PRELIMINARY RESULTS

Transformation 2: (nonsingular)

$$z = U \operatorname{col}(x_1, x_2) = \operatorname{col}(z_1, z_2)$$

Where
$$U=\begin{bmatrix}I_{n-m}&-\overline{B}_1\overline{B}_2^{-1}\\0&\overline{B}_2^{-1}\end{bmatrix}$$

$$\dot{z}_1 = \widetilde{A}_{11} z_1 + \widetilde{A}_{12} z_2 \tag{3a}$$

$$\dot{z}_2 = \widetilde{A}_{21} z_1 + \widetilde{A}_{22} z_2 + u + d$$
 (3b)

$$y = \widetilde{C}z = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \widetilde{C}_1 \\ \widetilde{C}_2 \end{bmatrix} z = \begin{bmatrix} \widetilde{C}_{11} & \widetilde{C}_{12} \\ 0 & \widetilde{C}_{22} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}. \quad (3c)$$

System and input matrix:

$$\widetilde{A} = \begin{bmatrix} \widetilde{A}_{11} & \widetilde{A}_{12} \\ \widetilde{A}_{21} & \widetilde{A}_{22} \end{bmatrix} \quad \text{and} \quad \widetilde{B} = \begin{bmatrix} 0 \\ I_m \end{bmatrix}$$

Lemma 1:

If the pair $(\widetilde{A}_{11}, \widetilde{C}_{11})$ is observable, then the pair $(\widetilde{A}, \widetilde{C})$ is observable.

$$C_2 V_1 = C_2 A V_1 = 0$$

The pair $(\widetilde{A},\widetilde{C})$ is observable iff the pair $(\widetilde{A}_{11},\widetilde{C}_{11})$ is observable

$$y = \widetilde{C}z = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \widetilde{C}_1 \\ \widetilde{C}_2 \end{bmatrix} z = \begin{bmatrix} \widetilde{C}_{11} & \widetilde{C}_{12} \\ 0 & \widetilde{C}_{22} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}. \quad (3c)$$

A new output function:

$$\widetilde{C}_{11}z_1 = y_1 - \widetilde{C}_{12}\widetilde{C}_{22}^{-1}y_2$$

Observer:

$$\dot{\hat{z}}_1 = \widetilde{A}_{11}\hat{z}_1 + \widetilde{A}_{12}\hat{z}_2 + L_1\widetilde{C}_{11}(z_1 - \hat{z}_1) + \widetilde{A}_{12}(z_2 - \hat{z}_2)$$
(5a)
$$\dot{\hat{z}}_2 = \widetilde{A}_{21}\hat{z}_1 + u + \widetilde{A}_{22}z_2 + K \text{sign}(z_2 - \hat{z}_2)$$
(5b)

where $L_1 \in \mathbb{R}^{(n-m)\times (p-m)}$ is the linear observer gain, K > 0 is some scalar and sign function is given by $\operatorname{sign}(\gamma) = [\operatorname{sign}(\gamma_1) \operatorname{sign}(\gamma_2) \cdots \operatorname{sign}(\gamma_m)]^{\top}$ for any vector $\gamma = [\gamma_1 \ \gamma_2 \ \cdots \ \gamma_m]^{\top}$. Here, $\hat{z} = \operatorname{col}(\hat{z}_1, \hat{z}_2)$ denotes the estimate of $z = \operatorname{col}(z_1, z_2)$.

Lemma 1:

If the pair $(\widetilde{A}_{11}, \widetilde{C}_{11})$ is observable, then the pair $(\widetilde{A}, \widetilde{C})$ is observable.

• L_1 exists

The eigenvalues of

$$\widetilde{A}_1 := \widetilde{A}_{11} - L_1 \widetilde{C}_{11}$$
 are stable

Lyapunov equation:

$$\widetilde{A}_{1}^{\mathsf{T}} P_{1} + P_{1} \widetilde{A}_{1} = -Q_{1}$$