

Escuela de Ingeniería Eléctrica

IE-425 Redes de computadores

Escuela de Ingeniería Eléctrica Universidad de Costa Rica

Febrero, 2021

Objetivo

-Conocer los parámetros básicos a considerar en diseño de redes de computadores.

Nivel de enlace de datos y mecanismos de acceso al medio

Powerpoint: 1996-2020, J.F. Kurose, K.W. Ross

División del flujo de bits en tramas

- 1. Conteo de bytes.
- 2. Bytes bandera con relleno de bytes.
- 3. Bits bandera con relleno de bits.
- 4. Violaciones de codificación de la capa física.

Conteo de bytes

 Un campo define el tamaño de la trama (en bytes)

Byte bandera y relleno de bytes

- Dos bytes bandera seguidos señalizan el final de una trama y el inicio de otra. Si hubiera un error o alguna desincronización mediante el byte bandera se podría reconocer de nuevo donde inicia la siguiente trama. (Byte bandera)
- Uso de un byte especial (ESC), cuando aparece un byte bandera que no es realmente bandera. Y ese mismo byte se utiliza para demarcar si aparece un ESC dentro de la trama. (Relleno de bytes)

FLAG	Encabe- zado	Campo de carga útil				Termi- nador	FLAG	
(a)								
Bytes originales			Después de rellenar					
A	FLAG	В		Α	ESC FLAG E	3		
А	ESC	В		А	ESC ESC E	3		
А	ESC	FLAG		Α	ESC ESC ES	SC	FLAG	В
А	ESC	ESC B		А	ESC ESC ES	SC	ESC	В

Bit bandera con relleno de bit

- Hay un byte bandera 0111 1110 (7E hex)
- Después de cualquier grupo de 5 bits en 1, se hace un relleno de un 0.
- Ej: USB.

Violaciones de código

 Por ejemplo 4B/5B utiliza 16 códigos, se pueden utilizar los 16 códigos para demarcar diferentes acciones en la capa de enlace.

Datos (4B)	Palabra de código (5B)	Datos (4B)	Palabra de código (5B)	
0000	11110	1000	10010	
0001	01001	1001	10011	
0010	10100	1010	10110	
0011	10101	1011	10111	
0100	01010	1100	11010	
0101	01011	1101	11011	
0110	01110	1110	11100	
0111	01111	1111	11101	

Combinación de métodos

- Ejemplo 802.11
- Utiliza un inicio de trama estándar de 72 bits.
- Luego de este inicio lleva el tamaño de la trama

802.11b Packet Format Bits:						
Preamble	Header	Payload Data				
144 or 72 bits	48 bits	N bits				

Control de errores

- Existen mecanismos para detectar y corregir errores.
- Una conexión confiable proporciona realimentación (trama recibida, trama no recibida)
- Limitación cuando hay una pérdida de trama por exceso de ruido. Una solución es un temporizador en emisor. Para evitar tramas duplicadas, se asigna una secuencia.

Control de flujo

- Transmisión depende de capacidad del medio y del receptor.
- Dos métodos:
 - Control de flujo basado en realimentación (mayormente función delegada a la capa de transporte)
 - Control de flujo basado en tasa (según lo que el medio y el receptor puedan aceptar)

Ejercicios

Ejercicio 2. Pág. 217

- La siguiente codificación de caracteres se utiliza en un protocolo de enlace de datos:
- A: 01000111 B: 11100011 FLAG: 01111110 ESC: 11100000
- Muestre la secuencia de bits transmitida (en binario) para la trama de cuatro caracteres: A B ESC FLAG cuando se utiliza cada uno de los siguientes métodos de entramado:
- (a) Conteo de caracteres.
- (b) Bytes bandera con relleno de bytes.
- (c) Bytes bandera de inicio y final, con relleno de bits.

Ejercicio 6. Pág. 217

• Una cadena de bits, 01111011111101111110, necesita transmitirse en la capa de enlace de datos. ¿Cuál es la cadena que realmente se transmite después del relleno de bits?

Captura WireShark

• Capturamos una trama en WireShark.

- ¿Qué información de capa 2 contiene?
- ¿Se muestran los bits o bytes por métodos de control flujo o control de errores?
- ¿En qué capa se utiliza esta información?

Powerpoint: 1996-2020, J.F. Kurose, K.W. Ross

Examen Parcial 1 35% de nota del curso

Estructura del examen

- 2 partes:
 - Parte 1. 30 puntos (50%)
 - Teoría, conceptos y algunos pocos cálculos

- Parte 2. 30 puntos (50%)
- Aplicación de conceptos, cálculos y un ejercicio aplicado