BUNDESREPUBLIK DEUTSCHLAND

REC'D 0 6 SEP 2004
WIPO PCT

EP04/7839

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 37 118.4

Anmeldetag:

11. August 2003

Anmelder/Inhaber:

Merck Patent GmbH, 64293 Darmstadt/DE

Bezeichnung:

Immobilisierte Immidazole und Ruthenium-

Katalysatoren

IPC:

C 07 E, C 07 B, B 01 J

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 12. Februar 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) BEST AVAILABLE COPY

Merck Patent Gesellschaft mit beschränkter Haftung 64271 Darmstadt

Immobilisierte Immidazole und Ruthenium-Katalysatoren

Immobilisierte Immidazole und Ruthenium-Katalysatoren

Die Erfindung betrifft das Verfahren zur Herstellung von auf anorganischen Oxid-Trägern immobilisierten N,N-disubstituierten Imidazoliumsalzen, N-heterozyklischen Carben-Liganden, und Ruthenium-Katalysatoren mit N-heterozyklischen Carben-Liganden, d.h. Verbindungen der allgemeinen Formeln (I) und (II), Verbindungen der allgemeinen Formeln (III) und (IV) und Verbindungen der allgemeinen Formeln (V) und (VI).

10

5

·(I)

15

20

25

(III)

(IV)

(11)

(V)

(VI)

Die Erfindung betrifft weiterhin die Verwendung der immobilisierten Verbindungen der allgemeinen Formeln (I - IV) in der organischen, metallorganischen oder Übergangsmetall-katalysierten Synthese sowie die Verwendung der Verbindungen der allgemeinen Formeln (V) und (VI) als Katalysatoren in der organischen und metallorganischen Synthese insbesondere für C-C-Kupplungsreaktionen wie der Olefin-Metathese.

35

30

1. Stand der Technik und Aufgabe der Erfindung

10

30

35

Beispiele von sterisch nicht anspruchsvollen Imidazolium- und 4,5-Dihydroimid-azoliumsalzen mit Trialkoxysilylgruppen sind in WO 01/32308, WO 02/098560 und in *J. Am. Chem. Soc.* **2002**, *124*, 12932; *Topics in Catalysis* **2001**, *14*, 139; *Journal of Catalysis* **2000**, *196*, 86; *J. Mol. Cat. A: Chem.* **2002**, *184*, 31 beschrieben.

15 Die Verbindungen wurden entweder direkt auf anorganische Oxide immobilisiert oder über eine Sol-Gel Methode in die entsprechenden Oberflächen-modifizierten Silica unter Bildung von A und B überführt. Im Hinblick auf eine Anwendung von A und B als Ligand-Vorstufen für z.B. immobilisierte NHC-Liganden (N-heterozyklische Carbene), die wiederum 20 als Liganden in Katalysatoren Anwendung finden, sind diese Verbindungen jedoch ungeeignet, da die daraus resultierenden NHC-Liganden thermisch nicht stabil sind und zudem zu Dimerisierungsreaktionen neigen, da das Carben-Kohlenstoffatom sterisch nicht ausreichend abgeschirmt wird. Diese Nachteile sollten sich beseitigen lassen, in dem sterisch anspruchsvolle Kohlenwasserstoff-Reste wie substituierte Aromaten wie 25 zum Beispiel Mesityl-Reste, aber auch Adamantyl, Cyclohexyl usw. anstelle der Alkylgruppe an das Stickstoffatom in A und B eingeführt werden. Bislang sind N-heterozyklische Carben-Liganden, immobilisiert auf anorganische Oxide unbekannt.

Beispiele von Ruthenium-Katalysatoren mit N-heterozyklischen Carben-Liganden sind beispielsweise in WO 00/15339, WO 00/71554, WO 99/51344, EP 0721953 und z.B. in *Chem. Eur. J.* 2001, 7, 3236; *J. Am. Chem. Soc.* 1999, 121, 2674; *Organic Letters* 1999, 1(6), 953 und in *J. Organomet. Chem.* 2000, 606, 49 beschrieben. Die beschriebenen Verbindungen können jedoch nur als homogene Katalysatoren eingesetzt

10

15

20

werden. Da die Abtrennung der homogenen Katalysatoren von den Reaktionsprodukten ein kostenintensiver und aufwendiger Vorgang ist, ist es von großem Vorteil, homogene Katalysatoren, die auf einem Träger immobilisiert sind, in den katalytischen Prozessen einzusetzen. Diese immobilisierten Katalysatoren lassen sich sehr einfach durch Filtration von den Reaktionsprodukten abtrennen. Dies ist insbesondere dann von großem Interesse, wenn der Katalysator sehr teuer ist und damit recycelt und im nächsten katalytischen Prozeß wieder eingesetzt werden soll oder wenn die Reaktionsprodukte des katalytischen Prozesses nicht mit Übergangsmetallen, wie sie in den Komplexverbindungen vorhanden sind, verunreinigt sein dürfen. Dies trifft besonders bei Produkten für pharmazeutische Anwendungen zu. Eine Immobilisierung von Ruthenium-Katalysatoren mit N-heterozyklischen Liganden auf organische Träger wie Polystyrol ist in Angew. Chem. 2000, 112, 4062 beschrieben. Jedoch haben organische Trägermaterialien im Vergleich zu den sehr robusten anorganischen Trägermaterialien viele Nachteile wie starkes Quellen oder Schrumpfen in Abhängigkeit von den verwendeten Medien, was die Katalysatoraktivität unvorhersehbar verringern kann. Über eine Immobilisierung dieser Katalysatoren auf anorganische Oxide haben Buchmeiser et al. in Angew. Chem. 2000, 112, 4062, Designed Monomers ans Polymers 2002, 5(2,3), 325 und in Adv. Synth. Catal. 2002, 344, 712 beschrieben. Die Immobilisierungsmethode ist sehr aufwendig und der Katalysator ist durch ein organisches Copolymer vom anorganischen Oxid getrennt, das heißt er ist letztendlich auf einem organischen Träger immobilisiert (C).

25

10

15

. 20

Hoveyda et al. berichten in *Angew. Chem.* **2001**, *113*, 4381 über die Immobilisierung eines Ruthenium-Katalysators mit einen Nheterozyklischen Carben-Liganden auf einem Oxidmaterial mit einem kleineren Linker. Die Verankerung des Katalysators erfolgt dabei aber über den Benzyliden-Liganden. Während der katalytischen Metathesereaktion wird jedoch die Bindung zwischen dem Benzyliden-Liganden und dem Ruthenium-Zentrum gelöst, wodurch der Katalysator vom Träger gelöst wird und in die Reaktionslösung übergeht. Dies führt zu einem hohen Verlust an Katalysator auf dem Träger (hohes Katalysator-Leaching), was eine Wiederverwendung mit ausreichenden Umsätzen unmöglich macht.

Die Aufgabe der vorliegenden Erfindung war es, immobilisierbare, sterisch anspruchsvolle Imidazolium- und 4,5-Dihydroimidazoliumsalzen, immobilisierbare N-heterozyklische Carben-Liganden und immobilisierbare Ruthenium-Katalysatoren mit N-heterozyklischen Carben-Liganden auf anorganische Oxide zu immobilisieren. Dabei sollen sich die immobilisierten Imidazolium- und 4,5-Dihydroimidazoliumsalzen, die immobilisierten N-heterozyklischen Carben-Liganden und die immobilisierten Ruthenium-Katalysatoren in einfacher Weise herstellen lassen, sie sollen teine hohe thermische Stabilität besitzen, sie sollen auf dem anorganischen Träger kovalent angebunden sein und in ausreichend großer Menge auf der Träger-Oberfläche für Anwendungsreaktionen zur Verfügung stehen. Sie sollen fest auf der Oberfläche verankert sein und kein Leaching zeigen.

2. Beschreibung der Erfindung

Die Lösung der Aufgabe erfolgt durch ein Verfahren zur Immobilisierung der Verbindungen der allgemeinen Formeln (I - VI)

30

25

(IV)

5
$$R3 \xrightarrow{R2} R1 \qquad R2 \xrightarrow{R1} R1 \qquad R3 \xrightarrow{R2} R1 \xrightarrow{R4} R^{-1} SiR'_n(OR')_{3-n} \qquad R3 \xrightarrow{R4} R^{-1} \qquad (II)$$

10 $R2 \xrightarrow{R1} R1 \qquad R2 \xrightarrow{R1}$

worin

(III)

R A, Ar, A-Ar, A-Ar-A, Het, AHet, AHetA mit insgesamt nicht mehr als 30 C-Atomen mit 30 Α geradkettiger, verzweigter, gesättigter C₁-C₂₀-Aikylrest, Cycloalkyl oder Cycloalkyl über eine oder Alkylgruppe(n) gebunden mit insgesamt 4 - 30 -C-Atomen. wobei sowohl im Alkyl- als auch im Cycloalkylrest eine CH2- oder CH-Gruppe durch N, NH, NA, O und/oder S sowie H-Atome durch 35 OA, NA₂ und/oder PA_2 ersetzt sein ein oder mehrfach substituiertes oder unsubstituiertes aromatischer Ar

	Konier	ıwasser	ston mit ir	isgesamt	nicht	menr	als 20	C-Ato	men,
	wobei	Substit	uențen A,	Hal, OA	, NA ₂ ,	PA ₂ ,	COOA,	COA,	CN,
		A, NO ₂ ,	=NH, =O			sein		können,	
Het	ein	ein-	oder	zweike	erniger	g	esättigte	er	oder
5	aroma	tischer l	Heterocyclu	s mit 1 b	ois 4 N	-, O- u	nd/oder	S-Ato	men,
ė	der unsubstituiert oder ein-, zwei- oder dreifach durch Hal und/oder								
	A, OA, COOA, COA, CN, CONHA, NA ₂ , PA ₂ , NO ₂ , =NH, =O								
									· 1.
R'	unabha	ängig vo	n der Stellu	ing im Mo					
R3									
R3'									
							•	_	
	AHetA								
R1 und	R2 ui	nabhän	gig voneina	nder H, C	l, Br oc	ler die			
R4	•							_	
							•		Z
	ersetzt			seir	า			kör	nnen
R5	Α,			Ar,					AAr
R6 und	R7 H	, A oder	Ar, wobei	H-Atome	in A od	ler Ar	durch Al	kenyl-	oder
				substituiert			sein könne		
X	gleich	oder	verschiede	n vone	inandei	r anio	onische	Ligar	nden
	und							Ū	
n	0,			1,					2
bedeute	en, auf a	anorgan	ischen Oxid	den unter	Bildun	g der \	/erbindu	ngen d	
	R' R3 R3' R1 und R4 R5 R6 und X	wobei CONH Het ein aroma der un A, OA, substit R' unabha R3 A, Ar, R3' geradk eine oc AHetA R1 und R2 un R4 H, Cl, mehrfa mehrei ersetzt R5 A, R6 und R7 H Alkinyli X gleich und n 0,	wobei Substit CONHA, NO2, Het ein ein- aromatischer i der unsubstitu A, OA, COOA, substituiert R' unabhängig vo R3 A, Ar, AAr, R3' geradkettiges eine oder zwei AHetA mit R1 und R2 unabhäng R4 H, Cl, Br ode mehrfach unge mehrere ersetzt R5 A, R6 und R7 H, A oder Alkinylreste X gleich oder und n 0,	wobei Substituenten A, CONHA, NO2, =NH, Het ein ein- oder aromatischer Heterocyclu der unsubstituiert oder eir A, OA, COOA, COA, CN, substituiert sein kann R' unabhängig von der Stellu R3 A, Ar, AAr, AArA, Het, R3' geradkettiges oder verzweine oder zwei Alkylgrupp AHetA mit insges R1 und R2 unabhängig voneinat R4 H, CI, Br oder geradket mehrfach ungesättigter C mehrere H ersetzt R5 A, R6 und R7 H, A oder Ar, wobei I Alkinylreste sub X gleich oder verschiede und n 0,	wobei Substituenten A, Hal, OA CONHA, NO2, =NH, =O Het ein ein- oder zweike aromatischer Heterocyclus mit 1 b der unsubstituiert oder ein-, zwei- o A, OA, COOA, COA, CN, CONHA, substituiert sein kann mit R' unabhängig von der Stellung im Mo R3 A, Ar, AAr, AArA, Het, AHet, R3' geradkettiges oder verzweigtersC eine oder zwei Alkylgruppe(n) gebu AHetA mit insgesamt R1 und R2 unabhängig voneinander H, C R4 H, Cl, Br oder geradkettiger, ver mehrfach ungesättigter C1-C7-Alky mehrere H ersetzt seir R5 A, Ar, R6 und R7 H, A oder Ar, wobei H-Atome Alkinylreste substituiert X gleich oder verschieden vone und n 0, 1,	wobei Substituenten A, Hal, OA, NA ₂ , CONHA, NO ₂ , =NH, =O Het ein ein- oder zweikerniger aromatischer Heterocyclus mit 1 bis 4 Nder unsubstituiert oder ein-, zwei- oder dra A, OA, COOA, COA, CN, CONHA, NA ₂ , Psubstituiert sein kann mit Hall R' unabhängig von der Stellung im Molekül AR3 A, Ar, AAr, AArA, Het, AHet, AHetA R3' geradkettiges oder verzweigtersCycloalkeine oder zwei Alkylgruppe(n) gebunden, AHetA mit insgesamt 4 R1 und R2 unabhängig voneinander H, Cl, Brook R4 H, Cl, Broder geradkettiger, verzweigter mehrfach ungesättigter C ₁ -C ₇ -Alkylrest, where H ersetzt sein R5 A, Ar, R6 und R7 H, A oder Ar, wobei H-Atome in A oder Alkinylreste substituiert X gleich oder verschieden voneinander und n 0, 1,	wobei Substituenten A, Hal, OA, NA ₂ , PA ₂ , CONHA, NO ₂ , =NH, =O sei Het ein ein- oder zweikerniger g aromatischer Heterocyclus mit 1 bis 4 N-, O- u der unsubstituiert oder ein-, zwei- oder dreifach A, OA, COOA, COA, CN, CONHA, NA ₂ , PA ₂ , NO substituiert sein kann mit Hal F, O substituiert sein kann mit Hal F,	wobei Substituenten A, Hal, OA, NA2, PA2, COOA, CONHA, NO2, =NH, =O sein Het ein ein- oder zweikerniger gesättigte aromatischer Heterocyclus mit 1 bis 4 N-, O- und/oder der unsubstituiert oder ein-, zwei- oder dreifach durch H A, OA, COOA, COA, CN, CONHA, NA2, PA2, NO2, =NH, substituiert sein kann mit Hal F, Cl, Br I unabhängig von der Stellung im Molekül A, Ar mit 1 - 12 R3 A, Ar, AAr, AArA, Het, AHet, AHetA mit 6 - 18 R3' geradkettiges oder verzweigtersCycloalkyl oder Cycloeine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, AHetA mit insgesamt 4 — 30 R1 und R2 unabhängig voneinander H, Cl, Br oder die Bedeutt R4 H, Cl, Br oder geradkettiger, verzweigter, gesättigter, mehrfach ungesättigter C1-C7-Alkylrest, wobei im Alkylremehrere H durch ersetzt sein R5 A, Ar, R6 und R7 H, A oder Ar, wobei H-Atome in A oder Ar durch Al Alkinylreste substituiert sein X gleich oder verschieden voneinander anionische und n 0, 1,	Het ein ein- oder zweikerniger gesättigter aromatischer Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomoder unsubstituiert oder ein-, zwei- oder dreifach durch Hal und/A, OA, COOA, COA, CN, CONHA, NA2, PA2, NO2, =NH, =O substituiert sein kann mit Hal F, Cl, Br oder R' unabhängig von der Stellung im Molekül A, Ar mit 1 - 12 C-Atomoder Cycloalkyl eine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, Het, AAH etA mit 6 - 18 C-Atomoder Cycloalkyl eine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, Het, AAH etA mit insgesamt 4 — 30 -C-Atomoder Cycloalkyl eine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, Het, AAH etA mit insgesamt 4 — 30 -C-Atomoder Cycloalkyl eine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, Het, AAH etA mit insgesamt 4 — 30 -C-Atomoder Cycloalkyl eine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, Het, AAH etA mit insgesamt 4 — 30 -C-Atomoder Cycloalkyl eine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, Het, AAH etA mit insgesamt 4 — 30 -C-Atomoder Cycloalkyl eine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, Het, AAH etA mit insgesamt 4 — 30 -C-Atomoder Cycloalkyl eine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, Het, AAH etA mit insgesamt 4 — 30 -C-Atomoder Edea Edea Edea Edea Edea Edea Edea Edea

30

35

allgemeinen Formel (la – Vla)

worin R, R1, R2, R3, R3', R4, R5, R6, R7 und X die oben gegebenen Bedeutungen annehmen können, und die dadurch erfolgte Bereitstellung neuer Trägergebundenen Produkte.

Die Immobilisierung der Verbindungen der allgemeinen Formeln (I) bis (VI) erfolgt durch Reaktion der Verbindungen (I) bis (VI) mit einem anorganischen Metalloxid in wasserfreien, inerten, aprotischen organischen Lösungsmitteln. Bei der Reaktion entsteht als Nebenprodukt ein Alkohol R'OH. Die Produkte (Ia) bis (VIa) lassen sich durch Filtration vom Lösungsmittel und R'OH abtrennen und können gegebenenfalls durch Waschen mit einem geeigneten Lösungsmittel aufgereinigt werden. Die Immobilisierung kann sowohl im Batch-Verfahren als auch im kontinuierlichen Verfahren durchgeführt werden.

10

20

25

30

Verwenden lassen sich die Verbindungen der allgemeinen Formeln (Ia) und (IIa) als immobilisierte Reaktionsmedien, immobilisierte ionische Flüssigkeiten, immobilisierte Ligand- bzw. Katalysator-Vorstufen und als immobilisierte Katalysatoren in organischen, metallorganischen und Übergangsmetall-katalysierten Synthesen. Die Verbindungen der allgemeinen Formeln (IIIa) und (IVa) lassen sich als Ausgangsstoffe zur Herstellung immobilisierter N-heterozyklischer Carben-Metall-Komplexe und als immobilisierte Liganden in katalytischen Reaktionen verwenden. Verwenden lassen sich die Verbindungen der allgemeinen Formeln (Va) und (VIa) als immobilisierte Katalysatoren in der organischen und metallorganischen Synthese. Insbesondere können sie als Katalysatoren in C-C-Kupplungsreaktionen, Hydrierungen und Hydroformylierung verwendet werden.

15 <u>3. Ausführliche Beschreibung der Erfindung</u>

Die Immobilisierung der Verbindungen der allgemeinen Formeln (I) bis (VI) erfolgt durch Reaktion der Verbindungen (I) bis (VI) mit einem anorganischen Metalloxid in wasserfreien, inerten, aprotischen organischen Lösungsmitteln. Die Reihenfolge der Zugabe der Komponenten kann beliebig gewählt werden. Die Ausgangsverbindungen können in einem geeigneten Lösungsmittel vorgelöst bzw. suspendiert werden.

Als Lösungsmittel werden bevorzugt halogenierte oder reine Kohlenwasserstoffe und zyklische Ether verwendet. Von den halogenierten Kohlenwasserstoffen werden bevorzugt Methylenchlorid, Chlorbenzol oder Trichlortoluol verwendet, ganz bevorzugt Methylenchlorid. Von den reinen Kohlenwasserstoffen werden bevorzugt Pentan, Hexan, Heptan, Oktan, Dekan, Benzol oder Toluol verwendet, ganz bevorzugt Heptan und Toluol. Von den zyklischen Ethern wird bevorzugt Tetrahydrofuran eingesetzt.

Als Schutzgasatmosphäre können Stickstoff oder Argon dienen.

Die Ausgangsverbindungen der allgemeinen Formeln (I) bis (VI) werden in einem 0.01 – 100-fachen Überschuss bezüglich der aktiven OH-Gruppen auf der Oxidoberfläche zugegeben, vorzugsweise in einem 0.1 – 50-fachen

30

35

Überschuss ganz besonders bevorzugt in einem 0.5 – 10-fachen Überschuss.

Die Reaktion kann in einem Temperaturbereich von –20°C bis + 150 °C, vorzugsweise von 0°C bis +120 °C. Die Reaktionszeit beträgt 30 Minuten bis 10 Tage, vorzugsweise 1 Stunde bis 2 Tage und ganz bevorzugt 1 Stunde bis 1 Tag.

Die gebildeten Produkte (Ia) bis (VIa) lassen sich in einfacher Weise durch Filtration abtrennen und können gegebenenfalls durch Waschen mit den oben genannten Lösungsmitteln aufgereinigt und anschließend getrocknet werden.

Die erfindungsgemäße Immobilisierung kann sowohl im Batch-Verfahren als auch im kontinuierlichen Verfahren durchgeführt werden. Im kontinuierlichen Verfahren werden die oben beschriebenen Lösungen der Verbindungen (I) bis (VI) durch das monolithische Material gepumpt, wobei der Monolith auf die entsprechende Reaktionstemperatur erwärmt wird. Die Lösungen von (I) bis (VI) können hierbei gegebenenfalls im Kreislauf gefahren werden und somit den Monolithen mehrmals durchströmen. Die Flussraten können beliebig gewählt werden. Anschließend wird der funktionalisierte Monolith mit den o.g. Lösungsmitteln gewaschen und in Anwendungsreaktionen eingesetzt.

Die Oxide können zur Durchführung des erfindungsgemäßen Verfahrens im Batch-Betrieb auch in feinteiliger Form mit Lösungen der Verbindungen der allgemeinen Formeln (I) – (VI) vermischt und bei geeigneter Reaktionstemperatur unter Schutzgasatmosphäre umgesetzt werden. Zu diesem Zweck können die einzelnen Reaktionspartner in beliebiger Reihenfolge zugesetzt werden.

Die Durchführung der Umsetzungen sowohl im Batch-Betrieb als auch kontinuierlich ist an sich unkritisch. Die Reaktionen können in einfacher Weise in Anlagen durchgeführt werden, in denen alle Teile und Vorrichtungen, die mit den Reaktionspartnern in Kontakt kommen, gegen die eingesetzten Chemikalien inert sind und keine Korrosions- oder

10

15

20

25

30

35

Auslaugungserscheinungen zeigen. Entscheidend ist, dass die verwendete Anlage temperierbar ist, eine sichere Zu- und Abführung der Reaktionspartner und Reaktionsprodukte bietet und falls erforderlich Möglichkeiten zur intensiven Durchmischung des Reaktionsgemischs aufweist. Weiterhin sollte die Anlage es ermöglichen, unter Inertgasatmophäre zu arbeiten bzw. flüchtige Substanzen sicher abzuleiten. Dementsprechend können die Reaktionen auch in einer Glasapparatur, ausgestattet mit Rührer, Zu- und gegebenenfalls Ablauf, mit Rückflußkühler oder Kondensationskühler mit Ablauf, durchgeführt werden, wenn diese Apparatur auch die Möglichkeit zur Überlagerung mit Inertgas bietet. Die Reaktionen können aber auch in einer technischen Anlage durchgeführt werden, die gegebenenfalls aus rostfreiem Stahl und anderen geeigneten inerten Materialien gefertigt ist und die erforderlichen Vorrichtungen zur Temperierung, Zu- und Abführung der Edukte und Produkte aufweist.

Üblicherweise werden die Reaktionen im Batch-Betrieb durchgeführt, insbesondere wenn die Reaktionen langsam erfolgen.
Wenn größere Mengen der gewünschten Produkte der allgemeinen Formeln (I) oder (II) hergestellt werden sollen und wenn es sich bei den umzusetzenden Edukten um reaktive Verbindungen handelt, kann es sinnvoll sein, die Reaktionen in einer entsprechenden Anlage durchzuführen, die für den kontinuierlichen Betrieb ausgelegt ist.

Erfindungsgemäße Verbindungen der allgemeinen Formeln (Ia) und (IIa) stellen immobilisierte Imidazolium- und 4,5-Dihydroimidazolium-Salze dar. In (Ia) liegt ein immobilisiertes 1,3-disubstituiertes Imidazolium-Kation mit einem einfach geladenem Anion und in (IIa) ein immobilisiertes 1,3-disubstituiertes 4,5-Dihydroimidazolium-Kation ebenfalls mit einem einfach geladenem Anion vor.

Erfindungsgemäße Verbindungen der allgemeinen Formeln (IIIa) und (IVa) stellen immobilisierte 1,3-disubstituierte Imidazol-2-ylidene und immobilisierte 1,3-disubstituierte Imidazolin-2-ylidene dar. In (IIIa) liegt ein 4,5-ungesättigter Distickstoffheterozyklus und in (IVa) ein gesättigter Distickstoffheterozyklus vor. Das Kohlenstoffatom in 2-Position des

10

15

20

Heterozyklus (zwischen den beiden Stickstoffatomen) ist ein zweibindiges Carben-Kohlenstoff-Atom mit einem freien Elektronenpaar.

Erfindungsgemäße Verbindungen der allgemeinen Formeln (Va) und (Vla) stellen immobilisierte Ruthenium-Verbindungen dar, in denen das Rutheniumatom in der Oxidationsstufe 2 vorliegt, an das ein neutraler N-Heterozyklischer-Carben-Ligand, ein neutraler Phosphan-Ligand, ein neutraler Alkyliden-Ligand und zwei einfach geladene Anionen gebunden sind. N-Heterozyklische-Carben-Liganden stehen für 1,3-disubstituierte Imidazol-2-ylidene und 1,3-disubstituierte Imidazolin-2-ylidene, die sich vom Imidazol bzw. 4,5-Dihydroimidazol als Grundkörper ableiten. In beiden Ligandtypen ist das Kohlenstoffatom zwischen den beiden Stickstoffatomen des Heterozyklus ein Carben-Kohlenstoffatom, welches mittels des freien Elektronenpaars koordinativ an das Rutheniumatom gebunden ist. Auch der Alkyliden-Ligand enthält ein Carben-Kohlenstoffatome, welches an das Ruthenium-Zentrum gebunden ist.

Die Anbindung der Verbindungen (Ia) bis (VIa) an die Trägeroberfläche erfolgt über einen Spacer R, der dem Kohlenwasserstoffrest R entspricht, über welchen die SiR'_n(OR')_{3-n} Gruppe der Verbindungen der allgemeinen Formeln (I) bis (VI) mit dem Stickstoff-Atom des Heterozyklus verbunden ist. Der Spacer R hat dementsprechend die gleichen Bedeutungen wie dieser Kohlenwasserstoffrest.

R' in der SiR'_n(OR')_{3-n}-Einheit ist ein Kohlenwasserstoff-Rest, wobei n = 0, 1 oder 2 sein kann, bevorzugt 0 und 1 und ganz bevorzugt 0. Dieser Kohlenwasserstoffrest R' kann unabhängig von der Stellung im Molekül unterschiedliche Bedeutungen annehmen und geradkettig, unverzweigt (linear), verzweigt, gesättigt, ein- oder mehrfach ungesättigt, zyklisch (A), aromatisch (Ar) oder alkylaromatisch (AAr, AarA), gegebenenfalls ein- oder mehrfach substituiert sein.

A und Ar können dabei alle im folgenden gegebenen Bedeutungen annehmen.

Bevorzugt ist R' ein geradkettiger, unverzweigter (linearer), verzweigter, gesättigter, ein- oder mehrfach ungesättigter, oder zyklischer gesättigter

oder ein- oder mehrfach ungesättigter, Alkyl-Rest mit 1 – 12 C-Atomen. Besonders bevorzugt ist R' ein geradkettiger oder verzweigter gesättigter Alkylrest mit 1 – 7 C-Atomen, also eine Untergruppe aus der Alkylgruppe A, die im folgenden noch näher definiert wird.

5

R' kann also bevorzugt die Bedeutungen Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, sec-Butyl, tert.-Butyl, Pentyl, 1-, 2- oder 3-Methylbutyl (- C_5H_{10} -), 1,1- , 1,2- oder 2,2-Dimethylpropyl (- C_5H_{10} -), 1-Ethylpropyl (- C_5H_{10} -), Hexyl (- C_6H_{12} -), 1- , 2- , 3- oder 4-Methylpentyl (- C_6H_{12} -), 1,1- , 1,2- , 1,3- , 2,2- , 2,3- oder

10

3,3-Dimethylbutyl ($-C_6H_{12}$ -), 1- oder 2-Ethylbutyl ($-C_6H_{12}$ -), 1-Ethyl-1-methylpropyl ($-C_6H_{12}$ -), 1-Ethyl-2-methylpropyl ($-C_6H_{12}$ -), 1,1,2- oder 1,2,2-Trimethylpropyl ($-C_6H_{12}$ -), Heptyl, Octyl, Nonyl, Decyl, Undecyl oder Dodecyl annehmen.

15

Ganz besonders bevorzugt ist R' ein C₁-C₄-Alkylrest aus der Gruppe Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, sec-Butyl und tert.-Butyl.

__

In SiR'_n(OR')_{n-3} kann R' aber auch

20 Alkenyl

Vinyl, Propenyl, 1,2-Propadienyl, Butenyl, Butadienyl,

Pentenyl, 1,2-, 1,4-,1,3-Pentadienyl, 2,3-Dimethyl-2-butenyl,

Hexenyl, 1,5-Hexadienyl, 2-Methyl-1,3-butdienyl, 2,3-

Dimethyl-1,3-butadienyl, Isopentenyl,

Cycloalkenyl

Cyclopropenyl, Cyclobutenyl, Cyclopentenyl,

Cyclopentadienyl und Methylcyclopentadienyl

und

Alkinyl

Ethinyl, 1,2-Propinyl, 2-Butinyl, 1,3-Butadiinyl Pentinyl oder

Hexinyl bedeuten.

30

25

Je größer die Zahl der Alkoxy-Reste in der SiR'n(OR')_{3-n}-Gruppe ist und damit je kleiner n ist, desto größer kann die Anzahl der kovalenten Bindungen zwischen dem Metalloxid und den Verbindungen der allgemeinen Formeln (I) und (II) nach der Immobilisierung sein.

35

Die SiR'_n(OR')_{3-n} Gruppe ist über einen Kohlenwasserstoffrest R mit dem Stickstoff-Atom des Heterozyklus verbunden.

10

15

20

25

30

35

Der Kohlenwasserstoffrest R ist bevorzugt ein Rest mit 1 – 30 C-Atomen. Dieser Kohlenwasserstoffrest kann geradkettig, unverzweigt (linear), verzweigt, gesättigt, ein- oder mehrfach ungesättigt, zyklisch (A), oder aromatisch (Ar), heterozyklisch oder herteroaromatisch (Het) und gegebenenfalls ein- oder mehrfach substituiert sein.

Der Kohlenwasserstoffrest R kann ein Rest A, Ar, A-Ar, A-Ar-A, Het, A-Het, A-Het-A sein, wobei jeweils die Gruppen A, Ar und Het die im folgenden gegebenen Bedeutungen annehmen können. Bevorzugt ist R ein Rest A, Ar, A-Ar, A-Ar-A mit nicht mehr als 20 C-Atomen.

A geradkettiger, unverzweigter (linearer), verzweigter, gesättigter, einoder mehrfach ungesättigter oder zyklischer Alkylrest A mit 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, oder 30 C-Atomen, vorzugsweise mit 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12 C-Atomen.

A ist bevorzugt ein geradkettiger oder verzweigter, gesättigter C_1 - C_{12} -Alkylrest, oder ein Cycloalkyl mit 3 – 10 C-Atomen oder eine über eine oder zwei Alkylgruppe(n) gebundenes C_4 - C_{20} -Cycloalkyl.

Alkylen hat die gleichen Bedeutungen wie für A angegeben, mit der Maßgabe, daß eine weitere Bindung vom Alkyl zum nächsten Bindungsnachbarn geknüpft ist.

A ist beispielsweise eine Alkylengruppe ausgewählt aus der Gruppe Methylen (-CH₂-), Ethyl (-C₂H₄-), Propyl (-C₃H₆-), Isopropyl (-C₃H₆-), Butyl (-C₄H₈-), Isobutyl (-C₄H₈-), sek.-Butyl (-C₄H₈-) oder tert.-Butyl (-C₄H₈-), ferner auch Pentyl (-C₅H₁₀-), 1-, 2- oder 3-Methylbutyl (-C₅H₁₀-), 1,1- , 1,2- oder 2,2-Dimethylpropyl (-C₅H₁₀-), 1-Ethylpropyl (-C₅H₁₀-), Hexyl (-C₆H₁₂-), 1- , 2- , 3- oder 4-Methylpentyl (-C₆H₁₂-), 1,1- , 1,2- , 1,3- , 2,2- , 2,3- oder 3,3-Dimethylbutyl (-C₆H₁₂-), 1- oder 2-Ethylbutyl (-C₆H₁₂-), 1-Ethyl-1-methylpropyl (-C₆H₁₂-), 1-Ethyl-2-methylpropyl (-C₆H₁₂-), 1,1,2- oder 1,2,2-Trimethylpropyl (-C₆H₁₂-), Heptyl, Octyl, Nonyl, Decyl, Undecyl oder Dodecyl sein.

10

15

20

25

30

35

A kann auch eine Cycloalkylengruppe mit 3 – 30 C-Atomen sein, vorzugsweise C3-C9-Cycloalkylen. Hierin kann Cykloalkyl gesättigt, ungesättigt, gegebenenfalls über eine oder zwei Alkylgruppen im Molekül an den Imidazolstickstoff und die SiR^f_n(OR')_{n-3}-Gruppe gebunden sein. Auch kann bzw. können ein oder mehrere H-Atome(e) durch andere Substituenten in der Cycloalkylengruppe ersetzt sein. Cycloalkyl bedeutet vorzugsweise Cyclopropyl, Cyclobutyl, Cylopentyl, Cyclohexyl, Methylcyclopentyl, Cycloheptyl, Methylcyclohexyl, Cyclooktyl, 3-Menthyl oder Campher-10-yl (bicyclisches Terpen), Dekalin, Bicycloheptan, wobei diese Gruppen über ein oder zwei Alkylgruppen im Molekül an den Imidazolstickstoff und die SiR'_n(OR')_{n-3}-Gruppe gebunden sein können.

In diesem Fall bedeutet Cycloalkyl bevorzugt 1,2-Cyclopropyl, 1,2- oder 1,3-Cyclobutyl, 1,2- oder 1,3-Cyclopentyl, 1,2- , 1,3- oder 1,4-Cyclohexyl, ferner 1,2- , 1,3- oder 1,4-Cycloheptyl. Die genannten Gruppen können aber auch als R3 in substituierter oder unsubstituierter Form an den zweiten Imidazolstickstoff gebunden sein.

A kann auch eine ungesättigte Alkenyl- oder Alkinyl-Gruppe mit 2-20 C-Atomen sein, die sowohl an den Imidazol-Stickstoff oder einen Imidazol-Kohlenstoff als auch an die SiR'_n(OR')_{n-3}-Gruppe gebunden sein kann.

Alkenyl-Gruppen können geradkettig, verzweigte oder zyklische C2-C30-Alkenyle sein, vorzugsweise geradkettige, verzweigte zyklische C2-C9-Alkenyle, besonders bevorzugt geradkettige oder verzweigte C2-C6-Alkenyle aus der Gruppe Vinyl, Propenyl, Butenyl, Pentenyl oder Hexenyl.

Cycloalkenyl-Gruppen können geradkettig oder verzweigte C3-C30-Cycloalkenyle sein, vorzugsweise C3-C9-Cycloalkenyle, besonders bevorzugt C3-C6-Cycloalkenyle aus der Gruppe Cyclopropenyl, Cyclobutenyl, Cyclopentadienyl, Cyclopentadienyl und Methylcyclopentadienyl.

Alkinyl-Gruppen können geradkettig oder verzweigte C2-C30-Alkinyle sein, vorzugsweise geradkettige oder verzweigte C2-C9-Alkinyle, besonders bevorzugt geradkettige oder verzweigte C2-C6-Alkinyle aus der Gruppe Ethinyl, Propinyl, Butinyl, Pentinyl oder Hexinyl.

Sind Alkenyl, Cycloalkenyl oder Alkinyl Bestandteil des Kohlenwasserstoffrests R, weisen sie selbstverständlich die gleichen Bedeutungen auf mit der Maßgabe, daß eine weitere Bindung vom Alkenyl oder vom Alkinyl zum nächsten Bindungsnachbarn im Molekül geknüpft ist.

5

Ar ist ein ein- oder mehrkerniger aromatischer Kohlenwasserstoffrest mit 6 – 30 C-Atomen, der ein oder mehrfach substituiert oder unsubstituiert sein kann.

10

Ar ist bevorzugt ein ein- oder mehrfach substituiertes Phenyl oder Naphthyl, wobei Substituenten die Bedeutungen von A annehmen können und Ar insgesamt nicht mehr als 20 C-Atome besitzt.

15

Arylgruppen können bevorzugt C_6 - C_{10} -Aryle sein, vorzugsweise Phenyl oder Naphthyl. Alkylaryle können C_7 - C_{18} -Alkylaryle sein, vorzugsweise Toluyl oder Mesityl.

Bevorzugt bedeutet

20

Ar substituiertes oder unsubstituiertes Phenyl, Naphthyl, Anthryl, Phenanthryl, welches durch A, OA, CO-AOH, COOH, COOA, Fluor, Chlor, Brom, Iod, Hydroxy, Methoxy, Ethoxy, Propoxy, Butoxy, Pentyloxy, Hexyloxy, Nitro, Cyan, Formyl, Acetyl, Propionyl, Trifluormethyl, Amino, Methylamino, Ethylamino, Dimethylamino, Diethylamino, Benzyloxy, Sulfonamido, Methylthio, Methylsulfinyl, Methylsulfonyl, Methylsulfonamido, Ethylsulfonamido, Propylsulfonamido, Butylsulfonamido, Dimethylsulfonamido, Phenylsulfonamido, Carboxy, Methoxycarbonyl, Ethoxycarbonyl, Aminocarbonyl mono-, di- oder trisubstituiert sein kann, wobei Ar nicht

25

mehr als 20 C-Atome aufweist, wenn es durch A substituiert ist und/oder an A gebunden ist.

30

Vorzugsweise bedeutet

35

unsubstituiertes, ein- oder mehrfach substituiertes Phenyl, und im einzelnen bevorzugt Phenyl, o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-

10

15

20

30

Benzoxadiazol-5-yl,

Naphthyl.

Isopropylphenyl, o-, m- oder p-tert.-Butylphenyl o-, m- oder p-Cyanphenyl, o-, m- oder p-Methoxyphenyl, o-, m- oder p-Ethoxyphenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Bromphenyl, o-, m- oder p- Chlorphenýl, o-, m- oder p-Methylthiophenyl, o-, moder p-Methylsulfinylphenyl, o-, m- oder p-Methylsulfonylphenyl, o-, m- oder p-Aminophenyl, o-, m- oder p-Methylaminophenyl, o-, m- oder p-Dimethylaminophenyl, o-, m- oder p-Nitrophenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dibromphenyl, 2-Chlor-3-methyl-, 2-Chlor-4-methyl-, 2-Chlor-5-methyl-, 2-Chlor-6methyl-, 2-Methyl-3-chlor-, 2-Methyl-4-chlor-, 2-Methyl-5-chlor-, 2-Methyl-6-chlor-, 3-Chlor-4-methyl-, 3-Chlor-5-methyl- oder 3-Methyl-4chlorphenyl, 2-Brom-3-methyl-, 2-Brom-4-methyl-, 2-Brom-5-methyl-, 2-Brom-6-methyl-, 2-Methyl-3-brom-, 2-Methyl-4-brom-, 2-Methyl-5brom-, 2-Methyl-6-brom-, 3-Brom-4-methyl-, 3-Brom-5-methyl- oder 3-Methyl-4-bromphenyl, 2,4- oder 2,5-Dinitrophenyl, 2,5- oder 3,4-Dimethoxyphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6- oder 3,4,5-Trichlorphenyl, 2,4,6-Tri-tert-Butylphenyl, 2,5-Dimethylphenyl, 4lodphenyl, 4-Fluor-3-chlorphenyl, 4-Fluor-3,5-dimethylphenyl, 2-Fluor-4-bromphenyl, 2,5-Difluor-4-bromphenyl, 2,4-Dichlor-5-methylphenyl, 3-Brom-6-methoxyphenyl, 3-Chlor-6-methoxyphenyl, 2-Methoxy-5methylphenyl, 2,4,6-Triisopropylphenyl, 1,3-Benzodioxol-5-yl, 1,4-Benzodioxan-6-yl, Benzothiadiazol-5-yl oder

Arylen hat die gleichen Bedeutungen wie für Ar angegeben, mit der Maßgabe, daß eine weitere Bindung vom aromatischen System zum nächsten Bindungsnachbarn geknüpft ist.

Im einzelnen kann die mit Het bezeichnete Gruppe folgende Bedeutungen annehmen:

Het ein ein- oder zweikerniger gesättigter, ungesättigter oder aromatischer Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert

oder ein-, zwei- oder dreifach durch Hal und/oder A, OA, CO-AOH, COOH, COOA, COA, OH, CN, CONHA, NO₂, =NH, =O substituiert sein kann, mit Hal F, Cl, Br oder l.

5 Bevorzugt bedeutet

Het unsubstituiertes oder ein- oder zweifach durch Hal und/oder A substituiertes Chromen-2-on-yl, Pyrrolyl, Imidazolyl, Pyridyl, Pyrimidyl, Piperidinyl, 1-Methyl-piperidinyl, Indolyl, Thiopenyl, Furyl, Imidazolyl, Pyrazolyl Oxazolyl, Isoxazolyl Thiazolyl, Isothiazolyl, Triazolyl, Thienyl, Tetrazolyl, Oxadiazolyl, Thiadiazolyl, Thiopyranyl, Pyridazinyl, Pyrazyl, Benzofuryl, Benzothienyl, Indolyl, [2,1,3]-Benzothiadiazolyl, Benzimidazolyl, Benzopyrazolyl, Benzoxazolyl, Benzisoxazolyl, Benzthiazolyl, Benzisothiazolyl, Benz-2,1,3-oxadiazolyl, Chinolyl, Isochinolyl, Cinnolinyl, wobei Substituenten A. OA, CO-AOH, COOH, COOA, Fluor, Chlor,

wobei Substituenten A, OA, CO-AOH, COOH, COOA, Fluor, Chlor, Brom, Iod sein können

besonders bevorzugt 2- oder 3-Furyl, 2- oder 3-Thienyl, 1-, 2- oder 3-Pyrrolyl, 1-, 2, 4- oder 5-Imidazolyl, 1-, 3-, 4- oder 5-Pyrazolyl, 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, 2-, 3- oder 4-Pyridyl, 1-Methyl-piperidin-4yl oder Piperidin-4-yl.2-, 4-, 5- oder 6-Pyrimidinyl, weiterhin bevorzugt 1,2,3-Triazol-1-, -4- oder -5-yl, 1,2,4-Triazol-1-, -3- oder 5-yl, 1- oder 5-Tetrazolyl, 1,2,3-Oxadiazol-4- oder -5-yl, 1,2,4-Oxadiazol-3- oder -5-yl, 1,3,4-Thiadiazol-2- oder -5-yl, 1,2,4-Thiadiazol-3- oder -5-yl, 1,2,3-Thiadiazol-4- oder -5-yl, 2-, 3-, 4-, 5oder 6-2H-Thiopyranyl, 2-, 3- oder 4-4-H-Thiopyranyl, 3- oder 4-Pyridazinyl, Pyrazinyl, 2-, 3-, 4-, 5- 6- oder 7-Benzofuryl, 2-, 3-, 4-, 5-, 6- oder 7-Benzothienyl, 1-, 2-, 3-, 4-, 5-, 6- oder 7-Indolyl, 1-, 2-, 4- oder 5-Benzimidazolyl, 1-, 3-, 4-, 5-, 6- oder 7-Benzopyrazolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 3-, 4-, 5-, 6- oder 7-Benzisoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzthiazolyl, 2-, 4-, 5-, 6- oder 7-Benzisothiazolyl, 4-, 5-, 6- oder 7-Benz-2,1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Chinolyl, 1-, 3-, 4-, 5-, 6-, 7- oder 8-Isochinolyl, 3-, 4-, 5-, 6-, 7- oder 8-Cinnolinyl, 2-, 4-, 5-, 6-, 7- oder 8-, Chinazolinyl, 4- oder 5-Isoindolyl, 5- oder 6-Chinoxalinyl, 2-, 3-, 5-, 6-, 7- oder 8-2H-Benzo[1,4]oxazinyl, weiter bevorzugt 1,3-Benzo-

20

10

15

Het

25

30

35

10

15

20

25

30

35

dioxol-5-yl, 1,4-Benzodioxan-6-yl, 2,1,3-Benzothiadiazol-4- oder -5-yl, 2,1,3-Benzoxadiazol-5-yl oder Chromenyl.

Die heterocyclischen Reste können auch teilweise oder vollständig hydriert sein und die folgenden Bedeutungen annehmen:

Het 2,3-Dihydro-2-, -3-, -4- oder -5-furyl, 2,5-Dihydro-2-, -3-, -4- oder 5furyl, Tetrahydro-2- oder -3-furyl, 1,3-Dioxolan-4-yl, Tetrahydro-2oder -3-thienyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 2,5-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 1-, 2- oder 3-Pyrrolidinyl, Tetrahydro-1-, -2- oder -4-imidazolyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrazolyl, Tetrahydro-1-, -3- oder -4-pyrazolyl, 1,4-Dihydro-1-, -2-, -3- oder -4-pyridyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5- oder -6pyridyl, 1-, 2-, 3- oder 4-Piperidinyl, 2-, 3- oder 4-Morpholinyl, Tetrahydro-2-, -3- oder -4-pyranyl, 1,4-Dioxanyl, 1,3-Dioxan-2-, -4oder -5-yl, Hexahydro-1-, -3- oder -4-pyridazinyl, Hexahydro-1-, -2-, -4- oder -5-pyrimidinyl, 1-, 2- oder 3-Piperazinyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 1,2,3,4-Tetrahydro-1-,-2-,-3-, -4-, -5-, -6-, -7- oder -8-isochinolyl, 2-, 3-, 5-, 6-, 7- oder 8- 3,4-Dihydro-2H-benzo[1,4]oxazinyl, weiter bevorzugt 2,3-Methylendioxyphenyl, 3,4-Methylendioxyphenyl, 2,3-Ethylendioxyphenyl, 3,4-Ethylendioxyphenyl, 3,4-(Difluormethylendioxy)-phenyl, 2,3-Dihydrobenzofuran-5- oder 6-yl, 2,3-(2-Oxo-methylendioxy)-phenyl oder auch 3,4-Dihydro-2H-1,5-benzodioxepin-6- oder -7-yl, ferner bevorzugt 2,3-Dihydrobenzofuranyl oder 2,3-Dihydro-2-oxo-furanyl.

Heterocycloalkylen bzw. Heterocycloarylen hat die gleichen Bedeutungen wie für Het angegeben, mit der Maßgabe, daß eine weitere Bindung vom heterozyklischen System zum nächsten Bindungsnachbarn geknüpft ist.

Heterocycloalkylen bedeutet vorzugsweise 1,2-, 2,3- oder 1,3-Pyrrolidinyl, 1,2-, 2,4-, 4,5- oder 1,5-Imidazolidinyl, 1,2-, 2,3-, oder 1,3-Pyrazolidinyl, 2,3-, 3,4-, 4,5- oder 2,5-Oxazolidinyl, 1,2-, 2,3-, 3,4- oder 1,4- Isoxazolidinyl, 2,3-, 3,4-, 4,5- oder 2,5-Thiazolidinyl, 2,3-, 3,4-, 4,5- oder 2,5-Isothiazolidinyl, 1,2-, 2,3-, 3,4- oder 1,4-Piperidinyl, 1,4- oder 1,2-Piperazinyl, weiterhin bevorzugt 1,2,3-Tetrahydro-triazol-1,2- oder -1,4-yl, 1,2,4-Tetrahydro-triazol-1,2- oder 3,5-yl, 1,2- oder 2,5-Tetrahydro-tetrazolyl, 1,2,3-Tetrahydro-oxadiazol-2,3-, -3,4-, -4,5- oder -1,5-yl, 1,2,4-Tetrahydro-

oxadiazol-2,3-, -3,4- oder -4,5-yl, 1,3,4-Tetrahydro-thiadiazol-2,3-, -3,4-, -4,5- oder -1,5-yl, 1,2,4-Tetrahydro-thiadiazol-2,3-, -3,4-, -4,5- oder -1,5-yl, 1,2,3-Thiadiazol-2,3-, -3,4-, -4,5- oder -1,5-yl, 2,3- oder 3,4-Morpholinyl, 2,3-, 3,4- oder 2,4-Thiomorphölinyl.

5 ·

Der Kohlenwasserstoffrest R ist ganz besonders bevorzugt eine Gruppe mit nicht mehr als 20 C-Atomen und nimmt Bedeutungen an, ausgewählt aus Verbindungen, welche zu den C₁-C₁₂-Alkylenen,C₃-C₁₀-Cycloalkylenen, bzw. über eine oder zwei Alkylgruppe(n) gebundenen

10

20

25

30

 C_4 - C_{20} -Cycloalkylenen, C_6 - C_{14} -Arylenen oder den C_7 - C_{20} -Alkylarylenen zählen und davon insbesondere bevorzugt eine C_1 - C_4 -Alkylen-Kette aus der Reihe Methylen, Ethylen, Propylen und Butylen bzw. eine C_6 - C_8 -Arylen-Kette aus der Reihe - C_6 H $_4$ - und - C_6 H $_2$ Me $_2$ - bzw. eine C_7 - C_9 -Alkylaryl-Kette aus der Reihe -CH $_2$ C $_6$ H $_4$ -, -CH $_2$ C $_6$ H $_2$ Me $_2$ -, -CH $_2$ C $_6$ H $_4$ CH $_2$ - und -

15 CH₂C₆H₂Me₂CH₂-.

R3 ist ein Kohlenwasserstoff-Rest, der alle Bedeutungen von A, Ar, AAr, AArA, Het, AHet, AHetA annehmen kann, in dem H-Atome durch funktionelle Gruppen Z ersetzt sein können. Dieser Kohlenwasserstoff-Rest kann geradkettig, unverzweigt (linear), verzweigt, gesättigt, ein- oder mehrfach ungesättigt, zyklisch (A), oder aromatisch (Ar), heterozyklisch oder herteroaromatisch (Het) und gegebenenfalls ein- oder mehrfach substituiert sein. Insbesondere handelt es sich bei dem Kohlenwasserstoffrest R3 um einen Rest, der sich stabilisierend auf die Carbenfunktion der Verbindungen der allgemeinen Formeln (I) und (II) auswirkt. H-Atome in R3 können durch funktionelle Gruppen Z, wie im folgenden definiert, ersetzt sein.

Bevorzugt ist R3 ein aliphatischer, aromatischer oder heteroaromatischer Kohlenwasserstoffrest, und zwar wie oben beschrieben, ein aliphatischer Rest A, ein aromatischer Kohlenwasserstoff Ar aus den oben aufgezählten Gruppen oder ein heterozyklischer Substituent Het wie oben definiert. Ganz bevorzugt ist R3 ein aliphatischer,d. h. ein geradkettiger, unverzweigter (linearer), verzweigter, gesättigter, ein- oder mehrfach ungesättigter, oder ein zyklischer aliphatischer oder aromatischer

35 Kohlenwasserstoffrest mit 1 – 18 C-Atomen. Aus dieser Gruppe von Verbindungen erwiesen sich die Reste Phenyl, Toloyl, 2,6-Dimethylphenyl,

Mesityl, 2,6-Diisopropylphenyl, 2,4,6-Triisopropylphenyl oder Cyclohexyl als besonders geeignet und führten zu besonders vorteilhaften Eigenschaften der hergestellten Verbindungen.

- R1 und R2 können unabhängig voneinander H sein oder alle Bedeutungen von Hal, A, Ar und AAr, wie oben angegeben, annehmen, wobei in A und Ar H-Atome durch funktionelle Gruppen Z ersetzt sein können, und Hal F, CI, Br oder I bedeuten können. Besonders bevorzugt nehmen R1 und R2 die Bedeutungen von R3 an oder bedeuten H, CI oder Br. Insbesondere bevorzugt bedeuten R1 und R2 unabhängig voneinander H, CI, Br, geradkettiger, verzweigter, gesättigter, ein- oder mehrfach ungesättigter C₁-C₇-Alkylrest, wobei im Alkylrest ein oder mehrere H durch Z ersetzt sein können.
- Wie bereits beschrieben können in allen Kohlenwasserstoff-Resten R, R1, 15 R2 und R3, insbesondere aber in R3, H-Atome durch funktionelle Gruppen Z ersetzt sein und Si-, N-, P-, O- oder S-Atome tragen. Es können Silyl-Gruppen sein oder Gruppen, die eine oder mehrere Alkohol-, Aldehyd-, Carbonsäure-, Amin-, Amid-, Imid-, Phosphin-, Ether- oder Thioether-Funktion besitzen, d. h. sie können u. a. Reste mit den Bedeutungen OA, 20 NHA, NAA', PAA', CN, NO2, SA, SOA, SO2A, SO2Ar, SiH3 oder SiHAA'oder SiAA'A" sein, wobei A, A' und A" unabhängig voneinander die Bedeutungen von A gemäß der gegebenen Definition annehmen können. Sie können Gruppen sein, die eine oder mehrere Alkohol- (OA), Aldehyd-, Carbonsäure-, Amin-, Amid-, Imid-, Phosphin-, Ether- oder Thioether-25 Funktionen besitzen oder Silyl- (SiH₃-) oder Silanyl-Gruppen (SiAlkyl₃-) sein. Bevorzugt hat eine Gruppe Z die Bedeutung OA, NHA, NAA' und PAA'.
- R1 und R2 können daher z.B. auch SO₃H, F, Cl, ein Hydroxyl, Alkanoyloder Cycloalkanoyl-Rest sein.
 R1, R2 oder R2 können Methoxy, Ethoxy, Propionyl, Butyryl, Pentanoyl, Hexanoyl, Heptanoyl, Octanoyl, Nonanoyl, Decanoyl, Undecanoyl, Dodecanoyl, Tridecanoyl, Tetradecanoyl, Pentadecanoyl, Hexadecanoyl, Hexadecanoyl, Heptadecanoyl oder Octadecanoyl bedeuten.

10

15

20

25

30

35

R1, R2 und R3 können auch Acylreste sein. Vorzugsweise können R1, R2, und R3 Acylreste mit 1, 2, 3, 4, 5, 6, 7, 8, 9, oder 10 C-Atomen sein und z.B. Formyl, Acetyl, Propionyl, Butyryl, Trifluoracetyl oder Benzoyl oder Naphthoyl bedeuten. Weiterhin können R1, R2, und R3 Amino, Methylamino, Dimethylamino, Methylthio, Methylsulfinyl, Methylsulfonyl oder Phenylsulfonyl-Gruppen sein.

Es können auch in den Resten R1, R2 und R3 in Alkyl, Alkylen, Cycloalkyl, Cycloalkylen, Alkanoyl und Cycloalkanoyl jeweils eine, zwei- oder drei Methylengruppen durch N, O und/oder S ersetzt sein.

Eine Kohlenwasserstoff-Gruppe in R1, R2 und R3 kann also die Bedeutungen von A, Ar oder AAr annehmen und eine Alkyl-, Alkenyl-, Aryl-, Alkylaryl- oder Alkinylgruppe wie oben definiert sein, worin ein oder mehrere H-Atome durch oben genannte funktionelle Gruppen Z ersetzt sein können.

R3'ist ein zyklischer Kohlenwasserstoff, der sich stabilisierend auf die Verbindungen der allgemeinen Formeln (I) und (II) im Vergleich zum Stand der Technik auswirkt. H-Atome in R3'können durch funktionelle Gruppen Z ersetzt sein.

Bevorzugt ist R3'ein zyklischer aliphatischer Kohlenwasserstoffrest A, wie oben beschrieben, ein aromatischer Kohlenwasserstoff Ar aus den oben aufgezählten Gruppen oder ein heterozyklischer Substituent Het wie oben definiert. Ganz bevorzugt ist R3'ein zyklischer aliphatischer oder aromatischer Kohlenwasserstoffrest mit 6 – 18 C-Atomen. Aus dieser Gruppe von Verbindungen erwiesen sich die Reste Mesityl, Triisopropylphenyl oder Cyclohexyl als besonders geeignet und führten zu besonders vorteilhaften Eigenschaften der hergestellten Verbindungen.

In den Resten R3'und R4 können funktionelle Gruppen Z H-Atome ersetzen. Diese funktionellen Gruppen Z können Si-, N-, P-, O- oder S-Atome tragen und können u. a. Reste mit den Bedeutungen OA, NHA, NAA', PAA', CN, NO₂, SA, SOA, SO₂A, SO₂Ar, SiH₃ oder SiHAA'- oder SiAA'A" sein, wobei A, A' und A" unabhängig voneinander die Bedeutungen von A gemäß der gegebenen Definition

10

15

20

25

annehmen können. Sie können Gruppen sein, die eine oder mehrere Alkohol- (OA), Aldehyd-, Carbonsäure-, Amin-, Amid-, Imid-, Phosphin-, Ether- oder Thioether-Funktionen besitzen oder Silyl- (SiH₃-) oder Silanyl-Gruppen (SiAlkyl₃-) sein. Bevorzugt hat eine Gruppe Z die Bedeutung OA, NHA, NAA' und PAA'.

R4 kann daher z.B. auch SO₃H, F, Cl, ein Hydroxy, Alkanoyl- oder Cycloalkanoyl-Rest sein. Sie können Methoxy, Ethoxy, Propionyl, Butyryl, Pentanoyl, Hexanoyl, Heptanoyl, Octanoyl, Nonanoyl, Decanoyl, Undecanoyl, Dodecanoyl, Tridecanoyl, Tetradecanoyl, Pentadecanoyl, Hexadecanoyl, Heptadecanoyl oder Octadecanoyl bedeuten.

R4 kann auch ein Acylrest sein. Vorzugsweise kann R4 Acylrest mit 1, 2, 3, 4, 5, 6, 7, 8, 9, oder 10 C-Atomen sein und z.B. Formyl, Acetyl, Propionyl, Butyryl, Trifluoracetyl oder Benzoyl oder Naphthoyl bedeuten. Weiterhin können R1, R2, und R4 Amino, Methylamino, Dimethylamino, Methylsulfinyl, Methylsulfonyl oder Phenylsulfonyl-Gruppen sein.

Es können auch in den Resten R3' und R4 in Alkyl, Alkylen, Cycloalkyl, Cycloalkylen, Alkanoyl und Cycloalkanoyl jeweils eine, zwei- oder drei Methylengruppen durch N, O und/oder S ersetzt sein.

Eine Kohlenwasserstoff-Gruppe in R4 kann also die Bedeutungen von A, Ar oder AAr annehmen und eine Alkyl-, Alkenyl-, Aryl-, Alkylaryl- oder Alkinylgruppe wie oben definiert sein, worin ein oder mehrere H-Atome durch oben genannte funktionelle Gruppen Z ersetzt sein können.

R4 kann H sein oder alle Bedeutungen von Hal, A, Ar und AAr, wie oben angegeben, annehmen, wobei in A und Ar H-Atome durch funktionelle Gruppen Z ersetzt sein können, und Hal F, Cl, Br oder I bedeuten können. Bevorzugt bedeutet in R4 Hal Cl oder Br. Insbesondere bevorzugt bedeutet R4 unabhängig voneinander H, Cl, Br, geradkettiger, verzweigter,, gesättigter, ein- oder mehrfach ungesättigter C₁-C₇-Alkylrest, wobei im Alkylrest ein oder mehrere H durch Z ersetzt sein können.

30

25

30

35

R5 kann unabhängig voneinander A, Ar oder AAr, wie oben definiert, bedeuten und insbesondere eine Alkyl-, Cycloalkyl oder Aryl-Gruppe mit bis zu 10 C-Atomen sein. Bevorzugt ist R5 ein C₁-C₆-Alkyl, ein C₅-C₈-Cycloalkyl oder ein C6-C10-Aryl und kann bevorzugt die Bedeutungen 5 Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, sec-Butyl, tert.-Butyl, Pentyl, 1-, 2- oder 3-Methylbutyl (-C₅H₁₀-), 1,1-, 1,2- oder 2,2-Dimethylpropyl (- C_5H_{10} -), 1-Ethylpropyl (- C_5H_{10} -), Hexyl (- C_6H_{12} -), 1-, 2-, 3- oder 4-Methylpentyl (-C₆H₁₂-), 1,1-, 1,2-, 1,3-, 2,2-, 2,3- oder 3,3-Dimethylbutyl ($-C_6H_{12}$ -), 1- oder 2-Ethylbutyl ($-C_6H_{12}$ -), 10 1-Ethyl-1-methylpropyl ($-C_6H_{12}$ -), 1-Ethyl-2-methylpropyl ($-C_6H_{12}$ -), 1.1.2- oder 1.2.2-Trimethylpropyl (-C₆H₁₂-), Cylopentyl, Cyclohexyl, Methylcyclopentyl, Cycloheptyl, Methylcyclohexyl, Cyclooktyl, Phenyl, o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-Isopropylphenyl, o-, m- oder p-tert.-Butylphenyl 15 Naphthyl, haben, Ganz bevorzugt bedeutet R5 Cyclohexyl, Cyclopentyl, Isopropyl und Phenyl.

R6 und R7 können unabhängig voneinander H, A oder Ar sein, wobei H-Atome in A oder Ar durch Alkenyl- oder Alkinylreste substituiert sein können, mit nicht mehr als 30 C-Atomen. R6und R7können daher unabhängig voneinander H, Alkyl-, Cycloalkyl, Aryl, Alkenyl oder Alkinyl mit bis zu 30 C-Atomen sein. Bevorzugt sind R6 und R6 H, C₁-C₁₀-Alkyl, C₆-C₁₀-Aryl, C₂-C₁₀-Alkenyl und C₂-C₈-Alkinyl. Bevorzugt können R6 und R6 also die Bedeutungen Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, sec-Butyl, tert.-Butyl, Pentyl, 1-, 2- oder 3-Methylbutyl (-C₅H₁₀-), 1,1-, 1,2- oder 2,2-Dimethylpropyl (- C_5H_{10} -), 1-Ethylpropyl (- C_5H_{10} -), Hexyl (- C_6H_{12} -), 1-, 2-, 3- oder 4-Methylpentyl (- C_6H_{12} -), 1,1- , 1,2- , 1,3- , 2,2- , 2,3- oder 3,3-Dimethylbutyl (- C_6H_{12} -), 1- oder 2-Ethylbutyl (- C_6H_{12} -), 1-Ethyl-1methylpropyl (-C₆H₁₂-), 1-Ethyl-2-methylpropyl (-C₆H₁₂-), 1,1,2- oder 1,2,2-Trimethylpropyl (-C₆H₁₂-), Heptyl, Octyl, Nonyl, Decyl, Cyclopropenyl, Cyclobutenyl, Cyclopentenyl, Cyclohexyl, Cyclopentadienyl und Methylcyclopentadienyl, Phenyl, o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-Isopropylphenyl, o-, m- oder p-tert.-Butylphenyl, Naphthyl, Vinyl, Propenyl, Butenyl, Pentenyl oder Hexenyl, Ethinyl, Propinyl, Butinyl, Pentinyl oder Hexinyl annehmen.

10

15

20

25

30

Ganz bevorzugt bedeuten R6 und R7 H, Methyl, Phenyl und C2-C8-Alkenyle wie z.B. Vinyl,—C=CMe2 oder —C=CPh2.

X ist jeweils ein einwertiges Anion, das zum Ladungsausgleich dient. Es ist in den Verbindungen der allgemeinen Formeln (V) und (VI) bzw. (Va) und (VIa) als Ligand an ein zweifach positiv geladenes Ruthenium-Zentralatom gebunden ist. Je nach Elektronegativität des Anions X kann diese Bindung eine koordinative Bindung, die durch freie Elektronenpaare des Anions ausgebildet wird, oder eine ionische Bindung sein.

Die in den Verbindungen (I) und (II) bzw. (V) und (VI) enthaltenen Anionen X können unabhängig voneinander Halogenid (Hal) aus der Gruppe Br-, Cl-, J- und F-, Pseudohalogenid wie Cyanid (CN-) und Thiocyanid (SCN-), Alkoxid, Aryloxid, Alkyl, Aryl, Carboxyl usw. sein. Bevorzugt ist X Halogenid,

ganz bevorzugt Cl oder Br.

Die Herstellung der Verbindungen der allgemeinen Formeln (V) und (VI) kann grundsätzlich nach zwei verschiedenen Methoden erfolgen, die im folgenden als Methode A und Methode B bezeichnet werden.

Die Herstellung der Verbindungen der allgemeinen Formeln (V) und (VI) kann nach Methode A durch Umsetzung von Verbindungen der allgemeinen Formel (I) bzw. (II) gemäß der Reaktionsgleichungen GI. 1 bzw. GI. 2 mit einer zur Deprotonierung von (V) bzw. (VI) befähigten Base wie z.B. Metallalkoholate, MOR, Metallhydride, MH, Metallamide, MNH₂ oder Ammoniak und [P(R4)₃]₂X₂Ru=CR5R6 in wasserfreien, inerten, aprotischen organischen Lösungsmitteln unter Schutzgasatmosphäre erfolgen. Nach Abtrennung der Nebenprodukte lassen sich die Verbindungen der allgemeinen Formeln (V) und (VI) erhalten.

Methode A

Die Herstellung der Verbindungen der allgemeinen Formeln (V) und (VI) kann nach <u>Methode B</u> auch durch Umsetzung von Verbindungen der allgemeinen Formel (III) bzw. (IV) analog der Reaktionsgleichungen Gl. 3 und Gl. 4 mit [P(R4)₃]₂X₂Ru=CR5R6 in wasserfreien, inerten, aprotischen organischen Lösungsmitteln erfolgen. Nach Abtrennung der Nebenprodukte lassen sich die Verbindungen der allgemeinen Formeln (I) und (II) erhalten.

Methode B

20

R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R3 N R SiR'_n(OR')_{3-n}
$$+ [P(R5)_3]X_2Ru=CR6R7 R3 N N R SiR'n(OR')3-n R6 R7 P(R5)3 (V)$$

30

R2 R1 R2 R1 R2 R1 R2 R1 R3 N R—SiR'_n(OR')_{3-n}
$$+ [P(R5)_3]X_2Ru = CR6R7$$
 R3 N R R2 R1 R3 N R R3 N R R3 N R R6 R6 P(R5)₃ (VI)

35

Auch im Fall der Methode B erfolgt die Umsetzung unter Schutzgasatmosphäre. Auch hier sind Stickstoff und Argon als Schutzgase bevorzugt. Die Edukte können zur Durchführung der Reaktion in wasserfreien, inerten, aprotischen organischen Lösungsmitteln gelöst oder suspendiert werden.

Die Imidazol-Grundkörper der für die Synthese der als Edukte benötigten substituierten Imidazole für die Herstellung der Verbindungen der allgemeinen Formeln (I), (III) und (V) lassen sich analog der in der Patentschrift US-A-6,177,575 beschriebenen Synthesemethode gemäß der folgenden allgemeinen Reaktionsgleichung herstellen:

$$\begin{array}{c} R2 \\ O \\ O \end{array} + R2-NH_2 + NH_4CH_3COO + H \\ \begin{array}{c} H^+/H_2O \\ H \end{array} + R3-N \\ \begin{array}{c} R2 \\ N \\ \end{array}$$

10

5 .

Die Synthese des Grundkörpers (VIII) der Verbindungen der allgemeinen Formeln (II), (IV) und (VI) (substituiertes 4,5-Dihydroimidazol) kann nach Methoden erfolgen, welche in Tetrahedron Lett. **1980**, 21, 885, Chem. Ber. **1965**,98, 1342 und in DE-A-11 89 998 beschrieben sind.

15

20

Die Herstellung der am zweiten Stickstoffatom des Imidazolrings durch Silyl-gruppen substituierten Verbindungen der allgemeinen Formeln (I) bis (IV) kann in einfacher Weise durch Umsetzung von R3-substituiertem Imidazol bzw. substituiertem 4,5-Dihydroimidazol mit Chlor-, Brom- oder lod-haltigen Alkoxysilanen

25

30

ohne Zugabe eines weiteren Lösemittels unter Schutzgasatmosphäre erfolgen. Es ist aber auch möglich, die Reaktion in einem inerten aprotischen organischen Lösungsmittel durchzuführen.

10

15

20

25

30

35

(11)

Je nach Reaktivität des eingesetzten Imidazols der allgemeinen Formeln erfolgt die Reaktion unter Einhaltung der Reaktionstemperatur innerhalb kurzer Zeit oder erfordert mehrere Tage. Die Reaktionstemperatur liegt dabei in einem Bereich von 20 bis + 200 °C, vorzugsweise von 20 bis 100 °C und ganz bevorzugt zwischen 60 und 100 °C. Die gebildeten Produkte (I) und (II) lassen sich nach Beendigung der Reaktion als stabile Substanzen nach bekannten Methoden rein isolieren und nach Methode A zu den Verbindungen der allgemeinen Formeln (V) und (VI)

Die Herstellung der Verbindungen der allgemeinen Formeln (III) und (IV) erfolgt durch Umsetzung der Alkoxysilyl-funktionalisierten Imidazoliumsalzen (I) bzw. Alkoxysilyl-funktionalisierten 4,5-Dihydroimidazolium-Salze (II) mit einer geeigneten Base in wasserfreien, inerten, aprotischen organischen Lösungsmitteln unter Schutzgasatmosphäre.

weiterverarbeiten oder auf einem Träger immobilisieren.

10

15

20

25

30

35

Diese Umsetzung kann gegebenenfalls direkt nach der Herstellung der Imidazoliumsalzen (I) bzw. 4,5-Dihydroimidazolium-Salze (II) ohne vorherige Aufreinigung erfolgen. Für diese Umsetzung geeignete Basen sind Metallalkoholate der allgemeinen Formel MOR oder Basen ausgewählt aus der Gruppe der Metallhydride, MH, Metallamide, MNH₂ und Ammoniak in einem wasserfreien, inerten, aprotischen organischen Lösungsmittel. Bevorzugt wird NH₃/NaH oder ein Metallalkoholat als Base eingesetzt. In verschiedenen Umsetzungen hat sich Kalium-t-Butylat (KO^tBu) als ganz besonders geeignet erwiesen.

Zur Reaktion können alle Reaktionspartner gemeinsam im Reaktionsgefäß eingesetzt werden. Die Reihenfolge der Zugabe der Komponenten kann beliebig gewählt werden.

Die Ausgangsverbindungen der allgemeinen Formeln (I) bzw. (II) können in einem geeigneten Lösungsmittel, wie z. B. einem Ether vorgelöst bzw. suspendiert sein.

Als Schutzgasatmosphäre können Stickstoff oder Argon dienen. Diese Reaktion kann in einem Temperaturbereich von –78°C bis + 100 °C, vorzugsweise von –40°C bis +60 °C während einer Reaktionszeit von 1 Minute bis 6 Stunden erfolgen. Die gebildeten Produkte der allgemeinen Formeln (III) bzw. (IV) können gegebenenfalls nach Abtrennung fester Nebenprodukte und Entfernung der flüchtigen Bestandteilen in einfacher Weise durch Extraktion und Kristallisation rein isoliert werden oder direkt nach Methode B zu den Verbindungen der allgemeinen Formeln (V) oder

10

15

20

25

30

35

(VI) umgesetzt werden oder auf einem anorganischen Oxid als Träger immobilisiert werden.

Als Träger können anorganische Oxide, die aktive OH-Gruppen auf der Oberfläche enthalten und damit zur Reaktion mit den Ausgangsverbindungen (I) bis (VI) befähigt sind, verwendet werden. Als anorganische Oxide können natürliche oder chemisch hergestellte partikuläre oder monolithische Oxide des Siliziums, Bors, Aluminium, Titan und des Zirkoniums oder auch Oxidmischungen verwendet werden. Bevorzugt werden partikuläre oder monolithische Oxide des Siliziums oder Aluminiums oder deren Mischoxide und Zeolithe verwendet. Besonders bevorzugt werden partikuläre oder monolithische Oxide des Siliziums verwendet. Bei den siliziumhaltigen Materialien kann es sich um ein Kieselgel oder natürlich vorkommendes Silikat handeln, welche sich von ketten-, band- und schichtförmigen Kieselsäuren ableiten.

Die Vorteile der Verbindungen der allgemeinen Formeln (la) und (lla) im Vergleich zum Stand der Technik sind, dass sie durch den sterisch anspruchsvollen Rest R3' sehr stabil sind und somit geeignete Vorstufen darstellen für die Synthese der thermisch sehr empfindlichen Nheterozyklischen Carben-Liganden und der daraus synthetisierbaren Metallkomplexe. Die Vorteile der Verbindungen der allgemeinen Formeln (IIIa) und (IVa) im Vergleich zum Stand der Technik sind, daß diese erstmals zugänglich sind und dass sie auch thermisch viel stabiler sind als ihre ungeträgerten Analoga. Damit stehen erstmals stabile immobilisierte N-heterozyklische Carben-Liganden zur Verfügung, die mit einer Vielzahl von Übergangsmetallen sehr aktive Katalysatoren bilden, die effektiv in der organischen und metallorganischen Synthese eingesetzt werden können. Die Vorteile der Verbindungen der allgemeinen Formeln (Va) und (Vla) im Vergleich zum Stand der Technik sind, daß erstmals Ruthenium-Katalysatoren mit einem N-heterozyklischen Carben-Liganden zugänglich sind, die direkt auf einem anorganischen Oxid immobilisiert sind und damit thermische sehr stabil sind. Die Verbindungen (Ia) bis (VIa) sind kovalent auf dem anorganischen Oxid immobilisiert. Damit sind sie in Anwendungsreaktionen von den Reaktionslösungen bzw. Reaktionsprodukten sehr einfach abtrennbar. Damit können die

10

15

20

25

30

35

Verbindungen der allgemeinen Formeln (la) bis (Vla) recycelt und erneut in Anwendungsreaktionen eingesetzt werden. Insbesondere ist dies bei den Verbindungen (Va) und (Vla) von Vorteil, da viele immobilisierte Katalysatoren sehr teuer sind und so mehrmals eingesetzt werden kann. Dies führt zur Einsparung von Prozesskosten in allen Anwendungsreaktionen insbesondere in katalytischen Reaktionen unter Verwendung teurer Übergangsmetallkatalysatoren. Da die zur Immbilisierung befähigte SiR'n(OR')3-n-Gruppe an dem N-Heterozyklischen-Carben-Liganden gebunden ist und dieser fester an das Ruthenium-Atom gebunden ist als die noch vorhandene P(R5)3-Gruppe, sind erstmals immobilisierte Ruthenium-Katalysatoren zugänglich, die kein Katalysator-Leaching aufweisen. Während der katalytischen Reaktion dissoziiert der schwächer gebundene Phosphan-Ligand vom katalytisch aktiven Ruthenium-Zentrum in die Lösung, so daß während der gesamten Katalyse die katalytisch aktive Spezies an dem Träger gebunden bleibt und somit kein Katalysatorverlust durch Leaching auftritt. Die Verbindungen der allgemeinen Formeln (Ia) bis (VIa) sind sehr einfach und in quantitativen Ausbeuten zugänglich. Zudem gibt es anorganische Träger, die entweder aus Partikeln oder aus einem Monolithen bestehen. Folglich lassen sich alle Anwendungsreaktionen in batch-Verfahren als auch in kontinuierlichen Verfahren durchführen.

Verwenden lassen sich die Verbindungen der allgemeinen Formeln (la) und (lla) als immobilisierte Reaktionsmedien, immobilisierte ionische Flüssigkeiten, immobilisierte Ligand- bzw. Katalysator-Vorstufen und als immobilisierte Katalysatoren in organischen, metallorganischen und Übergangsmetall-katalysierten Synthesen. Die Verbindungen der allgemeinen Formeln (llla) und (lVa) lassen sich als Ausgangsstoffe zur Herstellung immobilisierter N-heterozyklischer Carben-Metall-Komplexe und als immobilisierte Liganden in katalytischen Reaktionen verwenden, insbesondere in Ruthenium-katalysierten Metathese-Reaktionen, Palladium-katalysierten Heck- oder Suzuki-Reaktionen, Rhodium-katalysierte Hydrierungen, Furansynthesen, Hydroformulierung, Isomerisierungen oder Hydrosilylierung. Verwenden lassen sich die Verbindungen der allgemeinen Formeln (Va) und (VIa) als immobilisierte Katalysatoren in der organischen und metallorganischen Synthese.

Insbesondere können sie als Katalysatoren in C-C-Kupplungsreaktionen, Hydrierungen, Isomerisierungen, Silylierungen und Hydroformylierung verwendet werden. Besonders geeignet sind die neuen Verbindungen als immobilisierte Katalysatoren für C-C-Kupplungsreaktionen wie der Olefinmetathese und für Hydrierungsreaktionen. Besonders vorteilhaft sind die neuen Verbindungen in Olefinmetathesereaktionen wie der Kreuzmetathese (CM), Ringschlussmetathese (RCM), Ringöffnungsmetathese-Polymerisation (ROMP), Acyclische Dienmetathese-Polymerisation (ADMET) und En-In-Metathese.

10

15

5

4. Beipsiele

Zum besseren Verständnis und zur Verdeutlichung der Erfindung werden im folgenden Beispiele gegeben, die im Rahmen des Schutzbereichs der vorliegenden Erfindung liegen. Diese sind jedoch aufgrund der allgemeinen Gültigkeit des beschriebenen Erfindungsprinzips nicht geeignet, den Schutzbereich der vorliegenden Anmeldung nur auf diese Beispiele zu reduzieren.

20 (A) Immobilisierung von N,N'-disubstituierten Imidazoliumsalze

Immobilisierung von 1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazoliumchlorid auf Kieselgel 60 in CH₂Cl₂

25

30

35

In einen Kolben mit Rückflusskühler werden unter Argonatmosphäre 2.64 g Kieselgel 60 sowie eine Lösung aus 2.68 g (6.3 mmol) 1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazoliumchlorid und 50 ml CH₂Cl₂ gegeben. Es wird über Nacht unter Rückfluss gekocht, anschließend wird das Kieselgel wird abfiltriert und solange mit CH₂Cl₂ gewaschen, bis die Waschlösung farblos bleibt. Der Feststoff wird am Vakuum getrocknet. Man erhält das Produkt als hellbraunes Pulver.

Analyse [%]: gefunden: C 11.8, H 1.7, N 1.4. Beladung [μ mol/m²]: C 1.62, N 1.17. ¹³C MAS NMR: δ 0 – 34 (C_{ali}), 44 - 64 (NC, OC), 116 – 146 (C_{arom}). ²⁹Si MAS NMR: δ -107 (Q₃, 25 %), -98 (Q₂, 44 %), -89 (Q₁, 7 %), -65 (T₄, 10 %), -58 (T₃, 3 %), -51 (T'₁, 2 %), -50 (T₁, 9 %).

Immobilisierung von 1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazoliumchlorid auf Kieselgel 60 in Toluol

5

In einen Kolben mit Rückflusskühler werden unter Argonatmosphäre 3.07 g Kieselgel 60 sowie eine Lösung aus 5.38 g (12.6 mmol) 1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazoliumchlorid und 50 ml Toluol gegeben. Es wird über Nacht unter Rückfluss gekocht. Das Kieselgel wird abfiltriert und solange mit CH₂Cl₂ gewaschen bis die Waschlösung farblos bleibt, anschließend wird am Vakuum getrocknet. Man erhält das Produkt als hellbraunes Pulver.

10

15

20

Analyse [%]: gefunden: C 12.3, H 2.2, N 1.4. Beladung [μ mol/m²]: C 1.72, N 1.27. ¹³C MAS NMR: δ 4 – 32 (C_{ali}), 46 - 64 (NC, OC), 116 – 146 (C_{arom}). ²⁹Si MAS NMR: δ -108 (Q₃, 34 %), -98 (Q₂, 43 %), -89 (Q₁, 5 %), -49 (T'₁, 18 %).

Immobilisierung von 1-Mesityl-3-[4-(trimethoxysilyl)benzyl]imidazoliumchlorid auf Kieselgel 60 in CH₂Cl₂

25

In einen Stickstoffkolben werden unter Argonatmosphäre 3.00 g (6.94 mmol) 1-Mesityl-3-[4-(trimethoxysilyl)benzyl]imidazoliumchlorid, 2.69 g Kieselgel 60 und 25 ml CH₂Cl₂ gegeben. Es wird über Nacht unter Rückfluss gekocht. Das Kieselgel wird von der Lösung abgetrennt und dreimal mit CH₂Cl₂ gewaschen. Anschließend wird am Vakuum getrocknet. Das Produkt wird als braunes Pulver erhalten.

30

35

Analyse [%]: gefunden: C 12.5, H 3.0, N 1.3. Beladung [μ mol/m²]: C 1.35, N 1.10. ¹³C MAS NMR: δ?12 – 26 (C_{ali}), 44 - 56 (NC, OC), 146 – 120 (C_{arom}). ²⁹Si MAS NMR: δ -108 (Q₃, 39 %), -98 (Q₂, 49 %), -89 (Q₁, 3 %), -68 (T₄, 1 %), -60 (T₃, 5 %), -53 (T₁′, 2 %), -49 (T₁, 1 %).

Immobilisierung von 1-Mesityl-3-[4-

(trimethoxysilyl)benzyl]imidazoliumchlorid auf Kieselgel 60 in Toluol

10

15

20

25

30

In einen Stickstoffkolben werden unter Argonatmosphäre 3.00 g (6.94 mmol) 1-Mesityl-3-[4-(trimethoxysilyl)benzyl]imidazoliumchlorid, 2.71 g Kieselgel 60 und 25 ml Toluol gegeben. Es wird über Nacht unter Rückfluss gekocht. Das Kieselgel wird von der Lösung abgetrennt und dreimal mit CH₂Cl₂ gewaschen. Anschließend wird am Vakuum getrocknet. Das Produkt wird als braunes Pulver erhalten.

Analyse [%]: gefunden: C 16.7, H 2.6, N 1.6. Beladung [μ mol/m²]: C 1.95, N 1.42. ¹³C MAS NMR:? δ 12 – 26 (C_{ali}), 44 - 58 (NC, OC), 150 – 120 (C_{arom}).

Immobilisierung von 1-Mesityl-3-[3-

(triethoxysilyl)propyl]imidazoliumchlorid auf einem Silica Monolith im Kolben

In einen Stickstoffkolben mit aufgesetztem Rückflußkühler werden 624 mg (1.46 mmol) 1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazoliumchlorid in 5 ml CH₂Cl₂ gelöst. In diese Lösung wird der Monolith gestellt und man lässt ihn sich langsam vollsaugen. Es wird über Nacht unter Rückfluss gekocht. Die Lösung wird entfernt. Der Monolith wird solange mit CH₂Cl₂ gewaschen, bis die Waschlösung farblos bleibt. Man erhält das Produkt als hellbraunen Monolith-Stab.

Analyse [%]:gefunden: 12,4 % C, 2,8 % H, 1,5 % N. Beladung [μ mol/m²]: C 1.72, N 1.27. ¹³C MAS NMR: δ ?8 – 36 (C_{ali}), 52 - 62 (NC, OC), 146 – 120 (C_{arom}). ²⁹Si MAS NMR: δ T₁′(7 %), T₄ (4 %), Q₁ (1 %), Q₂ (43 %), Q₃ (46 %).

Immobilisierung von 1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazoliumchlorid auf einem Chromolith im Durchfluß

Der über Nacht im Trockenschrank bei 80 °C vorgetrocknete Monolith wird in den auf 30 °C temperierten Ofen der Durchflußapparatur eingebaut. Es

10

15

20

wird 1 h mit CH₂Cl₂ bei einem Fluß von 0.05 ml/min gespült. 1.03 g (2.00 mmol) 1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazoliumchlorid gelöst in 50 ml CH₂Cl₂ werden in 10 ml Portionen in die Probenschleife gegeben und mit einem Fluß von 0,3 ml/min durch den Monolith gepumpt. Es wurde über Nacht mit CH₂Cl₂ mit einem Fluß von 0,1 ml/min nachgewaschen.

Analyse [%]: gefunden: 10,6 % C, 1,7 % H, 1,3 % N. Beladung [μ mol/m²]: C 1.42, N 1.17. ¹³C MAS NMR: δ 4 - 32 (C_{ali}), 46 - 60 (NC, OC), 146 – 116 (C_{arom}). ²⁹Si MAS NMR: δ T₃ (7 %), T₄ (11 %), Q₁ (5 %), Q₂ (46 %), Q₃ (31 %).

(B) Immobilisierung der N-heterozyklischen Carbene

Immobilisierung von 1-[3-(Trimethoxysilyl)benzyl]-3-(mesityl)imidazol-2-yliden auf KG60

In einen Schlenk werden unter Argonatmosphäre 1.5 g (3.77 mmol) 1-[4-(Trimethoxysilyl)benzyl]-3-(mesityl)imidazoliumchlorid, 403 mg (3.60 mmol) KO¹Bu und 15 ml THF gegeben und 1h bei RT gerührt. Die flüchtigen Bestandteile werden im Vakuum entfernt. Der Rückstand wird in 25 ml Heptan aufgenommen. Die Lösung wird vom entstandenen Feststoff mittels Filtration über eine Kanüle in einen zweiten Schlenk überführt, in dem 1.44 g KG 60 vorgelegt werden. Die Mischung wird 3h bei RT gerührt. Anschließend wird das KG über eine Fritte abgetrennt, mit Heptan gewaschen und im Hochvakuum getrocknet. Das Produkt wird als freifliegendes Pulver erhalten.

Analyse[%] gefunden: C 17.7, H 2.4, N 1.7. Beladung [µmol/m²]: C 2.03, N 1.49.

(C) Immobilisierung der Ruthenium-Katalysatoren

Immobilisierung von {1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh auf Kieselgel 60 in Heptan

30

25

380 mg {1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh) wird in 15 ml CH₂Cl₂ unter Argonatmosphäre gelöst und 100 mg KG 60 zugegeben. Es wird 18h bei 25°C gerührt. Das Kieselgel 60 wird durch Filtration und mehrmaligem Waschen mit Heptan und Tetrahydrofuran von der Lösung abgetrennt. Das funktionalisierte Kieselgel wird im Hochvakuum getrocknet.

Analyse [%]: gefunden: C 14.0, H 2.3, N 1.0. Beladung [μ mol/m²]: C 0.8, N 0.8. ¹³C MAS NMR: δ 10 – 30 (C_{ali}), 132 – 120 (C_{arom}).

10

5

Immobilisierung von {1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh auf einem SiO₂-Monolith im Durchfluß

Der SiO₂-Monolith wird über Nacht im Trockenschrank bei 120 °C

getrocknet und anschließend in den Thermostaten der Durchflussapparatur
angeschlossen. Der Chromolith wird 1 h mit CH₂Cl₂ bei einem Fluß von 0.5
ml/min gespült. In einem Kolben werden 950 mg {1-Mesityl-3-[3(triethoxysilyi)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh) in 30 ml CH₂Cl₂
unter Argonatmosphäre gelöst und in die Probenschleife der

Durchflußapparatur eingespritzt. Die Immobilisierung erfolgt bei einem Fluß
von 0.03 ml/min. Anschließend wird mit 30 ml Tetrahydrofuran und mit 20
ml CH₂Cl₂ gespült.

25

30

35

(D) Testung der immobilisierten Ruthenium-Katalysatoren in der Katalyse

Metathese mit {1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh immobilisiert auf Kieselgel 60

In einen Dreihalskolben werden unter Argonatmosphäre 40 μmol {1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh) immobilisiert auf KG 60 (100 mg), 86.4 ml (4 mmol) 1,7-Octadien und 50 ml CH₂Cl₂ gegeben. Es wird unter Rückfluß gerührt und Proben für die

15

Gaschromatographie entnommen. GC: Verhältnis 1,7-Octadien:Cyclohexen: 1: 4.4 (81 % Umsatz).

Katalysator-Leaching-Test mit {1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh immobilisiert auf Kieselgel 60

In einen Dreihalskolben werden unter Argonatmosphäre 40 μ mol {1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh) immobilisiert auf KG 60 (100 mg) und 50 ml CH₂Cl₂ gegeben. Der Katalysator wird abgetrennt und in die Lösung werden 86.4 ml (4 mmol) 1,7-Octadien gegeben. Es wird unter Rückfluß gerührt und Proben für die Gaschromatographie entnommen. Im GC konnte kein Cyclohexen detektiert werden. Der immobilisierte Katalysator ist somit nicht in die Lösung übergegangen.

Metathese mit {1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh immobilisiert auf einem SiO₂-Monolith

Der mit {1-Mesityl-3-[3-(triethoxysilyl)propyl]imidazol-2-yliden}(PCy₃)Cl₂Ru=CHPh) funktionalisierte SiO₂-Monolith wird in die Durchflußapperatur eingebaut. In die Probenschleife werden 8 ml (53 mmol) 1,7-Octadien gegeben, welches mit einem Fluß von 0.5 ml/min bei Raumtemperatur einmal über den Chromolith gepumpt wird. Die erhaltene Reaktionslösung wird mittels GC untersucht. GC: Verhältnis 1,7-Octadien:Cyclohexen: 1.00: 1.67 (62%).

PATENTANSPRÜCHE

1. Verfahren zur Immobilisierung von N,N-disubstituierten Imidazoliumsalzen, N-heterozyklischen Carben-Liganden, und Ruthenium-Katalysatoren mit N-heterozyklischen Carben-Liganden auf anorganischen Oxid-Trägern, dadurch gekennzeichnet, dass eine Verbindung der allgemeinen Formeln (I), (II), (III), (IV), (V) oder (VI)

5

(I)

(II)

15

20

25

30

35

(IV)

worin

R A, Ar, A-Ar, A-Ar-A, Het, AHet, AHetA mit insgesamt nicht mehr mit als 30 C-Atomen

A geradkettiger, verzweigter, gesättigter C₁-C₂₀-Alkylres	st,
Cycloalkyl oder Cycloalkyl über eine oder zw	ei
Alkylgruppe(n) gebunden mit insgesamt 4 – 30 -C-Atome	n,
wobei sowohl im Alkyl- als auch im Cycloalkylrest eine CH2- od	
CH-Gruppe durch N, NH, NA, O und/oder S sowie H-Atome durc	
OA, NA ₂ und/oder PA ₂ ersetzt sein kan	n,
Ar ein oder mehrfach substituiertes oder unsubstituiertes aromatisch	er
Kohlenwasserstoff mit insgesamt nicht mehr als 20 C-Atome	n,
wobei Substituenten A, Hal, OA, NA2, PA2, COOA, COA, Cl	N,
CONHA, NO ₂ , =NH, =O sein könne	n,
Het ein ein- oder zweikerniger gesättigter od	er
aromatischer Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atome	n,
der unsubstituiert oder ein-, zwei- oder dreifach durch Hal und/od	er
A, OA, COOA, COA, CN, CONHA, NA ₂ , PA ₂ , NO ₂ , =NH, =O	
substituiert sein kann mit Hal F, Cl, Br oder	١,
R' unabhängig von der Stellung im Molekül A, Ar mit 1 - 12 C-Atome	n,
R3 A, Ar, AAr, AArA, Het, AHet, AHetA mit 6 - 18 C-Atome	n,
R3' geradkettiges oder verzweigtersCycloalkyl oder Cycloalkyl üb	er
eine oder zwei Alkylgruppe(n) gebunden, Ar, AAr, AArA, Het, AHe	et,
AHetA mit insgesamt 4 – 30 -C-Atome	en
R1 und R2 unabhängig voneinander H, Cl, Br oder die Bedeutu	ng
von	₹3
R4 H, Cl, Br oder geradkettiger, verzweigter, gesättigter, ein- od	ler
mehrfach ungesättigter C ₁ -C ₇ -Alkylrest, wobei im Alkylrest ein od	ler
mehrere H durch	Z
ersetzt sein könn	en
	Ar
R6 und R7 H, A oder Ar, wobei H-Atome in A oder Ar durch Alken	yl-
oder	
Alkinylreste substituiert sein könn	en
X gleich oder verschieden voneinander anionische Ligand	en
und	
n 0,	2
bedeuten,	
mit einem anorganischen Metalloxid, welches aktive OH-Gruppen auf	
der Oberfläche besitzt, in einem wasserfreien, inerten, aprotisch	en

organischen Lösungsmittel unter Bildung eines Alkohols R'OH unter Schutzgasatmosphäre umgesetzt wird, das gebildete Produkt (la) (lla), (VIa) (Va) oder (Illa), (IVa),

5

(la)

10

15

(Illa)

(IVa)

(IIa)

(Va)

(Vla)

25

20

worin R, R1, R2; R3, R3', R4, R5, R6, R7und X die oben gegebenen Bedeutungen haben, und "-Träger" ein anorganisches Oxid bedeutet, abgetrennt wird, und gegebenenfalls aufgereinigt wird.

- 30
- 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass als Schutzgasatmosphäre Stickstoff oder Argon dienen.
- 3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das gebildete Produkt durch Filtration abgetrennt wird und gegebenenfalls durch Waschen mit einem geeigneten Lösungsmittel aufgereinigt wird.

10

15

20

25

- 4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass es im Batch-Verfahren durchgefüht wird.
- 5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass es in einem kontinuierlichen Verfahren durchgefüht wird.
 - 6. Verfahren gemäß einem oder mehreren der Ansprüche 1 5, dadurch gekennzeichnet, dass als anorganische Oxide natürliche oder chemisch hergestellte partikuläre oder monolithische Oxide des Siliziums, Bors, Aluminium, Titan und des Zirkoniums oder deren Mischoxide oder Zeolithe verwendet werden.
 - 7. Verfahren gemäß einem oder mehreren der Ansprüche 1 5, dadurch gekennzeichnet, dass als anorganische Oxide partikuläre oder monolithische Oxide des Siliziums oder Aluminiums oder deren Mischoxide verwendet werden.
 - 8. Verfahren gemäß einem oder mehreren der Ansprüche 1 5, dadurch gekennzeichnet, dass als anorganische Oxide partikuläre oder monolithische Oxide des Siliziums, wobei es sich um ein Kieselgel oder natürlich vorkommendes Silikat handeln kann, welche sich von ketten-, band- und schichtförmigen Kieselsäuren ableiten, verwendet werden.
 - 9. Verfahren gemäß einem oder mehreren der Ansprüche 1 5, dadurch gekennzeichnet, dass als Lösungsmittel Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe oder zyklische Ether verwendet werden.
 - 10. Verfahren gemäß einem oder mehreren der Ansprüche 1 5, dadurch gekennzeichnet, dass als Lösungsmittel Pentan, Hexan, Heptan, Oktan, Dekan, Benzol, Toluol, Methylenchlorid, Chlorbenzol, Trichlortoluol, Tetrahydrofuran oder deren Gemische verwendet werden.
- 11. Verfahren gemäß einem oder mehreren der Ansprüche 1 5, dadurch gekennzeichnet, dass die Ausgangsverbindungen der allgemeinen Formeln (I) bis (VI) in einem 0.01 100-fachen Überschuss bezüglich

20

25 -

der aktiven OH-Gruppen auf der Oxidoberfläche, vorzugsweise in einem 0.1 – 50-fachen Überschuss und ganz besonders bevorzugt in einem 0.5 – 10-fachen Überschuss, zugegeben werden.

- 12. Verfahren gemäß einem oder mehreren der Ansprüche 1 5, dadurch gekennzeichnet, dass die Reaktion bei einer Temperatur in einem Bereich zwischen –20°C bis + 150 °C, vorzugsweise zwischen 0°C bis +120 °C innerhalb einer Reaktionszeit von 30 Minuten bis 10 Tage, vorzugsweise von einer Stunde bis 2 Tage und ganz bevorzugt von einer Stunde bis einem Tag durchgeführt wird.
 - 13. Verfahren gemäß einem oder mehreren der Ansprüche 1 5, dadurch gekennzeichnet, dass nach erfolgter Reaktion die gebildeten Produkte (Ia) bis (VIa) durch Filtration abgetrennt, gegebenenfalls mit einem Lösungsmittel, ausgewählt aus der Gruppe Pentan, Hexan, Heptan, Oktan, Dekan, Benzol, Toluol, Methylenchlorid, Chlorbenzol, Trichlortoluol und Tetrahydrofuran oder deren Gemische gewaschen und anschließend getrocknet werden.
 - 14. Verfahren gemäß einem oder mehreren der Ansprüche 1, 3, 5 dadurch gekennzeichnet, dass kontinuierlich Lösungen der Verbindungen der allgemeinen Formeln (I) bis (VI) durch das monolithische Material gepumpt werden, wobei der Monolith auf eine Temperatur zwischen 20°C bis + 150 °C eingestellt wird, und der funktionalisierte Monolith nach erfolgter Reaktion mit einem Lösungsmitteln ausgewählt aus der Gruppe Pentan, Hexan, Heptan, Oktan, Dekan, Benzol, Toluol, Methylenchlorid, Chlorbenzol, Trichlortoluol und Tetrahydrofuran oder deren Gemische gewaschen wird.
- 30 15. Verfahren gemäß Anspruch 14, dadurch gekennzeichnet, dass kontinuierlich Lösungen der Verbindungen der allgemeinen Formeln (I) bis (VI) im Kreislauf gepumpt werden, wodurch der Monlith mehrmals durchströmt wird.
- 35 16. Verfahren gemäß einem oder mehreren der Ansprüche 1 4, dadurch gekennzeichnet, dass die anorganischen Oxide mit den Lösungen der

15

30

Verbindungen der allgemeinen Formel (I) bis (VI) vermischt werden und zur Reaktion gebracht werden.

- 17. Auf anorganischen Oxid-Trägern immobilisierte N,N-disubstituierten Imidazoliumsalze der allgemeinen Formeln (Ia) und (IIa), N-heterozyklischen Carben-Liganden der allgemeinen Formeln (IIIa) und (IVa), und Ruthenium-Katalysatoren mit N-heterozyklischen Carben-Liganden der allgemeinen Formeln (Va) und (VIa)
- 18. Verwendung der Verbindungen der allgemeinen Formeln (Ia) und (IIa) als immobilisierte Reaktionsmedien, immobilisierte ionische Flüssigkeiten, immobilisierte Ligand- bzw. Katalysator-Vorstufen und als immobilisierte Katalysatoren in organischen, metallorganischen und Übergangsmetall-katalysierten Synthesen.
 - Verwendung der Verbindungen der allgemeinen Formeln (IIIa) und (IVa) als Ausgangsstoffe zur Herstellung immobilisierter Nheterozyklischer Carben-Metall-Komplexe,
- 20. Verwendung der Verbindungen der allgemeinen Formeln (Illa) und (IVa) als immobilisierte Liganden in katalytischen Reaktionen, insbesondere in Ruthenium-katalysierten Metathese-Reaktionen, Palladium-katalysierten Heck- oder Suzuki-Reaktionen, Rhodium-katalysierten Hydrierungen, Furansynthesen, Hydroformulierung,
 Isomerisierungen oder Hydrosilylierung.
 - 21. Verwendung der Verbindungen der allgemeinen Formeln (Va) und (VIa) als immobilisierte Katalysatoren in der organischen und metallorganischen Synthese.
 - 22. Verwendung der Verbindungen der allgemeinen Formeln (Va) und (VIa) als Katalysatoren in C-C-Kupplungsreaktionen, Hydrierungen, Isomerisierungen, Silylierungen und Hydroformylierung.
- 35 23. Verwendung der Verbindungen der allgemeinen Formeln (la) bis (Via) als immobilisierte Katalysatoren für C-C-Kupplungsreaktionen wie der

Olefinmetathese und für Hydrierungsreaktionen,
Olefinmetathesereaktionen wie der Kreuzmetathese (CM),
Ringschlussmetathese (RCM), Ringöffnungsmetathese-Polymerisation
(ROMP), Acyclische Dienmetathese-Polymerisation (ADMET) und EnIn-Metathese

ZUSAMMENFASSUNG

Die Erfindung betrifft das Verfahren zur Herstellung von auf anorganischen Oxid-Trägern immobilisierten N,N-disubstituierten Imidazoliumsalzen, N-heterozyklischen Carben-Liganden, und Ruthenium-Katalysatoren mit N-heterozyklischen Carben-Liganden, d.h. Verbindungen der allgemeinen Formeln (I) und (II), Verbindungen der allgemeinen Formeln (III) und (IV) und Verbindungen der allgemeinen Formeln (V) und (VI).

10

5

(I)

15

R2 R1
$$R3^{-N} N R - SiR'_n(OR')_{3-n}$$

(HI)

(IV)

25

20

R2

R1

R3

N

R—SIR'_n(OR')_{3-n}

X

R6

X

R7

P(R5)₃

(VI)

Die Erfindung betrifft weiterhin die Verwendung der immobilisierten Verbindungen der allgemeinen Formeln (I - IV) in der organischen, metallorganischen oder Übergangsmetall-katalysierten Synthese sowie die Verwendung der Verbindungen der allgemeinen Formeln (V) und (VI) als Katalysatoren in der organischen und metallorganischen Synthese insbesondere für C-C-Kupplungsreaktionen wie der Olefin-Metathese.

35

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.