SEWING MACHINE

Patent number:

JP2003284887

Publication date:

2003-10-07

Inventor:

HORI MASAYUKI

Applicant:

BROTHER IND LTD

Classification:

- international:

D05B87/02

- european:

Application number:

JP20020091561 20020328

Priority number(s): JP20020091561 20020328

Also published as:

US6814016 (B2) US2003183144 (A1)

Report a data error here

Abstract of JP2003284887

PPROBLEM TO BE SOLVED: To provide a sewing machine which makes it possible to surely pass a thread through the eye of a needle by having a transmitting member for transmitting a force for lowering a hook and by having a holding member for holding the thread. <P>SOLUTION: A contact member 158 which comes into contact with the transmitting member 48 and moves this member to a cut-off position when a moving mechanism moves the thread holding member to a prescribed position, is fixed to a support block 54. In other words, the support block 54 is fixed to a sewing machine frame and the contact member 158 is so disposed as to be at a fixed position, regardless of the vertical motions of a needlebar and the needle and a swing in the horizontal direction. <P>COPYRIGHT: (C)2004,JPO

Data supplied from the esp@cenet database - Worldwide

Family list 4 family members for: JP2003284887 Derived from 3 applications.

Back to JP200328

- 1 Sewing machine
 Publication info: CN1448571 A 2003-10-15
- 2 SEWING MACHINE Publication info: **JP2003284887 A** - 2003-10-07
- 3 Sewing machine
 Publication info: US6814016 B2 2004-11-09
 US2003183144 A1 2003-10-02

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-284887 (P2003-284887A)

(43)公開日 平成15年10月7日(2003.10.7)

(51) Int.Cl.7 D05B 87/02 識別記号

FΙ D05B 87/02 テーマコート*(参考) 3B150

審査請求 未請求 請求項の数3

OL (全 13 頁)

(21)出願番号

特顧2002-91561(P2002-91561)

(22)出願日

平成14年3月28日(2002.3.28)

(71)出顧人 000005267

プラザー工業株式会社

愛知県名古屋市瑞穂区苗代町15番1号

(72) 発明者 堀 正幸

名古屋市瑞穂区苗代町15番1号 プラザー

工業株式会社内

(74)代理人 100109195

弁理士 武藤 勝典 (外1名)

Fターム(参考) 3B150 CD05 CD07 CE05 CE25 CE27

FJ01 FJ04

(54) 【発明の名称】 ミシン

(57)【要約】

【課題】フックを下降させる力を伝達する伝達部材及び 糸を保持する保持部材を備えて確実に針の目孔に糸を通 すことができるミシンを提供すること。

【解決手段】移動機構が糸保持部材を所定位置に移動す ると、伝達部材48と当接して伝達部材48を遮断位置 に移動する当接部材158を、支持ブロック54に固定 している。即ち、この支持ブロック54はミシンフレー ムに固定されており、この当接部材158は、針棒や針 の上下動や水平方向の揺動とは関わらず一定の位置にあ るように配置されている。

【特許請求の範囲】

【請求項1】 所定の上下位置に停止する針と、

前記針の目孔を進入可能なフックと、

前記フックを上方に常に付勢する付勢部材と、

前記付勢部材よる付勢力に抗して、前記フックを下方へ 移動する下降力を伝達する伝達位置と、前記下降力の伝 達を遮断した遮断位置との間を移動可能な伝達部材と、 糸を保持する保持部材と、

前記針の目孔に対する所定位置に前記保持部材を移動する移動機構と、

前記移動機構が前記保持部材を前記所定位置に移動する と、前記伝達部材と当接して前記伝達部材を前記遮断位 置に移動する当接部材とを備えること特徴とミシン。

【請求項2】 前記針がミシンフレームに対して相対的 に上下動するものであって、前記当接部材が前記ミシン フレームに支持されたことを特徴とする請求項1に記載 のミシン。

【請求項3】 前記針及び前記フックがミシンフレーム に対して水平方向に揺動するものであって、前記移動機 構が前記ミシンフレームに支持されたことを特徴とする 請求項1または2に記載のミシン。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、保持された糸を針の目孔にフックによって通すミシンに関する。

[0002]

【従来の技術】従来よりミシンの糸通し装置は、針の目孔を進入可能なフックと、そのフックを下端に支持する糸通し棒と、その糸通し棒に連結された糸通しレバーとを備え、この糸通し装置は、所定範囲で上下動する針との衝突を避けるため、針の上方に配置されている。そして、作業者が糸通しレバーを上下に移動することによって、この糸通し棒は昇降し、糸通しレバーが最も下の位置まで移動されると、フックが針の目孔と同じ高さになる。更に、糸通し装置が、糸の2箇所を保持する保持部材と、糸を保持した保持部材を針の目孔の前に移動する移動機構とを、上述したフック等に加えて備え、そのフックが保持部材に保持された糸を針の目孔に引き込むものである。

【0003】また、針を水平方向に揺動する機構を設けられたミシンもあり、その針の揺動軌跡は一般に円弧であり、針の揺動位置によって水平や上下の方向に関して針の目孔の位置が異なる。その揺動による位置変化の影響を少なくするため、針が揺動されるミシンでは、糸通し棒や保持部材が針棒と共にミシンフレームに対して相対的に水平方向に揺動するように配置される。例えば、本出願人による特公平7-71596号公報に記載のミシンの糸通し装置である。

[0004]

【発明が解決しようとする課題】しかしながら、糸通し

2

レバーが最も下の位置まで移動される前に、作業者が勘違いして、糸通しレバーを下ろすことをやめてしまい、糸通しができないおそれがあった。そのため、本出願人は、糸通し棒を押し下げる力を伝達する伝達部材を備え、フックが完全に前進した後にその力の伝達を自動的に遮断し、弾性体によって糸通し棒を引き上げ、その引き上げ時にフックを後退させる糸通し装置を考案した。それは、特願2001-172264号に記載の糸通し装置であり、その伝達部材を針棒の上端に当接させて、糸通し棒を押し下げる力の伝達を遮断する。

【0005】この出願の糸通し装置では、針の停止位置によって、糸通し棒を押し下げる力の伝達が遮断される位置が異なってしまう。そのため、針棒の上端と伝達部材との距離が針棒の停止位置によって変化するため、伝達部材と針棒の上端とが近いと、保持部材が針の目孔の前に達する前に、フックが針の目孔に前進し、力の伝達が遮断され、フックが後退してしまったり、逆に、伝達部材と針棒の上端とが遠いと、保持部材が針の目孔の前に達した時には、フックの下降が不充分で、フックが前進しておらず、フックが十分に下降する前に、保持部材が先に針の目孔から離間してしまい、フックが糸を捕捉できず、糸通しができないという問題点があると考えられる。また、伝達部材と針棒の上端とが、常に一定の距離になるようにする、ミシンの構成を複雑化するという問題点がある。

【0006】本発明は、上述した問題点を解決するためになされたものであり、フックを下降させる力を伝達する伝達部材及び糸を保持する保持部材を備えて確実に針の目孔に糸を通すことができるミシンを提供することである。

[0007]

【課題を解決するための手段】この目的を達成するために、請求項1記載のミシンは、所定の上下位置に停止する針と、前記針の目孔を通過するフックと、前記フックを上方に常に付勢する付勢部材と、前記付勢部材よる付勢力に抗して、前記フックを下方へ移動する下降力を伝達する伝達位置と、前記下降力の伝達を遮断した遮断位置との間を移動可能な伝達部材と、糸を保持する保持部材と、前記針の目孔に対する所定位置に前記保持部材を移動する移動機構と、前記移動機構が前記保持部材を移動する移動機構と、前記移動機構が前記保持部材を前記所定位置に移動すると、前記伝達部材と当接して前記伝達部材を前記遮断位置に移動する当接部材とを備えている。

【0008】そして、前記移動機構が前記針の目孔に対する所定位置に前記保持部材を移動すると、前記伝達部材と当接部材とが当接して、前記伝達部材が前記伝達位置から前記遮断位置に移動する。前記フックが前記針の目孔に通過し、前記保持部材が所定の位置に移動された後に、前記フックが付勢部材によって上昇するので、前記フックが上昇する際には、前記保持部材は所定の位置

.3

に達しており、前記フックと前記保持部材とが所定の関係となる。

【0009】請求項2記載のミシンは、ミシンフレームに対して相対的に上下動する針と、前記ミシンフレームに支持された当接部材とを備え、針はミシンフレームに対して相対的に上下動し、当接部材はミシンフレームに支持され、針の上下位置とは独立して、配置されている。

【0010】請求項3記載のミシンは、ミシンフレームに対して水平方向に揺動する針及びフックと、前記ミシンフレームに支持された移動機構とを備え、前記移動機構は、揺動した針の水平位置とは独立して、前記ミシンフレームに配置されている。

[0011]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照して説明する。

【0012】図1及び図2に示すように、ミシン10は、水平面を有するベッド部12と、ベッド部12の右端部から立設する脚柱部14と、脚柱部14から左方に伸展するアーム部16と、アーム部16の左端部となるヘッド部18とから構成されている。このヘッド部18には、ヘッド部18等を構成するミシンフレーム24に対して相対的に針棒26を上下動するための針棒駆動機構28、ミシンフレーム24に対して相対的に針棒26を水平方向に揺動するための針棒揺動機構30、針棒26に対して所定の位相で天秤32を上下動するための天秤駆動機構34、針棒26の下端の針36に糸Tを糸通しフック35で通すための糸通し機構38が配置されている。この針36は、ベッド部内の釜機構40と協働して、針36と天秤32とは互いに所定の位相で上下動して、縫い目が形成される。

【0013】このミシン10は、特願2001-172264号(以下、「上記本出願人の出願」と称する。)に記載のミシンと同様に、糸駒42を収納する糸カセット44をカセット装着部46に着脱可能なものであり、その糸カセット44を装着する操作によって糸通し棒47を下方に押し下げ、同時に、天秤32にも糸Tをかける構成である。更に、ミシン10はその糸通し棒47を押し下げる力を伝達・遮断する伝達部材48が備え、基本的には、上記本出願人の出願に記載のミシンと類似しており、異なる点を中心に以下説明する。

【0014】上記本出願人の出願のミシンとは異なって、このミシン10では、天秤32の右側に、図3に示すように、糸Tの2箇所を保持する糸保持部材50と、その糸保持部材50を針36の目孔51まで一旦下降して、針36の目孔51に接近させた後に、上昇させて、針36の目孔51から離間させる移動機構52が設けられている。この移動機構52は、図4及び図5に示す支持ブロック54及び取付部材56を介してミシンフレーム24に固定されている。

4

【0015】カセット装着部46の左側には、糸通し機構38のうち糸通しフック35に関する糸通しフック機構55が、針棒26と共に揺動中心軸58を揺動軸として円弧に揺動するように配置されている。一方、糸保持部材50は、針棒26と共に揺動しないようにミシンフレーム24に固定されているので、針棒26や糸通し棒47を揺動するパルスモータ等の出力を高くする必要がなく、また、その移動機構52を揺動させるための逃がし的な空間をミシン10の内部に設ける必要もなく、ミシン10の小型化が図られている。

【0016】次に、この糸保持部材50並びに移動機構52について説明する。

【0017】図6(b)に示すように、糸保持部材50は、2本の平行な糸保持腕62,64を有し、それらの糸保持腕62,64は間隔をあけて平行に連結部66より伸展して、図6(b)における左方の糸保持腕62の左側の面には、揺動部材68の中間部が揺動可能に支持されている。その揺動部材68の図6(b)における上端の固定されたバネ当てピン74には、巻きバネ72が当接し、図6(a)における揺動部材68の上端が揺動軸70を中心として反時計回り方向に付勢され、揺動部材68の図6(b)における下端は、左方の糸保持腕62の先端の近傍に位置する。

【0018】揺動軸70よりも図6(b)における下方の揺動部材68には、当接ピン76が図6(b)の左方に突出するように固定され、その当接ピン76が巻きバネ72の弾性力に抗して、図6(a)の左方向に押されると、揺動部材68の下端が、図6(b)における左方の糸保持腕62の先端から離間する。即ち、糸下が挟まれるように開閉可能に糸保持部材50は構成されている。

【0019】連結部66は、図6(b)の右方に伸展して、移動機構52の第1の連動部材78が固定されている。この第1の連動部材78は、図6(b)における右方に突出しており、図6(c)に示すように、その突出部80が図6(b)における右方の移動支持板82に貫通して形成されたガイド溝84に摺動可能に取り付けられている。このガイド溝84の幅は、図6(b)における右方の移動支持板82の長手方向に伸展しており、その幅はほぼ第1の連動部材78の突出部80と同じである。図6(b)における右方の移動支持板82と左方の移動支持板86とが6本の間隔ピン88,90,92,94,96、98によって一定の間隔をあけて平行に取り付けられている。

【0020】図6における上方の2本の間隔ピン88, 90には、それぞれ滑車100,102が回転可能に支 持され、図6における下方の1本の間隔ピン98にも滑 車104が回転可能に支持されている。これら滑車10 0,102,104には、金属性の細いワイヤーである

第1の紐状部材106の中間部がかけられ、図6(a)に示すように、略「N」の字を左右反転したように、その第1の紐状部材106は滑車100,104との接触部分で折り返されている。この第1の紐状部材106は、それら滑車100,102,104、移動支持板82に対して相対的に移動可能である。即ち、それら滑車100,104が第1の紐状部材106を移動可能に支持している。この第1の紐状部材106の中間部には、上記第1の連動部材78が固定され、この第1の紐状部材106が移動すると第1の連動部材78も一体に移動支持板82に対し相対的に移動する。この第1の紐状部材106の両端は、不動支持板108から突出する固定支持ピン110,112の外周を摺動可能に取り付けられている。

【0021】こうして、第1の紐状部材106が図7の 下方の移動するときには、所定の長さの第1の紐状部材

106について、その第1の紐状部材106の一方側が

移動不可能に不動支持部材108の固定支持ピン110

によって支持され、その他方側が移動可能に移動支持部

材の滑車100によって支持されている。第1の支持機

構が、不動支持部材108の固定支持ピン110、移動 支持部板82,86の滑車100によって構成されてい る。この第1の支持機構によって支持された間の第1の 紐状部材106に第1の移動部材として滑車104は当 接して、第1の紐状部材106を移動する。そして、第 1の連動部材78は、第1の移動部材としての滑車10 4と当接した部分よりも図7の左(他方側)の第1の紐 状部材106に連結されると共に、糸通し機構としての 糸保持部材50が連結されている。また、第1の紐状部 材106が図7の上方に移動するときには、図7の上方 の滑車104は、第1の紐状部材106の移動支持部材 として作用しする。また、第1の紐状部材106が図7 の上方に移動するときには、図7の下方の滑車104が 第1の紐状部材106の移動支持部材として作用する。 【0022】従って、図7の下方へ2枚の移動支持部板 82,86が距離 d だけ移動すると、それに伴って、滑 車100,104も図7の下方へ距離 d だけ移動する。 それらの移動に伴って、第1の紐状部材106の中間部 分が滑車104によって図7における下方に押されて、 その滑車100の右側(移動可能支持側)から左側(移 動不可支持側)へ滑車104の回転によって第1の紐状 部材106が長さdだけ送られる。即ち、この滑車10 4が図7の下方に移動する場合には、動滑車として機能 する。この滑車104よりも右側の滑車100よりも、 更に右側の第1の紐状部材106に固定された第1の連 動部材78及び糸保持部材50が下方に距離2×dだけ 移動する。このように、滑車104の移動量が2倍の移 動量を生じるように、この移動機構52は構成されてい る。尚、上述のようにどちらかの滑車100、104が 6

移動部材となるかは、第1の紐状部材106の移動方向 に依存する。

【0023】また、この不動支持板108には、第1の 紐状部材106とは別の第2の紐状部材114が取り付けれ、その図7における左の第2の紐状部材114の一方側の端部は、不動支持板108から突出する固定支持ピン116に離間不可能であるが、その固定支持ピン116の外周を摺動可能に取り付けられている。また、その図7における右の第2の紐状部材114の端部は、移動支持板82,86から突出する間隔ピン90に離間不可能であるが、その間隔ピン90の外周を摺動可能に取り付けられている。

【0024】この第2の紐状部材114の中間部には、 滑車118が当接しており、この滑車118との接触部分で略「V」の字のように第2の紐状部材114は折り返されている。この滑車118は、カセット接触体120と一体に移動するように連結され、このカセット接触体120は、図8に示すもう一枚の不動支持板122に質通して形成されたガイド溝(図略)に摺動可能に取り付けれらている。カセット接触体120は糸カセット44の右側の一部に押し下げられるように、糸カセット44の昇降経路内に配置され、所定位置まで押し下げられると、糸カセット44から離間するように構成されている。

【0025】この2枚の不動支持板108,122の間には、4本の間隔ピン122,124,126,128が両方の不動支持板108,122に直交するように立設して固定されて、2枚の不動支持板108,122は間隔をあけて平行に位置している。その間に、上記2枚の移動支持板82,86、第1の紐状部材106、並びに、第2の紐状部材114が位置している。

【0026】このように、所定長さの別の第2の紐状部材114の一方側が不動支持板108の固定支持ピン116によって移動不可能に支持され、他方側が移動支持板82,86の間隔ピン90によって移動可能に支持されている。これら不動支持板108の固定支持ピン116、移動支持板82,86の間隔ピン90によって第2の支持機構が構成され、この第2の支持機構によって第2の支持機構が構成され、この第2の支持機構によって第2の大時機構が構成され、この第2の支持機構によって第2の支持機構が構成され、この第2の支持機構によって第2の支持機構が表された間の第2の紐状部材114に第2の移動部材としての滑車118と当接した部分よりも他方側の第2の紐状部材114に連結されると共に、第1の移動部材としての滑車104にも移動支持板82,86を介して連結されている。

【0027】また、第2の紐状部材114を引き戻す弾性体としての引きバネ132が備えられ、その引きバネ132は、上記移動支持板82,86の図6の下方と上記滑車118の一体に移動する滑車付属部材134との間にかけられ、それらを互いに引き合うように配置され

ている。第2の連動部材としての間隔ピン90、第1の移動部材としての滑車104、並びに、第1の紐状部材106の他方側を移動可能に支持する移動支持部材としての滑車100が一体的に移動するように移動支持板82、86に固定されている。そして、移動支持部材としての滑車100よりも更に右側(他方側)の第1の紐状部材106が移動不可能に不動支持板108の固定支持ピン112に支持されている。従って、第2の紐状部材114より4倍長く移動する第1の紐状部材106を引き戻す引きバネを設けるよりも、引きバネ132が短いもので良く、小型化が図られている。

【0028】例えば、このカセット接触体120が図7の下方に距離 d だけ移動されると、滑車118によって第2の紐状部材114が下方に押されて、この滑車118やカセット接触体120に対して相対的に移動する。その滑車118の右側(移動可能支持側)から左側(移動不可支持側)へ滑車118の回転によって第2の紐状部材114が長さ d だけ送られ、図7における右の第2の紐状部材114の端部に連結された間隔ピン90は図7の下方に距離2×d だけ移動する。即ち、この滑車118は動滑車として機能している。

【0029】このとき、図7における右の第2の紐状部材114の端部は、間隔ピン90に固定されており、2枚の移動支持板82,86、その滑車100,102,104も同様に図7における下方向に距離2×dだけ一体となって下方に移動する。それらの下方への移動に伴って、第1の紐状部材106の中間部分が滑車104によって図7の下方に押されて、その滑車104の右側(移動可能支持側)から左側(移動不可支持側)へ滑車104の回転によって第1の紐状部材106が長さ2×dだけ送られ、この滑車104よりも更に右の滑車100よりも右側の第1の紐状部材106に固定された第1の連動部材78及び糸保持部材50は図6の下方に距離4×dだけ移動する。このように、カセット接触体120の移動量が4倍の移動量を生じるように、この移動機構52は構成されている。

【0030】次に、このミシン10の糸通しフック35を移動する糸通しフック機構55について説明する。上記本出願人の出願に記載のミシンと同様に、図9に示すように、針36の目孔51を進入可能な糸通しフック35を上方に常に付勢する付勢部材136と、針36の目孔51に糸通しフック35を進入、後退する進退機構138と、付勢部材136よる付勢力に抗して、糸通しフック35を下方へ移動するよる付勢力に抗して、糸通しフック35を下方へ移動する下降力を伝達する伝達位置と、下降力の伝達を遮断した遮断位置との間を移動可能な伝達部材48と、糸カセット44の装着に伴って糸通し棒47を下降するためのカセット挿入部46に設けられたカセット接触体139とを備えている。尚、フック35は、その下側の一部が上方へ向かって凹んでおり、その凹んだ部分で糸を捕捉する。

8

【0031】付勢部材136とは糸通し棒47を上方へ 常に付勢するための引っ張りバネである。進退機構13 8とは、糸通し棒47に上方に取り付けられた回転部材 140 (図10参照)、その糸通し棒47のから水平方 向に突出したピン142等である。この回転部材140 によれば、糸カセット44の装着に伴い、糸通し棒47 が下降して、その糸通し棒47から突出する調整ピン1 44が針棒26に固定された高さ調整部材146に当接 すると、糸通し棒47のピン142が回転部材140の 直線溝148に沿って下降する。そして、糸通し棒47 が所定の位置まで下降すると、ピン142が回転部材1 40の螺旋溝150に達し、糸通し棒47及び糸通しフ ック35が回転し、糸通しフック35が針36の目孔5 1に進入して、針36の目孔51の反対側から突出す る。そして、上記伝達部材48が垂直状態姿勢に近い遮 断状態になり、糸通し棒47が付勢部材の付勢力によっ て上昇すると、糸通しフック35が逆回転して、糸通し フック35が針36の目孔51から後退するものであ る。

【0032】伝達部材48は、ガイド軸151を摺動可 能に通され、伝達部材48の中央部分は回転可能に支持 され、図11に示す伝達位置にあるように巻きバネであ る付勢部材152によって付勢されている。その伝達位 置にあるときには、伝達部材48は垂直姿勢から少し傾 いており、その伝達部材48の上端153で、回転部材 140の上部の当接部154の上方に接触して、糸通し 棒47を下降する力を伝達可能である。また、付勢部材 152の付勢力に抗して、伝達部材152が回転され、 図12に示す遮断位置に移動すると、伝達部材48の上 端153が当接部154から離間する。即ち、糸通し棒 47をその付勢部材136の付勢力によって上昇可能な 状態とする。この金属製の伝達部材48の上部153に は、樹脂の回転部材140の当接部154の保護のため の、ABSまたはポリアセテート樹脂が巻かれている。 この伝達部材48は、引きバネである付勢部材155に よって、常に上方に付勢されているが、糸カセット44 の装着によってその付勢力に抗して下方に移動される。 【0033】このミシン10では、上記本出願人の出願 と異なって、伝達部材48と当接して伝達部材48を遮 断位置に移動する当接部材158が次のように設けられ ている。上述の移動機構52が糸保持部材50を所定位 置に移動すると、当接部材158が伝達部材48と当接 して伝達部材48を遮断位置に移動するように、当接部 材158は支持ブロック54に固定されている。即ち、 この支持ブロック54はミシンフレーム24に固定され ており、この当接部材158は、針棒26や針36の上 下動や水平方向の揺動とは関わらず一定の位置にあるよ うに配置されている。糸保持部材50についての所定の 位置とは、糸通しフック35が突出する針36の目孔5 1の反対側において、糸通しフック35が糸Tを捕捉す

るため、針36の目孔51から突出した糸通しフック35よりも上方の位置である。即ち、針36の目孔51から突出した糸通しフック35に糸Tが交差するように上昇して、糸通しフック35の下側に糸Tを積極的に押し当て、糸Tをわずかに屈曲させている位置である。

【0034】このミシン10では、上記本出願人の出願と異なって、スリットタイプの天秤32と、その天秤32を挟んで左右に伸展する板状のガイド部材160とが設けられ、天秤32の上方より糸カセット44で水平方向に張られた糸丁が、このガイド部材160の上端に沿って下降すると、その糸丁が天秤32に導かれるように、ミシン10は構成されている。

【0035】また、このミシン10では、上記本出願人の出願と異なって、糸カセット44には、上記天秤32のためとは別に張られた糸丁があり、上記糸保持部材50が、糸カセット44の装着に伴って、その別の糸丁を捕捉し、その糸丁が針36の目孔51に向かって下方に移動される。

【0036】上述のように構成されたミシン10に糸カセット44を装着する際の糸通し動作について説明する

【0037】作業者がカセット装着部46に糸カセット44を上方より挿入して、糸カセット44がカセット装着部46の底に到達するまで、下方に糸カセット44を押すだけで、このミシン10では、天秤32への糸かけと針36の目孔51への糸通しが完了する。このとき、糸カセット44の右側の一部がカセット接触体120を押すと共に、糸カセット44の中央側の一部がカセット接触体139を下方へ押す。即ち、糸カセット44を下降へ押すという手動操作によって、糸通し機構38の進退機構139及び移動機構52が手動操作にて動作する。その操作によって、糸通し棒47が下降する。

【0038】また、糸カセット44の前方において、糸 Tが図6の紙面に直交する方向に伸展して張られてお り、この張られた糸Tが、図13の位置から下降する糸 保持部材50によって捕捉される。カセット接触体12 0が糸カセット44に押されて移動した距離の約4倍の 距離をこのときに糸保持部材50は移動する。そして、 図14に示すように、糸保持部材50は最も下降する。 このとき、針36に糸通し可能な所定の上下範囲(図1 5に上限位置及び下限位置の針36の目孔51に糸通し するために位置する糸保持部材162を図示)のうち、 その最下位置に停止する針36の目孔51の反対側から 糸通しフック35が突出する位置よりも下方に、移動機 構52が糸保持部材50の糸保持腕62,64の2本と もを移動させた後に、進退機構138によって糸通しフ ック35が、図16に示すように、針36の目孔51の 反対側から突出する。 尚、図15に示すように、糸保持 腕62,64の糸Tを保持する位置は、若干上下にずれ ているが、その糸保持位置のいずれもが、糸通し可能範 10

囲の最下位置に停止する針36の目孔51の反対側から 糸通しフック35が突出する位置よりも下方になる。

【0039】その針36の目孔51から突出した糸通し フック35よりも上方に2本の糸保持腕62、64を移 動させるように、移動機構52は糸保持部材50を上方 へ移動する。即ち、針36の目孔51が、図15に示す 糸通し可能な上下範囲に位置していれば、その針36の 目孔51から突出した糸通しフック35の下方に、糸保 持部材50は移動した後に、糸保持部材50は上昇する ので、従来のように単に糸Tを張っているだけとは異な り、積極的に糸Tを糸通しフック35に交差するように しているのである。尚、移動機構52は糸通しに際し て、針棒26の上下停止位置や水平方向の揺動位置に関 わらず、針36に糸通し可能な所定の上下範囲のうち、 その最下位置に停止する針36の目孔51の反対側から 糸通しフック35が突出する位置よりも下方に、糸保持 部材50を下降させるという一定の移動経路しか持たな いので、その移動機構52は簡単な構成ですむのであ る。

【0040】この上昇のとき、図14に示す最も下降した位置から、2本の糸保持腕62,64の間に糸通しフック35が挟んだ状態で移動する。その2本の糸保持腕62,64が糸通しフック35よりも上方に達しという所定の位置に、糸保持部材50が移動されると、伝達部材48が当接部材158に当接して、伝達位置から遮断位置に移動して、弾性体の弾性力によって糸通し棒47が上方に上昇する。

【0041】この上昇過程で、図17に示すように、糸 通しフック35は糸通しフック保持部材162に支持さ れており、左の糸保持腕62の先端部が糸通しフック保 持部材162の下部に突き当たり、そのため、移動機構 52による糸保持部材50の上昇速度は抑制され、糸保 持部材50が針36の目孔51よりも一方的に上方へ移 動することはない。即ち、第2の紐状部材114を引き 戻すの引きバネ132に対して、糸保持部材50と糸通 しフック保持部材162との当接という負荷を加え、そ の糸保持部材50の上昇の速度を抑制(減少)したので ある。この糸保持部材50と糸通しフック糸保持部材1 62との当接は糸通し棒47が反回転して、糸通し35 が針36の目孔51から完全に離間するまで継続する。 図18に示すように、糸通しフック35が針36の目孔 51から後退されて、糸保持部材50と糸通しフック保 持部材162との当接は解消し、上記引きバネ132に よって第2の紐状部材114が引き戻され、糸保持部材 50が速度を上げて上昇する。

【0042】尚、カセット接触体120は、糸カセット44に押されて所定量移動されると、糸カセット44の移動経路から退避して、上記引きバネ132が効くようになって、第2の紐状部材114が引き戻されて、図7に示すような元の状態に戻る。即ち、糸保持部材50が

上昇する。

【0043】上述した実施の形態においては、糸カセット44を用いたミシン10において、本願発明を実施したが、糸カセット44を用いないミシン10に対して、本願発明を実施しても良い。その場合は糸通し操作レバーを設け、それによって糸通しの手動操作を行い、その手動操作によって糸通し機構38が動作するように構成する。上述した実施の形態においては、ミシンフレーム24に対して水平方向に相対して針36を揺動するミシン10に、本願発明を実施したが、針36を水平方向に10揺動しないミシン10に用いても良い。

【0044】上述した実施に形態においては、水平方向に糸Tを張っているが、上下方向に糸Tを張っても良く、その場合には、水平方向に移動して糸通しフック35と糸Tが交差するようにする。上述した実施に形態では、2本の糸保持腕62,64を移動さいているが、糸通しフック35に糸Tを交差するのであれば、少なくとも一方の糸保持部材50であれば良い。

【0045】上述した実施に形態においては、動滑車を利用して糸保持部材50を移動したが、糸通しフック3 20 5を移動しても良い。また、上述した実施の形態では、細いワイヤーを用いたが、歯無しのベルト、タイミングベルト、ギヤ等を用いても良い。上述した実施に形態では、動滑車を用いているが、紐状部材を同様に移動できるのであれば、単なる円柱等のものであっても良い。

【0046】上述した実施の形態では、左右方向に針36を揺動するミシン10に本願発明を実施したが、前後方向に針36を揺動するミシン10で実施しても良い。

【0047】上述した実施の形態においては、糸保持部材50が針36に接近した後の針36の間近の所定範囲において、糸保持部材50が針36に平行に下降し、再び、針36に平行に上昇するように、移動機構52は構成されているが、針36に対して平行でなく、針36に対して斜めに糸保持部材50を移動機構52が移動しても良い。上述した実施の形態においては、糸保持部材50を針36に対して平行に移動機構52が移動しているが、下降時或いは上昇時のいずれか一方の移動時のみに、糸保持部材50を針36に対して平行に移動機構52が移動しても良い。

[0048]

【発明の効果】以上説明したことから明らかなように、 請求項1記載のミシンでは、フックが上昇する際には、 保持部材は所定の位置に達しており、フックと保持部材 とが所定の関係となり、確実に針の目孔に糸を通すこと ができる。

【0049】請求項2記載のミシンでは、当接部材はミシンフレームに支持され、針の上下位置とは独立して配置されており、針の停止時の上下位置に常に追従して当接部材と伝達部材との距離を一定にする構成よりも、簡 50

12

単な構成で確実に針の目孔に糸を通すことができる。

【0050】請求項3記載のミシンでは、移動機構が、 揺動した針の水平位置とは独立して配置されており、針 の揺動時の水平位置に常に追従して当接部材と伝達部材 との距離を一定にする構成よりも、簡単な構成で確実に 針の目孔に糸を通すことができる。

【図面の簡単な説明】

【図1】本実施の形態に係るミシンの全体の外観図である。

【図2】本実施の形態に係るミシンの全体の透視図である。

【図3】本実施の形態に係る糸保持部材及びその移動機 構の側面を示す図である。

【図4】本実施の形態に係る天秤機構等の前面を示す図である。

【図5】本実施の形態に係る移動機構を取り付ける部品 を示す図である。

【図 6 】本実施の形態に係る移動機構を構成する部品を 示す図である。

20 【図7】本実施の形態に係る移動機構を示す全体図であ ス

【図8】本実施の形態に係る移動機構を示す全体図であ ス

【図9】本実施の形態に係る伝達部材及び当接部材を示す図である。

【図10】本実施の形態に係る回転部材を示す図であ ろ

【図11】本実施の形態に係る伝達位置にある伝達部材 及び当接部材を示す図である。

【図12】本実施の形態に係る遮断位置にある伝達部材及び当接部材を示す図である。

【図13】本実施の形態に係る上昇位置にある糸保持部 材及び移動機構を示す全体図である。

【図14】本実施の形態に係る最下位置にある糸保持部 材及び移動機構を示す全体図である。

【図15】本実施の形態に係る糸通し可能範囲の上限位 置及び下限位置の糸保持部材を示す図である。

【図16】本実施の形態に係るフックが針の目孔の反対 側から突出した状態を示す図である。

40 【図17】本実施の形態に係るフック保持部材と糸保持 部材とが当接した状態を示す図である。

【図18】本実施の形態に係るフック保持部材と糸保持 部材とが当接した状態を示す図である。

【符号の説明】

10 ミシン

24 ミシンフレーム

36 針

48 伝達部材

50 糸保持部材

○ 51 目孔

130-

(8) 13 14 52 移動機構 140 回転部材 フック保持部材 106 第1の紐状部材 162 114 第2の紐状部材 糸 【図1】 【図5】 0 55 【図7】 110 108 116 126-【図2】 120 114 -118 -134 -14 128-132

【図18】

【図17】

