

Lecture 35: Infinite Sequences and Series.

MA2032 Vector Calculus

Lecturer: Larissa Serdukova

School of Computing and Mathematical Science University of Leicester

December 9, 2022

Absolute Convergence

- For a general series with both positive and negative terms, we can apply the tests for convergence studied before to the series of absolute values of its terms.
- In doing so, we are led naturally to the following concept.

DEFINITION A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$, converges.

Absolute Convergence

THEOREM 12-The Absolute Convergence Test

If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Proof For each n,

$$-|a_n| \le a_n \le |a_n|$$
, so $0 \le a_n + |a_n| \le 2|a_n|$.

If $\Sigma_{n=1}^{\infty}|a_n|$ converges, then $\Sigma_{n=1}^{\infty}2|a_n|$ converges and, by the Direct Comparison Test, the nonnegative series $\Sigma_{n=1}^{\infty}(a_n+|a_n|)$ converges. The equality $a_n=(a_n+|a_n|)-|a_n|$ now lets us express $\Sigma_{n=1}^{\infty}a_n$ as the difference of two convergent series:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n + |a_n| - |a_n|) = \sum_{n=1}^{\infty} (a_n + |a_n|) - \sum_{n=1}^{\infty} |a_n|.$$

Therefore, $\sum_{n=1}^{\infty} a_n$ converges.

Absolute Convergence

EXAMPLE 1 This example gives two series that converge absolutely.

(a) For $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \cdots$, the corresponding series of absolute values is the convergent series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$$

The original series converges because it converges absolutely.

(b) For $\sum_{n=1}^{\infty} \frac{\sin n}{n^2} = \frac{\sin 1}{1} + \frac{\sin 2}{4} + \frac{\sin 3}{9} + \cdots$, which contains both positive and negative terms, the corresponding series of absolute values is

$$\sum_{n=1}^{\infty} \left| \frac{\sin n}{n^2} \right| = \frac{|\sin 1|}{1} + \frac{|\sin 2|}{4} + \cdots,$$

which converges by comparison with $\sum_{n=1}^{\infty} (1/n^2)$ because $|\sin n| \le 1$ for every n. The original series converges absolutely; therefore it converges.

• The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio a_{n+1}/a_n .

THEOREM 13-The Ratio Test

Let $\sum a_n$ be any series and suppose that

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho.$$

Then (a) the series *converges absolutely* if $\rho < 1$, (b) the series *diverges* if $\rho > 1$ or ρ is infinite, (c) the test is *inconclusive* if $\rho = 1$.

Proof

(a) $\rho < 1$. Let r be a number between ρ and 1. Then the number $\varepsilon = r - \rho$ is positive. Since

$$\left|\frac{a_{n+1}}{a_n}\right| \to \rho,$$

 $|a_{n+1}/a_n|$ must lie within ε of ρ when n is large enough, say, for all $n \ge N$. In particular,

$$\left|\frac{a_{n+1}}{a_n}\right| < \rho + \varepsilon = r, \quad \text{when } n \ge N.$$

Hence

$$\begin{aligned} |a_{N+1}| &< r|a_N|, \\ |a_{N+2}| &< r|a_{N+1}| < r^2|a_N|, \\ |a_{N+3}| &< r|a_{N+2}| < r^3|a_N|, \\ &\vdots \\ |a_{N+m}| &< r|a_{N+m-1}| < r^m|a_N|. \end{aligned}$$

Therefore,

$$\sum_{m=N}^{\infty} |a_m| = \sum_{m=0}^{\infty} |a_{N+m}| \le \sum_{m=0}^{\infty} |a_N| r^m = |a_N| \sum_{m=0}^{\infty} r^m.$$

The geometric series on the right-hand side converges because 0 < r < 1, so the series of absolute values $\sum_{m=N}^{\infty} |a_m|$ converges by the Direct Comparison Test. Because adding or deleting finitely many terms in a series does not affect its convergence or divergence property, the series $\sum_{n=1}^{\infty} |a_n|$ also converges. That is, the series $\sum a_n$ is absolutely convergent.

(b) $1 < \rho \le \infty$. From some index M on,

$$\left| \frac{a_{n+1}}{a_n} \right| > 1$$
 and $|a_M| < |a_{M+1}| < |a_{M+2}| < \cdots$.

The terms of the series do not approach zero as n becomes infinite, and the series diverges by the nth-Term Test.

(c) $\rho = 1$. The two series

$$\sum_{n=1}^{\infty} \frac{1}{n} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^2}$$

show that some other test for convergence must be used when $\rho = 1$.

For
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
: $\left| \frac{a_{n+1}}{a_n} \right| = \frac{1/(n+1)}{1/n} = \frac{n}{n+1} \to 1$.

For
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
: $\left| \frac{a_{n+1}}{a_n} \right| = \frac{1/(n+1)^2}{1/n^2} = \left(\frac{n}{n+1} \right)^2 \to 1^2 = 1$.

In both cases, $\rho = 1$, yet the first series diverges, whereas the second converges.

• The Ratio Test is often **effective** when the terms of a series **contain factorials** of expressions involving n or expressions **raised to a power involving** n.

EXAMPLE 2

Investigate the convergence of the following series.

(a)
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$$

Solution We apply the Ratio Test to each series.

(a) For the series $\sum_{n=0}^{\infty} (2^n + 5)/3^n$,

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{(2^{n+1}+5)/3^{n+1}}{(2^n+5)/3^n} = \frac{1}{3} \cdot \frac{2^{n+1}+5}{2^n+5} = \frac{1}{3} \cdot \left(\frac{2+5 \cdot 2^{-n}}{1+5 \cdot 2^{-n}}\right) \rightarrow \frac{1}{3} \cdot \frac{2}{1} = \frac{2}{3}.$$

The series converges absolutely (and thus converges) because $\rho = 2/3$ is less than 1. This does *not* mean that 2/3 is the sum of the series. In fact,

$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n} = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n + \sum_{n=0}^{\infty} \frac{5}{3^n} = \frac{1}{1 - (2/3)} + \frac{5}{1 - (1/3)} = \frac{21}{2}.$$

(b) If
$$a_n = \frac{(2n)!}{n!n!}$$
, then $a_{n+1} = \frac{(2n+2)!}{(n+1)!(n+1)!}$ and

$$\begin{vmatrix} \frac{a_{n+1}}{a_n} \end{vmatrix} = \frac{n!n!(2n+2)(2n+1)(2n)!}{(n+1)!(n+1)!(2n)!}$$
$$= \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} \to 4.$$

The series diverges because $\rho = 4$ is greater than 1.

THEOREM 14-The Root Test

Let $\sum a_n$ be any series and suppose that

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho.$$

Then (a) the series *converges absolutely* if $\rho < 1$, (b) the series *diverges* if $\rho > 1$ or ρ is infinite, (c) the test is *inconclusive* if $\rho = 1$.

Proof

(a) $\rho < 1$. Choose an $\varepsilon > 0$ so small that $\rho + \varepsilon < 1$. Since $\sqrt[n]{|a_n|} \to \rho$, the terms $\sqrt[n]{|a_n|}$ eventually get to within ε of ρ . So there exists an index M such that

$$\sqrt[n]{|a_n|} < \rho + \varepsilon$$
 when $n \ge M$.

Then it is also true that

$$|a_n| < (\rho + \varepsilon)^n$$
 for $n \ge M$.

Now, $\sum_{n=M}^{\infty} (\rho + \varepsilon)^n$ is a geometric series with ratio $(\rho + \varepsilon) < 1$ and therefore converges. By the Direct Comparison Test, $\sum_{n=M}^{\infty} |a_n|$ converges. Adding finitely many terms to a series does not affect its convergence or divergence, so the series

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + \dots + |a_{M-1}| + \sum_{n=M}^{\infty} |a_n|$$

also converges. Therefore, $\sum a_n$ converges absolutely.

- (b) $1 < \rho \le \infty$. For all indices beyond some integer M, we have $\sqrt[n]{|a_n|} > 1$, so that $|a_n| > 1$ for n > M. The terms of the series do not converge to zero. The series diverges by the nth-Term Test.
- (c) $\rho = 1$. The series $\sum_{n=1}^{\infty} (1/n)$ and $\sum_{n=1}^{\infty} (1/n^2)$ show that the test is not conclusive when $\rho = 1$. The first series diverges and the second converges, but in both cases $\sqrt[n]{|a_n|} \to 1$.

EXAMPLE 3 Consider again the series with terms $a_n = \begin{cases} n/2^n, & n \text{ odd} \\ 1/2^n, & n \text{ even.} \end{cases}$

Does $\sum a_n$ converge?

Solution We apply the Root Test, finding that

$$\sqrt[n]{|a_n|} = \begin{cases} \sqrt[n]{n}/2, & n \text{ odd} \\ 1/2, & n \text{ even.} \end{cases}$$

Therefore,

$$\frac{1}{2} \le \sqrt[n]{|a_n|} \le \frac{\sqrt[n]{n}}{2}.$$

Since $\sqrt[n]{n} \to 1$ (Section 10.1, Theorem 5), we have $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1/2$ by the Sandwich Theorem. The limit is less than 1, so the series converges absolutely by the Root Test.

EXAMPLE 4 Which of the following series converge, and which diverge?

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^3}$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^3}$$
 (c) $\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$

We apply the Root Test to each series, noting that each series has positive terms.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 converges because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \to \frac{1^2}{2} < 1$.

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^3} \text{ diverges because } \sqrt[n]{\frac{2^n}{n^3}} = \frac{2}{\left(\sqrt[n]{n}\right)^3} \to \frac{2}{1^3} > 1.$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$$
 converges because $\sqrt[n]{\left(\frac{1}{1+n}\right)^n} = \frac{1}{1+n} \to 0 < 1$.