# Lecture: Introduction to LP, SDP and SOCP

### Zaiwen Wen

Beijing International Center For Mathematical Research Peking University

http://bicmr.pku.edu.cn/~wenzw/bigdata2015.html wenzw@pku.edu.cn

Acknowledgement: this slides is based on Prof. Farid Alizadeh lecture notes

# Linear Programming (LP)

### **Primal**

# $\min \quad c_1 x_1 + \ldots + c_n x_n$

s.t. 
$$a_{11}x_1 + \ldots + a_{1n}x_n = b_1$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n = b_m$$
$$x_i \ge 0$$

### Dual

$$\max b_1 y_1 + \ldots + b_m y_m$$

s.t. 
$$a_{11}y_1 + \ldots + a_{m1}y_m \le c_1$$

$$a_{1n}y_1+\ldots+a_{mn}y_m\leq c_n$$

# Linear Programming (LP)

### more succinctly

### Primal (P)

$$min c^{\top} x$$
s.t.  $Ax = b$ 

$$x \ge 0$$

### Dual (D)

$$\begin{aligned} & \max \quad b^\top y \\ & \text{s.t.} \quad A^\top y + s = c \\ & \quad s \geq 0 \end{aligned}$$

# Weak duality

### Suppose

- x is feasible to (P)
- (y, s) is feasible to (D)

Then

$$0 \leq x^{\top}s \text{ because } x_i s_i \geq 0$$

$$= x^{\top}(c - A^{\top}y)$$

$$= c^{\top}x - (Ax)^{\top}y$$

$$= c^{\top}x - b^{\top}y$$

$$= \text{ duality gap}$$

# Key Properties of LP

Strong duality: If both Primal and Dual are feasible then at the optimum

$$c^{\mathsf{T}}x = b^{\mathsf{T}}y \Longleftrightarrow x^{\mathsf{T}}s = 0$$

complementary slackness: This implies

$$x^{\top}s = x_1s_1 + \ldots + x_ns_n = 0$$
 and therefore  $x_is_i = 0$ 

# complementarity

 Putting together primal feasibility, dual feasibility and complementarity together we get a square system of equations

$$Ax = b$$

$$A^{\top}y + s = c$$

$$x_{i}s_{i} = 0 \quad \text{for } i = 1, \dots, n$$

 At least in principle this system determines the primal and dual optimal values

# Algebraic characterization

• We can define  $x \circ s = (x_1 s_1, \dots, x_n s_n)^{\top}$  and

$$L_x: y \to (x_1y_1, \dots, x_ny_n)^{\top}$$
 i.e.  $L_x = \text{Diag}(x)$ 

We can write complementary slackness conditions as

$$x \circ s = \mathsf{L}_x s = \mathsf{L}_x \mathsf{L}_s 1 = 0$$

1, the vector of all ones, is the identity element:

$$x \circ 1 = x$$

# Semidefinite Programming (SDP)

- $X \succeq Y$  means that the symmetric matrix X Y is positive semidefinite
- X is positive semidefinite



$$a^{\top}Xa \geq 0$$
 for all vector  $a \Longleftrightarrow X = B^{\top}B \Longleftrightarrow$ 

all eigenvalues of X is nonnegative

# Semidefinite Programming (SDP)

$$ullet \langle X,Y 
angle = \sum_{ij} X_{ij} Y_{ij} = \operatorname{Tr}(XY)$$
 Primal (P)

min 
$$\langle C_1, X_1 \rangle + \ldots + \langle C_n, X_n \rangle$$
  
s.t.  $\langle A_{11}, X_1 \rangle + \ldots + \langle A_{1n}, X_n \rangle = b_1$   
 $\ldots$   
 $\langle A_{m1}, X_1 \rangle + \ldots + \langle A_{mn}, X_n \rangle = b_m$   
 $X_i \succeq 0$ 

### Dual (D)

max 
$$b_1y_1 + ... + b_my_m$$
  
s.t.  $A_{11}y_1 + ... + A_{m1}y_m + S_1 = c_1$   
...  $A_{1n}y_1 + ... + A_{mn}y_m + S_n = c_n$   
 $S_i \succeq 0$ 

# Simplified SDP

For simplicity we deal with single variable SDP:

# Primal (P) $\min \quad \langle C, X \rangle \qquad \max \quad b^{\top} y$ s.t. $\langle A_1, X \rangle = b_1$ $\dots$ $\langle A_m, X \rangle = b_m$ $X \succeq 0$ Dual (D) $\max \quad b^{\top} y$ s.t. $\sum_i y_i A_i + S = C$

- A single variable LP is trivial
- But a single matrix SDP is as general as a multiple matrix

# Weak duality in SDP

Just as in LP

$$\langle X, S \rangle = \langle C, X \rangle - b^{\top} y$$

• Also if both  $X \succeq 0$  and  $S \succeq 0$  then

$$\langle X, S \rangle = \text{Tr}(XS^{1/2}S^{1/2}) = \text{Tr}(S^{1/2}XS^{1/2}) \ge 0$$

because  $S^{1/2}XS^{1/2} \succeq 0$ 

Thus

$$\langle X, S \rangle = \langle C, X \rangle - b^{\top} y \ge 0$$



# Complementarity Slackness Theorem

•  $X \succeq 0$  and  $S \succeq 0$  and  $\langle X, S \rangle = 0$  implies

$$XS = 0$$

Proof:

Proof: 
$$\langle X, S \rangle = \operatorname{Tr}(XS^{1/2}S^{1/2}) = \operatorname{Tr}(S^{1/2}XS^{1/2})$$
 Thus  $\operatorname{Tr}(S^{1/2}XS^{1/2}) = 0$ . Since  $S^{1/2}XS^{1/2} \succeq 0$ , then 
$$S^{1/2}XS^{1/2} = 0 \Longrightarrow S^{1/2}X^{1/2}X^{1/2}S^{1/2} = 0$$
  $X^{1/2}S^{1/2} = 0 \Longrightarrow XS = 0$ 

# Algebraic properties of SDP

 For reasons to become clear later it is better to write complementary slackness conditions as

$$\frac{XS + SX}{2} = 0$$

• It can be shown that if  $X \succeq 0$  and  $S \succeq 0$ , then XS = 0 iff

$$XS + SX = 0$$

# Algebraic properties of SDP

- Definition:  $X \circ S = \frac{XS + SX}{2}$
- The binary operation  $\circ$  is commutative  $X \circ S = S \circ X$
- $\circ$  is not associative:  $X \circ (Y \circ Z) \neq (X \circ Y) \circ Z$  in general
- But  $X \circ (X \circ X) = (X \circ X) \circ X$ . Thus  $X^{\circ p} = X^p$  is well defined
- In general  $X \circ (X^2 \circ Y) = X^2 \circ (X \circ Y)$
- The identity matrix I is identity w.r.t ∘
- Define the operator

$$\mathsf{L}_X: Y \to X \circ Y$$
, thus  $X \circ S = \mathsf{L}_X(S) = \mathsf{L}_X(\mathsf{L}_S(I))$ 



14/29

### **Constraint Qualifications**

- Unlike LP we need some conditions for the optimal values of Primal and Dual SDP to coincide
- Here are two:
  - If there is primal-feasible X > 0 (i.e. X is positive definite)
  - If there is dual-feasible S > 0
- When strong duality holds  $\langle X, S \rangle = 0$

### KKT Condition

Thus just like LP The system of equations

$$\langle A_i, X \rangle = b_i, \quad \text{for } i = 1, \dots, m$$

$$\sum_i y_i A_i + S = C$$

$$X \circ S = 0$$

Gives us a square system

# Second Order Cone Programming (SOCP)

For simplicity we deal with single variable SOCP:

### Primal (P)

### Dual (D)

$$\begin{aligned} & \min & c^\top x & \max & b^\top y \\ & \text{s.t.} & Ax = b & \text{s.t.} & A^\top y + s = c \\ & & x_{\mathcal{Q}} \succeq 0 & s_{\mathcal{O}} \succeq 0 \end{aligned}$$

- the vectors x, s, c are indexed from zero
- If  $z = (z_0, z_1, \dots, z_n)^{\top}$  and  $\bar{z} = (z_1, \dots, z_n)^{\top}$





## Illustration of SOC



$$\mathcal{Q} = \{ z \mid z_0 \ge \|\bar{z}\| \}$$

# Weak Duality in SOCP

- The single block SOCP is not as trivial as LP but it still can be solved analytically
- weak duality: Again as in LP and SDP

$$x^{\top}s = c^{\top}x - b^{\top}y = \text{ duality gap}$$

If  $x, s \succeq_{\mathcal{Q}} 0$ , then

$$\begin{array}{rcl} x^{\top}s & = & x_0s_0 + \bar{x}^{\top}\bar{s} \geq \\ & \geq & \|\bar{x}\| \cdot \|\bar{s}\| + \bar{x}^{\top}\bar{s} & \text{ since } x, s \succeq_{\mathcal{Q}} 0 \\ & \geq & |\bar{x}^{\top}\bar{s}| + \bar{x}^{\top}\bar{s} & \text{ Cauchy-Schwartz inequality} \\ & \geq & 0 \end{array}$$

# Complementary Slackness for SOCP

- Given  $x \succeq_{\mathcal{Q}} 0$ ,  $s \succeq_{\mathcal{Q}} 0$  and  $x^{\top}s = 0$ . Assume  $x_0 > 0$  and  $s_0 > 0$
- We have

$$(*) x_0^2 \ge \sum_{i=1}^n x_i^2$$

$$(**) s_0^2 \ge \sum_{i=1}^n s_i^2 \iff x_0^2 \ge \sum_{i=1}^n \frac{s_i^2 x_0^2}{s_0^2}$$

$$(***) x^\top s = 0 \iff -x_0 s_0 = \sum_i x_i s_i \iff -2x_0^2 = \sum_{i=1}^n \frac{2x_i s_i x_0}{s_0}$$

- Adding (\*), (\*\*), (\*\*\*), we get  $0 \ge \sum_{i=1}^n \left(x_i + \frac{s_i x_0}{s_0}\right)^2$
- This implies

$$x_i s_0 + x_0 s_i = 0$$
, for  $i = 1, ..., n$ 

### Illustration of SOC



When  $x \succeq_{\mathcal{Q}} 0$ ,  $s \succeq_{\mathcal{Q}} 0$  are orthogonal both must be on the boundary in such a way that their projection on the  $x_1, \ldots, x_n$  plane is collinear

# **Strong Duality**

at the optimum

$$c^{\top}x = b^{\top}y \Longleftrightarrow x^{\top}s = 0$$

- Like SDP constraint qualifications are required
- If there is primal-feasible  $x \succ_{\mathcal{Q}} 0$
- If there is dual-feasible  $s \succ_{\mathcal{Q}} 0$

# Complementary Slackness for SOCP

• Thus again we have a square system

$$Ax = b,$$

$$A^{\top}y + s = c$$

$$x^{\top}s = 0$$

$$x_0s_i + s_0x_i = 0$$

# Algebraic properties of SOCP

 Let us define a binary operation for vectors x and s both indexed from zero

$$\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix} \circ \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_n \end{pmatrix} = \begin{pmatrix} x^\top s \\ x_0 s_1 + s_0 x_1 \\ \vdots \\ x_0 s_n + s_0 x_n \end{pmatrix}$$

# Algebraic properties of SOCP

- The binary operation  $\circ$  is commutative  $x \circ s = s \circ x$
- $\circ$  is not associative:  $x \circ (y \circ z) \neq (x \circ y) \circ z$  in general
- But  $x \circ (x \circ x) = (x \circ x) \circ x$ . Thus  $x^{\circ p} = x^p$  is well defined
- In general  $x \circ (x^2 \circ y) = x^2 \circ (x \circ y)$
- The identity matrix I is identity w.r.t ∘
- $e = (1, 0, \dots, 0)^{\top}$  is the identity:  $x \circ e = x$

# Algebraic properties of SOCP

Define the operator

$$\mathsf{L}_{x}: y \to x \circ y$$

$$\mathsf{L}_{x} = \mathsf{Arw}(x) = \begin{pmatrix} x_{0} & \bar{x}^{\top} \\ \bar{x} & x_{0}I \end{pmatrix}$$

$$x \circ s = \mathsf{Arw}(x)s = \mathsf{Arw}(x)\mathsf{Arw}(s)e$$

# Summary

### **Properties**

| LP                      | SDP                                                                             | SOCP                                                                                                                                                                                                                        |
|-------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x \circ s = (x_i s_i)$ | $X \circ S = \frac{XS + SX}{2}$                                                 | $x \circ s = \begin{pmatrix} x^{\top} s \\ x_0 \bar{s} + s_0 \bar{x} \end{pmatrix}$                                                                                                                                         |
| 1                       | 1                                                                               | $e = (1, 0, \dots, 0)^{T}$                                                                                                                                                                                                  |
| yes                     | no                                                                              | no                                                                                                                                                                                                                          |
| $y \to \text{Diag}(x)y$ | $Y 	o rac{XY + YX}{2}$                                                         | $y \to Arw(x)y$                                                                                                                                                                                                             |
| Ax = b                  | $\langle A_i, X \rangle = b_i$                                                  | Ax = b                                                                                                                                                                                                                      |
| $A^{\top}y + s = c$     | $\sum_{i} y_i A_i + S = C$                                                      | $A^{\top}y + s = c$                                                                                                                                                                                                         |
| $L_xL_s1=0$             | $L_X(L_S(I))=0$                                                                 | $L_x L_s e = 0$                                                                                                                                                                                                             |
|                         | $x \circ s = (x_i s_i)$ $1$ $yes$ $y \to Diag(x)y$ $Ax = b$ $A^{\top}y + s = c$ | $x \circ s = (x_i s_i) \qquad X \circ S = \frac{XS + SX}{2}$ $\begin{array}{ccc} 1 & & & & & \\ yes & & & & \\ y \to \text{Diag}(x)y & & & & & \\ X \to S = \frac{XS + SX}{2} \\ & & & & \\ & & & & \\ & & & & \\ & & & & $ |

### Conic LP

A set  $K \subseteq \mathbb{R}^n$  is a proper cone if

- It is a cone: If  $x \in K \Longrightarrow ax \in K$  for all  $\alpha \ge 0$
- It is convex:  $x, y \in K \Longrightarrow \alpha x + (1 \alpha)y \in K$  for  $\alpha \in [0, 1]$
- It is pointed:  $K \cap (-K) = \{0\}$
- It is closed
- It has non-empty interior in  $\mathbb{R}^n$
- dual cone:

$$\mathsf{K}^* = \{ x \mid \text{ for all } z \in \mathsf{K}, \langle x, z \rangle \ge 0 \}$$



### Conic LP

### Conic-LP is defined as the following optimization problem: Primal (P)

# min $c^{\top}x$

min 
$$c \cdot x$$
  
s.t.  $Ax = b$   
 $x \in K$ 

$$\max \quad b^{\top} y$$
  
s.t.  $A^{\top} y + s = c$   
 $s \in \mathbf{K}^*$ 

- For LP K is the nonnegative orthant
- For SDP K is the cone of positive semidefinite matrices
- For SOCP K is the circular or Lorentz cone
- In all three cases the cones are self-dual K = K\*