Roll No.

CBB-2945-T M C A Second Semester (End Semester) Examination, 2019

COMPUTER SCIENCE AND APPLICATION

(Data Structure)

Time: Three Hours]

[Maximum Marks : 60

(#1

Note: - Attempt all questions.

3

SECTION-A

(Objective Type Questions) 10×1=10

Note: - Choose the correct option.

- 1. $f(n) = \Theta(g(n))$ if and only if:
- (a) g (n) G \leq f (n) \leq C₂ g (n)
 - (b) $g(n) \leq C_2 f(n)$
 - (c) Both (a) and (b)
 - (d) None of above
- 2. Time complexity of algorithm depends on :
 - (A) RAM size
 - (B) CPU speed
 - (C) Processor
 - _(D) All of above
- 3. Reverse string and CPU scheduling uses:
 - (a) Stack, stack
 - (b) Queue, queue

- (c) Stack, queue
- (d) Queue, stack
- 4. Number of pointers in DLL are:
 - (a) 4
- __ (b) 2
 - (c) 3
 - (d) 5
- 5. Heap is implemented by :
 - (A) DEQUE
 - (B) Priority Queue
 - (C) Circular Queue
- (D) All of above
- 6. Operater use in circular queue is:
 - (a) '
 - _ (b) %
 - (c) +
 - (d) -

Height balanced tree was developed by:

- Danish Ritche (a)
- Bill Gate (b)
- Adelson Velenski and Landis -(c)
 - All of above (d)

Greatest element in BSI is in:

- Left most (a)
- Right most (b)
 - Left right most (c)
 - Right most left (d)

Time complexity for binary search is:

- 一 (a) $0 (\log_2 n)$
 - (b) $0 (n^2)$
 - (c) n
 - 0 (n4). (d)

10. Which only is valid for adjacecy matrix elements:

$$-(a) \quad aij = \int_0^1 \frac{if \ Ti \ Tj}{o \ otherwise}$$

(b)
$$aij = \int_{0}^{1} if \ anedge$$

(c)
$$aij = \int_0^{-1} if \ Ti \ to \ Tj$$

$$otherwise$$

(d)
$$aij = \int_{1}^{0} \frac{if \ Ti \ to \ Tj}{otherwise}$$

SECTION-B

(Short Answer Type Questions) 4×5=20

Note: Attempt any four questions. All questios carry equal marks.

CBB-2945-T

7

(1) Construct sparse matrix and find its transpose.

$$A = \begin{bmatrix} 0 & 0. & 0 & 1 \\ 3 & 0 & 0 & 9 \\ 5 & 2 & 0 & 0 \\ 0 & 15 & 0 & 0 \\ 4 & 3 & 0 & 7 \end{bmatrix}$$

Show all steps.

- Write function for following operation in SLL:
 - (a) Insert at end
 - (b) Delete afternode
- Explain DEQUE model with diagram.
 - 4. Construct Binarry tree using.

$$(A+B)^* (C/D) + E^*F$$

5. Given A [10] = {3, 9, 2, 5, 17, 11, 7, 13, 10, 6}

Key = 7, 13

Apply binary search and show all steps.

Construct BST and find inorder and preorder of :

9, 25, 3, 2, 11, 5, 13, 4, 6, 22

SECTION - C

(Long Answer Type Questions) 3×10=30

Note: Attempt any three questions. All questios carry equal marks.

- Explain Asymptotic notations with example.
- How to represent polynomial in SLL? Support your answer with an example. Write an algorithm for addition of two polynomial P₁ (x) and P₂ (x).
 - (a) Convert infix to postfix using stackA + (B*C (D/E ↑ F) * G) * H
 - (b) Ackerman function defined as:

A
$$(m, n) = n+1$$
 if $m=0$
A $(m-1, 1)$ if $m \ne 0$ but $n = 0$
A $(m-1, A (m, n-1)$ if $m \ne 0$ and $n \ne 0$
Find A $(1, 3)$ and a $(2, 3)$

[P. T. O.

- (a) Explain AVL tree with example. Write various rotation in AVL tree.
 - (b) Find the minimum number of nodes in AVL tree with height 8.
 - 5. Suppose a weight group G is maintained in memory by a node DATA and c weight matrix W as follows.

DATA :
$$V_{1}$$
, V_{2} , V_{3} , V_{4}

$$W = \begin{bmatrix} 0 & 0 & 3 & 0 \\ 5 & 0 & 1 & 7 \\ 2 & 0 & 0 & 4 \\ 0 & 6 & 9 & 0 \end{bmatrix}$$

Draw graph G and find shortest path from V_1 to all nodes using dijkstra's algorithm.