MC358 - Fundamentos matemáticos da computação

Prof. Dr. Hilder Vitor Lima Pereira

02 de agosto de 2023

- 1 Conectivos e proposições
- 2 Tabela verdade

- 3 Equivalência lógica
- 4 Formas normais e conectivos universais
- 5 Perguntas, observações, comentários?

Conectivos e proposições

Proposição

Proposições: afirmações que podem ser verdadeiras ou falsas

- Pelé marcou mais de mil gols em partidas oficiais
- A Unicamp tem 34,655 alunos matriculados
- Aniara é o título de um filme e Aniara é o título de um poema

Proposição

Proposições: afirmações que podem ser verdadeiras ou falsas

- Pelé marcou mais de mil gols em partidas oficiais
- A Unicamp tem 34,655 alunos matriculados
- Aniara é o título de um filme e Aniara é o título de um poema

Na última proposição, é possível identificar subproposições, chamadas de *proposições atômicas*.

2 | 15

Conectivos

São operadores usados para conectar proposições. Alguns exemplos:

- \blacksquare conjunção: $a \land b$ ($a \in b$)
- disjunção: $a \lor b$ (a ou b)
- negação: ¬a (não a)

Conectivos

São operadores usados para conectar proposições. Alguns exemplos:

- \blacksquare conjunção: $a \land b$ ($a \in b$)
- disjunção: $a \lor b$ (a ou b)
- negação: ¬a (não a)
- lacksquare condicional: $a \to b$ (a implica b, ou "se a, então b")
- bicondicional: $a \leftrightarrow b$ (a se, e somente se b)

Tabela verdade

É uma forma de representar e analisar uma proposição... As primeiras colunas correspondem às proposições atômicas e as demais às proposições compostas.

р	q	$p \wedge q$
F	F	F
F	V	F
V	F	F
V	V	V

É uma forma de representar e analisar uma proposição... As primeiras colunas correspondem às proposições atômicas e as demais às proposições compostas.

р	q	$p \wedge q$
F	F	F
F	V	F
V	F	F
V	V	V

Exemplos na lousa: $p \lor q$, $p \to q$, $(p \land q) \lor \neg r$

Proposições triviais

Tautologia

- sempre verdadeira
- última coluna da tabela verdade só tem V
- e.g., $p \lor \neg p$

Contradição

- sempre falsa
- última coluna da tabela verdade só tem F
- \blacksquare e.g., $p \land \neg p$

Verificação de sono...

Acessem slido.com e usem o código 2514023 para acessar o quiz...

Equivalência lógica

Ī	Ī	

Dizemos que $P(x_1,...,x_n)$ e $Q(x_1,...,x_n)$ são equivalentes se $P(x_1,...,x_n) = Q(x_1,...,x_n)$ para qualquer atribuição de valores.

Escrevemos $P(x_1,...,x_n) \Leftrightarrow Q(x_1,...,x_n)$.

Dizemos que $P(x_1,...,x_n)$ e $Q(x_1,...,x_n)$ são equivalentes se $P(x_1,...,x_n) = Q(x_1,...,x_n)$ para qualquer atribuição de valores.

Escrevemos $P(x_1,...,x_n) \Leftrightarrow Q(x_1,...,x_n)$.

■ Exemplo: Contrapositiva:

$$(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p)$$

Dizemos que $P(x_1,...,x_n)$ e $Q(x_1,...,x_n)$ são equivalentes se $P(x_1,...,x_n) = Q(x_1,...,x_n)$ para qualquer atribuição de valores.

Escrevemos $P(x_1,...,x_n) \Leftrightarrow Q(x_1,...,x_n)$.

■ Exemplo: Contrapositiva:

$$(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p)$$

■ Exemplo de fórmulas <u>não</u> equivalentes:

Dizemos que $P(x_1,...,x_n)$ e $Q(x_1,...,x_n)$ são equivalentes se $P(x_1,...,x_n) = Q(x_1,...,x_n)$ para qualquer atribuição de valores.

Escrevemos $P(x_1,...,x_n) \Leftrightarrow Q(x_1,...,x_n)$.

■ Exemplo: Contrapositiva:

$$(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p)$$

- Exemplo de fórmulas <u>não</u> equivalentes:
 - Recíproca

$$(p \rightarrow q) \not \Rightarrow (q \rightarrow p)$$

Dizemos que $P(x_1,...,x_n)$ e $Q(x_1,...,x_n)$ são equivalentes se $P(x_1,...,x_n) = Q(x_1,...,x_n)$ para qualquer atribuição de valores.

Escrevemos $P(x_1,...,x_n) \Leftrightarrow Q(x_1,...,x_n)$.

■ Exemplo: Contrapositiva:

$$(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p)$$

- Exemplo de fórmulas não equivalentes:
 - ► Recíproca

$$(p \rightarrow q) \not \Rightarrow (q \rightarrow p)$$

Inversa

$$(p \rightarrow q) \not \Rightarrow (\neg p \rightarrow \neg q)$$

1. Elemento identidade: $(p \land V) \Leftrightarrow (p \lor F) \Leftrightarrow p$

- 1. Elemento identidade: $(p \land V) \Leftrightarrow (p \lor F) \Leftrightarrow p$
- 2. Dupla negação: $\neg(\neg p) \Leftrightarrow p$

- 1. Elemento identidade: $(p \land V) \Leftrightarrow (p \lor F) \Leftrightarrow p$
- 2. Dupla negação: $\neg(\neg p) \Leftrightarrow p$
- 3. Idempotência: $(p \land p) \Leftrightarrow (p \lor p) \Leftrightarrow p$

- 1. Elemento identidade: $(p \land V) \Leftrightarrow (p \lor F) \Leftrightarrow p$
- 2. Dupla negação: $\neg(\neg p) \Leftrightarrow p$
- 3. Idempotência: $(p \land p) \Leftrightarrow (p \lor p) \Leftrightarrow p$
- 4. Leis de dominação: $(p \lor V) \Leftrightarrow V \in (p \land F) \Leftrightarrow F$

ŏ

- 1. Elemento identidade: $(p \land V) \Leftrightarrow (p \lor F) \Leftrightarrow p$
- 2. Dupla negação: $\neg(\neg p) \Leftrightarrow p$
- 3. Idempotência: $(p \land p) \Leftrightarrow (p \lor p) \Leftrightarrow p$
- 4. Leis de dominação: $(p \lor V) \Leftrightarrow V \in (p \land F) \Leftrightarrow F$
- 5. Comutatividade: $(p \land q) \Leftrightarrow (q \land p) \in (p \lor q) \Leftrightarrow (q \lor p)$

- 1. Elemento identidade: $(p \land V) \Leftrightarrow (p \lor F) \Leftrightarrow p$
- 2. Dupla negação: $\neg(\neg p) \Leftrightarrow p$
- 3. Idempotência: $(p \land p) \Leftrightarrow (p \lor p) \Leftrightarrow p$
- 4. Leis de dominação: $(p \lor V) \Leftrightarrow V \in (p \land F) \Leftrightarrow F$
- 5. Comutatividade: $(p \land q) \Leftrightarrow (q \land p)$ e $(p \lor q) \Leftrightarrow (q \lor p)$
- 6. Associatividade: $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$, etc

- 1. Elemento identidade: $(p \land V) \Leftrightarrow (p \lor F) \Leftrightarrow p$
- 2. Dupla negação: $\neg(\neg p) \Leftrightarrow p$
- 3. Idempotência: $(p \land p) \Leftrightarrow (p \lor p) \Leftrightarrow p$
- 4. Leis de dominação: $(p \lor V) \Leftrightarrow V \in (p \land F) \Leftrightarrow F$
- 5. Comutatividade: $(p \land q) \Leftrightarrow (q \land p)$ e $(p \lor q) \Leftrightarrow (q \lor p)$
- 6. Associatividade: $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$, etc
- 7. Distributividade:

$$(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r)) \in (p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$$

- 1. Elemento identidade: $(p \land V) \Leftrightarrow (p \lor F) \Leftrightarrow p$
- 2. Dupla negação: $\neg(\neg p) \Leftrightarrow p$
- 3. Idempotência: $(p \land p) \Leftrightarrow (p \lor p) \Leftrightarrow p$
- 4. Leis de dominação: $(p \lor V) \Leftrightarrow V \in (p \land F) \Leftrightarrow F$
- 5. Comutatividade: $(p \land q) \Leftrightarrow (q \land p) \in (p \lor q) \Leftrightarrow (q \lor p)$
- 6. Associatividade: $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$, etc
- 7. Distributividade:

$$(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r)) \ \ \mathsf{e} \ \ (p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$$

8. De Morgan:

$$\neg(p \land q) \Leftrightarrow (\neg p \lor \neg q) \ \ \mathbf{e} \ \ \neg(p \lor q) \Leftrightarrow (\neg p \land \neg q)$$

ŏ

ormas normais e conectivos universais

Como obter um circuito que implementa uma função?

Uma empresa tem um modelo valioso (uma função) e você quer "conhecer" o modelo...

Você envia uma entrada m e recebe f(m).

Como obter uma implementação de f?

Problema: dada a tabela verdade, como obter uma fórmula?

Desafio: escreva f em função de p e q

р	q	f
F	F	V
F	V	F
V	F	V
V	V	F

Forma normal disjuntiva (FND)

Considere f como uma função das variáveis $x_1, ..., x_n$.

Digamos que há m linhas terminando com V.

Para $1 \le i \le m$, considere a linha $L_i = (c_1, ..., c_n, V)$ onde $c_i \in \{V, F\}$.

Construa a proposição $p_i=(y_1\wedge y_2\wedge...\wedge y_n)$ onde $y_j=x_j$ se $c_i=V$ e $y_j=\neg x_j$ se $c_i=F$.

Finalmente,

$$f = p_1 \vee p_2 \vee ... \vee p_m$$

Mas se a tabela tiver muito mais linhas terminando com V do que terminando com F?

р	q	r	f
F	F	F	V
F	F	V	V
F	V	F	V
F	V	V	F
V	F	F	F
V	F	V	V
V	V	F	V
V	V	V	V

Mas se a tabela tiver muito mais linhas terminando com V do que terminando com F?

р	q	r	f	$\neg f$
F	F	F	V	F
F	F	V	V	F
F	V	F	V	F
F	V	V	F	V
V	F	F	F	V
V	F	V	V	F
V	V	F	V	F
V	V	V	V	F

Mas se a tabela tiver muito mais linhas terminando com V do que terminando com F?

р	q	r	f	$\neg f$
F	F	F	V	F
F	F	V	V	F
F	V	F	V	F
F	V	V	F	V
V	F	F	F	V
V	F	V	V	F
V	V	F	V	F
V	V	V	V	F

Construímos FND para $\neg f$ e negamos para obter $\neg(\neg f) = f$. O resultado se chama forma normal conjuntiva.

Forma normal conjuntiva

- Construída negando variáveis das linhas terminadas em F.
- Conecta proposições usando conjunção (∧) em vez de disjunção (∨).
- Ou seja,

$$f = p_1 \wedge p_2 \wedge ... \wedge p_m$$

em vez de

$$f = p_1 \vee p_2 \vee ... \vee p_m$$

Forma normal conjuntiva

- Construída negando variáveis das linhas terminadas em F.
- Conecta proposições usando conjunção (∧) em vez de disjunção (∨).
- Ou seja,

$$f = p_1 \wedge p_2 \wedge ... \wedge p_m$$

em vez de

$$f = p_1 \vee p_2 \vee ... \vee p_m$$

- Além disso, cada p_i usa ∨ em vez de ∧.
- Por exemplo:

$$(x_1 \vee \neg x_5) \wedge (x_1 \vee x_2 \vee x_4) \wedge (\neg x_2 \vee x_3)$$

Conectivos universais

Forma normal disjuntiva implica que $\{\land,\lor,\lnot\}$ é um conjunto de conectivos universais.

Conectivos universais

Forma normal disjuntiva implica que $\{\land,\lor,\neg\}$ é um conjunto de conectivos universais.

Além disso, usando dupla negação e de Morgan, temos que \land e \neg sozinhos já formam um conjunto universal de conectivos.

Como mostrar que um conjunto de conectivos é universal?

Considere um conjunto C de conectivos.

Podemos tentar "refazer" todo esse trabalho e mostrar que qualquer tabela verdade pode ser implementada pelos conectivos dados...

Como mostrar que um conjunto de conectivos é universal?

Considere um conjunto \mathcal{C} de conectivos.

Podemos tentar "refazer" todo esse trabalho e mostrar que qualquer tabela verdade pode ser implementada pelos conectivos dados...

Ou, como dito na primeira aula: podemos usar resultados anteriores:

- Agora já sabemos que ∧ e ¬ são universais.
- Basta escrever \land usando conectivos em \mathcal{C} .
- E escrever \neg usando conectivos em \mathcal{C} .

Perguntas.	observações.	comentários?
i cigantas,	observações,	conficilitatios.

=	=	=	=	=