

Numerikus módszerek

Király Balázs

- 1. Felac
- 1. Felada
- (2. típus)
- 2. Felada (1. típus)
- 2 Felada
- (2. típus)
- 3. Felada
- 3. Feladat
- (2. típus)
- (1 típus
- (1. típus
- 4. Felada
- E Edward
- C. Folodo

Numerikus módszerek

Távoktatás 6. hét
I. Próba Dolgozat Megoldások
gyakorlat

Király Balázs

Pécsi Tudományegyetem Matematikai és Informatikai Intézet

2020.04.28

módszerek

Király Balázs

1. Feladat (1. típus)

(1. típus)

o)

1. Felad (2. típus

2. Felad

(1. típus

2. Felada (2. típus)

3. Felada (1. típus)

3. Feladat (2. típus)

4. Felada

(1. típus

4. Felada (2. típus)

1. Feladat (1. típus)

Tekintsük az M(7,-3,3) gépi számhalmazt! Adjuk meg a

a) fl(-3,17)

b) fl(10,625)

c) $fl(\frac{7}{3})$

értékét!

Numerikus módszerek

Király Balázs

1. Feladat

(1. típus)

c)

1. Felada (2. típus)

2. Felada (1. típus

2. Felada

3. Felada (1. típus)

3. Feladat (2. típus)

4. Felada

(1. típus)

4. Feladat

1. Feladat (1. típus)

Tekintsük az M(7,-3,3) gépi számhalmazt! Adjuk meg a

a) fl(-3,17)

b) fl(10,625)

c) $fl(\frac{7}{3})$

értékét!

Megoldás:

Az M(7,-3,3) gépi számhalmaz elemei 7-bites mantisszából

Numerikus módszerek

Király Balázs

1 Feladat (1. típus)

1. Feladat (1. típus)

Tekintsük az M(7,-3,3) gépi számhalmazt! Adjuk meg a

a) fl(-3,17)

b) fl(10,625)

c) $fl(\frac{7}{3})$

értékét!

Megoldás:

Az M(7,-3,3) gépi számhalmaz elemei 7-bites mantisszából és $-3 \le k \le 3$, $k \in \mathbb{Z}$ karakterisztikából építhetők fel.

Numerikus módszerek

Király Balázs

Megoldás:

a) fl(-3,17)

Numerikus módszerek

Király Balázs

Megoldás:

- a) fl(-3,17)
 - Átírjuk a számot 2-es számrendszerbe:

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- a)
- b)
- 1. Felad
- (2. típus
- (1. típus
- 2. Felada
- 3. Felada
- 3. Feladat
- 4. Felad
- (1. típus
- 4. Felada (2. típus)

Megoldás:

- a) fl(-3,17)
 - Átírjuk a számot 2-es számrendszerbe:
 - 3 | 1
 - 1 | 1

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- a) b) c)
- 1. Felac
- (2. típus
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Felad
- (1. típus
- 4. Felada (2. típus)

Megoldás:

- a) fl(-3,17)
 - Átírjuk a számot 2-es számrendszerbe:

- 0 | 68 1 | 36
- 72
- 1 44
- 88 | 0

Numerikus módszerek

Király Balázs

Megoldás:

a) fl(-3,17)

Átírjuk a számot 2-es számrendszerbe:

3

> 44 88

Azaz

 $3,17_{10} \approx 11.001010_2$

Numerikus módszerek

Király Balázs

Megoldás:

a) fl(-3,17)

Átírjuk a számot 2-es számrendszerbe:

17	۸-۵
34	Aza
60	3,17

Azaz
$$3,17_{10} \approx 11.001010_2$$

$$11.001010 \cdot 2^0 =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- a) b)
- 1. Felac
- 2. Felad
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Felad
- (1. típus
- 4. Felada (2. típus)

Megoldás:

a) fl(-3,17)

Átírjuk a számot 2-es számrendszerbe:

Numerikus módszerek

Király Balázs

Megoldás:

a) fl(-3,17)

Átírjuk a számot 2-es számrendszerbe:

Lefelé kerekítünk,

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- a) b) c)
- 1. Felad
- 2. Felad
- (1. típus
- 2. Felada (2. típus)
- Felada
 típus)
- 3. Felada
- 4. Felada
- (1. típus)
- 4. Fela (2. típu

Megoldás:

a) fl(-3,17)

Átírjuk a számot 2-es számrendszerbe:

Lefelé kerekítünk, így az előállított gépi szám:

+[1100101|2]

Numerikus módszerek

Király Balázs

- 1 Felada
- (1. típu
- a) b)
- c)
- 1. Felada
- 2. Felada
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- (2. típus)
- 4. Felada
- (1. típus
- 4. Felada (2. típus)
- (2. tipu

Megoldás:

Ellenőrzés

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] =$$

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{128}\right) \cdot 4 =$$

Numerikus módszerek

Király Balázs

1 Felad

(1 típi

(1. tip

a b

c)

1. Fela (2. típu

2. Felac

(1. típus

2. Felada (2. típus)

3. Felada (1. típus)

3. Feladat

4. Felad

(1. típus)

4. Felada (2. típus)

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{128}\right) \cdot 4 = 3 + \frac{5}{32} = 3,15625$$

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{128}\right) \cdot 4 = 3 + \frac{5}{32} = 3,15625$$

Az eltérés: -0.01375

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{128}\right) \cdot 4 = 3 + \frac{5}{32} = 3,15625$$

Az eltérés: -0.01375

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{128}\right) \cdot 4 = 3 + \frac{5}{32} = 3,15625$$

Az eltérés: -0.01375

$$+[1100110|2] =$$

Numerikus módszerek

Király Balázs

1. Felac

(1. típu:

a) b)

1. Felac (2. típus

2. Felada (1. típus)

2. Felada

3. Felada (1. típus)

3. Feladat (2. típus)

Feladat
 típus)

4. Feladat (2. típus)

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{128}\right) \cdot 4 = 3 + \frac{5}{32} = 3,15625$$

Az eltérés: -0.01375

$$+[1100110|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{64}\right) \cdot 4 =$$

Numerikus módszerek

Király Balázs

1. Felac

(1. típu:

a) b) c)

1. Felad (2. típus

2. Felada (1. típus)

(1. típus)

(2. típus)

3. Felada (1. típus)

3. Feladat (2. típus)

4. Felada (1. típus)

4. Feladat (2. típus)

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{128}\right) \cdot 4 = 3 + \frac{5}{32} = 3,15625$$

Az eltérés: -0.01375

$$+[1100110|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{64}\right) \cdot 4 = 3 + \frac{3}{16} = 3,1875$$

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{128}\right) \cdot 4 = 3 + \frac{5}{32} = 3,15625$$

Az eltérés: -0.01375

A "felső szomszéd":

$$+[1100110|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{64}\right) \cdot 4 = 3 + \frac{3}{16} = 3,1875$$

Az eltérés: +0.0175

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1100101|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{128}\right) \cdot 4 = 3 + \frac{5}{32} = 3,15625$$

Az eltérés: -0.01375

A "felső szomszéd":

$$+[1100110|2] = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{64}\right) \cdot 4 = 3 + \frac{3}{16} = 3{,}1875$$

Az eltérés: +0.0175

$$fgy fl(-3.17) = -[1100101|2]$$

módszerek

Király Balázs

Megoldás:

b) fl(10,625)

Numerikus módszerek

Király Balázs

Megoldás:

b) fl(10,625)

Ha észrevesszük, hogy a legnagyobb ábrázolható szám:

$$M_{\infty} = +[11111111|3] = \left(1 - \frac{1}{128}\right) \cdot 2^3 = 7\frac{15}{16}$$

Numerikus módszerek

Király Balázs

1. Felac

(1. típu

1. Felada (2. típus

2. Felad

2. Felada (2. típus)

3. Felada (1. típus)

3. Feladat (2. típus)

4. Felada

(1. típus)

4. Felada (2. típus)

Megoldás:

b) fl(10,625)

Ha észrevesszük, hogy a legnagyobb ábrázolható szám:

$$M_{\infty} = +[11111111|3] = \left(1 - \frac{1}{128}\right) \cdot 2^3 = 7\frac{15}{16} < 10,625$$

Numerikus módszerek

Király Balázs

Megoldás:

b) fl(10,625)

Ha észrevesszük, hogy a legnagyobb ábrázolható szám:

$$M_{\infty} = +[11111111|3] = \left(1 - \frac{1}{128}\right) \cdot 2^3 = 7\frac{15}{16} < 10,625$$

akkor rögtön adódik, hogy fl(10,625) = NaN.

Numerikus módszerek

Király Balázs

1. Felac (1. típus

1. Felada

2. Felada (1. típus)

2. Felada (2. típus)

3. Felada (1. típus)

3. Feladat (2. típus)

4. Feladat (1. típus)

4. Felada (2. típus)

Megoldás:

b) fl(10,625)

Ha észrevesszük, hogy a legnagyobb ábrázolható szám:

$$M_{\infty} = +[11111111|3] = \left(1 - \frac{1}{128}\right) \cdot 2^3 = 7\frac{15}{16} < 10,625$$

akkor rögtön adódik, hogy fl(10,625) = NaN. Ha ezt nem vesszük észre, akkor az a) feladatban látott módszerrel k = 4 adódik, ami nem megengedett.

módszerek

Király Balázs

- 1. Fela
- (1. típu:
- a) b)
- b)
- 1. Felac
- (2. típus
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- (1. tipus)
- 4 Folods
- 4. Felau
- 4. Felada
- (2. típ

Megoldás:

c) $fl(\frac{7}{3})$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- a) b)
- c)
- (2. típus
- 2. Felac
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Felada (2. típus)

Megoldás:

Numerikus módszerek

Király Balázs

Megoldás:

Mivel
$$2 \le \frac{7}{3} < 4 = 2^2$$
,

Numerikus módszerek

Király Balázs

Megoldás:

Mivel
$$2 \le \frac{7}{3} < 4 = 2^2$$
, és $\frac{1}{2} \le m < 1$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- a)
- c)
- 1. Felad (2. típus
- (2. tipu
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Felada (2. típus)

Megoldás:

Mivel
$$2 \le \frac{7}{3} < 4 = 2^2$$
, és $\frac{1}{2} \le m < 1$
 $2 \le m \cdot 2^k < 4$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- a)
- c)
- 1. Felad (2. típus
- 2 Felan
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Felada (2. típus)

Megoldás:

c) $fl(\frac{7}{3})$

Mivel
$$2 \le \frac{7}{3} < 4 = 2^2$$
, és $\frac{1}{2} \le \frac{m}{2} < 1$ ezért $k = 2$.

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- a) b)
- 1. Felad
- 2 Felad
- (1. típus
- Feladatípus)
- 3. Felada
- 3. Feladat
- 4. Felad
- (1. típus
- 4. Felada (2. típus)

Megoldás:

- c) $fl(\frac{7}{3})$
 - A szám tizedestört alakja végtelen szakaszos tört.

Mivel
$$2 \le \frac{7}{3} < 4 = 2^2$$
, és $\frac{1}{2} \le \frac{m}{2} < 1$ ezért $k = 2$.

Ha t=7 és k=2, akkor a számábrázoláshoz $\frac{1}{2^{7+1}}\cdot 2^2=\frac{1}{64}$ pontosság kell.

Numerikus módszerek

Király Balázs

Megoldás:

c) $fl(\frac{7}{3})$

A szám tizedestört alakja végtelen szakaszos tört.

Mivel
$$2 \le \frac{7}{3} < 4 = 2^2$$
, és $\frac{\frac{1}{2}}{2} \le \frac{m}{m \cdot 2^k} < 1$ ezért $k = 2$.

Ha t=7 és k=2, akkor a számábrázoláshoz $\frac{1}{27+1}\cdot 2^2=\frac{1}{64}$ pontosság kell.

Mivel $\frac{1}{100} < \frac{1}{44} < \frac{1}{10}$, azaz 1 tizedesjegy még nem, de 2 tizedesjegy pontosság már elég lesz.

Numerikus módszerek

Király Balázs

1. Felac

(1. típus

c)

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada (2. típus)

3. Felada (1. típus)

3. Feladat (2. típus)

4. Felada (1. típus)

4. Felada

1. Feladat

Megoldás:

A szám tizedestört alakja végtelen szakaszos tört.

Mivel
$$2 \le \frac{7}{3} < 4 = 2^2$$
, és $\frac{1}{2} \le \frac{m}{2} < 1$ ezért $k = 2$.

Ha t=7 és k=2, akkor a számábrázoláshoz $\frac{1}{2^{7+1}} \cdot 2^2 = \frac{1}{64}$ pontosság kell.

Mivel $\frac{1}{100} < \frac{1}{64} < \frac{1}{10}$, azaz 1 tizedesjegy még nem, de 2 tizedesjegy pontosság már elég lesz.

Így
$$\frac{7}{3} \approx 2.33$$

Numerikus módszerek

Király Balázs

1. Felac

(1. típus

c)

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada (2. típus)

3. Felada (1. típus)

3. Feladat (2. típus)

4. Felada (1. típus)

4. Felada

1. Feladat

Megoldás:

A szám tizedestört alakja végtelen szakaszos tört.

Mivel
$$2 \le \frac{7}{3} < 4 = 2^2$$
, és $\frac{1}{2} \le \frac{m}{2} < 1$ ezért $k = 2$.

Ha t=7 és k=2, akkor a számábrázoláshoz $\frac{1}{2^{7+1}} \cdot 2^2 = \frac{1}{64}$ pontosság kell.

Mivel $\frac{1}{100} < \frac{1}{64} < \frac{1}{10}$, azaz 1 tizedesjegy még nem, de 2 tizedesjegy pontosság már elég lesz.

Így
$$\frac{7}{3} \approx 2.33$$

Numerikus módszerek

Király Balázs

Megoldás:

Átírjuk a számot 2-es számrendszerbe:

Numerikus módszerek

Király Balázs

1. Felac

(1. típus

(1. tipu a)

b)

1. Felada (2. típus)

2. Felad

(1. típus)

2. Felada (2. típus)

3. Felada

3. Feladat

4. Felada

(1. típus

4. Felad (2. típus

Megoldás:

Átírjuk a számot 2-es számrendszerbe: Az egészrész átírása: $2_{10} = 10_2$

Numerikus módszerek

Király Balázs

Megoldás:

Átírjuk a számot 2-es számrendszerbe:

Az egészrész átírása: $2_{10} = 10_2$

A törtrész:

33

66

32

0 64

28

56 12

Numerikus módszerek

Király Balázs

Megoldás:

Átírjuk a számot 2-es számrendszerbe:

 $2.33_{10} \approx 10.010101_2$

Az egészrész átírása: $2_{10} = 10_2$

Azaz

A törtrész:

33

66

32

0 64

28

56 12

Numerikus módszerek

Király Balázs

Megoldás:

Átírjuk a számot 2-es számrendszerbe:

Az egészrész átírása: $2_{10} = 10_2$

A törtrész:

33 66

Azaz

32 $2.33_{10} \approx 10.010101_2$ 0 64

28

56 12 $10.010101 \cdot 2^0 =$

Numerikus módszerek

Király Balázs

Megoldás:

Átírjuk a számot 2-es számrendszerbe:

Az egészrész átírása: $2_{10} = 10_2$

A törtrész:

33

66 Azaz 32 $2.33_{10} \approx 10.010101_2$

0 64

28

56 12 $10.010101 \cdot 2^0 = 0.1001010 \cdot 1 \cdot 2^2$

Numerikus módszerek

Király Balázs

Megoldás:

Átírjuk a számot 2-es számrendszerbe:

Az egészrész átírása: $2_{10} = 10_2$

A törtrész:

33 66 Azaz

32 $2.33_{10} \approx 10.010101_2$ 0

64

28

 $10.010101 \cdot 2^0 = 0.1001010|1 \cdot 2^2$ 56

12

Fölfele kerekítünk.

Numerikus módszerek

Király Balázs

Megoldás:

Átírjuk a számot 2-es számrendszerbe:

Az egészrész átírása: $2_{10} = 10_2$

A törtrész:

33 66 Azaz

32 $2.33_{10} \approx 10.010101_2$ 0

64

28

 $10.010101 \cdot 2^0 = 0.1001010|1 \cdot 2^2$ 56

12

Fölfele kerekítünk, így az előállított gépi szám:

+[1001011|2]

Numerikus módszerek

Király Balázs

- 1. Felada
- (1. típu
- a)
- b) c)
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- 3. Felada
- 4 Felada
- (1. típus
- 4. Felada (2. típus)
- (Z. tipus)

Megoldás:

Ellenőrzés

Numerikus módszerek

Király Balázs

1 Foladat

(1 tíni

(1. tipi

a) b)

c)

(2. típus

2. Felac

(1. típus

Feladatípus)

3. Felada (1. típus)

3. Feladat (2. típus)

4. Felad

(1. típus)

4. Felada (2. típus)

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1001011|2] =$$

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1001011|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128}\right) \cdot 4 =$$

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1001011|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128}\right) \cdot 4 = 2 + \frac{11}{32} = 2,34375$$

Numerikus módszerek

Király Balázs

1. Felac

(1. típu:

a) b) c)

1. Felad (2. típus

2. Felada (1. típus)

2. Felada (2. típus)

3. Felada (1. típus)

3. Feladat (2. típus)

4. Felada

(1. típus)

4. Felada (2. típus)

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1001011|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128}\right) \cdot 4 = 2 + \frac{11}{32} = 2,34375$$

Az eltérés: +0.01375

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1001011|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128}\right) \cdot 4 = 2 + \frac{11}{32} = 2,34375$$

Az eltérés: +0.01375

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1001011|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128}\right) \cdot 4 = 2 + \frac{11}{32} = 2,34375$$

Az eltérés: +0.01375

$$+[1001010|2] =$$

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1001011|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128}\right) \cdot 4 = 2 + \frac{11}{32} = 2,34375$$

Az eltérés: +0.01375

$$+[1001010|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64}\right) \cdot 4 =$$

Numerikus módszerek

Király Balázs

1. Felad

(1. típus

b)

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada

3. Felada (1. típus)

3. Feladat (2. típus)

4. Feladat (1. típus)

(1. tipus)

4. Felada (2. típus)

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1001011|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128}\right) \cdot 4 = 2 + \frac{11}{32} = 2,34375$$

Az eltérés: +0,01375

$$+[1001010|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64}\right) \cdot 4 = 2 + \frac{5}{16} = 2,3125$$

Numerikus módszerek

Király Balázs

Megoldás:

Ellenőrzés

Az előállított gépi szám:

$$+[1001011|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128}\right) \cdot 4 = 2 + \frac{11}{32} = 2,34375$$

Az eltérés: +0.01375

Az "alsó szomszéd":

$$+[1001010|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64}\right) \cdot 4 = 2 + \frac{5}{16} = 2,3125$$

Az eltérés: -0.0175

Numerikus módszerek

Király Balázs

Ellenőrzés

Megoldás:

Az előállított gépi szám:

$$+[1001011|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128}\right) \cdot 4 = 2 + \frac{11}{32} = 2,34375$$

Az eltérés: +0.01375

Az "alsó szomszéd":

$$+[1001010|2] = \left(\frac{1}{2} + \frac{1}{16} + \frac{1}{64}\right) \cdot 4 = 2 + \frac{5}{16} = 2,3125$$

Az eltérés: -0.0175

$$\operatorname{fgy} fl(\frac{7}{3}) = +[1001011|2]$$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Feladat (2. típus)
- 2. Felad
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Felad (2. típus
- 5. Felada
- 6 Felada

1. Feladat (1. típus)

Egy egység oldalú négyzet körülírható körének területét számoljuk. Mind a sugár, mind pedig a π értékét két tizedesjegyre kerekítjük. Adjuk meg a számolt terület abszolút és relatív hibakorlátait.

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Feladat (2. típus)
- 2. Felada (1. típus)
- 2. Felada
- (2. tipus)
- (1. típus)
- Felada
 típus)
- 4. Felada (1. típus)
- Felada
 típus)
- 5. Felad
- 6 Felada

1. Feladat (1. típus)

Egy egység oldalú négyzet körülírható körének területét számoljuk. Mind a sugár, mind pedig a π értékét két tizedesjegyre kerekítjük. Adjuk meg a számolt terület abszolút és relatív hibakorlátait.

Megoldás:

$$r = \frac{\sqrt{2}}{2} \approx 0.71$$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Feladat (2. típus)
- 2. Felada (1. típus)
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- 4. Felada
- 5. Felad
- 6 Felada

1. Feladat (1. típus)

Egy egység oldalú négyzet körülírható körének területét számoljuk. Mind a sugár, mind pedig a π értékét két tizedesjegyre kerekítjük. Adjuk meg a számolt terület abszolút és relatív hibakorlátait.

Megoldás:

$$r = \frac{\sqrt{2}}{2} \approx 0.71$$
 $\Delta_{0.71} = 0.01$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Feladat (2. típus)
- 2. Felada (1. típus)
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Felada (2. típus)
- 4. Felada
- 4. Felada
- 5. Felad
- 6 Felada

1. Feladat (1. típus)

Egy egység oldalú négyzet körülírható körének területét számoljuk. Mind a sugár, mind pedig a π értékét két tizedesjegyre kerekítjük. Adjuk meg a számolt terület abszolút és relatív hibakorlátait.

Megoldás:

$$r = \frac{\sqrt{2}}{2} \approx 0.71$$
 $\Delta_{0.71} = 0.01$ $\pi \approx 3.14$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Feladat (2. típus)
- 2. Felada (1. típus)
- 2. Felada (2. típus)
- (2. típus)
- 3. Felada (1. típus)
- 3. Felada (2. típus)
- 4. Felada
- 4. Felada
- 5. Felad
- 6 Felada

1. Feladat (1. típus)

Egy egység oldalú négyzet körülírható körének területét számoljuk. Mind a sugár, mind pedig a π értékét két tizedesjegyre kerekítjük. Adjuk meg a számolt terület abszolút és relatív hibakorlátait.

Megoldás:

$$r = \frac{\sqrt{2}}{2} \approx 0.71$$
 $\Delta_{0.71} = 0.01$ $\pi \approx 3.14$ $\Delta_{3.14} = 0.01$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Feladat (2. típus)
- 2. Felada (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- 3. Felada
- (2. típus)
- (1. tipus
- 4. Felada (2. típus)
- 5. Felad
- 6 Felada

1. Feladat (1. típus)

Egy egység oldalú négyzet körülírható körének területét számoljuk. Mind a sugár, mind pedig a π értékét két tizedesjegyre kerekítjük. Adjuk meg a számolt terület abszolút és relatív hibakorlátait.

Megoldás:

$$r=rac{\sqrt{2}}{2}pprox 0.71$$
 $\Delta_{0,71}=0.01$ $\pipprox 3.14$ $\Delta_{3,14}=0.01$ Ekkor $\delta_{0,71}pprox rac{\Delta_{0,71}}{0.71}=$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Feladat (2. típus)
- 2. Felada
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Felada (2. típus)
- (2. tipus)
- 4. Felada
- 4. Felada (2. típus)
- 5. Felad
 - 6 Felada

1. Feladat (1. típus)

Egy egység oldalú négyzet körülírható körének területét számoljuk. Mind a sugár, mind pedig a π értékét két tizedesjegyre kerekítjük. Adjuk meg a számolt terület abszolút és relatív hibakorlátait.

Megoldás:

$$r=rac{\sqrt{2}}{2}pprox 0.71 \qquad \Delta_{0,71}=0.01 \ \pipprox 3.14 \qquad \Delta_{3,14}=0.01 \ ext{Ekkor} \ \delta_{0,71}pprox rac{\Delta_{0,71}}{0.71}=1.4\cdot 10^{-2}$$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Feladat (2. típus)
- 2. Felada (1. típus)
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- Felada
 típus)
- 4. Felada
- 4. Felada
- (2. típus
- 5. Felada
- S Foladat

1. Feladat (1. típus)

Egy egység oldalú négyzet körülírható körének területét számoljuk. Mind a sugár, mind pedig a π értékét két tizedesjegyre kerekítjük. Adjuk meg a számolt terület abszolút és relatív hibakorlátait.

Megoldás:

A körülírt kör sugara:

$$r = \frac{\sqrt{2}}{2} \approx 0.71$$
 $\Delta_{0.71} = 0.01$ $\pi \approx 3.14$ $\Delta_{3.14} = 0.01$

Ekkor

$$\delta_{0,71} pprox rac{\Delta_{0,71}}{0,71} = 1,4 \cdot 10^{-2}$$

$$\delta_{3,14} \approx \frac{\Delta_{3,14}}{3,14} =$$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Feladat (2. típus)
- 2. Felada (1. típus)
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- Feladatípus)
- 4. Felada
- 4. Felada
- (2. típus
- 5. Felada
- S Feladat

1. Feladat (1. típus)

Egy egység oldalú négyzet körülírható körének területét számoljuk. Mind a sugár, mind pedig a π értékét két tizedesjegyre kerekítjük. Adjuk meg a számolt terület abszolút és relatív hibakorlátait.

Megoldás:

A körülírt kör sugara:

$$r = \frac{\sqrt{2}}{2} \approx 0.71$$
 $\Delta_{0.71} = 0.01$ $\pi \approx 3.14$ $\Delta_{3.14} = 0.01$

Ekkor

$$\delta_{0,71} pprox rac{\Delta_{0,71}}{0,71} = 1,4 \cdot 10^{-2}$$

$$\delta_{3,14} \approx \frac{\Delta_{3,14}}{3,14} = 3.2 \cdot 10^{-3}$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. tipus
- 1. Feladat (2. típus)
- 2. Felada
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- (1. típus)
- 4 Folodo
- 4. Felada
- 4 Folodo
- (2. típus
- 5. Felad
- 6. Feladat

Megoldás:

$$T=r^2\pi.$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típus
- 1. Feladat (2. típus)
- 2. Felad
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3 Feladat
- (2. típus)
- 4. Felada
- (1. típus)
- (2. típus)
- 5. Felad
- 6 Feladat

Megoldás:

$$T=r^2\pi.$$

Ehhez $r \cdot r \approx 0.71 \cdot 0.71 = 0.5041$.

Numerikus módszerek

Király Balázs

- 1. Felac
- 1. Feladat
- (2. típus)
- 2. Felad (1. típus
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus)
- (2. típus)
- 5. Felada
- 6 Feladat

Megoldás:

$$T=r^2\pi.$$

Ehhez
$$r \cdot r \approx 0.71 \cdot 0.71 = 0.5041$$
.

$$\Delta_{0.71 \cdot 0.71} = 2 \cdot |0.71| \cdot 0.01 = 0.0142$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. tipus
- 1. Feladat (2. típus)
- 2. Felad
- 2 Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus)
- (2. típus)
- 5. Felad
- 6. Felada

Megoldás:

$$T=r^2\pi.$$

Ehhez
$$r \cdot r \approx 0.71 \cdot 0.71 = 0.5041$$
.

$$\Delta_{0,71\cdot0,71} = 2 \cdot |0,71| \cdot 0,01 = 0,0142$$

$$\delta_{0,71\cdot0,71} = 2 \cdot \delta_{0,71} = 2.8 \cdot 10^{-2}$$

Numerikus módszerek

Király Balázs

- 1. Feladat
- (2. típus)

Megoldás:

$$T=r^2\pi$$
.

Ehhez $r \cdot r \approx 0.71 \cdot 0.71 = 0.5041$.

$$\Delta_{0.71\cdot0.71} = 2 \cdot |0.71| \cdot 0.01 = 0.0142$$

$$\Delta_{0,71\cdot0,71} = 2 \cdot |0,71| \cdot 0,01 = 0,0142$$

$$\delta_{0,71\cdot0,71} = 2 \cdot \delta_{0,71} = 2.8 \cdot 10^{-2}$$

$$\Delta_{0.71^2 \cdot 3.14} = 0.5041 \cdot 0.01 + 3.14 \cdot 0.0142 = 0.049629$$

Numerikus módszerek

Király Balázs

- 1. Feladat (2. típus)

Megoldás:

$$T=r^2\pi$$
.

Ehhez $r \cdot r \approx 0.71 \cdot 0.71 = 0.5041$.

$$\Delta_{0.71\cdot0.71} = 2 \cdot |0.71| \cdot 0.01 = 0.0142$$

$$\frac{2}{5}$$
 $\frac{2}{5}$ $\frac{5}{5}$ $\frac{10-2}{5}$

$$\delta_{0,71\cdot0,71} = 2 \cdot \delta_{0,71} = 2.8 \cdot 10^{-2}$$

$$\Delta_{0,71^2\cdot 3,14} = 0,5041\cdot 0,01+3,14\cdot 0,0142 = 0,049629$$

$$\delta_{0.71^2 \cdot 3.14} = 2.8 \cdot 10^{-2} + 3.2 \cdot 10^{-3} = 3.12 \cdot 10^{-2}.$$

Numerikus módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Felad
- ---
- C. Folodo

2. Feladat

Adjuk meg a *B* mátrix Cholesky-felbontását és felhasználásával a determinánsát!

$$B = \left[\begin{array}{rrrr} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{array} \right]$$

Numerikus módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- (Z. tipus)
- 4. Felada (1. típus)
- 4. Felada (2. típus)
- 5. Felac
- 6. Felad

2. Feladat

Adjuk meg a *B* mátrix Cholesky-felbontását és felhasználásával a determinánsát!

$$B = \left[\begin{array}{rrrr} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{array} \right]$$

Megoldás:

A Cholesky felbontás során $A = L \cdot L^T$.

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Felada (2. típus)
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- 3. Feladat (1. típus)
- 3. Feladat
- (2. típus)
- (1. tipus)
- 4. Felada (2. típus)

5. Felada

6. Feladat

2. Feladat

Adjuk meg a *B* mátrix Cholesky-felbontását és felhasználásával a determinánsát!

$$B = \left[\begin{array}{rrrr} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{array} \right]$$

Megoldás:

A Cholesky felbontás során $A = L \cdot L^T$. Ahol L egy alsóháromszög mátrix, a főátlóban nem-negatív elemekkel (de nem feltétlenül 1-esek, mint az LU-nál).

módszerek

Király Balázs

- Felada
 típus
- 1. Felada (2. típus)
- 2. Feladat (1. típus)
- 2. Feladat (2. típus)
- 3. Feladat (1. típus)
- 3. Feladat
- 4. Feladat (1. típus)
- 4. Feladat
- 5. Felada
- 6. Feladat

2. Feladat

Adjuk meg a *B* mátrix Cholesky-felbontását és felhasználásával a determinánsát!

$$B = \left[\begin{array}{rrrr} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{array} \right]$$

Megoldás:

A Cholesky felbontás során $A=L\cdot L^T$. Ahol L egy alsóháromszög mátrix, a főátlóban nem-negatív elemekkel (de nem feltétlenül 1-esek, mint az LU-nál).

Az L mátrix elemeit a mátrix-szorzáson keresztül határozzuk meg.

módszerek

Király Balázs

- 2. Feladat (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

módszerek

Király Balázs

- 1. Felad
- (1. tipus
- (2. típus
- 2. Feladat
- (1. típus)
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Felada
- E Folodo

$$\ell_1^2 = 4$$

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} \mathbf{4} & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 2. Feladat (1. típus)

$$\ell_1^2 = 4 \quad \ell_1 = \pm 2$$

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} \mathbf{4} & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felada
- 1. Felad
- (2. tipus)
- 2. Feladat (1. típus)
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Felada
- (2. típus)
- 4. Felada (1. típus
- (1. típus
- (2. tipus
- 5. Felada
- 6 Feladat

$$\ell_1^2 = 4 \quad \ell_1 = 2$$

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} \mathbf{4} & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 2. Feladat (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & \ell_{10} \\ 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & \ell_3 & 0 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ 7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

$$\begin{array}{c|cccc} \ell_1^2=4 & \ell_1=2 \\ \ell_7 & \ell_1 \cdot \ell_2=2 \end{array}$$

Numerikus módszerek

Király Balázs

- 2. Feladat
- (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

$$egin{pmatrix} \ell_1^2 = 4 & \ell_1 = 2 \ \ell_7 & \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 2. Feladat (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 2. Feladat (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

$$\ell_1^2 = 4 \quad \ell_1 = 2
\ell_1 \cdot \ell_2 = 2 \quad \ell_2 = 1
\ell_1 \cdot \ell_4 = -2 \quad \ell_4 = -1
\ell_1 \cdot \ell_7 = 4$$

Numerikus módszerek

Király Balázs

- 2. Feladat
- (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & \ell_{10} \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \end{bmatrix}$$

$$\begin{array}{cccc} \ell_1^2 = 4 & \ell_1 = 2 \\ \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \end{array}$$

Numerikus módszerek

Király Balázs

- 2. Feladat
- (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

$$\ell_1^2 = 4$$
 $\ell_1 = 2$
 $\ell_1 \cdot \ell_2 = 2$ $\ell_2 = 1$
 $\ell_1 \cdot \ell_4 = -2$ $\ell_4 = -1$

$$\ell_1 \cdot \ell_2 = 2 \quad \ell_2 = 1$$

$$\ell_1 \cdot \ell_4 = -2 \quad \ell_4 = -1$$

$$\ell_1 \cdot \ell_7 = 4 \quad \ell_7 = 2$$

$$\ell_1^2 + \ell_2^2 = 10$$

$$\ell_2^2 + \ell_3^2 = 10$$

Numerikus módszerek

Király Balázs

- 2. Feladat (1. típus)

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

$$\ell_3 = 3$$

Numerikus módszerek

Király Balázs

- 2. Feladat
- (1. típus)

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix}$$

$$\ell_1 \cdot \ell_7 = 4 \quad \ell_7 = 2$$

$$\ell_2^2 + \ell_3^2 = 10$$

$$\ell_3 = \pm 3$$

$$\ell_3 = \pm 3$$

Numerikus módszerek

Király Balázs

- 2. Feladat
- (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \\ \ell_3 = 3 \\ \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \end{bmatrix}$$

$$\begin{array}{c|cccc} & \ell_1^2 = 4 & \ell_1 = 2 \\ \ell_7 & \ell_8 & \\ \ell_9 & \ell_{10} & \\ \ell_{10} & \ell_{20} & \ell_{20} & \ell_{20} \\ \ell_{11} & \ell_{20} & \ell_{20} & \ell_{20} \\ \ell_{11} & \ell_{20} & \ell_{20} & \ell_{20} \\ \ell_{20} \ell_{20} & \ell_{20} \\ \ell_{20} & \ell_{20} & \ell_{20}$$

Numerikus módszerek

Király Balázs

- 2. Feladat (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \end{bmatrix}$$

$$\begin{pmatrix}
\ell_{1}^{2} = 4 & \ell_{1} = 2 \\
\ell_{1} & \ell_{2} = 2 & \ell_{2} = 1 \\
\ell_{8} & \ell_{9} & \ell_{1} \cdot \ell_{4} = -2 & \ell_{4} = -1 \\
\ell_{1} & \ell_{7} = 4 & \ell_{7} = 2 \\
\ell_{10} & \ell_{2}^{2} + \ell_{3}^{2} = 10 \\
4
\end{pmatrix}$$

$$\begin{pmatrix}
\ell_{3} = 4 & \ell_{1} = 2 \\
\ell_{1} \cdot \ell_{4} = -2 & \ell_{4} = -1 \\
\ell_{1} \cdot \ell_{7} = 4 & \ell_{7} = 2
\end{pmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felad
- 1. Felad
- (z. tipus
- 2. Feladat (1. típus)
- 2. Felada (2. típus)
- (2. tipus)
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus)
- (2. típus
- 5. Felada
- 6 Folodol

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felada
- 1. Felad
- (2. tipus
- 2. Feladat (1. típus)
- 2. Felada (2. típus)
- (2. tipus)
- (1. típus)
- 3. Felada (2. típus)
- 4. Felada
- (1. típus
- (2. típus
- 5 Felada
- 0. Estada

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felada
- 1. Felad
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- (2. típus)
- (1. típus)
- 3. Felada (2. típus)
- (2. tipus)
- 4. Folodo
- 4. Felada (2. típus)
- 5 Felada
- 5. Felad

6. Feladat

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

$$\ell_4^2 + \ell_5^2 + \ell_6^2 = 9$$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus
- 1. Felad
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- (2. lipus)
- (1. típus)
- 3. Felada (2. típus)
- (2. tipus)
- 4 Folad
- 4. Felada
- ---
- 5. Felad

6 Feladat

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

$$\ell_4^2 + \ell_5^2 + \ell_6^2 = 9$$
 $\ell_6 = 2$

Numerikus módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felad
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- (1. típus)
- 3. Felada (2. típus)
- (2. tipus)
- 4. Folodo
- 4. Felada
- E Folodo
- 5. Felada

6. Feladat

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_3 = 3 \\ \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

$$\ell_4^2 + \ell_5^2 + \ell_6^2 = 9$$
 $\ell_6 = \pm 2$

Numerikus módszerek

Király Balázs

- 2. Feladat
- (1. típus)

Megoldás:

 $\ell_4^2 + \ell_5^2 + \ell_6^2 = 9$ $\ell_6 = 2$ $\ell_4 \cdot \ell_7 + \ell_5 \cdot \ell_8 + \ell_6 \cdot \ell_9 = 0$

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \end{bmatrix}$$

$$\begin{bmatrix} \ell_1 & 0 & 0 & 0 \\ \ell_2 & \ell_3 & 0 & 0 \\ \ell_4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

$$\ell_{1}^{2} = 4 \quad \ell_{1} = 2$$

$$\ell_{1} \cdot \ell_{2} = 2 \quad \ell_{2} = 1$$

$$\ell_{1} \cdot \ell_{4} = -2 \quad \ell_{4} = -1$$

$$\ell_{1} \cdot \ell_{7} = 4 \quad \ell_{7} = 2$$

$$\ell_{2}^{2} + \ell_{3}^{2} = 10$$

$$\ell_{3} = 3$$

$$\ell_{2} \cdot \ell_{4} + \ell_{3} \cdot \ell_{5} = 5$$

$$\ell_{5} = 2$$

$$\ell_{2} \cdot \ell_{7} + \ell_{3} \cdot \ell_{8} = -1$$

$$\ell_{9} = -1$$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus
- 1. Felad
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- (1. típus)
- 3. Felada (2. típus)
- (2. lipus)
- (1. típus
- 4. Felada (2. típus)
- 5 Felada
- 5. Felada

S Feladat

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

$$\ell_4^2 + \ell_5^2 + \ell_6^2 = 9 \quad \ell_6 = 2$$

$$\ell_4 \cdot \ell_7 + \ell_5 \cdot \ell_8 + \ell_6 \cdot \ell_9 = 0 \quad \ell_9 = 2$$

Numerikus módszerek

Király Balázs

2. Feladat

(1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

$$\begin{array}{ll} \ell_4^2 \! + \! \ell_5^2 \! + \! \ell_6^2 \! = \! 9 & \ell_6 = \! 2 \\ \ell_4 \cdot \ell_7 \! + \! \ell_5 \cdot \ell_8 + \ell_6 \cdot \ell_9 = \! 0 & \ell_9 = \! 2 \\ \ell_7^2 \! + \! \ell_8^2 \! + \! \ell_9^2 \! + \! \ell_{10}^2 \! = \! 9 \end{array}$$

Numerikus módszerek

Király Balázs

- 2. Feladat
- (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

$$\begin{vmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \\ \ell_3 = 3 \\ \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{vmatrix}$$

$$\begin{array}{ll} \ell_4^2 \! + \! \ell_5^2 \! + \! \ell_6^2 \! = \! 9 & \ell_6 = \! 2 \\ \ell_4 \cdot \ell_7 + \ell_5 \cdot \ell_8 + \ell_6 \cdot \ell_9 = \! 0 & \ell_9 = \! 2 \\ \ell_7^2 \! + \! \ell_8^2 \! + \! \ell_9^2 \! + \! \ell_{10}^2 \! = \! 9 & \ell_{10} = \! 1 \end{array}$$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Felad (2. típus
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- (1. típus)
- (2. típus)
- 4. Felada
- 4. Felad
- (Z. tipus)
- 5. Felada

C Folodoi

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

$$\begin{array}{ll} \ell_4^2 \! + \! \ell_5^2 \! + \! \ell_6^2 \! = \! 9 & \ell_6 = \! 2 \\ \ell_4 \cdot \ell_7 \! + \! \ell_5 \cdot \ell_8 + \ell_6 \cdot \ell_9 = \! 0 & \ell_9 = \! 2 \\ \ell_7^2 \! + \! \ell_8^2 \! + \! \ell_9^2 \! + \! \ell_{10}^2 \! = \! 9 & \ell_{10} = \pm \! 1 \end{array}$$

Numerikus módszerek

Király Balázs

- 2. Feladat
- (1. típus)

$$\begin{bmatrix} \ell_1 & \ell_2 & \ell_4 & \ell_7 \\ 0 & \ell_3 & \ell_5 & \ell_8 \\ 0 & 0 & \ell_6 & \ell_9 \\ 0 & 0 & 0 & \ell_{10} \end{bmatrix} \begin{bmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & \ell_5 & \ell_6 & 0 \\ \ell_7 & \ell_8 & \ell_9 & \ell_{10} \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 & 4 \\ 2 & 10 & 5 & -1 \\ -2 & 5 & 9 & 0 \\ 4 & -1 & 0 & 10 \end{bmatrix} \begin{bmatrix} \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{bmatrix}$$

$$\begin{vmatrix} \ell_1 \cdot \ell_2 = 2 & \ell_2 = 1 \\ \ell_1 \cdot \ell_4 = -2 & \ell_4 = -1 \\ \ell_1 \cdot \ell_7 = 4 & \ell_7 = 2 \\ \ell_2^2 + \ell_3^2 = 10 \\ \ell_3 = 3 \\ \ell_2 \cdot \ell_4 + \ell_3 \cdot \ell_5 = 5 \\ \ell_5 = 2 \\ \ell_2 \cdot \ell_7 + \ell_3 \cdot \ell_8 = -1 \\ \ell_8 = -1 \end{vmatrix}$$

$$\begin{array}{ll} \ell_4^2 \! + \! \ell_5^2 \! + \! \ell_6^2 \! = \! 9 & \ell_6 = \! 2 \\ \ell_4 \cdot \ell_7 + \ell_5 \cdot \ell_8 + \ell_6 \cdot \ell_9 = \! 0 & \ell_9 = \! 2 \\ \ell_7^2 \! + \! \ell_8^2 \! + \! \ell_9^2 \! + \! \ell_{10}^2 \! = \! 9 & \ell_{10} = \! 1 \end{array}$$

módszerek

Király Balázs

- 1. Felac
- (1. tipu:
- 1. Felada (2. típus)
- 2. Feladat
- (1. típus)
- 2. Felada
- (2. tipus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus
- 4. Felad (2. típus
- 5. Felada
- 6 Feladat

Megoldás:

ĺgy

$$L = \left[egin{array}{ccccc} 2 & 0 & 0 & 0 \ 1 & 3 & 0 & 0 \ -1 & 2 & 2 & 0 \ \end{array}
ight]$$

módszerek

Király Balázs

- 1. Felac
- (1. tipus)
- (2. típus
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus
- (2. típus
- 5. Felada
- 6 Folodo

Megoldás:

ĺgy

$$L = \left[\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -1 & 2 & 1 \end{array} \right]$$

Az *L* mátrix determinánsa a főátlóbeli elemek szorzataként kapható,

módszerek

Király Balázs

- 2. Feladat
- (1. típus)

Megoldás:

$$L = \left[\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -1 & 2 & 1 \end{array} \right]$$

Az L mátrix determinánsa a főátlóbeli elemek szorzataként kapható, azaz

$$\det L = \ell_1 \cdot \ell_3 \cdot \ell_6 \cdot \ell_{10}$$

módszerek

Király Balázs

- 2. Feladat
- (1. típus)

Megoldás:

$$L = \left[\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -1 & 2 & 1 \end{array} \right]$$

Az L mátrix determinánsa a főátlóbeli elemek szorzataként kapható, azaz

$$\det L = \ell_1 \cdot \ell_3 \cdot \ell_6 \cdot \ell_{10} = 2 \cdot 3 \cdot 2 \cdot 1 =$$

módszerek

Király Balázs

- 2. Feladat
- (1. típus)

Megoldás:

$$L = \left[\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -1 & 2 & 1 \end{array} \right]$$

Az L mátrix determinánsa a főátlóbeli elemek szorzataként kapható, azaz

$$\det L = \ell_1 \cdot \ell_3 \cdot \ell_6 \cdot \ell_{10} = 2 \cdot 3 \cdot 2 \cdot 1 = 12$$

Numerikus módszerek

Király Balázs

- Felad
 típus
- 1. Felada (2. típus)
- 2. Feladat
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus)
- (Z. tipuo)

5. Felada

S Feladat

Megoldás:

ĺgy

$$L = \left[\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -1 & 2 & 1 \end{array} \right]$$

Az L mátrix determinánsa a főátlóbeli elemek szorzataként kapható, azaz

$$\det L = \ell_1 \cdot \ell_3 \cdot \ell_6 \cdot \ell_{10} = 2 \cdot 3 \cdot 2 \cdot 1 = 12$$

Mivel
$$\det L^T = \det L$$
, ezért $\det B = (\det L)^2 = 12^2 = 144$.

Numerikus módszerek

Király Balázs

- 1. Felac
- 1. Felad
- 2 Felad
- (1. típus
- 2. Feladat (2. típus)
- 3. Felada
- 3. Feladat
- (2. típus)
- 4. Felada (1. típus
- (1. típus)
- (2. típus
- 5. Felada
- 6. Feladat

2. Feladat

Adjuk meg a *B* mátrix LU-felbontását és felhasználásával a determinánsát!

$$B = \left[\begin{array}{rrr} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{array} \right]$$

Numerikus módszerek

Király Balázs

- 2. Feladat (2. típus)

2. Feladat

Adjuk meg a B mátrix LU-felbontását és felhasználásával a determinánsát!

$$B = \left[\begin{array}{rrr} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{array} \right]$$

Megoldás:

Az LU-felbontás során $A = L \cdot U$.

Numerikus módszerek

Király Balázs

- Felad
 típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- 2. Feladat (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- (1. típus)
- 4. Felada (2. típus)
- . Felada
- 6. Felada

2. Feladat

Adjuk meg a *B* mátrix LU-felbontását és felhasználásával a determinánsát!

$$B = \left[\begin{array}{rrr} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{array} \right]$$

Megoldás:

Az LU-felbontás során $A=L\cdot U$. Ahol L egy alsóháromszög mátrix, mely a főátlóban 1-eseket tartalmaz, míg az U egy felsőháromszög mátrix.

Numerikus módszerek

Király Balázs

Felada
 típus)

1. Felada (2. típus)

2. Felada (1. típus)

2. Feladat

2. Felada (2. típus)

Feladatípus)

3. Felada (2. típus)

(1. típus)

4. Feladat (2. típus)

5. Feladat

. Feladat

2. Feladat

Adjuk meg a *B* mátrix LU-felbontását és felhasználásával a determinánsát!

$$B = \left[\begin{array}{rrr} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{array} \right]$$

Megoldás:

Az LU-felbontás során $A=L\cdot U$. Ahol L egy alsóháromszög mátrix, mely a főátlóban 1-eseket tartalmaz, míg az U egy felsőháromszög mátrix.

 $Az\ L$ és U mátrixok elemeit a mátrix-szorzáson keresztül határozzuk meg.

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típu:
- 1. Felada (2. típus
- 2. Felad
- (1. típus
- 2. Feladat
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4 Felads
- (1. típus
- 4. Felac

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típus
- 1. Felada (2. típus
- 2. Felad
- (1. típus
- 2. Feladat (2. típus)
- (2. típus)
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- 4. Felac
- 5. Felada

6 Feladat

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} & 2\ell_1 = -4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típus
- 1. Felad (2. típus
- 2. Felac
- (1. típus
- 2. Feladat (2. típus)
- (2. tipus)
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- (2. típu:
- ---
- J. I Claud

6. Feladat

$$\begin{bmatrix} 2 & 3 & 3 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix}$$

$$2\ell_1 = -4 \quad \ell_1 = -2$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típus
- 1. Felada (2. típus)
- 2. Felad
- (1. típus
- 2. Feladat
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- (2. típu:
- ---
- 5. Felaua
- 6. Felada

Megoldás:

$$\begin{bmatrix} 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix}$$

 $2\ell_1 = -4 \quad \ell_1 = -2$

 $2\ell_2 = 6$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típus
- 1. Felad (2. típus
- 2. Felac
- (1. típus
- 2. Feladat (2. típus)
- (2. tipus)
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- 4. Felac
- 5. Felad
- 6. Feladat

Megoldás:

$$\begin{bmatrix} 2 & 3 & 3 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} 2\ell_2 = 6 \quad \ell_2 = 3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix}$$

 $2\ell_1 = -4$ $\ell_1 = -2$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. tipus
- (2. típus
- 2. Felac
- (1. típus
- 2. Feladat (2. típus)
- 3. Felada
- (1. típus
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- 4. relaction (2. típu:
- o. i ciada
- 6. Feladat

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 2\ell_1 = -4 & \ell_1 = -2 \\ 2\ell_2 = 6 & \ell_2 = 3 \\ 5\ell_1 + u_1 = -8 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 2. Feladat
- (2. típus)

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix}$$

$$2\ell_1 = -4$$
 $\ell_1 = -2$

$$\begin{array}{c|cccc} u_2 & 2\ell_2 = 6 & \ell_2 = 3 \\ u_2 & 5\ell_1 + u_1 = -8 & u_1 = 2 \end{array}$$

$$5\ell_1 + u_1 = -8 \quad u_1 = 2$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. tipus
- (2. típus)
- 2. Felad
- (1. típus
- 2. Feladat
- (2. típus)
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- 4. Fela
- 5. Felada
- 6. Felada

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 2\ell_1 = -4 & \ell_1 = -2 \\ 2\ell_2 = 6 & \ell_2 = 3 \\ 5\ell_1 + u_1 = -8 & u_1 = 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felac
- 1. Felad
- (2. tipus
- 2. Felad
- 2. Feladat
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- 4. Felac
- (2. ...

5. Felada

6. Felada

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 2\ell_1 = -4 & \ell_1 = -2 \\ 2\ell_2 = 6 & \ell_2 = 3 \\ 5\ell_1 + u_1 = -8 & u_1 = 2 \\ 5\ell_1 + u_2 = -9 & u_2 = 1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felad
- 1. Felad
- (2. típus
- 2. Felad
- 2. Feladat
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Felad
- (1. típus
- 4. Fela
- ---
- . . .

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 2\ell_1 = -4 & \ell_1 = -2 \\ 2\ell_2 = 6 & \ell_2 = 3 \\ 5\ell_1 + u_1 = -8 & u_1 = 2 \\ 5\ell_1 + u_2 = -9 & u_2 = 1 \\ 5\ell_2 + u_1 \cdot \ell_3 = 25 \end{bmatrix}$$

módszerek

Király Balázs

- 1. Felad
- 1. Felad
- (2. típus
- 2. Felad
- 2. Feladat
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Felad
- (1. típus
- 4. Felac
- ---
- 5. Felad

6. Felada

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 2\ell_1 = -4 & \ell_1 = -2 \\ 2\ell_2 = 6 & \ell_2 = 3 \\ 5\ell_1 + u_1 = -8 & u_1 = 2 \\ 5\ell_1 + u_2 = -9 & u_2 = 1 \\ 6\ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix} \begin{bmatrix} 5\ell_2 + u_1 \cdot \ell_3 = 25 & \ell_3 = 5 \\ 5\ell_2 + u_1 \cdot \ell_3 = 25 & \ell_3 = 5 \end{bmatrix}$$

módszerek

Király Balázs

- 1. Felad
- 1. Felad
- (2. típus)
- 2. Felad
- 2. Feladat
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Felad
- (1. típus
- 4. Fela
- ---
-

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 2\ell_1 = -4 & \ell_1 = -2 \\ 2\ell_2 = 6 & \ell_2 = 3 \\ 5\ell_1 + u_1 = -8 & u_1 = 2 \\ 5\ell_1 + u_2 = -9 & u_2 = 1 \\ 5\ell_2 + u_1 \cdot \ell_3 = 25 & \ell_3 = 5 \\ -4 & -8 & -9 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix} \begin{bmatrix} 5\ell_2 + u_1 \cdot \ell_3 = 25 & \ell_3 = 5 \\ 5\ell_2 + u_2 \cdot \ell_3 + u_3 = 23 \end{bmatrix}$$

módszerek

Király Balázs

- 2. Feladat
- (2. típus)

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 2\ell_1 = -4 & \ell_1 = -2 \\ 2\ell_2 = 6 & \ell_2 = 3 \\ 5\ell_1 + u_1 = -8 & u_1 = 2 \\ 5\ell_1 + u_2 = -9 & u_2 = 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix} \begin{bmatrix} 5\ell_2 + u_1 \cdot \ell_3 = 25 & \ell_3 = 5 \\ 5\ell_2 + u_2 \cdot \ell_3 + u_3 = 23 & u_3 = 3 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 2. Feladat (2. típus)

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{array}{c} 2\ell_1 = -4 & \ell_1 = -2 \\ 2\ell_2 = 6 & \ell_2 = 3 \\ 5\ell_1 + u_1 = -8 & u_1 = 2 \\ 5\ell_1 + u_2 = -9 & u_2 = 1 \\ \begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix} \begin{array}{c} 5\ell_2 + u_1 \cdot \ell_3 = 25 & \ell_3 = 5 \\ 5\ell_2 + u_2 \cdot \ell_3 + u_3 = 23 & u_3 = 3 \end{array}$$

$$\operatorname{\mathsf{Így}} L = \left[\begin{array}{ccc} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 5 & 1 \end{array} \right] \text{ \'es } U = \left[\begin{array}{ccc} 2 & 5 & 5 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array} \right].$$

Numerikus módszerek

Király Balázs

1. Felad (1. típus

1. Felada

2. Felad

(1. típus

2. Feladat (2. típus)

3. Felada (1. típus)

3. Felada (2. típus)

4 Felada

4 Felada

4. Feladat (2. típus)

5. Felada

6 Feladat

Megoldás:

$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & u_1 & u_2 \\ 0 & 0 & u_3 \end{bmatrix} \begin{bmatrix} 2\ell_1 = -4 & \ell_1 = -2 \\ 2\ell_2 = 6 & \ell_2 = 3 \\ 5\ell_1 + u_1 = -8 & u_1 = 2 \\ 5\ell_1 + u_2 = -9 & u_2 = 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \ell_1 & 1 & 0 \\ \ell_2 & \ell_3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & 5 \\ -4 & -8 & -9 \\ 6 & 25 & 23 \end{bmatrix} \begin{bmatrix} 5\ell_2 + u_1 \cdot \ell_3 = 25 & \ell_3 = 5 \\ 5\ell_2 + u_2 \cdot \ell_3 + u_3 = 23 & u_3 = 3 \end{bmatrix}$$

$$\mathsf{fgy}\,L = \left[\begin{array}{ccc} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 5 & 1 \end{array} \right] \, \mathsf{\acute{e}s}\,U = \left[\begin{array}{ccc} 2 & 5 & 5 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array} \right].$$

Mivel $\det L = 1$ és $\det U = 2 \cdot 2 \cdot 3 = 12$, ezért $\det B = \det L \cdot \det U = 12$.

Numerikus módszerek

Király Balázs

- 1. Felac
- 1. Felac
- (2. típus
- 2. Felad (1. típus
- (1. tipus
- (2. típus)
- 3. Feladat (1. típus)
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Felac
- 5 Folada
- 6 Felada

3. Feladat

Adjuk meg a C mátrix QR-felbontását Gram-Schmidt ortogonalizációval!

$$C = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. tipus)
- 2. Feladal (2. típus)

3. Feladat (1. típus)

- 3. Felada (2. típus)
- 4. Felada
- (1. típus)
- (2. tipus
- 5. Felada
- 6. Felada

3. Feladat

Adjuk meg a *C* mátrix *QR*-felbontását Gram-Schmidt ortogonalizációval!

$$C = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right].$$

Megoldás:

A QR-felbontás során a mátrix ot egy Q ortogonális és egy R felsőháromszög mátrix szorzatára bontjuk.

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- 2. Felada (2. típus)
- 3. Feladat (1. típus)
- 3. Felada (2. típus)
- 4. Felada
- 4. Felada
- (2. típus
- 5. Feladi

6. Feladat

3. Feladat

Adjuk meg a *C* mátrix *QR*-felbontását Gram-Schmidt ortogonalizációval!

$$C = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right].$$

Megoldás:

A QR-felbontás során a mátrix ot egy Q ortogonális és egy R felsőháromszög mátrix szorzatára bontjuk.

Jelöljük az C mátrix oszlopait rendre $\underline{a}_1, \underline{a}_2, \underline{a}_3$ vektorokkal.

Numerikus módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- 2. Felada (2. típus)
- 3. Feladat (1. típus)
- 3. Feladat (2. típus)
- Felada
 típus)
- 4. Felada
- ---
- 5. Felada
- 6. Feladat

3. Feladat

Adjuk meg a *C* mátrix *QR*-felbontását Gram-Schmidt ortogonalizációval!

$$C = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right].$$

Megoldás:

A *QR*-felbontás során a mátrix ot egy *Q* ortogonális és egy *R* felsőháromszög mátrix szorzatára bontjuk.

Jelöljük az C mátrix oszlopait rendre $\underline{a}_1, \underline{a}_2, \underline{a}_3$ vektorokkal.

$$\underline{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \underline{a}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \underline{a}_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

módszerek

Király Balázs

- 1. Felada (1. típus
- 1. Felada
- (2. típus
- 2. Felad (1. típus
- 2 Felad
- (2. típus)
- 3. Feladat (1. típus)
- 3. Feladat
- (2. típus)
- (1. típus)
- 4. Felada (2. típus)
- (z. tipus
- 6. Felada

Megoldás:

A Q mátrix $\underline{q}_1,\underline{q}_2,\underline{q}_3$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az R mátrixot is.

$$R = \left[\begin{array}{cc} 0 \\ 0 & 0 \end{array} \right]$$

Numerikus módszerek

Király Balázs

- 3. Feladat
- (1. típus)

Megoldás:

A Q mátrix q_1,q_2,q_3 oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az R mátrixot is. $\underline{q}_1 = \frac{1}{r_{11}}\underline{a}_1$

$$R = \begin{bmatrix} 0 \\ 0 & 0 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

Megoldás:

$$Q =$$

The elocality with a
$$a_1$$
 a_2 a_3 a_4 a_4 a_4 a_5 a_4 a_5 a_4 a_5 a

$$r_{11} = \|\underline{u}_1\|_2 = \sqrt{2}$$

$$R = \left[\begin{array}{c} \sqrt{2} \\ 0 \\ 0 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

Megoldás:

eközben oszloponként előállítjuk az
$$R$$
 mátrixot is.
$$\underline{q}_1 = \frac{1}{r_{11}}\underline{a}_1$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$r_{11} = \|\underline{a}_1\|_2 = \sqrt{2}$$

$$\underline{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$r_{11} = \|\underline{a}_1\|_2 = \sqrt{2} \qquad \underline{q}_1$$

$$r_{11} = \|\underline{a}_1\|_2 = \sqrt{2}$$
 $\underline{q}_1 =$

$$R = \begin{bmatrix} \sqrt{2} \\ 0 \\ 0 & 0 \end{bmatrix}.$$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

Megoldás:

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \quad r_{11} = \|\underline{a}_{1}\|_{2} = \sqrt{2} \qquad \underline{q}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
$$\underline{q}_{2} = \frac{1}{r_{22}} \left(\underline{a}_{2} - r_{12}\underline{q}_{1}\right)$$

$$R = \left[\begin{array}{cc} \sqrt{2} \\ 0 \\ 0 & 0 \end{array} \right].$$

$$\underline{q}_1 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

$$\underline{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\underline{q}_1 = \overline{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\frac{1}{2}$$
 $\sqrt{2}$ $\left[1 \right]$

$$\underline{\underline{\underline{\underline{a}}}} = \frac{1}{r_{22}} \left(\underline{\underline{a}}_2 - r_{12} \underline{\underline{q}}_1 \right)$$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

Megoldás:

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & & \\ 0 & & \\ 0 & 0 & \end{bmatrix}. \begin{array}{c} -2 & -2 & \\ r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle \\ & & \\ \end{array}$$

$$\underline{q}_1 = \frac{1}{r_{11}}\underline{a}_1$$

$$\begin{bmatrix}
\underline{q}_1 & \underline{r}_{11} = 1 \\
r_{11} = \|\underline{a}_1\|_2 = \sqrt{2} & \underline{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \\
\underline{q}_2 = \frac{1}{r_{22}} (\underline{a}_2 - r_{12}\underline{q}_1)$$

$$\underline{q}_2 = \frac{1}{r_{22}} \left(\underline{a}_2 - r_{12} \underline{q}_1 \right)$$

$$r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle$$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

Megoldás:

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & & & & \\ 0 & & & \\ \frac{1}{\sqrt{2}} & & & \\ \end{bmatrix} \begin{array}{c} q_1 = \frac{r_1}{r_{11}}\underline{u}_1 \\ r_{11} = \|\underline{a}_1\|_2 = \sqrt{2} & q_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \\ \underline{q}_2 = \frac{1}{r_{22}} \left(\underline{a}_2 - r_{12}\underline{q}_1\right) \\ R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & & \\ 0 & & \\ 0 & 0 & \\ \end{bmatrix} \begin{array}{c} r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle = \sqrt{2} \\ & & \\ \end{array}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 \\ 0 & 0 \end{bmatrix}$$

$$\underline{q}_1 = \frac{1}{r_{11}}\underline{a}_1$$

$$r_{11} = \|\underline{a}_1\|_2 = \sqrt{2}$$

$$\underline{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\underline{q}_2 = \frac{1}{r_{22}} \left(\underline{a}_2 - r_{12} \underline{q}_1 \right)$$

$$r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle = \sqrt{2}$$

$$r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle = \sqrt{2}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

Megoldás:

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 & \\ 0 & 0 \end{bmatrix}$$

$$\underline{q}_1 = \frac{1}{r_{11}}\underline{a}_1$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \quad r_{11} = \|\underline{a}_{1}\|_{2} = \sqrt{2} \qquad \underline{q}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 \\ 0 & 0 \end{bmatrix} \quad r_{12} = \langle \underline{q}_{1}, \underline{a}_{2} \rangle = \sqrt{2}$$

$$\underline{a}_{2} - r_{12}\underline{q}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle = \sqrt{2}$$

$$\dot{a}_2 - r_{12}\underline{q}_1 =$$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus
- 1. Felada
- (2. tipus)
- 2. Felada (1. típus
- 2. Felada
- 3. Feladat (1. típus)
- 3. Feladat
- (2. típus)
- 4. Felada
- 4. Felada
- (2. típus)
- 5. Felad
- 6. Felada

Megoldás:

A Q mátrix $\underline{q}_1,\underline{q}_2,\underline{q}_3$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az R mátrixot is.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 \\ 0 & 0 \end{bmatrix}$$

$$\frac{q_1}{r_{11}} = ||\underline{a}_1||_2 = \sqrt{2}$$

$$q_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\frac{q_2}{r_{12}} = \frac{1}{r_{22}} \left(\underline{a}_2 - r_{12} \underline{q}_1 \right)$$

$$r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle = \sqrt{2}$$

$$\underline{a}_2 - r_{12} \underline{q}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

Megoldás:

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 \\ 0 & 0 \end{bmatrix}$$

$$\frac{q_{1}}{q_{1}} = \frac{1}{r_{11}}\underline{a}_{1}$$

$$r_{11} = \|\underline{a}_{1}\|_{2} = \sqrt{2} \qquad \underline{q}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\underline{q}_{2} = \frac{1}{r_{22}} (\underline{a}_{2} - r_{12}\underline{q}_{1})$$

$$r_{12} = \frac{1}{r_{22}} (\underline{a}_{2} - r_{12}\underline{q}_{1})$$

$$\underline{q}_2 = \frac{1}{r_{22}} \left(\underline{a}_2 - r_{12} \underline{q}_1 \right)$$

$$r_{12} = \langle a, a_2 \rangle = \sqrt{2}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 \\ 0 & 0 \end{bmatrix} \cdot \underbrace{\begin{matrix} r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle = \sqrt{2} \\ \underline{a}_2 - r_{12}\underline{q}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

Megoldás:

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\underline{q}_1 = \frac{1}{r_{11}}\underline{a}_1$$

$$\begin{bmatrix}
\frac{q_1}{r_{11}} & r_{11} \stackrel{!}{=} 1 \\
r_{11} & = ||\underline{a}_1||_2 = \sqrt{2} & \underline{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \\
\underline{q}_2 & = \frac{1}{r_{22}} \left(\underline{a}_2 - r_{12} \underline{q}_1 \right) \\
\mathbf{q}_3 & = \frac{1}{r_{22}} \left(\underline{a}_3 - r_{12} \underline{q}_1 \right)$$

$$r_{12} = \langle q_1, \underline{a}_2 \rangle = \sqrt{2}$$

$$r_{12} = \langle q_1, \underline{a}_2 \rangle = \sqrt{2}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \underbrace{\begin{matrix} r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle = \sqrt{2} \\ \underline{a}_2 - r_{12}\underline{q}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$r_{22} = \|\underline{a}_2 - r_{12}q_1\|_2 = 1$$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

Megoldás:

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} \sqrt{2} & 1 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\underline{q}_1 = \frac{1}{r_{11}}\underline{a}_1$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \quad r_{11} = \|\underline{a}_1\|_2 = \sqrt{2} \qquad \underline{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\underline{q}_2 = \frac{1}{r_{22}} \left(\underline{a}_2 - r_{12}\underline{q}_1\right)$$

$$r_{12} = \langle \underline{q}_1, \underline{a}_2 \rangle = \sqrt{2}$$

$$r_{22} = \|\underline{a}_2 - r_{12}\underline{q}_1\|_2 = 1$$
 $\underline{q}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Numerikus módszerek

Király Balázs

- 3. Feladat (1. típus)

$$\underline{q}_3 = \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 \right)$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \left[\begin{array}{cc} \sqrt{2} & \sqrt{2} \\ 0 & 1 \\ 0 & 0 \end{array} \right].$$

Király Balázs

- 1. Fela
- (1. típus
- 1. Felad (2. típus
- 2. Felad
- (1. típus)
- 2. Felada (2. típus)
- 3. Feladat
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- 4. Fela
- (== --|----
- 6 Felada

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \left[\begin{array}{cc} \sqrt{2} & \sqrt{2} \\ 0 & 1 \\ 0 & 0 \end{array} \right].$$

$$\underline{q}_3 = \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 \right)$$

$$r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \left[\begin{array}{cc} \sqrt{2} & \sqrt{2} \\ 0 & 1 \\ 0 & 0 \end{array} \right].$$

$$\underline{q}_3 = \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 \right)$$

$$r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}}$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

$$\underline{q}_3 = \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 \right)$$

$$r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Megoldás:
$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad \begin{cases} \underline{q}_3 = \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2\right) \\ r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ r_{23} = \langle \underline{q}_2, \underline{a}_3 \rangle \end{cases}$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \left[\begin{array}{ccc} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 \end{array} \right].$$

Megoldás:
$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad \frac{\underline{q}_3 = \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2 \right)}{r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}} \\ r_{23} = \langle \underline{q}_2, \underline{a}_3 \rangle = -1$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \left[\begin{array}{ccc} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 \end{array} \right].$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad \begin{cases} \underline{q}_3 = \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2 \right) \\ r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ r_{23} = \langle \underline{q}_2, \underline{a}_3 \rangle = -1 \\ \underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2 = \end{cases}$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{2} \\ 0 & 0 \end{bmatrix}.$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad \begin{aligned} q_3 &= \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 \right) \\ r_{13} &= \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ r_{23} &= \langle \underline{q}_2, \underline{a}_3 \rangle = -1 \\ \underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 = \\ &= \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad \begin{aligned} & \underline{q}_3 = \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 \right) \\ & r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ & r_{23} = \langle \underline{q}_2, \underline{a}_3 \rangle = -1 \\ & \underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 = \\ & = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \\ R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 \end{bmatrix} \cdot = \begin{bmatrix} \frac{1}{2} \\ 0 \\ 1 \end{bmatrix}$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad \begin{aligned} r_{13} &= \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} \\ r_{23} &= \langle \underline{q}_2, \underline{a}_3 \rangle = -1 \\ \underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2 = \\ \end{bmatrix} \\ \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 \end{bmatrix} \qquad = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{aligned}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ r_{23} = \langle \underline{q}_2, \underline{a}_3 \rangle = -1 \\ \underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2 = \\ R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$$

$$r_{33} = \|\underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2\|_2 =$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad \begin{cases} r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} \\ r_{23} = \langle \underline{q}_2, \underline{a}_3 \rangle = -1 \\ \underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2 = \\ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{cases}$$

$$R = \left[\begin{array}{ccc} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{array} \right].$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ r_{23} = \langle \underline{q}_2, \underline{a}_3 \rangle = -1 \\ \underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2 = \\ R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \qquad = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$$

$$r_{33} = \|\underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2\|_2 = \frac{\sqrt{2}}{2}$$

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \\ \frac{1}{\sqrt{2}} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \cdot = \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$$

$$\underline{q}_3 = \frac{2}{\sqrt{6}} \left[\begin{array}{c} \frac{1}{2} \\ -1 \\ -\frac{1}{2} \end{array} \right] =$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad \begin{aligned} & \underline{q}_3 = \frac{1}{r_{33}} \left(\underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 \right) \\ & r_{13} = \langle \underline{q}_1, \underline{a}_3 \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ & r_{23} = \langle \underline{q}_2, \underline{a}_3 \rangle = -1 \\ & \underline{a}_3 - r_{13} \underline{q}_1 - r_{23} \underline{q}_2 = \\ & = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \\ & = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix} \end{aligned}$$

$$r_{33} = \|\underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2\|_2 = \frac{\sqrt{2}}{2}$$

módszerek

Király Balázs

- 3. Feladat (1. típus)

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \end{bmatrix} \qquad \begin{aligned} r_{13} &= \langle \underline{q}_{1}, \underline{a}_{3} \rangle = \frac{1}{\sqrt{2}} \\ r_{23} &= \langle \underline{q}_{2}, \underline{a}_{3} \rangle = -1 \\ \underline{a}_{3} - r_{13}\underline{q}_{1} - r_{23}\underline{q}_{2} = \\ \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \cdot = \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$$

$$\underline{q}_{3} = \frac{2}{\sqrt{6}} \begin{bmatrix} \frac{1}{2} \\ -1 \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \end{bmatrix}^{r_{33}} = \|\underline{a}_{3} - r_{13}\underline{q}_{1} - r_{23}\underline{q}_{2}\|_{2} = \frac{\sqrt{2}}{2}$$

$$\underline{q}_{3} = \frac{1}{r_{33}} \left(\underline{a}_{3} - r_{13}\underline{q}_{1} - r_{23}\underline{q}_{2} \right)
r_{13} = \langle \underline{q}_{1}, \underline{a}_{3} \rangle = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}
r_{23} = \langle \underline{q}_{2}, \underline{a}_{3} \rangle = -1
\underline{a}_{3} - r_{13}\underline{q}_{1} - r_{23}\underline{q}_{2} =
= \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} =$$

$$= \begin{bmatrix} -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$$

$$|r_{33}| = ||\underline{a}_3 - r_{13}\underline{q}_1 - r_{23}\underline{q}_2||_2 = \frac{\sqrt{2}}{2}$$

módszerek

Király Balázs

- 1. Felac
- 1. Felada
- (2. típus
- 2. Felad
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus)
- 4. Felac (2. típus
- 5 Felada
- 6 Felada

3. Feladat

Adjuk meg a C mátrix QR-felbontását Gram-Schmidt ortogonalizációval normálás nélkül!

$$C = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus
- 2. Felada (2. típus)
- 3. Feladat (1. típus)
- 3. Feladat (2. típus)
- 4. Feladat
- (T. tipus) 4. Feladat
- (Z. tipus)
- 5. Felada
- 6 Felada

3. Feladat

Adjuk meg a C mátrix QR-felbontását Gram-Schmidt ortogonalizációval normálás nélkül!

$$C = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right].$$

Megoldás:

Ekkor a mátrixot egy \widetilde{Q} mátrix és egy \widetilde{R} felsőháromszög mátrix szorzatára bontjuk, ahol \widetilde{Q} oszlopai páronként ortogonálisak és $\widetilde{r}_{ii}=1$

módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- 2. Felada (2. típus)
- Feladattípus)
- 3. Feladat (2. típus)
- 4. Felad
- 4 Felada
- (2. típus
- 5. Felad
 - . . .

3. Feladat

Adjuk meg a C mátrix QR-felbontását Gram-Schmidt ortogonalizációval normálás nélkül!

$$C = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right].$$

Megoldás:

Ekkor a mátrixot egy \widetilde{Q} mátrix és egy \widetilde{R} felsőháromszög mátrix szorzatára bontjuk, ahol \widetilde{Q} oszlopai páronként ortogonálisak és $\widetilde{r_{ii}}=1$

Használjuk az előző feladat jelöléseit az oszlopvektorokra.

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típus
- 1. Felad (2. típus
- 2. Felac
- (1. típus
- 2. Felada (2. típus)
- 3 Felada
- (1. típus)
- 3. Feladat (2. típus)
- 4. Feladat
- (1. tipus)
- (2. típus
- 5. Felad
- 6. Felada

Megoldás:

A \widetilde{Q} mátrix $\widetilde{\underline{q}}_1, \widetilde{\underline{q}}_2, \widetilde{\underline{q}}_3$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az \widetilde{R} mátrixot is.

$$\widetilde{Q} =$$

$$\widetilde{R} = \left[\begin{array}{ccc} 1 & & \\ 0 & 1 & \\ 0 & 0 & 1 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típus
- 1. Felad (2. típus
- 2 Felac
- (1. típu:
- 2. Felad
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Feladat
- (1. típus)
- (2. típus)
- 5. Felada
- 6. Felada

Megoldás:

A \widetilde{Q} mátrix $\widetilde{\underline{q}}_1, \widetilde{\underline{q}}_2, \widetilde{\underline{q}}_3$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az \widetilde{R} mátrixot is.

$$\widetilde{Q} = \begin{bmatrix} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$\widetilde{\underline{q}}_1 = \underline{a}_1$$

$$\widetilde{R} = \left[\begin{array}{ccc} 1 & & \\ 0 & 1 & \\ 0 & 0 & 1 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

A \widetilde{Q} mátrix $\widetilde{q}_{_1},\widetilde{q}_{_2},\widetilde{q}_{_3}$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az \widetilde{R} mátrixot is.

$$\widetilde{Q} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 $\widetilde{\underline{q}}_1 = \underline{a}_1$
 $\widetilde{\underline{q}}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

$$\widetilde{\underline{q}}_1 = \underline{a}_1$$

$$\widetilde{\underline{q}}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\widetilde{R} = \left[\begin{array}{ccc} 1 & & \\ 0 & 1 & \\ 0 & 0 & 1 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

A \widetilde{Q} mátrix $\widetilde{q}_{_1},\widetilde{q}_{_2},\widetilde{q}_{_3}$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az \widetilde{R} mátrixot is.

$$\widetilde{Q} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \qquad \widetilde{\underline{q}}_1 = \underline{a}_1 \qquad \widetilde{\underline{q}}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
$$\widetilde{\underline{q}}_2 = \underline{a}_2 - \widetilde{r}_{12} \widetilde{\underline{q}}_1$$

$$\widetilde{\underline{q}}_1 = \underline{a}_1 \qquad \widetilde{\underline{q}}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\underline{\widetilde{q}}_2 = \underline{a}_2 - \widetilde{r}_{12}\underline{\widetilde{q}}_1$$

$$\widetilde{R} = \left[\begin{array}{ccc} 1 & & \\ 0 & 1 & \\ 0 & 0 & 1 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

A \widetilde{Q} mátrix $\widetilde{q}_1, \widetilde{q}_2, \widetilde{q}_3$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az \widetilde{R} mátrixot is.

$$\widetilde{Q} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$egin{aligned} \widetilde{\underline{q}}_1 &= \underline{a}_1 & \widetilde{\underline{q}}_1 &= \left[egin{array}{c} 1 \ 0 \ 1 \end{array}
ight] \ \widetilde{\underline{q}}_2 &= \underline{a}_2 - \widetilde{r}_{12} \widetilde{\underline{q}}_1 \end{aligned}$$

$$\underline{\widetilde{q}}_2 = \underline{a}_2 - \widetilde{r}_{12}\underline{\widetilde{q}}_1$$

$$\widetilde{R} = \begin{bmatrix} 1 & & \\ 0 & 1 & \\ 0 & 0 & 1 \end{bmatrix} \cdot \widetilde{r}_{12} = \frac{\langle \widetilde{q}_1, \underline{a}_2 \rangle}{\langle \widetilde{q}_1, \widetilde{q}_1 \rangle}$$

Numerikus módszerek

Király Balázs

- 3. Feladat
- (2. típus)

Megoldás:

A \widetilde{Q} mátrix $\widetilde{q}_{_1},\widetilde{q}_{_2},\widetilde{q}_{_3}$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az \widetilde{R} mátrixot is.

$$\widetilde{Q} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$egin{aligned} \widetilde{\underline{q}}_1 &= \underline{a}_1 & \widetilde{\underline{q}}_1 &= \left[egin{array}{c} 1 \ 0 \ 1 \end{array}
ight] \ \widetilde{\underline{q}}_2 &= \underline{a}_2 - \widetilde{r}_{12} \widetilde{\underline{q}}_1 \end{aligned}$$

$$\underline{\widetilde{q}}_2 = \underline{a}_2 - \widetilde{r}_{12}\underline{\widetilde{q}}_1$$

$$\widetilde{R} = \left[egin{array}{ccc} 1 & 1 & & \ 0 & 1 & & \ 0 & 0 & & 1 \end{array}
ight] \cdot \quad \widetilde{r}_{12} = rac{\langle \widetilde{q}_1, a_2
angle}{\langle \widetilde{q}_1, \widetilde{q}_1
angle} = rac{2}{2} = 1$$

módszerek

Király Balázs

- 3. Feladat
- (2. típus)

Megoldás:

A \widetilde{Q} mátrix $\widetilde{q}_1, \widetilde{q}_2, \widetilde{q}_3$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az \widetilde{R} mátrixot is.

$$\widetilde{Q} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$egin{aligned} \widetilde{q}_1 &= \underline{a}_1 & \widetilde{q}_1 &= \left[egin{array}{c} 1 \ 0 \ 1 \end{array}
ight] \ \widetilde{q}_2 &= \underline{a}_2 - \widetilde{r}_{12} \widetilde{q}_1 \end{aligned}$$

$$\underline{\widetilde{q}}_2 = \underline{a}_2 - \widetilde{r}_{12}\underline{\widetilde{q}}_1$$

$$\widetilde{R} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 $\widetilde{r}_{12} = \frac{\langle \widetilde{q}_1, \underline{a}_2 \rangle}{\langle \widetilde{\underline{q}}_1, \widetilde{\underline{q}}_1 \rangle} = \frac{2}{2} = 1$

$$\widetilde{\underline{q}}_2 = \left| \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right| - \left| \begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right|$$

Numerikus módszerek

Király Balázs

- 3. Feladat
- (2. típus)

Megoldás:

A \widetilde{Q} mátrix $\widetilde{q}_1, \widetilde{q}_2, \widetilde{q}_3$ oszlopait egyenként határozzuk meg, eközben oszloponként előállítjuk az \widetilde{R} mátrixot is.

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \widetilde{\underline{q}}_1 = \underline{a}_1 \qquad \widetilde{\underline{q}}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\underline{\widetilde{q}}_2 = \underline{a}_2 - \widetilde{r}_{12} \underline{\widetilde{q}}_1$$

$$\underline{\widetilde{q}}_2 = \underline{a}_2 - \widetilde{r}_{12}\underline{\widetilde{q}}_1$$

$$\widetilde{R} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \widetilde{r}_{12} = \frac{\langle \widetilde{q}_1, \underline{a}_2 \rangle}{\langle \widetilde{q}_1, \widetilde{q}_1 \rangle} = \frac{2}{2} = 1$$

$$\widetilde{\underline{q}}_2 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu:
- 1. Felada (2. típus)
- 2. Felac
- (1. típus
- 2. Felada
- (2. típus)
- (1. típus)
- 3. Feladat (2. típus)
- (2. típus)
- (1. típus
- 4. Felad
- (2. típus)
- 5. Felada
- 6. Felada

$$\underline{\widetilde{q}}_3 = \underline{a}_3 - \widetilde{r}_{13}\underline{\widetilde{q}}_1 - \widetilde{r}_{23}\underline{\widetilde{q}}_2$$

$$\widetilde{Q} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} \right]$$

$$\widetilde{R} = \left[\begin{array}{ccc} 1 & 1 \\ 0 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. tipu:
- 1. Felada (2. típus
- 2. Felac
- (1. típus
- 2. Felada
- (2. típus)
- (1. típus)
- 3. Feladat
- (2. típus)
- (1. típus
- 4. Felad
- (2. típus)
- 5. Felad
- 6. Felada

$$\underline{\widetilde{q}}_3 = \underline{a}_3 - \widetilde{r}_{13}\underline{\widetilde{q}}_1 - \widetilde{r}_{23}\underline{\widetilde{q}}_2$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \widetilde{r}_{13} = \frac{\langle \widetilde{q}_1, \underline{a}_3 \rangle}{\langle \widetilde{q}_1, \widetilde{q}_1 \rangle}$$

$$\widetilde{R} = \left[\begin{array}{ccc} 1 & 1 \\ 0 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 3. Feladat
- (2. típus)

$$\underline{\widetilde{q}}_3 = \underline{a}_3 - \widetilde{r}_{13}\underline{\widetilde{q}}_1 - \widetilde{r}_{23}\underline{\widetilde{q}}_2$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\widetilde{Q} = \left[egin{array}{ccc} 1 & 0 & & \\ 0 & 1 & & \\ 1 & 0 & & \end{array}
ight] \qquad \widetilde{r}_{13} = rac{\langle \widetilde{q}_1, \underline{a}_3 \rangle}{\langle \widetilde{q}_1, \widetilde{q}_1 \rangle} = rac{1}{2}$$

$$\widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & \\ 0 & 0 & 1 \end{bmatrix}.$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

 $\widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & \\ 0 & 0 & 1 \end{bmatrix}.$

$$\underline{\widetilde{q}}_3 = \underline{a}_3 - \widetilde{r}_{13}\underline{\widetilde{q}}_1 - \widetilde{r}_{23}\underline{\widetilde{q}}_2$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \\ 0 & 1 & \\ 1 & 0 & \end{bmatrix} \qquad \widetilde{r}_{13} = \frac{\langle \widetilde{q}_{1}, \underline{a}_{3} \rangle}{\langle \widetilde{q}_{1}, \widetilde{q}_{1} \rangle} = \frac{1}{2}$$

$$\widetilde{r}_{23} = \frac{\langle \widetilde{q}_{2}, \underline{a}_{3} \rangle}{\langle \widetilde{q}_{2}, \widetilde{q}_{2} \rangle}$$

$$\widetilde{r}_{23} = \frac{\langle \widetilde{q}_2, \underline{a}_3 \rangle}{\langle \widetilde{q}_2, \widetilde{q}_2 \rangle}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

 $\widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$

$$\underline{\widetilde{q}}_3 = \underline{a}_3 - \widetilde{r}_{13}\underline{\widetilde{q}}_1 - \widetilde{r}_{23}\underline{\widetilde{q}}_2$$

$$\widetilde{r}_{12} = \frac{\langle \widetilde{q}_1, \underline{a}_3 \rangle}{\langle \widetilde{q}_1, \underline{a}_3 \rangle} = \frac{1}{2}$$

$$\widetilde{r}_{13} = \frac{\langle \underline{q}_1, \underline{a}_3 \rangle}{\langle \underline{\widetilde{q}}_1, \underline{\widetilde{q}}_1 \rangle} = \frac{1}{2}$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \\ 0 & 1 & \\ 1 & 0 & \end{bmatrix} \qquad \widetilde{r}_{13} = \frac{\langle \widetilde{q}_1, \underline{a}_3 \rangle}{\langle \widetilde{q}_1, \widetilde{q}_1 \rangle} = \frac{1}{2}$$

$$\widetilde{r}_{23} = \frac{\langle \widetilde{q}_2, \underline{a}_3 \rangle}{\langle \widetilde{q}_2, \widetilde{q}_2 \rangle} = \frac{-1}{1} = -1$$

Numerikus módszerek

Király Balázs

- 3. Feladat
- (2. típus)

$$\underline{\widetilde{q}}_3 = \underline{a}_3 - \widetilde{r}_{13}\underline{\widetilde{q}}_1 - \widetilde{r}_{23}\underline{\widetilde{q}}_2$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \\ 0 & 1 & \\ 1 & 0 & \end{bmatrix} \qquad \widetilde{r}_{13} = \frac{\langle \widetilde{g}_1, \underline{a}_3 \rangle}{\langle \widetilde{q}_1, \widetilde{q}_1 \rangle} = \frac{1}{2}$$

$$\widetilde{r}_{23} = \frac{\langle \widetilde{q}_2, \underline{a}_3 \rangle}{\langle \widetilde{q}_2, \widetilde{q}_2 \rangle} = \frac{-1}{1} = -1$$

$$\widetilde{r}_{23} = \frac{\langle \widetilde{\underline{q}}_2, \underline{a}_3 \rangle}{\langle \widetilde{q}_2, \widetilde{q}_2 \rangle} = \frac{-1}{1} = -1$$

$$\widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}. \quad \widetilde{r}_{23} = \frac{\langle \underline{q}_2, \underline{u}_3 \rangle}{\langle \widetilde{q}_2, \widetilde{q}_2 \rangle} = \frac{-1}{1} = -1$$

$$\widetilde{q}_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

módszerek

Király Balázs

- 3. Feladat (2. típus)

$$\underline{\widetilde{q}}_3 = \underline{a}_3 - \widetilde{r}_{13}\underline{\widetilde{q}}_1 - \widetilde{r}_{23}\underline{\widetilde{q}}_2$$

$$\widetilde{r}_{13} = \frac{\langle \widetilde{\underline{q}}_1, \underline{a}_3 \rangle}{\langle \widetilde{\underline{q}}_1, \widetilde{\underline{q}}_1 \rangle} = \frac{1}{2}$$

$$\langle \underline{q}_1, \underline{q}_1 \rangle = 2$$
 $\langle \widetilde{q}_1, a_2 \rangle = -1$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{r}_{13} = \frac{\langle \widetilde{\underline{q}}_1, \underline{a}_3 \rangle}{\langle \widetilde{\underline{q}}_1, \widetilde{\underline{q}}_1 \rangle} = \frac{1}{2}$$

$$\widetilde{r}_{23} = \frac{\langle \widetilde{\underline{q}}_2, \underline{a}_3 \rangle}{\langle \widetilde{\underline{q}}_2, \widetilde{\underline{q}}_2 \rangle} = \frac{-1}{1} = -1$$

$$\widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}. \quad \widetilde{r}_{23} = \frac{\langle \widetilde{q}_{2}, \underline{a}_{3} \rangle}{\langle \widetilde{q}_{2}, \widetilde{q}_{2} \rangle} = \frac{-1}{1} = -1$$

$$\widetilde{q}_{3} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}$$

módszerek

Király Balázs

- 1. Felac
- (1. típu
- 1. Felada (2. típus
- 2 Felad
- (1. típus
- 2. Felada
- 3. Felada
- 3. Feladat (2. típus)
- 4. Folod
- (1. típus
- (2. típu:
- (Z. tipus
- 5. Felaul

6. Felada

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$\widetilde{R} = \left[egin{array}{cccc} 1 & 1 & rac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}
ight].$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} & 1 & 0 & \frac{1}{2} \\ & 0 & 1 & 0 \\ & 1 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} & 1 & 0 & \frac{1}{2} \\ & 0 & 1 & 0 \\ & 1 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
 $R = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\sqrt{2}$$

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q =$$

$$R =$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} & 1 & 0 & \frac{1}{2} \\ & 0 & 1 & 0 \\ & 1 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\sqrt{2}$$

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$R =$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} & 1 & 0 & \frac{1}{2} \\ & 0 & 1 & 0 \\ & 1 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\sqrt{2}$$

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \qquad R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ & & \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ & & \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} & 1 & 0 & \frac{1}{2} \\ & 0 & 1 & 0 \\ & 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} & 1 & 1 & \frac{1}{2} \\ & 0 & 1 & -1 \\ & 0 & 0 & 1 \end{bmatrix}.$$

$$\widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sqrt{2}$$
 1

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \qquad R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ & & \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\sqrt{2}$$
 1

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ & & & \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 3. Feladat
- (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} & 1 & 0 & \frac{1}{2} \\ & 0 & 1 & 0 \\ & 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} & 1 & 1 & \frac{1}{2} \\ & 0 & 1 & -1 \\ & 0 & 0 & 1 \end{bmatrix}.$$

$$\widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sqrt{2}$$
 1

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sqrt{2}$$
 1 $\frac{1}{\sqrt{2}}$

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \qquad R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\widetilde{R} = \begin{bmatrix} & 1 & & 2 & & 2 \\ & 0 & & 1 & & -1 \\ & 0 & & 0 & & 1 \end{bmatrix}$$

$$\sqrt{2}$$
 1 $\frac{1}{\sqrt{2}}$

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \end{bmatrix} \qquad R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 3. Feladat (2. típus)

Megoldás:

$$\widetilde{Q} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\widetilde{R} = \begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sqrt{2}$$
 1 $\frac{1}{\sqrt{2}}$

A Q mátrix oszlopait a hosszukkal osztva kaphatók a Q ortogonális mátrix oszlopai.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{2} \end{bmatrix}$$

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \end{bmatrix} \qquad R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \frac{\sqrt{2}}{2} \\ 0 & 1 & -1 \\ 0 & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típus
- 1. Felad (2. típus
- 2. Felad
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Feladat
- (1. típus)
- 4. Felad
- E Folode
- 6 Felada

4. Feladat

Adjuk meg a D mátrix QR-felbontását Householder algoritmussal!

$$D = \left[\begin{array}{cc} 3 & 2 \\ 4 & 1 \end{array} \right].$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. tipus
- (2. típus)
- 2. Felada (1. típus
- (1. típus)
- 2. Feladat (2. típus)
- 3. Feladat (1. típus)
- 3. Feladat
- 4. Feladat
- (1. típus)
- 4. Felad (2. típus
- 5 Felada
- 6 Felada

4. Feladat

Adjuk meg a *D* mátrix *QR*-felbontását Householder algoritmussal!

$$D = \left[\begin{array}{cc} 3 & 2 \\ 4 & 1 \end{array} \right].$$

Megoldás:

Legyen
$$\underline{a} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 a mátrix első oszlopvektora.

Numerikus módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- 2. Felada (1. típus)
- 2. Felada (2. típus)
- 3. Feladat (1. típus)
- 3. Feladat
- 4. Feladat (1. típus)
- 4. Felad
- E Folodo
- 5. Felaua

4. Feladat

Adjuk meg a D mátrix QR-felbontását Householder algoritmussal!

$$D = \left[\begin{array}{cc} 3 & 2 \\ 4 & 1 \end{array} \right].$$

Megoldás:

Legyen $\underline{a} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ a mátrix első oszlopvektora.

Keressük azt a \bar{H} Housholder transzformációt, amely az \underline{a} vektort a $\underline{b} = \begin{bmatrix} \sigma \\ 0 \end{bmatrix}$ vektorba viszi.

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus
- 1. Felada (2. típus)
- 2. Felada
- 2. Felada (1. típus)
- 2. Felada (2. típus)
- 3. Feladat (1. típus)
- 3. Felada
- 4. Feladat
- (1. típus)
- (2. típu:
- 5. Felada
- 6 Felada

4. Feladat

Adjuk meg a D mátrix QR-felbontását Householder algoritmussal!

$$D = \left[\begin{array}{cc} 3 & 2 \\ 4 & 1 \end{array} \right].$$

Megoldás:

Legyen $\underline{a} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ a mátrix első oszlopvektora.

Keressük azt a \vec{H} Housholder transzformációt, amely az \underline{a} vektort a $\underline{b} = \begin{bmatrix} \sigma \\ 0 \end{bmatrix}$ vektorba viszi.

Ekkor
$$||\underline{a}||_2 = ||\underline{b}||_2$$

Numerikus módszerek

Király Balázs

- 4. Feladat (1. típus)

4. Feladat

Adjuk meg a D mátrix QR-felbontását Householder algoritmussal!

$$D = \left[\begin{array}{cc} 3 & 2 \\ 4 & 1 \end{array} \right].$$

Megoldás:

Legyen $\underline{a} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ a mátrix első oszlopvektora.

Keressük azt a H Housholder transzformációt, amely az avektort a $\underline{b} = \begin{bmatrix} \sigma \\ 0 \end{bmatrix}$ vektorba viszi. Ekkor $\|\underline{a}\|_2 = \|\underline{b}\|_2 \quad \Rightarrow \quad \sigma = \pm 5$

Ekkor
$$||a||_2 = ||b||_2$$
 $\Rightarrow \sigma = \pm 5$

Numerikus módszerek

Király Balázs

1. Felada

1. Felada

2. Felada

(1. típus)

2. Feladat (2. típus)

3. Feladat

3. Feladat

(2. típus)
4. Feladat

(1. típus)4. Felada

Feladat
 típus)

5. Felada

6. Feladat

4. Feladat

Adjuk meg a D mátrix QR-felbontását Householder algoritmussal!

$$D = \left[\begin{array}{cc} 3 & 2 \\ 4 & 1 \end{array} \right].$$

Megoldás:

Legyen $\underline{a} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ a mátrix első oszlopvektora.

Keressük azt a H Housholder transzformációt, amely az \underline{a}

vektort a $\underline{b} = \left[\begin{array}{c} \sigma \\ 0 \end{array} \right]$ vektorba viszi.

Ekkor $\|\underline{a}\|_2 = \|\underline{b}\|_2$ \Rightarrow $\sigma = \pm 5$

Mivel $a_1 > 0$, ezért $\sigma = -5$.

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felada (2. típus
- 2. Felad
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Feladat
- (1. típus)
- 4. Felada
- (______
- 6 Feladat

Megoldás:

Numerikus módszerek

Király Balázs

- 4. Feladat
- (1. típus)

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

Numerikus módszerek

Király Balázs

- 1 Foladat
- (1. tipu
- 1. Felada (2. típus
- (Z. t.pac
- (1. típus
- (1. tipus)
- 2. Felada (2. típus)
- 3. Felada
- (1. tipus)
- 3. Feladat (2. típus)
- 4. Feladat (1. típus)
- (1. tipus
- (2. típus
- 5. Felada
- 6 Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felad
- 2 Folad
- (1. típus
- 2. Felada
- (2. típus)
- (1. típus)
- 3. Feladat
- 4. Feladat
- (1. típus)
- 4. Felad
- (z. tipus)
- 6 Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felada
- 2 Felad
- (1. típus
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Feladat
- (1. típus)
- 4. Felac
- E Folodo
- 6 Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. tipu
- 1. Felada (2. típus)
- 2. Felac
- (1. típus
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Feladat
- (1. típus)
- 4. Felad
- (______
- 6 Folada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{64 + 16} = 4\sqrt{5}.$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felad (2. típus
- 2. Felac
- (1. típus
- 2. Felada (2. típus)
- (2. tipus)
- (1. típus)
- 3. Feladat
- 4. Feladat
- (1. típus)
- 4. Felada (2. típus)
- _____
- 6 Folada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{64 + 16} = 4\sqrt{5}.$$

$$\underline{v} = \frac{1}{4\sqrt{5}} \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felada
- 2. Felac
- (1. típus
- 2. Felada (2. típus)
- (2. típus)
- (1. típus)
- 3. Feladat
- 4. Feladat
- (1. típus)
- 4. Felad (2. típus
- E Folodo
- 6 Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{64 + 16} = 4\sqrt{5}.$$

$$\underline{v} = \frac{1}{4\sqrt{5}} \left[\begin{array}{c} 8\\4 \end{array} \right] = \frac{1}{\sqrt{5}} \left[\begin{array}{c} 2\\1 \end{array} \right]$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felad (2. típus
- 2. Felad
- (1. típus
- 2. Felada (2. típus)
- (2. típus)
- (1. típus)
- 3. Felada
- 4. Feladat
- (1. típus)
- 4 Felada
- 5. Felada
- 6. Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{64 + 16} = 4\sqrt{5}.$$

$$\underline{v} = \frac{1}{4\sqrt{5}} \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

$$H(\underline{v}) = I - 2\underline{v} \cdot \underline{v}^T =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- Felad
 típus
- 2. Felac
- (1. típus
- 2. Felada (2. típus)
- (z. tipus)
- (1. típus)
- 3. Felada (2. típus)
- 4. Feladat
- (1. típus)
- (2. típ

. Felada

6 Feladat

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{64 + 16} = 4\sqrt{5}.$$

$$\underline{v} = \frac{1}{4\sqrt{5}} \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

$$H(\underline{v}) = I - 2\underline{v} \cdot \underline{v}^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \cdot \frac{1}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot [2, 1] =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. tipu
- 1. Felad (2. típus
- 2. Felac
- (1. típus
- (2. típus)
- 3. Felada
- (1. típus)
- 3. Felada (2. típus)
- 4. Feladat
- (1. típus)
- (2. típu
 - . Feladat
- 6 Feladat

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{64 + 16} = 4\sqrt{5}.$$

$$\underline{v} = \frac{1}{4\sqrt{5}} \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

$$H(\underline{v}) = I - 2\underline{v} \cdot \underline{v}^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \cdot \frac{1}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot [2, 1] = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típu:
- 1. Felada (2. típus)
- 2. Felad
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Feladat
- (1. típus)
- 4. Felada (2 típus)
- 5. Felad
- 6 Felada

Megoldás:

A QR-felbontás ortogonális mátrixa az előbb felírt H mátrix:

Numerikus módszerek

Király Balázs

- 1. Fela
- 1. típu
- 1. Felada (2. típus)
- 2. Felad
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- (2. tipus)
- 4. Feladat (1. típus)
- 4. Felad
- (2. típus)
- 5. Felac
- 6. Felada

Megoldás:

A QR-felbontás ortogonális mátrixa az előbb felírt H mátrix:

$$Q = H(\underline{v}) = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felada (2. típus)
- 2. Felada (1. típus)
- (1. típus)
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Feladat
- (1. típus)
- (2. típus
- 5 Folad
- 6 Feladat

Megoldás:

A QR-felbontás ortogonális mátrixa az előbb felírt H mátrix:

$$Q = H(\underline{v}) = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

A felsőháromszög mátrix mátrix-szorzással kapható:

$$R = H \cdot D = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- (2. típus)
- 2. Felada (1. típus)
- (1. típus)
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Feladat
- (1. típus)
- (2. típus
- 5. Felada
- 6 Feladat

Megoldás:

A QR-felbontás ortogonális mátrixa az előbb felírt H mátrix:

$$Q = H(\underline{v}) = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

A felsőháromszög mátrix mátrix-szorzással kapható:

$$R = H \cdot D = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} -5 & -2 \\ 0 & -1 \end{bmatrix}$$

módszerek

Király Balázs

- 1. Felac
- 1. Felada
- (2. típus)
- 2. Felad (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Feladat (2. típus)
- 5 Felada
- 6 Felada

4. Feladat

Adjuk meg azt a Householder transzformációt, amely a $(1,-2,2)^T$ vektort \underline{e}_1 irányú vektorba viszi, ellenőrzésként végezzük is el a transzformációt!

Numerikus módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus
- Feladat
 típus)

5. Felada

6 Felada

4. Feladat

Adjuk meg azt a Householder transzformációt, amely a $(1,-2,2)^T$ vektort \underline{e}_1 irányú vektorba viszi, ellenőrzésként végezzük is el a transzformációt!

Megoldás:

Legyen
$$\underline{b} = \begin{bmatrix} \sigma \\ 0 \\ 0 \end{bmatrix}$$
.

Numerikus módszerek

Király Balázs

4. Feladat (2. típus)

4. Feladat

Adjuk meg azt a Householder transzformációt, amely a $(1, -2, 2)^T$ vektort e_1 irányú vektorba viszi, ellenőrzésként végezzük is el a transzformációt!

Megoldás:

Legyen
$$\underline{b} = \begin{bmatrix} \sigma \\ 0 \\ 0 \end{bmatrix}$$
.

Keressük azt a H Housholder transzformációt, amely az a vektort a b vektorba viszi.

Numerikus módszerek

Király Balázs

1. Felada (1. típus)

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada

3. Felada

típus)
 Feladal

Feladat
 típus)
 Feladat

4. Feladat

(2. típus)

5. Felada

Feladat

4. Feladat

Adjuk meg azt a Householder transzformációt, amely a $(1,-2,2)^T$ vektort \underline{e}_1 irányú vektorba viszi, ellenőrzésként végezzük is el a transzformációt!

Megoldás:

Legyen
$$\underline{b} = \begin{bmatrix} \sigma \\ 0 \\ 0 \end{bmatrix}$$
.

Keressük azt a H Housholder transzformációt, amely az \underline{a} vektort a \underline{b} vektorba viszi.

Ekkor
$$\|\underline{a}\|_2 = \|\underline{b}\|_2$$

Numerikus módszerek

Király Balázs

1. Felada (1. típus)

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada (2. típus)

3. Felada

3. Felada (2. típus)

(1. tipus

4. Feladat (2. típus)

5. Felada

Eoladat

4. Feladat

Adjuk meg azt a Householder transzformációt, amely a $(1,-2,2)^T$ vektort \underline{e}_1 irányú vektorba viszi, ellenőrzésként végezzük is el a transzformációt!

Megoldás:

Legyen
$$\underline{b} = \begin{bmatrix} \sigma \\ 0 \\ 0 \end{bmatrix}$$
.

Keressük azt a \vec{H} Housholder transzformációt, amely az \underline{a} vektort a b vektorba viszi.

Ekkor
$$\|\underline{a}\|_2 = \|\underline{b}\|_2 \quad \Rightarrow \quad \sigma = \pm 3$$

Numerikus módszerek

Király Balázs

Felada
 típus

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada (2. típus)

3. Felada (1. típus)

3. Feladat (2. típus) 4. Feladat

4. Feladat

4. Felada (2. típus)

5. Feladat

Feladat

4. Feladat

Adjuk meg azt a Householder transzformációt, amely a $(1,-2,2)^T$ vektort \underline{e}_1 irányú vektorba viszi, ellenőrzésként végezzük is el a transzformációt!

Megoldás:

Legyen
$$\underline{b} = \begin{bmatrix} \sigma \\ 0 \\ 0 \end{bmatrix}$$
.

Keressük azt a \vec{H} Housholder transzformációt, amely az \underline{a} vektort a b vektorba viszi.

Ekkor
$$\|\underline{a}\|_2 = \|\underline{b}\|_2 \implies \sigma = \pm 3$$

Mivel $a_1 > 0$, ezért $\sigma = -3$.

Numerikus módszerek

Király Balázs

- 1. Fela
- 1. típu:
- 1. Felad
- 2. Felad
- (1. típus
- 2. Felada
- 3. Felada
- (1. tipus)
- (2. típus)
- 4. Felada
- 4. Feladat (2. típus)
- 5 Felad:
- 6 Felada

Megoldás:

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felada (2. típus
- 2. Felad
- (1. típus
- 2. Felada
- 3. Felada
- (1. típus)
- (2. típus)
- 4. Felada
- 4. Feladat
- (2. típus)
- 6 Folada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

Numerikus módszerek

Király Balázs

- 1. Felad
- (1. típu
- 1. Felada (2. típus)
- 2 Felad
- (1. típus
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4 Felada
- (1. típus
- 4. Feladat (2. típus)
- (z. tipus)
- 6 Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- Felad
 típus
- (z. tipus
- (1. típus
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Felad
- (1. típus
- 4. Feladat (2. típus)
- 5. Felad
- 6. Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} - \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- Felad
 típus
- (Z. tipus
- (1. típus
- (1. tipus
- (2. típus)
- 3. Felada
- 3. Feladat
- (2. típus)
- (1. típus
- 4. Feladat (2. típus)
- 5 Felada
- 6. Feladat

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} - \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- Felad
 típus
- 2. Fela
- (1. típus
- (i. tipu
- (2. típus)
- 3. Felada
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- 4. Feladat (2. típus)
- 5. Felada
- 6. Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} - \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{16 + 4 + 4 +} = 2\sqrt{6}.$$

Numerikus módszerek

Király Balázs

- 1 Feladat
- (1. típu
- 1. Felad
- 2 Felac
- (1. típus
- (- |
- (2. típus)
- 3. Felada
- (1. típus)
- 3. Feladat (2. típus)
- (2. tipus)
- (1. tipus)
- 4. Feladat (2. típus)
- 5. Felada
- 6. Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{vmatrix} 1 \\ -2 \\ 2 \end{vmatrix} - \begin{vmatrix} -3 \\ 0 \\ 0 \end{vmatrix} = \begin{vmatrix} 4 \\ -2 \\ 2 \end{vmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{16 + 4 + 4 +} = 2\sqrt{6}.$$

$$\underline{v} = \frac{1}{2\sqrt{6}} \left[\begin{array}{c} 4\\ -2\\ 2 \end{array} \right]$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felad (2. típus
- 2. Felac
- (1. típus
- 2. Felada
- (2. típus)
- (1. típus)
- 3. Feladat
- (2. típus)
- (1. tipus
- 4. Feladat
- (2. típus)
- 6. Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} - \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{16 + 4 + 4 +} = 2\sqrt{6}.$$

$$\underline{v} = \frac{1}{2\sqrt{6}} \begin{bmatrix} 4\\ -2\\ 2 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- Felad
 típus
- (z. tipus
- (1. típu:
- (.. upac
- (2. típus)
- 3. Felada
- (1. típus)
- 3. Feladat (2. típus)
- (2. tipus)
- (1. típ
- 4. Feladat (2. típus)
- 5 Felada
- . . .
- 6. Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{vmatrix} 1 \\ -2 \\ 2 \end{vmatrix} - \begin{vmatrix} -3 \\ 0 \\ 0 \end{vmatrix} = \begin{vmatrix} 4 \\ -2 \\ 2 \end{vmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{16 + 4 + 4 +} = 2\sqrt{6}.$$

$$\underline{v} = \frac{1}{2\sqrt{6}} \begin{bmatrix} 4\\ -2\\ 2 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}.$$

$$H(\underline{v}) = I - 2\underline{v} \cdot \underline{v}^T$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felad (2. típus
- (z. tipus
- (1. típus
- (.. upac
- (2. típus)
- 3. Felada
- (1. típus
- 3. Feladat (2. típus)
- (2. tipus)
- (1. típus
- 4. Feladat (2. típus)
- 5. Felada
- 6. Feladat

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{vmatrix} 1 \\ -2 \\ 2 \end{vmatrix} - \begin{vmatrix} -3 \\ 0 \\ 0 \end{vmatrix} = \begin{vmatrix} 4 \\ -2 \\ 2 \end{vmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{16 + 4 + 4 +} = 2\sqrt{6}.$$

$$\underline{v} = \frac{1}{2\sqrt{6}} \left[\begin{array}{c} 4\\ -2\\ 2 \end{array} \right] = \frac{1}{\sqrt{6}} \left[\begin{array}{c} 2\\ -1\\ 1 \end{array} \right].$$

$$H(\underline{v}) = I - 2\underline{v} \cdot \underline{v}^T = I - 2 \cdot \frac{1}{\sqrt{6}} \cdot \frac{1}{\sqrt{6}} \underline{u} \cdot \underline{u}^T =$$

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típu
- 1. Felad
- (Z. tipus
- (1. típus
- 2. Felada
- (2. típus)
- 3. Felada
- (1. típus)
- Feladat
 típus)
- 4 Feladat
- (... t.pao,
- 4. Feladat (2. típus)
- 5. Felada
- 6. Felada

Megoldás:

$$\underline{v} = \frac{\underline{a} - \underline{b}}{\|\underline{a} - \underline{b}\|_2}$$

$$\underline{u} = \underline{a} - \underline{b} = \begin{vmatrix} 1 \\ -2 \\ 2 \end{vmatrix} - \begin{vmatrix} -3 \\ 0 \\ 0 \end{vmatrix} = \begin{vmatrix} 4 \\ -2 \\ 2 \end{vmatrix}$$

$$\|\underline{u}\|_2 = \sqrt{16 + 4 + 4 +} = 2\sqrt{6}.$$

$$\underline{v} = \frac{1}{2\sqrt{6}} \left[\begin{array}{c} 4\\ -2\\ 2 \end{array} \right] = \frac{1}{\sqrt{6}} \left[\begin{array}{c} 2\\ -1\\ 1 \end{array} \right].$$

$$H(\underline{v}) = I - 2\underline{v} \cdot \underline{v}^T = I - 2 \cdot \frac{1}{\sqrt{6}} \cdot \frac{1}{\sqrt{6}} \underline{u} \cdot \underline{u}^T = I - \frac{1}{3} \underline{u} \cdot \underline{u}^T.$$

módszerek

Király Balázs

- 1. Felac
- (1. típu:
- Felad
 típus
- 2. Felada
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- (1. típus)
- 4 Felada
- 4. Felada (1. típus)
- 4. Feladat (2. típus)
- 5. Felad
- 6 Felada

Megoldás:

módszerek Király Balázs

Milaly Dalaz

- 1. Fela
- (1. típu
- 1. Felada (2. típus
- 2. Felad
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3 Folada:
- (2. típus)
- 4. Felada
- 4. Feladat (2. típus)
- (2. tipuo,
- 6 Felada

Megoldás:

$$H(\underline{v}) \cdot \underline{a} = \left(I - \frac{1}{3}\underline{u} \cdot \underline{u}^T\right) \cdot \underline{a} =$$

Numerikus módszerek Király Balázs

- 4. Feladat
- (2. típus)

Megoldás:

$$H(\underline{v}) \cdot \underline{a} = \left(I - \frac{1}{3}\underline{u} \cdot \underline{u}^T\right) \cdot \underline{a} = \underline{a} - \frac{1}{3}\underline{u} \cdot \underline{u}^T \cdot \underline{a} =$$

Numerikus módszerek

Király Balázs

- 4. Feladat (2. típus)

Megoldás:

$$H(\underline{v}) \cdot \underline{a} = \left(I - \frac{1}{3}\underline{u} \cdot \underline{u}^{T}\right) \cdot \underline{a} = \underline{a} - \frac{1}{3}\underline{u} \cdot \underline{u}^{T} \cdot \underline{a} =$$

$$= \underline{a} - \frac{1}{3}\underline{u} \cdot \left(\underline{u}^{T} \cdot \underline{a}\right) =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felada
- (2. típus
- (1. típu:
- 2. Felada
- (2. típus)
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felad
- (1. típus
- 4. Feladat (2. típus)
- 5. Felau
- 6 Feladat

Megoldás:

$$H(\underline{v}) \cdot \underline{a} = \left(I - \frac{1}{3}\underline{u} \cdot \underline{u}^{T}\right) \cdot \underline{a} = \underline{a} - \frac{1}{3}\underline{u} \cdot \underline{u}^{T} \cdot \underline{a} =$$

$$= \underline{a} - \frac{1}{3}\underline{u} \cdot \left(\underline{u}^{T} \cdot \underline{a}\right) = \underline{a} - \frac{1}{3} \cdot \left\langle \underline{u}, \underline{a} \right\rangle \cdot \underline{u}$$

Numerikus módszerek Király Balázs

- 4. Feladat (2. típus)

Megoldás:

$$H(\underline{v}) \cdot \underline{a} = \left(I - \frac{1}{3}\underline{u} \cdot \underline{u}^{T}\right) \cdot \underline{a} = \underline{a} - \frac{1}{3}\underline{u} \cdot \underline{u}^{T} \cdot \underline{a} =$$

$$= \underline{a} - \frac{1}{3}\underline{u} \cdot \left(\underline{u}^{T} \cdot \underline{a}\right) = \underline{a} - \frac{1}{3} \cdot \langle \underline{u}, \underline{a} \rangle \cdot \underline{u}$$

$$H \cdot \underline{a} = \underline{a} - \frac{1}{3} \langle \underline{u}, \underline{a} \rangle \underline{u} =$$

módszerek Király Balázs

- 4. Feladat (2. típus)

Megoldás:

$$H(\underline{v}) \cdot \underline{a} = \left(I - \frac{1}{3}\underline{u} \cdot \underline{u}^{T}\right) \cdot \underline{a} = \underline{a} - \frac{1}{3}\underline{u} \cdot \underline{u}^{T} \cdot \underline{a} =$$

$$= \underline{a} - \frac{1}{3}\underline{u} \cdot \left(\underline{u}^{T} \cdot \underline{a}\right) = \underline{a} - \frac{1}{3} \cdot \left\langle \underline{u}, \underline{a} \right\rangle \cdot \underline{u}$$

$$H \cdot \underline{a} = \underline{a} - \frac{1}{3} \langle \underline{u}, \underline{a} \rangle \underline{u} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} - \underbrace{\frac{1}{3} \cdot (2 + 2 + 2)}_{2} \cdot \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} =$$

módszerek Király Balázs

Kiraly Balaz

- 1. Fela
- (1. típu
- 1. Felad
- (2. típus
- (1. típu:
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat (2. típus)
- 4 Feladat
- (1. típus)
- 4. Feladat (2. típus)
- 5. Felada
- 6. Felada

Megoldás:

$$H(\underline{v}) \cdot \underline{a} = \left(I - \frac{1}{3}\underline{u} \cdot \underline{u}^T\right) \cdot \underline{a} = \underline{a} - \frac{1}{3}\underline{u} \cdot \underline{u}^T \cdot \underline{a} =$$

$$= \underline{a} - \frac{1}{3}\underline{u} \cdot (\underline{u}^T \cdot \underline{a}) = \underline{a} - \frac{1}{3} \cdot \langle \underline{u}, \underline{a} \rangle \cdot \underline{u}$$

$$H \cdot \underline{a} = \underline{a} - \frac{1}{3} \langle \underline{u}, \underline{a} \rangle \underline{u} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} - \underbrace{\frac{1}{3} \cdot (2 + 2 + 2)}_{} \cdot \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

1. Felada (1. típus)

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada

(2. típus)

3. Feladat (1. típus)

3. Felada (2. típus)

(1. típus

4. Felada

5. Feladat

6. Felada

5. Feladat

Adjuk meg az A mátrix ∞ normára vonatkozó kondíciószámát! (VAGY 1-es VAGY Froebenius normára vonatkozó kondíciószám.)

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 0 & 0 & -2 \end{bmatrix}$$

Megoldás:

Mivel ${
m cond} A=\|A\|\cdot\|A^{-1}\|$, ezért először felírjuk a mátrix normáját (a feladat ∞ normát kért, de hasonlóan oldható meg a többi felsorolt norma esetére is):

Numerikus módszerek

Király Balázs

1. Felada (1. típus)

1. Felada (2. típus)

2. Felada (1. típus)

(1. tipus)

(2. típus)

3. Felada (1. típus)

3. Felada (2. típus)

4. Fela (1. típu

4. Felada (2. típus)

5. Feladat

6. Feladat

5. Feladat

Adjuk meg az A mátrix ∞ normára vonatkozó kondíciószámát! (VAGY 1-es VAGY Froebenius normára vonatkozó kondíciószám.)

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 0 & 0 & -2 \end{bmatrix}$$

Megoldás:

Mivel $\mathrm{cond} A = \|A\| \cdot \|A^{-1}\|$, ezért először felírjuk a mátrix normáját (a feladat ∞ normát kért, de hasonlóan oldható meg a többi felsorolt norma esetére is):

$$||A||_{\infty} = \max\{4, 4, 2\} =$$

Numerikus módszerek

Király Balázs

1. Felada (1. típus)

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada

(2. típus)

3. Feladat (1. típus)

3. Felada (2. típus)

(1. típus)

4. Felada (2. típus)

5. Feladat

6. Felada

5. Feladat

Adjuk meg az A mátrix ∞ normára vonatkozó kondíciószámát! (VAGY 1-es VAGY Froebenius normára vonatkozó kondíciószám.)

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 0 & 0 & -2 \end{bmatrix}$$

Megoldás:

Mivel $\operatorname{cond} A = \|A\| \cdot \|A^{-1}\|$, ezért először felírjuk a mátrix normáját (a feladat ∞ normát kért, de hasonlóan oldható meg a többi felsorolt norma esetére is):

$$||A||_{\infty} = \max\{4, 4, 2\} = 4$$

Numerikus módszerek

Király Balázs

1. Felada (1. típus)

1. Felada (2. típus)

2. Felada (1. típus)

(1. típus)

(2. típus)

3. Felada (1. típus)

3. Felada (2. típus)

(1. típus)

4. Felada (2. típus)

5. Feladat

Feladat

5. Feladat

Adjuk meg az A mátrix ∞ normára vonatkozó kondíciószámát! (VAGY 1-es VAGY Froebenius normára vonatkozó kondíciószám.)

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 0 & 0 & -2 \end{bmatrix}$$

Megoldás:

Mivel $\operatorname{cond} A = \|A\| \cdot \|A^{-1}\|$, ezért először felírjuk a mátrix normáját (a feladat ∞ normát kért, de hasonlóan oldható meg a többi felsorolt norma esetére is):

$$||A||_{\infty} = \max\{4, 4, 2\} = 4$$

 $||A||_{1} = \max\{3, 2, 5\} =$

Numerikus módszerek

Király Balázs

1. Felada (1. típus)

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada (2. típus)

3. Felada (1. típus)

3. Felada (2. típus)

(1. típus)

4. Felada (2. típus)

5. Feladat

Feladat

5. Feladat

Adjuk meg az A mátrix ∞ normára vonatkozó kondíciószámát! (VAGY 1-es VAGY Froebenius normára vonatkozó kondíciószám.)

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 0 & 0 & -2 \end{bmatrix}$$

Megoldás:

Mivel $\operatorname{cond} A = \|A\| \cdot \|A^{-1}\|$, ezért először felírjuk a mátrix normáját (a feladat ∞ normát kért, de hasonlóan oldható meg a többi felsorolt norma esetére is):

$$||A||_{\infty} = \max\{4, 4, 2\} = 4$$

 $||A||_{1} = \max\{3, 2, 5\} = 5$

Numerikus módszerek

Király Balázs

1. Felada (1. típus)

1. Felada (2. típus)

2. Felada (1. típus)

(1. tipus)

(2. típus)

3. Feladat (1. típus)

3. Felada (2. típus)

(1. tipus)

4. Feladat (2. típus)

5. Feladat

. Feladat

5. Feladat

Adjuk meg az A mátrix ∞ normára vonatkozó kondíciószámát! (VAGY 1-es VAGY Froebenius normára vonatkozó kondíciószám.)

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 0 & 0 & -2 \end{bmatrix}$$

Megoldás:

Mivel $\mathrm{cond} A = \|A\| \cdot \|A^{-1}\|$, ezért először felírjuk a mátrix normáját (a feladat ∞ normát kért, de hasonlóan oldható meg a többi felsorolt norma esetére is):

$$\begin{array}{lll} \|A\|_{\infty} & = & \max\{4,\ 4,\ 2\} = 4 \\ \|A\|_{1} & = & \max\{3,\ 2,\ 5\} = 5 \\ \|A\|_{F} & = & \sqrt{1+1+4+4+1+1+4} = \sqrt{16} \end{array}$$

Numerikus módszerek

Király Balázs

1. Felada (1. típus)

1. Felada (2. típus)

2. Felada (1. típus)

2. Felada

(2. tipus)

(1. típus)

(2. típus)

4. Felada

Feladat
 típus)

5. Feladat

Felada

5. Feladat

Adjuk meg az A mátrix ∞ normára vonatkozó kondíciószámát! (VAGY 1-es VAGY Froebenius normára vonatkozó kondíciószám.)

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 0 & 0 & -2 \end{bmatrix}$$

Megoldás:

Mivel $\mathrm{cond} A = \|A\| \cdot \|A^{-1}\|$, ezért először felírjuk a mátrix normáját (a feladat ∞ normát kért, de hasonlóan oldható meg a többi felsorolt norma esetére is):

$$\begin{array}{lll} \|A\|_{\infty} & = & \max\{4,\ 4,\ 2\} = 4 \\ \|A\|_{1} & = & \max\{3,\ 2,\ 5\} = 5 \\ \|A\|_{F} & = & \sqrt{1+1+4+4+1+1+4} = \sqrt{16} = 4 \end{array}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- 1. típu
- 1. Felad
- 2. Felada
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- (z. tipus)
- (1. típus)
- 4. Felada
- 5. Feladat
- 6 Felada

Megoldás:

Numerikus módszerek

Király Balázs

- 1. Felac
- (1. típu
- (2. típus
- 2. Felad (1. típus
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Felac
- 5. Feladat
- 6. Felada

Megoldás:

$$\left[\begin{array}{ccc|ccc|c} 1 & -1 & 2 & 1 & 0 & 0 \\ -2 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 & 1 \end{array}\right]$$

Numerikus módszerek

Király Balázs

- 1. Felac
- 1 Felac
- 2 Felad
- (1. típus
- 2. Felada
- 3. Felada
- 3. Feladat
- 4. Felada
- (1. típus
- 4. Fela
- 5. Feladat
- 6 Felada

Megoldás:

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ -2 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & -1 & 3 & 2 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 & 1 \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felac
- 1. Felac
- 2 Felad
- (1. típus
- 2. Felada
- (2. lipus)
- (1. típus)
- 3. Felada
- 4. Felada
- (1. típus
- 4. Felai (2. típu
- 5. Feladat
- 6 Felada

Megoldás:

$$\left[\begin{array}{ccc|c} 1 & -1 & 2 & 1 & 0 & 0 \\ -2 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 & 1 \end{array}\right] \Rightarrow \left[\begin{array}{ccc|c} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & -1 & 3 & 2 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 & 1 \end{array}\right] \Rightarrow$$

$$\Rightarrow \left[\begin{array}{ccc|ccc|ccc} 1 & -1 & 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & 2 & 1 & \frac{3}{2} \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} \end{array} \right]$$

Numerikus módszerek

Király Balázs

- 1. Felac
- 1. Felac
- (2. tipus
- 2. Felad (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- (z. tipus)
- (1. típus
- 4. Felac
- 5. Feladat
- 6 Folodo

Megoldás:

$$\left[\begin{array}{ccc|c}
1 & -1 & 2 & 1 & 0 & 0 \\
-2 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & -2 & 0 & 0 & 1
\end{array}\right] \Rightarrow \left[\begin{array}{ccc|c}
1 & -1 & 2 & 1 & 0 & 0 \\
0 & -1 & 3 & 2 & 1 & 0 \\
0 & 0 & -2 & 0 & 0 & 1
\end{array}\right] \Rightarrow$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & 2 & 1 & \frac{3}{2} \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 & -1 & -\frac{1}{2} \\ 0 & 1 & 0 & -2 & -1 & -\frac{3}{2} \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Felac
- 1. Felac
- 2. Felad
- (1. típus
- 2. Felada (2. típus)
- 3. Felada (1. típus)
- 3. Felada
- 4 Felad
- (1. típus
- 4. Fela
- (Z. tiput

5. Feladat

6. Felada

Megoldás:

A mátrix inverzét Gauss-eliminációval határozzuk meg:

$$\left[\begin{array}{ccc|c}
1 & -1 & 2 & 1 & 0 & 0 \\
-2 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & -2 & 0 & 0 & 1
\end{array}\right] \Rightarrow \left[\begin{array}{ccc|c}
1 & -1 & 2 & 1 & 0 & 0 \\
0 & -1 & 3 & 2 & 1 & 0 \\
0 & 0 & -2 & 0 & 0 & 1
\end{array}\right] \Rightarrow$$

$$\Rightarrow \left[\begin{array}{ccc|c} 1 & -1 & 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & 2 & 1 & \frac{3}{2} \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} \end{array} \right] \Rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0 & -1 & -1 & -\frac{1}{2} \\ 0 & 1 & 0 & -2 & -1 & -\frac{3}{2} \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} \end{array} \right]$$

Így az A mátrix inverze:

$$A^{-1} = \left[\begin{array}{rrr} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{array} \right]$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. tipu
- 1. Felad (2. típus
- 2. Felac
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- 4. Folodo
- (1. típus
- 4. Felac
- 5. Feladat
- 6. Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. tipu
- (2. típus
- 2. Felac
- (1. tipus
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4 Felad:
- (1. típus
- 4. Felac
- 5. Feladat
- 6 Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. tipu:
- (2. típus
- 2. Felac
- (1. tipus
- Felada(2. típus)
- 3. Felada
- 3. Feladat
- 4 Folodo
- (1. típus
- 4. Felac
- 5. Feladat
- 6. Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. tipu
- 1. Felad (2. típus
- 2. Felac
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Feladat
- (2. típus)
- 4. relad
- (1. típus
- (2. típu
- 5. Feladat
- 6. Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2}$$

 $||A^{-1}||_{1} = \max\left\{3, 2, \frac{5}{2}\right\} =$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. tipu
- (2. típus
- 2. Felac
- (1. típus
- 2. Felada (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Folode
- (1. típus
- 4. Felai (2. típu
- 5. Feladat
- 6. Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2}$$
$$||A^{-1}||_{1} = \max\left\{3, 2, \frac{5}{2}\right\} = 3$$

Numerikus módszerek

Király Balázs

5. Feladat

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2}$$

$$||A^{-1}||_{1} = \max\left\{3, 2, \frac{5}{2}\right\} = 3$$

$$||A^{-1}||_{F} = \sqrt{1 + 1 + \frac{1}{4} + 4 + 1 + \frac{9}{4} + \frac{1}{4}} =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- 1. Felad
- (2. típus
- 2. Felac (1. típus
- 2. Felada
- (2. típus)
- (1. típus
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus)
- (2. típu
- 5. Feladat
- 6. Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$\begin{split} \|A^{-1}\|_{\infty} &= \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2} \\ \|A^{-1}\|_{1} &= \max\left\{3, 2, \frac{5}{2}\right\} = 3 \\ \|A^{-1}\|_{F} &= \sqrt{1 + 1 + \frac{1}{4} + 4 + 1 + \frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{39}}{2}. \end{split}$$

Numerikus módszerek

Király Balázs

- 5. Feladat

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

Kiszámítjuk az inverz megfelelő normáit:

$$\begin{split} \|A^{-1}\|_{\infty} &= \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2} \\ \|A^{-1}\|_{1} &= \max\left\{3, 2, \frac{5}{2}\right\} = 3 \\ \|A^{-1}\|_{F} &= \sqrt{1 + 1 + \frac{1}{4} + 4 + 1 + \frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{39}}{2}. \end{split}$$

$$\operatorname{cond}_{\infty} A = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty} =$$

Numerikus módszerek

Király Balázs

- 5. Feladat

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

Kiszámítjuk az inverz megfelelő normáit:

$$\begin{split} \|A^{-1}\|_{\infty} &= \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2} \\ \|A^{-1}\|_{1} &= \max\left\{3, 2, \frac{5}{2}\right\} = 3 \\ \|A^{-1}\|_{F} &= \sqrt{1 + 1 + \frac{1}{4} + 4 + 1 + \frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{39}}{2}. \end{split}$$

$$cond_{\infty}A = ||A||_{\infty} \cdot ||A^{-1}||_{\infty} = 4 \cdot \frac{9}{2}$$

Numerikus módszerek

Király Balázs

- 1. Fela
- 1. Felad
- (2. típus
- 2. Felac (1. típus
- 2. Felada
- (2. típus)
- (1. típus)
- 3. Felada (2. típus)
- 4. Felada
- (1. típus
- (2. típus)
- 5. Feladat
- 6. Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

Kiszámítjuk az inverz megfelelő normáit:

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2}$$

$$||A^{-1}||_{1} = \max\left\{3, 2, \frac{5}{2}\right\} = 3$$

$$||A^{-1}||_{F} = \sqrt{1 + 1 + \frac{1}{4} + 4 + 1 + \frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{39}}{2}.$$

$$\operatorname{cond}_{\infty} A = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty} = 4 \cdot \frac{9}{2} = 18$$

Numerikus módszerek

Király Balázs

- 1. Fela
- 1. Felad
- 2 Felad
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Felada
- (2. típus)
- (1. típus
- 4 Felad
- E Folod
- 5. Feladat
- 6. Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

Kiszámítjuk az inverz megfelelő normáit:

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2}$$

$$||A^{-1}||_{1} = \max\left\{3, 2, \frac{5}{2}\right\} = 3$$

$$||A^{-1}||_{F} = \sqrt{1 + 1 + \frac{1}{4} + 4 + 1 + \frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{39}}{2}.$$

$$\operatorname{cond}_{\infty} A = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty} = 4 \cdot \frac{9}{2} = 18$$

 $\operatorname{cond}_{1} A = \|A\|_{1} \cdot \|A^{-1}\|_{1} =$

Numerikus módszerek

Király Balázs

- 1. Fela
- 1. Felad
- (2. típus
- 2. Felad (1. típus
- 2. Felada
- 3 Felada
- (1. tipus)
- (2. típus)
- 4. Felada (1. típus
- (1. típus
- (z. tipus
- 5. Feladat
- 6. Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

Kiszámítjuk az inverz megfelelő normáit:

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2}$$

$$||A^{-1}||_{1} = \max\left\{3, 2, \frac{5}{2}\right\} = 3$$

$$||A^{-1}||_{F} = \sqrt{1 + 1 + \frac{1}{4} + 4 + 1 + \frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{39}}{2}.$$

$$\operatorname{cond}_{\infty} A = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty} = 4 \cdot \frac{9}{2} = 18$$

 $\operatorname{cond}_{1} A = \|A\|_{1} \cdot \|A^{-1}\|_{1} = 5 \cdot 3$

módszerek

Király Balázs

- 5. Feladat

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

Kiszámítjuk az inverz megfelelő normáit:

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2}$$

$$||A^{-1}||_{1} = \max\left\{3, 2, \frac{5}{2}\right\} = 3$$

$$||A^{-1}||_{F} = \sqrt{1 + 1 + \frac{1}{4} + 4 + 1 + \frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{39}}{2}.$$

$$\operatorname{cond}_{\infty} A = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty} = 4 \cdot \frac{9}{2} = 18$$

$$\operatorname{cond}_{1} A = \|A\|_{1} \cdot \|A^{-1}\|_{1} = 5 \cdot 3 = 15$$

$$\operatorname{cond}_{F} A = \|A\|_{F} \cdot \|A^{-1}\|_{F} = 4 \cdot \frac{\sqrt{39}}{2}$$

módszerek

Király Balázs

- 1. Fela
- 1. Felad
- (2. tipus
- (1. típus
- 2. Felada (2. típus)
- 3. Felada
- 3. Felada
- (2. típus)
- (1. típus
- 4. Folod
- E Folod
- 5. Feladat
 - 6. Felada

Megoldás:

$$A^{-1} = \begin{bmatrix} -1 & -1 & -\frac{1}{2} \\ -2 & -1 & -\frac{3}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

Kiszámítjuk az inverz megfelelő normáit:

$$||A^{-1}||_{\infty} = \max\left\{\frac{5}{2}, \frac{9}{2}, \frac{1}{2}\right\} = \frac{9}{2}$$

$$||A^{-1}||_{1} = \max\left\{3, 2, \frac{5}{2}\right\} = 3$$

$$||A^{-1}||_{F} = \sqrt{1 + 1 + \frac{1}{4} + 4 + 1 + \frac{9}{4} + \frac{1}{4}} = \frac{\sqrt{39}}{2}.$$

$$\begin{array}{rcl}
\operatorname{cond}_{\infty} A & = & \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty} = 4 \cdot \frac{9}{2} = 18 \\
\operatorname{cond}_{1} A & = & \|A\|_{1} \cdot \|A^{-1}\|_{1} = 5 \cdot 3 = 15 \\
\operatorname{cond}_{F} A & = & \|A\|_{F} \cdot \|A^{-1}\|_{F} = 4 \cdot \frac{\sqrt{39}}{2} = 2 \cdot \sqrt{39}.
\end{array}$$

módszerek

Király Balázs

- 1. Felac
- (1. tipus
- 1. Felada (2. típus)
- 2. Felada (1. típus)
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- 4. Felada
- (1. típus)
- 4. Felad (2. típus
- 5 Felada
- 6. Feladat

6. Feladat

Adjuk meg az A mátrix 2-es normára vonatkozó kondíciószámát! Figyelem a mátrix SZIMMETRIKUS!

$$A = \left[\begin{array}{cc} 4 & 5 \\ 5 & 3 \end{array} \right]$$

Megoldás:

$$\operatorname{cond}_2 A = ||A||_2 \cdot ||A^{-1}||_2.$$

Numerikus módszerek

Király Balázs

- 1. Felac
- 1. Felad
- (2. típus)
- 2. Felada (1. típus)
- 2. Felada (2. típus)
- 3 Felada
- 3. Feladat
- (2. típus)
- 4. Felada (1. típus)
- 4. Felada (2. típus)
- 5 Folad
- 6. Feladat

6. Feladat

Adjuk meg az A mátrix 2-es normára vonatkozó kondíciószámát! Figyelem a mátrix SZIMMETRIKUS!

$$A = \left[\begin{array}{cc} 4 & 5 \\ 5 & 3 \end{array} \right]$$

Megoldás:

$$\operatorname{cond}_2 A = \|A\|_2 \cdot \|A^{-1}\|_2.$$

Mivel A szimmetrikus, ezért $||A||_2 = \varrho(A)$.

Numerikus módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada (1. típus)
- 3. Felada (2. típus)
- (2. tipus)
- 4. Felada
- Felada
 típus)
- 5. Felada
- 6. Feladat

6. Feladat

Adjuk meg az A mátrix 2-es normára vonatkozó kondíciószámát! Figyelem a mátrix SZIMMETRIKUS!

$$A = \left[\begin{array}{cc} 4 & 5 \\ 5 & 3 \end{array} \right]$$

Megoldás:

$$\operatorname{cond}_2 A = ||A||_2 \cdot ||A^{-1}||_2.$$

Mivel A szimmetrikus, ezért $||A||_2 = \varrho(A)$. A spektrálsugár meghatározásához:

$$\kappa_A(\lambda) = \left| \begin{array}{cc} 4 - \lambda & 5 \\ 5 & 3 - \lambda \end{array} \right| =$$

módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- 2. Feladat (2. típus)
- Feladatípus)
- 3. Felada
- (2. típus)
- (1. tipus)
- 4. Felada (2. típus)
- 5. Felada
- 6. Feladat

6. Feladat

Adjuk meg az A mátrix 2-es normára vonatkozó kondíciószámát! Figyelem a mátrix SZIMMETRIKUS!

$$A = \left[\begin{array}{cc} 4 & 5 \\ 5 & 3 \end{array} \right]$$

Megoldás:

$$\operatorname{cond}_2 A = ||A||_2 \cdot ||A^{-1}||_2.$$

Mivel A szimmetrikus, ezért $||A||_2 = \varrho(A)$.

$$\kappa_A(\lambda) = \begin{vmatrix} 4 - \lambda & 5 \\ 5 & 3 - \lambda \end{vmatrix} = (4 - \lambda) \cdot (3 - \lambda) - 25 = 0$$

módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- (2. típus)
- 3. Felada (1. típus)
- 3. Felada (2. típus)
- 4. Felada
- 4. Felada
- 5 Felada
- 6. Feladat

6. Feladat

Adjuk meg az A mátrix 2-es normára vonatkozó kondíciószámát! Figyelem a mátrix SZIMMETRIKUS!

$$A = \left[\begin{array}{cc} 4 & 5 \\ 5 & 3 \end{array} \right]$$

Megoldás:

$$\operatorname{cond}_2 A = ||A||_2 \cdot ||A^{-1}||_2.$$

Mivel A szimmetrikus, ezért $||A||_2 = \varrho(A)$.

$$\kappa_A(\lambda) = \begin{vmatrix} 4 - \lambda & 5 \\ 5 & 3 - \lambda \end{vmatrix} = (4 - \lambda) \cdot (3 - \lambda) - 25 = \lambda^2 - 7\lambda - 13$$

módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus)
- 2. Felada
- (1. típus)
- 2. Felada (2. típus)
- Feladatípus)
- 3. Felada (2. típus)
- 4 Felada
- 4. Felada
- 4. Felada (2. típus)

5. Felada

6. Feladat

6. Feladat

Adjuk meg az A mátrix 2-es normára vonatkozó kondíciószámát! Figyelem a mátrix SZIMMETRIKUS!

$$A = \left[\begin{array}{cc} 4 & 5 \\ 5 & 3 \end{array} \right]$$

Megoldás:

$$\operatorname{cond}_2 A = ||A||_2 \cdot ||A^{-1}||_2.$$

Mivel A szimmetrikus, ezért $||A||_2 = \varrho(A)$.

$$\kappa_A(\lambda) = \begin{vmatrix} 4-\lambda & 5 \\ 5 & 3-\lambda \end{vmatrix} = (4-\lambda)\cdot(3-\lambda)-25 = \lambda^2-7\lambda-13 = 0$$

módszerek

Király Balázs

- 1. Felad (1. típus
- 1. Felada (2. típus
- 2. Felada (1. típus)
- 2. Felada (2. típus)
- 3. Felada (1. típus)
- 3. Felada (2. típus)
- 4. Felada
- 4. Felada
- 5 Felada
- 6. Feladat

6. Feladat

Adjuk meg az A mátrix 2-es normára vonatkozó kondíciószámát! Figyelem a mátrix SZIMMETRIKUS!

$$A = \left[\begin{array}{cc} 4 & 5 \\ 5 & 3 \end{array} \right]$$

Megoldás:

$$\operatorname{cond}_2 A = \|A\|_2 \cdot \|A^{-1}\|_2.$$

Mivel A szimmetrikus, ezért $||A||_2 = \rho(A)$.

$$\kappa_A(\lambda) = \begin{vmatrix} 4-\lambda & 5 \\ 5 & 3-\lambda \end{vmatrix} = (4-\lambda)\cdot(3-\lambda)-25 = \lambda^2-7\lambda-13 = 0$$

$$\lambda_{1,2} = \frac{7 \pm \sqrt{49 + 52}}{2}$$

módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Felada (2. típus
- 2. Felada (1. típus)
- 2. Felada
- 3. Felada
- 3. Felada
- (2. típus)
- tipus)
 Felada
- 4. Felada (2. típus)
- 5. Felada
- 6. Feladat

6. Feladat

Adjuk meg az A mátrix 2-es normára vonatkozó kondíciószámát! Figyelem a mátrix SZIMMETRIKUS!

$$A = \left[\begin{array}{cc} 4 & 5 \\ 5 & 3 \end{array} \right]$$

Megoldás:

$$\operatorname{cond}_2 A = \|A\|_2 \cdot \|A^{-1}\|_2.$$

Mivel A szimmetrikus, ezért $||A||_2 = \varrho(A)$.

$$\kappa_A(\lambda) = \begin{vmatrix} 4-\lambda & 5 \\ 5 & 3-\lambda \end{vmatrix} = (4-\lambda)\cdot(3-\lambda)-25 = \lambda^2-7\lambda-13 = 0$$

$$\lambda_{1,2} = \frac{7 \pm \sqrt{49 + 52}}{2} = \frac{7 \pm \sqrt{101}}{2}$$

Numerikus módszerek

Király Balázs

- 1. Felada (1. típus)
- 1. Felada (2. típus)
- 2. Felada (1. típus)
- (1. típus)
- (2. típus)
- (1. típus)
- 3. Felada (2. típus)
- (1. típus)
- 4. Felada (2. típus)
- 5. Feladat
- 6. Feladat

6. Feladat

Adjuk meg az A mátrix 2-es normára vonatkozó kondíciószámát! Figyelem a mátrix SZIMMETRIKUS!

$$A = \left[\begin{array}{cc} 4 & 5 \\ 5 & 3 \end{array} \right]$$

Megoldás:

$$\operatorname{cond}_2 A = \|A\|_2 \cdot \|A^{-1}\|_2.$$

Mivel A szimmetrikus, ezért $||A||_2 = \varrho(A)$.

$$\kappa_A(\lambda) = \begin{vmatrix} 4-\lambda & 5 \\ 5 & 3-\lambda \end{vmatrix} = (4-\lambda)\cdot(3-\lambda)-25 = \lambda^2-7\lambda-13 = 0$$

$$\lambda_{1,2} = \frac{7 \pm \sqrt{49 + 52}}{2} = \frac{7 \pm \sqrt{101}}{2} \quad \Rightarrow \quad ||A||_2 = \varrho(A) = \frac{7 + \sqrt{101}}{2}$$

módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felad
- 2. Felad
- (1. típus)
- 2. Felada (2. típus)
- 3. Felada
- (1. típus)
- (2. tipus)
- 4. Felada
- 4. Felada
- (2. típus)
- 5. Felada

6. Feladat

Megoldás:

 ${\it A}$ szimmetrikus

módszerek Király Balázs

Kiraly balaz

- 1. Fela
- (T. tipu:
- (2. típus
- 2. Felad
- 2. Felada
- (2. típus)
- 3. Felada (1. típus)
- 3. Feladat
- (2. típus)
- (1. típus)
- 4. Felada (2. típus)
- 5. Felada
- 6. Feladat

Megoldás:

A szimmetrikus $\Rightarrow A^{-1}$ is szimmetrikus

módszerek

Király Balázs

- 1. Fela
- (1. tipu
- Felad
 típus
- 2. Felac
- (1. típus
- 2. Felada
- (z. tipus)
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus)
- (2. típus)
- 5. Felada
- 6. Feladat

Megoldás:

A szimmetrikus $\Rightarrow A^{-1}$ is szimmetrikus \Rightarrow

$$||A^{-1}||_2 = \varrho(A^{-1}) =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felad (2. típus
- 2 Felan
- (1. típu:
- 2. Felada
- 3 Felada
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus)
- (2. típus)
- 5. Felada
- 6. Feladat

Megoldás:

A szimmetrikus $\Rightarrow A^{-1}$ is szimmetrikus \Rightarrow

$$||A^{-1}||_2 = \varrho(A^{-1}) = \frac{1}{|\lambda_{\min}A|} =$$

Numerikus módszerek

Király Balázs

- 1. Fela
- (1. típu
- 1. Felad (2. típus
- 2. Fela
- (1. típu:
- 2. Felada
- (2. típus)
- (1. típus)
- 3. Feladat (2. típus)
- 4. Felada
- (1. típus
- (2. típus)
- 5. Felada
- 6. Feladat

Megoldás:

A szimmetrikus $\Rightarrow A^{-1}$ is szimmetrikus \Rightarrow

$$||A^{-1}||_2 = \varrho(A^{-1}) = \frac{1}{|\lambda_{\min}A|} = \left|\frac{2}{7 - \sqrt{101}}\right|$$

módszerek Király Balázs

Kiraly Balaz

- 1. Fela
- (1. típu
- 1. Felad (2. típus
- 2. Felac
- (1. típu:
- 2. Felada (2. típus)
- (2. típus)
- (1. típus)
- 3. Feladat
- 4. Felada
- (1. típus)
- (2. típus)
- 5. Felada
- 6. Feladat

Megoldás:

A szimmetrikus $\Rightarrow A^{-1}$ is szimmetrikus \Rightarrow

$$||A^{-1}||_2 = \varrho(A^{-1}) = \frac{1}{|\lambda_{\min}A|} = \left|\frac{2}{7 - \sqrt{101}}\right| = \frac{2}{\sqrt{101} - 7}$$

Így a kondíciószám:

$$cond_2A = ||A||_2 \cdot ||A^{-1}||_2 =$$

módszerek

Király Balázs

- 1. Fela
- (1. típu
- Felad
 típus
- 2. Felad
- (1. típus
- 2. Felada (2. típus)
- (2. tipus)
- (1. típus)
- 3. Feladat
- 4. Felada
- (1. típus)
- (2. típus)
- 5. Felada
- 6. Feladat

Megoldás:

A szimmetrikus $\Rightarrow A^{-1}$ is szimmetrikus \Rightarrow

$$||A^{-1}||_2 = \varrho(A^{-1}) = \frac{1}{|\lambda_{\min}A|} = \left|\frac{2}{7 - \sqrt{101}}\right| = \frac{2}{\sqrt{101} - 7}$$

Így a kondíciószám:

$$\operatorname{cond}_2 A = ||A||_2 \cdot ||A^{-1}||_2 = \frac{7 + \sqrt{101}}{\sqrt{101} - 7}$$