Chapitre 27

Séries numériques

27	Séries numériques	1
	27.6 Série géométrique	2
	27.11Deux séries de termes généraux égaux presque partout	2
	27.12CN de convergence portant sur le terme général	
	27.16Théorème de comparaison des séries à termes positifs	2
	27.20Convergence absolue entraı̂ne convergence	3
	27.23Comparaison des séries par domination ou négligabilité	3
	27.24Comparaison des séries à termes positifs par équivalence	
	27.25Théorème de comparaison entre série et intégrale	4
	27.29Nature des séries de Riemann	5
	27.30 Nature des séries exponentielles	5
	27.32Nature des séries de Bertrand - Hors Programme	6
	27.35Règle d'Alembert - Hors Programme	
	27.39Critère spécial des séries alternées	7

27.6 Série géométrique

Théorème 27.6

Soit $a \in \mathbb{C}$. La série $\sum a^n$ converge si et seulement si |a| < 1. Dans ce cas :

$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$$

Soit $n \in \mathbb{N}$.

$$S_n = \sum_{k=0}^n a^k = \frac{1 - a^{n+1}}{1 - a} \ (a \neq 1)$$

$$\underset{n \to +\infty}{\longrightarrow} \frac{1}{1 - a} \ (|a| < 1)$$

La série converge et $\sum_{n\geq 0} a^n = \frac{1}{1-a}$.

27.11 Deux séries de termes généraux égaux presque partout

Propostion 27.11

Si (u_n) et (v_n) ne diffèrent que d'un nombre fini de termes, alors $\sum u_n$ et $\sum v_n$ sont de même nature.

On note $A = \{n \in \mathbb{N}, u_n \neq v_n\}$. Supposons $A \neq \emptyset$.

D'après les hypothèses, A est majoré donc possède un maximum N d'après la propriété fondamentale de \mathbb{N} . On note (S_n) et (S'_n) les sommes partielles associée à $\sum u_n$ et $\sum v_n$. Pour $n \geq N$:

$$S_n = S'_n + K$$
 où $K = \sum_{k \in A} (u_k - v_k)$ (constant)

Ainsi (S_n) converge si et seulement si (S'_n) converge.

27.12 CN de convergence portant sur le terme général

${ m Th\'eor\`eme}~27.12$

Si $\sum u_n$ converge, alors (u_n) converge vers 0. De manière équivalente, si (u_n) ne tend pas vers 0, la série $\sum u_n$ diverge.

On suppose que $S_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$ ou \mathbb{C} .

$$u_n = S_n - S_{n-1} = \ell - \ell = 0$$

27.16 Théorème de comparaison des séries à termes positifs

Théorème 27.16

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles qu'il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$:

$$0 \le u_n \le v_n$$

Alors:

— Si $\sum v_n$ converge, alors $\sum u_n$ converge aussi.

— Si $\sum u_n$ diverge (vers $+\infty$ donc), alors $\sum v_n$ diverge aussi (vers $+\infty$ donc).

De plus, si la divergence est grossière pour $\sum u_n$, elle l'est aussi pour $\sum v_n$.

En utilisant les notations du (27.11), on peut supposer que :

$$\forall n \geq 0, 0 \leq u_n \leq v_n$$

Puis:

$$\forall n \geq 0, 0 \leq S_n \leq S'_n$$

On utilise alors le théroème de comparaison sur les suites.

27.20 Convergence absolue entraîne convergence

Théorème 27.20

Toute série réelle ou complexe absolument convergente est convergente.

— On suppose que $(u_n) \in \mathbb{R}^{\mathbb{N}}$, avec $\sum |u_n|$ convergente.

On pose, pour tout $n \in \mathbb{N}$:

$$u_n^+ = \max(u_n, 0) \ge 0 \text{ et } u_n^- = \max(-u_n, 0) \ge 0$$

Ainsi, $u_n = u_n^+ - u_n^-$.

Or, pour tout n:

$$0 \le u_n^+ \le |u_n|$$

$$0 \le u_n^- \le |u_n|$$

Par comparaison des séries à termes positifs, $\sum u_n^+$ et $\sum u_n^-$ convergent et par linéarité (27.16) $\sum u_n$ converge.

— On suppose que $(u_n) \in \mathbb{C}^{\mathbb{N}}$, avec $\sum |u_n|$ convergente. Alors:

$$\forall n \in \mathbb{N}, |Re(u_n)| \le |u_n|$$

 $|Im(u_n)| \le |u_n|$

Donc, $\sum Re(u_n)$ et $\sum Im(u_n)$ sont absolument convergentes (27.15) donc convergent, puis par combinaison linéaire (27.16) $\sum u_n$ converge.

27.23 Comparaison des séries par domination ou négligabilité

${ m Th\'eor\`eme}~27.23$

Soit $\sum u_n$ une série à termes quelconques et $\sum v_n$ une série à termes positifs telles que $u_n = O(v_n)$ (ou $u_n = o(v_n)$). Alors :

— La convergence de $\sum v_n$ entraı̂ne la convergence absolue de $\sum u_n$.

— La divergence de $\sum u_n$ (celle de $\sum |u_n|$ suffit) entraı̂ne la divergence de $\sum v_n$.

On suppose $u_n = O(v_n)$ avec $v_n \ge 0$.

— On suppose que $\sum v_n$ converge. On a $|u_n| = O(v_n)$ donc à partir d'un certain rang :

$$0 \le |u_n| \le Mv_n$$

D'après le théorème de comparaison par majoration des séries à termes positifs, $\sum |u_n|$ converge donc $\sum u_n$ converge.

— Si $\sum |u_n|$ diverge, par comparaison par minoration des séries à termes positifs, $\sum v_n$ diverge.

27.24 Comparaison des séries à termes positifs par équivalence

${ m Th\'eor\`eme}$ 27.24

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs. Si $u_n \underset{n \to +\infty}{\sim} v_n$, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Si $u_n \underset{n \to +\infty}{\sim} v_n$, alors $u_n = O(v_n)$ et $v_n = O(u_n)$.

On conclut avec (27.23).

27.25 Théorème de comparaison entre série et intégrale

Théorème 27.25

Soit $a \in \mathbb{R}$ et soit $f: [a; +\infty[\to \mathbb{R}$ une fonction décroissante et positive. Alors $\sum f(n)$ converge si et seulement si $\int_a^{+\infty} f(t) dt$ converge aussi (i.e. $\lim_{x \to +\infty} \int_a^x f(t) dt$ existe et est finie).

D'après le TLM $(f \ge 0)$, $\lim_{x \to +\infty} \int_a^x f(t) dt$ existe dans $\mathbb{R} \cup \{+\infty\}$ et :

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt = \lim_{n \to +\infty} \int_{a}^{n} f(t) dt$$

Soit $n_0 \in \mathbb{N}$ avec $n_0 \ge a$. $\int_a^{+\infty} f(t) dt$ et $\int_{n_0}^{+\infty} f(t) dt$ sont de même nature. Comme f est décroissante, pour tout $n \ge n_0$:

$$f(n+1) \le \int_n^{n+1} f(t) dt \le f(n)$$

Donc par Chasles:

$$\underbrace{\sum_{k=n_0}^{n} f(k+1)}_{n_1} \le \int_{n_0}^{n+1} f(t) dt \le \sum_{k=n_0}^{n} f(k)$$

D'après le TLM:

- Si $\sum (f_n)$ converge, alors $\lim_{n \to +\infty} \int_{n_0}^{n+1} f(t) dt \in \mathbb{R}_+$.
- Si $\lim_{n \to +\infty} \int_{n_0}^{n+1} f(t) dt \in \mathbb{R}_+$, alors $\sum (f_n)$ converge.

Exercice 1

Exercice 27.1

En utilisant le théorème de comparaison, déterminer la nature de la série de terme général $u_n = \left(\frac{1}{n}\right)^{1+\frac{1}{n}}$.

$$u_n = \left(\frac{1}{n}\right)^{1+\frac{1}{n}}$$

$$= \frac{1}{n}e^{o(1)}$$

$$\geq \frac{1}{2n} \text{ à partir d'un certain rang}$$

Par comparaison des séries à termes positifs, $\sum u_n$ diverge.

Exercice 2

Exercice 27.2

En utilisant un théorème de comparaison par domination ou négligabilité, déterminer la nature de la série de terme général :

$$u_n = \frac{e - \left(1 + \frac{1}{n}\right)^n}{n^{\frac{3}{2}} - |n^{\frac{3}{2}}| + n}$$

$$u_n = \frac{e - \left(1 + \frac{1}{n}\right)^n}{n^{\frac{3}{2}} - \left\lfloor n^{\frac{3}{2}} \right\rfloor + n}$$

$$\stackrel{=}{\underset{n \to +\infty}{=}} \frac{e - \exp\left(n \ln\left(1 + \frac{1}{n}\right)\right)}{O(1) + n}$$

$$\stackrel{=}{\underset{n \to +\infty}{=}} \frac{e - \exp\left(1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)\right)}{n + o(n)}$$

$$\stackrel{=}{\underset{n \to +\infty}{=}} \frac{e - e \times \exp\left(-\frac{1}{2n} + o\left(\frac{1}{n}\right)\right)}{n + o(n)}$$

$$\stackrel{=}{\underset{n \to +\infty}{=}} \frac{e - e\left(1 - \frac{1}{2} + o\left(\frac{1}{n}\right)\right)}{n + o(n)}$$

Par comparaison par \sim , $\sum u_n$ est convergent.

27.29 Nature des séries de Riemann

Soit $\alpha \in \mathbb{R}$. La série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

- Si $\alpha < 0$, la divergence est grossière.
- On a montré que $\sum \frac{1}{n}$ diverge.
- Si α ∈]0,1] :

$$0 < \frac{1}{n} < \frac{1}{n^{\alpha}}$$

- Donc $\sum \frac{1}{n^{\alpha}}$ diverge d'après le théorème de comparaison des séries à termes positifs. Soit $\alpha > 1$, $t \mapsto \frac{1}{t^{\alpha}}$ est décoroissante et positive sur $[1, +\infty[$.

$$\int_{1}^{x} \frac{1}{t^{\alpha}} dt = \left[\frac{1}{(-\alpha + 1)t^{\alpha - 1}} \right]_{1}^{x}$$
$$= \frac{1}{(1 - \alpha)x^{\alpha - 1}} - \frac{1}{(1 - \alpha)}$$
$$\xrightarrow{x \to +\infty} \frac{1}{1 - \alpha}$$

Par comparaison série intégrale, $\sum \frac{1}{n^{\alpha}}$ converge.

27.30 Nature des séries exponentielles

Pour tout $x \in \mathbb{R}$, la série exponentielle $\sum_{n>0} \frac{x^n}{n!}$ est absolument convergente et sa somme vaut e^x .

— Pour tout $x \in \mathbb{R}$:

$$\frac{x^n}{n!} = o\left(\frac{1}{n^2}\right)$$

Par comparaison par domination à une série de Riemann de paramètre 2 > 1, $\sum_{n \ge 0} \frac{x^n}{n!}$ est absolument convergente.

Soit $x \in \mathbb{R}$, $\exp \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$, on applique la formule de Taylor avec reste intégral : Pour tout $n \in \mathbb{N}$:

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{t} dt$$

On pose $M = \max(1, e^x)$.

$$\left| \int_0^x \frac{(x-t)^n e^t}{n!} dt \right| \le \pm \int_0^x \frac{(x-t)^n}{n!} M dt$$

$$= M \frac{|x|^{n+1}}{(n+1)!}$$

$$\xrightarrow{n \to +\infty} 0$$

27.32 Nature des séries de Bertrand - Hors Programme

Propostion 27.32 - HP

La série de Bertrand de paramètre $(\alpha, \beta) \in \mathbb{R}^2$ est définie par $\sum \frac{1}{n^{\alpha} \ln^{\beta} n}$. Elle est convergente si et seulement si $(\alpha, \beta) > (1, 1)$ pour l'ordre lexicographique. Cela signifie :

- si $\alpha > 1$, la série converge
- si $\alpha < 1$, la série diverge
- pour $\alpha = 1$:
 - si $\beta > 1$, la série converge
 - si $\beta \leq 1$, la série diverge
- Si $\alpha > 1$, alors pour tout $\beta \in \mathbb{R}$:

$$\frac{1}{n^{\alpha} \ln^{\beta} n} = o\left(\frac{1}{n^{\frac{\alpha+1}{2}}}\right)$$

- Comme $\frac{1+\alpha}{2} > 1$, par comparaison en $0, \sum \frac{1}{n^{\alpha} \ln^{\beta} n}$ converge.
- Si $\alpha < 1$, alors pour tout $\beta \in \mathbb{R}$:

$$\frac{1}{n^{\frac{\alpha+1}{2}}} = o\left(\frac{1}{n^{\alpha \ln^{\beta} n}}\right)$$

- Comme $\frac{\alpha+1}{2} < 1$, par comparaison en $0, \sum \frac{1}{n^{\alpha} \ln^{\beta} n}$ diverge.
- Si $\alpha = 1$. Pour $\beta = 1$, $\sum \frac{1}{n \ln n}$ diverge (comparaison série intégrale). Pour $\beta < 1$:

$$\frac{1}{n \ln n} < \frac{1}{n \ln^{\beta} n}$$

 $\sum \frac{1}{n \ln n}$ diverge donc par comparaison des séries à termes positifs, $\sum \frac{1}{n \ln^{\beta} n}$ diverge. Pour $\beta > 1$, $t \mapsto \frac{1}{t \ln^{\beta} t}$ est positive et décroissante sur $[2, +\infty[$.

$$\int_2^x \frac{dt}{t \ln^\beta t} = \int_2^x \frac{1}{t} \times (\ln t)^{-\beta} dt = \left[\frac{(\ln t)^{1-\beta}}{1-\beta} \right]_2^x \underset{x \to +\infty}{\longrightarrow} \frac{\ln(2)^{1-\beta}}{\beta - 1}$$

Par comparaison série intégrale, $\sum \frac{1}{n \ln^{\beta} n}$ converge.

27.35 Règle d'Alembert - Hors Programme

Théorème 27.35 - HP

Soit $\sum u_n$ à termes quelconques non nuls. On suppose que $\left(\left|\frac{u_{n+1}}{u_n}\right|\right)$ admet une lite (finie) ℓ . Alors:

- 1. si $0 \le \ell < 1$, alors $\sum u_n$ converge absolument
- 2. si $\ell > 1$, alors $\sum u_n$ diverge grossièrement
- 3. si $\ell = 1$, on ne peut rien dire

$$\left| \frac{u_{n+1}}{u_n} \right| \underset{n \to +\infty}{\longrightarrow} \ell \in [0, 1[]$$

A partir d'un rang n_0 :

$$\left| \frac{u_{n+1}}{u_n} \right| \le \frac{\ell+1}{2}$$

On a directement:

$$0 \le |u_n| \le \underbrace{\left(\frac{\ell+1}{2}\right)^{n-n_0} \times |u_{n_0}|}_{}$$

terme général d'une série géométrique de raison $\frac{\ell+1}{2}$

Par comparaison des séries à termes positifs, $\sum u_n$ est absolument convergente donc convergente.

- Même raisonnement si $\ell > 1$.
- $\frac{1}{n^2}$ et $\frac{1}{n}$ fournissent des contre-exemples.

27.39 Critère spécial des séries alternées

Théorème 27.39

Toute série alternée est convergente.

Soit $\sum (-1)^n a_n$ une série alternée. Ainsi, $a_n \ge 0$ pour tout $n \ge 0$. (a_n) est décroissante et $a_n \xrightarrow[n \to +\infty]{} 0$. On note (S_n) la suite des sommes partielles associée à cette série. Montrons que (S_{2n}) et (S_{2n+1}) sont adjacentes.

$$\forall n \ge 0, S_{2n+1} - S_{2n} = (-1)^{2n+1} a_{2n+1}$$
 $\xrightarrow{n \to +\infty} 0$

— Pour $n \geq 0$:

$$S_{2n+3} - S_{2n+1} = (-1)^{2n+3} a_{2n+3} + (-1)^{2n+2} a_{2n+2}$$
$$= a_{2n+2} - a_{2n+3}$$
$$\ge 0$$

$$S_{2n+2} - S_{2n} = (-1)^{2n+2} a_{2n+2} + (-1)^{2n+1} a_{2n+1}$$
$$= a_{2n+1} - a_{2n+2}$$
$$\le 0$$

Les suites (S_{2n+1}) et (S_{2n}) sont adjacentes, donc elles convergent vers une limite commune. Donc (S_n) converge, donc $\sum (-1)^n a_n$ converge.