Arrangements d'hyperplans : apports de la dualité et de l'optimisation

Baptiste Plaquevent-Jourdain, avec Jean-Pierre Dussault, Université de Sherbrooke Jean Charles Gilbert, INRIA Paris

10 Juin 2023

Cadre

Outline

- Cadre
- 2 Vers les hyperplans
- Un algorithme
- Matroïdes et dualité
- **1** Le cas affine

References

Plan

- Cadre
- 2 Vers les hyperplans
- Un algorithme
- Le cas affine

Systems of smooth nonlinear equations

General problem:

Cadre

0000000

Find a point $x_* \in \mathbb{R}^n$: $F(x_*) = 0$, with $F : \mathbb{R}^n \to \mathbb{R}^n$ smooth

Illustration of Newton's method in 1D

 x_0 near x_* , $F \in \mathcal{C}^{1,1}$ $F'(x_*)$ non-singular quadratic convergence

Nonsmooth equations

Vers les hyperplans

Harder problem:

Cadre

0000000

Find a poind $x_* \in \mathbb{R}^n$: $F(x_*) = 0$, with $F : \mathbb{R}^n \to \mathbb{R}^n$ nonsmooth

Kummer's counter-example to Newton; in the nonsmooth case the Jacobian might not be defined.

 x_0 near x_* . F semismooth. all $J \in "F'(x_*)"$ non-singular quadratic convergence

Remedy: semismooth Newton's method

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

Cadre

00000000

- take $x_0 \in \mathbb{R}^n$ (near x_*)
- for k = 1 2, ..., solve $F(x_k) + J_k \delta_k = 0$ for δ_k , with $J_k \in \partial_B F(x_k)$: $\partial_B F$ is the Bouligand differential
- then $x_{k+1} = x_k + (\alpha_k)\delta_k$

Remedy: semismooth Newton's method

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

Cadre

00000000

- take $x_0 \in \mathbb{R}^n$ (near x_*)
- for $k = 1 \ 2, \dots$, solve $F(x_k) + J_k \delta_k = 0$ for δ_k , with $J_k \in \partial_B F(x_k)$: $\partial_B F$ is the Bouligand differential
- then $x_{k+1} = x_k + (\alpha_k)\delta_k$

Cadre

00000000

References

Remedy: semismooth Newton's method

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

- take $x_0 \in \mathbb{R}^n$ (near x_*)
- for k = 1 2, ..., solve $F(x_k) + J_k \delta_k = 0$ for δ_k , with $J_k \in \partial_B F(x_k)$: $\partial_B F$ is the Bouligand differential
- then $x_{k+1} = x_k + (\alpha_k)\delta_k$

Cadre

00000000

References

Remedy: semismooth Newton's method

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

- take $x_0 \in \mathbb{R}^n$ (near x_*)
- for $k = 1 \ 2, \dots$, solve $F(x_k) + J_k \delta_k = 0$ for δ_k , with $J_k \in \partial_B F(x_k)$: $\partial_B F$ is the Bouligand differential
- then $x_{k+1} = x_k + (\alpha_k)\delta_k$

Generalized derivatives

Vers les hyperplans

Bouligand differential

$$\partial_{\mathsf{B}} F(x) = \{ J \in \mathbb{R}^{n \times n} : \exists (x_k)_k \to x, F'(x_k) \to J \}$$
 (1)

Example:
$$F(x) = \begin{cases} -x/2 & \text{if } x \leq 0 \\ -x & \text{if } x > 0 \end{cases}$$
, $\partial_B F(0) = \{-1/2, -1\}.$

$$\underbrace{\partial_B F(x)}_{=??} \subsetneq \underbrace{\partial_B F_1(x) \times \cdots \times \partial_B F_p(x)}_{\text{$\square \cdots = \text{easy}}} \text{ (sometimes =)}$$

∃ other differentials: Clarke, Mordukhovich, 2nd order...

Linear Complementarity Problems

General form [CPS92; FP03]

Vers les hyperplans

$$A, B \in \mathbb{R}^{n \times n}, a, b \in \mathbb{R}^{n}, \rightarrow A(x) = Ax + a, B(x) = Bx + b$$

$$0 \le (Ax + a) \perp (Bx + b) \ge 0 \Leftrightarrow$$

$$\forall i, A_{i,:}x + a_{i} \ge 0, B_{i,:}x + b_{i} \ge 0, (A_{i,:}x + a_{i})(B_{i,:}x + b_{i}) = 0$$

$$(2)$$

Remark:
$$u \ge 0, v \ge 0, uv = 0 \Leftrightarrow \min(u, v) = 0$$

(2) $\Leftrightarrow \forall i, F_i(x) := \min(A_i(x), B_i(x)) = 0 \Leftrightarrow F(x) = 0$

Cadre

0000000

Linear Complementarity Problems

General form [CPS92; FP03]

Vers les hyperplans

$$A, B \in \mathbb{R}^{n \times n}, a, b \in \mathbb{R}^{n}, \rightarrow A(x) = Ax + a, B(x) = Bx + b$$

$$0 \le (Ax + a) \perp (Bx + b) \ge 0 \Leftrightarrow$$

$$\forall i, A_{i,:}x + a_{i} \ge 0, B_{i,:}x + b_{i} \ge 0, (A_{i,:}x + a_{i})(B_{i,:}x + b_{i}) = 0$$

$$(2)$$

Remark:
$$u \ge 0, v \ge 0, uv = 0 \Leftrightarrow \min(u, v) = 0$$

(2) $\Leftrightarrow \forall i, F_i(x) := \min(A_i(x), B_i(x)) = 0 \Leftrightarrow F(x) = 0$

Cadre

0000000

Summary

Cadre

00000000

Minimum function on LCPs \Rightarrow semismooth system

Adapted Newton requires info on $\partial_B \min(\mathcal{A}, \mathcal{B})(\cdot) = \partial_B F(\cdot)$

Or to form $\partial_{\mathcal{C}} \min(\mathcal{A}, \mathcal{B})(\cdot)$.

One $J_B \in \partial_B F$: [Qi93] One $J_C \in \partial_C F$: [CX11]

But all of them?

Upcoming plan

Cadre

0000000

The main question

Determine generalized Jacobians of

$$x \mapsto F(x) = \min(Ax + a, Bx + b)$$

- their structure
- finite (but exponential) number of elements
- how to compute them

Plan

- 1 Cadre
- Vers les hyperplans
- 3 Un algorithme
- 4 Matroïdes et dualité
- Le cas affine

Vers les hyperplans

0000000

Cadre

$$f,g \in \mathcal{C}^1$$
: $\min(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \text{hyperplanes}$$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\top x <, >0\}$$

Vers les hyperplans

0000000

Cadre

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} = B_{i,:} \end{cases}$$

$$A_{i,:}x + a_{i} > B_{i,:}x + b_{i}$$

$$I(x) := \{i \in [1:n]: A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

 $\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \text{hyperplanes}$

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \quad H_{i}^{-,+} = \{x \in \mathbb{R}^{n} : v_{i}^{+}x <, >0\}$$
Hyperplanes $H_{i} := (B_{i,:} - A_{i,:})^{\perp} := v_{i}^{\perp}$; for ∂_{B} 's def, $\mathbb{R}^{n} \setminus \cup H_{i}$
 H_{i}^{-} or H_{i}^{+} , $\forall i \in [1:p]: H_{i}^{+} \Leftrightarrow J_{i,:} = A_{i,:}, H_{i}^{-} \Leftrightarrow J_{i,:} = B_{i,:}$

Computing the B-differential

Vers les hyperplans

0000000

Cadre

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} > B_{i,:}x + b_{i} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \textbf{hyperplanes}$$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\top x <, >0\}$$

Computing the B-differential

Vers les hyperplans

0000000

Cadre

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} = B_{i,:} \end{cases} \\ A_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} = B_{i,:} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \text{hyperplanes}$$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\top x <, >0\}$$

 H^- or H^+ $\forall i \in [1:p]$: $H^+ \Leftrightarrow I_{i} = A_{i}$. $H^- \Leftrightarrow I_{i} = B_{i}$.

Vers les hyperplans

0000000

$$f,g \in \mathcal{C}^1$$
: $\min(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} = B_{i,:} \end{cases} \\ A_{i,:}x + a_{i} > B_{i,:}x + b_{i} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \textbf{hyperplanes}$$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\top x <, > 0\}$$

 H_i^- or H_i^+ , $\forall i \in [1:p]: H_i^+ \Leftrightarrow J_{i:i} = A_{i:i}, H_i^- \Leftrightarrow J_{i:i} = B_{i:i}$

Cadre

Computing the B-differential

Vers les hyperplans

0000000

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases} \\ A_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \textbf{hyperplanes}$$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\mathsf{T}x <, >0\}$$
Hyperplanes $H_i := (B_i, \dots, A_i)^{\perp} := v_i^{\perp} : \text{for } \partial_i : \text{odd} \in \mathbb{R}^n \setminus H_i$

Cadre

Computing the B-differential

0000000

Cadre

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases} \\ A_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases}$$

$$I(x) := \{i \in [1:n]: A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$
 $\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \mathbf{hyperplanes}$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\top x <, >0\}$$
Hyperplanes $H_i := (B_{i,:} - A_{i,:})^\perp := v_i^\perp \text{; for } \partial_B\text{'s def, } \mathbb{R}^n \setminus \cup H_i$

Vers les hyperplans

0000000

Cadre

$$f,g \in \mathcal{C}^1$$
: $\min(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases} \\ A_{i,:}x + a_{i} > B_{i,:}x + b_{i} \end{cases}$$

$$I(x) := \{i \in [1:n]: A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

 $\min(\mathcal{A}, \mathcal{B})$ non-diff \Leftrightarrow affine terms equal \Leftrightarrow **hyperplanes**

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\mathsf{T} x <, >0\}$$

Hyperplanes $H_i := (B_{i,:} - A_{i,:})^{\perp} := v_i^{\perp}$; for ∂_B 's def, $\mathbb{R}^n \setminus \bigcup H_i$

$$H_i^-$$
 or H_i^+ , $\forall i \in [1:p]$: $H_i^+ \Leftrightarrow J_{i,:} = A_{i,:}$, $H_i^- \Leftrightarrow J_{i,:} = B_{i,:}$

Directions and hyperplanes - 1

Vers les hyperplans

0000000

$$V = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & e_1 + e_2 \end{bmatrix}$$
 $x + d_k = x + t_k d$
 $e_1 + e_2$
 H_3
 H_3

Red, blue, black: H_i and v_i . In magenta, points of the form $x + t_k d$, $t_k \setminus 0$. The points remain on the same sides of the hyperplanes along k: the J is constant; no need for sequences, points are sufficient.

Directions and hyperplanes - 2

0000000

 $\forall i \in [1:p], 2$ possibilities: maximum of 2^p Jacobians. Here, 6 among the $2^3 = 8$ possible Jacobians exist in $\partial_B F$

Directions and hyperplanes - 3

Vers les hyperplans

0000000

Directions and hyperplanes - 3

Vers les hyperplans

0000000

Directions and hyperplanes - 3

Vers les hyperplans

0000000

Directions and hyperplanes - 3

Vers les hyperplans

0000000

Directions and hyperplanes - 3

Vers les hyperplans

0000000

Directions and hyperplanes - 3

Vers les hyperplans

0000000

$$|I(x)| = p$$
 hyperplanes, $H_i = v_i^{\perp}$, $v_i = B_{i,:} - A_{i,:}$
 $\mathbb{R}^n \setminus \bigcup H_i = \text{ differentiable points, on the } + \text{ or } - \text{ side of every } H_i.$

Fundamental question

given
$$v_i := (B_{i,:} - A_{i,:})^T$$

find all $s = (s_1, ..., s_p) \in \{\pm 1\}^p$,
s.t. $\exists d_s, \forall i \in [1:p], s_i v_i^T d_s > 0$

2^p linear feasibility problems to solve... How to improve?

Summary

$$|I(x)| = p$$
 hyperplanes, $H_i = v_i^{\perp}, v_i = B_{i,:} - A_{i,:}$
 $\mathbb{R}^n \setminus \bigcup H_i = \text{differentiable points, on the} + \text{or} - \text{side of every } H_i.$

Fundamental question

given
$$v_i := (B_{i,:} - A_{i,:})^T$$

find all $s = (s_1, ..., s_p) \in \{\pm 1\}^p$,
s.t. $\exists d_s, \forall i \in [1:p], s_i v_i^T d_s > 0$

2^p linear feasibility problems to solve... How to improve?

Cadre

Very well-known in algebra / combinatorics... ... but very theoretically: Möbius function, lattices, matroids.

Very impressive results such as $|\partial_B F(x)|$ (Winder [Win66])

$$\begin{aligned} |\partial_B F(x)| &= \sum_{T \subset \{H_i, i \in [1:m]\}} (-1)^{|T| - n + \dim(\bigcap H_t, t \in T)} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{|\mathcal{V}| - \operatorname{rank}(\mathcal{V})} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{\operatorname{null}(\mathcal{V})} \end{aligned}$$

or upper bounds but not exactly $\partial_B F(x)$.

From literature

Vers les hyperplans

000000

Very well-known in algebra / combinatorics... ... but very theoretically: Möbius function, lattices, matroids.

Very impressive results such as $|\partial_B F(x)|$ (Winder [Win66])

$$\begin{split} |\partial_{\mathcal{B}}F(x)| &= \sum_{T \subset \{H_i, i \in [1:m]\}} (-1)^{|T|-n+\dim(\bigcap H_t, t \in T)} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{|\mathcal{V}|-\operatorname{rank}(\mathcal{V})} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{\operatorname{null}(\mathcal{V})} \end{split}$$

or upper bounds but not exactly $\partial_B F(x)$.

Plan

- 2 Vers les hyperplans
- Un algorithme
- Le cas affine

Schéma

Cadre

L'algorithme RČ [RČ18]

- procédé récursif : hyperplans ajoutés un par un
- arbre deux descendants si H_{k+1} coupe la chambre en 2
- vérification faite par l'optimisation linéaire

→ Il est possible d'apporter des améliorations 'générales'.
 Ou d'utiliser les matroïdes !

Schéma

Cadre

L'algorithme RČ [RČ18]

- procédé récursif : hyperplans ajoutés un par un
- arbre deux descendants si H_{k+1} coupe la chambre en 2
- vérification faite par l'optimisation linéaire

→ Il est possible d'apporter des améliorations 'générales'.
Ou d'utiliser les matroïdes !

Example avec les chambres et l'arbre

Example avec les chambres et l'arbre

Example avec les chambres et l'arbre

Plan

- Cadre
- 2 Vers les hyperplans
- 3 Un algorithme
- Matroïdes et dualité
- 5 Le cas affine

Le cas affine

++- (,--+) correspond à un POL non-réalisable. + à droite de H_1 , + en haut de H_2 , — en bas à gauche de H_3 : impossible de trouver un point.

L'alternative de Gordan

L'astuce de l'alternative

 $M \in \mathbb{R}^{p \times n}$, exactement une des deux affirmations est vraie :

$$\begin{cases}
\exists x \in \mathbb{R}^n : Mx > 0_{\mathbb{R}^p} \\
\exists \gamma \in \mathbb{R}^p_+ : M^T \gamma = 0
\end{cases}$$
(3)

si
$$M = \operatorname{diag}(s) V^{\mathsf{T}} \to Mx = (s_1 v_1^{\mathsf{T}} x; \dots; s_p v_p^{\mathsf{T}} x)$$
, c'est: "il existe un point dans la chambre définie par s ou un $\gamma \in \mathbb{R}_+^p$ "

En optimisation : "dualité" \simeq autre approche/vision

Cadre

L'astuce de l'alternative

 $M \in \mathbb{R}^{p \times n}$, exactement une des deux affirmations est vraie :

$$\begin{cases}
\exists x \in \mathbb{R}^n : Mx > 0_{\mathbb{R}^p} \\
\exists \gamma \in \mathbb{R}^p_+ : M^{\mathsf{T}} \gamma = 0
\end{cases}$$
(3)

si
$$M = \operatorname{diag}(s)V^{\mathsf{T}} \to Mx = (s_1v_1^{\mathsf{T}}x; \dots; s_pv_p^{\mathsf{T}}x)$$
, c'est: "il existe un point dans la chambre définie par s **ou** un $\gamma \in \mathbb{R}_+^p$ "

En optimisation : "dualité" \simeq autre approche/vision

Algorithme "dual"

Principe

Détecter les incompatibilités := les γ via l'alternative de Gordan Arrêter une branche de l'arbre si incompatibilité

Une incompatibilité = système non-réalisable "de taille minimale"

C'est (une utilité possible) des matroïdes

Algorithme "dual"

Principe

Détecter les incompatibilités := les γ via l'alternative de Gordan Arrêter une branche de l'arbre si incompatibilité

Une incompatibilité = système non-réalisable "de taille minimale"

C'est (une utilité possible) des matroïdes

Algorithme "dual"

Principe

Cadre

Détecter les incompatibilités := les γ via l'alternative de Gordan Arrêter une branche de l'arbre si incompatibilité

Une incompatibilité = système non-réalisable "de taille minimale"

C'est (une utilité possible) des matroïdes !

Matroïdes linéaires/vectoriels

Cadre

Définition : circuits de matroïde

Pour $V \in \mathbb{R}^{n \times p}$, $V = [v_1 \dots v_p]$, on cherche les circuits de $V := J \subset [1:p]$, $V_{:,J} = [v_j]_{j \in J}$ a un noyau de dimension = 1 et $\forall J_0 \subsetneq J, \{v_j\}_{j \in J_0}$ indépendants

 \rightarrow trouver tous les J

$$J ext{ circuit } \Rightarrow \exists \eta \in \mathbb{R}_*^J, V_{:,J} \eta = 0 \Leftrightarrow [V_{:,J} \widetilde{\operatorname{sign}(\eta)}] [\widetilde{\operatorname{sign}(\eta)}] \eta] = 0$$

 $M_{(J)} = [V_{:,J} \operatorname{sign}(\eta)]$ et $\gamma_{(J)} = [\operatorname{sign}(\eta)\eta] \ge 0$ vérifient l'alternative la 'chambre' de taille |J| définie par $\operatorname{sign}(\eta)$ est vide !

Matroïdes linéaires/vectoriels

Cadre

Définition : circuits de matroïde

Pour $V \in \mathbb{R}^{n \times p}$, $V = [v_1 \dots v_p]$, on cherche les circuits de $V := J \subset [1:p]$, $V_{:,J} = [v_j]_{j \in J}$ a un noyau de dimension = 1 et $\forall J_0 \subsetneq J, \{v_j\}_{j \in J_0}$ indépendants

 \rightarrow trouver tous les J:

$$J \text{ circuit} \Rightarrow \exists \eta \in \mathbb{R}_*^J, V_{:,J} \eta = 0 \Leftrightarrow [V_{:,J} \widetilde{\operatorname{sign}(\eta)}] [\widetilde{\operatorname{sign}(\eta)}] \eta] = 0$$

 $M_{(J)} = [V_{:,J} \operatorname{sign}(\eta)]$ et $\gamma_{(J)} = [\operatorname{sign}(\eta)\eta] \ge 0$ vérifient l'alternative la 'chambre' de taille |J| définie par $\operatorname{sign}(\eta)$ est vide !

Matroïdes linéaires/vectoriels

Cadre

Définition : circuits de matroïde

Pour $V \in \mathbb{R}^{n \times p}$, $V = [v_1 \dots v_p]$, on cherche les circuits de $V := J \subset [1:p]$, $V_{:,J} = [v_j]_{j \in J}$ a un noyau de dimension = 1 et $\forall J_0 \subsetneq J, \{v_j\}_{j \in J_0}$ indépendants

 \rightarrow trouver tous les J:

$$J \operatorname{circuit} \Rightarrow \exists \eta \in \mathbb{R}_*^J, V_{:,J} \eta = 0 \Leftrightarrow [V_{:,J} \widetilde{\operatorname{sign}(\eta)}] [\widetilde{\operatorname{sign}(\eta)}] \eta = 0$$

 $M_{(J)} = [V_{:,J} \operatorname{sign}(\eta)]$ et $\gamma_{(J)} = [\operatorname{sign}(\eta)\eta] \ge 0$ vérifient l'alternative la 'chambre' de taille |J| définie par $\operatorname{sign}(\eta)$ est vide !

- arbre normal ([RČ18])
- arbre dual (matroïdes)
- arbre avec les matroïdes (mais bcp d'optimisation)

Des améliorations générales pour les algorithmes 'normaux'. Ou des versions avec matroïdes qui améliorent beaucoup.

Résumé

Cadre

Algorithmes

- arbre normal ([RČ18])
- arbre dual (matroïdes)
- arbre avec les matroïdes (mais bcp d'optimisation)

Des améliorations générales pour les algorithmes 'normaux'. Ou des versions avec matroïdes qui améliorent beaucoup.

Comparaisons numériques

	temps CPU (en s)						
	original	Arbre+M-1		Arbre+M-2		Juste matroïdes	
Problème	code	Temps	Ratio	Temps	Ratio	Temps	Ratio
rand-4-8-2	1.06	0.10	10.75	0.02	48.44	0.03	36.67
rand-7-9-4	1.13	0.45	2.51	0.29	3.95	0.02	68.67
rand-7-13-5	11.06	4.29	2.58	2.94	3.76	0.25	44.60
rand-8-15-7	64.79	29.53	2.19	27.59	2.35	4.54	14.29
rand-9-16-8	157.05	78.01	2.01	81.61	1.92	18.87	8.32
rand-10-17-9	352.42	196.09	1.80	213.48	1.65	70.19	5.02
srand-8-20-4	874.01	323.56	2.70	649.61	1.35	705.36	1.24
rc-2d-20-6	12.68	0.35	36.06	0.26	48.78	0.26	49.63
rc-2d-20-7	23.01	0.56	40.87	0.53	43.06	0.45	51.50
rc-perm-6	62.89	0.84	74.44	2.33	27.03	2.46	25.61
rc-perm-8	6589.31	85.70	76.89	1599.53	4.12	5290.13	1.25
rc-ratio-20-5-7	91.57	27.43	3.34	29.70	3.08	20.54	4.46
rc-ratio-20-5-9	88.24	25.21	3.50	27.54	3.20	17.75	4.97
rc-ratio-20-7-7	581.28	241.24	2.41	506.67	1.15	447.83	1.30
rc-ratio-20-7-9	460.64	162.95	2.83	315.67	1.46	234.72	1.96
Moyenne (totale)			16.60		13.90		30.31
Médiane (totale)			3.24		4.12		27.80

Plan

- 2 Vers les hyperplans
- Un algorithme
- **1** Le cas affine

$$H_i = \{x \in \mathbb{R}^n : v_i^\mathsf{T} x = 0\} \rightarrow H_i = \{x \in \mathbb{R}^n : v_i^\mathsf{T} x = \tau_i\}$$

linéaire/homogène \rightarrow affine/non – homogène

Une chambre auparavant vide, ++-, est maintenant non-vide.

Gordan et Motzkin

$$\underbrace{\left\{ \begin{array}{l} s_1 v_1^\mathsf{T} x > 0 \\ \vdots \\ s_p v_p^\mathsf{T} x > 0 \end{array} \right.}_{\text{Gordan}} \rightsquigarrow \underbrace{\left\{ \begin{array}{l} s_1 v_1^\mathsf{T} x > s_1 \tau_1 \\ \vdots \\ s_p v_p^\mathsf{T} x > s_p \tau_p \end{array} \right.}_{\text{Motzkin}}$$

L'autre alternative (Motzkin)

 $M \in \mathbb{R}^{p \times n} \setminus \{0\}, m \in \mathbb{R}^p$, exactement une des affirmations est vraie

$$\begin{cases}
\exists x \in \mathbb{R}^n : Mx > m \\
\exists (\gamma, \gamma_0) \in (\mathbb{R}^p_+ \times \mathbb{R}^-) \setminus \{0\} : M^\mathsf{T} \gamma = 0, m^\mathsf{T} \gamma + \gamma_0 = 0
\end{cases} \tag{4}$$

Gordan et Motzkin

Cadre

$$\underbrace{\left\{ \begin{array}{l} s_1 v_1^\mathsf{T} x > 0 \\ \vdots \\ s_p v_p^\mathsf{T} x > 0 \end{array} \right.}_{\text{Gordan}} \sim \underbrace{\left\{ \begin{array}{l} s_1 v_1^\mathsf{T} x > s_1 \tau_1 \\ \vdots \\ s_p v_p^\mathsf{T} x > s_p \tau_p \end{array} \right.}_{\text{Motzkin}}$$

L'autre alternative (Motzkin)

 $M \in \mathbb{R}^{p \times n} \setminus \{0\}, m \in \mathbb{R}^p$, exactement une des affirmations est vraie

$$\begin{cases}
\exists x \in \mathbb{R}^n : Mx > m \\
\exists (\gamma, \gamma_0) \in (\mathbb{R}_+^p \times \mathbb{R}^-) \setminus \{0\} : M^\mathsf{T} \gamma = 0, m^\mathsf{T} \gamma + \gamma_0 = 0
\end{cases} \tag{4}$$

Résumé

- algorithme initial avec l'arbre & améliorations
- algorithme avec 100% matroïdes
- applicables aussi dans le cas affine, légères adaptations

L'option mixte

Regarder l'arrangement dans \mathbb{R}^{n+1} , $\tau_i \leftrightarrow$ nouvelle dimension. L'idéal : résoudre le cas affine par algorithme pour le cas linéaire.

Résumé

Cadre

- algorithme initial avec l'arbre & améliorations
- algorithme avec 100% matroïdes
- applicables aussi dans le cas affine, légères adaptations

L'option mixte

Regarder l'arrangement dans \mathbb{R}^{n+1} , $\tau_i \leftrightarrow$ nouvelle dimension.

L'idéal : résoudre le cas affine par algorithme pour le cas linéaire.

L'approche mixte - notations

Vers les hyperplans

$$V = \begin{bmatrix} v_1 \dots v_p \\ T = \begin{bmatrix} \tau_1 \dots \tau_p \end{bmatrix} \quad \widetilde{V} = \begin{bmatrix} V \\ T \end{bmatrix} = \begin{bmatrix} \widetilde{v}_1 \dots \widetilde{v}_p \end{bmatrix} = \begin{bmatrix} v_1 \dots v_p \\ \tau_1 \dots \tau_p \end{bmatrix}$$

- $S^H(V) = \{s : \exists x, \operatorname{diag}(s)V^Tx > 0\}$ cas linéaire;
- $S^{nH}(\widetilde{V}) = \{s : \exists x, \operatorname{diag}(s)V^{\mathsf{T}}x > s \cdot T^{\mathsf{T}}\} \text{ for } \widetilde{V} := (V; T),$
- $\mathcal{S}^H(\widetilde{V}) = \{s : \exists \ \widetilde{x} \in \mathbb{R}^{n+1}, \operatorname{diag}(s) \widetilde{V}^T \widetilde{x} > 0\}$, cas mixte :=

L'approche mixte - notations

$$V = \begin{bmatrix} v_1 \dots v_p \end{bmatrix} \quad \widetilde{V} = \begin{bmatrix} V \\ T \end{bmatrix} = \begin{bmatrix} \widetilde{v}_1 \dots \widetilde{v}_p \end{bmatrix} = \begin{bmatrix} v_1 \dots v_p \\ \tau_1 \dots \tau_p \end{bmatrix}$$

- $S^H(V) = \{s : \exists x, \operatorname{diag}(s)V^Tx > 0\}$ cas linéaire;
- $S^{nH}(\widetilde{V}) = \{s : \exists x, \operatorname{diag}(s)V^{\mathsf{T}}x > s \cdot T^{\mathsf{T}}\}\ \text{for } \widetilde{V} := (V; T),$
- $\mathcal{S}^H(\widetilde{V}) = \{s : \exists \ \widetilde{x} \in \mathbb{R}^{n+1}, \operatorname{diag}(s) \widetilde{V}^T \widetilde{x} > 0\}$, cas mixte :=

L'approche mixte - notations

$$V = \begin{bmatrix} v_1 \dots v_p \end{bmatrix} \quad \widetilde{V} = \begin{bmatrix} V \\ T \end{bmatrix} = \begin{bmatrix} \widetilde{v}_1 \dots \widetilde{v}_p \end{bmatrix} = \begin{bmatrix} v_1 \dots v_p \\ \tau_1 \dots \tau_p \end{bmatrix}$$

- $S^H(V) = \{s : \exists x, \operatorname{diag}(s)V^Tx > 0\}$ cas linéaire;
- $\mathcal{S}^{nH}(\widetilde{V}) = \{s : \exists x, \operatorname{diag}(s)V^{\mathsf{T}}x > s \cdot T^{\mathsf{T}}\} \text{ for } \widetilde{V} := (V; T),$ cas affine:
- $S^H(\widetilde{V}) = \{s : \exists \ \widetilde{x} \in \mathbb{R}^{n+1}, \operatorname{diag}(s) \widetilde{V}^T \widetilde{x} > 0\}, \text{ cas mixte} :=$

L'approche mixte - notations

$$V = \begin{bmatrix} v_1 \dots v_p \\ T = \begin{bmatrix} \tau_1 \dots \tau_p \end{bmatrix} \quad \widetilde{V} = \begin{bmatrix} V \\ T \end{bmatrix} = \begin{bmatrix} \widetilde{v}_1 \dots \widetilde{v}_p \end{bmatrix} = \begin{bmatrix} v_1 \dots v_p \\ \tau_1 \dots \tau_p \end{bmatrix}$$

- $S^H(V) = \{s : \exists x, \operatorname{diag}(s)V^Tx > 0\}$ cas linéaire;
- $S^{nH}(\widetilde{V}) = \{s : \exists x, \operatorname{diag}(s)V^{\mathsf{T}}x > s \cdot T^{\mathsf{T}}\}\ \text{for } \widetilde{V} := (V; T),$ cas affine:
- $\mathcal{S}^H(\widetilde{V}) = \{s : \exists \ \widetilde{x} \in \mathbb{R}^{n+1}, \operatorname{diag}(s) \widetilde{V}^T \widetilde{x} > 0\}, \text{ cas mixte} :=$ regarder \tilde{V} comme cas linéaire dans $\mathbb{R}^{(n+1)\times p}$.

Le cas affine

L'approche mixte - fin des notations

Partie symétrique et asymétrique d'un cas affine

$$\left\{ \begin{array}{ll} \mathcal{S}^{nH}_{sym}(\widetilde{V}) & := & \mathcal{S}^{nH}(\widetilde{V}) \cap [-\mathcal{S}^{nH}(\widetilde{V})] \\ \mathcal{S}^{nH}_{asym}(\widetilde{V}) & := & \mathcal{S}^{nH}(\widetilde{V}) \backslash \mathcal{S}^{nH}_{sym}(\widetilde{V}) \end{array} \right.$$

La nouvelle chambre ++- est asymétrique, les autres sont symétriques.

L'approche mixte - propriétés

$$S^{H}(V) \subseteq S^{H}(\widetilde{V}) \tag{5}$$

$$\mathcal{S}^{H}(V)^{c} \supseteq \mathcal{S}^{H}(\widetilde{V})^{c} \tag{6}$$

$$S_{sym}^{nH}(\widetilde{V}) = S^{H}(\widetilde{V}) \cap S^{H}(V) = S^{H}(V)$$
 (7)

$$S_{asym}^{nH}(\widetilde{V}) \cup [-S_{asym}^{nH}(\widetilde{V})] = S^{H}(\widetilde{V}) \setminus S^{H}(V)$$
 (8)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{sym} = \mathcal{S}^H(\widetilde{V})^c \cap \mathcal{S}^H(V)^c = \mathcal{S}^H(\widetilde{V})^c$$
(9)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{asym} \cup -[\mathcal{S}^{nH}(\widetilde{V})^c]_{asym} = \mathcal{S}^H(V)^c \setminus \mathcal{S}^H(\widetilde{V})^c$$
(10)

Cadre

References

L'approche mixte - propriétés

$$S^{H}(V) \subseteq S^{H}(\widetilde{V}) \tag{5}$$

$$\mathcal{S}^{H}(V)^{c} \supseteq \mathcal{S}^{H}(\widetilde{V})^{c} \tag{6}$$

$$S_{sym}^{nH}(\widetilde{V}) = S^{H}(\widetilde{V}) \cap S^{H}(V) = S^{H}(V)$$
 (7)

$$S_{asym}^{nH}(\widetilde{V}) \cup [-S_{asym}^{nH}(\widetilde{V})] = S^{H}(\widetilde{V}) \setminus S^{H}(V)$$
 (8)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{sym} = \mathcal{S}^H(\widetilde{V})^c \cap \mathcal{S}^H(V)^c = \mathcal{S}^H(\widetilde{V})^c$$
(9)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{asym} \cup -[\mathcal{S}^{nH}(\widetilde{V})^c]_{asym} = \mathcal{S}^H(V)^c \setminus \mathcal{S}^H(\widetilde{V})^c$$
(10)

$$\mathcal{S}^{H}(V) \subseteq \mathcal{S}^{H}(\widetilde{V}) \tag{5}$$

$$S^{H}(V)^{c} \supseteq S^{H}(\widetilde{V})^{c} \tag{6}$$

$$S_{\text{sym}}^{nH}(\widetilde{V}) = S^{H}(\widetilde{V}) \cap S^{H}(V) = S^{H}(V)$$
 (7)

$$S_{asym}^{nH}(\widetilde{V}) \cup [-S_{asym}^{nH}(\widetilde{V})] = S^{H}(\widetilde{V}) \setminus S^{H}(V)$$
 (8)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{sym} = \mathcal{S}^H(\widetilde{V})^c \cap \mathcal{S}^H(V)^c = \mathcal{S}^H(\widetilde{V})^c$$
(9)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{asym} \cup -[\mathcal{S}^{nH}(\widetilde{V})^c]_{asym} = \mathcal{S}^H(V)^c \setminus \mathcal{S}^H(\widetilde{V})^c$$
(10)

L'approche mixte - propriétés

$$S^{H}(V) \subseteq S^{H}(\widetilde{V}) \tag{5}$$

$$\mathcal{S}^{H}(V)^{c} \supseteq \mathcal{S}^{H}(\widetilde{V})^{c} \tag{6}$$

$$S_{\text{sym}}^{nH}(\widetilde{V}) = S^{H}(\widetilde{V}) \cap S^{H}(V) = S^{H}(V)$$
 (7)

$$S_{asym}^{nH}(\widetilde{V}) \cup [-S_{asym}^{nH}(\widetilde{V})] = S^{H}(\widetilde{V}) \backslash S^{H}(V)$$
 (8)

$$[\mathcal{S}^{nH}(\widetilde{V})^c]_{sym} = \mathcal{S}^H(\widetilde{V})^c \cap \mathcal{S}^H(V)^c = \mathcal{S}^H(\widetilde{V})^c$$
(9)

$$[S^{nH}(\widetilde{V})^c]_{asym} \cup -[S^{nH}(\widetilde{V})^c]_{asym} = S^H(V)^c \setminus S^H(\widetilde{V})^c$$
(10)

Arguments et intérêt

Cadre

Preuves : les définitions & basculer entre Gordan et Motzkin

$$\mathcal{S}_{sym}^{nH}(\widetilde{V}) = \mathcal{S}^{H}(\widetilde{V}) \cap \mathcal{S}^{H}(V) = \mathcal{S}^{H}(V)$$

$$\mathcal{S}^{nH}_{asym}(\widetilde{V}) \cup [-\mathcal{S}^{nH}_{asym}(\widetilde{V})] = \mathcal{S}^{H}(\widetilde{V}) \backslash \mathcal{S}^{H}(V)$$

Droite : uniquement des cas linéaires

Gauche : le cas affine recherché

Détail restant : distinguer les bons s des -s. (Ça marche bien.)

Arguments et intérêt

Cadre

Preuves : les définitions & basculer entre Gordan et Motzkin

$$\mathcal{S}_{\mathsf{sym}}^{\mathsf{nH}}(\widetilde{V}) = \mathcal{S}^{\mathsf{H}}(\widetilde{V}) \cap \mathcal{S}^{\mathsf{H}}(V) = \mathcal{S}^{\mathsf{H}}(V)$$

$$\mathcal{S}^{nH}_{asym}(\widetilde{V}) \cup [-\mathcal{S}^{nH}_{asym}(\widetilde{V})] = \mathcal{S}^H(\widetilde{V}) \backslash \mathcal{S}^H(V)$$

Droite : uniquement des cas linéaires

Gauche : le cas affine recherché

Détail restant : distinguer les bons s des -s. (Ça marche bien.)

Algorithmes

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

Ouverture : si on veut "tout" l'arrangement (⊋ chambres) ?

 \rightarrow remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais $3^p...$) Merci pour votro

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- adaptations des améliorations au cas affine

Conclusion

Cadre

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Conclusion

Cadre

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Algorithmes

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

Ouverture : si on veut "tout" l'arrangement (\supsetneq chambres) ? \rightsquigarrow remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais $3^p...$) Merci pour votre

Algorithmes

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

Ouverture : si on veut "tout" l'arrangement (⊋ chambres) ?

 \rightarrow remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais $3^p...$) Merci pour votre

Conclusion

Algorithmes

- algorithme de l'arbre (cas affine/linéaire)
- améliorations structurelles
- améliorations fondamentales : matroïdes
- adaptations des améliorations au cas affine
- algorithme 'mixte' pour le cas affine

Code pour les cas affine/mixte en développement.

Ouverture : si on veut "tout" l'arrangement (⊋ chambres) ?

 \rightarrow remplacer $\{-,+\}$ par $\{-,0,+\}$ (mais $3^p...$) Merci pour votre

Bibliographic elements I

Cadre

- [CPS92] R.W. Cottle, J.-S. Pang, and R.E. Stone. *The Linear Complementarity Problem*. Academic Press, Boston, 1992.
- [CX11] X. Chen and S. Xiang. "Computation of generalized differentials in nonlinear complementarity problems". In: Computational Optimization and Applications 50 (2011). [doi], pp. 403–423.
- [FP03] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research. Springer, 2003.
- [Qi93] L. Qi. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations". In: Mathematics of Operations Research 18 (Feb. 1993). [doi], pp. 227–244.

Bibliographic elements II

Cadre

- [QS93] L. Qi and J. Sun. "A nonsmooth version of Newton's method". In: *Mathematical Programming* 58 (1993). [doi], pp. 353–367.
- [RČ18] Miroslav Rada and Michal Černý. "A New Algorithm for Enumeration of Cells of Hyperplane Arrangements and a Comparison with Avis and Fukuda's Reverse Search". In: SIAM Journal on Discrete Mathematics 32 (Jan. 2018), pp. 455–473. DOI: 10.1137/15M1027930.
- [Win66] Robert O. Winder. "Partitions of N-space by hyperplanes". In: *SIAM Journal on Applied Mathematics* 14.4 (1966). [doi], pp. 811–818.