What is the adiabatic flame temperature when propane (C₃H₈) at 300K is burnt with stoichiometric amount (to give CO₂ and H₂O) of pure oxygen at 300K ? Take 1 Nm³ blast air as the basis. Present your results as fully populated mass and heat balance tables.

Method I: Head Bolamee: Sensible heads of all materials is given as HT-H298= 14.047

Reaction: (3 +8+502=3002+4+20; AH=3x(-394000)+4(-242000)-(-105000)-0

O_2 , 298K (1N m3= $\frac{1000}{22.4} \times \frac{273}{298} = 40.9 \text{ ind} / \times 0$ O_2 , 298K (4.0.7 = 8.180 mol) × 0 C348,298K $\frac{46.9}{5} = 8.180 \text{ mol}$ 24w. Head $\frac{40.9}{5} = 8.180 \text{ mol}$ 24w. Head $\frac{10.9}{5} = 8.180 \text{ mol}$ 25w. Head $\frac{10.9}{5} = 8.180 \text{ mol}$ 26w. Head $\frac{10.9}{5} = 8.180 \text{ mol}$ 27 = $\frac{10.9}{5} = 8.180 \text{ mol}$ 28w. Head $\frac{10.9}{5} = 8.180 \text{ mol}$ 28w. Head $\frac{10.9}{5} = 8.180 \text{ mol}$	Input	Details	3	Output	Details	3
0	,298K	(1 N m3= 1000 × 273 = 40.9 ind) × 0	٥	CO2,74	24.54x (61.07-30500)	
40.9 3 ×394000 + 4×(242000) 5 (-105000) - 0	H8,298F	46.90 = 8.180 mot	0	H20,9,T	32:72 = (47.47, -22200)	
	M. Head	40.9 3 × 394000 + 4 × 242000	×	405568	adiabatic	

Enthally of Jements at 298 K= 0, compareds have enthally (= 24) at 298 K Method II: Enthalfy Balance: Enthalfyin = Enthalfy out (for adiabatiz process)

		2)	Output	Details	2
2,268	02,298 element		0	200	(4298 + (Hg - 4298) MCO2	
	* +	F			= 24.54 (-394000 + 61.07, -30500)	
3 48,218	(3 #8,298 (0+ A+1,398) M = 8:10 (-1000)	3	-	H209	(H298+(HTg-#298)).M420	
					= 32.72 (- 242000 10 +47 (15-2200)	0

- Two methods are identical, except how one does the counting.

- Engineers normally prefer Method I