P2 Simulation Results

George G Vega Yon

Sep 27, 2018

Intro

- ▶ Took the first 2,000 trees from panther
- Ran 4 types of models:
 - Gold Standard (no missing) dat ~ psi + eta + mu + Pi
 - 2. Missing dat ~ psi + eta + mu + Pi
 - Pub Bias (has missing and publication bias) dat ~ mu + psi + Pi
 - 4. Full model (same as before) dat ~ psi + eta + mu + Pi
- ► Each model ran the MCMCs with the following parameteres:

```
mcmc.nbatch <- 1e5
mcmc.burnin <- 2e4
mcmc.thin <- 100
mcmc.nchains <- 4</pre>
```

Moreover, each chain now starts from a randomly chosen point.

Bias

Contents

Bias

Convergence

Coverage

Prediction

01-gold-standard: Small

01-gold-standard: Mid-small

01-gold-standard: Mid-large

01-gold-standard: Large

04-full-model: Small

04-full-model: Mid-small

04-full-model: Mid-large

04-full-model: Large

Contents

Bias

Convergence

Coverage

Prediction

01-gold-standard

02-missing

03-pub-bias

04-full-model

Contents

Bias

Convergence

Coverage

Prediction

01-gold-standard

Missing	psi0	psi1	mu0	m1	Pi	
Right Prior						
[0.1, 0.2)	0.81	0.81	0.93	0.93	0.92	
[0.2, 0.3)	0.85	0.87	0.93	0.93	0.93	
[0.3, 0.4)	0.79	0.87	0.94	0.94	0.92	
[0.4, 0.5]	0.86	0.86	0.95	0.97	0.94	
NA	0.81	0.90	0.94	0.95	0.95	

Table 1: Coverage probability at the 95% level by prior (right/wrong), and proportion of missingness. Estimations with the *right* prior use the same priors as the data generating process, whereas estimations with the *wrong* prior used a prior that had a mean twice as large as the data generating process.

02-missing

Missing	psi0	psi1	mu0	m1	Pi	
Right Prior						
[0.1, 0.2)	0.81	0.83	0.91	0.94	0.92	
[0.2, 0.3)	0.86	0.92	0.90	0.94	0.92	
[0.3, 0.4)	0.80	0.91	0.88	0.97	0.92	
[0.4, 0.5]	0.85	0.94	0.92	0.96	0.95	
NA	0.77	0.94	0.73	0.95	0.95	

Table 2: Coverage probability at the 95% level by prior (right/wrong), and proportion of missingness. Estimations with the *right* prior use the same priors as the data generating process, whereas estimations with the *wrong* prior used a prior that had a mean twice as large as the data generating process.

03-pub-bias

Missing	psi0	psi1	mu0	m1	Pi	
Right Prior						
[0.1, 0.2)	0.95	0.90	0.95	0.93	0.92	
[0.2, 0.3)	0.96	0.94	0.92	0.94	0.93	
[0.3, 0.4)	0.94	0.94	0.95	0.93	0.93	
[0.4, 0.5]	0.93	0.95	0.96	0.97	0.95	
NA	0.94	0.94	0.94	0.95	0.95	

Table 3: Coverage probability at the 95% level by prior (right/wrong), and proportion of missingness. Estimations with the *right* prior use the same priors as the data generating process, whereas estimations with the *wrong* prior used a prior that had a mean twice as large as the data generating process.

04-full-model

Missing	psi0	psi1	mu0	m1	Pi	
Right Prior						
[0.1, 0.2)	0.93	0.92	0.94	0.94	0.93	
[0.2, 0.3)	0.93	0.96	0.90	0.95	0.92	
[0.3, 0.4)	0.90	0.95	0.89	0.95	0.92	
[0.4, 0.5]	0.90	0.97	0.91	0.96	0.95	
NA	0.81	0.95	0.70	0.95	0.95	

Table 4: Coverage probability at the 95% level by prior (right/wrong), and proportion of missingness. Estimations with the *right* prior use the same priors as the data generating process, whereas estimations with the *wrong* prior used a prior that had a mean twice as large as the data generating process.

Prediction

Contents

Bias

Convergence

Coverage

Prediction

01-gold-standard

Random annotations based on a Bernoulli(0.42)

02-missing

Random annotations based on a Bernoulli(0.42)

03-pub-bias

Random annotations based on a Bernoulli(0.42)

04-full-model

Random annotations based on a Bernoulli(0.42)