某型涡扇发动机起动燃油控制算法研究

余丽平, 王辉荔, 邹朝兰, 王光卫

(中航工业贵州航空发动机研究所 550081)

摘要:起动特性是发动机控制系统设计较为关键的环节。为了确保某型涡扇发动机起动过程具有超温保护的功能,需贯彻起动过程执行机构RDF-S1投入工作的措施。本文通过对起动过程RDF-S1控制算法摸底试验数据进行分析,得出起动过程中RDF-S1的控制算法,并将该算法贯彻到国产电子控制器中进行试验验证,对后续全权限控制系统的设计奠定了基础。

关键词: 起动、控制算法、试验验证

A Study on Fuel Controlling Algorithm of Some Turbofan Engine Starting

YU Liping, WANG Huili, ZOU Chaolan, WANG Guangwei

(AVIC Guizhou Aeroengine Research Institute, Guiyang, Guizhou Province, 550081, China)

Abstract: Starting characteristic is a relatively key link of engine controling design. In order to ensure overtemperature cut-out function of some turbofan engine during strating process, the measure ,which is putting the executive mechanism RDF-S1 into work during starting process, is required to carry out. In this paper, by means of analyzing the test data of RDF-S1 controlling algorithm of the starting process, control algorithm of RDF-S1 during starting process is obtained and used into the proof test of localized electronic control unit, which lays a foundation for the follow-up full authority control system design.

Keywords: start; control algorithm; test verification

1 引言

起动是航空发动机的一个重要过渡过程,对发动机起动系统的基本要求是:在压气机不喘振和涡轮前不超温的情况下,在给定时间内按照给定的起动和燃油控制程序点燃主燃烧室并将发动机加速到慢车。为了确保某型涡扇发动机起动过程具有超温保护的功能,需贯彻起动过程执行机构RDF-S1投入工作的措施。研究决定对电子控制器的RDF-S1起动控制算法进行摸底试验。

本文主要阐述了起动控制算法摸底试验的试验平台、起动过程RDF-S1投入工作的条件、起动过程RDF-S1控制算法摸底试验方法,通过分析试验数据得到了起动过程中RDF-S1的控制算法,并将该算法贯彻到国产电子控制器中进行试验验证。该算法可以有效的在起动过程中对加速燃油流量进行控制。

作者简介: 余丽平, 工程师, 电话: 13608511885, 0851-4101094, Email: yuliping0616@126.com

2 起动控制算法摸底试验系统组成

起动控制算法摸底试验框图如图1所示,将发动机数学模型实时计算的频率量和模拟量转换成板卡所需信号,通过DA和DO输出至信号调理箱,信号调理箱将收到的电压信号转换成对应的传感器信号发给电子控制器,同时将收到的工控机DO信号转换成相应的SWI信号输送给电子控制器;控制软件根据采集的信号进行控制计算与输出,通过信号调理箱将电子控制器输出的PWM/i信号和SWO信号转换成电压信号和DI信号返回至执行机构数学模型,执行机构数学模型得到位移信号反馈给电子控制器,同时将计算得到的控制量传送给发动机数学模型进行计算,这样就构成了闭环仿真测试环境。

图1 起动控制算法摸底试验框图

3 起动过程RDF-S1投入工作的条件

起动过程RDF-S1投入工作的控制框图如图2所示。首先,电子控制器根据其 T_5 限制计划以及 n_2 变化率、 T_5 修正值,形成执行机构RDF-S1的输入指令(占空比系数);选择活门根据该指令,选择数控系统工作;定压油经执行机构RDF-S1、节流嘴以及物理转速传感器形成的回油窗口减压后,形成计量活门上腔的控制压力 P_m ;控制比量活门的位置,并和最小流量限制器高选后,限制发动机不超温、不超转;当 n_2 低于一定值时,物理转速传感器关闭其上的回油窗口,执行机构RDF-S1不再起作用,该转速点称为 n_2 联锁转速,目前的该指标为 $79\%\pm2\%$ 。因此,RDF-S1要在起动时起作用, n_2 联锁转速应该下降到慢车转速以下 $37\%\pm2\%$;临近慢车转速时,RDF-S1退出工作,由转速调节器投入工作,保证发动机工作在慢车转速。

图2 起动过程RDF-S1投入工作控制框图

4 RDF-S1控制算法摸底试验数据分析及结论

4.1 RDF-S1控制算法摸底试验方法

按照起动过程RDF-S1控制算法摸底试验要求开展了起动过程RDF-S1控制算法摸底试验,具体试验内容如下:

- a) 在不同发动机进口压力P₁下,摸索n₂变化率限制值dn_{21im}随发动机进口压力P₁的变化规律;
- b) 在不同发动机进口温度 T_i^* 和进口压力 P_i 下,摸索起动过程RDF-S1的占空比 γ_i^{de2} 随(dn_2 - dn_{21ii})的变化规律;
 - c) 在不同发动机进口温度 T_1^* 下,摸索起动过程中(T_{5igh} - T_{5igh})随 d_{T5} 变化规律;
- d 在不同发动机进口温度 T_1 *和进口压力 P_1 下,摸索起动过程RDF-S1的占空比 $\gamma_1^{T5\%}$ 合与($T_{51im}-T_{5\%}$)的变化规律。

4.2 n₂变化率限制值dn₂iim随发动机进口压力P₁变化的试验数据分析及结论

在发动机数学模型不工作的情况下,改变发动机进口压力 P_i , n_2 变化率限制值 dn_{21im} 随发动机进口压力变化的试验数据如表1、图3所示。

表1 dn21im随P1变化的试验数据

P ₁ (kgf/cm ²)	dn _{2lim} (%/s)
1.03	3.62
0.964	3.37
0.918	3.21
0.865	3.02
0.814	2.85
0.717	2.5
0.641	2.24
0.56	1.96
0.487	1.7
0.375	1.3
0.273	0.95
0.201	0.7

 n_2 变化率限制值 dn_{2lim} 与发动机进口压力 P_1 的关系满足公式 dn_{2lim} =3. $5P_1$,式中 dn_{2lim} 单位为%/s, P_1 单位为 kgf/cm^2 ;

$$n_2$$
变化率限制值 $dn_{21im}=f$ $(n_{2hs},\ P_i)$, $dn_{21im}=$ $6P_1$ $n_{2hs}\in [0.70\%]$ $n_{2hs}\in [75\%,\ 94\%]$,其余按 n_{2hs} 线性过渡。 $2.5\,P_1$ $n_{2hs}\in [97\%,\ 98.5\%]$

4.3 RDF-S1占空比 γ 1^{th2}随 (dn₂-dn_{21in}) 变化的试验数据分析及结论

dn₁=1.0, dT₂=5.0, T₁*=15℃时, 在不同的P₁, 分别设置不同的dn₂, 试验数据如表2、图4所示。

表2 RDF-S1占空比 Y 1^{dn2}随(dn2-dn21im) 变化的试验数据

P ₁ (kgf/cm ²)	dn _{2给定} (%/s)	$\mathrm{dn_{2lim}}$ (%/s)	dn_{2} $\#$ $(\%/s)$	(dn_2-dn_{2lim}) $(\%/s)$	γ_1^{dn2} (%)
0.371	1.8	1.29	1.34	0.05	54.8
	2.5		1.5	0.21	55.7
	3.0		1.8	0.51	57.3
	3.5		2.046	0.756	58.5
	4.0		2.37	1.08	60
	1.3	0.94	0.96	0.02	54.7
0.269	1.4		1.045	0.105	55.3
0.268	1.5		1.1	0.16	55.6
	2.0		1.57	0.63	58
	2.5		1.957	0.257	55.9
0.402	2.8	1.7	2.194	0.494	57.12
0.492	3.0	1.7	2.215	0.515	57.2
	3.4		2.51	0.81	58.7
	3.5	2.5	2.73	0.23	55.8
0.714	3.8		3.012	0.512	57.17
	4.0		3.196	0.696	58.1
	4.5		3.567	1.067	60

58.5 58 57.5 57.5 56.5 56.6 56

P₁=0.371 时 γ₁ ^{del} 随(dn₂-dn_{2lim})的变化曲线

P₁=0.268 时 γ₁ do2 随 (dn₂-dn_{25m}) 的变化曲线

P₁=0.492 时 γ₁ ^{do2} 随 (dn₂-dn_{2Hm}) 的变化曲线

P₁=0.714 时 y₁ da2 随 (dn₂-dn_{22ne}) 的变化曲线

图4 不同P₁时 Y 1^{dn2}随(dn₂-dn_{21in})的变化曲线

起动过程中 γ_1^{dn2} 从 $n_{2h}s=30\%$ 开始计算,且随 n_2 变化率的变化规律满足公式 $\gamma_1^{dn2}=55+5$ (dn_2-dn_{21in})。

4.4 地面起动过程中(T5综合-T5实际)随dT5变化的试验数据分析及结论

表3 (T_{5综合}-T_{5实际})随dT₅变化的试验数据

dT5 (°C/s)	10	15	20	25
(T _{5綜合} -T _{5実际})(°C)	50	76	100	127

图5 (T_{5综合}-T_{5实际}) 随dT₅的变化曲线

地面起动过程中Tsisch是Ts的5s超前校正信号。

4.5 RDF-S1占空比 $\Upsilon_1^{T5\%}$ 随(T_{51im} - $T_{5\%}$) 变化的试验数据分析及结论

 $P_1=1.04 \text{kgf/cm}^2$, $dn_1=1.0$, $dn_2=1.0$,在不同的 T_1^* ,分别设置 dT_5 ,试验数据如表4所示。

表4 RDF-S1占空比 Y 1^{T5综合}随(T_{51im}-T_{5综合}) 变化的试验数据

表示的 STATE OF THE SEED OF THE					
T₁*(°C)	dT₅(°C /s)	T _{5lim} (°C)	RDF-S1 工作时 T _{5 综合} (℃)	RDF-S1 工作时(T _{Slim} -T _{5 综合})(℃)	
15	10	660	580	80	
	15				
	20				
	25				
50	10	765	685	80	
	15				
	20				
	25				
	10	495	415	80	
-40	15				
-40	20	155			
	25				
0	10	615	535	80	
	15				
	20	010			
	25				

起动过程当($T_{5lim}-T_{5\%}$) ≤ 80 °C开始计算 $\gamma_1^{T5\%}$ 6, $\gamma_1^{T5\%}$ 6=k($T_{5lim}-T_{5\%}$ 6)。

4.6 试验结论

地面和空中起动过程中,应根据n2变化率和T5综合调节主燃烧室供油量,RDF-S1高速电磁阀起动控制算法如下:

 $Y_1^{dn^2=55+5}$ (dn_2 - dn_{21im}), $Y_1^{dn^2}$ 从 n_{2hs} =30%开始计算; $Y_1^{T5\%}=k$ (T_{51im} - $T_{5\%}=k$), $Y_1^{T5\%}=k$ (T_{51im} - $T_{5\%}=k$) 《80°C开始计算。 Y_1 =max { $Y_1^{dn^2}$, $Y_1^{T5\%}=k$ }。 其中:

a)
$$dn_{2lim}=f$$
 $(n_{2hs},\ P_{i})$, $dn_{2lim}=$ $\begin{cases} \textbf{3.5P_{1}} & \textbf{n_{2hs}} \in \textbf{[0, 70\%]} \\ \textbf{6P_{1}} & \textbf{n_{2hs}} \in \textbf{[75\%, 94\%]} , 其余按 n_{2hs} 线性过渡。 **2.5P_{1}** $\textbf{n_{2hs}} \in \textbf{[97\%, 98.5\%]} \end{cases}$$

式中dn_{2lim}单位为%/s, P₁单位为kgf/cm²。

b)T_{5%含}是T₅的5s超前校正信号。

5 试验验证

燃油柱塞泵调节器n₂联锁转速由79%±2%下降到37%±2%和贯彻起动过程中RDF-S1控制算法后的电子控制器随发动机进行了地面试验,在不同起动供油特性下,进行起动过程RDF-S1控制算法的验证试验,当n₂转速大于30%时,电子控制器开始输出RDF-S1计算结果,当RDF-S1的输出超过50%时,RDF-S1起作用,将副油路压力切平,如图6所示,从试验结果可以看出,RDF-S1的控制算法在起动过程对参数具有超限保护作用。

图6 起动过程中RDF-S1投入工作曲线

6 结论

为了满足发动机起动过程具有超温保护功能的需求,在原有液压机械起动过程控制的基础上增加了电子控制器根据 dn_{21im} 和 T_{5ig} 。进行控制的算法,该算法通过地面试验验证表明了可以有效的在起动过程中对加速燃油流量进行控制。不但解决了当前混合式控制系统面临的难题,也为今后全权限起动控制系统设计打下了坚实的基础。

参考文献

- [1] 樊思齐、徐芸华,《航空推进系统控制》,西北工业大学出版社,1995年
- [2] 王光卫, 《XX发动机贯彻起动时 II M-1参与工作的方案可行性报告》,贵州航空发动机研究所,2011年

(责任编辑 金长喜)