

M61A : Intégration Probabilités Louis Loiseau

L3 Mathématiques 2020-2021

Feuille d'exercice n°2 Solutions des exercices

Rappel de cours:

Une application $f:(\Omega,\mathcal{F})\longrightarrow (\Omega',\mathcal{F}')$ est mesurable si $\forall A\in\mathcal{F}',\ f^{-1}(A)\in\mathcal{F}$.

Exercice 1. Soit $(\Omega, \mathcal{F}, \mu)$ un espace mesuré et soit $f : \Omega \longrightarrow \mathbf{R}$ une fonction mesurable. Ici, on a donc $(\Omega', \mathcal{F}') = (\mathbf{R}, \mathcal{B}(\mathbf{R}))$

1) Soit $g: \mathbf{R} \longrightarrow \mathbf{R}$ continue. Montrons que $g \circ f$ est mesurable.

Pour $A \in \mathcal{B}(\mathbf{R})$:

$$(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$$

Si A est ouvert, alors $g^{-1}(A)$ aussi par continuité. Donc $f^{-1}(g^{-1}(A)) \in \mathscr{F}$ car f est mesurable et car $g^{-1}(A) \in \mathscr{B}(\mathbf{R})$.

On a montré que les $(g \circ f)^{-1}(A)$ avec A ouvert dans \mathbf{R} appartiennent à \mathscr{F} . Or les ouverts de \mathbf{R} engendrent \mathscr{B} donc les $(g \circ f)^{-1}(A)$ engendrent la tribu $(g \circ f)^{-1}(\mathscr{B})$. Donc

$$(g\circ f)^{-1}(\mathcal{B})\subset\mathcal{F}$$

Autre méthode : Une fonction continue est en particulier mesurable, par le même argument. Or la composée d'applications mesurables est mesurable.

- a) Si g(x) = |x| ou $g(x) = x^2$, par continuité sur **R**, elles sont aussi mesurables d'après le point précédent.
- b) Posons g=1/f. On remarque que g n'est pas définie sur Ω tout entier. En effet, elle n'est pas définie sur les points où f s'annule. (ie: g est définie sur $\Omega \setminus f^{-1}(\{0\}) \equiv \Omega'$)

Il faut donc définir une tribu sur Ω' .

Comme $E \in \mathcal{F}$ (car $\{0\} \in \mathcal{B}$ et f mesurable), alors

$$\mathscr{F}' = \{A \setminus E \mid A \in \mathscr{F}\}\$$

est une tribu sur Ω' .

La fonction $x \mapsto 1/x$ est continue sur $\mathbf{R}^* f : (\Omega', \mathscr{F}') \longrightarrow \mathbf{R}^*$ est mesurable; donc 1/f est mesurable de (Ω', \mathscr{F}') dans \mathbf{R} .

Autre point de vue : On prolonge arbitrairement 1/f à Ω en posant $1/f(\omega)=0$ si $\omega\in f^{-1}\{0\}$ (par exemple)

Alors 1/f ainsi prolongée est mesurable de (Ω, \mathcal{F}) dans **R**.

Exercice 2. Soit *X* une variable aléatoire.

$$X: (\Omega, \mathcal{F}, \mathbf{P}) \longrightarrow (\mathbf{R}, \mathcal{B})$$
 mesurable.

On suppose X de loi uniforme sur]0, 1[, c'est-à-dire

$$X: (\Omega, \mathscr{F}, \mathbf{P}) \longrightarrow]0,1[$$

avec $P(X^{-1}(A)) = \lambda(A)$ pour $A \in]0,1[$

1) Soit $Y = \tan(\pi(X - 1/2))$. Alors $Y = f(X) = f \circ X$, où

$$f:]0,1[\longrightarrow \mathbf{R}$$

$$x \longrightarrow f(x) = \tan\left(\underbrace{\pi(x-1/2)}_{x}\right)$$

 $Y:(\Omega,\mathcal{F},\mathbf{P})\longrightarrow (\mathbf{R},\mathcal{B})$ mesurable d'après le premier exercice.

On cherche $P(Y^{-1}(A))$ pour $A \in \mathcal{B}$. Pour A =]a, b]:

$$Y^{-1}(]a,b]) = (f \circ X)^{-1}(]a,b]) = X^{-1}(f^{-1}(]a,b])$$

Or, $f(x) = y \iff \pi(x - 1/2) = \arctan(y) \iff x = \frac{1}{\pi}\arctan(y) + \frac{1}{2}$ Donc

$$Y^{-1}([a,b]) = X^{-1}\left(\left[\frac{\arctan a}{\pi} + \frac{1}{2}, \frac{\arctan b}{\pi} + \frac{1}{2}\right]\right)$$

Ou encore

$$\mathbf{P}\big(Y^{-1}([a,b])\big) = \lambda\left(\left[\frac{\arctan a}{\pi} + \frac{1}{2}, \frac{\arctan b}{\pi} + \frac{1}{2}\right]\right) = \frac{1}{\pi}(\arctan b - \arctan a) = F(b) - F(a)$$

Donc la loi de *Y* est égale à la mesure associée à la fonction $F(x) = \frac{arctanx}{\pi}$

2) $Z = g \circ X$, où

$$g: \begin{cases}]0,1[\longrightarrow \mathbf{R} \\ x \mapsto \ln \frac{1}{x}] \end{cases}$$

Alors $Z: (\Omega, \mathcal{F}, \mathbf{P}) \longrightarrow (\mathbf{R}, \mathcal{B})$ mesurable d'après le premier exercice. Z est à valeurs dans $]0, +\infty[$ donc sa loi est une mesure sur $]0, +\infty[$.

$$Z^{-1}(]a,b]) = (g \circ X)^{-1}(]a,b]) = X^{-1}(g^{-1}(]a,b])$$

Soit $x \in]0,1]$ et $y \in]0,+\infty[$. Or $g(x)=y \iff x=e^{-y}$ Donc

$$Z^{-1}([a,b]) = X^{-1}(g^{-1}([a,b])) = X^{-1}([e^{-b},e^{-a}])$$

D'où

$$\mathbf{P}(Z^{-1}(|a,b|)) = \lambda([e^{-b}, e^{-a}]) = e^{-a} - e^{-b} = G(b) - G(a)$$

Où $G(x) = -e^{-x}$ pour $x \in]0, +\infty[$.

La loi de Z est la mesure sur $]0, +\infty[$ associée à la fonction G, ou encore la mesure sur \mathbb{R} associée à la fonction $\tilde{G}: \mathbb{R} \longrightarrow \mathbb{R}$ définie par G(x) sur $]0, +\infty[$ et par 0 sur $]-\infty, 0]$.

Exercice 3. Soit la variable aléatoire réelle $X:\Omega \longrightarrow \mathbb{R}$ et sa fonction de répartition

$$F(x) = \mathbf{P}(X^{-1}(]-\infty,x]) \equiv \mathbf{P}(X \in]-\infty,x]).$$

Rappels de cours:

- F est croissante
- $-\lim_{-\infty} F(x) = 0 \text{ et } \lim_{+\infty} F(x) = 1$
- F est continue à droite en tout x (ie : $\lim_{y>x} F(y) = F(x)$) et est continue en x si et seulement si $\mathbf{P}(X=x) = 0$.

Pour $u \in]0,1[$, on pose

$$G(u) = \inf\{x \in \mathbf{R} \mid F(x) \ge u\}$$

Et G(u) = 0 sinon.

1) Comme $\lim_{\infty} F = 0$ et $\lim_{\infty} = 1$, on a que $\{x \in \mathbf{R} \mid F(x) \ge u\}$ est non vide et minoré par $u \in]0,1[$.

De plus, la borne inférieure de l'ensemble est atteinte d'après le fait précédent. C'est donc un minimum, car F est continue à droite de l'inf. Donc G(u) appartient à l'ensemble et on a $F(G(u)) \ge u$.

De plus, si x < G(u), x n'est pas dans l'ensemble, donc F(x) < u.

Si $x \ge G(u)$, on na $F(x) \ge F(G(u)) \ge u$. Donc

$$[G(u), +\infty[\subset \{x \in \mathbf{R} \mid F(x) \ge u\}]$$

Puisque G(u) est l'inf l'autre inclusion est évidente, donc

$$[G(u), +\infty[= \{x \in \mathbf{R} \mid F(x) \ge u\}]$$

2) Soit U une variable aléatoire de loi uniforme sur [0,1]. On pose $Y = G \circ U : \Omega \longrightarrow \mathbb{R}$. Par croissance de F, on a pour $u' \ge u$

$$\{x \in \mathbf{R} \mid F(x) \ge u'\} \subset \{x \in \mathbf{R} \mid F(x) \ge u\}$$

Donc $G(u') \ge G(u)$. ie : G est croissante.

Par suite, $G:]0,1[\longrightarrow \mathbb{R}$ est mesurable. En effet, l'image inverse d'un intervalle par une application croissante est un intervalle. Comme les intervalles engendrent \mathcal{B} , on obtient $G^{-1}(\mathcal{B}) \subset \mathcal{B}$.

Comme G et U sont mesurables, $Y = G \circ U$ aussi.

NB. Pour montrer que *G* est croissante, on n'a pas besoin que *F* le soit.

3) Pour montrer que *X* et *Y* ont même loi, il suffit de montrer qu'elles ont la même fonction de répartition.

$$\mathbf{P}(Y \le x) \equiv \mathbf{P}(Y^{-1}(] - \infty, x])) = \mathbf{P}((G \circ U)^{-1}(]\infty, x])) = 1 - \mathbf{P}(U^{-1}(G^{-1}(]x, +\infty[)))$$

On va montrer que

$$G^{-1}(]x, +\infty[) =] F(x), +\infty[$$

— $G^{-1}(]x, +\infty[) \subset]F(x), +\infty[$ Soit $u \in G^{-1}(]x, +\infty[)$. Montrons que u > F(x). Raisonnons pas l'absurde. On suppose que F(x) > u.

On sait d'après (1) que $\{x \in \mathbf{R} \mid F(x) \ge u\} = [G(u), +\infty[$. Donc

$$F(x) \ge u \Longrightarrow x \ge G(u)$$

Ce qui est en contradiction avec $u \in G^{-1}(]x, +\infty[)$

— $G^{-1}(]x, +\infty[) \supset]F(x), +\infty[$ Soit u > F(x). On a toujours d'après (1) que $F(G(u)) \ge u$ et donc F(G(u)) > F(x). La croissance 1 de F entraı̂ne que G(u) > x Ainsi $u \in G^{-1}(]x, +\infty[)$

Par suite,

$$\begin{aligned} \mathbf{P}(Y \leq x) &= 1 - \mathbf{P} \big(U^{-1}(G^{-1}(]x, +\infty)) \big) \\ &= 1 - \mathbf{P} \big(U \in]F(x), +\infty] \big) \\ &= \mathbf{P} \big(U \in] - \infty, F(x)] \big) \\ &= \mathbf{P} \big(U \in [0, F(x)] \big) \text{ car } U \text{ de loi uniforme sur } [0, 1] \\ &= \lambda([0, F(x)]) \text{ car } 0 \leq F \leq 1 \text{ et car la loi de } U \text{ est la mesure uniforme sur } [0, 1] \\ &= F(x) \end{aligned}$$

D'où $\mathbf{P}(Y \leq x) = F(x)$.

Exercice 4.

Exercice 5. Dans $(\Omega, \mathcal{F}, \mathbf{P})$, on dispose d'évènements indépendants $A_1, \dots A_n \in \mathcal{F}$ *indépendants* et tous de probabilité $p \in [0, 1]$. Est-il possible que

$$\mathbf{P}\left(\bigcup_{i=1}^n A_i\right) = 1 ?$$

Rappel de cours : $A_1, ..., A_n$ indépendants signifie que pour tout $B_1, ..., B_k \in \{A_1, ..., A_n\}$ distincts, on a $\mathbf{P}(B_1 \cap ... B_k) = \mathbf{P}(B_1) \cdots \mathbf{P}(B_k)$

Crible de Poincaré : Pour tout $A_1, ..., A_n \in \mathcal{F}$

$$\mathbf{P}(A_1 \cap \dots \cap A_n) = \mathbf{P}(A) + \dots + P(A_n)$$

$$- \mathbf{P}(A_1 \cap A_2) - \dots - \mathbf{P}(A_{n-1} \cap A_n)$$

$$+ \mathbf{P}(A_1 \cap A_2 \cap A_3) + \dots + \mathbf{P}(A_{n-2} \cap A_{n-1} \cap A_n) - \dots$$

$$+ (-1)^n \mathbf{P}(A_1 \cap A_2 \cap \dots \cap A_n)$$

$$= \sum_{k=1}^n (-1)k - 1) \sum_{1 \le i_1 \le i_2 \le \dots i_k \le n} \mathbf{P}\left(\bigcap_{j=1}^k A_{i_j}\right)$$

Autre méthode:

$$\mathbf{P}\left(\bigcup_{k=1}^{n} A_{k}\right) = 1 - \mathbf{P}\left(\Omega \setminus \bigcup_{k=1}^{n} A_{k}\right)$$
$$= 1 - \mathbf{P}\left(\bigcap_{k=1}^{n} \Omega \setminus A_{k}\right)$$

^{1.} pas forcément stricte.

Comme $A_1,...,A_n$ les événements contraires aussi. Autrement dit $\Omega \setminus A_1,...,\Omega \setminus A_n$ sont indépendants et donc

$$\mathbf{P}(\bigcup A_k) = 1 - \prod \mathbf{P}(\Omega \setminus A_k) = 1 - \prod (1 - p) = 1 - (1 - p)^n$$

Si $p \ne 1$, on a $\mathbf{P}(\bigcup A_k) \ne 1$. Si p = 1, on a $\mathbf{P}(\bigcup A_k) = 1$, de plus les A_k sont indépendants.

Remarque : les évènements $A_1, ..., A_k$ sont indépendants si et seulement si les tribus engendrés $\sigma(A_1), ..., \sigma(A_n)$ le sont :

Si $\mathscr{C}, \mathscr{D} \subset \mathscr{F}$, si $\mathscr{C} \perp \mathscr{D}$ et si \mathscr{C} et \mathscr{D} sont chacune stables par intersection finie, alors $\sigma(\mathscr{C}) \perp \sigma(\mathscr{D})$.

Exercice 6.

Exercice 7.

Exercice 8 (Lemme de BOREL-CANTELLI). On va appliquer la loi 0-1 de KOLMOGOROV. Ici, on a **P**($\limsup A_n$) = 0 ou 1, car $\limsup A_n$ sont indépendants.

Supposons que $\mathbf{P}(\limsup A_n) = 0$. La limsup est une intersection décroissante des $B_n = \bigcup_{k \ge n} A_k$. Donc $\mathbf{P}(\limsup A_n) = \lim_n \mathbf{P}(B_n)$. Or :

$$\begin{split} \mathbf{P}(B_n) &= 1 - \mathbf{P}(\Omega \setminus B_n) \\ &= 1 - \mathbf{P}(\bigcap_{k \ge n} \Omega \setminus A_k) \\ &= 1 - \prod_{k \ge n} \mathbf{P}(\Omega \setminus A_k) \\ &= 1 - \prod (1 - \mathbf{P}(A_k)) \end{split}$$

Comme $\lim \mathbf{P} \longrightarrow (B_n) = 0$, on a $\prod (1 - \mathbf{P}(A_k) \longrightarrow 1$ donc $P'A_k) \longrightarrow 0$, de plus en prenant le log, on obtient

$$\sum_{k \ge n} \log(1 - P(A_k)) \longrightarrow \log 1 = 0$$

Donc $\sum_{\mathbf{N}^*} \log(1 - \mathbf{P}(A_k))$ converge. Or $\log(1 - n) \sim u$ en 0.Donc $\sum_k \mathbf{P}(A_k)$ est convergente. Contradiction.

Exercice 9.

Exercice 10.

Exercice 11.

Exercice 12.

Exercice 13.

Exercice 14.

Exercice 15.

Exercice 16.

Exercice 17.

Exercice 18.

- Exercice 19.
- Exercice 20.
- Exercice 21.
- Exercice 22.
- Exercice 23.
- Exercice 24.
- Exercice 25.
- Exercice 26.