M1IF39: PROJET
TRANSVERSAL ET
TECHNOLOGIES INNOVANTES

Objectifs du projet

- □ Coupler vos compétences en
 - Réseau
 - Image
 - Intelligence artificielle
 - Programmation embarquée
 - **-** ...
- Groupes
 - 7 groupes (contraintes matérielles)
 - 7-8 étudiants
 - De préférence avec des profils différents

Le projet

- Rolland Garros arrive donc ... on va ramasser des balles
- Un terrain de jeu
 - □ Entouré de « murs » de 30 à 60 cm de haut
 - Dimensions à définir
 - Géométrie variable
 - Avec ou sans obstacles
 - Une, ou plusieurs, ouverture(s)
- N balles de couleur (rouge et/ou bleu)
- Objectif : vider le terrain de toutes les balles présentes

- Dimensions maximales
 - Longueur: 31cm
 - □ Largeur: 24cm
 - □ Hauteur : 23 cm
- □ Briques ((intelligentes))
 - □ Au max : une brique EV3
 - En plus: 0, 1 ou 2 briques NXT
 - Au max, un parmi
 - Galaxy s4
 - iPhone 5S
 - Nokia lumia 920

- Moteurs
 - 3 servomoteurs (grand) EV3
 - 2 servomoteurs (moyen) EV3
 - 3 servomoteurs NXT
- Capteurs
 - Distance Ultra-sons (EV3 et NXT)
 - Distance IR (longue distance 30 à 150 cm)
 - Capteur de couleur (EV3 et NXT)
 - Capteur de lumière
 - Boussole, gyroscope, accéléromètre, compas
 - **-** ...

- Système de déplacement
 - Chenilles
 - **2**, 3, 4, ... roues (normales)
 - Roues holonomiques
 - □ Pieds (??)
- Localisation
 - Odométrie (couplage capteurs/moteurs)
 - Vision (interne avec les caméras du terminal mobile)
 - Externe (caméras externes)
 - Des marqueurs seront placés sur les « murs » du terrain

- Connectivité
 - Wifi
 - Buetooth
- Caméras externes
 - □ Flux vidéos disponibles via des sockets sur le réseau filaire de la salle
- Externalisation
 - Un PC (au max) pour traiter les flux vidéos externes et mettre à disposition les données (socket, web, ...)

Compétition

- Les tâches à accomplir:
 - T1 : Sortir les balles du terrain de jeu (le plus rapidement possible)
 - T2 : Sortir les balles du terrain de jeu (une sortie par couleur de balle)
 - T3 : Sortir les balles dans un ordre particulier
 - T4 : tâche bonus (en plus des 3 autres) : faire sortir le robot par l'une des ouvertures
- □ Temps imparti (max): 5mn

Compétition

- □ Les terrains de jeu :
 - □ A : rectangulaire, 2 ouvertures
 - B: en L, 2 ouvertures
 - □ C: en U, 2 ouvertures
- Les obstacles
 - □ O1 : pas d'obstacle
 - O2 : un obstacle sur le terrain
 - □ O3 : n obstacles sur le terrain
 - □ O4 : obstacle malus...

Compétition

 Selon le temps disponible, évaluation de vos conceptions sur :

$$\Box$$
 T1 + [A, B, C] + O1

$$\Box$$
 T2 + [A, B, C] + O1

□ Au mieux, évaluation sur :

$$\square$$
 T[1, 2, 3] + [A, B, C] + O[1, 2, 3]

Un score par évaluation

Retours attendus

- Code source sur un dépôt (forge)
- Plan de montage du robot
- Wiki, pages web (forge)
 - Calendrier prévisionnel
 - Compte rendu des réunions de travail
 - Pour chaque test/expérimentation = une page sur le wiki avec :
 - Objectif du test
 - Réalisation (photos, vidéos)
 - Conclusion (que s'est-il passé, pourquoi, ...)
 - **-** ...

Calendrier

- □ 7 avril : présentation du projet
- 9 avril : composition des groupes
- □ Du 14 avril au 2 mai : conception des robots
 - □ Créneaux 12h-14h, en TD8
 - Deux groupes max par créneau
- □ 5 au 9 mai : semaine intensive
- □ Du 12 mai au ?? mai : amélioration
 - □ Créneaux 12h-14h, en TD8
 - Deux groupes max par créneau
- □ ?? mai : première évaluation
- □ ?? juin : évaluation finale des projets