B、C 联网的主机数量分别是 53、26、12、12,故需要的表示网络地址的位数分别为 6 位、5 位、4 位、4 位。

故(3)应填11111111.11111111.11111111.11100000,即转化为 点分十进制为: 255, 255, 255, 224。 计算总部地址范围:已知表示网络地址的位数分别为6位,即可 表示 2⁶=64 个主机, 其中, 第一个 IP 地址 (即主机部分全部为 0的 IP) 和最后一个 IP (即主机部分全部为 1 的 IP) 不能分配 给主机使用,即可用 IP 地址数量为 64-2=62。故 129+62-1=190, 即 IP 地址范围是: 202.119.110.129~202.119.110.190。 计算子公司 A 地址范围: 已知表示网络地址的位数分别为 5 位, 即可表示 2⁵=32 个主机,同理可用 IP 数量 30 个。故 94-30+1=65, 即 IP 地址范围是: 202.119.110.65~202.119.110.94。 计算子公司B地址范围: 已知表示网络地址的位数分别为4位. 即可表示2⁴=16个主机,同理可用IP数量14个。故97+14-1=110, 即 IP 地址范围是: 202.119.110.97~202.119.110.110。 计算子公司 C 地址范围: 因为公司 B 和 C 的主机位于地址相邻的 子网, 且110对应的二进制表示法:01101110, 其中后4位表示 主机位, 故与之相邻的子网后8位二进制表示为: 0111****, 故 范围为: 01110000~01111111, 即 112~127, 同理去掉 2 个不可用 IP 地址 (112 和 127). 故最终 IP 地址范围是: 202. 119. 110. 113²02. 119. 110. 126. 【1810】设网络拓扑如题 44 图所示。请利用 Di jkstra 最短路径 算法计算节点 x 到网络中所有节点的最短路径。填写题 44 表中 序号处的内容。 注:如果某个节点在选择下一跳节点时,有多个节点的最短路径 相同,则选择节点编号小的节点作为下一跳节点。例如,如果节 点x到节点y和节点z的路径代价相同,而且都是x到所有下一 跳节点中的最短路径,则选择 y 为 x 的下一跳节点。 第六节 链路状态路 路由算法 由选择算法 题 44 图 与路由协 *** (综合题)

议

目的	下一跳	代价
. 5	(1)	(2)
t	(3)	(4)
u	(5)	(6)
v	(7)	(8)
w	w	1
у	(9)	(10)
z	an	(12)

题 44表 节点 x 的路由表

答案:

(1) W (2) 6 (3) W (4) 5 (5) W (6) 3 (7) W (8) 2 (9) W (10) 3 (11) W (12) 7

解析:

链路状态路由选择算法就是利用 Di jkstra 算法求最短路径:

- D(v): 到本次迭代为止,源结点(计算结点)到目的结点 v 的当前路径距离。初始化时,如果结点 v 和源结点直接相连,那么 D(v) 就是其链路上的权值,否则就是 ∞ 。
- \bullet P(v): 到本次迭代为止,在源结点到目的结点 v 的当前路径上,结点 v 的前序结点。
- C(x, y): 结点 x 与结点 y 之间直接链路的费用,如果 x 和 y 之间没有之间链路相连,则 $c(x, y) = \infty$ 。
- •S: 结点的集合,用于存储从源结点到该结点的最短路径已求出的结点集合,初始值只有源点本身。

故各节点 x 到网络中所有节点的最短路径:

循环	S	每轮 选择 的结 点	D[y],P[y]	D[z],P[z]	D[w],P[w]	D[v], P[v]	D[t],P[t]	D[u],P[u]	D[s],P[s]
初始	{x}	22	7, y	00	1, w	3, v	00	00	00
1	{x, w}	w	7, y	00		2, w	∞	6, w	~
2	{x, w, v}	v	3, v	00		(A)	10, v	3, v	000
3	{x, w, v, u}	u	3, v	00			5, u		9, u
4	$\{x, w, v, y\}$	У	20	13, y			5, u		9, u
5	{x, w, v, u, t}	t		7, t					6, t
6	{x, w, v, u, t, s}	s		7, t					
7	{x, w, v, u, t, z}	Z							

故得到 x 上的转发表:

目的	下一跳	代价
s	w	6
t	W	5
u	W	3
v	W	2
w	w	1
У	W	3
Z	W	7

第五章 数据链路层与局域网

节	知识点名称	主观题				
		【1910】简述数据链路层提供的主要服务。(简答题)				
第一节	数据链路层	(1) 组剂	(1) 组帧。			
数据链路	服务	(2)链路	各接入。			
层服务	**	(3) 可拿	靠交付。			
		(4) 差针	昔控制。			
			是一种典型的差错控制方式,在计算机网络中应用广			
			泛。在检错重发方式中,发送端对待发送数据进行差			
		检错重 错编码,编码后的数据通过信道传输,接收端利用				
	差错控制的	发	错编码检测数据是否出错,对于出错的数据,接收端			
第二节	基本方式		请求发送端重发数据加以纠正,直到接收端接收到正			
差错控制	***		确数据为止。			
	(简答题)		是接收端进行差错纠正的一种差错控制方法。前向纠			
		前向纠	错机制需要利用纠错编码, 即这类编码不仅可以检测			
		错 数据传输过程中是否发生了错误,而且还可以定位领				
			误位置并直接加以纠正。			

		接收端将收到的数据原封不动发回发送端,发送端通	
		反馈校 过比对接收端反馈的数据与发送的数据可以确认接收	
		验 端是否正确无误接收了已发送的数据。	
		优点:原理简单,易于实现,无须差错编码。	
		检错丢 不纠正出错的数据,而是直接丢弃错误数据。只适用	
		弄 于实时性要求较高的系统。	
		【1804】若接收方收到的二进制数字序列为 11010110111101,	
		CRC 生成多项式为 x^4+x+1, 试说明数据传输过程中是否出错	
		(要求写出计算机过程)。(简答题)	
		答案:	
		多项式 x ⁴ +x+1 对应的位串是 10011,	
		1100001010	
		1100001010 10011}11010110111101	
		10011	
		10011	
		10011	
		10111	
		10011	
		10010	
	循环冗余码	10011	
	***	11	
		余数不为 0, 说明数据传输过程中出错。	
		解析:	
		CRC 编码的基本思想是:将二进制位串看成是系数为 0 或 1 的多	
		项式的系数。一个 k 位二进制数据可以看作是一个 k-1 次多项式	
		的系数列表,该多项式共有 k 项,从 x^(k-1)到 x^0。这样的多	
		项式被认为是 k-1 阶多项式。	
		使用 CRC 编码时,发送方和接收方必须预先商定一个生成多项式	
		G(x)。生成多项式的最高位和最低位系数必须是 1。假设一帧数	
		据有 m 位,对应多项式 M(x),为了计算它的 CRC 编码,该帧必	
		须比生成多项式长。基本思想是在帧的尾部附加一个校验和, 使	
		得附加校验和之后的帧所对应的多项式能够被 G(x)除尽。当接	
		收方收到了带校验和的帧之后,用 G(x)去除它,如果余数不为	
		0,则表明传输过程中有错误,否则无错。	
		【1904】简述1-坚持 CSMA 的基本原理。(简答题)	
		1-坚持 CSMA 的基本原理: 若通信站有数据发送, 先侦听信道;	
		若发现信道空闲,则立即发送数据;若发现信道忙,则继续侦听	
なっ ナ	# the 112 are 15	信道直至发现信道空闲,然后立即发送数据。	
第三节	载波监听多	【1810】简述非坚持 CSMA 的基本原理。(简答题)	
多路访问	路访问协议	非坚持 CSMA 的基本原理: 若通信站有数据发送, 先侦听信道;	
控制协议	***	若发现信道空闲,则立即发送数据;若发现信道忙,则等待一个	
		随机时间, 然后重新开始侦听信道, 尝试发送数据; 若 发送数	
		据时产生冲突,则等待一个随机时间,然后重新开始侦听信道,	
		尝试发送数据。	
<u> </u>	1	4	

		【1704】简述 CSMA/CD 的基本思想。(简答题)
		当一个节点要发送数据时,首先监听信道;如果信道空闲就发送
		数据,并继续监听;如果在数据发送过程中监听到了冲突,则立
		刻停止数据发送,等待一段随机的时间后,重新开始尝试发送数
		据。
		有一个电缆长度为 1Km 的 CSMA/CD 局域网, 信号传播速度为光
		速的 2/3, 其最小帧长度为 1000bit。 试求出数据传输速率。 (简
		答题)
		答案:
		合来. 信号传输速率 v = 3*10^8 * 2/3 = 2*10^8 m/s;
		数据传输速率 R = Lmin/(2d/v) = 1000bit/(2*1000m/(2*10^8
		m/s)) = 10 ⁸ bit/s
		M/S/) - 10 6 BIC/S 解析:
		MPVI: 使用 CSMA/CD 协议实现多路访问控制时, 通过共享信道通信的两
		个通信站之间相距的最远距离、信号传播速度、数据帧长度以及
		$\frac{L_{\min}}{R} \geqslant \frac{2D_{\max}}{R}$
		信道信 息传输速率之间要满足下列约束关系: R ν ,
		式中 Lmin 为数据帧最小长度;R 信息传输速率;Dmax 为两通
		信站之间的最远距离; v 为信号传播速度。
		已知,光在真空中的传播速率: 3*10^8m/s
		本题中,信号传输速率 v = 3*10^8 * 2/3 = 2*10^8 km/s;数
		据传输速率 R = Lmin/(2d/v) = 1000bit/(2*1000m/(2*10^8
		m/s)) = 10 ⁸ bit/s
		【1910】简述虚拟局域网(VLAN)的概念及其划分方法。(简
	虚拟局域网★★	答题)
		虚拟局域网是一种基于交换机(必须支持VLAN功能)的逻辑分
		割(或限制)广播域的局域网应用形式。
		划分 VLAN 的方法:基于交换机端口划分、基于 MAC 地址划分和
		基于上层协议类型或地址划分等方法。
		【1810】简述地址解析协议 ARP 的作用及其基本思想。(简答
		题)
		作用:根据本网内目的主机或默认网关的 IP 地址获取其 MAC 地
第四节	地址解析协 议(ARP) ★★★	址。
局域网		基本思想:在每一台主机中设置专用内存区域,称为 ARP 高速缓
		存(也称为 ARP 表),存储该主机所在局域网中其他主机和路由
		器的 IP 地址与 MAC 地址的映射关系,并且这个映射表要经常更
		新。ARP 通过广播 ARP 查询报文,来询问某目的 IP 地址对应的
		MAC 地址, 即知道本网内某主机的 IP 地址, 可以查询得到其 MAC
		地址。
		【1610】分别计算携带 40 字节和 400 字节数据的以太网帧的最
	以太网	大传输效率。(数据传输效率=数据长度/帧的总长度。要求写
	**	出计算过程,计算结果保留3位有效数字)(简答题)
		答案:

携带 40 字节情况下的最大传输效率: 40/(40+6+18)=62.5%; 携带 400 字节情况下的最大传输效率: 400/(400+18)=95.7%。 解析:

根据 CSMA/CD 协议的工作原理,可以求出以太网的最短帧长为512 位,即 64 字节,这也是为什么以太网帧中的数据字段最少要 46 字节(如果不足 46 字节,则需要填充)的原因。以太网帧结构如图所示

6字节	6字节	2字节	46~1500字节	4字节
目的地址	源地址	类型	数据	CRC

图 5.17 以太网帧结构

本题中, 若要传输的数据字段为 40 字节, 不足 46 字节, 故需要填充 6 个字节, 再加上以太网帧结构中必要的字节 6+6+2+4=18字节, 帧的总长度共 64 字节, 所以数据传输效率=40/64=62.5%。若要传输的数据字段为 400字节, 大于 46 字节, 故只需要加上必要的 18 字节, 帧的总长度共 418 字节, 所以数据传输效率=400/418=95.7%。

第六章 网络层

ヤハキ 内谷広			
节	知识点名称	主观题	
		【1610】简述模拟信号、数字信号和信道的概念。(简答题)	
		模拟信号是指信号的因变量完全随连续消息的变化而变化的信	
第一节	模拟通信和	号。模拟信号的自变量可以是连续的,也可以是离散的;但其因	
数据通信	数字通信	变量一定是连续的。	
基础	*	数字信号是指表示消息的因变量是离散的,自变量时间的取值也	
		是离散的信号,数字信号的因变量的状态是有限的。	
		信道是信号传输的介质。	
		(1) 奈奎斯特公式, 给出了理想无噪声信道的信道容量:	
		C = 2B1og₂M ,式中,C 为信道容量,单位为 bit/s 或 bps; B 为	
		信道带宽,单位为 Hz; M 为进制数,即信号状态数。	
		\$	
		(2)香农公式给出连续信道的信道容量为: $C=Blog_2$ $(1+\frac{S}{N})$;	
		【1804】设传输宽带为 3000Hz 无噪声信道的调制电平数为 32,	
		试求出最大信号传输速率和最大数据传输速率(要求写出计算过	
第三节	连续信道容	程)。(简答题)	
信道与信	量	答案:	
道容量	***	最大信号传输速率 = 2B = 2*3000Hz = 6000Hz;	
		最大数据传输速率 = 2B1og2M = 2*3000*log2(32) = 30000bit/s	
		= 30Kbit/s	
		解析:	
		^^^^//· 信道容量是指信道无差错传输信息的最大平均信息速率。根据奈	
		奎斯特第一准则,对于理想无噪声的基带传输系统,最大频带利	
		用率为 2 Baud/Hz。显然,如果传输 M 进制基带信号,则理想无	
		噪声信道的信道容量为: C = 2B1og2M, 式中, C 为信道容量, 单	

	T	
		位为 bit/s; B 为信道带宽,单位为 Hz; M 为进制数,即信号状
		态数(调制电平数)。这就是著名的奈奎斯特公式,给出了理想
		无噪声信道的信道容量。即可得公式:最大数据传输速率 =
		2B1og2M; 最大信号传输速率 = 2B, 其中 B 为带宽。
		有一受随机噪声干扰的信道,其带宽为 4KHz,信噪比为 30dB。
		试求出最大数据传输速率。 (简答题)
		答案:
		根据信噪比的换算关系 $\left(\frac{S}{N}\right)_{dB} = 10\log_{10}\left(\frac{S}{N}\right)_{3p*}$,可得
		$\left(\frac{S}{N}\right)_{\eta_{pp}} = 10^{\frac{\left(\frac{S}{N}\right)_{ab}}{10}} = 1000$ 代 入 香 农 公 式 可 得 :
		C = 4000 * log2(1+1000) = 4000 * log2(1001) ≈ 40Kbit/s
		解析:
		信道容量是指信道无差错传输信息的最大平均信息速率。假设带
		宽为B(Hz)的连续信道,输入信号的功率为S,信道加性高斯
		白噪声的功率为N、则著名的香农公式给出了该连续信道的信道
		25 (1952)
		$C = B \log_2 \left(1 + \frac{S}{N}\right)$, 其中, S/N 为信噪比, 为信号功率
		与噪声功率之比; C 为信道容量, 单位为 bit/s; B 为信道带宽,
		单位为 Hz。信噪比通常会以分贝(dB)为单位,换算关系为
		$\left(\frac{S}{N}\right)_{dB} = 10\log_{10}\left(\frac{S}{N}\right)_{\frac{1}{N}}$
		简述米勒码的编码规则。(简答题)
	米勒码	1) 信息码中的 1 编码为双极非归零码的 01 或者 10。
		2) 信息码连1时,后面的1要交替编码,即前面的1如果编码
第四节		为 01, 后面的 1 就编码为 10, 反之亦然。
		3) 信息码中的 0 编码为双极非归零码的 00 或者 11, 即码元中
基带传输	**	间不跳变。
		4) 信息码单个0时,其前沿、中间时刻、后沿均不跳变。
		5) 信息码连0时,两个0码元的间隔跳变,即前一个0的后沿
		(后一个0的前沿) 跳变。
		I the state of the

第七章 无线与移动网络

节	知识点名称	主观题
第三节		【1810】简述 IEEE802.11 中四个主要协议具有的共同特征。(简
ヤート 无线局域	无线局域网	答题)
网	IEEE802. 11	(1)都使用相同的介质访问控制协议 CSMA/CA。
IEEE802.	***	(2)链路层帧使用相同的帧格式。 (3)都具有降低传输速率以传输更远距离的能力。
11		(4) 都支持"基础设施模式"和"自组织模式"两种模式。

第八章 网络安全基础

节	知识点名称	主观题

		简述网络安全的概念及网络安全攻击的常见形式。(简答题)
		网络安全是指网络系统的硬件、软件及其系统中的数据受到保
	网络安全威	护,不因偶然的或者恶意的原因而遭受到破坏、更改、泄露,系
第一节	胁	· 统连续可靠正常地运行, 网络服务不中断。
网络安全	<i>,</i> ₩	网络主要面临安全威胁有:首先,从报文传输方面,主要包括窃
概述	 (简答题)	一个多工女面面女生 威胁有: 自九, 从报文传输为面, 工女已招动一听、插入、假冒、劫持等安全威胁。比较常见的网络攻击还包括
	(同合处)	拒绝服务 DoS 以及分布式拒绝服务 DDoS 等。其次还包括映射、
		分组"嗅探"和 IP 欺骗等。 【1810】假设采用密钥 K=nice 的列置换密码,"x"为填充字母,
		对明文"bob i love you"进行加密,加密得到的密文是?
		答案: bvu iex ooo bly
		解析:列置换密码是指明文按照密钥的规定,按列换位,并且按
		列读出新的序列得到密文的方法。置换密码的加密过程如下:首
		先,将明文 P 按密钥 K 的长度 n 进行分组,并且每组一 行按行
	مسيطة در عد	排列,即每行有n个字符。若明文长度不是n的整数倍,则不足
第二节	换位密码	部分用双方约定的方式填充,如双方约定用字母"x"替代空缺
数据加密	***	处字符。设最后得到的字符矩阵为 Mmn, m 为明文划分的行数。
	(综合题)	然后,按照密钥规定的次序将 Mmn 对应的列输出,便可得到密文
		序列 C。密钥通常用一个无重复字母的单词表示,而单词中每个
		字母在字母表中的相对次序,则规定了 Mmn 的列输出次序。
		密钥 K=nice,则密钥长度 n=4,密钥的字母顺序为(4,3,1,2),即
		密钥规定的列输出顺序为第3列一第4列一第2列一第1列。因
		此将明文排列成 M34 矩阵, 每行分别为 bobi、love、youx, 其中
		最后的"x"为填充字母。依据密钥规定的列输出顺序输出各列,
		便得到密文为: bvu iex ooo bly。
		简述消息完整性检测方法中所使用的密码散列函数应具备的主
	消息完整性 检测方法	要特征。 (简答题)
		(1) 一般的散列函数具有算法公开。
		(2) 能够快速计算。
		(3) 对任意长度报文进行多对一映射均能产生定长输出。
第三节		(4) 对于任意报文无法预知其散列值。
消息完整		(5) 不同报文不能产生相同的散列值。
性与数字		(6) 单向性、抗弱碰撞性、抗强碰撞性。
签名	数字签名 ★★	【1910】简述数字签名应满足的要求。(简答题)
並石		1)接收方能够确认或证实发送方的签名,但不能伪造。
		2) 发送方发出签名的消息给接收方后,就不能再否认他所签发
		的消息。
		3) 接收方对已收到的签名消息不能否认,即有收报认证。
		4) 第三者可以确认收发双方之间的消息传送, 但不能伪造这一
		过程。