Linear Operators on Kleene Algebras

1 Introduction

1.1 Algebraic Structures

Definition 1 (Monoid). A monoid is a set S with a binary operation $\circ: S \times S \to S$ (multiplication) with the following axioms:

- $(1) \circ is associative.$
- (2) There exists an identity element $e \in S$ such that:

$$\forall a \in S : e \circ a = a = a \circ e$$

Definition 2 (Semiring). A semiring is a set R with two binary operations $+: R \times R \to R$ (addition) and $\cdot: R \times R \to R$ (multiplication) with the following axioms:

- (1) (R, +) is a commutative monoid with identity 0.
- (2) (R, \cdot) is a monoid with identity 1.
- (3) Multiplication left and right distributes over addition.
- (4) Multiplication by 0 annihilates R.

Definition 3 (Left Module Over a Semiring). A left module M over a semiring R is a set with two binary operations $+: M \times M \to M$ (addition) and $\cdot: R \times M \to M$ (scalar multiplication) with the following axioms:

- (1) (M, +) is an abelian group.
- (2) For all $s, r \in R$ and $x, y \in M$:

$$r \cdot (x + y) = (r \cdot x) + (r \cdot y)$$
$$(r + s) \cdot x = (r \cdot x) + (s \cdot x)$$
$$(r \cdot s) \cdot x = r \cdot (s \cdot x)$$
$$1_R \cdot x = x$$

Definition 4 (Right Module Over a Semiring). A right module would be defined similarly, except all instances of scalar multiplication happen on the right side.

Definition 5 (Bimodule Over a Semiring). A bimodule is a module that is both a left module and a right module with respect to scalar multiplication.

2 Linear Transformation

From linear algebra, a linear transformation (operator, map, mapping, function) is a homomorphism $T\colon V\to W$ between two modules V and W with respect to addition and scalar multiplication.