CC1 Analyse 4 durée : 2h

Les calculettes et téléphones portables ne sont pas autorisés.

Exercice 1. Pour tout $n \in \mathbb{N}^*$ et $x \in [0, +\infty[$, on pose $f_n(x) = \frac{nx^3 + e^{-nx}}{nx^2 + 1}$.

- 1. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur $[0,+\infty[$ vers une fonction f qu'on déterminera. (distinguer le cas x=0). La convergence est-elle uniforme sur $[0,+\infty[$?
- 2. En utilisant la suite $x_n = \frac{1}{n}$, montrer que la convergence n'est pas uniforme sur $]0, +\infty[$.
- 3. (a) Montrer que

$$\forall n \in \mathbb{N}^*, \ \forall x > 0 \ , \quad |f_n(x) - f(x)| \le \frac{1}{nx} + e^{-nx}.$$

- (b) En déduire que pour tout réel a>0, la convergence de $(f_n)_{n\in\mathbb{N}}$ vers f est uniforme sur $[a,+\infty[$.
- (c) Déterminer $\lim_{n\to+\infty}\int_a^1 f_n(x)dx$, pour tout $a\in]0,1[$.
- 4. On pose $I_n = \int_0^1 f_n(x) dx$. Montrer que

$$\forall n \in \mathbb{N}^*, \quad \left| \int_0^1 (f_n(x) - x) dx \right| \le \frac{1}{n} (1 - e^{-n}) + \frac{1}{2n} \ln(1 + n).$$

En déduire $\lim_{n\to+\infty}I_n$

Exercice 2. Pour tout $n \in \mathbb{N}^*$ et $x \in [0, +\infty[$, on pose $f_n(x) = \frac{x}{\sqrt{n}(1 + nx^2)}$.

- 1. Montrer que la série de fonctions $\sum_{n\geq 1} f_n(x)$ converge simplement sur $[0,+\infty[$.
- 2. Déterminer $\sup_{x\in[0,+\infty[}|f_n(x)|$. La convergence de la série est-t-elle normale sur $[0,+\infty[$?
- 3. Montrer que la convergence est normale sur $[a, +\infty[$, pour tout a > 0.

- 4. On se propose de montrer que la convergence de la série n'est pas uniforme sur $[0, +\infty[$.
 - (a) Montrer que

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, +\infty[\ , \ \sqrt{\frac{n}{2}} \frac{x}{1 + 2nx^2} \le \sum_{k=n+1}^{2n} f_k(x) \le \sum_{k=n+1}^{+\infty} f_k(x)$$

- (b) Déterminer $\sup_{x \in [0,+\infty[} \sqrt{\frac{n}{2}} \frac{x}{1+2nx^2}$.
- (c) Conclure

Exercice 3. Pour tout
$$n \in \mathbb{N}^*$$
 et $x \in \mathbb{R}$, on pose $f_n(x) = \frac{\sin(nx)}{n^3}$.

1. Montrer que la série de fonctions $\sum_{n\geq 1} f_n(x)$ converge simplement sur $\mathbb R.$ On pose

$$f(x) = \sum_{n=1}^{+\infty} f_n(x), \ x \in \mathbb{R}$$

- 2. Montrer que la fonction f est continue sur \mathbb{R} .
- 3. Calculer $\int_0^{2\pi} f(x)dx$.
- 4. Montrer que f est dérivable sur $\mathbb R$ et exprimer f'(x) comme somme d'une série.