χ² test kvality fitu

χ² test kvality fitu

sada naměřených hodnot

$$x = (x_1, x_2, ..., x_n)$$

(nezávislé proměnné)

$$\mathbf{y} = (y_1, y_2, \dots, y_n)$$

(závislé proměnné) $y_i \in N(\mu_i, \sigma_i)$

modelová funkce

$$\lambda(x|\boldsymbol{\theta})$$

(modelujeme závislost y(x))

$$\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_m)$$

(parametry modelové závislosti)

• náhodná proměnná χ^2

$$\chi^{2}(\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{\sigma},\boldsymbol{x}) = \sum_{i=1}^{n} \frac{\left(y_{i} - \lambda(x_{i}|\boldsymbol{\theta})\right)^{2}}{\sigma_{i}^{2}}$$

testovací statistika

$$\chi^2 \in f_{\chi^2}(\nu)$$

 χ^2 rozdělení o $\nu=n-m$ stupních volnosti

χ² rozdělení

hustota pravděpodobnosti

$$f(y|\nu) = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}y^{\frac{\nu}{2}-1}e^{-\frac{y}{2}} \qquad y \in [0, \infty) \quad \nu = 1, 2, \dots$$

počet stupňů volnosti ν

gama funkce
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

χ² rozdělení

$$z_{i} \in N(0,1)$$

$$y = \sum_{i=1}^{\nu} z_{i} \to y \in f(\nu) \text{ resp. } \chi^{2}(\nu)$$

$$x_{i} \in N(\mu_{i}, \sigma_{i})$$

$$y = \sum_{i=1}^{\nu} \frac{(x_{i} - \mu_{i})^{2}}{\sigma_{i}^{2}} \to y \in f(\nu) \text{ resp. } \chi^{2}(\nu)$$

• momenty χ^2 rozdělení

$$E[y] = v$$

$$V[y] = 2v$$

χ^2 test kvality fitu

•
$$\chi^2$$
 rozdělení $f(y|n-m) = \frac{1}{2^{\frac{n-m}{2}}\Gamma(\frac{n-m}{2})} y^{\frac{n-m}{2}-1} e^{-\frac{y}{2}}$ $P[y \ge \chi_0^2] = \int_{\chi_0^2}^{\infty} f(y|n-m) dy$

$$P[y \ge \chi_0^2] = \int_{\chi_0^2}^{\infty} f(y|n-m) dy$$

počet stupňů volnosti v = n - m

$$E[\chi^2] = n - m$$
$$V[\chi^2] = 2(n - m)$$

 χ^2 na počet stupňů volnosti $\chi^2/(n-m)$

$$E[\chi^2/(n-m)] = 1$$

$$V[\chi^2/(n-m)] = 2/(n-m)$$

- naměřené hodnoty $y_i \in N(\mu_i, \sigma_i)$ jsou navzájem nezávislé nulová hypotéza H₀ a modelová funkce $\lambda(x, \theta)$ správně vystihuje závislost y(x)
- pokud je pravděpodobnost $P[y \ge \chi_0^2] < \alpha$, potom zamítneme nulovou hypotézu
- α hladina signifikance (typicky 0.05 nebo 0.01)

χ² test kvality fitu

• tabulka hodnot $P[y \ge \chi_0^2]$ pro počet stupňů volnosti $\nu = 1 - 10$

Počet stupňů volnosti v	χ_0^2										
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
$P[y \ge \chi_0^2]$	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001

Pro počet stupňů volnosti $\nu > 10$ rozdělení $\chi^2(\nu)$ konverguje k normálnímu rozdělení $N(\nu, \sqrt{2\nu})$.

χ² test kvality fitu – polynom

•
$$m = 2 (\nu = 8)$$
 • $m = 3 (\nu = 7)$

•
$$\chi^2 = 40.916$$

•
$$\chi^2/\nu = 5.114$$

$$m = 3 \ (v = 7)$$

•
$$\chi^2 = 40.916$$
 • $\chi^2 = 31.362$

•
$$\chi^2/\nu = 5.114$$
 • $\chi^2/\nu = 4.480$

•
$$m = 4 (v = 6)$$

•
$$\chi^2 = 7.174$$

•
$$\chi^2/\nu = 1.196$$

•
$$0.3 < P < 0.5$$

•
$$m = 5 (v = 5)$$

•
$$\chi^2 = 6.939$$

•
$$\chi^2/\nu = 1.388$$

•
$$0.2 < P < 0.3$$

χ² test kvality fitu – polynom

•
$$m = 2 (v = 8)$$

•
$$\chi^2 = 40.916$$

•
$$\chi^2/\nu = 5.114$$

•
$$m = 3 \ (v = 7)$$

•
$$\chi^2 = 31.362$$

•
$$\chi^2/\nu = 4.480$$

•
$$m = 4 (v = 6)$$

•
$$\chi^2 = 7.174$$

•
$$\chi^2/\nu = 1.196$$

•
$$0.3 < P < 0.5$$

•
$$m = 5 (v = 5)$$

•
$$\chi^2 = 6.939$$

•
$$\chi^2/\nu = 1.388$$

•
$$0.2 < P < 0.3$$

•
$$m = 6 (v = 4)$$

•
$$\chi^2 = 5.756$$

•
$$\chi^2/\nu = 1.439$$

•
$$0.2 < P < 0.3$$

•
$$m = 8 (v = 2)$$

•
$$\chi^2 = 1.616$$

•
$$\chi^2/\nu = 0.808$$

•
$$0.3 < P < 0.5$$

•
$$m = 7 (v = 3)$$

•
$$\chi^2 = 5.230$$

•
$$\chi^2/\nu = 1.743$$

•
$$0.1 < P < 0.2$$

•
$$m = 9 (v = 1)$$

•
$$\chi^2 = 0.545$$

•
$$\chi^2/\nu = 0.545$$

•
$$0.3 < P < 0.5$$