@

EUROPEAN PATENT APPLICATION

- ② Application number: 86201048.5
- ② Date of filing: 17.06.86

Int. ct.*: C 07 D 473/00, C 07 D 473/30,
 G 07 D 473/40, C 07 D 519/00,
 A 61 K 31/52
 (C07D519/00, 473:00, 471:00),
 (C07D519:00, 513:00, 473:00)

(3) Priority: 24.06.85 GB 8515934

 Applicant: JANSSEN PHARMACEUTICA N.V., Turnhoutsebaan 30, B-2340 Beerse (BE)

- Date of publication of application: 30.12.86
 Bulletin 86/52
- Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE
- Inventor: Janssens, Frans Eduard, Tinstraat 79, B-2830-Bonhelden (BE) Inventor: Diels, Gaston Stanislas Marcella, Oosteinde 12, B-2380-Ravels (BE)
- (4-Piperidinylmethyl and -hetero)purines.
- Novel (4-piperidinyimethyl and hetero)purines of formula

wherein - A¹ = A² -CH = N-CH = N-

wherein $-A^1 = A^2 - A^3 = A^4 - Is - N = CH - N = CH - or$ $-CH = N - CH = N - and L Is a radical L^1 - C_1H_2 - T - C_2H_2 - or$

the pharmaceutically acceptable acid addition salts and possible stereochemically isomeric forms thereof, which compounds are anti-alieroic agents; pharmaceutical compositions containing such compounds as an active Ingredient and methods of preparing said compounds and pharmaceutical compositions.

ACTORUM AG

0666

JAB 476

5

10

15

(4-PIPERIDINYLMETHYL AND -HETERO)PURINES.

20 Background of the invention:

In U.S. Patent No. 4,219,559 there are described a number of N-heterocyclyl-4-piperidinamines having antihistaminic properties.

In European Patent Publication Nos. 0,099,139; 0,145,037 and 0,144,101 there are also described a number of N-heterocyclyl-4-

25 piperidinamines as compounds having antihistaminic and serotoninantagonistic properties.

The compounds of the present invention differ from the prior art compounds essentially by the nature of the 4-piperidinyl substituent which is invariably a purinylmethyl or -hetero group.

Description of the preferred embodiments:

This invention is concerned with novel (4-piperidinylmethyl and -hetero)purines which may structurally be represented by the formula

35

the pharmaceutically acceptable acid addition salts and the possible stereochemically isomeric forms thereof, wherein:

 $-A^1=A^2-A^3=A^4$ is a bivalent radical having the formula

-N=CH-N=CH- (a-1), or

-CH=N-CH=N- (a-2),

10 wherein one or two hydrogen atoms in said radicals (a-1) or (a-2) may, each independently from each other, be replaced by halo, C₁₋₆ alkyl, C₁₋₆ alkyloxy, trifluoromethyl or hydroxy;

 $^{1-0}_{\rm R}$ is a member selected from the group consisting of hydrogen, ${\rm C_{1-10}}$ alkyl, ${\rm C_{3-6}}$ cycloalkyl, ${\rm ar}^1$ and ${\rm C_{1-6}}$ alkyl substituted with one 15 or two ${\rm ar}^1$ radicals;

 $\ensuremath{\mathrm{R}}^2$ is a member selected from the group consisting of hydrogen and $\ensuremath{\mathrm{C}}_{1-6}$ alkyl:

B is CH₂, NR, O, S, SO or SO₂; said R being a member selected from the group consisting of hydrogen, c_{1-6} alkyl, c_{3-6} cycloalkyl, 20 (c_{1-6} alkyl)-co-, (c_{1-6} alkyloxy)-co and Ar²- c_{1-6} alkyl;

L is a member selected from the group consisting of a radical of formula

$$L^{1}-C_{r}H_{2r}-T-C_{s}H_{2s}-$$
 (b-1); and

25

a radical of formula

$$L^{1-C}_{r}H_{2r}^{-T^{1}-N}$$
 (b-2);

30

35

wherein one or two hydrogen atoms in the bivalent radical $^{-}$ C_SH₂₅- may, each independently from each other, be replaced by halo, hydroxy, mercapto, isothiocyanato, isocyanato, $^{-}$ C₁₋₆ alkylthio, $^{-}$ Ar¹D-, $^{-}$ Ar¹S-, $^{-}$ Ar¹SO₂-, or NHR³R⁵; and n is 0 or the integer 1 or 2;

r and s are, independently from each other, 0 or an integer of from l to 6 inclusive;

-z-c- or a direct bond; said Y being O, S, NR³ or a direct bond; 10 X being O, S, CH-NO or NR4; Z being O, S, NR⁵ or a direct bond; and said R^3 being hydrogen, c_{1-6} alkyl, Ar^2-c_{1-6} alkyl, $2-(c_{1-6}$ alkyloxy)-1,2-dioxoethyl or a radical of formula $-c(=X)-R^6$, R^6 being hydrogen, C₁₋₆ alkyl, Ar², Ar²-C₁₋₆ alkyl, C₁₋₆ alkyloxy, 15 Ar²-c₁₋₆ alkyloxy, mono- or di(C₁₋₆ alkyl)amino, Ar²-amino, Ar^2-c_{1-6} alkylamino or Ar^2-c_{1-6} alkyl $(c_{1-6}$ alkyl)amino; said R⁴ being hydrogen, C₁₋₆ alkyl, cyano, nitro, Ar²-sulfonyl, c_{1-6} alkylsulfonyl, c_{1-6} alkylcarbonyl or Ar^2 -carbonyl; and said R⁵ being hydrogen or C₁₋₆ alkyl;

wherein L1 is a member selected from the group consisting of hydrogen; halo; hydroxy; C₁₋₆ alkyloxy; C₁₋₆ alkylthio; cyano; mercapto; isocyanato; isothiocyanato; Ar¹; Ar¹-carbonyl; Ar¹-sulfonyl; c_{1-6} alkylsulfonyl; c_{3-6} cycloalkyl being optionally substituted with up to two substituents each independently selected from the group 25 consisting of C_{1-6} alkyl, cyano and Ar²; [10,11-dihydro-5<u>H</u>-dibenzo-[a,d]cyclohepten-5-ylidene]methyl; Het; and furan substituted with

substituted c_{1-6} alkyl; said substituted c_{1-6} alkyl being c_{1-6} alkyl substituted with a member selected from the group consisting of hydroxy, mercapto, c $_{1-6}$ alkyloxy, c $_{1-6}$ alkylthio, aminoc $_{1-6}$ 30 alkylthio, ${\rm ar}^2{\rm -oxy}$ and a radical of formula

wherein: t is 0 or an integer of from 1 to 6 inclusive; and R^7 is hydrogen or C_{1-6} alkyl; provided that; when in said radical of formula (c) t is 0, then Z or Y is a direct bond; and

where r is 0, L 1 may also be c_{2-6} alkenyl, ar^1-c_{2-6} alkenyl or c_{1-6} alkyl substituted with two c_{1-6} alkyloxy radicals; and

10 where r is 0 and T is \mathbb{NR}^3 , or T is $-\mathbb{N}(\mathbb{R}^5)-\mathbb{C}(=\mathbb{X})-\mathbb{Y}$ or \mathbb{T}^1 is $-\mathbb{N}(\mathbb{R}^5)-\mathbb{C}(=\mathbb{X})-\mathbb{N}$, L¹ may also be amino, \mathbb{C}_{1-6} alkylamino or \mathbb{A}^1 -amino; and

where r is 0, and T is $-N(R^5)-C(=X)-Y$ or T^1 is $-N(R^5)-C(=X)-$, L^1 may also be nitro;

said Het being an optionally substituted five- or six-membered heterocyclic ring, being optionally condensed with an optionally substituted five- or six-membered carbocyclic or heterocyclic ring;

20 provided that:

25

- 1) when L is a radical of formula (b-1) wherein L¹ is hydrogen and wherein T is -Z-C(-X)-Y- wherein Y is other then a direct bond and Z and X are each independently O or S, then r is not 0; or when L is a radical of formula (b-2) wherein L¹ is hydrogen and wherein T¹ is -Z-C(-X)- wherein Z and X are each independently O or S, then r is not 0;
- ii) when L is a radical of formula (b-1) wherein L¹ is halo, hydroxy, C₁₋₆ alkyloxy, mercapto, C₁₋₆ alkylthio, isocyanato, isothiocyanato or Het connected to C_rH_{2r} on a nitrogen atom, and wherein r is 0, then T is a direct bond or a radical -c(=X)-Y-; or when L is a radical of formula (b-2) wherein L¹ is halo, hydroxy, C₁₋₆ alkyloxy, mercapto, C₁₋₆ alkylthio, isocyanato, isothiocyanato or Het connected to C_rH_{2r} on a nitrogen atom, and wherein r is 0, then T¹ is a radical -c(=X)-;

- iii) when L is a radical of formula (b-1) wherein T is Y, said Y being other than a direct bond, or wherein T is -Z-C(-X)-Y-, wherein Y is other than a direct bond, then s is not 0;
- wherein Ar¹ is a member selected from the group consisting of phenyl, substituted phenyl, naphthalenyl, thienyl, halothienyl, C₁₋₆ alkylthdenyl, pyriddinyl, mono- and di(C₁₋₆ alkyloxy)pyriddinyl, pyrrolyl, C₁₋₆ alkylpyrrolyl, furanyl, furanyl substituted with C₁₋₆ alkyl, pyrazinyl, thiazolyl, imidazolyl, C₁₋₆ alkylimidazolyl; said substituted phenyl, being phenyl substituted with up to 3
- substituents each independently selected from the group consisting of halo, hydroxy, nitro, cyano, trifluoromethyl, c₁₋₆ alkyl, c₁₋₆ alkyl, c₁₋₆ alkylthio, mercapto, amino, mono- and di(c₁₋₆ alkyl)amino, c₁₋₆ alkylsulfonyl, c₁₋₆ alkylsulfonylc₁₋₆ alkyl,
- 15 phenyiC₁₋₆ alkylsulfonyl, phenylsulfonylC₁₋₆ alkyl, a radical of formula R⁰-C₁H₂-Y-, a radical of formula R⁰-Z-C(=X)-Y-, and a radical of formula R¹⁰SO₂Y-; wherein p is an integer of from 1 to 6 inclustive and R⁰ is a member selected from the group consisting of amino, cyano, phenyl aminocarbonyl, mono- and di(C₁₋₆ alkyl)amino-
- 20 carbonyl, C₁₋₆ alkyloxycarbonyl, phenylC₁₋₆ alkyloxycarbonyl,
 4-morpholinylcarbonyl, 1-piperidinylcarbonyl, 1-pyrrolidinylcarbonyl,
 and C₂₋₆ alkenyl; wherein R⁹ is member selected from the group
 consisting of hydrogen, C₁₋₆ alkyl and Ar²; provided that, when
 R⁹ is hydrogen and Y is other than a direct bond, then Z is not O or
 25 S; and wherein R¹⁰ is C₁₋₆ alkyl or Ar²;
 - wherein hr² is a member selected from the group consisting of phenyl, substituted phenyl, thienyl and furanyl, said substituted phenyl being phenyl optionally substituted with up to three substituents each independently selected from the group consisting of
- 30 halo, hydroxy, nitro, cyano, trifluoromethyl, C_{1-6} alkyl, C_{1-6} alkyloxy, C_{1-6} alkylothio, mercapto, amino, mono- and $\operatorname{di}(C_{1-6}$ alkyl)amino, carboxyl, C_{1-6} alkyloxycarbonyl and $(C_{1-6}$ alkyl)-co.

As used in the foregoing definitions the term halo is generic to fluoro, chloro, brome and iodo; the term "C₁₋₆ alkyl" is meant to include straight and branch chained saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as, for example, methyl, ethyl, 1-methylethyl, 1,1-dimethylethyl, propyl, 2-methylpropyl, butyl, pentyl, hexyl and the like; "C₁₋₁₀ alkyl" is meant to include C₁₋₆ alkyl radicals, as defined hereinabove, and the higher homologs thereof having from 7 to 10 carbon atoms; the term "C₂₋₆ alkenyl" is meant to include straight and branch chained hydrocarbon radicals having from 2 to 6 carbon atoms, such as, for example, 2-propenyl, 2-butenyl, 3-butenyl, 2-pentenyl and the like; the term "C₃₋₆ cycloalkyl" is generic to cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl; and "C₁₋₆ alkanediyl" is meant to include bivalent straight or branch chained alkanedlyl radicals having from 1 to 6 carbon atoms.

15

Preferred compounds within the invention are those wherein Het is a five- or six-membered heterocyclic ring containing a number of heteroatoms which varies of from 1 to 4, said heteroatoms being selected from the group consisting of oxygen, sulfur and nitrogen, 20 provided that no more than two oxygens or sulfurs are present, said five or six-membered ring being optionally condensed with a five- or six-membered carbocyclic or heterocyclic ring also containing a number of heteroatoms which varies from 1 to 4, the latter heteroatoms being selected from the group consisting of oxygen, sulfur and nitrogen, 25 provided that no more than 2 oxygens or sulfurs are present, and wherein said Het being a bicyclic ring system may optionally be substituted with up to 6 substituents, or said Het being a monocyclic ring system may optionally be substituted with up to 3 substituents. said substituents of Het being selected from te group consisting of a 30 bivalent radical of formula =X, said =X independently having the same meaning of the previously defined X: halo: isocvanato: isothiocvanato: nitro, cyano, trifluoromethyl; a radical of formula A-Y-, wherein A is hydrogen. Ar 1 or C₁₋₆ alkyl being optionally substituted with Ar1, C1-6 alkyloxy, Ar10, hydroxy, C1-6 alkyloxycarbonyl and Y 35 independently has the same meaning of the previously defined Y; and a

radical A Z-C(=X)-Y-, wherein A is as defined hereinabove and Z, X and Y independently have the same meanings of the previously defined Z, X and Y; provided that (i) when in the radical A-Y- A is hydrogen, then Y is other than a direct bond, or (ii) when in the radical A-Z-C(=X)-Y-A is hydrogen and Y is NR 3 , O or S, then Z is other than O or S.

Particularly preferred compounds within the invention are those wherein Het is a member selected from the group consisting of pyridinyl which is optionally substituted with one or two substituents each independently selected from the group consisting of 10 halo, amino, mono- and dic_{1-6} alkyl amino, $\operatorname{Ar}^2\operatorname{c}_{1-6}$ alkylamino, nitro, cyano, aminocarbonyl, c₁₋₆ alkyl, c₁₋₆ alkyloxy, c_{1-6} alkylthio, c_{1-6} alkyloxycarbonyl, hydroxy, c_{1-6} alkylcarbonyloxy, $\arctan^2 - c_{1-6}$ alkyl and carboxyl; 15 pyridinyloxide optionally substituted with nitro; quinolinyl which is optionally substituted with C, alkyl; pyrimidinyl which is optionally substituted with one or two substituents each independently selected from the group consisting of halo, amino, hydroxy, C1-6 alkyl, C1-6 alkyloxy, C1-6 alkylthio and Ar2-C1-6 alkyl; 20 quinazolinyl which is optionally substituted with hydroxy or C1-6 alkyl; pyridazinyl which is optionally substituted with C1-6 alkyl or quinoxalinyl which is optionally substituted with C,_6 alkyl; pyrazinyl which is optionally substituted with halo, amino or C,_ alkyl; phthalazinyl which is optionally substituted with halo; morfolinyl; 30 thiomorfolinyl; piperidinyl;

dioxinyl, both being optionally substituted with c_{1-6} alkyl or halo;

35

2,3-dihydro-3-oxo-4H-benzoxazinyl and 2,3-dihydro-1,4-benzo-

dioxanyl being optionally substituted with C1-6 alkyl;

2-oxo-2<u>H</u>-1-benzopyranyl and 4-oxo-4<u>H</u>-1-benzopyranyl both being optionally substituted with C₁₋₆ alkyl; 1,4-dihydro-2,4-dioxo-3(2<u>H</u>)-pyrimidinyl being optionally substituted with C₁₋₆ alkyl; and 4-oxo-2(1<u>H</u>)-pyrimidinyl;

5.6-dihydro-4½-1,3-thiazin-2-yl, thiazolyl, 4.5-dihydrothiazolyl, oxazolyl, imidazolyl, tetrazolyl, 1,3.4-thiadiazolyl, benzimidazolyl, benzontiazolyl, benzontiazolyl, 4.5-dihydro-5-oxo-l½-tetrazolyl, 2-oxo-3-oxazolidinyl and indolyl whereby each of the Het-radicals of group ii) may optionally be substituted where possible with up to two substituents selected from the group consisting of C₁₋₆ alkyl, Ar¹, Ar^{1-C}₁₋₆ alkyl, benzimidazolylC₁₋₆ alkyl, amino, (aminoiminomethyl)amino, mono- and diC₁₋₆ alkyl)amino, Ar¹-amino, nitro, C₁₋₆ alkyloxy-carbonyl and pyrimidinyl;

iii) a radical of formula

20

$$G^{5}$$
 R^{23}
 $(e-7)$, G^{6}
 N^{24}
 R^{24}
 R^{25}
 $R^{$

wherein each x2 is independently 0 or S;

R¹¹, R¹², R¹⁴, R²² and R²⁴ are each independently hydrogen, C₁-6 alkyl, kr²-C₁-6 alkyl, hydroxyc₁-6 alkyl or C₁-6 alkyloxycarbonyl; R¹³, R¹⁶, R¹⁷, R¹⁸ R¹⁹, R²⁰, R²¹ and R²³ are each independently hydrogen, C₁-6 alkyl, hydroxy, mercapto, C₁-6 alkyloxy, C₁-6 alkylthio, halo and (C₁-6 alkyloxycarbonyl)C₁-6 alkylthio, halo and (C₁-6 alkyloxycarbonyl)C₁-6 alkyl-16, dalkyl-16, dalky

wherein one or two hydrogen atoms in said radicals g^1 , g^2 , g^3 , g^4 , g^5 or g^6 or in the benzene part of the radicals of formula (e-2), (e-3) or (e-9) may be replaced by C_{1-6} alkyl. C_{1-6} alkylthio, C_{1-6} alkyloxy or halo where said hydrogen atom is bonded on a carbon atom, or by C_{1-6} alkyl. C_{1-6} alkyloxycarbonyl. $\Lambda r^2 - C_{1-6}$ alkyl, where said hydrogen is bonded on a nitrogen atom.

It is clear that R^{11} , R^{12} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} or R^{23} is absent where the radical of formula (e-1), respectively (e-4), (e-5), (e-6) or (e-7) is connected to C_SH_{2S} on the atom bearing R^{11} , R^{12} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} or R^{23} .

35

More particularly preferred compounds within the invention are those wherein L is a radical of formula (b-1).

Especially preferred compounds within the invention are those more particularly preferred compounds wherein Het is as described hereinabove for the particularly preferred compounds, wherein r is 0 and \mathbf{L}^1 is hydrogen, hydroxy, \mathbf{C}_{1-6} alkyloxy, \mathbf{C}_{1-6} alkylthio, mercapto, Het, \mathbf{Ar}^1 , isocyanato, isothiocyanato or cyano.

More especially preferred compounds within the invention are those 10 especially preferred compounds wherein \mathbb{R}^1 is \mathbf{C}_{1-6} alkyl substituted with one \mathbb{R}^1 radical.

It is evident that in the compounds of formula (I) wherein \textbf{L}^1 is Het, said Het may be unsaturated or partly or completely saturated.

The compounds of formula (I) wherein Het is a heterocycle which is substituted with a hydroxy, mercapto or amino radical may contain in their structure a keto-enol tautomeric system or a vinylog system thereof, and consequently these compounds may be present in their keto 20 form as well as their enol form.

The compounds of formula (I) can generally be prepared by reacting a piperidine of formula (III) with a diamine of formula (III).

25
$$R^2$$
 X^1 H_2N A^1 A^2 A^2 A^3

In some instances the reaction of (II) with (III) first yields an intermediate of formula $\ .$

which may in situ or, if desired, after isolating and further purifying it, be cyclisized to the desired compounds of formula (I). In (II) and (II-a) χ^1 is O. S or NH.

W as used in the foregoing and following reaction schemes is an appropriate leaving group such as, for example, halo, e.g. chloro, brown or iodo, a sulfonyloxy group, e.g. methylsulfonyloxy or 4-methylphenylsulfonyloxy, and where W is connected to a -C(=X)-, -C(=X¹)- or -C(=X²)-radical it may also be C₁₋₆ alkyloxy, C₁₋₆ alkylthio, 15 Ar²-o-, or Ar²-s-.

The piperidine of formula (II) may in situ be generated, for example, by converting a piperidine which is substituted in its 4-position with a -B-C(=X^1)-OH radical into a piperidine of formula (II) by reacting the former piperidine with thionyl chloride, phosphoro trichloride, phosphoryl chloride, phosphoroxy chloride and the like.

The reaction of (II) with (III) may be conducted in a suitable solvent such as, for example, a hydrocarbon, e.g., benzene, hexane; an ether, e.g., 1,1'-oxybisethane, tetrahydrofuran; a kétone, e.g., 2-propanone, 25 2-butanone; an alcohol, e.g., methanol, ethanol, 2-propanol,

l-butanol; a halogenated hydrocarbon, e.g., trichloromethane, dichloromethane, an organic acid, e.g., acetic acid, propanoic acid; a polar aprotic solvent e.g., N.M-dimethylfornamide, N.M-dimethyl-acetamide and the like; and mixtures of such solvents. Depending upon the solvent and nature of W it may be appropriate to add an

appropriate base and/or a iodide salt, preferably an alkali metal iodide, to the reaction mixture. Elevated temperatures may enhance the reaction rate. The compounds of formula (I) can also be prepared by reacting an intermediate of formula (V) with a piperidine of formula (IV) wherein \mathbf{E}^1 and \mathbf{E}^2 are selected so that during the reaction a radical -B-is formed.

For example, the compounds of formula (I) can be prepared by reacting a piperidine of formula (IV) wherein E¹ is a radical of formula -B-M with an intermediate of formula (V) wherein E² is a radical of 15 formula -W.

In (IV-a) M is, depending upon the nature of B, hydrogen or an appropriate alkalimetal or earth alkaline metal and in (V-a) W has the 25 previously described meaning. Additionally, the compounds of formula (I) can also be prepared by reacting a piperidine of formula (IV) wherein E¹ is W with an intermediate of formula (V) wherein E² is a radical of formula -B-M, said W and M having the previously described meanings.

More particularly, the compounds of formula (I) wherein B is -CH₂can also be prepared by reacting a piperidine of formula (IV) wherein
E¹ represents a radical of formula -CH₂-W, (IV-C), with an
intermediate of formula (V) wherein E² represents M, (V-c) or
5 alternatively, by reacting a piperidine of formula IV, wherein E¹ is
a radical of formula -M, (IV-d), with an intermediate of formula (V)
wherein E² is a radical of formula -CH₂-W, (V-d).

The reaction of (IV) with (V) may conveniently be conducted in an appropriate solvent such as for example, an aromatic hydrocarbon, e.g., tertahydrofuran and the like; a halogenated hydrocarbon, e.g. trichloromethane and the like; <u>N.H. dimethylformamide (DMR)</u>; <u>N.H. dimethylformamide (DMR)</u>; <u>N.H. dimethylformamide (DMR)</u>; and where M is hydrogen, said solvent may also be a C₁₋₆ alkanol, e.g., methanol, ethanol, l-butanol and the like; a ketone, e.g., 2-propanone, 4-methyl-2-pentanone and the like. In some cir
30 cumstances, the addition of an appropriate base such as, for example, an alkali metal carbonate or hydrogen carbonate, sodium hydride or an organic base such as, for example, <u>N.M.-diethylethanamine or M.-(l-methyl-ethyl)-2-propanamine</u> and/or the addition of a lodide salt, preferably an alkali metal lodide, may be appropriate. Somewhat elevated tempera-

The compounds of formula (I), wherein B is NR, can also be prepared by a cyclodesulfurization reaction of an appropriate thiourea derivative of formula

10 Said cyclodesulfurization reaction may be carried out by the reaction of (VI-a) with an appropriate alkyl halide, preferably iodomethane in an appropriate reaction-inert organic solvent, e.g., a

C₁₋₆ alkanol such as methanol, ethanol, 2-propanol and the like. Otherwise, the cyclodesulfurization reaction may be carried out by the reaction of (VI-a) with an appropriate metal oxide or salt in an appropriate solvent according to art-known procedures. For example, the compounds of formula (I) can easily be prepared by the reaction of (VI-a) with an appropriate Hg(II) or Pb(II) oxide or salt, such as, for example HgO, HgCl₂, Hg(OAc)₂, PbO or
20 Pb(OAc)₂. In certain instances it may be appropriate to supplement the reaction mixture with a small amount of sulfur. Even so methanediimines, especially N.N'-methanetetraylbis[cyclohexanamine] may be used as cyclodesulfurizing agents.

In some instances compounds of formula (I), wherein B is NR, may 25 alternatively be prepared by cyclodesulfurizing a thiourea of formula (VI-b) and subsequently dehydrating the thus obtained oxazole[5.4-d]pyrimidine derivatives with a suitable dehydrating agent, e.g., phosphoryl chloride, phosphor trichloride, phosphor pentachloride, thionyl chloride and the like.

30

35

(VI-b)

In (VI-b) R^{1-a} has the same meaning as described hereinabove for R^1 .

The compounds of formula (I) can also be converted into each other. A number of such reactions will be described hereinafter in more detail.

In order to simplify the structural representations of the compounds of formula (I) and of certain precursors and intermediates thereof the

represented by the symbol D.

10

15

25

The compounds of formula (I) wherein L is L², said compounds
being represented by the formula (I-b) can be prepared by alkylating

20 an intermediate of formula (VII) with a compound of formula (I) wherein
L is o², said compound being represented by the formula (I-c).

 L^2 as defined hereinabowe is a radical of formula (b-1) other then hydrogen, said radical being represented by the formula (b-1-a), or a radical of formula (b-2).

In (VII) and (I-c), Q^1 and Q^2 are selected so that a bivalent 30 radical of formula (b-1-a) or (b-2) is formed during the alkylation reaction, said (b-1-a) and (b-2) having the previously described meaning.

For example, the compounds of formula (I-b) can be prepared by N-alkylating a piperidine of formula (I-c) wherein ϱ^2 is hydrogen. 35 said piperidine being represented by the formula (I-c-1).

with a reagent of formula (VII-a).

In some instances the alkylating reagent (VII-a) can also be a reactive cyclic reagent which may be formed by an intramolecular cyclisation reaction. The said cyclic form of (VII-a) may be formed in situ, or if desired, isolated and further purified before reacting 10 it with (I-c-1).

Additionally, the compounds of formula (I-b), wherein L² is a radical of formula (b-l-a), wherein T is T², said T² being O, S, NR³ or -z¹-c(=X)-Y-, said Z¹ being O, S or NR⁵, or a radical 15 of formula (b-2) wherein T¹ is T³, said T³ being -Z¹-c(=X)- or a direct bond, said compounds being represented by the formula (I-b-1-a), respectively (I-b-1-b), can be prepared by alkylating a piperidine of formula (I-c-2) with a reagent of formula (VII-b).

In (I-c-2) ϱ^{2a} is a radical of formula HT^2 -C_SH_2S-,

30 respectively a radical of formula HT^3 -N $(\operatorname{CH}_2)_n$ and W^1 has the previously defined meaning of W. and where r=0, and L^1 is Het or Ar^1 , it may also be C_{1-6} alkyloxy or C_{1-6} alkylthio.

25

The compounds of formula (I-b), wherein L^2 is a radical of formula (b-1-a), wherein T is T^4 , said T^4 being O, S, NR 3 or $-z-c(-x)-y^1-$, said y^1 being O, S or NR 3 , and said compounds being represented by the formula (I-b-2), may also be prepared by alkylating a piperidine of formula (I-c) wherein ϱ^2 is a radical of formula $-c_1^2 + c_2^2 + c_3^2 + c$

$$L^{1}C_{r}H_{2r}-T^{4}H + W-C_{s}H_{2s}-D$$
 alkylation $L^{1}-C_{r}H_{2r}-T^{4}-C_{s}H_{2s}-D$ (VII-c) (I-c-3) reaction (I-b-2)

The alkylation reactions are conveniently conducted in an inert organic solvent such as, for example, an aromatic hydrocarbon, e.g., benzene, methylbenzene, dimethylbenzene, and the like; a C₁₋₆ alkanol, e.g., methanol, ethanol, l-butanol and the like; a ketone, e.g., 2-propanone, 4-methyl-2-pentanone and the like; an ether, e.g., 1,4-dioxane, 1,1-oxybisethane, tetrahydrofuran and the

20 like; N.N-dimethylformamide (DMF); N.N-dimethylacetamide (DMA); dimethyl sulfoxide (DMSO); nitrobenzene; 1-methyl-2-pyrrolidinone; and the like. The addition of an appropriate base such as, for example, an alkali metal carbonate or hydrogen carbonate, sodium hydride or an organic base such as, for example, N.N-diethylethanamine or

25 <u>N</u>-(1-methylethyl)-2-propanamine may be utilized to pick up the acid which is liberated during the course of the reaction. In some circumstances the addition of a iodide salt, preferably an alkali metal iodide, is appropriate. Somewhat elevated temperatures may enhance the rate of the reaction.

The compounds of formula (I-b) can also be prepared by the reductive N-alkylation reaction of (I-c-1) with an appropriate carbonyl-compound of formula L^{2-a}=C=O (VIII), said L^{2-a}=C=O being a compound of formula L²-H wherein a -CH₂- radical is oxidated to a carbonyl radical.

$$L^{2-a}=C=0 + (I-c-1) \longrightarrow L^{2-p} (I-b)$$

The compounds of formula (I-b), wherein L^2 is a radical of 5 formula $L^1 - c_1 H_{27} - N R^3 - c_5 H_{25} -$, said compounds being represented by the formula (I-b-3) may alternatively be prepared by the reductive $N^2 - N R^3 - (N^2) - (N^2$

10 said L¹-(C_TH_{2T-1})=0 being a compound of formula L¹-C_TH_{2T}-H wherein a -GH₂-radical is oxidated to a carbonyl radical. The compounds of formula (T-b-3) can also be prepared by the reductive №-alkylation of an amine of formula (X), with a compound of formula (I) wherein L is a radical of formula O=(C_EH_{2E-1})-, said compound

being represented by the formula (I-e), and said O=(C_SH_{2s-1}) being a radical of formula H-C_SH_{2s} wherein a -CH₂ radical is oxidated to a carbonyl radical.

$$\begin{array}{c} \text{L}^{1-}(\text{C}_{r}\text{H}_{2r-1}) = \text{O} \ + \ \text{HN}(\text{R}^{3}) - \text{C}_{s}\text{H}_{2s} - \text{D} \longrightarrow \text{L}^{1-}\text{C}_{r}\text{H}_{2r} - \text{N}(\text{R}^{3}) - \text{C}_{s}\text{H}_{2s} - \text{D} \\ \text{(Ir-d)} \end{array}$$

$$L^{1}-C_{r}H_{2r}-N(R^{3})H + O=(C_{s}H_{2s-1})-D \longrightarrow (I-b-3)$$
(X)

25 Said reductive N-alkylation reaction may conveniently be carried out by catalytically hydrogenating a mixture of the reactants in a suitable reaction-inert organic solvent according to art-known catalytic hydrogenating procedures. The reaction mixture may be stirred and/or heated in order to enhance the reaction rate. Suitable 30 solvents are, for example, water; C₁₋₆ alkanols, e.g. methanol, ethanol, 2-propanol and the like; cyclic ethers, e.g. 1,4-dioxane and the like; halogenated hydrocarbons, e.g. trichloromethane and the like; N-M-dimethylformamide; dimethyl sulfoxide and the like; or a mixture of 2 or more of such solvents. The term "art-known catalytic 5 hydrogenating procedures" means that the reaction is carried out under

hydrogen atmosphere and in the presence of an appropriate catalyst such as, for example, palladium-on-charcoal, platinum-on-charcoal and the like. In order to prevent the undesired further hydrogenation of certain functional groups in the reactants and the reaction products it may be advantageous to add an appropriate catalyst-poison to the reaction mixture, e.g., thiophene and the like.

The compounds of formula (I-b), wherein L is a radical of formula (b-l-a) wherein T is z^1 - $C(-x^2)$ -NH-, z^1 being as previously described, x^2 being 0 or S, and said compounds being represented by 10 the formula (Ib-4), can generally be prepared by reacting an isocyanate or isothiocyanate of formula (I-f) with a reagent of formula (XI):

The compounds of formula (I-b), wherein L² is a radical of formula (b-l-a), wherein T is -NH-C(=x²)-x¹-, Y¹ being as

20 previously described, and the compounds of formula (I-b), wherein L² is a radical of formula (b-l-a), wherein T is -NH-C(=x²)- and s is
0, and the compounds of formula (I-b), wherein L² is a radical of formula (b-2), wherein T¹ is -NH-C(=x²)-, said compounds being represented by the formula (I-b-5-a), respectively (I-b-5-b) and

25 (I-b-5-c), can be prepared by reacting an isocyanate or isothiocyanate of formula (XII) with a piperidine of formula (I-c-4), respectively (I-c-1) and (I-c-5).

$$(XII) + HN \xrightarrow{(CH_2)_n} D \xrightarrow{L^1-C_rH_{2r}-NH-C-H} \xrightarrow{(CH_2)_n} D$$

$$(1-c-5) \qquad (1-b-5-c)$$

5

35

The reaction of (XI) with (I-F) and of (XII) with (I-C-4), respectively (I-C-1) and (I-C-5) may be conducted in a suitable reaction-inert solvent such as, for example, a hydrocarbon, e.g., loenzene, a ketone, e.g., acetone, a halogenated hydrocarbon, e.g., dichloromethane, trichloromethane, an ether, e.g., 1,1'-oxybisethane, tetrahydrofuran and the like. Elevated temperatures may be suitable to enhance the rate of the reaction.

15 The compounds of formula (I-b), wherein L² is a radical of formula (b-1-a), wherein T is -C(=X²)-Y¹-, and the compounds of formula (I-b), wherein L is a radical of formula (b-1-a), wherein s is 0 and T is a radical of formula -C(=X²)-, and the compounds of formula (I-b) wherein L² is a radical of formula (b-2), wherein T¹ is -C(=X²)-, said compounds being represented by the formula (I-b-6-a), respectively (I-b-6-b) and (I-b-6-c), may be prepared by reacting a piperidine of formula (I-c-4), respectively (I-c-1) and (I-c-5) with a reagent of formula (XIII).

25
$$L^{1}$$
- $c_{r}H_{2r}$ - c_{r} - c_{r} + (I-c-4) $\rightarrow L^{1}$ - $c_{r}H_{2r}$ - c_{r} - $c_$

30 (XIII) + (I-c-1)
$$\longrightarrow$$
 $L^1c_rH_{2r}$ -c-b (I-b-6-b)

$$(XIII) + (I-c-5) \longrightarrow L^1 c_r H_{2r} - c - N \underbrace{(CH_2)_n}_{n}$$

The reaction of (XIII) with (I-c-4), respectively (I-c-1) and (I-c-5) may generally be conducted following art-known esterification—or amidation reaction-procedures. For example, the carboxylic acid may be 5 converted into a reactive derivative, e.g., an anhydride or a carboxylic acid halide, which subsequently, is reacted with (I-c-4), (I-c-1) or (I-c-5); or by reacting (XIII) and (I-c-4), respectively (I-c-1) and (I-c-5) with a suitable reagent capable of forming amides or esters, e.g., dicyclohexylcarbodimide, 2-chloro-1-methylpyridinium 10 iodide and the like. Said reactions are most conveniently conducted in a suitable solvent such as, for example, an ether, e.g. tetrahydrofuran, a halogenated hydrocarbon, e.g. dichloromethane, trichloromethane or a polar aprotic solvent, e.g. N.N-dimethylformamide. The addition of a base, e.g. N.N-diethylethanamine may be appropriate.

The compounds of formula (I-b), wherein L^2 is a radical of formula (b-l-a) wherein T is $-2^1-C(-x)-x^1-$, and the compounds of formula (I-b), wherein L^2 is a radical of formula (b-l-a) wherein s is 0 and T is $-2^1-(C-X)-$, and the compounds of formula (I-b), wherein L^2 is a radical of formula (b-2) wherein T^1 is $-2^1-C(-X)-$, said compounds being represented by the formula (I-b-7-a), respectively (I-b-7-b) and (I-b-7-c), can also be prepared by reacting (XI) with (I-c-4), respectively (I-c-1) and (I-c-5) in the presence of an appropriate C-X generating agent.

25
$$(XI) + (I-c-4) + \underbrace{C=X}_{\text{qenerating agent}} L^{1}-c_{r}H_{2r}-z^{1}-c(=x)-Y^{1}-c_{s}H_{2s}-D$$

30 (XI) + (I-c-1) +
$$\searrow$$
c=X \longrightarrow L¹-C_rH_{2r}-Z¹-C(=X)-D (I-b-7-b)

$$(XI) + (I-c-5) + c=x \longrightarrow L^{1-c}rH_{2r}-z^{1-c}(=x)-x$$
generating agent
$$(I-b-7-c)$$

5

An appropriate C=X generating agent is, for example, 1,1'-thiocarbonylbis[lH-imidazole], 1,1'-carbonylbis[lH-imidazole], carbonic
dichloride, carbonothioic dichloride, urea, thiourea, trichloroacetyl
chloride, and the like. The reaction of (XI) with (I-c-4), (I-c-1) or

10 (I-c-5) is conveniently conducted in a suitable solvent, such as, for
example, a hydrocarbon, e.g., benzene, methylbenzene; an ether, e.g.,
1,1'-oxybisethane, tetrahydrofuran; a halogenated hydrocarbon, e.g.,
dichloromethane, trichloromethane and the like. The addition of a base
such as, for example, an alkali metal carbonate or hydrogen carbonate
to an organic base, e.g., N.M-diethylethanamine and the like, may be
appropriate.

The compounds of formula (I-b) wherein L² is a radical of formula (b-1), wherein s is an integer of from 2 to 6 inclusive, said

20 compounds being represented by the formula (I-g) can be prepared by reacting an appropriate alkene of formula (XIV) with a piperidine of formula (I-c-1).

$$\begin{array}{c} L^{1}C_{r}H_{2r}^{-T-C}2_{-6} \text{ alkenediyl-H} + (\text{I-c-1}) & \longrightarrow L^{1}C_{r}H_{2r}^{-T-C}2_{-6} \text{ alkenediyl-D} \\ 25 & (\text{XTV}) \end{array}$$

The compounds of formula (I-b) wherein L^2 is a radical of formula $L^1-C_\Gamma H_{2\Gamma}-T-C_{S^1-2}H_{2S^1-4}-CH(X^1H)-CH_2^-$, wherein s' is an integer of from 2 to 6 inclusive, said compounds being represented by the formula (I-h) 30 may also be prepared by reacting a reagent of formula (XV) with a piperidine of formula (I-c-1).

$$L^{1-c}_{r}H_{2r}^{-T-c}_{s'-2}H_{2(s'-2)} \xrightarrow{Y^{1}} + (\text{I-c-1}) \Rightarrow L^{1-c}_{r}H_{2r}^{-T-c}_{s'-2}H_{2s'-4} \xrightarrow{Y^{1}H}$$
(XV)
(1-h)

The reactions of (XIV) with (I-c-1), and (XV) with (I-c-1) may be conducted by stirring and, if desired, heating the reactants together. The said reactions may be conducted in a suitable solvent such as, for example, an alkanone, e.g. 2-propanone, 4-methyl-2-propanone, an lo ether, e.g. tetrahydrofuran, 1,1'-oxybisethane, an alcohol, e.g. methanol, ethanol, l-butanol, M.M-dimethylformamide, N.N-dimethylacetamide and the like.

It is evident that the radical "-C₂₋₆ alkenyl-", the corresponding "-C₂₋₆ alkanediyl-"radical and the radical

5 C_{2s'-2}H_{2s'-4} may bear the previously described substitutions of the radical -C₂H_{2s}.

The compounds of formula (I) wherein L¹ is Het, said compounds being represented by the formula (I-i), may also be prepared following 20 procedures for preparing ring systems which are known in the art or analogous procedures thereof. A number of such cyclization procedures will be described hereinafter.

The bivalent radical K used in the description of these cyclization reactions has the following meaning:

$$-c_r H_{2r} - T - c_s H_{2s} - (d-1); \text{ or}$$
 $-c_r H_{2r} - T^1 - N (d-2);$

and the radicals (e-l-a), (e-2), (e-3), (e-5-a), (e-6), (e-7) and (e-8) also used in the description of these cyclization reactions have the following meaning:

30

15
$$e^{\frac{R^{24}}{R^{24}}}$$
 (e-8); wherein

x², R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶, R²⁰, R²¹, R², R²³, R²⁴, o¹, o³, o⁴, o⁵ and o⁶ have the same meaning as defined hereinabove for the 20 particularly preferred compounds.

For example, the compounds of formula (I-1) wherein Het is an optionally substituted imidazolyl radical, said compounds being

represented by the formula (I-i-1), can be prepared by the cyclization reaction of an appropriate \underline{N} -(2,2-diC $_{1-6}$ alkyloxyethyl)imidamide

25 derivative of formula (XVI).

$$\begin{array}{c} c_{1-6} \text{ alkyl-o} \\ c_{1-6} \text{ alkyl-o} \\ c_{1-6} \text{ alkyl-o} \\ (xyz) \end{array} \xrightarrow{N-R^{27}} \begin{array}{c} \mathbb{R}^{25} \\ \mathbb{R}^{25} \\ \mathbb{R}^{25} \end{array} \xrightarrow{\mathbb{R}^{25}} \begin{array}{c} \mathbb{R}^{27} \\ \mathbb{R}^{25} \\ \mathbb{R}^{25} \end{array} \xrightarrow{\mathbb{R}^{25}} \begin{array}{c} \mathbb{R}^{27} \\ \mathbb{R}^{25} \\ \mathbb{R}^{25} \end{array}$$

wherein R^{25} , R^{26} and R^{27} are each independently optional substituents of the imidazole ring.

- 5 Said cyclization reaction may conveniently be conducted in a suitable solvent in the presence of an appropriate acid such as, for example, hydrochloric, hydrobromic and the like acids. Elevated temperatures may enhance the rate of the reaction.
- 10 The compounds of formula (I-i) wherein Het is an optionally substituted thiazolyl radical, being optionally condensed with a fiveor six-membered hetero- or carbocyclic ring, may be prepared by a number of cyclization reactions, yielding, depending upon the case, compounds which may be represented by the formula (I-i-2) or (I-i-3).

15
$$R^{28}$$
-CH-C- R^{29} + H_2N -C-K-D cyclization R^{28} - R^{29} - $R^{$

 ${\rm R}^{28}$, ${\rm R}^{29}$, ${\rm R}^{30}$ and ${\rm R}^{31}$ are each independently optional

- 25 substituents of the said thiazolyl ring, or, where in the compounds of formula (I-i-2) said thiazolyl ring is condensed with a five- or six-membered hetero- or carbocyclic ring, R²⁸ and R²⁹ taken together may form a bivalent radical of formula G⁴.
- 30 Further, where Het is a radical of formula (e-1-a), said Het may be formed by condensing an intermediate (XXI) with a c-x² generating agent, e.g. urea, thiousea, 1,1'-carbonylbis[lH-imidazole], C₁₋₆ alkyl carbonohalidate, phosgene, thiophosgene, trichloromethyl carbonohalidate and the like.

The compounds of formula (I-i-4) wherein R^{11} is hydrogen may additionally be prepared by cyclizing an intermediate of formula

15 reacting a reagent (XXIII) with an amine (XXIV).

cyclization of (XXII) may conveniently be conducted in a suitable solvent such as, for example, an ether, e.g. 1,1-oxybisethane, 25 tetrahydrofuran, an halogenated hydrocarbon, e.g. dichloromethane, trichloromethane, a hydrocarbon, e.g. benzene, methylbenzene, an alcohol, e.g. methanol, ethanol, a ketone, e.g. 2-propanone, 4-methyl-2-pentanone, N.N-dimethylformamide, N.N-dimethylacetamide, or mixtures of such solvents, optionally in the presence of an

The reaction of (XXI) with the $\sum_{x=0}^{\infty} x^2$ generating agent and the

30 appropriate base such as, for example, N.N-diethylethanamine, an alkali or earth alkaline metal carbonate or hydrogen carbonate. In order to enhance the reaction rate, it may be suitable to heat the reaction mixture.

Further, where Het is a radical of formula (e-2), said Het may be 35 generated by cyclizing an intermediate (XXV) with an acid (XXVI) or a

suitable functional derivative thereof, thus preparing a compound of formula (I-1-5). Alternatively an intermediate (XXVII) may be condensed with an aromatic amino acid or -thioacid of formula (XXVIII), preparing also a compound (I-1-5).

The reaction of (XXV) with (XXVI) and of (XXVII) with (XXVIII) may be conducted in a suitable reaction-inert solvent, such as, for example, a hydrocarbon, e.g. benzene, methylbenzene, an alcohol, water. In some instances it may be appropriate to use higher temperatures in order to 20 reduce the reaction time.

Where Het is a radical of formula (e^{-3}) , wherein \mathbb{R}^{16} is hydrogen and \mathbb{R}^{15} is a radical of formula \mathbb{R}^{15-a} -CH₂-, said Het may be formed by reacting a compound (XXIX) with an appropriate acetylene derivative (XXX), thus preparing a compound of formula (I-i-6).

Additionally, where Het is a radical of formula (e-3), said Het may be formed by reacting (XXIX) with a ketone of formula (XXXI), thus preparing a compound of formula (I-1-7).

30
$$\longrightarrow_{\substack{C-NH-K-D\\ 1/2\\ (XXX)}}^{NH-R}$$
 $\xrightarrow{CH\equiv C-R^{15-a}}$ $\longrightarrow_{\substack{N\\ 1/2\\ (XXX)}}^{R^{14}}$ $\xrightarrow{K}_{\substack{N\\ 1/2\\ (1-1-6)}}^{R^{14}}$

5

$$(xxxx) + o=c \xrightarrow{R^{16}}_{R^{15}} \xrightarrow{R^{14}}_{N-R-D} \xrightarrow{R^{14}}_{N-R-D}$$

The reaction of (XXIX) with (XXX) may be conducted in a suitable solvent such as, for example, an alcohol, e.g. methanol, ethanol, while the reaction of (XXIX) with (XXXI) may be conducted in a suitable solvent preferably in the presence of an organic acid such as, for example, ethanedioic acid and the like. Elevated temperatures may also be appropriate to shorten the reaction time.

Additionally, where Het is a radical (e-5-a), said Het may be created by condensing a reagent (XXXII) with an intermediate (XXXIII), thus giving a compound (I-1-8).

Where Het is a radical (e-6) being connected to K by the G⁴ containing ring and bearing a 2-mercaptosubstituent, said Het may be formed during the cyclization of an intermediate (XXXII) with CS₂, thus preparing a compound (I-1-9).

30 Where Het is a radical of formula (e-7) being connected to K either by the 6⁵ containing ring or by the imidazole ring, said Het is formed during the condensation reaction of a reagent (XXXV) with an intermediate (XXXVI) respectively by the cyclodesulfurization reaction of an intermediate (XXXVII), thus preparing a compound (I-1-10)

35 respectively (I-i-ll).

$$R^{23} \stackrel{\text{NH}}{\underset{\text{NH}}{=}} + R^{22} \stackrel{\text{IN}}{\underset{\text{H}_{Z}N}{=}} \longrightarrow G^{5} \longrightarrow R^{23} \stackrel{\text{NH}}{\underset{\text{N}}{=}} \times G^{5}$$

$$(XXXV) \qquad (XXXVI) \qquad (I-i-10)$$

$$G^{5} \stackrel{\text{NH}-R^{22}}{\underset{\text{NH}-C-K-D}{=}} \xrightarrow{\text{cyclodesulfurization}} G^{5} \stackrel{\text{NN}}{\underset{\text{N}}{=}} \times G^{5}$$

$$(XXXVII) \qquad (I-i-11)$$

The reactions of (XXXII) with (XXXIII), of (XXXIV) with CS₂ and (XXXV) with (XXXVI) may conveniently conducted in a suitable
reaction-inert solvent, such as for example one of the solvents given hereinabove for the preparation of (I-i-4) optionally in the presence of an appropriate base, e.g. one of the bases also described for the preparation of (I-i-4); higher temperatures may be used to enhance the reaction rate.

The cyclodesulfurization of (XXXVII) may be carried out by the reaction of (XXXVII) with an appropriate alkyl halide, preferably iodomethane in an appropriate reaction—inert organic solvent, e.g., a C₁₋₆ alkanol such as methanol, ethanol, 2-propanol and the like. Otherwise, the cyclodesulfurization reaction may be carried out by the reaction of (XXXVII) with an appropriate metal oxide or salt in an appropriate solvent according to art-known procedures. For example, the compounds of formula (I) can easily be prepared by the reaction of (XXXVII) with an appropriate Hg(II) or Pb(II) oxide or salt, such as, for example HgO, HgCl₂, Hg(OAc)₂. Pbo or Pb(OAc)₂. In certain 30 instances it may be appropriate to supplement the reaction mixture with a small amount of sulfur. Even so methanedimines, especially N,N'—methanetetraylbis[cyclohexanamine] may be used as cyclode—sulfurizing agents.

Where Het is a radical (e-8), said Het may be formed during the condensation of an intermediate (XXXVIII) with a $\sum c-x^2$ generating agent, following the same procedures as previously described for the preparation of (I-1-4) starting from (XXXIII).

5

10

(XXXVIII)

The compounds of formula (I) can also be converted into each other following art-known procedures of functional grouptransformation. Some examples will be cited hereinafter.

The compounds of formula (I), wherein -B- is -S- may be converted

15 into the corresponding compounds of formula (I), wherein -B- is -SOor -SO₂- by an appropriate oxidation reaction, e.g. by reacting the
former compounds with a suitable oxidating agent such as, for example,
potassium periodate, a peroxide, e.g. 3-chlorobenzenecarboperoxoic
acid. hydrogen peroxide, and the like, in a suitable solvent such as,
20 for example, an ether, e.g. tetrahydrofuran, l.l'-oxybisethane, a
hydrocarbon, e.g. benzene, a halogenated hydrocarbon, e.g.
dichloromethane, trichloromethane and the like. In the instance where
a sulfinyl is desired, said oxidation reaction is preferably conducted
at lower temperatures with approximately one equivalent of the
25 oxidating agent, while where a sulfonyl is desired, said oxidation
reaction may be conducted at room or elevated temperature with an
excess of oxidating agent.

The compounds of formula (I) having a nitro substituent can be converted into the corresponding amines by stirring and, if 30 desired, heating the starting nitro-compounds in a hydrogen-

containing medium in the presence of a suitable amount of an appropriate catalyst such as, for example, platinum-on-charcoal, palladium-on-charcoal, Raney-nickel and the like catalysts.

Suitable solvents are, for example, alcohols, e.g., methanol, ethanol and the like.

methods for preparing N-H groups such as, for example :

- where said nitrogen is substituted with an Ar²-CH₂ group, by treating the starting compounds with hydrogen in the presence of a suitable catalyst, e.g. palladium-on-charcoal, platinum-on-
- 5 charcoal, in an appropriate solvent;
 - 2. or, where said nitrogen is substituted with a sulfonyl group, e.g. $c_{1-6} \ alkylsulfonyl \ and \ Ar^2-sulfonyl, \ by \ treating \ the starting \ compounds with an aqueous acidic solution preferably in the presence of a catalyst such as, for example, phenol, methoxybenzene and the like:$
 - or, where said nitrogen atoms are substituted with an Ar²-carbonyl group by treating the starting compounds with an aqueous basic solution, e.g. an alkali metal hydroxide solution;
 - 4. where said nitrogen is substituted with C₁₋₆ alkyloxy carbonyl or 5 Ar²-oxycarbonyl, by treating the starting compounds with an aqueous acidic or aqueous basic solution optionally in admixture with an organic solvent or where said nitrogen atom is substituted with Ar²-oxycarbonyl, by catalytically hydrogenating the starting materials in a suitable solvent.
- The compounds of formula (I) containing a nitrogen atom substituted with ${\rm Ar}^2-{\rm CH}_2-$ may be converted into the corresponding compounds where said nitrogen is substituted with ${\rm C}_{1-6}$ alkyloxycarbonyl, for example by treating the former compounds with a ${\rm C}_{1-6}$ alkyl carbonohalidate in the presence of a suitable solvent and, if desired, in the presence of an appropriate base.

The compounds of formula (1) containing a mercapto group may be converted into the corresponding isothiocyanato containing compounds by treating the starting amino compounds with CS₂ in the presence of N.N'-methanetetraylbis[cyclohexanamine].

30 The compounds of formula (I) containing a -CH₂-C(-O)- fragment can be converted into the corresponding compounds of formula (I) containing a -CH(halo)-C(-O)- fragment Following art-known halogenating procedures, e.g. by treating the starting compound with a halogen.

In all of the foregoing and in the following preparations, the reaction products may be isolated from the reaction mixture and, if necessary, further purified according to methodologies generally known in the art.

- 5 The compounds of formula (I) have basic properties and, consequently, they may be converted to their therapeutically active non-toxic acid addition salt forms by treatment with appropriate acids, such as, for example, inorganic acids, such as hydrohalic acid, e.g. hydrochloric, hydrobromic and the like, and sulfuric acid, nitric acid, phosphoric acid and the like; or organic acids, such as, for example, acetic, propanoic, hydroxyacetic, 2-hydroxy-propanoic, 2-oxopropanoic, ethanedioic, propanedioic, butanedioic, (Z)-2-butenedioic, (B)-2-butenedioic, 2-hydroxybutanedioic, 2,3-dihydroxybutanedioic, 2-hydroxy-1,2,3-propanetricarboxylic, methanesulfonic, ethanesulfonic, benzenesulfonic, 4-methylbenzenesulfonic, cyclohexanesulfamic, 2-hydroxybenzoic, 4-amino-2-hydroxybenzoic and the like acids. Conversely the salt form can be converted
- 20 Some intermediates and starting materials in the foregoing preparations are known compounds which may be prepared according to art-known methodologies of preparing said or similar compounds and others are new. A number of such preparation methods will be described hereinafter in more detail.

by treatment with alkali into the free base form.

25 The intermediates of formula (II), wherein B is CH₂, x¹ is NH and W is c₁₋₆ alkyloxy, said intermediates being represented by the formula (II-c), can be prepared by reacting a (cyanomethyl)piperidine of formula (XXXIX) with an alcohol, e.g. methanol, ethanol and the like, in the presence of an acid, e.g. hydrochloric acid.

35

5 The intermediates of formula (IV) may be prepared by a reduction reaction of an appropriate 4-piperidinone, and, if desired, followed by an appropriate art-known groupstransformation procedure, e.g., where a compound of formula (V-b) is desired, by reacting the thus obtained alcohol with thionyl chloride, methylsulfonyl chloride and the like in order to obtain an appropriate leaving group.

The intermediates of formula (VI-a) can be prepared by the procedures described in, for example, European Patent Publication Nos. 0.099,139: 0.145,037 and 0.144,101.

The intermediates of formula (VII) can conveniently be prepared 15 following art-known procedures as described in, for example, U.S. Patent Number 4,342,870 and European Patent Publication Number 0,070,053.

From formula (I) it is evident that the compounds of this invention may have several asymmetric carbon atoms in their structure.

Bach of these chiral centers may be present in a R- and a S-configuration, this R- and S-notation being in correspondence with the rules described by R.S. Cahn, C. Ingold and V. Prelog in Ancew. Chem., Int. Ed. Engl., 5, 385, 511 (1966).

Pure stereochemically isomeric forms of the compounds of formula
25 (I) may be obtained by the application of art-known procedures.

Diastereoisomers may be separated by physical separation methods such as selective crystallization and chromatographic techniques, e.g., counter current distribution, and enantiomers may be separated from each other by the selective crystallization of their diastereomeric
30 saits with optically active acids.

Pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically. It is evident that the cis and trans diastereomeric racemates may be further resolved into their optical isomers, cis(+), cis(-), trans(+) and trans(-) by the application of methodologies known to those skilled in the art.

5 Stereochemically isomeric forms of the compounds of formula (I) are naturally intended to be embraced within the scope of the invention.

The compounds of the present invention possess useful pharmacological properties and are active as antihistamines and as 10 serotonin-antagonists. This is clearly demonstrated by the results of the "Protection of rats from compound 48/80-induced lethality" test.

In view of their antihistaminic properties, the compounds of formula (I) and their acid-addition salts are very useful in the 15 treatment of allergic diseases such as, for example, allergic rhinitis, allergic conjunctivities, chronic urticaria, allergic astma and the like.

In view of their useful pharmacological properties the subject compounds may be formulated into various pharmaceutical forms for 20 administration purposes. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, in base or acid addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form 25 of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be 30 employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions. syrups, elixirs and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of 35 their ease in administration, tablets and capsules represent the most

advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be 5 included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. In the compositions suitable for 10 percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wettable agent. optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deletorious effect on the skin. Said additives may facilitate the 15 administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment. Acid addition salts of (I) due to their increased water solubility over the corresponding base form, are obviously more 20 suitable in the preparation of aqueous compositions.

It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete 2 units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, 30 wafers, injectable solutions or suspensions, teaspoonfuls. tablespoonfuls and the like, and segregated multiples thereof.

The present invention is also related with a method of treating allergic diseases in warm-blooded animals suffering from said allergic diseases by administering an effective anti-allergic amount of a compound of formula (I) or a pharmaceutically acceptable acid addition salt thereof.

Those of skill in treating allergic diseases in warm-blooded animals could easily determine the effective amount from the test results presented hereinafter. In general it is contemplated that an effective amount would be from 0.1 mg to 100 mg, more preferably from 10 1 to 50 mg.

The following examples are intented to illustrate and not to limit the scope of the present invention in all its aspects. Unless otherwise stated all parts therein are by weight.

15

20

25

30

EXPERIMENTAL PART

A. Preparation of Intermediates

Example 1

A mixture of 3.7 parts of 2-pyridinemethanamine, 4.1 parts of
4.6-dichloropyrimidin-5-anine, 3.03 parts of M.M-diethylethanamine
and 150 parts of water was stirred for 8 hours at room temperature.
After cooling, the whole was stirred overnight. The product was
filtered off, washed with water and dried overnight in vacuo at
80°C, yielding 5.35 parts (90.8%) of 6-chloro-M⁴-(2-pyridinyl-

- 10 methyl)-4,5-pyrimidinediamine; mp. 140.3°C (interm. 1).
 In a similar manner there were also prepared:
 - 6-chloro-M⁴-[(4-fluorophenyl)methyl]-4,5-pyrimidinediamine; mp. 244.4°C (interm. 2);
 - 6-chloro-M⁴-(2-furanylmethyl)-4,5-pyrimidinediamine mp. 138.7°C
 - 6-chloro-M⁴-(2-thienylmethyl)-4,5-pyrimidinediamine; mp. 165.5°C (interm. 4):
 - 6-chloro-M⁴-[(5-methyl-2-furanyl)methyl]-4,5-pyrimidinediamine (interm. 5):
- 20 6-chloro-N⁴-(2-pyrazinylmethyl)-4,5-pyrimidinediamine (interm. 6); 6-chloro-N⁴-(4-thiazolylmethyl)-4,5-pyrimidinediamine; mp. 145.5°C (interm. 7); 6-chloro-N⁴-[(4-methoxyphenyl)methyl]-4,5-pyrimidinediamine; .
- mp. 183.5°C (interm. 8); and 25 \underline{N}^4 -[(4-fluorophenyl)methyl]-6-methyl-4,5-pyrimidinediamine;
 - In a similar manner there is also prepared: 6-chloro- \underline{M}^4 -[(2.4-dimethylphenyl)methyl]-4.5-pyrimidinediamine; (interm. 10).
- 30 Example 2

To a stirred mixture of 20.2 parts of 4.5-pyrimidinediamine, 40 parts of pyridine and 144 parts of $\underline{N},\underline{N}$ -dimethylformamide was added dropwise a solution of 24.2 parts of 4-fluorobenzoyl chloride in 36 parts of $\underline{N},\underline{N}$ -dimethylformamide at 10°C. Upon completion, stirring

35 was continued for 30 minutes at room temperature. 600 Parts of water

were added. The product was filtered off and dried, yielding 30 parts (70%) of N-(4-amino-5-pyrimidinyl)-4-fluorobenzamide (interm. 11).

To a stirred mixture of 30 parts of N-(4-amino-5-pyrimidinyl)4-fluorobenzamide and 360 parts of tertahydrofuran were added
portionwise 9.86 parts of lithium tetrahydroaluminate under
nitrogen atmosphere. The mixture was stirred for 6 hours. Another
portion of 10 parts of lithium tetrahydroaluminate was added
portionwise and stirring was continued for 2 hours at room

temperature. The reaction mixture was decomposed with water. The layers were separated. The aqueous phase was extracted with tetrahydrofuran. The combined organic layers were dried, filtered and evaporated. The residue was crystallized from acetonitrile. The product was filtered off and dried, yielding 18 parts (63.5%) of 15 N⁵-[(4-filworophenyl)methyl]-4.5-pyrimidinediamine (interm. 12).

Following the same procedure and using equivalent amounts of the appropriate starting materials, there were also prepared: \underline{N} -(4-amino-6-hydroxy-5-pyrimidiny1)-4-fluorobenzamide (interm. 13); and

20 6-amino-5-[[(4-fluorophenyl)methyl]amino]-4-pyrimidinol (interm. 14).
Example 3

A mixture of 62.2 parts of 6-chloro- N^4 -(2-pyridinylmethyl)-4,5-pyrimidinediamine, 3 parts of a solution of thiophene in methanol 4%, 20 parts of calcium oxide and 400 parts of methanol was

25 hydrogenated at normal pressure and at 50°C with 5 parts of palladium-on-charcoal catalyst 10%. After the calculated amount of hydrogen was taken up, the catalyst was filtered off and the filtrate was evaporated, yielding 63.5 parts (100%) of M⁴-(2pyridinylmethyl)-4,5-pyrimidinediamine as a residue (interm. 15).

30 In a similar manner there were also prepared: $\frac{M}{2}$ -[(4-fluorophenyl)methyl]-4,5-pyrimidinediamine as a residue (interm. 16);

 \underline{N}^4 -(2-furanylmethy1)-4,5-pyrimidinediamine; mp. 116.4°C (interm. 17);

35 $\underline{\mathbf{w}}^4$ -(2-thienylmethyl)-4,5-pyrimidinediamine (interm. 18);

 $\underline{N}^4-[(5-methyl-2-furanyl)methyl]-4,5-pyrimidinediamine (interm. 19); \\ \underline{N}^4-(2-pyrazinylmethyl)-4,5-pyrimidinediamine as a residue (interm. 20);$

 \underline{N}^4 -[(4-methoxyphenyl)methyl]-4,5-pyrimidinediamine (interm. 21);

N⁴-(4-thiazolylmethyl)-4,5-pyrimidinediamine (interm. 22).

In a similar manner there is also prepared:

 \underline{N}^4 -[(2,4-dimethylphenyl)methyl]-4,5-pyrimidinediamine (interm. 23). Example 4

10 A mixture of 8.72 parts of M⁴-[(4-fluorophenyl)methyl]4.5-pyrimidinediamine, 63 parts of carbon disulfide and 45 parts of
M.M-dimethylfornamide was stirred for 3 hours at reflux temperature.
After cooling, the reaction mixture was poured into water. The
precipitated product was filtered off and dried, yielding 10.1 parts
15 (78.9%) of 9-[(4-fluorophenyl)methyl]-9H-purine-8-thiol (interm. 24).

To a stirred mixture of 4.6 parts of potassium hydroxide and 200 parts of water were added portionwise 1.7 parts of iodomethane, followed by the dropwise addition of 3.8 parts of 9-[(4-fluoro-phenyl)methyl]-9½-purine-8-thiol. Upon complete addition, the whole 20 was stirred for 2 hours at room temperature. The precipitated product was filtered off and dried, yielding 3.45 parts (73.9%) of 9-[(4-fluorophenyl)methyl]-8-(methylthio)-9½-purine; mp. 167.1°C (interm. 25).

Example 5

25 A mixture of 26 parts of methyl 3-methyl-4-oxo-1-piperidinecarboxylate, 16.5 parts of benzenemethanamine, 2 parts of a solution
of thiophene in ethanol 4% and 200 parts of methanol was
hydrogenated at normal pressure and at room temperature with 3 parts
of palladium-on-charcoal catalyst 10%. After the calculated amount
30 of hydrogen was taken up, the catalyst was filtered off and the
filtrate was evaporated to dry, yielding 40.2 parts of methyl
3-methyl-4-[(phenylmethyl)amino]-1-piperidinecarboxylate as a
residue (interm. 26).

A mixture of 40 parts of methyl 3-methyl-4-[(phenylmethyl)-35 amino]-1-piperidinecarboxylate and 160 parts of methanol was hydrogenated at normal pressure and at room temperature with 2 parts of palladium-on-charcoal catalyst 10%. After the calculated amount of hydrogen was taken up, the catalyst was filtered off and the filtrate was evaporated to dry. The residue was distilled (bp. 80°C at 0.1 mm. pressure). The distillate was further purified by

5 at 0.1 mm. pressure). The distillate was further purified by gas-chromatography (at 215°c and at 10 lbs/sq. inch), yielding 8.6 parts of methyl 4-amino-3-methyl-1-piperidinecarboxylate (interm. 27)

To a stirred and cooled (-10°C) mixture of 138.6 parts of carbon disulfide, 113.8 parts of $\underline{N},\underline{N}'$ -methanetetraylbis[cyclohexanamine].

- and 450 parts of tetrahydrofuran were added dropwise 106 parts of methyl 4-amino-3-methyl-1-piperidinecarboxylate at this low temperature. The reaction mixture was allowed to attain room temperature. After stirring for 1 hour at room temperature, the mixture was evaporated and the residue was stirred in 2,2'-oxybis-
- 15 propane. The precipitate was filtered off and the filtrate was evaporated, yielding 141.1 parts (100%) of methyl cis-4-isothiocyanato-3-methyl-1-piperidinecarboxylate as a residue (interm. 28).

Following the same procedure and using equivalent amounts of the appropriate starting materials, there were also prepared:

20 methyl (<u>cis+trans</u>)-methyl 4-amino-3-methyl-1-piperidinecarboxylate; bp. 136-140°C (water-jet) (interm. 29); and methyl (<u>cis+trans</u>)-4-isothiocyanato-3-methyl-1-piperidinecarboxylate as a residue (interm. 30).

Example 6

- 25 A mixture of 42.5 parts of M⁴-(2-furanylmethyl)-4.5pyrimidinediamine, 50.5 parts of ethyl 4-isothiocyanato-1-piperidinecarboxylate and 630 parts of tetrahydrofuran was stirred for 48 hours at reflux temperature. After cooling, the product was filtered off, washed with tetrahydrofuran and 1.1'-oxybisethane and dried,
- 30 yielding 86.4 parts (96.2%) of ethyl 4-[[[[4-[(2-furanylmethyl)-amino]-5-pyrimidinyl]amino]thioxomethyl]-amino]-l-piperidine-carboxylate (interm. 31).

In a similar manner there were also prepared:

No. L \mathbb{R}^2 \mathbb{R}^1 $-\mathbb{A}^1 = \mathbb{A}^2 - \mathbb{A}^3 = \mathbb{A}^4$ isomeric mp. form \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^4 isomeric mp. form \mathbb{R}^3 \mathbb{R}^4 $\mathbb{R$

In a similar manner there were also prepared:

N-(4-amino-6-hydroxy-5-pyrimidinyl-N-[(4-fluorophenyl)methyl]-N'
[a-(phenylmethyl)-4-piperidinyl]thiourea; mp. 192.9°C (interm. 42);

and

third A-[[(4-amino-6-hydroxy-5-pyrimidinyl)](4-fluorophonyl)-

ethyl 4-[[(4-amino-6-hydroxy-5-pyrimidinyl)[(4-fluorophenyl)methyl]amino]-thioxomethyl]amino]-l-piperidinecarboxylate (interm.
43).

In a similar manner there is also prepared:

30 ethyl 4-[[[4-[(2,4-dimethylphenyl)methyl]amino]-5-pyrimidinyl]
aminothioxomethyl]amino]-1-piperidinecarboxylate (interm. 44).

Example 7

A mixture of 52.4 parts of 1-(phenylmethyl)-4-piperidineacetic acid hydrochloride, 38.7 parts of $\frac{N}{2}$ -[(4-fluorophenyl)methyl]-

35

4.5-pyrimidinediamine and 765 parts of phosphoryl chloride was stirred and refluxed for 30 minutes. The reaction mixture was evaporated. The residue was decomposed with ice water. The product was extracted with dichloromethane after treatement with sodium hydroxide. The extract was washed with water, dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol, saturated with ammonia, (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue 10 was crystallized from acetonitrile. The product was filtered off and dried, yielding 37 parts (61%) of N-[4-[[(4-fluorophenyl)methyl]-amino]-5-pyrimidinyl]-1-(phenylmethyl)-4-piperidineacetamide; mp. 157.3°C (interm. 45). Example 8

15 To a stirred mixture of 14.2 parts of isocyanatoethane, 29.2 parts of sodium azide and 135 parts of dry tetrahydrofuran was added a solution of 39 parts of aluminum chloride in 225 parts of dry tetrahydrofuran. Stirring was continued overnight at reflux temperature. The reaction mixture was cooled and acidified with a 20 hydrochloric acid solution 6N. The whole was evaporated to dry and the product was extracted four times with 2-propanone. The combined extracts were dried, filtered and evaporated. The residue was dried overnight, yielding 18 parts (65%) of 1-ethyl-1,4-dihydro-5½-tetrazol-5-one (interm. 46).

To a stirred solution of 109 parts of 1.2-dibromoethane and 21.2 parts of sodium carbonate in 5 parts of water and 18 parts of N.N-dimethylformamide were added dropwise a solution of 22.5 parts of 1-ethyl-1.4-dihydro-5H-tetrazol-5-one in 5 parts of water and 27 parts of N.N-dimethylformamide at about 40°C. Upon completion, 30 stirring was continued overnight at 40°C. The organic phase was separated, dried and distilled, yielding 9.8 parts (22%) of 1-(2-bromoethyl)-4-ethyl-1.4-dihydro-5H-tetrazol-5-one; bp. 110°C at 0.1 mm pressure (interm. 47).

Example 9

A mixture of 50 parts of 2-thiazolamine, 76 parts of 3-acetyl-4,5-dihydro-2(3H)-furanone, 1.2 parts of concentrated hydrochloric acid and 270 parts of methylbenzene was stirred and 5 refluxed for 2 hours using a water-separator. The reaction mixture was cooled and 340 parts of phosphoryl chloride were added at a temperature between 20 and 30°C. The whole was heated slowly to 100~110°C and stirring was continued for 2 hours at this temperature. The reaction mixture was evaporated and the residue was 10 poured into a mixture of crushed ice and ammonium hydroxide. The product was extracted with trichloromethane. The extract was dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (95:5 by volume) as eluent. The pure fractions were 15 collected and the eluent was evaporated. The residue was crystallized from a mixture of 2-propanol and 1,1'-oxybisethane, vielding 36 parts of 6-(2-chloroethyl)-7-methyl-5H-thiazolo-[3.2-a]pvrimidin-5-one (interm. 48).

20 B. Preparation of Final compounds

Example 10

A mixture of 20.65 parts of 1-(phenylmethyl)-4-piperidineacetic acid hydrochloride. 19.5 parts of 6-chloro-M - ((4-fluorophenyl)-methyl)-4.5-pyrimidinedianie and 510 parts of phosphoryl chloride 25 was stirred and refluxed for 13 hours. The reaction mixture was evaporated. The residue was poured into ice water. The whole was treated with sodium hydroxide. The product was extracted with 4-methyl-2-pentanone. The extract was washed with water, dried, filtered and evaporated. The residue was purified by column 30 chromatography over silica gel using a mixture of trichloromethane and methanol, saturated with ammonia, (97:3 by volume) as eluent. The first fraction was collected and the eluent was evaporated, yielding 23.6 parts (75%) of 6-chloro-9-[(4-fluorophenyl)methyl]-8-[[1-(phenylmethyl)-4-piperidinyl]-methyl]-9H-purine as an oily 7 residue (compound 1).

In a similar manner there was also prepared: 6-chloro-7-[(4-fluorophenyl)methyl]-8-[[1-(phenylmethyl)-4piperidinyl]-methyl]-7H-purine (compound 2); and 9-[(4-fluorophenyl)methyl]-6-methyl-8-[[l-(phenylmethyl)-5 4-piperidinyl]-methyl]-9H-purine as an oily residue (compound 3).

Example 11

A mixture of 36 parts of N-[4-[[(4-fluorophenyl)methyl]amino]-5-pyrimidinyl]-1-(phenylmethyl)-4-piperidineacetamide and 935 parts of phosphoryl chloride was stirred and refluxed for 8 hours. After 10 cooling, the reaction mixture was evaporated. The residue was decomposed in ice water. The whole was treated with a sodium hydroxide solution. The product was extracted with 4-methyl-2pentanone. The extract was dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using . 15 a mixture of trichloromethane and methanol, saturated with ammonia, (97:3 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was stirred in 2,2'-oxybispropane. The product was filtered off and crystallized from acetonitrile. The product was filtered off and dried, yielding 10.6 20 parts (30.4%) of 9-[(4-fluorophenyl)methyl]-8-[[1-(phenylmethyl)-4-piperidinyl]methyl]-9H-purine; mp. 136.4°C (compound 4).

Example 12

A mixture of 12.6 parts of 1-(phenylmethyl)-4-piperidinol, 3.2 parts of a sodium hydride dispersion 50% and 200 parts of

- 25 N.N-dimethylacetamide was stirred for 1 hour at room temperature. 18 Parts of 9-[(4-fluorophenyl)methyl]-8-(methylthio)-9H-purine were added portionwise and upon completion, stirring was continued for 4 hours at room temperature. The reaction mixture was poured into water. The product was filtered off and taken up in trichloro-
- 30 methane. The organic layer was washed with water and filtered over diatomaceous earth. The filtrate was dried, filtered and evaporated. After crystallization from acetonitrile, the product was filtered off and dried, yielding 16.75 parts (61.1%) of 9-[(4-fluorophenyl)methyl]-8-[[1-(phenylmethyl)-4-piperidinyl]oxy]-9H-purine;
- 35 mp. 117.0°C (compound 5).

Example 13

To a stirred mixture of 13 parts of 9-[(4-fluorophenyl)methyl]-9½-purine-8-thiol and 300 parts of water were added 2 parts of sodium hydroxide. The reaction mixture was filtered over diatomaceous earth. After evaporation, the residue was taken up in methylbenzene and the solvent was evaporated again (this was repeated twice). The residue was taken up in 270 parts of ½,½-dimethylacetamide and 19.3 parts of 1-[(4-methylphenyl)sulfonyl]-4-piperidinol methanesulfonate (ester) were added. The whole was stirred over weekend at 60°C. The reaction mixture was poured into water and the product was extracted with 4-methyl-2-pentanone. The extract was washed with water, dried, filtered and evaporated, yielding 27 parts (100%) of 4-[[9-[(4-fluorophenyl)methyl]-9½-purin-8-yl]thio]-1-[(4-methylphenyl)-sulfonyl)piperidine (compound 6).

15 Example 14

A mixture of 4 parts of ethyl 4-[[[4-[(2-furanylmethyl)amino]-5-pyrimidinyl]amino]thioxomethyl]-amino]-1-piperidinecarboxylate, 6 parts of mercury(II)oxide and 80 parts of ethanol was stirred for 2 hours at reflux temperature. The whole was filtered while hot over 20 Hyflo® and the filtrate was evaporated. The residue was crystallized from a mixture of acetonitrile and ethanol. The product was filtered off and dried, yielding 0.8 parts (21.5%) of ethyl 4-[[9-(2-furanylmethyl)-9H-purin-8-yl]amino]-1-piperidinecarboxylate; mp. 171.9°C (compound 7).

25 Following the same procedure and using equivalent amounts of the appropriate starting materials, there was also prepared:

ethyl $4-[[9-[(4-fluorophenyl)methyl]-9\underline{H}-purin-8-yl]amino]-1-piperidinecarboxylate; mp. 174.5°C (compound 8).$

Example 15

A mixture of 24 parts of ethyl 4-[[[[4-[(phenylmethyl)amino]-5pyrimidinyl]amino]thioxomethyl]amino]-l-piperidinecarboxylate, 24 parts of mercury(II) oxide and 240 parts of methanol, saturated with ammonia was stirred overnight at reflux temperature. The reaction mixture was filtered while hot and the filtrate was evaporated. The 75 residue was taken up in a mixture of trichloromethane and ethanol. After washing with water, the organic layer was evaporated and the residue was crystallized from acetonitrile. The product was filtered off and dried, yielding 20.3 parts (92.1%) of ethyl 4-[[9-(phenyl-methyl)-9H-purin-8-yl]amino]-1-piperidinecarboxylate; mp. 156.9°C (compound 9).

In a similar manner there were also prepared: ethyl 4-[[9-(2-thienylmethyl)-9H-purin-8-yl]amino]-1-piperidinecarboxylate as a residue (compound 10);

ethyl 4-[[9-(2-pyridinylmethyl)-9H-purin-8-yl]amino]-1-piperidine-10 carboxylate (compound 11);

ethyl 4-[[9-[(5-methyl-2-furanyl)methyl]-9H-purin-8-yl]amino]l-piperidine-carboxylate as a residue (compound 12); ethyl 4-[[9-(2-pyrazinylmethyl)-9H-purin-8-yl]amino]-l-piperidinecarboxylate as a residue (compound 13);

15 ethyl 4-[(9-methyl-9H-purin-8-yl)amino]-l-piperidinecarboxylate;
mp. 169.6°C (compound 14);
ethyl 4-[[9-[(4-methoxyphenyl)methyl]-9H-purin-8-yl]amino]l-piperidinecarboxylate; mp. 168.1°C (compound 15); and
M-[1-(phenylmethyl)-4-piperidinyl]-9H-purin-8-amine; mp. 276.1°C

20 (compound 16).

5

Example 16

A mixture of 15.7 parts of ethyl 4-[[[[4-(cyclopropylamino)-5pyrImidinyl]amino]thioxomethyl]amino]-l-piperidinecarboxylate, 20
parts of mercury(II) oxide, 40 parts of ethanol and 135 parts of

25 N.M.-dimethylacetamide was stirred overnight at 80°C. The reaction
mixture was filtered over diatomaceous earth while hot. The filtrate
was poured into water and the product was extracted with
dichloromethane. The organic layer was dried, filtered and
evaporated. The residue was crystallized from acetonitrile. The
30 product was filtered off and dried, yielding 2.2 parts (14.1%) of
ethyl 4-[(9-cyclopropyl-9M-purin-8-yl)amino]-l-piperidinecarboxylate; mp. 177.0°C (compound 17).

In a similar manner there was also prepared:
ethyl 4-[[9-(4-thiazolylmethyl)-9H-purin-8-yl]amino]-1-piperidine35 carboxylate (compound 18).

Example 17

A mixture of 13 parts of methyl cis-4-[[[4-[[(4-fluorophenyl)-methyl]amino]-5-pyrimidinyl]amino]thioxomethyl]amino]-3-methyl-1-piperidinecarboxylate, 13 parts of mercury(II) oxide, 0.1 parts of sulfur and 160 parts of methanol, saturated with ammonia was stirred for 0.5 hours at reflux temperature. The reaction mixture was filtered over diatomaceous earth while hot and the filtrate was evaporated. The residue was poured into water and the product was extracted with trichloromethane. The extract was washed with water, 10 dried, filtered and evaporated. The residue was solidified in 1.1-oxybisethane. The product was filtered off and dried, yielding 7 parts (58.5%) of methyl cis-4-[[9-[(4-fluorophenyl)methyl]-9H-purin-8-yl]amino]-3-methyl-1-piperidinecarboxylate; mp. 152.2°C (compound 19).

15 In a similar manner there were also prepared:
7-[(4-fluoropheny1)methy1)-<u>M</u>-[1-(pheny1methy1)-4-piperidiny1]7½-purin-8-amine; mp. 251.1°C (compound 20).
methy1 (<u>cis+trans</u>)-4-[[9-[(4-fluoropheny1)methy1]-9½-purin-8-y1]amino]-3-methy1-1-piperidinecarboxylate (compound 21);

On a similar manner there are also prepared: ethyl 4-[[9-[(4-fluorophenyl)methyl]-9H-purin-8-yl]methylamino]-l-piperidinecarboxylate (compound 22); and ethyl 4-[[9-[(2.4-dimethylphenyl)methyl]-9H-purin-8-yl]amino]l-piperidinecarboxylate (compound 23).

25 Example 18

A mixture of 88.8 parts of ethyl 4-[[[(4-mino-6-hydroxy-5pyrimidinyl)[(4-fluorophenyl)methyl]amino]thioxomethyl]amino]-1plperidinecarboxylate, 88 parts of mercury(II) oxide, 0.1 parts of
sulfur and 1200 parts of ethanol was stirred overnight at reflux
30 temperature. The reaction mixture was filtered over diatomaceous
earth while hot and the filtrate was evaporated. The residue was
purified by column chromatography over silica gel using a mixture of
trichloromethane and methanol, saturated with ammonia, (95:5 by
volume) as eluent. The pure fractions were collected and the eluent
35 was evaporated. The residue was crystallized from ethyl acetate. The

product was filtered off and dried, yielding 50.7 parts (66.1%) of ethyl 4-[[7-amino-1-[(4-fluorophenyl)methyl]oxazolo[5,4-d]pyrimidin-2(lH)-yiiden]amino]-1-piperidinecarboxylate; mp. 174.6°C (compound 24).

- A mixture of 50.7 parts of ethyl 4-[[7-amino-l-[(4-fluorophenyl)-methyl]oxazolo[5,4-d]pyrimidin-2(lH)-yliden]amino]-l-piperidine-carboxylate and 3050 parts of phosphoryl chloride was stirred for 90 minutes at reflux temperature. The reaction mixture was evaporated. The residue was poured into ice water. The whole was treated with .
- 10 ammonium hydroxide. The product was extracted with 4-methyl-2-pentanone. The extract was washed with water, dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol, saturated with ammonia, (95:5 by volume) as eluent. The pure
- 15 fractions were collected and the eluent was evaporated. The residue was crystallized from acetonitrile. The product was filtered off and dried, yielding 21.6 parts (41.5%) of ethyl 4-[[6-chloro-7-[(4-fluorophenyl)methyl]-7½-purin-8-yl]amino]-1-piperidinecarboxylate; mp. 126.6°C (compound 25).
- 20 Following the same procedure and using equivalent amounts of the appropriate starting materials, there were also prepared: 1-[(4-fluoropheny1)methy1]-2,3-dihydro-2-[[1-(phenylmethy1)-4-piperidiny1]imino]oxazolo[5,4-d]-pyrimidine-4-amine; mp. 178.5°C (compound 26); and
- 25 6-chloro-7-[(4-fluorophenyl)methyl]-<u>N</u>-[1-(phenylmethyl)-4piperidinyl]-7<u>H</u>-purin-8-amine; mp. 248.6°C (compound 27).
 Example 19
- A mixture of 16 parts of 6-chloro-7-[(4-fluorophenyl)methyl]8-[[1-(phenylimethyl)-4-piperidinyl]methyl]-7H-purine, 4.65 parts of
 30 ethyl carbonochloridate and 180 parts of methylbenzene was stirred
 for 2 hours at reflux temperature. After cooling, the reaction
 mixture was treated with ammonium hydroxide and the product was
 extracted with methylbenzene. The extract was washed with water,
 dried, filtered and evaporated, yielding 18.7 parts (100%) of ethyl
- 35 4-[[6-chloro-7-[(4-fluorophenyl)methyl]-7H-purin-8-yl]methyl]-1-

piperidinecarboxylate as a residue (compound 28).

In a similar manner there was also prepared:

ethyl 4-[[9-[(4-fluorophenyl)methyl]-6-methyl-9 \underline{H} -purin-8-yl]-

methyl]-1-piperidinecarboxylate (compound 29); and

5 ethyl 4-[[6-chloro-9-[(4-fluorophenyl)methyl]-9<u>H</u>-purin-8-yl]methyl]-1-piperidinecarboxylate as a residue (compound 30).

Example 20

A mixture of 24.8 parts of 4-[[9-[(4-fluorophenyl)methyl]9H-purin-8-yl]thio]-1-[(4-methylphenyl)sulfonyl]piperidine and 300

parts of acetic acid, saturated with hydrogen bromide was stirred
overnight at room temperature. After evaporation, the residue was
taken up in water. The whole was treated with a sodium hydroxide
solution and extracted with dichloromethane. The extract was
acidified with a hydrochloric acid solution and extracted with

- 15 water. The aqueous layer was treated with a sodium hydroxide solution and the product was extracted with dichloromethane. The extract was washed with water, dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol. (95:5 by volume) -->
- 20 trichloromethane and methanol, saturated with ammonia, (90:10 by volume) as eluents. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from acetonitrile. The product was filtered off and dried, yielding 3.0 parts (17.4%) of 9-[(4-fluorophenyl)methyl]-8-(4-piperidinylthio)-9H-purine; mp.
- 25 113.5°C (compound 31).

In a similar manner there is also prepared: 9-[(4-fluorophenyl)methyl]-8-(4-piperidinylsulfonyl)-9H-purine (compound 32). Example 21

- 30 A mixture of 60.5 parts of ethyl 4-[[9-(2-furanylmethyl)-9H-purin-8-yl]amino]-l-piperidinecarboxylate, 90 parts of potassium
 - hydroxide, 800 parts of 2-propanol and 20 parts of water was stirred for 48 hours at reflux temperature. The reaction mixture was evaporated. The reaction mixture was poured into water while
- 35 stirring. The product was filtered off and dried, yielding a first

fraction of 36.2 parts of 9-(2-furanylmethyl)-N-(4-piperidinyl)-9H-purin-8-amine hemihydrate. The aqueous phase was extracted with dichloromethane. The organic layer was dried, filtered and evaporated. The oily residue was stirred in acetonitrile and

- 5 2,2'-oxybispropane. The product was filtered off and dried, yielding a second fraction of 5.6 parts of 9-(2-furanylmethyl)-½-(4-piperidinyl)-½-(4-piperidinyl)-½-(4-piperidinyl)-½-(4-piperidinyl)-½-piperidinyl)-½-emine hemihydrate; mp. 164.1°C (compound 33).
- Following the same procedure and using equivalent amounts of the appropriate starting materials, there were also prepared: 9-[(4-fluoropheny1)methy1]-<u>W</u>-(4-piperidiny1)-9<u>H</u>-purin-8-amine dihydrochloride; mp. 275.0°C (compound 34);
- N-(4-piperidinyl)-9-(2-thienylmethyl)-9H-purin-8-amine; mp. 189.6°C (compound 35);
 - M-(4-piperidinyl)-9-(2-pyridinylmethyl)-9H-purin-8-amine;
 - mp. 194.8°C (compound 36);
 - 9-[(5-methyl-2-furanyl)methyl]- \underline{N} -(4-piperidinyl)-9 \underline{H} -purin-8-amine; mp. 165.1°C (compound 37);
- 20 N-(4-piperidinyl)-9-(2-pyrazinylmethyl)-9H-purin-8-amine as a residue (compound 38); and
 - 9-[(4-methoxyphenyl)methyl]- \underline{N} -(4-piperidinyl)-9 \underline{H} -purin-8-amine hemihydrate; mp. 144.1°C (compound 39).

In a similar manner there is also prepared:

25 9-[(2.4-dimethylphenyl)methyl]-N-(4-piperidinyl)-9H-purin-8-amine (compound 40).

Example 22

A mixture of 7.5 parts of ethyl 4-[[6-chloro-7-[(4-fluoro-phenyl)methyl]-7½-purin-8-yl]amino]-1-piperidinecarboxylate and 150

30 parts of a hydrobromic acid solution 48% in water was stirred overnight at 80°C. The reaction mixture was evaporated. The residue was stirred in 2-propanone. The product was filtered off and dried, yielding 8.5 parts (100%) of 7-[(4-fluorophenyl)methyl]-8-(4-piperidinylamino)-7H-purin-6-ol dihydrobromide as a residue (compound 41).

35 In a similar manner there were also prepared:

9-[(4-fluoropheny1)methy1]-8-(4-piperidinylmethy1)-9H-purin-6-ol dihydrobromide as a residue (compound 42); and 7-[(4-fluoropheny1)methy1]-8-(4-piperidinylmethy1)-7H-purin-6-ol dihydrobromide: mp. 277.8°C (compound 43).

5 Example 23

A mixture of 10.5 parts of ethyl 4-[(9-methyl-9<u>H</u>-purin-8yl)amino]-1-piperidinecarboxylate and 300 parts of a hydrobromic acid solution 48% in water was stirred for 6 hours at 80°C. After evaporation, the residue was boiled in methanol. The reaction

mixture was cooled and the precipitated product was filtered off, boiled in methanol again and yielded, after filtration and drying, 7.7 parts (56.6%) of 9-methyl-N-(4-piperidinyl)-9H-purin-8-amine dihydrobromide; mp. 298.3°C (compound 44).

In a similar manner there were also prepared:

- 15 cis-9-[(4-fluoropheny1)methy1]-N-(3-methy1-4-piperidiny1)-9H-purin-8-amine dihydrobromide (compound 45);
 - 9-(phenylmethyl)-N-(4-piperidinyl)-9H-purin-8-amine dihydrobromide; mp. 270.9°C (compound 46);
 - $(\underline{\text{cis}} + \underline{\text{trans}}) 9 [(4 \text{fluorophenyl}) + \underline{\text{M}} (3 \text{methyl} 4 \text{piperidinyl}) \underline{\text{M}} (3 \underline{\text{methyl}} 4 \underline{\text{methyl}} 4 \underline{\text{methyl}} \underline{\text{Methyl$
- 9H-purin-8-amine dihydrobromide (compound 47);
 9-[(4-fluorophenyl)methyl]-6-methyl-8-(4-piperidinyl)methyl)-9H-purine as a residue (compound 48);
 - 9-cyclopropyl-N-(4-piperidinyl)-9H-purin-8-amine; mp.140.6°C (compound 49); and
- 25 \underline{N} -(4-piperidinyl)-9-(4-thiazolylmethyl)-9 \underline{H} -purin-8-amine; mp. 208.4°C (compound 50).

In a similar manner there is also prepared: 9-[4-fluorophenyl]methyl]-N-methyl-N-(4-piperidinyl)-9H-purin-8-amine (compound 51).

30 Example 24

A mixture of 17.6 parts of 9-[(4-fluorophenyl)methyl]-8[[1-(phenylmethyl)-4-piperidinyl]methyl]-9H-purine and 200 parts of
methanol was hydrogenated at normal pressure and at room temperature
with 2 parts of palladium-on-charcoal catalyst 10%. After the
35 calculated amount of hydrogen was taken up, the catalyst was

filtered off and the filtrate was evaporated. The residue was taken up in water. The product was extracted with trichloromethane. The extract was dried, filtered and evaporated. The residue was converted into the ethanedioate salt in ethanol. The salt was filtered off and dried, yielding 8.1 parts (38.1%) of 9-[(4-fluoro-phenyl)methyl]-8-(4-piperidinylmethyl)-9H-purine ethanedioate(1:2); mp. 163.9°C (compound 52).

In a similar manner there were also prepared:

9-[(4-fiuorophenyl)methyl]-6-methoxy-8-(4-piperidinylmethyl)-9<u>H</u>-purine (compound 54).

Example 25

A mixture of 15 parts of 6-chloro-7-[(4-fluorophenyl)methyl]15 8-[[1-(phenylmethyl)-4-piperidinyl]-methyl]-7½-purine, 5 parts of
calcium oxide and 200 parts of methanol was hydrogenated at normal
pressure and at room temperature with 2 parts of palladium-oncharcoal catalyst 10%. After the calculated amount of hydrogen was
taken up, the catalyst was filtered off and the filtrate was
20 evaporated. The residue was taken up in water. The product was
extracted with dichloromethane. The extract was dried, filtered and
evaporated. The residue was purified by column chromatography over
silica gel using a mixture of trichloromethane and methanol,
saturated with ammonia, (95:5 ---> 85:15 by volume) as eluent. The
25 pure fractions were collected and the eluent was evaporated,
yielding 5.8 parts (54%) of 7-[(4-fluorophenyl)methyl]-8(4-piperidinylmethyl)-7½-purine as a residue (compound 55).
Example 26

A mixture of 16.25 parts of 9-[(4-fluoropheny1)methy1]30 8-[[1-(phenylmethy1)-4-piperidiny1]oxy]-9H-purine and 200 parts of
methanol was hydrogenated at normal pressure and at 50°C with 3
parts of palladium-on-charcoal catalyst 10% and 6 parts of
Raney-nickel catalyst. After the calculated amount of hydrogen was
taken up, the catalyst was filtered off and the filtrate was
35 evaporated. The residue was taken up in trichloromethane and water

was added. The product was extracted with trichloromethane. The extract was washed with water, dried, filtered and evaporated. The residue was stirred in 1.1'-oxybisethane. The precipitated product was filtered off and dried, yielding 10.5 parts (82.2%) of

9-[(4-fluorophenyl)methyl]-8-(4-piperidinyloxy)-9H-purine; mp. 79.3°C (compound 56).

Example 27

A mixture of 3.2 parts of 2.3-dihydro-1.4-benzodioxin-2-methanol
4-methylbenzenesulfonate(ester), 5 parts of 9-[(4-fluoropheny1)10 methyl]-8-(4-piperidinylmethyl)-9H-purin-6-ol dihydrobromide, 3
parts of sodium carbonate and 45 parts of N.N-dimethylacetamide was
stirred overnight at 70°C. After cooling, the reaction mixture was
filtered over diatomaceous earth and the filtrate was evaporated.
The residue was purified by column chromatography over silica gel
15 using a mixture of trichloromethane and methanol, saturated with
ammonia, (90:10 by volume) as eluent. The pure fractions were
collected and the eluent was evaporated. The residue was
crystallized twice: first from acetonitrile and then from ethanol.
The product was filtered off and dried, yielding 0.8 parts (16.3%)

In a similar manner there was also prepared:

8-[[1-[(2.3-dihydro-1,4-benzodioxin-2-y1)methyl]-4-piperidinyl]
25 amino]-7-[(4-fluorophenyl)methyl]-7H-purin-6-ol; mp. 257.5°C
(compound 58).

methyl]-9-[(4-fluorophenyl)methyl]-9H-purin-6-ol; mp. 200.7°C

Example 28

(compound 57).

A mixture of 3.2 parts of 2.3-dihydro-1.4-benzodioxin-2-methanol 4-methylbenzenesulfonate (ester), 4.5 parts of 7-[(4-fluorophenyl)-30 methyl]-8-(4-piperidinylmethyl)-7H-purin-6-ol dihydrobromide, 4 parts of sodium carbonate and 45 parts of N.M-dimethylformamide was stirred overnight at 70°C. After cooling, the reaction mixture was filtered over diatomaceous earth and the filtrate was evaporated.

The residue was purified by column chromatography over silica gel 35 using a mixture of trichloromethane and methanol, saturated with

ammonia, (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from acetontrile. The product was filtered off and dried, yielding 1.5 parts (34%) of 8-[[1-[(2.3-dihydro-1.4-benzodioxin-2-y1)methyl]-4-piperidinyl]methyl]-7-[(4-fluorophenyl)methyl]-7h-purin-6-ol; mp. 175.2°C (compound 59).

In a similar manner there were also prepared:

N-[1-[(2,3-dihydro-1,4-benzodioxin-2-y1)methy1]-4-piperidiny1]9-(2-furany1-methy1)-9H-purin-8-amine dihydrochloride dihydrate;

mp. 174.4°C (compound 60); and

 \underline{w} -[1-[(2,3-dihydro-1,4-benzodioxin-2-y1)methy1]-4-piperidiny1]-9-[(5-methy1-2-furany1)methy1]-9 \underline{w} -purin-8-amine; mp. 200.8°C (compound 61).

Example 29

15 A mixture of 1.9 parts of 1-(2-chloroethyl)-4-methoxybenzene, 5
parts of 7-[(4-fluorophenyl)methyl]-8-(4-piperidinylmethyl)7H-purin-6-ol dihydrobromide, 4 parts of sodium carbonate and 45
parts of N.M-dimethylacetamide was stirred overnight at 70°C. After
cooling, the reaction mixture was filtered over diatomaceous earth
20 and the filtrate was evaporated. The residue was purified by column
chromatography over silica gel using a mixture of trichloromethane
and methanol, saturated with ammonia, (95:5 by volume) as eluent.
The pure fractions were collected and the eluent was evaporated. The
residue was crystallized from acetontrile. The product was filtered
25 off and dried, yielding 2.2 parts (46%) of 7-[(4-fluorophenyl)methyl]-8-[[1-[2-(4-methoxyphenyl)-thyl]-4-piperidinyl]methyl]-7Hpurin-6-ol; mp. 122.2°C (compound 62).

In a similar manner there were also prepared:

No.	L	R ²	В	R ¹	-A ¹ =A ² -A ³ =A ⁴ -	isom form	. mp. °C
63	4-CH3O-C6H4-C2H5-	н	CH ₂	4-F-C6H4-CH2-	-N=C-N=C(OH)-	-	197.0
64	4-CH3O-C6H4-C2H5-	н	0	4-F-C6H4-CH2-	-N=C-N=C-	-	120.0
65	4-CH3O-C6H4-C2H5-	CH3	NH	4-F-C6H4 CH2-	-N=C-N=C-	cis	160.5
66	4-CH3O-C6H4-C2H5-	н	NH	сн ₃ -	-N=C-N=C-	-	136.5
67	4-CH3O-C6H4-CH2-	Н	NH	4-F-C6H4-CH2-	-C=N-C=N-	-	216.0
68	4-CH3O-C6H4-C2H5-	Н	NH	cyclopropyl-	-N=C-N=C-	-	166.1
69	4-CH3O-C6H4-C2H5-	н	NH	4-thiazolyl-CH ₂ -	-N=C-N=C-	-	152.2
70	$^{4-CH_3O-C_6H_4-C_2H_5-}$	н	NH	4-CH3O-C6H4-CH2-	-N=C-N=C-	-	167.8
71	4-CH ₃ O-C ₆ H ₄ -C ₂ H ₅ -	Н	S	4-F-C6H4-CH2-	-N=C-N=C-	-	102.0

15 In a similar manner there are also prepared:

- 9-[(4-fluoropheny1)methy1]-8-[[1-[2-(2-methoxypheny1)ethy1]-4-piperidiny1]methy1]-9H-purine (compound 72).
- 9-[(4-fluoropheny1)methy1]-N-methy1-N-[1-[2-(4-methoxypheny1)ethy1]-4-piperidiny1]-9H-purin-8-amine (compound 73).

20 Example 30

A mixture of 2 parts of 1-(2-chloroethy1)-4-methoxybenzene, 3.1 parts of N-(4-piperidiny1)-9-(2-pyridiny1methy1)-9H-purin-8-amine, 1.5 parts of sodium carbonate and 45 parts of N-N-dimethy1formamide was stirred overnight at 70°C. The reaction mixture was poured into

- 25 water. The product was extracted with dichloromethane. The extract was dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol, saturated with ammonia, (95:5 by volume) as eluent. The pure fractions were collected and the eluent was
- 30 evaporated. The residue was crystallized from acetonitrile. The product was filtered off and dried, yielding 2.2 parts (50%) of N-[1-[2-(4-methoxyphenyl)ethyl]-4-piperidinyl]-9(2-pyridinyl-methyl)-9H-purin-8-amine; mp. 144.5°C (compound 74).

$$\mathsf{CH_3O-} \underbrace{\mathsf{CH_2-CH_2-N}}_{\mathsf{CH_3O-}} \underbrace{\mathsf{CH_3O-}}_{\mathsf{H}} \underbrace{\mathsf{N}}_{\mathsf{N}} \underbrace{\mathsf{N}}_{\mathsf{N}}^{\mathsf{R}^1} \underbrace{\mathsf{A}_{\mathsf{N}}^1}_{\mathsf{A}_{\mathsf{N}}^{\mathsf{N}}} \underbrace{\mathsf{A}_{\mathsf{N}}^1}_{\mathsf{A}_{\mathsf{N}}^{\mathsf{N}}}$$

	5		

10

15

20

No.	R ¹	-A ¹ =A ² -A ³ =A ⁴ -	Base or salt form	mp. °C
75	4-F-C6H4-CH2-	-n=C-n=C-	base	170.6
76	2-furanyl-CH ₂ -	-N=C-N=C-	base	140.6
17	2-thienyl-CH ₂ -	-N=C-N=C-	hemihydrate	135.9
18	4-F-C ₆ H ₄ -CH ₂ -	-C=N-C=N-	base	194.9
79	5-CH ₃ -2-furany1-CH ₂	N=CN=C-	base	164.9
30	4-F-C6H4-CH2-	-N=C-N=C-	(E)-2-butenedioate(2:3)	156.2
31	4-F-C6H4-CH2-	-C=N-C=N-	base	139.1
32	4-F-C6H4-CH2-	-C(OH)=N-C=N-	monohydrate	222.4
83	C_HCH	-N=C-N=C-	base	161.5
84	4-F-C6H4-CH2-	-N=C-N=C(CH3)-	(E)-2-butenedioate(1:2)	148.0

In a similar manner there was also prepared:

ethyl [2-[4-[[9-(2-thienylmethyl)-9H-purin-8-yl]amino]-1-piperidinyl]ethyl]carbamate as a residue (compound 85).

In a similar manner there is also prepared:

Example 31

A mixture of 1.45 parts of 3-(2-chloroethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one, 2 parts of N-(4-piperidinyl)-9-(2-pyrazinyl30 methyl)-9H-purin-8-amine, 1 part of sodium carbonate and 45 parts of
N.N-dimethylacetamide was stirred and heated overnight at 90°C. The
reaction mixture was poured into water. The product was extracted
with trichloromethane. The extract was dried, filtered and
evaporated. The residue was purified by column chromatography over
35 silica gel using a mixture of trichloromethane and methanol.

saturated with ammonia, (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from acetonitrile. The product was filtered off and dried, yielding 0.9 parts (31.6%) of 2-methyl-3-[2-[4-[9-(2-5 pyrazinylmethyl)-9½-purin-8-yl]amino]-1-piperidinyl]-ethyl]-4½-pyrido[1,2-a]pyrimidin-4-one; mp. 180.1°C (compound 87).

N	٥.	В	R ¹	R ²	-A ¹ =A ² -A ³ =A ⁴ -	Base or salt form	mp. °C
8	3	NH	2-furanyl-CH2-	н	-N=C-N=C-	н ₂ 0	176.6
8	•	NH	2-thienyl-CH2-	н	-N=C-N=C-	base	194.3
9	0	NH	2-pyridinyl-CH2-	н	-N=C-N=C-	base	201.3
9		NH	5-CH ₃ -2-furanyl- CH ₂ -	н	-N=C-N=C-	base	208.1
9	2	CH ₂	4-F-C6H4-CH2-	н	-N=C-N=C-	(E)-2-butenedioate (2:5)	180.0
9	3	NH	4-F-C6H4-CH2-	н	-C=N-C=N-	base	211.5
9	1	CH ₂	4-F-C6H4-CH2-	н	-C=N-C=N-	3HC1.2H20	217.5
9:	5	CH ₂	4-F-C6H4-CH2-	н	-N=C-N=C(OH)-	1/2H ₂ O	196.5
91	5	NH	4-F-C6H4-CH2-	н	-C(OH)=N-C=N-	н ₂ о	201.9
9	7	^{СН} 2	4-F-C6H4-CH2-	н	-C(OH)=N-C=N-	base	210.1
91	3	0	4-F-C6H4-CH2-	н	-N=C-N=C-	base	152.4
9)	NH	CH3-	н	-N=C-N=C-	1/2 н ₂ о	213.0
10	00	NH	C6H5-CH2-	н	-N=C-N=C-	base	239.2
þ	1	NH	4-F-C6H4-CH2-	3-CH ₃	-N=C-N=C-	base/cis+trans	212.5
, þ.	2	NH	4-F-C6H4-CH2-	H	-N=C-N=C(CH3)-	base	148.9
þ	3	NH	4-thiazolyl- $\mathrm{CH_2}$ -	н	-N=C-N=C-	base	222.0

In a similar manner there were also prepared:

10	No. B	R ¹	$-A^{1}=A^{2}-A^{3}=A^{4}-$	Base or salt form	mp. °C
	104 NH	2-furanyl-CH ₂ -	-N=C-N=C-	base	181.6
	105 NH	2-thienyl-CH ₂ -	-N=C-N=C-	н ₂ о	168.2
	106 NH	2-pyridinyl-CH ₂ -	-N=C-N=C-	H ₂ O	164.7
15	107 NH	5-CH ₃ -2-furanyl-CH ₂ -	-N=C-N=C-	base	173.4

In a similar manner there were also prepared:

3-[2-[4-[[9-[(4-fluorophenyl)methyl]-6-hydroxy-9<u>H</u>-purin-8-yl]methyl]-1-piperidinyl]ethyl]-6,7,8,9-tetrahydro-2-methyl-4<u>H</u>-pyrido-

20 [1,2-a]pyrimidin-4-one; mp. 171.1°C (compound 108);

1-[3-[4-[[9-[(4-fluoropheny1)methy1]-6-methoxy-9H-purin-8-y1]-methy1]-1-piperidiny1]propy1]-1,3-dihydro-2H-benzimidazo1-2-one

(E)-2-butenedioate(2:3); mp. 179.9°C (compound 109);

9-[(4-fluorophenyl)methyl]- \underline{N} -[1-[2-(4-morpholinyl)ethyl]-4-

25 piperidinyl]-9½-purin-8-amine; mp. 176.8°C (compound 110);
7-methyl-6-[2-[4-[[9-(2-thienylmethyl)-9½-purin-8-yl]amino]-1piperidinyl]ethyl]-5½-thiazolo[3,2-a]pyrimidin-5-one hemihydrate;

mp. 104.5°C (compound 111);
1-ethyl-4-[2-[4-[[9-[(4-fluorophenyl)methyl]-9H-purin-8-yl]amino]-

30 1-piperidinyl]ethyl]-1,4-dihydro-5H-tetrazol-5-one; mp. 160.3°C (compound 112); and

3-[2-[4-[[9-[(4-fluorophenyl)methyl]-9<u>H</u>-purin-8-yl]amino]-1piperidinyl]ethyl]-2,4-(1<u>H</u>,3<u>H</u>)quinazolinedione; mp. 241.0°C (compound 113).

Example 32

A mixture of 1.8 parts of 1-(3-chloropropyl)-1.3-dihydro2H-benzimidazol-2-one, 2.7 parts of 9-[(4-filuorophenyl)methyl]8-(4-piperidinylmethyl)-9H-purine, 1 part of sodium carbonate and 45
5 parts of N.N-dimethylformamide was stirred and heated overnight at
70°C. After cooling, the reaction mixture was poured into water. The
product was extracted with trichloromethane. The extract was dried,
filtered and evaporated. The residue was purified by column
chromatography over silica gel using a mixture of trichloromethane
10 and methanol, saturated with ammonia, (95:5 by volume) as eluent.
The pure fractions were collected and the eluent was evaporated. The
residue was converted into the (E)-2-butenedioate salt in ethanol.
The salt was filtered off and dried, yielding 2.85 parts (45.9%) of
1-[3-4-[9-[(4-filuorophenyl)methyl]-9H-purin-8-y]methyl]-

15 1-piperidinyl]-propyl]-1.3-dihydro-2H-benzimidazol-2-one
(E)-2-butenedioate(1:2); mp. 186.2°C (compound 114).

In a similar manner there were also prepared:

1-[2-[4-[[9-[(4-fluoropheny1)methy1]-9H-purin-8-yl]amino]-1-piperidinyl]-ethyl]-1,3-dihydro-2H-benzimidazol-2-one; mp. 242.4°C (compound 115);

20 1-[3-[4-[[9-[(4-fluorophenyl)methyl]-6-hydroxy-9H-purin-8-yl]methyl]-1-piperidinyl]propyl]-1,3-dihydro-2H-benzimidazol-2-one; mp. 245.8°C (compound 116).

In a similar manner there are also prepared:

 $\label{eq:continuous} 3,7-dimethyl-6-[2-[4-[9-[(4-fluorophenyl)methyl]-9\underline{H}-purin-8-yl]-25 $$ methyl]-1-piperidinyl]ethyl]-5\underline{H}-thiazolo[3,2-a]pyrimidin-5-one$

(compound 117);
3-[2-[4-[[9-[(4-fluorophenyl)methyl]-9H-purin-8-yl]thio]-1piperidinyl]ethyl]-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one

(compound 118);

30 3-[2-[4-[[9-[(4-fluorophenyl)methyl]-9H-purin-8-yl]sulfonyl]-1.piperidinyl]ethyl]-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one

(compound 119).

A mixture of 1.2 parts of bromo-1-propene, 3.26 parts of

35 9-[(4-fluorophenyl)methyl]-N-(4-piperidinyl)-9H-purin-8-amine, 1.5

parts of sodium hydrogen carbonate and 40 parts of ethanol was stirred for 1 hour at reflux temperature. The reaction mixture was filtered over diatomaceous earth while hot and the filtrate was evaporated. The residue was taken up in water and the product was extracted with 4-methyl-2-pentanone. The extract was dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol, saturated with emmonia. (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from acetonitrile. The product was filtered off and dried, yielding 0.8 parts (22%) of 9-[(4-fluorophenyl)methyl]-H-[1-(2-propenyl)-4-piperidinyl)-9H-purin-8-amine; mp. 144.8°C (compound 120).

In a similar manner there was also prepared:

15 4-[[9-[(4-fluorophenyl)methyl]-9\(\frac{H}{2}\)-purin-8-yl]amino]-\(\frac{N}{2}\)-(1-methylethyl)l-piperidinepropanamide (E)-2-butenedioate(1:2); mp. 202.5°C (compound 121).

Example 34

- A mixture of 3.46 parts of <u>M</u>-(dihydro-3,3-diphenyl-2(3<u>H</u>)20 furanylidene)-<u>M</u>-methylmethanaminium bromide, 3.1 parts of
 <u>M</u>-(4-piperidinyl)-9-(2-pyridinylmethyl)-9<u>H</u>-purin-8-amine, 1.5 parts
 of sodium carbonate and 45 parts of <u>M</u>.<u>M</u>-dimethylacetamide was
 stirred overnight at 80°C. After cooling, the reaction mixture was
 poured into water and the product was extracted with 4-methyl-225 pentanone. The extract was dried, filtered and evaporated. The
- 25 pentanone. The extract was dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol, saturated with ammonia (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from
- 30 acetonitrile. The product was filtered off and dried, yielding 4.1 parts (71%) of N.N-dimethyl-a.a-diphenyl-4-[[9-(2-pyridinyl-methyl)-9]-purin-8-yl]amino]-1-piperidinebutanamide; mp. 191.6°C (compound 122).

No.	В	R ¹	-A ¹ =A ² -A ³ =A ⁴ -	Base or salt form	mp. °C
123	NH	5-CH ₃ -2-furany1-CH ₂	-N=C-N=C-	1/2 H ₂ O	87.5
124	NH	с ₆ н ₅ -сн ₂ -	-N=C-N=C-	base	204.2
125	NH	2- furanyl-CH ₂ -	-N=C-N=C-	base	201.5
126	CH ₂	4-F-C6H4-CH2-	-N=C-N=C(OH)-	base	139.2
127	NH	2-thienyl-CH ₂ -	-N=C-N=C-	base	197.7
128	NH	4-F-C6H4-CH2-	-N=C-N=C-	2HC1	208.6
129	NH	cyclopropyl	-N=C-N=C-	(E)-2-butendicate (2:5)	172
130	NH	$^{4-CH_3O-C_6H_4-CH_2-}$	-N=C-N=C-	(E)-2-butendioate (2:5)	132.3

In a similar manner there were also prepared:

N,N,Y-trimethyl-a.a-diphenyl-a-[[9-(2-pyridinylmethyl)-9H-purin-8-yl]amino]-l-piperidinebutanamide; mp. 143.0°C (compound 131);
4-[(9-methyl-9H-purin-8-yl)amino]-N,N-dimethyl-a.a-diphenyl-1piperidinebutanamide (compound 132);
Y,N,N-trimethyl4-[[9-(2-pyridinylmethyl)-9H-purin-8-yl]methyl-a.a-diphenyl-1-piperidinebutanamide (compound 133);
4-[[9-(2-furanylmethyl)-9H-purin-8-yl]amino]-Y,N,N-trimethyl-a.a-diphenyl-1-piperidinebutanamide (compound 134); and
0 Y,N,N-trimethyl-4-[[9-([5-methyl-2-furanyl)methyl]-9H-purin-8-yl]-

In a similar manner there are also prepared: $\rho, \underline{N}, \underline{N} - \text{trimethy14-}[[9-(2-pyridinylmethy1)-9}\underline{H}-purin-8-y1]amino]--\\ \alpha, \alpha-diphenyl-1-piperidinebutanamide (compound 136); and$

amino]-a,a-diphenyl-1-piperidinebutanamide (compound 135).

5

10

15

Example 35

- A mixture of 4.9 parts of 9-[(4-fluorophenyl)methyl]-N-
- 5 (4-piperidiny1)-9H-purin-8-amine, 1 part of a solution of thiophene in methanol 48, 120 parts of methanol and 8 parts of 2-propanone was hydrogenated at normal pressure and at room temperature with 2 parts of palladium-on-charcoal catalyst 10%. After the calculated amount of hydrogen was taken up, the catalyst was filtered off and the
- 10 filtrate was evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (90:10 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from acetonitrile, yielding 1.5 parts (27.2%) of
- 15 9-[(4-fluorophenyl)methyl]-N-[1-(1-methylethyl)-4-piperidinyl]-9N-purin-8-amine; mp. 185.6°C (compound 138).

Example 36

- A mixture of 3 parts of poly(oxymethylene), 5 parts of
- 20 dihydrobromide, 1 part of a solution of thiophene in methanol 4%, 5 parts of potassium acetate and 120 parts of methanol was hydrogenated at normal pressure and at room temperature with 2 parts of palladium-on-charcoal catalyst 10%. After the calculated amount

of hydrogen was taken up, the catalyst was filtered off and the

7-[(4-fluorophenyl)methyl]-8-(4-piperidinylamino)-7H-purin-6-ol

- 25 Eiltrate was evaporated. The residue was taken up in water and the whole was treated with sodium carbonate. The product was extracted with dichloromethane. The extract was dried, filtered and evaporated. The residue was purified by column chromatography over silica cel using a mixture of trichloromethane and methanol.
- 30 saturated with ammonia, (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from acetonitrile. The product was filtered off and dried, yielding 2 parts (56%) of 7-[(4-fluorophenyl)methyl]-8-[(1-methyl-4-piperidinyl)amino]-7%-purin-6-ol; mp. 255.6°C
- 35 (compound 139).

In a similar manner there was also prepared: 9-[(4-fluorophenyl)methyl]-8-[(1-methyl-4-piperidinyl)methyl]-9<u>H</u>-purin-6-ol mp. 219.0°C (compound 140).

Example 37

A mixture of 1.93 parts of 2-ethenylpyridine, 5 parts of 9-[(4-fluorophenyl)methyl]-N-(4-piperidinyl)-9H-purin-8-amine and 80 parts of 1-butanol was stirred and refluxed overnight. The reaction mixture was evaporated. The residue was purified by column chromatography over silica gel using first a mixture of trichloromethane and methanol (95:5 by volume) and then a mixture of trichloromethane and methanol, saturated with ammonia (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from acetonitrile, yielding 1 part (15%) of 9-[(4-fluorophenyl)methyl]-N-[1-[2-15] (2-pyridinyl)ethyl]-4-piperidinyl]-9H-purin-8-amine; mp. 172.3°C (compound 141).

9-(2-furanylmethyl)-N-[1-[2-(2-pyridinyl)ethyl]-4-piperidinyl]9H-purin-8-amine; mp. 144.5°C (compound 142);
20 N-[1-[2-(2-pyridinyl)ethyl]-4-piperidinyl]-9-(2-thienylmethyl)9H-purin-8-amine; mp. 152.7°C (compound 143);
N-[1-[2-(2-pyridinyl)ethyl]-4-piperidinyl]-9-(2-pyridinylmethyl)9H-purin-8-amine; mp. 163.8°C (compound 144); and
9-[(5-methyl-2-furanyl)methyl]-N-[1-[2-(2-pyridinyl)ethyl]-4piperidinyl]-9H-purin-8-amine; mp. 163.8°C (compound 145).

In a similar manner there were also prepared:

Example 39

During 30 minutes, gaseous oxirane was bubbled through a stirred mixture of 5 parts of 9-[(4-fluoropheny1)methy1]-N-(4-piperidiny1)-9H-purin-8-amine and 80 parts of methanol at room temperature. After stirring for 3 hours at room temperature, the reaction mixture was evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol saturated with ammonia, (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from acetonitrile, yielding 2.2 parts (40%) of

-66-

4-[[9-[(4-fluoropheny1)methy1]-9H-purin-8-y1]amino]-1-piperidine-ethano1; mp. 158.7°C (compound 146).

Example 39

A mixture of 3.22 parts of 2-chloroacetonitrile, 16 parts of
5 9-[(4-fluorophenyl)methyl]-M-(4-piperidinyl)-9H-purin-8-amine, 12.7
parts of sodium carbonate and 225 parts of N.M-dimethylformamide was
stirred for 6 hours at room temperature. The reaction mixture was
poured onto water. The product was extracted twice with
trichloromethane. The combined extracts were dried, filtered and
10 evaporated. The residue was crystallized from acetonitrile. The
precipitate was filtered off and the filtrate was evaporated,
yielding 16 parts of 4-[[9-[(4-fluorophenyl)methyl]-9H-purin8-yi]amino]-l-piperidineacetonitrile as a residue (compound 147).

In a similar manner there were also prepared:

15

No.	L	R ¹	В	$-A^{1}=A^{2}-A^{3}=A^{4}-$	mp °C
148	NC-CH ₂ -	2-furanyl-CH ₂ -	ΝН	-N=C-N=C-	-
149	NC-(CH ₂) ₄ -	2-furanyl-CH ₂ -	ИН	-N=C-N=C-	-
	NC-CH ₂ -	2-pyridinyl-CH ₂ -	NH	-N=C-N=C-	-
151	NC-CH2-	5-CH ₃ -2-furanyl-CH ₂ -	NH	-N=C-N=C-	-
152	NC-CH2-	4-F-C6H4-CH2-	CH ₂	-N=C-N=C(OCH3)-	-
153	NC-CH ₂ -	4-F-C6H4-CH2-	CH ₂	-N=C-N=C(OH)-	-
154	NC-CH ₂ -	4-F-C6H4-CH2-	CH ₂	-N=C-N=C-	-

Example 40

146.1°C (compound 155).

5

15

A mixture of 18.2 parts of 4-[[9-[(4-fluorophenyl)methyl]-9Hpurin-8-yl]amino]-1-piperidineacetonitrile and 240 parts of methanol
saturated with ammonia was hydrogenated at normal pressure and at a
temperature below 20°c with 3 parts of Raney-nickel catalyst. After
the calculated amount of hydrogen was taken up, the catalyst was
filtered off and the filtrate was evaporated. The residue was
crystallized from acetonitrile. The product was filtered off and
dried, yielding 16 parts (87.5%) of M-[1-(2-aminoethyl)-4piperidinyl]-9-[(4-fluorophenyl)methyl]-9H-purin-8-amine; mp.

In a similar manner there were also prepared:

20	No.	L	R ¹	В	-A ¹ =A ² -A ³ =A ⁴ -	mp. °C
	156	NH2-(CH2)2-	2-furanyl-CH ₂ -	NH	-N=C-N=C-	-
	157	NH2-(CH2)5-	2-furanyl-CH2-	NH	-N=C-N=C-	-
	158	NH2-(CH2)2-	2-pyridinyl-CH ₂ -	NH	-N=C-N=C-	-
25	159	NH2-(CH2)2-	5-CH3-2-furanyl-CH2-	NH	-N=C-N=C-	-
	160	NH2-(CH2)2-	4-F-C6H4-CH2-	CH ₂	-N=C-N=C(OCH3)-	-
	161		4-F-C6H4-CH2-	CH2	-N=C-N=C(OH)-	-
	162		4-F-C6H4-CH2-	CH ₂	-N=C-N=C-	-

Example 41

30

A mixture of 10 parts of ethyl [2-[4-[[9-(2-thienylmethyl)-9H-purin-8-yl]amino]-1-piperidinyl]ethyl]carbamate, 10 parts of potassium hydroxide and 240 parts of 2-propanol was stirred overnight at reflux temperature. The reaction mixture was evaporated. Water was added. After stirring, the product was filtered off and dried, yielding 3.6 parts (56%) of N-[1-(2-amino-ethyl)-4-piperidinyl]-9-(2-thienylmethyl)-9H-purin-8-amine (compound 163).

Example 42

- 5 A mixture of 1.7 parts of 2-chloropyrimidine, 5.5 parts of N-[1-(2-aminoethyl)-4-piperidinyl]-9-[(4-fluorophenyl)methyl]-9Hpurin-8-amine, 1.5 parts of sodium hydrogen carbonate and 160 parts of ethanol was stirred and refluxed for 20 hours. The reaction mixture was evaporated. The residue was purified by column
- ochromatography over silica gel using a mixture of trichloromethane and methanol (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from acetonitrile, yielding 4.5 parts (67%) of 9-[(4-fluorophenyl)methyl]-N-[1-[2-(2-pyrimidinylamino)ethyl]-4-
- 15 piperidinyl]-9H-purin-8-amine; mp. 164.1°C (compound 164).

No.	R ¹	В	$-A^{1}=A^{2}-A^{3}=A^{4}-$	base or salt form	mp. °C
165	2-furanyl-CH ₂ -	NH	-N=C-N=C-	base	135.5
166	2-pyridinyl-CH ₂ -	NH	-N=C-N=C-	base	140.1
167	2-thienyl-CH ₂ -	NH	-N=C-N=C-	base	157.2
168	5-CH ₂ -2-furanyl-CH ₂ -	NH	-N=C-N=C-	base	174.1
169	4-F-C ₆ H ₄ -CH ₂ -	CH2	-N=C-N=C(OCH ₂)-	base	138.1
170	4-F-C_HCH	CH,	-N=C-N=C(OH)-	base	212.9
171	4-F-C6H4-CH2-	CH ₂	-N=C-N=C-	ethanedicate (1:3)	102.1

evaporated. The residue was crystallized from acetonitrile. The product was filtered off and dried, yielding 1.3 parts (29%) of M-[2-[4-[[9-[(4-fluorophenyl)methyl]-9H-purin-8-yl]amino]-1-piperidinyl]ethyl]-M-methylthiourea; mp. 205.5°C (compound 179),

5 In a similar manner there is also prepared: <u>M</u>-[2-[4-[[9-[(4-fluorophenyl)methyl]-9<u>H</u>-purin-8-yl]methyl]-1piperidinyl]ethyl]-<u>M</u>'-ethylurea; (compound 180). Example 47

To a stirred and cooled (-10°C) mixture of 5.6 parts of

10 M.M. methanetetraylbis[cyclohexanamine], 13.9 parts of carbon
disulfide and 90 parts of tetrahydrofuran were added portionwise 10
parts of M-[1-(2-aminoethyl)-4-piperidinyl]-9-[(4-fluorophenyl)methyl]-9H-purin-8-amine. Upon completion, the temperature was
allowed to rise to room temperature and the reaction mixture was

15 evaporated, yielding 16 parts of 9-[(4-fluorophenyl)methyl]-N-[1(2-isothiocyanatoethyl)-4-piperidinyl]-9H-purin-8-amine (compound
181).

A mixture of 2.95 parts of 3,4-pyridinediamine, 16 parts of 9-[(4-fluorophenyl)methyl]-N-[1-(2-isothiocyanatoethyl)-4-piperi20 dinyl]-9H-purin-8-amine, and 90 parts of tetrahydrofuran was stirred and refluxed overnight. The reaction mixture was evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol, saturated with ammonia, (95/5 by volume) as eluent. The pure fractions were collected and 25 the eluent was evaporated, yielding 10.5 parts of N-(4-amino-3-pyridinyl)-N-[2-[4-[[9-[(4-fluorophenyl)]methyl]-9H-purin-8-yl]-amino]-l-piperidinyl]ethyl]thiourea (compound 182).

A mixture of 10.5 parts of M-(4-amino-3-pyridiny1)-M'-[2-[4-[[9-[(4-fluoropheny1)methy1]-9H-purin-8-y1]-amino]-1-piperidiny1]-30 ethyl]thiourea. 6 parts of mercury(II) oxide, 1 part of sulfur and 120 parts of ethanol was stirred and refluxed overnight. The reaction mixture was filtered over Hyflo® while hot. The filtrate was evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol, 35 saturated with ammonia, (90:10 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was converted into the (E)-2-butenedioate salt in ethanole. The salt was filtered off and dried, yielding 4 parts (17%) of 9-[(4-fluoro-pheny1)methy1]-<u>H</u>-[1-[2-[(1<u>H</u>-imidazo[4.5-c]pyridin-2-y1)amino]ethy1]-4-plperidiny1]-9<u>H</u>-purin-8-amine (E)-2-butenedioate(1:3) monohydrate; mp. 191.0°C (compound 183).

Example 48

To a previously prepared sodium methoxide solution, starting from 25 parts of sodium in 400 parts of methanol, were added 49.4 parts of 6-chloro-9-[(4-fluorophenyl)methyl]-8-[[1-(phenylmethyl)-4-piperidinyl]methyl]-9H-purine. After stirring for 8 hours at reflux temperature, the reaction mixture was cooled and 1000 parts of water were added. The precipitated product was filtered off and dried, yielding 34.5 parts (70.4%) of 9-[(4-fluorophenyl)methyl]-6-methoxy-8-[[1-(phenylmethyl)-4-piperidinyl]methyl]-9H-purine (compound 184).

Example 49

A mixture of 3 parts of 6-chloro-9-[(4-fluorophenyl)methyl]-8[[1-(phenylmethyl)-4-piperidinyl]-methyl]-9½-purine and 50 parts of
20 a hydrochloric acid solution lN was stirred and refluxed for 1.5
hours. After cooling, the mixture was made alkaline with ammonium
hydroxide. The product was, extracted with trichloromethane. The
extract was washed with water, dried, filtered and evaporated. The
residue was crystallized from a mixture of acetonitrile and ethanol.
25 The product was filtered off and dried, yielding 1.5 parts (52%) of
9-[(4-fluorophenyl)methyl]-1,9-dihydro-8-[[1-(phenylmethyl)-4-piperidinyl]methyl]-6½-purin-6-one; mp. 197.0°C (compound 185).
Exemple 50

A mixture of 2.7 parts of 9-[(4-fluorophenyl)methyl]-8-[[1-30 [2-(4-methoxyphenyl)ethyl]-4-piperidinyl]-methyl]-9H-purin-6-ol and 75 parts of a hydrobromic acid solution 48% in water was stirred for 4 hours at 80°C. After evaporation, the residue was taken up in water and treated with sodium carbonate. The product was extracted with trichloromethane. The extract was dried, filtered and sporated. The residue was purified by column chromatography over

silica gel using a mixture of trichloromethane and methanol, saturated with ammonia, (90:10 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from ethanol and acetonitrile. The product was filtered off and dried, yielding 1 part (38.6%) of 9-[(4-fluorophenyl)methyl]-8-[[1-[2-(4-hydroxyphenyl)ethyl]-4-piperidinyl]-methyl]-9H-purin-6-ol; mp. 215.7°C (compound 186).

In a similar manner there was also prepared:

Example 51

To a stirred solution of 7.2 parts of 4-[[9-[(4-fluoropheny1)methyl]-9H-purin-8-yl]thio]-1-[(4-methylphenyl)sulfonyl]plperidine
in 195 parts of dichloromethane is added dropwise a solution of 7
parts of 3-chlorobenzenecarboperoxoic acid in 65 parts of
dichloromethane. Upon completion, stirring is continued for 2 hours
20 at room temperature. The whole is washed with a sodium carbonate
solution and twice with water, dried, filtered and evaporated. The
residue is crystallized from acetonitrile. The product is filtered
off and dried, yielding 3 parts (40%) of 4-[[9-[(4-fluoropheny1)methyl]-9H-purin-8-yl]sulfonyl]-1-[(4-methylphenyl)sulfonyl]25 piperidine: (compound 189).

30

C. Pharmacological Examples

The useful antihistaminic properties of the compounds of formula
(I) are demonstrated in the following test procedure.

Example 52

Protection of rats from compound 48/80-induced lethality.

Compound 48/80, a mixture of oligomers obtained by condensation of 4-methoxy-N-methylbenzeneethanamine and formaldehyde has been descri-10 bed as a potent histamine releasing agent (Int. Arch. Allergy, 13, 336 (1958)). The protection from compound 48/80-induced lethal circulatory collapse appears to be a simple way of evaluating quantitatively the antihistaminic activity of test compounds. Male rats of an inbred Wistar strain, weighing 240-260 g were used in the experiment. After 15 overnight starvation the rats were transferred to conditioned laboratories (temp. = 21 + 1°C, relative humidity = 65 ± 5%). The rats were treated subcutaneously or orally with a test compound or with the solvent (NaCl solution, 0.9%). One hour after treatment there was injected intravenously compound 48/80, freshly dissolved in 20 water, at a dose of 0.5 mg/kg (0.2 ml/100 g of body weight). In control experiments, wherein 250 solvent-treated animals were injected with the standard dose of compound 48/80, not more than 2.8% of the animals survived after 4 hours. Survival after 4 hours is therefore considered to be a safe criterion of a protective effect of 25 drug administration.

The ED_{50} -values of the compounds of formula (I) are listed in Table 1. Said ED_{50} -values are the values in $\mathrm{mg/kg}$ body weight at which the tested compounds protect 50% of the tested animals against compound 48/80-induced lethality.

30

Table 1

Compound No.	compound 48/80 lethality test in rats-ED ₅₀ in mg/kg body weight
60	0.08
61	0.01
62	0.04
64	0.08
74	0.01
75	0.08
76	0.02
77	0.02
78	0.04
79	0.04
80	0.04
81	0.04
83	0.08
87	0.08
88	0.02
89	0.08
100	0.02
104	0.04
106	0.08
107	0.02
114	0.04
115	0.08
141	0.01
142	0.02
143	0.02
144	0.04
145	0.01
165	0.02

Compound No.	compound 48/80 lethality test in rats-ED ₅₀ in mg/kg body weight	
167	0.08	
168	0.02	
169	0.08	
171	0.08	
172	0.04	
173	0.08	
183	0.04	

D) Composition Examples

The following formulations exemplify typical pharmaceutical compositions in dosage unit form suitable for systemic administration to animal and human subjects in accordance with the instant invention. "Active ingredient" (A.I.) as used throughout these examples relates to a compound of formula (I) or a pharmaceutically acceptable actid addition sait thereof.

10 Example 53 : ORAL DROPS

500 Grams of the A.I. was dissolved in 0.5 liters of 2-hydroxypropanoic acid and 1.5 liters of the polyethylene glycol at 60-80°C.
After cooling to 30-40°C there were added 35 liters of polyethylene
glycol and the mixture was stirred well. Then there was added a
5 solution of 1750 grams of sodium saccharin in 2.5 liters of purified
water and while stirring there were added 2.5 liters of cocoa flavor
and polyethylene glycol q.s. to a volume of 50 liters, providing an
oral drop solution comprising 10 milligrams of the A.I. per
milliliter. The resulting solution was filled into suitable containers.

20 Example 54 : ORAL SOLUTION

9 Grams of methyl 4-hydroxybenzoate and 1 gram of propyl
4-hydroxybenzoate were dissolved in 4 liters of boiling purified
water. In 3 liters of this solution were dissolved first 10 grams of
2,3-dihydroxybutanedioic acid and thereafter 20 grams of the A.I. The
latter solution was combined with the remaining part of the former
solution and 12 liters 1,2,3-propanetriol and 3 liters of sorbitol 70%
solution were added thereto. 40 Grams of sodium saccharin were
dissolved in 0.5 liters of water and 2 milliliters of raspberry and 2
milliliters of gooseberry essence were added. The latter solution was
combined with the former, water was added q.s. to a volume of 20
liters providing an oral solution comprising 20 milligrams of the
active ingredient per teaspoonful (5 milliliters). The resulting
solution was filled in suitable containers.

Example 55 : CAPSULES

20 Grams of the A.I., 6 grams sodium lauryl sulfate, 56 grams starch, 56 grams lactose, 0.8 grams colloidal silicon dioxide, and 1.2 grams magnesium stearate were vigorously stirred together. The resulting mixture was subsequently filled into 1000 suitable hardened gelating capsules, comprising each 20 milligrams of the active ingredient.

Example 56 : FILM-COATED TABLETS

Preparation of tablet core

10 A mixture of 100 grams of the A.I., 570 grams lactose and 200 grams starch was mixed well and thereafter humidified with a solution of 5 grams sodium dodecyl sulfate and 10 grams polyvinylpyrrolidone (Kollidon-K 90®) in about 200 milliliters of water. The wet powder mixture was sieved, dried and sieved again. Then there was added 100 15 grams microcrystalline cellulose (Avicel®) and 15 grams hydrogenated vegetable oil (Sterotex ®). The whole was mixed well and compressed into tablets, giving 10.000 tablets, each containing 10 milligrams of the active ingredient.

Coating

To a solution of 10 grams methyl cellulose (Methocel 60 HG®) in 75 milliliters of denaturated ethanol there was added a solution of 5 grams of ethyl cellulose (Ethocel 22 cps ®) in 150 milliliters of dichloromethane. Then there were added 75 milliliters of dichloromethane and 2.5 milliliters 1.2.3-propanetriol. 10 Grams of 25 polyethylene glycol was molten and dissolved in 75 milliliters of dichloromethane. The latter solution was added to the former and then there were added 2.5 grams of magnesium octadecanoate, 5 grams of polyvinylpyrrolidone and 30 milliliters of concentrated colour suspension (Opaspray K-1-2109®) and the whole was homogenated.

30 The tablet cores were coated with the thus obtained mixture in a coating apparatus.

Example 57 : INJECTABLE SOLUTION

1.8 Grams methyl 4-hydroxybenzoate and 0.2 grams propyl 4-hydroxybenzoate were dissolved in about 0.5 liters of boiling water for 35 injection. After cooling to about 50°C there were added while stirring

-79-

4 grams lactic acid, 0.05 grams propylene glycol and 4 grams of the A.I..

The solution was cooled to room temperature and supplemented with water for injection q.s. ad 1 liter volume, giving a solution of 4 5 milligrams A.I. per milliliters. The solution was sterilized by filtration (U.S.P. XVII p. 811) and filled in sterile containers.

Example 58 : SUPPOSITORIES

3 Grams A.I. was dissolved in a solution of 3 grams 2,3-dihydroxy-butanedioic acid in 25 milliliters polyethylene glycol 400. 12 Grams 10 surfactant (SPAN®) and triglycerides (Witepsol 555 ©) q.s. ad 300 grams were molten together. The latter mixture was mixed well with the former solution. The thus obtained mixture was poured into moulds at a temperature of 37-38°C to form 100 suppositories each containing 30 .milligrams of the active ingreddent.

15

20

25

30

35

1. A chemical compound having the formula

$$L-N \stackrel{\mathbb{R}^2}{\longmapsto} B \stackrel{\mathbb{R}^1}{\longmapsto} N \stackrel{\mathbb{R}^1}{\longmapsto} A \stackrel{\mathbb{R}^2}{\mapsto} 3 \qquad \qquad (1) \, ,$$

a pharmaceutically acceptable acid addition salt or a possible stereochemically isomeric form thereof, wherein:

 $-a^1=A^2-A^3=A^4$ is a bivalent radical having the formula

(a-1). or

-CH=N-CH=N-(a-2).

7 wherein one or two hydrogen atoms in said radicals (a-1) or (a-2) may,

8 each independently from each other, be replaced by halo, C_{1-6} alkyl,

9 C₁₋₆ alkyloxy, trifluoromethyl or hydroxy; 10 R¹ is a member selected from the group consisting of hydrogen,

11 c_{1-10} alkyl. c_{3-6} cycloalkyl. Ar^1 and c_{1-6} alkyl substituted with one 12 or two Ar^1 radicals;

 ${\ensuremath{\mathtt{R}}}^2$ is a member selected from the group consisting of hydrogen and 14 C₁₋₆ alkyl;

B is CH_2 , NR, O, S, SO or SO_2 ; said R being a member selected

16 from the group consisting of hydrogen, C₁₋₆ alkyl, C₃₋₆ cycloalkyl,

17 (c_{1-6} alkyl)-co-, (c_{1-6} alkyloxy)-co and Δr^2 - c_{1-6} alkyl;

L is a member selected from the group consisting of a radical of

19 formula

20
$$L^{1}$$
- $c_{r}^{H}_{2r}$ - T - $c_{s}^{H}_{2s}$ - (b-1); and

21 a radical of formula

22
$$L^{1}-C_{r}H_{2r}-T^{1}-N$$
 (b-2);

wherein one or two hydrogen atoms in the bivalent radical 23

~81-

```
^{-\text{C}}_{\text{S}}\text{H}_{2\text{S}}^{-} may, each independently from each other, be replaced by
25 halo, hydroxy, mercapto, isothiocyanato, isocyanato, C<sub>1-6</sub> alkyloxy,
26 C<sub>1-6</sub> alkylthio, Ar<sup>1</sup>, Ar<sup>1</sup>O-, Ar<sup>1</sup>S-, Ar<sup>1</sup>SO<sub>2</sub>-, or NHR<sup>3</sup>R<sup>5</sup>; and
         n is 0 or the integer 1 or 2;
         r and s are, independently from each other, 0 or an integer of from 1
29 to 6 inclusive;
    T is -Y- or -Z-C-Y-:
30
32 said Y being O, S, NR or a direct bond;
33 X being O, S, CH-NO, or NR4;
34 Z being O, S, NR<sup>5</sup> or a direct bond; and
         said R^3 being hydrogen, C_{1-6} alkyl, Ar^2-C_{1-6} alkyl, 2-(C_{1-6} alkyl-
36 oxy)-1.2-dioxoethyl or a radical of formula -c(=X)-R<sup>6</sup>, R<sup>6</sup> being hydrogen,
37 c_{1-6}^{-} alkyl, Ar^2, Ar^2-c_{1-6}^{-} alkyl, c_{1-6}^{-} alkyloxy, Ar^2-c_{1-6}^{-} alkyloxy,
38 mono- or di(c<sub>1-6</sub> alkyl)amino, Ar<sup>2</sup>-amino, Ar<sup>2</sup>-C<sub>1-6</sub> alkylamino or
39 \operatorname{Ar}^{2}-\operatorname{C}_{1-6} alky\operatorname{1}(\operatorname{C}_{1-6} alky1)amino;
         said R<sup>4</sup> being hydrogen, C<sub>1-6</sub> alkyl, cyano, nitro, Ar<sup>2</sup>-sulfonyl,
41 C_{1-6} alkylsulfonyl, C_{1-6} alkylcarbonyl or Ar^2-carbonyl; and
        said R<sup>5</sup> being hydrogen or C<sub>1-6</sub> alkyl;
42
        wherein \mathbf{L}^{\mathbf{l}} is a member selected from the group consisting of hydro-
44 gen; halo; hydroxy; c_{1-6} alkyloxy; c_{1-6} alkylthio; cyano; mercapto;
45 isocyanato; isothiocyanato; Ar<sup>1</sup>; Ar<sup>1</sup>-carbonyl; Ar<sup>1</sup>-sulfonyl; C<sub>1-6</sub>
46 alkylsulfonyl; C<sub>3-6</sub> cycloalkyl being optionally substituted with up
47 to two substituents each independently selected from the group
48 consisting of C_{1-6} alkyl, cyano and Ar^2; [10,11-dihydro-5<u>H</u>-dibenzo-
49 [a,d]cyclohepten-5-ylidene]methyl; Het; and furan substituted with
50 substituted c_{1-6} alkyl; said substituted c_{1-6} alkyl being c_{1-6}
```

51 alkyl substituted with a member selected from the group consisting of 52 hydroxy, mercapto, c₁₋₆ alkyloxy, c₁₋₆ alkylthio, aminoc₁₋₆

53 alkylthio, Ar 2-oxy and a radical of formula

- wherein: t is 0 or an integer of from 1 to 6 inclusive; and
- 56 R is hydrogen or C1-6 alkyl;
- 57 provided that: when in said radical of formula (c) t is 0, then Z or Y
- 58 is a direct bond: and
- 59 where r is 0, L^1 may also be C_{2-6} alkenyl, Ar^1-C_{2-6} alkenyl or
- 60 C1-6 alkyl substituted with two C1-6 alkyloxy radicals; and
- 61 where r is 0 and T is NR³, or T is $-N(R^5)-C(-X)-Y$ or T¹ is $-N(R^5)-C(-X)-X$
- 62 L1 may also be amino, C1-6 alkylamino or Ar1-amino; and
- 63 where r is 0, and T is $-N(R^5)-C(-X)-V$ or T^1 is $-N(R^5)-C(-X)-T^1$
- 64 may also be nitro:
- 65 said Het being an optionally substituted five- or six-membered hetero-
- 66 cyclic ring, being optionally condensed with an optionally substituted
- 67 five- or six-membered carbocyclic or heterocyclic ring;
- provided that:
- 69 i) when L is a radical of formula (b-1) wherein L is hydrogen and
- 70 wherein T is -Z-C(=X)-Y- wherein Y is other then a direct bond
- and Z and X are each independently O or S, then r is not 0; or 71
- when L is a radical of formula (b-2) wherein L is hydrogen and 72
- wherein T is -Z-C(=X)- wherein Z and X are each independently 73
- O or S. then r is not 0:
- 75 ii) when L is a radical of formula (b-1) wherein L is halo,
- hydroxy, C_{1-6} alkyloxy, mercapto, C_{1-6} alkylthio, isocyanato, 76
- 77 isothiocyanato or Het connected to C.H., on a nitrogen atom,
- and wherein r is 0, then T is a direct bond or a radical
- -C(=X)-Y-; or when L is a radical of formula (b-2) wherein L 79
- is halo, hydroxy, C1-6 alkyloxy, mercapto, C1-6 alkylthio. 80
- isocyanato, isothiocyanato or Het connected to C.H., on a 81

```
nitrogen atom, and wherein r is 0, then T^1 is a radical -c(=x)-:
82
83 iii) when L is a radical of formula (b-1) wherein T is Y, said Y being
84
          other than a direct bond, or wherein T is -Z-C(=X)-Y-, wherein Y
85
          is other than a direct bond, then s is not 0:
         wherein \operatorname{Ar}^1 is a member selected from the group consisting of
87 phenyl, substituted phenyl, naphthalenyl, thienyl, halothienyl, c_{1-6}
88 alkylthienyl, pyridinyl, mono- and di(C_{1-6} alkyloxy)pyridinyl,
89 pyrrolyl, C_{1-6} alkylpyrrolyl, furanyl, furanyl substituted with
90 C_{1-6} alkyl, pyrazinyl, thiazolyl, imidazolyl, C_{1-6} alkylimidazolyl;
91 said substituted phenyl, being phenyl substituted with up to 3
92 substituents each independently selected from the group consisting of
93 halo, hydroxy, nitro, cyano, trifluoromethyl, c_{1-6} alkyl, c_{1-6}
94 alkyloxy, C_{1-6} alkylthio, mercapto, amino, mono- and di(C_{1-6}
95 alkyl)amino, c_{1-6} alkylsulfonyl, c_{1-6} alkylsulfonylc_{1-6} alkyl,
96 phenylc_{1-6} alkylsulfonyl, phenylsulfonylc_{1-6} alkyl, a radical of
97 formula R8-C<sub>p</sub>H<sub>2p</sub>-Y-, a radical of formula R9-Z-C(=X)-Y-, and
98 a radical of formula _{\rm R}^{10}{\rm So}_{2}{\rm Y}^{-}; wherein p is an integer of from 1
99 to 6 inclusive and R^8 is a member selected from the group consisting
100 of amino, cyano, phenyl aminocarbonyl, mono- and \operatorname{di}(c_{1-6} alkyl)amino-
101 carbonyl, C_{1-6} alkyloxycarbonyl, phenylC_{1-6} alkyloxycarbonyl,
102 4-morpholinylcarbonyl, 1-piperidinylcarbonyl, 1-pyrrolidinylcarbonyl,
103 and C2-6 alkenyl; wherein R9 is member selected from the group
104 consisting of hydrogen, C<sub>1-6</sub> alkyl and Ar<sup>2</sup>; provided that, when
105 R is hydrogen and Y is other than a direct bond, then Z is not O or
106 S; and wherein R^{10} is C_{1-6} alkyl or Ar^2;
       wherein Ar 2 is a member selected from the group consisting of
108 phenyl, substituted phenyl, thienyl and furanyl, said substituted
109 phenyl being phenyl optionally substituted with up to three
110 substituents each independently selected from the group consisting of
lll halo, hydroxy, nitro, cyano, trifluoromethyl, c_{1-6} alkyl, c_{1-6}
112 alkyloxy, C<sub>1-6</sub> alkylthio, mercapto, amino, mono- and di(C<sub>1-6</sub>
```

113 alkyl)amino, carboxyl, C_{1-6} alkyloxycarbonyl and $(C_{1-6}$ alkyl)-co.

```
2. A chemical compound according to claim 1 wherein Het is a five-
1
   or six-membered heterocyclic ring containing a number of heteroatoms
2
   which varies of from 1 to 4, said heteroatoms being selected from the
3
   group consisting of oxygen, sulfur and nitrogen, provided that no more
   than two oxygens or sulfurs are present, said five or six-membered
   ring being optionally condensed with a five- or six-membered
   carbocyclic or heterocyclic ring also containing a number of
   heteroatoms which varies from 1 to 4, the latter heteroatoms being
   selected from the group consisting of oxygen, sulfur and nitrogen,
  provided that no more than 2 oxygens or sulfurs are present, and
   wherein said Het being a bicyclic ring system may optionally be
12 substituted with up to 6 substituents, or said Het being a monocyclic
13 ring system may optionally be substituted with up to 3 substituents,
14 said substituents of Het being selected from te group consisting of a
15 bivalent radical of formula =X, said =X independently having the same
   meaning of the previously defined X; halo; isocyanato; isothiocyanato;
17 nitro, cyano, trifluoromethyl; a radical of formula A-Y-, wherein A is
18 hydrogen, Ar^1 or C_{1-6} alkyl being optionally substituted with
19 Ar 1, C1-6 alkyloxy, Ar 10, hydroxy, C1-6 alkyloxycarbonyl and Y
20 independently has the same meaning of the previously defined Y; and a
21 radical A-Z-C(=X)-Y-, wherein A is as defined hereinabove and Z, X and
22 Y independently have the same meanings of the previously defined Z, X
23 and Y; provided that (i) when in the radical A-Y- A is hydrogen, then
24 Y is other than a direct bond, or (ii) when in the radical A-Z-C(=X)-Y-
    A is hydrogen and Y is NR3, O or S, then Z is other than O or S.
```

- 3. A chemical compound according to claim 2 wherein Het is a member selected from the group consisting of 2 pyridinyl which is optionally substituted with one or two substi-3 tuents each independently selected from the group consisting of halo, amino, mono- and dic_{1-6} alkylamino, $\operatorname{Ar}^2 \operatorname{C}_{1-6}$ alkylamino, nitro, cyano, aminocarbonyl, C₁₋₆ alkyl, C₁₋₆ alkyloxy, c₁₋₆ alkylthio, c₁₋₆ alkyloxycarbonyl, hydroxy,
- C1-6 alkylcarbonyloxy, Ar2-C1-6 alkyl and carboxyl;
- pyridinyloxide optionally substituted with nitro;

ı

```
quinolinyl which is optionally substituted with C1-6 alkyl;
10
         pyrimidinyl which is optionally substituted with one or two
11
         substituents each independently selected from the group
12
         consisting of halo, amino, hydroxy, C<sub>1-6</sub> alkyl, C<sub>1-6</sub>
13
         alkyloxy, C_{1-6} alkylthio and Ar^2-C_{1-6} alkyl;
14
         quinazolinyl which is optionally substituted with hydroxy or
15
16
         C1-6 alkyl;
         pyridazinyl which is optionally substituted with C1-6 alkyl or
17
18
         quinoxalinyl which is optionally substituted with C1-6 alkyl;
19
         pyrazinyl which is optionally substituted with halo, amino or
20
21
         C<sub>1-6</sub> alkyl;
22
         phthalazinyl which is optionally substituted with halo;
23
         morfolinyl;
24
         thiomorfolinyl:
25
         piperidinyl;
26
         2,3-dihydro-3-oxo-4H-benzoxazinyl and 2,3-dihydro-1,4-benzo-
27
         dioxinyl, both being optionally substituted with C_{1-6} alkyl or
28
29
         dioxanyl being optionally substituted with C_{1-6} alkyl;
30
         2-oxo-2H-1-benzopyranyl and 4-oxo-4H-1-benzopyranyl both being
         optionally substituted with C1-6 alkyl;
31
32
         1.4-dihydro-2.4-dioxo-3(2H)-pyrimidinyl being optionally
33
         substituted with C_{1-6} alkyl; and
         4-oxo-2(lH)-pyrimidinyl;
34
35
         5,6-dihydro-4H-1,3-thiazin-2-yl, thiazolyl, 4,5-dihydrothiazolyl,
36
         oxazolyl, imidazolyl, tetrazolyl, 1,3,4-thiadiazolyl, benzimi-
37
         dazolyl, benzothiazolyl, benzoxazolyl, 4,5-dihydro-5-oxo-14-
38
```

dazolyl. benzothiazolyl. benzoxazolyl. 4.5-dihydro-5-oxo-1Htetrazolyl. 2-oxo-3-oxazolidinyl and indolyl whereby each of the
Het-radicals of group ii) may optionally be substituted where
be possible with up to two substituents selected from the group
consisting of C₁₋₆ alkyl. Ar¹, Ar¹-C₁₋₆ alkyl. benzimidazolylC₁₋₆ alkyl. amino. (aminominomethyl)amino. mono- and
di(C₁₋₆ alkyl)amino, Ar¹-amino, nitro. C₁₋₆ alkyloxyday are promptly and pyrimidinyl;

45 iii) a radical of formula

- 61 -CH=CH-CH-N-, -N=CH-N=CH- or -CH=N-CH=N-:
- 62 G^5 is -N=CH=CH=CH-, -CH=N-CH=CH-, -CH=CH-N=CH-, -CH=CH-CH-N-,
- 63 -N=CH-N=CH- or -CH=N-CH=N-;
- 64 G is -CH=CH-CH=CH-, -N=CH-CH=CH-, -CH=N-CH=CH-, -CH=CH-N=CH-,
- 65 -CH=CH-CH-N-, -N=CH-N=CH- or -CH=N-CH=N-:
- 66 wherein one or two hydrogen atoms in said radicals g¹, g², g³, g⁴,
- 67 g^5 or g^6 or in the benzene part of the radicals of formula (e-2),
- 68 (e-3) or (e-9) may be replaced by C1-6 alkyl, C1-6 alkylthio, C1-6
- 69 alkyloxy or halo where said hydrogen atom is bonded on a carbon atom,
- 70 or by C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, Ar^2-C_{1-6} alkyl, where
- 71 said hydrogen is bonded on a nitrogen atom; and wherein
- 72 it is clear that R¹¹, R¹², R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²² or R²³ is absent
- 73 where the radical of formula (e-1), respectively (e-4), (e-5), (e-6)
- 74 or (e-7) is connected to $C_{n}H_{2n}$ on the atom bearing R^{11} , R^{12} , R^{17} , R^{18} ,
- 75 R19, R20, R21, R22 or R23.
- 4. A chemical compound according to claim 3 wherein L is a radical
 of formula (b-1).
- 1 5. A chemical compound according to claim 4 wherein r is 0 and
- 2 L^1 is hydrogen, hydroxy, C_{1-6} alkyloxy, C_{1-6} alkylthio, mercapto,
- 3 Het, Ar¹, isocyanato, isothiocyanato or cyano.
- 1 6. A chemical compound according to claim 5 wherein R^1 is C_{1-6}
- 2 alkyl substituted with one Ar^1 radical.
 - 7. A pharmaceutical composition comprising a suitable
- ${\small 2} \quad \hbox{pharmaceutical carrier and as active ingredient a therapeutically} \\$
- 3 effective amount of a compound as claimed in any one of claims 1 to 6.

- 8. An anti-allergic pharmaceutical composition comprising a
 - suitable pharmaceutical carrier and as active ingredient an
- effective anti-allergic amount of a compound as claimed in any one
- of claims 1 to 6.
- 9. A method of preparing a pharmaceutical composition.
- 2 characterized in that a therapeutically effective amount of a
- 3 compound as defined in any of claims 1 to 6 is intimately mixed
- with suitable pharmaceutical carriers.
- 10. A compound as claimed in any one of claims 1 to 6 for use as

a medicine.

- 1 11. A compound as claimed in any one of claims 1 to 6 for use as
- 2 an anti-allergic medicine.
- 1 12. A process for preparing a chemical compound as claimed in
- 2 any one of claims 1 to 6, characterized by
- 3 I) reacting a piperidine of formula

wherein x^1 is O, S or NH and W is a reactive leaving group,

6 with an aromatic diamine of formula

7
$$\begin{array}{c} R^1 \\ HN \\ HN \\ A^2 \\ A^3 \end{array} (III)$$

- 8 in a reaction inert medium, said reaction proceeding in some
- 9 instances via an intermediate of formula

- 11 which may in situ, or if desired, after isolating and further
- 12 purifying it, be cyclisized to yield the desired compounds of
- 13 formula (I);
- 14 II) reacting a piperidine of formula

16 with an intermediate of formula

- 8 in a reaction-inert solvent, wherein:
- 19 i) ${\tt E}^1$ is a radical of formula -B-M wherein M is hydrogen or 20 an alkali metal or earth alkaline metal and ${\tt E}^2$ is a

-90-

- 22 ii) E¹ is a radical of formula -W and E² is a radical of
 23 formula M-B; or
- 24 iii) E¹ is a radical of formula -CH₂-W and E² is a radical
 25 of formula -M, thus preparing a compound of formula

26 L-N
$$\xrightarrow{R^2}$$
 $\xrightarrow{R^1}$ $\xrightarrow{A^1}$ $\xrightarrow{A^2}$ (I-a); or

- 27 iv) E¹ is a radical of formula -M and E² is a radical of 28 formula -CH₂-W, thus preparing a compound of formula (I-a);
- 29 III) i) cyclodesulfurizing an intermediate of formula

- with an appropriate alkyl halide, metal oxide or metal salt in
- 32 a reaction-inert solvent; or

30

31

33

34

35

36

37

38

39

41

42

43

ii) cyclodesulfurizing an intermediate of formula

pyrimidine derivative with a suitable dehydrating agent; and, if desired, converting the compounds of formula (I) into each other by a) alkylating a compound of formula ϱ^2 -D (I-c) with a reagent of formula $\iota^1-\varrho^1$ (VII) in a suitable solvent, thus preparing a compound of formula ι^2 -D (I-b), wherein ι^2 has the previously defined meaning of L, provided that it is other than hydrogen, and wherein

and subsequently dehydrating the thus obtained oxazole[5,4-d]-

			-91
44			$^{-91-}$. 2 is -W and 2 is hydrogen wherein -W is a
45		1	reactive leaving group or taken together with L ² a
46			reactive cyclic agent; or
47		ii) (Q^1 is $-C_{\mu}H_{2r}-W^1$ and Q^2 is a radical of formula
48		1	HT ² -C _S H _{2s} -, wherein W ¹ is a reactive leaving
49		9	group and T is O, S, NR or -Z'-C(=X)-Y-, said
50			z ¹ being O, S or NR ⁵ , thus preparing a compound of
51		1	Formula L ¹ -C _r H _{2r} -r ² -C _s H _{2s} -D (I-b-1-a); or
52			$ ho^1$ is $-c_r^H_{2r}^{-w^1}$ and $ ho^2$ is a radical of formula
53			HT3-N (CH ₂) _n
54			wherein T ³ is a direct bond or Z ¹ -(C=X)-, thus
55			preparing a compound of formula
		-	
56			$L^{1}-c_{r}H_{2r}-T^{3}-N$ (I-b-1-b); or
57		iv) (g^1 is a radical of formula $-c_r H_{2r} - T^4 H$ and g^2 is W-C _{S,25} -, wherein T^4 is O, S, NR ³ or
58		9	2 is W-C _s H _{2s} -, wherein T ⁴ is O, S, NR ³ or
59		-	$-Z-C(=X)-Y^1$ -, said Y^1 being O, S or NR ³ , thus
60		I	preparing a compound of formula
61		1	L ¹ -C _r H _{2r} -T ⁴ -C _s H _{2s} -D (I-b-2);
62	b)		N-alkylating a compound of formula H-D, (I-c-l),
63		with a carbonyl-compound of formula L^{2-a} =C=O (VIII), said	
64		${\tt L}^{2-a}={\tt C=O}$ being a compound of formula ${\tt L}^2-{\tt H}$ wherein a -CH $_2$ -	
65		radical is oxidated to a carbonyl radical, in a reaction-inert	
6 6		solvent, thus preparing a compound of formula L^2 -D (I-b);	
67	c)	reductively]	N-alkylating a compound of formula
68			$HN(R^3)-C_eH_{2e}-D$ (I-d)

with a carbonyl-compound of formula

69

70
$$L^{1}-(C_{r}H_{2r-1})=0$$
 (IX),

- said L^{1} -($C_{r}H_{2r-1}$)=O being a compound of formula 71
- L1-C_H2-H wherein a -CH2- radical is oxidated to a 72
- carbonyl radical, in a reaction inert solvent, thus preparing a 73
- compound of formula 74

77

79

75
$$L^{1}-c_{r}H_{2r}-N(R^{3})-c_{s}H_{2s}-D(I-b-3);$$

d) reductively N-alkylating an intermediate of formula 76

$$L^1-C_rH_{2r}-N(R^3)H(X)$$

78 with a compound of formula

- said O=(C $_{\rm S}{\rm H}_{2s-1})^-$ being a radical of formula H-C $_{\rm S}{\rm H}_{2s}^-$ wherein a -CH $_{\rm Z}^-$ radical is oxidated to a carbonyl radical, in a 80
- 81
- reaction-inert solvent, thus preparing a compound of formula (I-b-3); 82
- e) reacting a reagent of formula 83

84
$$L^1-C_rH_{2r}-Z^1H$$
 (XI)

with a compound of formula 85

$$x^2 = c = N - c_e H_{2e} - D (I - f),$$

- wherein X2 is O or S, in a reaction-inert solvent, thus preparing 87
- a compound of formula 88

$${\tt L}^1-{\tt C}_{\tt r}{\tt H}_{\tt 2r}-{\tt Z}^1-{\tt C}(={\tt X}^2)-{\tt NH}-{\tt C}_{\tt S}{\tt H}_{\tt 2s}-{\tt D}~({\tt I}-{\tt b}-{\tt 4})\,;$$

90 f) reacting a reagent of formula

91
$$L^{1}-C_{r}H_{2r}-N=C=X^{2} (XII)$$

92 with a compound of formula

93
$$HY^{1}-C_{s}H_{2s}-D$$
 (I-c-4),

94 respectively with a compound of formula H-D (I-c-1) or with a

95 compound of formula

96

103

105

106

107

$$+N \xrightarrow{(CH_2)_n} D \quad (I-c-5).$$

97 in a reaction-inert solvent, thus preparing a compound of formula

98
$$L^{1}-C_{r}H_{2r}-NH-C(=x^{2})-Y^{1}-C_{e}H_{2e}-D$$
, (I-b-5-a),

99 respectively of formula

100
$$L^{1}-c_{r}H_{2r}-NH-c(=X^{2})-D$$
, (I-b-5-b),

101 or of formula

102
$$L^{1}-c_{r}H_{2r}-NH-C(=X^{2})-N \underbrace{\qquad \qquad }_{(CH_{2})}D \text{ (I-b-5-c);}$$

g) reacting a reagent of formula

104
$$L^1-C_rH_{2r}-C(=x^2)-OH$$
 (XIII)

with (I-c-4), respectively with (I-c-1) or (I-c-5), in a reaction-inert solvent, if desired, after converting the OK group in (XIII) in a reactive leaving group or by reacting

108 (XIII) with (I-c-4), respectively (I-c-1) or (I-c-5), in the

109 presence of a reagent capable of forming esters or amides, thus

110 preparing a compound of formula

111
$$L^{1-c}_{r}H_{2r}^{-c}(=x^{2})-y^{1-c}_{s}H_{2s}^{-d}$$
, (I-b-6-a),

112 respectively of formula

113
$$L^{1}-c_{r}H_{2r}-c(=x^{2})-D$$
, (I-b-6-b),

114 or of formula

115
$$L^{1-c}r^{H_{2r}-c(-x^{2})-1}\underbrace{\qquad}_{(cH_{2})_{n}} (i-b-6-c);$$

- h) reacting (XI) with (I-c-4), respectively (I-c-1) or (I-c-5) in the presence of a C=X generating agent in a reaction-inert
- 118 solvent, thus preparing a compound of formula

119
$$L^{1}-C_{r}H_{2r}-z^{1}-C(=x)-y^{1}-C_{s}H_{2s}-D, (I-b-7-a),$$

120 respectively of formula

$$L^{1}-C_{r}H_{2r}-Z^{1}-C(=X)-D$$
, (I-b-7-b),

122 or of formula

121

123
$$L^{1}-C_{r}H_{2r}-Z^{1}-C(=X)-N \underbrace{ CH_{2}}_{CCH_{2}} D (I-b-7-c);$$

- 1) reacting an alkene of formula L^{1} - $C_{r}H_{2r}$ -T- C_{2-6} alkenediyl-H
- of formula (XIV) with (I-c-1) in a reaction-inert solvent, thus
- 126 preparing a compound of formula

127
$$L^1-c_rH_{2r}-T-c_{2-6}$$
 alkanediyl-D, (I-g);

128 j) reacting a reagent of formula

,

129

137

$$L^{1}-C_{r}H_{2r}-T-C_{s'-2}H_{2s'-4}$$
 , (XV), with (I-c-1).

in a reaction-inert solvent, thus preparing a compound of formula

131
$$L^{1}-c_{r}H_{2r}-T-c_{s}, -2^{H}_{2s}, -4 -\frac{cH-cH_{2}}{v_{1}^{H}} = 0 \quad (I-h),$$

- 132 wherein s' is an integer of from 2 to 6 inclusive;
- 133 k) cyclizing an imidamide of formula

- in a reaction-inert solvent in the presence of an acid, thus
- 136 preparing a compound of formula

- (I-i-1)
- wherein R²⁵, R²⁶ and R²⁷ are, each independently, optional
- 139 substituents of the imidazole ring;
- 140 1) condensing a ketone of formula

$$R^{28}-CH(W)-C(=0)-R^{29}$$
, (XVII).

- 142 with a thioamide of formula
- 143 H₂N-C(=S)-K-D, (XVIII),
- in a reaction-inert solvent, thus preparing a compound of formula

145
$$R^{28} \longrightarrow K^{-D} (I-1-2),$$

wherein R²⁸ and R²⁹ are, each independently, optional substi-146

tuents of the thiazole ring, or where in the compound of formula 147 (I-i-2) said thiazolyl ring is condensed with a five- or 148

six-membered hetero- or carbocyclic ring, R^{28} and R^{29} taken 149

together may form a radical of formula G3: 150

m) condensing a thioamide of formula 151

152

155

159

162

$$R^{30}$$
-C(=S)NH₂, (XIX),

with a ketone of formula W-CHR³¹-(C=O)-K-D. (XX). in a 153

reaction-inert solvent, thus preparing a compound of formula 154

$$R^{30} \underbrace{ }_{N} \stackrel{S}{\underbrace{ }} \stackrel{R^{31}}{\underbrace{ }}_{N-D} (I-1-3),$$

wherein R^{30} and R^{31} are, each independently, optional 156

substituents of the thiazolvl ring: 157

158 n) reacting an amide or thioamide of formula

$$g^{1} \bigcup_{\substack{R \\ NH \\ C-NH-K-D \\ \frac{11}{2}}}^{R^{11}} (XXI)$$

with a z=x2 generating agent, in a reaction-inert solvent, 160

thus preparing a compound of formula 161

$$g^1$$
 N
 X^2
 $N = K-D$
 $N = K-D$
 $N = K-D$

o) cyclizing a urea or thiourea of formula 163

165 which in situ may be generated by reacting a reagent

with an amine 167

in a reaction-inert solvent, thus preparing a compound of formula 169

170
$$g^1 \xrightarrow{H}_{N-K-D}^{H} (I-1-4-a);$$

p) condensing an aniline of formula 171

- with an acid of formula R¹³COOH (XXVI), or a reactive 173
- derivative thereof, in a reaction-inert solvent, thus preparing 174
- 175 a compound of formula

177 q) condensing an aniline of formula

179 with an amide of formula

184

186

191

180
$$R^{13}$$
-C(=O)-NH-K-D (XXVIII)

in a reaction-inert solvent, thus preparing a compound of 181 formula (I-i-5); 182

r) condensing an aniline of formula 183

with an acetylene of formula CH=C-R 15-4(XXX), in a reaction-185 inert solvent, thus preparing a compound of formula

187

s) condensing (XXIX) with a ketone of formula 188

$$R^{15}-C(=0)-R^{16}$$
 (XXXI),

in a reaction-inert solvent, thus preparing a compound of formula 190

t) condensing a reagent of formula 192

193
$$g^3 \longrightarrow_N^{NH} 2$$
 (XXXII),

194 with a ketone of formula

 $W-CH(R^{20})-C(=0)-K-D$ (XXXIII), 195

in a reaction-inert solvent, thus preparing a compound of formula 196

197
$$G^3 \bigvee_{N} \bigvee_{R}^{K-D} (I-1-8);$$

u) condensing an amine of formula 198

199
$$G^4$$
, (XXXIV).

with CS_2 , in a reaction-inert solvent, thus preparing a 200 compound of formula

201

v) reacting a reagent of formula R^{23} -C(=NH)-W (XXXV) with an 203

amine of formula 204

205

-100-

206 in a reaction-inert solvent, thus preparing a compound of formula

208 w) cyclodesulfurizing a thioamide of formula

207

217

210 with an appropriate alkyl halide, metal oxide or metal salt in a 211 reaction-inert solvent, thus preparing a compound of formula

213 x) condensing an amine of formula

214
$$G^6$$
 NH-R²⁴ (XXXVIII).

215 with a C=X² generating agent, in a reaction-inert solvent,

216 thus preparing a compound of formula

$$G^{6} \xrightarrow{N-K-D} (I-1-12);$$

218 wherein K is a bivalent radical of formula

219
$$-c_r H_{2r} - T - c_s H_{2s} - (d-1);$$
 or
220 $-c_r H_{2r} - T^1 - N \longrightarrow (d-2);$ and

221 wherein D represents a radical of formula

223 and R^{11} , R^{13} , R^{14} , R^{15} , R^{16} , R^{20} , R^{21} , R^{22} , R^{23} and R^{24} are, each

224 independently optional substituents of the previously described

225 bicyclic radicals and G^1 , G^3 , G^4 , G^5 and G^6 are, each independently,

226 optionally substituted bivalent radicals, selected so that they form,

227 combined with the five- or six-membered heterocycle to which they are

228 attached, a bicyclic Het-system; or optionally converting the

229 compounds of formula (I) into each other following art-known

230 grouptransformation procedures, and, if desired, converting the

231 compounds of formula (I) into a therapeutically active non-toxic

232 acid-addition salt form by treatment with an appropriate acid or,

233 conversely, converting the acid-addition salt into the free base form

234 with alkali; and/or preparing stereochemically isomeric forms thereof.