

প্রাইমারি লেকচার শিট

Lecture Content

লগারিদম

লগারিদম

প্রাথমিক তথ্য:

সর্বপ্রথম স্কটল্যান্ডের গণিতবিদ 'জ<mark>ন নেপিয়ার' (1550-1617) লগা</mark>রিদম আবিষ্কার করেন।

শুধু ধনাত্মক সংখ্যার লগারিদম আ<mark>ছে । শূন্য এবং ঋণাত্মক সংখ্যার লগারিদম নেই ।</mark>

যদি $a^x = M$ হয় তবে x কে M এর a ভিত্তিক লগারিদ্ম বা সংক্ষেপে লগ বলা হয় । লগারিদ্মের প্রতীক ব্যবহার করে লেখা হয় : $Log_aM = x$ Log_aM কে a ভিত্তিক লগ 'M' পড়া হয় ।

ব্যবহারিক ক্ষেত্রে লগারিদমের ভিত্তি সাধারণত ১০ ধরা হয়। ১০ ভিত্তিক লগারিদমকে সাধারণ লগারিদম বলে। এই ক্ষেত্রে ভিত্তি উহ্য রাখা হয় অর্থাৎ $\log_{10} M$ বোঝাতে $\log M$ লেখা হয়।

* লগারিদমের প্রবর্তন করেন- জন নেপিয়ার

🗹 প্রয়োজনীয় সূত্রাবলি :

- $\log_a(MN) = \log_a M + \log_a N$ (অর্থাৎ গুণ থাকলে যোগ এবং ভাগ থাকলে বিয়োগ করতে হয়)
- 2. $\log_a \frac{M}{N} = \log_a M \log_a N$ (অর্থাৎ ভাগ থাকলে বিয়োগ করতে হয়)
- $3. \log_a M^n = n \log_a M$ (ভিত্তিমূলের উপর ভিত্তি, আবার ভিত্তি এর উপর পাওয়ার থাকলে পাওয়ারটি শুরুতে বসে) যেমন : $\log_a 10^5 = 5 \log_a 10$
- $4. \quad log_a 1 = 0$ (যে কোন ভিত্তিমূলের উপর ভিত্তি 1 হলে তার উত্তর 0 হয়)
- $5. \log_a a = 1$ অর্থাৎ $\log_{10} 10 = 1$ (ভিত্তিমূল এবং ভিত্তি মিলে গেলে তার মান সবসময় 1 হয় ।)
- 6. $\log_a a^2 = 2$ অর্থাৎ $\log_x x^4 = 4$ (অর্থাৎ কখনো \log এর ভিত্তিমূল ও ভিত্তি যদি সমান হয় তাহলে ভিত্তিমূল এবং ভিত্তি উভয়ে উঠে যায় এবং ভিত্তির উপর যে পাওয়ার থাকে, তাই উত্তর লিখতে হয়)
- 7. loga + logb + logc = log (abc) (log কমন নেয়ার সময় যোগ থাকলে গুণ)
- 8. $\log a \log b = \log \left(\frac{a}{b}\right) (\log \text{ কমন নেয়ার সময় বিয়োগ থাকলে ভাগ হয় এবং প্রথমটি উপরে বসে)}$

লেকচার **১**৬ 9. $\log_a y = x$ হলে $a^x = y$ (সূত্রটি সব থেকে গুরুত্বপূর্ণ)

ব্যাখ্যা: (কোন পাওয়ার = কোন মান দেয়া থাকলে \log তুলে দিয়ে ঐ পাওয়ার ও মানটি স্থান বদল করে অর্থাৎ পাওয়ার এর জায়গায় মানটি এবং মান এর জায়গায় পাওয়ার যায়) অর্থাৎ $\log_a x = b$ হলে $a^b = x$ লিখা যায়। ভালোভাবে আরেকটি দেখুন:

 $\log_{x} 4 = 2$ হলে $x^{2} = 4$

 $10. \, \log_a x = \frac{\log_b x}{\log_b a} = \frac{\log x}{\log a} \,, \, \log_a b \, \times \log_b c = \log_a c \,, \ \, a^{\log_a b} = b \,, \ \, \log_a m = \log_b m \, \times \log_a b \,$

Teacher's Discussion

১. 32 এর 2 ভিত্তিক লগারিদম কত?

[প্রাথমিক সহকারী শিক্ষক নিয়োগ পরীক্ষা (১ম পর্যায়)-২০২২; প্রাথমিক সহকারী শিক্ষক নিয়োগ পরীক্ষা (৩য় পর্যায়) : ১৯]

- ক. 3 গ. 5
- খ. 4 ঘ. 6

- ত উত্তর: গ
- ২. $\log 8^2 = \Phi 0$? প্রাথমিক সহকারী শিক্ষক নিয়োগ (৪র্থ পর্যায়) : ১৯]
 - ক. 1
- খ. $\frac{1}{2}$
- গ. $\frac{2}{3}$
- <mark>ঘ. 1</mark> **উত্তর:** ঘ
- ৩. $\log_5^x = 3$ হলে $x = \overline{\Phi}$ ত?

[প্রাথমিক সহকারী শিক্ষক নিয়ো<mark>গ পরীক্ষা</mark> (৪র্থ পর্যায়) : ১৯]

- ক. 375 গ. 125
- খ. 120
- ঘ. 225
- 8. $\log_{\sqrt{3}} 81 = \overline{\Phi}$?
 - ক. 4
- খ. 27√3
- গ. 8
- **ঘ**. $\frac{1}{8}$
- উত্তর: গ

- ৫. $\log_3 \frac{1}{9} = \overline{9}$?
 - ক. 2
- **₹**. − 2
- গ. 3 log2⁸ – ক্য
- ৬. log₂⁸ = কত?
 - ক. 4 গ. 2
- খ. 3
- <mark>ঘ</mark>. 1

উত্তর: খ

- 1 উত্তর: খ
- ৭. $\log_2 \frac{1}{32} = \overline{\text{ao}}$?
 - ক. $\frac{1}{25}$
- 킥. 5 1
- ঘ. $-\frac{1}{5}$
- **উত্তরঃ** খ
- ৮. 32 এর 2 ভিত্তিক লগারিদম কত?
 - ক. 3
- খ. 4
- গ. 5
- ঘ. 6
- **উত্তর:** গ

- ৯. $\log_{3\sqrt{2}} \frac{1}{324} = \overline{499}$?
 - $\overline{\Phi}$. $162\sqrt{2}$
- খ. 4
- গ. $\frac{1}{162\sqrt{2}}$
- ঘ. 4
- **উত্তর:** ঘ

- <mark>১০. 5√5 এর 5 ভিত্তিক</mark> লগ কত?
 - ক. √5
- খ. $\frac{2}{3}$
- গ. $\frac{3}{2}$
- ঘ. 4
- উত্তর: গ

- $\log_5 \sqrt[3]{5} =$ কত?
 - $\overline{\Phi}$. $\frac{1}{3}$
- খ. $\frac{1}{2}$
- গ. $\frac{1}{4}$
- ঘ. $\frac{1}{5}$
- **উত্তর:** ক

- ১২. $\log_{12}\sqrt{12} = \overline{\Phi}$ ত?
 - $\overline{\Phi}$. $\frac{1}{3}$
- খ. $\frac{1}{6}$
- ঘ. $\frac{1}{5}$
- **উত্তর:** গ

উত্তর: গ

- ১৩. $\log_2 \sqrt{6} + \log_2 \sqrt{\frac{2}{3}} = \Phi$ ত?
 - ক. 0 গ. 1
- খ. 2
- গ. 1
- ঘ. 3
- ১৪. $\log_{2\sqrt{5}} 20 = \overline{20}$
 - ক. 400 গ. 2
- খ. 10
- ঘ. 2√5
- **উত্তর:** গ

- ১৫. $\log_2 \sqrt{\frac{1}{64}} = \overline{\phi}$ ত?
 - ▼. 3

গ. 6

- $\sqrt[4]{-\frac{1}{6}}$
- **উত্তর:** ক
- ১৬. $\log_x 8 = -2$ হলে, $x = \overline{4}$
 - কত? _
 - গ. $2\sqrt{2}$
- ঘ. 4
- **উত্তর:** গ

[৩৮তম বিসিএস]

- ১৭. $\log_x^{\left(\frac{3}{2}\right)} = -\frac{1}{2}$ হলে, x এর মান-
- [৩৭তম বিসিএস]

- ক. $\frac{4}{9}$
- খ. $\frac{9}{4}$
- ঘ. $\sqrt{\frac{2}{3}}$
- **উত্তর:** ক

১৮.
$$\log_a \sqrt{2} = \frac{1}{6}$$
 হলে, $a = \overline{\Phi}$ ত?

- ক. $\sqrt{2}$
- গ. 6
- ঘ. 8
- **উত্তর:** ঘ

১৯. $\log_{10}^{(0.001)} = \overline{\Phi}$ ত?

- ক. − 2
- গ. $\frac{1}{2}$
- উত্তর: খ

উত্তর: গ

- ২০. $\log_{2\sqrt{5}}^{400} = x$ হলে, x এর মান নির্ণয় কর।
- গ. 4
- ঘ. $2\sqrt{5}$ ২১. $\log_x^{324} = 4$ হয়, তবে $x = \overline{}$ কত?
 - $\overline{\Phi}$. $3\sqrt{2}$
- গ. $5\sqrt{2}$
- ঘ. 2√5
- উত্তর: ক

- ২২. 400 এর log4; ভিত্তিক কত?
 - ক. 10
- খ. 20
- গ. 2
- ঘ. 2√5
- উত্তর: ঘ

- ২৩. $\log_a{}^x=1, \log_a{}^y=2$ এবং $\log_a{}^z=3$ হলে, $\log_a{\left(\frac{x^3y^2}{z}\right)}$ এর মান
 - ক. 1
- খ. 4
- গ. 2
- ঘ. 5
- উত্তর: খ
- ২৪. $\log_{\sqrt{a}}^{b} \times \log_{\sqrt{b}}^{c} \times \log_{\sqrt{c}}^{a}$ এর মান কত?
- গ. 6
- ঘ. ৪
- **উত্তর:** ঘ
- $\frac{\log\sqrt{27} + \log8 \log\sqrt{512}}{\log 1.5} = \overline{\bullet}$ ত?
- ঘ. 10
- উত্তর: গ

- $\text{2.6. } \log_{\sqrt{8}} x = 3\frac{1}{3}$
 - গ. 34
- খ. 32
- ঘ. 22
- উত্তর: খ

(৩৮তম বিসিএস)

উত্তর: ক

উত্তর : গ

Student's Practice

- $2\log_{10}^{5} + \log_{10}^{36} \log_{10}^{9} = ?$
 - [৪৪তম বিসিএস]
 - ক. 2 গ. 37
- খ. 100 ঘ. 4.6
- উত্তর: ক
- ২. যদি $\log_{10} x = -1$ হয়, তাহলে নিচের কোনটি x এর মান?
 - [৪৪তম বিসিএস]

- ক. 0.1
- **খ**. 0.01
- গ. $\frac{1}{10000}$
- ঘ. 0.001
- উত্তর: ক

- $2^{\log_2^3 + \log_2^5} = ?$
- [৪৩তম বিসিএস]

- ক. -8 গ. 15
- খ. 2 <mark>ঘ</mark>. 10
- 8. $\log_2 \log_{\sqrt{e}}^{e^2} = ?$ [৪১তম বিসিএস]
 - ক. -2
- খ. -1
- গ. 1
- ঘ. 2
- উত্তরঃ ঘ

- ৫. কোন শর্তে $\log a^a = 1$?
- (৪০তম বিসিএস)
- $\overline{\Phi}$. a > 0, $a \ne 1$ গ. a > 0, 1 = 1
- খ. a ≠ 0, a > 1 ঘ. a ≠ 1, 1 < 0
- উত্তর: ক
- ৬. $\log_x\left(\frac{3}{2}\right) = -\frac{1}{2}$ হলে, x এর মান-
 - (৩৭তম বিসিএস)

- $\log_x\left(\frac{1}{8}\right) = -2$ হলে $x = \infty$?
 - **▼.** $2\sqrt{2}$
 - গ. ২
- ঘ. 4
 - (৩৬তম বিসিএস)
- ৮. $\log_{\sqrt{3}} 81 = \Phi \circ$?

ক. 4

- - গ. 3
- ১০. $\log_a x = 1$, $\log_a y = 2$ এবং $\log_a z = 3$ হলে,
 - $\log a \left(\frac{x^3 y^2}{z} \right)$ এর মান কত?
- (৩৫তম বিসিএস)

ক. 1

গ. 2

- গ. 4
- ঘ. 5
 - উত্তর : গ (৩২তম বিসিএস)
- ১১. $\log_2^8 = \overline{\Phi}$? ক. 2
- খ. 3

১২. $\log_2\left(\frac{1}{32}\right)$ এর মান –

(৩১তম বিসিএস)

- গ. $\frac{1}{5}$ ঘ. $\frac{-1}{5}$

উ: খ

১৩. $\log_a \left(\frac{m}{n}\right) = \Phi$?

(৩০তম বিসিএস)

- $\overline{\Phi}$. log_a m − log_a n
- খ. log_a m + log_a n
- গ. loga m × loga n য. কোনটিই নয়

উত্তর: ক

- os. $\frac{1}{\log_a(abc)} + \frac{1}{\log_b(abc)} + \frac{1}{\log_c(abc)} = \frac{1}{\log_c(abc)}$

- ঘ. $\frac{1}{2}$

সমাধান:
$$\frac{1}{\log_a(abc)} + \frac{1}{\log_b(abc)} + \frac{1}{\log_c(abc)}$$

- $= \log_{abc} a + \log_{abc} b + \log_{abc} c$
- $= log_{abc}abc = 1$
- ০৪. $\log_5 (\sqrt[3]{5}) (\sqrt{5}) =$ কত?

উত্তর: গ

- $\log_5\left(\frac{3}{\sqrt{5}}\right)\left(\sqrt{5}\right) = \log_5\left(\frac{1}{5^3}, \frac{1}{5^2}\right)$
- $= \log_5 \left(\frac{1}{3} + \frac{1}{2} \right) = \log_5 \left(\frac{2+3}{5} \right)$
- $=\log_5 5^{\frac{5}{6}} = \frac{5}{6}\log_5 5 = \frac{5}{6}.1 = \frac{5}{6}$

Class

- $log_8^2 = \overline{\Phi}$ ত?
 - ক. 1

খ. $\frac{1}{2}$

- ২. $\log_3 \frac{1}{9} = \overline{\Phi}$?
 - ক. 2
- খ. −2
- গ. 3
- **ঘ.** − 3
- ৩. $\log_2^8 = \overline{\Phi}\overline{\Phi}$?
 - ক. 4
- খ. 3
- গ. 2
- ঘ. 1
- 8. $\log_{3\sqrt{2}} \frac{1}{324} =$ কত?
 - Φ. 162√2
- 휙. 4
- গ. $\frac{1}{162\sqrt{2}}$ ঘ. -4
- ৫. $\log_a \sqrt{2} = \frac{1}{6}$ হলে, $a = \overline{\Phi}$ ত?
 - $\overline{\Phi}$. $\sqrt{2}$ গ. 6
- ঘ. 8

- ৬. $\log_4^{256} = \overline{\Phi}\overline{\Phi}$?
 - ক. 1
- খ. 2
- গ. 3
- ঘ. 4
- ৭. $24\sqrt{5}$ এর 5 ভিত্তিক লগ কত?

- $b. \log_x \frac{1}{8} = -2$ হলে, $x = \overline{\Phi}$ ত?
 - ক. 2
- গ. $2\sqrt{2}$
- ৯. $\log_{\sqrt{3}} 81$ কত?
 - ক. 4
- খ. 27√3
- গ. 8
- ঘ. $\frac{1}{6}$
- ১০. log2¹⁶ এর মান কত?
 - ক. 5
- খ. 3
- গ. 4