Review of Bayesian Regression

EES 5891-03
Bayesian Statistical Methods
Jonathan Gilligan

Class #22: Tuesday, November 15 2022

Linear Regression

Linear Regression

- Start with simple regression:
 - One predictor variable \(X\)
 - Predictor and outcome are both continuous (real numbers)

\[\begin{align} Y &\sim \text{Normal}(\mu, \sigma) \\ \mu &= \alpha + \beta X \end{align} \]

- Multiple linear regression
 - \(N\) predictor variables \(X_1, \ldots, X_N\)
 - Everything continuous
 \[\begin{align} Y &\sim \text{Normal}(\mu, \sigma) \\ \mu &= \alpha + \sum_{i=1}^N
 \beta_i X_i \end{align} \]

- Polynomial regression
 - Just treat each power of \(X\) like a new predictor
 - You can have polynomials with more than one variable

\[\begin{align} Y &\sim \text{Normal}(\mu, \sigma) \\ \mu &= \alpha + \sum_{j=1}^N \beta_i X^j \end{align} \]

Scaling Variables

- Standardizing:
 - $(X_{\text{std}}) = (X = \text{bar } X) / \text{sigma}_X$
 - All variables on the same scale
 - Centered with 0 at the mean
 - Slopes (\(\beta\)) measure the effect of changing by 1 standard deviation.

- Log scaling
 - Good for outcome variables that must be positive
 - Good for predictor variables with a tail that covers a large range
 - Population is often log-scaled
 - Variable must be \(>0\), so if some values are \(0\), add a small number to them (e.g., 0.01, 0.001).

Integer Models

- Boolean (Yes/No)
 - Coin toss: Heads or tails
 - Bernoulli distribution
 - Special case of binomial, with one trial: dbinom(1, p)
- Count data:
 - Binomial distribution
 - o rbinom(N, p)
 - Maximum value = \(N\)
 - Poisson distribution
 - o dpois(lambda)
 - No maximum value
 - Poisson(\(\lambda\\)) is the limiting case of Binomial(\(\N\\), \(\p\\)) when \(\N\\) is large and \(\p\\) is small, with \(\Np = \lambda\\).

- Generalized Linear Models (GLMs):
 - Link functions:

\[\begin{align} Y &\sim \text{Binomial}(N,
p) \\ p &= \text{logit}^{-1}(\alpha + \beta X)
\end{align} \]

```
y ~ dbinom(N, lambda),
logit(p) = a + b * x
```

\[\begin{align} Y &\sim \text{Poisson} (\lambda) \\ \lambda &= \exp(\alpha + \beta X) \end{align} \]

```
y ~ dpois(lambda),
log(lambda) = a + b * x
```

- Priors for probabilities (range 0 to 1)
 - Beta functions: dbeta(a, b)
 - $\circ Mean = (a / (a + b))$

Beta Distributions

- Mean = (a / (a + b))
- Variance = $(ab / ((a+b)^2 (a + b + 1)))$

Exponential Family of Distributions

Categorical Variables

- Categorical variables
 - Predictors (section 5.3):
 - Use index variables (0 or 1)
 - \(N\) levels: \(N-1\) index-variables (default category)
 - Only one index is 1 (the one for the category)
 - If they're all zero, it's the default category
 - Outcomes (section 11.3):
 - Integer 0...N
 - Use multinomial (categorical) likelihood (categorical())
 - Use Dirichlet priors (dirichlet())
 - Dirichlet is like an \(N\)-dimensional generalization of the beta distribution

- Ordered categorical variables
 - Effects are cumulative
 - Predictors (section 12.4):
 - Use an integer variable (\(K\)) with values
 \(0 \ldots N-1\)
 - \(N 1\) variables \(\\delta_i\\) (\(i \\in [1, \\dots, N-1]\))
 - \(\mu = \alpha + \sum_{i=1}^{K} \delta_i\)
 - Initially, no effect.
 - Every time you step to the next level,
 there's another effect, and they add up.
 - Outcomes (section 12.3):
 - Integer 0...N
 - Use multiple logistic regression
 - Initially at lowest value
 - As effect grows, step through values in sequence.

Multilevel Models

Multilevel Models

- Data is grouped into clusters
 - Geographical groupings (states, counties, etc.)
 - Temporal groupings (seasons)
 - Other categories:
 - Gender
 - Education
 - Profession
 - Species
 - Individual
 - 0
- Hyperpriors and hyperparameters:
 - Each group may have its own prior for slope, intercept, etc.
 - The parameters for that prior are drawn from a *hyperprior*

Single-level model

\[\small \begin{align} Y &\sim \text{Normal}
(\mu, \sigma) \\ \mu &= \alpha + \beta X \\
\alpha &\sim \text{Normal}(0, 1) \\ \beta
&\sim \text{Normal}(0, 1) \\ \sigma &\sim
\text{Exponential}(1) \\ \end{align} \]

Two-level model (varying intercept)

\[\small \begin{align} Y &\sim \text{Normal} (\mu, \sigma) \\ \mu &= \alpha + \beta X \\ \alpha &\sim \text{Normal}(\bar \alpha, \sigma_\alpha) \\ \beta &\sim \text{Normal}(0, 1) \\ \bar \alpha &\sim \text{Normal}(0, 1) \\ \sigma &\sim \text{Exponential}(1) \\ \sigma_\alpha &\sim \text{Exponential}(1) \\ \end{align} \]

Multilevel Models

Designing Models

Designing Models

- Analyze relationships between variables
 - DAGs describe causal relationships among variables.
 - They can help us detect potential problems:
 - Spurious associations
 - Masked relationships
 - Multicollinearity
 - Post-treatment bias
 - Confounders
- Four fundamental types of confounding relationships:

- General rules:
 - 1. List all paths connecting *X* (potential cause) to *Y* (outcome)
 - 2. Classify each path as open or closed
 - A path is open unless it contains a collider
 - 3. Classify each path by whether it's a backdoor path.
 - A backdoor path has an arrow pointing at X
 - 4. If there are any *open backdoor paths*, try to close it by *conditioning* on a variable.
- Example (Section 6.4.2)

Testing DAGs

- How can you tell whether your DAG is correct?
 - You can't
 - There could always be important unobserved variables you don't know about
- Comparing DAGs with evidence
 - Analyze DAGs for conditional independencies
 - Conditional independencies are empirically testable statements
 - Use your model's posterior predictions to test predicted conditional independencies.
 - If DAG's conditional independencies are not observed, then it's probably not correct.
 - dagitty's impliedConditionalIndependencies() function is your friend.

- DAG analysis is helpful, but it's not enough.
 - DAGs tell you about the *logical structure* of your model, but they don't tell you about the science.
 - What you know as a scientist is even more important:
 - Why do you think X influences Y?
 - What other variables might also play a role?

Example: Urban Water Conservation Policies

Urban Water Conservation Policies

- Build a database of water conservation policies for 197 largest cities in the US
 - Vanderbilt Water Conservation Index (VWCI)
 - List of 79 possible policies
 - o 31 are *requirements*
 - 21 are rebates for voluntary actions
 - Each city gets a score based on how many policies it has adopted

Descxriptive Statistics

- Range of values: 3–53 (max. possible is 79)
- Mean: 18.7, median 15
- Model VWCI:
 - Predict score from
 - Temperature
 - Rainfall
 - Fraction of water supply from surface water
 - Population
 - Population growth
 - Personal income
 - Partisan voting index
 - Drop Honolulu HI and Anchorage AK and focus on 48 contiguous states
 - Temperature and Precipitation are collinear so use Köppen Aridity Index, which combines the two

Multilevel Model

- Multilevel variable-intercept model:
 - Predict each city's score from city-level data and state-level data
 - Priors for intercepts are based on statelevel data

\[\begin{align} V_i &\sim \text{Binomial}
(N_{\text{Actions}}, p_i) \\ \text{logit}(p_i) &=
\alpha_j + \sum_{k \in \text{city variables}}
\beta_k x_{ik} \\ \alpha_j &\sim \text{Normal}
(\mu_j, \sigma_\alpha) \\ \mu_j &= \alpha_0 +
\sum_{k \in \text{state variables}} \gamma_k
w_{jk} \end{align} \]

• Original residuals showed data were overdispersed (variance was too great for a Binomial), so we changed the model to use a beta-binomial distribution (see Chapter 12).

\[\begin{align} V_i &\sim \text{beta-Binomial} \(N_{\text{Actions}}, \phi p_i, \phi (1 - p_i) \\ \end{align} \]

Results

- Most important state-level predictors:
 - Aridity
 - Partisan voting index (PVI)
- Most important city-level predictors:
 - PVI
 - Population growth
 - Log population
- City-level Aridity, surface water, and personal income don't matter after accounting for state-level effects

Checking model

- We did detailed interviews with water managers in San Antonio and Phoenix
 - San Antonio has a higher score than predictied.
 - Its Republican political leaning suggests low water conservation,
 - but the city doesn't have so much choice:
 - A lawsuit over endangered species led to federal requirements to conserve water
 - Phoelix has a lower score than predicted.
 - Central Arizona Project brings water from Colorado River
 - Reduces water stress on Phoenix

Cities With the 10 Largest Residuals From VWCI Regression				
Rank	City	VWCI	predicted VWCI	residual
1	San Antonio, TX	46	28.9	17.1
2	McAllen, TX	15	30.2	-15.2
3	Oxnard, CA	49	33.9	15.1
4	Austin, TX	47	32.7	14.3
5	Santa Maria, CA	23	35.7	-12.7
6	San Diego, CA	52	39.5	12.5
7	Santa Rosa, CA	50	37.5	12.5
8	College Station, TX	30	18.1	11.9
9	Phoenix, AZ	21	32.4	-11.4
10	Houston, TX	18	29.2	-11.2