EECS 376: Foundations of Computer Science

Euiwoong Lee

Quote of The Day

"Every Complex Problem has a Clear, Simple and Wrong Solution."

- H. L. Mencken

Design & Analysis of Algorithms

- * Algorithm Design: A set of methods to create algorithms for certain types of problems
- * Examples: Dynamic Programming, Divide and Conquer, Greedy Algorithms, ...
- * Algorithm Analysis: A set of methods to prove correctness of algorithms and determine the amount of resources (e.g. time, memory) necessary to execute them
- * Examples: Master Theorem, Potential Method, ...
- * Reminder: We describe algorithms in "Pseudo-Code".

Greatest Common Divisor

- * **Definition:** Let $x, y \in \mathbb{N}$. The **Greatest Common Divisor** (gcd) of x and y is the largest $z \in \mathbb{N}$ that divides both x and y.
- * If gcd(x, y) = 1 then x and y are **coprime**.
- * Examples:
 - * gcd(21,9) = 3
 - * gcd(121,5) = 1
- * Algorithm 1: For $z = 1 \dots x$ test if z divides both x and y
- * Runtime: O(x) operations
- * Question: Can we do better?

The Euclidean Algorithm

- * Algorithm 2: Euclid(x, y): (when $x > y \ge 0$)
 - * if y = 0 return x
 - * If y = 1 return 1
 - * return $Euclid(y, x \mod y)$
- * Question: How many iterations can we have?
- * Analysis: We use the potential method.
- * Let s_i = the value of x + y at iteration i. We show:
- 1. $s_0 = x + y$
- 2. for all $i: s_i \geq 1$
- 3. for all $i: s_{i+1} \le \frac{3}{4} s_i$
- * Conclusion 1: In *i*th iteration: $1 \le s_i \le \left(\frac{3}{4}\right)^i (x+y)$.
- * Conclusion 2: $i \le \log_{4/3}(x + y) = O(\log(x + y))$.

Euclid, 300 BCE

Quote of The Day

"Divide et impera" (divide and conquer)

Philip II

Divide and Conquer Algorithms

Main Idea:

- 1. Divide the problem into smaller subproblems
- 2. Solve each subproblem recursively
- 3. Combine the solutions of the subproblems in a "meaningful" way

Runtime Analysis:

- * Tools to solve recurrence relations
- * The "Master Theorem"

The Master Theorem

Story: Divide-and-conquer algorithm breaks a problem of size n into:

- * *k* smaller problems
- * each one of size n/b
- * with cost of $O(n^d)$ to combine the results together

Formally: Consider the recurrence relation $T(n) = kT(n/b) + O(n^d)$, when k, b > 1. Then:

$$T(n) = \begin{cases} O(n^d) & \text{if } (k/b^d) < 1\\ O(n^d \log n) & \text{if } (k/b^d) = 1\\ O(n^{\log_b k}) & \text{if } (k/b^d) > 1 \end{cases}$$

Integer Multiplication

- * Problem: Given two *n*-bit numbers N_1 and N_2 , compute $N_1 \times N_2$
- * Long Multiplication:
 - * Reduce problem to n additions of 2n-bit numbers
 - * Do each addition in O(n) time
- * Runtime: $O(n^2)$ in total!
- * Example: What is 59×42 ?

	1							0	1	1	1	0	C
+		1	1	1	0	1	1					59<<5	
+				1	1	1	0	1	1			59<<3	
=						1	1	1	0	1	1	59<<1	
						×	1	0	1	0	1	<u>0</u> ←	42
							Ţ	1	Ţ	U	Ţ	1	00

Divide and Conquer Multiplication

- * Input: N_1 and N_2 , two n-digit numbers (assume n is a power of 2)
- * Split N_1 and N_2 into n/2 low-order digits & n/2 high-order digits:

*
$$N_1 = a \cdot 10^{n/2} + b$$
 N_1

*
$$N_2 = c \cdot 10^{n/2} + d$$

$$\begin{array}{c|cccc}
N_1 & a & b \\
N_2 & c & d
\end{array}$$

* Compute $N_1 \times N_2 = a \times \overline{c \cdot 10^n + (a \times d + b \times c) \cdot 10^{n/2} + b \times d}$

*
$$m_1 = (a+b) \times (c+d)$$

*
$$m_2 = a \times c$$

*
$$m_3 = b \times d$$

* Return:
$$m_2 \cdot 10^n + (m_1 - m_2 - m_3) \cdot 10^{n/2} + m_3$$
.

* T(n) = time to multiply two n-digit numbers

*
$$T(n) = 3T(n/2) + O(n) \Rightarrow k = 3, b = 2 \Rightarrow$$

 $T(n) = O(n^{\log_2 3}) = O(n^{1.585}).$

time: O(n) + T(n/2)

time: T(n/2)

time: T(n/2)

time: O(n)

Quote of The Day

"If you can solve it, it is an exercise; otherwise it is a research problem"

Richard E. Bellman,
 The Inventor of Dynamic Programming

Dynamic Programming

High-level Idea: Break a complex problem into smaller (easier) subproblems subject to:

 \boldsymbol{a}

- 1. Principle of optimality (optimal substructure) a substructure of an optimal structure is itself optimal.
 - **Example:** A subpath of any shortest path is itself a shortest path.
- 2. Overlapping sub-problems: "many" smaller subproblems are actually the "same" problem.
 - **Example:** When computing the Fibonacci sequence using the rule: $F_n = F_{n-1} + F_{n-2}$, "many" recursive calls will be repeated.

Implementation Strategies

* Recurrence for Fibonacci:

$$F(n) = \begin{cases} 1 & \text{if } n = 0 \text{ or } n = 1 \\ F(n-1) + F(n-2) & \text{if } n \ge 2 \end{cases}$$

- * Once we've determined the recurrence relation, we have a choice of three implementation strategies:
- * Top-down Recursive (Naïve): Start at desired result, compute recursively down to the base case
- Top-down Memoization: Same as naïve, but save results as we compute them and reuse already-computed results
- * Bottom-up Table: Start from base case(s), work our way up to the desired result

Longest Common Subsequence

- * **Definition:** A **subsequence** of a string s is a subset of the characters of s with respect to their original order.
 - * **Example:** for *s* = "Fibonacci sequence"
 - * "Fun"
 - * "seen"
 - * "cse"
 - * ...
- * Given strings X[1..n] and Y[1..m]
- * Goal: Find the length of a longest common subsequence of X and Y.
 - * Largest string obtainable from *X* and *Y* by deleting chars
- * Example: "Gole" is an LCS of "Google" and "Go Blue".
- * Q: What's a brute force solution?
 - * Each character of X and Y is either deleted or not.

Longest Common Subsequence

- * Idea: Let X and Y be two strings of length n and m, respectively.
- * If the last characters are equal: (X[n] = Y[m]):
- * LCS(X[1..n], Y[1..m]) = LCS(X[1..n-1], Y[1..m-1]) + 1

Longest Common Subsequence

- * Idea: Let X and Y be two strings of length n and m, respectively.
- * If the last characters are **not** equal: $(X[n] \neq Y[m])$:
- * LCS(X[1..n], Y[1..m]) = Maximum of

$$LCS(X[1..n-1], Y[1..m])$$

and

$$LCS(X[1..n], Y[1..m-1])$$

Recurrence for LCS

- * Let LCS(i, j) denote the length of a longest common subsequence of X[1...i] and Y[1...j].
- * Then:

$$LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0\\ 1 + LCS(i-1,j-1) & X[i] = Y[j]\\ \max \left\{ \frac{LCS(i-1,j)}{LCS(i,j-1)} \right\} & X[i] \neq Y[j] \end{cases}$$

- * Naïve Implementation: Exponential runtime!
- * Observation: There are O(nm) distinct values: LCS(i, j) for $0 \le i \le n$ and $0 \le j \le m$ (overlapping sub-problems)

SIMECE CSE

https://www.cs.usfca.edu/~galles/visualization/DPLCS.html

Quote of The Day

"Greed is not a financial issue.

It's a heart issue."

Andy Stanley

Kruskal's Algorithm

Kruskal(G): // G is a weighted, undirected graph

 $T \leftarrow \emptyset$ // invariant: T has no cycles

for each edge *e* in increasing order of weight:

if T + e is acyclic: $T \leftarrow T + e$

return T

Quote of The Day

"I believe that the question:

'Can machines think?'
is too meaningless to deserve discussion."

Alan Turing

Computability: Review

- * Question: Which problems are solvable by a computer?
- * **Answer:** Depends on what a <u>problem</u> is, what <u>solvable</u> is, and what a <u>computer</u> is.
- * **Problem:** A language $L \subseteq \Sigma^*$
 - Set of strings whose output is YES/accept.

Deterministic Finite Automaton (DFA)

Input Finite String Deterministic Finite Automaton Output "Accept" or "Reject"

DFA: Formal Definition

* A deterministic finite automaton (DFA) is a 5-tuple:

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$

- * Q = (a finite) set of states
- * Σ = the (finite) **input alphabet** (often {0,1} but not always)
- * $q_0 \in Q$, = the **initial state** (an element of Q)
- * $F \subseteq Q$, = the set of **final/accepting states** (a subset of Q)
- * $\delta: Q \times \Sigma \to Q$ = the **transition function** (maps a state and input character to a new state)
- * **Definition:** M **accepts** x, if given x as an input, M starts at q_0 , makes transitions according to δ , and ends in an accepting state $q \in F$.

Turing Machines

The "brain" of a TM is like a DFA, except it additionally specifies:

- what we write and
- whether move left or right

Note: " $a \rightarrow b$, R" means if the contents of the cell is a, then write b and move right.

There are also <u>two</u> special "termination" states; *accept* and *reject*.

Turing Machine: Formal Definition

```
* A Turing machine is a 7-tuple:
```

$$M = \langle Q, \Gamma, \Sigma, \delta, q_{start}, q_{accept}, q_{reject} \rangle$$

- * Q = set of states
- * Σ = the **input** alphabet (typically {0,1} but not always)
- * \perp = the **blank symbol**
- * Γ = the **tape alphabet** where generally $\Gamma = \Sigma \cup \{\bot\}$
- * $q_{start} \in Q$, = the initial state
- * $F = \{q_{accept}, q_{reject}\} \subseteq Q$, = the set of **final states** (one accepting state and one rejecting state)
- * $\delta: (Q \setminus F) \times \Gamma \to Q \times \Gamma \times \{L, R\}$ = the transition function
- * **Definition:** M accepts/rejects x if, given x as input, M starts at q_{start} and reaches q_{accept}/q_{reject} , respectively, when making transitions according to δ .

Computability: Review

- * Question: Which problems are solvable by a computer?
- * Answer: Depends on what solvable is and what a computer is.
- * **Definition:** A program *M* decides a language *A* if given *x* as input:
 - * If $x \in A$, M accepts x ("return 1")
 - * If $x \notin A$, M rejects x ("return o")
- * **Remark:** *M* is called a **decider** and <u>must</u> always halt; *A* is **decidable**.
- * **Definition:** The **language** of M, $L(M) = \{x : M \text{ accepts } x\}$
- * **Definition:** M **recognizes** a language A if A = L(M). In other words:
 - * If $x \in A$, M accepts x
 - * If $x \notin A$, M either rejects x or loops on x
- Remark: M is called a recognizer and may not always halt.

Turing Machine: Need to know

HERE IS WHAT **YOU**NEED TO KNOW ABOUT TURING MACHINES!

A Turing Machine: Review

- * **General:** Everything (PDF file, Photo, C++ code) is a binary string. The application is what makes sense of it.
- * Storing/encoding a natural number n, requires $O(\log n)$ bits
- * a Turing Machine (TM) M = a Program
- * $\langle M \rangle$ the source code of M

* Remarks:

- 1. The source code $\langle M \rangle$ of a program is a binary string of **finite** length.
- 2. An input x to a program is always of **finite** length.
- 3. A source code $\langle M \rangle$ can serve as an input for another program.
- 4. We can run a program on its source code.

A Turing Machine: Review

- * Algorithmic description: Instead of writing C++ code or a 7-tuple, we give a high-level description that can be converted into code.
- * **Example:** M on input x:
- * In C++: "bool M(string x);"
- * Fact 1: There are countably-many programs.
- * Fact 2: There are uncountably-many languages.
- * Conclusion: There are "more" languages then programs.
 Therefore, there exist undecidable (and in fact)
 unrecognizable languages.
 That is, a language A such that L(M) ≠ A for every M.

An Undecidable Language

- * Let X be a list of languages $L(M_i)$ for all programs M_i .
- * Claim: We can construct a language L^* that is not on list X by flipping the diagonal.
- * Since X contains the language of every program, L^* is not the language of \underline{any} program it is undecidable!

		\mathcal{E}	0	1	00	01	10	•••
	$L(M_1)$	0	0	0	0	0	0	•••
	$L(M_2)$	0	0 1 0 1 0 0	0	•••			
,	$L(M_3)$	1	1	0	1	0	1	•••
	$L(M_4)$	0	0	1	1	0	1	•••
	$L(M_5)$	1	1	1	0	1	0	•••
	$L(M_6)$	0	1	1	0	1	0	•••

		0					
L^*	1	0	1	0	0	1	•••

X

A Turing Machine: Review

- * A language is the set of "yes" instances for a decision problem.
- * Example: The Halting problem:

$$L_{\text{HALT}} = \{(\langle M \rangle, x) : M \text{ halts on } x\}$$

- * Question behind the language: $(\langle M \rangle, x) \in L_{\text{HALT}}$?
- * In English: "Does the program M halt on input x?"
- * Importance: Is L_{HALT} decidable?
- * Answer: No, but it is recognizable: simulate M on x (using the interpreter/Universal TM).
- * Explicit undecidable languages: L_{ACC} , L_{HALT} , $L_{\varepsilon\text{-HALT}}$, L_{\emptyset} , L_{EQ}

The Barber Paradox

- * Claim: $L_{\text{BARBER}} = \{\langle M \rangle : M \text{ does not accept } \langle M \rangle \}$ is undecidable.
- * **Proof:** Assume for contradiction some program B decides $L_{\rm BARBER}$.
 - * It implies $\langle P \rangle \in L_{\text{BARBER}} \iff B \text{ accepts } \langle P \rangle$.
- * Question: $\langle B \rangle \in L_{\text{BARBER}}$?
- * **Answer:** Suppose *P* is a program.
- 1. $P \text{ accepts } \langle P \rangle \Longrightarrow \langle P \rangle \notin L_{\text{BARBER}}$.
- 2. P does not accept $\langle P \rangle \implies \langle P \rangle \in L_{\text{BARBER}}$.
- * Question: What if P = B?
- 1. $\langle B \rangle \in L_{\text{BARBER}} \Rightarrow B \text{ accepts } \langle B \rangle \Longrightarrow \langle B \rangle \notin L_{\text{BARBER}}$.
- 2. $\langle B \rangle \notin L_{\text{BARBER}} \Rightarrow B \text{ does not accept } \langle B \rangle \implies \langle B \rangle \in L_{\text{BARBER}}$.

ECE

Contradiction!

L_{ACC} is Undecidable

We need to implement:

B is given one input: $\langle M \rangle$ M does not accept $\langle M \rangle \Longrightarrow B$ accepts $\langle M \rangle$ M accepts $\langle M \rangle \Longrightarrow B$ rejects $\langle M \rangle$

We have:

C is given two inputs: $\langle M \rangle$ and x M accepts $x \Rightarrow C$ accepts $(\langle M \rangle, x)$ M does not accept $x \Rightarrow C$ rejects $(\langle M \rangle, x)$

* **Proof:** Assume (for contradiction) that a decider C exists for $L_{ACC} = \{(\langle M \rangle, x) : M \text{ accepts } x\}$. We can use C to construct a decider B for $L_{BARBER} = \{\langle M \rangle : M \text{ does not accept } \langle M \rangle\}$:

$L_{\rm HALT}$ is Undecidable

We need to implement:

C is given two inputs: $\langle M \rangle$ and xM accepts $x \Rightarrow C$ accepts $(\langle M \rangle, x)$ M does not accept $x \Rightarrow C$ rejects $(\langle M \rangle, x)$

We have:

H is given two inputs: $\langle M \rangle$ and x M accepts or rejects $x \Longrightarrow H$ accepts $(\langle M \rangle, x)$ M loops on $x \Longrightarrow H$ rejects $(\langle M \rangle, x)$

- * Claim: $L_{\text{HALT}} = \{(\langle M \rangle, x) : M \text{ halts on } x\}$ is undecidable.
- * **Proof:** Assume (for contradiction) that a decider H exists for L_{HALT} . We can the construct a decider C for $L_{\text{ACC}} = \{(\langle M \rangle, x) : M \text{ accepts } x\}$:

Conclusion

- * The Halting Problem is undecidable although it is a fundamental problem in software and hardware design!
- * Question: Perhaps the problem is easy for small programs?
- * Collatz Conjecture: This program halts for every n:

```
int n;
while (n > 1) {
   n = (n%2) ? 3*n+1 : n/2;
}
```


Paul Erdös offered \$500 for this problem!

Decidability and Reducibility

- * Question: How do we show undecidability of a language?
- * Answer:
 - * Directly: L_{BARBER} is undecidable.
 - * Indirectly: If L_{HALT} is decidable so is L_{ACC} .
- * **Definition:** Language A is **Turing reducible** to language B, written $A \leq_T B$, if there exists a program M that decides A using a "black box" that decides B.
- * Intuition: A is "no harder" than B to solve.
- * Theorem: Suppose $A \leq_T B$. Then B is decidable $\Rightarrow A$ is decidable.
- * Contrapositive: Suppose $A \leq_T B$. Then A is <u>undecidable</u> $\Longrightarrow B$ is <u>undecidable</u>.
- * Strategy: Pick an undecidable language A and show that $A \leq_T B$.

Proving a Language is Unrecognizable

- * Claim: If a language A and its complement \overline{A} are both <u>recognizable</u>, then A is decidable.
- * Observation: If a language A is undecidable, then at least one of A or \overline{A} must be unrecognizable. (contraposition of the above)
- * Conclusion: If A is undecidable but recognizable, then \overline{A} is unrecognizable.
- * **Example:** $\overline{L_{\text{ACC}}}$ is unrecognizable
 - * L_{ACC} is undecidable (proof by contradiction)
 - * L_{ACC} is recognizable (the universal TM U is a recognizer for L_{ACC})
 - $* \Rightarrow \overline{L_{\text{ACC}}}$ must be unrecognizable

Type of Questions

- * Multiple choice
- * True / False
- * Always / Sometimes / Never
- * Short Answer
- * Free Response

Good luck!

