

Nombre y apellidos:

NIF:

a) 4 dBm

c)

5 dBm

6 dBm

7 dBm

Escuela Técnica Superior de Ingeniería de Telecomunicación Departamento de Teoría de la Señal y Comunicaciones

SISTEMAS DE COMUNICACIÓN AUDIOVISUALES Examen parcial de los temas 3 y 4

(Tiempo: 50 minutos)

NO se permite teléfono móvil durante la realización de la prueba. Sí se permite calculadora. Se admite

formulario para el Tema 4.	
CUESTIÓN 1.	
Un sistema está compuesto por un atenuador con perdidas 3 dB seguido ganancia 20 dB y figura de ruido 1 dB. Si el sistema se encuentra a una tem la temperatura de ruido a la entrada del sistema es de 3500 K, ¿cual será la salida de este sistema?	peratura física de 325 K y
 a) 296160 K b) 125900 K c) 321251 K d) 198780 K 	
CUESTIÓN 2.	
A la entrada de un amplificador de ganancia en potencia G=10 dB se in potencia 1dBm. El amplificador funciona en régimen cuasilineal, produciend de distorsión de segundo orden de -6 dBm. Si la amplitud de la sinusoide de	do a su salida una potencia

potencia de distorsión de segundo orden obtendremos a la salida?.

CUESTIÓN 3

Un sensor digitaliza una señal utilizando 7 bits por muestra. Si la señal eléctrica obtenida por el sensor varía entre los -5 y los 7 voltios, y teniendo en cuenta que no se produce saturación, ¿cual es el valor del ruido de cuantificación en dBm?.

- a) -2.87 dBm
- b) -1.35 dBm
- c) 0.32 dBm
- d) 1.72 dBm

CUESTIÓN 4

Un sistema de transmisión presenta una respuesta en frecuencia como la representada en la Figura 1. Si transmitimos la señal $x(t) = \cos(2\pi \cdot 100 \cdot t) + 5\sin(2\pi \cdot 500 \cdot t)$, ¿cual de las afirmaciones es cierta?.

- a) Tendrá distorsión de amplitud, pero no de fase.
- b) Tendrá distorsión de amplitud y de fase.
- c) No tendrá distorsión de amplitud ni de fase.
- d) No tendrá distorsión de amplitud pero sí de fase.

Figura 1

CUESTIÓN 5

La Figura 2 representa el espectro a la salida de un sistema que ha distorsionado la señal de entrada que era una sinusoide con frecuencia 1 Hz. Atendiendo a la gráfica y a los valores observados. ¿Cual de las siguientes afirmaciones es correcta?

- a) El sistema ha generado cinco armónicos de la señal fundamental.
- b) El sistema ha generado tres armónicos de la señal fundamental.
- c) El sistema ha generado dos armónicos de la señal fundamental.
- d) El sistema a producido la intermodulación de la señal de entrada.

Figura 2

CUESTIÓN 6

Para una aplicación donde el entorno electromagnético es muy ruidoso elegiríamos preferiblemente una línea de transmisión metálica del tipo:

- a) Coaxial
- b) UTP
- c) STP
- d) a) o c) según la frecuencia de la señal transmitida

CUESTIÓN 7

Es importante que toda línea de transmisión esté adaptada a la carga con el fin de que:

- a) Toda la potencia entregada por el transmisor le llegue a la carga
- b) No se produzcan daños en la etapa de salida del equipo transmisor
- c) La impedancia característica de la línea sea real y no haya distorsión de fase
- d) a) y b)

CUESTIÓN 8

La impedancia característica de una línea de transmisión sin pérdidas vale 72 ohm. Sabiendo que la autoinducción por unidad de longitud de la línea es 0,5 uH/m, calcular la capacidad por unidad de longitud, la velocidad de fase y la constante de fase a 80 MHz.

- a) $C= 96 \text{ pF/m}, v_f= 1,44 \times 10^9 \text{ m/s}, \text{ beta}=2.5 \text{ rad/m}$
- b) $C= 96 \text{ pF/m}, v_f= 1,44x10^8 \text{ m/s}, \text{ beta=5 rad/m}$
- c) $C=96 \text{ pF/m}, v_f=1,44x10^8 \text{ m/s}, \text{ beta=2,5 rad/s}$
- d) Ninguna de las anteriores

CUESTIÓN 9

Las pérdidas por absorción intrínseca en una fibra óptica

- a) Son debidas a las irregularidades de las redes moleculares que componen su núcleo
- b) Son provocadas por las fluctuaciones aleatorias del índice de refracción
- c) Son originadas por defectos espaciados cuasi-periódicamente
- d) Se sitúan en la zona del UV o IR

CUESTIÓN 10

Una fibra monomodo con diámetro del núcleo de 8 micras y cuyos índices de refracción del núcleo y del revestimiento son 1,445 y 1,44

- a) Puede trabajar en la primera ventana
- b) Puede trabajar en la segunda ventana únicamente
- c) Su frecuencia característica hace que se puedan propagar únicamente 2 modos.
- d) Puede trabajar en segunda y tercera ventanas