An Extensible Body Sensor Network Platform with Real-Time 3D Myles Keller

<u>Myles Keller</u> Dr. Robert Karam

Visualization *Dr.*

Introduction

A Body Sensor Network (BSN) is a system consisting of low-power, often wireless sensor nodes used to monitor various aspects of the wearer's body and the environment surrounding them

Fig. 1: Typical Body Sensor Network Configuration

Motivation

Most existing BSN research focuses on optimizing individual system components or on healthcare-specific applications

Our focus is on designing an <u>extensible</u> <u>BSN platform</u> that supports research and development of emerging <u>wearable and implantable applications</u>

Novel features include support for:

- Dynamic microcontroller role reconfiguration
- Real-time, multi-dimensional data visualization
- Platform-independent, browser-based front-end for developers
- Support for multi-sensor energy optimization strategies

Browser Front-end

Info Overview

Shows unique name and icon, current value(s), and visibility state of all sensors configured in environment

3D Visualizer

Applies spatial, location, orientation, and movement sensor data to symbolic objects in 3D space

UI Buttons (a)

Allows user quick access to preconfigured or custom JavaScript commands for sensors and the front-end

Fig. 2: Screenshot Displaying Each Component of Browser Front-End

Virtual Console

Provides debugging information from sensors and allows input of simple user commands

2D Graphing

Plots streaming sensor data for easier identification of patterns, anomalies, and any correlations

Data Export <a>

Saves streaming sensor data to local file system for future offline processing and analysis

Communication Back-end

Sensor Interfacing

- JavaScript constructors are used to initialize sensors for use in BSN
- NODE microcontrollers report data up to the CONTROLLER microcontroller
- PlatformIO used for one-time flash of C++ firmware for initial configuration

Wifi

Communication Protocol

- Browser Front-end, controllers, and nodes communicate via Wi-Fi
- WebSocket parses information between Browser Front-end and Wi-Fi for reliable, bi-directional communication with minimal lag

Results

Sampling Rate Optimization

- Sensor passes ID of another sensor as a reference of how to modulate its internal sampling rate
- Sensor scales back internal duty cycle proportionally to values from reference
- Observed 14% reduction in overall microcontroller power consumption

Fig. 3: Effect of Sample Rate Modulation on Current Draw

Microcontroller Role Flexibility

We observed appropriate responses from the microcontroller according to each role assignment it can perform in the BSN:

- NODE: microcontroller hub for one or more physical or virtual sensors
- controller providing communication link between NODEs and Browser Front-end

Fig. 4: Microcontroller Role Assignment Hierarchy

Wireless Data Streaming

- controller hosts ad-hoc Wi-Fi network for sending/receiving data on BSN and hosting Browser Front-end
- Measurements from the BSN rendered in real-time with a 15 Hz refresh rate when transmitting via Wi-Fi