CSCI 6333/6315 Database Systems Spring 2020

ASSIGNMENT 4: Data Storage and Querying, Transaction Management Sample Solutions

Problem 1. This problem has two parts:

a. Construct a B^+ -tree for the following key values:

Assume that the number of pointers that will fit in one internal node is 4 and each leaf node can store 3 key values.

- b. After the B^+ -tree is constructed for Part a, show the final tree after the following operations:
 - b.1. Insert 9
 - b.2. Insert 10
 - b.3. Insert 8
 - b.4. Delete 23
 - b.5. Delete 19

Solution:

a. The tree is:

b.1. Insert 9, and the tree becomes:

b.2. Insert 10, and the tree becomes:

b.3. Insert 8, and the tree becomes:

b.4. Delete 23, and the tree becomes:

b.5. Delete 19, the tree becomes:

Problem 2. This problem has two parts:

a. Suppose that we are using extendable hashing on a file that contains records with the following search key values:

Show the extendable hash structure for this file if the hash function is h(x) = x% 8, and each bucket can hold three records.

- b. After Completing Part a, show the extendable hash structures after the following operations:
 - b.1. Delete 11

b.2. Delete 31

b.3. Insert 1

b.4. Insert 15

Problem 3. Consider the following SQL query for our University Database:

select T.dept_name from department as T, department as S

Write an efficient relational-algebra expression that is equivalent to this query. Justify your choice.

$$\Pi_{T.dept_name}(\rho_T(department) \bowtie)_{T.budget>S.budget}$$

$$\rho_S \left(\sigma_{department.building=MAG}(department) \right)$$

- 1. First, select departments located in "MAG" building, which shall reduce the departments significantly.
- 2. Do a conditional join to find departments with budgets greater than any department located in "MAG" building"
- 3. Extract the department names after step 2.

Note: For execution, step2 and 3 can be combined.

Problem 4. Let the relations $r_1(A, B, C)$ and $r_2(C, D, E)$ have the following properties: r_1 has 20,000 tuples, r_2 has 45,000 tuples, 25 tuples of r_1 fit on one block, and 30 tuples of r_2 fit on one block. Estimate the number of block accesses required, using each of the following join strategies for $r_1 \bowtie r_2$:

- a. Nested-loop join
- b. Block nested-loop join
- c. Merge join
- d. Hash join

$$n_{r_1} = 20,000, n_{r_2} = 45,000$$

 $b_{r_1} = 20,000/25 = 800, b_{r_2} = 45,000/30 = 1,500.$

a. If r_l is used for the outer loop, then the number of block transfers is 20,000 * 1500 + 800 = 30,000,800.

If r_2 is used for the outer loop, then the number of block access would be 45,000 *800 + 1500 = 36,001,500.

In either of the two cases, the number of disk seeks is $n_{r_1} + n_{r_2} = 800 + 1,500 = 2,300$.

b. If r_l is used for the outer loop, then the number of block transfers is 800 * 1500 + 800 = 1,200,800. The number of disk seeks is $2 \times b_{r_1} = 1,600$.

If r_2 is used for the outer relation, then the number of block transfers is 1500 *800 + 1500 = 1,201,500. The number of disk seeks is $2 \times b_{r_2} = 3,000$.

c. Assume both relations are sorted. In the worst case, we need $b_{r_1} + b_{r_2} = 800 + 1500 = 2,300$ block transfers. The number of disk seeks is also $b_{r_1} + b_{r_2} = 800 + 1500 = 2,300$.

If the relations are not sorted, we need to add the cost for sorting the relations.

d. For hash join, the total number of block transfers is $3 \times (b_{r_1} + b_{r_2}) = 6,900$, and the total number of disk seeks is $2 \times (b_{r_1} + b_{r_2}) = 4,600$. Here, we ignore the extra cost pertaining to the number of hash buckets which is determined by the specific hash functions used.

Problem 5. Show that the following equivalences hold.

- a. $E_1 \triangleright \triangleleft_{\theta} (E_2 E_3) = (E_1 \triangleright \triangleleft_{\theta} E_2 E_1 \triangleright \triangleleft_{\theta} E_3)$
- b. $\sigma_{\theta_1 \land \theta_2}(E_1 \rhd \lhd_{\theta_3} E_2) = \sigma_{\theta_1}(E_1 \rhd \lhd_{\theta_3} (\sigma_{\theta_2}(E_2)))$, where θ_2 involves only attributes from E_2 .
- a. $t \in E_1 \rhd \lhd_{\theta} (E_2 E_3)$, if and only if there are $u \in E_1, v \in E_2 E_3$, such that u and v satisfy θ and t is the join of u and v. Note that $v \in E_2 E_3$ implies $v \in E_2$ but $v \notin E_3$. The latter condition is equivalent to $t \in E_1 \rhd \lhd_{\theta} E_2$, but $t \notin E_1 \rhd \lhd_{\theta} E_3$.
- b. $\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie_{\theta_3} E_2) = \sigma_{\theta_1}(\sigma_{\theta_2}(E_1 \bowtie_{\theta_3} E_2)) = \sigma_{\theta_1}(E_1 \bowtie_{\theta_3 \wedge \theta_2} E_2)$. Since θ_2 involves only attributes from E_2 , the latter is same as $\sigma_{\theta_1}(E_1 \bowtie_{\theta_3} (\sigma_{\theta_2}(E_2)))$.