Contents

1	What is vertex packing problem (VP)	1
2	The generalized vertex packing problem (GVP-k) that this article cares about	1
3	Some application	1
4	Introduction 4.1 Integer Programming Model (for VP)	1
5	TODO Facets and partial convex hull representations for $\operatorname{GVP-k}$	2

1 What is vertex packing problem (VP)

The traditional vertex packing problem dened on an undirected graph identies the largest weighted independent set of nodes, that is, a set of nodes whose induced subgraph contains no edges.

2 The generalized vertex packing problem (GVP-k) that this article cares about

k edges may exist within the subgraph induced by the chosen set of nodes.

3 Some application

A particular context in which such problems arise is in the national airspace planning model

4 Introduction

G = (N, E), weighted c_j , for $j = 1, \dots, n$.

4.1 Integer Programming Model (for VP)

Maximize: cxSubject to: $Ax \le e$ $x \in \{0, 1\}$

- 1. A is a p \times n matrix $a_{hi}=1$ means vertex $i\in edge\ h$
- 2. e is a all-one vector.
- 3. \Rightarrow Ax \leq e means that each edges 2 end-points should not be in the answer x simutaneously.

4.2 Prefect Graph

chromatic number = maximum clique cardinality (for each $G' \subseteq G$)

4.3 Integer Programming Model (for GVP-k)

Maximize: cxSubject to: $\sum_{(i,j)\in E} z_{ij} \le k$ $z_{ij} \ge x_i + x_j - 1, z_{ij} \ge 0$ $x_j \in \{0,1\}, \forall j \in N$

note that edge (i, j) is in the answer when $z_{ij} = 1 = x_i x_j$

5 TODO Facets and partial convex hull representations for GVP-k

Proposition 1: Consider a graph G and a subgraph \hat{G} of G. If $Dx \leq d$ represents a set of valid inequalities for GVP-k dened on \hat{G} , then $Dx \leq d$ is valid for GVP-k dened on G.

Proof: Since GVP-k for \hat{G} is a relaxation of GVP-k dened on G, the restrictions that govern a feasible generalized vertex packing solution on \hat{G} are a subset of those valid for G. This completes the proof.

Note: You could use less restrictions on \hat{G} than on G (maybe a subset).