Лекція №13

Семантика контекстно-вільних мов і генерація вихідного коду

Способи визначення семантики мов програмування

Розрізняють формальну і неформальну семантику.

Формальна семантика (для побудови компіляторів) – це зміст (сенс) синтаксичних правил вхідної мови, що виражені в термінах вихідної мови та в діях по формуванню значень вихідної мови.

Неформальна семантика (для користувача) – це зміст (сенс) речень вхідної мови, що виражений в термінах речень вихідної мови.

В якості метасемантичної мови може бути або спеціалізована метасемантична мова, або інша мова програмування. Серед відомих метасемантичних мов можна назвати:

- 1) дворівневі або w-граматики;
- 2) системи продукцій;
- 3) віденську метамову;
- 4) атрибутні граматики (розширений атрибутний метод).
- 1. Дворівневі або w-граматики використовувалися для опису семантики мови АЛГОЛ-68 на основі використання метаправил, які дозволяють описати контекстно-залежні характеристики мови у вигляді правил КВ-граматики.
- 2. Система продукцій дозволяє сформувати породжуюче правило, яке визначає семантику на основі контекстно-залежних характеристик мови.
- 3. Віденська метамова дозволяє описати процедуру, що породжує речення на деякій об'єктній мові абстрактної машини, інтерпретуючи яку можна згенерувати код для конкретного комп'ютера. Така метамова використовувалася для реалізації компілятора мови PL-1.
- 4. Метод атрибутних граматик оснований на тому, що правила КВ-мови доповнюються атрибутами, здійснивши обчислення яких можна отримати вихідну програму. Атрибути приписуються нетерміналам і можуть бути успадкованими (спадкування атрибутів відбувається зверху донизу) і синтезованими (синтез атрибутів відбувається знизу вгору).

Внутрішнє подання дерева розбору

Синтаксис:

- 1. $\langle onepatop \rangle \rightarrow \langle smihha \rangle := \langle вираз \rangle$
- 2. $\langle Bира3 \rangle \rightarrow \langle Bира3 \rangle \langle 30д \rangle \langle Tepm \rangle$
- 3. $\langle Bupa3 \rangle \rightarrow \langle Tepm \rangle$
- **4**. <**3**0Д> → +
- 5. <30л> → −
- 6. $\langle \text{терм} \rangle \rightarrow \langle \text{змінна} \rangle$
- 7. $\langle \text{терм} \rangle \rightarrow (\langle \text{вираз} \rangle)$
- 8. $\langle 3Mihha \rangle \rightarrow A$
- 9. $\langle 3MiHHa \rangle \rightarrow B$
- 10. \langle 3мінна $\rangle \rightarrow C$
- 11. <змінна $> \rightarrow D$

При побудові дерева розбору розрізняють прості вузли, що складаються із одного нетерміналу, і складні, що складаються із декількох компонент.

У внутрішньому поданні дерево розбору часто подається в вигляді цілочисельного вектора. Елементи такого вектора мають наступний зміст:

- додатне ціле число є номером правила;
- від'ємне ціле число є посиланням (індексом елемента вектора, в якому розміщується номер потрібного правила).

Подання дерева розбору у вигляді числового вектора називається лінійною формою подання дерева розбору.

Порядок побудови лінійної форми з посиланнями

- 1. Дерево розбору проходять зліва-направо, знизу-вверх по ланцюжкам, які ведуть до нелівих нетерміналів.
- 2. При досягненні нелівого нетерміналу в вектор розбору (назвемо його вектором RAS) виписуються номери правил, що йдуть зверху-вниз. Якщо інших нелівих нетерміналів у даному правилі більше немає, то подальший підйом вверх можливий тільки в тому випадку, коли шлях веде до нелівої компоненти або аксіоми граматики.
- 3. Якщо складний вузол містить декілька нелівих компонент, то кожній нелівій компоненті ставиться у відповідність посилання, причому порядок посилань нумерується справа наліво.
- 4. Останнім елементом вектора RAS ϵ посилання на аксіому граматики.

												LRAS
1	2	3	4	5	6	7	8	9	10	11	12	13
4	6	10	2	-2	-1	3	6	9	1	-4	8	-10

Довжина вектора RAS для розглянутого вище дерева дорівнює 13-ти елементам (LRAS=13).

Види семантичної відповідності

- 1. Проста відповідність на вихід передається один символ або рядок символів вихідної мови.
- 2. Відповідність типу посилання (клауза) рекурсивний спуск по дереву розбору.
- 3. Проста функціональна відповідність значення або спосіб обробки нетермінала ϵ функцією його входження в праву частину правила.

Приклад.

```
Для нетерміналу <зод> при обробці правил 

<множник> → <зод><число> 

та 

<вираз> → <вираз><зод><терм> 

повинні бути згенеровані різні команди вихідної мови.
```

4. Складна функціональна відповідність – семантика обробки нетерміналу визначається дальнім контекстом.

Приклад.

В правилі <змінна>:=<вираз>, змінна і вираз можуть бути різних типів (дійсних, цілих, тощо) і, відповідно до цих типів, повинні бути згенеровані різні команди вихідної програми.

Проста метасемантична мова

Проста метасемантична мова – це множина семантичних визначень, які описуються трьома простими видами об'єктів і які ставляться у відповідність кожному синтаксичному правилу.

Семантичне визначення – це опис відповідності між кожним правилом (іноді конструкцією) вхідної мови та конструкцією (-ями) (фрагментом коду) вихідної мови, а також опис дій, що виконують семантичний аналіз та генерацію коду, для даного правила граматики.

Розглянемо граматику простої метасемантичної мови.

- 1. \langle семантичне визначення $\rangle \rightarrow \langle \langle$ сукупність об'єктів $\rangle \rangle$
- 2. $\langle \text{сукупність об'} \in \text{ктів} \rangle \rightarrow \langle \text{об'} \in \text{кт} \rangle$
- 3. $\langle \text{сукупність об'єктів} \rangle \rightarrow \langle \text{об'єкт} \rangle \langle \text{сукупність об'єктів} \rangle$
- 4. <об'єкт $> \rightarrow <$ простий об'єкт>
- 5. <об'єкт $> \rightarrow <$ посилання>
- 6. <об'єкт $> \rightarrow <$ розділювач>
- 7. $\langle \text{простий об'} \epsilon \text{кт} \rangle \rightarrow \langle \text{рядок символів} \rangle$
- 8. <рядок символів $> \rightarrow <$ символ>
- 9. <рядок символів $> \rightarrow <$ символ> <рядок символів>
- 10. <посилання> → [<клауза>]
- 11. <клауза> → <ціле>
- 12. <ціле> → <номер нетермінальної компоненти правої частини правила, рахуючи справа наліво>
- 13. <розділювач> →
- 14. <розділювач> $\to \alpha$

Порядок слідування клауз (посилань для спуску по дереву) в семантичному визначенні задає порядок розбору.

Приклад:

Семантичне визначення для даного правила може бути, наприклад, таким: $\{[3][2][1]\}$ або $\{[3][1][3][1][2]\}$.

Повторення клаузи у семантичному визначенні означає повторний спуск по піддереву вказаного нетерміналу.

Призначення розділювачів:

- _ розділення вихідного тексту в межах рядка;
- α перехід на новий рядок.

Приклад фрагменту вихідного коду на мові асемблера і відповідного йому семантичного визначення:

$$\begin{array}{ccc} \text{MOV AX,A} & \leftrightarrow & \{\alpha \text{MOV_AX,A}\alpha \text{MOV_B,AX}\} \\ \text{MOV B,AX} & \end{array}$$