

Ken Short

4/18/2022

© Copyright 2022 Kenneth L. Short

1

Conversion Phases

- ☐ There are four phases that make up a single conversion of an analog input to a binary output
 - Auto Zero
 - Input Signal Integration
 - Reference Voltage Deintegration
 - Integrator Output Zero

4/18/2022 © Copyright 2022 Kenneth L. Short

Switch Positions vs. Conversion Phase

Conversion Phase	swı	sw _R +	SW _R -	swz	sw _R	SW ₁	sw _{IZ}
Auto-zero (A = 0, B = 1)	_	_	_	Closed	Closed	Closed	_
Input Signal Integration (A = 1, B = 0)	Closed	_	_	_	_	_	_
Reference Voltage De-integration (A =1, B = 1)	_	* Closed	_	_	_	Closed	_
Integrator Output Zero (A = 0, B = 0)	_	_	_	_	Closed	Closed	Closed

 $^{^{\}ast}$ Assumes a positive polarity input signal. $\mathrm{SW}^{-}_{\mathrm{RI}}$ would be closed for a negative input signal.

4/18/2022

© Copyright 2022 Kenneth L. Short 5

A and B Phase Control

A	В	Phase	Purpose	Duration	
0	1	auto zero	correct for offset voltages	2**16 clocks minimum	
1	0	signal integrate	integrate unknown input voltage	2**16 clocks exactly	
1	1	reference deintegrate	integrate - Vref	until neg. edge of CMPTR	
0	0	integrator zero	bring the integrator's output to 0	until pos. edge of CMPTR	

4/18/2022 © Copyright 2022 Kenneth L. 11 Short

Measured Voltage vs Count

$$Vunknown = \frac{deintegrate count}{2^{16}} \times Vref$$

4/18/2022 © Copyright 2022 Kenneth L. 12 Short

Binary Counter

Out Register

TC514 Controller FSM entity TC514fsm is port (soc : in std logic; -- start conversion control input cmptr: in std_logic; -- start conversion control input max_cnt: in std_logic; -- TC 514 comparator status input -- maximum count status input max_cnt : in seq_regretary clock : in std_logic; -- system clock clk_dvd : in std_logic; -- clock divided down -- synchronous reset a : out std_logic; -- conversion phase control b : out std logic; -- conversion phase control busy_bar : out std_logic; -- active low busy status cnt_en : out std_logic; -- counter enable control to counter clr_cntr_bar : out std_logic; -- signal to clear counter load_result : out std_logic); -- load enable end; 4/18/2022 © Copyright 2022 Kenneth L. 17

Short

State Assignment Approaches for Moore **FSMs** - to automtically create state assignment the following signal declarati -- and constant declarations must be commented out and states enumerated: (load_result, clr_cntr_bar, cnt_en, busy_bar, a, b) <= present_state;</pre> signal present_state, next_state : std_logic_vector(5 downto 0); constant auto_zero: std_logic_vector (5 downto 0) := "011001"; constant az idle: std logic vector (5 downto 0) := "000101"; constant integrate: std logic vector (5 downto 0) := "011010"; constant deintegrate: std_logic_vector (5 downto 0) := "011011"; constant zero_int: std_logic_vector (5 downto 0) := "110000"; constant clear_cntr: std_logic_vector (5 downto 0) := "000001"; - to automtically create state diagram the following type declaration -- and signal declaration must be uncommented: - type state is (auto zero, az idle, integrate, deintegrate, zero int, clear cntr); - signal present state, next state : state; © Copyright 2022 Kenneth L. 4/18/2022 30

What is the Synplify Symbolic FSM Compiler

- ☐ The Symbolic FSM Compiler is an advanced state machine optimizer, which automatically recognizes state machines in your design and optimizes them.
- □ Unlike other synthesis tools that treat state machines as regular logic, the FSM Compiler extracts the state machines as symbolic graphs, and then optimizes them by reencoding the state representations and generating a better logic optimization starting point for the state machines.
- ☐ The FSM Explorer uses the state machines extracted by the FSM Compiler when it explores different encoding styles.
- ☐ The FSM Explorer option is only available in the Synplify Pro and Synplify Premier tools.

4/18/2022

© Copyright 2022 Kenneth L. Short

31

State Assignment

- ☐ If your design does not specify state assignment, the Synplifier synthesizer contains a feature called FSM Compiler that identifies FSMs in your description and optimizes their state assignments based on the target PLD
- ☐ If you specified state assignment in your FSM description, make sure Synplify's FSM Compiler is OFF when you run the synthesis.

4/18/2022

© Copyright 2022 Kenneth L. Short

32

