HW 5 Report

Ruijie Song

March.5.2021

2.1 Exercise: Generating Gaussian random vectors

2.2 Exercise: Covariance Estimation and Whitening

1. the theoretical value of the covariance matrix Rx:

2	-1.2
-1.2	1

2. numerical listing of your covariance estimate Rx:

<u> </u>	
1.80186189486342	-1.05439805350776
-1.05439805350776	0.903742306202859

3.

4. numerical listing of the covariance estimate Rw:

1	0
0	1

4. Eigenimages, PCA, and Data Reduction

1.

Figure 1. original image

5.1 Exercise: Classification and PCA

Input	Output
d	a
j	у
1	i
n	v
p	e
q	a
u	a
у	X

1. Let $Bk = \Lambda k$, i.e. assume each class has a different diagonal covariance, where the elements of Λk are the diagonal elements of Rk.

i	1
у	v

2. Let Bk = Rwc, i.e. assume each class has the same covariance, where Rwc is defined as the average within-class covariance

g	q
у	v

3. Let $Bk = \Lambda$, i.e. each class has the same diagonal covariance, where the elements of Λ are the diagonal elements of the matrix, Rwc, defined above.

f	t
у	v

4. Let Bk = I, i.e. each class has an identity covariance around a different mean, μk .

q	g
f	t
у	v

- 1. The 2,3 & 4 work the best
- 2. The accuracy of the estimates is more important. The accuracy of the data model may not impact the estimates. Even the covariance is I, the accuracy of estimates is high.