Développements limités

Jérémy Meynier

Exercice 1

Donner le développement limité à l'ordre 3 au voisinage de 3 de $g(x) = \sqrt{1+x}$

Exercice 2

Donner le développement limité à l'ordre 5 en 0 de $f(x) = \exp(\tan(x))$

Exercice 3

Soit
$$f(x) = \frac{1}{x^2} \left(\frac{\ln(1+x) + \ln(1-x)}{x^2} + 1 \right)$$
. Déterminer $\lim_{x \to 0} f(x)$

Exercice 4

Déterminer le développement asymptotique à l'ordre 4 de $\ln(x+\sqrt{1+x^2})$

Exercice 5

- 1. Montrer qu'il existe $x_n \in]n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2}[$ tel que $\tan(x_n) = x_n$
- 2. Donner un développement asymptotique à 3 termes de x_n

Exercice 6

Soit $f: x \in \mathbb{R}^{+*} \mapsto x - \ln(x)$

- 1. Soit $n \geq 2$. Montrer f(x) = n possède 2 solutions u_n et v_n avec $u_n \in]0,1[$ et $v_n \in]1,+\infty[$
- 2. Montrer que $v_n = n + \ln(n) + \frac{\ln(n)}{n} + o(\frac{\ln(n)}{n})$
- 3. Montrer que $u_n = e^{-n} + e^{-2n} + o(e^{-2n})$

Exercice 7

Soit $f(x) = e^x + x$

1. Montrer que $\forall n \in \mathbb{N}^*$ f(x) = n possède une unique solution sur \mathbb{R}^+ , que l'on nomme u_n

1

2. Donner un développement asymptotique à 2 termes de u_n

Jérémy Meynier 2

Exercice 8

Soit
$$u_n = \sqrt{n + \sqrt{n - 1 + \sqrt{\dots \sqrt{1 + \sqrt{0}}}}}$$

- 1. Expliciter une relation entre u_n et u_{n-1}
- 2. Faire un développement limité à l'ordre 3 de \boldsymbol{u}_n