Висша Алгебра ТК1 Решения

Румен Димитров

February 2019

1. Формулирайте теоремата за делене с частно и остатък за цели числа

$$\forall a,b\in\mathbb{Z},b\neq0,$$
 \exists единствени $q,r\in\mathbb{Z}:a=bq+r,0\leq r<|b|.$

2. Напишете определението за най-голям общ делител на две цели числа

Казваме, че d е НОД на a,b, когато $d\mid a$ и $d\mid b$ и ако числото d_1 също е общ делител на a и b, то $d_1\mid d$.

3. Напишете определението за наймалко общо кратно на две цели числа

Казваме, че d е НОК на a,b когато $a\mid d$ и $b\mid d$ и ако d_1 също е общо кратно на a и b, то $d\mid d_1$.

4. Каква е връзката между най-голям общ делител и най-малко общо кратно на две цели числа

Нека (a,b) е НОД и [a,b] е НОК на две цели числа a,b. Тогава е изпълнено (a,b)[a,b]=ab.

5. Напишете равенството на Безу за две цели числа

Ако a и b са две цели числа и (a,b)=d, то $\exists \ u,v\in\mathbb{Z}$, така че ua+vb=d.

6. Формулирайте основната теорема на аритметиката

Всяко $n>1\in\mathbb{N}$ се представя по единствен начин като произведение на прости числа, с точност до реда на множителите.

7. Напишете определението за пълна система остатъци по модул п

Пълна система остатъци по модул n е всяка система от n на брой несравними цели числа (Например $0,1,...,n-1 \mod n$).

8. Напишете определението за редуцирана система остатъци по модул ${\bf n}$

Всяка система от $\phi(n)$ на брой ест. числа, несравними по модул n и взаимно прости с n. Например, 1,5,7,11 е редуцирана (приведена) система остатъци по модул 12.

9. Напишете определението за функция на Ойлер

Нека $n \in \mathbb{N}$. Броят на ест. числа, ненадминаващи n и взаимно прости с n обозначаваме $\phi(n)$ и наричаме функция на Ойлер. Например, $\phi(6)=2$, защото от всички (естествени) числа преди 6, само 1 и 5 са взаимно прости с 6.

10. Формулирайте теоремата на Ойлер

Нека $n \in \mathbb{N}, r \in \mathbb{Z}$ и (r,n) = 1, тогава е изп. $r^{\phi(n)} \equiv 1 \mod n$.

11. Формулирайте теоремата на Ферма

Ако p е просто число и $a \nmid p$, то $a^{p-1} \equiv 1 \mod p$.

12. Напишете определението за това едно число да дели друго

Казваме, че b дели a, или $b \mid a$, когато $\exists q \in \mathbb{Z} : a = bq$.

13. Напишете определението за това числото а да е сравнимо с числото b по модул п

Нека $n \in \mathbb{N}, \ a,b \in \mathbb{Z}$. Казваме, че a е сравнимо с b по модул n, или $a \equiv b \mod n \iff n \mid (a-b)$.

14. Формулирайте теоремата на Уилсън

Ако p е просто число, то е изп. $(p-1)! \equiv -1 \mod p$.

15. Докажете, че за всяко цяло число а е изпълнено, че а \mid а

По дефиниция искаме число q, така че a=qa. q=1 работи, значи дефиницията е изпълнена и $a\mid a$.

16. Докажете, че ако $a \mid b$ и $b \neq 0$, то $|a| \leq |b|$.

По дефиниция, $b=qa, \ |q|\geq 1$ (защото q трябва да е цяло число) \Longrightarrow |b|=|qa|=|q||a|.

Сега, ако $q=\pm 1,$ то |b|=|a|. В противен случай, |b|>|a|.

17. Докажете, че ако а | b и b | c, то а | c

По дефиниция, $b=q_1a,\ c=q_2b\implies c=q_1q_2a,\ q_1q_2\in\mathbb{Z}.$ Значи $a\mid c.$

18. Докажете, че ако $a \mid b$ и $a \mid c$, то $a \mid b + c$

По дефиниция, $b = q_1 a, c = q_2 a \Longrightarrow$

 $b+c=(q_1+q_2)a, \ \ q_1+q_2\in \mathbb{Z}.$ Значи $a\mid c.$

19. Докажете, че за всяко цяло число $a \in uзпълнено a \equiv a \pmod{n}$

Искаме $n \mid (a-a)$, т.е. $n \mid 0$ Търсим q, така че 0=nq. Очевидно q=0 върши работа.

20. Докажете, че ако $a \equiv b \pmod{n}$, то $b \equiv a \pmod{n}$

 $a\equiv b\mod n\iff n\mid (a-b)\iff a\mid (a-b)\iff \exists q\in\mathbb{Z}:\ (a-b)=qn$ Умножаваме и двете страни по -1 $b-a=(-q)n,\ (-q)\in\mathbb{Z}\implies n\mid (b-a)\implies b\equiv a\mod n.$

21. Докажете, че ако $a \equiv b \pmod{n}$ и $b \equiv c \pmod{n}$, то $a \equiv c \pmod{n}$

По дефиниция, $n \mid (a-b), \quad n \mid (b-c) \implies n \mid (a-b) + (b-c) \implies n \mid (a-c) \implies a \equiv c \mod n.$

22. Докажете, че ако a \equiv b (mod n) и c \equiv d (mod n), то a \pm c \equiv b \pm d (mod n)

$$\begin{array}{l} n\mid (a-b),\quad n\mid (c-d)\implies\\ n\mid (a-b)+(c-d)\implies\\ n\mid (a+c)-(b+d)\implies (a+c)\equiv (b+d)\mod n. \text{ Също,} \\ n\mid (a-b)-(c-d)\implies \end{array}$$

$$n \mid (a-b) - (c-d) \implies$$

 $n \mid a-b-c+d \implies$

$$n \mid (a-c) - (b-d) \implies (a-c) \equiv (b-d) \mod n.$$

- 23. Дайте пример за крайна група
- $\{-1,1\}$ относно умножението
- 24. Дайте пример за безкрайна група
- $(\mathbb{Z},+)$
- 25. Дайте пример за абелева група

Горните две, също C_n etc

- 26. Дайте пример за неабелева група
- $GL_n(F)=\{A\in M_{n,n}\mid det A\neq 0\}$ е неабелева за $n\geq 2$. Например, $GL_3(F)$ е неабелева.
 - 27. Дайте пример за крайна циклична група

$$C_4 = \{\pm i, \pm 1\}$$
 или Z_4 - Адитивна циклична група от ред 4

28. Дайте пример за безкрайна циклична група

$$\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$$

29. Напишете определението за циклична група

G е циклична, когато $\exists a \in G$, такъв че $\langle a \rangle = \{a^k \mid k \in \mathbb{Z}\} = G$.

30. Напишете определението за ред на елемент от дадена група

Нека G е група и $g \in G$. Най-малкото естествено число r, за което $g^r = e$ наричаме ред на елемента g. Бележим го с r(g) или |g|. Ако не съществува, казваме, че g не е от краен ред и пишем $r(g) = \infty$.

31. Напишете определението за съседен клас на група по нейна подгрупа

Нека G е група, $H \leq G$, $g \in G$. Тогава $gH = \{gh \mid h \in H\}$ наричаме ляв съседен клас на G по H, а $Hg = \{hg \mid h \in H\}$ - десен съседен клас на G по H.

32. Напишете определението за индекс на подгрупа на дадена група в групата

Нека G е крайна група и $H \leq G$. Броя на левите (или десните) съседни класове на G по H наричаме индекс на H в G и бележим |G:H|.

33. Формулирайте теоремата на Лагранж

Нека G е група, $|G| < \infty$, $H \le G$. Тогава е изп. |G| = |H||G:H|.

34. Напишете определението за нормална подгрупа на дадена група

Нека G е група и $H \leq G$. Ако $\forall g \in G$ е изп. gH = Hg, то H наричаме нормална подгрупа на G.

35. Напишете определението за факторгрупа на дадена група по нейна нормална подгрупа

Нека G е група, $H \leq G$. Групата, дефинирана по следния начин се нарича факторгрупа на G по H: $G/H = \{gH \mid g \in G\}$ с операция $g_1Hg_2H = (g_1g_2)H$.

36. Напишете определението за ядро на хомоморфизъм на групи

Нека $\phi: G \to G'$ е хомоморфизъм на групи. Ядро на ϕ дефинираме по следния начин: $Ker\phi = \{a \in G \mid \phi(a) = e\} \subseteq G$.

37. Напишете определението за образ на хомоморфизъм на групи

$$\phi:G \to G'$$
 хомоморфизъм. $Im\phi = \{b=G' \mid \exists a \in G : \phi(a)=b\} \subseteq G'$

38. Формулирайте теоремата за хомоморфизмите за групи

 $\phi:G\to G'$ хомоморфизъм, нека $H=Ker\phi.$ Тогава $H\unlhd G$ и $G/H\cong Im\phi.$

39. Формулирайте втората теорема за хомоморфизмите за групи

Нека
$$G$$
 е група, $H \subseteq G$, $A \subseteq G$. Тогава $AH/H \cong A/A \cap H$.

40. Формулирайте третата теорема за хомоморфизмите за групи

Нека Gе група, $H \unlhd G, \ A \unlhd G$ и $H \leq A.$ Тогава $A/H \unlhd G/H$ и $(G/H)/(A/H) \cong G/A.$