

# **Intel® Celeron® Mobile Processor Dual-Core on 45-nm Process**

### **Datasheet**

For Platforms Based on Mobile Intel® 4 Series Express Chipset Family September 2009

Document Number: 321111-003



INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.

Enhanced Intel SpeedStep® Technology for specified units of this processor is available. See the Processor Spec Finder at http://processorfinder.intel.com or contact your Intel representative for more information.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

This device is protected by U.S. patent numbers 5,315,448 and 6,516,132, and other intellectual property rights. The use of Macrovision's copy protection technology in the device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.

Intel, Pentium, Intel Core, Intel Core 2, Intel SpeedStep and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

\*Other names and brands may be claimed as the property of others.

Copyright  $\ensuremath{\text{@}}$  2008, Intel Corporation. All rights reserved.



# **Contents**

| 1 | Intro      | oduction                                          | . 7        |
|---|------------|---------------------------------------------------|------------|
|   | 1.1<br>1.2 | Terminology References                            |            |
| 2 |            | Power Features                                    | 11         |
|   | 2.1        | Clock Control and Low Power States                | 12         |
|   | 2.2        | 2.1.2 Package Low-Power States                    | 15         |
| 3 |            |                                                   |            |
| 3 | 3.1<br>3.2 | Power and Ground Pins                             | 17         |
|   | 3.3        | Voltage Identification                            |            |
|   | 3.4        | Catastrophic Thermal Protection                   | 20         |
|   | 3.5        | Reserved and Unused Pins                          |            |
|   | 3.6        | FSB Frequency Select Signals (BSEL[2:0])          |            |
|   | 3.7<br>3.8 | FSB Signal Groups                                 |            |
|   | 3.9        | Maximum Ratings                                   |            |
|   | 3.10       | Processor DC Specifications                       |            |
| 4 | Pack       | age Mechanical Specifications and Pin Information | 29         |
| - | 4.1        | Package Mechanical Specifications                 |            |
|   | 4.2        | Processor Pinout and Pin List                     |            |
|   | 4.3        | Alphabetical Signals Reference                    | 53         |
| 5 | Ther       | mal Specifications and Design Considerations      | 51         |
|   | 5.1        | Monitoring Die Temperature                        |            |
|   |            | 5.1.1 Thermal Diode                               |            |
|   |            | 5.1.2 Thermal Diode Offset                        |            |
|   |            | 5.1.3 Intel® Thermal Monitor                      |            |
|   |            | 5.1.4 Digital Thermal Sensor                      |            |
|   |            | 5.1.5 Out of Specification Detection              |            |
|   |            | J.I.O FROCIOT# JIGHA FILL                         | <i>J</i> / |



# **Figures**

| 1    | Package-Level Low-Power States                                                    | 11 |
|------|-----------------------------------------------------------------------------------|----|
| 2    | Core Low-Power States                                                             |    |
| 3    | 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)          | 30 |
| 4    | 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)          |    |
| 5    | 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)                         |    |
| 6    | 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)                         | 33 |
|      |                                                                                   |    |
| Tabl | es                                                                                |    |
| 1    | Coordination of Core-Level Low-Power States at the Package Level                  | 11 |
| 2    | Voltage Identification Definition                                                 |    |
| 3    | BSEL[2:0] Encoding for BCLK Frequency                                             |    |
| 4    | FSB Pin Groups                                                                    |    |
| 5    | Processor Absolute Maximum Ratings                                                | 23 |
| 6    | DC Voltage and Current Specifications                                             | 25 |
| 7    | FSB Differential BCLK Specifications                                              | 26 |
| 8    | AGTL+ Signal Group DC Specifications                                              | 27 |
| 9    | CMOS Signal Group DC Specifications                                               |    |
| 10   | Open Drain Signal Group DC Specifications                                         | 28 |
| 11   | The Coordinates of the Processor Pins as Viewed from the Top of the Package       |    |
|      | (Sheet 1 of 2)                                                                    | 34 |
| 12   | The Coordinates of the Processor Pins as Viewed from the Top of the Package       |    |
|      | (Sheet 2 of 2)                                                                    | 35 |
| 13   | Pin Listing by Pin Name                                                           |    |
| 14   | Pin Listing by Pin Number                                                         |    |
| 15   | Signal Description                                                                |    |
| 16   | Power Specifications for the Intel Celeron Dual-Core Processor - Standard Voltage |    |
| 17   | Thermal Diode Interface                                                           |    |
| 18   | Thermal Diode Parameters Using Diode Model                                        |    |
| 19   | Thermal Diode Parameters Using Transistor Model                                   |    |
| 20   | Thermal Diode ntrim and Diode Correction Toffset                                  | 65 |



# **Revision History**

| Document<br>Number | Revision<br>Number | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date           |
|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 321111             | -001               | Initial Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | November 2008  |
| 321111             | -002               | Added T3000, T3100, T3300, and T3500 processors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | June 2009      |
| 321111             | -003               | <ul> <li>Added specifications for SFF processor SU2300</li> <li>Added C4 state support information for SU2300 SFF processor</li> <li>Added Speedstep technology suppport information for SU2300 SFF processor</li> <li>details:</li> <li>Chapter 1: updated feature list for SFF processor</li> <li>Section 2.1: added C4/deeper sleep state information</li> <li>Figure 1: updated C4/deeper sleep state information</li> <li>Figure 2: updated C4/deeper sleep state information</li> <li>Table 1: Added C4/deeper sleep state information</li> <li>Section Section 2.1.1.6, Section 2.1.2.6: Added C4/deeper sleep state information</li> <li>Section 2.2: Added information on Intel speedstep technology description</li> <li>Table 8: added table for SU2300 processor DC specifications</li> <li>Table 25: added table for SU2300 thermal specifications</li> <li>Figure 7, Table 19, Table 20, Table 17, Table 23 added SU2300 pin and package information</li> </ul> | September 2009 |





# 1 Introduction

This document provides electrical, mechanical, and thermal specifications for the Intel® Celeron® Mobile Processor Dual-Core T1x00, Intel(R) Celeron Processors T3x00 and Intel(R) Celeron Dual-core SFF Processors. The processor supports the Mobile Intel® 4 Series Express Chipset and Intel® 82801IBM (ICH9M) Controller-Hub Based Systems.

#### Note:

In this document, the Celeron processor is referred to as the processor and Mobile Intel® 4 Series Express Chipset family is referred to as the (G)MCH.

The following list provides some of the key features on this processor:

- Dual-Core processor for mobile with enhanced performance
- Intel architecture with Intel® Wide Dynamic Execution
- L1 Cache to Cache (C2C) transfer
- On-die, primary 32-KB instruction cache and 32-KB write-back data cache in each core
- · On-die, 1-MB second level shared cache with advanced transfer cache architecture
- Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3) and Supplemental Streaming SIMD Extensions 3 (SSSE3)
- 667-MHz Source-Synchronous Front Side Bus (FSB) for the T1x00 Series, and 800-MHz Source-Synchronous Front Side Bus (FSB) for the T3x00 Series processors and SFF processors
- Digital Thermal Sensor (DTS)
- Intel® 64 Technology
- PSI2 functionality
- Execute Disable Bit support for enhanced security
- Half ratio support (N/2) for Core to Bus ratio
- Supports enhanced Intel® Virtualization Technology (SFF processor only)
- Intel® Deeper Sleep low-power state with P\_LVL4 I/O Support (SFF processor only)
- Advanced power management feature includes Enhanced Intel SpeedStep® Technology (SFF processor only)



# 1.1 Terminology

| Term                                       | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #                                          | A "#" symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the "#" symbol implies that the signal is inverted. For example, D[3:0] = "HLHL" refers to a hex 'A', and D[3:0]# = "LHLH" also refers to a hex "A" (H= High logic level, L= Low logic level). XXXX means that the specification or value is yet to be determined. |
| Front Side Bus<br>(FSB)                    | Refers to the interface between the processor and system core logic (also known as the chipset components).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AGTL+                                      | Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+ signaling technology on some Intel processors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Storage<br>Conditions                      | Refers to a non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor landings should not be connected to any supply voltages, have any I/Os biased or receive any clocks. Upon exposure to "free air" (i.e., unsealed packaging or a device removed from packaging material) the processor must be handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material.                                                                                                                                          |
| Enhanced Intel<br>SpeedStep®<br>Technology | Technology that provides power management capabilities to laptops.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Processor Core                             | Processor core die with integrated L1 and L2 cache. All AC timing and signal integrity specifications are at the pads of the processor core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Intel® 64<br>Technology                    | 64-bit memory extensions to the IA-32 architecture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Intel®<br>Virtualization<br>Technology     | Processor virtualization which when used in conjunction with Virtual Machine Monitor software enables multiple, robust independent software environments inside a single platform.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TDP                                        | Thermal Design Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V <sub>CC</sub>                            | The processor core power supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| V <sub>SS</sub>                            | The processor ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# 1.2 References

Material and concepts available in the following documents may be beneficial when reading this document.

| Document                                                                                                                             | <b>Document Number</b>                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Intel® Celeron® Dual-Core T1x00 Processors Specification Update for Platforms Based on Mobile Intel® 4 Series Express Chipset Family | See http://<br>www.intel.com/design/<br>mobile/specupdt/<br>319734.htm     |
| Mobile Intel® 4 Series Express Chipset Family Datasheet                                                                              | 355969                                                                     |
| Mobile Intel® 4 Series Express Chipset Family Specification Update                                                                   | 320123                                                                     |
| Intel® I/O Controller Hub 9(ICH9)/ I/O Controller Hub 9M (ICH9M) Datasheet                                                           | See http://<br>www.intel.com/Assets/<br>PDF/datasheet/<br>316972.pdf       |
| Intel® I/O Controller Hub 8 (ICH8)/ I/O Controller Hub 8M (ICH8M)<br>Specification Update                                            | See http://<br>www.intel.com/Assets/<br>PDF/specupdate/<br>316973.pdf      |
| Intel® 64 and IA-32 Architectures Software Developer's Manual                                                                        | See http://<br>www.intel.com/design/<br>pentium4/manuals/<br>index_new.htm |
| Intel® 64 and IA-32 Architectures Software Developer's Manuals<br>Documentation Change                                               | See http:// developer.intel.com/ design/processor/ specupdt/252046.htm     |
| Volume 1: Basic Architecture                                                                                                         | 253665                                                                     |
| Volume 2A: Instruction Set Reference, A-M                                                                                            | 253666                                                                     |
| Volume 2B: Instruction Set Reference, N-Z                                                                                            | 253667                                                                     |
| Volume 3A: System Programming Guide                                                                                                  | 253668                                                                     |
| Volume 3B: System Programming Guide                                                                                                  | 253669                                                                     |

### Introduction





# 2 Low Power Features

### 2.1 Clock Control and Low Power States

The processor supports the C1/AutoHALT, C1/MWAIT, C2, C3 and some support the C4 core low-power states, along with their corresponding package-level states for power management. See Chapter 3 to see if C4 is supported. These package states include Normal, Stop Grant, Stop Grant Snoop, Sleep, and Deep Sleep. The processor's central power management logic enters a package low-power state by initiating a P\_LVLx (P\_LVL2, P\_LVL3, P\_LVL4) I/O read to the (G)MCH. Figure 1 shows the package-level low-power states and Figure 2 shows the core low-power states. Refer to Table 1 for a mapping of core low-power states to package low-power states.

The processor implements two software interfaces for requesting low-power states: MWAIT instruction extensions with sub-state hints and P\_LVLx reads to the ACPI P\_BLK register block mapped in the processor's I/O address space. The P\_LVLx I/O reads are converted to equivalent MWAIT C-state requests inside the processor and do not directly result in I/O reads on the processor FSB. The monitor address does not need to be setup before using the P\_LVLx I/O read interface. The sub-state hints used for each P\_LVLx read can be configured through the IA32\_MISC\_ENABLES Model Specific Register (MSR).

If the processor encounters a chipset break event while STPCLK# is asserted, it asserts the PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to system logic that the processor should return to the Normal state.

Table 1. Coordination of Core-Level Low-Power States at the Package Level

| Core States       | Package States |
|-------------------|----------------|
| C0                | Normal         |
| C1 <sup>(1)</sup> | Normal         |
| C2                | Stop Grant     |
| C3                | Deep Sleep     |
| C4                | Deeper Sleep   |

NOTE: AutoHALT or MWAIT/C1

Figure 1. Package-Level Low-Power States





### Figure 2. Core Low-Power States



### 2.1.1 Core Low-Power States

### 2.1.1.1 C0 State

This is the normal operating state of the processor.

### 2.1.1.2 C1/AutoHALT Powerdown State

C1/AutoHALT is a low-power state entered when the processor core executes the HALT instruction. The processor core transitions to the C0 state upon the occurrence of SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# causes the processor to immediately initialize itself.

A System Management Interrupt (SMI) A System Management Interrupt (SMI) handler returns execution to either Normal state or the C1/AutoHALT Powerdown state. See the Intel® 64 and IA-32 Intel® Architecture Software Developer's Manual, Volume 3A/3B: System Programmer's Guide for more information.

The system can generate a STPCLK# while the processor is in the C1/AutoHALT Powerdown state. When the system deasserts the STPCLK# interrupt, the processor returns execution to the HALT state.

The processor in C1/AutoHALT powerdown state process only the bus snoops. The processor enters a snoopable sub-state (not shown in Figure 2) to process the snoop and then return to the C1/AutoHALT Powerdown state.



### 2.1.1.3 C1/MWAIT Powerdown State

C1/MWAIT is a low-power state entered when the processor core executes the MWAIT instruction. Processor behavior in the C1/MWAIT state is identical to the C1/AutoHALT state except that there is an additional event that can cause the processor core to return to the C0 state: the Monitor event. See the Intel® 64 and IA-32 Intel® Architecture Software Developer's Manual, Volume 2A/2B: Instruction Set Reference for more information.

### 2.1.1.4 Core C2 State

The core of the processor can enter the C2 state by initiating a P\_LVL2 I/O read to the P\_BLK or an MWAIT(C2) instruction, but the processor does not issue a Stop Grant Acknowledge special bus cycle unless the STPCLK# pin is also asserted.

The processor in C2 state processes only the bus snoops. The processor enters a snoopable sub-state (not shown in Figure 2) to process the snoop and then return to the C2 state.

### 2.1.1.5 Core C3 State

Core C3 state is a very low-power state the processor core can enter while maintaining context. The core of the processor can enter the C3 state by initiating a P\_LVL3 I/O read to the P\_BLK or an MWAIT(C3) instruction. Before entering the C3 state, the processor core flushes the contents of its L1 cache into the processor's L2 cache. Except for the caches, the processor core maintains all its architectural state in the C3 state. The Monitor remains armed if it is configured. All of the clocks in the processor core are stopped in the C3 state.

Because the core's caches are flushed, the processor keeps the core in the C3 state when the processor detects a snoop on the FSB. The processor core transitions to the C0 state upon the occurrence of a Monitor event, SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# causes the processor core to immediately initialize itself.

### **2.1.1.6** Core C4 State

Individual cores of the dual-core processor that have C4 can enter the C4 state by initiating a P\_LVL4 I/O read to the P\_BLK or an MWAIT(C4) instruction. The processor core behavior in the C4 state is nearly identical to the behavior in the C3 state. The only difference is that if both processor cores are in C4, the central power management logic will request that the entire processor enter the Deeper Sleep package low-power state (see Section 2.1.2.6)

### 2.1.2 Package Low-Power States

Package level low-power states are applicable to the processor.

### 2.1.2.1 Normal State

This is the normal operating state for the processor. The processor enters the Normal state when the core is in the CO, C1/AutoHALT, or C1/MWAIT state.

### 2.1.2.2 Stop-Grant State

When the STPCLK# pin is asserted the core of the processor enters the Stop-Grant state within 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle. When the STPCLK# pin is deasserted the core returns to the previous core low-power state.



Since the AGTL+ signal pins receive power from the FSB, these pins should not be driven (allowing the level to return to  $V_{\rm CCP}$ ) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the FSB should be driven to the inactive state.

RESET# causes the processor to immediately initialize itself, but the processor stays in Stop-Grant state. When RESET# is asserted by the system the STPCLK#, SLP#, and DPSLP# pins must be deasserted more than 480 µs prior to RESET# deassertion (AC Specification T45). When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be deasserted ten or more bus clocks after the deassertion of SLP# (AC Specification T75).

While in the Stop-Grant state, the processor services snoops and latch interrupts delivered on the FSB. The processor latches SMI#, INIT# and LINT[1:0] interrupts and services only upon return to the Normal state.

The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# is asserted if there is any pending interrupt or monitor event latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear still cause assertion of PBE#. Assertion of PBE# indicates to system logic that the processor should return to the Normal state.

A transition to the Stop Grant Snoop state occurs when the processor detects a snoop on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see Section 2.1.2.4) occurs with the assertion of the SLP# signal.

### 2.1.2.3 Stop Grant Snoop State

The processor responds to snoop or interrupt transactions on the FSB while in Stop-Grant state by entering the Stop-Grant Snoop state. The processor stays in this state until the snoop on the FSB has been serviced (whether by the processor or another agent on the FSB) or the interrupt has been latched. The processor returns to the Stop-Grant state once the snoop has been serviced or the interrupt has been latched.

### 2.1.2.4 Sleep State

The Sleep state is a low-power state in which the processor maintains its context, maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP# pin should only be asserted when the processor is in the Stop-Grant state. SLP# assertions while the processor is not in the Stop-Grant state is out of specification and may result in unapproved operation.

In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep state. Snoop events that occur while in Sleep state or during a transition into or out of Sleep state causes unpredictable behavior. Any transition on an input signal before the processor has returned to the Stop-Grant state results in unpredictable behavior.

If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor resets itself, ignoring the transition through Stop-Grant state. If RESET# is driven active while the processor is in the Sleep state, the SLP# and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the processor correctly executes the Reset sequence.

While in the Sleep state, the processor is capable of entering an even lower power state, the Deep Sleep state, by asserting the DPSLP# pin. (See Section 2.1.2.5.) While the processor is in the Sleep state, the SLP# pin must be deasserted if another asynchronous FSB event needs to occur.



### 2.1.2.5 Deep Sleep State

Deep Sleep state is a very low-power state the processor can enter while maintaining context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. BCLK may be stopped during the Deep Sleep state for additional platform level power savings. BCLK stop/restart timings on appropriate chipset based platforms with the CK505 clock chip are as follows:

- Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.
- Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK periods.

To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be restarted after DPSLP# deassertion as described above. A period of 15 microseconds (to allow for PLL stabilization) must occur before the processor can be considered to be in the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-Grant state.

While in Deep Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions of signals are allowed on the FSB while the processor is in Deep Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state results in unpredictable behavior.

### 2.1.2.6 Deeper Sleep State

The Deeper Sleep state is similar to the Deep Sleep state but further reduces core voltage levels. One of the potential lower core voltage levels is achieved by entering the base Deeper Sleep state. The Deeper Sleep state is entered through assertion of the DPRSTP# pin while in the Deep Sleep state. The following lower core voltage level is achieved by entering the Intel Enhanced Deeper Sleep state which is a sub-state of Deeper Sleep state. Intel Enhanced Deeper Sleep state is entered through assertion of the DPRSTP# pin while in the Deep Sleep only when the L2 cache has been completely shut down.

Exit from Deeper Sleep is initiated by DPRSTP# deassertion when either core requests a core state other than C4 or either core requests a processor performance state other than the lowest operating point.

# 2.2 Enhanced Intel SpeedStep® Technology

Some processors feature Enhanced Intel SpeedStep Technology. See each processor's DCL to see if it supports Enhanced Intel SpeedStep Technology. Following are the key features of Enhanced Intel SpeedStep Technology:

- Multiple voltage and frequency operating points provide optimal performance at the lowest power.
- Voltage and frequency selection is software-controlled by writing to processor MSRs:
  - If the target frequency is higher than the current frequency, V<sub>CC</sub> is ramped up in steps by placing new values on the VID pins, and the PLL then locks to the new frequency.
  - If the target frequency is lower than the current frequency, the PLL locks to the new frequency and the  $V_{CC}$  is changed through the VID pin mechanism.
  - Software transitions are accepted at any time. If a previous transition is in progress, the new transition is deferred until the previous transition completes.



- The processor controls voltage ramp rates internally to ensure glitch-free transitions.
- Low transition latency and large number of transitions possible per second:
  - Processor core (including L2 cache) is unavailable for up to 10  $\mu s$  during the frequency transition.
  - The bus protocol (BNR# mechanism) is used to block snooping.
- Improved Intel® Thermal Monitor mode:
  - When the on-die thermal sensor indicates that the die temperature is too high the processor can automatically perform a transition to a lower frequency and voltage specified in a software-programmable MSR.
  - The processor waits for a fixed time period. If the die temperature is down to acceptable levels, an up-transition to the previous frequency and voltage point occurs.
  - An interrupt is generated for the up and down Intel Thermal Monitor transitions enabling better system-level thermal management.
- Enhanced thermal management features:
  - Digital Thermal Sensor and Out of Specification detection.
  - Intel Thermal Monitor 1 (TM1) in addition to Intel Thermal Monitor 2 (TM2) in case of unsuccessful TM2 transition.
  - Dual core thermal management synchronization.

Each core in the dual-core processor implements an independent MSR for controlling Enhanced Intel SpeedStep Technology, but both cores must operate at the same frequency and voltage. The processor has performance state coordination logic to resolve frequency and voltage requests from the two cores into a single frequency and voltage request for the package as a whole. If both cores request the same frequency and voltage, then the processor will transition to the requested common frequency and voltage. If the two cores have different frequency and voltage requests, then the processor will take the highest of the two frequencies and voltages as the resolved request and transition to that frequency and voltage.

#### Caution:

**Enhanced Intel SpeedStep Technology transitions are multistep processes that require clocked control.** These transitions cannot occur when the processor is in the Sleep or Deep Sleep package low-power states since processor clocks are not active in these states.

### 2.3 Low-Power FSB Features

The processor incorporates FSB low-power enhancements:

- Dynamic On Die Termination disabling
- Low V<sub>CCP</sub> (I/O termination voltage)

The On Die Termination on the processor FSB buffers is disabled when the signals are driven low, resulting in power savings. The low I/O termination voltage is on a dedicated voltage plane independent of the core voltage, enabling low I/O switching power at all times.



# 2.4 Processor Power Status Indicator (PSI#) Signal

The PSI# signal is asserted when the processor is in a reduced power consumption state. PSI# can be used to improve light load efficiency of the voltage regulator, resulting in platform power savings and extended battery life. The algorithm that the processor uses for determining when to assert PSI# is different from the algorithm used in previous processors.





# 3 Electrical Specifications

### 3.1 Power and Ground Pins

For clean, on-chip power distribution, the processor has a large number of  $V_{CC}$  (power) and  $V_{SS}$  (ground) inputs. All power pins must be connected to  $V_{CC}$  power planes while all  $V_{SS}$  pins must be connected to system ground planes. Use of multiple power and ground planes is recommended to reduce I\*R drop. The processor  $V_{CC}$  pins must be supplied the voltage determined by the VID (Voltage ID) pins.

# 3.2 FSB Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor. As in previous generation processors, the processor core frequency is a multiple of the BCLK[1:0] frequency. The processor uses a differential clocking implementation.

# 3.3 Voltage Identification

The processor uses seven voltage identification pins,VID[6:0], to support automatic selection of power supply voltages. The VID pins for processor are CMOS outputs driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding to the state of VID[6:0]. A 1 refers to a high-voltage level and a 0 refers to low-voltage level.

### Table 2. Voltage Identification Definition (Sheet 1 of 4)

| VID6 | VID5 | VID4 | VID3 | VID2 | VID1 | VID0 | V <sub>CC</sub> (V) |
|------|------|------|------|------|------|------|---------------------|
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1.5000              |
| 0    | 0    | 0    | 0    | 0    | 0    | 1    | 1.4875              |
| 0    | 0    | 0    | 0    | 0    | 1    | 0    | 1.4750              |
| 0    | 0    | 0    | 0    | 0    | 1    | 1    | 1.4625              |
| 0    | 0    | 0    | 0    | 1    | 0    | 0    | 1.4500              |
| 0    | 0    | 0    | 0    | 1    | 0    | 1    | 1.4375              |
| 0    | 0    | 0    | 0    | 1    | 1    | 0    | 1.4250              |
| 0    | 0    | 0    | 0    | 1    | 1    | 1    | 1.4125              |
| 0    | 0    | 0    | 1    | 0    | 0    | 0    | 1.4000              |
| 0    | 0    | 0    | 1    | 0    | 0    | 1    | 1.3875              |
| 0    | 0    | 0    | 1    | 0    | 1    | 0    | 1.3750              |
| 0    | 0    | 0    | 1    | 0    | 1    | 1    | 1.3625              |
| 0    | 0    | 0    | 1    | 1    | 0    | 0    | 1.3500              |
| 0    | 0    | 0    | 1    | 1    | 0    | 1    | 1.3375              |
| 0    | 0    | 0    | 1    | 1    | 1    | 0    | 1.3250              |
| 0    | 0    | 0    | 1    | 1    | 1    | 1    | 1.3125              |
| 0    | 0    | 1    | 0    | 0    | 0    | 0    | 1.3000              |
| 0    | 0    | 1    | 0    | 0    | 0    | 1    | 1.2875              |
| 0    | 0    | 1    | 0    | 0    | 1    | 0    | 1.2750              |
| 0    | 0    | 1    | 0    | 0    | 1    | 1    | 1.2625              |
| 0    | 0    | 1    | 0    | 1    | 0    | 0    | 1.2500              |
| 0    | 0    | 1    | 0    | 1    | 0    | 1    | 1.2375              |



Table 2. Voltage Identification Definition (Sheet 2 of 4)

| VID6 | VID5 | VID4 | VID3 | VID2 | VID1 | VID0 | V <sub>CC</sub> (V) |
|------|------|------|------|------|------|------|---------------------|
| 0    | 0    | 1    | 0    | 1    | 1    | 0    | 1.2250              |
| 0    | 0    | 1    | 0    | 1    | 1    | 1    | 1.2125              |
| 0    | 0    | 1    | 1    | 0    | 0    | 0    | 1.2000              |
| 0    | 0    | 1    | 1    | 0    | 0    | 1    | 1.1875              |
| 0    | 0    | 1    | 1    | 0    | 1    | 0    | 1.1750              |
| 0    | 0    | 1    | 1    | 0    | 1    | 1    | 1.1625              |
| 0    | 0    | 1    | 1    | 1    | 0    | 0    | 1.1500              |
| 0    | 0    | 1    | 1    | 1    | 0    | 1    | 1.1375              |
| 0    | 0    | 1    | 1    | 1    | 1    | 0    | 1.1250              |
| 0    | 0    | 1    | 1    | 1    | 1    | 1    | 1.1125              |
| 0    | 1    | 0    | 0    | 0    | 0    | 0    | 1.1000              |
| 0    | 1    | 0    | 0    | 0    | 0    | 1    | 1.0875              |
| 0    | 1    | 0    | 0    | 0    | 1    | 0    | 1.0750              |
| 0    | 1    | 0    | 0    | 0    | 1    | 1    | 1.0625              |
| 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1.0500              |
| 0    | 1    | 0    | 0    | 1    | 0    | 1    | 1.0375              |
| 0    | 1    | 0    | 0    | 1    | 1    | 0    | 1.0250              |
| 0    | 1    | 0    | 0    | 1    | 1    | 1    | 1.0125              |
| 0    | 1    | 0    | 1    | 0    | 0    | 0    | 1.0000              |
| 0    | 1    | 0    | 1    | 0    | 0    | 1    | 0.9875              |
| 0    | 1    | 0    | 1    | 0    | 1    | 0    | 0.9750              |
| 0    | 1    | 0    | 1    | 0    | 1    | 1    | 0.9625              |
| 0    | 1    | 0    | 1    | 1    | 0    | 0    | 0.9500              |
| 0    | 1    | 0    | 1    | 1    | 0    | 1    | 0.9375              |
| 0    | 1    | 0    | 1    | 1    | 1    | 0    | 0.9250              |
| 0    | 1    | 0    | 1    | 1    | 1    | 1    | 0.9125              |
| 0    | 1    | 1    | 0    | 0    | 0    | 0    | 0.9000              |
| 0    | 1    | 1    | 0    | 0    | 0    | 1    | 0.8875              |
| 0    | 1    | 1    | 0    | 0    | 1    | 0    | 0.8750              |
| 0    | 1    | 1    | 0    | 0    | 1    | 1    | 0.8625              |
| 0    | 1    | 1    | 0    | 1    | 0    | 0    | 0.8500              |
| 0    | 1    | 1    | 0    | 1    | 0    | 1    | 0.8375              |
| 0    | 1    | 1    | 0    | 1    | 1    | 0    | 0.8250              |
| 0    | 1    | 1    | 0    | 1    | 1    | 1    | 0.8125              |
| 0    | 1    | 1    | 1    | 0    | 0    | 0    | 0.8000              |
| 0    | 1    | 1    | 1    | 0    | 0    | 1    | 0.7875              |
| 0    | 1    | 1    | 1    | 0    | 1    | 0    | 0.7750              |
| 0    | 1    | 1    | 1    | 0    | 1    | 1    | 0.7625              |
| 0    | 1    | 1    | 1    | 1    | 0    | 0    | 0.7500              |
| 0    | 1    | 1    | 1    | 1    | 0    | 1    | 0.7375              |
| 0    | 1    | 1    | 1    | 1    | 1    | 0    | 0.7250              |
| 0    | 1    | 1    | 1    | 1    | 1    | 1    | 0.7125              |
| 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0.7000              |
| 1    | 0    | 0    | 0    | 0    | 0    | 1    | 0.6875              |
| 1    | 0    | 0    | 0    | 0    | 1    | 0    | 0.6750              |
| 1    | 0    | 0    | 0    | 0    | 1    | 1    | 0.6625              |
| 1    | 0    | 0    | 0    | 1    | 0    | 0    | 0.6500              |



Table 2. Voltage Identification Definition (Sheet 3 of 4)

| VID6 | VID5 | VID4 | VID3 | VID2 | VID1 | VID0 | V <sub>CC</sub> (V) |
|------|------|------|------|------|------|------|---------------------|
| 1    | 0    | 0    | 0    | 1    | 0    | 1    | 0.6375              |
| 1    | 0    | 0    | 0    | 1    | 1    | 0    | 0.6250              |
| 1    | 0    | 0    | 0    | 1    | 1    | 1    | 0.6125              |
| 1    | 0    | 0    | 1    | 0    | 0    | 0    | 0.6000              |
| 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0.5875              |
| 1    | 0    | 0    | 1    | 0    | 1    | 0    | 0.5750              |
| 1    | 0    | 0    | 1    | 0    | 1    | 1    | 0.5625              |
| 1    | 0    | 0    | 1    | 1    | 0    | 0    | 0.5500              |
| 1    | 0    | 0    | 1    | 1    | 0    | 1    | 0.5375              |
| 1    | 0    | 0    | 1    | 1    | 1    | 0    | 0.5250              |
| 1    | 0    | 0    | 1    | 1    | 1    | 1    | 0.5125              |
| 1    | 0    | 1    | 0    | 0    | 0    | 0    | 0.5000              |
| 1    | 0    | 1    | 0    | 0    | 0    | 1    | 0.4875              |
| 1    | 0    | 1    | 0    | 0    | 1    | 0    | 0.4750              |
| 1    | 0    | 1    | 0    | 0    | 1    | 1    | 0.4625              |
| 1    | 0    | 1    | 0    | 1    | 0    | 0    | 0.4500              |
| 1    | 0    | 1    | 0    | 1    | 0    | 1    | 0.4375              |
| 1    | 0    | 1    | 0    | 1    | 1    | 0    | 0.4250              |
| 1    | 0    | 1    | 0    | 1    | 1    | 1    | 0.4125              |
| 1    | 0    | 1    | 1    | 0    | 0    | 0    | 0.4000              |
| 1    | 0    | 1    | 1    | 0    | 0    | 1    | 0.3875              |
| 1    | 0    | 1    | 1    | 0    | 1    | 0    | 0.3750              |
| 1    | 0    | 1    | 1    | 0    | 1    | 1    | 0.3625              |
| 1    | 0    | 1    | 1    | 1    | 0    | 0    | 0.3500              |
| 1    | 0    | 1    | 1    | 1    | 0    | 1    | 0.3375              |
| 1    | 0    | 1    | 1    | 1    | 1    | 0    | 0.3250              |
| 1    | 0    | 1    | 1    | 1    | 1    | 1    | 0.3125              |
| 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0.3000              |
| 1    | 1    | 0    | 0    | 0    | 0    | 1    | 0.2875              |
| 1    | 1    | 0    | 0    | 0    | 1    | 0    | 0.2750              |
| 1    | 1    | 0    | 0    | 0    | 1    | 1    | 0.2625              |
| 1    | 1    | 0    | 0    | 1    | 0    | 0    | 0.2500              |
| 1    | 1    | 0    | 0    | 1    | 0    | 1    | 0.2375              |
| 1    | 1    | 0    | 0    | 1    | 1    | 0    | 0.2250              |
| 1    | 1    | 0    | 0    | 1    | 1    | 1    | 0.2125              |
| 1    | 1    | 0    | 1    | 0    | 0    | 0    | 0.2000              |
| 1    | 1    | 0    | 1    | 0    | 0    | 1    | 0.1875              |
| 1    | 1    | 0    | 1    | 0    | 1    | 0    | 0.1750              |
| 1    | 1    | 0    | 1    | 0    | 1    | 1    | 0.1625              |
| 1    | 1    | 0    | 1    | 1    | 0    | 0    | 0.1500              |
| 1    | 1    | 0    | 1    | 1    | 0    | 1    | 0.1375              |
| 1    | 1    | 0    | 1    | 1    | 1    | 0    | 0.1250              |
| 1    | 1    | 0    | 1    | 1    | 1    | 1    | 0.1125              |
| 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0.1000              |
| 1    | 1    | 1    | 0    | 0    | 0    | 1    | 0.0875              |
| 1    | 1    | 1    | 0    | 0    | 1    | 0    | 0.0750              |
| 1    | 1    | 1    | 0    | 0    | 1    | 1    | 0.0625              |



### Table 2. Voltage Identification Definition (Sheet 4 of 4)

| VID6 | VID5 | VID4 | VID3 | VID2 | VID1 | VID0 | V <sub>CC</sub> (V) |
|------|------|------|------|------|------|------|---------------------|
| 1    | 1    | 1    | 0    | 1    | 0    | 0    | 0.0500              |
| 1    | 1    | 1    | 0    | 1    | 0    | 1    | 0.0375              |
| 1    | 1    | 1    | 0    | 1    | 1    | 0    | 0.0250              |
| 1    | 1    | 1    | 0    | 1    | 1    | 1    | 0.0125              |
| 1    | 1    | 1    | 1    | 0    | 0    | 0    | 0.0000              |
| 1    | 1    | 1    | 1    | 0    | 0    | 1    | 0.0000              |
| 1    | 1    | 1    | 1    | 0    | 1    | 0    | 0.0000              |
| 1    | 1    | 1    | 1    | 0    | 1    | 1    | 0.0000              |
| 1    | 1    | 1    | 1    | 1    | 0    | 0    | 0.0000              |
| 1    | 1    | 1    | 1    | 1    | 0    | 1    | 0.0000              |
| 1    | 1    | 1    | 1    | 1    | 1    | 0    | 0.0000              |
| 1    | 1    | 1    | 1    | 1    | 1    | 1    | 0.0000              |

# 3.4 Catastrophic Thermal Protection

The processor supports the THERMTRIP# signal for catastrophic thermal protection. An external thermal sensor should also be used to protect the processor and the system against excessive temperatures. Even with the activation of THERMTRIP#, which halts all processor internal clocks and activity, leakage current can be high enough that the processor cannot be protected in all conditions without power removal to the processor. If the external thermal sensor detects a catastrophic processor temperature of 125 °C (maximum), or if the THERMTRIP# signal is asserted, the  $\rm V_{CC}$  supply to the processor must be turned off within 500 ms to prevent permanent silicon damage due to thermal runaway of the processor. THERMTRIP# functionality is not guaranteed if the PWRGOOD signal is not asserted.

### 3.5 Reserved and Unused Pins

All RESERVED (RSVD) pins must remain unconnected. Connection of these pins to  $V_{CC}$ ,  $V_{SS}$ , or to any other signal (including each other) may result in component malfunction or incompatibility with future processors. See Section 4.2 for a pin listing of the processor and the location of all RSVD pins.

For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is provided on the processor silicon. Unused active high inputs should be connected through a resistor to ground ( $V_{SS}$ ). Unused outputs can be left unconnected.

The TEST1 and TEST2 pins must have a stuffing option of separate pull-down resistors to  $V_{\text{SS}}$ .

For the purpose of testability, route the TEST3 and TEST5 signals through a ground-referenced Zo =  $55-\Omega$  trace that ends in a via that is near a GND via and is accessible through an oscilloscope connection.



# 3.6 FSB Frequency Select Signals (BSEL[2:0])

The BSEL[2:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]). These signals should be connected to the clock chip and the appropriate chipset on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 3.

### Table 3. BSEL[2:0] Encoding for BCLK Frequency

| BSEL[2] | BSEL[1] | BSEL[0] | BCLK Frequency |
|---------|---------|---------|----------------|
| L       | L       | L       | RESERVED       |
| L       | L       | Н       | 133 MHz        |
| L       | Н       | Н       | RESERVED       |
| L       | Н       | L       | 200 MHz        |
| Н       | Н       | L       | RESERVED       |
| Н       | Н       | Н       | RESERVED       |
| Н       | L       | Н       | RESERVED       |
| Н       | L       | L       | RESERVED       |

# 3.7 FSB Signal Groups

The FSB signals have been combined into groups by buffer type in the following sections. AGTL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group as well as the AGTL+ I/O group when driving.

With the implementation of a source synchronous data bus, two sets of timing parameters need to be specified. One set is for common clock signals, which are dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals, which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 4 identifies which signals are common clock, source synchronous, and asynchronous.



Table 4. FSB Pin Groups

| Signal Group Type            |                             | Signals <sup>1</sup>                                                                                                                                                                                 |                                                        |                                        |  |  |
|------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|--|--|
| AGTL+ Common Clock Input     | Synchronous to BCLK[1:0]    | BPRI#, DEFER#, PRE                                                                                                                                                                                   | EQ# <sup>5</sup> , RESET#, RS[2:0]#, TRD               | <sup>5</sup> , RESET#, RS[2:0]#, TRDY# |  |  |
| AGTL+ Common Clock I/O       | Synchronous to BCLK[1:0]    | ADS#, BNR#, BPM[3:0]# <sup>3</sup> , BRO#, DBSY#, DRDY#, HIT#,<br>HITM#, LOCK#, PRDY# <sup>3</sup> , DPWR#                                                                                           |                                                        |                                        |  |  |
|                              |                             | Signals REQ[4:0]#,                                                                                                                                                                                   | Associated Strobe                                      |                                        |  |  |
|                              |                             | A[16:3]#                                                                                                                                                                                             | ADSTB[0]#                                              |                                        |  |  |
|                              |                             | A[35:17]#                                                                                                                                                                                            | ADSTB[1]#                                              |                                        |  |  |
| AGTL+ Source Synchronous I/O | Synchronous to assoc.       | D[15:0]#,<br>DINV0#                                                                                                                                                                                  | DSTBP0#,<br>DSTBN0#                                    |                                        |  |  |
|                              | strobe                      | D[31:16]#,<br>DINV1#                                                                                                                                                                                 | DSTBP1#,<br>DSTBN1#                                    |                                        |  |  |
|                              |                             | D[47:32]#,<br>DINV2#                                                                                                                                                                                 | DSTBP2#,<br>DSTBN2#                                    |                                        |  |  |
|                              |                             | D[63:48]#,<br>DINV3#                                                                                                                                                                                 | DSTBP3#,<br>DSTBN3#                                    |                                        |  |  |
| AGTL+ Strobes                | Synchronous<br>to BCLK[1:0] | ADSTB[1:0]#, DSTB                                                                                                                                                                                    | P[3:0]#, DSTBN[3:0]#                                   |                                        |  |  |
| CMOS Input                   | Asynchronous                |                                                                                                                                                                                                      | PSLP#, IGNNE#, INIT#, LINTO<br>DD, SMI#, SLP#, STPCLK# | )/INTR,                                |  |  |
| Open Drain Output            | Asynchronous                | FERR#, IERR#, THEF                                                                                                                                                                                   | RMTRIP#                                                |                                        |  |  |
| Open Drain I/O               | Asynchronous                | PROCHOT# <sup>4</sup>                                                                                                                                                                                |                                                        |                                        |  |  |
| CMOS Output                  | Asynchronous                | PSI#, VID[6:0], BSE                                                                                                                                                                                  | L[2:0]                                                 |                                        |  |  |
| CMOS Input                   | Synchronous to TCK          | TCK, TDI, TMS, TRST                                                                                                                                                                                  | -#                                                     |                                        |  |  |
| Open Drain Output            | Synchronous<br>to TCK       | TDO                                                                                                                                                                                                  |                                                        |                                        |  |  |
| FSB Clock                    | Clock                       | BCLK[1:0]                                                                                                                                                                                            |                                                        |                                        |  |  |
| Power/Other                  |                             | COMP[3:0], DBR# <sup>2</sup> , GTLREF, RSVD, TEST2, TEST1, THERMDA, THERMDC, V <sub>CC</sub> , V <sub>CCA</sub> , V <sub>CCP</sub> , V <sub>CC_SENSE</sub> , V <sub>SS</sub> , V <sub>SS_SENSE</sub> |                                                        |                                        |  |  |

### NOTES:

- 1. Refer to Chapter 4 for signal descriptions and termination requirements.
- 2. In processor systems where there is no debug port implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects.
- 3. BPM[2:1]# and PRDY# are AGTL+ output only signals.
- 4. PROCHOT# signal type is open drain output and CMOS input.
- 5. On die termination differs from other AGTL+ signals.



### 3.8 CMOS Signals

CMOS input signals are shown in Table 4. Legacy output FERR#, IERR# and other non-AGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These signals do not have setup or hold time specifications in relation to BCLK[1:0]. However, all of the CMOS signals are required to be asserted for more than four BCLKs in order for the processor to recognize them. See Section 3.10 for the DC specifications for the CMOS signal groups.

### 3.9 Maximum Ratings

Table 5 specifies absolute maximum and minimum ratings. If the processor stays within functional operation limits, functionality and long-term reliability can be expected.

**Caution:** At conditions outside functional operation condition limits, but within absolute

maximum and minimum ratings, neither functionality nor long term reliability can be expected. At conditions exceeding absolute maximum and minimum ratings, neither

functionality nor long term reliability can be expected.

**Caution:** Precautions should always be taken to avoid high-static voltages or electric fields.

### **Table 5.** Processor Absolute Maximum Ratings

| Symbol                     | Parameter                                                     | Min  | Max  | Unit | Notes <sup>1</sup> |
|----------------------------|---------------------------------------------------------------|------|------|------|--------------------|
| TSTORAGE                   | Processor storage temperature                                 | -40  | 85   | °C   | 2, 3, 4            |
| V <sub>CC</sub>            | Any processor supply voltage with respect to $V_{\rm SS}$     | -0.3 | 1.55 | V    |                    |
| V <sub>inAGTL+</sub>       | AGTL+ buffer DC input voltage with respect to V <sub>SS</sub> | -0.1 | 1.55 | V    |                    |
| V <sub>inAsynch_CMOS</sub> | CMOS buffer DC input voltage with respect to $V_{SS}$         | -0.1 | 1.55 | V    |                    |

### NOTES:

- For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.
- Storage temperature is applicable to storage conditions only. In this scenario, the
  processor must not receive a clock, and no lands can be connected to a voltage bias.
  Storage within these limits does not affect the long term reliability of the device. For
  functional operation, please refer to the processor case temperature specifications.
- 3. This rating applies to the processor and does not include any tray or packaging.
- 4. Failure to adhere to this specification can affect the long-term reliability of the processor.



# 3.10 Processor DC Specifications

The processor DC specifications in this section are defined at the processor core (pads) unless noted otherwise. See Table 4 for the pin signal definitions and signal pin assignments.

Table 7 through Table 10 list the DC specifications for the processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. The Highest Frequency Mode (HFM) and Super Low Frequency Mode (SuperLFM) refer to the highest and lowest core operating frequencies supported on the processor. Active mode load line specifications apply in all states except in the Deep Sleep and Deeper Sleep states.  $V_{CC,BOOT}$  is the default voltage driven by the voltage regulator at power up in order to set the VID values. Unless specified otherwise, all specifications for the processor are at Tjunction = 100 °C. Care should be taken to read all notes associated with each parameter.



Table 6. DC Voltage and Current Specifications for the T3x00 Celeron Processors

| Symbol                                 |                                                                   | Paramete                                      | r           | Min   | Тур  | Max        | Unit   | Notes   |
|----------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|-------------|-------|------|------------|--------|---------|
| V <sub>CC</sub>                        | V <sub>CC</sub> of the P                                          | rocessor Core                                 |             | 0.8   |      | 1.25       | V      | 1, 2    |
| V <sub>CC,BOOT</sub>                   | Default V <sub>CC</sub>                                           | Default $V_{CC}$ Voltage for Initial Power Up |             |       | 1.20 |            | V      | 2, 8    |
| V <sub>CCP</sub>                       | AGTL+ Term                                                        | nination Voltag                               | е           | 1.00  | 1.05 | 1.10       | V      |         |
| V <sub>CCA</sub>                       | PLL Supply \                                                      | Voltage                                       |             | 1.425 | 1.5  | 1.575      | V      |         |
| I <sub>CCDES</sub>                     | I <sub>CC</sub> for processors<br>Recommended Design Targets:     |                                               |             |       |      | 47         | А      | 5       |
|                                        | I <sub>CC</sub> for processors                                    |                                               |             |       |      | Α          |        |         |
| I <sub>CC</sub>                        | Processor<br>Number                                               | Frequency                                     | Die Variant |       |      |            |        |         |
|                                        | T3000                                                             | 1.8 GHz                                       | 1 MB        |       |      | 47         | Α      | 3, 4    |
|                                        | T3100                                                             | 1.9 GHz                                       | 1 MB        |       |      | 47         | Α      | 3, 4    |
| I <sub>AH</sub> ,<br>I <sub>SGNT</sub> | I <sub>CC</sub> Auto-Ha                                           | I <sub>CC</sub> Auto-Halt & Stop-Grant        |             |       |      | 25.4       | А      | 3, 4    |
| I <sub>SLP</sub>                       | I <sub>CC</sub> Sleep                                             |                                               |             |       |      | 24.7       | Α      | 3, 4    |
| I <sub>DSLP</sub>                      | I <sub>CC</sub> Deep Sle                                          | еер                                           |             |       |      | 22.9       | Α      | 3, 4    |
| dI <sub>CC/DT</sub>                    | V <sub>CC</sub> Power Supply Current Slew Rate at CPU Package Pin |                                               |             |       | 600  | A/μs       | 6, 7   |         |
| I <sub>CCA</sub>                       | I <sub>CC</sub> for V <sub>CCA</sub> Supply                       |                                               |             |       | 130  | mA         |        |         |
| I <sub>CCP</sub>                       |                                                                   | Supply before<br>Supply after V               |             |       |      | 4.5<br>2.5 | A<br>A | 9<br>10 |

### NOTES:

- 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing in such a way that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (Intel Thermal Monitor 2, or Extended Halt State).
- 2. The voltage specifications are assumed to be measured across  $V_{CC\_SENSE}$  and  $V_{SS\_SENSE}$  pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-m $\Omega$  minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
- 3. Specified at 105 °C Tj.
- 4. Specified at the nominal  $V_{CC}$ .
- 5. 800-MHz FSB supported
- 6. Instantaneous current  $I_{CC\_CORE\_INST}$  of 55 A has to be sustained for short time ( $t_{INST}$ ) of 10  $\mu$ s. Average current is less than maximum specified  $I_{CCDES}$ . VR OCP threshold should be high enough to support current levels described herein.
- 7. Measured at the bulk capacitors on the motherboard.
- 8. Based on simulations and averaged over the duration of any change in current. Specified by design/characterization at nominal  $V_{CC}$ . Not 100% tested.
- 9. This is a power-up peak current specification, which is applicable when  $V_{CCP}$  is high and  $V_{CC\_CORE}$  is low.
- 10. This is a steady-state  $I_{CC}$  current specification, which is applicable when both  $V_{CCP}$  and  $V_{CC\_CORE}$  are high.

1-MB L2 cache.



Table 7. DC Voltage and Current Specifications for the T1x00 Celeron Mobile Processors

| Symbol                                 |                                                                   | Paramete                                             | r           | Min   | Тур  | Max        | Unit   | Notes   |
|----------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|-------------|-------|------|------------|--------|---------|
| V <sub>CC</sub>                        | V <sub>CC</sub> of the P                                          | rocessor Core                                        |             | 0.95  | 1.15 | 1.30       | V      | 1, 2    |
| V <sub>CC,BOOT</sub>                   | Default V <sub>CC</sub>                                           | Default V <sub>CC</sub> Voltage for Initial Power Up |             |       | 1.20 |            | V      | 2, 8    |
| V <sub>CCP</sub>                       | AGTL+ Term                                                        | nination Voltag                                      | е           | 1.00  | 1.05 | 1.10       | V      |         |
| V <sub>CCA</sub>                       | PLL Supply \                                                      | Voltage                                              |             | 1.425 | 1.5  | 1.575      | V      |         |
| I <sub>CCDES</sub>                     | I <sub>CC</sub> for processors<br>Recommended Design Targets:     |                                                      |             |       |      | 36         | А      | 5       |
|                                        | I <sub>CC</sub> for proce                                         | essors                                               |             |       |      |            | Α      |         |
| I <sub>CC</sub>                        | Processor<br>Number                                               | Frequency                                            | Die Variant |       |      |            |        |         |
|                                        | T1600                                                             | 1.66 GHz                                             | 1 MB        |       |      | 41         | Α      | 3, 4    |
|                                        | T1700                                                             | 1.83 GHz                                             | 1 MB        |       |      | 41         | Α      | 3, 4    |
| I <sub>AH</sub> ,<br>I <sub>SGNT</sub> | I <sub>CC</sub> Auto-Halt & Stop-Grant                            |                                                      | t           |       |      | 21         | А      | 3, 4    |
| I <sub>SLP</sub>                       | I <sub>CC</sub> Sleep                                             |                                                      |             |       |      | 20.5       | Α      | 3, 4    |
| I <sub>DSLP</sub>                      | I <sub>CC</sub> Deep Sle                                          | еер                                                  |             |       |      | 18.6       | Α      | 3, 4    |
| dI <sub>CC/DT</sub>                    | V <sub>CC</sub> Power Supply Current Slew Rate at CPU Package Pin |                                                      |             |       | 600  | A/μs       | 6, 7   |         |
| I <sub>CCA</sub>                       | I <sub>CC</sub> for V <sub>CCA</sub> Supply                       |                                                      |             |       |      | 130        | mA     |         |
| I <sub>CCP</sub>                       |                                                                   | Supply before<br>Supply after V                      |             |       |      | 4.5<br>2.5 | A<br>A | 9<br>10 |

### **NOTES:**

- 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing in such a way that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (Intel Thermal Monitor 2, or Extended Halt State).
- 2. The voltage specifications are assumed to be measured across  $V_{CC\_SENSE}$  and  $V_{SS\_SENSE}$  pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-m $\Omega$  minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
- 3. Specified at 100 °C Tj.
- 4. Specified at the nominal  $V_{CC}$ .
- 5. 667-MHz FSB supported
- 6. Instantaneous current  $I_{CC\_CORE\_INST}$  of 55 A has to be sustained for short time ( $t_{INST}$ ) of 10  $\mu$ s. Average current is less than maximum specified  $I_{CCDES}$ . VR OCP threshold should be high enough to support current levels described herein.
- 7. Measured at the bulk capacitors on the motherboard.
- 8. Based on simulations and averaged over the duration of any change in current. Specified by design/characterization at nominal  $V_{CC}$ . Not 100% tested.
- 9. This is a power-up peak current specification, which is applicable when  $V_{CCP}$  is high and  $V_{CC\_CORE}$  is low.
- 10. This is a steady-state  $I_{CC}$  current specification, which is applicable when both  $V_{CCP}$  and  $V_{CC}$  are high.
- 11. 512-KB L2 cache.



Table 8 lists the DC specifications for the processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. The Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer to the highest and lowest core operating frequencies supported on the Genuine Intel Processor. Unless specified otherwise, all specifications for the processor are at Tjunction =100 °C. Care should be taken to read all notes associated with each parameter.

Table 8. Voltage and Current Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel Celeron SFF Genuine Intel Processor

| Symbol                                 |                                                                            | Parameter                                                   |                  | Min   | Тур  | Max        | Unit   | Notes  |
|----------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|------------------|-------|------|------------|--------|--------|
| V <sub>CC</sub>                        | V <sub>CC</sub> of the Proc                                                | V <sub>CC</sub> of the Processor Core                       |                  |       |      | 1.1        | V      | 1, 2   |
| V <sub>CC,BOOT</sub>                   | Default V <sub>CC</sub> Vol                                                | Default V <sub>CC</sub> Voltage for Initial Power Up        |                  |       | 1.20 | _          | V      | 2, 8   |
| V <sub>CCP</sub>                       | AGTL+ Termina                                                              | ation Voltage                                               |                  | 1.00  | 1.05 | 1.10       | V      |        |
| $V_{CCA}$                              | PLL Supply Vol                                                             | tage                                                        |                  | 1.425 | 1.5  | 1.575      | V      |        |
| I <sub>CCDES</sub>                     | I <sub>CC</sub> for Process                                                | ors Recommende                                              | ed Design Target | ı     | ı    | 18         | А      | 5      |
|                                        | I <sub>CC</sub> for process                                                | I <sub>CC</sub> for processors                              |                  |       |      |            | Α      |        |
| I <sub>CC</sub>                        | Processor<br>Number                                                        | Frequency                                                   | Die Variant      |       |      |            |        |        |
|                                        | SU2300                                                                     | 1.2GHz                                                      | 1MB              |       |      | 17.6       | Α      | 3, 4   |
| I <sub>AH</sub> ,<br>I <sub>SGNT</sub> | I <sub>CC</sub> Auto-Halt & Stop-Grant                                     |                                                             |                  | _     | _    | 6.3        | А      | 3, 4   |
| I <sub>SLP</sub>                       | I <sub>CC</sub> Sleep                                                      |                                                             |                  | _     | _    | 5.9        | А      | 3, 4   |
| I <sub>DSLP</sub>                      | I <sub>CC</sub> Deep Sleep                                                 |                                                             | _                | _     | 5.0  | А          | 3, 4   |        |
| I <sub>DPRSLP</sub>                    | I <sub>CC</sub> Deeper Slee                                                | ер                                                          |                  | _     | _    | 3.2        | Α      | 3, 4   |
| dI <sub>CC/DT</sub>                    | V <sub>CC</sub> Power Supply Current Slew Rate at<br>Processor Package Pin |                                                             | _                | _     | 600  | A/µs       | 7      |        |
| I <sub>CCA</sub>                       | I <sub>CC</sub> for V <sub>CCA</sub> Su                                    | I <sub>CC</sub> for V <sub>CCA</sub> Supply                 |                  |       |      | 130        | mA     |        |
| I <sub>CCP</sub>                       |                                                                            | pply before V <sub>CC</sub> soply after V <sub>CC</sub> Sta |                  |       |      | 4.5<br>2.5 | A<br>A | 8<br>9 |

#### NOTES:

- 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (ex: Extended Halt State).
- (ex: Extended Halt State).
   The voltage specifications are assumed to be measured across V<sub>CCSENSE</sub> and V<sub>SSSENSE</sub> pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-mΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
- Specified at 100°C Tj.
- 4. Specified at nominal  $V_{CC}$ .



- 5. 800-MHz FSB supported
- 6. Measured at the bulk capacitors on the motherboard.
- 7. Based on simulations and averaged over the duration of any change in current. Specified by design/characterization at nominal  $V_{CC}$ . Not 100% tested.
- 8. This is a power-up peak current specification, which is applicable when  $V_{CCP}$  is high and  $V_{CC}$  core is low.
- 9. This is a steady-state Icc current specification, which is applicable when both  $V_{CCP}$  and  $V_{CC}$  core are high.
- 10. SU2300 processor operates at same core frequency in HFM and LFM.

### **Table 9. FSB Differential BCLK Specifications**

| Symbol             | Parameter                 | Min  | Тур | Max  | Unit | Notes <sup>1</sup> |
|--------------------|---------------------------|------|-----|------|------|--------------------|
| V <sub>CROSS</sub> | Crossing Voltage          | 0.3  |     | 0.55 | V    | 2, 7, 8            |
| $\Delta V_{CROSS}$ | Range of Crossing Points  |      |     | 140  | mV   | 2, 7, 5            |
| V <sub>SWING</sub> | Differential Output Swing | 300  |     |      | mV   | 6                  |
| I <sub>LI</sub>    | Input Leakage Current     | -5   |     | +5   | μA   | 3                  |
| Cpad               | Pad Capacitance           | 0.95 | 1.2 | 1.45 | pF   | 4                  |

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of BCLK1.
- 3. For Vin between 0 V and  $V_{IH}$ .
- 4. Cpad includes die capacitance only. No package parasitics are included.
- 5.  $\Delta V_{CROSS}$  is defined as the total variation of all crossing voltages as defined in Note 2.
- 6. Measurement taken from differential waveform.
- 7. Measurement taken from single-ended waveform.
- 8. Only applies to the differential rising edge (Clock rising and Clock# falling).



Table 10. **AGTL+ Signal Group DC Specifications** 

| Symbol            | Parameter              | Min                    | Тур                  | Max                    | Unit | Notes <sup>1</sup> |
|-------------------|------------------------|------------------------|----------------------|------------------------|------|--------------------|
| V <sub>CCP</sub>  | I/O Voltage            | 1.00                   | 1.05                 | 1.10                   | V    |                    |
| GTLREF            | Reference Voltage      |                        | 2/3 V <sub>CCP</sub> |                        | V    | 6                  |
| R <sub>COMP</sub> | Compensation Resistor  | 27.23                  | 27.5                 | 27.78                  | Ω    | 10                 |
| R <sub>ODT</sub>  | Termination Resistor   |                        | 55                   |                        | Ω    | 11                 |
| V <sub>IH</sub>   | Input High Voltage     | GTLREF+0.10            | V <sub>CCP</sub>     | V <sub>CCP</sub> +0.10 | V    | 3,6                |
| $V_{\mathrm{IL}}$ | Input Low Voltage      | -0.10                  | 0                    | GTLREF-0.10            | V    | 2,4                |
| V <sub>OH</sub>   | Output High Voltage    | V <sub>CCP</sub> -0.10 | $V_{CCP}$            | V <sub>CCP</sub>       |      | 6                  |
| R <sub>TT</sub>   | Termination Resistance | 50                     | 55                   | 61                     | Ω    | 7                  |
| R <sub>ON</sub>   | Buffer On Resistance   | 22                     | 25                   | 28                     | Ω    | 5                  |
| I <sub>LI</sub>   | Input Leakage Current  |                        |                      | ±100                   | μΑ   | 8                  |
| Cpad              | Pad Capacitance        | 1.6                    | 2.1                  | 2.55                   | pF   | 9                  |

#### NOTES:

- Unless otherwise noted, all specifications in this table apply to all processor frequencies. 1.
- 2.  $V_{\mathrm{IL}}$  is defined as the maximum voltage level at a receiving agent that is interpreted as a logical low value.
- 3.  $V_{IH}$  is defined as the minimum voltage level at a receiving agent that is interpreted as a logical high value.
- $V_{IH}$  and  $V_{OH}$  may experience excursions above  $V_{CCP}$ . However, input signal drivers must 4. comply with the signal quality specifications.
- 5. This is the pull-down driver resistance. Measured at  $0.31*V_{CCP}$ ,  $R_{ON}$  (min) =  $0.4*R_{TT}$ ,  $R_{ON}$ (typ) = 0.455\* $R_{TT}$ ,  $R_{ON}$  (max) = 0.51\* $R_{TT}$ .  $R_{TT}$  typical value of 55  $\Omega$  is used for  $R_{ON}$  typ/ min/max calculations.
- 6. GTLREF should be generated from  $V_{CCP}$  with a 1%-tolerance resistor divider. The  $V_{CCP}$ referred to in these specifications is the instantaneous  $V_{\mbox{\scriptsize CCP}}$
- 7.  $R_{TT}$  is the on-die termination resistance measured at  $V_{\text{OL}}$  of the AGTL+ output driver. Measured at  $0.31*V_{CCP}$   $R_{TT}$  is connected to  $V_{CCP}$  on die. Specified with on die  $R_{TT}$  and  $R_{ON}$  turned off. Vin between 0 and  $V_{CCP}$
- 8.
- 9. Cpad includes die capacitance only. No package parasitics are included.
- 10. This is the external resistor on the comp pins.
- 11. On die termination resistance measured at  $0.33*V_{\text{CCP}}$



**Table 11. CMOS Signal Group DC Specifications** 

| Symbol           | Parameter                      | Min                  | Тур              | Max                   | Unit | Notes <sup>1</sup> |
|------------------|--------------------------------|----------------------|------------------|-----------------------|------|--------------------|
| V <sub>CCP</sub> | I/O Voltage                    | 1.00                 | 1.05             | 1.10                  | V    |                    |
| V <sub>IH</sub>  | Input High Voltage             | 0.7*V <sub>CCP</sub> | V <sub>CCP</sub> | V <sub>CCP</sub> +0.1 | V    | 2                  |
| V <sub>IL</sub>  | Input Low Voltage<br>CMOS      | -0.10                | 0.00             | 0.3*V <sub>CCP</sub>  | V    | 2                  |
| V <sub>OH</sub>  | Output High Voltage            | 0.9*V <sub>CCP</sub> | V <sub>CCP</sub> | V <sub>CCP</sub> +0.1 | V    | 2                  |
| V <sub>OL</sub>  | Output Low Voltage             | -0.10                | 0                | 0.1*V <sub>CCP</sub>  | V    | 2                  |
| I <sub>OH</sub>  | Output High Current            | 1.5                  |                  | 4.1                   | mA   | 5                  |
| I <sub>OL</sub>  | Output Low Current             | 1.5                  |                  | 4.1                   | mA   | 4                  |
| I <sub>LI</sub>  | Input Leakage Current          |                      |                  | ±100                  | μΑ   | 6                  |
| Cpad1            | Pad Capacitance                | 1.6                  | 2.1              | 2.55                  | pF   | 7                  |
| Cpad2            | Pad Capacitance for CMOS Input | 0.95                 | 1.2              | 1.45                  |      | 3                  |

### **NOTES:**

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. The  $V_{CCP}$  referred to in these specifications refers to instantaneous  $V_{CCP}$ .
- 3. Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are included.
- 4. Measured at 0.1\*V<sub>CCP</sub>.
- 5. Measured at 0.9\*V<sub>CCP</sub>.
- 6. For Vin between 0  $\dot{V}$  and  $\dot{V}_{CCP}$ . Measured when the driver is tristated.
- Cpad1 includes die capacitance only for DPRSTP#, DPSLP#, PWRGOOD. No package parasitics are included.

### **Table 12.** Open Drain Signal Group DC Specifications

| Symbol          | Parameter              | Min                  | Тур              | Max                  | Unit | Notes <sup>1</sup> |
|-----------------|------------------------|----------------------|------------------|----------------------|------|--------------------|
| V <sub>OH</sub> | Output High Voltage    | V <sub>CCP</sub> -5% | V <sub>CCP</sub> | V <sub>CCP</sub> +5% | V    | 3                  |
| V <sub>OL</sub> | Output Low Voltage     | 0                    |                  | 0.20                 | V    |                    |
| I <sub>OL</sub> | Output Low Current     | 16                   |                  | 50                   | mA   | 2                  |
| I <sub>LO</sub> | Output Leakage Current |                      |                  | ±200                 | μΑ   | 4                  |
| Cpad            | Pad Capacitance        | 1.9                  | 2.2              | 2.45                 | pF   | 5                  |

### NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. Measured at 0.2 V.
- 3.  $V_{OH}$  is determined by value of the external pull-up resistor to  $V_{CCP}$
- 4. For Vin between 0 V and  $V_{OH}$ .
- 5. Cpad includes die capacitance only. No package parasitics are included.

§



# 4 Package Mechanical Specifications and Pin Information

### 4.1 Package Mechanical Specifications

The processor is available in a 1-MB, 478-pin Micro-FCPGA package. The package mechanical dimensions, keep-out zones, processor mass specifications, and package loading specifications are shown in Figure 3 through Figure 6.

The SFF processor (ULV DC) is available 956-ball Micro-FCBGA packages. The package mechanical dimensions are shown in Figure 7.

The maximum outgoing co-planarity is 0.2 mm (8 mils) for SFF Package

The mechanical package pressure specifications are in a direction normal to the surface of the processor. This requirement is to protect the processor die from fracture risk due to uneven die pressure distribution under tilt, stack-up tolerances and other similar conditions. These specifications assume that a mechanical attach is designed specifically to load one type of processor.

Moreover, the processor package substrate should not be used as a mechanical reference or load-bearing surface for the thermal or mechanical solution. Please refer to the Santa Rosa Platform Mechanical Design Guide for more details.

**Note:** For M-step based processors refer to the 2-MB package drawings.



Figure 3. 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)





Figure 4. 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)





Figure 5. 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)





Figure 6. 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)





Figure 7. SFF (ULV DC) Die Micro-FCBGA Processor Package Drawing

B6748-01 E38344(1)



THIS DRAWING CONTAINS INTEL CORPORATION CONFIDENTIAL INFORMATION. IT IS DISCLOSED IN CONFIDENCE AND ITS CONTENTS MAY NOT BE DISCLOSED, PREPRODUCED, DISPLAYED OR MODIFIED, WITHOUT THE PRIOR WRITTEN CONSENT OF INTEL CORPORATION, REPRODUCED, DISPLAYED OR MODIFIED, WITHOUT THE PRIOR

38



# 4.2 Processor Pinout and Pin List

Table 13 shows the top view pinout of the Intel Celeron Dual-Core processor. The pin list, arranged in two different formats, is shown in the following pages.

Table 13. The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 1 of 2)

|    | 1             | 2      | 3           | 4           | 5           | 6           | 7              | 8   | 9   | 10  | 11  | 12  | 13  |    |
|----|---------------|--------|-------------|-------------|-------------|-------------|----------------|-----|-----|-----|-----|-----|-----|----|
| A  |               | VSS    | SMI#        | VSS         | FERR#       | A20M#       | VCC            | VSS | VCC | VCC | VSS | VCC | VCC | A  |
| В  |               | RSVD   | INIT#       | LINT1       | DPSLP#      | VSS         | VCC            | VSS | VCC | VCC | VSS | VCC | VSS | В  |
| С  | RESET#        | VSS    | RSVD        | IGNNE<br>#  | VSS         | LINT0       | THERM<br>TRIP# | VSS | VCC | VCC | VSS | VCC | VCC | С  |
| D  | VSS           | RSVD   | RSVD        | VSS         | STPCLK<br># | PWRGO<br>OD | SLP#           | VSS | VCC | VCC | VSS | VCC | VSS | D  |
| E  | DBSY#         | BNR#   | VSS         | HITM#       | DPRSTP<br># | VSS         | VCC            | VSS | VCC | VCC | VSS | VCC | VCC | E  |
| F  | BR0#          | VSS    | RS[0]#      | RS[1]#      | VSS         | RSVD        | VCC            | VSS | VCC | VCC | VSS | VCC | VSS | F  |
| G  | VSS           | TRDY#  | RS[2]#      | VSS         | BPRI#       | HIT#        |                |     |     |     |     |     |     | G  |
| н  | ADS#          | REQ[1] | VSS         | LOCK#       | DEFER#      | VSS         |                |     |     |     |     |     |     | н  |
| J  | A[9]#         | VSS    | REQ[3]      | A[3]#       | VSS         | VCCP        |                |     |     |     |     |     |     | J  |
| K  | VSS           | REQ[2] | REQ[0]      | VSS         | A[6]#       | VCCP        |                |     |     |     |     |     |     | к  |
| L  | REQ[4]#       | A[13]# | VSS         | A[5]#       | A[4]#       | VSS         |                |     |     |     |     |     |     | L  |
| М  | ADSTB[0<br>]# | VSS    | A[7]#       | RSVD        | VSS         | VCCP        |                |     |     |     |     |     |     | м  |
| N  | VSS           | A[8]#  | A[10]#      | VSS         | RSVD        | VCCP        |                |     |     |     |     |     |     | N  |
| P  | A[15]#        | A[12]# | VSS         | A[14]#      | A[11]#      | VSS         |                |     |     |     |     |     |     | P  |
| R  | A[16]#        | VSS    | A[19]#      | A[24]#      | VSS         | VCCP        |                |     |     |     |     |     |     | R  |
| т  | VSS           | RSVD   | A[26]#      | VSS         | A[25]#      | VCCP        |                |     |     |     |     |     |     | т  |
| U  | A[23]#        | A[30]# | VSS         | A[21]#      | A[18]#      | VSS         |                |     |     |     |     |     |     | U  |
| V  | ADSTB[1<br>]# | VSS    | RSVD        | A[31]#      | VSS         | VCCP        |                |     |     |     |     |     |     | v  |
| w  | VSS           | A[27]# | A[32]#      | VSS         | A[28]#      | A[20]#      |                |     |     |     |     |     |     | w  |
| Y  | COMP[3]       | A[17]# | VSS         | A[29]#      | A[22]#      | VSS         |                |     |     |     |     |     |     | Y  |
| AA | COMP[2]       | VSS    | A[35]#      | A[33]#      | VSS         | TDI         | VCC            | VSS | VCC | VCC | VSS | VCC | VCC | AA |
| AB | VSS           | A[34]# | TDO         | VSS         | TMS         | TRST#       | VCC            | VSS | VCC | VCC | VSS | VCC | VSS | AB |
| AC | PREQ#         | PRDY#  | VSS         | BPM[3]<br># | TCK         | VSS         | VCC            | VSS | VCC | VCC | VSS | VCC | VCC | AC |
| AD | BPM[2]#       | VSS    | BPM[1]<br># | BPM[0]<br># | VSS         | VID[0]      | VCC            | VSS | VCC | VCC | VSS | VCC | VSS | AD |
| AE | VSS           | VID[6] | VID[4]      | VSS         | VID[2]      | PSI#        | VSS<br>SENSE   | VSS | VCC | VCC | VSS | VCC | VCC | AE |
| AF | TEST5         | VSS    | VID[5]      | VID[3]      | VID[1]      | VSS         | VCC<br>SENSE   | VSS | VCC | VCC | VSS | VCC | VSS | AF |
|    | 1             | 2      | 3           | 4           | 5           | 6           | 7              | 8   | 9   | 10  | 11  | 12  | 13  | _  |



Table 14. The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 2 of 2)

|        |     |     | •   |     | •   |     |              |              |          |         |               |               |               |        |
|--------|-----|-----|-----|-----|-----|-----|--------------|--------------|----------|---------|---------------|---------------|---------------|--------|
|        | 14  | 15  | 16  | 17  | 18  | 19  | 20           | 21           | 22       | 23      | 24            | 25            | 26            |        |
| A      | VSS | VCC | VSS | VCC | VCC | VSS | VCC          | BCLK[1]      | BCLK[0]  | VSS     | THRMDA        | VSS           | TEST6         | A      |
| В      | VCC | VCC | VSS | VCC | VCC | VSS | VCC          | VSS          | BSEL[0]  | BSEL[1] | VSS           | THRMDC        | VCCA          | В      |
| С      | VSS | VCC | VSS | VCC | VCC | VSS | DBR#         | BSEL[2]      | VSS      | TEST1   | TEST3         | VSS           | VCCA          | С      |
| D      | VCC | VCC | VSS | VCC | VCC | VSS | IERR#        | PROCHO<br>T# | RSVD     | VSS     | DPWR#         | TEST2         | VSS           | D      |
| E      | VSS | VCC | VSS | VCC | VCC | VSS | VCC          | VSS          | D[0]#    | D[7]#   | VSS           | D[6]#         | D[2]#         | E      |
| F      | VCC | VCC | VSS | VCC | VCC | VSS | VCC          | DRDY#        | VSS      | D[4]#   | D[1]#         | VSS           | D[13]#        | F      |
| G      |     |     |     |     |     |     |              | VCCP         | D[3]#    | VSS     | D[9]#         | D[5]#         | VSS           | G      |
| н      |     |     |     |     |     |     |              | VSS          | D[12]#   | D[15]#  | VSS           | DINV[0]#      | DSTBP[<br>0]# | н      |
| J      |     |     |     |     |     |     |              | VCCP         | VSS      | D[11]#  | D[10]#        | VSS           | DSTBN[<br>0]# | J      |
| K      |     |     |     |     |     |     |              | VCCP         | D[14]#   | VSS     | D[8]#         | D[17]#        | VSS           | K      |
| L      |     |     |     |     |     |     |              | VSS          | D[22]#   | D[20]#  | VSS           | D[29]#        | DSTBN[<br>1]# | L      |
| М      |     |     |     |     |     |     |              | VCCP         | VSS      | D[23]#  | D[21]#        | VSS           | DSTBP[<br>1]# | М      |
| N      |     |     |     |     |     |     |              | VCCP         | D[16]#   | VSS     | DINV[1]#      | D[31]#        | VSS           | N      |
| P      |     |     |     |     |     |     |              | VSS          | D[26]#   | D[25]#  | VSS           | D[24]#        | D[18]#        | P      |
| R      |     |     |     |     |     |     |              | VCCP         | VSS      | D[19]#  | D[28]#        | VSS           | COMP[0<br>]   | R      |
| Т      |     |     |     |     |     |     |              | VCCP         | D[37]#   | VSS     | D[27]#        | D[30]#        | VSS           | Т      |
| U      |     |     |     |     |     |     |              | VSS          | DINV[2]# | D[39]#  | VSS           | D[38]#        | COMP[1        | U      |
| V      |     |     |     |     |     |     |              | VCCP         | VSS      | D[36]#  | D[34]#        | VSS           | D[35]#        | v      |
| w      |     |     |     |     |     |     |              | VCCP         | D[41]#   | VSS     | D[43]#        | D[44]#        | VSS           | w      |
| Y      |     |     |     |     |     |     |              | VSS          | D[32]#   | D[42]#  | VSS           | D[40]#        | DSTBN[<br>2]# | Y      |
| AA     | VSS | VCC | VSS | VCC | VCC | VSS | VCC          | D[50]#       | VSS      | D[45]#  | D[46]#        | VSS           | DSTBP[<br>2]# | A      |
| АВ     | VCC | VCC | VSS | VCC | VCC | VSS | VCC          | D[52]#       | D[51]#   | VSS     | D[33]#        | D[47]#        | VSS           | A<br>B |
| AC     | VSS | VCC | VSS | VCC | VCC | VSS | DINV[3<br>]# | VSS          | D[60]#   | D[63]#  | VSS           | D[57]#        | D[53]#        | AC     |
| A<br>D | VCC | VCC | VSS | VCC | VCC | VSS | D[54]#       | D[59]#       | VSS      | D[61]#  | D[49]#        | VSS           | GTLREF        | A<br>D |
| AE     | VSS | VCC | VSS | VCC | VCC | VSS | VCC          | D[58]#       | D[55]#   | VSS     | D[48]#        | DSTBN[3]<br># | VSS           | AE     |
| AF     | VCC | VCC | VSS | VCC | VCC | VSS | VCC          | VSS          | D[62]#   | D[56]#  | DSTBP[3]<br># | VSS           | TEST4         | AF     |
|        | 14  | 15  | 16  | 17  | 18  | 19  | 20           | 21           | 22       | 23      | 24            | 25            | 26            |        |



## **Table 15.** SFF Processor Top View Upper Left Side

|    | BD           | вс           | ВВ     | ВА          | AY          | AW  | AV    | AU     | АТ     | AR     | AP     | AN            | АМ     | AL         | AK     | AJ     | АН     | AG         | AF          | AE     | AD     | AC     |
|----|--------------|--------------|--------|-------------|-------------|-----|-------|--------|--------|--------|--------|---------------|--------|------------|--------|--------|--------|------------|-------------|--------|--------|--------|
| 1  | 00           | БО           | 00     | VSS         | Α.          | VSS | AV    | TDO    | Αι     | A[35]# | A      | A[17]#        | AIVI   | A[31]#     | AIX    | A[30]# | All    | A[19]#     | Α.          | COMP[  | Αυ     | A[16]# |
| 2  |              |              | VSS    |             | BPM[3]<br># |     | PREQ# |        | A[22]# |        | A[34]# |               | A[32]# |            | A[21]# |        | A[23]# |            | COMP[<br>3] | -,     | A[11]# |        |
| 3  |              | VSS          |        | VSS         |             | VSS |       | VSS    |        | VSS    |        | VSS           |        | VSS        |        | VSS    |        | VSS        |             | VSS    |        | VSS    |
| 4  | VSS          |              | VID[5] |             | VID[6]      |     | TCK   |        | A[20]# |        | A[28]# |               | A[27]# |            | A[18]# |        | A[26]# |            | A[24]#      |        | A[12]# |        |
| 5  |              | VID[4]       |        | BPM[2]<br># |             | TMS |       | A[33]# |        | A[29]# |        | ADSTB<br>[1]# |        | RSVD0<br>4 |        | A[25]# |        | RSVD0<br>3 |             | A[14]# |        | A[10]# |
| 6  | VSS          |              | VSS    |             | VSS         |     | VSS   |        | VSS    |        | VSS    |               | VSS    |            | VSS    |        | VSS    |            | VSS         |        | VSS    |        |
| 7  |              | VID[1]       |        | BPM[1]<br># |             | TDI |       | VSS    |        | VCCP   |        | VCCP          |        | VCCP       |        | VCCP   |        | VCCP       |             | VCCP   |        | VCCP   |
| 8  | VID[0]       |              | VID[3] |             | BPM[0]<br># |     | TRST# |        | VSS    |        | VSS    |               | VSS    |            | VSS    |        | VSS    |            | VSS         |        | VSS    |        |
| 9  |              | VSS          |        | VSS         |             | VSS |       | VSS    |        | VCCP   |        | VCCP          |        | VCCP       |        | VCCP   |        | VCCP       |             | VCCP   |        | VCCP   |
| 10 | PSI#         |              | VID[2] |             | TEST5       |     | PRDY# |        | VSS    |        | VCCP   |               | VSS    |            | VCCP   |        | VSS    |            | VCCP        |        | VSS    |        |
| 11 |              | VSS          |        | VSS         |             | VSS |       | VCCP   |        | VCCP   |        | VCCP          |        | VCCP       |        | VCCP   |        | VCCP       |             | VCCP   |        | VCCP   |
| 12 | VCCS<br>ENSE |              | VSS    |             | VSS         |     | VSS   |        | VSS    |        | VCCP   |               | VSS    |            | VCCP   |        | VSS    |            | VCCP        |        | VSS    |        |
| 13 |              | VSSSE<br>NSE |        | VSS         |             | VSS |       | VCCP   |        | VCCP   |        | VCCP          |        | VCCP       |        | VCCP   |        | VCCP       |             | VCCP   |        | VCCP   |
| 14 | VCC          |              | VCC    |             | VCC         |     | VCC   |        | VCC    |        | VCC    |               | VCC    |            | VCCP   |        | VCCP   |            | VCCP        |        | VCCP   |        |
| 15 |              | VSS          |        | VSS         |             | VSS |       | VSS    |        | VSS    |        | VSS           |        | VSS        |        | VSS    |        | VSS        |             | VSS    |        | VSS    |
| 16 | VCC          |              | VCC    |             | VCC         |     | VCC   |        | VCC    |        | VCC    |               | VCC    |            | VCC    |        | VCC    |            | VCC         |        | VCC    |        |
| 17 |              | VSS          |        | VSS         |             | VSS |       | VSS    |        | VSS    |        | VSS           |        | VSS        |        | VSS    |        | VSS        |             | VSS    |        | VSS    |
| 18 | VCC          |              | VCC    |             | VCC         |     | VCC   |        | VCC    |        | VCC    |               | VCC    |            | VCC    |        | VCC    |            | VCC         |        | VCC    |        |
| 19 |              | VSS          |        | VSS         |             | VSS |       | VSS    |        | VSS    |        | VSS           |        | VSS        |        | VSS    |        | VSS        |             | VSS    |        | VSS    |
| 20 | VCC          |              | VCC    |             | VCC         |     | VCC   |        | VCC    |        | VCC    |               | VCC    |            | VCC    |        | VCC    |            | VCC         |        | VCC    |        |
| 21 |              | VSS          |        | VSS         |             | VSS |       | VSS    |        | VSS    |        | VSS           |        | VSS        |        | VSS    |        | VSS        |             | VSS    |        | VSS    |
| 22 | VCC          |              | VCC    |             | VCC         |     | VCC   |        | VCC    |        | VCC    |               | VCC    |            | VCC    |        | VCC    |            | VCC         |        | VCC    |        |



## Table 16. SFF Processor Top View Upper Right Side

|    | T      |        |               |          |            |             |       | _           | _           |            |      |       |        |       | l      |       |            |      | _      |       | Γ_         |      |
|----|--------|--------|---------------|----------|------------|-------------|-------|-------------|-------------|------------|------|-------|--------|-------|--------|-------|------------|------|--------|-------|------------|------|
|    | AB     | AA     | Υ             | W        | ٧          | U<br>REQ[2] | Т     | REQ[0]      | Р           | N          | М    | L     | K      | J     | Н      | G     | F          | Е    | D      | С     | В          | Α    |
| 1  |        | A[7]#  |               | A[5]#    |            | #           |       | #           |             | LOCK#      |      | TRDY# |        | DBSY# |        | VSS   |            | VSS  |        |       |            |      |
| 2  | A[15]# |        | RSVD0<br>2    |          | RSVD0<br>1 |             | A[9]# |             | A[3]#       |            | BR0# |       | RS[0]# |       | HIT#   |       | HITM#      |      | VSS    |       |            |      |
| 3  |        | VSS    |               | VSS      |            | VSS         |       | VSS         |             | VSS        |      | VSS   |        | VSS   |        | VSS   |            | VSS  |        | VSS   |            |      |
| 4  | A[8]#  |        | ADSTB<br>[0]# |          | A[4]#      |             | A[6]# |             | REQ[3]<br># |            | ADS# |       | RS[2]# |       | RS[1]# |       | RSVD0<br>6 |      | FERR#  |       | VSS        |      |
| 5  |        | A[13]# |               | REQ[4]   |            | VSS         |       | REQ[1]<br># |             | DEFER<br># |      | BPRI# |        | BNR#  |        | RESET |            | SMI# |        | LINT1 |            | VSS  |
| 6  | VSS    |        | VSS           | <i>m</i> | VSS        |             | VSS   | "           | VSS         | "          | VSS  |       | VSS    |       | VSS    | "     | VSS        |      | VSS    |       | VSS        |      |
| 7  |        | VCCP   |               | VCCP     |            | VCCP        |       | VCCP        |             | VCCP       |      | VCCP  |        | DBR#  |        | DPRST |            | PWRG |        | A20M# |            | VSS  |
| 8  | VSS    |        | VSS           |          | VSS        |             | VSS   |             | VSS         |            | VSS  |       | VSS    |       | RSVD0  | P#    | STPCL      | OOD  | INIT#  |       | DPSLP      |      |
|    | V33    |        | V33           |          | V33        |             | VSS   |             | VSS         |            | VSS  |       | V33    | RSVD0 | 7      |       | K#         |      | IINI1# |       | #          |      |
| 9  |        | VCCP   |               | VCCP     |            | VCCP        |       | VCCP        |             | VCCP       |      | VCCP  |        | 5     |        | VSS   | IGNNE      | VSS  |        | LINT0 | THER       | VSS  |
| 10 | VCCP   |        | VSS           |          | VCCP       |             | VSS   |             | VCCP        |            | VSS  |       | VCCP   |       | VSS    |       | #          |      | SLP#   |       | MTRIP<br># |      |
| 11 |        | VCCP   |               | VCCP     |            | VCCP        |       | VCCP        |             | VCCP       |      | VCCP  |        | VCCP  |        | VCCP  |            | VCCP |        | VSS   |            | VSS  |
| 12 | VCCP   |        | VSS           |          | VCCP       |             | VSS   |             | VCCP        |            | VSS  |       | VCCP   |       | VCCP   |       | VCCP       |      | VCCP   |       | VCCP       |      |
| 13 |        | VCCP   |               | VCCP     |            | VCCP        |       | VCCP        |             | VCCP       |      | VCCP  |        | VCCP  |        | VCCP  |            | VCCP |        | VCCP  |            | VCCP |
| 14 | VCCP   |        | VCCP          |          | VCCP       |             | VCCP  |             | VCCP        |            | VCCP |       | VCCP   |       | VCCP   |       | VCCP       |      | VCCP   |       | VCCP       |      |
| 15 |        | VSS    |               | VSS      |            | VSS         |       | VSS         |             | VSS        |      | VSS   |        | VSS   |        | VSS   |            | VSS  |        | VSS   |            | VSS  |
| 16 | VCC    |        | VCC           |          | VCC        |             | VCC   |             | VCC         |            | VCC  |       | VCC    |       | VCC    |       | VCC        |      | VCC    |       | VCC        |      |
| 17 |        | VSS    |               | VSS      |            | VSS         |       | VSS         |             | VSS        |      | VSS   |        | VSS   |        | VSS   |            | VSS  |        | VSS   |            | VSS  |
|    |        | VSS    |               | VSS      |            | VSS         |       | VSS         |             | V33        |      | VOO   |        | V33   |        | V33   |            | V33  |        | V33   |            | V33  |
| 18 | VCC    |        | VCC           |          | VCC        |             | VCC   |             | VCC         |            | VCC  |       | VCC    |       | VCC    |       | VCC        |      | VCC    |       | VCC        |      |
| 19 |        | VSS    |               | VSS      |            | VSS         |       | VSS         |             | VSS        |      | VSS   |        | VSS   |        | VSS   |            | VSS  |        | VSS   |            | VSS  |
| 20 | VCC    |        | VCC           |          | VCC        |             | VCC   |             | VCC         |            | VCC  |       | VCC    |       | VCC    |       | VCC        |      | VCC    |       | VCC        |      |
| 21 |        | VSS    |               | VSS      |            | VSS         |       | VSS         |             | VSS        |      | VSS   |        | VSS   |        | VSS   |            | VSS  |        | VSS   |            | VSS  |
| 22 | VCC    |        | VCC           |          | VCC        |             | VCC   |             | VCC         |            | VCC  |       | VCC    |       | VCC    |       | VCC        |      | VCC    |       | VCC        |      |



### **Table 17.** SFF Processor Top View Lower Left Side

|    | BD   | вс     | BB         | ВА     | AY                 | AW         | ΑV     | AU     | ΑT     | AR     | AP     | AN     | AM     | AL            | AK            | AJ           | AH     | AG     | AF     | ΑE          | AD          | AC     |
|----|------|--------|------------|--------|--------------------|------------|--------|--------|--------|--------|--------|--------|--------|---------------|---------------|--------------|--------|--------|--------|-------------|-------------|--------|
| 23 |      | VSS    |            | VSS    |                    | VSS        |        | VSS    |        | VSS    |        | VSS    |        | VSS           |               | VSS          |        | VSS    |        | VSS         |             | VSS    |
| 24 | VCC  |        | VCC        |        | VCC                |            | VCC    |        | VCC    |        | VCC    |        | VCC    |               | VCC           |              | VCC    |        | VCC    |             | VCC         |        |
| 25 |      | VSS    |            | VSS    |                    | VSS        |        | VSS    |        | VSS    |        | VSS    |        | VSS           |               | VSS          |        | VSS    |        | VSS         |             | VSS    |
| 26 | VCC  |        | VCC        |        | VCC                |            | VCC    |        | VCC    |        | VCC    |        | VCC    |               | VCC           |              | VCC    |        | VCC    |             | VCC         |        |
| 27 |      | VSS    |            | VSS    |                    | VSS        |        | VSS    |        | VSS    |        | VSS    |        | VSS           |               | VSS          |        | VSS    |        | VSS         |             | VSS    |
| 28 | VCC  |        | VCC        |        | VCC                |            | VCC    |        | VCC    |        | VCC    |        | VCC    |               | VCC           |              | VCC    |        | VCC    |             | VCC         |        |
| 29 |      | VSS    |            | VSS    |                    | VSS        |        | VSS    |        | VSS    |        | VSS    |        | VSS           |               | VSS          |        | VSS    |        | VSS         |             | VSS    |
| 30 | VCC  |        | VCC        |        | VCC                |            | VCC    |        | VCC    |        | VCC    |        | VCC    |               | VCC           |              | VCC    |        | VCC    |             | VCC         |        |
| 31 |      | VSS    |            | VSS    |                    | VSS        |        | VSS    |        | VSS    |        | VSS    |        | VSS           |               | VSS          |        | VSS    |        | VSS         |             | VSS    |
| 32 | VCC  |        | VCC        |        | VCC                |            | VCC    |        | VCC    |        | VCC    |        | VCC    |               | VCC           |              | VCC    |        | VCC    |             | VCC         |        |
| 33 |      | VSS    |            | VSS    |                    | VSS        |        | VCC    |        | VCC    |        | VCC    |        | VCC           |               | VCC          |        | VCC    |        | VCC         |             | VCC    |
| 34 | THRM |        | THRM<br>DA |        | VSS                |            | VSS    |        | VCC    |        | VSS    |        | VSS    |               | VSS           |              | VSS    |        | VSS    |             | VSS         |        |
| 35 |      | D[58]# |            | D[62]# |                    | VSS        |        | VSS    |        | VSS    |        | VCCP   |        | VCCP          |               | VCCP         |        | VCCP   |        | VCCP        |             | VCCP   |
| 36 | VSS  |        | VSS        |        | D[56]#             |            | VSS    |        | VSS    |        | VCCP   |        | VSS    |               | VCCP          |              | VSS    |        | VCCP   |             | VSS         |        |
| 37 |      | DINV[3 |            | D[54]# |                    | VSS        |        | VSS    |        | VSS    |        | VCCP   |        | VCCP          |               | VCCP         |        | VCCP   |        | VCCP        |             | VCCP   |
| 38 | VSS  | 1"     | D[55]#     |        | DSTBP<br>[3]#      |            | D[48]# |        | VSS    |        | VCCP   |        | VSS    |               | VCCP          |              | VSS    |        | VCCP   |             | VSS         |        |
| 39 |      | D[59]# |            | VSS    | [O]#               | VSS        |        | VSS    |        | VSS    |        | VSS    |        | VSS           |               | VSS          |        | VSS    |        | VSS         |             | VSS    |
| 40 | VSS  |        | D[61]#     |        | DSTBN<br>[3]#      |            | D[50]# |        | D[57]# |        | D[45]# |        | D[42]# |               | D[43]#        |              | D[34]# |        | D[35]# |             | D[26]#      |        |
| 41 |      | VSS    |            | D[60]# | [o] <sub>i</sub> . | D[52]#     |        | D[51]# |        | D[53]# |        | D[46]# |        | D[47]#        |               | DINV[2<br>]# |        | D[37]# |        | TEST4       |             | D[27]# |
| 42 |      |        | VSS        |        | VSS                |            | VSS    |        | VSS    |        | VSS    |        | VSS    |               | VSS           | J#           | VSS    |        | VSS    |             | VSS         |        |
| 43 |      |        |            | VSS    |                    | GTLRE<br>F |        | D[63]# |        | D[33]# |        | D[41]# |        | DSTBP<br>[2]# |               | D[36]#       |        | D[44]# |        | COMP[<br>0] |             | TEST6  |
| 44 |      |        |            |        | VSS                | <u> </u>   | VSS    |        | D[49]# |        | D[32]# |        | D[40]# | [4]#          | DSTBN<br>[2]# |              | D[39]# |        | D[38]# | OJ.         | COMP[<br>1] |        |



## Table 18. SFF Processor Top View Lower Right Side

|          | АВ     | AA     | Υ      | w      | v      | U                 | т      | R               | Р      | N      | М      |        | <b>V</b> |          | н     | G      | F     | Е     | D            | С           | В      |             |
|----------|--------|--------|--------|--------|--------|-------------------|--------|-----------------|--------|--------|--------|--------|----------|----------|-------|--------|-------|-------|--------------|-------------|--------|-------------|
| 23       | AB     | VSS    | Y      | VSS    | V      | VSS               |        | VSS             | Р      | VSS    | IVI    | VSS    | K        | J<br>VSS | п     | VSS    | Г     | VSS   | ט            | VSS         | В      | A<br>VSS    |
| 24       | VCC    |        | VCC    |        | VCC    |                   | VCC    |                 | VCC    |        | VCC    |        | VCC      |          | VCC   |        | VCC   |       | VCC          |             | VCC    |             |
| 25       | 700    | VSS    | *00    | VSS    | 700    | VSS               | 700    | VSS             | *00    | VSS    | 700    | VSS    | *00      | VSS      | 700   | VSS    | ***   | VSS   | *00          | VSS         | 700    | VSS         |
| <u> </u> |        | VSS    | 1/00   | VSS    | 1/00   | VSS               | 1,00   | VSS             | 1/00   | VSS    | 1100   | VSS    | 1/00     | VSS      | 1100  | VSS    | 1,00  | VSS   |              | VSS         | 1/00   | V33         |
| 26       | VCC    |        | VCC    |        | VCC    |                   | VCC    |                 | VCC    |        | VCC    |        | VCC      |          | VCC   |        | VCC   |       | VCC          |             | VCC    |             |
| 27       |        | VSS    |        | VSS    |        | VSS               |        | VSS             |        | VSS    |        | VSS    |          | VSS      |       | VSS    |       | VSS   |              | VSS         |        | VSS         |
| 28       | VCC    |        | VCC    |        | VCC    |                   | VCC    |                 | VCC    |        | VCC    |        | VCC      |          | VCC   |        | VCC   |       | VCC          |             | VCC    |             |
| 29       |        | VSS    |        | VSS    |        | VSS               |        | VSS             |        | VSS    |        | VSS    |          | VSS      |       | VSS    |       | VSS   |              | VSS         |        | VSS         |
| 30       | VCC    |        | VCC    |        | VCC    |                   | VCC    |                 | VCC    |        | VCC    |        | VCC      |          | VCC   |        | VCC   |       | VCC          |             | VCC    |             |
| 31       |        | VSS    |        | VSS    |        | VSS               |        | VSS             |        | VSS    |        | VSS    |          | VSS      |       | VSS    |       | VSS   |              | VSS         |        | VSS         |
| 32       | VCC    |        | vcc    |        | VCC    |                   | VCC    |                 | VCC    |        | VCC    |        | VCC      |          | VCC   |        | VCC   |       | VCCP         |             | VCCP   |             |
| 33       |        | VCC    |        | VCC    |        | VCC               |        | VCC             |        | VCC    |        | VCC    |          | VCC      |       | VCC    |       | VCCP  |              | VCCP        |        | VCCP        |
| 34       | VSS    |        | VSS    |        | VSS    |                   | VSS    |                 | VSS    |        | VSS    |        | VSS      |          | VSS   |        | VCCP  |       | VCCA         |             | VCCA   |             |
| 35       |        | VCCP   |        | VCCP   |        | VCCP              |        | VCCP            |        | VCCP   |        | VCCP   |          | VCCP     |       | VCCP   |       | VCCP  |              | BCLK[<br>1] |        | BCLK[<br>0] |
| 36       | VCCP   |        | VSS    |        | VCCP   |                   | VSS    |                 | VCCP   |        | VSS    |        | VCCP     |          | VCCP  |        | VCCP  |       | VSS          | ,           | VSS    |             |
| 37       |        | VCCP   |        | VCCP   |        | VCCP              |        | VCCP            |        | VCCP   |        | VCCP   |          | VCCP     |       | VSS    |       | TEST1 |              | BSEL[1      |        | BSEL[0      |
| 38       | VCCP   |        | VSS    |        | VCCP   |                   | VSS    |                 | VCCP   |        | VSS    |        | VCCP     |          | VSS   |        | DRDY# |       | PROC<br>HOT# | 1           | BSEL[2 |             |
| 39       |        | VSS    |        | VSS    |        | VSS               |        | VSS             |        | VSS    |        | VSS    |          | VSS      |       | D[6]#  |       | VSS   | HO1#         | VSS         | J      | VSS         |
| 40       | D[25]# |        | D[29]# |        | D[17]# |                   | D[11]# |                 | DINV[0 |        | D[12]# |        | DSTBN    |          | D[4]# |        | D[0]# |       | TEST2        |             | IERR#  |             |
| 41       | ,      | D[24]# |        | D[21]# | . ,    | D[23]#            |        | D[20]#          | ]#     | D[10]# | . ,    | D[8]#  | [0]#     | DSTBP    | .,    | D[13]# |       | D[7]# |              | DPWR        |        | VSS         |
| 42       | VSS    | J[27]# | VSS    | J[21]# | VSS    | اردی <sub>ا</sub> | VSS    | الوميا <i>ت</i> | VSS    | J[10]# | VSS    | 2[0]#  | VSS      | [0]#     | VSS   | 2[10]# | VSS   | 2[1]# | VSS          | #           | VSS    | *00         |
|          | voo    | DI303# | v33    | DSTBP  | vss    | DSTBN             | v33    | DINV[1          | voo    | Diaa.  | voo    | D(4E)# | v33      | Distr    | voo   | D(41#  | v33   | DI31# | v33          | TESTA       | vss    |             |
| 43       |        | D[28]# |        | [1]#   |        | [1]#              |        | ]#              |        | D[22]# |        | D[15]# |          | D[3]#    |       | D[1]#  |       | D[2]# |              | TEST3       |        |             |
| 44       | D[19]# |        | D[30]# |        | D[18]# |                   | D[31]# |                 | D[16]# |        | D[14]# |        | D[9]#    |          | D[5]# |        | VSS   |       | VSS          |             |        |             |



Table 19. Pin Listing by Pin Name (Sheet 1 of 16)

| (Sheet 1 of 16) |               |                       |                  |  |  |  |  |  |  |  |  |  |  |
|-----------------|---------------|-----------------------|------------------|--|--|--|--|--|--|--|--|--|--|
| Pin Name        | Pin<br>Number | Signal Buffer<br>Type | Direction        |  |  |  |  |  |  |  |  |  |  |
| A[3]#           | J4            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[4]#           | L5            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[5]#           | L4            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[6]#           | K5            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[7]#           | М3            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[8]#           | N2            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[9]#           | J1            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[10]#          | N3            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[11]#          | P5            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[12]#          | P2            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[13]#          | L2            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[14]#          | P4            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[15]#          | P1            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[16]#          | R1            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[17]#          | Y2            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[18]#          | U5            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[19]#          | R3            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[20]#          | W6            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[21]#          | U4            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[22]#          | Y5            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |
| A[23]#          | U1            | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |  |  |

Table 19. Pin Listing by Pin Name (Sheet 2 of 16)

| Pin Name  | Pin<br>Number | Signal Buffer<br>Type | Direction        |
|-----------|---------------|-----------------------|------------------|
| A[24]#    | R4            | Source Synch          | Input/<br>Output |
| A[25]#    | T5            | Source Synch          | Input/<br>Output |
| A[26]#    | Т3            | Source Synch          | Input/<br>Output |
| A[27]#    | W2            | Source Synch          | Input/<br>Output |
| A[28]#    | W5            | Source Synch          | Input/<br>Output |
| A[29]#    | Y4            | Source Synch          | Input/<br>Output |
| A[30]#    | U2            | Source Synch          | Input/<br>Output |
| A[31]#    | V4            | Source Synch          | Input/<br>Output |
| A[32]#    | W3            | Source Synch          | Input/<br>Output |
| A[33]#    | AA4           | Source Synch          | Input/<br>Output |
| A[34]#    | AB2           | Source Synch          | Input/<br>Output |
| A[35]#    | AA3           | Source Synch          | Input/<br>Output |
| A20M#     | A6            | CMOS                  | Input            |
| ADS#      | H1            | Common Clock          | Input/<br>Output |
| ADSTB[0]# | M1            | Source Synch          | Input/<br>Output |
| ADSTB[1]# | V1            | Source Synch          | Input/<br>Output |
| BCLK[0]   | A22           | Bus Clock             | Input            |
| BCLK[1]   | A21           | Bus Clock             | Input            |
| BNR#      | E2            | Common Clock          | Input/<br>Output |
| BPM[0]#   | AD4           | Common Clock          | Input/<br>Output |
| BPM[1]#   | AD3           | Common Clock          | Output           |
| BPM[2]#   | AD1           | Common Clock          | Output           |
| BPM[3]#   | AC4           | Common Clock          | Input/<br>Output |
| BPRI#     | G5            | Common Clock          | Input            |



Table 19. Pin Listing by Pin Name (Sheet 3 of 16)

| Pin Signal Ruffer |               |                       |                  |  |  |  |  |  |  |  |  |
|-------------------|---------------|-----------------------|------------------|--|--|--|--|--|--|--|--|
| Pin Name          | Pin<br>Number | Signal Buffer<br>Type | Direction        |  |  |  |  |  |  |  |  |
| BR0#              | F1            | Common Clock          | Input/<br>Output |  |  |  |  |  |  |  |  |
| BSEL[0]           | B22           | CMOS                  | Output           |  |  |  |  |  |  |  |  |
| BSEL[1]           | B23           | CMOS                  | Output           |  |  |  |  |  |  |  |  |
| BSEL[2]           | C21           | CMOS                  | Output           |  |  |  |  |  |  |  |  |
| COMP[0]           | R26           | Power/Other           | Input/<br>Output |  |  |  |  |  |  |  |  |
| COMP[1]           | U26           | Power/Other           | Input/<br>Output |  |  |  |  |  |  |  |  |
| COMP[2]           | AA1           | Power/Other           | Input/<br>Output |  |  |  |  |  |  |  |  |
| COMP[3]           | Y1            | Power/Other           | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[0]#             | E22           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[1]#             | F24           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[2]#             | E26           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[3]#             | G22           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[4]#             | F23           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[5]#             | G25           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[6]#             | E25           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[7]#             | E23           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[8]#             | K24           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[9]#             | G24           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[10]#            | J24           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[11]#            | J23           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[12]#            | H22           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[13]#            | F26           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
| D[14]#            | K22           | Source Synch          | Input/<br>Output |  |  |  |  |  |  |  |  |
|                   |               |                       |                  |  |  |  |  |  |  |  |  |

Table 19. Pin Listing by Pin Name (Sheet 4 of 16)

| Pin Name | Pin<br>Number | Signal Buffer<br>Type | Direction        |
|----------|---------------|-----------------------|------------------|
| D[15]#   | H23           | Source Synch          | Input/<br>Output |
| D[16]#   | N22           | Source Synch          | Input/<br>Output |
| D[17]#   | K25           | Source Synch          | Input/<br>Output |
| D[18]#   | P26           | Source Synch          | Input/<br>Output |
| D[19]#   | R23           | Source Synch          | Input/<br>Output |
| D[20]#   | L23           | Source Synch          | Input/<br>Output |
| D[21]#   | M24           | Source Synch          | Input/<br>Output |
| D[22]#   | L22           | Source Synch          | Input/<br>Output |
| D[23]#   | M23           | Source Synch          | Input/<br>Output |
| D[24]#   | P25           | Source Synch          | Input/<br>Output |
| D[25]#   | P23           | Source Synch          | Input/<br>Output |
| D[26]#   | P22           | Source Synch          | Input/<br>Output |
| D[27]#   | T24           | Source Synch          | Input/<br>Output |
| D[28]#   | R24           | Source Synch          | Input/<br>Output |
| D[29]#   | L25           | Source Synch          | Input/<br>Output |
| D[30]#   | T25           | Source Synch          | Input/<br>Output |
| D[31]#   | N25           | Source Synch          | Input/<br>Output |
| D[32]#   | Y22           | Source Synch          | Input/<br>Output |
| D[33]#   | AB24          | Source Synch          | Input/<br>Output |
| D[34]#   | V24           | Source Synch          | Input/<br>Output |
| D[35]#   | V26           | Source Synch          | Input/<br>Output |
| D[36]#   | V23           | Source Synch          | Input/<br>Output |



Table 19. Pin Listing by Pin Name (Sheet 5 of 16)

| Pin Name | Pin<br>Number | Signal Buffer<br>Type | Direction        |
|----------|---------------|-----------------------|------------------|
| D[37]#   | T22           | Source Synch          | Input/<br>Output |
| D[38]#   | U25           | Source Synch          | Input/<br>Output |
| D[39]#   | U23           | Source Synch          | Input/<br>Output |
| D[40]#   | Y25           | Source Synch          | Input/<br>Output |
| D[41]#   | W22           | Source Synch          | Input/<br>Output |
| D[42]#   | Y23           | Source Synch          | Input/<br>Output |
| D[43]#   | W24           | Source Synch          | Input/<br>Output |
| D[44]#   | W25           | Source Synch          | Input/<br>Output |
| D[45]#   | AA23          | Source Synch          | Input/<br>Output |
| D[46]#   | AA24          | Source Synch          | Input/<br>Output |
| D[47]#   | AB25          | Source Synch          | Input/<br>Output |
| D[48]#   | AE24          | Source Synch          | Input/<br>Output |
| D[49]#   | AD24          | Source Synch          | Input/<br>Output |
| D[50]#   | AA21          | Source Synch          | Input/<br>Output |
| D[51]#   | AB22          | Source Synch          | Input/<br>Output |
| D[52]#   | AB21          | Source Synch          | Input/<br>Output |
| D[53]#   | AC26          | Source Synch          | Input/<br>Output |
| D[54]#   | AD20          | Source Synch          | Input/<br>Output |
| D[55]#   | AE22          | Source Synch          | Input/<br>Output |
| D[56]#   | AF23          | Source Synch          | Input/<br>Output |
| D[57]#   | AC25          | Source Synch          | Input/<br>Output |
| D[58]#   | AE21          | Source Synch          | Input/<br>Output |

Table 19. Pin Listing by Pin Name (Sheet 6 of 16)

| Pin Name  | Pin<br>Number | Signal Buffer<br>Type | Direction        |
|-----------|---------------|-----------------------|------------------|
| D[59]#    | AD21          | Source Synch          | Input/<br>Output |
| D[60]#    | AC22          | Source Synch          | Input/<br>Output |
| D[61]#    | AD23          | Source Synch          | Input/<br>Output |
| D[62]#    | AF22          | Source Synch          | Input/<br>Output |
| D[63]#    | AC23          | Source Synch          | Input/<br>Output |
| DBR#      | C20           | CMOS                  | Output           |
| DBSY#     | E1            | Common Clock          | Input/<br>Output |
| DEFER#    | H5            | Common Clock          | Input            |
| DINV[0]#  | H25           | Source Synch          | Input/<br>Output |
| DINV[1]#  | N24           | Source Synch          | Input/<br>Output |
| DINV[2]#  | U22           | Source Synch          | Input/<br>Output |
| DINV[3]#  | AC20          | Source Synch          | Input/<br>Output |
| DPRSTP#   | E5            | CMOS                  | Input            |
| DPSLP#    | B5            | CMOS                  | Input            |
| DPWR#     | D24           | Common Clock          | Input/<br>Output |
| DRDY#     | F21           | Common Clock          | Input/<br>Output |
| DSTBN[0]# | J26           | Source Synch          | Input/<br>Output |
| DSTBN[1]# | L26           | Source Synch          | Input/<br>Output |
| DSTBN[2]# | Y26           | Source Synch          | Input/<br>Output |
| DSTBN[3]# | AE25          | Source Synch          | Input/<br>Output |
| DSTBP[0]# | H26           | Source Synch          | Input/<br>Output |
| DSTBP[1]# | M26           | Source Synch          | Input/<br>Output |
| DSTBP[2]# | AA26          | Source Synch          | Input/<br>Output |



Table 19. Pin Listing by Pin Name (Sheet 7 of 16)

| (Sheet / of 16) |               |                       |                  |
|-----------------|---------------|-----------------------|------------------|
| Pin Name        | Pin<br>Number | Signal Buffer<br>Type | Direction        |
| DSTBP[3]#       | AF24          | Source Synch          | Input/<br>Output |
| FERR#           | A5            | Open Drain            | Output           |
| GTLREF          | AD26          | Power/Other           | Input            |
| HIT#            | G6            | Common Clock          | Input/<br>Output |
| HITM#           | E4            | Common Clock          | Input/<br>Output |
| IERR#           | D20           | Open Drain            | Output           |
| IGNNE#          | C4            | CMOS                  | Input            |
| INIT#           | В3            | CMOS                  | Input            |
| LINT0           | C6            | CMOS                  | Input            |
| LINT1           | B4            | CMOS                  | Input            |
| LOCK#           | H4            | Common Clock          | Input/<br>Output |
| PRDY#           | AC2           | Common Clock          | Output           |
| PREQ#           | AC1           | Common Clock          | Input            |
| PROCHOT#        | D21           | Open Drain            | Input/<br>Output |
| PSI#            | AE6           | CMOS                  | Output           |
| PWRGOOD         | D6            | CMOS                  | Input            |
| REQ[0]#         | К3            | Source Synch          | Input/<br>Output |
| REQ[1]#         | H2            | Source Synch          | Input/<br>Output |
| REQ[2]#         | K2            | Source Synch          | Input/<br>Output |
| REQ[3]#         | J3            | Source Synch          | Input/<br>Output |
| REQ[4]#         | L1            | Source Synch          | Input/<br>Output |
| RESET#          | C1            | Common Clock          | Input            |
| RS[0]#          | F3            | Common Clock          | Input            |
| RS[1]#          | F4            | Common Clock          | Input            |
| RS[2]#          | G3            | Common Clock          | Input            |
| RSVD            | B2            | Reserved              |                  |
| RSVD            | C3            | Reserved              |                  |
| RSVD            | D2            | Reserved              |                  |
| RSVD            | D3            | Reserved              |                  |
| RSVD            | D22           | Reserved              |                  |

Table 19. Pin Listing by Pin Name (Sheet 8 of 16)

| Din Name       | Pin    | Signal Buffer | Discostinu |
|----------------|--------|---------------|------------|
| Pin Name       | Number | Туре          | Direction  |
| RSVD           | F6     | Reserved      |            |
| RSVD           | M4     | Reserved      |            |
| RSVD           | N5     | Reserved      |            |
| RSVD           | T2     | Reserved      |            |
| RSVD           | V3     | Reserved      |            |
| SLP#           | D7     | CMOS          | Input      |
| SMI#           | A3     | CMOS          | Input      |
| STPCLK#        | D5     | CMOS          | Input      |
| TCK            | AC5    | CMOS          | Input      |
| TDI            | AA6    | CMOS          | Input      |
| TDO            | AB3    | Open Drain    | Output     |
| TEST1          | C23    | Test          |            |
| TEST2          | D25    | Test          |            |
| TEST3          | C24    | Test          |            |
| TEST4          | AF26   | Test          |            |
| TEST5          | AF1    | Test          |            |
| TEST6          | A26    | Test          |            |
| THERMTRIP<br># | C7     | Open Drain    | Output     |
| THRMDA         | A24    | Power/Other   |            |
| THRMDC         | B25    | Power/Other   |            |
| TMS            | AB5    | CMOS          | Input      |
| TRDY#          | G2     | Common Clock  | Input      |
| TRST#          | AB6    | CMOS          | Input      |
| VCC            | A7     | Power/Other   |            |
| VCC            | A9     | Power/Other   |            |
| VCC            | A10    | Power/Other   |            |
| VCC            | A12    | Power/Other   |            |
| VCC            | A13    | Power/Other   |            |
| VCC            | A15    | Power/Other   |            |
| VCC            | A17    | Power/Other   |            |
| VCC            | A18    | Power/Other   |            |
| VCC            | A20    | Power/Other   |            |
| VCC            | AA7    | Power/Other   |            |
| VCC            | AA9    | Power/Other   |            |
| VCC            | AA10   | Power/Other   |            |
| VCC            | AA12   | Power/Other   |            |



Table 19. Pin Listing by Pin Name (Sheet 9 of 16)

Pin **Signal Buffer Pin Name Direction** Number Type VCC AA13 Power/Other VCC **AA15** Power/Other VCC AA17 Power/Other VCC **AA18** Power/Other VCC AA20 Power/Other VCC AB7 Power/Other VCC AB9 Power/Other VCC AB10 Power/Other VCC AB12 Power/Other VCC AB14 Power/Other VCC AB15 Power/Other VCC **AB17** Power/Other VCC **AB18** Power/Other VCC AB20 Power/Other VCC AC7 Power/Other VCC AC9 Power/Other VCC AC10 Power/Other VCC AC12 Power/Other VCC AC13 Power/Other VCC AC15 Power/Other VCC AC17 Power/Other VCC AC18 Power/Other VCC AD7 Power/Other VCC AD9 Power/Other VCC AD10 Power/Other VCC AD12 Power/Other VCC AD14 Power/Other VCC AD15 Power/Other VCC AD17 Power/Other VCC AD18 Power/Other VCC AE9 Power/Other VCC AE10 Power/Other VCC AE12 Power/Other VCC AE13 Power/Other VCC AE15 Power/Other VCC AE17 Power/Other

Table 19. Pin Listing by Pin Name (Sheet 10 of 16)

| (Sheet 10 of 18) |               |                       |           |
|------------------|---------------|-----------------------|-----------|
| Pin Name         | Pin<br>Number | Signal Buffer<br>Type | Direction |
| VCC              | AE18          | Power/Other           |           |
| VCC              | AE20          | Power/Other           |           |
| VCC              | AF9           | Power/Other           |           |
| VCC              | AF10          | Power/Other           |           |
| VCC              | AF12          | Power/Other           |           |
| VCC              | AF14          | Power/Other           |           |
| VCC              | AF15          | Power/Other           |           |
| VCC              | AF17          | Power/Other           |           |
| VCC              | AF18          | Power/Other           |           |
| VCC              | AF20          | Power/Other           |           |
| VCC              | B7            | Power/Other           |           |
| VCC              | B9            | Power/Other           |           |
| VCC              | B10           | Power/Other           |           |
| VCC              | B12           | Power/Other           |           |
| VCC              | B14           | Power/Other           |           |
| VCC              | B15           | Power/Other           |           |
| VCC              | B17           | Power/Other           |           |
| VCC              | B18           | Power/Other           |           |
| VCC              | B20           | Power/Other           |           |
| VCC              | C9            | Power/Other           |           |
| VCC              | C10           | Power/Other           |           |
| VCC              | C12           | Power/Other           |           |
| VCC              | C13           | Power/Other           |           |
| VCC              | C15           | Power/Other           |           |
| VCC              | C17           | Power/Other           |           |
| VCC              | C18           | Power/Other           |           |
| VCC              | D9            | Power/Other           |           |
| VCC              | D10           | Power/Other           |           |
| VCC              | D12           | Power/Other           |           |
| VCC              | D14           | Power/Other           |           |
| VCC              | D15           | Power/Other           |           |
| VCC              | D17           | Power/Other           |           |
| VCC              | D18           | Power/Other           |           |
| VCC              | E7            | Power/Other           |           |
| VCC              | E9            | Power/Other           |           |
| VCC              | E10           | Power/Other           |           |



Table 19. Pin Listing by Pin Name (Sheet 11 of 16)

| Pin Name | Pin<br>Number | Signal Buffer<br>Type | Direction |
|----------|---------------|-----------------------|-----------|
| VCC      | E12           | Power/Other           |           |
| VCC      | E13           | Power/Other           |           |
| VCC      | E15           | Power/Other           |           |
| VCC      | E17           | Power/Other           |           |
| VCC      | E18           | Power/Other           |           |
| VCC      | E20           | Power/Other           |           |
| VCC      | F7            | Power/Other           |           |
| VCC      | F9            | Power/Other           |           |
| VCC      | F10           | Power/Other           |           |
| VCC      | F12           | Power/Other           |           |
| VCC      | F14           | Power/Other           |           |
| VCC      | F15           | Power/Other           |           |
| VCC      | F17           | Power/Other           |           |
| VCC      | F18           | Power/Other           |           |
| VCC      | F20           | Power/Other           |           |
| VCCA     | B26           | Power/Other           |           |
| VCCA     | C26           | Power/Other           |           |
| VCCP     | G21           | Power/Other           |           |
| VCCP     | J6            | Power/Other           |           |
| VCCP     | J21           | Power/Other           |           |
| VCCP     | K6            | Power/Other           |           |
| VCCP     | K21           | Power/Other           |           |
| VCCP     | M6            | Power/Other           |           |
| VCCP     | M21           | Power/Other           |           |
| VCCP     | N6            | Power/Other           |           |
| VCCP     | N21           | Power/Other           |           |
| VCCP     | R6            | Power/Other           |           |
| VCCP     | R21           | Power/Other           |           |
| VCCP     | T6            | Power/Other           |           |
| VCCP     | T21           | Power/Other           |           |
| VCCP     | V6            | Power/Other           |           |
| VCCP     | V21           | Power/Other           |           |
| VCCP     | W21           | Power/Other           |           |
| VCCSENSE | AF7           | Power/Other           |           |
| VID[0]   | AD6           | CMOS                  | Output    |
| VID[1]   | AF5           | CMOS                  | Output    |

Table 19. Pin Listing by Pin Name (Sheet 12 of 16)

| Pin Name | Pin<br>Number | Signal Buffer<br>Type | Direction |
|----------|---------------|-----------------------|-----------|
| VID[2]   | AE5           | CMOS                  | Output    |
| VID[3]   | AF4           | CMOS                  | Output    |
| VID[4]   | AE3           | CMOS                  | Output    |
| VID[5]   | AF3           | CMOS                  | Output    |
| VID[6]   | AE2           | CMOS                  | Output    |
| VSS      | A2            | Power/Other           |           |
| VSS      | A4            | Power/Other           |           |
| VSS      | A8            | Power/Other           |           |
| VSS      | A11           | Power/Other           |           |
| VSS      | A14           | Power/Other           |           |
| VSS      | A16           | Power/Other           |           |
| VSS      | A19           | Power/Other           |           |
| VSS      | A23           | Power/Other           |           |
| VSS      | A25           | Power/Other           |           |
| VSS      | AA2           | Power/Other           |           |
| VSS      | AA5           | Power/Other           |           |
| VSS      | AA8           | Power/other           |           |
| VSS      | AA11          | Power/Other           |           |
| VSS      | AA14          | Power/Other           |           |
| VSS      | AA16          | Power/Other           |           |
| VSS      | AA19          | Power/Other           |           |
| VSS      | AA22          | Power/Other           |           |
| VSS      | AA25          | Power/Other           |           |
| VSS      | AB1           | Power/Other           |           |
| VSS      | AB4           | Power/Other           |           |
| VSS      | AB8           | Power/Other           |           |
| VSS      | AB11          | Power/Other           |           |
| VSS      | AB13          | Power/Other           |           |
| VSS      | AB16          | Power/Other           |           |
| VSS      | AB19          | Power/Other           |           |
| VSS      | AB23          | Power/Other           |           |
| VSS      | AB26          | Power/Other           |           |
| VSS      | AC3           | Power/Other           |           |
| VSS      | AC6           | Power/Other           |           |
| VSS      | AC8           | Power/Other           |           |
| VSS      | AC11          | Power/Other           |           |



Table 19. Pin Listing by Pin Name (Sheet 13 of 16)

Pin **Signal Buffer Pin Name Direction** Number Type VSS AC14 Power/Other VSS AC16 Power/Other VSS AC19 Power/Other VSS AC21 Power/Other VSS AC24 Power/Other VSS AD2 Power/Other VSS AD5 Power/Other VSS AD8 Power/Other VSS AD11 Power/Other VSS AD13 Power/Other VSS AD16 Power/Other VSS AD19 Power/Other VSS AD22 Power/Other VSS AD25 Power/Other VSS AE1 Power/Other VSS AE4 Power/Other VSS AE8 Power/Other VSS AE11 Power/Other VSS AE14 Power/Other VSS AE16 Power/Other VSS **AE19** Power/Other VSS AE23 Power/Other VSS AE26 Power/Other VSS AF2 Power/Other VSS AF6 Power/Other VSS AF8 Power/Other VSS AF11 Power/Other VSS AF13 Power/Other VSS AF16 Power/Other VSS AF19 Power/Other VSS AF21 Power/Other VSS AF25 Power/Other **VSS** В6 Power/Other VSS В8 Power/Other VSS B11 Power/Other VSS B13 Power/Other

Table 19. Pin Listing by Pin Name (Sheet 14 of 16)

| Pin Name | Pin    | Signal Buffer | Direction |
|----------|--------|---------------|-----------|
|          | Number | Туре          |           |
| VSS      | B16    | Power/Other   |           |
| VSS      | B19    | Power/Other   |           |
| VSS      | B21    | Power/Other   |           |
| VSS      | B24    | Power/Other   |           |
| VSS      | C2     | Power/Other   |           |
| VSS      | C5     | Power/Other   |           |
| VSS      | C8     | Power/Other   |           |
| VSS      | C11    | Power/Other   |           |
| VSS      | C14    | Power/Other   |           |
| VSS      | C16    | Power/Other   |           |
| VSS      | C19    | Power/Other   |           |
| VSS      | C22    | Power/Other   |           |
| VSS      | C25    | Power/Other   |           |
| VSS      | D1     | Power/Other   |           |
| VSS      | D4     | Power/Other   |           |
| VSS      | D8     | Power/Other   |           |
| VSS      | D11    | Power/Other   |           |
| VSS      | D13    | Power/Other   |           |
| VSS      | D16    | Power/Other   |           |
| VSS      | D19    | Power/Other   |           |
| VSS      | D23    | Power/Other   |           |
| VSS      | D26    | Power/Other   |           |
| VSS      | E3     | Power/Other   |           |
| VSS      | E6     | Power/Other   |           |
| VSS      | E8     | Power/Other   |           |
| VSS      | E11    | Power/Other   |           |
| VSS      | E14    | Power/Other   |           |
| VSS      | E16    | Power/Other   |           |
| VSS      | E19    | Power/Other   |           |
| VSS      | E21    | Power/Other   |           |
| VSS      | E24    | Power/Other   |           |
| VSS      | F2     | Power/Other   |           |
| VSS      | F5     | Power/Other   |           |
| VSS      | F8     | Power/Other   |           |
| VSS      | F11    | Power/Other   |           |
| VSS      | F13    | Power/Other   |           |



Table 19. Pin Listing by Pin Name (Sheet 15 of 16)

| Pin Name | Pin<br>Number | Signal Buffer<br>Type | Direction |
|----------|---------------|-----------------------|-----------|
| VSS      | F16           | Power/Other           |           |
| VSS      | F19           | Power/Other           |           |
| VSS      | F22           | Power/Other           |           |
| VSS      | F25           | Power/Other           |           |
| VSS      | G1            | Power/Other           |           |
| VSS      | G4            | Power/Other           |           |
| VSS      | G23           | Power/Other           |           |
| VSS      | G26           | Power/Other           |           |
| VSS      | Н3            | Power/Other           |           |
| VSS      | H6            | Power/Other           |           |
| VSS      | H21           | Power/Other           |           |
| VSS      | H24           | Power/Other           |           |
| VSS      | J2            | Power/Other           |           |
| VSS      | J5            | Power/Other           |           |
| VSS      | J22           | Power/Other           |           |
| VSS      | J25           | Power/Other           |           |
| VSS      | K1            | Power/Other           |           |
| VSS      | K4            | Power/Other           |           |
| VSS      | K23           | Power/Other           |           |
| VSS      | K26           | Power/Other           |           |
| VSS      | L3            | Power/Other           |           |
| VSS      | L6            | Power/Other           |           |
| VSS      | L21           | Power/Other           |           |
| VSS      | L24           | Power/Other           |           |
| VSS      | M2            | Power/Other           |           |
| VSS      | M5            | Power/Other           |           |
| VSS      | M22           | Power/Other           |           |
| VSS      | M25           | Power/Other           |           |
| VSS      | N1            | Power/Other           |           |
| VSS      | N4            | Power/Other           |           |
| VSS      | N23           | Power/Other           |           |
| VSS      | N26           | Power/Other           |           |
| VSS      | P3            | Power/Other           |           |
| VSS      | P6            | Power/Other           |           |
| VSS      | P21           | Power/Other           |           |
| VSS      | P24           | Power/Other           |           |

Table 19. Pin Listing by Pin Name (Sheet 16 of 16)

| Pin Name | Pin<br>Number | Signal Buffer<br>Type | Direction |
|----------|---------------|-----------------------|-----------|
| VSS      | R2            | Power/Other           |           |
| VSS      | R5            | Power/Other           |           |
| VSS      | R22           | Power/Other           |           |
| VSS      | R25           | Power/Other           |           |
| VSS      | T1            | Power/Other           |           |
| VSS      | T4            | Power/Other           |           |
| VSS      | T23           | Power/Other           |           |
| VSS      | T26           | Power/Other           |           |
| VSS      | U3            | Power/Other           |           |
| VSS      | U6            | Power/Other           |           |
| VSS      | U21           | Power/Other           |           |
| VSS      | U24           | Power/Other           |           |
| VSS      | V2            | Power/Other           |           |
| VSS      | V5            | Power/Other           |           |
| VSS      | V22           | Power/Other           |           |
| VSS      | V25           | Power/Other           |           |
| VSS      | W1            | Power/Other           |           |
| VSS      | W4            | Power/Other           |           |
| VSS      | W23           | Power/Other           |           |
| VSS      | W26           | Power/Other           |           |
| VSS      | Y3            | Power/Other           |           |
| VSS      | Y6            | Power/Other           |           |
| VSS      | Y21           | Power/Other           |           |
| VSS      | Y24           | Power/Other           |           |
| VSSSENSE | AE7           | Power/Other           | Output    |

Table 20. Pin Listing by Pin Number (Sheet 1 of 17)

| Pin Name | Pin<br>Number | Signal<br>Buffer Type | Direction |
|----------|---------------|-----------------------|-----------|
| VSS      | A2            | Power/Other           |           |
| SMI#     | A3            | CMOS                  | Input     |
| VSS      | A4            | Power/Other           |           |
| FERR#    | A5            | Open Drain            | Output    |
| A20M#    | A6            | CMOS                  | Input     |
| VCC      | A7            | Power/Other           |           |



Table 20. Pin Listing by Pin Number (Sheet 2 of 17)

| (Sheet 2 of 17) |               |                       |                  |
|-----------------|---------------|-----------------------|------------------|
| Pin Name        | Pin<br>Number | Signal<br>Buffer Type | Direction        |
| VSS             | A8            | Power/Other           |                  |
| VCC             | A9            | Power/Other           |                  |
| VCC             | A10           | Power/Other           |                  |
| VSS             | A11           | Power/Other           |                  |
| VCC             | A12           | Power/Other           |                  |
| VCC             | A13           | Power/Other           |                  |
| VSS             | A14           | Power/Other           |                  |
| VCC             | A15           | Power/Other           |                  |
| VSS             | A16           | Power/Other           |                  |
| VCC             | A17           | Power/Other           |                  |
| VCC             | A18           | Power/Other           |                  |
| VSS             | A19           | Power/Other           |                  |
| VCC             | A20           | Power/Other           |                  |
| BCLK[1]         | A21           | Bus Clock             | Input            |
| BCLK[0]         | A22           | Bus Clock             | Input            |
| VSS             | A23           | Power/Other           |                  |
| THRMDA          | A24           | Power/Other           |                  |
| VSS             | A25           | Power/Other           |                  |
| TEST6           | A26           | Test                  |                  |
| COMP[2]         | AA1           | Power/Other           | Input/<br>Output |
| VSS             | AA2           | Power/Other           |                  |
| A[35]#          | AA3           | Source Synch          | Input/<br>Output |
| A[33]#          | AA4           | Source Synch          | Input/<br>Output |
| VSS             | AA5           | Power/Other           |                  |
| TDI             | AA6           | CMOS                  | Input            |
| VCC             | AA7           | Power/Other           |                  |
| VSS             | AA8           | Power/other           |                  |
| VCC             | AA9           | Power/Other           |                  |
| VCC             | AA10          | Power/Other           |                  |
| VSS             | AA11          | Power/Other           |                  |
| VCC             | AA12          | Power/Other           |                  |
| VCC             | AA13          | Power/Other           |                  |
| VSS             | AA14          | Power/Other           |                  |
| VCC             | AA15          | Power/Other           |                  |

Table 20. Pin Listing by Pin Number (Sheet 3 of 17)

| Pin Name  | Pin<br>Number | Signal<br>Buffer Type | Direction        |
|-----------|---------------|-----------------------|------------------|
| VSS       | AA16          | Power/Other           |                  |
| VCC       | AA17          | Power/Other           |                  |
| VCC       | AA18          | Power/Other           |                  |
| VSS       | AA19          | Power/Other           |                  |
| VCC       | AA20          | Power/Other           |                  |
| D[50]#    | AA21          | Source Synch          | Input/<br>Output |
| VSS       | AA22          | Power/Other           |                  |
| D[45]#    | AA23          | Source Synch          | Input/<br>Output |
| D[46]#    | AA24          | Source Synch          | Input/<br>Output |
| VSS       | AA25          | Power/Other           |                  |
| DSTBP[2]# | AA26          | Source Synch          | Input/<br>Output |
| VSS       | AB1           | Power/Other           |                  |
| A[34]#    | AB2           | Source Synch          | Input/<br>Output |
| TDO       | AB3           | Open Drain            | Output           |
| VSS       | AB4           | Power/Other           |                  |
| TMS       | AB5           | CMOS                  | Input            |
| TRST#     | AB6           | CMOS                  | Input            |
| VCC       | AB7           | Power/Other           |                  |
| VSS       | AB8           | Power/Other           |                  |
| VCC       | AB9           | Power/Other           |                  |
| VCC       | AB10          | Power/Other           |                  |
| VSS       | AB11          | Power/Other           |                  |
| VCC       | AB12          | Power/Other           |                  |
| VSS       | AB13          | Power/Other           |                  |
| VCC       | AB14          | Power/Other           |                  |
| VCC       | AB15          | Power/Other           |                  |
| VSS       | AB16          | Power/Other           |                  |
| VCC       | AB17          | Power/Other           |                  |
| VCC       | AB18          | Power/Other           |                  |
| VSS       | AB19          | Power/Other           |                  |
| VCC       | AB20          | Power/Other           |                  |
| D[52]#    | AB21          | Source Synch          | Input/<br>Output |



Table 20. Pin Listing by Pin Number (Sheet 4 of 17)

| (Sileet 4 of 17) |               |                       |                  |
|------------------|---------------|-----------------------|------------------|
| Pin Name         | Pin<br>Number | Signal<br>Buffer Type | Direction        |
| D[51]#           | AB22          | Source Synch          | Input/<br>Output |
| VSS              | AB23          | Power/Other           |                  |
| D[33]#           | AB24          | Source Synch          | Input/<br>Output |
| D[47]#           | AB25          | Source Synch          | Input/<br>Output |
| VSS              | AB26          | Power/Other           |                  |
| PREQ#            | AC1           | Common<br>Clock       | Input            |
| PRDY#            | AC2           | Common<br>Clock       | Output           |
| VSS              | AC3           | Power/Other           |                  |
| BPM[3]#          | AC4           | Common<br>Clock       | Input/<br>Output |
| TCK              | AC5           | CMOS                  | Input            |
| VSS              | AC6           | Power/Other           |                  |
| VCC              | AC7           | Power/Other           |                  |
| VSS              | AC8           | Power/Other           |                  |
| VCC              | AC9           | Power/Other           |                  |
| VCC              | AC10          | Power/Other           |                  |
| VSS              | AC11          | Power/Other           |                  |
| VCC              | AC12          | Power/Other           |                  |
| VCC              | AC13          | Power/Other           |                  |
| VSS              | AC14          | Power/Other           |                  |
| VCC              | AC15          | Power/Other           |                  |
| VSS              | AC16          | Power/Other           |                  |
| VCC              | AC17          | Power/Other           |                  |
| VCC              | AC18          | Power/Other           |                  |
| VSS              | AC19          | Power/Other           |                  |
| DINV[3]#         | AC20          | Source Synch          | Input/<br>Output |
| VSS              | AC21          | Power/Other           |                  |
| D[60]#           | AC22          | Source Synch          | Input/<br>Output |
| D[63]#           | AC23          | Source Synch          | Input/<br>Output |
| VSS              | AC24          | Power/Other           |                  |
| D[57]#           | AC25          | Source Synch          | Input/<br>Output |

Table 20. Pin Listing by Pin Number (Sheet 5 of 17)

| Pin Name | Pin    | Signal             | Direction        |
|----------|--------|--------------------|------------------|
|          | Number | <b>Buffer Type</b> |                  |
| D[53]#   | AC26   | Source Synch       | Input/<br>Output |
| BPM[2]#  | AD1    | Common<br>Clock    | Output           |
| VSS      | AD2    | Power/Other        |                  |
| BPM[1]#  | AD3    | Common<br>Clock    | Output           |
| BPM[0]#  | AD4    | Common<br>Clock    | Input/<br>Output |
| VSS      | AD5    | Power/Other        |                  |
| VID[0]   | AD6    | CMOS               | Output           |
| VCC      | AD7    | Power/Other        |                  |
| VSS      | AD8    | Power/Other        |                  |
| VCC      | AD9    | Power/Other        |                  |
| VCC      | AD10   | Power/Other        |                  |
| VSS      | AD11   | Power/Other        |                  |
| VCC      | AD12   | Power/Other        |                  |
| VSS      | AD13   | Power/Other        |                  |
| VCC      | AD14   | Power/Other        |                  |
| VCC      | AD15   | Power/Other        |                  |
| VSS      | AD16   | Power/Other        |                  |
| VCC      | AD17   | Power/Other        |                  |
| VCC      | AD18   | Power/Other        |                  |
| VSS      | AD19   | Power/Other        |                  |
| D[54]#   | AD20   | Source Synch       | Input/<br>Output |
| D[59]#   | AD21   | Source Synch       | Input/<br>Output |
| VSS      | AD22   | Power/Other        |                  |
| D[61]#   | AD23   | Source Synch       | Input/<br>Output |
| D[49]#   | AD24   | Source Synch       | Input/<br>Output |
| VSS      | AD25   | Power/Other        |                  |
| GTLREF   | AD26   | Power/Other        | Input            |
| VSS      | AE1    | Power/Other        |                  |
| VID[6]   | AE2    | CMOS               | Output           |
| VID[4]   | AE3    | CMOS               | Output           |
| VSS      | AE4    | Power/Other        |                  |



Table 20. Pin Listing by Pin Number (Sheet 6 of 17)

| (Sheet 6 of 1/) |               |                       |                  |
|-----------------|---------------|-----------------------|------------------|
| Pin Name        | Pin<br>Number | Signal<br>Buffer Type | Direction        |
| VID[2]          | AE5           | CMOS                  | Output           |
| PSI#            | AE6           | CMOS                  | Output           |
| VSSSENSE        | AE7           | Power/Other           | Output           |
| VSS             | AE8           | Power/Other           |                  |
| VCC             | AE9           | Power/Other           |                  |
| VCC             | AE10          | Power/Other           |                  |
| VSS             | AE11          | Power/Other           |                  |
| VCC             | AE12          | Power/Other           |                  |
| VCC             | AE13          | Power/Other           |                  |
| VSS             | AE14          | Power/Other           |                  |
| VCC             | AE15          | Power/Other           |                  |
| VSS             | AE16          | Power/Other           |                  |
| VCC             | AE17          | Power/Other           |                  |
| VCC             | AE18          | Power/Other           |                  |
| VSS             | AE19          | Power/Other           |                  |
| VCC             | AE20          | Power/Other           |                  |
| D[58]#          | AE21          | Source Synch          | Input/<br>Output |
| D[55]#          | AE22          | Source Synch          | Input/<br>Output |
| VSS             | AE23          | Power/Other           |                  |
| D[48]#          | AE24          | Source Synch          | Input/<br>Output |
| DSTBN[3]#       | AE25          | Source Synch          | Input/<br>Output |
| VSS             | AE26          | Power/Other           |                  |
| TEST5           | AF1           | Test                  |                  |
| VSS             | AF2           | Power/Other           |                  |
| VID[5]          | AF3           | CMOS                  | Output           |
| VID[3]          | AF4           | CMOS                  | Output           |
| VID[1]          | AF5           | CMOS                  | Output           |
| VSS             | AF6           | Power/Other           |                  |
| VCCSENSE        | AF7           | Power/Other           |                  |
| VSS             | AF8           | Power/Other           |                  |
| VCC             | AF9           | Power/Other           |                  |
| VCC             | AF10          | Power/Other           |                  |
| VSS             | AF11          | Power/Other           |                  |
| VCC             | AF12          | Power/Other           |                  |

Table 20. Pin Listing by Pin Number (Sheet 7 of 17)

| Pin Name  | Pin<br>Number | Signal<br>Buffer Type | Direction        |
|-----------|---------------|-----------------------|------------------|
| VSS       | AF13          | Power/Other           |                  |
| VCC       | AF14          | Power/Other           |                  |
| VCC       | AF15          | Power/Other           |                  |
| VSS       | AF16          | Power/Other           |                  |
| VCC       | AF17          | Power/Other           |                  |
| VCC       | AF18          | Power/Other           |                  |
| VSS       | AF19          | Power/Other           |                  |
| VCC       | AF20          | Power/Other           |                  |
| VSS       | AF21          | Power/Other           |                  |
| D[62]#    | AF22          | Source Synch          | Input/<br>Output |
| D[56]#    | AF23          | Source Synch          | Input/<br>Output |
| DSTBP[3]# | AF24          | Source Synch          | Input/<br>Output |
| VSS       | AF25          | Power/Other           |                  |
| TEST4     | AF26          | Test                  |                  |
| RSVD      | B2            | Reserved              |                  |
| INIT#     | В3            | CMOS                  | Input            |
| LINT1     | B4            | CMOS                  | Input            |
| DPSLP#    | B5            | CMOS                  | Input            |
| VSS       | В6            | Power/Other           |                  |
| VCC       | B7            | Power/Other           |                  |
| VSS       | B8            | Power/Other           |                  |
| VCC       | B9            | Power/Other           |                  |
| VCC       | B10           | Power/Other           |                  |
| VSS       | B11           | Power/Other           |                  |
| VCC       | B12           | Power/Other           |                  |
| VSS       | B13           | Power/Other           |                  |
| VCC       | B14           | Power/Other           |                  |
| VCC       | B15           | Power/Other           |                  |
| VSS       | B16           | Power/Other           |                  |
| VCC       | B17           | Power/Other           |                  |
| VCC       | B18           | Power/Other           |                  |
| VSS       | B19           | Power/Other           |                  |
| VCC       | B20           | Power/Other           |                  |
| VSS       | B21           | Power/Other           |                  |



Table 20. Pin Listing by Pin Number (Sheet 8 of 17)

| (Sheet 8 of 17) |               |                       |           |
|-----------------|---------------|-----------------------|-----------|
| Pin Name        | Pin<br>Number | Signal<br>Buffer Type | Direction |
| BSEL[0]         | B22           | CMOS                  | Output    |
| BSEL[1]         | B23           | CMOS                  | Output    |
| VSS             | B24           | Power/Other           |           |
| THRMDC          | B25           | Power/Other           |           |
| VCCA            | B26           | Power/Other           |           |
| RESET#          | C1            | Common<br>Clock       | Input     |
| VSS             | C2            | Power/Other           |           |
| RSVD            | C3            | Reserved              |           |
| IGNNE#          | C4            | CMOS                  | Input     |
| VSS             | C5            | Power/Other           |           |
| LINT0           | C6            | CMOS                  | Input     |
| THERMTRIP<br>#  | C7            | Open Drain            | Output    |
| VSS             | C8            | Power/Other           |           |
| VCC             | C9            | Power/Other           |           |
| VCC             | C10           | Power/Other           |           |
| VSS             | C11           | Power/Other           |           |
| VCC             | C12           | Power/Other           |           |
| VCC             | C13           | Power/Other           |           |
| VSS             | C14           | Power/Other           |           |
| VCC             | C15           | Power/Other           |           |
| VSS             | C16           | Power/Other           |           |
| VCC             | C17           | Power/Other           |           |
| VCC             | C18           | Power/Other           |           |
| VSS             | C19           | Power/Other           |           |
| DBR#            | C20           | CMOS                  | Output    |
| BSEL[2]         | C21           | CMOS                  | Output    |
| VSS             | C22           | Power/Other           |           |
| TEST1           | C23           | Test                  |           |
| TEST3           | C24           | Test                  |           |
| VSS             | C25           | Power/Other           |           |
| VCCA            | C26           | Power/Other           |           |
| VSS             | D1            | Power/Other           |           |
| RSVD            | D2            | Reserved              |           |
| RSVD            | D3            | Reserved              |           |
| VSS             | D4            | Power/Other           |           |

Table 20. Pin Listing by Pin Number (Sheet 9 of 17)

| Pin Name | Pin<br>Number | Signal<br>Buffer Type | Direction        |
|----------|---------------|-----------------------|------------------|
| STPCLK#  | D5            | CMOS                  | Input            |
| PWRGOOD  | D6            | CMOS                  | Input            |
| SLP#     | D7            | CMOS                  | Input            |
| VSS      | D8            | Power/Other           |                  |
| VCC      | D9            | Power/Other           |                  |
| VCC      | D10           | Power/Other           |                  |
| VSS      | D11           | Power/Other           |                  |
| VCC      | D12           | Power/Other           |                  |
| VSS      | D13           | Power/Other           |                  |
| VCC      | D14           | Power/Other           |                  |
| VCC      | D15           | Power/Other           |                  |
| VSS      | D16           | Power/Other           |                  |
| VCC      | D17           | Power/Other           |                  |
| VCC      | D18           | Power/Other           |                  |
| VSS      | D19           | Power/Other           |                  |
| IERR#    | D20           | Open Drain            | Output           |
| PROCHOT# | D21           | Open Drain            | Input/<br>Output |
| RSVD     | D22           | Reserved              |                  |
| VSS      | D23           | Power/Other           |                  |
| DPWR#    | D24           | Common<br>Clock       | Input/<br>Output |
| TEST2    | D25           | Test                  |                  |
| VSS      | D26           | Power/Other           |                  |
| DBSY#    | E1            | Common<br>Clock       | Input/<br>Output |
| BNR#     | E2            | Common<br>Clock       | Input/<br>Output |
| VSS      | E3            | Power/Other           |                  |
| HITM#    | E4            | Common<br>Clock       | Input/<br>Output |
| DPRSTP#  | E5            | CMOS                  | Input            |
| VSS      | E6            | Power/Other           |                  |
| VCC      | E7            | Power/Other           |                  |
| VSS      | E8            | Power/Other           |                  |
| VCC      | E9            | Power/Other           |                  |
| VCC      | E10           | Power/Other           |                  |
| VSS      | E11           | Power/Other           |                  |



Table 20. Pin Listing by Pin Number (Sheet 10 of 17)

| (Sheet 10 of 17) |               |                       |                  |
|------------------|---------------|-----------------------|------------------|
| Pin Name         | Pin<br>Number | Signal<br>Buffer Type | Direction        |
| VCC              | E12           | Power/Other           |                  |
| VCC              | E13           | Power/Other           |                  |
| VSS              | E14           | Power/Other           |                  |
| VCC              | E15           | Power/Other           |                  |
| VSS              | E16           | Power/Other           |                  |
| VCC              | E17           | Power/Other           |                  |
| VCC              | E18           | Power/Other           |                  |
| VSS              | E19           | Power/Other           |                  |
| VCC              | E20           | Power/Other           |                  |
| VSS              | E21           | Power/Other           |                  |
| D[0]#            | E22           | Source Synch          | Input/<br>Output |
| D[7]#            | E23           | Source Synch          | Input/<br>Output |
| VSS              | E24           | Power/Other           |                  |
| D[6]#            | E25           | Source Synch          | Input/<br>Output |
| D[2]#            | E26           | Source Synch          | Input/<br>Output |
| BR0#             | F1            | Common<br>Clock       | Input/<br>Output |
| VSS              | F2            | Power/Other           |                  |
| RS[0]#           | F3            | Common<br>Clock       | Input            |
| RS[1]#           | F4            | Common<br>Clock       | Input            |
| VSS              | F5            | Power/Other           |                  |
| RSVD             | F6            | Reserved              |                  |
| VCC              | F7            | Power/Other           |                  |
| VSS              | F8            | Power/Other           |                  |
| VCC              | F9            | Power/Other           |                  |
| VCC              | F10           | Power/Other           |                  |
| VSS              | F11           | Power/Other           |                  |
| VCC              | F12           | Power/Other           |                  |
| VSS              | F13           | Power/Other           |                  |
| VCC              | F14           | Power/Other           |                  |
| VCC              | F15           | Power/Other           |                  |
| VSS              | F16           | Power/Other           |                  |
| VCC              | F17           | Power/Other           |                  |

Table 20. Pin Listing by Pin Number (Sheet 11 of 17)

| Pin Name | Pin<br>Number | Signal<br>Buffer Type | Direction        |
|----------|---------------|-----------------------|------------------|
| VCC      | F18           | Power/Other           |                  |
| VSS      | F19           | Power/Other           |                  |
| VCC      | F20           | Power/Other           |                  |
| DRDY#    | F21           | Common<br>Clock       | Input/<br>Output |
| VSS      | F22           | Power/Other           |                  |
| D[4]#    | F23           | Source Synch          | Input/<br>Output |
| D[1]#    | F24           | Source Synch          | Input/<br>Output |
| VSS      | F25           | Power/Other           |                  |
| D[13]#   | F26           | Source Synch          | Input/<br>Output |
| VSS      | G1            | Power/Other           |                  |
| TRDY#    | G2            | Common<br>Clock       | Input            |
| RS[2]#   | G3            | Common<br>Clock       | Input            |
| VSS      | G4            | Power/Other           |                  |
| BPRI#    | G5            | Common<br>Clock       | Input            |
| HIT#     | G6            | Common<br>Clock       | Input/<br>Output |
| VCCP     | G21           | Power/Other           |                  |
| D[3]#    | G22           | Source Synch          | Input/<br>Output |
| VSS      | G23           | Power/Other           |                  |
| D[9]#    | G24           | Source Synch          | Input/<br>Output |
| D[5]#    | G25           | Source Synch          | Input/<br>Output |
| VSS      | G26           | Power/Other           |                  |
| ADS#     | H1            | Common<br>Clock       | Input/<br>Output |
| REQ[1]#  | H2            | Source Synch          | Input/<br>Output |
| VSS      | H3            | Power/Other           |                  |
| LOCK#    | H4            | Common<br>Clock       | Input/<br>Output |
| DEFER#   | H5            | Common<br>Clock       | Input            |



Table 20. Pin Listing by Pin Number (Sheet 12 of 17)

| (Sileet 12 of 17) |               |                       |                  |
|-------------------|---------------|-----------------------|------------------|
| Pin Name          | Pin<br>Number | Signal<br>Buffer Type | Direction        |
| VSS               | Н6            | Power/Other           |                  |
| VSS               | H21           | Power/Other           |                  |
| D[12]#            | H22           | Source Synch          | Input/<br>Output |
| D[15]#            | H23           | Source Synch          | Input/<br>Output |
| VSS               | H24           | Power/Other           |                  |
| DINV[0]#          | H25           | Source Synch          | Input/<br>Output |
| DSTBP[0]#         | H26           | Source Synch          | Input/<br>Output |
| A[9]#             | J1            | Source Synch          | Input/<br>Output |
| VSS               | J2            | Power/Other           |                  |
| REQ[3]#           | J3            | Source Synch          | Input/<br>Output |
| A[3]#             | J4            | Source Synch          | Input/<br>Output |
| VSS               | J5            | Power/Other           |                  |
| VCCP              | J6            | Power/Other           |                  |
| VCCP              | J21           | Power/Other           |                  |
| VSS               | J22           | Power/Other           |                  |
| D[11]#            | J23           | Source Synch          | Input/<br>Output |
| D[10]#            | J24           | Source Synch          | Input/<br>Output |
| VSS               | J25           | Power/Other           |                  |
| DSTBN[0]#         | J26           | Source Synch          | Input/<br>Output |
| VSS               | K1            | Power/Other           |                  |
| REQ[2]#           | K2            | Source Synch          | Input/<br>Output |
| REQ[0]#           | K3            | Source Synch          | Input/<br>Output |
| VSS               | K4            | Power/Other           |                  |
| A[6]#             | K5            | Source Synch          | Input/<br>Output |
| VCCP              | K6            | Power/Other           |                  |
| VCCP              | K21           | Power/Other           |                  |
| D[14]#            | K22           | Source Synch          | Input/<br>Output |

Table 20. Pin Listing by Pin Number (Sheet 13 of 17)

| Pin Name  | Pin<br>Number | Signal<br>Buffer Type | Direction        |
|-----------|---------------|-----------------------|------------------|
| VSS       | K23           | Power/Other           |                  |
| D[8]#     | K24           | Source Synch          | Input/<br>Output |
| D[17]#    | K25           | Source Synch          | Input/<br>Output |
| VSS       | K26           | Power/Other           |                  |
| REQ[4]#   | L1            | Source Synch          | Input/<br>Output |
| A[13]#    | L2            | Source Synch          | Input/<br>Output |
| VSS       | L3            | Power/Other           |                  |
| A[5]#     | L4            | Source Synch          | Input/<br>Output |
| A[4]#     | L5            | Source Synch          | Input/<br>Output |
| VSS       | L6            | Power/Other           |                  |
| VSS       | L21           | Power/Other           |                  |
| D[22]#    | L22           | Source Synch          | Input/<br>Output |
| D[20]#    | L23           | Source Synch          | Input/<br>Output |
| VSS       | L24           | Power/Other           |                  |
| D[29]#    | L25           | Source Synch          | Input/<br>Output |
| DSTBN[1]# | L26           | Source Synch          | Input/<br>Output |
| ADSTB[0]# | M1            | Source Synch          | Input/<br>Output |
| VSS       | M2            | Power/Other           |                  |
| A[7]#     | М3            | Source Synch          | Input/<br>Output |
| RSVD      | M4            | Reserved              |                  |
| VSS       | M5            | Power/Other           |                  |
| VCCP      | M6            | Power/Other           |                  |
| VCCP      | M21           | Power/Other           |                  |
| VSS       | M22           | Power/Other           |                  |
| D[23]#    | M23           | Source Synch          | Input/<br>Output |
| D[21]#    | M24           | Source Synch          | Input/<br>Output |
| VSS       | M25           | Power/Other           |                  |



Table 20. Pin Listing by Pin Number (Sheet 14 of 17)

| (Silect 14 of 17) |               |                       |                  |
|-------------------|---------------|-----------------------|------------------|
| Pin Name          | Pin<br>Number | Signal<br>Buffer Type | Direction        |
| DSTBP[1]#         | M26           | Source Synch          | Input/<br>Output |
| VSS               | N1            | Power/Other           |                  |
| A[8]#             | N2            | Source Synch          | Input/<br>Output |
| A[10]#            | N3            | Source Synch          | Input/<br>Output |
| VSS               | N4            | Power/Other           |                  |
| RSVD              | N5            | Reserved              |                  |
| VCCP              | N6            | Power/Other           |                  |
| VCCP              | N21           | Power/Other           |                  |
| D[16]#            | N22           | Source Synch          | Input/<br>Output |
| VSS               | N23           | Power/Other           |                  |
| DINV[1]#          | N24           | Source Synch          | Input/<br>Output |
| D[31]#            | N25           | Source Synch          | Input/<br>Output |
| VSS               | N26           | Power/Other           |                  |
| A[15]#            | P1            | Source Synch          | Input/<br>Output |
| A[12]#            | P2            | Source Synch          | Input/<br>Output |
| VSS               | P3            | Power/Other           |                  |
| A[14]#            | P4            | Source Synch          | Input/<br>Output |
| A[11]#            | P5            | Source Synch          | Input/<br>Output |
| VSS               | P6            | Power/Other           |                  |
| VSS               | P21           | Power/Other           |                  |
| D[26]#            | P22           | Source Synch          | Input/<br>Output |
| D[25]#            | P23           | Source Synch          | Input/<br>Output |
| VSS               | P24           | Power/Other           |                  |
| D[24]#            | P25           | Source Synch          | Input/<br>Output |
| D[18]#            | P26           | Source Synch          | Input/<br>Output |
| A[16]#            | R1            | Source Synch          | Input/<br>Output |

Table 20. Pin Listing by Pin Number (Sheet 15 of 17)

| Pin Name | Pin<br>Number | Signal<br>Buffer Type | Direction        |
|----------|---------------|-----------------------|------------------|
| VSS      | R2            | Power/Other           |                  |
| A[19]#   | R3            | Source Synch          | Input/<br>Output |
| A[24]#   | R4            | Source Synch          | Input/<br>Output |
| VSS      | R5            | Power/Other           |                  |
| VCCP     | R6            | Power/Other           |                  |
| VCCP     | R21           | Power/Other           |                  |
| VSS      | R22           | Power/Other           |                  |
| D[19]#   | R23           | Source Synch          | Input/<br>Output |
| D[28]#   | R24           | Source Synch          | Input/<br>Output |
| VSS      | R25           | Power/Other           |                  |
| COMP[0]  | R26           | Power/Other           | Input/<br>Output |
| VSS      | T1            | Power/Other           |                  |
| RSVD     | T2            | Reserved              |                  |
| A[26]#   | Т3            | Source Synch          | Input/<br>Output |
| VSS      | T4            | Power/Other           |                  |
| A[25]#   | T5            | Source Synch          | Input/<br>Output |
| VCCP     | T6            | Power/Other           |                  |
| VCCP     | T21           | Power/Other           |                  |
| D[37]#   | T22           | Source Synch          | Input/<br>Output |
| VSS      | T23           | Power/Other           |                  |
| D[27]#   | T24           | Source Synch          | Input/<br>Output |
| D[30]#   | T25           | Source Synch          | Input/<br>Output |
| VSS      | T26           | Power/Other           |                  |
| A[23]#   | U1            | Source Synch          | Input/<br>Output |
| A[30]#   | U2            | Source Synch          | Input/<br>Output |
| VSS      | U3            | Power/Other           |                  |
| A[21]#   | U4            | Source Synch          | Input/<br>Output |



Table 20. Pin Listing by Pin Number (Sheet 16 of 17)

| (Silect 16 of 17) |               |                       |                  |
|-------------------|---------------|-----------------------|------------------|
| Pin Name          | Pin<br>Number | Signal<br>Buffer Type | Direction        |
| A[18]#            | U5            | Source Synch          | Input/<br>Output |
| VSS               | U6            | Power/Other           |                  |
| VSS               | U21           | Power/Other           |                  |
| DINV[2]#          | U22           | Source Synch          | Input/<br>Output |
| D[39]#            | U23           | Source Synch          | Input/<br>Output |
| VSS               | U24           | Power/Other           |                  |
| D[38]#            | U25           | Source Synch          | Input/<br>Output |
| COMP[1]           | U26           | Power/Other           | Input/<br>Output |
| ADSTB[1]#         | V1            | Source Synch          | Input/<br>Output |
| VSS               | V2            | Power/Other           |                  |
| RSVD              | V3            | Reserved              |                  |
| A[31]#            | V4            | Source Synch          | Input/<br>Output |
| VSS               | V5            | Power/Other           |                  |
| VCCP              | V6            | Power/Other           |                  |
| VCCP              | V21           | Power/Other           |                  |
| VSS               | V22           | Power/Other           |                  |
| D[36]#            | V23           | Source Synch          | Input/<br>Output |
| D[34]#            | V24           | Source Synch          | Input/<br>Output |
| VSS               | V25           | Power/Other           |                  |
| D[35]#            | V26           | Source Synch          | Input/<br>Output |
| VSS               | W1            | Power/Other           |                  |
| A[27]#            | W2            | Source Synch          | Input/<br>Output |
| A[32]#            | W3            | Source Synch          | Input/<br>Output |
| VSS               | W4            | Power/Other           |                  |
| A[28]#            | W5            | Source Synch          | Input/<br>Output |
| A[20]#            | W6            | Source Synch          | Input/<br>Output |
| VCCP              | W21           | Power/Other           |                  |

Table 20. Pin Listing by Pin Number (Sheet 17 of 17)

| Pin Name  | Pin<br>Number | Signal<br>Buffer Type | Direction        |
|-----------|---------------|-----------------------|------------------|
| D[41]#    | W22           | Source Synch          | Input/<br>Output |
| VSS       | W23           | Power/Other           |                  |
| D[43]#    | W24           | Source Synch          | Input/<br>Output |
| D[44]#    | W25           | Source Synch          | Input/<br>Output |
| VSS       | W26           | Power/Other           |                  |
| COMP[3]   | Y1            | Power/Other           | Input/<br>Output |
| A[17]#    | Y2            | Source Synch          | Input/<br>Output |
| VSS       | Y3            | Power/Other           |                  |
| A[29]#    | Y4            | Source Synch          | Input/<br>Output |
| A[22]#    | Y5            | Source Synch          | Input/<br>Output |
| VSS       | Y6            | Power/Other           |                  |
| VSS       | Y21           | Power/Other           |                  |
| D[32]#    | Y22           | Source Synch          | Input/<br>Output |
| D[42]#    | Y23           | Source Synch          | Input/<br>Output |
| VSS       | Y24           | Power/Other           |                  |
| D[40]#    | Y25           | Source Synch          | Input/<br>Output |
| DSTBN[2]# | Y26           | Source Synch          | Input/<br>Output |



Table 21. SFF Listing by Ball Name

| Signal Name | Ball<br>Number |
|-------------|----------------|
| A[3]#       | P2             |
| A[4]#       | V4             |
| A[5]#       | W1             |
| A[6]#       | T4             |
| A[7]#       | AA1            |
| A[8]#       | AB4            |
| A[9]#       | T2             |
| A[10]#      | AC5            |
| A[11]#      | AD2            |
| A[12]#      | AD4            |
| A[13]#      | AA5            |
| A[14]#      | AE5            |
| A[15]#      | AB2            |
| A[16]#      | AC1            |
| A[17]#      | AN1            |
| A[18]#      | AK4            |
| A[19]#      | AG1            |
| A[20]#      | AT4            |
| A[21]#      | AK2            |
| A[22]#      | AT2            |
| A[23]#      | AH2            |
| A[24]#      | AF4            |
| A[25]#      | AJ5            |
| A[26]#      | AH4            |
| A[27]#      | AM4            |
| A[28]#      | AP4            |
| A[29]#      | AR5            |
| A[30]#      | AJ1            |
| A[31]#      | AL1            |
| A[32]#      | AM2            |
| A[33]#      | AU5            |
| A[34]#      | AP2            |
| A[35]#      | AR1            |
| A20M#       | C7             |
| ADS#        | M4             |
| ADSTB[0]#   | Y4             |

| Signal Name | Ball<br>Number |
|-------------|----------------|
| ADSTB[1]#   | AN5            |
| BCLK[0]     | A35            |
| BCLK[1]     | C35            |
| BNR#        | J5             |
| BPM[0]#     | AY8            |
| BPM[1]#     | BA7            |
| BPM[2]#     | BA5            |
| BPM[3]#     | AY2            |
| BPRI#       | L5             |
| BR0#        | M2             |
| BSEL[0]     | A37            |
| BSEL[1]     | C37            |
| BSEL[2]     | B38            |
| COMP[0]     | AE43           |
| COMP[1]     | AD44           |
| COMP[2]     | AE1            |
| COMP[3]     | AF2            |
| D[0]#       | F40            |
| D[1]#       | G43            |
| D[2]#       | E43            |
| D[3]#       | J43            |
| D[4]#       | H40            |
| D[5]#       | H44            |
| D[6]#       | G39            |
| D[7]#       | E41            |
| D[8]#       | L41            |
| D[9]#       | K44            |
| D[10]#      | N41            |
| D[11]#      | T40            |
| D[12]#      | M40            |
| D[13]#      | G41            |
| D[14]#      | M44            |
| D[15]#      | L43            |
| D[16]#      | P44            |
| D[17]#      | V40            |
| D[18]#      | V44            |
| D[19]#      | AB44           |





| Signal Name | Ball<br>Number |
|-------------|----------------|
| D[20]#      | R41            |
| D[21]#      | W41            |
| D[22]#      | N43            |
| D[23]#      | U41            |
| D[24]#      | AA41           |
| D[25]#      | AB40           |
| D[26]#      | AD40           |
| D[27]#      | AC41           |
| D[28]#      | AA43           |
| D[29]#      | Y40            |
| D[30]#      | Y44            |
| D[31]#      | T44            |
| D[32]#      | AP44           |
| D[33]#      | AR43           |
| D[34]#      | AH40           |
| D[35]#      | AF40           |
| D[36]#      | AJ43           |
| D[37]#      | AG41           |
| D[38]#      | AF44           |
| D[39]#      | AH44           |
| D[40]#      | AM44           |
| D[41]#      | AN43           |
| D[42]#      | AM40           |
| D[43]#      | AK40           |
| D[44]#      | AG43           |
| D[45]#      | AP40           |
| D[46]#      | AN41           |
| D[47]#      | AL41           |
| D[48]#      | AV38           |
| D[49]#      | AT44           |
| D[50]#      | AV40           |
| D[51]#      | AU41           |
| D[52]#      | AW41           |
| D[53]#      | AR41           |
| D[54]#      | BA37           |
| D[55]#      | BB38           |
| D[56]#      | AY36           |
| D[57]#      | AT40           |
| l           | l              |

|             | Ball   |
|-------------|--------|
| Signal Name | Number |
| D[58]#      | BC35   |
| D[59]#      | BC39   |
| D[60]#      | BA41   |
| D[61]#      | BB40   |
| D[62]#      | BA35   |
| D[63]#      | AU43   |
| DBR#        | J7     |
| DBSY#       | J1     |
| DEFER#      | N5     |
| DINV[0]#    | P40    |
| DINV[1]#    | R43    |
| DINV[2]#    | AJ41   |
| DINV[3]#    | BC37   |
| DPRSTP#     | G7     |
| DPSLP#      | В8     |
| DPWR#       | C41    |
| DRDY#       | F38    |
| DSTBN[0]#   | K40    |
| DSTBN[1]#   | U43    |
| DSTBN[2]#   | AK44   |
| DSTBN[3]#   | AY40   |
| DSTBP[0]#   | J41    |
| DSTBP[1]#   | W43    |
| DSTBP[2]#   | AL43   |
| DSTBP[3]#   | AY38   |
| FERR#       | D4     |
| GTLREF      | AW43   |
| HIT#        | H2     |
| HITM#       | F2     |
| IERR#       | B40    |
| IGNNE#      | F10    |
| INIT#       | D8     |
| LINT0       | C9     |
| LINT1       | C5     |
| LOCK#       | N1     |
| PRDY#       | AV10   |
| PREQ#       | AV2    |
| PROCHOT#    | D38    |





|             | T              |
|-------------|----------------|
| Signal Name | Ball<br>Number |
| PSI#        | BD10           |
| PWRGOOD     | E7             |
| REQ[0]#     | R1             |
| REQ[1]#     | R5             |
| REQ[2]#     | U1             |
| REQ[3]#     | P4             |
| REQ[4]#     | W5             |
| RESET#      | G5             |
| RS[0]#      | K2             |
| RS[1]#      | H4             |
| RS[2]#      | K4             |
| RSVD01      | V2             |
| RSVD02      | Y2             |
| RSVD03      | AG5            |
| RSVD04      | AL5            |
| RSVD05      | J9             |
| RSVD06      | F4             |
| RSVD07      | Н8             |
| SLP#        | D10            |
| SMI#        | E5             |
| STPCLK#     | F8             |
| TCK         | AV4            |
| TDI         | AW7            |
| TDO         | AU1            |
| TEST1       | E37            |
| TEST2       | D40            |
| TEST3       | C43            |
| TEST4       | AE41           |
| TEST5       | AY10           |
| TEST6       | AC43           |
| THERMTRIP#  | B10            |
| THRMDA      | BB34           |
| THRMDC      | BD34           |
| TMS         | AW5            |
| TRDY#       | L1             |
| TRST#       | AV8            |
| VCC         | AA33           |
| VCC         | AB16           |
|             |                |

|             | Ball   |
|-------------|--------|
| Signal Name | Number |
| VCC         | AB18   |
| VCC         | AB20   |
| VCC         | AB22   |
| VCC         | AB24   |
| VCC         | AB26   |
| VCC         | AB28   |
| VCC         | AB30   |
| VCC         | AB32   |
| VCC         | AC33   |
| VCC         | AD16   |
| VCC         | AD18   |
| VCC         | AD20   |
| VCC         | AD22   |
| VCC         | AD24   |
| VCC         | AD26   |
| VCC         | AD28   |
| VCC         | AD30   |
| VCC         | AD32   |
| VCC         | AE33   |
| VCC         | AF16   |
| VCC         | AF18   |
| VCC         | AF20   |
| VCC         | AF22   |
| VCC         | AF24   |
| VCC         | AF26   |
| VCC         | AF28   |
| VCC         | AF30   |
| VCC         | AF32   |
| VCC         | AG33   |
| VCC         | AH16   |
| VCC         | AH18   |
| VCC         | AH20   |
| VCC         | AH22   |
| VCC         | AH24   |
| VCC         | AH26   |
| VCC         | AH28   |
| VCC         | AH30   |
| VCC         | AH32   |





| Signal Name | Ball<br>Number |
|-------------|----------------|
| VCC         | AJ33           |
| VCC         | AK16           |
| VCC         | AK18           |
| VCC         | AK20           |
| VCC         | AK22           |
| VCC         | AK24           |
| VCC         | AK26           |
| VCC         | AK28           |
| VCC         | AK30           |
| VCC         | AK32           |
| VCC         | AL33           |
| VCC         | AM14           |
| VCC         | AM16           |
| VCC         | AM18           |
| VCC         | AM20           |
| VCC         | AM22           |
| VCC         | AM24           |
| VCC         | AM26           |
| VCC         | AM28           |
| VCC         | AM30           |
| VCC         | AM32           |
| VCC         | AN33           |
| VCC         | AP14           |
| VCC         | AP16           |
| VCC         | AP18           |
| VCC         | AP20           |
| VCC         | AP22           |
| VCC         | AP24           |
| VCC         | AP26           |
| VCC         | AP28           |
| VCC         | AP30           |
| VCC         | AP32           |
| VCC         | AR33           |
| VCC         | AT14           |
| VCC         | AT16           |
| VCC         | AT18           |
| VCC         | AT20           |
| VCC         | AT22           |

| Signal Name | Ball<br>Number |
|-------------|----------------|
|             |                |
| VCC         | AT24           |
| VCC         | AT26           |
| VCC         | AT28           |
| VCC         | AT30           |
| VCC         | AT32           |
| VCC         | AT34           |
| VCC         | AU33           |
| VCC         | AV14           |
| VCC         | AV16           |
| VCC         | AV18           |
| VCC         | AV20           |
| VCC         | AV22           |
| VCC         | AV24           |
| VCC         | AV26           |
| VCC         | AV28           |
| VCC         | AV30           |
| VCC         | AV32           |
| VCC         | AY14           |
| VCC         | AY16           |
| VCC         | AY18           |
| VCC         | AY20           |
| VCC         | AY22           |
| VCC         | AY24           |
| VCC         | AY26           |
| VCC         | AY28           |
| VCC         | AY30           |
| VCC         | AY32           |
| VCC         | B16            |
| VCC         | B18            |
| VCC         | B20            |
| VCC         | B22            |
| VCC         | B24            |
| VCC         | B26            |
| VCC         | B28            |
| VCC         | B30            |
| VCC         | BB14           |
| VCC         | BB16           |
| VCC         | BB18           |
| VCC         | 5510           |

Datasheet Datasheet





|             | Ball   |
|-------------|--------|
| Signal Name | Number |
| VCC         | BB20   |
| VCC         | BB22   |
| VCC         | BB24   |
| VCC         | BB26   |
| VCC         | BB28   |
| VCC         | BB30   |
| VCC         | BB32   |
| VCC         | BD14   |
| VCC         | BD16   |
| VCC         | BD18   |
| VCC         | BD20   |
| VCC         | BD22   |
| VCC         | BD24   |
| VCC         | BD26   |
| VCC         | BD28   |
| VCC         | BD30   |
| VCC         | BD32   |
| VCC         | D16    |
| VCC         | D18    |
| VCC         | D20    |
| VCC         | D22    |
| VCC         | D24    |
| VCC         | D26    |
| VCC         | D28    |
| VCC         | D30    |
| VCC         | F16    |
| VCC         | F18    |
| VCC         | F20    |
| VCC         | F22    |
| VCC         | F24    |
| VCC         | F26    |
| VCC         | F28    |
| VCC         | F30    |
| VCC         | F32    |
| VCC         | G33    |
| VCC         | H16    |
| VCC         | H18    |
| VCC         | H20    |
| VCC         | H20    |

| <b>-</b>    |                |
|-------------|----------------|
| Signal Name | Ball<br>Number |
| VCC         | H22            |
| VCC         | H24            |
| VCC         | H26            |
| VCC         | H28            |
| VCC         | H30            |
| VCC         | H32            |
| VCC         | J33            |
| VCC         | K16            |
| VCC         | K18            |
| VCC         | K20            |
| VCC         | K22            |
| VCC         | K24            |
| VCC         | K26            |
| VCC         | K28            |
| VCC         | K30            |
| VCC         | K32            |
| VCC         | L33            |
| VCC         | M16            |
| VCC         | M18            |
| VCC         | M20            |
| VCC         | M22            |
| VCC         | M24            |
| VCC         | M26            |
| VCC         | M28            |
| VCC         | M30            |
| VCC         | M32            |
| VCC         | N33            |
| VCC         | P16            |
| VCC         | P18            |
| VCC         | P20            |
| VCC         | P22            |
| VCC         | P24            |
| VCC         | P26            |
| VCC         | P28            |
| VCC         | P30            |
| VCC         | P32            |
| VCC         | R33            |
| VCC         | T16            |





| Signal Name | Ball<br>Number |
|-------------|----------------|
| VCC         | T18            |
| VCC         | T20            |
| VCC         | T22            |
| VCC         | T24            |
| VCC         | T26            |
| VCC         | T28            |
| VCC         | T30            |
| VCC         | T32            |
| VCC         | U33            |
| VCC         | V16            |
| VCC         | V18            |
| VCC         | V20            |
| VCC         | V22            |
| VCC         | V24            |
| VCC         | V26            |
| VCC         | V28            |
| VCC         | V30            |
| VCC         | V32            |
| VCC         | W33            |
| VCC         | Y16            |
| VCC         | Y18            |
| VCC         | Y20            |
| VCC         | Y22            |
| VCC         | Y24            |
| VCC         | Y26            |
| VCC         | Y28            |
| VCC         | Y30            |
| VCC         | Y32            |
| VCCA        | B34            |
| VCCA        | D34            |
| VCCP        | A13            |
| VCCP        | A33            |
| VCCP        | AA7            |
| VCCP        | AA9            |
| VCCP        | AA11           |
| VCCP        | AA13           |
| VCCP        | AA35           |
| VCCP        | AA37           |

| Signal Name | Ball<br>Number |
|-------------|----------------|
| VCCP        | AB10           |
| VCCP        | AB12           |
| VCCP        | AB14           |
| VCCP        | AB36           |
| VCCP        | AB38           |
| VCCP        | AC7            |
| VCCP        | AC9            |
| VCCP        | AC11           |
| VCCP        | AC13           |
| VCCP        | AC35           |
| VCCP        | AC37           |
| VCCP        | AD14           |
| VCCP        | AE7            |
| VCCP        | AE9            |
| VCCP        | AE11           |
| VCCP        | AE13           |
| VCCP        | AE35           |
| VCCP        | AE37           |
| VCCP        | AF10           |
| VCCP        | AF12           |
| VCCP        | AF14           |
| VCCP        | AF36           |
| VCCP        | AF38           |
| VCCP        | AG7            |
| VCCP        | AG9            |
| VCCP        | AG11           |
| VCCP        | AG13           |
| VCCP        | AG35           |
| VCCP        | AG37           |
| VCCP        | AH14           |
| VCCP        | AJ7            |
| VCCP        | AJ9            |
| VCCP        | AJ11           |
| VCCP        | AJ13           |
| VCCP        | AJ35           |
| VCCP        | AJ37           |
| VCCP        | AK10           |
| VCCP        | AK12           |
| • 561       | ,L             |





|             | D-II           |
|-------------|----------------|
| Signal Name | Ball<br>Number |
| VCCP        | AK14           |
| VCCP        | AK36           |
| VCCP        | AK38           |
| VCCP        | AL7            |
| VCCP        | AL9            |
| VCCP        | AL11           |
| VCCP        | AL13           |
| VCCP        | AL35           |
| VCCP        | AL37           |
| VCCP        | AN7            |
| VCCP        | AN9            |
| VCCP        | AN11           |
| VCCP        | AN13           |
| VCCP        | AN35           |
| VCCP        | AN37           |
| VCCP        | AP10           |
| VCCP        | AP12           |
| VCCP        | AP36           |
| VCCP        | AP38           |
| VCCP        | AR7            |
| VCCP        | AR9            |
| VCCP        | AR11           |
| VCCP        | AR13           |
| VCCP        | AU11           |
| VCCP        | AU13           |
| VCCP        | B12            |
| VCCP        | B14            |
| VCCP        | B32            |
| VCCP        | C13            |
| VCCP        | C33            |
| VCCP        | D12            |
| VCCP        | D14            |
| VCCP        | D32            |
| VCCP        | E11            |
| VCCP        | E13            |
| VCCP        | E33            |
| VCCP        | E35            |
| VCCP        | F12            |

| Signal Name | Ball<br>Number |
|-------------|----------------|
| VCCP        | F14            |
| VCCP        | F34            |
| VCCP        | F36            |
| VCCP        | G11            |
| VCCP        | G13            |
| VCCP        | G35            |
| VCCP        | H12            |
| VCCP        | H14            |
| VCCP        | H36            |
| VCCP        | J11            |
| VCCP        | J13            |
| VCCP        | J35            |
| VCCP        | J37            |
| VCCP        | K10            |
| VCCP        | K12            |
| VCCP        | K14            |
| VCCP        | K36            |
| VCCP        | K38            |
| VCCP        | L7             |
| VCCP        | L9             |
| VCCP        | L11            |
| VCCP        | L13            |
| VCCP        | L35            |
| VCCP        | L37            |
| VCCP        | M14            |
| VCCP        | N7             |
| VCCP        | N9             |
| VCCP        | N11            |
| VCCP        | N13            |
| VCCP        | N35            |
| VCCP        | N37            |
| VCCP        | P10            |
| VCCP        | P12            |
| VCCP        | P14            |
| VCCP        | P36            |
| VCCP        | P38            |
| VCCP        | R7             |
| VCCP        | R9             |





| Signal Name | Ball<br>Number |
|-------------|----------------|
| VCCP        | R11            |
| VCCP        | R13            |
| VCCP        | R35            |
| VCCP        | R37            |
| VCCP        | T14            |
| VCCP        | U7             |
| VCCP        | U9             |
| VCCP        | U11            |
| VCCP        | U13            |
| VCCP        | U35            |
| VCCP        | U37            |
| VCCP        | V10            |
| VCCP        | V12            |
| VCCP        | V14            |
| VCCP        | V36            |
| VCCP        | V38            |
| VCCP        | W7             |
| VCCP        | W9             |
| VCCP        | W11            |
| VCCP        | W13            |
| VCCP        | W35            |
| VCCP        | W37            |
| VCCP        | Y14            |
| VCCSENSE    | BD12           |
| VID[0]      | BD8            |
| VID[1]      | BC7            |
| VID[2]      | BB10           |
| VID[3]      | BB8            |
| VID[4]      | BC5            |
| VID[5]      | BB4            |
| VID[6]      | AY4            |
| VSS         | A5             |
| VSS         | A7             |
| VSS         | A9             |
| VSS         | A11            |
| VSS         | A15            |
| VSS         | A17            |
| VSS         | A19            |
| l           |                |

| Signal Name | Ball     |
|-------------|----------|
| 2.3         | Number   |
| VSS         | A21      |
| VSS         | A23      |
| VSS         | A25      |
| VSS         | A27      |
| VSS         | A29      |
| VSS         | A31      |
| VSS         | A39      |
| VSS         | A41      |
| VSS         | AA3      |
| VSS         | AA15     |
| VSS         | AA17     |
| VSS         | AA19     |
| VSS         | AA21     |
| VSS         | AA23     |
| VSS         | AA25     |
| VSS         | AA27     |
| VSS         | AA29     |
| VSS         | AA31     |
| VSS         | AA39     |
| VSS         | AB6      |
| VSS         | AB8      |
| VSS         | AB34     |
| VSS         | AB42     |
| VSS         | AC3      |
| VSS         | AC15     |
| VSS         | AC17     |
| VSS         | AC19     |
| VSS         | AC21     |
| VSS         | AC23     |
| VSS         | AC25     |
| VSS         | AC27     |
| VSS         | AC29     |
| VSS         | AC31     |
| VSS         | AC39     |
| VSS         | AD6      |
| VSS         | AD8      |
| VSS         | AD10     |
| VSS         | AD12     |
|             | <u> </u> |





| Signal Name | Ball<br>Number |
|-------------|----------------|
| VSS         | AD34           |
| VSS         | AD34           |
| VSS         | AD38           |
| VSS         | AD30<br>AD42   |
| VSS         | AD42<br>AE3    |
| VSS         | AE15           |
|             | AE15<br>AE17   |
| VSS         |                |
| VSS         | AE19           |
| VSS         | AE21           |
| VSS         | AE23           |
| VSS         | AE25           |
| VSS         | AE27           |
| VSS         | AE29           |
| VSS         | AE31           |
| VSS         | AE39           |
| VSS         | AF6            |
| VSS         | AF8            |
| VSS         | AF34           |
| VSS         | AF42           |
| VSS         | AG3            |
| VSS         | AG15           |
| VSS         | AG17           |
| VSS         | AG19           |
| VSS         | AG21           |
| VSS         | AG23           |
| VSS         | AG25           |
| VSS         | AG27           |
| VSS         | AG29           |
| VSS         | AG31           |
| VSS         | AG39           |
| VSS         | AH6            |
| VSS         | AH8            |
| VSS         | AH10           |
| VSS         | AH12           |
| VSS         | AH34           |
| VSS         | AH36           |
| VSS         | AH38           |
| VSS         | AH42           |
| V 3 3       | AH4Z           |

| Signal Name | Ball<br>Number |
|-------------|----------------|
| VSS         | AJ3            |
| VSS         | AJ15           |
| VSS         | AJ17           |
| VSS         | AJ19           |
| VSS         | AJ21           |
| VSS         | AJ23           |
| VSS         | AJ25           |
| VSS         | AJ27           |
| VSS         | AJ29           |
| VSS         | AJ31           |
| VSS         | AJ39           |
| VSS         | AK6            |
| VSS         | AK8            |
| VSS         | AK34           |
| VSS         | AK42           |
| VSS         | AL3            |
| VSS         | AL15           |
| VSS         | AL17           |
| VSS         | AL19           |
| VSS         | AL21           |
| VSS         | AL23           |
| VSS         | AL25           |
| VSS         | AL27           |
| VSS         | AL29           |
| VSS         | AL31           |
| VSS         | AL39           |
| VSS         | AM6            |
| VSS         | AM8            |
| VSS         | AM10           |
| VSS         | AM12           |
| VSS         | AM34           |
| VSS         | AM36           |
| VSS         | AM38           |
| VSS         | AM42           |
| VSS         | AN3            |
| VSS         | AN15           |
| VSS         | AN17           |
| VSS         | AN19           |





| Signal Name | Ball<br>Number |
|-------------|----------------|
| VSS         | AN21           |
| VSS         | AN23           |
| VSS         | AN25           |
| VSS         | AN27           |
| VSS         | AN29           |
| VSS         | AN31           |
| VSS         | AN39           |
| VSS         | AP6            |
| VSS         | AP8            |
| VSS         | AP34           |
| VSS         | AP42           |
| VSS         | AR3            |
| VSS         | AR15           |
| VSS         | AR17           |
| VSS         | AR19           |
| VSS         | AR21           |
| VSS         | AR23           |
| VSS         | AR25           |
| VSS         | AR27           |
| VSS         | AR29           |
| VSS         | AR31           |
| VSS         | AR35           |
| VSS         | AR37           |
| VSS         | AR39           |
| VSS         | AT6            |
| VSS         | AT8            |
| VSS         | AT10           |
| VSS         | AT12           |
| VSS         | AT36           |
| VSS         | AT38           |
| VSS         | AT42           |
| VSS         | AU3            |
| VSS         | AU7            |
| VSS         | AU9            |
| VSS         | AU15           |
| VSS         | AU17           |
| VSS         | AU19           |
| VSS         | AU21           |

| Cianal Name | Ball   |
|-------------|--------|
| Signal Name | Number |
| VSS         | AU23   |
| VSS         | AU25   |
| VSS         | AU27   |
| VSS         | AU29   |
| VSS         | AU31   |
| VSS         | AU35   |
| VSS         | AU37   |
| VSS         | AU39   |
| VSS         | AV6    |
| VSS         | AV12   |
| VSS         | AV34   |
| VSS         | AV36   |
| VSS         | AV42   |
| VSS         | AV44   |
| VSS         | AW1    |
| VSS         | AW3    |
| VSS         | AW9    |
| VSS         | AW11   |
| VSS         | AW13   |
| VSS         | AW15   |
| VSS         | AW17   |
| VSS         | AW19   |
| VSS         | AW21   |
| VSS         | AW23   |
| VSS         | AW25   |
| VSS         | AW27   |
| VSS         | AW29   |
| VSS         | AW31   |
| VSS         | AW33   |
| VSS         | AW35   |
| VSS         | AW37   |
| VSS         | AW39   |
| VSS         | AY6    |
| VSS         | AY12   |
| VSS         | AY34   |
| VSS         | AY42   |
| VSS         | AY44   |
| VSS         | B4     |
|             |        |





| Signal Name | Ball<br>Number |
|-------------|----------------|
| VSS         | В6             |
| VSS         | B36            |
| VSS         | B42            |
| VSS         | BA1            |
| VSS         | BA3            |
| VSS         | BA9            |
| VSS         | BA11           |
| VSS         | BA13           |
| VSS         | BA15           |
| VSS         | BA17           |
| VSS         | BA19           |
| VSS         | BA21           |
| VSS         | BA23           |
| VSS         | BA25           |
| VSS         | BA27           |
| VSS         | BA29           |
| VSS         | BA31           |
| VSS         | BA33           |
| VSS         | BA39           |
| VSS         | BA43           |
| VSS         | BB2            |
| VSS         | BB6            |
| VSS         | BB12           |
| VSS         | BB36           |
| VSS         | BB42           |
| VSS         | BC3            |
| VSS         | BC9            |
| VSS         | BC11           |
| VSS         | BC15           |
| VSS         | BC17           |
| VSS         | BC19           |
| VSS         | BC21           |
| VSS         | BC23           |
| VSS         | BC25           |
| VSS         | BC27           |
| VSS         | BC29           |
| VSS         | BC31           |
| VSS         | BC33           |

| Signal Name | Ball<br>Number |
|-------------|----------------|
| VSS         | BC41           |
| VSS         | BD4            |
| VSS         | BD6            |
| VSS         | BD36           |
| VSS         | BD38           |
| VSS         | BD40           |
| VSS         | C3             |
| VSS         | C11            |
| VSS         | C15            |
| VSS         | C17            |
| VSS         | C19            |
| VSS         | C21            |
| VSS         | C23            |
| VSS         | C25            |
| VSS         | C27            |
| VSS         | C29            |
| VSS         | C31            |
| VSS         | C39            |
| VSS         | D2             |
| VSS         | D6             |
| VSS         | D36            |
| VSS         | D42            |
| VSS         | D44            |
| VSS         | E1             |
| VSS         | E3             |
| VSS         | E9             |
| VSS         | E15            |
| VSS         | E17            |
| VSS         | E19            |
| VSS         | E21            |
| VSS         | E23            |
| VSS         | E25            |
| VSS         | E27            |
| VSS         | E29            |
| VSS         | E31            |
| VSS         | E39            |
| VSS         | F6             |
| VSS         | F42            |
|             |                |





| Signal Name | Ball<br>Number |
|-------------|----------------|
| VSS         | F44            |
| VSS         | G1             |
| VSS         | G3             |
| VSS         | G9             |
| VSS         | G15            |
| VSS         | G17            |
| VSS         | G19            |
| VSS         | G21            |
| VSS         | G23            |
| VSS         | G25            |
| VSS         | G27            |
| VSS         | G29            |
| VSS         | G31            |
| VSS         | G37            |
| VSS         | Н6             |
| VSS         | H10            |
| VSS         | H34            |
| VSS         | H38            |
| VSS         | H42            |
| VSS         | J3             |
| VSS         | J15            |
| VSS         | J17            |
| VSS         | J19            |
| VSS         | J21            |
| VSS         | J23            |
| VSS         | J25            |
| VSS         | J27            |
| VSS         | J29            |
| VSS         | J31            |
| VSS         | J39            |
| VSS         | K6             |
| VSS         | K8             |
| VSS         | K34            |
| VSS         | K42            |
| VSS         | L3             |
| VSS         | L15            |
| VSS         | L17            |
| VSS         | L19            |

| Signal Name | Ball<br>Number |
|-------------|----------------|
| VSS         | L21            |
| VSS         |                |
|             | L23            |
| VSS         | L25            |
| VSS         | L27            |
| VSS         | L29            |
| VSS         | L31            |
| VSS         | L39            |
| VSS         | M6             |
| VSS         | M8             |
| VSS         | M10            |
| VSS         | M12            |
| VSS         | M34            |
| VSS         | M36            |
| VSS         | M38            |
| VSS         | M42            |
| VSS         | N3             |
| VSS         | N15            |
| VSS         | N17            |
| VSS         | N19            |
| VSS         | N21            |
| VSS         | N23            |
| VSS         | N25            |
| VSS         | N27            |
| VSS         | N29            |
| VSS         | N31            |
| VSS         | N39            |
| VSS         | P6             |
| VSS         | P8             |
| VSS         | P34            |
| VSS         | P42            |
| VSS         | R3             |
| VSS         | R15            |
| VSS         | R17            |
| VSS         | R19            |
| VSS         | R21            |
| VSS         | R21            |
|             |                |
| VSS         | R25            |
| VSS         | R27            |





| Signal Name | Ball<br>Number |  |  |  |  |
|-------------|----------------|--|--|--|--|
| VSS         | R29            |  |  |  |  |
| VSS         | R31            |  |  |  |  |
| VSS         | R39            |  |  |  |  |
| VSS         | T6             |  |  |  |  |
| VSS         | T8             |  |  |  |  |
| VSS         | T10            |  |  |  |  |
| VSS         | T12            |  |  |  |  |
| VSS         | T34            |  |  |  |  |
| VSS         | T36            |  |  |  |  |
| VSS         | T38            |  |  |  |  |
| VSS         | T42            |  |  |  |  |
| VSS         | U3             |  |  |  |  |
| VSS         | U5             |  |  |  |  |
| VSS         | U15            |  |  |  |  |
| VSS         | U17            |  |  |  |  |
| VSS         | U19            |  |  |  |  |
| VSS         | U21            |  |  |  |  |
| VSS         | U23            |  |  |  |  |
| VSS         | U25            |  |  |  |  |
| VSS         | U27            |  |  |  |  |
| VSS         | U29            |  |  |  |  |
| VSS         | U31            |  |  |  |  |
| VSS         | U39            |  |  |  |  |
| VSS         | V6             |  |  |  |  |
| VSS         | V8             |  |  |  |  |
| VSS         | V34            |  |  |  |  |
| VSS         | V42            |  |  |  |  |
| VSS         | W3             |  |  |  |  |
| VSS         | W15            |  |  |  |  |
| VSS         | W17            |  |  |  |  |
| VSS         | W19            |  |  |  |  |
| VSS         | W21            |  |  |  |  |
| VSS         | W23            |  |  |  |  |
| VSS         | W25            |  |  |  |  |
| VSS         | W27            |  |  |  |  |
| VSS         | W29            |  |  |  |  |
| VSS         | W31            |  |  |  |  |
| VSS         | W39            |  |  |  |  |

| Signal Name | Ball<br>Number |
|-------------|----------------|
| VSS         | Y6             |
| VSS         | Y8             |
| VSS         | Y10            |
| VSS         | Y12            |
| VSS         | Y34            |
| VSS         | Y36            |
| VSS         | Y38            |
| VSS         | Y42            |
| VSSSENSE    | BC13           |

# Package Mechanical Specifications and Pin Information





# 4.3 Alphabetical Signals Reference

**Table 22.** Signal Description (Sheet 1 of 7)

| Name        | Туре             |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                          |  |  |  |
|-------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A[35:3]#    | Input/<br>Output | phase 1 of the address p<br>sub-phase 2, these pins<br>connect the appropriate<br>source synchronous sign                                                                                                                                                                                                                                                                                                                                       | A[35:3]# (Address) define a 2 <sup>36</sup> -byte physical memory address space. In subphase 1 of the address phase, these pins transmit the address of a transaction. In sub-phase 2, these pins transmit transaction type information. These signals must connect the appropriate pins of both agents on the processor FSB. A[35:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. Address signals are used as straps which are sampled before RESET# is deasserted. |                                                                                                                                          |  |  |  |
| A20M#       | Input            | 20 (A20#) before looking write transaction on the address wrap-around at supported in real mode.                                                                                                                                                                                                                                                                                                                                                | g up a line in any intern<br>bus. Asserting A20M# 6<br>the 1-Mbyte boundary.                                                                                                                                                                                                                                                                                                                                                                                                                                       | ocessor masks physical address bit<br>al cache and before driving a read/<br>emulates the 8086 processor's<br>Assertion of A20M# is only |  |  |  |
|             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ut write instruction, it m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ust be valid along with the TRDY#                                                                                                        |  |  |  |
| ADS#        | Input/<br>Output | ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[35:3]# and REQ[4:0]# pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction.                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |  |  |  |
|             |                  | Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and falling edges. Strobes are associated with signals as shown below.                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |  |  |  |
| ADSTB[1:0]# | Input/<br>Output | Signals                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Associated Strobe</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |  |  |  |
|             | Оигрис           | REQ[4:0]#, A[16:3]#                                                                                                                                                                                                                                                                                                                                                                                                                             | ADSTB[0]#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |  |  |  |
|             |                  | A[35:17]#                                                                                                                                                                                                                                                                                                                                                                                                                                       | ADSTB[1]#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |  |  |  |
| BCLK[1:0]   | Input            | agents must receive the                                                                                                                                                                                                                                                                                                                                                                                                                         | se signals to drive their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es the FSB frequency. All FSB outputs and latch their inputs. In respect to the rising edge of                                           |  |  |  |
| BNR#        | Input/<br>Output |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s transactions. During a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bus stall by any bus agent who is<br>bus stall, the current bus owner                                                                    |  |  |  |
| BPM[2:1]#   | Output           | They are outputs from the                                                                                                                                                                                                                                                                                                                                                                                                                       | ne processor which indic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and performance monitor signals. ate the status of breakpoints and                                                                       |  |  |  |
| BPM[3,0]#   | Input/<br>Output | programmable counters used for monitoring processor performance. BPM[3:0]# should connect the appropriate pins of all processor FSB agents. This includes debug or performance monitoring tools.                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |  |  |  |
| BPRI#       | Input            | BPRI# (Bus Priority Request) is used to arbitrate for ownership of the FSB. It must connect the appropriate pins of both FSB agents. Observing BPRI# active (as asserted by the priority agent) causes the other agent to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |  |  |  |
| BR0#        | Input/<br>Output | BR0# is used by the processor (Symmetric Ag                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s. The arbitration is done between Priority Agent).                                                                                      |  |  |  |



**Table 22.** Signal Description (Sheet 2 of 7)

| Name      | Туре             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                   | Descript       | ion                         |  |  |  |  |
|-----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|--|--|--|--|
| BSEL[2:0] | Output           | Table 3 defines associated with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BSEL[2:0] (Bus Select) are used to select the processor input clock frequency.  Table 3 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset and clock synthesizer. All agents must operate at the same frequency. |                |                             |  |  |  |  |
| COMP[3:0] | Analog           | COMP[3:0] mu tolerance) resi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   | d on the syste | m board using precision (1% |  |  |  |  |
| D[63:0]#  | Input/<br>Output | D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the FSB agents, and must connect the appropriate pins on both agents. The data driver asserts DRDY# to indicate a valid data transfer.  D[63:0]# are quad-pumped signals and are driven four times in a common clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals corresponds to a pair of one DSTBP# and one DSTBN#. The following table shows the grouping of data signals to data strobes and DINV#.  Quad-Pumped Signal Groups  Data DSTBN#/ DINV#  D[15:0]# 0 0  D[31:16]# 1 1  D[47:32]# 2 2  D[63:48]# 3 3  Furthermore, the DINV# pins determine the polarity of the data signals. Each group of 16 data signals corresponds to one DINV# signal. When the DINV# signal is active, the corresponding data group is inverted and therefore sampled active high. |                                                                                                                                                                                                                                                                                                                                   |                |                             |  |  |  |  |
| DBR#      | Output           | DBR# (Data Bus Reset) is used only in processor systems where no debug port is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port is implemented in the system, DBR# is a no-connect in the system. DBR# is not a processor signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                |                             |  |  |  |  |
| DBSY#     | Input/<br>Output | DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the FSB to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This signal must connect the appropriate pins on both FSB agents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                |                             |  |  |  |  |
| DEFER#    | Input            | guaranteed in-<br>of the address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEFER# is asserted by an agent to indicate that a transaction cannot be guaranteed in-order completion. Assertion of DEFER# is normally the responsibility of the addressed memory or Input/Output agent. This signal must connect the appropriate pins of both FSB agents.                                                       |                |                             |  |  |  |  |



Table 22. Signal Description (Sheet 3 of 7)

| Name        | Туре             |                                                                                                                                                                                                                                                                                                                                  | Desc                                | ription                                                                                                                             |  |  |  |
|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|             |                  | DINV[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of the D[63:0]# signals. The DINV[3:0]# signals are activated when the data on the data bus is inverted. The bus agent inverts the data bus signals if more than half the bits, within the covered group, would change level in the next cycle. |                                     |                                                                                                                                     |  |  |  |
|             |                  | DINV[3:0]# Assignm                                                                                                                                                                                                                                                                                                               | ent To Data Bu                      | s                                                                                                                                   |  |  |  |
| DINV[3:0]#  | Input/<br>Output | Bus Signal                                                                                                                                                                                                                                                                                                                       | Data Bus<br>Signals                 |                                                                                                                                     |  |  |  |
|             |                  | DINV[3]#                                                                                                                                                                                                                                                                                                                         | D[63:48]#                           |                                                                                                                                     |  |  |  |
|             |                  | DINV[2]#                                                                                                                                                                                                                                                                                                                         | D[47:32]#                           |                                                                                                                                     |  |  |  |
| l           |                  | DINV[1]#                                                                                                                                                                                                                                                                                                                         | D[31:16]#                           |                                                                                                                                     |  |  |  |
|             |                  | DINV[0]#                                                                                                                                                                                                                                                                                                                         | D[15:0]#                            |                                                                                                                                     |  |  |  |
| DPRSTP#     | Input            | the Deep Sleep State to                                                                                                                                                                                                                                                                                                          | the Deeper Slee<br>must be deassert | n causes the processor to transition from ep state. In order to return to the Deep ed. DPRSTP# is driven by the Intel ased chipset. |  |  |  |
| DPSLP#      | Input            | Sleep State to the Deep                                                                                                                                                                                                                                                                                                          | Sleep state. In o                   | causes the processor to transition from the order to return to the Sleep State, DPSLP# y the Intel 82801HBM ICH8M chipset.          |  |  |  |
| DPWR#       | Input/<br>Output |                                                                                                                                                                                                                                                                                                                                  |                                     | hipset to reduce power on the processor ves this pin during dynamic FSB frequency                                                   |  |  |  |
| DRDY#       | Input/<br>Output | indicating valid data on                                                                                                                                                                                                                                                                                                         | the data bus. In ted to insert idle | data driver on each data transfer,<br>a multi-common clock data transfer,<br>clocks. This signal must connect the                   |  |  |  |
|             |                  | Data strobe used to late                                                                                                                                                                                                                                                                                                         | ch in D[63:0]#.                     |                                                                                                                                     |  |  |  |
|             |                  | Signals                                                                                                                                                                                                                                                                                                                          | Associated<br>Strobe                |                                                                                                                                     |  |  |  |
| DSTBN[3:0]# | Input/           | D[15:0]#, DINV[0]#                                                                                                                                                                                                                                                                                                               | DSTBN[0]#                           |                                                                                                                                     |  |  |  |
|             | Output           | D[31:16]#, DINV[1]#                                                                                                                                                                                                                                                                                                              | DSTBN[1]#                           |                                                                                                                                     |  |  |  |
|             |                  | D[47:32]#, DINV[2]#                                                                                                                                                                                                                                                                                                              | DSTBN[2]#                           |                                                                                                                                     |  |  |  |
|             |                  | D[63:48]#, DINV[3]#                                                                                                                                                                                                                                                                                                              | DSTBN[3]#                           |                                                                                                                                     |  |  |  |
|             |                  | Data strobe used to late                                                                                                                                                                                                                                                                                                         | ch in D[63:0]#.                     |                                                                                                                                     |  |  |  |
|             |                  | Signals                                                                                                                                                                                                                                                                                                                          | Associated                          | Strobe                                                                                                                              |  |  |  |
|             | Input/           | D[15:0]#, DINV[0]#                                                                                                                                                                                                                                                                                                               | DSTBP[0                             | 0]#                                                                                                                                 |  |  |  |
| DSTBP[3:0]# | Output           | D[31:16]#, DINV[1]#                                                                                                                                                                                                                                                                                                              | DSTBP[1                             | 1]#                                                                                                                                 |  |  |  |
|             |                  | D[47:32]#, DINV[2]#                                                                                                                                                                                                                                                                                                              | DSTBP[2                             | 2]#                                                                                                                                 |  |  |  |
|             |                  | D[63:48]#, DINV[3]#                                                                                                                                                                                                                                                                                                              | DSTBP[3                             | 3]#                                                                                                                                 |  |  |  |



**Table 22.** Signal Description (Sheet 4 of 7)

| Name       | Туре             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| FERR#/PBE# | Output           | FERR# (Floating-point Error)/PBE#(Pending Break Event) is a multiplexed signal and its meaning is qualified with STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating point when the processor detects an unmasked floating-point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MS-DOS*-type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. When FERR#/PBE# is asserted, indicating a break event, it remains asserted until STPCLK# is deasserted. Assertion of PREQ# when STPCLK# is active also causes an FERR# break event. |  |  |  |  |  |
|            |                  | For additional information on the pending break event functionality, including dentification of support of the feature and enable/disable information, refer to /olumes 3A and 3B of the Intel® 64 and IA-32 Architectures Software Developer's Manual and the Intel® Processor Identification and CPUID Instruction application note.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| GTLREF     | Input            | GTLREF determines the signal reference level for AGTL+ input pins. GTLREF should be set at $2/3\ V_{CCP}$ GTLREF is used by the AGTL+ receivers to determine if a signal is a logical 0 or logical 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| HIT#       | Input/<br>Output | HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Either FSB agent may assert both HIT# and HITM# together to indicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| HITM#      | Input/<br>Output | that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| IERR#      | Output           | IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the FSB. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor keeps IERR# asserted until the assertion of RESET#, BINIT#, or INIT#.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| IGNNE#     | Input            | IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set. IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.                                                                                                                                                                                                           |  |  |  |  |  |
| INIT#      | Input            | INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output Write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT# must connect the appropriate pins of both FSB agents.  If INIT# is sampled active on the active to inactive transition of RESET#, then the processor executes its Built-in Self-Test (BIST)                                                                     |  |  |  |  |  |



Table 22. Signal Description (Sheet 5 of 7)

| Name      | Туре             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LINT[1:0] | Input            | LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus agents. When the APIC is disabled, the LINTO signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Intel® Pentium® processor. Both signals are asynchronous.  Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is the default configuration.                                                                                                                               |
| LOCK#     | Input/<br>Output | LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of both FSB agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction.  When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it waits until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the FSB throughout the bus locked operation and ensure the atomicity of lock.                                                                                                                                                                                                                                    |
| PRDY#     | Output           | Probe Ready signal used by debug tools to determine processor debug readiness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PREQ#     | Input            | Probe Request signal used by debug tools to request debug operation of the processor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PROCHOT#  | Input/<br>Output | As an output, PROCHOT# (Processor Hot) goes active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system activates the TCC, if enabled. The TCC remains active until the system deasserts PROCHOT#.  By default PROCHOT# is configured as an output. The processor must be enabled via the BIOS for PROCHOT# to be configured as bidirectional.                                                                                                                                                                                                          |
| PSI#      | Output           | This signal may require voltage translation on the motherboard.  Processor Power Status Indicator signal. This signal is asserted when the processor is in both in the Normal state (HFM to LFM) and in lower power states (Deep Sleep and Deeper Sleep).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PWRGOOD   | Input            | PWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that the clocks and power supplies are stable and within their specifications. 'Clean' implies that the signal remains low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD.  The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation. |
| REQ[4:0]# | Input/<br>Output | REQ[4:0]# (Request Command) must connect the appropriate pins of both FSB agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB[0]#.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



**Table 22.** Signal Description (Sheet 6 of 7)

| Name                                                 | Type                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESET#                                               | Input                      | Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least two milliseconds after $V_{CC}$ and BCLK have reached their proper specifications. On observing active RESET#, both FSB agents deasserts their outputs within two clocks. All processor straps must be valid within the specified setup time before RESET# is deasserted. There is a $55\text{-}\Omega$ (nominal) on die pull-up resistor on this signal.                                                                                                                                                                                   |
| RS[2:0]#                                             | Input                      | RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of both FSB agents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RSVD                                                 | Reserved<br>/No<br>Connect | These pins are RESERVED and must be left unconnected on the board. However, it is recommended that routing channels to these pins on the board be kept open for possible future use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SLP#                                                 | Input                      | SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state does not recognize snoops or interrupts. The processor recognizes only assertion of the RESET# signal, deassertion of SLP#, and removal of the BCLK input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Stop-Grant state, restarting its internal clock signals to the bus and processor core units. If DPSLP# is asserted while in the Sleep state, the processor exits the Sleep state and transition to the Deep Sleep state. |
| SMI#                                                 | Input                      | SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enters System Management Mode (SMM). An SMI Acknowledge transaction is issued and the processor begins program execution from the SMM handler.  If an SMI# is asserted during the deassertion of RESET#, then the processor tristates its outputs.                                                                                                                                                                                                                                                                                                                                  |
| STPCLK#                                              | Input                      | STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.                                                                                                                                                                               |
| тск                                                  | Input                      | TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TDI                                                  | Input                      | TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TDO                                                  | Output                     | TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TEST1, TEST2,<br>TEST3,<br>TEST4,<br>TEST5,<br>TEST6 | Input                      | TEST1 and TEST2 must have a stuffing option of separate pulldown resistors to $V_{SS}.$ For the purpose of testability, route the TEST3 and TEST5 signals through a ground-referenced Zo=55 $\Omega$ trace that ends in a via that is near a GND via and is accessible through an oscilloscope connection.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| THRMDA                                               | Other                      | Thermal Diode Anode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| THRMDC                                               | Other                      | Thermal Diode Cathode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



**Table 22.** Signal Description (Sheet 7 of 7)

| Name                  | Туре   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THERMTRIP#            | Output | The processor protects itself from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor stops all execution when the junction temperature exceeds approximately 125 °C. This is signalled to the system by the THERMTRIP# (Thermal Trip) pin.                                                                                                                                                                                                                                                        |
| TMS                   | Input  | TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TRDY#                 | Input  | TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of both FSB agents.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TRST#                 | Input  | TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V <sub>CC</sub>       | Input  | Processor core power supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V <sub>SS</sub>       | Input  | Processor core ground node.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V <sub>CCA</sub>      | Input  | V <sub>CCA</sub> provides isolated power for the internal processor core PLL's.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| V <sub>CCP</sub>      | Input  | Processor I/O Power Supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V <sub>CC_SENSE</sub> | Output | $V_{CC\_SENSE}$ together with $V_{SS\_SENSE}$ are voltage feedback signals to Intel® MVP-6 that control the 2.1-m $\Omega$ loadline at the processor die. It should be used to sense voltage near the silicon with little noise.                                                                                                                                                                                                                                                                                                                                                                                                     |
| VID[6:0]              | Output | VID[6:0] (Voltage ID) pins are used to support automatic selection of power supply voltages ( $V_{CC}$ ). Unlike some previous generations of processors, these are CMOS signals that are driven by the processor. The voltage supply for these pins must be valid before the VR can supply Vcc to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID pins becomes valid. The VID pins are needed to support the processor voltage specification variations. See Table 2 for definitions of these pins. The VR must supply the voltage that is requested by the pins, or disable itself. |
| V <sub>SS_SENSE</sub> | Output | $V_{SS\_SENSE}$ together with $V_{CC\_SENSE}$ are voltage feedback signals to Intel MVP-6 that control the 2.1-m $\Omega$ loadline at the processor die. It should be used to sense ground near the silicon with little noise.                                                                                                                                                                                                                                                                                                                                                                                                       |

§

# Package Mechanical Specifications and Pin Information





Maintaining the proper thermal environment is key to reliable, long-term system operation. A complete thermal solution includes both component and system level thermal management features. The system/processor thermal solution should be designed so that the processor remains within the minimum and maximum junction temperature (Tj) specifications at the corresponding thermal design power (TDP) value listed in Table 24 through Table 26.

#### Caution:

Operating the processor outside these limits may result in permanent damage to the processor and potentially other components in the system.

**Table 23.** Power Specifications for the 3x00 Celeron Processors

| Symbol                                 | Processor Number  Core Frequency & Voltage         |          | Thermal Design<br>Power |     |      | Unit | Notes         |
|----------------------------------------|----------------------------------------------------|----------|-------------------------|-----|------|------|---------------|
| TDP                                    | T1600                                              | 1.66 GHz |                         | 35  |      |      | 1, 4, 5, 6, 9 |
| TDP                                    | T1700 1.83 GHz                                     |          |                         | 35  |      | W    | 1, 4, 5, 6, 9 |
| Symbol                                 | Parameter                                          |          |                         | Тур | Max  | Unit |               |
| P <sub>AH</sub> ,<br>P <sub>SGNT</sub> | Auto Halt, Stop Grant Power at HFM V <sub>CC</sub> |          |                         |     | 13.9 | W    | 2, 5, 7       |
| P <sub>SLP</sub>                       | Sleep Power at V <sub>CC</sub>                     |          |                         |     | 13.1 | W    | 2, 5, 7       |
| P <sub>DSLP</sub>                      | Deep Sleep Power at V <sub>CC</sub>                |          |                         |     | 5.5  | W    | 2, 5, 8       |
| T <sub>J</sub>                         | Junction Temperatu                                 | re       | 0                       |     | 105  | °C   | 3, 4          |

Table 24. Power Specifications for the Intel Celeron Dual-Core Processor - Standard Voltage

| Symbol                                 | Processor<br>Number Core Frequency & Voltage       |          | Thermal Design<br>Power |     |      | Unit | Notes         |
|----------------------------------------|----------------------------------------------------|----------|-------------------------|-----|------|------|---------------|
| TDP                                    | T1600                                              | 1.66 GHz |                         | 35  |      | W    | 1, 4, 5, 6, 9 |
| TDP                                    | T1700 1.83 GHz                                     |          |                         | 35  |      | W    | 1, 4, 5, 6, 9 |
| Symbol                                 | Parameter                                          |          |                         | Тур | Max  | Unit |               |
| P <sub>AH</sub> ,<br>P <sub>SGNT</sub> | Auto Halt, Stop Grant Power at HFM V <sub>CC</sub> |          |                         |     | 13.5 | W    | 2, 5, 7       |
| P <sub>SLP</sub>                       | Sleep Power at V <sub>CC</sub>                     |          |                         |     | 12.9 | W    | 2, 5, 7       |
| P <sub>DSLP</sub>                      | Deep Sleep Power at V <sub>CC</sub>                |          |                         |     | 7.7  | W    | 2, 5, 8       |
| Тյ                                     | Junction Temperatu                                 | re       | 0                       |     | 100  | °C   | 3, 4          |

#### **NOTES:**

- The TDP specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can generate.
- 2. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated.



- 3. As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor's automatic mode is used to indicate that the maximum  $T_1$  has been reached. Refer to Section 5.1 for details.
- 4. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications.
- 5. At Tj of 100 °C
- 6. At Tj of 50 °C
- 7. At Tj of 35 °C
- 8. 512-KB L2 cache

Table 25. Power Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel Celeron (SFF) Genuine Intel Processor

| Symbol                                | Processor<br>Number         | Core Frequency |     | Thermal Design<br>Power |     |      | Notes   |
|---------------------------------------|-----------------------------|----------------|-----|-------------------------|-----|------|---------|
| TDP                                   | SU2300                      | 1.2 GHz        |     | 10                      |     |      | 1, 4, 5 |
| Symbol                                | Parameter                   |                | Min | Тур                     | Max | Unit | Notes   |
| P <sub>AH,</sub><br>P <sub>SGNT</sub> | Auto Halt, Stop Grant Power |                |     |                         | 2.9 | W    | 2, 6    |
| P <sub>SLP</sub>                      | Sleep Power                 | Sleep Power    |     |                         | 2.9 | W    | 2, 6    |
| P <sub>DSLP</sub>                     | Deep Sleep Power            |                |     |                         | 1.3 | W    | 2,7     |
| P <sub>DPRSLP</sub>                   | Deeper Sleep Power          |                |     |                         | 0.6 | W    | 2, 7    |
| Tj                                    | Junction Tempera            | ture           | 0   |                         | 100 | °C   | 3,4     |

#### **NOTES**

- 1. The TDP specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can generate.
- 2. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated.
- 3. As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor's automatic mode is used to indicate that the maximum  $T_J$  has been reached. Refer to Section 5.1 for more details.
- 4. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications.
- 5. At Tj of 100 °C
- 6. At Tj of 50 °C
  - 7. At Tj of 35 °C

# **5.1** Monitoring Die Temperature

The processor incorporates three methods of monitoring die temperature:

- Thermal Diode
- Intel Thermal Monitor
- Digital Thermal Sensor



## 5.1.1 Thermal Diode

The processor incorporates an on-die PNP transistor whose base emitter junction is used as a thermal diode, with its collector shorted to ground. The thermal diode can be read by an off-die analog/digital converter (a thermal sensor) located on the motherboard or a stand-alone measurement kit. The thermal diode may be used to monitor the die temperature of the processor for thermal management or instrumentation purposes but is not a reliable indication that the maximum operating temperature of the processor has been reached. When using the thermal diode, a temperature offset value must be read from a processor MSR and applied. See Section 5.1.2 for more details. Please see Section 5.1.3 for thermal diode usage recommendation when the PROCHOT# signal is not asserted.

The reading of the external thermal sensor (on the motherboard) connected to the processor thermal diode signals does not reflect the temperature of the hottest location on the die. This is due to inaccuracies in the external thermal sensor, on-die temperature gradients between the location of the thermal diode and the hottest location on the die, and time based variations in the die temperature measurement. Time-based variations can occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at which the  $\mathsf{T}_{\mathsf{J}}$  temperature can change.

Offset between the thermal diode-based temperature reading and the Intel Thermal Monitor reading may be characterized using the Intel Thermal Monitor's Automatic mode activation of the thermal control circuit. This temperature offset must be taken into account when using the processor thermal diode to implement power management events. This offset is different than the diode Toffset value programmed into the processor Model Specific Register (MSR).

Table 26 to Table 29 provide the diode interface and specifications. The diode model parameters apply to the traditional thermal sensors that use the diode equation to determine the processor temperature. Transistor model parameters have been added to support thermal sensors that use the transistor equation method. The Transistor model may provide more accurate temperature measurements when the diode ideality factor is closer to the maximum or minimum limits. Contact your external sensor supplier for recommendations. The thermal diode is separate from the Intel Thermal Monitor's thermal sensor and cannot be used to predict the behavior of the Intel Thermal Monitor.

### **Table 26.** Thermal Diode Interface

| Signal Name | Pin/Ball Number | Signal Description    |
|-------------|-----------------|-----------------------|
| THERMDA     | A24             | Thermal diode anode   |
| THERMDC     | A25             | Thermal diode cathode |



## **Table 27.** Thermal Diode Parameters Using Diode Model

| Symbol          | Parameter                        | Min   | Тур   | Max   | Unit | Notes   |
|-----------------|----------------------------------|-------|-------|-------|------|---------|
| I <sub>FW</sub> | Forward Bias Current             | 5     |       | 200   | μΑ   | 1       |
| n               | Diode Ideality Factor            | 1.000 | 1.009 | 1.050 |      | 2, 3, 4 |
| R <sub>T</sub>  | R <sub>T</sub> Series Resistance |       | 4.52  | 6.24  | Ω    | 2, 3, 5 |

#### NOTES:

- Intel does not support or recommend operation of the thermal diode under reverse bias.
   Intel does not support or recommend operation of the thermal diode when the processor power supplies are not within their specified tolerance range.
- 2. Characterized across a temperature range of 50-100°C.
- 3. Not 100% tested. Specified by design characterization.
- 4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:

$$I_{FW} = I_S * (e^{qV_D/nkT} - 1)$$

where  $I_S$  = saturation current, q = electronic charge,  $V_D$  = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin).

5. The series resistance,  $R_T$ , is provided to allow for a more accurate measurement of the junction temperature.  $R_T$ , as defined, includes the lands of the processor but does not include any socket resistance or board trace resistance between the socket and the external remote diode thermal sensor.  $R_T$  can be used by remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation:

$$T_{error} = [R_T * (N-1) * I_{FWmin}] / [nk/q * In N]$$

where  $T_{error}=$  sensor temperature error, N= sensor current ratio, k= Boltzmann Constant, q= electronic charge.



#### Table 28. Thermal Diode Parameters Using Transistor Model

| Symbol                           | Parameter            | Min   | Тур   | Max   | Unit | Notes |
|----------------------------------|----------------------|-------|-------|-------|------|-------|
| I <sub>FW</sub>                  | Forward Bias Current | 5     |       | 200   | μΑ   | 1,2   |
| IE                               | Emitter Current      | 5     |       | 200   | μΑ   | 1     |
| n <sub>Q</sub>                   | Transistor Ideality  | 0.997 | 1.001 | 1.005 |      | 3,4,5 |
| Beta                             |                      | 0.3   |       | 0.760 |      | 3,4   |
| R <sub>T</sub> Series Resistance |                      | 2.79  | 4.52  | 6.24  | Ω    | 3,6   |

#### NOTES:

- 1. Intel does not support or recommend operation of the thermal diode under reverse bias.
- 2. Same as  $I_{FW}$  in Table 27.
- 3. Characterized across a temperature range of 50-100°C.
- 4. Not 100% tested. Specified by design characterization.
- 5. The ideality factor, nQ, represents the deviation from ideal transistor model behavior as exemplified by the equation for the collector current:

$$I_C = I_S * (e^{qV}BE^{/n}Q^{kT} - 1)$$

where  $I_S$  = saturation current, q = electronic charge,  $V_{BE}$  = voltage across the transistor base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute temperature (Kelvin).

 The series resistance, R<sub>T</sub>, provided in the Diode Model Table (Table 27) can be used for more accurate readings as needed.

When calculating a temperature based on the thermal diode measurements, a number of parameters must be either measured or assumed. Most devices measure the diode ideality and assume a series resistance and ideality trim value, although are capable of also measuring the series resistance. Calculating the temperature is then accomplished using the equations listed under Table 27. In most sensing devices, an expected value for the diode ideality is designed-in to the temperature calculation equation. If the designer of the temperature sensing device assumes a perfect diode, the ideality value (also called  $n_{\rm trim}$ ) is 1.000. Given that most diodes are not perfect, the designers usually select an  $n_{\rm trim}$  value that more closely matches the behavior of the diodes in the processor. If the processor diode ideality deviates from that of the  $n_{\rm trim}$ , each calculated temperature offsets by a fixed amount. This temperature offset can be calculated with the equation:

$$T_{error(nf)} = T_{measured} * (1 - n_{actual}/n_{trim})$$

where  $T_{error(nf)}$  is the offset in degrees C,  $T_{measured}$  is in Kelvin,  $n_{actual}$  is the measured ideality of the diode, and  $n_{trim}$  is the diode ideality assumed by the temperature sensing device.

## 5.1.2 Thermal Diode Offset

In order to improve the accuracy of the diode-based temperature measurements, a temperature offset value (specified as Toffset) is programmed in the processor MSR which contains thermal diode characterization data. During manufacturing each processor thermal diode is evaluated for its behavior relative to the theoretical diode. Using the equation above, the temperature error created by the difference  $n_{\text{trim}}$  and the actual ideality of the particular processor is calculated.



If the  $n_{trim}$  value used to calculate the Toffset differs from the  $n_{trim}$  value used to in a temperature sensing device, the  $T_{error(nf)}$  may not be accurate. If desired, the Toffset can be adjusted by calculating  $n_{actual}$  and then recalculating the offset using the  $n_{trim}$  as defined in the temperature sensor manufacturer's datasheet.

The n<sub>trim</sub> used to calculate the Diode Correction Toffset are listed in Table 29.

## **Table 29.** Thermal Diode n<sub>trim</sub> and Diode Correction Toffset

| Symbol            | Parameter                                | Value |
|-------------------|------------------------------------------|-------|
| n <sub>trim</sub> | Diode Ideality used to calculate Toffset | 1.01  |

# 5.1.3 Intel® Thermal Monitor

The Intel Thermal Monitor helps control the processor temperature by activating the TCC (Thermal Control Circuit) when the processor silicon reaches its maximum operating temperature. The temperature at which the Intel Thermal Monitor activates the TCC is not user configurable. Bus traffic is snooped in the normal manner and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active.

With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be minor and hence not detectable. An underdesigned thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under-designed may not be capable of cooling the processor even when the TCC is active continuously.

The Intel Thermal Monitor controls the processor temperature by modulating (starting and stopping) the processor core clocks when the processor silicon reaches its maximum operating temperature. The Intel Thermal Monitor uses two modes to activate the TCC: automatic mode and on-demand mode. If both modes are activated, automatic mode takes precedence.

There are two automatic modes called Intel Thermal Monitor 1 and Intel Thermal Monitor 2. These modes are selected by writing values to the MSRs of the processor. After automatic mode is enabled, the TCC activates only when the internal die temperature reaches the maximum allowed value for operation.

When Intel Thermal Monitor 1 is enabled and a high temperature situation exists, the clocks modulates by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are processor speed dependent and decreases linearly as processor core frequencies increase. Once the temperature has returned to a non-critical level, modulation ceases and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near the trip point. The duty cycle is factory configured and cannot be modified. Also, automatic mode does not require any additional hardware, software drivers, or interrupt handling routines. Processor performance decreases by the same amount as the duty cycle when the TCC is active.

### Note:

Intel Thermal Monitor 1 and Intel Thermal Monitor 2 features are collectively referred to as Adaptive Thermal Monitoring features. Intel recommends Intel Thermal Monitor 1 and 2 be enabled on the processors.



Intel Thermal Monitor 1 and 2 can co-exist within the processor. If both Intel Thermal Monitor 1 and 2 bits are enabled in the auto-throttle MSR, Intel Thermal Monitor 2 takes precedence over Intel Thermal Monitor 1. However, if Force Intel Thermal Monitor 1 over Intel Thermal Monitor 2 is enabled in MSRs via BIOS and Intel Thermal Monitor 2 is not sufficient to cool the processor below the maximum operating temperature, then Intel Thermal Monitor 1 also activates to help cool down the processor.

The TCC may also be activated via on-demand mode. If Bit 4 of the ACPI Intel Thermal Monitor control register is written to a 1, the TCC activates immediately independent of the processor temperature. When using on-demand mode to activate the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-demand mode may be used at the same time automatic mode is enabled, however, if the system tries to enable the TCC via on-demand mode at the same time automatic mode is enabled and a high temperature condition exists, automatic mode takes precedence.

An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its temperature is above the thermal trip point. Bus snooping and interrupt latching are also active while the TCC is active.

Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also includes one ACPI register, one performance counter register, three MSR, and one I/O pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#.

PROCHOT# is not be asserted when the processor is in the Stop Grant, Sleep, Deep Sleep, and Deeper Sleep low power states, hence the thermal diode reading must be used as a safeguard to maintain the processor junction temperature within maximum specification. If the platform thermal solution is not able to maintain the processor junction temperature within the maximum specification, the system must initiate an orderly shutdown to prevent damage. If the processor enters one of the above low power states with PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits the low power state and the processor junction temperature drops below the thermal trip point.

If Intel Thermal Monitor automatic mode is disabled, the processor will be operating out of specification. Regardless of enabling the automatic or on-demand modes, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature of approximately 125°C. At this point the THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. When THERMTRIP# is asserted, the processor core voltage must be shut down within the time specified in Chapter 3.

In all cases, the Intel Thermal Monitor feature must be enabled for the processor to remain within specification.

# **5.1.4** Digital Thermal Sensor

The processor also contains an on die Digital Thermal Sensor (DTS) that can be read via an MSR (no I/O interface). Each core of the processor will have a unique digital thermal sensor whose temperature is accessible via the processor MSRs. The DTS is the preferred method of reading the processor die temperature since it can be located much closer to the hottest portions of the die and can thus more accurately track the die temperature and potential activation of processor core clock modulation via the Intel Thermal Monitor. The DTS is only valid while the processor is in the normal operating state (the Normal package level low-power state).



Unlike traditional thermal devices, the DTS will output a temperature relative to the maximum supported operating temperature of the processor  $(T_{J,max})$ . It is the responsibility of software to convert the relative temperature to an absolute temperature. The temperature returned by the DTS will always be at or below  $T_{J,max}$ . Catastrophic temperature conditions are detectable via an Out Of Spec status bit. This bit is also part of the DTS MSR. When this bit is set, the processor is operating out of specification and immediate shutdown of the system should occur. The processor operation and code execution is not guaranteed once the activation of the Out of Spec status bit is set.

The DTS-relative temperature readout corresponds to the Intel Thermal Monitor 1/Intel Thermal Monitor 2 trigger point. When the DTS indicates maximum processor core temperature has been reached, the Intel Thermal Monitor 1 or 2 hardware thermal control mechanism will activate. The DTS and Intel Thermal Monitor 1/Intel Thermal Monitor 2 temperature may not correspond to the thermal diode reading because the thermal diode is located in a separate portion of the die and thermal gradient between the individual core DTS. Additionally, the thermal gradient from DTS to thermal diode can vary substantially due to changes in processor power, mechanical and thermal attach, and software application. The system designer is required to use the DTS to guarantee proper operation of the processor within its temperature operating specifications.

Changes to the temperature can be detected via two programmable thresholds located in the processor MSRs. These thresholds have the capability of generating interrupts via the core's local APIC. Refer to the *Intel*® *64 and IA-32 Architectures Software Developer's Manual* for specific register and programming details.

# **5.1.5** Out of Specification Detection

Overheat detection is performed by monitoring the processor temperature and temperature gradient. This feature is intended for graceful shut down before the THERMTRIP# is activated. If the processor's Intel Thermal Monitor 1 or 2 are triggered and the temperature remains high, an "Out Of Spec" status and sticky bit are latched in the status MSR register and generates thermal interrupt.

# **5.1.6 PROCHOT# Signal Pin**

An external signal, PROCHOT# (processor hot), is asserted when the processor die temperature has reached its maximum operating temperature. If Intel Thermal Monitor 1 or 2 is enabled, then the TCC will be active when PROCHOT# is asserted. The processor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#. Refer to the Intel® 64 and IA-32 Architectures Software Developer's Manual for specific register and programming details.

The processor implements a bi-directional PROCHOT# capability to allow system designs to protect various components from overheating situations. The PROCHOT# signal is bi-directional in that it can either signal when the processor has reached its maximum operating temperature or be driven from an external source to activate the TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system components.

Only a single PROCHOT# pin exists at a package level of the processor. When either core's thermal sensor trips, the PROCHOT# signal will be driven by the processor package. If only Intel Thermal Monitor 1 is enabled, PROCHOT# will be asserted and only the core that is above TCC temperature trip point will have its core clocks modulated. If Intel Thermal Monitor 2 is enabled, then regardless of which core(s) are above TCC temperature trip point, both cores will enter the lowest programmed Intel Thermal Monitor 2 performance state. It is important to note that Intel recommends both Intel Thermal Monitor 1 and 2 to be enabled.



When PROCHOT# is driven by an external agent, if only Intel Thermal Monitor 1 is enabled on both cores, then both processor cores will have their core clocks modulated. If Intel Thermal Monitor 2 is enabled on both cores, then both processor cores will enter the lowest programmed Intel Thermal Monitor 2 performance state. It should be noted that Force Intel Thermal Monitor 1 on Intel Thermal Monitor 2, enabled via BIOS, does not have any effect on external PROCHOT#. If PROCHOT# is driven by an external agent when Intel Thermal Monitor 1, Intel Thermal Monitor 2, and Force Intel Thermal Monitor 1 on Intel Thermal Monitor 2 are all enabled, then the processor will still apply only Intel Thermal Monitor 2.

PROCHOT# may be used for thermal protection of voltage regulators (VR). System designers can create a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR will cool down as a result of reduced processor power consumption. Bi-directional PROCHOT# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its TDP. With a properly designed and characterized thermal solution, it is anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time when running the most power intensive applications. An under-designed thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may cause a noticeable performance loss.

ξ





| 1  | Coordination of Core-Level Low-Power States at the Package Level                                              | . 11 |
|----|---------------------------------------------------------------------------------------------------------------|------|
| 2  | Voltage Identification Definition                                                                             |      |
| 3  | BSEL[2:0] Encoding for BCLK Frequency                                                                         |      |
| 4  | FSB Pin Groups                                                                                                |      |
| 5  | Processor Absolute Maximum Ratings                                                                            |      |
| 6  | DC Voltage and Current Specifications for the T3x00 Celeron Processors                                        |      |
| 7  | DC Voltage and Current Specifications for the T1x00 Celeron Mobile Processors                                 | . 28 |
| 8  | Voltage and Current Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel                         |      |
|    | Celeron SFF Genuine Intel Processor                                                                           |      |
| 9  | FSB Differential BCLK Specifications                                                                          |      |
| 10 | AGTL+ Signal Group DC Specifications                                                                          |      |
| 11 | CMOS Signal Group DC Specifications                                                                           |      |
| 12 | Open Drain Signal Group DC Specifications                                                                     | . 32 |
| 13 | The Coordinates of the Processor Pins as Viewed from the Top of the Package                                   |      |
|    | (Sheet 1 of 2)                                                                                                | . 39 |
| 14 | The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 2 of                       | 40   |
|    | 2)                                                                                                            |      |
| 15 | SFF Processor Top View Upper Left Side                                                                        |      |
| 16 | SFF Processor Top View Upper Right Side                                                                       |      |
| 17 | SFF Processor Top View Lower Left Side                                                                        |      |
| 18 | SFF Processor Top View Lower Right Side                                                                       |      |
| 19 | Pin Listing by Pin Name                                                                                       |      |
| 20 | Pin Listing by Pin Number                                                                                     |      |
| 21 | SFF Listing by Ball Name                                                                                      |      |
| 22 | Signal Description                                                                                            |      |
| 23 | Power Specifications for the 3x00 Celeron Processors                                                          |      |
| 24 | Power Specifications for the Intel Celeron Dual-Core Processor - Standard Voltage                             | . 83 |
| 25 | Power Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel Celeron (SFF) Genuine Intel Processor | 0.4  |
| 26 |                                                                                                               |      |
| 26 | Thermal Diode Interface                                                                                       |      |
| 27 | Thermal Diode Parameters Using Diode Model                                                                    |      |
| 28 |                                                                                                               |      |
| 29 | Thermal Diode ntrim and Diode Correction Toffset                                                              | . oo |





| 1 | Package-Level Low-Power States                                           | 11 |
|---|--------------------------------------------------------------------------|----|
| 2 | Core Low-Power States                                                    | 12 |
| 3 | 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) | 34 |
|   | 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) |    |
|   | 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)                |    |
|   | 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)                |    |
|   | SFF (ULV DC) Die Micro-FCBGA Processor Package Drawing                   |    |





| 1 | Intro      | duction                                          | ١                      |                                     |   | 7   |  |
|---|------------|--------------------------------------------------|------------------------|-------------------------------------|---|-----|--|
|   | 1.1        | Termin                                           | ology                  |                                     |   | 8   |  |
|   | 1.2        | Referer                                          | nces                   |                                     |   | 9   |  |
| 2 | Low        | Power F                                          | eatures                |                                     |   | 1   |  |
|   | 2.1        |                                                  |                        | d Low Power States                  |   |     |  |
|   |            | 2.1.1                                            |                        | r-Power States                      |   |     |  |
|   |            |                                                  | 2.1.1.1                | C0 State                            |   |     |  |
|   |            |                                                  | 2.1.1.2                | C1/AutoHALT Powerdown State         |   | 2   |  |
|   |            |                                                  | 2.1.1.3                | C1/MWAIT Powerdown State            |   | .3  |  |
|   |            |                                                  | 2.1.1.4                | Core C2 State                       |   | .3  |  |
|   |            |                                                  | 2.1.1.5                | Core C3 State                       |   |     |  |
|   |            |                                                  | 2.1.1.6                | Core C4 State                       |   |     |  |
|   |            | 2.1.2                                            |                        | Low-Power States                    |   |     |  |
|   |            |                                                  | 2.1.2.1                | Normal State                        |   |     |  |
|   |            |                                                  | 2.1.2.2                | Stop-Grant State                    |   |     |  |
|   |            |                                                  | 2.1.2.3                | Stop Grant Snoop State              |   |     |  |
|   |            |                                                  | 2.1.2.4<br>2.1.2.5     | Sleep State  Deep Sleep State       |   |     |  |
|   |            |                                                  | 2.1.2.5                | Deeper Sleep State                  |   | . J |  |
|   | 2.2        | Enhanc                                           |                        | peedStep® Technology                |   |     |  |
|   | 2.2        |                                                  |                        | eatures                             |   |     |  |
|   | 2.4        |                                                  |                        | Status Indicator (PSI#) Signal      |   |     |  |
|   |            |                                                  |                        | , , ,                               |   |     |  |
| 3 | Elect      | trical Specifications                            |                        |                                     |   |     |  |
|   | 3.1        |                                                  |                        | nd Pins                             |   |     |  |
|   | 3.2        |                                                  |                        | [1:0]) and Processor Clocking       |   |     |  |
|   | 3.3        | Voltage                                          | <b>Identific</b>       | ation                               |   | .9  |  |
|   | 3.4        |                                                  |                        | rmal Protection                     |   |     |  |
|   | 3.5        |                                                  |                        | used Pins                           |   |     |  |
|   | 3.6        | FSB Fre                                          | equency S              | elect Signals (BSEL[2:0])           |   | 23  |  |
|   | 3.7        | FSB Sig                                          | nal Grou               | os                                  | 2 | 23  |  |
|   | 3.8        | CMOS S                                           | Signals                |                                     | 2 | 5   |  |
|   | 3.9        | Maximu                                           | ım Rating              | S                                   |   | 25  |  |
|   | 3.10       | Process                                          | or DC Sp               | ecifications                        |   | 6   |  |
| 4 | Dack       | ago Mor                                          | hanical                | Specifications and Pin Information  | 2 | , ၁ |  |
| • |            | age med                                          | Jilaliicai<br>o Mochon | specifications and Pili Information |   |     |  |
|   | 4.1<br>4.2 |                                                  |                        | cal Specifications                  |   |     |  |
|   | 4.2<br>4.3 |                                                  |                        | and Pin List                        |   |     |  |
|   |            | •                                                | _                      | als Reference                       |   |     |  |
| 5 | Ther       | Thermal Specifications and Design Considerations |                        |                                     |   |     |  |
|   | 5.1        | Monitor                                          | ing Die T              | emperature                          | 8 | 34  |  |
|   |            | 5.1.1                                            |                        | Diode                               |   |     |  |
|   |            | 5.1.2                                            |                        | Diode Offset                        |   |     |  |
|   |            | 5.1.3                                            |                        | nermal Monitor                      |   |     |  |
|   |            | 5.1.4                                            |                        | nermal Sensor                       |   |     |  |
|   |            | 5.1.5                                            |                        | pecification Detection              |   |     |  |
|   |            | 5 1 6                                            |                        | T# Signal Pin                       |   |     |  |

