Espacios vectoriales. Aplicaciones lineales. Diagonalización

Ejercicio 1. Sean $X_1 = \{(1,0,1,1), (1,1,-1,1), (0,1,2,1)\}$ y $B = \{(1,-1,0,1), (-1,2,-1,0), (0,3,-2,6), (1,-1,0,2)\}$ dos subconjuntos de \mathbb{R}^4 .

- 1. Comprueba que B es una base de \mathbb{R}^4 .
- 2. Calcula en B las coordenadas del vector (1, 1, 1, 1).
- 3. Comprueba que X₁ es un conjunto de vectores linealmente independientes.
- 4. Construye una base B_1 que contenga a X_1 .
- 5. Calcula la matriz del cambio de base de B₁ a B.

Ejercicio 2. Sea $f: (\mathbb{Z}_2)^7 \to (\mathbb{Z}_2)^3$ la aplicación lineal dada por:

$$f(x, y, z, t, u, v, w) = (t + u + v + w, y + z + v + w, x + z + u + w).$$

Y sea B = $\{(1,0,1), (1,1,0), (1,1,1)\}.$

- 1 Comprueba que B es una base de $(\mathbb{Z}_2)^3$.
- **2** Calcula la matriz de f en las bases canónicas de $(\mathbb{Z}_2)^7$ y $(\mathbb{Z}_2)^3$. Llama a esta matriz P.
- 3 Calcula una base de N(f).
- 4 Calcula $M_{B_c;B}(f)$.
- **5** Define una aplicación lineal $g: (\mathbb{Z}_2)^4 \to (\mathbb{Z}_2)^7$ de forma que Im(g) sea igual al suespacio N(f).
- **6** Calcula la matriz de G en las bases canónicas de $(\mathbb{Z}_2)^4$ y $(\mathbb{Z}_2)^7$. Llama a esta matriz G.
- 7 Comprueba que $P \cdot G = 0$.
- **8** Demuestra que $f \circ g : (\mathbb{Z}_2)^4 \to (\mathbb{Z}_2)^3$ es la aplicación constante cero.

Ejercicio 3. Sean $U = L[(1,2,3),(2,3,4),(3,4,0)], W \equiv \begin{cases} 2x + 2y + z = 0 \\ 4x + 3y + 3z = 0 \end{cases}$ y $V_3 \equiv \begin{cases} 4x + 2y + z = 0 \\ 2x + y + 3z = 0 \end{cases}$ tres subespacios de $(\mathbb{Z}_5)^3$.

- 1 Calcula una base de cada uno de ellos.
- 2 Calcula una base de $V_2 = U \cap W$.

Sea A la matriz 3×3 con coeficientes en \mathbb{Z}_5 que tiene dos valores propios 2 y 3, y cuyos subespacios propios correspondientes son V_2 y V_3 .

- 3 Calcula las multiplicidades algebraicas y geométricas de los valores propios 2 y 3.
- 4 Calcula la matriz A.
- 5 Calcula A²⁰.