

IP PARIS

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance

école normale supérieure paris-saclay UNIVERSITE PARIS-SACLAY

{kimia.nadjahi,umut.simsekli,roland.badeau}@telecom-paris.fr, alain.durmus@cmla.ens-cachan.fr

Kimia Nadjahi¹, Alain Durmus², Umut Şimşekli^{1,3}, Roland Badeau¹

1: LTCI, Télécom Paris, Institut Polytechnique de Paris 2: CMLA, ENS Paris-Saclay 3: Department of Statistics, University of Oxford

Minimum Distance Estimation

- Observations $Y_{1:n} = (Y_1, \dots, Y_n), Y_i \in Y \subset \mathbb{R}^d$, i.i.d. from $\mu_{\star} \in \mathcal{P}(Y)$, with $\mathcal{P}(Y)$: set of probability measures on Y.
- A family of distributions on Y parameterized by $\theta \in \Theta \subset \mathbb{R}^{d_{\theta}}$: $\mathcal{M} = \{ \mu_{\theta} \in \mathcal{P}(\mathsf{Y}), \ \theta \in \Theta \}.$
- Purely generative models: We can generate $m \in \mathbb{N}^*$ i.i.d. samples from μ_{θ} , but the likelihood is intractable. $\hat{\mu}_{\theta,m}$ is the empirical distribution.

Given $Y_{1:n}$, its empirical distribution $\hat{\mu}_n$ and a distance **D** on $\mathcal{P}(\mathsf{Y})$, we perform Minimum Distance Estimation (MDE):

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathbf{D}(\hat{\mu}_n, \mu_\theta)$$
 (1)

or Minimum Expected Distance Estimation (MEDE):

$$\hat{\theta}_{n,m} = \operatorname{argmin}_{\theta \in \Theta} \mathbb{E} \left[\mathbf{D}(\hat{\mu}_n, \hat{\mu}_{\theta,m}) | Y_{1:n} \right]$$
 (2)

Optimal Transport (OT) Metrics

For $p \geq 1$, $\mathcal{P}_p(Y)$: set of probability measures on Y with finite p'th moment. Let $\mu, \nu \in \mathcal{P}_p(\mathsf{Y})$.

Wasserstein distance (W_p) . Computationally expensive, except in 1d $(Y \subset \mathbb{R}) \to \text{analytical form.}$

Sliced-Wasserstein (SW) distance.

 \mathbb{S}^{d-1} : d-dimensional unit sphere, σ : uniform distribution on \mathbb{S}^{d-1} .

Practical metric based on projections: $\forall u \in \mathbb{S}^{d-1}, y \in \mathbf{Y}, \ u^{\star}(y) = \langle u, y \rangle$

Image adapted from Kolouri et al. 2016

 $\mathbf{SW}_p^p(\mu,\nu) = \int_{\mathbb{S}^{d-1}} \mathbf{W}_p^p(u_{\sharp}^{\star}\mu, u_{\sharp}^{\star}\nu) d\boldsymbol{\sigma}(u)$

Combining MDE and OT

Minimum Wasserstein estimators, defined in (1) and (2) with $\mathbf{D} = \mathbf{W}_p$, have asymptotic guarantees [1] but are not practical.

 \Rightarrow With $\mathbf{D} = \mathbf{SW}_p$ in (1) and (2), we get the minimum (expected) SW estimators (M(E)SWE) of order p.

Recent studies show the empirical success of SW-based estimators on generative modeling, but lack of theoretical guarantees.

 \Rightarrow We investigate the asymptotic properties of these estimators.

Theoretical Results

The convergence in \mathbf{SW}_p implies the weak convergence in $\mathcal{P}(\mathbb{R}^d)$.

Key assumptions.

- Continuity: For any $(\theta_n)_{n\in\mathbb{N}}$ in Θ such that $\lim_{n\to+\infty} \rho_{\Theta}(\theta_n,\theta) = 0$,
 - **A1.** $(\mu_{\theta_n})_{n\in\mathbb{N}}$ converges weakly (\xrightarrow{w}) to μ_{θ} .
 - **A2.** $\lim_{n\to+\infty} \mathbb{E}[\mathbf{SW}_p(\mu_{\theta_n}, \hat{\mu}_{\theta_n,n})|Y_{1:n}] = 0.$
- Data-generating process:
 - **A3.** $\lim_{n\to+\infty} \mathbf{SW}_p(\hat{\mu}_n, \mu_{\star}) = 0$, \mathbb{P} -almost surely.
- Bounded sets: For some $\epsilon > 0$,
 - **A4.** $\Theta_{\epsilon}^{\star} = \{\theta \in \Theta : \mathbf{SW}_{p}(\mu_{\star}, \mu_{\theta}) \leq \epsilon_{\star} + \epsilon\}, \text{ with } \epsilon_{\star} =$ $\inf_{\theta \in \Theta} \mathbf{SW}_p(\mu_{\star}, \mu_{\theta})$, is bounded.
 - **A5.** $\Theta_{\epsilon,n} = \{\theta \in \Theta : \mathbf{SW}_p(\hat{\mu}_n, \mu_\theta) \leq \epsilon_n + \epsilon\}, \text{ with } \epsilon_n = \mathbf{SW}_p(\hat{\mu}_n, \mu_\theta) \leq \epsilon_n + \epsilon\}$ $\inf_{\theta\in\Theta} \mathbf{SW}_p(\hat{\mu}_n,\mu_\theta)$, is bounded almost surely.

Existence and consistency of MSWE

Assume A1, A3, A4. Then, there exists E with $\mathbb{P}(\mathsf{E}) = 1$ such that, for all $\omega \in \mathsf{E}$,

$$\lim_{n \to +\infty} \inf_{\theta \in \Theta} \mathbf{SW}_p(\hat{\mu}_n(\omega), \mu_{\theta}) = \inf_{\theta \in \Theta} \mathbf{SW}_p(\mu_{\star}, \mu_{\theta}),$$

 $\limsup \operatorname{argmin}_{\theta \in \Theta} \mathbf{SW}_p(\hat{\mu}_n(\omega), \mu_{\theta}) \subset \operatorname{argmin}_{\theta \in \Theta} \mathbf{SW}_p(\mu_{\star}, \mu_{\theta})$ $n \rightarrow +\infty$

Besides, for all $\omega \in \mathsf{E}$, there exists $n(\omega)$ such that, for all $n \geq n(\omega)$, $\operatorname{argmin}_{\theta \in \Theta} \mathbf{SW}_p(\hat{\mu}_n(\omega), \mu_{\theta})$ is non-empty.

Guarantees for MESWE. Existence and consistency (with A1 to A4), convergence to MSWE as $m \to \infty$ (A1, A2, A5).

Central limit theorem for MSWE with p=1

Consider A1, A3, A4, $\mu_{\star} = \mu_{\theta_{\star}}$ (with $\theta_{\star} \in \Theta$ well-separated) and $H: \theta \mapsto \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} |G_{\star}(u,t) - \langle \theta, D_{\star}(u,t) \rangle | dt d\boldsymbol{\sigma}(u), \text{ with }$

- $\sqrt{n}(\hat{F}_n F_{\theta_{\star}}) \xrightarrow{w} G_{\star}$, where \hat{F}_n and $F_{\theta_{\star}}$ contain the CDFs of the projected $\hat{\mu}_n$ and μ_{θ_*}
- $D_{\star}(u,\cdot)$: the "derivative" of $F_{\theta}(u,\cdot)$ in θ_{\star}

 $\sqrt{n} \inf_{\theta \in \Theta} \mathbf{SW}_1(\hat{\mu}_n, \mu_\theta) \xrightarrow{w} \inf_{\theta \in \Theta} H(\theta),$ Then,

 $\sqrt{n}(\hat{\theta}_n - \theta_\star) \xrightarrow{w} \operatorname{argmin}_{\theta \in \Theta} H(\theta), \text{ as } n \to +\infty$

 \Rightarrow Convergence rate of \sqrt{n} independent of the dimension

Numerical Experiments

• Multivariate Gaussians.

MSWE vs. n

MESWE vs. n = m

MESWE, n = 2000 vs. m

• Multivariate elliptically contoured stable distributions.

 $\mathcal{M} = \{ \mathcal{E} \alpha \mathcal{S}_c(\mathbf{I}, \mathbf{m}) : \mathbf{m} \in \mathbb{R}^d \} \text{ with } \alpha = 1.8, \text{ and } \mathbf{m}_{\star} = 2.$

• High-dimensional real data.

We train the Sliced-Wasserstein Generator [2] (based on MESWE), on MNIST.

We plot the mean-squared error between the training/test loss obtained for (n, m) $(\text{from } (1,1) \text{ to } (10\ 000,60)) \text{ and for }$ $(n^*, m^*) = (60\,000, 200).$

Main References

- [1] E. Bernton, P. E. Jacob, M. Gerber, C. P. Robert. On parameter estimation with the Wasserstein distance. Information and Inference: A Journal of the IMA, Jan 2019.
- [2] I. Deshpande, Z. Zhang, A. G. Schwing. Generative modeling using the sliced Wasserstein distance. CVPR 2018.