Содержание

1	Комбинаторика, правило суммы и произведения. Размещения с повторениями и без повторений.	2
2	Перестановки с повторениями и без повторений. Сочетания с повторениями и без повторений, свойства биномиальных коэффициентов.	2
3	Сколькими способами можно разложить n_1 предметов одного сорта, , n_k предметов k -го сорта в два ящика? Следствия.	4

1 Комбинаторика, правило суммы и произведения. Размещения с повторениями и без повторений.

Правило суммы:

Если объект A можно выбрать m способами, а объект B, после выбора A, можно выбрать n способами, то пару (A,B) можно выбрать $n \times m$ способами.

Правило произведения:

Если A можно выбрать n способами, а B — m способами, то объект A или B можно выбрать n+m способами. (Выбор B никак не согласуется с выбором A.)

Размещения с повторениями:

Размещениями с повторениями из n типов по k элементов (k и n в произвольном соотношении) называются все такие последовательности k элементов, принадлижащих n типам, которые отличаются друг от друга составом или последовательностью элементов.

$$\overline{A_n^k} = n^k$$

Размещения без повторений:

Размещениями без повторений из n различных типов по k элементам называются все такие последовательности из k различных элементов, такие, что они различаются по составу или по порядку. Причём k < n.

$$A_n^k = \frac{n!}{(n-k)!}$$

2 Перестановки с повторениями и без повторений. Сочетания с повторениями и без повторений, свойства биномиальных коэффициентов.

Перестановки с повторениями:

Перестановками с повторениями из n_1, \ldots, n_k элементов k-го типа называются всевозможные последовательности длины n, отличающиеся друг от друга последовательностью элементов.

$$\overline{P}(n_1,\ldots,n_k) = \frac{n!}{n_1!\cdots n_k!}$$

Перестановски без повторений:

Перестановками без повторений из n элементов называются всевозможные последовательности из n элементов.

$$P_n = n!$$

Сочетания с повторениями:

Сочетаниями с повторениями из n по k (k и n в произвольном соотношении) называются все такие комбинации из k элементов $\in n$ типам, которые отличаются только составом элементов.

$$\overline{C^k}_n = C^k_{n+k-1} = \overline{P}(n-1,k)$$

Сочетания без повторений:

Сочетаниями без повторений из n по k ($k \le n$) называются все такие комбинации из k различных элементов, выбранных из n исходных элементов, которые отличаются друг от друга составом.

$$C_n^k = \frac{n!}{(n-k)!k!}$$

Свойства биномиальных коэффициентов:

1. $C_n^k = \overline{P}(k, n - k)$

 $C_n^k = C_n^{n-k}$

3. $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$

4. $C_n^0 + C_n^1 + \dots + C_n^n = 2^n$

5. $C_n^0 - C_n^1 + C_n^2 - C_n^3 + \dots + C_n^n = 0$

3 Сколькими способами можно разложить n_1 предметов одного сорта, . . . , n_k предметов k-го сорта в два ящика? Следствия.

Схема: n_1 предметов 1-го типа . . . n_k предметов k-го типа раскладываются в два различных ящика:

$$(n_1+1)\cdot (n_2+1)\cdot \dots \cdot (n_k+1)$$
 способов.

Следствие 1:

Если все предметы различны, то:

$$n_1 = 1 = n_2 = \dots = n_k = 1 \Rightarrow 2^k$$
 способов.

Следствие 2:

Не менее r_i предметов i-го типа в каждый ящик:

$$(n_1-2r_1+1)\cdot (n_2-2r_2+1)\cdot \cdots \cdot (n_k-2r_k+1)$$
 способов.