第1题

- ❖说明存取时间与存取周期的区别。
 - ▶ 存取时间: 读或者写操作所用的时间
 - ▶ 存取周期:两次访问存储单元的最小时间间隔
- ❖什么是存储器的带宽?若某存储器的数据总线宽度为64位,存取周期为100ns,则该存储器的带宽是多少?
 - ▶存储器带宽:单位时间内访问的存储量
 - ▶计算: 64/(100×10⁻⁹)=640Mb/s

第2题

- ❖某机字长16位, 其存储容量是64KB, 按字编址其寻址范围是多少
- ? 若主存以字节编制, 试画出主存字地址和字节地址的分配情况。
 - ▶容量为64KB, 即按字节编址, 寻址范围就是64K字节
 - ▶字长为16位,因此,按字编址,寻址范围就是64K×8/16=32K字
 - ▶每个字包含2个字节,主存字地址和字节地址的分配情况:

字地址	字节地址					
0	0	1				
2	2	3				
•••••	•••••	•••••				
65534	65534	65535				

- ❖一个容量为16K×32位的存储器,分别需要几条地址线和数据线?
- ❖如果该存储器采用二维地址结构,且行地址和列地址的位数相同,则译码器输出的行选择线和列选择线分别有多少条?
- ❖若选用下列不同规格的存储芯片来实现该存储器,需要各存储芯片的数目以及它们的排列方式分别是怎样的?
 - **≻1K×4**
 - >2K×8
 - >4K×4
 - >16K X 1
 - >4K×8
 - >8K×8

- ❖一个容量为16K×32位的存储器,分别需要几条地址线和数据线?
 - >地址线的决定因素:存储器存储字单元的数量
 - ▶16K=2¹⁴,于是地址线为14根
 - ▶数据线的决定因素:存储器存储单元的数据宽度
 - ▶数据线为32根

- ❖一个容量为16K×32位的存储器,分别需要几条地址线和数据线?
- ❖如果该存储器采用二维地址结构,且行地址和列地址的位数相同,则译码器输出的行选择线和列选择线分别有多少条?
 - ▶存储容量16K决定需要14条地址线
 - ▶数据宽度32位决定需要32条数据线
 - ▶行地址位数=列地址位数
 - >2^x \times 2^x = 16K \rightarrow x = 7
 - ▶对应的行选择线2⁷ = 128,列选择线2⁷ = 128

- ❖一个容量为16K×32位的存储器,分别需要几条地址线和数据线?
- ❖如果该存储器采用二维地址结构,且行地址和列地址的位数相同,则译码器输出的行选择线和列选择线分别有多少条?
- ❖若选用下列不同规格的存储芯片来实现该存储器,需要各存储芯片的数目以及它们的排列方式分别是怎样的?
 - **≻1K×4**
 - >2K×8
 - >4K×4
 - >16K X 1
 - >4K×8
 - >8K × 8

$>1K\times4\rightarrow16K\times32$

■需要进行字扩展(深度)和位扩展(宽度)

■将全部存储器芯片看成一个二维阵列

■字扩展需要的行数: 16K/1K=16

■位扩展需要的列数: 32/4=8

■总的存储器芯片数量=16×8=128

■或者

- ■所有存储器芯片的容量之和=目标存储器容量
- ■存储器芯片数量=目标存储器容量/单个芯片容量

16

■存储器芯片数量=(16K×32)/(1K×4)=16×8=128

 \geq 2K \times 8 \rightarrow 16K \times 32

 \rightarrow 4K \times 4 \rightarrow 16K \times 32

 \rightarrow 4K \times 8 \rightarrow 16K \times 32

 $>8K\times8\rightarrow16K\times32$

第4题

- ❖现有一容量为256K×8的DRAM存储芯片, 试回答:
 - ▶该芯片包含多少个字单元?
 - ▶该芯片包含多少个二进制存储单元电路(存储位元)?
 - ▶该芯片的刷新地址计数器应该是多少位?
 - ▶若该DRAM芯片的存取周期为0.25us,试问采用集中刷新、分散刷新及 异步刷新三种方式的刷新间隔各为多少?

第4题

- ❖现有一容量为256K×8的DRAM存储芯片,试回答:
 - ▶该芯片包含多少个字单元?
 - **■256K字单元**
 - ▶该芯片包含多少个二进制存储单元电路(存储位元)?
 - $-256K \times 8 = 2^{21}$
 - ▶该芯片的刷新地址计数器应该是多少位?
 - ■刷新地址计数器产生的是用于DRAM刷新的行地址,因此,它的位数就是行地址的位数。而DRAM芯片行地址和列地址通常会共享同一组管脚,因此,行地址和列地址的位数是相等的,是整个芯片地址数量的一半
 - ■256K = 2¹⁸→行地址为9位→刷新地址计数器为9位
 - ▶若该DRAM芯片的存取周期为0.25us,试问采用集中刷新、分散刷新及 异步刷新三种方式的刷新间隔各为多少?

第4题

- ❖现有一容量为256K×8的DRAM存储芯片,试回答:
 - ▶该芯片包含多少个字单元?
 - ▶该芯片包含多少个二进制存储单元电路(存储位元)?
 - ▶该芯片的刷新地址计数器应该是多少位?
 - ▶若该DRAM芯片的存取周期为0.25us,试问采用集中刷新、分散刷新及 异步刷新三种方式的刷新间隔各为多少?
 - ■该芯片共有2⁹ = 512行,刷新是按行进行的
 - ■每个刷新周期内、所有行必须至少被刷新一次
 - ■集中刷新:在刷新周期的某一时间段集中刷新所有行,因此,刷新的间隔时间即为刷新周期,一般取2ms
 - ■分散刷新: 刷新分散到每个存取周期,每个存取周期刷新一行。故刷新的间隔时间为 512×0.25 us = 128us
 - ■异步刷新:只要保证在一个刷新周期内将存储芯片所有行刷新一遍即可。因此,刷新的间隔时间仍为刷新周期,一般取2ms

第5题

- ❖画出1K×4位的存储器芯片组成一个64K×8位的存储器逻辑框图。 要求64K分成4个页面,每个页面分16组,指出共需多少片存储器芯 片。
 - ▶1K×4芯片组成64K×8存储器
 - ▶需要进行字扩展和位扩展
 - ▶字扩展: 64K/1K = 64
 - ▶位扩展: 8/4 =2
 - ▶芯片数: (64K×8)/(1K×4)=128
 - ▶将64K字空间分为4个页面
 - ▶整个存储器分成4个16K×8的小存储器

第5题

>逻辑框图一

第5题

第6题

- ❖设有一个64K×32位的RAM芯片,问该芯片共有多少个基本单元电路(简称存储基元)? 欲设计一种具有上述同样多存储基元的芯片,要求对芯片字长的选择应满足地址线和数据线的总和为最小,试确定这种芯片的地址线和数据线,并说明有几种解答。
 - ▶该芯片的存储基元总数=64K×32位=2048K=2²¹(个)
 - ▶如要满足地址线和数据线总和最小,应尽量把存储元安排在字向,因为 地址位数和字数成2的幂的关系,可较好地压缩线数
 - ▶设地址为n位,数据为b位,则: $2^{n} \times b = 2^{21}$,即: $b = 2^{21-n}$
 - ▶(n,b)的组合有(21,1), (20,2), (19,4), (18,8),
 - ▶n+b最小的组合为(21,1)和(20,2)

第7题

- ❖某8位机地址码为20位,若使用4K×4的RAM芯片组成模块板结构的存储器,问:
 - ▶该机所允许的最大主存空间是多少?
 - ■最大主存空间=2²⁰×8=1024K×8位=8192KB=8MB
 - ▶若每个模板为32K×8位, 共需多少模板块?
 - $(1024K \times 8) / (32K \times 8) = 32$
 - ▶每个模板块内共有几片RAM芯片?
 - $(32K \times 8) / (4K \times 4) = 16$
 - ▶共有多少片RAM?
 - ■16×32=512或(1024K×8)/(4K×4)=512
 - ▶CPU如何选择各模板块?

第7题

❖某8位机地址码为20位,若使用4K×4的 RAM芯片组成模块板结构的存储器,问:

- ▶CPU如何选择各模板块?
 - ■CPU地址→(模板号,模板内部偏移)
 - ■模板块数→模板号
 - ■32个模板→5位模板号
 - ■模板存储单元数量→模板内部偏移位数
 - -32K→15位偏移
 - •CPU地址→(5位模板号, 15位模板内部偏移)
 - ■CPU地址高5位选择32个模板 (5-32译码器或4个3-8译码器)
 - **■CPU地址范围与模板对应关系如表所示**

CPU地址范围(高5位)	模板
00000H-07FFFH (0000,0)	0
08000H-0FFFFH (0000,1)	1
10000H-17FFFH (0001,0)	2
18000H-1FFFFH (0001,1)	3
20000H-27FFFH (0010,0)	4
28000H-2FFFFH (0010,1)	5
30000H-37FFFH (0011,0)	6
38000H-3FFFFH (0011,1)	7
	•••
F0000H-F7FFFH (1111,0)	30
F8000H-FFFFFH (1111,1)	31

- ❖设CPU有16根地址线,8根数据线,并用MREQ#作访存控制信号,R/W#作读写命令信号,现有存储芯片ROM(2K×8,4K×4,8K×8)和RAM(1K×4,2K×8,4K×8)及74138译码器和其他门电路。试选择合适芯片,并画出CPU和芯片连接图。要求:
 - ▶最小4K地址为系统程序区,4096~16383地址范围为用户程序区
 - ▶指出选用的存储芯片类型及数量
 - ▶画出片选逻辑

- ▶16根地址线,8根数据线
 - ■CPU具有64K×8位的寻址能力
 - ■主存储器容量上限是64K×8位
 - ■位扩展宽度:8位
- ▶4K地址为系统程序区,4096~16383为用户程序区
 - ■ROM地址空间: 0000H~0FFFH, 容量: 4K×8
 - ■RAM地址空间: 1000H~3FFFH, 容量: 12K×8
- ▶ROM扩展(4K×8系统程序区)
 - ■4K×4, 2K×8均可, 不能选8K×8
 - ■选择4K×4、2片、位扩展
- ▶RAM扩展(12K×8用户程序区)
 - •1K×4, 2K×8, 4K×8均可
 - ■选择4K×8,3片,字扩展

▶存储器芯片地址空间

▪共需4个片选

0000H~0FFFH	ROM(2片4K×4)	2片选连接在一起
1000H~1FFFH	RAM(4K×8)	独立片选
2000H~2FFFH	RAM(4K×8)	独立片选
3000H~3FFFH	RAM(4K×8)	独立片选

▶使用74138译码器

▶74138的真值表

		INP	UTS			OUTPUTS							
I	ENABL	E	A	DDRES	SS	OUTPUIS							
E3	~E2	~E1	A2	A1	A0	~Y0	~Y1	~Y2	~Y3	~Y4	~Y5	~Y6	~Y7
×	×	Н	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
L	×	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
×	Н	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

▶译码器输出直接作为片选信号

■E3、E2#、E1#用做访问控制信号

■E2: H

•E1#、E0#: MREQ#

■A2、A1、A0用做读写命令信号

•A2: L

•A1、A0: CPU地址线A13, A12

▶译码器输出:

138输出	连接关系
Y0#	ROM片选
Y1#	RAM片选
Y2#	RAM片选
Y3#	RAM片选

▶片选逻辑

- ❖CPU假设同第8题,现有8片8K×8位的RAM芯片与CPU相连,试回答:
 - ▶用74138译码器画出CPU与存储芯片的连接图
 - ▶写出每片RAM的地址范围
 - ▶如运行时发现不论往哪片RAM写入数据后,以A000H为起始地址的存储芯片都有与其相同的数据,分析故障原因
 - ▶根据前面的连线图,若出现地址A13与CPU断线,并搭接到高电平上, 将出现什么后果?

- ▶8片8K×8位的RAM芯片与CPU相连
 - ■主存储器总容量为64K×8
 - •CPU的数据线为8位,地址线为16位
 - ■8片RAM只能是字扩展
 - ■每片RAM占用8KB的地址空间
 - ■每片RAM的片选信号均为独立
- ▶存储器芯片地址空间如表所示
- ▶74LS138译码器
 - ■CPU地址A15, A14, A13对应74LS138的A2, A1, A0
 - ■Y0#...Y7#对应8个RAM芯片的片选

0000H∼1FFFH	RAM(8K×8)
2000H∼3FFFH	RAM(8K×8)
4000H∼5FFFH	RAM(8K×8)
6000H∼7FFFH	RAM(8K×8)
8000H∼9FFFH	RAM(8K×8)
A000H~BFFFH	RAM(8K×8)
C000H~DFFFH	RAM(8K×8)
E000H~FFFFH	RAM(8K×8)
·	

- ▶如运行时发现不论往哪片RAM写入数据后,以A000H为起始地址的存储芯片都有与其相同的数据,分析故障原因
 - ■CPU地址A15, A14, A13对应74LS138的A2, A1, A0
 - ■Y0#...Y7#对应8个RAM芯片的片选
 - ■以A000H为起始地址的存储芯片始终被选中
 - ■Y5#在写入操作过程中, 恒为低电平

Y0#	0000H∼1FFFH	RAM(8K×8)
Y1#	2000H∼3FFFH	RAM(8K×8)
Y2#	4000H~5FFFH	RAM(8K×8)
Y3#	6000H∼7FFFH	RAM(8K×8)
Y4#	8000H∼9FFFH	RAM(8K×8)
Y5#	A000H~BFFFH	RAM(8K×8)
Y6#	C000H∼DFFFH	RAM(8K×8)
Y7#	E000H~FFFFH	RAM(8K×8)

- ▶根据前面的连线图,若出现地址A13与CPU断线,并搭接到高电平上, 将出现什么后果?
 - ■74138译码器的输入将只存在4种可能: 001、011、101、111
 - 000, 001→001
 - **■010、011→011**
 - **100** 101 → 101
 - **110**, 111→111

		INP	UTS			OUTPUTS							
	ENABLE	3	P	ADDRES	S		0011013						
E3	~E2	~E1	A2	A1	A0	~Y0	~Y1	~Y2	~Y3	~Y4	~Y5	~Y6	~Y7
×	×	Н	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
L	×	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
×	Н	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

- ▶根据前面的连线图,若出现地址A13与CPU断线,并搭接到高电平上, 将出现什么后果?
 - ■对0000~1FFF读写操作实际访问的是RAM1,依次类推
 - ■即只能正确访问地址中A13=1的RAM芯片1、3、5、7,而访问不到地址中 A13=0的RAM芯片0、2、4、6

0000H~1FFFH	_
2000H~3FFFH	RAM1
4000H∼5FFFH	_
6000H~7FFFH	RAM3
8000H~9FFFH	_
A000H~BFFFH	RAM5
C000H~DFFFH	_
E000H~FFFFH	RAM7