Canine oral microbiome transplantation study - Report v4

Prepared by Yuki Chan (Dec 28 2018; updated Jan 11 2019; Feb 14 2019)

Summary about Samples

Summary abou	t Sai	iipic			
Count of	T4	тэ	т э	Τ.4	Total
samples	T1	T2	T3	T4	Total
Control	9	9	9	9	36
DogB	1	1	1	1	4
DogD	1	1	1	1	4
DogG	1	1	1	1	4
Dogl	1	1	1	1	4
DogK^	1	1	1	1	4
DogM^	1	1	1	1	4
DogO	1	1	1	1	4
DogR	1	1	1	1	4
DogS	1	1	1	1	4
Donor	5	9	0	0	14
DogE	5	9	0	0	14
Recipient	9	9	9	9	36
DogA	1	1	1	1	4
DogC	1	1	1	1	4
DogF	1	1	1	1	4
DogH	1	1	1	1	4
DogJ^	1	1	1	1	4
DogL^	1	1	1	1	4
DogN	1	1	1	1	4
DogP	1	1	1	1	4
DogQ	1	1	1	1	4
Grand Total	23	27	18	18	86

Donor samples From D	OogE
T1 (baseline)	related to
MT-E-I-1	DogA,C
MT-E-II-1	DogF,H
MT-E-III-1	DogJ,L
MT-E-IV-1	DogN
MT-E-V-1	DogP, Q
MT-E-V-2#	DogQ
Processed plaque Fron	n DogE
T2 (transplantation)	transferred to
Transplant-A (MT-A)	DogA
Transplant-C (MT-C)	DogC
Transplant-F (MT-F)	DogF
Transplant-H (MT-H)	DogH
Transplant-J (MT-J)	DogJ
Transplant-L (MT-L)	DogL
Transplant-N (MT-N)	DogN
Transplant-P (MT-P)	DogP
Transplant-Q (MT-Q)	DogQ

^Dog L had been reported to had contact to dog J, K or M after transplantation # This is a baseline sample that was taken at a wrong day, not included in the analysis

Timepoints

T1: Week 0 = baseline

T2: Week 2 = the day of transplantation

T3: Week 4 = 2 weeks after transplantation

T4: Week 14 = 12 weeks after transplantation

Sequence data summary

The number of sequencing reads and the data statistics passed through the DADA2 pipeline for each sample was summarized in TableS1.

How many sequencing reads are there? (1 read \approx 1 bacterial cell in theory)

	All	Donor	Recipient	Control
number of	samples	(n=14)	(n=36)	(n=36)
reads	(n=86)			
min	18614	18614	19408	19090
max	29353	29165	27059	29353
mean	21525	20605	21846	21561

All samples carry equivalently high numbers of sequences.

In these 86 samples there were 1753 ASVs (Amplicon Sequence Variants), conceptually equivalent to operational taxonomic units (OTUs) defined at 100% sequence identity; which can be interpreted as individual bacterial strains.

How many different bacteria are there in the samples? (number of ASVs)

	A 11	D	Danista at	C11
	All	Donor	Recipient	Control
	samples	(n=14)	(n=36)	(n=36)
	(n=86)			
min	169	169	205	220
max	439	295	439	413
mean	282	218.5	297.1	292.4
Total	1753	581	1308	1224

The samples from the donor dog had the lowest number of bacterial strains (ASVs).

How many bacteria (ASVs) are found in common among the samples from the donor, control and recipient dogs?

Is the sampling depth enough? i.e. did we recover most of the bacteria from the samples?

Rarefraction curves = plot of the number of ASVs (representing the species richness) as a function of the number of sequencing reads in the sample. These curves for all the samples reached plateau indicating high coverage of the microbiota by sequencing.

Comparison of bacterial diversities in the microbiomes

Shannon Entropy (or Shannon diversity index) measures the species richness and evenness in the bacterial communities in the sample. Observed ASVs are the count of ASVs in the samples

Alpha Diversity: Observed ASVs across samples

The diversity and species richness (number of different species) is significantly lower in the donor samples; whereas the Control and Recipient samples are similar at both the baseline (T1) and before transplant (T2). ** indicated statistical significant difference inferred with Wilcoxon-signed rank test with p <= 0.01; NS means no significant difference. This is consistent to what is known: healthy periodontal plaque microbiome has lower diversities than diseased ones. Note that Donor samples at T2 (in the figure at the bottom of this page) refer to the processed plaque samples from donor that were transferred to the recipient dogs.

Comparing alpha-diversities of microbiome at T2 before transplant

There are intrinsic changes in the diversities of microbiome in the donor dog. The increase in MT-F relative to MT-R-II-1 is awkward. However the overall range of variation is acceptable.

Shannon Entropies changes along time in Donor dog E

Shannon Entropies changes along time in Donor dog E

^{*}Updated scale of y-axis to start from 0

The effect of the first cleaning at baseline was obvious in reducing the diversity of microbiomes (week0vs2 = T1vsT2) in both control and recipient dogs (p<=0.01). The effect of transplantation was less clear (week2vs4 = T2vsT3). It seemed to further lower diversities in the recipient (although tested NS in Wilcoxon test). The diversity restored at 14 weeks (T4vsT1) in both Control and Recipient dogs.

Diversity changes across timepoints in the Control and Recipient dogs

Comparing alpha-diversities of microbiome in Control and Recipient across timepoints

What bacteria are in the samples? This heatmap shows the phylum composition of all the samples.

The three bacterial phyla **Bacteroidetes**, **Proteobacteria** and **Firmicutes** are dominant and prevalent in all samples. **Synergistetes** is absent in the donor samples. There are less Spirochaetes in the donor samples

Donor samples are distinctive from the control and recipient samples. There is no obvious trend of microbiome shift in the recipient dog samples (blue) after transplantation in this unconstrained ordination with all samples included.

PERMANOVA test statistics

Permutation test for adonis under reduced model

Marginal effects of terms

Permutation: free

Number of permutations: 999

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

	Df	SumOfSqs	R2	F	Pr(>F)	
Treatment	2	0.153	0.147	8.81	0.001	***
Timepoint	3	0.083	0.08	3.2	0.001	***
Gender	1	0.011	0.01	1.25	0.252	
Residual	79	0.684	0.661			
Total	85	1.035	1			

PERMANOVA test for Control samples only; testing for the difference cross timepoints:

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Timepoint	3	0.039	0.01313	1.39	0.115	0.1
Residuals	32	0.303	0.00946	0.885		
Total	35	0.342	1			

Pairwise-statistics

pairs	F.Model	R2	p.value	p.adjusted
T1 vs T2	1.767	0.099	0.09	0.54
T1 vs T3	1.457	0.083	0.148	0.888
T1 vs T4	0.858	0.051	0.559	1
T2 vs T3	0.399	0.024	0.919	1
T2 vs T4	2.371	0.129	0.029	0.174
T3 vs T4	1.404	0.081	0.155	0.93

The variation in the microbiome is measured with weighted UniFrac distance metrics, which takes into account the abundance and the phylogenetic relationship of taxa within the microbiome.

PERMANOVA test indicates that there are no differences in the microbiome in the control samples across timepoints.

PERMANOVA test for Recipient samples only; testing for the difference cross timepoints:

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)	
Timepoint	3	0.08	0.0267	2.47	0.188	3.00E-04	***
Residuals	32	0.345	0.0108	0.812			
Total	35	0.425	1				

Pairwise-statistics

pairs	F.Model	R2	p.value	p.adjusted	
T1 vs T2	3.199	0.167	0.001	0.006	**
T1 vs T3	3.396	0.175	0.002	0.012	*
T1 vs T4	0.960	0.057	0.49	1	
T2 vs T3	1.300	0.075	0.24	1	
T2 vs T4	3.160	0.165	0.002	0.012	*
T3 vs T4	2.778	0.148	0.013	0.078	•

There are significant differences in the Recipient samples across timepoints. This implies the synergistic effects of transplantation (T1 vs T3) to cleaning (T1 vs T2).

Percentage BOP in the Control and Recipient dogs

Plaque percentage in the Control and Recipient dogs

Mean PPD in the Control and Recipient dogs

With these clinical measurements data, next we sought to examine how these variables (BOP%, mean PPD and plaque %) are associated with the changes in the mcirobiome community composition; by constrained ordination analysis using Distance-based redundancy analysis.

Donor samples cluster towards the right whereas the BOP & PPD measurements increase towards the left (gradient indicated by black arrows). The major differences in the microbiome

between the donor vs control and recipient are associated to lower % BOP ; % plaque and mean PPD measurements.

Canonical analysis of principal coordinates for Control samples

Canonical analysis of principal coordinates for Recipient samples

Differential abundances analysis

These ASVs are showing significant changes in their abundances in the recipient dogs at different timepoints

Recipient Timepoint 2 vs 4

Recipient Timepoint 3 vs 4

Supplementary Table S2 summarizes the microbial taxa transferred from the donor transplant plaque to the recipients. It may be more meaningful to examine the loss of microbial taxa (instead of the gain) in the recipient samples at T3 and T4 relative to T1/T2; considering the fact of decrease in the diversities.

Supplementary

General description of the methods used for the analysis:

1) Quality check of the sequences obtained from BGI (HK), using fastQC on the fastq files

2) Primer sequences were trimmed from the clean reads using cutadapt

Ref: Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet. journal*, *17*(1), pp-10.

3) Sequences were processed using the DADA2 R package

Ref: Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. *Nature Methods*, *13*(7), 581.

Ref: Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. *The ISME Journal*, *11*(12), 2639.

"DADA2 is a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide...

DADA2 implements a new quality-aware model of Illumina amplicon errors. Sample composition is inferred by dividing amplicon reads into partitions consistent with the error model. The full workflow involves: filtering, error learning and modeling, dereplication, merging paired-end reads, and chimera identification" (Quote from Callahan et al. 2016)

4) Statistical analyses using phyloseq and other R package

Ref: McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PloS one*, *8*(4), e61217.

Ref: Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J., & Holmes, S. P. (2016). Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. *F1000Research*, *5*.

Ref: Love, Michael I., Wolfgang Huber, and Simon Anders. "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." *Genome biology* 15.12 (2014): 550.

5) Taxonomy Assignment

"The DADA2 package provides a native implementation of the naive Bayesian classifier method (Wang et al. 2007) for taxonomy assignment. It takes as input a set of sequences to be classified, and a training set of reference sequences with known taxonomy, and outputs taxonomic assignments with at least minBoot (default at 50) bootstrap confidence. The dada2 package also implements a method to make species level assignments based on exact matching between ASVs and sequenced reference strains. Recent analysis (Edgar 2018) suggests that exact matching (or 100% identity) is the only appropriate way to assign species to 16S gene fragments." (Quoted from DADA2 workflow)

We use a curated reference sequence database that comprised of the RDP trainset 16 (Cole 2014, derived from RDP Release 11.5 that consists of 3,356,809 aligned and annotated 16S rRNA sequences, updated 2016-09-30), eHOMD 16S rRNA RefSeq Version 15.1 (Chen et al. 2010, updated 2017-11-16) and the full set of canine oral microbiome 16S rRNA gene sequences (Dewhirst et al. 2012, 416 full-length sequences). Mothur (Schloss 2009) was used to process the reference sequences.

NB. The silva SSU reference database (v132 last updated 2017-12-13) is not used due to the incompatible taxonomy with the NCBI, HOMD, RDP databases, most notably due to the proposed superphylum, Patescibacteria that includes candidate phyla Gracilibacteria (GN02), Microgenomates, Parcubacteria, and Saccharibacteria (TM7)

Ref: Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Applied and environmental microbiology*, 73(16), 5261-5267.

Ref: Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J. and Sahl, J.W., 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Applied and environmental microbiology*, *75*(23), pp.7537-7541.

Ref: Edgar, R. C. (2018). Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics, bty113, https://doi.org/10.1093/bioinformatics/bty113.

Ref: Cole, J. R., Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T. Brown, A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis Nucl. Acids Res. 42(Database issue):D633-D642; doi: 10.1093/nar/gkt1244 [PMID: 24288368]

Ref: Chen, T., Yu, W-Han, Izard, J., Baranova, O.V., Lakshmanan, A., Dewhirst, F.E. (2010) The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. *Database*, Vol. 2010, Article ID baq013, doi: 10.1093/database/baq013

Ref: Dewhirst, Floyd E., Erin A. Klein, Emily C. Thompson, Jessica M. Blanton, Tsute Chen, Lisa Milella, Catherine MF Buckley, Ian J. Davis, Marie-Lousie Bennett, and Zoe V. Marshall-Jones. "The canine oral microbiome." *PloS one* 7, no. 4 (2012): e36067.

6) Functional metagenomic prediction of canine oral microbiome

"PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty."

A validated dada2-to-PICRUSt pipeline was used for the analysis:

https://github.com/vmaffei/dada2 to picrust

Accuracy of this pipeline has been tested using paired 16S and shotgun metagenome datasets.

Among the 1759 ASVs (Amplicon Sequence Variants) in the canine oral microbiome dataset, 1374 (78.11%) were matched to the greengene database and functional metagenome information available.

Ref: Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RL, Knight R, Beiko RG. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology. 2013 Sep;31(9):814.

TableS1 Statistics of data after processing through the DADA2 pipeline:

	SampleID	RawReads	clean	filtered	denoised	merged	nonchimeric	%output
1	MT-A-1	50265	35144	34247	34247	24877	20685	41.2%
2	MT-A-2	50968	35500	34708	34708	25757	20851	40.9%
3	MT-A-3	54617	35000	34061	34061	27890	24538	44.9%
4	MT-A-4	49865	34805	33956	33956	25122	20178	40.5%
5	MT-B-1	49589	34992	34160	34160	25570	21456	43.3%
6	MT-B-2	53257	35478	34450	34450	28033	24079	45.2%
7	MT-B-3	55239	35060	34231	34231	27703	23592	42.7%
8	MT-B-4	49250	34646	33925	33925	27474	23103	46.9%
9	MT-C-1	53289	34817	34269	34269	26331	20717	38.9%
10	MT-C-2	60002	34883	34239	34239	29144	25740	42.9%
11	MT-C-3	57681	34992	34470	34470	28566	23427	40.6%
12	MT-C-4	51699	34849	34314	34314	26374	21686	41.9%
13	MT-D-1	51900	35000	34393	34393	26761	21670	41.8%
14	MT-D-2	51878	35009	34387	34387	26129	20253	39.0%
15	MT-D-3	54702	34617	33961	33961	26869	20929	38.3%
16	MT-D-4	47834	34408	33849	33849	25489	20566	43.0%
17	MT-E-I-1	51331	34772	33987	33987	25426	20800	40.5%
18	MT-E-II-1	54934	34848	34011	34011	27058	19876	36.2%
19	MT-E-III-1	51587	34949	34087	34087	26424	19000	36.8%
20	MT-E-IV-1	51141	34941	33998	33998	25444	19443	38.0%
21	MT-E-V-1	56223	35034	34177	34177	27120	19545	34.8%
	MT-E-V-2	59157	34975	34252	34252	29908	22116	37.4%
22	MT-F-1	53046	34633	34083	34083	27705	23819	44.9%
23	MT-F-2	52271	34933	34305	34305	26367	19841	38.0%
24	MT-F-3	52542	35009	34373	34373	26276	20763	39.5%
25	MT-F-4	51180	35169	34549	34549	26088	20615	40.3%
26	MT-G-1	51628	35246	34628	34628	26390	21473	41.6%
27	MT-G-2	52810	34549	33977	33977	25882	19090	36.1%
28	MT-G-3	49457	34389	33817	33817	25868	19570	39.6%
29	MT-G-4	55495	34808	34175	34175	27205	22848	41.2%
30	MT-H-1	52976	35244	34612	34612	26429	21923	41.4%
31	MT-H-2	52791	35304	34571	34571	26487	21527	40.8%
32	MT-H-3	52368	34638	34047	34047	26388	20480	39.1%
33	MT-H-4	51536	35280	34631	34631	25986	22714	44.1%
34	MT-I-1	52996	35289	34608	34608	26597	21711	41.0%
35	MT-I-2	55780	34808	34115	34115	26696	20330	36.4%
36	MT-I-3	49221	34732	34293	34293	26238	21201	43.1%
37	MT-I-4	51675	35017	34359	34359	26118	22772	44.1%
38	MT-J-1	54336	35135	34479	34479	27661	22780	41.9%
39	MT-J-2	53817	35060	34351	34351	27544	21665	40.3%
40	MT-J-3	56563	34899	34138	34138	29498	25406	44.9%
41	MT-J-4	55658	35560	34805	34805	28791	24203	43.5%

						1		
42	MT-K-1	54890	35518	34645	34645	27321	23256	42.4%
43	MT-K-2	54327	35051	34362	34362	26543	22164	40.8%
44	MT-K-3	51341	34807	34169	34169	27723	23614	46.0%
45	MT-K-4	53320	35026	34277	34277	26154	21370	40.1%
46	MT-L-1	50316	34672	33911	33911	25401	19924	39.6%
47	MT-L-2	51657	35102	34263	34263	26928	21030	40.7%
48	MT-L-3	58197	35043	34052	34052	29715	27059	46.5%
49	MT-L-4	53352	35552	34848	34848	27182	21792	40.8%
50	MT-M-1	52059	35035	34049	34049	25566	20515	39.4%
51	MT-M-2	53180	34589	33788	33788	26763	20618	38.8%
52	MT-M-3	50304	34984	34350	34350	27257	21687	43.1%
53	MT-M-4	51884	34580	33777	33777	25292	19853	38.3%
54	MT-N-1	52130	35457	34721	34721	25555	20643	39.6%
55	MT-N-2	55280	35432	34608	34608	27423	19635	35.5%
56	MT-N-3	52272	34831	33986	33986	26424	19408	37.1%
57	MT-N-4	56101	35630	34656	34656	28763	24902	44.4%
58	MT-O-1	53803	35605	34687	34687	26806	22185	41.2%
59	MT-O-2	55477	35085	34204	34204	26594	19698	35.5%
60	MT-O-3	51406	34705	34086	34086	26953	20183	39.3%
61	MT-O-4	57804	30635	29707	29707	29442	29353	50.8%
62	MT-P-1	49664	34687	33925	33925	24797	21097	42.5%
63	MT-P-2	53456	35255	34454	34454	27137	20575	38.5%
64	MT-P-3	51636	35196	34306	34306	26042	19996	38.7%
65	MT-P-4	50803	35690	34867	34867	26050	20257	39.9%
66	MT-Q-1	49872	35359	34365	34365	25526	21759	43.6%
67	MT-Q-2	56068	35296	34422	34422	27882	24249	43.2%
68	MT-Q-3	49932	34747	34019	34019	27181	20859	41.8%
69	MT-Q-4	49970	34400	33805	33805	24521	19718	39.5%
70	MT-R-1	49775	34750	34182	34182	24948	19961	40.1%
71	MT-R-2	50983	34825	34290	34290	26408	20666	40.5%
72	MT-R-3	51757	35202	34644	34644	26760	20644	39.9%
73	MT-R-4	50754	35236	34708	34708	26132	20203	39.8%
74	MT-S-1	53333	34874	34275	34275	27725	25310	47.5%
75	MT-S-2	49249	34300	33739	33739	26851	20475	41.6%
76	MT-S-3	47863	34909	34372	34372	25541	20172	42.1%
77	MT-S-4	50925	34430	33799	33799	24804	19641	38.6%
78	Transplant-A	54312	34958	34077	34077	26218	19070	35.1%
79	Transplant-C	54635	34958	34087	34087	26529	19030	34.8%
80	Transplant-F	62548	34815	33942	33942	30944	29165	46.6%
81	Transplant-H	53950	34755	33992	33992	27057	18614	34.5%
82	Transplant-J	56797	34907	34068	34068	28091	21314	37.5%
83	Transplant-L	56037	35545	34629	34629	27779	21479	38.3%
84	Transplant-N	57660	35093	34325	34325	27844	20902	36.3%
85	Transplant-P	57327	34916	33943	33943	28430	20442	35.7%
86	Transplant-Q	56452	35457	34637	34637	28008	19784	35.0%

TableS2. Members of microbiota successfully transferred from the donor to the recipients:

		DogA	DogA	DogE	DogE	DogA	DogA
	timepoint	T1	T2	T1	T2	Т3	T4
	treatment	Recpt	Recpt	Donor	Donor	Recpt	Recpt
	Sample	MT-A-1	MT-A-2	MT-E-I-1	MT-A	MT-A-3	MT-A-4
Neisseriaceae	ASV287	0	0	38	45	21	0
Neisseria sp.	ASV290	0	0	22	45	13	0
Neisseria sp.	ASV235	0	0	0	50	25	0
Xenophilus sp.	ASV286	0	0	32	43	31	0
Treponema sp. COT 356	ASV341	0	0	25	42	19	0
Porphyromonas sp.	ASV376	0	0	29	14	38	0
Porphyromonas sp.	ASV176	0	0	60	19	25	0
Porphyromonas sp.	ASV1069	0	0	0	3	0	3
Porphyromonas sp.	ASV123	0	0	39	19	0	15
Porphyromonas sp.	ASV150	0	0	51	19	0	88
TM7 G-2 sp.	ASV193	0	0	24	134	74	0

		DogC	DogC	DogE	DogE	DogC	DogC
	timepoint	T1	T2	T1	T2	T3	T4
	treatment	Recpt	Recpt	Donor	Donor	Recpt	Recpt
	Sample	MT-C-1	MT-C-2	MT-E-I-1	MT-C	MT-C-3	MT-C-4
Neisseria sp.	ASV665	0	0	16	53	21	0
Fusobacterium sp.	ASV287	0	0	38	66	39	0
Neisseria sp.	ASV738	0	0	0	22	33	0
Leucobacter sp.	ASV286	0	0	32	113	57	27
Pasteurellaceae G-2 sp.	ASV341	0	0	25	121	31	16
Xenophilus sp.	ASV489	0	0	0	16	3	0
Fusobacterium sp.	ASV45	0	0	28	712	0	44
Porphyromonas sp.	ASV44	0	0	30	152	374	224
Porphyromonas sp.	ASV458	0	0	0	21	9	0
Porphyromonas sp.	ASV577	0	0	0	13	0	6
Pasteurellaceae G-1 sp.	ASV575	0	0	5	7	0	3
Propionibacterium sp. COT 296	ASV624	0	0	5	8	0	2
Chlorobi G-1 sp.	ASV145	0	0	18	14	33	0
Bergeyella sp.	ASV218	0	0	0	44	99	0
Alloprevotella sp.	ASV40	0	0	279	1531	233	39
GN02 G-1 sp.	ASV176	0	0	60	14	126	101
Paraprevotella sp.	ASV348	0	0	0	15	35	0
Moraxella sp.	ASV174	0	0	0	97	12	19
Campylobacter mucosalis	ASV123	0	0	39	19	0	39
GN02 G-1 sp.	ASV150	0	0	51	45	65	133
Acholeplasmatales G-4 sp.	ASV651	0	0	5	12	16	6
Neisseria sp.	ASV53	0	0	53	200	38	0

Bacteroidia sp.	ASV162	0	0	143	25	52	83
Porphyromonas sp.	ASV396	0	0	47	4	0	10
Tissierella sp.	ASV828	0	0	0	25	0	26

	dog	DogF	DogF	DogE	DogE	DogF	DogF
	timepoint	T1	T2	T1	T2	Т3	T4
	treatment	Recpt	Recpt	Donor	Donor	Recpt	Recpt
	Sample	MT-F-1	MT-F-2	MT-E-II-1	MT-F	MT-F-3	MT-F-4
Clostridiales F-1,G-4 sp.	ASV271	0	0	80	83	5	4
Peptostreptococcaceae XI G-10 sp.	ASV44	0	0	131	69	67	249
Helcococcus sp. COT 140	ASV356	0	0	44	39	33	0
TM7 G-2 sp.	ASV173	0	0	73	30	62	10
Treponema sp. COT 359	ASV589	0	0	28	18	9	0
Proprionivibrio sp. COT 223	ASV261	0	0	115	47	94	36
Fusobacterium sp.	ASV477	0	0	0	2	28	9
Prevotella sp. COT 372	ASV40	0	0	165	189	570	102
Stenotrophomonas sp. COT 224	ASV326	0	0	9	16	0	9
Capnocytophaga sp.	ASV244	0	0	0	15	18	33
Treponema sp.	ASV403	0	0	13	28	0	4
Chlorobi G-1 sp.	ASV184	0	0	39	33	15	28
Cardiobacterium sp. COT 176	ASV362	0	0	17	4	0	12
Lachnospiraceae XIVa G-2 sp.	ASV640	0	0	4	32	8	0
Bergeyella sp.	ASV431	0	0	0	15	7	4
unclassified Alphaproteobacteria	ASV1058	0	0	0	4	0	3
Erysipelotrichaceae G-2 sp.	ASV146	0	0	33	45	321	211
Lachnospiraceae XIVa G-2 sp.	ASV140	0	0	0	6	47	0

	dog	DogH	DogH	DogE	DogE	DogH	DogH
	timepoint	T1	T2	T1	T2	Т3	T4
	treatment	Recpt	Recpt	Donor	Donor	Recpt	Recpt
	Sample	MT-H-1	MT-H-2	MT-E-II-1	МТ-Н	MT-H-3	MT-H-4
Peptostreptococcaceae XI G-10 sp.	ASV287	0	0	65	42	36	0
Treponema sp. COT 359	ASV892	0	0	1	3	0	9
Erysipelotrichaceae	ASV278	0	0	30	71	58	0
Treponema sp.	ASV699	0	0	0	4	0	13
Proteocatella sp. COT 032	ASV196	0	0	46	325	0	8
Fusobacterium sp.	ASV700	0	0	0	4	0	5
Capnocytophaga cynodegmi	ASV261	0	0	115	65	62	0
Porphyromonas sp.	ASV40	0	0	165	315	469	32
Catonella sp. COT 257	ASV53	0	0	217	513	37	51
Peptostreptococcaceae XI G-3 sp.	ASV695	0	0	0	5	0	10
Propionibacterium sp. COT 296	ASV396	0	0	7	7	0	19
Chlorobi G-1 sp.	ASV184	0	0	39	23	13	18
Deltaproteobacteria G-1 sp.	ASV221	0	0	29	16	9	8

Moraxella sp.	ASV418	0	0	0	57	4	0
Peptostreptococcaceae XI G-5 sp.	ASV298	0	0	0	15	14	32
Actinomyces sp.	ASV315	0	0	32	22	8	6
Streptococcus sp.	ASV555	0	0	0	18	13	0
Erysipelotrichaceae G-4 sp. COT 381	ASV121	0	0	72	41	24	21
Capnocytophaga sp.	ASV250	0	0	23	14	20	0

	dog	DogJ	DogJ	DogE	DogE	DogJ	DogJ
	timepoint	T1	T2	T1	T2	Т3	T4
	treatment	Recpt	Recpt	Donor	Donor	Recpt	Recpt
	Sample	MT-J-1	MT-J-2	MT-E-III-1	MT-J	MT-J-3	MT-J-4
Bacteroidia sp.	ASV331	0	0	0	9	0	12
Porphyromonas sp.	ASV71	0	0	100	83	68	0
Porphyromonas sp.	ASV235	0	0	27	12	69	0
Porphyromonas sp.	ASV286	0	0	29	10	94	12
Porphyromonas sp.	ASV341	0	0	23	14	75	0
Porphyromonas macacae	ASV399	0	0	1	28	0	13
Prevotella sp.	ASV129	0	0	6	31	11	18
Alloprevotella sp.	ASV88	0	0	48	34	0	15
Bergeyella sp.	ASV44	0	0	206	254	960	0
Capnocytophaga sp.	ASV892	0	0	4	3	0	8
Capnocytophaga cynodegmi	ASV278	0	0	96	49	35	0
unclassified Alphaproteobacteria	ASV477	0	0	0	3	65	0
Chlorobi G-1 sp.	ASV40	0	0	144	168	245	43
Stenotrophomonas sp. COT 224	ASV326	0	0	43	66	0	8
Xanthomonadaceae	ASV279	0	0	0	9	0	19
Xenophilus sp.	ASV158	0	0	242	39	41	0
Brachymonas sp.	ASV473	0	0	0	51	35	0
Alcaligenaceae	ASV438	0	0	0	25	43	0
Neisseria sp.	ASV115	0	0	0	57	89	99
Moraxella sp.	ASV144	0	0	0	139	0	5
Moraxella sp.	ASV53	0	0	263	955	36	0
Treponema sp.	ASV863	0	0	0	8	0	9
Peptostreptococcaceae XI G-10 sp.	ASV121	0	0	23	26	0	8

	dog	DogL	DogL	DogE	DogE	DogL	DogL
	timepoint	T1	T2	T1	T2	Т3	T4
	treatment	Recpt	Recpt	Donor	Donor	Recpt	Recpt
	Sample	MT-L-1	MT-L-2	MT-E-III-1	MT-L	MT-L-3	MT-L-4
Bacteroidia sp.	ASV331	0	0	0	33	8	16
Porphyromonas sp.	ASV287	0	0	50	33	24	0
Porphyromonas sp.	ASV290	0	0	41	31	15	20
Porphyromonadaceae G-1 sp.	ASV422	0	0	0	17	5	10
Porphyromonas sp.	ASV316	0	0	17	13	28	0

Paraprevotella sp.	ASV680	0	0	5	26	0	10
Alloprevotella sp.	ASV88	0	0	48	113	42	9
unclassified Bacteroidetes	ASV461	0	0	12	6	0	9
Bergeyella sp.	ASV44	0	0	206	414	169	137
Capnocytophaga sp.	ASV501	0	0	0	9	0	6
Flavobacteriaceae	ASV427	0	0	0	4	0	4
Capnocytophaga cynodegmi	ASV278	0	0	96	52	41	0
TM7 G-3 sp.	ASV336	0	0	12	27	31	0
GN02 G-1 sp.	ASV577	0	0	0	56	12	0
GN02 G-2 sp.	ASV108	0	0	219	90	12	33
Campylobacterales	ASV777	0	0	2	19	16	2
Globicatella sp.	ASV421	0	0	25	33	0	10
Erysipelotrichaceae	ASV196	0	0	51	73	0	10
Fusobacterium sp.	ASV145	0	0	0	36	0	55
Fusobacterium sp.	ASV261	0	0	53	49	103	35
unclassified Alphaproteobacteria	ASV477	0	0	0	8	67	3
Chlorobi G-1 sp.	ASV40	0	0	144	218	513	186
Stenotrophomonas sp. COT 224	ASV326	0	0	43	32	0	8
Xenophilus sp.	ASV176	0	0	92	44	163	139
Brachymonas sp.	ASV361	0	0	9	25	5	23
Brachymonas sp.	ASV585	0	0	11	1	16	20
Brachymonas sp.	ASV380	0	0	0	14	155	56
Pasteurellaceae G-1 sp.	ASV348	0	0	13	9	14	0
Pasteurellaceae G-2 sp.	ASV174	0	0	0	235	0	61
Pasteurellaceae G-2 sp.	ASV214	0	0	8	69	5	78
Moraxella sp.	ASV53	0	0	263	368	69	0
Actinomyces sp.	ASV134	0	0	121	42	140	0
Treponema sp. COT 233	ASV204	0	0	0	13	55	37
Treponema sp.	ASV362	0	0	0	16	0	15
Spirochaeta sp.	ASV711	0	0	0	5	3	20
Catonella sp. COT 257	ASV298	0	0	11	31	0	15
Peptostreptococcaceae XI G-3 sp.	ASV315	0	0	39	25	7	0
Peptostreptococcaceae XI G-5 sp.	ASV555	0	0	15	26	12	0

	dog	DogN	DogN	DogE	DogE	DogN	DogN
	timepoint	T1	T2	T1	T2	Т3	T4
	treatment	Recpt	Recpt	Donor	Donor	Recpt	Recpt
	Sample	MT-N-1	MT-N-2	MT-E-IV-1	MT-N	MT-N-3	MT-N-4
Bacteroidia sp.	ASV339	0	0	0	23	0	14
Porphyromonas sp.	ASV290	0	0	0	24	20	0
Paraprevotella sp.	ASV680	0	0	3	26	12	0
Alloprevotella sp.	ASV88	0	0	25	66	174	185
Bergeyella sp.	ASV44	0	0	81	361	536	130
Porphyromonas gulae	ASV141	0	0	69	4	19	4

Porphyromonas sp.	ASV23	0	0	349	72	122	69
GN02 G-1 sp.	ASV577	0	0	0	25	0	10
Fusobacterium sp.	ASV261	0	0	47	71	28	0
Chlorobi G-1 sp.	ASV40	0	0	219	501	364	124
Stenotrophomonas sp. COT 224	ASV326	0	0	50	10	0	11
Xanthomonadaceae	ASV279	0	0	29	5	0	25
Xenophilus sp.	ASV64	0	0	100	31	90	136
Xenophilus sp.	ASV176	0	0	113	29	0	32
Comamonas sp. COT 270	ASV16	0	0	0	103	245	305
Pasteurella sp.	ASV124	0	0	0	83	66	0
Neisseria sp.	ASV206	0	0	71	14	12	14
Neisseria sp.	ASV123	0	0	45	65	0	39
Neisseria sp.	ASV150	0	0	254	12	0	28
Moraxella sp.	ASV53	0	0	181	241	41	0
Actinomyces sp.	ASV134	0	0	20	51	51	35
Treponema sp.	ASV221	0	0	0	44	0	47
Treponema sp. COT 233	ASV204	0	0	0	26	0	52
Spirochaeta sp. COT 314	ASV343	0	0	0	3	5	27
Desulfovibrio sp.	ASV38	0	0	0	63	299	737
Lachnospiraceae XIVa G-4 sp.	ASV357	0	0	29	19	53	0
Peptostreptococcaceae XI G-3 sp.	ASV130	0	0	0	31	0	26
Helcococcus sp. COT 140	ASV146	0	0	17	43	28	13
Peptostreptococcaceae XI G-7 sp.	ASV185	0	0	18	7	0	27

	dog	DogP	DogP	DogE	DogE	DogP	DogP
	timepoint	T1	T2	T1	T2	Т3	T4
	treatment	Recpt	Recpt	Donor	Donor	Recpt	Recpt
	Sample	MT-P-1	MT-P-2	MT-E-V-1	MT-P	MT-P-3	MT-P-4
Porphyromonas sp.	ASV290	0	0	36	34	27	0
Prevotella sp. COT 372	ASV271	0	0	40	53	3	4
Bacteroidetes	ASV461	0	0	18	9	3	0
Erysipelotrichaceae	ASV917	0	0	4	3	0	4
Xenophilus sp.	ASV176	0	0	65	31	80	0
Neisseria sp.	ASV206	0	0	35	11	21	42
Neisseria sp.	ASV368	0	0	8	9	28	0
Treponema sp. COT 233	ASV204	0	0	39	31	0	48
Catonella sp. COT 025	ASV354	0	0	5	14	7	0

	dog	DogQ	DogQ	DogE	DogE	DogQ
	timepoint	T1	T2	T2	Т3	T4
	treatment	Recpt	Recpt	Donor	Recpt	Recpt
	Sample	MT-Q-1	MT-Q-2	MT-Q	MT-Q-3	MT-Q-4
Bacteroidia sp.	ASV665	0	0	3	17	19
Paludibacter sp.	ASV531	0	0	11	16	0

Porphyromonas macacae	ASV399	0	0	12	0	49
Paraprevotella sp.	ASV680	0	0	3	5	13
Cloacibacterium sp. COT 320	ASV353	0	0	8	6	0
Capnocytophaga canimorsus	ASV219	0	0	55	10	0
Porphyromonas gulae	ASV195	0	0	94	392	94
SR1 G-1 sp.	ASV351	0	0	26	0	1
Xenophilus sp.	ASV176	0	0	41	31	0
Pasteurella canis	ASV70	0	0	472	0	28
Pasteurellaceae G-2 sp.	ASV110	0	0	206	0	28
Pasteurellaceae G-2 sp.	ASV79	0	0	228	8	0
Pasteurellaceae G-2 sp.	ASV174	0	0	54	0	17
Neisseria sp.	ASV206	0	0	16	0	24
Neisseria sp.	ASV609	0	0	5	0	8
Conchiformibius sp.	ASV127	0	0	27	43	22
Moraxella sp.	ASV144	0	0	52	0	29
Moraxella sp.	ASV53	0	0	672	54	0
Actinomyces sp.	ASV134	0	0	178	15	13
Treponema sp. COT 233	ASV204	0	0	26	27	31
Deltaproteobacteria G-1 sp.	ASV411	0	0	20	5	0
Deltaproteobacteria G-1 sp. COT 266	ASV437	0	0	7	13	0
Lachnospiraceae XIVa G-7 sp.	ASV635	0	0	12	13	0
Lachnospiraceae XIVa G-2 sp.	ASV431	0	0	4	13	0
Lachnospiraceae XIVa G-4 sp.	ASV357	0	0	6	7	0
Peptostreptococcaceae XI G-3 sp.	ASV315	0	0	16	19	7