

Mobile UAV Landing Pad

Colter Assman, Julian Brackins, Samuel Carroll, Faculty Advisor: Hafiza Farzami, Charles Parsons, Alex Wulff

Sponsor:

Rockwell Collins Dr. Jeff McGough

Mission

Develop a system for autonomously landing a UAV on a ground vehicle.

Potential usages include assisting search and rescue teams with collecting data in areas unsafe for human interactions, such as forest fires and radioactive zones.

Craft Landing

OpenCV

- Custom ROS Package named cv_tracker. Compares observed size of the landing pad with the known size to determine distance.
- Tracks 3 colored circles on landing pad to determine distance and orientation.

ar_track_alvar

- Can create tags of any size and resolution.
- Tracks the pose of individual AR tags.

Path Planning

Wavefront Algorithm for UGV navigation.

Point cloud data for detecting nearby obstacles.

UGV

Frame

- Rectangle design to house the power supply and computational container.
- Built from 6061-T Aluminium, 22"x44"
- Weight of frame: 65 lb
 - Rated to hold 200 lb.

Steering System

• Golf-cart's Ackerman steering system and front suspension

Custom API

API Designed for ease of subscription for topics on custom made nodes.

Assists design complexity for UGV and UAV. Same API handles both environments for a uniform code design.

UAV

Mavros:

Communication node for ROS. Wirelessly communicates with quad copter to send waypoints for navigation.

Sensing and Computing

Cameras GPS Landing Pad Odroid XU-3 Lite Odroid XU Roboteq 2130 Motor Controller

Libraries

ROS OpenCV ar_track_alvar Freenect PCL Sensor Kinect Sophus Openni Stereo_slam Eventemitter2