НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

КАФЕДРА ІНФОРМАЦІЙНОЇ БЕЗПЕКИ

«До захисту допущено»

Завідувач кафедри

Дипл	омна робота
освітньо-кваліф	ікаційного рівня "магістр"
за спеціальністю 8.04030101 «Прин	кладна математика»
на тему «Тема»	
Виконав студент 6 курсу групи Ф	І-51м
Кригін Валерій Михайлович	
Керівник к.т.н., Барановський Оле	ексій Миколайович
Рецензент,	$(ni\partial nuc)$
	$(ni\partial nuc)$
	Засвідчую, що у цій дипломній роботі не-
	має запозичень з праць інших авторів без
	відповідних посилань.
	Студент

$PE\Phi EPAT$

КЛЮЧЕВЫЕ СЛОВА

ABSTRACT

KEYWORDS

РЕФЕРАТ

СЛОВА

ЗМІСТ

Вступ	6
1 Теоретичні відомості	7
1.1 Формули	7
1.2 Задача	7
2 Практичні результати	S
3 Охорона праці	.0
Висновки	. 1
Перелік посилань	2

вступ

Актуальність роботи.

Об'ект дослідження —

 $\Pi peдмет$ дослідження —

Мета дослідження.

Завдання наступні:

- 1) Вивчити;
- 2) Розробити.

Практичне значення одержаних результатів.

1 ТЕОРЕТИЧНІ ВІДОМОСТІ

1.1 Формули

$$Z = < T, K, \tau, g, q >$$

$$\tau \subset T^2$$

$$g: \tau \times K^2 \to \mathbb{R}$$

$$q: T \times K \to \mathbb{R}$$

$$\vec{k}^* = \operatorname*{arg\,max}_{\vec{k} \in K} \left\{ \sum_{tt' \in \tau} g_{tt'} \left(k_t, k_{t'} \right) + \sum_{t \in T} q_t \left(k_t \right) \right\}$$

$$E(Z) = \sum_{tt' \in \tau} \max_{k,k' \in K} \{g_{tt'}(k_t, k'_{t'})\} + \sum_{t \in T} \max_{k \in K} \{q_t(k_t)\} \ge$$

$$\ge \max_{k \in K} \left\{ \sum_{tt' \in \tau} g_{tt'}(k_t, k_{t'}) + \sum_{t \in T} q_t(k_t) \right\}$$

1.2 Задача

$$\varphi \in \Phi$$

$$g'_{tt'}(k_t, k'_{t'}) = g_{tt'}(k_t, k'_{t'}) + \varphi_{tt'}(k_t) + \varphi_{t't}(k'_{t'})$$

$$q_t'(k_t) = q_t(k_t) - \sum_{t' \in N(t)} \varphi_{tt'}(k_t)$$

$$E(\Phi) = \sum_{tt' \in \tau} \max_{k,k' \in K} \{ g_{tt'}(k_t, k'_{t'}) + \varphi_{tt'}(k_t) + \varphi_{t't}(k'_{t'}) \} + \sum_{t \in T} \max_{k \in K} \left\{ q_t(k_t) - \sum_{t' \in N(t)} \varphi_{tt'}(k_t) \right\} \to min$$

2 ПРАКТИЧНІ РЕЗУЛЬТАТИ

3 ОХОРОНА ПРАЦІ

висновки

В результаті виконання роботи вдалося.

ПЕРЕЛІК ПОСИЛАНЬ