CodeBook

Andre Costa March, 20, 2018

Introduction

This is the code book for the Getting and Cleaning Data Course Project. It contains the description of the final data, which is stored in the Tidy_DataFrame.csv file. The data in this file is a tidy data composed of the following variables

- subject: informs the number of the person in which the data was measured.
- activity: informs the activity in which the data was collected.
- 79 Variables containing the mean of a measured data for a subject and activity. The names used for then was the names from the original database, with a number prefix, which show what was the variable position in the original database. The name in the original database is described as following:

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMaq).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern:

'-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

{r cars} summary(cars)

Including Plots

You can also embed plots, for example:

{r pressure, echo=FALSE} plot(pressure)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.