Devoir à la maison n°12 : corrigé

Problème 1 – Fonctions 1-périodiques

Partie I - Un espace vectoriel

1. Soit $k \in \mathbb{Z}$. Pour tout $x \in \mathbb{R}$,

$$e_k(x+1) = e^{2ik\pi(x+1)} = e^{2ik\pi x}e^{2ik\pi} = e^{2ik\pi x} = e_k(x)$$

Ainsi e_k est 1-périodique i.e. $e_k \in E$.

2. La fonction nulle sur \mathbb{R} est 1-périodique donc appartient à E. Soient $(\lambda, \mu) \in \mathbb{C}^2$ et $(f, g) \in E^2$. Pour tout $x \in \mathbb{R}$

$$(\lambda f + \mu g)(x + 1) = \lambda f(x + 1) + \mu g(x + 1) = \lambda f(x) + \mu g(x) = (\lambda f + \mu g)(x)$$

Ainsi $\lambda f + \mu g$ est 1-périodique donc appartient à E. Ceci prouve que E est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{R}}$.

3. Supposons $k \neq l$. Alors

$$\int_0^1 e_k(x) e_{-l}(x) dx = \int_0^1 e^{2i(k-l)\pi x} dx = \frac{1}{2i(k-l)\pi} \left[e^{2i(k-l)\pi x} \right]_0^1 = 0$$

Supposons maintenant k = l. Alors

$$\int_{0}^{1} e_{k}(x)e_{l-}(x) dx = \int_{0}^{1} dx = 1$$

4. Soit $(\lambda_k)_{-n \le k \le n} \in \mathbb{C}^{2n+1}$ tel que

$$\sum_{k=-n}^{n} \lambda_k e_k = 0$$

Fixons $l \in [-n, n]$. Alors

$$\int_0^1 \left(\sum_{k=-n}^n \lambda_k e_k(x) \right) e_{-l}(x) \, dx = 0$$

Par linéarité de l'intégrale

$$\sum_{k=-n}^n \lambda_k \int_0^1 e_k(x) e_{-1}(x) dx = 0$$

Mais d'après la question précédente, $\int_0^1 e_k(x)e_{-l}(x)\,dx = \begin{cases} 1 & \text{si } k=l \\ 0 & \text{sinon} \end{cases}$. Il en résulte que $\lambda_l = 0$. Ceci étant vrai quelque soit le choix de $l \in [-n,n]$, la famille $(e_k)_{-n \leqslant k \leqslant n}$ est libre.

5. Puisque la famille $(e_k)_{-n \leqslant k \leqslant n}$ est libre et engendre E_n (par définition de E_n), c'est une base de E_n . Comme elle comporte 2n+1 vecteurs, dim $E_n=2n+1$.

Partie II - Un endomorphisme

1. Soient $(\lambda,\mu)\in\mathbb{C}^2$ et $(f,g)\in\left(\mathbb{C}^\mathbb{R}\right)^2$. Pour tout $x\in\mathbb{R}$

$$\begin{split} T(\lambda f + \mu g)(x) &= \frac{1}{2} \left((\lambda f + \mu g) \left(\frac{x}{2} \right) + (\lambda f + \mu g) \left(\frac{x+1}{2} \right) \right) \\ &= \frac{1}{2} \left(\lambda f \left(\frac{x}{2} \right) + \mu g \left(\frac{x}{2} \right) + \lambda f \left(\frac{x+1}{2} \right) + \mu g \left(\frac{x+1}{2} \right) \right) \\ &= \frac{\lambda}{2} \left(f \left(\frac{x}{2} \right) + f \left(\frac{x+1}{2} \right) \right) + \frac{\mu}{2} \left(g \left(\frac{x}{2} \right) + g \left(\frac{x+1}{2} \right) \right) \\ &= \lambda T(f)(x) + \mu T(g)(x) = (\lambda T(f) + \mu T(g))(x) \end{split}$$

Ainsi $T(\lambda f + \mu g) = \lambda T(f) + \mu T(g)$.

De plus, pour $f \in \mathbb{C}^{\mathbb{R}}$, $T(f) \in \mathbb{C}^{\mathbb{R}}$ donc T est bien un endomorphisme de $\mathbb{C}^{\mathbb{R}}$.

2. Soit $f \in E$. Pour tout $x \in \mathbb{R}$,

$$T(f)(x+1) = \frac{1}{2} \left(f\left(\frac{x+1}{2}\right) + f\left(\frac{x+2}{2}\right) \right)$$
$$= \frac{1}{2} \left(f\left(\frac{x+1}{2}\right) + f\left(\frac{x}{2}+1\right) \right)$$
$$= \frac{1}{2} \left(f\left(\frac{x+1}{2}\right) + f\left(\frac{x}{2}\right) \right)$$
$$= T(f)(x)$$

Ainsi T(f) est 1-périodique i.e. $T(f) \in E$. Ceci prouve que E est stable par T.

3. Soit $k \in \mathbb{Z}$. Pour tout $x \in \mathbb{R}$

$$T(e_k)(x) = \frac{1}{2} \left(e_k \left(\frac{x}{2} \right) + e_k \left(\frac{x+1}{2} \right) \right)$$

$$= \frac{1}{2} \left(e^{ik\pi x} + e^{ik\pi(x+1)} \right)$$

$$= \frac{1}{2} e^{ik\pi x} \left(1 + e^{ik\pi} \right)$$

$$= \begin{cases} e^{ik\pi x} & \text{si } k \text{ est pair} \\ 0 & \text{si } k \text{ est impair} \end{cases}$$

Ainsi $T(e_k) = e_{\frac{k}{4}}$ si k est pair et $T(e_k) = 0$ si k est impair.

De manière équivalente, on peut dire que pour tout $k \in \mathbb{Z}$, $T(e_{2k}) = e_k$ et $T(e_{2k+1}) = 0$.

- **4.** Soit $k \in [-n, n]$.
 - $\blacktriangleright \ \ \text{Si k est pair, } \mathsf{T}(e_k) = e_{\frac{k}{2}} \ \text{et } \frac{k}{2} \in \llbracket -n,n \rrbracket. \ \text{Ainsi } \mathsf{T}(e_k) \in \mathsf{E}_n.$
 - ▶ Si k est impair, $T(e_k) = 0 \in E_n$.

Comme $(e_k)_{-n \leq k \leq n}$ engendre $E_n, T(E_n) \subset E_n$ par linéarité de T. E_n est donc stable par T.

5. Le sous-espace vectoriel $\operatorname{Im} T_n$ est engendré par la famille $(\mathsf{T}(e_k))_{-n\leqslant k\leqslant n}$. Puisque $\mathsf{T}(e_k)=0$ pour k impair, $\operatorname{Im} T_n$ est engendré par la famille $(\mathsf{T}(e_{2k}))_{-n\leqslant 2k\leqslant n}$, c'est-à-dire par la famille $(e_k)_{-n\leqslant 2k\leqslant n}$. Cette dernière famille est une sous-famille de la famille $(e_k)_{-n\leqslant k\leqslant n}$, qui est une base de E_n et a fortiori une famille libre. La famille $(e_k)_{-n\leqslant 2k\leqslant n}$ est donc également libre : c'est donc une base de $\mathsf{Im} T_n$. La dimension de $\mathsf{Im} T_n$ est le nombre d'entiers pairs compris entre -n et n. Si n est pair, dim $\mathsf{Im} T_n=n+1$ et si n est impair, dim $\mathsf{Im} T_n=n$.

Le théorème du rang affirme que dim $E_n = \dim \operatorname{Im} T_n + \dim \operatorname{Ker} T_n$. Puisque dim $E_n = 2n + 1$, dim $\operatorname{Ker} T_n = n$ si n est pair et dim $\operatorname{Ker} T_n = n + 1$ si n est impair.

Partie III - Deux projecteurs

1. Il suffit de remarquer que $(e_k)_{k \in [-n,n]}$ est une base de E_n .

2. Soit $k \in [-n, n]$.

Si k est pair, il existe $p \in \mathbb{Z}$ tel que k = 2p. Alors $P_n(e_k) = S_n \circ T_n(e_k) = S_n(e_p) = e_{2p} = e_k$. A fortiori, $P_n \circ P_n(e_k) = P_n(e_k) = e_k$. Si k est impair, $P_n(e_k) = S_n \circ T_n(e_k) = S_n(0) = 0$. A fortiori, $P_n \circ P_n(e_k) = P_n(e_k) = 0$.

Comme $(e_k)_{-n \le k \le n}$ est une base de E_n , $P_n \circ P_n = P_n$ et donc P_n est un projecteur.

Le sous-espace vectoriel $\operatorname{Im} P_n$ est engendré par la famille $(P_n(e_k))_{-n\leqslant k\leqslant n}$ et donc par la famille $(e_{2p})_{-n\leqslant 2p\leqslant n}$ d'après ce qui précède. Ainsi $\operatorname{Im} P_n = \operatorname{vect}((e_{2p})_{-n\leqslant 2p\leqslant n})$.

Le sous-espace vectoriel $\operatorname{Ker} P_n$ contient la famille $(e_{2p+1})_{-n\leqslant 2p+1\leqslant n}$ d'après ce qui précède. Cette famille est libre en tant que sous-famille d'une base. Le théorème du rang permet alors d'affirmer que la dimension de $\operatorname{Ker} P_n$ est égal au nombre d'éléments de la famille $(e_{2p+1})_{-n\leqslant 2p+1\leqslant n}$. Cette famille est donc une base de $\operatorname{Ker} P_n$ donc $\operatorname{Ker} P_n = \operatorname{vect} ((e_{2p+1})_{-n\leqslant 2p+1\leqslant n})$.

3. Soit $k \in [-n, n]$.

$$\text{Si } |2k| \leqslant n, \ Q_n(e_k) = T_n \circ S_n(e_k) = T_n(e_{2k}) = e_k. \ \text{A fortiori,} \ Q_n \circ Q_n(e_k) = e_k. \ \text{Si } |2k| > n, \ Q_n(e_k) = T_n \circ S_n(e_k) = T_n(0) = 0. \ \text{A fortiori,} \ Q_n \circ Q_n(e_k) = Q_n(e_k) = 0.$$

Comme $(e_k)_{-n\leqslant k\leqslant n}$ est une base de $E_n, Q_n\circ Q_n=Q_n$ et donc Q_n est un projecteur.

Le sous-espace vectoriel Im Q_n est engendré par la famille $(Q_n(e_k))_{-n\leqslant k\leqslant n}$ et donc par la famille $(e_k)_{|2k|\leqslant n}$ d'après ce qui précéde. Ainsi Im $Q_n=\mathrm{vect}\left((e_k)_{|2k|\leqslant n}\right)$.

Le sous-espace vectoriel Ker Q_n contient la famille $(e_k)_{|2k|>n}$ d'après ce qui précède. Cette famille est libre en tant que sous-famille d'une base. Le théorème du rang permet alors d'affirmer que la dimension de Ker Q_n est égal au nombre d'éléments de la famille $(e_k)_{|2k|>n}$. Cette famille est donc une base de Ker Q_n donc Ker $Q_n = \text{vect}\left((e_k)_{|2k|>n}\right)$.