全国 2011 年 10 月高等教育自学考试

数据结构试题 课程代码: 02331

— ,	单项选择题(本大题共 15 小题,每小题 2 分,共 30 分)
	在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的
	括号内。错选、多选或未选均无分。

在每小题列出的四个备选项中只有一个	`是符合题目要求的,请将其代码填写在题后的			
括号内。错选、多选或未选均无分。				
1、在数据的逻辑结构中,树结构和图结构都是()				
A.非线性结构	B.线性结构			
C.动态结构	D.静态结构			
2.在一个长度为 n 的顺序表中插入一个元素的算法的时间复杂度为 ()				
A.O (1)	B.O $(\log n)$			
C.O (n)	D.O (n ²)			
3.指针 p1 和 p2 分别指向两个无头结点的非空单循环链表中的尾结点, 要将两个链表链接成				
一个新的单循环链表,应执行的操作为(
A.p1->next=p2->next;p2->next=p1-	->next;			
B. $p2->next=p1->next;p1->next=p2$	->next;			
C. $p=p2->next$; $p1->next=p$; $p2->next=p1->next$;				
D. $p=p1->next$; $p1->next=p2->next$; $p2->next=p$;				
4.设栈的初始状态为空,入栈序列为1,2,	3, 4, 5, 6, 若出栈序列为 2, 4, 3, 6, 5, 1			
则操作过程中栈中元素个数最多时为()				
A.2 ↑	B.3 ↑			
C.4 ↑	D.6 个			
5.队列的特点是()				
A.允许在表的任何位置进行插入和删除				
B. 只允许在表的一端进行插入和删除				
C.允许在表的两端进行插入和删除				
D. 只允许在表的一端进行插入, 在另一端进行删除				
6.一个链串的结点类型定义为				
# define NodeSize 6				
typedef struct node{				

浙 02331# 数据结构试卷 第 1 页 (共 7 页)

char data[NodeSize];			
struct node*next;			
}LinkStrNode;			
如果每个字符占1个字节,指针占2个字节,	,该链串的存储密度为()		
A.1/3	B.1/2		
C.2/3	D.3/4		
7.广义表 A= (a,B,(a,B,(a,B,······))) 的长度为			
A.1	B.2		
C.3	D.无限值		
8.已知 10×12 的二维数组 A,按"行优先顺序"	'存储,每个元素占 1 个存储单元,已知 A [1][1]		
的存储地址为 420,则 A[5][5]的存储地址为	()		
A.470	B.471		
C.472	D.473		
9.在一棵二叉树中,度为2的结点数为15,度	医为1的结点数为3,则叶子结点数为()		
A.12	B.16		
C.18	D.20		
10.在带权图的最短路径问题中,路径长度是打	旨()		
A.路径上的顶点数	B.路径上的边数		
C.路径上的顶点数与边数之和	D.路径上各边的权值之和		
11.具有 n 个顶点、e 条边的无向图的邻接矩阵中,零元素的个数为()			
A.e	B.2e		
$C.n^2$ -2e	D.n ² -1		
12.要以 O(n log n)时间复杂度进行稳定的排	; 序,可用的排序方法是()		
A.归并排序	B.快速排序		
C.堆排序	D.冒泡排序		
13.若希望在 1000 个无序元素中尽快求得前 10) 个最大元素,应借用()		
A.堆排序	B.快速排序		
C.冒泡排序	D.归并排序		
14.对有序表进行二分查找成功时,元素比较的	勺次数 ()		
A.仅与表中元素的值有关	B.仅与表的长度和被查元素的位置有关		

浙 02331# 数据结构试卷 第 2 页 (共 7 页)

C.仅与被查元素的值有关 D	.仅与表中元素按升序或降序排列有关			
15.散列文件是一种()				
A.顺序存取的文件 B.	随机存取的文件			
C.索引存取的文件 D	.索引顺序存取的文件			
二、填空题(本大题共10小题,每小题2分,表	共 20 分)			
请在每小题的空格中填上正确答案。错填、不填均无分。				
16 .若一个算法中的语句频度之和为 T $(n) = 3n^3 - 200nlog_2n + 50n$,则该算法的渐近时间复杂				
度为				
17.在单链表中,除了第1个元素结点外,任一结点的存储位置均由指示。				
18.栈的修改是按的原则进行。				
19.字符串中任意个连续的字符组成的子序列称为该串的。				
20.假设一个 10 阶的上三角矩阵 A 按行优先顺序压缩存储在一维数组 B 中,若矩阵中的第				
一个元素 a_{11} 在 B 中的存储位置 k = 0 ,则元素 a_{55} 在 B 中的存储位置 k = $。$				
21.在一棵具有 n 个结点的严格二叉树中,度为 l	l 的结点个数为。			
22.对于稀疏图,采用表示法较为节省存储空间。				
23.在排序过程中,如果,则称其为外部排序。				
24.设有一组记录的关键字为 {19, 14, 23, 1, 68, 12, 10, 78, 25}, 用链地址法构造散				
列表,散列函数为 h(key)=key%11,散列地址为 1 的链中有个记录。				
25.多关键字文件的特点是除主文件和主索引外,还建有。				
三、解答题(本大题共 4 小题, 每小题 5 分, 共 20 分)				
26.对于下列稀疏矩阵(注:矩阵元素的行列下标均从1开始)				
$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & -1 & 0 & 0 \end{bmatrix} $				
$\begin{bmatrix} 0 & 7 & 1 & 0 & 0 \\ -8 & 0 & 5 & 0 & 0 \end{bmatrix}$				
0 0 0 0 0				
0 0 6 -2 9				
(1) 画出三元组表;				
(2) 画出三元组表的行表。				
(1)				

(2)

- 27.已知一个森林的前序遍历序列为 CBADHEGF, 后序遍历序列为 ABCDEFGH。 (1) 画出该森林; (2) 画出该森林所对应的二叉树。 (1) (2) 28.对关键字序列(429,653,275,897,170,908,473,256,726)进行基数排序,写出 每一趟的排序结果。 29.对下列关键字序列 (87, 25, 310, 08, 27, 132, 68, 96, 187, 133, 70, 63, 47, 135) 构造散列表,假设散列函数为h(key)=key%13,用拉链法解决冲突。 (1) 画出该散列表; (2) 求等概率情况下查找成功的平均查找长度 ASL; (3) 写出删除值为70的关键字时所需进行的关键字比较次数。 (1) (2) (3) 四、算法阅读题(本大题共4小题,每小题5分,共20分) 30.阅读下列算法,并回答问题: (1) 假设 L= (3, 7, 7, 11, 20, 20, 20, 51, 51), 写出执行函数 f30 (&L) 后的 L; (2) 简述 f30 的功能。 void f30(SeqList*L) //L 为非空的有序表
 - int i=1,k=0;
 while(i < L -> length)
 {
 if(L -> data[i]!=L -> data[k])
 L -> data[++k]=L -> data[i];
 i++;
 }
 L -> length=k+1;

浙 02331# 数据结构试卷 第 4 页 (共 7 页)

```
}
(1)
(2)
31.阅读下列算法,并回答问题:
 (1) 假设栈 S= (3, 8, 6, 2, 5), 其中 5 为栈顶元素, 写出执行函数 f31 (&S) 后的 S;
 (2) 简述函数 f31 的功能。
void f31(Stack *S){
     Queue Q; InitQueue(&Q);
     while(!StackEmpty(S))
       EnQueue(&Q,Pop(&S));
     while(!QueueEmpty(Q))
       Push(&S,DeQueue(&Q));
}
 (1)
 (2)
32.假设具有 n 个结点的完全二叉树顺序存储在向量 BT[1.. n]中,阅读下列算法,并回答问
题:
 (1) 若向量 BT 为:
                   D
     1
          2
              3
                   4
                         5
                                  7
画出执行函数 f32 (BT,7,1) 的返回结果;
(2)简述函数 f32 的功能。
  BinTree f32(DataType
                       BT[],int n,int i)
       BinTree p;
       if (i \ge n) return NULL;
       p= (BinTNode*) malloc(sizeof(BinTNode));
       p->data=BT[i];
      p - > lchild = f32(BT, n, i*2);
```

浙 02331# 数据结构试卷 第 5 页 (共 7 页)

```
p - > rchild = f32(BT, n, i*2+1);
     return
}
(1)
(2)
33.已知有向图的邻接表和邻接矩阵定义如下:
 # define MaxNum 50
                                                // 图的最大顶点数
typedef struct node {
                                                //邻接点域
     int adjvex;
     struct node *next;
                                                //链指针域
   EdgeNode;
                                                // 边表结点结构
typedef struct{
                                                //顶点域
    char vertex;
    EdgeNode *firstedge;
                                                // 边表头指针
                                                //顶点表结点结构
} VertexNode;
typedef
        struct {
    VertexNode
                                                //邻接表
               adjlist [MaxNum];
                                                //图中当前顶点数和边数
    int n,e;
                                                //邻接表描述的图
} ALGraph;
typedef struct{
        vertex[MaxNum];
                                                //顶点表
   char
                                                //邻接矩阵
       adjmatrix [MaxNum][MaxNum];
   int
                                                //图中当前顶点数和边数
   int
       n,e;
                                                //邻接矩阵描述的图
} AMGraph;
下列算法是将邻接表描述的图 G1 改为邻接矩阵描述的图 G2, 在空白处填上适当内容使算
法完整:
void f33 (ALGraph G1,AMGraph *G2)
    int
         i, j;
    EdgeNode *p;
    G2->n=G1.n;
```

浙 02331# 数据结构试卷 第 6 页 (共 7 页)

```
G2->e=___(1)___;

for (i=0; i<G1.n; i++)

{ G2->vertex[i]=___(2)__;
    p=G1.adjlist[i].firstedge;
    for (j=0; j<G1.n; j++) G2->adjmatrix[i][j]=0;
    while (p)
    { G2->adjmatrix[i][p->adjvex]=1;
        ___(3)___;
    }
}

(1)
(2)
(3)
```

五、算法设计题(本题 10 分)

34.设顺序表 L 是一个递增有序表。编写算法,要求利用二分查找法确定插入位置,将元素 x 插入到 L 中,使 L 保持有序。