BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 31 424.1

Anmeldetag:

11. Juli 2002

Anmelder/Inhaber:

PRO DESIGN Electronic & CAD-Layout GmbH,

Bruckmühl/DE

Bezeichnung:

Vorrichtung und Verfahren zur Datenkommunikation

IPC:

G 06 F 15/163

München, den 12. Juni 2003 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

Hois

DR.-ING. WOLFRAM SCHLIMME

DIPL-ING., DIPL-WIRTSCH.-ING.

Anmelder:

Ç.

PRO DESIGN
5 Electronic & CAD-Layout GmbH
Albert-Mayer-Straße 16

D - 83052 BRUCKMÜHL

Ottobrunn, den

11. Juli 2002

Amtl. Aktenzeichen: Anwaltsakte:

P 1022

PATENTANWALT EUROPEAN PATENT ATTORNEY EUROPEAN TRADE MARK ATTORNEY

POSTANSCHRIFT: POSTFACH 13 66 D - 85505 OTTOBRUNN

HAUSANSCHRIFT: ROSENHEIMER LANDSTR. 115 D - 85521 OTTOBRÜNN

TELEFON 089 - 60 900 69
TELEFAX 089 - 60 900 60
INFO-LINE 0700 - WSPATENT
E-MAIL info@wspatent.de
INTERNET www.wspatent.de

Vorrichtung und Verfahren zur Datenkommunikation

15

20

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Datenkommunikation zwischen einer ersten Host-Einrichtung oder einer weiteren Host-Einrichtung und zumindest einer Client-Einrichtung entlang eines gemeinsamen Übertragungswegs. Eine Host-Einrichtung ist beispielsweise ein Host-Computer (Personal Computer, Workstation) und eine Client-Einrichtung kann eine beliebige Hardware-Anwendung sein (zum Beispiel FPGA oder ASIC).

25

Fig. 3 zeigt ein Kommunikationssystem der Anmelderin der vorliegenden Anmeldung, welches unter der Marke UMRBus bekannt ist. Dieses Kommunikationssystem erlaubt die einfache Übertragung von Daten und/oder Signalen zwischen einer Host-Einrichtung oder einem Host-Computer (300) und zugeordneter Hardware (Clients), beispielsweise ASICs oder FPGAs. Unterschiedliche Softwareanwendungen können mit ihren entsprechenden Hardwareanwendungen über unabhängige virtuelle Kanäle kommunizieren, welche dasselbe Hardwareinterface zwischen dem Host-Computer (300) und der Client-Hardware (331, 332, 333) benutzen. Dieses Kommunikationssystem stellt

eine einfache standardisierte Schnittstelle zwischen dem Host-Computer (300) und zumindest einem Client (331, 332, 333) dar. Dieser Client (331, 332, 333) kann sowohl eine Softwareapplikation als auch eine Hardwareapplikation sein.

5

Einzelne Host-Anwendungen (301, 302, 303), die in Fig. 1 mit "HAPP" (Host Application) bezeichnet sind, sind über ein "HAPI" genanntes Host Application Interface, also eine Host-Anwendungs-Schnittstelle (310), mit einem Host

- 10 Application Interface Module "HAPIM" verbunden, welches auch als Host-Anwendungs-Schnittstelleneinheit (312) bezeichnet
- wird. Die Host-Anwendung ist ein Programm, das über die Host-Anwendungs-Schnittstelle mit einer oder mehreren Client-Anwendung(en) Daten austauscht. Das Host Application
- 15 Interface Module (312) ist eine Softwarebibliothek, die eine Vielzahl von Funktionen und Befehlen zum Zugriff auf das Kommunikationssystem bereitstellt. Eine Host-Anwendungs-Schnittstelle HAPI ist eine Schnittstelle,

auf welcher Host-Anwendungen aufsetzen.

20

Das Host Application Interface Module (312) steht unmittelbar in Verbindung mit einem Software Interface Module "SIM", also einer Software-Schnittstelleneinheit (314), die in der Regel dem betriebssystemspezifischen Gerätetreiber entspricht. Eine Host-Anwendungs-Schnittstelleneinheit HAPIM stellt die Host-Anwendungs-Schnittstelle bereit und überträgt in Zusammenarbeit mit der Software-Schnittstelleneinheit Daten von und zu den Clients.

30 Das Software Interface Module (314) steht über eine standardisierte Schnittstellenverbindung (316), zum Beispiel PCI oder RS232, mit einem Hardware Interface Module "HIM" (Hardware-Schnittstelleneinheit) (318) in Verbindung. Das Hardware Interface Module (318) stellt die Gegenstelle zum 35 Software Interface Module (314) in Hardware dar. Dieses Hardware Interface Module (318) kann beispielsweise ein

PCI-Controller und eine Interfacekomponente zwischen dem PCI-Controller und einem Daten-Bus aufweisen. Die Software-Schnittstelleneinheit SIM vollzieht den Datenaustausch zwischen der

5 Host-Anwendungs-Schnittstelleneinheit HAPIM und der Hardware-Schnittstelleneinheit HIM.

Ein wesentliches Merkmal des Hardware Interface Moduls (318) ist, daß es auf der der Software abgewandten Seite immer einen physikalischen Daten-Bus (320) bereitstellt. Dieser Daten-Bus (320) verbindet das Hardware Interface Module (318) mit einer Mehrzahl von Client Application Interface Modulen "CAPIM", auch Client-Anwendungs-Schnittstelleneinheiten (341, 342, 343) genannt. Dabei stellt der Daten-Bus (320) eine Ringverbindung zwischen den darin eingebundenen

Die Hardware-Schnittstelleneinheit HIM tauscht Daten mit der 20 Software-Schnittstelleneinheit SIM aus und stellt den Clients den Daten-Bus zur Verfügung.

Client-Anwendungs-Schnittstelleneinheiten (341, 342, 343)

und dem Hardware Interface Module (318) dar.

Jedes Client Application Interface Module (341, 342, 343)

stellt eine Art Knoten dar, welcher in den physikalischen

Daten-Bus (320) eingefügt ist. Jedes Client Application

Interface Module (341, 342, 343) steht über ein Client

Application Interface "CAPI", auch

Client-Anwendungs-Schnittstelle (322) genannt, mit einer

Client Application "CAPP", also einer Client-Anwendung (351, 352, 353), in Verbindung. Jedes Client Application Interface

Module (341, 342, 343) besitzt eine eigene Adresse und eine

Typkennung und stellt der Client Application (351, 352, 353)

das Client Application Interface (322) zur Verfügung.

35 In der in Fig. 3 gezeigten Vorrichtung wird die gesamte Datenkommunikation vom Host-Computer (300) gesteuert.

Datenaustausch kann dabei jeweils nur zwischen einem Hardware Interface Module (318) und jeweils einem Client Application Interface Module (341, 342, 343) stattfinden. Es ist somit lediglich eine Kommunikation zwischen dem Host-Computer (300) und den Client-Anwendungen (351, 352, 353) möglich, nicht jedoch innerhalb der im gezeigten Beispiel als Hardware ausgebildeten Client-Anwendungen (351, 352, 353). Darüber hinaus kann diese bekannte Vorrichtung zur Datenkommunikation nicht in Systemen mit mehreren Host-Computern eingesetzt werden.

Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung zur Datenkommunikation zwischen einer ersten Host-Einrichtung oder einer weiteren Host-Einrichtung und zumindest einer 15 Client-Einrichtung entlang eines gemeinsamen Übertragungswegs sowie ein entsprechendes Verfahren zur Datenkommunikation zu schaffen.

Die die Vorrichtung betreffende Aufgabe wird durch die im 20 Patentanspruch 1 angegebenen Merkmale gelöst.

Mit dieser erfindungsgemäßen Vorrichtung wird eine
Datenkommunikation auf einem gemeinsamen Übertragungsweg auch
dann ermöglicht, wenn mehrere Host-Einrichtungen vorgesehen
25 sind. Beispielsweise kann diese Vorrichtung innerhalb von
FPGA basierenden Bildverarbeitungssystemen benutzt werden, um
die im FPGA implementierte Bildverarbeitung zu steuern, auch
wenn das Bildverarbeitungssystem einen eigenen integrierten
Prozessor, also eine eigene Host-Einrichtung, aufweist, die
30 parallel zur übergeordneten Host-Einrichtung Parameter unter
Benutzung des Daten-Buses ändern möchte. Die
Übertragungs-Steuereinheit in der erfindungsgemäßen
Vorrichtung übernimmt dabei die Aufgabe der Steuerung, welche
der Host-Einrichtung in einem bestimmten Zeitraum oder für
eine bestimmte Datenmenge den Übertragungsweg benutzen darf.

Vorzugsweise weisen die erste und/oder die weitere Host-Einrichtung, insbesondere die Host-Anwendung, einen Prozessor auf.

5 Der Übertragungsweg ist dabei vorzugsweise als Sammelschiene oder Daten-Bus ausgebildet. Vorteilhafte Weiterbildungen dieser Vorrichtung sind in den Ansprüchen 3 bis 5 angegeben.

Die das Verfahren betreffende Aufgabe wird durch die im 10 Anspruch 6 angegebenen Verfahrensschritte gelöst.

Wesentliches Merkmal dieses erfindungsgemäßen Verfahrens ist das Vorsehen und Übertragen einer Arbitrierungsinformation auf dem Übertragungsweg entlang der geöffneten

15 Kommunikationsverbindung, wobei die Arbitrierungsinformation dafür sorgt, daß jeweils immer nur eine Host-Einrichtung Zugriff auf den Übertragungsweg erhält. Bevorzugte Ausbildungen und Weiterbildungen des erfindungsgemäßen Verfahrens sind in den Ansprüchen 7 bis 10 angegeben.

20

Die Erfindung wird nachfolgend anhand eines Beispiels unter Bezugnahme auf die Zeichnung näher erläutert; in dieser zeigt:

- Fig. 1. die schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Datenkommunikation;
 - Fig. 2. ein Flußdiagramm einer Datenkommunikation gemäß dem erfindungsgemäßen Verfahren und

- Fig. 3. den schematischen Aufbau einer Vorrichtung zur Datenkommunikation gemäß dem Stand der Technik.
- Die Fig. 1 zeigt eine Vorrichtung zur Datenkommunikation

 gemäß der vorliegenden Erfindung mit zwei Host-Einrichtungen

 1, 2. Die erste Host-Einrichtung 1 weist beispielsweise einen

Personalcomputer (PC) 11 auf und die zweiten Host-Einrichtung 2 weist beispielsweise einen in eine Hardware-Applikation integrierten Prozessor (Embedded Processor) 21 auf. Eine derartige Hardware-Anwendung mit integriertem Prozessor kann beispielsweise ein ASIC oder ein FPGA mit einem integrierten Prozessor sein. Beispielsweise werden derartige FPGAs in Bildverarbeitungssystemen eingesetzt. So werden zum Beispiel Parameter für einen Framegrabber vom ersten Host-Computer in die FPGA-Hardware übertragen, die den integrierten Prozessor aufweist.

Sowohl der erste Host-Computer 1 als auch der zweite

Host-Computer 2 sind jeweils mit einer Haupt-Anwendung "MAPP"

(Master Application) 14, 24 versehen, die über eine

Haupt-Anwendungs-Schnittstelleneinheit "MAPIM" (Master Application Interface Module) in einen Daten-Bus 9

eingebunden ist.

Die Haupt-Anwendung 14, 24 ist in diesem Beispiel eine in
20 Hardware implementierte Anwendung, die über eine
Haupt-Anwendungs-Schnittstelle "MAPI" (Master Application
Interface) 12, 22 mit der
Haupt-Anwendungs-Schnittstelleneinheit 10, 20 verbunden ist
und über diese mit dem Daten-Bus 9 in Verbindung steht.

25

Weiterhin sind beispielhaft fünf Client-Einrichtungen 3, 4, 5, 6, 7 vorgesehen, die jeweils eine Client-Anwendung "CAPP" (Client Application) 34, 44, 54, 64, 74 aufweisen. Jede Client-Anwendung steht über eine

30 Client-Anwendungs-Schnittstelle "CAPI" (Client Application Interface) 32, 42, 52, 62, 72 mit einer Client-Anwendungs-Schnittstelleneinheit "CAPIM" (Client Application Interface Module) 30, 40, 50, 60, 70 in Verbindung, welche jeweils in den Daten-Bus 9 eingebunden 35 ist.

Eine Client-Anwendung ist hier eine in Hardware implementierte Anwendung, die über die Client-Anwendungs-Schnittstelle 32, 42, 52, 62, 72 Daten über den Daten-Bus 9 mit einem der Host-Computer 1, 2 austauscht.

5 Dieser Datenaustausch wird von der entsprechenden Haupt-Anwendung 14, 24 gesteuert.

Die Client-Anwendungs-Schnittstelleneinheit 30, 40, 50, 60, 70 bildet jeweils die Schnittstelle zwischen dem Daten-Bus 9 und der jeweiligen Client-Anwendungs-Schnittstelle 32, 42, 52, 62, 72. Dem jeweiligen über diese Client-Anwendungs-Schnittstelle 32, 42, 52, 62, 72 mit dem Daten-Bus 9 verbundenen Client 3, 4, 5, 6, 7 beziehungsweise der auf diesen laufenden Client-Anwendung 34, 44, 54, 64, 74 werden nur jene Daten und Dienste zur Verfügung gestellt, die die jeweilige Client-Anwendung 34, 44, 54, 64, 74 betreffen.

In den Daten-Bus 9 ist ferner eine Übertragungs-Steuereinheit "BCM" (BUS Control Module) 8 eingebunden, die den Zugriff der 20 einzelnen Haupt-Anwendungs-Schnittstelleneinrichtungen 10, 20 auf den Daten-Bus 9 verwaltet und die Daten-Bus-Interrupts überwacht.

- Bei dieser erfindungsgemäßen Vorrichtung ist die

 Hardware-Schnittstellen-Einheit HIM nicht, wie im Stand der
 Technik gemäß Fig. 3 unmittelbar in den Daten-Bus
 eingebunden, sondern stellt die Daten über die
 Haupt-Anwendungs-Schnittstelleneinheit 10, 20 auf den
 Daten-Bus 9 zur Verfügung. Die Hardware-Schnittstelleneinheit

 HIM kann dabei durch die jeweilige Haupt-Anwendung MAPP 14,
 24 gebildet sein.
- Anhand der Fig. 2 wird nachfolgend die Zugriffsverwaltung einer Host-Einrichtung auf eine Client-Einrichtung 35 beschrieben.

Zu Betriebsbeginn sendet die Übertragungs-Steuereinheit BCM 8 eine Arbitrierungsinformation, die ständig auf dem Daten-Bus 9 zur Verfügung steht. Diese Arbitrierungsinformation ist beispielsweise als Arbitrierungs-Frame ausgebildet, der eine 5 Kopfinformation (Frame Header) und ein Datenwort enthält.

Möchte ein Host-Computer auf den Daten-Bus zugreifen und über diesen Daten an eine Client-Anwendung übertragen oder mit dieser austauschen, so gibt er diesen Zugriffswunsch im

- 10 Schritt 101 an die ihm zugeordnete Haupt-Anwendungs-Schnittstelleneinheit MAPIM. Die
- Haupt-Anwendungs-Schnittstelleneinheit MAPIM übernimmt dann im Schritt 102 den auf dem Daten-Bus 9 umhergereichten Arbitrierungs-Frame und liest aus diesem im Schritt 103 die
- 15 Arbitrierungsdaten aus. In den Arbitrierungsdaten ist ein Aktivitäts-Bit enthalten, welches angibt, ob der Daten-Bus 9 derzeit von einer anderen Anwendung benutzt wird. Ist dieses Aktivitäts-Bit nicht gesetzt, so bedeutet dies, daß der Daten-Bus 9 frei ist.

20

Im Schritt 104 prüft die

Haupt-Anwendungs-Schnittstelleneinheit MAPIM nun, ob das
Aktivitäts-Bit gesetzt ist oder nicht. Ist das Aktivitäts-Bit
gesetzt, also der Datenbus nicht frei, übergibt das MAPIM den

- 25 Arbitrierungs-Frame wieder an den Daten-Bus im Schritt 105 und übernimmt diesen nach einer Wartepause 106 wieder, um die Schritte 102 bis 104 zu wiederholen.
- Wird jedoch im Schritt 104 festgestellt, daß das

 30 Aktivitäts-Bit nicht gesetzt ist, das heißt, daß der

 Daten-Bus frei ist, so setzt die

 Haupt-Anwendungs-Schnittstelleneinheit MAPIM ihrerseits im

 Schritt 107 das Aktivitäts-Bit und zeigt damit an, daß es auf
 den Daten-Bus 9 zugreifen möchte. Der Arbitrierungs-Frame

 35 wird dann im Schritt 108 wieder an den Daten-Bus 9 übergeben
- 35 wird dann im Schritt 108 wieder an den Daten-Bus 9 übergeber und läuft dort weiter um bis er zur

Übertragungs-Steuereinrichtung BCM 8 gelangt. Diese übernimmt im Schritt 109 den Arbitrierungsblock, liest im Schritt 110 die Arbitrierungsdaten aus und reserviert im Schritt 111 den Daten-Bus 9 für den anfragenden Host-Computer.

5

Eine Haupt-Anwendungs-Schnittstelleneinheit MAPIM darf den Daten-Bus somit nur verwenden, wenn es den Arbitrierungs-Frame erhält und in diesem das Aktivitäts-Bit nicht bereits durch eine andere

- 10 Haupt-Anwendungs-Schnittstelleneinheit gesetzt worden ist.

 Der Arbitrierungs-Frame wird von der
- Übertragungs-Steuereinrichtung BCM empfangen und nicht wieder an den Daten-Bus zurückgegeben, wenn das Aktivitäts-Bit gesetzt ist. Die Haupt-Anwendungs-Schnittstelleneinheit
- 15 MAPIM, die das Aktivitäts-Bit gesetzt hat, kann jetzt seine Daten über den Daten-Bus 9 übertragen.

Nach Beendigung dieser freigegebenen Datenkommunikation über den Daten-Bus 9 oder nach Ablauf des vorgegebenen

20 Zeitintervalls oder des vorgegebenen Datenvolumens für die Datenübertragung sendet die

Haupt-Anwendungs-Schnittstelleneinheit MAPIM den

- Arbitrierungs-Frame erneut, jedoch jetzt mit deaktiviertem Aktivitäts-Bit, wodurch angezeigt wird, daß der Daten-Bus 9
- jetzt wieder frei ist. Auf diese Weise ist sichergestellt, daß nur jeweils eine Haupt-Anwendungs-Schnittstelleneinheit MAPIM auf dem Daten-Bus 9 aktiv ist und es nicht zu Überlagerungen von Datenübertragungen auf dem Daten-Bus kommt. Die Übertragungs-Steuereinrichtung BCM 8 überwacht
- dabei den Daten-Bus 9 in der Form, daß sie durch einen Zähler die Takte zwischen dem Durchlauf zweier Arbitrierungs-Frames zählt. Übersteigt der Zählerwert den vorgegebenen Grenzwert der Anzahltakte pro Zugriff so wird daraus geschlossen, daß kein Arbitrierungs-Frame empfangen wurde. Dieses kann
- 35 beispielsweise durch eine Unterbrechung des Daten-Bus 9 oder durch einen Reset der gesamten Vorrichtung geschehen. In

diesem Fall sendet die Überwachungs-Steuereinrichtung 8 erneut einen Arbitrierungs-Frame mit deaktivierten Aktivitäts-Bit und gibt so den blockierten Daten-Bus 9 automatisch wieder frei.

5

Wird auf dem Daten-Bus ein Interrupt angezeigt, so übernimmt die Übertragungs-Steuereinrichtung BCM 8 den Daten-Bus 9 und sendet einen Interrupt-Frame. Wurde der Interrupt-Frame erfolgreich übertragen, so sendet die

- 10 Übertragungs-Steuereinrichtung BCM 8 einen sogenannten
 "Interrupt Information Frame". Mit diesem "Interrupt
 Information Frame" werden die
 - Haupt-Anwendungs-Schnittstelleneinheit MAPIM über den Interrupt-Status der einzelnen
- 15 Client-Anwendungs-Schnittstelleneinheiten CAPIM informiert und können diese Information an die jeweilige Haupt-Anwendung MAPP zur weiteren Verarbeitung weiterleiten. Auf diese Weise wird sichergestellt, daß alle Host-Computer über Interrupts informiert werden.

20

Auf diese Weise wird eine erfindungsgemäße Vorrichtung zur Datenkommunikation mit einem darauf laufenden Datenkommunikationsverfahren mit einem multimasterfähigen Daten-Bus 9 geschaffen.

25

Die Erfindung ist nicht auf das obige Ausführungsbeispiel beschränkt, das lediglich der allgemeinen Erläuterung des Kerngedankens der Erfindung dient. Im Rahmen des Schutzumfangs kann die erfindungsgemäße Vorrichtung vielmehr auch andere als die oben beschriebenen Ausgestaltungsformen annehmen. Die Vorrichtung kann hierbei insbesondere Merkmale aufweisen, die eine Kombination aus den jeweiligen Einzelmerkmalen der Ansprüche darstellen.

Bezugszeichen in den Ansprüchen, der Beschreibung und den Zeichnungen dienen lediglich dem besseren Verständnis der Erfindung und sollen den Schutzumfang nicht einschränken.

Bezugszeichenliste

- 1 Host-Computer
- 2 Host-Einrichtung
- 5 3 Client-Einrichtung
 - 4 Client-Einrichtung
 - 5 Client-Einrichtung
 - 6 Client-Einrichtung
 - 7 Client-Einrichtung
- 10 8 Übertragungs-Steuereinheit BCM
 - 9 Daten-Bus
 - 10 Haupt-Anwendungs-Schnittstelleneinheit MAPIM
 - 12 Haupt-Anwendungs-Schnittstelle MAPI
 - 14 Haupt-Anwendung MAPP
- 15 20 Haupt-Anwendungs-Schnittstelleneinheit MAPIM
 - 22 Haupt-Anwendungs-Schnittstelle MAPI
 - 24 Haupt-Anwendung MAPP
 - 30 Client-Anwendungs-Schnittstelleneinheit CAPIM
 - 32 Client-Anwendungs-Schnittstelle CAPI
- 20 34 Client-Anwendung CAPP
 - 40 Client-Anwendungs-Schnittstelleneinheit CAPIM
 - 42 Client-Anwendungs-Schnittstelle CAPI
 - 44 Client-Anwendung CAPP
- 50 Client-Anwendungs-Schnittstelleneinheit CAPIM
- 25 52 Client-Anwendungs-Schnittstelle CAPI
 - 54 Client-Anwendung CAPP
 - 60 Client-Anwendungs-Schnittstelleneinheit CAPIM
 - 62 Client-Anwendungs-Schnittstelle CAPI
 - 64 Client-Anwendung CAPP
- 30 70 Client-Anwendungs-Schnittstelleneinheit CAPIM
 - 72 Client-Anwendungs-Schnittstelle CAPI
 - 74 Client-Anwendung CAPP
 - 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111:
- 35 Verfahrensschritte

- 300 Host-Einrichtung
- 301 Host-Anwendung HAPP
- 302 Host-Anwendung HAPP
- 303 Host-Anwendung HAPP
- 5 310 Host-Anwendungs-Schnittstelle HAPI
 - 312 Host-Anwendungs-Schnittstelleneinheit HAPIM
 - 314 Software-Schnittstelleneinheit SIM
 - 316 Schnittstellenverbindung
 - 318 Host-Schnittstelleneinheit
- 10 320 Daten-Bus
 - 322 Client-Anwendungs-Schnittstelle CAPI
 - 331 Client-Einrichtung
 - 332 Client-Einrichtung
 - 333 Client-Einrichtung
- 15 341 Client-Anwendungs-Schnittstelleneinheit CAPIM
 - 342 Client-Anwendungs-Schnittstelleneinheit CAPIM
 - 343 Client-Anwendungs-Schnittstelleneinheit CAPIM
 - 351 Client-Anwendung CAPP
 - 352 Client-Anwendung CAPP
- 20 353 Client-Anwendung CAPP

Neue DE-Patentanmeldung Anmelder: PRO DESIGN Electronic & CAD-Layout GmbH, BRUCKMÜHL Anwaltsakte: P 1022 11. Juli 2002

diesen der Host-Einrichtung zur Verfügung.

5

Zusammenfassung

Eine Vorrichtung zur Datenkommunikation zwischen einer ersten Host-Einrichtung oder einer weiteren Host-Einrichtung und zumindest einer Client-Einrichtung entlang eines gemeinsamen 10 Übertragungswegs umfaßt eine erste Host-Einrichtung, die eine Host-Anwendung umfaßt; zumindest eine weitere Host-Einrichtung, die eine Host-Anwendung umfaßt; zumindest eine Client-Einrichtung, die eine Client-Anwendung umfaßt; eine Übertragungs-Steuereinheit; wobeis die Host-Einrichtungen 15 und die Client-Einrichtung (en) sowie die Übertragungs-Steuereinheit durch den Übertragungsweg zum Austausch von Daten und/oder Signalen miteinander verbunden sind und wobei die Übertragungs-Steuereinheit ausgebildet ist, um den Zugriff der Host-Einrichtungen auf den 20 Übertragungsweg zu steuern. Ein auf dieser Vorrichtung laufendes Verfahren zur Datenkommunikation stellt bei einem Zugriffswunsch einer Host-Einrichtung auf den Übertragungsweg

335

14.

25

Neue DE-Patentanmeldung Anmelder: PRO DESIGN Electronic & CAD-Layout GmbH, BRUCKMÜHL Anwaltsakte: P 1022

11. Juli 2002

5

10

Patentansprüche

- 1. Vorrichtung zur Datenkommunikation zwischen einer ersten Host-Einrichtung oder einer weiteren Host-Einrichtung und zumindest einer Client-Einrichtung entlang eines gemeinsamen Übertragungswegs mit:
 - einer ersten Host-Einrichtung (1), die eine
 Host-Anwendung (11) umfaßt;
 - zumindest einer weiteren Host-Einrichtung (2), die eine Host-Anwendung (21) umfaßt;
- zumindest einer Client-Einrichtung (3, 4, 5, 6, 7), die eine Client-Anwendung (34, 44, 54, 64, 74) umfaßt;
 - einer Übertragungs-Steuereinheit (8);
- wobei die Host-Einrichtungen (1, 2) und die

 Client-Einrichtung(en) (3, 4, 5, 6, 7) sowie die
 Übertragungs-Steuereinheit (8) durch den
 Übertragungsweg (9) zum Austausch von Daten und/oder
 Signalen miteinander verbunden sind und
- wobei die Übertragungs-Steuereinheit (8) ausgebildet
 25 ist, um den Zugriff der Host-Einrichtungen (1, 2) auf
 den Übertragungsweg (9) zu steuern.
- Vorrichtung nach Anspruch 1,
 dadurch gekennzeichnet,
 daß die erste und/oder die weitere Host-Einrichtung (1,
 2), insbesondere die Host-Anwendung (11, 12), einen
 Prozessor aufweisen.
- 3. Vorrichtung nach Anspruch 1 oder 2,
 dadurch gekennzeichnet,

daß der Übertragungsweg (9) als Sammelschiene (Daten-Bus) ausgebildet ist.

- Vorrichtung nach Anspruch 1, 2 oder 3,
 dadurch gekennzeich net,
 daß die Host-Einrichtungen (1, 2) jeweils eine
 Hauptanwendungs-Schnittstelleneinheit (10, 20) aufweisen,
 die in den Übertragungsweg (9) eingebunden ist.
- 10 5. Vorrichtung nach Anspruch 4,
 dadurch gekennzeich net,
 daß die Host-Einrichtungen (1, 2) jeweils eine
 Hauptanwendungseinheit (14, 24) aufweisen, die die
 jeweilige Host-Anwendung (11, 21) mit der zugeordneten
 Hauptanwendungs-Schnittstelleneinheit (10, 20) verbindet.
- Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeich net, daß jede Client-Einrichtung (3, 4, 5, 6, 7) eine
 Clientanwendungs-Schnittstelleneinheit (30, 40, 50, 60, 70) aufweist, die in den Übertragungsweg (9) eingebunden und mit der zugeordneten Client-Anwendung (34, 44, 54, 64, 74) verbunden ist.
- 7. Verfahren zur Datenkommunikation zwischen einer ersten Host-Einrichtung oder einer weiteren Host-Einrichtung und zumindest einer Client-Einrichtung entlang eines gemeinsamen Übertragungswegs mit den Schritten:
- Öffnen einer Kommunikationsverbindung zwischen einer

 auf der Host-Einrichtung laufenden Host-Anwendung und
 einer auf der Client-Anwendung laufenden

 Client-Anwendung;
 - Übertragen einer Arbitrierungsinformation auf dem Übertragungsweg entlang der geöffneten Kommunikationsverbindung, wobei die Arbitrierungsinformation Daten enthält, aufgrund

derer der Übertragungsweg für ein vorgegebenes
Zeitintervall oder für ein vorgegebenes Datenvolumen
für eine nachfolgende Datenübertragung auf dem
Übertragungsweg entlang der geöffneten

Kommunikationsverbindung reserviert wird;

- Übertragen von Daten und/oder Signalen zwischen der Host-Anwendung und der Client-Anwendung und/oder zwischen der Client-Anwendung und der Host-Anwendung auf dem Übertragungsweg entlang der geöffneten Kommunikationsverbindung.
- 8. Verfahren nach Anspruch 7,
 dadurch gekennzeichnet in het,
 daß die Arbitrierungsinformation als Arbitrierungsblock
 übertragen wird, wobei ein Arbitrierungsblock
 Arbitrierungsdaten aufweist, die Information über die
 Länge des vorgegebenen Zeitintervalls oder über den
 Umfang des vorgegebenen Datenvolumens für die
 nachfolgende Datenübertragung umfassen.

0 Verf

5

10

20

25

- 9. Verfahren nach Anspruch 8,
 dadurch gekennzeichnet,
 daß der Arbitrierungsblock Aktivitätsdaten aufweist, die
 Information über den aktuellen Zustand des
 Übertragungswegs umfaßt, aus der hervorgeht, ob der
 Übertragungsweg aktuell zur Datenübertragung genutzt
 wird.
- 10. Verfahren nach Anspruch 7,
 30 dadurch gekennzeichnet,
 daß bei einem Zugriffswunsch einer Host-Anwendung auf den
 Übertragungsweg folgende Schritte durchgeführt werden:
 - die der Host-Anwendung zugeordnete

 Hauptanwendungs-Schnittstelleneinheit übernimmt den
 auf dem Übertragungsweg präsenten Arbitrierungsblock,
 - liest die Aktivitätsdaten aus,

- prüft anhand der Aktivitätsdaten, ob der Übertragungsweg aktuell zur Datenübertragung frei ist,
- schreibt, falls der Übertragungsweg frei ist,
 Aktivitätsdaten in den Arbitrierungsblock, die eine
 Benutzung des Übertragungswegs durch die
 Host-Anwendung anzeigen, und
- übergibt den Arbitrierungsblock über den Übertragungsweg an die Übertragungs-Steuereinheit;
- o voraufhin die Übertragungs-Steuereinheit den Übertragungsweg für den Zugriff durch die Host-Anwendung reserviert.
- 11. Verfahren nach Anspruch 10,

 dadurch gekennzeichnet,

 daß nach Ablauf einer Datenübertragung die

 Aktivitätsdaten im Arbitrierungsblock von der

 Hauptanwendungs-Schnittstelleneinheit wieder

 zurückgesetzt werden und somit der Übertragungsweg wieder

 freigegeben wird.

25

5

FIG. 3 (Stand der Technik)

