Part IA — Intro to Mechanics

Based on lectures by Dr P. J. O'Donnell Notes taken by Marcus Ng

Michaelmas 2023

The lecture list is taken directly from the course schedule. However, it has been shortened to 8 lectures for this session.

Lecture 1

Brief introduction

Lecture 2: Kinematics of a single particle

Position, velocity, speed, acceleration. Constant acceleration in one-dimension. Projectile motion in two-dimensions.

Lecture 3: Equilibrium of a sinle particle

The vector nature of forces, addition of forces, examples including gravity, tension in a string, normal reaction (Newton's third law), friction. Conditions for equilibrium.

Lecture 4: Equilibrium of a rigid body

Resultant of several forces, couple, moment of a force. Conditions for equilibrium.

Lecture 5: Dynamics of particles

Newton's second law. Examples of pulleys, motion on an inclined plane.

Lecture 6: Dynamics of particles

Further examples, including motion of a projectile with air-resistance.

Lecture 7: Energy

Defintion of energy and work. Kinetic energy, potential energy of a particle in a uniform gravitational field. Conservation of energy.

Lecture 8: Momentum

Definition of momentum (as a vector), conservation of momentum, collisions, coefficient of restitution, impulse.

Lecture 9: Springs, strings and SHM

Force exerted by elastic sptings and strings (Hooke's Law). Oscillations of a particle attached to a spring, and of a particle hanging on a string. Simple harmonic motion of a particle for small displacement from equilibrium.

Lecture 10: Motion in a circle

Derivation of the central acceleration of a particle constrained to move on a circle. Simple pendulum; motion of a particle sliding on a cylinder.

Contents