Diabetes Bayesian

Rory Quinlan

```
library(MASS)
library(ggplot2)
library(gridExtra)
table <- read.table("C:\\Users\\roryq\\Downloads\\azdiabetes.dat", header = T)
dia <- table[table$diabetes == "Yes", 1: dim(table)[2]-1]
ndia <- table[table$diabetes == "No",1:dim(table)[2]-1]
colnames(dia)</pre>
```

```
## [1] "npreg" "glu" "bp" "skin" "bmi" "ped" "age"
```

```
# MC estimates for diabetes parameters
#prior parameters
ybar <- apply(dia, 2, mean)</pre>
Sigma <- cov(dia)
n <- dim(dia)[1]</pre>
mu0 <- ybar
nu0 <- 9
L0 <- S0 <- Sigma
theta_ad<-sigma_ad <- NULL</pre>
set.seed(11000)
for(s in 1:1000){
#Update theta
Ln <- solve(solve(L0) + n * solve(Sigma))</pre>
 mun <- Ln %*% (solve(L0) %*% mu0 + n * solve(Sigma) %*% ybar)</pre>
 theta <- mvrnorm(1, mun, Ln)</pre>
#update Simga
 Sn \leftarrow S0 + (t(dia) - c(theta)) %*% t(t(dia) - c(theta))
 Sigma <- solve( rWishart(1, nu0 + n, solve(Sn))[,,1])</pre>
# save results
theta_ad <- rbind(theta_ad, theta) ; sigma_ad <- rbind(sigma_ad, c(Sigma))</pre>
}
```

```
# MC estimates for non-diabetes parameters
#prior parameters
ybar <- apply(ndia, 2, mean)</pre>
Sigma <- cov(ndia)</pre>
n <- dim(ndia)[1]</pre>
mu0 <- ybar
nu0 <- 9
L0 <- S0 <- Sigma
theta_an<-sigma_an <- NULL
set.seed(10000)
for(s in 1:1000){
#Update theta
Ln <- solve(solve(L0) + n * solve(Sigma))</pre>
 mun <- Ln %*% (solve(L0) %*% mu0 + n * solve(Sigma) %*% ybar)</pre>
 theta <- mvrnorm(1, mun, Ln)</pre>
 #update Simga
Sn \leftarrow S0 + (t(ndia) - c(theta)) %*% t(t(ndia) - c(theta))
 Sigma <- solve( rWishart(1, nu0 + n, solve(Sn))[,,1])</pre>
 # save results
theta_an <- rbind(theta_an, theta) ; sigma_an <- rbind(sigma_an, c(Sigma))</pre>
}
```

```
# Create data frame from MC
theta_an <- data.frame(theta_an)</pre>
sigma_an <- data.frame(sigma_an)</pre>
theta_ad <- data.frame(theta_ad)</pre>
sigma_ad <- data.frame(sigma_ad)</pre>
theta_an$diabetes <- sigma_an$diabetes <- "no"</pre>
theta_ad$diabetes <- sigma_ad$diabetes <- "yes"</pre>
theta <- rbind(theta_an, theta_ad)</pre>
sigma <- rbind(sigma_an, sigma_ad)</pre>
# Plot thetas for yes and no diabetes on number of pregnancies
p1<-ggplot() + geom_density(aes(x = npreg), data = theta_an, color = "blue", ) + geom_density(ae</pre>
s(x = npreg), data = theta_ad, color = "red")+labs(x="Number of Pregnancies", title= "Diabetes v
s No Diabetes", subtitle="Number of Pregnancies")
p2<- ggplot() + geom_density(aes(x = skin), data = theta_an, color = "blue", ) + geom_density(ae
s(x = skin), data = theta ad, color = "red")+labs(x="Skin Fold Thickness",title= "Diabetes vs No
Diabetes", subtitle="Skin Fold Thickness")
p3<- ggplot() + geom_density(aes(x = bmi), data = theta_an, color = "blue", ) + geom_density(aes
(x = bmi), data = theta_ad, color = "red")+labs(x="BMI", title= "Diabetes vs No Diabetes", subti
tle="BMI")
p4<-ggplot() + geom_density(aes(x = bp), data = theta_an, color = "blue", ) + geom_density(aes(x
= bp), data = theta_ad, color = "red")+labs(x="Blood Pressure", title= "Diabetese vs No Biabete
s", subtitle="Blood Pressure")
p5<-ggplot() + geom density(aes(x = age), data = theta an, color = "blue", ) + geom density(aes
(x = age), data = theta_ad, color = "red")+labs(x="age", title= "Diabetese vs No Biabetes", subt
itle="Age")
p6<-ggplot() + geom_density(aes(x = glu), data = theta_an, color = "blue", ) + geom_density(aes
(glu), data = theta_ad, color = "red")+labs(x="Glucose Level", title= "Diabetese vs No Biabete
s", subtitle="Glucose Level")
grid.arrange(p1, p2, p3, p4, p5, p6, ncol = 2)
```

Diabetes vs No Diabetes

Number of Pregnancies

Diabetes vs No Diabetes

Skin Fold Thickness

Diabetes vs No Diabetes

Diabetese vs No Biabetes

Blood Pressure

Diabetese vs No Biabetes

Diabetese vs No Biabetes

post.sigd <- as.numeric(apply(sigma_ad[,1:49], 2, mean))
post.sign <- as.numeric(apply(sigma_an[,1:49], 2, mean))
plot(x = post.sigd, y = post.sign, xlim = c(-10, 155), pch=21,ylim=c(-10,160),col="black", bg="lightblue", cex=2,xlab= "Posterior Sigmas of Diabetes Group", ylab="Posterior Sigmas of Non Diabetes Group")
abline(coef = c(0,1))</pre>

Posterior Sigmas of Diabetes Group