Using the Transformer

ELECTRA (Clark et al., 2019)

Learning goals

- Replaced Token Detection task
- Interplay of Generator and Discriminator

ELECTRA CLARK ET AL. (2020)

ELECTRA: a different pre-training objective

- (Small) generator model G + (large) Discriminator model D
- Generator task: Masked language modeling
- Discriminator task: Replaced token detection
- ELECTRA learns from all of the tokens (not just from a small portion, like e.g. BERT)

Source: Clark et al. (2020)

ELECTRA – TRAINING DETAILS

Joint pre-training (but not in a GAN-fashion):

- G and D are (Transformer) encoders which are trained jointly
- G replaces [MASK]s in an input sequence

 → Passes corrupted input sequence x̄^{corrupt} to D
- Generation of samples:

$$m_i \sim \mathrm{unif}\{1,n\} \ \mathrm{for} \ i=1 \ \mathrm{to} \ k$$
 $\qquad \qquad \boldsymbol{x}^{\mathrm{masked}} = \mathrm{REPLACE}(\boldsymbol{x},\boldsymbol{m}, \text{[MASK]})$ $\hat{x}_i \sim p_G(x_i|\boldsymbol{x}^{\mathrm{masked}}) \ \mathrm{for} \ i \in \boldsymbol{m}$ $\qquad \qquad \boldsymbol{x}^{\mathrm{corrupt}} = \mathrm{REPLACE}(\boldsymbol{x},\boldsymbol{m},\hat{\boldsymbol{x}})$ with approx. 15% of the tokens masked out (via choice of k)

- *D* predicts whether $x_t, t \in 1, ..., T$ is "real" or generated by *G*
 - Softmax output layer for G (probability distr. over all words)
 - Sigmoid output layer for *D* (Binary classification real vs. generated)

ELECTRA – TRAINING DETAILS

Using the masked & corrupted input sequences, the (joint) loss can be written down as follows:

Loss functions:

$$\begin{split} \mathcal{L}_{\text{MLM}}(\boldsymbol{x}, \theta_G) &= \mathbb{E}\left(\sum_{i \in \boldsymbol{m}} -\log p_G(x_i | \boldsymbol{x}^{\text{masked}})\right) \\ \mathcal{L}_{\text{Disc}}(\boldsymbol{x}, \theta_D) &= \mathbb{E}\left(\sum_{t=1}^n -\mathbb{1}(x_t^{\text{corrupt}} = x_t) \log D(\boldsymbol{x}^{\text{corrupt}}, t) - \mathbb{1}(x_t^{\text{corrupt}} \neq x_t) \log(1 - D(\boldsymbol{x}^{\text{corrupt}}, t))\right) \end{split}$$

Combined:

$$\min_{ heta_G, heta_D} \sum_{m{x} \in \mathcal{X}} \mathcal{L}_{ ext{MLM}}(m{x}, heta_G) + \lambda \mathcal{L}_{ ext{Disc}}(m{x}, heta_D)$$

with λ set to 50, since the discriminator's loss is typically much lower than the geneator's.

ELECTRA – TRAINING DETAILS

Generator size:

- Same size of G and D:
 - Twice as much compute per training step + too challenging for D
- Smaller Generators are preferable (1/4 1/2) the size of D)

Source: Clark et al. (2020)

Weight sharing (experimental):

- Same size of G and D: All weights can be tied
- G smaller than D: Share token & positional embeddings

ELECTRA – MODEL COMPARISON

Note: Different batch sizes (2k vs. 8k) for ELECTRA vs. RoBERTa/XLNet explain why same number of steps lead to approx. 1/4 of the compute for ELECTRA.

ELECTRA – SOTA PERFORMANCE

Performance differences vs. BERT/RoBERTa (GLUE dev set):

Model	Train FLOPs	Params	CoLA	SST	MRPC	STS	QQP	MNLI	QNLI	RTE	Avg.
BERT RoBERTa-100K RoBERTa-500K XLNet	1.9e20 (0.27x) 6.4e20 (0.90x) 3.2e21 (4.5x) 3.9e21 (5.4x)		60.6 66.1 68.0 69.0	93.2 95.6 96.4 97.0	91.4 90.9	92.1	92.0 92.2	86.6 89.3 90.2 90.8	92.3 94.0 94.7 94.9	82.7 86.6	84.0 87.9 88.9 89.1
BERT (ours) ELECTRA-400K ELECTRA-1.75M	7.1e20 (1x) 7.1e20 (1x) 3.1e21 (4.4x)	335M 335M 335M	67.0 69.3 69.1	95.9 96.0 96.9	90.6	91.2 92.1 92.6		89.6 90.5 90.9	93.5 94.5 95.0	79.5 86.8 88.0	87.2 89.0 89.5

Source: Clark et al. (2020)

SOTA performance (GLUE test set):

Model	Train FLOPs	CoLA	SST	MRPC	STS	QQP	MNLI	QNLI	RTE	WNLI	Avg.*	Score
BERT	1.9e20 (0.06x)	60.5	94.9	85.4	86.5	89.3	86.7	92.7	70.1	65.1	79.8	80.5
RoBERTa	3.2e21 (1.02x)	67.8	96.7	89.8	91.9	90.2	90.8	95.4	88.2	89.0	88.1	88.1
ALBERT	3.1e22 (10x)	69.1	97.1	91.2	92.0	90.5	91.3	-	89.2	91.8	89.0	-
XLNet	3.9e21 (1.26x)	70.2	97.1	90.5	92.6	90.4	90.9	-	88.5	92.5	89.1	-
ELECTRA	3.1e21 (1x)	71.7	97.1	90.7	92.5	90.8	91.3	95.8	89.8	92.5	89.5	89.4

^{*} Avg. excluding QNLI to ensure comparability

Source: Clark et al. (2020)