Name: Abhay Sharma

Class: BE - C

Moodle Id: 20102065

Roll No.: 28

pyplot.show()

Sub.: Applied Data Science

Experiment No.: 09

```
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from matplotlib import pyplot
series=pd.read_csv(r'/content/airlinepassenger.csv', header=0, index_col=0)
series.plot()
```



```
from matplotlib import pyplot
from statsmodels.tsa.seasonal import seasonal_decompose
data = pd.read_csv(r'/content/airlinepassenger.csv')
data.columns= ['date', 'data']
#Change datatype to pandas datetime
data['date'] = pd.to_datetime (data['date'])
data=data.set_index('date')
result = seasonal_decompose(data, model='multiplicative')
result.plot()
pyplot.show()
```


import pandas as pd
import numpy as np

```
product= {'month': [1,2,3,4,5,6,7,8,9,10,11,12], 'demand': [290,260,288,300,310,303,329,340,316,330,308 ,310]}
```

df = pd.DataFrame (product)

df.head()

	month	demand	
0	1	290	11.
1	2	260	
2	3	288	
3	4	300	
4	5	310	

```
df ['pandas_SMA_3'] = df.iloc[:,1].rolling(window=3).mean()
```

df.head()

	pandas_SMA_3	demand	month	
ılı	NaN	290	1	0
	NaN	260	2	1
	279.333333	288	3	2
	282.666667	300	4	3
	299.333333	310	5	4

```
df ['pandas_SMA_4'] = df.iloc[:,1].rolling(window=4).mean()
```

df.head()

Conclusion

Time series decomposition is one of the best ways to understand how a time series behaves. The statsmodels library provides an implementation of the naive, or classical, decomposition method in a function called seasonal_decompose().