Conducted by

Cross Validation

Ritvij Bharat Private Limited (RBPL)

- Is there a way we can achieve the following:
 - Train on **ALL** the data
 - Evaluate on ALL the data?

Ritvij Bharat Private Limited (RBPL)

Conducted by:

Consider this dataset:

iHUB Div	X Wa Samna	ark IIT Ro	y
Area m²	Bedrooms	Bathrooms	Price
200	3	2	\$500,000
190	2	1	\$450,000
230	3	3	\$650,000
180	1	1	\$400,000
210	2	2	\$550,000

Consider training vs testing:

		X		y
	X ₁	X ₂	$\mathbf{x_3}$	у
	x_1^1	x_{1}^{1}	x_{1}^{1}	y ₁
TRAIN	x_{1}^{2}	x ² ₁	x ² ₁	y ₂
	x_1^3	x ³ ₁	x ³ ₁	y ₃
TEST	x_{1}^{4}	x ⁴ ₁	x ⁴ ₁	y ₄
ILOI	x_{1}^{5}	x ⁵ ₁	x ⁵ ₁	y ₅

Now we can represent full data and splits:

Ritvij Bharat Private Limited (RBPL)

Split data into K equal parts:

Ritvij Bharat Private Limited (RBPL)

An Introduction to Machine Learning with Python Programming

- 1/K left as test set 2023 20 Oct 2023
- Train model and get error metric for split:

Repeat for another 1/K split

Ritvij Bharat Private Limited (RBPL)

And again

ERROR 1								
ERROR 2								
	1.7	(DDI	أنصطلم	La Tile	Dulin	 LUI D	D.	
ERROR 3								

Do it for all possible splits

	ERROR 1
	ERROR 2
	ERROR 3
Presented by:	•••
	ERROR K

Get average error

	 	11/0		311111111			
ERROR 1							
ERROR 2							
ERROR 3	CDDI		La Ti	Dallar		Di	
)V:	ted l	esen	Pi		
ERROR K							
MEAN ERROR							

Average error is the expected performance

ERROR 1									
ERROR 2									
] 1	17.7	(DDI	لسنانسا	bo Til	Dulin		LUI D	Di	
ERROR 3									
			V:	ted b	esen	Pi			
ERROR K									
					-				
MEAN ERROR									

An Introduction to Machine Learning with Python Programming

- We were able to train on all data and evaluate on all data!
- Better sense of true performance across multiple potential splits.
- What is the cost of this?
 - We have to repeat computations K number of times!
- Common choice for K is 10 so each test set is 10% of your total data.
- Largest K possible would be K equal to the number of number of rows.
 - This is known as **leave one out** cross validation.

Hold-Out Test Set: Train | Validation Split | Test

Shreyas Shukla

Regularization for Linear Regression

Jupiter Exercise

Conducted by:

Ridge Regression

Ritvij Bharat Private Limited (RBPL)

- Help reduce the potential for overfitting to the training data.
- Adds a penalty term to the error based on the squared value of the coefficients.
- Ridge Regression is a regularization method for Linear Regression resented by:
 Shreyas Shukla

General formula for the regression line:

Conducted by: iHUB Divya Sampark, IIT Roorkee and

$$\hat{y}=\hat{eta}_0+\hat{eta}_1x_1+\hat{eta}_2x_2+\cdots+\hat{eta}_px_p$$
 Presented by: Shreyas Shukla

These Beta coefficients were solved by minimizing the residual sum of squares (RSS).

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

We could substitute our regression equation for $\hat{\mathbf{y}}$:

Conducted by:

iHUB Divva Sampark. IIT Roorkee

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
=
$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$$

Summarize RSS:

Conducted by:

HILLD Direct Commands HT Donaless

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
Shreyas Shukia

- Ridge Regression adds a shrinkage penalty
- Ridge Regression seeks to minimize this entire error term **RSS** + **Penalty**.
- **Shrinkage penalty** based off the squared coefficient:
- Shrinkage penalty has a tunable lambda parameter which determines how severe the penalty is. Theoretically, it can be any value from 0 to positive infinity.

Error
$$=\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2 + \lambda \sum_{j=1}^p \beta_j^2$$

Thought experiment

Split the dataset into a training set and test set:

An Introduction to Machine Learning with Python Programming

- Now we can fit on the training data to produce the line: $\hat{y} = \beta_1 x + \beta_0$
- Regardless of RSS or Ridge error, we're still trying to create a line: $\hat{y} = \beta_1 x + \beta_0$
- The only difference would be the coefficients found.

An Introduction to Machine Learning with Python Programming

- Our fitted $\hat{y} = \beta_1 x + \beta_0^{2023 20 \text{ Oct 2023}}$
- Appears to have over fit to training data.

This means we have high **variance.** 20223

Could we introduce a little more **bias** to significantly **reduce** variance?

- Would adding the penalty term help generalize with more bias?
- Adding bias can help generalize $\hat{y} = \beta_1 x + \beta_0$

- Let's imagine trying to reduce the Ridge Regression error term:
- There is λ and the squared slope coefficient.

An Introduction to Machine Learning with Python Programming Assume $\lambda = 1$ 11 Sep 2023 - 20 Oct 2023

Then essentially, we're trying to minimize is the beta coefficient and the beta coefficient squared.

For single feature this lowers slope at the cost of some additional bias.

Generalize better to unseen data

- Consider overfitting to training set
- An increase in X results in a greater y response:

An Introduction to Machine Learning with Python Programming

- Compare to a more generalized model that used Ridge Regression
- Same feature change does not produce as much y response:

Same feature change does not produce as much y response

Ridge Regression

 Trying to minimize a squared Beta term leads us to punish larger coefficients.

• In the case of a single feature, a larger Beta means a steeper sloped line.

• A steeper sloped line would mean more response per increase in X

value.

Again, in the case of a single feature that larger beta means a steeper sloped line and that would would mean more response per increase in X value.

- What about the lambda term? How much should we punish these larger coefficients?
- We simply use cross-validation to explore multiple lambda options and then choose the best one!

Error
$$=\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2 + \lambda \sum_{j=1}^p \beta_j^2$$

Shreyas Shukla

Conducted by:

Ridge Regression

Important Notes

- Sklearn refers to lambda as alpha
- For cross validation metrics, sklearn uses a "scorer object". All scorer objects follow the convention that **higher** return values are **better** than lower return values.
- For example, obviously higher accuracy is better.
- But higher RMSE is actually worse!
- So Scikit-Learn fixes this by using a negative RMSE as its scorer metric. \checkmark

Error
$$= \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- This allows for uniformity across all scorer metrics, even across different tasks types.
- The same idea of uniformity across model classes applies to referring to the penalty strength parameter as alpha.

Ritvij Bharat Private Limited (RBPL)

Lasso Regression L1 Regularization

Ritvij Bharat Private Limited (RBPL)

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ritvij Bharat Private Limited (RBPL)

L1 adds a penalty which is equal to the **absolute value** of the magnitude of coefficients.

How is it different from L2?

- Limits the size of the coefficients.
- Can yield sparse models where some coefficients can become zero.

- LASSO can make some of the coefficients to be zero when the tuning parameter λ is sufficiently large.
- As a result, Models generated from the LASSO are generally much easier to interpret.

- LassoCV operates on checking a number of alphas within a range, instead of providing the alphas directly.
- Let's explore the results of LASSO in Python and Scikit-Learn!