Indice

Τ	Lai	La funzione esponenziale complessa					
	1.1	Riassunto sui numeri complessi	1				
	1.2	Richiami di topologia	7				
1.3		Serie di potenze	10				
	1.4	Le serie di potenze come serie di funzioni	14				
		1.4.1 Convergenza negli spazi di funzioni	14				
		1.4.2 Operazioni elementari con le serie di potenze	18				
		1.4.3 Derivazione di serie di potenze	19				
		1.4.4 Integrazione di serie di potenze	22				
	1.5	La funzione esponenziale complessa	23				
		1.5.1 Considerazioni generali	23				
		1.5.2 Definizione dell'esponenziale complesso	24				
		1.5.3 Le funzioni trigonometriche complesse	26				
2	Las	serie e la trasformata di Fourier	29				
	2.1	Preambolo: equazioni differenziali a coefficienti costanti	29				
	2.2	1	31				
	2.3	Serie di Fourier	36				
		2.3.1 Teoremi ulteriori sulle serie di Fourier	43				
	2.4	Cenni all'integrale di Lebesgue	44				
		2.4.1 Preliminari	45				
		2.4.2 Definizione dell'integrale di Lebesgue	46				
		2.4.3 Alcune proprietà dell'integrale di Lebesgue	48				
		2.4.4 Gli spazi L^p ed \mathcal{L}^p	50				
	2.5	La trasformata di Fourier in L^1	51				
		2.5.1 L'antitrasformata di Fourier	57				
		2.5.2 Il prodotto di convoluzione	59				
	2.6	Alcune applicazioni	61				
		2.6.1 I filtri lineari	61				
		2.6.2 Il teorema della campionatura	62				
		2.6.3 L'equazione del calore	63				
	2.7	La trasformata di Fourier in \mathbb{R}^n	65				
		2.7.1 Il paradiso degli integrali di Fourier: $S(\mathbb{R}^n)$	66				

ii INDICE

3	$\operatorname{Str} olimits$	utture	topologiche, metriche, vettoriali 73						
	3.1	Richia	mi sulle strutture topologiche						
		3.1.1	Continuità						
		3.1.2	Densità e separabilità						
		3.1.3	Compattezza						
		3.1.4	Estensioni continue						
		3.1.5	Completamento di uno spazio metrico						
	3.2	Spazi	vettoriali						
		3.2.1	Sottospazi vettoriali						
		3.2.2	Dipendenze lineari e basi						
		3.2.3	Somme dirette						
		3.2.4	Spazi normati						
		3.2.5	Serie infinite di vettori						
		3.2.6	Complementi sugli spazi $\boldsymbol{L^p}$						
		3.2.7	Gli spazi l^p						
4	Spa	zi di H	m Silbert m 95						
	4.1	Spazi	prehilbertiani						
	4.2	Ortogo	onalità						
	4.3	Sistem	ii ortonormali						
		4.3.1	Polinomi ortogonali						
		4.3.2	La trasformata di Fourier in $\boldsymbol{L^2}$						
5	Operatori 121								
	_		azioni lineari tra spazi vettoriali						
	5.2		azioni lineari tra spazi normati						
		5.2.1	Norma operatoriale						
		5.2.2	Convergenza di operatori						
		5.2.3	Estensione continua di applicazioni continue						
		5.2.4	Serie operatoriali						
	5.3	Opera	tori in spazi di Hilbert						
		5.3.1	Il teorema di Fischer-Riesz						
		5.3.2	Aggiunto di un operatore continuo						
		5.3.3	Aggiunto di un operatore non limitato						
		5.3.4	Operatori autoaggiunti						
		5.3.5	Proiettori						
		5.3.6	Operatori isometrici ed unitari						
		5.3.7	Operatori chiusi						
		5.3.8	L'aggiunto dell'operatore di derivazione						

INDICE iii

6	Elementi di teoria spettrale				
	6.1	Rappresentazione spettrale in spazi vettoriali di dimensione finita	. 159		
	6.2	Autovalori per operatori in dimensione infinita	. 163		
		6.2.1 Autovalori per l'operatore \boldsymbol{X}	. 163		
		6.2.2 Autovalori per l'operatore \boldsymbol{P}	. 164		
		6.2.3 Lo spettro	. 164		
	6.3	L'operatore risolvente	. 165		
		6.3.1 Lo spettro degli operatori $\boldsymbol{X},\boldsymbol{P}$ e $\boldsymbol{L_z}$. 168		
	6.4	Ricerca di autovettori generalizzati	. 170		
		6.4.1 Autovettori generalizzati per l'operatore \boldsymbol{P}	. 170		
		6.4.2 Autovettori generalizzati per l'operatore \boldsymbol{X}	. 171		
	6.5	Distribuzioni	. 172		
		6.5.1 Le distribuzioni temperate	. 173		
		6.5.2 Le distribuzioni regolari	. 176		
		6.5.3 La convergenza debole	. 179		
	6.6	Spazi di Hilbert equipaggiati	. 180		
		6.6.1 Operatori in $\mathcal{S}'(\mathbb{R})$. 180		
7	For	me differenziali	185		
	7.1				
	7.2	Forme differenziali			
	7.3	Integrazione su cammini			
	7.4	Omotopia tra circuiti			
o.	D	: d::.b:11	201		
8		nzioni di una variabile complessa	201		
	8.1	Funzioni olomorfe			
		Integrazione complessa			
	8.3	Logaritmo complesso			
	8.4	Potenze complesse			
	8.5	Analiticità delle funzioni olomorfe			
	8.6	Principio di identità delle funzioni olomorfe			
	8.7	Serie di Laurent			
	8.8	Teorema dei residui			
		8.8.1 Calcolo dei residui			
	8.9	Calcolo di integrali definiti con il il metodo dei residui	. 225		
9	La 1	trasformata di Laplace	235		
	9.1	Introduzione	. 235		
	9.2	Definizione della trasformata di Laplace	. 236		
	9.3	Proprietà della trasformata di Laplace	. 237		
		9.3.1 Convoluzione e sua trasformata di Laplace	. 239		
	9.4	Inversione della trasformata di Laplace			

iv INDICE

Date: 2021-02-05 00:03 +0100

Revision: 317: a198ef63a6bd

Definizioni e simboli

- := indica "uguale per definizione"
- $\bullet \cong \text{indica equivalenza}$ (a seconda del contesto), oppure isomorfismo tra strutture.
- N indica l'insieme dei numeri naturali, \mathbb{Z} gli interi (positivi e negativi), \mathbb{Q} i razionali, \mathbb{R} i reali, \mathbb{C} i complessi, \mathbb{I} gli immaginari, \mathbb{U} gli unitari. Gli stessi insiemi privati del numero 0 (zero) sono indicati con una stellina all'apice: \mathbb{N}^* , \mathbb{R}^* , ecc..
- Con il simbolo \mathbb{K} si indica un generico corpo di scalari, solitamente $\mathbb{K} = \mathbb{R}$ o \mathbb{C} .
- $\widetilde{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ indica l'unione della retta reale con i due punti all'infinito.
- L'aggettivo positivo indica un numero reale maggiore o uguale a zero: $x \ge 0$ ossia $x \in \mathbb{R}_+$. I numeri maggiori di zero e diversi da zero saranno chiamati strettamente positivi: x > 0 ossia $x \in \mathbb{R}_+^*$.
 - Analogamente negativo vuol dire $x \leq 0$ $(x \in \mathbb{R}_{-})$ mentre strettamente negativo vuol dire x < 0 $(x \in \mathbb{R}_{-}^{*})$.
- Una funzione $f: \mathbb{R} \to \mathbb{R}$ si dirà crescente se $a > b \Longrightarrow f(a) \geq f(b)$, mentre si dirà strettamente crescente se $a > b \Longrightarrow f(a) > f(b)$. Analogamente per funzioni decrescenti e strettamente decrescenti.
- La notazione $A \subset B$ indica che A è sottoinsieme di B, non necessariamente proprio, cioè può essere A = B. In alcuni testi ciò è indicato con $A \subseteq B$.
- C.L. indica "combinazione lineare".
- Se $l \in \mathbb{N}$, $C^l(\mathbb{K}, Y)$ indica l'insieme delle funzioni $\mathbb{K} \to Y$ con derivata l-esima continua.