Week 1 Problem 5

	P	roblem 5
<u> </u>		Part A
女-		2,050 Emergency caus in 12 Months 2050/12 = 170.8
₩ -	<u>E(X)</u>	
ガーダー		Estimate calls Imonth: 171 calls
		Part B
		Estimated variation 171-170.8 = 0.2
	E(X)	
1.		171+0.4= 171.644 monthly range 170.6 to
水- 灰		171-0.4= 170.6 171.4 calls
怀_		Part C
以 以 一		Yearly range of caus 2047.2 to 2056.8
		Our estimate is within this range.
		Part D
·		171-0.4=68.4 69 Years
X		
k –		
K		
× -		
_		
· (
(_		
(/ —		
-		

I really have no due how to do Week this Anna thed explaining but it's not making sense in my head. Problem 6 Part AE= $\sum_{X=0}^{\infty} X \cdot p(X) = \sum_{X=0}^{\infty} \frac{x \cdot e^{-\lambda} \lambda^{X}}{x!} = e^{-\lambda} \sum_{X=1}^{\infty} \frac{\lambda^{2}}{(x-1)!}$ = e = 2 \(\Sigma \) \(\Sigma $= \lambda e^{-\lambda} \sum_{i=0}^{\infty} \lambda^{i} = e^{-\lambda} \cdot \lambda e^{\lambda}$ EN+=At $V = E(X)^2 - E(X)^2$ 2= mean of poisson x2 p(x)- λ2 P(N=12)=e-2(X)"=e-171 (171)18 in Ressentiany Part C somme 95% level interval NP Part D'The method in part C reminds me of the first book proof in part a X.P(X).

Week I Problem 11

	16 Bombers Ex	posure
	2 options: Low-air defense missile exposure	1 Min
	High-surface to air missile exposure	5 MIN
	3 Stages: 1) Defect Target 2) Acquire Target (Lock or	1)
	3) Hit Target	
	AD Type Patent Pacquire Phit Ming Rafe LOW 0.90 0.80 0.05 Guns 20 sh	
	HIGH 0.75 0.95 0.70 M.I. 3/min	
	Part A	
	L= time flying low (mins)	
	H= time flying high (mins)	
	GOAL MAXIMIZE terrosco # of bombers that survive	2 (1'm
	going to flip this and minimize the probabil	itya
	bomber is detected, targeted and hit.	J
	Pail = prob. bomber is detected/targeted/hit	
	Pall. low = 0.034	
	Pa11. nigh = 0.498	
	To maximize the number of bombers that survi	ive,
	the optimal flight path is low. It is the least	ca shalty
	producing as it has the smaller Pall value.	
	producing as it has the smaller Pall value. Part B	
	D= chance the bomber destroys the target	
	Goal: determine chance of success (target destr	royed
	For this mission	
	s=chance of success	
	· the only time D is applicable is before the b	xomber
	meets Pall. 10W or Pall. high, so that will be	shown
	as 1-Pall.low and 1-Pall.high (i.e. the time	re before
September 1	the bomber is hit)	
	· the chance of success will be time bomber is	nothit
	times the chance the bomber destroys the t	
	1-Pall.10w = 0.944	0
	1-Pall. high = 0.502	

5.10w = not. Pau. 10w · D = 0.6748; S. high = not. Dall. high · D = 0.3514

Since we determined the optimal path for this mission is to fry low, the probability that the bomber successfully makes it to the target who being detected lacquired that and then destroys the target is 0.6748

Part D

D=0.70, that an individual bomber can destroy the target

((not. Pall.low).D).B=0.95

Look at the sensitivity when changing D

Sensitivity Analysis on R

while the modests values do change when hovering around a 70% destroy chance, they don't more too much and all around still > have a myn success rate for the mission.

Part C

Goal: determine the min. number of bombers

necessary for a 95% chance of success

Thought: if each bombers success is individual

of the others than we could determine the #

necessary by solving 0.6748.B=0.95 white B is

the number of Bombers 0.95%.6748=B

B=1.4 Since we can't have .4 of a bomber, the

minimum number of bombers necessary is 2.

Part E

Bad weather decreases Podetect and D. They are reduced in the same proportion.

Politicated cut in half, now 0,45. Pall. low. New = 855 0.018 is the probability the bomber is taken down.

Dis cut in half now 0.35 0.982.35 = 0.3437

Probability target is successfully destroyed = 0.3437

The bomber defeating the target hap an advantage