Expressões regulares

Universidade Federal de Campina Grande – UFCG

Centro de Engenharia Elétrica e Informática – CEEI

Departamento de Sistemas e Computação – DSC

Professor: Andrey Brito Período: 2023.2

Lembrando do nosso AFND do início...

• Como transformá-lo em um AFD?

Lembrando do nosso AFND do início...

• Como ele reagiu à entrada 01011?

• Como isso nos ajuda a entender a conversão? E como comparar os procedimentos de união para AFDs e para AFNDs ajudaria?

Outro exemplo (primeiro, iterativamente)

Detalhes do exaustivo

Um AFND é uma 5-tupla <Q, \sum , δ , q_0 , F>, onde Q é um conjunto finito de estados \sum é um alfabeto finito $\delta: Q \times \sum_{\epsilon} \rightarrow P(Q)$ é a função de transição $q_0 \in Q$ é o estado inicial $F \subseteq Q$ é o conjunto de estados de aceitação

- M = <Q', \sum , δ ', q', F'>, onde
 - $Q' = \langle \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \rangle$
 - $q_0' = E(\{q_0\}) = E(\{1\}) = \{1, 3\}$
 - $F' = \{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\} \}$

Otimizando o exaustivo

• Eliminando os estados inacessíveis

Equivalência – Não faça!

AFND e linguagens regulares

 Uma linguagem é regular se e somente se é reconhecida por um AFND

AFND e linguagens regulares

- Uma linguagem é regular se e somente se é reconhecida por um AFND
 - Se a linguagem é regular existe um AFD que reconhece, todo AFD é um AFND

AFND e linguagens regulares

- Uma linguagem é regular se e somente se é reconhecida por um AFND
 - Se a linguagem é regular existe um AFD que reconhece, todo AFD é um AFND
 - Se a linguagem é reconhecida por um AFND, existe um AFD que simula o AFND, logo existe um AFD que a reconhece

Expressões regulares

Expressões regulares

- Assim como vimos para operações regulares...
- Aritmética
 - Objeto de estudo: números
 - Expressão aritmética: (3 + 4) × 5
 - Expressão aritmética gera: número
- Teoria da computação
 - Objeto de estudo: linguagens
 - Expressão regular: $(0 \cup 1) \cdot 0^*$ ou $(0 + 1) \cdot 0^*$
 - Expressão regular gera: linguagem

Uso

- Detecção de padrões
 - AWK, GREP
 - Editores de texto (p.ex., Microsoft Word)
 - Pearl, Java, Python
 - Validação de entrada
- Especificações de protocolo
- Compiladores (descrevendo expressões, identificadores, constantes)

Exemplos de Expressões Regulares

• E-mails válidos em formulários:

```
[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}
```

- Constantes numéricas em uma linguagem de programação $(+ \cup \cup \lambda)$ $(D^+ \cup D^+.D^* \cup D^*.D^+) \rightarrow 72, 3.14159, +7, -.01$
- IPs em um busca em um arquivo de log

```
\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3} \rightarrow \text{quatro números de 3 dígitos}  (25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?) \rightarrow números de 0 a 255
```

Exemplo de procura por IPs em grande volumes de dados:

```
\pi bin/hadoop jar hadoop-examples.jar grep input output '[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.
```

Ou, se para um único arquivo: ... | grep -E -o "[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.

Exemplo de entrada de log

```
50.97.138.111 - - [21/Sep/2014:19:08:48 -0300] "GET
/index.php?option=com content& view=article& id=22: workshop-testes-tolerancia-
falhas&catid=10:workshop&Itemid=25 HTTP/1.0" 200 12404
50.97.138.111 - - [21/Sep/2014:19:08:49 -0300] "GET /administrator/templates/khepri/favicon.ico
HTTP/1.0" 200 1150
207.46.13.86 - - [21/Sep/2014:19:09:30 -0300] "GET
/index.php?option=com_content&view=category&layout=blog&id=10&Itemid=25 HTTP/1.1" 200
3389
157.55.39.93 - - [21/Sep/2014:19:16:19 -0300] "GET
/index.php?option=com_content&view=article&id=22:workshop-testes-tolerancia-
falhas&catid=10:workshop&Itemid=25 HTTP/1.1" 200 4527
37.59.69.33 - - [21/Sep/2014:19:21:15 -0300] "GET /wp-login.php HTTP/1.1" 404 210
37.59.69.33 - - [21/Sep/2014:19:21:16 -0300] "GET /administrator/index.php HTTP/1.1" 200
```

Exemplo de saída de log

```
366251
        150.165.85.172
30484
        46.45.32.79
25617
        195,128,126,91
20067 216.144.247.50
18648
        129.82.100.202
18643
        142.4.17.151
18252
        80.93.26.151
17977
        37.1.223.254
15599
        95.47.137.56
14258
        213.251.189.203
12178
        198.24.185.168
11127
        142.4.211.151
10671
        77.235.33.28
10168
        91,121,165,158
```

Definição formal

- Seja ∑ um alfabeto
 - 1. Se a $\in \Sigma$, então a é uma expressão regular
 - 2. Se λ é a palavra nula, então λ é uma expressão regular
 - 3. Se \emptyset é o conjunto vazio, então \emptyset é uma expressão regular

Definição formal

Seja ∑ um alfabeto

- 1. Se a $\in \Sigma$, então a é uma expressão regular
- 2. Se λ é a palavra nula, então λ é uma expressão regular
- 3. Se \varnothing é o conjunto vazio, então \varnothing é uma expressão regular
- 4. Se R_1 e R_2 são expressões regulares, então $(R_1 \cup R_2)$ e $(R_1 \bullet R_2)$ são expressões regulares
- 5. Se R_1 é uma expressão regular, então (R_1^*) é uma expressão regular

Expressões e linguagens: ERs descrevem conjuntos de palavras...

Expressão

• 0*10*

Expressão

• 0*10*

Linguagem

• w contém um 1

Expressões e linguagens: ERs descrevem conjuntos de palavras...

Expressão

• 0*10*

Aqui na realidade são várias expressões combinadas!

Outras definições

- λ versus \varnothing
 - λ : antes representava uma palavra, a palavra vazia, mas aqui, como ER, é a ER que tem como linguagem um conjunto unitário, cujo único elemento é a palavra vazia
 - Ø: aqui, como ER, representa um conjunto vazio, então não tem nenhuma palavra

Outras definições

- λ versus \varnothing
 - λ: como ER descreve uma linguagem unitária
 - Ø: nenhuma palavra, conjunto vazio

Outras definições

- Linguagem descrita por R: L(R)
 - Equivalência: $R_1 \equiv R_2 \leftrightarrow L(R_1) = L(R_2)$
 - $R^+ = RR^*$, ou seja, $R^* = R^+ \cup \{\lambda\}$

```
• Se \Sigma = \{0, 1\}

• R_1 = \Sigma \rightarrow L(R_1) = \{0, 1\}

• R_2 = (0 \cup 1) \rightarrow L(R_2) = \{0, 1\}

• R_1 \equiv R_2

• R_3 = \Sigma^* \rightarrow L(R_3) = \{\text{todas as palavras sobre o alfabeto, incluindo } \lambda\}

• R_4 = 1^* . \varnothing \rightarrow ?

• R_5 = \varnothing^* \rightarrow ?
```

• $R_5 = \emptyset^* \rightarrow L(R_5) = \{\lambda\}$

• Se $\Sigma = \{0, 1\}$ • $R_1 = \Sigma \rightarrow L(R_1) = \{0, 1\}$ • $R_2 = (0 \cup 1) \rightarrow L(R_2) = \{0, 1\}$ • $R_1 \equiv R_2$ • $R_3 = \Sigma^* \rightarrow L(R_3) = \{\text{todas as palavras sobre o alfabeto, incluindo } \lambda\}$ • $R_4 = 1^* . \varnothing \rightarrow L(R_4) = \varnothing$

Expressão

- 0*10*
- ∑*1 ∑*
- Σ *001 Σ *
- (01⁺)*
- $(\sum \sum)*$
- (01 ∪ 10)
- $0\Sigma*0 \cup 1\Sigma*1 \cup 0 \cup 1$

Expressões e linguagens ($\Sigma = \{0,1\}$)

Expressão

- 0*10*
- ∑*1 ∑*
- ∑*001 ∑*
- (01⁺)*
- $(\sum \sum)*$
- (01 ∪ 10)
- $0\Sigma*0 \cup 1\Sigma*1 \cup 0 \cup 1$

Linguagem

- w contém um 1
- w contém ao menos um 1
- w contém uma sequência 001
- Todo 0 é seguido de um 1
- w tem comprimento par
- {01, 10}
- w começa e termina com o mesmo símbolo

- Teorema 3: uma linguagem é regular se e somente se ela pode ser descrita por uma expressão regular
 - Isso significa que ERs e AFs são equivalentes

- R = \mathbf{a} , para algum a em Σ
 - Então, L(R) = {a}
 - O seguinte AFND também reconhece L(R)

- $R = \lambda$
 - Então, $L(R) = {\lambda}$
 - O seguinte AFND também reconhece L(R)

- R = Ø
 - Então, L(R) = ∅
 - O seguinte AFND também reconhece L(R)

Novamente: expressões regulares complexas

- Seja ∑ um alfabeto
 - 1. Se $a \in \Sigma$, então **a** é uma expressão regular.
 - 2. Se λ é a palavra nula, então λ é uma expressão regular.
 - 3. Se \emptyset é o conjunto vazio, então \emptyset é uma expressão regular.
 - 4. Se R_1 e R_2 são expressões regulares, então $(R_1 \cup R_2)$ e $(R_1 \bullet R_2)$ são expressões regulares.
 - 5. Se R_1 é uma expressão regular, então (R_1^*) é uma expressão regular.

- As regras restantes: ERs podem ser geradas a partir da...
 - União
 - Concatenação
 - Ou operação estrela sobre outras ERs
- A classe de linguagens regulares também é fechada por essas mesmas operações
 - Usar essas operações para gerar expressões maiores gera linguagens regulares
 - Sabemos gerar AFNDs que reconhecem linguagens geradas por essas operações regulares

- Conclusões
 - Expressões podem ser convertidas em autômatos
 - Logo, expressões geram linguagens regulares

Exemplo

• Converter (**ab** \cup **a**)* em um AFND

• a

• h

ab

Exemplo

• Converter (**ab** \cup **a**)* em um AFND

• ab \cup a

Exemplo

• Converter (**ab** \cup **a**)* em um AFND

AFND \rightarrow ER

Equivalência AFND > ER

- A transformação nem sempre é intuitiva, precisamos de um processo
- Mas em geral queremos converter o autômato...
 - ... eliminado os estados um a um até que sobre somente dois estados
 - Estes estados são um estado inicial e um final
 - O estado inicial tem uma única transição, saindo dele
 - O estado final tem uma única transição, chegando nele
 - Quando eliminarmos um estado, vamos compensar a remoção adicionando símbolos a outras transições diretas
 - As transições podem ter agora expressões regulares, que vão crescendo para representar partes cada vez maiores do autômatos