Mathématiques $I - TD_1$ 14-15 février 2022

Exercice 1 (Rappel)

Soit X et Y deux ensembles non vides et soit $f: X \to Y$.

- 1. Montrer que : f est injective si, et seulement si, il existe $g: Y \to X$ telle que $g \circ f = \mathrm{id}_X$.
- 2. Montrer que : f est surjective si, et seulement si, il existe $g: Y \to X$ telle que $f \circ g = \mathrm{id}_Y$.

Pour montrer une équivalence (« si, et seulement si »), on fait une double implication.

1. — Supposons que f soit injective.

L'idée à exploiter est le fait que f est bijective sur son image

$$Im(f) = \{f(x), x \in X\} = \{y \in Y, \exists x \in X, y = f(x)\}\$$

On définit une application $g: Y \to X$ de la manière suivante. Soit $y \in Y$.

- Si $y \in \text{Im}(f)$, alors il existe un $x \in E$ tel que y = f(x) et il est unique car f est injective. On pose alors g(y) = x.
- Si $y \notin \text{Im}(f)$, on pose $g(y) = x_0$ avec $x_0 \in X$ quelconque.

Montrons alors que $g \circ f = \mathrm{id}_X$, c'est-à-dire

$$\forall x \in X, (g \circ f)(x) = \mathrm{id}_X(x) = x$$

Pour montrer un résultat du type $\forall x \in E...$ on commence par « soit $x \in E$ ».

Soit $x \in X$. Alors $f(x) \in \text{Im}(f)$ donc g(f(x)) = x par définition de g. On a donc $g \circ f = \text{id}_X$.

— Supposons qu'il existe $g: Y \to X$ telle que $g \circ f = \mathrm{id}_X$. Soit $(x_1, x_2) \in X^2$ tel que $f(x_1) = f(x_2)$. Alors

$$g(f(x_1)) = g(f(x_2))$$

Mais $g(f(x_1)) = (g \circ f)(x_1) = \mathrm{id}_X(x_1) = x_1$ et de même $g(f(x_2)) = x_2$. On a donc $x_1 = x_2$ et on en déduit que f est injective.

Conclusion:

f est injective si, et seulement si, il existe $g: Y \to X$ telle que $g \circ f = \mathrm{id}_X$.

2. — Supposons que f soit surjective. Soit $y \in Y$. Puisque f est surjective, il existe $x_y \in E$ tel que $y = f(x_y)$. On pose alors $g(y) = x_y$. On a donc définit une application $g \colon Y \to X$. Montrons que $f \circ g = \operatorname{id}_Y$. Soit $y \in E$ et soit $x_y \in E$ tel que $y = f(x_y)$. Alors

$$(f \circ g)(y) = f(g(y)) = f(x_y) = y = \mathrm{id}_Y(y)$$

 $donc f \circ g = id_Y$

— Supposons qu'il existe $g: Y \to X$ telle que $f \circ g = \mathrm{id}_Y$. Soit $y \in Y$. On a alors

$$f(g(y)) = y$$

Autrement dit, pour tout $y \in Y$, il existe $x = g(y) \in X$ tel que y = f(x), donc f est surjective.

Conclusion:

f est surjective si, et seulement si, il existe $g \colon Y \to X$ telle que $f \circ g = \mathrm{id}_Y$.

Exercice 2

Soit A et B deux ensembles finis.

- 1. Montrer que $A \times B$ est fini et que $\operatorname{card}(A \times B) = \operatorname{card}(A) \operatorname{card}(B)$.
- 2. En déduire que pour tout $n \in \mathbb{N}^*$, A^n est fini et $\operatorname{card}(A^n) = (\operatorname{card} A)^n$.
- 3. Montrer que $A \cup B$ est fini et que $\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) \operatorname{card}(A \cap B)$.

1.

D'après le cours, A est fini veut dire qu'il existe une bijection entre A et $[\![1,n_A]\!]$, où $n_A = \operatorname{card}(A)$. De plus, comme $\operatorname{card}([\![1,n_A]\!]) = \operatorname{card}([\![0,n_A-1]\!]) = n_A$, alors on peut dire qu'il existe une bijection entre A et $[\![0,n_A-1]\!]$.

Ensuite, on va étudier le cardinal de $[0, n_A - 1] \times [0, n_B - 1]$, et d'utiliser une bijection naturelle entre $[0, n_A - 1] \times [0, n_B - 1]$ et $[0, n_A n_B - 1]$ donnée par la division euclidienne.

Si $A = \emptyset$ ou $B = \emptyset$ alors $A \times B = \emptyset$ et on a bien

$$\operatorname{card}(A \times B) = \operatorname{card}(\emptyset) = 0 = \operatorname{card}(A)\operatorname{card}(B)$$

Supposons que $A \neq \emptyset$ et $B \neq \emptyset$. Posons $n_A = \operatorname{card}(A) \in \mathbb{N}^*$ et $n_B = \operatorname{card}(B) \in \mathbb{N}^*$. Il existe des bijections $\phi_A : A \to [0, n_A - 1]$ et $\phi_B : B \to [0, n_B - 1]$. Alors

$$\begin{cases}
A \times B & \longrightarrow & [0, n_A - 1] \times [0, n_B - 1] \\
(a, b) & \longmapsto & (\phi_A(a), \phi_B(b))
\end{cases}$$

est une bijection puisqu'elle admet pour réciproque

$$\begin{cases}
\llbracket 0, n_A - 1 \rrbracket \times \llbracket 0, n_B - 1 \rrbracket & \longrightarrow & A \times B \\
(k, \ell) & \longmapsto & \left(\phi_A^{-1}(k), \phi_B^{-1}(\ell) \right)
\end{cases}$$

Pour montrer qu'une fonction $f: X \to Y$ est bijective, on peut essayer de trouver directement une fonction $g: Y \to X$ telle que $f \circ g = \mathrm{id}_Y$ et $g \circ f = \mathrm{id}_X$ (on a alors $g = f^{-1}$ la réciproque de f.

On a donc

$$\operatorname{card}(A \times B) = \operatorname{card}(\llbracket 0, n_A - 1 \rrbracket \times \llbracket 0, n_B - 1 \rrbracket)$$

Montrons que $[0, n_A - 1] \times [0, n_B - 1]$ est en bijection avec $[0, n_A n_B - 1]$. En effet, par division euclidienne :

$$\forall n \in [0, n_A n_B - 1], \exists ! (q, r) \in [0, n_A - 1] \times [0, n_B - 1], \quad n = n_B q + r$$

donc $n \mapsto (q, r)$ est une bijection de $[0, n_A n_B - 1]$ sur $[0, n_A - 1] \times [0, n_B - 1]$. On a donc

$$\operatorname{card}(A \times B) = \operatorname{card}(\llbracket 0, n_A - 1 \rrbracket \times \llbracket 0, n_B - 1 \rrbracket)$$

$$= \operatorname{card}(\llbracket 0, n_A n_B - 1 \rrbracket)$$

$$= n_A n_B$$

$$= \operatorname{card}(A)\operatorname{card}(B)$$

Dans tous les cas, on a montré que

$$\operatorname{card}(A \times B) = \operatorname{card}(A) \operatorname{card}(B)$$

2

Il est naturel de faire une récurrence pour montrer un résultat portant sur les entiers naturels.

Pour $n \in \mathbb{N}^*$, notons P_n la propriété « A^n est fini et $\operatorname{card}(A^n) = \operatorname{card}(A)^n$ ».

• Initialisation : P_1 est vraie car $A^1=A$ est fini et

$$\operatorname{card}(A^1) = \operatorname{card}(A) = \operatorname{card}(A)^1$$

• Hérédité : soit $n \in \mathbb{N}^*$. Supposons que P_n soit vraie et montrons que P_{n+1} est vrai. On a

$$A^{n+1} = A^n \times A$$

Par hypothèse de récurrence, A^n est fini donc en appliquant la question précédente (et le fait que A est aussi fini), on en déduit que A^{n+1} est fini et que

$$\operatorname{card}(A^{n+1}) = \operatorname{card}(A^n \times A) = \operatorname{card}(A^n) \operatorname{card}(A)$$

Mais par hypothèse de récurrence $card(A^n) = card(A)^n$ donc

$$\operatorname{card}(A^{n+1}) = \operatorname{card}(A^n)\operatorname{card}(A) = \operatorname{card}(A)^n\operatorname{card}(A) = \operatorname{card}(A)^{n+1}$$

ce qui montre que P_{n+1} est vraie.

• Conclusion : Par principe de récurrence, la propriété P_n est vraie pour tout $n \in \mathbb{N}^*$

pour tout
$$n \in \mathbb{N}^*$$
, A^n est fini et $\operatorname{card}(A^n) = (\operatorname{card} A)^n$.

ა.

On commence par le cas où $A \cap B = \emptyset$.

• Si $A = \emptyset$ alors $A \cup B = B$ et $A \cap B = \emptyset$ et on a bien

$$\operatorname{card}(A \cup B) = \operatorname{card}(B) = \underbrace{\operatorname{card}(A \cup B)}_{=0} + \operatorname{card}(B) - \underbrace{\operatorname{card}(A \cap B)}_{=0}$$

De même, si $B = \emptyset$ on a $\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B)$. On suppose donc $A \neq \emptyset$ et $B \neq \emptyset$. Posons $n_A = \operatorname{card}(A) \in \mathbb{N}^*$ et $n_B = \operatorname{card}(A) \in \mathbb{N}^*$. Il existe des bijections $\phi_A \colon A \to \llbracket 1, n_A \rrbracket$ et $\phi_B \colon B \to \llbracket n_A + 1, n_A + n_B \rrbracket$.

Posons

$$\psi \colon \left\{ \begin{array}{ccc} A \cup B & \longrightarrow & [1, n_A + n_B] \\ x & \longmapsto & \begin{cases} \phi_A(x) & \text{si } x \in A \\ \phi_B(x) & \text{si } x \in B \end{cases} \right.$$

La fonction ψ est bien définie car on ne peut pas avoir $x \in A$ et $x \in B$ (car on aurait $x \in A \cap B = \emptyset$, c'est absurde). Elle est de plus bijective car elle admet pour réciproque

$$\begin{cases}
[1, n_A + n_B] & \longrightarrow & A \cup B \\
n & \longmapsto & \begin{cases}
\phi_A^{-1}(n) & \text{si } 1 \leqslant n \leqslant n_A \\
\phi_B^{-1}(n) & \text{si } n_A + 1 \leqslant n \leqslant n_B
\end{cases}$$

Puisque ψ est bijective, on en déduit que $A \cup B$ est fini et

$$\operatorname{card}(A \cup B) = \operatorname{card}(\llbracket 1, n_A + n_B \rrbracket) = n_A + n_B = \operatorname{card}(A) + \operatorname{card}(B) - \underbrace{\operatorname{card}(A \cap B)}_{=0}$$

• Si $A \cap B \neq \emptyset$. En remarquant que

$$A \cup B = A \cup (B \setminus A)$$
 et $A \cap (B \setminus A) = \emptyset$

on en déduit d'après le point précédent que $A \cup B$ est fini et que

$$card(A \cup B) = card(A) + card(B \setminus A)$$

On a aussi

$$B = (A \cap B) \cup (B \setminus A)$$
 et $(A \cap B) \cap (B \setminus A) = \emptyset$

donc

$$card(B) = card(A \cap B) + card(B \cap A)$$

Conclusion:

$$A \cup B$$
 est fini et $\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B)$

Exercice 3

Soit E un ensemble.

1. On suppose dans cette question que E est fini. Montrer que $\mathscr{P}(E)$ est fini et que

$$\operatorname{card}(\mathscr{P}(E)) = 2^{\operatorname{card}(E)}$$

Les ensembles E et $\mathscr{P}(E)$ sont-ils en bijection?

2. Montrer que E et $\mathscr{P}(E)$ ne sont jamais en bijection.

1

Pour construire une partie (un sous-ensemble) de E, on choisit de prendre ou non chaque élément de E. On va formaliser cette idée.

- Si $E = \emptyset$, alors $\mathscr{P}(\emptyset) = \{\emptyset\}$ donc $\mathscr{P}(E)$ est fini et il a $1 = 2^0 = 2^{\operatorname{card}(E)}$ éléments.
- Si $E \neq \emptyset$, comme E est fini, il existe $\phi \colon \{1, \dots, n\} \to E$ bijective (avec $n = \operatorname{card}(E) \in \mathbb{N}^*$). On a donc $E = \{\phi(1), \dots, \phi(n)\}$. Posons

$$\Phi \colon \left\{ \begin{array}{ccc} \{0,1\}^n & \longrightarrow & \mathscr{P}(E) \\ (\delta_1, \dots, \delta_n) & \longmapsto & \left\{ \phi(i), \ i \in \{1, \dots, n\} \ \text{et} \ \delta_i = 1 \right\} \end{array} \right.$$

Pour montrer que Φ est bijective, on peut trouver sa réciproque.

On construit une application $\Psi \colon \mathscr{P}(E) \to \{0,1\}^n$ de la manière suivante. Soit $A \in \mathscr{P}(E)$. On pose $\Psi(A) = (\delta_1, \dots, \delta_n)$ avec

$$\forall i \in \{1, \dots, n\}, \ \delta_i = \begin{cases} 1 & \text{si } \phi(i) \in A \\ 0 & \text{si } \phi(i) \notin A \end{cases}$$

Alors on a $\Phi \circ \Psi = \mathrm{id}_{\{0,1\}^n}$ et $\Psi \circ \Phi = \mathrm{id}_{\mathscr{P}(E)}$ par construction de Φ et Ψ , ce qui montre que Φ est une bijection et que sa réciproque est Ψ .

Comme $\{0,1\}^n$ est fini et à 2^n éléments (voir l'exercice précédent), on en déduit par bijection que $\mathscr{P}(E)$ est fini et a aussi $2^n = 2^{\operatorname{card} E}$ éléments.

Conclusion:

$$\mathscr{P}(E)$$
 est fini et $\operatorname{card}(\mathscr{P}(E)) = 2^{\operatorname{card}(E)}$.

On aurait pu aussi montrer le résultat par récurrence sur $n = \operatorname{card}(E)$.

Comme $\operatorname{card}(\mathscr{P}(E)) = 2^n > n = \operatorname{card}(E)$ pour tout $n \in \mathbb{N}$, on en déduit que

Si E est fini, E et $\mathscr{P}(E)$ ne sont jamais en bijection.

2. On a déjà démontré le résultat pour $E = \emptyset$. Supposons $E \neq \emptyset$ et supposons par l'absurde qu'il existe une bijection $\phi \colon E \to \mathscr{P}(E)$. Soit

$$A = \{ x \in E, \ x \notin \phi(x) \}$$

En particulier, $A \in \mathcal{P}(E)$ et, comme ϕ est surjective, il existe $a \in E$ tel que $\phi(a) = A$. Distinguons deux cas :

- si $a \in A$, alors $a \notin \phi(a) = A$, absurde;
- si $a \notin A$, alors $a \in A$, absurde.

On conclut donc:

E et $\mathscr{P}(E)$ ne sont jamais en bijection.

Exercice 4

On rappelle qu'un nombre premier est un nombre naturel dont les seuls diviseurs sont 1 et luimême. Par exemple : 3, 5, 7 et 11 sont premiers. 4, 8 et 9 ne sont pas premiers.

Montrer que l'ensemble \mathbb{P} des nombres premiers est infini.

Supposons par l'absurde que \mathbb{P} soit fini. On sait que $\mathbb{P} \neq \emptyset$ (par exemple $2 \in \mathbb{P}$). Il existe donc $n \in \mathbb{N}^*$ tel que

$$\mathbb{P} = \{p_1, \dots, p_n\}$$

Posons

$$q = 1 + \prod_{i=1}^{n} p_i$$

- Si $q \in \mathbb{P}$, c'est absurde, car $q \neq p_i$ pour tout $i \in \{1, \ldots, n\}$.
- Si $q \notin \mathbb{P}$, alors il est divisible par un nombre premier donc il existe $i_0 \in \{1, \ldots, n\}$ tel que p_{i_0} divise q. Mais p_{i_0} divise aussi le produit $\prod_{i=1}^n p_i$ donc divise la différence $q \prod_{i=1}^n p_i = 1$. On a donc $p_{i_0} = 1 \notin \mathbb{P}$, absurde.

Conclusion:

l'ensemble \mathbb{P} des nombres premiers est infini.

Exercice 5

- 1. Montrer que \mathbb{Z} est dénombrable.
- 2. Montrer que \mathbb{Q} est dénombrable.
- 3. \mathbb{R} est-il dénombrable?
- 1. On veut dénombrer tous les éléments de \mathbb{Z} . Par exemple on peut penser à écrire \mathbb{Z} sous la forme suivante :

$$\mathbb{Z} = \{0, -1, 1, -2, 2, -3, 3, \ldots\}$$

On cherche donc une application $f: \mathbb{N} \to \mathbb{Z}$ telle que f(0) = 0, f(1) = -1, f(2) = 1, etc.

On définit donc l'application $f: \mathbb{N} \to \mathbb{Z}$ de la manière suivante :

$$\forall n \in \mathbb{N}, \ f(n) = \left\{ \begin{array}{cc} \frac{n}{2} & \text{si } n \text{ est pair} \\ -\frac{n+1}{2} & \text{si } n \text{ est impair} \end{array} \right.$$

L'application f est surjective. En effet, soit $a \in \mathbb{Z}$.

- Si $a \ge 0$, on pose n = 2a, alors $f(n) = \frac{2a}{2} = a$.
- Si a < 0, on pose n = -2a 1, alors n est impair et donc $f(n) = -\frac{-2a 1 + 1}{2} = a$.

On a montré que pour tout $a \in \mathbb{Z}$ il existe $n \in \mathbb{N}$ tel que a = f(n). L'application f est donc surjective.

D'après le cours, on déduit que

 \mathbb{Z} est dénombrable.

2. D'après le cours, $\mathbb{Z} \times \mathbb{N}^*$ est dénombrable. L'application

$$\phi \colon \left\{ \begin{array}{ccc} \mathbb{Z} \times \mathbb{N}^* & \longrightarrow & \mathbb{Q} \\ (a,b) & \longmapsto & \frac{a}{b} \end{array} \right.$$

est surjective (mais elle n'est pas injective, par exemple $\phi(1,2) = \frac{1}{2} = \frac{2}{4} = \phi(2,4)$). D'après le cours, on en déduit que

 $\mathbb Q$ est dénombrable.

3. Montrons d'abord que [0,1[n'est pas dénombrable. On raisonne par l'absurde : on suppose que [0,1[est dénombrable. Comme cet ensemble est infini, il existe une bijection $\phi \colon \mathbb{N}^* \to [0,1[$ donc

$$[0,1[=\{\phi(1), \phi(2), \phi(3), \dots\}]$$

On va construire un nombre réel $x \in [0,1]$ de la façon suivante : on pose

$$x = \overline{0, a_1 a_2 \cdots a_n \cdots}$$

où $a_n \in [0, 9]$ est la *n*-ième décimale de x $(n \in \mathbb{N}^*)$ avec

- $a_n = 2$ si la *n*-ième décimale de $\phi(n)$ est égale à 1;
- $a_n = 1$ si la *n*-ième décimale de $\phi(n)$ est différente de 1.

Alors on a $x \neq \phi(j)$ pour tout $j \in \mathbb{N}^*$. Cela montre que ϕ n'est pas surjective, ce qui est une contradiction. On en déduit que [0,1[n'est pas dénombrable.

Cet argument s'appelle l'argument diagonale de Cantor. Voici une figure pour l'illustrer :

```
\begin{array}{llll} & \textit{eléments de} \; [0,1[ & & & on \; pose \; x=0,112112 \dots \\ & \phi(1)=0,\boxed{3}\; 842434789 \dots & & x \neq \phi(1) \; \grave{a} \; cause \; du \; 3 \\ & \phi(2)=0,5\boxed{7}\; 64318974 \dots & & x \neq \phi(2) \; \grave{a} \; cause \; du \; 7 \\ & \phi(3)=0,38\boxed{1}\; 6175312 \dots & & x \neq \phi(3) \; \grave{a} \; cause \; du \; 7 \\ & \phi(4)=0,754\boxed{8}\; 137246 \dots & & x \neq \phi(4) \; \grave{a} \; cause \; du \; 4 \\ & \phi(5)=0,5122\boxed{4}\; 54494 \dots & & x \neq \phi(5) \; \grave{a} \; cause \; du \; 4 \\ & \phi(6)=0,11211\boxed{1}\; 1111 \dots & & x \neq \phi(6) \; \grave{a} \; cause \; du \; 1 \\ & \vdots & & \vdots & & \vdots \end{array}
```

Supposons par l'absurde que \mathbb{R} est dénombrable : il existe une bijection $\psi: \mathbb{R} \to \mathbb{N}$. L'application $\theta \colon [0,1[\to \mathbb{R} \text{ définie par } x \to x \text{ est injective donc par composée de fonctions injectives, } \theta \circ \psi \colon [0,1[\to \mathbb{N} \text{ est injective, donc } [0,1[\text{ est dénombrable, ce qui est une contradiction.}]$ Conclusion :

 \mathbb{R} n'est pas dénombrable.

Exercice 6

Soit:

$$f \colon \left\{ \begin{array}{ccc}]-1,1[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{2x}{1-x^2} \end{array} \right.$$

- 1. Justifier que f est bien définie.
- 2. Tracer la courbe représentative de f à l'aide de Sympy. Comment dire si la fonction f est injective? Surjective? Bijective?
- 3. Montrer que f est bijective et expliciter sa réciproque.

1.

Dans l'expression de f(x), le seul problème possible est de diviser par 0.

Pour tout $x \in]-1,1[$, on a $x \neq 1$ et $x \neq -1$ donc $1-x^2 \neq 0$. On en déduit que

f est bien définie.

2. On trace la courbe représentative de f:

```
from sympy import *
    x = symbols('x')
    plot(2*x/(1-x**2),(x,-1,1),ylim=(-3,3))
```


Soit $g: I \to J$ avec $I \subset \mathbb{R}$ et $J \subset \mathbb{R}$. Alors

• g est surjective si

$$\forall y \in J, \ \exists x \in I, \quad y = g(x)$$

Graphiquement, cela veut dire que toutes les droites horizontales d'équation y=a avec $a\in J$ ont au moins un point d'intersection avec la courbe représentative de g.

• g est injective si

$$\forall (x_1, x_2) \in I^2, \quad g(x_1) = g(x_2) \implies x_1 = x_2$$

Graphiquement, cela veut dire que toutes les droites horizontales d'équation y=a avec $a\in J$ ont au plus un point d'intersection avec la courbe représentative de g.

• g est bijective si elle est surjective et injective, c'est-à-dire

$$\forall y \in J, \exists ! x \in I, \quad y = g(x)$$

Graphiquement, cela veut dire que toutes les droites horizontales d'équation y=a avec $a\in J$ ont un seul un point d'intersection avec la courbe représentative de g.

On conjecture que f est bijective.

3.

Pour montrer que f est bijective, on peut montrer qu'elle est injective et surjective. On peut aussi directement montrer que :

$$\forall y \in \mathbb{R}, \exists ! x \in]-1,1[, y=f(x)]$$

Pour cela, le plus simple est de faire un raisonnement par analyse-synthèse.

Soit $y \in \mathbb{R}$.

• Analyse : on suppose qu'il existe $x \in]-1,1[$ tel que

$$y = f(x) = \frac{2x}{1 - x^2}$$

On a donc

$$(1 - x^2)y = 2x$$

d'où

$$yx^2 + 2x - y = 0$$

Si y = 0, alors x = 0.

Si $y \neq 0$, alors le discriminant est $4 + 4y^2 = 4(1 + y^2) > 0$ donc on a deux solutions

$$x = \frac{-2 \pm \sqrt{4(1+y^2)}}{2y} = \frac{-1 \pm \sqrt{1+y^2}}{y}$$

On a trouvé deux solutions, ce qui est embêtant... Mais on doit vérifier qu'elles sont bien dans]-1,1[.

D'une part, on a

$$\left(\frac{-1-\sqrt{1+y^2}}{y}\right)^2 = \underbrace{\frac{0}{1+2\sqrt{1+y^2}+1} + y^2}_{\geqslant 0} \geqslant \frac{y^2}{y^2} = 1$$

donc

$$\frac{-1-\sqrt{1+y^2}}{y} \notin]-1,1[$$

D'autre part, on a

$$\left(\frac{-1+\sqrt{1+y^2}}{y}\right)^2 = \overbrace{\frac{1-2\sqrt{1+y^2}+y^2}{y^2} + y^2}^{<0} < \frac{y^2}{y^2} = 1$$

donc

$$\frac{-1+\sqrt{1+y^2}}{y} \in \,]-1,1[$$

L'étape d'analyse montre que SI il existe $x \in]-1,1[$, alors il est unique et on a son expression en fonction de y.

• On a f(0) = 0 donc si y = 0, il existe $x = 0 \in]-1,1[$ tel que f(x) = y. Si $y \neq 0$, on pose

$$x = \frac{-1 + \sqrt{1 + y^2}}{y}$$

alors on a vu que $x \in]-1,1[$ et on vérifie par un calcul que f(x)=y.

L'étape de synthèse montre donc l'existence d'un $x \in]-1,1[$ (à partir de l'expression trouvée lors de l'étape d'analyse). On a donc montré qu'il existe $x \in]-1,1[$ tel que f(x)=y et qu'il est unique (étape d'analyse), donc f est bijective.

Conclusion:

$$f$$
 est bijective et sa réciproque est $y \longmapsto \begin{cases} 0 & \text{si } y = 0 \\ \frac{-1 + \sqrt{1 + y^2}}{y} & \text{si } y \neq 0 \end{cases}$