3D Rotations and Complex Representations

Computer Graphics CMU 15-462/15-662

Rotations in 3D

- What is a rotation, intuitively?
- How do you know a rotation when you see it?
 - length/distance is preserved (no stretching/shearing)
 - orientation is preserved (e.g., text remains readable)

3D Rotations—Degrees of Freedom

- How many numbers do we need to specify a rotation in 3D?
- For instance, we could use rotations around X, Y, Z. But do we need all three?
- Well, to rotate Pittsburgh to another city (say, São Paulo), we have to specify two numbers: latitude & longitude:
- Do we really need both latitude and longitude? Or will one suffice?
- Is that the *only* rotation from Pittsburgh to São Paulo? (How many more numbers do we need?)

NO: We can keep São Paulo fixed as we rotate the globe.

Hence, we MUST have three degrees of freedom.

Commutativity of Rotations—2D

In 2D, order of rotations doesn't matter:

Same result! ("2D rotations commute")

Commutativity of Rotations—3D

- What about in 3D?
- IN-CLASS ACTIVITY:
 - Rotate 90° around Y, then 90° around Z, then 90° around X
 - Rotate 90° around Z, then 90° around Y, then 90° around X
 - (Was there any difference?)

CONCLUSION: bad things can happen if we're not careful about the order in which we apply rotations!

Representing Rotations—2D

- First things first: how do we get a rotation matrix in 2D? (Don't just regurgitate the formula!)
- Suppose I have a function $S(\theta)$ that for a given angle θ gives me the point (x,y) around a circle (CCW).
 - Right now, I do not care how this function is expressed!*
- What's e1 rotated by θ ? $\tilde{e}_1 = S(\theta)$
- What's e2 rotated by θ ? $\tilde{\mathbf{e}}_2 = S(\theta + \pi/2)$
- How about $u := ae_1 + be_2$?

$$\mathbf{u} := aS(\theta) + bS(\theta + \pi/2)$$

What then must the matrix look like?

$$\begin{bmatrix} S(\theta) & S(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \cos(\theta + \pi/2) \\ \sin(\theta) & \sin(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Representing Rotations in 3D—Euler Angles

- How do we express rotations in 3D?
- One idea: we know how to do 2D rotations.
- Why not simply apply rotations around the three axes? (X,Y,Z)
- Scheme is called Euler angles
- PROBLEM: "Gimbal Lock" [DEMO]

Gimbal Lock

- When using Euler angles θ_x , θ_y , θ_z , may reach α configuration where there is *no way to rotate around one of the three axes!*
- Recall rotation matrices around three axes:

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{x} & -\sin \theta_{x} \\ 0 & \sin \theta_{x} & \cos \theta_{x} \end{bmatrix} \qquad R_{y} = \begin{bmatrix} \cos \theta_{y} & 0 & \sin \theta_{y} \\ 0 & 1 & 0 \\ -\sin \theta_{y} & 0 & \cos \theta_{y} \end{bmatrix} \qquad R_{z} = \begin{bmatrix} \cos \theta_{z} & -\sin \theta_{z} & 0 \\ \sin \theta_{z} & \cos \theta_{z} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Product of these matrices represents rotation by Euler angles:

$$R_x R_y R_z = \begin{bmatrix} \cos \theta_y \cos \theta_z & -\cos \theta_y \sin \theta_z & \sin \theta_y \\ \cos \theta_z \sin \theta_x \sin \theta_y + \cos \theta_x \sin \theta_z & \cos \theta_z - \sin \theta_x \sin \theta_y \sin \theta_z & -\cos \theta_y \sin \theta_x \\ -\cos \theta_x \cos \theta_z \sin \theta_y + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_y \sin \theta_z & \cos \theta_x \cos \theta_y \end{bmatrix}$$

■ Consider special case $\theta_y = \pi/2$ (so, $\cos \theta_y = 0$, $\sin \theta_y = 1$):

$$\implies \begin{bmatrix} 0 & 0 & 1 \\ \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_z & 0 \\ -\cos \theta_x \cos \theta_z + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & 0 \end{bmatrix}$$

Gimbal Lock, continued

Simplifying matrix from previous slide, we get

no matter how we adjust θ_x , θ_z , $\sin(\theta_x + \theta_z)$ $\cos(\theta_x + \theta_z)$ 0 can only rotate in one plane! $\cos(\theta_x + \theta_z)$ $\sin(\theta_x + \theta_z)$ $\sin(\theta_x + \theta_z)$ 0 can only rotate in one plane!

Q: What does this matrix do?

- We are now "locked" into a single axis of rotation
- Not a great design for airplane controls!

Rotation from Axis/Angle

■ Alternatively, there is a general expression for a matrix that performs a rotation around a given axis u by a given angle θ :

$$\begin{bmatrix} \cos\theta + u_x^2 (1 - \cos\theta) & u_x u_y (1 - \cos\theta) - u_z \sin\theta & u_x u_z (1 - \cos\theta) + u_y \sin\theta \\ u_y u_x (1 - \cos\theta) + u_z \sin\theta & \cos\theta + u_y^2 (1 - \cos\theta) & u_y u_z (1 - \cos\theta) - u_x \sin\theta \\ u_z u_x (1 - \cos\theta) - u_y \sin\theta & u_z u_y (1 - \cos\theta) + u_x \sin\theta & \cos\theta + u_z^2 (1 - \cos\theta) \end{bmatrix}$$

Just memorize this matrix! :-)

...we'll see a much easier way, later on.

Complex Analysis—Motivation

- Natural way to encode geometric transformations in 2D
- Simplifies code / notation / debugging / thinking
- *Moderate* reduction in computational cost/bandwidth/storage
- Fluency with complex analysis can lead into deeper/novel solutions to problems...

DON'T: Think of these numbers as "complex."

DO: Imagine we're simply defining additional operations (like dot and cross).

Imaginary Unit

More importantly: obscures geometric meaning.

Imaginary Unit—Geometric Description

Imaginary unit is just a quarter-turn in the counter-clockwise direction.

Complex Numbers

- Complex numbers are then just 2-vectors
- Instead of e_1,e_1 , use "1" and " ι " to denote the two bases
- Otherwise, behaves exactly like a real 2-dimensional space

...except that we're also going to get a very useful new notion of the *product* between two vectors.

Complex Arithmetic

■ Same operations as before, plus one more:

- Complex multiplication:
 - angles add
 - magnitudes multiply

"POLAR FORM"*:

Complex Product—Rectangular Form

Complex product in "rectangular" coordinates (1, ι):

$$z_1 = (a+bi)$$
 $z_2 = (c+di)$
 $z_1z_2 = ac + adi + bci + bdi^2 = (ac - bd) + (ad + bc)i.$

The strength of two quarter turns same as -1 a

- We used a lot of "rules" here. Can you justify them geometrically?
- Does this product agree with our geometric description (last slide)?

Complex Product—Polar Form

Perhaps most beautiful identity in math:

$$e^{i\pi} + 1 = 0$$

Specialization of Euler's formula:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Can use to "implement" complex product:

$$z_1=ae^{i\theta}$$
, $z_2=be^{i\phi}$ $z_1z_2=abe^{i(\theta+\phi)}$ (as with real exponentiation, exponents add)

Leonhard Euler (1707–1783)

Q: How does this operation differ from our earlier, "fake" polar multiplication?

2D Rotations: Matrices vs. Complex

Suppose we want to rotate a vector u by an angle θ, then by an angle φ.

REAL / RECTANGULAR

$$\mathbf{u} = (x, y) \qquad \mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$\mathbf{B} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

$$\mathbf{A}\mathbf{u} = \begin{bmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{bmatrix}$$

$$\mathbf{BAu} = \begin{bmatrix} (x\cos\theta - y\sin\theta)\cos\phi - (x\sin\theta + y\cos\theta)\sin\phi \\ (x\cos\theta - y\sin\theta)\sin\phi + (x\sin\theta + y\cos\theta)\cos\phi \end{bmatrix}$$

 $= \cdots$ some trigonometry $\cdots =$

$$\mathbf{BAu} = \begin{bmatrix} x\cos(\theta + \phi) - y\sin(\theta + \phi) \\ x\sin(\theta + \phi) + y\cos(\theta + \phi) \end{bmatrix}.$$

COMPLEX / POLAR

$$u = re^{i\alpha}$$

$$a = e^{i\theta}$$

$$b = e^{i\phi}$$

$$abu = re^{i(\alpha + \theta + \phi)}$$

Pervasive theme in graphics:

Sure, there are often many "equivalent" representations.

...But why not choose the one that makes life easiest*?

Quaternions

- **TLDR: Kind of like complex numbers but for 3D rotations**
- Weird situation: can't do 3D rotations w/ only 3 components!

William Rowan Hamilton (1805-1865)

Here as he walked by

(Not Hamilton)

Quaternions in Coordinates

- Hamilton's insight: in order to do 3D rotations in a way that mimics complex numbers for 2D, actually need FOUR coords.
- One real, *three* imaginary:

"H" is for Hamilton!
$$q = a + b\imath + c\jmath + dk \in \mathbb{H}$$

Quaternion product determined by

$$i^2 = j^2 = k^2 = ijk = -1$$

together w/"natural" rules (distributivity, associativity, etc.)

■ WARNING: product no longer commutes!

For
$$q, p \in \mathbb{H}$$
, $qp \neq pq$

(Why might it make sense that it doesn't commute?)

Quaternion Product in Components

Given two quaternions

$$q = a_1 + b_1 i + c_1 j + d_1 k$$

$$p = a_2 + b_2 i + c_2 j + d_2 k$$

Can express their product as

$$qp = a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)i + (a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2)j + (a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2)k$$

... fortunately there is a (much) nicer expression.

Quaternions—Scalar + Vector Form

- If we have four components, how do we talk about pts in 3D?
- Natural idea: we have three imaginary parts—why not use these to encode 3D vectors?

$$(x,y,z) \mapsto 0 + xi + yj + zk$$

Alternatively, can think of a quaternion as a pair

(scalar, vector)
$$\in \mathbb{H}$$

 \cap \cap \mathbb{R}^3

Quaternion product then has simple(r) form:

$$(a, \mathbf{u})(b, \mathbf{v}) = (ab - \mathbf{u} \cdot \mathbf{v}, a\mathbf{v} + b\mathbf{u} + \mathbf{u} \times \mathbf{v})$$

■ For vectors in R3, gets even simpler:

$$\mathbf{u}\mathbf{v} = \mathbf{u} \times \mathbf{v} - \mathbf{u} \cdot \mathbf{v}$$

3D Transformations via Quaternions

- Main use for quaternions in graphics? Rotations.
- Consider vector x ("pure imaginary") and unit quaternion q:

$$x \in \text{Im}(\mathbb{H})$$
 $q \in \mathbb{H}, |q|^2 = 1$

Rotation from Axis/Angle, Revisited

 \blacksquare Given axis u, angle θ , quaternion q representing rotation is

Much easier to remember (and manipulate) than matrix!

$$\begin{bmatrix} \cos\theta + u_x^2 (1 - \cos\theta) & u_x u_y (1 - \cos\theta) - u_z \sin\theta & u_x u_z (1 - \cos\theta) + u_y \sin\theta \\ u_y u_x (1 - \cos\theta) + u_z \sin\theta & \cos\theta + u_y^2 (1 - \cos\theta) & u_y u_z (1 - \cos\theta) - u_x \sin\theta \\ u_z u_x (1 - \cos\theta) - u_y \sin\theta & u_z u_y (1 - \cos\theta) + u_x \sin\theta & \cos\theta + u_z^2 (1 - \cos\theta) \end{bmatrix}$$

Interpolating Rotations

- Suppose we want to smoothly interpolate between two rotations (e.g., orientations of an airplane)
- Interpolating Euler angles can yield strange-looking paths, non-uniform rotation speed, ...
- Simple solution* w/ quaternions: "SLERP" (spherical linear interpolation):

Slerp
$$(q_0, q_1, t) = q_0(q_0^{-1}q_1)^t, t \in [0, 1]$$

Where else are (hyper-)complex numbers useful in computer graphics?

Generating Coordinates for Texture Maps

Complex numbers are natural language for angle-preserving ("conformal") maps

Preserving angles in texture well-tuned to human perception...

Useless-But-Beautiful Example: Fractals

Defined in terms of iteration on (hyper)complex numbers:

(Will see exactly how this works later in class.)

Next time: Perspective & Texture Mapping

