

Probabilistic Machine Learning

Prof. Seungchul Lee Industrial AI Lab.

Outline

- Probabilistic Linear Regression
- Probabilistic Classification
- Probabilistic Clustering
- Probabilistic Dimension Reduction

Frequentist View of Linear Regression

Probabilistic Linear Regression

• Inference idea

$$P(X \mid \theta) = \text{Probability [data | pattern]}$$

data = underlying pattern + independent noise

- Change your viewpoint of data
 - Generative model

Generative Model: Regression

$$y = \hat{y} + arepsilon = \omega^T x + arepsilon, \quad arepsilon \sim \mathcal{N}(0, \sigma^2)$$

$$D = \{(x_1, y_1), (x_2, y_2), \cdots, (x_m, y_m)\}$$

$$P\left(y\mid x;\omega,\sigma^{2}
ight)=\mathcal{N}\left(\omega^{T}x,\sigma^{2}
ight)$$

Probabilistic Linear Regression

- Given observed data $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\},\$
- We want to estimate the weight vector ω
- Each response generated by a linear model plus Gaussian noise

$$y = \omega^T x + arepsilon, \quad arepsilon \sim \mathcal{N}\left(0, \sigma^2
ight)$$

$$y \mid x \sim \left(\omega^T x, \sigma^2
ight)$$

Probability of each response variable

$$P(y \mid x \, ; \omega) = \mathcal{N}\left(\omega^T x, \sigma^2
ight) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}igg(-rac{1}{2\sigma^2}ig(y-\omega^T xig)^2igg)$$

Maximum Likelihood Estimation (MLE)

- Estimate parameters $\theta = (\omega, \sigma^2)$ such that maximize the likelihood given a generative model
 - Likelihood

$$\mathcal{L} = P(D \mid \theta) = P(D; \theta)$$

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} P(D; \theta)$$

Log-likelihood:

$$egin{aligned} \ell(\omega,\sigma) &= \log \mathcal{L}(\omega,\sigma) = \log P(D\,;\omega,\sigma^2) \ &= \log P(Y\mid X\,;\omega,\sigma^2) \ &= \log \prod_{i=1}^m P\left(y_i\mid x_i\,;\omega,\sigma^2
ight) \ &= \sum_{i=1}^m \log P\left(y_i\mid x_i\,;\omega,\sigma^2
ight) \ &= \sum_{i=1}^m \log rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}\left(-rac{\left(y_i-\omega^Tx_i
ight)^2}{2\sigma^2}
ight) \ &= \sum_{i=1}^m \left\{-rac{1}{2} \mathrm{log}(2\pi\sigma^2) - rac{\left(y_i-\omega^Tx_i
ight)^2}{2\sigma^2}
ight\} \end{aligned}$$

Maximum Likelihood Estimation (MLE)

Maximum likelihood solution:

$$\begin{split} \log \mathcal{L}(\omega, \sigma) &= \sum_{i=1}^{m} \left\{ -\frac{1}{2} \log \left(2\pi \sigma^{2} \right) - \frac{\left(y_{i} - \omega^{T} x_{i} \right)^{2}}{2\sigma^{2}} \right\} \\ \hat{\omega}_{MLE} &= \arg \max_{\omega} \log P(D; \omega, \sigma^{2}) \\ &= \arg \max_{\omega} \ -\frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \left(y_{i} - \omega^{T} x_{i} \right)^{2} \\ &= \arg \min_{\omega} \frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \left(y_{i} - \omega^{T} x_{i} \right)^{2} \\ &= \arg \min_{\omega} \sum_{i=1}^{m} \left(y_{i} - \omega^{T} x_{i} \right)^{2} \end{split}$$

- Big lesson
 - It is equivalent to the least-squares objective function for linear regression (amazing!)
 - In least squares, we implicitly assume that noise is Gaussian distributed

Compute MLE for Linear Regression

$$egin{aligned} \mathcal{L}(\omega,\sigma) &= P\left(y_1,y_2,\cdots,y_m \mid x_1,x_2,\cdots,x_m; \ oldsymbol{\omega},\sigma
ight) \ &= \prod_{i=1}^m P\left(y_i \mid x_i; \ \omega,\sigma
ight) \ &= rac{1}{\left(2\pi\sigma^2
ight)^{rac{m}{2}}} \mathrm{exp}igg(-rac{1}{2\sigma^2} \sum_{i=1}^m (y_i - \omega^T x_i)^2igg) \end{aligned}$$

Compute MLE for Linear Regression

$$\mathcal{L}(\omega, \sigma) = \frac{1}{(2\pi\sigma^2)^{\frac{m}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^m (y_i - \omega^T x_i)^2\right)$$

$$\ell = -\frac{m}{2} \log 2\pi - m \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^m (y_i - \omega^T x_i)^2$$

$$\frac{d\ell}{d\omega} = -2X^T Y + 2X^T X \omega = 0 \implies \omega_{MLE} = (X^T X)^{-1} X^T Y$$

$$\frac{d\ell}{d\sigma} = -\frac{m}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^m (y_i - \omega^T x_i)^2 = 0 \implies \sigma_{MLE}^2 = \frac{1}{m} \sum_{i=1}^m (y_i - \omega^T x_i)^2$$

- Big lesson
 - It is equivalent to the least-squares objective function for linear regression (amazing!)
 - In least squares, we implicitly assume that noise is Gaussian distributed

Linear Regression: A Probabilistic View

```
m = 200

a = 1
x = 3 + 2*np.random.uniform(0,1,[m,1])
noise = 0.1*np.random.randn(m,1)

y = a*x + noise;
y = np.asmatrix(y)
```


Linear Regression: A Probabilistic View

Demonstrate

$$arepsilon \sim \mathcal{N}\left(0, \sigma^2
ight)$$

```
yhat0 = theta[1,0]*x + theta[0,0]
err0 = yhat0 - y

yhat1 = 1.2*x - 1
err1 = yhat1 - y

yhat2 = 1.3*x - 1
err2 = yhat2 - y
```


Linear Regression: A Probabilistic View

- Demonstrate
 - samples are independent

```
a0x = err0[1:]

a0y = err0[0:-1]

a1x = err1[1:]

a1y = err1[0:-1]

a2x = err2[1:]

a2y = err2[0:-1]
```


Bayesian View of Linear Regression

Generative Model: Regression

$$y = \hat{y} + arepsilon = \omega^T x + arepsilon, \quad arepsilon \sim \mathcal{N}(0, \sigma^2)$$

$$\omega_1 = \begin{bmatrix} \omega_0 \\ \omega_1 \end{bmatrix}$$

$$\omega_0$$

$$D = \{(x_1,y_1), (x_2,y_2), \cdots, (x_m,y_m)\}$$

$$P\left(y\mid x;\omega,\sigma^{2}
ight)=\mathcal{N}\left(\omega^{T}x,\sigma^{2}
ight)$$

$$y = \omega_1 x + \omega_0 + \varepsilon$$

Meaning of ω

Prior on ω

• Suppose to assume a Gaussian prior distribution over the weight vector $\boldsymbol{\omega}$

Prior on ω

• Suppose to assume a Gaussian prior distribution over the weight vector $\boldsymbol{\omega}$

Maximum-a-Posteriori (MAP)

- No prior information or uniform distribution on ω leads to MLE
- Suppose to assume a Gaussian prior distribution over the weight vector ω
 - (Make sure you understand what it means)
 - Assume $E[\omega] = 0$ for simplicity

$$P(\omega) \sim \mathcal{N}\left(0, \Sigma
ight) = \mathcal{N}\left(0, \lambda^{-1} I
ight) = rac{1}{(2\pi)^{D/2}} \mathrm{exp}igg(-rac{\lambda}{2}\omega^T\omegaigg)$$

- Excellent explanation by Philipp Henning
 - https://www.youtube.com/watch?v=50Vgw11qn0o

Posterior

- Posterior probability
 - Bayes rule

$$P(\omega \mid D) = \frac{P(D \mid \omega)P(\omega)}{P(D)}$$

Log posterior probability

$$\log P(\omega \mid D) = \log rac{P(D \mid \omega)P(\omega)}{P(D)} = \log P(D \mid \omega) + \log P(\omega) - \underbrace{\log P(D)}_{ ext{constant}}$$

Maximize log posterior probability

Maximum-a-Posteriori (MAP)

$$\begin{split} \hat{\omega}_{MAP} &= \arg\max_{\omega} \log P(\omega \mid D) \\ &= \arg\max_{\omega} \left\{ \log P(D \mid \omega) + \log P(\omega) \right\} \\ &= \arg\max_{\omega} \left\{ \sum_{i=1}^{m} \left\{ -\frac{1}{2} \log(2\pi\sigma^{2}) - \frac{\left(y_{i} - \omega^{T} x_{i}\right)^{2}}{2\sigma^{2}} \right\} - \frac{D}{2} \log(2\pi) - \frac{\lambda}{2} \omega^{T} \omega \right\} \\ &= \arg\min_{\omega} \frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \left(y_{i} - \omega^{T} x_{i} \right)^{2} + \frac{\lambda}{2} \omega^{T} \omega \\ & \text{ (ignoring constants and changing max to min)} \end{split}$$

• For $\sigma = 1$ (or some constant) for each input, it's equivalent to the regularized least-squares objective (amazing!)

$$\hat{\omega}_{MAP} = rg\min_{\omega} \left\{ \sum_{i=1}^{m} \left(y_i - \omega^T x_i
ight)^2 + \lambda \omega^T \omega
ight\}$$

• Big lesson: MAP = l_2 norm regularization

MAP Illustration

• One observation

• Two observations

• 20 observations

Summary: MLE vs MAP

• MLE solution:

$$\hat{\omega}_{MLE} = rg \min_{\omega} rac{1}{2\sigma^2} \sum_{i=1}^m \left(y_i - \omega^T x_i
ight)^2$$

MAP solution:

$$\hat{\omega}_{MAP} = rg \min_{\omega} rac{1}{2\sigma^2} \sum_{i=1}^m \left(y_i - \omega^T x_i
ight)^2 + rac{\lambda}{2} \omega^T \omega^T$$

- Take-home messages:
 - MLE estimation of a parameter leads to unregularized solutions
 - MAP estimation of a parameter leads to regularized solutions
 - The prior distribution acts as a regularizer in MAP estimation
- Note: for MAP, different prior distributions lead to different regularizers
 - Gaussian prior on ω regularizes the l_2 norm of ω
 - Laplace prior $exp(-C\|\omega\|_1)$ on ω regularizes the l_1 norm of ω

Probabilistic Classification

Probabilistic Classification

- We want to predict the label probabilities
 - E.g., $P(y = +1 | x, \omega)$: the probability that the label is $P(y | x, \omega)$
 - In a sense, it is our confidence in the predicted label +1

Probabilistic Linear Classification

- Probabilistic classification models allow us do that (y = -1/+1)
- Consider the following function in a compact expression

$$P(y \mid x, \omega) = \sigma\left(y\omega^T x
ight) = rac{1}{1 + \exp(-y\omega^T x)}$$

• σ is the logistic function which maps all real number into (0,1)

Logistic Regression

- What does the decision boundary look like for logistic regression?
- At the decision boundary labels -1/+1 becomes equiprobable

$$P(y=+1\mid x,\omega) = P(y=-1\mid x,\omega)$$
 $\dfrac{1}{1+\exp(-\omega^T x)} = \dfrac{1}{1+\exp(\omega^T x)}$ $\exp(-\omega^T x) = \exp(\omega^T x)$ $\omega^T x = 0$

- The decision boundary is therefore linear ⇒ logistic regression is a linear classifier
- Note: it is possible to kernelize and make it nonlinear

Maximum Likelihood Solution

- Goal: want to estimate ω from the data $D = \{(x_1, y_1), \dots, (x_m, y_m)\}$
- Log-likelihood:

$$egin{aligned} \ell(\omega) &= \log \mathcal{L}(\omega) = \log P(D \mid \omega) \ &= \log P(Y \mid X, \omega) \ &= \log \prod_{i=1}^m P(y_i \mid x_i, \omega) \ &= \sum_{i=1}^m \log P(y_i \mid x_i, \omega) \ &= \sum_{i=1}^m \log rac{1}{1 + \exp(-y_i \omega^T x_i)} \ &= \sum_{i=1}^m - \log \left[1 + \exp(-y_i \omega^T x_i)
ight] \end{aligned}$$

Maximum Likelihood Solution

Maximum Likelihood Solution:

$$\hat{\omega}_{MLE} = rg \max_{\omega} \log \mathcal{L}(\omega) = rg \min_{\omega} \sum_{i=1}^{m} \log igl[1 + \expigl(-y_i \omega^T x_i igr) igr]$$

- No closed-form solution exists, but we can do
 - CVXPY (we did it)
 - Gradient descent on ω

$$egin{aligned}
abla_{\omega} \log \mathcal{L}(\omega) &= \sum_{i=1}^m -rac{1}{1+\exp(-y_i\omega^Tx_i)} \expigl(-y_i\omega^Tx_iigr)(-y_ix_iigr) \ &= \sum_{i=1}^m rac{1}{1+\exp(y_i\omega^Tx_i)} y_ix_i \end{aligned}$$

Prior on ω

• Suppose to assume a Gaussian prior distribution over the weight vector $\boldsymbol{\omega}$

Maximum-a-Posteriori Solution

• Let's assume a Gaussian prior distribution over the weight vector ω

$$P(\omega) = \mathcal{N}\left(0, \lambda^{-1}I
ight) = rac{1}{(2\pi)^{D/2}} \mathrm{exp}igg(-rac{\lambda}{2}\omega^T\omegaigg)$$

Maximum-a-Posteriori Solution:

$$\begin{split} \hat{\omega}_{MAP} &= \arg\max_{\omega} \log P(\omega \mid D) \\ &= \arg\max_{\omega} \{\log P(D \mid \omega) + \log P(\omega) - \underbrace{\log P(D)}_{\text{constant}} \} \\ &= \arg\max_{\omega} \{\log P(D \mid \omega) + \log P(\omega) \} \\ &= \arg\max_{\omega} \left\{ \sum_{i=1}^{m} -\log \left[1 + \exp\left(-y_{i}\omega^{T}x_{i}\right)\right] - \frac{D}{2}\log(2\pi) - \frac{\lambda}{2}\omega^{T}\omega \right\} \\ &= \arg\min_{\omega} \sum_{i=1}^{m} \log \left[1 + \exp\left(-y_{i}\omega^{T}x_{i}\right)\right] + \frac{\lambda}{2}\omega^{T}\omega \end{split}$$
 (ignoring constants and changing max to min)

• Big lesson: MAP = l_2 norm regularization

Maximum-a-Posteriori Solution

- Q: What does regularizer do in a classifier?
- A: Nonlinear classifier gives more intuitive explanation

- No closed-form solution exists but we can do gradient descent on ω
 - See "<u>A comparison of numerical optimizers for logistic regression</u>" by Tom Minka on optimization techniques (gradient descent and others) for logistic regression
 - (both MLE and MAP)

Summary: MLE vs MAP

MLE solution:

$$\hat{\omega}_{MLE} = rg\min_{\omega} \sum_{i=1}^m \logigl[1 + \expigl(-y_i\omega^T x_iigr)igr]$$

MAP solution:

$$\hat{\omega}_{MAP} = rg \min_{\omega} \sum_{i=1}^{m} \log igl[1 + \expigl(-y_i \omega^T x_i igr) igr] + rac{\lambda}{2} \omega^T \omega^T$$

- Take-home messages (we already saw these before)
 - MLE estimation of a parameter leads to unregularized solutions
 - MAP estimation of a parameter leads to regularized solutions
 - The prior distribution acts as a regularizer in MAP estimation
- Note: For MAP, different prior distributions lead to different regularizers
 - Gaussian prior on ω regularizer the l_2 norm of ω
 - Laplace prior $exp(-C\|\omega\|_1)$ on ω regularizes the l_1 norm of ω

Probabilistic Clustering

• will not cover in this course

Probabilistic Dimension Reduction

• will not cover in this course

Summary

- *Probabilistic* Linear Regression
- Probabilistic Classification
- Probabilistic Clustering
- Probabilistic Dimension Reduction