# Modelo dinámico de predicción y ajuste de los precios de las habitaciones de hoteles

Trabajo de Fin de Master

Autor: Andrés Herranz González Tutores: Alfonso Mateos Caballero

Antonio Jiménez Martínez

# Esquema de la presentación



1. Introducción

#### Introducción

Proyecto financiado por Centro Tecnológico Mixto Al.nnovation Space (UPM - Accenture)



## Descripción del problema

- Revenue Management (RM)
- Aplicación en el sector hotelero
- Stock limitado
- Segmentación de clientes
- Horizonte de análisis
- Competencia



#### La gestión de beneficios...

"es determinante y crítica para la rentabilidad, . . . las decisiones sobre los precios suelen estar mal administradas (o incluso no gestionadas)".

Phillips, R. L. (2005). Pricing and revenue optimization. Stanford: Stanford University Press.

2. Objetivos del proyecto

## Objetivos



Generación de un Revenue Management System (RMS)



Recomendador dinámico de precios óptimos



Reacción ante eventos



Definición de un entorno



Modelo de decisión basado en el conocimiento experto



Analisis de Riesgo Adversario (metodología evolutiva)

3. Estado del arte

## Estado del arte



Técnicas de *revenue management* para industria de las aerolíneas



RMS comerciales (IDeaS, JDA)



Programación dinámica (procesos de Markov)



4. Metodología



Evolución de la metodología

Basado en la teoría de juegos y el equilibrio de Nash (dilema del prisionero)

Representado mediante diagramas de influencia

Gestión de la competencia

Gestión del riesgo asociado a las variaciones en los precios

Modelo ARA



Modelo ARA: Problema de Daphne y Apollo



Modelo ARA: adaptación a la industria hotelera

## Modelo estimador de demanda



- Estimación de la demanda para cada día I dentro del horizonte de estudio
- División de la demanda para cada día I entre los días comprenden el *lead-time*

• 
$$D_i = \sum_{i=0}^I d_{I,i}$$

- Fuentes de información
  - El tiempo
  - Eventos
  - Datos de aerolíneas
- Segmentación de la demanda entre los periodos del día











Estimación de la probabilidad de que los clientes elijan nuestro hotel dada una configuración de precios

Se ha seleccionado un modelo de regresión lineal El histórico sirve para el entrenamiento Importancia de tener una buena base de datos que crezca con el tiempo Métrica para la evaluación R<sup>2</sup>

## Modelo de regresión

## Modelo basado en la ocupación

Según la fórmula de la elasticidad

• 
$$o = o_{nominal} \left( \frac{p}{p_{nominal}} \right)^e$$

- Distribución de la ocupación entre los días restantes hasta el día de reserva
- El beneficio máximo se calcula como:
  - $\underset{d}{\operatorname{arg\,max}} \sum_{i=0}^{I} U(p_{I,i}) \times O(p_{I,i})$

## Modelo basado en la ocupación: expresión

• Obtención del conjunto óptimo de precios  $\overrightarrow{P_I}$ 

$$\underset{\overrightarrow{p_I}}{\operatorname{arg\,max}} \sum_{i=0}^{I} \left( \sum_{\overrightarrow{p_0} \in H_0} \left( \sum_{c \in \{0,1\}} u_H(p_{I,i},c) p_H(C = c | p_{I,i}, \overrightarrow{p_0}) \right) \pi_H(H_0 = \overrightarrow{p_0}) \right) \frac{D_{I,i}}{N+1} \left( \frac{p_{I,i}}{\overrightarrow{p_{nom}}} \right)$$

$$s. a \qquad p_{I,i} \in H \quad \forall p_{I,i} \in \overrightarrow{p_I}$$

$$\sum_{i=0}^{I} O(p_{I,i}) \leq C_I$$



- Optimización de la ecuación (un solo objetivo)
- Difícil dado que el conjunto de precios aparece varias veces
- Planteamiento de resolución mediante metaheurísticas

## Optimización de la ecuación

5. Sistema

## Sistema: esquema general



### Sistema: las tablas



Demanda media diaria

| D   | DO              | DΩ              | Oteomo prob | D.A.                 | M                   | №º días |                      |
|-----|-----------------|-----------------|-------------|----------------------|---------------------|---------|----------------------|
| r   | PO <sub>1</sub> | PO <sub>2</sub> | Otcome_prob | M <sub>cl</sub> ents | M <sub>demand</sub> | ulas    | t <sub>clients</sub> |
| 100 | 100             | 90              | 0.32        | 4.8                  | 15.1                | 35      |                      |
| 100 | 110             | 100             | 0.38        | 4.7                  | 12.3                | 73      | 8                    |
| 100 | 110             | 120             | 0.44        | 6.3                  | 14.2                | 28      | 3                    |
| 120 | 110             | 130             | 0.31        | 3.7                  | 11.9                | 12      |                      |
| 120 | 130             | 130             | 0.39        | 2.8                  | 7.1                 | 13      | +                    |

Probabilidad de que un cliente se venga conmigo con esta combinación de precios Nº de clientes que han hecho reserva en nuestro hotel con esta combinación de precios en el día actual

#### Combinación de precios

P: Mi precio

P0<sub>1</sub>: Precio del primer hotel competidor P0<sub>2</sub>: Precio del segundo hotel competidor

Nº de días que se ha puesto esta combinación de precios

### Sistema: división de las tablas



 $30 \times 2 \times 2 \times 6 = 720 \text{ tablas}$ 

## Sistema: tablas auxiliares

| Р   | P0 <sub>1</sub> | PO <sub>2</sub> | Otcome_prob | M <sub>clients</sub> | M <sub>demand</sub> | Nº días | t <sub>clients</sub> |
|-----|-----------------|-----------------|-------------|----------------------|---------------------|---------|----------------------|
| 100 | 100             | 90              | 0.32        | 4.8                  | 15.1                | 35      |                      |
| 100 | 110             | 100             | 0.38        | 4.7                  | 12.3                | 73      | 8                    |
| 100 | 110             | 120             | 0.44        | 6.3                  | 14.2                | 28      | 3                    |
| 120 | 110             | 130             | 0.31        | 3.7                  | 11.9                | 12      |                      |
| 120 | 130             | 130             | 0.39        | 2.8                  | 7.1                 | 13      | 1                    |

| P0 <sub>1</sub> | Nº días |
|-----------------|---------|
| 95              | 23      |
| 105             | 28      |
| 100             | 13      |
| 110             | 19      |

| P0 <sub>2</sub> | Nº días |
|-----------------|---------|
| 90              | 23      |
| 100             | 13      |
| 110             | 18      |
| 120             | 9       |

Tablas auxiliares con el número de veces que ha puesto un competidor sus distintos precios

## Sistema: modos de ejecución



Ejecución del modelo ARA para establecer precios iniciales para el día siguiente

**SISTEMA** 

Modelo de Análisis del Riesgo Adversario (ARA)

## Sistema: modos de ejecución

tiempo real

#### 2. Modificación de los precios de la competencia

Ejecución del modelo ARA para establecer precios



**CHANNEL MANAGER** 



**SISTEMA** 

## Sistema: modos de ejecución



**CANAL** 

#### 3. Realización de una reserva en nuestro hotel

- Actualización de los contenidos de las tablas
- Ejecución del modelo ARA para establecer precios en función de la ocupación del hotel





#### **SISTEMA**

6. Prototipo

## Prototipo desarrollado

- Modelo de datos diferente -> transformación
- Validar que los resultados son coherentes
- Estudio del modelo preventivo y proactivo
- No se ha utilizado la ocupación y por tanto, tampoco se ha optimizado la función



## 7. Conclusiones y trabajo futuro

### Conclusiones

- Adaptación de ARA para un nuevo escenario
- Planteamiento de una metodología de optimización
- Aplicable a diversos escenarios y muy customizable
- Desarrollo de un prototipo

## Trabajo futuro

- Desarrollo de la metodología completa
- Generación de un modelo de estimación de demanda
- Introducción de las cancelaciones en el modelo