Пусть X-граф на вершинах $x_1...x_n$.

Обозначим за X_i - граф, который мы получили из графа удалением всех рёбер, инцидентных x_i и добавлением всех нерёбер, инцидентных x_i .

Пусть у нас есть имеется множество непомеченных графов $X_1...X_n$ (Под непомеченными графами имеется ввиду, что мы знаем их с точностью до изоморфизма).

Мы хотим узнать, при каких n мы всегда можем однозначно восстановить X по этому множеству.

При n=4 это неверно.

Основной результат:

Теорема 1. Пусть $n \neq 0 \pmod{4}$. Тогда если X и X' - графы на вершинах $x_1, ..., x_n$, причём при $1 \leq i \leq n$ $X_i \cong X'_i$, то $X \cong X'$.

С помощью чего мы это всё доказываем?

Пусть $f:\mathbb{Z}_2^k\to\mathbb{R}$, тогда её преобразование Фурье - это $\widehat{f}:\mathbb{Z}_2^k\to\mathbb{R},$ определённое как

$$\widehat{f}(X) = \sum_{Y} (-1)^{XY} f(Y)$$

Также при $\Gamma \subset \mathbb{Z}_2^k$ определим $\overline{f}: \mathbb{Z}_2^k \to \mathbb{R}$ как

$$\overline{f}(Y) = \sum_{Y \in X + \Gamma} f(X)$$

Пемма 1. Линейное преобразование $f \mapsto \widehat{f}$ обратимо тогда и только тогда, когда $\widehat{\chi}_{\Gamma}(X) \neq 0$ при всех $X \in \mathbb{Z}_2^k$.

Тепрь пусть V_n - это множество всех формальных линейных комбинаций $\sum_X a_x X$, $a_x \in \mathbb{R}$, где X пробегает множество всех графов на вершинах $x_1, ..., x_n$.

Пусть $\phi: V_n \to V_n$ - это линейное преобразование, определённое как

$$\phi(X) = X_1 + \dots + X_n,$$

где X_i - помеченные графы, определённые выше.

Лемма 2. ϕ обратимо тогда и только тогда, когда $n \neq 0 \pmod{4}$

Открытые вопросы:

Верно ли это при $n=0\ (mod\ 4)$ и $x\geq 8?$

Есть ли доказательство нашего основного результата, которое явно строит X?

Похожая гипотеза:

Верно ли тоже то же самое для графов $X_1,...,X_n$, которые мы получаем удалением вершин $x_1,...,x_n$ соответственно из графа X?