Last time

An algorithm is efficient if it does qualitatively better than brute force on every input.

Does every computational problem have a polynomial time algorithm?

Are we satisfied? $\mathcal{N}_{\mathcal{O}}$

How to define runtime:

(i) (evel of defail

Dig Onotation

2) union inputs?

Dest case X 7 one bad input =

one bad input =

onusable

average case > probability distribution

over inputs

worst case > "For all inputs"

How many primitive operations does the algorithm take?

Algorithm 1

Input: integer array A of length n

Assume the following

- 1 operation for basic arithmetic operations
- · 1 operation for variable assignment
- 1 operation for variable retrieval

runtime = # primitive ops for input of size n

$$t(n) = N(5n+4) = 5n^2 + 4n$$

Big O notation

upperbound

Definition of big O: f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

ex $5n^2 + 4nis$ $O(n^2)$. We need to show that there exist could No s.t. $5n^2 + 4 \le C N^2$ for all $n \ge N_0$.

how about C=(0) and $n_0=0$? Show frat $5n^2 + 4n \leq 10n^2$ for $n \geq 0$. Note that for all $n \geq 0$, $n^2 > N$. So $5n^2 + 4n \leq 5n^2 + 4n^2 = 9n^2 \leq 10n^2$ Could I have chosen C=4, $N_0=0$? Could I have chosen C=4, $N_0=100$? Could I have chosen C=9, $N_0=100$? $\int_{n_0}^{n_0} \int_{n}^{n} f(n)$ $\int_{n_0}^{n_0} \int_{n}^{n} f(n)$

Big O notation: another example

Definition of big O: f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Claim: 2n + 100 is $O(n^2)$.

To Show 2n+100 is $0(n^2)$, we have to show that there exist constants c70 and n_0 70 s.t. $2n+100 \le cN^2$ for all $n \ge N_0$.

nelet to show:

Big O notation: another example

Definition of big O: f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Claim: 2n + 100 is $O(n^2)$.

Proof:

choose c=1 and no=20. Then, [we have 24100 \le n2 for all n7,20.

See pidare

(aim: 10 is 0(2ⁿ).

is 5n+4 0(n)? how do I prove that 5 n2 +4 is not O(n)? To prove true: give (70, No 20 S.t. Sn2 +4 E Cn for all n3 No. To prove false (5n²+4 is not O(n)): show that there are no (70, No2,0) S. I 5n2+4 ECN for all n3No.

Let's do some examples together

1. Prove that $3n^3 + 5n^2 - 2n = O(n^3)$ using the definition of big O. That is, you must give a c and an n_0 and show that they fit the definition, either by reasoning in words or by drawing a graph.

$$3n^3+5n^2-2n \leq CN^3$$
 for all $n \geq N_0 zon^3$
 $C = 20$, $N_0 = 0$.
 $3n^3+5n^2-2n \leq 20n^3$ for all $n \geq 0$.

2. How would you prove that $3n^3 + 5n^2 - 2n \neq O(n^2)$? Don't do it, just tell me how you would.

Def of Dig 0: f(n) is O(g(n)) if there exist c70, No70 S.t. F(n) & Cg(w) for all n7 No.

1. (8 points) Suppose you have algorithms with the following runtimes. (Assume these are exact running times as a function of the input size n, not a asymptotic running times.) How much slower do these algorithms get when you double the input size?

(a) n

(b) $n \log n$

2. (7 points) Recall the definition of big O:

f(n) is O(g(n)) if there exist positive constants n_0, c such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

Using this definition, prove that 2n + 5 is $O(n^2)$.

Summary 50 fax

When we talk about the runtime of an algorithm, we always mean:

(2) f(n) is
$$O(g(n))$$
 (ex Snlogn+6n+25 is)

" pre algorithmis $n(Ogn)$ "

For
$$i = 1, 2, ..., n$$

For $j = i + 1, i + 3, ..., n$
Add up array entries $A[i]$ through $A[j]$
Store the result in $B[i, j]$
Endfor

Endfor

inher (00p: n-1+(n-1)(n-2)+noverall f(n) = n(n-1+(n-1)(n-2)+n)

Big Omega notation

Lower bounds. f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

- f(n) is both $\Omega(n^2)$ and $\Omega(n)$.
- f(n) is not $\Omega(n^3)$.

Big Theta notation

Tight bounds. f(n) is $\Theta(g(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 \ge 0$ such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

Ex. $f(n) = 32n^2 + 17n + 1$.

- f(n) is $\Theta(n^2)$.
- f(n) is neither $\Theta(n)$ nor $\Theta(n^3)$.

 $Is f(n) = 32n^2 + 17n + 5...$

- 1. $\Theta(n)$
- 2. $\Theta(n^2)$
- 3. $\Theta(n^3)$
- 4. All three
- 5. $\Theta(n^2)$ and $\Theta(n^3)$

Multiplication by a constant

Suppose I have runtime f(n) and I know it is O(g(n)).

Is $b \cdot f(n) = O(g(n))$ for all constants b?

Asymptotically different functions

```
log n
n
n \log n
n^2
n^3
3<sup>n</sup>
```

Summary

Big O is _____ for functions

Big Omega is _____ for functions

Big Theta is _____ for functions

We use Big O/Big Omega/Big Theta in order to:

Is there a worst-case input here? (Or best case?)

Algorithm 1

```
Input: integer array A of length n
for i = 1, 2, ..., n :
    total = 0
    for j = 1, 2, ..., n:
        total = total + A[i]
    B[i] = total
```

Summary

When we talk about the runtime of an algorithm, we always mean: