

Systeme II

3. Die Datensicherungsschicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 31.05.2017

Der Mediumzugriff in der Sicherungsschicht

- Statisches Multiplexen
- Dynamische Kanalbelegung
 - Kollisionsbasierte Protokolle
 - Kollisionsfreie Protokolle (contention-free)
 - Protokolle mit beschränkten Wettbewerb (limited contention)

Statisches Multiplexen

TDMA

- Gegeben sei eine einzelne Leitung (Ressource)
- Mehreren Kommunikations-verbindungen werden feste Zeiträume/Kanäle (slots/channels) zugewiesen
 - Oder: Feste Frequenzbänder werden ihnen zugewiesen
- Feste Datenraten und entsprechenden Anteilen am Kanal
 - Quellen lasten die Leitung aus

Verkehrsspitzen (bursty traffic)

- Problem: Verkehrsspitzen (bursty traffic)
 - Definition: Großer Unterschied zwischen Spitze und Durchschnitt
 - In Rechnernetzwerken: Spitze/Durchschnitt = 1000/1 nicht ungewöhnlich

Der Mediumzugriff in der Sicherungsschicht

- Statisches Multiplexen
- Dynamische Kanalbelegung
 - Kollisionsbasierte Protokolle
 - Kollisionsfreie Protokolle (contention-free)
 - Protokolle mit beschränkten Wettbewerb (limited contention)

Dynamische Kanalzuweisung – MAC

- Statisches Multiplexing ist nicht geeignet für Datenverbindung mit Spitzen
- Alternative: Zuweisung des Slots/Kanals an die Verbindung mit dem größten Bedarf
 - Dynamische Medium-Belegung
 - statt fester
- Der Mediumzugriff wird organisiert:
 - Mediumszugriff-Protokoll (Medium Access Control protocol
 - MAC)

Annahmen

Stationsmodell (terminal model)

- N unabhängige Stationen möchten eine Leitung/ Ressource teilen
- Mögliches Lastmodell:
 - Wahrscheinlichkeit, dass ein Paket im Intervall der Länge Δt erzeugt wird ist λ Δt für eine Konstante λ

Eine Leitung/Kanal

- für alle Stationen
- Keine weitere Verbindungen möglich

Collision assumption

- Nur ein einfacher Frame kann auf dem Kanal übertragen werden
- Zwei (oder mehr) sich zeitlich überschneidende Frames kollidieren und werden gelöscht
- Noch nicht einmal Teile kommen an

$$E[X] = \sum_{u=0}^{n} u \cdot P(x=u)$$

$$= P$$

Annahmen

Zeitmodelle

- Kontinuierlich
 - Übertragungen können jeder Zeit beginnnen (keine zentrale Uhr)
- Diskret (Slotted time)
 - Die Zeitachse ist in Abschnitte (slots) unterteilt
 - Übertragungen können nur an Abschnittsgrenzen starten
 - Slots können leer (idle), erfolgreich (mit Übertragung) sein oder eine Kollision beinhalten

- Stationen können erkennen ob der Kanal momentan von anderen Stationen verwendet wird
 - Nicht notwendigerweise zuverlässig

Bewertung des Verhaltens

- Methoden zur Bewertung der Effizienz einer Kanalzuweisung
- Ourchsatz (throughput)
 - Anzahl Pakete pro Zeiteinheit
 - Besonders bei großer Last wichtig
- Verzögerung (delay)
 - Zeit für den Transport eines Pakets
 - Muss bei geringer Last gut sein
- Gerechtigkeit (fairness)
 - Gleichbehandlung aller Stationen
 - Fairer Anteil am Durchsatz und bei Delay

Mögliche MAC-Protokolle

- Unterscheidung: Erlaubt das Protokoll Kollisionen?
 - Als Systementscheidung
 - Die unbedingte Kollisionsvermeidung kann zu Effizienzeinbußen führen

System mit Kollisionen: Contention System

Algorithmus

- Sobald ein Paket vorhanden ist, wird es gesendet
- Ursprung
 - 1985 by Abrahmson et al., University of Hawaii
 - Ziel: Verwendung in Satelliten-Verbindung

Pakete werden zu beliebigen Zeiten übertragen

ALOHA – Analyse

ALOHA – Analyse

- Vorteile
 - Einfach
 - Keine Koordination notwendig
- Nachteile
 - Kollisionen
 - Sender überprüft den Kanalzustand nicht
 - Sender hat keine direkte Methode den Sende-Erfolg zu erfahren
 - Bestätigungen sind notwendig
 - Diese können auch kollidieren

ALOHA – Effizienz

- Betrachte Poisson-Prozess zur Erzeugung von Paketen
 - Entsteht durch "unendlich" viele Stationen, die sich gleich verhalten
 - Zeit zwischen zwei Sende-Versuchen ist exponentiell verteilt
 - Sei G der Erwartungswert der Übertragungsversuche pro Paketlänge
 - Alle Pakete haben gleiche Länge
 - Dann gilt

$$P[k \text{ Versuche}] = \frac{G^k}{k!}e^{-G}$$

$$\begin{bmatrix} E[X] = \sum_{n=0}^{\infty} n \cdot \frac{G^n}{n!} e^{-G^n} \\ = G^n \end{bmatrix}$$

- Um eine erfolgreiche Übertragung zu erhalten, darf keine Kollision mit einem anderen Paket erfolgen
- Wie lautet die Wahrscheinlichkeit für eine solche Übertragung?

h Sandy

$$= \left(\begin{array}{c} \chi \\ \chi \end{array} \right) \cdot \left(\chi - b \right) - \chi \cdot b$$

$$u = 0 : p(1-p)$$

$$N = 1 \cdot \left(1 - b \right)_{n-1} \left(\frac{n}{n} \right)$$

$$k = 0 : \rho(\Lambda - \rho)^{N} \binom{n}{0}$$

$$k = 1 : \rho(\Lambda - \rho)^{N-1} \binom{n}{1}$$

$$k = 2 : \rho^{2} (\Lambda - \rho)^{N-2} \binom{n}{2}$$

$$E\left[X_{n}\right] = \sum_{u=0}^{n} u \cdot P\left[X=u\right] = E\left[X_{n} + X_{1} + \dots + 1\right] = E\left[u \cdot X_{n}\right] = u \cdot E\left[X_{n}\right] = p \cdot u$$

$$\lim_{N\to\infty} \binom{n}{n} \cdot \left(\frac{1}{N}\right)^{N} \cdot \left(\frac{1}{N}\right)^{N} \cdot \left(\frac{1}{N}\right)^{N} = \frac{1}{N} \frac{1}{N} \frac{1}{N} \cdot \frac{1}{N$$

$$\left(1 - \frac{1}{x}\right)^{\frac{1}{x}} = \left(1 - \frac{1}{x}\right)^{\frac{1}{x}} - \frac{1}{x}$$

ALOHA – Effizienz

- Ein Paket X wird gestört, wenn
 - ein Paket kurz vor X startet
 - wenn ein Paket kurz vor dem Ende von X startet
- Das Paket wird erfolgreich übertragen, wenn in einem Zeitraum von zwei Paketen kein (anderes) Paket übertragen wird
- Durchsatz:
 - $S(G) = Ge^{-2G}$
 - Optimal für G=1/2, S=1/e

Slotted ALOHA

$$1.\frac{1}{2} + 2.\frac{1}{4} + 3.\frac{1}{8} + \dots = 2$$

$$\frac{1}{2}$$
 + $\frac{1}{4}$ + $\frac{1}{16}$ = $\frac{1}{4}$ + $\frac{1}{16}$ = $\frac{1}{4}$ + $\frac{1}{16}$ = $\frac{1}{4}$ + $\frac{1}{4}$ = $\frac{1}{2}$

$$\lambda = \frac{1}{6} + \frac{1}{16} = \frac{1}{4}$$

Slotted ALOHA – Effizienz

- Ein Paket X wird gestört, wenn
 - ein Paket kurz vor X startet
 - wenn ein Paket kurz vor dem Ende von X startet
- Das Paket wird erfolgreich übertragen, wenn in einem Zeitraum von zwei Paketen kein (anderes) Paket übertragen wird

Slotted ALOHA

- ALOHAs Problem:
 - Lange Verwundbarkeit eines Pakets
- Reduktion durch Verwendung von Zeitscheiben (Slots)
 - Synchronisation wird vorausgesetzt
- Ergebnis:
 - Verwundbarkeit wird halbiert
 - Durchsatz:
 - S(G) = Ge-G
 - Optimal für G=1, S=1/e

Durchsatz in Abhängigkeit der Last

- Für (slotted) ALOHA ist eine geschlossene Darstellung in Abhängigkeit von G möglich
- Kein gutes Protokoll

Bestimmung der Warte-Zeit

- Nach der Kollision:
- Algorithmus binary exponential backoff
 - k:=2
 - Solange Kollision beim letzten Senden
 - Wähle t gleichwahrscheinlich zufällig aus {0,...,k-1}
- 4 2 943

- Warte t Zeit-Slots
- Sende Nachricht (Abbruch bei Collision Detection)
- k:= 2 k
- Algorithmus
 - passt Wartezeit dynamisch an die Anzahl beteiligter Stationen an
 - sorgt für gleichmäßige Auslastung des Kanals
 - ist fair (auf lange Sicht)

Multiple Access with Collision Avoidance MACA

- (a) A sendet Request to Send (RTS) an B.
- (b) B antwortet mit Clear to Send (CTS) an A.

CSMA und Übertragungszeit

CSMA und Übertragungszeit

- Carrier Sense Multiple Access:
 - Erst senden wenn der Kanal frei ist
- CSMA-Problem:
 - Übertragungszeit d (propagation delay)
- Zwei Stationen
 - starten Senden zu den
 Zeitpunkten t und t+ε mit ε<d
 - sehen jeweils einen freien Kanal
- Zweite Station
 - verursacht dann eine Kollision

Kollisionserkennung – CSMA/CD

- Falls Kollisionserkennung (collision detection) möglich ist,
 - dann beendet der spätere Sender seine Übertragung
 - Zeitverschwendung wird reduziert, da mindestens eine Nachricht (die erste) übertragen wird
- Fähigkeit der Kollisionserkennung hängt von der Bitübertragungsschicht ab
- CSMA/CD Carrier Sense Multiple Access/Collision Detection
- Collision Detection
 - setzt gleichzeitiges Abhören des Kanals nach Kollisionen voraus
 - Ist das was auf dem Kanal geschieht, identisch zu der eigenen Nachricht?

Phasen in CSMA/CD

- Leer-Phase (IDLE)
 - Keine Station sendet einen Frame
- Wettbewerbsphase (Contention Period)
 - Kollisionen entstehen, Übertragungen werden abgebrochen
- Übertragungsphase (Transmission Period)
 - Keine Kollision, effektiver Teil des Protokolls

! Es gibt nur Wettbewerbs-, Übertragungsphasen und Leer-Phasen

Der Mediumzugriff in der Sicherungsschicht

- Statisches Multiplexen
- Dynamische Kanalbelegung
 - Kollisionsbasierte Protokolle
 - Kollisionsfreie Protokolle (contention-free)
 - Protokolle mit beschränkten Wettbewerb (limited contention)

Wettbewerbsfreie Protokolle

- Einfaches Beispiel: Statisches Zeit-Multiplexen (TDMA)
 - Jeder Station wird ein fester Zeit-Slot in einem sich wiederholenden Zeitschema zugewiesen
- Nachteile bekannt und diskutiert
- Gibt es dynamische kollisionsfreie Protokoll?

Time

Bit-map Protokoll

- Probleme von TDMA
 - Wenn eine Station nichts zu senden hat, dann wird der Kanal nicht genutzt
- Reservierungssystem: Bit-map protocol
 - Kurze statische Reservierung-Slots zur Ankündigung
 - Müssen von jeder Station empfangen werden

Bitmap-Protokolle

- Verhalten bei geringer Last
 - Falls keine Pakete verschickt werden, wird der (leere)
 Wettbewerbs-Slot wiederholt
 - Eine Station muss auf seinen Wettbewerbs-Slot warten
 - Erzeugt gewisse Verzögerung (delay)
- Verhalten bei hoher Last
 - Datenpakete dominieren die Kanalbelegung
 - Datenpakete sind länger als die Contention-Slots
 - Overhead ist vernachlässigbar
 - Guter und stabiler Durchsatz
- Bitmap ist ein Carrier-Sense Protokoll!

Der Mediumzugriff in der Sicherungsschicht

- Statisches Multiplexen
- Dynamische Kanalbelegung
 - Kollisionsbasierte Protokolle
 - Kollisionsfreie Protokolle (contention-free)
 - Protokolle mit beschränkten Wettbewerb (limited contention)

Protokolle mit beschränktem Wettbewerb

Ziel

- geringe Verzögerung bei kleiner Last
 - wie Kollisionsprotokolle
- hoher Durchsatz bei großer Last
 - wie kollisionsfreie Protokolle

Idee

- Anpassung des Wettbewerb-Slots (contention slot) an die Anzahl der teilnehmenden Stationen
- Mehrere Stationen müssen sich dann diese Slots teilen

Adaptives Baumprotokoll Voraussetzung

- Adaptives Baumprotokoll (adaptive tree walk)
- Ausgangspunkt:
 - Binäre, eindeutige Präsentation aller Knoten (ID)
 - Dargestellt in einem Baum
 - Synchronisiertes Protokoll
 - Drei Typen können unterschieden werden:
 - Keine Station sendet
 - Genau eine Station sendet
 - Kollision: mindestens zwei
 Stationen senden

Kollision

Adaptives Baumprotokoll Basis-Algorithmus

- Basis-Algorithmus
 - Jeder Algorithmus sendet sofort (slotted Aloha)
 - Falls eine Kollision auftritt,
 - akzeptiert keine Station mehr neue Paket aus der Vermittlungsschicht
 - Führe Adaptive-Tree-Walk(ε) aus

CoNe Freiburg

Adaptives Baumprotokoll Knoten-Test

Algorithmus Knoten-Test

- für Knoten u des Baums und
- kollidierende Menge S von Station
- Knoten-Test(u)
 - Betrachte zwei Slots pro Knoten des Baums
 - Im ersten Slot senden alle Knoten aus S, die mit ID u0 anfangen
 - Im zweiten Slot senden alle Knoten aus S, die mit ID u1 anfangen

Adaptives Baumprotokoll

Kern-Algorithmus

Algorithmus Knoten-Test

- für Knoten u des Baums und
- kollidierende Menge S von Station
- Knoten-Test(u)
 - Betrachte zwei Slots pro Knoten des Baums
 - Im ersten Slot senden alle Knoten aus S, die mit ID u0 anfangen
 - Im zweiten Slot senden alle Knoten aus S, die mit ID u1 anfangen

Adaptive Tree Walk(x)

- Führe Knoten-Test(x) aus
- Falls Kollision im ersten Slot,
 - führe Adaptive-Tree-Walk(x0) aus
- Falls Kollision im zweiten Slot,
 - Führe Adaptive-Tree-Walk(x1) aus

Adaptives Baumprotokoll Beispiel (1)

Adaptives Baumprotokoll Beispiel (2)

Adaptives Baumprotokoll Beispiel (3)

Kollidierende Stationen

Adaptive-Tree-Walk

Kollidierende Stationen

Adaptives Baumprotokoll Beispiel (4)

Adaptives Baumprotokoll Beispiel (5)

Kollidierende Stationen

Systeme II

3. Die Datensicherungsschicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg