Probabilistic Computing

Computation Complexity Seminar

Ali Fathi - Fahid Hamzei

Department of Computer Science Sharif University of Technology

September 16, 2021

Overview

- Probabilistic Turing Machine
- 2 RP, coRP and ZPP Classes
- Robustness
- Randomized Reduction
- **5** Randomized Space-Bounded Computation
- 6 References

Introduction

Idea of Turing Machine

Intelligence, Uncertainty and Error

$$L = \{w_1, w_2, \cdots\}$$

 $w \in L \text{ or } w \notin L$

Uncertainty and permission to make error, speed up the computations.

Power of Randomness

Probabilistic Turing Machine (Algorithm)

An assumption

• We access to a fair coin, or adequate number of random bites.

(we will see other types of randomness, like unfair coin, fulfill our requirements too)

Example: Primality testing

$$PRIMES = \{ p \in \mathbb{N} \mid p \text{ is prime} \}$$

Probabilistic Algorithm

```
On input p:
if p is even then
   if p=2, accept and reject otherwise;
end
Sample k independent random numbers a_1, \dots, a_k \in \{1, \dots, p-1\};
for i = 1 to k do
   Calculate a_i^{p-1} \mod p. Reject if it is not 1;
   Factorize p-1 as p-1=s.2^l in which s is odd;
   Calculate series y_0 = (a_i^{s.2^0} \mod p), \cdots, y_l = (a_i^{s.2^l} \mod p);
   If u_0, \dots, u_l wasn't like (\dots, -1, 1, 1, \dots, 1), Reject;
end
If no reject occurred, accept;
```

Some lemmas

Lemma

If p is prime, then for all $a \in \{1, \dots, p-1\}$, there is $a^{p-1} \mod p = 1$.

For odd composite p:

- $\exists a \in \{1, \dots, p-1\}$ such that $a^{p-1} \mod p \neq 1$ (at least for half of such a's).
- $\forall a \in \{1, \dots, p-1\}: a^{p-1} \mod p = 1 \to \text{Carmichael numbers.}$

Lemma

If p is a Carmichael numbers, $\exists q \notin \{1, -1\}$ such that $q^2 \mod p = 1$.

Some lemmas

Lemma

For every odd composite p, for at least half of $\{1, \dots, p-1\}$, the last non-one element of series y_0, y_1, \dots, y_l in which $y_t = (a^{s \cdot 2^t} \mod p)$, is not -1.

Therefore are rejected with error less than 2^{-k} .

Probabilistic Turing Machine

Probabilistic Turing Machine (PTM)

Probabilistic Turing Machine

$$\langle Q, \Sigma, \Gamma, (\delta_0, \delta_1), q_0, q_a, q_r \rangle$$

Tosses a coin at each node to use δ_0 or δ_1

Probabilistic Turing Machine

- $\delta_0 = \delta_1 \Rightarrow PTM$ would be a DTM
- $Pr[M \text{ accepts } x] = \sum_{b \text{ is accepting branch}} Pr[b] = \frac{\text{\#accepting branches}}{\text{\#all branches}}$ (considering same height for all branches)
- No non-determinism (⇒ practically implementable)

PTM computation time

Length of the longest computation branch

Bounded-error Probabilistic Decider (BP-Desider)

For a language L, PTM M is called a BP-Decider for L by error ϵ , if on every $x \in \Sigma^*$:

$$x \in L \Rightarrow Pr[M \text{ accepts } x] \ge 1 - \epsilon$$

 $x \notin L \Rightarrow Pr[M \text{ rejects } x] \ge 1 - \epsilon$

i.e.
$$Pr[M(x) = L(x)] \ge 1 - \epsilon$$
.

Bounded-error Probabilistic TIME (BPTIME) classes

$$BPTIME(T(n)) = \{L \subseteq \Sigma^* \mid \exists M \in PTMs \text{ such that } \forall x : Pr[M(x) = L(x)] \ge \frac{2}{3}$$
 and M decides x on $O(T(|x|))$ time $\}$

We will see later that $\frac{2}{3}$ could be replaced with any number $p > \frac{1}{2}$.

Bounded-error Probabilistic Polynomial-time (BPP) class

$$BPP = \bigcup_{k=0}^{\infty} BPTIME(n^k)$$

BPP equivalent definition

$$BPP = \bigcup_{k=0}^{\infty} BPTIME(n^k)$$

Equivalently, $L \in BPP$ iff there exists some TM M (uses a bit stream r to decide about which transition function to chose) and a polynomial $P : \mathbb{N} \to \mathbb{N}$ which for every $x \in \Sigma^*$:

$$Pr_{r \in R\{0,1\}^{P(|x|)}}[M(x,r) = L(x)] \ge \frac{2}{3}$$

BPP relationships

- $P \subseteq BPP$ (and is guessed BPP = P, though an open problem yet)
- $BPP \subseteq EXP$ (even $BPP \stackrel{?}{=} NEXP$ is open!)
- \bullet No proved relation with NP

Example

 $ZEROP = \{\langle p \rangle \mid p \text{ is a polynomial and } p(x_1, \dots, x_n) \equiv 0\}$ (Equivalent to polynomials equality, and same with RO branching program)

Probabilistic Algorithm

Lemma

if $p \not\equiv 0$, deg(p) = d and $S \subseteq \mathbb{N}$ to be a finite set, for a_1, \dots, a_n randomly sampled from S:

$$Pr[p(a_1,\cdots,a_n)\neq 0]\geq 1-\frac{d}{|S|}$$

For $d \leq 2^m$ and $S = \{1, \dots, 10.2^m\}$, $1 - \frac{d}{|S|} \geq 0.9$. $(m = |\langle p \rangle| \text{ and } \langle p \rangle \text{ is represented like a circuit with } \{\times, +, -\} \text{ instead of } \{\wedge, \vee, \neg\})$ Problem: terms like $a^d = O\left((10.2^m)^{2^m}\right)$.

Example (cont.)

Idea: do calculations in mod $k \in \{1, 2, \dots, 2^{2m}\}$.

Lemma

Number y has at most $\log_2 y$ prime factors.

So for $y = O\left((10.2^m)^{2^m}\right)$, number of prime factors would be at most $(m + \log_2 10).2^m = o\left(\frac{2^{2m}}{2m}\right) < \frac{2^{2m}}{4m}$.

Lemma

There is at least $\frac{2^{2m}}{2m}$ prime numbers among $\{1, 2, \cdots, 2^{2m}\}$.

Therefore at least $\frac{2^{2m}}{4m}$ prime numbers, different to prime factors of y, exist in $\{1, 2, \dots, 2^{2m}\}$. Hence $Pr[k \nmid y = p(a_1, \dots, a_n)] \geq \frac{1}{4m}$.

RP, coRP and ZPP Classe

Randomized TIME (RTIME) classes

RTIME(T(n)) is the class of all languages like L for which there exists some PTM M such that for every input $x \in \Sigma^*$:

$$x \in L \Rightarrow Pr[M(x) = 1] \ge \frac{2}{3}$$

 $x \notin L \Rightarrow Pr[M(x) = 0] = 1$

and running time of M is O(T(|x|)).

(Again $\frac{2}{3}$ could be replaced with any positive number 0)

Note: we can be sure of result when we see M(x) = 1.

Randomized Polynomial-time (RP) class

$$RP = \bigcup_{k=0}^{\infty} RTIME(n^k)$$

coRP class

$$coRP = \{L \,|\, \bar{L} \in RP\}$$

RP and coRP relationships

- $RP \subseteq NP$
- $coRP \subseteq coNP$
- $RP, coRP \subseteq BPP$
- $P \subseteq RP, coRP$

Zero-sided error TIME (ZTIME) classes

ZTIME(T(n)) is the class of all languages like L for which there exists some PTM M such that for every input $x \in \Sigma^*$, M(x) = L(x) and $\underline{\text{expected}}$ running time is O(T(|x|)).

Zero-sided error Probabilistic Polynomial-time (ZPP) class

$$ZPP = \bigcup_{k=0}^{\infty} ZTIME(n^k)$$

ZPP (other definition)

ZPP is the class of all languages like L for which there exists some polynomial-time PTM M such that for every input $x \in \Sigma^*$, $M(x) \in \{0, 1, \bot\}$ and $Pr[M(x) = \bot] < \frac{1}{2}$ and:

$$x \in L \Rightarrow M(x) \neq 0$$

 $x \notin L \Rightarrow M(x) \neq 1$

Proof idea

• $ZPP_2 \subseteq ZPP_1$: Repeat M until anything else than \bot appears.

$$\sigma = Pr[M(x) \neq \bot] \ge \frac{1}{2}$$

$$\mathbb{E}[T] = \sigma \cdot 1 + (1 - \sigma) (\mathbb{E}[T] + 1) \implies \mathbb{E}[T] = \frac{1}{\sigma} \le 2$$

• $ZPP_1 \subseteq ZPP_2$: Halt after running 3T(n) and output \perp .

Markov Inequality

$$Pr[T > a] \leq \frac{\mathbb{E}[T]}{a}$$

ZPP vs RP and coRP

Theorem

$ZPP = RP \cap coRP$

- $ZPP \subseteq RP$ (coRP): Halt after running 3T(n) and output 0 (1).
- $RP \cap coRP \subseteq ZPP$: M_1 no mistake on reject, and M_2 no mistake on accept. If $M_1(x) = M_2(x) = 1$, output 1; if $M_1(x) = M_2(x) = 0$, output 0; and otherwise $(M_1(x) = 0 \text{ and } M_2(x) = 1)$ output \perp .

Overview

Any BPP-complete?

- Probably no! (hard to find any such language)
- Semantic definition of BP Decider: at least $\frac{2}{3}$ branches of M must be equal (checking this characteristic is undecidable).
- Example:

```
L = \{\langle M, x, 1^t \rangle \mid M \text{ accepts } x \text{ with probability more than } \frac{2}{3} \text{ in at most } t \text{ steps} \}

U_{BPP}: simulator \Rightarrow L \in BPP - hard

but U_{BPP} does not hold the characteristic for ill M's.
```

Any hierarchy theorem for BPP?

- Probably not and again hard
- Even unknown: $BPTIME(n) \stackrel{?}{=} BPTIME(n^{(\log n)^{10}})$

Robustness

Robustness

$$L \in \text{BPP} \iff \begin{cases} Pr[M(x) = L(x)] \ge \frac{2}{3} \\ Pr[M(x) \ne L(x)] \le \frac{1}{3} \end{cases}$$

What's so special about $\frac{1}{3}$?

$$L \in \text{BPP} \iff \begin{cases} Pr[M(x) = L(x)] \ge \frac{2}{3} \\ Pr[M(x) \ne L(x)] \le \frac{1}{3} \end{cases}$$

What's so special about $\frac{1}{3}$? Nothing! any value less than $\frac{1}{2}$ works.

$$\begin{array}{l} \forall\,c>0:\\ BPP_{\frac{1}{2}+n^{-c}}:=\left\{L\,|\,\,\exists\,\,\mathrm{poly-time}\,PTM\,\,M,\,\,\forall\,x:\,Pr[M\,(x)=L\,(x)]\geq\frac{1}{2}+|x|^{-c}\right\} \end{array}$$

$$\begin{array}{l} \forall\,c>0:\\ BPP_{\frac{1}{2}+n^{-c}}:=\left\{L\,|\,\,\exists\,\,\mathrm{poly-time}\,PTM\,\,M,\,\,\forall\,x:\,Pr[M\left(x\right)=L\left(x\right)]\geq\frac{1}{2}+|x|^{-c}\right\} \end{array}$$

- n^{-c} is noticeable
- success probability $\geq \frac{1}{2} + n^{-c}$
- $BPP = BPP_{\frac{2}{3}}$

$$\begin{array}{l} \forall\,c>0:\\ BPP_{\frac{1}{2}+n^{-c}}:=\left\{L\,|\,\,\exists\,\,\mathrm{poly-time}\,PTM\,\,M,\,\,\forall\,x:\,Pr[M\left(x\right)=L\left(x\right)]\geq\frac{1}{2}+|x|^{-c}\right\} \end{array}$$

- n^{-c} is noticeable
- success probability $\geq \frac{1}{2} + n^{-c}$
- $BPP = BPP_{\frac{2}{3}}$

$$BPP_{\frac{2}{3}} \stackrel{?}{=} BPP_{\frac{3}{4}} \stackrel{?}{=} BPP_{\frac{501}{1000}}$$

Amplification lemma

Theorem (Error reduction for BPP)

$$\forall c > 0, \ \exists \text{ poly-time } PTM\ M, \ \forall x: Pr[M\left(x\right) = L\left(x\right)] \geq \frac{1}{2} + |x|^{-c}$$

 \downarrow

$$\forall d > 0, \exists \text{ poly-time } PTM M', \forall x : Pr[M'(x) = L(x)] \ge 1 - 2^{-|x|^d}$$

Amplification lemma

Theorem (Error reduction for BPP)

$$\forall c > 0, \ \exists \text{ poly-time } PTM\ M, \ \forall x: Pr[M\left(x\right) = L\left(x\right)] \geq \frac{1}{2} + |x|^{-c}$$

 \downarrow

$$\forall d > 0, \exists \text{ poly-time } PTM M', \forall x : Pr[M'(x) = L(x)] \geq 1 - 2^{-|x|^d}$$

• error probability $\leq 2^{-|x|^d}$ (negligible)

Amplification lemma

Theorem (Error reduction for BPP)

$$\forall c > 0, \ \exists \text{ poly-time } PTM\ M, \ \forall x: Pr[M\left(x\right) = L\left(x\right)] \geq \frac{1}{2} + |x|^{-c}$$

 \downarrow

$$\forall d > 0, \exists \text{ poly-time } PTM M', \forall x : Pr[M'(x) = L(x)] \ge 1 - 2^{-|x|^d}$$

Proof idea:

- M' simulates M many times
- Output the majority value

Error reduction Algorithm

M': on input x

- 1. Simulate M on x for $8|x|^{2c+d}$ times.
- 2. If the majority of outputs are 1, output 1; otherwise output 0.

$$BPP_{\frac{1}{2}+n^{-c}} = BPP$$

$$\forall \ c > 0 : BPP_{\frac{1}{2} + n^{-c}} = BPP$$

$$BPP_{\frac{1}{2}+n^{-c}} = BPP$$

Theorem

$$\forall \ c>0: BPP_{\frac{1}{2}+n^{-c}}=BPP$$

 \bullet Proof : Clearly $BPP = BPP_{\frac{2}{3}} \subseteq BPP_{\frac{1}{2} + n^{-c}}$

$$BPP_{\frac{1}{2}+n^{-c}}\subseteq BPP_{1-2^{-n^d}}\subseteq BPP_{\frac{2}{3}}=BPP$$

• Fair coin : $Pr[Head] = Pr[Tail] = \frac{1}{2}$

•
$$\rho$$
-biased coin :
$$\begin{cases} Pr[Head] = \rho \\ Pr[Tail] = 1 - \rho \end{cases} \quad 0 \le \rho \le 1$$

• Turing Machine + Fair coin VS. Turing Machine + Unfair coin

Theorem

- ρ -biased coin : $\begin{cases} Pr[Head] = \rho \\ Pr[Tail] = 1 \rho \end{cases}$
- The *i*th bit of ρ is computable in poly(i) time

 $\implies \rho$ -biased coin can be simulated with a standard PTM in expected time O(1)

$$P:$$
 on input $\rho = 0.\rho_1\rho_2\cdots$
For $i = 1, 2, \cdots$:
Generate random bit b_i
1. If $b_i > \rho_i$, output $Tail$.
2. If $b_i < \rho_i$, output $Head$.

$$P: \text{ on input } \rho = 0.\rho_1\rho_2\cdots$$

$$\text{For } i = 1, 2, \cdots:$$

$$\text{Generate random bit } b_i$$

$$1. \text{ If } b_i > \rho_i, \text{ output } Tail.$$

$$2. \text{ If } b_i < \rho_i, \text{ output } Head.$$

$$\text{example : let } \rho = \frac{3}{4} = (0.11000\cdots)_2$$

$$\begin{cases} 0 \to Head & (\frac{1}{2}) \\ 0 \to Head & (\frac{1}{4}) \\ 1 \begin{cases} 0 \to \cdots Tail & (\frac{1}{8}) \\ 1 \to Tail & (\frac{1}{9}) \end{cases}$$

$$P$$
: on input $\rho = 0.\rho_1 \rho_2 \cdots$
For $i = 1, 2, \cdots$:

Generate random bit b_i

- 1. If $b_i > \rho_i$, output Tail.
- 2. If $b_i < \rho_i$, output Head.

$$\rho = \rho_1 \cdot 2^{-1} + \rho_2 \cdot 2^{-2} + \cdots$$

$$Pr[Head] = \sum_{i=1}^{\infty} \rho_i \frac{1}{2^i} = \rho$$

$$E[T] = \sum_{i=1}^{\infty} E[T \mid i_{stop} = i] \cdot Pr[i_{stop} = i] = \sum_{i=1}^{\infty} i^{c} \frac{1}{2^{i}} = O(1)$$

- Fair coin: $Pr[Head] = Pr[Tail] = \frac{1}{2}$
- PTM M has access to a ρ -biased coin.
- \implies Fair coin can be simulated by M in expected time $O\left(\frac{1}{\rho(1-\rho)}\right)$

- 1. Generate two bits b_1 and b_2
- 2. If $b_1 = Head$ and $b_2 = Tail$, output Head
- 3. If $b_1 = Tail$ and $b_2 = Head$, output Tail
- 4. If $b_1 = b_2$ Generate two fresh random bits then go to 2.

- 1. Generate two bits b_1 and b_2
- 2. If $b_1 = Head$ and $b_2 = Tail$, output Head
- 3. If $b_1 = Tail$ and $b_2 = Head$, output Tail
- 4. If $b_1 = b_2$ Generate two fresh random bits then go to 2.

$$Pr[Halt]$$
 in each step = $\rho(1-\rho) \implies E[T] = \frac{1}{\rho(1-\rho)} = O(1)$

BPP

• We know:

BPP is in PH

Theorem

 $BPP\subseteq \Sigma_2^p\cap \Pi_2^p$

Adleman's theorem

Theorem (Adleman's theorem)

 $BPP \subset P_{/poly}$

Adleman's theorem

Theorem (Adleman's theorem)

$$BPP \subset P_{/poly}$$

• Goal: $\exists r_0, M, \forall x : |x| = n \implies M(x, r_0) = L(x)$

• Proof idea : $\begin{cases} error \ reduction \\ union \ bound \end{cases}$

Adleman's theorem

$$|x| = n \text{ and } |r| = m$$

$$R_{x_i} = \{r \mid M(x, r) \neq L(x)\}$$

$$\underset{r \in \mathbb{R}\{0,1\}^m}{Pr} [M(x_i, r) \neq L(x_i)] < \epsilon$$

$$\implies \frac{|R_{x_i}|}{|R|} < \epsilon \implies |R_{x_i}| < \epsilon |R|$$

 $\sum_{i=1}^{2^n} |R_{x_i}| < |R|$

Definition (Randomized reduction)

$$B \leq_r C := \exists \text{ polynomial-time } PTM \ M, \forall x : Pr[C(M(x)) = B(x)] \geq \frac{2}{3}$$

Definition (Randomized reduction)

$$B \leq_r C := \exists \text{ polynomial-time } PTM \ M, \forall x : Pr[C(M(x)) = B(x)] \geq \frac{2}{3}$$

- $B \leq_p C := \exists M, \forall x : Pr[C(M(x)) = B(x)] = 1$
- Not transitive
- $M(x) \in \{0,1\}^*$

Definition (Randomized reduction)

$$B \leq_r C := \exists \text{ polynomial-time } PTM \ M, \forall x : Pr[C(M(x)) = B(x)] \geq \frac{2}{3}$$

- $B \leq_p C := \exists M, \forall x : Pr[C(M(x)) = B(x)] = 1$
- Not transitive
- $M(x) \in \{0,1\}^*$

Definition (transitive randomized reduction)

$$B \leq_r C :=$$

 \exists polynomial-time $PTM\ M, \forall x : Pr[C(M(x)) = B(x)] \ge 1 - 2^{-|x|^d}$

Observation: $C \in BPP \& B \leq_r C \implies B \in BPP$

Observation: $C \in BPP \& B \leq_r C \implies B \in BPP$

$$\exists M_C, \forall x : Pr[M_C(x) = C(x)] \ge \frac{2}{3} \to Pr[M'_C(x) = C(x)] \ge \frac{11}{12}$$

$$\exists M_r, \forall x : Pr[C(M_r(x)) = B(x)] \ge \frac{2}{3}$$

 M_B : On input x

- 1. Simulate M_r on x to obtain $M_r(x)$
- 2. Simulate M'_c on $M_r(x)$, output $M'_c(M_r(x))$

$BP \cdot C$

```
Definition: BP \cdot \mathcal{C}

\forall \mathcal{C} : (Class of languages)

L \in BP \cdot \mathcal{C} \iff \exists D \in \mathcal{C} \& polynomial-time <math>PTM M :

\begin{cases} x \in L \implies Pr[M(x) \in D] \geq \frac{2}{3} \\ x \notin L \implies Pr[M(x) \notin D] \geq \frac{2}{3} \end{cases}
```

$$BP \cdot C$$

Definition:
$$BP \cdot C$$

 $\forall \mathcal{C} : (Class of languages)$

$$L \in BP \cdot \mathcal{C} \iff \exists D \in \mathcal{C} \text{ \& polynomial-time } PTM M :$$

$$\begin{cases} x \in L \implies Pr[M(x) \in D] \ge \frac{2}{3} \\ x \notin L \implies Pr[M(x) \notin D] \ge \frac{2}{3} \end{cases}$$

$$BP \cdot NP = \{L \mid L \leq_r SAT\}$$

•
$$NP = \{L \mid L \leq_p SAT\}$$

$BP \cdot NP$ (Probabilistic NP)

$$BP \cdot NP = \{L \mid L \leq_r SAT\}$$

$$\{L \mid L \leq_r SAT\} \subseteq BP \cdot NP$$
 by definition.

$$BP \cdot NP \subseteq \{L \mid L \leq_r SAT\}:$$

 $C \in BP \cdot NP \implies \exists D \in NP : C \leq_r D$

$$C \leq_r D D \leq_p SAT$$
 $\}$ $C \leq_r D \leq_p SAT \implies C \leq_r SAT$

$BP \cdot NP$ (Probabilistic NP)

$$BP \cdot NP = \{L \mid L \leq_r SAT\}$$

$$\{L \mid L \leq_r SAT\} \subseteq BP \cdot NP$$
 by definition.

$$BP \cdot NP \subseteq \{L \mid L \leq_r SAT\} : C \in BP \cdot NP \implies \exists D \in NP : C \leq_r D$$

$$C \leq_r D D \leq_n SAT$$
 $\}$ $C \leq_r D \leq_p SAT \implies C \leq_r SAT$

- \bullet $BPP \subseteq BP \cdot NP$
- $NP \subseteq BP \cdot NP$

Randomized Space-Bounded Computation

$$L \in RL \iff \exists \ O(\log n)\text{-space} \ PTM\ M: \begin{cases} x \in L \implies Pr[M\ (x) = 1] \ge \frac{2}{3} \\ x \notin L \implies Pr[M\ (x) = 0] = 1 \end{cases}$$

$$L \in BPL \iff \exists \ O(\log n)\text{-space} \ PTM\ M: \begin{cases} x \in L \implies Pr[M\ (x) = 1] \ge \frac{2}{3} \\ x \notin L \implies Pr[M\ (x) = 0] \ge \frac{2}{3} \end{cases}$$

Definitional Issue

 $RL \subseteq NL$ similar to $RP \subseteq NP$

Definitional Issue

$$NL \subseteq RL$$
:

$$L \in NL \implies \exists \text{ poly-time } N : N(x) = L(x)$$

$$t = P\left(|x|\right)$$

 $Pr[\text{find an accepting path}] \ge 2^{-t}$

$$E[T] = 2^t$$

 $O(\log \log n)$ counter

UPATH

- UPATH: contains all $\langle G, s, t \rangle$:
 - \bullet G is an undirected graph
 - \bullet s and t are connected in G
- \bullet Recall PATH is NL-complete
- Actually $UPATH \in L$

UPATH

- UPATH: contains all $\langle G, s, t \rangle$:
 - ullet G is an undirected graph
 - \bullet s and t are connected in G
- ullet Recall PATH is NL-complete
- Actually $UPATH \in L$

- $M: \text{On input } \langle G, s, t \rangle$
 - 1. Take a random walk of length $100n^4$ starting from s
 - 2. Accept iff the walk reaches t within $100n^4$ steps.

References

References

- Computational complexity, a modern approach; Sanjeev Arora, Boak Barak
- Introduction to the theory of computation; Michael Sipser; Third edition
- Computational complexity, a conceptual perspective; Oded Goldreich
- Rafael Pass's lecture notes on Theory of Computing
- Markov Chains and Random Walks

References

Thanks:))