Evaluation

Experimental protocols, datasets, metrics

Information Retrieval

Topic feeds

Search

Answer generation

Machine translation

How to benchmark the correctness of natural language processing and information retrieval algorithms?

The R* Nautilus

with thanks to Nicola Ferro for the visualisation

Reproduce
Different data, set up
Same task/goal
Same/different materials
Same/different methods
Different group/lab

Replicate
Same data, set up
Same task/goal
Same materials
Same methods
Different group/lab

Repeat Same data, set up Same task/goal Same materials Same methods Same group/lab Transferred Repurposed Trusted Productivity

Reuse / Generalise
Different data, set up
Different task/goal
Same/different materials
Same/different methods
Different group/lab

Organizations dedicated to replicable and reproducible benchmarks

- There are several organizations dedicated to the definition of reproducible benchmakrs:
 - TREC: http://trec.nist.gov/tracks.html
 - CLEF: http://clef2017.clef-initiative.eu/
 - SemEVAL: http://alt.qcri.org/semeval2017/
 - Visual recognition: http://image-net.org/challenges/LSVRC/
- These experimental setups define:
 - a protocol
 - a dataset (documents and relevance judgments)
 - a set of metrics to evaluate performance.

Reproducible experimentation

- Experimental protocol
 - Is the <u>task/problem</u> clear? Is it a <u>standard task</u>?
 - Detailed <u>description of the experimental setup</u>:
 - identify all steps of the experiments.
- Reference dataset
 - Use a <u>well known dataset</u> if possible.
 - If not, how was the data obtained?
 - Clear separation between training and test set.
- Evaluation metrics
 - Prefer the <u>commonly used metrics</u> by the community.
 - Check which <u>statistical test</u> is most adequate.

What is your task?

 Experimental setups are designed to develop a algorithm to address a specific task

- Topic detection; Search by exemple; Ranking annotations; Real-time summarization; Conversational search
- Benchmarks exist for all the above tasks.

Examples of standard tasks

- For example, current "hot" tasks:
 - Conversational recommendation
 - Conversational search: http://www.treccast.ai/
 - Medical Visual QA: https://www.imageclef.org/2019/medical/vqa
 - Health misinformation: https://trec-health-misinfo.github.io/
- Several forums specialize in particular tasks (and region specific challenges):
 - TREC: Blog search, opinion leader, patent search, Web search, document categorization...
 - CLEF: Plagiarism detection, expert search, wikipedia mining, multimodal image tagging, medical image search...
 - Others: Japanese, Russian, Spanish, etc...

Traditional training setup

Extended training setup

Essential aspects of a sound evaluation

- Experimental protocol
 - Is the <u>task/problem</u> clear? Is it a <u>standard task</u>?
 - Detailed <u>description of the experimental setup</u>:
 - identify all steps of the experiments.
- Reference dataset
 - Use a well known dataset if possible.
 - If not, how was the data obtained?
 - Clear separation between training and test set.
- Evaluation metrics
 - Prefer the <u>commonly used metrics</u> by the community.
 - Check which <u>statistical test</u> is most adequate.

Reference datasets

- A reference dataset is made of:
 - a collection of documents
 - a set of training data
 - a set of test data
 - the relevance judgments or groundtruth.
- Reference datasets are as <u>important as metrics</u> for evaluating the proposed method.
 - Many different datasets exist for <u>standard tasks</u>.
 - Reference datasets set the difficulty level of the task.
 - Allow a fair comparison across different methods.

Example of relevance judgments

- Category of a document/image/video
- Query-document pair
 - Q1,D2 TRUE
 - Q1,D7 FALSE
 - Q2,D3 FALSE
 - Q2,D9 TRUE
- Reference translations
 - "Good Morning" -> "Bom dia"

Categories comedy, cars, explosions

Types of evaluation

• With groundtruth

A/B testing

A combination of the two

Ground-truth

- The theoretical "ultimate goal" is to devise a method that produces exactly the same output as the ground-truth.
 - Ground-truth tells the scientist how the algorithm *should* behave.

		Ground-truth		
		True	False	
Method	True	True positive	False positive	Type I error
	False	False negative	True negative	

Type II error

- The practical "ultimate goal" can be very different:
 - ground-truth is incomplete, incorrect and only mirrors a small portion of reality.

Obtaining groundtruth/relevance judgments

- Crowdsourcing system
 - DefinedCrowd, Amazon Mechanical Turk, ...
 - Limesurvey: <a href="https://github.com/LimeSurvey/Li
 - Relevation: https://github.com/ielab/relevation
- Quality annotations
 - Redundant annotations
- Cost reduction strategies
 - Convergence
 - Pooling strategies

Annotate these pictures with keywords:

Groundtruth

• Examine the groundtruth:

People Nepal Mother Baby Colorful dress Fence

Sunset Horizon Clouds Orange Desert

Flowers Yellow Nature

Beach Sea Palm tree White-sand Clear sky

- Groundtruth is incomplete
- Not all groundtruth is of equal importance/relevance.

From user annotations to ground-truth

- Judgments can be obtained by experts or by crowdsourcing
 - Human relevance judgments can be incorrect and inconsistent
- How do we measure the quality of human judgments?

$$kappa = \frac{p(A) - p(E)}{1 - p(E)}$$
 $p(A)$ -> proportion of times humans agreed $p(E)$ -> probability of agreeing by chance

- Values above 0.8 are considered good
- Values between 0.67 and 0.8 are considered fair
- Values below 0.67 are considered dubious

System quality and user utility

- The discussed evaluation procedures only measure the system performance on a given task
 - It can overfit
 - It might be distant from what users expect
- Only real users actually assess the system
 - How expressive is its query language?
 - How large is its collection?
 - How effective are the results?
- A/B testing
 - Make small variation on the system and direct a proportion of users to that system
 - Evaluate frequency with which users prefer one system to the other

A/B testing

Full population

A/B testing

Full population

A/B testing

- This technique is used when the dataset is too large to be completely examined.
- Considering the results of 10 systems:
 - Examine the top 100 results of each system
 - Label all documents according to its relevance
 - Use the labeled results as ground-truth to evaluate all systems.
- Drawback: can't compute recall, AP and MAP

Essential aspects of a sound evaluation

- Experimental protocol
 - Is the <u>task/problem</u> clear? Is it a <u>standard task</u>?
 - Detailed <u>description of the experimental setup</u>:
 - identify all steps of the experiments.
- Reference dataset
 - Use a <u>well known dataset</u> if possible.
 - If not, how was the data obtained?
 - Clear separation between training and test set.
- Evaluation metrics
 - Prefer the <u>commonly used metrics</u> by the community.
 - Check which <u>statistical test</u> is most adequate.

Evaluation metrics

- <u>Utility metrics</u> are focused in evaluating the results that are presented to the user
 - Usually, this is done with relevance judgments on the top results
 - Common metrics for binary relevance judgments: Top Precision and Recall
 - Common metrics for binary relevance judgments: NDCG
- Stability metrics are focused in evaluating the robustness of the system results.
 - Usually, this is done with binary relevance judgments across a wide range of data
 - Common metrics: MAP, AP, Precision-Recall curves

Binary relevance judgments

$$Accuracy = \frac{truePos + trueNeg}{truePos + falsePos + trueNeg + falseNeg}$$

$$Precision = \frac{truePos}{truePos + falsePos}$$

$$Recall = \frac{truePos}{truePos + falseNeg}$$

$$F_1 = \frac{2}{\frac{1}{P} + \frac{1}{R}}$$

		Ground-truth	
		True	False
Method	True	True positive	False positive
	False	False negative	True negative

Em PT: exatidão, precisão e abragência.

Why not accuracy?

You easily get 99.999999% by not retrieving non-relevant results!!!

$$Accuracy = \frac{truePos + trueNeg}{truePos + falsePos + trueNeg + falseNeg}$$

Precision-recall graphs for ranked results

Interpolated precision-recall graphs

Average Precision

- Web systems favor high-precision methods (P@20)
- Other more robust metric is AP:

$$AP = \frac{1}{\#relevant} \cdot \sum_{k \in \{set\ of\ positions\ of\ the\ relevant\ docs\}} p@k$$

$$AP = \frac{1}{4} \cdot \left(\frac{1}{2} + \frac{2}{4} + \frac{3}{6}\right) = 0.375$$

Average Precision

Average precision is the area under the P-R curve

Mean Average Precision (MAP)

 MAP evaluates the system for a given range of queries.

- It summarizes the global system performance in one single value.
- It is the mean of the average precision of a set of n queries:

$$MAP = \frac{AP(q_1) + AP(q_2) + AP(q_3) + ... + AP(q_n)}{n}$$

Web scale evaluation

- It is impossible to know all relevant documents.
 - It is too expensive or time-consuming.
- <u>nDCG</u>, <u>BPref</u> and <u>Inferred AP</u> are three measures to evaluate a system with incomplete ground-truth.
- These metrics use the concept of <u>pooled results</u>

Relevance

- Some documents are more relevant than others.
 - Documents have different levels of relevance.
- The position of a document in the rank is also important to the user.
 - Relevant documents ranked top count more.

DCG: Incomplete multi-level relevance

• The Discounted Cumulative Gain measure, considers the notion of multi-level relevance:

$$DCG_m \propto 2^{rel_i} - 1$$
 $rel_i = \{0,1,2,3,...\}$

• The DCG measure, also considers the position where the document is on the rank:

$$DCG_m = \sum_{i=1}^{m} \frac{2^{rel_i} - 1}{\log_2(1+i)}$$
 $rel_i = \{0,1,2,3,...\}$

 The normalized metric measures the deviation from the optimal sort order:

$$nDCG_m = \frac{DCG_m}{bestDCG_m}$$

The R* Nautilus

with thanks to Nicola Ferro for the visualisation

Reproduce
Different data, set up
Same task/goal
Same/different materials
Same/different methods
Different group/lab

Replicate
Same data, set up
Same task/goal
Same materials
Same methods
Different group/lab

Repeat
Same data, set up
Same task/goal
Same materials
Same methods
Same group/lab

Transferred Repurposed Trusted Productivity

> Reuse / Generalise Different data, set up Different task/goal Same/different materials Same/different methods Different group/lab

Experimental protocol

Reference dataset

Evaluation metrics

Summary

- Experimental benchmarks: Protocol, Dataset, Metrics
- The quality of groundtruth
 - Incomplete, incorrect, ambiguous
 - Kappa statistics
- Measuring success
 - Metrics (for replicable+repeatable experiments)
 - A/B testing is the best way of measuring success, but is by far the most expensive
 - Results pooling is a balanced strategy
- Evaluation collections / resources
 - See TRECVID and ImageCLEF for multimedia datasets.
 - See TREC and CLEF forums for large-scale datasets
 - Others exist for Biomedical domain, Geographic IR, Plagiarism,...

Chapter 8