Содержание

1	Зад	ание		2
2	Teo	ретиче	еская часть	2
	2.1	Тестон	вые примеры	2
		2.1.1	Плоскость	2
		2.1.2	Линейно-квадратичная функция	3
		2.1.3	Параболоид	3
		2.1.4	Индивидуальная функция	3
	2.2	Разно	стные схемы	3
		2.2.1	Схема с весом $\sigma = 0$	3
		2.2.2	Схемы с весом $\sigma = 1/4, 1/2$	
3	Пра	актиче	еская часть	5
	3.1^{-}	Расчет	гная схема с весом $\sigma=0$	5
		3.1.1	Часть 1	5
			Часть 2	
	3.2		гная схема с весом $\sigma = 1/4$	8
			Часть 1	8
	3.3		гная схема с весом $\sigma = 1/2$	9
		3.3.1	Часть 1	9
4	Прт	иложеі	ние	10

1 Задание

Начально-краевая задача для уравнения колебаний струны

$$\begin{cases} y_{tt} = ay_{xx} + f, & x \in (0,L), t \in (0,T), \\ y|_{t=0} = \varphi(x), & y_t|_{t=0} = v(x), \\ y|_{x=0} = g_0(t), & y|_{x=L} = g_L(t). \end{cases}$$
(1)

Здесь a > 0 - константа, решение y = y(t,x).

Реализовать разностные схемы:

- с весом $\sigma = 0$
- с весом $\sigma = 1/4$
- с весом $\sigma = 1/2$

Подготовить несколько тестовых примеров. Среди обязательных должны быть представлены

- 1. плоскости y(t,x) = ax + bt + c(в том числе константы),
- 2. линейно-квадратичные функции $y(t,x) = ax^2 + bt + c$
- 3. параболоиды $y(t,x) = ax^2 + bt^2 + c$
- 4. $y(t,x) = e^{\sin^2 x + \cos^2 t}$

2 Теоретическая часть

2.1 Тестовые примеры

$$a = 1, L = 2, T = 10L = 20$$

2.1.1 Плоскость

$$y(t,x) = 2x + 3t - 5$$

$$\begin{cases} y_{tt} = y_{xx}, \ x \in (0,L), t \in (0,T), \\ y|_{t=0} = 2x - 5, y_t|_{t=0} = 3, \\ y|_{x=0} = 3t - 5, y|_{x=L} = 3t - 1. \end{cases}$$
(2)

2.1.2 Линейно-квадратичная функция

$$y(t,x) = 2x^2 + t - 3$$

$$\begin{cases} y_{tt} = y_{xx} - 4, & x \in (0,L), t \in (0,T), \\ y|_{t=0} = 2x^2 - 3, & y_t|_{t=0} = 1, \\ y|_{x=0} = t - 3, & y|_{x=L} = t + 5. \end{cases}$$
(3)

2.1.3 Параболоид

$$y(t,x) = 3x^2 - 2t^2 - 1$$

$$\begin{cases} y_{tt} = y_{xx} - 10, \ x \in (0,L), t \in (0,T), \\ y|_{t=0} = 3x^2 - 1, y_t|_{t=0} = 0, \\ y|_{x=0} = -2t^2 - 1, y|_{x=L} = -2t^2 + 11. \end{cases}$$

$$(4)$$

2.1.4 Индивидуальная функция

$$y(t,x) = e^{\sin^2 x + \cos^2 t}$$

$$\begin{cases} y_{tt} = y_{xx} + \left(e^{\sin^2 x + \cos^2 t}\right) \left(\sin^2 2t - 2\cos 2t - \sin^2 2x - 2\cos 2x\right), \\ x \in (0, L), t \in (0, T), \\ y|_{t=0} = e^{\sin^2 x + 1}, y_t|_{t=0} = 0, \\ y|_{x=0} = e^{\cos^2 t}, y|_{x=L} = e^{\sin^2 2 + \cos^2 t}. \end{cases}$$

$$(5)$$

2.2 Разностные схемы

2.2.1 Cxema c весом $\sigma = 0$

Формула разностного уравнения

$$U_i^{j+1} = \frac{\tau^2}{h^2} \left(U_{i+1}^j - 2U_i^j + U_{i-1}^j \right) + \tau^2 f_i^j + 2U_i^j - U_i^{j-1}$$

Так как разностная схема трехслойная, то возникает проблема старта. Для этого воспользуемся значением производной по t в точке 0. Заполним второй слой по формуле:

$$U_i^1 = \tau V_i + \frac{\tau^2}{2h^2} \left(U_{i+1}^0 - 2U_i^0 + U_{i-1}^0 + \frac{\tau^2}{2} f_i^0 + U_i^0 \right)$$

Шаблон

Порядок аппроксимации

$$\psi = C_1 \tau^2 + C_2 h^2$$

Устойчивость

Схема устойчива по начальным данным, если $\tau < h$

2.2.2 Схемы с весом $\sigma = 1/4, 1/2$

Формула разностного уравнения

$$\sigma \frac{\tau^2}{h^2} \left(U_{i+1}^{j+1} + U_{i-1}^{j+1} \right) - \left(1 + 2\sigma \frac{\tau^2}{h^2} \right) U_i^{j+1} = \left(2U_i^j - U_i^{j-1} \right) +$$

$$+ \tau^2 \left(1 - 2\sigma \right) \frac{\left(U_{i+1}^j - 2U_i^j + U_{i-1}^j \right)}{h^2} + \sigma \tau^2 \frac{\left(U_{i+1}^{j-1} - 2U_i^{j-1} + U_{i-1}^{j-1} \right)}{h^2} + \tau^2 \varphi$$

Так как разностная схема трехслойная, то возникает проблема старта. Для решения этой проблемы воспользуемся значением производной по t в точке 0. Заполняем второй слой по формуле:

$$U_i^1 = \tau V_i + \frac{\tau^2}{2h^2} \left(U_{i+1}^0 - 2U_i^0 + U_{i-1}^0 \right) + \frac{\tau^2}{2} f_i^0 + U_i^0$$

Шаблон

Порядок аппроксимации

$$\psi = C_1 \tau^2 + C_2 h^2$$

 \mathbf{y} стойчивость 1

$$\sigma \ge \frac{1}{4} - \frac{h^2}{4\tau^2}$$

3 Практическая часть

3.1 Расчетная схема с весом $\sigma = 0$

3.1.1 Часть 1

Шаги: $h=0.02,\, \tau=0.01,\, L=2,\, T=20$

Тестовая задача №1

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	2.615E-12	1.168E + 284	NAN	NAN	NAN
$\tau_0/2$	5.016E-12	3.375E-12	NAN	NAN	NAN
$\tau_0/4$	3.24E-11	1.125E-11	1.057E-11	NAN	NAN
$\tau_0/8$	1.479E-10	4.194E-11	2.509E-11	1.175E-11	NAN
$\tau_0/16$	1.766E-10	2.58E-10	7.199E-11	5.465E-11	3.42E-11

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	1.098E-12	3.893E + 283	NAN	NAN	NAN
$\tau_0/2$	1.272E-12	1.382E-12	NAN	NAN	NAN
$\tau_0/4$	8.12E-12	5.013E-12	6.679E-12	NAN	NAN
$\tau_0/8$	6.273E-11	1.433E-11	1.431E-11	9.955E-12	NAN
$\tau_0/16$	1.526E-10	9.681E-11	3.226E-11	2.011E-11	2.046E-11

 $^{^{1}}$ Данное неравенство обеспечивает абсолютную устойчивость, тем не менее некорректно будет его называть условием устойчивости(отсутствует условие на шаги). Это скорее правило выбора веса

Тестовая задача №3

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	3.354E-11	2.508E + 282	NAN	NAN	NAN
$\tau_0/2$	6.321E-11	1.063E-10	NAN	NAN	NAN
$\tau_0/4$	4.602E-10	2.998E-10	1.182E-10	NAN	NAN
$\tau_0/8$	1.108E-08	3.768E-10	6.395E-10	5.765E-10	NAN
$\tau_0/16$	7.4E-08	2.15E-08	9.373E-10	7.412E-10	8.388E-10

Тестовая задача №4

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	0.0008271	7.781E + 287	NAN	NAN	NAN
$\tau_0/2$	0.0007173	0.0002055	NAN	NAN	NAN
$\tau_0/4$	0.0006938	0.0001776	5.121E-05	NAN	NAN
$\tau_0/8$	0.0006883	0.0001717	4.42E-05	1.278E-05	NAN
$\tau_0/16$	0.0006869	0.0001704	4.273E-05	1.102E-05	3.192E-06

Вывод

Полученный результат полностью соответствует теоретическим свойствам схемы. При невыполнении условия устойчивости решение во всех случаях расходится. В четвёртой задаче прослеживается зависимость погрешности аппроксимации от шага по h, но погрешность практически не изменяется при изменении шага по τ . Я считаю, что это происходит по причине входных данных. Ведь в точке t=0 первая производная по t равна 0. В первых трёх задачах погрешность аппроксимации минимальна, так как вторые производные тестовых функций представляют собой константы.

3.1.2 Часть 2

Определим визуально моменты времени, при которых решение становится неустойчивым для каждой из тестовых задач при $\tau=0.01, h=0.01$

Тестовая задача №2

Тестовая задача №3

Тестовая задача №4

3.2 Расчетная схема с весом $\sigma = 1/4$

3.2.1 Часть 1

Шаги: $h=0.02,\, \tau=0.01,\, L=2, T=20$

Тестовая задача №1

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$				1.723E-10	
$\tau_0/2$	1.155E-10	4.869E-11	7.642E-11	2.667E-10	7.708E-10
$\tau_0/4$	1.263E-10	2.544E-10	6.198E-10	2.364E-10	1.399E-09
$\tau_0/8$	1.888E-09	1.551E-10	2.143E-10	1.509E-09	2.041E-09
$\tau_0/16$	8.006E-09	5.772E-09	7.125E-09	6.081E-09	1.153E-08

Тестовая задача №2

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	2.301E-11	7.002E-12	1.776E-11	5.163E-11	2.102E-10
$\tau_0/2$	2.925E-11	2.72E-11	1.71E-11	9.878E-11	2.469E-10
$\tau_0/4$	7.605E-11	1.301E-10	2.537E-10	1.221E-10	4.219E-10
$\tau_0/8$	6.454E-10	3.237E-10	3.112E-10	2.08E-10	1.028E-09
$\tau_0/16$	4.364E-09	1.871E-09	2.331E-09	2.011E-09	3.889E-09

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	7.493E-10	3.42E-10	8.625E-10	2.278E-09	8.619E-09
$\tau_0/2$	1.718E-09	6.025E-10	1.302E-09	3.6E-09	1.034E-08
$\tau_0/4$	4.355E-09	6.025E-09	1.033E-08	5.877E-09	1.721E-08
$\tau_0/8$	3.861E-08	2.384E-08	2.339E-08	2.645E-08	4.815E-08
$\tau_0/16$	1.443E-07	1.656E-07	1.814E-07	1.703E-07	1.686E-07

Тестовая задача №4

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	0.0008566	0.0003927	0.0003496	0.0003553	0.0003569
$\tau_0/2$	0.000726	0.0002124	9.785E-05	8.737E-05	8.879E-05
$\tau_0/4$	0.0006962	0.0001799	5.289E-05	2.444E-05	2.184E-05
$\tau_0/8$	0.0006889	0.0001723	4.476E-05	1.32E-05	6.108E-06
$\tau_0/16$	0.0006871	0.0001705	4.288E-05	1.116E-05	3.295E-06

3.3 Расчетная схема с весом $\sigma=1/2$

3.3.1 Часть 1

Шаги: $h=0.02,\, \tau=0.01,\, L=2, T=20$

Тестовая задача №1

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	3.898E-11	1.953E-11	3.016E-11	2.465E-10	7.992E-10
$\tau_0/2$	1.691E-10	5.009E-11	2.626E-10	6.622E-11	6.236E-10
$\tau_0/4$	7.917E-11	8.053E-10	2.868E-10	6.154E-11	7.373E-10
$\tau_0/8$	2.388E-09	9.444E-10	1.107E-09	2.413E-09	4.708E-09
$\tau_0/10$	6 1.195E-09	3E-09	5.455E-09	1.514E-08	5.815E-09

Тестовая задача №2

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	1.328E-11	1.211E-11	1.087E-11	7.608E-11	2.639E-10
$\tau_0/2$	4.547E-11	1.328E-11	7.639E-11	1.577E-11	1.97E-10
/	3.881E-11				
$\tau_0/8$	1.162E-09	6.727E-10	1.359E-10	1.163E-09	1.919E-09
$\tau_0/16$	5.772E-10	9.332E-10	1.851E-09	5.082E-09	1.964E-09

Тестовая задача №3

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	7.054E-10	2.798E-10	5.584E-10	3.261E-09	1.067E-08
$\tau_0/2$	2.294E-09	1.028E-09	3.537E-09	1.196E-09	8.376E-09
$\tau_0/4$	3.371E-09	1.282E-08	6.313E-09	4.066E-09	9.202E-09
$\tau_0/8$	5.351E-08	3.615E-08	2.369E-08	5.283E-08	7.865E-08
$\tau_0/16$	8.727E-08	1.35E-07	1.043E-07	2.167E-07	1.062E-07

	h_0	$h_0/2$	$h_0/4$	$h_0/8$	$h_0/16$
$\tau_0/1$	0.0008883	0.0003888	0.000333	0.0003237	0.0003214
$\tau_0/2$	0.0007352	0.0002203	9.7E-05	8.33E-05	8.096E-05
$\tau_0/4$	0.0006986	0.0001821	5.486E-05	2.423E-05	2.083E-05
$\tau_0/8$	0.0006895	0.0001729	4.532E-05	1.369E-05	6.053E-06
$\tau_0/16$	0.0006872	0.0001707	4.302E-05	1.13E-05	3.418E-06

Вывод

В РС с весами равными $\sigma=1/4$, $\sigma=1/2$ методы получаются абсолютно устойчивыми, так как, условие устойчивости как такового нет. Вместо этого имеется правило выбора веса. В задачах 1-3 наблюдается накапливание погрешности в силу простой структуры тестируемых функций. В задаче 4 функция более сложная и по полученным данным зависимость погрешности аппроксимации от шагов видна хорошо.

4 Приложение

```
import numpy as np
    from matplotlib import pyplot as plt
   L = 2
    T = L * 10
   N1 = 51
    Nt = 2001
    def y1(x, t):
10
        return 2 * x + 3 * t - 5
11
12
13
    def f1(x, t):
14
        return 0
15
16
17
    def y01(x):
18
        return 2 * x - 5
19
    def g01(t):
22
        return 3 * t - 5
24
```

```
25
    def gl1(t):
26
         return 3 * t - 1
27
28
29
    def v1(x):
30
         return 3
31
32
33
    def y2(x, t):
34
         return 2 * x ** 2 + t - 3
36
37
    def f2(x, t):
         return -4
    def y02(x):
42
         return 2 * x ** 2 - 3
43
44
45
    def g02(t):
46
         return t - 3
47
48
49
    def gl2(t):
50
         return t + 5
51
52
53
    def v2(x):
54
         return 1
55
56
57
    def y3(x, t):
         return 3 * x ** 2 - 2 * t ** 2 - 1
59
60
61
    def f3(x, t):
62
         return -10
63
64
65
    def y03(x):
66
         return 3 * x ** 2 - 1
```

```
68
69
    def g03(t):
70
         return - 2 * t ** 2 - 1
71
72
73
    def gl3(t):
74
         return - 2 * t ** 2 + 11
75
76
77
    def v3(x):
         return 0
79
    def y4(x, t):
         return np.exp((np.sin(x))**2 + (np.cos(t))**2)
85
    def f4(x, t):
86
         return (np.exp((np.sin(x))**2 + (np.cos(t))**2))*
                 ((np.sin(2*t))**2 - 2*np.cos(2*t) -
                  (np.sin(2*x))**2 - 2*np.cos(2*x))
89
91
    def y04(x):
92
         return np.exp((np.sin(x))**2 + 1)
93
94
95
    def g04(t):
96
         return np.exp((np.cos(t))**2)
97
98
99
    def gl4(t):
100
         return np.exp((np.sin(2))**2 + (np.cos(t))**2)
101
102
103
    def v4(x):
104
         return 0
105
106
107
    def Krest(f, N1, Nt, y0, g0, g1, v):
108
         U = np.zeros((N1, Nt))
109
         x = np.linspace(0, L, Nl)
```

```
t = np.linspace(0, T, Nt)
111
         x1 = L / (Nl - 1)
112
         t1 = T / (Nt - 1)
113
         for i in range(0, N1):
114
             U[i][0] = y0(x[i])
115
         for j in range(0, Nt):
116
             U[0][j] = g0(t[j])
117
         for j in range(0, Nt):
118
             U[N1 - 1][j] = gl(t[j])
119
         for i in range(1, N1 - 1):
120
             U[i][1] = v(x[i]) * t1 + (t1 ** 2 / (2 * x1 ** 2)) \setminus
121
                       * \
122
                         (U[i + 1][0] - 2 * U[i][0] + U[i - 1][0])
                         + (t1 ** 2) / 2 * f(x[i], t[0]) + U[i][0]
         for j in range(1, Nt - 1):
             for i in range(1, N1 - 1):
                  U[i][i + 1] = (t1 ** 2 / x1 ** 2) * 
                       (U[i + 1][j] - 2 * U[i][j] + U[i - 1][j]) \setminus
128
                           + t1 ** 2 * f(x[i], t[j]) + 
129
                                  2 * U[i][j] - U[i][j - 1]
130
         return U
131
132
133
    def Weight(f, Nl, Nt, y0, g0, gl, v, sg):
134
         U = np.zeros((N1, Nt))
135
         x = np.linspace(0, L, Nl)
136
         t = np.linspace(0, T, Nt)
137
         x1 = L / (N1 - 1)
138
         t1 = T / (Nt - 1)
139
         for i in range(0, N1):
140
             U[i][0] = y0(x[i])
141
         for j in range(0, Nt):
142
             U[0][j] = g0(t[j])
143
         for j in range(0, Nt):
144
             U[N1 - 1][j] = gl(t[j])
145
         for i in range(1, N1 - 1):
146
             U[i][1] = v(x[i]) * t1 + (t1 ** 2 / (2 * x1 ** 2)) \setminus
147
                         * (U[i + 1][0] - 2 * U[i][0] + U[i - 1][0]) \setminus
148
149
                           t1 ** 2) / 2 * f(x[i], t[0]) + U[i][0]
         A = np.zeros((N1 - 2, N1 - 2))
         for i in range(0, N1 - 2):
```

```
for j in range(0, N1 - 2):
154
                 if i == j:
155
                      A[i][j] = -(1 + 2 * sg * (t1 / x1) ** 2)
156
                 if i == j + 1 or i == j - 1:
157
                      A[i][j] = sg * (t1 / x1) ** 2
158
159
         for j in range(1, Nt - 1):
160
             b = np.zeros(N1 - 2)
161
             for i in range(1, N1 - 1):
                 if i == 1:
                      b[i - 1] = -((2 * U[i][j] - U[i][j - 1])
                                    + t1 ** 2 * (1 - 2 * sg) * (
                                   U[i - 1][i] - 2 * U[i][i]
                                   + U[i + 1][j]) / (x1 ** 2)
                                    + sg * t1 ** 2 * (
                                                 U[i - 1][j - 1]
                                                 -2 * U[i][i - 1]
                              + U[i + 1][j - 1]) / (x1 ** 2)
171
                                    + t1 ** 2 * f(
172
                          x[i], t[j]) - sg * (t1 / x1) ** 2\
173
                                  * U[i - 1][j + 1]
174
                 elif i == N1 - 2:
175
                      b[i - 1] = -((2 * U[i][j] - U[i][j - 1])
176
                                    + t1 ** 2 * (1 - 2 * sg) * (
177
                                   U[i - 1][j] - 2 * U[i][j]
178
                                   + U[i + 1][j]) / (x1 ** 2)
179
                                    + sg * t1 ** 2 * (
180
                                                 U[i - 1][j - 1]
181
                                                 -2 * U[i][j - 1]
182
                                                 + U[i + 1][j - 1])
183
                                    / (x1 ** 2) + t1 ** 2 * f(
184
                          x[i], t[j]) - sg * (t1 / x1) ** 2 \
185
                                  * U[i + 1][i + 1]
186
                 else:
187
                      b[i - 1] = -((2 * U[i][j] - U[i][j - 1])
188
                                    + t1 ** 2 * (1 - 2 * sg) * (
189
                                   U[i - 1][j] - 2 * U[i][j]
190
                                   + U[i + 1][j]) / (x1 ** 2)
191
                                    + sg * t1 ** 2 * (
192
                                                 U[i - 1][i - 1]
                                                 -2 * U[i][j - 1]
                                                 + U[i + 1][i - 1])
                                    / (x1 ** 2) + t1 ** 2 * f(
```

```
x[i], t[j])
197
             Q = np.linalg.solve(A, b)
198
             for i in range(1, N1 - 1):
199
                  U[i][j + 1] = Q[i - 1]
200
         return U
201
202
203
    def Value(y, N1, Nt):
204
         value = np.zeros((N1, Nt))
205
         x = np.linspace(0, L, Nl)
206
         t = np.linspace(0, T, Nt)
207
         for j in range(0, Nt):
208
             for i in range(0, N1):
                  value[i][j] = y(x[i], t[j])
         return value
    def Err(y, f, Nl, Nt, y0, g0, gl, v):
214
         Nl1 = Nl
215
         Nt1 = Nt
216
         err = np.zeros((5, 5))
217
         for i in range(0, 5):
218
             for j in range(0, 5):
219
                  value = Value(y, Nl1, Nt1)
220
                  err[i][j] = np.max(np.abs(value -
221
                               Krest(f, Nl1, Nt1, y0, g0, gl, v)))
222
                  print('t = ', T / (Nt1 - 1), '
                                                     h = '
223
                         , L / (N11 - 1)
224
                  print('\Piorpewhoctb = ',"\{:1.4G\}".format(err[i][j]))
225
                  Nl1 = Nl1 * 2
226
             Nt1 = Nt1 * 2
227
             Nl1 = Nl
228
         return err
229
230
231
    def Err1(y, f, Nl, Nt, y0, g0, gl, v, sg):
232
         Nl1 = Nl
233
         Nt1 = Nt
234
         err = np.zeros((5, 5))
235
         for i in range(0, 5):
             for j in range(0, 5):
                  value = Value(y, Nl1, Nt1)
                  err[i][j] = np.max(np.abs(value -
239
```

```
Weight(f, Nl1, Nt1, y0, g0, gl, v, sg)))
240
                  print('t = ', T / (Nt1 - 1), ' h = ', L /
241
                         (N11 - 1))
242
                  print('\squareorpewhoctb = ',"\{:1.4G\}".format(err[i][j]))
243
                  Nl1 = Nl1 * 2
244
              Nt1 = Nt1 * 2
245
              Nl1 = Nl
246
         return err
247
248
249
     def Table(name, y, f, Nl, Nt, y0, g0, gl, v):
250
         R = Err(y, f, Nl, Nt, y0, g0, gl, v)
251
         with open(name, 'w') as f:
              f.write('& ' + 'h_{0} & ' + 'h_{0}/2 & '
                       + h_{0}/4 & + h_{0}/8 & + h_{0}/16
                       + ' \\\ ' + '\hline' + '\n')
              for i in range(0, 5):
                  for j in range(0, 6):
257
                       if j == 5:
258
                           f.write(' ' + "{:1.4G}".format(R[i][j - 1]))
259
                           f.write(' \\\ ' + '\hline')
260
                           f.write('\n')
261
                       elif j == 0:
262
                           f.write('\\' + 'tau_{0}/{'
263
                                     + str(2 ** i) + '} & ')
264
                           print(2 ** i)
265
                       else:
266
                           f.write("{:1.4G}".format(R[i][j-1]))
267
                           f.write(' & ')
268
269
270
     def Table1(name, y, f, Nl, Nt, y0, g0, gl, v, sg):
271
         R = Err1(y, f, Nl, Nt, y0, g0, gl, v, sg)
272
         with open(name, 'w') as f:
273
              f.write(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}
274
                       + h_{0}/4  ' + h_{0}/8  ' + h_{0}/16 
275
                       + ' \\\ ' + '\hline' + '\n')
276
              for i in range(0, 5):
                  for j in range(0, 6):
278
                       if j == 5:
                           f.write(' ' + "{:1.4G}".format(R[i][j])
                                                                 - 1]))
                           f.write(' \\\ ' + '\hline')
282
```

```
f.write('\n')
283
                      elif j == 0:
284
                          f.write('\\' + 'tau_{0}/{'
285
                                  + str(2 ** i) + '} & ')
286
                          print(2 ** i)
287
                      else:
288
                          f.write("{:1.4G}".format(R[i][j - 1]))
289
                          f.write(' & ')
290
```