Epiphany-V: A 1024-core 64b SOC

by Andreas Olofsson (ARL presentation, 9/16/16)

Disclaimers

Funded by DARPA under contract HR0011-15-9-0013

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

Distribution: Confidential and proprietary

Adapteva Story

- 2008: Founded (Lexington, MA)
- 2009: 16-core 25 GFLOPS/W 65nm prototype
- 2011: 16-core 25 GFLOPS/W 65nm product
- 2012: 64-core 50 GFLOPS/W 28nm product
- 2012: Parallella Kickstarter campaign
- 2014: Parallella shipped to over 10K users, 200 Universities
- 2016: Tapeout of Epiphany-V: 1024-core 64-bit processor

My story

- Naturalized US Citizen (from Sweden) (15, 10, 8, 10)
- Physics/EE at UPenn
- Found my "calling" (chip design) at 24
- 10 years at Analog Devices designing lower power DSPs
- I love speed and hate inefficiency!

Core

Epiphany Intro

- An array of RISC processors
- Shared distributed memory
- Explicit x/y/z memory addressing
- No hardware caching
- Multiple mesh connected NOCs
- Transparent off-chip NOC scaling

1 GHz RISC Core

Local Memory

Multicore
Framework
Router

Epiphany Programming Models

- Bare Metal
 - C/C++, interrupts, memcpy(), 1 thread/core
- Dataflow/Stream/Message Passing
 - MPI, CAL, BSP, ...
- Accelerator
 - OpenCL
 - OpenMP
 - OpenSHMEM

Does it Work? Yes!

Cores	Value	Author	Model
8	2958 cycles	Ericsson	BOS
16	12 GFLOPS	Ross et al (ARL)	MPI
16	8.7 GFLOPS	Ross et al (ARL)	MPI
16	8.28 GFLOPS	Ross et al (ARL)	MPI
16	2.5 GFLOPS	Ross et al (ARL)	MPI
	8 16 16	 16 12 GFLOPS 16 8.7 GFLOPS 16 8.28 GFLOPS 	8 2958 cycles Ericsson 16 12 GFLOPS Ross et al (ARL) 16 8.7 GFLOPS Ross et al (ARL) 16 8.28 GFLOPS Ross et al (ARL)

Over 100 more publications at: parallella.org/publications

E5 Introduction

- 1024 64-bit RISC processors
- 64-bit memory architecture
- 64/32-bit IEEE floating point support
- 512 Mbit distributed on-chip SRAM
- 3 136-bit wide 2D mesh NOCs
- 1024 programmable I/O signals
- 2052 Independent Power Domains
- Support for up to 1 billion shared memory processors

Area Breakdown

Function	Value (mm^2)	Share of Total Die Area
SRAM	62.4	53.3%
Register File	15.1	12.9%
FPU	11.8	10.1%
NOC	12.1	10.3%
IO Logic / Pads	10.4	8.9%
"Other" Core Stuff	5.77	5.0%

E5 Overview

E5 Layout

E5 Performance (at 1GHz simulated)

Compute:

- FLOAT: 2,048 DPF GFLOPS, SPF 4,096 GFLOPS
- FIXED: 8,192 GOPS

Memory/IO:

- 32 TB/s local memory bandwidth
- 1.5 TB/s bisection NOC bandwidth
- <100ns on-chip communication latency*
- 343 GB/s IO bandwidth (at 250MHz IO clock)

Design Cost Efficiency

Chip	Cost
P100	\$1B?
KNL	\$1B?
Epiphany-V	<\$1M

1000X advantage?! (based on statements from Jen-Hsun Huang and anecdotal Intel data)

Designer Responsibility

Effort (h

14

Design Team

Designer	Responsibility	Effort (hrs)
Contractor A	Floating Point Unit	200
Contractor B	Design Verification engine	200
Contractor C	EDA Tool support	112
Ola Jeppsson	Simulator/SDK	500
Andreas Olofsson	Everything else	4100

Processor Comparison Table

Chip	Company	Nodes	FLOPS	Area	Trans.	Power	Process
P100	Nvidia	56	4.7T	610	15.3B	250W	16FF+
KNL	Intel	72	3.6T	683	7.1B	245W	14nm
Broadwell	Intel	24	1.3T	456	7.2B	165W	14nm
Kilocore	UC-Davis	1000	N/A	64	0.6B	39W	32nm
Epiphany-V	Adapteva	1024	2.0T	117	4.5B	TBD	16FF+

Chip GFLOPS/mm^2 GFLOPS/W W/mm^2 16 Compute Density Comparison (DPF)

Chip	GFLOPS/mm ²	GFLOPS/W	W/mm^2
KNL	5.27	14.69	0.35
P100	7.7	18.8	0.40
Broadwell	2.85	7.88	0.36
Epiphany-V	17.55	100	0.17

Preliminary! Kind of amazing that MIMD beats SIMD...

Processor Density Comparison

Chip	Nodes/mm^2	MB RAM / mm ²
P100	0.09	0.034
KNL	0.11	0.05
Broadwell	0.05	0.15
Epiphany-V	8.75	0.54

80X advantage in processor density!

Minimum Power

Chip	Active	Standby
P100	10W?	>1w?
KNL	10W?	>1w?
Broadwell	10W?	>1W?
Epiphany-V	10mW	100uW

~1000x advantage in minimum active and minimum standby power.

Conclusions

- 100 GFLOPS (DPF) easily achieveable at 16nm
- 100x improvement in cost efficiency demonstrated
- 100x improvement in min active power demonstrated
- Traditional memory hierarchy (DRAM + cache) is dead
- Mesh NOCs is the future
- Exposed physically aware memory hierarchy is the future

Research Help Needed!

- SW "Place and Route" for mesh NOCs (static/dynamic sched)
- Proving scalability for 1024 cores (E5 simulator available)
- Libraries (FFTW/BLAS) for 2D mesh NOCs
- An effective software caching solution