In [4]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt

Out[5]:

		Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blo Pressu
	0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/
	1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/
	2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/
	3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/
	4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/
;	369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140/
;	370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140/
;	371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140/
;	372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140/
;	373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140/

374 rows × 13 columns

```
In [6]: df.head()
```

Out[6]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90
4 (•

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 374 entries, 0 to 373
Data columns (total 13 columns):

Data	COTAIIII3 (COCAT TO COTAIIII	٥).	
#	Column	Non-Null Count	Dtype
0	Person ID	374 non-null	int64
1	Gender	374 non-null	object
2	Age	374 non-null	int64
3	Occupation	374 non-null	object
4	Sleep Duration	374 non-null	float64
5	Quality of Sleep	374 non-null	int64
6	Physical Activity Level	374 non-null	int64
7	Stress Level	374 non-null	int64
8	BMI Category	374 non-null	object
9	Blood Pressure	374 non-null	object
10	Heart Rate	374 non-null	int64
11	Daily Steps	374 non-null	int64
12	Sleep Disorder	374 non-null	object

dtypes: float64(1), int64(7), object(5)

memory usage: 38.1+ KB

In [8]: import seaborn as sns

In [9]: | df.describe()

Out[9]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Da
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	37
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	681
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	161
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	300
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	560
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	700
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	800
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	1000

In [10]: sns.pairplot(df)

Out[10]: <seaborn.axisgrid.PairGrid at 0x1a818136c70>


```
In [11]: df1=df.drop(['Stress Level'],axis=1)
         df1=df1.drop(df1.index[1537:])
         df1.isna().sum()
Out[11]: Person ID
                                     0
         Gender
                                     0
         Age
                                     0
         Occupation
                                     0
         Sleep Duration
                                     0
         Quality of Sleep
                                     0
         Physical Activity Level
         BMI Category
                                     0
         Blood Pressure
                                     0
         Heart Rate
                                     0
         Daily Steps
                                     0
         Sleep Disorder
         dtype: int64
In [13]: sns.displot(df['BMI Category'])
```

Out[13]: <seaborn.axisgrid.FacetGrid at 0x1a81b7e9a90>


```
In [14]: sns.heatmap(df1.corr())
```

Out[14]: <AxesSubplot:>

In [15]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

In [16]: df1.isna().sum()

Out[16]:	Person ID	0
	Gender	0
	Age	0
	Occupation	0
	Sleep Duration	0
	Quality of Sleep	0
	Physical Activity Level	0
	BMI Category	0
	Blood Pressure	0
	Heart Rate	0
	Daily Steps	0
	Sleep Disorder	0
	dtvpe: int64	

```
In [22]: y=df1['Age']
          x=df1.drop(['Gender','BMI Category','Sleep Disorder','Occupation','Blood Pressu
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
          print(x_train)
                                Sleep Duration
                                                  Quality of Sleep
               Person ID Age
                                                                     \
          336
                      337
                            54
                                             8.4
                                                                  9
                            29
                                             6.1
                                                                  6
          10
                       11
                                             7.3
                                                                  8
          131
                      132
                            38
                                                                  7
          228
                      229
                            44
                                             6.6
                                                                  9
          344
                      345
                            57
                                             8.2
          . .
                      . . .
                            . . .
                                             . . .
                                                                 . . .
          152
                      153
                            39
                                            7.2
                                                                  8
          351
                      352
                            57
                                             8.1
                                                                  9
                                                                  9
          339
                      340
                            55
                                            8.1
          119
                      120
                            37
                                            7.2
                                                                  8
          187
                      188
                            43
                                            6.3
                                                                  6
               Physical Activity Level Heart Rate Daily Steps
          336
                                                               5000
                                      30
                                                   65
                                      30
                                                   70
          10
                                                               8000
          131
                                      60
                                                   68
                                                               8000
                                                   65
          228
                                      45
                                                               6000
                                      75
          344
                                                   68
                                                               7000
          . .
                                                  . . .
                                                                . . .
          152
                                      60
                                                   68
                                                               8000
          351
                                      75
                                                   68
                                                               7000
          339
                                      75
                                                   72
                                                               5000
          119
                                      60
                                                   68
                                                               7000
                                                   72
          187
                                      45
                                                               6000
```

[261 rows x 7 columns]

```
In [23]: model=LinearRegression()
    model.fit(x_train,y_train)
    model.intercept_
```

Out[23]: -2.0605739337042905e-13

```
In [24]: prediction=model.predict(x_test)
         plt.scatter(y_test,prediction)
Out[24]: <matplotlib.collections.PathCollection at 0x1a81d9e5550>
          60
          55
          50
          45
          40
          35
          30
                       35
                              40
                                    45
                                           50
                                                  55
                                                        60
                 30
In [25]: model.score(x_test,y_test)
Out[25]: 1.0
In [26]: from sklearn.linear_model import Ridge,Lasso
In [27]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[27]: Ridge(alpha=10)
In [28]: rr.score(x_test,y_test)
Out[28]: 0.9999788606864037
In [29]: la =Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[29]: Lasso(alpha=10)
In [30]: la.score(x_test,y_test)
Out[30]: 0.9793081412531147
In [ ]:
```