PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-205496

(43) Date of publication of application: 22.07.1994

(51)Int.Cl.

HO4R 3/12 HO3H 17/06 HO4R 1/40

(21)Application number: 05-001321

(71)Applicant: PIONEER ELECTRON CORP

(22)Date of filing:

07.01.1993

(72)Inventor: YANAGAWA HIROBUMI

CHIYOU SHISEI

(54) SPEAKER EQUIPMENT

(57) Abstract:

PURPOSE: To emit a sound from a speaker with a desired directivity by employing the speaker directivity control technology.

CONSTITUTION: The speaker equipment is provided with plural speaker unit groups 26 arranged at least in a line and digital filter groups 22 respectively connecting to the plural speaker unit groups 26. Plural audio signals are inputted in common to each digital filter and a characteristic of each digital filter is respectively revised with respect to the plural audio signals to allow a correspondent speaker unit to have a desired directivity for the plural audio signals. When 1st and 2nd signals are inputted to digital filters DF1-DFm, the digital filters DF1-DFm apply parallel processing to the two inputted audio signals to allow the speaker unit group 26 to have a desired beam directivity. Thus, a signal is sounded from the speaker with the desired directivity.

LEGAL STATUS

[Date of request for examination]

14.12.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3205625

[Date of registration]

29.06.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-205496

(43)公開日 平成6年(1994)7月22日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
H 0 4 R	3/12	Z	73465H		
H 0 3 H	17/06	Z	70375 J		
H 0 4 R	1/40	3 1 0			

審査請求 未請求 請求項の数3 (全 6 頁)

(21)出願番号	特顯平5-1321	(71)出願人	000005016
			パイオニア株式会社
(22)出願日	平成5年(1993)1月7日		東京都目黒区目黒1丁目4番1号
		(72)発明者	柳川 博文
			東京都大田区大森西 4 丁目15番 5 号 パイ
			オニア株式会社大森工場内
		(72)発明者	張 子青
			東京都大田区大森西4丁目15番5号 パイ
			オニア株式会社大森工場内
		(74)代理人	弁理士 石川 泰男

(54)【発明の名称】 スピーカ装置

(57)【要約】

【目的】 スピーカ装置に係り、特にスピーカ装置の指向性制御技術に関し、スピーカの指向性制御技術を用いて、所望の指向性でスピーカから放音することができるスピーカ装置を提供することを目的とする。

【構成】 少なくとも直線状に配置された複数のスピーカユニットと、複数のスピーカユニットのそれぞれに接続されたデジタルフィルタとを備え、各ディジタルフィルタには、それぞれ、複数のオーディオ信号が共通に入力さりており、複数のオーディオ信号に対して、各ディジタルフィルタの特性をそれぞれ変更することにより、対応するスピーカユニットが、複数のオーディオ信号に対してそれぞれ所望の指向性となるように構成する。

本発明の系!果施例によろスピリ灰置

(A) 説明図

26:スピーカユニット群

SP2 SP3 / SPm SPm

2

【特許請求の範囲】

【請求項1】 少なくとも直線状に配置された複数のス ピーカユニットと、前記複数のスピーカユニットにそれ ぞれ接続されたデジタルフィルタとを備え、

前記各ディジタルフィルタには複数のオーディオ信号が 共通に入力され、該複数のオーディオ信号に対して、前 記各ディジタルフィルタの特性をそれぞれ変更すること により、対応するスピーカユニットが、複数のオーディ オ信号に対してそれぞれ所望の指向性となるようにした ことを特徴とするスピーカ装置。

【請求項2】 少なくとも直線状に配置された複数のス ピーカユニットと、前記複数のスピーカユニットにそれ ぞれ接続されたデジタルフィルタとを備え、

前記各ディジタルフィルタには1つのオーディオ信号が 共通に入力され、該オーディオ信号に対して、前記各デ ィジタルフィルタを、それぞれ異なる2つ以上の特性と なるように変更することにより、対応するスピーカユニ ットが、オーディオ信号に対してそれぞれ異なる2つ以 上の指向性となるようにしたことを特徴とするスピーカ 装置。

【請求項3】 直線状に配置された複数のスピーカユニ ットと、前記複数のスピーカユニットの両端以外のスピ ーカユニットに接続されたデジタルフィルタとを備え、 前記両端以外のディジタルフィルタにはそれぞれオーデ ィオ信号が入力されるとともに、両端のスピーカユニッ トにはオーディオ信号が直接入力され、前記各デジタル フィルタの特性を変更することにより、両端以外のスピ ーカユニットが所望の指向性となるようにしたことを特 徴とするスピーカ装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、スピーカ装置に係り、 特にスピーカ装置の指向性制御技術に関する。

[0002]

【従来の技術】スピーカの性能を評価するための特性の 1つに指向性がある。指向性とは、方向によって音圧の 大きさが相違する性質である。この指向性は、一般に、 広い程良いといったものではなく、そのスピーカの用 途、換言すれば、そのスピーカのサービス範囲によって 求められるパターンが異なる。例えば、オーディオ用の 40 場合は広い指向性を求められる場合が多いし、拡声用の 場合にはハウリグ防止等のために特定の方向のみ放射す るよう狭指向性とすることが求められる。

【0003】一方、スピーカの指向性を決定する要因に は、単一のスピーカユニットの場合、コーン形であるか ホーン形であるか等のスピーカユニット自体の構造や、 コーン形スピーカの場合の振動板のコーンの深さ等があ る。また、複数のスピーカユニットを用いた直線配列型 (いわゆるトーンゾイレ形) のスピーカにより特定の方 向にのみ放射するものである。いずれにしても、スピー 50 号が共通に入力され、該オーディオ信号に対して、前記

カの指向性は当該スピーカユニット自体の物理的構造も しくは配置により決定される。しかし、要求される指向 性を受ける場合が多い。そのため、デジタルフィルタを 用いて指向性パターンを電気的に制御するようにしたス ピーカシステムが開発されている(特開平2-2397 98号公報及び特開平3-197864号)。そして、 図6には、このようなスピーカシステムのブロック回路 が示されている。

【0004】図6において、符号10,12,14はそ 10 れぞれ、デジタルフィルタ群、アンプ群、スヒーカ群を 示す。ディジタルフィルタ群10は、n個のデジタルフ イルタ(例えばFIR (Finite Impulse Response) フ イルタ) 16-1, 16-2, …, 16-nを含み、ア ンプ群12は、n個のアンプ18-1, 18-2, …, 18-nを含み、スピー力群14は、n個のフルレンジ のスピーカユニット20-1, 20-2, …, 20-nを含む。そして、デジタルフィルタ群10内のデジタル フィルタ16-1, 16-2, …, 16-nは、それぞ れ、アンプ群 12内のアンプ 18-1, 18-2, …. 18-nを介してスピーカ群14内のスピーカユニット 20-1, 20-2, …, 20-nに接続されている。 また、デジタルフィルタ群10内のデジタルフィルタ1 6-1, 16-2, …, 16-nには、共通入力端子I Nから共通入力信号が供給される。

【0005】以上の構成において、デジタルフィルタ1 6-1, 16-2, …, 16-nのフィルタ係数を調整 することにより、スピーカユニット20-1.20-2, …, 20-nの指向性が制御され、これにより、ス ピーカ群14全体として最適な指向性が得られるように 30 なっている。

[0006]

【発明が解決しようとする課題】本発明は、上述したス ピーカの指向性制御技術を用いて、所望の指向性でスピ ーカから放音することができるスピーカ装置を提供する ことにある。

[0007]

【課題を解決するための手段】第1の発明は、少なくと も直線状に配置された複数のスピーカユニットと、前記 複数のスピーカユニットにそれぞれ接続されたデジタル フィルタとを備え、前記各ディジタルフィルタには複数 のオーディオ信号が共通に入力され、該複数のオーディ オ信号に対して、前記各ディジタルフィルタの特性をそ れぞれ変更することにより、対応するスピーカユニット が、複数のオーディオ信号に対してそれぞれ所望の指向 性となるように構成される。

【0008】第2の発明は、少なくとも直線状に配置さ れた複数のスピーカユニットと、前記複数のスピーカユ ニットにそれぞれ接続されたデジタルフィルタとを備 え、前記各ディジタルフィルタには1つのオーディオ信

各ディジタルフィルタを、それぞれ異なる2つ以上の特 性となるように変更することにより、対応するスピーカ ユニットが、オーディオ信号に対してそれぞれ異なる2 つ以上の指向性となるように構成される。

【0009】第3の発明は、直線状に配置された複数の スピーカユニットと、前記複数のスピーカユニットの両 端のスピーカユニットに接続されたデジタルフィルタと を備え、前記両端のディジタルフィルタにはそれぞれオ ーディオ信号が入力されるとともに、他のスピーカユニ ットにはオーディオ信号が直接入力され、前記各デジタ ルフィルタの特性を変更することにより、両端のスピー カユニットが所望の指向性となるよう構成される。

[0010]

【作用】第1の発明では、複数のオーディオ信号に対し て、各デジタルフィルタの特性をそれぞれ変更可能と し、対応するスピーカユニットが、複数のオーディオ信 号に対してそれぞれ所望の指向性となるようにしてい

【0011】第2の発明では、1つのオーディオ信号に 対して、各デジタルフィルタが異なる2つ以上の特性を 20 有するように、該各デジタルフィルタの特性をそれぞれ 変更可能とし、対応するスピーカユニットが、1つのオ ーディオ信号に対して所望の異なる2つ以上の指向性と なるようにしている。

【0012】第3の発明では、オーディオ信号に対し て、デジタルフィルタの特性をそれぞれ変更可能とし、 両端のスピーカユニットが、オーディオ信号に対してそ れぞれ所望の指向性となるようにしている。

[0013]

【実施例】次に、図面に基づいて本発明の好適な実施例 を図面に基づいて説明する。なお、以下の各実施例で は、複数のスピーカユニットは、直線状に配置されてい るが(直線状アレイ)、複数のスピーカユニットは、縦 方向及び横方向に平面状に配置されてもよい。

【0014】まず、図1には、本発明の第1実施例によ るスピーカ装置が示され、(A)はその説明図であり、 (B) はそのブロック回路を示す。図1 (B) に示すよ うに、スピーカ装置は、第1信号入力端子IN1及び第 2入力端子 IN2を有しており、この入力端子 IN1及 びIN2は、デジタルフィルタとして機能するデジタル 40 オーディオシグナルプロセッサ (DSAP) DF₁~D F_m 及びこれと直列なアンプ $A_1 \sim A_m$ を介してスピー カユニット $SP_1 \sim SP_m$ に接続されている。以上の構 成において、デジタルフィルタ $\mathrm{DF}_1\sim\mathrm{DF}_{\mathrm{m}}$ 、アンプ $A_1 \sim A_m$ 、 X^{μ} 、 X^{μ} ぞれ、デジタルフィルタ群22、アンプ群24、スピー カユニット群26と称せられる。

【0015】前記デジタルフィルタ群22内の各デジタ ルフィルタDF $_1$ ~DF $_m$ には、コントローラ(CP

号機30を通じてコントローラ28からは、各デジタル フィルタDF₁ ~DF_m にそれぞれ固有のフィルタ係数 データαhiが設定される。フィルタ係数データαhi は、メモリ32二格納されており、入力キーボード34 の支持操作によってメモリ32に格納されたフィルタ係 数データ α h i が順次デジタルフィルタDF $_1$ ~DF $_m$ に設定される。

【0016】前記スピーカユニット $SP_1 \sim SP_m$ は、 一方向に等間隔で直線状に配列されてスピーカアレイを 構成している。なお、スピーカユニットSP₁~SP_m は好ましくは同一物理的特性、例えば、当該スピーカユ ニットの特性を規立する諸元(口径、最底共振周波数、 振動板質量等)の等しいものとする。スピーカユニット の再生周波数範囲、すなわち、ウーファ、スコーカ、ツ イータ、あるいはフルレンジタイプとするか否かは、用 途に合わせて適宜選択してよい。また、図示しないが、 各スピーカユニットを個々にエンクロージァに収納する か、一枚の連続バッフル板あるいは壁等に取付けるか は、当該スピーカ装置の用途によって異なるので、適 宜、必要な構成とすればよい。

【0017】前記デジタルフィルタDF₁~DF_mは、 デジタル信号処理装置(DSP: digital signal proce ssor) により実現され、一般的な直線型FIR (finite impulse response) フィルタで構成される。ハードウ ェア構成は、図示を省略するが、信号処理の中心となる 算術演算や論理演算を行う演算ユニット(ALU: arit hmetic logic unit) と、演算シーケンスを制御するた めのシーケンサ(プログラムカウンタ、命令レジスタ及 びデコーダを含む)と、必要なプログラムを格納するR OM (read only memoty)、データの格納を行うRAM (random access memory) 及びデータの一時的格納を行 うレジストと、外部とのデータの授受を行うための入出 力ポートと、及び上記各要素を接続するバスと、を有し て構成される。

【0018】なお、デジタルフィルタ $DF_1 \sim DF_m$ の 構成(タップ数、乗算器の係数)は同じである。以上の 構成において、第1信号及び第2信号がデジタルフィル $PDF_1 \sim DF_m$ に入力されると、該デジタルフィルタ $DF_1 \sim DF_m$ は、この入力された2つのオーディオ信 号(第1信号及び第2信号)に対して並列処理を行い、 スピーカユニット群26が所望のビーム状の指向性を有 するようにする。すなわち、図1(A)に示されるよう に、スピーカユニット群26からは、第1の信号36及 び第2の信号38が異なる方向にビーム状に放射され

【0019】次に、図2には、本発明の第2実施例によ るスピーカ装置が示されている。図2おいて、スピーカ ユニット群26からのビーム状の指向性は、前記図1の 第1実施例と同様であるが、第1の信号36及び第2の U) 28からの信号機30が接続されいている。この信 50 信号38は、それぞれ、壁40,42で反射させられ、

5

聴取者(リスニングポイント) 44に向かうようになっており、これにより、サラウンドシステムが構成される。

【0020】なお、図2では、第1の信号36及び第2 の信号38をそれぞれ左右の壁40,42で反射させて 左右のサラウンドシステムを構成しているが、反射面と して、前置反射及び後置反射とすることもできる。

【0021】次に、図3には、本発明の第3実施例によるスピーカ装置が示され、(A)はその説明図であり、(B)はそのブロック回路を示し、(C)はDASPの他の入力例を示す。

【0022】図3(B)において、スピーカ装置のブロック回路は、前記図1(B)の第1実施例のブロック回路と同様であるが、次の点が相違する。すなわち、、各デジタルフィルタDF $_1$ ~DF $_m$ には、オーディオ信号としてサラウンド信号 S_L 及び S_R とセンサ信号Cとが入力さりており、デジタルフィルタDF $_1$ ~DF $_m$ は、この入力されたオーディオ信号 S_L , S_R , Cを処理して、図3(A)に示される指向性が得られるようにする。なお、放音された2つのサラウンド信号 S_L , S_R は、それぞれ壁44, 46で反射される。

【0023】なお、図3(B)においては、サラウンド信号 S_L , S_R の他に、サラウンド信号 S_L と S_R とを加算器 48 で加算した信号をセンサ信号として各デジタルフィルタD F_1 ~D F_m に入力してもよい。

【0024】次に、図4には本発明の第4実施例による スピーカ装置が示されている。図4において、スピーカ ユニット群26内では、複数のスピーカユニットSP1 ~SPm が直線状に配列されている。これらの、複数の スピーカユニット $SP_1 \sim SP_m$ のうち両端以外のスピ ーカユニットSP₂及びSP_{m-1}に対してのみ、指向性 制御処理を施した信号を入力する。例えば、スピーカユ ニット SP_1 にL信号 S_L を入力し、且つ、スピーカユ ニット SP_m にR信号 S_R を入力してもよく、あるい は、スピーカユニットSP1 にL信号SL 及びR信号S R を同時に入力し、且つ、スピーカユニット SP_m にL信号 S_L 及びR信号 S_R を同時に入力するようにしても よい。なお、他のスピーカユニット $SP_2 \sim SP_{m-1}$ に は、上記のような指向性制御が行われる。また、スピー カユニットSP₁~SP_{m-1}にはそれぞれ指向性制御し たL信号 S_L ,R信号 S_R を加え、中央の1個または2個のスピーカには指向性制御しないもう1つの信号(例 えば、センターの信号)を加える。

【0025】次に、図5には本発明の第5実施例によるスピーカ装置が示されている。図5において、スピーカユニット群26内の各スピーカユニットS P_1 ~S P_m は、1つのオーディオ信号に対して2種類の指向性を持つように、その指向性が制御されている。すなわち、第1の信号50は、上方への指向性を有し、天井52で反

6

射されて後方の座席54~54にいる聴取者に到達させられるようになっており、一方、第2の信号56は、前方への指向性を有し、前方の座席58~58にいる聴取者に到達させられるようになっている。なお、前記第1の信号50及び第2の信号56は、同一のオーディオ信号であり、前方の座席58~58にいる聴取者及び後方の座席54~54にいる聴取者は、同一のオーディオ信号を聴取することができる。

【0026】なお、本発明において、各デジタルフィルタの乗算器の係数をそれぞれ同じにすると、この係数データを各デジタルフィルタに同時に送ることができるので、指向性を変更でき(データの転送が容易になる)。 更に、デジタルフィルタのフィルタ係数を記憶しているテーブルが1つでよい。

【0027】また、本発明においては、デジタルフィルタは、FIRフィルタで構成されてもよく、あるいは、IIR(Infinite Impulse Response)で構成されるようにしてもよい。

【0028】なお、本発明では、デジタルフィルタのフィルタ係数は、非直線最適化手法(特願平3-197864号)により演算されてもよく、あるいは、本発明は、最適化手法を用いないスピーカ装置(例えば特開平2-239798号公報)にも適用可能である。

[0029]

【発明の効果】以上説明したように、本発明によれば、 スピーカの指向性制御技術を用いることにより、所望の 指向性でスピースから放音することができる。

【図面の簡単な説明】

【図1】本発明の第1実施例によるスピーカ装置を示し、(A)はその説明図であり、(B)はそのブロック回路図である。

【図2】本発明の第2実施例によるスピーカ装置の説明 図である。

【図3】本発明の第3実施例によるスピーカ装置を示し、(A)はその説明図であり、(B)はそのブロック回路図であり、(C)はDASPの他の入力例を示す図である。

【図4】本発明の第4実施例によるスピーカ装置の説明 図である。

【図5】本発明の第5実施例によるスピーカ装置の説明 図である。

【図 6】従来のスピーカ装置のブロック回路図である。 【符号の説明】

22…デジタルフィルタ群

24…アンプ群

26…スピーカユニット群

DF1 ~DFm …デジタルフィルタ

 $A_1 \sim A_m \cdots r \mathcal{V} \mathcal{T}$

SP1 ~SPm …スピーカユニット

【図1】

本発明の第1実施例によろスピカ延置

(A) 説明図

【図4】

本発明の第4実施例にようスピール表置の説明図

【図2】

本発明の第2実施例によるスピーカ授重の説明図

【図3】

本発明の第3実施例によりスピーカ装置

【図5】

本発明の第5実施例によるスピカ級遣の説明図

【図6】

従来のスピーカ長重のブロック回路図

