Softwarica College of IT & E-Commerce STW210CT: Programming, Algorithms and Data Structures

in collaboration with

Assignment Brief 2021

Ind/Group Individual	Cohort Sept 2020	Module Code: STW210CT
		Hand out date: TBD
		Due date: TBD
	· ·	% of Module Mark 70%
e via Softwarica M	oodle: Upload t	hrough Assignment links
in 3 weeks of assi	gnment submis	sion
	Courseword Individual Article Via Softwarica Miding: URLs (source in 3 weeks of assistant)	• I _

Module Learning Outcomes Assessed:

- 1. Write software to solve a range of problems.
- 2. Implement and use simple searching and sorting algorithms.
- 3. Use libraries to extend the functionality of the base language.
- 4. Use basic design and testing strategies

Notes:

- You are expected to use the <u>CUHarvard</u> referencing format. For support and advice on how this students can contact <u>Centre for Academic Writing (CAW)</u>.
- 2. Please notify your registry course support team and module leader for disability support.
- The University cannot take responsibility for any coursework lost or corrupted on disks, laptops or personal computer. Students should therefore regularly back-up any work and are advised to save it on the University system.
- 4. If there are technical or performance issues that prevent students submitting coursework through the online coursework submission system on the day of a coursework deadline, an appropriate extension to the coursework submission deadline will be agreed. This extension will normally be 24 hours or the next working day if the deadline falls on a Friday or over the weekend period. This will be communicated via email and as a Softwarica Moodle announcement.

a) provided set of binary numbers in a linked list, find all unique permutations and return each integer value of generated permutations as linked list. [3 Marks]

Input: 1 \longrightarrow 0 \longrightarrow 1

Permutation:

$$[1, 1, 0] \longrightarrow 6$$

$$[0, 1, 1] \longrightarrow 3$$

Output:
$$5 \longrightarrow 6 \longrightarrow 3$$

b) Given array of contiguous prime number, return array with missing element in between. [3 Marks]

Input [2, 3, 5, 11, 17, 23]

Output: [7, 13, 19]

Week2

a) Using stack check for balanced parenthesis within a string. [2 Marks]

Input "{()}{}"

Output true

b) Given two stack a and b, if allowed to pop from each stack, all popped values are added together, return maximum pop one can make without sum exceeding some given integer k. [3 Marks]

Given k=11

Output: 4

Convert Infix expression to Reverse Polish Notation (RPN) and Evaluate Reverse polish notation using stack. [5 Marks]

Example

Infix: 4(5+6) (input)

RPN conversion: 456+* (output) Evaluated value: 44 (output)

Week4

You have provided height of wall represented in 2D array where Each cell represent height of wall example a[i][j]=2,.suppose you are at position a[0][0], return maximum effort and minimum effort as array in sorter order required to travel to bottom right Cell of the given 2D array.

An effort is maximum or minimum absolute difference in height of two consecutive wall. NOTE: A person is allowed to go through rows and column. [5 Marks]

MAX EFFORT
ABSOLETE DIFF=7

 $\mathsf{INPUT} = \{\{1,3,8,9\}, \{8,7,2,6\}, \{13,3,6,4\}, \{13,1,5,3\}\}$

You are hired as a network engineer, given an undirected graph representing a local area network of organization, design an algorithm to find vulnerable points in a connected network. Where each vulnerable point is the vertex within a graph whose failure will split the network and fails the whole communication system. [7 Marks]

Vulnerable points: 7, 12

Provided a Binary Tree and an array of nodes from tree. Return true if each node from array has connected corresponding balanced leaf node, else return false. [5 Marks]

Input: head=[5,9] root=[1,5,5,null,3,3,9,2,7]

Output: True

Week7

- a) Write a java program to solve convex hull problem. [4 Marks]
- b) Design a circular queue with implementation of following operations front(), Rear(), enQueue(int val), deQueue(int val), IsEmpty(), isFUII(). [3 Marks]

Week 8 to 11

Suppose you are assigned with project to develop an application to store information about network architecture of your organization. This application will helps to find information about connected network devices. This application also allow users to find optimal route between provided source and destination device, so that network engineer can define optimal path for data transfer. Developed system should meet following requirements.

- System should allow Registration and login [12 marks]
- Add/update/delete Network devices [12 marks]
- Display network architecture [12 marks]
- Recommend optimal path between provided source and destination device [12 marks]
- View details of each device including ports, product name, product type etc. [12 marks]

Note: For optimal path, cost of each hop is 1, use graph data structure and files to store information.

Total [60 marks]

Marking Notes

- 1. All submitted coursework will be assessed via VIVA conducted at the end of this semester.
- 2. Each VIVA will last 20 minutes.
- 3. You will submit on the deadline a document (PDF or Word) on Moodle containing all the coursework tasks solved and including a link to your GitHub Classroom repository shared via Softwarica LMS.
- 4. During the VIVA you will be assessed with few relevant random questions.
- 5. If you submit only some of the task, your mark will be proportional to that.
- 6. The marking criteria valid for week 8-11 is presented below.

Criteria	0	2	4	6	8	10
Feature	Not	Only few features	Many of the features	Many of the	Most of the	All features
complete	submitted	implemented and	are implemented but	features are	features are	implemented and are
		are not executing	are not executing	implemented and	implemented and	executing correctly
			correctly	are executing	are executing	
Codo	Net	A a a i a un una a un t	Look of comments	correctly	correctly	Carras as da is ruell
Code aesthetic	Not submitted	Assignment submitted but not	Lack of comments, formatted in Source	Lack of comments, formatted in	Lack of	Source code is well
aestnetic	Submitted	commented and	code. Only few	Source code, but	comments, formatted in	commented, properly formatted, meaningful
		formatted.	classes and	meaningful	Source code, but	variable/function/class
		variable's/classes/	functions are define	variable/class/	meaningful	names are used.
		function are	but hard to read	function names are	variable/class/	Code is easy read
		defined but		used few function	function names	and understand,
		meaningless		are define.	are used. Code	having many pure
					is easy to read	functions.
GUI	Not	Hard to use. Only	Few frame are	Some frame are	Easy to use,	Easy to use, Proper
	submitted	some component	difficult to use. UI	difficult to use. UI	Proper use of	use of various UI
		are used and	component are used	component are	various UI	components, Clean
		unmanaged	but unmanaged.	used but	components.	and interactive UI
				unmanaged.	User Interaction is low	
I/P	Not	Only few input	Only few inputs field	Most input fields	Most input fields	All input fields are
Validation	submitted	fields are	are validated. Error	are properly	are properly	properly validated.
		validated. Error	messages are	validated. Error	validated. Error	Error messages are
		message are not	shown in code	messages are	messages are	properly shown in
		shown	format	shown in code	properly shown in	natural language.
				format	natural language	
Unit	Not	Only few features	Many of the	Many of the	Most of the	All modules are unit
Testing	submitted	are tested without	modules are tested	modules are tested	modules are	tested using suitable
		using framework	and many of them	using suitable unit	tested using	unit testing
		and many of them	are fail	testing framework.	suitable unit	framework. Should
		are fail			testing	have full testing
					framework. Should have	coverage.
					partial coverage.	
					partiai coverage.	

Viva	Not present	Could not explain	Could explain basic	Could explain	Could explain	Could explain
	(Assignment	reasoning behind	terms but not about	reasoning behind	reasoning behind	reasoning behind the
	submitted	the code. But	algorithm. But	the code, including	the code,	code, including use of
	but absent in	answered only	answered only two	use of loops,	including use of	loops, conditions,
	viva)	one viva question	viva question	conditions,	loops, conditions,	algorithms. Answered
				algorithms.	algorithms.	all five question
				answered only	answered only	
				three viva question	four viva question	