Dozent: Denis Vogel Tutor: Marina Savarino

Aufgabe 32

(a) Es gilt

$$\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ \sqrt{2} \end{pmatrix} = \sqrt{2} \cdot \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix}$$

und

$$\begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ \sqrt{3} \end{pmatrix} = \sqrt{3} \cdot \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$$

(b) Wir erhalten

$$C = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \oplus \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

(c) Für das charakteristische Polynom ergibt sich

$$\chi_C^{\text{char}} = \det \begin{pmatrix} t & -3 & -2 & 0 \\ -1 & t & 0 & -2 \\ -1 & 0 & t & -3 \\ 0 & -1 & -1 & t \end{pmatrix} = t^4 - 10t^2 + 1.$$

Es gilt nun $(\sqrt{2}+\sqrt{3})^4-10(\sqrt{2}+\sqrt{3})^2+1=0$. Das muss schon nach Aufgabe 31(c) so sein, da die Einheitsmatrix natürlich die Darstellungsmatrix der Identität ist und wir mit f und g die zugehörigen Endomorphismen der Matrizen A und B bezeichnen können. Als Eigenwert von f erhalten wir $\lambda=\sqrt{2}$ und als Eigenwert von g ergibt sich $\mu=\sqrt{3}$. Damit lässt sich die Aussage direkt anwenden.

Aufgabe 33

(a) Definiere $\mu: V^n \to K$, $(x_1, \dots, x_n) \mapsto f_1(x_1) \dots f_n(x_n)$. Diese Abbildung ist multilinear, da

$$\mu(x_1, \dots, x_i + \lambda x_i', \dots, x_n) = f_1(x_1) \dots f_i(x_i + \lambda x_i') \dots f_n(x_n)$$

$$\stackrel{f_i \text{ linear}}{=} f_1(x_1) \cdot f_i(x_i) \dots f_n(x_n) + \lambda f_1(x_1) \cdot \dots \cdot f_i(x_i') \cdot f_n(x_n)$$

$$= \mu(x_1, \dots, x_i, \dots, x_n) + \lambda \mu(x_1, \dots, x_i', \dots, x_n)$$

Nach der universellen Eigenschaft (UM) existiert also eine eindeutige lineare Abbildung $\varphi_{f_1,...,f_n} \colon V^{\otimes n} \to K$ mit

$$\varphi_{f_1,\ldots,f_n}(x_1\otimes\cdots\otimes x_n)=\mu(x_1,\ldots,x_n)=f_1(x_1)\ldots f_n(x_n),$$

was zu zeigen war.

(b) Definiere $\mu \colon (V^*)^n \to (V^{\otimes n})^*$, $(f_1, \dots, f_n) \mapsto \varphi_{f_1, \dots, f_n}$. Diese Abbildung ist multilinear, da

$$\mu(f_1, \dots, f_i + \lambda f_i', \dots, x_n) = \varphi_{f_1, \dots, f_i + \lambda f_i', \dots, f_n}$$

$$= (x_1 \otimes \dots \otimes x_n \mapsto f_1(x_1) \dots (f_i + \lambda f_i')(x_i) \dots f_n(x_n))$$

$$= (x_1 \otimes \dots \otimes x_n \mapsto f_1(x_1) \dots (f_i(x_i) + \lambda f_i'(x_i)) \dots f_n(x_n))$$

$$= (x_1 \otimes \dots \otimes x_n \mapsto f_1(x_1) \dots f_i(x_i) \dots f_n(x_n) + \lambda f_1(x_1) \dots f_i'(x_i) \dots f_n(x_n))$$

$$= (x_1 \otimes \dots \otimes x_n \mapsto f_1(x_1) \dots f_n(x_n)) + \lambda (x_1 \otimes \dots \otimes x_n \mapsto f_1(x_1) \dots f_i'(x_i) \dots f_n(x_n))$$

$$= \varphi_{f_1, \dots, f_i, \dots, f_n} + \lambda \varphi_{f_1, \dots, f_i', \dots, f_n}$$

$$= \mu(f_1, \dots, f_i, \dots, x_n) + \lambda \mu(f_1, \dots, f_i', \dots, x_n)$$

Nach der universellen Eigenschaft (UM) existiert also eine eindeutige lineare Abbildung $\Phi_n : (V^*)^{\otimes n} \to (V^{\otimes n})^*$ mit

$$\Phi_n(f_1\otimes\cdots\otimes f_n)=\mu(f_1,\ldots,f_n)=\varphi_{f_1,\ldots,f_n},$$

was zu zeigen war.

(c) Sei (x_1, \ldots, x_n) eine Basis von V. Dann ist $f \in V^*$ eindeutig durch die Werte auf den Basisvektoren definiert. Wir erhalten daher mit $\psi_i \colon V \to K, \quad x_j \mapsto \delta_{ij}$ eine Basis von V^* (siehe LA1). Es gilt nun für ein $f \in V^*$:

$$f = \sum_{i=1}^{n} f(x_i) \cdot \psi_i,$$

da nämlich

$$f(x) = f\left(\sum_{j=1}^{n} \alpha_j x_j\right) = \sum_{j=1}^{n} \alpha_j f(x_j) = \sum_{j=1}^{n} \alpha_j \sum_{i=1}^{n} f(x_i) \psi_i(x_j) = \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_j f(x_i) \delta_{ij} = \sum_{i=1}^{n} \alpha_i f(x_i).$$

Wir betrachten nun $f \otimes g \in V^* \otimes V^*$ mit $\Phi_2(f \otimes g) = 0$. Dann gilt

$$0 = \Phi_2(f \otimes g)$$

$$= \varphi_{f,g}$$

$$= (x_i \otimes x_j \mapsto f(x_i) \cdot g(x_j))$$

Damit diese Abbildung gleich der Nullabbildung wird, muss gelten

$$0 = f(x_i) \cdot g(x_i) \qquad \forall 1 \le x_i, x_j \le n$$

Allerdings gilt auch

$$f \otimes g = \left(\sum_{i=1}^{n} f(x_i)\psi_i\right) \otimes \left(\sum_{j=1}^{n} g(x_j)\psi_j\right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} g(x_j)f(x_i)(\psi_i \otimes \psi_j)$$

Da $\Phi_2(f,g) = 0$ ist, muss $f(x_i) \cdot g(x_i) \ \forall 1 \leq x_i, x_j \leq n$ gelten

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} 0(\psi_i \otimes \psi_j)$$
$$= 0$$

Also ist ker $\Phi_2 = 0$. Ist nun ein $F \in (V \otimes V)^*$ vorgeben durch die Werte an den Basisvektoren $F(x_i \otimes x_j) = \alpha_{ij}$, so ist durch $G \in V^* \otimes V^*$ mit

$$G = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} (\psi_i \otimes \psi_j)$$

ein Urbild gegeben, da

$$\Phi_{2}(G)(x_{k} \otimes x_{l}) = \Phi_{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} (\psi_{i} \otimes \psi_{j}) \right) (x_{k} \otimes x_{l})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \Phi_{2}(\psi_{i} \otimes \psi_{j}) (x_{k} \otimes x_{l})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \psi_{i}(x_{k}) \cdot \psi_{j}(x_{l})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \delta_{ik} \cdot \delta_{jl}$$

$$= \alpha_{kl}$$

$$= F(x_{k} \otimes x_{l})$$

Also ist Φ_2 sowohl injektiv als auch surjektiv und damit bijektiv.

Aufgabe 34

(a) Sei $y \in \bigwedge^n M$. Dann gilt

$$y = y_1 \wedge \cdots \wedge y_n$$

Da (x_1, \ldots, x_n) ein Erzeugendensystem von M ist, können wir schreiben

$$= \sum_{i_1=0}^{n} \alpha_{1,i} x_{i_1} \wedge \dots \wedge \sum_{i_n=0}^{n} \alpha_{n,i} x_{i_n}$$

Aufgrund der Linearität von ∧ ist das gleich

$$= \sum_{i_1=0}^{n} \alpha_{1,i} \cdots \sum_{i_n=0}^{n} \alpha_{n,i} (x_{i_1} \wedge \cdots \wedge x_{i_n})$$

Da Ausdrücke mit $x_{i_j} = x_{i_k}$ für $k \neq j$ gleich 0 sind, müssen wir nur Ausdrücke mit paarweise verschiedenen x_{i_j} betrachten. Durch Umsortieren, wobei Vorzeichenwechsel in den Koeffizienten berücksichtigt werden sollen, sehen wir ein,dass es o.B.d.A. genügt, solche Ausdrücke zu summieren, in denen $x_{i_1} < \cdots < x_{i_n}$ gilt.

(b) Da I von 2 und $1+\sqrt{-5}$ erzeugt wird, genügt es zu zeigen, dass $2 \wedge 1 + \sqrt{-5} = 0$, da aufgrund der Bilinearität von \wedge alle Elemente in $\bigwedge^2 I$ durch Linearkombination mit Skalaren aus R aus diesem Element erzeugt werden können. Es gilt

$$3 \cdot (2 \wedge (1 + \sqrt{-5})) = 6 \wedge 1 + \sqrt{-5} = (1 + \sqrt{-5})(1 - \sqrt{-5}) \wedge 1 + \sqrt{-5} = (1 - \sqrt{-5}) \cdot (1 + \sqrt{-5} \wedge 1 + \sqrt{-5}) = 0$$

und

$$2 \cdot (2 \wedge (1 + \sqrt{-5})) = 2 \wedge 2 \cdot (1 + \sqrt{-5}) = (2 \wedge 2) \cdot (1 + \sqrt{-5}) = 0$$

Aus der Differenz der beiden Aussagen folgt die Behauptung.

Aufgabe 35

(a) Definiere $\mu \colon M \times M \to M \otimes M$, $(a,b) \mapsto a \otimes b - b \otimes a$. Es gilt $\mu(\lambda a,b) = (\lambda a) \otimes b - b \otimes (\lambda a) = \lambda(a \otimes b - b \otimes a) = \lambda \mu(a,b)$ und analog $\mu(a,\lambda b) = \lambda \mu(a,b)$. Außerdem ist $\mu(a+a',b) = (a+a') \otimes b - b \otimes (a+a') = a \otimes b - b \otimes a + a' \otimes b - b \otimes a' = \mu(a,b) + \mu(a',b)$ genauso wie $\mu(a,b+b') = \mu(a,b) + \mu(a,b')$. Schließlich gilt $\mu(a,a) = a \otimes a - a \otimes a = 0$. μ ist also multilinear und alternierend. Nach der universellen Eigenschaft (UA) existiert daher eine eindeutige lineare Abbildung $f \colon \bigwedge^2 M \to M \otimes M$ mit

$$f(a \wedge b) = \mu(a, b) = a \otimes b - b \otimes a,$$

was zu zeigen war.

(b) Sei x_1, \ldots, x_n eine Basis von M. Es genügt, zu zeigen dass $f(x_i\hat{x}_j) \neq 0$ ist, da die Familie $(x_i, x_j)_{1 \leq i \neq j \leq n}$ eine Basis von $\bigwedge^2 M$ bildet, sodass wir daraus folgern können, dass ker f=0 ist. Wir nehmen an, es gäbe $i \neq j$ derart, dass $0 = f(x_i \wedge x_j) = x_i \otimes x_j - x_j \otimes i \implies x_i \otimes x_j = x_j \otimes x_i$. Allerdings bilden $(x_i \otimes x_j)_{1 \leq i,j \leq n}$ eine Basis von $M \otimes M$, sodass $x_i \otimes x_j = x_j \otimes x_i$ ein Widerspruch zur linearen Unabhängigkeit dieser Basis wäre. Damit haben wir unsere Annahme zum Widerspruch geführt und die Behauptung gezeigt.