

Module 1: IP Addressing & Subnetting.

BinhBT, UIT

Module Objectives

Module Title: IP Addressing & Subnetting

Module Objective: Explain IPv4 and how to subnetting IP Address.

Topic Title	Topic Objective
IP Addressing verson 4	
Subnet Mask	
IP class	
IP Private and IP Public	
Subnetting IP Address	

1.0 Computer Network

Reference Models

Benefits of Using a Layered Model

Reference Models The OSI Reference Model

Reference Models The TCP/IP Reference Model

TCP/IP Model Represents data to the user, plus encoding and dialog Application control. Supports communication between diverse devices across Transport diverse networks Internet Determines the best path through the network. Controls the hardware devices and media that make up the Network Access network.

Reference Models

Comparing the OSI and TCP/IP Models

1.1 IPv4 Network Address

IPv4 Address Structure Binary Number System

IPv4 Address Structure

Converting a Binary Address to Decimal

Practice

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	0	1	1	0	0	0	0

Answer = 176

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

Answer = 255

IPv4 Address Structure Converting a Binary Address to Decimal

Network Portion and Host Portion of an IPv4 Address

- To define the network and host portions of an address, a devices use a separate 32-bit pattern called a subnet mask
- The subnet mask does not actually contain the network or host portion of an IPv4 address, it just says where to look for these portions in a given IPv4 address

Network Portion and Host Portion of an IPv4 Address

	Dotted Decimal	Significant bits shown in binary					
Network Address	10.1.1.0/24	10.1.1.00000000					
First Host Address	10.1.1.1	10.1.1.00000001					
Last Host Address	10.1.1.254	10.1.1.11111110					
Broadcast Address	10.1.1.255	10.1.1.11111111					
Number of hosts: 2^8 – 2 =	Number of hosts: 2^8 – 2 = 254 hosts						

Network Address	10.1.1.0/25	10.1.1.0 00000000
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001
Last Host Address	10.1.1 <mark>.126</mark>	10.1.1.01111110
Broadcast Address	10.1.1 <mark>.127</mark>	10.1.1.01111111
Number of hosts: 2^7 - 2	= 126 hosts	

Network Address	10.1.1.0/26	10.1.1.00000000				
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001				
Last Host Address	10.1.1.62	10.1.1.00111110				
Broadcast Address 10.1.1.63 10.1.1.00111111						
Number of hosts: 2^6 - 2 = 62 hosts						

IPv4 Subnet Mask

IPv4 Network. Host. and Broadcast Address

10.1.1.0/24

	Host Portion		Network Portion	
	0	1	1	10
All 0s – NETWORK ADDRESS	0000000	0000001	0000001	00001010
	10	1	1	10
0s and 1s in host portion	00001010	0000001	0000001	00001010
	255	1	1	10
All 1s -	11111111	00000001	00000001	00001010
BROADCAST		0000001	0000001	00001010
ADDRESS				

IPv4 Subnet Mask

First Host and Last Host Addresses

10.1.1.0/24

1	Network Portion	Host Portion		
10	1	1	1	FIRST HOST
00001010	00000001	00000001	0000001	All 0s and a 1 in the host portion
10	1	1	254	LAST HOST
00001010	0000001	0000001	11111110	All 1s and a 0 in the host portion

Bitwise AND Operation

$$1 \text{ AND } 1 = 1 \quad 1 \text{ AND } 0 = 0 \quad 0 \text{ AND } 1 = 0 \quad 0 \text{ AND } 0 = 0$$

IPv4 Unicast, Broadcast, and Multicast Unicast Transmission

In an IPv4 network, the hosts can communicate one of three different ways:

Unicast, Broadcast, and Multicast

#1 Unicast – the process of sending a packet from one host to an individual host.

IPv4 Unicast, Broadcast, and Multicast Broadcast Transmission

In an IPv4 network, the hosts can communicate one of three different ways:

Unicast, Broadcast, and Multicast

#2 Broadcast – the process of sending a packet from one host to all hosts in the network.

Limited Broadcast

Source: 172.16.4.1 Destination: 255.255.255.255

IPv4 Unicast, Broadcast, and Multicast Multicast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: **Unicast**, Broadcast, and Multicast

#3 Multicast – The process of sending a packet from one host to a selected group of hosts, possibly in different networks.

Types of IPv4 Address Classful Addressing

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	1110 0000- 1110 1111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

Types of IPv4 Address Classless Addressing

Classless Addressing

- Formal name is Classless Inter-Domain Routing (CIDR, pronounced "cider"
- Created a new set of standards that allowed service providers to allocate IPv4 addresses on any address bit boundary (prefix length) instead of only by a class A, B, or C address

Types of IPv4 Address Public and Private IPv4 Addresses

Private address blocks are:

- Hosts that do not require access to the Internet can use private addresses
- 10.0.0.0 to 10.255.255.255 (10.0.0.0/8)
- 172.16.0.0 to 172.31.255.255 (172.16.0.0/12)
- 192.168.0.0 to 192.168.255.255 (192.168.0.0/16)

1.2 Subnetting IP Networks

Network Segmentation Reasons for Subnetting

Subnetting is the process of segmenting a network into multiple smaller network spaces called subnetworks or subnets.

- Large networks must be segmented into smaller subnetworks, creating smaller groups of devices and services to:
- Control traffic by containing broadcast traffic within each subnetwork.
- Reduce overall network traffic and improve network performance.

Communication Between Subnets

- A router is necessary for devices on different networks and subnets to communicate.
- Each router interface must have an IPv4 host address that belongs to the network or subnet that the router interface is connected.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.

IP Subnetting is FUNdamental The Plan

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Subnetting an IPv4 Network **Basic Subnetting**

- Borrowing Bits to Create Subnets
- Borrowing 1 bit $2_1 = 2$ subnets

Subnetting an IPv4 Network Subnets in Use

Subnets in Use

Subnet 0

Network 192.168.1.0-127/25

192.168.1.0/25

Subnet 1

Network 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet Network Address 192. 168. 1. 0 000 0000 = 192.168.1.0 First Host Address = 192.168.1.1 192. 168. 1. 0 000 0001 Last Host Address 1. 0 111 1110 192. 168. = 192.168.1.126 Broadcast Address 192. 168. 1. 0 111 1111 = 192.168.1.127 Address Range for 192.168.1.128/25 Subnet Network Address 192. 168. 1. 1 000 0000 = 192.168.1.128 First Host Address = 192.168.1.129 1. 1 000 0001 192. 168. Last Host Address = 192.168.1.254 192. 168. 1. 1 111 1110 Broadcast Address 192. 168. 1. 1 111 1111 = 192.168.1.255

Subnetting an IPv4 Network Subnetting Formulas

Subnetting an IPv4 Network Creating 4 Subnets

Borrowing 2 bits to create 4 subnets. $2^2 = 4$ subnets

Subnetting an IPv4 Network Creating 8 Subnets

Borrowing 3 bits to Create 8 Subnets. $2^3 = 8$ subnets

	Network	192.	168.	1.	000	0 0000	192.168.1.1
Net 0	Fist	192.	168.	1.	000	0 0001	192.168.1.1
11010	Last	192.	168.	1.	000	1 1110	192.168.1.30
	Broadcast	192.	168.	1.	000	1 1111	192.168.1.31
	Network	192.	168.	1.	001	0 0000	192.168.1.32
Net 1	Fist	192.	168.	1.	001	0 0001	192.168.1.33
	Last	192.	168.	1.	001	1 1110	192.168.1.62
	Broadcast	192.	168.	1.	001	1 1111	192.168.1.63
	Network	192.	168.	1.	010	0 0000	192.168.1.64
Net 2	Fist	192.	168.	1.	010	0 0001	192.168.1.65
	Last	192.	168.	1.	010	1 1110	192.168.1.94
	Broadcast	192.	168.	1.	010	1 1111	192.168.1.95
	Network	192.	168.	1.	010	0 0000	192.168.1.96
Net 3	Fist	192.	168.	1.	010	0 0001	192.168.1.97
	Last	192.	168.	1.	010	1 1110	192.168.1.126
	Broadcast	192.	168.	1.	010	1 1111	192.168.1.127

Subnetting an IPv4 Network Creating 8 Subnets (cont.)

	Matricado	102	160		100	0.0000	100 100 1 100
	Network	192.	168.	1.	100	0 0000	192.168.1.128
Net 4	Fist	192.	168.	1.	100	0 0001	192.168.1.129
	Last	192.	168.	1.	100	1 1110	192.168.1.158
	Broadcast	192.	168.	1.	100	1 1111	192.168.1.159
	Network	192.	168.	1.	101	0 0000	192.168.1.160
Net 5	Fist	192.	168.	1.	101	0 0001	192.168.1.161
	Last	192.	168.	1.	101	1 1110	192.168.1.190
	Broadcast	192.	168.	1.	101	1 1111	192.168.1.191
	Network	192.	168.	1.	110	0 0000	192.168.1.192
Net 6	Fist	192.	168.	1.	110	0 0001	192.168.1.193
	Last	192.	168.	1.	110	1 1110	192.168.1.222
	Broadcast	192.	168.	1.	110	1 1111	192.168.1.223
	Network	192.	168.	1.	111	0 0000	192.168.1.224
Net 7	Fist	192.	168.	1.	111	0 0001	192.168.1.225
	Last	192.	168.	1.	111	1 1110	192.168.1.254
	Broadcast	192.	168.	1.	111	1 1111	192.168.1.255

Subnetting an IPv4 Network Creating 8 Subnets (cont.)

Subnet Allocation

Determining the Subnet Mask Subnetting Based on Host Requirements

Two considerations when planning subnets:

- Number of subnets required
- Number of host addresses required

Formula to determine number of usable hosts: 2^n-2

- 2ⁿ (where n is the number of remaining host bits) is used to calculate the number of hosts.
- -2 (The subnetwork ID and broadcast address cannot be used on each subnet.)

Determining the Subnet Mask Subnetting Network-Based Requirements

Calculate the number of subnets:

- 2^n (where n is the number of bits borrowed)
- Subnet needed for each department.

Subnets Based on Organizational Structure

Subnetting To Meet Network Requirements

- Balance the required number of subnets and hosts for the largest subnet.
- Design the addressing scheme to accommodate the maximum number of hosts for each subnet.
- Allow for growth in each subnet.

Determining the Subnet Mask

Subnetting To Meet Network Requirements

Subnets and Addresses

```
10101100.00010000.00000000000000000 172.16.0.0/22
  10101100.00010000.00000000.01000000 172.16.0.64/26
  10101100.00010000.000000000.10000000 172.16.0.128/26
  10101100.00010000.000000000.11000000 172.16.0.192/26
  10101100.00010000.000000001.00000000 172.16.1.0/26
  10101100.00010000.000000001.010000000 172.16.1.64/26
  10101100.00010000.000000001.100000000 172.16.1.128/26
                  Nets 7 – 14 not shown
15 10101100.00010000.000000011.10000000 172.16.3.128/26
16 10101100.00010000.0000000<mark>11.110000000</mark> 172.16.3.192/26
                              2^{6}-2=62
                        2^4 = 16
                        subnets
                                Hosts per
                                subnet
```

Benefits of Variable Length Subnet Masking Traditional Subnetting Wastes Addresses

- Traditional subnetting –
 Uses the same number of addresses is allocated for each subnet.
- Subnets that require fewer addresses have unused (wasted) addresses; for example, WAN links only need two addresses.

Traditional Subnetting Creates Equal Sized Subnets

Benefits of Variable Length Subnet Masking Variable Length Subnet Masks (VLSM)

- The variable-length subnet mask (VLSM) or subnetting a subnet provides more efficient use of addresses.
- VLSM allows a network space to be divided in unequal parts.
- Subnet mask varies, depending on how many bits have been borrowed for a particular subnet.
- Network is first subnetted, and then the subnets are resubnetted.

Subnets of Varying Sizes

Benefits of Variable Length Subnet Masking Basic VLSM

VLSM Subnetting Scheme

```
11000000.10101000.00010100.00000000 192.168.20.0/24
   11000000.10101000.00010100 .000 00000 192.168.20.0/27
   11000000.10101000.00010100.00100000 192.168.20.32/27
                                                               LANs
   11000000.10101000.00010100.01000000 192.168.20.64/27
                                                               A, B, C, D
   11000000.10101000.00010100.01100000 192.168.20.96/27
   11000000.10101000.00010100 .100 00000 192.168.20.128/27
                                                              Unused/
   11000000.10101000.00010100 .101 00000 192.168.20.160/27
                                                              Available
   11000000.10101000.00010100 .110 00000 192.168.20.192/27_
   11000000.10101000.00010100.11100000 192.168.20.224/27
  3 more bits borrowed from subnet 7:
7:0 11000000.10101000.00010100 .111000 00 192.168.20.224/30
7:1 11000000.10101000.00010100 .111001 00 192.168.20.228/30
                                                               WANs
7:2 11000000.10101000.00010100 .111010 00 192.168.20.232/30_
7:3 11000000.10101000.00010100.11101100 192.168.20.236/30
7:4 11000000.10101000.00010100.11110000 192.168.20.240/30
                                                               Unused/
7:5 11000000.10101000.00010100 .11110100 192.168.20.244/30
                                                               Available
7:6 11000000.10101000.00010100 .111110 00 192.168.20.248/30
7:7 11000000.10101000.00010100 .111111 00 192.168.20.252/30_
```

Benefits of Variable Length Subnet Masking VLSM in Practice

- Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.
- Each LANs will be assigned a subnet with /27 mask.
- Each WAN link will be assigned a subnet with /30 mask.

Network Topology: VLSM Subnets


```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ip address 192.168.20.1 255.255.255.224
R1(config-if) #exit
R1(config) #interface serial 0/0/0
R1(config-if) #ip address 192.168.20.225 255.255.252
R1(config-if) #end
R1#
```

Benefits of Variable Length Subnet Masking VLSM Chart

VLSM Subnetting of 192.168.20.0 /24

	/27 Network	Hosts
Bldg A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254

1

2

	/30 Network	Hosts
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Unused	.236	.237238
Unused	.240	.241242
Unused	.244	.245246
Unused	.248	.249250
Unused	.252	.253254

Summary

In this chapter, you learned that:

- IPv4 hosts can communicate one of three different ways: unicast, broadcast, and multicast.
- The private IPv4 address blocks are: 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16.
- Subnetting is the process of segmenting a network, by dividing it into multiple smaller network spaces.
- Subnetting a subnet, or using VLSM, was designed to avoid wasting addresses.
- IPv6 address space is subnetted to support the hierarchical, logical design of the network.
- Size, location, use, and access requirements are all considerations in the address planning process.
- IP networks must be tested to verify connectivity and operational performance.