Introduction:

In this Assignment, we had given a antibiotic dataset. And the goal is to use different data visualization methods to better present the data, so that the viewers can understand the information in the dataset more easiler and clear. We hope after seeing several graphs, the viewer can decide which antibotic is better than ohthers, which means that antibictic need less does to prevent virus growth.

Outline:

- 1. Input the dataset and relevant packages/environment
- 2. Manipulate data format so we can better plot the data
- 3. Using different kind of graph and methods to present the data
- 4. Get the insight of the the graphs and decide which antibiotic is bette

Details:

1. Input the dataset and relevant packages/environment:

We use jupyter nootbook, python3 kernel.

For input dataset, we can use dataFrame.read_csv funciton. However, in this assignment, we decide to use dictionary to create Pandas dataFrame object, just because the dataset is pretty small.

Then, we can import relevant packages, numpy for n-dimensionary array, pandas for Panda dataFrame, matplotlib and seaborn to plot the data

```
# import relevant packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

2. Manipulate data format so we can better plot the data:

Original dataSet looks like below, is a wide format, which is easier for human to read.

Bacteria	Penicilin	Streptomycin	Neomycin	Gram Staining
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative
Salmonella schottmuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Staphylococcus aureus	0.03	0.03	0.001	positive
Streptococcus fecalis	1	1	0.1	positive
Streptococcus hemolyticus	0.001	14	10	positive
Streptococcus viridans	0.005	10	40	positive

However, the computer prefer the Long Format which is more accessible for computer to work with, we use the dataFrame.melt function to convert the wide format into long fromat and it looks like below

```
vertical_antibiotic = antibiotic.melt(id_vars=['Bacteria', 'Gram_Staining'])
print(vertical_antibiotic)
executed in 14ms, finished 21:10:30 2022-10-07
```

exect	ated iii 14iiis, iiiiisiied 21.10.30 2022-10-07				
	Bacteria	Gram Staining	variable	value	
0	Aerobacter aerogenes	negative	Penicilin	870.000	
1	Brucella abortus	negative	Penicilin	1.000	
2	Brucella anthracis	positive	Penicilin	0.001	
3	Diplococcus pneumoniae	positive	Penicilin	0.005	
4	Escherichia coli	negative	Penicilin	100.000	
5	Klebsiella pneumoniae	negative	Penicilin	850.000	
6	Mycobacterium tuberculosis	negative	Penicilin	800.000	
7	Proteus vulgaris	negative	Penicilin	3.000	
8	Pseudomonas aeruginosa	negative	Penicilin	850.000	
9	Salmonella (Eberthella) typhosa	negative	Penicilin	1.000	
10	Salmonella schottmuelleri	negative	Penicilin	10.000	
11	Staphylococcus albus	positive	Penicilin	0.007	
12	Staphylococcus aureus	positive	Penicilin	0.030	
13	Streptococcus fecalis	positive	Penicilin	1.000	
14	Streptococcus hemolyticus	positive	Penicilin	0.001	
15	Streptococcus viridans	positive	Penicilin	0.005	
16	Aerobacter aerogenes	negative	Streptomycin	1.000	
17	Brucella abortus	negative	Streptomycin	2.000	
18	Brucella anthracis	positive	Streptomycin	0.010	
19	Diplococcus pneumoniae	positive	Streptomycin	11.000	
20	Escherichia coli	negative	Streptomycin	0.400	
21	Klebsiella pneumoniae	negative	Streptomycin	1.200	
22	Mycobacterium tuberculosis	negative	Streptomycin	5.000	
23	Proteus vulgaris	negative	Streptomycin	0.100	
24	Pseudomonas aeruginosa	negative	Streptomycin	2.000	
25	Salmonella (Eberthella) typhosa	negative	Streptomycin	0.400	
26	Salmonella schottmuelleri	negative	Streptomycin	0.800	
27	Staphylococcus albus	positive	Streptomycin	0.100	
28	Staphylococcus aureus	positive	Streptomycin	0.030	
29	Streptococcus fecalis	positive	Streptomycin	1.000	
30	Streptococcus hemolyticus	positive	Streptomycin	14.000	
31	Streptococcus viridans	positive	Streptomycin	10.000	
32	Aerobacter aerogenes	negative	Neomycin	1.600	
33	Brucella abortus	negative	Neomycin	0.020	
34	Brucella anthracis	positive	Neomycin	0.007	
35	Diplococcus pneumoniae	positive	Neomycin	10.000	
36	Escherichia coli	negative	Neomycin	0.100	
37	Klebsiella pneumoniae	negative	Neomycin	1.000	
38	Mycobacterium tuberculosis	negative	Neomycin	2.000	
39	Proteus vulgaris	negative	Neomycin	0.100	
40	Pseudomonas aeruginosa	negative	Neomycin	0.400	
41	Salmonella (Eberthella) typhosa	negative	Neomycin	0.008	
42	Salmonella schottmuelleri	negative	Neomycin	0.090	
43	Staphylococcus albus	positive	Neomycin	0.001	
44	Staphylococcus aureus	positive	Neomycin	0.001	
45	Streptococcus fecalis	positive	Neomycin	0.100	
46	Streptococcus hemolyticus	positive	Neomycin	10.000	
47	Streptococcus viridans	positive	Neomycin	40.000	

3. Using different kind of graph and methods to present the data:

Use sns.heatmap in the oringinal dataset, set the vmin, vmax and colorMap in the order to better distinguish the different. As we can see, Penicillin has more dark part which means it needs more dose. Streptomycin and Neomycin is pretty much the same while Neomycin seems little brighter.

However, it this picture we cannot tell which Bacterial is Gram Staining positive or nagtive. The Gram Stining might be a factor that affect the result. Also, although Penicillin has some dark part, it also has very bright part

Aerobacter aerogenes -	8.7e+02	1	1.6
Brucella abortus -	1	2	0.02
Brucella anthracis -	0.001	0.01	0.007
Diplococcus pneumoniae -	0.005	11	10
Escherichia coli -	le+02	0.4	0.1
Klebsiella pneumoniae -	8.5e+02	1.2	1
Mycobacterium tuberculosis -	8e+02	5	2
Proteus vulgaris -	3	0.1	0.1
Pseudomonas aeruginosa -	8.5e+02	2	0.4
Salmonella (Eberthella) typhosa -	1	0.4	0.008
Salmonella schottmuelleri -	10	0.8	0.09
Staphylococcus albus -	0.007	0.1	0.001
Staphylococcus aureus -	0.03	0.03	0.001
Streptococcus fecalis -	1	1	0.1
Streptococcus hemolyticus -	0.001	14	10
Streptococcus viridans -	0.005	10	40
	Penicilin	Streptomycin	Neomycin

We also can use barplot to show the overall dataset

Also, we can calculate the mean base on different antibiotic and get a more global view

4. Get the insight of the the graphs and decide which antibiotic is bett:

As we can see in the graphs. Overall Neomycin and Streptomycin are perform very good in 16 bacterias. And Neomycin is a little better than Strptomycin.

Also, we can see Pencillin did the best in bacteria which are gram staining positive, however, in gram staining negative, pencillin works very bad.

If we know the bacteria's gram staning is positive, we can definitely choose Pencillin. If we don't or gram staining is negative, we can use Neomycin or Streptomycin, and the first choose would be Neomycin if we don't specific the bacteria.