

Statistics MATH 324

McGill University, Montréal, Canada

Fall 2018

Sampling distributions

- Recall: Statistics is the science of extracting information from data using tools from mathematics, in particular, probability.
- 1- In this chapter, we formally define a statistic.
- 2- Introduce the distribution of a statistic: sampling distribution.
- 3- The Central Limit Theorem (CLT), and some related topics.

Statistic

• Let $\underline{X} = (X_1, ..., X_n)$ be a random sample from some distribution F.

Definition:

A **statistic** is a function of only the random sample and some known constants:

$$T(\underline{X}) = T(X_1, ..., X_n) : \mathcal{X} \longrightarrow \mathbb{R}^d.$$

where $\mathcal{X} \subset \mathbb{R}^n$ is referred to as the sample space, and $d \ge 1$.

Statistical analyses use various statistics for various purposes.

Note:

One assumption we often (but not always) make is that the random variables X_1, X_2, \dots, X_n are a random sample, i.e. that they are independent and identically distributed according to the same probability distribution, say, F.

Examples

Sample mean (average):

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Sample variance:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Order statistics:

$$X_{(1)}, X_{(2)}, \ldots, X_{(n)}.$$

Range:

$$R_n(\underline{X}) = X_{(n)} - X_{(1)}.$$

Remarks

• A **statistic** is itself a **random** variable; hence, it has a distribution.

Defintion:

The distribution of a **statistic** is called sampling distribution.

• Example 7.1: an illustrative example on sampling distribution.

More on sampling distribution

- It depends on the underlying distribution F from which the random sample X_1, \ldots, X_n is taken.
- It depends on the statistic T(X) under consideration.
- It depends on the sample size n.
- It may or may not be computed explicitly.

Why do we even care about the sampling distribution?

CBC News Post: Mar 30, 2015:

Seattle-based Amazon wants to deliver packages of under five pounds in 30 minutes or less using its Amazon Prime Air autonomous drones in the near future.

• Consider the timing for n = 100 deliveries, with observed average $\bar{x}_n = 33$ minutes. What can we conclude from this observation? Is the mean delivery time higher than what is claimed?

8/38

- Let X be the delivery time of a randomly selected Amazon Prime Air autonomous drone (the type for which data is collected). The distribution of X is denoted by F.
- A random sample: $X_1, X_2, ..., X_n$ are iid from F.
- The sample average: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- Based on the post-experimental data, we have observed that $\overline{x}_n = 33$ minutes, with n = 100. We would like to see, if the company's claim is true, how likely is to observe such sample average!
- To answer this question, by using statistics and probability language, we need certain tools that we discuss now.

Samples of Gaussian random variables

Assumption: in this Sub-section, we assume that X_1, X_2, \dots, X_n is a random sample from $N(\mu, \sigma^2)$; (unless otherwise is stated).

- The Normal distribution fits reasonably well to many data sets, and is a suitable approximation to many discrete and continuous distributions.
- Compared to other distributions, it is easier to work with the normal distribution in many statistical analysis problems.

A. Sampling distribution of the sample average

Recall the following result:

Theorem 6.3:

Let $X_1, ..., X_n$ be independent random variables, where $X_i \sim N(\mu_i, \sigma_i^2)$, $\mu_i = E(X_i)$, $\sigma_i^2 = Var(X_i)$, for i = 1, ..., n. Then,

$$Y_n = \sum_{i=1}^n a_i X_i \sim N\bigg(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\bigg),$$

 $a_1, \ldots, a_n \in \mathbb{R}$ are constants.

Important special case

• Set $a_1 = ... = a_n = \frac{1}{n}$, and

$$\mu_1 = \ldots = \mu_n = \mu$$
, $\sigma_1^2 = \ldots = \sigma_n^2 = \sigma^2$.

Then, $Y_n = \overline{X}_n$. Furthermore,

Theorem 7.1:

Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$, then

$$\overline{X}_n \sim N(\mu, \sigma^2/n).$$

PROOF. Use Theorem 6.3.

Remarks

• For any sample size *n*, we have

$$E(\overline{X}_n) = \mu$$
, $Var(\overline{X}_n) = \frac{\sigma^2}{n}$.

For any sample size n,

$$Z_n = rac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

• As $n \to \infty$: $Var(\overline{X}_n) \to 0$.

This implies that \overline{X}_n converges in probability to μ as the sample size n increases.

Drone example (cont'd...)

• Assuming that the delivery time X has a normal distribution $N(\mu, \sigma^2)$, we have that:

$$\overline{X}_{100} \sim N(\mu, \frac{\sigma^2}{100}).$$

 Note: the above sampling distribution depends on two unknown parameters:

$$(\mu, \sigma^2)$$
.

For now, we cannot proceed unless we make more assumption(s)!

Some applications of the sampling distribution of \overline{X}_n

To see why it is useful to know a sampling distribution, make the following assumption (for the time being, out of convenience only):

Assumption:

The true value of the standard deviation is $\sigma = 5$ minutes. Thus,

$$\overline{X}_{100} \sim N(\mu, \frac{25}{100}).$$

1. Proving or disproving a claim about μ

• Suppose Amazon's claim is true and $\mu = 30$. What is the probability of observing a random sample with average delivery time at least 33 minutes?

$$\Pr(\overline{X}_{100} \ge 33) = \Pr\left(Z \ge \frac{33 - 30}{5/10}\right) = \Pr(Z \ge 6) \approx 9.9 \times 10^{-10}$$

Based on this data, the claim is thus very unlikely to be true!

This type of argument is called argumentum ad absurdum.

2. Finding a plausible range of values for μ

• What is the chances that \overline{X}_{100} lies within 1 minute from the true average delivery time (μ)?

$$\Pr(|\overline{X}_{100} - \mu| \le 1) = ??? \approx 0.9545$$

17/38

3. Determining a minimum sample size

• Suppose we want to be 90% sure that \overline{X}_n is within 1 minute from μ (90% is 18 out of 20). How many timing (n) we should test?

$$P(|\overline{X}_n - \mu| \le 1.0) = 0.90.$$

• Note that if $Z \sim N(0,1)$, then $P(|Z| \le 1.645) \approx 0.90$. Hence,

$$\frac{1.0}{5/\sqrt{n}} \ge 1.645 \Longleftrightarrow n \ge \frac{5^2 \times (1.645)^2}{1.0^2} = 68.0625.$$

B. Sampling distribution of the sample variance

Recall the following result:

• Theorem 6.4:

Let $X_1, ..., X_n$ be independent random variables, where $X_i \sim N(\mu_i, \sigma_i^2)$, $\mu_i = E(X_i)$, $\sigma_i^2 = Var(X_i)$, for i = 1, ..., n. Define,

$$Z_i = \frac{X_i - \mu_i}{\sigma_i}.$$

Then, Z_1, \ldots, Z_n are independent and they all have the same distribution N(0,1). Also, $\sum_{i=1}^n Z_i^2 \sim \chi_{(n)}^2$.

• Special case: $\mu_1 = \ldots = \mu_n = \mu$ and $\sigma_1^2 = \ldots = \sigma_n^2 = \sigma_n^2$ McGill

19/38

Sampling distribution of S_n^2 (cont'd...)

• Theorem 7.3:

Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Then,

$$\frac{(n-1)S_n^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X}_n)^2 \sim \chi_{(n-1)}^2.$$

Moreover, \overline{X}_n and S_n^2 are independent.

- PROOF. Will be presented later on when we have enough tools.
- Compare Special case of Theorem 6.4 and Theorem 7.3. Pay attention to the degrees of freedoms of the two χ^2 distributions.

Some properties of S_n^2

- Note that: $E\{\chi^2_{(r)}\} = r$, $Var\{\chi^2_{(r)}\} = 2r$.
- Then, it is easy to see that:

$$E\{S_n^2\} = \sigma^2 \ , \ Var(S_n^2) = \frac{2\sigma^4}{n-1}$$

- Hence, $S_n^2 \xrightarrow{p} \sigma^2$, as $n \to \infty$.
- This implies that as the sample size grows larger, the sample variance S_n^2 will be closer and closer to the population variance σ^2 .

Drone example: cont'd...

• What is the probability that the ratio $\frac{S_n^2}{\sigma^2}$ lies in [0.7, 1.3]?

$$\Pr\left\{0.7 \le \frac{\mathcal{S}_n^2}{\sigma^2} \le 1.3\right\} = \Pr\left\{69.3 \le \frac{(n-1)\mathcal{S}_n^2}{\sigma^2} \le 128.7\right\} = 0.9658.$$

- The above calculation implies that we are "96.58%" confident that σ^2 belongs to the interval $[S_n^2/1.3, S_n^2/0.7]$.
- For example, assume that the observed value of the sample standard deviation is $s_n = 4.5$. Then,

$$[s_n^2/1.3, s_n^2/0.7] = [15.58, 28.93].$$

Be careful about the interpretation of this interval.

The student distribution

Definition 7.2:

Suppose $Z \sim N(0,1)$ and $W \sim \chi^2_{(\nu)}$ are independent. Then,

$$T=rac{Z}{W/\sqrt{
u}}\sim t_{(
u)}.$$

we say T has a Student t distribution with ν degrees of freedom.

- Its pdf has a complex form and we do not directly use it in this course.
- This distribution is due to William S. Gosset, who published it under the pen name "Student" (he worked for Arthur Guinness & Son, Dublin).

Construction of the Student t distribution

Theorem:

Let X_1, \ldots, X_n be i.i.d. from $N(\mu, \sigma^2)$. Then,

$$T_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \sim t(n-1).$$

PROOF. Use Theorems 7.1 and 7.3, and Definition 7.2.

1. Drone example (cont'd...)

 We revisit the calculations on page 15 of the notes. Here, we do not know σ^2 . Then.

$$\Pr(\overline{X}_{100} \ge 33) = \Pr\left(T \ge \frac{33 - 30}{4.5/10}\right) = \Pr(T \ge 6.67) = 7.4 \times 10^{-10}$$

where $T \sim t_{(99)}$.

 Again, based on this data, their claim seems very unlikely to be true!

2. Finding a plausible range of values for μ

• What is the chances that \overline{X}_{100} lies within 1 minute from the true average delivery time (μ)? (we do not know σ^2).

$$\Pr(|\overline{X}_{100} - \mu| \le 1) = ??? \approx 0.9713$$

C. Sampling distribution of the ratio of two sample variances

- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu_1, \sigma_1^2)$ and $Y_1, \ldots, Y_m \stackrel{iid}{\sim} N(\mu_2, \sigma_2^2)$ be two independent random samples.
- Question: how do we compare the two variances σ_1^2 and σ_2^2 ?

The F statistic

• Definition: Let $W_1 \sim \chi^2_{(\nu_1)}$ and $W_2 \sim \chi^2_{(\nu_2)}$ be independent random variables. Then,

$$\textit{F} = \frac{\textit{W}_1/\nu_1}{\textit{W}_2/\nu_2}$$

is said to have the Fisher-Snedecor F distribution with (ν_1, ν_2) degrees of freedom, and we write $F \sim F_{(\nu_1, \nu_2)}$.

Note:

$$F \sim F_{(\nu_1,\nu_2)} \Longleftrightarrow rac{1}{F} \sim F_{(\nu_2,\nu_1)}$$

 Similar to other well known distributions, the quantiles of the F distribution can be obtained from statistical tables. The F distribution is also available in R.

Comparing sample variances

Theorem

Consider the independent random samples

$$X_1,\ldots,X_n\stackrel{iid}{\sim} N(\mu_1,\sigma_1^2)$$
 and $Y_1,\ldots,Y_m\stackrel{iid}{\sim} N(\mu_2,\sigma_2^2)$. Then

$$\frac{S_n^2/\sigma_1^2}{S_m^2/\sigma_2^2} \sim F_{(n-1,m-1)}.$$

PROOF. To be discussed in class.

What if normality assumption does not hold?

- In our discussion in the last two lectures, we have been assuming that the data generating mechanism is a Gaussian distribution.
- The assumption led to convenient well-known distributions for the sample mean, variance, etc.
- Let us relax the normality assumption and see what we can do.

The Central Limit Theorem (CLT)

• Theorem 7.4: Let X_1, \ldots, X_n be a random sample from an arbitrary distribution F with $E(X_i) = \mu$ and $0 < Var(X_i) = \sigma^2 < \infty$. Define

$$U_n = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}.$$

Then as $n \to \infty$, for all $x \in \mathbb{R}$,

$$G_n(x) = \Pr(U_n \le x) \longrightarrow \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

• We say U_n converges in distribution to N(0,1), and we write $U_n \stackrel{d}{\longrightarrow} N(0,1)$.

Reality check

Under the assumptions of Theorem 7.4,

$$E(\overline{X}_n) = E\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \mu$$

$$Var(\overline{X}_n) = Var\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{\sigma^2}{n}.$$

• This means, the U_n in Theorem 7.4 is designed so that

$$E(U_n) = 0$$
 , $Var(U_n) = 1$.

Remarks

• Practical implication of Theorem 7.4: for large sample sizes *n*,

$$U_n \approx N(0,1)$$
 , or equivalently $\overline{X}_n \approx N(\mu, \frac{\sigma^2}{n})$,

where " \approx " means "approximation".

This is irrespective of the underlying distribution F, as long as $0 < Var(X_i) = \sigma^2 < \infty$.

- The approximation becomes arbitrarily good, as n grows. The speed at which this occurs depends on F, though.
- It has been generalized in various ways, e.g., by Lindeberg and Lévy, Lyapunov, etc.

Drone example: revisited

- Recall the calculations on pages 15, 16, and 17. Under the normality assumption of the distribution of delivery time, the probability calculations were exact.
- Now, let us relax the assumption that the delivery time, as a random variable, follows a normal distribution $N(\mu, \sigma^2)$. That means, it has an unknown distribution F.
- Repeat all the calculations, except that the probability statements will all be approximations.
- Note: the sample size n = 100 is large enough, and hence the approximation based on the CLT is very good.

Next:

- Can we also relax the assumption of "known variance σ^2 " in Drone example calculations?
- Answer: YES.
- We will use Slutsky's Theorem:

Let X_1, X_2, \ldots and Y_1, Y_2, \ldots be two sequences of random variables such that as $n \to \infty$, $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$. for some constant c. Then, as $n \to \infty$

- (2) $X_n \times Y_n \stackrel{d}{\longrightarrow} X \times C$

• Theorem:

Let X_1, X_1, \dots, X_n be a random sample from an arbitrary distribution F such that $E(X_i^4) < \infty$. Then, as $n \to \infty$,

$$W_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \stackrel{d}{\longrightarrow} N(0, 1).$$

- PROOF. Will be discussed in class.
- NOTE:

If $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, then W_n has an exact t-student distribution with (n-1) degrees of freedom. If $n \to \infty$, then $t_{(n-1)} \stackrel{d}{\longrightarrow} N(0,1).$

Drone example: revisited

Recall the calculation on page 24.

$$\Pr(\overline{X}_{100} \ge 33) = \Pr\left(U_{100} \ge \frac{33 - 30}{4.5/10}\right) = \Pr(U_{100} \ge 6.67)$$

$$\approx 1 - \Phi(6.67) = 1.28 \times 10^{-11}.$$

- Again, their claim seems very unlikely to be true!
- What is the chances that \overline{X}_{100} lies within 1 minute from the true average delivery time (μ)?

$$\Pr(|\overline{X}_{100} - \mu| \le 1) = ??? \approx 0.9736.$$

The Normal approximation to the binomial distribution: (CLT)

Will be discussed in class.

