Fonctions à plusieurs variables

Mise à jour du cours du 05/02

Mercredi 14 février 2018

1 Dérivées partielles. Fonction de classe C^1

Notation:

On note ||.|| la norme $||.||_{\infty}$ sur \mathbb{R}^n .

Soit U un ouvert de \mathbb{R}^2 , $f: U \longrightarrow \mathbb{R}$, $(x, y) \mapsto f(x, y)$

Soit $a = (a_1, a_2) \in U$, $\exists r > 0$ tel que $B(a, r) = \{x, ||x - a||_{\infty} < r\} \subset U$. Donc $\{(x_1, x_2) \in \mathbb{R}^2, ||x_1 - a_1|, |x_2 - a_2|]\} \subset U$.

Considérons $x_1 \longrightarrow f(x_1, a_2) \stackrel{def}{=} \varphi(x_1), |a_1 - r, a_1 + r| \longrightarrow \mathbb{R}.$

Si $x_1 \longrightarrow \varphi(x_1)$ est dérivable en $x_1 = a_1$ on dira que f admet une dérivée partielle par rapport à la variable x_1 au point a, on écrira $\frac{\partial f}{\partial x_1}(a) \stackrel{def}{=} \varphi'(a_1)$.

De même, si on définit pour $x_2 \in]a_2 - r$, $a_2 + r[$, $\psi(x_2) = f(a_1, x_2)$ et si ψ est dérivable en a_2 , on dira que f admet une dérivée partielle par rapport à x_2 au point a. On posera $\frac{\partial f}{\partial x_2}(a) = \psi'(a_2)$.

Soit U un ouvert de \mathbb{R}^n , $a \in U$, r > 0 tel que $B(a,r) \subset U$, pour $j \in \{1,...,n\}$ soit $\alpha_j :]a_j - r$, $a_j + r[\longrightarrow B(a,r)$.

Définition:

On dit que f admet une dérivée partielle par rapport à la j-ième variable au point $a \iff$ la fonction $t \mapsto f \circ \alpha_j(t), \ |a_j - r, \ a_j + r[\longrightarrow \mathbb{R}, \ \text{est dérivable au point } t = a_j.$

On note $\frac{\partial f}{\partial x_j}(a) \stackrel{def}{=} (f \circ \alpha_j)'(a_j)$. Si f admet une dérivée partielle par rapport à la j-ième variable en tout point $x \in U$, on peut définir une fonction $\frac{\partial f}{\partial x_j} : U \longrightarrow \mathbb{R}, \ x \mapsto \frac{\partial f}{\partial x_j}(x)$.

Principe de calcul:

Pour calculer une dérivée partielle par rapport à la variable x_j , on fixe les autres variables, et on est ramené au calcul de la dérivée d'une fonction de la seule variable x_j .

$\mathbf{E}\mathbf{x}$:

$$U = \{(x, y, z) \in \mathbb{R}^2, z > 0\}$$
 posons $f(x, y, z) = yz^x = e^{x\ln(z)}$

Dérivées partielles par rapport à x en un point $(x_0, y_0, z_0) \in U$. On fixe $y = y_0, z = z_0$ et on considère $x \mapsto f(x, y_0, z_0) = \underbrace{y_0 e^{x \ln(z_0)}}_{\varphi(x)}$ On aura $\frac{\partial f}{\partial x}(x_0, y_0, z_0) = \varphi'(x_0)$. Or $\varphi'(x) = y_0(\ln(z_0)e^{x \ln(z_0)}, \text{ donc } \frac{\partial f}{\partial x}(x_0, y_0, z_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0)$

 $y_0(\ln(z_0))e^{x_0\ln(z_0)} = y_0\ln(z_0)z_0^{x_0}$

Dérivées partielles par rapport à y. On fixe $x=x_0,\,z=z_0$. On considère $y\longrightarrow \psi(y)=ye^{x_0\ln(z_0)}$. On a $\psi'(y)=e^{x_0\ln(z_0)}=z_0^{x_0}$. Donc $\frac{\partial f}{\partial y}(x_0,y_0,z_0)=z_0^{x_0}$.

Dérivée partielle par rapport à z. On fixe $x=x_0, y=y_0$. On considère $z\mapsto \theta(z)=y_0e^{x_0\ln(z)}$]0, $+\infty$ [\longrightarrow \mathbb{R} . Alors θ est dérivable et $\theta'(z)=y_0x(\ln(z))'e^{x_0\ln(z)}=y_0\frac{x_0}{z}e^{x_0\ln(z)}=y_0x_0z^{x_0-1}$, donc $\frac{\partial f}{\partial z}(x_0,y_0,z_0)=y_0x_0z^{x_0-1}$. Généralisation de la définition :

Soient
$$U$$
 un ouvert de \mathbb{R}^n , $f: \longrightarrow \mathbb{R}^p$. On écrit $f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_p(x) \end{bmatrix} \in \mathbb{R}^p$, et f_i est une fonction $f_i: U \longrightarrow \mathbb{R}$,

Définition:

Soit $a \in U$. On dit que f admet une dérivée partielle par rapport à la variable x_j en $a \in U \iff \forall i \in I$

$$\{1,...,p\},\ f_i$$
 admet une dérivée partielle par rapport à x_j en a . On note $\frac{\partial f}{\partial x_j}(a) = \begin{bmatrix} \frac{\partial f}{\partial x_j}(a) \\ \vdots \\ \frac{\partial f_p}{\partial x_j}(a) \end{bmatrix} \in \mathbb{R}^p$.

Définition:

Soient U un ouvert de \mathbb{R}^n , $f:U\longrightarrow\mathbb{R}^p$, on dit que f est C^1 sur $U\Longleftrightarrow$

 $i/ \ \forall \ j \in \{1,...,n\}$ f admet une dérivée partielle par rapport à x_j en tout point $x \in U$, et $ii/ \ \forall \ j \in \{1,...,n\}, \ x \mapsto \frac{\partial f}{\partial x_j}(x), \ U \longrightarrow \mathbb{R}^p$, est continue.

$\mathbf{E}\mathbf{x}$:

$$U = \{(x, y, z) \in \mathbb{R}^3, z > 0\}, f(x, y, z) = ye^{x\ln(z)}.$$

On a vu que $\frac{\partial f}{\partial x}(x,y,z)=y\ln(z)e^{x\ln(z)}$ $\frac{\partial f}{\partial y}(x,y,z)=e^{x\ln(z)}$ $\frac{\partial f}{\partial z}(x,y,z)=y\frac{yx}{z}e^{x\ln(z)}$ continues sur U (comme composées de fonctions continues). Donc f est C^1 sur U.

Ex:

Pour $(x, y) \in \mathbb{R}^2$, posons $f(x, y) = \frac{xy}{x^2 + y^2}$ si $(x, y) \neq (0, 0)$ et f(0, 0) = 0.

Vérifions que $\frac{\partial f}{\partial x}(x_0, y_0)$, $\frac{\partial f}{\partial y}(x_0, y_0)$, existent en tout point de \mathbb{R}^2 . Soit $(x_0, y_0) \neq (0, 0)$. Considérons $x \mapsto \frac{xy_0}{x^2 + y_0^2} = \varphi(x)$.

Si $y_0 \neq 0$, le dénominateur ne s'annule pas $\forall x \in \mathbb{R}$ donc φ est dérivable en tout point et $\varphi'(x) = \frac{y_0}{x^2 + y_0^2} - \frac{2x^2y_0}{(x^2 + y_0^2)^2}$

Si $y_0 = 0$, $\varphi(x) = 0$ est donc dérivable en $x_0 \neq 0$, donc $\varphi'(x_0) = 0$. Donc $\forall (x_0, y_0) \in U = \mathbb{R}^2 - \{(0, 0)\}$, $\frac{\partial f}{\partial x}(x_0, y_0)$ existe et vaut $\frac{y_0}{x_0^2 + y_0^2} - \frac{2x_0^2 y_0}{(x_0^2 + y_0^2)^2}$. De même, $\forall (x_0, y_0) \in U$, $\frac{\partial f}{\partial y}(x_0, y_0)$ existe et vaut $\frac{x_0}{x_0^2 + y_0^2} - \frac{2y_0^2 x_0}{(x_0^2 + y_0^2)^2}$.

De plus $(x,y) \longrightarrow \frac{\partial f}{\partial x}(x,y)$, $(x,y) \longrightarrow \frac{\partial f}{\partial y}(x,y)$ sont continues sur U. (Ce sont des composées de fonctions continues, comme les dénominateurs ne s'annulent pas sur U). Donc f est de classe C^1 sur U.

Cas du point (0, 0): On a f(x, 0) = 0, $\forall x \in \mathbb{R}$. Donc $x \mapsto f(x, 0)$ est dérivable et donc $\frac{\partial f}{\partial x}(0, 0)$ existe et vaut 0. De même $\frac{\partial f}{\partial x}(0, 0)$ existe et vaut 0. Donc $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ existent en tout point de \mathbb{R}^2 .

Par contre, f n'est pas de classe C^1 sur \mathbb{R}^2 . Considérons pour $y \neq 0$, $\frac{\partial f}{\partial x}(0, y) = \frac{1}{y}$ n'est pas continue en y = 0. Donc f n'est pas C^1 sur \mathbb{R}^2 .

Remarque:

On a vu que f n'est pas continue en (0, 0).

Rappel:

Soient I un intervalle ouvert, $I \subset \mathbb{R}$, $a \in I$, $f : I \longrightarrow \mathbb{R}$. f est dérivable en a, de dérivée $f'(a) \Longleftrightarrow$

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=f'(a)\Longleftrightarrow \forall\ \varepsilon>0,\ \exists\ \eta>0\ \mathrm{et}\ \forall\ h\ \mathrm{tel}\ \mathrm{que}\ a+h\in I\ \mathrm{et}\ |h|<\eta,\ \mathrm{on}\ \mathrm{a}$$

$$|f(a+h) - f(a) - f'(a)h| \le \varepsilon |h|$$
 (*)

Notation:

Soient U un ouvert d'un e.v.n, F un e.v.n, $f:U\longrightarrow F, g:U\longrightarrow \mathbb{R}_+$.

- On écrit
$$f = \mathcal{O}(g), x \mapsto a \iff \exists C > 0, \exists r > 0$$
 tel que $B(a,r) \subset U$ et que $\forall x \in B(a,r), C \in \mathcal{C}(G)$

$$||f(x)||_F \leqslant Cg(x),$$

- On écrit
$$f = o(g)$$
, $x \mapsto a \iff \forall \varepsilon > 0$, $\exists r > 0$ tel que $B(a,r) \subset U$ et que $\forall x \in B(a,r)$, $||f(x)||_F ≤ \varepsilon g(x)$.

On peut réecrire (*) sous la forme $f(a+h)-f(a)-f'(a)h=o(|h|),\,h\longrightarrow 0.$

${ m Proposition}:$

Soit U un ouvert de \mathbb{R}^n , $f:U\longrightarrow\mathbb{R}$ une application C^1 . Soit $a\in U$. Alors pour tout $h\in\mathbb{R}^n$,

$$f(a+h) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(a)h_j = o(||h||), h \longrightarrow 0.$$

Donc $\forall \ \varepsilon > 0, \ \exists \ \eta > 0 \ \text{tel que} \ \forall \ h \ \text{avec} \ a + h \in I \ \text{et} \ |h| < \eta, \ \text{on a} \ |f(a+h) - f(a) - \sum_{j=1}^n \frac{\partial f}{\partial x_j}(a)h_j| \leqslant \varepsilon ||h||.$