Notes for

CZ4003 Computer Vision

Written by Nicklas Hansen

Thin Lens Fundamental Equations

$$\frac{1}{Z} + \frac{1}{Z} = \frac{1}{f}$$

$$\frac{Y}{Z} = \frac{y}{z}$$

Small Aperture – increases depth of field, but less light -> longer exposure time

Pinhole Camera – infinitesimal aperture -> only one ray from each scene point -> lens not needed Relationship between a point in world frame and a point image frame:

$$\begin{bmatrix} kx_{im} \\ ky_{im} \\ k \end{bmatrix} = \begin{bmatrix} -f/s_x & 0 & o_x \\ 0 & -f/s_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_x \\ r_{21} & r_{22} & r_{23} & T_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

$$M_{int} \qquad M_{ext}$$

Examples of intrinsic parameters M_{int} are camera properties, e.g. focal length and sensor size, and extrinsic parameters are translation and rotation vectors from world frame to image frame.

Blur – occurs when object is in front or behind the focal plane; blur can be negated by low aperture

diameter of aperture
$$b = \frac{df}{\hat{Z}} - \frac{diameter of aperture}{distance of object point}$$

Image Negative – for image with gray-level in [0,255] the transform is s = 255 - r (r = intensity)

 $\mbox{\bf Contrast Stretching} - s = \frac{{255\left({r - {r_{min}}} \right)}}{{{r_{max}} - {r_{min}}}} \ \ {\rm for} \ r_{min} < r < r_{max} \mbox{, otherwise 0 or 255}$

Power-Law Transform – $s = c \cdot r^{\gamma}$ where c, γ are constants

Histogram Equalization – only approx. flat (not perfectly), approach is to shift gray-level bins

Reapplying the equalization does not render new results, as algorithm already produces best result

$$s_k = T(k) = \frac{255}{MN} \sum_{j=0}^k n_j$$
 for k bins

Spatial Filtering (Weighted Sum)

$$w = \begin{bmatrix} -0.3 & -0.2 & 0.1 \\ -0.3 & -0.4 & 0.1 \\ 0.4 & 0.3 & 0.3 \end{bmatrix}$$

As a correlation:

$$g(x,y) = \sum_{u=-a}^{a} \sum_{v=b}^{b} f(x+u, y+v) \cdot w(u, v)$$

As a convolution:

(kernel w is rotated)

-0.3	-0.2	0.1		0.3	0.3
-0.3	-0.4	0.1		0.1	-0.4
0.4	0.3	0.3	•	0.1	-0.2

$$h(u, v) = w(-u, -v)$$

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=b}^{b} f(x-s, y-t) \cdot h(s,t)$$

<u>Difference between correlation and convolution</u>

Rotation makes no difference on a symmetric (e.g. gaussian) filter, but usually not the case

Convolution is associative, while correlation is not -> filters can be pre-computed -> computed fast

Averaging Filter (box) – different filter sizes can be used, output is average of neighbouring pixels

Gaussian Smoothing – 2D normal density function, variable filter sizes; further away -> less weight

$$h(x, y) = \frac{1}{2 \pi \sigma^2} \exp\left(-\frac{x^2 + y^2}{2 \sigma^2}\right)$$

Sum of filter coefficients should be normalised to 1

Median Filter – nonlinear, cannot be represented as convolution, useful for removing speckle noise **Frequency Domain** – split signals into multiple layers, i.e. signal layer + interference layer (noise) Low-pass filtering: image will blur, high-pass filtering: finding edges, band-pass: allows specific freqs. **Convolution Theorem** – convolution of two spatial images equiv. to multiplying corresponding FTs $f(x,y) \otimes h(x,y) = IFT \left\{ FT \left[f(x,y) \right] FT \left[h(x,y) \right] \right\}$

Fourier Transform – equation as below for function f(x, y)

$$F(u,v) = \sum_{y=0}^{N-1} \sum_{x=0}^{M-1} f(x,y) \exp \left[-j2\pi \left(\frac{ux}{M} + \frac{vy}{N} \right) \right]$$

In case of F(0,0), the exponent will be equal 0 and the transform is thus just a summation; F(0,0) describes the lowest frequency in the Fourier spectrum and its value is the sum of all intensities of all pixels in the image

Relation between exp and cos/sin

$$\exp\left[j2\pi\left(\frac{xu}{M} + \frac{yv}{N}\right)\right] = \cos\left[2\pi\left(\frac{xu}{M} + \frac{yv}{N}\right)\right] + j\sin\left[2\pi\left(\frac{xu}{M} + \frac{yv}{N}\right)\right]$$

Example:

???

$$F(1,1) = 0 + 0 + 0 + 1 \cdot \exp\left[-j2\pi\left(\frac{1\cdot 1}{2} + \frac{1\cdot 1}{2}\right)\right] = \exp(-j2\pi\cdot 2)$$

Edgels – pixel locations with locally maximum gray-level gradient in one direction and small change in perpendicular direction

Ridges – located between two parallel, near and sharp gradients in opposite directions

Binary Image – edges marked 1, otherwise 0 -> no explicit continuity information; can be solved using other representations: linked edges, polygonal lines, parametric curves

Path Encoding (Chain Codes) – each pixel is encoded as relative direction to the previous pixel, requires only 2-bit or 3-bit number; drawback is that it is expensive to access edgel coordinates

Edge Detection – consists of three steps: edge filtering (generate gray-scale image where pixels contain estimates of gradient magnitudes; edgel detection: binary image containing edgels from edge filtered image; edgel linking: produces a set of edges consisting of connected edgels

Edge Filters (Sobel) – estimate horizontal and vertical gradient magnitudes G_x and G_y separately

$$\nabla f \approx |G_x| + |G_y|$$

Edge Filters (Laplacian of Gaussian) – emphasizes curvature; edgels detected from zero-crossings; filter is less sensitive to noise because of Gaussian smoothing; adjustable σ for different thresholds

$$f \cdot \nabla^2 h = \nabla^2 (f \cdot h)$$
*

Canny Edge Detector – commonly used advanced algorithm; based on gaussian edge filtering; best

Gaussian Edge Filtering – input image is filtered twice by x and y derivatives of Gaussian

$$h_{x}(x,y) = \frac{\partial h}{\partial x} = -\frac{x}{\sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$h_{y}(x,y) = \frac{\partial h}{\partial y} = -\frac{y}{\sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$G_{x} = f * h_{x}, \quad G_{y} = f * h_{y}$$

Non-maximal Suppression – reduce broad filtered edges to single-pixel-wide paths; set all gradient magnitudes to zero if they are not local maxima

Hysteresis Thresholding — uses high threshold t_H and low threshold t_L + condition: a pixel has neighbouring pixels perpendicular to the edge gradient which have already been set to 1 Removes tiny noisy edges from the image

$$f_{t} = \begin{cases} 1, & f \geq t_{H} \\ 0, & t_{L} \leq f < t_{H} & Condition \end{cases}$$

Hough Transform – useful for grouping straight image edges that belong to same physical edge in the world, but are disconnected e.g. due to noise or occlusion

Line Equation – $x \cos \theta + y \sin \theta = \rho \rightarrow (\rho, \theta)$ equals a unique line in the image

Take all edge points in image and transform them into sinusoidal curves in parameter space (ρ, θ) ; edge points having common point in parameter space lie on a common straight line in image -> points with high intensity means the corresponding line in image has strong edge support

Image Regions (Labelled Mask Overlay) – representation of image regions by mapping label values to different colours to display as overlay on image

Quadtree – recursively divides a square region into 4 quadrant sub-regions and codes them in a tree structure; division stops when all pixels in a sub-region has common label

Region Segmentation – involves dividing an image into separate homogeneous (uniform) regions (regions with pixels sharing similar properties, e.g. intensity, variance of neighbourhood)

Gray-Level Thresholding – simplest method; divides into two regions based on intensity

$$s = \begin{cases} 0, & r \le t \\ 1, & r > t \end{cases}$$

For automatic thresholding, t can be set to average pixel value in image, but Otsu is better

Otsu Method – minimize the pixel gray-level variance within each group; find threshold t

$$SS_{W} = \sum_{j=i}^{k} \sum_{i=1}^{n_{t}} (x_{ij} - \bar{x}_{j})^{2}$$

$$\sigma_{L}^{2}(t) = \frac{1}{q_{L}(t)} \sum_{r=0}^{t} (r - \mu_{L}(t))^{2} p(r), \quad \sigma_{H}^{2}(t) = \frac{1}{q_{H}(t)} \sum_{r=t+1}^{255} (r - \mu_{H}(t))^{2} p(r)$$

Application of Otsu is to compute $\sigma_w^2(t)$ for t = [1; 254] and select the t with smallest $\sigma_w^2(t)$

Texture Detection – hard to define, but has two approaches: structural or statistical

Structural – a texture is a set of texture elements (texels) repeated in spatial relationship; hard to automate -> what is a texel? Natural textures with inherent randomness not covered

Statistical (Co-occurrence Matrices) – matrix \mathcal{C}_d is to discover distributions of relative positions of pixels; how often to pixels with same intensity appear together in a particular spatial relationship in an image patch?

 $\mathcal{C}(1,0)$ means co-occurrence 1 down, while $\mathcal{C}(0,1)$ means 1 right

				$\mathbf{C}_{(1,0)}$				$\mathbf{C}_{(0,1)}$				$\mathbf{C}_{(1,1)}$			
127	127	0	0		0	127	255		0	127	255		0	127	255
127	127	0	0	0	4	0	2	0	4	0	2	0	2	0	2
0	0	255	255	127	2	2	0	127	2	2	0	127	2	1	1
0	0	255	255	255	0	0	2	255	0	0	2	255	0	0	1

To compare co-occurrence matrices for image patches of different sizes, they are normalised

$$\mathbf{N_{d}}(a,b) = \frac{\mathbf{C_{d}}(a,b)}{\sum_{r} \sum_{c} \mathbf{C_{d}}(a,b)}$$

After normalisation, $0 < N_d(a, b) \le 1$ for all a and b

Statistical (Filter Banks) – bank of sinusoidal filters with gaussian window; after convolution with a given filter bank, the mean absolute value of the neighbourhood around each filtered output pixel is computed; corresponding mean absolute values across the filter outputs can be concatenated to form a texture feature vector for that pixel location

K-means Clustering – useful when there's more than two groups; each pixel is associated with a feature vector; goal of clustering is to classify feature vectors that are close to each other in feature vector space in the same group and separate those that are far apart; algorithm repeats two steps:

Assignment Step – assign each observation to nearest cluster

$$S_i^{(t)} = \left\{x_p: \left\|x_p - m_i^{(t)}\right\|^2 \leq \left\|x_p - m_j^{(t)}\right\|^2 \, \forall j, 1 \leq j \leq k\right\}$$

Update Step – calculate new means for all clusters

$$m_i^{(t+1)} = rac{1}{|S_i^{(t)}|} \sum_{x_i \in S_i^{(t)}} x_j$$

Stereo Vision - change in relative angular displacement of img points across different camera views

Camera Perspectives – assume 1D camera translated by T along x-direction in cam frame

$$x_l = f \frac{X_l}{Z}$$
 $x_r = f \frac{X_r}{Z}$, $x_l - x_r = f \frac{X_l - X_r}{Z} = \frac{fT}{Z}$, depth: $Z = \frac{fT}{x_l - x_r} = \frac{fT}{d}$ where $d = \text{disparity}$

Triangulation Accuracy – if $T \to 0$, then $\delta Z \to \infty$ (cameras should not be too close) $Z \to \infty$, $\delta Z \to \infty$ (lower accuracy for further points in world)

Correspondence Problem – for each important image point in one image, find the corresponding point in a second image; appearance-based: match points with similar look (can be used if cameras close); feature-based: match similar features (edges, corners, etc.)

Sum-of-Squares Difference (SSD) –
$$\arg\min_{(x,y)} \sum_{u=-N}^{N} \sum_{v=-N}^{N} [I(x+u,y+v) - g(u,v)]^2$$

For small image patch g with center location (x,y), the image patch with smallest SSD in relation to any image patch in the second image is the best appearance-based matching; can in practice be computed using convolution

Trade-off in applications – appearance matching most accurate when cameras close, 3D estimation is most accurate when cameras are far apart, so something in-between is used

Feature-based Matching – relatively invariant to viewpoint; e.g. match corner points in two images with the same angle; corner points can have very different orientation; in practice, there may be multiple candidates to a given feature – a heuristic can be used to differentiate, but does not always guarantee the right solution

Proximity – match feature point to candidate with nearest (x, y) position in image

Ordering – feature points found on a contour in the first image must still be on a contour in same order in the second image, otherwise not correct candidate

3D Reconstruction – assume projection matrices from camera calibration are known; then 3D world coordinates can be reconstructed from a L and R camera, where $[X \ Y \ Z]^T$ is the unknowns

$$\begin{bmatrix} a_{9}x_{l} - a_{1} & a_{10}x_{l} - a_{2} & a_{11}x_{l} - a_{3} \\ a_{9}y_{l} - a_{5} & a_{10}y_{l} - a_{6} & a_{11}y_{l} - a_{7} \\ b_{9}x_{r} - b_{1} & b_{10}x_{r} - b_{2} & b_{11}x_{r} - b_{3} \\ b_{9}y_{r} - b_{5} & b_{10}y_{r} - b_{6} & b_{11}y_{r} - b_{7} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} a_{4} - x_{l} \\ a_{8} - y_{l} \\ b_{4} - x_{r} \\ b_{8} - y_{r} \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \mathbf{W}^{+}\mathbf{q} = (\mathbf{W}^{T}\mathbf{W})^{-1}\mathbf{W}^{T}\mathbf{q}$$

Object Recognition – challenges are scaling, deformation, background, clutter and in-class variation **Clustering**

Within-cluster sum of squares

Between-class sum of squares

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

$$BSS = \sum_{i} |C_{i}| (m_{i} - m)^{2}$$

$$BSS + WSS = const$$

Support Vector Machine – given linearly separable dataset, find a separating hyperplane; there are infinitely many hyperplanes, but optimal plane will be the one with the largest margin

$$\alpha_i \left[y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right] = 0, \quad \forall i = 1...N$$

 $\Rightarrow \alpha_i = 0 \text{ or } y_i (\mathbf{w}^T \mathbf{x}_i + b) = 1$

Any vector in the dataset either serve as support vectors $(a_i = 0)$ to define hyperplane or they have no contribution $(a_i \neq 0)$; as such, the entire dataset can be replaced by only support vectors

Precision, Recall and F-measure – if a cut-off threshold of 0.8 is chosen, any instance with posterior probability greater than 0.8 is classified as positive

	PREI	PREDICTED CLASS						
		Class =Yes	Class= No					
ACTUAL	Class	(TP)	(FN)					
CLASS	=Yes	3	2					
	Class	(FP)	(TN)					
	=No	3	2					

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

$$p = TP/(TP+FP) = 3/(3+3) = 1/2$$

 $r = TP/(TP+FN) = 3/(3+2) = 3/5$
F-measure = $2pr/(p+r) = 6/11$

ROC Curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- ullet Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

	Clas s	+		+				+		+	+	
Threshold	 >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Bag of Features – quantize features using visual vocabulary; represent images of frequencies of "visual words", e.g. using histograms; use SVM (if binary) or other supervised learning to classify