Lecture 8: Unsupervised Learning

Haiping Lu

YouTube Playlist: https://www.youtube.com/c/HaipingLu/playlists

COM4059/6059: MLAI21@The University of Sheffield

Week 8 Contents / Objectives

- Why Unsupervised Learning?
- Principal Component Analysis (PCA)
- PCA Unboxing
- Clustering: from k-means to spectral
- Autoencoder

Week 8 Contents / Objectives

- Why Unsupervised Learning?
- Principal Component Analysis (PCA)
- PCA Unboxing
- Clustering: from k-means to spectral
- Autoencoder

Supervised vs Unsupervised

Unsupervised Learning

- Supervised learning: each data point has a label
- Unsupervised learning: no labels for the data
 - Dimensionality reduction
 - Clustering

Machine Learning	Supervised	Unsupervised
Discrete output	Classification	Clustering
Continuous output	Regression	Dimensionality Reduction

13/11/2021 5

Dimensionality Reduction (DR)

$\cdot 2 \rightarrow 1$

Original data	Transformed
(1, 1.2)	1.15
(2, 2)	2
(3, 3.3)	3.1

Why DR?
High D → Low D

- Curse of dimensionality
 - Nearest neighbours
- Reduce redundancy (correlation)
- Visualisation

Question

- USPS dataset handwritten digit
- Size: 64 x 57; binary (1-bit, BW)

 The binary image space contains much more than just this digit.

How many possible images of this size and bit depth?

$$2^{64 \times 57} = 2^{3648} = ?$$

How About a Face?

Low-D Subspace/Manifolds

- For high dimensional data with structure:
 - Fewer variations than dimensions
 - Data to live on a lower dimensional manifold
 - → Deal with them by looking for a lower dimensional embedding (or projection, transformation)

Week 8 Contents / Objectives

- Why Unsupervised Learning?
- Principal Component Analysis (PCA)
- PCA Unboxing
- Clustering: from k-means to spectral
- Autoencoder

PCA?

Visualisation demo

Principal Component Analysis

The idea:

- Rotate the data with some <u>rotation matrix</u>
 R (change of basis) so that the new
 - features are uncorrelated
- Keep the dimension with the highest variance for DR

Principal Component Analysis

- PCA (@Hotelling:analysis33): a linear embedding
- Rotate to find directions in data with maximum variance
- How do we find these directions?
 - Diagonalize the sample covariance (scatter) matrix of N samples $\{\mathbf{x}^{(i)}, i=1,\cdots,N\}$

$$\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{x}^{(i)} - \boldsymbol{\mu} \right) \left(\mathbf{x}^{(i)} - \boldsymbol{\mu} \right)^{\top}$$

Principal Component Analysis

- Given data $\{\mathbf{x}^{(i)}\}$, PCA finds **orthogonal** directions defined by a projection (rotation) \mathbf{U} capturing the **maximum variance** in the data
- Solution: eigenvectors of $S \rightarrow U$
- ullet PCA representation $egin{aligned} \mathbf{y} = \mathbf{U}^{ op} \mathbf{x} \end{aligned}$
- Question: Given the PCA representation y, how to obtain an approximation/reconstruction of x?

$$\hat{\mathbf{x}} = \mathbf{U}\mathbf{y}$$

Representation & Reconstruction

Face x in k "face space" coordinates

$$\mathbf{x} \to [\mathbf{u}_1^\top (\mathbf{x} - \boldsymbol{\mu}), \cdots, \mathbf{u}_k^\top (\mathbf{x} - \boldsymbol{\mu})]$$

= $[w_1, \cdots, w_k]$

Reconstruction: eigenvectors as orthonormal basis vectors

9.6

$$\hat{\mathbf{x}}$$

=

$$+ w_1\mathbf{u}_1 + w_2\mathbf{u}_2 + w_3\mathbf{u}_3 + w_4\mathbf{u}_4 + \cdots$$

Reconstruction

After computing eigenfaces using 400 face images from the ORL face database

PCA Ingredients

- Data: +pre-processing, e.g., $\mathcal{N}(0,1)$
- Model
 - Structure/Architecture: linear projection $\mathbf{y} = \mathbf{U}^{\top}\mathbf{x}$
 - Hyper-parameter: lower dimension k
 - Parameters (theta): the principal components (eigenvectors)
- Evaluation metric: max variance
- Optimisation: eigen-decomposition

Week 8 Contents / Objectives

- Why Unsupervised Learning?
- Principal Component Analysis (PCA)
- PCA Unboxing
- Clustering: from k-means to spectral
- Autoencoder

Variance → Covariance (Matrix)

- Variance and covariance:
 - Measure of the "spread" of a set of points around their center of mass (mean)
- Variance (scalar):
 - Measure of the deviation from the mean for points in one dimension
- Covariance (matrix):
 - Measure of how much each of the dimensions vary from the mean with respect to each other

- Covariance is measured between two dimensions
- Covariance sees if there is a **relation** between the two dimensions
- Covariance between one dimension is the variance (degeneration)

Positive/Negative Covariance

Positive: Both dimensions increase or decrease together

Negative: While one increase the other decrease

Covariance

- Find relationships between dimensions in high dimensional data sets X
- Scatter matrix S: sample-based estimation of covariance matrix (i: sample; j/k: variable)

$$s_{jk} = \frac{1}{N} \sum_{i=1}^{N} (X_{ij} - E(X_j))(X_{ik} - E(X_k))$$

The Sample mean

- <u>Uncorrelated</u> variables → covariance = 0
- Diagonal covariance mat → all variables are uncorrelated

PCA Derivation – Max Variance

- Scatter mat for the input $\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{x}^{(i)} \boldsymbol{\mu} \right) \left(\mathbf{x}^{(i)} \boldsymbol{\mu} \right)^{\top}$
- Question: what is the scatter mat for the projections?

$$\mathbf{U}^{\mathsf{T}}\mathbf{S}\mathbf{U}$$

• First PC: maximise the variance in the projected space, i.e. the variance of $y = \mathbf{u}_1^\top \mathbf{x}$

$$var(y) = \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \mu_y \right)^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbf{u}_1^{\top} \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{\mathbf{x}} \right) \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{\mathbf{x}} \right)^{\top} \mathbf{u}_1$$

$$= \mathbf{u}_1^{\top} \mathbf{S} \mathbf{u}_1$$

PCA: Max Variance -> Eigenvalue

Find the first direction u₁ via a unit-norm constrained optimisation, using <u>Lagrange multipliers</u>:

$$L\left(\mathbf{u}_{1}, \lambda_{1}\right) = \mathbf{u}_{1}^{\mathsf{T}} \mathbf{S} \mathbf{u}_{1} + \lambda_{1} \left(1 - \mathbf{u}_{1}^{\mathsf{T}} \mathbf{u}_{1}\right)$$

- Gradient w.r.t. $\mathbf{u_1}$: $\frac{\mathrm{d}L\left(\mathbf{u}_1,\lambda_1\right)}{\mathrm{d}\mathbf{u}_1} = 2\mathbf{S}\mathbf{u}_1 2\lambda_1\mathbf{u}_1$
- Set to 0 and rearrange: $\mathbf{S}\mathbf{u}_1 = \lambda_1\mathbf{u}_1 \rightarrow \mathbf{First} \; \mathbf{PC}$
 - Eigenvalue problem
- Question: many solutions (eigen-pairs), which to choose?

$$\operatorname{var}(y) = \mathbf{u}^{\top} \mathbf{S} \mathbf{u} = \lambda \mathbf{u}^{\top} \mathbf{u} = \lambda$$

PCA Solution

- Further directions: **orthogonal** (uncorrelated) to the first and each others \rightarrow top k eigenvectors of S
 - Eigenvectors: basis functions, principal components
 - Eigenvalue: the variance captured respectively

Questions

• For \mathbf{u}_1 what if we do not have the unit-norm constraint?

$$L\left(\mathbf{u}_{1}, \lambda_{1}\right) = \mathbf{u}_{1}^{\mathsf{T}} \mathbf{S} \mathbf{u}_{1} + \frac{\lambda_{1} \left(1 - \mathbf{u}_{1}^{\mathsf{T}} \mathbf{u}_{1}\right)}{2}$$

- → Trivial solution: infinity
- For further directions: what if we do not require them to be orthogonal?
 - \rightarrow We will have the same \mathbf{u}_1 , useless solution

PCA: Max Variance ←→ Min MSE

Consider the first PC with the projection vector **u**. We assume **zero-mean**, i.e. *centered* data

Maximum Variance Direction: 1^{st} PC = a vector **u** such that projection on it captures max variance in the data

$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{u}^T \mathbf{x}^{(i)})^2 = \mathbf{u}^T \mathbf{X} \mathbf{X}^T \mathbf{u}$$

Minimum Reconstruction Error: 1st PC = a vector **u** such that projection on it yields minimum MSE reconstruction

$$\frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} - (\mathbf{u}^T \mathbf{x}^{(i)}) \mathbf{u}\|^2$$

 $blue^2 + green^2 = black^2$

black² is fixed (it's just the data)

So, maximizing blue² is equivalent to minimizing green²

How many (k) PCs to keep?

- Pick based on percentage of variance captured / lost
 - Variance captured: the variance of the projected data
 - Pick smallest k that explains a certain percentage of variance (Sum of first k EVs)/(sum of all EVs)

Look for an "elbow" in <u>scree plot</u> (plot of explained

variance or eigenvalues)

Week 8 Contents / Objectives

- Why Unsupervised Learning?
- Principal Component Analysis (PCA)
- PCA Unboxing
- Clustering: from k-means to spectral
- Autoencoder

What is Clustering?

 Find grouping of objects such that the objects in a group will be similar or more related to one another and those in different groups will be different or less related

k-means Example (k=2)

k-means & PCA

Machine Learning	Supervised	Unsupervised
Discrete output	Classification	Clustering
Continuous output	Regression	Dimensionality Reduction

• The objective of k-means clustering: to minimize the within-cluster scatter

$$\min \sum_{j=1}^{k} \sum_{i \text{ allocated to } j} \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}^{(j)} \right)^{\top} \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}^{(j)} \right)$$

- Similarity with PCA: also measure of the "spread" of a set of points around their *center of mass* (mean)
- Clustering analogy
 - Classification w/o labelled training data
 - Extreme dimensionality reduction (to a cluster label)

k-means Clustering Ingredients

- Data: +pre-processing, e.g., $\mathcal{N}(0,1)$
- Model
 - Structure/Architecture: linear separation btw clusters
 - **Hyper-parameter**: #clusters *k*
 - Parameters (theta): the k cluster centroids
- Evaluation metric: within-cluster scatter
- Optimisation: expectation maximisation (EM), kind of gradient descent

k-means Has a Problem

- k-means: centroid-based, for compactness (scatter)
- Spectral clustering: connectivity

Spectral Clustering

Group points based on links in a graph

• Image as graph: segmentation as clustering

How to Create the Graph?

Gaussian kernel

 compute similarity between objects

$$\mathbf{W}(i,j) = \exp \frac{-|x_i - x_j|^2}{\sigma^2}$$

- One could create
 - A fully connected graph (~ FC layer)
 - K-nearest neighbour graph: each node is only connected to its K-nearest neighbours (~ convolutional layer, local connectivity)
- Clustering → Graph cut/partition
 - Objective: minimise cut

Min Cut = Good Cut?

A case where minimum cut gives a bad partition

• Solution: Normalise the cut

[Shi & Malik '00]

Graph Clustering Process

Graph Terminologies

Degree of nodes

$$d_i = \sum_j w_{i,j}$$

Volume of a set

$$vol(A) = \sum_{i \in A} d_i, A \subseteq V$$

Graph Cut

Consider a partition of the graph into two parts A & B

Question

$$cut(A,B) =$$

• cut(A, B): sum of the weights of the set of edges that connect the two groups $cut(A, B) = \sum_{i=1}^{n} w_{ij}$

 $i \in A, j \in B$

Goal: find the partition that minimizes the cut

Normalized Cut (Ncut)

 Consider the connectivity between groups relative to the volume of each group

$$Ncut(A,B) + \frac{cut(A,B)}{Vol(A)} + \frac{cut(A,B)}{Vol(B)}$$

$$Ncut(A, B) = cut(A, B) \frac{Vol(A) + Vol(B)}{Vol(A)Vol(B)}$$

Solving/Minimising Ncut

- Compute the similarity matrix $\mathbf{W}: \mathbf{W}(i,j) = w_{i,j}$
- Compute the degree matrix $\mathbf{D}: \mathbf{D}(i,i) = \sum_{j} w_{i,j}$
- Solve a generalised eigenvalue problem (relaxed Ncut)

$$\min_{\mathbf{y}} \mathbf{y}^{\top} (\mathbf{D} - \mathbf{W}) \mathbf{y} \text{ s.t. } \mathbf{y}^{\top} \mathbf{D} \mathbf{y} = 1 \Rightarrow (\mathbf{D} - \mathbf{W}) \mathbf{y} = \lambda \mathbf{D} \mathbf{y}$$
(D-W) : Laplacian matrix

• Solution:

- Bipartition: use the eigenvector with the second smallest eigenvalue to partition the graph into two parts
 - Splitting point: minimum Ncut (plot).
- K-way partition: k-means clustering of multiple eigenvectors
 - Graph embedding (dimensionality reduction) → eigenvectors 41

Recap: Power of Transform

- Logistic regression transforms classification into linear regression of the log odds, modelling the probability of the predicted output rather than the output itself.
- Spectral clustering **transforms** non-linear clustering into (linear) k-means clustering of generalised eigenvectors based on the similarity graph, modelling the connectivity of data points rather than themselves.

Spectral Clustering Ingredients

- Data: +pre-processing, e.g., $\mathcal{N}(0,1)$
- Model
 - Structure/Architecture: spectral (nonlinear) separation btw clusters
 - **Hyper-parameter**: #clusters k (+#eigenvectors), kernel bandwidth σ
 - Parameters (theta): the (generalised) eigenvectors
- Evaluation metric: normalised (graph) cut
- Optimisation: eigen-decomposition (and expectation maximisation in k-means)

Week 8 Contents / Objectives

- Why Unsupervised Learning?
- Principal Component Analysis (PCA)
- PCA Unboxing
- Clustering: from k-means to spectral
- Autoencoder

Autoencoder

- Encoder: compress data or extract features
- Decoder: generate images given a new code
- Bottleneck (code): to make it non-trivial, much smaller dimension as the latent representation

Autoencoder Example

- Find the weights minimising the difference between the input and reconstruction
- The code layer (bottleneck) is a low--dimensional summary of the input

13/11/2021 46

PCA as Linear Autoencoder

- PCA: autoencoder w/t single-layer encoder/decoder
- Weight sharing between the encoder and decoder

Transpose Convolution Layer

(a) Convolutional layer: the input size is the convolution is performed with stride S = 1and no padding (P = 0). The output Yis of size $W_2 = H_2 = 3$.

(b) Transposed convolutional layer: input size $W_1 = H_1 = 5$; the receptive field F = 3; $W_1 = H_1 = 3$; transposed convolution with stride S = 2; padding with P = 1; and a receptive field of F = 3. The output Yis of size $W_2 = H_2 = 5$.

https://www.mdpi.com/2072-4292/9/6/522/htm

More at https://github.com/vdumoulin/conv arithmetic

13/11/2021 48

Convolutional Autoencoder (Lab)

```
class Autoencoder(nn.Module):
    def init (self):
        super(Autoencoder, self). init ()
        self.encoder = nn.Sequential(
            # 1 input image channel, 16 output channel, 3x3 square convolution
            nn.Conv2d(1, 16, 3, stride=2, padding=1),
            nn.ReLU(),
            nn.Conv2d(16, 32, 3, stride=2, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 64, 7)
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(64, 32, 7),
            nn.ReLU(),
            nn.ConvTranspose2d(32, 16, 3, stride=2, padding=1, output_padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(16, 1, 3, stride=2, padding=1, output_padding=1),
            nn.Sigmoid() #to range [0, 1]
    def forward(self, x):
       x = self.encoder(x)
       x = self.decoder(x)
13/11/2021return x
                                                                                49
```

Training

Autoencoder Ingredients

- Data: + pre-processing, e.g., $\mathcal{N}(0,1)$
- Model
 - Structure/Architecture: layers defined in nn.module
 - **Hyper-parameter**: layer specs, e.g. #layers #channels, kernel size
 - Parameters (theta): layer weights and biases
- Evaluation metric: MSE or other
- Optimisation: backprop, SGD or the like

Acknowledgement

The slides used materials from:
 Lisa Zhang, Michael Guerzhoy,
 Neil Lawrence, Derek Hoiem,
 Pandu Nayak, Prabhakar
 Raghavan, Fereshteh Sadeghi,
 Aarti Singh, David Sontag, James
 Hays, Alan Fern, Tommi
 Jaakkola, Jure Leskovec

Recommended Reading

- The <u>PCA book</u> (from a UIUC link)
- Chapter on PCA in most machine learning books
- Chapter on clustering in most machine learning books
- The <u>normalized cut paper</u> in 2000
- Chapter on autoencoder in <u>the Deep</u> <u>Learning Book</u>
- Wikipedia entries on covered topics
- Scikit-learn/PyTorch documentations
- The lab notebook and references