0.0.1 Preparation for Galois' Solvability Theorem

Def: G is called solvable if there exists a sequence of subgroups $G = G_0 \triangleright G_1 \triangleright ... \triangleright G_m = \{1\}$. s.t. G_i/G_{i+1} is abelian.

Theorem 0.1 Let $N \triangleright G$. G is solvable $\iff N, G/N$ is solvable.

Proof: \Longrightarrow

 $G/N\checkmark$

 $N_i = G_i \cap N$.

 $N = N_0 \supset N_1 \supset \ldots \supset N_m = 1.$

 $N_{i+1} \triangleleft N_i$? Yes, because $N \cap G_{i+1} \triangleleft G_i$

 N_i/N_{i+1} Abelian? $N\cap G_i\hookrightarrow G_i \twoheadrightarrow G_i/G_{i+1}$

 $f: N \cap G_i \to G_i/G_{i+1}$. composition of above.

Kernel of f? $n \to nG_{i+1}$, $n \in \ker f \iff n \in G_{i+1} \cap N$.

 $N_i/N_{i+1} = N \cap G_i/N \cap G_{i+1} \cong \inf \{ G_i/G_{i+1} \}$.

 \leftarrow

Construct a series for G.

$$N = N_0 \triangleright N_1 \triangleright \ldots \triangleright N_m = \{1\}$$

$$G/N = H_0 \triangleright H_1 \triangleright \ldots \triangleright H_m = \{1\}$$

$$\{1\} = N_m \triangleleft \ldots \triangleleft N_0 = N - G_n < G_{n-1} \ldots G < G$$

$$\{1\} \triangleleft H_n \ldots \triangleleft H_0 = G/N$$

 $\phi: G \to G/N$

$$\phi^{-1}(H_1) \to H_i$$

So $G_{i+1} \triangleleft G_i$ because $H_{i+1} \triangleleft H_i$.

$$G_i/G_{i+1} \cong G_i/N/G_{i+1}/N = H_i/H_{i+1}$$

By 3rd homo. them.

 $\therefore G_i/G_{i+1}$ abelian.

0.0.2 Cyclic Extensions

.

Theorem 0.2 (Dedekind) Let F be a field, and G a group. Then every finite set $\{\chi_1, \ldots, \chi_m\}$ of homomorphisms

 $G_i: G \to F^{\times}$ is linearly independent over F

Remark: X set, F field.

 $Func(X, F) = \{f : X \to F\}$ is a vector space over f.

 $(f_1 + f_2)(x) = f_1(x) + f_2(x).$

 $(\alpha \cdot f)(x) = \alpha f(x).$

 $\chi_1, \ldots, \chi_m \in Func(G, F)$ are linearly independent.

Theorem 0.3 $\sum_i a_i \chi_i = 0 \implies a_1 = \cdots = a_m = 0.$

Proof: $m = 1\checkmark$.

 $a\chi = 0 \implies a = 0.$

Assume m-1.

 $a_1\chi_1 + a_m\chi_m = 0. \star$

 $a_i \in F$ need to show all zero.

 $\chi_1 \neq \chi_2 \implies \exists g \in G$

 $\chi_1(g) \neq \chi_2(g)$

 $\forall x \in G : a_1 \chi_1 + \dots + a_m \chi_m = 0$

also for $gx: a_1\chi_1(gx) + \cdots + a_m\chi_m(gx) = 0$

(*) $a_1\chi_1(x)\chi_1(g) + \cdots + a_m\chi_m(x)\chi_m(g) = 0.$

(**) $a_1\chi_1(x)\chi_1(g) + \cdots + a_m\chi_1(x)\chi_m(g) = 0$. By mult above with $\chi_1(x)$

 $(*) - (**) = \sum_{j=2}^{m} a'_j \chi_j(x) = 0. \ \forall x \in G.$

 $a_j' = a_j(\chi_j(g) - \chi_1(g)).$

By induction, $a'_{i} = 0$.

In particular, $a_2' = 0$.

 $0 = a_2' = a_2(x_2(g) - x_1(g)) \neq 0$

 $\implies a_2 = 0$

So in \star , there are m-1 terms, by induction $a_1=a_3=\cdots=a_m=0$

0.0.3 Back to Cyclic Extensions

$$F = F_0 \subset F_1 \subset \dots F_m.$$

$$F_{i+1} = F_i(\sqrt[n_i]{a_i})$$

Theorem 0.4 Let F be a field containing a primitive n^{th} root of 1. Let $E = F[\alpha], \alpha^n = a \in F$ and no smaller power of $\alpha \in F$. Then E/F is Galois ext with $Gal(E/F) \cong \mathbb{Z}/n\mathbb{Z}$.

Conversely, if E/F is cyclic Galois Ext of degree n, then $\exists \alpha \in E$ s.t. $E = F[\alpha], \alpha^n \in F$.

Proof: (\Longrightarrow)

 $\alpha, \zeta \alpha, \zeta^2 \alpha, \dots, \zeta^n \alpha$ are the roots of $x^n - a \in F[x]$.

 $Gal(F[\alpha]/F) \to \mathbb{Z}/n\mathbb{Z}$

 $\sigma \to i\sigma, \, \sigma(\alpha) = \zeta^{i\sigma}\alpha$

 \Leftarrow

enough to find $\alpha \in E^{\times}$ s.t. $\sigma(\alpha) = \zeta^{-1}\alpha$