

EXHIBIT A

**Fourth Supplemental Declaration of
Richard Heuser, M.D., F.A.C.C., F.A.C.P.**

(filed in co-pending application Serial No. 09/794,456)

BEST AVAILABLE COPY

Appl. Serial No. 10/064,000
Letter September 21, 2006

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT: James P. Elia)
SERIAL NO.: 09/794,456)
FILED: February 27, 2001)
FOR: METHOD FOR REPAIRING)
A DAMAGED PORTION OF)
A HUMAN HEART)
EXAMINER: Elizabeth C. Kemmerer
GROUP ART UNIT: 1646

**FOURTH SUPPLEMENTAL DECLARATION
OF RICHARD HEUSER, M.D., F.A.C.C., F.A.C.P.**

I, Richard Heuser, declare as follows:

1. I have offices at 500 West Thomas Road, Suite 900, Phoenix, Arizona 85013.
2. This Fourth Supplemental Declaration is submitted in addition to my previous Declaration, dated June 5, 2003, my Supplemental Declaration dated February 4, 2004, my Second Supplemental Declaration dated July 18, 2004, and my Third Supplemental Declaration dated February 15, 2005. No changes are made to any of such previous Declarations.
3. My Curriculum Vitae (hereinafter "CV") is attached as Exhibit A to my Declaration of June 5, 2003, and my background is further amplified by materials submitted in my Second and Third Supplemental Declarations.

4. I have read and understood the disclosures of the above-referenced patent application at page 20, line 10 through page 21, line 15; and page 44, line 19 through page 46, line 16. Such disclosures are the same as I read and understood in my previous Declaration and Supplemental Declaration. A copy of such disclosures is attached hereto as Fourth Supplemental Declaration Exhibit A.

I have also read and understood additional disclosures of the above-referenced patent application at page 33, lines 8-10; page 37, lines 19-25; page 40, line 20 through page 43 line 3; page 44, lines 12 and 13; page 48, lines 13-15; page 53, line 1 through page 56, line 25; and page 62, lines 1-10. A copy of such additional disclosures is attached hereto as Fourth Supplemental Declaration Exhibit B.

5. The disclosures in Fourth Supplemental Declaration Exhibit A, also contained in my previous Declaration and Supplemental Declaration, relate to using growth factors, including cells, for promoting the growth of soft tissue and, more specifically, to a method which may use such growth factors for growing a new portion of a human heart by growing new cardiac muscle. Such disclosures are also directed to the growth of new arteries in the heart.

I understand that the additional disclosures in Fourth Supplemental Declaration Exhibit B relate to using cellular growth factors, including bone marrow stem cells, to grow soft tissue, including an artery. Stem cells harvested from bone marrow, peripheral blood and from culture banks are described as being implanted for promoting morphogenesis and growth of all three-germ tissue layers, i.e. mesoderm, ectoderm and endoderm tissues. It would be understood by one skilled in the art that morphogenesis includes the growth of an artery, which comprises mesodermal tissue.

6. I have read and understood the claims set forth in Fourth Supplemental Declaration Exhibit C and have been informed that such claims will be concurrently presented in this application with this Fourth Supplemental Declaration.

7. Based upon above Paragraphs 4-6, it is my opinion that one skilled in the medical arts, armed with the knowledge in the disclosures referenced therein, would be enabled to practice the method set forth in Fourth Supplemental Declaration Exhibit C and to predictably anticipate the results defined therein without need for resorting to undue experimentation. It is my further opinion that one skilled in the art reading such disclosures would understand that all of the well known administration procedures described at page 45 of the patent application, including intravenous, intraluminal, intramuscular, and with an angioplasty balloon, would be applicable for use in growing an artery in a human patient regardless of whether the genetic material was a gene; cell, including stem cells such as bone marrow stem cells; or another type of growth factor.

Declarant states that the above opinion was reached independently.

Declarant understands that (1) any willful false statements and the like made herein are punishable by fine or imprisonment, or both (18 U.S.C. 1001) and may jeopardize the validity of the application or any patent issuing thereon, and (2) that all statements made of Declarant's own knowledge are true and that all statements made on information and belief are believed to be true.

Further Declarant sayeth not.

Date:

6/16/06

A handwritten signature in black ink, appearing to read "Richard Heuser". The signature is written over a horizontal line.

Richard Heuser, M.D., F.A.C.C., F.A.C.P.

**FOURTH
SUPPLEMENTAL
DECLARATION**

EXHIBIT A

DISCLOSURES

EXHIBIT A

DISCLOSURES APPLICATION SERIAL NO. 09/794,456

PAGE 20, LINE 10 – PAGE 21, LINE 15

Growth factors can be utilized to induce the growth of “hard tissue” or bone and “soft tissues” like ectodermal and mesodermal tissues. As used herein, the term growth factor encompasses compositions and living organisms which promote the growth of hard tissue, such as bone, or soft tissue, in the body of a patient. The compositions include organic and inorganic matter. The compositions can be genetically produced or manipulated. The living organisms can be bacteria, viruses, or any other living organism which promote tissue growth. By way of example and not limitation, growth factors can include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (acidic/basis (FGF a,b), interleukins (IL's), tumor necrosis factor (TNF), transforming growth factor (TGF-B), colony-stimulating factor (CSF), osteopontin (Eta-1 OPN), platelet-derived growth factor (PDGF), interferon (INF), bone morphogenic protein 1 (BMP-1), and insulin growth factor (IGF). Recombinant and non-recombinant growth factors can be utilized as desired. Bacteria or viruses can, when appropriate, be utilized as growth factors. For example, there is a bacterial hydrophilic polypeptide that self-assembles into a nanometer internal diameter pore to build a selective lipid body. Various enzymes can be utilized for the synthesis of peptides which contain amino acids that control three-dimensional protein structure and growth. Growth factors can be applied in gels or other carriers which regulate the rate of release of the growth factors and help maintain the growth factors and the carrier, at a desired location in the body. Time release capsules, granules, or other carriers containing growth factor can be activated by tissue pH, by enzymes, by ultrasound,

by electricity, by heat, by selected *in vivo* chemicals or by any other selected means to release the growth factor. The carrier can be resorbable or non-resorbable. Or, the growth factor itself can be activated by similar means. Either the carrier or the growth factor can mimic extracellular fluid to control cell growth, migration, and function. The growth factor can be administered orally, systemically, in a carrier, by hypodermic needle, through the respiratory tract, or by any other desired method. The growth factor can also be administered into a capsule or other man-made composition or structure placed in the body. While administration of the growth factor is presently usually localized in the patient's body, circumstances may arise where it is advantageous to distribute a growth factor throughout the patient's body in uniform or non-uniform concentrations. An advantage to growth factors is that they can often, especially when in capsule form or in some other containment system, be inserted to a desired site in the body by simply making a small incision and inserting the growth factor. The making of such small incision comprises minor surgery which can often be accomplished on an out-patient basis. The growth factors can be multifactorial and nonspecific.

PAGE 44, LINE 19 – PAGE 46, LINE 16

Genetic material comprising a portion of a gene, a gene, genes, a gene product (i.e., a composition a gene causes to be produced like, for example, an organ-producing growth factor), growth factor, or an ECM (extracellular matrix) can be used in or on the body to grow an organ or tissue. For example, the vascular epithelial growth factor gene (VEGF) or its growth factor equivalent can be inserted into the body to cause an artery to grow. When insertion of a gene, portion of a gene, gene product, growth factor, or ECM *in vivo* or *ex vivo* is referred to herein in connection with any of the implant techniques of the invention, it is understood that a cell

nutrient culture(s), physiological nutrient culture(s), carrier (s), enhancer(s), promoter(s), or any other desired auxiliary component(s) can be inserted with the gene or at the same location as the gene, growth factor, ECM, etc.

An artery is an organ from the circulatory system. An artery can be grown in the heart, legs, or other areas by injecting a gene or other genetic material into muscle at a desired site. Size, vascularity, simplicity of access, ease of exploitation, and any other desired factors can be utilized in selecting a desired site. The gene is one of several known VEGF genes which cause the production of vascular endothelial growth factors. Several VEGF genes which produce vascular endothelial growth factors are believed to exist because nature intends for there to be several pathways (i.e., genes) which enable the production of necessary growth factors. The existence of several pathways is believed important because if one of the genes is damaged or inoperative, other similar genes can still orchestrate the production of necessary growth factors. VEGF genes are used by the body to promote blood vessel growth. VEGF genes are assimilated (taken in) by muscle cells. The genes cause the muscle cells to make a VEGF protein which promotes the growth of new arteries. VEGF proteins can be made in a lab and injected into a patient intravenously, intraluminally, or intramuscularly to promote the growth of an artery. Or, the genes (or other genetic material) can be applied with an angioplasty balloon, with the assistance of a vector, or by any other method.

It is not always desirable to grow a completely new organ. Sometimes growing a portion of an organ is desirable. For example, in some heart attacks or strokes, a portion of the heart or brain remains viable and a portion dies. An injection of a gene to form cardiac muscle and/or an injection of a gene to form an artery can be utilized to revive or replace the dead portion of the heart. The dead portion of the heart may (or may not) be used as a matrix while the new muscles

and vessels grow. Thus, in this example, a partial new organ is grown in a pre-existing organ. A pacemaker may (or may not) be necessary. A second injection of a gene may (or may not) be necessary to stop cardiac muscle growth once it is completed. Portions of organs throughout the body can similarly be repaired or replaced. It may be necessary to provide gene(s) or growth factor(s) sequentially. For instance, one or more blood vessels are grown by inserting an appropriate gene or other genetic material into a selected area. Second, an appropriate gene or other genetic material is inserted in the selected area to grow a bone or other organ.

The size and shape limitation of the desired structure can come from a containment and boundary contact inhibition phenomenon or by a chemical inhibition.

A variation on the theme of growing a portion of an organ is as follows: a portion of a heart dies. The pericardium is utilized as a scaffold and seeded with cells and/or genes to grow new muscle, and genes (or other genetic material) to grow new arteries. Immediately adjacent the dead cardiac muscle, onto or into the pericardium, the appropriate cells, genes, and/or growth factors (or other genetic material) are placed. Once the new muscle and blood vessels have grown, the function specific tissue can be applied to the damaged portion of the heart and paced, if necessary, to augment cardiac action. If the surgeon desires, the dead muscle can be removed and the new muscle and blood vessels can be surgically rotated into the excised region and secured. This probably can be done endoscopically. In essence, the pericardium is utilized to allow the new muscle wall to grow. The new muscle wall is then transplanted into the damaged heart wall. This procedure utilizes the body as a factor to grow an organ and/or tissue, after which the organ and/or tissue is transplanted to a desired region. On the other hand, the new muscle wall may integrate itself into the old wall and not require transplantation.

**FOURTH
SUPPLEMENTAL
DECLARATION**

EXHIBIT B

DISCLOSURES

EXHIBIT B

DISCLOSURES APPLICATION SERIAL NO. 09/794,456

PAGE 33, LINES 8-10

Morphogenesis or morphogenetics is the origin and evolution of morphological characters and is the growth and differentiation of cells and tissues during development.

PAGE 37, LINES 19-25

Multifactorial and nonspecific cells (such as stem cells and germinal cells) can provide the necessary in vivo and in vitro cascade of genetic material once an implanted master control gene's transcription has been activated. Likewise, any host cell, clone cell, cultured cell, or cell would work. Genetic switches (such as the insect hormone ecdysone) can be used to control genes inserted into humans and animals. These gene switches can also be used in cultured cells or other cells. Gene switches govern whether a gene is on or off making possible precise time of gene activity.

PAGE 40, LINE 20 – PAGE 43, LINE 3

EXAMPLE 11

MSX-1 and MSX-2 are the homeobox genes that control the generation and growth of a tooth. A sample of skin tissue is removed from the patient and the MSX-1 and MXS-2 homeobox gene(s) are removed from skin tissue cells. The genes are stored in an appropriate nutrient culture medium.

BMP-2 and BMP-4 growth factors are obtained by recombinant or natural extraction from bone.

Living stem cells are harvested from the bone marrow, the blood of the patient, or from cell culture techniques. The stem cells are placed in a nutrient culture medium at 98.6 degrees. The temperature of the culture medium can be varied as desired but ordinarily is between 40 to 102 degrees F.

MXS-1 and MXS-2 transcription factors are obtained which will initiate the expression of the MXS-1 and MXS-2 homeobox genes.

The MXS-1 and MXS-2 transcription factors, BMP-2 and BMP-4 bone morphogenic proteins, and MXS-1 and MXS-2 genes are added to the nutrient culture medium along with the living stem cells.

EXAMPLE 12

Example 11 is repeated except that the transcription factors bind to a receptor complex in the stem cell nucleus.

EXAMPLE 13

Example 11 is repeated except that the MXS-1 and MXS-2 transcription factors are not utilized. The transcription of the MXS-1 and MXS-2 homeobox genes is activated by applying an electric spark to the nutrient culture medium.

EXAMPLE 14

Example 13 is repeated except that the stem cells are starved and the transcription of the MXS-1 and MXS-2 homeobox genes is activated by applying an electric spark to the nutrient culture medium.

EXAMPLE 15

WT-1 and PAX genes are obtained from a sample of skin tissue is removed from the patient. The genes are stored in an appropriate nutrient culture medium. PAX genes produce PAX-2 and other transcription factors.

BMP-7 and other kidney related BMP growth factors are obtained by recombinant or natural extraction from bone.

Living stem cells are harvested from the bone marrow, the blood of the patient, or from cell culture techniques. The stem cells are placed in a nutrient culture medium at 98.6 degrees. The temperature of the culture medium can be varied as desired but ordinarily is between 40 and 102 degrees F.

The WT-1 and PAX genes, and BMP-7 and other kidney BMPS are added to the nutrient culture medium along with the living stem cells.

A primitive kidney germ is produced. The kidney germ is transplanted in the patient's body near a large artery. As the kidney grows, its blood supply will be derived from the artery.

EXAMPLE 16

The Aniridia gene is obtained from a sample of skin tissue is removed from the patient. The gene(s) is stored in an appropriate nutrient culture medium.

Aniridia transcription factor (activates expression of the Aniridia gene) and growth factors (function to help stem cells differentiate during morphogenesis to form an eye) are obtained.

Living stem cells are harvested from the bone marrow, the blood of the patient, or from cell culture techniques. The stem cells are placed in a nutrient culture medium at 98.6 degrees.

The temperature of the culture medium can be varied as desired but ordinarily is between 40 to 102 degrees F.

The Aniridia transcription factor and growth factors and the Aniridia gene are added to the nutrient culture medium along with the living stem cells.

A primitive eye germ is produced. The kidney germ is transplanted in the patient's body near the optic nerve. As the kidney grows, its blood supply will be derived from nearby arteries.

EXAMPLE 17

The Aniridia gene is obtained from a sample of skin tissue is removed from the patient. The gene(s) is stored in an appropriate nutrient culture medium.

Aniridia transcription factor (activates expression of the Aniridia gene) and growth factors (function to help stem cells differentiate during morphogenesis to form an eye) are obtained and added to the nutrient culture medium.

An eye germ develops. A branch of the nearby maxillary artery is translocated to a position adjacent the eye germ to promote the development of the eye germ. The eye germ matures into an eye which receives its blood supply from the maxillary artery.

The term "cell nutrient culture" as used herein can include any or any combination of the following: the extracellular matrix; conventional cell culture nutrients; and/or, a cell nutrient such as a vitamin. As such, the cell nutrient culture can be two-dimensional, three dimensional, or simply a nutrient, and is useful in promoting the processes of cellular dedifferentiation, redifferentiation, differentiation, growth, and development.

PAGE 44, LINES 12- 13

An organ, as used herein, consists of two or more kinds of tissues joined into one structure that has a certain task.

PAGE 48, LINES 13- 15

In the example above, if germinal cells (and in some cases, stem cells) are utilized a direct differentiation and morphogenesis into an organ can occur in vivo, ex vivo, or in vitro.

PAGE 53, LINE 1 – PAGE 56, LINE 25

EXAMPLE 18

A 36 year old Caucasian male experiences pain in his left leg. A medical examination reveals a damaged one inch long section of a large artery in his left leg. The examination also reveals that this damaged section of the artery is nearly completely clogged with plaque and that the wall of the artery is weakened. The weakening in the arterial wall makes attempting to clean out the artery risky and also makes it risky to attempt to insert a stent in the artery.

Recombinant cDNA encoded to combine with a cell ribosome to produce the human growth factor VEGF is assembled into a eukaryotic expression plasmid. The recombinant cDNA is from cDNA libraries prepared from HL60 leukemia cells and is known to cause the growth of arteries. The plasmid is maintained at a room temperature of 76 degrees F.

The clones are placed in 1.0 milliliters of a normal saline carrier solution at a room temperature of 76 degrees F to produce an genetic carrier solution. The genetic carrier solution contains about 250 ug of the cDNA clones. A nutrient culture can, if desired, be utilized in conjunction with or in place of the saline carrier. Each clone is identical. If desired, only a

single clone can be inserted in the normal saline carrier solution. The saline carrier solution comprises 0.09% by weight sodium chloride in water. A saline carrier solution is selected because it will not harm the DNA clone.

Two sites are selected for injection of the genetic carrier solution. While the selection of sites can vary as desired, the sites are selected at the lower end (the end nearest the left foot of the patient) of the damaged section of the artery so that the new arterial section grown can, if necessary, be used to take the place of the damaged section of the artery in the event the damaged section is removed.

The first site is on the exterior wall of the artery on one side of the lower end of the damaged section of the artery. A containment system is placed at the first site.

The second site is inside the wall of the artery on the other side of the lower end of the artery.

The genetic carrier solution is heated to a temperature of 98.6 degrees F. 0.25 milliliters of the genetic carrier solution is injected into the containment system at the first site. 0.25 milliliters of the genetic carrier solution is injected at the second site inside the wall of the artery. Care is taken to slowly inject the genetic carrier solution to avoid entry of the solution into the artery such that blood stream will carry away the cDNA in the solution.

After two weeks, an MRI is taken which shows the patient's leg artery. The MRI reveals new growth at the first and second sites.

After four weeks, another MRI is taken which shows the patient's leg artery. The MRI shows that (1) at the first site a new artery is growing adjacent the patient's original leg artery, and (2) at the second site a new section of artery is growing integral with the original artery, i.e., at the second site the new section of artery is lengthening the original artery, much like inserting

a new section of hose in a garden hose concentric with the longitudinal axis of the garden hose lengthens the garden hose.

After about eight to twelve weeks, another MRI is taken which shows that the new artery growing adjacent the patient's original artery has grown to a length of about one inch and has integrated itself at each of its ends with the original artery such that blood flows through the new section of artery. The MRI also shows that the new artery at the second site has grown to a length of one-half inch.

In any of the examples of the practice of the invention included herein, cell nutrient culture can be included with the gene, the growth factor, the extracellular matrix, or the environmental factors.

In any of the examples of the practice of the invention included herein, the concept of gene redundancy can be applied. For example, the Examples 1 to 14 concerning a tooth list the genes MSX-1 and MSX-2. These genes differ by only two base pairs. Either gene alone may be sufficient. A further example of redundancy occurs in growth factors. Looking at the Examples 10 to 14, BMP4 or BMP2 alone may be sufficient. Redundancy can also be utilized in connection with transcription factors, extracellular matrices, environmental factors, cell nutrient cultures, physiological nutrient cultures, vectors, promotors, etc.

One embodiment of the invention inserts genetic material (gene, growth factor, ECM, etc.) into the body to induce the formation of an organ. Similar inducing materials inserted ex vivo into or onto a living cell in an appropriate physiological nurturing environment will also induce the growth of an organ. The VCSEL laser allows early detection in a living cell of a morphogenic change indicating that organ formation has been initiated. With properly timed transplantation, organ growth completes itself.

During the ex vivo application of the invention, a gene and/or growth factor is inserted into a cell or a group of cells; an ECM or environmental factor(s) are placed around and in contact with a cell or group of cells; or, genetic material is inserted into a subunit of a cell to induce organ growth. An example of a subunit of a cell is an enucleated cell or a comparable artificially produced environment. In in vivo or ex vivo embodiments of the invention to induce the growth of an organ, the genes, growth factors, or other genetic material, as well as the environmental factors or cells utilized, can come from any desired source.

EXAMPLE 19

Genetically produced materials are inserted in the body to cause the body to grow, reproduce, and replace in vivo a clogged artery in the heart. This is an example of site-specific gene expression. A plasmid expression vector containing an enhancer/promoter is utilized to aid in the transfer of the gene into muscle cells. The enhancer is utilized to drive the specific expression of the transcriptional activator. After the enhancer drives the expression of the transcriptional activator, the transcriptional activator transactivates the muscle/artery genes. Saline is used as a carrier. Cardiac muscle can take up naked DNA injected intramuscularly. Injecting plasmid DNA into cardiac (or skeletal) muscle results in expression of the transgene in cardiac myocytes for several weeks or longer.

Readily available off-the-shelf (RAOTS) cDNA clones for recombinant human VEGF165, isolated from cDNA libraries prepared from HL60 leukemia cells, are assembled in a RAOTS expression plasmid utilizing 736 bp CMV promoter/enhancer to drive VEGF expression. Other RAOTS promoters can be utilized to drive VEGF expression for longer periods of time. Other RAOTS recombinant clones of angiogenic growth factors other than VEGF can be utilized, for example, fibroblast growth factor family, endothelial cell growth

factor, etc. Downstream from the VEGF cDNA is an SV40 polyadenylation sequence. These fragments occur in the RAOTS pUC118 vector, which includes an Escherichia coli origin of replication and the Beta lactamase gene for ampicillin resistance.

The RAOTS construct is placed into a RAOTS 3 ml syringe with neutral pH physiologic saline at room temperature (or body temperature of about 37 degrees C). The syringe has a RAOTS 27 gauge needle.

Access to the cardiac muscle is gained by open heart surgery, endoscopic surgery, direction injection of the needle without incision, or by any other desired means. The cardiac muscle immediately adjacent a clogged artery is slowly injected with the RAOTS construct during a five second time period. Injection is slow to avoid leakage through the external covering of muscle cells. About 0.5 ml to 1.0 ml (milliliter) of fluid is injected containing approximately 500 ug phVEGF165 in saline (N=18). The readily available off-the-shelf cDNA clones cause vascular growth which automatically integrates itself with the cardiac muscle. Anatomic evidence of collateral artery formation is observed by the 30th day following injection to the RAOTS construct. One end of the artery integrates itself in the heart wall to receive blood from the heart. The other end of the artery branches into increasing smaller blood vessels to distribute blood into the heart muscle. Once the growth of the new artery is completed, the new artery is left in place in the heart wall. Transplantation of the new artery is not required.

Blood flow through the new artery is calculated in a number of ways. For example, Doppler-derived flow can be determined by electromagnetic flowmeters (using for example, a Doppler Flowmeter sold by Parks Medical Electronic of Aloha, Oregon) both in vitro and in vivo. RAOTS external ultrasound gives a semiquantitative analysis of arterial flow. Also, RAOTS angiograms or any other readily available commercial devices can be utilized.

VEGF gene expression can be evaluated by readily available off-the-shelf polymerase chain reaction (PCR) techniques.

If controls are desired, the plasmid pGSVLacZ containing a nuclear targeted Beta-galactosidase sequence coupled to the simian virus 40 early promoter can be used. To evaluate efficiency, a promoter-matched reporter plasmid, pCMV Beta (available from Clontech of Palo Alto, California), which encodes Beta-galactosidase under control of CMV promoter/enhancer can be utilized. Other RAOTS products can be utilized if desired.

EXAMPLE 20

A patient, a forty year old African-American female in good health, has been missing tooth number 24 for ten years. The space in her mouth in which her number 24 tooth originally resided is empty. All other teeth except tooth number 24 are present in the patient's mouth. The patient desires a new tooth in the empty "number 24" space in her mouth.

A full thickness mucoperiosteal flap surgery is utilized to expose the bone in the number 24 space. A slight tissue reflection into the number 23 tooth and number 25 tooth areas is carried out to insure adequate working conditions.

A Midwest Quietair handpiece (or other off-the-shelf handpiece) utilizing a #701XXL bur (Dentsply Midwest of Des Plaines, Illinois) (a #700, #557, #558, etc. bur can be utilized if desired) is used to excavate an implant opening or site in the bone. The implant opening is placed midway between the roots of the number 23 and number 25 teeth. The opening ends at a depth which is about fifteen millimeters and which approximates the depth of the apices of the roots of the number 23 and number 25 teeth. Care is taken not to perforate either the buccal or lingual wall of the bone. In addition, care is taken not to perforate or invade the periodontal ligament space of teeth numbers 23 and 25.

An interrupted drilling technique is utilized to avoid overheating the bone when the #701XXL bur is utilized to form the implant opening. During a drilling sequence, the drill is operated in five second increments and the handpiece is permitted to stall. Light pressure and a gentle downward stroke are utilized.

PAGE 62, LINES 1-10

EXAMPLE 36

Example 18 is repeated except that the patient is a 55 year old Caucasian male, and the genetic carrier solution is injected into two sites in the coronary artery of the patient. The first site is on the exterior wall on one side of the artery. The second site is inside the wall of the artery on the other side of the artery. A section of the artery is damaged, is partially blocked, and has a weakened wall. The first and second sites are each below the damaged section of the artery. Similar results are obtained, i.e., a new section of artery grows integral with the original artery, and a new section of artery grows adjacent the original artery. The new section of artery has integrated itself at either end with the original artery so that blood flows through the new section of artery.

**FOURTH
SUPPLEMENTAL
DECLARATION**

EXHIBIT C

CLAIMS

EXHIBIT C

CLAIMS APPLICATION SERIAL NO. 09/794,456

Claim 7

A method of repairing a dead portion of a pre-existing heart comprising the steps of: placing a growth factor at a selected area of a human patient; and forming a new artery thereby causing said dead portion of said heart to be repaired.

Claim 11

The method of claim 7, wherein said growth factor comprises a member selected from the group consisting of cells, cellular products, and derivatives of cellular products.

Claim 12

The method of claim 11, wherein said growth factor comprises a cell.

Claim 13

The method of claim 12, wherein said cell is multifactorial and non-specific.

Claim 14

The method of claim 13, wherein said cell comprises a stem cell.

Claim 15

The method of claim 7, wherein said growth factor is placed in said patient by injection.

Claim 16

The method of claim 15, wherein said injection is intravenous.

Claim 17

The method of claim 15, wherein said injection is intraluminal.

Claim 18

The method of claim 15, wherein said injection is intramuscular.

Claim 19 The method of claim 7, wherein said growth factor is placed in said patient by a carrier.

Claim 20 The method of claim 19, wherein said carrier comprises an angioplasty balloon.

Claim 21 A method of repairing a damaged portion of a pre-existing heart comprising the steps of: placing a growth factor at a selected area of a human patient; and forming a new artery thereby causing said damaged portion of said heart to be repaired.

Claim 25 The method of claim 21, wherein said growth factor comprises a member selected from the group consisting of cells, cellular products, and derivatives of cellular products.

Claim 26 The method of claim 25, wherein said growth factor comprises a cell.

Claim 27 The method of claim 26, wherein said cell is multifactorial and non-specific.

Claim 28 The method of claim 27, wherein said cell comprises a stem cell.

Claim 29 The method of claim 21, wherein said growth factor is placed in said patient by injection.

Claim 30 The method of claim 29, wherein said injection is intravenous.

Claim 31 The method of claim 29, wherein said injection is intraluminal.

Claim 32 The method of claim 29, wherein said injection is intramuscular.

Claim 33

The method of claim 21, wherein said growth factor is placed in said patient by a carrier.

Claim 34

The method of claim 33, wherein said carrier comprises an angioplasty balloon.

Claim 35

A method of repairing a dead portion of a preexisting heart comprising the steps of placing a living stem cell harvested from bone marrow at a selected area of a human patient and forming a new artery thereby causing said dead portion of said heart to be repaired.

Claim 36

The method of claim 35, wherein said living stem cell is placed in said patient by injection.

Claim 37

The method of claim 35, wherein said living stem cell is locally placed in said patient.

Claim 38

A method of repairing a damaged portion of a preexisting heart comprising the steps of placing a living stem cell harvested from bone marrow at a selected area of a human patient and forming a new artery thereby causing said damaged portion of said heart to be repaired.

Claim 39

The method of claim 38, wherein said living stem cell is placed in said patient by injection.

Claim 40

The method of claim 38, wherein said living stem cell is locally placed in said patient.

Claim 41 The method of claim 37, wherein said living stem cell is placed into said patient by intraluminal administration.

Claim 42 The method of claim 37, wherein said living stem cell is placed into said patient by an angioplasty balloon.

Claim 43 The method of claim 40, wherein said living stem cell is placed into said patient by intraluminal administration.

Claim 44 The method of claim 40, wherein said living stem cell is placed into said patient by an angioplasty balloon.

Claim 45 The method of claim 7, wherein said growth factor comprises a cell and said cell is placed adjacent to said dead portion of said heart.

Claim 46 The method of claim 21, wherein said growth factor comprises a cell and said cell is placed adjacent to said damaged portion of said heart.

Claim 47 The method of claim 45, wherein said cell comprises a stem cell.

Claim 48 The method of claim 47, wherein said stem cell is injected into said heart.

Claim 49 The method of claim 46, wherein said cell comprises a stem cell.

Claim 50 The method of claim 49, wherein said stem cell is injected into said heart.

Claim 51 The method of claim 7, wherein said growth factor comprises a cell and said cell is placed in said body by intravenous injection.

Claim 52 The method of claim 21, wherein said growth factor comprises a cell and said cell is placed in said body by intravenous injection.

Claim 53

The method of claim 47, wherein said stem cell is placed in said body by intraluminal injection.

Claim 54

The method of claim 49, wherein said stem cell is placed in said body by intraluminal injection.

Claim 55

The method of claim 47, wherein said stem cell is placed in said body by an angioplasty balloon.

Claim 56

The method of claim 49, wherein said stem cell is placed in said body by an angioplasty balloon.

Claim 57

The method of claim 7 further comprising calculating blood flow through said newly formed artery.

Claim 58

The method of claim 7 further comprising observing said newly formed artery.

Claim 59

The method of claim 21 further comprising determining blood flow through said newly formed artery.

Claim 60

The method of claim 21 further comprising observing said newly formed artery.

EXHIBIT B

**Third Supplemental Declaration of
Andrew E. Lorincz, M.D.**

(filed in co-pending application Serial No. 09/794,456)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT: James P. Elia)
SERIAL NO.: 09/794,456)
FILED: February 27, 2001)
FOR: METHOD FOR REPAIRING)
A DAMAGED PORTION OF)
A HUMAN HEART)

EXAMINER: Elizabeth C. Kemmerer
GROUP ART UNIT: 1646

**THIRD SUPPLEMENTAL DECLARATION
OF ANDREW E. LORINCZ, M.D.**

I, Andrew E. Lorincz, declare as follows:

1. I reside at 16135 NW 243rd Way, High Springs, Florida 32643-3813.
2. This Third Supplemental Declaration is submitted in addition to my previous Declaration, dated June 9, 2003, my Supplemental Declaration dated February 3, 2004, and my Second Supplemental Declaration dated July 19, 2004. No changes are made to any of such previous Declarations.
3. My Curriculum Vitae (hereinafter "CV") is attached as Exhibit A to my Declaration of June 5, 2003, and my background is further amplified by materials submitted in my Second Supplemental Declaration.
4. I have read and understood the disclosures of the above-referenced patent application at page 20, line 10 through page 21, line 15; and page 44, line 19 through page 46, line 16. Such disclosures are the same as I read and understood

in my previous Declaration and Supplemental Declaration. A copy of such disclosures is attached hereto as Third Supplemental Declaration Exhibit A.

I have also read and understood additional disclosures of the above-referenced patent application at page 33, lines 8-10; page 37, lines 19-25; page 40, line 20 through page 43 line 3; page 44, lines 12 and 13; page 48, lines 13-15; page 53, line 1 through page 56, line 25; and page 62, lines 1-10. A copy of such additional disclosures is attached hereto as Third Supplemental Declaration Exhibit B.

5. The disclosures in Third Supplemental Declaration Exhibit A, also contained in my previous Declaration and Supplemental Declaration, relate to using growth factors, including cells, for promoting the growth of soft tissue and, more specifically, to a method which may use such growth factors for growing a new portion of a human heart by growing new cardiac muscle. Such disclosures are also directed to the growth of new arteries in the heart.

I understand that the additional disclosures in Third Supplemental Declaration Exhibit B relate to using cellular growth factors, including bone marrow stem cells, to grow soft tissue, including an artery. Stem cells harvested from bone marrow, peripheral blood and from culture banks are described as being implanted for promoting morphogenesis and growth of all three-germ tissue layers, i.e. mesoderm, ectoderm and endoderm tissues. It would be understood by one skilled in the art that morphogenesis includes the growth of an artery, which comprises mesodermal tissue.

6. I have read and understood the claims set forth in Third Supplemental Declaration Exhibit C and have been informed that such claims will be concurrently presented in this application with this Third Supplemental Declaration.

7. Based upon above Paragraphs 4-6, it is my opinion that one skilled in the medical arts, armed with the knowledge in the disclosures referenced therein, would be enabled to practice the method set forth in Third Supplemental Declaration Exhibit C and to predictably anticipate the results defined therein without need for resorting to undue experimentation. It is my further opinion that one skilled in the art reading such disclosures would understand that all of the well known administration procedures described at page 45 of the patent application, including intravenous, intraluminal, intramuscular, and with an angioplasty balloon, would be applicable for use in growing an artery in a human patient regardless of whether the genetic material was a gene; cell, including stem cells such as bone marrow stem cells; or another type of growth factor.

Declarant states that the above opinion was reached independently.

Declarant understands that (1) any willful false statements and the like made herein are punishable by fine or imprisonment, or both (18 U.S.C. 1001) and may jeopardize the validity of the application or any patent issuing thereon, and (2) that all statements made of Declarant's own knowledge are true and that all statements made on information and belief are believed to be true.

Further Declarant sayeth not.

Date: 5 June 2006

Andrew E. Lorincz, M.D.
Andrew E. Lorincz, M.D.

**THIRD
SUPPLEMENTAL
DECLARATION**

EXHIBIT A

DISCLOSURES

EXHIBIT A

DISCLOSURES APPLICATION SERIAL NO. 09/794,456

PAGE 20, LINE 10 – PAGE 21, LINE 15

Growth factors can be utilized to induce the growth of “hard tissue” or bone and “soft tissues” like ectodermal and mesodermal tissues. As used herein, the term growth factor encompasses compositions and living organisms which promote the growth of hard tissue, such as bone, or soft tissue, in the body of a patient. The compositions include organic and inorganic matter. The compositions can be genetically produced or manipulated. The living organisms can be bacteria, viruses, or any other living organism which promote tissue growth. By way of example and not limitation, growth factors can include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (acidic/basis (FGF a,b), interleukins (IL's), tumor necrosis factor (TNF), transforming growth factor (TGF-B), colony-stimulating factor (CSF), osteopontin (Eta-1 OPN), platelet-derived growth factor (PDGF), interferon (INF), bone morphogenic protein 1 (BMP-1), and insulin growth factor (IGF). Recombinant and non-recombinant growth factors can be utilized as desired. Bacteria or viruses can, when appropriate, be utilized as growth factors. For example, there is a bacterial hydrophilic polypeptide that self-assembles into a nanometer internal diameter pore to build a selective lipid body. Various enzymes can be utilized for the synthesis of peptides which contain amino acids that control three-dimensional protein structure and growth. Growth factors can be applied in gels or other carriers which regulate the rate of release of the growth factors and help maintain the growth factors and the carrier, at a desired location in the body. Time release capsules, granules, or other carriers containing growth factor can be activated by tissue pH, by enzymes, by ultrasound,

by electricity, by heat, by selected *in vivo* chemicals or by any other selected means to release the growth factor. The carrier can be resorbable or non-resorbable. Or, the growth factor itself can be activated by similar means. Either the carrier or the growth factor can mimic extracellular fluid to control cell growth, migration, and function. The growth factor can be administered orally, systemically, in a carrier, by hypodermic needle, through the respiratory tract, or by any other desired method. The growth factor can also be administered into a capsule or other man-made composition or structure placed in the body. While administration of the growth factor is presently usually localized in the patient's body, circumstances may arise where it is advantageous to distribute a growth factor throughout the patient's body in uniform or non-uniform concentrations. An advantage to growth factors is that they can often, especially when in capsule form or in some other containment system, be inserted to a desired site in the body by simply making a small incision and inserting the growth factor. The making of such small incision comprises minor surgery which can often be accomplished on an out-patient basis. The growth factors can be multifactorial and nonspecific.

PAGE 44, LINE 19 – PAGE 46, LINE 16

Genetic material comprising a portion of a gene, a gene, genes, a gene product (i.e., a composition a gene causes to be produced like, for example, an organ-producing growth factor), growth factor, or an ECM (extracellular matrix) can be used in or on the body to grow an organ or tissue. For example, the vascular epithelial growth factor gene (VEGF) or its growth factor equivalent can be inserted into the body to cause an artery to grow. When insertion of a gene, portion of a gene, gene product, growth factor, or ECM *in vivo* or *ex vivo* is referred to herein in connection with any of the implant techniques of the invention, it is understood that a cell

nutrient culture(s), physiological nutrient culture(s), carrier (s), enhancer(s), promoter(s), or any other desired auxiliary component(s) can be inserted with the gene or at the same location as the gene, growth factor, ECM, etc.

An artery is an organ from the circulatory system. An artery can be grown in the heart, legs, or other areas by injecting a gene or other genetic material into muscle at a desired site. Size, vascularity, simplicity of access, ease of exploitation, and any other desired factors can be utilized in selecting a desired site. The gene is one of several known VEGF genes which cause the production of vascular endothelial growth factors. Several VEGF genes which produce vascular endothelial growth factors are believed to exist because nature intends for there to be several pathways (i.e., genes) which enable the production of necessary growth factors. The existence of several pathways is believed important because if one of the genes is damaged or inoperative, other similar genes can still orchestrate the production of necessary growth factors. VEGF genes are used by the body to promote blood vessel growth. VEGF genes are assimilated (taken in) by muscle cells. The genes cause the muscle cells to make a VEGF protein which promotes the growth of new arteries. VEGF proteins can be made in a lab and injected into a patient intravenously, intraluminally, or intramuscularly to promote the growth of an artery. Or, the genes (or other genetic material) can be applied with an angioplasty balloon, with the assistance of a vector, or by any other method.

It is not always desirable to grow a completely new organ. Sometimes growing a portion of an organ is desirable. For example, in some heart attacks or strokes, a portion of the heart or brain remains viable and a portion dies. An injection of a gene to form cardiac muscle and/or an injection of a gene to form an artery can be utilized to revive or replace the dead portion of the heart. The dead portion of the heart may (or may not) be used as a matrix while the new muscles

and vessels grow. Thus, in this example, a partial new organ is grown in a pre-existing organ. A pacemaker may (or may not) be necessary. A second injection of a gene may (or may not) be necessary to stop cardiac muscle growth once it is completed. Portions of organs throughout the body can similarly be repaired or replaced. It may be necessary to provide gene(s) or growth factor(s) sequentially. For instance, one or more blood vessels are grown by inserting an appropriate gene or other genetic material into a selected area. Second, an appropriate gene or other genetic material is inserted in the selected area to grow a bone or other organ.

The size and shape limitation of the desired structure can come from a containment and boundary contact inhibition phenomenon or by a chemical inhibition.

A variation on the theme of growing a portion of an organ is as follows: a portion of a heart dies. The pericardium is utilized as a scaffold and seeded with cells and/or genes to grow new muscle, and genes (or other genetic material) to grow new arteries. Immediately adjacent the dead cardiac muscle, onto or into the pericardium, the appropriate cells, genes, and/or growth factors (or other genetic material) are placed. Once the new muscle and blood vessels have grown, the function specific tissue can be applied to the damaged portion of the heart and paced, if necessary, to augment cardiac action. If the surgeon desires, the dead muscle can be removed and the new muscle and blood vessels can be surgically rotated into the excised region and secured. This probably can be done endoscopically. In essence, the pericardium is utilized to allow the new muscle wall to grow. The new muscle wall is then transplanted into the damaged heart wall. This procedure utilizes the body as a factor to grow an organ and/or tissue, after which the organ and/or tissue is transplanted to a desired region. On the other hand, the new muscle wall may integrate itself into the old wall and not require transplantation.

**THIRD
SUPPLEMENTAL
DECLARATION**

EXHIBIT B

DISCLOSURES

EXHIBIT B

DISCLOSURES APPLICATION SERIAL NO. 09/794,456

PAGE 33, LINES 8-10

Morphogenesis or morphogenetics is the origin and evolution of morphological characters and is the growth and differentiation of cells and tissues during development.

PAGE 37, LINES 19-25

Multifactorial and nonspecific cells (such as stem cells and germinal cells) can provide the necessary in vivo and in vitro cascade of genetic material once an implanted master control gene's transcription has been activated. Likewise, any host cell, clone cell, cultured cell, or cell would work. Genetic switches (such as the insect hormone ecdysone) can be used to control genes inserted into humans and animals. These gene switches can also be used in cultured cells or other cells. Gene switches govern whether a gene is on or off making possible precise time of gene activity.

PAGE 40, LINE 20 – PAGE 43, LINE 3

EXAMPLE 11

MSX-1 and MSX-2 are the homeobox genes that control the generation and growth of a tooth. A sample of skin tissue is removed from the patient and the MSX-1 and MXS-2 homeobox gene(s) are removed from skin tissue cells. The genes are stored in an appropriate nutrient culture medium.

BMP-2 and BMP-4 growth factors are obtained by recombinant or natural extraction from bone.

Living stem cells are harvested from the bone marrow, the blood of the patient, or from cell culture techniques. The stem cells are placed in a nutrient culture medium at 98.6 degrees. The temperature of the culture medium can be varied as desired but ordinarily is between 40 to 102 degrees F.

MXS-1 and MXS-2 transcription factors are obtained which will initiate the expression of the MXS-1 and MXS-2 homeobox genes.

The MXS-1 and MXS-2 transcription factors, BMP-2 and BMP-4 bone morphogenic proteins, and MXS-1 and MXS-2 genes are added to the nutrient culture medium along with the living stem cells.

EXAMPLE 12

Example 11 is repeated except that the transcription factors bind to a receptor complex in the stem cell nucleus.

EXAMPLE 13

Example 11 is repeated except that the MXS-1 and MXS-2 transcription factors are not utilized. The transcription of the MXS-1 and MXS-2 homeobox genes is activated by applying an electric spark to the nutrient culture medium.

EXAMPLE 14

Example 13 is repeated except that the stem cells are starved and the transcription of the MXS-1 and MXS-2 homeobox genes is activated by applying an electric spark to the nutrient culture medium.

EXAMPLE 15

WT-1 and PAX genes are obtained from a sample of skin tissue is removed from the patient. The genes are stored in an appropriate nutrient culture medium. PAX genes produce PAX-2 and other transcription factors.

BMP-7 and other kidney related BMP growth factors are obtained by recombinant or natural extraction from bone.

Living stem cells are harvested from the bone marrow, the blood of the patient, or from cell culture techniques. The stem cells are placed in a nutrient culture medium at 98.6 degrees. The temperature of the culture medium can be varied as desired but ordinarily is between 40 and 102 degrees F.

The WT-1 and PAX genes, and BMP-7 and other kidney BMPS are added to the nutrient culture medium along with the living stem cells.

A primitive kidney germ is produced. The kidney germ is transplanted in the patient's body near a large artery. As the kidney grows, its blood supply will be derived from the artery.

EXAMPLE 16

The Aniridia gene is obtained from a sample of skin tissue is removed from the patient. The gene(s) is stored in an appropriate nutrient culture medium.

Aniridia transcription factor (activates expression of the Aniridia gene) and growth factors (function to help stem cells differentiate during morphogenesis to form an eye) are obtained.

Living stem cells are harvested from the bone marrow, the blood of the patient, or from cell culture techniques. The stem cells are placed in a nutrient culture medium at 98.6 degrees.

The temperature of the culture medium can be varied as desired but ordinarily is between 40 to 102 degrees F.

The Aniridia transcription factor and growth factors and the Aniridia gene are added to the nutrient culture medium along with the living stem cells.

A primitive eye germ is produced. The kidney germ is transplanted in the patient's body near the optic nerve. As the kidney grows, its blood supply will be derived from nearby arteries.

EXAMPLE 17

The Aniridia gene is obtained from a sample of skin tissue is removed from the patient. The gene(s) is stored in an appropriate nutrient culture medium.

Aniridia transcription factor (activates expression of the Aniridia gene) and growth factors (function to help stem cells differentiate during morphogenesis to form an eye) are obtained and added to the nutrient culture medium.

An eye germ develops. A branch of the nearby maxillary artery is translocated to a position adjacent the eye germ to promote the development of the eye germ. The eye germ matures into an eye which receives its blood supply from the maxillary artery.

The term "cell nutrient culture" as used herein can include any or any combination of the following: the extracellular matrix; conventional cell culture nutrients; and/or, a cell nutrient such as a vitamin. As such, the cell nutrient culture can be two-dimensional, three dimensional, or simply a nutrient, and is useful in promoting the processes of cellular dedifferentiation, redifferentiation, differentiation, growth, and development.

PAGE 44, LINES 12- 13

An organ, as used herein, consists of two or more kinds of tissues joined into one structure that has a certain task.

PAGE 48, LINES 13- 15

In the example above, if germinal cells (and in some cases, stem cells) are utilized a direct differentiation and morphogenesis into an organ can occur in vivo, ex vivo, or in vitro.

PAGE 53, LINE 1 – PAGE 56, LINE 25

EXAMPLE 18

A 36 year old Caucasian male experiences pain in his left leg. A medical examination reveals a damaged one inch long section of a large artery in his left leg. The examination also reveals that this damaged section of the artery is nearly completely clogged with plaque and that the wall of the artery is weakened. The weakening in the arterial wall makes attempting to clean out the artery risky and also makes it risky to attempt to insert a stent in the artery.

Recombinant cDNA encoded to combine with a cell ribosome to produce the human growth factor VEGF is assembled into a eukaryotic expression plasmid. The recombinant cDNA is from cDNA libraries prepared from HL60 leukemia cells and is known to cause the growth of arteries. The plasmid is maintained at a room temperature of 76 degrees F.

The clones are placed in 1.0 milliliters of a normal saline carrier solution at a room temperature of 76 degrees F to produce an genetic carrier solution. The genetic carrier solution contains about 250 ug of the cDNA clones. A nutrient culture can, if desired, be utilized in conjunction with or in place of the saline carrier. Each clone is identical. If desired, only a

single clone can be inserted in the normal saline carrier solution. The saline carrier solution comprises 0.09% by weight sodium chloride in water. A saline carrier solution is selected because it will not harm the DNA clone.

Two sites are selected for injection of the genetic carrier solution. While the selection of sites can vary as desired, the sites are selected at the lower end (the end nearest the left foot of the patient) of the damaged section of the artery so that the new arterial section grown can, if necessary, be used to take the place of the damaged section of the artery in the event the damaged section is removed.

The first site is on the exterior wall of the artery on one side of the lower end of the damaged section of the artery. A containment system is placed at the first site.

The second site is inside the wall of the artery on the other side of the lower end of the artery.

The genetic carrier solution is heated to a temperature of 98.6 degrees F. 0.25 milliliters of the genetic carrier solution is injected into the containment system at the first site. 0.25 milliliters of the genetic carrier solution is injected at the second site inside the wall of the artery. Care is taken to slowly inject the genetic carrier solution to avoid entry of the solution into the artery such that blood stream will carry away the cDNA in the solution.

After two weeks, an MRI is taken which shows the patient's leg artery. The MRI reveals new growth at the first and second sites.

After four weeks, another MRI is taken which shows the patient's leg artery. The MRI shows that (1) at the first site a new artery is growing adjacent the patient's original leg artery, and (2) at the second site a new section of artery is growing integral with the original artery, i.e., at the second site the new section of artery is lengthening the original artery, much like inserting

a new section of hose in a garden hose concentric with the longitudinal axis of the garden hose lengthens the garden hose.

After about eight to twelve weeks, another MRI is taken which shows that the new artery growing adjacent the patient's original artery has grown to a length of about one inch and has integrated itself at each of its ends with the original artery such that blood flows through the new section of artery. The MRI also shows that the new artery at the second site has grown to a length of one-half inch.

In any of the examples of the practice of the invention included herein, cell nutrient culture can be included with the gene, the growth factor, the extracellular matrix, or the environmental factors.

In any of the examples of the practice of the invention included herein, the concept of gene redundancy can be applied. For example, the Examples 1 to 14 concerning a tooth list the genes MSX-1 and MSX-2. These genes differ by only two base pairs. Either gene alone may be sufficient. A further example of redundancy occurs in growth factors. Looking at the Examples 10 to 14, BMP4 or BMP2 alone may be sufficient. Redundancy can also be utilized in connection with transcription factors, extracellular matrices, environmental factors, cell nutrient cultures, physiological nutrient cultures, vectors, promotors, etc.

One embodiment of the invention inserts genetic material (gene, growth factor, ECM, etc.) into the body to induce the formation of an organ. Similar inducing materials inserted ex vivo into or onto a living cell in an appropriate physiological nurturing environment will also induce the growth of an organ. The VCSEL laser allows early detection in a living cell of a morphogenic change indicating that organ formation has been initiated. With properly timed transplantation, organ growth completes itself.

During the ex vivo application of the invention, a gene and/or growth factor is inserted into a cell or a group of cells; an ECM or environmental factor(s) are placed around and in contact with a cell or group of cells; or, genetic material is inserted into a subunit of a cell to induce organ growth. An example of a subunit of a cell is an enucleated cell or a comparable artificially produced environment. In in vivo or ex vivo embodiments of the invention to induce the growth of an organ, the genes, growth factors, or other genetic material, as well as the environmental factors or cells utilized, can come from any desired source.

EXAMPLE 19

Genetically produced materials are inserted in the body to cause the body to grow, reproduce, and replace in vivo a clogged artery in the heart. This is an example of site-specific gene expression. A plasmid expression vector containing an enhancer/promoter is utilized to aid in the transfer of the gene into muscle cells. The enhancer is utilized to drive the specific expression of the transcriptional activator. After the enhancer drives the expression of the transcriptional activator, the transcriptional activator transactivates the muscle/artery genes. Saline is used as a carrier. Cardiac muscle can take up naked DNA injected intramuscularly. Injecting plasmid DNA into cardiac (or skeletal) muscle results in expression of the transgene in cardiac myocytes for several weeks or longer.

Readily available off-the-shelf (RAOTS) cDNA clones for recombinant human VEGF165, isolated from cDNA libraries prepared from HL60 leukemia cells, are assembled in a RAOTS expression plasmid utilizing 736 bp CMV promoter/enhancer to drive VEGF expression. Other RAOTS promoters can be utilized to drive VEGF expression for longer periods of time. Other RAOTS recombinant clones of angiogenic growth factors other than VEGF can be utilized, for example, fibroblast growth factor family, endothelial cell growth

factor, etc. Downstream from the VEGF cDNA is an SV40 polyadenylation sequence. These fragments occur in the RAOTS pUC118 vector, which includes an Escherichia coli origin of replication and the Beta lactamase gene for ampicillin resistance.

The RAOTS construct is placed into a RAOTS 3 ml syringe with neutral pH physiologic saline at room temperature (or body temperature of about 37 degrees C). The syringe has a RAOTS 27 gauge needle.

Access to the cardiac muscle is gained by open heart surgery, endoscopic surgery, direction injection of the needle without incision, or by any other desired means. The cardiac muscle immediately adjacent a clogged artery is slowly injected with the RAOTS construct during a five second time period. Injection is slow to avoid leakage through the external covering of muscle cells. About 0.5 ml to 1.0 ml (milliliter) of fluid is injected containing approximately 500 ug phVEGF165 in saline (N=18). The readily available off-the-shelf cDNA clones cause vascular growth which automatically integrates itself with the cardiac muscle. Anatomic evidence of collateral artery formation is observed by the 30th day following injection to the RAOTS construct. One end of the artery integrates itself in the heart wall to receive blood from the heart. The other end of the artery branches into increasing smaller blood vessels to distribute blood into the heart muscle. Once the growth of the new artery is completed, the new artery is left in place in the heart wall. Transplantation of the new artery is not required.

Blood flow through the new artery is calculated in a number of ways. For example, Doppler-derived flow can be determined by electromagnetic flowmeters (using for example, a Doppler Flowmeter sold by Parks Medical Electronic of Aloha, Oregon) both in vitro and in vivo. RAOTS external ultrasound gives a semiquantitative analysis of arterial flow. Also, RAOTS angiograms or any other readily available commercial devices can be utilized.

VEGF gene expression can be evaluated by readily available off-the-shelf polymerase chain reaction (PCR) techniques.

If controls are desired, the plasmid pGSVLacZ containing a nuclear targeted Beta-galactosidase sequence coupled to the simian virus 40 early promoter can be used. To evaluate efficiency, a promoter-matched reporter plasmid, pCMV Beta (available from Clontech of Palo Alto, California), which encodes Beta-galactosidase under control of CMV promoter/enhancer can be utilized. Other RAOTS products can be utilized if desired.

EXAMPLE 20

A patient, a forty year old African-American female in good health, has been missing tooth number 24 for ten years. The space in her mouth in which her number 24 tooth originally resided is empty. All other teeth except tooth number 24 are present in the patient's mouth. The patient desires a new tooth in the empty "number 24" space in her mouth.

A full thickness mucoperiosteal flap surgery is utilized to expose the bone in the number 24 space. A slight tissue reflection into the number 23 tooth and number 25 tooth areas is carried out to insure adequate working conditions.

A Midwest Quietair handpiece (or other off-the-shelf handpiece) utilizing a #701XXL bur (Dentsply Midwest of Des Plaines, Illinois) (a #700, #557, #558, etc. bur can be utilized if desired) is used to excavate an implant opening or site in the bone. The implant opening is placed midway between the roots of the number 23 and number 25 teeth. The opening ends at a depth which is about fifteen millimeters and which approximates the depth of the apices of the roots of the number 23 and number 25 teeth. Care is taken not to perforate either the buccal or lingual wall of the bone. In addition, care is taken not to perforate or invade the periodontal ligament space of teeth numbers 23 and 25.

An interrupted drilling technique is utilized to avoid overheating the bone when the #701XXL bur is utilized to form the implant opening. During a drilling sequence, the drill is operated in five second increments and the handpiece is permitted to stall. Light pressure and a gentle downward stroke are utilized.

PAGE 62, LINES 1-10

EXAMPLE 36

Example 18 is repeated except that the patient is a 55 year old Caucasian male, and the genetic carrier solution is injected into two sites in the coronary artery of the patient. The first site is on the exterior wall on one side of the artery. The second site is inside the wall of the artery on the other side of the artery. A section of the artery is damaged, is partially blocked, and has a weakened wall. The first and second sites are each below the damaged section of the artery. Similar results are obtained, i.e., a new section of artery grows integral with the original artery, and a new section of artery grows adjacent the original artery. The new section of artery has integrated itself at either end with the original artery so that blood flows through the new section of artery.

**THIRD
SUPPLEMENTAL
DECLARATION**

EXHIBIT C

CLAIMS

EXHIBIT C

CLAIMS APPLICATION SERIAL NO. 09/794,456

Claim 7

A method of repairing a dead portion of a pre-existing heart comprising the steps of: placing a growth factor at a selected area of a human patient; and forming a new artery thereby causing said dead portion of said heart to be repaired.

Claim 11

The method of claim 7, wherein said growth factor comprises a member selected from the group consisting of cells, cellular products, and derivatives of cellular products.

Claim 12

The method of claim 11, wherein said growth factor comprises a cell.

Claim 13

The method of claim 12, wherein said cell is multifactorial and non-specific.

Claim 14

The method of claim 13, wherein said cell comprises a stem cell.

Claim 15

The method of claim 7, wherein said growth factor is placed in said patient by injection.

Claim 16

The method of claim 15, wherein said injection is intravenous.

Claim 17

The method of claim 15, wherein said injection is intraluminal.

Claim 18

The method of claim 15, wherein said injection is intramuscular.

Claim 19 The method of claim 7, wherein said growth factor is placed in said patient by a carrier.

Claim 20 The method of claim 19, wherein said carrier comprises an angioplasty balloon.

Claim 21 A method of repairing a damaged portion of a pre-existing heart comprising the steps of: placing a growth factor at a selected area of a human patient; and forming a new artery thereby causing said damaged portion of said heart to be repaired.

Claim 25 The method of claim 21, wherein said growth factor comprises a member selected from the group consisting of cells, cellular products, and derivatives of cellular products.

Claim 26 The method of claim 25, wherein said growth factor comprises a cell.

Claim 27 The method of claim 26, wherein said cell is multifactorial and non-specific.

Claim 28 The method of claim 27, wherein said cell comprises a stem cell.

Claim 29 The method of claim 21, wherein said growth factor is placed in said patient by injection.

Claim 30 The method of claim 29, wherein said injection is intravenous.

Claim 31 The method of claim 29, wherein said injection is intraluminal.

Claim 32 The method of claim 29, wherein said injection is intramuscular.

Claim 33. The method of claim 21, wherein said growth factor is placed in said patient by a carrier.

Claim 34 The method of claim 33, wherein said carrier comprises an angioplasty balloon.

Claim 35 A method of repairing a dead portion of a preexisting heart comprising the steps of placing a living stem cell harvested from bone marrow at a selected area of a human patient and forming a new artery thereby causing said dead portion of said heart to be repaired.

Claim 36 The method of claim 35, wherein said living stem cell is placed in said patient by injection.

Claim 37 The method of claim 35, wherein said living stem cell is locally placed in said patient.

Claim 38 A method of repairing a damaged portion of a preexisting heart comprising the steps of placing a living stem cell harvested from bone marrow at a selected area of a human patient and forming a new artery thereby causing said damaged portion of said heart to be repaired.

Claim 39 The method of claim 38, wherein said living stem cell is placed in said patient by injection.

Claim 40 The method of claim 38, wherein said living stem cell is locally placed in said patient.

Claim 41 The method of claim 37, wherein said living stem cell is placed into said patient by intraluminal administration.

Claim 42 The method of claim 37, wherein said living stem cell is placed into said patient by an angioplasty balloon.

Claim 43 The method of claim 40, wherein said living stem cell is placed into said patient by intraluminal administration.

Claim 44 The method of claim 40, wherein said living stem cell is placed into said patient by an angioplasty balloon.

Claim 45 The method of claim 7, wherein said growth factor comprises a cell and said cell is placed adjacent to said dead portion of said heart.

Claim 46 The method of claim 21, wherein said growth factor comprises a cell and said cell is placed adjacent to said damaged portion of said heart.

Claim 47 The method of claim 45, wherein said cell comprises a stem cell.

Claim 48 The method of claim 47, wherein said stem cell is injected into said heart.

Claim 49 The method of claim 46, wherein said cell comprises a stem cell.

Claim 50 The method of claim 49, wherein said stem cell is injected into said heart.

Claim 51 The method of claim 7, wherein said growth factor comprises a cell and said cell is placed in said body by intravenous injection.

Claim 52 The method of claim 21, wherein said growth factor comprises a cell and said cell is placed in said body by intravenous injection.

Claim 53 The method of claim 47, wherein said stem cell is placed in said body by intraluminal injection.

Claim 54 The method of claim 49, wherein said stem cell is placed in said body by intraluminal injection.

Claim 55 The method of claim 47, wherein said stem cell is placed in said body by an angioplasty balloon.

Claim 56 The method of claim 49, wherein said stem cell is placed in said body by an angioplasty balloon.

Claim 57 The method of claim 7 further comprising calculating blood flow through said newly formed artery.

Claim 58 The method of claim 7 further comprising observing said newly formed artery.

Claim 59 The method of claim 21 further comprising determining blood flow through said newly formed artery.

Claim 60 The method of claim 21 further comprising observing said newly formed artery.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.