https://www.cs.ubc.ca/~fwood/CS340/

Lecture II

Lecture roughly follows: http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap2_data.pdf Slides: https://www.cs.ubc.ca/~fwood/CS340/lectures/L2.pdf

Data Mining: Some Typical Steps

- 1. Learn about the application.
- 2. Identify data mining task.
- 3. Collect data.
- 4. Clean and preprocess the data.
- 5. Transform data or select useful subsets.
- 6. Choose data mining algorithm.
- 7. Data mining!
- 8. Evaluate, visualize, and interpret results.
- 9. Use results for profit or other goals. (often, you'll go through cycles of the above)

What is data?

We'll define data as a collection of examples, and their features

Types of data

- Categorical features come from an unordered set
 - Binary: Job done or not?
 - Nominal: city
- Numerical features come from an ordered sets
 - Discrete counts: age
 - Ordinal: rating
 - Continuous/real-values: height

Converting to numerical features

It is very often more desirable to have real-values example representation.

Age	City	Income		Age	Van	Bur	Sur	Income
23	Van	22,000.00		23	1	0	0	22,000.00
23	Bur	21,000.00		23	0	1	0	21,000.00
22	Van	0.00	\longrightarrow	22	1	0	0	0.00
25	Sur	57,000.00		25	0	0	1	57,000.00
19	Bur	13,500.00		19	0	1	0	13,500.00
22	Van	20,000.00		22	1	0	0	20,000.00

CPSC 340 Jeremi Do Dinh Week 1 61985628

This is called 1 of k encoding, and we can now interpret examples as points in space (E.g., first example is at (23,1,0,0,22000))

Approximating Text with Numerical Features

Approximating Images and Graphs

graycale intensity

(1,1)	(2,1)	(3,1)	 (m,1)	 (m,n)
45	44	43	 12	 35

adjacency matrix

N1	N2	N3	N4	N5	N6	N7
0	1	1	1	1	1	1
0	0	0	1	0	1	0
0	0	0	0	0	1	0
0	0	0	0	0	0	0

Data Cleaning

ML+DM typically assume 'clean' data. Ways that data might not be 'clean' :

- Noise (e.g., distortion on phone).
- Outliers (e.g., data entry or instrument error).
- Missing values (no value available or not applicable)
- Duplicated data (repetitions, or different storage formats).

Any of these can lead to problems in analyses

- Want to fix these issues, if possible.
- Some ML methods are robust to these.
- Often, ML is the best way to detect/fix these.