«Статистическая проверка гипотез»

Шарифуллин Ринас Рамилевич гр. 09-131

Вариант – 13

Задание 3 1

- 1. В соответствии с молекулярной теорией при термической обработке металла должно происходить изменение его прочности (увеличение или уменьшение).
- 2. Для проверки предположения были произведены измерения прочности до и после обработки n=78 металлических прутков, изготовленных из одной плавки металла.
- 3. По соображениям физики процесса можно предположить, что измерения суть реализации нормальной случайной величины N (μ , σ^2), где μ математическое ожидание показателя прочности в образцах, σ^2 дисперсия, характеризующая степень изменчивости этого показателя от образца к образцу, а также точность метода измерения. До проведения обработки $\mu = \mu_1$, $\sigma^2 = \sigma_1^2$; после проведения обработки $\mu = \mu_2$, $\sigma^2 = \sigma_2^2$.
- 4. Ожидается, что $\theta = \mu_1 \mu_2 \neq 0$, т.е. в среднем прочность металла изменяется. Нулевая гипотеза H_0 : $\theta = 0$ при альтернативе H_1 : $\theta \neq 0$.
- 5. Уровень значимости α = 0.01.
- 6. Ввиду предположения нормальности наблюдений следует применить одновыборочный (разностный) критерий Стьюдента, основанный на разности $\bar{x}_1 \bar{x}_2$ выборочных средних значений до и после обработки. Для вычисления статистики Стьюдента необходимо найти среднее арифметическое \bar{u} и дисперсию (смещённую) S_u^2 разностей $u_i = x_i y_i$, i = 1, ..., n. Статистика Стьюдента равна

$$T = \frac{\bar{u}}{\sqrt{s_u^2}} \sqrt{n-1}$$

В соответствии с теоретическими предпосылками ожидается, что абсолютная величина $|\bar{x}_1 - \bar{x}_2|$ будет принимать большие положительные значения. Нулевая гипотеза должна отвергаться, когда абсолютное значение статистики Стьюдента $|T| \ge C$.

- 7. Функция распределение тестовой статистики в граничной точке $\theta_0 = 0$ совпадает с функцией распределения Стьюдента $\mathbb{St}_{(n-1)}$ с n-1=77 степенями свободы.
- 8. Критическая константа \mathcal{C}_{lpha} находится из уравнения

$$P\{|T| > C\} = 2(1 - \mathbb{St}_{77}(C)) = 0.01,$$

т.е. – равна верхней 0.005-квантили распределения Стьюдента с 77 степенями свободы.

- а) Воспользовавшись таблицей (пакетом Excel), нашли, что C_{α} = 2,641.
- b) Окончательный вид критической области $|T| \ge 2,641$

9.

а) По представленным данным найдено

		До	После	По разностям	
Объём выборки	n	78	78	78	
Среднее		108,07	105,11	2,96	
Станд. откл.	S	8,133	9,21	12,654	
Станд. ошибка среднего	m	0,921	1,04	1,43	
Статистика Стьюдента			$T = 2,05 = t_{$ эксп		
1%-ая критическая область			$ T \ge 2,641$		
Гипотеза отсутствия эффекта			принимается		
с критическим уровнем значимости			p-val = 0,043		
Вывод. Отклонение от нулевой гипотезы статически не значимо.					

b) Критический уровень значимости p-value вычислялся по формуле

p-val =
$$2(1 - \mathbb{S}t_{77}(|T|)) = 2(1 - \mathbb{S}t_{77}(2,05)) = 0,043$$
.

Наблюдения не противоречат гипотезе отсутствия эффекта обработки (П-значение p-val = 0,043).

Задание 3 2

- 1. Требуется сравнить точность измерений, производимых двумя хорошо откалиброванными (т.е. без систематической ошибки) приборами. Первый прибор был изготовлен по новой технологии, которая, как заявляют изобретатели, повышает точность.
- 2. Первым прибором было произведено 64 измерений эталонных образцов, вторым прибором 45 измерений.
- 3. Можно предположить, что ошибка измерения каждым из приборов носит случайный характер и имеет нормальное распределение со средним нуль и дисперсиями σ_1^2 и σ_2^2 .
- 4. Ожидается, что $\sigma_1^2 < \sigma_2^2$. Т.е. в терминах параметра $\theta = \frac{\sigma_1^2}{\sigma_2^2}$ нулевая гипотеза \mathbf{H}_0 : $\theta \ge 1$ при альтернативе $\mathbf{H}1$: $\theta < 1$.
- 5. Уровень значимости α = 0.05.
- 6. В силу нормальности распределения наблюдений, можно применить критерий Фишера. Тестовая статистика Фишера

$$F = \frac{\tilde{s}_1^2}{\tilde{s}_2^2},$$

- где S_j^2 несмещённая оценка дисперсии в j-й группе (j-го прибора), j=1,2. Ожидания разработчиков нового прибора будут подтверждены, если F примет достаточно большие значения, т.е. критическая область имеет вид $\{F>C\}$.
- 7. В граничной точке θ_0 =1 распределение статистики Фишера совпадает с распределением Фишера $\mathbb{F}_{(n_1-1,n_2-1)}$ с n_1 = 64 и n_2 = 45 степенями свободы.
- 8. Критическая константа C_{α} находится как решение уравнения $P\{F > C_{\alpha}\} = 1 \mathbb{F}_{(64.45)}(C) = 0.05$,

т.е. равна верхней 0.05-квантили распределения Фишера.

- а) По таблице распределения Фишера (процедуре Excel), находим $C_{\alpha} = 1,596$.
- b) Окончательный вид критической области $\{F > 1,596\}$.
- 9. По представленным данным:

	1-ый прибор	2-ый прибор
n	64	45
\bar{x}	128,69	149,149
\tilde{s}^2	59,898	182,537
Статистика Фишера $F = s_1^2 / s_2^2$		3,047
5%-ая критическая область	<i>F</i> ≥ 1,596	
Гипотеза H_0 : $\sigma_1^2 \geq \sigma_2^2$		отвергается

Вывод: предположение о повышенной точности 1-го	
прибора статистически подтверждается	
р-значение	0,00007

a. p-value вычисляется по формуле

p-val =
$$1 - \mathbb{F}_{(64,45)}(3,047) = 0,00007$$

Можно сделать вывод о высокой значимости согласия данных (П-значение p = 0.00007) с претензиями разработчиков нового прибора.

Задание 3_3

- 1. В регионе 0.4 населения ежегодно страдало от OP3. Фармацевтическая компания разработала средство профилактики OP3 и обещала, что это средство приведёт к понижению доли заболевших.
- 2. Для проверки этого заявления предполагается разработанное средство применить к группе n=68 случайно отобранных пациентов.
- 3. Таким образом, в эксперименте наблюдаются бернуллиевские случайные величины с вероятностью успеха (не подхватить OP3) θ .
- 4. Ожидается, что θ > 0,6. Нулевая гипотеза \mathbf{H}_0 : $\theta \le$ 0,6 при альтернативе \mathbf{H}_1 : θ > 0,6.
- 5. Уровень значимости α = 0.05.
- 6. Применим критерий знаков, основанный на числе T, избежавших заболевания после вакцинации. Ясно, что ожидания фармкомпании будут подтверждены, если T примет достаточно большое значение, т.е. критическая область имеет вид $\{T \geq C\}$.

В граничной точке θ_0 = 0,6 функция распределения статистики T есть функция биномиального распределения \mathbb{B} im $(k\mid n,\theta_0)$ = $\mathbf{P}_{\theta 0}$ $\{T\leq k\}$ с n = 68, k = 0,1, ..., n.

7. Критическая константа C_{α} находится как решение неравенства $\mathbf{P}\{T \geq C_{\alpha}\} = \mathbf{1} - \mathbb{Bim}(C_{\alpha} - \mathbf{1} \mid 68, 0.6) \leq 0.05,$ причём, из всех таких констант нужно выбрать наименьшую, т.е. число $C_{\alpha} - \mathbf{1}$ равно квантили порядка 0.95 биномиального распределения.

- **а.** По таблице биномиального распределения (с помощью процедуры Excel), находим C_{α} = 48.
- **b.** Вид критической области: нулевая гипотеза отвергается, если $\{T \ge 48\}$.
- 8. По представленным данным:

Частота появления А (не заболевших)	0,603				
	41 из 68				
5%-ая критическая область	≥ 48				
Гипотеза H ₀ : $p \le 0,6$	принимается				
Вывод. Отклонение от нулевой гипотезы статистически не значимо.					
Имеются все основания не одобрять применение профилактического					
средства.					
Критический уровень значимости	$\alpha_{crit} = 0.53$				

a. p-value вычисляется по формуле

$$p-val = 1 - Bim(41 - 1| 68; 0,6) = 0,53$$

Можно сделать вывод о не согласии данных (p > 0.05) с ожиданиями фармкомпании.

Задание 3_4

- 1. Для увеличения срока службы электроламп был разработан новый дизайн цоколя.
- 2. Чтобы проверить действенность этой модификации предлагается провести испытания на долговечность в одинаковых условиях партии m = 64 ламп, изготовленных со старым цоколем, и, независимо, партии n = 48 ламп с новым цоколем.
- 3. Время службы каждой лампы есть случайная величина с функцией распределения F_1 (для старых образцов 1-я выборка) или F_2 (для новых образцов 2-я выборка).
- 4. Ожидается, что $F_1(x) > F_2(x)$ для $\forall x > 0$ (т.е. для ламп старого образца более вероятен выход из строя до момента x или, другими словами, $\xi_2 > (d) \xi_1$ время службы новых ламп стохастически больше). Гипотеза \mathbf{H}_0 : $F_1(x) \equiv F_2(x)$ при альтернативе \mathbf{H}_1 : $F_1(x) > F_2(x)$, $\forall x$.
- 5. Уровень значимости α = 0.025.
- 6. Применим критерий Вилкоксона, основанный на сумме W рангов 1-й выборки в общем ряду данных. Если справедлива альтернативная гипотеза (наблюдения в 1-й выборке стохастически меньше наблюдений во 2-й), то ожидаются небольшие значения W. Другими словами, критическая область имеет вид $\{W \leq C\}$.
- 7. При справедливости нулевой гипотезы распределение статистики W есть распределение Уилкоксона с параметрами (64, 48). Можно применить нормальную аппроксимацию с матем.ожиданием μ_W = 3616 и стандартным отклонением σ_W = 170,08.
- 8. Т.о., критическая константа C_{α} находится как целая часть решения уравнения

$$P\{W \le C\} \approx \Phi\left(\frac{C-3616}{170,08}\right) = 0,025,$$

- т.е. C равна квантили порядка 0.05 нормального закона.
 - а. По таблице (с помощью процедуры Excel), находим C_{α} = 3282,649.
 - b. Вид критической области: нулевая гипотеза отвергается, если $\{W \le 3282,649\}$.
- 9. По представленным данным:

Объемы выборок	m = 64	N = 48
Сумма рангов 1-ый выборки <i>W</i>	30	28

Математическое ожидание μ_w			3616	
Стандартное отклонение σ_w			170,08	
2,5%-я критическая область			<i>W</i> ≤ 3282,649	
Вывод Нулевая гипотеза о совпадении распред		елений отвергается		
	с критическим уровнем значимости $lpha_{crit}=0{,}00027$			
Заключение. Новый дизайн цоколя лампы приводит к большому				
увеличению срока службы.				

a. p-value вычисляется по формуле

p-val
$$\approx \Phi\left(\frac{3028-3616}{170,08}\right) = 0,00027$$

Поскольку p-val значительно меньше 2,5%-го уровня значимости, то есть все основания считать новый цоколь более надёжным.

Задание 3_5

- 1. Производители кока-колы уверяют, что содержание витамина С в банках идентично содержанию этого витамина в стеклянных бутылках.
- 2. Измерено содержание витаминов в n_1 = 75 банках (группа A) и в n_2 = 92 бутылках (группа B).
- 3. Содержание витаминов в продукте есть случайная величина с функцией распределения F_1 (для группы A) или F_2 (для группы B).
- 4. Ожидания производителей можно формализовать в виде $F_1(x) = F_2(x)$ для $\forall x > 0$ (т.е. содержание витаминов стохастически одинаково). Т.о., нулевая гипотеза \mathbf{H}_0 : $F_1 \equiv F_2$ гипотеза однородности совокупностей (без альтернативы).
- 5. Уровень значимости α = 0.025.
- 6. Применим критерий однородности хи-квадрат, основанный статистике X^2 , равной сумме квадратов разностей частот попадания данных в r=10 интервалов группировки. Ожидания компании будут подтверждены, если X^2 примет маленькое значение, т.е. критическая область имеет вид $\{X^2 > C\}$.
- 7. При справедливости нулевой гипотезы функцию распределения статистики X^2 можно приблизить функцией хи-квадрат распределения $\mathbb{K}\mathbb{h}\mathbb{1}(x\mid r-1)=\mathbf{P}_{H0}\{X^2\leq x\}$ с r-1=9 степенями свободы.
- 8. Критическая константа $\mathcal{C}\alpha$ находится как решение неравенства

$$\mathbf{P}_{\mathsf{H0}}\left\{X^2 \geq C_{\alpha}\right\} = 1 - \mathbb{K} \mathbb{h} \mathbb{i}(C\alpha \mid 9) = 0.025,$$

т.е. C_{α} равна квантили порядка 0.975 хи-квадрат распределения с 9 ст. св. По таблице хи-квадрат распределения (процедурой Excel), находим C_{α} = 19,02.

а. Вид критерия: гипотеза однородности отвергается, если $\{X^2 \ge 19.02\}$.

9. По представленным данным:

	Частоты				
Границы	Группа А		Группа В		χ^2
54,25	0	0	11	0,1196	8,967
61,25	26	0,3467	44	0,4783	1,707
68,25	34	0,4533	28	0,3043	2,470
75,25	9	0,1200	9	0,0978	0,188
82,25	5	0,0667	0	0	6,133
89,25	0	0	0	0	0

96,25	0	0	0	0	0
103,25	0	0	0	0	0
110,25	0	0	0	0	0
∞	1	0,0133	0	0	1,227
Σ	75	1	92	1	20,69
2,5%-я крити	$2,5$ %-я критическая область $X^2 ≥ 19,02$				
Вывод Гипотеза однородности групп					отвергается
p-value	е с критическим уровнем значимости				0,0141
Вывод. Содержание витамина С различаются по способу разлива.					

а. p-value вычисляется по формуле p-val = $1 - \mathbb{K}hi(20,69|9) = 0,0141$. Есть все основания считать не идентичными способы разлива продукта (П-значение p-val = 0,0141).