CIND-221: Introducción a Procesos Estocásticos

Felipe Osorio

f.osoriosalgado@uandresbello.edu

Facultad de Ingeniería, UNAB

Definición 1 (Proceso estocástico):

Un proceso estocástico es una colección de variables aleatorias $\{X_t, t \in T\}$ definidas en un mismo espacio de probabilidades $(\Omega, \mathcal{F}, \mathsf{P})$ con T el conjunto de índices del proceso.

El conjunto de valores que adopta la variable X_t es llamado espacio de estados del proceso y es denotado por S, y cada elemento de S es un estado del proceso.

¹También llamado espacio paramétrico.

Observación:

Para cada $\omega \in \Omega$ fijo, tenemos que la transformación definida como:

$$X(\omega): T \to S$$

 $t \to X_t(\omega)$

es llamada trayectoria del proceso.²

A continuación se presenta ejemplos de trayectorias con un conjunto de datos reales y mediante datos simulados, a saber:

- Dólar observado vs. peso chileno desde Enero-2022 a Octubre-2025.
- ► Trayectorias simuladas desde una caminata aleatoria.

²o realización del proceso estocástico.

Trayectoria del dólar observado vs. peso chileno desde Enero-2022 a Octubre-2025³

 $^{^{3}}$ Datos extraídos desde página del Banco Central.

Trayectorias simuladas

Procesos estocásticos pueden clasificarse en 4 tipos, dependiendo de la naturaleza del espacio de estados y espacio paramétrico.

- Proceso estocástico de tiempo discreto y espacio de estado discreto
 - El número de individuos en una población al final del año t, que se puede modelar como $\{X_t:t\in T\}$, donde $T=\{0,1,2,\ldots\}$ y $S=\{0,1,2,\ldots\}$.
- Proceso estocástico de tiempo continuo y espacio de estado discreto
 - El número de llamadas entrantes X_t en un intervalo [0,t]. Es decir, para el proceso estocástico $\{X_t:t\in T\}$ tenemos $T=\{t:0\leq t<\infty\}$ y $S=\{0,1,\dots\}$.

- Proceso estocástico de tiempo discreto y espacio de estado continuo
 - El precio de cierre de una acción en el día t. De este modo el proceso $\{X_t:t\in T\}$, tiene $T=\{0,1,\dots\}$ y $S=\{x:0\leq x<\infty\}$.
- Proceso estocástico de tiempo continuo y espacio de estado continuo
 - El flujo de un río que se observa en un año. 4 En este caso

$$T=\{t:0\leq t<\infty\}, \qquad S=\{x:0\leq x<\infty\}.$$

 $^{{}^{\}mathbf{4}}X_{t}$ es el flujo en el tiempo t.

Definición 2:

Si, para todo t_0, t_1, \ldots, t_n tal que $t_0 < t_1 < \cdots < t_n$, las variables aleatorias

$$X_{t_0}, X_{t_1} - X_{t_0}, X_{t_2} - X_{t_1}, \dots, X_{t_n} - X_{t_{n-1}},$$

son independientes, entonces el proceso $\{X_t:t\in T\}$ se dice un proceso con incrementos independientes.

Definición 3:

Un proceso estocástico $\{X_t: t \in T\}$ se dice con incrementos estacionarios si

$$X_{t+h} - X_{s+h} \stackrel{\mathsf{d}}{=} X_t - X_s,$$

para cualquier $t, s \in T$ y h > 0.

Definición 4:

Si, para todo t_1, t_2, \dots, t_n la distribución conjunta de los vectores

$$(X_{t_1}, X_{t_2}, \dots, X_{t_n})^{\top}, \qquad (X_{t_1+h}, X_{t_2+h}, \dots, X_{t_n+h})^{\top},$$

es la misma, para todo h > 0. Entonces, El proceso $\{X_t : t \in T\}$ se dice estacionario.

Notación:

Sea $\{X_t:t\in T\}$ un proceso estocástico. Entonces, denotamos:

- $ightharpoonup m(t) = \mathsf{E}(X_t), \ t \in T$ a la función de media del proceso.
- $lackbox{K}(s,t) = \text{cov}(X_s,X_t)$, para $s,t\in T$ como la función de covarianza del proceso.

Definición 5:

Un proceso estocástico $\{X_t, t \in T\}$ se denomina proceso de segundo orden si $\mathsf{E}(X_t^2) < \infty$, para todo $t \in T$.

Ejemplo:

Sean Z_1 y Z_2 variables aleatorias independientes normalmente distribuídas, cada una con media 0 y varianza σ^2 . Para $\lambda \in \mathbb{R}$, considere

$$X_t = Z_1 \cos(\lambda t) + Z_2 \sin(\lambda t), \quad t \in \mathbb{R}.$$

Entonces $\{X_t : t \in \mathbb{R}\}$ es un proceso estacionario de segundo orden.

Note que la función de medias es dada por

$$\mathsf{E}(X_t) = \mathsf{E}\{Z_1\cos(\lambda t) + Z_2\sin(\lambda t)\} = \mathsf{E}(Z_1)\cos(\lambda t) + \mathsf{E}(Z_2)\sin(\lambda t).$$

Sin embargo, $Z_j \sim N(0, \sigma^2)$, para j = 1, 2. De este modo, $E(X_t) = 0$.

Por otro lado,

$$\begin{split} \mathsf{E}(X_t^2) &= \mathsf{E}\{[Z_1\cos(\lambda t) + Z_2\sin(\lambda t)]^2\} \\ &= \mathsf{E}\{Z_1^2\cos^2(\lambda t) + Z_2^2\sin^2(\lambda t) + Z_1Z_2\cos(\lambda t)\sin(\lambda t)\} \\ &= \mathsf{E}(Z_1^2)\cos^2(\lambda t) + \mathsf{E}(Z_2^2)\sin^2(\lambda t) + \mathsf{E}(Z_1Z_2)\cos(\lambda t)\sin(\lambda t), \end{split}$$

como Z_1 y Z_2 son independientes, sigue que $\mathsf{E}(Z_1Z_2)=\mathsf{E}(Z_1)\,\mathsf{E}(Z_2)=0$, y como $\mathsf{E}(Z_1^2)=\mathsf{E}(Z_2^2)=\sigma^2$, obtenemos:

$$\mathsf{E}(X_t^2) = \sigma^2\{\cos^2(\lambda t) + \sin^2(\lambda t)\} = \sigma^2 < \infty.$$

Es decir, el proceso $\{X_t : t \in \mathbb{R}\}$ es de segundo orden.

Proceso simulado: $X_t=Z_{1t}\cos(\lambda t)+Z_{2t}\sin(\lambda t)$, con $t\in[1,T]$ donde T=1000, $\{Z_{jt}\}$ es simulado desde N(0,1), para j=1,2, y $\lambda=1$.

Definición 6:

Un proceso estocástico de segundo orden $\{X_t, t \in T\}$ se dice débilmente estacionario si $m(t) = \mathrm{E}(X_t)$ es independiente de t y su función de covarianza K(s,t) depende sólo de la diferencia |t-s|, es decir,

$$cov(X_s, X_t) = f(|t - s|).$$

Ejemplo:

Sea $\{X_n: n \geq 1\}$ variables aleatorias no correlacionadas con media 0 y varianza 1. Entonces

$$cov(X_r, X_n) = \mathsf{E}(X_r X_n) = \begin{cases} 0, & r \neq n, \\ 1, & r = n. \end{cases}$$

Entonces $\{X_n : n \ge 1\}$ es un proceso débilmente estacionario.

Definición 7 (Proceso de Markov):

Sea $\{X_t: t \geq 0\}$ un proceso estocástico definido sobre el espacio de probabilidad $(\Omega, \mathcal{F}, \mathsf{P})$ con espacio de estados S discreto. Se dice que $\{X_t: t \geq 0\}$ es un proceso de Markov si para cualquier $0 \leq t_1 < t_2 < \dots < t_{n-1} < t_n$ y para todo $x_1, x_2, \dots, x_{n-1}, y$, se tiene que

$$\mathsf{P}(X_{t_n} = y | X_{t_1} = x_1, \dots, X_{t_{n-1}} = x_{n_1}) = \mathsf{P}(X_{t_n} = y | X_{t_{n-1}} = x_{n-1}).$$

Observación:

Cualquier proceso estocástico que tenga incrementos independientes es un proceso de Markov.

Definición 8 (Función de transición):

Si $\{X_t: t \geq 0\}$ es un proceso de Markov, a la probabilidad condicional:

$$p_{st}(x,y) = \mathsf{P}(X_t = y | X_s = x),$$

se le denomina función de transición del proceso.⁵

Observación:

A continuación supondremos que la función de transición será estacionaria,

$$p_t(x, y) = p_{uv}(x, y) = P(X_v = y | X_u = x),$$

 $\mathsf{con}\ t = v - u \ge 0.$

⁵Es decir, $p_{st}(x,y)$ es la probabilidad de transición del tiempo s al tiempo t $(s \to t)$.

Definición 9 (Cadena de Markov):

Sea S un conjunto discreto. Una cadena de Markov es una secuencia de variables aleatorias $\{X_n:n\in\mathbb{N}\}$ que satisface

$$\mathsf{P}(X_{n+1}=y|X_1=x_1,\dots,X_{n-1}=x_{n-1},X_n=x)=\mathsf{P}(X_{n+1}=y|X_n=x),$$
 para todo $x_1,\dots,x_{n-1},x,y\in S$ y $n\geq 1.$

Observación:

Podemos interpretar la propiedad anterior como: Si conocemos $X_n = x$, conocer la historia anterior $X_{n-1}, X_{n-2}, \ldots, X_1$ no tiene influencia en el estado futuro X_{n+1} .

Definición 10 (Probabilidad de transición):

Sea $\{X_n:n\geq 0\}$ una cadena de Markov. Las probabilidades

$$p_{ij} = \mathsf{P}(X_{n+1} = j | X_n = i),$$

son llamadas probabilidades de transición.

Observación:

A continuación caracterizaremos una cadena de Markov organizando las probabilidades p_{ij} en una matriz. Considere la siguiente definición.

Definición 11 (Vector de probabilidades):

Sea $p = (p_1, \dots, p_n)^{\top}$ se dice un vector de probabilidades, si satisface:

(i)
$$p_i \ge 0, i = 1, ..., n$$
.

(ii)⁶
$$\sum_{i=1}^{n} p_i = 1$$
.

 $^{^{\}mathbf{6}}$ o equivalentemente $\mathbf{1}^{\top} p = 1$ con $\mathbf{1} = (1, \dots, 1)^{\top}$

Definición 12 (Cadena homogénea):

Una cadena de Markov $\{X_n:n\geq 0\}$ es llamada homogénea si las probabilidades de transición no dependen de n. Esto es,

$$p_{ij} = P(X_1 = j | X_0 = i) = P(X_{n+1} = j | X_n = i).$$

Definición 13 (Distribución inicial):

La distribución de probabilidades $\pi:=\{\pi_i\}_{i\in S}$, con

$$\pi_i = \mathsf{P}(X_0 = i),$$

es llamada distribución inicial.

Definición 13 (Matriz de transición):

La matriz

$$P = (p_{ij}) = \begin{pmatrix} p_{00} & p_{01} & p_{02} & \cdots \\ p_{10} & p_{11} & p_{12} & \cdots \\ p_{20} & p_{21} & p_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

es llamada matriz de transición.

Note que una matriz de transición es una matriz estocástica⁷ que satisface:

- (i) $p_{ij} \geq 0$, para todo $i, j \in S$.
- (ii) $\sum_{j} p_{ij} = 1$, para todo $j \in S$.

⁷Una matriz de transición también es llamada matriz de probabilidad.

Ejemplo:

Considere la matriz

$$\mathbf{P} = \begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}.$$

En efecto, $p_{ij} > 0$, $\forall i, j$, y

$$0.5 + 0.4 + 0.1 = 1,$$

 $0.3 + 0.4 + 0.3 = 1,$
 $0.2 + 0.3 + 0.5 = 1.$

Ejemplo (Secuencia IID):

Asuma que X_0, X_2, \ldots es una secuencia de variables aleatorias IID que toma valores en $\{1, \ldots, k\}$, con

$$\mathsf{P}(X_n=j)=p_j, \qquad \mathsf{para}\ j=1,\dots,k,\,\mathsf{y}\ n\geq 0,$$

donde $p_1+\cdots+p_k=1$. Por independencia, tenemos que

$$P(X_1 = j | X_0 = i) = P(X_1 = j) = p_j.$$

La matriz de transición es dada por:

$$\boldsymbol{P} = \begin{pmatrix} p_1 & p_2 & \cdots & p_k \\ p_1 & p_2 & \cdots & p_k \\ \vdots & \vdots & & \vdots \\ p_1 & p_2 & \cdots & p_k \end{pmatrix}.$$

Ejemplo (Caminata aleatoria):

Una cadena de Markov cuyo espacio de estados es dado por los enteros $i=0,\pm 1,\pm 2,\ldots$ se dice una caminata aleatoria si para 0< p<1, tenemos

$$p_{i,i+1} = p = p_{i,i-1}, \qquad i = 0, \pm 1, \pm 2, \dots,$$

con matriz de transición

Caminata aleatoria 1-D8

⁸En inglés, random walk.

Resultado 1:

(a) Considere P matriz de transición, entonces la condición (ii) puede ser expresada como:

$$P1 = 1$$
.

(b) Cualquier fila de la matriz P es un vector de probabilidades.

Demostración:

Considere $P \in \mathbb{R}^{n \times n}$. Para verificar (a), note que P1 = 1, es decir:

$$\begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}.$$

Es decir,

$$p_{11} + p_{12} + \dots + p_{1n} = 1$$

$$p_{21} + p_{22} + \dots + p_{2n} = 1$$

$$\vdots$$

$$p_{n1} + p_{n2} + \dots + p_{nn} = 1$$

o equivalentemente

$$\sum_{j=1}^{n} p_{1j} = 1, \ \sum_{j=1}^{n} p_{2j} = 1, \quad \dots \quad \sum_{j=1}^{n} p_{nj} = 1.$$

De este modo,

$$\sum_{i=1}^{n} p_{ij}, \qquad i = 1, \dots, n.$$

La demostración de (b) es directa.

Resultado 2:

Si $P \in \mathbb{R}^{n \times n}$ es matriz de transición y q es vector de probabilidades n-dimensional. Entonces $q^{\top}P$ es vector de probabilidades.

Demostración:

Sea ${m r}^{\top} = {m q}^{\top} {m P}$, con ${m r} = (r_1, \dots, r_n)^{\top}$. Evidentemente $r_i \geq 0$ para $i = 1, \dots, n$. Note que ${m r}^{\top} {m 1} = \sum_{j=1}^n r_j$. Así,

$$\boldsymbol{r}^{\top}\mathbf{1} = \boldsymbol{q}^{\top}\boldsymbol{P}\mathbf{1} = \boldsymbol{q}^{\top}\mathbf{1} = 1,$$

pues ${m q}$ es vector de probabilidades.

Resultado 3:

Si ${m P}=(p_{ij})$ y ${m Q}=(q_{ij})$ son matrices de transición $n\times n$. Entonces el producto ${m P}{m Q}$ es una matriz de transición.

Demostración:

Sabemos que P1=1 y Q1=1. Deseamos mostrar PQ1=1. En efecto,

$$PQ1 = P1 = 1$$
,

lo que verifica el resultado.

Resultado 4:

Si P es matriz de transición $n \times n$, entonces P^2, P^3, \ldots, P^m son matrices de transición.

Demostración:

El resultado sigue inmediatamente desde el Resultado 3. En efecto, tomando $oldsymbol{Q} = oldsymbol{P}$, sigue que:

$$P^21 = PQ1 = 1$$
,

análogamente para $m{P}^3m{1}=m{P}^2m{Q}m{1}=m{1}$ y así sucesivamente para $m{P}^m.9$

 $^{^{9}}$ Este resultado también se puede mostrar usando inducción.

Resultado 5 (Ecuaciones de Chapman-Kolmogorov):

Si la secuencia de variables aleatorias $\{X_n:n\geq 0\}$ es una cadena de Markov y si k< m< n, entonces tenemos que para todo $h,j\in S$,

$$\mathsf{P}(X_n=j|X_k=h) = \sum_{i \in S} \mathsf{P}(X_n=j|X_m=i) \, \mathsf{P}(X_m=i|X_k=k).$$

Definición 14:

Sea $\{X_n:n\in\mathbb{N}\}$ una cadena de Markov, la probabilidad de transición en m pasos desde el estado i al j, es dada por:

$$p_{ij}^{(m)} = P(X_{n+m} = j | X_n = i).$$

Además,

$$p_{ij}^{(0)} = P(X_n = j | X_n = i) = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Observación:

La probabilidad $p_{ij}^{\left(m\right)}$ es estacionaria si y solo si,

$$p_{ij}^{(m)} = \mathsf{P}(X_{n+m} = j | X_n = i) = \mathsf{P}(X_m = j | X_0 = i).$$

Observación:

Las probabilidades de transición de m-pasos, pueden ser escritas en la matriz de transición:

$$P^{(m)} = (p_{ij}^{(m)}).$$

Es decir, $\mathbf{P}^{(0)} = \mathbf{I}$.

Definición 15 (Cadena de Markov homogénea):

Una cadena de Markov cuyas probabilidades de transición en m pasos son todas estacionarias es llamada cadena de Markov homogénea.

Proposición 1:

Las ecuaciones de Chapman-Kolmogorov proveen un procedimiento para calcular las probabilidades de transición de n-pasos. En efecto, sigue que:

$$p_{ij}^{(n+m)} = \sum_{k=0}^{\infty} p_{ik}^{(n)} p_{kj}^{(m)},$$

para todo $n, m \ge 0$ y todo $i, j \in S$.

Observación:

En forma matricial la Proposición 1 puede ser escrita como:

$$\mathbf{P}^{(n+m)} = \mathbf{P}^{(n)} \cdot \mathbf{P}^{(m)},$$

donde · denota multiplicación matricial.

Note la condición inicial,

$$P^{(2)} = P^{(1+1)} = P \cdot P = P^2,$$

continuando por inducción tenemos que la matriz de transición de n-pasos puede ser escrita como:

$$P^{(n)} = P^{(n-1+1)} = P^{(n-1)}P = P^n.$$

Observación:

Si $\{X_n:n\in\mathbb{N}\}$ es una cadena de Markov con conjunto de estados $S=\{0,1,2,3\}$, con matriz de transición

$$\boldsymbol{P} = \begin{pmatrix} 1/5 & 1/5 & 0 & 3/5 \\ 0 & 1/3 & 2/3 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix},$$

que puede ser representada por una red con vértices que indican los estados y arcos indicando transiciones.

Corolario 1 (Matriz de transición de *n*-pasos):

Sea X_0,X_1,\ldots una cadena de Markov con matriz de transición ${\bf \it P}.$ La matriz de transición de n-pasos de la cadena es dada por:

$$P^{(n)} = P, \quad n \ge 0,$$

con
$$p_{ij}^{(n)} = P(X_n = j | X_0 = i), \forall i, j.$$

Ejercicio:

Considere la matriz de transición

$$\boldsymbol{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ q & 0 & p & 0 \\ 0 & q & 0 & p \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad q = 1 - p.$$

Obtenga ${m P}^3$ y verifique que es matriz de transición.

Ejercicio:

Considere una cadena de Markov con matriz de transición

$$oldsymbol{P} = egin{pmatrix} 1-p & p \ q & 1-q \end{pmatrix},$$

donde $p,q\in(0,1)$ y p+q>0. Determine ${\boldsymbol P}^n.$

Sugerencia:

- $lackbox{ }$ Calcular valores y vectores propios de $m{P}$, esto es $m{P}m{u}_i=\lambda_im{u}_i,\ i=1,2.$
- ▶ Sea $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2)$ y $U = (u_1, u_2)$, luego $P = U\Lambda U^{-1}$.
- Ahora, $P^n = U\Lambda^nU^{-1}$ (¿por qué?).
- ▶ Calcular U^{-1} y Λ^n para obtener P^n .

Ejercicio:

Considere

$$\mathbf{P} = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1/2 & 1/2 \\ 0 & 0 & 1 \end{pmatrix},$$

verifique (por inducción) que la n-ésima potencia de P es dada por:

$$\boldsymbol{P}^n = \begin{pmatrix} \frac{1}{2^n} & 0 & 1 - \frac{1}{2^n} \\ 0 & \frac{1}{2^n} & 1 - \frac{1}{2^n} \\ 0 & 0 & 1 \end{pmatrix}.$$

¿Qué sucede cuando $\lim_{n\to\infty} \boldsymbol{P}^n$?