Artificial Intelligence Term Project2 Report

Wei Li 李韡

May 31, 2017

Contents

1	Ove	erview
	1.1	Architecture of cv_tools.cpp Program
	1.2	Architecture of naive_bayes.cpp Program
2	Det	ailed Description
	2.1	Deal with numeric attributes
	2.2	Test Result
		2.2.1 Shuffle vs. No Shuffle
		2.2.2 About Data Set
		2.2.3 About Continuous and Discretization
3	Bro	bblem Encountered
	3.1	Save Running Time
	3.2	Using scripts

1 Overview

在提交的檔案中,資料夾code中包括cv_tools.cpp 與 naive_bayes.cpp兩個程式碼,以及4個shell檔案,分別用於:compile程式碼,對data set進行k-fold切割,執行 NB classifier以及執行 C4.5 演算法。

詳細的説明見code資料夾下的readme.txt檔案。

請務必在Windows系統下使用std=c++11 -O3參數進行compile

1.1 Architecture of cv_tools.cpp Program

我們的任務是實現一個a k-fold stratified cross validation tool, 其中k可以自用指定。

首先,我們需要讀取xx.names這個檔案,通過parser,得到class的總數量。

然後,我們再使用若干個vector,將每一種class的資料存入相對應的vector中。

再來,我們對每一個vector,進行shuffle操作,保證數據的亂序,這很重要, 也會對最後validate的結果產生很大影響。這樣做的目的,是為了保證stratified。 最後,我們我們在每一個vector中選取一份,作為test data,剩下的k-1份, 作為train data。在這裡,我的k設定是10。同時,我們輸出編號次序連續的10份names檔 案,以方便C4.5 演算法的執行。

1.2 Architecture of naive_bayes.cpp Program

同樣,在執行演算法之前,我們需要對data進行適當的處理。

具體包括,讀取names檔案,確定class的數量和種類,確定feature的數量以及種類,特別需要注意的是對continuous數據的處理,這在後面我會再次提到。

讀取完names檔案後,再讀取data檔案,做相應的處理,存儲必要的資訊。

最後,我們便可以開始執行我們的naive bayes演算法,對test檔案的data進行預測。

這裡,强調一下我對資料的處理:

每次,我只讀入一行,讀入後,刪除該行所有的空格,若行尾還有"."存在,也一併刪除。對於xx.names檔案下features的處理,先用分號進行分割,分開後再用逗號進一步分開。對於xx.data檔案下features的處理,過濾掉空格後,直接用逗號進行分割。

2 Detailed Description

2.1 Deal with numeric attributes

解決連續性數據的方法可以分為兩種,其中一種是把每一個連續型的數據離散化,然後用相應的離散區間替換連續數值。但這種方法不好控制離散區間劃分的粒度,如果粒度太細,就會因為每一個區間的訓練量太少而不能對機率做出可靠的估計,如果粒度太粗,那麼有些區間就會含有來自不同類的記錄,因此失去了正確的決策邊界。

介於五種data set中粒度難以確定,比如年齡,大致的範圍是在0-100之間,而温度,很顯然則是在0-40度之間,這是的我們難以確定一個合適的分割粒度,所以我沒有使用離散化這種方法,而是使用了第二種方法,假設連續的變量服從某種分佈,然後使用訓練數據估計分佈的參數,這裡我使用的高斯分佈(Gaussian distribution),反觀年齡,温度,確實也是遵循高斯分佈或者説近似能夠滿足高斯分佈,這使得方法二來得更加準確。

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (1)

使用高斯分佈,我們需要計算mean 和 vairance,所以,在前面處理xx.data檔案的同時,我們一併計算每一個feature所對應的mean和vairance,這樣,就可以方便後面naive bayes計算機率了,詳細的過程,可以見code的load_data()這一函數。

另外,使用高斯分佈在程式的耗時上,也優與使用離散化的方法。特別是如果我們的分割區間很小,則計算的次數會明顯增加,記憶體的消耗也會增加。

2.2 Test Result

下圖是在對數據進行亂序分割,並使用高斯分佈處理連續型數據,拉普拉斯修正的情況下得到的結果:

dataset		cv1	cv2	cv3	cv4	cv5	суб	cv7	c v 8	cv9	cv10	avg	p-value
	NB_Acc	0.82	0.82	0.83	0.84	0.83	0.83	0.83	0.82	0.83	0.83	0.83	$\pm 2.7 E407$
adult	c4.5_Acc	0.87	0.85	0.87	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	
cor	NB_Acc	0.90	0.87	0.89	0.88	0.87	0.89	0.85	0.85	0.88	0.87	0.87	3 1 E-05
car	c4.5_Acc	0.90	0.94	0.94	0.95	0.90	0.94	0.91	0.91	0.95	0.92	0.93	
isolet	NB_Acc	0.18	0.17	0.21	0.22	0.19	0.21	0.17	0.17	0.21	0.21	0.19	1.3.94 E-L:
isolei	c4.5_Acc	0.75	0.78	0.79	0.80	0.83	0.77	0.81	0.79	0.75	0.80	0.79	
1.1	NB_Acc	0.92	0.88	0.92	0.93	0.90	0.92	0.91	0.91	0.90	0.92	0.91	1 2 88 F 1 I
page-blocks	c4.5_Acc	0.96	0.97	0.98	0.97	0.96	0.96	0.97	0.97	0.97	0.99	0.97	
winequality	NB_Acc	0.45	0.41	0.44	0.45	0.47	0.46	0.44	0.44	0.43	0.44	0.44	4.68E-08
winequality	c4.5_Acc	0.61	0.62	0.58	0.59	0.63	0.56	0.56	0.60	0.63	0.58	0.59	4.00E-00

Figure 1: result

2.2.1 Shuffle vs. No Shuffle

從這裡我們能夠很明顯地看出,如果在做k-fold CV的時候,沒有對data 進行shuffle,結果會差甚遠。

dataset		cv1	cv2	cv3	cv4	cv5	суб	cv7	cv8	cv9	cv10	avg	p-value
adult	NB_Acc	0.82	0.83	0.82	0.82	0.83	0.83	0.82	0.83	0.83	0.83	0.83	エスリンド・リス
aduli	c4.5_Acc	0.85	0.86	0.86	0.85	0.86	0.86	0.86	0.86	0.87	0.85	0.86	
car	NB_Acc	0.71	0.64	0.64	0.72	0.76	0.68	0.86	0.87	0.84	0.82	0.75	+ 0 004303
Cai	c4.5_Acc	0.77	0.77	0.73	0.76	0.86	0.85	0.87	0.88	0.84	0.84	0.82	
isolet	NB_Acc	0.22	0.15	0.19	0.18	0.18	0.21	0.14	0.22	0.20	0.16	0.18	1.51E-09
isolei	c4.5_Acc	0.74	0.79	0.77	0.83	0.80	0.73	0.55	0.78	0.65	0.75	0.74	
page-blocks	NB_Acc	0.88	0.92	0.92	0.81	0.91	0.91	0.89	0.87	0.85	0.91	0.89	1 9 726.475
page-blocks	c4.5_Acc	0.95	0.98	0.96	0.97	0.97	0.97	0.97	0.98	0.95	0.94	0.96	
winequality	NB_Acc	0.48	0.43	0.44	0.42	0.41	0.49	0.43	0.40	0.41	0.45	0.44	0.382873
winequality	c4.5_Acc	0.44	0.42	0.35	0.42	0.42	0.48	0.45	0.44	0.48	0.44	0.43	0.502073

Figure 2: result without CV data shuffle

2.2.2 About Data Set

從 figure 1 我們可以看到,除了isolet外,其他data set所預測的結果,NB ACC和C4.5 ACC還算接近,但都是c4.5更好一些,這可能和我的NB實現有一定

的關係,當然,更多的原因應該是傳統的Naive Bayes將各個feature視為獨立不相干的,但在實際生活中,各個feature往往是存在聯繫的,有些甚至存在緊密的連續,這樣計算出的概率也許會有不准確的時候。

而我們來看看 isolet 這個 data set,總共有600多個feature,全部為連續型,這相對與NB來說是比較不利的,feature間是否存在聯繫,feature是否是滿足高斯分佈的,有是否獨立,在如此高緯度的features下,均難以保證,而decision tree則不會受到很大的影響。

這導致的結果就是NB 和 C45兩種演算法結果差異巨大。

2.2.3 About Continuous and Discretization

從結果中還可以發現,離散型feature居多的data set,如 car 這個 data set,兩種算法的表現均比較理想,而在連續型feature居多的data set,如isolet 和winequality,兩種算法的表現就稍微差一些。

原因仍然在於,想處理好連續型的數據,並非是一件很容易的事,需要經過一些轉化,從而喪失掉一些精準度。

3 Broblem Encountered

3.1 Save Running Time

Naive Bayes計算機率的部分,是程式最耗時的地方,如何節省時間,這是一個問題?

為了避免每一次計算機率都要重新計算個數,我使用了map將已經計算過的 記錄存起來,當下次訪問的時候,直接拿出來用,這樣可以加速程序的運行。

但是仍然存在一個小問題,在處理離散型的feature時,就無法這樣做,這也 是整個程式最耗時的地方,因為每一次均要重新計算,不過也環算可以接受。

3.2 Using scripts

手動地進行測試是一件很繁瑣的事,我使用了4個shell腳本來簡化操作。另外,C4.5的原程式輸出太多無用的資訊,我均將他們刪去,因為我只需要得到test acc即可。