## Introduction to Topology

General Topology, Lecture 15

## Haoming Wang

27 July 2019

This is the Lecture note for the *Introduction to Topology*. The course covers the following topics: Naive Set Theory, Elementary Number Theory, Group Theory, Topological Spaces and Continuous Maps, Introduction to Algebraic Topology.

## CONTENT:

- 1. Compactness
- 2. Bound

3. Abelian Group

## Compactness

**Definition 1** (Compact). Let X be a top. sp. we say that X is compact if  $\forall U_{\alpha} \subseteq_{open} X(\alpha \in A), X = \cup_{\alpha \in A} U_{\alpha} \Rightarrow \exists \alpha_1, \dots, \alpha_k \in A$ , s.t.  $X = U_{\alpha_1} \cup \dots \cup U_{\alpha_k}$ .

**Definition 2** (Compact Subset). Let X be a top. sp.  $K \subseteq X$ , we say K is a compact subset in X, if  $\forall U_{\alpha} \subseteq_{open} X(\alpha \in A), K \subseteq \cup_{\alpha \in A} U_{\alpha} \Rightarrow \exists \alpha_1, \dots, \alpha_k \in A$ , s.t.  $K \subseteq U_{\alpha_1} \cup \dots \cup U_{\alpha_k}$ .

**Exercise 1.** Show that K is a compact subset in  $X \Leftrightarrow K$  (equipped with the subspace topology) is a compact space.

*Proof.*  $\Rightarrow$ : For any  $V_{\alpha} \subseteq_{open} K$ ,  $\exists U_{\alpha} \subseteq_{open} X$ , s.t.  $V_{\alpha} = U_{\alpha} \cap K$ . For any

$$K = \bigcup_{\alpha \in A} V_{\alpha}$$

$$= \bigcup_{\alpha \in A} U_{\alpha} \cap K$$

$$= K \cap \bigcup_{\alpha \in A} U_{\alpha}$$

$$= K \cap (U_{\alpha_{1}} \cup \cdots \cup U_{\alpha_{k}})$$

$$= V_{\alpha_{1}} \cup \cdots \vee V_{\alpha_{k}}$$

Thus *K* is compact.  $\Leftarrow$ : for any  $K \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ , we have  $\bigcup_{\alpha \in A} (U_{\alpha} \cap K) \subseteq K$  and

$$K = K \cap K$$

$$\subseteq K \cap \cup_{\alpha \in A} U_{\alpha}$$

$$= \cup_{\alpha \in A} (K \cap U_{\alpha})$$

Thus  $K = \bigcup_{\alpha \in A} (K \cap U_{\alpha}) = \bigcup_{\alpha \in A} V_{\alpha}$ , where  $V_{\alpha} \subseteq_{open} K$ . And  $\exists V_{\alpha_1}, \dots, V_{\alpha_k} \subseteq_{open} K$ , s.t.

$$K = V_{\alpha_1} \cup \cdots V_{\alpha_k}$$

$$= K \cap (U_{\alpha_1} \cup \cdots U_{\alpha_k})$$

$$\subseteq U_{\alpha_1} \cup \cdots U_{\alpha_k}$$

Thus *K* is a compact subset in *X*.

**Definition 3** (Hausdorff Topology Space). A top. sp. *X* is Hausdorff if  $\forall p, q \in X, p \neq q \Rightarrow \exists$  open nbds *U* of *p* and *V* of *q* in *X* such that  $U \cap V = \emptyset$ .

**Example 1.** Let  $X = \{1, 2\}$ ,  $\mathcal{T}$  is trivial topology, then  $(X, \mathcal{T})$  is not a Hausdorff topology space.

**Proposition 1.** *Suppose X is Hausdorff, K*( $\subseteq X$ ) *is compact, p*  $\in X \backslash K \Rightarrow$  $\exists U, V \subseteq_{open} X$ , s.t.  $K \subseteq V$ ,  $p \in U$ , and  $U \cap V = \emptyset$ .

*Proof.* X is Hausdorff  $\Rightarrow \forall q \in K, \exists U_q, V_q \subseteq_{open} X \text{ s.t. } q \in V_q, p \in$  $U_q, U_q \cap V_q = \emptyset$ . Thus  $K \subseteq \bigcup_{q \in K} V_q = \bigcup_{i=1}^k V_{q_i}$ , Let  $V = \bigcup_{i=1}^k V_{q_i}$ ,  $U = \bigcup_{i=1}^k V_{q_i}$  $\bigcap_{i=1}^k U_{q_i}$ , then

$$\begin{split} U \cap V &= \left( \cap_{j=1}^k U_{q_j} \right) \cap \left( \cup_{i=1}^k V_{q_i} \right) \\ &= \cup_{i=1}^k \left[ \cap_{j=1}^k \left( U_{q_j} \cap V_{q_i} \right) \right] \\ &= \cup_{i=1}^k \varnothing = \varnothing. \end{split}$$

**Corollary 1.** Suppose X is Hausdorff,  $K \subseteq_{cpt.} X$  is compact  $\Rightarrow K$  is closed.

*Proof.* For  $\forall p \in X \backslash K, \exists W_p \subseteq_{open} X$ , s.t.  $x \in W_p$  and  $W_p \cap K = \emptyset$ , that is  $W_p \subseteq X \setminus K$ . And because

$$X\backslash K = \cup_{p\in X\backslash K} \{p\} \subseteq \cup_{p\in X\backslash K} W_p \subseteq X\backslash K$$

we have that  $X \setminus K = \bigcup_{p \in X \setminus K} W_p \subseteq_{open} X$ , and then  $K \subseteq_{close} X$ . 

**Exercise 2.** Suppose *X* is locally compact Hausdorff,  $K \subseteq_{cpt} X$ ,  $C \subseteq_{close} X$ , show that if  $C \cap K = \emptyset \Rightarrow \exists U, V \subseteq_{open} X$ , s.t.  $K \subseteq V, C \subseteq$ U and  $U \cap V = \emptyset$ .

**Proposition 2.** Suppose X is a compact space,  $K \subseteq_{close} X \Rightarrow K \subseteq_{cpt.} X$ .

*Proof.* Suppose that  $U_{\alpha} \subseteq_{open} X(\alpha \in A)$  cover K, i.e.  $K \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ . Then

$$X = K \cup (X \setminus K) \subseteq$$

$$(\cup_{\alpha \in A} U_{\alpha}) \cup (X \setminus K)$$

$$= \left[\cup_{i=1}^{k} U_{\alpha_{i}}\right] \cup (X \setminus K)$$

$$= \cup_{i=1}^{k} \left[U_{\alpha_{i}} \cup (X \setminus K)\right]$$

and

$$\begin{split} K &= K \cap X = K \cap \left[ \cup_{i=1}^k U_{\alpha_i} \cup (X \setminus K) \right] \\ &= \cup_{i=1}^k \left[ K \cap ((X \setminus K) \cup U_{\alpha_i}) \right] \\ &= \cup_{i=1}^k \left[ (K \cap (X \setminus K)) \cup (K \cap U_{\alpha_i}) \right] \\ &= \cup_{i=1}^k (K \cap U_{\alpha_i}) \\ &\subseteq \cup_{i=1}^k U_{\alpha_i}. \end{split}$$

Note 1. Thus the larger top. is, the more likely it is to be Hausdorff.



*Note* 2. If *X* is Haus.  $K \subseteq_{cpt.} X$  is close; If *X* is cpt.  $K \subseteq_{close} X$  is cpt.

Note 3. So the standard routines for proving a set K is cpt. is suppose  $U_{\alpha}(\alpha \in A)$  cover it at first, and then try to argue  $K \subseteq \bigcup_{i=1}^k U_{\alpha_i}$ .

Thus *K* is compact.

**Exercise 3.** *X* is locally compact Hausdorff (LCH) space,  $C \subseteq_{close} X$ , show that  $\forall c \in C, \exists T_c \subseteq_{cpt} C$ , s.t.  $c \in T_c$ .

*Proof.* For  $\forall c \in C, \exists S_c \subseteq_{cpt.} X$ , s.t.  $c \in S_c$  and  $c \in S_c \cap C$ . Since  $S_c \subseteq_{cpt.} X \Rightarrow S_c \subseteq_{close} X \Rightarrow S_c \cap C \subseteq_{close} X$ 

$$X \setminus (S_c \cap C) \subseteq_{open} X$$

$$\Rightarrow S_c \cap (X \setminus (S_c \cap C)) \subseteq_{open} S_c$$

$$\Rightarrow S_c \setminus [S_c \cap (X \setminus (S_c \cap C))] \subseteq_{close} S_c$$

$$\Rightarrow (S_c \setminus S_c) \cup [S_c \setminus X \setminus (S_c \cap C)] \subseteq_{close} S_c$$

$$\Rightarrow S_c \setminus X \setminus (S_c \cap C)$$

$$= S_c \cap C \subseteq_{close} S_c.$$

Since  $S_c \cap C \subseteq_{close} S_c$ ,  $S_c$  is cpt.  $\Rightarrow S_c \cap C \subseteq_{cpt.} S_c \Rightarrow S_c \cap C$  is cpt.  $\Rightarrow S_c \cap C \subseteq_{cvt.} C.$ 

**Proposition 3.** X, Y are cpt. space  $\Rightarrow$  X  $\times$  Y (equipped with the product topology) is compact.

*Proof.* Trivial. Fix x, consider  $\{x\} \times Y$ . then utilize the definition of product topology, and then use the compactness of Y.Thus  $\{x\}$  × Y could be covered by finite open set. For detailed argument, see here(0:52:00).

**Proposition 4.** Suppose X, Y are top. sp.  $X \xrightarrow{f} Y$  is continuous.  $K \subseteq_{cvt}$ .  $X \Rightarrow f(K) \subseteq_{cpt.} Y$ .

*Proof.* Suppose  $V_{\alpha}(\alpha \in A)$  cover f(K), that is  $f(K) \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ , thus

$$K \subseteq f^{-1}(\bigcup_{\alpha \in A} U_{\alpha})$$

$$= \bigcup_{\alpha \in A} f^{-1}(U_{\alpha})$$

$$= \bigcup_{i=1}^{k} f^{-1}(U_{\alpha_{i}})$$

$$= f^{-1}(\bigcup_{i=1}^{k} U_{\alpha_{i}}).$$

Thus  $f(K) \subseteq \bigcup_{i=1}^k U_{\alpha_i}$  and it is compact.

**Corollary 2.** Suppose map  $X \xrightarrow{f} Y$  is conti. X is compact, Y is Hausdorff, then f is a closed map, i.e.  $C \subseteq_{close} X \Rightarrow f(C) \subseteq_{close} Y$ .

*Proof.*  $C \subseteq_{close} X$ , X is compact  $\Rightarrow C \subseteq_{cpt.} X \Rightarrow f(C) \subseteq_{cpt.} Y$ , Y is Hausdorff  $\Rightarrow$  f(C) is close.

**Corollary 3.** Suppose map  $X \xrightarrow{f} Y$  is conti. bijection, X is compact, Y is  $Hausdorff \Rightarrow f$  is a homeomorphism.

*Note* 4.  $A \subseteq_{close} X$ ,  $A \subseteq B \subseteq X$ , then  $A \subseteq_{close} B$ .

*Note* 5. Remember that  $A \subseteq_{cpt.} B$ means A is a cpt. subset of B, which is equivalent with A is a cpt. set.

*Note* 6. Since *f* is continuous,  $f^{-1}(U_{\alpha})(\alpha \in A)$  are open.

*Proof.* f is closed map, and f is a bijection, thus  $f^{-1}$  is continuous. fis bijection, f and  $f^{-1}$  are continuous, thus f is a homeomorphism.

Bound

**Definition 4** (Upper Bound). Given  $A \subseteq \mathbb{R}$ , we call  $u \in \mathbb{R}$  is a upper bound of *A* if  $a \le u$  for  $\forall a \in A$ ;  $l \in \mathbb{R}$  is a lower bound of *A* if  $l \le a$ for  $\forall a \in A$ .

**Definition 5** (Greatest Element).  $x \in \mathbb{R}$  is the greatest (smallest) element of A if  $x \in A$  and x is a upper (lower) bound of A.

**Definition 6** (Least Upper Bound).  $u \in \mathbb{R}$  is the least upper bound (or supremum) of A, if u is the smallest element of the set of all upper bounds of A, denote as  $u = \sup A$ .

 $l \in \mathbb{R}$  is the greatest lower bound (or infimum) of A, if l is the greatest element of the set of all lower bounds of A, denote as l = $\inf A$ .

**Example 2.** Let A = [0,1), the set of upper bound of A is  $[1,\infty)$ , the set of lower bound of *A* is  $(-\infty, 0]$ . Thus sup A = 1, inf A = 0.

Suppose we admit that the gapless property of real number: if  $\emptyset \neq S \subseteq \mathbb{R}$  has upper bound (lower bound), then sup  $S(\inf S) \exists$ .

**Theorem 1.** [0,1] (as a subspace of  $\mathbb{R}$ ) is compact.

*Proof.* Suppose that  $V_{\alpha} \subseteq_{oven} \mathbb{R}(\alpha \in A)$  cover [0, 1]. Consider

 $S := \{s \in [0,1] | [0,s] \text{ can be covered by finitely many } V_{\alpha} \}$ 

Thus  $0 \in S$ ,  $S \neq \emptyset$ .  $S \subseteq [0,1]$ , thus S has an upper bound  $\Rightarrow \sup S \exists$ . Let  $s_0 := \sup S$ . Since 1 is an upper bound of S,  $s_0 \le 1$ . For  $\forall t \le s_0$ , t is not an upper bound of S,  $\exists s' \in S$ , s.t. t < s', thus [0,t] could be covered by finitely many  $V_{\alpha}$ .

Since  $s_0 \le 1$ ,  $\exists \alpha_0$ , s.t.  $s_0 \subseteq V_{\alpha_0}$ ,  $\exists r > 0$ , s.t.  $B_r(s_0) \subseteq V_{\alpha_0}$ . Thus  $[0, s_0 - r]$  can be covered by finitely many of  $V_\alpha$ , and  $(s_0 - r, s_0 + r)$ can be covered by  $V_{\alpha_0}$ . Thus  $[0, s_0 + r)$  can be covered by finitely many  $V_{\alpha}$ . Thus  $s_0 = 1$  and  $s_0 \in S \Rightarrow S = [0, 1]$ . 

Thus  $[0,1] \times [0,1]$ , as a subspace of  $\mathbb{R}^2$ , which coincides with the product space of [0,1] and [0,1], is compact.

More generally, we can reprove the Heine-Borel theorem: for  $K \subseteq \mathbb{R}^n$ , then  $K \subseteq_{cpt}$ .  $\mathbb{R}^n \Leftrightarrow K \subseteq_{close} \mathbb{R}^n$  and K is bdd.

*Proof.*  $\Rightarrow$ :  $\mathbb{R}^n$  is metric space  $\Rightarrow \mathbb{R}^n$  is Hausdorff  $\Rightarrow K \subseteq_{close} \mathbb{R}^n$ . Since  $K \subseteq \bigcup_{n \in \mathbb{N}} B_n(0) \Rightarrow \exists r_1, \dots, r_k$ , s.t.  $K \subseteq \bigcup_{i=1}^k B_{n_i}(0) \Rightarrow K$  is bdd.

*Note* 7. Actually, In any metric space *X*,  $K \subseteq_{cpt.} X \Rightarrow K \subseteq_{close} X$  and be bdd.

 $\Leftarrow$ : K is bdd.  $\Rightarrow$ ,  $\exists r > 0$ , s.t.  $K \subseteq B_r(0)$ ,  $\Rightarrow \exists [a_1, b_1], \cdots, [a_n, b_n] \in$  $\mathbb{R}$ , s.t.  $K \subseteq B_r(0) \subseteq \times_{i=1}^n [a_i, b_i]$ . Since  $K \subseteq_{close} \mathbb{R}^n \Rightarrow K \subseteq_{close}$  $\times_{i=1}^{n}[a_i,b_i] \subseteq_{cpt.} \mathbb{R}^n \Rightarrow K \subseteq_{cpt.} \times_{i=1}^{n}[a_i,b_i] \Rightarrow K \text{ is cpt.}$ 

**Exercise 4.** Suppose  $S \subseteq_{close} \mathbb{R}$  and  $S \neq \emptyset$ , S has an upper bound, show that sup  $S \in S$ .

*Proof.* Let  $s_0 := \sup S$ . If  $s_0 \notin S \Rightarrow s_0 \in \mathbb{R} \setminus S \subseteq_{open} \mathbb{R}$ . Thus  $\exists r > 0$ , s.t.  $B_r(s_0) \in \mathbb{R} \setminus S$ , that is  $s_0 - r \in \mathbb{R} \setminus S \Rightarrow s_0 - r \geq s(\forall s \in S)$ . But  $s_0$  is the smallest upper bound, then  $\forall s' < s_0, \exists s \in S$ , s.t. s > s', which leads to a contradiction.

**Corollary 4.** Given a conti. map  $K \xrightarrow{f} \mathbb{R}$ , K is cpt.  $\Rightarrow f$  has a max. and min.

*Proof. K* is cpt., *f* is conti.  $\Rightarrow$   $f(K) \subseteq_{cpt.} \mathbb{R} \Rightarrow f(K) \subseteq_{close} \mathbb{R}$ and be bdd. Thus f(K) has a upper bound and lower bound, thus  $\max f(K) = \sup f(K) \in f(K)$  and  $\min f(K) = \inf f(K) \in f(K)$ .