Ewa Bojke

Wprowadzenie

Niech T(x) be, dzie zmienna, losowa, opisuja, ca, dalsza, długo's'c z'ycia x - latka. Przez K(x) oznaczamy K(x) = [T(x)]. Funkcje, przez'ycia zmiennej losowej T(x) oznaczamy $kp_x = P(T(x) > k)$. Wiemy, z'e I_{x+k} oznacza ilo's'c x - latk'ow, kt'orzy doz'ywaja, wieku x+k, a I_x oznacza ilo's'c os'ob doz'ywaja, cych wieku x.

Estymatorem funkcji przez ycia jest

$${}_{k}\rho_{x} = \frac{I_{x+k}}{I_{x}}.$$
 (1)

Niech T(x) be_xdzie zmienna_x losowa_xopisuja_xca_x dalsza_x d-lugo's'c z'ycia x - latka. Przez K(x) oznaczamy K(x) = [T(x)]. Dystrybuante_x zmiennej losowej T(x) oznaczamy $_k q_x = P(T(x) \le k)$.

Estymatorem dystrybuanty jest

$$kq_X = 1 - k p_X. \tag{2}$$

Niech T(x) be, dzie zmienna, losowa, opisuja, ca, dalsza, d-lugo's'c z'ycia x - latka. Przez K(x) oznaczamy K(x) = [T(x)]. Prawdopodobien'stwo zmiennej losowej [T(x)] = k oznaczamy P(K(x) = k). Mowa tu o prawdopodobien'stwie 'smierci x - latka w roku x+k- tym. Wiemy, ze d_{x+k} oznacza ilo's'c x - latk'ow, kt'orzy umieraja, w wieku x+k, a I_x oznacza ilo's'cos'ob doz'ywaja, cych wieku x.

Estymatorem prawdopodobien'stwa jest

$$P(K(x) = k) = \frac{d_{x+k}}{l_x}.$$
 (3)

Niech T(x) i T(y) be, da, zmiennymi losowymi opisuja, cymi dalsza, długość z ycia odpowiednio x - latka i y -latka. Przez K(x) oznaczamy K(x) = [T(x)] oraz przez K(y) oznaczamy K(y) = [T(y)].

Funkcje przez ycia zmiennych losowych T(x) i T(y) moz emy nazwa c statusem wsp olnego z ycia gdy T(x:y) = min(T(x), T(y)).

Estymatorem funkcji przezycia jest

$${}_{k}\rho_{x:y} = {}_{k} \rho_{x} \cdot {}_{k}\rho_{y}. \tag{4}$$

Funkcje przez ycia zmiennych losowych T(x) i T(y) moz emy nazwa cstatusem ostatniego doz ywaja, cego gdy T(x:y) = max(T(x), T(y)).

Estymatorem funkcji jest

$$_{k}p_{\overline{x}:\overline{y}}=1-_{k}q_{\overline{x}:\overline{y}}, \tag{5}$$

 $gdzie_k q_{x:y} = _k q_x \cdot _k q_y .$

k₽20

k	kpx	k	kpx	k	kpx	k	kpx
1	0.99973840	21	0.99165904	41	0.93321192	61	0.62803731
2	0.99949693	22	0.99072332	42	0.92640031	62	0.59660526
3	0.99925545	23	0.98968699	43	0.91897494	63	0.56284901
4	0.99902404	24	0.98851986	44	0.91091569	64	0.52692954
5	0.99879262	25	0.98722193	45	0.90218233	65	0.48913864
6	0.99856121	26	0.98578313	46	0.89272455	66	0.44986870
7	0.99831973	27	0.98417330	47	0.88252221	67	0.40958255
8	0.99805814	28	0.98239242	48	0.87155520	68	0.36883357
9	0.99777641	29	0.98043043	49	0.85978328	69	0.32819527
10	0.99746451	30	0.97824709	50	0.84720643	70	0.28827134
11	0.99713248	31	0.97585246	51	0.83378442	71	0.24967552
12	0.99678033	32	0.97319623	52	0.81945688	72	0.21295113
13	0.99639799	33	0.97025828	53	0.80416344	73	0.17862138
14	0.99598547	34	0.96701848	54	0.78780348	74	0.14714908
15	0.99554277	35	0.96344666	55	0.77021602	75	0.11887633
16	0.99504975	36	0.95950256	56	0.75124008	76	0.09404461
17	0.99450643	37	0.95516606	57	0.73064424	77	0.07272435
18	0.99390275	38	0.95040699	58	0.70822727	78	0.05488535
19	0.99323869	39	0.94518508	59	0.68376782	79	0.04035658
20	0.99249414	40	0.93946010	60	0.65707473	80	0.02885631

Tablica 1: tabela prawdopodobien'stw

Im 20-latek jest starszy tym prawdopodobien'stwa na przez'ycie kolejnych lat są mniejsze. Najwie, kszy spadek prawdopodobien'stwa na przez'ycie zacznie sie, od momentu gdy badany be, dzie mia-l 75 lat.

*k***9**20

k	kqx	k	kqx	k	kqx	k	kqx
1	0.00026160	21	0.00834096	41	0.06678808	61	0.37196269
2	0.00050307	22	0.00927668	42	0.07359969	62	0.40339474
3	0.00074455	23	0.01031301	43	0.08102506	63	0.43715099
4	0.00097596	24	0.01148014	44	0.08908431	64	0.47307046
5	0.00120738	25	0.01277807	45	0.09781767	65	0.51086136
6	0.00143879	26	0.01421687	46	0.10727545	66	0.55013130
7	0.00168027	27	0.01582670	47	0.11747779	67	0.59041745
8	0.00194186	28	0.01760758	48	0.12844480	68	0.63116643
9	0.00222359	29	0.01956957	49	0.14021672	69	0.67180473
10	0.00253549	30	0.02175291	50	0.15279357	70	0.71172866
11	0.00286752	31	0.02414754	51	0.16621558	71	0.75032448
12	0.00321967	32	0.02680377	52	0.18054312	72	0.78704887
13	0.00360201	33	0.02974172	53	0.19583656	73	0.82137862
14	0.00401453	34	0.03298152	54	0.21219652	74	0.85285092
15	0.00445723	35	0.03655334	55	0.22978398	75	0.88112367
16	0.00495025	36	0.04049744	56	0.24875992	76	0.90595539
17	0.00549357	37	0.04483394	57	0.26935576	77	0.92727565
18	0.00609725	38	0.04959301	58	0.29177273	78	0.94511465
19	0.00676131	39	0.05481492	59	0.31623218	79	0.95964342
20	0.00750586	40	0.06053990	60	0.34292527	80	0.97114369

Tablica 2: tabela prawdopodobien'stw

Dystrybuanta

Z wykresu moz'emy wyczyta'c jakie mamy prawdopodobien'stwa, z'e 20 -latek przez'yje k lat lub mniej. Przyk-ladowo prawdopodobien'stwo, z'e osoby przez'yja, 100 lat lub mniej jest r'owne 0.97132.

 $P\left(K\left(20\right)=k\right)$

k	pk	k	pk	k	pk	k	pk
1	0.00025154	21	0.00092566	41	0.00681162	61	0.03143205
2	0.00024148	22	0.00103633	42	0.00741531	62	0.03375625
3	0.00023141	23	0.00116713	43	0.00805924	63	0.03591947
4	0.00023141	24	0.00129793	44	0.00874342	64	0.03779090
5	0.00023141	25	0.00144885	45	0.00945779	65	0.03926994
6	0.00024148	26	0.00160984	46	0.01020234	66	0.04028615
7	0.00026160	27	0.00178088	47	0.01096701	67	0.04074898
8	0.00028172	28	0.00197205	48	0.01176186	68	0.04063830
9	0.00031191	29	0.00217328	49	0.01257684	69	0.03992394
10	0.00033203	30	0.00240469	50	0.01343207	70	0.03859582
11	0.00035215	31	0.00265623	51	0.01432754	71	0.03672439
12	0.00038234	32	0.00292789	52	0.01529344	72	0.03432975
13	0.00041252	33	0.00323980	53	0.01637002	73	0.03147230
14	0.00045277	34	0.00357182	54	0.01758746	74	0.02827275
15	0.00049301	35	0.00394410	55	0.01898600	75	0.02484178
16	0.00054332	36	0.00433650	56	0.02058578	76	0.02131021
17	0.00060369	37	0.00476914	57	0.02241697	77	0.01783900
18	0.00066406	38	0.00522191	58	0.02445945	78	0.01452877
19	0.00074455	39	0.00571492	59	0.02669309	79	0.01150027
20	0.00083510	40	0.00624818	60	0.02903742	80	0.00883398

Tablica 3: tabela prawdopodobien'stw

P(K(x)=k)

Moz'emy zauwaz'y'c, z'e 20-latek ma najwie, ksze prawdopodobien'stwo 'smierci wtedy gdy jego wiek znajdzie się, w przedziale mie, dzy 75 a 90 lat.

Status wsp´olnego z'ycia dla 20 - latka i 25 - latka, czyli $_kp_{20:25}.$

k	kpxy	k	kpxy	k	kpxy	k	kpxy
0	1.00000000	19	0.98302305	38	0.87445600	57	0.43643313
1	0.99950677	20	0.98099641	39	0.86202471	58	0.39910689
2	0.99902370	21	0.97874247	40	0.84858887	59	0.36073300
3	0.99852062	22	0.97622211	41	0.83410828	60	0.32178916
4	0.99800759	23	0.97343630	42	0.81855715	61	0.28287586
5	0.99746451	24	0.97034652	43	0.80190559	62	0.24465449
6	0.99690145	25	0.96691441	44	0.78413683	63	0.20784856
7	0.99630839	26	0.96314177	45	0.76525863	64	0.17314484
8	0.99566526	27	0.95895156	46	0.74523961	65	0.14117510
9	0.99497212	28	0.95432661	47	0.72406312	66	0.11245698
10	0.99421897	29	0.94924044	48	0.70172007	67	0.08732650
11	0.99339583	30	0.94362821	49	0.67815905	68	0.06596120
12	0.99250277	31	0.93746481	50	0.65332077	69	0.04835201
13	0.99151984	32	0.93068770	51	0.62712946	70	0.03431007
14	0.99044715	33	0.92325496	52	0.59945522	71	0.02350902
15	0.98926478	34	0.91511633	53	0.57021894	72	0.01550545
16	0.98794290	35	0.90621384	54	0.53932584	73	0.00981555
17	0.98647176	36	0.89650165	55	0.50670126	74	0.00594561
18	0.98484169	37	0.88593579	56	0.47237713	75	0.00343448

Tablica 4: tabela wsp´olnego z ycia

k	kpxy	k	kpxy	k	kpxy	k	kpxy
0	1.00000000	19	0.99993046	38	0.99603682	57	0.89153756
1	0.99999994	20	0.99991305	39	0.99517721	58	0.87264978
2	0.99999976	21	0.99989136	40	0.99414415	59	0.85060133
3	0.99999945	22	0.99986422	41	0.99290735	60	0.82501550
4	0.99999901	23	0.99983066	42	0.99143219	61	0.79557396
5	0.99999839	24	0.99978894	43	0.98967812	62	0.76202843
6	0.99999761	25	0.99973715	44	0.98760148	63	0.72427988
7	0.99999661	26	0.99967347	45	0.98515427	64	0.68237671
8	0.99999534	27	0.99959440	46	0.98227727	65	0.63658335
9	0.99999375	28	0.99949697	47	0.97890657	66	0.58738905
10	0.99999175	29	0.99937744	48	0.97497067	67	0.53546460
11	0.99998925	30	0.99923019	49	0.97038003	68	0.48170967
12	0.99998618	31	0.99905009	50	0.96503275	69	0.42717022
13	0.99998237	32	0.99882923	51	0.95880317	70	0.37298131
14	0.99997768	33	0.99855919	52	0.95152913	71	0.32032479
15	0.99997189	34	0.99822980	53	0.94302789	72	0.27025794
16	0.99996464	35	0.99782858	54	0.93307203	73	0.22375753
17	0.99995562	36	0.99734094	55	0.92138378	74	0.18160883
18	0.99994441	37	0.99675044	56	0.90765945	75	0.14433305

Tablica 5: tabela z'ycia

Status 1 oznacza u = (20:25), a status 2 oznacza $u = \overline{(20:25)}$. Moz'emy zauwaz'y'c, z'e funkcja przez'ycia statusu 2 ma wie, ksze prawdopodobien'stwa przez'ycia w kolejnych latach. Najwie, ksza, r'oz'nice, mie, dzy prawdopodobien'stwami status 1 i status 2 widzimy wtedy gdy badani be, da, mieli wiek z przedzia-lu (70,85). Wie, ksze prawdopodobien'stwa przez'ycia sa, dla funkcji, w kt'orej z'yje przynajmniej jedna osoba, niz' dla funkcji gdzie obie osoby z'yja,

k	kpxy	k	kpxy	k	kpxy	k	kpxy
1	0.99947643	19	0.98076590	37	0.87154018	55	0.46028833
2	0.99895297	20	0.97843025	38	0.85888355	56	0.42354640
3	0.99839942	21	0.97583799	39	0.84521010	57	0.38564602
4	0.99783595	22	0.97297014	40	0.83048985	58	0.34700438
5	0.99725249	23	0.96978792	41	0.81471465	59	0.30812347
6	0.99663900	24	0.96627313	42	0.79784408	60	0.26957931
7	0.99598547	25	0.96237771	43	0.77987187	61	0.23203112
8	0.99528190	26	0.95807407	44	0.76078564	62	0.19613258
9	0.99450821	27	0.95331559	45	0.74054383	63	0.16252632
10	0.99365448	28	0.94807571	46	0.71910473	64	0.13178284
11	0.99272074	29	0.94230884	47	0.69642425	65	0.10433794
12	0.99170712	30	0.93596109	48	0.67241562	66	0.08049141
13	0.99058361	31	0.92901799	49	0.64699077	67	0.06037114
14	0.98934035	32	0.92139875	50	0.62004834	68	0.04391938
15	0.98796748	33	0.91305311	51	0.59150275	69	0.03091695
16	0.98644528	34	0.90395206	52	0.56126132	70	0.02099963
17	0.98474399	35	0.89403950	53	0.52928481	71	0.01372659
18	0.98285404	36	0.88324289	54	0.49560272	72	0.00860844

Tablica 6: tabela wsp´olnego z`ycia

Status ostatniego doz'ywaja,cego dla 20 - latka i 27 - latka, czyli $_kp_{20:27}$.

k	kpxy	k	kpxy	k	kpxy	k	kpxy
1	0.99999993	19	0.99991509	37	0.99607474	55	0.90753709
2	0.99999973	20	0.99989364	38	0.99522423	56	0.89149001
3	0.99999936	21	0.99986693	39	0.99420207	57	0.87281463
4	0.99999884	22	0.99983377	40	0.99297783	58	0.85118479
5	0.99999814	23	0.99979264	41	0.99151939	59	0.82627022
6	0.99999723	24	0.99974164	42	0.98978660	60	0.79776734
7	0.99999607	25	0.99967843	43	0.98773543	61	0.76546054
8	0.99999460	26	0.99960038	44	0.98531782	62	0.72922033
9	0.99999272	27	0.99950377	45	0.98247461	63	0.68907921
10	0.99999032	28	0.99938494	46	0.97913674	64	0.64524245
11	0.99998731	29	0.99923909	47	0.97522739	65	0.59811024
12	0.99998361	30	0.99905970	48	0.97065195	66	0.54829930
13	0.99997898	31	0.99884108	49	0.96529699	67	0.49660816
14	0.99997322	32	0.99857339	50	0.95903207	68	0.44399061
15	0.99996608	33	0.99824647	51	0.95170096	69	0.39148123
16	0.99995719	34	0.99784903	52	0.94311423	70	0.34011846
17	0.99994607	35	0.99736668	53	0.93305927	71	0.29092665
18	0.99993222	36	0.99678133	54	0.92129511	72	0.24476719

Tablica 7: tabela z[']ycia

Status 1 oznacza u = (20:27), a status 2 oznacza $u = \overline{(20:27)}$. Moz'emy zauwaz'y'c, z'e funkcja przez'ycia statusu 2 ma wie, ksze prawdopodobien'stwa przez'ycia w kolejnych latach. Najwie, ksza, r'oznice, mie, dzy prawdopodobien'stwami status 1 i status 2 widzimy wtedy gdy badani be, da, mieli wiek z przedzia-lu (70,85). Wie, ksze prawdopodobien'stwa przez'ycia sa, dla funkcji, w kt'orej z'yje przynajmniej jedna osoba, niz' dla funkcji gdzie obie osoby z'yja,.

• prawdopodobienstwo, ze 20 - latek i 25 - latek dozyja, 60-tego roku zycia

[1] 0.8944548

• prawdopodobienstwo, ze 20 - latek i 27 - latek dozyja, 60-tego roku zycia

[1] 0.8948785

• prawdopodobienstwo, zeprzynajmniej jedna osoba z badanych 20-latek lub 25 - latek doz'yje *60*-tego roku z'ycia

[1] 0.997058

• prawdopodobienstwo, zeprzynajmniej jedna osoba z badanych 20-latek lub 27 - latek doz'yje 60-tego roku z'ycia

[1] 0.9970825

k	pk	k	pk	k	pk	k	pk
1	0.00000058	20	0.000000968	39	0.000042135	58	0.000757628
2	0.000000061	21	0.000001211	40	0.000050028	59	0.000879632
3	0.000000063	22	0.000001492	41	0.000059165	60	0.001009976
4	0.000000065	23	0.000001848	42	0.000069578	61	0.001141676
5	0.000000072	24	0.000002304	43	0.000081422	62	0.001267807
6	0.000000077	25	0.000002824	44	0.000094906	63	0.001377195
7	0.000000085	26	0.000003488	45	0.000110098	64	0.001461471
8	0.000000100	27	0.000004281	46	0.000127191	65	0.001510585
9	0.000000116	28	0.000005221	47	0.000146351	66	0.001517488
10	0.000000141	29	0.000006397	48	0.000167926	67	0.001481273
11	0.000000164	30	0.000007772	49	0.000192775	68	0.001400593
12	0.000000192	31	0.000009496	50	0.000221462	69	0.001280527
13	0.000000231	32	0.000011533	51	0.000255330	70	0.001130124
14	0.000000274	33	0.000013980	52	0.000295300	71	0.000959948
15	0.000000338	34	0.000016938	53	0.000343247	72	0.000783550
16	0.000000412	35	0.000020437	54	0.000400886	73	0.000613149
17	0.000000504	36	0.000024673	55	0.000470031	74	0.000457807
18	0.000000626	37	0.000029574	56	0.000551971	75	0.000325537
19	0.000000776	38	0.000035407	57	0.000647835	76	0.000219717

Tablica 8: tabela 'smierci

prawdopodobien´stwo, zejedna osoba umrze dok-ladnie w k-tym roku, czyli 20 - latek albo 25- latek

k	pk	k	pk	k	pk	k	pk
1	0.000483114	20	0.002042113	39	0.013206619	58	0.054698769
2	0.000493183	21	0.002283284	40	0.014368853	59	0.058663071
3	0.000503264	22	0.002534454	41	0.015599066	60	0.062509729
4	0.000513345	23	0.002815670	42	0.016887131	61	0.066071477
5	0.000543552	24	0.003136955	43	0.018232729	62	0.069231284
6	0.000563690	25	0.003468188	44	0.019645513	63	0.071800095
7	0.000593882	26	0.003849476	45	0.021115275	64	0.073683952
8	0.000644196	27	0.004260714	46	0.022651712	65	0.074741928
9	0.000694508	28	0.004701869	47	0.024254495	66	0.074877440
10	0.000764937	29	0.005202967	48	0.025943086	67	0.074092383
11	0.000825309	30	0.005733876	49	0.027766125	68	0.072319043
12	0.000895745	31	0.006334567	50	0.029742640	69	0.069587587
13	0.000986292	32	0.006974902	51	0.031930366	70	0.065970611
14	0.001076832	33	0.007674833	52	0.034347605	71	0.061547737
15	0.001197541	34	0.008434137	53	0.037051015	72	0.056493251
16	0.001328300	35	0.009252776	54	0.040057264	73	0.050964018
17	0.001469087	36	0.010150481	55	0.043372759	74	0.045103016
18	0.001640021	37	0.011097201	56	0.046954583	75	0.039135841
19	0.001831047	38	0.012122596	57	0.050760154	76	0.033247004

Tablica 9: tabela 'smierci

k	pk	k	pk	k	pk	k	pk
1	0.000000066	19	0.000000964	37	0.000035008	55	0.000553740
2	0.000000071	20	0.000001201	38	0.000041769	56	0.000641975
3	0.000000075	21	0.000001490	39	0.000049471	57	0.000740675
4	0.000000077	22	0.000001829	40	0.000058404	58	0.000848583
5	0.000000082	23	0.000002256	41	0.000068639	59	0.000962138
6	0.000000089	24	0.000002811	42	0.000080252	60	0.001077172
7	0.000000100	25	0.000003453	43	0.000093418	61	0.001185237
8	0.000000119	26	0.000004249	44	0.000108435	62	0.001279495
9	0.000000139	27	0.000005224	45	0.000125483	63	0.001349951
10	0.00000170	28	0.000006372	46	0.000144886	64	0.001388675
11	0.000000201	29	0.000007791	47	0.000167294	65	0.001390184
12	0.000000234	30	0.000009440	48	0.000193206	66	0.001350396
13	0.000000285	31	0.000011488	49	0.000223687	67	0.001270032
14	0.000000345	32	0.000013894	50	0.000259340	68	0.001154025
15	0.000000420	33	0.000016761	51	0.000301613	69	0.001011227
16	0.000000512	34	0.000020277	52	0.000351034	70	0.000852219
17	0.000000635	35	0.000024371	53	0.000408916	71	0.000689670
18	0.000000785	36	0.000029296	54	0.000476143	72	0.000534458

Tablica 10: tabela 'smierci

prawdopodobien´stwo, zejedna osoba umrze dok-ladnie w k-tym roku, czyli 20 - latek albo 27- latek

k	pk	k	pk	k	pk	k	pk
1	0.000513444	19	0.002113421	37	0.012339287	55	0.047964932
2	0.000533590	20	0.002354694	38	0.013443740	56	0.051515120
3	0.000553755	21	0.002616002	39	0.014596670	57	0.055084353
4	0.000563848	22	0.002897367	40	0.015817619	58	0.058574309
5	0.000583995	23	0.003208756	41	0.017096365	59	0.061871206
6	0.000614216	24	0.003570249	42	0.018432776	60	0.064892705
7	0.000654491	25	0.003951724	43	0.019826484	61	0.067484506
8	0.000714890	26	0.004373171	44	0.021297050	62	0.069579758
9	0.000775285	27	0.004844635	45	0.022844113	63	0.071047480
10	0.000855800	28	0.005345973	46	0.024487199	64	0.071802899
11	0.000936332	29	0.005907204	47	0.026265322	65	0.071796732
12	0.001016858	30	0.006498193	48	0.028197656	66	0.070956682
13	0.001127568	31	0.007158884	49	0.030332451	67	0.069271352
14	0.001248338	32	0.007859137	50	0.032678592	68	0.066761259
15	0.001379141	33	0.008618905	51	0.035283541	69	0.063499440
16	0.001530065	34	0.009457934	52	0.038126089	70	0.059565569
17	0.001711145	35	0.010346166	53	0.041213632	71	0.055085502
18	0.001902234	36	0.011313295	54	0.044504026	72	0.050208694

Tablica 11: tabela 'smierci

CZE,S´C´ I

Zadanie 1

Wiemy, ze warto śc bieża,ca 'swiadczenia wynosi

$$Z = C \gamma^{k+1}.$$

Jednorazowa, sk-ladke, netto (JSN) definiujemy wzorem

$$A_x = C \cdot E Z = C$$
 $k=0$
 $\sum_{k=0}^{\infty} \gamma^{k+1} \cdot P(K = k).$

Wiemy, $\dot{z}e\delta = 0.05$, czyli $\dot{\gamma} = e^{-0.05}$. Wiemy r'owniez', $\dot{z}e$ ubezpieczenie wyp-lacane jest na koniec roku 'smierci i wynosi 50000, czyli C = 50000.

Rozk-lad prawdopodobien'stwa 'smierci dla 20 - latka

Najwie, ksze prawdopodobien stwo, zie 20 - latek umrze be,dzie wtedy gdy osia, gnie wiek z przedzia-lu (80, 85). Warto ść jednorazowej sk-ladki netto w tym ubezpieczeniu 20 - latka wynosi

[1] 2781.585

Zadanie 2

W zadaniu 2 korzystamy z estymator'ow

$$_{k}\rho_{x}=\frac{I_{x+k}}{I_{x}}$$
, $_{k}\rho_{y}=\frac{I_{y+k}}{I_{y}}$, $\rho_{x+k}=\frac{I_{x+k+1}}{I_{x+k}}$, $\rho_{y+k}=\frac{I_{y+k+1}}{I_{y+k}}$.

Wiemy, ze warto ść bieża, ca 'swiadczenia wynosi

$$Z = C v^{k+1}.$$

Jednorazowa, sk-ladke, netto (JSN) w ubezpieczeniu, w kt´orym kwota C wyp-lacana jest na koniec roku pierwszej ´smierci oznaczamy

$$A_{x:y} = C \cdot E Z = C \qquad \gamma^{k+1} \cdot P(K(x:y) = k).$$

Aby wyliczy'c powyz'sze JSN

modelujemy wz'or na prawdopodobien'stwo pierwszej 'smierci

$$P(K(x:y) = k) = k p_{x:y} \cdot q_{(x+k:y+k)} = k p_{x:y} \cdot (1 - p_{x+k:y+k}) = k p_x \cdot k p_y \cdot (1 - p_{x+k} \cdot p_{y+k}).$$

Rozk-lad prawdopodobien'stwa 'smierci dla statusu: u = (20:25)

Najwie, ksze prawdopodobien stwo smierci pierwszej osoby jest moż liwe za oko-lo 55 lat,czyli mniej wię, cej w przedziale wiekowym (75, 80). Warto ść jednorazowej sk-ladki netto w tym ubezpieczeniu dla 20 - latka i 25 -latka wynosi

[1] 4431.796

Jednorazowa, sk-ladke, netto (JSN) w ubezpieczeniu, w kt'orym kwota *C* wyp-lacana jest na koniec roku drugiej 'smierci oznaczamy

$$A_{\overline{x}:\overline{y}} = C \cdot E Z = C \sum_{k=0}^{\infty} \gamma^{k+1} \cdot P(K(\overline{x}:\overline{y}) = k).$$

Aby wyliczy'c powyz'sze JSN

• modelujemy wz´or na prawdopodobien´stwo drugiej ´smierci

$$P(K(x : y) = k) = {}_{k} p_{x:y} \cdot q_{(x+k:y+k)} = {}_{k} p_{x:y} \cdot (1 - p_{x+k:y+k}) =$$

$$= ({}_{k}p_{x} + {}_{k} p_{y} - {}_{k} p_{x} \cdot {}_{k} p_{y})(1 - (p_{x+k} + p_{y+k} - p_{x+k} \cdot p_{y+k})).$$

Najwie, ksze prawdopodobien stwo drugiej smierci znajduje się, w przedziale wiekowym (85,90). Warto s'c jednorazowej sk-ladki netto w tym ubezpieczeniu dla 20 - latka i 25 - latka wynosi

[1] 227.3515

CZE,S´C´ II

Zadanie 1

Warto's'c biez'a,ca, wp-lat oznaczamy

$$Y = \sum_{k=0}^{\infty} \gamma^k \mathbf{1} \wedge_{\kappa \geq k} .$$

Aktuarliana, warto's'c renty (AWR) oznaczamy

$$\vec{a_x} = EY = \sum_{k=0}^{\infty} \gamma^k \cdot P(K \ge k).$$

W zadaniu 1 musimy obliczy c AWR, je śli wp-laty dokonywane sa, do momentu: śmierci x latka, pierwszej śmierci, drugiej śmierci. Przyjmujemy, ze wp-lacana jest 1 z-l na pocza, tku roku. Wykorzystamy wz or, w kt orym AWR zalez y od wcze śniej policzonego JSN, czyli $Ax + d \cdot \sigma = 1$.

Aktuarialna warto's'c wp-lat dla 20-latka wynosi

[1] 18.88737

Aby wyliczy'c AWR, je'sli wp-laty dokonywane sa, do momentu pierwszej 'smierci

• modelujemy wz'or na prawdopodobien'stwo, z'e 20- latek i 25-latek doz'yja, k lat

$$P(K(x:y) \ge k) = k p_{x:y} = k p_x \cdot_k p_y$$
.

Aktuarialna warto'sc wp-lat dla 20-latka i 25 -latka do momentu pierwszej 'smierci wynosi

[1] 17.77382

Aby wyliczy'c AWR, je'sli wp-laty dokonywane sa, do momentu drugiej 'smierci

• modelujemy wz'or na prawdopodobien'stwo ostatniego doz'ywaja,cego k lat

$$P(K(x:y) \ge k) = {}_{k} p_{x:y} = {}_{k} p_{x} + {}_{k} p_{y} - {}_{k} p_{x} \cdot {}_{k} p_{y}$$

Aktuarialna warto'sc wp-lat dla 20-latka i 25 -latka do momentu drugiej 'smierci wynosi

[1] 18.75632

CZE,S´C´ III

Zadanie 1

Warto's'c biez'a,ca wyp-lat dla x- latka i y- latka wynosi

$$Z = C_1 \gamma^{k_1+1} + C_2 \gamma^{k_2}$$
+1 $E Z = C_1 A_{x:y} + \dots$

$$C_2 A_{x:y}.$$

Warto's'c biez'a,ca wp-lat dla pierwszej 'smierci wynosi

$$Y = P \left(\sum_{k=0}^{\infty} \gamma^k 1 \wedge_{K_1 \geq k} \right)$$

$$E Y = P \ddot{a}_{x:y}$$
.

Warto´s´cbiez˙a,ca, wp-lat dla drugiej ´smierci wynosi

$$Y = P \left(\begin{array}{c} \sum^{\infty} \\ \gamma^{k} 1 \wedge_{K_{2} \geq k} \right)$$

$$= P \left(\begin{array}{c} \\ k = 0 \end{array} \right)$$

$$E Y = P \ddot{a}_{x : y}.$$

Stosuja, c zasade, r'ownowaz no'sci ($EZ = P \cdot EY$) otrzymujemy sk-ladki netto dla

• pierwszej 'smierci

$$P = \frac{C_1 A_{x:y} + C_2 A_{x:y}}{a_{x:y}}$$

• drugiej 'smierci

$$P = \frac{C_1 A_{x:y} + C_2 A_{x:y}}{a_{x:y}^{-}}$$

W zadaniu wiemy, ze 20 - latek i 25 - latek zakupuja, ubezpieczenie, w kt'orym kwota 50000 wyp-lacana jest na koniec roku pierwszej 'smierci i 100000 na koniec roku drugiej 'smierci. Stopa procentowa jest r'owna 5%.

Sk-ladka netto p-lacona na pocza, tku kaz dego roku az do pierwszej 'smierci wynosi

[1] 274.9267

Sk-ladka netto p-lacona na pocza, tku kaz dego roku az do drugiej 'smierci wynosi

[1] 260.5254

Obie sk-ladki sa, w przyste, pnej cenie. Status powininien rozwaz y c zdolno ś c finansowa, i che, c inwestycji.