Exam 3 Graded Student Jacob Hauptman **Total Points** 92 / 100 pts Question 1 true/false 8 / 8 pts E(2X+3) 1.1 2 / 2 pts ✓ - 0 pts Correct: true - 2 pts Incorrect 1.2 $E(X^2 + 3)$ 2 / 2 pts - 0 pts Correct: False - 2 pts Incorrect V(2X+3) 2 / 2 pts 1.3 ✓ - 0 pts Correct: False - 2 pts Incorrect V(X^2+3) 1.4 2 / 2 pts - 0 pts Correct: False - 2 pts Incorrect Question 2 Linear rescaling with exponential **6** / 6 pts **✓ - 0 pts** Correct: E(Y) = -30, V(Y) = 400**- 3 pts** Incorrect E(Y)**- 3 pts** Incorrect V(Y)Question 3 3 / 6 pts Central limit theorem usage - 0 pts Correct: C ✓ - 3 pts one incorrect answer is circled - 3 pts C is not circled **– 6 pts** more than one incorrect answer circled

6 / 6 pts

- ✓ 0 pts Correct: A
 - **6 pts** Incorrect

Question 5

(no title) **8** / 8 pts

5.1 probability Min = 10

4 / 4 pts

- \checkmark 0 pts Correct: .01 + .05 + .05 = .11
 - 4 pts Incorrect

5.2 expected value of Min

4 / 4 pts

- \checkmark 0 pts Correct: 10(.11) + 20(.25) + -10(64) = -.3
 - 1 pt Small typo in simplification
 - **2 pts** Calculated expected value of a different statistic
 - **4 pts** Incorrect

Question 6

Bias of Min for mu 6 / 6 pts

- \checkmark **0 pts** Correct: -7.3 or Answer from 5b 7
 - **6 pts** Incorrect

Linear combination 13 / 15 pts

7.1 Expected value 5 / 6 pts

- **0 pts** Correct: -3
- ✓ 1 pt small typo
 - 3 pts Incorrect value for E(X)
 - 3 pts Incorrect formula for E(Z)
 - 6 pts Insufficient work to receive credit

7.2 **Variance** 5 / 6 pts

- **0 pts** Correct: 101
- ✓ 1 pt small typo
 - **3 pts** Incorrect variance for X
 - 3 pts Incorrect formula for V(Z)
 - **6 pts** Insufficient work to receive credit

7.3 Independence 3 / 3 pts

- ✓ 0 pts Correct: B
 - **3 pts** Incorrect

Normal distribution **12** / 15 pts 8.1 probability for X **5** / 5 pts **✓** - 0 pts Correct: .9772 – 2 pts 1-.9772**- 3 pts** Incorrect z score **– 5 pts** Insufficient work to receive credit probability for sample average 8.2 **5** / 5 pts **✓** - 0 pts Correct: .8413 - 1 pt small typo **- 2 pts** 1 - .8413**- 3 pts** Incorrect z score **- 5 pts** Insufficient work to receive credit confidence **2** / 5 pts 8.3 **- 0 pts** Correct: 91

- **3 pts** Incorrect z-score (but correct formulas)
- \checkmark -3 pts 109 (z score of 3 instead of -3)
 - **4 pts** Wrong formulas (e.g., attempt to compute for sample total)
 - **6 pts** Insufficient work to receive credit

Random samples 15 / 15 pts

9.1 expected value and standard deviation

5 / 5 pts

- $m{\checkmark}$ **0 pts** Correct: $\mu_X=3$, $\sigma_X=4$
 - 1 pt small typo
 - **2 pts** variance instead of standard deviation, i.e., $\mu_X=3$, $\sigma_X=16$
 - **3 pts** Incorrect variance
 - **3 pts** Incorrect expected value
 - 5 pts Insufficient work to receive credit

9.2 sample size 3 5 / 5 pts

- **✓ 0 pts** Correct: $1 (.8)^3$
 - 1 pt small typo
 - **3 pts** wrong combinations of samples to achieve sample average less than 2
 - **5 pts** Insufficient work to receive credit

9.3 sample size 64 5 / 5 pts

- \checkmark **0 pts** Correct: .0228 (or correct given (a))
 - 2 pts 1-.0228
 - **2 pts** Correct standard deviation (given (a)) but incorrect calculations
 - 3 pts Incorrect standard deviation
 - **5 pts** Insufficient work to receive credit

Point estimators 15 / 15 pts

10.1 sample average is unbiased

3 / 3 pts

✓ - 0 pts Correct: True

- 3 pts Incorrect

10.2 calculate the bias

6 / 6 pts

- ✓ 0 pts Correct: $\frac{\sigma^2}{10}$
 - 1 pt small typo
 - **2 pts** Incorrect formula for $V(\overline{X})$
 - **2 pts** Incorrect formula for $E(\overline{X})$
 - 4 pts Incorrect formula for Bias
 - **5 pts** Correct formula for Bias with respect to ℓ^2 , but no other relevant work
 - 6 pts Insufficient work to receive credit

10.3 solve for K 6 / 6 pts

- **✓ 0 pts** Correct: $\frac{1}{10}$, or correct given (b)
 - 2 pts small error
 - **4 pts** Some relevant work shown
 - **6 pts** Insufficient work to receive credit

Name: Jacob tauntman

UID: 120067075

Question	Points	Score
1	8	
2	6	
3	6"	
. 4	6	
5	8	5
6	6	
7	15	
8	15	
9	15	
10	15	
Total:	100	

Directions: No notes, text books, calculators, cell phones, or other electronics are allowed. Unless otherwise specified, you do not need to simplify your answers; however, your answers should not contain the sybmols \int , \sum , or Φ . Please sign the University of Maryland honors pledge below.

"I pledge on my honor that I have not given or received any unauthorized assistance on this assessment."

Good luck! This test does not define you :)

Formulas: The following formulas for pmfs and pdfs are provided for your convenience. They may or may not be useful on the exam.

• Binomial:
$$p(x; n, p) = \binom{n}{x} p^x (1-p)^{n-x}$$
, $E(X) = np$, $V(X) = np(1-p)$

• Geometric:
$$p(x; p) = (1-p)^{x-1}p$$
, $E(X) = \frac{1}{p}V(X) = \frac{(1-p)}{p^2}$

• Hypergeometric:
$$p(x; N, M, n) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}, E(X) = n \cdot \frac{M}{N}, V(X) = n \cdot \frac{N-n}{N-1} \cdot \frac{M}{N} \cdot \left(1 - \frac{M}{N}\right)$$

• Uniform continuous:
$$f(x; A, B) = \frac{1}{B-A}$$
, $E(X) = \frac{A+B}{2}$, $V(X) = \frac{(B-A)^2}{12}$

• Exponential:
$$f(x; \lambda) = \lambda e^{-\lambda x}$$
, $E(X) = \frac{1}{\lambda}$, $V(X) = \frac{1}{\lambda^2}$

CDF for Standard Normal: The following table give some values of the cumulative distribution function for the standard normal distribution.

a	$\Phi(a)$	
$-\infty$	0	
-3.0	.0013	
-2.5	.0062	
-2	.0228	
-1.5	.0668	
-1	.1587	
-0.5	.3085	
0	.5	
.5	.6915	
1	.8413	
1.5	.9332	
2	.9772	
2.5	.9938	
3.0	.9987	
000	1	

Short Answer: Answer the following questions and write your final answer in the box or line when indicated. You do not need to show your work.

- 1. [8 pts.] Determine whether the following statements are true or false where X and Y are random variables on sample space S.
 - (a) E(2X+3) = 2E(X) + 3.

(b)
$$E(X^2 + 3) = E(X)^2 + 3$$
.

(c)
$$V(2X+3) = 2V(X) + 3$$
.

(d)
$$V(X^2 + 3) = V(X)^2 + 3$$
.

2. [6 pts.] Suppose X has the exponential distribution with parameter $\lambda = \frac{1}{10}$. $E(x) = \frac{1}{\lambda} = \frac{1}{(\frac{1}{10})} = 10$ Let Y = -2X - 10. Find E(Y) and V(Y).

$$E(Y) = -2E(X) - 10 = -2(10) - 10 = -20 - 10 = -30$$

 $V(Y) = (-2)^2V(X) = 4V(X) = 400$

$$E(Y) = -30$$

$$V(Y) = 400$$

- 3. [6 pts.] Let X be a random variable. Which of the following have approximately normal distributions? Circle all that apply.
 - A. X itself, if X is a continuous random variable.
 - B. \overline{X} (the sample averages), if we take a random sample of size n = 8.
 - (c) T_0 (the sample totals), if we take a random sample of size n = 80.
 - D. The sample modes, if we take a random sample of size n = 800.

4. [6 pts.] Suppose that the heights of men in the United States are normally distributed with mean 70 inches and standard deviation 3 inches. If we randomly sample 9 men in the united states, what is the probability that their average height is more than 71.5 inches?

A. 0668
$$\mu = 70$$
 $\sigma = 3$ $\sigma_{\overline{x}} = \frac{3}{12} = \frac{3}{5} = 1$

B. .3085

C. 6915
$$P(x>71.5)=P(z>71.5-70)=1-9332=0.0668$$

5. [8 pts.] Suppose the random variable X has the following distribution:

	_ +			
	\boldsymbol{x}	-10	10	20
ļ	P(x)	.4	.1	.5

Suppose we take a random sample of size two.

(a) What is the probability that the sample minimum is 10?

$$P(\text{Min} = 10) = 0.17 + 2(0.1)(0.75) = 0.11$$

(b) Calculate the expected value of the sample minimum.

$$10 - 10 20 P(Min = -1a) = 0.4^2 + 2(0.4)(0.1) + 2(0.4)(0.5) P(Min = 2c) = 0.5^2 = 0.25$$

 $10 - 10 20, 20 = 0.16 + 2(0.04) + 2(0.2) = 0.16 + 0.08 + 0.4 = 0.64$
 $10 - 10 10 = 0.16 + 0.08 + 0.4 = 0.64$

$$E(Min) = -10(0.64) + 10(0.11) + 20(0.25)$$

$$= -6.4 + 1.1 + 5 = -6.4 + 6.1 = -0.3$$

6. [6 pts.] Using the distribution table from problem 5, calculate the bias of the estimator $\hat{\mu}=$ Min (i.e., sample minimum) for μ if we take a random sample of size two.

$$\operatorname{Bias}(\hat{\mu}) = -7.3$$

Full Response: For full credit, show your work.

7. [15 pts.] Let X be the number of times we have to toss a biased coin with P(H) = .2 until we get Heads. Let Y have an unknown distribution, with E(Y) = -1, V(Y) = 2, and Cov(X,Y) = -0.25. Let 1 (0 1) 0 = 020 Z = -2X + 3Y + 10.

(a) Calculate the expected value of
$$Z$$
, $E(Z)$.

$$E(2) = -2E(X) + 3E(Y) + 10 = 0$$

X is geometric
 $E(X) = \frac{1}{P} = \frac{10}{0.2} = \frac{10}{2} = 5$

$$E(Z) = 17$$

(b) Calculate the variance of
$$Z$$
, $V(Z)$.

$$V(X) = \frac{1-l^2}{l^2} = \frac{1-0.2}{0.2^2} = \frac{0.8}{0.04} = \frac{9}{4} = \frac{80}{4} = 20$$

$$V(2)=(-2)^2V(x)+(3)^2V(y)+2(-2)(3)(av(x,y))$$

=4(20)+9(2)-12(-\frac{1}{4})=80+18+3=91

$$V(Z) = 9$$

(c) Are X and Y independent?

A. Yes, they are independent.

B. No, they are dependent.

We do not have enough information to answer.

- 8. [15 pts.] The average time it takes for fully charged cell phone to run out of battery is normally distributed, with mean 100 hours and standard deviation 15 hours.
 - (a) If you charged your cell phone at 11am on Monday, what is the probability it is still working at 9am on Thursday?

on Thursday?

$$\mu = |ee| = |f| = |f|$$

(b) Suppose we randomly sample 25 cell phones. What is the probability that their average battery life is longer than 97 hours?

$$Q_{x} = \frac{6}{4\pi} = \frac{15}{5} = 3$$

$$P(X > 97) = P(Z > \frac{97 - 100}{3}) = 1 - \Phi(-1)$$

(c) Suppose we randomly sample 25 cell phones. Find the number N so that we can be 99.87% confident that the average battery life is at least N hours.

$$\frac{\overline{\Phi}(3) = 0.9987}{N - 100} = 3 = N - 100 = 9 \Rightarrow N = 109$$

9. [15 pts.] Suppose X has the following distribution.

1	\boldsymbol{x}	-5	5
Ì	P(x)	.2	.8

(a) Calculate μ_X and σ_X .

(a) Calculate
$$\mu_X$$
 and σ_X .

$$k_X = E(X) = -5(0.2) + 5(0.8) = -1 + 4 = 3$$

$$V(X) = E(X^2) - E(X)^2 ; E(X^2) = (-5)^2(0.2) + (5)^2(0.8)$$

$$= 25(0.2) + 25(0.8)$$

$$= 25(0.2 + 0.8) = 25$$

$$= 25(0.2 + 0.8) = 25$$

$$\mu_X = 3$$

$$\sigma_X = 4$$

(b) Suppose we take a random sample of size n and calculate the sample average.

(a) Suppose n=3. What is the probability that the sample average is less than 2?

(a) Suppose
$$n = 3$$
. What is the probability that the sample average is less than 2 :
$$-5 - 5 + 7 = -5 - 5 - 5 = -5 < 2$$

$$P(\overline{X} < 2) = 0.2^{2}(0.8) + 0.2(0.8)^{2} + (0.2)^{3}$$

(b) Suppose $n = \underline{64}$. What is the probability that the sample average is less than 2?

CLI, n=64230
$$\sigma = \frac{4}{164} = \frac{4}{8} = 0.5$$

$$P(X < 2) = P(Z < \frac{2-3}{0.5}) = \Phi(-\frac{1}{12}) = \Phi(-2) = 0.0928$$

$$P(\overline{X} < 2) = 00228$$

- 10. [15 pts.] Using a rod of (unknown) length ℓ , you lay out a square plot of side length ℓ . So the area is ℓ^2 . Suppose you take 10 independent measurements $X_1,...,X_{10}$, each with mean ℓ and variance σ^2 .
 - (a) True or false: \overline{X} is an unbiased estimator for $\ell.$

Truc

(b) Calculate the bias of
$$\overline{X}^2$$
. (Hint: Use a formula for the variance of \overline{X} .)

$$\beta_{1a} = (\overline{X}^2) = E(\overline{X}^2) - l^2 \qquad \sigma_{\overline{X}} = \frac{\sigma_{\overline{X}}}{ln} \quad \sigma_{\overline{X}}^2 = \frac{\sigma_{\overline{X}}^2}{ln} = \frac{\sigma^2}{l0}$$

$$V(\overline{X}) = E(\overline{X}^2) - E(\overline{X})^2 \Rightarrow E(\overline{X}^2) = V(\overline{X}) + E(\overline{X})^2 = \frac{\sigma^2}{l0} + l^2$$

$$E(\overline{X}^2) - l^2 = \frac{\sigma^2}{l0} + l^2 - l^2 = \frac{\sigma^2}{l0} + l^2 - l^2 = \frac{\sigma^2}{l0}$$

$$\operatorname{Bias}_{\ell^2}(\overline{X}^2) = \frac{\sigma^2}{10}$$

(c) For what value of K is $\overline{X}^2 - KS^2$ an unbiased estimator of ℓ^2 ? You may use the fact that S^2 (sample standard deviation) is an unbiased estimator for σ^2 .

Bias₂(
$$\bar{X}^2 - kS^2$$
) = $E(\bar{X}^2) - kE(S^2) - \ell^2 = C$
Using $E(\bar{X}^2)$ from (b)

$$\frac{\sigma^2}{10} + \ell^2 - kE(S^2) - \ell^2 = 0 \Rightarrow \frac{\sigma^2}{10} + \ell^2 - kE(S^2) - \ell^2 = 0$$

$$\frac{\sigma^2}{10} = kE(S^2)$$

$$k = \frac{\sigma^{2}}{10} \left(\frac{1}{E(5^{2})} \right)$$

$$= \frac{\sigma^{2}}{10} \left(\frac{1}{\sigma^{2}} \right) = \frac{1}{10}$$

$$K = \frac{1}{10}$$