

$$\begin{array}{lll}
\hat{P} \in \operatorname{RehamRegion} & \Rightarrow \operatorname{RehamTheory} \\
\hat{P} \notin \operatorname{R} & 11 & \Rightarrow \operatorname{RejedTheory} \\
1-\alpha = \Re(|z| \leq |z|_{2}) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z \leq \hat{P} - \operatorname{P} \leq |z|_{2}\right) \\
&= \operatorname{P}\left(-z$$

There is no evidence to suggest that there is an uneven ratio

The 100 coins (pair)
See: 1:51 Heads => Fair See: 2:98 Heads => Pair Unfair Sec: 3:61 Heads => ?
Theory Of NULL Hypotesis denoted "Ho" and is in
a subset of the parameter space. The alternative hypotesis that everything else is not "Ho", is called "Ha"
Ho: p=6.5 \(\alpha = 51.
Hq i $P \neq 0.5$ Relain Region = $\left[0.5 \pm \frac{0.5(0.5)}{100}\right] = \left[0.4, 0.6\right]$
OR Retaining Pregion => Reject Ha The Coin Is Not Fair
Eminems Experiment: Not a Perfect sample would Not all MM's in the would of all MM's in the would from a certain shipment, at around this time.
o Ha: p≠0.2 My Portion 8 total 1 blue

	Random Variable Spits out data; "random data".
	Clinical total for cancer cure
	Ho: drug does not work
	Hai Cling does work
<i>F</i>	Type I error. Say that drug does work but in reality it doesn't won
	Type II error Say that drug doesn't work but in reality it does work
	-> Both are bad and costly.
	Fire Alarm in Kielly Hall (again)
	Ha: no fire
	Ha: fire
	Type I error D'arm sounds but no fire (false alarm).
	Type II error No alarm but there is a fire.
*-	Mare & big so there is more "Type I" errors than "Type II" errors, lo avoid people dying.
	When using random data to make decisions you come could be wrong!

Ho= P=0.5 d=51/=> Z=2 Ha: P+0,5 Ø: n: 4,247,000 Relain Region = (3.5+2 6.5(0.5) 0,00242 = 0.49516, 0.50484 p= 2173,000 - 0.51165 - Male/Female.

4,247,000 PEReject => Reject Ho => Male/Female birth ratio is un-even 1 · Mac Males their Females as n1 > P(Type I error) Power = 1 - P(Type I enoi) probability of failure in effoct. We either Relain or Reject: Ho Ha => Accept Ha

