Teória automatického riadenia III.

Cvičenie V, Kálmánov filter

G. Takács, G. Batista

Ústav automatizácie, merania a aplikovanej informatiky Strojnícka fakulta, Slovenská technická univerzita

Čo je Kálmánov filter

Diskrétny Kálmánov filter rekonštruuje stav systému, pričom minimalizuje varianciu chyby odhadu, t.j. odhaduje stav systému ktorého výstupný signál je značne zašumený

Používa sa v prípade keď:

- poznáme dynamiku systému
- niektorý zo stavov nie je merateľný
- máme k dispozícií viac senzorov tej istej veličiny s rozdielnou presnosťou
- meraný výstup je zašumený
- poznáme varianciu a kovarianciu merania a procesu

(UAMAI) TAR III. 19.10.2015 2 / 12

Čo je Kálmánov filter

Čo je Kálmánov filter

Pre diskrétny systém:

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{w}_k$$
 $\mathbf{y}_k = \mathbf{C}\mathbf{x}_k + \mathbf{v}_k$

kde \mathbf{w}_k a \mathbf{v}_k sú šum procesu a merania

$$\mathbf{Q} = E[\mathbf{w}\mathbf{w}^T]$$
$$\mathbf{R} = E[\mathbf{v}\mathbf{v}^T]$$

z toho je **Q** kovariačná matica šumu procesu a **R** je kovariačná matica šumu merania

(UAMAI) TAR III. 19.10.2015 4/12

Kálmánov filter

apriórny odhad stavu

$$\mathbf{e}_{k+1}^- = \mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1}^-$$

aposteriórny odhad stavu

$$\mathbf{e}_{k+1} = \mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1}$$

Kovariancie potom:

$$\mathbf{P}_{k+1}^{-} = E[\mathbf{e}_{k+1}^{-}\mathbf{e}_{k+1}^{-T}]$$

 $\mathbf{P}_{k+1} = E[\mathbf{e}_{k+1}\mathbf{e}_{k+1}^{T}]$

(UAMAI) TAR III. 19.10.2015 5 / 12

Aplikovatelnosť filtra

Pre vyhodnotenie aplikovatelnosti Kálmánovho filtra je nutné vyšetriť pozorovateľnosť systému:

$$Ob = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

kde hodnosť matice *Ob* musí byť rovná hodnosti matice dynamiky systému

(UAMAI) TAR III. 19.10.2015 6/12

Kálmánov filter

chceme dostať aposteriórny odhad:

$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_{k+1}^- + \mathbf{K}(\mathbf{y}_k - \mathbf{C}\hat{\mathbf{x}}_{k+1}^-)$$

kde K je Kálmánovo zosilnenie

$$\mathbf{K}_k = \mathbf{P}_k^{-} \mathbf{C}^T (\mathbf{C} \mathbf{P}_k^{-} \mathbf{C}^T + \mathbf{R})^{-1}$$

(UAMAI) TAR III. 19.10.2015 7 / 12

Pre nás

$$\mathbf{R} = \mathbf{CC}^T diag(\sigma_y^2)$$

 $\mathbf{Q} = \mathbf{BB}^T diag(\sigma_u^2)$
 $\mathbf{P}_0 = \mathbf{Q}$

Prediktor

$$\hat{\mathbf{x}}_{k+1}^- = \mathbf{A}\hat{\mathbf{x}}_k + \mathbf{B}\mathbf{u}_k$$
 $\mathbf{P}_k^- = \mathbf{A}\mathbf{P}_k\mathbf{A}^T + \mathbf{Q}$

Korektor

$$\mathbf{K}_{k} = \mathbf{P}_{k}^{-} \mathbf{C}^{T} (\mathbf{C} \mathbf{P}_{k}^{-} \mathbf{C}^{T} + \mathbf{R})^{-1}$$

$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_{k+1}^{-} + \mathbf{K}_{k} (\mathbf{y}_{k} - \mathbf{C} \hat{\mathbf{x}}_{k+1}^{-})$$

$$\mathbf{P}_{k} = (\mathbf{I} - \mathbf{K}_{k} \mathbf{C}) \mathbf{P}_{k}^{-}$$

(UAMAI) TAR III. 19.10.2015 8/12

Zadanie

- načítajte váš identifikovaný model a LQ regulátor z predošlej hodiny
- ullet nastavte maticu merania na meranie zrýchlenia ${f C} = egin{bmatrix} -rac{b}{m} \end{bmatrix}$
- nastavte smerodajnú odchýlku šumu merania na $\sigma_y = 10 m/s^2$
- ullet nastavte smerodajnú odchýlku šumu procesu na $\sigma_u=10\,V$
- urobte diskrétnu simuláciu saturovaného LQ riadenia pričom:
 - šum vstupu a výstupu simulujte pomocou funkcie "random" ktorej argument je relevantná smerodajná odchýlka
 - vstup LQ regulátora je výstup Kálmánovho filtra (to znamená že si ten filter musíte naprogramovať)
- graficky porovnajte reálny výstup systému, nameraný(zašumený) signál, odhad výstupu Kálmánovým filtrom
- taktiež porovnajte vypočítaný vstup systému a reálny(zašumený)
- graficky porovnajte frekvenčné charakteristiky spomenutých troch výstupných signálov
- kód dobre okomentujte a grafické výstupy spravte tak aby sa v nich dalo orientovať

Schéma simulácie

(UAMAI) TAR III. 19.10.2015 10 / 12

Očakávaný výstup

Odozva:

Očakávaný výstup

Frekvenčná charakteristika:

(UAMAI) TAR III. 19.10.2015 12 / 12