LMMC Prof. Wedson Gomes

Introdução

A **fonte de alimentação** é o dispositivo responsável por fornecer energia elétrica aos componentes de um computador.

As principais características das fontes são: tensão, potência, eficiência, tipos de conectores, entre outros.

Função Principal

Converter corrente alternada (AC – Alternating Current) - grossamente falando, a energia recebida por meio de geradores, como uma hidroelétrica - em corrente contínua (DC - Direct Current), uma tensão apropriada para uso em aparelhos eletrônicos.

Função Principal

Toda a fonte CC/CA tem por objetivo transformar a onda senoidal da rede elétrica em tensão contínua. Tal processo chama-se retificação de tensão.

Característica da CA senoidal:

- Valor de pico ou máximo;
- Freqüência (f = 1/T);
- Período;
- Ciclo;
- Valor eficaz (Vef = Vp / sqr2)

Tipos de Fonte

Existem dois tipos principais de fontes de alimentação:

- Lineares
- Chaveada

Figura 1 - Diagrama de uma fonte linear

Fontes Lineares

- O transformador Modifica o valor da tensão alternada da rede para o valor desejado;
- A retificação constituída por 2 ou 4 diodos retificadores transforma a tensão alternada do enrolamento secundário do transformador em uma tensão contínua ondulada (com ripple)
- O filtro possui capacitores e indutores que ameniza as ondulações que ainda possam existir sobre a tensão contínua, tornando-a mais pura.

Componentes eletrônicos

Transformador

Diodos

Transistor

Indutor

Fonte Chaveada

 O fato básico que rege o funcionamento das fontes chaveadas está na capacidade de armazenamento de energia em capacitores (em forma de tensão) e em indutores (em forma de corrente). Produzindo assim uma tensão contínua estabilizada.

Figura 8 - Diagrama de uma fonte chaveada

Fonte Chaveada

Fonte Chaveada

- Outra vantagem é que a fote chaveada é mais leve que as outras, pois seus componentes são menores, devido ao uso de alta frequencia.
- A fonte chaveada tem um excelente rendimento, pois consome pouco para funcionar e transfere quase toda energia para a saída.
- Tem um alto custo de dessenvolvimento, mas um baixo custo de produção, normalmente mais barato que as lineares, dessa maneiraa se investe mais em melhorias e aplicação em fontes chaveadas.

Função Principal

 Por se tratar de um equipamento que gera campo eletromagnético (já que é capaz de trabalhar com frequências altas), as fontes devem ser blindadas para evitar interferência em outros aparelhos e no próprio computador.

Especificação de Potência:

De todas as especificações técnicas descritas no databook de cada componente, o interesse maior direcionou seu foco na corrente máxima em modo contínuo, dada em ampères (A). Para encontrar a potência máxima teórica do componente em watts se pode usar a fórmula

$$P = V \times I$$

onde P é a POTÊNCIA EM WATTS, V é a TENSÃO EM VOLTS e I é a CORRENTE EM AMPÈRES.

Lembre-se que isto não significa que a fonte de alimentação fornecerá a corrente máxima de cada componente, já que a potência máxima que a fonte de alimentação pode fornecer, depende de outros componentes

Especificação de Potência:

Na figura 11, demonstra-se o calculo da potência máxima produzida por uma fonte de alimentação AT de 300W. Note que, a potência produzida por uma tensão negativa é somada ao total, e não subtraída.

Como podemos ver, a potência total produzida pela fonte de alimentação AT, é um pouco maior do que os 300W de potência que foi rotulada.

Tensão	300W	350W	400W	450W
+12VDC	10~12A	10~12A	12~14A	12~14A
-12VDC	800mA	800mA	800mA	800mA
+5VDC	30A	35A	40A	45A
-5VDC	300mA	300mA	300mA	300mA
+5VSB	720mA	720mA	720mA	720mA
+3,3VDC	28A	30A	40A	45A

Especificação de Potência:

Tensão de fornecimento para a saída	Corrente nominal de saída	Potência nominal desta saída (12V):
12V	26A	P = V x I = 12 x 26 = 312W

Figura 12 - Exemplo de fonte ATX

Fonte ATX:

- A mais usada hoje em dia. Permite ligar e desligar o seu computador de forma digital ou por software. Digital, quando se aciona um computador com sistema ATX através de um botão, e esse botão não é do tipo liga/desliga, mas, sim, um mero contato momentâneo para uma ponte da placa-mãe, que acionará a fonte de alimentação, como se tivesse acionado um relé e, por software, quando se utiliza programas que trabalham diretamente com o sistema de *shutdown/wake-on*.
- A Fonte ATX tem um *plug* de 20 pinos e, ganhou mais uma fonte de alimentação para a placa-mãe, uma linha de +3,3V.

Padrões de fontes de alimentação

Com essa padronização, uma pessoa saberá que, ao montar uma computador, a placa-mãe se encaixará adequadamente no gabinete da máquina, assim como a fonte de alimentação.

Padrões de fontes de alimentação

As fontes ATX são capazes de fornecer tensão de 3,3 V, característica que não existia no padrão anterior, o AT (Advanced Tecnology).

No padrão ATX, esse conector é uma peça única e só possível de ser encaixada de uma forma, evitando problemas por conexão incorreta.

As fontes ATX também trouxeram um recurso que permite o desligamento do computador por software. Para isso, as fontes desse tipo contam com um sinal **TTL** (*Transistor-Transistor Logic*) chamado PS_ON (*Power Supply On*).

Quando está ligada e em uso, a placa-mãe mantém o PS_ON em nível baixo, como se o estive deixando em um estado considerado "desligado".

Controles da Fonte ATX

Soft Power Control: usado para ligar ou desligar a fonte por software. É graças a esse recurso que o sistema operacional consegue desligar o computador sem que o usuário tenha que apertar um botão para isso;

Wake-on-LAN: permite ligar ou desligar a fonte por placa de rede.

ATX12V 1.x: essa nova especificação surgiu em meados de 2000 e consiste, basicamente, em um conector adicional de 12 V formado por 4 pinos, e outro, opcional, de 6 pinos e tensão de 3,3 V ou 5 V.

A versão 1.3, teve como principal novidade a implementação de um conector de energia para dispositivosSATA;

ATX12V 2.x: série de revisões que lançou um conector para a placa-mãe de 24 pinos (até então, o padrão era 20 pinos) e adicionou, na versão 2.2, um plugue para placas de vídeo que usam o slot PCI Express, recurso necessário devido ao alto consumo de energia desses dispositivos.

EPS12V: Seu principal diferencial é a oferta de um conector adicional de 8 pinos (que pode ser uma combinação de dois conectores de 4 pinos) e um opcional de 4.

Para atender de forma expressiva o mercado, muitos fabricantes oferecem fontes que são, ao mesmo tempo, ATX12V v2.x e EPS12V.

Pino	Sinal	Descrição
1	+12V	Amarelo
2	+5∨	Vermelho =
3	+5\	Vermelho •
4	+57	Vermelho =
5	+3.3V	Laranja 👅
6	+3.3√ STBY	Marrom -
7,8,9,10	GND	Preto ■
11	Power on	Branco
12	Power OK	Azul

Table 2. DC Output Voltage Regulation

Output	Range	Min.	Nom.	Max.	Unit
+12V1DC (1)	±5%	+11.40	+12.00	+12.60	Volts
+12V2DC (3)	±5%	+11.40	+12.00	+12.60	Volts
+5VDC	±5%	+4.75	+5.00	+5.25	Volts
+3.3VDC (2)	±5%	+3.14	+3.30	+3.47	Volts
-12VDC	±10%	-10.80	-12.00	-13.20	Volts
+5VSB	±5%	+4.75	+5.00	+5.25	Volts

 $^{^{(1)}}$ At +12 VDC peak loading, regulation at the +12 VDC output can go to \pm 10%.

⁽²⁾ Voltage tolerance is required at main connector and S-ATA connector (if used).

⁽³⁾ Minimum voltage during peak is greater than 11.0 VDC

v

Tensões das fontes de alimentação

 Os dispositivos que compõem um computador são tão variados que requerem níveis diferentes de tensão para o seu funcionamento. Por isso, as fontes de alimentação fornecem, essencialmente, as seguintes tensões: +3,3 V, +5 V, +12 V, -5 V e -12 V (as)antigas fontes AT não oferecem a tensão de +3,3 V).

As saídas de +3,3 V e +5 V são mais direcionadas a dispositivos menores, como chips de memória.

A tensão de +12 V é utilizada por dispositivos que consomem mais energia, tais como HDs (cujo motor é responsável por girar os discos) e drives de DVD ou Blu-ray

As tensões de -5 V e -12 V são pouco utilizadas - serviam ao antigo barramento ISA, por exemplo.

Memórias RAM do tipo DDR3, por exemplo, podem trabalhar com +1,5 V.

Para esses casos, a placa-mãe conta com reguladores que convertem uma saída de voltagem da fonte de alimentação para a tensão necessária ao componente em questão.

Potência das fontes de alimentação

Ao adquirir uma fonte com potência mais baixa que a que seu computador necessita, vários problemas podem acontecer, como desligamento repentino da máquina ou reinicializações constantes.

O ideal é optar por uma fonte que ofereça uma certa "folga" neste aspecto. Mas escolher uma requer alguns cuidados.

Item	Consumo
Processadores medianos e top de linha	60 W - 110 W
Processadores econômicos	30 W - 80 W
Placa-mãe	20 W - 100 W
HDs e drives de DVD ou Blu-ray	25 W - 35 W
Placa de vídeo com instruções em 3D	35 W - 110 W
Módulos de memória	2 W - 10 W
Placas de expansão (placa de rede, placa de som, etc)	5 W - 10 W
Cooler	5 W - 10 W
Teclado e mouse	1 W - 15 W

Processador	95 W
HD (cada)	25 W + 25 W
Drive de DVD	25 W
Placa de vídeo 3D	80 W
Mouse óptico + teclado	10 W
Total	260 W

Neste caso, uma fonte com pelo menos 400 W reais seria o ideal (lembre-se da dica de sempre contar com uma "folga").

Eficiência das fontes de alimentação

A **eficiência** é uma medida percentual que indica o quanto de energia da rede elétrica, isto é, da corrente alternada, é efetivamente transformada em corrente contínua.

Suponha que você tenha um computador que exige 300 W, mas a fonte está extraindo 400 W. A eficiência aqui é então de 75%. Os 100 W a mais que não são utilizados são eliminados em forma de calor.

Eficiência das fontes de alimentação

Fontes de maior qualidade tem eficiência de pelo menos 80%, portanto, estas são as mais indicadas. Fontes com eficiência entre 70% e 80% são até aceitáveis, mas abaixo disso não são recomendadas.

v

Conectores das fontes de alimentação

20 Pinos Para compatibilidado Com as placas.

Placa Mãe

HD

Ventoinha das fontes

- Ao pegar uma fonte de alimentação, você vai perceber que ela possui uma ventoinha, isto é, um "ventilador" que tem a função de retirar o ar quente proveniente do calor que é gerado dentro do computador.
- Medem 80 mm, de forma que é possível visualizá-la ao olhar a parte de trás da máquina. Uma ventoinha maior, quase sempre de 120 mm, que fica instalada na parte de baixo

Como faço para testar fontes de alimentação corretamente?

Muitos técnicos perguntam como se deve testar, corretamente, fontes de alimentação. Isso deve ser feito com o auxílio de um multímetro digital, posicionado na escala de tensão contínua (VDC), na escala de 20 V. Além disso, deve-se colocar um resistor (10 ohms x 10 watts) na saída a ser testada.

Isso deve ser feito pelo seguinte motivo:

algumas fontes apresentam tensões corretas quando estão sem carga, mas, quando colocamos carga, sua tensão baixa. Além desse teste, o ideal é usar um osciloscópio para verificar se há flutuação na saída da fonte. As saídas deverão ser, totalmente contínuas, não possuindo, qualquer flutuação.

Como faço para testar (ligar) fontes ATX fora do gabinete, sem conectá-la à placa-mãe?

Nas fontes convencionais, basta ligar a fonte que ela "arma", mesmo fora do micro. Como fazer isso em fontes ATX?

Para fazer com que fontes ATX sejam ligadas sem estar conectadas à placa-mãe, basta aterrar o pino PS-ON da fonte de alimentação, isto é, conectar o pino PS-ON (pino 14) ao terra (pinos 3, 5, 7, 13, 15, 16 ou 17). Como em geral o PS-ON é um fio cor verde, basta ligar o fio verde da fonte ao fio preto, através de um pequeno fio ou mesmo um clipes de papel aberto.

Figura 16 - Teste externo de fonte ATX

		·
3.3V	0 🗆	3.3V
-12V	@ ②	3.3V
COM	® 3	СОМ
PS-ON	(4) (4)	5V
СОМ	® ③	сом Figura 17 - Pinos
СОМ	6 6	sv da fonte de
СОМ	O	сом alimentação
-5V	(8) (8)	PW-OK
5V	(9 (9)	5VSB

12V

5V

