Finding All Eigenvalues

- Directly from the Characteristic Equation: How to efficiently obtain the Characteristic Polynomial – Faddeev-Le Verrier
- Using similarity transformation: Reduce to diagonal or triangular form – QR decomposition
- The characteristic equation, $det (A-\lambda I)=0$, may be written as

$$(-1)^{n} \left(\lambda^{n} - a_{n-1} \lambda^{n-1} - a_{n-2} \lambda^{n-2} - \dots - a_{1} \lambda - a_{0} \right) = 0$$

- It may be seen that $a_{n-1} = \sum a_{ii}$, i.e., trace(A)
- and $a_0 = (-1)^{n+1} \det(A)^{i=1,...,n}$

Finding All Eigenvalues

- Fedeev-Leverrier came up with an algorithm for obtaining all the coefficients of the polynomial.
- Set $A_{n-1}=A$ and, as seen, $a_{n-1}=trace(A_{n-1})$
- For i=n-2, n-3, ..., 1, 0:

$$A_i = A(A_{i+1} - a_{i+1} I); a_i = trace(A_i)/(n-i)$$

- Solve using any of the methods discussed earlier to get all the eigenvalues.
- Another side-benefit is that we get the inverse of A as $A^{-1} = [A_1 a_1 I]/a_0$

Faddeev-Le Verrier method: Example

• $A_i = A(A_{i+1} - a_{i+1} I);$ $a_i = trace(A_i)/(n-i)$ $A^{-1} = [A_1 - a_1 I]/a_0$ • Example: $A = \begin{bmatrix} 3 & 4 & 1 \\ 3 & 5 & 1 \\ 2 & 2 & 1 \end{bmatrix}$ $A_2 = \begin{bmatrix} 3 & 4 & 1 \\ 3 & 5 & 1 \\ 2 & 2 & 1 \end{bmatrix}$ $a_2 = 9;$

$$A_{1} = \begin{bmatrix} -4 & -2 & -1 \\ -1 & -6 & 0 \\ -4 & 2 & -4 \end{bmatrix} \quad a_{1} = -7; \quad A_{0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad a_{0} = 1$$

Characteristic polynomial is

(-1) (λ^3 - 9 λ^2 +7 λ -1); Roots: 8.16, 0.66, 0.19

• Inverse is $\begin{vmatrix} 3 & -2 & -1 \\ -1 & 1 & 0 \\ 4 & 2 & 3 \end{vmatrix}$

Finding All Eigenvalues: Similarity Transform

- If A=S⁻¹BS, the eigenvalues of B will be same as those of A
- $S^{-1}BS x = \lambda x => By = \lambda y$, where $y=Sx => det (B-\lambda I)=0$
- A and B are said to be similar
 (Note: Eigenvectors are NOT same -> x for A and Sx for B)
- If we could perform the similarity transformation in such a way that B is diagonal or triangular, the diagonal elements will give us the eigenvalues!

- One of the methods is the QR method, in which Q is an **orthogonal matrix** and R is upper triangular. Since Q is orthogonal, its inverse is equal to its transpose.
- An iterative method is followed to achieve the transformation. Assumption: A has *n* linearly independent eigenvectors.
- Orthogonal matrix is generated by using the *Gram-Schmidt orthogonalization* technique

Orthogonalization: Gram-Schmidt Method

- If there are n linearly independent vectors, say,
 x_i, we can generate a set of n orthonormal vectors, say, y_i.
- Take the first orthogonal unit vector, y_1 , in the direction of any one of these, say, x_1 .
- To generate the second unit vector, y_2 , which is orthogonal to y_1 , project x_2 on y_1 and take

$$y_2 = \frac{x_2 - (x_2^T y_1)y_1}{\|x_2 - (x_2^T y_1)y_1\|}$$

Take
$$x_1 = \begin{cases} 3 \\ 1 \end{cases}$$
; $x_2 = \begin{cases} 1 \\ 3 \end{cases}$

$$y_1 = \frac{1}{\sqrt{10}} \begin{cases} 3 \\ 1 \end{cases}$$

$$x_2^T y_1 = \frac{6}{\sqrt{10}}$$

$$x_2 - (x_2^T y_1)y_1 = \begin{cases} -4/5 \\ 12/5 \end{cases}$$

$$y_2 = \frac{1}{\sqrt{10}} \begin{Bmatrix} -1 \\ 3 \end{Bmatrix}$$

$$y_2 = \frac{x_2 - (x_2^T y_1)y_1}{\|x_2 - (x_2^T y_1)y_1\|}$$

Orthogonalization: Gram-Schmidt Method

It is easy to show that y₂ is orthogonal to y₁:

$$(x_2 - (x_2^T y_1)y_1)^T y_1 = x_2^T y_1 - (x_2^T y_1)y_1^T y_1 = 0$$

- Similar philosophy is used to generate the other vectors of the orthogonal set.
- The orthogonality may be proved by showing that if the y_i are orthogonal up to i=k, y_{k+1} is orthogonal to all y_i from i=1 to k. And we have already shown it to be true for k=2 (in fact, k=1 will work!)

Orthogonalization: Gram-Schmidt Method

• To generate the third unit vector, y_3 , which is orthogonal to both y_1 and y_2 ,

$$y_3 = \frac{x_3 - (x_3^T y_1)y_1 - (x_3^T y_2)y_2}{\|x_3 - (x_3^T y_1)y_1 - (x_3^T y_2)y_2\|}$$

The general equation is

$$y_{k+1} = \frac{\sum_{i=1}^{k} (x_{k+1}^T y_i) y_i}{\left\| x_{k+1} - \sum_{i=1}^{k} (x_{k+1}^T y_i) y_i \right\|}$$

- We generate an orthogonal matrix Q
- We know that if A=S⁻¹BS, the eigenvalues of B will be same as those of A
- Also, if Q is orthogonal, its transpose is its inverse
- If A=Q^TBQ for some Q and B, and if B is diagonal or triangular, we get the eigenvalues
- For example, since a symmetric matrix has orthogonal eigenvectors, we could construct Q by using the eigenvectors as its columns

$$Q = [\{x_1\} \ \{x_2\} \ . \ . \ \{x_n\}]$$

$$AQ = [\lambda_1 \{x_1\} \ \lambda_2 \{x_2\} \ . \ . \ \lambda_n \{x_n\}] = QD$$

where D is a diagonal matrix with eigenvalues on the diagonal

Consequently, A=QDQ^T

Since we don't know the eigenvectors, how to construct Q to obtain the triangular form of B? (It is easier to achieve a triangular B than a diagonal B!)

- An iterative technique is used
- The iterative sequence is written as:
 - $A_0 = A$
 - For k=0,1,2,....till convergence
 - $A_k = Q_k R_k$: Perform a QR decomposition of A
 - $A_{k+1} = Q_k^T A_k Q_k = R_k Q_k$

- The QR decomposition of A is obtained by using the Gram-Schmidt orthogonalization with columns of A as the x vectors. $A=QR=>R=Q^TA$. When would R be upper triangular?
 - \geq 2nd col of Q is orthogonal to 1st col of A: $r_{21}=0$
 - > 3rd col of Q is orthogonal to 1st and 2nd columns of A: $r_{31}=r_{32}=0$. And so on.
- If we take the first col of Q as a unit vector along the first column vector of A, Q will be orthogonal
 - Take the first column of Q as a unit vector in the same direction as the first column of A: $\{q\}_1 = \{a\}_1 / |\{a\}_1|$
 - ➤ Follow the orthogonalization procedure described earlier, using subsequent columns of A

QR method: Example

•
$$A_k = Q_k R_k$$
; $R_k = Q_k^T A_k$; $A_{k+1} = R_k Q_k$

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}; Q = \begin{bmatrix} 0.81650 & -0.49237 & -0.30151 \\ 0.40825 & 0.86164 & -0.30151 \\ 0.40825 & 0.12309 & 0.90453 \end{bmatrix}; R = \begin{bmatrix} 2.44949 & 2.04124 & 2.04124 \\ 0 & 1.35401 & 0.61546 \\ 0 & 0 & 1.20605 \end{bmatrix}$$

$$A = RQ = \begin{bmatrix} 3.6667 & 0.8040 & 0.4924 \\ 0.8040 & 1.2424 & 0.1485 \\ 0.4924 & 0.1485 & 1.0909 \end{bmatrix}; Q = \begin{bmatrix} 0.9685 & -0.2155 & -0.1249 \\ 0.2124 & 0.9765 & -0.0377 \\ 0.1301 & 0.0099 & 0.9915 \end{bmatrix}; R = \begin{bmatrix} 3.7859 & 1.0619 & 0.6503 \\ 0 & 1.0414 & 0.0497 \\ 0 & 0 & 1.0145 \end{bmatrix}$$

$$A = RQ = \begin{bmatrix} 3.977 & 0.2276 & 0.1319 \\ 0.2276 & 1.0174 & 0.0101 \\ 0.1319 & 0.0101 & 1.0058 \end{bmatrix}$$

After 3 iterations A is nearly diagonal

Q	0.9999	-0.0143	-0.0083
	0.0143	0.9999	-0.0002
	0.0083	0.0000	1.0000
R	3.9991	0.0717	0.0414
	0.0000	1.0002	0.0002
	0.0000	0.0000	1.0001
A	3.9999	0.0144	0.0083
	0.0144	1.0001	0.0000
	0.0083	0.0000	1.0000

• Eigenvalues of 4,1, and 1

Finding Eigenvectors

• Once the eigenvalues are obtained, use

$$[A-\lambda I]\{x\}=\{0\}$$

to solve for $\{x\}$

- Note that a unique solution does not exist
- It will only give the direction of the vector
- Example: $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ Eigenvalues: 2 and 4
 - > For 2, $x_1+x_2=0 =>$ Eigenvector is $\{1,-1\}^T$
 - > For 4, $-x_1+x_2=0 =>$ Eigenvector is $\{1,1\}^T$