Econometria

Parte Extra

Prof. Adalto Acir Althaus Junior oe

Sumário

- Tópicos
- Variáveis instrumentais
- Modelos de escolha discreta
 - ✓ Logit, Probit
- Efeito do tratamento

Considere o seguinte modelo

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

✓ Onde:
$$cov(x_1, u) = \cdots = cov(x_{k-1}, u) = 0$$

 $cov(x_k, u) \neq 0$

- Se estimarmos este modelo, obteremos uma estimativa viesada ou inconsistente para $\beta_{\boldsymbol{k}}$

Se usarmos MQO:

MQO é consistente

Entretanto, MQO falha na seguinte situação:

A solução deste problema por variáveis instrumentais pode ser vista como

A solução fica:

- A variável adicional z é chamada de instrumento válido para x, quando a variável z satisfaz ambas as condições.
- Em geral, temos muitas variáveis em u, e se mais de uma destas variáveis estiver correlacionada com x, neste caso, necessitamos no mínimo tantas variáveis em z, quantas forem as variáveis em u correlacionadas com x.

- IVs devem satisfazer duas condições
 - ✓ condição de relevância
 - ✓ Condição de exclusão
- Condição de Relevância
- O seguinte deve ser verdade ...
- No modelo abaixo, z satisfaz a condição de relevância se $\gamma \neq 0$

$$x_k = \alpha_0 + \alpha_1 x_1 + \dots + \alpha_{k-1} x_{k-1} + \gamma z + v$$

• Isso significa que z é relevante para explicar o regressor problemático, depois de "parcializar" o efeito de todos os outros regressores no modelo original

- Condição de Exclusão
- O seguinte deve ser verdade ...
- No modelo original, onde

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

z satisfaz a condição de exclusão se cov(z, u) = 0

- O que isso significa em palavras?
 - ✓ Resposta: z não é correlacionado com a perturbação, u ... isto é, não tem poder explicativo em relação a y após o condicionamento do outro x's
 - ✓ Podemos testar essa condição?

- Você encontrou uma boa IV, e agora?
 - ✓ Pode-se pensar na estimativa IV como sendo feita em duas etapas
- Primeiro estágio: regredir x_k em outros x's & z

$$x_k = \partial_0 + \partial_1 x_1 + \partial_2 x_2 + \dots + \partial_{k-1} x_{k-1} + \partial_k z + u$$

• Segundo estágio: tomar x_k previsto $(\widehat{x_k})$ do primeiro estágio e usá-lo no modelo original em vez de x_k . É por isso que também chamamos de estimativas IV mínimos quadrados de dois estágios (2SLS)

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{k-1} x_{k-1} + \beta_k \widehat{x_k} + u$$

- Os valores previstos (calculados) representam a variação em x_k que é "boa", pois é orientada apenas por fatores não correlacionados com u
- Especificamente, o valor previsto é função linear de variáveis não correlacionadas com \boldsymbol{u}
- Por exemplo no Stata, use os comandos ivreg ou xtivreg (para dados em painel)

- As 3 opções mais comuns são:
- Dist. Uniforme dá origem ao modelo de probabilidade linear
- Dist. Logística dá origem ao modelo logit
- Dist. Normal Padrão dá origem ao modelo probit

Os procedimentos descritos acima pressupõem uma certa distribuição de probabilidade para

- As FDA dessas distribuições são:
 - Uniforme: F(a) = a
 - Logística: $F(a) = \frac{e^a}{1 + e^a}$
 - Normal padrão: $F(a) = \int_{-\infty}^{a} (2\pi)^{-1/2} e^{(-t^2/2)} dt$

- Observações:
- O modelo de probabilidade linear é assim chamado por ser estimado por uma regressão linear:

$$y = F(\mathbf{x'}\beta) + u$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_n x_n + u$$

- Pela sua simplicidade, tal modelo foi muito usado no passado
- Com o desenvolvimento dos <u>processos</u> <u>computacionais</u>, tornou-se possível trabalhar com modelos mais complexos, como logit e probit

- Exemplo Indústrias Declinantes
- Variável de escolha:

$$y = \begin{cases} 1 & \text{fechou} \\ 0 & \text{não fechou} \end{cases}$$

- Variáveis explicativas:
 - SCALE = capacidade produtiva da planta (% da maior planta)
 - SHARE = capacidade produtiva da firma (% da indústria)
 - MULTPLANT = dummy (=1 se firma multi-planta)
 - SPECIALIST = dummy (=1 se firma não diversificada)
 - MAJORSITE = dummy (=1 se planta multi-produto)
 - CUT = utilização da capacidade total de produção da indústria

- Exemplo Indústrias Declinantes
- Variável de escolha:

$$y = \begin{cases} 1 & \text{fechou} \\ 0 & \text{não fechou} \end{cases}$$

$$y = \beta_0 + \beta_1 SCALE + \beta_2 SHARE + \beta_3 MULTPLANT + \beta_4 SPECIALIST + \beta_5 MAJORSITE + \beta_6 CUT + u$$

- reg -> probabilidade linear
- logit -> logit
- Probit -> probit

Exemplo Indústrias Declinantes

TABLE 8 Logit Analysis of Plant Closures^a

20gt Hamijoto di Filitti Ordanio				
Independent Variable	Mean Value	8.1	8.2	8.3
Constant	1.0	136‡	131‡	093‡
		(.017)	(.019)	(.031)
SCALE	.46	183‡	170‡	150‡
		(.034)	(.037)	(.039)
SHARE	.24	.138‡		
		(.061)		
SHARE* [multiplant firm]	.35 ^b		.148‡	.140†
			(.062)	(.068)
SHARE* [single-plant firm]	.16°		.055	.060
			(.120)	(.153)
MULTPLANT	.45	017	030	035
		(.019)	(.025)	(.026)
SPECIALIST	.10	055†	$054\dagger$	043
		(.032)	(.032)	(.033)
MAJORSITE	.60	.021	.019	.026
		(.016)	(.016)	(.016)
CU	.54			055
				(.040)
Number of observations		1646	1646	1480
Number of closures		124	124	104
Probability of closure		7.5%	7.5%	7.0%
Log likelihood		-417.8	-417.4	-353.4

- Exemplo Indústrias Declinantes
- Principais Conclusões:
- A probabilidade de fechamento de uma planta de produção:
 - diminui com o tamanho da planta
 - aumenta com o tamanho da firma
- Resultados sugerem complementaridade entre teorias de "shakeout" e "stakeout"
 - Shake out = firmas pequenas seriam expulsas de indústrias declinantes mais facilmente devido às vantagens de custo das grandes (economias de escala)
 - Stake out = firmas pequenas conseguiriam sobreviver mais tempo em indústrias declinantes pois podem manter-se lucrativas com menor produção

- Efeitos do tratamento
- Seja d igual a um indicador de tratamento do experimento que estudaremos
 - $\checkmark d = 0$ não tratado pela experiência (ou seja, grupo controle)
 - $\checkmark d = 1$ tratado por experiência (isto é, grupo tratado)
 - ✓ Seja y o resultado potencial de interesse
 - $\checkmark y = y$ (0) para grupo não tratado
 - \checkmark y = y (1) para o grupo tratado
- Fácil mostrar que y = y(0) + d[y(1) y(0)]

- Ex. # 1 O tratamento pode ser que o programa mais médicos
 - $\checkmark d = 1$ para municípios que receberam ações do programa
 - $\checkmark y$ pode ser um número de coisas, por exemplo nr. de atendimentos
- Ex. # 2 O tratamento é que as empresas emitem debentures
 - $\checkmark d = 1$ se as empresas emitem
 - ✓ y poderia ser uma série de coisas, como ROA, Lucratividade

- Agora podemos definir algumas coisas
- Efeito Médio de Tratamento (ATE) é dado por

$$\mathbf{E}[\mathbf{y}(\mathbf{1}) - \mathbf{y}(\mathbf{0})]$$

- O que isso significa em palavras?
- Resposta: É mudança esperada em y quando o indivíduo recebe o tratamento pelo programa ou experimento; este é o efeito causal que normalmente estamos interessados em descobrir!

$$E[y(1) - y(0)]$$

- Por que não podemos observar diretamente a ATE?
- Resposta = Só observamos um resultado...
 - ✓ Se os elementos são do grupo dos tratados, observamos y (1); se não for tratado, observamos y (0). Nós nunca observamos os dois.
 - ✓ Não conseguimos observar um determinado elemento do grupo dos tratados caso não tivesse recebido o tratamento
 - ✓ isto é nós não podemos observar o contrafactual do y (1), que seria seu resultado na ausência do tratamento, pois o indivíduo efetivamente recebeu o tratamento e não há como observar diretamente o que aconteceria caso não tivesse recebido

Efeito médio do tratamento sobre os tratados (ATT) é dado por

$$E[y(1)-y(0) \mid d=1]$$

- Este é o efeito do tratamento naqueles que são tratados; ou seja, a alteração esperada em y tratado se a amostra da população de observações que são tratadas for aleatória
- O que não observamos aqui?
 - \checkmark Resposta = $y(0) \mid d = 1$

- O efeito médio do tratamento sobre os não tratados (ATU) é dado por $E[y(1)-y(0) \mid d=0]$
- É o que o efeito do tratamento teria sobre aqueles que não são tratados pelo experimento
- Não observamos $y(1) \mid d = 0$

• Como estimamos ATE, E[y(1)-y(0)]?

- ✓ Resposta = Nós dependemos de $E[y(1) \mid d = 1] E[(y(0) \mid d = 0]]$ como uma forma de inferir o ATE
- ✓ Se interpretarmos isto como ATE, estamos assumindo que, na ausência do tratamento, o grupo tratado teria, em média, o mesmo resultado que o grupo não tratado. Mas será verdade?

$$\{E[y(1)|d=1] - E[y(0)|d=1]\} + \{E[y(0)|d=1] - E[y(0)|d=0]\}$$

- A comparação pelas simples diferença de médias não nos fornece o ATE!!
- Qual é o "viés de seleção" em palavras?
 - ✓ Resposta: Se o tratamento não for atribuído aleatoriamente, há um viés!

- O viés de seleção: E[y(0)|d = 1] E[y(0)|d = 0]
- Definição = Qual seria a diferença em média para o grupos das observações tratadas e das não tratadas sem qualquer tratamento
 - ✓ Não observamos este contrafactual!
 - ✓ Agora vamos ver porque a aleatoriedade é a chave

• Um tratamento aleatório, d, implica que d é independente dos resultados potenciais; isto é

$$E[y(0) \mid d=1] = E[(y(0) \mid d=0] = E(y(0))$$

E

$$E[y(1) \mid d=1] = E[(y(1) \mid d=0] = E(y(1))$$

o valor esperado
de y é o mesmo
para os tratados
e não tratados
na ausência de
qualquer
tratamento

- Com isso, é fácil ver que o viés de seleção fica igual a zero (= 0)
- E, o ATT restante é igual a ATE!

Expressando isso em formato de um modelo de regressão:

$$y = \beta_0 + \beta_1 d + u$$

Esta regressão só dará uma estimativa consistente de $\beta 1$ Se $\mathbf{cov}(d, u) = \mathbf{0}$; isto é, o tratamento, d, é aleatório e, portanto, não correlacionado com $y(\mathbf{0})$

 O formato de regressão também nos permite inserir facilmente controles adicionais, X

$$y = \beta_0 + \beta_1 d + \beta_{S'} X + u$$

- Algumas técnicas e métodos para se obter uma aproximação mais precisa do ATT - ATE
 - ✓ Experimentos Aleatorização
 - ✓ Experimentos não aleatórios
 - ✓ Matching e uso de propensity scores
 - ✓ Diff-in-diff (difference in diferences)
 - ✓ Rdd (regression discontinuity design)
 - √ Técnicas não paramétricas
 - ✓ Outras técnicas e desenhos de experimentos
- Modernamente, os estudos envolvem a preocupação com métodos mais robustos e bem desenhados tanto na amostragem e coleta de dados com nas estimações, visando possibilitar inferências causais