VITMO

Разработка метода межъязыкового семантического анализа текстов программ

Подготовил: Орловский М.Ю Системное и прикладное программное обеспечение Научный руководитель: Логинов И.П.

Анализ сценариев использования

Для анализа сценариев использования решено рассмотреть LSP.

LSP (language server protocol) – протокол, обобщающий языковые концепции для

получения общих методов взаимодействия с программой в контексте инстру-

ментальных средств разработки

Сценарии использования

Зависимость функциональности от необходимой информации

Информация об областях видимости	Информация об областях видимости и типах
Подсветка символаСворачивание кода	 Поиск объявления или определения Определение иерархии вызовов Поиск ссылок на идентификатор Автодополнение символа

Специфично для языка: подсказки, рефакторинги, стиль кода

Неполная схема метода

Извлечение кода

Подзадачи:

- Извлечение информации о системе;
- Парсинг информации;
- Трансляция информации в обобщенную структуру.

Информация о системе

echo \$GLOBAL_VAR

- Содержимое файловой системы;
- Системные переменные;
- Ресурсы (сеть, процессор, конфигурация периферии).

То есть структурированные данные.

Процесс парсинга

Парсинг вовлекает генератор парсеров и языковую грамматику. Формат AST – структурированное дерево (S-выражения)

Синтаксическая трансляция

	Production	Code Snippet
1	Number $ ightarrow$ Sign List	\$\$ ← \$1 × \$2
2	Sign $ ightarrow$ +	\$\$ ← 1
3	Sign $ ightarrow$ -	\$\$ ← -1
4	List \rightarrow Bit	\$\$ ← \$ 1
5	$List_0 \rightarrow List_1$ Bit	\$\$ ← 2 × \$1 + \$2
6	Bit \rightarrow 0	\$\$ ← 0
7	Bit \rightarrow 1	\$\$ ← 1

В общем случае функция, отображающая синтаксические элементы (AST) в исполняемый код для над этими элементами

Онтология

Таким представлением является онтология.

- Семантика межъязыковых связей;
- Грамматики и соответствующие парсеры для разных языков;
- Синтаксические трансляции для разных языков;
- Система типов.

Разные исчисления и их системы //ТМО

В качестве системы типов стоит избрать хорошо изученные 🧢 😵 формализмы из теории типов. Таковыми являются различные расширения лямбда-исчисления.

Виды систем:

- System F
- System F_<.

Практичная система: $\lambda_{<}$

Идеальная система: System F_<.

О фрагментах

В ходе исследования было предпринято много попыток выработки формализма фрагментов.

Итоговым вариантом стал метод логического вывода, основанный на структурированных утверждениях.

Но всё изменилось...

Графы областей (Scope-graphs)

 $d_7 \rightarrow 1$

 $def x_1 = 1$ def y_2 = if x_3 == 0 then 3 else x_4

Scope graph

Declarations

$$\mathbf{x}_1^{\mathsf{D}}: \tau_1 \quad \mathbf{y}_2^{\mathsf{D}}: \tau_2$$

Reference constraints

$$x_3^{\mathsf{R}} \mapsto \delta_1 \quad \delta_1 : Int$$
 $x_4^{\mathsf{R}} \mapsto \delta_2 \quad \delta_2 : \tau_4$

Type constraints

$$au_1 \equiv Int \\ Bool \equiv Bool \\ Int \equiv Int \\ au_3 \equiv Int \\ au_2 \text{ is } au_3 \sqcup au_4 \\$$

Solution

$$\delta_1 = \mathbf{x}_1^{\mathsf{D}} \quad \delta_2 = \mathbf{x}_1^{\mathsf{D}}$$
 $\tau_1 = Int \quad \tau_2 = Int$
 $\tau_3 = Int \quad \tau_4 = Int$

Статья "A Theory of Name Resolution [1]", а также её продолжение "Language-Independent

Type-Dependent

Name Resolution [2]".

Языко-независимый формализм анализа областей видимости и типов.

^[1] Neron, P., Tolmach, A., Vjśser, E., &. 2015. A Theory of Name Resolution [2] Hendrik van Antwerpen et al, "Kanguage-Independent Type-Dependent Name Resolution," Delft University of Technology, 2015

Итоговая схема анализатора

Спасибо за внимание!

ITSIMOre than a UNIVERSITY

Github.com/uberde

ver

t.me: @uberdever