Name:

J#:

Date:

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard E1.

Mark:

Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 5 \\ -1 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 0 & -3 \end{bmatrix}$$

Solution:

$$3x_1 - x_2 + x_4 = 5$$
$$-x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 = -3$$

Standard E2.

Mark:

Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & -\frac{2}{3} & -1 & \frac{2}{3} \\ 0 & 2 & 3 & -2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & -1 \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Standard E3.

Mark:

Solve the following linear system.

$$3x + 2y + z = 7$$
$$x + y + z = 1$$
$$-2x + 3z = -11$$

Solution: Let $A = \begin{bmatrix} 3 & 2 & 1 & 7 \\ 1 & 1 & 1 & 1 \\ -2 & 0 & 3 & 11 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$. It follows that the system has exactly one solution: $\begin{bmatrix} 4 & -2 & -1 \end{bmatrix}$

Standard E4.

Mark

Find a basis for the solution set to the homogeneous system of equations

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 0$$
$$x_1 + x_2 - x_3 + 5x_4 = 0$$

Solution: Let $A = \begin{bmatrix} 2 & 3 & -5 & 14 & 0 \\ 1 & 1 & -1 & 5 & 0 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & -3 & 4 & 2 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} -2 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 0 \\ 1 \end{bmatrix} \right\}$.

Standard V1.

Mark:

Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot (f \oplus g) = c \odot f \oplus c \odot g$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $f, g \in \mathcal{P}$, and let $c \in \mathbb{R}$.

$$c \odot (f \oplus q) = c \odot (f' + q') = c(f' + q')' = cf'' + cq'' = cf' \oplus cq' = c \odot f \oplus c \odot q.$$

However, this is not a vector space, as there is no zero vector. Additionally, $1 \odot f \neq f$ for any nonzero polynomial f.

Determine if
$$\begin{bmatrix} 4 \\ -1 \\ 6 \\ -7 \end{bmatrix}$$
 belongs to the span of the set $\left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 4 \\ 3 \end{bmatrix} \right\}$.

Solution: Since

$$RREF \left(\begin{bmatrix} 2 & 4 & | & 4 \\ 0 & -1 & | & -1 \\ -1 & 4 & | & 6 \\ 5 & 3 & | & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \\ 0 & 0 & | & 0 \end{bmatrix}$$

contains the contradiction 0=1, $\begin{bmatrix} 4\\-1\\6\\-7 \end{bmatrix}$ is not a linear combination of the three vectors.

Standard V3.

Determine if the vectors $\begin{bmatrix} 8 \\ 21 \\ -7 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -8 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 4 \\ 11 \\ -5 \end{bmatrix}$ span \mathbb{R}^3 .

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 8 & -3 & -1 & 4 \\ 21 & -8 & -3 & 11 \\ -7 & 3 & 2 & -5 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the rank is less than 3, they do not span \mathbb{R}^3 .

Mark: Standard V4.

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x-x^2)+(x^2)=x\notin W$.

Standard S1.

Mark:

Determine if the set of polynomials $\{x^2 + x, x^2 + 2x - 1, x^2 + 3x - 2\}$ is linearly dependent or linearly independent

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, the set is linearly dependent.

Standard S2.

Determine if the set $\left\{ \begin{bmatrix} 1 & -3 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} -1 & 4 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 3 & 9 \end{bmatrix} \right\}$ is a basis of $M_{2,2}$ or not.

Solution:

RREF
$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ -3 & 4 & 0 & 3 \\ 2 & -1 & 2 & 3 \\ 2 & 1 & 1 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

Standard S3.

Let W be the subspace of \mathcal{P}_3 given by $W = \text{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right)$. Find a basis for

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then a basis is $\{x^3 + x^2 + 2x + 1, 3x^3 - x^2 + 3x - 2\}$.

Standard S4.

Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$. Find the dimension of W.

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix}\right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has two pivot columns, so W has dimension 2.

${\bf Additional\ Notes/Marks}$	
---------------------------------	--