(12)7	MM	ASHISH ALLSHA
TEXT MINING D	M	MISHPA
) 6	BC60789
(1) K-Meons (4,5)	(2,3)	
(210)		01
Iteration I C1 C4	<u>C</u>	Balong to
	0	C1
C((2,8)	3	C4
(2(2,5) 3		C4
	5	C4
(3(5,4)	J13	
(4(4,5) JI3		C4
(4611)	1.010	C4
	110	1 1 1 1 1
		CI
(1(4,2))	0	
		C4
(7(2,8) JS	03	
(8(3,6)		
	g strugglik a sik.	the state of
Since C1 = C4,		
:- C11p rentroid = (2,8)		
1-C11/2 /Ch	5+4+3+4	+3
		,
	1+5+4+2-	+6
	6 4 + 5 + 4 + 2 - 6	- $)$
	- (00)	
= $(3,$	5, 4.33)	

Iteration I			alseemate
C1 (2,8) C2 (2,5) C3 (5,4) C4 (4,5) C5 (3,4) C6 (4,6) C7 (2,8) (8(2,4)	$(2,6)$ $C1$ O 3 5 $\sqrt{13} = 3.6$ $\sqrt{15} = 4.1$ $\sqrt{40} = 6.31$ O $\sqrt{5} = 2.23$	(3.5, 4.23) <u>C4</u> 14.9689 1.6489 1.5358 0.836 0.599 2.383° 2.464	Belongs to C1 C4 C4 C4 C1 C4
i) The 3 (C); (C); (C); (C); (C); (C); (C); (C);	reatroids oft 2,8) (3.5, 4.33 (2,8) C2,8) Casters' note C7 = (2,8)	s the two it	2,4), (4,2),(3,6)

Decision Tree

TF-10F - Extrem (I.G)

[erm!	Term 2	Torm 3	Class
2.1	10.4	12.1	X
2.5	12.5	18.5	X
2.6	9.8	11.0	X
1.1	12.5	16.2	4
1.4	12.1	11.2	X
1.6	10.6	2.01	7
Information	on Grain		
	$g_2\left(\frac{2}{6}\right) + \frac{3}{6}$		
In order	to colculate	te lestropy	prooperg one

Termy Since the X and Y are segral divided (Cook 3 is number). Therefore we toke the mean of the sum of entropiles is order to divide and form three structure.

Town 1

2:1+2:5+2:6+1:1+1:4+1:6 = 1:8

$$-\left[\frac{2}{3} \log_{2}\left(\frac{1}{3}\right) + \frac{1}{3} \log_{2}\left(\frac{1}{2}\right)\right]$$

$$-\left[\frac{2}{3} \log_{2}\left(\frac{1}{3}\right) + \frac{1}{3} \log_{2}\left(\frac{1}{2}\right)\right]$$

$$= 0.918$$
Term 2

$$10.4+12.5+9.8+11.5+12.1+10.5 = 11.3$$

$$-\left[\frac{1}{3} \log_{2}\left(\frac{1}{3}\right) + \frac{1}{3} \log_{2}\left(\frac{1}{3}\right)\right]$$

$$-\left[\frac{1}{3} \log_{2}\left(\frac{1}{3}\right) + \frac{1}{3} \log_{2}\left(\frac{1}{3}\right)\right]$$

$$-\left[\frac{1}{3} \log_{2}\left(\frac{1}{3}\right) + \frac{1}{3} \log_{2}\left(\frac{1}{3}\right)\right]$$

$$= 0.918$$
Term 3
$$11.35$$

$$14$$

$$-\left[\frac{2}{3} \log_{2}\left(\frac{1}{3}\right) + \frac{1}{3} \log_{2}\left(\frac{1}{3}\right)\right]$$

$$= 0.918$$
Term 3
$$12.1 + 18.5 + 11.0 + 16.2 + 11.2 + 10.5$$

$$= 79.5$$

$$6$$

$$13.25$$

$$0 \times 13$$

13. 25 <
$$3 \times -\left[\frac{3}{4} \log_2\left(\frac{3}{4}\right) + \frac{1}{4} \log_2\left(\frac{1}{4}\right)\right]$$

$$= 0.811$$
Term II)
$$133$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$

$$= 137$$