Отчет по лабораторной работе №1

Операционные системы

Абронина Алиса Кирилловна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Создание виртуальной машины	7
	3.2 Работа с операционной системой после установки	7
	3.3 Установка операционной системы	7
	3.4 Установка программного обеспечения для создания документации	11
4	Выводы	13
5	Ответы на контрольные вопросы	14
6	Выполнение домашнего задания	16

Список иллюстраций

3.1	Вход в ОС	8
3.2	Запуск терминала	8
3.3	Обновления	9
3.4	Установка tmux и mc	9
3.5	Установка программы для автоматического обновления	9
3.6	Поиск файла	10
3.7	Изменяю файл	10
3.8	Перезагрузка виртуальной машины	10
	Поиск файла	11
3.10	Редактирование файла	11
3.11	Перезагрузка виртуальной машины	11
3.12	Установка pandoc и pandoc-crossref	12
3.13	Установка texlive	12
6.1	Анализ последовательности загрузки системы	16
6.2	Поиск версии ядра	16
6.3	Поиск частоты процессора	16
6.4	Поиск модели процессора	17
6.5	Поиск объема доступной оперативной памяти	17
6.6	Поиск типа обнаруженного гипервизора	17
6.7	Поиск типа файловой системы	18
6.8	Поиск последовательности монтирования файловых систем	18

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки.
- 4. Установка программного обеспечения для создания документации
- 5. Домашнее задание

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

У меня уже была установлена виртуальная машина на ноутбуке.

3.2 Работа с операционной системой после установки.

Так как у меня уже была установлена виртуальная машина, я установила операционную систему

3.3 Установка операционной системы

Запускаю виртуальную машину. Вхожу в ОС под учетной записью, которую я задала при установке (рис. 3.1).

Рис. 3.1: Вход в ОС

Нажимаю Win + Enter для запуска терминала и переключаюсь на роль суперпользователя (рис. 3.2).

Рис. 3.2: Запуск терминала

Обновляю все пакеты (рис. 3.3).

Рис. 3.3: Обновления

Устанавливаю программы для удобства работы в консоли (рис. 3.4).

Рис. 3.4: Установка tmux и mc

Устанавливаю программы для автоматического обновления (рис. 3.5).

Рис. 3.5: Установка программы для автоматического обновления

Перехожу в каталог /etc/selinux, открываю mc, ищу нужный файл (рис. 3.6).

Рис. 3.6: Поиск файла

Изменяю открытый файл (рис. 3.7).

Рис. 3.7: Изменяю файл

Перезагружаю виртуальную машину (рис. 3.8).

Рис. 3.8: Перезагрузка виртуальной машины

Перехожу в папку /tc/X11/xorg.conf.d, открываю mc для удобства и открывааю файл 00-keyboard.conf (рис. 3.9).

Рис. 3.9: Поиск файла

Редактирую файл конфигурации (рис. 3.10).

Рис. 3.10: Редактирование файла

Перезагрузка виртуальной машины (рис. 3.11).

```
[root@vbox ~]# reboot
```

Рис. 3.11: Перезагрузка виртуальной машины

3.4 Установка программного обеспечения для создания документации

Устанавливаю pandoc и pandoc-crossref вручную (рис. 3.12).

Рис. 3.12: Установка pandoc и pandoc-crossref

Устанавливаю дистрибутив texlive (рис. 3.13).

```
root@vbox:~# dnf -y install texlive-scheme-full
Обновление и загрузка репозиториев:
```

Рис. 3.13: Установка texlive

4 Выводы

Я приобрела практические навыки установки операционной системы на виртуальную машину, а также настроила минимально необходимые для дальнейшей работы сервисы.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выполнение домашнего задания

Ввожу в терминале dmesg, чтобы проанализировать последовательность загрузки системы (рис. 6.1).

```
conina@vbox ~]$ sudo -i
| пароль для akabronina:
@vbox ~]# dmesg
```

Рис. 6.1: Анализ последовательности загрузки системы

С помощью поиска, осуществляющего командой dmesg | grep -i , ищу версию ядра Linux (рис. 6.2).

Рис. 6.2: Поиск версии ядра

Ищу частоту процессора (рис. 6.3).

```
[root@vbox ~]# dmesg | grep -i "processor"
[   0.000011] tsc: Detected 1899.953 MHz processor
[   0.517875] smpboot: Total of 1 processors activated (3799.90 BogoMIPS)
[   0.528952] ACPI: Added _OSI(Processor Device)
[   0.528956] ACPI: Added _OSI(Processor Aggregator Device)
```

Рис. 6.3: Поиск частоты процессора

Ищу модель процессора (рис. 6.4).

```
[root@vbox ~]# dmesg | grep -i "CPU0"
[    0.515167] smpboot: <mark>CPU0</mark>: AMD Ryzen 7 5800U with Radeon Graphics (family:
0x19, model: 0x50, stepping: 0x0)
```

Рис. 6.4: Поиск модели процессора

Ищу объем доступной оперативной памяти (рис. 6.5).

```
/box ~]# dmesg | grep -i "memory"
000000] DMI: Memory slots populated: 0/0
002461] ACPI: Reserving FACP table memory at [mem 0xdfff00f0-0xdfff01e3]
.002462] ACPI: Reserving DSDT table memory at [mem 0xdfff0200-0xdfff023f]
.002462] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
.002463] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
.002463] ACPI: Reserving APIC table memory at [mem 0xdfff0200-0xdfff023f]
.002463] ACPI: Reserving SSDT table memory at [mem 0xdfff0240-0xdfff0293]
.002464] ACPI: Reserving SSDT table memory at [mem 0xdfff0240-0xdfff060b]
.004112] Early memory node ranges
.194164] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff]
.194165] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000ffff]
.194166] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000fffff]
.194167] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x000fffff]
.194168] PM: hibernation: Registered nosave memory: [mem 0x00000000-0xdfffffff]
.194169] PM: hibernation: Registered nosave memory: [mem 0xe0000000-0xfebfffff]
.194169] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfebfffff]
.194170] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfebfffff]
.194171] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfeffffff]
.194172] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfeffffff]
.194173] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfeffffff]
.194171] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfeffffff]
.194172] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfeffffff]
.194173] PM: hibernation: Registered nosave memory: [mem 0x
```

Рис. 6.5: Поиск объема доступной оперативной памяти

Ищу тип обнаруженного гипервизора (рис. 6.6).

```
[root@vbox ~]# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 6.6: Поиск типа обнаруженного гипервизора

Смотрю тип файловой системы (рис. 6.7).

```
∮vbox ~]# fdisk -l
Disk /dev/sda: 80 GiB, 85899345920 bytes, 167772160 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 8A82D17D-056C-4266-BC92-0D47C1664BF5
           Start
                        End Sectors Size Type
/dev/sda1 2048
             2048 4095 2048 1M BIOS boot
4096 2101247 2097152 1G Linux extended boot
/dev/sda2
/dev/sda3 2101248 167770111 165668864 79G Linux filesystem
Disk /dev/zram0: 3,81 GiB, 4094689280 bytes, 999680 sectors
Units: sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
```

Рис. 6.7: Поиск типа файловой системы

Смотрю последовательность монтирования файловых систем (рис. 6.8).

```
[root@vbox ~]# dmesg | grep -i "mount"
[    0.413875] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[    0.413875] Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[    0.413875] Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[    3.953489] BTRFS: device label fedora devid 1 transid 503 /dev/sda3 (8:3) scanned by mount
[    (413)
[    3.955501] BTRFS info (device sda3): first mount of filesystem 60c4761b-331d-45c9-9518-3
97d4faa3388
[    5.941495] systemd[1]: run-credentials-systemd\x2djournald.service.mount: Deactivated successfully.
[    5.952895] systemd[1]: Set up automount proc-sys-fs-binfmt_misc.automount - Arbitrary Executable File Formats File System Automount Point.
[    5.966156] systemd[1]: Listening on systemd-mountfsd.socket - DDI File System Mounter Socket.
[    5.978532] systemd[1]: Mounting dev-hugepages.mount - Huge Pages File System...
[    5.995382] systemd[1]: Mounting dev-hugepages.mount - POSIX Message Queue File System...
[    6.008439] systemd[1]: Mounting sys-kernel-debug.mount - Kernel Debug File System...
[    6.321963] systemd[1]: Starting systemel-tracing.mount - Kernel Trace File System...
[    6.321963] systemd[1]: Starting systemd-remount-fs.service - Remount Root and Kernel File Systems...
[    6.321963] SYSTA-fs $\mathbb{S} sda2): mounted filesystem 0593920e-2f67-49d6-9742-e6c0e04a0a34 r/w with ordered data mode. Quota mode: none.
```

Рис. 6.8: Поиск последовательности монтирования файловых систем