Suicide. Why?

Some battles in life are meant to be fought alone. However much you might want, you are unable to use cheat codes like reaching out to family and friends. There has always been a point in everyone's life when they thought nobody around them really understood them, in spite of several assurances from loved ones alluding otherwise. We feel englufed in loneliness, self-pity and helplessness, while being surrounded by 'our' people. A dark well from where you nobody but you can help yourself out from. Now, although several people argue that such experiences are a necessity in life, to understand it better and to add to your variety of experiences, to be comfortable in your own skin and to face adversity bravely; but you know you've reached a new low when the zest of life leaves you altogether and scenarios of a world without yourself in it often occupy your mind. While some take professional help, some reach out to their dear ones and some power through, many give in to their proclivities.

Why?

While we might never be able to answer the question in its true philosophical sense, we can endeavour to empathise with the victims, and try to understand their convictions, motivations and compulsions.

In doing so, we build a more sensitive society which could prove to be a net for this drastic step and identify vulnerable groups around us, a burning need of today. More so in a country such as India, which riddled with its subsistential social and economic problems, added to the stigma surrounding mental health, rarely gives us the opportunity of attempting to understand or even recognising this as a real problem.

If we try to analyse past data, and interact more freely regarding this, we will ultimately strengthen both the spirit and emotional quotient of us as a people, and perhaps help the law enforcement and formulation agencies to educate people better.

Now, how do we study suicides in India?

Data

We will here try to get an analytical peek at Indian Suicide data for the years of 2001 to 2012, as provided publicly by the National Crime Records Bureau (NCRB) of India and dabble with a little correlation according to the 2011 Indian Census Data.

```
In [5]: # Importing necessary libraries
!pip3 install geopandas --quiet

import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import plotly.express as px

import warnings
warnings.filterwarnings("ignore")

In [6]: # Reading file path
filepath='./data/Suicides in India/Suicides in India 2001-2012.csv'
# Setting the 1st column as index column and reading dataset from filepath
data=pd.read_csv(filepath)
```

(237519, 7)

	State	Year	Type_code	Туре	Gender	Age_group	Total
0	A & N Islands	2001	Causes	Illness (Aids/STD)	Female	0-14	0
1	A & N Islands	2001	Causes	Bankruptcy or Sudden change in Economic	Female	0-14	0
2	A & N Islands	2001	Causes	Cancellation/Non-Settlement of Marriage	Female	0-14	0
3	A & N Islands	2001	Causes	Physical Abuse (Rape/Incest Etc.)	Female	0-14	0
4	A & N Islands	2001	Causes	Dowry Dispute	Female	0-14	0
237514	West Bengal	2012	Social_Status	Seperated	Male	0-100+	149
237515	West Bengal	2012	Social_Status	Widowed/Widower	Male	0-100+	233
237516	West Bengal	2012	Social_Status	Married	Male	0-100+	5451
237517	West Bengal	2012	Social_Status	Divorcee	Male	0-100+	189
237518	West Bengal	2012	Social_Status	Never Married	Male	0-100+	2658

237519 rows × 7 columns

The following is a quick glance at the dataset provided in csv form

```
In [8]: # getting a peek at our dataset
data.sample(10)
```

```
Out[8]:
                             State Year
                                                  Type code
                                                                                      Type Gender Age_group Total
          163691
                                                                                                                    0
                          Nagaland 2003
                                              Means adopted
                                                                                 By Hanging
                                                                                               Male
                                                                                                            60+
          202283
                             Sikkim 2012
                                                     Causes
                                                                              Unemployment
                                                                                             Female
                                                                                                          45-59
                                                                                                                    0
          147863
                           Manipur 2011
                                              Means_adopted
                                                                  By Overdose of sleeping pills
                                                                                                           0-14
                                                                                                                    0
           99601 Jammu & Kashmir 2009 Professional_Profile Self-employed (Business activity)
                                                                                               Male
                                                                                                          30-44
                                                                                                                    5
           60130
                       Daman & Diu 2011 Professional_Profile
                                                                      Others (Please Specify)
                                                                                               Male
                                                                                                           60+
                                                                                                                    0
           41620
                       Chhattisgarh 2002
                                           Professional Profile
                                                                      Others (Please Specify)
                                                                                                           60+
                                                                                                                   38
                                                                                               Male
          116724
                             Kerala 2004
                                                     Causes
                                                                        Illegitimate Pregnancy
                                                                                               Male
                                                                                                          15-29
                                                                                                                    0
           24602
                            Assam 2008
                                           Professional_Profile
                                                                   Farming/Agriculture Activity
                                                                                                           0-14
                                                                                             Female
          167237
                          Nagaland 2010
                                                     Causes
                                                                            Property Dispute
                                                                                                          15-29
                                                                                                                    0
          140023
                       Maharashtra 2009
                                              Means_adopted
                                                                          By Over Alcoholism
                                                                                               Male
                                                                                                           0-14
                                                                                                                    0
```

```
In [9]: # DATA CLEANING

# We remove categories such as all india, states and uts, as it leads to duplicacy in our results
    data=data[(data['State']!='Total (All India)') & (data['State']!='Total (States)') & (data['State']!='Total (Uts)')]

In [10]: # Data cleaning

# We select a type code as a dataframe to judge parameters such as gender and state, because keeping other type codes
```

First thing that comes to mind. Which groups are more susceptible to committing suicides? Let's have a look

```
In [11]: # Checking for null values
data.isnull().sum()

Out[11]: State     0
     Year     0
     Type_code     0
     Type      0
     Gender     0
     Age_group     0
     Total      0
     dtype: int64
```

Where?

A look at the raw numbers of suicides in various states, across years

causes=data[data['Type_code']=='Causes']

```
In [12]: state=causes.groupby('State')['Total'].sum().to_frame()
In [13]: state.sort_values(by='Total', ascending=True, inplace=True)
    state.style.background_gradient(subset='Total', cmap='Reds')
```

Out[13]: Total

```
Lakshadweep
     Daman & Diu
                     279
        Nagaland
                     347
         Manipur
                     421
     D & N Haveli
                     686
         Mizoram
                     834
      Chandigarh
                    1034
       Meghalaya
                    1086
Arunachal Pradesh
                    1328
    A & N Islands
                    1623
          Sikkim
                    1924
Jammu & Kashmir
             Goa
                    3475
     Uttarakhand
                    3702
Himachal Pradesh
                    5319
      Puducherry
                    6429
          Tripura
                    9194
           Bihar
                    9245
          Punjab
                    9270
       Jharkhand
                    9950
        Delhi (Ut)
                    16857
         Haryana
                   29437
                   34469
          Assam
    Uttar Pradesh
                   46680
       Rajasthan
                    51027
          Odisha
                   53448
     Chhattisgarh
                   60495
          Gujarat
                    66177
  Madhya Pradesh
           Kerala
                  146965
       Karnataka
     West Bengal
  Andhra Pradesh
                  162820
       Tamil Nadu
                   163813
     Maharashtra
                  180389
```

```
In [15]: # Reading geopandas shape file of
    shp_gdf = gpd.read_file('./data/India GIS Data/India States/Indian_states.shp')
    shp_gdf.set_index('st_nm', inplace = True)

# changing a few names according to the original data file, so that our data is able to be mapped
    shp_gdf.rename(index={'Andaman & Nicobar Island':'A & N Islands', 'Arunanchal Pradesh': 'Arunachal Pradesh', 'Dadara and the same of the state of the st
```



```
In [20]: # collecting information on different types of 'type_code' and their numbers
             data['Type_code'].value_counts()
                                                 109200
Out[20]: Causes
                                                  67200
             Means_adopted
             Professional_Profile
                                                  49263
                                                   6720
             Education_Status
             Social Status
                                                   4200
             Name: Type_code, dtype: int64
In [21]: # creating different datasets for different type codes
means=data[data['Type_code']=='Means_adopted']
professional_profile=data[data['Type_code']=='Professional_Profile']
edu_status=data[data['Type_code']=='Education_Status']
             social_status=data[data['Type_code']=='Social_Status']
In [22]: # Data cleaning
             # Replacing vague and long headings and grouping similar or repetitive ones together
causes['Type'].replace(to_replace=['Causes Not known', 'Other Causes (Please Specity)', 'Other Prolonged Illness', 'Be
```

Why?

We get a broad look at reasons behind suicides. This might not feel very intuitive, so we will later group them according to other factors such as age and gender

```
In [23]: why=causes.groupby('Type')['Total'].sum().sort_values(ascending=False).to_frame()
why.style.background_gradient(subset='Total', cmap='Reds')
```

Out[23]: Total

Туре	
Unknown	453119
Family Problems	341952
Prolonged Illness	194565
Insanity/Mental Illness	94229
Love Affairs	45039
Bankruptcy or Sudden change in Economic Status	35410
Poverty	32684
Dowry Dispute	31970
Drug Abuse/Addiction	30046
Unemployment	27365
Failure in Examination	27005
Property Dispute	18652
Suspected/Illicit Relation	14911
Fall in Social Reputation	13464
Professional/Career Problem	12554
Cancellation/Non-Settlement of Marriage	11296
Death of Dear Person	10321
Cancer	9058
Illness (Aids/STD)	8723
Not having Children (Barrenness/Impotency	8588
Paralysis	7286
Divorce	4133
Physical Abuse (Rape/Incest Etc.)	3992
Illegitimate Pregnancy	2494
Ideological Causes/Hero Worshipping	2118

```
# replacing vague and long headings and grouping similar or repetitive ones together
to_replace=['By Hanging', 'By Consuming Insecticides', 'By Other means (please specify)', 'By Fire/Self Immolation',
value=['Hanging', 'Consuming Insecticides', 'Undescribed Means', 'Self-Immolation', 'Drowning', 'Letting vehicles run
means['Type'].replace(to_replace=to_replace, value=value, inplace=True)
```

How?

```
In [25]: how=means.groupby('Type')['Total'].sum().sort_values(ascending=False).to_frame()
how.style.background_gradient(subset='Total', cmap='Reds')
```

Out [25]: Total

```
Type
               Hanging
                        460955
Consuming Insecticides
     Consuming Poison
    Undescribed Means
                         144370
        Self-Immolation
                         128006
             Drowning
                          96711
Letting vehicles run over
                         45299
           Jumping off
                          24114
        Over Alcoholism
                          15973
          Electrocution
                          10816
 Sleeping pills overdose
                          9960
              Fire arms
                           6294
    Injury self infliction
                           5093
             Machines
```

```
In [26]: # Data cleaning

# Replacing vague and long headings and grouping similar or repetitive ones together
to_replace=['Others (Please Specify)', 'Farming/Agriculture Activity', 'Service (Private)', 'Self-employed (Business)
```

value=['Unspecified', 'Farming/Agriculture', 'Private Service', 'Self-employed', 'Unspecified', 'Government Service',
professional_profile['Type'].replace(to_replace=to_replace, value=value, inplace=True)

Who?

Professional Profile

```
In [27]: who=professional_profile.groupby('Type')['Total'].sum().sort_values(ascending=False).to_frame()
who.style.background_gradient(subset='Total', cmap='Reds')
```

Out [27]: Total

Туре	
Unspecified	508351
House Wife	285243
Farming/Agriculture	197923
Private Service	115472
Unemployed	114374
Self-employed	78112
Student	74323
Public Sector Undertaking	30786
Government Service	23325
Retired	11334

Educational Profile

```
In [28]: who_ed=edu_status.groupby('Type')['Total'].sum().sort_values(ascending=False).to_frame()
who_ed.style.background_gradient(subset='Total', cmap='Reds')
```

Out [28]: Total

Туре	
Primary	362827
Middle	342971
No Education	321757
Matriculate/Secondary	256566
Hr. Secondary/Intermediate/Pre-Universit	118908
Graduate	31274
Diploma	14153
Post Graduate and Above	7475

Total

Social Profile

```
In [29]: who_so=social_status.groupby('Type')['Total'].sum().sort_values(ascending=False).to_frame()
who_so.style.background_gradient(subset='Total', cmap='Reds')
```

Out[29]:

Age

```
In [30]: #age group wise suicides
age=causes.groupby('Age_group')['Total'].sum().to_frame()
age.style.background_gradient(subset='Total', cmap='Reds')
```

```
Out[30]: Total
```

Age_group	Age_group							
0-14	32685							
15-29	509776							
30-44	488713							
45-59	294333							
60+	115467							

Gender

The raw number of suicides by men greatly surpasses the number of suicides by women. Among other factors, this is also due to men overnumbering women population-wise too

Percentage of Suicides Over The Years By Gender

When?

```
In [33]: year=causes.groupby('Year')['Total'].sum().to_frame()
         year.style.background_gradient(subset='Total', cmap='OrRd')
                 Total
          Year
         2001 108506
         2002 110417
               110851
         2003
         2004
               113697
               113914
         2005
                118112
         2006
         2007
         2008
         2009
               134599
         2010
          2011
               135585
         2012 120488
In [34]: women=causes[causes['Gender']=='Female']
         women_year=women.groupby('Year')['Total'].sum().to_frame()
         women_year.rename(columns={'Total': 'Female'}, inplace=True)
```

```
In [35]: men=causes[causes['Gender']=='Male']
    men_year=men.groupby('Year')['Total'].sum().to_frame()
    men_year.rename(columns={'Total': 'Male'}, inplace=True)
```

Male and Female Suicides by Year

```
In [36]: gender_year=men_year.join(women_year)
         gender_year.style.background_gradient(cmap='0rRd', axis=0)
Out[36]:
                Male Female
          Year
         2001 66314
                      42192
         2002 69332
                      41085
         2003
               70221
                      40630
         2004
               72651
                      41046
         2005
               72916
                      40998
               75702
         2006
                      42410
         2007
                      43342
         2008
         2009
               87180
         2010
          2011
               87839
         2012
                      40715
In [37]: fig = px.bar(gender_year, x=year.index, y=['Female', 'Male'], title='Suicides By Year and Gender', labels={'value':'N
         fig.show()
```

Suicides By Year and Gender

Male and Female Suicides By Year and State

ut[38]:			2001		2002		2003		2004		2005		2006		2007		2008	
	Gender	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Fema
	State																	
	A & N Islands	50	79	53	91	43	70	41	81	53	86	37	96	56	100	45	98	2
	Andhra Pradesh	4143	6379	4122	7571	3896	7513	4444	9082	4577	8865	4413	8863	4933	9949	4633	9721	46 [.]
	Arunachal Pradesh	35	76	43	71	27	54	30	49	21	49	33	96	31	98	33	77	9
	Assam	811	1836	808	1702	920	1676	894	1945	895	1951	915	2116	946	2116	1019	1970	108
	Bihar	296	307	294	426	248	351	139	212	216	327	319	299	431	534	406	609	50
	Chandigarh	31	39	34	53	35	68	23	52	26	63	24	56	22	60	25	58	:
	Chhattisgarh	1385	2640	1321	2629	1327	2592	1509	2986	1576	3305	1566	3060	1583	3256	1697	3248	192
	D & N Haveli	15	35	18	32	22	30	19	20	28	41	19	23	32	44	28	32	2
	Daman & Diu	4	10	2	15	6	18	8	5	7	25	8	14	9	6	5	14	
	Delhi (Ut)	509	730	410	643	412	741	457	799	468	777	532	960	515	966	508	795	54
	Goa	89	167	83	226	87	213	102	212	85	197	92	183	92	178	104	183	Ę
	Gujarat	2142	2649	1938	2706	1916	2650	1926	2850	1863	2902	1987	3048	2205	3375	2430	3735	248
	Haryana	643	1364	630	1570	614	1613	628	1454	553	1493	550	1766	581	1852	682	1974	68
	Himachal Pradesh	130	177	126	208	146	240	135	236	145	214	156	301	144	258	213	417	19
	Jammu & Kashmir	62	91	88	96	75	63	61	51	98	196	110	152	81	153	133	177	15
	Jharkhand	109	141	119	153	119	153	184	233	285	523	335	521	409	880	309	602	36
	Karnataka	4010	7871	4190	8080	3986	8375	3919	8018	3850	7707	4164	8048	3912	8392	4006	8216	398
	Kerala	2785	6787	2645	7165	2503	6935	2455	6598	2414	6830	2443	6583	2374	6588	2439	6130	243
	Lakshadweep	0	0	0	0	1	1	0	0	0	0	1	1	2	1	0	0	
	Madhya Pradesh	3324	3536	3320	3579	3224	3538	3161	3634	2597	2851	2932	3503	2859	3470	3264	4365	40
	Maharashtra	5280	9338	5082	9447	4950	9810	4826	9903	4823	9603	4984	10510	4764	10420	4485	9889	45
	Manipur	17	24	9	30	5	21	9	32	4	23	12	24	11	28	11	23	
	Meghalaya	18	69	18	49	9	32	16	39	21	50	23	69	27	60	28	57	2
	Mizoram	8	46	10	56	11	41	7	53	8	47	10	60	6	22	6	35	
	Nagaland	15	25	8	19	5	17	6	25	6	21	9	19	7	17	10	32	
	Odisha	1963	2089	1757	2631	1680	2740	1671	2544	1654	2554	1692	2373	1820	2488	1749	3155	179
	Puducherry	206	323	157	410	194	388	201	338	198	340	177	349	198	319	173	334	19
	Punjab	252	396	110	397	125	506	129	516	106	482	162	610	215	632	226	643	2
	Rajasthan	1236	1959	1156	2092	1272	2389	1239	2486	1320	2858	1353	2910	1283	3154	1564	3602	158
	Sikkim	32	62	24	54	37	68	42	56	47	62	47	98	38	84	71	216	1.
	Tamil Nadu	4162	7128	4261	6983	4718	7154	4893	7946	4569	7507	4872	7509	5124	8687	5382	9043	547
	Tripura	391	463	286	493	356	488	337	433	314	401	337	428	286	419	310	442	2
	Uttar Pradesh	1715	1801	1924	2326	1676	1987	1683	1954	1677	1772	1338	1761	1873	2054	1909	2179	19 ⁻
	Uttarakhand	129	182	156	205	129	262	89	148	93	180	153	173	118	130	87	104	14
	West Pengal	6105	7/105	5883	7124	5056	7/12/	5762	7661	6401	861/	6605	9120	6355	8505	6483	8360	618

In [39]: to_replace=['Causes Not known', 'Other Causes (Please Specity)', 'Other Prolonged Illness', 'Bankruptcy or Sudden cha
value=['Unknown', 'Unknown', 'Prolonged Illness', 'Bankruptcy or Sudden change in Economic Status', 'Not having Child
data['Type'].replace(to_replace=to_replace, value=value, inplace=True)

Male and Female Suicides by Year, State and Causes

West Bengal

In this graph, you can use the slider to view gender wise suicides in each state by year. Also, the stacks here represent the causes, which can be viewed upon hovering them

Male and Female Suicides by Year, State amd Causes

Age group wise suicides according to year, state and causes

In this graph, you can use the slider to view age group wise suicides in each state by year. Also, the stacks here represent the causes, which can be viewed upon hovering them

Out[42]:		State	A & N Islands	Andhra Pradesh	Arunachal Pradesh	Assam	Bihar	Chandigarh	Chhattisgarh	D & N Haveli	Daman & Diu	Delhi (Ut)	Goa	Gujarat	Haryana	Himachal Pradesh
		Gender														
	0-	Female	31	1878	26	310	283	9	917	2	5	235	38	486	274	53
	14	Male	22	1387	23	424	289	7		4	6	188	23	385	441	54
	15-	Female	298	23640	220	5260	1811	241	9095	155	62	3825	523		3727	934
	29	Male	332	31481	352	8124	1909	290	12953	148	69	5036	697	13924	7866	1140
	30-	Female	133	16884	126	3713	1439	96	5823	62	21	1612	294	8213	2576	576
	44	Male	331	39886	398	9034	1859	253	14131	121	67	3776	960	14754	8090	1189
	45-	Female	57	8325	16	1502	382	21	2799	42	4	364	133	3810	958	256
	59	Male	254	26592	144	5099	859	90	9108	79	38	1382	502	8058	3990	719
		Female	31	3669	3	246	138	11	1105	19	3	102	117	1738	288	112
	60+	Male	134	9078	20	757	276	16	3441	54	4	337	188	2552	1227	286

Suicides as a function of Population

Mapping Suicides in 2011 as a function of respective states' population according to 2011 census

```
In [44]: #reading the census file
census=pd.read_csv('./data/India Census 2011/india-districts-census-2011.csv')

In [45]: #grouping census according to population
pop=census.groupby('State name')['Population'].sum().to_frame()

In [46]: #grouping census according to male population
male=census.groupby('State name')['Male'].sum().to_frame()

In [47]: #grouping census according to female population
female=census.groupby('State name')['Female'].sum().to_frame()

In [48]: #joining total population table with male population table
pop=pop.join(male)

In [49]: #joining total population table with female population table
pop=pop.join(female)

2011 state wise population

In [50]: pop.style.background_gradient(cmap='Greens')
```

A table represnting the number of suicides and total population, both gender wise and then per lakh suicides gender wise. It also gives us the average numbers

```
In [53]: suicide_1_2011=pop.join(state_1_2011)
    suicide_1_2011['per lakh']=(suicide_1_2011['Total Suicides'] / suicide_1_2011['Population'])*100000
    suicide_1_2011['male per lakh']=(suicide_1_2011['Male Suicides'] / suicide_1_2011['Male'])*100000
    suicide_1_2011['female per lakh']=(suicide_1_2011['Female Suicides'] / suicide_1_2011['Female'])*100000
    suicide_1_2011.loc['AVERAGE'] = suicide_1_2011.mean()
    suicide_1_2011.sort_values(by='per lakh', ascending=True, inplace=True)
    suicide_1_2011.style.background_gradient(cmap='0rRd')
```

:		Population Mal		Female	Female Suicides	Male Suicides	Total Suicides	per lakh	male per lakh	ŗ
	State									
-	Lakshadweep	64473.000000	33123.000000	31350.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
	Bihar	104099452.000000	54278157.000000	49821295.000000	349.000000	446.000000	795.000000	0.763693	0.821693	0.
	Manipur	2855794.000000	1438586.000000	1417208.000000	15.000000	18.000000	33.000000	1.155546	1.251229	1.
	Nagaland	1978502.000000	1024649.000000	953853.000000	8.000000	25.000000	33.000000	1.667929	2.439860	0.
	Jammu & Kashmir	12541302.000000	6640662.000000	5900640.000000	143.000000	144.000000	287.000000	2.288439	2.168459	2.
	Uttar Pradesh	199812341.000000	104480510.000000	95331831.000000	2130.000000	2713.000000	4843.000000	2.423774	2.596657	2.
	Uttarakhand	10086292.000000	5137773.000000	4948519.000000	125.000000	192.000000	317.000000	3.142879	3.737028	2.
	Punjab	27743338.000000	14639465.000000	13103873.000000	211.000000	755.000000	966.000000	3.481917	5.157292	1
	Jharkhand	32988134.000000	16930315.000000	16057819.000000	387.000000	825.000000	1212.000000	3.674048	4.872916	2
	Meghalaya	2966889.000000	1491832.000000	1475057.000000	42.000000	111.000000	153.000000	5.156917	7.440516 8.483588	2.
	Rajasthan	68548437.000000	35550997.000000	32997440.000000	1332.000000	3016.000000	4348.000000	6.342960		4.
	Himachal Pradesh	6864602.000000	3481873.000000	3382729.000000	174.000000	269.000000	443.000000	6.453397	7.725727	5.
	Mizoram	1097206.000000	555339.000000	541867.000000	13.000000	77.000000	90.000000	8.202653	13.865405	2
	Assam	31205576.000000	15939443.000000	15266133.000000	900.000000	1826.000000	2726.000000	8.735618	11.455858	5.
	Arunachal Pradesh	1383727.000000	713912.000000	669815.000000	35.000000	99.000000	134.000000	9.683991	13.867255	5.
	Chandigarh	1055450.000000	580663.000000	474787.000000	48.000000	57.000000	105.000000	9.948363	9.816365	10
	Delhi (Ut)	16787941.000000	8987326.000000	7800615.000000	548.000000	1168.000000	1716.000000	10.221623	12.996079	7.
	Gujarat	60439692.000000	31491260.000000	28948432.000000	2470.000000	3912.000000	6382.000000	10.559286	12.422494	8.
	Odisha	41974218.000000	21212136.000000	20762082.000000	2181.000000	3060.000000	5241.000000	12.486236	14.425704	10.
	Madhya Pradesh	72626809.000000	37612306.000000	35014503.000000	4019.000000	5240.000000	9259.000000	12.748736	13.931611	11
	Haryana	25351462.000000	13494734.000000	11856728.000000	781.000000	2464.000000	3245.000000	12.800051	18.258974	6.
	AVERAGE	34595856.485714	17807721.657143	16788134.828571	1364.171429	2509.685714	3873.857143	13.089025	16.804277	9.
	Daman & Diu	243247.000000	150301.000000	92946.000000	15.000000	18.000000	33.000000	13.566457	11.975968	16.
	Maharashtra	112374333.000000	58243056.000000		5060.000000	10887.000000	15947.000000	14.190963	18.692357	9.
	Andhra Pradesh	84580777.000000	42442146.000000	42138631.000000	4957.000000	10120.000000	15077.000000	17.825563	23.844223	11.
	West Bengal	91276115.000000	46809027.000000	44467088.000000	6868.000000	9624.000000	16492.000000	18.068254	20.560137	15
	D & N Haveli	343709.000000	193760.000000	149949.000000	22.000000	41.000000	63.000000	18.329459	21.160198	14.
	Tripura	3673917.000000	1874376.000000	1799541.000000	256.000000	447.000000	703.000000	19.134891	23.847937	14.
	Goa	1458545.000000	739140.000000	719405.000000	98.000000	195.000000	293.000000	20.088513	26.382012	13.
	Karnataka	61095297.000000	30966657.000000	30128640.000000	4150.000000	8472.000000	12622.000000	20.659528	27.358458	13.
	Tamil Nadu	72147030.000000	36137975.000000	36009055.000000	5681.000000	10282.000000	15963.000000	22.125651	28.452065	15.
	Kerala	33406061.000000	16027412.000000	17378649.000000	2219.000000	6212.000000		25.237935		12.
	Chhattisgarh	25545198.000000	12832895.000000	12712303.000000	2229.000000	4527.000000	6756.000000	26.447241		17.
	Sikkim	610577.000000	323070.000000	287507.000000	77.000000	107.000000	184.000000	30.135429	33.119757	26
	A & N Islands	380581.000000	202871.000000	177710.000000	42.000000	94.000000	136.000000	35.734837	46.334863	23.
	Puducherry	1247953.000000	612511.000000	635442.000000	161.000000	396.000000	557.000000	44.633091	64.651900	25.

```
In [54]: merged2 = shp_gdf.join(suicide_1_2011)
    merged2
    #as telangana was formed from andhra pradesh after 2012- the end of this data collection, we will input the same value merged2.at['Telangana', 'per lakh']=merged2.at['Andhra Pradesh', 'per lakh']
    merged2.at['Telangana', 'male per lakh']=merged2.at['Andhra Pradesh', 'female per lakh']
    merged2.at['Telangana', 'female per lakh']=merged2.at['Andhra Pradesh', 'female per lakh']
```

Suicide density: suicides per lakh people

Male Suicide density: suicides per lakh males

AxesSubplot(0.125,0.148351;0.62x0.693299)

Female Suicide density: suicides per lakh women

AxesSubplot(0.125,0.148351;0.62x0.693299)


```
In [59]: age=causes.groupby('Age_group')['Total'].sum().to_frame()
       age.loc["Total"] = age.sum()
       age.style.background_gradient(subset='Total', cmap='0rRd')
Out[59]:
                Total
       Age_group
          0-14
                32685
          15-29
               509776
         30-44
               488713
         45-59
               294333
           60+
               115467
          Total 1440974
In [60]: data=data[data['Total']>0]
In [62]: to_29['Type_code'].unique()
```

```
Out[62]: array(['Causes', 'Means_adopted', 'Professional_Profile'], dtype=object)
In [63]: to_59['Type_code'].unique()
Out[63]: array(['Causes', 'Means_adopted', 'Professional_Profile'], dtype=object)
In [64]: to_44['Type_code'].unique()
Out[64]: array(['Causes', 'Means_adopted', 'Professional_Profile'], dtype=object)
In [65]: above_60['Type_code'].unique()
Out[65]: array(['Causes', 'Means_adopted', 'Professional_Profile'], dtype=object)
In [66]: allage['Type_code'].unique()
Out[66]: array(['Education_Status', 'Social_Status'], dtype=object)
In [67]: to_14[to_14['Type'] == 'Retired']
Out[67]:
                          State Year
                                           Type_code
                                                      Type Gender Age_group Total
           80907
                         Gujarat 2012 Professional_Profile Retired
                                                                                  3
                                                                          0-14
                                                             Female
           84319
                        Haryana 2006 Professional_Profile Retired
                                                               Male
                                                                          0-14
                                                                                1
          132233 Madhya Pradesh 2007 Professional_Profile Retired
          175528
                         Odisha 2012 Professional_Profile Retired
                                                                          0-14
                                                                                  2
          228939
                     Uttarakhand 2009 Professional_Profile Retired
                                                               Male
                                                                          0-14
```

Social and Educational Status of Victims

Since this part of the data is not clasified age-wise, we'll have an overall look. You can hover on these maps to get the numbers

Closer look at all ages

While the correlation of suicide victims with their social or educational status might be a risky one to make before we know the representation of the same in general populace, one is compelled to notice that the attainment of education makes one less vulnerable and perhaps more rational while taking such a drastic step.

Age wise visualisation of causes, means adopted and professional profiles of victims

Ages 0-14

Closer look at age group of 0-14

Ages 15-29

Closer look at age group of 15-29

Ages 30-44

Ages 45-59

Ages 60+

Closer look at age group of 60+

