Tema 5

Cálculo integral en $\mathbb R$

Ejercicios y Soluciones

5.1. Evalúa la suma de Riemann para $f(x) = 2-x^2$ correspondiente a una partición del intervalo [0,2] en 4 subintervalos de igual longitud, tomando los puntos extremos de la derecha de cada subintervalo como puntos de muestra. Haz un dibujo que te ayude a comprender qué representa esa suma de Riemann.

Solución.

La suma de Riemann

$$\mathcal{R}_4(f(x), \mathcal{P}) = \sum_{i=1}^4 f(x_i) \Delta x = 0, 5(f(0,5) + f(1) + f(1,5) + f(2))$$
$$= 0, 5[1, 75 + 1 + (-0, 25) + (-2)] = 0, 5(0,5) = 0, 25$$

representa la suma de las áreas de los dos rectángulos que se encuentran por encima del eje x menos la suma de las áreas de los dos rectángulos que se encuentran por debajo del eje de las x.

5.2. Dada a un número real positivo cualquiera, para cada $n \in \mathbb{N}$ fijo, divide el intervalo [0, a] en n subintervalos de igual longitud. Utiliza el extremo derecho de cada subintervalo para construir la suma de Riemann asociada a la partición anterior que aproxime la integral definida

$$\int_0^a \frac{1}{\sqrt{1+x^2}} \, dx.$$

Simplifica todo lo que puedas la expresión resultante.

Solución.

La suma de Riemann $\mathcal{R}_n(f,\mathcal{P})$ de $f(x)=\frac{1}{\sqrt{1+x^2}}$ asociada para cada n a la partición $\mathcal{P}=\{0< a/n<2a/n<\ldots< ka/n<\ldots< (n-1)a/n< a\}$ del intervalo [0,a] es

$$\mathcal{R}_n(f,\mathcal{P}) = \sum_{k=1}^n \frac{a}{\sqrt{n^2 + k^2 a^2}}$$

5.3. La parte entera de un número real x se define como $[x] = \max\{k \in \mathbb{Z} \mid k \leq x\}$, es decir, [x] es el entero inmediatamente inferior a x. Calcula el valor de la integral definida $\int_1^4 \frac{1}{[x]} dx$.

Solución.

La función 1/[x] es integrable en [1,4], ya que es una función acotada en tal intervalo y discontinua solamente en los puntos 2, 3, y 4. En cada intervalo [n, n+1], para n=1,2,3, 1/[x] difiere de la

función constante 1/n en tan sólo el punto n+1, por lo que sus integrales son iguales. Así, aplicando la aditividad de la integración, se tiene:

$$\int_{1}^{4} \frac{1}{[x]} dx = \sum_{n=1}^{3} \int_{n}^{n+1} \frac{1}{[x]} dx = \sum_{n=1}^{3} \int_{n}^{n+1} \frac{1}{n} dx = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}.$$

 $\overline{5.4.}$

Calcula el valor de cada integral definida interpretándola en términos de áreas.

(I)
$$\int_{-1}^{1} \sqrt{1-x^2} \, dx$$
.

(II)
$$\int_{-1}^{1} \log \frac{2+x}{2-x} \, dx$$
.

(III)
$$\int_{-1}^{3} \sqrt{3 - x^2 + 2x} \, dx.$$

Solución.

- (I) $\pi/2$.
- (II) 0.
- (III) 2π .

5.5. Utiliza las propiedades elementales de la integral definida para verificar las desigualdades siguientes sin evaluar las integrales:

(I)
$$\int_0^{\pi/4} \sin^3(x) \, dx \le \int_0^{\pi/4} \sin^2(x) \, dx$$
.

(II)
$$2 \le \int_{-1}^{1} \sqrt{1+x^2} \, dx \le 2\sqrt{2}$$

(III)
$$\int_0^{\pi/2} x \sin x \, dx \le \frac{\pi^2}{8}$$
.

5.6. Si f es una función integrable en [a, b] tal que $\int_a^b f \neq 0$, demuestra que existe $c \in [a, b]$ tal que $\int_a^c f = \int_c^b f$.

Solución.

La función $G(x) = \int_a^x f(t) dt - \int_x^b f(t) dt$ es continua en [a, b]. Además se puede comprobar que $G(a) = -\int_a^b f = -G(b)$, con lo que aplicando el teorema de Bolzano, se obtiene el resultado.

5.7. Si f es una función continua en \mathbb{R} y periódica de periodo T. prueba que

$$\int_0^T f(t) dt = \int_x^{x+T} f(t) dt, \qquad \forall x \in \mathbb{R}.$$

Solución.

Sea $G(x) = \int_x^{x+T} f(t) dt$. Por el teorema fundamental del Cálculo y por la periodicidad de f, resulta que, para todo $x \in \mathbb{R}$, G'(x) = f(x+T) - f(x) = 0. Luego G es constante. Así, para todo $x \in \mathbb{R}$, $G(x) = G(0) = \int_0^T f(t) dt$.

[5.8.] En cada uno de los apartados siguientes, halla $g : \mathbb{R} \to \mathbb{R}$ continua y k constante para que se cumpla la ecuación integral correspondiente:

(I)
$$\int_{1}^{x} g(t) dt + \int_{0}^{x} t g(t) dt = \arctan x + \log \sqrt{1 + x^2} + k$$
 para todo $x > 0$.

(II)
$$\int_{k}^{x} g(t) \cos t \, dt = \sin^{2} x - \sin x - 2 \text{ para todo } x \in (0, \pi/2).$$

Solución.

(I) Dado que g es continua en \mathbb{R} , por el teorema fundamental del Cálculo, las funciones $\int_1^x g(t) dt$ y $\int_0^x t g(t) dt$ son derivables en \mathbb{R} . Puesto que se ha de cumplir que

$$\int_{1}^{x} g(t) dt + \int_{0}^{x} t g(t) dt = \arctan x + \log \sqrt{1 + x^{2}} + k,$$

derivando, resulta que

$$g(x) + xg(x) = \frac{1}{1+x^2} + \frac{x}{1+x^2}.$$

Se deduce que $g(x) = 1/(1+x^2)$. En tal caso, sustituyendo en la igualdad dada y evaluando para x = 0, se sigue que $k = -\pi/4$.

(II) Razonando análogamente, se deduce que $g(x)=2\sin x-1$ y $k=-\pi/2+2\pi n$, para cualquier $n\in\mathbb{Z}.$

5.9.

Calcula
$$\lim_{x \to 0} \frac{\int_0^{x^2} \log(1+t) dt}{\int_0^x (e^{t^3} - 1) dt}$$
.

Aplicando el teorema fundamental del Cálculo, la regla de L'Hôpital, y equivalencias, se tiene:

$$\lim_{x \to 0} \frac{\int_0^{x^2} \log(1+t) dt}{\int_0^x (e^{t^3} - 1) dt} = \lim_{x \to 0} \frac{2x \log(1+x^2)}{e^{x^3} - 1} = \lim_{x \to 0} \frac{2x^3}{x^3} = 2.$$

 $\boxed{\textbf{5.10.}}$ Halla los valores de a y b para los que

$$\lim_{x \to 0} \frac{a}{bx - \sin x} \int_0^x \frac{t^2}{\sqrt{4+t}} \, dt = 1.$$

Solución.

$$a = b = 1$$
.

5.11. Indica razonadamente si son verdaderas o falsas las siguientes afirmaciones:

- (I) Sea $f:[a,b]\to\mathbb{R}$ una función continua en [a,b] tal que $\int_a^b f(x)dx=0$, entonces existe $c\in[a,b]$ tal que f(c)=0.
- (II) $\int_0^4 \frac{x}{x^2 1} \, dx = \frac{1}{2} \ln 15.$

Solución.

- (I) Verdadero.
- (II) Falso.

5.12. Calcula las siguientes integrales indefinidas directamente o usando un cambio de variable.

$$(I) \int \frac{1}{\sqrt[n]{x}} dx$$

(IV)
$$\int \frac{1}{1 + \cos^2 x} \, dx$$

(II)
$$\int \frac{1}{2+x^2} dx$$

(v)
$$\int \frac{1}{e^x + e^{-x}} dx$$

(III)
$$\int x^2 \sqrt{1-x} \, dx$$

(VI)
$$\int \frac{\sin^3 x}{\sqrt{\cos x}} \, dx$$

(I)
$$\frac{x^{1-1/n}}{1-1/n} + C$$

(IV)
$$\frac{\sqrt{2}}{2} \arctan\left(\frac{\operatorname{tg} x}{\sqrt{2}}\right) + C$$

(II)
$$\frac{\sqrt{2}}{2} \operatorname{arctg}\left(\frac{x}{\sqrt{2}}\right) + C$$

(v)
$$arctg(e^x) + C$$

(III)
$$-\frac{2(1-x)^{3/2}}{3} + \frac{4(1-x)^{5/2}}{5} - \frac{2(1-x)^{7/2}}{7} + C$$
 (VI) $-2\cos^{1/2}x + \frac{2\cos^{5/2}x}{5} + C$

(VI)
$$-2\cos^{1/2}x + \frac{2\cos^{5/2}x}{5} + C$$

[5.13.] Calcula las siguientes integrales integrando por partes:

(I)
$$\int \ln x \, dx$$

(IV)
$$\int x \operatorname{sen}(\sqrt{x}) \, dx$$

(II)
$$\int x \cos x \, dx$$

(v)
$$\int \frac{x^2}{(x^2+1)^2} dx$$

(III)
$$\int \sin x \cos x \ln(\operatorname{tg} x) \, dx$$

Solución.

(I)
$$x \ln x - x + C$$

(II)
$$x \operatorname{sen} x + \cos x + C$$

(III)
$$\frac{1}{2}(\sin^2 x \ln |\lg x| + \ln |\cos x|) + C$$

(IV)
$$(12-2x)\sqrt{x}\cos(\sqrt{x}) - (12-6x)\sin(\sqrt{x}) + C$$

(v)
$$-\frac{x}{2(1+x^2)} + \frac{1}{2} \arctan x + C$$

5.14. Utiliza el cambio $u = \operatorname{sen} t$ para comprobar que

$$\int \frac{1}{\cos t} dt = \frac{1}{2} \ln \left| \frac{1 + \sin t}{1 - \sin t} \right| + C = \ln |\operatorname{tg} t + \sec t| + C$$

[5.15.] Calcula las siguientes integrales definidas utilizando las sustituciones trigonométricas que se indican:

(I)
$$\int_0^{3\frac{\sqrt{3}}{2}} \frac{x^3}{(4x^2+9)^{3/2}} dx, \qquad 2x = 3 \operatorname{tg} \theta.$$

(II)
$$\int_0^{2/3} x^3 \sqrt{4 - 9x^2} \, dx$$
, $3x = 2 \operatorname{sen} \theta$, donde $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

- (I) 3/32
- (II) 64/1215.
- **5.16.** Calcula las siguientes integrales racionales:

$$(I) \int \frac{dx}{(x+a+1)(x+a)}$$

(IV)
$$\int \frac{1}{x^3 + 1} \, dx$$

(II)
$$\int \frac{1}{x^3 + 2x^2 + x} dx$$

(v)
$$\int \frac{1}{(1+x^2)^2} dx$$
 (usa el cambio $x = \operatorname{tg}(t)$).

(III)
$$\int \frac{x^4}{x^4 - 1} \, dx$$

(VI)
$$\int \frac{3x+5}{(x^2+2x+2)^2} \, dx$$

Solución.

(I)
$$\ln \left| \frac{x+a}{x+a+1} \right| + C$$

(II)
$$\frac{1}{x+1} + \ln \left| \frac{x}{x+1} \right| + C$$

(III)
$$x + \frac{1}{4} \ln \left| \frac{x-1}{x+1} \right| - \frac{1}{2} \arctan x + C$$

(IV)
$$\frac{1}{6} \ln \left| \frac{(x+1)^2}{x^2 - x + 1} \right| + \frac{1}{\sqrt{3}} \arctan \left(\frac{2x - 1}{\sqrt{3}} \right) + C$$

(v)
$$\frac{x}{2(1+x^2)} + \frac{1}{2} \arctan x + C$$

(VI)
$$\frac{2x-1}{2(2+2x+x^2)} + \arctan(x+1) + C$$

5.17. Calcula las siguientes integrales indefinidas:

$$(I) \int \frac{x^3}{\sqrt{x-1}} \, dx$$

(II)
$$\int \frac{1}{\sqrt{x} + \sqrt[3]{x}} \, dx$$

(III)
$$\int \frac{e^{2x}}{(e^x+1)^{1/4}} dx \text{ (Usa la sustitución } x=\sin^2\theta \text{ junto con la identidad } \sin(2\theta)=2\sin\theta\cos\theta).$$

(IV)
$$\int \operatorname{sen}(\omega t) \operatorname{sen}(\omega t + \varphi) dt$$

(I)
$$2\sqrt{x-1}\left(\frac{(x-1)^3}{7} + \frac{3(x-1)^2}{5} + x\right) + C$$

(II)
$$6\sqrt[6]{x} - 3\sqrt[3]{x} + 2\sqrt{x} - 6\ln(1 + \sqrt[6]{x}) + C$$

(III)
$$\frac{4}{7}\sqrt[4]{(e^x+1)^7} - \frac{4}{3}\sqrt[4]{(e^x+1)^3} + C$$

(IV)
$$\frac{t\cos\varphi}{2} - \frac{\sin(2\omega t + \varphi)}{4\omega}$$

[5.18.] Calcula
$$\int \frac{2x^2}{(1+x^2)^2} dx$$

- (I) utilizando la sustitución trigonométrica $x = \operatorname{tg} \theta$;
- (II) por partes.

Solución.

$$\arctan x - \frac{x}{1+x^2} + C$$

5.19. Halla el valor promedio de $f(x) = \frac{\sqrt{x^2 - 1}}{x}$ cuando x recorre el intervalo [1,7]. (Utiliza la sustitución trigonométrica $x = \sec \theta$.)

Solución.

$$\frac{1}{6}[\sqrt{48} - \sec^{-1}(7)]$$

 $\overline{$ 5.20. La velocidad v de la sangre que fluye por un vaso de radio R y longitud l a una distancia r del eje del vaso es

$$v(r) = \frac{P}{4\eta l}(R^2 - r^2),$$

donde P, l, y η son constantes positivas. Calcula la velocidad promedio en [0, R] y compárala con la velocidad máxima en ese intervalo.

Solución.

$$v_{\text{prom}} = \frac{PR^2}{6\eta l}$$
. El valor máximo de $v(r)$ se alcanza para $r=0$ y es $v(0) = \frac{PR^2}{4\eta l} > v_{\text{prom}}$.

5.21. Calcula las integrales definidas siguientes

(I)
$$\int_{-\pi/2}^{\pi} \sin|\theta| \, d\theta$$

(II)
$$\int_{-7}^{7} \frac{x^3 \cos x}{x^6 + 2} \, dx.$$

(III)
$$\int_1^3 \frac{\operatorname{arc} \operatorname{tg} \sqrt{t}}{\sqrt{t}} dt$$
 (usa el cambio $u = \sqrt{t}$ seguido de integración por partes)

Solución.

- (I) 3
- (II) 0 (Observa las simetrías del integrando y del intervalo de integración)

(III)
$$\frac{2}{3}\sqrt{3}\pi - \frac{1}{2}\pi - \ln 2$$

5.22. Estudia la convergencia o divergencia de las siguientes integrales impropias:

(I)
$$\int_0^2 \frac{1}{(x-1)^{2/3}} dx;$$

(IV)
$$\int_0^{\pi/2} \sec x \, dx;$$

(II)
$$\int_{-\infty}^{0} xe^{-2x} dx$$
;

(v)
$$\int_0^\infty \cos(\pi x) \, dx;$$

(III)
$$\int_{-\infty}^{\infty} \frac{1}{e^x + e^{-x}} dx;$$

(VI)
$$\int_0^1 x \ln x \, dx.$$

Solución.

(I) Converge a 6.

(IV) Diverge.

(II) Diverge.

(v) Diverge.

(III) Converge a $\pi/2$.

(VI) Converge a -1/4.

[5.23.] Usando criterios de comparación, determina la convergencia o divergencia de las siguientes integrales impropias:

(I)
$$\int_2^\infty \frac{1}{x^{3/2} - x^{1/2}} dx;$$

(III)
$$\int_0^\infty e^{-x^2} dx;$$

(II)
$$\int_0^2 \frac{1}{x^{3/2} - x^{1/2}} \, dx$$

(IV)
$$\int_0^\infty \frac{1}{e^x + x} \, dx.$$

- (I) Converge por comparación con $\int_2^\infty \frac{1}{x^{3/2}} dx$.
- (II) Diverge por comparación con $\int_1^2 \frac{1}{x-1} dx$.
- (III) Converge por comparación con $\int_0^\infty e^{-x} dx$.
- (IV) Converge por comparación con $\int_0^\infty e^{-x} dx$.
- **5.24.** Comprueba que la integral $\int_2^\infty \frac{1}{x^a (\ln x)^b} dx$:
 - (I) converge si a > 1, para todo b,
 - (II) converge si a = 1 y b > 1,
- (III) diverge si a < 1, para todo b.

Solución.

Los resultados se pueden probar utilizando el criterio de comparación por paso al límite y propiedades de límites en el infinito.

[**5.25.**] La integral

$$\int_0^\infty \left(\frac{1}{\sqrt{x^2+4}} - \frac{C}{x+2}\right) \, dx$$

converge para cierto valor de C. Determina C y calcula la integral.

Solución.

La integral converge si y sólo si C = 1. En ese caso converge a ln 2.

[5.26.] Demuestra que la función

$$f(x) = \int_0^x \frac{e^t}{\sqrt{|t|}} dt$$

está bien definida para todo $x \in \mathbb{R}$. Calcula los puntos de inflexión de la curva y = f(x) y determina sus asíntotas.

La integral impropia $f(x)=\int_0^x \frac{e^t}{\sqrt{|t|}}\,dt$ converge para todo $x\in\mathbb{R}$ por comparación con = $\int_0^x \frac{1}{\sqrt{|t|}}\,dt$. Los puntos de inflexión de la curva y=f(x) son el (0,0), y (1/2,f(1/2)). La única asíntota es la recta horizontal $y=-\sqrt{\pi}$