Homework 6

Benji Altman

March 10, 2018

23.8 First we will use a theorem from real analysis

Theorem 0.1. Let (a_n) be a convergent sequence in \mathbb{R} with standard topology and $(b_n)0$ be a sequence in \mathbb{R} . The sequence $(a_n + b_n)$ converges iff (b_n) converges.

A proof for this may be provided if desired, however this is considered to be outside the scope of this course.

Let us choose $x \in \mathbb{R}^{\omega}$ and let us consider this to be (b_n) . Let us also choose $\epsilon \in (0,1)$, then the open ball around x is defined as $\{(s_n) \mid \forall_{n \in \mathbb{N}} | s_n - b_n| < \frac{\epsilon}{n} \}$. This means that any element s in our open ball may be written as $(b_n + \frac{\delta}{n})$ for some $\delta \in (0,\epsilon)$. We now use our theorem from above consider $\frac{\delta}{n}$ to be our sequence (a_n) . Thus we may cover \mathbb{R}^{ω} with two open non-intersecting sets, The set of all convergent sequences in \mathbb{R} with standard topology and the set of all non-convergent sequences in \mathbb{R} with the standard topology.

23.11