Relatório de Arquitetura de Software

para

um Sistema de Controle de Estacionamento

Giovanna Karla Felix de Macedo & Thuanny Carvalho Rolim de Albuquerque

IMD
Bacharelado em Tecnologia da Informação
Arquitetura de Software
JAIR CAVALCANTI LEITE
THAIS VASCONCELOS BATISTA

Natal, 18 de Novembro de 2024

Contents

1	Intr	Introdução					
	1.1	Objetivo	do Documento	2			
	1.2	Contextu	alização				
2	Visão do Produto						
	2.1	Objetivo		4			
	2.2	Público-A	Alvo e stakeholders	4			
		2.2.1 P	úblico-Alvo	4			
		2.2.2 St	takeholders	5			
		2.2.3 In	npacto nos Stakeholders	5			
2.3 Uso pretendido			endido	6			
		2.3.1 C	enários de Uso	6			
		2.3.2 Fu	unções-Chave do Sistema	6			
		2.3.3 In	npacto Esperado do Uso	7			
	2.4	Escopo d	o Produto	7			
		2.4.1 Li	imites do Sistema	7			
		2.4.2 O	bjetivos Principais do Escopo	8			
		2.4.3 B	enefícios para os Stakeholders	8			
		2.4.4 Li	imitações Técnicas e Operacionais	8			
3	Requisitos						
3.1 Requisitos Funcionais		s Funcionais	9				
	3.2	Requisito	os Não Funcionais	13			
4	Dia	grama B	DD (Block Definition Diagram)	16			
	4.1	I.1 Value Types					
		4.1.1 D	escrição Geral	16			
		4.1.2 E	lementos Representados no Diagrama	16			
		4.1.3 R	elacionamento com o Sistema	17			
	4.2	Ports		18			

Chapter 0: Contents

		4.2.1	Descrição Geral	18
		4.2.2	Elementos Representados no Diagrama	18
		4.2.3	Relacionamentos no Diagrama	19
	4.3	Conne	ectors	20
		4.3.1	Descrição Geral	20
		4.3.2	Elementos Representados no Diagrama	20
	4.4	Comp	onents	22
	4.5	Comp	onentes	22
		4.5.1	Descrição Geral	22
		4.5.2	Elementos Representados no Diagrama	22
		4.5.3	Interação entre Componentes	23
		4.5.4	Relacionamento com os Requisitos	23
5	Diag	grama	IBD (Internal Block Diagram)	25
		5.0.1	Descrição Geral	25
		5.0.2	Elementos Representados no Diagrama	25
		5.0.3	Conexões Internas	26
		5.0.4	Fluxos de Dados	26
		5.0.5	Relacionamento com os Requisitos	26
6	Con	sidera	ções Finais	28
		6.0.1	Contribuições e Benefícios	28
		6.0.2	Próximos Passos	28

Introdução

Este relatório apresenta a concepção inicial de um Sistema de Controle de Estacionamento, o ParkSystem, projetado para atender às necessidades de gestão eficiente, segurança e conveniência em estacionamentos de diversos portes. O objetivo principal do sistema é oferecer uma experiência otimizada para motoristas e administradores, garantindo agilidade na entrada e saída de veículos, cálculo automatizado de tarifas e suporte a múltiplas formas de pagamento.

A solução proposta é flexível e escalável, podendo ser configurada para pequenos estacionamentos, como em edifícios residenciais, até grandes instalações, como arenas esportivas. Além disso, o sistema está desenhado para operar continuamente (24x7), com alta tolerância a falhas, garantindo disponibilidade mesmo em situações críticas.

Este documento detalha os requisitos funcionais e não funcionais do sistema, organizados e justificados por meio de diagramas e descrições textuais. A especificação inclui aspectos relacionados à gestão de vagas, controle de entrada e saída, identificação e autorização de veículos, cálculo de tarifas, segurança de dados, e outros elementos essenciais para assegurar a eficiência e confiabilidade do sistema.

Ao longo deste relatório, será detalhado os requisitos, componentes, conectores, portas e configurações do sistema proposto.

1.1 Objetivo do Documento

Este documento tem como objetivo especificar os requisitos de um Sistema de Controle de Estacionamento (ParkSystem), fornecendo uma visão geral do produto e detalhando as funcionalidades e características essenciais para sua implementação. Por meio de uma abordagem estruturada, o relatório apresenta requisitos funcionais e não funcionais, diagramas representativos (como os de requisitos, BDD e IBD) e justificativas técnicas para as decisões tomadas. Além disso, ele estabelece a base para o desenvolvimento de uma solução confiável, escalável e adequada às necessidades dos usuários.

1.2 Contextualização

Com o crescimento da urbanização e o aumento da frota de veículos, a gestão de estacionamentos tornouse um desafio crítico em grandes centros urbanos. Soluções tradicionais frequentemente apresentam gargalos operacionais, como filas extensas, dificuldade em localizar vagas e falta de segurança. Além disso, a necessidade

Chapter 1: Introdução

de sistemas integrados, que suportem diferentes métodos de acesso, pagamento e monitoramento, é cada vez mais evidente.

3

Nesse cenário, o Sistema de Controle de Estacionamento proposto busca integrar tecnologia e usabilidade para oferecer uma experiência fluida e segura tanto para usuários quanto para administradores. A solução incorpora características modernas, como operação 24x7, suporte a múltiplos métodos de autenticação (ticket, RFID, ANPR) e pagamento (dinheiro, cartões, PIX), além de garantir conformidade com regulamentações de privacidade de dados (LGPD).

Visão do Produto

2.1 Objetivo

O Sistema de Controle de Estacionamento será uma solução integrada para a gestão eficiente de estacionamentos, adaptável a diferentes tipos de infraestrutura. O produto deve permitir:

- Gestão Inteligente de Vagas: Identificação e exibição em tempo real das vagas disponíveis, incluindo tipos específicos (cobertas, acessíveis). Entrada e Saída Automatizada: Controle de acesso por tecnologias como tickets, RFID e leitura de placas, com redundância para situações de emergência.
- Cálculo e Pagamento de Tarifas: Automação do cálculo com base no tempo de permanência, permitindo configurações específicas de preços e suporte a múltiplos métodos de pagamento.
- Operação Contínua e Escalável: Funcionar ininterruptamente e se adaptar a diferentes capacidades, de pequenos estacionamentos a grandes arenas. Segurança e Privacidade: Proteção dos dados de usuários e conformidade com leis de privacidade.

A visão do produto é proporcionar um sistema confiável, ágil e seguro, que otimize a experiência dos usuários e reduza custos operacionais para os administradores.

2.2 Público-Alvo e stakeholders

2.2.1 Público-Alvo

O público-alvo do Sistema de Controle de Estacionamento inclui indivíduos e organizações que utilizam ou administram estacionamentos de diferentes portes e finalidades. Entre os principais grupos estão:

1. Motoristas e Usuários Finais:

Pessoas que utilizam estacionamentos em edifícios residenciais, comerciais, shoppings, hospitais, ou arenas esportivas. Necessitam de acesso rápido, métodos de pagamento variados e informações claras sobre vagas disponíveis.

2. Administradores de Estacionamentos:

Profissionais responsáveis por gerenciar a operação diária do estacionamento. Buscam soluções que reduzam custos operacionais, aumentem a segurança e otimizem o fluxo de veículos.

3. Empresas de Gestão de Estacionamentos:

Organizações especializadas em operar grandes estacionamentos de forma terceirizada. Demandam sistemas escaláveis e integrados para monitorar múltiplas localizações.

4. Lojistas e Comerciantes Locais:

Negócios que dependem de estacionamentos próximos para atrair clientes. Beneficiam-se de integrações que oferecem descontos ou vales para consumidores.

2.2.2 Stakeholders

Os stakeholders do sistema incluem todos os indivíduos ou entidades que possuem interesse no desenvolvimento, operação e uso do sistema. Eles são classificados em:

1. Stakeholders Primários:

- Usuários Finais: Motoristas e pessoas que estacionam seus veículos.
- Operadores e Administradores do Sistema: Equipes que monitoram a operação do estacionamento
- Proprietários dos Estacionamentos: Indivíduos ou empresas que possuem o local e visam maximizar a rentabilidade.

2. Stakeholders Secundários:

- **Desenvolvedores do Sistema**: Engenheiros e equipes responsáveis pela implementação e manutenção do software e hardware.
- Fornecedores de Equipamentos: Empresas que fabricam cancelas automáticas, sensores de estacionamento e terminais de pagamento.
- Prestadores de Serviços de Pagamento: Bancos e empresas que oferecem gateways para transações financeiras (PIX, cartões, apps).

3. Stakeholders Regulatórios:

- Agências de Proteção de Dados: Organizações que monitoram a conformidade do sistema com a LGPD.
- Órgãos Municipais: Responsáveis pela regulamentação de estacionamentos e emissão de licenças.

4. Stakeholders Indiretos:

- Clientes de Lojas e Serviços: Indivíduos que utilizam o estacionamento para acessar estabelecimentos comerciais próximos.
- Prestadores de Serviços de Emergência: Bombeiros, paramédicos e equipes de segurança que necessitam de acesso rápido em situações críticas.

2.2.3 Impacto nos Stakeholders

O sucesso do sistema dependerá de como ele atende às expectativas de cada stakeholder:

- Usuários finais esperam rapidez, segurança e praticidade.
- Administradores desejam eficiência e baixos custos operacionais.
- Reguladores exigem conformidade com as leis de segurança e privacidade.

Esse mapeamento permite priorizar funcionalidades e garantir que o sistema ofereça valor a todos os envolvidos.

2.3 Uso pretendido

O **ParkSystem** foi concebido para otimizar a gestão e operação de estacionamentos de diferentes portes, garantindo eficiência, segurança e uma experiência satisfatória para seus usuários.

O sistema será implementado para atender aos seguintes cenários e necessidades:

2.3.1 Cenários de Uso

1. Estacionamentos de Pequeno e Médio Porte:

- Edifícios residenciais e comerciais, onde o fluxo de veículos é limitado.
- Necessidade de monitoramento básico de vagas, controle de entrada/saída e cálculo automatizado de tarifas.

2. Estacionamentos de Grande Porte:

- Centros comerciais, hospitais, aeroportos e arenas esportivas, com alta rotatividade de veículos.
- Requisitos avançados como escalabilidade, gerenciamento de filas e integração com sistemas de reservas e aplicativos móveis.

3. Eventos e Situações de Alta Demanda:

- Controle temporário de acesso em grandes eventos.
- Otimização para minimizar filas e gerenciar reservas antecipadas de vagas.

4. Operação 24x7:

 Garantia de funcionamento contínuo em estacionamentos que operam sem interrupções, com tolerância a falhas e redundância de sistemas.

2.3.2 Funções-Chave do Sistema

- 1. Controle de Vagas Disponíveis:
 - Exibição em tempo real de vagas livres e sua localização, incluindo informações sobre acessibilidade.

2. Gestão de Entrada e Saída:

 Automação de cancelas acionadas por diferentes métodos (tickets, RFID, QR Code, leitura de placas).

3. Cálculo e Cobrança Automática:

• Tarifação baseada no tempo de permanência e características da vaga, com suporte a múltiplos métodos de pagamento (dinheiro, cartões, PIX, aplicativos).

4. Segurança e Conformidade:

• Controle de acesso autorizado e criptografia de dados sensíveis para proteger informações pessoais e financeiras.

5. Gerenciamento Administrativo:

• Interface para administradores configurarem tarifas, formas de pagamento e integrarem o sistema com outras tecnologias.

6. Gestão de Emergências:

• Controle manual de cancelas e priorização de saída rápida em situações críticas.

2.3.3 Impacto Esperado do Uso

- Melhoria na Experiência do Usuário: Redução de tempo para entrada, saída e pagamento.
- Aumento da Eficiência Operacional: Automatização de processos e redução da necessidade de intervenção humana.
- Segurança e Conformidade: Garantia de proteção de dados e conformidade com regulamentos, como a LGPD.
- Adaptabilidade e Escalabilidade: Operação eficiente em estacionamentos de diferentes tamanhos e capacidades.

Este sistema é voltado para resolver os desafios modernos de gerenciamento de estacionamentos, atendendo a diversos perfis de uso e promovendo uma operação confiável e escalável.

2.4 Escopo do Produto

O ParkSystem abrange funcionalidades destinadas a modernizar a gestão e operação de estacionamentos de diversos tamanhos e complexidades, promovendo eficiência, segurança e conveniência para os usuários finais, operadores e administradores. Este documento detalha o escopo do sistema, incluindo as principais funcionalidades e limitações, com foco em atender às demandas do mercado moderno de gestão de estacionamentos.

2.4.1 Limites do Sistema

1. Inclusões no Escopo:

- Gerenciamento de Vagas: Monitoramento e exibição em tempo real de vagas disponíveis, tipos de vagas (cobertas, descobertas, acessíveis) e localização.
- Controle de Entrada e Saída: Automação de cancelas com suporte a múltiplas tecnologias (tickets, RFID, QR Code, leitura de placas).
- Cálculo e Pagamento de Tarifas: Tarifação dinâmica com suporte a diferentes métodos de pagamento, incluindo dinheiro, cartões, PIX e aplicativos móveis.
- Segurança de Dados e Conformidade: Proteção de informações sensíveis e aderência às regulamentações, como a LGPD.
- Tolerância a Falhas: Garantia de operação contínua mesmo em caso de falhas parciais de componentes, com redundância e backup de energia.
- Integração com Tecnologias: Compatibilidade com gateways de pagamento, aplicativos móveis e sistemas de reservas.
- Relatórios Administrativos: Geração de dados operacionais e financeiros para análise e melhoria contínua.

2. Exclusões do Escopo:

- Manutenção Física de Equipamentos: A substituição física de cancelas, sensores e dispositivos não está incluída no funcionamento do sistema.
- Integração com Sistemas Não-Compatíveis: Tecnologias legadas ou não suportadas pelo sistema não serão incluídas, salvo adaptações previamente acordadas.
- Gerenciamento de Frotas Corporativas: Embora o sistema permita configurações personalizadas, não está focado em gerenciamento de frotas específicas.

2.4.2 Objetivos Principais do Escopo

- Automação e Eficiência: Substituir processos manuais por tecnologias modernas para otimizar o fluxo de veículos e reduzir o tempo de espera.
- Segurança e Confiabilidade: Oferecer um sistema seguro e robusto, garantindo a continuidade das operações mesmo em situações de falha parcial.
- Flexibilidade e Escalabilidade: Atender desde pequenos estacionamentos residenciais até grandes arenas esportivas, com suporte a ajustes de capacidade e requisitos específicos.
- Melhoria da Experiência do Usuário: Fornecer uma interface amigável e opções convenientes de pagamento e localização de veículos.

2.4.3 Benefícios para os Stakeholders

1. Motoristas:

- Acesso rápido e fácil a informações sobre vagas disponíveis.
- Processos de entrada, saída e pagamento simplificados.

2. Administradores e Operadores:

- Controle centralizado e configurável de tarifas, capacidades e tecnologias de acesso.
- Relatórios e análises para tomada de decisão baseada em dados.

3. Proprietários de Estacionamento:

- Maximização da ocupação e receitas através de gestão eficiente e tarifas dinâmicas.
- Redução de custos operacionais com automação.

2.4.4 Limitações Técnicas e Operacionais

- Dependência de Infraestrutura Local: O funcionamento do sistema depende de componentes como câmeras, sensores e cancelas em bom estado.
- Latência em Conexões de Rede: Em estacionamentos com redes instáveis, algumas funções podem operar de forma limitada ou em modo offline temporário.
- Capacidade Máxima Configurável: O sistema é projetado para escalabilidade, mas limites específicos podem depender da infraestrutura disponível.

Com este escopo bem definido, o sistema busca entregar uma solução completa para gestão de estacionamentos, equilibrando funcionalidades avançadas com simplicidade de uso e manutenção.

Requisitos

Este tópico apresenta os requisitos funcionais e não funcionais do Sistema de Controle de Estacionamento, agrupando-os conforme suas funcionalidades principais e destacando sua importância na implementação do sistema. A definição e organização dos requisitos são cruciais para garantir o cumprimento dos objetivos do produto e atender às expectativas dos stakeholders.

3.1 Requisitos Funcionais

1. Gestão de Vagas:

- O sistema deve monitorar e exibir, em tempo real, a quantidade de vagas disponíveis, incluindo a localização exata de cada vaga.
- Identificar o tipo de vaga (coberta, descoberta, acessível) e exibir essa informação.
- Exibir em painéis ou visores localizados em pontos estratégicos o número e localização das vagas disponíveis.

2. Controle de Entrada e Saída de Veículos:

- Implementar cancelas automáticas para controle de entrada e saída.
- Permitir o acionamento das cancelas por:
 - Ticket impresso;
 - Cartão RFID;
 - Reconhecimento Automático de Placas (ANPR);
 - QR Code;
- Permitir que uma pessoa autorizada controle as cancelas manualmente em situações de emergência.

3. Identificação e Autorização de Veículos

- Associar o veículo ao ticket, RFID ou placa no momento da entrada.
- Garantir que o condutor que entrou com o veículo ou uma pessoa autorizada possa retirá-lo.
- Habilitar autorização de terceiros para retirada do veículo, com verificação da autorização.

4. Cálculo e Tarifação do Tempo de Estacionamento

- Calcular automaticamente o valor a ser pago com base no tempo de permanência do veículo.
- Permitir configuração de tarifas variáveis conforme tipo de vaga ou horários específicos (ex.: horários de pico).
- Pagamento do Ticket só vale até 15 mins, depois disso o valor é reajustado

5. Gestão de Formas de Pagamento

- Oferecer pagamento em:
 - Máquinas automáticas;
 - Aplicativo mobile;
 - Direto na cancela de saída.
- Suportar múltiplos métodos de pagamento: dinheiro, cartões de débito e crédito, PIX e pagamentos via app.
- Configuração das formas de pagamento disponíveis pelo administrador.

6. Operação Contínua (24x7)

• Operar continuamente, garantindo disponibilidade 24 horas por dia, 7 dias por semana.

7. Gerenciamento de Emergências

- Prover mecanismos para que uma pessoa autorizada possa abrir manualmente as cancelas em casos de emergência.
- Assegurar rápida liberação das saídas em situações de emergência para evacuação segura.

8. Otimização de Fluxo e Redução de Filas

- Minimizar o tempo de espera na entrada e saída dos veículos, especialmente em períodos de alta demanda.
- Garantir que o tempo de espera não ultrapasse 10 segundos por veículo.

9. Configuração de Escalabilidade

- Permitir configuração do sistema para diferentes capacidades de estacionamento (ex.: prédios residenciais, arenas).
- Facilitar a adição ou remoção de sensores, câmeras e cancelas, sem impactos operacionais.

10. Controle de Acesso ao Sistema

• Garantir que apenas pessoal autorizado tenha acesso aos controles manuais e dados administrativos do sistema.

11. Integração com Gateways de Pagamento

• Integrar o sistema com gateways de pagamento para suporte a transações via cartões, PIX e apps móveis.

12. Sistema de Reservas Antecipadas

- Permitir que usuários reservem vagas com antecedência, especialmente útil para eventos ou horários de pico.
- Integrar a reserva com o sistema de entrada, para que a vaga seja garantida até o horário estipulado pelo usuário.

13. Monitoramento de Ocorrências e Suporte

- Incluir um canal de comunicação direta com o suporte ou segurança, acessível nas máquinas de pagamento e no aplicativo.
- Registrar ocorrências como tentativas de acesso não autorizadas, alarmes de emergência e falhas de equipamento.

14. Assistência de Localização de Veículo

• Disponibilizar um sistema de localização do veículo dentro do estacionamento, utilizando tecnologia RFID, Bluetooth, ou código do ticket.

• Permitir que o usuário, pelo aplicativo, insira dados do veículo (ex.: placa ou ticket) para receber orientações até o local onde estacionou.

15. Validação por QR Code

 Adicionar a opção de validação de entrada/saída por QR Code no ticket ou aplicativo mobile, oferecendo uma alternativa prática ao usuário.

16. Monitoramento de Segurança e Câmeras de Vigilância

- Integrar o sistema com câmeras de segurança para registrar entrada e saída de veículos, além de monitorar áreas sensíveis do estacionamento.
- Permitir acesso às gravações em caso de necessidade de auditoria ou investigação.

17. Opção de Descontos e Promoções

- Permitir que o administrador configure descontos para determinados períodos (ex.: período noturno) ou perfis de usuário (ex.: mensalistas ou clientes de lojas específicas).
- Aplicar descontos automaticamente de acordo com as condições configuradas e informá-los na tela de pagamento.

18. Gestão de Mensalidades e Planos de Assinatura

- Incluir uma funcionalidade para gestão de mensalistas, com opções de pagamento recorrente e controle de assinaturas.
- Associar veículos e usuários cadastrados a planos de acesso com preços e horários específicos, como planos semanais, mensais ou de múltiplas entradas.

19. Notificações e Alertas

- Enviar notificações aos usuários (via app ou SMS) quando o tempo de estacionamento estiver próximo de expirar, caso o sistema seja tarifado por horas.
- Enviar alertas automáticos ao administrador ou equipe de segurança em caso de falhas no sistema, tentativas de acesso não autorizadas ou emergências.

20. Sistema de Análise e Relatórios

- Gerar relatórios detalhados sobre taxas de ocupação, fluxo de entrada e saída, receita gerada e outros dados operacionais.
- Permitir exportação de dados em formatos padrão (ex.: CSV, PDF) para análise administrativa.

21. Integração com Serviços Externos de Mobilidade

 Permitir integração com serviços de mobilidade urbana e apps de localização (como Google Maps e Waze) para exibir disponibilidade de vagas e facilitar a navegação até o estacionamento.

22. Acesso Coringa para os funcionário

- Acesso via Cartão, QR Code para funcionários;
- Não precisa validar ticket com o tempo e valor

Figure 3.1: Requisitos Funcionais do ParkSystem

3.2 Requisitos Não Funcionais

1. Funcionamento 24x7

• O sistema deve operar continuamente, sem interrupção, 24 horas por dia, 7 dias por semana, garantindo disponibilidade ininterrupta.

2. Tolerância a Falhas

- O sistema deve continuar operando em caso de falhas parciais de componentes (ex.: cancelas ou sensores).
- Incluir redundância em componentes principais, como servidores e banco de dados, para assegurar a operação contínua.
- Implementar um backup de energia (ex.: no-break) para manter o sistema operacional durante quedas de energia.

3. Atualizações de Hardware e Software

- Permitir substituição de hardware e atualização de software sem interrupção das operações do estacionamento.
- Realizar atualizações de forma transparente para o usuário, com mínima interferência na operação normal.

4. Segurança de Dados

- Os dados de entrada e saída de veículos e informações de pagamento devem ser protegidos por criptografia.
- Assegurar que todos os dados sensíveis estejam em conformidade com regulamentações de privacidade, como a LGPD.

5. Controle de Acesso ao Sistema

 Apenas pessoal autorizado deve ter acesso aos controles manuais do sistema e aos dados administrativos.

6. Configuração de Diferentes Capacidades

- O sistema deve ser configurável para operar em estacionamentos de diferentes tamanhos, desde pequenos prédios até grandes arenas esportivas.
- A arquitetura deve permitir adição ou remoção de sensores, câmeras e cancelas, sem impacto significativo na operação.

7. Desempenho e Escalabilidade de Rede

- O sistema deve suportar picos de acesso simultâneo em grandes eventos, escalando para acomodar a demanda sem perda de desempenho.
- Deve ser projetado para suportar centenas ou milhares de usuários simultâneos em grandes estacionamentos.

8. Usabilidade e Acessibilidade

- A interface dos terminais e aplicativos deve ser intuitiva e acessível, com suporte para múltiplos idiomas e opções de acessibilidade para pessoas com deficiência.
- O sistema deve oferecer um modo de alto contraste, suporte a comandos de voz e integração com dispositivos de leitura de tela.

9. Tempo de Resposta

 As operações de autenticação e autorização para entrada e saída devem ser concluídas em no máximo 3 segundos.

• O sistema de pagamento deve processar as transações em até 5 segundos para minimizar filas.

10. Módulo de Previsão de Demanda

• Utilizar análise de dados e machine learning para prever horários de alta demanda com base em histórico e tendências, sugerindo ajustes operacionais (ex.: reserva de vagas ou abertura de cancelas adicionais).

11. Autonomia Operacional em Caso de Falhas

• Equipamentos críticos (cancelas, leitores de placas, terminais de pagamento) devem ser capazes de operar por um período mínimo de 24 horas sem conectividade total, utilizando backup de dados e bateria auxiliar.

Figure 3.2: Requisitos Não Funcionais do ParkSystem

Figure 3.3: Diagrama de requisitos NF e RF do ParkSystem

Diagrama BDD (Block Definition Diagram)

Os diagramas BDD (Block Definition Diagram) são utilizados para representar os blocos principais do sistema e suas relações estruturais. No contexto do Sistema de Controle de Estacionamento, os BDDs descrevem os subsistemas, portas, sensores e atuadores, bem como suas interdependências e funções.

4.1 Value Types

4.1.1 Descrição Geral

Este diagrama BDD apresenta a estrutura de tipos, dimensões, e valores que compõem os dados manipulados pelo sistema. Ele organiza as unidades de informação e as respectivas associações semânticas, categorizando os dados em tipos básicos, dimensões físicas e enums que representam estados e comandos específicos.

4.1.2 Elementos Representados no Diagrama

- 1. Tipos de Valor (Value Types):
 - Tipos Primários:
 - Int: Representa números inteiros.
 - Boolean: Representa valores binários (verdadeiro ou falso).
 - String: Representa cadeias de texto.
 - Void: Utilizado para indicar ausência de valor.
 - Real: Representa números reais.
 - Tipos Associados a Dimensões:
 - Horas Tempo: Associa a unidade "Horas" à dimensão "Tempo".
 - Minutos Tempo: Associa a unidade "Minutos" à dimensão "Tempo".
 - ReaisDinheiro: Associa a unidade "Reais" à dimensão "Dinheiro".
 - CentavosDinheiro: Associa a unidade "Centavos" à dimensão "Dinheiro".
- 2. Dimensões e Unidades:
 - Dimensão Tempo:
 - Contém as unidades Horas e Minutos, aplicáveis a intervalos de tempo.
 - Dimensão Dinheiro:

- Contém as unidades Reais e Centavos, aplicáveis a valores monetários.
- 3. Enums (Enumerações):
 - Estado: Enumeração que identifica os estados possíveis como Up (ativo) e Down (inativo).
 - Comando: Enumeração que define os comandos possíveis, como On e Off.
 - Detectado: Enumeração que identifica condições de detecção, como In (entrada detectada) e Out (saída detectada).

4. Data Types:

- Estados: Representa estados complexos associados à enumeração Estado. Exemplo: Cancela:Estado.
- Comandos: Representa comandos complexos associados à enumeração Comando. Exemplo: Cameras:Comando.
- Detectados: Representa dados de detecção associados à enumeração Detectado. Exemplo: Sensor-DeAndar:Detectado.

4.1.3 Relacionamento com o Sistema

Os elementos do diagrama são utilizados diretamente nas portas de entrada e saída do sistema, vinculando os fluxos de dados aos tipos específicos e garantindo coerência na comunicação entre sensores, atuadores e controladores.

Figure 4.1: BDD Types

4.2 Ports

4.2.1 Descrição Geral

O diagrama BDD das portas do sistema representa os elementos e fluxos principais associados à comunicação e ao processamento de dados no sistema de controle de estacionamento. Ele descreve as portas de entrada e saída de dados (inputs e outputs) para cada bloco funcional, evidenciando os tipos de fluxo e suas conexões.

4.2.2 Elementos Representados no Diagrama

O diagrama apresenta as portas de entrada (inPorts) e saída (outPorts) do sistema, categorizadas pelos tipos de dados e fluxos processados. Os principais elementos incluem:

- 1. Portas Relacionadas ao Dinheiro (Pagamento):
 - CDinheiroOPT (outPort): Representa a saída de dados em centavos de dinheiro.
 - CDinheiroIPT (inPort): Entrada de valores em centavos.
 - RDinheiroOPT (outPort): Representa a saída de valores em reais.
 - RDinheiroIPT (inPort): Entrada de valores em reais.
- 2. Portas Relacionadas ao Tempo (Estadia):
 - MTempoIPT (inPort): Entrada de tempo em minutos.
 - MTempoOPT (outPort): Saída de tempo em minutos.
 - HTempoIPT (inPort): Entrada de tempo em horas.
 - HTempoOPT (outPort): Saída de tempo em horas.
- 3. Portas de Comando:
 - ComandoOPT (outPort): Emissão de comandos para atuadores.
 - ComandoIPT (inPort): Recepção de comandos para processamento.
- 4. Portas de Detecção:

- DetectadoIPT (inPort): Entrada de informações detectadas por sensores.
- Detectado
OPT (outPort): Saída de dados detectados.
- 5. Portas de Estado:
 - EstadoIPT (inPort): Entrada de dados sobre o estado do sistema.
 - EstadoOPT (outPort): Saída de dados indicando o estado atual.

4.2.3 Relacionamentos no Diagrama

Cada porta está conectada a subsistemas que recebem ou transmitem dados para processar funções específicas, como pagamento, validação de tempo e detecção de veículos. As portas inPorts e outPorts possibilitam a comunicação direta entre sensores, atuadores e o controlador central, assegurando que o sistema funcione de forma integrada e confiável.

Figure 4.2: BDD Ports

4.3 Connectors

4.3.1 Descrição Geral

O diagrama BDD apresentado mapeia os conectores que estabelecem a comunicação entre as portas de entrada e saída do sistema. Ele evidencia os fluxos de dados e as dependências entre os diversos subsistemas, indicando como os dados são transmitidos e processados para atender às funcionalidades do sistema.

4.3.2 Elementos Representados no Diagrama

- 1. Conexões Principais:
 - TempoToDinheiroCN: Este conector mapeia os dados de tempo (HorasTempo e MinutosTempo) para valores monetários:
 - Fonte: Porta HTempoOPT (HorasTempo) e MTempoOPT (MinutosTempo).
 - Destino: Porta RDinheiroIPT (ReaisDinheiro) e CDinheiroIPT (CentavosDinheiro).
 - DetectarPresencaCN: Conector responsável pela detecção de presença:
 - Fonte: Porta DetectadoOPT (Detectado)
 - Destino: Porta DetectadoIPT (Detectado)
 - EnviarComandoCN: Estabelece a conexão para envio de comandos:
 - Fonte: Porta ComandoOPT (Comando).
 - Destino: Porta ComandoIPT (Comando).
 - MudarEstadoCN: Conector que altera o estado do sistema:
 - Fonte: Porta EstadoOPT (Estado).
 - Destino: Porta EstadoIPT (Estado).
- 2. Fluxos de Dados: Cada conector transporta um tipo de dado específico, garantindo que a comunicação respeite as dimensões e valores definidos no modelo. Os fluxos são caracterizados pelas fontes (ports de saída) e os destinos (ports de entrada), conforme mostrado no diagrama.
- Relacionamento com os Requisitos :
 Os conectores foram projetados para atender diretamente aos requisitos funcionais do sistema, garantindo que:

- Os tempos registrados sejam convertidos em valores monetários corretamente.
- A presença do carro seja detectada e processada.
- Os comandos sejam enviados e executados de forma precisa.
- Os estados do sistema possam ser monitorados e alterados conforme necessário.

Figure 4.3: BDD Connectors

4.4 Components

Para focar nos componentes do sistema, ajustarei a abordagem para descrever os elementos representados no diagrama, destacando suas funcionalidades e interações. Aqui está um exemplo de tópico baseado no modelo apresentado:

4.5 Componentes

4.5.1 Descrição Geral

O diagrama BDD apresentado mapeia a estrutura do sistema "PkSystem", detalhando os componentes principais e suas interações. Esses componentes são responsáveis por diferentes funcionalidades dentro do sistema, incluindo controle de cancelas, leitura de tickets, detecção de presença de veículos, cálculo de pagamento, e monitoramento da ocupação de vagas.

4.5.2 Elementos Representados no Diagrama

- 1. PkSystem: Componente central que coordena a interação entre todos os subsistemas do sistema de estacionamento. Ele centraliza a configuração e gerencia o fluxo de informações entre os componentes.
- 2. **CancelaCP**:
 - Responsável por controlar a entrada e saída de veículos no estacionamento.
 - Possui uma porta de entrada que valida o estado do ticket ("valido : EstadoOPT") antes de permitir a abertura da cancela.
- 3. **LeitorDeTicketCP**:

- Componente responsável por ler os tickets apresentados pelos usuários.
- A porta "lido : Estado
IPT" reflete o estado do ticket após a leitura, que é essencial para determinar a validade da entrada ou saída.

4. **SensorDeVagaCP**:

- Monitora a ocupação das vagas no estacionamento.
- A porta "detectado : Detectado
OPT" é utilizada para identificar a presença ou ausência de veículos em uma vaga específica.

5. **RastreadorCP**:

- Utilizado para monitorar a ocupação global do estacionamento.
- A porta "ocupado : DetectadoOPT" indica se uma vaga está ocupada ou disponível.

6. **MaquinaDePagamentoCP**:

- Componente responsável pelo processamento de pagamentos.
- Utiliza a porta "calculado : RDinheiroOPT" para calcular o valor devido com base no tempo de permanência no estacionamento.

7. **CameraCP**:

- Monitoriza a entrada e saída de veículos, fornecendo informações visuais e dados para controle.
- A porta "controlador : ComandoIPT" é utilizada para receber comandos do sistema, permitindo ajustes na operação da câmera.

4.5.3 Interação entre Componentes

Os componentes listados são interdependentes, colaborando para garantir o funcionamento correto do sistema de estacionamento. A integração entre eles é coordenada pelo componente central "PkSystem", que garante que os dados de leitura de tickets, detecção de veículos, cálculos de pagamento e monitoramento de vagas sejam precisos e sincronizados.

4.5.4 Relacionamento com os Requisitos

Cada componente foi projetado para atender a requisitos específicos do sistema, como:

- CancelaCP para controle seguro de entrada e saída de veículos.
- LeitorDeTicketCP para verificação da validade dos tickets.
- SensorDeVagaCP e RastreadorCP para monitoramento de ocupação.
- MaquinaDePagamentoCP para cálculos precisos de taxas com base no tempo de permanência.
- CameraCP para suporte visual e controle de comandos no sistema.

Figure 4.4: BDD Components

Diagrama IBD (Internal Block Diagram)

5.0.1 Descrição Geral

O diagrama IBD apresentado ilustra a interação interna dos componentes do sistema "PkSystem". Este diagrama foca nos detalhes das conexões entre os componentes, mostrando como os dados fluem e são processados dentro do sistema. Ele evidencia as dependências e comunicações internas, revelando como os diferentes módulos se interconectam para realizar as funcionalidades necessárias.

5.0.2 Elementos Representados no Diagrama

1. CancelaCP:

- Componente responsável por gerenciar a abertura e fechamento da cancela do estacionamento.
- A porta "valido : Estado
OPT" recebe o estado do ticket (válido ou inválido) para autorizar a ação correspondente.

2. **LeitorDeTicketCP**:

- Encargado de ler os tickets apresentados pelos usuários.
- A porta "lido : EstadoIPT" comunica o resultado da leitura ao sistema, definindo a validade do ticket.

3. **SensorDeVagaCP**:

- Utilizado para monitorar a ocupação das vagas no estacionamento.
- A porta "detectado: DetectadoOPT" detecta a presença de veículos nas vagas, contribuindo para o controle de ocupação.

4. **MaquinaDePagamentoCP**:

- Componente responsável pelo cálculo e processamento dos pagamentos.
- A porta "calculado : RDinheiroOPT" recebe informações de tempo de permanência para calcular o valor devido.

5. **RastreadorCP**:

- Monitora a ocupação global do estacionamento.
- A porta "ocupado : DetectadoOPT" indica a ocupação atual do estacionamento, sendo útil para controle geral.

6. **CameraCP**:

- Monitoriza a entrada e saída de veículos, capturando dados visuais relevantes para o sistema.
- A porta "controlador : ComandoIPT" permite enviar comandos para controle e ajustes operacionais.

5.0.3 Conexões Internas

O diagrama inclui várias conexões que representam o fluxo de dados entre os componentes:

- DetectarPresencaCN (c1): Conector que liga a presença detectada pelo "SensorDeVagaCP" ao controle do estacionamento, indicando se há veículos estacionados.
- MudarEstadoCN (c2): Conector que comunica o estado do ticket validado ao sistema, permitindo ações como abrir ou fechar a cancela.
- TempoToDinheiroCN (c3): Conector que transfere as informações de tempo de permanência para a "MaquinaDePagamentoCP", facilitando o cálculo do valor a ser cobrado.
- EnviarComandoCN (c4 e c5): Conectores que enviam comandos específicos para os módulos apropriados, como comandos de câmera e controle de acesso.

5.0.4 Fluxos de Dados

O diagrama mostra como os dados são transportados entre os componentes, garantindo que:

- A detecção de veículos nas vagas seja reportada corretamente para controle de ocupação.
- O estado dos tickets seja validado e comunicado para as decisões de abrir ou fechar a cancela.
- O tempo de permanência seja convertido corretamente em valores monetários para a cobrança.
- Comandos específicos possam ser enviados para ajustar as operações internas do sistema.

5.0.5 Relacionamento com os Requisitos

As conexões mostradas no diagrama garantem que todos os requisitos funcionais do sistema sejam atendidos, como:

- A validação de tickets e controle de acesso.
- A detecção precisa de presença nas vagas.
- O cálculo exato dos valores de pagamento com base no tempo.
- O monitoramento contínuo da ocupação global e controle visual através de câmeras.

Figure 5.1: IBD

Considerações Finais

O desenvolvimento deste relatório abordou de forma abrangente o projeto e modelagem de um sistema de controle, desde a definição dos requisitos até a estruturação detalhada dos componentes e suas interações. A aplicação de diagramas *Block Definition Diagram* (BDD) permitiu a visualização clara da arquitetura do sistema, incluindo as portas, tipos de dados e conectores que garantem a interoperabilidade entre os subsistemas.

Ao longo do documento, destacaram-se os seguintes pontos:

- Estruturação dos Requisitos: A distinção entre requisitos funcionais e não funcionais forneceu um entendimento sólido das expectativas do sistema, alinhando-as com as necessidades do público-alvo e stakeholders.
- Modelagem de Dados: A utilização de tipos e dimensões específicos, como Tempo, Dinheiro, e enumeradores, assegurou que as operações fossem realizadas com precisão e consistência.
- Conectividade: A análise detalhada dos conectores evidenciou como os fluxos de dados são transmitidos dentro do sistema, garantindo modularidade e clareza no design.
- Alinhamento com os Objetivos: Todo o sistema foi projetado para atender aos propósitos definidos, oferecendo funcionalidades robustas e escaláveis.

6.0.1 Contribuições e Benefícios

O processo de elaboração deste sistema trouxe diversas contribuições, tais como:

- Padronização do Design: O uso de SysML proporcionou um modelo padronizado e amplamente compreendido para a especificação do sistema.
- Facilidade de Manutenção e Expansão: A modularidade e clareza do modelo facilitam adaptações futuras, permitindo a incorporação de novos requisitos ou alterações tecnológicas.
- Base para Implementação: O detalhamento apresentado neste relatório fornece uma base sólida para a próxima etapa, que é a implementação prática do sistema.

6.0.2 Próximos Passos

Com a finalização da modelagem, os próximos passos incluem:

 Validação do Modelo: Realizar uma revisão técnica para verificar a consistência e atender a eventuais lacunas.

- 2. **Implementação:** Traduzir o modelo em soluções concretas, incluindo software e hardware, conforme aplicável.
- 3. **Testes:** Avaliar o desempenho do sistema implementado em condições reais de uso, garantindo que ele atenda às expectativas definidas.

Por fim, este relatório consolida uma abordagem estruturada e eficiente para o projeto do sistema, reafirmando a importância de um planejamento robusto para alcançar soluções tecnológicas de qualidade. O modelo apresentado serve como um guia técnico para garantir que o sistema entregue valor aos seus usuários e atenda a seus objetivos com excelência.