Appendix S1

Manuel A. Rivas and Matti Pirinen January 28, 2018

1 MRP model comparison for association testing

We consider the multivariate linear regression model

$$\mathbf{Y}_{(N\times K)} = \mathbf{\Psi} + \mathbf{X}_{(N\times M)(M\times K)} + \mathbf{E}_{(N\times K)},$$

where the matrices $Y = [y_{ik}]$, $X = [x_{im}]$, $B = [\beta_{mk}]$ and $E = [e_{ik}]$ describe the phenotype values (y_{ik}) , copies of minor allele (x_{im}) , variant-phenotype effects (β_{mk}) , and residual errors (e_{ik}) , for individual i, phenotype k, and variant m. We assume that each phenotype has been transformed to a standard normal distribution and that the columns of X have been centered, which means that the estimate for the intercept term Ψ is 0 and independent of the estimate of B. We use vectorized notation where the rows of B form vector $\boldsymbol{\beta} = (\beta_1, \ldots, \beta_M)^T$ of length MK.

We define the MRP model comparison as a Bayes factor (BF) between the alternative model, where at least one variant affects at least one phenotype, and the null model, where all variant-phenotype effects are zero. BF is the ratio of the marginal likelihoods for these two models:

$$BF = \frac{\int_{\beta} p\left(\text{Data}|\beta\right) p\left(\beta|\text{ALT}\right) d\beta}{\int_{\beta} p\left(\text{Data}|\beta\right) p\left(\beta|\text{NULL}\right) d\beta},$$

where Data can correspond either to the effect size estimates $\widehat{\boldsymbol{\beta}}$ and the estimated variance-covariance matrix of $\widehat{\boldsymbol{\beta}}$, $\widehat{\mathbf{V}}_{\boldsymbol{\beta}}$, or to the original phenotypes and genotypes, $\underset{(N\times K)}{\mathbf{Y}}$ and $\underset{(N\times M)}{\mathbf{X}}$, and any other covariates that we want to regress out from the phenotypes.

The prior distribution for the null model, $p(\beta|\text{NULL})$, is simply the point mass at $\beta = 0$. In section 2 we show how we approximate the likelihood function for β , $p(\text{Data}|\beta)$, in section 3 we define the prior distribution $p(\beta|\text{ALT})$ for the alternative model, and finally, in section 4, we compute the BF.

2 Likelihood function

A maximum likelihood estimator of B is given by the ordinary least-squares method

$$\widehat{\mathbf{B}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\,\mathbf{X}^{\mathsf{T}}\mathbf{Y},$$

that in vectorized form is denoted by $\widehat{\boldsymbol{\beta}} = \left(\widehat{\boldsymbol{\beta}}_1, \dots, \widehat{\boldsymbol{\beta}}_M\right)^\mathsf{T}$. An estimator of the variance-covariance of $\widehat{\boldsymbol{\beta}}$ is given by

$$\widehat{V}_{\boldsymbol{\beta}} = (X^{\intercal}X)^{-1} \otimes \widehat{V}_{Y},$$

where \hat{V}_{Y} is the estimated residual variance-covariance matrix of Y given X.

Following Band et al. [1], we approximate the likelihood function of β by a multivariate normal distribution with mean $\hat{\beta}$ and variance-covariance matrix \hat{V}_{β} . Note that by approximating \hat{V}_{Y} by the trait correlation matrix, this likelihood approximation does not require access to the individual level data X and Y but only to the summary data of effect sizes $\hat{\beta}$, LD-matrix X^TX and a trait correlation estimate.

3 Prior of β in the alternative model

We construct the prior distribution $p(\beta|ALT)$ for the alternative model in three steps allowing user to specify correlations between effects of different variants on different traits across different studies.

In a single study, the prior density for β incorporates the expected correlation of genetic effects among a group of variants (\mathbf{R}_{var}) and among a group of phenotypes (\mathbf{R}_{phen}). In addition, we incorporate an expected spread of the effect size of each variant by scaling \mathbf{R}_{var} as

$$\mathbf{S}_{\mathrm{var}} = \Delta \left(\sigma_m \right) \mathbf{R}_{\mathrm{var}} \Delta \left(\sigma_m \right),$$

where $\Delta\left(\sigma_{m}\right)$ is a diagonal matrix with entries σ_{m} determining the spread of the effect size distribution for each variant $m \leq M$. Thus, we can model settings where, e.g., protein-truncating variants have larger effect sizes $(\sigma=1)$ than missense variants $(\sigma=0.1)$. Note that when $\sigma_{m}=1$ for all m then $\mathbf{S}_{\text{var}}=\mathbf{R}_{\text{var}}$.

All in all, our prior density for β under alternative model is

$$\boldsymbol{\beta}|ALT \sim \mathcal{N}(\mathbf{0}, \mathbf{U})$$
, where $\mathbf{U} = \mathbf{S}_{\text{var}} \otimes \mathbf{R}_{\text{phen}}$.

When we have data from multiple studies we allow for possible differences in genetic effects across ethnicities or populations extending the Approximate Bayes Factors of Band et al. [1] and the summary statistics approach of RAREMETAL [2] from univariate to multivariate phenotypes. Let $\widehat{\beta} = (\widehat{\beta}_{s,m,k}) =$

 $(\widehat{\beta}_{1,1,1}, \widehat{\beta}_{1,1,2}, \ldots, \widehat{\beta}_{1,1,K}, \widehat{\beta}_{1,2,1}, \ldots, \widehat{\beta}_{1,2,K}, \ldots, \widehat{\beta}_{1,M,K}, \widehat{\beta}_{2,1,1}, \ldots, \widehat{\beta}_{S,M,K})$, where S is the number of studies, M is the number of variants, and K is the number of phenotypes. As with a single study, we incorporate the expected correlation of genetic effects between a pair of variants and a single phenotype using the matrix \mathbf{S}_{var} , between a variant and a pair of phenotypes using the matrix \mathbf{R}_{phen} , and we introduce the matrix $\mathbf{R}_{\text{study}}$ to specify prior on the similarity in effect sizes across the studies. Thus, the prior is

$$\boldsymbol{\beta} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{U}\right), \text{ where } \mathbf{U} = \mathbf{R}_{\mathrm{study}} \otimes \left(\mathbf{S}_{\mathrm{var}} \otimes \mathbf{R}_{\mathrm{phen}}\right).$$

It is straightforward to include a non-zero vector μ as a prior mean of genetic effects, in which case the prior is

$$\boldsymbol{\beta} \sim \mathcal{N}\left(\boldsymbol{\mu}, \mathbf{U}\right)$$
.

We use this, for example, when screening for protective rare variants that have a pre-specified beneficial profile on a set of risk factors.

$4 \quad BF_{MRP}$

The Bayes Factor is the ratio of the marginal likelihoods between the alternative and the null model. The marginal likelihood for the alternative model is

$$\int_{\beta} p\left(\text{Data}|\beta\right) p\left(\beta|\text{ALT}\right) d\beta = c \times \mathcal{N}\left(\widehat{\beta}; \mu, \widehat{V}_{\beta} + \mathbf{U}\right)$$

and the marginal likelihood for the null model is

$$\int_{\boldsymbol{\beta}} p\left(\text{Data}|\boldsymbol{\beta}\right) p\left(\boldsymbol{\beta}|\text{NULL}\right) d\boldsymbol{\beta} = c \times \mathcal{N}\left(\widehat{\boldsymbol{\beta}}; 0, \widehat{\mathbf{V}}_{\boldsymbol{\beta}}\right).$$

The Bayes Factor (derived below in section 4.1) is given by

$$\mathrm{BF}_{\mathrm{MRP}} = \frac{\det\left(\widehat{\mathbf{V}}_{\boldsymbol{\beta}} + \mathbf{U}\right)^{-\frac{1}{2}} \exp\left[-\frac{1}{2}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\mu}\right)^{\mathsf{T}}\left(\widehat{\mathbf{V}}_{\boldsymbol{\beta}} + \mathbf{U}\right)^{-1}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\mu}\right)\right]}{\det\left(\widehat{\mathbf{V}}_{\boldsymbol{\beta}}\right)^{-\frac{1}{2}} \exp\left[-\frac{1}{2}\widehat{\boldsymbol{\beta}}^{\mathsf{T}}\widehat{\mathbf{V}}_{\boldsymbol{\beta}}^{-1}\widehat{\boldsymbol{\beta}}\right]}.$$

When $\mu = 0$, BF_{MRP} is an increasing function of the following quadratic form

$$Q(\widehat{\boldsymbol{\beta}}; \widehat{\mathbf{V}}_{\boldsymbol{\beta}}, \mathbf{U}) = \widehat{\boldsymbol{\beta}}^{\mathsf{T}} \left(\widehat{\mathbf{V}}_{\boldsymbol{\beta}}^{-1} - (\widehat{\mathbf{V}}_{\boldsymbol{\beta}} + \mathbf{U})^{-1} \right) \widehat{\boldsymbol{\beta}}.$$
(1)

Furthermore, this quadratic form is the only part of the BF_{MRP} that depends on $\widehat{\beta}$. Thus, by deriving a distribution of $Q(\widehat{\beta}; \widehat{V}_{\beta}, \mathbf{U})$ under the null model we can compute a p-value when BF_{MRP} is used as a test statistic. According to basic properties of quadratic forms of Gaussian variables, $Q(\widehat{\beta}; \widehat{V}_{\beta}, \mathbf{U}) \sim \sum_{i=1}^{n} d_i \chi_i^2$, where χ_i^2 are an independent sample from χ_1^2 distribution (chi-square with one degree of freedom), and d_i are the eigenvalues of matrix $I - (\widehat{V}_{\beta} + \mathbf{U})^{-1} \widehat{V}_{\beta}$. The distribution function for a mixture of chi-squares can be numerically evaluated by the R-package 'CompQuadForm' [3].

4.1 MRP Bayes Factor derivation

To compute the Bayes Factor

$$\mathrm{BF}_{\mathrm{MRP}} = \frac{\det\left(\widehat{\mathbf{V}}_{\boldsymbol{\beta}} + \mathbf{U}\right)^{-\frac{1}{2}} \exp\left[-\frac{1}{2}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\mu}\right)^{\mathsf{T}}\left(\widehat{\mathbf{V}}_{\boldsymbol{\beta}} + \mathbf{U}\right)^{-1}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\mu}\right)\right]}{\det\left(\widehat{\mathbf{V}}_{\boldsymbol{\beta}}\right)^{-\frac{1}{2}} \exp\left[-\frac{1}{2}\widehat{\boldsymbol{\beta}}^{\mathsf{T}}\widehat{\mathbf{V}}_{\boldsymbol{\beta}}^{-1}\widehat{\boldsymbol{\beta}}\right]}$$

we first consider the term inside the exponential function:

$$\mathcal{E}\left(\widehat{\boldsymbol{\beta}},\boldsymbol{\mu},\widehat{\boldsymbol{V}}_{\boldsymbol{\beta}},\boldsymbol{U}\right) = \frac{1}{2}\,\widehat{\boldsymbol{\beta}}^{\mathsf{T}}\,\widehat{\boldsymbol{V}}_{\boldsymbol{\beta}}^{-1}\,\widehat{\boldsymbol{\beta}} - \frac{1}{2}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\mu}\right)^{\mathsf{T}}\left(\widehat{\boldsymbol{V}}_{\boldsymbol{\beta}} + \boldsymbol{U}\right)^{-1}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\mu}\right).$$

Since \widehat{V}_{β} and U are typically defined through Kronecker products of smaller matrices, their inverses are easier to compute than the inverse of their sum. Hence we use Woodbury matrix identity to write

$$\mathcal{E}\left(\widehat{\boldsymbol{\beta}}, \boldsymbol{\mu}, \widehat{\mathbf{V}}_{\boldsymbol{\beta}}, \mathbf{U}\right) = \frac{1}{2} \, \widehat{\boldsymbol{\beta}}^{\mathsf{T}} \, \widehat{\mathbf{V}}_{\boldsymbol{\beta}}^{-1} \, \widehat{\boldsymbol{\beta}} - \frac{1}{2} \left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\mu}\right)^{\mathsf{T}} \left(\widehat{\mathbf{V}}_{\boldsymbol{\beta}}^{-1} - \widehat{\mathbf{V}}_{\boldsymbol{\beta}}^{-1} \left(\mathbf{U}^{-1} + \widehat{\mathbf{V}}_{\boldsymbol{\beta}}^{-1}\right)^{-1} \widehat{\mathbf{V}}_{\boldsymbol{\beta}}^{-1}\right) \left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\mu}\right).$$

To simplify the determinant calculation we write

$$\det\left(\widehat{\mathbf{V}}_{\beta} + \mathbf{U}\right) = \det\left(\widehat{\mathbf{V}}_{\beta}\right) \det\left(\mathbf{I} + \widehat{\mathbf{V}}_{\beta}^{-1}\mathbf{U}\right).$$

The logarithm of the Bayes Factor is then

$$\log\left(\mathrm{BF}_{\mathrm{MRP}}\right) = -\frac{1}{2}\log\left(\det\left(\mathbf{I} + \widehat{\boldsymbol{V}}_{\boldsymbol{\beta}}^{-1}\mathbf{U}\right)\right) + \mathcal{E}\left(\widehat{\boldsymbol{\beta}}, \boldsymbol{\mu}, \widehat{\boldsymbol{V}}_{\boldsymbol{\beta}}, \mathbf{U}\right).$$

If studies do not share individuals, \hat{V}_{β} is a block-diagonal matrix

$$\widehat{\mathbf{V}}_{\beta} = \begin{bmatrix} \overline{\widehat{\mathbf{V}}_{\beta}^{1}} & 0 & \cdots & 0 \\ \hline 0 & \widehat{\mathbf{V}}_{\beta}^{2} & \cdots & 0 \\ \hline \vdots & & \ddots & \vdots \\ \hline 0 & 0 & \cdots & \widehat{\mathbf{V}}_{\beta}^{S} \end{bmatrix}.$$

If studies share individuals, e.g., controls, we take the approach of Cichonska et al. [4] to use summary level data to estimate the correlation structure of the non-diagonal blocks caused by overlapping individuals.

References

- [1] Band G, Le QS, Jostins L, Pirinen M, Kivinen K, Jallow M, et al. Imputation-based meta-analysis of severe malaria in three African populations. PLoS genetics. 2013;9(5):e1003509.
- [2] Liu DJ, Peloso GM, Zhan X, Holmen OL, Zawistowski M, Feng S, et al. Meta-analysis of gene-level tests for rare variant association. Nature Genetics. 2014;46(2):200–204.
- [3] Duchesne P, de Micheaux PL. Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods. Computational Statistics and Data Analysis. 2010;54:858–862.
- [4] Cichonska A, Rousu J, Marttinen P, Kangas AJ, Soininen P, Lehtimäki T, et al. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics. 2016;32(13):1981–1989.