AMS 572 Data Analysis I Simple Linear Regression

Pei-Fen Kuan

Applied Math and Stats, Stony Brook University

▶ Recall under $H_0: \beta = 0$

$$t = \frac{\hat{\beta}}{\sqrt{s_{y.x}^2 / \sum_i (X_i - \bar{X})^2}} \sim t_{N-2}$$

▶ In general, if $T \sim t_{\nu}$, then $T^2 \sim F_{1,\nu}$. Thus

$$t^2 \sim F_{1,N-2}$$

$$\beta = \frac{\sum_{i=1}^{N \text{ ote}} \overline{Y_i}}{\sum_{i=1}^{N \text{ ote}} \overline{Y_i}}$$

$$SSR = \sum_{\underline{X}} (\hat{Y}_i - \overline{Y})^2 = \sum_{\underline{X}} \hat{\beta}^2 (X_i - \overline{X})^2$$

$$= \frac{(\sum_{\underline{X}} (X_i - \overline{X})(Y_i - \overline{Y}))^2}{\sum_{\underline{X}} (X_i - \overline{X})^2}$$

► Thus

$$t^2 = \frac{SSR}{MSE} = \frac{SSR}{SSE/(N-2)}$$
 $\sim f_{1,N}$

▶ For $H_0: \beta = 0$ vs $H_A: \beta \neq 0$, can use F with

$$C_{\alpha} = \{F: F > F_{1}, N-2}$$
 and .

- \triangleright For two sided alternative F and t tests equivalent
- \triangleright For one sided alternative, use t

► ANOVA table:

Source	$\mathrm{d}\mathrm{f}$	SS	MS	F
Regression	1	SSR	SSR=M3R	MSR/MSE
Residual	N-2	SSE	SSE/(N-2)	
Total	N-1	SST		

Diagnostics

- ► Assumptions for linear regression
 - 1. Linearity: $Y_i = \alpha + \beta X_i + \epsilon_i$
 - 2. X's are fixed constants
 - 3. $\epsilon_i \text{ iid } \sim N(0, \sigma^2)$

Diagnostics

- ► Assumptions: Linear model and homogeneity of variance
- ► Residual plot: Scatterplot of

$$(\hat{Y}_i, r_i) = (\hat{Y}_i, Y_i - \hat{Y}_i)$$

► If we see lack of homogeneity of variance or linearity, consider transformations

Diagnostics

- ► The following three slides are prototypical residual plots indicating
 - 1. linear regression model is appropriate
 - 2. assumption of linearity questionable
 - 3. assumption of constant variance questionable

Normality Diagnostics

- ▶ Assumption: ϵ_i 's are normally distributed
- \triangleright This assumption is not as important if N is large (CLT)
- ▶ Inference robust to small departures from normality
- ▶ Violations of other assumptions can suggest non-normality
- qq-plot, histogram, boxplot of residuals

Regression: Diagnostics

▶ Beware influential observations; always check scatterplot

Remedial Measures

- ▶ Transformations, e.g., $log(Y) = \alpha + \beta X$
- ▶ Multiple regression, e.g., $Y = \alpha + \beta_1 X + \beta_2 X^2$
- ▶ Nonparametric procedures, e.g., Kendall's tau
- ▶ More sophisticated models allowing for
 - ▶ dependencies/clusters (e.g., GEE)
 - ▶ heterogeneity of variance (e.g., weight least squares)

non-constant/hetero scala scrity.