2018 年全国青少年信息学奥林匹克 浙江省队选拔赛第一试

竞赛时间: 3月21日8:00-13:00

题目名称	线图	历史	迷宫
目录	line	history	maze
可执行文件名	line	history	maze
输入文件名	line.in	history.in	maze.in
输出文件名	line.out	history.out	maze.out
每个测试点时限	3s	2s	1s
内存限制	512MB	512MB	512MB
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型
是否有附加文件	是	是	是

提交源程序必须加后缀

对于 C++ 语言	line.cpp	history.cpp	maze.cpp
对于 C 语言	line.c	history.c	maze.c
对于 Pascal 语言	line.pas	history.pas	maze.pas

编译开关

	对于 C++ 语言	-O2 -lm	-O2 -lm	-O2 -lm
	对于 C 语言	-O2 -lm	-O2 -lm	-O2 -lm
Г	对于 Pascal 语言	-O2	-O2	-O2

1 线图

1.1 题目描述

九条可怜是一个热爱出题的女孩子。

今天可怜想要出一道和图论相关的题。在一张无向图 G 上,我们可以对它进行一些非常有趣的变换,比如说对偶,又或者说取补。这样的操作往往可以赋予一些传统的问题新的活力。例如求补图的连通性、补图的最短路等等,都是非常有趣的问题。

最近可怜知道了一种新的变换: 求原图的线图 (line graph)。对于无向图 $G=\langle V,E\rangle$,它的线图 L(G) 也是一个无向图:

- 它的点集大小为 |*E*|,每个点唯一对应着原图的一条边。
- 两个点之间有边当且仅当这两个点对应的边在原图上有公共点(注意不会有自环)。

下图是一个简单的例子, 左图是原图, 右图是它对应的线图。其中点 1 对应原图的边 (1,2), 点 2 对应 (1,4), 点 3 对应 (1,3), 点 4 对应 (3,4)。

经过一些初步的摸索,可怜发现线图的性质要比补图复杂很多,其中突出的一点就是补图的补图会变回原图,而 L(L(G)) 在绝大部分情况下不等于 G,甚至在大多数情况下它的点数和边数会以很快的速度增长。

因此,可怜想要从最简单的入手,即计算 $L^k(G)$ 的点数 ($L^k(G)$ 表示对 G 求 k 次线图)。

然而遗憾的是,即使是这个问题,对可怜来说还是太困难了,因此她进行了一定的弱化。她给出了一棵 n 个节点的树 T,现在她想让你计算一下 $L^k(T)$ 的点数。

1.2 输入格式

第一行输入两个整数 n,k,表示树的点数以及连续求线图的次数。

接下来 n-1 行每行两个整数 u,v 表示树上的一条边。

1.3 输出格式

输出一行一个整数,表示答案对 998244353 取模后的值。

1.4 样例输入

5 3

1 2

2 3

2 5

3 4

1.5 样例输出

5

1.6 样例解释

如下图所示,左图为原树,中图为 L(G),右图为 $L^2(G)$ 。这儿并未画出 $L^3(G)$,但是由于 $L^2(G)$ 有 5 条边,因此 $L^3(G)$ 中有 5 个点。

1.7 数据范围与约定

测试点	k	测试点	k
1	=2	6	= 6
2	= 3	7	= 7
3	=4	8	= 8
4	= 5	9	= 9
5	- 5	10	- 9

对于 100% 的数据, $2 \le n \le 5000$ 。

2 历史

2.1 题目描述

九条可怜是一个热爱阅读的女孩子。

这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣。

这个世界有 n 个城市,这 n 个城市被恰好 n-1 条双向道路联通,即任意两个城市都可以 互相到达。同时城市 1 坐落在世界的中心,占领了这个城市就称霸了这个世界。

在最开始,这 n 个城市都不在任何国家的控制之下,但是随着社会的发展,一些城市会崛起形成国家并夺取世界的霸权。为了方便,我们标记第 i 个城市崛起产生的国家为第 i 个国家。在第 i 个城市崛起的过程中,第 i 个国家会取得城市 i 到城市 1 路径上所有城市的控制权。

新的城市的崛起往往意味着战争与死亡,若第 i 个国家在崛起中,需要取得一个原本被国家 $j(j \neq i)$ 控制的城市的控制权,那么国家 i 就必须向国家 j 宣战并进行战争。

现在,可怜知道了,在历史上,第 i 个城市一共崛起了 a_i 次。但是这些事件发生的相对顺序已经无从考究了,唯一的信息是,在一个城市崛起称霸世界之前,新的城市是不会崛起的。

战争对人民来说是灾难性的。可怜定义一次崛起的灾难度为崛起的过程中会和多少不同的 国家进行战争(和同一个国家进行多次战争只会被计入一次)。可怜想要知道,在所有可能的崛 起顺序中,灾难度之和最大是多少。

同时,在考古学家的努力下,越来越多的历史资料被发掘了出来,根据这些新的资料,可怜会对 a_i 进行一些修正。具体来说,可怜会对 a_i 进行一些操作,每次会将 a_x 加上 w。她希望在每次修改之后,都能计算得到最大的灾难度。

然而可怜对复杂的计算并不感兴趣,因此她想让你来帮她计算一下这些数值。

对题面的一些补充:

- 同一个城市多次崛起形成的国家是同一个国家,这意味着同一个城市连续崛起两次是不会和任何国家开战的:因为这些城市原来就在它的控制之下。
- 在历史的演变过程中,第i个国家可能会有一段时间没有任何城市的控制权。但是这并不意味着第i个国家灭亡了,在城市i 崛起的时候,第i个国家仍然会取得 1 到i 路径上的城市的控制权。

2.2 输入格式

第一行输入两个整数 n, m 表示城市个数和操作个数。

第二行输入 n 个整数表示 a_i 的初始值。

接下来 n-1 行, 每行输入两个整数 $u_i, v_i (1 \le u_i, v_i \le n)$ 描述了一条道路。

接下来 m 行每行输入两个整数 x_i, w_i 表示将 a_{x_i} 加上 w_i 。

2.3 输出格式

输出共m+1行,第一行表示初始的 a_i 的答案,接下来m行每行表示这次修正后的答案。

2.4 样例输入

5 3

1 1 1 1 1

1 2

1 3

2 4

2 5

2 1

3 1

4 1

2.5 样例输出

6

7

9

10

2.6 样例解释

在修正开始之前,如果按照所在城市 4,1,5,3,2 的顺序崛起,那么依次会和 0,1,2,1,2 个国家进行战争。这时一共会产生 6 对敌对关系。可以证明这是所有崛起顺序中的最大值。

2.7 数据范围与约定

测试点	n	m	其他约定	
1	≤ 10	= 0	$a_i = 1$	
3		≤ 150000	第 <i>i</i> 条道路连接 <i>i</i> 和 <i>i</i> + 1	
4 5	$ \leq 150000 $	= 0		
6 7 8		≤ 150000	无	
9 10	$\leq 4 \times 10^5$	$\leq 4 \times 10^5$		

对于 100% 的数据, $1 \le a_i, w_i \le 10^7, 1 \le x_i \le n$

3 迷宮

3.1 题目描述

九条可怜是一个贪玩的女孩子。

暑假快要到了,可怜打算在她家的私人海滩旁边建一座城堡,这样就可以在放暑假的时候 邀请她的朋友们来玩了。同时,可怜打算在城堡的地下修建一座迷宫,因为探险总是一件充满 乐趣的事情。

经过简单的设计,可怜打算修建一座这样的迷宫:

- 迷宫可以被抽象成 n 个点,nm 条边的有向图。1 号点是唯一的入口也是唯一的出口。
- 每一个点恰好有 m 条出边,且这些出边被依次标号为 [0,m) 的正整数。
- 迷宫允许自环和重边。

同时,一座优秀的迷宫应该有一定的解谜因素。因此可怜希望每一条从 1 号点出发并回到 1 号点的回路都有着一定的规律。

可怜发现,如果把一条从 1 出发的路径经过的所有边的编号都记录下来,那么能得到一个 (可能有前导 0) 的 m 进制数;同时对于每一个 (可能有前导 0) 的 m 进制数,都能对应回一条从 1 出发的路径。

于是可怜选定了一个整数 K,她希望这个迷宫满足一条从 1 出发的路径能回到 1 **当且仅当**这条路径对应的数是 K 的倍数。

现在可怜已经选定了 m 和 K,但是她发现并不是对所有的 n,都存在满足上述所有条件的迷宫设计方案。建造迷宫是一件费时费力的事情,于是可怜想要找到一个最小的满足条件的 n。

然而可怜对复杂的计算并不感兴趣,因此她想让你来帮她计算一下这个数值。

3.2 输入格式

第一行输入一个整数 T 表示数据组数。

接下来 T 行每行两个十进制正整数 m, K 表示可怜选定的整数。

3.3 输出格式

对于每组数据,输出一行一个整数表示能够满足所有条件的最小的 n。如果不存在这样的 n,输出 -1。

3.4 样例输入

3

2 3

2 46 8

3.5 样例输出

3

3

5

3.6 样例解释

第一组数据(左)和第二组数据(右)的一种设计方案如下图所示。其中紫色边表示 0 号边,蓝色边表示 1 号边。

3.7 数据范围与约定

测试点	m	K	t	其他约定
1	≤ 6	≤ 10		
2	≤ 100	≤ 100		
3	100	<u> </u>	≤ 100	一 无
4	$\leq 10^5$	$\leq 10^{5}$		
5				
6				m 为质数
7	$\leq 10^9$	$\leq 10^9$	≤ 1000	
8				- 无
9	$\leq 10^{18}$	$\leq 10^{18}$	$\leq 3 \times 10^5$	
10				

对于 100% 的数据,保证 $m \geq 2$ 。