

Variable-Length Subnet Mask

Workbook

Version 2.0

192.168

192.168.10.96

92.168.10.126

172.31.15.0

10.250.1.0

Student Name:

IP Address Classes

Class A	1 – 127	(Network 127 is rese	rved for	r loopback and internal testing)
		Leading bit pattern	0	00000000.000000000.00000000.0000000000
Class B	128 – 191	Leading bit pattern	10	10000000.00000000.00000000.00000000000
Class C	192 – 223	Leading bit pattern	110	11000000.000000000.00000000.0000000000
Class D	224 – 239	(Reserved for multic	ast)	
Class E	240 – 255	(Reserved for experi	mental,	used for research)

Private Address Space

Class A	10.0.0.0 to 10.255.255.255
Class B	172.16.0.0 to 172.31.255.255
Class C	192.168.0.0 to 192.168.255.255

Default Subnet Masks

Class A	255.0.0.0
Class B	255.255.0.0
Class C	255.255.255.0

This workbook assumes you already have a background in subnetting. If you don't you may want to consider completing the <u>IP Addressing and Subnetting Workbook</u>.

Produced by: Robb Jones jonesr@careertech.net and/or Robert.Jones@fcps.org Frederick County Career & Technology Center Cisco Networking Academy Frederick County Public Schools Frederick, Maryland, USA

Special Thanks to Melvin Baker and Jim Dorsch for taking the time to check this workbook for errors.

Workbooks included in the series:

IP Addressing and Subnetting Workbooks
ACLs - Access Lists Workbooks
VLSM Variable-Length Subnet Mask IWorkbooks

Classful vs. Classless Subnetting

When you're subnetting an IP address for a network you have two options: classful and classless. Classful subnetting is the simplest method. It tends to be the most wasteful because it uses more addresses than are necessary. In classful subnetting you use the same subnet mask for each subnet, and all the subnets have the same number of addresses in them.

Classless addressing allows you to use different subnet masks and create subnets tailored to the number of users in each group. This technique is referred to as VLSM, Variable Length Subnet Masks.

What is VLSM

Variable Length Subnet Masks allow you a much tighter control over your addressing scheme. If you use a class C address with a default subnet mask you end up with one subnet containing 256 addresses. By using VLSM you can adjust the number of subnets and number of addresses depending on the specific needs of your network. The same rules apply to a class A or B addresses.

VLSM is supported by the following protocols: RIP version 2, OSPF, EIGRP, Dual IS-IS, and BGP. You need to configure your router for Variable Length Subnet Masks by setting up one of these protocols. Then configure the subnet masks of the various interfaces in the IP address interface subcommand.

Benefits of VLSM

Allows efficient use of address space
Allows the use of multiple subnet mask lengths
Breaks up an address block into smaller custom blocks
Allows for route summarization
Provides more flexibility in network design
Supports hierarchical enterprise networks

This workbook explores three different methods to figure out sub-subnets: the box method, the circle method, and a VLSM chart.

Classful Subnetting Example

When you're subnetting an IP address for a network you have two options: classful and classless. Classful subnetting is the simplest method. It also tends to be the most wasteful because it uses more addresses than are necessary. In classful subnetting you use the same subnet mask for each subnet, and all the subnets have the same number of addresses in them.

In this example you need five subnets, each one containing 30 hosts. The serial connections only require two address each so you are wasting 28 usable addresses in each of the serial subnet ranges.

Classful Subnet Ranges

192.168.1.0	to	192.168.1.31	/27
192.168.1.32	to	192.168.1.63	/27
192.168.1.64	to	192.168.1.95	/27
192.168.1.96	to	192.168.1.127	/27
192.168.1.128	to	192.168.1.159	/27
192.168.1.160	to	192.168.1.191	/27
192.168.1.192	to	192.168.1.223	/27
192.168.1.224	to	192.168.1.255	/27

/27 255.255.255.224 32 Hosts 8 Subnets

The Box Method for visualizing subnets

Classless Subnetting Example

Classless addressing allows you to use different subnet masks and create subnets tailored to the number of users in each subnetwork. There are fewer wasted IP addresses using smaller subnets.

In this example you need at total of five subnets, two containing 30 hosts, one containing 12 hosts, and two serial connections that only require two usable addresses each.

By adjusting the subnet masks you can cut your address usage by almost half in this example. This type of subnetting requires a network protocol which will support it such as: RIP version 2, EIGRP, OSPF, or BGP.

Classless Subnet Ranges

192.168.1.0 192.168.1.32 192.168.1.64 192.168.1.80 192.168.1.84	to to to to	192.168.1.31 192.168.1.63 192.168.1.79 192.168.1.82 192.168.1.87	/27 /27 /28 /30 /30
192.168.1.88	to	192.168.1.95	/29
192.168.1.96	to	192.168.1.127	/27
192.168.1.128	to	192.168.1.255	/25

The Box Method for visualizing subnets

Visualizing Subnets Using The Box Method

The box method is a simple way to visualize the breakdown of subnets and addresses into smaller sizes. By shading or coloring in the boxes you can easily break up your subnets without overlapping your addresses. You adjust each subnet to the correct size needed.

Start with a square. The whole square is a single subnet comprised of 256 addresses.

/24 255.255.255.0 256 Hosts 1 Subnet 255

Split the box in half and you get two subnets with 128 addresses.

/25 255.255.255.128 128 Hosts 2 Subnets

Divide the box into quarters and you get four subnets with 64 addresses.

/26 255.255.255.192 64 Hosts 4 Subnets

Split each individual square and you get eight subnets with 32 addresses.

0 32 128 160 31 63 159 64 96 192 224

/27 255.255.255.224 32 Hosts 8 Subnets

Split the boxes in half again and you get sixteen subnets with sixteen addresses.

/28 255.255.255.240 16 Hosts 16 Subnets

The next split gives you thirty two subnets with eight addresses.

/29 255.255.255.248 8 Hosts 32 Subnets

0	8		32	40	128	136	160	168
	7	15	39	47	135	143	167	175
16	24	1	48	56	144	152	176	184
2	3	31	55	63	151	159	183	191
64	72	2	96	104	192	200	224	232
7 80	1 88	79	103 112	111 120	199 208	207 216	321 240	239 248
		,	1112	120	200	-10	_ 10	- 10
8	7	95	119	127	215	223	247	255

The last split gives sixty four subnets with four addresses each.

/30 255.255.255.252 4 Hosts 64 Subnets

0		8		32	40	128	136	160	168
			11	35	43	131	139	163	171
4		12		36	44	132	140	164	172
	7		15	39	47	135	143	167	175
16		24		48	56	144	152	176	184
ı	19		27	51	59	147	155	179	187
20		28		52	60	148	156	180	188
	23		31	55	63	151	159	183	191
64		72		96	104	192	200	224	232
	67		75	99	107	195	203	227	235
68		76		100	108	196	204	228	236
	71		79	103	111	199	207	231	239
80		88		112	120	208	216	240	248
	83		91	115	123	211	219	243	251
84		92		116	124	212	220	244	252
ı	87		95	119	127	215	223	247	255

VLSM Addressing

Box Method

(Sample)

Problem 1

Using the network diagram and information given create an addressing scheme which utilizes variable-length subnet masks. Show the subnet address and CIDR in the boxes below, color or shade the sub-subnets used in the box. This business will be using the class C address 220.10.10.0. Remember to start with your largest groups first.

VLSM Addressing

Box Method

(Sample)

Problem 2

Using the network diagram and information given create an addressing scheme which utilizes variable-length subnet masks. Show the subnet address and CIDR in the boxes below, color or shade the sub-subnets used in the box. This company will be using the class C address 192.168.16.0. Remember to start with your largest groups first.

Problem 4

Using the network diagram and information given create an addressing scheme which utilizes variable-length subnet masks. Show the subnet address and CIDR in the boxes below, color or shade the sub-subnets used in the box. This company will be using the class C address 220.108.38.0. Remember to start with your largest groups first.

0		8		32		40		128	136		160		168
	3		11		35		43	131	1	39	1	163	171
4		12		36		44		132	140		164		172
	7		15		39		47	135	1	43	1	167	175
16		24		48		56		144	152		176		184
	19		27		51		59	147	1	55	1	179	187
20		28		52		60		148	156		180		188
	22		24				63	151	١,	-	١,	183	191
	23		31		55		03	151		เอษ		100	191
64	23	72		96		104		192	200		224		232
		72		96					200		224		
	67	72 76		96	99		107	192	200	203	224	227	232
	67			96 100	99	108	107	192 195	200 2 204	203	224 2 228	227	232 235
	67 71		75	96 100	99	108	107 3 111	192 195 196	200 2 204	203 207	224 2 228	227	232 235 236
68	67 71	76	75 79	96 100 1	99	108	107 3 111	192 195 196 199	200 204 216	203	224 228 240	227	232 235 236 239
68	67 71 83	76	75 79 91	96 100 1 112	99	108	107 3 111	192 195 196 199 208	200 204 216	203 207 219	224 228 240	227	232 235 236 239 248

Problem 5

Using the network diagram and information given create an addressing scheme which utilizes variable-length subnet masks. Show the subnet address and CIDR in the boxes below, color or shade the sub-subnets used in the box. This company will be using the class C address 192.168.10.0. Remember to start with your largest groups first.

0		8		32	·	40		128	136		160	168	П
	3		11	3	35		43	131	1	39	163	17	1
4		12		36	-	44		132	140		164	172	
	7		15	3	39		47	135	1	43	167	17	'5
16		24		48		56		144	152		176	184	П
	19		27	5	51		59	147	1	55	179	18	37
20		28		52	(60		148	156		180	188	
	23		31	5	55		63	151	1	59	183	19	1
			0.	Ŭ	,0		00	101		00	100	10	′ '
64		72		96		104		192	200	00	224	232	
64		72	75						200	203	224		٦
64 68	67	72 76		96	99		107	192	200	203	224	232	٦
	67			96 9	9	1 108	107	192 195	200 2 204	203	224 227	232 23	35
	67 71		75	96 9 100	99	1 108	107	192 195 196	200 2 204	203 207	224 227 228	232 23 236	35
68	67 71	76	75	96 9 100 10	99	108 120	107	192 195 196 199	200 204 204 216	203 207	224 227 228 231 240	232 236 236 23	35
68	67 71 83	76 88	75 79	96 100 10 112)3	108 120	107	192 195 196 199 208	200 204 204 216	203	224 227 228 231 240	232 236 236 23	35 39

Problem 6

Using the network diagram and information given create an addressing scheme which utilizes variable-length subnet masks. Show the subnet address and CIDR in the boxes below, color or shade the sub-subnets used in the box. This company will be using the class C address 222.10.150.0. Remember to start with your largest groups first.

Draw the necessary lines and color in the used squares with different shades to highlight each subnet.

64	31	96	63	128	159	224	191
64	95	96	127	192	223	224	255

Problem 7

Using the network diagram and information given create an addressing scheme which utilizes variable-length subnet masks. Show the subnet address and subnet mask in the boxes below, color or shade the sub-subnets used in the box. This company will be using the class C address 200.150.70.0. Remember to start with your largest groups first.

Draw the necessary lines and color in the used squares with different shades to highlight each subnet.

Problem 8

Using the network diagram and information given create an addressing scheme which utilizes variable-length subnet masks. Show the subnet address and subnet mask in the boxes below, color or shade the sub-subnets used in the box. This company will be using the class C address 192.168.24.0. Remember to start with your largest groups first.

Draw the necessary lines and color in the used squares with different shades to highlight each subnet.

