Binomial Distribution

Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Binomial Probability

Many processes have only 2 possible outcomes

Flipping a coin

Gaston Sanche

Effectiveness of a drug:

Effective -vs- Not effective

Financial Balance

Many processes can be broken down into 2 complementary events

Rolling a die

Obtaining 1

Not 1

Rolling a die

1, 2, or 3

4, 5, 6

Fixed number of trials

Repeated trials under identical conditions

Independent trials

Probability of success is the same in each trial

Goal: Probability of **k** successes out of **n** trials

Flipping a coin 5 times
Identical conditions
Independent trials
Constant probability of heads
Probability of 3 heads

2 Experiments

Experiment A: withdraw a ball, replace it, withdraw a 2nd ball, and counting # of orange balls

Experiment B: withdraw a ball, no replacement, withdraw a 2nd ball, and counting # of orange balls

Which experiment is Binomial?

Binomial Probability

- *n* independent trials
- k successes
- p probability of success

$$P(k \text{ successes}) = nCk p^k (1-p)^{n-k}$$

Binomial Probability

$$P(k \text{ successes}) = nCk p^k (1-p)^{n-k}$$

equivalently

$$P(k_{\text{successes}}) = \binom{n}{k} p^k (1-p)^{n-k}$$

k=3 successes in n=7 trials

k=3 successes in n=7 trials

How many different ways to get 3 successes in 7 trials?

Binomial Probability Formula

Example

3 coins flipped

Probabilities of number of heads?

3 coins are flipped

$$P(X = 0) = {}_{3}C_{0} (\frac{1}{2})^{0} (\frac{1}{2})^{3}$$

3 coins are flipped

$$P(X = 0) = {}_{3}C_{0} (\frac{1}{2})^{0} (\frac{1}{2})^{3}$$

$$P(X = 1) = {}_{3}C_{1} (\frac{1}{2})^{1} (\frac{1}{2})^{2}$$

$$P(X = 2) = {}_{3}C_{2} (\frac{1}{2})^{2} (\frac{1}{2})^{1}$$

3 coins are flipped

$$P(X = 0) = {}_{3}C_{0} (\frac{1}{2})^{0} (\frac{1}{2})^{3}$$

$$P(X = 1) = {}_{3}C_{1} (\frac{1}{2})^{1} (\frac{1}{2})^{2}$$

$$P(X = 2) = {}_{3}C_{2} (\frac{1}{2})^{2} (\frac{1}{2})^{1}$$

$$P(X = 3) = {}_{3}C_{3} (\frac{1}{2})^{3} (\frac{1}{2})^{0}$$

3 coins are flipped

$$P(X = 0) = {}_{3}C_{0} (\frac{1}{2})^{0} (\frac{1}{2})^{3} = \frac{1}{8}$$

$$P(X = 1) = {}_{3}C_{1} (\frac{1}{2})^{1} (\frac{1}{2})^{2} = \frac{3}{8}$$

$$P(X = 2) = {}_{3}C_{2} (\frac{1}{2})^{2} (\frac{1}{2})^{1} = \frac{3}{8}$$

$$P(X = 3) = {}_{3}C_{3} (\frac{1}{2})^{3} (\frac{1}{2})^{0} = \frac{1}{8}$$

3 coins are flipped

Some Expressions

Inequalities Expressions

Notation	Expression
k = 4	Four successes
$k \ge 4$ (k = 4, 5, 6,, n)	Four or more successes At least four successes No fewer than four successes
$k \le 4$ ($k = 0, 1, 2, 3, 4$)	Four or fewer successes At most four successes No more than four successes
k > 4 (k = 5, 6,, n)	More than four successes
k < 4 (k = 0, 1, 2, 3)	Fewer than four successes

Graphing binomial distributions

Jim makes about 50% of the field goals he attempts

Draw the distribution probability that Jim will make 0, 1, 2, 3, 4, 5, or 6 shots out of six attempts.

$$n = ?$$

$$p = ?$$

$$k = ?$$

Graphing binomial distributions

$$P(X = k) = {6 \choose k} 0.5^{k} (1-0.5)^{6-k}$$

k	P(k)
0	
1	
2	
3	
4	
2 3 4 5 6	
6	

k	P(k)
0	0.016
1	0.094
2	0.234
3	0.312
4	0.234
5	0.094
6	0.016

k	P(k)
0	0.016
1	0.094
2	0.234
3	0.312
4	0.234
5	0.094
6	0.016

k	P(k)
0	0.016
1	0.094
2	0.234
3	0.312
4	0.234
5	0.094
6	0.016

Graphics of Binomial Distribs.

X binomial random variable

$$n = 6$$

$$p = 0.5$$

X binomial random variable

$$n = 6$$

$$p = 0.3$$

X binomial random variable

$$n = 6$$

$$p = 0.7$$

Binomial n = 6 and p = 0.7

X binomial random variable

$$n = 6$$

p = 0.1, 0.3, 0.5, 0.6, 0.7, 0.9

