Kink-limited Orowan strengthening and the brittle to ductile transition of irradiated & unirradiated bcc metals

Thomas D Swinburne* and Sergei L Dudarev

CCFE, UKAEA Culham Science Centre, UK

*Current address: CINaM, CNRS Aix-Marseille, France

Physical Review Materials 2, 073608 (2018)

Helping to explain, not solve, the brittle to ductile transition of irradiated & unirradiated bcc metals

Thomas D Swinburne* and Sergei L Dudarev

CCFE, UKAEA Culham Science Centre, UK

*Current address: CINaM, CNRS Aix-Marseille, France

Physical Review Materials 2, 073608 (2018)

- The brittle to ductile transition
- The kink mechanism
- Kink-limited Orowan strengthening
- Calculating the activation energy
- Modified Orowan flow law
- Comparison to experiment

- The brittle to ductile transition
- The kink mechanism
- Kink-limited Orowan strengthening
- Calculating the activation energy
- Modified Orowan flow law
- Comparison to experiment

Dislocations

 Crystalline materials prefer to concentrate deformation in highly deformed "cores" with a surrounding elastic field

- The creation and migration of dislocations typically controls crystal plasticity
- Dislocations can carry away deformation, reducing the stress intensity

The brittle to ductile transition

• The fracture toughness of many materials show a peak with temperature

The brittle to ductile transition

- Crack blunting requires the creation and motion of dislocations
- Hirsch and Roberts argued that existing dislocations migrate to a crack, where they emit dislocations that carry away deformation from the tip

• This picture strongly implies the BDT is controlled by dislocation mobility

The brittle to ductile transition

The Hirsch Roberts model was dramatically validated in silicon

Brittle to ductile transition temperature of silicon Hirsch and Roberts, Phil. Mag., 1989

s <u>_</u>		Activation energy	
(Pav/m s ⁻¹)	Experiment	Intrinsic Si (2 × 10 ¹³ Pcm ⁻³)	n-type Si (2×10 ¹⁸ Pcm ⁻³)
	BDT (Samuels and Roberts 1989)	2-1 ± 0-1 eV	1-6±0-1 eV
	BDT (St John 1975)	1-9 eV	_
	Dislocation velocity (George and Champier 1979)	2-2 eV	1-7 eV
	Dislocation velocity (Imai and Sumino 1983)†	2-3 eV	1-7 eV
	†Doping levels used were 2×10^{12} Bcm ⁻³ and 6.2×10^{18} Pcm ⁻³		

BDT activation energy:

Dislocation velocity:

Orowan Law:

 $\log_{e} \dot{\epsilon}_{\text{ext.}}(T_{\text{BDT}}) = A - U_{\text{BDT}}/k_{\text{B}}T_{\text{BDT}}$

 $\log_{\rm e} v_{\rm dislo} = B - U_{\rm dislo}/k_{\rm B}T$

 $\dot{\epsilon} = b \rho_{dislo} v_{dislo}, \Rightarrow U_{dislo} = U_{BDT}$

• But what is the activation energy U_{dislo} for dislocation motion?

- The brittle to ductile transition
- The kink mechanism
- Kink-limited Orowan strengthening
- Calculating the activation energy
- Modified Orowan flow law
- Comparison to experiment

The kink mechanism

• The dislocation core energy varies periodically with the host lattice, resulting in a periodic 'Peierls' barrier to migration

- If $L > 2E_{kink}/V$, dislocations move by kink pair nucleation
- In some cases $U_{dislo} = 2E_{kink}$ but we find in important limits $U_{dislo} = E_{kink}$

The kink mechanism

The energy of a separated kink pair is localized at the two kink sites

• As typically $E_{kink} \gg k_B T$, the kink nucleation rate is **thermally activated**

$$\begin{split} \Gamma(\sigma, \mathsf{T}) &= \omega \exp(-U_{\mathsf{dislo}}(\sigma, \mathsf{T})/\mathsf{k_BT}) \\ \mathsf{v}_{\mathsf{dislo}}(\sigma, \mathsf{T}) &= b \left(\Gamma(\sigma, \mathsf{T}) - \Gamma(-\sigma, \mathsf{T})\right) \simeq b \Gamma(\sigma, \mathsf{T}) \end{split}$$

The kink mechanism

 The Hirsch Roberts model shows the BDT is controlled by dislocation mobility through existing microstructure (towards/away from cracks)

 We thus need to understand kink-limited motion through a field of obstacles

- The brittle to ductile transition
- The kink mechanism
- Kink-limited Orowan strengthening
- Calculating the activation energy
- Modified Orowan flow law
- Comparison to experiment

Orowan strengthening

• The classic model of obstacle hardening ignores kinks, treating dislocations as elastic lines which glide, pin and **bow out** under an applied stress

- ullet To pin, obstacle must balance the dislocation PK force $\sim \mu b^2\cos\Theta = Lb\sigma$
- We pinch off at $\Theta = \pi/2 \Rightarrow$ flow stress $\sigma_f = \alpha \mu b/L$, where $\alpha \in [0,1]$
- For $\sigma < \sigma_{\rm f}$, dislocations do not move at any temperature

Kink-limited Orowan strengthening

 With a kink mechanism, dislocations no longer bow out (due to the Peierls potential) but still nucleate kinks, forming kink pileups at pinning points

- A pileup of n_k kinks induces a force of $n_k h_k \sigma b$ on an obstacle
- Flow condition is therefore a threshold kink pile up size
- If kinks can nucleate, depinning is controlled by $\Gamma = \omega exp\left(-U_{dislo}/k_{B}T\right)$

- The brittle to ductile transition
- The kink mechanism
- Kink-limited Orowan strengthening
- Calculating the activation energy
- Modified Orowan flow law
- Comparison to experiment

Calculating the activation energy

• Atomistic calculations can (with effort) evaluate $U_{\text{dislo}}(\sigma, T)$ for **short lines**

TDS and M-C Marinica, PRL 2018

Stukowski et al. IJP 2016

A significant dependence on applied stress and temperature is seen

Calculating the activation energy

• Atomistic calculations can be well modeled with a 'kink free energy' F_k

$$F_k(\sigma, T) = U_k \left(1 - \frac{T}{T_{ath}} - \frac{\sigma/\sigma_p}{1 - T/T_{ath}} \right)$$

bcc Fe: $U_k = 0.33 \text{eV}$, $\sigma_p \simeq 900 \text{MPa}$ and $T_{\text{ath}} = 700 \text{K}$

- \Rightarrow velocity for short segments: $v_{dislo}(L, \sigma, T) = \omega L \exp(-2\beta F_k(\sigma, T))$
- $v \propto L$ has been seen in TEM observations (Caillard, Acta Mat. 2010)
- However, still need to explore the full (σ, T, L) parameter space

Length dependent mobility

• We used the Frenkel-Kontorova model to study longer lines

Length dependent mobility

• We used the Frenkel-Kontorova model to study longer lines

 $\bullet\,$ Simulations and theory agree: U_{dislo} halves when dislocation is longer than

$$L^*(\sigma, T) = b \exp(\beta F_k(\sigma, T))$$

From atomistic/FK dislocation simulations we find a mobility law

$$\begin{split} \mathsf{L} & \leq \mathsf{L}^*(\sigma,\mathsf{T}): \quad \mathsf{v}_{\mathsf{dislo}}(\mathsf{L},\sigma,\mathsf{T}) = \mathsf{L}\omega_0 \mathsf{exp}\left[-2\beta \mathsf{F}_\mathsf{k}(\sigma,\mathsf{T})\right] \\ \mathsf{L} & \geq \mathsf{L}^*(\sigma,\mathsf{T}): \quad \mathsf{v}_{\mathsf{dislo}}(\mathsf{L},\sigma,\mathsf{T}) = \mathsf{b}\omega_0 \mathsf{exp}\left[-\beta \mathsf{F}_\mathsf{k}(\sigma,\mathsf{T})\right] \end{split}$$

Length dependent mobility

• As U_{dislo} halves when $L > L^* = b \exp(\beta F_k(\sigma, T))$, we find three regimes

• Importantly, the crossover L* can be $\ll \mu m$ under realistic σ , T regimes whilst leaving Arrhenius measurements almost unchanged at U_k

• Existence of *L** previously recognized (e.g. Hirth&Lothe, Dorn&Rajnak) but we find new relevance in detailed analysis of crossover length

- The brittle to ductile transition
- The kink mechanism
- Kink-limited Orowan strengthening
- Calculating the activation energy
- Modified Orowan flow law
- Comparison to experiment

Modified Orowan flow law

• We used the $v_{dislo}(L, \sigma, T)$ in kink-limited dislocation-obstacle simulations

This evidenced the modified Orowan flow law

$$\dot{\epsilon} = \begin{cases} \rho_{\text{dislo}} b \langle L \rangle \omega_0 \text{exp} \left[-2\beta F_k(\sigma, T) \right] & \langle L \rangle \leq L^*(\sigma, T) \\ \rho_{\text{dislo}} b^2 \omega_0 \text{exp} \left[-\beta F_k(\sigma, T) \right] & \langle L \rangle \geq L^*(\sigma, T) \end{cases}$$

- The brittle to ductile transition
- The kink mechanism
- Kink-limited Orowan strengthening
- Calculating the activation energy
- Modified Orowan flow law
- Comparison to experiment

Comparison to experiment

• For unirradiated, unworked materials, we expect $\langle L \rangle \geq L^*$ and therefore

$$\begin{split} \log_{\mathrm{e}} |\dot{\epsilon}_{\mathrm{unirr}}(\mathsf{T}_{\mathrm{BDT}})| &= \ln |\rho b^{2}| - \beta_{\mathrm{BDT}} F_{k} \\ &\simeq \mathcal{A} - \beta_{\mathrm{BDT}} U_{k} \quad \Rightarrow \quad \mathsf{U}_{\mathrm{dislo}} = \mathsf{U}_{\mathbf{k}} \end{split}$$

• We find striking agreement with BDT fracture data and DFT calulations Giannattasio *et al.* Phys. Scr. 2007, Dezerald *et al.* PRB 2015

Comparison to experiment

 For irradiated materials, where \(\lambda L\rangle\) is reduced, equating dislocation velocities at the BDT before and after irradiation yeilds

$$\mathsf{T}^{\mathsf{irr}}_{\mathsf{BDT}} = \frac{2F_k}{F_k/\mathsf{T}^{\mathsf{uniirr}}_{\mathsf{BDT}} + \ln|\langle L \rangle/b|} \leq 2\mathsf{T}^{\mathsf{uniirr}}_{\mathsf{BDT}}$$

- We find qualitative agreement with BDT data on RAFM steels Gaganidze et al. 2006
- Lack of detailed microstructural analysis / well defined loading makes comparison harder

Agreement across many steels ⇒ geometry influences BDT ≥ chemistry?

Thank you for listening

Length dependent mobility law essential for kink-limited obstacle hardening

- Existence of L^* known but we find L^* is routinely submicron \Rightarrow influential
- Modified Orowan law consistent with diverse BDT fracture experiments

Details: TDS and SLD, Physical Review Materials 2, 073608 (2018)

tiny.cc/tds110 tomswinburne@gmail.com