Fizika doga 2

Az áramerősség

- Jele: I
- I = Q/t illetve P/U
- Mértékegysége: A

Feszültség

- Jele: U
- Mértékegysége: V
- U = P/I, W/Q

Ellenállás

- Jele: R
- Mértékegység: Ω (görög nagy omega)
- R = U/I Ω= V/A

Fémes vezetők ellenállása-fajlagos ellenállás

- Egyenesen arányos a vezető l hosszával Fordítottan arányos a vezető A keresztmetszetével
- Függ a vezető anyagi minőségétől
- R = ρ * I/A ahol ρ a vezető anyagára jellemző arányossági tényező, a fajlagos ellenállás.
- $\rho = \Omega m$
- Pl réz fajlagos ellenállása: 1,78 10-6Ωm

Az elektromos áram munkája és hőhatása

- Munka jele: W
- W= U / (delta)t
- Mértékegysége: J --> J = V A s

- A munka egyenlő a fogyasztó által környezetének leadott Qle hővel.
- Tehát Qle = U / (delta)t

Teljesítmény

- Jele: P
- Mértékegysége: W
- P=W/t=U / t/t=U * I
- Egyenáram esetén:
 - $P = U / (/2 R = U^2 / R)$

 - W = V * A (tehát VA)P=W (watt) -> 1W=1VA

Fogyasztók kapcsolása

Soros:

- Az áramerősségek megegyeznek ($I = I_1 = I_2$)
- A feszültségek összeadódnak ($U = U_1 + U_2$)
- $R_e = soros eredő ellenállás (R_e = R_1 + R_2) tehát egyenlő a részellenállások$ összegével
- Az áram feszültsége az ellenállások arányában eloszlik a fogyasztókon
- U1/R1=U2/R2
 - U1/U2 = R1/R2

Párhuzamos:

- |1+|2+|3=|4+|5|
- Befolyó áramerősség összege == kifolyó áramerősség összegével
- $U = U_1 = U_2 = U_3$
- $U/R_e = U/R_1 + U/R_2 + U/R_3$
 - $1/R_e = 1/R_1 + 1/R_2 + 1/R_3$
 - $R_1 / = R_2 I_2 = R_3 * I_3 (fordított arányos)$

Mérőműszerek mérőhatásának kiterjesztése

- Ideális ampermérő: Ra << R
- Ideális voltmérő: R_v >> R

Ampermérő kiterjesztése

- R_s = sont ellenállás
- $U_a = UR_s$
- $R_a /= R_s (n-1) * I$
- $R_s = R_a/(n-1)$

Ideális voltmérő kiterjesztése

- Re = Előtét ellenállás
- $I_{v} = I_{re}$
- $U/R_v = (n-1) * U/R_e$
 - $R_e = (n-1) * R_v$

Áramforrás belső ellenállása

Ohm Törvény teljes áramkörre

- $R_{\beta} <<< R_k (fogyasztó)$
- $U0 = U_{\beta} + U_{k}$ (üresjárati feszültség)
- OHM törvénye teljes áramkörre:
 - $U0 = I R_k + / R_{\beta}$
 - $I = U0/(R_k + R_\beta)$
- Üresjárati feszültség = U_k=U0 ha nincs fogyasztó
 - I = 0
 - $R_{\beta} = 0$
- Rövid zár esete
 - $U_k = 0$
 - $I_{max} = U0/R_{\beta}$
 - $U_{\beta} = U_{0}$
- Kapocsfeszültség

•
$$U_k = U0-I * R_\beta$$

Feladatok

1064 Mekkora az R ellenállás, ha R_1 = 10 Ω , R_2 = 25 Ω , R_3 = 30 Ω és a rendszer eredő ellenállása 15 Ω ? (R =10 Ω)

R₁ R₂ B