# Digital Integrated Circuit Lecture 9 MOS Transistor Theory

Sung-Min Hong (<a href="mailto:smhong@gist.ac.kr">smhong@gist.ac.kr</a>)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

### **Review of Previous Lecture**

#### Lecture 8

- Nonideal IV
  - Analysis on the velocity saturation

$$V_{dsat} = \frac{V_{GT}V_c}{V_{GT} + V_c}$$

$$I_{dsat} = C_{OX}W \frac{V_{GT}^2 + V_c}{V_{GT} + V_c}v_{sat}$$

Body effect

$$V_c = E_c L$$

## 2.4 Nonideal IV

# 2.4. Nonideal IV (13)

- Leakage
  - -Subthreshold slope

$$S = \left[\frac{d(\log_{10} I_d)}{dV_{gs}}\right]^{-1} = nv_T \ln 10$$

- Drain-induced barrier lowering
- Gate-induced drain leakage



Fig. 2.20

## 2.5 DC Transfer

# 2.5. DC transfer (1)

- A CMOS inverter
  - The transistor is a switch with an infinite off-resistance and a finite on-resistance.



Fig. 2.25



# 2.5. DC transfer (2)

- Important properties (Taken from Rabaey's book)
  - The HIGH and LOW output levels equal  $V_{DD}$  and GND, respectively.
  - -The logic levels are not dependent upon the relative device sizes, so that the transistors can be minimum size. (Ratioless)
  - A well-designed CMOS inverter has a low output impedance.
  - -The input resistance of the CMOS inverter is extremely high.
  - The absence of current flow between  $V_{DD}$  and GND means that the logic gate does not consume any static power.

# 2.5. DC transfer (3)

 We have five points. Identify the operational modes of transistors.



Fig. 2.26(c)

## 2.5. DC transfer (4)

- Input threshold,  $V_{inv}$  (or switching threshold)
  - -When  $V_{in} = V_{out} = V_{inv}$
- $\beta$  ( $\frac{W}{L}\mu C_{OX}$ ) ratio
  - -HIGH-skewed,  $\frac{\beta_p}{\beta_n} > 1$ , stronger PMOS -LOW-skewed,  $\frac{\beta_p}{\beta_n} < 1$ , weaker PMOS



# 2.5. DC transfer (5)

- ullet Quantitative analysis for  $V_{inv}$ 
  - Use the long-channel IV

$$I_{dn} = \frac{\beta_n}{2} (V_{inv} - V_{tn})^2$$
 and  $I_{dp} = -\frac{\beta_p}{2} (V_{inv} - V_{DD} - V_{tp})^2$ 

- After manipulation, we have

$$V_{inv} = rac{V_{DD} + V_{tp} + V_{tn} \sqrt{rac{1}{r}}}{1 + \sqrt{rac{1}{r}}}$$

-(Here, 
$$r = \frac{\beta_p}{\beta_n}$$
)

– For a special case with r=1,  $V_{inv}=\frac{V_{DD}+V_{tn}+V_{tp}}{2}$ 

# 2.5. DC transfer (6)

- Quantitative analysis for  $V_{inv}$  with velocity saturation
  - Use the following expressions:

$$I_{dn} = W_n C_{ox} v_{sat-n} (V_{inv} - V_{tn})$$
  

$$I_{dp} = -W_p C_{ox} v_{sat-p} (V_{inv} - V_{DD} - V_{tp})$$

- After manipulation, we have

$$V_{inv} = \frac{V_{DD} + V_{tp} + V_{tn} \frac{1}{r}}{1 + \frac{1}{r}}$$

-(Here, 
$$r = \frac{W_p v_{sat-p}}{W_n v_{sat-n}}$$
)

– For a special case with r=1,  $V_{inv}=\frac{v_{DD}+v_{tn}+v_{tp}}{2}$ 

# 2.5. DC transfer (7)

- Compare them.
  - Let's draw  $\frac{V_{inv}}{V_{DD}}$  as a function of r. Assume that  $V_t = V_{tn} = -V_{tp}$ .



# 2.5. DC transfer (8)

- Width ratio (Velocity-saturated inverter)
  - It is found that

$$r = \frac{W_{p}v_{sat-p}}{W_{n}v_{sat-n}} = \frac{V_{inv} - V_{tn}}{V_{DD} - V_{tp} - V_{inv}}$$

-The width ratio is given by

$$\frac{W_p}{W_n} = \frac{v_{sat-n}(V_{inv} - V_{tn})}{v_{sat-p}(V_{DD} - V_{tp} - V_{inv})}$$

# 2.5. DC transfer (9)

- Noise margin
  - -Two unity gain points
  - -Input voltage is  $V_{IL}$ .
  - Input voltage is  $V_{IH}$ .

In this case,

$$NL_L = V_{IL} NL_H = V_{DD} - V_{IH}$$



Fig. 2.30

#### Homework#3

- Due: AM08:00, October 5
- Problem#1
  - -Calculate  $V_{IL}$  with the ideal IV characteristics. It can be found from a condition of  $\frac{dV_{out}}{dV_{in}}=-1$ . Neglect the channel length modulation. Assume  $\mu_n C_{OX} \frac{W_n}{L_n} = \mu_p C_{OX} \frac{W_p}{L_p}$  and  $V_{tn}=-V_{tp}$  for simplicity.
  - Hint: The NMOSFET is in the saturation mode, while the PMOSFET in the linear mode.

#### Homework#3

- Problem#2
  - Using the solution of Problem#1, calculate  $V_{IL}$  when  $V_{DD}$  is 1.8 V and  $V_{tn}$  is 0.5 V.

# Thank you!