Отчет о выполнении лабораторной работы 2.3.1 Получение и измерение вакуума

Матренин Василий, Б01-006

31 марта 2021 г.

Цель работы: 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

1 Теоретическая часть

Экспериментальная установка

В данной работе используются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до давления 10^{-4} торр.

Установка изготовлена из стекла, и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (М $_1$ и М $_2$), форвакуумного насоса (ФН) и соединительных кранов ($K_1, K_2, ..., K_6$) (рис. 1). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рис. 1: Схема установки

Все краны вакуумной установки стеклянные. Стенки кранов тонкие, пробки кранов полые и составляют одно целое с рукоятками. Пробки кранов притерты к корпусам. Для герметизации используется вакуумная смазка.

Устройство и принцип действия форвакуумного насоса схематически, но довольно ясно изображены на рис 2. В положениях «а» и «б» пластина «А» засасывает разреженный воздух из откачиваемого объёма, а пластина «Б» вытесняет ранее захваченный воздух в атмосферу. В положениях «в» и «г» пластины поменялись ролями.

Рис. 2: Схема действия ротационного двухпластинчатого форвакуумного насоса

Устройство и принцип действия $\partial u \phi \phi y з u o n ho coca$ схематически изображены на рис 3. Такой насос работает в тысячи раз быстрее форвакуумного. Его действие основано на диффузии. Масло, налитое в сосуд A, подогревается электрической печкой. Пары масла поднимаются по трубке Б и вырываются из сопла B. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку BB. В трубке Γ мало осаждается и стекает вниз. Оставшийся газ, выходя в трубку Φ B, откачивается форвакуумным насосом.

Рис. 3: Схема работы диффузионного насоса

Диффузионный насос работает наиболее эффективно, когда длина свободного пробега молекул примерно равна ширине кольцевого зазора между соплом B и стенками трубки BB. Давление насыщенных паров масла при рабочей температуре, создаваемой обогревателем сосуда A, много больше $5 \cdot 10^{-2}$ торр, поэтому пары масла создают плотную струю, увлекающую с собой молекулы газа.

Диффузионный насос, используемый в нашей установке (см. рис 1) имеет две ступени и соответственно два сопла. Одно сопло вертикальное (первая ступень), второе горизонтальное (вторая ступень). За второй ступенью имеется ещё одна печь, но пар из этой печи поступает не в сопло, а по тонкой трубке подводится ближе к печке первой ступени. Эта печь осуществляет фракционирование масла. Легколетучие фракции масла,

испаряясь, поступают в первую ступень, обогащая её. По этой причине плотность струи первой ступени выше, и эта ступень начинает откачивать при более высоком давлении в форвакуумной части. Вторая ступень обогащается малолетучими фракциями масла. Плотность струи второй ступени меньше, но меньше и давление насыщенных паров. Соответственно, в откачиваемый объем поступает меньше паров масла, и его удаётся откачать до более высокого вакуума.

Термопарный манометр. Чувствительным элементом манометра является платиново-родиевая термопара, спаянная с никелевой нитью накала и заключённая в стеклянный баллон. Устройство термопары пояснено на рис. 4. По нити накала НН пропускается ток постоянной величины. Для установки тока служит потенциометр R, расположенный на передней панели вакуумметра. Термопара ТТ присоединяется к милливольтметру, показания которого определяются температурой нити накала и зависят от отдачи тепла в окружающее пространство.

Потери тепла определяются теплопроводностью нити и термопары, теплопроводностью газа, переносом тепла конвективными потоками газа внутри лампы. теплоизлучением нити (инфракрасное тепловое излучение). режиме лампы основную роль теплопроводность газа. При давлениях, не меньших 1 торр, теплопроводность газа, а вместе с ней и ЭДС термопары практически не зависят от давления газа, и прибор не работает.

При улучшении вакуума средний свободный пробег молекул становится сравнимым с диаметром нити, теплоотводность падает, и температура спая возрастает. При вакууме порядка 10^{-3} торр теплоотвод, осуществляемый

Рис. 4: Схема термопарного манометра с лампой ЛТ-2

газом, становится сравнимым с другими потерями тепла, и температура становится практически постоянной. Градуировочная кривая термопары приведена на рис. 5.

Рис. 5: Градуировочная кривая термопары ЛТ-2

Ионизационный манометр. Схема ионизационного манометра изображения на рисунке 6. Он представляет собой трехэлектродную лампу. Электроны испускаются раскалённым катодом и увлекаются электрическим полем к аноду, имеющему вид редкой спирали. Проскакивая за её витки, электроны замедляются полем коллектора и возвращаются к аноду. Прежде чем осесть на аноде, они успевают много раз пересечь пространство между катодом и коллектором. На своём пути электроны ионизуют молекулы газа. Ионы, образовавшиеся между анодом и коллектором, притягиваются полем коллектора и определяют его ток.

Накалённый катод ионизационного манометра перегорает, если давление в системе превышает 10^{-3} торр, поэтому перед его включением необходимо проверить давление термопарным манометром.

Рис. 6: Схема ионизационной лампы ЛТ-2

Процесс откачки

Опишем процесс откачки математически:

Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений і обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm H}$, десорбция с поверхностей внутри сосуда $Q_{\rm H}$, обратный ток через насос $Q_{\rm H}$. Тогда, приравнивая убыль газа из сосуда (с точностью до RT/μ) в единицу времени -VdP и сумму перечисленных токов имеем:

$$-VdP = (PW - \sum_{i} Q_{i})dt \tag{1}$$

При достижении предельного вакуума устанавливается давление $P_{\rm np}$, и dP=0. Тогда

$$W = (\sum_{i} Q_i)/P_{\rm np} \tag{2}$$

Поскольку обычно $Q_{\rm u}$ постоянно, а $Q_{\rm h}$ и $Q_{\rm d}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp(-\frac{W}{V}t)$$
 (3)

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \dots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{4}$$

Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При высоком вакууме течение существеннее определяется взаимодействием со стенками

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{l}$$
 (5)

Если труба соединяет насос установку, то давлением P_1 у насоса можно пренебречь. Давление в сосуде $P=P_2$. Тогда имеем:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3l} \sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

Для пропускной способности отверстий имеется формула

$$C_{\text{\tiny OTB}} = \left(\frac{dV}{dt}\right)_{\text{\tiny OTB}} = S\frac{\bar{v}}{4} \tag{7}$$

Для воздуха при комнатной температуре $\bar{v}/4 = 110 \text{ м/c} = 11 \text{ л/c} \cdot \text{см}^2$.

2 Ход работы

Измерение объёмов форвакуумной и высоковакуумной частей установки

- 1. Проверил, что K_4 открыт, впустил в установку атмосферный воздух через краны K_1 и K_2 . «Запер» в капилляре атмосферный воздух кранами K_5 и K_6 . Объем капилляра в используемой установке $V_{\kappa}=50~{\rm cm}^3$.
- 2. Закрыл K_1 и K_2 , включил форвакуумный насос и дал ему откачать себя. Подключил установку к насосу краном K_2 . Откачал установку до 10^{-2} торр. Отсоединил установку краном K_2 , и оставил насос работать «на себя». Перекрыл K_3 , отделяя высоковакуумною часть установки. Закрыл K_4 , чтобы привести в готовность масляный манометр.
- 3. Открыл K_5 , чтобы «запертый» ранее воздух заполнил форвакуумную часть установки, снял давление с помощью вакуумного манометра, измерив разность высот столбиков масла:

$$\Delta h = (29.0 \pm 0.1) \text{ cm}$$

4. Из того, что плотномть плотность масла в манометре равна 885 г/л, и считая, что установившееся давление много больше форвакуумного, получил:

$$P = (2518 \pm 18) \; \Pi a$$

Из уравнения состояния (изотерма):

$$V_{\Phi {
m B}} = (1950 \pm 15) \ {
m cm}^3$$

5. Открыв кран K_3 , получил значение разности высот на манометре (аналогично) :

$$\Delta h = (18.7 \pm 0.1)$$
cm

Получил объем высоковакуумной части установки (погрешности сложились):

$$V_{\rm BB} = (1100 \pm 30) \text{ cm}^3$$

6. Открыл кран K_4 .

Получение высокого вакуума

- 1. Откачал установку ФВ насосом.
- 2. Включил термопарные манометры, устанавил их токи согласно паспортам. Переключил прибор в режим измерения ЭДС и определил давление в установке по градуировочной кривой (рис. 5)
- 3. По достижении форвакуума закрываем K_6 и начинаем откачку высоковакуумного баллона с помощью диффузионного насоса
- 4. Включив ионизационную лампу, производим обезгаживание и записываем минимальное установившееся давление:

$$P_{\rm np} = 6, 0 \cdot 10^{-5} \text{ Topp}$$

Измерение скорости по ухудшению и улучшению вакуума

1. Закрываем кран K_3 , отключая тем самым откачку вакуума и записываем на видео изменения показаний микроамперметра, пока вакуум не ухудшится до $7,6\cdot 10^{-4}$ торр. Затем открываем K_3 и так же записываем улучшение вакуума. Приводим результаты повторных измерений в таблице 1 и на графиках (рис. 7 и 8).

Улучшение, 1		Улучшение, 2		Ухудшение, 1		Ухудшение, 2		Ухудшение, 3	
t, c	р, торр $\cdot 10^{-4}$								
0	7.60	0	7.60	0	0.65	0	0.71	0	0.76
1	6.50	1	7.00	5	0.76	5	0.72	5	1.20
2	5.50	2	5.50	10	1.20	10	1.10	10	1.70
3	4.60	3	4.30	16	1.70	15	1.60	15	2.20
5	3.10	4	3.60	25	2.50	21	2.20	20	2.70
8	1.90	5	2.90	35	3.30	31	3.10	29	3.60
13	1.10	10	1.40	45	4.10	41	4.00	39	4.50
18	0.83	15	0.94	55	5.00	51	4.90	49	5.50
23	0.74	18	0.85	75	6.70	66	6.30	59	6.40
37	0.70	26	0.76	84	7.50	79	7.50	71	7.50

Таблица 1: Зависимости давления от времени

Рис. 7: Зависимость давления от времени по улучшении вакуума

Рис. 8: Зависимость давления от времени по ухудшению вакуума

2. Рассчитав коэффициенты наклона графиков 7(а) и 7(б) и зная объем высоковакуумной части установки, получим скорость откачки W диффузионного

насоса, сравнив графики с зависимостью (4). Считаем

$$W = -\bar{a} \cdot V, \quad \varepsilon_W^2 = \varepsilon_{\bar{a}}^2 + \varepsilon_V^2,$$

где \bar{a} — среднее коэффициентов наклона из зависимостей 7(a) и 7(б). Имеем:

$$W = (0,261 \pm 0,02) \text{ } \pi/\text{c}$$

3. Имея в виду соотношения (1) для случая ухудшения вакуума (без откачки), оценим $Q_{\rm H}$ с помощью полученных зависимостей 8(a, б, в). Считаем

$$\frac{dP}{dt} = \bar{a}$$

где \bar{a} — среднее коэффициентов наклона из зависимостей 8(a), 8(б), 8(в). Имеем:

$$Q_{\text{\tiny H}} + Q_{\text{\tiny M}} = (1, 21 \pm 0, 05) \cdot 10^{-5} \text{ Topp} \cdot \pi/c$$

 $Q_{\rm д}$ обычно порядка $10^{-8},$ поэтому можно считать $Q_{\rm h} + Q_{\rm д} \approx Q_{\rm h}.$ Таким образом,

$$Q_{\scriptscriptstyle
m H} + Q_{\scriptscriptstyle
m J} pprox 1,26 \cdot 10^{-5} \ {
m Topp} \cdot {
m J/c}$$

4. Оценим пропускную способность трубы от вакуумного баллона, имея в виду порядки её диаметра и длины и размерного множителя

$$d\sim 10^{-2}$$
 м, $L\sim 1$ м, $\sqrt{\frac{RT}{\mu}}\sim 500$ м/с,

используя формулу (6) имеем:

$$C_{\mathrm{TP}} \sim 1 \; \mathrm{\pi/c},$$

3 Выводы

- 1. Проверены теоретические зависимости, связанные с течением газа (рис. 7 и 8)
- 2. Измерено значение производительности насоса с точностью $\varepsilon=8\%$