

卷積神經網路 Convolutional Neural Network

國立東華大學電機工程學系楊哲旻

Outline

- 1 模型架構
- 2 特點
- 3 卷積層
- 4 卷積與填充
- 5 自動提取特徵
- 6 池化層
- 7 全連接層
- 8 超參數
- 8 卷積神經網路實作

深度學習 - 卷積神經網路 01. 模型架構

卷積神經網路為深度學習的分類模型,架構為一輸入層、數個隱藏層與一輸出層所組成,其中隱藏層包含有卷積層、池化層與全連接層。它與多層感知器不同點是並**非所有神經元會全部連結**。

訓練過程是從訓練集中以梯度下降法來確定權重與偏差。

→ 卷積神經網路概述:卷積層(Convolution layer)

→ 卷積神經網路概述:卷積層(Convolution layer)

對不同影像上,若相同的特徵出現在不同的區域依 然可以找到,因共用相同的參數

權重共享

○ 卷積神經網路概述:池化層(Pooling layer)

影像作再取樣(縮小或放大)不會改變物件。我們可以對像素進行欠取樣 (Undersampling)使影像大小更小,讓運算數據量更少

Undersampling

卷積層與池化層可以多層,最終提取出來的特徵皆由全連接層連接至輸出層

深度學習 - 卷積神經網路 03. 卷積層

卷積層(Convolution layer)

卷積層如何利用特徵來判斷?

深度學習 - 卷積神經網路 04. 卷積與填充

卷積層(Convolution layer)

瀘波器

影像局部區域

$$[(-1) \times (-1) + (-1) \times (-1) \times (-1) + (-1) \times (-1) \times (-1) + (-1) \times (-1) \times$$

瀘波器

遮罩(Mask)或稱窗口 在原始影像上移動,<u>濾波器</u>(Filter)或稱<u>卷積核</u>內的 值對遮罩內的值作內積計算,這過程稱為卷積(Convolution)或稱旋積

- 深度(Depth): k個濾波器作卷積,深度即為k
- 步長(Stride):每次移動遮罩的距離
- 零填充(Zero-padding):原始影像周圍補上零

影像

- ▶ 濾波器大小:3×3
- 卷積後得到的圖像大小為:3×3

步長為1

 $W_{output} = (W_{input} - F + 2P)/S + 1$ = $(8 - 3 + 2 \times 0)/1 + 1 = 6$

> 沒有做填充

- Woutput 是卷積後特徵圖的寬(高)度
- W_{input}是卷積前圖像寬(高)度
- F是濾波器的寬(高)度
- P是填充補幾圈
- S是步長

	-1	<u>-1</u>			
	-1)	<u>(1)</u>	1		
	<u>-1</u>		<u>-1</u>		
瀘波器 /					

■ **3**定少技

未做填充的影像其特徵圖將變小

-1	-1	-1	-1/	-1	-1	-1	-1
-1	-1	-1	1	1	1	-1	-1
-1	-1	1	/-1	-1	1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1
-1	-1	-1	1	-1	-1	-1	-1
-1	-1	1	-1	-1	-1	-1	-1
-1	1	1	1	1	1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1

7/9	8/9	7/9	6/9	5/9	6/9
1	6/9	4/9	5/9	4/9	6/9
7/9	6/9	7/9	5/9	6/9	7/9
7/9	8/9	5/9	6/9	7/9	8/9
7/9	3/9	3/9	4/9	5/9	6/9
7/9	6/9	6/9	7/9	7/9	6/9

特徵圖

影像

深度學習 - 卷積神經網路 05. 自動提取特徵

濾波器

具有特徵的濾波器內的權重其數值是如何得到?

其實一開始都設置初始權重,因此一開始特徵並不是最好的特徵,因此模型預測與標籤所計算的誤差會非常高。但透過梯度下降法更新濾波器的權重,隨著訓練多次迭代,它會自動趨近於它認為最好的特徵,這CNN該特點稱為自動提取特徵

深度學習 - 卷積神經網路 06. 池化層

日

池化層(Pooling layer)

- 局部最大池化(Max Pooling)
- 局部平均池化(Average Pooling)
- 局部隨機池化(Stochastic Pooling)
- 全域最大池化(Global Max Pooling)
- 全域平均池化(Global Average Pooling) [1]
 - ▶ 池化後的深度沒變
 - ▶ 全域池化滑窗大小與整張特徵圖的大小一樣大

[1] Min Lin, Qiang Chen, Shuicheng Yan, "Network In Network," arXiv:1312.4400, 2014.

特徵圖

0.5	0.9	0.1	0.4	0	1
1	0	0.4	0	0.5	0
0.4	0.8	0.3	1	0.7	0.9
0.2	0.6	0.5	0.2	0.1	0.3
1	0.7	1	0.1	0.4	0.8
0	0.8	0.2	0	0.3	1

Max Pooling (Size: 2×2, Stride: 2)

1.0	0.4	1.0
0.8	1.0	0.9
1.0	1.0	1.0

Average Pooling (Size: 2×2, Stride: 2)

深度學習 - 卷積神經網路 07. 全連接層

將所有特徵圖變為一維度,並組合在一起來進行輸出分類。通常在全連接層與輸出層間會使用Softmax函數來輸出機率,使所有類別的機率和為1

$$y_j = f_{Softmax}(z_j) = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}}$$
 for $j = 1, ..., K$

$$\frac{e^{z_1}}{e^{z_1} + e^{z_2} + e^{z_3}} = \frac{24.5}{24.5 + 164.0 + 0.15} = 0.13$$

$$\frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}} = \frac{164.0}{24.5 + 164.0 + 0.15} = 0.87$$

$$\frac{e^{z_{35}}}{e^{z_1} + e^{z_2} + e^{z_3}} = \frac{0.15}{24.5 + 164.0 + 0.15} = 0.00$$

貓

 z_1 3.2 e^{z_1} 24.5 z_2 5.1 e^{z_2} 164.0

0.13

Normalization **0.87**

0.00

+ z_3

-1.7 e^{z_3} (

深度學習 - 卷積神經網路 08. 超參數

卷積神經網路常用的超參數

- 學習速率 (Learning Rate)
- 批量 (Batch)
- 迭代次數 (Number of iterations)
- 正則化懲罰係數 (Regularization)
- 隱藏層層數與神經元數量(卷積層、池化層與全連接層)
- 丟棄法 (Dropout)
- 卷積層的濾波器大小與數量
- 池化層的濾波器與其大小

卷積神經網路 – 實作

卷積神經網路 - 實作

Cifar10

Cifar10 Dataset

- 由 Alex Krizhevsky, Vinod Nair 和 Geoffrey Hinton 蒐集的資料集
- 60000張32x32彩色圖像
- 包含十種類別:飛機、汽車、鳥、貓、鹿、狗、青蛙、 馬、船 與 卡車
- 訓練集為50000張,其中每個類別各5000張;測試集 為10000張,其中每個類別各1000張

應用端

新資料

卷積神經網路 - 實作

Cifar10

airplane

bird

cat

deer

dog

frog

horse

ship

truck

問題

- 如果影像的資料集太小, 該如何解決呢?
- 超參數該如何選擇?

作業一

- 請使用資料增量方式以提高模型的預 測能力
- 嘗試訓練Cifar100建立CNN分類器

