PCT WORLD ORGANISATION FOR INTELLECTUAL PROPERTY International Office INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	International patent classification*: CO7 D 305/14, A61K 31/335	Al	(11) International publication number: WO 95/33736 (43) International publication date: 14 December 1995 (14.12.95)					
(30)	21) International application number: PCT/FR95/00735 22) International filing date: 7 June 1995 (07.06.95) 30) Data relating to the priority: 94/07,049 9 June 1994 (09.06.94) FR 71) Applicant (for all designated States except US): RHONE-POULENC RORER S.A. [FR/FR]: 20, avenue Raymond-Aron, F-92160 Antony (FR).		(81) Designated States: AM. AU. BB. BG. BR. BY. CA. CN. CZ. EE. FI. GE. HU. IS. JP. KG. KP. KR. KZ. LK. LR. LY. LY. MD. MG. MN. MX. NO. NZ. PL. RO. RU. SG. SI. SK. TJ. TM. TT. UA. UG. US. UZ. VN. European Patent (AT. BE. CH. DE. DK. ES. FR. GB. GR. IE. IT. LU. MC. NL. PT. SE). OAPI Patent (BF. BJ. CF. CG. CI. CN. GA. GN. ML. MR. NE. SN. TD. TG). ARIPO Patent (KE. HM. SD. SZ. UG). Published With the International Search Report. Before expiry of the period provided for amending the claims, will be republished if such amendments are received.					
(72) (75)	72) Inventors; and 75) Inventors/Applicants (US only): Hervé BOUCHARD [FR/FR]: 114, avenue Danielle-Casanova, F-94200 Ivry-sur-Seine (FR). Jean-Dominique BOURZAT [FR/FR]: 36, boulevard de la Libération, F-94300 Vincennes (FR). Alain COMMERÇON [FR/FR]: 1 bis, rue Charles-Floquet, F-94400 Vitry-sur-Seine (FR). Corinne TERRIER [FR/FR]: 32 bis, boulevard de Chanzy, F-93190 Livry-Gargan (FR). Hartine ZUCCO [FR/FR]: 24, rue Adrien-Tessier, F-94320 Thiais (FR).							
(74)	Representative: Jacques PILARD: Rhone-Poulenc 5.A., Patents Directorate, 20. avenue Raymo Aron, F-92165 Antony Cédex (FR).		·					

As printed

(54) TIBE: NEW TAXOIDS, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM

(34) Tiere: MOUVEAUX TAXOIDES, LEUR PREPARATION ET LES COMPOSITIONS PHARMACEUTIQUES QUI LES CONTIEN-NENT

(57) Abstract

New taxolds having general formula (1), (II) preparation thereof and pharmaceutical compositions containing them. In general formula (I): Re is hydrogen, hydroxy, altoxy, acyloxy, altoxyacetoxy, and Re is hydrogen or Re and Re form together with the carbon atom to which they are linked a lectone function, Z is a hydrogen atom or a radical having general formula (II) wherein R₁ is an optionally substituted beautoyl radical. Prompt or

$$Z = 0$$
 $R_1 = 0$
 $R_2 = 0$
 $R_3 = 0$
 $R_4 = 0$
 $R_5 =$

furoyl radical or a radical R_2O-CO wherein R_3 is an alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, bicycloalkyl, optionally substituted phenyl or heterocyclyl radical; R_3 is an alkyl, alkenyl, alkynyl, cycloalkyl, phenyl, naphtyl or heterocyclic aromatic radical, and R_4 and R_5 similar or different, represent an alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, bicycloalkyl, aryl or heterocyclyl radical, with the condition that R_5 does not represent a methyl radical. The new products having general formul. (1) wherein Z is a radical having general formula (II) have remarkable antisumoral and antileukaemic properties.

(57) Abrégé

Nouvesux taxoldes de formules générales (I), (II), leur préparation et les compositions pharmaceutiques qui les contiennent. Dans la formule générale (I): R₀ représente hydrogène, hydroxy, alcoxy, acyloxy, alcoxyacetoxy et R₀ représente hydrogène ou bien R₀ et R₀ forment ensemble avec l'atome de carbone suquel IIs sont liés une fonction ectone; Z représente un atome d'hydrogène ou un radical de formule générale (II) dans laquelle R₁ représente un radical benzoyle éventuellement substitué, thénoyle ou furuyle ou un radical R₂-O-CO- dans lequel R₂ représente un radical alcoyle, alcényle, cycloalcoyle, cycloalcoyle, bicycloalcoyle, phényle éventuellement substitué ou hétérocyclyte, R₂ représente un radical alcoyle, alcényle, alcynyle, cycloalcoyle, phényle, naphtyle ou hétérocyclique sromatique; et R₀ et R₁, identiques ou differents, représentem un radical alcoyle, alcényle, alcynyle, cycloalcoyle, phényle, naphtyle ou hétérocyclique sromatique; et R₀ et R₁, identiques ou differents, représentem un radical despite de l'activité d

ATTORNEY DOCKET NUMBER:10177-211-999 SERIAL NUMBER: 09/910,388

REFERENCE: B133

un radical de formule générale (II) présentent de

PCT WORLD ORGANISATION FOR INTELLECTUAL PROPERTY International Office INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	International patent classification': CO7 D 305/14, A61K 31/335	Al	(11) International publication number: WO 95/33736 (43) International publication date:				
-	CU/ U 305/14, Abik 31/335	<u> </u>	14 December 1995 (14.12.95)				
(21)	International application number: PCT/FR99	5/00735	(81) Designated States: AM. AU. BB. BG. BR. BY CA. CN				
(22)	22) International filing date: 7 June 1995 (07.06.95)		LR. LT. LV. HD. HG. HN. HX. NO. NZ. PL. RO. RU				
(30)	Data relating to the priority: 94/07.049 9 June 1994 (09.06.94)	FR	SG. SI. SK. TJ. TM, TT. UA, UG, US, UZ, VN, European Patent (AT. BE. CH, DE. DK. ES. FR. GB. GR, IE, IT. LU. MC. NL. PT. SF) (API Patent (BE				
(71)	Applicant (for all designated States except U RHOME-POULENC RORER S.A. [FR/FR]: 20, avenu Raymond-Aron, F-92160 Antony (FR).	/S): e	BJ. CF. CG. CI. CM. GA. GN. ML. MR. NE. SN. TD. TG). ARIPO Patent (KE. MW. SD, SZ. UG).				
(72) (75)			Published With the International Search Report. Before expiry of the period provided for amending the claims, will be republished if such amendments are received.				
(74)	Representative: Jacques PILARD: Rhone-Poulenc 5.A. Patents Directorate, 20, avenue Raymon Aron, F-92165 Antony Cédex (FR).	Rorer nd·					
			·				
	As printed						

As printed

(54) TIBE: NEW TAXOIDS, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM

(54) Titre: NOUVEAUX TAXOIDES, LEUR PREPARATION ET LES COMPOSITIONS PHARMACEUTIQUES QUI LES CONTIEN-NENT

(57) Abstract

New taxoids having general formula (I), (II) preparation thereof and pharmaceutical compositions containing them. In general formula (I): R_a is hydrogen, hydroxy, altexy, acyloxy, altexysectexy, and R_b is hydrogen or R_a and R_b form together with the exbon atom to which they are linked a knine function, Z is a hydrogen atom or a radical having general formula (II) wherein R_b is an optionally substituted benzoyl radical. a prompt of

singled beauty) reason. From the function R_2 is an alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, bicycloalkyl, optionally substituted phenyl or heterocyclyl radical; R_3 is an alkyl, alkenyl, alkynyl, cycloalkyl, phenyl, naphtyl or heterocyclic aromatic radical, and R_4 and R_3 , similar or different, represent an alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, bicycloalkyl, aryl or heterocyclyl radical, with the condition that R_3 does not represent a methyl radical. The new products having general formula (II) have remarkable antixumoral and antileukaemic properties.

(57) Abrégé

Nouveaux taxoldes de formules générales (I), (II), leur préparation et les compositions pharmaceuruques qui les contiennent. Dans la formule générale (I): R₀ représente bydrogène, bydroxy, alcoxy, acylory, alcoxyacetoxy et R₀ représente hydrogène ou bien R₀ et R₀ forment ensemble avec l'atome de carbone suquel là sont liés une fonction ectone; Z représente un atome d'hydrogène ou un radical de formule générale (II) dans laquelle R₁ représente un radical benoyle éventuellement substitué, thénoyle ou froyle ou un radical R₂ représente un radical alcoyle, alcynyle, cycloalcoyle, cycloalcoyle, bicycloalcoyle, bicycloalcoyle dehnyle éventuellement substitué ou hétérocyclyte; R₃ représente un radical alcoyle, alcényle, alcynyla, cycloalcoyla, phényle, naphyle ou hétérocyclique aromanque; et R₂ et R₃, identiques ou différents, représentent or radical alcoyle, alcynyle, cycloalcoyle, cycloalcoyle, cycloalcoyle, bicycloalcoyle, syle, ou hétérocyclyle, R₃ ne pouvant pas représenter un radical méthyle. Les nouveaux produits de formule générale (I) dans laquelle Z représente un radical de formule générale (II) présentent des propriétés antitumorales et antibucémiques remarquables.

ONLY FOR INFORMATION

Codes used to identify the PCT member States on the flyleaves of the brochures in which international applications made under the PCT are published.

AT	Austria	KZ	Kazakhstan
ΑU	Australia	LI	Liechtenstein
BB	Barbados	LK	Sri Lanka
BE	Belgium	LU	Luxembourg
BF	Burkina Fasso	LV	Latvia
BG	Bulgaria	MC	Monaco
ВJ	Benin	MD	Republic of Moldova
BR	Brazil	MG	Madagascar
BY	Belarus	ML	Mali
CA	Canada	MN	Mongolia
CF	Central African Republic	MR	Mauritania
CG	Congo	MW	Malawi
CH	Switzerland	NB	Niger
CI	Ivory Coast	NL	Netherlands
CM	Cameroon	NO	Norway
CN	China	NZ	New Zealand
CS	Czechoslovakia	PL	Poland
CZ	Czech Republic	PT	Portugal
DE	Germany	RO	Romania
DK	Denmark	RU	Russian Pederation
ES	Spain	SD	Sudan
FI	Finland	SE	Sweden
FR	France	SI	Slovenia
GA	Gabon	SK	Slovakia
GB	United Kingdom	SN	Senegal
GB	Georgia	TD	Chad
GN	Guinea	TG	Togo
GR	Greece	TJ	Tajikistan
HU	Hungary	TT	Trinidad and Tobago
IB	Ireland	UA	Ukraine
IT	Italy	us	United States of America
JP	Japan	UZ	Uzbekistan
KB	Kenya	VN	Vietnam
KG	Kyrghyzstan		
KP	Democratic People's		
	Republic of Korea		
KR	Republic of Korea		
		-	

NOVEL TAXOIDS. THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS WHICH CONTAIN THEM

The present invention relates to novel taxoids of general formula:

5 in which:

R_a represents a hydrogen atom or a hydroxyl radical, an alkoxy radical containing 1 to 4 carbon atoms, an acyloxy radical containing 1 to 4 carbon atoms or an alkoxyacetoxy radical in which the alkyl part contains 1 to 4 carbon atoms and R_b represents a hydrogen atom, or alternatively R_a and R_b form, together with the carbon atom to which they are attached, a ketone function,

Z represents a hydrogen atom or a radical of general formula:

$$\begin{array}{ccc} R_1NH & O \\ R_3 & & \\ \hline OH & & \end{array}$$

in which:

R₁ represents a benzoyl radical optionally substituted with one or more atoms or radicals, which may be identical or different, chosen from halogen atoms and alkyl radicals containing 1 to 4 carbon atoms, alkoxy radicals containing 1 to 4 carbon atoms, trifluoromethyl, thenoyl and furoyl radicals, or a radical R2-0-CO- in which R2 represents: - an alkyl radical containing 1 to 8 carbon atoms, an alkenyl radical containing 2 to 8 carbon atoms, an alkynyl radical containing 3 to 8 carbon atoms, a cycloalkyl radical containing 3 to 6 carbon atoms, a cycloalkenyl radical containing 4 to 6 carbon atoms, or a bicycloalkyl radical containing 7 to 10 carbon atoms, these radicals optionally being substituted with one or more substituents chosen from halogen atoms and hydroxyl radicals, alkoxy radicals containing 1 to 4 carbon atoms, dialkylamino radicals in which each alkyl part contains 1 to 4 carbon atoms, piperidino and morpholino radicals, 1-piperazinyl radicals (optionally substituted at -4 with an alkyl radical containing 1 to 4 carbon atoms or with a phenylalkyl radical in which the alkyl part contains 1 to 4 carbon atoms), cycloalkyl radicals containing 3 to 6 carbon atoms, cycloalkenyl radicals containing 4 to 6 carbon atoms, phenyl radicals (optionally substituted with one or more atoms or radicals chosen from halogen atoms and alkyl radicals containing 1 to 4 carbon atoms or alkoxy radicals containing 1 to 4 carbon atoms), cyano or

10

15

20

25

carboxyl radicals and alkoxycarbonyl radicals in which the alkyl part contains 1 to 4 carbon atoms,

- a phenyl or α - or β -napthyl radical which is optionally substituted with one or more atoms or radicals chosen from halogen atoms and alkyl radicals containing 1 to 4 carbon atoms or alkoxy radicals containing 1 to 4 carbon atoms or a 5-membered aromatic heterocyclic radical preferably chosen from furyl and thienyl radicals.

- or a saturated heterocyclic radical containing 4 to 6 carbon atoms optionally substituted with one or more alkyl radicals containing 1 to 4 carbon atoms,

R, represents a straight or branched alkyl radical containing 1 to 8 carbon atoms, a straight or branched alkenyl radical containing 2 to 8 carbon 15 atoms, a straight or branched alkynyl radical containing 2 to 8 carbon atoms, a cycloalkyl radical containing 3 to 6 carbon atoms, or a phenyl or α - or β naphthyl radical which is optionally substituted with 20 one or more atoms or radicals chosen from halogen atoms and alkyl, alkenyl, alkynyl, aryl, aralkyl, alkoxy, alkylthio, aryloxy, arylthio, hydroxyl, hydroxyalkyl, mercapto, formyl, acyl, acylamino, aroylamino, alkoxycarbonylamino, amino, alkylamino, dialkylamino, 25 carboxyl, alkoxycarbonyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, cyano, nitro and trifluoromethyl radicals, or a 5-membered aromatic heterocycle

containing one or more hetero atoms, which may be

identical or different, chosen from nitrogen, oxygen and sulphur atoms and optionally substituted with one or more substituents, which may be identical or different, chosen from halogen atoms, and alkyl, aryl, amino, alkylamino, dialkylamino, alkoxycarbonylamino, acyl, arylcarbonyl, cyano, carboxyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl and alkoxycarbonyl radicals, it being understood that, in the substituents of the phenyl, α - or β -naphthyl and aromatic heterocyclic radicals, the alkyl radicals and the alkyl portions of the other radicals contain 1 to 4 carbon

atoms and that the alkenyl and alkynyl radicals contain

2 to 8 carbon atoms and that the aryl radicals are

 R_4 and R_5 , which may be identical or different, represent

phenyl or α - or β -naphthyl radicals, and

10

- a straight or branched alkyl radical containing 1 to 8 carbon atoms, a straight or branched alkenyl radical containing 2 to 8 carbon atoms, a straight or branched 20 alkynyl radical containing 2 to 8 carbon atoms, a cycloalkyl radical containing 3 to 6 carbon atoms, a cycloalkenyl radical containing 4 to 6 carbon atoms or a bicycloalkyl radical containing 7 to 11 carbon atoms, these radicals optionally being substituted with one or 25 more substituents chosen from halogen atoms and hydroxyl radicals, alkyloxy radicals containing 1 to 4 carbon atoms, dialkylamino radicals in which alkyl part contains 1 to 4 carbon atoms, piperidino and morpholino

radicals, 1-piperazinyl radicals (optionally substituted at -4 with an alkyl radical containing 1 to 4 carbon atoms or with a phenylalkyl radical in which the alkyl part contains 1 to 4 carbon atoms),

- cycloalkyl radicals containing 3 to 6 carbon atoms, cycloalkenyl radicals containing 4 to 6 carbon atoms, phenyl radicals which are optionally substituted, cyano and carboxyl radicals and alkyloxycarbonyl radicals in which the alkyl part contains 1 to 4 carbon atoms,
- or an aryl radical optionally substituted with one or more atoms or radicals chosen from halogen atoms and alkyl, alkenyl, alkynyl, aryl, aralkyl, alkoxy, alkylthio, aryloxy, arylthio, hydroxyl, hydroxyalkyl, mercapto, formyl, acyl, acylamino, aroylamino,
- alkoxycarbonylamino, amino, alkylamino, dialkylamino, carboxyl, alkoxycarbonyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, cyano, nitro, azido, trifluoromethyl and trifluoromethoxy radicals,
- or a 4- to 6-membered saturated or unsaturated

 heterocyclic radical optionally substituted with one or
 more alkyl radicals containing 1 to 4 carbon atoms,
 it being understood that R_s cannot represent a methyl
 radical,

it being understood that the cycloalkyl, cycloalkenyl
and bicycloalkyl radicals may optionally be substituted
with one or more alkyl radicals containing 1 to 4
carbon atoms.

The aryl radicals which may be represented by

 R_3 , R_4 and/or R_5 are preferably phenyl or α - or β naphthyl radicals optionally substituted with one or more atoms or radicals chosen from halogen atoms (fluorine, chlorine, brominc or iodine) and alkyl, alkenyl, alkynyl, aryl, arylalkyl, alkoxy, alkylthio, aryloxy, arylthio, hydroxyl, hydroxyalkyl, mercapto, formyl, acyl, acylamino, aroylamino, alkoxycarbonylamino, amino, alkylamino, dialkylamino, carboxyl, alkoxycarbonyl, carbamoyl, dialkylcarbamoyl, 10 cyano, nitro, azido, trifluoromethyl and trifluoromethoxy radicals, it being understood that the alkyl radicals and the alkyl portions of the other radicals contain 1 to 4 carbon atoms, that the alkenyl and alkynyl radicals contain 2 to 8 carbon atoms and 15 that the aryl radicals are phenyl or α - or β -naphthyl radicals, and that the radical R, cannot represent a methyl radical.

The heterocyclic radicals which may be represented by R₁, R₄ and/or R₅ are preferably

5-membered aromatic heterocyclic radicals containing one or more atoms, which may be identical or different, chosen from nitrogen, oxygen and sulphur atoms, optionally substituted with one or more substituents, which may be identical or different, chosen from halogen atoms (fluorine, chlorine, bromine or iodine) and alkyl radicals containing 1 to 4 carbon atoms, aryl radicals containing 6 to 10 carbon atoms, alkoxy radicals containing 1 to 4 carbon atoms, aryloxy

radicals containing 6 to 10 carbon atoms, amino radicals, alkylamino radicals containing 1 to 4 carbon atoms, dialkylamino radicals in which each alkyl part contains 1 to 4 carbon atoms, acylamino radicals in which the acyl part contains 1 to 4 carbon atoms, alkoxycarbonylamino radicals containing 1 to 4 carbon atoms, acyl radicals containing 1 to 4 carbon atoms, arylcarbonyl radicals in which the aryl part contains 6 to 10 carbon atoms, cyano, carboxyl and carbamoyl radicals, alkylcarbamoyl radicals in which the alkyl part contains 1 to 4 carbon atoms, dialkylcarbamoyl radicals in which each alkyl part contains 1 to 4 carbon atoms, and alkoxycarbonyl radicals in which the alkoxy part contains 1 to 4 carbon atoms.

The present invention more particularly relates to the products of general formula (I) in which R_a represents a hydroxyl radical, an alkoxy radical containing 1 to 4 carbon atoms, an acyloxy radical containing 1 to 4 carbon atoms or an alkoxyacetoxy radical in which the alkyl part contains 1 to 4 carbon atoms and R_b represents a hydrogen atom, Z represents a hydrogen atom or a radical of general formula (II) in which R₁ represents a benzoyl radical or a radical R₂-O-CO- in which R₂ represents a tert-butyl radical, and R₃ represents an alkyl radical containing 1 to 6 carbon atoms, an alkenyl radical containing 2 to 6 carbon atoms, a cycloalkyl radical containing 3 to 6 carbon atoms, a phenyl radical optionally substituted with one

or more atoms or radicals, which may be identical or different, chosen from halogen atoms (fluorine or chlorine) and alkyl (methyl), alkoxy (methoxy), dialkylamino (dimethylamino), acylamino (acetylamino), 5 alkoxycarbonylamino (tert-butoxycarbonylamino) or trifluoromethyl radicals or a 2- or 3-furyl, 2- or 3-thienyl or 2-, 4- or 5-thiazolyl radical, and R4 represents a phenyl radical which is optionally substituted with one or more atoms or radicals, which 10 may be identical or different, chosen from halogen atoms and alkyl, alkoxy, amino, alkylamino, dialkylamino, acylamino, alkoxycarbonylamino, azido, trifluoromethyl and trifluoromethoxy radicals, or a 2or 3-thienyl or 2- or 3-furyl radical, and R, represents 15 an optionally substituted alkyl radical containing 1 to 4 carbon atoms, it being understood that R, cannot represent a methyl radical.

Even more particularly, the present invention relates to the products of general formula (I) in which

R_a represents a hydrogen atom or a hydroxyl or acetyloxy or methoxyacetoxy radical and R_b represents a hydrogen atom, Z represents a hydrogen atom or a radical of the general formula (II) in which R₁ represents a benzoyl radical or a radical R₂-0-CO- in which R₂ represents a tert-butyl radical, and R₃ represents an isobutyl, isobutenyl, butenyl, cyclohexyl, phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-thiazolyl, 4-thiazolyl or 5-thiazolyl radical, and R₄ represents a phenyl

radical which is optionally substituted with a halogen atom, and R, represents an alkyl radical containing 2 to 4 carbon atoms.

The products of general formula (I) in which I represents a radical of general formula (II) have noteworthy antitumour and antileukaemia properties.

5

10

15

20

According to the invention, the products of general formula (I), in which R_a represents a hydrogen atom or an alkoxy, acyloxy or alkoxyacetoxy radical, R_b represents a hydrogen atom, and R₄, R₅ and Z are defined as above, may be obtained by the action of an alkali metal halide (sodium chloride, sodium iodide or potassium fluoride) or an alkali metal azide (sodium azide) or a quaternary ammonium salt or an alkali metal phosphate on a product of general formula:

in which Z, R₄ and R₅ are defined as above, R_a represents a hydrogen atom or an alkoxy, acyloxy or alkoxyacetoxy radical or a protected hydroxyl radical, and R_b represents a hydrogen atom, followed, if necessary, by replacement of the protecting group carried by R_a by a hydrogen atom.

The reaction is generally carried out in an organic solvent chosen from ethers (tetrahydrofuran, diisopropyl ether or methyl tert-butyl ether) and nitriles (acetonitrile) alone or as a mixture, at a temperature between 20°C and the boiling point of the reaction mixture.

5

10

15

The product of general formula (LII) in which Z represents a radical of general formula (II) may be obtained by esterification of a product of general formula:

in which R_4 and R_5 are defined as above, R_a represents a hydrogen atom or an alkoxy, acyloxy or alkoxyacetoxy radical or a protected hydroxyl radical, and R_b represents a hydrogen atom, using an acid of general formula:

$$\begin{array}{c|c}
R_1 & R_6 & O \\
\hline
R_3 & & OH \\
\hline
O-R_7 & & (V)
\end{array}$$

in which R_1 and R_3 are defined as above, or R_6 represents a hydrogen atom and R_7 represents a protecting group for the hydroxyl function, and either

R₄ and R₇ together form a 5- or 6-membered saturated heterocycle, or using a derivative of this acid, to give an ester of general formula:

$$R_1$$
 R_6
 R_7
 R_8
 R_8

in which R_a, R_b, R₁, R₁, R₄, R₅, R₆ and R₇ are defined as

above, followed by replacement of the protecting groups
represented by R₇ and/or R₆ and R₇ by hydrogen atoms and
optionally R_a, when it represents an acyloxy or
alkoxyacetoxy radical or a protected hydroxyl radical,
by a hydroxyl radical.

10 The esterification using an acid of general formula (V) may be carried out in the presence of a coupling agent (carbodiimide or reactive carbonate) and an activating agent (aminopyridines) in an organic solvent (ethers, esters, ketones, nitriles, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons or aromatic hydrocarbons) at a temperature between -10 and 90°C.

The esterification may also be performed using the acid of general formula (V) in anhydride form, working in the presence of an activating agent (aminopyridines) in an organic solvent (ethers, esters,

20

replacement of the protecting groups by hydrogen atoms is carried out using an inorganic acid (hydrochloric acid, sulphuric acid or hydrofluoric acid) or an organic acid (acetic acid, methanesulphonic acid, trifluoromethanesulphonic acid or p-toluenesulphonic acid) used alone or as a mixture, working in an organic solvent chosen from alcohols, ethers, esters, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, aromatic hydrocarbons and nitriles, at a temperature

between -10 and 60°C,

2) When R_i represents a hydrogen atom and R_i represents a protecting group for the hydroxyl function and R_i
20 represents a 2,2,2-trichloroethoxycarbonyloxy radical, replacement of the protecting group R_i is carried out under the conditions described above in 1) and that of R_i is carried out by treatment using zinc, optionally combined with copper, in the presence of acetic acid at a temperature between 30 and 60°C, or using an inorganic or organic acid such as hydrochloric acid or

acetic acid dissolved in an aliphatic alcohol containing 1 to 3 carbon atoms (methanol, ethanol, propanol or isopropanol) or in an aliphatic ester (ethyl acetate, isopropyl acetate or n-butyl acetate) in the presence of zinc which is optionally combined with copper,

3) when R₆ and R₇ together form a 5- or 6-membered saturated heterocycle and more particularly an oxazolidine ring of general formula:

$$R_1-N$$
 O (VII)

10 in which R₁ is defined as above, R₂ and R₃, which may be identical or different, represent a hydrogen atom or an alkyl radical containing 1 to 4 carbon atoms, or an aralkyl radical in which the alkyl part contains 1 to 4 carbon atoms and the aryl part preferably represents a phenyl radical optionally substituted with one or more 15 alkoxy radicals containing 1 to 4 carbon atoms, or an aryl radical preferably representing a phenyl radical optionally substituted with one or more alkoxy radicals containing 1 to 4 carbon atoms, or alternatively R. represents an alkoxy radical containing 1 to 4 carbon 20 atoms or a trihalomethyl radical such as trichloromethyl or a phenyl radical substituted with a trihalomethyl radical such as trichloromethyl and R,

represents a hydrogen atom, or alternatively R, and R, form, together with the carbon atom to which they are attached, a 4- to 7-membered ring, and R, represents an acyloxy or alkoxyacetoxy or 2,2,2-

- trichloroethoxycarbonyloxy radical, replacement of the protecting group formed by R_i and R_7 by hydrogen atoms and of R_a by a hydroxyl radical may be carried out, depending on the meanings of R_a , R_1 , R_4 and R_7 , in the following way:
- a) when R₁ represents a tert-butoxycarbonyl radical, R₂ and R₃, which may be identical or different, represent an alkyl radical or an aralkyl (benzyl) or aryl (phenyl) radical, or alternatively R₃ represents a trihalomethyl radical or phenyl radical substituted

 15 with a trihalomethyl radical, and R₃ represents a hydrogen atom, or alternatively R₃ and R₄ together form a 4- to 7-membered ring, treatment of the ester of general formula (VI) with an inorganic or organic acid, optionally in an organic solvent such as an alcohol,

 20 gives the product of general formula:

$$\begin{array}{c|c}
R_{2} & & & & & & \\
R_{3} & & & & & & \\
\hline
OH & OH & OH & OCOR_{5}
\end{array}$$
(VIII)

in which R_a , R_b , R_3 , R_4 and R_5 are defined as above,

which compound is acylated using benzoyl chloride in which the phenyl ring is optionally substituted, thenoyl chloride, furoyl chloride or a product of general formula:

 $R_2-O-CO-X \qquad (IX)$

in which R₂ is defined as above and X represents a halogen atom (fluorine or chlorine) or a residue -O-R₂, or -O-CO-O-R₂, in order to obtain a product of general formula:

in which R_a, R_b, R₁, R₃, R₄ and R₅ are defined as above, the protecting group R_a of which compound, when it represents a protected hydroxyl radical, is replaced, if necessary, by a hydroxyl radical.

Preferably, the product of general formula

15 (VI) is treated with formic acid at a temperature in the region of 20°C.

20

Acylation of the product of general formula

(VIII) using a benzoyl chloride in which the phenyl

radical is optionally substituted, thenoyl chloride or

furoyl chloride or a product of general formula (IX) is

preferably carried out in an inert organic solvent

chosen from esters such as ethyl acetate, isopropyl acetate or n-butyl acetate and halogenated aliphatic hydrocarbons such as dichloromethane or 1,2-dichloroethane, in the presence of an inorganic base such as sodium bicarbonate or an organic base such as triethylamine. The reaction is carried out at a temperature between 0 and 50°C, preferably in the region of 20°C.

Replacement of the protecting group of R_a,

when it represents a 2,2,2-trichloroethoxycarbonyloxy
radical, is preferably carried out under the conditions
described above in 2),

b) when R₁ represents a benzoyl radical which is optionally substituted, a thenoyl or furoyl radical 15 or a radical R_2O-CO- in which R_2 is defined as above, R_8 represents a hydrogen atom, an alkoxy radical containing 1 to 4 carbon atoms or a phenyl radical substituted with one or more alkoxy radicals containing 1 to 4 carbon atoms, and R, represents a hydrogen atom, replacement of the protecting group formed by R, and R, 20 by hydrogen atoms is carried out in the presence of an inorganic acid (hydrochloric acid or sulphuric acid) or an organic acid (acetic acid, methanesulphonic acid, trifluoromethanesulphonic acid or p-toluenesulphonic acid) used alone or as a mixture, in a stoichiometric 25 or catalytic amount, working in an organic solvent chosen from alcohols, ethers, esters, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons and

aromatic hydrocarbons, at a temperature between -10 and 60° C, preferably between 15 and 30° C, and replacement of the protecting group of R_a , when it represents a 2,2,2-trichloroethoxycarbonyloxy radical, by a hydrogen atom is carried out under the conditions described above in 2).

- 4) when R_a represents an alkoxyacetyl radical and R_6 and R_7 are defined as in point 1) above, firstly, the protecting group R_7 is replaced by a hydrogen atom,
- 10 working under the acidic conditions described in point
 1) above, optionally followed by replacement of R, by a
 hydroxyl radical, by treatment in an alkaline medium or
 by the action of a zinc halide under conditions which
 do not affect the rest of the molecule. The alkaline
- treatment is generally carried out by the action of ammonia in an aqueous-alcoholic medium at a temperature in the region of 20°C. The treatment with a zinc halide, preferably zinc iodide, is generally carried out in methanol at a temperature in the region of 20°C.
- 5) when R_a represents an alkoxyacetoxy radical and R_s and R_s are defined as in point 2-a) above, the radical R_a is replaced by a hydroxyl radical by treatment in alkaline medium or by treatment using a zinc halide under the conditions described in point 3) above,
- followed by treatment of the product of general formula

 (VI) obtained under the deprotection and acylation

 conditions described in point 2-a) above.

6) when R_a represents an alkoxyacetoxy radical and R_c and R_r are defined as in point 2-b) above, the radical R_a is replaced by a hydroxyl radical by treatment in an alkaline medium or by treatment using a zinc halide under the conditions described in point 3) above, followed by treatment of the product obtained under the conditions described in point 2-b) above.

According to the invention, the products of general formula (III) in which R₄ and R₅ are defined as above, R_a represents a hydrogen atom or an alkoxy, acyloxy or alkoxyacetoxy radical, and R_b represents a hydrogen atom, or alternatively R_a and R_b form, together with the carbon atom to which they are attached, a ketone function, and Z represents a hydrogen atom, may be obtained by the action of a trifluoromethanesulphonic acid derivative, such as the anhydride or the N-phenyltrifluoromethanesulphonimide, on a product of general formula:

HO
$$\frac{R_b}{HO}$$
 $OOOR_5$ $OCOR_5$

in which R_a , R_b , R_4 and R_5 are defined as above.

The reaction is generally carried out in an inert organic solvent (optionally halogenated aliphatic

hydrocarbons, or aromatic hydrocarbons) in the presence of an organic base such as an aliphatic tertiary amine (triethylamine) or pyridine, at a temperature between -50 and +20°C.

5 The products of general formula (XI) in which R_4 and R_5 are defined as above, R_a represents a hydrogen atom or an alkoxy, acyloxy or alkoxyacetoxy radical or a protected hydroxyl radical, and R_b represents a hydrogen atom, may be obtained by the action of hydrofluoric acid or trifluoroacetic acid in a basic 10 organic solvent, such as pyridine optionally substituted with one or more alkyl radicals containing 1 to 4 carbon atoms, or triethylamine optionally in combination with an inert organic solvent such as 15 methylenechloride or acetonitrile or tetrahydrofuran, at a temperature between 20 and 80°C, on a product of general formula:

in which R, and R, are defined as above, R, represents a hydrogen atom or an alkoxy, acyloxy or alkoxyacetoxy radical or a protected hydroxyl radical, R, represents a hydrogen atom, and the symbols G, which are identical,

20

represent a trialkylsilyl radical.

The product of general formula (XII) may be obtained by the action of a product of general formula:

R-Y (XIII)

in which R represents an alkyl, alkanoyl or alkoxyacetyl radical or a protecting group for the hydroxyl function and Y represents a halogen atom, on a product of general formula:

in which R_4 , R_5 and G_1 are defined as above.

When R represents an alkyl or alkoxyacetyl radical, it is particularly advantageous to work in a basic organic solvent such as pyridine or in an inert organic solvent such as methylene chloride, chloroform or 1,2-dichloroethane, in the presence of a tertiary amine such as triethylamine or pyridine, at a temperature in the region of 0°C.

When R represents an alkyl radical, it is particularly advantageous to metallate the hydroxyl function at -10 beforehand using an alkali metal hydride (sodium hydride) or a metal alkylide (butyllithium).

20

The product of general formula (XIV) and,

optionally, the product of general formula (XII) may be obtained by the action of an organometallic derivative of general formula:

$$R_4-M$$
 (XV)

in which R₄ is defined as above and M represents a metal atom, preferably a lithium or magnesium atom, on a product of general formula:

in which R_a , R_b , R_5 and G_1 are defined as above.

The reaction is generally carried out in an organic solvent such as an ether (tetrahydrofuran) at a temperature below -50°C, preferably in the region of -78°C.

The product of general formula (XVI) may be obtained by esterification of a product of general formula:

15

which

in

 R_{a} , R_{b} and G_{i} are defined as above, using an acid of general formula:

5 R_s-COOH (XVIII)

in which R₅ is defined as above, or using a derivative of this acid such as a halide or an anhydride, in the presence of a coupling agent or of an inorganic or organic base.

The product of general formula (XVII) may be obtained by the action of a product of general formula (XIII) on a product of general formula:

in which G₁ is defined as above, under the conditions described above for the action of a product of general formula (XIII) on a product of general formula (XIV).

The product of general formula (XIX) may be

prepared by the action of phosgene, or one of the derivatives thereof such as triphosgene, on a product of general formula:

in which G₁ is defined as above, working in a basic organic solvent such as pyridine, at a temperature below -50°C, preferably in the region of -78°C.

The product of general formula (XX) may be prepared by the action of a halotrialkylsilane on a product of general formula:

in which G_1 is defined as above, working in a basic organic solvent.

The product of general formula (XXI) may be prepared under the conditions described by D.G.I. Kingston et al., Journal of Nat. Prod., <u>56</u>, 884 (1993).

The product of general formula (I) in which R_a and R_b each represent a hydrogen atom may be obtained by

electrolytic reduction of a product of general formula
(I) in which R_a represents a hydroxyl radical or an
acyloxy or alkoxyacetoxy radical or under the
conditions described in International Application PCT
WO 93/06093.

5

25

The products of general formula (I) in which R_a and R_b form, together with the carbon atom to which they are attached, a ketone function may be obtained by oxidation of a product of general formula (I) in which R_a represents a hydroxyl radical and R_b represents a hydrogen atom, using, for example, pyridinium chlorochromate, pyridinium dichromate, potassium dichromate, ammonium dichromate or manganese dioxide.

The novel products of general formula (I)

obtained using the processes according to the invention may be purified according to the known methods, such as crystallization or chromatography.

The products of general formula (I) in which

Z represents a radical of general formula (II) have

noteworthy biological properties.

In vitro, measurement of the biological activity is carried out on tubulin extracted from pig brain by the method of M.L. Shelanski et al., Proc. Natl. Acad. Sci. USA, 70, 765-768 (1973). Study of the depolymerization of microtubules into tubulin is carried out according to the method of G. Chauvière et al., C.R. Acad. Sci., 293, 2nd series, 501-503 (1981). In this study, the products of general formula (I) in

which Z represents a radical of general formula (II) proved to be at least as active as taxol and Taxotere.

In vivo, the products of general formula (I) in which Z represents a radical of general formula (II) proved to be active in mice grafted with melanoma B16 at doses between 1 and 10 mg/kg via the intraperitoneal route, as well as on other liquid or solid tumours.

and more particularly an activity on tumours which are

resistant to Taxol or to Taxotere. Such tumours

comprise tumours of the colon which have a high

expression of the mdr 1 gene (multi-drug resistance

gene). Multi-drug resistance is a common term relating

to the resistance of a tumour to various products

having various structures and mechanisms of action.

Taxoids are generally known for being highly recognized

by experimental tumours such as P388/DOX, a cell line

selected for its resistance to doxorubicin (DOX) which

expresses mdr 1.

The examples which follow illustrate the present invention.

EXAMPLE 1

To a solution of 0.193 g of 2α -benzoyloxy- 5β , 20-epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo- 4α -

propanoyloxy-7β-trifluoromethanesulphonyloxy-11-taxen13α-yl (2R,4S)-3-tert-butoxycarbonylamino-2-hydroxy-4phenylpropionate in 2.5 cm³ of acetonitrile and

0.250 cm3 of tetrahydrofuran are successively added 0.096 g of powdered 4Å molecular sieves and 0.290 g of sodium chloride. The reaction mixture is kept stirring at a temperature in the region of 75°C for 5 hours, and 5 then, at a temperature in the region of 20°C, 75 cm³ of dichloromethane and 50 cm' of saturated aqueous sodium chloride solution are added. The organic phase is separated out after settling of the phases has taken place, washed twice with 40 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium 10 sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.150 g of a product is obtained, which is purified by chromatography on 80 g of silica (0.063-0.2 mm) 15 contained in a column 1 cm in diameter (eluent: dichloromethane/methanol: 98/2 by volume), collecting 10 cm³ fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.080 g of 2α -benzoyloxy- 5β , 20-epoxy- 1β -hydroxy- 10β -20 methoxyacetoxy-7 β , 8-methylene-19-nor-9-oxo-4 α propanoyloxy-11-taxen-13α-yl (2R,4S)-3-tertbutoxycarbonylamino-2-hydroxy-3-phenylpropionate is obtained, the characteristics of which are as follows: - ^{1}H NMR spectrum (400 MHz, CDCl,, δ in ppm): 1.24 (t, J 25 = 7.5 Hz, 3H : CH, ethyl); 1.24 (s, 6H : CH,); 1.27 (s, 9H : C(CH₃),) ; 1.42 (mt, 1H : H 7); 1.68 and 2.24 (2 mts, 1H each: CH, at 19); 1.86 (s, 1H: OH at 1); 1.86 (s, 3H : CH₃); 2.12 and 2.86 (d and dt respectively, J = 16 and 5 Hz, 1H each: CH₂ at 6); from 2.15 to 2.30 and 2.41 (mt and dd respectively, J = 16 and 9 Hz, 1H each: CH₃ at 14); 2.64 (mt, 2H: CH₂ ethyl); 3.26 (mt, 1H: OH at 2'); 3.52 (s, 3H: OCH₃); 4.07 (d,J = 7 Hz, 1H: H at 3); 4.04 and 4.33 (2d, J = 9 Hz, 1H each: CH₂ at 20); 4.22 (limiting AB, J = 16 Hz, 2H: OCOCH₂O); 4.62 (mt, 1H: H at 2'); 4.70 (d, J = 4 Hz, 1H: H at 5); 5.28 (md, 2H: H at 3' and CONH); 5.67 (d,J = 7 Hz, 1H: H at 2); 6.26 (broad t, J = 9 Hz, 1H: H at 13); 6.42 (s, 1H: H at 10); from 7.25 to 7.45 (mt, 5H: aromatic H at 3'); 7.52 (t, J = 7.5 Hz, 2H: OCOC₆H₃ meta-H); 7.62 (t, J = 7.5 Hz, 1H: OCOC₆H₃ para-H); 8.16 (d, J = 7.5 Hz, 2H: OCOC₆H₃ ortho-H).

- 15 2α-Benzoyloxy-5β,20-epoxy-1β-hydroxy-10βmethoxyacetoxy-9-oxo-4α-propanoyloxy-7βtrifluoromethanesulphonyloxy-11-taxen-13α-yl (2R,4S)-3tert-butoxycarbonylamino-2-hydroxy-4-phenylpropionate
 may be prepared the following way:
- A solution of 0.760 g of 2α-benzoyloxy-5β,

 20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-4αpropanoyloxy-7β-trifluoromethanesulphonate-11-taxen13α-yl (2R,4S,5R)-3-tert-butoxycarbonyl-2-(4methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate

 in 6.6 cm³ of 0.1N hydrochloric ethanol solution is kept stirring at a temperature in the region of 0°C for 22
 hours. The reaction medium is concentrated to dryness under reduced pressure (2.7 kPa) at 20°C. The crude

reaction material is dissolved in 80 cm3 of dichloromethane and 80 cm of saturated aqueous sodium bicarbonate solution. The organic phase is separated out after settling of the phases has taken place and then extracted with twice 50 cm3 of dichloromethane. The 5 organic phases are combined, washed with 50 cm3 of distilled water and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 20°C. 0.9 g of a white foam is obtained, which is purified by chromatography on 150 g 10 of silica (0.063-0.2 mm) contained in a column 3 cm in diameter (eluent: dichloromethane/methanol: 95/5 by volume), collecting 15 cm3 fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure 15 (2.7 kPa) at 20°C. 0.456 g of 2α -benzoyloxy- 5β , 20epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo- 4α propanoyloxy- 7β -trifluoromethanesulphonyloxy-11-taxen-13α-yl (2R,4S)-3-tert-butoxycarbonylamino-2-hydroxy-4-20 phenylpropionate is obtained, the physical characteristics of which are as follows: - 1 H NMR spectrum (400 MHz, CDCl,, δ in ppm): 1.24 (s, 9H : CH, and CH, ethyl); 1.34 (s, 9H : C(CH,),); 1.74 (s, 1H : OH at 1); 1.88 (s, 3H : CH,); 2.05 (broad s, 3H : CH_3); 2.24 and 2.86 (2 mts, 1H each: CH_2 at 6); 2.33 25 (d, J = 9 Hz, 2H : CH₂ at 14); 2.68 (mt, <math>2H : CH₂ethyl); 3.30 (mt, 1H : OH at 2'); 3.52 (s, 3H : OCH,); 3.93 (mt, 1H : H at 3); 4.19 (limiting AB, J = 16 Hz,

2H: OCOCH₂O); 4.20 and 4.36 (2d, J = 9 Hz, 1H each: CH₂ at 20); 4.64 (broad d, J = 5.5 Hz, 1H: H at 2');

4.86 (broad d, J = 10 Hz, 1H: H at 5); 5.22 (mt, 1H: H at 3'); 5.30 (d, J = 10 Hz, 1H: CONH); 5.51 (dd, J = 10 and 7.5 Hz, 1H: H at 7); 5.75 (d, J = 7 Hz, 1H: H at 2); 6.20 (mt, 1H: H at 13); 6.71 (s, 1H: H at 10); from 7.30 to 7.45 (mt, 5H: aromatic H at 3'); 7.52 (t, J = 7.5 Hz, 2H: OCOC₆H₅ meta-H); 7.64 (t, J = 7.5 Hz, 1H: OCOC₆H₅ para-H); 8.13 (d, J = 7.5 Hz, 2H: OCOC₆H₅ ortho-H).

2α-Benzoyloxy-5β,20-epoxy-1β-hydroxy-10βmethoxyacetoxy-9-oxo-4α-propanoyloxy-7βtrifluoromethanesulphonyloxy-11-taxen-13α-yl
(2R,4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4phenyl-1,3-oxazolidine-5-carboxylate may be prepared in
the following way:

To a solution of 0.590 g of 2α -benzoyloxy- 1β , 13α -dihydroxy- 5β , 20-epoxy- 10β -methoxyacetoxy-9-oxo- 4α -propanoyloxy- 7β -trifluoromethanesulphonyloxy-11-

- taxene in 10 cm³ of anhydrous ethyl acetate are successively added 0.463 g of (2R,4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylic acid, 0.319 g of dicyclohexylcarbodiimide and 0.028 g of
- 4-dimethylaminopyridine. The reaction mixture is stirred for 15 hours, under an argon atmosphere, at a temperature in the region of 20°C, followed by addition of 75 cm³ of dichloromethane and 50 cm³ of saturated

aqueous ammonium chloride solution. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm³ of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.980 g of product are obtained, which is purified by chromatography on 150 g of silica (0.063-0.2 mm) contained in a column 3 cm in diameter (eluent: dichloromethane/methanol:

- 95/5 by volume), collecting 15 cm³ fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.740 g of 2α-benzoyloxy-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-4α-
- propanoyloxy-7β-trifluoromethanesulphonyloxy-11-taxen13α-yl (2R,4S,5R)-3-tert-butoxycarbonyl-2-(4methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate
 is obtained in the form of a white foam, the physical
 characteristics of which are as follows:
- 20 ¹H NMR spectrum (400 MHz, CDCl₃, δ in ppm) : 1.06 (s, 12H : CH₃ and C(CH₃)₃); 1.20 (s, 3H : CH₃); 1.27 (t, J = 7.5 Hz, 3H : CH₃ ethyl); 1.67 (s, 1H : OH at 1); 1.71 (s, 3H : CH₃); 1.83 (s, 3H : CH₃); from 2.00 to 2.30 and 2.83 (2 mt, 1H each : CH₂ at 6); from 2.00 to 2.30 (mt,
- 25 2H : CH₂ ethyl); 2.08 and 2.22 (2 dd, J = 16 and 9 HZ, lH each : CH₂ at 14); 3.52 (s, 3H : OCH₃); 3.82 (s, 3H : ArOCH₃); 3.82 (mt, lH : H at 3); 4.12 and 4.29 (2d, J = 9 Hz, lH each : CH₂ at 20); 4.18 (limiting AB,

J = 16 Hz, 2H : OCOCH₂O); 4.51 (d, J = 5 Hz, 1H : H at 2'); 4.80 (broad d, J = 10 Hz, 1H : H5); from 5.35 to 5.45 (mt, 1H : H at 3'); 5.43 (dd, J = 10.5 and 7.5 Hz, 1H : H at 7); 5.68 (d, J = 7 Hz, 1H : H at 2); 6.01 (mt, 1H : H at 13); 6.38 (mt, 1H : H at 5'); 6.60 (s, 1H : H at 10); 6.92 (d, J = 8.5 Hz, 2H : aromatic H ortho to the OCH₃); 7.39 (d, J = 8.5 Hz, 2H : aromatic H meta to the OCH₃); from 7.30 to 7.45 (mt, 5H : aromatic H at 3'); 7.50 (t, J = 7.5 Hz, 2H : OCOC₆H₅ meta-H); 7.65 (t, J = 7.5 Hz, 1H : OCOC₆H₅ para-H); 8.03 (d, j =

2α-Benzoyloxy-1β,13α-dihydroxy-5β,20-epoxy10β-methoxyacetoxy-9-oxo-4α-propanoyloxy-7βtrifluoromethanesulphonyloxy-11-taxene may be prepared in the following way:

7.5 Hz, 2H : OCOC,H, ortho-H).

10

15

To a solution of 0.660 g of 2α-benzoyloxy5β,20-epoxy-10β-methoxyacetoxy-9-oxo-4α-propanoyloxy1β,7β,13α-trihydroxy-11-taxene in 6.6 cm³ of anhydrous dichloromethane and 0.338 cm³ of pyridine, maintained
20 under an argon atmosphere, and at a temperature in the region of 0°C, is added dropwise 0.354 cm³ of trifluoromethanesulphonic anhydride. The orangecoloured solution obtained is stirred for 10 minutes at a temperature in the region of 0°C and for 30 minutes
25 at a temperature in the region of 20°C, followed by addition of 3 cm³ of water and 50 cm³ of dichloromethane. The organic phase is separated out after settling of the phases has taken place, washed

with twice 40 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.800 g of product is obtained, which is purified by chromatography on 100 g of silica (0.063-0.2 mm) contained in a column 2 cm in diameter (eluent: dichloromethane/methanol: 95/5 by volume), collecting 15 cm3 fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure 10 (2.7 kPa) at 40°C. 0.591 g of 2α -benzoyloxy- 1β , 13α dihydroxy-5 β , 20-epoxy-10 β -methoxyacetoxy-9-oxo-4 α propanoyloxy-7 β -trifluoromethanesulphonyloxy-11-taxene is obtained in the form of a white foam, the physical 15 characteristics of which are as follows: - ^{1}H NMR spectrum (400 MHz, CDCl₃, δ in ppm) : 1.05 (s, $3H : CH_3$; 1.19 (s, $3H : CH_3$); 1.23 (t, J = 7.5 Hz, 3H :CH, ethyl); 1.62 (s, lH : OH at 1); 1.89 (s, 3H : CH₃); 2.12 (d, J = 5 Hz, 1H : OH at 13); 2.24 and 2.90 (2 mts, 1H each : CH₂ at 6); 2.25 (s, 3H : CH₃); 2.30 20 (limiting AB, 2H : CH, at 14); 2.64 (mt, 2H : CH, ethyl); 3.52 (s, 3H: OCH_3); 4.02 (d, J = 7 Hz, 1H: H at 3); 4.15 and 4.35 (2d, J = 9 Hz, 1H each : CH_2 at 20); 4.20 (limiting AB, J = 16 Hz, 2H : OCOCH₂O); 4.85 25 (mt, 1H : H at 13); 4.91 (broad d, J = 10 Hz, 1H : H at5); 5.57 (dd, J = 10 and 7 Hz, 1H : H at 7); 5.69 (d, J= 7 Hz, 1H : H at 2); 6.73 (s, 1H : H at 10); 7.50 (t, $J = 7.5 \text{ Hz}, 2\text{H} : OCOC_6H_5 \text{ meta-H}); 7.63 (t, J = 7.5 \text{ Hz},$

1H : $OCOC_{\epsilon}H_{5}$ para-H); 8.11 (d, J = 7.5 Hz, 2H : $OCOC_{\epsilon}H_{5}$ ortho-H).

 2α -Benzoyloxy- 5β , 20-epoxy- 10β -methoxyacetoxy-9-oxo- 4α -propanoyloxy- 1β , 7β , 13α -trihydroxy-11-taxene may be prepared in the following way:

To a solution of 1.21 g of 2α-benzoyloxy7β,13α-ditriethylsilyloxy-5β,20-epoxy-1β-hydroxy-10βmethoxyacetoxy-9-oxo-4α-propanoyloxy-11-taxene in 15 cm³
of dichloromethane are added, at a temperature in the
region of 20°C, 23 cm³ of triethylamine-hydrofluoric
acid complex. The reaction mixture is stirred for 20
hours at a temperature in the region of 20°C, followed
by addition of 50 cm³ of dichloromethane and 100 cm³ of
saturated aqueous sodium hydrogen carbonate solution.

- The organic phase is separated out after settling of the phases has taken place, washed with twice 50 cm³ of saturated aqueous sodium chloride solution and them dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2./
- kPa) at 40°C. 1.04 g of 2α-benzoyloxy-5β,20-epoxy-10β-methoxyacetoxy-9-oxo-4α-propanoyloxy-1β,7β,13α-trihydroxy-11-taxene are obtained in the form of a white foam, the physical characteristics of which are as follows:
- 25 H NMR spectrum (400 MHz, CDCl₃, δ in ppm): 1.11 (s, 6H : CH₃); 1.25 (t, J = 7.5 Hz, 3H : CH₃ ethyl); 1.65 (s, 1H : OH at 1); 1.70 (s, 3H : CH₃); 1.88 and 2.60 (2 mts, 1H each : CH₂ at 6); 2.08 (s, 3H : CH₃); 2.30

(limiting AB, 2H : CH₂ at 14); 2.39 (d, J = 4 Hz, 1H :
OH at 7); ^ 53 (mt, 2H : CH₂ ethyl); 3.55 (s, 3H :
OCH₃); 3.90 (d, J = 7 Hz, 1H : H at 3); 4.17 and 4.32
(2d, J = 9 Hz, 1H each : CH₂ at 20); 4.25 (limiting AB,

J = 16 Hz, 2H : OCOCH₂O); 4.51 (mt, 1H : H at 7); 4.89
(mt, 1H : H at 13); 4.95 (broad d, J = 10 Hz, 1H : H at 5); 5.64 (d, J = 7 Hz, 1H : H at 2); 6.43 (s, 1H : H at 10); 7.48 (t, J = 8 Hz, 2H : OCOC₆H₅ meta-H); 7.61 (t, J = 8 Hz, 1H : OCOC₆H₅ para-H); 8.13 (d, J = 8 Hz, 2H :
OCOC₆H₅ ortho-H).

 2α -Benzoyloxy- 7β , 13α -ditriethylsilyloxy- 5β , 20-epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo- 4α -propanoyloxy-11-taxene may be prepared in the following way:

To a solution of 0.900 g of 2α-benzoyloxy-15 1β , 10β -dihydroxy- 7β , 13α -bis(triethylsilyloxy)- 5β , 20epoxy-9-oxo-4 α -propanoyloxy-11-taxene in 15 cm 3 of pyridine is added, at a temperature in the region of 0°C, 0.520 cm3 of methoxyacetyl chloride. The reaction mixture is stirred for 2 hours at a temperature in the 20 region of 20°C, followed by addition of 100 cm³ of dichloromethane and 50 cm3 of saturated aqueous ammonium chloride solution. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm3 of saturated aqueous ammonium chloride 25 solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 1.3 g of product are

obtained, which product is purified by chromatgraphy on 150 g of silica (0.063-0.2 mm) contained in a column 2.5 cm in diameter (eluent: ethyl acetate/cyclohexane : 25/75 by volume), collecting 10 cm³ fractions. The 5 fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.780 g of 2\alpha-benzoyloxy- 7β , 13 α -bis (triethylsilyloxy) -5 β , 20-epoxy-1 β -hydroxy- 10β -methoxyacetoxy-9-oxo- 4α -propanoyloxy-11-taxene is obtained in the form of a white foam, the physical 10 characteristics of which are as follows: - ¹H NMR spectrum (400 MHz, CDCl₁, δ in ppm) : from 0.50 to 0.70 (mt, 12 H : CH, ethyl); 0.92 (t, J = 7.5 Hz, 9H : CH, ethyl); 1.00 (t, J = 7.5 Hz, 9H : CH, ethyl); 1.10 $(s, 3H : CH_3); 1.17 (s, 3H : CH_3); 1,29 (t, J = 7.5 Hz,$ 15 3H : CH, ethyl at 4); 1.61 (s, 1H : OH at 1); 1.68 (s, 3H : CH₃); 1.84 and 2.51 (2 mts, 1H each : CH, at 6); 2.09 and 2.21 (2 dd, J = 16 and 9 Hz, 1H each : CH, at 14); 2.10 (s, 3H : CH₃); 2.60 (mt, 2H : CH₂ ethyl at 4); 20 3.50 (s, $3H : OCH_3$); 3.78 (d, J = 7 Hz, 1H : H at 3); 4.12 and 4.30 (2d, J = 9 Hz, 1H each : CH, at 20); 4.15 (limiting AB, J = 16 Hz, 2H : OCOCH,0); 4.49 (dd, J = 11and 7 Hz, 1H : H at 7); 4.90 (mt, 2H : H at 5 and H at 13); 5.62 (d, J = 7 Hz, 1H : H at 2); 6.52 (s, 1H : Hat 10); 7.45 (t, J = 7.5 Hz, $2H : OCOC_{\epsilon}H_{\epsilon}$ meta-H; 7.58 $(t, J = 7.5 \text{ Hz}, 1\text{H} : OCOC_{\epsilon}H, para-H); 8.09 (d, J = 1.00)$

 2α -Benzoyloxy- 1β , 10β -dihydroxy- 7β , 13α -

7.5 Hz, 2H : OCOC, H, ortho-H).

bis(triethylsilyloxy)-5 β ,20-epoxy-9-oxo-4 α propanoyloxy-11-taxene may be prepared in the following
way:

To a solution of 1.105 g of 1β , 2α -carbonato- 7β , 13α -bis (triethylsilyloxy) - 5β , 20-epoxy- 10β methoxyacetoxy-9-oxo-4α-propanoyloxy-11-taxene in 50 cm³ of tetrahydrofuran anhydride are added, at a temperature in the region of -78°C, 1.8 cm3 of a 1M solution of phenyllithium in tetrahydrofuran. The reaction mixture is stirred for 15 minutes at a 10 temperature in the region of -78°C, followed by addition of 10 cm' of saturated aqueous ammonium chloride solution. At a temperature in the region of 20°C, 20 cm3 of saturated aqueous ammonium chloride solution and 50 cm3 of dichloromethane are added. The 15 organic phase is separated out after settling of the phases has taken place, washed with twice 10 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and 20 concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 1.3 g of product are obtained, which product is purified by chromatography on 150 g of silica (0.063-0.2 mm) contained in a column 5 cm in diameter (eluent: ethyl acetate/cyclohexane: 10/90 by volume), collecting 18 cm3 fractions. The fractions 25 containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.840 g of 2α -benzoyloxy- 1β , 10β - dihydroxy- 7β , 13α -bis (triethylsilyloxy) - 5β , 20-epoxy-9-oxo- 4α -propanoyloxy-11-taxene is obtained in the form of a white foam, the physical characteristics of which are as follows:

- 5 ¹H NMR spectrum (400 MHz, CDCl₃, δ in ppm) : from 0.53 (mt, 6 H : CH₂ ethyl); 0.65 (mt, 6 H : CH₂ ethyl); 0.92 (t, J = 7.5 Hz, 9H : CH₃ ethyl); 1.00 (t, J = 7.5 Hz, 9H : CH₃ ethyl); 1.07 (s, 3H : CH₃); 1.14 (s, 3H = : CH₃); 1.26 (t, J = 7.5 Hz, 3H : CH₃ ethyl at 4);
- 10 1.40 (s, 1H : OH at 1); 1.71 (s, 3H : CH₃); 1.88 and
 2.45 (2 mts, 1H each: CH₂ at 6); 2.00 (s, 3H : CH₃);
 2.06 and 2.18 (2 dd, J = 16 and 9 Hz, 1H each: CH₂ at
 14); 2.60 (q, J = 7.5 Hz, 2H : CH₂ ethyl at 4); 3.84 (d,
 J = 7 Hz, 1H : H at 3); 4.14 and 4.30 (2d, J = 8.5 Hz,
- 20 2H : $OCOC_{\xi}H_{5}$ meta-H); 7.60 (t, J = 7.5 Hz, 1H : $OCOC_{\xi}H_{5}$ para H); 8.09 (d, J = 7.5 Hz, 2H : $OCOC_{\xi}H_{5}$ ortho-H).

 1β , 2α -Carbonato- 7β , 13α -bis (triethylsilyloxy) - 5β , 20-epoxy- 10β -methoxyacetoxy-9-oxo- 4α -propanoyloxy-11-taxene may be prepared in the following way:

To a solution of 2.0 g of 1β , 2α -carbonato- 7β , 13α -bis(triethylsilyloxy)- 5β , 20-epoxy- 4α -hydroxy- 10β -methoxyacetoxy-9-oxo-11-taxene in 90 cm³ of dichloromethane are added 3.7 g of

4-dimethylaminopyridine and 3.64 cm3 of propionic anhydride. The reaction medium is heated at a temperature in the region of 42°C for 8 hours. 50 cm' of saturated aqueous sodium chloride solution and 50 cm3 of dichloromethane are added. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 2.6 g of product 10 are obtained, which product is purified by chromatography on 100 g of silica (0.063-0.2 mm) contained in a column 3 cm in diameter (eluent: ethyl acetate/cyclohexane: 5/95 by volume), collecting 12 cm3 15 fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 1.97 g of 1β, 2αcarbonato-7 β , 13 α -bis(triethylsilyloxy)-5 β , 20-epoxy-10 β methoxyacetoxy-9-oxo-4α-propanoyloxy-11-taxene are 20 obtained in the form of a white foam, the physical characteristics of which are as follows:

- ¹H NMR spectrum (400 MHz, CDCl₃, δ in ppm): from 0.50 to 0.75 (mt, 12H : CH₂ ethyl); 0.94 (t, J = 7.5 Hz, 9H : CH₃ ethyl); 1.03 (t, J = 7.5 Hz, 9H : CH₃ ethyl); 1.21 (mt, 6H : CH₃ and CH₃ ethyl); 1.28 (s, 3H : CH₃); 1.75 (s, 3H : CH₃); 1.90 and 2.60 (2 mts, 1 H each: CH₃ at 6); 2.13 (s, 3H : CH₃); 2.15 and 2.38 (2 dd, J = 16 and

9 Hz, 1 H each: CH, at 14); 2.43 (mt, 2H : CH, ethyl);
3.43 (d, J = 5.5 Hz, 1H : H at 3); 3.51 (s, 3H : OCH,);
4.18 (s, 2H : OCOCH,O); 4.46 (dd, J = 11 and 7 Hz, 1H :
H at 7); 4.48 and 4.65 (2d, J = 9Hz, 2H : CH, at 20);
4.51 (d, J = 5.5 HZ, 1 H : H at 2); 4.93 (broad d, J =
10 Hz, 1 H : H at 5); 5.02 (t, J = 9 Hz, 1 H : H at
13); 6.51 (s, 1H : H at 10).

 1β , 2α -Carbonato- 7β , 13α -bis (triethylsilyloxy) - 5β , 20-epoxy- 4α -hydroxy- 10β -methoxyacetoxy-9-oxo-11-

10 taxene may be prepared in the following way:

5

To a solution of 4.12 g of 1β , 2α -carbonato- 4α , 10β -dihydroxy- 7β , 13α -bis(triethylsilyloxy)- 5β , 20epoxy-9-oxo-11-taxene in 80 cm3 of pyridine are added, with stirring and at a temperature in the region of $0\,^{\circ}\text{C}$, 2 g of powdered 4Å molecular sieves and 2.86 cm³ of 15 methoxyacetyl chloride. The reaction mixture is stirred for 15 minutes at a temperature in the region of 0°C and the reaction medium is then allowed to warm slowly to a temperature in the region of 20°C. After stirring for 4 hours at a temperature in the region of 20°C, 50 20 cm3 of saturated aqueous ammonium chloride solution and 100 cm3 of dichloromethane are added. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm3 of satura ed aqueous. ammonium chloride solution, with twice 25 cm³ of

ammonium chloride solution, with twice 25 cm³ of saturated aqueous copper sulphate solution and with twice 25 cm³ of saturated aqueous sodium chloride solution and then dried over magnesium sulphate,

filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 5.3 g of product are obtained, which product is purified by chromatography on 200 g of silica (0.063-0.2 mm) contained in a column 4 cm in diameter (eluent: ethyl acetate/cyclohexane: 25/75 by volume), collecting 12 cm³ fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 4.21 g of 1β,2α-carbonato-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-4α-hydroxy-10β-methoxyacetoxy-9-oxo-11-taxene are obtained in the form of a white foam, the physical characteristics of which are as follows:

- ¹H NMR spectrum (400 MHz, CDCl₃, δ in ppm): 0.59 (mt,

6H: CH₂ ethyl); 0.73 (mt, 6H: CH₂ ethyl); 0.91 (t, J =

7.5 Hz, 9 H: CH₃ ethyl); 1.02 (t, J = 7.5 Hz, 9H: CH₃
ethyl); 1.15 (s, 3H: CH₃); 1.18 (s, 3H: CH₃); 1.65 (s,

3H: CH₃); 1.98 and 2.51 (2 mts, 1 H each: CH₂ at 6);

2.15 (s, 3H: CH₃); 2.54 and 2.72 (2 dd respectively,

20 J = 16 and 9 Hz and J = 16 and 3 Hz, 1H each: CH₂ at

14); 2.93 (s, 1H: OH at 4); 3.03 (d, J = 5 Hz, 1H: H

at 3); 3.51 (s, 3H: OCH₃); 4.16 (mt, 1H: H at 7); 4.17

(AB, J = 18 Hz, 2H: OCOCH₂O); 4.37 (d, J = 5 Hz, 1H: H

at 2); 4.54 (AB, J = 9 Hz, 2H: CH₂ at 2U); 4.76 (broad

 1β , 2α -Carbonato- 4α , 10β -dihydroxy- 7β , 13α -bis(triethylsilyloxy)- 5β , 20-epoxy-9-oxo-11-taxene may

d, J = 10 Hz, 1H : H at 5; 4.81 (dd, J = 9 and 3 Hz,

1H : H at 13); 6.51 (s, 1H : H at 10).

25

be prepared in the following way:

To a solution of 0.400 g of 7β , 13α bis (triethylsilyloxy) -5β , 20-epoxy-9-oxo- 1β , 2α , 4α , 10β tetrahydroxy-11-taxene in 10 cm3 of dichloromethane are added, with stirring and at a temperature in the region of -78°C, 1 cm3 of pyridine and 0.560 g of triphosgene. The reaction mixture is stirred for 2 hours at a temperature in the region of -78°C and the reaction medium is then allowed to warm slowly to a temperature in the region of 20°C. 30 cm³ of saturated aqueous 10 ammonium chloride solution and 20 cm' of dichloromethane are added. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm3 of saturated aqueous sodium chloride 15 solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.400 g of a yellow foam is obtained, which is purified by chromatography on 25 g of silica (0.063-0.2 mm) contained in a column 2 cm in 20 diameter (eluent: ethyl acetate/cyclohexane: 20/80 by volume), collecting 10 cm3 fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.330 g of 1β , 2α -carbonato- 4α , 10β dihydroxy- 7β , 13α -bis (triethylsilyloxy) - 5β , 20-epoxy-9-25 oxo-11-taxene is obtained in the form of a white foam, the physical characteristics of which are as follows: - ^{1}H NMR spectrum (400 MHz, CDCl,, δ in ppm) : 0.54 (mt,

6H : CH, ethyl); 0.63 (mt, 6H : CH, ethyl); 0.92 (t, J = 7.5 Hz, 9H : CH, ethyl); 1.03 (t, J = 7.5 Hz, 9H : CH, ethyl); 1.11 (s, 3H : CH,); 1.19 (s, 3H : CH,); 1.72 (s, 3H : CH,); 1.98 and 2.46 (2 mts, 1H each : CH, at 6); 2.06 (s, 3H : CH,); 2.55 at 2.66 (2 dd, J = 16 and 9 Hz and J = 16 and 3 Hz respectively, 1H each: CH, at 14); 3.00 (s, 1H : OH at 4); 3.13 (d, J = 5 Hz, 1H : H at 3); 4.06 (dd, J = 11 and 7 Hz, 1H : H at 7); 4.20 (d, J = 2.5 Hz, 1H : OH at 10); 4.33 (d, J = 5 Hz, 1H : H at 2); 4.55 (AB, J = 9 Hz, 2H : CH, at 20); 4.76 (broad d, J = 10 Hz, 1H : H at 5); 4.82 (dd, J = 9 and 3 Hz, 1H : H at 13); 5.19 (d, J = 2.5 Hz, 1H : H at 10).

7β,13α-Bis(triethylsilyloxy)-5β,20-epoxy-9
15 oxo-1β,2α,4α,10β-tetrahydroxy-11-taxene may be prepared in the following way:

To a solution of 3.80 g of 5β,20-epoxy-9-oxo1β,2α,4α,10β,13α-pentahydroxy-7β-triethylsilyloxy-11taxene in 100 cm³ of dichloromethane are added, with
stirring and at a temperature in the region of 0°C,
1.20 cm³ of pyridine and 2.48 cm³ of
chlorotriethylsilane. The reaction mixture is stirred
for 3 hours at a temperature in the region of 0°C.
100 cm³ of saturated aqueous sodium chloride solution
are added. The organic phase is separated out after
settling of the phases has taken place, washed with
twice 100 cm³ of saturated aqueous sodium chloride
solution and then dried over magnesium sulphate,

20

25

filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 5.34 g of an orange-coloured oil are obtained, which product is purified by chromatography on 300 g of silica (0.063-0.2 mm)

- contained in a column 3 cm in diameter (eluent: ethyl acetate/cyclohexane: 25/75 by volume), collecting 40 cm³ fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C.
- 4.18 g of of 7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-9-oxo-1β,2α,4α,10β-tetrahydroxy-11-taxene are obtained in the form of a white foam, the physical characteristics of which are as follows:
- ¹H NMR spectrum (400 MHz, CDCl₃, δ in ppm) : 0.53 (mt, 6H : CH₂ ethyl); 0.75 (mt, 6H : CH₂ ethyl); 0.91 (t, J = 7.5 Hz, 9H : CH₃ ethyl); 1.01 (s, 3H : CH₃); 1.03 (t, J = 7.5 Hz, 9H : CH₃ ethyl); 1.09 (s, 3H : CH₃); 1.63 (s, 3H : CH₃); 1.97 (s, 3H : CH₃); from 1.95 to 2.10 and 2.40 (2 mts, 2H each : CH₃ at 14 and CH₃ at 6); 3.17 (s,
- 25 (broad d, J = 10 Hz, lH : H at 5); 4.74 (mt, lH : H at 13); 5.14 (d, J = 3 Hz, lH : H at 10).

KXAMPLE 2

To a solution of 20.5 mg of 5β , 20-epoxy- 1β hydroxy- 10β -methoxyacetoxy-9-oxo- 4α -propanoyloxy- 2α -(2thenoyloxy) -7β -trifluoromethanesulphonyloxy-11-taxen-13α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-5 phenylpropionate in 0.2 cm³ of acetonitrile and 0.025 cm3 of tetrahydrofuran are added 45 mg of sodium chloride and a spatulaful of activated 4Å molecular sieves. The mixture obtained is maintained at reflux, for 2 hours, under an argon atmosphere. After cooling 10 to a temperature in the region of 20°C, the solvents are evaporated off under reduced pressure (0.27 kPa) at a temperature in the region of 40°C, and the solid residue is taken up in 5 cm3 of dichloromethane. 15 filtered on cotton wool and rinsed with 5 cm3 of an ethyl acetate/dichloromethane mixture (50/50 by volume). The organic phases are concentrated under reduced pressure (0.27 kPa) at a temperature in the region of 40°C. 17.1 mg of a yellow foam are thus 20 obtained, which product is purified by thin-layer preparative chromatography [2 Merck preparative plates, Kieselgel 60F254, thickness 0.25 mm, deposited as a solution in dichloromethane, eluent: methanol/dichloromethane mixture (6/94 by volume)]. 25 After elution of the zone corresponding to the main product with a methanol/dichloromethane mixture (10/90 by volume), filtration on sintered glass and then

evaporation of the solvents under reduced pressure

- (0.27 kPa) at a temperature in the region of 40°C,
 10.0 mg of 5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy7,8β-methylene-9-oxo-4α-propanoyloxy-2α-(2-thenoyloxy)19-nor-11-taxen-13α-yl (2R,3S)-3-tert-
- 5 butoxycarbonylamino-2-hydroxy-3-phenylpropionate are obtained in the form of a white resin, the characteristics of which are as follows:
 - ¹H NMR spectrum (400 MHz, CDCl₃, δ in ppm) : 1.18 (t, J = 7.5 Hz, 3H : CH₃ ethyl); 1.22 (s, 6H : CH₃); 1.32
- 10 (s, 9H : C(CH₃)₃); 1.41 (mt, 1H : H at 7); 1.69 and 2.23
 (2 mts, 1H each : CH₂ at 19); 1.81 (s, 1H : OH at 1);
 1.85 (s, 3H : CH₃); 2.12 and 2.50 (d and dt
 respectively, J = 16 and J = 16 and 4.5 Hz, 1H each :
 CH₂ at 6); 2.25 and 2.39 (2 dd, J = 16 and 9 Hz, 1H
- 15 each : CH₂ at 14); 2.63 (mt, 2H : CH₂ ethyl); 3.23 (mt,
 1H : OH at 2'); 3.52 (s, 3H : OCH₃); 4.03 (d, J = 7 Hz,
 1H : H at 3); 4.12 and 4.44 (2d, J = 9 Hz, 1H each : CH₂
 at 20); 4.20 (limiting AB, J = 16 Hz, 2H : OCOCH₂O);
 4.62 (mt, 1H : H at 2'); 4.70 (d, J = 4 Hz, 1H : H at
- 25 (broad d, J = 5 Hz, 1H : H at 5 of the 2-thenoy1); 7.96 (broad d, J = 3.5 Hz, 1H : H at 5 of the 2-thenoy1).

 5β , 20-Epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo- 4α -propanoyloxy- 2α -(2-thenoyloxy)- 7β -

trifluoromethanesulphonyloxy-11-taxen-13 α -yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate may be prepared in the following way:

A solution of 75 mg of 5β , 20-epoxy- 1β hydroxy-10 β -methoxyacetoxy-9-oxo-4 α -propanoyloxy-2 α -(2thenoyloxy) -7\beta-trifluoromethanesulphonyloxy-11-taxen- $13\alpha-y1$ (2R, 4S, 5R) -3-tert-butoxycarbonyl-2-(4methoxyphenyl) -4-phenyl-1,3-oxazolidine-5-carboxylate in 0.77 cm3 of a 0.1N solution of hydrochloric acid in ethanol is stirred at a temperature in the region of 10 5°C for 2 hours. The reaction mixture is then diluted with 10 cm3 of dichloromethane and washed with twice 1 cm3 of distilled water. After extraction of the aqueous phase with 1 cm3 of dichloromethane, the organic phases are combined, dried over magnesium sulphate, 15 filtered on sintered glass and concentrated under reduced pressure (0.27 kPa) at a temperature in the region of 40°C. 74.4 mg of a yellow resin are thus obtained, which product is purified by chromatography 20 at atmospheric pressure on 8 g of silica (0.063-0.2 mm) contained in a column 1.5 cm in diameter (elution gradient: ethyl acetate/dichloromethane from 5/95 to 20/80 by volume), collecting 8 cm3 fractions. The fractions containing only the desired product are 25 combined and concentrated to dryness under reduced pressure (0.27 kPa) at 40°C for 2 hours. 56.3 mg of 5β , 20-epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo- 4α propanoyloxy- 2α -(2-thenoyloxy)- 7β - trifluoromethanesulphonyloxy-11-taxen-13α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate are thus obtained in the form of a pale yellow foam, the characteristics of which are as follows:

- 5 H NMR spectrum (400 MHz, CDCl₃, δ in ppm) : 1.20 (s, 6H : CH₃); 1.22 (t, J = 7.5 Hz, 3H : CH₃ ethyl); 1.36 (s, 9H : C(CH₃)₃); 1.71 (s, 1H : OH at 1); 1.89 (s, 3H : CH₃); 2.05 (s, 3H : CH₃); 2.25 and 2.86 (2 mts, 1H each : CH₂ at 6); 2.33 (d, J = 9 Hz, 2H : CH₃ at 14);
- 2.66 (mt, 2H : CH₂ ethyl); 3.28 (d, J = 5 Hz, lH : OH at
 2'); 3.52 (s, 3H : OCH₃); 3.90 (d, J = 7 Hz, lH : H at
 3); 4.20 (limiting AB, J = 16 Hz, 2H : OCOCH₂O); 4.27
 and 4.50 (2d, J = 9 Hz, lH each : CH₂ at 20); 4.61 (mt,
 lH : H at 2'); 4.88 (broad d, J = 10 Hz, lH : H at 5);
- 15 5.20 (broad d, J = 10 Hz, lH : H at 3'); 5.30 (d, J =
 10 Hz, lH : CONH); 5.50 (dd, J = 10 and 7 Hz, lH : H at
 7); 5.65 (d, J = 7 Hz, lH : H at 2); 6.18 (broad t, J =
 9 Hz, lH : H at 13); 6.70 (s, lH : H at 10); 7.18 (dd,
 J = 5 and 3.5 Hz, lH : H at 4 of the 2-thenoyl); from
- 7.30 to 7.50 (mt, 5H : aromatic H at 3'); 7.69 (dd, J =
 5 and 1.5 Hz, 1H : H at 5 of the 2-thenoyl); 7.92 (dd,
 J = 3.5 and 1.5 Hz, 1H : H at 5 of the 2-thenoyl).

 5β , 20-Epoxy-1 β -hydroxy-10 β -methoxyacetoxy-9-oxo-4 α -propanoyloxy-2 α -(2-thenoyloxy)-7 β -

trifluoromethanesulphonyloxy-11-taxen-13α-yl
(2R,4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4phenyl-1,3-oxazolidine-5-carboxylate may be prepared in
the following way:

To a solution of 55.2 mg of 5β , 20-epoxy- 1β , 13α -dihydroxy- 10β -methoxyacetoxy-9-oxo- 4α propanoyloxy- 2α -(2-thenoyloxy)- 7β trifluoromethanesulphonyloxy-11-taxene in 0.1 cm3 of 5 anhydrous toluene are successively added 41 mg of (2R, 4S, 5R) -3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4phenyl-1,3-oxazolidine-5-carboxylic acid, 26 mg of dicyclohexylcarbodiimide and 3 mg of 4-(N,Ndimethylamino) pyridine. The reaction mixture is stirred for 2 hours, under an argon atmosphere and at a 10 temperature in the region of 20°C, and then placed on a chromatography column at atmospheric pressure (15 g of silica (0.063-0.2 mm) contained in a column 1.5 cm in diameter (elution gradient: ethyl 15 acetate/dichloromethane from 5/95 to 10/90 by volume), collecting 10 cm³ fractions). The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (0.27 kPa) at 40°C for 2 hours. 75.3 mg of 5β , 20-epoxy- 1β -hydroxy- 10β methoxyacetoxy-9-oxo- 4α -propanoyloxy- 2α -(2-thenoyloxy)-20 7β -trifluoromethanesulphonyloxy-11-taxen-13 α -yl (2R, 4S, 5R) -3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4phenyl-1,3-oxazolidine-5-carboxylate are thus obtained in the form of a white foam, the characteristics of which are as follows: 25 - ^{1}H NMR spectrum (400 MHz, CDCl,, δ in ppm): 1.04 (s, 9H : $C(CH_3)_3$; 1.04 (t, J = 7.5 Hz, 3H : CH_3 ethyl);

1.14 (s, 3H : CH₃); 1.16 (s, 3H : CH₃); 1.61 (s, 1H : OH

at 1); 1.68 (s, 3H : CH₃); 1.81 (s, 3H : CH₃); from 2.00 to 2.30 (mt, 4H : CH, ethyl and CH, at 14); 2.03 and 2.80 (2 mts, 1H each : CH, at 6); 3.50 (s, 3H : OCH,); 3.77 (d, J = 7 Hz, 1H : H at 3); 3.81 (s, 3H : ArOCH₃); 4.13 (limiting AB, J = 16 Hz, 2H : OCOCH₂O); 4.18 and 4.39 (2d, J = 9 Hz, 1H each : CH₂ at 20); 4.48 (d, J =4 Hz, 1 H : H at 2'); 4.78 (broad d, J = 10 Hz, 1 H : Hat 5); from 5.35 to 5.50 (mt, 2H : H at 3' and H at 7); 5.55 (d, J = 7 Hz, 1H : H at 2); 5.96 (broad t, J =9 Hz, 1H : H at 13); 6.34 (mt, 1H : H at 5'); 6.56 (s, . 10 1H : H at 10); 6.88 (d, J = 8 Hz, 2H : aromatic H ortho to the OCH,); 7.13 (dd, J = 5 and 3.5 Hz, 1H : H at 4 of the 2-thenoyl); from 7.30 to 7.45 (mt, 5H : aromatic H at 3'); 7.36 (d, J = 8 Hz, 2H: aromatic H meta to the OCH_1); 7.62 (broad d, J = 5 Hz, 1H : H at 5 of the 2-15 thenoyl); 7.80 (broad d, J = 3.5 Hz, 1H : H at 5 of the 2-thenoy1).

5β,20-Epoxy-1β,13α-dihydroxy-10βmethoxyacetoxy-9-oxo-4α-propanoyloxy-2α-(2-thenoyloxy)
7β-trifluoromethanesulphonyloxy-11-taxene may be prepared in the following way:

To a solution of 50 mg of 5β , 20-epoxy- 10β -methoxyacetoxy-9-oxo- 4α -propanoyloxy- 2α -(2-thenoyloxy)- 1β , 7β , 13α -trihydroxy-11-taxene in 0.5 cm³ of anhydrous dichloromethane and 0.0255 cm³ of pyridine, maintained under an argon atmosphere and at a temperature in the region of 0°C, is added dropwise 0.0265 cm³ of trifluoromethanesulphonic anhydride. The orange-

25

coloured solution obtained is stirred for 10 minutes at a temperature in the region of 0°C and for 45 minutes at a temperature in the region of 20°C, followed by addition of 0.1 cm³ of a methanol/dichloromethane 5 mixture (5/95 by volume). The solution is placed on a chromatography column at atmospheric pressure (10 g of silica (0.063-0.2 mm) contained in a column 1.5 cm in diameter (elution gradient: methanol/dichloromethane from 2/98 to 5/95 by volume), collecting 8 cm3 10 fractions). The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (0.27 kPa) at 40°C for 2 hours. 55.2 mg of 5β , 20-epoxy- 1β , 13α -dihydroxy- 10β methoxyacetoxy-9-oxo- 4α -propanoyloxy- 2α -(2-thenoyloxy)-15 7β -trifluoromethanesulphonyloxy-11-taxene are thus obtained in the form of a white foam.

5β,20-Epoxy-1β,7β,13α-trihydroxy-10βmethoxyacetoxy-9-oxo-4α-propanoyloxy-2α-(2-thenoyloxy)ll-taxene may be prepared in the following way:

20

25

To a solution of 0.302 g of 5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-4α-propanoyloxy-2α-(2-thenoyloxy)-7β,13α-bis(triethylsilyloxy)-11-taxene in 5 cm³ of dichloromethane are added, at a temperature in the region of 20°C, 6 cm³ of triethylamine-hydrofluoric acid complex (Et,N.3HF). The reaction mixture is stirred for 24 hours at a temperature in the region of 20°C, followed by addition of 50 cm³ of dichloromethane and 100 cm³ of saturated aqueous sodium hydrogen carbonate

5

10

15

20

25

at 3 of the 2-thenoyl).

solution. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40° C. 0.24 g of 5β ,20-epoxy- 1β , 7β , 13α -trihydroxy- 10β -methoxyacetoxy-9-oxo- 4α propanoyloxy-2α-(2-thenoyloxy)-11-taxene is thus obtained in the form of a white foam, the characteristics of which are as follows: - ^{1}H NMR spectrum (400 MHz, CDCl,, δ in ppm): 1.07 (s, $3H : CH_3$; 1.10 (s, $3H : CH_3$); 1.22 (t, J = 7.5 Hz, 3H :CH, ethyl); 1.62 (s, 1H : OH at 1); 1.69 (s, 3H : CH₃); 1.89 and 2.63 (2 mts, 1H each: CH, at 6); 2.03 (d, J =5.5 Hz, 1H : OH at 13); 2.07 (s, 3H : CH_1); 2.27 (d, J =9 Hz, 2H : CH_2 at $1\frac{1}{4}$); 2.35 (d, J = 4.5 Hz, 1H : OH at 7); 2.59 (mt, 2H : CH₂ ethyl); 3.52 (s, 3H : OCH₃); 3.84 (d, $J = 7 h_4$, 1H : H at 3); 4.23 and 4.43 (2d, J =9 Hz, 1H each : CH, at 20); 4.25 (limiting AB, J =16 Hz, 2H : OCOCH₂O); 4.49 (mt, 1H : H at 7); 4.87 (mt, 1H : H at 13); 4.95 (broad d, J = 10Hz, 1H : H at 5); 5.53 (d, J = 7 Hz, 1H : H at 2); 6.42 (s, 1H : H at10); 7.14 (dd, J = 4.5 and 3.5 Hz, 1H : H at 4 of the

 5β , 20-Epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo- 4α -propanoyloxy- 2α -(2-thenoyloxy)- 7β , 13α -

2-thenoyl); 7.61 (dd, J = 4.5 and 1.5 Hz, 1H : H at 5

of the 2-thenoyl); 7.83 (dd, J = 3.5 and 1.5 Hz, 1H : H

bis(triethylsilyloxy)-11-taxene may be prepared in the following way:

To a solution of 0.5 g of 5β , 20-epoxy- 1β , 10β -dihydroxy-9-oxo- 4α -propanoyloxy- 2α -(2-thenoyloxy)-

- 7β,13α-bis(triethylsilyloxy)-11-taxene in 10 cm³ of pyridine is added, at a temperature in the region of 0°C, 0.286 cm³ of methoxyacetyl chloride. The reaction mixture is stirred for 10 hours at a temperature in the region of 20°C, followed by addition of 100 cm³ of
- dichloromethane and 50 cm³ of saturated aqueous ammonium chloride solution. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm³ of saturated aqueous ammonium chloride solution and then dried over magnesium sulphate,
- filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. The residue obtained (0.6 g) is purified by chromatography on 50 g of silica (0.063-0.2 mm) contained in a column 2 cm in diameter (eluent: ethyl acetate/cyclohexane : 5/95 by volume),
- collecting 10 cm³ fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (0.27 kPa) at 40°C.
 0.320 g of 5β,20-epoxy-1β-hydro y-10β-methoxyacetoxy-9-oxo-4α-propanoyloxy-2α-(2-thenoyloxy)-7β,13α-
- 25 bis(triethylsilyloxy)-ll-taxene is obtained in the form of a white foam, the physical characteristics of which are as follows:

⁻ ^{1}H NMR spectrum (400 MHz, CDCl,, δ in ppm) : from 0.50

to 0.70 (mt, 12 H : CH₂ ethyl) : 0.92 (t, J = 7.5 Hz, 9H : CH, ethyl); 0.98 (t, J = 7.5 Hz, 9H : CH, ethyl); 1.09 (s, $3H : CH_3$); 1.15 (s, $3H : CH_3$); 1.27 (t, J =7.5 Hz, 3H : CH, ethyl at 4); 1.59 (s, 1H : OH at 1); 1.65 (s, 3H : CH₃); 1.85 and 2.52 (2 mts, 1H each : CH₂ 5 at 6); 2.07 and 2.18 (2 dd, J = 16 and 9 Hz, iH each: CH₂ at 14); 2.08 (s, 3H : CH₃); 2.58 (mt, 2H : CH₂ ethyl at 4); 3.50 (s, 3H : OCH₃); 3.73 (d, J = 7 Hz, 1H : H at 3); 4.13 (limiting AB, J = 16 Hz, $2H : OCOCH_2O$); 4.20 and 4.41 (2d, J = 9 Hz, 1H each : CH, at 20); 4.49 (dd, 10 J = 11 and 7 Hz, 1H : H at 7); 4.89 (broad t, J = 9 Hz, 1H = H at 13); 4.91 (broad d, J = 10 Hz, 1H : H at 5); 5.53 (d, J = 7 Hz, 1H : H at 2); 6.51 (s, 1H : H at10); 7.12 (dd, J = 4.5 and 3 Hz, 1H : H at 4 of the 2-thenoy1); 7.61 (d, J = 4.5 Hz, lH : H at 5 of the 15 2-thenoyl); 7.83 (d, J = 3 Hz, 1H : H at 3 2-thenoyl). 5β , 20-Epoxy- 1β , 10β -dihydroxy-9-oxo- 4α propanoyloxy-2 α -(2-thenoyloxy)-7 β ,13 α bis(triethylsilyloxy)-11-taxene may be prepared in the 20 following way:

To a solution of 0.5 g of 1β,2αcarbonyldioxy-5β,20-epoxy-10β-methoxyacetoxy-9-oxo-4αpropanoyloxy-7β,13α-bis(triethylsilyloxy)-11-taxene in
20 cm³ of tetrahydrofuran, under an argon atmosphere and
25 at a temperature in the region of -78°C, are added
1.5 cm³ of a 1M solution of 2-thienyllithium in
tetrahydrofuran. The reaction mixture is stirred for
35 minutes at a temperature in the region of -78°C,

followed by addition of 1 cm' of saturated aqueous ammonium chloride solution. At a temperature in the region of 20°C, 10 cm3 of saturated aqueous ammonium chloride solution and 50 cm³ of dichloromethane are added. The organic phase is separated out after settling of the phases has taken place, washed with twice 10 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 0.65 g of a solid is obtained, which is purified by chromatography on 90 g of silica (0.063-0.2 mm) contained in a column 1 cm in diameter (eluent: ethyl acetate/cyclohexane : 10/90 by volume), collecting 10 cm3 fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (0.27 kPa) at 40°C. 0.511 g of 5β , 20-epoxy- 1β , 10β dihydroxy-9-oxo-4 α -propanoyloxy-2 α -(2-thenoyloxy)- 7β , 13α -bis(triethylsilyloxy)-ll-taxene is obtained in the form of a white foam, the physical characteristics of which are as follows: - 1 H NMR (600 MHz, CDCl₃, δ in ppm): 0.57 (mt, 6 H : CH₂ ethyl); 0.68 (mt, 6 H : CH₂ ethyl); 0.95 (t, J = 7.5 Hz, 9H : CH, ethyl); 1.01 (t, J = 7.5 Hz, 9H : CH, ethyl); 1.07 (s, 3H : CH_3); 1.17 (s, 3H : CH_3); 1.27 (t, J=7.5 Hz, 3H : CH, ethyl at 4); 1.73 (s, 3H : CH,); 1.90 and 2.47 (2 mts, 1H each; CH₂ at 6); 2.02 (s, 3H : CH₃);

2.09 and 2.18 (2 dd, J = 16 and 9 Hz, 1H each : CH_2 at

10

15

20

25

14); 2.60 (mt, 2H : CH, ethyl at 4); 3.82 (d, J = 7 Hz,
1H : H at 3); 4.24 and 4.44 (2d, J = 9 Hz, 1H each : CH,
at 20); 4.26 (d, J = 0.5 Hz, 1H : OH at 10); 4.42 (dd,
J = 11 and 7 Hz, 1H : H at 7); 4.93 (broad d, J =

5 10 Hz, 1H : H at 5); 4.97 (broad t, J = 9 Hz, 1H : H at
13); 5.13 (d, J = 0.5 Hz, 1H : H at 10); 5.53 (d, J =
7 Hz, 1H : H at 2); 7.15 (dd, J = 4.5 and 3 Hz, 1H : H
at 4 of the 2-thenoyl); 7.63 (d, J = 4.5 Hz, 1H : H at
5 of the 2-thenoyl); 7.85 (d, J = 3 Hz, 1H : H at 3 of
10 the 2-thenoyl).

EXAMPLE 3

To a solution of 154 mg of 2α -benzoyloxy- 4α butanoyloxy- 5β , 20-epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo-7 β -trifluoromethanesulphonyloxy-11-taxen-13 α -yl 15 (2R, 3S) -3-tert-butoxycarbonylamino-2-hydroxy-3phenylpropionate in 2 cm 3 of acetonitrile and 200 μ l of tetrahydrofuran are successively added 96 mg of powdered 4Å molecular sieves and 225 mg of sodium chloride. The reaction mixture is kept stirring at a temperature in the region of 75°C for 5 hours, 20 followed, at a temperature in the region of 20°C, by addition of 15 cm3 of dichloromethane and 10 cm3 of saturated aqueous sodium chloride solution. The organic phase is separated out after settling of the phases has 25 taken place, washed with twice 20 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and concentrated to

dryness under reduced pressure (2.7 kPa) at 40°C.

133 mg of product are obtained, which product is
purified by chromatography on 80 g of silica (0.0630.2 mm) contained in a column 1 cm in diameter, eluting
with a dichloromethane/methanol mixture (98/2 by
volume) and collecting 10 cm³ fractions. The fractions
containing only the desired product are combined and
concentrated to dryness under reduced pressure
(2.7 kPa) at 40°C. 63 mg of 2α-benzoyloxy-4α-

- butanoyloxy-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-7β,8-methylene-19-nor-9-oxo-11-taxen-13α-yl (2R,3S)-3tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate are obtained in the form of a white foam, the physical characteristics of which are as follows:
- ¹H NMR spectrum (400 MHz; CDCl₃; δ in ppm): 0.92 (t, J = 7.5 Hz, 3H : CH₃ of the propyl); 1.26 (s, 6H : CH₃);
 1.31 (s, 9H : C(CH₃)₃); 1.42 (mt, 1H : H at 7); 1.71 and
 2.26 (2 mts, 1H each : CH₂ at 19); from 1.60 to 1.85 (mt, 2H : CH₂ of the propyl); 1.86 (s, 3H : CH₃); 1.88
- 20 (s, 1H : OH at 1); 2.12 and 2.50 (broad d and mt
 respectively, J = 16 Hz, 1H each : CH, at 6); 2.23 and
 2.39 (mt and dd respectively, J = 16 and 9 Hz, 2H : CH,
 at 14); 2.49 and 2.65 (2 mts, 1H each : OCOCH, of the
 propyl); 3.25 (mt, 1H : OH at 2'); 3.51 (s, 3H : OCH,);
- 25 4.05 and 4.32 (2 d, J = 9 Hz, 1H each : CH₂ at 20); 4.10 (d, J = 7 Hz, 1H : H at 3); 4.16 and 4.22 (2 d, J = 16 Hz, 1H each: OCOCH₂O); 4.62 (mt, 1H : H at 2'); 4.68 (broad d, J = 4.5 Hz, 1H : H at 5); 5.25 (broad d, J =

10 Hz, 1H: H at 3'); 5.30 (d, J = 10 Hz, 1H: CONH);
5.65 (d, J = 7 Hz, 1H: H at 2); 6.23 (broad t, J =
9 Hz, 1H: H at 13); 6.42 (s, 1H: H at 10); from 7.25
to 7.45 (mt, 5H: aromatic H at 3'); 7.51 (t, J = 7.5
Hz, 2H: OCOC₆H₅ meta-H); 7.62 (t, J = 7.5 Hz, 1H:
OCOC₆H₅ para-H); 8.16 (d, J = 7.5 Hz, 2H: OCOC₆H₅
ortho-H).

 $2\alpha\text{-Benzoyloxy-}4\alpha\text{-butanoyloxy-}5\beta\text{,}20\text{-epoxy-}1\beta\text{-}$ hydroxy- 10β -methoxyacetoxy- $9\text{-}oxo\text{-}7\beta$ -

trifluoromethanesulphonyloxy-11-taxen-13α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate may be prepared in the following way:

A solution of 400 mg of 2α-benzoyloxy-4α-butanoyloxy-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-7β-trifluoromethanesulphonyloxy-11-taxen-13α-yl (2R,4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate in 6.4 cm³ of 0.1N hydrochloric ethanol solution is kept stirring at a temperature in the region of 0°C for 6 hours, and then 20 at a temperature in the region of 20°C for 15 hours.

The reaction medium is concentrated to dryness under reduced pressure (2.7 kPa) at 20°C. The crude reaction product is dissolved in 20 cm³ of dichloromethane and 10 cm³ of saturated aqueous sodium bicarbonate solution.

The aqueous phase is separated out after settling of the phases has taken place and then extracted with twice 20 cm³ of dichloromethane. The organic phases are combined, washed with 30 cm³ of distilled water and then

dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 20°C. 410 mg of a product are obtained, which product is purified by chromatography on 60 g of silica (0.063-0.2 mm) contained in a column 1 cm in diameter, eluting with a dichloromethane/methanol mixture (98.5/1.5 by volume) and collecting 10 cm3 fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 20°C. 307 mg of 2α-benzoyloxy-4α-10 butanoyloxy- 5β , 20-epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo-7eta-trifluoromethanesulphonyloxy-11-taxen-13lpha-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3phenylpropionate are obtained in the form of a white 15 foam, the 'hysical characteristics of which are as follows: - 1 H NMR spectrum (400 MHz; CDCl₃; δ in ppm): 0.93 (t, J = 7.5 Hz, $3H : CH_3 \text{ of the propyl}$; $1.22 (s, 3H : CH_3)$; 1.24 (s, 3H : CH₃); 1.35 (s, 9H : C(CH₃)₃); from 1.65 to 1.85 (mt, 2H : CH2 of the propyl); 1.74 (s, 1H : OH at 20 1); 1.88 (s, 3H : CH₃); 2.04 (s, 3H : CH₃); 2.25 and 2.86 (2 mts, 1H each : CH_2 at 6); 2.33 (d, J = 9 Hz, 2H : CH, at 14); 2.52 and 2.66 (2 mts, J = 14.5 and6.5 Hz, 1H each: OCOCH, of the propyl); 3.33 (d, J =25 4 Hz, 1H : OH at 2'); 3.52 (s, 3H : OCH₁); 3.94 (d, J =7 Hz, 1 H : 1 H at 3); 4.16 and 4.21 (2 d, 1 H = 16 Hz, 1 Heach: OCOCH₂O); 4.19 and 4.35 (2 d, J = 9 Hz, 1H each:

CH, at 20); 4.62 (mt, 1H : H at 2'); 4.86 (broad d, J =

10 Hz, 1H : H at 5); 5.22 (broad d, J = 10 Hz, 1H : H at 3'); 5.33 (d, J = 10 Hz, 1H : CONH); 5.50 (dd, J = 11 and 8 Hz, 1H : H at 7); 5.73 (d, J = 7 Hz, 1H : H at 2); 6.16 (broad t, J = 9 Hz, 1H : H at 13); 6.71 (g, 1H : H at 10); from 7.25 to 7.45 (mt, 5H : aromatic H at 3'); 7.51 (t, J = 7.5 Hz, 2H : OCOC₆H₅ meta-H); 7.63 (t, J = 7.5 Hz, 1H : OCOC₆H₅ para-H); 8.12 (d, J = 7.5 Hz, 2H : OCOC₆H₅ at ortho-H).

 2α -Benzoyloxy- 4α -butanoyloxy- 5β , 20-epoxy- 1β -

- hydroxy-10β-methoxyacetoxy-9-oxo-7βtrifluoromethanesulphonyloxy-11-taxen-13α-yl
 (2R,4S,5R)-3-tert-butoxycarbonyl-7-(4-methoxyphenyl)-4phenyl-1,3-oxazolidine-5-carboxylate may be prepared in
 the following way:
- To a solution of 400 mg of 2α-benzoyloxy-4α-butanoyloxy-1β,13α-dihydroxy-5β,20-epoxy-10β-methoxyacetoxy-9-oxo-7β-trifluoromethanesulphonyloxy-11-taxene in 10 cm³ of anhydrous ethyl acetate are successively added 247 mg of (2R,4S,5R)-3-tert-
- butoxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylic acid, 186 mg of dicyclohexylcarbodiimide and 12.5 mg of 4-dimethylaminopyridine. The reaction mixture is stirred for 15 hours, under an argon atmosphere and at
- a temperature in the region of 20°C, and then concentrated to dryness under reduced pressure

 (2.7 kPa) at 40°C. 1 g of a product is obtained, which is purified by chromatography on 100 g of silica

(0.063-0.2 mm) contained in a column 3 cm in diameter, eluting with a dichloromethane/methanol mixture (95/5 by volume) and collecting 12 cm3 fractions. The fractions containing only the desired product are 5 combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 410 mg of 2α -benzoyloxy- 4α butanoyloxy- 5β , 20-epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo-7 β -trifluoromethanesulphonyloxy-11-taxen-13 α -yl (2R, 4S, 5R) -3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4phenyl-1,3-oxazolidine-5-carboxylate are obtained in 10 the form of a white foam, the physical characteristics of which are as follows: - ¹H NMR spectrum (400 MHz; CDCl₃; δ in ppm): 0.92 (t, $J = 7.5 \text{ Hz}, 3H : CH_3 \text{ of the propyl}); 1.07 (s, 9H :$ $C(CH_3)_3$; 1.17 (s, 6H : CH_3); from 1.55 to 1.70 (mt, 15 3H : CH2 of the propyl and OH at 1); 1.64 (s, 3H : CH3); 1.84 (s, 3H : CH₃); 2.08 and from 2.15 to 2.30 (dd and mt respectively, J = 16 and 9 Hz, 1H each : CH, at 14); from 2.15 to 2.30 and 2.82 (2 mts, 1H each : CH, at 6); 20 from 2.15 to 2.30 (mt, 2H : OCOCH, of the propyl); 3.51 $(s, 3H : OCH_3); 3.82 (s, 3H : ArOCH_3); 3.83 (d, J =$ 7 Hz, 1H : H at 3); 4.12 and 4.28 (2 d, J = 9 Hz, 1H each : CH_2 at 20); 4.14 and 4.22 (2 d, J = 16 Hz, 1H each : $OCOCH_2O$); 4.52 (broad d, J = 4.5 Hz, 1H : H at 25 2'); 4.79 (broad d, J = 10 Hz, 1H : H at 5); from 5.35 to 5.50 (mt, 1H : H at 3'); 5.44 (dd, J = 9 and 7 Hz, 1H : H at 7); 5.67 (d, J = 7 Hz, 1H : H at 2); 5.99

(broad t, J = 9 Hz, 1H : H at 13); 6.40 (mult., 1H : H

at 5'); 6.59 (s, 1H : H at 10); 6.92 (d, J = 8.5 Hz,

2H aromatic H ortho to the OCH₃); from 7.25 to 7.45

(mt, 5H : aromatic H at 3'); 7.37 (d, J = 8.5 Hz, 2H :

aromatic meta to the OCH₃); 7.48 (t, J = 7.5 Hz, 2H :

OCOC₆H₅ meta-H); 7.63 (t, J = 7.5 Hz, 1H : OCOC₆H₅ para-H); 8.11 (d, J = 7.5 Hz, 2H : OCOC₆H₅ ortho-H).

5

10

The 2α -Benzoyloxy- 4α -butanoyloxy- 1β , 13α -dihydroxy- 5β , 20-epoxy- 10β -methoxyacetoxy-9-oxo- 7β -trifluoromethanesulphonyloxy-11-taxene may be prepared in the following way:

To a solution of 389 mg of 2α -benzoyloxy- 4α butanoyloxy- 5β ,20-epoxy- 10β -methoxyacetoxyl-9-oxo- 1β , 7β , 13α -trihydroxy-11-taxene in 6 cm³ of anhydrous dichloromethane and 390 μ l of pyridine, maintained 15 under an argon atmosphere and at a temperature in the region of 0°C, are added dropwise 410 μ l of trifluoromethanesulphonic anhydride. The orangecoloured solution obtained is stirred for 15 minutes at a temperature in the region of 0°C, followed by 20 addition of 3 cm3 of water and 50 cm3 of dichloromethane. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, 25 filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 510 mg of product are obtained, which product is purified by chromatography on 70 g of silica (0.063-0.2 mm) contained in a column

1 cm in diameter, eluting with a dichloromethane/methanol mixture (95/5 by volume) and collecting 10 cm3 fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 410 mg of 2α-benzoyloxy-4α-butanoyloxy-1β,13αdihydroxy- 5β , 20-epoxy- 10β -methoxyacetoxy-9-oxo- 7β trifluoromethanesulphonyloxy-11-taxene are obtained in the form of a white foam, the physical characteristics 10 of which are as follows: - 1H NMR spectrum (400 MHz; CDCl,, δ in ppm): 1.06 (t, J = 7.5 Hz, 3H : CH₃ of the propyl); 1.06 (s, <math>3H : CH₃); 1.20 (s, 3H : CH₃); 1.63 (s, 1H : OH at 1); 1.77 (mt, 2H : CH₂ of the propyl); 1.87 (s, 3H : CH₃); 2.18 (d, J = 5 Hz, lH : OH at 13); from 2.15 to 2.40 (limiting 15 AB, 2H: CH, 14); from 2.15 to 2.40 and 2.89 (2 mts, 1H each : CH₂ 6); 2.25(s, 3H : CH₃); 2.59 (limiting AB, J = 16 and 7.5 Hz, 2H : OCOCH₂ of the propyl); 3.51 (s, $3H : OCH_3$); 4.03 (d, J = 7 Hz, 1H : H3); 4.16 and 4.24 20 (2 d, J = 16 Hz, 1H each : OCOCH₂O); 4.18 and 4.35 (2 d,J = 9 Hz, lh each : CH, 20); 4.85 (mt, <math>lh : H13); 4.92 (broad d, J = 10 Hz, 1H : H5); 5.57 (dd, J = 10.5 and 7 Ez, 1 H : H 7); 5.68 (d, J = 7 Hz, 1 H : H 2); 6.73 (s, 1H : H 10); 7.51 (t, J = 7.5 Hz, 2H : OCOC_eH, meta-H); 25 7.63 (t, J = 7.5 Hz, 1H : OCOC₆H, para-H); 8.10 (d,

 2α -Benzoyloxy- 4α -butanoyloxy- 5β , 20-epoxy- 10β -methoxyacetoxy-9-oxo- 1β , 7β , 13α -trihydroxy-11-taxene may

J = 7.5 Hz, $2H : OCOC_6H_5 \text{ ortho-H})$.

be prepared in the following way:

To a solution of 580 mg of 2α-benzoyloxy-4αbutanoyloxy- 7β ,13 α -bis(triethylsilyloxy)- 5β ,20-epoxy- 1β -hydroxy- 10β -methoxyacetoxy-9-oxo-11-taxene in 5 cm³ of dichloromethane are added, at a temperature in the region of 20°C, 5.5 cm of triethylamine-hydrofluoric acid complex. The reaction mixture is stirred for 23 hours at a temperature in the region of 20°C, followed by addition of 50 cm3 of dichloromethane and 100 cm3 of 10 saturated aqueous sodium hydrogen carbonate solution. The organic phase is separated out after settling of the phases has taken place, washed with twice 20 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and 15 concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 520 mg of product are obtained, which product is purified by chromatography on 70 g of silica (0.063-0.2 mm) contained in a column 2 cm in diameter, eluting with a methanol/dichloromethane 20 mixture (5/95 by volume) and collecting 10 cm³ fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 389 mg of 2α benzoyloxy- 4α -butanoyloxy- 5β ,20-epoxy- 10β -25 methoxyacetoxy-9-oxo- 1β ,7 β ,13 α -trihydroxy-11-taxene are obtained in the form of a white foam, the physical characteristics of which are as follows:

⁻ ^{1}H NMR spectrum (400 MHz; CDCl,; δ in ppm) : 1.05 (t,

J = 7.5 Hz, 3H : CH₃ of the propyl); 1.11 (s, 6H : CH₃);
1.67 (s, 3H : CH₃); 1.71 (s, 1H : OH at 1); 1.75 (mt,
2H : CH₂ of the propyl); 1.85 and from 2.45 to 2.65
(2 mts, 1H each : CH₂ at 6); 2.05 (s, 3H : CH₃); 2.24

5 (d, J = 5 Hz, 1H : OH); 2.28 (limiting AB, J = 16 and 9
Hz, 2H : CH₃ at 14); 2.40 (d, J = 4 Hz, 1H : OH); 2.56
(limiting AB, 2H : OCOCH₂ of the propyl); 3.51 (s, 3H : OCH₃); 3.88 (d, J = 7 Hz, 1H : H at 3); 4.15 and 4.32 (2
d, J = 9 Hz, 1H each : CH₂ at 20); 4.23 (limiting AB,
10 J = 16 Hz, 2H : OCOCH₂O); 4.48 (mt, 1H : H at 7); 4.86
(mt, 1H : H at 13); 4.94 (broad d, J = 10 Hz, 1H : H at 5); 5.62 (d, J = 7 Hz, 1H : H at 2); 6.43 (s, 1H : H at 10); 7.49 (t, J = 7.5 Hz, 2H : OCOC₆H₃ meta-H); 7.62 (t, J = 7.5 Hz, 1H : OCOC₆H₃ para-H); 8.12 (d, J = 7.5 Hz,

2α-Benzoyloxy-4α-butanoyloxy-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-11-taxene may be prepared in the following way:

15

2H : OCOC, H, ortho-H).

To a solution of 906 mg of 2α-benzoyloxy-4α-butanoyloxyl-1β,10β-dihydroxy-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-9-oxo-11-taxene in 18 cm³ of pyridine are added, at a temperature in the region of 0°C, 1.03 cm³ of methoxyacetyl chloride. The reaction mixture is stirred for 14 hours at a temperature in the region of 20°C, followed by addition of 20 cm³ of dichloromethane and 20 cm³ of saturated aqueous ammonium chloride solution. The organic phase

is separated out after settling of the phases has taken place, washed with 4 times 20 cm³ of saturated aqueous copper sulphate solution, with twice 40 cm³ of saturated aqueous ammonium chloride solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 800 mg of a product are obtained, which product is purified by chromatography on 100 g of silica (0.063-0.2 mm) contained in a column 2.5 cm in diameter, eluting with a methanol/dichloromethane mixture (2/98 by volume) and collecting 15 cm³ fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 580 mg of 2α- benzoyloxy-4α-butanoyloxy-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-1β-hydroxy-10β-methoxycetoxy-2-cyc-11-taxene are obtained in the form

10

15

methoxyacetoxy-9-oxo-11-taxene are obtained in the form of a white foam, the physical characteristics of which are as follows:

- 1H NMR spectrum (400 MHz; CDCl₃; & in ppm) : 0.60 and 0.68 (2 mts, 6H each : CH₂ of the ethyl); 0.95 and 1.04 (2 t, J = 7.5 Hz, 9H each : CH₃ of the ethyl); 1.09 (t, J = 7.5 Hz, 3H : CH₃ of the propyl); 1.13 (s, 3H : CH₃); 1.18 (s, 3H : CH₃); 1.64 (s, 1H : OH at 1); 1.68 (s, 3H : CH₃); 1.84 (mt, 2H : CH₂ of the propyl); 1.89 and 2.50 (2 mts, 1H each : CH₂ at 6); 2.11 and 2.23 (2 dd, J = 16 and 9 Hz, 1H each : CH₃ at 14); 2.13 (s, 3H : CH₃); 2.55 (mt, 2H : OCOCH₃ of the propyl); 3.53 (s,

 $3H : OCH_3$); 3.82 (d, J = 7 Hz, 1H : H at 3); 4.13

and 4.31 (2 d, J = 9 Hz, 1H each : CH₂ at 20); 4.16

(limiting AB, J = 16 Hz, 2H : OCOCH₂O); 4.52 (dd, J = 11

and 7 Hz, 1H : H at 7); 4.91 (mt, 1H : H at 13); 4.93

(broad d, J = 10 Hz, 1H : H at 5); 5.64 (d, J = 7 Hz,

1H : H at 2); 6.54 (s, 1H : H at 10); 7.47 (t, J =

7.5 Hz, 2H : OCOC₆H₅ at meta-H); 7.61 (t, J = 7.5 Hz,

1H : OCOC₆H₅ para-H); 8.11 (d, J = 7.5 Hz, 2H : OCOC₆H₅

ortho-H).

 2α -Benzoyloxy- 4α -butanoyloxy- 1β , 10β -

dihydroxy-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-9oxo-11-taxene may be prepared in the following way:

To a solution of 907 mg of 4α-butanoyloxy- 1β , 2α -carbonato- 7β , 13α -bis(triethylsilyloxy)- 5β , 20epoxy- 10β -methoxyacetoxy-9-oxo-11-taxene in 50 cm³ of anhydrous tetrahydrofuran are added, at a temperature 15 in the region of -78°C, 2.34 cm of a 1M solution of phenyllithium in tetrahydrofuran. The reaction mixture is stirred for 1 hour at a temperature in the region of -78°C, followed by addition of 10 cm3 of saturated aqueous ammonium chloride solution. At a temperature in 20 the region of 20°C, 20 cm' of saturated aqueous ammonium chloride solution and 50 cm3 of dichloromethane are added. The organic phase is separated out after settling of the phases has taken place, washed with 25 twice 10 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced

pressure (2.7 kPa) at 40°C. 1.3 g of product are

obtained, which product is purified by chromatography on 150 g of silica (0.063-0.2 mm) contained in a column 5 cm in diameter, eluting with an ethyl acetate/cyclohexane mixture (10,'90 by volume) and collecting 18 cm' fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 906 mg of 2α -benzoyloxy- 4α -butanoyloxyl- 1β , 10β dihydroxy- 7β , 13α -bis(triethylsilyloxy)- 5β , 20-epoxy-9-10 oxo-11-taxene are obtained in the form of a white foam, the physical characteristics of which are as follows: - 1H NMR spectrum (400 MHz; CDCl; & in ppm) : 0.56 and 0.67 (2 mts, 6H each : CH, of the ethyl); 0.95 and 1.03 (2 t, J = 7.5 Hz, 9H each : CH₃ of the ethyl); 1.08 (s, 15 $3H : CH_3$); 1.10 (t, J = 7.5 Hz, $3H : CH_3$ of the propyl); 1.18 (s, 3H : CH₃); 1.60 (s, 1H : OH at 1); 1.73 (s, 3H : CH₃); 1.84 (mt, 2H : CH₂ of the propyl); 1.91 and 2.48 (2 mts, 1H each : CH₂ at 6); 2.03 (s, 3H : CH₃); 2.11 and 2.22 (2 dd, J = 16 and 9 Hz, 1H each : CH, at 20 14); 2.58 (mt, 2H : OCOCH, of the propyl); 3.87 (d, J =7 Hz, 1 H : 1 H at 3); 4.18 and 4.32 (2d, 1 H = 1 Hz, 1 Heach : CH_2 at 20); 4.28 (d, J = 2 Hz, 1H : OH at 10); 4.42 (dd, J = 10.5 and 6.5 Hz, 1H : H at 7); 4.93 (broad d, J = 10 Hz, 1H : H at 5); 4.98 (t, <math>J = 9 Hz, 25 1H : H at 13); 5.17 (d, J = 2 Hz, 1H : H at 10); 5.62 (d, J = 7 Hz, 1H : H at 2); 7.49 (t, J = 7.5 Hz, 2H : $OCOC_{\epsilon}H_{s}$ at meta-H); 7.61 (t, J = 7.5 Hz, 1H : $OCOC_{\epsilon}H_{s}$ para-H); 8.12 (d, J = 7.5 Hz, 2H : OCOC, H, ortho-H).

4α-Butanoyloxy-1β,2α-carbonato-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-10β-methoxyacetoxy-9-oxo-11-taxene may be prepared in the following way:

To a solution of 870 mg of 1β , 2α -carbonato-

- 7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-4α-hydroxy-10β-methoxyacetoxy-9-oxo-11-taxene in 15 cm³ of dichloromethane are added 1.46 g of 4dimethylaminopyridine and 3.90 cm³ of butyric anhydride. The reaction medium is heated at a temperature in the
- region of 42°C for 45 hours. 50 cm³ of saturated aqueous sodium chloride solution and 50 cm³ of dichloromethane are added. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm³ of saturated aqueous sodium chloride
- solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 2.0 g of product are obtained, which product is purified by chromatography on 170 g of silica (0.063-0.2 mm) contained in a column
- 3 cm in diameter, eluting with an ethyl acetate/cyclohexane mixture (5/95 by volume) and collecting 15 cm³ fractions. The fractions containing only the desired product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C.
- 25 1.00 g of 4α-butanoyloxy-1β, 2α-carbonato-7β, 13α-ditriethylsilyloxy-5β, 20-epoxy-10β-methoxyacetoxy-9-oxo-11-taxene is obtained in the form of a white foam, the physical characteristics of which are as follows:

- ^{1}H NMR spectrum (400 MHz; CDCl,; δ in ppm) : from 0.50 to 0.70 (mt, 12H : CH, of the ethyl); 0.90 and 1.10 (mt, 21H : CH, of the ethyl and CH, of the propyl); 1.18 (s, 3H : CH₃); 1.28 (s, 3H : CH₃); 1.73 (mt, 2H : CH₂ of the propyl); 1.75 (s, 3H : CH₃); 1.92 and 2.59 (2 mts, 1H 5 each : CH₂ at 6); 2.13 (s, 3H : CH₃); 2.14 and from 2.35 to 2.45 (dd and mt respectively, J = 16 and 9 Hz, 1H each : CH, at 14); from 2.35 to 2.45 (mt, 2H : OCOCH, of the propyl); 3.42 (d, J = 6.5 Hz, 1H : H at 3); <math>3.5110 $(s, 3H : OCH_3); 4.18 (s, 2H : OCOCH_2O); 4.46 (dd, J = 10)$ and 6.5 Hz, 1H : H at 7); 4,50 and 4.63 (2 d, J = 9 Hz, 1H each : CH_2 at 20); 4.51 (d, J = 6.5 Hz, 1H : H at 2); 4.93 (broad d, J = 10 Hz, 1H : H at 5); 5.02 (broad t, J = 9 Hz, 1H : H at 13); 6.51 (8, 1H : H at 10).

15 EXAMPLE 4

By performing the process as in Example 3, and starting with 2α-benzoyloxy-4α-phenylacetoxy-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-7β-trifluoromethanesulphonyloxy-11-taxen-13α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3 phenylpropionate, 2α-benzoyloxy-5β-20-epoxy-1β-hydroxy-10β-methoxyacetoxy-7β,8-methylene-19-nor-9-oxo-4α-phenylacetoxy-11-taxen-13α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate is obtained, the characteristics of which are as follows:

⁻ 1 H NMR spectrum (400 MHz; CDCl₃; δ in ppm) : 1.24 (s,

15H : CH, - CH, and C(CH,),); 1.40 (mt, 1H: H at 7); 1.66 and 2.24 (2 dd, J = 6 and 5 Hz and J = 10 and 6 Hz, 1H each : CH, at 19); 1.92 (s, lH : OH at 1); 1.96 (s, 3H : CH_3); 2.07 and 2.46 (broad d and dt respectively, J = 16 Hz and J = 16 and 4.5 Hz, 1H each : CH₂ at 6); 2.32 and 2.54 (dd and broad dd respectively, J = 16 and 9 Hz, 1H each : CH2 at 14); 3.24 (mt, 1H : OH at 2'); 3.53 (s, 3H : OCH₃); 3.90 and 4.14 (2 d, J = 15 Hz, 1H each: $OCOCH_2Ar$); 4.00 and 4.16 (2 d, J = 9 Hz, 1H each : CH_2 at 20); 4.20 and 4.26 (2 d, J = 16 Hz, 1H each : 10 $OCOCH_2O$); 4.23 (d, J = 7 Hz, 1H : H at 3); 4.55 (broad d, J = 4.5 Hz, 1H : H at 5); 4,63 (mt, <math>1 H : H at 2'); 5.31 (limiting AB, 2H : H at 3' and CONH); 5.71 (d, J =7 Hz, 1 H : 1 H at 2); 6.34 (broad t, 1 H = 1 H at 1 H at 13); 6.44 (s, 1H : H at 10); from 7.10 to 7.45 (mt, 10 15 H: aromatic H and aromatic H at 3'); 7.51 (t, J =7.5 Hz, 2H : OCOC₆H₅ meta-H); 7.63 (t, J = 7.5 Hz, 1H : $OCOC_{\epsilon}H_{s}$ para-H); 8.16 (d, J = 7.5 Hz, 2H : $OCOC_{\epsilon}H_{s}$ ortho-H).

By performing the process under similar conditions to those described in Example 3, 2α-benzoyloxy-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-4α-phenylacetoxy-7β-trifluoromethanesulphonyloxy-11-taxen-13α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate is prepared, the characteristics of which are as follows:

- ^{1}H NMR spectrum (400 MHz; CDCl₃; δ in ppm) : 1.24 (s, $6H : CH_3$); 1.36 (s, $9H : C(CH_3)_3$); 1.74 (s, 1H, OH at 1); 1.87 (s, 3H : CH₃); 2.14 (s, 3H : CH₃); 2.19 and 2.83 (2 mts, 1H each : CH₂ at 6); 2.39 and 2.48 (2 broad dd, J = 16 and 9 Hz, 1H each : CH_2 at 14); 3.38 (d, J =5 4.5 Hz, 1H : OH at 2'); 3.53 (s, 3H : OCH₃); 3.90 and 4.14 (2 d, J = 15 Hz, 1H each : OCOCH₂Ar); 4.01 (d, J = 7 Hz, 1H : H at 3; 4.11 and <math>4.20 (2 d, J = 9 Hz, 1H each: CH_2 at 20); 4.17 and 4.25 (2 d, J = 16 Hz, 1H each : OCOCH₂O); 4.65 (mt, 1H : H at 2'); 4,68 (broad 10 d, J = 10 Hz, 1 H: H at 5); 5.28 (broad d, J = 10 Hz, 1H : H at 3'); 5.35 (d, J = 10 Hz, 1H : CONH); 5.50 (dd, J = 10 and 7 Hz, 1H : H at 7); 5.77 (d, J = 7 Hz, 1H : H at 2); 6.28 (broad t, J = 9 Hz, 1H : H at 13); 15 6.74 (s, 1H : H at 10); from 7.15 to 7.45 (mt, 10 H : aromatic H and aromatic H at 3'); 7.51 (t, J = 7.5 Hz, 2H : $OCOC_{\xi}H_{5}$ meta-H); 7.66 (t, J = 7.5 Hz, 1H : $OCOC_{\xi}H_{5}$ para-H); 8.08 (d, J = 7.5 Hz, 2H : OCOC, H₅ ortho-H).

By performing the process under similar

conditions to those described in Example 3, 2αbenzoyloxy-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9oxo-4α-phenylacetoxy-7β-trifluoromethanesulphonyloxy11-taxen-13α-yl (2R,4S,5R)-3-tert-butoxycarbonyl-2-(4methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate

is prepared, the characteristics of which are as

follows:

- 1 H NMR spectrum (400 MHz; CDCl); a temperature of 333° K, δ in ppm) : 1.06 (s, γ H : CH)); 1.12 (s, 3H :

CH₃); 1.24 (s, 3H : CH₃); 1.66 (s, 1H : OH at 1); 1.83 $(s, 3H : CH_3); 1.86 (s, 3H : CH_3); 2.14 and 2.79 (2 mts,$ 1H each : CH₂ at 6); 2.24 and 2.30 (2 dd, J = 16 and 9 Hz, 1H each : CH₂ at 14); 3.45 and 3.58 (2 d, J =15 Hz, 1H each: OCOCH2Ar); 3.54 (s, 3H: OCH3); 3.85 (s, $3H : ArocH_3$); 3.94 (d, J = 7 Hz, 1H : H at 3); <math>4.08and 4.17 (2 d, J = 9 Hz, 1H each : CH₂ at 20); 4.14 and 4.22 (2 d, J = 16 Hz, 1H each : OCOCH₂O); 4.59 (broad d, J = 10 Hz, 1H : H at 5; 4.63 (d, J = 5.5 Hz, 1H : H at2'); 5.45 (d, J = 5.5 Hz, 1H : H at 3'); 5.47 (mt, 1H : 10 H at 7); 5.72 (d, J = 7 Hz, 1H : H at 2); 6.14 (broad t, J = 9 Hz, 1H : H at 13); 6.34 (s, <math>1H : H at 5'); 6.65 (s, 1H : H at 10); 6.94 (d, J = 8.5 Hz, 2H :aromatic H ortho to the OCH3); from 7.20 to 7.45 (mt, 12H : aromatic H and aromatic H meta to the OCH, and 15 aromatic H at 3'); 7.48 (t, J = 7.5 Hz, 2H : OCOC₆H₅ meta-H); 7.64 (t, J = 7.5 Hz, $1H : OCOC_6H_5$ para-H); 7.98(d, J = 7.5 Hz, $2H : OCOC_{\epsilon}H_{s} \text{ ortho-H}$).

By performing the process under similar

conditions to those described in Example 3,

2α-benzoyloxy-1β,13α-dihydroxy-5β,20-epoxy-10β
methoxyacetoxy-9-oxo-4α-phenylacetoxy-7β
trifluoromethanesulphonyloxy-11-taxene is prepared, the

characteristics of which are as follows:

25 - H NMR spectrum (400 MHz; CDCl₃; δ in ppm) : 1.07 (s, 3H : CH₃); 1.21 (s, 3H: CH₃); 1.64 (s, 1H : OH at 1); 1.87 (s, 3H : CH₃); 2.18 (d, J = 4.5 Hz, 1H : OH at 13); 2.20 and 2.88 (2 mts, 1H each : CH₂ at 6); 2.30 (s, 3H :

CH₃); from 2.25 to 2.35 (mt, 2H : CH₂ at 14); 3.52 (s, 3H : OCH₃); 3.90 and 3.97 (2 d, J = 15 Hz, 1H each : OCOCH₂Ar); 4.08 (d, J = 7 Hz, 1H : H at 3); 4.12 and 4.27 (2 d, J = 9 Hz, 1H each : CH₂ at 20); 4.16 and 4.24 (2 d, J = 16 Hz, 1H each : OCOCH₂O); 4.80 (broad d, J = 10 Hz, 1H : H at 5); 4.92 (mt, 1H : H at 13); 5.55 (dd, J = 10 and 6.5 Hz, 1H : H at 7); 5.71 (d, J = 7 Hz, 1H : H at 2); 6.74 (s, 1H : H at 10); from 7.25 to 7.45 (mt, 5H : aromatic H); 7.48 (t, J = 7.5 Hz, 2H : OCOC₆H₅ meta-H); 7.64 (t, J = 7.5 Hz, 1H : OCOC₆H₅ para-H); 8.03 (d, J = 7.5 Hz, 2H : OCOC₆H₅ ortho-H).

By performing the process under similar conditions to those described in Example 3, 2qbenzoyloxy- 5β , 20-epoxy- 10β -methoxyacetoxy-9-oxo- 4α phenylacetoxy- 1β , 7β , 13α -trihydroxy-11-taxene is 15 prepared, the characteristics of which are as follows: - ¹H NMR spectrum (400 MHz; CDCl,; δ in ppm) : 1.12 (s, 3H : CH₃); 1.14 (s, 3H: CH₃); 1.66 (s, 1H : OH at 1); 1.67 (s, 3H : CH₃); 1.84 and 2.56 (2 mts, 1H each : CH₂ 20 at 6); 2.11 (s, 3H : CH₃); from 2.20 to 2.45 (2 mts, 1H each : OH); 2.35 and 2.42 (2 dd, J = 16 and 9 Hz, 1H each : CH2 at 14); 3.54 (s, 3H : OCH2); 3.94 (limiting AB, J = 15 Hz, $2H : OCOCH_2Ar$); 3.94 (d, J = 7 Hz, 1H : Hat 3); 4.12 and 4.25 (2 d, J = 9 Hz, 1H each : CH, at 25 20); 4.26 (limiting AB, J = 16 Hz, 2H : OCOCH₂O); 4.50 (mt, 1H : H at 7); 4.87 (broad d, J = 10 Hz, 1H : H at5); 4.96 (mt, 1H : H at 13); 5.66 (d, J = 7 Hz, 1H : H at 2); 6.44 (s, 1H : H at 10); from 7.25 to 7.45 (mt,

5H : aromatic H); 7.47 (t, J = 7.5 Hz, $2H : OCOC_6H_5$ meta-H); 7.62 (t, J = 7.5 Hz, $1H : OCOC_6H_5$ para-H); 8.04 (d, J = 7.5 Hz, $2H : OCOC_6H_5$ ortho-H).

By performing the process under similar conditions to those described in Example 3, 2α-benzoyloxy-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-4α-phenylacetoxy-11-taxene is prepared, the characteristics of which are as follows:

- ¹H NMR spectrum (400 MHz; CDCl₃; δ in ppm) : 0.60 and 0.72 (2 mts, 6H each : CH₂ of the ethyl); 0.94 and 1.05 (2 t, J = 7.5 Hz, 9H each : CH₃ of the ethyl); 1.15 (s, 3H : CH₃); 1.22 (s, 3H: CH₃); 1.66 (s, 3H : CH₃); 1.69 (broad s, 1H : OH at 1); 1.84 and 2.51 (2 mts,
- 15 1H each : CH₂ at 6); 2.20 (s, 3H : CH₃); 2.24 and 2.36
 (2 dd, J = 16 and 9 Hz, 1H each : CH₂ at 14); 3.54 (s,
 3H : OCH₃); 3.82 and 3.96 (2 d, J = 15 Hz, 1H each :
 OCOCH₂Ar); 3.89 (d, J = 7 Hz, 1H : H at 3); 4.06 and
 4.16 (2 d, J = 9 Hz, 1H each : CH₂ at 20); 4.20
- 20 (limiting AB, J = 16 Hz, 2H : OCOCH₂O); 4.52 (dd, J = 10 and 6 Hz, 1H : H at 7); 4.79 (broad d, J = 10 Hz, 1H : H at 5); 4.96 (broad t, J = 9 Hz, 1H : H at 13); 5.66 (d, J = 7 Hz, 1H : H at 2); 6.58 (s, 1H : H at 10); from 7.25 to 7.45 (mt, 7H : aromatic H and OCOC₆H₅ meta-
- 25 H); 7.61 (t, J = 7.5 Hz, 1H : OCOC₆H₅ para-H); 8.00 (d, J = 7.5 Hz, 2H : OCOC₆H₅ at ortho-H).

By performing the process under similar conditions to those described in Example 3,

2α-benzoyloxy-1β,10β-dihydroxy-7β,13αbis(triethylsilyloxy)-5β,20-epoxy-9-oxo-4αphenylacetoxy-11-taxene is prepared, the characteristics of which are as follows:

- ^{1}H NMR spectrum (600 MHz; CDCl₃; δ in ppm) : 0.53 and 5 0.72 (2 mts, 6H each : CH₂ of the ethyl); 0.94 and 1.05 (2 t, J = 7.5 Hz, 9H each : CH₃ of the ethyl); 1.10 (s, 3H : CH₃); 1.20 (s, 3H: CH₃); 1.64 (s, 1H : OH at 1); 1.70 (s, 3H : CH₃); 1.86 and 2.45 (2 mts, 1H each : CH₂ 10 at 6); 2.10 (s, 3H : CH_3); 2.20 and 2.32 (2 dd, J =16 and 9 Hz, 1H each : CH2 at 14); 3.80 and 3.96 (2 d, J = 16 Hz, 1H each: $OCOCH_2Ar$); 3.95 (d, J = 7 Hz, 1H: H at 3); 4.07 and 4.17 (2 d, J = 9 Hz, 1H each : CH₂ at 20); 4.29 (broad s, 1H : OH at 10); 4.43 (dd, J = 1115 and 7 Hz, 1H : H at 7); 4.79 (broad d, J = 10 Hz, 1H : H at 5); 5.03 (broad t, J = 9 Hz, 1H : H at 13); 5.19 (broad s, 1H : H at 10); 5.63 (d, J = 7 Hz, 1H : H at 2); from 7.25 to 7.45 (mt, 7H : aromatic H and OCOC, H, meta-H); 7.60 (t, J = 7.5 Hz, 1H : OCOC₆H₅ para-H); 8.00 (d, J = 7.5 Hz, $2H : OCOC_{\epsilon}H_{s} \text{ ortho-H}$). 20

By performing the process under similar conditions to those described in Example 3, 1β,2α-carbonato-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-10β-methoxyacetoxy-9-οπο-4α-phenylacetoxy-11-taxene is prepared, the characteristics of which are as follows:

- ¹H NMR spectrum (400 MHz; CDCl₃; δ in ppm) : 0.61 and 0.74 (2 mts, 6H each : CH₂ of the ethyl); 0.92 and 1.05 (2 t, J = 7.5 Hz, 9H each : CH₃ of the ethyl); 1.20 (s,

3H : CH₃); 1.30 (s, 3H: CH₃); 1.73 (s, 3H : CH₃); 1.83
and 2.54 (2 mts, 1H each : CH₂ at 6); 2.18 (s, 3H :
CH₃); 2.27 and 2.48 (2 dd, J = 16 and 9 Hz, 1H each :
CH₂ at 14); 3.50 (d, J = 6.5 Hz, 1H : H at 3); 3.53 (s,
3H : OCH₃); 3.65 (limiting AB, J = 14 Hz, 2H :
OCOCH₂Ar); 4.18 (limiting AB, 2H : OCOCH₂O); 4.45 and
4.53 (2 d, J = 9 Hz, 1H each : CH₂ at 20); 4.46 (mt,
1H : H at 7); 4.53 (d, J = 6.5 Hz, 1H : H at 2); 4.68
(broad d, J = 10 Hz, 1H : H at 5); 5.06 (broad t, J =
9 Hz, 1H : H at 13); 6.53 (s, 1H : H at 10); from 7.25
to 7.45 (mt, 5H : aromatic H).

EXAMPLE 5

By performing the process as in Example 3, and starting with $2\alpha\text{-benzoyloxy-}4\alpha,10\beta\text{-}$

- bis (methoxyacetoxy) -5β, 20-epoxy-1β, hydroxy-9-oxo-7β-trifluoromethanesulphonyloxy-11-taxen-13α-yl (2R, 3S)-3-text-butoxycarbonylamino-2-hydroxy-3-phenylpropionate, 2α-benzoyloxy-4α, 10β-bis (methoxyacetoxy) -5β, 20-epoxy-1β-hydroxy-7β, 8-
- methylene-19-nor-9-oxo-11-taxen-13α-yl (2R,3S)-3-tertbutoxycarbonylamino-2-hydroxy-3-phenylpropionate is
 prepared, the characteristics of which are as follows:
 ¹H NMR spectrum (400 MHz; CDCl₃; temperature of
 333° K, δ in ppm) : 1.26 (s, 3H : CH₃); 1.29 (s, 3H :
- 25 CH₃); 1.35 (s, 9H : C(CH₃)₃); 1.42 (mt, 1H : H at 7);
 1.71 and 2.29 (dd and mt respectively, J = 6.5 and
 5 Hz, 1H each : CH, at 19); 1.81 (s, 1H : OH at 1); 1.91

(s, 3H : CH₃); 2.15 and 2.54 (broad d and dt respectively, J = 16 Hz and J = 16 and 4.5 Hz, 1H each : CH, at 6); 2.32 (limiting AB, 2H : CH, at 14); 3.50 and 3.53 (2 s, 3H each : OCH3); 3.60 (mult. 1H, OH at 2'); 4.11 and 4.56 (2 d, J = 16 Hz, 1H each : OCOCH₂O); 4.12 and 4.31 (2 d, J = 9 Hz, 1H each : CH₂ at 20); 4.17 (d, J = 7 Hz, 1H : H at 3); 4.19 and 4.24 (2 d, J = 16Hz, 1H each : OCOCH₂O); 4.67 (mt, 1H : H at 2'); 4.78 (d, J = 4.5 Hz, 1H: H at 5); 5.29 (broad d, J = 10 Hz, 1H : H at 3'); 5.47 (d, J = 10 Hz, 1H : CONH); 5.70 (d, 10 J = 7 Hz, 1H : H at 2); 6.21 (broad t, J = 9 Hz, 1H : Hat 13); 6.44 (s, 1H : H at 10); 7.30 (t, J = 7.5 Hz, 1H : para-H of the aromatic at 3'); 7.39 (t, J = 7.5Hz, 2H : meta-H of the aromatic at 3'); 7.45 (d, J =7.5 Hz, 2H : ortho-H of the aromatic at 3'); 7.51 (t, J 15 = 7.5 Hz, 2H : $OCOC_6H_5$ meta-H); 7.61 (t, J = 7.5 Hz, 1H: $OCOC_{\ell}H_{5}$ para-H); 8.12 (d, J = 7.5 Hz, 2H : $OCOC_{\ell}H_{5}$ ortho-H).

By performing the process under similar

conditions to those described in Example 3, 2αbenzoyloxy-4α,10β-bis(methoxyacetoxy)-5β,20-epoxy-1βhydroxy-9-oxo-7β-trifluoromethanesulphonyloxy-11-taxen13α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3phenylpropionate is prepared, the characteristics of

which are as follows:

- ¹H NMR spectrum (400 MHz; CDCl₃; temperature of
333° K, δ in ppm) : 1.22 (s, 3H : CH₃); 1.27 (s, 3H :
CH₃); 1.38 (s, 9H : C(CH₃)₃); 1.64 (s, 1H : OH at 1);

1.92 (s, $3H : CH_3$); 2.11 (s, $3H : CH_3$); 2.25 and 2.92 (2 mts, 1H each : CH, at 6); 2.26 and 2.36 (2 dd, J = 16and 9 Hz, 1H each: CH, at 14); 3.47 and 3.52 (2 s, 3H each : OCH3); 3.66 (broad s, 1H, OH at 2'); 3.99 (d, J = 7 Hz, lH : H at 3); 4.15 and 4.57 (2 d, <math>J = 16 Hz, 1H each : OCOCH₂O); 4.19 (limiting AB, J = 16 Hz, 2H : $OCOCH_2O$); 4.24 and 4.35 (2 d, J = 9 Hz, 1H each : CH₂ at 20); 4.70 (mt, 1H : H at 2'); 4.95 (broad d, J = 10 Hz, 1H : H at 5); 5 29 (broad d, J = 10 Hz, 1H : H at 3'); 5.49 (d, J = 10 Hz, 1H : CONH); 5.53 (dd, J = 11 and 810 Hz, 1H: H at 7); 5.76 (d, J = 7 Hz, 1H: H at 2); 6.18 (broad t, J = 9 Hz, 1H : H at 13); 6.74 (s, 1H : H at 10); 7.30 (t, J = 7.5 Hz, 1H : para-H of the aromatic at 3'); 7.38 (t, J = 7.5 Hz, 2H: meta-H of the aromatic at 3'); 7.45 (d, J = 7.5 Hz, 2H: ortho-H of 15 the aromatic at 3'); 7.49 (t, J = 7.5 Hz, 2H : OCOC, H, meta-H); 7.63 (t, J = 7.5 Hz, 1H : OCOC_cH_c para-H); 8.09 (d, J = 7.5 Hz, $2H : OCOC_{\epsilon}H_{s} \text{ ortho-H}$).

By performing the process under similar

conditions to those described in Example 3, 2αbenzoyloxy-4α,10β-bis(methoxyacetoxy)-5β,20-epoxy-1βhydroxy-9-oxo-7β-trifluoromethanesulphonyloxy-11-taxen13α-yl (2R,4S.5R)-3-tert-butoxycarbonyl-2-(4methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate

is prepared, the characteristics of which are as
follows:

- 1 H NMR spectrum (400 MHz; CDCl); temperature of 333° K, δ in ppm) : 1.10 (s, 9H : (CCH)); 1.18 (s, 3H

: CH₁); 1.20 (s, 3H : CH₁); 1.64 (s, 1H : OH at 1); 1.75 $(s, 3H : CH_3); 1.86 (s, 3H : CH_3); 2.12 and 2.26 (2 dd,$ J = 16 and 9 Hz, 1H each : CH₂ at 14); 2.24 and 2.86 (2 mts, 1H each : CH_2 at 6); 3.33 and 3.53 (2 s, 3H : 5 OCH_1); 3.65 and 4.10 (2 d, J = 16 Hz, 1H each: $OCOCH_2O$); 3.83 (s, 3H: ArOCH₂); 3.86 (d, J = 7 Hz, 1H : H at 3); 4.14 and 4.20 (2 d, J = 16 Hz, 1H each: OCOCH,0); 4.19 and 4.32 (2 d, J = 9 Hz, 1H each : CH, at 20); 4.72 (broad d, J = 4.5 Hz, 1H : H at 2'); 4.89 (broad d, J = 10 Hz, 1H : H at 5); 5 46 (mt, <math>1H : H at10 3'); 5.45 (dd, J = 11 and 8 Hz, 1H : H at 7); 5.69 (d, J = 7 Hz, 1H : H at 2); 5.94 (broad t, J = 9 Hz, 1H : Hat 13); 6.40 (broad s, 1H : H at 5'); 6.63 (s, 1H : H at 10); 6.93 (d, J = 8.5 Hz, 2H: aromatic ortho-H at 15 OCH,); from 7.30 to 7.45 (mt, 5H : aromatic H at 3'); 7.38 (d, J = 8.5 Hz, 2H : aromatic meta-H at OCH₃); 7.48 $(t, J = 7.5 Hz, 2H : OCOC_{t}H_{t}, meta-H); 7.63 (t, J = 7.5)$ Hz, 1H : OCOC, H, para-H); 8.08 (d, J = 7.5 Hz, 2H : OCOC,H, ortho-H).

20 By performing the process under similar conditions to those described in Example 3, 2α-benzoyloxy-4α,10β-bis(methoxyacetoxy)-1β,13α-dihydroxy-5β,20-epoxy-9-oxo-7β-trifluoromethanesulphonyloxy-11-taxene is prepared, the characteristics of which are as follows:

- 'H NMR spectrum (400 MHz; CDCl,; b in ppm) : 1.06 (s, 3H : CH,); 1.20 (s, 3H : CH,); 1.61 (s, 1H : OH at 1); 1.89 (s, 3H : CH,); 2.23 (d, J = 5 Hz, 1H : OH at 13);

from 2.20 to 2.35 and 2.92 (2 mts, 1H each : CH₂ at 6);

2.26 (s, 3H : CH₃); 2.32 (d, J = 9 Hz, 2H : CH₂ at 14);

3.52 and 3.58 (2s, 3H each : OCH₃); 4.04 (d, J = 7 Hz,

1H : H at 3); 4.19 and 4.32 (2 limiting AB, J = 16 Hz,

2H each : OCOCH₂O); 4.20 and 4.38 (2 d, J = 9 Hz, 1H

each : CH₂ at 20); 4.82 (mt, 1H : H at 13); 4.99 (broad d, J = 10 Hz, 1H : H at 5); 5.55 (d, J = 10 and 7 Hz,

1H : H at 7); 5.69 (d, J = 7 Hz, 1H : H at 2); 6.73 (s,

1H : H at 10); 7.51 (t, J = 7.5 Hz, 2H : OCOC₆H₃ meta
10 I); 7.64 (t, J = 7.5 Hz, 1H : OCOC₆H₃ para-H); 8.13 (d,

J = 7.5 Hz, 2H : OCOC₆H₃ ortho-H).

By performing the process under similar conditions to those described in Example 3, 2α benzoyloxy-4\alpha, 10\beta-bis (methoxyacetoxy) -5\beta, 20-epoxy-9-15 $\cos -1\beta$, 7β , 13α -trihydroxy-11-taxene is prepared, the characteristics of which are as follows: - ^{1}H NMR spectrum (400 MHz; CDCl₃; δ in ppm) : 1.11 (s, 6H : CH₃); 1.63 (s, 1H : CH at 1); 1.70 (s, 3H : CH₃); 1.92 and 2.63 (2 mts, 1H each : CH2 at 6); 2.08 (s, 3H : CH₃); from 2.20 to 2.30 (mt, 3H : CH₂ at 14 and OH); 20 2.40 (d, J = 4 Hz, 1H : OH); 3.54 and 3.59 (2 s, 3H each : OCH_3); 3.92 (d, J = 7 Hz, 1H : H at 3); 4.20 and 4.35 (2 d, J = 9 Hz, 1H each : CH, at 20); 4.24 and 4.28 (2 limiting AB, J = 16 Hz, 2H each : OCOCH₂O); 4.50 (mt, 1H : H at 7); 4.86 (mt, 1H : H at 13); 5.03 (broad d, 25 J = 10 Hz, 1H : H at 5); 5.65 (d, <math>J = 7 Hz, 1H : H at2); 6.44 (s, 1H : H = 10); 7.49 (t, J = 7.5 Hz, 2H :

 $OCOC_{\epsilon}H_{s}$ meta-H); 7.63 (t, J = 7.5 Hz, 1H : $OCOC_{\epsilon}H_{s}$

para-H); 8.14 (d, J = 7.5 Hz, 2H : OCOC₆H₅ ortho-H).

By performing the process under similar conditions to those described in Example 3, 2α -benzoyloxy- 4α , 10β -bis (methoxyacetoxy) - 7β , 13α -

- bis(triethylsilyloxy)-5β,20-epoxy-1β-hydroxy-9-oxo-11taxene is prepared, the characteristics of which are as follows:
- 1H NMR spectrum (400 MHz; CDCl;; & in ppm) : 0.60 and 0.70 (2 mts, 6H each : CH2 of the ethyl); 0.94 and 1.02 (2 t, J = 7.5 Hz, 9H each : CH₃ of the ethyl); 1.12 (s,10 3H : CH₃); 1.20 (s, 3H : CH₃); 1.64 (s, 1H : OH at 1); 1.70 (s, 3H : CH₁); 1.91 and 2.57 (2 mts, 1H each : CH₂ at 6); 2.12 (g, 3H : CH_3); 2.13 and 2.23 (2 dd, J = 16and 9 Hz, 1H each : CH, at 14); 3.53 and 3.57 (2 s, 3H each : OCH_1); 3.83 (d, J = 7 Hz, 1H : H at 3); 4.15 and 15 4.40 (2 d, J = 16 Hz, $2H : OCOCH_2O$); 4.19 (limiting AB, J = 16 Hz, $2H : OCOCH_2O$); 4.21 and 4.37 (2 d, J = 9 Hz, 1H each : CH_2 at 20); 4.51 (dd, J = 11 and 7 Hz, 1H : Hat 7); 4.93 (t, J = 9 Hz, 1H : H at 13); 5.02 (broad d, J = 10 Hz, 1H : H at 5); 5.64 (d, J = 7 Hz, 1H : H at 20 2); 6.56 (s, 1H: H at 10); 7.48 (t, J = 7.5 Hz, 2H: $OCOC_{\xi}H_{\xi}$ meta-H); 7.63 (t, J = 7.5 Hz, 1H : $OCOC_{\xi}H_{\xi}$ para-

By performing the process under similar

conditions to those described in Example 3,

2α-benzoyloxy-1β,10β-dihydroxy-7β,13α
bis(triethylsilyloxy)-5β,20-epoxy-4α-methoxyacetoxy-9
oxo-11-taxene is prepared, the characteristics of which

H); 8.19 (d, J = 7.5 Hz, $2H : OCOC_6H_5 \text{ ortho-H}$).

are as follows:

- ^{1}H NMR spectrum (400 MHz; CDCl₃; δ in ppm) : 0.57 and 0.69 (2 mts, 6H each : CH, of the ethyl); 0.94 and 1.03 (2 t, J = 7.5 Hz, 9H each : CH, of the ethyl); 1.09 (s,3H : CH₃); 1.17 (s, 3H : CH₃); 1.58 (s, 1H : OH at 1); 1.75 (s, 3H : CH₁); 1.93 and 2.49 (2 mts, 1H each : CH₂ at 6); 2.03 (s, 3H : CH_3); 2.09 and 2.18 (2 dd, J = 16 and 9 Hz, 1H each : CH, at 14); 3.57 (s, 3H : OCH,); 3.88 (d, J = 7 Hz, 1H : H at 3); 4.16 and 4.40 (2 d, J = 16 Hz, 1H each : OCOCH₂O); 4.20 and 4.36 (2 d, 10 J = 9 Hz, 1H each : CH, at 20); 4.28 (broad s, 1H : OH at 10); 4.42 (mt, 1H : H at 7); 4.97 (t, J = 9 Hz, 1H : H at 13); 5.01 (broad d, J = 10 Hz, 1H : H at 5); 5.17 (broad s, 1H : H at 10); 5.62 (d, J = 7 Hz, 1H : H at2); 7.47 (t, J = 7.5 Hz, $2H : OCOC_sH_s$ meta-H); 7.61 (t, 15 J = 7.5 Hz, 1H : OCOC₄H₅ para-H); 8.18 (d, J = 7.5 Hz, 2H : OCOC,H, ortho-H).

By performing the process under similar conditions to those described in Example 3,

4α,10β-bis (methoxyacetoxy) -1β,2α-carbonato-7β,13α-bis (triethylsilyloxy) -5β,20-epoxy-9-oxo-11-taxene is prepared, the characteristics of which are as follows:

- ¹H NMR spectrum (400 MHz; CDCl₃; δ in ppm) : 0.60 and 0.68 (2 mts, 6H each : CH₂ of the ethyl); 0.92 and 1.01 (2 t, J = 7.5 Hz, 9H each : CH₃ of the ethyl); 1.19 (s, 3H : CH₃); 1.27 (s, 3H : CH₃); 1.75 (s, 3H : CH₃); 1.91 and 2.63 (2 mts, 1H each : CH₂ at 6); 2.08 and 2.41 (2 dd, J = 16 and 9 Hz, 1H each : CH₂ at 14); 2.12 (s,

3H: CH₃); 3.44 (d, J = 6.5 Hz, 1H: H at 3); 3.46 and
3.50 (2 s, 3H each: OCH₃); 4.06 and 4.14 (2 d,

J = 16 Hz, 1H each: OCOCH₂O); 4.16 (s, 2H: OCOCH₂O);
4.46 (dd, J = 10 and 7 Hz, 1H: H at 7); 4.50 and 4.66

(2 d, J = 9 Hz, 1H each: CH₂ at 20); 4.51 (d, J = 6.5

Hz, 1H: H at 2); 4.99 (mt, 1H: H at 13); 5.00 (broad d, J = 10 Hz, 1H: H at 5); 6.51 (s, 1H: H at 10).

EXAMPLE 6

By performing the process as in Example 3, and starting with 2α -benzoyloxy- 4α -cyclopropanoyloxy-10 5β , 20-epoxy- 1β -hydroxy-9-oxo- 10β -methoxyacetoxy- 7β trifluoromethanesulphonyloxy-11-taxen-13a-yl (2R,3S)-3tert-butoxycarbonylamino-2-hydroxy-3phenylpropionate, 2a-benzoyloxy-4a-cyclopropanoyloxy- 5β , 20-epoxy- 1β -hydroxy- 10β -methoxyacetoxy- 7β , 8-15 methylene-19-nor-9-oxo-11-taxen-13 α -yl (2R,3S)-3-tertbutoxycarbonylamino-2-hydroxy-3-phenylpropionate is prepared, the characteristics of which are as follows: - 1H NMR spectrum (400 MHz; CDCl; temperature in the region of 333° K, δ in ppm): from 0.80 to 1.40 (mt, 20 4H : CH₂CH₂ of the cyclopropyl); 1.30 (s, 6H : CH₃); 1.35 (s, 9H : C(CH₃)₃); from 1.30 to 1.40 (mt, 1H : H at 7); 1.70 and 2.23 (2 dd, J = 6 and 5.5 Hz and J = 10and 5.5 Hz respectively, 1H each : CH, at 19); 1.80 (mt, 25 1H : CH of the cyclopropyl); 1.85 (s, 1H : OH at 1); 1.86 (s, 3H : CH,); 2.11 and 2.44 (broad d and dt respectively, J = 16 Hz and J = 16 and 4.5 Hz, 1H

each : CH₂ at 6); 2.34 and 2.50 (2 dd, J = 16 and 9 Hz,
lH each : CH₂ at 14); 3.22 (d, J = 4 Hz, lH : OH at 2');
3.52 (s, 3H : OCH₃); 4.08 and 4.28 (2 d, J = 9 Hz, lH
each : CH₂ at 20); 4.13 (d, J = 7 Hz, lH : H at 3); 4.16

5 and 4.24 (2 d, J = 16 Hz, lH each : OCOCH₂O); 4.62 (d,
J = 4.5 Hz, lH : H at 5); 4.70 (broad d, J = 4 Hz, lH :
H at 2'); 5.28 (limiting AB, 2H : H3' and CONH); 5.70
(d, J = 7 Hz, lH : H at 2); 6.23 (broad t, J = 9 Hz, lH
: H at 13); 6.42 (s, lH : H at 10); from 7.20 to 7.45

10 (mt, 5H : aromatic H at 3'); 7.52 (t, J = 7.5 Hz, 2H :
OCOC₆H₃ meta-H); 7.61 (t, J = 7.5 Hz, lH : OCOC₆H₃
para-H); 8.14 (d, J = 7.5 Hz, 2H : OCOC₆H₃ ortho-H).

By performing the process under similar conditions to those described in Example 3,

- 15 2α-benzoyloxy-4α-cyclopropanoyloxy-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-7β-trifluoromethanesulphonyloxy-11-taxen-13α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate is prepared, the characteristics of which are as
- ^{1}H NMR spectrum (400 MHz; CDCl;; δ in ppm): from 0.85

20

follows:

to 1.40 (mt, 4H : CH₂CH₂ of the cyclopropyl); 1.22 (s, 3H : CH₂); 1.24 (s, 3H : CH₃); 1.39 (s, 9H: C(CH₃);

1.70 (s, 1H : OH at 1); 1.83 (mt, 1H : CH of the

25 cyclopropyl); 1.88 (s, 3H : CH₃); 2.05 (s, 3H : CH₃);

2.23 and 2.84 (2 mts, 1H each : CH_2 at 6); 2.34 and 2.42

(2 dd, J = 16 and 9 Hz, 1H each: CH_2 at 14); 3.35 (d,

J = 5.5 Hz, 1H : OH at 2'); 3.52 (s, 3H : OCH₃); <math>3.96

(d, J = 7 Hz, 1H : H at 3); 4.16 and 4.25 (2 d, J = 16

Hz, 1H each : OCOCH₂O); 4.17 and 4.28 (2 d, J = 9 Hz, 1H

each : CH₂ at 20); 4.72 (mt, 1H : H at 2'); 4.81 (broad

d, J = 10 Hz, 1H : H at 5); 5.28 (broad d, J = 10 Hz,

1H : H at 3'); 5.36 (d, J = 10 Hz, 1H : CONH); 5.48

(dd, J = 10.5 and 7 Hz, 1H : H at 7); 5.72 (d, J =

7 Hz, 1H : H at 2); 6.11 (mt, 1H : H at 13); 6.71 (s,

1H : H at 10); from 7.25 to 7.45 (mt, 5H : aromatic H

at 3'); 7.52 (t, J = 7.5 Hz, 2H : OCOC₆H₅ meta-H); 7.65

(t, J = 7.5 Hz, 1H : OCOC₆H₅ para-H); 8.08 (d, J = 7.5

Hz, 2H : OCOC₆H₅ ortho-H).

10

By performing the process under similar conditions to those described in Example 3, 2α-benzoyloxy-4α-cyclopropanoyloxy-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-7β-trifluoromethanesulphonyloxy-11-taxen-13α-yl(2R,4S,5R)-3-tert-butoxycarbonyl-2-(4-methoxyphenyl)-4-phenyl-1,3-oxazolidine-5-carboxylate is prepared, the characteristics of which are as follows:

20 - H NMR spectrum (400 MHz; CDCl,; δ in ppm): from 0.50 to 1.50 (mt, 5H : CH and CH, of the cyclopropyl); 1.04 (s, 9H : C(CH,)); 1.17 (s, 3H : CH,); 1.19 (s, 3H : CH,); 1.65 (s, 1H : OH at 1); 1.72 (s, 3H : CH,); 1.84 (s, 3H : CH,); 2.14 and 2.32 (2 dd, J = 16 and 9 Hz, 1H each : CH, at 14); 2.16 and 2.79 (2 mts, 1H each : CH, at 6); 3.52 (s, 3H : OCH,); 3.82 (s, 3H : ArOCH,); 3.86 (d, J = 7 Hz, 1H : H at 3); 4.11 and 4.24 (2 d, J = 9 Hz, 1H each : CH, at 20); 4.15 and 4.22 (2 d, J =

16 Hz, 1H each: OCOCH₂O); 4.60 (d, J = 4.5 Hz, 1H: H at 2'); 4.74 (broad d, J = 10 Hz, 1H: H at 5); 5.44 (dd, J = 10.5 and 8 Hz, 1H: H at 7); 5.50 (mt, 1H: H at 3'); 5.67 (d, J = 7 Hz, 1H: H at 2); 5.88 (mt, 1H: H at 13); 6.41 (mult., 1H: H at 5'); 6.61 (s, 1H: H at 10); 6.92 (d, J = 8.5 Hz, 2H: aromatic H ortho to the OCH₃) 7.38 (d, J = 8.5 Hz, 2H: aromatic H meta to the OCH₃); from 7.25 to 7.45 (mt, 5H: aromatic H at 3'); 7.49 (t, J = 7.5 Hz, 2H: OCOC₆H₃ meta-H); 7.63 (t, J = 7.5 Hz, 1H: OCOC₆H₃ para-H); 8.02 (d, J = 7.5 Hz, 2H: OCOC₆H₃ ortho-H).

By performing the process under similar conditions to those described in Example 3, 2α-benzoyloxy-4α-cyclopropanoyloxy-1β,13α-dihydroxy- 5β , 20-epoxy-10 β -methoxyacetoxy-9-oxo- 7β -15 trifluoromethanesulphonyloxy-11-taxene is prepared, the characteristics of which are as follows: - 1H NMR spectrum (400 MHz; CDCl; temperature of 333° K, δ in ppm): from 0.90 to 1.40 (mt, 4H : CH₂CH₂ of the cyclopropyl); 1.10 (s, 3H : CH₃); 1.22 (s, 3H : 20 CH,); 1.61 (s, 1H : OH at 1); from 1.70 to 1.85 (mt, 2H: CH of the cyclopropyl and OH at 13); 1.90 (s, 3H : CH₁); 2.22 and 2.86 (2 mts, 1H each : CH, at 6); 2.26 (s, 3H : CH_1); 2.36 (d, J = 9 Hz, 2H : CH, at 14); 3.52 (s, <math>3H : OCH_3); 4.05 (d, J = 7 Hz, 1H : H at 3); 4.14 and 4.22 25 (2 d, J = 16 Hz, 1H each : OCOCH₂O); 4.20 and 4.36 (2 d,J = 9 Hz, 1H each : CH₂ at 20); 4.84 (mt, 1H : H at 13); 4.85 (broad d, J = 10 Hz, 1H : H at 5); 5.54 (dd,

J = 11 and 8 Hz, 1H : H at 7); 5.72 (d, J = 7 Hz, 1H : H at 2); 6.73 (s, 1H : H at 10); 7.51 (t, J = 7.5 Hz, 2H : $OCOC_6H_5$ meta-H); 7.63 (t, J = 7.5 Hz, 1H : $OCOC_6H_5$ para-H); 8.12 (d, J = 7.5 Hz, 2H : $OCOC_6H_5$ ortho-H).

By performing the process under similar 5 conditions to those described in Example 3, 2\alpha-benzoyloxy-4\alpha-cyclopropanoyloxy-1\beta, 13\alpha-dihydroxy- 5β , 20-epoxy-10 β -methoxyacetoxy-9-oxo- 7β trifluoromethanesulphonyloxy-11-taxene is prepared, the characteristics of which are as follows: 10 - 1H NMR spectrum (400 MHz; CDCl; temperature of 333° K, & in ppm): from 0.90 to 1.40 (mt, 4H : CH,CH, of the cyclopropyl); 1.10 (s, 3H : CH₁); 1.22 (s, 3H : CH,); 1.61 (s, 1H : OH at 1); from 1.70 to 1.85 (mt, 2H : CH of the cyclopropyl and OH at 13); 1.90 (s, 3H : 15 CH,); 2.22 and 2.86 (2 mts, 1H each : CH, at 6); 2.26 $(s, 3H : CH_3); 2.36 (d, J = 9 Hz, 2H : CH_2 at 14); 3.52$ $(s, JH : OCH_3); 4.05 (d, J = 7 Hz, 1H : F at 3); 4.14$ and 4.22 (2 d, J = 16 Hz, 1H each : OCOCH₂O); 4.20 and 4.36 (2 d, J = 9 Hz, 1H each : CH, at 20); 4.8420 (mt, 1H : H at 13); 4.85 (broad d, J = 10 Hz, 1H : H at5); 5.54 (dd, J = 11 and 8 Hz, 1H : H at 7); <math>5.72 (d, J= 7 Hz, 1H: Hat 2); 6.73 (s, 1H: Hat 10); 7.51 $(t, J = 7.5 Hz, 2H : OCOC_{\epsilon}H_{s} meta-H); 7.63 (t, J = 7.5)$ Hz, 1H: OCOC,H, para-H); 8.12 (d, J = 7.5 Hz, 2H: 25

By performing the process under similar conditions to those described in Example 3,

OCOC,H, ortho-H).

2α-benzoyloxy-4α-cyclopropanoyloxy-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-1β-hydroxy-10β-methoxyacetoxy-9-oxo-11-taxene is prepared, the characteristics of which are as follows:

- 5 H NMR spectrum (400 MHz; CDCl₃, δ in ppm): 0.60 and 0.68 (2 mts, 6H each : CH₂ of the ethyl); from 0.90 to 1.35 (mt, 4H : CH₂CH₂ of the cyclopropyl); 0.94 and 1.03 (2 t, J = 7.5 Hz, 9 H each : CH₃ of the ethyl); 1.14 (s, 3H : CH₃); 1.20 (s, 3H : CH₃); 1.64 (s, 1H : OH at 1);
- 1.71 (s, 3H : CH₃); 1.73 (mt, 1H : CH of the cyclopropyl); 1.87 and 2.50 (broad dd and mt respectively; J = 14 and 11 Hz, 1H each : CH₂ at 6); 2.11 and 2.29 (2 dd, J = 16 and 9 Hz, 1H each : CH₂ at 14); 2.15 (s, 3H : CH₃); 3.53 (s, 3H : OCH₃); 3.86 (d,
- 20 6.56 (s, lH : H at 10); 7.50 (t, J = 7.5 Hz, 2H :

 OCOC₆H₅ meta-H); 7.62 (t, J = 7.5 Hz, lH : OCOC₆H₅ paraH); 8.09 (d, J = 7.5 Hz, 2H : OCOC₆H₅ ortho-H).

By performing the process under similar conditions to those described in Example 3,

25 2α-benzoyloxy-4α-cyclopropanoyloxy-1β,10β-dihydroxy-7β,13α-bis(triethylsilyloxy)-5β,20-epoxy-9-oxo-11-taxene is prepared, the characteristics of which are as follows:

- ¹H NMR spectrum (400 MHz; CDCl₁, δ in ppm); 0.58 and 0.68 (2 mts, 6H each : CH, of the ethyl); from 0.90 to 1.35 (mt, 4H : CH,CH, of the cyclopropyl); 0.94 and 1.03 (2 t, J = 7.5 Hz, 9H each : CH, of the ethyl); 1.12 (s,3H : CH₃); 1.22 (s, 3H : CH₃); 1.59 (s, 1H : OH at 1); 1.67 (mt, 1H : CH of the cyclopropyl); 1.73 (s, 3H : CH₃); 1.90 and 2.44 (2 mts, 1H each : CH, at 6); 2.06 $(s, 3H : CH_1); 2.10 \text{ and } 2.25 (2 dd, J = 16 and 9 Hz, 1H)$ each : CH_2 at 14); 3.91 (d, J = 7 Hz, 1H : H at 3); 4.1610 and 4.26 (2 d, J = 9 Hz, 1H each : CH, at 20); 4.28 (d, J = 1.5 Hz, 1H : OH at 10; 4.42 (dd, J = 11 and 6 Hz,1H : H at 7); 4.84 (broad d, J = 10 Hz, 1H : H at 5);5.00 (t, J = 9 Hz, 1H : H at 13); 5.16 (d, J = 1.5 Hz, 1H : H at 10; 5.62 (d, J = 7 Hz, 1H : H at 2); 7.5015 $(t, J = 7.5 Hz, 2H : OCOC_{t}, meta-H); 7.62 (t, J =$ 7.5 Hz, 1H : OCOC₄H₃ para-H); 8.09 (d, J = 7.5 Hz, 2H : OCOC,H, ortho-H).

 1β , 2α -Carbonato- 4α -cyclopropanoyloxy- 7β , 13α -bis(triethylsilyloxy)- 5β , 20-epoxy- 10β -methoxyacetoxy-9-oxo-11-taxene may be prepared in the following way:

20

25

To a solution of 100 mg of 1β , 2α -carbonato- 7β , 13α -bis (triethylsilyloxy) -5 β , 20-epoxy- 4α -hydroxy- 10β -methoxyacetoxy-9-oxo-11-taxene in 7 cm³ of tetrahydrofuran are added dropwise, at a temperature in the region of -30°C, 345 μ l of a 1M solution of lithium hexamethyldisilazane in hexane. The reaction mixture is stirred for 15 minutes at this temperature, followed by dropwise addition of 39 μ l of cyclopropanoyl chloride.

The reaction mixture is stirred for 30 minutes at a temperature in the region of 0°C, followed by hydrolysis by addition of 1 cm' of saturated ammonium chloride solution and 50 cm3 of dichloromethane. The organic phase is separated out after settling of the phases has taken place, washed with twice 40 cm3 of saturated aqueous sodium chloride solution and then dried over magnesium sulphate, filtered and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 120 mg of a product are obtained, 10 which product is purified by chromatography on 70 g of silica (0.063-0.2 mm) contained in a column 2 cm in diameter, eluting with an ethyl acetate/cyclohexane mixture (20/80 by volume) and collecting 10 cm³ fractions. The fractions containing only the desired 15 product are combined and concentrated to dryness under reduced pressure (2.7 kPa) at 40°C. 31 mg of 1β , 2α carbonato- 4α -cyclopropanoyloxy- 7β , 13α bis(triethylsilyloxy)-5 β ,20-epoxy-10 β -methoxyacetoxy-9-20 oxo-11-taxene are obtained in the form of a white foam, the physical characteristics of which are as follows: - ^{1}H NMR spectrum (400 MHz; CDCl,; δ in ppm): 0.60 and 0.66 (2 mts, 6H each : CH, of the ethyl); from 0.90 to 1.35 (mt, 4H : CH, CH, of the cyclopropyl); 0.92 and 1.02 25 (2 t, J = 7.5 Hz, 9H each : CH₃ of the ethyl); 1.19 (s, 3H : CH₃); 1.29 (s, 3H : CH₃); 1.60 (s, 1H : OH at 1); 1.62 (mt, 1H : CH of the cyclopropyl); 1.73 (s, 3H : CH_3); 1.88 and 2.57 (broad dd and mt respectively, J =

15 and 10 Hz, 1H each: CH, at 6); 2.15 (s, 3H: CH₃);
2.19 and 2.37 (2 dd, J = 16 and 9 Hz, 1H each: CH₂ at
14); 3.48 (d, J = 7 Hz, 1H: H at 3); 3.51 (s, 3H:

OCH₃); 4.16 (s, 2H: OCOCH₂O); 4.44 (mt, 1H: H at 7);
4.45 and 4.54 (2 d, J = 9 Hz, 1h each: CH₂ at 20); 4.49

(d, J = 7 Hz, 1H: H at 2); 4.85 (broad d, J = 10 Hz,
1H: H at 5); 5.02 (broad t, J = 9 Hz, 1H: H at 13);
6.52 (s, 1H: H at 10).

The novel products of general formula (I) in which Z represents a radical of general formula (II) 10 exhibit significant inhibitory activity on abnormal cell proliferation and possess therapeutic properties which make it possible to treat patients having pathological conditions associated with abnormal cell proliferation. The pathological conditions include the 15 abnormal cell proliferation of malignant or benign cells of various tissues and/or organs comprising, without any limitation being implied, muscle, bone or conjunctive tissues, the skin, the brain, the lungs, the sexual organs, the lymphatic or renal systems, 20 breast or blood cells, the liver, the digestive system, the pancreas and the thyroid or adrenal glands. These pathological conditions may also include psoriasis, solid tumours, cancers of the ovary, breast, brain, prostate, colon, stomach, kidney or testicles, Kaposi's 25 sarcoma, cholangiocarcinoma, choriocarcinoma, neuroblastoma, Wilms' tumour, Hodgkin's disease, melanomas, multiple myelomas, chronic lymphocytic

leukaemias and acute or chronic granulocytic lymphomas. The novel products according to the invention are particularly useful for treating cancer of the ovary. The products according to the invention may be used for preventing or delaying the appearance or reappearance of the pathological conditions or for treating these pathological conditions.

The products according to the invention may
be administered to a patient in various forms adapted
to the chosen route of administration, which is
preferably the parenteral route. Administration via the
parenteral route comprises intravenous,
intraperitoneal, intramuscular or subcutaneous
administrations. Intraperitoneal or intravenous
administration is more particularly preferred.

The present invention also comprises the pharmaceutical compositions which contain at least one product of general formula (I) in a sufficient amount suitable for use in human or veterinary therapy. The compositions may be prepared according to the usual methods, using one or more pharmaceutically acceptable adjuvants, vehicles or excipients. Suitable vehicles include diluents, sterile aqueous media and various non-toxic solvents. The compositions are preferably provided in the form of aqueous solutions or suspensions, of injectable solutions which may contain emulsifying agents, dyes, preserving agents or stabilizing agents.

20

25

The choice of adjuvants or excipients may be determined by the solubility and the chemical properties of the product, the particular mode of administration and good pharmaceutical practice.

5 Aqueous or non-aqueous sterile solutions or suspensions are used for parenteral administration. For the preparation of non-aqueous solutions or suspensions, natural vegetable oils such as olive oil, sesame oil or liquid paraffin, or injectable organic 10 esters such as ethyl oleate, may be used. The aqueous sterile solutions may consist of a solution of a pharmaceutically acceptable salt dissolved in water. The aqueous solutions are suitable for intravenous administration provided that the pH is appropriately 15 adjusted and that the solution is made isotonic, for example with a sufficient amount of sodium chloride or glucose. The sterilization may be performed by heating or by any other means which does not adversely affect the composition.

It is clearly understood that all the products entering into the compositions according to the invention must be pure and non-toxic in the amounts used.

The compositions may contain at least 0.01 %

of therapeutically active product. The amount of active product in a composition is such that a suitable dosage may be prescribed. The compositions are preferably prepared such that a single dose contains from 0.01 to

1000 mg approximately of active product for administration via the parenteral route.

The therapeutic treatment may be carried out concurrently with other therapeutic treatments including antineoplastic drugs, monoclonal antibodies, 5 immunotherapies or radiotherapies or biologicalresponse modifiers. The response modifiers include, without any limitation being implied, lymphokines and cytokines such as interleukins, interferons $(\alpha, \beta \text{ or } \delta)$ and TNF. Other chemotherapeutic agents which are useful 10 in the treatment of disorders due to abnormal cell proliferation include, without any limitation being implied, alkylating agents such as nitrogen mustards, for instance mechloretamine, cyclophosphamide, 15 melphalan and chlorambucil, alkyl sulphonates, for instance busulphan, nitrosoureas, for instance carmustine, lomustine, semustine and streptozocin, triazenes, for instance dacarbazine, antimetabolites, for instance folic acid analogues such as methotrexate, 20 pyrimidine analogues, for instance fluorouracil and cytarabine, purine analogues, for instance mercaptopurine and thioguanine, natural products such as vinca alkaloids, for instance vinblastine, vincristine and vendesine, epipodophyllotoxins, for 25 instance etoposide and teniposide, antibiotics, for instance dactinomycin, daunorubicin, doxorubicin, ' bleomycin, plicamycin and mitomycin, enzymes, for instance L-asparaginase, various agents, for instance

platinum coordination complexes such as cisplatin, substituted ureas such as hydroxyurea, methylhydrazine derivatives, for instance procarbazine, adrenocorticoid suppressants, for instance mitotane and

aminoglutethymide, hormones and antagonists, for instance adrenocorticosteroids, for instance prednisone, progestins, for instance hydroxyprogesterone caproate, methoxyprogesterone acetate and megestrol acetate, oestrogens, for instance diethylstilbestrol and ethynylestradiol, antioestrogens such as tamoxifen, and androgens, for instance testosterone propionate and fluoxymesterone.

The doses used for implementing the methods according to the invention are those which permit a prophylactic treatment or a maximum therapeutic response. The doses vary according to the form of administration, the particular product selected and the personal characteristics of the subject to be treated. In general, the doses are those which are therapeutically effective for the treatment of disorders due to abnormal cell proliferation. The products according to the invention may be administered as often as necessary in order to obtain the desired therapeutic effect. Some patients may respond rapidly to relatively high or low doses, and then require low

to relatively high or low doses, and then require low or zero maintenance doses. Generally, low doses will be used at the start of the treatment and, if necessary, increasingly high doses will be administered until an

and 200 mg/kg. Via the intraperitoneal route, the doses will generally be between 0.1 and 100 mg/kg and

10 preferably between 0.5 and 50 mg/kg and even more specifically between 1 and 10 mg/kg. Via the intravenous route, the doses will generally be between 0.1 and 50 mg/kg and preferably between 0.1 and 5 mg/kg and even more specifically between 1 and 2 mg/kg. It is understood that, in order to choose the most suitable dosage, the route of administration, the patient's weight, general state of health and age, and all the factors which may influence the effectiveness of the treatment, will have to be taken into account.

The example which follows illustrates a composition according to the invention.

EXAMPLE

40 mg of the product obtained in Example 1 are dissolved in 1 cm³ of Emulphor EL 620 and 1 cm³ of ethanol, and the solution is then diluted by addition of 18 cm³ of physiological serum.

The composition is administered by infusion over 1 hour by introduction into physiological

98

solution.

WO 95/33736

CLAIMS

1. Novel taxoids of general formula:

in which:

R. represents a hydrogen atom or a hydroxyl

radical, an alkoxy radical containing 1 to 4 carbon
atoms, an acyloxy radical containing 1 to 4 carbon
atoms or an alkoxyacetoxy radical in which the alkyl
part contains 1 to 4 carbon atoms and R_b represents a
hydrogen atom, or alternatively R_a and R_b form, together
with the carbon atom to which they are attached, a
ketone function.

Z represents a hydrogen atom or a radical of general formula:

$$\begin{array}{ccc}
R_1NH & O \\
R_3 & & \\
\hline
OH
\end{array}$$
(II)

in which:

15 R₁ represents a benzoyl radical optionally substituted with one or more atoms or radicals, which may be identical or different, chosen from halogen

atoms and alkyl radicals containing 1 to 4 carbon atoms, alkoxy radicals containing 1 to 4 carbon atoms, trifluoromethyl, thenoyl and furoyl radicals, or a radical R_2 -O-CO- in which R_2 represents:

- 5 - an alkyl radical containing 1 to 8 carbon atoms, an alkenyl radical containing 2 to 8 carbon atoms, an alkynyl radical containing 3 to 8 carbon atoms, a cycloalkyl radical containing 3 to 6 carbon atoms, a cycloalkenyl radical containing 4 to 6 carbon atoms, or a bicycloalkyl radical containing 7 to 10 carbon atoms, 10 these radicals being optionally substituted with one or more substituents chosen from halogen atoms and hydroxyl radicals, alkoxy radicals containing 1 to 4 carbon atoms, dialkylamino radicals in which each alkyl 15 part contains 1 to 4 carbon atoms, piperidino and morpholino radicals, 1-piperazinyl radicals (optionally substituted at -4 with an alkyl radical containing 1 to 4 carbon atoms or with a phenylalkyl radical in which the alkyl part contains 1 to 4 carbon atoms),
- cycloalkyl radicals containing 3 to 6 carbon atoms, cycloalkenyl radicals containing 4 to 6 carbon atoms, phenyl radicals (optionally substituted with one or more atoms or radicals chosen from halogen atoms and alkyl radicals containing 1 to 4 carbon atoms or alkoxy radicals containing 1 to 4 carbon atoms), cyano or carboxyl radicals and alkoxycarbonyl radicals in which
 - a phenyl or α or β -napthyl radical which is

the alkyl part contains 1 to 4 carbon atoms,

optionally substituted with one or more atoms or radicals chosen from halogen atoms and alkyl radicals containing 1 to 4 carbon atoms or alkoxy radicals containing 1 to 4 carbon atoms or a 5-membered aromatic heterocyclic radical preferably chosen from furyl and thienyl radicals,

- or a saturated heterocyclic radical containing 4 to 6 carbon atoms optionally substituted with one or more alkyl radicals containing 1 to 4 carbon atoms,

10 R, represents a straight or branched alkyl radical containing 1 to 8 carbon atoms, a straight or branched alkenyl radical containing 2 to 8 carbon atoms, a straight or branched alkynyl radical containing 2 to 8 carbon atoms, a cycloalkyl radical 15 containing 3 to 6 carbon atoms, or a phenyl or α - or β -naphthyl radical which is optionally substituted with one or more atoms or radicals chosen from halogen atoms and alkyl, alkenyl, alkynyl, aryl, aralkyl, alkoxy, alkylthio, aryloxy, arylthio, hydroxyl, hydroxyalkyl, 20 mercapto, formyl, acyl, acylamino, aroylamino, alkoxycarbonylamino, amino, alkylamino, dialkylamino, carboxyl, alkoxycarbonyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, cyano; nitro and trifluoromethyl radicals, cr a 5-membered aromatic heterocycle 25 containing one or more hetero atoms, which may be identical or different, chosen from nitrogen, oxygen and sulphur atoms and optionally substituted with one or more substituents, which may be identical or

different, chosen from halogen atoms, and alkyl, aryl, amino, alkylamino, dialkylamino, alkoxycarbonylamino, acyl, arylcarbonyl, cyano, carboxyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl and alkoxycarbonyl radicals, it being understood that, in the substituents of the phenyl, α- or β-naphthyl and aromatic heterocyclic radicals, the alkyl radicals and the alkyl portions of the other radicals contain 1 to 4 carbon atoms and that the alkenyl and alkynyl radicals contain 2 to 8 carbon atoms and that the aryl radicals are phenyl or α- or β-naphthyl radicals, and

 R_4 and R_5 , which may be identical or different, represent

- a straight or branched alkyl radical containing 1 to 8 carbon atoms, a straight or branched alkenyl radical 15 containing 2 to 8 carbon atoms, a straight or branched alkynyl radical containing 2 to 8 carbon atoms, a cycloalkyl radical containing 3 to 6 carbon atoms, a cycloalkenyl radical containing 4 to 6 carbon atoms or 20 a bicycloalkyl radical containing 7 to 11 carbon atoms, these radicals optionally being substituted with one or more substituents chosen from halogen atoms and hydroxyl radicals, alkyloxy radicals containing 1 to 4 carbon atoms, dialkylamino radicals in which each alkyl part contains 1 to 4 carbon atoms, piperidino and 25 morpholino radicals, 1-piperazinyl radicals (optionally substituted at -4 with an alkyl radical containing 1 to 4 carbon atoms or with a phenylalkyl radical in which

the alkyl part contains 1 to 4 carbon atoms), cycloalkyl radicals containing 3 to 6 carbon atoms, cycloalkenyl radicals containing 4 to 6 carbon atoms, phenyl radicals which are optionally substituted, cyano 5 and carboxyl radicals and alkyloxycarbonyl radicals in which the alkyl part contains 1 to 4 carbon atoms, - or an aryl radical optionally substituted with one or more atoms or radicals chosen from halogen atoms and alkyl, alkenyl, alkynyl, aryl, aralkyl, alkoxy, 10 alkylthio, aryloxy, arylthio, hydroxyl, hydroxyalkyl, mercapto, formyl, acyl, acylamino, aroylamino, alkoxycarbonylamino, amino, alkylamino, dialkylamino, carboxyl, alkoxycarbonyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, cyano, nitro, azido, trifluoromethyl 15 and trifluoromethoxy radicals, it being understood that R, cannot represent a methyl radical or a 4- to 6-membered saturated or unsaturated heterocyclic radical optionally substituted with one or more alkyl radicals containing 1 to 4 carbon atoms,

20 it being understood that R, cannot represent a methyl radical,

25

it being understood that the cycloalkyl, cycloalkenyl and bicycloalkyl radicals may optionally be substituted with one or more alkyl radicals containing 1 to 4 carbon atoms.

2. Novel taxoids according to claim 1, for which R represents a hydroxyl radical, an alkoxy radical containing 1 to 4 carbon atoms, an acyloxy

radical containing 1 to 4 carbon atoms or an alkoxyacetoxy radical in which the alkyl part contains 1 to 4 carbon atoms, and $R_{\rm b}$ represents a hydrogen atom, Z represents a hydrogen atom or a radical of general formula (II) in which R, represents a benzoyl radical or 5 * radical R2-0-CO- in which R2 represents a tert-butyl radical, and R, represents an alkyl radical containing 1 to 6 carbon atoms, an alkenyl radical containing 2 to 6 carbon atoms, a cycloalkyl radical containing 3 to 6 10 carbon atoms, a phenyl radical optionally substituted with one or more atoms or radicals, which may be identical or different, chosen from halogen atoms (fluorine or chlorine) and alkyl, alkoxy, dialkylamino, acylamino, alkoxycarbonylamino or trifluoromethyl radicals or a 2- or 3-furyl, 2- or 3-thienyl or 2-, 4-15 or 5-thiazolyl radical, and R4 represents a phenyl radical which is optionally substituted with one or more atoms or radicals, which may be identical or different, chosen from halogen atoms and alkyl, alkoxy, amino, alkylamino, dialkylamino, acylamino, 20 alkoxycarbonylamino, azido, trifluoromethyl and trifluoromethoxy radicals, or a 2- or 3-thienyl or 2or 3-furyl radical, and R, represents an optionally substituted alkyl radical containing 1 to 4 carbon atoms, it being understood that R, cannot represent a 25 methyl radical.

3. Novel taxoids according to claim 1, for which R_a represents a hydrogen atom or a hydroxyl or acetyloxy or methoxyacetoxy radical and R_b represents a hydrogen atom, Z represents a hydrogen atom or a radical of the general formula (II) in which R₁ represents a benzoyl radical or a radical R₂-O-CO- in which R₂ represents a tert-butyl radical, and R₃ represents an isobutyl, isobutenyl, butenyl, cyclohexyl, phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-thiazolyl, 4-thiazolyl or 5-thiazolyl radical, and R₄ represents a phenyl radical which is optionally substituted with a halogen atom, and R₃ represents an alkyl radical containing 2 to 4 carbon atoms.

4. Process for the preparation of a product according to one of claims 1 to 3, characterized in
 15 that a product of general formula:

in which Z, R, and R, are defined as in one of claims 1 to 3, R, represents a hydrogen atom or an alkoxy, acyloxy or alkoxyacetoxy radical or a protected hydroxyl radical, and R, represents a hydrogen atom, is treated with an alkali metal halide or an alkali metal azide or a quaternary ammonium salt or an alkali metal phosphate, optionally followed by replacement of the

20

protecting group represented by R. by a hydrogen atom.

- 5. Process for the preparation of a product according to one of claims 1 to 3, for which R, and R, are defined as in one of claims 1 to 3, and R, and R, each represent a hydrogen atom, characterized in that a product according to one of claims 1 to 3, for which R, represents a hydroxyl, acyloxy or alkoxyacetoxy radical, is reduced electrolytically.
- 6. Process for the preparation of a product according to one of claims 1 to 3, for which R₄ and R₅ are defined as in one of claims 1 to 3, and R₅ and R₆ form, together with the carbon atom to which they are attached, a ketone function, characterized in that a product according to one of claims 1 to 3, for which R₅ represents a hydroxyl radical and R₆ represents a hydrogen atom, is oxidized.
- 7. Pharmaceutical composition, characterized in that it contains at least one product according to one of claims 1 to 3, for which Z represents a radical of general formula (II), in combination with one or more pharmaceutically acceptable products, whether inert or pharmacologically active.

VERIFIED TRANSLATION OF PCT

2-1417/95

IN THE MATTER OF an Australian Application corresponding to PCT Application PCT/FR95/00735

I, Norval O'CONNOR PhD,

c/o Europa House, Marsham Way, Gerrards Cross, Buckinghamshire, England, do solemnly and sincerely declare that I am conversant with the English and French languages and am a competent translator thereof, and that to the best of my knowledge and belief the following is a true and correct translation of the PCT Application filed under No. PCT/FR95/00735.

Date: 11 November 1996

N. O'CONNOR

For and on behalf of RWS Translations Ltd.