CISC 2210 Discrete Structures - Noson S. Yanofsky

Student: Ruslan Pantaev

March 10, 2018

1.5

1.

Let $f(n) = n^2 + 3$ and g(n) = 5n - 11 for $n \in \mathbb{N}$ Thus $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{Z}$ Calculate:

(a)

$$f(1)$$
 and $g(1)$
 $f(1) = 1^2 + 3 = 4$
 $g(1) = 5(1) - 11 = -6$

(b)

$$f(2)$$
 and $g(2)$
 $f(2) = 2^2 + 3 = 7$
 $g(2) = 5(2) - 11 = -1$

(c)

$$f(3)$$
 and $g(3)$
 $f(3) = 3^2 + 3 = 12$
 $g(3) = 5(3) - 11 = 4$

(d)

$$f(4)$$
 and $g(4)$
 $f(4) = 4^2 + 3 = 19$
 $g(4) = 5(4) - 11 = 9$

(e)

$$f(5)$$
 and $g(5)$
 $f(5) = 5^2 + 3 = 28$
 $g(5) = 5(5) - 11 = 14$

(f)

To think about: Is f(n) + g(n) always an even number?

let's test base case of n = 0 to be sure:

$$f(0)$$
 and $g(0)$
 $f(0) = 0^2 + 3 = 3$
 $g(0) = 5(0) - 11 = -11$

let f(n) and g(n) both produce either an even or odd integer within the \mathbb{Z} domain.

for
$$n = \{n : n \in \mathbb{N} \text{ and } n \mod 2 = 0\}$$

let z_1 and z_2 be outputs of f(n) and g(n) respectively,

where
$$z = \{z : z \in \mathbb{Z} \text{ and } z \mod 2 = 0\}$$

thus, $(z_1 + z_2) \mod 2 = 0$

let $z_1 + 1$ and $z_2 + 1$ be outputs of f(n) and g(n) respectively,

where
$$z = \{z : z \in \mathbb{Z} \text{ and } z \mod 2 = 0\}$$

thus, $((z_1 + 1) + (z_2 + 1)) \mod 2 = (z_1 + z_2 + 2) \mod 2 = 0$

Yes, f(n) + g(n) consistently produces an even integer within the \mathbb{Z} domain.

2.

Consider the function $h: \mathbb{P} \to \mathbb{P}$ defined by $h(n) = |\{k \in \mathbb{N} : k|n\}|$ for $n \in \mathbb{P}$. In words, h(n) is the number of divisors of n.

Calculate h(n) for $1 \le n \le 10$ and for n = 73.

$$h(1) = 1$$

$$h(2) = |1,2| = 2$$

$$h(3) = |1,3| = 2$$

$$h(4) = |1,2,4| = 3$$

$$h(5) = |1,5| = 2$$

$$h(6) = |1,2,3,6| = 4$$

$$h(7) = |1,7| = 2$$

$$h(8) = |1,2,4,8| = 4$$

$$h(9) = |1,3,9| = 3$$

$$h(10) = |1,2,5,10| = 4$$

$$h(73) = |1,73| = 2$$

3.

Let Σ^* be the language using letters from $\Sigma = \{a, b\}$. We've already seen a useful function from Σ^* to \mathbb{N} . It is the length function, which already has a name: length. Calculate:

(a)

$$length(bab) = 3$$

(b)

$$length(aaaaaaaaa) = 8$$

(c)

$$length(\lambda) = 0$$

(d)

What is the image set Im(length) for this function?

 \mathbb{N}

5.

Let
$$f$$
 be the function in example 3:
$$f(m,n)=\lfloor \frac{n}{2}\rfloor -\lfloor \frac{m-1}{2}\rfloor$$

(a)

Calculate
$$f(0,0), f(8,8), f(-8,-8), f(73,73)$$
, and $f(-73,-73)$

$$f(0,0) = \lfloor \frac{0}{2} \rfloor - \lfloor \frac{0-1}{2} \rfloor = 0 - (-1) = 1$$

$$f(8,8) = \lfloor \frac{8}{2} \rfloor - \lfloor \frac{8-1}{2} \rfloor = 4 - 3 = 1$$

$$f(-8,-8) = \lfloor \frac{-8}{2} \rfloor - \lfloor \frac{-8-1}{2} \rfloor = -4 - (-5) = 1$$

$$f(73,73) = \lfloor \frac{73}{2} \rfloor - \lfloor \frac{73-1}{2} \rfloor = 36 - 36 = 0$$

$$f(-73,-73) = \lfloor \frac{-73}{2} \rfloor - \lfloor \frac{-73-1}{2} \rfloor = -36 - (-36) = 0$$

(b)

Find f(n,n) for all (n,n) in $\mathbb{Z}x\mathbb{Z}$. Hint: Consider the cases when n is even and when it is odd

if
$$n \mod 2 = 0$$
, $f(n, n) = 1$, else if $n \mod 2 = 1$, $f(n, n) = 0$

8.

Let
$$S = \{1, 2, 3, 4, 5\}$$
 and consider the functions $1_s.f.g$ and h from S into S defined by $1_s(n) = n, f(n) = 6 - n, g(n) = max\{3, n\},$ and $h(n) = max\{1, n - 1\}$

(a)

Write each of these functions as a set of ordered pairs, i.e., list the elements in their graphs:

$$\begin{aligned} \mathbf{1}_s(n) &= \{(1,1), (2,2), (3,3), (4,4), (5,5)\} \\ f(n) &= \{(1,5), (2,4), (3,3), (4,2), (5,1)\} \\ g(n) &= \{(1,3), (2,3), (3,3), (4,4), (5,5)\} \\ h(n) &= \{(1,1), (2,1), (3,2), (4,3), (5,4)\} \end{aligned}$$

(b)

Sketch a graph of each of these functions:

9.

For
$$n \in \mathbb{Z}$$
, let $f(n) = \frac{1}{2}[(-1)^n + 1]$.
The function f is the characteristic function for some subset of \mathbb{Z} .
Which subset?

 $\{0,1\}$, where $1 = \text{all even integers in } \mathbb{Z}$

10.

Consider subsets A and B of a set S

(a)

The function $X_A \cdot X_B$ is the characteristic function of some subset of S. Which subset?

$$A \cap B$$

(b)

Repeat part (a) for the function $X_A + X_B - X_{A \cap B}$

$$A \bigcup B$$

(c)

Repeat part (a) for the function $X_A + X_B - 2 \cdot X_{A \cap B}$

$$A \backslash B \bigcup B \backslash A$$

13.

We define functions mapping \mathbb{R} into \mathbb{R} as follows:

$$f(x) = x^3 - 4x$$
$$g(x) = \frac{1}{x^2 + 1}$$
$$h(x) = x^4$$

(a)

Find
$$f \circ f$$

$$f(x^3 - 4x)$$

= $(x^3 - 4x)^3 - 4(x^3 - 4x)$

Find
$$f \circ g \circ h$$

$$f(g(h(x)))$$

$$= f(g(x^4))$$

$$= f(\frac{1}{(x^4)^2 + 1})$$

$$= (\frac{1}{(x^4)^2 + 1})^3 - 4(\frac{1}{(x^4)^2 + 1})$$