Assume a non-empty convex set $C = \{x | Mx + C \ge 0\}$

Prove that for a point % cither:

- (i) x lies in C, i.e. Mx+C≥0
- (ii) There exists a hyperplane h such that for all $y \in C$, $h(y) \ge 0$ i.e. $h(C) \ge 0$ and h(x) < 0
 - Proving (i-)ii): If $M \times + C \ge 0$ then there is no hyperplane h such that $h(C) \ge 0$ and h(x) < 0.

Proof by contradiction: Assume $Mx+C\geq 0$ and there does exist a hyperplane h such that $h(C)\geq 0$ and h(x)<0.

Contradiction: $Mx + C \ge 0$ means that $x \in C$, so both $h(x) \ge 0$ and h(x) < 1 are impossible.

Proving (ii \rightarrow i): If there exists a hyperplane h such that $h(c) \ge 0$ and h(x) < 0, then Mx + C < 0.

Proof by Contradiction: Assume cristance of such a hyperplane and $Mx+C\geq 0$.

Contradiction: For all $y \in (x, h(y) \ge 0$. For Mx + (A0) to be true, $h(x) \ge 0$, but h(x) < 0.