

planetmath.org

Math for the people, by the people.

proof of Kolmogorov's strong law for IID random variables

 $Canonical\ name \qquad Proof Of Kolmogorovs Strong Law For IID Random Variables$

Date of creation 2013-03-22 18:33:57 Last modified on 2013-03-22 18:33:57

 $\begin{array}{ll} \text{Owner} & \text{gel (22282)} \\ \text{Last modified by} & \text{gel (22282)} \end{array}$

Numerical id 7

Author gel (22282) Entry type Proof Classification msc 60F15

Related topic KolmogorovsStrongLawOfLargeNumbers

Related topic MartingaleProofOfKolmogorovsStrongLawForSquareIntegrableVariables

Kolmogorov's strong law for square integrable random variables states that if X_1, X_2, \ldots is a sequence of independent random variables with $\sum_n \mathrm{Var}[X_n]/n^2 < \infty$ then $n^{-1} \sum_{k=1}^n (X_k - \mathbb{E}[X_k])$ converges to zero with probability one as $n \to \infty$ (see martingale proof of Kolmogorov's strong law for square integrable variables). We show that the following version of the strong law for IID random variables follows from this.

Theorem (Kolmogorov). Let X_1, X_2, \ldots be independent and identically distributed random variables with $\mathbb{E}[|X_n|] < \infty$. Then, $n^{-1} \sum_{k=1}^n (X_k - \mathbb{E}[X_k]) \to 0$ as $n \to \infty$, with probability one.

Note that here, the random variables X_n are not necessarily square integrable. Let us set $\tilde{X}_n = X_n - \mathbb{E}[X_n]$, so that \tilde{X}_n are IID random variables with $\mathbb{E}[\tilde{X}_n] = 0$. Then, set

$$Y_n = \begin{cases} \tilde{X}_n, & \text{if } |\tilde{X}_n| < n, \\ 0, & \text{otherwise.} \end{cases}$$

Using the fact that X_n has the same distribution as X_1 gives

$$\sum_{n} \mathbb{E}[Y_{n}^{2}]/n^{2} = \sum_{n} \mathbb{E}\left[1_{\{|\tilde{X}_{n}| < n\}} n^{-2} \tilde{X}_{n}^{2}\right]$$

$$= \sum_{n} \mathbb{E}\left[1_{\{|\tilde{X}_{1}| < n\}} n^{-2} \tilde{X}_{1}^{2}\right]$$

$$= \mathbb{E}\left[\sum_{n} 1_{\{|\tilde{X}_{1}| < n\}} n^{-2} \tilde{X}_{1}^{2}\right].$$
(1)

Letting N be the smallest integer greater than $|\tilde{X}_1|$,

$$\sum_{n} 1_{\{|\tilde{X}_1| < n\}} n^{-2} \le \sum_{n=N}^{\infty} \frac{4}{4n^2 - 1} = \sum_{n=N}^{\infty} \left(\frac{2}{2n - 1} - \frac{2}{2n + 1} \right)$$
$$= \frac{2}{2N - 1} \le \frac{2}{N} \le \frac{2}{|\tilde{X}_1|}.$$

So, putting this into equation (??),

$$\sum_{n} \operatorname{Var}[Y_n]/n^2 \le \sum_{n} \mathbb{E}[Y_n^2]/n^2 \le \mathbb{E}[2|\tilde{X}_1|] < \infty.$$

Therefore, Y_n satisfies the required properties to apply the strong law for square integrable random variables,

$$n^{-1} \sum_{k=1}^{n} (Y_k - \mathbb{E}[Y_k]) \to 0$$
 (2)

as $n \to \infty$, with probability one. Also,

$$\mathbb{E}[Y_n] = \mathbb{E}[Y_n - \tilde{X}_n] = -\mathbb{E}[1_{\{|\tilde{X}_n| > n\}} \tilde{X}_n] = -\mathbb{E}[1_{\{|\tilde{X}_1| > n\}} \tilde{X}_1]$$

converges to 0 as $n \to \infty$ (by the dominated convergence theorem). So, the $\mathbb{E}[Y_k]$ terms in (??) vanish in the limit, giving

$$n^{-1} \sum_{k=1}^{n} Y_k \to 0 \tag{3}$$

as $n \to \infty$ with probability one.

We finally note that

$$\mathbb{E}\left[\sum_{n} 1_{\{\tilde{X}_n \neq Y_n\}}\right] = \mathbb{E}\left[\sum_{n} 1_{\{|\tilde{X}_1| \geq n\}}\right] \leq \mathbb{E}[|\tilde{X}_1|] < \infty,$$

so $\sum_{n} 1_{\{\tilde{X}_n \neq Y_n\}} < \infty$, and $\tilde{X}_n = Y_n$ for large n (with probability one). So, Y_k can be replaced by \tilde{X}_k in $(\ref{eq:condition})$, giving the result.

References

- [1] David Williams, *Probability with martingales*, Cambridge Mathematical Textbooks, Cambridge University Press, 1991.
- [2] Olav Kallenberg, Foundations of modern probability, Second edition. Probability and its Applications. Springer-Verlag, 2002.