CS F211 Data Structures & Algorithms

DICTIONARY DATA STRUCTURES — SEARCH TREES

Balancing a Search Tree

- Height Balance Property
- AVL Tree
 - Example

HEIGHT-BALANCE PROPERTY

- A node v in a binary tree is said to be height-balanced if
 - the difference between the heights of the children of v –
 i.e. its sub-trees is at most 1.

• Height Balance Property:

- A binary tree is said to be *height-balanced* if each of its nodes is height-balanced.
- Adel'son-Vel'skii and Landis tree (or AVL tree)
 - Any height-balanced binary tree is referred to as an AVL tree.
- The height-balance property keeps the height minimal
 - How?

AVL TREE - HEIGHT

o Theorem:

 The minimum number of nodes n(h) of an AVL tree of height h is Ω(c^h) for some constant c >1.

• Proof (by induction):

- 1. n(1) = 1 and n(2) = 2
- 2. For h>2, n(h) >= n(h-1) + n(h-2) + 1 Why?
- 3. Then, n(h) is a monotonic sequence i.e. n(h) > n(h-1). So, n(h) > 2*n(h-2)
- 4. By, repeated substitution, $n(h) > 2^{j} * n(h-2*j)$ for h-2*j >= 1
- 5. So, n(h) is $\Omega(2^{h/2})$

AVL TREE - HEIGHT

- Corollary:
 - The height of an AVL tree with n nodes is O(log n).
 - Proof:
 - o Obvious from the previous theorem.
- Thus the cost of a *find* operation in an AVL tree with n nodes is O(log n).
- What about insertion and deletion?
 - Adding or removing a node may disturb the balance.

Insert 65:

No (re-)balancing needed!

AVL Tree – Insertion – Example 2

Insert 49

X – point of insertion

Y – parent of X

Z – parent of Y

T0 – T3 : left to right listing of other subtrees involved

(a,b,c) left-to-right listing of (X,Y,Z)

AVL Tree – Insertion e.g.2

Re-structure:

Input: Z, a , b, c, and T1, T2, T3, T4

1. Replace subtree at Z with subtree at b

2. Set a as left subtree of b and set T0 and T1 as left & right subtrees of a

AVL Tree — Insertion — e.g 2

Re-structure:

Input: Z, a , b, c, and T1, T2, T3, T4

- 1. Replace subtree at Z with subtree at b
- 2. Set a as left subtree of b and set T0 and T1 as left & right subtrees of a
- 3. Set c as right subtree of b and set T2 and T3 as left & right subtrees of c

AVL TREE - INSERTION - E.G. 3

AVL TREE — INSERTION - CASES

Generalized rotation:

(along the path from the inserted node to the root)

- Let Z be the first unbalanced node.
- Let Y be the child of Z and X be the child of Y.
- Then call rotate with X,Y, and Z.

AVL TREE - ROTATION

```
rotate (X, Y, Z)
   let a, b, c be left-to-right listing of nodes X, Y, and Z
   let T0, T1, T2, T3 be left-to-right listing of other
subtrees of x,y, and z (i.e. subtrees of X, Y, and Z not
rooted at x or y)
Replace Z with b;
Set a to be left child of b;
Set T0 and T1 to be left & right subtrees of a;
Set c to be right child of b;
Set T2 and T3 be left & right subtrees of c;
```

AVL TREE - ROTATION

- The restructuring procedure is referred to as a rotation:
 - "geometric" visualization
- If b==Y then restructuring is referred to as a single rotation
 - i.e. rotating Y over Z
- If b==X then restructuring is referred to as a double rotation
- \circ if b==Z?
 - Argue that this case cannot happen
- Exercise: Draw templates for each possible case. How many of them are there?

AVL ROTATION CASES — SINGLE ROTATION

b=y:2 cases

AVL ROTATION CASES — DOUBLE ROTATION

b=x:2 cases

AVL TREE - DELETION

- After deletion of node W, if W is internal, pull one of its descendants up (as in binary search tree).
 - This may result in imbalance (at some ancestor of W)

• Restructuring:

- Z : first unbalanced node on the path from the deleted node to the root.
- Y: child of Z with larger height (it won't be an ancestor of W)
- X : child of Y with larger height (break ties arbitrarily).
- Then call rotate(X,Y, Z)

o Claims:

- This balances the node Z (locally) Why?
- This does not the balance the tree (globally) Why?

AVL TREE - DELETION

- After deletion of node W:
 - 1. if W is internal, pull one of its descendants up (as in binary search tree).
 - 2. Let Z be the first unbalanced ancestral node on the way up. Balance Z by rotation.
 - 3. Repeat step 2 until the root is balanced.

AVL TREE — TIME COMPLEXITY

- Time Complexity of
 - Find:
 - o O(h) and h is log N
 - Insert:
 - O(h) for finding the right position and O(1) for rotation
 - o Total time is O(log N)
 - Delete:
 - oO(h) for finding the right node (to be deleted) and O(h) rotations, each rotation taking time O(1).
 - o Total time is O(log N)

AVL Trees – Implementation Issues

- O How do we check for an unbalanced node?
 - Every node maintains a (relative) weight:
 - o0 ==> balanced
 - o 1 ==> right sub tree is taller
 - o -1 ==> left sub tree is taller
 - On insertion:
 - Weights are to be updated
 - olf insertion happens on the right sub tree of node with weight 1 then it may become unbalanced
 - oSimilarly for a left sub tree of node with weight -1

DICTIONARY - COMPARISON

Balanced BST

Time Complexity:

- Θ(logN) worst case and average case
- Space Complexity
 - Θ(N) links,
 - Θ(N) space for counts (height balance info.)

Hashtable

- Time Complexity:
 - Θ(1) average case and
 Θ(N) worst case
- Space Complexity
 - Θ(N) words separate chaining (Table and links)
 - Θ(N) bits empty/nonempty

AVL TREE —COMPLEXITY

- Despite the improved time complexity, Hashtables are preferred to AVL trees in practice:
 - o Most often hashtables behave well O(1) operations with high probability
 - o Implementation is complex for AVL trees
 - Rotations in AVL tree destroy locality of memory references.*
 - Why? [Consider the pointer / subtree changes.]
 - Affects caching / paging behavior resulting in bad performance.
 - o Update of height balance information results in dirty caches / pages *
 - Virtual Memory performance suffers
 - * See Notes on Memory Hierarchy (at the end of this slide set)

AVL TREE —COMPLEXITY

[2]

- AVL Trees are preferred only if
 - obound O(log N) is strictly needed OR
 - o Ordered operations are needed.
 - E.g. find the minimum element
 - find all elements with key < K in order</p>

BALANCING THE BINARY TREE — OTHER OPTIONS

- If tree construction is offline (i.e. a static tree):
 - Can you choose the optimal construction?
 - o Relate to Quicksort!
 - Cost of optimal construction?
 - Random choice?
- Will random choice work online (i.e. for a dynamic tree)?
- Other Techniques for Balancing:
 - E.g. Red-black Trees (left as a reading exercise)