

Module 2

- Divide and conquer VS iterative algorithms
- Recursion
- Solving Recurrences
- Binary Search
- Merge Sort
- Towers of Hanoi

Recall from Week 1

- Asymptotic Analysis: O, Ω , Θ
- Used to compare functions that represent the running times of different algorithms that can be used to solve a problem.
- How did we get the functions

Iterative Algorithm Analysis

Exact # of times sum++ is executed:

$$\sum_{i=1}^{n^2} i = \frac{n^2(n^2+1)}{2}$$

$$= \frac{n^4+n^2}{2}$$

$$\in \Theta(n^4)$$

The Divide and Conquer Approach

The most well known algorithm design strategy:

- 1. Divide the problem into two or more smaller subproblems.
- Conquer the subproblems by solving them recursively.
- 3. Combine the solutions to the subproblems into the solutions for the original problem.

A Typical Divide and Conquer Case

Merge-Sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.

Closed form: $T(n) = \Theta(nlgn)$

Recurrences and Running Time

 An equation or inequality that describes a function in terms of its value on smaller inputs.

$$T(n) = T(\frac{n}{4}) + 1$$

- Recurrences arise when an algorithm contains recursive calls to itself
- What is the actual running time of the algorithm?
- Need to solve the recurrence
 - Find an explicit formula of the expression
 - Bound the recurrence by an expression that involves n

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Closed form: $T(n) = \Theta(lgn)$

Power of a Number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Counting the number of operations which are multiplications

Example: $a^n = a^* a^* ... *a$

Example: $15^9 = 15*15*15*15*15*15*15*15*15$

Power of a Number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Divide-and-conquer algorithm:

Base cases $a^0 = 1$ and $a^1 = a$

$$T(n) = T(n/2) + \Theta(1)$$

Problem: Compute a^n , where $n \in \mathbb{N}$.

Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

Base cases $a^0 = 1$ and $a^1 = a$

Extra Recursion

```
long power (long x, long n) {
   if(n == 0)
     return 1;
   else if(n == 1)
        return x;
   else if ((n % 2) == 0)
     return power (x, n/2) * power (x, n/2);
   else
     return x * power (x, (n-1)/2) * power (x, (n-1)/2);
}
```

The recurrence relation is:

$$T(n) = 1$$
 if $n = 0$ or $n = 1$
 $T(n) = 2T(n/2) + c$ if $n > 2$

Running time $\Theta(n)$

Problem: Compute a^n , where $n \in \mathbb{N}$.

Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

Base cases $a^0 = 1$ and $a^1 = a$

Recurrence Relations from Code

```
long power (long x, long n) {
   if(n == 0)
       return 1;
   else if (n == 1)
       return x;
   else if ((n % 2) == 0){
       temp = power(x, n/2);
       return temp*temp;
   }
   else {
       temp = power(x, (n-1)/2)
       return x * temp* temp;
```

The recurrence relation is:

$$T(n) = 1$$
 if $n = 0$ or $n = 1$
 $T(n) = T(n/2) + c$ if $n > 2$

Solve the Recurrence

The recurrence relation is:

$$T(n) = 1$$
 if $n = 0$ or $n = 1$
 $T(n) = T(n/2) + c$ if $n > 2$
 $T(n) = T(n/2) + c$
 $= T(n/4) + c + c$
 $= T(n/8) + c + c + c$
....
 $= T(n/2^k) + kc$
Stop when $k = lgn$
 $T(n) = T(1) + clgn$
 $= 1 + clgn$
 $T(n) = \Theta(lgn)$

- There are three towers
- n gold disks, with decreasing sizes, placed on the first tower
- You need to move all of the disks from the first tower to the second tower
- Larger disks can not be placed on top of smaller disks
- The third tower can be used to temporarily hold disks

Tower of Hanoi

Tower of Hanoi

 The disks must be moved within one week. Assume one disk can be moved in 1 second. Is this possible?

 To create an algorithm to solve this problem, it is convenient to generalize the problem to the "n-disk" problem, where in our case n = 64.

Towers of Hanoi

```
Hanoi(n, from, to, temp) {
    if (n == 1)
        Move(from, to);
    else{
        Hanoi(n - 1, from, temp, to);
        Move(from, to);
        Hanoi(n - 1, temp, to, from);
    }
}
```

The recurrence relation for the running time of the method **Hanoi** is:

$$T(1) = 1$$

$$T(n) = 2T(n-1) + 1$$

$$if n > 1$$

$$T(n) = \Theta(2^n)$$

Guess and Prove

- Calculate T(n) for small n and look for a pattern.
- Guess the result and prove your guess correct using induction.

$$T(n) = 2T(n-1) + 1$$

n	T(n)
1	1
2	3
3	7
4	15
5	31

$$T(n) = 2^n - 1$$

Iteration Method

Unwind recurrence, by repeatedly replacing T(n) by the r.h.s. of the recurrence until the base case is encountered.

$$T(n) = 2T(n-1) + 1$$

$$= 2*[2*T(n-2)+1] + 1$$

$$= 2^{2}*T(n-2) + 1+2$$

$$= 2^{2}*[2*T(n-3)+1] + 1 + 2$$

$$= 2^{3}*T(n-3) + 1+2 + 2^{2}$$

. . . .

$$T(n) = 2^k * T(n-k) + 1+2+2^2+...+2^{k-1}$$

Common Summations

• Arithmetic series:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Geometric series:

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

- Special case: $|\chi| < 1$:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

· Harmonic series:

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

Other important formulas:

$$\sum_{k=1}^{n} \lg k \approx n \lg n$$

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + \dots + n^{p} \approx \frac{1}{p+1} n^{p+1}$$

Geometric Series

After k steps

$$T(n) = 2^k * T(n-k) + 1+2+2^2+...+2^{k-1}$$

$$T(n) = 2^{n-1} * T(n-(n-1)) + 1+2+2^2+...+2^{n-2}$$

$$T(n) = 2^{n-1} * T(1) + 1 + 2 + 2^{2} + ... + 2^{n-2}$$

$$= 1 + 2 + \dots + 2^{n-1} = \sum_{i=0}^{n-1} 2^{i}$$

$$\Theta(2^{n})$$

If n=64 the 2⁶⁴ seconds about 1.84 x10¹⁹ seconds or 584+billion years

Forming Recurrence Relations

```
public void f (int n) {
   if (n > 0) {
      System.out.println(n);
      f(n-1);
   }else
      return;
}
```

The recurrence relation is:

$$T(0) = 1$$

$$T(n) = T(n-1) + c if n > 0$$

$$T(n) = T(n-1) + c$$

= $T(n-2) + c + c$
= $T(n-3) + c + c + c$
...
= $T(n-k) + kc$
Stop when $k = n$
 $T(n) = T(0) + cn$
 $T(n) = b + cn = \Theta(n)$

$$T(n) = \Theta(n)$$

Write a recurrence for the running time T(n) of Algo1(n).

```
Algo1(n) {
  total = 0
  if n \le 1 return 2
  else {
       total = Algo1(n/4) + Algo1(n/4)
       for i = 1 to n do
         for j = 1 to n do
              total = i + j
                                       a) T(n) = T(2n/4) + cn
    return total
                                       b) T(n) = 2T(n/4) + cn^2
                                       c) T(n) = 2T(n/4) + c
                                       d) T(n) = T(2n/4) + cn^2
                                       e) T(n) = T(n/4) + cn^2
```

Write a recurrence for the running time T(n) of Algo2(n).

```
Algo2(n) {
  total = 0
    if n \le 1 return 2
  else {
      Algo2(n/2)
       print total
       Algo2(n/2)
       for j = 1 to n do
                                       a) T(n) = T(n/2) + cn
              total = n+j
       print total
                                       b) T(n) = 2T(n/2) + cn^2
       return
                                       c) T(n) = 2T(n/2) + cn
                                       d) T(n) = T(n/4) + cn^2
                                       e) T(n) = T(n/4) + cn^2
```

Recurrences Solutions

•
$$T(n) = T(n-1) + cn$$

$$\Theta(n^2)$$

 Recursive algorithm that loops through the input to eliminate one item

•
$$T(n) = T(n/2) + c$$

$$\Theta(lgn)$$

Recursive algorithm that halves the input in one step

•
$$T(n) = T(n/2) + cn$$

$$\Theta(n)$$

 Recursive algorithm that halves the input but must examine every item in the input

•
$$T(n) = 2T(n/2) + c$$

$$\Theta(n)$$

 Recursive algorithm that splits the input into 2 halves and does a constant amount of other work

Methods for Solving Recurrences

- Iteration method
- Substitution method
- Recursion tree method
- Master method

The Iteration Method

- Convert the recurrence into a summation and try to bound it using a known series
 - Iterate the recurrence until the initial condition is reached.
 - Use back-substitution to express the recurrence in terms of *n* and the initial (boundary) condition.

Iteration Method – Binary Search

$$T(n) = c + T(n/2)$$

$$T(n) = c + T(n/2)$$

$$= c + c + T(n/4)$$

$$= c + c + c + T(n/4)$$

$$= c + c + c + T(n/8)$$

$$T(n/4) = c + T(n/8)$$
Stop when $n/2^i = 1 = i = lgn$

$$T(n) = c + c + ... + c + T(1)$$

$$= clgn + T(1)$$

$$= \Theta(lgn)$$

Iteration - Mergesort

$$T(n) = n + 2T(n/2)$$

$$T(n) = n + 2T(n/2)$$

$$= n + 2(n/2 + 2T(n/4))$$

$$= n + n + 4T(n/4)$$

$$= n + n + 4(n/4 + 2T(n/8))$$

$$= n + n + n + 8T(n/8)$$
... = in + 2ⁱT(n/2ⁱ) stop at i = lgn
$$= nlgn + 2^{lgn}T(1)$$

$$= nlgn + nT(1)$$

$$= \Theta(nlgn)$$

Substitution Method

Guess a solution

$$T(n) = O(g(n))$$

Induction goal: apply the definition of the asymptotic notation

$$T(n) \le c g(n)$$
, for some $c > 0$ and $n \ge n_0$

- Induction hypothesis: $T(k) \le c g(k)$ for all k < n
- Prove the induction goal
 - Use the induction hypothesis to find some values of the constants d and n₀ for which the induction goal holds

Substitution: T(n) = T(n-1)+T(n-2)

Guess: $T(n) = O(\phi^n)$

Induction goal: $T(n) \le c\phi^n$, for some c and $n \ge n_0$

- Induction hypothesis: $T(k) \le c\phi^k$ for k < n
- Proof of induction goal:

$$T(n) = T(n-1) + T(n-2)$$

$$\leq c\phi^{n-1} + c\phi^{n-2}$$

$$\leq c\phi^{n-2} (\phi + 1)$$

$$\leq c\phi^{n-2} (\phi^2)$$

$$T(n) \leq c \phi^n$$

$$T(n) = O(\phi^n)$$

Properties

$$\Phi = \frac{1+\sqrt{5}}{2}$$

$$\Phi^2 = \frac{3+\sqrt{5}}{2}$$

$$\Phi + 1 = \Phi^2$$

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- Convert the recurrence into a tree:
 - Each node represents the cost incurred at various levels of recursion
 - Sum up the costs of all levels
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- Usually involves geometric series

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

T(*n*)

$$(n/4)^{2} \qquad n^{2} \qquad n^{2}$$

$$(n/4)^{2} \qquad (n/8)^{2} \qquad (n/8)^{2} \qquad \frac{5}{16}n^{2}$$

$$(n/4)^{2} \qquad \frac{25}{256}n^{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$n^{2}\left(1+\frac{5}{16}+\left(\frac{5}{16}\right)^{2}+\left(\frac{5}{16}\right)^{3}+\cdots\right)$$

$$= O(n^{2})$$

$$= n^{2}\left(1+\frac{5}{16}+\left(\frac{5}{16}\right)^{2}+\left(\frac{5}{16}\right)^{3}+\cdots\right)$$

Geometric series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \quad \text{for } x \neq 1$$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

$$n^{2}\left(1+\frac{5}{16}+\left(\frac{5}{16}\right)^{2}+\left(\frac{5}{16}\right)^{3}+\cdots\right)=n^{2}\left(\frac{1}{1-\frac{5}{16}}\right)=\frac{16}{11}n^{2}$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Therefore $T(n) = \Theta(n^2)$

Recursion Tree – Example 2

$$T(n) = T(n/3) + T(2n/3) + n$$

 The longest path from the root to a leaf is:

$$n \rightarrow (2/3) n \rightarrow (2/3)^2 \ n \rightarrow \ldots \rightarrow 1$$

- Subproblem size hits 1 when
 1 = (2/3)ⁱn ⇔ i=log_{3/2}n
- cost of the problem at level i = n
- Total cost:

T(n)
$$< n + n + ... = n(\log_{3/2} n) = n \frac{\lg n}{\lg \frac{3}{2}} = O(n \lg n)$$

$$\Rightarrow$$
 T(n) = O(nlgn)

Recursion Tree – Example 3

$$T(n) = T(n/3) + T(2n/3) + n$$

$$T(n) = \Omega(n)$$
$$T(n) = O(n \log n)$$

The Master Method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n),$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Master Method

"Formula" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

case 1: if
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

case 2: if
$$f(n) = \Theta(n^{\log_b a})$$
, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

case 3: if
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for some $\epsilon > 0$, and if

 $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then:

$$T(n) = \Theta(f(n))$$
 regularity

Idea of Master Method

Recursion tree: *f* (*n*) a f (n/b)f (n/b) f (n/b) f (n/b) $h = \log_b n$ $a^2 f(n/b^2)$ $f(n/b^2)$ $f(n/b^2)$ $f(n/b^2)$ $\#leaves = a^h$ $n^{\log_{b^a}}T(1)$

Idea of Master Method

Three common cases

Compare f(n) with $n^{\log ba}$:

f(n) = O(n^{logba-ε}) for some constant ε > 0.
 f(n) grows polynomially slower than n^{logba} (by an n^ε factor).
 Solution: T(n) = Θ(n^{logba}).

Case 1

Ex.
$$T(n) = 4T(n/2) + n$$

$$a = 4, b = 2 \implies n^{\log_b a} = n^2; f(n) = n.$$

CASE 1:
$$f(n) = O(n^{2-\varepsilon})$$
 for $\varepsilon = 1$.

$$\therefore T(n) = \Theta(n^2).$$

Idea of Master Method

Case 2

Ex.
$$T(n) = 4T(n/2) + n^2$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$$

CASE 2:
$$f(n) = \Theta(n^2)$$

$$\therefore T(n) = \Theta(n^2 \lg n).$$

Idea of master theorem

Case 3

Ex.
$$T(n) = 4T(n/2) + n^3$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$$

CASE 3:
$$f(n) = \Omega(n^{2+\epsilon})$$
 for $\epsilon = 1$ *and*

$$4(n/2)^3 \le cn^3$$
 (reg. cond.) for $c = 1/2$.

$$T(n) = \Theta(n^3)$$
.

Master Method

"Formula" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

case 1: if
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

case 2: if
$$f(n) = \Theta(n^{\log_b a})$$
, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

case 3: if
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for some $\epsilon > 0$, and if

 $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then:

$$T(n) = \Theta(f(n))$$
 regularity

Master Method – Binary Search

$$T(n) = T(n/2) + c$$

$$a = 1$$
, $b = 2$, $log_2 1 = 0$

compare $n^{\log_2 1} = n^0 = 1$ with f(n) = c

Case 2: if
$$f(n) = \Theta(n^{\log_b a})$$
, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

$$f(n) = \Theta(1) \Rightarrow case 2$$

$$\Rightarrow$$
 T(n) = Θ (lgn)

Master Method – Example 1

$$T(n) = 2T(n/2) + n^2$$
 $a = 2$, $b = 2$, $log_2 2 = 1$ compare n with $f(n) = n^2$
case 3: if $f(n) = \Omega(n^{log}b^a + \epsilon)$ for some $\epsilon > 0$
 $\Rightarrow f(n) = \Omega(n^{1+\epsilon})$ case $3 \Rightarrow$ verify regularity cond.

 $a f(n/b) \le c f(n)$
 $\Rightarrow 2 (n/2)^2 \le c n^2$
 $\Rightarrow 2 n^2/4 \le c n^2 \Rightarrow c = \frac{1}{2}$ is a solution (c<1)

 $\Rightarrow T(n) = \Theta(n^2)$

Master Method – Example 2

T(n) = 2T(n/2) +
$$\sqrt{n}$$
 a = 2, b = 2, $\log_2 2 = 1$
compare n with f(n) = $n^{1/2}$

$$\Rightarrow$$
 f(n) = O(n^{1-\varepsilon}) case 1

$$\Rightarrow T(n) = \Theta(n)$$

Master Method - Example 3

$$T(n) = 3T(n/4) + nlgn \qquad a = 3, b = 4, log_43 = 0.793$$

$$compare \ n^{0.793} \ with \ f(n) = nlgn$$

$$f(n) = \Omega(n^{log}_4^{3+\epsilon}) \ case \ 3$$

$$check \ regularity \ condition:$$

$$a \ f(n/b) \le c \ f(n)$$

$$3*(n/4)lg(n/4) \le 3/4nlgn \Rightarrow c = 3/4$$

$$T(n) = \Theta(nlgn)$$

Master Method: Merge-Sort

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

$$T(n) = 2T\left(\frac{n}{2}\right) + kn$$

where, a = 2, b = 2, and f(n) = nn $n^{\log_{b} a} = n^{\log_{2} 2} = n$

case 1: if $f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

case 2: if $f(n) = \Theta(n^{\log_b a})$, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

case 3: if $f(n) = \Omega(n^{\log_b \alpha + \epsilon})$ for some $\epsilon > 0$, and if

$$T(n) = \Theta(nlgn)$$