Partie 1. Préliminaires

(1) Matrices normales de $M_2(\mathbb{R})$

(1.a) Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Alors ${}^tA.A = A.{}^tA$ signifie que
$$\begin{cases} a^2 + b^2 = a^2 + c^2 \\ c^2 + d^2 = b^2 + d^2 \end{cases} \iff \begin{cases} b = c \\ \text{ou } b = -c \neq 0 \text{ et } a = d \end{cases}$$
. Par suite A est symétrique, ou bien de la forme $A = A_{a,b}$ avec $(a,b) \in \mathbb{R}^2$.

(1.b) On a:

$$\chi_{A_{a,b}}(X) = \begin{vmatrix} a-X & -b \\ b & a-X \end{vmatrix} = (X-a)^2 + b^2 = (X-z)(X-\overline{z}).$$

Si b=0 alors $A_{a,b}=A_a=A_z$. Sinon $\chi_{A_{a,b}}$ est scindé à racines simples sur \mathbb{C} , donc diagonalisable. On conclut que $A_{a,b}$ et A_z sont semblables dans $M_2(\mathbb{C})$.

(2) (2.a) Si A_i est normale pour tout $i \in \{1, 2, ..., p\}$ alors

$${}^{t}A.A = {}^{t}(A_{1} \oplus ... \oplus A_{p}) \cdot (A_{1} \oplus ... \oplus A_{p})$$

$$= ({}^{t}A_{1}.A_{1} \oplus ... \oplus {}^{t}A_{p}.A_{p})$$

$$= (A_{1}.{}^{t}A_{1} \oplus ... \oplus A_{p}.{}^{t}A_{p})$$

$$= (A_{1} \oplus ... \oplus A_{p}) \cdot {}^{t}(A_{1} \oplus ... \oplus A_{p}) = A.{}^{t}A.$$

Donc A est une matrice normale.

(2.b) Soient $P_1, ..., P_n$ des matrices inversibles tels que pour tout $i \in \{1, ..., p\}$, $A_i =$ $P_iB_iP_i^{-1}$. On pose

$$P = P_1 \oplus ... \oplus P_p$$
 et $R = P_1^{-1} \oplus ... \oplus P_p^{-1}$.

Le calcul par blocs montre que $P.R = I_n$ (ce qui montre que $P \in GL_n(\mathbb{C})$ et $P^{-1}=R$) et que

$$P.B.P^{-1} = (P_1B_1P_1^{-1}) \oplus \dots \oplus (P_pB_pP_p^{-1})$$
$$= A_1 \oplus \dots \oplus A_p = A.$$

- (3) Soient A et $B \in M_n(\mathbb{R})$. On suppose qu'il existe $P \in GL_n(\mathbb{C})$ vérifiant : $A = P.B.P^{-1}$.
 - (3.a) On écrit $P = (z_{k,j})_{1 \le k,j \le n}$ avec $z_{k,j} = a_{k,j} + i.b_{k,j}$. On pose $P_1 = (a_{k,j})_{1 \le k,j \le n}$ et $P_2 = (b_{k,j})_{1 \le k,j \le n}$. On a alors $P = P_1 + iP_2$, avec P_1 et $P_2 \in M_n(\mathbb{R})$. Or A.P = P.A donc

$$A.(P_1 + iP_2) = (P_1 + iP_2).B.$$

 $ie. A.P_1 + iA.P_2 = P_1.B + iP_2.B.$

D'où:

$$A.P_1 = P_1.B$$
 et $A.P_2 = P_2.B$.

(3.b) On en déduit que pour tout $t \in \mathbb{R}$, on a :

$$A.(P_1 + tP_2) = A.P_1 + tA.P_2$$

= $P_1.B + tP_2.B$
= $(P_1 + tP_2).B$.

(3.c) Soit Q le polynôme défini par :

$$Q(X) = \det(P_1 + XP_2).$$

On a : $Q(i) = \det(P_1 + iP_2) = \det(P) \neq 0$. Donc Q est un polynôme non nul, à coefficients réels. On en déduit que Q admet un nombre fini de racines. D'où il existe $\alpha \in \mathbb{R}$ tel que $Q(\alpha) \neq 0$, c'est-à-dire :

$$(P_1 + \alpha P_2) \in GL_n(\mathbb{R}).$$

(3.d) On a donc A. $(P_1 + \alpha P_2) = (P_1 + \alpha P_2) \cdot B$, On conclut que

$$A = (P_1 + \alpha P_2) .B. (P_1 + \alpha P_2)^{-1}.$$

Enfin A et B sont semblables dans $M_n(\mathbb{R})$, d'aprés 3.c.

Partie 2. $(C_1)\Rightarrow(C_2)$

- (4) Cas euclidien
 - (4.a) Pour toute base orthonormale \mathcal{B}_1 de E, on a : $A' = \operatorname{Mat}(f, \mathcal{B}_1) = P^{-1}.A.P$ où P est la matrice de passage de la base \mathcal{B} à la base \mathcal{B}_1 . Comme \mathcal{B} et \mathcal{B}_1 sont orthonormales, alors P est une matrice orthogonale, donc ${}^tP.P = I_n$. On a alors

$${}^{t}A'.A' = {}^{t}({}^{t}P.A.P).({}^{t}P.A.P)$$

$$= {}^{t}P.{}^{t}A.P.{}^{t}P.A.P$$

$$= {}^{t}P.{}^{t}A.A.P$$

$$= {}^{t}P.A.{}^{t}A.P$$

$$= {}^{t}P.A.P.{}^{t}P.{}^{t}A.P$$

$$= {}^{t}P.A.P.{}^{t}P.{}^{t}A.P$$

$$= {}^{t}A'.{}^{t}A'.$$

D'où A' est normale.

(4.b) Soit $p \in \mathbb{N}^*$ et F un sous espace vectoriel de E de dimension p, stable par f. Soit B_F une base orthonormale de F. On la complète en une base orthonormale \mathcal{B}_1 de E (\mathcal{B}_1 est une base orthonormale adaptée à la somme directe $E = F \oplus F^{\perp}$). Comme F est stable par f, la matrice : $M := \operatorname{Mat}(f, \mathcal{B}_1)$ est de la forme

$$M = \left(\begin{array}{cc} A_1 & C \\ 0_{n-p,p} & A_2 \end{array}\right).$$

(4.c) On a:
$${}^tM.M = \left(\begin{array}{ccc} {}^tA_1.A_1 & {}^tA_1.C \\ {}^tC.A_1 & {}^tC.C + {}^tA_2.A_2 \end{array} \right)$$
 et $M.{}^tM = \left(\begin{array}{ccc} A_1.{}^tA_1 + C.{}^tC & C.{}^tA_2 \\ A_2.{}^tC & A_2.{}^tA_2 \end{array} \right)$. On déduit que
$${}^tA_1.A_1 = A_1.{}^tA_1 + C.{}^tC.$$

D'où par linéarité de l'application trace, on obtient :

$$Tr(^{t}A_{1}.A_{1}) = Tr(A_{1}.^{t}A_{1}) + Tr(C.^{t}C)$$
$$= Tr(^{t}A_{1}.A_{1}) + Tr(C.^{t}C).$$

Donc
$$Tr(C.^tC) = 0$$
.
Or $Tr(C.^tC) = \sum_{i=1}^p \sum_{j=1}^{n-p} c_{i,j}^2 = 0$ donc $C = 0_{p,n-p}$.

(4.d) Comme

$$M = \operatorname{Mat}(f, \mathcal{B}_1) = \begin{pmatrix} A_1 & O_{p,n-p} \\ 0_{n-p,p} & A_2 \end{pmatrix}.$$

on déduit que F^{\perp} : (l'orthogonale de F) est stable par f, donc F^{\perp} est un supplémentaire de F, stable par f. On conclut que f est semi-simple.

- (5) Cas général: Soit $f \in \mathcal{L}(E)$. On suppose qu'il existe une base $\mathcal{B} = (e_1, e_2, ..., e_n)$ de E vérifiant $A = \operatorname{Mat}(f, \mathcal{B})$ est normale.
 - (5.a) $\varphi(y,x) = \sum_{i=1}^{n} y_i x_i = \sum_{i=1}^{n} x_i y_i = \varphi(x,y)$. Donc φ est symétrique.
 - $\varphi(\alpha x + x', y) = \sum_{i=1}^{n} (\alpha x_i + x_i') y_i = \alpha \sum_{i=1}^{n} x_i y_i + \sum_{i=1}^{n} x_i' y_i = \alpha \varphi(x, y) + \varphi(x', y).$
 - $\varphi(x,x) = \sum_{i=1}^{n} x_i^2 > 0 \text{ si } x \neq 0.$

Donc φ définit un produit scalaire sur E. De plus $\varphi(e_i, e_i) = 1$ et $\varphi(e_i, e_j) = 0$ si $i \neq j$. D'où \mathcal{B} est une base orthonormale de E.

(5.b) La matrice de f dans une base orthonormale est une matrice normale. D'aprés la question (4), f est semi-simple.

Partie 3. $(C_2) \Rightarrow (C_3)$

Soit f un endomorphisme semi-simple de E.

- (6) Soit R un polynôme de $\mathbb{R}[X]$ tel que l'endomorphisme g=R(f) est nilpotent.
 - (6.a) Soit $x \in \ker g \iff R(f)(x) = 0 \implies R(f)(f(x)) = f(R(f)(x)) = 0$. Donc $f(x) \in \ker g$. D'où $\ker g$ est stable par f. Ou bien $f \circ g = g \circ f \implies \ker g$ est stable par f.
 - (6.b) Comme f est semi-simple, on déduit que ker g admet un supplémentaire H stable par f. Or g est un polynôme en f, donc H est stable par g.

- (6.c) En considére l'endomorphisme $g_H: H \longrightarrow H$ induit par g sur H. On sait que g_H est injective (puisque $\ker g_H = H \cap \ker g = \{0\}$) donc inversible. Supposons que $\dim H \geq 1$. Alors l'endomorphism g_H est nilpotent et inversible. Ce qui est absurde, donc $H = \{0\}$. On déduit que $E = \ker g$, par suite g = 0.
- (7) Soit $(\lambda_1, \lambda_2, ..., \lambda_k) \in \mathbb{C}^k$ tel que $\chi_f(X) = \prod_{i=1}^k (X \lambda_i)^{n_i}$, avec $n_i \in \mathbb{N}^*$ la multiplicité de λ_i dans χ_f pour tout $i \in \{1, 2, ...k\}$.
 - (7.a) Le polynôme $\chi_f \in \mathbb{R}[X]$ donc si $z \in \{\lambda_1, \lambda_2, ..., \lambda_k\}$ alors $\bar{z} \in \{\lambda_1, \lambda_2, ..., \lambda_k\}$. Il existe, éventuellement, des réels $\alpha_1, ..., \alpha_m$ et des complexes $z_1, ..., z_p$ tels que

$$\{\lambda_1, \lambda_2, ..., \lambda_k\} = \{\alpha_1, ..., \alpha_m, z_1, \bar{z}_1, ..., z_p, \bar{z}_p\}.$$

D'où

$$Q = \prod_{i=1}^{k} (X - \lambda_{i})$$

$$= \prod_{i=1}^{m} (X - \alpha_{i}) \cdot \prod_{j=1}^{p} [(X - z_{j}) (X - \bar{z}_{j})]$$

$$= \prod_{i=1}^{m} (X - \alpha_{i}) \cdot \prod_{j=1}^{p} (X^{2} - 2 \operatorname{Re}(z_{j}) X + |z_{j}|^{2}) \in \mathbb{R}[X].$$

Donc $Q \in \mathbb{R}[X]$.

Ou bien $Q = \frac{P}{\operatorname{p} \gcd(P, P')}$ et $\operatorname{p} \gcd(P, P') \in \mathbb{R}[X]...$

(7.b) On a : $(Q(f))^n = Q^n(f)$. Or $Q^n = \prod_{i=1}^k (X - \lambda_i)^n$, donc χ_f divise Q^n , par suite $Q^n(f) = 0$. D'où Q(f) est nilpotent. Comme de plus f est semi-simple, d'aprés (6) Q(f) = 0. On déduit que f est annulé par un polynôme réel sans facteurs carrés.

Partie 4. $(C_3) \Rightarrow (C_1)$

- (8) Comme A est annulé par Q scindé à racines simples sur $\mathbb C$ donc A est diagonalisable dans $M_n(\mathbb C)$.
- (9) Comme A est semblable dans $M_n(\mathbb{C})$ à une matrice diagonale $D \in M_n(\mathbb{R})$, donc d'aprés (3), A et D sont semblables dans $M_n(\mathbb{R})$.
- (10)(10.a) Supposons que n est impair. Donc $\lim_{x\to +\infty}\chi_A(x)=+\infty$ et $\lim_{x\to -\infty}\chi_A(x)=-\infty$. Comme χ_A est continue sur $\mathbb R$ et change de signe, par le théorème des valeurs intermédiaires on déduit qu'il existe $\alpha\in\mathbb R$ tel que $\chi_A(\alpha)=0$, ce qui est absurde. Donc n est pair.

Où bien les racines de χ_A sont deux à deux conjuguées et de même multiplicité...

(10.b) On a : $\chi_A \in \mathbb{R}[X]$. Si z est une racine de χ_A alors \bar{z} est une racine de χ_A . Il existe donc $(z_1, z_2, ..., z_p) \in \mathbb{C}^p$ et $P \in GL_n(\mathbb{C})$ tels que :

$$A = P \begin{pmatrix} z_1 & 0 & 0 \\ 0 & \overline{z}_1 & \\ & 0 & 0 \\ & & z_p & 0 \\ 0 & & 0 & \overline{z}_p \end{pmatrix} P^{-1}$$
$$= P \cdot (A_{z_1} \oplus ... \oplus A_{z_p}) \cdot P^{-1}.$$

- (10.c) D'aprés (I.1), pour tout $j \in \{1, ..., p\}$, si $z_j = a_j + i.b_j$ alors A_{a_j,b_j} et A_{z_j} sont semblables dans $M_2(\mathbb{C})$. En utilisant la question (I.2) on déduit que $A_{z_1} \oplus ... \oplus A_{z_p}$ est semblable dans $M_n(\mathbb{C})$ à $A' = A_{a_1,b_1} \oplus ... \oplus A_{a_p,b_p}$. Or A' est une matrice normale. On conclut que A est semblable dans $M_n(\mathbb{C})$ à une matrice normale A'.
- (10.d) D'aprés (I.3) A et A' sont deux matrices réelles semblables dans $M_n(\mathbb{C})$, donc semblables dans $M_n(\mathbb{R})$. On conclut que A est semblable dans $M_n(\mathbb{R})$ à une matrice normale A'.
- (11) Soit $\lambda_1, ..., \lambda_k$ les valeurs propres réelles éventuelles de A et $z_1, \bar{z}_1, ..., z_p, \bar{z}_p$ ses valeurs propres dans $\mathbb{C}\backslash\mathbb{R}$. Comme A est diagonalisable dans $M_n(\mathbb{C})$, il existe $P \in GL_n(\mathbb{C})$ tels que

$$A = P.diag(\lambda_1, ..., \lambda_k, z_1, \overline{z}_1, ..., z_p, \overline{z}_p).P^{-1}$$

= $P.(D \oplus A_{z_1} \oplus ... \oplus A_{z_p})P^{-1}$,

où $D=diag\left(\lambda_{1},...,\lambda_{k}\right)\in M_{k}\left(\mathbb{R}\right)$. Comme dans le cas précédent, pour tout $i\in\left\{1,...,p\right\}$, $A_{a_{i},b_{i}}$ et $A_{z_{i}}$ sont semblables dans $M_{2}(\mathbb{C})$. En utilisant la question (I.2) on déduit que $D\oplus A_{z_{1}}\oplus...\oplus A_{z_{p}}$ est semblable dans $M_{n}(\mathbb{C})$ à $M=D\oplus A_{a_{1},b_{1}}\oplus...\oplus A_{a_{p},b_{p}}$. On conclut que A est semblable dans $M_{n}(\mathbb{C})$ à M. D'aprés (I.3) A et M sont deux matrices réelles semblables dans $M_{n}\left(\mathbb{R}\right)$, donc semblables dans $M_{n}\left(\mathbb{R}\right)$. De plus $M\in M_{n}\left(\mathbb{R}\right)$ est une matrice normale. Donc A est semblable dans $M_{n}\left(\mathbb{R}\right)$ à une matrice normale.

Partie 5. Deux petites applications

(12) Soit H un sous groupe fini de GL(E). Tout automorphisme $f \in H$ est d'ordre fini. Il existe donc un entier naturel non nul m tel que $f^m = Id_E$. On déduit que

$$Q = X^m - 1 = \prod_{k=0}^{m-1} (X - e^{\frac{2ik\pi}{m}})$$

est un polynôme annulateur de f. Comme Q est sans facteurs carrés, alors f est semi-simple.

(13) Soient (Ω, τ, P) un espace probabilisé, X et Y deux variables aléatoires indépendantes suivant la même loi géométrique de paramètre $p \in]0,1[$.

(13.a) On a l'évènement
$$(X=Y)=\coprod_{k=1}^{+\infty}(X=k,Y=k).$$
 Donc

$$P(X = Y) = \sum_{k=1}^{+\infty} P(X = k, Y = k)$$

$$\stackrel{+}{=} \sum_{k=1}^{+\infty} P(X = k) P(Y = k) \text{ car } X \text{ et } Y \text{ sont indépendantes.}$$

$$= \sum_{k=1}^{+\infty} \left(p(1-p)^{k-1} \right)^2 = p^2 \frac{1}{1 - (1-p)^2} = \frac{p}{2-p}.$$

(13.b) Pour $\omega \in \Omega$, on définit la matrice $M(\omega)$ par :

$$M(\omega) = \begin{pmatrix} X(\omega) & -X(\omega) \\ Y(\omega) & -Y(\omega) \end{pmatrix}.$$

Soit $f(\omega)$ l'endomorphisme associé canoniquement à $M(\omega)$.

$$\chi_f(\lambda) = \lambda^2 + (X(\omega) - Y(\omega)) \lambda$$
$$= \lambda (\lambda + (X(\omega) - Y(\omega))).$$

Si $X(\omega) - Y(\omega) \neq 0$.Donc χ_f est sans facteurs carrés d'où $f(\omega)$ est semi-simple. Si $X(\omega) - Y(\omega) = 0$.Donc $\chi_f(\lambda) = \lambda^2 \Longrightarrow f^2 = 0$. Supposons que f est semi-simple, d'aprés (III.6) f = 0. Absurde.

L'événement " f est semi-simple" est l'événement contraire de l'événement (X=Y). La probablité pour que f soit semi-simple vaut

$$P(X \neq Y) = 1 - P(X = Y)$$

$$= 1 - \frac{p}{2 - p}.$$

$$= \frac{2 - 2p}{2 - p}.$$