· Linear independence of vectors

$$IR^n \ni (x_1 \dots x_n)$$
, $\alpha_{n_1} \in IR^n$ $\alpha_{n_1} = (\alpha_{n_1}, \alpha_{n_2} \alpha_{n_3} \dots \alpha_{n_n}) \Rightarrow \text{vector}$
 \vdots
 $\alpha_{(m_1)} \in IR^n$

· Imear combination

a linearly independent

$$x_1\alpha_{01}+\cdots+x_m\alpha_{cm}=\overrightarrow{0}$$
 if $x_{mn}=\overrightarrow{0}$ is an unique solution,

exp
$$a_{C1}$$
... $a_{Cm} \in \mathbb{N}^{N}$ are triearly dependent

 $A_{1} A_{C1} + \cdots + A_{2m} A_{Cm} = \vec{O}$, C_{C1} ... $C_{m} \neq \vec{O}$ (solution)

 $C_{1} A_{C1} + \cdots + C_{2m} A_{Cm} = \vec{O}$ assume that $C_{1} \neq 0$
 $\Rightarrow A_{C1} = -\frac{1}{C_{1}} \left(C_{2} A_{C2} + \cdots + G_{m} A_{Cm} \right)$
 $a_{C1} = a_{C1} + a_{C2} + a_{C3} + a_{C4} + a_{C4}$

भिः एव ज्यानस्थान स्थाप्त भाग

independent & vectors & 1/202

IR2의 또 vector를 표한수 있다

· Rank

0,0

00

A: mxn mottrix

· tow-equivalent matrix

- o now equivelent: some rank (.. row
- o row-echelon form

o rank(A) = rank(AT)

> e, ... en eir are limently inde.
$$\alpha \in \mathbb{R}^n$$
, (= C; α_n) c, eir

Homogeneous linear system

orf rank A < n then there is a nontrivial solution

· Mill Space = N (vector space (R")

A: mxn matrix Az = 0, x, x solutions

$$A_{\pi_1} = 0$$
, $A_{\pi_2} = 0$

N: the set of all solutions of AR = O

A : num matrix rank A+ nultity = n.

Non - homogeneous system

$$a_{i1}x_i + \cdots + a_mx_m = b_i$$

(1) Aze to consitent (has a solution)

$$\widetilde{A}$$
: augmented matrix of $A \rightarrow \begin{bmatrix} a_1 & \cdots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots \\ a_{n_1} & \cdots & a_{n_n} & b_n \end{bmatrix}$

rank (A)
$$\leq$$
 rank (\widetilde{A}) ($\underline{rank(\widetilde{A})} = \underline{rank(A)}$ or $\underline{rank(A)} + 1 = \underline{rank(\widetilde{A})}$

$$tank(A) = r \leq n$$

$$C_{1}\begin{bmatrix} 0_{11} \\ \vdots \\ 0_{mn} \end{bmatrix} + C_{r}\begin{bmatrix} 0_{11r} \\ \vdots \\ 0_{mnr} \end{bmatrix} + G_{r1}\begin{bmatrix} b_{1} \\ \vdots \\ b_{mn} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} - \frac{(C_{1}+C_{2}+\cdots)}{C_{r+1}} : Salution$$
In the only time.

(2) #(solution)

O A= nxm matrix, rank A=N.

Then the system has on unique solution

$$tank(A) = tank(\widetilde{A}) = n$$

$$\sum_{i=1}^{N} C a_{ij} = \sum_{i=1}^{K} \overline{C} a_{(i)} \qquad \overline{C} = C$$