Special Functions

Throughout this course we will be working with scaled and shifted versions of functions. The general notation for a scaled and shifted function will be as follows

$$f(x) \longrightarrow f(\frac{x-x_0}{b})$$

where constant to represents the shift and constant b represents the scale.

Let us consider an example function, the Gaussian function, to make these concepts more concerte.

$$f(x) = e^{-\pi x^2}$$

Shift:

$$f(x-x_0) = e^{-\pi (x-x_0)^2}$$

Scale:

$$f(x/b) = e^{-\pi \left(\frac{x}{b}\right)^2}$$

The figure below show example shifts and scaled Gussian functions. - 1x2

Note that for positive values of %, the function shifts to the right, while for negative values of xo, the shift is towards me left of origin.

Similarly, for 161 >1 the function expands , and for . 161 < 1 value it shrinks as seen in the compress previous example.

Now, we will consider a number of special functions that will prove to be very useful in representing Physical Structures, such as an aperture or other physical quantities and/or processes.

Unit Step Function

This function is (usually) used to turn other function 'on or aff. It is defined as:

Step(x) =
$$\begin{cases} 0 & x < 0 \\ \frac{1}{2} & x = 0 \\ 1 & x > 0 \end{cases}$$
Step(x+0.5) \Rightarrow Step(x-1)

The step function can be used to make another function single sided. For example: Slep (x)·cos (271x) is only non-yero for $\chi > 0$, as shown in the next figure.

Function Transformations

* Flip

 $f(x) \longrightarrow f(-x)$ argument sign

Transform change onginal

x=0 -> x=0

x=1 -> x=-1

Ex:

Ex:

EX:

Functions symmetric about origin do not change with $f(x) \rightarrow f(-x)$ transfermation.

Note: f(x) -> f(-x) x

> flip around y-axis

 $f(x) \rightarrow -f(x)$

-> flip around x-axis

* Scaling_

 $f(x) \longrightarrow f(bx)$

161 > 1 \rightarrow compress 161 < 1 \rightarrow expand

Ex:

$$\frac{f(x)}{\text{Transform}} \xrightarrow{\text{Original}} \frac{f(2x)}{x=-0.5} \xrightarrow{\text{original}} x=-1$$

Ex:

$$f(x) \rightarrow f(.5x) = f(x/2)$$
Transform
$$x=-2 \rightarrow x=-1$$

$$x=0 \rightarrow x=0$$

$$x=+2 \rightarrow x=+1.5$$

* Shifting and Scaling

f(x) -> f (b.(x-x2))

L> shift

then

Scale coround x)

EX'

$$f(x) \rightarrow f(2(x-1))$$

Transform $\chi = 0$ \longrightarrow $\chi = -2$

 $x = 05 \rightarrow x = -1$

x= 1 -> x=0

 $x = 15 \rightarrow x = 1$

Note that we can make a function left-sided by using Slep(-x).

Note: The step function is discontinuous:

 $\lim_{x\to 0^+} \text{Step}(x) \neq \lim_{x\to 0^-} \text{Step}(x) \neq \text{Step}(0) = \frac{1}{2}$

Such a function is physically not realizable, however, it is still a very useful mathematical tool in practice.

Signum Function

The step function can be defined in terms of the Signum function, denoted by squ(x),

Step (x) = $\frac{1}{2}$ (1+ sgn(x))

This implies the following deft of sgn (x):

$$Sgn(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

Note that the signum function, sgn(x), is also discontinuous.

ling sgn(x) # lim sgn(x)

Bosically, Sgn(X) yields the sign of the argument. This furthin will be important when we define the Fourier Transform of step furthin later in the semester.

Ramp Function

The ramp function is defined as the integral of the Step function as.

$$ramp(x) = \int_{-\infty}^{x} slep(x) dx = \begin{cases} 0 & x < 3 \\ x & x > 0 \end{cases}$$

Note the slope of the ramp ($(\frac{X-X_0}{b})$) is equal to 1/b.

The rectangular function is used often to approximate a number of physical processes in physical ophics such as slik and rectangular apertures. The rectangular function can be defined in terms of a unit step function as

$$9tect(x) = Step(x+\frac{1}{2}) - Step(x-\frac{1}{2})$$
or equivalently
$$9tect(x) = \begin{cases} 1 & |x| < \frac{1}{2} \\ \frac{1}{2} & |x| = 1/2 \\ 0 & |x| > 2 \end{cases}$$

$$9tect(x+\frac{1}{2}) - Step(x-\frac{1}{2})$$

$$9tect(x) = \begin{cases} 1 & |x| < \frac{1}{2} \\ \frac{1}{2} & |x| = 1/2 \\ 0 & |x| > 2 \end{cases}$$

$$9tect(x+\frac{1}{2}) - Step(x-\frac{1}{2})$$

$$9tect(x) = \begin{cases} 1 & |x| < \frac{1}{2} \\ \frac{1}{2} & |x| = 1/2 \\ 0 & |x| > 2 \end{cases}$$

$$9tect(x+\frac{1}{2}) - Step(x-\frac{1}{2})$$

$$9tect(x) = \begin{cases} 1 & |x| < \frac{1}{2} \\ \frac{1}{2} & |x| = 1/2 \\ 0 & |x| > 2 \end{cases}$$

$$9tect(x+\frac{1}{2}) - Step(x-\frac{1}{2})$$

$$9tect(x+\frac{1}{2}) - Step(x+\frac{1}{2})$$

$$9tect(x+\frac{1}{2}) - Step(x+\frac{1}{2$$

Let us consider the area under the rectangular function. We define

Area =
$$A = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = \int_{-161/2}^{161/2+20} dx = \int_{-161/2+20}^{161/2+20} dx =$$

So ho insure that a grechingular function has unit area in general we need to scale it by A. $\frac{1}{\ln 1}$ great $\left(\frac{X-X_0}{D}\right) \longrightarrow \text{Unit area}$,

Triangle Function

The triangle function creates a pulse, which unlike the sect function, is continuous for all values of argument. The triangle function is def^{h} as:

$$tn'(x) = \begin{cases} 0 & |x| > 1 \\ x+1 & 1 \leq x \leq 0 \\ 1-x & 0 \leq x \leq 1 \end{cases}$$

The area under the triangle function is

$$A = \int_{-\infty}^{\infty} b n \left(\frac{x - x_0}{b} \right) = |b|$$

Therefore, a unit area triangle function is def as

$$\frac{1}{|b|}$$
 tri $\left(\frac{x-x_0}{b}\right)$ — Unit Area.

Sinc Function

The sinc function is a very important function and is related to the nect function via the Fourier transform. It is defined as C Gaskill's notation)

$$Sinc(X) = \frac{Sin \pi x}{\pi x}$$

It is interesting to consider the value of sinc function at zero argument value. At first look, it seems that division by zero would cause the function to go to infinity. But a closer inspection reveals

$$\lim_{x\to 0} \operatorname{Sinc}(x) = \lim_{x\to 0} \frac{\operatorname{Sin} \pi x}{\pi x} \to \left(\frac{0}{0}\right)$$

We can apply the L'Hôpital's rule here

$$\lim_{x \to 0} \sin C(x) = \lim_{x \to 0} \frac{\partial \sin \pi x / \partial x}{\partial \pi x / \partial x}$$

$$= \lim_{x \to 0} \frac{\pi \cos \pi x}{\pi}$$

$$= \lim_{x \to 0} \cos \pi x = 1$$

Therefore, we find that: sinc (0) = 1

Note: Many authors use the definition $sinc(x) = \frac{sinx}{x}$, Here we will use the notation of Gaskill due to following normalization property

Area
$$A = \int_{-\infty}^{\infty} sinc\left(\frac{x-x_b}{b}\right) dx = 1b1$$

The sinc function has many important properties that are worth remembering.

Sinc (x) = 0 at $x=\pm 1,\pm 2,\pm 3,\pm 4...$ and of course, the maximum value of Sinc (x) occurs at x=0.

Gaussian Function

The Gaussian function is defined as (Gaskill):

Gaus (1) =
$$e^{-\pi \chi^2}$$

As noted in case of sinc function, this particular definition with a fuctor of T in the argument is preferred due to the following normalization property.

$$A = \int_{-\infty}^{\infty} Gues\left(\frac{x-x_0}{b}\right) dx = 161$$

$$\int_{-\infty}^{\infty} Gues\left(\frac{x}{b}\right) dx = 161$$

$$\int_{-\infty}^{\infty} Gues\left(\frac{x}{b}\right) dx = 161$$

