MATEMÁTICA DISCRETA

CURSO 2022/2023

Violeta Migallón Gomis Jose Penadés Martínez

MATEMÁTICA DISCRETA

CONTENIDO

Bloque 1. Introducción a la teoría de grafos.

Lección 1. Grafos: fundamentos.

Lección 2. Accesibilidad y Conectividad.

Lección 3. Árboles.

Lección 4. Grafos Ponderados.

Bloque 2. Aritmética entera y modular.

Lección 1. Los números enteros.

Lección 2. Congruencias. Aritmética modular.

Bloque 1. INTRODUCCIÓN A LA TEORÍA DE GRAFOS

Lección 1. Grafos: fundamentos.

Lección 2. Accesibilidad y Conectividad.

Lección 3. Árboles.

Lección 4. Grafos Ponderados.

Lección 1. GRAFOS: FUNDAMENTOS

- 1. Definición y conceptos básicos.
- 2. <u>Tipos particulares de grafos.</u>
- 3. Grado de un vértice.
- 4. Caminos y conexión.
- 5. Representación matricial.

Lección 1. GRAFOS: FUNDAMENTOS.

DEFINICIONES

 Un grafo no dirigido G es un par (V,A), en el que V es un conjunto cuyos elementos llamaremos vértices, y A una familia de pares no ordenados de vértices, que llamaremos aristas.

$$V = \{x,y,z\}$$

$$A = \{e_1 = \{x,y\}, e_2 = \{x,z\}\}$$

Lección 1. GRAFOS: FUNDAMENTOS.

2. Un **grafo dirigido** *G* es un par (*V*,*A*), en el que *V* es un conjunto cuyos elementos llamaremos **vértices**, y *A* una familia de pares ordenados de vértices, que llamaremos **arcos**.

$$V = \{x,y,z\}$$

A={
$$e_1$$
=(x,z), e_2 =(y,z),
 e_3 =(y,y), e_4 =(z,x),
 e_5 =(y,z)}

Lección 1. GRAFOS: FUNDAMENTOS.

MOTIVACIÓN

La teoría de grafos nos sirve de ayuda para la representación y conocimiento de las estructuras de informática, además de favorecer la aplicación de la informática a otros campos.

Ejemplos de áreas de aplicación:

- Encaminamiento de paquetes por routers: Por ejemplo en redes de telefonía en las que hay que encontrar el camino que tarde menos tiempo.
- Sistemas de información geográficos: La extracción de características curvilíneas de imágenes se realiza usando técnicas de minimización de caminos en un grafo.
- Reconocimiento del habla: Distinción de palabras que suenan de manera similar.

Lección 1. GRAFOS: FUNDAMENTOS.

- Modelización de sistemas de carreteras: Simulación por ordenador de sistemas de tráfico usando grafos.
- Modelado de redes de computadores: Representación de una red de computadores mediante un grafo.
- Modelado de la distribución de los procesadores en una máquina paralela: Los grafos permiten representar la distribución de procesadores en una máquina paralela.
- Grafos de llamada: Hay muchos programas que constan de módulos que invocan unos a otros. Los grafos de llamadas representan estos módulos y cómo se invocan entre ellos.

• ...

Lección 1. GRAFOS: FUNDAMENTOS.

3. Llamamos **grafo no dirigido asociado** a un grafo dirigido, a un grafo con el mismo conjunto de vértices y en el que se han ignorado las direcciones de los arcos.

GRAFO NO DIRIGIDO ASOCIADO

Lección 1. GRAFOS: FUNDAMENTOS.

4. Un **grafo mixto** es aquel que contiene tanto arcos como aristas.

Lección 1. GRAFOS: FUNDAMENTOS.

- 5. Los extremos de una arista (arco) se dice que son **incidentes** con la arista (arco).
- 6. Dos vértices incidentes con una misma arista (arco) se dicen adyacentes.
- 7. Un **bucle** es una arista (o arco) cuyos extremos son el mismo vértice.

Lección 1. GRAFOS: FUNDAMENTOS.

DEFINICIONES:

1. Un grafo **simple** es un grafo sin bucles en el que no hay dos aristas que unan el mismo par de vértices. Si el grafo es dirigido diremos que es simple si no tiene bucles y no hay dos arcos uniendo el mismo par de vértices y con la misma dirección. Si un grafo no es simple se llama **multigrafo**.

EJEMPLO:

MULTIGRAFO

Lección 1. GRAFOS: FUNDAMENTOS.

2. Un grafo no dirigido (dirigido) se dice que es **completo** si hay al menos una arista (arco) uniendo cada par de vértices distintos. Denominaremos por K_n al grafo completo no dirigido y simple con n vértices.

EJEMPLO:

GRAFO DIRIGIDO
COMPLETO NO SIMPLE

GRAFO NO DIRIGIDO COMPLETO SIMPLE (K_4)

Lección 1. GRAFOS: FUNDAMENTOS.

3. Un grafo no dirigido diremos que es **bipartido** si existe una partición {X, Y} del conjunto de vértices de forma que toda arista tiene un extremo en X y otro en Y. Un grafo dirigido es bipartido si lo es su grafo no dirigido asociado.

$$X = \{x, t\}$$

Lección 1. GRAFOS: FUNDAMENTOS.

EJEMPLO: ¿Es bipartido el siguiente grafo dirigido?

Analizando su grafo no dirigido asociado

$$X = \{a, c, e\}$$

$$Y = \{b,d,f\}$$

Es bipartido, y por tanto el grafo inicial lo es.

Lección 1. GRAFOS: FUNDAMENTOS.

4. Diremos que un **grafo bipartido es completo** si cada vértice de *X* está unido con cada vértice de *Y*.

Bipartido completo

Bipartido no completo

Lección 1. GRAFOS: FUNDAMENTOS.

5. Sean G = (V,A) y H = (V',A') dos grafos. H es **subgrafo** de G si $V' \subset V$ y $A' \subset A$.

EJEMPLO:

6. Diremos que un subgrafo *H* de un grafo *G* es **generador** si sus conjuntos de vértices son iguales.

 H_3 es subgrafo generador (y G_1)

Lección 1. GRAFOS: FUNDAMENTOS.

DEFINICIONES:

1. Llamamos **grado de un vértice** v en un grafo no dirigido G al número de aristas incidentes con él. Cada bucle se cuenta dos veces. Se denotará por $d_{\mathbf{G}}(v)$.

Designamos por $\Gamma(v)$ al conjunto de vértices adyacentes a v.

EJEMPLO:

El vértice \mathbf{x} es incidente con las aristas: $\mathbf{e_1}, \mathbf{e_2}$ y $\mathbf{e_4}$. Por tanto $d_{\mathbf{G}}(\mathbf{x}) = 3$.

El conjunto de vértices adyacentes para \mathbf{x} es $\Gamma(\mathbf{x}) = \{\mathbf{t}, \mathbf{z}\}.$

El grado del vértice z es $d_{\mathbf{G}}(z)=4$.

Lección 1. GRAFOS: FUNDAMENTOS.

2. Sea G un grafo dirigido. Llamaremos **grado de salida** de un vértice v y lo denotaremos por ds(v) al número de arcos salientes de v.

Llamaremos **grado de entrada** de un vértice v y lo denotaremos por $d_{\mathbf{e}}(v)$ al número de arcos entrantes en v.

Se llamará **grado de un vértice** a la suma de estos dos grados. Análogamente se puede definir $\Gamma(v)$ y $\Gamma^{-1}(v)$.

EJEMPLO:

El vértice z tiene 3 arcos entrantes: de(z)=3.

El vértice z tiene sólo 1 arco saliente: ds(z)=1.

El conjunto de vértices que son extremos

finales de arcos que se inician en z es $\Gamma(z) = \{x\}$.

El conjunto de vértices que son extremos

iniciales de arcos que terminan en z es $\Gamma^{-1}(z) = \{x, y\}$.

Lección 1. GRAFOS: FUNDAMENTOS.

TEOREMA

1. Sea G = (V,A) un grafo, entonces

$$\sum_{v \in V} d_G(v) = 2card(A)$$

2. Sea G = (V,A) un grafo dirigido, entonces:

$$\sum_{v \in V} d_s(v) = \sum_{v \in V} d_e(v) = card(A)$$

Lección 1. GRAFOS: FUNDAMENTOS.

COROLARIO

El número de vértices de grado impar de un grafo es par.

EJEMPLO:

Calculamos los grados de los vértices: $d(\mathbf{x})=3$, $d(\mathbf{y})=0$, $d(\mathbf{z})=4$, $d(\mathbf{t})=1$ Vemos que hay 2 vértices (un número par) con grado impar: \mathbf{x} y \mathbf{t} .

Lección 1. GRAFOS: FUNDAMENTOS.

DEFINICIONES: Sea *G* un grafo no dirigido:

1. Una **cadena** es una sucesión finita $W=v_0e_1v_1$. . . e_kv_k cuyos términos son alternativamente vértices y aristas.

EJEMPLO:

 $C_1 = v_1 e_1 v_2 e_2 v_3 e_3 v_5 e_6 v_2 e_2 v_3 e_3 v_5 e_8 v_6$

2. La **longitud** de una cadena es el número de aristas que contiene.

EJEMPLO: La longitud de la cadena **C** es 7.

Lección 1. GRAFOS: FUNDAMENTOS.

- 3. Una cadena simple es una cadena con todas sus aristas distintas.
- 4. Un **camino** es una cadena con todos sus vértices distintos.

EJEMPLO:

La cadena $C_2 = v_1 e_1 v_2 e_2 v_3 e_3 v_5 e_6 v_2$ es una cadena simple de longitud 4.

La cadena $C_3 = v_6 e_8 v_5 e_7 v_4 e_5 v_3$ es un camino.

Lección 1. GRAFOS: FUNDAMENTOS.

5. Una **cadena cerrada** es una cadena de longitud no nula en donde el vértice inicial y final coinciden.

EJEMPLO:

La cadena $C_4 = v_2 e_6 v_5 e_7 v_4 e_4 v_2 e_1 v_1 e_1 v_2$ es una cadena cerrada.

Como repite aristas (e_1) , la cadena C_4 no es simple.

Como repite vértices $(\mathbf{v_2})$, la cadena $\mathbf{C_4}$ no es un camino.

Lección 1. GRAFOS: FUNDAMENTOS.

6. Un **ciclo** es una cadena simple cerrada con todos sus vértices distintos.

EJEMPLO:

La cadena $C=v_2e_4v_4e_7v_5e_3v_3e_2v_2$ es un ciclo.

Estos conceptos son los mismos para grafos dirigidos salvo que las direcciones de los arcos deben concordar con la dirección del camino o cadena. En el caso dirigido el ciclo recibe el nombre de **circuito**.

Lección 1. GRAFOS: FUNDAMENTOS.

7. Diremos que dos vértices **u** y **v** están **conectados** si existe un camino de **u** a **v** y viceversa.

EJEMPLO:

Los vértices v_1 y v_6 están conectados por el camino $C=v_1e_1v_2e_6v_5e_8v_6$.
Cualquier par de vértices está conectado.

Los vértices v_1 y v_4 están conectados por los caminos:

 $C_1 = v_1 e_1 v_2 e_4 v_4$ $C_2 = v_4 e_5 v_3 e_2 v_2 e_9 v_1$ Los vértices v_4 y v_5 no están conectados

Lección 1. GRAFOS: FUNDAMENTOS.

8. Un grafo es **conexo** si todo par de vértices están conectados.

Grafo conexo

Grafo no conexo

9. Un grafo dirigido es **débilmente conexo** si su grafo no dirigido asociado es conexo.

Lección 1. GRAFOS: FUNDAMENTOS.

TEOREMA

La relación de conexión es de equivalencia y por tanto determina una partición en el conjunto de vértices. A los elementos de dicha partición se les denomina componentes conexas del grafo.

TEOREMA

Un grafo es conexo si y sólo si el número de componentes conexas es 1.

EJEMPLO:

Componentes conexas

Lección 1. GRAFOS: FUNDAMENTOS.

TEOREMA (Para grafos no dirigidos)
Un grafo es bipartido si y sólo si no contiene ningún ciclo impar.

EJEMPLO:

El siguiente grafo NO es bipartido ya que contiene un ciclo impar: $v_2v_4v_5$

Lección 1. GRAFOS: FUNDAMENTOS.

DEFINICIÓN:

Sea G un grafo con n vértices $\{v_i\}_{i=1}^n$. Llamamos **matriz de adyacencia** a la matriz de orden $n \times n$, $A = [a_{ij}]$ tal que a_{ij} es igual al número de aristas (arcos) del vértice v_i al v_j . En el caso no dirigido, el bucle se cuenta dos veces.

$$A = \begin{bmatrix} 0 & 2 & 2 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 \\ 2 & 1 & 2 & 1 & 2 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \end{bmatrix}$$

Lección 1. GRAFOS: FUNDAMENTOS.

PROPIEDADES DE LA MATRIZ DE ADYACENCIA:

1. Sea G un grafo no dirigido con matriz de adyacencia A. Entonces, la suma de los elementos de la fila i (o columna i) es igual al grado del vértice v_i .

EJEMPLO:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} = 3$$

El grado del vértice x es 3.

Lección 1. GRAFOS: FUNDAMENTOS.

2. Sea *G* un grafo dirigido con matriz de adyacencia *A*. Entonces, la suma de los elementos de la fila *i* es igual al grado de salida del vértice *v_i* y la suma de los elementos de la columna *j* es igual al grado de entrada del vértice *j*.

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$d_s(x)=1 \text{ y } d_e(z)=3$$

Lección 1. GRAFOS: FUNDAMENTOS.

3. Sea G un grafo con matriz de adyacencia A. Entonces, el elemento (i,j) de la matriz A^r , $r \ge 1$, es igual al número de cadenas de v_i a v_i de longitud r.

EJEMPLO:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 2 & 2 & 2 & 4 \\ 2 & 2 & 4 & 5 \\ 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Por ejemplo, el número de cadenas de longitud 3 de v_2 a v_3 es 4.

Lección 1. GRAFOS: FUNDAMENTOS.

DEFINICIONES:

1. Sea G=(V,A) un grafo no dirigido con n vértices y m aristas siendo $V=\{v_i\}_{i=1}^n$ y $A=\{a_i\}_{i=1}^m$. Llamamos **matriz de incidencia** de G a la matriz de orden $n\times m$

$$M = [m_{ij}] \ / \ m_{ij} = \left\{ \begin{array}{l} 0 \quad \text{si } v_i \text{ no es incidente con } a_j \\ 1 \quad \text{si } v_i \text{ es incidente con } a_j \\ 2 \quad \text{si } a_j \text{ es un bucle en } v_i \end{array} \right.$$

Lección 1. GRAFOS: FUNDAMENTOS.

2. Sea G=(V,A) un grafo dirigido con n vértices y m arcos siendo $V=\{v_i\}_{i=1}^n$ y $A=\{a_i\}_{i=1}^m$. Llamamos **matriz de incidencia** de G a la matriz de orden $n\times m$

$$B = [b_{ij}] \; / \; b_{ij} = \left\{ \begin{array}{ll} 0 & \text{si } v_i \text{ no es incidente con } a_j \\ 1 & \text{si } v_i \text{ es vértice inicial de } a_j \\ -1 & \text{si } v_i \text{ es vértice final de } a_j \\ 2 & \text{si } a_j \text{ es un bucle en } v_i \end{array} \right.$$

Lección 1. GRAFOS: FUNDAMENTOS.

PROPIEDADES DE LA MATRIZ DE INCIDENCIA:

1. Sea *G* un grafo no dirigido. La suma de los elementos de cada fila de la matriz de incidencia es igual al grado del correspondiente vértice.

EJEMPLO:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} = 5$$

Los grados de los vértices son:

$$d(v_1)=5$$
, $d(v_2)=3$, $d(v_3)=8$, $d(v_4)=2$, $d(v_5)=2$

Lección 1. GRAFOS: FUNDAMENTOS.

2. Sea *G* un grafo no dirigido. La suma de los elementos de cada columna de la matriz de incidencia es igual a 2.

Lección 1. GRAFOS: FUNDAMENTOS.

3. Sea *G* un grafo dirigido sin bucles. La suma de los elementos de cada columna de la matriz de incidencia es igual a 0.

$$M = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ -1 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$Q \qquad Q \qquad Q \qquad Q$$

Lección 1. GRAFOS: FUNDAMENTOS.

DEFINICIONES:

1. Sea *G* un grafo no dirigido. Llamaremos **tabla de aristas incidentes** del grafo *G* a una tabla que lista, para cada vértice *v*, todas las aristas incidentes con *v*.

Tabla de aristas incidentes
$$v_1: e_1, e_5, e_6, e_7, e_8$$
 $v_2: e_1, e_2, e_5$
 $v_3: e_2, e_3, e_4, e_6, e_7, e_9, e_{10}$
 $v_4: e_8, e_{10}$
 $v_5: e_4, e_9$

Lección 1. GRAFOS: FUNDAMENTOS.

2. Sea *G* un grafo dirigido. Llamaremos **tabla de arcos salientes** del grafo *G* a una tabla que lista, para cada vértice *v*, todos los arcos salientes de *v*. Llamaremos **tabla de arcos entrantes** del grafo *G* a una tabla que lista, para cada vértice *v*, todos los arcos entrantes en *v*.

Arcos	salientes	Arcos	entrantes
<i>x</i> :	e_1	x:	e_4, e_7
<i>y</i> :	e_2, e_5e_6, e_7	y:	
<i>z</i> :	e_4	z:	e_1, e_2, e_5
<i>t</i> :	e_{3}	<i>t</i> :	$e_{3}^{}, e_{6}^{}$