► The Maximum Independent Set, a problem we already know about, is in **NP**.

- ► The Maximum Independent Set, a problem we already know about, is in **NP**.
- ► The language of, say, palindrome words, is easy to be proved in **P**, thus in **NP**.

- ► The Maximum Independent Set, a problem we already know about, is in **NP**.
- ► The language of, say, palindrome words, is easy to be proved in **P**, thus in **NP**.
- Intuitively, however, the inherent difficulties of solving the two problems *should be* different.

- ► The Maximum Independent Set, a problem we already know about, is in **NP**.
- ► The language of, say, palindrome words, is easy to be proved in **P**, thus in **NP**.
- ▶ Intuitively, however, the inherent difficulties of solving the two problems *should be* different.
- What can we thus conclude from the fact that a language \mathcal{L} is in the class **NP**?
 - Not much, actually! We can only conclude that it is not *too* complicated to solve it.

- ► The Maximum Independent Set, a problem we already know about, is in **NP**.
- ► The language of, say, palindrome words, is easy to be proved in **P**, thus in **NP**.
- ▶ Intuitively, however, the inherent difficulties of solving the two problems *should be* different.
- What can we thus conclude from the fact that a language \mathcal{L} is in the class **NP**?
 - Not much, actually! We can only conclude that it is not *too* complicated to solve it.
- ▶ We need something else, namely a (pre-order) relation between languages such that two languages being in relation tells us something precise about the **relative** difficulty of deciding them.

Reductions

Reductions

- The language \mathcal{L} is said to be **polynomial-time reducible** to another language \mathcal{H} iff there is a polytime computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that $x \in \mathcal{L}$ iff $f(x) \in \mathcal{H}$.
- ▶ In this case, we write $\mathcal{L} \leq_p \mathcal{H}$.

Reductions and Complexity

- ▶ If $\mathcal{L} \leq_p \mathcal{H}$, then \mathcal{H} is at least as difficult as \mathcal{L} , at least as far as classes like **P** (or above it) are concerned.
 - ▶ If, e.g., $\mathcal{L} \leq_p \mathcal{H}$ and $\mathcal{H} \in \mathbf{P}$, then also $\mathcal{L} \in \mathbf{P}$: a way to decide if $x \in \mathcal{L}$ consists in traslating it into f(x) (which can be done in polynomial time), then checking whether $f(x) \in \mathcal{H}$.

Reductions and Complexity

- ▶ If $\mathcal{L} \leq_p \mathcal{H}$, then \mathcal{H} is at least as difficult as \mathcal{L} , at least as far as classes like **P** (or above it) are concerned.
 - ▶ If, e.g., $\mathcal{L} \leq_p \mathcal{H}$ and $\mathcal{H} \in \mathbf{P}$, then also $\mathcal{L} \in \mathbf{P}$: a way to decide if $x \in \mathcal{L}$ consists in traslating it into f(x) (which can be done in polynomial time), then checking whether $f(x) \in \mathcal{H}$.
- ▶ A language $\mathcal{H} \subseteq \{0,1\}^*$ is said to be:
 - NP-hard if $\mathcal{L} \leq_p \mathcal{H}$ for every $\mathcal{L} \in \mathbb{NP}$.
 - ▶ NP-complete if \mathcal{H} is NP-hard, and $\mathcal{H} \in \mathbf{NP}$.

Reductions and Complexity

- ▶ If $\mathcal{L} \leq_p \mathcal{H}$, then \mathcal{H} is at least as difficult as \mathcal{L} , at least as far as classes like **P** (or above it) are concerned.
 - ▶ If, e.g., $\mathcal{L} \leq_p \mathcal{H}$ and $\mathcal{H} \in \mathbf{P}$, then also $\mathcal{L} \in \mathbf{P}$: a way to decide if $x \in \mathcal{L}$ consists in traslating it into f(x) (which can be done in polynomial time), then checking whether $f(x) \in \mathcal{H}$.
- ▶ A language $\mathcal{H} \subseteq \{0,1\}^*$ is said to be:
 - ▶ **NP**-hard if $\mathcal{L} \leq_p \mathcal{H}$ for every $\mathcal{L} \in \mathbf{NP}$.
 - ▶ NP-complete if \mathcal{H} is NP-hard, and $\mathcal{H} \in \mathbf{NP}$.

Theorem

- 1. The relation \leq_p is a pre-order (i.e. it is reflexive and transitive).
- 2. If \mathcal{L} is NP-hard and $\mathcal{L} \in \mathbf{P}$, then $\mathbf{P} = \mathbf{NP}$.
- 3. If \mathcal{L} is \mathbf{NP} -complete, then $\mathcal{L} \in \mathbf{P}$ iff $\mathbf{P} = \mathbf{NP}$.

One obvious way of building an **NP**-complete problem is to define it as the problem of *simulating* any Turing machine, more or less the way we have done it while proving the Hierarchy Theorem.

- ▶ One obvious way of building an **NP**-complete problem is to define it as the problem of *simulating* any Turing machine, more or less the way we have done it while proving the Hierarchy Theorem.
- ► Let TMSAT be the following language:

$$\texttt{TMSAT} = \{(\textcolor{red}{\alpha}, \textcolor{red}{x}, \textcolor{red}{1^n}, \textcolor{red}{1^t}) \mid \textcolor{red}{\exists u \in \{0,1\}} . \mathcal{M}_\alpha \text{ outputs } 1 \\ \text{on input } (x,u) \text{ within } t \text{ steps} \}$$

- ▶ One obvious way of building an **NP**-complete problem is to define it as the problem of *simulating* any Turing machine, more or less the way we have done it while proving the Hierarchy Theorem.
- ► Let TMSAT be the following language:

TMSAT =
$$\{(\alpha, x, 1^n, 1^t) \mid \exists u \in \{0, 1\}^*. \mathcal{M}_{\alpha} \text{ outputs } 1$$

on input (x, u) within t steps $\}$

Theorem

TMSAT is **NP**-complete.

- ▶ One obvious way of building an **NP**-complete problem is to define it as the problem of *simulating* any Turing machine, more or less the way we have done it while proving the Hierarchy Theorem.
- ► Let TMSAT be the following language:

$$\texttt{TMSAT} = \{(\alpha, x, 1^n, 1^t) \mid \exists u \in \{0, 1\}^*. \\ \mathcal{M}_{\alpha} \text{ outputs } 1 \\ \text{ on input } (x, u) \text{ within } t \text{ steps} \}$$

Theorem

TMSAT is **NP**-complete.

▶ Although interesting from a purely theoretical perspective, the language TMSAT is very specifically tied to Turing Machines, and thus of no practical importance.

- Formulas of **propositional logic** are either:
 - ▶ Propositional variables, like X, Y, Z, ...;
 - ▶ Built from smaller formulas by way of the connective \land , \lor and \neg .

Formulas are indicated as F, G, H, \ldots ,

- ► Formulas of **propositional logic** are either:
 - ▶ Propositional variables, like X, Y, Z, ...;
 - ▶ Built from smaller formulas by way of the connective \land , \lor and \neg .

Formulas are indicated as F, G, H, \ldots ,

▶ Examples: $X \vee \neg X$, $X \wedge (Y \vee \neg Z)$, etc.

- Formulas of **propositional logic** are either:
 - ▶ Propositional variables, like X, Y, Z, ...;
 - ▶ Built from smaller formulas by way of the connective \land , \lor and \neg .

Formulas are indicated as F, G, H, \ldots ,

- **Examples**: $X \vee \neg X$, $X \wedge (Y \vee \neg Z)$, etc.
- Given a formula F and an assignment ρ of elements from $\{0,1\}$ to the propositional variables in F, one can define the **truth value** for F, indicated as $\llbracket F \rrbracket$, by induction on F:

- Formulas of **propositional logic** are either:
 - ▶ Propositional variables, like X, Y, Z, ...;
 - ▶ Built from smaller formulas by way of the connective \land , \lor and \neg .

Formulas are indicated as F, G, H, \ldots ,

- ► Examples: $X \vee \neg X$, $X \wedge (Y \vee \neg Z)$, etc.
- Given a formula F and an assignment ρ of elements from $\{0,1\}$ to the propositional variables in F, one can define the **truth value** for F, indicated as $\llbracket F \rrbracket$, by induction on F:

► Examples: $[X \lor \neg X] = 1$ for every ρ , while the truth value $[X \land (Y \lor \neg Z)]$ equals 1 only for some of the possible ρ .

- Formulas of **propositional logic** are either:
 - ▶ Propositional variables, like X, Y, Z, ...;
 - ▶ Built from smaller formulas by way of the connective \land , \lor and \neg .

Formulas are indicated as F, G, H, \ldots ,

- ► Examples: $X \vee \neg X$, $X \wedge (Y \vee \neg Z)$, etc.
- Given a formula F and an assignment ρ of elements from $\{0,1\}$ to the propositional variables in F, one can define the **truth value** for F, indicated as $\llbracket F \rrbracket$, by induction on F:

- ► Examples: $[X \lor \neg X] = 1$ for every ρ , while the truth value $[X \land (Y \lor \neg Z)]$ equals 1 only for some of the possible ρ .
- A formula F is **satisfiable** iff there is one ρ such that ||F|| = 1.

The Cook-Levin Theorem

- ▶ A propositional formula *F* is said to be in **conjunctive normal form** (or a **CNF**) when it is a conjunction of disjunctions of *literals* (a literal being a variable or its negation).
- ▶ Examples: $X \vee \neg X$ and $X \wedge (Y \vee \neg Z)$ are both CNFs, while a formula which is *not* a CNF is $X \vee (Y \wedge \neg Z)$.

The Cook-Levin Theorem

- ▶ A propositional formula *F* is said to be in **conjunctive normal form** (or a **CNF**) when it is a conjunction of disjunctions of *literals* (a literal being a variable or its negation).
- ▶ Examples: $X \vee \neg X$ and $X \wedge (Y \vee \neg Z)$ are both CNFs, while a formula which is *not* a CNF is $X \vee (Y \wedge \neg Z)$.
- ▶ The disjunctions in a CNF are said to be **clauses**, and a k**CNF** is a CNF whose clauses contains at most $k \in \mathbb{N}$ literals. Examples: the two formulas $X \vee \neg X$ and $X \wedge (Y \vee \neg Z)$ are 2CNFs, but not 1CNFs.

The Cook-Levin Theorem

- ▶ A propositional formula *F* is said to be in **conjunctive normal form** (or a **CNF**) when it is a conjunction of disjunctions of *literals* (a literal being a variable or its negation).
- ▶ Examples: $X \vee \neg X$ and $X \wedge (Y \vee \neg Z)$ are both CNFs, while a formula which is *not* a CNF is $X \vee (Y \wedge \neg Z)$.
- ▶ The disjunctions in a CNF are said to be **clauses**, and a k**CNF** is a CNF whose clauses contains at most $k \in \mathbb{N}$ literals. Examples: the two formulas $X \vee \neg X$ and $X \wedge (Y \vee \neg Z)$ are 2CNFs, but not 1CNFs.

Theorem (Cook-Levin)

The following two languages are NP-complete:

$$\begin{array}{l} \mathtt{SAT} = \{ \bot F \ | \ F \ is \ a \ satisfiable \ CNF \} \\ \\ \mathtt{3SAT} = \{ \bot F \ | \ F \ is \ a \ satisfiable \ 3CNF \} \end{array}$$

Thank You!

Questions?