

المحاضرة الثانية

كلية الهندسة

الذكاء الصنعي العملي

Introduction to Generative AI & LLMs Embedding Concept 2 / intro to Transformers

د. رياض سنبل

Word Embedding

- An embedding maps each word to a point in a much smaller m-dim space (e.g. 300 values)
- Two approaches:
 - Learn the embedding jointly with your main task:
 - An embedding layer with m hidden nodes to map word IDs to an m-dim vector.
 - Add your hidden layer and output layer, learn weights end-to-end with SGD.
 - Use pre-trained embedding:
 - Usually trained on another, much bigger dataset.
 - Freeze embedding weights to produce simple word embedding.

Training Embedding Layer

- Input layer use fixed length document (e.g. 100 nodes for 100 word IDs).
 - Pad with 0's is doc is shorter.
- Add an embedding layer to learn embeddings:
 - (1) Represent every word as an n-dim one hot encoding BOW.
 - (2) Learn an m-dim embedding using m-hidden nodes.
 - Learn weight matrix W(n*m) to map one hot encoded word to embedding.
 - (3) Use Linear activation function => X_{embed} = W. X_{orig}
- Add a layer to map word embedding to desired output.
- Learn all weights from labeled data.

Pre-trained embeddings

- More data => better embeddings BUT also more labels!
- Solution: self-supervised learning
 - Given a word, predict the surrounding words.
- Most common approaches:
 - Word2vec: learn neural embedding for word based on surrounding words.
 - GloVe (Global Vector): Count co-occurences of words in matrix.
 - FastText: learns embedding for character n-gram
 - Language models: learn context-dependenct embedding.
 - BERT, ELMO, GPT3

Skip-grams

- We can also analyze the meaning of a particular word by looking at the contexts in which it occurs.
- The context is the set of words that occur near the word, i.e. at displacements of ...,-3,-2,-1,+1,+2,+3,... in each sentence where the word occurs.
- A skip-gram is a set of non-consecutive words (with specified offset), that occur in some sentence.
- We can construct a BoSG (bag of skip-gram) representation for each word from the skip-gram table.
 - Example?

word2Vec: Local contexts

- Instead of entire documents, Word2Vec uses words k positions away from each center word.
 - These words are called context words.
- Example for k=3:
 - "It was a bright cold day in April, and the clocks were striking".
 - Center word: red (also called focus word).
 - Context words: blue (also called target words).
- Word2Vec considers all words as center words, and all their context words.

The skip-gram model

- Vocabulary size: V
- Input layer: center word in 1-hot form.
- k-th row of $W_{V\times N}$ is **center** vector of k-th word.
- k-th column of W' NXV is context vector of the k-th word in V.
- Note, each word has 2 vectors, both randomly initialized.
- The output column y_{ij} , i=1..C, has 3 steps
 - 1) Use the context word 1-hot vector to choose its column in W' NXV
 - 2) dot product with h_i the center word
 - 3) compute the softmax

CBOW

- What about we predict center word, given context word, opposite to the skip-gram model?
- Yes, this is called Continuous Bag
 Of Words model in the original
 Word2Vec paper.

We can consider either W or W' as the word's representation. Or even take the average.

Using Pretrained Model

Do I need to Train Word2Vec?

- Answer: NO!
- You can download <u>pre-trained</u> Word2Vec models trained on massive corpora of data.
- Common example: Google News Vectors, 300 dimensional vectors for 3 million words, trained on Google News articles.
- File containing vectors (1.5 GB) can be downloaded for free and easily loaded into gensim.

```
from gensim.models import Word2Vec
import gensim.downloader as api
v2w_model = v2w_model = api.load('word2vec-google-news-300')
sample_word2vec_embedding=v2w_model['computer'];
```

FastText

- Limitations of Word2Vec:
 - OOV problem.
 - Words like "meet" and "meeting" are learned independently (no param sharing)
- FastText use character n-gram (word hashing)
 - Basic model can be similar to word2vec model.
 - Words are represented by all char n-grams of length 3 to 6.
 - Represent words based on its n-gram embeddings.
 - short n-grams (n = 4) are good to capture syntactic information
 - longer n-grams (n = 6) are good to capture semantic information

Transformer In General

Encoder-Decoder

Sequence

Sequence

Filters in higher layer can consider longer sequence

Hard to parallel

(CNN can parallel)

Self-Attention

 b^i is obtained based on the whole input sequence.

 b^1 , b^2 , b^3 , b^4 can be parallelly computed.

You can try to replace any thing that has been done by RNN with self-attention.

BERT

Next Sentence Prediction

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

2018

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin,mingweichang,kentonl,kristout}@google.com

Pre-training

Tokenization

Initial Embedding

Contextual Embedding

How?

In the next Lectures

