Building Predictive Models

Duffy Industries

- Robin Curtin, the Transportation vice president for Duffy Industries, a food manufacturer, is trying to understand their transportation rates. She needs to estimate what rates should be for full truckload (TL) service from a new facility. Duffy uses contract "over-the-road" trucking companies for TL shipments. These are moves directly from one point to another with no intermediate stops.
- Robin only has a snapshot of data showing the costs and some other characteristics of about 100 TL shipments.
- Some questions she would like to answer:
 - What characteristics are driving the rates for my TL services?
 - What rates should I expect if I open new lanes?

Duffy Industries

Let's take a look at a snapshot of the data

ID	Cost Per Load	Distance (miles)	LeadTime (days)	Trailer Length (ft)	Weight (lbs)	Equipment
1	\$3,692	1,579	1	53	20,559	DRY
2	\$3,279	1,298	12	48	17,025	REF
3	\$3,120	1,382	11	48	26,736	DRY
4	\$3,205	1,033	1	53	26,176	DRY
5	\$3,188	1,320	3	53	17,994	DRY
6	\$2,835	1,103	9	53	32,207	DRY
7	\$2,364	743	1	48	18,589	DRY

ID unique identification number for the load

CPL cost per load (\$)

Dist distance hauled for shipment (miles)

LdTime lead time from offer to tender to carrier (days) 0 = same day

TrlLng trailer length (feet)

Wgt weight of goods in trailer (lbs)

Eqpt equipment type (Dry Van or Refrigerated)

Duffy Industries – Quick Statistics

	CPL	Dist	LdTime	TrlLng	Wgt
Min	\$1,660	502	0.00	48	15,100
25th Pct	\$2,632	904	2.75	48	21,221
Mode	\$3,730	#N/A	1.00	53	#N/A
Median	\$3,166	1273	6.00	53	26,514
Mean	\$3,132	1207	5.87	51.3	26,709
75th Pct	\$3,701	1538	9.00	53	32,277
Max	\$4,301	1793	13.00	53	39,932
Range	\$2,641	1291	13.00	5	24,832
IQ	\$1,070	634	6.25	5	11,056
StdDev.s	\$652	385	3.94	2.38	7,034
CORR(CPL,X)	1.00	0.90	-0.09	0.14	0.08

Eqpt: 60 Ref and 40 Dry shipments

What to do next?

- Explore how CPL is influenced by other variables
- Develop a descriptive model where CPL=f(Dist, LdTime, . . . ?)
- Develop a predictive model for CPL

Setting up the Variables

Dependent vs. Independent Variables

- We want to measure movement of one (dependent) variable to a small set of relevant (independent) variables.
- Dependent variable Y is a function of independent variables X.
- Examples:
 - Property Values = f(area, location, # bathrooms, ...)
 - Sales = f(last month's sales, advertising budget, price, seasonality, ...)
 - Probability Taking Transit versus Driving = f(income, location, . . .)
 - Height = f(age, gender, height of parents, . . .)
 - GPA = f(GMAT, age, undergraduate Grades, ...)
 - Number of Fliers = f(Economic activity, size of origin and destination cities, competitor's price, . . .)
 - Condominium fees = f(area, story . . .)

Variables Types

- Variables have different scales
 - Nominal Scale / Categorical Groupings without related value
 - Income status (1=retired, 2=student, 3=two income, etc.)
 - Country of origin (1=US, 2=Canada, 3=China, etc.)
 - Organizational structure (1=centralized, 2=decentralized, etc.)
 - Ordinal Scale indicates ranking but not proportionality between values
 - Job satisfaction scale 1 to 5 (a 2 is not twice as good as a 1)
 - Planning versus Response Profile (0 = Planner, 4 = Responder)
 - ◆ Education level (1=High School, 2=Undergraduate, 3=Masters, etc.)
 - Ratio Scale value indicating ranking and relation
 - Examples; Age, Income, Cost, Distance, Weight,
- Form of the Dependent Variable dictates the method used
 - Continuous takes any value
 - Discrete takes only integer values
 - Binary is equal to 0 or 1

We will focus on Linear Regression of continuous, ratio scaled dependent variables

Duffy Industries

- Dependent variable, Y: CPL or cost per load
- Potential independent variables, X_i:
 - Dist distance
 - LdTime lead time
 - TrlLng length of trailer
 - Wgt weight
 - Eqpt equipment type

- Start with simple linear model
- Draw "best fit" line
- CPL = $f(Dist) = \beta_0 + \beta_1 X_1$

Linear Regression

Linear Regression Model

- Formally,
 - The relationship is described in terms of a linear model
 - The data (x_i, y_i) are the observed pairs from which we try to estimate the B coefficients to find the 'best fit'
 - The error term, ε, is the 'unaccounted' or 'unexplained' portion
 - The error terms are assumed to be iid $^{\sim}N(0,\sigma)$ and catch all of the factors ignored or neglected in the model

$$E(Y \mid x) = \beta_0 + \beta_1 x$$
$$StdDev(Y \mid x) = \sigma$$

Linear Regression - Residuals

Residuals

- Predicted or estimated values found by using regression coefficients, b.
- Residuals, e_i , are the difference of actual, y_i , minus predicted, \hat{y}_i , values
- We want to select the "best" **b** values that "minimize the residuals"

$$\hat{y}_i = b_0 + b_1 x_i$$
 for $i = 1, 2, ...n$
 $e_i = y_i - \hat{y}_i = y_i - b_0 + b_1 x_i$ for $i = 1, 2, ...n$

Linear Regression – Best Fit

- How should I determine the "best fit" with the residuals?
 - Min sum of errors?

min
$$\Sigma(y_i - b_0 + b_1x_i)$$

Min sum of absolute error?

min
$$\Sigma | y_i - b_0 + b_1 x_i |$$

Min sum of squares of error?

min
$$\Sigma (y_i - b_0 + b_1 x_i)^2$$

We will select the model that minimizes the residual sum of squares . . . WHY?

- Ordinary Least Squares (OLS) Regression
 - Finds the optimal value of the coefficients (b_0 and b_1) that minimize the sum of the squares of the errors.

$$\sum_{i=1}^{n} \left(e_{i}^{2}\right) = \sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i}\right)^{2} = \sum_{i=1}^{n} \left(y_{i} - b_{0} - b_{1}x_{i}\right)^{2}$$

$$b_{0} = \overline{y} - b_{1}\overline{x} \qquad b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

Formal Definitions

- Where did this come from?
 - Unconstrained optimization (think back to first week!)
 - Partial derivatives to find the first order optimality condition with respect to each variable.

$$\frac{\partial \sum e_i^2}{\partial b_0} = \frac{\partial \sum (y_i - b_0 - b_1 x_i)^2}{\partial b_0} = \sum_{i=1}^n -2(y_i - b_0 - b_1 x_i) = 0$$

$$= -2\sum_{i=1}^n (y_i) + 2\sum_{i=1}^n (b_0) + 2\sum_{i=1}^n (b_1 x_i) = 0$$

$$\sum_{i=1}^n (b_0) = \sum_{i=1}^n (y_i) - \sum_{i=1}^n (b_1 x_i)$$

$$nb_0 = \sum_{i=1}^n (y_i) - b_1 \sum_{i=1}^n (x_i)$$

$$b_0 = \frac{\sum_{i=1}^n (y_i)}{n} - b_1 \frac{\sum_{i=1}^n (x_i)}{n} = \overline{y} - b_1 \overline{x}$$

- We can expand to multiple variables
 - So, for k variables we need to find k regression coefficients

$$Y_{i} = \beta_{0} + \beta_{1}x_{1i} + ... + \beta_{k}x_{ki} + \varepsilon_{i} \quad \text{for } i = 1, 2, ... n$$

$$E(Y \mid x_{1}, x_{2}, ..., x_{k}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + ... + \beta_{k}x_{k}$$

$$StdDev(Y \mid x_{1}, x_{2}, ..., x_{k}) = \sigma$$

$$\sum_{i=1}^{n} (e_i^2) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_{1i} - \dots - b_k x_{ki})^2$$

Validating a Model – First Steps

Model Evaluation Metrics

- All packages will provide statistics for evaluation
 - Names and format will differ slightly package by package
- Model Output
 - Model Statistics (Regression Statistics or Summary of Fit)
 - ◆ Coefficient of Determination or Goodness of Fit (R²)
 - Adjusted R²
 - Standard Error (Root Mean Squared Error)
 - Analysis of Variance (ANOVA)
 - Sum of the Squares (Model, Residual/Error, and Total)
 - Degrees of Freedom
 - Parameter Statistics (Coefficient Statistics)
 - Coefficient (b value)
 - Standard error
 - t-Statistic
 - p-value
 - Upper and Lower Bounds

Model Validation 1 – Overall Fit

ID	CPL (Y)	Dist (X)
1	\$3,692	1,579
2	\$3,279	1,298
3	\$3,120	1,382
4	\$3,205	1,033
5	\$3,188	1,320
6	\$2,835	1,103
7	\$2,364	743
8	\$2,434	772
9	\$3,486	1,389
10	\$3,730	1,761
11	\$3,735	1,664
12	\$4,096	1,542
13	\$2,123	641
14	\$3,560	1,527
15	\$4,041	1,407
16	\$3,765	1,720
17	\$3,565	1,310
18	\$1,686	565
19	\$3,045	1,200
20	\$2,933	1,207
•		
100	\$4,208	1,687

- How much variation in dependent variable, y, can we explain?
 - If we only have the mean?
 - If we can make estimates?
- What is the total variation of CPL?

$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

- Find dispersion around the mean
- Called the Total Sum of Squares
- What if we now make estimates of y for each x?
 - Find variation not accounted for by estimates
 - Called the Error or Residual Sum of Squares

$$RSS = e_i^2 - (y_i - \hat{y}_i)^2$$

- The regression model "explains" a certain percentage of the total variation of the dependent variable
 - Coefficient of Determination or R²

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{(y_{i} - \hat{y}_{i})^{2}}{(y_{i} - \overline{y})^{2}}$$

- Ranges between 0 and 1
- The adj R² corrects for additional variables
 - n= # observations

• n= # observations
• k = # independent variables (not b₀)
$$adjR^2 = 1 - \left(\frac{RSS}{TSS}\right)\left(\frac{n-1}{n-k-1}\right)$$

Model Validation 2 – Individual Coefficients

- Each Independent variable (and b₀) will have:
 - An estimate of coefficient (b₁),
 - A standard error (s_{bi})
 - s_e = Standard error of the model
 - s_x = Standard deviation of the independent variable
 - n = number of observations
 - The t-statistic ~Student-t, df=n-k-1
 - ♦ k = number of independent variables
 - b_i = estimate or coefficient of independent variable
 - Corresponding p-value Testing the Slope
 - If no linear relationship exists between the two variables, we would expect the regression line to be horizontal, that is, to have a slope of zero.
 - We want to see if there is a linear relationship, i.e. we want to see if the slope (b_1) is something other than zero. So: H_0 : $b_1 = 0$ and H_1 $b_1 \neq 0$
- Confidence Intervals
 - We can estimate an interval for the slope parameter, (b₁)

$$s_{b_1} = \frac{\varepsilon}{\sqrt{(n-1)s_x^2}}$$

$$t = \frac{b_1 - \beta_1}{s_{b_1}}$$

Model 1: CPL=f(Dist)

Model 1: CPL = $b_0 + b_1$ (Dist)

R ²	0.818
adj R²	0.816
S _e	281.3
RSS	7,754,694
TSS	42,519,984

Estimation Model

$$CPL = 1282 + 1.532$$
 (Dist)

		Std Error			Lower CI	Upper Cl
	Coefficient	(s _{bi})	t-stat	p-value	(95%)	(95%)
Intercept (b ₀)	1,282.47	92.596	13.85	<0.0001	1,099	1,466
Distance (b ₁)	1.532	0.073	20.961	<0.0001	1.387	1.677

Interpretation:

- Model explains ~82% of total variation in CPL (very good!)
- Both the b_0 and b_1 terms make sense in terms of magnitude and sign and are statistically valid (p<0.0001)

How can we improve the model?

ID	Cost Per Load	Distance (miles)	LeadTime (days)	Trailer Length (ft)	Weight (lbs)	Equipment
1	\$3,692	1,579	1	53	20,559	REF
2	\$3,279	1,298	12	48	17,025	DRY
3	\$3,120	1,382	11	48	26,736	REF
4	\$3,205	1,033	1	53	26,176	REF
5	\$3,188	1,320	3	53	17,994	REF
6	\$2,835	1,103	9	53	32,207	REF
7	\$2,364	743	1	48	18,589	REF

- What potential additions can we make?
 - Does the equipment type matter?
 - Does lead time have an impact?
 - Does the trailer length have an effect?
 - Does the weight influence rates?
 - Does the CPL have a non-linear relationship with distance? weight?
- Be logical in approach and exploration always have a hypothesis going in!

Model 2: CPL = f(Dist, Wgt)

Model 2: CPL = $b_0 + b_1(Dist) + b_2(Wgt)$

R ²	0.819
adj R²	0.815
s _e	281.951
RSS	7,711,126
TSS	42,519,984

Estimation Model

$$CPL = 1282 + 1.532 (Dist) - 0.003 (Wgt)$$

		Std Error			Lower CI	Upper CI
	Coefficient	(s _{bi})	t-stat	p-value	(95%)	(95%)
Intercept (b ₀)	1,354	134.4	10.077	<0.0001	1,088	1,621
Distance (b ₁)	1.538	0.074	20.852	<0.0001	1.392	1.685
Weight (b ₂)	-0.003	0.004	-0.74	0.461	-0.011	0.005

Interpretation:

- Model explains ~82% of total variation in CPL (still very good!)
- Note that while R² improved from Model 1, the adj R² got worse!
- Both the b_0 and b_1 terms make sense in terms of magnitude and sign and are statistically valid (p<0.0001)
- b₂ does not make sense (more weight costs less?) and has poor p-value

Linear Transformations

What about non-linear relationships?

Suppose we think that CPL has some nonlinear relationship with some of our independent variables . . .

$$y = \beta_0 + \beta_1 x_1$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$

$$y = \beta_0 + \beta_1 \ln(x_1)$$

$$y = ax^b \Rightarrow \ln(y) = \ln(a) + b\ln(x)$$

$$y = ax_1^{b1} x_2^{b2} \Rightarrow \ln(y) = \ln(a) + b_1 \ln(x_1) + b_2 \ln(x_2)$$

Recall,

- ln(1) = 0
- ln(e) = 1
- ln(xy) = ln(x) + ln(y)
- ln(x/y) = ln(x) ln(y)
- $ln(x^a) = aln(x)$

Modeling Techniques 1

- Linear Transformations
 - We assume a linear model: $y_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + ... + b_k x_{ik}$
 - What if we have a non-linear relationship with an independent variable?
 - OLS Regression is ok as long as the estimated equation is linear in all of its independent variables
- Let's Try! Model 3: CPL = f(Dist, Dist²)
 - Testing whether the distance effect tapers off at longer distances
 - Create new variable: DistSq = DIST^2
 - Run Regression: CPL = f(Dist, DistSq)

Model 3: $CPL = b_0 + b_1(Dist) + b_2(DistSq)$

R ²	0.818
adj R²	0.814
S _e	282.698
RSS	7,752,076
TSS	42,519,984.

Estimation Model

$$CPL = 1282 + 1.532 (Dist) - 0.00004 (DistSq)$$

		Std Error			Lower Cl	Upper CI
	Coefficient	(s _{bi})	t-stat	p-value	(95%)	(95%)
Intercept (b ₀)	1,236	271	4.557	<0.0001	698	1,775
Distance (b ₁)	1.622	0.503	3.222	0.002	0.623	2.621
Distance ² (b ₂)	-0.00004	0.00022	-0.181	0.857(//	-0.0005	0.0004

Interpretation:

- Model explains ~82% of total variation in CPL (still very good!), but squared term did not improve the adj R² from Model 1.
- b₀ and b₁ still are good (note slight degradation of p-value for b₁)
- b₂ sign and magnitude make sense (at 1000 miles, reduces effect by \$40) but has poor p-value

Modeling Categorical Variables

Modeling Techniques 2

- So far, we assumed that independent variables are continuous & ratio scalar.
- What if we have a nominal/categorical independent variable?
- Create a Dummy Variable
 - Suppose you think equipment type impacts CPL?
 - ◆ Create a binary dummy variable RefFlag =1 if Refrigerated, =0 o.w.
 - Run the Regression CPL = (Dist, RefFlag)
 - Coefficient of RefFlag captures the differential impact of refrigerated trailers versus Dry vans
- Notes:
 - You do not need to create two dummy variables (RefFlag and DryFlag)
 in fact it will fail! This is over-specifying.
 - If we create a DryFlag variable and run CPL=f(Dist, DryFlag) we will get the same estimates for each observation!

Model 4: $CPL = b_0 + b_1(Dist) + b_2(RefFlag)$

R ²	0.822		
adj R²	0.818		
S _e	279.634		
RSS	7,584,957		
TSS	42,519,984.		

Estimation Model

$$CPL = 1320 + 1.529 (Dist) + 84 (RefFlag)$$

	Coefficient	Std Error (s _{bi})	t-stat	p-value	Lower CI (95%)	Upper CI (95%)
Intercept (b ₀)	1,235.858	97.333	12.697	<0.0001	1,042.68	1,429.037
Distance (b ₁)	1.529	0.073	21.032	<0.0001	1.384	1.673
RefFlag(b ₂)	84.135	57.106	1.473	0.144	-29.204	197.474

Interpretation:

- Model explains ~82% of total variation in CPL (adj R² improved from Model 1)
- Both the b₀ and b₁ terms are still fine
- b₂ does not make sense in terms of sign (refrigeration costs more) but has a poor p-value. Perhaps it is more of a function of distance
- Let's test new variable RefDist = RefFlag*Dist

Model 5: $CPL = b_0 + b_1(Dist) + b_2(RefDist)$

R ²	0.821
adj R ²	0.817
S _e	280.298
RSS	7,620,996
TSS	42,519,984

Estimation Model

$$CPL = 1320 + 1.529 (Dist) + 0.06 (RefDist)$$

	Coefficient	Std Error (s _{bi})	t-stat	p-value	Lower Cl (95%)	Upper CI (95%)
Intercept (b ₀)	1,283	92.267	13.906	<0.0001	1,099.967	1,466.216
Distance (b ₁)	1.495	0.078	19.191	<0.0001	1.341	1.65
RefFlag(b ₂)	0.059	0.045	1.304	0.195	-0.031	0.149

Interpretation:

- Model is $good b_0$, and b_1 are fine.
- b₂ is problematic sign and magnitude are reasonable but p-value is bad.
- Should we keep it? This is where we get more art than science. If important, then OK but always state the p-value so the user of the model understands its strength/weakness.

Model 6: $CPL = b_0 + b_1(Dist) + b_2(SameDay)$

R ²	0.828
adj R²	0.824
S _e	274.655
RSS	7,317,250
TSS	42,519,984

SameDay = 1 if LdTime=0, =0 o.w.

Estimation Model

$$CPL = 1238 + 1.552 (Dist) + 233 (SameDay)$$

		Std Error			Lower CI	Upper Cl
	Coefficient	(s _{bi})	t-stat	p-value	(95%)	(95%)
Intercept (b ₀)	1,238	92.308	13.407	<0.0001	1,054	1,420
Distance (b ₁)	1.552	0.072	21.602	<0.0001	1.409	1.694
SameDay(b ₂)	233	96.609	2.408	0.018	40.9	424.4

Interpretation & Insights:

- There are many ways to model the Lead Time effect:
 - Continuous each day adds a linear cost
 - OverWeek = 1 if LdTime>7 days, =0 o.w.
- Quantified potential financial benefit for changing practice (SameDay tenders)

Model Validation II

Regression Assumptions

- 1. There is a population regression line that joins the mean of the dependent variables.
- 2. This implies that the mean of the error is 0.
- 3. The variance of the dependent variable is constant for all values of the explanatory variables (Homoscedasticity)
- 4. The dependent variable is normally distributed for any value of the explanatory variables.
- 5. The error terms are probabilistically independent.

Model Validation

Multi-Collinearity & Autocorrelation

- Multi-Collinearity Are the independent variables correlated?
 - When two or more independent variables are highly correlated
 - Model might have high R² but explanatory variables might fail t-test
 - Can often result in strange results for correlated variables
 - Check for correlation and remove correlated independent variables
- Autocorrelation Are the residuals not independent?
 - Errors are supposed to be identical and independently distributed (iid)
 - Typically a time series issue plot variables over time to see trend
 - If they are not independent, they are autocorrelated

Model Validation - Heterscedasticity

- **Heteroscedasticity** Does the standard deviation of the error terms differ for different values of the independent variables?
 - Observations are supposed to have the same variance
 - How do the residuals behave over the ind. var.'s?
 - Examine scatter plots and look for "fan-shaped" distributions
 - Fixes (weighted least squares regression, others beyond scope)

Model Validation

- Linearity Is the dependent variable linear with independent variables?
 - With one ind. variable, scatter plots work
 - More than one ind. variable look at R²
- Normality of Error Terms Are the error terms distributed Normally?
 - We have assumed that $e^{\sim}N(0,\sigma)$
 - Look at a histogram of the residuals
 - There are more formal tests; e.g., Chi-Square or Kolmogorov–Smirnov tests

Key Points from Lesson

The Practice of Regression

- 1. Choose which independent variables to include in the model, based on common sense and context specific knowledge.
- 2. Collect data (create dummy variables in necessary).
- Run regression -- the easy part.
- 4. Analyze the output and make changes in the model -- this is where the action is.
 - Using fewer independent variables is better than using more
 - Always be able to explain or justify inclusion (or exclusion) of a variable
 - Always validate individual explanatory variables (p-value)
 - There is more art than science to these models

Regression Analysis Checklist

- Linearity: scatter plot, common sense, and knowing your problem
- Signs of Regression Coefficients: do they agree with intuition?
- t-statistics: are the coefficients significantly different from zero?
- adj R²: is it reasonably high in the context?
- Normality: plot histogram of the residuals
- **Heteroscedasticity**: plot residuals with each x variable
- Autocorrelation: "time series plot"
- Multicollinearity: compute correlations of the x variables
 - If |corr|>.70 you might want to remove one of the variables

Practical Concerns – Beware Over-Fitting

Suppose you are given the following data,

Sales	Effort
5	1
4	3
7	4
6	2

 How would you find the "best" fit curve assuming Sales = f(Effort)?

Results – which is the best fit?

Modeling Issues and Tips

- Don't confuse causality and relationship
 - Statistics find and measure relationships not causality
 - User must try to explain the causality
- Don't be a slave to R² model must make sense
 - Look at adjusted R² to compare between models
- Simple is better (avoid over-specifying)

Rule of thumb n≥5(k+2) where n= num obs and k=num of ind variables

- Avoid extrapolating out of observed range
- Non-linear relationships can be modeled through data transformations (In, sqrt, 1/x, Multiply)

Questions, Comments, Suggestions? Use the Discussion Forum!

"Wilson and Dexter waiting patiently to regress their way out of their holiday costumes"

