- Company Graduação

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Estratégia e Implementação de Estruturas de Dados

Profa. Rita de Cássia Rodrigues
rita@fiap.com.br

AULA 12 – MAPEAMENTO DO MODELO ENTIDADE
RELACIONAMENTO PARA O MODELO RELACIONAL (FÍSICO)

Agenda

- ✓ Objetivo
- ✓ Conceitos referentes a Mapeamento do Modelo Entidade-Relacionamento para modelo relacional (Físico)
- ✓ Revisão dos Conceitos
- ✓ Exercícios

Objetivos

- ☐ Explanar os conceitos de modelagem de dados;
- ☐ Caracterizar o Mapeamento do Modelo Entidade-Relacionamento para
- Modelo Relacional (Física)
- ☐ Projetar banco de dados, identificar e abstrair as necessidades;
- ☐ Aplicar os conceitos trabalhados para construir um modelo de dados.

Conteúdo Programático referente a esta aula

- ☐ Mapeamento do modelo E-R para Modelo Relacional (Físico)
 - Contextualiação e aplicação das regras
- **□**Exercícios

1. Converter entidade e respectivos atributos

- ✓ Cada entidade é traduzida para uma tabela
- Cada atributo define uma coluna

✓ Cada atributo identificador definem colunas que compõem a chave primária.

<u>Boa prática</u>: A fim de facilitar o trabalho dos programadores, é conveniente manter os nomes das colunas curtos e procurar utilizar a mesma nomenclatura para todo o banco de dados. Normalmente as empresas criam regras para composição dos nomes, que devem estar de acordo com as regras de criação de nomes dos SGBD's em relação aos caracteres e tamanho permitidos.

Veja as regras de nomenclatura da apostila: Aula_Complementar_04_Convenção_Nomenclatura_Banço_Dados_RitaCRodrigues.PDF

1. Converter entidade e respectivos atributos Exemplo

Modelo Relacional (Físico)

Modelo Lógico

<u>Atenção</u>: Todas as tabelas devem possuir uma chave primária. No caso de não existirem, é preciso criar um identificador, preferencialmente com conteúdo numérico por serem localizados mais rapidamente pelos SGBD's.

Nota: Constraint: restrições (regras) associadas as colunas (campos) de uma tabela. No exemplo: constraint Chave Primária é utilizada para identificar cada ocorrência (registro) de maneira única.

2. Converter entidade e respectivos atributos

Regra para Mapeamento de entidade com relacionamento identificador:

Para cada **relacionamento identificador** (-----), **é criada uma chave estrangeira** que implementa a entidade identificada pelo relacionamento identificador.

A chave primária da tabela que implementa a entidade identificada pelo relacionamento identificador será composta por:

- ✓ colunas correspondentes aos atributos identificadores
- ✓ chaves estrangeiras que implementam os relacionamentos identificadores.

Exemplo

2. Converter entidade e respectivos atributos

Exemplo mapeamento de entidade com relacionamento identificador:

2. Converter entidade e respectivos atributos

3. Converter entidade e respectivos atributos

Atributos se transformam em campos de tabelas, **exceto quando são multivalorados ou compostos.**

- ☐ Atributos compostos devem ser desmembrados em atributos atômicos (único/indivisível).
- ☐ Atributos multivalorados devem dar origem a uma nova tabela.

4. Converter relacionamento e respectivos atributos

A conversão é determina pela cardinalidade mínima e máxima das entidades que participam do relacionamento.

Temos três alternativas para tradução de relacionamentos:

- Tabela própria (Entidade Associativa ou Agregação)
- Adição de colunas (atributos do relacionamento)
- Fusão de tabelas

4. Converter relacionamento e respectivos atributos

Tabela Própria (ENTIDADE ASSOCIATIVA)

O relacionamento é implementado através de uma tabela própria (ASSOCIATIVA), contendo as seguintes colunas:

- □ colunas correspondentes aos identificadores das entidades relacionadas (chaves estrangeiras).
- colunas correspondentes aos atributos do relacionamento.

F/\sqrt{P}

4. Converter relacionamento e respectivos atributos

Tabela Própria (ASSOCIATIVA) - Exemplo

4. Converter relacionamento e respectivos atributos

Adição de Colunas

Adicionar na tabela cuja cardinalidade máxima é 1 (relacionamento) as seguintes colunas:

- □ colunas correspondentes ao identificador da entidade relacionada, formando uma **chave estrangeira** em relação a tabela que implementa a entidade relacionada.
- colunas correspondentes aos atributos do relacionamento.

4. Converter relacionamento e respectivos atributos

Adição de Colunas - Exemplo

O atributo data da lotação é
um atributo do relacionamento
entre as entidades
"DEPARTAMENTO" e "EMPREGADO".

O atributo do relacionamento deve ser conduzido a TABELA com cardinalidade máxima igual a 1, neste exemplo "EMPREGADO".

4. Converter relacionamento e respectivos atributos

Fusão de Tabelas

Implementar em uma única tabela, todos os atributos de ambas as entidades e atributos eventualmente existentes no relacionamento. Esta conversão somente pode ser aplicada para relacionamentos do tipo 1:1.

Teremos a implementação de um relacionamento recursivo.

4. Converter relacionamento e respectivos atributos

Fusão de Tabelas - Exemplo

5. Converter especializações e generalizações

Temos três alternativas para implementação:

- ☐ Uso de uma única tabela para toda hierarquia de generalização/especialização.
- ☐ Uso de uma tabela para cada entidade.
- ☐ Uso de uma tabela genérica e tabelas especializadas.

5. Converter especializações e generalizações

Exemplo com uso de uma <u>única tabela</u> para toda hierarquia de generalização/especialização:

5. Converter especializações e generalizações

Através do uso de uma única tabela para toda hierarquia de generalização/especialização:

As colunas CREA e CRM no exemplo devem ser definidas como opcionais.

Isto se faz necessário, pois se um funcionário não pertencer a nenhuma das classes especializadas, terá estas colunas vazias, enquanto que um médico terá a coluna CREA vazia e um engenheiro terá a coluna CRM vazia.

5. Converter especializações e generalizações

Exemplo com uso de uma tabela para cada entidade:

Atributos se repetem nas entidades, exceto os atributos específicos.

5. Converter especializações e generalizações

Exemplo com uso de uma tabela por entidade especializada:

Neste caso devemos aplicar todas as regras relativas a implementação de entidades e relacionamentos vistas nesta aula, acrescendo a inclusão da chave primária da tabela correspondente a entidade genérica, em cada correspondente a uma entidade especializada (herança de atributos).

As tabelas especializadas herdam a chave primária da tabela genérica.

F/\sqrt{P}

5. Converter especializações e generalizações

Exemplo com uso de uma tabela por entidade especializada:

F | / P

5. Converter especializações e generalizações

Exemplo com uso de uma tabela por entidade especializada:

5. Converter especializações e generalizações

Análise entre os tipos de implementação

<u>Tabela Única</u>: Os dados estão em uma única linha, não sendo necessário realizar junções para obter informações da entidade genérica e especializada. As colunas opcionais são referentes aos atributos que podem ser vazios de acordo com as características de cada funcionário.

A chave primária é armazenada uma única vez.

<u>Uma tabela por entidade especializada</u>: Faremos junções para obter as informações necessárias, pois parte dos dados estão armazenados na tabela genérica e parte na tabela especializada.

Uma tabela para cada entidade: Teremos replicação dos dados em cada tabela.

6. Mapeamento de Entidades Fracas

Para cada tabela fraca, a chave primária será composta per la primária da tabela Forte e mais um atributo (chave estrangeira na tabela fraca), formando assim uma chave primária composta.

6. Mapeamento de Entidades Fracas


```
T_SIP_DEPENDENTE

P * cd_dependente NUMBER (3)

PF* T_SIP_FUNCIONARIO_nr_matricula NUMBER (5)

* nm_dependente VARCHAR2 (80)

* dt_nascimento DATE

T_SIP_DEPENDENTE_PK (cd_dependente, T_SIP_FUNCIONARIO_nr_matricula)

T_SIP_DEPENDENTE_T_SIP_FUNCIONARIO_FK (T_SIP_FUNCIONARIO_nr_matricula)
```

Chave primária composta na TABELA FRACA, pela chave estrangeira mais um campo da própria tabela.

Correspondência dente os modelos ER e Relacional

Modelo Lógico (ER)	Modelo Relacional (Físico)
Entidade	TABELA
Atributo Simples	CAMPOS OU COLUNAS
Atributo Composto	JUNÇÃO DE VÁRIOS CAMPOS
Atributo Multivalorado	GERAR NOVA TABELA
Conjunto de valores	DOMÍNIO
Atributo Chave (Identificador)	CHAVE PRIMÁRIA
Entidade Associativa	TABELA PRÓPRIA
Atributos do relacionamento	ADICIONAR COLUNAS NA TABELA QUE TIVER A CARDINALIDA MÁXIMA 1 NO RELACIONAMENTO
Atributo que estabelece associação entre as entidades	CHAVE ESTRANGEIRA
Relacionamento Identificado	CHAVE ESTRANGEIRA COMPÕE A CHAVE PRIMÁRIA

Próxima aula estudaremos

☐ Revisão de conceitos através de exercícios

■ Avaliação

REFERÊNCIAS

- HEUSER, C.A. Projeto de Banco de Dados. Série
 Livros Didáticos, V. 4. Bookman, 2009. Capítulo 4 e 5 –
 p. 120 a 180
- MACHADO, Felipe Nery R. Banco de Dados Projeto e Implementação. Érica, 2004. Capítulo 12 – p. 239 a 249
- ELMASRI, R.; NAVATHE, S.B. Sistemas de Banco de Dados: Fundamentos e Aplicações. Pearson, 2005.
 Capítulo 7 – p. 137 a 147

Copyright © 2016 Profa. Rita de Cássia Rodrigues

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).