Sistemi Elettronici, Tecnologie e Misure Appello del 10/9/2019

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
c						
d						

1. Un amplificatore di tensione presenta funzione di trasferimento

$$A_{v}(s) = \frac{\frac{s}{s_{0}}}{\left(1 - \frac{s}{s_{p1}}\right)\left(1 - \frac{s}{s_{p2}}\right)\left(1 - \frac{s}{s_{p3}}\right)}$$

con $s_0=2\pi\cdot 10$ Hz, $s_{\rm p1}=-2\pi\cdot 100$ Hz, $s_{\rm p2}=-2\pi\cdot 10$ kHz e $s_{\rm p3}=-2\pi\cdot 33$ kHz. Ne segue che:

- (a) la banda si estende tra 10Hz e 33kHz e l'amplificazione in banda vale 3300
- (b) la banda si estende tra 100Hz e 10kHz e l'amplificazione in banda vale 100
- (c) la banda si estende tra 100Hz e 10kHz e l'amplificazione in banda vale 10
- (d) la banda si estende tra 10kHz e 33kHz e l'amplificazione in banda vale 3.3
- 2. Una funzione di trasferimento vale 10 per s = 0 e presenta un polo ed uno zero, entrambi reali negativi. A frequenza molto maggiore delle frequenze di taglio del polo e dello zero, la fase della funzione di trasferimento:
 - (a) è 90°
 - (b) è 180°
 - (c) è -90°
 - (d) è 0°
- 3. In un circuito contenente un diodo ideale D siè fatta l'ipotesi che il diodo sia in OFF. L'ipotesi è verificata se:
 - (a) $v_{\rm D} < 0$
 - (b) $v_{\rm D} > 0$
 - (c) $i_{\rm D} > 0$
 - (d) $i_{\rm D} < 0$
- 4. In un amplificatore invertente basato su operazionale ideale:
 - (a) la resistenza d'ingresso è infinita e la resistenza d'uscita è nulla;
 - (b) la resistenza d'ingresso è nulla e la resistenza d'uscita è infinita;
 - (c) la resistenza d'ingresso è finita e non nulla e la resistenza d'uscita è nulla;
 - (d) la resistenza d'ingresso è infinita e la resistenza d'uscita è finita e non nulla
- 5. La transconduttanza di piccolo segnale $g_{\rm m}$ di un transistore nMOS in regione di saturazione può essere espressa in funzione delle grandezze nel punto di lavoro Q come:

(a)
$$g_{
m m}=rac{I_{
m D}}{V_{
m GS}-V_{
m TH}}$$
 (b) $g_{
m m}=\sqrt{rac{eta}{I_{
m D}}}$ (c) $g_{
m m}=\lambda I_{
m D}$ (d) $g_{
m m}=\sqrt{2eta I_{
m D}}$

- 6. Un amplificatore di transresistenza è ottenuto collegando in cascata un amplificatore di transresistenza descritto dai parametri $R_{\rm m,1}, R_{\rm in,1}, R_{\rm out,1}$, (tutti finiti e non nulli) ed un amplificatore di tensione descritto dai parametri $A_{\rm v,2}$ $R_{\rm in,2}, R_{\rm out,2}$ tutti finiti e non nulli. La transresistenza complessiva $R_{\rm m}$ della cascata dei due stadi è data da
 - (a) $R_{\rm m,1}$
 - (b) $R_{\rm m,1}A_{\rm v,2} \frac{R_{\rm in,2}}{R_{\rm in,2} + R_{\rm out,1}}$
 - (c) $A_{v,2}R_{\text{in},2}\frac{R_{\text{in},2}}{R_{\text{in},2}+R_{\text{out},1}}$
 - (d) $R_{m,1}A_{v,2}$

Esercizio 1.

Con riferimento allo stadio in figura

- 1. verificare la regione di funzionamento di MP e MN e determinarne i parametri del modello per il piccolo segnale;
- 2. determinare $A_v = v_{\rm out}/v_{\rm in}$, la resistenza di ingresso $R_{\rm in}$ e la resistenza di uscita $R_{\rm out}$ (espressioni simboliche e valori numerici);
- 3. dare una rappresentazione dello stadio in termini di amplificatore di tensione;
- 4. Supponendo che lo stadio debba operare fino alla frequenza di 100 kHz, e v_{in} sia un segnale sinusoidale, qual è la massima ampiezza di picco che può avere senza incorrere in limitazioni di linearità? Si assuma lo *slew rate* dello stadio pari a $|SR| = 1 \text{ V}/\mu\text{s}$.

Esercizio 2.

Circuito considerato nell'Esercizio 2.

Circuito equivalente di OP1 per il terzo punto dell'Esercizio 2.

Con riferimento al circuito in figura, si determinino:

- 1. le espressioni delle tensioni $v_{\text{OUT}1}$ e $v_{\text{OUT}2}$ e della corrente $i_{\text{OUT}3}$ in funzione degli ingressi v_1 , v_2 e i_1 e di R_1 , ... R_7 , assumendo che gli amplificatori operazionali siano ideali;
- 2. l'intervallo dei valori che può assumere l'errore in continua su $v_{\rm OUT1}, v_{\rm OUT2}$ e $i_{\rm OUT3}$, assumendo $R_1 = R_2 = \cdots = R_7 = R_{\rm L} = 10 {\rm k}\Omega$, che l'input offset voltage massimo (in modulo) riportato sui dati di targa di tutti gli operazionali presenti sia pari a 10mV e che input bias current ed input offset current siano entrambe trascurabili;
- 3. l'espressione di $v_{\rm OUT1}$ assumendo che OP2 ed OP3 siano ideali e che OP1 presenti amplificazione di tensione differenziale $A_{\rm d}=10^3$, resistenze d'ingresso per il modo differenziale e per il modo comune infinite e resistenza d'uscita nulla (come da circuito equivalente).