Παρουσίαση για χρήση με το σύγγραμμα, Αλγόριθμοι Σχεδίαση και Εφαρμογές, των Μ. Τ. Goodrich and R. Tamassia, Wiley, 2015 (στα ελληνικά από εκδόσεις Μ. Γκιούρδας)

Δυναμικός προγραμματισμός

image. NASA-MSFC.

Εφαρμογή: Αντιστοίχιση ακολουθιών DNA

- Οι ακολουθίες DNA μπορούν να θεωρηθούν ως συμβολοσειρές αποτελούμενες από τους χαρακτήρες **A**, **C**, **G**, **T**, οι οποίες αναπαριστούν νουκλεοτίδια.
- Η εύρεση ομοιοτήτων ανάμεσα σε δύο ακολουθίες DNA αποτελεί μια σημαντική πράξη στη βιοπληροφορική.
 - Για παράδειγμα, όταν συγκρίνουμε το DNA διαφορετικών οργανισμών, τέτοιες αντιστοιχίσεις μπορούν να επισημάνουν τα σημεία, στα οποία αυτοί οι οργανισμοί έχουν παρόμοια μοτίβα DNA.

Εφαρμογή: Αντιστοίχιση ακολουθιών DNA

 Η εύρεση της καλύτερης αντιστοίχισης συμβολοσειρών DNA αφορά την ελαχιστοποίηση του αριθμού των αλλαγών για να μετατρέψουμε τη μία συμβολοσειρά στην άλλη.

Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest subsequence, GTCGTCGGAAGCCGGCCGAA, that is common to these two strings.

 Μία αναζήτηση ωμής δύναμης θα απαιτούσε εκθετικό χρόνο αλλά μπορούμε να επιτύχουμε πολύ καλύτερα αποτελέσματα χρησιμοποιώντας δυναμικό προγραμματισμό.

Προθέρμανση: Γινόμενα αλυσίδας πινάκων

- Ο Δυναμικός προγραμματισμός είναι μία τεχνική αλγοριθμικής σχεδίασης.
 - Αντί να ξεκινήσουμε με μία εξήγηση της τεχνικής, θα ξεκινήσουμε με ένα κλασικό παράδειγμα:
 - Γινόμενα αλυσίδας πινάκων
- Επανάληψη: Πολλαπλασιασμός πινάκων.

 - O A sival $d \times e$ kal o B sival $e \times f$

$$C[i,j] = \sum_{k=0}^{e-1} A[i,k] * B[k,j]$$

• O(def) χρόνος

Γινόμενα αλυσίδας πινάκων

♦ Γινόμενα αλυσίδας πινάκων:

- Υπολογισμός A=A₀*A₁*...*A_{n-1}
- O A_i εival d_i × d_{i+1}
- Πρόβλημα: Που θα μπουν οι παρενθέσεις?

♦ Παράδειγμα

- Ο Β είναι 3 × 100
- O C είναι 100 × 5
- Ο D είναι 5 × 5
- To (B*C)*D θέλει 1500 + 75 = 1575 ops
- To B*(C*D) θέλει 1500 + 2500 = 4000 ops

Προσέγγιση απαρίθμησης

- Αλγόριθμος γινόμενου αλυσίδας πινάκων:
 - Δοκιμή όλων πιθανών τρόπων για παρενθετοποίηση του τΑ=A₀*A₁*...*A_{n-1}
 - Υπολογισμός του αριθμού των λειτουργιών (ops)
 για κάθε τρόπο
 - Επιλογή του καλύτερου
- Χρόνος εκτέλεσης:
 - Ο αριθμός των πιθανών τρόπων για να μπουν οι παρενθέσεις είναι ίσος με τον αριθμό δυαδικών δένδρων με η κόμβου
 - Είναι εκθετικό!
 - Ονομάζεται αριθμός Catalan, και είναι σχεδόν 4ⁿ.
 - Είναι απαίσιος αλγόριθμος!

Μία άπληστη μέθοδος

- ▼ Ιδέα #1: συνεχόμενη επιλογή του γινομένου που απαιτεί τις περισσότερες λειτουργίες.
- Αντί-παράδειγμα:
 - Ο Α είναι10 × 5
 - O Β είναι 5 × 10
 - Ο C είναι 10 × 5
 - O D είναι 5 × 10
 - Η ἀπληστη ιδέα #1 δίνει (A*B)*(C*D), που θέλει 500+1000+500 = 2000 ops
 - To A*((B*C)*D) θέλει 500+250+250 = 1000 ops

Ακόμη μία άπληστη προσέγγιση

- ▼ Ιδέα #2: συνεχόμενη επιλογή του γινομένου που χρησιμοποιεί τις περισσότερες λειτουργίες.
- Αντί-παράδειγμα:
 - Ο Α είναι 101 × 11
 - O B εivaι 11 × 9
 - Ο C είναι 9 × 100
 - O D είναι 100 × 99
 - Η ἀπληστη ιδέα #2 δίνει Α*((B*C)*D)), που θέλει
 109989+9900+108900=228789 ops
 - To (A*B)*(C*D) θέλει 9999+89991+89100=189090 ops
- Η άπληστη προσέγγιση δεν μας δίνει την βέλτιστη λύση.

Mia «αναδρομική» προσέγγιση

- Ορισμός υπό-προβλημάτων:
 - Εύρεση του καλύτερου τρόπου για παρενθετοποίηση του $A_{i} * A_{i+1} * ... * A_{i}$.
 - Το Ν_{i,i} υποδηλώνει τον αριθμό των λειτουργιών που απαιτεί το υπόπρόβλημα.
 - Η βέλτιστη λύση για το συνολικό πρόβλημα είναι Ν_{0,n-1}.
- ※ Άριστα υπό-προβλήματα: Η βέλτιστη λύση μπορεί να εκφραστεί με όρους άριστων υπό-προβλημάτων
 - Πρέπει να υπάρχει ένας τελικός πολλαπλασιασμός για την βέλτιστη λύση.
 - Έστω ότι ο τελικός πολλαπλασιασμός είναι στο i: $(A_0^*...*A_i)*(A_{i+1}*...*A_{n-1}).$
 - Τότε η βέλτιστη λύση $N_{0,n-1}$ είναι το άθροισμα δύο άριστων υπό-προβλημάτων, το $N_{0,i}$ και το $N_{i+1,n-1}$ συν τον χρόνο για τον τελευταίο πολλαπλασιασμό.
 - Εάν το καθολικό βέλτιστο δεν είχε αυτά τα άριστα υπό-προβλήματα θα μπορούσαμε να βρούμε μία ακόμη καλύτερη «βέλτιστη» λύση.

Μία εξίσωση χαρακτηρσιμού

- Το καθολικό βέλτιστο θα πρέπει να οριστεί σε όρους άριστων υπό-προβλημάτων.
- Ας σκεφτούμε όλες τις πιθανές θέσεις για τον τελικό πολλαπλασιασμό:
 - Θυμηθείτε ότι ο A_i είναι ένας πίνακας διαστάσεων d_i × d_{i+1}.
 - Έτσι, μια χαρακτηριστική εξίσωση για το Ν_{i,j} είναι η εξής:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Σημειώστε ότι τα υπό-προβλήματα δεν είναι ανεξάρτητα τα υπάρχει αλληλοεπικάλυψη στα υπόπροβλήματα.

Ένας αλγόριθμος δυναμικού προγραμματισμού

- Επειδή υπάρχει
 επικάλυψη στα υπόπροβλήματα, δεν
 χρησιμοποιούμε
 αναδρομή.
- Αντί αυτού,
 δημιουργούμε άριστα
 υπό-προβλήματα «από κάτω προς τα πάνω»
- Τα Ν_{i,i} είναι εύκολα, έτσι ξεκινάμε από αυτά
- Μετά υπό-προβλήματα μεγέθους 2,3,... και έτσι στην συνέχεια.
- Ο χρόνος εκτέλεσης είναι
 Ο(n³)

Algorithm *matrixChain(S)*:

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal paranethization of *S*

for
$$i \leftarrow 1$$
 to $n-1$ do

$$N_{i,i} \leftarrow 0$$

for $b \leftarrow 1$ to n-1 do

for
$$i \leftarrow 0$$
 to n - b - 1 do

$$j \leftarrow i + b$$

$$N_{i,j} \leftarrow + infinity$$

for
$$k \leftarrow i$$
 to j -1 do

$$N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1}\}$$

 d_{i+1}

Οπτικοποίηση αλγόριθμου δυναμικού προγραμματισμού

answer

- προς τα πάνω γεμίζει τον πίνακα Ν κατά διαγώνιους
- Το Ν_{ι,i} παίρνει τις τιμές από την γραμμή i και την στήλη j
- Το γέμισμα κάθε κελιού στον πίνακα Ν θέλει χρόνο O(n).
- ♦ Συνολικός χρόνος: O(n³)
- Η εύρεση της παρενθετοποίησης γίνεται με το να θυμάται το "k" για κάθε κελί στον Ν

Η γενική τεχνική δυναμικού προγραμματισμού

- Εφαρμόζεται σε προβλήματα που αρχικά φαίνεται να απαιτούν πολύ χρόνο (πιθανότατα εκθετικό), αρκεί να έχουμε:
 - Απλά υπό-προβλήματα: τα υπό-προβλήματα μπορούν να οριστούν χρησιμοποιώντας λίγες μόνο μεταβλητές, όπως j, k, l, m, κ.ο.κ.
 - Βελτιστότητα υπό-προβλημάτων: η καθολικά βέλτιστη λύση μπορεί να οριστεί με όρους βέλτιστων λύσεων σε υπόπροβλήματα.
 - Επικάλυψη υπό-προβλημάτων: τα υπό-προβλήματα δεν είναι ανεξάρτητα, αλλά επικαλύπτονται (οπότε πρέπει να κατασκευαστούν από κάτω προς τα πάνω).