MATH 2330: Multivariable Calculus

4.3: Partial Derivatives

Section 4.3 - Partial Derivatives:

Definitions & Terminology:

Figure 1: Partial Derivatives Geometry Diagram

The partial derivative of f with respect to x at the point (a,b), $f_x(a,b)$, is the slope of the line tangent to the curve z = f(x,b) at the point (a,b).

• To compute f_x : treat y as a constant, and take the derivative w.r.t. x.

The partial derivative of f with respect to y at the point (a,b), $f_y(a,b)$, is the slope of the line tangent to the curve z=f(a,y) at the point (a,b).

• To compute f_y : treat x as a constant, and take the derivative w.r.t. y.

Common types of partial derivative notation:

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x}f(x,y) = \frac{\partial z}{\partial x}$$

Clairaut's Theorem:

Suppose f is defined on a disk D that contains the point (a,b). If the functions f_{xy} and f_{yx} are both continuous on D, then

MATH 2330: Multivariable Calculus

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Punchline: If the mixed partial derivatives are continuous, order doesn't matter!

Example 1: Consider $f(x,y)=5x^2-2xy+3y^3$. Find f_{xy} and f_{yx} and verify that the conclusion of Clairaut's Theorem holds.

Example 2: Use implicit differentiation to find $\frac{\partial z}{\partial x}$:

$$x^2 - y^2 + z^2 - 2z = 4$$

Section 4.3 Group Work:

Clarifying Clairaut's Theorem

Consider $f ! x " y " z \# ! x^2 \cos [y^3 " z^2]"$.

- **1.** Why do we know that f_{zyyxxx} ! 0 without doing any computation?
- **2** Do we also know, without doing any computation, that f_{xyzzz} ! 0? Why or why not?
- **3.** Suppose that $f_x \mid 3x \mid ay^2$, $f_y \mid bxy \mid 2y$, $f_y \mid 1 \mid 1 \mid 1 \mid 3$, and f has continuous mixed second partial derivatives f_{xy} and f_{yx} .
 - (a) Find values for a and b and thus equations for f_x and f_y . HNTWhat does Clairaut's Theorem say about the mixed partial derivatives of a function? When does the theorem apply?
 - (b) Can you f nd a function F!x"y#such that $\frac{\$F}{\$x}$! f_x in part (a)?
 - (c) Can you find a function G!x"y#! F!x"y#' k!y# such that $\frac{\$G}{\$y}! f_y$ in part (a)? What is k!y#
 - (d) What is $\frac{\$G}{\$x}$? Can you now f nd f!x"y#

Figure 2: Clarifying Clairaut Group Work Activity