Problems for Lecture 1

Name: Xin Chen

Student Number: A0151856Y

problem 1.

(a) Statement char $*s[4] = {"this", "that", "we", "!"};$ declares a pointer array each of which is pointing to the beginning of a string. In this case, s is also a pointer pointing to the beginning of array s[4]. Then s[2][1] means *(*(s+2)+1), which gives the value 'e'. similarly, s[0][0] is 't' and s[0][4] is '\0'.

(b) As said in (a), s is a pointer to pointer, so we can declare a function like void myfunc(char **s), and use myfunc(s) to call the function.

If the array is declared as char t[4][5], it can be passed to a function like void myfunc(char t[4][5]) by calling myfunc(s).

problem 2.

1/3: The science notation of 1/3 in binary system is:

0.01010...

If we code this as

0 01111111 01010101010101010101010,

because now 0<e<255, the computer will retrieve the float by $(1+f) \times 2^{e-127}$. It's wrong because the "1+f".

So we need to rewrite 1/3 as

$$1.01010... \times 2^{-2}$$

then the exponent is now -2 + 127 = 125. So finally, the answer is

0 01111101 01010101010101010101010

(b) machine epsilon 2^{-23} .

smallest positive number: $1 \times 2^{-23} \times 2^{-126} = 2^{-149}$ (form 1) or $(1+0) \times 2^{-126}$ (form 2).

Because e=255 is for special cases, so the e for largest positive number is e=254, then the real exponent is 254-127=127.

So the largest positive number can be calculated by

$$(1+2^{-1}+\cdots+2^{-23})\times 2^{127}=(2-2^{-23})\times 2^{127}$$

problem 3.

Substitute $F_n = Ar^n$ to the recursion formula, then it's easy to find

$$r^2 + r - 1 = 0$$

.

The solution is $r = \frac{-1 \pm \sqrt{5}}{2}$. So the general solution is

$$F_n = A \left(\frac{-1 \pm \sqrt{5}}{2} \right)^n$$

.

For the golden-mean case, $r=\frac{-1+\sqrt{5}}{2}$ and A=1. Because r<1, the Φ_n will go to 0 when increasing n and two adjacent number will be closer and closer. This just leads the instability of computation, which is clearly shown in the following figure.

(32-bit-float numbers are used in this plot.)