埋め込みと相対位相 (メモ)

1

定義 1.1. $f: X \to Y$ は, $f: (X, 位相) \to (f(X), 相対位相)$ が同相写像となるときに, (位相的) 埋め込みであるという.

注意 1.2. ι で包含写像を表す.

例 1.3. $\iota(S^1, \text{密着位相}) \to (\mathbb{R}^2, \text{密着位相})$ は埋め込みである.

例 1.4. $\iota(S^1, \text{密着位相}) \to (\mathbb{R}^2, 標準的な位相)$ は埋め込みではない.

例 1.5. $\iota(S^1, \text{密着位相}) \to (\mathbb{R}^2, \text{離散位相})$ は埋め込みではない.

例 1.6. $\iota(S^1, 標準的な位相) \to (\mathbb{R}^2, 密着位相)$ は埋め込みではない.

例 1.7. $\iota(S^1, 標準的な位相) \to (\mathbb{R}^2, 標準的な位相)$ は埋め込みである.

例 1.8. $\iota(S^1, 標準的な位相) \to (\mathbb{R}^2, 離散位相)$ は埋め込みではない.

例 1.9. $\iota(S^1,$ 離散位相) $\to (\mathbb{R}^2,$ 密着位相) は埋め込みではない.

例 1.10. $\iota(S^1,$ 離散位相) $\to (\mathbb{R}^2,$ 標準的な位相) は埋め込みではない.

例 1.11. $\iota(S^1,$ 離散位相) $\to (\mathbb{R}^2,$ 離散位相) は埋め込みである.

注意 1.12. 包含写像は常に連続になるとは限らない. 実際, $S^1\subset\mathbb{R}^2$ に密着位相を考えると包含写像は連続でない. が, 標準的には始域の集合には相対位相をこめている状況なので, 包含写像は連続な場合が多い.