Нейросетевая реконструкция пористых тел с сохранением топологических и статистических свойств образца

Будакян Я. С.

Научный руководитель: к.т.н., доцент Грачев Е. А.

27 мая 2019 г.

Проблема исследований кернов

С решением задачи правдоподобного реконструирования пористых сред, появляется возможность:

- Провести апскейлинг (реконструировать среду в большем размере, чем оригинальный образец);
- Проводить статистические эксперименты (проводить моделирование процессов не только на оригинальном образце, но и на его реконструкциях, получая таким образом не значение в одной точке, а распределение);

Задачи

- Разработать алгоритм реконструкции трехмерных пористых сред на основе образца, с сохранением следующих его топологических и статистических характеристик:
 - 4 первых функционала Минковского:
 - Объем
 - Площадь поверхности
 - Средняя кривизна
 - Характеристика Эйлера-Пуанкаре
 - Двухточечная корреляционная функция
- Верифицировать алгоритм на большом количестве реконструированных образцов

Функционалы Минковского

Функционалы Минковского для трехмерных тел вводятся следующим образом:

•
$$V = M_0 = \int_{SY} dV$$

•
$$S=M_1=\frac{1}{3}\int_{\delta X}dS$$

•
$$B = M_2 = \frac{1}{6} \int_{SV} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) dS$$

•
$$\xi = M_3 = \frac{1}{3} \int_{\delta X} \frac{1}{R_1 R_2} dS$$

Метод решения

Для реконструкции применяется генеративная состязательная нейронная сеть

Ее обучение сводится к минимизации функционала:

$$\min_{ heta} \max_{\zeta} \, \mathbb{E}_{x \sim p_{data}} \log D_{\zeta}(x) + \mathbb{E}_{z \sim p_{z}} \log (1 - D_{\zeta}(\textit{G}_{ heta}(z)))$$

Новизна

- Конкретные архитектуры сетей генератора и дискриминатора взяты неизмененными из других работ похожей тематики;
- Новизна заключается в модифицированной адаптируемой процедуре обучения нейронной сети с автоматическим отслеживанием значений функционалов Минковского и изменением гиперпараметров в процессе обучения;

На данный момент:

- Разработка алгоритмической части завершена (реализован программный комплекс, позволяющий обучать нужны сети и использовать их для реконструкции образцов);
- Проведен ряд вычислительных экспериментов по обучению сетей на томографии песчаника:
- Анализ в процессе (анализ функционалов Минковского готов, двухточечная корреляционная функция пока нет);
- Текст готов примерно на треть;

Ещё нужно сделать:

- Провести дополнительные вычислительные эксперименты;
- Провести более широкомасштабный анализ функционалов Минковского реконструированных образцов;
- Провести статистический анализ (построить и сравнить двухточечные корреляционные функции);

 Рис.: Образец
 Рис.: 1
 Рис.: 2
 Рис.: 3

Примеры реконструкции одной из обученных сетей

Анализ значений функционалов Минковского (V, S) для реконструированных образцов

Анализ значений функционалов Минковского (B, ξ) для реконструированных образцов

Lukas Mosser, Olivier Dubrule, Martin J. Blunt: "Reconstruction of three-dimensional porous media using generative adversarial neural networks" // arXiv: 1704.03225 [cs.CV], 2017.