# Presentation-I



LITERATURE REVIEW AND PROPOSED IDEA ON COLLISION VALIDATION

# Papers Covered For Topics

- Numerical simulation of head-on collision of two coaxial vortex rings Cheng, Lou and Lim
  - General Idea of co-axial vortex collision for identical and different vortices and azimuthal instability.
- Head-on collision of two vortex rings Oshima(1978)
  - Experimental Study of  $NH_4Cl$  based smoke vortex ring collisions.
- Head-on collision of viscous vortex rings Stanway, Shariff, Hussain
  - Research on temporal changes in KE and ensthrophy and the iterative solution to the problem.
- A brief introduction to vortex dynamics and turbulence Mofftat
- Head-on collision of two co-axial vortex rings Chu, Wang, Chang, Chang and Chang

#### Review

- Vortex Rings are vortices produced by turbulence from an external source.
- As a single entity, the body shows similar behaviour in ideal(inviscid) and viscous flow.
- However, interactions with other vortex rings and other solid bodies show deviations.
- The vortex rings in general can be described by the governing equation.

$$div(\mathbf{u})=0$$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u}$$

- The vorticity  $\Omega$  and the velocity u, decrease and increase according to the gaussian function which is dependent on core radius and circulation.
- As two (opposite circulation) vortex rings approach each other, they cause mutual induction as a result
  of which axial velocity decreases but radial velocity increases.
- In case of identical vortex rings, the velocity rediction and the radial expansion are similar to both.

## Review(Contd.)

- In case of CR > 1 or CR < 1, the core radii will be different leading to different rates of velocity reduction and expansion rates.
- In this case, in close proximity, the induced velocity of thicker ring will be more than that of the thinner ring and will cause easy slip-over of thicker ring on thinner ring.
- With increase in CR, there is a decrease in KE and vorticity dissipation but increases ensthrophy.
- Increase in Re causes increase in vorticity intensity and ensthrophy.
- If the ring release velocity is very high and the Re is also along the higher line, the ring develops a wavy nature.
- When 2 vortex rings of this type interact there is a formation of vortex ringlet and loops.
- Depending on the value of CR, the ringlets form have different angles from the plane of collision.
- The temporal trends in KE, Ensthrophy are same as before.

# Proposition

 Determining the effect of vorticity and azimuthal wave number on ringlet size and angle of deviation

### Implementation Methodology

- Changing exit velocity through orifice to change wave number and evaluate changes in ringlet dimension.
- We know, higher CR means a higher angle of deviation from the plane of collision. We can fix CR and modulate the circulation values to bring changes.

#### Presentation - II

**Vortex Ring Formations** 

#### Papers Covered

- VORTEX RINGS EXPERIMENTS AND NUMERICAL SIMULATIONS -Damian , Talasce, Simonesque Mihailescue
  - Analysing a single vortex ring after formation.
- Circulation Generation- Rosenfield
  - Process of creating vortex rings from circular nozzles
- Vortex Ring Time Scale Karim, Rambod and Shariff

#### Ansys Simulations Update

- Have tried analysing transient fluid flow through a nozzle alone.
- Yet to setup the container system for the nozzle in 3D to make the formation of vortex.
- Learning UDF for making variable input parameters for changing vortex size and circulation.



Single Nozzle Flow(Trial)

#### Presentation-III

Formation of vortex rings and starting collisions



#### Papers Reviews (Vortex Formation)

- The Ring Vortex: Concepts for a Novel Complex Flow Phantom for Medical Imaging Ferrari, Ambrogio,
   Walker and more
  - a) Governing Equations on Vortex Ring
  - b) Method For creating Vortex Rings in ANSYS
  - c) Velocity UDF set up
- Numerical Simulations of 3D Compressible Vortex Ring— Dora and more
  - a) General Dimensions of apparatus
  - b) Difference between density dependent and independent vortex rings
- Circulation Generation and Vortex Ring Formation by Conic Nozzles Rosenfield, Katija, and Dabiri
  - a) ANSYS Setup for Vortex ring formation
  - b) Dependence of nozzle length and exit diameter on ring characteristics.

#### Papers Reviews (Vortex Formation)

- Direct numerical simulation of a laminar vortex ring James, Madnia
  - a) Numerical Techniques on the formation of vortex rings
  - b) Whether to choose nozzle or orifice.
- Simulations of the formation of an axisymmetric vortex ring— Heeg and Riley
  - a) General Dimensions of apparatus
  - b) Difference between density dependent and independent vortex rings
- Vortex Dynamics PG Saffman
  - a) General Equations of Vortices
  - b) Relation between modulating terms and ring characteristics

#### Review

- Formation of vortex rings is directly possible through orifices and nozzles.
- Vortex rings are analytically classified into 3 types Hill, Thick and Thin
- In case of nozzles the following points must be kept in mind:
- Two sections:
  - 1.A straight tube of length Ls= 40 cm and a constant diameter of Dp=2.5 cm
  - 2.A conic nozzle of length Ln=5.1 cm dimensions are chosen to match the experimental setup and exit diameter De of De /Dp=0.2, 0.4, 0.6, 0.8, or 1. The computational domain downstream of the nozzle exit has a length of L/Dp=32, and the outer boundary is at a radial distance of H/Dp=4.
  - 3.An orifice is a limiting case of a nozzle when De/Dp=1 and L=0
- The circulation of a vortex ring is directly dependent on the De/Dp ratio.
- On the similar lines, for a given circulation and impulse, the kinetic energy is inversely dependent on the diameter ratio as mentioned above.
- Decreasing the length increases the 2-dimensional component of the ring, thus increasing circulation.



Fig. 1 Sketch of the domain of computation

$$\Gamma^{**} = \frac{t^{**}}{2} + \frac{1}{\tilde{U}D_e} \int_0^t \int_0^{D_e/2} u \frac{\partial v}{\partial x} dr d\tau$$

# Comparison

| .99 | 4.2 | 0.18     |
|-----|-----|----------|
| 79  | 3.8 | 0.22     |
| .83 | 3.7 | 0.24     |
|     | .79 | 2.79 3.8 |

# Design Used





## Model



#### UDF Used

```
U = U_0 \cos(wt) for t \le T */4
U = 0 (zero velocity) for t > T */4
```

```
#include "udf.h"
#define PI 3.1415
DEFINE PROFILE (velocity pulse, thread, position)
   face t f;
   real velocity;
   real tme current;
   real ang frq=6.283;
   begin f loop(f,thread)
       tme_current=RP_Get_Real ("flow-time");;
       if((tme_current>=0) && (tme_current<0.25)){</pre>
               velocity=10.*cos(ang frq*tme current);
        }else if((tme_current>=0.25)){
               velocity=0;
       F PROFILE(f,thread,position)=velocity;
end f loop(f,thread)
```

Ln 1, Col 1

100% Unix (LF)

UTF-8

#### Modified UDF for Explicit Slug Formation

```
begin_f_loop(f,thread)
{
    F_CENTROID(x, f, thread);
    NV_VV(x,=,x,-,orig);
    r = NV_MAG(x);
    tme_current=RP_Get_Real ("flow-time");
    if((tme_current>=0) && (tme_current<0.02)){
        velocity=0.5*(1-exp((-5)*(1-r)))*cos(tme_current*157.079);
    }else{
        velocity=0;
    }
    F_PROFILE(f,thread,position)=velocity;
}</pre>
```

This UDF considers an exponential decrease in the initial velocity amplitude at the starting point.

#### Current Simulations





#### Current Simulations







## Collission Papers Covered

- Numerical simulation of head-on collision of two coaxial vortex rings Cheng,
   Lou
- Head-on Collision of laminar vortex rings Stanway Shariff



# External Points Seen

- Optimum density fluids have to used for easier visualization of the collision and for maintaining the strength of the ring.
- Collision should take place at points further away from the exit, especially in case of an orifice.
- Identical coaxial rings will be formed by same exit diameter and length.
- Coaxial rings with different core radii can be formed by changing between orifice and nozzle. However, length should be kept constant to account for the same 2dimensional component.

# Collision Update





# Presentation-IV

Vortex ring collision validation



## Clarity of Ring



### Clarity and Stability





#### Oshima Trials



```
begin_f_loop(f,thread)
        F_CENTROID(x, f, thread);
        NV_VV(x,=,x,-,orig);
        r = NV_MAG(x);
        tme_current=RP_Get_Real ("flow-time");
        if((tme_current>=0) && (tme_current<0.08)){</pre>
                velocity=5.0334*(1-exp((-5)*(1-r)))*sin(tme_current*39.2699);
        }else if((tme_current>=0.08)){
                velocity=0;
       F PROFILE(f,thread,position)=velocity;
end_f_loop(f,thread)
```

# Validation (Net Velocity Distribution with radius)













#### Collission (Papers Covered)

- Interaction of Two Vortex Rings moving Along common axis of symmetry Oshima, Kambe, Asaka
  - Numerical Approach to collision
  - Provided slug model for the collision process

$$U_i(r) = U_{im} \frac{1 - e^{-\gamma(1-r)}}{1 - e^{-\gamma}} \sin \frac{t}{T} \pi$$
,

- In this experiment, 1 D collision was created between 2 rings moving in same direction.
- Numerical Simulations of Two Coaxial Vortex Rings Head-on Collision Guan , Wei and more

# System Used







# Measurement Points

## Vorticity Plots









#### Simulations Based on Cheng Papers







PRESENTATION V

Moving Planes and MATLAB

# 0.250 0.500 (m)

# DYNAMIC CONTOURS

- Set up an expression to move the plane to the position of the maximum vorticity.
- True value of radius can be measured by this.
- Set up a point at Maximum Vorticity,
   Probed coordinates at that point to set up
   the plane and then moved the plane
   along the X direction.



### PLOTTING RADIUS

 Files at 15 timesteps were taken and exported to MATLAB.

```
[Num, Txt, Raw] = xlsread("D:\savar\Documents\Intern Material\IITK Vortex Colissions\Si
 x=Num(:,3);
  y=Num(:,4);
  z=Num(:,5);
  F = TriScatteredInterp(x,y,z)
  [qx \ qy] = meshgrid(min(x)-0.1:0.01:max(x)+0.1,min(y)-0.1:0.01:max(y)+0.1)
  qz = F(qx,qy);
  contour (qx,qy,qz)
  ma=0;
 mi=max(y);
 \exists for i=1:size(x) 
      if (y(i)>ma) \&\& (z(i)>=0.25*std(z)+mean(z))
          ma=y(i);
      else if (y(i) < mi) \&\& (z(i) >= 0.25*std(z) + mean(z))
              mi=y(i);
          end
      end
  end
  [p,q]=ginput(2);
  r=q(2)-q(1);
```









### CIRCULATION RATIOS

Polyline was created at average points of the ring.

Line integral of tangential velocity was taken along the polyline.

Plot was made directly in CFD-Post as polyline couldn't be exported to MATLAB.













# LIM NICKELS MODEL

\_\_\_\_



### Presentation - VI

Instability Model, Looping and Slow Trials

# Instability Trials



### Azimuthal Instability

- Happens at higher Reynolds number
- Current analysis performed at 2000 Reynolds number.
- Apparatus same as earlier.
- The only exception is that the speed was increased tremendously to 15 m/s to provide N=15.



# Radius Growth in Instability Case









Diameter vs Time (High Velocity)

Diameter vs Time (Low Velocity)

### Visualisation

- Isosurfaces were made **Average + 20% Std. Deviation** in order to maintain visibility.
- As soon as collision started, the sine wave perturbation was seen and the looping mentioned was observed.



### Perturbation based linking



Local
Looping for
shorter ring
formation



## Secondary Collissions



• There is a secondary collision which occurs slightly concentric regions of high vorticity to the major collision.



