a) Représenter par un tableau de Karnaugh les expressions :

$$A = \overline{ac} + \overline{bc} + \underline{abc}$$
 et $B = \overline{ab} + \overline{bc} + \overline{ac}$

b) Utiliser le tableau pour déterminer les expressions de \overline{A} et \overline{B} .

1 lette = 4 cases 2 letter = 2 cases 3 letter = 1 case

b)
$$A = \overline{ab} + \overline{ac}$$

$$= \overline{a.(b+\overline{c})}$$

B= abc + abc

Soit $A = a \cdot b \cdot c + abc + a \cdot b + ab \cdot c$. Simplifier A avec un diagramme de Karnaugh, puis vérifier par des calculs.

	Ь	Ь	5	5
Q			X	X
ā			*	X
	c	ć	10	1

$$= \overline{b} \left(\overline{a} (\overline{c} + 1) + \alpha (\underline{c} + \overline{c}) \right)$$

$$= \overline{b} \left(\overline{a} + \alpha \right) = \overline{b}$$

On considère la lo *définie par la table de vérité du tableau :

Spi

Tableau 4.23

a	ь	a*b
0	. 0	0
0	1	1
1	0	1
1	1	0

- a) En logique, quel est l'équivalent de cette loi? le "ou exclusif" = Tor
- b) À l'aide d'une table de vérité, montrer que $a*b = \overline{a} \cdot b + a \cdot \overline{b}$
- c) Démontrer par calculs que $a * b = (a + b) \cdot (\overline{a} + \overline{b})$.

c)
$$(a+b)(\bar{a}+\bar{b}) = a\bar{a} + a\bar{b} + \bar{a}b + b\bar{b}$$

= $a\bar{b} + \bar{a}b = a*b$

Exercice 3:

Définissons un nouvel opérateur, nommé op1 et défini par : $op1(P,Q) = (P \land (Q)) \lor ((P) \land Q)$

1. Construire la table de vérité de cette formule:

P	9	P 1	61	P 10	PAG	(P16)) v (P16/	
0	, O	' \	1,1	0			0	,	
0	\	()	0	Q	\ ()) \		
V	0	6	1	\ \	0		1 \		
('	1 1	10	10	0	0		0		

Considérons maintenant l'opération op2 définie par : $op2(P,Q) = (P \lor Q) \land ((\bar{P}) \lor (\bar{Q}))$

2. Construire la table de vérité de cette formule

P	Q	1	19	DJQ	P16	(Pu6	JV (E	219)
0	0	1	(0	١ '		70	
0	ı	(0	l	l		1 \	
1	0	0	- ((1		\ \	
1	١	5	0	1	0		0	

3. Que remarque-t-on? Clas 2 sporatous sont of wir alunts 4. <u>Bonus (+0,5 pts)</u>: Comment s'appelle cet opérateur?

Exi3 Dans un grand magasin, le service clientèle a organisé une classification des clients en trois catégories :

- Si le client achète un article, il est classé en catégorie A et a = 1, sinon a = 0.
- Si le client échange ou rend un article, il est classé en catégorie E et e = 1 sinon
- Si le client demande des renseignements, il est classé en catégorie R et r = 1 sinon

Soit $F = a \cdot e \cdot r + a \cdot e \cdot r$ le client achiete, n'é change pas et sonande des reuseignement.

a) Faire le diagramme de Karnaugh de F.

- b) En déduire une forme simplifiée de F.
- c) Retrouver la forme simplifiée de F par calcul.
- d) Quel type de client est un client de type \overline{F} ? Est-ce un client peu intéressant, assez intéressant ou très intéressant pour le magasin ? Donner l'écriture la plus simple de F.

5) On a F = ae c) F = aer + aer = ae((+r)) = ae.1 = ae

ā + ē bide Horgan

Exis On considère l'expression $E = \overline{ac} + b\overline{c} + a\overline{b} + \overline{ab}c$.

- a) Simplifier l'écriture de E à l'aide <u>d'un diagramme de Karnaugh</u> et en <u>déduire</u> que $E = \overline{b} + \overline{c}$. Retrouver par calcul la forme simplifiée de E.
- b) Dans un organisme qui aide des personnes au chômage à retrouver un emploi, on considère pour ces personnes les trois variables booléennes a, b et c définies ainsi :
- a = 1 si la personne a 45 ans ou plus, sinon a = 0.
- b = 1 si la personne est au chômage depuis un an ou plus, sinon b = 0.
- c = 1 si la personne a déjà suivi une qualification l'année précédente, sinon c = 0.

Une formation sera mise en place pour les personnes vérifiant au moins un des critères suivants :

- · Avoir 45 ans ou plus et être au chômage depuis moins d'un an.
- · Avoir moins de 45 ans et ne pas avoir suivi de formation l'année précédente.
- Être au chômage depuis un an ou plus et ne pas avoir suivi de formation i année précédente.
- Avoir moins de 45 ans, être au chômage depuis moins d'un an et avoir suivi une formation l'année précédente.

Les personnes qui ne répondent à aucun de ces quatre critères pourront participer à un stage d'insertion en entreprise.

- 1) Écrire l'expression booléenne \underline{F} en fonction de a,b et c qui traduit le fait que la personne pourra suivre cette formation.
- En déduire les personnes qui ne pourront pas participer à la formation et qui participeront donc à un stage d'insertion en entreprise.

a) Tobb de Karnaugh de E

on obtaint donc E grace aux cases non ochées:

$$(E = bC)$$

$$E = E = bC$$

$$E = b + C \text{ laide}$$
Morpon

b) NF = a.b + a.c + b.c + a.b.c = E

2) Ceux qui ce persent pas participer conespondent à F. Dr F=E=bx (5) personnes au shônege depuis lan ou plus et qui ent déjà sui i une formation l'année précédente.

 au moins = +au + = -

Une entreprise décide de choisir de nouveaux chefs de service parmi ses employés en se servant des variables booléennes suivantes :

- a = 1 si et seulement si l'employé a plus de 10 ans d'ancienneté dans l'entreprise.
- b = 1 si et seulement si l'employé arrive souvent en retard.
- c = 1 si et seulement si l'employé a des relations difficiles avec ses collègues.

L'entreprise fait une première sélection parmi ses employés en considérant les critères suivants : « l'employé est ponctuel et s'entend bien avec ses collègues » ou « l'employé est dans l'entreprise depuis au moins 10 ans ».

- a) Donner l'expression booléenne E correspondant à un employé qui respecte les conditions pour devenir chef de service.
- b) Donner l'expression de \overline{E} à l'aide du tableau de Karnaugh. Retrouver le résultat par calculs.

5) Table de Karnangh de E:

on a donc == ab +ac =a (b+c)

Pou calcul: E = a+bc

=>E= a+bc = a.bc 1º loide Morgan

 $= \bar{a} \cdot (\bar{b} + \bar{c}) = \bar{a} \cdot (b + c)$ $= \bar{a}b + \bar{a}c.$

Afaie: . DM pour lundi

. Pour meradi : exos d'algo (conditions) :702.