Dr. Shashi Ranjan Kumar

Assistant Professor
Department of Aerospace Engineering
Indian Institute of Technology Bombay
Powai, Mumbai, 400076 India

Dr. Shashi Ranjan Kumar AE 305/717 Lecture 11 Flight Me

1 / 31

• Why do you need coordinate frames?

- To determine motion of a vehicle, it becomes necessary to relate the solution to the motion of Earth.
 - ⇒ Define inertial reference frame w.r.t. the Earth
 - ⇒ Obtain motion of both vehicle and Earth w.r.t. the inertial frame
- Initial orientation of reference coordinate frame, position, and velocity are required to obtain future orientation, position and velocity.

True Inertial Frame of Reference

- How do you define inertial frame?
 - ⇒ Reference frame in which Newton's laws of motion are valid.
 - ⇒ A set of mutually perpendicular axes that neither accelerate nor rotate with respect to inertial space.
 - ⇒ Fixed relative to the stars
- Newton's laws are also valid in Galilean frames.
- Galilean frames: Those which do not rotate w.r.t. one another, and are uniformly translating in space.
- True inertial frame is Galilean frames with absolute zero motion.
- True inertial frame is not a practical reference frame.
- It is used only for visualization of other reference frames.

Frame of References: Axes Systems

- Inertial axes system
- Earth-Fixed axes system: Fixed at center of Earth and rotates with it.
- Navigation system: Located at surface of Earth and origin is directly beneath the vehicle.

Frame of References: Axes Systems

- Body axes system: Any set of axes fixed to vehicle, moving with it.
- Origin: CG location of vehicle
- Ox_bz_b coincides with plane of symmetry
- ullet Ox_b axis along longitudinal centerline or zero-lift line
- ullet Oy_b axis ot towards right side, Oz_b axis downward to complete RH system

• Special cases of body axes system: Stability and Wind axes systems

Frame of References: Axes Systems

- Stability axes system: $Ox_sy_sz_s$
 - $\Rightarrow Ox_s$ lies in plane of symmetry (PoS)
 - \Rightarrow For $\beta=0$, Ox_s points in opposite direction of relative wind
 - \Rightarrow For $\beta \neq 0$, Ox_s chosen to coincide the projection of relative wind in PoS
 - \Rightarrow $\mathit{Oy}_s \perp \mathsf{PoS}$ towards right side and Oz_s downward to complete RH system
 - ⇒ How to locate stability axes w.r.t. body axes? Angle of attack
 - \Rightarrow What would be the direction of D and L for $\beta=0$? Opposite to Ox_s and Oz_s
- Wind axes system: $Ox_w y_w z_w$
 - $\Rightarrow Ox_w$ points in opposite direction of relative wind
 - $\Rightarrow Oz_w$ lies in PoS
 - $\Rightarrow Oy_s \perp Ox_wz_w$ towards right side
 - \Rightarrow For $\beta \neq 0$, Ox_wz_w will not coincide with PoS
 - ⇒ How to locate wind axes w.r.t. body axes? Angle of attack and sideslip angle
 - \Rightarrow What would be the direction of drag and lift? Opposite to Ox_w and Oz_w

Coordinate Transformation

- Position of rigid body: position vector O_RO_E of origin
- ullet Orientation of rigid body: 3×3 rotation matrix
- For simplification, we assume $O_E = O_R$

Coordinate Transformation

- Rotation matrix approach utilizes 9 parameters, which obey the orthogonality and unit length constraints, to describe the orientation of the rigid body.
- A rigid body possesses 3 rotational DOF, 3 independent parameters are sufficient to characterize completely and unambiguously its orientation.
- Three-parameter representations are popular in engineering because they minimize the dimensionality of the rigid-body control problem
- Transformation of coordinate axes is an important necessity in resolving angular positions and rates from one coordinate system to other.
- Transformation matrix: Mapping of the components of a vector, resolved in one frame, into the same resolved into the other frame.
 - ⇒ Direction cosine matrix (DCM)
 - ⇒ Euler Angles
 - ⇒ Quaternions

Direction Cosines of a Vector

Angle between two vectors $oldsymbol{r}_1$ and $oldsymbol{r}_2$

$$\theta = \cos^{-1}\left[\frac{\boldsymbol{r}_2^T\boldsymbol{r}_1}{\sqrt{\boldsymbol{r}_1^T\boldsymbol{r}_1}\sqrt{\boldsymbol{r}_2^T\boldsymbol{r}_2}}\right]$$

Direction cosines: $\cos \alpha, \cos \beta, \cos \gamma$

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
 Proof?

Example

Find the direction cosines and direction angles of the vector v = -8i + 3j + 2k.

- Assume α, β, γ be the angles formed by vector w.r.t. x, y, z axes, respectively.
- We can write

$$\cos \alpha = \frac{\boldsymbol{v}^T \boldsymbol{i}}{\|\boldsymbol{v}\|} = \frac{-8}{\sqrt{77}} \implies \alpha = 156^{\circ}$$

Similarly,

$$\cos \beta = \frac{\boldsymbol{v}^T \boldsymbol{j}}{\|\boldsymbol{v}\|} = \frac{3}{\sqrt{77}} \implies \beta = 70^{\circ}$$

$$\cos \gamma = \frac{\boldsymbol{v}^T \boldsymbol{k}}{\|\boldsymbol{v}\|} = \frac{2}{\sqrt{77}} \implies \gamma = 77^{\circ}$$

- Direction cosine matrix (DCM) transforms a vector in \mathbb{R}^3 from one frame to other frame.
- ullet DCM for transformation between frames a and b

$$\boldsymbol{C}_a^b = \left[\begin{array}{ccc} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{array} \right]$$

• Specifically, if (X,Y,Z) and (x,y,z) are the representations of a vector in frames a and b, respectively, then

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \underbrace{\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}} \Rightarrow \mathbf{R}^b = \mathbf{C}_a^b \mathbf{R}^a$$
Rotation Matrix

- Matrix DCM projects the vector \mathbf{R}^a into a reference frame b.
- \bullet For orthogonal systems, $(\boldsymbol{C}_a^b)^{-1} = (\boldsymbol{C}_a^b)^T = \boldsymbol{C}_b^a$

Direction Cosines

Geometric Interpretation of Direction Cosine Matrix

• Assume vector R coordinatized in reference frames a and b as R^a and R^b , respectively.

$$\begin{split} &\boldsymbol{R}^a = & (\boldsymbol{R}^T \boldsymbol{1}_x^a) \boldsymbol{1}_x^a + (\boldsymbol{R}^T \boldsymbol{1}_y^a) \boldsymbol{1}_y^a + (\boldsymbol{R}^T \boldsymbol{1}_z^a) \boldsymbol{1}_z^a \\ &\boldsymbol{R}^b = & (\boldsymbol{R}^T \boldsymbol{1}_x^b) \boldsymbol{1}_x^b + (\boldsymbol{R}^T \boldsymbol{1}_y^b) \boldsymbol{1}_y^b + (\boldsymbol{R}^T \boldsymbol{1}_z^b) \boldsymbol{1}_z^b \end{split}$$

where, $\mathbf{R}^T \mathbf{1}_i^a \ \forall \ i=x,y,z$ denotes scalar component of \mathbf{R} projected along the i^{th} a-frame coordinate direction.

• Unit vectors $\mathbf{1}_i^a$ and $\mathbf{1}_j^b$ are related, for i,j=x,y,z, as

$$\mathbf{1}_{i}^{b} = (\mathbf{1}_{i}^{b^{T}} \mathbf{1}_{x}^{a}) \mathbf{1}_{x}^{a} + (\mathbf{1}_{i}^{b^{T}} \mathbf{1}_{y}^{a}) \mathbf{1}_{y}^{a} + (\mathbf{1}_{i}^{b^{T}} \mathbf{1}_{z}^{a}) \mathbf{1}_{z}^{a}$$

ullet The $i^{
m th}$ component of ${m R}^b$ can be expressed as

$$\begin{split} \boldsymbol{R}^T \mathbf{1}_i^b = & \boldsymbol{R}^T [(\mathbf{1}_i^{b^T} \mathbf{1}_x^a) \mathbf{1}_x^a + (\mathbf{1}_i^{b^T} \mathbf{1}_y^a) \mathbf{1}_y^a + (\mathbf{1}_i^{b^T} \mathbf{1}_z^a) \mathbf{1}_z^a] \\ = & (\mathbf{1}_i^{b^T} \mathbf{1}_x^a) \boldsymbol{R}^T \mathbf{1}_x^a + (\mathbf{1}_i^{b^T} \mathbf{1}_y^a) \boldsymbol{R}^T \mathbf{1}_y^a + (\mathbf{1}_i^{b^T} \mathbf{1}_z^a) \boldsymbol{R}^T \mathbf{1}_z^a \end{split}$$

ullet The vector $oldsymbol{R}^b$ can be expressed as

$$egin{aligned} m{R}^b &= \left[egin{array}{c} m{R}^T m{1}_x^b \ m{R}^T m{1}_y^b \ m{R}^T m{1}_y^b \end{array}
ight] = \left[egin{array}{c} m{1}_x^b m{1}_x^a & m{1}_x^b m{1}_y^a & m{1}_x^b m{1}_z^a \ m{1}_y^b m{1}_x^a & m{1}_y^b m{1}_y^a & m{1}_y^b m{1}_z^a \ m{1}_z^b m{1}_x^a & m{1}_z^b m{1}_y^a & m{1}_z^b m{1}_z^a \end{array}
ight] \left[m{R}^T m{1}_x^a \ m{R}^T m{1}_y^a \ m{R}^T m{1}_z^a \end{array}
ight] \\ &= \left[m{1}_x^b m{1}_x^a & m{1}_x^b m{1}_y^a & m{1}_x^b m{1}_z^a \ m{1}_y^b m{1}_z^a & m{1}_y^b m{1}_z^a \ m{1}_y^b m{1}_z^a \end{array}
ight] m{R}^a \\ &= m{1}_z^b m{1}_x^a & m{1}_z^b m{1}_y^a & m{1}_z^b m{1}_z^a \ m{1}_z^b m{1}_z^a \end{array}
ight] = m{C}_a^b m{R}^a = [C_{ij}] m{R}^a \end{aligned}$$

ullet $[C_{ij}]$ represents the cosine of the angle between the unit vectors $m{1}_i^b$ and $m{1}_j^a$.

Example 1

Consider two coordinate frames with their unit vectors as (i, j, k), and (i', j', k'), respectively. If i' = j, j' = -i, and k' = k then what would be the DCM matrix?

DCM matrix

$$\left[\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

Example 2

Consider two coordinate frames with their unit vectors as (i, j, k), and (i', j', k'), respectively. If i' = i, j' = -k, and k' = j then what would be the DCM matrix?

DCM matrix

$$\left[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}
\right]$$

Example 3

Consider two coordinate frames with their unit vectors as (i,j,k), and (i',j',k'), respectively. If the old coordinate frame is rotated with angle θ anti-clockwise w.r.t. z-axis to get new frame then what would be the DCM matrix?

Unit vectors of new frame

$$i' = \cos \theta i + \sin \theta j$$

 $j' = -\sin \theta i + \cos \theta j$
 $k' = k$

DCM matrix

$$\begin{bmatrix}
\cos\theta & \sin\theta & 0 \\
-\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Direction Cosine Matrix

Example 4

Find out the missing coefficients of DCM.

$$T = \begin{bmatrix} 0.8999 & -0.4323 & 0.0578 \\ c_{21} & 0.8665 & -0.2496 \\ c_{31} & c_{32} & 0.9666 \end{bmatrix}$$

We can use orthogonal property of DCM.

$$0.9666c_{32} - 0.8665 \times 0.2496 - 0.4323 \times 0.0578 = 0$$
$$c_{31}c_{32} + 0.8665c_{21} - 0.8999 \times 0.4323 = 0$$
$$0.9666c_{31} - 0.2496c_{21} + 0.0578 \times 0.8999 = 0$$

- On solving, we get $c_{21} = 0.4323$, $c_{31} = 0.0578$, $c_{32} = 0.2496$
- Check for correctness

Propagation of Direction Cosine Matrix

- ullet Consider the two frames be the a and b frames.
- At time t, the frames a and b are related through the DCM $C_b^a(t)$.
- At time $t + \Delta t$, frame b rotates to a new orientation such that the direction cosine matrix is given by $C_b^a(t + \Delta t)$.
- ullet Rate of change of $oldsymbol{C}^a_b(t)$ is given by

$$\dot{\boldsymbol{C}}_b^a(t) = \lim_{\Delta t \to 0} \frac{\Delta \boldsymbol{C}_b^a}{\Delta t} = \lim_{\Delta t \to 0} \frac{\boldsymbol{C}_b^a(t + \Delta t) - \boldsymbol{C}_b^a(t)}{\Delta t}$$

From geometrical considerations,

$$C_b^a(t + \Delta t) = C_b^a(t)(I + \Delta \theta^b)$$

where, $I + \Delta \theta^b$ is the small angle DCM relating b frame at time t to the rotated b frame at time $t + \Delta t$.

Direction Cosines

Propagation of Direction Cosine Matrix

ullet $\Delta oldsymbol{ heta}^b$ is given by

$$\Delta \boldsymbol{\theta}^b = \begin{bmatrix} 0 & -\Delta \theta_Y & \Delta \theta_P \\ \Delta \theta_Y & 0 & -\Delta \theta_R \\ -\Delta \theta_P & \Delta \theta_R & 0 \end{bmatrix}, \quad \Delta \theta_k = \sin \Delta \theta_k \ \forall \ k = R, Y, P$$

- Note that because the rotation angles are small in the limit as $\Delta t \to 0$, small angle approximations are valid and the order of rotation is immaterial.
- ullet Rate of change of $oldsymbol{C}_b^i(t)$ is now written as

$$\dot{\boldsymbol{C}}_b^a(t) = \boldsymbol{C}_b^a(t) \lim_{\Delta t \to 0} \frac{\Delta \boldsymbol{\theta}^b}{\Delta t}$$

• In the limit $\Delta t \to 0$, $\Delta \theta^b/\Delta t$ is the skew-symmetric form of angular velocity of the frame b relative to a frame.

$$\dot{\boldsymbol{C}}_b^a(t) = \boldsymbol{C}_b^a(t) \boldsymbol{\Omega}_{ab}^b = \boldsymbol{C}_b^a(t) \begin{bmatrix} 0 & -\omega_Y & \omega_P \\ \omega_Y & 0 & -\omega_R \\ -\omega_P & \omega_R & 0 \end{bmatrix}$$

Propagation of Direction Cosine Matrix

- DCM differential equation is a linear matrix differential equation, forced by the angular velocity vector in its skew symmetric matrix form.
- Nine scalar, linear, coupled differential equations
- This equation can be integrated with the initial conditions, which represent the initial orientation of the a-frame with respect to the b-frame.
- Differential equation

$$\dot{C}_{i,j} = C_{i,j+1}\omega_{j+2} - C_{i,j+2}\omega_{j+1}, \quad i, j = 1, 2, 3$$

where, second subscript is modulo 3, and $\omega_1 = \omega_R, \omega_2 = \omega_P, \omega_3 = \omega_Y$

A first order approximation for transformation matrix, using Taylor series

$$oldsymbol{C}_{t_k+\Delta T} = \left[oldsymbol{I} + oldsymbol{\Omega}_{ab}^b(t_k) \Delta T
ight] oldsymbol{C}_{t_k}$$

Propagation of Direction Cosine Matrix: Alternate derivation

Consider transformation of unit vectors from body to inertial axes system using DCM

$$\begin{bmatrix} \hat{i}_i \\ \hat{j}_i \\ \hat{k}_i \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \begin{bmatrix} \hat{i}_b \\ \hat{j}_b \\ \hat{k}_b \end{bmatrix} = C_b^i \begin{bmatrix} \hat{i}_b \\ \hat{j}_b \\ \hat{k}_b \end{bmatrix}$$

Consider first equation

$$\hat{i}_i = C_{11}\hat{i}_b + C_{12}\hat{j}_b + C_{13}\hat{k}_b$$

On differentiation, we get

$$\dot{\hat{i}}_i = \dot{C}_{11}\hat{i}_b + \dot{C}_{12}\hat{j}_b + \dot{C}_{13}\hat{k}_b + C_{11}\dot{\hat{i}}_b + C_{12}\dot{\hat{j}}_b + C_{13}\dot{\hat{k}}_b$$

We know that

$$\dot{\hat{i}}_b = \omega_b \times \hat{i}_b, \quad \dot{\hat{j}}_b = \omega_b \times \hat{j}_b, \quad \dot{\hat{k}}_b = \omega_b \times \hat{k}_b$$

Propagation of Direction Cosine Matrix: Alternate derivation

Now, one may write

$$\begin{split} \dot{\hat{i}}_{i} = & \dot{C}_{11}\hat{i}_{b} + \dot{C}_{12}\hat{j}_{b} + \dot{C}_{13}\hat{k}_{b} + C_{11}\omega_{b} \times \hat{i}_{b} + C_{12}\omega_{b} \times \hat{j}_{b} + C_{13}\omega_{b} \times \hat{k}_{b} \\ = & \dot{C}_{11}\hat{i}_{b} + \dot{C}_{12}\hat{j}_{b} + \dot{C}_{13}\hat{k}_{b} + \omega_{b} \times (C_{11}\hat{i}_{b} + C_{12}\hat{j}_{b} + C_{13}\hat{k}_{b}) \\ = & \dot{C}_{11}\hat{i}_{b} + \dot{C}_{12}\hat{j}_{b} + \dot{C}_{13}\hat{k}_{b} + \omega_{b} \times \hat{i}_{i} \end{split}$$

• As \hat{i}_i is a vector of unit magnitude and fixed direction in inertial frame, $\dot{\hat{i}}_i=0,$ which implies

$$\dot{C}_{11}\hat{i}_b + \dot{C}_{12}\hat{j}_b + \dot{C}_{13}\hat{k}_b + \omega_b \times \hat{i}_i = 0$$

Similarly

$$\dot{C}_{21}\hat{i}_b + \dot{C}_{22}\hat{j}_b + \dot{C}_{23}\hat{k}_b + \omega_b \times \hat{j}_i = 0$$
$$\dot{C}_{31}\hat{i}_b + \dot{C}_{32}\hat{j}_b + \dot{C}_{33}\hat{k}_b + \omega_b \times \hat{k}_i = 0$$

Propagation of Direction Cosine Matrix: Alternate derivation

Vector product

$$\omega_b \times \hat{i}_i = \begin{vmatrix} \hat{i}_b & \hat{j}_b & \hat{k}_b \\ p & q & r \\ C_{11} & C_{12} & C_{13} \end{vmatrix}$$
$$= \hat{i}_b (C_{13}q - C_{12}r) + \hat{j}_b (C_{11}r - C_{13}p) + \hat{k}_b (C_{12}p - C_{11}q)$$

• Thus, $\dot{C}_{11}\hat{i}_b+\dot{C}_{12}\hat{j}_b+\dot{C}_{13}\hat{k}_b+\omega_b\times\hat{i}_i=0$ leads to

$$\hat{i}_b(\dot{C}_{11} + C_{13}q - C_{12}r) + \hat{j}_b(\dot{C}_{12} + C_{11}r - C_{13}p) + \hat{k}_b(\dot{C}_{13} + C_{12}p - C_{11}q) = 0$$

Now we have

$$\dot{C}_{11} = C_{12}r - C_{13}q, \ \dot{C}_{12} = C_{13}p - C_{11}r, \ \dot{C}_{13} = C_{11}q - C_{12}p$$

Propagation of Direction Cosine Matrix: Alternate derivation

Similarly

$$\dot{C}_{21} = C_{22}r - C_{23}q, \ \dot{C}_{22} = C_{23}p - C_{21}r, \ \dot{C}_{23} = C_{21}q - C_{22}p$$

$$\dot{C}_{31} = C_{32}r - C_{33}q, \ \dot{C}_{32} = C_{33}p - C_{31}r, \ \dot{C}_{33} = C_{31}q - C_{32}p$$

In compact form,

$$\begin{bmatrix} \dot{C}_{11} & \dot{C}_{12} & \dot{C}_{13} \\ \dot{C}_{21} & \dot{C}_{22} & \dot{C}_{23} \\ \dot{C}_{31} & \dot{C}_{32} & \dot{C}_{33} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \begin{bmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{bmatrix}$$
$$\dot{C}_b^i = C_b^i \Omega_{ib}^b$$

where

$$\Omega_{ib}^b = \left[\begin{array}{ccc} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{array} \right]$$

Propagation of Direction Cosine Matrix

 \bullet On taking transpose and using the fact that $(\Omega^b_{ib})' = -\Omega^b_{ib},$ we get

$$\dot{C}_i^b = -\Omega_{ib}^b C_i^b$$

- This equation is of the form of $\dot{X}=AX, \ A=-\Omega^b_{ib}.$
- Characteristic equation: $\Delta(\lambda I A) = 0$, where Δ denotes the determinant of matrix.

$$\lambda(\lambda^2 + p^2 + q^2 + r^2) = 0$$

- Eigenvalues: $\lambda = 0, \pm j\sqrt{p^2 + q^2 + r^2} = \pm j|\omega_b|$
- Neutrally stable system
- Care needs to be taken during updating these coefficients to avoid accumulation of rounding off error, and prevent the system from blow out.

ullet The position of a point R in XY coordinate frame is given by

$$\left[\begin{array}{c} R_X \\ R_Y \end{array}\right] = \left[\begin{array}{c} R\cos\beta \\ R\sin\beta \end{array}\right]$$

- Let us assume $\gamma = \theta + \beta$.
- Position of a point R' in XY coordinate frame is given by

$$\begin{bmatrix} R'_X \\ R'_Y \end{bmatrix} = \begin{bmatrix} R\cos\gamma \\ R\sin\gamma \end{bmatrix} = \begin{bmatrix} R\cos\theta\cos\beta - R\sin\theta\sin\beta \\ R\sin\theta\cos\beta + R\cos\theta\sin\beta \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}}_{\text{Rotation matrix}} \begin{bmatrix} R_X \\ R_Y \end{bmatrix}$$

Rotation of Frame of Reference

- Let us assume $\alpha = \theta + \delta$.
- ullet The position of a point R in XY frame is given by

$$\left[\begin{array}{c} R_X \\ R_Y \end{array}\right] = \left[\begin{array}{c} R\cos\alpha \\ R\sin\alpha \end{array}\right]$$

• Position of a point R in X'Y' frame is given by

$$\left[\begin{array}{c} R_{X'} \\ R_{Y'} \end{array}\right] = \left[\begin{array}{c} R\cos\delta \\ R\sin\delta \end{array}\right]$$

• As $\delta = \alpha - \theta$, we can also write

$$\begin{bmatrix} R_{X'} \\ R_{Y'} \end{bmatrix} = \begin{bmatrix} R\cos(\alpha - \theta) \\ R\sin(\alpha - \theta) \end{bmatrix} = \begin{bmatrix} R\cos\alpha\cos\theta + R\sin\alpha\sin\theta \\ R\sin\alpha\cos\theta - R\cos\alpha\sin\theta \end{bmatrix}$$
$$= \begin{bmatrix} R_X\cos\theta + R_Y\sin\theta \\ R_Y\cos\theta - R_X\sin\theta \end{bmatrix} = \underbrace{\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}}_{\text{Rotation matrix}} \begin{bmatrix} R_X \\ R_Y \end{bmatrix}$$

Reference

- Bernard Etkin and Llyod Duff Reid, Dynamics of Flight Stability and Control, John Wiley and Sons, Third Edition, 1996.
- Bandhu N. Pamadi, Performance, Stability, and Control of Airplanes, AIAA Education Series, 1998.
- George M. Siouris, Aerospace Avionics Systems: A Modern Synthesis, Academic Press, Inc. 1993.

Thank you for your attention !!!