

Optical measurement of the electric field (stability)

Christian Velten

Objective

 Measure the electric field using the linear electro-optic (Pockels) effect

 Utilize existing technology/knowledge (i.e. from Cs-magnetometry [M. Sturm])

Independent of (final) HV setup / assembly

Electric field effects

Absolute field strength

• EDM signal:

$$d_n = \frac{\hbar \, \Delta \omega}{4 \, \left| \vec{E} \right|}$$

Geometric phases:

$$\delta\omega \sim \frac{\partial B_z}{\partial z} \; \vec{v} \times \vec{E}$$

Field stability

 HV AC ripples (low-amplitude oscillations on the feedthrough and electrodes):

$$j(t) \sim \sin(\omega_{\rm AC} t)$$

- ightharpoonup spin-flip possible if $\mathcal{O}\left(\omega_{\mathrm{AC}}\right)\sim30\,\mathrm{Hz}$
 - detection of alternating current:

$$\frac{\partial I}{\partial t} \neq 0 \Longrightarrow \frac{\partial E}{\partial t} \neq 0$$

(technically includes sparks and leakage currents)

Electric field effects

Absolute field strength

• EDM signal:

$$d_n = \frac{\hbar \,\Delta\omega}{4 \, \left| \vec{E} \right|}$$

• Geometric phases:

$$\delta\omega \sim \frac{\partial B_z}{\partial z} \; \vec{v} \times \vec{E}$$

Field stability

 HV AC ripples (low-amplitude oscillations on the feedthrough and electrodes):

$$j(t) \sim \sin(\omega_{\rm AC} t)$$

- spin-flip possible if $\mathcal{O}\left(\omega_{\mathrm{AC}}\right)\sim30\,\mathrm{Hz}$
 - detection of alternating current:

$$\frac{\partial I}{\partial t} \neq 0 \Longrightarrow \frac{\partial E}{\partial t} \neq 0$$

(technically includes sparks and leakage currents)

current technology

- 852nm DFB-laser diode
 - temperature controlled
 - 224.68 mA yielding 150 mW
- Table-top design
 (off-site at cluster building)

- low-noise photodiode board
- battery-powered (2x9V) for each +/- 9V and relative ground
 - few mV/min discharge

board characterization

Transmission (board #1)

- Frequency sweep from 1Hz to 1MHz
- Oscilloscope amplitude readout

completely automated (python), easily adaptable

board characterization

Transmission (board #2)

- Frequency sweep from 1Hz to 1MHz
- Oscilloscope amplitude readout

completely automated (python), easily adaptable

board characterization

- Frequency sweep from 1Hz to 1MHz
- Readout via lock-in amplifier

completely automated (python), easily adaptable

What's next?

complete table-top setup

 characterize laser diode (e.g. stability) and quartz-rod

 apply high voltage (~10kV) with lowamplitude oscillations to mimic AC ripples