

Unit 01

210.95

Review of Statistics

1.41

Probability

Terminologies

- Ω : Sample Space = a set of all possible outcomes
- $\omega \in \Omega$: Sample Outcome = element of the sample space
- $A \subseteq \Omega$: Event = a set of ω that satisfies certain condition
- $X: \Omega \rightarrow \mathcal{R}$: Real-Valued Random Variable
 - = a function that maps from the sample space to the real line (or Euclidean space)

Probability

- A probability is a set function that satisfies the following properties
 - 1. $0 \le P(A) \le 1$ for each event A
 - 2. $P(\Omega) = 1$
 - 3. For each event sequence A_1 , A_2 , A_n , of mutually exclusive (disjoint) events $P(U_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty} P(A_i)$

Random Variable

Discrete Random Variables

 $X: \Omega \to \mathcal{R}$ takes on values in $S = \{x_1, x_2, \dots\}$, its probability mass function is defined by $P_X(x_i) = P(X = x_i), i \ge 1$

Given a collection $X_1, X_2, \cdots X_n$ of real-valued random variables, its joint probability mass function (pmf) is defined as

$$P_{(X_1,\dots,X_n)}(x_1,\dots,x_n) = P(X_1 = x_1,\dots,X_n = x_n)$$

The conditional pmf of X given Y=y is then given by $P_{X|Y} = \frac{P_{(X,Y)}(x,y)}{P_X(x)}$

Random Variable

The collection of random variables

The collection of random variables X_1, \dots, X_n are independent

$$P_{(X_1,\dots,X_n)}(x_1,\dots,x_n) = P_{X_1}(x_1) \times P_{X_2}(x_2) \times \dots \times P_{X_n}(x_n)$$

for all $(x_1,\dots,x_n) \in S^n$

Expected(Mean) Returns

- Expected (Mean) Returns
 - Let *r* be a return of an asset
 - Obviously, r is a random variable
 - Think of n different possibilities (or scenarios)
 - Technically speaking, we call this situation n states
 - Return will take n different values with n different probabilities
 - Expected return is defined by

$$E(r) = \sum_{s=1}^{n} p(s)r(s)$$

Expected(Mean) Returns

	Α	В	С	D	E
1					
2			Scenario Rates of Return		
3	Scenario	Probability	$r_D(i)$	$r_D(i)$ +0.03	$0.4*r_D(i)$
4	1	0.14	-0.10	-0.007	-0.040
5	2	0.36	0.00	0.03	0.000
6	3	0.30	0.10	0.13	0.040
7	4	0.20	0.32	0.35	0.128
8		Mean	0.080	0.110	0.032
9		Cell C8	=SUMPRODUCT(\$B\$4:\$B\$7,C4:C7)		
10					
11					
12					

- Expected Return of a Portfolio
 - Portfolio is a collection of investment weights that are invested in assets

$$(w_1, \cdots, w_N)$$

Return of a portfolio is given by

$$r_P = w_1 \times r_1 + w_2 \times r_2 + \dots + w_N \times r_N$$

• Note that each r_i , $i=1,\cdots,N$ is a random variable Also, the portfolio is a random variable as it is the weighted sum of random variables

- Expected Return of a Portfolio
 - Expected return of a portfolio is just the linear sum of expected values of individual assets weighted by their investment weights

$$E(r_P) = \sum_{i=1}^{N} w_i \times E(r_i)$$

Review of Statistics

- Variance
 - Variance is the expected value that measures how typically a random variable moves around its mean

$$Var(X) = \sigma_X^2 = \sum_{\forall x} (x - \mu_X)^2 \times P(X = x)$$
$$= \sum_{i=1}^{N} (r_i - \mu_r)^2 \times P(r = r_i)$$

Scenario analysis for bonds and stocks

	Н	1	J	K	L		
1							
2			Scenario Rat	es of Return	Portfoilo Return		
3	Scenario	Probability	$r_D(i)$	$r_E(i)$	$0.4*r_D(i)+0.6*r_E(i)$		
4	1	0.14	-0.10	-0.35	-0.2500		
5	2	0.36	0.00	0.20	0.1200		
6	3	0.30	0.10	0.45	0.3100		
7	4	0.20	0.32	-0.19	0.0140		
8		Mean	0.080	0.12	0.1040		
9		Cell L4	=0.4*J4+0.6*K4				
10		Cell L8	=SUMPRODUCT(\$I\$4:\$I\$7,L4:L7)				
11							

Scenario analysis for bonds and stocks

	Α	В	С	D	E		
13							
14			Scenario Rates of Return				
15	Scenario	Probability	$r_D(i)$	$r_D(i)$ +0.03	$0.4*r_D(i)$		
16	1	0.14	-0.10	-0.007	-0.040		
17	2	0.36	0.00	0.03	0.000		
18	3	0.30	0.10	0.13	0.040		
19	4	0.20	0.32	0.35	0.128		
20		Mean	0.080	0.110	0.032		
21		Variance	0.0185	0.0185	0.0034		
22		SD	0.1359	0.1359	0.0584		
23	Cell C21 =SUMPRODUCT(\$B\$16:\$B\$19,C16:C19, C16:C19) -C20^2						
24	Cell C22 = C21^0.5						

Variance of a portfolio

$$\begin{split} \sigma_P^2 &= \sum_{i=1}^n P(i) [\mathsf{r}_p - \mathsf{E}(\mathsf{r}_p)]^2 = \sum_{i=1}^n [w_D d(i) + w_E e(i)]^2 \\ &= \sum_{i=1}^n P(i) [w_D^2 d(i)^2 + w_E^2 e(i)^2 + 2w_D w_E d(i) e(i)] \\ &= w_D^2 \sum_{i=1}^n P(i) d(i)^2 + w_E^2 \sum_{i=1}^n P(i) e(i)^2 + 2w_D w_E \sum_{i=1}^n P(i) d(i) e(i) \\ &= w_D^2 \sigma_D^2 + w_E^2 \sigma_E^2 + 2w_D w_E \sum_{i=1}^n P(i) d(i) e(i) \end{split}$$

Computation of the portfolio variance

	Н	1	J	K		
13						
14			Scenario Rates of Return			
15	Scenario	Probability	$r_D(i)$	$r_E(i)$		
16	1	0.14	-0.10	-0.35		
17	2	0.36	0.00	0.20		
18	3	0.30	0.10	0.45		
19	4	0.20	0.32	-0.19		
20		Mean	0.08	0.12		
21		SD	0.1359	0.2918		
22		Covariance	-0.0034			
23		Correlation	-0.0847			
24	Cell J22	=SUMPRODUCT(I16:I19,J16:J19.K16:K19)-J20*K20				
25	Cell J23	=J22/(J21*K21)				

Covariance

The covariance between two variables are defined as

$$Cov(r_D, r_E) = E[(r_D - E(r_D)) \times (r_E - E(r_E))]$$

= $E(r_D r_E) - E(r_D) E(r_E)$

- The covariance quantifies the covariation of two random variables
- In particular, it measures how linearly two random variables move together

Computation of the covariance

	А	В	С	D	Е	F	G	Н
1		Rates of Return			Deviation from Mean			Product of
2	Probability	Bonds	Stocks		Bonds	Stocks		Deviation
3	0.25	-2	30		-8	20		-160
4	0.50	6	10		0	0		0
5	0.25	14	-10		8	-20		-160
6	Mean:	6	10		0	0		-80

Correlation Coefficient

- Though the covariance measures how two random variables move together linearly, it is subject to the size issue; the larger the random variables, the bigger the covariance is
- We need to remove the size issue. How? Normalize the covariance by the standard measure of the variability of random variables, i.e., standard deviation

$$Corr(r_D, r_E) = \frac{Cov(r_D, r_E)}{\sigma_D, \sigma_E}$$

Correlation Coefficient

- Note
 - A correlation coefficient falls between -1 and +1

$$Cov(r_D, r_E) = \sigma_D, \sigma_E \ Corr(r_D, r_E)$$

Computation of the correlation coefficient

	Н	1.0	J	K		
13						
14			Scenario Rates of Return			
15	Scenario	Probability	$r_D(i)$	$r_E(i)$		
16	1	0.14	-0.10	-0.35		
17	2	0.36	0.00	0.20		
18	3	0.30	0.10	0.45		
19	4	0.20	0.32	-0.19		
20		Mean	0.08	0.12		
21		SD	0.1359	0.2918		
22		Covariance	-0.0034			
23		Correlation	-0.0847			
24	Cell J22	=SUMPRODUCT(I16:I19,J16:J19.K16:K19)-J20*K20				
25	Cell J23	=J22/(J21*K21)				