SELF-LEARNING ACTIVITY 1

212137

1. What is data analysis?

Data analysis is the process of inspecting, cleansing, transforming, and modeling data to discover useful information, make conclusions, and support decision-making. It involves organizing, cleaning, and studying data to understand patterns or trends, and helps answer questions like "What is happening?" or "Why is this happening?".

2. Why data analysis?

Data analysis is important because it empowers informed decision-making, identifies trends and patterns, optimizes processes, and drives innovation, ultimately leading to better outcomes and competitive advantages.

3. What are the data analysis tools?

Data collection and analysis tools are defined as a series of charts, maps, and diagrams designed to collect, interpret, and present data for a wide range of applications and industries.

- Excel
- RStudio
- Looker
- R
- Data visualization
- Talend
- SAS
- Google Analytics

4. What are the types of data analysis?

- Descriptive analysis
- Prescriptive analysis
- Diagnostic analysis
- Predictive analysis
- Quantitative analysis
- Qualitative research

5. Discuss data analysis process

The data analysis process involves

- Defining the problem
 - Clarify the Goal: What questions are you trying to answer or what problem are you trying to solve?
 - o Set Specific Objectives: What specific insights do you need to gain?
- Collecting and preparing data

Data Collection

- o Identify Data Sources: Determine where the relevant data can be found (databases, files, APIs, etc.)
- Gather the Data: Collect the necessary data, ensuring it is accurate and complete.
 Data Preparation
- o Data Cleaning: Address inconsistencies, errors, and missing values in the data.
- O Data Transformation: Convert data into a suitable format for analysis (e.g., standardization, normalization).
- O Data Integration: Combine data from multiple sources if needed.
- Analyzing it to find patterns
 - Descriptive Analysis Summarize and describe the data using measures like mean, median, and standard deviation.
 - o Diagnostic Analysis Identify the root causes of specific patterns or outcomes.
 - o Predictive Analysis Use historical data to forecast future trends or outcomes.
 - Prescriptive Analysis Recommend actions based on analysis to achieve desired outcomes.
- Interpreting the results
 - o Draw Meaningful Insights: Analyze the results and identify key findings and patterns.
 - Formulate Conclusions: Based on the analysis, draw conclusions and answer the initial questions.
- Visualizing findings for effective communication and decision-making.
 - Create Visualizations: Use charts, graphs, and other visuals to communicate findings effectively.
 - O Present Findings: Share the results and conclusions with stakeholders in a clear and concise manner.