ME 2450 Assignment 04

Technical Content:

Total:

Name: Due:	February 21, 2019 before midn	ght
Collaborators:		
I declare that the knowledged.	he assignment here submitted is	original except for source material explicitly ac-
and of the discip	=	olicy and regulations on honesty in academic work, s applicable to breaches of such policy and regula-
Name		Date
Signature		Student ID
Score		
Exercise Gradeo	d:	
Presentation:	/2	

Exercise 1

(3 pts.) Solve the following system of equations by LU decomposition:

$$8x_1 + 4x_2 - x_3 = 11$$
$$-2x_1 + 5x_2 + x_3 = 4$$
$$2x_1 - x_2 + 6x_3 = 7$$

- a) by hand
- b) using a python or matlab script that you write.
- c) Make a statement about verification based on the results of (a) and (b).

Exercise 2

(3 pts.) Use LU decomposition to solve for the displacement of each mass in the illustration. Let $k=10\frac{kg}{c^2}$ and $g=9.81\frac{m}{c^2}$

- a) Write a system equations for the illustrated system of masses and springs. Hint: by summing forces in the vertical direction for each mass, m_i (where i=1...3), a system of 3 equations (force balance) and 3 unknowns (displacement of each mass) will result. In the terms used in class, Ax=b, the coefficient matrix, A, will consist of the spring constants, k, and the right hand side column vector, b, will consist of the external forces, $m_i g$.
- b) Use the LU decomposition script written in Exercise 1 to solve for the 3 unknown displacements. Use $m_1=2kg$, $m_2=3kg$, and $m_3=2.5kg$.
- c) Using the same L and U matrices from part (b), solve for the displacements if the masses are changed to $m_1 = 4kg$, $m_2 = 6kg$, and $m_3 = 5kg$.

Exercise 3

(2 pts.) Use the Gauss-Seidel method to solve the following system until the approximate relative error falls below $\epsilon_A=.0005$. If necessary, rearrange the equations to achieve convergence.

$$-3x_1 + x_2 + 12x_3 = 50$$
$$6x_1 - x_2 - x_3 = 3$$
$$6x_1 + 9x_2 + x_3 = 40$$

- a) using a built-in function in matlab (linsolve) or python (numpy.linalg.solve)
- b) using a python or matlab script that you write.