Designing the Microphone Circuit

Read the microphone datasheet:

- Your first task is to work out the microphone circuit as below
- Assume the Microphone (E.C.M. Unit and the FET amplifier) act as an ideal current source

Questions:

- What is the Current I0 (DC and AC terms)?
- What is the Resistance R0?
- What is the Capacitance C0?

Operational Amplifier Circuit

- The op-amp design uses the differential amplifier shown below
- The –ve input will take the AC signal from the microphone and act as an inverting amplifier
- Our ears are not sensitive to the phase of a audio signal, so we can use an inverting amplifier in this case
- The +ve input will take the DC Power Supply (Vss = 3.3V) and set a suitable DC level for the amplified AC signal at the output

Amplifier Design

 We will review how to design this circuit using principle of superposition (Revision from 1st year Engineering)

Superposition Theorem

For us:

V1 is the AC input (microphone)

V2 is the DC input (power supply Vss)

Amplifier: AC Analysis for V1

Calculating $V_{out(1)}$

For us:

This will help us work out the gain for audio frequencies

$$V_{out(1)} = -V_1 \frac{R_2}{R_1}$$

Things to Watch Out for:

- R1 includes capacitor **C0** from microphone circuit: for **AC** frequencies it has impedance $\sim 0~\Omega$ (acts as a wire)
- Note that the bias resistor **R0** in the microphone circuit will also affect the input impedance to the op-amp

Amplifier: DC Analysis for V2

Calculating $V_{out(2)}$

$$V_{out(2)} = V_2 \frac{R_4}{(R_3 + R_4)} \frac{(R_1 + R_2)}{R_1}$$

For us:

This will help us work out the best DC level for the analogue-to-digital converter

Things to Watch Out for:

- R1 includes capacitor **C0**: at DC frequency, impedance $\sim \infty \Omega$ (acts as an open circuit)
- So what happens to the term { (R1+R2)/R1 } ?

Amplifier: Summing Up

The total op-amp output is the sum of **Vout(1)** and **Vout(2)**, the AC and DC terms respectively:

Differential Amplifier

Output is proportional to the difference between the input voltages

Influence of the DC Level and Capacitors

The Analogue-to-Digital Converter can record any signal between 0V and Vcc (3.3V)

What is the best DC level to use here?

Our circuit contains two capacitors:

- Microphone circuit C0 acts like a high-pass filter:
 - Blocks the microphone DC current from entering the amplifier
 - Amplifies the AC microphone signal (speech) above 300 Hz
- Amplifier circuit C1 acts like a low-pass filter:
 - Allows the amplified speech to pass to the digitiser
 - Can filter out frequencies above 3 kHz to remove unwanted signals
- Calculate cutoff frequencies and check audio is not affected

Designing and Simulating the Circuit

- Please review the slides above and make an initial estimate of the component values you plan to use: **record in your lab book!**
- You can then use LT-Spice to simulate the circuit and check that it behaves as expected and fix any mistakes/problems
- There is a summary guide for LT-Spice to remind you of what to do and a ZIP file to install the MCP6271 op-amp we will use

LT-Spice Opamp Screenshot

NB – your circuit will be different to this one!

Amplifier Specification

- You will use an electet microphone (see datasheet)
- The output will be amplified by the op-amp circuit:
 - You need to achieve at least 1.1V peak-to-peak output for good audibility
- The op-amp output will be connected to an analogue-to-digital converter on the STM32 Board
- Available Power Supplies: 0V and 3.3V only
- Available Component Values: as per your component pack
- You should use capacitors C0 and C1 to reduce the gain outside speech range 300 Hz - 3 kHz
- You should make sure that you record in your lab book your key findings, including the following values:
 - 1. Resistance values R0-R4, Capacitor values C0 and C1.
 - The output voltage achieved at 1 kHz and the lower and upper cutoff-frequencies of your circuit.