6. Rezonanční obvody v mikrovlnné integrované technice

6.1. Mikropáskové rezonátory

a) Rezonátor z úseku vedení

Obr. 6.1.1.

Vedení o délce $\lambda g/4$ nebo $\lambda g/2$ zakončené naprázdno nebo nakrátko. Předpoklad $w \ll \lambda g/2$, rezonance s videm kvazi-TEM.

Rezonanční frekvenci ovlivňuje rozptylové pole na konci mikropásku. Lze je reprezentovat rozptylovou kapacitou C_r nebo ekvivalentním prodloužením Δl .

Určení rozptylové kapacity C_r

Wolff a Knoppik navrhli v [88] výpočet rozptylové kapacity pomocí rozptylové kapacity na hraně mikropáskového vedení. Po úpravě lze získat:

$$C_{r} = \frac{1}{2} \left[\frac{\sqrt{\varepsilon_{ef}^{l}(2l,h,t,\varepsilon_{r})}}{c.Z_{v}(2l,h,t,\varepsilon_{r})} - \frac{\varepsilon_{0}.\varepsilon_{r}.2l.}{h} \right].w$$
 (6.1.1)

kde

 $\varepsilon_{ef}^{l}(2l,h,t,\varepsilon_{r})$ je efektivní permitivita mikropáskového vedení šířky 2l na substrátu tlouštky h s pokovením tlouštky t a relativní permitivitou ε_{r} .

 $Z_{V}(2l, h, t, \varepsilon_{r})$ je vlnový odpor mikropáskového vedení šířky 2l realizovaného na tomto substrátu.

Vztah (6.1.1) lze upravit [7] na tvar:

$$C_r = \varepsilon_0 \cdot \frac{w}{h} \left(\varepsilon_{ef}^l I_f - \varepsilon_r \cdot l \right)$$
 (6.1.2)

kde l_f je fiktivní šířka 1/2 mikropáskového vedení šířky 2l. Lze ji určit např pomocí vztahů (2.7.1), (2.7.2) případně spolu s (2.7.3) a (2.7.4). ε_{ef}^l lze určit podle (2.7.6). Potom např. pro 2l > h:

$$l_f = l_{ef} + \frac{h}{\pi} \cdot \ln \left[17,08 \left(\frac{l_{ef}}{h} \right) + 0,85 \right]$$
 (6.1.3)

kde

$$l_{ef} = l + 0,625.\frac{t}{\pi} \left(1 + \ln \frac{2h}{t} \right)$$
 (6.1.4)

$$\varepsilon_{ef}^{I} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \cdot \frac{1}{\sqrt{1 + \frac{6h}{l}}} - \frac{\varepsilon_r - 1}{4, 6} \cdot \frac{t/h}{\sqrt{2l/h}}$$
(6.1.5)

Určení ekvivalentního prodloužení Δl

 Δl je změna délky mikropáskového vedení šířky w odpovídající kapacitě C_r . Vzhledem k (2.5.1):

$$\frac{C_r}{\Delta I} = \frac{1}{v_f \cdot Z_v} = C \tag{6.1.6}$$

Tedy vzhledem k (2.5.4) a (6.1.2)

$$\Delta l = \frac{1}{C} \cdot Cr = \frac{h}{\varepsilon_{ef}^{w} \cdot \varepsilon_{0} \cdot w_{f}} \cdot \varepsilon_{0} \frac{w}{h} \cdot \left(\varepsilon_{ef}^{l} \cdot l_{f} - \varepsilon_{r} \cdot l \right) = \frac{w}{w_{f} \cdot \varepsilon_{ef}^{w}} \cdot \left(\varepsilon_{ef}^{l} \cdot l_{f} - \varepsilon_{r} \cdot l \right)$$
(6.1.7)

kde w_f je fiktivní šířka mikropáskového vedení o šířce w určená podle (2.7.1) až (2.7.4).

Další vztah pro výpočet Δl uvádí Hammerstad v [90].

$$\Delta I = 0,412.h. \frac{\varepsilon_r + 0.3}{\varepsilon_r - 0.258} \cdot \frac{w/h + 0.264}{w/h + 0.8}$$
(6.1.8)

Vztah je platný pro $w/h \ge 0, 2$ a $2 \le \varepsilon_r \le 50$ s chybou menší než 4%.

Sériová rezonance

1) rezonanční délka

podmínka sériové rezonance:

$$Z_{vst} = \frac{Z_k + j \cdot Z_v \cdot \operatorname{tg}\alpha I}{1 + j \frac{Z_k}{Z_v} \cdot \operatorname{tg}\alpha I} = 0$$
(6.1.9)

kde

$$Z_{k} = \frac{1}{j\omega_0 C_r} \tag{6.1.10}$$

odtud
$$Z_{v}.\operatorname{tg}\alpha_{0}l = \frac{1}{\omega_{0}C_{r}}$$
 (6.1.11)

rezonanční délka
$$I = \frac{c}{\omega_0 \sqrt{\epsilon_{ef}^{w}}} \cdot \operatorname{arctg} \frac{1}{\omega_0 C_r Z_v} + (n-1) \cdot \frac{\lambda_{g0}}{2}$$

$$n = 1, 2, 3, ...$$
(6.1.12)

případně
$$l + \Delta l = (2n - 1) \cdot \frac{\lambda g_0}{4}$$
 (6.1.13)

2) činitel jakosti

$$Q_0 = \frac{\omega \cdot W}{P_2} \tag{6.1.14}$$

W je střední hodnota celkové energie elmag. pole při rezonanci P_z je střední hodnota činného výkonu ztraceného v obvodu při rezonanci Platí:

$$P_{z} = \frac{1}{2} Re \left[Z_{vst} \left(\omega_{0} \right) \right] I.I^{*} = \frac{1}{2} . R_{vst} . |I|^{2}$$
 (6.1.15)

$$W = We + W_m = \frac{I.I^*}{4} \cdot \frac{dX_{vst}}{d\omega}_{(\omega = \omega_0)}$$
 (6.1.16)

kde

$$Z_{vst} = R_{vst} + jX_{vst} \tag{6.1.17}$$

Pak (6.1.14) po dosazení, [91]:

$$Q_0 = \frac{\omega_0}{2.R_{vst}(\omega_0)} \cdot \frac{dX_{vst}}{d\omega}_{(\omega = \omega_0)}$$
(6.1.18)

Po dosazení (6.1.9) do (6.1.15) a (6.1.16) lze vztah (6.1.18) upravit na, [91]:

$$Q_0 = \frac{\alpha}{2\beta} \cdot \left(1 + \frac{\sin 2\alpha I}{2\alpha I}\right) \approx \frac{\alpha}{2\beta}$$
 (6.1.19)

β je konstanta útlumu, pro kterou v tomto případě platí:

$$\beta = \beta c + \beta_d + \beta r \tag{6.1.20}$$

 βr vyjadřuje ztráty způsobené vyzařováním

Pro Q_0 tedy platí:

$$\frac{1}{Q_0} = \frac{1}{Q_c} + \frac{1}{Q_d} + \frac{1}{Q_r} \tag{6.1.21}$$

a

$$Qc = \frac{\alpha}{\beta c}$$
 (6.1.22)

$$Q_d = \frac{\alpha}{2\beta_d} \tag{6.1.23}$$

Pro Qr uvádějí Belohoubek a Denlinger [92]:

$$Qr = \frac{Z_{v}}{480\pi (h/\lambda_{0})^{2} F(ef)}$$
 (6.1.24)

kde pro F(ef) uvádí Lewin, [93], (viz též [95]a [96]):

$$F(ef) = \frac{\varepsilon_{eff} + 1}{\varepsilon_{eff}} - \frac{(\varepsilon_{eff} - 1)^{2}}{2\varepsilon_{eff}^{3/2}} \cdot \ln \frac{\sqrt{\varepsilon_{eff}} + 1}{\sqrt{\varepsilon_{eff}} - 1}$$
(6.1.25)

ε_{eff} je kmitočtově závislá efektivní permitivita určená podle (2.7.11)

3) rezonanční odpor

$$R_{vst}(\omega_0) = Z_{v}.tgh\beta l \approx Z_{v}.\beta l = Z_{v}.(\beta_c + \beta_d + \beta_r)$$
(6.1.26)

Paralelní rezonance

1) Rezonanční délka

podmínka paralelní rezonance pro bezeztrátové vedení $Y_{vst} = 0$.

odtud
$$tg\alpha l = -\omega_0 C_r Z_v$$
 (6.1.27)

rezonanční délka
$$I = n \cdot \frac{\lambda_{g0}}{2} - \frac{c}{\omega_0 \sqrt{\epsilon_{ef}^w}} \cdot \operatorname{arctg}(\omega_0 C_r \cdot Z_v)$$
 (6.1.28)

$$n=1,2,3,...$$

případně
$$l + \Delta l = n \cdot \frac{\lambda_{g0}}{2} = n \cdot \frac{c}{2f_0 \cdot \sqrt{\epsilon_{ef}^w}}$$
 (6.1.29)

2) Činitel jakosti

$$Q_0 = \frac{\alpha}{2\beta} \cdot \left(1 - \frac{\sin 2\alpha l}{2\alpha l} \right) \approx \frac{\alpha}{2\beta}$$
 (6.1.30)

3) Rezonanční odpor

$$R_{vst}(\omega_0) = \frac{Z_v}{\beta I} = \frac{Z_v}{(\beta_c + \beta_d + \beta_r)I}$$
(6.1.31)

b) Obdélníkový rezonátor

Zjednodušená analýza

Zanedbané rozptylové pole na okrajích rezonátoru a předpoklad ε_r v rezonátoru. Rezonanční kmitočty:

$$\omega_0^{TE_{m0p}} = \frac{c}{\sqrt{\varepsilon_r}} \cdot \sqrt{\left(\frac{m\pi}{w}\right)^2 + \left(\frac{p\pi}{l}\right)^2}$$
 (6.1.32)

kde m=1, 2, 3, ..., p=0, 1, 2, 3, ...jsou vidová čísla. Při w>l má nejnižší kmitočet vid TE_{100} , následuje TE_{200} , TE_{201} , ...

Vypočtený kmitočet je až 20% vyšší než změřený. Chyba se zmenšuje s rostoucím w a 1.

Zpřesněná analýza

Wolff a Knoppik v [88] navrhli přesnější model respektující rozptylového pole na okrajích rezonatoru, nehomogennost dielektrika a nestacionární (dynamické) rozložení pole v rezonátoru.

Pro výpočet w_f resp. l_f se použijí vztahy pro výpočet fiktivní šiřky mikropásku o šířce w resp. l podle vztahů (2.7.2) až (2.7.4).

Dynamická permitivita ε_{dyn} je určena pomocí dynamické kapacity rezonátoru na substrátu s relativní permitivitou dielektrika ε_r resp. vyplněného vzduchem.

$$\varepsilon_{dyn} = \frac{C_{dyn}(\varepsilon = \varepsilon_0.\varepsilon_r)}{C_{dyn}(\varepsilon = \varepsilon_0)}$$
(6.1.33)

Pro obě dynamické kapacity platí:

$$C_{dyn} = C_{dyn i} + C_{dyn e} ag{6.1.34}$$

 $C_{dyn\,i}$ odpovídá dynamické kapacitě prostoru pod pokovením

 $C_{dyne} = C_{dyne1} + C_{dyne2}$ odpovídá dynamické kapacitě rozptylového pole na hranách délky w a l. Dynamické kapacity jsou určeny pomocí energetické definice kapacity a celkové energie elmag. pole odpovídající příslušnému vidu. Podle [88] platí:

$$C_{dyni} = \frac{C_{stati}}{\gamma \delta} = \frac{\varepsilon_0 \varepsilon_r l w}{h \gamma \delta}$$
 (6.1.35)

kde

$$\gamma = 1$$
 pro $m = 0$
 $\gamma = 2$ pro $m \neq 0$

$$\delta = 1$$
 pro $p = 0$
 $\delta = 2$ pro $p \neq 0$

$$C_{dyne1} = \frac{C_{stat\ e\ 1}}{\delta} \tag{6.1.36}$$

$$C_{dyne2} = \frac{C_{stere2}}{\gamma} \tag{6.1.37}$$

Statické kapacity rozptylového pole jsou určeny pomocí kapacit mikropáskových vedení o šířkách w resp 1.

Potom platí:

$$C_{dyne1} = \frac{C_{state1}}{\delta} = \frac{1}{\delta} \left[\frac{1}{v_f^w . Z_v^w} - \frac{\varepsilon_r . \varepsilon_0 . w}{h} \right] = \frac{1}{\delta} \left[\frac{w_f \varepsilon_{ef}^w . \varepsilon_0}{h} - \frac{\varepsilon_r . \varepsilon_0 . w}{h} \right]$$
(6.1.38)

$$C_{dyne2} = \frac{C_{stat\ e2}}{\gamma} = \frac{w}{\gamma} \cdot \left[\frac{1}{v_f^l \cdot Z_v^l} - \frac{\varepsilon_r \cdot \varepsilon_0 \cdot l}{h} \right] = \frac{w}{\gamma} \cdot \left[\frac{I_f \cdot \varepsilon_{ef}^l \cdot \varepsilon_0}{h} - \frac{\varepsilon_r \cdot \varepsilon_0 \cdot l}{h} \right]$$
(6.1.39)

Po dosazení do (6.1.33):

$$\varepsilon_{dyn} = \frac{\varepsilon_{ef}^{w}.w_{f}.l + \varepsilon_{ef}^{l}.l_{f}.w.\frac{\delta}{\gamma} - \varepsilon_{r}.l.w.\left(1 + \frac{\delta - 1}{\gamma}\right)}{w_{f}.l + w.l_{f}.\frac{\delta}{\gamma} - w.l.\left(1 + \frac{\delta - 1}{\gamma}\right)}$$
(6.1.40)

Veličiny s horním indexem w resp. l odpovídají mikropáskovému vedení šířky w resp. l.

Zpřesněný rezonanční kmitočet je pak určen vztahem:

$$\omega_0^{TE_{m0p}} = \frac{c}{\sqrt{\varepsilon_{dyn}}} \cdot \sqrt{\left(\frac{m\pi}{w_f}\right)^2 + \left(\frac{p\pi}{l_f}\right)^2}$$
(6.1.41)

kde *m*=1, 2, 3, ..., *p*=0, 1, 2, 3, ..

Činitel jakosti

Pro vidy TE_{m0p} platí podle [7], [91], [94]:

$$Qc = \frac{2}{\delta} \cdot \frac{V}{S} = \frac{2}{\delta} \cdot \frac{w_f \cdot l_f \cdot h}{2 \cdot w_f \cdot l_f} = \frac{h}{\delta}$$
 (6.1.42)

kde δ je hloubka vniku

$$Q_d = \frac{1}{\lg \delta_{dyn}} \tag{6.1.43}$$

kde, viz též (2.7.22)

$$tg\delta_{dyn} = \frac{\varepsilon_r}{\varepsilon_{dyn}} \cdot \frac{\varepsilon_{dyn} - 1}{\varepsilon_r - 1} \cdot tg\delta$$
 (6.1.44)

$$Qr = \frac{\sqrt{\varepsilon_{dyn}^3} I_f^2}{p.h.w_f.(1+\varepsilon_{dyn}).(\frac{2}{3}-F_w)}$$
(6.1.45)

kde

$$F_{W} = (-1)^{p} \cdot \left(\frac{\sin x}{x} - \frac{\sin x}{x^{3}} - \frac{\cos x}{x^{2}} \right)$$
 (6.1.46)

a

$$x = \frac{\omega_0 I_f}{c} = \frac{p.\pi}{\sqrt{\varepsilon_{dyn}}}$$
 (6.1.47)

Celkově:
$$\frac{1}{Q_0} = \frac{1}{Q_c} + \frac{1}{Q_d} + \frac{1}{Q_r}$$
 (6.1.48)

Zapojení obdélníkového rezonátoru do vedení, [7]

- symetrické zapojení

Obr. 6.1.4. Průchozí symetrické zapojení.

V tomto případě se vybudí jen vidy s vidovými čísly p = 0, 2, 4, (jen sudé)

- nesymetrické zapojení

Obr. 6.1.5. Průchozí nesymetrické zapojení.

V tomto případě se vybudí více vidů.

p sudé - přenos je maximálníp liché - přenos je nulový (minimální)

- absorpční zapojení

Obr. 6.1.6. Absorpční zapojení.

V tomto případě se mohou vybudit všechny vidy TE_{m0p} m=1, 2, 3, ..., p=0, 1, 2, 3, ...

c) Kruhový diskový rezonátor

Zjednodušená analýza

Obr. 6.1.7.

Zanedbané rozptylové pole na okraji disku a předpoklad ε_r v rezonátoru. Pro rezonanční kmitočty tohoto válcového rezonátoru odvodil Watkins, [87]:

$$\omega_0^{TM_{mn0}} = \frac{c}{\sqrt{\varepsilon_r}} \cdot \frac{\alpha'_{mn}}{r} \tag{6.1.49}$$

kde α'_{mn} jsou n-té kořeny derivace Besselovy funkce prvního druhu J_m řádu m. Nejnižší rezonanční frekvenci má vid TM_{110} , pak následuje TM_{210} , TM_{010} , TM_{310} , ... Vypočtený kmitočet je vždy vyšší o cca 3-8%. Chyba klesá s rostoucím r/h.

Zpřesněná analýza

Wolff a Knoppik [88] navrhli přesnější model, zavedli r_f místo r a ε_{dyn} místo ε_r .

Obr. 6.1.8.

 r_f postihuje efektivní rozšíření rozměrů disku vzhledem k rozptylovému poli. ϵ_{dyn} zahrnuje vliv nehomogenního rozložení pole odpovídajícího příslušnému vidu a vliv nehomogenního dielektrika - vzduch, substrát

Rezonanční kmitočet je pak určen:

$$\omega_0^{TM_{mn0}} = \frac{c}{\sqrt{\epsilon_{dyn}}} \cdot \frac{\alpha'_{mn}}{r_f} \tag{6.1.50}$$

Určení r_f .

Efektivní zvětšení poloměru bylo odvozeno na základě vztahu pro výpočet kapacity kruhového diskového vzduchového kondenzátoru, který odvodil již Kirchhoff, [89]:

$$C = \frac{\varepsilon_0 \cdot \pi \cdot r^2}{h} \left\{ 1 + \frac{2h}{\pi r} \left[\ln \left(\frac{\pi r}{2h} \right) + 1,7726 \right] \right\}$$
 (6.1.51)

Pro r_f pak platí:

$$r_f = r \cdot \left\{ 1 + \frac{2h}{\pi r} \cdot \left[\ln \left(\frac{\pi r}{2h} \right) + 1,7726 \right] \right\}^{1/2}$$
 (6.1.52)

Odvození ε_{dvn}.

Na základě energetické definice kapacity lze pro dynamickou kapacitu odpovídající poli pod diskem odvodit, [88]:

$$Cdyn \ i = \frac{\varepsilon_0 \cdot \varepsilon_r \pi r^2}{\delta \cdot h} \left[1 - \frac{J_{m-1}(\alpha'_{mn}) \cdot J_{m+1}(\alpha'_{mn})}{J_m^2(\alpha'_{mn})} \right] = \frac{\varepsilon_0 \cdot \varepsilon_r \pi r^2}{\delta \cdot h} \left[1 - \left(\frac{m}{\alpha'_{mn}}\right)^2 \right] (6.1.53)$$

kde

$$\delta = 1$$
 pro $m = 0$
 $\delta = 2$ pro $m \neq 0$

Pro dynamickou kapacitu rozptylového pole pak platí:

$$C_{dyn\ e} = \frac{1}{\delta} \cdot C_{stat\ e} \tag{6.1.54}$$

kde statická kapacita je určena:

$$C_{stat\ e} = \left[\frac{1}{v_f(2r,h,\varepsilon_r).Z_v(2r,h,\varepsilon_r)} - \frac{\varepsilon_0.\varepsilon_r.2r}{h}\right].\pi r = \left[\frac{2r_f.\varepsilon_{ef}.\varepsilon_0}{h} - \frac{2r.\varepsilon_r.\varepsilon_0}{h}\right].\pi r \quad (6.1.55)$$

kde ε_{ef} je efektivní permitivita mikropáskového vedení šířky 2r.

Celková dynamická kapacita:

$$C_{dyn} = C_{dyn i} + C_{dyn e} ag{6.1.56}$$

Dynamická relativní permitivita je určena vztahem:

$$\varepsilon_{dyn} = \frac{C_{dyn}(\varepsilon = \varepsilon_0.\varepsilon_r)}{C_{dyn}(\varepsilon = \varepsilon_0)}$$
(6.1.57)

Po dosazení lze získat:

$$\varepsilon_{dyn} = \frac{2r_f \cdot \varepsilon_{ef} - r \cdot \varepsilon_r \cdot \left[2 - \frac{1}{\delta} + \frac{1}{\delta} \cdot \left(\frac{m}{\alpha_{mn}} \right)^2 \right]}{2r_f - r \cdot \left[2 - \frac{1}{\delta} + \frac{1}{\delta} \cdot \left(\frac{m}{\alpha_{mn}} \right)^2 \right]}$$
(6.1.58)

kde δ je určeno (6.1.53).

Zapojení kruhového rezonátoru do vedení, [7]

Obr. 6.1.9.

U průchozího rezonátoru nastává podle velikosti úhlu α při rezonanci určitého vidu maximální či minimální (nulový) přenos mezi vstupem a výstupem.

Platí:
$$\alpha = \frac{k}{m}.180^{\circ}$$
 ($k=1, 2, 3, ...$) přenos vidu TM_{mn0} je maximální (jednotkový) $\alpha = \frac{2k-1}{m}.180^{\circ}$ ($k=1, 2, 3, ...$) přenos vidu TM_{mn0} je minimální (nulový)

U rotačně symetrických vidů *m*=0 je přenos vždy maximální.

d) Prstencový rezonátor

Obr. 6.1.10.

Pro $R - r < \lambda g/2$ rezonuje s vlnou kvazi -TEM.

Přibližná rezonanční podmínka:

$$2\pi \cdot \frac{R+r}{2} = m \cdot \lambda g$$
 $m=1, 2, 3, ...$ (6.1.59)

Pak:

$$f_0 = \frac{m.c}{\pi.\sqrt{\varepsilon_{ef}}.(R+r)} \tag{6.1.60}$$

Přesnější charakteristiku rezonátoru lze nalézt v [97], [98], [99].

Zapojení prstencového rezonátoru do vedení, [7]

Obr. 6.1.11.

Volbou úhlu α lze na rezonančním kmitočtu měnit přenos. Platí:

$$\alpha = \frac{k}{m}.180^{\circ}$$
 k=1, 2, 3, ... přenos je maximální (jednotkový)

$$\alpha = \frac{2k-1}{m}.180^{\circ}$$
 $k=1, 2, 3, ...$ přenos je minimální (nulový)

e) Rezonátor ve tvaru výseče mezikruží

Obr. 6.1.12.

Rezonanční podmínka:

$$2\pi \frac{R+r}{2} \cdot \frac{\Psi}{360} = n \cdot \frac{\lambda_g}{2} \tag{6.1.61}$$

tedy:

Zkrácením elektrické délky, ve srovnání s prstencovým rezonátorem, lze eliminovat některé rezonance. Např.

rezonátor dle obr. 6.1.11 pro
$$\alpha = 90^{\circ}$$
 pro $\alpha = 90^{\circ}$, $\Psi = 120^{\circ}$ maximální přenos minimální přenos $m=0, 2, 4, 6, ...$ $m=n/2=6, 12, 18, ...$ $m=n/2=3, 9, 15, ...$ $m=n/2=3, 9, 15, ...$

6.2. Dielektrické rezonátory

válcový

prstencový

Obr. 6.2.1.

Materialy.

vysoce jakostní dielektrikum $tg\delta \approx 10^{-4} \div 10^{-3}$ permitivita $\epsilon_r = 20 \div 100$ vysoká teplotní stabilita $TK_{f_0} \cong \pm \cdot 10^{-5} \div 10^{-6}$ frekvenční pásmo $\sim 0, 7 \text{ GHz} \div \sim 50 \text{ GHz}$

hlavní aplikace

oscilátory, filtry

Dielektrikum	Pásmo kmitočtů [GHz]	εγ	$Q_0 f_0$ [GHz]	$TK_{f_0}[10^{-6}/^{\circ}C]$
$Ba_2Ti_9O_{20}$ [100],		40	> 32 000	+2
$(Zr, Sn)TiO_4$ [100]		34 - 37	> 32 000	± 20
$(Sr, Ca)[(Li, Nb), Ti]O_3$ [100]	77.00	38 - 46	31 500	+ 30 ÷ -70
$BaTi_4O_9$ [100]		38	> 28 000	+15, +3
$(Ca, Sr)(Ba, Zr)O_3$ [100]		29 - 32	> 22 000	+ 50 ÷ -50
Trans-Tech 8300 [101] Barium Titanate	0,8 - 13, 8	35 - 36	> 23 800	9, 6, 3, 0, -3
Trans-Tech 8600 [101] BaLnTi Oxid	0,7 - 3,6	80	> 9 000	9, 6, 3, 0, -3, -6
Trans-Tech 8700 [101] BaZnTaTi Oxid	5,55 - 32,15	27,6-30,6	> 100 000	4, 2, 0, -2, -4
Trans-Tech 8800 [101] Barium Titanium Oxid	0,79 - 5,21	36,6-38,3	> 27 000	+4
Stabilit M36 [7]	8 - 18	35 - 37	> 35 000	-4 ÷ -8
Stablit M42 [7]	2 - 12	41 - 43	> 25 000	-4 ÷ -8
Stabilit M75 [7]	1 - 4	72 - 78	> 6 000	-4 ÷ -8
$Ba(MgZrTaNb)O_3$ [102]	6,34; 48	27	181 000	$0,4\pm 0,7$
$Ba(SnMgTa)O_3$ [102]	9,2; 48	24,4	255 700	$0, 1 \div 0, 8$
$Ba_3MgTa_2O_9$ [102]	11,2; 48	24	303 500	$3,9\pm 1,6$

Výhody: malé rozměry - až $\sqrt{\varepsilon_r}$ krát oproti dutinovým rezonátorům

vysoký činitel jakosti

možnost volby teplotního koeficientu kompatibilita s planárními strukturami konstrukčně jednoduché přelaďování

Základní vid a rezonanční frekvence

Obr. 6.2.2.

Přibližné řešení pole pro rezonátor ve volném prostoru

Kvádrová dutina s magnetickými stěnami.

vid
$$TE_{110}$$
 $\omega_0^{TE_{110}} = \frac{c}{\sqrt{\varepsilon_r}} \cdot \sqrt{\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2}$ (6.2.1)

vid
$$TE_{111}$$
 $\omega_0^{TE_{111}} = \frac{c}{\sqrt{\varepsilon_r}} \cdot \sqrt{\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 + \left(\frac{\pi}{l}\right)^2}$ (6.2.2)

Skutečný rezonanční kmitočet je: $\omega_0^{TE_{110}} < \omega_0 < \omega_0^{TE_{111}}$.

Válcová dutina s magnetickými stěnami.

vid
$$TE_{010}$$
 $\omega_0^{TE_{010}} = \frac{c}{\sqrt{\varepsilon_r}} \cdot \frac{\alpha_{01}}{R} = \frac{2,4048.c}{R.\sqrt{\varepsilon_r}}$ (6.2.3)

vid
$$TE_{011}$$
 $\omega_0^{TE_{011}} = \frac{c}{\sqrt{\varepsilon_r}} \cdot \sqrt{\left(\frac{\alpha_{01}}{R}\right)^2 + \left(\frac{\pi}{I}\right)^2}$ (6.2.4)

kde α_{01} je 1. kořen Besselovy funkce 1. druhu 0. řádu. Platí $\alpha_{01}=2,4048$.

Skutečný rezonanční kmitočet je:
$$\omega_0^{TE_{010}} < \omega_0 < \omega_0^{TE_{011}}$$
 (6.2.5)

Zpřesněné řešení

Předpoklad magnetických stěn na povrchu rezonátorů není v praxi splněn. Yee formuloval rezonanční podmínky dominantních vidů za předpoklu ideální magnetické vodivost pouze u bočních stěn rezonátorů, viz odkaz v [102]:

kvádrový rezonátor
$$\omega_0^{TE_{11\delta}} = \frac{c}{\sqrt{\varepsilon_r}} \cdot \sqrt{\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 + \left(\frac{\pi.\delta}{l}\right)^2}$$
 (6.2.6)

válcový rezonátor
$$\omega_0^{TE_{01\delta}} = \frac{c}{\sqrt{\varepsilon_r}} \cdot \sqrt{\left(\frac{\alpha_{01}}{R}\right)^2 + \left(\frac{\pi \cdot \delta}{l}\right)^2}$$
 (6.2.7)

kde δ vyjadřuje poměrnou délku rozměru l vhledem k polovině vlnové délky, $0 < \delta < 1$. Těchto výsledků použil Sethares a Nauman, [102], a formulovali transcendentní rovnici umožňující výpočet rezonanční frekvence z rozměrů rezonátorů. Uvádějí také podmínku, za které jsou vidy $TE_{11\delta}$ u kvádrového rezonátoru a $TE_{01\delta}$ u válcového rezonátoru dominantní.

dominantní.

Platí: kvádrový rezonátor
$$\frac{a}{l} > 0,48$$
 (6.2.8)

válcový rezonátor $l < 2R$ (6.2.9)

kvádrový rezonátor
$$\frac{a}{l} > 0,48$$
 (6.2.8)
válcový rezonátor $l < 2R$

Pro dostatečný odstup základního vidu od vyšších vidů je podle [101] vhodné u válcového rezonátoru dodržet podmínku:

$$0, 7.R \le l \le 0, 9.R \tag{6.2.10}$$

Na [102] navazuje Abe a další, [103]. Pro délku I válcového rezonátoru odvozuje vztah:

$$l = \frac{\lambda_0}{\sqrt{\varepsilon_r - \left(\frac{\alpha_{mn}}{\pi} \cdot \frac{\lambda_0}{2R}\right)^2}} \cdot \frac{1}{\pi} \cdot \arctan \frac{\sqrt{\left(\frac{\alpha_{mn}}{\pi} \cdot \frac{\lambda_0}{2R}\right)^2 - 1}}{\sqrt{\varepsilon_r - \left(\frac{\alpha_{mn}}{\pi} \cdot \frac{\lambda_0}{2R}\right)^2}}$$
(6.2.11)

kde $\lambda_0 = c/f_0$ a pro vid $TE_{01\delta}$ je $\alpha_{01} = 2,4048$.

Při známých I a R lze určit podle (6.2.11) rezonanční kmitočet f_0 iteračně.

V praktických rezonančních obvodech je rezonátor umístěn na povrchu substrátu nesoucího mikropáskové vedení. Rezonanční frekvence je pak vyšší než udává vztah (6.2.11). Day v [104] uvádí závislost rezonančního kmitočtu vidu $TE_{01\delta}$ rezonátoru z amorfního TiO_2 (rutil $\varepsilon_r = 85$, l/(2R) = 1,28) na vzdálenosti rezonátoru od kovové roviny. Při přiložení rezonátoru na kovovou rovinu vzroste rezonanční kmitočet o cca 3% oproti vzdálenosti 0,18 $\it I$. Abe, [103], uvádí změnu $\it f_0$ o 12% pro rezonátor položený na 1 mm korundový substrát a o 18% v případě 0,635 mm silného korundového substrátu. Jednalo se o rezonátor z materiálu $BaTi_4O_9$ s $\varepsilon_r = 39,5$ a l/D = 0,4.

Rezonanční kmitočet je vždy výrazně ovlivněn bezprostředním okolím rezonátoru a jeho určení prostřednictvím (6.2.11) je pouze orientační

Pro praktické aplikace proto uvádí Trans-Tech v [101] následující iterační postup odvozený ze vztahu:

$$f_0 = \frac{K_0}{\sqrt{\varepsilon_r} \cdot \left(\frac{\pi}{4}\right)^{1/3} \cdot \left(\frac{4R^2}{l_0}\right)^{1/3}}$$
 [palec] (6.2.12)

kde K_0 =8.553 je konstanta v nultém kroku iterace. Její hodnota po přepočtu na [mm] je 73,9. l_0 je počáteční délka rezonátoru. Vztah (6.2.12) udává rezonanční kmitočet s chybou typicky 5%.

Rezonátor se umístí do obvodu a změří se jeho rezonanční kmitočet f_{0m} . Vypočítá se nová hodnota konstanty K_1 ze vztahu:

$$K_1 = \sqrt{\varepsilon_r} \cdot \left(\frac{\pi}{4}\right)^{1/3} \cdot \left(\frac{4R^2}{l_0}\right)^{1/3} f_{0m}$$
 (6.2.13)

Nová délka l₁ rezonátoru se pak určí podle vztahu:

$$l_1 = \frac{K_1^3}{\varepsilon_r^{3/2} \cdot \left(\frac{\pi}{4}\right) \cdot 4R^2 f_d^3}$$
 (6.2.14)

 $kde f_d$ je požadovaná frekvence.

Je-li splněna podmínka (6.2.10), iterace je u konce. V opačném případě je nutno vybrat dielektrický rezonátor s vhodnějším průměrem a postup opakovat.

Tato procedura umožňuje nalezení rozměrů rezonátoru s typickou chybou frekvence 1%. Jako alternativní metodu ze doporučit aproximační postup navržený Kajfezem, [104].

Přelaďování rezonátoru

- a) přibližováním kovového terčíku lze zvýšit f_0 až o cca 20 %, [101]
- b) přibližováním dielektrické tyče lze snížit f_0 až o 20 %, [101]
- c) přibližováním identického dielektrického rezonátoru lze snížit f_0 až o 20 %, [105], [106]

Přeladění se však využívá pouze na cca 5 %, aby nedegradoval činitel jakosti a teplotní koeficient. Toto omezení se ale netýká varianty c).

Zapojení rezonátoru do vedení

Náhradní obvod

Obr. 6.2.6.

Náhradní obvod má v místě vazby charakter do serie zapojeného paralelního rezonančního obvodu. Pro S-matici náhradního obvodu podle obr. 6.2.6 a) odvodil Vendelin [108], str.395:

$$(S) = \begin{bmatrix} \frac{\beta}{\beta + 1 + jQ_{0}.\Delta\omega/\omega_{0}} e^{-j2\frac{2\pi}{\lambda_{g}}.l}, & \frac{1 + jQ_{0}.\Delta\omega/\omega_{0}}{\beta + 1 + jQ_{0}.\Delta\omega/\omega_{0}} e^{-j2\frac{2\pi}{\lambda_{g}}.l} \\ \frac{1 + jQ_{0}.\Delta\omega/\omega_{0}}{\beta + 1 + jQ_{0}.\Delta\omega/\omega_{0}} e^{-j2\frac{2\pi}{\lambda_{g}}.l}, & \frac{\beta}{\beta + 1 + jQ_{0}.\Delta\omega/\omega_{0}} e^{-j2\frac{2\pi}{\lambda_{g}}.l} \end{bmatrix}$$
(6.2.15)

kde β je činitel vazby definovaný:

$$\beta = \frac{R}{2Z_v} \tag{6.2.16}$$

6.3. Rezonátory se soustředěnými parametry

Dají se realizovat pomocí prvků popsaných v kap. 5. Aitchison a další např. uvádějí sériově zapojené sériové a paralelní rezonanční obvody [107].

Pracovní kmitočet 5 až 10 GHz. Činitel jakosti 10 až 90. Další možnost realizace rezonančních obvodů uvádí Svačina v [7].

