Euler's method

Contents

- Local truncation error
- Convergence
- Exercises

Let a first-order initial-value problem be given in the form

$$u'(t) = f(t, u(t)), a \le t \le b,$$

 $u(a) = u_0.$ (6.2.1)

We represent a numerical solution of an IVP by its values at a finite collection of nodes, which for now we require to be equally spaced:

$$t_i = a + ih, \qquad h = \frac{b - a}{n}, \qquad i = 0, \dots, n.$$
 (6.2.2)

The number h is called the **step size**.

Because we don't get exactly correct values of the solution at the nodes, we need to take some care with the notation. From now on we let $\hat{u}(t)$ denote the exact solution of the IVP. The approximate value at t_i computed at the nodes by our numerical methods will be denoted by $u_i \approx \hat{u}(t_i)$. Because we are given the initial value $u(a) = u_0$ exactly, there is no need to distinguish whether we mean u_0 as the exact or the numerical solution.

Consider a piecewise linear interpolant to the (as yet unknown) values u_0, u_1, \ldots, u_n . For $t_i < t < t_{i+1}$, its slope is

$$rac{u_{i+1}-u_i}{t_{i+1}-t_i} = rac{u_{i+1}-u_i}{h}.$$

We can connect this derivative to the differential equation by following the model of $u^\prime=f(t,u)$:

$$rac{u_{i+1}-u_i}{h}=f(t_i,u_i), \qquad i=0,\ldots,n-1.$$

We could view the left-hand side as a forward-difference approximation to u'(t) at $t=t_i$. We can rearrange the equation to get **Euler's method**, our first method for IVPs.

Algorithm 6.2.1: Euler's method for an IVP

Given the IVP u'=f(t,u), $u(a)=u_0$, and the nodes <u>(6.2.2)</u>, iteratively compute the sequence

$$u_{i+1} = u_i + hf(t_i, u_i), \qquad i = 0, \dots, n-1.$$
 (6.2.3)

Then u_i is approximately the value of the solution at $t = t_i$.

Euler's method marches ahead in t, obtaining the solution at a new time level explicitly in terms of the latest value.

A basic implementation of Euler's method is shown in <u>Function 6.2.2</u>. It expects the IVP to be specified as an <u>ODEProblem</u>, as in <u>Demo 6.1.3</u>. The output of <u>Function 6.2.2</u> is a vector of the nodes and a vector of approximate solution values at those nodes.

Function 6.2.2: euler

Euler's method for an initial-value problem

```
1 """
2
      euler(ivp,n)
4 Apply Euler's method to solve the given IVP using `n` time steps.
 5 Returns a vector of times and a vector of solution values.
7 function euler(ivp,n)
      # Time discretization.
      a,b = ivp.tspan
10
      h = (b-a)/n
      t = [a + i*h for i in 0:n]
11
12
13
      # Initial condition and output setup.
14
      u = fill(float(ivp.u0),n+1)
15
      # The time stepping iteration.
16
17
      for i in 1:n
          u[i+1] = u[i] + h*ivp.f(u[i],ivp.p,t[i])
18
19
      end
20
      return t,u
21 end
```

About the code

Click to show

Local truncation error

Let $\hat{u}(t)$ be the exact solution of the IVP (6.2.1), and suppose that somehow we have access to it at $t = t_i$, so that $u_i = \hat{u}(t_i)$. How good is u_{i+1} as an approximation to $\hat{u}(t_{i+1})$? The answer is revealed through a Taylor series:

$$\hat{u}(t_{i+1}) - \left[u_i + hf(t_i, u_i)\right] = \hat{u}(t_{i+1}) - \left[\hat{u}(t_i) + hf(t_i, \hat{u}(t_i))\right] \\
= \left[\hat{u}(t_i) + h\hat{u}'(t_i) + \frac{1}{2}h^2\hat{u}''(t_i) + O(h^3)\right] - \left[\hat{u}(t_i) + h\hat{u}'(t_i)\right] \\
= \frac{1}{2}h^2\hat{u}''(t_i) + O(h^3), \tag{6.2.4}$$

where we used the fact that \hat{u} satisfies the differential equation.

We now introduce some formalities.

Definition 6.2.3: One-step IVP method

A **one-step method** for the IVP (6.2.1) is a formula of the form

$$u_{i+1} = u_i + h\phi(t_i, u_i, h), \qquad i = 0, \dots, n-1.$$
 (6.2.5)

Euler's method is the particular case of (6.2.5) with $\phi(t, u, h) = f(t, u)$, but we will see other one-step methods in later sections.

In close analogy with <u>Section 5.5</u>, we define truncation error as the residual of (6.2.5) when the exact solution is inserted.

Definition 6.2.4: Truncation error of a one-step IVP method

The **local truncation error** (LTE) of the one-step method (6.2.5) is

$$\tau_{i+1}(h) := \frac{\hat{u}(t_{i+1}) - \hat{u}(t_i)}{h} - \phi(t_i, \hat{u}(t_i), h). \tag{6.2.6}$$

The method is called **consistent** if $\tau_{i+1}(h) \to 0$ as $h \to 0$.

The following follows immediately from the definitions.

Lemma 6.2.5

If $\phi(t,u,0)=f(t,u)$ for any function u, then the method $\underline{(6.2.5)}$ is consistent.

Convergence

While the local truncation error is straightforward to calculate from its definition, it is not the quantity we want to know about and control.

Definition 6.2.6: Global error of an IVP solution

Given an IVP whose exact solution is $\hat{u}(t)$, the **global error** of approximate solution values u_0, u_1, \ldots, u_n at times t_i in (6.2.2) is the vector $[\hat{u}(t_i) - u_i]_{i=0,\ldots,n}$.

At times the term *global error* may be interpreted as the max-norm of the global error vector, or as its final value.

By our definitions, the local error in stepping from t_i to t_{i+1} is $h\tau_{i+1}(h)$. To reach the time t=b from t=a with step size h, we need to take n=(b-a)/h steps. If we want to reach, say, t=(a+b)/2, then we would have to take n/2 steps, and so on. In fact, to reach any fixed time in the interval, we need to take $O(n)=O(h^{-1})$ steps. By expressing the local error with a factor of h taken out, the LTE τ itself is accounting for the simple accumulation of error caused by taking O(n) steps. \square

However, global error is not as simple as a sum of local errors. As explained in <u>Theorem 6.1.7</u> and illustrated in <u>Demo 6.1.8</u>, each step causes a perturbation of the solution that can grow as t advances. Thus, we have to account for the flow evolution of individual step truncation errors as well as their mere accumulation. That is the subject of the following theorem.

Theorem 6.2.7

Suppose that the unit local truncation error of the one-step method (6.2.5) satisfies

$$|\tau_{i+1}(h)| \le Ch^p,\tag{6.2.7}$$

and that

$$\left|\frac{\partial \phi}{\partial u}\right| \le L \tag{6.2.8}$$

for all $t \in [a,b]$, all u, and all h>0. Then the global error satisfies

$$|\hat{u}(t_i) - u_i| \le \frac{Ch^p}{L} \Big[e^{L(t_i - a)} - 1 \Big] = O(h^p),$$
 (6.2.9)

as h o 0.

Proof

Define the global error sequence $\epsilon_i = \hat{u}(t_i) - u_i$. Using (6.2.5), we obtain

$$\epsilon_{i+1} - \epsilon_i = \hat{u}(t_{i+1}) - \hat{u}(t_i) - (u_{i+1} - u_i) = \hat{u}(t_{i+1}) - \hat{u}(t_i) - h\phi(t_i, u_i, h),$$

or

$$\epsilon_{i+1} = \epsilon_i + [\hat{u}(t_{i+1}) - \hat{u}(t_i) - h\phi(t_i, \hat{u}(t_i), h)] + h[\phi(t_i, \hat{u}(t_i), h) - \phi(t_i, u_i, h)].$$

We apply the triangle inequality, (6.2.6), and (6.2.7) to find

$$|\epsilon_{i+1}| \le |\epsilon_i| + Ch^{p+1} + h |\phi(t_i, \hat{u}(t_i), h) - \phi(t_i, u_i, h)|.$$

The Fundamental Theorem of Calculus implies that

$$egin{aligned} \left|\phi(t_i,\hat{u}(t_i),h)-\phi(t_i,u_i,h)
ight|&=\left|\int_{u_i}^{\hat{u}(t_i)}rac{\partial\phi}{\partial u}\,du
ight|\ &\leq \int_{u_i}^{\hat{u}(t_i)}\left|rac{\partial\phi}{\partial u}
ight|du\ &\leq L|\hat{u}(t_i)-u_i|=L\,|\epsilon_i|. \end{aligned}$$

Thus

$$egin{aligned} |\epsilon_{i+1}| & \leq Ch^{p+1} + (1+hL)|\epsilon_i| \ & \leq Ch^{p+1} + (1+hL)ig[Ch^{p+1} + (1+hL)|\epsilon_{i-1}|ig] \ & dots \ & \leq Ch^{p+1}ig[1 + (1+hL) + (1+hL)^2 + \dots + (1+hL)^iig]. \end{aligned}$$

To get the last line we applied the inequality recursively until reaching ϵ_0 , which is zero. Replacing i+1 by i and simplifying the geometric sum, we get

$$|\epsilon_i| \leq C h^{p+1} rac{(1+hL)^i - 1}{(1+hL) - 1} = rac{C h^p}{L} ig[(1+hL)^i - 1 ig].$$

We observe that $1+x\leq e^x$ for $x\geq 0$ (see Exercise 5). Hence $(1+hL)^i\leq e^{ihL}$, which completes the proof.

The theorem justifies one more general definition.

Definition 6.2.8: Order of accuracy of a one-step IVP method

If the local truncation error of the one-step method (6.2.5) satisfies $\tau_{i+1}(h) = O(h^p)$ for a positive integer p, then p is the **order of accuracy** of the formula.

We could restate Theorem 6.2.7 as saying that the global error has the same order of accuracy as the LTE. Note, however, that the $O(h^p)$ convergence hides a leading constant that grows exponentially in time. When the time interval is bounded as $h \to 0$, this does not interfere with the conclusion, but the behavior as $t \to \infty$ contains no such guarantee.

Demo 6.2.9

We consider the IVP $u' = \sin[(u+t)^2]$ over $0 \le t \le 4$, with u(0) = -1.

```
f = (u,p,t) -> sin((t+u)^2);
tspan = (0.0,4.0);
u0 = -1.0;
ivp = ODEProblem(f,u0,tspan)
```

```
ODEProblem with uType Float64 and tType Float64. In-place: false timespan: (0.0, 4.0) u0: -1.0
```

Here is the call to Function 6.2.2.

We could define a different interpolant to get a smoother picture above, but the derivation of Euler's method assumed a piecewise linear interpolant. We can instead request more steps to make the interpolant look smoother.

```
t,u = FNC.euler(ivp,50)
plot!(t,u,m=2,label="n=50")
```


Increasing n changed the solution noticeably. Since we know that interpolants and finite differences become more accurate as $h \to 0$, we should anticipate the same behavior from Euler's method. We don't have an exact solution to compare to, so we will use a DifferentialEquations solver to construct an accurate reference solution.

```
u_exact = solve(ivp,Tsit5(),reltol=1e-14,abstol=1e-14)
plot!(u_exact,l=(2,:black),label="reference")
```


Now we can perform a convergence study.

```
n = [ round(Int,5*10^k) for k in 0:0.5:3 ]
err = []
for n in n
    t,u = FNC.euler(ivp,n)
    push!( err, norm(u_exact.(t)-u,Inf) )
end

pretty_table((n=n,err=err),["n","Inf-norm error"])
```

ļ	n	Inf-norm error
ľ	5	2.7342
İ	16	0.107594
İ	50	0.0299962
İ	158	0.00885025
ĺ	500	0.00273659
ĺ	1581	0.000859654
ĺ	5000	0.000271243

The error is approximately cut by a factor of 10 for each increase in n by the same factor. A log-log plot also confirms first-order convergence. Keep in mind that since h=(b-a)/n, it follows that $O(h)=O(n^{-1})$.

Euler's method is the ancestor of the two major families of IVP methods presented in this chapter. Before we describe them, though, we generalize the initial-value problem itself in a crucial way.

Exercises

- 1. \triangle Do two steps of Euler's method for the following problems using the given step size h. Then, compute the error using the given exact solution.
 - (a) u' = -2tu, u(0) = 2; h = 0.1; $\hat{u}(t) = 2e^{-t^2}$
 - **(b)** u' = u + t, u(0) = 2; h = 0.2; $\hat{u}(t) = -1 t + 3e^t$
 - (c) tu' + u = 1, u(1) = 6, h = 0.25; $\hat{u}(t) = 1 + 5/t$
 - (d) $u'-2u(1-u)=0,\ u(0)=1/2,\ h=0.25;\ \hat{u}(t)=1/(1+e^{-2t})$
- 2. \blacksquare For each IVP, solve the problem using <u>Function 6.2.2</u>. (i) Plot the solution for n=320.
 - (ii) For $n=10\cdot 2^k$, $k=2,3,\ldots,10$, compute the error at the final time and make a log-log convergence plot, including a reference line for first-order convergence.
 - (a) $u'=-2tu,\ 0\leq t\leq 2,\ u(0)=2;\ \hat{u}(t)=2e^{-t^2}$
 - **(b)** u' = u + t, $0 \le t \le 1$, u(0) = 2; $\hat{u}(t) = -1 t + 3e^t$
 - (c) $(1+t^3)uu'=t^2,\ 0\leq xt\leq 3,\ u(0)=1;\ \hat{u}(t)=[1+(2/3)\ln(1+xt^3)]^{1/2}$
 - (d) $u'-2u(1-u)=0,\ 0\leq t\leq 2,\ u(0)=1/2;\ \hat{u}(t)=1/(1+e^{-2t})$
 - (e) $v'-(1+x^2)v=0,\ 1\leq x\leq 3,\ v(1)=1,\ \hat{v}(x)=e^{(x^3+3x-4)/3}$
 - (f) $v' + (1+x^2)v^2 = 0, \ 0 \le x \le 2, \ v(0) = 2, \ \hat{v}(x) = 6/(2x^3 + 6x + 3)$
 - (g) $u'=2(1+t)(1+u^2),\ 0\leq t\leq 0.5,\ u(0)=0,\ \hat{u}(t)=\tan(2t+t^2)$
- 3. A Here is an alternative to Euler's method:

$$egin{aligned} v_{i+1} &= u_i + h f(t_i, u_i), \ u_{i+1} &= u_i + h f(t_i + h, v_{i+1}). \end{aligned}$$

- (a) Write out the method explicitly in the general one-step form (6.2.5) (i.e., clarify what ϕ is for this method).
- **(b)** Show that the method is consistent.
- 4. Consider the problem u' = ku, u(0) = 1 for constant k and t > 0.
 - (a) Find an explicit formula in terms of h, k, and i for the Euler solution u_i at t=ih.
 - **(b)** Find values of k and h such that $|u_i| \to \infty$ as $i \to \infty$ while the exact solution $\hat{u}(t)$ is bounded as $t \to \infty$.
- 5. Prove the fact, used in the proof of Theorem 6.2.7, that $1 + x \le e^x$ for all $x \ge 0$.
- 6. Suppose that the error in making a step is also subject to roundoff error ϵ_{i+1} , so that the total local error per unit step is $Ch^p + \epsilon_{i+1}h^{-1}$; assume that $|\epsilon_{i+1}| \leq \epsilon$ for all i and that the initial condition is known exactly. Generalize Theorem 6.2.7 for this case.
- Another point of view is that we can of course make local errors smaller by chopping h in half, but then we have to take twice as many steps. The important quantity, then, is local error *per unit step length*, which is how τ is defined.

By Tobin A. Driscoll and Richard J. Braun

Copyright © Society for Applied and Industrial Mathematics, 2022.

This site is based on uncorrected proofs of Fundamentals of Numerical Computation, Julia Edition.