# → Import Library

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

### → Import Data Set

```
df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Fish.csv')
```

#### → Get the First Five Rows of Dataframe

df.head()

2

Weight

Height

|   | Category | Species | Weight | Height  | Width  | Length1 | Length2 | Length3 | 10- |
|---|----------|---------|--------|---------|--------|---------|---------|---------|-----|
| 0 | 1        | Bream   | 242.0  | 11.5200 | 4.0200 | 23.2    | 25.4    | 30.0    |     |
| 1 | 1        | Bream   | 290.0  | 12.4800 | 4.3056 | 24.0    | 26.3    | 31.2    |     |
| 2 | 1        | Bream   | 340.0  | 12.3778 | 4.6961 | 23.9    | 26.5    | 31.1    |     |
| 3 | 1        | Bream   | 363.0  | 12.7300 | 4.4555 | 26.3    | 29.0    | 33.5    |     |
| 4 | 1        | Bream   | 430.0  | 12.4440 | 5.1340 | 26.5    | 29.0    | 34.0    |     |

#### Get information about the DataSet

159 non-null

159 non-null

float64

float64

```
4 Width 159 non-null float64
5 Length1 159 non-null float64
6 Length2 159 non-null float64
7 Length3 159 non-null float64
dtypes: float64(6), int64(1), object(1)
memory usage: 10.1+ KB
```

## Get the Summary Statistics

df.describe()

|       | Category   | Weight      | Height     | Width      | Length1    | Length2    | Leng     |
|-------|------------|-------------|------------|------------|------------|------------|----------|
| count | 159.000000 | 159.000000  | 159.000000 | 159.000000 | 159.000000 | 159.000000 | 159.0000 |
| mean  | 3.264151   | 398.326415  | 8.970994   | 4.417486   | 26.247170  | 28.415723  | 31.2270  |
| std   | 1.704249   | 357.978317  | 4.286208   | 1.685804   | 9.996441   | 10.716328  | 11.6102  |
| min   | 1.000000   | 0.000000    | 1.728400   | 1.047600   | 7.500000   | 8.400000   | 8.8000   |
| 25%   | 2.000000   | 120.000000  | 5.944800   | 3.385650   | 19.050000  | 21.000000  | 23.1500  |
| 50%   | 3.000000   | 273.000000  | 7.786000   | 4.248500   | 25.200000  | 27.300000  | 29.4000  |
| 75%   | 4.500000   | 650.000000  | 12.365900  | 5.584500   | 32.700000  | 35.500000  | 39.6500  |
| max   | 7.000000   | 1650.000000 | 18.957000  | 8.142000   | 59.000000  | 63.400000  | 68.0000  |
| 4     |            |             |            |            |            |            | <b>•</b> |

# Get the Shape Of the Data Frame

```
df.shape (159, 8)
```

#### → Get the Column names

# Define y(dependent or label or target variable) and X (independent or features or attribute Variable)

```
y = df['Weight']
X = df.drop(['Category','Species','Weight'],axis =1)
y.shape
     (159,)
X.shape
     (159, 5)
У
            242.0
     0
            290.0
     1
     2
            340.0
     3
            363.0
            430.0
     154
             12.2
     155
             13.4
     156
             12.2
     157
             19.7
             19.9
     158
     Name: Weight, Length: 159, dtype: float64
Χ
```

https://colab.research.google.com/drive/12Ga8CUzI9-BciwgN0iNB3cII2JJA4PgS#scrollTo=FbKbMOcRSNIt&printMode=true

# Add Constand to Features (X) for intercept Estimation

import statsmodels.api as sm

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/\_testing.py:19: FutureWarnir import pandas.util.testing as tm



X = sm.add\_constant(X)

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarning x = pd.concat(x[::order], 1)

| 4   |        |        |      |      |      |
|-----|--------|--------|------|------|------|
| 15/ | Z.8128 | 2.00/2 | 13.2 | 14.3 | 15.∠ |

X.head()

|   | const | Height  | Width  | Length1 | Length2 | Length3 | 1 |
|---|-------|---------|--------|---------|---------|---------|---|
| 0 | 1.0   | 11.5200 | 4.0200 | 23.2    | 25.4    | 30.0    |   |
| 1 | 1.0   | 12.4800 | 4.3056 | 24.0    | 26.3    | 31.2    |   |
| 2 | 1.0   | 12.3778 | 4.6961 | 23.9    | 26.5    | 31.1    |   |
| 3 | 1.0   | 12.7300 | 4.4555 | 26.3    | 29.0    | 33.5    |   |
| 4 | 1.0   | 12.4440 | 5.1340 | 26.5    | 29.0    | 34.0    |   |

# Get Train Test split

from sklearn.model\_selection import train\_test\_split

X\_train,X\_test,y\_train,y\_test = train\_test\_split(X,y,test\_size = 0.3,random\_state = 2529)

X\_train.shape,X\_test.shape,y\_train.shape,y\_test.shape

((111, 6), (48, 6), (111,), (48,))

#### Get the model train

import statsmodels.api as sm

model = sm.OLS(y\_train,X\_train).fit()

#### → Get model Prediction

```
y_pred = model.predict(X_test)
y_pred
            485.768263
     6
     54
             502.247209
             94.723820
     80
     138
             876.571171
     91
            184.078918
     48
             219.301305
             322.325322
     52
     103
            376.223260
     57
            372.357305
     149
           -182.675371
     153
           -160.604868
     108
            454.335862
     90
            159.597558
     118
            843.485252
     131
            587.216806
     100
             299.535214
     15
             597.729508
            197.146054
     46
     132
            639.890467
     79
             91.200679
     64
            150.954248
     35
            -103.083206
     133
            627.197128
     116
            795.691769
     31
            814.687330
     146
           -204.149651
     53
             329.987469
     28
             715.892880
     1
             359.756344
     117
             792.324392
     9
             532.703671
     12
             552.008323
     129
            433.484727
     111
            687.617503
     147
            -204.763625
     125
            932.536683
     120
            810.742342
     158
             -80.062172
     51
             284.362879
     34
            907.080360
     23
             642.582834
     127
            959.338482
             675.287923
     21
     113
            718.863055
     109
            623.898492
     101
             376.483470
     10
             530.838281
     157
             -86.235707
```

dtype: float64

```
y_pred.shape
(48,)
```

#### → Get Model Evaluation

# Get model Summary

print(model.summary())

#### OLS Regression Results

| Dep. Variable:                          | Weight           | R-squared:      |          | 0.896    |
|-----------------------------------------|------------------|-----------------|----------|----------|
| Model:                                  | OLS              | Adj. R-squared: |          | 0.891    |
| Method:                                 | Least Squares    | F-statistic:    |          | 181.2    |
| Date:                                   | Sat, 23 Apr 2022 | Prob (F-statist | ic):     | 5.84e-50 |
| Time:                                   | 02:08:58         | Log-Likelihood: |          | -689.20  |
| No. Observations:                       | 111              | AIC:            |          | 1390.    |
| Df Residuals:                           | 105              | BIC:            |          | 1407.    |
| Df Model:                               | 5                |                 |          |          |
| Covariance Type:                        | nonrobust        |                 |          |          |
| ======================================= |                  |                 |          | ======== |
| coef                                    | f std err        | t P> t          | [0.025   | 0.975]   |
|                                         |                  |                 |          |          |
| const -519.2834                         | 1 34.659 -1      | L4.983 0.000    | -588.005 | -450.562 |
| Height 29.8643                          | 3 10.826         | 2.759 0.007     | 8.398    | 51.330   |
| Width 2.2594                            | 1 26.105         | 0.087 0.931     | -49.502  | 54.020   |
| Length1 58.3379                         | 52.151           | 1.119 0.266     | -45.068  | 161.743  |
| Length2 8.5339                          | 51.806           | 0.165 0.869     | -94.189  | 111.256  |

| Length3     | -36.1521 | 21.444   | -1.686    | 0.095       | -78.671  | 6.367    |
|-------------|----------|----------|-----------|-------------|----------|----------|
| ========    | ======== | ======== | =======   | ========    | ======== | ======== |
| Omnibus:    |          | 5.3      | 884 Durbi | n-Watson:   |          | 2.008    |
| Prob(Omnibu | s):      | 0.0      | 968 Jarqu | e-Bera (JB) | •        | 4.993    |
| Skew:       |          | 0.3      | 391 Prob( | JB):        |          | 0.0824   |
| Kurtosis:   |          | 3.6      | S84 Cond. | No.         |          | 331.     |
| ========    |          |          |           |             |          |          |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec



\*Model has insignificant variables hence need remodelling

fig = sm.graphics.plot\_partregress\_grid(model)



fig = sm.graphics.plot\_regress\_exog(model, 'Width')



## → Get future Predictions

```
df.new = df.sample(1)
```

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:1: UserWarning: Pandas ( """Entry point for launching an IPython kernel.

df.new

|     | Category | Species | Weight | Height  | Width  | Length1 | Length2 | Length3 | 1 |
|-----|----------|---------|--------|---------|--------|---------|---------|---------|---|
| 125 | 3        | Perch   | 1100.0 | 12.5125 | 7.4165 | 40.1    | 43.0    | 45.5    |   |

df.columns

```
X_new = sm.add_constant(X_new,has_constant = 'add')
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarninx = pd.concat(x[::order], 1)

X\_new

|     | const | Height  | Width  | Length1 | Length2 | Length3 | 1 |
|-----|-------|---------|--------|---------|---------|---------|---|
| 125 | 1.0   | 12.5125 | 7.4165 | 40.1    | 43.0    | 45.5    |   |

X\_new.shape

(1, 6)

y\_pred\_new = model.predict(X\_new)

y\_pred\_new

125 932.536683 dtype: float64

✓ 0s completed at 8:08 AM

×