In English Log ud

Pernille Harris

CampusNet / 26050 Indledende kemi for biovidenskaberne E16 / Opgaver

Eksamen Efterår 2016

	d	

Vis rigtige svarSkjul rigtige svar

Spørgsmål 1

Vægtning 5%:

Hvilket udsagn er sandt?

Mn har 5 valenselektroner. Elektronkonfigurationen for valenselektronerne er: $3d^{\tilde{5}}$
Mn har 2 valenselektroner, Elektronkonfigurationen for valenselektronerne er: $4s^2 $
Mn har 25 valenselektroner, Elektronkonfigurationen for valenselektronerne er $[Ar]4s^23p^5$
Mn har 7 valenselektroner. Elektronkonfigurationen for valenselektronerne er:

Mn har ingen valenselektroner.

Spørgsmål 2

 $4s^23d^5$

Vægtning 5%:

Hvad er elektronkonfigurationen i grundtilstanden for Ni^{2+} :

- [Ar]4s²3d⁶
- \square [Ar]4s²3d⁵
- [Ar]3d⁵
- \square [Ar]4s⁶
- ✓ [Ar]3d⁸

Spørgsmål 3

Vægtning 4%:

Hvilket af følgende generelle udsagn er normalt sandt?

- ✓ Op gennem en gruppe stiger ioniseringsenergien.
- Ædelgasserne har de laveste ioniseringsenergier.
- Hvis to atomer er isoelektroniske, så vil det atom, der har størst kerneladning have den mindste ioniseringsenergi.
- Hvis et atom har en stor ioniseringsenergi, er det meget reaktivt.

Molekylorbitalteori

Vedhæftet er molekylorbitaldiagrammet for ${\sf O}_2$

Filer: MO for O2.jpg

Spørgsmål 4

Vægtning 3%:

Molekylorbitalteori:

Angiv om O_2 er stabilt og angiv de magnetiske egenskaber for O_2 .

- ✓ O₂ er stabilt og paramagnetisk

- O₂ er stabi**l**t og diamagnetisk

Spørgsmål 5

Vægtning 4%:

Molekylorbitalteori:

Angiv bindingsordenen for ${\rm N_2}^{2+}$

- ☐ Bindingsorden = 0
- ☐ Bindingsorden = 1
- ✓ Bindingsorden = 2
- ☐ Bindingsorden = 3
- Bindingsorden = 4

/19/2016
Side 3
Lewisstrukturer
Spørgsmål 6
Vægtning 3%: Angiv hvilken af følgende forbindelser der er isoelektronisk med SrO
BaO
LiF
□ NaI
KBr
Spørgsmål 7
Vægtning 2%: Angiv antallet af lonepairs på S for forbindelsen ${\sf SF}_4$
0
€ 1
2
3
_ 4
Spørgsmål 8
Vægtning 1%: Angiv antallet af lonepairs på hver F for forbindelsen ${\sf SF}_4$
0
<u> </u>
2
☑ 3
4
Spørgsmål 9 Vægtning 2%: Angiv antallet af lonepairs på B for forbindelsen BCl ₃

•	0
	1
	2
	3
	4

Vægtning 1%:

Angiv antallet af lonepairs på hver CI for forbindelsen BCI_3

- 0
- **1**
- 2
- 3
- **4**

Sid	le	4

Navngivning

Spørgsmål :	11
-------------	----

Vægtning 1%:

Navngiv følgende ion: CIO₃

- Hypochlorit
- Chlorit
- Chlorat
- Perchlorat
- Chloroxid

Spørgsmål 12

Vægtning 1%:

Navngiv KH

- Kaliumhydrid
- Kaliumhydrat
- Kaliumhydrogen
- Kalciumhydrat
- Hydrogenkalium

Spørgsmål 13

Vægtning 1%:

Opskriv formlen for aluminiumsulfat.

- ☐ AISO₃
- AISO₄
- Al₂(SO₃)₃
- ✓ Al₂(SO₄)₃
- Al(SO₄)₂

Spørgsmål 14

Vægtning 1%:

Opskriv formlen for cobalt(III) oxid.

- CoO₃
- KoO₃
- Ko₂O₃
- ✓ Co₂O₃

 Mg_2N_3

Vægtning 1%:	
Opskriv formlen for magnesiumnitri	d.
☐ MgN	
Mg_3N_2	
Mg(NO ₂) ₂	
MgN ₂	

Navngivning

Spørgsmål 16

Vægtning 1%:

Opskriv formlen for sølvnitrat.

☐ AgNO₂

✓ AgNO₃

SbNO₃

AuNO₃

AuNO₂

Kompleksforbindelser

Vedhæftet er ligandfeltopsplitningen af d-orbitaler for oktaedriske komplekser (uden elektroner)

Filer: ligandfeltopsplitning.jpg

Spørgsmål 17

Vægtning 1%:

Angiv centralatomets koordinationstal for den ioniske kompleksforbindelse:

 $[PdCl_4]^2$

- **1**
- 2
- **3**
- **4** 4
- 6

Spørgsmål 18

Vægtning 2%:

Angiv centralatomets oxidationstrin for den ioniske kompleksforbindelse:

 $[\operatorname{Cr}(\mathsf{H}_2\mathsf{O})_4\operatorname{Cl}_2]^+$

- **+6**
- _ -2
- +1
- **+**3
- **+4**

Spørgsmål 19

Vægtning 3%:

Angiv antallet af d-elektroner i $\mathbf{e}_{\mathbf{g}}$ og $\mathbf{t}_{2\mathbf{g}}$ for følgende kompleks:

[Co(CN)₆]³⁻

- e_g: 0
- ▼ t_{2g}: 6
- e_g: 3
- ☐ t_{2g}: 3
- e_g: 2 □ t_{2g}: 6
- e_g: 0 ☐ t_{2g}: 2
- e_g: 2
- □ t_{2g}: 4

/ægtning 3%:	
Navngiv følgende kompleksforbindelse: $[Co(NH_3)_4Cl_2]Cl$	
cobalttetraammoniakchlorid	
tetraammindichloridocobalt(II)	
tetraammindichloridocobalt(III)chlorid	
dichloridotriammincobalt(II)chlorid	
cobalt(III)dichloridotetraammindichlorid	

Spørgsmål 21

vægtning 3%:

 $Opskriv\ formlen\ for\ tetrachloridonikkelat (II)\mbox{-}ionen.$

- [NiCl₆]^{4−}
- ✓ [NiCl₄]²⁻
- [NiCl₄]²⁺
- [NiCl₃]⁺
- NiCl₄]

Reaktionsskemaer

Spørgsmål 22

Vægtning 4%:

Færdiggør og afstem følgende reaktion. Afbrænding i overskud af dioxygen.

$$K(s) + O_2(g) \rightarrow ?$$

$$\mod 4K(s) + O_2(g) \rightharpoonup 2K_2O(s)$$

$$\square$$
 2K(s) + O₂(g) \rightharpoonup K₂O₂(s)

$$\square$$
 2K(s) + O₂(g) \rightharpoonup 2KO(s)

$$\square$$
 4K(s) + 3O₂(g) \rightharpoonup 2K₂O₃(s)

Spørgsmål 23

Vægtning 4%:

Færdiggør og afstem følgende reaktion, hvori lithium reagerer med stort overskud af vand.

$$Li(s) + H_2O(1) \rightharpoonup ?$$

$$\quad \ \ \, \bigsqcup \, \, Li(s) + H_2O(l) \rightharpoonup LiO(aq) + H_2(g)$$

$$\square$$
 4Li(s) + 2H₂O(l) \rightharpoonup 4LiH(s) + O₂(aq)

$$\angle$$
 2Li(s) + 2H₂O(l) \rightharpoonup 2LiOH(s) + H₂(g)

$$\square$$
 2Li(s) + H₂O(l) \rightharpoonup Li₂O(s) + H₂(g)

$$\square$$
 Li(s) + 2H₂O(l) \rightharpoonup Li(OH)₂(aq) + H₂(g)

Spørgsmål 24

Vægtning 4%:

Opskriv den afstemte reaktionsligning for fremstilling af phosphor(V)oxid ud fra hvid phosphor ved afbrænding i overskud af dioxygen.

$$\ \ \, \ \, \square \,\, P_4(s) + 3O_2(g) \rightharpoonup P_4O_6(s)$$

$$P_4(s) + 5O_2(g) \rightharpoonup P_4O_{10}(s)$$

$$\square$$
 2P(s) + 5O₂(g) \rightharpoonup 2PO₅(s)

$$\ \ \ \ \square \ P_4(s) + 8O_2(g) + 6H_2(g) \rightharpoonup 4H_3PO_4(s)$$

$$P_4(s) + 10H_2O(g) \rightharpoonup P_4O_{10}(s) + 10H_2(g)$$

Vægtning 4%:

Angiv den korrekt afstemte reaktionsligning for fremstilling af Cr metal ud fra chrom(III)oxid ved hjælp af Al metal.

$$\square$$
 3CrO(s) + 2Al(s) \rightharpoonup 3Cr(s) + Al₂O₃(s)

$$\ \ \, \ \, \bigsqcup \ \, CrO_3(s) + 2Al(s) \rightharpoonup Cr(s) + Al_2O_3(s)$$

$$\quad \ \ \square \ \ \, Cr_2O_3(s) + 3Al(s) \rightharpoonup 2Cr(s) + 3AlO(s)$$

Støkiometri

Spørgsmål 26

Vægtning 6%:

Sammensætningen af ibuprofen (masseprocent) er 75,69% C, 8,80% H og 15,51% O. Bestem den empiriske formel for ibuprofen.

- C 10 H 18 O 10
- ✓ C ₁₃ H ₁₈ O ₂
- C 10 H 22 O 2
- C 12 H9 O 2
- C₇H₈O₂

Syre-base- og puffersystemer

Spørgsmål 27

Vægtning 6%:

Hvilken af de følgende blandinger kan klassificeres som en puffer?

- \blacksquare 500 mL 0,50 M natriumacetat + 500 mL H_2O
- 500 mL 0,50 M natriumacetat + 500 mL 0,75 M HCl
- 500 mL 0,50 M natriumacetat + 500 mL 0,50 M HCI
- 500 mL 0,50 M natriumacetat + 500 mL 0,50 M NaCl

Spørgsmål 28

Vægtning 6%:

Ethylamin, $\mathrm{C_2H_5NH_2}$, har en $\mathrm{K_b}$ på $5,6\cdot10^{-4}$

Hvad er hydroxidionkoncentrationen ([OH $^{-}$]) i 0,200 M ethylamin.

- 11,52 M
- 2,48 M
- 0,033 M
- ✓ 0,011 M
- 0,00024 M

Ligevægte

Spørgsmål 29

Vægtning 6%:

Opløselighedsproduktet $\textit{K}_{\textit{Sp}}$ af bly(II)bromid, PbBr₂, i vand er $4.67 \cdot 10^{-6}$

Du har et bægerglas med en vandig opløsning af $PbBr_{2_i}$ hvor fast $PbBr_2$ er fældet ud. Hvad er koncentrationen af opløst bromid i bægerglasset?

- 0,0030 M
- **✓** 0,021 M
- 0,033 M
- 0,042 M
- 0,0052 M

Spørgsmål 30

Vægtning 6%:

Man har en container (25°C) med starttrykkene: 0,100 bar Br_2 , 0,100 bar Cl_2 og 0,100 bar BrCl gas.

Ligevægtskonstanten ved 25° C for nedenstående reaktion er 10,1.

$$Br_2(g) + Cl_2(g) \rightleftharpoons 2BrCl(g)$$

Hvad er trykket af Br_2 når ligevægt har indstillet sig?

- 0,43 bar
- 0,042 bar
- 5,9 bar
- 0,0041 bar

Kinetik

Filer: Capture, PNG

Spørgsmål 31

Vægtning 6%:

 $Nedenunder\ ser\ du\ m{\mathring{a}linger}\ af\ koncentrationen\ af\ SO_2Cl_2\ som\ funktion\ af\ tiden.\ SO_2Cl_2\ dekomponerer\ til\ SO_2\ og\ Cl_2:$

$$SO_2Cl_2(g) \rightharpoonup SO_2(g) + Cl_2(g)$$

Det er en førsteordensreaktion. Bestem hastighedskonstanten.

Tid (s)	[SO ₂ Cl ₂] (M)
0	0,100
200	0,0944
400	0,0890
600	0,0840
800	0,0793
1000	0,0748
1200	0,0706

$$2.9 \times 10^{-4} \, \mathrm{s}^{-1}$$

$$2.9 \times 10^{-1} \, s^{-1}$$

$$2.9 \times 10^{-3} \text{s}^{-1}$$

$$2.9 \times 10^{-9} \text{s}^{-1}$$

$$2.9 \times 10^{-5} s^{-1}$$