```
#Loading Libraries
library(data.table)
library(readr)
library(ggplot2)
library(ggmosaic)
library(readxl)
#Importing Datasets
filepath <- "~/Data Analysis Projects/"
transactionData <- read_excel(paste0(filepath,"QVI_transaction_data.xlsx"))</pre>
CustomerData <- fread(paste0(filepath,"QVI_purchase_behaviour.csv"))
#Exploratory Data Analysis
str(transactionData)
head(transactionData)
setDT(transactionData)
str(CustomerData)
head(CustomerData)
#Date Type Conversion
transactionData$DATE <- as.Date(transactionData$DATE,origin = "1899-12-30")
str(transactionData)
#Summary of Product Names in Transaction Data
summary(transactionData$PROD_NAME)
```

```
#Product Names Analysis
productWords <-
data.table(unlist(strsplit(as.character(unique(transactionData[,PROD_NAME])),"\\s+")))
setnames(productWords,'words')
View(productWords)
productWords_withunwanted <- grepl('[0-9]|[&,"]',productWords$words)</pre>
productWords_cleaned <- productWords[!productWords_withunwanted]</pre>
View(productWords_cleaned)
word_counts <- productWords_cleaned[,.N,by=words][order(-N)]</pre>
View(word_counts)
#Removing Salsa Products
transactionData[, Salsa := grepl("salsa",tolower(PROD_NAME))]
transactionData <- transactionData[Salsa==FALSE, ][ ,Salsa:=NULL]
View(transactionData)
#Summary of Transaction Data
summary(transactionData)
#Outlier Detection
transactionData[PROD_QTY == 200]
transactionData[LYLTY_CARD_NBR == 226000]
#Removing Outlier
transactionData <- transactionData[LYLTY_CARD_NBR!=226000]
```

```
#Reexamine the Data
summary(transactionData)
#Transactions over Time
transaction counts <- transactionData[,.N,by=DATE]
View(transaction_counts[order(DATE)])
#Transactions Distribution
theme_set(theme_bw())
theme_update(plot.title = element_text(hjust=0.5))
ggplot(transaction_counts,aes(x=DATE,y=N)) +
geom_line() +
labs(x="Day",y="Transaction Count",title="Transactions over time") +
scale_x_date(breaks = '1 month') +
theme(axis.text.x = element_text(angle = 90,vjust = 0.5))
ggplot(subset(transaction counts,between(DATE,"2018-12-01","2018-12-
31")),aes(x=DATE,y=N)) +
geom_line() +
labs(x="Day",y="Transaction Count",title="Transactions over December") +
scale_x_date(breaks = '1 week')
theme(axis.text.x = element_text(angle = 90,vjust = 0.5))
ggplot(subset(transaction_counts,between(DATE,"2018-12-21","2018-12-
31")),aes(x=DATE,y=N)) +
geom_line() +
labs(x="Day",y="Transaction Count",title="Transactions over Christmas time") +
```

```
scale_x_date(breaks = '1 day')
theme(axis.text.x = element_text(angle = 45,hjust = 0.5))
#Chips Product Sizes
transactionData[, PACK_SIZE := parse_number(PROD_NAME)]
productSizes <- transactionData[, .N, by = PACK_SIZE][order(PACK_SIZE)]
View(productSizes)
#Product Sizes Frequency
ggplot(productSizes,aes(x=factor(PACK_SIZE),y=N)) +
geom_col(fill = "steelblue") +
labs(x="Sizes",y="Count",title="Product Sizes Distribution") +
theme(axis.text.x = element_text(vjust = 0.5))
#Chips Product Brands
transactionData[, Brand_Name:= sub(" .*","",PROD_NAME)]
View(transactionData)
transactionData[Brand_Name == "Red", Brand_Name:="RRD"]
transactionData[Brand_Name == "WW", Brand_Name:="Woolworths"]
productBrands <- transactionData[, .N, by = Brand_Name][order(Brand_Name)]</pre>
View(productBrands)
#Customer Data analysis
summary(CustomerData)
head(CustomerData)
subscription_dist <- CustomerData[,.N, PREMIUM_CUSTOMER]</pre>
```

```
View(subscription_dist)
Lifestage_dift <- CustomerData[,.N, LIFESTAGE]
View(Lifestage_dift)
#Customers Premium Type Distribution
ggplot(subscription_dist,aes(x=reorder(PREMIUM_CUSTOMER,N),y=N)) +
geom_col(fill = "darkgreen") +
labs(
 title = "Customers Premium Type Distribution",
 x= "Premium Type",
 y= "No. of customers"
#Families Distribution
ggplot(Lifestage_dift,aes(x=reorder(LIFESTAGE,N),y=N)) +
geom_col(fill = "yellow") +
labs(
 title = "Families Distribution",
 x= "Family Type",
 y= "No. of Families"
) +
theme(axis.text.x = element_text(size=6))
#Merging Data
Data <- merge(transactionData,CustomerData,all.x = TRUE)
View(Data)
```

```
#Merge validation
dim(Data)
dim(transactionData)
#Null Check
sum(is.na(Data))
#Saving data in csv file
fwrite(Data,paste0(filepath,"QVI_data.csv"))
#Customer Segment analysis
#Total Sales distribution
sales_by_groups<-
Data[,.(Totalsale=sum(TOT_SALES)),by=.(LIFESTAGE,PREMIUM_CUSTOMER)][order(-
Totalsale)]
View(sales_by_groups)
ggplot(sales_by_groups,aes(x=LIFESTAGE,y=Totalsale,fill=PREMIUM_CUSTOMER)) +
geom_bar(stat="identity",position = "dodge") +
labs(
 title = "Total Chip Sales by Lifestage and Premium Segment",
 x= "Lifestage",
 y= "Total Sale",
 fill="Premium Customer"
) +
theme_minimal()
```

```
#Customers Distribution
customers_by_groups<- Data[,.(TotalCustomers =
uniqueN(LYLTY_CARD_NBR)),by=.(LIFESTAGE,PREMIUM_CUSTOMER)][order(-
TotalCustomers)]
View(customers_by_groups)
ggplot(customers_by_groups,aes(x=LIFESTAGE,y=TotalCustomers,fill=PREMIUM_CUSTOM
ER)) +
geom_bar(stat="identity",position = "dodge") +
labs(
 title = "Total Customers by Lifestage and Premium Segment",
 x= "Lifestage",
 y= "Total Customers",
 fill="Premium Customer"
) +
theme_minimal()
#Average Units Purchased by Customers
avgunits_by_customers<- Data[,.(AvgUnits =
mean(PROD_QTY)),by=.(LIFESTAGE,PREMIUM_CUSTOMER)][order(-AvgUnits)]
View(avgunits_by_customers)
ggplot(avgunits_by_customers,aes(x=reorder(LIFESTAGE,-
AvgUnits),y=AvgUnits,fill=PREMIUM_CUSTOMER)) +
geom_bar(stat="identity",position = "dodge") +
labs(
```

```
title = "Average Units sold by Lifestage and Premium Segment",
 x= "Lifestage",
 y= "Avg Units",
 fill="Premium Customer"
) +
theme_minimal()
#Average Sales Analysis
avgsale_by_customers<- Data[,.(Avgsale =</pre>
mean(TOT_SALES)),by=.(LIFESTAGE,PREMIUM_CUSTOMER)][order(-Avgsale)]
View(avgsale_by_customers)
ggplot(avgsale_by_customers,aes(x=LIFESTAGE,y=Avgsale,fill=PREMIUM_CUSTOMER)) +
geom_bar(stat="identity",position = "dodge") +
labs(
 title = "Average Sale by Lifestage and Premium Segment",
 x= "Lifestage",
 y= "Avg Sale",
 fill="Premium Customer"
) +
theme_minimal()
#Hypothesis Analysis to check the significance difference in avg unit price
#between Mainstream and Premium, Budget Customers who are Mid age or Young
Singles/Couples
#H0: There is no significant difference
#H1: There is significant difference
```

```
Data[,UnitPrice:=TOT SALES/PROD QTY]
sum(is.na(Data$UnitPrice))
sum(is.infinite(Data$UnitPrice))
midage lifestage name <- "MIDAGE SINGLES/COUPLES"
young_lifestage_name <- "YOUNG SINGLES/COUPLES"
mainstream_name <- "Mainstream"
premium_name <- "Premium"
budget name <- "Budget"
midage main prem <- Data[LIFESTAGE == midage lifestage name &
PREMIUM_CUSTOMER %in% c(mainstream_name, premium_name)]
midage_main_budget <- Data[LIFESTAGE == midage_lifestage_name &
PREMIUM_CUSTOMER %in% c(mainstream_name, budget_name)]
young_main_prem <- Data[LIFESTAGE == young_lifestage_name & PREMIUM_CUSTOMER
%in% c(mainstream_name, premium_name)]
young_main_budget <- Data[LIFESTAGE == young_lifestage_name & PREMIUM_CUSTOMER
%in% c(mainstream name, budget name)]
#Two sample Test
t_test_1 <- t.test(UnitPrice ~ PREMIUM_CUSTOMER, data = midage_main_prem)
print(t_test_1)
t_test_2 <- t.test(UnitPrice ~ PREMIUM_CUSTOMER, data = midage_main_budget)
print(t_test_2)
t_test_3 <- t.test(UnitPrice ~ PREMIUM_CUSTOMER, data = young_main_prem)
print(t_test_3)
t test 4 <- t.test(UnitPrice ~ PREMIUM CUSTOMER, data = young main budget)
print(t_test_4)
```

```
#All the 4 T-Tests p value < 2.2e-16. Since the p value is < 0.05, the null hypothesis
#is rejected. It is statistically proven that there is a significant difference
#in average unite price between Mainstream and Premium, Budget Customers.
#Proportional Analysis
####BRANDS####
#Brands preferred by Mainstream Mid age, Young Singles/Couples Customers
Data[,Istargetsegment := (LIFESTAGE == young_lifestage_name & PREMIUM_CUSTOMER ==
mainstream_name)]
View(Data)
brand_counts <- Data[,.N,by = .(Brand_Name,Istargetsegment)]</pre>
View(brand_counts)
total counts <- Data[,.(TransactionCounts = .N),.(Istargetsegment)]
View(total_counts)
brand_proportions <- merge(brand_counts,total_counts,by="Istargetsegment")
brand_proportions[,Proportion := N/TransactionCounts]
View(brand proportions)
proportion_comparison <- dcast(brand_proportions, Brand_Name ~ Istargetsegment,
value.var = "Proportion")
View(proportion_comparison)
setnames(proportion_comparison,c(2,3),new=c("OtherProportion","TargetProportion"))
```

proportion_comparison[, PreferenceRatio := TargetProportion / OtherProportion]

View(proportion_comparison)

#Results

```
ggplot(proportion_comparison, aes(x = reorder(Brand, PreferenceRatio), y =
PreferenceRatio)) +
geom_bar(stat = "identity", fill = "skyblue") +
coord_flip() +
labs(title = "Brand Preference Ratio for Mainstream Young Singles/Couples",
   subtitle = "Ratio > 1 indicates higher preference by Target Segments",
   x = "Brand",
   y = "Preference Ratio (Target Proportion / Other Proportion)") +
theme_minimal()
plot_data_long <- melt(proportion_comparison[, .(Brand, TargetProportion,</pre>
OtherProportion)],
          id.vars = "Brand",
          variable.name = "SegmentGroup",
          value.name = "Proportion")
ggplot(plot_data_long, aes(x = reorder(Brand,-Proportion), y = Proportion, fill =
SegmentGroup)) +
geom_bar(stat = "identity", position = "dodge") +
scale_y_continuous(labels = scales::percent) +
labs(title = "Brand Purchase Proportion: Target Segment vs. Others",
   x = "Brand",
   y = "Proportion of Transactions") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

##INSIGHTS##

The brand preference analysis shows that Mainstream Young Singles/Couples have
a higher inclination towards brands like Tyrrells, Twisties, Doritos, and Tostitos,
as indicated by their preference ratios being greater than 1. This suggests a stronger
affinity for these brands compared to other segments. In contrast, brands like
Smiths, Sunbites, and Woolworths show lower ratios, indicating they are
less favored by this group. The trend hints at a preference for bold or
premium-style brands within this segment.

####PACK SIZE####

#Preferred pack size by Mainstream Mid age, Young Singles/Couples Customers

packsize_counts <- Data[,.(Pack_counts = .N),.(PACK_SIZE,Istargetsegment)]
View(packsize_counts)</pre>

pack_proportions <- merge(packsize_counts,total_counts,by ="Istargetsegment")
pack_proportions[,Proportion := Pack_counts/TransactionCounts]
View(pack_proportions)</pre>

packProportion_comparision <- dcast(pack_proportions,PACK_SIZE ~ Istargetsegment, value.var = "Proportion")

View(packProportion_comparision)

setnames(packProportion_comparision, c(2,3),c("OtherSegments", "TargetSegments"))

```
ggplot(packProportion_comparision, aes(x = reorder(PACK_SIZE,PreferenceRatio), y =
PreferenceRatio)) +
geom_bar(stat = "identity", fill = "skyblue") +
coord_flip() +
labs(title = "Pack Size Preference Ratio for Mainstream Young Singles/Couples",
   subtitle = "Ratio > 1 indicates higher preference by Target Segments",
   x = "Pack Size",
   y = "Preference Ratio (Target Proportion / Other Proportion)") +
theme minimal()
pack_data_long <- melt(packProportion_comparision[, .(PACK_SIZE, TargetSegments,
OtherSegments)],
          id.vars = "PACK_SIZE",
          variable.name = "Segment_Type",
          value.name = "Proportion"
ggplot(pack_data_long, aes(x = reorder(PACK_SIZE,-Proportion), y = Proportion, fill =
Segment_Type)) +
geom_bar(stat = "identity", position = "dodge") +
scale_y_continuous(labels = scales::percent) +
labs(title = "Pack Size Purchase Proportion: Target Segment vs. Others",
   x = "Pack Size",
```

```
y = "Proportion of Transactions") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

##INSIGHTS##

#The pack size preference analysis reveals that this customer segment tends to
prefer larger pack sizes such as 270g, 380g, and 330g, which might reflect bulk
buying behavior or social consumption habits. Mid-range pack sizes (e.g., 135g–165g)
are moderately preferred, while smaller packs (below 125g) are less favored.
This indicates that Mainstream Young Singles/Couples are likely seeking better
value or are purchasing for sharing occasions.