ALL DERIVATion lisT

Unit-I Physical World and Measurement

 No specific derivations are typically covered in this unit. It focuses more on introducing the basic concepts and principles of physics.

Unit-II Kinematics

- Chapter-3: Motion in a Straight Line
 - Derivation of equations of motion under constant acceleration.
- Chapter-4: Motion in a Plane
 - Derivation of equations of motion for projectile motion.

Unit-III Laws of Motion

- Chapter–5: Laws of Motion
 - Newton's second law of motion (F = ma)
 - Newton's third law of motion (action and reaction)

Unit-IV Work, Energy, and Power

- Chapter–6: Work, Energy, and Power
 - Derivation of work-energy theorem
 - Derivation of kinetic energy
 - Derivation of potential energy
 - Power and its derivation

Unit-V Motion of System of Particles and Rigid Body

- Chapter–7: System of Particles and Rotational Motion
 - Centre of mass and its derivation
 - Moment of inertia and its derivation
 - Torque and angular acceleration

Unit-VI Gravitation

- Chapter–8: Gravitation
 - Newton's law of universal gravitation and its derivation
 - Escape velocity

Unit-VII Properties of Bulk Matter

- Chapter-9: Mechanical Properties of Solids
 - Stress and strain
 - Hooke's law
- Chapter-10: Mechanical Properties of Fluids
 - Pressure in a fluid
 - Pascal's law
 - Archimedes' principle
- Chapter-11: Thermal Properties of Matter
 - Expansion of solids, liquids, and gases
 - Calorimetry

Unit-VIII Thermodynamics

- Chapter–12: Thermodynamics
 - Zeroth law of thermodynamics
 - First law of thermodynamics (Internal energy and heat)
 - Specific heat capacity
 - Work done in isothermal and adiabatic processes

Unit-IX Behaviour of Perfect Gases and Kinetic Theory of Gases

- Chapter–13: Kinetic Theory
 - Derivation of Boyle's Law
 - Derivation of Charles's Law
 - Derivation of Avogadro's Law
 - Ideal Gas Law and its derivation

Unit-X Oscillations and Waves

- Chapter-14: Oscillations
 - Simple harmonic motion (SHM) and its equation
 - Derivation of displacement, velocity, and acceleration in SHM
 - Derivation of energy in SHM
- Chapter–15: Waves
 - Wave equation
 - Derivation of velocity of a wave
 - Derivation of the displacement amplitude of a wave

IMP DERIVATIONS

Based on the typical importance and frequency of derivations asked by examiners in Class 11 physics exams, we can identify several key derivations that students should focus on:

- 1. Derivations of Equations of Motion (from Chapter 3: Motion in a Straight Line):
 - These derivations are fundamental to understanding the kinematics of motion and are often asked in exams.
- 2. Newton's Second Law of Motion (from Chapter 5: Laws of Motion):
 - ullet The derivation of F=ma is crucial as it forms the basis for understanding forces and their effects on motion.
- 3. Work-Energy Theorem (from Chapter 6: Work, Energy, and Power):
 - This derivation relates work done on an object to its change in kinetic energy, providing a fundamental understanding of energy transformations.
- 4. Newton's Law of Universal Gravitation (from Chapter 8: Gravitation):
 - Deriving $F=rac{G\cdot m_1\cdot m_2}{r^2}$ is important for understanding gravitational forces between objects, a key concept in celestial mechanics.
- 5. Simple Harmonic Motion (SHM) (from Chapter 14: Oscillations):
 - The derivation of equations describing SHM is significant as harmonic motion is prevalent in various physical systems.
- 6. Wave Equation (from Chapter 15: Waves):
 - Deriving the wave equation is crucial for understanding the propagation of waves through different mediums.
- 7. Boyle's Law, Charles's Law, and Ideal Gas Law (from Chapter 13: Kinetic Theory):
 - Derivations related to gas laws are important as they provide a foundation for understanding the behavior of gases.
- 8. Centre of Mass (from Chapter 7: System of Particles and Rotational Motion):
 - Understanding the concept and derivation of the center of mass is essential for analyzing the motion of systems of particles.