Tema 6

CIRCUITOS DE CORRIENTE CONTINUA (CIRCUITOS CON FUENTES CONSTANTES EN EL TIEMPO)

Teoría de Circuitos

Dpto. Ingeniería Eléctrica Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Índice

- Regímenes transitorio y permanente
- 2 Régimen permanente en circuitos de corriente continua
- 3 Circuitos dinámicos en un instante determinado
- 4 Régimen transitorio en circuitos de corriente continua

Índice

- Regímenes transitorio y permanente
- 2 Régimen permanente en circuitos de corriente continua
- 3 Circuitos dinámicos en un instante determinado
- 4 Régimen transitorio en circuitos de corriente continua

Regímenes transitorio y permanente

Circuito estático (no contiene elementos almacenadores de energía)

Respuesta instantánea ante cambios en la excitación.

Circuito dinámico (contiene elementos almacenadores de energía)

Aparece una evolución en la respuesta ante cambios en la excitación debido a que la energía almacenada no puede cambiar bruscamente.

Regímenes transitorio y permanente

Conexión de un condensador a una fuente de corriente continua

- La transición de un régimen permanente a otro diferente involucra en general un periodo transitorio, si existen bobinas y/o condensadores.
- Durante el régimen transitorio se produce una redistribución de la energía almacenada en bobinas y condensadores.
- El régimen transitorio puede estar provocado por:
 - Apertura-cierre de interruptores.
 - Cortocircuitos.
 - Cambios bruscos en los valores de las fuentes aplicadas.

Índice

- Regímenes transitorio y permanente
- 2 Régimen permanente en circuitos de corriente continua
- 3 Circuitos dinámicos en un instante determinado
- 4 Régimen transitorio en circuitos de corriente continua

Análisis de circuitos en régimen permanente de continua

En régimen permanente de continua todas las magnitudes tienen un valor constante:

- Las **bobinas** se comportan como cortocircuitos (U=0).
- Los **condensadores** se comportan como circuitos abiertos (I=0).

A diferencia de un circuito estático, hay energía almacenada en bobinas y condensadores. Dicha energía dará origen a futuros transitorios cuando se produzca un cambio en el circuito.

Análisis de circuitos en régimen permanente de continua

Resistencia

Comportamiento:
$$U = R \cdot I$$
 $I = G \cdot U$

$$I = G \cdot U$$

Potencia:
$$p_R(t) = U \cdot I = R \cdot I^2 = G \cdot U^2 \ge 0$$

Bobina

Comportamiento:
$$U = L \cdot \frac{dI}{dt} = 0$$
, $I = \text{cte}$

Potencia: $p_L(t) = U \cdot I = 0$

Energía:
$$w_L(t) = \frac{1}{2} \cdot L \cdot I^2 = \text{cte} \ge 0$$

Condensador

Comportamiento:
$$I = C \cdot \frac{dU}{dt} = 0$$
 , $U = \text{cte}$

Potencia: $p_C(t) = U \cdot I = 0$

Energía: $w_C(t) = \frac{1}{2} \cdot C \cdot U^2 = \text{cte} \ge 0$

Ejemplo

Índice

- Regímenes transitorio y permanente
- 2 Régimen permanente en circuitos de corriente continua
- 3 Circuitos dinámicos en un instante determinado
- 4 Régimen transitorio en circuitos de corriente continua

Análisis de circuitos dinámicos en un instante determinado

Se trata de determinar las magnitudes de un circuito en un instante concreto t_0 (por ejemplo, las condiciones iniciales de un transitorio).

lacktriangle Las fuentes, $e_g(t)$ e $i_g(t)$, se sustituyen por fuentes de valor fijado en dicho instante:

$$E_g = e_g(t_0)$$
 ; $I_g = i_g(t_0)$

② Condensadores e inductancias se sustituyen por fuentes de tensión e intensidad según la tensión y la intensidad en dicho instante, respectivamente:

$$U_0 = u_C(t_0)$$
 $I_0 = i_L(t_0)$

$$u_C(t_0) = U_0 \xrightarrow{-} \xrightarrow{\bullet} \quad \Rightarrow \quad \stackrel{\bullet}{\longrightarrow} \quad U_0$$

Análisis de circuitos dinámicos en un instante determinado

Analizar un circuito dinámico en un instante cualquiera, conocidas las energías almacenadas en dicho instante, se reduce a resolver un circuito resistivo con fuentes constantes, válido únicamente en dicho instante.

Índice

- Regímenes transitorio y permanente
- 2 Régimen permanente en circuitos de corriente continua
- 3 Circuitos dinámicos en un instante determinado
- 4 Régimen transitorio en circuitos de corriente continua

Régimen transitorio en circuitos de corriente continua

Orden del circuito: número de elementos almacenadores

El orden del circuito coincide con el orden de las ecuaciones diferenciales que definen su dinámica.

• Circuitos de primer orden: un único elemento almacenador de energía.

• Circuitos de segundo orden: dos elementos almacenadores de energía.

• Circuitos de orden superior a dos: el transitorio es una composición de transitorios de primer y segundo orden.

Transitorio debido a un condensador (Circuito RC)

Utilizando el Equivalente Thévenin en bornas del condensador:

Ecuación diferencial de primer orden que gobierna la evolución de la tensión en el condensador:

$$\frac{du(t)}{dt} + \frac{1}{RC}u(t) = \frac{V_g}{RC}$$

Transitorio debido a una bobina (Circuito RL)

Utilizando el Equivalente Norton en bornas de la bobina:

Ecuación diferencial de primer orden que gobierna la evolución de la intensidad en la bobina:

$$\frac{di(t)}{dt} + \frac{R}{L}i(t) = \frac{R}{L}I_g$$

Solución de la ecuación diferencial

RC:
$$\frac{du(t)}{dt} + \frac{1}{RC}u(t) = \frac{V_g}{RC}$$

RL:
$$\left| \frac{di(t)}{dt} + \frac{R}{L}i(t) = \frac{R}{L}I_g \right|$$

La solución se compone de dos términos:

RC:
$$u(t) = u_n(t) + U_{\infty}$$
 RL: $i(t) = i_n(t) + I_{\infty}$

- **QUE PRESPUESTA NATURAI:** $u_n(t)$ e $i_n(t)$, solución de la ecuación diferencial homogénea.
 - Incluye una constante de integración que habrá que determinar con las condiciones iniciales del circuito.
 - El tipo de evolución coincide con la que tendría el circuito si se anulan las fuentes (debida sólo a la energía almacenada).
- 2 Respuesta forzada: U_{∞} e I_{∞} , solución particular de la ecuación diferencial completa.
 - Depende únicamente de las fuentes del circuito.

Respuesta natural

La respuesta natural se obtiene resolviendo la ecuación diferencial de primer orden homogénea:

RC:
$$\frac{du(t)}{dt} + \frac{1}{\tau}u(t) = 0$$

RL:
$$\frac{di(t)}{dt} + \frac{1}{\tau}i(t) = 0$$

cuya solución, para t > 0 es

$$RC: \left| u_n(t) = K \cdot e^{-t/\tau} \right|$$

$$RL: \left| i_n(t) = K \cdot e^{-t/\tau} \right|$$

• τ es la constante de tiempo característica del circuito:

Circuito RC :
$$\tau = RC$$

Circuito RC:
$$\tau = RC$$
 Circuito RL: $\tau = L/R$

donde R es la resistencia equivalente que ve L o C.

• K se determina a partir de las condiciones iniciales, u(0) e i(0)

Significado de la constante de tiempo

Respuesta completa debida a un condensador (Circuito RC)

$$u(t) = V_{\infty} + [V_0 - V_{\infty}] e^{-t/\tau}$$

 $V_{\infty} = E \; ; \; \tau = RC$
 $u(0^-) = u(0^+) = V_0$

Tipo de evolución dependiendo del valor inicial y el valor final:

Respuesta completa debida a una bobina (Circuito RL)

$$i(t) = I_{\infty} + [I_0 - I_{\infty}] e^{-t/\tau}$$

 $I_{\infty} = I_g \; ; \; \tau = L/R$
 $i(0^-) = i(0^+) = I_0$

Tipo de evolución dependiendo del valor inicial y el valor final:

Cálculo de otras variables del circuito

- El circuito evoluciona desde su estado inicial al régimen permanente de forma exponencial, con la constante de tiempo determinada por el condensador o la bobina.
- Circuito de primer orden con condensador (RC):

$$i(t) = I_{\infty} + [I_0 - I_{\infty}] e^{-t/(RC)}$$

$$v(t) = V_{\infty} + [V_0 - V_{\infty}] e^{-t/(RC)}$$

• Circuito de primer orden con bobina (RL):

$$i(t) = I_{\infty} + [I_0 - I_{\infty}] e^{-t/(L/R)}$$

$$v(t) = V_{\infty} + [V_0 - V_{\infty}] e^{-t/(L/R)}$$

Circuitos de segundo orden Circuito con resistencias y fuentes (estático) Circuito con resistencias y fuentes (estático) Circuito con resistencias y fuentes (estático)

Circuito RLC serie

Se estudiará el circuito RLC serie, de interés práctico:

23 / 30

Circuito de segundo orden RLC serie

$$R i(t) + u_L(t) + u_C(t) = u_g(t) = V_g$$
$$i(t) = C \frac{du_C(t)}{dt} \quad ; \quad u_L(t) = L \frac{di(t)}{dt}$$

$$\frac{d^2i(t)}{dt^2} + \frac{R}{L}\frac{di(t)}{dt} + \frac{1}{LC}i(t) = 0$$

$$\frac{d^2 u_C(t)}{dt^2} + \frac{R}{L} \frac{du_C(t)}{dt} + \frac{1}{LC} u_C(t) = \frac{V_g}{LC}$$

Respuesta natural en transitorios de segundo orden

La respuesta natural se obtiene resolviendo la ecuación diferencial de segundo orden homogénea:

$$\frac{d^2f(t)}{dt^2} + 2\,\alpha\,\frac{df(t)}{dt} + \omega_o^2\,f(t) = 0 \quad \begin{cases} \alpha \equiv \text{Coef. de amortiguamiento.} \\ \omega_o \equiv \text{Frecuencia de resonancia.} \end{cases}$$

Polinomio característico:
$$s^2 + 2 \alpha s + \omega_o^2 = 0$$

Raíces del polinomio característico:
$$s_1, s_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2}$$

Para el RLC serie:
$$s^2 + \frac{R}{L} s + \frac{1}{LC} = 0$$
 \Longrightarrow $\alpha = \frac{R}{2L}$, $\omega = \frac{1}{\sqrt{LC}}$

En función de los valores de α y ω_o se obtienen respuestas naturales con distinta evolución temporal.

Respuesta natural en transitorios de segundo orden

Tipos de respuesta natural que se pueden presentar:

• Sobreamortiguada ($\alpha > \omega_o$): $s_1, s_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2}$

$$f_n(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$$
 $\tau_1 = -1/s_1 ; \tau_2 = -1/s_2$

• Críticamente amortiguada ($\alpha = \omega_o$): $s_1 = s_2 = -\alpha$

$$f_n(t) = (K_1 t + K_2) \cdot e^{-\alpha t}$$
 $\tau = 1/\alpha$

• Subamortiguada ($\alpha < \omega_o$): $s_1, s_2 = -\alpha \pm j\sqrt{\omega_o^2 - \alpha^2} = -\alpha \pm j\omega_d$

$$f_n(t) = K_1 e^{-\alpha t} \cdot \cos(\omega_d t + K_2)$$
 $\tau = 1/\alpha$

siendo $\omega_d = \sqrt{\omega_o^2 - \alpha^2}$ la frecuencia natural del circuito.

Respuesta natural en transitorios de segundo orden

Respuesta completa en el circuito RLC serie

- \bullet La respuesta forzada, $V\infty$, es el estado final impuesto por las fuentes.
- ullet La respuesta natural está impuesta por L y C.
- Las constantes de integración se calculan en base a los valores iniciales de la tensión en el condensador y la intensidad en la bobina, $u_C(0)$ e $i_L(0)$.

En muchas aplicaciones, basta con saber el tipo de transitorio, las condiciones iniciales y finales, y su duración (constantes de tiempo).

Cálculo de otras variables en un transitorio RLC serie

- Cualquier tensión o intensidad del circuito, x(t), evoluciona desde su valor inicial a su valor final según la respuesta natural del circuito.
- Circuito de segundo orden RLC serie:

Las constantes de integración se calculan, en caso de ser necesario su cálculo, en base a los valores iniciales de la variable de interés, x(0) y $\dot{x}(0)$, obtenidas a partir de la tensión en el consensador y la intensidad en la bobina en el instante inicial, $u_C(0)$ e $i_L(0)$.

Ejemplos de transitorios de segundo orden $V_c(t)$ $V_c(t)$