Name:	Calculus 1432
PSID:	Quiz 2 January 24, 2014
1 point per answer	· From 6. (lnx) + lnx2
1. $\frac{d}{dx} \ln x^2 = \frac{d}{dx} \left(2 \ln x \right) = \frac{2}{3}$	ax dx E
$\frac{d}{dx}e^x = e^{x}$	$= \frac{d}{dx} e^{x^{3} \cdot \ln 4} = 3x^{4} \cdot \ln 4 \cdot e^{x^{3} \cdot \ln 4} = 3x^{4} \cdot \ln 4 \cdot e^{x^{3} \cdot \ln 4}$
3. $\int \sec x dx = \left \ln \left \operatorname{SecX} + \operatorname{tanx} \right \right $	
4. $\frac{d}{dx}4^{x^3} = 4 + 3x^2 - \ln 4$	$\int \frac{x}{x^2 + 1} dx = \frac{1}{2} x + 1 + C.$
Let $f(x)=4^{x} \Rightarrow lnf(x)=x^{3} lng$ $f(x)=3^{2} lng \Rightarrow f(x)=4^{2} lng$ $f(x)=\frac{ln x}{6} dx = \frac{ln x}{6} lng$	Let $u=x^2+1$, $du=2xdx$ $3x^2 \ln 4$ $= \frac{1}{2} \ln u + C = \frac{1}{2} \dots$ 7. $\int \cot x dx = \frac{1}{2} \ln u + C = \frac{1}{2} \dots$
Lot $u = \ln x$, $du = dx$ $\int u du = \frac{u^2}{x^2} + c$ $\int u du = \frac{u^2}{x^2} + c$	I Instinx + C or - Inscx + C.
8. $\frac{d}{dx}x^{(x^5-2x)} = \langle x^5-2x \rangle = \langle x^5-2x \rangle$ Let $f(x) = x^{(x^5-2x)}$. Inf(x) = (x^5-2x) .	-2X) lnx
$\frac{f(x)}{f(x)} = (5x^4 - 2) \ln x + \frac{x^5 - 2x}{x}$	$= \int f(x) = \left[(\zeta x^{4} - z) \ln x + (x^{4} - z) \right] \chi^{(x^{5} - 2x)}$
9. $\int \frac{x^2 - 1}{x^3 - 3x + 1} dx = \frac{1}{3} \ln X^3 - 3x $ Let $u = X^3 - 3x + 1$ $du = 3x - 3$	$\frac{1}{\sqrt{1+C}}$
In July = 1 Inluste	
$\frac{1}{3} \int \frac{dq}{u} = \frac{1}{3} \ln u + C$ $10. \int \frac{1}{\sin x} dx = \int CSCX dX = \int L$	n cssx-cotx + c