FIM observée - Estimation Stochastique

1	Estimation stochastique de la FIM	1
2	Calcul de $\ln l(y_i, \psi_i, \theta)$ 2.1 Calcul de $\ln p(y_i \psi_i; \theta)$ 2.2 Calcul de $\ln p(\psi_i \theta)$	
3	Dérivées premières de la log-vraissemblance 3.1 Gradient en σ , les paramètres du modèles d'erreur 3.2 Gradient en μ , les effets fixes 3.2.1 Gradient en μ^{fix} , les effets fixes sans variabilité 3.2.2 Gradient en μ^{iiv} , les effets fixes avec variabilité 3.3 Gradient en Ω , les variances des effets aléatoires	3
4	Implémentation dans saemix	5
5	Exemples 5.1 Theophylline pharmacokinetics 5.2 Emax PD1 5.2.1 Modèle 1 5.2.2 Modèle 2: cov 5.3 Discrete toenail 5.3.1 Modèle 1 5.3.2 Modèle 2: nocov 5.3.3 Modèle 3: iiv1 5.4 Oxford boys 5.5 Catégoriel: knee	6 7 7 7 7 7 8
6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9

1 Estimation stochastique de la FIM

Une fois la convergence atteinte, disons à itération K, la FIM est estimée stochastiquement par:

$$I_{n,sco}^{K} = \frac{1}{n} \sum_{i=1}^{N} \Delta_{i}^{K} \left(\Delta_{i}^{K}\right)^{T} \tag{1}$$

οù

$$\Delta_i^k = (1 - \gamma_k) \Delta_i^{k-1} + \gamma_k \partial_\theta \ln l(y_i, \phi_i^k; \theta_{k-1})$$
(2)

On a donc besoin de calculer $\partial_{\theta} \ln l(y_i, \phi_i^k; \theta_{k-1})$

2 Calcul de $\ln l(y_i, \psi_i, \theta)$

$$y_i = f(t_i, h(\mu, z_i, \eta_i)) + g(t_i, h(\mu, z_i, \eta_i), \sigma)\varepsilon_i$$
(3)

où $\psi_i = h(\mu, z_i, \eta_i) = h(\phi_i)$

La vraisemblance s'écrit:

$$l(y_i, \psi_i; \theta) = l_y(y_i, \psi_i; \theta) \ l_\phi(\psi_i, \theta) = p(y_i | \psi_i; \theta) \ p(\psi_i | \theta)$$

$$\tag{4}$$

d'où la log-vraisemblance:

$$\ln l(y_i, \psi_i; \theta) = \ln p(y_i | \psi_i; \theta) + \ln p(\psi_i | \theta)$$
(5)

2.1 Calcul de $\ln p(y_i|\psi_i;\theta)$

D'une part, $y_i|\psi_i, \theta = y_i|\phi_i, \theta \sim \mathcal{N}\left(f(t_i, h(\phi_i)), g(t_i, h(\phi_i), \sigma)^2\right)$

$$\ln p(y_i|\phi_i;\theta) = -\frac{n_i}{2} \ln 2\pi - \frac{1}{2} \ln |g(t_i,h(\phi_i),\sigma)^2| - \frac{1}{2} (y_i - f(t_i,h(\phi_i)))^T (g(t_i,h(\phi_i),\sigma)^2)^{-1} (y_i - f(t_i,h(\phi_i)))$$

$$g(t_i,h(\phi_i),\sigma)^2 = diag(g(t_{ij},h(\phi_i),\sigma)^2) \text{ donc}$$

- $\ln |g(t_i, h(\phi_i), \sigma)|^2 = \ln \prod_i g(t_{ij}, h(\phi_i), \sigma)^2 = 2 \sum_i \ln g(t_{ij}, h(\phi_i), \sigma)^2$
- $(g(t_i, h(\phi_i), \sigma)^2)^{-1} = diag(1/g(t_{ij}, h(\phi_i), \sigma)^2)$

d'où
$$(y_i - f(t_i, h(\phi_i)))^T (g(t_i, h(\phi_i), \sigma)^2)^{-1} (y_i - f(t_i, h(\phi_i))) = \sum_j (\frac{y_{ij} - f(t_{ij}, h(\phi_i))}{g(t_{ij}, h(\phi_i), \sigma)})^2$$

Finalement,

$$\ln p(y_i|\phi_i;\theta) = -\frac{n_i}{2} \ln 2\pi - \sum_j \ln g(t_{ij}, h(\phi_i), \sigma) - \frac{1}{2} \sum_j \left(\frac{y_{ij} - f(t_{ij}, h(\phi_i))}{g(t_{ij}, h(\phi_i), \sigma)} \right)^2$$
 (6)

Rm: La quantité

$$\sum_{j} \ln g(t_{ij}, h(\phi_i), \sigma) + \frac{1}{2} \sum_{j} \left(\frac{y_{ij} - f(t_{ij}, h(\phi_i))}{g(t_{ij}, h(\phi_i), \sigma)} \right)^2$$
 (7)

est renvoyée par la fonction compute.LLy.2.

2.2 Calcul de $\ln p(\psi_i|\theta)$

D'autre part, $\psi_i | \theta = C_i \mu + \eta_i | \mu, \Omega \sim \mathcal{N}(C_i \mu, \Omega)$

Donc

$$\ln p(\psi_i|\theta) = -\frac{P}{2}\ln 2\pi - \frac{1}{2}\ln |\Omega| - \frac{1}{2}(\phi_i - C_i\mu)^T \Omega^{-1}(\phi_i - C_i\mu)$$
 (8)

En rassemblant les équations (6) et (8) on obtient:

$$\ln l(y_i, \psi_i; \theta) = -\frac{n_i}{2} \ln 2\pi - \frac{P}{2} \ln 2\pi$$

$$- \sum_j \ln g(t_{ij}, h(\phi_i), \sigma) - \frac{1}{2} \sum_j \left(\frac{y_{ij} - f(t_{ij}, h(\phi_i))}{g(t_{ij}, h(\phi_i), \sigma)} \right)^2$$

$$- \frac{1}{2} \ln |\Omega| - \frac{1}{2} (\phi_i - C_i \mu)^T \Omega^{-1} (\phi_i - C_i \mu)$$
(9)

3 Dérivées premières de la log-vraissemblance

On veut approcher $\partial_{\theta_k} \ln l(y, \psi, \theta)$ par $\frac{\ln l(y, \psi, \theta + \nu^{(k)}) - \ln l(y, \psi, \theta)}{\nu}$ où $\nu_j^{(k)} = \nu \ \delta_{jk}$ avec ν petit

LF: Rmq: on aurait-on pu utiliser:

$$\partial_{\theta_k} \ln l(y, \psi, \theta) \approx \frac{\ln l(y, \psi, \theta + \nu) - \ln l(y, \psi, \theta - \nu^{(k)})}{2\nu}$$
(10)

?

Le vecteur θ peut être décomposé: $\theta = (\mu, vec(\Omega), \sigma)$.

3.1 Gradient en σ , les paramètres du modèles d'erreur

Dans la formule (9), les termes qui dépendent de σ sont $\sum_{j} \ln g(t_{ij}, h(\phi_i), \sigma) + \frac{1}{2} \sum_{j} \left(\frac{y_{ij} - f(t_{ij}, h(\phi_i))}{g(t_{ij}, h(\phi_i), \sigma)} \right)^2$. Ces dérivées dépendent des formes de f et g et sont donc non triviales. On utilisera donc une différence finie pour approcher la dérivée.

$$\partial_{\sigma} \ln l(y,\phi;\theta) \approx \frac{\texttt{compute.LLy.2}(y,\phi;\theta) - \texttt{compute.LLy.2}(y,\phi,\theta+d\theta)}{d\theta}$$

3.2 Gradient en μ , les effets fixes

On distingue les effets fixes avec iiv, μ^{iiv} et ceux sans, μ^{fix} . Ainsi, $\phi_i = \left(\phi_i^{iiv}, \phi_i^{fix}\right) = \left(\phi_i^{iiv}, \mu^{fix}\right)$ Ainsi, on peut réécrire l'équation (9) en:

$$\ln l(y_i, \phi_i; \theta) = -\sum_{j} \ln g(t_{ij}, h(\phi_i^{iiv}, \mu^{fix}), \sigma) - \frac{1}{2} \sum_{j} \left(\frac{y_{ij} - f(t_{ij}, h(\phi_i^{iiv}, \mu^{fix}))}{g(t_{ij}, h(\phi_i^{iiv}, \mu^{fix}), \sigma)} \right)^2$$

$$- \frac{1}{2} \ln |\Omega| - \frac{1}{2} \left(\phi_i^{iiv} - C_i \mu^{iiv} \right)^T \Omega^{-1} \left(\phi_i^{iiv} - C_i \mu^{iiv} \right)$$

$$- \frac{P + n_i}{2} \ln 2\pi$$
(11)

3.2.1 Gradient en μ^{fix} , les effets fixes sans variabilité

Dans la formule (11), les termes qui dépendent de μ^{fix} sont : $-\sum_{j} \ln g(t_{ij}, h(\phi_i^{iiv}, \mu^{fix}), \sigma) - \frac{1}{2} \sum_{j} \left(\frac{y_{ij} - f(t_{ij}, h(\phi_i^{iiv}, \mu^{fix}))}{g(t_{ij}, h(\phi_i^{iiv}, \mu^{fix}), \sigma)} \right)^2$

Comme les paramètres du modèle d'erreur, on utilisera une approximation par différence finie et on utilisera la fonction compute.LLy.2.

3.2.2 Gradient en μ^{iiv} , les effets fixes avec variabilité

Dans la formule (11), à ϕ_i^{iiv} fixé, les termes qui dépendent de μ^{iiv} sont : $\frac{1}{2} (\phi_i^{iiv} - C_i \mu^{iiv})^T \Omega^{-1} (\phi_i^{iiv} - C_i \mu^{iiv}$

On peut calculer les dérivées premières par rapport aux μ_k^{iiv} les élément du vecteurs μ^{iiv} . Pour x, a: vecteurs colonnes et A: matrice on utilisera les formules:

$$\frac{\partial x^T A x}{\partial x} = (A + A^T) x \qquad \frac{\partial a^T x}{\partial x} = a \tag{12}$$

Commençons par réécrire $-\frac{1}{2}(\phi_i^{iiv} - C_i\mu^{iiv})^T\Omega^{-1}(\phi_i^{iiv} - C_i\mu^{iiv})$. En développant, on a:

$$\left(\phi_{i}^{iiv} - C_{i} \mu^{iiv} \right)^{T} \Omega^{-1} \left(\phi_{i}^{iiv} - C_{i} \mu^{iiv} \right) = \left(\phi_{i}^{iiv} \right)^{T} \Omega^{-1} \phi_{i}^{iiv} - \left(\phi_{i}^{iiv} \right)^{T} \Omega^{-1} C_{i} \mu^{iiv} - \left(\mu^{iiv} \right)^{T} C_{i}^{T} \Omega^{-1} \phi_{i}^{iiv} + \left(\mu^{iiv} \right)^{T} C_{i}^{T} \Omega^{-1} C_{i} \mu^{iiv}$$
 (13)

La quantité $(\mu^{iiv})^T C_i^T \Omega^{-1} \phi_i^{iiv}$ est réelle donc elle est égale à sa transposée: $(\mu^{iiv})^T C_i^T \Omega^{-1} \phi_i^{iiv} = (\phi_i^{iiv})^T \Omega^{-1} C_i \mu^{iiv}$.

$$-\frac{1}{2} \left(\phi_i^{iiv} - C_i \mu^{iiv} \right)^T \Omega^{-1} \left(\phi_i^{iiv} - C_i \mu^{iiv} \right) = -\frac{1}{2} \left(\phi_i^{iiv} \right)^T \Omega^{-1} \phi_i^{iiv} + \left(\phi_i^{iiv} \right)^T \Omega^{-1} C_i \mu^{iiv} - \frac{1}{2} \left(\mu^{iiv} \right)^T C_i^T \Omega^{-1} C_i \mu^{iiv}$$
(14)

On a:

$$\bullet \ \frac{\partial \left(\phi_i^{iiv}\right)^T \Omega^{-1} \phi_i^{iiv}}{\partial u^{iiv}} = 0$$

• $(\phi_i^{iiv})^T \Omega^{-1} C_i$ est un vecteur ligne, donc $\frac{\partial (\phi_i^{iiv})^T \Omega^{-1} C_i \mu^{iiv}}{\partial \mu^{iiv}} = ((\phi_i^{iiv})^T \Omega^{-1} C_i)^T = C_i^T (\Omega^{-1})^T \phi_i^{iiv}$ Or Ω^{-1} est symétrique, donc $(\Omega^{-1})^T = \Omega^{-1}$ D'où:

$$\frac{\partial \left(\phi_i^{iiv}\right)^T \Omega^{-1} C_i \mu^{iiv}}{\partial \mu^{iiv}} = C_i^T \Omega^{-1} \phi_i^{iiv}$$

•
$$\frac{\partial \left(\mu^{iiv}\right)^T C_i^T \Omega^{-1} C_i \mu^{iiv}}{\partial \mu^{iiv}} = \left(C_i^T \Omega^{-1} C_i + C_i^T \left(\Omega^{-1}\right)^T C_i\right) \mu^{iiv} = 2 C_i^T \Omega^{-1} C_i \mu^{iiv}$$
D'où:

$$-\frac{1}{2}\frac{\partial (\mu^{iiv})^T C_i^T \Omega^{-1} C_i \mu^{iiv}}{\partial \mu^{iiv}} = -C_i^T \Omega^{-1} C_i \mu^{iiv}$$

Donc finalement :

$$\partial_{\mu^{iiv}} \ln l(y_i, \phi_i; \theta) = C_i^T \Omega^{-1} \left(\phi_i^{iiv} - C_i \mu^{iiv} \right)$$
(15)

3.3 Gradient en Ω , les variances des effets aléatoires

Dans la formule (11), à ϕ fixé, les termes qui dépendent de Ω sont : $-\frac{1}{2}\ln|\Omega| - \frac{1}{2}(\phi_i - C_i\mu)^T\Omega^{-1}(\phi_i - C_i\mu)$

On peut calculer les dérivées premières par rapport à ω les élément de la matrice Ω .

D'après livre Marc Lavielle

Soit A une matrice de taille $n \times n$. On introduit les auntités suivantes:

- v_A , $n^2 \times 1$: est le vecteur des colonnes de A, les unes sous les autres
- $\overline{v_A}$, $\frac{1}{2}n(n+1) \times 1$: est le vecteur obtenu à partir de v_A et en enlevant tous les composantes sur-diagonales de A
- \mathcal{D}_n , $\frac{1}{2}n(n+1)\times n^2$: la matrice d'élimination, permettant de passer de v_A à $\overline{v_A}$, i.e. : $\mathcal{D}_n v_A = \overline{v_A}$, elimination.matrix(n) du package matrixcalc

Comme Ω est symétrique, il s'agit de dériver $-\frac{1}{2}\ln|\Omega| - \frac{1}{2}(\phi_i - C_i\mu)^T\Omega^{-1}(\phi_i - C_i\mu)$ par rapport à $\overline{v_\Omega}$.

D'une part, on a que $\frac{\partial \ln |X(z)|}{\partial z} = tr\left(X(z)^{-1} \frac{\partial X(z)}{\partial z}\right)$ donc

$$\frac{\partial \ln |\Omega|}{\partial \overline{v_{\Omega}}_{k}} = tr \left(\Omega^{-1} \frac{\partial \Omega}{\partial \overline{v_{\Omega}}_{k}} \right) \tag{16}$$

où $\overline{v_\Omega}_k$ est la $k\text{-}\mathrm{i\`eme}$ composante du vecteur $\overline{v_\Omega}_k$

D'autre part, réécrivons $(\phi_i - C_i \mu)^T \Omega^{-1} (\phi_i - C_i \mu)$:

 $(\phi_i - C_i \mu)^T \Omega^{-1}$ est un vecteur ligne i.e. la transposée d'un vecteur colonne; or pour tous vecteurs colonnes u, v, on a: $u^T v = v^T u = tr(vu^T)$. Par ailleurs, $((\phi_i - C_i \mu)^T \Omega^{-1})^T = \Omega^{-1} (\phi_i - C_i \mu)$ car Ω^{-1} est symétrique.

Donc

$$(\phi_i - C_i \mu)^T \Omega^{-1} (\phi_i - C_i \mu) = tr ((\phi_i - C_i \mu) (\phi_i - C_i \mu)^T \Omega^{-1})$$

On sait également que tr(AB) = tr(BA) donc:

$$tr((\phi_i - C_i\mu)^T\Omega^{-1}(\phi_i - C_i\mu)) = tr(\Omega^{-1}(\phi_i - C_i\mu)(\phi_i - C_i\mu)^T)$$

Comme $\partial(\operatorname{tr}(A)) = \operatorname{tr}(\partial A)$, on a :

$$\frac{\partial \left(\phi_{i} - C_{i}\mu\right)^{T} \Omega^{-1}\left(\phi_{i} - C_{i}\mu\right)}{\partial \overline{v_{\Omega}}_{k}} = tr\left(\frac{\partial \Omega^{-1}}{\partial \overline{v_{\Omega}}_{k}}\left(\phi_{i} - C_{i}\mu\right)\left(\phi_{i} - C_{i}\mu\right)^{T}\right)
= -tr\left(\Omega^{-1} \frac{\partial \Omega}{\partial \overline{v_{\Omega}}_{k}} \Omega^{-1}\left(\phi_{i} - C_{i}\mu\right)\left(\phi_{i} - C_{i}\mu\right)^{T}\right)$$
(17)

En rassemblant nos deux membres, puis par linéarité de la trace on a:

$$\partial_{\overline{v}_{\Omega_{k}}} \ln l(y_{i}, \phi_{i}; \theta) = -\frac{1}{2} \left[tr \left(\Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}_{\Omega_{k}}} \right) - tr \left(\Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}_{\Omega_{k}}} \Omega^{-1} (\phi_{i} - C_{i}\mu) (\phi_{i} - C_{i}\mu)^{T} \right) \right]$$

$$= -\frac{1}{2} \left[tr \left(\Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}_{\Omega_{k}}} \Omega^{-1} \Omega \right) - tr \left(\Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}_{\Omega_{k}}} \Omega^{-1} (\phi_{i} - C_{i}\mu) (\phi_{i} - C_{i}\mu)^{T} \right) \right]$$

$$= -\frac{1}{2} \left[tr \left(\Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}_{\Omega_{k}}} \Omega^{-1} (\Omega - (\phi_{i} - C_{i}\mu) (\phi_{i} - C_{i}\mu)^{T}) \right) \right]$$

$$= \frac{1}{2} \left[tr \left(\Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}_{\Omega_{k}}} \Omega^{-1} ((\phi_{i} - C_{i}\mu) (\phi_{i} - C_{i}\mu)^{T} - \Omega) \right) \right]$$
(18)

Par cyclicité de la trace, on a:

$$\frac{\partial \left(\phi_i - C_i \mu\right)^T \Omega^{-1} \left(\phi_i - C_i \mu\right)}{\partial \overline{v_{\Omega}}_k} = \frac{1}{2} \left[tr \left(\frac{\partial \Omega}{\partial \overline{v_{\Omega}}_k} \Omega^{-1} \left(\left(\phi_i - C_i \mu\right) \left(\phi_i - C_i \mu\right)^T - \Omega \right) \Omega^{-1} \right) \right]$$
(19)

On utilise ensuite la formule $tr(ABCD) = (v_{A^T})^T (D^T \otimes B) v_C$

- $A = \frac{\partial \Omega}{\partial \overline{v_{\Omega}}_k}$ est symétrique, donc $\left(\frac{\partial \Omega}{\partial \overline{v_{\Omega}}_k}\right)^T = \frac{\partial \Omega}{\partial \overline{v_{\Omega}}_k}$
- $D = \Omega^{-1}$ est symétrique, donc $D^T = D$

$$\frac{\partial \left(\phi_{i} - C_{i}\mu\right)^{T}\Omega^{-1}\left(\phi_{i} - C_{i}\mu\right)}{\partial \overline{v_{\Omega}_{k}}} = \left(v_{\underline{\partial\Omega}}\right)^{T}\left(\Omega^{-1}\otimes\Omega^{-1}\right)v_{\left(\phi_{i} - C_{i}\mu\right)\left(\phi_{i} - C_{i}\mu\right)^{T}-\Omega}$$
(20)

Vérifions que les dimensions sont les bonnes. On a

- $(\Omega^{-1} \otimes \Omega^{-1})$ de taille $n^2 \times n^2$
- $v_{\Omega-(\phi_i-C_i\mu)(\phi_i-C_i\mu)^T}$ de taille $n^2 \times 1$

donc $\left(\Omega^{-1} \otimes \Omega^{-1}\right) v_{\Omega - \left(\phi_i - C_i \mu\right) \left(\phi_i - C_i \mu\right)^T}$ est bien de taille $n^2 \times 1$.

Aussi, pour obtenir $\frac{\partial \left(\phi_{i}-C_{i}\mu\right)^{T}\Omega^{-1}\left(\phi_{i}-C_{i}\mu\right)}{\partial \overline{v_{\Omega}}}$, il faut multiplier A par $\left(\Omega^{-1}\otimes\Omega^{-1}\right)v_{\left(\phi_{i}-C_{i}\mu\right)\left(\phi_{i}-C_{i}\mu\right)^{T}-\Omega}$, où A est la matrice dont la k-ième ligne est $\left(v\right|\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}\right)^{T}$

Or, $\partial \overline{v_{\Omega}}_k$ est la matrice de taille $n \times n$ dont toutes les composante valent 0 sauf celle à la place de $\overline{v_{\Omega}}_k$ qui vaut 1. Par conséquent, $A = \mathcal{D}_n$

$$\overline{\partial_{\overline{v_{\Omega}}} \ln l(y_i, \phi_i; \theta) = \frac{1}{2} \mathcal{D}_n \left(\Omega^{-1} \otimes \Omega^{-1} \right) v_{\left(\phi_i^{iiv} - C_i \mu^{iiv}\right) \left(\phi_i^{iiv} - C_i \mu^{iiv}\right)^T - \Omega}}$$
(21)

Rmq: Dans le livre de Marc Lavielle c'est \mathcal{D}_n^T , mais ça ne colle pas niveau dimensions.

4 Implémentation dans saemix

Quatres fichiers:

- stocha_SaemixRes.R
- \bullet stocha_main.R
- stocha_mstep.R
- stocha_aux.R

stocha_SaemixRes.R: ajout de champs en .sa: fim.sa, se.fixed.sa, se.omega.sa, se.cov.sa, se.respar.sa, conf.int.sa
stocha_main.R: Ce qui change par rapport au main classique:

- Initialisation de deltai = 0. On pourrait le faire définir dans initialiseMainAlgo() mais ça impliquerait de modifier cette fonction aussi.
- Appel à mstep.fim_stoch()
- Calcul de la FIM stochastique:

```
if(saemix.options$fim.sa) {
    npartot = length(deltai[,1])
    indfim_stoch = array(data=NA,dim=c(npartot,npartot,Dargs$N))
    for (i in 1:Dargs$N){
        indfim_stoch_i = deltai[,i] %*% t(deltai[,i])
        indfim_stoch[,,i] = indfim_stoch_i
    }
    fim_stoch = rowSums(indfim_stoch, dims = 2)
}
```

• Transformation de paramètres de la FIM et calcul des SE associés :

```
# Stochastic FIM & update saemix.res
if(saemix.options$fim.sa) {
    x<-try(saemixObject<-transfFim.sa(saemixObject, fim_stoch))
    if(inherits(x,"try-error") & saemixObject@options$warnings) message("Problem transforming the stochastic FIM\n")
}</pre>
```

stocha_mstep.R : contient mstep.fim_stoch()

stocha_aux.R

- mstep.deriv_mu_omega_i(): pour un sujet donné i, calcul des dérivées premières de la log vraissemblance par rapport à μ_{iiv} et $\overline{v_{\Omega}}$
- compute.LLy.2(): comme compute.LLy() mais avec moyenne sur les chaînes des ϕ_i
- transfFIM.stocha(): transformation de la FIM pour les paramètres fonctions de gaussiennes et calcul des SE associées

5 Exemples

5.1 Theophylline pharmacokinetics

name	estimate	se	cv	lower	upper	se.sa	cv.sa	lower.sa	upper.sa
ka	1.56	0.3	18.92	0.98	2.14	0.51	32.73	0.56	2.56
V	31.48	1.31	4.17	28.91	34.05	4.74	15.05	22.19	40.77
CL	1.55	1.02	65.8	-0.45	3.55	1.6	103.34	-1.59	4.69
$beta_W eight(CL)$	0.01	0.01	112.59	-0.01	0.03	0.02	187.81	-0.02	0.04
Var.ka	0.38	0.17	45.08	0.04	0.71	0.24	63.65	-0.09	0.85
Var.V	0.01	0.01	62.57	0	0.03	0.02	174.44	-0.03	0.06
Var.CL	0.07	0.04	48.44	0	0.14	0.09	119.43	-0.1	0.25
a.1	0.74	0.06	7.65	0.63	0.86	0.04	5.98	0.66	0.83
SD.ka	0.62	0.14	22.54	0.34	0.89	0.2	31.82	0.23	1
SD.V	0.11	0.04	31.28	0.04	0.18	0.1	87.22	-0.08	0.31
SD.CL	0.27	0.07	24.22	0.14	0.4	0.16	59.72	-0.05	0.59

5.2 Emax PD1

5.2.1 Modèle 1

name	estimate	se	cv	lower	upper	se.sa	cv.sa	lower.sa	upper.sa
E0	23.4	1.08	4.63	21.27	25.52	1.1	4.72	21.23	25.56
Emax	107.19	6.09	5.68	95.25	119.13	6.58	6.14	94.29	120.08
EC50	15.25	0.77	5.04	13.74	16.75	0.79	5.19	13.7	16.8
Var.E0	0.13	0.03	21.91	0.07	0.18	0.03	22.43	0.07	0.18
Var.Emax	0.3	0.04	14.8	0.21	0.39	0.05	16.87	0.2	0.4
Var.EC50	0.07	0.03	38.02	0.02	0.12	0.03	41.13	0.01	0.13
a.1	4.81	0.42	8.79	3.98	5.64	0.39	8.07	4.05	5.57
SD.E0	0.36	0.04	10.96	0.28	0.43	0.04	11.22	0.28	0.44
SD.Emax	0.55	0.04	7.4	0.47	0.63	0.05	8.43	0.46	0.64
SD.EC50	0.27	0.05	19.01	0.17	0.37	0.05	20.56	0.16	0.37

5.2.2 Modèle **2**: cov

name	estimate	se	cv	lower	upper	se.sa	cv.sa	lower.sa	upper.sa
E0	23.24	1.07	4.61	21.14	25.34	1.11	4.76	21.08	25.41
Emax	107.2	6.12	5.71	95.21	119.2	6.52	6.08	94.42	119.98
EC50	11.45	0.98	8.55	9.53	13.37	1.03	9.02	9.43	13.48
beta gender(EC50)	0.39	0.1	25.59	0.19	0.58	0.11	27.89	0.18	0.6
Var.E0	0.13	0.03	21.5	0.07	0.18	0.03	23.29	0.07	0.19
Var.Emax	0.31	0.05	14.74	0.22	0.4	0.05	16.47	0.21	0.41
Var.EC50	0.05	0.02	42.85	0.01	0.1	0.02	41.97	0.01	0.09
a.1	4.72	0.41	8.63	3.92	5.52	0.41	8.65	3.92	5.52
SD.E0	0.36	0.04	10.75	0.28	0.43	0.04	11.64	0.28	0.44
SD.Emax	0.55	0.04	7.37	0.47	0.63	0.05	8.24	0.46	0.64
SD.EC50	0.23	0.05	21.42	0.13	0.32	0.05	20.99	0.13	0.32

5.3 Discrete toenail

5.3.1 Modèle 1

name	estimate	se.sa	cv.sa	lower.sa	upper.sa
alpha	-2.24	0.74	-32.96	-3.68	-0.79
beta	-1.26	0.17	-13.61	-1.59	-0.92
beta treatment(beta)	-0.46	0.23	-49.44	-0.91	-0.01
Var.alpha	60.38	16.1	26.66	28.83	91.94
Var.beta	1.11	0.18	16.51	0.75	1.47
SD.alpha	7.77	1.04	13.33	5.74	9.8
SD.beta	1.05	0.09	8.26	0.88	1.22

5.3.2 Modèle 2: nocov

name	estimate	se.sa	cv.sa	lower.sa	upper.sa
alpha	-2.25	0.75	-33.16	-3.72	-0.79
beta	-1.51	0.15	-10.12	-1.82	-1.21
Var.alpha	62.37	16.55	26.53	29.94	94.8
Var.beta	1.2	0.2	16.63	0.81	1.59
SD.alpha	7.9	1.05	13.27	5.84	9.95
SD.beta	1.1	0.09	8.31	0.92	1.28

5.3.3 Modèle 3: iiv1

name	estimate	se.sa	cv.sa	lower.sa	upper.sa
alpha	-1.71	0.35	-20.51	-2.39	-1.02
beta	-0.39	0.03	-7.41	-0.44	-0.33
beta treatment(beta)	-0.15	0.04	-26.31	-0.22	-0.07
Var.alpha	16.11	2.71	16.85	10.79	21.43
SD.alpha	4.01	0.34	8.42	3.35	4.68

5.4 Oxford boys

name	estimate	se	cv	lower	upper	se.sa	cv.sa	lower.sa	upper.sa
base	149.16	1.56	1.05	146.1	152.23	1.84	1.23	145.56	152.77
slope	6.51	0.33	5.08	5.86	7.16	0.37	5.72	5.78	7.24
Var.base	0	0	27.76	0	0	0	29.48	0	0
Cov.base.slope	0.06	0.02	36.98	0.02	0.1	0.05	93.62	-0.05	0.16
Var.slope	2.74	0.79	28.91	1.19	4.29	1.41	51.7	-0.04	5.51
a.1	0.66	0.03	5.24	0.59	0.73	0.03	3.94	0.61	0.71
SD.base	0.05	0.01	13.88	0.04	0.07	0.01	14.74	0.04	0.07
Corr.base.slope	0.64	0.12	18.84	0.4	0.87	0.42	65.99	-0.19	1.47
SD.slope	1.65	0.24	14.46	1.19	2.12	0.43	25.85	0.82	2.49

5.5 Catégoriel: knee

name	estimate	se.sa	cv.sa	lower.sa	upper.sa
alp1	-15.21	0.12	-0.79	-15.44	-14.97
alp2	6.51	0.77	11.77	5.01	8.01
alp3	8.49	0.71	8.35	7.1	9.88
alp4	12.48	1.02	8.17	10.48	14.48
beta	0.87	0.14	15.9	0.6	1.14
Var.alp1	189.79	33.69	17.75	123.76	255.82
Var.beta	0.55	0.1	18.06	0.35	0.74
SD.alp1	13.78	1.22	8.88	11.38	16.17
SD.beta	0.74	0.07	9.03	0.61	0.87

6 Dérivées secondes de la log-vraissemblance

A partir de la formule de Louis:

$$\partial_{\theta}^{2} \ln l(y;\theta) = \mathbb{E} \left[\partial_{\theta}^{2} \ln l(y,\phi;\theta) | y; \theta \right] + Cov \left[\partial_{\theta} \ln l(y,\phi;\theta) | y; \theta \right]$$
(22)

where

$$Cov\left[\partial_{\theta} \ln l(y,\phi;\theta)|y;\theta\right] = \mathbb{E}\left[\left(\partial_{\theta} \ln l(y,\phi;\theta)\right)\left(\partial_{\theta} \ln l(y,\phi;\theta)\right)^{T}|y;\theta\right] - \mathbb{E}\left[\left(\partial_{\theta} \ln l(y,\phi;\theta)\right)|y;\theta\right]\mathbb{E}\left[\left(\partial_{\theta} \ln l(y,\phi;\theta)\right)|y;\theta\right]^{T}$$
(23)

On pourra donc estimer la FIM observée comme:

$$H_k = -\left(D_k + G_k - \Delta_k \Delta_k^T\right) \tag{24}$$

en introduisant:

$$\Delta_K = \frac{1}{K} \sum_{k=1}^K \partial_\theta \ln l(y, \phi^{(k)}; \theta)$$

$$D_K = \frac{1}{K} \sum_{k=1}^K \partial_\theta^2 \ln l(y, \phi^{(k)}; \theta)$$

$$G_K = \frac{1}{K} \sum_{k=1}^K \left(\partial_\theta \ln l(y, \phi^{(k)}; \theta) \right) \left(\partial_\theta \ln l(y, \phi^{(k)}; \theta) \right)^T$$
(25)

La procédure Monte Carlo peut être remplacée par une procédure stochatisque avec:

$$\Delta_k = (1 - \gamma_k) \Delta_{k-1} + \gamma_k \ln l(y, \phi^{(k)}; \theta)$$

$$D_K = (1 - \gamma_k) D_{k-1} + \gamma_k \partial_{\theta}^2 \ln l(y, \phi^{(k)}; \theta)$$

$$G_K = (1 - \gamma_k) G_{k-1} + \gamma_k (\partial_{\theta} \ln l(y, \phi^{(k)}; \theta)) (\partial_{\theta} \ln l(y, \phi^{(k)}; \theta))^T$$
(26)

Il nous faut donc calculer les dérivées secondes de la log-vraisemnblance. Pour les gradients numériques, on pourra utiliser:

$$\partial_{\theta_{j},\theta_{k}}^{2} \ln l(y,\psi,\theta) \approx \frac{\ln l(y,\psi,\theta+\nu^{(j)}+\nu^{(k)}) + \ln l(y,\psi,\theta-\nu^{(j)}-\nu^{(k)})}{4\nu^{2}} - \frac{\ln l(y,\psi,\theta+\nu^{(j)}-\nu^{(k)}) + \ln l(y,\psi,\theta-\nu^{(j)}+\nu^{(k)})}{4\nu^{2}}$$
(27)

En σ , les paramètres du modèles d'erreur et μ_{fix} , on utilisera une approximation numérique.

Puis

- $\partial_{\mu^{fix}\mu^{iiv}} = 0$
- $\partial_{\sigma\mu^{iiv}} = 0$
- $\partial_{\mu^{fix}\overline{v_{\Omega}}} = 0$
- $\partial_{\sigma \overline{v_{\Omega}}} = 0$

Il s'agit ensuite de redériver:

- $\partial_{\mu^{iiv}} \ln l(y_i, \phi_i; \theta) = C_i^T \Omega^{-1} (\phi_i^{iiv} C_i \mu^{iiv})$
- $\bullet \ \partial_{\overline{v_{\Omega}}} \ln l(y_i, \phi_i; \theta) = \frac{1}{2} \mathcal{D}_n^T (\Omega^{-1} \otimes \Omega^{-1}) v_{\left(\phi_i^{iiv} C_i \mu^{iiv}\right) \left(\phi_i^{iiv} C_i \mu^{iiv}\right)^T \Omega}$

par rapport à μ^{iiv} et $\overline{v_{\Omega}}$.

6.1 $\partial_{\mu^{iiv}\mu^{iiv}}$

$$\partial_{\mu^{iiv}\mu^{iiv}} \ln l(y_i, \phi_i; \theta) = -C_i^T \Omega^{-1} C_i$$
(28)

6.2 $\partial_{\mu^{iiv}\overline{v_{\Omega}}}$

$$\partial_{\overline{v_{\Omega}}\mu^{iiv}} \ln l(y_i, \phi_i; \theta) = \partial_{\overline{v_{\Omega}}} \left(\partial_{\mu^{iiv}} \ln l(y_i, \phi_i; \theta) \right) = \partial_{\overline{v_{\Omega}}} \left(C_i^T \Omega^{-1} \left(\phi_i^{iiv} - C_i \mu^{iiv} \right) \right)$$
(29)

Pour une composante:

$$\partial_{\overline{v_{\Omega}_k}\mu^{iiv}} \ln l(y_i, \phi_i; \theta) = \partial_{\overline{v_{\Omega}_k}} \left(C_i^T \Omega^{-1} \left(\phi_i^{iiv} - C_i \mu^{iiv} \right) \right)$$
(30)

6.3 $\partial_{\overline{v_\Omega v_\Omega}}$

Reprenons la forme

$$\partial_{\overline{v_{\Omega}_k}} \ln l(y_i, \phi_i; \theta) = \frac{1}{2} \left[tr \left(\frac{\partial \Omega}{\partial \overline{v_{\Omega}_k}} \Omega^{-1} \left(\left(\phi_i - C_i \mu \right) \left(\phi_i - C_i \mu \right)^T - \Omega \right) \Omega^{-1} \right) \right]$$
(31)

On a:

$$\partial_{\overline{v_{\Omega}}_{k}}\overline{v_{\Omega}_{l}}\ln l(y_{i},\phi_{i};\theta) = \frac{1}{2} \left[tr \left(\partial_{\overline{v_{\Omega}}_{k}} \left(\frac{\partial \Omega}{\partial \overline{v_{\Omega}}_{l}} \Omega^{-1} \left(\left(\phi_{i} - C_{i}\mu \right) \left(\phi_{i} - C_{i}\mu \right)^{T} - \Omega \right) \Omega^{-1} \right) \right) \right]$$
(32)

et en notant $S_i = (\phi_i - C_i \mu)(\phi_i - C_i \mu)^T$

$$\partial_{\overline{v}\Omega_{k}} \left(\frac{\partial \Omega}{\partial \overline{v}_{\Omega l}} \Omega^{-1} (S_{i} - \Omega) \Omega^{-1} \right) = \frac{\partial \Omega}{\partial \overline{v}_{\Omega_{k}} \overline{v}_{\Omega l}} \Omega^{-1} (S_{i} - \Omega) \Omega^{-1}$$

$$- \frac{\partial \Omega}{\partial \overline{v}_{\Omega l}} \Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}_{\Omega_{k}}} \Omega^{-1} (S_{i} - \Omega) \Omega^{-1}$$

$$- \frac{\partial \Omega}{\partial \overline{v}_{\Omega l}} \Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}_{\Omega_{k}}} \Omega^{-1}$$

$$- \frac{\partial \Omega}{\partial \overline{v}_{\Omega l}} \Omega^{-1} (S_{i} - \Omega) \Omega^{-1} \partial_{\overline{v}_{\Omega_{k}}} \Omega^{-1}$$

$$- \frac{\partial \Omega}{\partial \overline{v}_{\Omega l}} \Omega^{-1} (S_{i} - \Omega) \Omega^{-1} \partial_{\overline{v}_{\Omega_{k}}} \Omega^{-1}$$

$$(33)$$

On a

$$\bullet \ \frac{\partial \Omega}{\partial \overline{v_{\Omega}}_k \overline{v_{\Omega}}_l} = 0 \text{ donc}$$

$$\frac{\partial \Omega}{\partial \overline{v_{\Omega}_k} \overline{v_{\Omega}_l}} \Omega^{-1} (S_i - \Omega) \Omega^{-1} = 0$$

•

$$\begin{split} -\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1}\big(S_{i}-\Omega\big)\Omega^{-1} &= -\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1}S_{i}\Omega^{-1} + \frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1}\Omega\big)\Omega^{-1} \\ &= -\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1}S_{i}\Omega^{-1} + \frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1} \\ &= -\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1}S_{i}\Omega^{-1} + \frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1} \end{split}$$

•

$$\begin{split} -\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\big(S_{i}-\Omega\big)\Omega^{-1}\partial\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1} &= -\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}S_{i}\Omega^{-1}\partial\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1} + \frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\Omega\Omega^{-1}\partial\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1} \\ &= -\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}S_{i}\Omega^{-1}\partial\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1} + \frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\partial\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1} \\ &= -\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}S_{i}\Omega^{-1}\partial\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1} + \frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}\partial\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1} \end{split}$$

d'où

$$\partial_{\overline{v}\Omega_{k}} \left(\frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} (S_{i} - \Omega) \Omega^{-1} \right) = -\frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}\Omega_{k}} \Omega^{-1} S_{i} \Omega^{-1} + \frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}\Omega_{k}} \Omega^{-1}$$

$$-\frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}\Omega_{k}} \Omega^{-1}$$

$$-\frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} S_{i} \Omega^{-1} \partial_{\overline{v}\Omega_{k}} \Omega^{-1} + \frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} \partial_{\overline{v}\Omega_{k}} \Omega^{-1}$$

$$= -\frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}\Omega_{k}} \Omega^{-1} S_{i} \Omega^{-1} + \frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} \frac{\partial \Omega}{\partial \overline{v}\Omega_{k}} \Omega^{-1}$$

$$-\frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} S_{i} \Omega^{-1} \partial_{\overline{v}\Omega_{k}} \Omega^{-1}$$

$$-\frac{\partial \Omega}{\partial \overline{v}\Omega_{l}} \Omega^{-1} S_{i} \Omega^{-1} \partial_{\overline{v}\Omega_{k}} \Omega^{-1}$$

$$(34)$$

$$=-\frac{\partial\Omega}{\partial\overline{v_{\Omega}l}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}k}}\Omega^{-1}\big(S_i-\Omega\big)\Omega^{-1}-\frac{\partial\Omega}{\partial\overline{v_{\Omega}l}}\Omega^{-1}S_i\Omega^{-1}\partial\frac{\partial\Omega}{\partial\overline{v_{\Omega}k}}\Omega^{-1}$$

Donc

$$\partial_{\overline{v_{\Omega_k}}\overline{v_{\Omega_l}}} \ln l(y_i, \phi_i; \theta) = -\frac{1}{2} \left[tr \left(\frac{\partial \Omega}{\partial \overline{v_{\Omega_l}}} \Omega^{-1} \frac{\partial \Omega}{\partial \overline{v_{\Omega_k}}} \Omega^{-1} \left(S_i - \Omega \right) \Omega^{-1} \right) + tr \left(\frac{\partial \Omega}{\partial \overline{v_{\Omega_l}}} \Omega^{-1} S_i \Omega^{-1} \frac{\partial \Omega}{\partial \overline{v_{\Omega_k}}} \Omega^{-1} \right) \right]$$
(35)

Par cyclicité de la trace, on a:

$$tr\left(\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{l}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}\Omega^{-1}(S_{i}-\Omega)\Omega^{-1}\right) = tr\left(\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}\Omega^{-1}(S_{i}-\Omega)\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{l}}\Omega^{-1}\right)$$

$$= \left(v\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}\right)^{T}\left(\Omega^{-1}\otimes\left(\Omega^{-1}(S_{i}-\Omega)\Omega^{-1}\right)\right)v\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{l}}$$
(36)

et

$$tr\left(\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\Omega^{-1}S_{i}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}\Omega^{-1}\right) = \left(v\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{l}}}\right)^{T}\left(\Omega^{-1}\otimes\left(\Omega^{-1}S_{i}\Omega^{-1}\right)\right)v\frac{\partial\Omega}{\partial\overline{v_{\Omega}_{k}}}$$
(37)

D'autre part, pour x, y vecteur et A matrice, $x^T A y \in \mathbb{R}$ donc $x^T A y = (x^T A y)^T = y^T A^T x$. Donc

$$\left(v_{\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{l}}}^{T}\right)^{T}\left(\Omega^{-1}\otimes\left(\Omega^{-1}S_{i}\Omega^{-1}\right)\right)v_{\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}} = \left(v_{\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}}^{T}\right)^{T}\left(\Omega^{-1}\otimes\left(\Omega^{-1}S_{i}\Omega^{-1}\right)\right)^{T}v_{\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{l}}}$$
(38)

Or $(A \otimes B)^T = A^T \otimes B^T$; et comme ω^{-1} est symétrique, on a: $(\Omega^{-1}S_i\Omega^{-1})^T = \Omega^{-1}S_i^T\Omega^{-1}$ Rappelons que $S_i = (\phi_i - C_i\mu)(\phi_i - C_i\mu)^T$ donc $S_i^T = S_i$. Aussi, $(\Omega^{-1}S_i\Omega^{-1})^T = \Omega^{-1}S_i\Omega^{-1}$.

Par conséquent:

$$(v_{\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{l}}}^{T})^{T} (\Omega^{-1} \otimes (\Omega^{-1}S_{i}\Omega^{-1})) v_{\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}} = (v_{\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}}^{T})^{T} (\Omega^{-1} \otimes (\Omega^{-1}S_{i}\Omega^{-1})) v_{\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{l}}}$$

$$(39)$$

En rassemblant les deux traces, on a:

En rassemblant les deux traces, on a:
$$tr\Big(\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{l}}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}\Omega^{-1}\big(S_{i}-\Omega\big)\Omega^{-1}\Big) + tr\Big(\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{l}}\Omega^{-1}S_{i}\Omega^{-1}\frac{\partial\Omega}{\partial\overline{v_{\Omega}}_{k}}\Omega^{-1}\Big) = 2\Big(v\underbrace{\partial\Omega}_{\overline{\partial\overline{v_{\Omega}}_{k}}}^{T}\Big)^{T}\Big(\Omega^{-1}\otimes\big(\Omega^{-1}\big(S_{i}-\frac{1}{2}\Omega\big)\Omega^{-1}\big)\Big)v\underbrace{\partial\Omega}_{\overline{\partial\overline{v_{\Omega}}_{l}}}$$
(40)

Finalement

$$\partial_{\overline{v}\Omega_k}\overline{v}_{\Omega_l}\ln l(y_i,\phi_i;\theta) = -\left(v\frac{\partial\Omega}{\partial\overline{v}_{\Omega_k}}\right)^T \left(\Omega^{-1}\otimes\left(\Omega^{-1}\left(S_i - \frac{1}{2}\Omega\right)\Omega^{-1}\right)\right)v\frac{\partial\Omega}{\partial\overline{v}_{\Omega_l}}$$
(41)

On en déduit:

$$\partial_{\overline{v_{\Omega}v_{\Omega}}} \ln l(y_i, \phi_i; \theta) = -\mathcal{D}_n \left(\Omega^{-1} \otimes \left(\Omega^{-1} \left(S_i - \frac{1}{2} \Omega \right) \Omega^{-1} \right) \right) \mathcal{D}_n^T$$
(42)