Тема 12. Числовые ряды. Сходимость ряда. Критерий Коши сходимости ряда. Необходимый признак сходимости. Ряды с неотрицательными членами

Определение 1. Пара последовательностей $\{u_n\}$ и $\{s_n\},\ u_n,s_n\in\mathbb{C},\ n=1,2,\ldots,$ где

$$s_n = u_1 + \ldots + u_n, \quad n = 1, 2, \ldots,$$
 (1)

называется рядом или бесконечной суммой и обозначается

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$
 (2)

Элементы последовательности u_n называются элементами pядa, а элементы последовательности s_n — его частичными суммами.

Если существует конечный предел

$$\lim_{n \to \infty} s_n = s,\tag{3}$$

то он называется суммой ряда. В этом случае ряд называют сходящимся и пишут

$$\sum_{n=1}^{\infty} u_n = s.$$

Если последовательность $\{s_n\}$ не стремится к конечному пределу, то ряд называется расходящимся.

Пример 1. Рассмотрим ряд $\sum_{n=0}^{\infty}q^n$, |q|<1, $q\in\mathbb{C}$. Частичная сумма ряда равна: $s_n=\frac{1-q^{n+1}}{1-q},\ n=0,1,\ldots$ Вычислим предел последовательности $\{s_n\}$:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \lim_{n \to \infty} \left(\frac{1}{1 - q} - \frac{q^{n+1}}{1 - q} \right) = \frac{1}{1 - q}, \ |q| < 1.$$

Следовательно, при |q|<1 ряд сходится и $\sum\limits_{n=0}^{\infty}q^n=\frac{1}{1-q}$. При |q|>1 ряд расходится. При q=1 имеем $s_n=n$, $\lim\limits_{n\to\infty}s_n=+\infty$, а значит ряд расходится.

Отметим некоторые свойства сходящихся рядов.

Теорема 1. (Необходимый признак сходимости ряда). Если ряд $\sum_{n=1}^{\infty} u_n$ сходится, то $\lim_{n\to\infty} u_n = 0$.

Доказательство. Пусть ряд $\sum\limits_{n=1}^{\infty}u_n$ — сходится. Следовательно, существует конечный $\lim\limits_{n\to\infty}s_n=s.$ Из равенства $u_n=s_n-s_{n-1},\ n=2,3,\dots$ имеем

$$\lim_{n \to \infty} (s_n - s_{n-1}) = s - s = 0.$$

Теорема 2. Если ряды $\sum\limits_{n=1}^{\infty}u'_n, \ \sum\limits_{n=1}^{\infty}u''_n$ сходятся, причем их суммы равны s' и s'', то для любых $\lambda', \lambda'' \in \mathbb{C}$ ряд $\sum\limits_{n=1}^{\infty}(\lambda' u'_n + \lambda'' u''_n)$ сходится и

$$\sum_{n=1}^{\infty} (\lambda' u_n' + \lambda'' u_n'') = \lambda' s' + \lambda'' s''.$$

Доказательство следует из определения сходящегося ряда и свойства пределов.

Определение 2. Для ряда $\sum_{n=1}^{\infty} u_n$ ряд $\sum_{k=1}^{\infty} u_{n+k}$ называется n -м остатком данного ряда. Если ряд сходится, то $r_n = \sum_{k=1}^{\infty} u_{n+k}$ — сумма остатка.

Теорема 3. Если ряд сходится, то и любой его остаток сходится. Если какой-то остаток ряда сходится, то и сам ряд также сходится, причем $s-s_n=r_n$ для любых $n=1,2,\ldots$

Без доказательства.

Сформулируем и докажем критерий Коши сходимости ряда.

Теорема 4. Ряд $\sum_{n=1}^{\infty} u_n$ сходится тогда и только тогда, когда для любого $\varepsilon>0$ существует n_0 : для любого $n>n_0$ и для любых целых $p\geq 0$ имеет место

$$|u_{n+1} + \ldots + u_{n+p}| < \varepsilon.$$

Доказательство. Рассмотрим последовательность частичных сумм $s_n = u_1 + \ldots + u_n$. По критерию Коши для последовательности $\{s_n\}$ имеем: $\{s_n\}$ — сходится $\iff \forall \ \varepsilon > 0$ $\exists \ n_0 : \ \forall \ n > n_0 \ \forall \ \text{целого} \ p \geq 0 \ |s_{n+p} - s_n| < \varepsilon, \ \text{т.e.} \ |u_{n+1} + \ldots + u_{n+p}| < \varepsilon.$

Ряды с неотрицательными членами. Признаки сравнения

Лемма 1. Ряд $\sum_{n=1}^{\infty} u_n$, $u_n \ge 0$, сходится тогда и только тогда, когда его частичные суммы ограничены сверху.

Доказательство. Пусть дан ряд $\sum_{n=1}^{\infty}u_n$ с неотрицательными членами $(u_n\geq 0,\ n=1,2,\ldots)$. Тогда

$$s_{n+1} = s_n + u_n \ge s_n,$$

т.е. последовательность частичных сумм $\{s_n\}$ данного ряда возрастает. Возрастающая последовательность $\{s_n\}$ имеет конечный предел тогда и только тогда, когда она ограничена сверху. \square

Замечание 1. Если $u_n \ge 0$, то последовательность $\{s_n\}$ возрастает и всегда имеет конечный или бесконечный предел S.

Теорема 5. (Признак сравнения). Пусть даны два ряда

$$\sum u_n, \ \sum v_n, \ 0 \le u_n \le v_n, \ n = 1, 2, \dots; \tag{4}$$

тогда:

1) если ряд $\sum_{n=1}^{\infty} v_n$ сходится, то и ряд $\sum_{n=1}^{\infty} u_n$ сходится;

2) если ряд $\sum_{n=1}^{\infty} u_n$ расходится, то и ряд $\sum_{n=1}^{\infty} v_n$ расходится.

Доказательство Теоремы 5 очевидным образом вытекает из Леммы 1.

Следствие 1. Пусть $u_n \ge 0, \ v_n > 0, \ n = 1, 2, \dots,$

$$\lim_{n \to \infty} \frac{u_n}{v_n} = l; \tag{5}$$

тогда:

1) если ряд $\sum\limits_{n=1}^{\infty}v_n$ сходится и $0\leq l<+\infty,$ то сходится и ряд $\sum\limits_{n=1}^{\infty}u_n\,;$

2) если ряд $\sum_{n=1}^{\infty} v_n$ расходится и $0 < l \le +\infty$, то расходится и ряд $\sum_{n=1}^{\infty} u_n$.

В частности, если

$$\lim_{n \to \infty} \frac{u_n}{v_n} = 1,$$

то ряды $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$ сходятся или расходятся одновременно.

Доказательство.

1) $0 < l < +\infty$

Из условия (5) следует, что для любого $\varepsilon > 0$ существует $n_0: \forall n > n_0$ выполняется неравенство

$$\frac{u_n}{v_n} < l + \varepsilon \implies u_n < (l + \varepsilon)v_n, \ n > n_0.$$
 (6)

Если ряд $\sum_{n=1}^{\infty} v_n$ сходится, то сходится ряд $\sum_{n=1}^{\infty} (l+\varepsilon)v_n$. Тогда в силу (6) по признаку

сравнения (Теорема 5) сходится ряд $\sum_{k=1}^{\infty} u_{n_0+k}$, следовательно, сходится ряд $\sum_{n=1}^{\infty} u_n$.

 $(2) \ 0 < l \le +\infty$, выберем $l' : \ 0 < l' < l$.

Из условия (5) следует, что существует n_0 : $\forall n > n_0$ выполняется неравенство

$$\frac{u_n}{v_n} > l' \quad \to \quad u_n > l'v_n, \quad n > n_0. \tag{7}$$

Из расходимости ряда $\sum_{n=1}^{\infty} v_n$ вытекает, очевидно, расходимость ряда $\sum_{n=1}^{\infty} l'v_n$. Тогда

по признаку сравнения из (7) следует, что ряд $\sum_{k=1}^{\infty} u_{n_0+k}$ расходится, следовательно, ряд

$$\sum_{n=1}^{\infty} u_n$$
 расходится.

Пример 2. Ряд $\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$ расходится, т. к. $\frac{1}{1+\sqrt{n}} \geq \frac{1}{\sqrt{n}+\sqrt{n}} = \frac{1}{2\sqrt{n}}$, а ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ расходится.

Замечание 2. Если члены ряда u_n заданы функцией от n, которая имеет смысл для любых достаточно больших неотрицательных значений переменной n и является "достаточно гладкой" функцией этой переменной, то целесообразно разложить u_n с помощью формулы Тейлора по степеням $\frac{1}{n}$. Поведение ряда определит главный член полученного разложения.

Пример 3. Рассмотрим ряд $\sum_{n=1}^{\infty} \left(1 - \cos \frac{\pi}{n}\right)$, здесь $u_n = 1 - \cos \frac{\pi}{n} \ge 0$. Воспользуемся разложением Тейлора

$$\cos x = 1 - \frac{x^2}{2} + o(x^2), \ x \to 0.$$

Тогда $1-\cos\frac{\pi}{n}=1-\left[1-\frac{1}{2}\left(\frac{\pi}{n}\right)^2+o\left(\frac{\pi}{n}\right)^2\right]=\frac{1}{2}\left(\frac{\pi}{n}\right)^2+o\left(\frac{\pi}{n}\right)^2$. Так как

$$\lim_{n \to \infty} \frac{\frac{1}{2} \left(\frac{\pi}{n}\right)^2 + o\left(\frac{\pi}{n}\right)^2}{\frac{1}{n^2}} = \frac{\pi^2}{2},$$

ряд сходится по признаку сравнения (Следствие 1).

Теорема 6 (Интегральный признак Коши). Если $f(x) \ge 0$ и убывает при $x \ge 1$, то ряд

$$\sum_{n=1}^{\infty} f(n) \tag{8}$$

сходится тогда и только тогда, когда сходится интеграл

$$\int_{1}^{\infty} f(x)dx. \tag{9}$$

Доказательство необходимости. Пусть ряд $\sum_{n=1}^{\infty} f(n)$ сходится. Функция f(x) монотонна на $[1; +\infty)$. Следовательно, она интегрируема по Риману на $[1, \eta], \eta \in (1, +\infty)$. Следовательно, имеет смысл говорить о несобственном интеграле (9).

Если $k \le x \le k+1, \ k=1,2...,$ то в силу убывания f имеем

$$f(k) \ge f(x) \ge f(k+1).$$

Проинтегрируем последнее неравенство по отрезку [k, k+1] :

$$\int_{k}^{k+1} f(k)dx \ge \int_{k}^{k+1} f(x)dx \ge \int_{k}^{k+1} f(k+1)dx,$$

получим неравенство

$$f(k) \ge \int_{k}^{k+1} f(x)dx \ge f(k+1).$$

Просуммируем неравенства по k от 1 до n:

$$\sum_{k=1}^{n} f(k+1) \le \sum_{k=1}^{n} \int_{k}^{k+1} f(x) dx \le \sum_{k=1}^{n} f(k) \implies$$

$$s_{n+1} - f(1) \le \int_{1}^{n+1} f(x)dx \le s_n, \tag{10}$$

где $s_n = \sum_{k=1}^n f(k), n = 1, 2, \dots$

Если ряд (8) сходится и его сумма равна s, то $s_n \le s$, $n = 1, 2, \ldots$ Следовательно, в силу неравенств (10) имеем:

$$\int_{1}^{n+1} f(x)dx \le s, \ n = 1, 2, \dots$$
 (11)

Рассмотрим $\eta \ge 1$, выберем такое натуральное n, что $\eta \le n+1$, тогда

$$\int_{1}^{\eta} f(x)dx \le \int_{1}^{n+1} f(x)dx \le s.$$

Таким образом, множество интегралов от неотрицательной функции f(x) ограничено сверху, следовательно интеграл $\int\limits_{-\infty}^{\infty}f(x)dx$ сходится.

Доказательство достаточности. Пусть $\int\limits_{1}^{\infty}f(x)dx$ сходится. Из неравенства (10) в силу неотрицательности f(x) следует:

$$s_{n+1} \le \int_{1}^{n+1} f(x)dx + f(1) \le f(1) + \int_{1}^{\infty} f(x)dx.$$

Т. е. последовательность частичных сумм s_n ряда (8) ограничена сверху, следовательно, ряд сходится.

Пример 4. Применим интегральный признак Коши к исследованию сходимости обобщенного гармонического $p \pi \partial a$:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}, \ \alpha \in \mathbb{R}.$$

При $\alpha>0$ требуемой функцией является функция $f(x)=\frac{1}{x^{\alpha}}$. Интеграл $\int\limits_{1}^{\infty}\frac{dx}{x^{\alpha}}$ сходится при $\alpha>1$ и расходится при $0<\alpha\leq 1$. В силу интегрального признака Коши ряд сходится при $\alpha>1$ и расходится при $0<\alpha\leq 1$. При $\alpha\leq 0$ ряд расходится. Это можно доказать непосредственно $\frac{1}{n^{\alpha}}\geq 1$ при $\alpha\leq 0$, т.е. последовательность членов ряда не стремится к нулю.

Теорема 7 (Радикальный признак Коши). Пусть для ряда

$$\sum_{n=1}^{\infty} u_n, \quad u_n \ge 0, \tag{12}$$

существует предел

$$\lim_{n \to \infty} \sqrt[n]{u_n} = l; \tag{13}$$

тогда, если l < 1, то ряд (12) сходится, а если l > 1, то расходится.

Доказательство.

- 1) Пусть l<1. Выберем число q: l< q<1. Из условия (13) следует, что $\exists \ n_0: \forall \ n>n_0$ выполняется неравенство $\sqrt[n]{u_n}< q,$ тогда $u_n< q^n, \ n>n_0$. Ряд $\sum\limits_{n=1}^\infty q^n$ сходится,
- поэтому ряд $\sum_{k=1}^{\infty} u_{n_0+k}$ сходится. Следовательно, ряд (12) сходится.
- 2) Пусть l > 1. В силу условия (13) $\exists n_0 : \forall n > n_0$ выполняется неравенство $\sqrt[n]{u_n} > 1 \Rightarrow u_n > 1, n > n_0$, т.е. последовательность $\{u_n\}$ не стремится к нулю. Следовательно, ряд (12) расходится.

Теорема 8 (Признак Даламбера). Пусть для ряда

$$\sum_{n=1}^{\infty} u_n, \ u_n > 0, \ n = 1, 2, \dots$$
 (14)

существует предел

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l. \tag{15}$$

Тогда, если l < 1, то ряд (14) сходится, а если l > 1, то расходится.

Без доказательства.

Пример 5.

1) Ряд $\sum_{n=1}^{\infty} \frac{1}{n!}$ сходится по признаку Даламбера, так как

$$\lim_{n \to \infty} \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

2) Ряд $\sum_{n=1}^{\infty} \frac{1}{n^n}$ сходится по радикальному признаку Коши, т.к.

$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{n^n}} = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Замечание 3. Среди рядов $\sum\limits_{n=1}^{\infty}u_n$ с неотрицательными членами, для которых $\lim\limits_{n\to\infty}\frac{u_{n+1}}{u_n}=1$ (соответственно $\lim\limits_{n\to\infty}\sqrt[n]{u_n}=1$), имеются как сходящиеся $\left(\sum\limits_{n=1}^{\infty}\frac{1}{n^2}\right)$, так и расходящиеся $\left(\sum\limits_{n=1}^{\infty}\frac{1}{n}\right)$ ряды.