ALGEBRA Chapter 20

Desigualdades e Inecuaciones de Primer Grado

MOTIVATING STRATEGY

¿QUÉFES UNO PESEDEDAD?

Es una relación de orden que se establece entre dos números reales que tienen diferente valor.

$$a; b \in \mathbb{R}/a \neq b$$

a>b , cuando la diferencia a-b es positiva

V

a < b , cuando la diferencia a - b es negativa

<u>Símbolos de las</u> <u>relaciones de orden:</u>

- < menor que
- > mayor que
- menor o igual que
- mayor o igual que

RECTA NUMÉRICA

Recta Numérica

Números enteros negativos

Números enteros positivos

INTERVALOS

Los intervalos son subconjuntos de los números reales que se pueden representar gráficamente en la recta numérica.

1. Intervalo abierto:

$$\langle a, b \rangle = \{ x \in \mathbb{R} / a < x < b \}$$

$$x \in]a, b[=\langle a, b \rangle]$$

2. Intervalo cerrado:

$$[a,b] = \{x \in \mathbb{R}/a \le x \le b\}$$

3. Intervalo semiabierto:

$$I. \quad [a,b] = \{x \in \mathbb{R}/a \le x < b\}$$

$$x \in [a, b[= [a, b)]$$

II.
$$]a,b] = \{x \in \mathbb{R}/a < x \le b\}$$

$$x \in]a,b] = \langle a,b]$$

INTERVALOS NO ACOTADOS:

PROPIEDADES FUNDAMENTALES:

 $I. \quad \forall a, b, c \in \mathbb{R}$

$$Si \ a > b \quad \land \quad b > c \quad \Longrightarrow \quad a > c$$

III. $\forall a, b \in \mathbb{R}$ y $m \in \mathbb{R}^+$, se cumple:

$$a > b \implies am > bm$$

$$a > b \implies \frac{a}{m} > \frac{b}{m}$$

II. $\forall a, b \in \mathbb{R}$ $y m \in \mathbb{R}$, se cumple:

$$a > b \implies a + m > b + m$$

$$a > b \implies a - m > b - m$$

IV. $\forall a, b \in \mathbb{R}$ y $m \in \mathbb{R}^-$, se cumple:

$$a > b \implies am < bm$$

$$a > b \implies \frac{a}{m} < \frac{b}{m}$$

INECUACIONES DE PRIMER GRADO

Las desigualdades de las formas:

$$|ax+b>0|$$

$$|ax+b<0|$$

$$|ax+b\geq 0|$$

$$|ax+b\leq 0|$$

 $con \ a,b \in \mathbb{R} \ (a \neq 0)$

o que se reducen a ella mediante transformaciones equivalentes, se llaman <u>INECUACIONES LINEALES EN UNA VARIABLE REAL</u>.

Si
$$A = [2; 7]$$
 $y B = \langle 4; 11 \rangle$,

halle $A \cap B$

$$A \cap B = \langle 4; 7 \rangle$$

Problema 2

Halle el conjunto solución de

$$\frac{3x-1}{4}-\frac{x-1}{3}\leq \frac{3}{4}$$

Resolución

$$\frac{3x - 1}{4} - \frac{x - 1}{3} \le \frac{3}{4}$$

mcm(4,3) = 12

$$12\left(\frac{3x-1}{4}\right)-12\left(\frac{x-1}{3}\right)\leq 12\left(\frac{3}{4}\right)$$

$$3(3x-1)-4(x-1) \le 9$$

$$9x - 3 - 4x + 4 \le 9$$

$$5x + 1 \le 9$$

$$x \leq \frac{8}{5}$$

$$\therefore x \in \langle -\infty; \frac{8}{5}]$$

04

Problema 3

Indique el intervalo para $\frac{x}{4} - 1$ si $x \in [8; 24)$

$$x \in [8; 24) \longrightarrow 8 \le x < 24$$

$$\begin{array}{c|c}
8 \leq x < 24 \\
2 \leq \frac{x}{4} < 6 \\
-1 \\
1 \leq \frac{x}{4} - 1 < 5
\end{array}$$

: El intervalo es [1; 5)

Si $x \in [4; 6]$, a qué intervalo pertenece la expresión

$$\frac{3x+2}{2}$$

$$x \in [4; 6] \qquad \longrightarrow \qquad 4 \le x \le 6$$

$$4 \le x \le 6$$

$$12 \le 3x \le 18$$

$$+2$$

$$14 \le 3x + 2 \le 20$$

$$\div 2$$

$$7 \le \frac{3x + 2}{2} \le 10$$

$$\therefore \frac{3x+2}{2} \in [7;10]$$

Resuelva

$$5(x-2) + 2(x-1) < 4(x-1)$$

sabiendo que el mayor valor entero de x representa la edad de Luis hace 15 años. ¿Cuántos años tiene actualmente?

$$5(x-2)+2(x-1)<4(x-1)$$

$$5x - 10 + 2x - 2 < 4x - 4$$

$$7x - 12 < 4x - 4$$

$$x < \frac{8}{3} = 2,66 \dots$$

$$x \in \langle -\infty; 2, 66 \dots \rangle$$

: actualmente Luis tiene 17 años.

Problema 6

Calcule el menor valor entero de x que verifica

$$\frac{2x+2}{5} + \frac{3x-2}{4} + \frac{4x+1}{3} \ge 5$$

Resolucióna

$$\frac{2x+2}{5} + \frac{3x-2}{4} + \frac{4x+1}{3} \ge 5$$

mcm(5,4,3) = 60

$$60\left(\frac{2x+2}{5}\right) + 60\left(\frac{3x-2}{4}\right) + 60\left(\frac{4x+1}{3}\right) \ge 60(5)$$

$$12(2x+2)+15(3x-2)+20(4x+1)\geq 300$$

$$24x + 24 + 45x - 30 + 80x + 20 \ge 300$$

$$149x + 14 \ge 300$$

$$x \ge \frac{286}{149} = 1,92$$
 $x \in [1,92;+\infty)$

: El menor valor entero que verifica x es 2.

◎1

Calcule el conjunto solución

$$3(x+1) + 3(x-2) > 7(x-1) + 2$$

$$3(x+1) + 3(x-2) > 7(x-1) + 2$$

$$3x + 3 + 3x - 6 > 7x - 7 + 2$$

$$6x - 3 > 7x - 5$$

$$\therefore CS = \langle -\infty ; 2 \rangle$$

Si 4x + 2 < 5x < 4x + 3, conjunto halle el solución

$$4x + 2 < 5x < 4x + 3$$

$$(ii)$$

Efectuando por partes:

$$i$$
 $4x + 2 < 5x$

$$\wedge$$
 ii. $5x < 4x + 3$

$$: CS = \langle 2; 3 \rangle$$

◎1