CIS 471/571 (Winter 2020): Introduction to Artificial Intelligence

Lecture 17: Hidden Markov Model

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminder

- Homework 4: Bayes Nets, HMMs
 - Deadline: March 06th, 2020

Thanh H. Nguyen 3/2/20

Hidden Markov Model

2/20

Thanh H. Nguyen 3/2/20

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring

Need to introduce time (or space) into our models

Markov Models

Value of X at a given time is called the state

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Conditional Independence

- Basic conditional independence:
 - Past and future independent given the present
 - Each time step only depends on the previous
 - This is called the (first order) Markov property
- Note that the chain is just a (growable) BN
 - We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example Markov Chain: Weather

• States: $X = \{rain, sun\}$

• Initial distribution: 1.0 sun

 $\bullet \quad \mathbf{CPT} \ \mathbf{P}(\mathbf{X}_{\mathsf{t}} \ | \ \mathbf{X}_{\mathsf{t-1}}):$

 $\begin{array}{c|cccc} \textbf{X}_{t-1} & \textbf{X}_{t} & \textbf{P}(\textbf{X}_{t}|\textbf{X}_{t-1}) \\ \\ \text{sun} & \text{sun} & 0.9 \\ \\ \text{sun} & \text{rain} & 0.1 \\ \\ \text{rain} & \text{sun} & 0.3 \\ \\ \text{rain} & \text{rain} & 0.7 \\ \end{array}$

Two new ways of representing the same CPT

Example Markov Chain: Weather

Initial distribution: 1.0 sun

•What is the probability distribution after one step?

$$P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$$

$$0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$$

Mini-Forward Algorithm

• Question: What's P(X) on some day t?

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow X_4$$

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Example Run of Mini-Forward Algorithm

From initial observation of sun

From initial observation of rain

• From yet another initial distribution $P(X_1)$:

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \qquad \dots \qquad \left\langle \begin{array}{c} 0.75 \\ 0.25 \end{array} \right\rangle$$

$$P(X_1) \qquad P(X_{\infty})$$

Stationary Distributions

- For most chains:
 - Influence of the initial distribution gets less and less over time.
 - The distribution we end up in is independent of the initial distribution

- Stationary distribution:
 - The distribution we end up with is called the stationary distribution P_{∞} of the chain
 - It satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Example: Stationary Distributions

• Question: What's P(X) at time t = infinity?

$$X_1$$
 X_2 X_3 X_4 X_4

$$P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$$

$$P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$$

$$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$

$$P_{\infty}(sun) = 3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 1/3P_{\infty}(sun)$$

$$P_{\infty}(sun) = 3/4$$
$$P_{\infty}(rain) = 1/4$$

$$P_{\infty}(rain) = 1/4$$

X _{t-1}	X _t	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Application of Stationary Distribution: Web Link Analysis

- PageRank over a web graph
 - Each web page is a state
 - Initial distribution: uniform over pages
 - Transitions:
 - With prob. c, uniform jump to a random page (dotted lines, not all shown)
 - With prob. 1-c, follow a random outlink (solid lines)

- Will spend more time on highly reachable pages
- E.g. many ways to get to the Acrobat Reader download page
- Somewhat robust to link spam
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors

Application of Stationary Distributions: Gibbs Sampling*

- Each joint instantiation over all hidden and query variables is a state: $\{X_1, ..., X_n\} = H U Q$
- Transitions:
 - With probability 1/n resample variable X_i according to

$$P(X_j \mid x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_n, e_1, ..., e_m)$$

- Stationary distribution:
 - Conditional distribution $P(X_1, X_2, ..., X_n | e_1, ..., e_m)$
 - Means that when running Gibbs sampling long enough we get a sample from the desired distribution
 - Requires some proof to show this is true!

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agent
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step

Example: Weather HMM

- •An HMM is defined by:
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X_t \mid X_{t-1})$
 - Emissions: $P(E_t \mid X_t)$

R _{t-1}	R _t	$P(R_t R_{t-1})$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process: future depends on past via the present
 - Current observation independent of all else given current state

- Quiz: does this mean that evidence variables are guaranteed to be independent?
 - [No, they tend to correlated by the hidden state]

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

Filtering / Monitoring

• Filtering, or monitoring, is the task of tracking the distribution $B_t(X) = P_t(X_t \mid e_1, ..., e_t)$ (the belief state) over time

• We start with $B_1(X)$ in an initial setting, usually uniform

 \bullet As time passes, or we get observations, we update B(X)

Sensor model: can read in which directions there is a wall, never more than 1 mistake

t=0

Motion model: may not execute action with small prob.

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Prob 0 1

Prob 0 1

Prob 0 1

The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

• Induction: assuming we have current belief $B(X_t) = P(X_t|e_{1:t})$

$$P(X_{t+1}|e_{1:(t+1)}) \leftarrow P(X_{t+1}|e_{1:t}) \leftarrow P(X_t|e_{1:t})$$

update

Observation Passage of time update

Inference: Base Cases

$$P(X_1|e_1)$$

$$P(x_1|e_1) = P(x_1, e_1)/P(e_1)$$

$$\propto_{X_1} P(x_1, e_1)$$

$$= P(x_1)P(e_1|x_1)$$

$$P(X_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$
$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

$$B(X_t) = P(X_t|e_{1:t})$$

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t)B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Observation

• Assume we have current belief P(X | previous evidence):

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

• Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

• Or, compactly:

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Weather HMM

R _t	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

Next Time: Particle Filtering and Applications of HMMs