Capítulo 20 - Manutenção de Software

Os Fatores de Qualidade de Software focalizam três aspectos importantes do Software Produto: (ISO 9126)

Manutenibilidade

- ❖ A Manutenibilidade pode ser definida qualitativamente como a facilidade com que o software pode ser entendido, corrigido, adaptado e ou melhorado.
- Tipos de Manutenção
 - → MANUTENÇÃO CORRETIVA: identificar e corrigir erros
 - → MANUTENÇÃO ADAPTATIVA: adaptar o software ao ambiente
 - → MANUTENÇÃO PERFECTIVA: atender pedidos do usuário para modificar funções existentes, incluir novas funções e efetuar melhoramentos gerais
 - → MANUTENÇÃO PREVENTIVA: Melhorar a manutenibilidade ou confiabilidade futuras e fornecer uma base melhor para futuros melhoramentos

Problemas da Manutenção

A maioria dos problemas com a manutenção do software é causada por deficiências na maneira como o software foi planejado e desenvolvido

PROBLEMAS CLÁSSICOS

- ✓ É difícil ou impossível rastrear o processo através do qual o software foi criado. A maioria dos softwares não foram projetados para suportar alterações.
- ✓ É difícil ou impossível traçar a evolução do software através das várias versões. As alterações não são adequadamente documentadas A documentação não existe, é incompreensível ou está desatualizada.
- ✓ É muito difícil entender programas "de outras pessoas", que frequentemente não estão presentes para explicar. A dificuldade aumenta conforme o número de elementos na configuração de software aumenta.
- ✓ A manutenção não é vista como um trabalho "glamoroso" ou importante

Custo de Manutenção

- Custos diretos da Manutenção
 - 70 % do orçamento do software (ciclo de vida)
 - Diminuição dramática na produtividade 40:1 [Boehm,79]
 - Custo do desenvolvimento : \$25,00 por linha de código
 - Custo da manutenção : \$1.000,00 por linha de código
- Outros custos Não Monetários
 - Adiamento de oportunidades de desenvolvimento
 - Insatisfação do cliente
 - Redução da qualidade global do software
 - Insatisfação do pessoal de desenvolvimento

Custo de Manutenção

→ A manutenibilidade é difícil de quantificar. Pode-se determinar a manutenibilidade indiretamente considerando componentes das atividades de manutenção que podem ser medidos

❖ MÉTRICAS DE MANUTENIBILIDADE (Gilb, 1979)

- tempo de reconhecimento do problema
- tempo de demora administrativa
- tempo de análise do problema
- tempo de especificação da alteração
- tempo de correção ou modificação
- tempo de teste local e global
- tempo de revisão da manutenção

Custo da Manutenção

- → A manutenibilidade pode ser medida indiretamente considerando medidas da estrutura do projeto e medidas da complexidade do software
- ❖ MODELO PARA ESTIMATIVA DE CUSTOS DE MANUTENÇÃO
- → Belady, 1972

$$M = P + Ke^{(c-d)}$$

Onde,

M = esforço de manutenção

P = esforço produtivo

K = constante empírica

e = número Euler (2,78...)

c = medida de complexidade atribuida a falta de bom projeto e de boa documentação

d = medida do grau de familiaridade com o software

Fatores Facilitadores

- √ Pessoal qualificado
- ✓ Processo de software estabelecido e documentado
- ✓ Sistemas com estruturas lógicas e compreensíveis
- ✓ Processo de manutenção estabelecido e documentado
- ✓ Processo de controle de mudanças estabelecido e documentado

Organização para a Manutenção

Organização para a Manutenção

- ✓ Autoridade controladora de mudanças: evita que as mudanças favoreçam um solicitante e prejudiquem outros...
- ✓ Controlador de manutenção: evita que modificações sejam implementadas sem serem devidamente aprovadas...
- ✓ Supervisor de sistemas: uma vez que tem familiaridade com um grupo de sistemas, pode avaliar mais rapidamente os pedidos de manutenção

Processo de Manutenção

Registros de Manutenção

EXEMPLO DE DADOS QUE PODEM SER ARMAZENADOS (Swanson):

- √ identificação e descrição do programa
 - número de linhas de comando
 - linguagem de programação usada
 - data da instalação do programa
 - número de execuções do programa desde a instalação
 - número de falhas de processamento associadas ao item anterior
- √ identificação e descrição das alterações no programa
 - tipo de manutenção
 - número de linhas de comandos adicionadas por alteração no programa
 - datas de início e fim da manutenção
 - número de pessoas-horas despendidos na manutenção

Gerenciamento da Manutenção

- ❖ Arcabouço Quantitativo (Swanson)
 - → número médio de falhas de processamento por execução do programa
 - → pessoas-horas despendido em cada categoria de manutenção
 - número médio de pessoas-horas despendido por linha de comando adicionado ou deletado devido a manutenção
 - → tempo médio de processamento para um pedido de manutenção
 - → porcentagem de pedidos de manutenção por tipo

Decisões:

- → Tecnologia de Desenvolvimento
- → Estrutura de Manutenção
- → Alocação de Recursos

Engenharia Reversa e Reengenharia

- Programas "Alienígenas"
 - Programas com fluxo de controle equivalente a um "prato de espaguete", módulos muito grandes e poucas linhas de comentários significativos.
 - → Projeto de dados e projeto arquitetural ruins.
 - → Nenhuma metodologia de desenvolvimento foi aplicada.
 - → Nenhum outro elemento da configuração de software, além do código.
 - → Documentação e registro histórico das alterações incompletos.
 - → Nenhum membro do pessoal atual de manutenção trabalhou no desenvolvimento do programa.

Engenharia Reversa e Reengenharia

- ENGENHARIA REVERSA: Processo de análise de um software, partindo-se inicialmente da implementação para um nível mais alto de abstração
- REENGENHARIA: Implica no exame e na alteração do software para reconstrui-lo em uma nova forma.

Elementos de Eng. Reversa e Reengenharia

DIRECIONALIDADE:

Engenharia Reversa: se a direcionalidade tem sentido único, toda informação é extraída a partir do código fonte e usada durante as atividades de manutenção.

Reengenharia : se a direcionalidade tem sentido duplo, a informação é usada para "alimentar" uma abordagem de reengenharia, que tentará reestruturar ou regenerar o programa antigo.

GRAU DE ABSTRAÇÃO

Refere-se ao nível de generalidade das descrições. Conforme o nível de abstração aumenta, mais produtivas se tornam as informações

INTEIREZA:

Refere-se ao nível de detalhes que é fornecido em cada nível de abstração.

INTERATIVIDADE:

Refere-se ao grau de participação do ser humano no processo de engenharia reversa. Conforme o nível de abstração aumenta, a interatividade deve aumentar ou a inteireza será prejudicada.