Polytech Nice Sophia - 2019/2020

DS1 - MAM3 - MI1

25/10/19 - Durée 1h30

Les notations sont celles du cours. Calculatrices et documents non autorisés.

Question de Cours. (4 points)

Enoncer clairement (hypothèses, conclusions) le théorème de convergence dominée de Lebesgue.

Exercice 1. (5 points)

On définit, pour tout $n \in \mathbb{N}^*$, la suite : $u_n = \int_0^n \left(1 - \frac{x}{n}\right)^n \cos x \ dx$.

Calculer $\lim_{n\to\infty} u_n$.

(Les théorèmes utilisés devront être clairement rappelés, les hypothèses soigneusement vérifiées et les conclusions mises en évidence.)

Exercice 2. (7 points)

Soit *I* un intervalle réel.

- 1. Montrer que, si les fonctions f et g appartiennent à $L^2(I)$ alors, le produit $fg \in L^1(I)$.
- 2. Montrer qu'on a alors :

$$\left(\int_{I} |f(t)g(t)|dt\right)^{2} \leq \left(\int_{I} |f(t)|^{2} dt\right) \left(\int_{I} |g(t)|^{2} dt\right)$$

- 3. En déduire que si I est borné alors on a l'inclusion $L^2(I) \subset L^1(I)$.
- 4. Donner deux fonctions f et g (différentes de la fonction $x \mapsto \frac{1}{\sqrt{x}}$) définies sur un intervalle réel I (à préciser) telles que $f \in L^1(I)$ et $g \in L^1(I)$ mais le produit $fg \notin L^1(I)$. Démontrer toutes vos assertions.
- 5. Montrer que la fonction f définie ci-dessous appartient à $L^p([1, +\infty[), pour \ 1 \le p \le +\infty])$

$$f(x) = \frac{1}{x(1 + |\ln x|)^2}$$

Exercice 3. (4 points)

Soit t > 0.

Montrer que la fonction $x \to \left(\frac{\sin x}{x}\right) e^{-tx}$ est Lebesgue-intégrable sur \mathbb{R}^{*+} .

= e cos(x1) / (x); there

2) treir, their thing e L2(I) Considerons: $F(x,t) = (x|f(t)|+|g(t)|)^{2}$ SEF(xit/dt < 00; txell confige L2(I)) on fent utiliser 1.

Rosons alors: P(x)= F(x,+|dt; Yx=|R Fétant positive, Pest positive comme P(2) > [F(2,t) dt 70, HXEIR == 22 | | f(t)|2 dt +2n | | f(t)|- | g|t/| dt + I get 1 dt 20; there carfeliti) congeliti Clest l'expression d'un trinôme du 2rd degré positif: son discriminant

D'où l'inégalité demandée.

3) I étant horné: posons g= / Ela) et appliquons @ diec felici): SIFE & (t) dt) = (If(t) dt)

fight | 2 dt = fix(t) | 2 dt = mesure (I) < co Dou: $\left(\int_{\mathbb{T}} |f(t)| dt\right)^2 \leq \left(\int_{\mathbb{T}} |f(t)|^2 dt\right) \times \text{mesure}(\mathbb{T})$ < two can fel2(I) > fel'(I). Conclusion: Si I est borné, inclus dans IR: 12(I) < 11(I)

4) I=]0,+60[P(t)= 1 ; HEI; flt of; flt of the ext done negatif: $\Delta = 4\left(\int |f(t)|^2 |f(t)|^2 dt\right)\left(\int |g(t)|^2 dt\right) = \frac{1}{t^{3/4}(1+t^2+t^3)}; \forall t \in \mathbb{Z} \xrightarrow{g(t)} \sqrt{\frac{1}{2}}; g(t) \sim \frac{1}{t^{3/4}}$ fletglet = 1 ; 69 ~ 15/4 (1+t2)(1+t1/4)

>> fg & L1(I) alm que fig e L4(I)

Ex@ (suite):

 $f(x) = \frac{1}{\chi(1+|\ln \chi|)^2};$ $f \in L^p([1,+\infty[), 1 \le p \le +\infty)$

elle seul problème en + 00

Colcul de I(X): Changement de vaniable

 $u=\frac{1}{x} \Rightarrow du=-u^2 dx$

Non: T(x) = - (1 w/du / 1 / 12 (1 - lnu) 2p

Quand X tend vers + vs, le problème revient à l'étude de la nature de

Or 1 1 2 1 0 12 16 (hu) 2p 0 12 16 (hu) 2p

Par le critère des fonctions équivalents
positives;

set de même nature

o 12 P(1-luy) 17

que for u2-p (lna) 2p.

Or cette dernière est une intéprob de Bertrand Convergente con ex=2-p < 1 pour p>1

d=1 et B=2 pour p=1

Conclusion:

J+10 [fa] Pdn ost consegente pour

1 < p < + 10.

P < LP([1,+10[) pour 1 < p < + 10.