

Université Internationale de Casablanca

CPI2 : ALGÈBRE 3, 2016-2017. Examen 10 janvier 2017

Exercice 1:

1. Sous quelle condition sur a l'ensemble

$$E_1 = \{(x, y, z) \in \mathbb{R}^3, \text{ tel que } x + y + a = 0, \text{ et } x + 3az = 0\}$$

est-il un sous-espace vectoriel de \mathbb{R}^3 ? Dans ce cas quelle est sa dimension? Trouver une base de E_1 .

- 2. L'ensemble $E_2 = \{(x,y) \in \mathbb{R}^2, \ tel \ que \ x + \alpha y + 1 \ge 0\}$ est-il un sous-espace vectoriel de \mathbb{R}^2 ?
- 3. L'ensemble $E_3 = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \text{ telle que } f(1) = 0 \}$ est-il un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$?
- 4. L'ensemble $E_4 = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \ telle \ que \ f(0) = 1 \}$ est-il un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$?

Exercice 2 : Soit E l'ensemble des fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ telles qu'ils existent $a, b, c \in \mathbb{R}$ pour lesquels :

$$\forall x \in \mathbb{R}, \quad f(x) = a\sin(x) + b\cos(x) + c\sin(2x)$$

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$.
- 2. Déterminer une base de E et sa dimension.

Exercice 3: $E = \mathbb{R}^3$ et $B_1 = (u_1, u_2, u_3)$ avec

$$u_1 = (1, 1, 0), \quad u_2 = (0, -1, 0), \quad u_3 = (3, 2, -1)$$

Et $B_2 = (v_1, v_2, v_3)$ avec

$$v_1 = (1, -1, 0), \quad v_2 = (0, 1, 0), \quad v_3 = (0, 0, -1)$$

- 41. Montrer que B_1 est une base de E.
- ? 2. Montrer que B_2 est une base de E.
- § 3. Calculer la matrice de passage P de la base B_1 à la base B_2 et son inverse P^{-1}
- 4. Soit f une application linéaire de \mathbb{R}^3 dans lui même. On suppose que la matrice associée à f dans la base B_1 est

$$A = \begin{pmatrix} 1 & 0 & -6 \\ -2 & 2 & -7 \\ 0 & 0 & 3 \end{pmatrix}$$

- (a) Calculer la matrice A' de l'application linéaire f dans la base B_2
 - (b) Calculer A'^n pour $n \in \mathbb{N}$.
 - (c) En déduire A^n

Exercice 4: Soit la matrice

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$

1. Calculer A²

2. Calculer $A^3 - A$

3. En déduire que A est inversible et calculer A^{-1} .

000