

SÍLABO CÀLCULO II

ÁREA CURRICULAR: MATEMÁTICAS Y CIENCIAS BÁSICAS

CICLO III CURSO DE VERANO 2019

I. CÓDIGO DEL CURSO : 09065603050

II. CRÉDITOS : 05

III. REQUISITO : 09065502050 Cálculo I

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Cálculo II es un curso teórico- práctico. El propósito de la asignatura es brindar al alumno los conceptos y principios básicos de Matemáticas y sus aplicaciones en el mundo real, para que pueda desarrollarse en las áreas científicas y tecnológicas.

El desarrollo del curso comprende las siguientes unidades de aprendizaje:

I. Integrales Indefinidas-definidas: técnicas de integración, integrales impropias, integración numérica, II. Aplicaciones de la integral definida (físicas y geométricas.), integrales impropias, integración numérica. III. Funciones de dos variables: derivadas parciales,

IV Integrales múltiples y aplicaciones geométricas y mecánicas. V. Series: numéricas, de potencias, serie de Taylor, Maclaurin, aplicaciones.

VI. FUENTES DE CONSULTA:

- Leithold, L. (1998). El cálculo. 7.a ed. México: Oxford University Press,
- Thomas, G. (2006). Cálculos varios variables. 11a ed. México: Pearson Educación
- Stewart J. (2008) Calculus 6 Edition Cengage Learning EMEA

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: INTEGRALES

OBJETIVOS DE APRENDIZAJE:

- Reconocer el concepto de integral, sus propiedades y la relación que existe con la derivada a través del Teorema Fundamental del Cálculo.
- Determinar antiderivadas de funciones elementales.
- Representar claramente las definiciones de integral definida.
- Aplicar los métodos de integración correctamente.

PRIMERA SEMANA

Primera sesión:

Integrales indefinidas: definición, propiedades, método de integración: cambio de variable **Segunda sesión:**

Integración por partes por partes, iintegración de funciones trigonométricas

SEGUNDA SEMANA

Primera sesión:

Integrales por sustitución trigonométrica, diferenciales binómicos.

Segunda sesión:

Integración por fracciones parciales

TERCERA SEMANA

Primera sesión:

Integral definida, propiedades fundamentales de la integral definida, cambio de variable en una integral definida, Cambio de variable en una integral definida-ejercicios de aplicación.

Segunda sesión:

Integrales impropias: (primera y segunda especie).

UNIDAD II: APLICACIONES DE LA INTEGRAL DEFINIDA

OBJETIVOS DE APRENDIZAJE:

- Analizar y aplicar métodos de integración para calcular áreas de diferentes regiones planas.
- Calcular el volumen de un sólido de revolución.
- Analizar una función dado en coordenadas polares.
- Relacionar entre las funciones hiperbólicas y circulares

CUARTA SEMANA

Primera sesión:

Cálculo de áreas en coordenadas rectangulares casos.

Segunda sesión:

Coordenadas polares: transformación entre coordenadas polares y cartesianas y viceversa gráficas en coordenadas polares.

QUINTA SEMANA

Primera sesión:

Áreas en coordenadas polares

Segunda sesión:

Volumen de un sólido de revolución: Método del anillo, capas cilíndricas, casos

SEXTA SEMANA

Primera sesión:

Volumen de sólidos cuyas secciones transversales se conocen, ejercicios de aplicación.

Segunda sesión:

Longitud de arco en coordenadas rectangulares, coordenadas paramétricas y coordenadas polares, ejercicios de aplicación

SÉPTIMA SEMANA

Primera sesión:

Áreas de superficies de revolución en coordenadas rectangulares y en coordenadas paramétricas.

Segunda sesión:

Funciones hiperbólicas Seno y Coseno Hiperbólicos, Derivadas de Funciones Hiperbólicas Integrales de las Funciones Hiperbólicas.

OCTAVA SEMANA

Exámenes parciales

UNIDAD III: FUNCIONES DE DOS O MÁS VARIABLES

OBJETIVOS DE APRENDIZAJE:

- Representar gráficamente algunas funciones de dos y tres variables.
- Entender las técnicas de derivación para funciones de varias variables.
- Interpretar y aplicar la derivación de sus diferentes modalidades.

NOVENA SEMANA

Primera sesión:

Coordenadas tridimensionales, función de dos variables, curvas de nivel, superficie de nivel, Derivadas Parciales, Interpretación Geométrica

Segunda sesión:

Incrementos y diferenciales, derivada total, Regla de la Cadena para funciones de varias variables

DÉCIMA SEMANA

Primera sesión:

Derivada de orden superior, derivada direccional y gradientes.

Segunda sesión:

Extremos de funciones de dos variables, aplicaciones de los extremos de funciones de dos variables.

UNIDAD IV: INTEGRALES MULTIPLES, APLICACIONES

OBJETIVOS DE APRENDIZAJE:

- Representar gráficamente las regiones planas.
- Conocer las técnicas de integración para funciones de varias variables.
- Interpretar y aplicar la integral doble para calcular centros de masa.

UNDÉCIMA SEMANA

Primera sesión:

$$R_{x}$$
 R_{y}

Regiones en el plano tipo:

Segunda sesión:

Integrales iterada, integral Doble Definida, Interpretación Geométrica.

DUODECIMA SEMANA

Primera sesión

Área de una Superficie Plana como Integral Doble Definida: coordenadas Rectangulares

Segunda sesión:

Volumen bajo una Superficie, ejercicios de aplicación

DECIMOTERCERA SEMANA

Primera sesión:

Centro de masa y momentos de inercia

Segunda sesión:

Integrales triples-aplicaciones.

UNIDAD V: SERIES

OBJETIVOS DE APRENDIZAJE:

- Conocer el concepto de series y sucesiones.
- Determinar si una serie converge o diverge, utilizando los criterios de convergencia.

DECIMOCUARTA SEMANA

Primera sesión:

Definición de una sucesión, sucesiones convergentes y divergentes, definición de una serie, Series convergentes y divergentes, serie geométrica

Segunda sesión:

Serie armónica, p-series, Criterios para la convergencia: Comparación de las Series con Términos Positivos, criterio de D'Alembert, Criterio de Cauchy, Criterio de la Integral.

DECIMOQUINTA SEMANA

Primera sesión:

Integración y derivación de las series, series de potencia, representación de funciones por series de potencias.

Segunda sesión:

Intervalo de Convergencia. Series de Taylor, Maclaurin, ejercicios de aplicación

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a) Matemática y Ciencias Básicas
b) Tópicos de Ingeniería
c) Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Las clases se desarrollaran teniendo en cuenta:

Aspecto metodológico: estimular el método científico (inductivo-deductivo). Procedimientos: Observación, análisis, demostración, solución de problemas.

Técnicas: Expositiva, dialogo, tutoría

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y proyector de multimedia.

Materiales: separatas, pizarra, tizas.

XI. EVALUACIÓN

Donde:

PF : Promedio Final

PC : Promedio de prácticas calificadas

EF : Examen final (escrito)

P1,..., P4: Prácticas Calificadas (escrito)

MN : Menor nota entre las Prácticas Calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Industrial, Ingeniería Civil, Ingeniería de Industrias Alimentarias, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería				
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos				
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas				
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario				
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería				
(f)	Comprensión de lo que es la responsabilidad ética y profesional				
(g)	Habilidad para comunicarse con efectividad				
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global				
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida				
(j)	Conocimiento de los principales temas contemporáneos				
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería				

XIII. HORAS, SESIONES, DURACIÓN

a)	Teoría	Práctica	Laboratorio	Horas de clase:
,	4	2	0	

- b) Número de sesiones por semana: Dos sesiones por semana
- c) Duración: 6 horas académicas de 45 minutos

XIV. DOCENTES DEL CURSO

Ing. Raúl Mitac Portugal

XV. FECHA

La Molina, enero de 2019.