Álgebra I. Taller de PARI/GP Universidad de El Salvador, 07/05/2019

- 0. Descargue e instale PARI/GP de su página http://pari.math.u-bordeaux.fr/
- 1. Encuentre todos los cuadrados módulo 13. Exprese cada uno de estos como $[2]_{13}^a$ para algún a.
- 2. Calcule las sumas $\sum_{1 \le i \le p-1} \left(\frac{i}{p}\right)$ para diferentes primos impares p. Explique y demuestre el resultado.
- 3. Verifique para varios m y n que si m es par, $m \mid n$ y m < n, entonces $\phi(m) < \phi(n)$. Trate de probarlo.
- 4. Calcule los primeros términos la serie inversa a $1-x-x^2$ en el anillo de las series formales $\mathbb{Z}[[x]]$. ¿Cuál es el patrón? Demuestre la fórmula general.
- 5. Para diferentes primos p, factorice el polinomio ciclotómico $\Phi_{p^k} \in \mathbb{Z}[x]$ en $\mathbb{F}_p[x]$. ¿Cuál es el patrón? Demuestre la fórmula general. (Véase la hoja de ejercicios 10.)
- 6. Factorice el octavo polinomio ciclotómico $\Phi_8 = x^4 + 1 \in \mathbb{Z}[x]$ módulo diferentes primos p. ¿Cuál es el primer primo p tal que Φ_8 es el producto de cuatro polinomios lineales en $\mathbb{F}_p[x]$? ¿Cuál sería el siguiente?
- 7. Verifique para diferentes primos p que el polinomio $x^p x + 1$ es irreducible en $\mathbb{F}_p[x]$.
- 8. Factorice el polinomio $x^3 + nx + 2$ en $\mathbb{Z}[x]$ para $n = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$. ¿Para cuáles de estos n el polinomio es reducible? Demuestre el resultado general. (Véase la hoja de ejercicios 10.)
- 9. Compruebe que el polinomio $x^3 + 8x^2 + 6$ es irreducible en $\mathbb{Z}[x]$. Factorice este polinomio módulo diferentes primos p. ¿Cuál es el primer primo tal que $x^3 + 8x^2 + 6$ queda irreducible en $\mathbb{F}_p[x]$? (Véase la hoja de ejercicios 10.)
- 10. Factorice el polinomio $x^9 x$ en $\mathbb{F}_3[x]$. Encuentre entre los factores un polinomio cuadrático irreducible $f \in \mathbb{F}_3[x]$. Encuentre todos los elementos α en el cuerpo cociente $k := \mathbb{F}_3[x]/(f)$ con la propiedad de que las potencias

$$\alpha$$
, α^2 , α^3 , α^4 , α^5 , α^6 , α^7 , α^8

representan todos los elementos no nulos en k.

- 11. Con ayuda de PARI/GP, encuentre un isomorfismo $\mathbb{F}_3[x]/(x^2+x+2) \cong \mathbb{F}_3[x]/(x^2+1)$.
- 12. Para diferentes números naturales a y b, calcule $mcd(x^a-1,x^b-1)$ en el cuerpo $\mathbb{Q}[x]$. En general, demuestre la fórmula para

$$mcd(x^a - 1, x^b - 1)$$
 en $k[x]$.

donde k es cualquier cuerpo.

- 13. Consideremos el cuerpo $\mathbb{Q}(\sqrt{3}) \cong \mathbb{Q}[x]/(x^2-3)$. Para el número $\alpha = 2 + \sqrt{3}$, calcule $\alpha^2, \alpha^3, \alpha^4, \alpha^5$.
- 14. Consideremos el cuerpo $\mathbb{Q}[x]/(\Phi_{23})$. Denotemos por ζ la imagen de x en el cociente. Verifique que el número

$$(1+\zeta^2+\zeta^4+\zeta^5+\zeta^6+\zeta^{10}+\zeta^{11})\,(1+\zeta+\zeta^5+\zeta^6+\zeta^7+\zeta^9+\zeta^{11})$$

tiene forma

$$2 \cdot \sum_{0 \le i \le 21} a_i \zeta^i$$
, donde $a_i \in \mathbb{Z}$.