Lecture 16

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 16 Class Lecture 25 – Thursday 4/18/2013

- Bioreactors
 - Monod Equation
 - Yield Coefficients
 - Washout

Review Last Lecture

Enzymes - Urease

A given enzyme can only catalyze only one reaction. Urea is decomposed by the enzyme urease, as shown below.

$$NH_2CONH_2 + UREASE \xrightarrow{H_2O} 2NH_3 + CO_2 + UREASE$$

 $S+E \xrightarrow{H_2O} P+E$

The corresponding mechanism is:

$$E+S \xrightarrow{k_1} E \bullet S$$

$$E \bullet S \xrightarrow{k_2} E+S$$

$$E \bullet S + W \xrightarrow{k_3} P+E$$

Michaelis Menten Equation

$$r_P = -r_S = \frac{V_{\text{max}}S}{K_M + S}$$

$$r_P = -r_S = \frac{V_{\text{max}}S}{K_M + S}$$

$$r_g = \mu_{\text{max}} \frac{C_C C_S}{K_S + C_S}$$

Figure 7-15 (a) Schematic of cell (b) Photo of cell dividing *E. coli*. Courtesy of D. L. Nelson and M. M. Cox, *Lehninger Principles of Biochemistry*, 3rd ed. (New York: Worth Publishers, 2000).

Batch Bioreactor

[Cells] +
$$\begin{bmatrix} Carbon \\ source \end{bmatrix}$$
 + $\begin{bmatrix} Nitrogen \\ source \end{bmatrix}$ + $\begin{bmatrix} Oxygen \\ source \end{bmatrix}$ + $\begin{bmatrix} Phosphate \\ source \end{bmatrix}$ + ... - $\begin{bmatrix} Colture media \\ conditions \end{bmatrix}$ (pH, temperature, etc.)

Phases of Cell Growth and Division

t=0 time \rightarrow

Cells + Substrate → More Cells + Product

- a) Phases of bacteria growth:
 - I. Lag II. Exponential III. Stationary IV. Death
- b) Monod growth rate law: $r_g = \mu_{\text{max}} \frac{C_C C_S}{K_S + C_S}$

1) Mass Balances

Accumulation = [In] - [Out] + [Growth] - [Death]
$$V \frac{dC_C}{dt} = v_0 C_{C0} - v_0 C_C + V r_g - V r_d$$
 Let $D = v_0 / V$

(1)
$$\frac{dC_C}{dt} = D(C_{C0} - C_C) + r_g - r_d$$

(1)
$$\frac{dC_C}{dt} = D(C_{C0} - C_C) + r_g - r_d$$

(2)
$$\frac{dC_S}{dt} = D(C_{S0} - C_S) + r_S$$

Rate Laws:

(3)
$$r_g = k_{OBS} \left(\frac{\mu_{\text{max}} C_S}{K_S + C_S} \right) C_C$$

$$(4) \quad k_{OBS} = \left(1 - \frac{C_P}{C_P^*}\right)^n$$

C_p*= Product concentration at which all metabolism ceases

3) Stoichiometry

A) Yield Coefficients

$$Y'_{C/S} = \frac{mass \ of \ new \ cells \ formed}{mass \ of \ substrate \ to \ produce \ new \ cells}$$
 $Y'_{S/C} = \frac{1}{Y'_{C/S}}$

$$Y'_{P/S} = \frac{mass \ of \ product \ formed}{mass \ of \ substrate \ consumed \ to \ form \ product}$$

B) Maintenance

(5)
$$m = \frac{mass \ of \ substrate \ consumed \ for \ maintainence}{mass \ of \ cells \cdot time}$$

$$-r_{S} = r_{g}Y_{S/C} + r_{P}Y_{S/P} + mC_{C}$$

3) Stoichiometry

Rate of Substrate Consumption

$$-r_{S} = r_{g}Y'_{S/C} + r_{P}Y'_{S/P} + mC_{C}$$

Can't separate substrate consumption used for cell growth from that used for product formations during exponenial growth.

$$-r_{S} = r_{g}Y'_{S/C} + mC_{C}$$

$$Y'_{S/C} = \frac{\text{(grams of substrate consumed)}}{\text{(grams of cells produced)}}$$

Volume=V

1) Mass Balance:

$$V\frac{dC_C}{dt} = 0 - v_0 C_C + (r_g - r_d)V$$
 (cells)

$$V \frac{dC_C}{dt} = 0 - v_0 C_C + (r_g - r_d) V \qquad \text{(cells)}$$

$$V \frac{dC_S}{dt} = v_0 C_{S0} - v_0 C_S + r_S V \qquad \text{(substrate)}$$

$$D = \frac{1}{\tau} = \frac{v_0}{V} \qquad \text{(dilution rate)}$$

$$(1) \frac{dC_C}{dt} = -DC_C + (r_g - r_d)$$

$$(2) \frac{dC_S}{dt} = D(C_{S0} - C_S) + r_S$$

(3) $\frac{dC_P}{dt} = DC_P - r_P$ (product)

2) Rate Laws:

$$(4) r_g = \frac{\mu_{\text{max}} C_S}{k_S + C_S} C_C K_{OBS}$$

$$(5) \quad K_{OBS} = \left(1 - \frac{C_P}{C_P^*}\right)^n$$

$$(6) r_P = Y_{P/C} r_g$$

$$(7) \quad r_S = -Y_{S/C}r_g - mC_C$$

(8)
$$r_D = k_D C_C$$

3) Parameters

$$\mu_{\text{max}}, C_P^*, n, k_S, k_D, y_{S/C}, y_{P/C}, m, D, C_{S0}$$

$$\dot{m} = v_0 C_C, \dot{m}_p = v_0 C_P, v_0 = DV, V$$

Polymath Setup

1.)
$$d(C_C)/d(t) = -D*C_C + (r_g - r_d)$$

2.)
$$d(C_S)/d(t) = -D*(C_{S0}-C_S)-Y_{sg}*r_g-m*C_C$$

3.)
$$d(C_P)/d(t) = -D*C_P + Y_{PC}*r_g$$

4.)
$$rg = (((1-(C_P/C_{pstar}))**0.52)*mumax*(C_S/(K_S+C_S))*C_C$$

$$6.) k_d = 0.01$$

7.)
$$r_d = k_d * C_C$$

8.)
$$C_{s0} = 250$$

$$9.)Y_{PC} = 5.6$$

10.)
$$m=0.3$$

11.)
$$mumax = 0.33$$

$$12.)Y_{SC}=12.5$$

13.)
$$K_S = 1.7$$

Bioreactors - Chemostats - CSTRs

1. Steady State - Neglect Death Rate and Cell Maintenance

$$0 = -DVC_C + r_gV$$

$$DC_C = r_g = \frac{\mu_{\text{max}}C_S}{K_S + C_S}C_C = \mu C_C$$

$$D = \mu = \frac{\mu_{\text{max}} C_S}{K_S + C_S}$$
$$C_S = \frac{DK_S}{\mu_{\text{max}} - D}$$

Bioreactors - Chemostats - CSTRs

3. Substrate
$$0 = D[C_{S0} - C_S]V + r_S V$$

$$D[C_{S0} - C_S] = -r_S = Y_{S/C}r_g = Y_{S/C}DC_C$$

$$C_{C} = Y_{C/S} [C_{S0} - C_{S}] = Y_{C/S} [C_{S0} - \frac{DK_{S}}{\mu_{\text{max}} - D}]$$

Bioreactors - Chemostats - CSTRs

CSTR Washout

$$C_C = 0$$

$$\frac{\dot{m}_c}{V} = \frac{v_0 C_C}{V} = DC_C$$

$$DC_{C} = DY_{C/S} \left[C_{S0} - \frac{DK_{S}}{\mu_{\text{max}} - D} \right]$$

$$D_W = \frac{\mu_{\text{max}} C_{S0}}{K_S + C_{S0}}$$

Maximum Product Flow Rate

End of Web Lecture 16 End of Class Lecture 25