BaF2 TOFPET Detector Simulation Status

Bill Worstell

PicoRad Imaging -> MGH

10/25/2023

SimpleOpticsZPencil.ipynb

Photon collection time statistics depend as expected with Depth of Interaction Z

NEvents: 1000
ic| SqrtNPhotons: 100
ic| XBounds: [1.5, 1.5]
ic| YBounds: [-3.0, -3.0]
ic| ZBounds: [0, 45.0]
ic| RegularZ: True
ic| XSource.size(): torch.Size([1000, 10000])
ic| YSource.size(): torch.Size([1000, 10000])

There is secondorder broadening of Mean Photon Survival vs depth Z across different X,Y

First event waveform encodes Depth of Interaction Z and Z reflection echo time peak

SimpleOpticsZPencil.ipynb

SimpleOpticsFlood.ipynb

Detection X and Y coordinates are nearly Independent of Depth of Interaction Z. while T distribution varies with Z.

First photon collection time varies linearly with Depth of Interaction Z

Timing errors are sub-picosecond for 10000 prompt photons with exact DOI correction

SimpleOpticsZPencil.ipynb SimpleOpticsFlood.ipynb

First photon collection time varies linearly with Depth of Interaction Z

Timing errors are sub-picosecond for 10000 prompt photons with exact DOI correction

SimpleOpticsZPencil.ipynb SimpleOpticsFlood.ipynb

Intrinsic light yield, LY_{intr} (ph/MeV)

1400^{a b h}-7000^{b i}

BaF2	Fast		Slow		
Decay Time	700ps		600ns		
			310		
Wavelength	220nm		nm		
Photons					
/511keV		715	3577		
Collection					
Fraction		0.8	0.8		
Photons					
Collected		572	2862		
QE		0.30	0.37		
N =					
PEs/511keV		172	1059		
1/sqrt(N)		8%	3%		

LAPPD QE 0.40 LAPPD126 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 200 500 300 700 100 Wavelength [nm]

Photoelectron Statistics

Gundacker, S., Pots, R.H., Nepomnyashchikh, A., Radzhabov, E., Shendrik, R., Omelkov, S., Kirm, M., Acerbi, F., Capasso, M., Paternoster, G. and Mazzi, A., 2021. <u>Vacuum ultraviolet silicon photomultipliers applied to BaF2 cross-luminescence detection for high-rate ultrafast timing applications</u>. *Physics in Medicine & Biology*, 66(11), p.114002.

Pots, R.H., Auffray, E. and Gundacker, S., 2020. <u>Exploiting Cross-Luminescence in Ba F 2 for Ultrafast Timing Applications Using Deep-Ultraviolet Sensitive HPK Silicon Photomultipliers</u>. *Frontiers in Physics*, *8*, p.592875.

Table 1. Overview of the general characteristics of BaF_2 , LSO:Ce and BGO. Values are taken from Lecoq *et al* (2017) unidicated.

Property	BaF2	LSO:Ce
Density ρ (g cm ⁻³)	4.88	7.4
Effective atomic number, $Z_{\rm eff}$	53	66
Photon absorption a @511 KeV (cm ⁻¹)	0.085	0.28
Radiation length X_0 (cm)	2	1.1
Intrinsic light yield, $LY_{intr}(ph/MeV)$	$1400^{a b h} - 7000^{b i}$	$40\ 000^{ m b}$
Decay time τ (ns)	$0.6-0.8^{\rm h}/620^{\rm i}$	22/44 ^b
Photon fraction @ 0.5 MeV	0.19°)	0.34 ^c
Emission peak(s) λ_{max} (nm)	$195^{i}220^{i}310^{h}$	420^{b}
Refractive index (RI) @ λ_{max}	$1.56^{\rm d}1.55^{\rm d}1.50^{\rm d}$	1.82 ^b
Melting point (°C)	1280°	2150 ^f
$Cost(\$ cm^{-3})$	15 ^g	60^{g}

Table 4. Scintillation rise and decay times measured for BaF₂ crystals from the producer Epic Crystal (Ep.) and Proteus (Pr.). Two exponential decay fits are compared with three exponential decay fits and when the crystals are wrapped in Teflon (Tef.) or left unwrapped. Errors are given in $\pm 1\sigma$, meaning a confidence interval of 68%.

Origin	$\tau_{\rm r}({\rm ps})$	$\tau_{\rm d1} ({\rm ns})$	R ₁ (%)	$\tau_{\rm d2}({\rm ns})$	R ₂ (%)	$\tau_{\rm d3}({\rm ns})$	R ₃ (%)	$ au_{ m deff}(m ns)^{ m a}$	
Ep. Tef.	<4	0.207 ± 0.087	3.0 ± 1	0.842 ± 0.059	10.6 ± 1.1	692 ± 28	86.4 ± 0.7	3.676	
Ep.	<4	0.136 ± 0.052	3.7 ± 0.7	0.855 ± 0.055	12.2 ± 1.0	805 ± 56	84.0 ± 1.1	2.405	
Pr. Tef.	<4	0.118 ± 0.050	2.0 ± 0.5	0.814 ± 0.040	9.1 ± 0.5	648 ± 21	88.9 ± 0.7	3.538	
Pr.	<4	$\textbf{0.074} \pm \textbf{0.035}$	$\textbf{3.5} \pm \textbf{0.7}$	$\boldsymbol{0.791 \pm 0.034}$	14.0 ± 1.1	602 ± 48	82.5 ± 1.4	1.535	
Ep. Tef.	<4	_	_	0.656 ± 0.011	13.6 ± 0.6	678 ± 27	86.4 ± 0.6	4.794	
Ep.	<4	_	_	$\textbf{0.616} \pm \textbf{0.021}$	16.0 ± 1.0	771 ± 53	84.0 ± 1.0	3.834	
Pr. Tef.	<4	_	_	0.639 ± 0.018	10.9 ± 0.4	637 ± 21	89.1 ± 0.4	5.815	
Pr.	<4	_	_	$\textbf{0.557} \pm \textbf{0.020}$	18.1 ± 1.0	577 ± 48	81.9 ± 1.3	3.064	
18									
$\tau_{\text{deff}} = (R_1/\tau_{\text{d}1} + R_2/\tau_{\text{d}2} + R_3/\tau_{\text{d}3})^{-1}$.									

First photon collection time varies linearly with Depth of Interaction Z

Timing errors are sub-picosecond for 10000 prompt photons with exact DOI correction

SimpleOpticsZPencil.ipynb SimpleOpticsFlood.ipynb

