Computer Vision Project

Exercise 1: Box Detection using RANSAC and Image Processing

Objective

Detect and estimate the size of a box from distance images and point cloud data.

Steps Involved

Data Handling

Load and visualize amplitude, distance, and point cloud data

2. Plane Detection(RANSAC)

Identify floor and box-top planes

3. Morphological Analysis

 Use morphological operations and connected component to isolate the box

4. Measurement

 Calculate the box's length, width, and height from geometric analysis

Figure 1: Visualization of floor, box and box corners

Data Overview

Provided Data Types

- 1. Amplitude Images
- 2. Distance Images
- 3. Point Cloud Data

Data in structured ".mat" files.

Visual Examples

Methodology – Data Loading & Visualization

- 1. Load .mat files using scipy.io
- Extract Amplitude, Distance, & Point Cloud
- 3. Filter valid 3d points $(z \neq 0)$
- 4. Visualize:
 - Amplitude Image (grayscale)
 - Raw Distance Image
 - Clipped Distance Image (Better visibility)

RANSAC – Floor Plane Detection

- Fit a plane to the floor using custom RANSAC
- Random 3-point sampling to estimate plane
- Distance-based inlier counting
- Select model with most inliers
- Output: normal vector, offset, and floor mask

Morphological Filtering of Floor Mask

- 1. Applied morphological operations to clean the initial floor mask
 - binary_closing() was used to fill small gaps or holes
 - binary_opening() removed small noisy regions
- 2. Used a 5x5 structuring element in both operations
- 3. Resulted in a cleaner floor mask for more accurate exclusion of ground points
- 4. Displayed intermediate results using matplotlib

RANSAC – Top Plane Detection

- Ran RANSAC again on remaining points (non-floor)
- Identified second dominant plane as box top
- Created mask from top-plane inliers
- Used scipy.ndimage.label() to find connected components
- Selected the largest component as box top

Dimension Estimation

Height:

Distance between floor plane and box-top plane using plane equations

$$Height = \frac{|\Delta d|}{||\vec{n}||}$$

$$\Delta d = d_{top} - d_{floor}$$

• \vec{n} is the **normal vector** to both planes

Length & Width:

Determined from 3D coordinates of bounding corners in the largest component

Output example:

Height: 0.184 m

Length (XY-diagonal): 0.649 m

Width (X/Y span): 0.530 m

Example 1:

Estimated Box Dimensions:

Height: 0.184 m

Length (XY-diagonal): 0.649 m

Width (X/Y span): 0.530 m

Example 2:

Estimated Box Dimensions:

Height: 0.182 m

Length (XY-diagonal): 0.634 m

Width (X/Y span): 0.515 m

Example 3:

Estimated Box Dimensions:

Height: 0.044 m

Length (XY-diagonal): 1.439 m

Width (X/Y span): 1.260 m

Example 4:

Estimated Box Dimensions:

Height: 0.191 m

Length (XY-diagonal): 0.751 m

Width (X/Y span): 0.569 m

Discussion – Strength & Weaknesses

Strengths:

- Clean custom RANSAC implementation
- Accurate isolation of floor and box via masks
- Effective use of morphological processing

Weaknesses:

- No noise filtering (e.g., median or Gaussian filters)
- Parameter tuning for RANSAC and morphological ops is manual

Suggestions:

- Add filtering for smoother masks
- Improve robustness for noisy or cluttered scenes

Conclusion

- Successfully identified and measured a box using only geometric methods
- Solid use of RANSAC, 3D point processing, and morphological analysis
- Future improvements:
 - Incorporate adaptive thresholding
 - Use filtering to improve mask precision

