Fakultät für Technik Studiengang "Elektrotechnik/Informationstechnik"

Klausur im Fach Signale und Systeme 04.02.2008

Prüfer: Prof. Dr.-Ing. Norbert Höptner

Hilfsmittel: Vorlesungsskripten, Mitschriften (incl. gelöster Übungsaufgaben), Fachbücher, Taschenrechner (nicht programmierbar, nicht grafikfähig)

1. Aufgabe (10 Punkte)

Ist das System y(t) = d[x(t)] / dt

- a) linear?
- b) zeitinvariant?
- c) kausal?
- d) stabil? Bestimmen Sie dazu die Systemfunktion H(s)=Y(s)/X(s)!

Begründen Sie Ihre Antworten (wenn möglich, auch mathematisch)!

2. Aufgabe (15 Punkte)

Ein analoges Videosignal wird mit fa = 13,5 MHz abgetastet.

- a) Welche maximale Signalkomponente Fsmax darf das Videosignal bei Einhaltung des Abtasttheorems beinhalten, wenn zwischen Fsmax und Fa/2 eine Bandlücke von 1.75 MHz sein soll?
- b) Entsteht für das Videosignal nach a) bei einer Abtastfrequenz von 10 MHz ein Aliasing-Fehler? Begründen Sie Ihre Antwort!
- c) Sie wollen bei einer Spektralanalyse (fa = 13,5 MHz) mithilfe der Diskreten Fouriertransformation (DFT) eine Frequenzauflösung Δf_{DFT} von 10 kHz erreichen. Wieviele Abtastwerte nDFT müssen Sie dann mindestens für die DFT verwenden?
- d) Für die Spektralanalyse-Genauigkeit nach c) nutzen Sie nun die Fast-Fourier-Transformation (FFT). Wieviele Abtastwerte n_{FFT} müssen Sie nun dazugehörige mindestens verwenden und wie lautet die Frequenzauflösung Δf_{FFT} ?

3. Aufgabe (20 Punkte)

Ein digitales System besitzt ein konjugiert komplexes Polpaar bei

- $Z_{\infty} = 0.5 \pm i0.2$.
 - a) Bestimmen Sie die Übertragungsfunktion H(z) in Polynomdarstellung.
 - b) Ist das System stabil?
 - c) Geben Sie die Direktstruktur des entsprechenden digitalen Filters an und bestimmen Sie die darin enthaltenen Koeffizienten.
 - d) Bestimmen Sie die Impulsantwort h(n) für n=0,1,2,3 (Tabelle!).
 - e) Auf das System H(z) werde die Eingangsfolge $x(n)=\{1,1,1\}$, sonst 0, gegeben. Bestimmen Sie die Antwortfolge y(n) n=0,1,2,3,4,5 (Tabelle!).

4. Aufgabe (20 Punkte)

Es sei ein LTI-System mit der Impulsantwort h(t) gegeben.

- a) Skizzieren Sie die Systemautokorrelierte φ_{hh} (τ) unter genauer Angabe wichtiger Eckpunkte der AKF.
- b) Auf das System werde weißes Rauschen mit der (zweiseitigen) Rauschleistungsdichte $4*N_0/2$ gegeben. Geben Sie die AKF φ_{yy} (au) des System-Ausgangsprozesses in Abhängigkeit von φ_{hh} (τ) an.
- c) Bestimmen Sie die Energie E_v des Ausgangsprozesses.