

Audio 应用设计说明

文档版本: V1.0.0

更新日期: 2013-08-15

版权声明

版权所有◎深圳市广和通实业发展有限公司 2013。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形 式传播。

注意

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导, 本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

商标申明

} FI3 C C M 为深圳市广和通实业发展有限公司的注册商标,由所有人拥有。

版本记录

文档版本	更新日期	说明
V1.0.0	2013-08-15	初始版本

Audio 应用设计说明 Page 2 of 19

适用型号

序号	型号	说明
1	所有带音频的模块	

Audio 应用设计说明 Page 3 of 19

目录

1	音频简介			
2	模扎	以语音设	计	7
	2.1	原理	图设计	7
		2.1.1	MIC参考原理图设计	7
		2.1.2	听筒以及扬声器参考原理图设计	8
		2.1.3	耳机参考原理图设计	g
	2.2	PCB	设计	10
		2.2.1	布局设计	10
		2.2.2	走线设计	10
	2.3	软件	设计	10
3	数字	▽语音		11
	3.1	PCM	/ 语音简介	11
	3.2	硬件	设计	11
	3.3	软件	设计	12
4	常见	己音频问	题	13
	4.1	上行	问题	13
	4.2	下行	问题	13
	4.3	TDD	噪声	13
		4.3.1	产生原理	13
		4.3.2	传播途径	13
		4.3.3	针对性改善措施	14
5	音頻	预测试与	认证	15
	5.1	认证	标准介绍	15
	5.2	测试	环境搭建	15
	5.3	测试	项目	16
		5.3.1	发送灵敏度/频率响应	16
		5.3.2	发送响度(SLR)	
		5.3.3	接收灵敏度/频率响应	
		5.3.4	接收响度(RLR)	17
		5.3.5	侧音屏蔽度	17
		5.3.6	发送失真	17
		5.3.7	接收失真	18
		5.3.8	回音损耗	19

539	空闲信诸噪声	10	q
ა.ა.უ	工例间坦紫严	 - 1	J

Audio 应用设计说明 Page 5 of 19

1 音频简介

Fibocom 无线通讯模块大部分型号支持模拟语音和数字语音。 在实际设计中,可参考本文档来进行音频功能的软硬件设计。

Audio 应用设计说明 Page 6 of 19

2 模拟语音设计

通道	管脚名	管脚说明	备注
通道一	MIC+	音频通道 1 上行输入+	上行默认通道
	MIC-	音频通道 1 上行输入-	
	EAR+	音频通道 1 下行输入+	下行默认通道
	EAR-	音频通道 1 下行输入-	
通道二	AUXI+	音频通道 2 上行输入+	
	AUXI-	音频通道 2 上行输入-	
	AUXO+	音频通道 2 下行输入+	
	AUXO-	音频通道 2 下行输入-	

2.1 原理图设计

2.1.1 MIC 参考原理图设计

模块内部都已经有偏置电压,模块内部输出都带有一定的直流分量,外部需要电流隔直。外部驱动其他功放电路,其偏置电压都需要通过隔直后连接。

差分 MIC 参考设计如下:

图 2-1 差分麦克风参考电路

Audio 应用设计说明 Page 7 of 19

单端 MIC 参考设计如下:

图 2-2 单端麦克风参考电路

2.1.2 听筒以及扬声器参考原理图设计

模块内部都已经有偏置电压,模块内部输出都带有一定的直流分量,外部需要电容隔直。外部驱动其他功放电路,其偏置电压都需要通过隔直后连接。

参考电路设计如下:

图 2-3 听筒和扬声器参考电路

Audio 应用设计说明 Page 8 of 19

为方便客户对音量控制,H330 做了更可控的原理图设计,把扬声器的音频功放电源 PIN 脚 VSPK 接出。VSPK 电压范围为 1.8-5V,电压越高,SPK 的响度就会越大。

图 2-4 VSPK 参考电路

2.1.3 耳机参考原理图设计

模块内部都已经有偏置电压,模块内部输出都带有一定的直流分量,外部需要电容隔直。外部驱动其他功放电路,其偏置电压都需要通过隔直后连接。参考电路如下:

图 2-5 耳机参考电路

市面上的耳机主要分 2 类: 3 节耳机和 4 节耳机。3 节耳机是通用接法,不会有什么问题。请注意 4 节耳机的接法。见下图:

图 2-6 四节耳机接法

一定要注意 C 和 D (对应插座 1,2pin 脚)的接法。在设计的时候就要定义好,要用哪种耳机。否则, 弄错了就会导致 MIC 没声音,左右声道因没有参考地而带来很多噪声。

Audio 应用设计说明 Page 9 of 19

2.2 PCB 设计

2.2.1 布局设计

- PCB 布局时, Audio 卡及走线必须远离干扰源, 比如电源电路、天线和高速数字信号电路等
- 对于 MIC 设计,大多的滤波电容靠近模块, ESD 器件靠近 MIC
- 对应 SPK 和 RCV, 大多的滤波电容靠近 SPK 或 RCV
- 过长的走线很容易引入噪声,建议在始端和末端都分别布有滤波器件
- 如果使用音频功放,尽量选择带有抑制 217Hz 功能的;并且注意放大后波形是否失真
- MIC 和 SPK 尽量不要布局在同一平面
- MIC 和 SPK 尽量远离

2.2.2 走线设计

- 为了减少 EMC 问题,信号线走线尽可能的避开射频线,电源线,时钟线,高速数据线
- 信号线的相邻层不要走信号线;若走线,把其他走线和音频信号线设计成正交垂直
- 保证整个 PCB 环境的地连通性和完整性最近路径连接到干净的系统地
- MIC 和 SPK 走线尽量不要走一起

2.3 软件设计

FIBOCOM 模块的音频参数都可以通过 AT 命令来控制实现。常用的音频 AT 命令有:

AT+MAPATH? //读取模块当前的通道

AT+MAPATH=1,1 //1"表示上行,"1"表示切换到通道 1(MIC)

AT+MAPATH=2 //此命令只适用于 G5s 系列模块, "2"表示切换到通道 2

AT+MMICG? //读取模块当前的音频上行(MIC)增益等级

AT+MMICG=? //读取模块可以设置上行(MIC)增益范围

AT+MMICG=7 //设置模块上行(MIC)增益,参数范围 0~16

AT+CLVL=4 //设置模块音频下行增益,参数范围 0~6

ATS96=4 //设置回声抑制等级,参数范围 0~6

ATS94=4 //设置侧音等级,参数范围 0~6

更多 AT 命令请参考 FIBOCOM 各项目的 AT 命令手册。

Audio 应用设计说明 Page 10 of 19

3 数字语音

3.1 PCM 语音简介

PCM-Pulse Code Modulation 脉冲编码调制。

工作原理:模拟音频信号经模数转换(A/D变换)直接形成的二进制序列,该文件没有附加的文件头和文件结束标志。

PCM 语音没有进行任何压缩,也没有左右声道之分。

只工作在主模式之下, MSB (最高有效位) 字开始。

3.2 硬件设计

PCM 共有 4 路信号。

管脚名	管脚说明	备注
PCM_IN	数字音频输入信号	接 AP 端的 PCM_OUT
PCM_OUT	数字音频输出信号	接 AP 端的 PCM_IN
PCM_SYNC	PCM 同步信号	采样频率 8kHz
PCM_CLK	PCM 时钟信号	时钟频率 256kHz

图 3-1 PCM 电路

Audio 应用设计说明 Page 11 of 19

示波器量测的正常信号图如下:

图 3-2 正常 PCM 信号

3.3 软件设计

FIBOCOM 把 PCM 功能设置为音频通道 3。

切换 PCM 功能的 AT 命令为:

AT+MAPATH=3

Audio 应用设计说明 Page 12 of 19

4 常见音频问题

4.1 上行问题

MIC 噪声干扰处理

- 1. MIC 干扰尽量选用贴片或插针 MIC, 焊线 MIC 尽量少用。如果非要用,线尽量短,扭成双绞线,组装后线的位置一致性要好,尽量避开天线。
- 2. MIC 的外围电路也容易引人噪声,如果有条件,也尽量放入屏蔽盖。

4.2 下行问题

- 1. 喇叭没有音腔或者密封不好,音腔不合适,导致低频声音效果差。
- 2. 喇叭外围电路及走线离干扰源过近,容易引入噪声。
- 3. 单端音频输出,地线选择不当,容易引入噪声。

4.3 TDD 噪声

4.3.1 产生原理

GSM 逻辑信道话音以复帧形式发送,一个复帧为 26 个 TDMA 帧,其中有 24 个传送话音信息,1 路用于随路控制,1 路空闲。一个 TDMA 帧为 156.25bit,有用的话音信息为 114bit。所以一个复帧的信息量为: 24*114=2736bit。

而 GSM 话音的数据流为 22.8kbit/s,即 2736/22.8=120ms。这说明一个复帧包含 120ms 的信息量。 所以一个 TDMA 的帧发送时间为 120/26=4.615ms。即 f=1/t=1/4.615=217Hz

GSM 系统以 217Hz 的频率在发送信号,相应的 GSM 的电流也会出现 217Hz 的纹波。

4.3.2 传播途径

1. 天线辐射

GSM 收发功率都是通过天线来转换的;发射时,天线把模块传送过来的 RF 信号转换成电磁波发射出去;接收时,把空中的电磁波转换成 RF 信号。不管是哪个过程,天线底下的所有器件包括走线,都是被动的产生电磁感应,耦合部分电磁波。

2. 电源

电源本身是不会产生 TDD 噪声的,会产生噪声的是射频功放,尤其是给射频功放供电的 VBAT。在通话过程中,射频功放以 TDMA 的方式工作,发射功率的频率就是 217Hz,结果 VBAT 就是如下图所示。电源上出现了很大的纹波。

Audio 应用设计说明 Page 13 of 19

图 4-1 TDD 噪声波形

3. 地

射频功放附近的地都会受 217Hz 影响。有条件可以把模块地单独打孔到主地。

4.3.3 针对性改善措施

天线耦合干扰处理

- 音频信号上的滤波电容值的适当调整。
- 可以更换长天线,实现远离音频部分。
- 通过屏蔽方式,隔离干扰信号
- 加强系统的地设计,特别加强音频、模块和系统主地的连通性。
- PCB 各层的地接一定要充分,尽量多打地孔,增加系统的 EMC 能力。

PCB 上传导干扰处理

• 如果无法改善则需要确定干扰源,并针对性改板。

Audio 应用设计说明 Page 14 of 19

5 音频测试与认证

5.1 认证标准介绍

YD/T1214-2002 & YD/T1215-2002 《900/1800MHz TDMA 数字蜂窝移动通信网通用分组无线业务 (GPRS)设备技术要求:移动台》

其他相关标准:

3GPP TS 51.010

3GPP TS 26.131

3GPP TS 26.132

5.2 测试环境搭建

图 5-1 测试环境搭建

图 5-2 测试环境搭建

Audio 应用设计说明 Page 15 of 19

测试仪器

Description	Model	Company
GSM System Simulator	CMU200	R&S
Audio Analyzer	UPL16	R&S
Telephone test Head	4602B	B&K
Ear Simulator	4195	B&K
Artificial Mouth	4227	B&K
Microphone Power Supply &	2690A-OS2	B&K
Preamplifier		

5.3 测试项目

5.3.1 发送灵敏度/频率响应

发送灵敏度/频率响应应该在容限范围内。在频率/dB 灵敏度坐标上将以下的点之间直线连接得到一个基准 Mask,测试结果理论上应该全部在 Mask 规定的范围之内。

图 5-3 SLR 测试截图

5.3.2 发送响度(SLR)

发送响度是一种基于客观单音测试的表示发送频率响应的方法,此参数表征收听者对于话音信号的感受。发送响度规范要求为: 8±3dB

5.3.3 接收灵敏度/频率响应

接受灵敏度是人工耳处的输出声压与 SS 的输入电平的比值,单位为 dB.接收灵敏度/频率响应必须符合在 Mask 所规定的范围之内。

Audio 应用设计说明 Page 16 of 19

图 5-4 RLR 测试截图

5.3.4 接收响度(RLR)

接收响度 RLR 是一种基于客观单音测试的表示接受频率响应的方法,他也是收听者对于话音信号响度感受的一种表示。

5.3.5 侧音屏蔽度

侧音掩蔽评定值是基于客观单音的测试,表示仿真嘴至仿真耳间的通路损耗,本测试表征了说话者在说话时对于本人语音的感受(包括从 MIC 收到的周围背景噪声)STMR 的值应为 15±5dB.当提供用户控制的接收音量控制功能,STMR 应该符合设定的要求,此时接收响度评定值应该等于标称值。

5.3.6 发送失真

发送失真是发射信号和总的失真的比值,是对发射设备线性程度的一个判定标准。信号电平和总失真功率之比应该高于限值。嘴参考点(MRP)处声压产果 10dBPa 除外。

Audio 应用设计说明 Page 17 of 19

图 5-5 发送失真测试截图

5.3.7接收失真

接收失真时接收信号和总失真的一个比较值,他反映了 receiver 的线性程度。要求:

Level at the digital audio interface	Level ratio
-45 dBm0	17,5 dB
-40 dBm0	22,5 dB
-30 dBm0	30,5 dB
-20 dBm0	33,0 dB
-10 dBm0	33,5 dB
-3 dBm0	31,2 dB
0 dBm0	25,5 dB

图 5-6 接收失真测试截图

Audio 应用设计说明 Page 18 of 19

5.3.8 回音损耗

回音损耗表示从 receiver 到 mic 的声音损耗,标准要求在最大音量时大于 46dB.但现在实际测试中还不能达到这个值,根据前面的测试经验暂定为大于 33dB (最大音量情况下)。

5.3.9 空闲信道噪声

发送

发送方向的空闲信道噪声是指 MRP 出在一个安静的环境时,DAI 处产生的等效噪声电平。规范要求空闲信道发送噪声不得超过-64dBm0P。

接收

接收方向空闲信道噪声是指在 DAI 端输入 No.1 编码的比特流时,在人工耳处测得的声压。因为此项标准与耳机音量存在直接关系,介于实际手机音量相对较大,因此该项指标标准定为:最大音量时≤-38dBPa(A)。(国际标准为≤-54dBPa(A))

Audio 应用设计说明 Page 19 of 19