1 Questao 1 - Identificação Direta

A identificação direta, como o próprio nome ja diz, está relacionada em obter o resultado desejado de uma forma mais rápida, direta. Neste caso o que vai importar são a entrada e saída do sistema, dessa forma é possível recuperar a resposta do sistema. Foram feitos dois experimentos com identificação direta, um para sistema de primeira ordem e outro para sistema de segunda ordem.

1.1 Sistema de 1^a Ordem - Experimento 1

Para este experimento o objetivo era encontrar a resposta do sistema de primeira ordem que tem como padronização a figura 1. Foi utilizado o bloco State-Space do MatLab para simulação do sistema como uma caixa preta, para que então pudessem ser obtidos os valores de $T_{r_{5\%}}$ e T_s . A entrada do sistema foi um degrau de amplitude 2, este valor de amplitude é necessário para o cálculo de K como mostra a equação abaixo.

Os valores obtidos foram $K=2,\,\tau=0,9792,\,T_s=3,917$

Figure 1: Sistema padrão de 1^a ordem

Após a obtenção desses valores, foi realizada uma simulação utilizando a seguinte equação de transferência:

$$\frac{Y(s)}{U(s)} = \frac{2}{0,9792s + 1}$$

Para esta função de transferência o valor de de T_s foi 3,83. Podemos observar que os valores de T_s foram muito próximos, o que justifica o fato de que a identificação foi bem sucedida. A Figura 2. mostra uma comparação entre o sinal medido com a caixa preta(Azul) e o sinal simulado com a equação encontrada(Verde).

Figure 2: Comparação entre os sistemas de 1^a ordem

1.2 Sistema de 2^a Ordem - Experimento 2

Analogamente ao experimento de primeira ordem o objetivo é encontrar diretamente um sistema de segunda ordem que tem como padrão a figura 3. Também foi utilizado o bloco State-Space do $MatLab^{\textcircled{o}}$ para simulação do sistema como uma caixa preta, a entrada do sistema continuou sendo um degrau de amplitude 2, então através de medições no próprio gráfico gerado e alguns cálculos, foram obtidos os valores: $K=1, V_{regime}=2, V_{pico}=2, 4, M_p=0, 2$ e $T_p=1,768$.

Figure 3: Sistema de 2^a padrão

Com estes valores foi possivel obter os valores de $\xi = 0,4559$ e $w_n = 1,9945$, através das fórmulas:

$$M_p = e^{\frac{-\xi\pi}{\sqrt{1-\xi^2}}}$$

$$T_p = \frac{\pi}{w_n\sqrt{1-\xi^2}}$$

A função de tranferência para os valores calculados é:

$$\frac{Y(s)}{U(s)} = \frac{3,9780}{s^2 + 1,8186s + 3,9780}$$

Analisando o gráfico da Figura 4, Percebe-se que as duas curvas se tornaram muito parecidas, a curva com o bloco *State-Space* está representada em azul e em verde esta representada a equação obtida.

Figure 4: Comparação entre os sistemas de 2^a ordem

2 Questao 2 - Identificação Indireta

A identificação indireta é chamada de tal forma pois agora não é possivel obter a função de transferência apenas com a entrada e saída do sistema, conforme a figura 5 tem-se um sistema de malha fechada, com um ganho K_c e uma resposta em malha aberta G(s), é

necessário conhecer o valor de K_c para se obter a resposta em malha fechada e descobrir a resposta de G(s), que é o objetivo, através da formula:

$$G(s) = \frac{1}{K_c} \frac{M(s)}{1 - M(s)} \tag{1}$$

onde M(s) é a resposta em malha fechada.

Figure 5: Sistema em malha fechada

A função M(s) é obtida através dos valores da simulação utilizando o bloco *State-Space*, com os mesmos cálculos que foram feitos na identificação direta.

2.1 Sistema de 1^a Ordem - Experimento 3

Neste experimento aplicou-se primeiramente o sistema em malha aberta, verificando que a resposta do sistema era muito lenta, assim foi necessário a aplicação do ganho K_c =4.5.

Para este experimento foram encontrados os valores de $T_s=2,249,~\tau=0,5263$ e K=0,98, portanto, temos que:

$$M(s) = \frac{0,98}{0,5263s + 1}$$

Partindo da equação de G(s) obtemos:

$$G(s) = \frac{0,98}{26,3150s+1}$$

O gráfico da Figura 6 mostra os sistemas obtidos, em azul está o sistema simulado e em verde está o sistema M(s) calculado.

Figure 6: Comparação entre o sistema simulado e calculado

2.2 Sistema de 2^a Ordem - Experimento 4

Primeramente foi feita a simulação em malha aberta, sem o ganho K_c e foi observado que não ocorreu sobressinal, o que descaracteriza o sistema de segunda ordem. Para consertar este erro aplicou-se um $K_c = 1$.

Para este experimento os valores encontrados foram $T_p=0,12,\,M_p=0,2,\,K=0,98,\,\xi=0,2163,\,w_n=26,8155,$ assim:

$$M(s) = \frac{704,6878}{s^2 + 11,6004s + 719,0692}$$

Partindo da equação de G(s) obtemos:

$$G(s) = \frac{14,0938}{s^2 + 11,6004s + 14,3814}$$

O gráfico da Figura 7 mostra os sistemas obtidos, em azul está o sistema simulado e em verde está o sistema M(s) calculado.

Figure 7: Comparação entre o sistema simulado e calculado