

A Practical Guide to Statistical Shape Models Featuring Hands-on Examples in CONRAD

Anna Gebhard, Tobias Geimer, Mathias Unberath, Frank Schebesch, Mena Abdelmalek, Andreas Maier

Outline

- I. Theory
 - Why Statistical Shape Models (SSM)?
 - 2. Data Representation
 - 3. Model Creation Pipeline
 - a) Alignment and Scaling
 - b) Computation of a Mean Shape
 - c) Extraction of Variation
 - 4. Principal Component Analysis (PCA)
 - 5. PCA Using Singular Value Decomposition
 - 6. Trained SSM & Functionality
- II. Practice: Tutorial Code
- III. Limitations of SSMs

Why SSMs?

Statistical Shape Models (SSMs) can express a range of expected, evidence-based **variation** on top of a **mean shape** derived from a cohort or population.

Figure 1: Training set of cardiac model variations

Why SSMs?

Mean Shape:

Knowledge about the general shape

Variation:

Knowledge about how much the shape can differ between subjects

This can be used in different applications of SSMs:

- Classification
- Segmentation
- Phantom generation

Applications of SSMs

Classification:

Use the variation to differentiate between classes

Segmentation:

Use prior knowledge about the shape to segment images

Figure 2: Two variation clusters

Figure 3: Segmented lung contour in a CT slice

Applications of SSMs

Phantom Creation:

Use shape extrapolation to create realistic representations within given variation

Figure 4: Different heart shapes¹

¹ M. Unberath et al. (2015-July), "Open-source 4D statistical shape model of the heart for x-ray projection imaging", Proc ISBI 2017, pp. 739–742

Data Representation

Point Cloud

Set of K 3-D points ...with connectivity $\boldsymbol{p}_i \in \mathbb{R}^3$, $i \in \{1, \dots, K\}$

Mesh

information (edges)

- **B-splines**
- **NURBS**
- Segmented volumetric images

Point correspondence or ways to establish it are crucial.2

² A. Sinha et al. (2017-February), "Simultaneous segmentation and correspondence improvement using statistical modes", Med Imag: Imag Proc, vol. 10133, p. 101331B

Model Creation Pipeline

To create a statistical shape model, representative **training data** of shapes within a given **population** is needed. This data is used in the following pipeline:

Training Set Preparation

Model Construction

Alignment and Scaling

Any variation that is not supposed to be modeled needs to be removed prior to model construction.

Alignment and Scaling

What does the variation include?

Only actual differences between the shapes.

Remove rotation, translation and scaling from the training data!

A Practical Guide to Statistical Shape Models Featuring Hands-on Examples in CONRAD | MICCAI 2018: Educational Challenge

Computation of a Mean Shape

Generalized Procrustes Analysis (GPA)³ is used to iteratively determine a mean shape to which all shapes in the training set have minimal distance (includes alignment and scaling).

³ J. C. Gower et al. (1975), "Generalized Procrustes Analysis", Psychometrika, vol. 40, pp. 33–51

Extraction of Variation

Principal Component Analysis (PCA)

Eigenvectors of the covariance matrix of the training data

The idea of **Principal Component Analysis (PCA)** is to extract the principal modes of variation by computing the eigenvectors of the covariance matrix.

Principal Component Analysis (PCA)

Training data matrix

$$Y = (x_1, x_2, \dots, x_N) \in \mathbb{R}^{3K \times N}$$

with zerocentered samples

$$\mathbf{x}_{i} \in \mathbb{R}^{3K}$$

Covariance matrix

$$\boldsymbol{C} = \frac{1}{N-1} \boldsymbol{Y} \boldsymbol{Y}^T \in \mathbb{R}^{3K \times 3K}$$

Principal Component Analysis (PCA)

Eigenequation

$$\boldsymbol{C}\Phi_{\mathbf{j}}=\lambda_{\mathbf{j}}\Phi_{\mathbf{j}}$$

The **eigenvectors** Φ_j corresponding to the **eigenvalues** λ_j of the covariation matrix C represent the directions of variation present in the data. To get the **principal modes of variation** of the statistical shape model, the first M eigenvectors are chosen.

What is M?

Principal Component Analysis (PCA)

Cumulative variance

$$var(M) = \frac{\sum_{j=1}^{M} \lambda_j}{\sum_{k=1}^{3K} \lambda_k}$$

The **number of components** M is determined by the **cumulative variance** exceeding a certain threshold, e.g. 90 %. This means that **90** % **of the variation** in the training data can be explained by the first M eigenvectors.

(Truncated)
basis of
eigenvectors

$$\mathbf{\Phi} = [\Phi_1, ..., \Phi_M] \in \mathbb{R}^{3K \times M}$$

PCA Using Singular Value Decomposition

Diagonalized covariance matrix

$$C = ULU^T$$

The covariance matrix is symmetric and can be diagonalized with $U \in \mathbb{R}^{3K \times 3K}$, a matrix of eigenvectors, and $L \in \mathbb{R}^{3K \times 3K}$, a diagonal matrix of the eigenvalues in decreasing order.

SVD of the data matrix Y

$$Y = USV^T$$

 $U \in \mathbb{R}^{3K \times 3K}$ and $V \in \mathbb{R}^{N \times N}$ are unitary matrices and $S \in \mathbb{R}^{3K \times N}$ contains the singular values on the diagonal.

PCA Using Singular Value Decomposition

$$C = \frac{1}{N-1} (USV^{T})(USV^{T})^{T}$$

$$= \frac{1}{N-1} USV^{T}VSU^{T}$$

$$= U \frac{S^{2}}{N-1} U^{T}$$

This shows that the singular values of the data matrix are related to the eigenvalues of the covariance matrix via $\lambda_i = \frac{s_i^2}{N-1}$.

Trained SSM

$$\mathbf{x}_i = \overline{\mathbf{x}} + \mathbf{\Phi} \mathbf{w}_i + \boldsymbol{\epsilon}$$

 $\mathbf{w}_i \in \mathbb{R}^M, \epsilon \in \mathbb{R}^{3K}$

Shapes can be expressed as a linear combination of eigenvectors given the **feature weights** w_i .

 ϵ is the **residual error** due to variance not explained by the model.

SSM: Functionality

reconstructShape (weights w)

reduceDim (shape x)

Reconstruct a shape x(w) from the model, given a set of feature weights $w \in \mathbb{R}^M$:

$$\chi(w) = \overline{\chi} + \Phi w$$

A corresponding, scaled and aligned shape $x \in \mathbb{R}^{3K}$ can be projected onto the model basis directly to obtain low-dimensional feature representation:

$$w_x = \Phi^{\mathrm{T}}(x - \overline{x})$$

SSM: Functionality

fitModel (shape y)

A scaled and aligned shape $y \in \mathbb{R}^{3L \times 1}$ of different size without known point correspondence requires fitting by iteratively optimizing:

$$\min_{w} ||f(y,x(w)) - x(w)||^2$$

with

- $x(w) = \overline{x} + \Phi w$,
- and f(y, x) being a matching operator (e.g. k-d tree) which yields a corresponding point in point cloud y to each point in x.

Weight Restriction

Weights are usually restricted to only allow "reasonable" shapes to be constructed.

Assuming the data follows a normal distribution^{*}, feature weights w_j are bounded within a certain range of the standard deviation $\sqrt{\lambda_j}$.

$$-3\sqrt{\lambda_j} \le w_j \le 3\sqrt{\lambda_j},$$

$$j \in \{1, \dots, M\}$$

Figure 5: Gaussian bell curve with multiples of the standard deviation

^{*}This, again, illustrates the need for many training data sets.

Main Modes of the Cardiac Model

Figure 6: Shape 1

Figure 7: Shape 2

The tutorial code uses shape 1 and shape 2 to create a simple **Statistical Shape Model**. **

^{**} In reality, much larger data sets are needed for training.

First, **GPA** is used to create the **mean shape** (**consenus**):

```
GPA gpa = new GPA(2);

gpa.addElement(0, shape1);

gpa.addElement(1, shape2);

gpa.runGPA();

SimpleMatrix consensus = gpa.getScaledAndShiftedConsensus();
```


Figure 8: Mean shape

Then the **PCA** is run on the data matrix:

```
DataMatrix datam = new DataMatrix(gpa);
PCA pca = new PCA(datam);
pca.run();
```

And the **statistical shape model** is created:

ActiveShapeModel asm = **new** ActiveShapeModel(pca);

Now, different weights can be used to create new shapes:

```
double[] weights = {1, 0};
Mesh mesh1 = asm.getModel(weights);
SimpleMatrix shape3 = mesh1.getPoints();
```


Figure 9: (1, 0)

Figure 10: (0, 200)

Figure 11: (0, 0)

Limitations of SSMs

It requires a large population of representative training samples.

- Point correspondences need to be established...
 - ...during preprocessing between samples in the training set.
 - ...during model fit between mean shape and the new shape.
- Many similarities to point set registration

Model fit requires initial guess and is susceptible to misalignments.

References and Further Readings

- M. Unberath et al. (2015-July), "Open-Source 4D Statistical Shape Model of the Heart for X-ray Projection Imaging", Proc. ISBI 2015, pp. 739–742
- T. Cootes (2000), "An Introduction to Active Shape Models", in Model-based Methods in Analysis of Biomedical Images (Oxford Univ Press) Chap. 7, pp. 223–248
- T. Heimann, H. Meinzer (2009), "Statistical Shape Models for 3D Medical Image Segmentation: A Review", Medical Image Analysis, vol.13, pp. 543–563
- J. C. Gower et al. (1975), "Generalized Procrustes Analysis", Psychometrika, vol. 40, pp. 33–51
- A. Sinha et al. (2017-February), "Simultaneous segmentation and correspondence improvement using statistical modes", in Medical Imaging: Image Processing, vol. 10133, p. 101331B