COMP 182 Algorithmic Thinking

Sets, Propositional Logic, Predicates, and Quantifiers

Luay Nakhleh Computer Science Rice University

Reading Material

- * Chapter 1, Sections 1, 4, 5
- * Chapter 2, Sections 1, 2

- * Mathematics is about statements that are either true or false.
- * Such statements are called **propositions**.
- * We use <u>logic</u> to describe them, and <u>proof techniques</u> to prove whether they are true or false.

Propositions

- * 5>7
- * The square root of 2 is irrational.
- * A graph is bipartite if and only if it doesn't have a cycle of odd length.
- * For n>1, the sum of the numbers 1,2,3,...,n is n².

Propositions?

- $*E=mc^2$
- * The sun rises from the East every day.
- * All species on Earth evolved from a common ancestor.
- * God does not exist.
- * Everyone eventually dies.

* And some of you might already be wondering: "If I wanted to study mathematics, I would have majored in Math. I came here to study computer science." * Computer Science is mathematics, but we almost exclusively focus on aspects of mathematics that relate to computation (that can be implemented in software and/or hardware).

*Logic is the language of computer science and, mathematics is the computer scientist's most essential toolbox.

Examples of "CS-relevant" Math

- * Algorithm A correctly solves problem P.
- * Algorithm A has a worst-case running time of $O(n^3)$.
- * Problem P has no solution.
- * Using comparison between two elements as the basic operation, we cannot sort a list of n elements in less than $O(n \log n)$ time.
- * Problem A is NP-Complete.

- * "Algorithm A is correct" is a proposition that requires a mathematical proof.
 - * All students in the course thinking that it is true is not a proof.
 - *Showing it is true on 1 million examples is not a proof.

- * "Problem P has no solution" is a proposition that requires a mathematical proof.
 - * Your inability to come up with a solution to Problem P is not a proof that a solution doesn't exist.
 - * All your 5,000 Facebook friends not being able to come up with a solution doesn't make the statement true either.

- * Despite decades of work by so many brilliant researchers, no one has been able to come up with a polynomial-time algorithm for the Traveling Salesman Problem (TSP).
- * Still, no computer scientist or mathematician would state "TSP has no polynomial-time solution" because such a statement would require a mathematical proof and such a proof has not been found yet.

- * It is important to note that decades of work by brilliant researchers not resulting in a polynomial-time algorithm for TSP do strengthen our *belief* that the *conjecture* that "TSP has no polynomial-time solution" is true.
- * This belief could, for example, direct other brilliant researchers to focus on proving the conjecture true (rather than false).
- * However, no matter how strong our belief is, it is still not a proof.

Sets

- * A <u>set</u> is an unordered collection of items.
- * We write $a \in S$ to denote that a is an <u>element</u> of set S, or that set S contains element a.
- * <u>Roster method</u> description of sets: B={0,1}, C={a,b,c,d}, D={#,\$,%,&,@}
- * Set builder or set comprehension description of sets: $F = \{x \mid x \text{ is an odd integer}\}$, $G = \{y \mid y \text{ is an integer that is divisible by 7}\}$

Sets

- * An element of a set cannot appear more than once in the set.
- * For example, $\{a,b,b,c\}$ is not a set.
- * A mathematical structure that allows for an element to appear more than once is called <u>multiset</u> or <u>bag</u>. In this course, we will only work with sets.

Special Sets

- * The set of natural numbers $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- * The set of integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- * The set of positive integers $\mathbb{Z}^+ = \{1, 2, ...\}$
- * The set of rational numbers $\mathbb{Q} = \{\frac{p}{q} | p, q \in \mathbb{Z}, q \neq 0\}$
- * The set of real numbers R
- * The set of positive real numbers \mathbb{R}^+

The Empty Set

- * The <u>empty set</u> is the set that contains no elements.
- * Denoted by Ø or {}.
- * Important: The set $\{\emptyset\}$ is *not* empty. Rather, it is a set that contains one element that is \emptyset .

Cardinality of Sets

* The <u>cardinality</u> of a finite set *S*, denoted by | *S*|, is the number of elements in *S*.

$$* | {a,b,c} | = 3$$

$$* | \varnothing | = 0$$

$$* | {\emptyset} | = 1$$

Cardinality of Sets

- *Not all sets are finite.
- *Infinite sets can be <u>countable</u> or <u>uncountable</u>.
- *More on this later in the semester.

Propositional Logic

Propositions

- * A <u>proposition</u> is a declarative sentence that is either true or false, but not both.
- * We use <u>propositional variables</u> (e.g., *p*, *q*, *r*, *s*,...) to represent propositions.

Propositions

- * Propositions:
 - ♦ 3∈{1,2,4}
 - * | {0,1} | =2
 - * 7∉{a,b,c}
- * Not propositions:
 - * 1+1
 - * {a,b,c}
 - * | {5,12,19} |

Compound Propositions

- * If p is a proposition, $\neg p$ is its negation.
- * If *p* and *q* are two propositions, then
 - * $p \land q$ ("p and q") is their conjunction
 - * $p \lor q$ ("p or q") is their <u>disjunction</u>

Truth Values

- * The <u>truth value</u> of a proposition is true, denoted by T, if it is a true proposition, and the truth value is false, denoted by F, if it is a false proposition.
- * True propositions:
 - * $|\{a,b\}| = 2$ $|\emptyset| < |\{1\}|$ $7 \notin \{1,5,9,12\}$
- * False propositions:
 - * $|\{\emptyset\}| = 0$ $7 \in \{1, 5, 9, 12\}$

Truth Table

- * For a compound proposition, one way to determine the truth value of the proposition is by using a <u>truth table</u>.
- * The truth table has one row for each combination of T and F for the primitive propositions.

Truth Table

TABLE 1 The Truth Table for the Negation of a Proposition.

p	$\neg p$
Т	F
F	Т

TABLE 2 The Truth Table for the Conjunction of Two Propositions.

p	\boldsymbol{q}	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

TABLE 3 The Truth Table for the Disjunction of Two Propositions.

q	$p \lor q$
T	T
F	T
T	T
F	F
	T F T

XOR, If, and Iff

TABLE 4 The Truth Table for
the Exclusive Or of Two
Propositions.

p	\boldsymbol{q}	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.

p	\boldsymbol{q}	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	Т

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	Т

Truth Tables of Compound Propositions

TABLE 7 The Truth Table of $(p \lor \neg q) \rightarrow (p \land q)$.					
p	\boldsymbol{q}	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$
T	T	F	T	Т	T
Т	F	T	T	F	F
F	T	F	F	F	T
F	F	Т	T	F	F

Tautology

- * A <u>tautology</u> is a compound proposition whose truth value is T under all truth assignments to its propositional variables.
- * Examples:
 - ♦ p∨¬p
 - $*(p \rightarrow q) \lor \neg q$
 - * Tvp

Contradiction

- * A <u>contradiction</u> is a compound proposition whose truth value is F under all truth assignments to its propositional variables.
- * Examples:
 - $*p \land \neg p$
 - * FAp

- * A compound proposition is satisfiable if it is not a contradiction.
- * A truth assignment to the propositional variables that make the compound proposition T is called a <u>solution</u> of this particular satisfiability problem.

- * The Propositional Satisfiability Problem, commonly known as <u>SAT</u>, is a <u>decision</u> <u>problem</u> that plays a central role in computer science.
- * It is defined as:
 - * Input: A compound proposition φ
 - * Output: "Yes", if φ is satisfiable, and "No" otherwise

- * A trivial algorithm for solving SAT would build the truth table of φ and check the rightmost column for a T.
- * If φ has n propositional variables, how many rows does the truth table have?
- * If the computer can build and evaluate 1000 rows a second, how many seconds does this algorithm take if n=10? If n=1000?

- * Two seminal results:
 - * Stephen Cook (1971) showed that SAT is NP-Complete.
 - * Richard Karp (1972) introduced polynomial-time reductions as a tool to show other problems are NP-Complete.
- * Both Cook and Karp won the Turing award for these contributions.

Predicate Logic

Predicate Logic

- *In mathematics and computer science, we often find statements that involve variables.
- *For example, $x \in \{1,2,3\}$.
- *In this example, x is the <u>variable</u>, and " $x \in \{1,2,3\}$ " is the <u>predicate</u>.

Predicate Logic

- * The statement $x \in \{1,2,3\}$ can be denoted by propositional function P(x).
- * This propositional function evaluates to either T or F once a value has been assigned to variable x, in which case the statement P(x) becomes a proposition.
- * What is P(1)? P(3)?₃₇P(7)?

Predicate Logic

- * These statements and functions may involve any number of variables.
- * For example, Q(x,y) is the statement " $x \in \{1,2,3\} \land y \notin \{a\}$ ".
- * What is the value of Q(1,a)? Q(1,b)?

Quantifiers

- * Another way to turn a propositional function into a proposition is via quantification.
- * Predicate calculus is the area of logic that deals with predicates and quantifiers.

Universal Quantification

*The universal quantification of P(x) is the statement "P(x)for all values of x in the domain of discourse" and is denoted by $\forall x P(x)$.

Existential Quantification

*The existential quantification of P(x) is the statement "P(x)for some value of x in the domain of discourse" and is denoted by $\exists x P(x)$.

Quantifiers

Statement	When True?	When False?
$\forall x P(x)$ $\exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. P(x) is false for every x .

Negating Quantified Expressions

TABLE 2 De Morgan's Laws for Quantifiers.					
Negation	Equivalent Statement	When Is Negation True?	When False?		
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.		
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .		

Quantifiers

* What are the truth values of the following statements if the domain consists of all integers:

$$\mathbf{a}) \ \forall n(n^2 \ge 0)$$

c)
$$\forall n(n^2 \ge n)$$

b)
$$\exists n(n^2 = 2)$$

d)
$$\exists n (n^2 < 0)$$

Nested Quantifiers

Statement	When True?	When False?
$\forall x \forall y P(x, y) \\ \forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y) \\ \exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

Negating Nested Quantifiers

 $*\neg \forall x \exists y \exists z \forall w P(x,y,z,w)$

 $*\exists x \forall y \forall z \exists w \neg P(x,y,z,w)$

Nested Quantifiers

*What are the truth values of the following statements if the domain consists of all integers:

a)
$$\forall n \exists m (n^2 < m)$$

c)
$$\forall n \exists m (n + m = 0)$$

b)
$$\exists n \forall m (n < m^2)$$

d)
$$\exists n \forall m (nm = m)$$

Back to Sets

Subsets

- *Let A and B be two sets.
- *A is a <u>subset</u> of B, denoted by $A \subseteq B$, if the following quantified expression is true:

$$\forall x (x \in A \rightarrow x \in B)$$

Proper Subsets

- *Let A and B be two sets.
- *A is a proper subset of B, denoted by $A \subseteq B$, if the following quantified expression is true:

$$\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$$

Equal Sets

- *Let A and B be two sets.
- *A and B are <u>equal</u>, denoted by A=B, if the following quantified expression is true:

$$\forall x (x \in A \leftrightarrow x \in B)$$

Power Sets

- *The power set of set A, denoted by P(A) or 2^A , is the set of all subsets of A.
- *What is the power set of $\{1,2,3\}$? Of \emptyset ?

Set Operations

$$A \cup B = \{x | x \in A \lor x \in B\}$$

* Intersection:

$$A \cap B = \{x | x \in A \land x \in B\}$$

* Difference:

$$A \setminus B = \{x | x \in A \land x \notin B\}$$

* Complement:

$$\overline{A} = \{ x \in U | x \notin A \}$$

* Cartesian product: $A \times B = \{(x, y) | x \in A \land y \in B\}$

Set Identities

Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$ 54	Complement laws

Questions?