Vedika Desai 21102B0060

```
GitHub: https://github.com/desaivedika/ML_Exp2.git
```

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings("ignore")

df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('test.csv')
```

print(df_train.shape)
df_train.head()

$\overrightarrow{\Rightarrow}$	(891,	12)
--------------------------------	-------	-----

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	\blacksquare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	th
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	

Next steps:

Generate code with df_train

New interactive sheet

Exploratory Data Analysis

df_train.info(verbose=True)

```
</pre
    RangeIndex: 891 entries, 0 to 890
    Data columns (total 12 columns):
    # Column
                    Non-Null Count Dtype
                    -----
    0
        PassengerId 891 non-null
                                  int64
                    891 non-null
                                  int64
        Survived
    1
                    891 non-null
                                  int64
        Pclass
    3
        Name
                    891 non-null
                                  object
        Sex
                    891 non-null
                                  object
                    714 non-null
                                  float64
    5
        Age
        SibSp
    6
                    891 non-null
                                  int64
        Parch
                    891 non-null
                                  int64
        Ticket
                    891 non-null
                                  object
                    891 non-null
                                  float64
        Fare
    10 Cabin
                    204 non-null
                                  object
    11 Embarked
                    889 non-null
                                  object
    dtypes: float64(2), int64(5), object(5)
    memory usage: 83.7+ KB
```

train = df_train.copy()

Visualization

```
decode_map = {0: "Not Survived", 1: "Survived"}
def decode_sentiment(label):
    return decode_map[int(label)]
train['Survived'] = train['Survived'].apply(lambda x: decode_sentiment(x))
target_grp = (train[['Survived']]
.groupby("Survived")
.agg(COUNT=("Survived","count"))
.sort_values(by=["COUNT"],ascending=False)
.reset_index()
)
target_grp.style.background_gradient(cmap='Blues')
₹
           Survived COUNT
      0 Not Survived
                       549
            Survived
                       342
grp = train['Survived'].value_counts(normalize=True)
grp.reset_index().style.background_gradient(cmap='Blues')
→
           Survived proportion
      0 Not Survived
                       0.616162
            Survived
                       0.383838
fig = plt.figure(figsize = (12,7))
grp.plot(kind='bar', color= ['lightgrey','midnightblue'], alpha = 0.9, rot=0)
plt.title('The Distribution of Survival Rate', fontsize=14)
plt.show()
```


The Distribution of Survival Rate

plt.show()

```
sns.set(style='darkgrid')
plt.style.use('dark_background')
plt.figure(figsize=(10, 6))
sns.countplot(x='Survived', hue='Sex', data=train, palette='Blues_r')
plt.title('Survival Rate by Gender')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.legend(title='Sex', loc='upper right')
plt.show()
```



```
survival_by_gender = train.groupby(['Sex', 'Survived']).size().unstack(fill_value=0)
survival_by_gender.columns = ['Not Survived', 'Survived']
survival_by_gender
₹
                                        \blacksquare
              Not Survived Survived
         Sex
                                        th
                        81
                                 233
      female
                       468
                                 109
       male
 Next steps:
              Generate code with survival_by_gender
                                                       View recommended plots
                                                                                      New interactive sheet
plt.figure(figsize=(10, 6))
sns.countplot(x='Survived', hue='Pclass', data=train, palette='Blues_r')
plt.title('Survival Rate by Passenger Class')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.legend(title='Pclass', loc='upper right')
```


View recommended plots

New interactive sheet

```
survival_by_class = train.groupby(['Pclass', 'Survived']).size().unstack(fill_value=0)
survival_by_class.columns = ['Not Survived', 'Survived']
survival_by_class
```

→ ▼		Not Survived	Survived	
	Pclass			ılı
	1	80	136	+/
	2	97	87	
	3	372	119	

Generate code with survival_by_class

Next steps:

```
plt.figure(figsize=(10, 6))
sns.histplot(data=train, x='Age', hue='Survived', multiple='stack',palette='Blues_r', bins=30)
plt.title('Age Distribution: Survived vs Not Survived')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```



```
bins = [0, 12, 18, 25, 35, 60, 120]
labels = ['0-12', '13-18', '19-25', '26-35', '36-60', '61+']

train['AgeGroup'] = pd.cut(train['Age'], bins=bins, labels=labels, right=False)

age_distribution = train.groupby(['AgeGroup', 'Survived']).size().unstack(fill_value=0)

age_distribution.columns = ['Not Survived', 'Survived']
age_distribution
```

	Not Survived	Survived	
AgeGroup			ılı
0-12	29	39	+/
13-18	23	22	
19-25	108	57	
26-35	123	78	
36-60	122	87	
61+	19	7	
	13-18 19-25 26-35 36-60	0-12 29 13-18 23 19-25 108 26-35 123 36-60 122	0-12 29 39 13-18 23 22 19-25 108 57 26-35 123 78 36-60 122 87

Generate code with age_distribution

Next steps:

```
plt.figure(figsize=(12, 8))
sns.catplot(x='Pclass', hue='Survived', col='Sex', kind='count', data=train,palette='Blues_r', dodge=True)
plt.subplots_adjust(top=0.85)
plt.suptitle('Survival by Passenger Class, Gender, and Embarked', fontsize=16)
plt.show()
```

View recommended plots

New interactive sheet

Data Cleaning and Preprocessing

df_train.isnull().sum()

$\overline{\rightarrow}$	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0
	Cabin	687
	Embarked	2
	dtype: int64	

print('Missing values:', df_train.isnull().values.any())
nvc = pd.DataFrame(df_train.isnull().sum(), columns=['Total Null Values'])
nvc['Percentage'] = (nvc['Total Null Values']/df_train.shape[0])*100
nvc.sort_values(by=['Percentage'], ascending=False).reset_index()

→ Missing values: True

	index	Total Null Values	Percentage	
0	Cabin	687	77.104377	ıl.
1	Age	177	19.865320	
2	Embarked	2	0.224467	
3	Passengerld	0	0.000000	
4	Survived	0	0.000000	
5	Pclass	0	0.000000	
6	Name	0	0.000000	
7	Sex	0	0.000000	
8	SibSp	0	0.000000	
9	Parch	0	0.000000	
10	Ticket	0	0.000000	
11	Fare	0	0.000000	

```
df_train.drop(columns=['Cabin'], inplace=True)
mean_age = df_train['Age'].mean()
df_train['Age'].fillna(mean_age, inplace=True)
df_train.isnull().sum()
     PassengerId
                      0
     Survived
                      0
     Pclass
                      0
     Name
                      0
                      0
     Sex
     Age
                      0
                      0
     SibSp
     Parch
                      0
     Ticket
                      0
     Fare
                      0
     Embarked
                      2
     dtype: int64
 df_train.head()
\overline{\Sigma}
         PassengerId Survived Pclass
                                                                           Name
                                                                                          Age SibSp
                                                                                                       Parch
                                                                                                                        Ticket
                                                                                                                                    Fare Embarked
                                                                                                                                                      \blacksquare
                                                                                     Sex
      0
                               0
                                        3
                                                          Braund, Mr. Owen Harris
                                                                                          22.0
                                                                                                            0
                                                                                                                      A/5 21171
                                                                                                                                 7.2500
                                                                                                                                                 S
                                                                                    male
                                                                                                                                                      ıl.
                                              Cumings, Mrs. John Bradley (Florence
                    2
                               1
                                        1
                                                                                  female
                                                                                          38.0
                                                                                                            0
                                                                                                                      PC 17599 71.2833
                                                                                                                                                 С
                                                                      Briggs Th...
                                                                                                                     STON/O2.
      2
                    3
                                       3
                                                            Heikkinen, Miss. Laina female 26.0
                                                                                                    0
                                                                                                            0
                                                                                                                                  7.9250
                                                                                                                                                  S
                                                                                                                       3101282
                                              Futrelle Mrs. Jacques Heath (Lily May
               Generate code with df_train
                                               View recommended plots
                                                                                 New interactive sheet
 Next steps:
df_train['Sex'] = df_train['Sex'].map({'male': 0, 'female': 1})
df_train = pd.get_dummies(df_train, columns=['Embarked'], drop_first=True)
df_train.head()
\overline{2}
         PassengerId Survived Pclass
                                                                 Name
                                                                       Sex
                                                                              Age
                                                                                   SibSp
                                                                                          Parch
                                                                                                         Ticket
                                                                                                                    Fare
                                                                                                                          Embarked_Q Embarked_S
                               0
                                       3
                                                Braund, Mr. Owen Harris
                                                                          0 22.0
                                                                                               0
                                                                                                       A/5 21171
                                                                                                                   7.2500
                                                                                                                                 False
                                                                                                                                               True
                                             Cumings, Mrs. John Bradley
                    2
                               1
                                       1
                                                                             38.0
                                                                                               0
                                                                                                       PC 17599
                                                                                                                 71.2833
                                                                                                                                 False
                                                                                                                                              False
                                                   (Florence Briggs Th...
                                                                                                      STON/O2.
      2
                    3
                                       3
                                                  Heikkinen, Miss. Laina
                                                                          1 26.0
                                                                                       0
                                                                                               0
                                                                                                                   7.9250
                                                                                                                                 False
                                                                                                                                               True
                                                                                                        3101282
                                            Futrelle, Mrs. Jacques Heath
      3
                                        1
                                                                          1
                                                                             35.0
                                                                                               0
                                                                                                         113803 53.1000
                                                                                                                                 False
                                                                                                                                               True
                                                        (Lilv Mav Peel)
               Generate code with df_train
                                               View recommended plots
 Next steps:
                                                                                 New interactive sheet
df_test.isnull().sum()
     PassengerId
                        0
     Pclass
                        0
                        0
     Name
     Sex
                       0
     Age
                       86
     SibSp
                        0
     Parch
                        0
     Ticket
                       0
     Fare
                        1
     Cabin
                      327
     Embarked
                        0
     dtype: int64
 df_test.drop(columns=['Cabin'], inplace=True)
```

```
df_test['Age'].fillna(mean_age, inplace=True)
mean_fare = df_test['Fare'].mean()
df_test['Fare'].fillna(mean_fare, inplace=True)
df_test['Sex'] = df_test['Sex'].map({'male': 0, 'female': 1})
df_test = pd.get_dummies(df_test, columns=['Embarked'], drop_first=True)
print(df_test.isnull().sum())
→ PassengerId
     Pclass
                    0
     Name
                    0
     Sex
                    0
     Age
     SibSp
                    0
     Parch
     Ticket
                    0
     Fare
                    0
     Embarked_Q
     Embarked S
                    0
     dtype: int64
```

df_test.head()

₹	Pas	sengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked_Q	Embarked_S	
	0	892	3	Kelly, Mr. James	0	34.5	0	0	330911	7.8292	True	False	11.
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	1	47.0	1	0	363272	7.0000	False	True	
	2	894	2	Myles, Mr. Thomas Francis	0	62.0	0	0	240276	9.6875	True	False	
	3	895	3	Wirz, Mr. Albert	0	27.0	0	0	315154	8.6625	False	True	
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	1	22.0	1	1	3101298	12.2875	False	True	

```
Next steps: Generate code with df_test View recommended plots New interactive sheet
```

Modeling

```
Classification Report Training Model (Logistic Regression):
                 precision
                              recall f1-score
               0
                       0.82
                                0.87
                                          0.85
                                                     444
               1
                       0.76
                                0.69
                                          0.73
                                                     268
                                          0.80
                                                     712
        accuracy
```

print(classification_report(y_train, y_train_pred_log))

```
macro avg 0.79 0.78 0.79 712
weighted avg 0.80 0.80 0.80 712
```

```
confusion_matrix_log_train = pd.DataFrame((confusion_matrix(y_train,y_train_pred_log)),
    ('Not Survived', 'Survived'),
    ('Not Survived', 'Survived'))

plt.figure()
heatmap = sns.heatmap(confusion_matrix_log_train, annot=True, annot_kws={'size': 12}, fmt='d', cmap='Blues_r')
heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0,ha='right', fontsize=12)
heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=0,ha='right', fontsize=12)
plt.title('Confusion Matrix for Training Model\n(Logistic Regression)\n',fontsize=14, color='white')
plt.ylabel('True label', fontsize=12)
plt.xlabel('Predicted label', fontsize=12)
plt.show()
```



```
y_test_pred_log = log_model.predict(X_test_scaled)
```

print('Classification Report Testing Model (Logistic Regression):')
print(classification_report(y_test, y_test_pred_log))

```
Classification Report Testing Model (Logistic Regression):
```

	precision	recall	+1-score	support
0	0.02	0.00	0.04	105
0	0.83	0.86	0.84	105
1	0.79	0.74	0.76	74
accuracy			0.81	179
macro avg	0.81	0.80	0.80	179
weighted avg	0.81	0.81	0.81	179

```
confusion_matrix_log_test = pd.DataFrame((confusion_matrix(y_test,y_test_pred_log)),
   ('Not Survived', 'Survived'),
   ('Not Survived', 'Survived'))

plt.figure()
heatmap = sns.heatmap(confusion_matrix_log_test, annot=True, annot_kws={'size':12}, fmt='d', cmap='Blues_r')
heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0,ha='right', fontsize=12)
heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=0,ha='right', fontsize=12)
plt.title('Confusion Matrix for Testing Model\n(Logistic Regression)\n',fontsize=14, color='white')
plt.ylabel('True label', fontsize=12)
plt.xlabel('Predicted label', fontsize=14)
```