

Introdução à Inteligência Computacional

Apresentação da Disciplina

Cristiano Leite de Castro - crislcastro@ufmg.br

Objetivo do Curso

- Introduzir os <u>conceitos básicos</u> necessários para estudos na área de Inteligência Computacional.
 - caracterização e modelagem de problemas a partir de dados.
 - técnicas para análise, extração e seleção de atributos relevantes em conjuntos de dados;
 - modelos lineares e não-lineares para regressão, classificação e agrupamento.
 - técnicas para avaliação e seleção de modelos.

Aprendizado Estatístico

• Para introduzir esses conceitos, iremos utilizar um conjunto de ferramentas para modelagem e análise de dados denominado *Aprendizado Estatístico*;

• Abordagem estatística para o problema de Aprendizado de Máquina.

Breve Histórico

	Neural Network Methods:	Statistical Learning Methods:
		Linear Regression Fisher's Linear Discriminant Analysis
1940-50s	McCulloch-Pits' neural model Hebbian Learning Rule	Logistic Regression
1950-60s	Rosenblatt's Perceptron	Hierarchical Clustering
:		K-means Algorithm
1960-70s	Minsk and Papert's Book	Vapnik and Chervonenkis' Theory
1970-80s		Generalized Linear Models
1980-90s	Hopfield and Kohonen NNs BackPropagation (MLPs)	Classification and Regression Trees Cross Validation Ensemble Methods (Boosting)
1990-00s	Radial Basis Function NNs	Support Vootor Machines
	CNNs	Support Vector Machines
	Convergência (Machir	ne Learning)
2000	Deen Learning ELMs Keri	nel Methods, LSTMs, Transformers,
:	etc.	ioi mourodo, Lo rivio, franciornicio,
<u>:</u>	Linha do tempo	

Machine Learning

O que é Machine Learning?

- Machine Learning (ML) is the study of computer algorithms that improve automatically through experience. [Mitchell, 1997]
- ML is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. [wikipedia]

Ethem Alpaydin (2020). Introduction to Machine Learning. Fourth ed. MIT.

Machine Learning

• Premissa:

- Não existe um modelo (ferramenta) único que funcione bem para todos os problemas.
- Por isso, é importante entender as propriedades de cada modelo antes de aplicá-los aos dados, bem como saber sobre suas forças e fraquezas.

Machine Learning

- Aprendizado Supervisionado:
 - Dadas medições $(\mathbf{X}_1, \mathbf{Y}_1)$, ..., $(\mathbf{X}_n, \mathbf{Y}_n)$, aprender um modelo para prever \mathbf{Y}_i baseado em \mathbf{X}_i
- Aprendizado Não-Supervisionado:
 - Dadas medições $(X_1, ..., X_n)$, descobrir alguma estrutura com base em similaridade.

• *Wage data*: compreender a relação entre idade, experiência e nível educacional, com o salário recebido.

• *Wage data*: compreender a relação entre idade, experiência e nível educacional, com o salário recebido.

• Filtro de spam:

 $X_i \rightarrow \text{email}$ $Y_i \rightarrow \text{spam ou não-spam (ham)}$ <u>objetivo</u>: prever Y_i com base em X_i

• Filtro de spam:

Pré-processamento e Extração de Características (embedding)

Modelagem, Validação e Seleção de Modelos

• Reconhecimento de dígitos escritos a mão

 $X_i \rightarrow \text{imagem (8x8 pixels)}$

$$Y_i \rightarrow \{0,1,\dots 9\}$$

•Reconhecimento de dígitos escritos a mão

source: Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations by Honglak Lee, Roger Grosse, Ranganath Andrew Y. Ng

Machine Learning

- Aprendizado Supervisionado:
 - Dadas medições $(\mathbf{X}_1, \mathbf{Y}_1)$, ..., $(\mathbf{X}_n, \mathbf{Y}_n)$, aprender um modelo para prever \mathbf{Y}_i baseado em \mathbf{X}_i
- Aprendizado Não-Supervisionado:
 - Dadas medições $(X_1, ..., X_n)$, descobrir alguma estrutura com base em similaridade.

 $X_i \rightarrow \text{imagens na Internet}$

busca por estrutura (similaridade)

. Market Segmentation:

 \mathbf{X}_{i} = info de uma pessoa/cliente: renda, profissão, idade, distância do centro urbano mais próximo, etc.

 objetivo: identificar subgrupos de pessoas que podem ser mais receptivas a uma determinada forma de propaganda ou potenciais compradores de um produto particular.

• Segmentação de Imagens por Regiões Homogêneas:

Fonte: Jaimes, B. R. A., Ferreira, J. P. K., & Castro, C. L. (2022). Unsupervised semantic segmentation of aerial images with application to uav localization. *IEEE Geoscience and Remote Sensing Letters*, *19*, 1–5.

James, Gareth, et al. *An introduction to statistical learning*. 3rd Edition. New York: Springer, 2022.

 Disponível para download gratuito em: *https://www.statlearning.com/*

Hastie, et al. *Elements of Statistical Learning*. 2nd Edition New York: Springer.

• Disponível para download gratuito em: https://hastie.su.domains/ElemStatLearn/

Christopher M. Pattern Recognition and Machine Learning. New York: Springer, 2006.

• Disponível em:

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bis hop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Kevin P. Murphy. Probabilistic Machine Learning. An Introduction. MIT Press, March 2022.

• Disponível em:

https://probml.github.io/pml-book/book1.html

Python vs R vs Matlab

Material - Python

• ver no Moodle:

- python numpy-matplotlib tutorial
- JAI-SBC sobre jupyter notebooks para ciência de dados

Plano de Aulas

Data	Assunto	Exercícios
19-03-2025	Apresentação do Curso	
26-03-2025	Fundamentos do Aprendizado de Máquina	Exercício 1
02-04-2025	Regressão Linear	
09-04-2025	Regressão Logística	Exercício 2
16-04-2025	Reamostragem - Validação Cruzada e Bootstrap	
23-04-2025	Seleção de Modelos e Regularização	Exercício 3
30-04-2025		
07-05-2025	Prova	
14-05-2025	Métodos Baseados em Árvores	
21-05-2025	Máquinas de Vetores de Suporte	Exercício 4
28-05-2025	Explicação do TP Final	
04-06-2025	A Definir	
11-06-2025	Apresentação Preliminar - TP Final	
18-06-2025	A Definir	
25-06-2025	Entrega do TP Final	
Avaliações:	Exercícios Práticos: 40%	
	Prova: 30%	
	Trabalho Final: 30%	

• Diagnóstico de Doenças Coronárias:

Fig. 2. Timeline illustrating the sequence of appointments and diagnoses of an arbitrary patient.

Fonte: Silva, C. A. O., Gonzalez-Otero, R., Bessani, M., Mendoza, L. O., & Castro, C. L. (2022). Interpretable risk models for sleep apnea and coronary diseases from structured and non-structured data. *Expert Systems with Applications*, *200*.

PPGEE - Linha IC

- Introdução à Inteligência Computacional
- Técnicas Clássicas em Reconhecimento de Padrões
- Sistemas Nebulosos
- Redes Neurais Artificiais
- Sistemas Multiagentes
- Computação Evolucionária
- Otimização em Engenharia
- Otimização Multiobjetivo
- Análise e Detecção de Imagens
- Identificação de Sistemas
- Planejamento e Análise de Experimentos
- Algoritmos e Estruturas de Dados para Eng. Computação
- Aprendizado por Reforço
- etc.

- Diagnóstico de Doenças Coronárias:
 - Dados Estruturados:
 - idade, sexo, altura, peso, pressão arterial, histórico de doenças doenças diagnosticadas (ICD-10).
 - Dados Não-Estruturados:
 - campos textuais relativos ao comportamento do paciente e também a sua família
 - cirurgias, uso de tóxicos, doenças familiares

t al.

Expert Systems With Applications 200 (2022)

Fig. 1. Overview diagram of the proposed framework.

• Diagnóstico de Doenças Coronárias:

Fig. 3. Schema for generating relevant input variables from textual data.

• Diagnóstico de Doenças Coronárias:

Fig. 3. Schema for generating relevant input variables from textual data.

Questions defined by the specialist and experienced with the Weak Supervision.

	ID	Questions
	S52	Does the patient report a history of cardiac surgery?
	S53	Does the patient report a history of cardiovascular surgery?
	S54	Does the patient report a history of cancer surgery?
Surgeries	S55	Does the patient report a history of lung surgery?
	S56	Does the patient report a history of brain trauma surgery?
	S74	Does the patient refer to bariatric surgery?
	S75	Does the patient refer to pancreatic surgery?
	F57	Does the patient report a history of a mother with a disease?
	F58	Does the patient have a history of a father with a disease?
	F59	Does the patient report a history of siblings with any illness?
	F60	Does the patient report a history of a grandmother with an illness?
	F61	Does the patient report a history of a grandfather with a disease?
	F62	Does the patient report a history of uncles with an illness?
Families	F76	Does the patient refer the mother with arterial hypertension?
raillilles	F77	Does the patient refer a father with hypertension?
	F78	Does the patient refer to the mother with acute myocardial infarction?
	F79	Does the patient refer a father with acute myocardial infarction?
	F80	Does the patient refer to the mother with atrial fibrillation?
	F81	Does the patient refer a father with atrial fibrillation?
	F82	Does the patient refer to the mother with sleep apnea?
	F83	Does the patient refer to a father with sleep apnea?
	T63	Does the patient report a history of drug use?
manta	T64	Does the patient report a smoking history?
Toxic	T65	Does the patient report a history of alcohol abuse?
	T66	Does the patient report a history of exposure to toxic substances?

• Diagnóstico de Doenças Coronárias:

Fig. 4. SHAP values for the 20 most important features for CAD prediction using physical, medical history, and non-structured data. The higher the SHAP value of a variable, the greater is its importance to prediction.

• Classificação automática de cortes de cana-de-açúcar:

Classificação automática de cortes de cana-de-açúcar:

• Segmentação Semântica de imagens

• Segmentação Semântica de imagens

• Geolocalização de VANTs por Imagens:

FIGURA 2.1 – (a) Imagem obtida por uma aeronave. (b) Imagem satelital obtida pelo Google Earth.

- Geolocalização de VANTs por Imagens:
 - Técnica de Casamento de Pontos Característicos

• Geolocalização de VANTs por Imagens:

Fig. 2. (Left) Overview of methodology for UAV position estimation via template matching that includes, as a key stage, the proposed method of semantic segmentation which is highlighted in the red shaded area. (Right) Map image from SW dataset and its semantic segmentation.

Fonte: Jaimes, B. R. A., Ferreira, J. P. K., & Castro, C. L. (2022). Unsupervised semantic segmentation of aerial images with application to uav localization. *IEEE Geoscience and Remote Sensing Letters*, 19, 1–5.

• Geolocalização de VANTs por Imagens:

Fig. 3. Position estimators' comparison: black, original UAV route; yellow, route from [11]; red and blue, SegNet and DeepLab routes [13]; orange, ours.

Fonte: Jaimes, B. R. A., Ferreira, J. P. K., & Castro, C. L. (2022). Unsupervised semantic segmentation of aerial images with application to uav localization. *IEEE Geoscience and Remote Sensing Letters*, *19*, 1–5.

Metodologia de Ensino

- Aulas semanais: Terças-Feiras 13:30 às 16:30hs
 - Teoria: apresentação conteúdo teórico (~ 1:30 h) presencial
 - Prática: exercícios computacionais (~ 1:30 h) normalmente online (via MS Teams)
- Notas de aula, avisos, etc. (MS Teams)
- Os exercícios computacionais devem ser desenvolvidos na linguagem Python
- Trabalho Final com implementação em Python