+

Clasificación de Productos de Supermercado con Redes Neuronales

+

• El objetivo principal del proyecto es:

Automatizar el registro de productos en un supermercado utilizando cámaras y sensores, reduciendo el tiempo necesario para registrar productos manualmente y minimizando errores.

Se logró desarrollar un modelo robusto con un desempeño de 97% de precisión en prueba, utilizando el dataset Grocery Store Dataset.

Las imágenes de entrada:

Se usaron solo 6 clases . . .

 Dados los recursos computacionales, se eligieron las 6 clases más representativas:

```
Coarse Class str
Apple 278
Juice 247
Milk 182
Yoghurt 181
Melon 154
Tomato 127
Name: count, dtype: int64
```

Histogramas de color

Resultados

Matriz de confusión

Insights

- Las manzanas son las objetos que mejor se clasifican según el modelo.
- Punto de equilibrio (ROI): 0.26 meses (~8 días).
- Ahorro mensual estimado: 1,728,000 COP.

34/34 — **21s** 616ms/step

Accuracy: 0.97

Macro Precision: 0.97
Macro Recall: 0.97
Macro F1-Score: 0.97
Micro Precision: 0.97
Micro Recall: 0.97
Micro F1-Score: 0.97

Reporte de clasificación:

	precision	recall	f1-score	support
0	0.98	0.99	0.98	276
1	1.00	0.95	0.98	153
2	0.98	0.95	0.96	219
3	0.94	0.93	0.93	164
4	0.93	0.98	0.95	172
5	0.98	1.00	0.99	100
accuracy			0.97	1084
macro avg	0.97	0.97	0.97	1084