

Question (1):-

1) For a single layer : no of generated points = 360 = 1000 Point/layer

Total no of points = 12 Layers X 1000 Point/ Layer = 12 000 Point

2) Degree interval = (-30)-(-6) = 2.18°

3) loser layer that will hit ground Pirst is 12

The distance (r) = 1.45 = 2.9 m rsin(w)

1.45m dista

4) laser layer that will hit ground last is 1

The distance (r) = 1.45 - 13.87 m

5) @ layer 1 :- r = 13.87 m (rejected)

@ layer 2 :- r = 10.42 m (rejected)

@ layer 3: r= 8.35 m (Accepted)

a 10 layers only will produce points

		DATE
Question (2):-	, , ,	
1] Model using P1, Ps	0-	
L Equation :-	-3.52 + 2.5y + 4.6 = 352 - 25y - 46=9	
L. Distances :-	$\begin{array}{c} P1 \rightarrow d=0 \\ P2 \rightarrow d=0 \\ P3 \rightarrow d=0.3 \\ P4 \rightarrow d=0.35 \end{array}$	P ₅ d ₋ d ₋ 0 P ₆ d ₋ 0.23 P ₇ d ₋ 0.7 P ₈ d ₋ 0.8
Lo no 2 outlers	= 2	
2] Model using P2, P7	1-	
L. Equation:	-3.12+3.1y+0.65	
P3_	d=0 P6. d=0.14 P7	→ d= 0.42 → d= 0.28 → d= 0 → d= 0.28
Ly no of outliers	= 2	

3] For the best model, we should consider all After checking all cases, we got that:	DATE
3) For the best model, we should consider all	28 (8C2) Cases.
The lost on of outliers are 1	140
The lost on of outliers are 1 The models that will halk the least on of Paradel using Pa and Paradel Using Pa and Paradel Using Pa and Paradel Parade	
-> Number of iterations needed = 28-2-	+1 = 27
4] least squares model:- [b] = (xTx)-1 xTy where:-b.	interes at
	- Hope
X ^T X = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3.1
	1 5.6
22 July 200	1 7.2
= 8 44.6	[1 8.5]
44.6 269.1	A Cale

1.0999 x - y - 0.553 = 0 Line equation :-

Distances :- P1 _ d= 0.24 PS _ d= 0.26 P2 - d= 0.04 P6 -> 2 - 0.09 P3 -> d = 0.23 P7 -> 1= 0.25 P4 - d = 0.57 P8 - d- 0.06

as we have I outlier

Combination of points			oints	Line I	Equation	Distance				Number of				
Point 1		Point 2		Slope	Y-intercept	P1	P2	P3	P4	P5	P6	P7	P8	outliers
3.1	2.5	4.1	3.9	1.400	-1.840	0.00	0.00	0.30	0.35	0.00	0.23	0.72	0.79	2
3.1	2.5	4.9	4.5	1.111	-0.944	0.00	0.19	0.00	0.79	0.48	0.31	0.04	0.13	2
3.1	2.5	5.1	5.9	1.700	-2.770	0.00	0.15	0.54	0.00	0.38	0.66	1.25	1.51	4
3.1	2.5	5.6	6	1.400	-1.840	0.00	0.00	0.30	0.35	0.00	0.23	0.72	0.79	2
3.1	2.5	6.1	6.3	1.267	-1.427	0.00	0.08	0.17	0.54	0.21	0.00	0.43	0.40	2
3.1	2.5	7.2	7	1.098	-0.902	0.00	0.20	0.02	0.81	0.51	0.34	0.00	0.18	2
3.1	2.5	8.5	8.7	1.148	-1.059	0.00	0.17	0.04	0.72	0.41	0.23	0.14	0.00	2
4.1	3.9	4.9	4.5	0.750	0.825	0.52	0.00	0.00	1.00	0.78	0.72	0.62	1.20	6
4.1	3.9	5.1	5.9	2.000	-4.300	0.27	0.00	0.45	0.00	0.40	0.72	1.39	1.79	5
4.1	3.9	5.6	6	1.400	-1.840	0.00	0.00	0.30	0.35	0.00	0.23	0.72	0.79	2
4.1	3.9	6.1	6.3	1.200	-1.020	0.13	0.00	0.23	0.51	0.19	0.00	0.40	0.31	1
4.1	3.9	7.2	7	1.000	-0.200	0.28	0.00	0.14	0.71	0.42	0.28	0.00	0.28	2
4.1	3.9	8.5	8.7	1.091	-0.573	0.21	0.00	0.18	0.61	0.31	0.15	0.19	0.00	1
4.9	4.5	5.1	5.9	7.000	-29.800	1.50	0.71	0.00	0.00	0.48	0.93	1.92	2.97	6
4.9	4.5	5.6	6	2.143	-6.000	0.79	0.47	0.00	0.41	0.00	0.33	1.03	1.49	5
4.9	4.5	6.1	6.3	1.500	-2.850	0.39	0.33	0.00	0.61	0.25	0.00	0.53	0.67	3
4.9	4.5	7.2	7	1.087	-0.826	0.03	0.18	0.00	0.80	0.50	0.34	0.00	0.19	2
4.9	4.5	8.5	8.7	1.167	-1.217	0.07	0.22	0.00	0.76	0.44	0.26	0.12	0.00	2
5.1	5.9	5.6	6	0.200	4.880	2.94	1.77	1.33	0.00	0.00	0.20	0.67	2.08	5
5.1	5.9	6.1	6.3	0.400	3.860	2.41	1.49	1.23	0.00	0.09	0.00	0.24	1.34	4
5.1	5.9	7.2	7	0.524	3.229	2.08	1.31	1.15	0.00	0.14	0.11	0.00	0.90	4
5.1	5.9	8.5	8.7	0.824	1.700	1.35	0.91	0.95	0.00	0.24	0.33	0.49	0.00	4
5.6	6	6.1	6.3	0.600	2.640	1.71	1.03	0.93	0.17	0.00	0.00	0.03	0.82	4
5.6	6	7.2	7	0.625	2.500	1.64	0.99	0.90	0.18	0.00	0.01	0.00	0.75	4
5.6	6	8.5	8.7	0.931	0.786	0.86	0.51	0.62	0.27	0.00	0.12	0.36	0.00	3
6.1	6.3	7.2	7	0.636	2.418	1.60	0.95	0.87	0.20	0.02	0.00	0.00	0.74	4
6.1	6.3	8.5	8.7	1.000	0.200	0.57	0.28	0.42	0.42	0.14	0.00	0.28	0.00	3
7.2	7	8.5	8.7	1.308	-2.415	0.52	0.58	0.31	1.00	0.66	0.45	0.00	0.00	5