

FCC PART 15.247 TEST REPORT

For

Skspruce Technologies Inc.

1732 North 1st St Suite 220, San Jose, CA

FCC ID: 2ACKD-WIA3280

Report Type:
Original Report

Test Engineer:

Report Number:

Report Date:

Reviewed By:

Test Laboratory:

Bay Area Compliance Laboratories Corp. (Chengdu)
5040, HuiLongWan Plaza, No. 1, ShaWan Road,
JinNiu District, ChengDu, China
Tel: 028-65523123, Fax: 028-65525125
www.baclcorp.com

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S)TEST METHODOLOGY	
Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	8
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i), §2.1091 & §1.1307(b)(1)- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	14
Antenna Connector Construction	14
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUPEMI TEST RECEIVER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	16
TEST EQUIPMENT LIST AND DETAILS	
TEST RESULTS SUMMARYTEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARDMEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	31
APPLICABLE STANDARD	
Test Procedure	31
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	

Bay Area Compliance Laboratories Corp. (Chengdu)

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	71
APPLICABLE STANDARD	71
Test Procedure	71
TEST EQUIPMENT LIST AND DETAILS	71
Test Data	72
FCC §15.247(e) - POWER SPECTRAL DENSITY	85
APPLICABLE STANDARD	85
Test Procedure	85
TEST EQUIPMENT LIST AND DETAILS	85
TEST DATA	86

Report No.: RSC141011001 Page 3 of 104

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Skspruce Technologies Inc.'s product, model number: WIA3200-80 (FCC ID: 2ACKD-WIA3280) (the "EUT") in this report was an Indoor Access Point, which was measured approximately: 200mm (W) x 200mm (D) x 45mm (H),

POE:

Input: AC 100 - 240V, 50/60Hz

Output: DC 48 - 56V

AC ADAPTER:

Input: AC 100 - 240V, 50/60Hz

Output: DC12V

*All measurement and test data in this report were gathered from final production sample, serial number: 8112014062300026 (provided by Applicant). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2014-12-30, and EUT complied with test requirement.

Objective

This report is prepared on behalf of *Skspruce Technologies Inc.* accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine the compliance of the EUT with FCC Part 15-Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.407 submissions with FCC ID: 2ACKD-WIA3280. FCC Part 15 B submissions with FCC ID: 2ACKD-WIA3280.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any RF tests which use conducted method measurement is ±3.17 dB, the uncertainty of any radiation on emissions measurement is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G-6GHz:: ±5.13dB; 6G~25GHz: ±5.47dB;

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Report No.: RSC141011001 Page 4 of 104

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Facility

The test site used by BACL to collect test data is located in the 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on July 31, 2009. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RSC141011001 Page 5 of 104

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for test in testing mode, which was provided by manufacturer. 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	1	1

For 802.11b, 802.11g, and 802.11n HT20 modes were tested with Channel 1, 6 and 11. For 802.11n HT40 mode were tested with Channel 3, 6 and 9.

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power, PSD across all date rates bandwidths and modulations.

Report No.: RSC141011001 Page 6 of 104

EUT Exercise Software

The software "art2_ver_4_9_93_RC_Bin, SecureCRT 7.1 & tftpd32" was used for testing, which was provided by manufacturer.

Test Mode	Test Software Version	art2_ver_4_9_93_RC_Bin, SecureCRT 7.1 & tftpd32				
	Test Frequency	2412MHz	2437MHz	2462MHz		
	Data Rate	CCK 1M	CCK 1M	CCK 1M		
802.11b	Power Level Setting Antenna 0	17	17	17		
	Power Level Setting Antenna 1	18	18	18		
	Power Level Setting Antenna 2	18	18	18		
	Test Frequency	2412MHz	2437MHz	2462MHz		
	Data Rate	OFDM 6M	OFDM 6M	OFDM 6M		
802.11g	Power Level Setting Antenna 0	12	12	12		
	Power Level Setting Antenna 1	12	12	12		
	Power Level Setting Antenna 2	12	12	12		
	Test Frequency	2412MHz	2437MHz	2462MHz		
	Data Rate	MCS0	MCS0	MCS0		
802.11n	Power Level Setting Antenna 0	7	7	7		
HT20	Power Level Setting Antenna 1	7	7	7		
	Power Level Setting Antenna 1	7	7	7		
	Test Frequency	2422MHz	2437MHz	2452MHz		
	Data Rate	MCS0	MCS0	MCS0		
802.11n	Power Level Setting Antenna 0	7	7	7		
HT40	Power Level Setting Antenna 1	7	7	7		
	Power Level Setting Antenna 2	7	7	7		

Equipment Modifications

No modification was made to the EUT.

Report No.: RSC141011001 Page 7 of 104

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
IBM	PC	8176	99Y7315
DELL	Monitor	SK-8815	9161649
IBM	Keyboard	KM-110X	XBK133000993
Logitech	Mouse	M-U0004	810-001808
Antek	Voip Gateway	EGW802	050830054-1B
EPSON	Printer	B261A	GXSK285854
GIGADIT	PoE Injector	NONE	NONE
LITEON	AC Adapter	PA-1051-0	L21133000100
KINGSTONE	U Disk	NONE	NONE

External I/O Cable

Cable Description	Length (m)	From	То
Unshielded LAN/Power cable	1.0	PoE Injector/AC Adapter	EUT
Shielded VGA cable	1.5	PC	Monitor
Unshielded LAN cable	1.0	PC	EUT
Shielded Mouse cable	1.5	PC	Mouse
Shielded Keyboard cable	1.5	PC	Keyboard
Shielded LPT Cable	1.5	PC	Printer
Shielded RS232 Cable	0.5	PC	Voip Gateway

Report No.: RSC141011001 Page 8 of 104

Block Diagram of Test Setup

For Conducted Emissions:

Report No.: RSC141011001 Page 9 of 104

For Spurious Emissions:

Report No.: RSC141011001 Page 10 of 104

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247(i), §2.1091 & §1.1307(b)(1)	Maximum Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RSC141011001 Page 11 of 104

FCC §15.247 (i), §2.1091 & §1.1307(b)(1)- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)			
0.3–1.34	614	1.63	*(100)	30			
1.34–30	824/f	2.19/f	*(180/f²)	30			
30–300	27.5	0.073	0.2	30			
300–1500	-	-	f/1500	30			
1500–100,000	-	-	1.0	30			

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$

Where:

S = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

DTS Band:

Mode	Frequency	Ante	nna Gain	Conducted Power		Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b	2462	3	2.00	20.74	118.58	20	0.047	1.0
802.11g	2437	3	2.00	20.61	115.08	20	0.046	1.0
802.11n HT20	2462	3	2.00	19.89	97.45	20	0.039	1.0
802.11n HT40	2422	3	2.00	20.06	101.41	20	0.040	1.0

Report No.: RSC141011001 Page 12 of 104

UNII Band:

5150-5250 MHz

Mode	Frequency	Ante	nna Gain		ucted wer	Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11a	5240	3	2.00	20.84	121.34	20	0.048	1
802.11ac VHT20	5180	3	2.00	19.96	99.08	20	0.039	1
802.11ac VHT40	5190	3	2.00	19.27	84.53	20	0.034	1
802.11ac VHT80	5210	3	2.00	19.53	89.74	20	0.036	1
802.11n HT20	5220	3	2.00	19.91	97.95	20	0.039	1
802.11n HT40	5190	3	2.00	19.38	86.70	20	0.034	1

5725-5850 MHz

Mode	1 requericy		nna Gain	nna Gain Conducted Power		Lvaluation		MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11a	5745	3	2.00	20.62	115.35	20	0.046	1
802.11ac VHT20	5745	3	2.00	20.15	103.51	20	0.041	1
802.11ac VHT40	5755	3	2.00	19.71	93.54	20	0.037	1
802.11ac VHT80	5775	3	2.00	19.51	89.33	20	0.035	1
802.11n HT20	5745	3	2.00	20.18	104.23	20	0.041	1
802.11n HT40	5755	3	2.00	19.70	93.33	20	0.037	1

According to KDB 447498 D01 General RF exposure guidance v05r02, EUT has 5GHz and 2.4GHz transmitting simultaneously. So the sum of MPE ratio for six antennas is 0.095 which is less than 1.0, So the collocation exposure exclusion applies.

Result: The device meet FCC MPE at 20 cm distance.

Report No.: RSC141011001 Page 13 of 104

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has six PCB antennas (three antennas for 2.4GHz & three antennas for 5GHz), which were attached to the EUT, and complied with 15.203, the maximum gain is 3.0 dBi. Please refer to the EUT internal photos.

Result: Compliance.

Report No.: RSC141011001 Page 14 of 104

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cispr} of Table 1, then:

- –compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit:
- -non compliance is deemed to occur if any measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Chengdu) is ±3.17 dB (150 kHz to 30 MHz).

Table 1 – Values of U_{cispr}

Measurement	U cispr
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Report No.: RSC141011001 Page 15 of 104

Bay Area Compliance Laboratories Corp. (Chengdu)

The setup of EUT was according to ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The power cables and external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

DC 48V was used by the EUT through POE injector. DC12V was used by the EUT through AC adapter.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the EUT's adapter was connected to the outlet of the first LISN and the other support equipments were connected to the outlet of the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Herein,s

V_C: corrected voltage amplitude V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN or ISN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Report No.: RSC141011001 Page 16 of 104

Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2014-06-23	2015-06-22
Rohde & Schwarz	L.I.S.N.	ENV216	3560.6550.06	2014-06-23	2015-06-22
Rohde & Schwarz	L.I.S.N.	ENV216	3560.6550.12	2014-02-08	2015-02-07

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, with the worst margin reading of:

6.3 dB at **0.153636 MHz** in the **Line** conducted mode.

Test Data

Environmental Conditions

Temperature:	15 °C
Relative Humidity:	63 %
ATM Pressure:	96.1 kPa

The testing was performed by Kevin Tao on 2015-01-12.

Report No.: RSC141011001 Page 17 of 104

For POE

Test Mode: Transmitting

Line

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.153636	59.5	9.000	Off	L1	18.8	6.3	65.8
0.178947	56.5	9.000	Off	L1	19.0	7.9	64.4
0.181386	56.6	9.000	Off	L1	19.0	7.7	64.3
0.211763	53.7	9.000	Off	L1	19.3	9.3	63.0
0.318890	44.7	9.000	Off	L1	19.9	14.8	59.5
4.751466	41.6	9.000	Off	L1	20.5	14.4	56.0

Frequency (MHz)	Average (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	41.1	9.000	Off	L1	18.7	14.9	56.0
0.151807	41.7	9.000	Off	L1	18.7	14.2	55.9
0.181386	40.6	9.000	Off	L1	19.0	13.7	54.3
0.348942	36.4	9.000	Off	L1	19.9	12.4	48.8
4.619278	33.9	9.000	Off	L1	20.5	12.1	46.0
4.731991	34.6	9.000	Off	L1	20.5	11.4	46.0

Report No.: RSC141011001 Page 18 of 104

Neutral

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Neutral	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.153636	58.0	9.000	Off	N	18.8	7.8	65.8
0.178776	55.0	9.000	Off	N	19.0	9.4	64.4
0.259059	44.6	9.000	Off	N	19.5	16.7	61.3
0.314858	43.8	9.000	Off	N	19.8	15.8	59.6
4.675114	43.9	9.000	Off	N	20.4	12.1	56.0
4.906948	43.6	9.000	Off	N	20.4	12.4	56.0

Frequency (MHz)	Average (dBuV)	Bandwidth (kHz)	Filter	Neutral	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150600	39.1	9.000	Off	N	18.7	16.9	56.0
0.348942	35.1	9.000	Off	N	19.9	13.7	48.8
3.440435	30.0	9.000	Off	N	20.4	16.0	46.0
4.617455	36.0	9.000	Off	N	20.4	10.0	46.0
4.731991	36.1	9.000	Off	N	20.4	9.9	46.0
11.685206	35.3	9.000	Off	N	20.5	14.7	50.0

Note: EUT transmitting simultaneously with 2.4G and 5G radio frequency and supports intelligent radio frequency management functionalities.

Report No.: RSC141011001 Page 19 of 104

For AC Adapter

Test Mode: Transmitting

Line

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.420135	36.3	9.000	Off	L1	20.1	21.1	57.4
0.446062	35.8	9.000	Off	L1	20.1	21.1	56.9
0.467950	36.3	9.000	Off	L1	20.1	20.2	56.6
0.492876	35.7	9.000	Off	L1	20.1	20.4	56.1
0.517062	35.6	9.000	Off	L1	20.1	20.4	56.0
1.139770	37.0	9.000	Off	L1	20.2	19.0	56.0

Frequency (MHz)	Average (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.444284	32.9	9.000	Off	L1	20.1	14.1	47.0
0.469822	32.7	9.000	Off	L1	20.1	13.8	46.5
0.492876	32.4	9.000	Off	L1	20.1	13.7	46.1
0.517062	32.2	9.000	Off	L1	20.1	13.8	46.0
0.540273	31.4	9.000	Off	L1	20.1	14.6	46.0
1.117246	31.7	9.000	Off	L1	20.2	14.3	46.0

Report No.: RSC141011001 Page 20 of 104

Neutral

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Neutral	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.180957	38.1	9.000	Off	N	19.0	26.4	64.4
0.418461	35.4	9.000	Off	N	20.1	22.0	57.5
0.469822	36.4	9.000	Off	N	20.1	20.1	56.5
0.564526	33.9	9.000	Off	N	20.1	22.1	56.0
1.139770	34.3	9.000	Off	N	20.2	21.7	56.0
27.672851	25.7	9.000	Off	N	20.8	34.3	60.0

Frequency (MHz)	Average (dBuV)	Bandwidth (kHz)	Filter	Neutral	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.420135	32.2	9.000	Off	N	20.1	15.2	47.4
0.444284	33.0	9.000	Off	N	20.1	14.0	47.0
0.469822	32.7	9.000	Off	N	20.1	13.8	46.5
0.492876	32.9	9.000	Off	N	20.0	13.2	46.1
0.517062	32.5	9.000	Off	N	20.1	13.5	46.0
0.542434	31.7	9.000	Off	N	20.1	14.3	46.0

Note: EUT transmitting simultaneously with 2.4G and 5G radio frequency and supports intelligent radio frequency management functionalities.

Report No.: RSC141011001 Page 21 of 104

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 2, then:

- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cispr} of Table 2, then:

- –compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- –non compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit.

Based on CISPR 16-4-2-2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Chengdu) is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G-6GHz: ±5.13dB; 6G~25GHz: ±5.47 dB;

Table 2 – Values of U_{cispr}

Measurement					
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB				
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB				
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB				

Report No.: RSC141011001 Page 22 of 104

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters Semi-Anechoic Chamber, using the setup in accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209 and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

DC 48V was used by the EUT through POE injector. DC12V was used by the EUT through AC adapter.

Report No.: RSC141011001 Page 23 of 104

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	1	PK
Above 1 GHZ	1 MHz	10 Hz	1	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Receiver Reading + Cable loss + Antenna Factor – Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit-Corrected Amplitude

Report No.: RSC141011001 Page 24 of 104

Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2014-06-23	2015-06-22
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2014-06-23	2015-06-22
Sunol Sciences	Broadband Antenna	JB3	A101808	2013-04-10	2015-04-09
Rohde & Schwarz	Spectrum Analyzer	FSL18	100180	2014-06-23	2015-06-22
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2014-10-17	2015-10-16
EM TEST	Horn Antenna	3115	003-6076	2014-04-09	2015-04-08
WEINSCHEL ENGINEERING	Attenuator	1A 10dB	AB1165	2014-10-31	2015-10-30
Mini-circuits	Filter	VHF-3100+	31306	2014-07-15	2015-07-14
Mini-circuits	Filter	VHF-6010+	31336	2014-07-15	2015-07-14
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2014-11-18	2015-11-17
EMCT	Semi-Anechoic Chamber	966	N/A	2013-03-13	2016-03-12

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

2.97 dB at 2483.4 MHz in the Vertical polarization for 802.11g mode

Test Data

Environmental Conditions

Temperature:	16 °C
Relative Humidity:	60 %
ATM Pressure:	96.3 kPa

The testing was performed by Kevin Tao on 2015-01-13.

Report No.: RSC141011001 Page 25 of 104

Test Mode: Transmitting

Гиоми	Re	ceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected	FCC 1	5.247
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
		8	02.11b m	node, Low	Channel	: 2412 MHz			
2412	79.92	PK	Н	23.14	5.75	0.00	108.81	N/A	N/A
2412	73.65	AV	Н	23.14	5.75	0.00	102.54	N/A	N/A
2412	83.37	PK	V	23.14	5.75	0.00	112.26	N/A	N/A
2412	78.79	AV	V	23.14	5.75	0.00	107.68	N/A	N/A
2399.4	35.82	PK	V	23.08	5.63	0.00	64.53	74.00	9.47
2399.4	20.98	AV	V	23.08	5.63	0.00	49.69	54.00	*4.31
4824	38.57	PK	V	30.76	7.86	26.81	50.38	74.00	23.62
4824	31.55	AV	V	30.76	7.86	26.81	43.36	54.00	10.64
7236	29.95	PK	V	34.35	10.52	26.62	48.20	74.00	25.80
7236	16.98	AV	V	34.35	10.52	26.62	35.23	54.00	18.77
9648	29.72	PK	V	37.08	12.95	26.35	53.40	74.00	20.60
9648	17.46	AV	V	37.08	12.95	26.35	41.14	54.00	12.86
2692	36.67	PK	V	26.40	6.05	26.81	42.31	74.00	31.69
2692	22.31	AV	V	26.40	6.05	26.81	27.95	54.00	26.05
98	47.2	QP	V	14.86	0.76	28.02	34.80	43.50	8.70
		80	2.11b mc	de, Middl	e Channe	el: 2437 MHz			
2437	76.73	PK	Н	25.74	5.79	0.00	108.26	N/A	N/A
2437	72.21	AV	Н	25.74	5.79	0.00	103.74	N/A	N/A
2437	83.91	PK	V	25.74	5.79	0.00	115.44	N/A	N/A
2437	79.38	AV	V	25.74	5.79	0.00	110.91	N/A	N/A
4874	36.54	PK	V	30.77	7.90	26.78	48.43	74.00	25.57
4874	28.45	AV	V	30.77	7.90	26.78	40.34	54.00	13.66
7311	30.11	PK	V	34.35	10.57	26.56	48.47	74.00	25.53
7311	17.28	AV	V	34.35	10.57	26.56	35.64	54.00	18.36
9748	29.21	PK	V	36.30	12.98	26.32	52.17	74.00	21.83
9748	17.35	AV	V	36.30	12.98	26.32	40.31	54.00	13.69
2692	34.58	PK	V	26.40	6.05	26.81	40.22	74.00	33.78
2692	22.36	AV	V	26.40	6.05	26.81	28.00	54.00	26.00
3526	35.22	PK	V	28.86	6.05	26.81	43.32	74.00	30.68
3526	21.74	AV	V	28.86	6.05	26.81	29.84	54.00	24.16
98	48.1	QP	V	14.86	0.76	28.02	35.70	43.50	7.80
	•	8	02.11b m	ode, High	Channel	: 2462 MHz	•		
2462	79.57	PK		25.80		0.00	109.30	N/A	N/A
2462	74.96	AV	Н	25.80	3.93	0.00	104.69	N/A	N/A
2462	82.45	PK	V	25.80	3.93	0.00	112.18	N/A	N/A
2462	78.63	AV	V	25.80	3.93	0.00	108.36	N/A	N/A
2483.4	32.94	PK	V	25.86	3.80	0.00	62.60	74.00	11.40
2483.4	20.52	AV	V	25.86	3.80	0.00	50.18	54.00	*3.82
4924	39.42	PK	V	30.90	4.70	26.71	48.31	74.00	25.69
4924	30.12	AV	V	30.90	4.70	26.71	39.01	54.00	14.99
7386	30.58	PK	V	34.53	6.84	26.53	45.42	74.00	28.58
7386	16.49	AV	V	34.53	6.84	26.53	31.33	54.00	22.67
9848	28.77	PK	V	36.54	8.49	26.30	47.50	74.00	26.50
9848	13.86	AV	V	36.54	8.49	26.30	32.59	54.00	21.41
2692	35.94	PK	V	26.40	6.05	26.81	41.58	74.00	32.42
2692	22.41	AV	V	26.40	6.05	26.81	28.05	54.00	25.95
98	47.6	QP	V	14.86	0.76	28.02	35.20	43.50	8.30

^{*} Within Measurement Uncertainty.

Report No.: RSC141011001 Page 26 of 104

F	Receiver		Rx Aı	ntenna	Cable	Amplifier	Corrected	FCC 1	FCC 15.247	
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
		8	02.11g m	node, Low	Channel	: 2412 MHz				
2412	74.95	PK	Н	23.14	5.75	0.00	103.84	N/A	N/A	
2412	61.54	AV	Н	23.14	5.75	0.00	90.43	N/A	N/A	
2412	77.32	PK	V	23.14	5.75	0.00	106.21	N/A	N/A	
2412	65.43	AV	V	23.14	5.75	0.00	94.32	N/A	N/A	
2399.5	34.91	PK	V	23.08	5.63	0.00	63.62	74.00	10.38	
2399.5	21.46	AV	V	23.08	5.63	0.00	50.17	54.00	*3.83	
4824	39.13	PK	V	30.76	7.86	26.81	50.94	74.00	23.06	
4824	32.48	AV	V	30.76	7.86	26.81	44.29	54.00	9.71	
7236	29.56	PK	V	34.35	10.52	26.62	47.81	74.00	26.19	
7236	16.32	AV	V	34.35	10.52	26.62	34.57	54.00	19.43	
9648	28.76	PK	V	37.08	12.95	26.35	52.44	74.00	21.56	
9648	14.35	AV	V	37.08	12.95	26.35	38.03	54.00	15.97	
2692	35.12	PK	V	26.40	6.05	26.81	40.76	74.00	33.24	
2692	22.84	AV	V	26.40	6.05	26.81	28.48	54.00	25.52	
98	46.4	QP	V	14.86	0.76	28.00	34.02	43.50	9.48	
				1		el: 2437 MHz		10100		
2437	73.45	PK	Н	25.74	5.79	0.00	104.98	N/A	N/A	
2437	62.54	AV	H	25.74	5.79	0.00	94.07	N/A	N/A	
2437	75.63	PK	V	25.74	5.79	0.00	107.16	N/A	N/A	
2437	65.14	AV	V	25.74	5.79	0.00	96.67	N/A	N/A	
4874	34.85	PK	V	30.77	7.90	26.78	46.74	74.00	27.26	
4874	27.95	AV	V	30.77	7.90	26.78	39.84	54.00	14.16	
7311	29.44	PK	V	34.35	10.57	26.56	47.80	74.00	26.20	
7311	16.86	AV	V	34.35	10.57	26.56	35.22	54.00	18.78	
9748	27.98	PK	V	36.30	12.98	26.32	50.94	74.00	23.06	
9748	13.54	AV	V	36.30	12.98	26.32	36.50	54.00	17.50	
2692	34.86	PK	V	26.40	6.05	26.81	40.50	74.00	33.50	
2692	18.45	AV	V	26.40	6.05	26.81	24.09	54.00	29.91	
3526	35.48	PK	V	28.86	6.05	26.81	43.58	74.00	30.42	
3526	22.75	AV	V	28.86	6.05	26.81	30.85	54.00	23.15	
98	47.2	QP	V	14.86	0.76	28.02	34.80	43.50	8.70	
90	47.2					: 2462 MHz	34.00	43.30	0.70	
2462	74.26	PK		25.80		0.00	103.99	N/A	N/A	
2462	61.78	AV	H	25.80	3.93	0.00	91.51	N/A	N/A	
2462	76.73	PK	V	25.80	3.93	0.00	106.46	N/A	N/A	
2462	64.57	AV	V	25.80	3.93	0.00	94.30	N/A	N/A	
2483.4	37.18	PK	V	25.86	3.80	0.00	66.84	74.00	7.16	
2483.4	21.37	AV	V	25.86	3.80	0.00	51.03	54.00	*2.97	
4924	35.86	PK	V	30.90	4.70	26.71	44.75	74.00	29.25	
4924	26.54	AV	V	30.90	4.70	26.71	35.43	54.00	18.57	
7386	29.46	PK	V	34.53	6.84	26.53	44.30	74.00	29.70	
7386	14.65	AV	V	34.53	6.84	26.53	29.49	54.00	24.51	
9848	28.63	PK	V	36.54	8.49	26.30	47.36	74.00	26.64	
9848	15.42	AV	V	36.54	8.49	26.30	34.15	54.00	19.85	
2692	32.48	PK	V	26.40	6.05	26.81	38.12	74.00	35.88	
2692	21.67	AV	V	26.40	6.05	26.81	27.31	54.00	26.69	
98	46.7	QP	V	14.86	0.76	28.02	34.30	43.50	9.20	

^{*} Within Measurement Uncertainty.

Report No.: RSC141011001 Page 27 of 104

F	Re	ceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected	FCC 1	15.247
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
		802.	11n HT2	0 mode, L	ow Chan	nel: 2412 MF	łz		
2412	69.84	PK	Н	23.14	5.75	0.00	98.73	N/A	N/A
2412	56.11	AV	Н	23.14	5.75	0.00	85.00	N/A	N/A
2412	73.23	PK	V	23.14	5.75	0.00	102.12	N/A	N/A
2412	58.56	AV	V	23.14	5.75	0.00	87.45	N/A	N/A
2399.5	36.48	PK	V	23.08	5.63	0.00	65.19	74.00	8.81
2399.5	21.31	AV	V	23.08	5.63	0.00	50.02	54.00	*3.98
4824	38.54	PK	V	30.76	7.86	26.81	50.35	74.00	23.65
4824	30.12	AV	V	30.76	7.86	26.81	41.93	54.00	12.07
7236	29.88	PK	V	34.35	10.52	26.62	48.13	74.00	25.87
7236	17.35	AV	V	34.35	10.52	26.62	35.60	54.00	18.40
9648	28.41	PK	V	37.08	12.95	26.35	52.09	74.00	21.91
9648	14.22	AV	V	37.08	12.95	26.35	37.90	54.00	16.10
2692	33.48	PK	V	26.40	6.05	26.81	39.12	74.00	34.88
2692	21.55	AV	V	26.40	6.05	26.81	27.19	54.00	26.81
98	48.5	QP	V	14.86	0.76	28.02	36.10	43.50	7.40
- 50	+0.0	·				nnel: 2437 M		+0.00	7.40
2437	67.96	PK	Н	25.74	5.79	0.00	99.49	N/A	N/A
2437	55.97	AV	H	25.74	5.79	0.00	87.50	N/A	N/A
2437	70.46	PK	V	25.74	5.79	0.00	101.99	N/A N/A	N/A
2437			V						
4874	58.25 36.71	AV PK	V	25.74	5.79 7.90	0.00	89.78	N/A	N/A
4874	29.88	AV	V	30.77	7.90	26.78 26.78	48.60	74.00	25.40
7311	31.02	PK	V	30.77 34.35	10.57		41.77 49.38	54.00 74.00	12.23 24.62
7311	18.26	AV	V	34.35	10.57	26.56 26.56	36.62	74.00 54.00	17.38
		PK	V						
9748 9748	28.74 17.76	AV	V	36.30 36.30	12.98 12.98	26.32 26.32	51.70 40.72	74.00 54.00	22.30 13.28
2692	33.34	PK	V						35.02
2692		AV	V	26.40	6.05	26.81	38.98	74.00	
3526	17.68 36.25	PK	V	26.40	6.05	26.81 26.81	23.32	54.00	30.68 29.65
				28.86	6.05		44.35	74.00	
3526	22.58	AV QP	V	28.86	6.05 0.76	26.81	30.68	54.00	23.32
98	47.8			14.86		28.02 nel: 2462 MF	35.40	43.50	8.10
0400	00.05							N1/A	N1/A
2462	68.35	PK	Н	25.80		0.00	98.08	N/A	N/A
2462	56.44	AV	H	25.80	3.93	0.00	86.17	N/A	N/A
2462	71.32	PK	V	25.80	3.93	0.00	101.05	N/A	N/A
2462	59.17	AV	V	25.80	3.93	0.00	88.90	N/A	N/A
2483.4	35.54	PK	V	25.86	3.80	0.00	65.20	74.00	8.80
2483.4	16.85	AV	V	25.86	3.80	0.00	46.51	54.00	7.49
4924	36.52	PK	V	30.90	4.70	26.71	45.41	74.00	28.59
4924 7386	28.69 30.12	AV PK	V	30.90 34.53	4.70 6.84	26.71 26.53	37.58	54.00 74.00	16.42 29.04
7386		AV	V			26.53	44.96 32.86		
9848	18.02		V	34.53	6.84		32.86	54.00 74.00	21.14
	28.89	PK	V	36.54 36.54	8.49	26.30	47.62		26.38
9848	15.45	AV	V		8.49	26.30	34.18	54.00 74.00	19.82
3526 3526	34.89	PK AV	V	28.86 28.86	6.05 6.05	26.81 26.81	42.99	74.00 54.00	31.01 24.34
98	21.56 48.2	QP	V		0.76		29.66 35.80		7.70
98 * M///////	40.2	QP	V	14.86	0.76	28.02	JJ.8U	43.50	1.10

^{*} Within Measurement Uncertainty.

Report No.: RSC141011001 Page 28 of 104

Frequency	Re	ceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected	FCC 1	15.247		
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	802.11n HT40 mode, Low Channel: 2422 MHz										
2422	67.56	PK	Н	23.14	5.75	0.00	96.45	N/A	N/A		
2422	56.14	AV	Н	23.14	5.75	0.00	85.03	N/A	N/A		
2422	71.41	PK	V	23.14	5.75	0.00	100.30	N/A	N/A		
2422	58.21	AV	V	23.14	5.75	0.00	87.10	N/A	N/A		
2399.5	41.38	PK	V	23.08	5.63	0.00	70.09	74.00	*3.91		
2399.5	18.34	AV	V	23.08	5.63	0.00	47.05	54.00	6.95		
4844	36.57	PK	V	30.76	7.86	26.81	48.38	74.00	25.62		
4844	29.12	AV	V	30.76	7.86	26.81	40.93	54.00	13.07		
7266	29.88	PK	V	34.35	10.52	26.62	48.13	74.00	25.87		
7266	16.58	AV	V	34.35	10.52	26.62	34.83	54.00	19.17		
9688	27.86	PK	V	37.08	12.95	26.35	51.54	74.00	22.46		
9688	14.65	AV	V	37.08	12.95	26.35	38.33	54.00	15.67		
2692	32.16	PK	V	26.40	6.05	26.81	37.80	74.00	36.20		
2692	21.23	AV	V	26.40	6.05	26.81	26.87	54.00	27.13		
98	48.3	QP	V	14.86	0.76	28.02	35.90	43.50	7.60		
	10.0	·				nnel: 2437 M	•	10.00	7.00		
2437	66.59	PK	Н	25.74	5.79	0.00	98.12	N/A	N/A		
2437	56.43	AV	H	25.74	5.79	0.00	87.96	N/A	N/A		
2437	70.52	PK	V	25.74	5.79	0.00	102.05	N/A	N/A		
2437	58.18	AV	V	25.74	5.79	0.00	89.71	N/A	N/A		
4874	35.48	PK	V	30.77	7.90	26.78	47.37	74.00	26.63		
4874	25.16	AV	V	30.77	7.90	26.78	37.05	54.00	16.95		
7311	31.85	PK	V	34.35	10.57	26.56	50.21	74.00	23.79		
7311	19.92	AV	V	34.35	10.57	26.56	38.28	54.00	15.72		
9748	30.62	PK	V	36.30	12.98	26.32	53.58	74.00	20.42		
9748	18.05	AV	V	36.30	12.98	26.32	41.01	54.00	12.99		
2692	34.68	PK	V	26.40	6.05	26.81	40.32	74.00	33.68		
2692	18.67	AV	V	26.40	6.05	26.81	24.31	54.00	29.69		
3526	35.24	PK	V	28.86	6.05	26.81	43.34	74.00	30.66		
3526	21.84	AV	V		6.05		29.94				
98	47.6	QP	V	28.86 14.86	0.76	26.81 28.02	35.20	54.00 43.50	24.06 8.30		
90	47.0					nel: 2452 Mł		43.30	0.30		
2452	65.00	PK	Н		4.00		95.75	N/A	N/A		
2452	65.98 53.24	AV	H	25.78	4.00	0.00	83.01	N/A N/A	N/A N/A		
2452	70.49	PK	V	25.78	4.00	0.00	100.26	N/A N/A	N/A		
2452	59.33	AV	V	25.78	4.00	0.00	89.10	N/A N/A	N/A N/A		
2483.4	29.14	PK	V	25.76	3.80	0.00	58.80	74.00	15.20		
2483.4	14.96	AV	V	25.86	3.80	0.00	44.62	54.00	9.38		
4904	35.15	PK	V	30.85	4.72	26.71	44.02	74.00	29.99		
4904	26.94	AV	V	30.85	4.72	26.71	35.80	54.00	18.20		
7356	30.28	PK	V	34.45	6.79	26.53	44.99	74.00	29.01		
7356	16.52	AV	V	34.45	6.79	26.53	31.23	54.00	22.77		
9808	28.99	PK	V	36.44	8.53	26.30	47.66	74.00	26.34		
9808	14.32	AV	V	36.44	8.53	26.30	32.99	54.00	21.01		
2692	32.15	PK	V	26.40	6.05	26.81	37.79	74.00	36.21		
2692	16.89	AV	V	26.40	6.05	26.81	22.53	54.00	31.47		
98	46.9	QP	V	14.86	0.76	28.02	34.50	43.50	9.00		

^{*} Within Measurement Uncertainty.

Report No.: RSC141011001 Page 29 of 104

For co-location evaluation data (2.4 GHz & 5GHz work simultaneously)

Eronionov.	Re	ceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected	FCC 1	15.247
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4824	47.62	PK	V	31.40	4.50	26.82	56.70	74.00	17.30
4824	35.14	AV	V	31.40	4.50	26.82	44.22	54.00	9.78
7236	47.52	PK	V	35.30	5.15	27.00	60.97	74.00	13.03
7236	34.33	AV	V	35.30	5.15	27.00	47.78	54.00	6.22
9648	47.48	PK	V	37.00	6.25	25.65	65.08	74.00	8.92
9648	31.23	AV	V	37.00	6.25	25.65	48.83	54.00	*5.17
98	45.74	PK	V	13.37	0.26	26.20	33.17	43.50	10.33
2399.95	58.28	AV	V	23.20	2.56	26.85	57.19	74.00	16.81
2399.95	44.86	PK	V	23.20	2.56	26.85	43.77	54.00	10.23
2483.55	47.36	AV	V	23.20	2.57	26.85	46.28	74.00	27.72
2483.55	33.59	QP	V	23.20	2.57	26.85	32.51	54.00	21.49
10360	40.23	PK	V	38.00	6.34	23.80	60.77	68.20	7.43
10360	28.15	AV	V	38.00	6.34	23.80	48.69	54.00	*5.31
15540	35.18	PK	٧	43.00	6.45	22.40	62.23	68.20	5.97
15540	21.54	AV	٧	43.00	6.45	22.40	48.59	54.00	*5.41
98	44.63	QP	V	13.37	0.26	26.20	32.06	43.50	11.44
5149.95	46.16	PK	٧	32.50	4.10	26.55	56.21	78.20	21.99
5149.95	32.21	AV	V	32.50	4.10	26.55	42.26	54.00	11.74
5350.51	45.89	PK	٧	32.50	4.20	26.55	56.04	78.20	22.16
5350.51	33.16	AV	V	32.50	4.20	26.55	43.31	54.00	10.69

^{*} Within Measurement Uncertainty.

Report No.: RSC141011001 Page 30 of 104

FCC §15.247(a) (2) - 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2014-10-17	2015-10-16

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RSC141011001 Page 31 of 104

Test Data

Environmental Conditions

Temperature:	17 °C
Relative Humidity:	60 %
ATM Pressure:	97.1 kPa

The testing was performed by Kevin Tao on 2015-01-05.

Test Mode: Transmitting

Mode	Channel	Frequency	6 dE	6 dB Bandwidth (MHz)				
Wode	Onamici	(MHz)	Antenna 0	Antenna 1	Antenna 2	(kHz)		
2.4G band	Low	2412	6.19	6.19	6.19	> 500		
802.11b	Middle	2437	6.19	6.25	6.19	> 500		
002.115	High	2462	6.19	6.25	6.19	> 500		
0.40 h a a d	Low	2412	16.65	16.59	16.59	> 500		
2.4G band 802.11g	Middle	2437	16.65	16.59	16.59	> 500		
002.119	High	2462	16.65	16.59	16.59	> 500		
2.4G band	Low	2412	17.79	17.79	17.79	> 500		
802.11n	Middle	2437	17.79	17.79	17.79	> 500		
HT20	High	2462	17.79	17.79	17.79	> 500		
2.4G band	Low	2422	36.67	36.55	36.55	> 500		
802.11n	Middle	2437	36.67	36.67	36.67	> 500		
HT40	High	2452	36.67	36.67	36.67	> 500		

Please refer to the following plots:

Report No.: RSC141011001 Page 32 of 104

802.11b Middle Channel for Antenna 0

Report No.: RSC141011001 Page 33 of 104

802.11b High Channel for Antenna 0

802.11g Low Channel for Antenna 0

Report No.: RSC141011001 Page 34 of 104

802.11g High Channel for Antenna 0

Report No.: RSC141011001 Page 35 of 104

802.11n HT20 Middle Channel for Antenna 0

Report No.: RSC141011001 Page 36 of 104

802.11n HT20 High Channel for Antenna 0

802.11n HT40 Low Channel for Antenna 0

Report No.: RSC141011001 Page 37 of 104

802.11n HT40 Middle Channel for Antenna 0

802.11n HT40 High Channel for Antenna 0

Report No.: RSC141011001 Page 38 of 104

802.11b Low Channel for Antenna 1

802.11b Middle Channel for Antenna 1

Report No.: RSC141011001 Page 39 of 104

802.11b High Channel for Antenna 1

802.11g Low Channel for Antenna 1

Report No.: RSC141011001 Page 40 of 104

802.11g Middle Channel for Antenna 1

802.11g High Channel for Antenna 1

Report No.: RSC141011001 Page 41 of 104

802.11n HT20 Low Channel for Antenna 1

802.11n HT20 Middle Channel for Antenna 1

Report No.: RSC141011001 Page 42 of 104

802.11n HT20 High Channel for Antenna 1

802.11n HT40 Low Channel for Antenna 1

Report No.: RSC141011001 Page 43 of 104

802.11n HT40 High Channel for Antenna 1

Report No.: RSC141011001 Page 44 of 104

802.11b Middle Channel for Antenna 2

Report No.: RSC141011001 Page 45 of 104

802.11b High Channel for Antenna 2

802.11g Low Channel for Antenna 2

Report No.: RSC141011001 Page 46 of 104

802.11g Middle Channel for Antenna 2

802.11g High Channel for Antenna 2

Report No.: RSC141011001 Page 47 of 104

802.11n HT20 Low Channel for Antenna 2

802.11n HT20 Middle Channel for Antenna 2

Report No.: RSC141011001 Page 48 of 104

802.11n HT20 High Channel for Antenna 2

802.11n HT40 Low Channel for Antenna 2

Report No.: RSC141011001 Page 49 of 104

802.11n HT40 Middle Channel for Antenna 2

802.11n HT40 High Channel for Antenna 2

Report No.: RSC141011001 Page 50 of 104

FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a spectrum analyzer.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2014-10-17	2015-10-16

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RSC141011001 Page 51 of 104

Test Data

Environmental Conditions

Temperature:	16 °C
Relative Humidity:	65 %
ATM Pressure:	97.1 kPa

The testing was performed by Kevin Tao on 2015-01-05.

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	Conducted Output Power (dBm)				Limit (dBm)	Result
			Antenna 0	Antenna 1	Antenna 1	Total		
2.4G band 802.11b	Low	2412	20.32	19.92	19.76	1	30	PASS
	Middle	2437	20.39	20.37	19.75	1	30	PASS
002.115	High	2462	20.74	20.69	20.37	1	30	PASS
2.4C band	Low	2412	20.27	19.91	20.02	1	30	PASS
2.4G band 802.11 g	Middle	2437	20.61	20.19	19.61	1	30	PASS
002.119	High	2462	20.50	20.27	19.79	1	30	PASS
2.4G band	Low	2412	15.31	14.83	14.74	19.74	30	PASS
802.11n	Middle	2437	15.40	15.04	14.67	19.82	30	PASS
HT20	High	2462	15.47	15.09	14.76	19.89	30	PASS
2.4G band 802.11n HT40	Low	2422	15.30	15.06	15.49	20.06	30	PASS
	Middle	2437	15.53	15.13	15.20	20.06	30	PASS
	High	2452	15.16	14.74	15.48	19.91	30	PASS

Note: Duty cycle is more than 98%.

Please refer to the following plots

Report No.: RSC141011001 Page 52 of 104

802.11b RF Output Power, Low Channel for Antenna 0

802.11b RF Output Power, Middle Channel for Antenna 0

Report No.: RSC141011001 Page 53 of 104

802.11b RF Output Power, High Channel for Antenna 0

802.11g RF Output Power, Low Channel for Antenna 0

Report No.: RSC141011001 Page 54 of 104

802.11g RF Output Power, Middle Channel for Antenna 0

802.11g RF Output Power, High Channel for Antenna 0

Report No.: RSC141011001 Page 55 of 104

802.11n HT20 RF Output Power, Low Channel for Antenna 0

802.11n HT20 RF Output Power, Middle Channel for Antenna 0

Report No.: RSC141011001 Page 56 of 104

802.11n HT20 RF Output Power, High Channel for Antenna 0

802.11n HT40 RF Output Power, Low Channel for Antenna 0

Report No.: RSC141011001 Page 57 of 104

802.11n HT40 RF Output Power, Middle Channel for Antenna 0

802.11n HT40 RF Output Power, High Channel for Antenna 0

Report No.: RSC141011001 Page 58 of 104

802.11b RF Output Power, Low Channel for Antenna 1

802.11b RF Output Power, Middle Channel for Antenna 1

Report No.: RSC141011001 Page 59 of 104

802.11b RF Output Power, High Channel for Antenna 1

802.11g RF Output Power, Low Channel for Antenna 1

Report No.: RSC141011001 Page 60 of 104

802.11g RF Output Power, Middle Channel for Antenna 1

802.11g RF Output Power, High Channel for Antenna 1

Report No.: RSC141011001 Page 61 of 104

802.11n HT20 RF Output Power, Low Channel for Antenna 1

802.11n HT20 RF Output Power, Middle Channel for Antenna 1

Report No.: RSC141011001 Page 62 of 104

802.11n HT20 RF Output Power, High Channel for Antenna 1

802.11n HT40 RF Output Power, Low Channel for Antenna 1

Report No.: RSC141011001 Page 63 of 104

802.11n HT40 RF Output Power, Middle Channel for Antenna 1

802.11n HT40 RF Output Power, High Channel for Antenna 1

Report No.: RSC141011001 Page 64 of 104

802.11b RF Output Power, Low Channel for Antenna 2

802.11b RF Output Power, Middle Channel for Antenna 2

Report No.: RSC141011001 Page 65 of 104

802.11b RF Output Power, High Channel for Antenna 2

802.11g RF Output Power, Low Channel for Antenna 2

Report No.: RSC141011001 Page 66 of 104

802.11g RF Output Power, Middle Channel for Antenna 2

802.11g RF Output Power, High Channel for Antenna 2

Report No.: RSC141011001 Page 67 of 104

802.11n HT20 RF Output Power, Low Channel for Antenna 2

802.11n HT20 RF Output Power, Middle Channel for Antenna 2

Report No.: RSC141011001 Page 68 of 104

802.11n HT20 RF Output Power, High Channel for Antenna 2

802.11n HT40 RF Output Power, Low Channel for Antenna 2

Report No.: RSC141011001 Page 69 of 104

802.11n HT40 RF Output Power, Middle Channel for Antenna 2

802.11n HT40 RF Output Power, High Channel for Antenna 2

Report No.: RSC141011001 Page 70 of 104

FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2014-10-17	2015-10-16

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RSC141011001 Page 71 of 104

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Data

Temperature:	16 °C		
Relative Humidity:	65 %		
ATM Pressure:	97.1 kPa		

The testing was performed by Kevin Tao on 2015-01-05.

Test Mode: Transmitting

Test Result: Compliance, Please refer to following table and plots.

Report No.: RSC141011001 Page 72 of 104

802.11b: Band Edge, Left Side for Antenna 0

802.11b: Band Edge, Right Side for Antenna 0

Report No.: RSC141011001 Page 73 of 104

802.11g: Band Edge, Right Side for Antenna 0

Report No.: RSC141011001 Page 74 of 104

802.11n HT20 Band Edge, Right Side for Antenna 0

Report No.: RSC141011001 Page 75 of 104

802.11n HT40 Band Edge, Right Side for Antenna 0

Report No.: RSC141011001 Page 76 of 104

802.11b: Band Edge, Left Side for Antenna 1

802.11b: Band Edge, Right Side for Antenna 1

Report No.: RSC141011001 Page 77 of 104

802.11g: Band Edge, Left Side for Antenna 1

802.11g: Band Edge, Right Side for Antenna 1

Report No.: RSC141011001 Page 78 of 104

802.11n HT20 Band Edge, Right Side for Antenna 1

Report No.: RSC141011001 Page 79 of 104

802.11n HT40 Band Edge, Right Side for Antenna 1

Report No.: RSC141011001 Page 80 of 104

802.11b: Band Edge, Left Side for Antenna 2

802.11b: Band Edge, Right Side for Antenna 2

Report No.: RSC141011001 Page 81 of 104

802.11g: Band Edge, Left Side for Antenna 2

802.11g: Band Edge, Right Side for Antenna 2

Report No.: RSC141011001 Page 82 of 104

802.11n HT20 Band Edge, Left Side for Antenna 2

802.11n HT20 Band Edge, Right Side for Antenna 2

Report No.: RSC141011001 Page 83 of 104

802.11n HT40 Band Edge, Left Side for Antenna 2

802.11n HT40 Band Edge, Right Side for Antenna 2

Report No.: RSC141011001 Page 84 of 104

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. According to KDB 558074 D01 DTS Meas Guidance v03v02, set the RBW = 3 kHz, VBW = 10 kHz, Set the span to 1.5 times the DTS channel bandwidth.
- 4. Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2014-10-17	2015-10-16	

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RSC141011001 Page 85 of 104

Test Data

Environmental Conditions

Temperature:	16 °C		
Relative Humidity:	65 %		
ATM Pressure:	97.1 kPa		

The testing was performed by Kevin Tao on 2015-01-05.

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	Power Spectral Density (dBm)				Limit	Result
			Antenna 0	Antenna 1	Antenna 2	Total	(dBm)	Rosuit
2.4G band 802.11b	Low	2412	-4.38	-3.71	-4.91	/	8	PASS
	Middle	2437	-4.76	-3.16	-4.61	/	8	PASS
	High	2462	-4.18	-2.74	-3.58	1	8	PASS
2.4G band 802.11 g	Low	2412	-12.81	-13.18	-14.36	1	8	PASS
	Middle	2437	-13.23	-13.71	-13.95	/	8	PASS
	High	2462	-13.83	-12.71	-14.01	/	8	PASS
2.4G band 802.11n HT20	Low	2412	-17.86	-19.95	-19.23	-14.15	8	PASS
	Middle	2437	-17.69	-17.53	-19.71	-13.43	8	PASS
	High	2462	-18.75	-18.48	-19.50	-14.12	8	PASS
2.4G band 802.11n HT40	Low	2422	-22.07	-21.60	-20.74	-16.66	8	PASS
	Middle	2437	-21.13	-21.52	-20.56	-16.28	8	PASS
	High	2452	-21.74	-22.12	-21.11	-16.87	8	PASS

Note: Duty cycle is more than 98%.

Please refer to the following plots.

Report No.: RSC141011001 Page 86 of 104

Power Spectral Density, 802.11b Low Channel for Antenna 0

Power Spectral Density, 802.11b Middle Channel for Antenna 0

Report No.: RSC141011001 Page 87 of 104

Power Spectral Density, 802.11b High Channel for Antenna 0

Power Spectral Density, 802.11g Low Channel for Antenna 0

Report No.: RSC141011001 Page 88 of 104

Power Spectral Density, 802.11g Middle Channel for Antenna 0

Power Spectral Density, 802.11g High Channel for Antenna 0

Report No.: RSC141011001 Page 89 of 104

Power Spectral Density, 802.11n HT20 Low Channel for Antenna 0

Power Spectral Density, 802.11n HT20 Middle Channel for Antenna 0

Report No.: RSC141011001 Page 90 of 104

Power Spectral Density, 802.11n HT20 High Channel for Antenna 0

Power Spectral Density, 802.11n HT40 Low Channel for Antenna 0

Report No.: RSC141011001 Page 91 of 104

Power Spectral Density, 802.11n HT40 Middle Channel for Antenna 0

Power Spectral Density, 802.11n HT40 High Channel for Antenna 0

Report No.: RSC141011001 Page 92 of 104

Power Spectral Density, 802.11b Low Channel for Antenna 1

Power Spectral Density, 802.11b Middle Channel for Antenna 1

Report No.: RSC141011001 Page 93 of 104

Power Spectral Density, 802.11b High Channel for Antenna 1

Power Spectral Density, 802.11g Low Channel for Antenna 1

Report No.: RSC141011001 Page 94 of 104

Power Spectral Density, 802.11g Middle Channel for Antenna 1

Power Spectral Density, 802.11g High Channel for Antenna 1

Report No.: RSC141011001 Page 95 of 104

Power Spectral Density, 802.11n HT20 Low Channel for Antenna 1

Power Spectral Density, 802.11n HT20 Middle Channel for Antenna 1

Report No.: RSC141011001 Page 96 of 104

Power Spectral Density, 802.11n HT20 High Channel for Antenna 1

Power Spectral Density, 802.11n HT40 Low Channel for Antenna 1

Report No.: RSC141011001 Page 97 of 104

Power Spectral Density, 802.11n HT40 Middle Channel for Antenna 1

Power Spectral Density, 802.11n HT40 High Channel for Antenna 1

Report No.: RSC141011001 Page 98 of 104

Power Spectral Density, 802.11b Low Channel for Antenna 2

Power Spectral Density, 802.11b Middle Channel for Antenna 2

Report No.: RSC141011001 Page 99 of 104

Power Spectral Density, 802.11b High Channel for Antenna 2

Power Spectral Density, 802.11g Low Channel for Antenna 2

Report No.: RSC141011001 Page 100 of 104

Power Spectral Density, 802.11g Middle Channel for Antenna 2

Power Spectral Density, 802.11g High Channel for Antenna 2

Report No.: RSC141011001 Page 101 of 104

Power Spectral Density, 802.11n HT20 Low Channel for Antenna 2

Power Spectral Density, 802.11n HT20 Middle Channel for Antenna 2

Report No.: RSC141011001 Page 102 of 104

Power Spectral Density, 802.11n HT20 High Channel for Antenna 2

Power Spectral Density, 802.11n HT40 Low Channel for Antenna 2

Report No.: RSC141011001 Page 103 of 104

Power Spectral Density, 802.11n HT40 Middle Channel for Antenna 2

Power Spectral Density, 802.11n HT40 High Channel for Antenna 2

***** END OF REPORT *****

Report No.: RSC141011001 Page 104 of 104