# Les données numériques: toutes des nombres! Métriques de classification

#### Diane Lingrand



2022 - 2023

#### But du TP aujourd'hui

- sounds classification into 3 classes: 'cat', 'dog' and 'bird' from the Speech Commands Dataset
  - 200 sounds per class for training, 200 other sounds per class for testing
  - 1 sound is described by a single MFCC vector (duration of the sound)
  - classification algorithm is kNN
    - which k value?
- How to evaluate the classification?
  - qualitative evaluation
  - quantitative evaluation : compute metrics on the test set

#### Evaluation d'une classification binaire : positifs et négatifs

vrais positifs (VP) : données positives calculées comme positives vrais négatifs (VN) : données négatives calculées comme négatives faux positifs (FP) : données négatives calculées comme positives faux négatifs (FN) : données positives calculées comme négatives

Matrice de confusion :

|         |         | classes estimées |         |  |  |
|---------|---------|------------------|---------|--|--|
|         |         | positif          | négatif |  |  |
| classes | positif | 9                | 1       |  |  |
| réelles | négatif | 1                | 9       |  |  |



## Vrais faux positifs négatifs

vrais positifs (VP) : données positives calculées comme positives vrais négatifs (VN) : données négatives calculées comme négatives faux positifs (FP) : données négatives calculées comme positives faux négatifs (FN) : données positives calculées comme négatives

précision (accuracy) : 
$$\frac{VP+VN}{P+N} = \frac{VP+VN}{VP+FP+VN+FN}$$
 sensibilité, rappel (recall, taux de VP :  $\frac{VP}{VP+FN}$  spécificité, sélectivité, taux de VN :  $\frac{VN}{VN+FP}$  précision (precision), v. de préd. pos. :  $\frac{VP}{VP+FP}$  valeur de prédiction négative :  $\frac{VN}{VN+FN}$ 

F-mesure (F1 score):  $2 \frac{\text{pr\'ecision.rappel}}{\text{pr\'ecision+rappel}} = \frac{2VP}{2VP+FP+FN}$ 



#### Métriques pour la classification multi-classes

- précision accuracy : fraction des prédictions correctes
- mesure F1: plusieurs options sont disponibles, entre autres:
  - 'micro' : calcul global des VP, FP, FN
  - None : une valeur de score F1 est calculée pour chaque classe
    - classe considérée comme positive, les autres classes étant alors considérées comme négatives
  - 'macro' : calcul du score pour chaque classe et moyenne de ces scores
- rappel recall : mêmes options que pour F1

- classes équilibrées : chaque (vraie) classe contient le même nombre de données
- classification binaire
  - classification aléatoire : 1 chance sur 2 d'être positif

- classes équilibrées : chaque (vraie) classe contient le même nombre de données
- classification binaire
  - classification aléatoire : 1 chance sur 2 d'être positif
    - ullet VP = FP = VN = VP = 0.5 = toute métrique

• example de classification :

|         |         | classes estimees |         |
|---------|---------|------------------|---------|
|         |         | positif          | négatif |
| classes | positif | 80               | 20      |
| réelles | négatif | 10               | 90      |

- classes équilibrées : chaque (vraie) classe contient le même nombre de données
- classification binaire
  - classification aléatoire : 1 chance sur 2 d'être positif

$$ullet$$
 VP = FP = VN = VP = 0.5 = toute métrique

• VP = 80, VN = 90, FN = 20, FP = 10

- classes équilibrées : chaque (vraie) classe contient le même nombre de données
- classification binaire
  - classification aléatoire : 1 chance sur 2 d'être positif

$$ullet$$
 VP = FP = VN = VP = 0.5 = toute métrique

- VP = 80, VN = 90, FN = 20, FP = 10
- rappel = 0.8, accuracy = 0.85, F1 = 16/19 = 0.84

- classification multi-classes
  - example : cas de 3 classes équilibrées
  - classification aléatoire : 1 chance sur 3 d'être de la classe 0

- classification multi-classes
  - example : cas de 3 classes équilibrées
  - classification aléatoire : 1 chance sur 3 d'être de la classe 0
    - accuracy = 1/3, rappel(micro) = 30/90 = 1/3, F1(micro) = 1/3

- classification multi-classes
  - example : cas de 3 classes équilibrées
  - classification aléatoire : 1 chance sur 3 d'être de la classe 0
    - accuracy = 1/3, rappel(micro) = 30/90 = 1/3, F1(micro) = 1/3
    - n classes équilibrées

- classification multi-classes
  - example : cas de 3 classes équilibrées
  - classification aléatoire : 1 chance sur 3 d'être de la classe 0
    - accuracy = 1/3, rappel(micro) = 30/90 = 1/3, F1(micro) = 1/3
    - n classes équilibrées
    - accuracy = 1/n, rappel(micro) = 1/n, F1(micro) = 1/n

- classification multi-classes
  - example : cas de 3 classes équilibrées
  - classification aléatoire : 1 chance sur 3 d'être de la classe 0
    - accuracy = 1/3, rappel(micro) = 30/90 = 1/3, F1(micro) = 1/3
    - n classes équilibrées
    - accuracy = 1/n, rappel(micro) = 1/n, F1(micro) = 1/n
  - example de classification :

|         |          | classes estimées |          |          |
|---------|----------|------------------|----------|----------|
|         |          | classe 0         | classe 1 | classe 2 |
| classes | classe 0 | 70               | 10       | 20       |
| réelles | classe 1 | 10               | 90       | 0        |
|         | classe 2 | 5                | 15       | 80       |

 Vu que la classe 'George W Bush' est majoritaire, il peut être tentant de construire un classifieur qui réponde toujours 'George W Bush'.
Dans ce cas, quelles seraient les valeurs de chaque métrique?

| classe            | numéro    | nombres  |
|-------------------|-----------|----------|
|                   | de classe | d'images |
| Colin Powell      | 0         | 236      |
| Donald Rumsfeld   | 1         | 121      |
| George W Bush     | 2         | 530      |
| Gerhard Schroeder | 3         | 109      |
| Tony Blair        | 4         | 144      |

 Vu que la classe 'George W Bush' est majoritaire, il peut être tentant de construire un classifieur qui réponde toujours 'George W Bush'.
Dans ce cas, quelles seraient les valeurs de chaque métrique?

| ,                 |           |          |
|-------------------|-----------|----------|
| classe            | numéro    | nombres  |
|                   | de classe | d'images |
| Colin Powell      | 0         | 236      |
| Donald Rumsfeld   | 1         | 121      |
| George W Bush     | 2         | 530      |
| Gerhard Schroeder | 3         | 109      |
| Tony Blair        | 4         | 144      |
|                   |           |          |

- précision (accuracy) = 530/(236+121+530+109+144)=0.4649
- rappel (micro) :  $\frac{VP}{VP+FN}$ 
  - VP = 530 et FP = (236+121+109+144) = FN
  - 'micro': rappel = 530/(236+121+530+109+144) = F1 = 0.4649
- None:
  - pour chaque classe sauf 'Bush' : VP=0, FP=0, FN=nb.images
  - pour la classe 'Bush' : VP = 530, FP = (236+121+109+144), FN = 0 donc recall=1 et F1=2\*0.4649/(0.4649+1)=0.6347
- 'macro' : 0.6347/5 = 0.1269
- 'weighted' : 0.6347\*530/(236+121+530+109+144)=0.2951

### Quelques ordres de grandeur (2)

- Et que donnerait un classifieur qui tire au hasard les classes?
  - En réalisant 1000 tirages aléatoires des prédictions de chaque données et en calculant la moyenne des performances, on obtient :

• F1 micro: 0.2005

• F1 None : [0.2037 0.1389 0.2800 0.1300 0.1550]

F1 macro : 0.1815F1 weighted : 0.2191

 Peut-on expliquer ce résultat? (en supposant que chaque donnée a autant de chances d'être classée dans chacune des classes)

### Quelques ordres de grandeur (2)

- Et que donnerait un classifieur qui tire au hasard les classes?
  - En réalisant 1000 tirages aléatoires des prédictions de chaque données et en calculant la moyenne des performances, on obtient :
    - F1 micro: 0.2005
    - F1 None : [0.2037 0.1389 0.2800 0.1300 0.1550]
    - F1 macro : 0.1815
    - F1 weighted : 0.2191
  - Peut-on expliquer ce résultat? (en supposant que chaque donnée a autant de chances d'être classée dans chacune des classes)
    - Probabilité qu'une donnée soit classée en classe i:1/5=0.2 avec 0< i<4
    - Calcul pour F1 None, classe 0 'Colin Powell' : P = 236; N = 904
    - Parmi les positifs, 1/5e seront classés positifs : VP = 236\*0.2, FN = 236\*0.8
    - Parmi les négatifs, 1/5e seront classés positifs : FP = 904\*0.2, VN = 904\*0.8
    - F1 = 2VP/(2VP+FN+FP) = 236\*0.4/(236\*0.4+236\*0.8+904\*0.2)=0.2035
  - Il faudra faire mieux que F1('micro')=0.4649

#### Résultat possible du TP de classification de sons







