BLATT 8

Dozent: PD Dr. Markus Junker

Assistent: Andreas Claessens

(05.12.2016)

Aufgabe 1

Sei $\mathcal{L} = \{P_0, P_1\}$ eine Sprache mit einstelligen Prädikatensymbolen P_0, P_1 . Finden Sie für jede der folgenden Aussagen eine \mathcal{L} -Struktur, in der die Aussage falsch ist und eine, in der sie richtig ist, sofern es eine solche Struktur gibt.

- a) $(\exists x \ P_0(x) \land \exists x \ P_1(x)) \rightarrow \exists x \ (P_0(x) \land P_1(x))$
- b) $\exists x \ (P_0(x) \land P_1(x)) \rightarrow (\exists x \ P_0(x) \land \exists x \ P_1(x))$
- c) $\forall x \ (P_0(x) \lor P_1(x)) \rightarrow (\forall x \ P_0(x) \lor \forall x \ P_1(x))$

Aufgabe 2

Sei $\mathcal{L} = \{R_0, R_1, c_0, c_1\}$, wobei c_0, c_1 Individuenkonstanten sind und R_0 ein einstelliges und R_1 ein zweistelliges Relationszeichen. Bestimmen Sie für die folgenden Formeln jeweils die Bereiche der Quantoren. Welche Individuenvariablen werden durch welche Quantoren gebunden, welche Individuenvariablen sind frei?

$$(\exists v_0 \exists v_1 \ ((R_0 v_2 \land R_0 v_1) \lor \exists v_2 \ (v_0 \doteq v_2 \land R_1 v_2 v_1)) \to v_1 \doteq v_0)$$

$$(\forall v_0 \ ((R_0 c_0 \to \exists v_0 \ v_0 \dot{=} v_1) \land \neg v_0 \dot{=} c_1) \land (\neg v_0 \dot{=} v_0 \to \exists v_0 \ R_0 v_0))$$

$$(\exists v_0 (\forall v_1 (R_0 v_0 \to R_1 v_2 c_1) \land \neg \exists v_2 \ R_0 c_0) \leftrightarrow \forall v_5 (\exists v_2 \forall v_1 (v_0 \dot{=} c_0 \lor R_1 v_0 v_5 \lor R_0 v_2) \to (R_1 v_3 v_5 \land R_1 v_4 c_2)))$$

Aufgabe 3

Sei $\mathcal{L}_1 = \{f_0, R_0\}$ eine Sprache mit einem zweistelligen Funktionszeichen f_0 und einem zweistelligen Relationszeichen R_0 . Sei $\mathcal{L}_2 := \mathcal{L}_1 \setminus \{f_0\}$. Wir definieren $\mathbb{N}^{>k} := \{n \in \mathbb{N} \mid n > k\}$, für jedes $k \in \mathbb{N}$.

- (a) Zeigen Sie, dass $(\mathbb{N}^{>5}, \leq)$ und $(\mathbb{N}^{>0}, \leq)$ isomorphe \mathcal{L}_2 -Strukturen sind.
- (b) Zeigen Sie, dass $(\mathbb{N}^{>5}, +, \leq)$ und $(\mathbb{N}^{>0}, +, \leq)$ nicht isomorphe \mathcal{L}_2 -Strukturen sind.

Aufgabe 4

Sei $\mathcal{L} = \{f_0, \dots, f_n, c_0, \dots c_m\}$ eine Sprache, wobei f_i ein Funktionszeichen der Stelligkeit l_i ist und c_0, \dots, c_m Individuenkonstanten. Schreiben Sie eine Turingmaschine mit dem Alphabet $A = \{f_0, \dots, f_n, c_0, \dots, c_m, *\}$, die **einmal** (d.h. die Maschine darf nicht zurückgehen) durch einen gegebenen Term $f_i\tau_1 \dots \tau_{l_i}$ durchgeht und jedes letzte Zeichen von τ_j ($j = 1, \dots, l_i$) durch * ersetzt und beim letzten Zeichen stoppt. Hierbei ist die Länge der Eingabe beschränkt, d.h. der Term kann maximal die Länge $N \in \mathbb{N}$ haben. Die Terem τ_j sind über den Alphabet A, d.h. es kommen keine Individuenvariablen vor.