

랜덤화 기법 및 해석 가능한 인공지능을 활용한 QLC 낸드플래시 데이터 신뢰성 개선

- 선택 문제: 1번
- ▶ 팀명: 믿음을주세요
- ▶ 팀원: 변지환(조장), 김세훈, 김영진, 나휘재

Science & Technology Oriented Brain's

KIAT

Executive summary

연구 배경 설명 - 메모리 반도체 시장 현황

TOTAL MEMORY IC MARKET (\$B) 250.0 220.5 225.0 200.0 188.1 175.3 175.0 163.3 146.8 150.0 129.9 125.4 125.0 100.0 80.378.079.4 Billions of Dollars 75.0 50.0 25.0 Source: IC Insights

D램보다더 커질 낸드시장규모

연구 배경 설명 - QLC 낸드플래시의 발전

연구 배경 설명 - 데이터 신뢰성 문제

1.Data retention

2.P/E 사이클 증가

3.Read disturb

연구 배경 설명 - 데이터 열화 요인

Endurance

A limited number of program/erase operations

Retention

Data loss by leakage

Read Disturb

A limited number of read operations

목차

Task 1. 랜덤화 기법

Task 2. 열화 현상 모델링

목차

Task 1. 랜덤화 기법

Task 2. 열화 현생 모델링

Task 1. 어떤 데이터 패턴에서 열화?

특정 데이터 패턴

Ex)
000000000000
1111111111

특정 부분의 셀 마모가 빨라지고 전압 변동이 커질 수 있다.

=> 데이터를 랜덤화하여 패턴을 없애보자!

16bit LFSR 구조

항목	16bits LFSR	24bits LFSR	
다항식	$x^{16} + x^{14} + x^{13} + x^{11} + 1$	$x^{24} + x^{22} + x^{21} + x^{19} + 1$	
시드 값 크기	16비트 (0x0000 ~ 0xFFFF)	24비트 (0x000000 ~ 0xFFFFFF)	
랜덤화 강도	충돌 가능성 높음, 보안 수준 낮음	충돌 가능성 낮음, 보안 수준 높음	
성능	빠른 연산 속도, 적은 메모리 사용	느린 연산 속도, 더 많은 메모리 사용	
적용 분야	간단한 랜덤화가 필요한 경우	높은 보안과 무작위성이 필요한 경우	

랜덤성이 낮은 데이터의 실험 결과:

구분	원본	16bits LFSR	24bits LFSR
총 비트 수	71,544	71,544	71,544
최대 연속 길이	9	15	14
평균 연속 길이	2.75	2.01	2.01
총 시퀀스 수	25,993	35,678	35,666
0 시퀀스 수	12,997	17,839	17,833
1 시퀀스 수	12,996	17,839	17,833

일반적인 영어 문장에 대한 실험 결과:

구분	원본	16bits LFSR	24bits LFSR
총 비트 수	14,800	14,800	14,800
최대 연속 길이	9	12	14
평균 연속 길이	1.96	2.01	2.01
총 시퀀스 수	7,557	7,347	7,346
0 시퀀스 수	3,779	3,673	3,673
1 시퀀스 수	3,778	3,674	3,673

SOURCE STATE OF THE STATE OF TH

Top모듈 (NANDFlashTransformer)

```
req

clk

NANDFlashTransformer

reset_n

6_pins(page_addr[],...)

8_pins(data_in[],...)
```


데이터 변환 회로 (DataTransformer)

Seed 기반 ReferenceData 생성 회로 (SeedGenerator)

Task 1. 실 구현 가능성

Verilog를 통한 하드웨어 시뮬레이션

- 약 2938.85 μm²의 면적

- 약 0.90 ns의 Critical Path Delay

매우 높은 속도로도 충분히 동작 가능한 구조 실제 구현 시에도 큰 오버헤드 없이 수행 가능

목차

Task 1. 랜덤화 기법

Task 2. 열화 현상 모델링

목차

Task 1. 랜덤화 기법

Task 2. 열화 현상 모델링

Task 2. 열화 현상 모델링

Task 2. 열화 현상 모델링

RTN(Random Telegraph Noise)

He,R.;Hu,H.;Xiong,C.; Han, G. Artificial Neural Network Assisted Error Correction for MLC NAND Flash Memory. *Micromachines* **2021**, *12*, 879.

$$p_r(x) = rac{1}{\sigma_r \sqrt{2\pi}} e^{-rac{x^2}{2\sigma_r^2}}, \quad \sigma_r = 0.00027 imes ext{PE}^{0.62}$$

CCI(Cell-to-Cell Interference)

$$\Delta V_{ ext{victim}} = \sum_{n} (\Delta V_t^{(n)} \cdot \gamma^{(n)}) \qquad \gamma_y = 0.08 s, \gamma_{xy} = 0.006 s$$

Retention Noise

$$p_t(x) = rac{1}{\sqrt{2\pi}\sigma_t}e^{-rac{(x-\mu_t)^2}{2\sigma_t^2}} \ \ \mu_t = \Delta V_t[A_t(ext{PE})^{lpha_i} + B_t(ext{PE})^{lpha_o}]\log(1+T), \quad \sigma_t = 0.3|\mu_t|$$

Task 2. 열화 현상 모델링

모든 개별적인 노이즈 요소를 결합한 NAND 플래시 메모리의 임계 전압:

$$V ext{th} = V + n_{ ext{RTN}} + \Delta V_{ ext{CCI}} - n_{ ext{retention}}$$

Task 2. 열화 현상 모델링 - 전압 분포 모델링

Task 2. 열화 현상 모델링 - LLR과 리텐션 Time

목차

Task 1. 랜덤화 기법

Task 2. 열화 현상 모델링

목차

Task 1. 랜덤화 기법

Task 2. 열화 현생 모델링

Task 3. 해석가능 AI란?

Task 3. 해석가능 인공지능 RAIN 프레임워크

(Reliability Assessment and Improvement framework for NAND flash)

모델이 안정적으로 잘 학습되었음을 시각화를 통해 확인 가능

혼동 행렬을 통한 모델 파악

ROC커브를 통한 모델의 성능 파악

모델의 예측 경향성 확인

Task 3. SHAP란?

Explanation

relative_llr_msb(가장 중요한 비트인 MSB의 LLR 값)가 약 31~37% 정도로 가장 큰 영향력

Task 3. LIME이란?

-1.82 < relative_llr_msb <= -0.24

neighbor2_llr_msb <= -1.21

-1.22 < neighbor3_llr_msb <= -0.01

-2.98 < neighbor2_llr_lsb <= -0.15

0.06 < neighbor3_llr_lsb <= 2.97

〈Random Forest 모델의 개별 예측 LIME 해석〉

〈XGBosst 모델의 개별 예측 LIME 해석〉

특정 개별 예측 사례에 대해 "이 셀의 MSB LLR이 이 정도 값일 때 오류 확률이 증가한다"는 식으로 지역적(로컬) 설명 가능

Outro.

QLC 낸드플래시에서 발생하는 데이터 신뢰성 문제

"랜덤화 기법" + "해석 가능한 인공지능 Framework"

"왜 오류가 나는지" O

MSB 관리 강화, 인접 셀 간섭 완화, ECC 자원 효율적 할 당 등 구체적인 전략 수립 가능

