AULA 14

Prof. Mathias

Algoritmos de busca

Análise de Algoritmos

- Aula anterior
- Introdução
- Algoritmos Buscas
- Análise de algoritmos
- Próxima aula

Aula Anterior

- Revisão de prova
- Prova

- Aula anterior
- Introdução

Introdução

- Busca:
 - É o processo de recuperação de dados armazenados em um repositório ou "base de dados"
 - Tipos de busca:
 - Dados estruturados: pode utilizar (vetores, lista, árvores)
 - Dados não estruturados: pode ser (arquivo texto, imagem)

Introdução

- Busca:
 - Ainda devemos considerar:
 - Dados são ordenados
 - Valores duplicados
- Tipos de busca que serão analisadas:
 - Busca linear
 - Busca sequencial
 - Busca binária

- Aula anterior
- Introdução
- Algoritmos Buscas

Algoritmo linear – dados não ordenados (pior caso)

L1	boolean buscaLinear(int[] vetor, int valor, int tamanho)	C ₁	-
L2	for(int i = 0; i < tamanho; i++){	C ₂	n
L3	if(valor == vetor[i]){	C ₃	n-1
L4	return true;	C ₄	1
L5	}	C ₅	-
L6	}	C ₆	-
L7	return false;	C ₇	1
L8	}	C ₈	-

$$T(n) = C_1 + C_2 + C_3 + C_4 + C_5 + C_6 + C_7 + C_8$$

$$T(n) = C_2 n + C_3 (n-1) + C_4 + C_7$$

$$T(n) = 2n + 1$$

Mathias Talevi Betim

Algoritmo Sequêncial – dados ordenados (pior caso)

L1	boolean buscaSequencial(int[] vetor, int valor, int tamanho){	C ₁	-
L2	for(int $i = 0$; $i < tamanho$; $i++$){	C ₂	n
L3	if(valor == vetor[i]){	C ₃	n-1
L4	return true;	C ₄	1
L5	}else if(valor < vetor[i]){	C ₅	n-1
L6	return false;	C ₆	1
L7	}	C ₇	-
L8	}	C ₈	-
L9	return false;	C ₉	1
L10	}	C ₁₀	-

$$T(n) = C_1 + C_2 + C_3 + C_4 + C_5 + C_6 + C_7 + C_8 + C_9 + C_{10}$$

$$T(n) = C_2 n + C_3 (n-1) + C_4 + C_5 (n-1) + C_6 + C_9$$

$$T(n) = 3n + 1$$

Algoritmo Binário – dados ordenados (pior caso)

L1	boolean buscaBinaria(int[] vetor, int valor, int tamanho){	C ₁	-
L2	int meio=0, inicio=0, fim=tamanho-1;	C ₂	1
L3	while(inicio <= fim){	C ₃	n/2
L4	meio = (inicio+fim)/2;	C ₄	n/2
L5	if(valor < vetor[meio]){	C ₅	n/2
L6	fim = meio-1;	C ₆	1
L7	}else if(valor > vetor[meio]){	C ₇	n/2
L8	inicio = meio+1;	C ₈	1
L9	}else{	C ₉	-
L10	return true;	C ₁₀	1
L11	}	C ₁₁	-
L12	}	C ₁₂	-
L13	return false;	C ₁₃	1
L14	}	C ₁₄	-

Algoritmo Binário – dados ordenados (pior caso)

```
T(n) = C_1 + C_2 + C_3 + C_4 + C_5 + C_6 + C_7 + C_8 + C_9 + C_{10} + C_{11} + C_{12} + C_{13} + C_{14}
T(n) = C_2 + C_3 n/2 + C_4 n/2 + C_5 n/2 + C_6 + C_7 n/2 + C_8 + C_{10} + C_{13}
T(n) = 4 n/2 + 5
```

- Aula anterior
- Introdução
- Algoritmos Buscas
- Análise de algoritmos
- Exercícios
- Próxima aula

Exercícios

- Qual técnica é mais eficiente: Linear, sequêncial ou binária?
 - Dado um conjunto de dados, codifique a busca Linear, sequencial e binária;
 - Realize a análise assintótica dos algoritmos;
 - Responda qual é mais eficiente provando sua resposta;

- Aula anterior
- Introdução
- Algoritmos Buscas
- Análise de algoritmos
- Exercícios
- Próxima aula

Próxima aula

• Grafos

AULA 14

Prof. Mathias