CSC311: Data Structures

Dr. Amlan Chatterjee

Computer Science Department California State University, Dominguez Hills

November 1, 2016

Sorting

Merge Sort

Merge

- A *merge* is a common data processing operation performed on two sequences of data with the following characteristics
 - Both sequences contain items with a common compareTo method
 - The objects in both sequences are ordered in accordance with this compareTo method
- The result is a third sequence containing all the data from the first two sequences

Merge Algorithm

Merge Algorithm

- Access the first item from both sequences.
- while not finished with either sequence
- Compare the current items from the two sequences, copy the smaller
- current item to the output sequence, and access the next item from the
 - input sequence whose item was copied.
- Copy any remaining items from the first sequence to the output

sequence.

Copy any remaining items from the second sequence to the output sequence.

Analysis of Merge

- For two input sequences each containing *n* elements, each element needs to move from its input sequence to the output sequence
- Merge time is O(n)
- Space requirements
 - The array cannot be merged in place
 - Additional space usage is O(n)

Merge Sort

- We can modify merging to sort a single, unsorted array
 - 1. Split the array into two halves
 - 2. Sort the left half
 - 3. Sort the right half
 - 4. Merge the two

• This algorithm can be written with a recursive step

(recursive) Algorithm for Merge Sort

Algorithm for Merge Sort

- if the tableSize is > 1
- Set halfSize to tableSize divided by 2.
- Allocate a table called leftTable of size halfSize.
- Allocate a table called rightTable of size tableSize halfSize.
- Copy the elements from table[0 ... halfSize 1] into leftTable.
- Copy the elements from table[halfSize ... tableSize] into rightTable.
- Recursively apply the merge sort algorithm to leftTable.
- Recursively apply the merge sort algorithm to rightTable.
- Apply the merge method using leftTable and rightTable as the input and the original table as the output.

Trace of Merge Sort

50 60 45 30

90 20 80 15

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

30 45 50 60

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Analysis of Merge Sort

- Each backward step requires a movement of n elements from smaller-size arrays to larger arrays; the effort is O(n)
- The number of steps which require merging is log *n* because each recursive call splits the array in half
- The total effort to reconstruct the sorted array through merging is $O(n \log n)$

Quicksort

Quicksort

- Developed in 1962
- Quicksort selects a specific value called a pivot and rearranges the array into two parts (called *partioning*)
 - all the elements in the left subarray are less than or equal to the pivot
 - all the elements in the right subarray are larger than the pivot
 - The pivot is placed between the two subarrays

25

The process is repeated until the array is sorted

Trace of Quicksort

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Pivot value = 12

 12
 33
 23
 43
 44
 55
 64
 77
 75

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Pivot value = 12

 12
 33
 23
 43
 44
 55
 64
 77
 75

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Pivot value = 33

 12
 33
 23
 43
 44
 55
 64
 77
 75

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Pivot value = 33

 12
 23
 33
 43
 44
 55
 64
 77
 75

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Pivot value = 33

12 23 33 43 44 55 64 77 75

Amlan Chatterjee CSC 311: Data Structures 11/1/2016 37

Pivot value = 33

38

Pivot value = 33

39

Pivot value = 55

 12
 23
 33
 43
 44
 55
 64
 77
 75

Pivot value = 64

12 23 33 43 44 55 64 77 75

Pivot value = 77

42

 12
 23
 33
 43
 44
 55
 64
 77
 75

Pivot value = 77

12 23 33 43 44 55 64 75 77

Amlan Chatterjee CSC 311: Data Structures 11/1/2016 43

Pivot value = 77

12 23 33 43 44 55 64 75 77

Algorithm for Quicksort

- The indexes first and last are the end points of the array being sorted
- The index of the pivot after partitioning is pivIndex

Algorithm for Quicksort

- if first < last then
- 2. Partition the elements in the subarray first . . . last so that the pivot value is in its correct place (subscript pivIndex)
- 3. Recursively apply quicksort to the subarray first . . . pivIndex 1
- 4. Recursively apply quicksort to the subarray pivIndex + 1 last

Amlan Chatterjee CSC 311: Data Structures 11/1/2016

Analysis of Quicksort

- If the pivot value is a random value selected from the current subarray,
 - then statistically half of the items in the subarray will be less than the pivot and half will be greater
- If both subarrays have the same number of elements (best case), there will be log *n* levels of recursion
- At each recursion level, the partitioning process involves moving every element to its correct position—*n* moves
- Quicksort is $O(n \log n)$, just like merge sort

Analysis of Quicksort (cont.)

- The array split may not be the best case, i.e. 50-50
- An exact analysis is difficult (and beyond the scope of this class), but, the running time will be bounded by a constant x n log n

Analysis of Quicksort (cont.)

- A quicksort will give very poor behavior if, each time the array is partitioned, a subarray is empty.
- In that case, the sort will be $O(n^2)$
- Under these circumstances, the overhead of recursive calls and the extra run-time stack storage required by these calls makes this version of quicksort a poor performer relative to the quadratic sorts
 - Use good partition techniques

Testing the Sort Algorithms

- Use a variety of test cases
 - small and large arrays
 - arrays in random order
 - arrays that are already sorted
 - arrays with duplicate values
- Compare performance on each type of array