Materials Data Book

2003 Edition

Cambridge University Engineering Department

PHYSICAL CONSTANTS IN SI UNITS

Absolute zero of temperature	− 273.15 °C
Acceleration due to gravity, g	9. 807 m/s ²
Avogadro's number, N_A	6.022x10 ²⁶ /kmol
Base of natural logarithms, e	2.718
Boltzmann's constant, k	1.381 x 10 ⁻²⁶ kJ/K
Faraday's constant, <i>F</i>	9.648 x 10 ⁷ C/kmol
Universal Gas constant, \overline{R}	8.3143 kJ/kmol K
Permeability of vacuum, μ _o	1.257 x 10 ⁻⁶ H/m
Permittivity of vacuum, ε_0	8.854 x 10 ⁻¹² F/m
Planck's constant, h	6.626 x 10 ⁻³⁷ kJ/s
Velocity of light in vacuum, <i>c</i>	2.998 x 10 ⁸ m/s
Volume of perfect gas at STP	22.41 m ³ /kmol

CONVERSION OF UNITS

Angle, θ	1 rad	57.30 °
Energy, U	See inside back cover	
Force, F	1 kgf	9.807 N
	1 lbf	4.448 N
Length, ℓ	1 ft	304.8 mm
	1 inch	25.40 mm
	1 Å	0.1 nm
Mass, M	1 tonne	1000 kg
	1 lb	0.454 kg
Power, P	See inside back cover	
Stress, σ	See inside back cover	
Specific Heat, C _p	1 cal/g.°C	4.188 kJ/kg.K
Stress Intensity, K	1 ksi √in	1.10 MPa √m
Temperature, T	1 °F	0.556 K
Thermal Conductivity, λ	1 cal/s.cm.°C	4.18 W/m.K
Volume, V	1 Imperial gall	4.546 x 10 ⁻³ m ³
	1 US gall	$3.785 \times 10^{-3} \mathrm{m}^3$
Viscosity, η	1 poise	0.1 N.s/m ²
	1 lb ft.s	0.1517 N.s/m ²

CONTENTS

<u> </u>	Page Number
Introduction	3
Sources	3
I. FORMULAE AND DEFINITIONS	
Stress and strain	4
Elastic moduli	4
Stiffness and strength of unidirectional composites	5
Dislocations and plastic flow	5
Fast fracture	6
Statistics of fracture	6
Fatigue 7	
Creep	7
Diffusion	8
Heat flow	8
II. PHYSICAL AND MECHANICAL PROPERTIES OF MATERIAI	.
	_
Melting temperature	9
Density Voung's modulus	10
Young's modulus Yield stress and tensile strength	11 12
Fracture toughness	13
Environmental resistance	14
Uniaxial tensile response of selected metals and polymers	15
III. MATERIAL PROPERTY CHARTS	
Young's modulus versus density	16
Strength versus density	17
Young's modulus versus strength	18
Fracture toughness versus strength	19
Maximum service temperature	20
Material price (per kg)	21
IV. PROCESS ATTRIBUTE CHARTS	
Material-process compatibility matrix (shaping)	22
Mass	23
Section thickness	23
Surface roughness	24
Dimensional tolerance	24
Economic batch size	25

V. CLASSIFICATION AND APPLICATIONS OF ENGINEERING MATER	RIALS
Metals: ferrous alloys, non-ferrous alloys Polymers and foams Composites, ceramics, glasses and natural materials	26 27 28
VI. EQUILIBRIUM (PHASE) DIAGRAMS	
Copper – Nickel Lead – Tin Iron – Carbon Aluminium – Copper Aluminium – Silicon Copper – Zinc Copper – Tin Titanium-Aluminium Silica – Alumina	29 30 30 31 31 32 32 33
VII. HEAT TREATMENT OF STEELS TTT diagrams and Jominy end-quench hardenability curves for steels	34
VIII. PHYSICAL PROPERTIES OF SELECTED ELEMENTS	
Atomic properties of selected elements Oxidation properties of selected elements	36 37

INTRODUCTION

The data and information in this booklet have been collected for use in the Materials Courses in Part I of the Engineering Tripos (as well as in Part II, and the Manufacturing Engineering Tripos). Numerical data are presented in tabulated and graphical form, and a summary of useful formulae is included. A list of sources from which the data have been prepared is given below. Tabulated material and process data or information are from the Cambridge Engineering Selector (CES) software (Educational database Level 2), copyright of Granta Design Ltd, and are reproduced by permission; the same data source was used for the material property and process attribute charts.

It must be realised that many material properties (such as toughness) vary between wide limits depending on composition and previous treatment. Any final design should be based on manufacturers' or suppliers' data for the material in question, and not on the data given here.

SOURCES

Cambridge Engineering Selector software (CES 4.1), 2003, Granta Design Limited, Rustat House, 62 Clifton Rd, Cambridge, CB1 7EG

M F Ashby, Materials Selection in Mechanical Design, 1999, Butterworth Heinemann

M F Ashby and D R H Jones, Engineering Materials, Vol. 1, 1996, Butterworth Heinemann

M F Ashby and D R H Jones, Engineering Materials, Vol. 2, 1998, Butterworth Heinemann

M Hansen, Constitution of Binary Alloys, 1958, McGraw Hill

I J Polmear, Light Alloys, 1995, Elsevier

C J Smithells, Metals Reference Book, 6th Ed., 1984, Butterworths

Transformation Characteristics of Nickel Steels, 1952, International Nickel

I. FORMULAE AND DEFINITIONS

STRESS AND STRAIN

$$\sigma_t = \frac{F}{A}$$

$$\sigma_n = \frac{F}{A_o}$$

$$\sigma_n = \frac{F}{A_o}$$
 $\varepsilon_t = \ln\left(\frac{\ell}{\ell_o}\right)$ $\varepsilon_n = \frac{\ell - \ell_o}{\ell_o}$

$$\varepsilon_n = \frac{\ell - \ell_o}{\ell_o}$$

F = normal component of force

 A_0 = initial area

A = current area

 ℓ_o = initial length

 ℓ = current length

 σ_t = true stress

 σ_n = nominal stress

 ε_t = true strain

 ε_n = nominal strain

Poisson's ratio,
$$v = -\frac{\text{lateral strain}}{\text{longitudinal strain}}$$

Young's modulus $E = \text{initial slope of } \sigma_t - \varepsilon_t \text{ curve} = \text{initial slope of } \sigma_n - \varepsilon_n \text{ curve.}$

Yield stress σ_y is the nominal stress at the limit of elasticity in a tensile test.

Tensile strength σ_{ts} is the nominal stress at maximum load in a tensile test.

Tensile ductility ε_f is the nominal plastic strain at failure in a tensile test. The gauge length of the specimen should also be quoted.

ELASTIC MODULI

$$G = \frac{E}{2(1+\nu)} \qquad K = \frac{E}{3(1-2\nu)}$$

For polycrystalline solids, as a rough guide,

Poisson's Ratio
$$v \approx \frac{1}{3}$$

Shear Modulus
$$G \approx \frac{3}{8} E$$

Bulk Modulus
$$K \approx E$$

These approximations break down for rubber and porous solids.

STIFFNESS AND STRENGTH OF UNIDIRECTIONAL COMPOSITES

$$E_{II} = V_f E_f + (1 - V_f) E_m$$

$$E_{\perp} = \left(\frac{V_f}{E_f} + \frac{1 - V_f}{E_m}\right)^{-1}$$

$$\sigma_{ts} = V_f \sigma_f^{f} + (1 - V_f) \sigma_y^{m}$$

 E_{II} = composite modulus parallel to fibres (upper bound)

 E_{\perp} = composite modulus transverse to fibres (lower bound)

 V_f = volume fraction of fibres

 E_f = Young's modulus of fibres

 E_m = Young's modulus of matrix

 σ_{ts} = tensile strength of composite parallel to fibres

 $\sigma_f^{\rm f}$ = fracture strength of fibres

 $\sigma_{v}^{\rm m}$ = yield stress of matrix

DISLOCATIONS AND PLASTIC FLOW

The force per unit length F on a dislocation, of Burger's vector b, due to a remote shear stress τ , is $F = \tau b$. The shear stress τ_v required to move a dislocation on a single slip plane is

$$\tau_y = \frac{cT}{bL}$$
 where $T = \text{line tension (about } \frac{1}{2}Gb^2$, where G is the shear modulus)

L = inter-obstacle distance

c = constant ($c \approx 2$ for strong obstacles, c < 2 for weak obstacles)

The shear yield stress k of a polycrystalline solid is related to the shear stress τ_y required to move a dislocation on a single slip plane: $k \approx \frac{3}{2}\tau_y$.

The uniaxial yield stress σ_y of a polycrystalline solid is approximately $\sigma_y = 2k$, where k is the shear yield stress.

Hardness H (in MPa) is given approximately by: $H \approx 3 \sigma_v$.

Vickers Hardness HV is given in kgf/mm², i.e. HV = H/g, where g is the acceleration due to gravity.

FAST FRACTURE

The stress intensity factor, *K*:

$$K = Y \sigma \sqrt{\pi a}$$

Fast fracture occurs when $K = K_{IC}$

In plane strain, the relationship between stress intensity factor K and strain energy release rate G is:

$$K = \sqrt{\frac{EG}{1 - v^2}} \approx \sqrt{EG}$$
 (as $v^2 \approx 0.1$)

Plane strain fracture toughness and toughness are thus related by: $K_{\rm IC} = \sqrt{\frac{E G_{\rm IC}}{1 - v^2}} \approx \sqrt{E G_{\rm IC}}$

"Process zone size" at crack tip given approximately by: $r_p = \frac{K_{\rm IC}^2}{\pi \sigma_f^2}$

Note that $K_{\rm IC}$ (and $G_{\rm IC}$) are only valid when conditions for linear elastic fracture mechanics apply (typically the crack length and specimen dimensions must be at least 50 times the process zone size).

In the above:

 σ = remote tensile stress

a = crack length

Y = dimensionless constant dependent on geometry; typically $Y \approx 1$

 $K_{\rm IC}$ = plane strain fracture toughness;

 $G_{\rm IC}$ = critical strain energy release rate, or toughness;

E = Young's modulus

 $\nu = Poisson's ratio$

 σ_f = failure strength

STATISTICS OF FRACTURE

Weibull distribution, $P_s(V) = \exp \left\{ \int_V -\left(\frac{\sigma}{\sigma_o}\right)^m \frac{dV}{V_o} \right\}$

For constant stress: $P_s(V) = \exp \left\{ -\left(\frac{\sigma}{\sigma_o}\right)^m \frac{V}{V_o} \right\}$

 P_s = survival probability of component

V = volume of component

 σ = tensile stress on component

 $V_o = \text{volume of test sample}$

 σ_o = reference failure stress for volume V_o , which gives $P_s = \frac{1}{e} = 0.37$

m =Weibull modulus

FATIGUE

Basquin's Law (high cycle fatigue):

$$\Delta \sigma N_f^{\alpha} = C_1$$

Coffin-Manson Law (low cycle fatigue):

$$\Delta \varepsilon^{p\ell} \, N_f^{\beta} = C_2$$

Goodman's Rule. For the same fatigue life, a stress range $\Delta\sigma$ operating with a mean stress σ_m , is equivalent to a stress range $\Delta\sigma_o$ and zero mean stress, according to the relationship:

$$\Delta \sigma = \Delta \sigma_o \left(1 - \frac{\sigma_m}{\sigma_{ts}} \right)$$

Miner's Rule for cumulative damage (for i loading blocks, each of constant stress amplitude and duration N_i cycles):

$$\sum_{i} \frac{N_i}{N_{fi}} = 1$$

Paris' crack growth law:

$$\frac{da}{dN} = A \Delta K^n$$

In the above:

 $\Delta \sigma$ = stress range;

 $\Delta \varepsilon^{p\ell}$ = plastic strain range;

 ΔK = tensile stress intensity range;

N = cycles;

 N_f = cycles to failure;

 α , β , C_1 , C_2 , A, n = constants;

a = crack length;

 σ_{ts} = tensile strength.

CREEP

Power law creep: $\dot{\varepsilon}_{SS} = A \sigma^n \exp(-Q/RT)$

 $\dot{\varepsilon}_{ss}$ = steady-state strain-rate

Q = activation energy (kJ/kmol)

R = universal gas constant

T = absolute temperature

A, n = constants

DIFFUSION

Diffusion coefficient: $D = D_o \exp(-Q/RT)$

Fick's diffusion equations:
$$J = -D \frac{dC}{dx}$$
 and $\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$

$$C =$$
concentration $J =$ diffusive flux

$$x = \text{distance}$$
 $D = \text{diffusion coefficient (m}^2/\text{s})$

$$t = \text{time}$$
 $D_o = \text{pre-exponential factor } (\text{m}^2/\text{s})$

$$Q = \text{activation energy (kJ/kmol)}$$

HEAT FLOW

Steady-state 1D heat flow (Fourier's Law): $q = -\lambda \frac{dT}{dx}$

Transient 1D heat flow:
$$\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial x^2}$$

$$T = \text{temperature (K)}$$
 $\lambda = \text{thermal conductivity (W/m.K)}$

$$q = \text{heat flux per second, per unit area (W/m}^2.s)$$
 $a = \text{thermal diffusivity (m}^2/s)$

For many 1D problems of diffusion and heat flow, the solution for concentration or temperature depends on the error function, erf:

$$C(x,t) = f \left[\operatorname{erf} \left(\frac{x}{2\sqrt{Dt}} \right) \right] \quad \text{or} \quad T(x,t) = f \left[\operatorname{erf} \left(\frac{x}{2\sqrt{at}} \right) \right]$$

A characteristic diffusion distance in all problems is given by $x \approx \sqrt{Dt}$, with the corresponding characteristic heat flow distance in thermal problems being $x \approx \sqrt{at}$.

The error function, and its first derivative, are:

erf(X)

0.80

0.84

0.88

$$\operatorname{erf}(X) = \frac{2}{\sqrt{\pi}} \int_0^X \exp(-y^2) dy$$
 and $\frac{d}{dX} [\operatorname{erf}(X)] = \frac{2}{\sqrt{\pi}} \exp(-X^2)$

The error function integral has no closed form solution – values are given in the Table below.

X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
erf(X)	0	0.11	0.22	0.33	0.43	0.52	0.60	0.68	0.74
X	0.9	1.0	1.1	1.2	1.3	1.4	1.5	∞	

0.93

0.95

0.97

0.91

II. PHYSICAL AND MECHANICAL PROPERTIES OF MATERIALS II.1 MELTING (or SOFTENING) TEMPERATURE, T,,

All data are for melting points at atmospheric pressure. For polymers (and glasses) the data indicate the glass transition (softening) temperature, above which the mechanical properties rapidly fall. Melting temperatures of selected elements are given in section VIII.

		T_m (°C)
Metals		
Ferrous	Cast Irons	
	High Carbon Steels	,
	Medium Carbon Steels	'
	Low Carbon Steels	,
	Low Alloy Steels	,
	Stainless Steels	
Non-ferrous	Aluminium Alloys	,
	Copper Alloys	982 - 1082
	Lead Alloys	322 - 328
	Magnesium Alloys	447 - 649
	Nickel Alloys	
	Titanium Alloys	1477 - 1682
	Zinc Alloys	375 - 492
Ceramics		
Glasses	Borosilicate Glass (*)	450 - 602
	Glass Ceramic (*)	,
	Silica Glass (*)	957 - 1557
	Soda-Lime Glass (*)	442 - 592
Porous	Brick	,
	Concrete, typical	1
	Stone	ı
Technical	Alumina	
	Aluminium Nitride	1
	Boron Carbide	2372 - 2507
	Silicon	
	Silicon Carbide	,
	Silicon Nitride	,
	Tungsten Carbide	2827 - 2920
Composites		
Metal	Aluminium/Silicon Carbide	525 - 627
Polymer	CFRP GFRP	n/a n/a
Natural		5
Matural	Bamboo (*)	77 - 102
	Cork (*)	,
	Leather (*)	,
	Wood, typical (Longitudinal) (*)	•
	Wood, typical (Transverse) (*)	77 - 102

		T_m ($^{\circ}$ C)
Polymers 1		
Elastomer	Butyl Rubber (*)	-7363
	EVA (*)	! !
	Isoprene (IR) (*)	ı
	Natural Rubber (NR) (*)	
	Neoprene (CR) (*)	·
	Polyurethane Elastomers (eIPU) (*)	,
	Silicone Elastomers (*)	
Thermoplastic	ABS (*)	88 - 128
	Cellulose Polymers (CA) (*)	-9 - 107
	lonomer (I) (*)	27 - 77
	Nylons (PA) (*)	44 - 56
	Polycarbonate (PC) (*)	
	PEEK (*)	143 - 199
	Polyethylene (PE) (*)	'
	PET (*)	- 89
	Acrylic (PMMA) (*)	85 - 165
	Acetal (POM) (*)	- 18 8
	Polypropylene (PP) (*)	-2515
	Polystyrene (PS) (*)	74 - 110
	Polyurethane Thermoplastics (tpPU) (*)	
	PVC	,
	Teflon (PTFE)	107 - 123
Thermoset	Epoxies	n/a
	Phenolics	n/a
	Polyester	n/a
Polymer Foams		
	Flexible Polymer Foam (VLD) (*)	·
	_	,
	Flexible Polymer Foam (MD) (*)	'
	Rigid Polymer Foam (LD) (*)	ı
	Rigid Polymer Foam (MD)(*) Bigid Bolymer Foam (HD)(*)	67 - 157
	1	

¹ For full names and acronyms of polymers – see Section V. (*) glass transition (softening) temperature n/a: not applicable (materials decompose, rather than melt) (Data courtesy of Granta Design Ltd)

II.2 DENSITY, ρ

7.05 7.88 7.78 7.78 7.78 8.77 7.78 1.74 1.74 1.34 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35			ρ (Mg/m³)
High Carbon Steels	Metals		
High Carbon Steels 7.8		Cast Irons	
Medium Carbon Steels		High Carbon Steels	,
Low Carbon Steels		Medium Carbon Steels	,
Low Alloy Steels		Low Carbon Steels	
ferrous Aluminum Alloys 7.6 - Copper Alloys 2.5 - Lead Alloys 1.74 - Magnesium Alloys 8.93 - Itanium Alloys 1.74 - Nickel Alloys 4.4 - Zinc Alloys 4.4 - Zinc Alloys 2.2 - Glass Ceramic 2.2 - Silica Glass 2.4 - Soda-Lime Glass 2.4 - Soda-Lime Glass 2.2 - Silica Glass 2.4 - Concrete, typical 2.2 - Stone 3.26 - Aluminium Nitride 2.3 - Silicon Carbide 3.5 - Silicon Carbide 3.5 - Silicon Nitride 2.3 - Iungsten Carbide 3 - Silicon Nitride 2.66 - Silicon Nitride 1.5 - Cork 6-RRP Leather 0.12 - Leather 0.6 - Cork 0.6 - Leather 0.6 - Wood, typical (Longitudinal) 0.6 -		Low Alloy Steels	,
ferrous Aluminium Alloys 2.5 - Copper Alloys 1.74 - Lead Alloys 1.74 - Nickel Alloys 1.74 - Nickel Alloys 4.4 - Titanium Alloys 4.4 - Zinc Alloys 4.95 - Silica Glass 2.2 - Silica Glass 2.44 - Soda-Lime Glass 2.44 - Soda-Lime Glass 2.44 - Soda-Lime Glass 2.2 - Soda-Lime Glass 2.2 - Alumina 3.26 - Alumina 3.26 - Aluminium Nitride 2.3 - Silicon 2.35 - Silicon Carbide 3 - Silicon Carbide 3 - Silicon Nitride 1.5 - Cork CFRP - - Bamboo Cork 0.12 - <tr< td=""><td></td><td>Stainless Steels</td><td>,</td></tr<>		Stainless Steels	,
Copper Alloys 8.93 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	Non-ferrous	Aluminium Alloys	,
Lead Alloys 10 -		Copper Alloys	,
Magnesium Alloys 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.75 1.		Lead Allovs	10 - 11.4
Nickel Alloys 7 7 7 7 7 7 7 7 7		Magnesium Allovs	,
Titanium Alloys 4.4 2.5 Zinc Alloys 2.2 4.95 Zinc Alloys 2.2 2.2 Glass Ceramic 2.2 2.2 Soda-Lime Glass 2.44 2.5 Soda-Lime Glass 2.44 2.5 Concrete, typical 2.5 3.5 Stone Alumina 3.26 3.5 Boron Carbide 3.26 3.5 Silicon Carbide 3.26 3.5 Silicon Carbide 3.26 3.5 Silicon Nitride 3.26 3.5 Silicon Carbide 3.26 3.5 Silicon Carbide 2.35 3.5 Silicon Nitride 2.35 3.5 CRRP Tungsten Carbide 15.3 1.5 CRRP CRRP 1.75 Cork C		Nickel Allovs	,
Silica Glass		Titaniim Allovs	,
Bamboo Cork		Zinc Alloys	,
Bamboo Cook	Ceramics		
Glass Ceramic 2.2 Silica Glass 2.17 Soda-Lime Glass 2.17 Soda-Lime Glass 2.44 Porous Brick 1.9 Concrete, typical 2.2 Stone 3.26 Aluminium Nitride 3.26 Boron Carbide 2.35 Silicon Carbide 3 Silicon Nitride 2.35 Silicon Nitride 3 Tungsten Carbide 3 Silicon Nitride 15.3 Tungsten Carbide 15.3 Silicon Nitride 1.5 CRRP 1.75 Cork Cork Cork Leather Wood, typical (Longitudinal) 0.6 Wood, typical (Longitudinal) 0.6 Wood, typical (Transpres) 0.6 Wood, typical (Transpress) 0.6 Wood, typical (T	Glasses	Borosilicate Glass	,
Silica Glass 2.17 2.24 2.44 2.25 2.44 2.2 2.3 2.		Glass Ceramic	
Soda-Lime Glass 2.44		Silica Glass	,
Porous Brick 1.9 -		Soda-Lime Glass	,
Concrete, typical Stone Stone Stone Alumina Alumina Silicon Carbide Silicon Silicon Nitride Silicon Nitride Silicon Carbide Silicon Noval Aluminium/Silicon Carbide Silicon Noval Aluminium/Silicon Carbide Silicon Carbide Silicon Noval Aluminium/Silicon Carbide 15.3 - 2.66 - 1.57 - 1.75 -	Porous	Brick	,
Stone Stone 3.5		Concrete, typical	,
Alumina 3.5		Stone	1
Aluminium Nitride 3.26 - 2.35	Technical	Alumina	
Boron Carbide 2.35 - Silicon Silicon Carbide 3 - Silicon Nitride 3 - Silicon Nitride 3 - Silicon Nitride 3 - Tungsten Carbide 15.3 - Metal Aluminium/Silicon Carbide 2.66 - CFRP		Aluminium Nitride	3.26 - 3.33
Silicon 2.3 - Silicon Carbide 3 - Silicon Nitride 3 - Silicon Nitride 3 - Silicon Nitride 3 - Tungsten Carbide 15.3 - Metal Aluminium/Silicon Carbide 2.66 - 1.5 - 1.5 - CFRP 1.75 - Bamboo 0.6 - Cork 0.12 - Leather Wood, typical (Longitudinal) 0.6 - Wood, typical (Longitudinal) 0.6 - Wood, typical (Tanguardo) 0.6 - Wood, ty		Boron Carbide	2.35 - 2.55
Silicon Carbide		Silicon	
Silicon Nitride		Silicon Carbide	,
Tungsten Carbide 15.3 - Node trailed 15.3 - Node trailed 2.66 - 1.5 - 1.5 - 1.76 - 1.76 - 1.77 - 1.77 - 1.78 - 1.78 - 1.79 - 1.79 - 1.70 -		Silicon Nitride	,
Metal Aluminium/Silicon Carbide 2.66 - 1.5 - 1.5 - 1.75 -		Tungsten Carbide	15.3 - 15.9
Metal Aluminium/Silicon Carbide 2.66 - Polymer CFRP 1.5 - GFRP 1.75 - Cork 0.12 - Leather Wood, typical (Longitudinal) 0.6 - Wood typical (Transpared) 0.6 -	Composites		
1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.75 -	Metal	Aluminium/Silicon Carbide	ı
Bamboo 0.6 - Cork 0.12 - Cork Wood, typical (Longitudinal) 0.6 - 0.81 - 0.8	Polymer	CFRP	ı
Bamboo 0.6 - Cork Leather Wood, typical (Longitudinal) 0.6 - Wood typical (Transverse) 0.6 -		GFRP	
0.6 - 0.6 - 0.12 - 0.12 - 0.81 - 0.81 - 1. (Longitudinal) 0.6 - 1. (Longitudin	Natural		
0.12 - 0.81 - 1, typical (Longitudinal) 0.6 - 1 tunion (Transpared) 0.6		Bamboo	
0.81		Cork	
) ()		Leather	
		Wood, typical (Edigitadiila)	

		l) Q	p (Mg/m³)	m³)
Polymers 1)	,
Elastomer	Butyl Rubber	0.9		0.92
	Isoprene (IR)	0.93		0.94
	Natural Rubber (NR)	0.92	٠	0.93
	Neoprene (CR)	1.23	•	1.25
	Polyurethane Elastomers (eIPU)	1.02	•	1.25
	Silicone Elastomers	1.3	٠	1.8
Thermoplastic	ABS	1.01	٠	1.21
	Cellulose Polymers (CA)	0.98	•	1.3
	lonomer (I)	0.93	•	96.0
	Nylons (PA)	1.12	•	1.14
	Polycarbonate (PC)	1.14	٠	1.21
	PEEK	1.3	٠	1.32
	Polyethylene (PE)	0.939	•	96.0
	PET	1.29	,	4.
	Acrylic (PMMA)	1.16	•	1.22
	Acetal (POM)	1.39	1	1.43
	Polypropylene (PP)	0.89	•	0.91
	Polystyrene (PS)	1.04	1	1.05
	Polyurethane Thermoplastics (tpPU)	1.12	٠	1.24
	PVC	1.3	٠	1.58
	Teflon (PTFE)	2.14	•	2.2
Thermoset	Epoxies	1.	ı	4 .
	Phenolics	1.24	1	1.32
	Polyester	1.04	٠	1.4
Polymer Foams				
1	Flexible Polymer Foam (VLD)	0.016	•	0.035
	Flexible Polymer Foam (LD)	0.038	•	0.07
	Flexible Polymer Foam (MD)	0.07	1	0.115
	Rigid Polymer Foam (LD)	0.036	•	0.07
	Rigid Polymer Foam (MD)	0.078	•	0.165
	Rigid Polymer Foam (HD)	0.1	•	0.47

1 For full names and acronyms of polymers – see Section V (Data courtesy of Granta Design Ltd).

II.3 YOUNG'S MODULUS, E

		E	E (GPa)
Polymers 1			
Elastomer	Butyl Rubber EVA	0.001	- 0.002
	Isoprene (IR)	0.0014	- 0.004
	Natural Rubber (NR)	0.0015	- 0.0025
	Neoprene (CR)	0.0007	- 0.002
	Polyurethane Elastomers (eIPU)	0.002	- 0.003
	Silicone Elastomers	0.005	- 0.02
Thermoplastic	ABS		- 2.9
	Cellulose Polymers (CA)	1.6	- 2
	lonomer (I)	0.2	- 0.424
	Nylons (PA)	2.62	- 3.2
	Polycarbonate (PC)	7	- 2.44
	PEEK	3.5	- 4.2
	Polyethylene (PE)	0.621	- 0.896
	PET	2.76	- 4.14
	Acrylic (PMMA)	2.24	- 3.8
	Acetal (POM)	2.5	- 2
	Polypropylene (PP)	0.896	- 1.55
	Polystyrene (PS)	2.28	- 3.34
	Polyurethane Thermoplastics (tpPU)	1.31	- 2.07
	PVC	2.14	- 4.14
	Teflon (PTFE)	0.4	- 0.552
Thermoset	Epoxies	2.35	- 3.075
	Phenolics	2.76	- 4.83
	Polyester	2.07	- 4.41
Polymer Foams			
	Flexible Polymer Foam (VLD)	0.0003	- 0.001
	Flexible Polymer Foam (LD)	0.001	- 0.003
	Flexible Polymer Foam (MD)	0.004	- 0.012
	Rigid Polymer Foam (LD)	0.023	- 0.08
	Rigid Polymer Foam (MD)	0.08	- 0.2
	Rigid Polymer Foam (HD)	0.2	- 0.48

1 For full names and acronyms of polymers – see Section V (Data courtesy of Granta Design Ltd)

II.4 YIELD STRESS, σ_{y} , AND TENSILE STRENGTH, σ_{ts}

		σ _y (MPa)		σ _{ts} (σ _{ts} (MPa)
Metals					
Ferrons	Cast Irons	,		350 -	1000
	High Carbon Steels	,	ıO	- 099	1640
	Medium Carbon Steels	1		410 -	1200
	Low Carbon Steels			345 -	580
	Low Alloy Steels		0	460 -	1200
	Stainless Steels	170 - 1000	0	480 -	2240
Non-ferrous	Aluminium Alloys	30 - 500		28	550
	Copper Alloys	30 - 500		100	550
	Lead Allovs	8 - 14		12 -	20
	Magnesium Allovs	,		185 -	475
	Nickel Alloys	70 - 1100	0	345 -	1200
	Titanium Alloys	250 - 1245	ıo	300	1625
	Zinc Alloys	80 - 450		135 -	520
Ceramics					
Glasses	Borosilicate Glass (*)			22 -	32
	Glass Ceramic (*)	750 - 2129	6	- 29	177
	Silica Glass (*)	1100 - 1600	0	45 -	155
	Soda-Lime Glass (*)	360 - 420		31	35
Porous	Brick (*)	,		- 2	4
	Concrete, typical (*)	,		2	9
	Stone (*)	,		2	17
Technical	Alumina (*)		0	320	665
	Aluminium Nitride (*)	,	0	197 -	270
	Boron Carbide (*)	2583 - 5687	_	350 -	260
	Silicon (*)	ı	0	160 -	180
	Silicon Carbide (*)	ı	0	370 -	089
	Silicon Nitride (*)		0	- 069	800
	Tungsten Carbide (*)	3347 - 6833	3	370 -	550
Composites					
Metal	Aluminium/Silicon Carbide	ı		290 -	365
Polymer	CFRP	•	0	- 059	1050
	GFRP	110 - 192		138 -	241
Natural					
	Bamboo	ı		36	45
	Cork			0.5	2.5
	Leather	5 - 10		- 20 -	700 700
	Wood, typical (Loligitudiilal)			8 4) - o
			-		ı

(Data courtesy of Granta Design Ltd)

		$\sigma_{ m y}$ (MPa)	¥	a)	σ _{ts} (MPa)	Σ	Pa)
Polymers 1							
Elastomer	Butyl Rubber	7		က	2	•	10
	EVA	12	,	18	16	•	20
	Isoprene (IR)	20		25	20	ı	22
	Natural Rubber (NR)	20	,	30	22	ı	32
	Neoprene (CR)	3.4	,	24	3.4	ı	24
	Polyurethane Elastomers (eIPU)	52	,	51	22	ı	21
	Silicone Elastomers	2.4		5.5	2.4	ı	5.5
Thermoplastic	ABS	18.5	,	51	27.6	•	55.2
	Cellulose Polymers (CA)	22	,	45	22	•	20
	lonomer (I)	8.3	,	15.9	17.2	ı	37.2
	Nylons (PA)	20	,	94.8	06	ı	165
	Polycarbonate (PC)	29	,	20	9	ı	72.4
	PEEK	92	,	92	20	•	103
	Polyethylene (PE)	17.9		29	20.7	ı	44.8
	PET	56.5	,	62.3	48.3	•	72.4
	Acrylic (PMMA)	53.8		72.4	48.3	1	9.62
	Acetal (POM)	48.6	,	72.4	90	ı	89.6
	Polypropylene (PP)	20.7	,	37.2	27.6	ı	4.14
	Polystyrene (PS)	28.7	,	56.2	35.9	ı	56.5
	Polyurethane Thermoplastics (tpPU)	40	,	53.8	31	ı	62
	PVC	35.4	,	52.1	40.7	ı	65.1
	Teflon (PTFE)	15	,	25	20	ı	30
Thermoset	Epoxies	36	,	71.7	45	ı	89.6
	Phenolics	27.6	,	49.7	34.5	ı	62.1
	Polyester	33	,	40	41.4	1	89.6
Polymer Foams							
	Flexible Polymer Foam (VLD)	0.01		0.12	0.24	ı	0.85
	Flexible Polymer Foam (LD)	0.02	,	0.3	0.24	ı	2.35
	Flexible Polymer Foam (MD)	0.05	,	0.7	0.43	ı	2.95
	Rigid Polymer Foam (LD)	0.3		1.7	0.45	ı	2.25
	Rigid Polymer Foam (MD)	4.0	,	3.5	0.65	ı	5.1
	Rigid Polymer Foam (HD)	0.8	-	12	1.2	ı	12.4

¹ For full names and acronyms of polymers – see Section V.

(*) NB: For ceramics, yield stress is replaced by *compressive strength*, which is more relevant in ceramic design. Note that ceramics are of the order of 10 times stronger in compression than in tension.

II.5 FRACTURE TOUGHNESS (PLANE STRAIN), KIC

		K _{IC} (MPa√m)
Metals Ferrous	Cast Irons High Carbon Steels	1 1
	Medium Carbon Steels Low Carbon Steels Low Alloy Steels Stainless Steels	
Non-ferrous	Aluminium Alloys Copper Alloys Lead Alloys Magnesium Alloys	22 - 35 30 - 90 5 - 15 - 18
	Nickel Alloys Titanium Alloys Zinc Alloys	80 - 110 14 - 120 10 - 100
Ceramics		
Glasses	Borosilicate Glass Glass Ceramic Silica Glass	0.5 - 0.7 1.4 - 1.7 0.6 - 0.8
Porous	Soda-Lime Glass Brick	0.55 - 0.7
	Concrete, typical	0.35 - 0.45
Technical	Alumina	
	Aluminium Nitride Boron Carbide	2.5 - 3.4
	Silicon	
	Silicon Carbide	2.5 - 5
	Tungsten Carbide	2 - 3.8
Composites	Original Origina Origina Origina Origina Origina Origina Origina Origina Or	77
Polymer	Audilling III Sill Coll Dide CFRP GFRP	
Natural		1
	Bamboo	0.05 - 0.1
	Leather	,
	Wood, typical (Longitudinal) Wood, typical (Transverse)	1 1
Jata courteev c	า เ	

(Data courtesy of Granta Design Ltd)

		/ _{IC} (MP	K _{IC} (MPa√m)
Polymers 1				
Elastomer	Butyl Rubber EVA	0.07		0.1
	Isoprene (IR)	0.07	ı	0.1
	Natural Rubber (NR)	0.15	ı	0.25
	Neoprene (CR)	0.1	ı	0.3
	Polyurethane Elastomers (eIPU)	0.2	•	4.0
	Silicone Elastomers	0.03	•	0.5
Thermoplastic	ABS	1.19	,	4.30
	Cellulose Polymers (CA)	_	•	2.5
	lonomer (I)	1.14	ı	3.43
	Nylons (PA)	2.22	ı	5.62
	Polycarbonate (PC)	2.1	•	4.60
	PEEK	2.73	•	4.30
	Polyethylene (PE)	<u>4</u> .	ı	1.72
	PET	4.5	ı	5.5
	Acrylic (PMMA)	0.7	ı	9.
	Acetal (POM)	1.71	•	4.2
	Polypropylene (PP)	က	ı	4.5
	Polystyrene (PS)	0.7	,	[-
	Polyurethane Thermoplastics (tpPU)	1.84	ı	4.97
	PVC	1.46	,	5.12
	Teflon (PTFE)	1.32	ı	. 8.
Thermoset	Epoxies	4.0	ı	2.22
	Phenolics	0.79		1.21
	Polyester	1.09	•	1.70
Polymer Foams				
•	Flexible Polymer Foam (VLD)	0.005	ı	0.02
	Flexible Polymer Foam (LD)	0.015	•	0.05
	Flexible Polymer Foam (MD)	0.03	•	0.09
	Rigid Polymer Foam (LD)	0.002	ı	0.02
	Rigid Polymer Foam (MD)	0.007	,	0.049
	Rigid Polymer Foam (HD)	0.024	•	0.091

¹ For full names and acronyms of polymers – see Section V.

Note: $K_{\rm IC}$ only valid for conditions of linear elastic fracture mechanics (see I. Formulae & Definitions). Plane Strain Toughness, $G_{\rm IC}$, may be estimated from $K_{\rm IC}^2 = E G_{\rm IC} / (1 - \nu^2) \approx E G_{\rm IC}$ (as $\nu^2 \approx 0.1$).

II.6 ENVIRONMENTAL RESISTANCE

Wear resistance

Wear resistance

		Flammability	Fresh water	Salt water	(VU) Jhgilnu2
Polymers 1		ı			1
Elastomer	Butyl Rubber EVA	шш	∢ ∢	∢ ∢	മ മ
	Isoprene (IR)	Ш	٨	⋖	В
	Natural Rubber (NR)	шц	∢ <	∢ <	ω α
	Neoprane (Cr.) Polyurethane Elastomers (eIPU)	и ш	۲ ∢	(∢	<u>a</u>
Ē	Silicone Elastomers	۵ ۵	∢ •	∢ •	a (
rermopiastic	ABS Cellulose Polvmers (CA)	ם ם	∢ ∢	∢ ∢	<u>م</u> د
	lonomer (I)		< <	< <	ω .
	Nylons (PA)	ပ	Α,	⋖	O
	Polycarbonate (PC)	۵ ۵	∢ <	< <	m <
	Polyethylene (PE)	۵ ۵	۲ ∢	(∢	(0
	PEŤ	۵	Α	٨	В
	Acrylic (PMMA)	۵	Α.	∢ ·	∢ (
	Acetal (POM)	ا ۵	۷ ۰	۷٠	ပ (
	Polypropylene (PP)	ے د	< <	< <	ם כ
	Polyurethane Thermoplastics (tpPU)	ပ	< <	< <	o m
	PVC	⋖	٧	4	⋖
	Teflon (PTFE)	⋖	⋖	⋖	ш
Thermoset	Epoxies	В	4	⋖	В
	Phenolics	ص د	∢ <	< <	∢ <
Polymer Foams	- Officer	٥	C	C	(
	Flexible Polymer Foams	ш	∢ ∘	∢ ∘	O a
	Rigid Polymer Foams	ن	4	٨	מ

 \square

ωШ

AABABABABAAA

A = very good; B = good; C = average; D = poor; E = very poor. ¹ For full names and acronyms of polymers – see Section V. (Data courtesy of Granta Design Ltd) Ranking: $\mathbf{m} \circ \mathbf{O}$ A B B

II.7 UNIAXIAL TENSILE RESPONSE OF SELECTED METALS & POLYMERS

Figure 2.1 Tensile response of some common metals

Figure 2.2 Tensile response of some common polymers

III. MATERIAL PROPERTY CHARTS

III.1 YOUNG'S MODULUS - DENSITY

Figure 3.1: Young's modulus, E, against density, ρ . The design guide-lines assist in selection of materials for minimum weight, stiffness-limited design. (Data courtesy of Granta Design Ltd)

III.2 STRENGTH - DENSITY

Figure 3.2: Failure strength, σ_f , against density, ρ . Failure strength is defined as the *tensile elastic limit* (usually yield stress) for all materials other than ceramics, for which it is the *compressive strength*. The design guide-lines assist in selection of materials for minimum weight, strength-limited design. (Data courtesy of Granta Design Ltd)

III.3 YOUNG'S MODULUS - STRENGTH

Figure 3.3: Young's modulus, E, against failure strength, σ_f . Failure strength is defined as the *tensile elastic limit* (usually yield stress) for all materials other than ceramics, for which it is the *compressive strength*. The design guide-lines assist in the selection of materials for maximum stored energy, volume-limited design. (Data courtesy of Granta Design Ltd)

III.4 FRACTURE TOUGHNESS - STRENGTH

Figure 3.4: Fracture toughness (plane strain), K_{IC} , against failure strength, σ_f . Failure strength is defined as the *tensile elastic limit* (usually yield stress) for all materials other than ceramics, for which it is the *compressive strength*. The contours show $K_{IC}^2/\pi\sigma_f^2$, which is approximately the diameter of the process zone at a crack tip. Valid application of linear elastic fracture mechanics using K requires that the specimen and crack dimensions are large compared to this process zone. The design guide-lines are used in selecting materials for damage tolerant design. (Data courtesy of Granta Design Ltd)

III.5 MAXIMUM SERVICE TEMPERATURE

Figure 3.5: Maximum service temperature. The shaded bars extend to the maximum service temperature – materials may be used safely for all temperatures up to this value, without significant property degradation. (Note: there is a modest range of maximum service temperature in a given material class – not all variants within a class may be used up to the temperature shown, so caution should be exercised if a material appears close to its limit).

NB: For full names and acronyms of polymers – see Section V. (Data courtesy of Granta Design Ltd)

III.6 MATERIAL PRICE (PER KG)

Figure 3.6: Material price (per kg), C_m (2003 data). C_m represents raw material price/kg, and does not include manufacturing or end-of-life costs.

NB: For full names and acronyms of polymers – see Section V. (Data courtesy of Granta Design Ltd)

IV. PROCESS ATTRIBUTE CHARTS

IV.1 MATERIAL - PROCESS COMPATIBILITY MATRIX (SHAPING)

Figure 4.1a: Metals

	r						
BuininseM		•	•	•	•	•	•
Powder Methods		•	•	•	•	•	•
Sheet Forming			•	•	•	•	•
Extrusion					•		•
Rolling\ Forging		•	•	•	•	•	•
Investment Gasting	•	•	•	•	•	•	
Die Casting	•			•	•	•	•
Sand Barting	•	•	•	•	•	•	
	Ferrous Cast Irons	Medium/High Carbon Steels	Low Carbon Steels	Low Alloy/Stainless Steels	Aluminium, Copper, Lead, Magnesium, Zinc Alloys	Nickel Alloys	Titanium Alloys
Metals	Ferrous				Non-ferrous Aluminium Magnesiur		

Figure 4.1b: Polymers and Foams

6				
Composite Forming			•	
Polymer Casting			•	
Rotational gnibluoM	•	•	•	•
Compression Moulding	•	•	•	
Wold Moulding		•		
Injection Moulding		•		•
Machining	•	•		•
	' 0	Ŋ	ts	JS
Polymers	Elastomers	hermoplastics	Thermosets	Polymer Foams

Notes on other materials:

Ceramics are all processed by powder methods, and Glasses are also moulded. Both are difficult to machine.

Polymer Composites are shaped by dedicated forming techniques, and are difficult to machine.

Natural Materials can only be machined, though some woods are also hot formed.

(Data courtesy of Granta Design Ltd)

Figure 4.2: Process attribute chart for shaping processes: mass range (kg)

Figure 4.3: Process attribute chart for shaping processes: section thickness (m) (DATA COURTESY OF GRANTA DESIGN LTD)

IV.4 SURFACE ROUGHNESS

Figure 4.4: Process attribute chart for shaping processes: surface roughness (μm)

Figure 4.5: Process attribute chart for shaping processes: dimensional tolerance (mm)

Tolerance (mm)

IV.6 ECONOMIC BATCH SIZE

Figure 4.6: Process attribute chart for shaping processes: economic batch size (Data courtesy of Granta Design Ltd)

V. CLASSIFICATION AND APPLICATIONS OF ENGINEERING MATERIALS

V.1 METALS: FERROUS ALLOYS, NON-FERROUS ALLOYS

Metals		Applications
Ferrous	Cast Irons	Automotive parts, engine blocks, machine tool structural parts, lathe heds
		received party, organic process, magnification of account of the control of the c
	High Carbon Steels	Cutting tools, springs, bearings, cranks, shafts, railway track
	Medium Carbon Steels	General mechanical engineering (tools, bearings, gears, shafts, bearings)
	Low Carbon Steels	Steel structures ("mild steel") – bridges, oil rigs, ships; reinforcement for concrete; automotive parts, car body panels; galvanised sheet; packaging (cans, drums)
	Low Alloy Steels	Springs, tools, ball bearings, automotive parts (gears connecting rods etc)
	Stainless Steels	Transport, chemical and food processing plant, nuclear plant, domestic ware (cutlery, washing machines, stoves), surgical implements, pipes, pressure vessels, liquid gas containers
Non-ferrous	Aluminium Alloys	
	Casting Alloys	Automotive parts (cylinder blocks), domestic appliances (irons)
	Non-heat-treatable Alloys	Electrical conductors, heat exchangers, foil, tubes, saucepans, beverage cans, lightweight ships, architectural panels
	Heat-treatable Alloys	Aerospace engineering, automotive bodies and panels, lightweight structures and ships
	Copper Alloys	Electrical conductors and wire, electronic circuit boards, heat exchangers, boilers, cookware, coinage, sculptures
	Lead Alloys	Roof and wall cladding, solder, X-ray shielding, battery electrodes
	Magnesium Alloys	Automotive castings, wheels, general lightweight castings for transport, nuclear fuel containers; principal alloying addition to Aluminium Alloys
	Nickel Alloys	Gas turbines and jet engines, thermocouples, coinage; alloying addition to austenitic stainless steels
	Titanium Alloys	Aircraft turbine blades; general structural aerospace applications; biomedical implants.
	Zinc Alloys	Die castings (automotive, domestic appliances, toys, handles); coating on galvanised steel

V.2 POLYMERS AND FOAMS

Polymers		Abbreviation	Applications
Elastomer	Butyl Rubber		Tyres, seals, anti-vibration mountings, electrical insulation, tubing
	Ethylene-vinyl-acetate	EVA	Bags, films, packaging, gloves, insulation, running shoes
	Isoprene	田	Tyres, inner tubes, insulation, tubing, shoes
	Natural Rubber	NR	Gloves, tyres, electrical insulation, tubing
	Polychloroprene (Neoprene)	CR	Wetsuits, O-rings and seals, footware
	Polyurethane Elastomers	el-PU	Packaging, hoses, adhesives, fabric coating
	Silicone Elastomers		Electrical insulation, electronic encapsulation, medical implants
Thermoplastic	Acrylonitrile butadiene styrene	ABS	Communication appliances, automotive interiors, luggage, toys, boats
	Cellulose Polymers	CA	Tool and cutlery handles, decorative trim, pens
	lonomer	_	Packaging, golf balls, blister packs, bottles
	Polyamides (Nylons)	PA	Gears, bearings; plumbing, packaging, bottles, fabrics, textiles, ropes
	Polycarbonate	PC	Safety goggles, shields, helmets; light fittings, medical components
	Polyetheretherketone	PEEK	Electrical connectors, racing car parts, fibre composites
	Polyethylene	PE	Packaging, bags, squeeze tubes, toys, artificial joints
	Polyethylene terephthalate	PET	Blow moulded bottles, film, audio/video tape, sails
	Polymethyl methacrylate (Acrylic)	PMMA	Aircraft windows, lenses, reflectors, lights, compact discs
	Polyoxymethylene (Acetal)	POM	Zips, domestic and appliance parts, handles
	Polypropylene	ЬР	Ropes, garden furniture, pipes, kettles, electrical insulation, astroturf
	Polystyrene	PS	Toys, packaging, cutlery, audio cassette/CD cases
	Polyurethane Thermoplastics	tp-PU	Cushioning, seating, shoe soles, hoses, car bumpers, insulation
	Polyvinylchloride	PVC	Pipes, gutters, window frames, packaging
	Polytetrafluoroethylene (Teflon)	PTFE	Non-stick coatings, bearings, skis, electrical insulation, tape
Thermoset	Epoxies		Adhesives, fibre composites, electronic encapsulation
	Phenolics		Electrical plugs, sockets, cookware, handles, adhesives
	Polyester		Furniture, boats, sports goods
Polymer Foams	Flexible Polymer Foam		Packaging, buoyancy, cushioning, sponges, sleeping mats
	Rigid Polymer Foam		Thermal insulation, sandwich panels, packaging, buoyancy

V.3 COMPOSITES, CERAMICS, GLASSES AND NATURAL MATERIALS

_		
		Applications
	Aluminium/Silicon Carbide	Automotive parts, sports goods
Polymer CFRP	ЗР	-ightweight structural parts (aerospace, bike frames, sports goods, boat hulls and oars, springs)
GFRP	₹P	Boat hulls, automotive parts, chemical plant
Ceramics		
Glasses Bord	Borosilicate Glass	Ovenware, laboratory ware, headlights
Glas	Glass Ceramic	Cookware, lasers, telescope mirrors
Silig	Silica Glass	High performance windows, crucibles, high temperature applications
Sod	Soda-Lime Glass	Windows, bottles, tubing, light bulbs, pottery glazes
Porous Brick	¥	Buildings
Conc	Concrete	General civil engineering construction
Stone	ЭС	Buildings, architecture, sculpture
Technical Alumina	nina	Sutting tools, spark plugs, microcircuit substrates, valves
Alun	Aluminium Nitride	Microcircuit substrates and heatsinks
Borc	Boron Carbide	-ightweight armour, nozzles, dies, precision tool parts
Silicon	nox	Microcircuits, semiconductors, precision instruments, IR windows, MEMS
Silic	Silicon Carbide	High temperature equipment, abrasive polishing grits, bearings, armour
Silic	Silicon Nitride	Bearings, cutting tools, dies, engine parts
Tung	Tungsten Carbide	Cutting tools, drills, abrasives
Natural		
Bam	Bamboo	Building, scaffolding, paper, ropes, baskets, furniture
Cork	~	Corks and bungs, seals, floats, packaging, flooring
Leather	ther	Shoes, clothing, bags, drive-belts
Wood	pc	Construction, flooring, doors, furniture, packaging, sports goods

VI. EQUILIBRIUM (PHASE) DIAGRAMS

Figure 6.1 Copper – Nickel equilibrium diagram

Figure 6.2 Lead – Tin equilibrium diagram

Figure 6.3 Iron – Carbon equilibrium diagram

Figure 6.4 Aluminium – Copper equilibrium diagram

Figure 6.5 Aluminium – Silicon equilibrium diagram

Figure 6.6 Copper – Zinc equilibrium diagram

Figure 6.7 Copper – Tin equilibrium diagram

Figure 6.8 Titanium – Aluminium equilibrium diagram

Figure 6.9 Silica – Alumina equilibrium diagram

VII. HEAT TREATMENT OF STEELS

Figure 7.1 Isothermal transformation diagram for 1% nickel steel, BS503M40 (En12)

Figure 7.2 Jominy end quench curves for 1% nickel steel, BS503M40 (En12)

Figure 7.3 Isothermal transformation diagram for 1.5% Ni – Cr – Mo steel, BS817M40 (En24)

Figure 7.4 Jominy end quench curves for 1.5% Ni – Cr – Mo steel, BS817M40 (En24)

VIII. PHYSICAL PROPERTIES OF SELECTED ELEMENTS

ATOMIC PROPERTIES OF SELECTED ELEMENTS

Element	Symbol	Atomic Number	Relative Atomic	Melting Point	Crystal structure 2	Lattice constants	³ (at 20°C)
		rvamber	Weight 1	(°C)	(at 20°C)	a, (b) (Å)	c (Å)
Aluminium	Al	13	26.982	660	f.c.c.	4.0496	
Beryllium	Ве	4	9.012	1280	h.c.p.	2.2856	3.5843
Boron	В	5	10.811	2300	t.	8.73	5.03
Carbon	С	6	12.011	3500	hex.	2.4612	6.7079
Chlorine	CI	17	35.453	– 101	_	_	
Chromium	Cr	24	51.996	1900	b.c.c.	2.8850	
Copper	Cu	29	63.54	1083	f.c.c.	2.5053	
Germanium	Ge	32	72.59	958	d.	5.6575	
Gold	Au	79	196.967	1063	f.c.c.	4.0786	
Hydrogen	Н	1	1.008	- 259	_	_	
Iron	Fe	26	55.847	1534	b.c.c.	2.8663	
Lead	Pb	82	207.19	327	f.c.c.	4.9505	
Magnesium	Mg	12	24.312	650	h.c.p.	3.2094	5.2103
Manganese	Mn	25	54.938	1250	cub.	8.912	
Molybdenum	Мо	42	95.94	2620	b.c.c.	3.1468	
Nickel	Ni	28	58.71	1453	f.c.c.	3.5241	
Niobium	Nb	41	92.906	2420	b.c.c.	3.3007	
Nitrogen	N	7	14.007	- 210	_	_	
Oxygen	0	8	15.999	- 219	_	_	
Phosphorus	Р	15	30.974	44	cub.	7.17 (at – 35°C)	
Silicon	Si	14	28.086	1414	d.	5.4305	
Silver	Ag	47	107.870	961	f.c.c.	4.0862	
Sulphur	S	16	32.064	119	f.c.orth.	10.437, (12.845)	24.369
Tin	Sn	50	118.69	232	b.c.t.	5.8313	3.1812
Titanium	Ti	22	47.90	1670	h.c.p.	2.9504	4.6833
Tungsten	W	74	183.85	3380	b.c.c.	3.1652	
Vanadium	V	23	50.942	1920	b.c.c.	3.0282	
Zinc	Zn	30	65.37	419	h.c.p.	2.6649	4.9468
Zirconium	Zr	40	91.22	1850	h.c.p.	3.2312	5.1476

¹ The values of atomic weight are those in the Report of the International Commission on Atomic Weights (1961). The unit is $1/12^{th}$ of the mass of an atom of C^{12} .

f.c.c. = face-centred cubic; h.c.p. = hexagonal close-packed; b.c.c. = body-centred cubic; t. = tetragonal; hex. = hexagonal; d. = diamond structure; cub. = cubic; f.c.orth. = face-centred orthorhombic; b.c.t. = body-centred tetragonal.

³ Lattice constants are in Ångström units (1 Å = 10^{-10} m)

OXIDATION PROPERTIES OF SELECTED ELEMENTS

Standard electrode potentials (300K, molar solutions)

Free energy of oxidation (at 273K)

Normal hydrogen scale (volts)	- 2.36	- 1.66	-0.76	-0.74	- 0.44	- 0.25	- 0.14	- 0.13	0.00	+ 0.15	+ 0.34	+ 0.40	+ 0.77	+ 0.80	+ 1.23	+ 1.42
Oxidation reaction for solution of the metal	$Mg \rightarrow Mg^{2+} + 2e^{-}$	$AI \rightarrow AI^{3+} + 3e^-$	$Zn \rightarrow Zn^{2+} + 2e^{-}$	$Cr \rightarrow Cr^{3+} + 3e^-$	$Fe \rightarrow Fe^{2+} + 2e^{-}$	$Ni \rightarrow Ni^{2+} + 2e^-$	$\operatorname{Sn} o \operatorname{Sn}^{2^+} + 2e^-$	$Pb \rightarrow Pb^{2+} + 2e^{-}$	$H_2 \rightarrow 2H^+ + 2e^-$	$\mathrm{Sn}^{2^+} o \mathrm{Sn}^{4^+} + 2\mathrm{e}^-$	$Cu \rightarrow Cu^{2+} + 2e^{-}$	$O_2 + 2H_2O + 4e^- \rightarrow 4(OH)^-$	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	$Ag \rightarrow Ag^{+} + e^{-}$	$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	$Au \rightarrow Au^{3+} + 3e^{-}$

Material	Oxide	Free energy (kJ/mol O ₂)
Beryllium	BeO	- 1182
Magnesium	MgO	- 1162
Aluminium	Al_2O_3	- 1045
Zirconium	ZrO_2	-1028
Titanium	TiO	- 848
Silicon	SiO ₂	- 836
Niobium	Nb_2O_5	- 757
Chromium	Cr_2O_3	- 701
Zinc	ZnO	- 636
Silicon nitride	$3SiO_2 + 2N_2$	- 629
Silicon carbide	$SiO_2 + CO_2$	- 580
Molybdenum	MoO_2	- 534
Tungsten	WO ₃	-510
Iron	Fe ₃ O ₄	- 508
Nickel	OİN	- 439
Most polymers	I	- 400
Diamond, graphite	CO_2	- 389
Lead	Pb ₃ O ₄	- 309
Copper	CnO	- 254
GFRP	I	- 200
Silver	Ag ₂ O	- 5
Gold	Au ₂ O ₃	+ 80

(Data courtesy of Granta Design Ltd)

CONVERSION OF UNITS – STRESS, PRESSURE AND ELASTIC MODULUS *

	MN/m ² (or MPa)	lb/in ²	kgf/mm ²	bar
MN/m ² (or MPa)	1	1.45×10^2	0.102	10
lb/in ²	6.89×10^{-3}	1	7.03 x 10 ⁻⁴	6.89×10^{-2}
kgf/mm ²	9.81	1.42 x 10 ³	1	98.1
bar	0.10	14.48	1.02 x 10 ⁻²	1

CONVERSION OF UNITS – ENERGY*

	J	cal	eV	ft lbf
J	1	0.239	6.24 x 10 ¹⁸	0.738
cal	4.19	1	2.61 x 10 ¹⁹	3.09
eV	1.60 x 10 ⁻¹⁹	3.83 x 10 ⁻²⁰	1	1.18 x 10 ⁻¹⁹
ft lbf	1.36	0.324	8.46 x 10 ¹⁸	1

CONVERSION OF UNITS - POWER*

	kW (kJ/s)	hp	ft lbf/s
kW (kJ/s)	1	1.34	7.38 x 10 ²
hp	0.746	1	5.50 x 10 ²
ft lbf/s	1.36 x 10 ⁻³	1.82 x 10 ⁻³	1

 $^{^{*}}$ To convert row unit to column unit, multiply by the number at the column-row intersection, thus 1 MN/m 2 = 10 bar