Слабая постановка задачи Дирихле-Неймана для уравнения Пуассона. Исследование сходимости

Работу выполнял: Копытков Дмитрий

Сентябрь 2024

1 Слабая постановка

Выпишем смешанную задачу Дирихле-Неймана для уравненея Пуассона на гладкой области Ω :

$$\Delta u = -f, u \in \Omega, \tag{1}$$

$$u|_{\Gamma_{out}} = u_{out}, \tag{2}$$

$$\frac{\partial u}{\partial n}|_{\Gamma_{in}} = u_{in}. \tag{3}$$

Для этой задачи возьмём ненулевую функцию v такую, что

$$v|_{\Gamma_{out}} = 0, (4)$$

умножим (1) на нее и проинтегрируем по Ω :

$$-\int_{\Omega} f v \, dx \, dy = \int_{\Omega} \Delta u v \, dx \, dy \xrightarrow{\text{Свойство div}}$$

$$\int_{\Omega} \operatorname{div} (\nabla u v) \, dx \, dy - \int_{\Omega} \nabla u \cdot \nabla v \, dx \, dy \xrightarrow{\Phi \text{ормула Гаусса-Остроградского}}$$

$$\int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}} v \, dx \, dy - \int_{\Omega} \nabla u \cdot \nabla v \, dx \, dy = \int_{\Gamma_{out}} \frac{\partial u}{\partial \mathbf{n}} v \, dx \, dy$$

$$+ \int_{\Gamma_{in}} \frac{\partial u}{\partial \mathbf{n}} v \, dx \, dy - \int_{\Omega} \nabla u \cdot \nabla v \, dx \, dy \xrightarrow{\frac{v|\Gamma_{out} = 0}{\partial n}}$$

$$\int_{\Gamma_{in}} \frac{\partial u}{\partial \mathbf{n}} v \, dx \, dy - \int_{\Omega} \nabla u \cdot \nabla v \, dx \, dy \xrightarrow{\frac{\partial u}{\partial n} = \nabla u \cdot n}$$

$$(5)$$

Таким образом, выписана слабая постановка задачи Дирихле-Неймана для уравнения Пуассона, то есть мы получили новое уравнение (5) с ГУ (2), (3), (4).

2 Исследование сходимости

 $\int_{\Gamma} \nabla u \cdot nv \, dx \, dy - \int_{\Omega} \nabla u \cdot \nabla v \, dx \, dy$

Теперь покажем как вычисляется порядок сходимости. По определению, порядок сходимости - это такое число p, что

$$||u_h - u||_{L_2} = Ch^p + O(h^{p+1}),$$
 (6)

или

$$\log \|u_h - u\|_{L_2} = p \log h + \log C + O(h). \tag{7}$$

Зная точное решение и, мы исследуем сходимость следующим образом:

$$\log_2 \frac{\|u_h - u\|_{L_2}}{\|u_{h/2} - u\|_{L_2}} = p + O(h).$$
 (8)

NIn	20	40	80	160	320
NOut	50	100	200	400	800
Норма численного решения, $\ u_h\ _{L_2}$	108.016	137.409	160.286	167.2	169.088
Абсолютная погрешность, $ \ u_h - u\ _{L_2} $	37.3469	10.9984	2.58262	0.70182	0.178358
Относительная погрешность, $\frac{\ u_h - u\ _{L_2}}{\ u\ _{L_2}}$	0.331754	0.0787798	0.0160463	0.00419195	0.00105448
Порядок сходимости, $\log_2 \frac{\ u_h - u\ _{L_2}}{\ u_h - u\ _{L_2}}$	-	1.7637	2.09038	1.87967	1.97633

Если же точное решение неизвестно, то можно определить порядок сходимости следующим образом:

$$\log_2 \frac{\|u_h - u_{h/2}\|_{L_2}}{\|u_{h/2} - u_{h/4}\|_{L_2}} =$$

$$= \log_2 \frac{1 + 2^{-p} + O(h)}{2^{-p+1} + O(h)} = p + O(h).$$
(9)

Таблица с численными результатами, если точное решение известно:

Таблица с численными результатами, если точное решение неизвестно:

NIn	20	40	80	160	320
NOut	50	100	200	400	800
Норма численного решения, $\ u_h\ _{L_2}$	108.016	137.409	160.286	167.2	169.088
Абсолютная погрешность, $ \ u_h - u_{h/2}\ _{L_2} $	30.5957	9.55009	2.1255	0.565212	-
Относительная погрешность, $\frac{\left\ u_{h}-u_{h/2}\right\ _{L_{2}}}{\left\ u_{h}\right\ _{L_{2}}}$	0.283252	0.0695013	0.0132607	0.00338045	-
Порядок сходимости, $\log_2 \frac{\left\ u_h - u_{h/2}\right\ _{L_2}}{\left\ u_{h/2} - u_{h/4}\right\ _{L_2}}$	-	1.67974	2.16771	1.91094	-

Вывод: при уменьшении шага сетки погрешность уменьшается, что может говорить о сходимости метода. Однако численные данные дают нестабильную картину.

Основные причины, по которым численные результаты отличаются от теоретических:

- Выводы оценки порядка сходимости делаются при $h \to 0$. Чем больше h, тем выше значения O(h). Тогда получаем, что из (9) значение может существенно отличаться.
- В численном решении начальные условия могут задаваться не точно, а значит порядок будет завситеть ещё и от порядка аппроксимации граничных условий, что заставляет задуматься о начальном шаге, с которого стоит рассматривать численное решение.