函数的极限

王二民(≥wagermn@126.com)

2019 至 2020 学年

郑州工业应用技术学院·基础教学部

合理推测

例 1. 设函数 $f: \mathbb{R} \to \mathbb{R}$, 且当 $x \neq 1$ 时 $f(x) = \frac{x^2-1}{x-1}$. 你觉得 f(1) 最有可能是多少?

函数的极限 1/26

函数极限

定义(函数极限)

设函数 f 在 a 的某个去心邻域内有定义, 若存在 $A \in \mathbb{R}$, 使得当 x 无限接近且不等于 a 时 f(x) 无限接近于 A, 则称 A 是函数 f(x) 在 x 趋于 a 时的**极限**, 记作

$$\lim_{x\to a} f(x) = A.$$

否则, 称函数 f(x) 在 x 趋于 a 时的极限不存在。

- \bigcirc 定义中 "不等于 a" 的意思是<mark>不考虑</mark>等于 a 的情况,并不意味着等于 a 时就不怎么。
- \bigcirc 定义中,存在 A 时,称表达式 $\lim_{x\to a} f(x)$ 有意义,否则,称表达式 $\lim_{x\to a} f(x)$ 无意义。

极限中的相关说法

表达式 $\lim_{x \to a} f(x) = A$ 读为

- 当 x 趋于 a 时 f(x) 趋于 A.
- 当 x 趋于 a 时 f(x) 的极限为 A.
- 函数 f 在 a 处的极限为 A.

极限 $\lim_{x\to a} f(x)$ 不存在时也可以说

- 当 x 趋于 a 时 f(x) 的极限不存在。
- 函数 f 在 a 处的极限不存在。

函数极限图示

函数极限举例

M 2. 考察函数下列函数在 x = 1 处的极限。

$$f(x) = \frac{x^2 - 1}{x - 1}$$
 $g(x) = x + 1$ $h(x) = \begin{cases} x + 1 & x \neq 1 \\ 1 & x = 1 \end{cases}$

 \bigcirc 极限 $\lim_{x\to a} f(x)$ 与函数 f 在 a 处是否有定义及函数值无关。

基本初等函数中的极限

定理(基本初等函数的连续性)

设基本初等函数 f 在 a 的某个邻域内有定义,则

$$\lim_{x\to a} f(x) = f(a).$$

求基本初等函数的极限举例

- $\lim_{x \to 2} x^2 = 4.$
- $\lim_{x \to 3} e^x = e^3$.
- $\lim_{x \to e} \ln x = \ln e = 1.$
- $\lim_{x \to 1} \arctan x = \arctan 1 = \frac{\pi}{4}.$

极限不存在的例子

例 3. 考察函数 $f(x) = \frac{x}{|x|}$ 在点 0 处的极限。

- 当 x 从 0 的左侧趋于 0 时, f(x) 无限接近于 1.
- 当 x 从 0 的右侧趋于 0 时, f(x) 无限接近于 -1.

左极限、右极限

设存在 $\delta > 0$ 使得函数 f(x) 在 $(a - \delta, a)$ 上有定义。若存在 $A \in \mathbb{R}$,使得当 x 无限接近且小于 a 时 f(x) 无限接近于 A,则 称 A 为函数 f(x) 在 x 趋于 a 时的<mark>左极限</mark>,记作

$$f(\underline{a}^{-}) \stackrel{\text{def}}{=} \lim_{x \to \underline{a}^{-}} f(x) = A. \tag{1}$$

否则, 称函数 f(x) 在 x 趋于 a 时的<mark>左极限</mark>不存在。

设存在 $\delta > 0$ 使得函数 f(x) 在 $(a, a + \delta)$ 上有定义。若存在 $A \in \mathbb{R}$,使得当 x 无限接近且大于 a 时 f(x) 无限接近于 A,则称 A 为函数 f(x) 在 x 趋于 a 时的<mark>右极限</mark>,记作

$$f(\mathbf{a}^+) \stackrel{\text{def}}{=} \lim_{\mathbf{x} \to \mathbf{a}^+} f(\mathbf{x}) = \mathbf{A}. \tag{2}$$

否则, 称函数 f(x) 在 x 趋于 a 时的右极限不存在。

左极限和右极限统称为**单侧极限**。

左右极限举例

左右极限与一般极限的关系

定理

设函数 f 在 a 的某个去心邻域内有定义,则

$$\lim_{x\to a} f(x) = A \iff \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = A.$$

推论

如果极限 $\lim_{\substack{x \to a^- \\ x \to a}} f(x)$ 和 $\lim_{\substack{x \to a^- \\ x \to a}} f(x)$ 都存在且不相等,那么极限 $\lim_{\substack{x \to a}} f(x)$ 不存在。

分段函数极限计算举例

例 4. 设
$$f(x) = \begin{cases} x^2 & x < 0 \\ e^x & x \ge 0 \end{cases}$$
 求极限 $\lim_{x \to 0} f(x)$.

解. 计算可得

$$f(0^{-}) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x^{2} = 0,$$

$$f(0^{+}) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} e^{x} = 1.$$

因为 $f(0^-) \neq f(0^+)$, 所以极限 $\lim_{x\to 0} f(x)$ 不存在。

☑ 极限 $\lim_{x\to 0^-} f(x)$ 只与函数 f 在 $(-\infty,0)$ 上的定义有关,而此时 $f(x) = x^2$, 所以 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} x^2$.

极限不存在的例子

例 5. 考察极限 $\lim_{x\to 0} \frac{1}{x}$ 和 $\lim_{x\to 0} \sin \frac{1}{x}$.

这两个极限都不存在

自变量趋于无穷时的极限

定义(自变量趋于无穷时的极限)

设存在 $M \in \mathbb{R}$ 使得函数 f(x) 在 |x| > M 时有定义,若存在 $A \in \mathbb{R}$ 使得当 |x| 无限增大时 f(x) 无限接近于 A, 则称 A 为 f(x) 在 x 趋于无穷时的极限,记为

$$\lim_{x\to\infty}f(x)=A.$$

否则称函数 f(x) 在 x 趋于无穷时的极限不存在。

 \bigcirc 注意 $x \to \infty$, 指的是 |x| 无限增大,即 x > 0 和 x < 0 两个部分都要考虑。

自变量趋于无穷时的极限举例

例 6. 考虑极限 $\lim_{x\to\infty}\frac{1}{x}$ 和 $\lim_{x\to\infty}\frac{1}{x^2}$.

无穷极限不存在的情况

例 7. 考虑极限 $\lim_{x\to\infty}$ arctan x.

不存在

- 只考虑 x < 0 时,arctan x 无限接近于 $-\frac{\pi}{2}$;
- 只考虑 x > 0 时,arctan x 无限接近于 $\frac{\pi}{2}$.

自变量趋于正、负无穷时的极限

设存在 $M \in \mathbb{R}$ 使得函数 f 在 $(M, +\infty)$ 上有定义,若存在 $A \in \mathbb{R}$ 使得 x 无限增大时 f(x) 无限接近于 A, 则称 A 为 x 趋于正无穷时 f(x) 的极限,记为

$$\lim_{x\to +\infty} f(x) = A.$$

否则,称函数 f(x) 在 x 趋于正无穷时的极限不存在。

设存在 $M \in \mathbb{R}$ 使得函数 f 在 $(-\infty, -M)$ 上有定义,若存在 $A \in \mathbb{R}$ 使得 -x 无限增大时 f(x) 无限接近于 A, 则称 A 为 x 趋于负无穷时 f(x) 的极限,记为

$$\lim_{x\to -\infty} f(x) = A.$$

否则,称函数 f(x) 在 x 趋于负无穷时的极限不存在。

幂函数和指数函数中的无穷极限

例 8. 考察极限 $\lim_{x\to+\infty} x^a$, 其中 $a\in\mathbb{R}$.

例 9. 考察极限 lim_{x→∞} a^x, 其中 a > 0 且 a ≠ 1.

无穷极限之间的关系

定理

设存在 M 使得函数 f 在 |x| > M 时有定义,则

$$\lim_{x\to\infty} f(x) = A \iff \lim_{x\to-\infty} f(x) = \lim_{x\to+\infty} f(x) = A.$$

推论

若极限 $\lim_{x\to -\infty} f(x)$ 和 $\lim_{x\to +\infty} f(x)$ 都存在但不相等,则极限 $\lim_{x\to \infty} f(x)$ 不存在。

水平渐近线

定义(水平渐近线)

称直线 y = A 为曲线 y = f(x) 的水平渐近线,如果 $\lim_{x \to \infty} f(x) = A.$

例 10. 求曲线 $y = \frac{1}{y}$ 的水平渐进线。

解. 因为极限

$$\lim_{x\to\infty}\frac{1}{x}=0,$$

所以曲线 $y = \frac{1}{y}$ 的水平渐进线为 y = 0.

无穷极限不存在的情况

例 11. 考虑极限 $\lim_{x\to\infty} \sin x$ 和 $\lim_{x\to\infty} x$.

函数极限的唯一性

定理

如果极限 $\lim_{x\to a} f(x)$ 存在,那么它的值唯一,即

$$\lim_{\substack{x \to a \\ \lim_{x \to a} f(x) = B}} f(x) = A = B.$$

 \square 定理中的 $x \to a$, 换成 $x \to a^+$, $x \to a^-$, $x \to \infty$, $x \to +\infty$ 或 $x \to -\infty$ 后依然成立。

局部有界性

定理(极限的局部有界性)

如果极限 $\lim_{x\to a} f(x)$ 存在,那么存在 $\delta > 0$ 和 $M \in \mathbb{R}$ 使得 当 $0 < |x - a| < \delta$ 时有 $|f(x)| \le M$.

- \bigcirc 定理结论也可以描述为 "函数 f 在 a 的某个去心邻域内有界"。
- \bigcirc 定理中的 $x \to a$, 换成 $x \to a^+$, $x \to a^-$, $x \to \infty$, $x \to +\infty$ 或 $x \to -\infty$ 后依然有类似的结论。

局部保号性

定理(函数保持极限的符号)

设 $\lim_{x\to a} f(x) = A$, 若 A>0 (或 A<0), 则存在 $\delta>0$,使得 当 $0<|x-a|<\delta$ 时 f(x)>0 (或 f(x)<0).

 \square 定理中的 $x \to a$, 换成 $x \to a^+$, $x \to a^-$, $x \to \infty$, $x \to +\infty$ 或 $x \to -\infty$ 后也有类似的结论。

当极限为 0 时,没有局部保号性。例如

局部保号性

定理(极限保持函数的符号)

设 $\lim_{x \to a} f(x) = A$, 若在 a 的某个去心邻域内恒有 $f(x) \le 0$ (或 $f(x) \ge 0$),则 $A \le 0$ (或 $A \ge 0$).

 \bigcirc 定理中的 $x \to a$, 换成 $x \to a^+$, $x \to a^-$, $x \to \infty$, $x \to +\infty$ 或 $x \to -\infty$ 后也有类似的结论。

定理结论中的非严格不等式不能改为严格不等式。例如设 $f(x) = \frac{x^3}{x}$, 则 f(x) > 0, 但 $\lim_{x \to 0} f(x) = 0$.

作业: 习题 1-3

- **o** 1.
- **2** 2.
- **3**.
- **4**

函数极限的 ε - δ 定义, $x \to a$

定义(函数极限)

设函数 f 在 a 的某个去心邻域内有定义, 若存在常数 A, 使得对于任意 $\epsilon > 0$, 都存在 $\delta > 0$, 使得当 $0 < |x - a| < \delta$ 时有 $|f(x) - A| < \epsilon$, 则称函数 f(x) 在 x 趋于 a 时的极限为 A, 记作

$$\lim_{x\to a} f(x) = A.$$

否则, 称函数 f(x) 在 x 趋于 a 时的极限不存在。

函数极限 $\lim_{x\to a} f(x) = A$ 用逻辑语言可以表示为

$$\forall \; \varepsilon > 0, \exists \; \delta > 0, \big(0 < |x - a| < \delta \implies |f(x) - A| < \varepsilon\big).$$

单侧极限及其理解

函数左极限 $\lim_{x\to a^-} f(x) = A$ 用逻辑语言可以表示为

$$\forall \ \varepsilon > 0, \exists \ \delta > 0, \big((0 < |x - a| < \delta) \land (x < a) \implies |f(x) - A| < \varepsilon \big).$$

函数右极限 $\lim_{x\to a^+} f(x) = A$ 用逻辑语言可以表示为

$$\forall \ \varepsilon > 0, \exists \ \delta > 0, \big((0 < |x - a| < \delta) \land (x > a) \implies |f(x) - A| < \varepsilon \big).$$

函数在 $x \rightarrow a$ 时的极限与在 $x \rightarrow a^-$ 和 $x \rightarrow a^+$ 时的极限的关系,类似于"整体与局部的关系"。

左右极限与一般极限关系的证明图示

定理

设函数 f 在 a 的某个去心邻域内有定义,则

$$\lim_{x\to a} f(x) = A \iff \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = A.$$

函数极限的 ε - δ 定义, $x \to \infty$

定义(函数极限)

设存在 $M \in \mathbb{R}$ 使得函数 f 在 |x| > M 时有定义, 若存在常数 A, 使得对于任意 $\varepsilon > 0$, 都存在 $\delta > 0$, 使得当 $|x| > \delta$ 时有 $|f(x) - A| < \varepsilon$, 则称函数 f(x) 在 x 趋于无穷时的极限为 A, 记作

$$\lim_{x\to\infty}f(x)=A.$$

否则, 称函数 f(x) 在 x 趋于无穷时的极限不存在。

函数极限
$$\lim_{x\to\infty} f(x) = A$$
 用逻辑语言可以表示为

$$\forall \ \varepsilon > 0, \exists \ \delta > 0, (|x| > \delta \implies |f(x) - A| < \varepsilon).$$

自变量趋于正、负无穷时的极限及其理解

函数极限
$$\lim_{x\to +\infty} f(x) = A$$
 用逻辑语言可以表示为

$$\forall \ \varepsilon > 0, \exists \ \delta > 0, \big((|x| > \delta) \land (x > 0) \implies |f(x) - A| < \varepsilon \big).$$

函数右极限 $\lim_{x\to -\infty} f(x) = A$ 用逻辑语言可以表示为

$$\forall \ \varepsilon > 0, \exists \ \delta > 0, \big((|x| > \delta) \land (x < 0) \implies |f(x) - A| < \varepsilon \big).$$

函数在 $x \to \infty$ 时的极限与在 $x \to +\infty$ 和 $x \to -\infty$ 时的极限的关系,类似于"整体与局部的关系"。

极限中的函数的局部性质及其描述

极限过程	对应的局部	备注
$x \rightarrow a$	$(a-\delta,a)\cup(a,a+\delta)$	δ > 0
$x \rightarrow a^{-}$	$(a - \delta, a)$	δ > 0
$x \rightarrow a^{+}$	$(a, a + \delta)$	δ > 0
$\chi \to \infty$	$(-\infty, -\delta) \cup (\delta, +\infty)$	δ > 0
$\chi \to +\infty$	$(\delta, +\infty)$	δ > 0
$X \to -\infty$	$(-\infty, -\delta)$	δ > 0

极限过程中逐点性质的描述,例如,称当 $x \to a$ 时 f(x) > 0,如果存在 $\delta > 0$,使得对任意 $x \in (a - \delta, a) \cup (a, a + \delta)$,都有 f(x) > 0.

极限过程中有界无界的描述

称当 $x \rightarrow a$ 时 f(x) 有界,如果存在 $\delta > 0$ 使得函数 f 在 $x \in (a - \delta, a) \cup (a, a + \delta)$ 上有界。

称当 $x \to a$ 时 f(x) 无界,如果对任意 $\delta > 0$,当函数 f 在 $(a - \delta, a) \cup (a, a + \delta)$ 上有定义时,函数 f 在 $(a - \delta, a) \cup (a, a + \delta)$ 上都无界。

 \bigcirc 这里之所以用"对任意",是因为此时关心的是 a 附近的情况。

不难发现"当 $x \to a$ 时 f(x) 有界"与"当 $x \to a$ 时 f(x) 无界"互为否命题。

极限的局部有界性

定理(极限的局部有界性)

若函数 f(x) 在 $x \to a$ 时的极限存在,则当 $x \to a$ 时函数 f(x) 有界。

 \bigcirc 定理及下面推论中的 $x \to a$, 换成 $x \to a^+$, $x \to a^-$, $x \to \infty$, $x \to +\infty$ 或 $x \to -\infty$ 后依然成立。

推论

若当 $x \rightarrow a$ 时 f(x) 无界,则函数 f(x) 在 $x \rightarrow a$ 时的极限不存在。

极限的局部保号性

定理(极限的局部保号性)

设 $\lim_{x \to a} f(x) = A$, 若 A > 0(或 A < 0), 则当 $x \to a$ 时 f(x) > 0(或 f(x) < 0)。

 \bigcirc 定理中的 $x \to a$, 换成 $x \to a^+$, $x \to a^-$, $x \to \infty$, $x \to +\infty$ 或 $x \to -\infty$ 后依然成立。

推论

设 $\lim_{x \to a} f(x) = A$, 若当 $x \to a$ 时 $f(x) \le 0$ (或 $f(x) \ge 0$), 则 $A \le 0$ (或 $A \ge 0$)。

 \bigcirc 推论中的 $x \to a$, 换成 $x \to a^+$, $x \to a^-$, $x \to \infty$, $x \to +\infty$ 或 $x \to -\infty$ 后依然成立。

海涅原理

定理(海涅原理)

极限 $\lim_{x\to a} f(x) = A$ 的充要条件是,对于任意取值异于 a 且收敛到 a 的数列 $\{x_n\}$, 数列 $\{f(x_n)\}$ 都收敛到 A.

例 12. 求极限 $\lim_{n\to\infty} \sin \frac{1}{n}$.

解. 因为极限 $\lim_{x\to 0} \sin x = 0$, 极限 $\lim_{n\to \infty} \frac{1}{n} = 0$ 且 $\frac{1}{n} \neq 0$, 所以由海涅原理可知 $\lim_{n\to \infty} \sin \frac{1}{n} = 0$.

有界函数极限不存在的判断

推论

如果存在两个取值异于 a 且收敛到 a 的数列 $\{x_n\}$, 使得对应的数列 $\{f(x_n)\}$ 收敛到不同的数,则极限 $\lim_{x\to a}$ 不存在。

例 13. 考察极限 $\lim_{x\to 0} \sin \frac{1}{x}$ 的存在性。

不存在

解. 记
$$x_n = \frac{1}{n\pi}$$
, 则 $x_n \neq 0$ 且 $\lim_{n \to \infty} x_n = 0$, 记 $y_n = \frac{1}{2n\pi + \frac{\pi}{2}}$, 则 $y_n \neq 0$ 且 $\lim_{n \to \infty} y_n = 0$, 从而

$$\lim_{n \to \infty} \sin \frac{1}{x_n} = \lim_{n \to \infty} 0 = 0 \qquad \lim_{n \to \infty} \sin \frac{1}{x_n} = \lim_{n \to \infty} 1 = 1$$

所以极限 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在。

极限不存在情况的分类

依据极限的局部有界性,可以把 $x \rightarrow a$ 时,极限不存在的情况分为两类

- 当 $x \to a$ 时函数 f(x) 无界
- 当 $x \to a$ 时函数 f(x) 有界,但存在两个取值异于 a 且收敛到 a 的数列 $\{x_n\}$,使得对应的数列 $\{f(x_n)\}$ 收敛到不同的数。
- ○其它极限过程下也有类似的结果。

水平渐近线

定义(水平渐近线)

称直线 y = A 为曲线 y = f(x) 的水平渐近线,如果 $\lim_{x \to +\infty} f(x) = A \quad \vec{\mathbf{x}} \quad \lim_{x \to -\infty} f(x) = A.$

例 14. 求曲线 y = arctan x 的水平渐进线。

解. 因为极限 $\lim_{x\to -\infty}$ arctan $x=-\frac{\pi}{2}$, $\lim_{x\to +\infty}$ arctan $x=\frac{\pi}{2}$, 所以曲线 $y=\arctan x$ 有两条水平渐进线,分别为 $y=-\frac{\pi}{2}$ 和 $y=\frac{\pi}{2}$.

例 15. 求曲线 $y = e^x$ 的水平渐进线。

解. 因为极限 $\lim_{x\to -\infty} e^x = 0$, 极限 $\lim_{x\to +\infty} e^x$ 不存在,所以曲线 $y = e^x$ 只有一条水平渐进线,为 y = 0.