Basic Calculus

Derivative and its Applications

Quang-Vinh Dinh PhD in Computer Science

Outline

- > Derivative Rules
- > Activation Functions
- > Application to Edge Detection
- > Application to Optimization

Model (Network) Construction

Which activation function?

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

$$softplus(x) = log(1 + e^x)$$

$$ReLU(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$

$$ELU(x) = \begin{cases} \alpha(e^x - 1) & \text{if } x \le 0\\ x & \text{if } x > 0 \end{cases}$$

2015

$$PReLU(x) = \begin{cases} \alpha x & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$

2017

sigmoid(x) =
$$\frac{1}{1 + e^{-x}}$$
 ReLU(x) = $\begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$ SELU(x) = $\begin{cases} \lambda x & \text{if } x > 0 \\ \lambda \alpha (e^x - 1) & \text{if } x \le 0 \end{cases}$ tanh(x) = $\frac{2}{1 + e^{-2x}} - 1$ ELU(x) = $\begin{cases} \alpha (e^x - 1) & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$ $\alpha \approx 1.0507$

2017

$$swish(x) = x * \frac{1}{1 + e^{-x}}$$

Sigmoid function

 $\underline{data}\underline{a} = \underline{sigmoid}(\underline{data})$

sigmoid'(x) = sigmoid(x) (1 - sigmoid(x))

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$\underline{data}\underline{a} = \underline{sigmoid}(\underline{data})$$

sigmoid'(x) =
$$\left(\frac{1}{1+e^{-x}}\right)' = \frac{-1}{(1+e^{-x})^2}(-e^{-x})$$

= $\frac{e^{-x}}{(1+e^{-x})^2} = \frac{e^{-x}+1-1}{(1+e^{-x})^2}$
= $\frac{1}{1+e^{-x}} - \frac{1}{(1+e^{-x})^2}$
= $\frac{1}{1+e^{-x}} \left(1 - \frac{1}{1+e^{-x}}\right)$
= sigmoid(x) $(1 - \text{sigmoid}(x))$

***** Tanh function

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$= \frac{2}{1 + e^{-2x}} - 1$$

$$= 1 - \frac{2}{e^{2x} + 1}$$

$$data_a = tanh(data)$$

$$tanh'(x) = 1 - tanh^2(x)$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 1 - \frac{2}{e^{2x} + 1} = \frac{2}{e^{-2x} + 1} - 1$$

$$\tanh'(x) = \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)' = \frac{(e^x + e^{-x})(e^x + e^{-x}) - (e^x - e^{-x})(e^x - e^{-x})}{(e^x + e^{-x})^2}$$

$$= \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{(e^x + e^{-x})^2}$$

$$= 1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 = 1 - \tanh^2(x)$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 1 - \frac{2}{e^{2x} + 1} = \frac{2}{e^{-2x} + 1} - 1$$

$$tanh'(x) = \left(\frac{2}{e^{-2x} + 1} - 1\right)' = \frac{4e^{-2x}}{(e^{-2x} + 1)^2} = 4\left(\frac{e^{-2x} + 1 - 1}{(e^{-2x} + 1)^2}\right)$$

$$= 4\left(\frac{1}{e^{-2x} + 1} - \frac{1}{(e^{-2x} + 1)^2}\right) = -\left(\frac{4}{(e^{-2x} + 1)^2} - \frac{4}{e^{-2x} + 1}\right)$$

$$= -\left(\frac{4}{(e^{-2x} + 1)^2} - \frac{4}{e^{-2x} + 1} + 1 - 1\right) = 1 - \left(\frac{2}{e^{-2x} + 1} - 1\right)^2 = 1 - tanh^2(x)$$

Swish

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$swish(x) = \frac{x}{1 + e^{-x}} = x \sigma(x)$$

$$swish'(x) = (x \sigma(x))' = (x)' \sigma(x) + x(\sigma(x))'$$

$$= \sigma(x) + x \sigma(x) (1 - \sigma(x))$$

$$= \sigma(x) + x \sigma(x) - x \sigma(x)^{2}$$

$$= x \sigma(x) + \sigma(x) (1 - x \sigma(x))$$

$$= swish(x) + \sigma(x) (1 - swish(x))$$

Outline

- > Derivative Rules
- > Activation Functions
- > Application to Edge Detection
- > Application to Optimization

Áp dụng cho hàm rời rạc

$$\frac{\text{Dạo hàm}}{\text{Thay đổi theo } x} = \frac{\Delta y}{\Delta x}$$

$$\frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f\left(x + \frac{\Delta x}{2}\right) - f(x - \frac{\Delta x}{2})}{\Delta x}$$

$$f(x) = \boxed{32 \quad 30 \quad 45 \quad 36 \quad 160 \quad 156 \quad 155 \quad 170}$$

$$\Delta x = 2$$

$$\frac{d}{dx} f(x) = \frac{f(x+1) - f(x-1)}{2} = \frac{156 - 36}{2} = 60$$

-1 0 1

x-derivative filter

*just ignore $\frac{1}{2}$

***** Grayscale images

f(x)

Consider each row a 1D function

Compute derivative for each position with $\Delta x = 1$

***** Implementation

Discussion

Input Image

Consider each row a 1D function

Compute derivative for each position with $\Delta x = 1$

How to visualize derivative values?

```
1 def derivative_x(data, height, width):
        result = [[0]*width for _ in range(height)]
        # get rows and compute derivative
        for i in range(height):
 6
            # for each row
            for j in range(width-1):
 8
                d_value = data[i][j+1] - data[i][j]
                result[i][j] = d value
10
11
12
        return result
```

Using magnitude

Consider each row a 1D function

Compute derivative for each position with $\Delta x = 1$

```
1 def derivative x(data, height, width):
        result = [[0]*width for _ in range(height)]
        # get rows and compute derivative
        for i in range(height):
 6
            # for each row
            for j in range(width-1):
 8
                d_value = data[i][j+1] - data[i][j]
 9
10
                # d_value can be positive or negative
11
                # process d value to adapt to an image
12
                result[i][j] = abs(d_value)
13
14
15
        return result
```

Using magnitude: Result

Derivative

Shift values

Consider each row a 1D function

Compute derivative for each position with $\Delta x = 1$

```
def derivative x(data, height, width):
        result = [[0]*width for _ in range(height)]
 3
        # get rows and compute derivative
 4
        for i in range(height):
 5
 6
            # for each row
            for j in range(width-1):
 8
                d_value = data[i][j+1] - data[i][j]
 9
10
                # d value can be positive or negative
11
                # process d value to adapt to an image
12
                d value = d value + 127.5
13
                d value = max(d value, 0)
14
15
                d_value = min(d_value, 255)
                result[i][j] = d value
16
17
18
        return result
```

Shift values: Result

Derivative

Central derivative

Input Image

Consider each row a 1D function

Compute derivative for each position with $\Delta x = 2$

```
1 def derivative_x(data, height, width):
        result = [[0]*width for _ in range(height)]
        # get rows and compute derivative
        for i in range(height):
 6
            # for each row
            for j in range(1, width-1):
                d_value = data[i][j+1] - data[i][j-1]
10
                # d_value can be positive or negative
11
12
                # process d_value to adapt to an image
                d_value = d_value + 127.5
13
                d value = max(d value, ∅)
14
                d_value = min(d_value, 255)
15
                result[i][j] = d value
16
17
18
        return result
```

Central derivative: Result

Grayscale images

(Height, Width)

Pixel p = scalar

 $0 \le p \le 255$

Tính đạo hàm trung bình theo hướng x

Sobel for x direction

Tính đạo hàm trung bình theo hướng y

y-derivative

Sobel for y direction

96

***** Grayscale images

$$a = -230 + 147 - 2 \times 237 + 2 \times 188 - 210 + 180 = -211$$

f(a) = |a| = 211

230	194	147	108	90	98	84	96	91	101	
237	206	188	195	207	213	163	123	116	128	
210	183	180	205	224	234	188	122	134	147	
198	189	201	227	229	232	200	125	127	135	
249	241	237	244	232	226	202	116	125	126	
251	254	241	239	230	217	196	102	103	99	
243	255	240	231	227	214	203	116	95	91	
204	231	208	200	207	201	200	121	95	95	
144	140	120	115	125	127	143	118	92	91	
121	121	108	109	122	121	134	106	86	97	

-1	0	1
-2	0	2
-1	0	1

Sobel for x direction

	f(a)				

Input Image

Úng dụng đạo hàm cho edge detection

Edge detection

Sobel-X

$$G_x = egin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \end{bmatrix} * I$$

$$G_y = egin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ +1 & +2 & +1 \end{bmatrix} * I$$

Úng dụng đạo hàm cho edge detection

Edge detection

$$G_x = egin{bmatrix} -1 & 0 & +1 \ -2 & 0 & +2 \ -1 & 0 & +1 \end{bmatrix} * I$$

$$G_y = egin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ +1 & +2 & +1 \end{bmatrix} * I$$

Code

Sobel-X

Sobel-Y

```
import numpy as np
   import cv2
   # read image and convert to grayscale
   img1 = cv2.imread('vn.jpeg', 0)
    # compute sobel-x
   sobelx = cv2.Sobel(img1, cv2.CV 64F,1,0)
   # compute sobel-y
   sobely = cv2.Sobel(img1, cv2.CV 64F, 0, 1)
12
   # save results
   cv2.imwrite('vn edge x.jpg', sobelx)
  cv2.imwrite('vn edge y.jpg', sobely)
```

Outline

- > Derivative Rules
- > Activation Functions
- > Application to Edge Detection
- > Application to Optimization

Đạo hàm cho hàm liên tục

$$\frac{\text{Dạo hàm}}{\text{Thay đổi theo } x} = \frac{\Delta y}{\Delta x}$$

$$\frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Δx cần tiến về 0 để đường tiếp tuyến tiến về hàm f(x) trong vùng lân cận tại x

Tìm giá trị min

Quan sát: x_{op} ở vị trí ngược hướng đạo hàm tại x_1 và x_2

Cách xử lý việc di chuyển ngược hướng đạo hàm cho $\mathbf{x_1}$ và $\mathbf{x_2}$ (để tìm $\mathbf{x_{op}}$) khác nhau hình thành các thuật toán tối ưu hóa khác nhau

Cách cập nhật giá trị x đơn giản

Derivative/Gradient

A cue to optimize a function

Dịch chuyển *x* về phía phải

Optimization

Simple Optimization

$$-100 \le x \le 100$$
$$x \in \mathbb{N}$$

Simple Optimization


```
1  # sphere function
2  def func(x):
3    return x**2
4
5  # đạo hàm trung tâm
6  def gradient(f, x, e=1.0e-4):
7    return (f(x + e/2) - f(x - e/2)) / e
```

```
import random
 3 # set x randomly
   x = random.randint(-100, 100)
   # params
   num iterations = 50
   step = 1
   # optimize
   for in range(num iterations):
       # compute the derivative at x
12
       dx = gradient(func, x)
13
14
15
       # get sign
       sign = 1
16
       if (dx < 0.0):
18
           sign = -1
       elif (dx == 0.0):
19
2.0
           sign = 0
22
       # update
       x = x - sign*step
```

Square function

$$-100 \le x \le 100$$
$$x \in \mathbb{N}$$

$$x_t = x_{t-1} - sign(f'(x_{t-1}))$$

$$x_0 = 70.0$$

$$f'(x_0) = 140.0$$

 $x_1 = x_0 - sign(140) = 69.0$

$$f'(x_1) = 138.0$$

 $x_2 = x_1 - sign(69.0) = 68.0$

$$f'(x_2) = 136.0$$

 $x_3 = x_2 - sign(68.0) = 67.0$

$$f'(x_3) = 134.0$$

 $x_4 = x_3 - sign(67.0) = 66.0$

Square function

Keep doing

$$x_t = x_{t-1} - sign(f'(x_{t-1}))$$

$$x_{63} = 7.0$$

$$f'(x_{63}) = 14.0$$

 $x_{64} = x_{63} - sign(14.0) = 6.0$

$$f'(x_{64}) = 12.0$$

 $x_{65} = x_{64} - sign(12.0) = 5.0$

$$f'(x_{65}) = 10.0$$

 $x_{66} = x_{65} - sign(10.0) = 4.0$

$$f'(x_{66}) = 8.0$$

 $x_{67} = x_{66} - sign(8.0) = 3.0$

Square function

Keep doing

$$x_t = x_{t-1} - sign(f'(x_{t-1}))$$

$$x_{67} = 3.0$$

$$f'(x_{67}) = 6.0$$

 $x_{68} = x_{67} - sign(6.0) = 2.0$

$$f'(x_{68}) = 4.0$$

 $x_{69} = x_{68} - sign(4.0) = 1.0$

$$f'(x_{69}) = 2.0$$

 $x_{70} = x_{69} - sign(2.0) = 0.0$

$$f'(x_{70}) = 0.0$$

 $x_{67} = x_{66} - sign(0.0) = 0.0$

Derivative

***** Optimization: 2D function

$$f(x,y) = x^2 + y^2$$
$$-100 \le x, y \le 100; x \in \mathbb{N}$$


```
\frac{\partial}{\partial x} f(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x/2, y) - f(x - \Delta x/2, y)}{\Delta x}\frac{\partial}{\partial y} f(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y/2) - f(x, y - \Delta y/2)}{\Delta y}
```

```
1 # sphere function
  def func(x, y):
       return x**2 + y**2
 1 | # đạo hàm trung tâm
 2 def gradient(f, x, y, e=1.0e-4):
       dx = (f(x+e/2, y) - f(x-e/2, y)) / e
       dy = (f(x, y+e/2) - f(x, y-e/2)) / e
       return dx, dy
 1 print(gradient(func, -1, 1))
 2 print(gradient(func, 0, 5))
 3 print(gradient(func, 5, -5))
(-1.9999999967268423, 1.9999999967268423)
(0.0, 9.99999993922529)
(9.99999974752427, -9.999999974752427)
```

Derivative

***** Optimization: 2D function

$$f(x,y) = x^2 + y^2$$
$$-100 \le x, y \le 100$$
$$x, y \in \mathbb{N}$$

$$x = x - sign\left(\frac{\partial f(x, y)}{\partial x}\right)$$

$$y = y - sign\left(\frac{\partial f(x, y)}{\partial y}\right)$$

$$x_0 = 3.0$$
 $y_0 = 4.0$

$$\frac{\partial f(x_0, y_0)}{\partial x} = 6.0 \qquad \frac{\partial f(x_0, y_0)}{\partial y} = 8.0$$
$$x_1 = 2.0 \qquad y_1 = 3.0$$

$$\frac{\partial f(x_1, y_1)}{\partial x} = 4.0 \qquad \frac{\partial f(x_1, y_1)}{\partial y} = 6.0$$
$$x_2 = 1.0 \qquad y_2 = 2.0$$

$$\frac{\partial f(x_2, y_2)}{\partial x} = 2.0 \qquad \frac{\partial f(x_2, y_2)}{\partial y} = 4.0$$
$$x_3 = 0.0 \qquad y_3 = 1.0$$

$$\frac{\partial f(x_3, y_3)}{\partial x} = 0.0 \qquad \frac{\partial f(x_3, y_3)}{\partial y} = 0.0$$
$$x_4 = 0.0 \qquad y_4 = 0.0$$

$f(x,y) = x^2 + y^2$

$-100 \le x, y \le 100$

$x \in \mathbb{N}$

```
1500 - loss/error

1000 - 750 - 500 - 250 - 0 - 10 20 30 40 50 iteration
```

```
1  # sphere function
2  def func(x, y):
3    return x**2 + y**2
4
5  # đạo hàm trung tâm
6  def gradient(f, x, y, e=1.0e-4):
7    dx = (f(x+e/2, y) - f(x-e/2, y)) / e
8    dy = (f(x, y+e/2) - f(x, y-e/2)) / e
9    return dx, dy
```

Derivative and Applications

```
import random
                                                   Initialize (x, y)
  # set (x,y) randomly
   x = random.randint(-100, 100)
   y = random.randint(-100, 100)
                                                      Compute
   # params
                                                 derivative at (x, y)
   num iterations = 80
   step = 1
10
   # optimize
                                                     Get sign of
   for in range(num iterations):
       \blacksquare# compute the derivative at (x,y)
13
                                                      (dx, dy)
       dx, dy = gradient(func, x, y)
14
15
       # get sign of dx
16
       sign x = np.sign(dx)
                                                    Move (x,y)
18
       sign y = np.sign(dy)
                                                 opposite to (dx,dy)
19
20
        # update
       x = x - sign x*step
       y = y - sign y*step
```

Stochastic gradient descent

$$x_t = x_{t-1} - sign(\frac{d}{dx}f(x))$$

Depending on an initial value

Stochastic gradient descent

$$x_t = x_{t-1} - \eta \frac{d}{dx} f(x)$$

Stochastic gradient descent

$$x_t = x_{t-1} - \eta \frac{d}{dx} f(x)$$

Challenges

Local minima

Global minima

Saddle points

https://vitalflux.com/local-global-maxima-minima-explained-examples/

Challenges

Saddle points

SGD + Momentum

$$v_t = \gamma v_{t-1} - \eta \frac{d}{dx} f(x)$$
$$x_t = x_{t-1} - v_t$$

SGD without momentum

SGD with momentum

Genevieve B. Orr

SGD + Momentum

SGD + Momentum

