CHE F226

TITLE- AI/ML ANALYSIS ON GLUCOSE SENNSOR DATA

Overview- Performing AI/ML models on glucose sensor data to get the patten and correlation between the input and output parameters.

Input parameter-

- Material
- Base material
- Functional groups
- Ratio of functional groups/C-C
- Surface Area of Base material (m²/q)
- Base material conductivity (S/m)
- Functional Group Conductivity
- Functional group electronegativity (S/m)
- Base material electroneghativity
- Functional group atomic radii (pm)
- Contact angle of base material with glucose solution (degree)
- Contact angle of functional group with glucose solution (degree)
- Interlayer Spacing of base material (nm)
- Mechanism
- Glucose concentration (mM)
- Peak Voltage (V)
- SR
- Interferons

pH

Output Parameter- Peak Current (mA)

ML/Al models used: Pearson correlation, Bayleigh Regression, Polynomial Regression, Random Forest Regression, SVR model, ANN model

PEARSON CORRELATION

OUTCOME:

- Peak current has the highest +ve correlation with Peak Voltage(V) and highest
 -ve correlation with Scan Rate.
- Peak current has low correlation with the features.

BAYLEIGH REGRESSION

OUTCOME: R square value (-ve except for peak voltage) signified that the model is performing worse than simply predicting the mean of the target variable.

45 degree line: Perfect Prediction

180 degree line: Zero error

R² Score: 0.0238

Adjusted R2: 0.0181

Mean Squared Error: 0.0160

Intercept: [0.00932952]

(high +ve correlation)Peak Voltage vs Peak current: It shows that though the model is better than simple mean, it is inefficient.

R² Score: -0.1584
Adjusted R²: -0.1651
Mean Squared Error: 0.0297
Intercept: [-0.01786931]

(high -ve correlation)Scan Rate vs Peak Current: It shows that though the model is worse than simple mean.

*OTHER OUTCOMES: All other features showed -ve R square suggesting an unfit model.

POLYNOMIAL REGRESSION

OUTCOME: R square (+ve but <10%) signified that the model is performing better than simply predicting the mean of the target variable but is very inefficient.

R² Score: 0.0066 Adjusted R²: 0.0043

(high +ve correlation)Peak Voltage vs Peak Current: It shows that though the model is better than simple mean, it is inefficient. R² Score: 0.0003 Adjusted R²: -0.0020

(high -ve correlation)Scan Rate vs Peak Current: It shows that though the model is better than simple mean, it is inefficient.

SVR & RANDOM FOREST REGRESSION

SVR R²: 0.0238 Random Forest R²: 0.0238

(high +ve correlation)Peak Voltage vs Peak current: It shows that though the models is better than simple mean, it is inefficient.

SVR R²: -0.1584 Random Forest R²: -0.1584

(high -ve correlation)Scan Rate vs Peak Current: It shows that though the models is worse than simple mean.

Artificial Neural Network (ANN model)

CHE F226

OUTCOME (for Peak Current as Output): The ANN model's performance plots signifies that both training and validation losses (MSE and MAE) decrease over epochs, indicating effective learning. However, the consistently lower training loss compared to validation loss suggests potential **overfitting** which is **not** a **major** issue, where the model may be capturing some noise in the training data. Notably, the **final low error values** (**converged ends of graph**) demonstrate a decent fit.