Homework assignment 4 – Symbolic Systems I – Uv
A, June 2020

Hannah

Question 1

 $\underline{\mathrm{TBox}}$

Person
Country
City
$Republic \sqsubseteq Country$
$Constitutional Monarchy \sqsubseteq Country$
$Republic \sqcap Constitutional Monarchy \sqsubseteq \bot$
$Person \sqcap Country \sqsubseteq \bot$
$City \sqcap Country \sqsubseteq \bot$
$Person \sqcap City \sqsubseteq \bot$
$Country \sqsubseteq \exists \overset{\frown}{has} Capital. City$
$Country \sqsubseteq \forall hasCapital.City$
$Country \sqsubseteq \exists hasHead.Person$
$City \sqsubseteq \exists hasHead.Person$
$President \sqsubseteq Person$
$Monarch \sqsubseteq Person$
$Mayor \sqsubseteq Person$
$ConstitutionalMonarchy \sqsubseteq \forall hasHead.Monarch$
$City \sqsubseteq \forall hasHead.Mayor$
A Dove
ABox NL Country
NL: Country
NL: Constitutional Monarchy
(NL, Willem Alexander): has Head
(Amsterdam, Femke): has Head
Continued:
GCI's:
1. $(Republic \sqcap Country) \sqsubseteq \forall hasHead. \neg Mayor$
It may be noted that republic is already a subset of country. So the following is correct as well:
Republic $\sqsubseteq \forall hasHead. \neg Mayor$
No, this does not follow from the knowledge base.
110, this does not follow from the knowledge base.
$Republic \sqsubseteq Country$
$Country \sqsubseteq \forall hasHead.Person$
$President \sqsubseteq Person$
$Monarch \sqsubseteq Person$
$Mayor \sqsubseteq Person$
From this KB it follows that a republic country always has a head which is a person. This person could it
this knowledge base be of the set President, Monarch and/or Mayor. To make this statement follow from the

knowledge base the following statements could be added:

 $Republic \sqsubseteq \forall hasHead.President \sqcup Monarch$

 $President \sqcap Mayor \sqsubseteq \bot$

2. Femke: Mayor

Yes, this follows from the knowledge base.

(Amsterdam, Femke) : hasHead

 $City \sqsubseteq \forall hasHead.Mayor$

Therefore, Femke is in the set Mayor.

3. $NL : \neg Republic$

Yes, this follows from the knowledge base.

NL: Constitutional Monarchy

 $Republic \cap Constitutional Monarchy \sqsubseteq \bot$

So, NL cannot be Republic.

4. $WillemAlexander : \neg Mayor$

No, this does not follow from the knowledge base.

(NL, Willem Alexander): has Head

NL: Constitutional Monarchy

 $Constitutional Monarchy \sqsubseteq \forall has Head. Monarch$

But, there is never mentioned that a Monarch cannot also be a Mayor.

Therefore, the following statement needs to be added:

 $Monarch \sqcap Mayor \sqsubseteq \bot$

For consistency, the following statements could be added but this does not influence the statement WillemAlexander: $\neg Mayor$.

 $Monarch \sqcap President \sqsubseteq \bot$

 $Mayor \sqcap President \sqsubseteq \bot$

Question 2

Constructing a complex concept of a 3-CNF formula can be done by replacing every propositional variable $x_1, ..., x_n$ in ϕ to the concept names $A_1, ..., A_n$.

So for instance if ϕ is :

 $\phi = (x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4 \lor x_5)$

Then constructing this into a complex concept C_{ϕ} :

 $C_{\phi} \equiv (A_1 \sqcup A_2 \sqcup \neg A_3) \sqcap (A_3 \sqcup \neg A_4 \sqcup A_5)$

Furthermore, we could set the first clause concept $C_1 \equiv A_1 \sqcup A_2 \sqcup \neg A_3$.

A 3-CNF formula is satisfiable if every clause in the formula is true. A clause in a 3-CNF formula is true if at least one literal, being x_i or $\neg x_i$, in the clause is true.

If for an interpretation $I = (\Delta^I, \cdot^I)$ x_i is true, then $A_i^I \neq \emptyset$. Furthermore, if in a clause concept one concept is non empty, then we can conclude that the entire clause is non empty: $C_1 \equiv A_1 \sqcup A_2 \sqcup \neg A_3$ and $A_1^I \neq \emptyset$ leads to $C_1^I \neq \emptyset$. $C_{\phi} \equiv A_1 \sqcup A_2 \sqcup \neg A_3 \cap (A_3 \sqcup \neg A_4 \sqcup A_5) \equiv C_1 \sqcap C_2$

For this example, $C_{\phi} \neq \emptyset$ iff both $C_1 \neq \emptyset$ and $C_2 \neq \emptyset$. $C_1 \neq \emptyset$ and $C_2 \neq \emptyset$ iff for both clauses one literal is true. So therefore, if the 3-CNF formula ϕ is satisfiable there exists an interpretation I for which $C_{\phi}^{I} \neq \emptyset$

Question 3

For all $n \in \{1, ..., m\}$

 KB_n

TBox

Add the TBox of all the KB_i , with 0 < i < n

 $A_{n-1} \sqsubseteq \forall r.((B_{n,a} \sqcap A_n) \sqcup (B_{n,b} \sqcap A_n))$

 $\exists r.(B_{n,a} \sqcap A_n)$

 $\exists r.(B_{n,b} \sqcap A_n)$

 $B_{n,a} \sqcap B_{n,b} \sqsubseteq \bot$

 $\forall r.B_{n,a} \\ \forall r.B_{n,b}$

 $\frac{ABox}{x:A_0}$

Question 4