作業指示書

TORICA Sim 制御装置 (TORICA Sim Controller)

要件

- 電装班員ではない人間が扱っても壊れにくい仕組みにすること。
- PC→マイコン間はUSB type-Cで接続できるようにすること。
- マイコン→ロードセル間はUSB type-Aで接続できるようにすること。
- 静電気の多い環境に置かれる可能性を考慮し、密閉型の筐体を3Dプリンタで造形する。

制御装置の基板設計

使用するマイコンはSeeed XIAO RP2040とし、これを表面実装する。以下にピン配置を示す。

P26 A0 D0 5V P27 A1 D1 Seecc P28 A2 D2 D10 MOSI P3 P29 A3 D3 D3 D10 MOSI P3 P6 SDA D4 D9 MISO P4 P7 SCL D5 D8 SCK P2 P0 TX D6 R D7 CSn P1 RX

FRONT

ピンの用途は以下のようにする。

ピン	用途
A0, A1	ラダーの可変抵抗分圧読み取り用
D2	リセットスイッチ
D3, D5, D7, D9	SLK クロック
D4, D6, D8, D10	 DOUT データ出力

A/D変換基盤との接続は以下のようにする。

USB Type-A「メス」

1 赤:+5V(電源用+)

2 白:D- (データ伝送用-)

3 緑:D+ (データ伝送用+)

4 黒: GND (電源用-)

ピン	+5V	D-	D+	GND
用途	VDD	SLK	DOUT	GND

3.5mmステレオミニプラグ/ジャックを用いて、ラダーを接続する。

それに伴って、XT→ステレオミニプラグ変換基板も製作する。

24bitA/D変換基板の設計

HX711を表面実装する。 データレートを80SPSにするためにRATEピンはHIGHにする。

Regulator Power VSUP						
Analog Power AVDD	Regulator Power	VSUP	1 •	16	DVDD	Digital Power
Regulator Control Input VFB 4 13 XO Crystal I/O Analog Ground AGND 5 12 DOUT Serial Data Output Reference Bypass VBG 6 11 PD_SCK Power Down and Serial Clock Input Ch. A Negative Input INNA 7 10 INPB Ch. B Positive Input	Regulator Control Output	BASE	2	15	□ RATE	Output Data Rate Control Input
Analog Ground AGND 5 12 DOUT Serial Data Output Reference Bypass VBG 6 11 PD_SCK Power Down and Serial Clock Input Ch. A Negative Input INNA 7 10 INPB Ch. B Positive Input	Analog Power	AVDD \square	3	14	□ XI	Crystal I/O and External Clock Input
Reference Bypass VBG	Regulator Control Input	VFB	4	13	□ xo	Crystal I/O
Ch. A Negative Input INNA 7 10 INPB Ch. B Positive Input	Analog Ground	AGND \square	5	12	DOUT	Serial Data Output
Chi Ti Tegative input	Reference Bypass	VBG 🗀	6	11	□ PD_SCK	Power Down and Serial Clock Input
Ch. A Positive Input INPA 8 9 INNB Ch. B Negative Input	Ch. A Negative Input	INNA 🗀	7	10	INPB	Ch. B Positive Input
	Ch. A Positive Input	INPA	8	9	INNB	Ch. B Negative Input

秋月で売られているA/D変換基板を参考に、ほぼパクる。使用部品も書いてあるので秋月で部品選定。

部品表

記号	値・定格	型番・備考
C1,C2	10uF 6.3V	
C3,4,5	0.1uF 50V	
Q1	トランジスタ	MMBT3906
R1	20k Ω	
R2	8.2k Ω	
R3 ∼ R6	100 Ω	
U1	A/D コンバータ	HX711
CN1	ピンヘッダ 6 P	
CN2,3	端子台	小型縦型 2 ピンタイプ

使用部品は変更となる場合が御座います。ご了承ください。

ピンアサイン

CN1	名称	機能
1	VDD	電源入力 DC5V
2	DAT	データ出力
	CLK	クロック入力
4	INPB	Bch+ 入力
5	INNB	Bch- 入力
6	GND	GND
CN2	名称	機能
1	AVDD	ロードセル用電源
2	GND	GND
2 CN3	GND 名称	
		GND

基板外形

弊社通販サイトの本商品に関するページはこちらです。

http://oleiguleidonshi.com/ostolog/g/g// 12270/

USB type-Aは制御基板と同様に使用する。

ピン	+5V	D-	D+	GND
用途	VDD	SLK	DOUT	GND
図中CN1	1	2	3	6

TORICA_Sim_Controller.md 2025-08-15

ロードセルのリード線はとても細いです。

配線は次のようにする。

基板	AVDD	GND	INNA	INPA
ロードセル	EXC+(赤)	EXC-(黒)	SIG-(白)	SIG+(緑)

基板にリード線を通す穴(φ2くらい)を4つ開けて、ハンダに無理な負荷がかからないようにする(下図)。ブリッジしたら嫌なので、それなりにパッド同士は離す。

A/D変換基板は4つ製作する。