SC 625 - Systems Theory

Assignment 4

Shreyas N B 210010061

November 8, 2023

Problem 1.

Solution. \Box

We can prove that (A, B) is controllable and observable using standard PBH tests where we get rank of observability matrix and controllability matrix is 4.

$$C = \begin{bmatrix} 0 & 1 & 0 & g \\ 1 & 0 & g & 0 \\ 0 & 1 & 0 & 2g \\ 1 & 0 & 2g & 0 \end{bmatrix}$$

$$\mathcal{O} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & g & 0 \\ 0 & 0 & 0 & g \end{bmatrix}$$

Thus, we find a K such that A + BK is exponentially stable. Let us take $A_c = -\mu I - A$ for some $\mu > 0$. Thus, we can find a W_c such that

$$A_c W_c + W_c A_c^T = -BB^T$$

where $W = \int_0^\infty e^{A_c t} B B^T e^{A_c^T t} dt$

Using these we can conclude that $\mu > \sqrt{2g}$. Choosing $\mu = 5$, we get the following:

$$W_c = \begin{bmatrix} 0.0044 & -0.0219 & 0.0062 & -0.0325 \\ -0.0219 & 0.1578 & -0.0295 & 0.2034 \\ 0.0062 & -0.0295 & 0.0093 & -0.0465 \\ -0.0325 & 0.2034 & -0.0465 & 0.2823 \end{bmatrix}$$

Hence, we choose $K = -\frac{1}{2}B^TW_c^{-1}$, to get:

$$K = \begin{bmatrix} 409.684 & 183.8736 & -709.684 & -203.8736 \end{bmatrix}$$

We follow the similar process for observability using the duality that (A^T,C^T) is controllable if (C,A) is observable. Hence, we can find an L such that $A^T+L^TC^T$ is exponentially stable. Thus, we get the Lyapunov equation as $A_c^TW_o+W_oA_c=-C^TC$ where $W_o=\int_0^\infty e^{A_c^Tt}C^TCe^{A_ct}dt$ Thus,

$$W_o = \begin{bmatrix} 0.1 & -0.01 & 0.0122 & -0.0012 \\ -0.01 & 0.002 & -0.0043 & 0.0005 \\ 0.0122 & -0.0043 & 0.0334 & -0.0064 \\ -0.0012 & 0.0005 & -0.0064 & 0.0013 \end{bmatrix}$$

Thus, we choose $L = -\frac{1}{2}CW^{-1}$ to get:

$$L = \begin{bmatrix} -20 \\ -300 \\ -223.8736 \\ -1009.684 \end{bmatrix}$$

Finally, our output feedback controller required an observer. Putting it all together we get the following standard equations:

$$\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} - Cx)$$
$$u = K\hat{x}$$

Plotting the results:

Figure 1: Initial conditions $x(0) = 0, \dot{x}(0) = 0, \theta(0) = 0.1, \dot{\theta}(0) = 0$

This is very similar to the results of the state-feedback controller we have seen earlier.

Figure 2: Output y(t) = Cz(t)

Problem 2.

 \Box

The nonlinear ODEs did not give implicit or explicit solutions in MATLAB. The code for this has been attached.