7/7/2020 Clustering | Coursera

Clustering Graded Quiz • 10 min

Due Jul 12, 11:59 PM PDT

k-Means Clustering **Hierarchical Clustering Density-based Clustering Quiz: Clustering**

Quiz: Clustering 5 questions

QUIZ • 10 MIN

Clustering Clustering

<u>°</u>

				_
1.	Which statement is NOT TRUE about k-means clustering?		3 points	
	k-means divides the data into non-overlapping clusters without any cluster-internal structure.			
	The objective Submiteerus , RSRIGOMENT usters in such a way that similar samples go into a cluster, and desamples fall into different: Substance ATTEMPTS 3 every 8 hours	lissimilar		Try again
	As k-means is an iterative algorithm, it guarantees that it will always converge to the global optimum.			
	Receive grade		Grade	View Feedback
2.	TO PASS 80% or higher Which of the following are characteristics of DBSCAN? Select all that apply.		100% 3 points	We keep your highest score
			ороло	
	✓ DBSCAN can find arbitrarily shaped clusters.			4 Q E
	✓ DBSCAN can find a cluster completely surrounded by a different cluster.			0 1
	✓ DBSCAN has a notion of noise, and is robust to outliers.			
	✓ DBSCAN does not require one to specify the number of clusters such as k in k-means			
3.	Which of the following is an application of clustering?		3 points	
	Customer churn prediction			
	O Price estimation			
	Customer segmentation			
	Sales prediction			
4.	Which approach can be used to calculate dissimilarity of objects in clustering?		3 points	
	Minkowski distance			
	Euclidian distance			
	Cosine similarity			
	All of the above			
5.	How is a center point (centroid) picked for each cluster in k-means?		3 points	
	We can randomly choose some observations out of the data set and use these observations as the initial means.			
	✓ We can create some random points as centroids of the clusters.			
	We can select it through correlation analysis.			
✓	I, Vaibhav Sharma , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code		3 P P	
]
		Save	Submit	