

Pulse Width Modulation Control Circuit

The SG3526 is a high performance pulse width modulator integrated circuit intended for fixed frequency switching regulators and other power control applications.

Functions included in this IC are a temperature compensated voltage reference, sawtooth oscillator, error amplifier, pulse width modulator, pulse metering and steering logic, and two high current totem pole outputs ideally suited for driving the capacitance of power FETs at high speeds.

Additional protective features include soft start and undervoltage lockout, digital current limiting, double pulse inhibit, adjustable dead time and a data latch for single pulse metering. All digital control ports are TTL and B–series CMOS compatible. Active low logic design allows easy wired–OR connections for maximum flexibility. The versatility of this device enables implementation in single–ended or push–pull switching regulators that are transformerless or transformer coupled. The SG3526 is specified over a junction temperature range of 0° to +125°C.

- 8.0 V to 35 V Operation
- 5.0 V ±1% Trimmed Reference
- 1.0 Hz to 400 kHz Oscillator Range
- Dual Source/Sink Current Outputs: ±100 mA
- Digital Current Limiting
- Programmable Dead Time
- Undervoltage Lockout
- Single Pulse Metering
- Programmable Soft–Start
- Wide Current Limit Common Mode Range
- Guaranteed 6 Unit Synchronization

SG3526

PULSE WIDTH MODULATION CONTROL CIRCUIT

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
SG3526N	T _J = 0° to +125°C	Plastic DIP

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	VCC	+40	Vdc
Collector Supply Voltage	VC	+40	Vdc
Logic Inputs		-0.3 to +5.5	V
Analog Inputs		–0.3 to V _{CC}	V
Output Current, Source or Sink	lo	±200	mA
Reference Load Current (V _{CC} = 40 V, Note 2)	I _{ref}	50	mA
Logic Sink Current		15	mA
Power Dissipation $T_A = +25^{\circ}C \text{ (Note 3)}$ $T_C = +25^{\circ}C \text{ (Note 4)}$	P _D	1000 3000	mW
Thermal Resistance Junction–to–Air	$R_{\theta JA}$	100	°C/W
Thermal Resistance Junction-to-Case	$R_{\theta JC}$	42	°C/W
Operating Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (Soldering, 10 Seconds)	T _{Solder}	±300	°C

- NOTES: 1. Values beyond which damage may occur.
 2. Maximum junction temperature must be observed.
 3. Derate at 10 mW/°C for ambient temperatures above +50°C.
 4. Derate at 24 mW/°C for case temperatures above +25°C.

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
Supply Voltage	Vcc	8.0	35	Vdc
Collector Supply Voltage	VC	4.5	35	Vdc
Output Sink/Source Current (Each Output)	I _O	0	±100	mA
Reference Load Current	l _{ref}	0	20	mA
Oscillator Frequency Range	f _{osc}	0.001	400	kHz
Oscillator Timing Resistor	R _T	2.0	150	kΩ
Oscillator Timing Capacitor	C _T	0.001	20	μF
Available Deadtime Range (40 kHz)	-	3.0	50	%
Operating Junction Temperature Range	TJ	0	+125	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{CC} = +15 \ \text{Vdc}, \ T_J = T_{low} \ \text{to} \ T_{high} \ [\text{Note 5}], \ unless \ otherwise \ noted.)$

Characteristics	Symbol	Min	Тур	Max	Unit
REFERENCE SECTION (Note 6)	•			•	
Reference Output Voltage (T _J = +25°C)	V _{ref}	4.90	5.00	5.10	V
Line Regulation (+8.0 V ≤ V _{CC} ≤ +35 V)	Reg _{line}	-	10	30	mV
Load Regulation (0 mA ≤ I _L ≤ 20 mA)	Reg _{load}	_	10	50	mV
Temperature Stability	ΔV _{ref} /ΔT	_	10	_	mV
Total Reference Output Voltage Variation (+8.0 V \leq V _{CC} \leq +35 V, 0 mA \leq I _L \leq 20 mA)	ΔV_{ref}	4.85	5.00	5.15	V
Short Circuit Current (V _{ref} = 0 V) (Note 2)	Isc	25	80	125	mA
UNDERVOLTAGE LOCKOUT				•	
Reset Output Voltage (V _{ref} = +3.8 V)		_	0.2	0.4	V
Reset Output Voltage (V _{ref} = +4.8 V)		2.4	4.8	_	V
OSCILLATOR SECTION (Note 7)	•	•			
Initial Accuracy (T _J = +25°C)		_	±3.0	±8.0	%
Frequency Stability over Power Supply Range (+8.0 V ≤ V _{CC} ≤ +35 V)	$\frac{\Delta f_{OSC}}{\Delta V_{CC}}$	-	0.5	1.0	%
Frequency Stability over Temperature $(\Delta T_J = T_{low} \text{ to } T_{high})$	$\frac{\Delta f_{OSC}}{\Delta T_{J}}$	-	2.0	-	%
Minimum Frequency $(R_T = 150 \text{ k}\Omega, C_T = 20 \text{ μF})$	f _{min}	-	0.5	-	Hz
Maximum Frequency $(R_T = 2.0 \text{ k}\Omega, C_T = 0.001 \text{ μF})$	f _{max}	400	-	-	kHz
Sawtooth Peak Voltage (V _{CC} = +35 V)	V _{OSC} (P)	_	3.0	3.5	V
Sawtooth Valley Voltage (V _{CC} = +8.0 V)	V _{osc} (V)	0.45	0.8	_	V
ERROR AMPLIFIER SECTION (Note 8)	•	•	•	•	•
Input Offset Voltage (R _S \leq 2.0 k Ω)	V _{IO}	_	2.0	10	mV
Input Bias Current	I _{IB}	_	-350	-2000	nA
Input Offset Current	IIO	-	35	200	nA
DC Open Loop Gain (R _L ≥ 10 MΩ)	AVOL	60	72	_	dB
High Output Voltage ($V_{Pin 1}$ - $V_{Pin 2}$ ≥ +150 mV, I_{Source} = 100 μA)	VOH	3.6	4.2	-	V
Low Output Voltage ($V_{Pin 2}$ – $V_{Pin 1}$ \geq +150 mV, I_{sink} = 100 μ A)	VOL	-	0.2	0.4	V
Common Mode Rejection Ratio (Rg \leq 2.0 k Ω)	CMRR	70	94	_	dB
Power Supply Rejection Ratio (+12 V ≤ V _{CC} ≤ +18 V)	PSRR	66	80	_	dB

NOTES: 2. Maximum junction temperature must be observed. 5. $T_{low} = 0^{\circ}C$ $T_{high} = +125^{\circ}C$ 6. $I_{L} = 0$ mA unless otherwise noted. 7. $f_{OSC} = 40$ kHz (RT = 4.12 k Ω ± 1%, CT = 0.01 μ F ± 1%, RD = 0 Ω) 8. $0 \text{ V} \leq \text{V}_{CM} \leq +5.2 \text{ V}$.

ELECTRICAL CHARACTERISTICS (continued)

Characteristics	Symbol	Min	Тур	Max	Unit
PWM COMPARATOR SECTION (Note 7)	•	•	•	•	•
Minimum Duty Cycle (VCompensation = +0.4 V)	DC _{min}	_	_	0	%
Maximum Duty Cycle (VCompensation = +3.6 V)	DC _{max}	45	49	-	%
DIGITAL PORTS (SYNC, SHUTDOWN, RESET)	•				
Output Voltage (High Logic Level) (I_{Source} = 40 μ A) (Low Logic Level) (I_{Sink} = 3.6 mA)	VOH VOL	2.4 _	4.0 0.2	_ 0.4	V
Input Current — High Logic Level (High Logic Level) (V _{IH} = +2.4 V) (Low Logic Level) (V _{IL} = +0.4 V)	liH liL	- -	-125 -225	-200 -360	μА
CURRENT LIMIT COMPARATOR SECTION (Note 9)					
Sense Voltage (R _S \leq 50 Ω)	V _{sense}	80	100	120	mA
Input Bias Current	I _{IB}	_	-3.0	-10	μΑ
SOFT-START SECTION					
Error Clamp Voltage (Reset = +0.4 V)		_	0.1	0.4	V
C _{Soft-Start} Charging Current (Reset = +2.4 V)	ICS	50	100	150	μΑ
OUTPUT DRIVERS (Each Output, V _C = +15 Vdc, unless otherwise noted.)	•				
Output High Level I _{source} = 20 mA I _{source} = 100 mA	VOH	12.5 12	13.5 13	_ _	V
Output Low Level I _{sink} = 20 mA I _{sink} = 100 mA	VOL	_ _	0.2 1.2	0.3 2.0	V
Collector Leakage, V _C = +40 V	IC(leak)	-	50	150	μΑ
Rise Time (C _L = 1000 pF)	t _r	-	0.3	0.6	μs
Fall Time (C _L = 1000 pF)	t _f	-	0.1	0.2	μs
Supply Current (Shutdown = +0.4 V, V_{CC} = +35 V, R_T = 4.12 k Ω)	Icc	-	18	30	mA

NOTES: 7. f_{OSC} = 40 kHz (R_T = 4.12 k Ω ± 1%, C_T = 0.01 μ F ± 1%, R_D = 0 Ω) 8. 0 V ≤ V_{CM} ≤ +5.2 V 9. 0 V ≤ V_{CM} ≤ +12 V

Figure 1. Reference Stability over Temperature

Figure 2. Reference Voltage as a Function Supply Voltage

Figure 3. Error Amplifier Open Loop Frequency Response

Figure 4. Current Limit Comparator Threshold

Figure 5. Undervoltage Lockout Characteristic

Figure 6. Output Driver Saturation Voltage as a Function of Sink Current

Figure 7. V_C Saturation Voltage as a Function of Sink Current

Figure 8. Oscillator Period

Figure 9. Error Amplifier

Figure 10. Undervoltage Lockout

Figure 11. Pulse Processing Logic

The metering Flip–Flop is an asynchronous data latch which suppresses high frequency oscillations by allowing only one PWM pulse per oscillator cycle.

The memory Flip–Flop prevents double pulsing in a push–pull configuration by remembering which output produced the last pulse.

APPLICATIONS INFORMATION

Figure 12. Extending Reference Output Current Capability

^{*} May be required with some types of transistors

Figure 13. Error Amplifier Connections

Figure 14. Oscillator Connections

Figure 16. Soft-Start Circuity

Figure 15. Foldback Current Limiting

Figure 17. Driving VMOS Power FETs

The totem pole output drivers of the SG3526 are ideally suited for driving the input capacitance of power FETs at high speeds.

Figure 18. Half-Bridge Configuration

Figure 19. Flyback Converter with Current Limiting

In the above circuit, current limiting is accomplished by using the current limit comparator output to reset the soft–start capacitor. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty}$

Figure 20. Single-Ended Configuration

Figure 21. Push-Pull Configuration

SG3526 **OUTLINE DIMENSIONS**

- NOTES:
 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	22.22	23.24	0.875	0.915	
В	6.10	6.60	0.240	0.260	
С	3.56	4.57	0.140	0.180	
D	0.36	0.56	0.014	0.022	
F	1.27	1.78	0.050	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.02	1.52	0.040	0.060	
J	0.20	0.30	0.008	0.012	
K	2.92 3.43 7.62 BSC 0 ° 15 °		0.115	0.135	
L			0.300 BSC		
M			0 °	15°	
N	0.51	1.02	0.020	0.040	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

