- **3.2-1.)** For $\max\{f(n), g(n)\} = \Theta(f(n) + g(n))$: $c_1(f(n) + g(n)) \le \max\{f(n), g(n)\} \le c_2(f(n) + g(n))$. Max $\{f(n), g(n)\} = f(n)$ or $g(n) \le c_2(f(n) + g(n)) = O(f(n) + g(n))$, however f(n) or $g(n) \ne O(f(n) + g(n))$. Therefore $\max\{f(n), g(n)\} \ne O(f(n) + g(n))$
- **3.2-2.)** The O-notation is only an upper bound not a tight bound essentially meaning at most. The statement is meaningless because it contradicts itself with a runtime "at least at most n²".
- **3.2-3.)** If $2^{n+1} = O(2^n)$, there must be c, $n_0 > 0$ such that $0 \le 2^{n+1} \le c2^n$. Since 2^{n+1} can be expressed as 2^*2^n , therefore $2^{n+1} = O(2^n)$ when c = 2 for all $n \ge 1$. $2^{2n} = O(2^n)$ if c, $n_0 > 0$ exists and $0 \le 2^{2n} \le c2^n$. Since $2^{2n} = 2^{n} * 2^n$, there is no such c that satisfies the definition, and $2^{2n} \ne O(2^n)$.
- **3.2-4.)** The definition of Θ -notation states for $f(n) = \Theta(g(n))$, $c_1g(n) \le f(n) \le c_2g(n)$. When $f(n) \ge c_1g(n)$, $f(n) = \Omega(g(n))$, and when $f(n) \le c_2g(n)$, f(n) = O(g(n)). Therefore when $c_1g(n) \le f(n) \le c_2g(n)$, $f(n) = \Omega(g(n)) = O(g(n))$ thus $f(n) = \Theta(g(n))$.
- **3.3-1.)** Since f(n) and g(n) are monotonically increasing, $m \le n$, $f(m) \le f(n)$, and $g(m) \le g(n)$. $f(m) + g(m) \le f(n) + g(n)$, $f(g(m)) \le f(g(n))$, and if also nonnegative, $f(m) * g(m) \le f(n) * g(n)$.
- **3.3-2.)** When $\alpha \neq 1$, the term $\lfloor \alpha n \rfloor = \lfloor \alpha \rfloor * n = 0 * n$ reduces to 0, and $\lceil (1-\alpha)n \rceil = \lceil (1-\alpha)\rceil * n = 1 * n$. When $\alpha = 1$, the term $\lfloor \alpha n \rfloor = \lfloor 1 \rfloor * n = 1 * n$, in which the term $\lceil (1-\alpha)n \rceil = \lceil (1-1)\rceil * n = 0$ reduces. Therefore $\lfloor \alpha n \rfloor + \lceil (1-\alpha)n \rceil = n$ for all real numbers α in the range $0 \leq \alpha \leq 1$.
- **3.3-4b.)** Applying lg to Stirling's approximation $\lg(n!) = \lg(\sqrt{2\pi n}(\frac{n}{e})^n(1+\Theta(\frac{1}{n}))) \Rightarrow \lg(\sqrt{2\pi n}) + n\lg(\frac{n}{e}) + \lg(1+\Theta(\frac{1}{n})) \Rightarrow \lg(\sqrt{n}) + n\lg(1+\Theta(\frac{1}{n})) + n\lg(1+\Theta(\frac{1}{n})) \Rightarrow \lg(\sqrt{n}) + n\lg(1+\Theta(\frac{1}{n})) + n\lg(1+\Theta(\frac{1}{n})) + n\lg(1+\Theta(\frac{1}{n})) + n\lg(1+\Theta(\frac{1}{n})) +$
- **3-1a.)** If $p(n) = O(n^k)$, there must be $c, n_0 > 0$ such that $0 \le p(n) \le cn^k$. Degree d polynomial p(n) can be expressed as n^d , and $k \ge d$. Since $0 \le n^d \le cn^k$ satisfies the definition of O-notation, the expression $p(n) = O(n^k)$ is true.
- **3-1b.)** If $p(n) = \Omega(n^k)$, there must be $c, n_0 > 0$ such that $0 \le cn^k \le p(n)$. Degree d polynomial p(n) can be expressed as n^d , and $k \le d$. Since $0 \le cn^k \le n^d$ satisfies the definition of Ω -notation, the expression $p(n) = \Omega(n^k)$ is true.

3-1c.) If $p(n) = \Theta(n^k)$, there must be c_1 , c_2 , $n_0 > 0$ such that $0 \le c_1 n^k \le p(n) \le c_2 n^k$. Degree d polynomial p(n) can be expressed as n^d , and k = d. Since $0 \le c_1 n^k \le n^d \le c_2 n^k$ satisfies the definition of the Θ -notation, the expression $p(n) = \Theta(n^k)$ is true.

3-2.)

	A	В	0	0	Ω	ω	Θ
a.	lg ^k n	n [€]	Yes	Yes	No	No	No
b.	n^k	c ⁿ	Yes	Yes	No	No	No
c.	\sqrt{n}	n ^{sin(n)}	No	No	No	No	No
d.	2 ⁿ	$2^{\frac{n}{2}}$	No	No	Yes	Yes	No
e.	n ^{lg(c)}	$c^{\lg(n)}$	No	No	Yes	Yes	No
f.	lg(n!)	lg(n ⁿ)	Yes	Yes	No	No	No

3-4a.) f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$, not O(f(n)), due to transpose symmetry.

3-4b.) $f(n) + g(n) = \Omega(\min\{f(n), g(n)\})$, not Θ , because there exists c, n_0 such that $0 \le \min\{f(n), g(n)\} \le f(n) + g(n)$.

3-4e.) $f(n) = O((f(n))^2)$ because there exists c, n_0 such that $0 \le f(n) \le cf(n)^2$.

3-4f.) f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$ due to transpose symmetry.

3-4g.) $f(n) = \Theta(f(n/2))$ because there is no such c_1 , c_2 , n_0 that satisfies the expression $0 \le c_1 f(n/2) \le f(n) \le c_2 f(n/2)$.

4.2-1.) 1: Matrix A B and C are partitioned into 1x1 matrices. 2: S_1 =8-2=6, S_2 =1+3=4, S_3 =7+5=12, S_4 =4-6=-2, S_5 =1+5=6, S_6 =6+2=8, S_7 =3-5=-2, S_8 =4+2=6, S_9 =1-7=-6, S_{10} =6+8=14. 3: P_1 =1*6=6, P_2 =4*2=8, P_3 =12*6=72, P_4 =5*-2=-10, P_5 =6*8=48, P_6 =-2*6=-12, P_7 =-84. 4: C_{11} = 48-10-8-12 = 18. C_{12} = 6+8 = 14. C_{21} = 72-10 = 62, C_{22} = 48+6-72+84 = 66.

4.2-5.) The multiplication of complex numbers (a + bi)*(c + di) can be done with an algorithm taking a b c and d as inputs, multiplying real numbers ac, ad, bc and imaginary numbers bd. The real component ac-bd and the imaginary component ad+bc would each be returned.

- 4.3-1a.)
- 4.3-1b.)
- 4.3-1c.)
- **4.5-1a.)** When $T(n) = 2T(\frac{n}{4}) + 1$, a = 2, b = 4, and f(n) = 1. This implies $n^{\log 4(2)} = \Theta(\sqrt{n})$, $f(n) = 1 = O(n^{(1/2) \epsilon})$ with $\epsilon = \frac{1}{2}$, the first case of the master theorem is applied, and $T(n) = \Theta(\sqrt{n})$.
- **4.5-1b.)** When $T(n) = 2T(\frac{n}{4}) + \sqrt{n}$, a=2, b=4, and $f(n) = \sqrt{n}$. This implies $n^{\log 4(2)} = \Theta(\sqrt{n})$, $f(n) = \sqrt{n} = \Theta(\sqrt{n} \cdot \lg^0 n)$, the second case of the master theorem is applied, and $T(n) = \Theta(\sqrt{n} \cdot \lg n)$.
- **4.5-1d.)** When $T(n) = 2T(\frac{n}{4}) + n$, a = 2, b = 4, and f(n) = n. This implies $n^{\log 4(2)} = \Theta(\sqrt{n})$, $f(n) = n = \Omega(n^{(1/2) + \epsilon})$ with $\epsilon = \frac{1}{2}$, the third case of the master theorem is applied, thus the regularity condition $af(\frac{n}{b}) \le cf(n)$ must be satisfied. The term $af(\frac{n}{b}) = 2*\frac{n}{4} = \frac{2n}{4}$ and when $c = \frac{2}{4}$, $cf(n) = \frac{2n}{4}$, and $T(n) = \Theta(n)$.
- **4.5-1e.)** When $T(n) = 2T(\frac{n}{4}) + n^2$, a = 2, b = 4, and $f(n) = n^2$. This implies $n^{\log 4(2)} = \Theta(\sqrt{n})$, $f(n) = n^2 = \Omega(n^{(\frac{1}{2}) + \epsilon})$ with $\epsilon = \frac{3}{2}$, the third case of the master theorem is applied, thus the regularity condition $af(\frac{n}{b}) \le cf(n)$ must be satisfied. The term $af(\frac{n}{b}) = 2*(\frac{n}{4})^2 = \frac{2n}{8}$ and when $c = \frac{2}{8}$, $cf(n) = \frac{2n}{8}$, and $T(n) = \Theta(n^2)$.
- **4.5-3.)** When $T(n) = T(\frac{n}{2}) + \Theta(1)$, a=1, b=2, and $f(n) = \Theta(1)$. This implies $n^{\lg(1)} = \Theta(n^0) = \Theta(1)$, $f(n) = \Theta(1) = \Theta(1*\lg^0 n)$, the second case of the master theorem is applied, and $T(n) = \Theta(1*\lg^1 n) = \Theta(\lg n)$.
- **Proof1.)** If a non-empty finite set S of positive integers has only 1 element n, it is the least element and the base case holds. If a non-empty finite set S of positive integers has at least n+1 elements, for some $x \in S$, x is either the least element of S, or there exists some $y \in S$, where $y \in S$, in such case y is the least element of S. The base and inductive cases show every non-empty finite set contains a least element.
- **Proof2.)** If a non-empty set S of positive integers does not contain a least element, then for any positive integer $n \in S$ there must be an $x \in S$ such that x < n, creating a sequence of positive integers in S continuously smaller than the previous. This will continue indefinitely, however an

infinite sequence of positive integers must reach 1, with no other positive integer smaller than it. Therefore any non-empty set of S of positive integers must contain a least element, even if infinite.