INFORMATIKAI ALAPISMERETEK

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fontos tudnivalók

Általános megjegyzések:

Ha egy kérdésre a jó válasz(ok) mellett a vizsgázó válaszában hibás választ is megjelöl, akkor a kérdésre adható pontszámból le kell vonni a rossz válaszok számát. Negatív pontszám nem adható, ezért több hibás válasz esetén a minimális pontszám nullánál kevesebb nem lehet.

Pl.: Ha egy jó válasz mellett a vizsgázó egy hibás választ is bejelöl, akkor 0 pontot kell adni

Egyes esetekben előfordulhat, hogy egy általánostól eltérő rendszer használata miatt valamely kérdésre a vizsgázó nem a várt válasz adja, de a válasza és az <u>indoklása</u> elfogadható. Ilyen esetben a kérdésre adható pontszámot meg kell adni.

Pl.: Táblázatkezelőkben magyar beállításnál a tizedesek elválasztásának a jele a vessző, és ez a várt válasz. Ha a vizsgázók munkájuk során angol beállítást használnak, vagy a vizsgázó odaírja ezt megjegyzésként, akkor az előző helyett az angol beállítású környezetben használt pont lesz a helyes válasz.

Az írásbeli vizsgafeladatok pontszámainak összege csak egész szám lehet. Ha az írásbeli vizsgarész pontszáma nem egész szám, akkor a matematikai kerekítés szabályai szerint kell eljárni (az öttizedre vagy az a felett végződő pontszámokat felfelé, az öttized alattit pedig lefelé kerekítjük).

Teszt jellegű, illetve egyszerű, rövid szöveges választ igénylő feladatok megoldása

Hardver

1) b, d, a, c (helyes válaszonként 1-1 pont)	4 pont
2) d	1 pont
3) b	1 pont
4) H, I, I, H (helyes válaszonként 1-1 pont)	4 pont
5) b	1 pont
6) c	1 pont
7) I, H, I, H (helyes válaszonként 1-1 pont)	4 pont
8) 1. sor: a, b; 2. sor: a, c; 3. sor: a, b, d; 4. sor: a, b	
(helyes soronként 1-1 pont)	4 pont
9) a	1 pont
<u>Szoftver</u>	
10) b	1 pont
11) d, c, a, b (helyes válaszonként 1-1 pont)	4 pont
12) d	1 pont
13) a:féreg (worm), b:polimorf vírus, c:trójai program, d:makró vír	us
(helyes válaszonként 1-1 pont)	4 pont
14) H, H, I, H (helyes válaszonként 1-1 pont)	4 pont
Szövegszerkesztés, táblázatkezelés	
15) c	1 pont
16) d	1 pont
17) b	1 pont
18) d	1 pont
Informatikai alapok	
19) c	1 nont
20) d	
-,	Pont

21)

Decimális érték	Bináris kód (8 bites)	Hexadecimális kód (2 jegyű)	2-es komplemens kód (8 bites)
93	<u>01011101</u>	<u>\$5D</u>	
-8			<u>11111000</u>
<u>194</u>		\$C2	

(helyes megoldásonként 1-1 pont)

4 pont

Hálózati ismeretek, HTML

22)	d	1 pont
23)	d	1 pont
24)	a	1 pont
25)	c	1 pont
26)	b	1 pont

A feladatokra adható összes pontszám: 50 pont

Programozási, illetve adatbázis-feladatok számítógépes megoldása

1. feladat 10 pont

Az alábbi algoritmus olyan 20 elemű, véletlen egész számokból álló sorozatot állít elő, amelyben pontosan 5 db prím van. Kódolja az algoritmust az alábbi programozási nyelvek egyikén: Pascal, Java, BASIC, C, C++ vagy C#!

A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk, mely az adatokat – ha szükséges – a billentyűzetről (standard input) olvassa, és a képernyőre (standard output) írja ki. Vizuális fejlesztőeszköz használata esetén az algoritmust konzol alkalmazásként (szöveges ablakban futó) kérjük elkészíteni! A Véletlenegész függvény a megadott határok közötti véletlen egész számot generál. (A határokat is beleértve.) Ha a függvény nem létezik a használt nyelvben, akkor alkalmazzon megfelelő képletet, amely a megadott intervallumba eső véletlenszámot generál! Az algoritmusban alkalmazott := operátor értékadást jelent!

```
Konstans N=20
Változó A[1..N]:egész elemű tömb
Függvény Prim(Szam:egész):logikai
Változó I:egész
        L:logikai
  L:=Hamis
  I:=1
  Ciklus amíg (I*I<Szam) és Nem(L)
      I := I + 1
      L:=Szam Mod I=0
  Ciklus vége
  Prim:=Nem(L)
Függvény vége
Eljárás Generalas:
Változó I, Db: egész
  Ciklus
    Db:=0
    Ciklus I:=1-től N-ig
      A[I]:=Véletlenegész(2,100)
      Ha Prim(A[I])
        akkor Db:=Db+1
      Elágazás vége
    Ciklus vége
  amíg (Db<>5)
Eljárás vége
Eljárás Kiiras:
Változó I:egész
    Ciklus I:=1-től N-ig
      Ha Prim(A[I])
        Akkor Ki: A[I],' (prim)'
        Különben Ki: A[I], ' (nem prim)'
      Elágazás vége
    Ciklus vége
Eljárás vége
Program Szamok
  Generalas
  Kiiras
Program vége.
```

 a) A programkód szintaktikailag hibátlan, lefordítható, eljárásokra tagolt
b) A globális konstans és tömbváltozó helyes definiálása, deklarálása 1 pont
c) Prim függvény helyes kódolása
 A függvény fejlécének a kódolása helyes; a paraméter neve és típusa megadásra került; a visszaadott érték típusa megadásra került; a lokális változók deklarálásra kerültek:
 Az elöltesztelős ciklus kódolása helyes; a ciklusfeltétel helyes; a ciklusmag tartalmazza a megadott utasításokat:
A ciklus előtti értékadások kódolása helyes; megtörténik az érték visszaadás:
d) A General eljárás helyes kódolása
A külső (hátultesztelős) ciklus helyes szervezése; a ciklusfeltétel megfelelő kódolása:
 A belső (számlálós) ciklus helyes szervezése; a ciklusváltozó deklarálásra került; a ciklusmag blokkba foglalása; a tömb a megfelelő tartományba eső véletlen értékekkel feltöltésre került: A prím elemek számlálása megtörténik; a számláláshoz szükséges változó helyes
deklarálása: 1 pont
e) A Kiiras eljárás helyes kódolása 2 pont
 Helyes ciklusszervezés; a ciklusváltozó helyes deklarálása; a ciklusmagban elágazás található helyes feltétellel:
 Megtörténik a tömbelemek, illetve minden tömbelem esetében a 'Prím', 'Nem prím'

2. feladat 10 pont

Írjon programot, amely előállítja a felhasználó által megadott 16 bites, bináris, előjel nélküli egész szám hexadecimális alakját! A hexadecimális forma előállításához az alábbiakban részletezett algoritmust használja!

Bináris érték átváltása hexadecimális formára:

- a bináris számjegyek sorozatát 4 bites csoportokra osztjuk
- meghatározzuk az egyes csoportok értékét 10-es számrendszerben
- a kapott értékeket egy-egy hexadecimális számjeggyé alakítjuk

Például:

Adott a következő 16 bites bináris szám: 1011001111011010

- 4 bites csoportokra bontjuk: 1011 0011 1101 1010
- a 4 bites csoportok 10-es számrendszerbeli értéke sorrendben: 11 3 13 10
- a kapott értékek hexadecimális számjegy formájában: B 3 D A
- A hexadecimális alak tehát: \$B3DA

A programnak semmiféle ellenőrzést nem kell végeznie, feltételezzük, hogy a felhasználó pontosan 16 bit hosszúságú bináris számot adott meg!

A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk, mely az adatokat – ha szükséges – billentyűzetről (standard input) olvassa, és a képernyőre (standard output) írja ki. Vizuális fejlesztőeszköz használata esetén az algoritmust konzol alkalmazásként (szöveges ablakban futó) kérjük elkészíteni! A feladat megoldása az alábbi nyelvek valamelyikén készüljön:Pascal, Java, BASIC, C, C++ vagy C#! Beadandó a feladatot megoldó program forráskódja!

 a) A programkód szintaktikailag hibátlan, lefordítható
b) A változók helyes definiálása
 A pont abban az esetben adható meg, ha valamennyi, a feladat bemenő és
kimenő adatait tárolni képes változó, illetve valamennyi segédváltozó megfelelően
deklarálásra került
c) Adatbekérés
 A pont abban az esetben adható meg, ha a bemenő adat bekérése megtörtént,
a bekérés a felhasználó számára egyértelmű volt
d) A bináris szám 4 bites csoportokra bontása
 A program legalább egy 4 bites csoportot helyesen elkülönít: 1 pont
 A program minden 4 bites csoportot helyesen elkülönít:
Megjegyzés: a pontok természetesen akkor is járnak, ha a csoportok nem kerülnek
kimásolásra, de a feldolgozásuk megfelelően megtörténik.
e) 4 bites csoportok értékének a meghatározása
Helyes ciklusszervezés; a 4 bit bejárása megtörténik:
 A bitek helyi értékeinek a helyes meghatározása:
 A program a csoportok értékét helyesen határozza meg:
f) A hexadecimális alak meghatározása2 pont
Minden hexadecimális számjegy meghatározásra kerül:
 A hexadecimális számjegyek megfelelő sorrendben kiírásra kerülnek: 1 pont

3. feladat 15 pont

Egy akrobatikus snowboard versenyen részt vevő versenyzők kétféle pontszámot kapnak: az egyiket a bemutatott gyakorlat nehézségére, a másikat pedig a kivitelezés minőségére. Mindkét pontszám értéke legalább 1 és legfeljebb 10 lehet. Törtpontszám is adható, de csak olyan, amelynek a törtrésze 0,5, pl. 3,5 vagy 8,5. A versenyen legfeljebb 10-en vehetnek részt!

Írjon programot, amely megvalósítja a versennyel kapcsolatosan az alábbi feladatokat!

- A program tegye lehetővé a versenyzők pontszámainak a beolvasását a billentyűzetről!
 A beolvasás során a program jelenítse meg a következő versenyző sorszámát, és adjon lehetőséget a kétféle pontszám beírására!
- A program ellenőrizze, hogy a beírt pontszámok a megfelelő intervallumba esnek-e, illetve, hogy a felhasználó nem írt-e be nem megengedett törtpontszámot (pl. 7,2)!
 Helytelen pontszám megadása esetén lehetőséget kell adni az újbóli beírásra, akár többször is, de hibaüzenetet nem kell adni! Típusellenőrzést nem kell végezni!
- Az adatbevitel végét a felhasználó határozza meg, úgy, hogy a következő versenyző első pontszámaként 0 végjelet ír be! Ekkor a másik pontszámot már ne is kérje a program!
- A program listázza ki táblázatszerűen (az alábbi mintához hasonlóan) a versenyzők sorszámát, valamint a gyakorlat nehézségére, illetve a kivitelezésre kapott pontszámot! A táblázatnak legyen fejléce!

Minta:

Sorszám	Nehézség	Kivitelezés	
1.	6	4.5	
2.	3.5	9	

 A program határozza meg az első olyan versenyző sorszámát, akinek a gyakorlatára kapott kétféle pontszám között a különbség 2-nél nagyobb, majd írja ki azt!
 A program ne vizsgálja meg a szükségesnél több versenyző pontszámait!

A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk, mely az adatokat billentyűzetről (standard input) olvassa, és a képernyőre (standard output) írja ki. Vizuális fejlesztőeszköz használata esetén az algoritmust konzol alkalmazásként (szöveges ablakban futó) kérjük elkészíteni! A feladat megoldása az alábbi nyelvek valamelyikén készüljön: Pascal, Java, BASIC, C, C++ vagy C#! Beadandó a feladatot megoldó program forráskódja!

c)	Elle	enőrzött beolvasás	5 pont
	_	A beolvasott pontszámok a későbbi feladatok végrehajtása érdekében tárolásra kerülnek:	
	_	A program ellenőrzi, hogy a pontszámok a megfelelő intervallumba esnek, és hogy a törtpontszámok törtrésze csak 0,5 lehet; a részfeltételek között megfe	ല്
		a logikai kapcsolat:	CIO
	_	Hibás adat beírása esetén a program lehetőséget ad a többszöri javításra:	
		egjegyzés: Elég, ha hibaüzenet nélkül működik az ellenőrzött adatbevitel, hibaüzenetre n lön pont!	em jár
	_	A beolvasás a 0 végjelig tart, a végjel beírása után a másik pontszámot már nem kéri a program: 1 pont	
		Csak akkor adható meg a pont, ha nem történik indextúllépés!	
	_	A versenyzők létszáma tárolásra kerül, vagy a program további része megállapítja azt:	
d)	Táb	olázatszerű kiírás:	2 pont
		Van megfelelő fejléc:	
e)	A f	Peladatban megadott tulajdonságú első versenyző sorszámának a meghatározása. S A keresés tesztelős ciklussal történik:	és!
	_	Helyes a keresési tulajdonságot megfogalmazó részfeltétel, és helyes a részfeltéközötti logikai kapcsolat:	
	_	Eredménytelen keresés esetén üzenet kiírása:	

4. feladat 15 pont

Egy természetjáró szakkörbe az iskola több osztályából járnak a tanulók. Az első félév során mindenki befizetett egy összeget a kirándulások céljára. A befizetések adatai az alábbi táblázatban láthatók, ezeket szeretnénk egy adatbázisban tárolni!

A. Hozzon létre egy "szakkorpenz" nevű adatbázist! Az adatbázison belül hozzon létre egy "befizetesek" nevű táblát! Hozza létre a szükséges mezőket a megfelelő típussal és állítsa be elsődleges kulcsként a "nev" mezőt! Töltse fel az adattáblát az alább megadott adatokkal!

nev (elsődleges kulcs)	osztaly	szulev	datum	osszeg
Apor Vilmos	10.E	1993	2008.10.25.	1 500 Ft
Bódy Elek	10.D	1993	2008.11.09.	2 300 Ft
Gyetvay Nándor	10.E	1992	2008.09.05.	2 000 Ft
Kalmár Petra	11.E	1991	2008.09.02.	1 800 Ft
Kiss Rózsa	11.F	1991	2008.10.23.	1 600 Ft
Suhajda László	10.D	1992	2008.11.30.	1 200 Ft
Varga Csaba	10.E	1993	2008.12.05.	3 000 Ft

B. Készítsen lekérdezést, mely megadja azon tanulók nevét, osztályát és életkorát, akik a minimális befizetéshez képest legalább 500 Ft-tal többet fizettek be a szakköri költségekre! A lista életkor szerint csökkenően legyen rendezve!

Megjegyzés: Azon adatbázis-kezelőknél, ahol adatbázisokat nem tudunk létrehozni, csak táblákat, ott adatbázis helyett alkönyvtárat (mappát) készítsünk, és ebben hozzuk létre a táblát megvalósító fájlt. Ekkor a beadandó a létrehozott alkönyvtár (mappa) és tartalma.

Amennyiben az adatbázis létrehozása és feltöltése nem az adott keretrendszerből, hanem valamilyen programnyelvi kóddal (pl. SQL) történik, beadandó a használt forrásnyelvű kód is.

a) Az adatbázis és a tábla létrehozása
 Az elsődleges kulcs megfelelően beállításra került:
b) Az adatok helyes és pontos felvitele
 A 4 pont csak abban az esetben adható meg, ha az adatbevitel semmiféle hibát nem tartalmaz!
 Hibásan bevitt értékenként -1 pont, minimum 0 pont.
c) A lekérdezés helyes megfogalmazása
Fő lekérdezés:
 A lekérdezés létezik, listázza a tanuló(k) nevét, osztályát, és a kért adatokon kívül más
adatot nem listáz ¹ :
 Az életkorra vonatkozó számított mező létezik és helyes, az életkor a listában
látható ² :
 Létezik és helyes a befizetett összegre vonatkozó szűrés: 5
 A lista az életkor szerint csökkenően rendezett ⁴:

A minimális befizetett összeg meghatározása (pl. segédlekérdezéssel^{5, 6}) 2 pont

(Amennyiben a vizsgázó indokolta (pl. leírta), hogy a feladat szövegéből nem derül ki vagy nem derülhet ki, hogy a minimális befizetést függvénnyel (vagy milyen más módon) kell meghatározni, akkor részére a fenti 2+1 pont megadható.)

Egy lehetséges megoldás a következő:

(A megoldásban szerepeltetett felső indexek az előbbiekben felsorolt részfeladatokat jelölik, nem részei az SQL lekérdezésnek!)

A fő lekérdezés:

SELECT befizetesek.nev¹, befizetesek.osztaly¹, Year(Now())-befizetesek.szulev² AS Kor FROM befizetesek, Seged WHERE (((befizetesek.osszeg)>Seged.MinOfosszeg+500))³ ORDER BY Year(Now())-befizetesek.szulev DESC⁴;

Segédlekérdezés:

SELECT⁵ Min(befizetesek.osszeg) ⁶ AS MinOfosszeg FROM befizetesek;

Értékelés:

A feladatokra adható összes pontszám: 50 pont

A két írásbeli rész összes pontszáma 100 pont.

Ahhoz, hogy a feladatok megoldását az érettségi jegy megállapításakor figyelembe lehessen venni, az összes pontszámnak legalább a 10%-át kell teljesíteni, ezért csak a legalább 10 pontos dolgozatok fogadhatók el a tantárgy végső osztályzatának a megállapításához.