

Functional MRI and data analysis Encoding models

Florent MEYNIEL

Neurospin, CEA, France

(...) brain regions where activity is significantly correlated with confidence.

Bounmy, Eger & Meyniel (2023) Neurolmage

(...) searchlight decoding analysis [was] used to reveal identity-specific value codes

Howard, Gottfried, Tobler & Kahnt (2015) *PNAS*

A general distinction: encoding vs. decoding

ENCODING

What are the brain responses triggered by this stimulus, task, emotion ...? (related to: forward models, univariate analysis, GLM, ...)

Task and stimuli

fMRI activity (gray scale)

DECODING

What is the likely cause (stimulus, task, emotion ...) of this brain response?

(related to: multivariate pattern analysis, search light, SVM, ...)

Typical encoding analysis in neuroscience

I/ Encoding: From neural activity to BOLD signal (forward model)

The haemodynamic response function Predicting the BOLD signal during a simple experiment Convolution model for BOLD data

II/ Encoding: Testing effects with mass univariate analysis

The regression approach: intuition and formalization Statistical parametric mapping with mass univariate analysis

III/ Encoding: General Linear Model

General linear model (GLM) and design matrix Testing the effect of interest with "contrasts" Categorical and parametric regressors Subject and Group level analyses

IV/ The problem with multiple comparisons

Multiple testing inflates the risk of having a false positive Statistical methods to correct for multiple comparisons

Applying encoding analysis to fMRI signal is difficult because the fMRI signal is slow and delayed

BOLD response (a.k.a. haemodynamic response function)

→ Encoding analysis of fMRI signal must be analysis of *timeseries*

Starting with an example

Example question: What are the brain regions (i.e. voxels) whose activity increase when a sound is played? fMRI data are noisy timeseries, answering this question requires modeling and a statistical approach.

Adapted from: SPM courses

Predicted BOLD responses in a simple experiment

Task: every 16 s, a sound is played.

In standard fMRI analyses, we assume that the observed BOLD signal is the superposition of (= the sum of) the BOLD responses evoked by every single neural event.

Mathematically, the expected BOLD signal is therefore the timeseries of neural activity convolved with the hemodynamic response function.

Overlap of BOLD responses in fast designs

Implications:

- some experimental designs are better than other (e.g. some neuronal effects may be completely smoothed out at the BOLD level)

From neuronal effects to timeseries of BOLD data: The power of forward modelling

FORWARD MODEL OF OBSERVATIONS

Expected neuronal activity in the auditory cortex

 \otimes

Expected BOLD response for a single, transient neural event

Expected BOLD timeseries in the auditory cortex

Actual data measured

I/ Encoding: From neural activity to BOLD signal (forward model)

The haemodynamic response function
Predicting the BOLD signal during a simple experiment
Convolution model for BOLD data

II/ Encoding: Testing effects with mass univariate analysis

The regression approach: intuition and formalization Statistical parametric mapping with mass univariate analysis

III/ Encoding: General Linear Model

General linear model (GLM) and design matrix Testing the effect of interest with "contrasts" Categorical and parametric regressors Subject and Group level analyses

IV/ The problem with multiple comparisons

Multiple testing inflates the risk of having a false positive Statistical methods to correct for multiple comparisons

From neuronal effects to timeseries of BOLD data: The regression approach

Compare predicted and observed time series

Error (what is not captured by the prediction)

Quantifying the significance of a regression The Student T-test: a signal-to-noise measure to quantify "Is β different from 0 ?"

The Student T-test tests whether the (central) value of a noisy variable, observed through a limited number of data points (X), is non-zero.

T-value = β / SE[β] : more extreme values indicate that mean(X) \neq 0

The regression approach applied to the entire brain: statistical parametric mapping and the mass univariate approach

What are the brain regions whose activity is modulated by the sound?

→ Repeat the same analysis for all voxels (mass univariate approach).

SPM{T₇₃}

→ examples #2, #3 in the notebook

Adapted from: SPM courses

shown)

Modelling BOLD response in a task: Matrix notations for regression and the General Linear Model (GLM)

$$Y = X\beta + \varepsilon$$

Modelling BOLD response in a task: The "design matrix" models observations as a linear combination of factors (multiple regression)

The model of observations is estimated by finding the best-fitting values for the β parameters. The least-square estimates (those that minimize the residual sum-of-square):

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

NB: the error should be normally, identically and independently distributed

- → data are spatially smoothed (it improves many aspects, including the issue of normal errors)
- → data must be "whitened" to remove the temporal autocorrelation of the data (which is inherent given the BOLD response)

From neuronal effects to timeseries of BOLD data: **Testing effects with linear contrast**

$$Y = X\beta + \varepsilon$$

Stimulus presented in the left ear

Motor response

Stimulus presented in the right ear

 $C^T = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$ Contrast testing for more activity when there is a motor response (is $\beta_3 > 0$?).

$$C^{T} = [1 -1 0 0]$$

 $C^{T} = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}$ Contrast testing for more activity when the stimulus is presented on the right compared the to left (is $\beta_1 > \beta_2$?)

Statistical test: is $c^T\beta \neq 0$?

→ Use a Student T-test.

$$T = \frac{c^T \hat{\beta}}{\sqrt{\hat{\sigma}^2 c^T (X^T X)^{-1} c^T}}$$

NB: σ^2 is the residual variance → any effect that can be accounted for should be included in the design matrix

From neuronal effects to timeseries of BOLD data: Include covariates in the design matrix

The fMRI signal is often corrupted by slow drifts (instability of the scanner)

Other "confound" variables typically included: subject's motion parameters

GLM: A conceptual distinction between categorical regressors and parametric regressors

In the end, both types boil down to a regression of time-series in the GLM...

"Parametric" regressors may reflect a property of the stimulus, or some variable computed from a model of cognitive function

Simple vs. sophisticated parametric regressors

Parametric regressor: value rating

Parametric regressors: semantic features (from a word embedding model)

Subject-level and group-level analyses

NB1: This method ignores the variance (σ) of the parameters from different subjects. Mixed-models and hierarchical models can take into account the subject-level variance for the group-level inference.

NB2: To compare different subjects voxel-wise, the anatomy first needs to be "**normalized**", i.e. aligned with one another. Usually, they are realigned to a standard anatomical space (e.g. MNI) so that a given voxel can be compared across studies. "functional alignment" is an alternative (e.g. Haxby et al, 2020 *eLife*)

The flexibility of General Linear Models

The GLM approach allows different statistical methods:

- Student T-test: Is my effect $E_1 \neq 0$? Is effect $E_1 > E_2$?
- Categorical variables and continuous variables
- F-test (ANOVA): Is there a difference between any level of factor E_1 (one-way ANOVA)? Is there a difference between any level of factor E_1 while controlling for the effects of E_2 , ... E_N (N-way ANOVA)
- T-test and F-test can be performed at the subject-level and at the group-level.

→ This is why we say *General* linearl models

Comparison of the multivariate and univariate approaches

Univariate / encoding

- Look at voxels independently from one another
- Look for spatially smoothed signal
- Based on a regression approach
- One must fully specify the type of representation looked for
- Statistics: T-test, F-test (parametric or not)
- Computationally cheap. Parametric tests suffice

Multivariate / decoding

- Look at the information conveyed jointly by multiple voxels
- Look for spatially structured signals
- Based on a classification approach (+ extension for continuous variables)
- The classification automatically extracts the relevant features
- Statistics: classification/prediction accuracy
- Computationally expensive. Requires permutation, cross-validation

I/ Encoding: From neural activity to BOLD signal (forward model)

The haemodynamic response function Predicting the BOLD signal during a simple experiment Convolution model for BOLD data

II/ Encoding: Testing effects with mass univariate analysis

The regression approach: intuition and formalization Statistical parametric mapping with mass univariate analysis

III/ Encoding: General Linear Model

General linear model (GLM) and design matrix Testing the effect of interest with "contrasts" Categorical and parametric regressors Subject and Group level analyses

IV/ The problem with multiple comparisons Multiple testing inflates the risk of having a false positive Statistical methods to correct for multiple comparisons

It is likely that a rare event occurs if you try multiple times

Bet 1

You throw a pair of dice. I give you 10€ if you have a double 6. You give me 10€ otherwise.

Probability that I win: $1-(1/6)^2=97\%$

Bet 2

You throw a pair of dice 100 times. I give you 10€ if you have a double 6 at least once. You give me 10€ otherwise.

Probability that I win: $[1-(1/6)^2]^{100}=6\%$

The problem of multiple testing across voxels

You find a voxel with different activity for "tone" and "no tone" in 20 subjects, at t=2.3 (p=0.016, one-tail t-test)!

Number of voxels that can be considered as grey matter after smoothing, at a resolution of 1.5 mm: ~ 500 000.

500 000 times.

Simulation of the chance level (null effect) in that experiment

8503 simulations / 500000 yield the same (or a higher) t-value as the one found.

NB: using the parametric distribution:
500000*0.016=8000.

\rightarrow we need to correct for the inflation of false positives.

Corrections (See Thomas Nichols 2003 for a review):

- Family wise error (Bonferroni, Gaussian random fields)
- False discovery rate