# TAD: Python y CUDA en Computación de Altas Prestaciones

Alejandro Samarín Lionel Aster Mena García Sergio Armas Pérez

#### Introducción

- Una GPU es un procesador especializado diseñado para el tratamiento gráfico.
- Se puede utilizar para manipular datos de aplicaciones ajenas al procesamiento gráfico (GPGPU).
- Podemos encontrar GPU en tarjetas gráficas, placas base e, incluso, integradas en algunas CPU.

#### Introducción

- CUDA (Compute Unified Device Architecture) es una estructura de computación paralela.
- El lenguaje que se emplea una variación de C.
- Diversos programadores, ajenos a NVIDIA, han creado wrappers para CUDA en Java, Perl...

#### Introducción

- PyCUDA es un wrapper de Python para CUDA desarrollado por Andreas Klöckner.
- Python es un lenguaje interpretado de muy alto nivel cuyo uso está en auge.
- La librería SciPy provee interesantes funciones.

#### Modelo CUDA

- Escalabilidad del paralelismo, basado en tres puntos claves:
  - Jerarquía de hilos.
  - Memoria compartida.
  - Sincronización por barrera.



## Modelo CUDA: Hilos

- Los hilos están contenidos en *Bloques*, y los bloques dentro de *Grids*.
- Identificador de hilo *threadIdx*.
- Identificador de bloque blockIdx.



### Modelo CUDA: Memoria

- Cada hilo posee su memoria local privada.
- Cada bloque de hilos posee su memoria compartida.
- Todos los hilos pueden acceder a la memoria global.
- Adicionalmente existen 2 tipos de memorias de solo lectura y acceso global: memoria de texturas y memoria constante.



#### Modelo CUDA

- Kernels: ejecutado por hilos en paralelo.
- Sincronización por Barrera.
- Estructura Host-Device:
  - Hilos CUDA se ejecutan en device.
  - Resto del programa en el host.
  - Espacios de memoria propios.
  - Transferencia de datos host-device.

# Modelo CUDA: Ventajas

- Incrementar el número de núcleos computacionales.
- Provee de granularidad fina en el paralelismo de los datos y los hilos.
- Extiende el lenguaje con un conjunto reducido de instrucciones.

# Recursos Hardware

|                                     | NVIDIA Tesla C2050 | NVIDIA Tesla C1060 |
|-------------------------------------|--------------------|--------------------|
| Capacidad de cómputo                | 2.0                | 1.3                |
| Numero de Multiprocesadores/núcleos | 14 (32 núcleos)    | 30 (8 núcleos)     |
| Total de Núcleos                    | 448                | 240                |
| Memoria Global                      | 2.62Gb             | 4Gb                |
| Memoria Compartida/bloque           | 48Kb               | 16Kb               |
| Máximo hilos/bloque                 | 1024               | 512                |
| Dimensión Max. bloque               | 1024 x 1024 x 64   | 512 x 512 x 64     |
| Dimensión Max. grid                 | 65535 x 65535 x 1  | 65535 x 65535 x 1  |

# «Hola mundo» en PyCUDA

• Inclusión de las librerías necesarias.

```
import pycuda.autoinit
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
```

Carga de los datos en la memoria.

```
import numpy
a = numpy.random.randn(4,4).astype(numpy.float32)
```

Reserva de espacio en el dispositivo.

```
a_gpu = cuda.mem_alloc(a.nbytes)
```

# «Hola mundo» en PyCUDA

• Transferencia de datos al device.

```
cuda.memcpy htod(a gpu, a)
```

• Ejecución del kernel.

```
func = mod.get_function("kernel_name")
func(a_gpu, block=(4,4,1))
```

Transferencia al host.

```
a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
```

### CPU vs GPU



### Software Framework



- Dados 2 frames del video, aplicar filtros consecutivamente:
  - Conversión a escala de grises
  - Filtro de Diferencia
  - Filtro Threshold
  - Filtro Erosion
  - Fusión en el canal R

Conversión a escala de grises

• Filtro de Diferencia





Filtro Threshold

• Filtro de Erosión





• Fusión en el canal R de la imagen original



# Jerarquía de Clases



# Resultado

#### Frames consecutivos de un vídeo





# Resultado



## Resultado

#### Detección de movimiento



# Preguntas



# Gracias por su atención