Mikroprosessorsystemer

Labøving 10 – Variabler og aritmetikk.

Oppgave 1.

Koden under skriver ut størrelsen på char. Kopier koden på neste side og kjør på Arduino UNO'en din. Utvid programmet så det viser størrelsen på følgende variabler: char, short int, int, long int, long long int, float, double og long double.

```
#define F_CPU 16000000UL
#define USART_BAUDRATE 9600 // desired baud rate
#define UBRR_VALUE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1) // UBRR value
/**********************************/Includes|****************************/
#include <avr/interrupt.h>
#include <stdio.h>
/********************************/function prototypes
static int usart_putchar( char data, FILE *stream );
void USART_init(uint16_t ubrr_value);
                           static FILE uart_str = FDEV_SETUP_STREAM(usart_putchar, NULL, _FDEV_SETUP_WRITE); // for printf to work
int main(void)
      USART_init(UBRR_VALUE);
      stdout = &uart_str;
                                      // to make printf work
      printf("char %d\r\n", sizeof(char));
      while (1)
      }
}
static int usart_putchar(char data, FILE *stream) {
      while ((UCSR0A & (1 << UDRE0)) == 0) {};
             // Wait for empty transmit buffer
      UDR0 = data; // Start transmission
      return 0;
}
void USART_init(uint16_t ubrr_value)
      UBRR0 = ubrr_value;
                                      // set baud rate to 9600
      UCSR0C = ((1<<UMSEL01)|(3<<UCSZ00));</pre>
                         // 8 bit 1 parity
      UCSR0B = ((1 << TXEN0) | (1 << RXEN0));
                                // enable transmitter, reciever and interrupt
}
```

Oppgave 2.

Lag et program med følgende kode:

```
volatile int8_t int8var = -200; // overflow - warning
volatile uint8_t uint8var = 100;

volatile int16_t int16var = -5000;;
volatile uint16_t uint16var = 2000;;
volatile int32_t int32var = 2000*5000; // overflow in expression- warning
int32var = 2000/5000*200;
int16var = int8var * uint8var;
int8var++;
uint16var++;
int16var++;
int16var++;
int32var++;

volatile float floatvar = 3.5;
volatile float floatvar2 = 4.7;
floatvar = floatvar * uint8var;
floatvar = floatvar/floatvar2;
```

Simuler koden. Se hva variablene blir. Se hvor lang tid utregningene tar. Se hvor stor koden blir med og uten flyttallsberegningene. Eksperimenter litt på egen hånd.

Kommenter på levering i It's Learning hva som var enkelt/vanskelig/interessant. Har du forslag til andre utregninger?