Dérivation dans un anneau

Les parties I et II sont totalement indépendantes.

Soit $(A, +, \times)$ un anneau (qui n'est pas a priori supposé commutatif)

On note 0 et 1 les éléments neutres additif et multiplicatif de A.

Une application $\delta: A \to A$ est appelée dérivation sur A si et seulement si, pour tout $x, y \in A$ on a les relations :

- (1) $\delta(x+y) = \delta(x) + \delta(y)$
- (2) $\delta(xy) = x\delta(y) + \delta(x)y$

Partie I – Crochet de Lie et exemple de dérivation

Pour $a,b \in A$, on pose [a,b] = ab - ba.

- 1. Que vaut [a,b] lorsque a et b commutent?
- 2. On revient au cas général et on se donne a,b,c dans A.
- 2.a Former une relation liant [a,b] et [b,a].
- 2.b Etablir que [a, b+c] = [a, b] + [a, c].
- 2.c Justifier [a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0. Cette dernière relation est connue sous le non d'identité de Jacobi.
- 3. Pour $a \in A$, on considère $d_a: A \to A$ l'application définie par $d_a(x) = ax xa$. Montrer que d_a est une dérivation sur A.

Partie II – Propriétés des dérivations

Soit δ une dérivation quelconque sur A .

- 1. En exploitant les relations (1) et (2) calculer $\delta(0)$ et $\delta(1)$.
- 2. Soit x un élément de l'anneau $(A, +, \times)$.
- 2.a Exprimer $\delta(-x)$ en fonction de $\delta(x)$.
- 2.b On suppose que x est inversible. Exprimer $\delta(x^{-1})$ en fonction de $\delta(x)$ et de x^{-1} .
- 3. On se donne $n \in \mathbb{N}^*$.
- 3.a Soit $x_1, x_2, ..., x_n$ une liste d'éléments de A. Exprimer $\delta(x_1x_2...x_n)$ en fonction des x_k et des $\delta(x_k)$.
- 3.b Soit $x \in A$. Exprimer $\delta(x^n)$. Que devient cette formule si x et $\delta(x)$ commutent?
- 4. Soit $C_{\delta} = \{x \in A/\delta(x) = 0\}$.
- 4.a Montrer que C_{δ} est un sous-anneau de $(A, +, \times)$.
- 4.b Montrer que, si $(A,+,\times)$ est un corps, alors C_{δ} est un sous-corps de $(A,+,\times)$.

Partie III – Manipulation de dérivations

- 1. Dans cette question δ_1, δ_2 désignent deux dérivations sur A.
- 1.a Pensez-vous que l'application $\delta_1 + \delta_2$ est une dérivation ?
- 1.b Pensez-vous que l'application $\delta_1 \circ \delta_2$ est une dérivation ?

- $\begin{array}{ll} \text{1.c} & \quad \text{On note } \left[\delta_{\text{l}},\delta_{2}\right] \!=\! \delta_{\text{l}}\circ\delta_{2} \delta_{2}\circ\delta_{\text{l}} \\ & \quad \text{Montrer que } \left[\delta_{\text{l}},\delta_{2}\right] \text{ est une dérivation sur } A \ . \end{array}$
- 2. Soit δ une dérivation sur A et a,b deux éléments de A .
- 2.a Montrer que $\left[\delta,d_{\scriptscriptstyle a}\right] = d_{\scriptscriptstyle \delta(a)}$.
- 2.b Montrer que $[d_a, d_b] = d_{[a,b]}$.