Visualizing Landslide Risk Zones in Idukki Using QGIS

Agenda

Topics Covered

- 1 Introduction
- Data and Preprocessing
- Slope Analysis in QGIS
- 4 Visual Output
- Interpretation & Observation
- 6 Conclusion & Future work

INTRODUCTION

- Objective: Identify and visualize potential landslide-prone zones in Idukki district, Kerala using slope analysiS
- Tools Used:
 - QGIS (Open-source GIS software)
 - SRTM DEM (Digital Elevation Model)
- Why Idukki?
 - One of Kerala's most landslide-vulnerable regions due to steep terrain and high rainfall

DATA SOURCES & PREPROCESSING

Data Used

- SRTM DEM Tiles (Shuttle Radar Topography Mission)
 - Resolution: 30 meters
 - Source: USGS EarthExplorer
- Kerala & District Shapefiles
 - Source: Bhoonidhi

0

Preprocessing Steps

- Merged multiple DEM tiles
- Clipped DEM to Idukki district boundary

SLOPE ANALYSIS IN QGIS

Methodology

- Used DEM → Slope tool via:
 - Raster → Terrain Analysis → Slope
- Classified slope values into 5 categories using Quantile mode:
 - Very Gentle
 - Gentle
 - Moderate
 - Steep
 - Very Steep (Landslide-Prone)

Styling

- Applied Singleband pseudocolor rendering
- Assigned colors from yellow to red (mild to steep)
- Custom labels created for each slope class

VISUAL OUTPUT

Final Map Includes:

- Slope categories color-coded from flat to steep
- District boundary for spatial context
- Legend, title, scale bar, and north arrow
- Map exported in print layout

<u>Landslide-Prone Zones – Idukki</u> Based on Slope Analysis

Slope Classification

- Very Gentle Slope Gentle Slope
- Moderate Slope
- Steep Slope
- Very Steep (Landslide-Prone)

INTERPRETATIONS & OBSERVATIONS

Key Findings

- A large portion of Idukki falls under Steep to Very Steep classes
- High-risk areas are concentrated along elevated slopes and escarpments
- The visualization confirms Idukki's vulnerability to landslides, especially during monsoon

Limitations

- Only slope data used doesn't consider:
 - Rainfall
 - Soil type
 - Vegetation
 - Human activity

CONCLUSION & FUTURE WORK

Conclusion

- QGIS-based slope analysis can effectively highlight landslide-prone zones
- DEM + terrain analysis is a powerful combo for preliminary risk mapping

Future Scope

- Integrate other factors like:
 - Rainfall intensity
 - Soil saturation
 - Land use data
- Model debris flow using 3D terrain visualization

THANK YOU