

==> 입력 펄스의 상승 에지에서 트리거 되며, 업 카운팅이 아닌 다운 카운팅을 하게 된다.

8.2

CLK	1	2	3	4	5	6
Q_0	0	1	0	1	0	1
Q_1	0	0	1	1	0	0
값	0	1	2	3	0	1

원래 회로

CLK	1	2	3	4	5	6
Q_0	0	1	0	1	0	1
Q_1	0	1	1	0	0	1
값	0	3	2	1	0	3

변경된 회로

==> 회로는 다운 카운터로 변경된다.

8.4 5개의 플립-플롭들에 의한 전체 전파지연시간은 5×10ns = 50ns가 된다. 그리고 다음 입력 펄스에 의한 상태 변화는 10ns 후에 발생하므로, 출력값을 확인할 여유 시간으로 20ns를 허용하려면 20ns-10ns = 10ns가 더 필요하게 된다. 결과적으로, 입력 신호에 허용되는 최단 주기는 50ns+10ns = 60ns가 된다.

8.5 (1) 8-비트 리플 카운터: 8×15ns=120ns

(2) 8-비트 동기식 카운터: 15ns

8.6

- 1010 경우 : 1010 → 1011 → 0100 → 0101 이므로, 2번만에 정상적인 상태 시퀀스로 진입
- 1011 경우: 1011 → 0100 → 0101 이므로, 1번만에 정상적인 상태 시퀀스로 진입
- 1100 경우 : 1100 → 1101 → 0110 → 0111 이므로, 2번만에 정상적인 상태 시퀀스로 진입
- 1101 경우: 1101 → 0110 → 0111 이므로, 1번만에 정상적인 상태 시퀀스로 진입
- 1110 경우: 1110 → 1111 → 0000 → 0001 이므로, 2번만에 정상적인 상태 시퀀스로 진입
- 1111 경우: 1111 → 0000 → 0001 이므로, 1번만에 정상적인 상태 시퀀스로 진입

8.7

0001 1001 1001 → 0010 0000 0000 이 되므로, 모두 6개의 플립-플롭들의 상태들이 변화된다.

-	현재 상티	A	1	다음 상티	H	플립-플롭 입력들						
А	В	С	А	A B C			T_{B}	Tc				
0	0	0	0	0	1	0	0	1				
0	0	1	0	1	0	0	1	1				
0	1	0	0	1	1	0	0	1				
0	1	1	1	0	0	1	1	1				
1	0	0	0	0	0	1	0	0				

Ğ	현재 상태	H	τ	가음 상태	H	플립-플롭 입력들					
A	В	С	А	В	С	J_A	KA	J_{B}	KB	J_{C}	Kc
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	0	0	0	X	1	0	X	0	X

- JK 플립-플롭으로 구성하는 경우에, 회로 구성에 필요한 게이트 수가 하나 줄었다.

ক্	현재 상1	태	다음 상태			플립-플롭 입력들					
А	В	С	А	В	С	T_A	T_{B}	Tc			
0	0	0	0	1	0	0	1	0			
0	1	0	1	0	0	1	1	0			
1	0	0	1	0	1	0	0	1			
1	0	1	1	1	1	0	1	0			
1	1	1	0	0	0	1	1	1			

- JK 플립-플롭을 이용한 회로보다 더 복잡해진다.

d	현재 상티	A	τ	다음 상태	}	플립-플롭 입력들			
А	В	С	А	В	С	T_A	T_{B}	Tc	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	1	0	1	0	
0	1	1	0	1	0	0	0	1	
0	1	0	1	1	0	1	0	0	
1	1	0	1	1	1	0	0	1	
1	1	1	1	0	1	0	1	0	
1	0	1	1	0	0	0	0	1	
1	0	0	0	0	0	1	0	0	

\setminus BC				
A	00	01	11	10
0	0	1	0	0
1	0	0	1	0

 $T_B=A'B'C+ABC=(A \oplus B)'C$

 $T_C=(A \oplus B \oplus C)'$

- 회로의 복잡도가 더 낮아진다.

8.15

Ž	현재 상티	A	다음 상태			플립-플롭 입력들					
А	В	С	А	В	С	J_A	KA	$ m J_{B}$	KB	J_{C}	Kc
0	1	1	1	0	0	1	X	X	1	X	1
1	0	О	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	О	1	1	1	X	0	X	0	1	X
1	1	1	0	1	1	X	1	X	0	X	0

 $\begin{array}{ll} J_A \!\!=\!\! 1 & \quad K_A \!\!=\!\! BC \\ J_B \!\!=\!\! C & \quad K_B \!\!=\!\! A' \\ J_C \!\!=\!\! 1 & \quad K_C \!\!=\!\! A' \!\!+\! B' \end{array}$

	현재	상태			다음	상태		플립-플롭 입력들			
A	В	С	D	А	В	С	D	T_A	T_{B}	T_{C}	T_{D}
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	1
0	1	0	1	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	1
0	1	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	1
1	0	0	1	0	0	0	0	1	0	0	1

- 8.3.4절의 입력 함수들과 일치한다.

	현재	상태			다음	상태		플립-플롭 입력들			
А	В	С	D	А	В	С	D	D_A	D _B	Dc	D_D
0	0	0	0	0	0	O	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	0
0	0	1	0	0	0	1	1	0	0	1	1
0	0	1	1	0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	1	0	1	0	1
0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	1	0	1	1	1
0	1	1	1	1	0	0	0	1	0	0	0
1	0	0	0	1	0	0	1	1	0	0	1
1	0	0	1	0	0	0	0	0	0	0	0

$$T_A=AD'+BCD$$

 $T_C=CD'+A'C'D$

$$T_B=BC'+BD'+B'CD$$

 $T_D=D'$

- JK 플립-플롭을 사용하여 회로를 구성하는 것이 가장 효율적이다.

8.18

(1) 우측 시프트 - 입력 순서: 0, 1, 0, 1

데이터 CLK 주기	d ₃	d_2	d_1	d_0
초기 상태	0	0	0	0
t_1	0	0	0	0
t_2	1	0	0	0
t_3	0	1	0	0
t_4	1	0	1	0

데이터 CLK 주기	d_3	d_2	d_1	d_0
초기 상태	0	0	0	0
t_1	0	0	0	1
t_2	0	0	1	0
t_3	0	1	0	1
t_4	1	0	1	0

8.21

(1) 우측 시프트: 10110101 → 01011010 (2) 좌측 시프트: 10110101 → 01101010

8.22

(1) 우측 시프트: 10110101 → 01011010 → 00101101 (2) 좌측 시프트: 10110101 → 01101010 → 11010100

8.23

	A_4	A_3	A_2	A_1	B_4	B_3	B_2	B_1
초기 상태	0	1	0	1	1	1	1	1
t_1	1	0	1	0	1	1	1	1
t_2	0	1	0	1	0	1	1	1
t_3	1	0	1	0	1	0	1	1
t_4	0	1	0	1	0	1	0	1

8.24 B 레지스터의 최상위 비트는 A 레지스터와 B 레지스터의 최하위 비트에 인가되어 두 레지스터 가 모두 좌측 시프트 동작을 한다.

			A_2					
초기 상태	0	0	0	0	1	0	1	0
t_1	0	0	0	1	0	1	0	1
t_2	0	0	1	0	1	0	1	0
초기 상태 t ₁ t ₂ t ₃	0	1	0	1	0	1	0	1
t_4	1	0	1	0	1	0	1	0