Can we conduct CRISPR tiling deletion screens in silico?

Gloria Grama, McVicker Lab August 7th, 2024

Watch talk here: https://watch.salk.edu/media/t/1 u5yxkpgm/350492942

A little about me

Hometown: Phoenix, AZ

Undergraduate Education: Computational Biology student at Arizona State University

Salk Position: SURF intern in McVicker Lab

Research: Identifying genetic sequences and variants associated with changes in gene expression

What is CRISPR?

CRISPR is a powerful and precise tool for genetic editing

What is a CRISPR tiling screen?

- Systematic deletions of small overlapping segments
- Deletions are measured against their effect on gene expression

Previous CRISPR deletion tiling experiment

- CRISPR tiling on GATA3 in Jurkat T cells has identified functional sequences (Chen et. al 2023)
- Only some parts of the genome play a role in how genes are expressed

Problem

- It's impractical to perform CRISPR tiling screens on ~30,000 protein coding genes in the genome
- Effects differ across different cell types
- Experiments are costly (time and money)

Hypothesis:

We can iteratively tile through a sequence in silico and measure functional sequences using deep learning predictions.

in silico = experimentation conducted within a computer

What can we use machine learning for?

Deep learning models are being used to predict gene expression (they're pretty good at it too)

CAGE-seq track predicts gene expression

CAGE-seq track predicts gene expression

Recreating CRISPR tiling screen in silico

Iteratively replace sequence with N's in 128bp bins

baseline:

AATGCCCTGACTGACGTAC ... GATCAGTTTAGCCAAAAA

iteration 1:

NNNNNNNNNNNNNNNN ... GATCAGTTTAGCCAAAAA

iteration 3072:

Recreating CRISPR tiling screen in silico

- Input iterations into Enformer and output the predicted CAGE-seq expression at the TSS
- Compute change in expression (Δ) from baseline TSS

Can in silico mutagenesis validate CRISPR tiling functional sequences?

Can in silico mutagenesis validate CRISPR tiling functional sequences?

- Generate a background distribution
- This is what we would expect to see given noise of data

Hypothesis testing

Null: Background and functional sequences have equal effects on gene expression **Alternative:** Background and functional sequences have significantly different effects on gene expression

- Paired t-test
- p value = 0.00556

Are there uncharacterized functional sequences?

Jittered data

Variation in context quantifies uncertainty in model's predictions

Computing significance of peaks

Null = 0

Computing significance of peaks

False discovery rate

- Conducting multiple hypothesis tests increases the likelihood of false positives
- FDR accounts for the number of significant values we would expect to see

False discovery rate

Did we recreate the CRISPR tiling experiment?

 7-fold enrichment in determining functional sequences under in silico conditions vs.
CRISPR tiling conditions

p-value =
$$1.9 \times 10^{-21}$$

Recreated 32% of true positives at an FDR cutoff of 0.05

Intersection of sensitivity and specificity

• 5-fold enrichment at $\alpha = 0.3$

p-value =
$$7.7 \times 10^{-24}$$

Future work

- Experimentally validate computationally determined functional sequences using CRISPR tiling
- Incorporate other prediction tracks for a more nuanced analysis of gene expression
- Incorporate smaller tiling bins and increase resolution of significant regions to eventually get single base pair measurements

Acknowledgments

McVicker Lab

- Graham McVicker (PI, PhD)
- Brad Balderson (PhD)
- Jeff Jaureguy
- Shanna Lavalle (PhD)
- Mickey Lorenzini
- Elise Marvin
- Ariana Fonseca
- Aaron Ho
- Chris Duroiu
- Han Chen
- Kiki Spaulding

SURF Coordinators

- Sophie Bales
- Monica Miller

Extra slides

CAGE-seq

In vitro identification of a gene's transcription start site (TSS)

- 1. Isolate mRNA (transcribed sequence)
- 2. Biochemically modify the 5' cap (site of protein synthesis initiation)
- 3. Modified RNA is reverse transcribed \rightarrow cDNA
- 4. Sequence is aligned to reference genome

Hypothesis testing

Null: Background and functional sequences excluding TSS will have equal effects on gene expression **Alternative:** Background and functional sequences excluding TSS will have significantly different effects on gene expression

- Paired t-test
- p value = $3.49 e^{-7}$

