RICERCA OPERATIVA - PARTE II

ESERCIZIO 1. (10 punti) Sia dato il seguente problema di PLI

$$\max x_1 + x_2$$

$$x_1 + x_2 \le \frac{9}{4}$$

$$x_1 \le \frac{3}{2}$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in Z$$

Si visualizzi graficamente la chiusura convessa della regione ammissibile di questo problema e se ne dia una descrizione tramite opportune disuguaglianze lineari. Si eseguano quindi le prime due iterazioni dell'algoritmo di taglio di Gomory, visualizzando graficamente a ogni iterazione il taglio aggiunto.

ESERCIZIO 2. (9 punti) Sia dato il seguente problema

$$\begin{aligned} & \min \quad x^3 - \frac{5}{4}x^2y \\ & -x \geq -2 \\ & x \geq 1 \\ & -y \geq -2 \\ & y \geq 1 \end{aligned}$$

- È un problema di programmazione convessa?
- si impostino le condizioni KKT;
- trovare tutti i punti che le soddisfano;
- possiamo affermare che questo problema ammette una soluzione ottima globale? Perché? In caso affermativo dire qual è l'ottimo globale del problema.

ESERCIZIO 3. (5 punti) Si presentino le condizioni che devono essere soddisfatte da un algoritmo line search perché sia garantita la convergenza globale dell'algoritmo stesso.

ESERCIZIO 4. (5 punti) Dato un algoritmo branch-and-bound per i problemi di PLI, discutere tutti i casi che permettono di cancellare un nodo dell'albero.