Lenguajes y Autómatas I

TAREA 28

- 1. Para cada una de las siguientes funciones, diseñe y escriba las transiciones de una Máquina de Turing que pueda realizarla:
 - a) Dada una cadena de entrada de la forma $w\mathbf{c}x$, donde $w, x \in \{\mathbf{a}, \mathbf{b}\}^*$, se pide que arroje como resultado la cadena xw, por ejemplo si la entrada es **abbcbaba**, debe de devolver como salida: **babaabb**.
 - b) Que duplique una cadena, es decir, dada la cadena de entrada $w \in \{a, b\}^*$, arroje como resultado ww, por ejemplo: si w = abbb, entonces devuelve: ww = abbbabbb.
 - c) Que pueda realizar sumas unarias de varios sumandos, generalizando la MT vista en el ejemplo de funciones Turing-computables, por ejemplo si la entrada es 1+111+11+1+1111, debe de devolver: 11111111111.
 - d) Dados dos números, en notación unaria, identifique el mínimo; la entrada es una cadena de la forma 1ⁿ~1^m, con n, m ≥ 0, mientras que la salida es: 1^m, si m < n o 1ⁿ, en caso contrario, por ejemplo: si la entrada es: 1111~11, entonces devuelve: 11.
 - e) Dada una cadena cualquiera $w \in \{\mathbf{a}, \mathbf{b}\}^*$, nos entregue una cadena de salida que tenga tantos 1s como veces aparezca la secuencia ab dentro de la cadena w, por ejemplo, si $w = \mathbf{abaabb}$, la salida debe ser: 11.
 - f) Dada una cadena de entrada de la forma $w = 1^n$, $n \ge 0$, nos entregue una cadena de salida que tenga la forma $(01)^n$, por ejemplo, si w = 1111, la salida debe ser: 01010101.
 - g) Dada una cadena de entrada de la forma $w = (\mathbf{ab})^n$, n > 0, nos entregue una cadena de salida que tenga la forma $\mathbf{1}^n$, y nos entregue la cadena $\mathbf{0}$, si la entrada no corresponde al formato esperado, por ejemplo, si $w = \mathbf{ababab}$, la salida debe ser: **111**. Pero si $w = \mathbf{babab}$, la salida debe ser: $\mathbf{0}$.