COMPUTER SYSTEMS AND ORGANIZATION Part 1

Khyati Kiyawat

Daniel G. Graham PhD

September 11, 2023

ENGINEERING

REVIEW

- ✓ What are logic gates?
- ✓ How to make circuits like Multiplexers, Adders?
- ✓ How to represent numbers in different formats?
- ✓ How to store data in registers?

Binary: 0110 Hex:0xAF23

CLOCKS EDGES

Rising Edge (Also called positive edge)

THE FLIP FLOP HOLD HOLDS THE VALUE FOR A CLOCK CYCLE

BUILDING A REGISTER FROM FLIP FLOPS

Removed Q (bar) for reability

3-BIT COUNTER

Let's put it all together and build a 3-bit counter

Circuit that counts from

000,

001,

010,

011,

100,

101,

110,

111

TODAY'S LECTURE

- 1. How do we use registers as building block to design a computer?
- 2. What is a register file and how to implement it?
- 3. Other memory components

THE MAP (THE MACHINE)

https://github.com/MKrekker/SINGLE-CYCLE-RISC-V

MEMORY COMPONENTS OF A PROCESSOR

PROGRAM COUNTER

To track where we are in a program

REGISTER FILE

- Temporary storage location
- Stores immediately needed variables

LET'S BUILD A REGISTER FILE OF FOUR REGISTERS

READ FROM A REGISTER FILE

READ FROM A REGISTER FILE

We want to write to a particular register.

Do you see a problem with this circuit?

Additional input signals:

- 1. Write enable
- 2. Address of the register to be written (A3)

Are we missing a component?

DEMULTIPLEXER (DEMUX)

Example: 1:2 Demux

S	Υ0	Y1
0	D	0
1	0	D

- Connects one input to one of the N outputs
- **Select** input is log_2N bits control input

HIGH-ORDER DEMULTIPLEXER

S	Y0	Y1	Y2	Y3
00	D	0	0	0
01	0	D	0	0
10	0	0	D	0
11	0	0	0	D

Can you implement higher-order demuxes like 1:8, 1:16, 1:64 using lower-order demuxes?

TIMING DIAGRAM

32 32-BIT REGISTER FILE

Simultaneously read from two registers and write into one register

Components:

- 1. Multiplexers
- 2. Registers
- 3. Demultiplexers

INSTRUCTION MEMORY

- Stores the program
- > Read data (RD) for a given address (A)

For this class, we will assume we cannot write to Instruction Memory.

DATA MEMORY

- Contains data needed by the program
- > Read data (RD) from a given address (A)
- Write data (WD) to a given address (A)

IS THIS IT?

- Are the RAMs in your laptop just made of flipflops?
- Are your hard disks in your computer systems just made of flipflops?
- Do you have other memory components in your computer?

MEMORY HIERARCHY

Memory Hierarchy Design

Figure from: https://www.geeksforgeeks.org/memory-hierarchy-design-and-its-characteristics/

EXERCISE

What should be the input signals to

- write 0xABCD to Register #8?
- 2. read from Register #31 and Register #16?

Register counting starts from 0

QUESTIONS?

