Problem Set #5

Back to Week 5

5/5 points earned (100%)

Quiz passed!

1/1 points

1.

Consider a directed graph with distinct and nonnegative edge lengths and a source vertex s. Fix a destination vertex t, and assume that the graph contains at least one s-t path. Which of the following statements are true? [Check all that apply.]

The shortest (i.e., minimum-length) s-t path might have as many as n-1 edges, where n is the number of vertices.

Correct Response

There is a shortest s-t path with no repeated vertices (i.e., a "simple" or "loopless" such path).

Correct Response

The shortest $s ext{-}t$ path must include the minimum-length edge of G.

Correct Response

 $lue{lue{\Box}}$ The shortest $s ext{-}t$ path must exclude the maximum-length edge of G.

Correct Response

2.

Consider a directed graph G=(V,E) and a source vertex s with the following properties: edges that leave the source vertex s have arbitrary (possibly negative) lengths; all other edge lengths are nonnegative; and there are no edges from any other vertex to the source s. Does Dijkstra's shortest-path algorithm correctly compute shortest-path distances (from s) in this graph?

Maybe, maybe not (depends on the graph)Always

Correct Response

Never

One approach is to see that the proof of correctness from the videos still works. A slicker solution is to notice that adding a positive constant M to all edges incident to s increases the length of every s-v path by exactly M, and thus preserves the shortest path.

Only if we add the assumption that ${\cal G}$ contains no directed cycles with negative total weight.

1/1 points

3.

Suppose you implement the functionality of a priority queue using a *sorted* array (e.g., from biggest to smallest). What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

 $\Theta(n)$ and $\Theta(n)$ $\Theta(n)$ and $\Theta(1)$

Correct Response

 $igotimes \Theta(\log n)$ and $\Theta(1)$ $igotimes \Theta(1)$ and $\Theta(n)$

4.

Suppose you implement the functionality of a priority queue using an *unsorted* array. What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

- $igorplus \Theta(n)$ and $\Theta(n)$
- $igotimes \Theta(1)$ and $\Theta(n)$

Correct Response

- \bigcirc $\Theta(n)$ and $\Theta(1)$
- $\Theta(1)$ and $\Theta(\log n)$

1/1 points

5.

You are given a heap with n elements that supports Insert and Extract-Min. Which of the following tasks can you achieve in $O(\log n)$ time?

- Find the largest element stored in the heap.
- None of these.
- Find the fifth-smallest element stored in the heap.

Correct Response

Find the median of the elements stored in the heap.

