Deep Reinforcement Learning (Sp25)

Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 15: Value-based Theoretical Guarantees

Overview

This lecture focuses on establishing theoretical foundations for value-based reinforcement learning by exploring the **Bellman Optimality Equation**, the **existence and uniqueness** of its solutions, and the **convergence guarantees** of classic methods like **value iteration** and **policy iteration**.

We examine key concepts such as fixed points, contraction mappings, and how these relate to the optimal action-value function q^* . The lecture provides both intuition and formal mathematical reasoning for convergence and optimality guarantees.

Bellman Optimality Equation (Stochastic Rewards)

Assume a Markov Decision Process (MDP) (S, A, P, R, γ) , with:

- \mathcal{S} : set of states
- A: set of actions
- P(s'|s,a): transition probability
- R(s,a): **stochastic** reward function
- $\gamma \in [0,1)$: discount factor

The **Bellman Optimality Equation** for the action-value function $q^*(s, a)$ is:

$$q^*(s, a) = \mathbb{E}_{s'} \left[R(s, a) + \gamma \max_{a'} q^*(s', a') \right]$$

This equation defines a fixed point relationship over q^* . Our goal is to study the **existence**, **uniqueness**, and **convergence** properties of solutions to this equation.

Questions to Address

- 1. **Existence**: Does a function q^* exist that satisfies the Bellman equation?
- 2. **Uniqueness**: Is the solution q^* unique?
- 3. Algorithmic Convergence: Can value iteration compute this q^* ?

Fixed Point Theory

Definition: Let T be an operator on a function space. A function x is a **fixed point** of T if:

$$T(x) = x$$

In the context of Bellman's equation, q^* is a fixed point of the **Bellman operator** T, defined as:

$$(Tq)(s,a) := \mathbb{E}_{s'} \left[R(s,a) + \gamma \max_{a'} q(s',a') \right]$$

Existence of the Fixed Point

We want to show that T has a fixed point in the space of bounded functions $Q := \{q : \mathcal{S} \times \mathcal{A} \to \mathbb{R}\}.$

Deep Reinforcement Learning (Sp25)

Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 15: Value-based Theoretical Guarantees

Construction of a Sequence

- Start from an arbitrary initial $q_0 \in Q$
- Define the iterative process:

$$q_{n+1} = Tq_n$$

• Inductively, $q_n = T^n q_0$

Intuition: Due to the bounded nature of rewards and the contraction properties of T, this sequence forms a **Cauchy sequence** in a suitable norm, hence it converges.

Normed Space and Convergence

We equip the function space with the supremum norm:

$$||q||_{\infty} := \sup_{s,a} |q(s,a)|$$

Then, we show that the Bellman operator T is a **contraction mapping** under this norm:

$$||Tq - Tq'||_{\infty} \le \gamma ||q - q'||_{\infty}$$

This implies that the sequence $\{q_n\}$ converges to a unique fixed point q^* , by the **Banach fixed-point theorem**.

Uniqueness of the Fixed Point

Assume by contradiction that two fixed points q^* and q'^* exist such that:

$$Tq^* = q^* \quad \text{and} \quad Tq'^* = q'^*$$

Then,

$$||q^* - q'^*||_{\infty} = ||Tq^* - Tq'^*||_{\infty} \le \gamma ||q^* - q'^*||_{\infty}$$

This implies:

$$(1 - \gamma) \|q^* - q'^*\|_{\infty} \le 0 \Rightarrow \|q^* - q'^*\|_{\infty} = 0 \Rightarrow q^* = q'^*$$

Hence, the fixed point is unique.

Bellman Operator as a Contraction

Let us analyze T explicitly:

$$(Tq)(s,a) = \mathbb{E}_{s'} \left[R(s,a) + \gamma \max_{a'} q(s',a') \right]$$

Then for any two functions q_1, q_2 :

$$||Tq_1 - Tq_2||_{\infty} = \sup_{s,a} \left| \mathbb{E}_{s'} \left[\gamma \max_{a'} q_1(s', a') - \gamma \max_{a'} q_2(s', a') \right] \right|$$

$$\leq \gamma \sup_{s',a'} |q_1(s', a') - q_2(s', a')| = \gamma ||q_1 - q_2||_{\infty}$$

This shows that T is a γ -contraction.

Deep Reinforcement Learning (Sp25)

Instructor: Dr. Mohammad Hossein Rohban

Summary of Lecture 15: Value-based Theoretical

Guarantees

Value Iteration Converges

Given that:

- T is a γ -contraction
- The sequence $q_n = T^n q_0$ lies in a complete metric space

Then by the Banach fixed-point theorem, $q_n \to q^*$ as $n \to \infty$.

Hence, value iteration converges to the optimal q^* regardless of the initial guess q_0 .

Policy Improvement Intuition

Suppose π is a policy, and we evaluate $q_{\pi}(s,a)$. If we now define:

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

then π' is a **greedy policy** w.r.t. q_{π} .

From policy improvement theorem:

$$v_{\pi'}(s) \ge v_{\pi}(s) \quad \forall s$$

That is, the greedy policy improves or retains the value of the previous policy. Thus, policy improvement always moves toward the optimal policy.

Policy Iteration Converges

Policy iteration alternates between:

- 1. **Policy Evaluation**: Compute q_{π}
- 2. **Policy Improvement**: Greedify q_{π} to obtain π'

Because the number of deterministic policies is finite ($|\mathcal{A}|^{|\mathcal{S}|}$), and each improvement strictly increases v_{π} for at least one state (unless already optimal), policy iteration is **guaranteed to converge** to π^* in finite steps.