Assignment-II (MA-101): Differential and Integral Calculus of Single Variable

- 1. State and Prove Taylor's theorem with Lagrange's form of remainder.
- **2.** The function $f(x) = \sin(x)$ is approximated by Taylor's polynomial of degree three about the point x = 0.
- **3.** Obtain the fourth degree Taylor's polynomial to $f(x) = e^{2x}$ about x = 0.
- **4.** Obtain the Taylor's series expansion of the following
- (a) a^x (b) $\log(1-x)$.
- **5.** Calculate the value of f(11/10) where $f(x) = x^3 + 3x^2 + 15x 10$ using Taylor's series.
- **6.** Find the Curvature and radius of curvature of the following curves.
- (i) $x^2 + y^2 = a^2$.
- (ii) $x = a(t \sin(t))$ and $y = a(1 \cos(t))$.
- 7. Trace the following curves.

(i)
$$y = c\cos(x/c)$$
 (ii) $x = 2(\theta + \sin \theta), y = 2(1 - \cos \theta)$ (iii) $r = 3(1 + \cos \theta)$ (iv) $r = 2\cos 2\theta$ (v) $(x^2 + y^2)^2 = 4(x^2 - y^2)$

- **8.** Find the length of the curve $y = (\frac{x}{2})^2$ from x = 0 to x = 2.
- **9.** Find the arc length of the loop of the curve $9ay^2 = (x 2a)(x 5a)^2$.
- **10.** Find the surface area of the solid generated by revolving the part of the lemniscate $r^2 = 2a^2\cos(2\theta)$, $0 \le \theta \le \pi/4$, about the x axis.
- 11. The area of cardioid $r=a(1+\cos\theta)$ includes between $\theta=-\pi/2$ and $\theta=\pi/2$ is rotated about the line $\theta=\pi/2$. Show that volume generated is $2(2+5\pi/8)a^3\pi$ is rotated about the line $\theta=\pi/2$.
- 12. Find the area of the surface generated by revolving about x axis the top half of cardioid $r = 1 + \cos(\theta)$.
- 13. Find the length of the curve $x=a(t-\sin(t)), y=a(1-\cos(t))$ from t=0 to $t=2\pi$.
- **14.** Find the length of the polar curve $r = \cos \theta + \sin \theta$.
- 15. Find the volume of the reel shaped solid formed by the revolution of the part of the parabola $y^2 = 4ax$ cut off by the latus rectum about y-axis.