Adam's 2nd closed for mula Adam-Moulton 2nd order for mula

Generalized Adam-Moulton formula

Yiti= Yi + DX = pm fiti-m + O[(Ax) H]

M=0

The Values of the Coefficient b_{nm}^* for the Adams-Moulton Formulas, for n up to 6 β* 3 5 n m = 0 β_{1m}^* 1 $2\beta_{2m}^*$ 8 -1 $12\beta_{3m}^{*}$ 19 -51 $24\beta_{4m}^*$ 5 251 646 -264106 -19 $720\beta_{5m}^{*}$ 475 1427 -798-1736 482 27 $1440\beta_{6m}^{*}$

TABLE 9.2

EXAMILE:

Use Adam-Moulton method of order 2 with a step size of $\Delta x = 0.1$ to compute the solution for $0 \le X \le 0.5$

$$y_{i+1} = y_i + \Delta x \left[\frac{f_i}{2} + \frac{f_{i+1}}{2} \right]$$

$$y_{i+1}\left[1+\frac{Ax}{2}\right] = y_i\left[1-\frac{Ax}{2}\right] + Ax\left[\frac{x_i+x_{i+1}}{2}\right]$$

$$y_{i+1} = y_i \left[1 - \frac{\Delta x}{2} \right] + \Delta x \left[\frac{x_i + x_{i+1}}{2} \right]$$

$$y_{i+1} = y_i \left[1 - \frac{\Delta x}{2} \right] + \frac{\Delta x}{2} \left[\frac{x_i + x_{i+1}}{2} \right]$$

$$1 + \frac{\Delta x}{2}$$

Put i=0
$$y_{1} = \frac{y_{0} (1 - \Delta x_{1}) + \Delta x [x_{0} + x_{1}]/2}{1 + \Delta x_{1}/2}$$

$$y_{1} = \frac{(1)[1 - 0.1/2] + 0.1[0 + 0.1]/2}{1 + 0.1/2}$$

$$i = 1$$
 ; $y_2 = \frac{y_1(1-\Delta x/\nu) + \Delta x(x_1+x_2)/2}{1+\Delta x/2}$

$$y_2 = \frac{0.9095(1-0.5/2) + 0.5(0.1+0.0)/2}{1+0.1/2}$$

y2 = 0.8372

۲:	yi	Jiti	Method
0	ı	0.9095	Adam-Moulton
0-1	0-9095	0.8372	Adom- Moulton
0.2	0.8372	0-7813	Adom - Moulton
0.3	0-7813	0.7402	Adam - Moulton
0 ·4	07402	0.7126	Adam- Moulton
Solutin-			