CR1 – Crittografia 1

Alfonso Pesiri - Fabrizio Zaccari

Tutorato 6 – 30 Aprile 2008

Esercizio 1. Sia $p^n=4,\,8,\,25,\,27,\,32$. In ciascuno di questi casi, svolgere i seguenti punti:

- 1. Calcolare tutti i polinomi monici irriducibili di grado n su \mathbb{F}_p ;
- 2. Dopo aver fissato un polinomio f monico irriducibile, trovare l'ordine ed il polinomio minimo di tutti gli elementi di $\mathbb{F}_{p^n} \simeq \mathbb{F}_p[x]/(f)$;
- 3. Trovare tutte le radici primitive del gruppo moltiplicativo $\mathbb{F}_{p^n}^*$;
- 4. Trovare tutti i sottocampi di \mathbb{F}_{p^n} .

Esercizio 2. Determinare il numero di polinomi irriducibili monici primitivi di grado 12 in $\mathbb{F}_5[x]$. Qual'è la probabilità che preso casualmente un polinomio monico di grado 12 su $\mathbb{F}_5[x]$ esso sia irriducibile?

Esercizio 3. Sia dato il polinomio $f(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$.

- 1. Dimostrare che f(x) è irriducibile;
- 2. Costruire \mathbb{F}_{16} ;
- 3. Trovare un generatore $g \in \mathbb{F}_{16}^*$ e scrivere tutti gli elementi di \mathbb{F}_{16}^* come potenze di g.

Esercizio 4. Si consideri il campo \mathbb{F}_2 . Dopo aver scritto tutti i polinomi irriducibili di grado ≤ 4 , dimostrare che $x^5 + x^2 + 1$ è irriducibile.

Esercizio 5. Mostrare che tutti i polinomi del tipo $x^p + x + 1$ sono riducibili in \mathbb{F}_p , per ogni $p \geq 3$.