Technical Report

INTELLIHACK-TASK03-CYPHERZ

DHANUSHI DEWMINDI | AMANDA HANSAMALI

Table of Contents

Technical Report: Fine-Tuning Qwen 2.5 3B Instruct Model for AI Research QA	3
1. Project Overview	3
Objective	3
Scope	3
2. Dataset Preparation	3
Source of Dataset	3
Data Preprocessing	3
Key Decisions	3
3. Fine-Tuning Methodology	4
Model and Tools	4
Training Configuration	4
Hyperparameter Choices	4
Key Decisions	5
4. Model Evaluation	5
Metrics Used	5
Evaluation Approach	5
Results	5
5. Model Quantization	
Approach	
Key Decisions	
·	6
Inference Setup	
RAG Implementation	
Key Decisions	
7. Challenges and Solutions	
Key Challenges	
Solutions Implemented	
8. Industry Best Practices Followed Error! Bookmark not de	

9	. Conclusion and Recommendations
	Project Success
	Future Improvements

Technical Report: Fine-Tuning Qwen 2.5 3B Instruct Model for AI Research QA

1. Project Overview

Objective

The primary objective of this project was to fine-tune the Qwen 2.5 3B Instruct model to create a specialized system capable of answering complex AI research questions accurately. The model is intended to retrieve, interpret, and generate responses based on recent AI research papers, blogs, and related documents.

Scope

- Generate a high-quality synthetic dataset.
- Fine-tune the Owen 2.5 3B model.
- Quantize the model to enhance efficiency.
- Implement an inference script with Retrieval-Augmented Generation (RAG).
- Evaluate the model and document the training process thoroughly.

2. Dataset Preparation

Source of Dataset

- The dataset used for fine-tuning was provided as a CSV file titled 'Software Questions.csv'. which is a custom-made dataset.
- The dataset comprised question-answer pairs focused on software development and AI research topics.

Data Preprocessing

- Cleaning: Removed null values and unnecessary columns.
- **Formatting:** Renamed columns to 'instruction' and 'output' to match the model's expected input format.
- **Splitting:** The dataset was split into training (80%), validation (10%), and test (10%) sets using stratified sampling to maintain data distribution.

Key Decisions

• Why CSV? CSV format ensured simplicity and compatibility with the pandas and datasets libraries.

• **Data Augmentation:** Considered but not implemented to avoid introducing synthetic bias.

3. Fine-Tuning Methodology

Model and Tools

• **Model Used:** Qwen 2.5 3B from Hugging Face.

```
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen2.5-3B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    low_cpu_mem_usage=True,
    token="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"
)

tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    token="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"
)
```

- **Libraries:** PyTorch, transformers, datasets, bitsandbytes, accelerate.
- **Environment:** Google Colab

Training Configuration

- **Batch Size:** 4 for both training and evaluation to balance performance and memory usage.
- **Epochs:** 3 epochs to prevent overfitting while allowing sufficient learning.
- Learning Rate: Set to 2e-5 based on experimental tuning.
- Evaluation Strategy: Performed at the end of each epoch using the validation dataset.

Hyperparameter Choices

- Mixed Precision (fp16): Enabled to optimize memory usage and increase training speed.
- Weight Decay: Set to 0.01 to help regularize the model.
- **Early Stopping:** Implemented through monitoring validation loss, ensuring no overfitting.

Memory and CPU Management

• Used Hugging Face for memory and CPU Management.

Key Decisions

- Why Qwen 2.5 3B? The basevariant is optimized for text generation tasks with specific prompts, ideal for a user friendly system.
- **Batch Size Choice:** A balance between maximizing GPU utilization and avoiding out-of-memory errors.

4. Model Evaluation

Metrics Used

- **Pass@1:** Specifically for evaluating reasoning tasks.
- **F1 Score:** For balanced measurement of precision and recall.

Evaluation Approach

- Conducted evaluations on both validation and test datasets.
- Compared model performance against baseline models to validate improvements.

Results

• The model achieved high accuracy on both validation and test datasets, demonstrating effective learning and generalization.

5. Model Quantization

Approach

- **Tool Used:** bitsandbytes library to convert the model to a 4-bit quantized version (.gguf format).
- **Objective:** Reduce model size and improve inference speed while maintaining performance.

Key Decisions

- Why Quantize? To enhance the deployment efficiency, especially for scenarios with limited computational resources.
- **Validation:** The quantized model was tested for performance degradation, with no significant drop observed.

6. Inference Script and RAG Components

Inference Setup

- Implemented an inference pipeline using the transformers library.
- Utilized FastAPI to provide an API endpoint for generating responses.
- Integrated Retrieval-Augmented Generation (RAG) using Haystack's BM25Retriever to fetch relevant documents as context.

RAG Implementation

- Built an in-memory document store to hold relevant research documents.
- Set up a retriever to find relevant passages based on the input query.
- Combined retrieved context with the model's generation capabilities to produce accurate and context-aware answers.

Key Decisions

- Why RAG? To improve the relevance and specificity of generated responses by providing the model with contextual documents.
- **API Choice:** FastAPI was chosen for its speed and simplicity in setting up an inference server.

7. Challenges and Solutions

Key Challenges

- 1. **Data Quality Issues:** Some questions in the dataset were too generic, leading to ambiguous answers.
- 2. **Memory Management:** During fine-tuning, high GPU memory usage led to interruptions.
- 3. **Inference Latency:** Initial model responses were slower than desired.

Solutions Implemented

- 1. **Data Refinement:** Filtered and edited ambiguous questions to improve dataset quality.
- 2. **Mixed Precision Training:** (fp16) reduced memory usage and improved stability.
- 3. Quantization: Drastically reduced model size, enhancing inference speed.

8. Conclusion and Recommendations

Project Success

- The project achieved its objectives by fine-tuning a robust model capable of answering technical AI research questions with high accuracy.
- The use of RAG significantly improved the relevance of generated responses, demonstrating the benefits of combining retrieval with generation models.

Future Improvements

- Advanced Techniques: Incorporate Reinforcement Learning techniques like GRPO for even better reasoning capabilities.
- **Deployment Enhancement:** Apply A/B testing and implement a model monitoring system to track performance in real-world applications.
- **Scalability:** Explore containerization (e.g., Docker) and orchestration (e.g., Kubernetes) for production deployment.