Universidad Nacional del Altiplano - FINESI

Estadística Computacional

Docente: Ing. Torres Cruz Fred Estudiante: Ruelas Yana Nestor Ademir Código: 230868

Fecha: Puno, 4 de mayo de 2025

Interfaz Visual del Método de Solución

1. Descripción del Problema

Se ha implementado una aplicación para resolver un problema de optimización lineal. Este tipo de problema busca maximizar o minimizar una función lineal sujeta a restricciones también lineales.

En nuestro caso, el problema tiene la forma:

- Maximizar $z = a \cdot x + b \cdot y$
- Sujeto a:
 - $x + y \le c$ (restricción combinada)
 - $x \le x_{\text{máx}}$ (límite superior de x)
 - $y \le y_{\text{máx}}$ (límite superior de y)
 - $x, y \ge 0$ (no negatividad)

Este modelo puede representar, por ejemplo, la distribución öptima de recursos entre dos actividades.

2. Framework Utilizado: Flask

- Flask es un microframework web en Python.
- Es liviano, sencillo y muy flexible, ideal para proyectos pequeños y prototipos rápidos.
- Permite manejar formularios, procesar entradas del usuario y mostrar resultados dinámicos.
- Fue elegido por su facilidad de integración con HTML y su curva de aprendizaje baja.
- El archivo principal se llama app.py y define las rutas, la lógica del cálculo y el renderizado de resultados.

3. Interfaz Visual Desarrollada

- Se diseñó una página web con HTML que permite al usuario ingresar los valores de entrada:
 - ullet Coeficientes de la función objetivo: a y b
 - $\bullet\,$ Límite de la restricción combinada: c
 - ullet Valores máximos permitidos para x y y
- Al enviar el formulario, Flask procesa los datos y calcula el valor máximo de z y el punto (x, y) donde se alcanza.
- La solución se presenta de forma clara directamente en la misma página.

Optimización Lineal
Maximizar: z = a·x + b·y
Restricciones: • x ≥ 0 • y ≥ 0 • x ≤ x_max • y ≤ y_max • x + y ≤ c
Coeficiente a (de x):
Valor del coeficiente de x en la función objetivo
Coeficiente b (de y):
Valor del coeficiente de y en la función objetivo Constante c (para $x + y \le c$):
Límite superior para la suma de x e y
Límite máximo de x:
Valor máximo que puede tomar x Límite máximo de y:
Lime manife de y.
Valor máximo que puede tomar y
• Calcular Óptimo

4. Ejemplo de Cálculo

■ Supongamos los siguientes valores:

•
$$a = 3, b = 2, c = 8, x_{\text{máx}} = 5, y_{\text{máx}} = 6$$

- El programa calcula los vértices factibles de la región definida por las restricciones.
- Se evalúa la función objetivo z = 3x + 2y en cada vértice.
- \blacksquare Se selecciona el punto donde zalcanza su máximo valor.
- Resultado:
 - Máximo valor de z: 21
 - \bullet En el punto (5,3)

5. Conclusión

- La implementación con Flask permitió desarrollar una interfaz funcional y sencilla para resolver problemas de optimización lineal.
- Se logra integrar Python con HTML para brindar una experiencia de usuario interactiva.
- El método es replicable y extensible a más restricciones o variables si se desea mejorar.
- Este proyecto es un ejemplo claro de cómo la estadística computacional se aplica en la resolución de problemas reales.