

74V2G00

DUAL 2-INPUT NAND GATE

- HIGH SPEED: $t_{PD} = 3.7 \text{ ns}$ (TYP.) at $V_{CC} = 5V$
- LOW POWER DISSIPATION:
 I_{CC} = 1 μA (MAX.) at T_A = 25 °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |IOH| = IOL = 8 mA (MIN)
- BALANCED PROPAGATION DELAYS: tplh ≅ tphl
- OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 5.5V
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The 74V2G00 is an advanced high-speed CMOS DUAL 2-INPUT NAND GATE fabricated with sub-micron silicon gate and double-layer metal

ORDER CODES							
PACKAGE TUBE T&R							
SOT23-8L		74V2G00STR					

wiring C²MOS technology.

The internal circuit is composed of 3 stages including buffer output, which provide high noise immunity and stable output.

Power down protection is provided on all inputs and outputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V.

PIN CONNECTION AND IEC LOGIC SYMBOLS

June 2000 1/6

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 5	1A, 2A	Data Input
2, 6	1B, 2B	Data Input
7, 3	1Y, 2Y	Data Output
4	GND	Ground (0V)
8	Vcc	Positive Supply Voltage

TRUTH TABLE

Α	В	Υ
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage (see note 1)	-0.5 to +7.0	V
Vo	DC Output Voltage (see note 2)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
lok	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	260	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	2.0 to 5.5	V
VI	Input Voltage	0 to 5.5	V
Vo	Output Voltage (see note 1)	0 to 5.5	V
Vo	Output Voltage (see note 2)	0 to V _{CC}	V
T _{op}	Operating Temperature	-40 to +85	°C
dt/dv	Input Rise and Fall Time (see note 3) ($V_{CC} = 3.3 \pm 0.3V$) ($V_{CC} = 5.0 \pm 0.5V$)	0 to 100 0 to 20	ns/V ns/V

¹⁾ Vcc = 0V

¹⁾ $V_{CC} = 0V$

²⁾ High or Low State

²⁾ High or Low State 3) V_{IN} from 30% to 70% of V_{CC}

DC SPECIFICATIONS

Symbol	Parameter	Tes	t Conditions			Value			Unit
		Vcc		T,	T _A = 25 °C		-40 to	85 °C	
		(V)		Min.	Тур.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0		1.5			1.5		V
	Voltage	3.0 to 5.5		0.7V _{CC}			0.7V _{CC}		V
VIL	Low Level Input	2.0				0.5		0.5	V
	Voltage	3.0 to 5.5				0.3V _{CC}		0.3V _{CC}	V
V _{OH}	High Level Output	2.0	I _O =-50 μA	1.9	2.0		1.9		
	Voltage	3.0	I _O =-50 μA	2.9	3.0		2.9		.,
		4.5	I _O =-50 μA	4.4	4.5		4.4		V
		3.0	I _O =-4 mA	2.58			2.48		
		4.5	I _O =-8 mA	3.94			3.8		
V _{OL}	Low Level Output	2.0	I ₀ =50 μA		0.0	0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1	.,
		4.5	I _O =50 μA		0.0	0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44	
		4.5	I _O =8 mA			0.36		0.44	
I _I	Input Leakage Current	0 to 5.5	$V_I = 5.5V$ or GND			±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			1		10	μΑ
I _{OPD}	Output Leakage Current	0	V _{OUT} = 5.5V			0.5		5.0	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3 \text{ ns}$)

Symbol	Parameter	Test Condition \		Value	Unit				
		Vcc	C∟	T _A = 25 °C		-40 to	85 °C		
		(V)	(pF)	Min.	Тур.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	3.3 ^(*)	15		5.5	7.9	1.0	9.5	
t _{PHL}	Time	3.3 ^(*)	50		8.0	11.4	1.0	13.0	ns
		5.0 ^(**)	15		3.7	5.5	1.0	6.5	
		5.0 ^(**)	50		5.2	7.5	1.0	8.5	

^(*) Voltage range is 3.3V ± 0.3V (**) Voltage range is 5V ± 0.5V

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value				Unit
			T,	T _A = 25 °C		-40 to 85 °C		
			Min.	Тур.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			4	10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)			19				pF

¹⁾ CPD is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/2$

TEST CIRCUIT

 C_L = 15/50 pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically $50\Omega)$

WAVEFORM: PROPAGATION DELAYS (f=1MHz; 50% duty cycle)

SOT23-8L MECHANICAL DATA

DIM.		mm			mils		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	0.90		1.45	35.4		57.1	
A1	0.00		0.15	0.0		5.9	
A2	0.90		1.30	35.4		51.2	
b	0.22		0.38	8.6		14.9	
С	0.09		0.20	3.5		7.8	
D	2.80		3.00	110.2		118.1	
E	2.60		3.00	102.3		118.1	
E1	1.50		1.75	59.0		68.8	
L	0.35		0.55	13.8		21.6	
е		0.65			25.6		
e1		1.95			76.7		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com