SOLUTIONS FOR HOMEWORK 4

15.1-2

Consider the case n=3 with the following price table

Length i	1	2	3
Price p_i	1	10	12
Density d_i	1	5	4

The greedy strategy will give $p_1 + p_2 = 11$, however our optimal solution is $p_3 = 12$.

$$15.1 - 3$$

Use the similar notations as our textbook, we have

$$r_n = \max_{1 \le i \le n} (p_i - c + r_{n-i})$$

and we have boundary condition $r_0 = 0$ (this is important and you will lose points if you do not explicitly write it down).

We also give the Pseudocode as Algorithm 1.

$$15.2 - 1$$

(Table omitted) The optimal parenthesization is $(A_1A_2)((A_3A_4)(A_5A_6))$, with the minimum number of scalar multiplication 2010.

$$15.2 - 2$$

We borrow the implementation of MATRIX-MULTIPLY from our textbook, pages 371. Pseudocode is presented by Algorithm 2.

Algorithm 1: Rod-Cut(p, n, c)

Algorithm 2: Matrix-Chain-Multiply(A, s, i, j)