2. Matrix powers (bonus, hand-in) (★☆☆)							
For a natural number $k \ge 1$, we define a cation	ne the k -th power of a square matrix A as	s the matrix multipli-					
——	$A^k = \underbrace{AA \cdots A}_{k \text{ times}}$						
Moreover we define $A^0 = I$, where							
Consider the matrix	$A = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$						
Use induction to show that for any k	$A = \begin{bmatrix} -1 & 0 \end{bmatrix}$ $k \ge 0$ the k -th power of the matrix A is						
	$A^{k} = \begin{bmatrix} 1+k & k \\ -k & 1-k \end{bmatrix}$						
	$A = \begin{bmatrix} -k & 1-k \end{bmatrix}$						
			T1+0 0 T				
Induktions verankes ung:	Für k=0 gilt	A° = I =	L-0 1-0]				
Induktionshypothese:	Angenommen, fir	ein nell gilt	٠,				
Δη = [1+n n] -n 1-n].						
	-n 1-n J.			17			
Induktions schitti	$A^{n+1} = A^n \cdot A$		n $\begin{cases} 2 \\ 1-n \end{cases}$ $\begin{bmatrix} -1 \\ \end{bmatrix}$				
mankt, onsech (itt.							
	[2 (1+n) - n	1+n7	[1+ (n+1)	(n+1) 7			
	$= \begin{bmatrix} 2(1+n) - n \\ -2n - (1-n) \end{bmatrix}$	- n _ =	[-(n+1)	1- (n+1)			
			,	,			
Deshalb stimmt	die Anesage a	uch fir n+1					
		1 12 /					
Also gilt die	Avesage für all	e kelV.					

3. Reconstruct a linear transformation (★☆☆)

a) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that

$$T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}1\\1\\2\end{pmatrix}, T\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = \begin{pmatrix}2\\3\\2\end{pmatrix}.$$

Determine the general formula for $T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right)$ with $x, y \in \mathbb{R}$.

b) Find a matrix A such that $T_A = T$.

a) Es wilt
$$\begin{pmatrix} x \\ y \end{pmatrix} = y \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix}$$

Also fold:
$$T(\begin{pmatrix} x \\ y \end{pmatrix}) = T(\begin{pmatrix} x \\ y \end{pmatrix}) + \begin{pmatrix} x - y \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2y + x - y \\ 3y + x - y \end{pmatrix} = \begin{pmatrix} x + y \\ x + 2y \end{pmatrix}$$

$$= \begin{pmatrix} 2y + x - y \\ 2y + (2x - 2y) \end{pmatrix} = \begin{pmatrix} x + y \\ 2x + 2y \end{pmatrix}$$

Also wird
$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + y \\ x + 2y \\ 2x \end{pmatrix}$$

Theorem 2.26
$$A = \begin{bmatrix} 1 \\ C \end{bmatrix}$$

$$T(c_1) = T(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$T(e_2) = T(\begin{pmatrix} 0 \\ 1 \end{pmatrix}) = \begin{pmatrix} 0+1 \\ 0+2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$

Also gilt
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix}$$
.

		5. Matrix m	ultiplication (t★★)										
		a) Consider the matrix												
					$A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$.								
		Find $x, y, z \in \mathbb{R}$ such that $A^3 + xA^2 + yA + zI = 0$. Note that both I and 0 are 3×3 matrices in this equation.												
	b) Let A and B be $m \times m$ matrices. Assume that A and B are commuting, i.e. $AB = BA$. Prove that we have $(AB)^k = A^k B^k$ for all $k \in \mathbb{N}$.													
		We say that a square matrix A is <i>nilpotent</i> if there exists $k \in \mathbb{N}$ such that $A^k = 0$. The minimal $k \in \mathbb{N}$ such that $A^k = 0$ is called the <i>nilpotent degree</i> of A .												
		c) Let A be a nilpotent matrix of degree $k \in \mathbb{N}$, and B be a matrix commuting with A . In particular, note that both A and B are square matrices. Is AB nilpotent? If yes, what can we say about the nilpotent degree of AB ?												
		d) Let A be an $m \times m$ nilpotent matrix of degree $k \in \mathbb{N}$. Prove that $(I-A)(I+A+\ldots+A^{k-1})=I$.												
	e) Let T be an $m \times m$ upper triangular matrix. Assume that the diagonal of T consists of 0's only. Prove that $T^m = 0$, i.e. T is nilpotent of degree less or equal to m .													
	Hint: Even if you do not manage to solve a question, you can use its result to tackle subsequent													
		questions.				6)								
C)	Nach	ر)	qi1+	(AB) <u>k</u> =	AL (3k =	- 0Bk	· = (0			
		Also	<u>is</u> 	AB	امدار در	<u> </u>	' -	Myla la	2 // 1	1	heters	اد .		
									enzgrad	noc		ις,		
		Achtung	z, des	Nilpatona	zgsad	muss	nicht	gleic	ih k	sein!				
		Gegen	seispiel:	Sei	A	nilpote	nt n	nit G	rad 5	عام ر	. Д ⁵	$\tilde{S} = 0$.		
			Sci B	$=$ λ^2 .	Dann	اح	A . [3 = A ³	· nilp	of unt	ait G	rad 2		
d)			Distribu										
٥١٫											A .	A 1.	4	
		(L - A)	(] +A	++ Ak-									`)	
					= I	·+ A ↑	. + A l	1 _	- A - ,	4 ²	- A	k		
					= I	- A	_							
					=				A n	loctut	n.t	Grad	k)	