Rec'd PCT/PTC 20 JUN 201

BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 1 6 MAR 2004

WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 25 637.7

Anmeldetag:

06. Juni 2003

Anmelder/Inhaber:

Universität Leipzig, 04109 Leipzig/DE

Bezeichnung:

Verwendung des Gens $\beta6$ und/oder $\beta7$ der

β-Untereinheit von hCG als Marker zur Im-

plantationsdiagnostik

IPC:

02/00

C 12 Q 1/68

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 3. Februar 2004

Deutsches Patent- und Markenamt

Der Präsident

Im_Auftrag

Faust

BEST AVAILABLE COPY

Verwendung des Gens $\beta 6$ und/oder $\beta 7$ der β -Untereinheit von hCG als Marker zur Implantationsdiagnostik

Die Erfindung betrifft die Verwendung eines Gens der β-Untereinheit von humanem Choriongonadotropin (hCG) als Marker für die Implantationsfähigkeit der Uterusschleimhaut (Endometrium) für einen Embryo.

Das der Erfindung zugrunde liegende hCG-Hormonmolekül ist ein Glykoprotein, bestehend aus zwei Untereinheiten αCG und βhCG in nichtkovalenter Bindung (1). Während der Schwangerschaft sezerniert der Trophoblast größere Mengen hCG-Dimer und freie αCG- und βhCG-Moleküle in das Blut. Auch in einigen nicht-trophoblastären Geweben gesunder Menschen wird hCG und/oder seine Untereinheiten in geringen Mengen exprimiert (2-6). Deshalb können im Serum hCG-Konzentrationen von hCG bis 1000 pg/ml und von βhCG bis 100 pg/ml in nichtschwangeren gesunden Personen beobachtet werden (7, 8). Höhere ßhCG-Serumwerte deuten auf einen gonadalen oder nicht-gonadalen Tumor hin und kennzeichnen eine ungünstige Prognose, wie bei Lungen-, Blasen-, Prostata-, Colon-, Nierenzell- und Mammakarzinom beschrieben (5, 9-13). Während das ßCG-Molekül nach bisherigem Kenntnisstand durch ein einziges Gen auf dem Chromosom 6q21.1-q23 codiert wird, wird ßhCG durch sechs nicht-allele Gene βhCG 8 (β8), β7, β5, β3, β1 und β2 als einem Gencluster auf dem Chromosom 19q13.3 codiert. Ein weiteres β hCG-Gen β 6 ist ein Allel von β 7 mit Differenzen in der 5'-nichttranslatierten Sequenz des Promotorgens (Exon 1 des βhCG). Nur die Gene β8, β 7, β 6, β 5 und β 3 codieren ein β hCG-Proteinmolekül von 145 Aminosäuren (Exon 2 und Exon 3).

Während β 5, β 8 und β 3 an Position 117 (Exon 3) der Aminosäuresequenz das Aspartat (Asp, A) codiert, bildet β 7 und β 6 dort Alanin (Ala, D). Die Gene β 1 und β 2 können zwar auch in einigen Geweben transkribiert werden, codieren aber ein Protein von nur 132 Aminosäuren mit unterschiedlicher Sequenz zum β hCG (14-16).

Während im Trophoblast fast ausschließlich hCG β 5, β 8 und β 3 exprimiert und translatiert wird, wird in einigen normalen, nicht-trophoblastären Geweben (Mamma, Lunge, Prostata, Skelettmuskulatur, Blase, Colon, Uterus u. a.) nur hCG β 7 und β 6 in geringem Umfang translatiert (17). Andererseits scheint im neoplastischen Trophoblast

(Chorioncarcinom) verstärkt hCG β 7, β 6 und in einigen neoplastischen nichttrophoblastären Geweben zusätzlich hCG β 5, β 8 und β 3 exprimiert zu werden.

In der Vergangenheit sind verschiedene Studien mit dem Ziel durchgeführt worden, die β hCG-Transkripte in verschiedenen normalen und neoplastischen Geweben nichttrophoblastärer Herkunft mit semiquantitativer Methode nachzuweisen (5, 11, 12, 18). Diese Methoden zeigen, daß β 7, β 5, β 8 und β 3 in normaler Plazenta (19), gesunden Testes (6), aber auch neoplastischen Testes (20) und neoplastischem Blasengewebe (21) transkribiert, aber in den verschiedenen Studien aber zwischen β 7 sowie β 5, β 8, β 3 nicht unterschieden wird.

In einer Arbeit (9) wird die Anwesenheit von β 7 im normalen und von β 8, β 5, β 3 in magnem Blasengewebe durch spezifische Restriktionsenzyme für die Erkennung einzelner Transkripte nachgewiesen.

Eine weitere Arbeit bestimmt die Überexpression von $\beta5$, $\beta8$, $\beta3$ im maligne transformierten nicht-trophoblastären Gewebe durch den ermittelten Transformationsindex, bestehend im Verhältnis zwischen der Expression von Gen $\beta5$, $\beta8$, $\beta3$ zur Gesamt-expression aller βhCG -Gene im selben Gewebe. Er wird mit Primern zwischen Exon 2 und Exon 3 erfaßt, die die Punktmutation C117 in der C-terminalen Region des βhCG im Exon 3 erkennen (17). Bisher wird diese Punktmutation Asp - Ala in Position 117 der βhCG -Aminosäureketten im genannten Quotient als diagnostischer Parameter der neoplastische Transformationen genutzt.

Eine Tumoridentifizierung durch Analyse der Sekretionsprodukte, insbesondere der Nutzung des hCG als Indikator für eine Krebserkrankung, zeigt eine französische Arbeitsgruppe bereits 1996. Beschrieben wird von Bellet et al. (17), daß die β -Untereinheit von hCG durch vier nicht-allele β hCG-Gene codiert wird. Zu den wesentlichen Erkenntnissen gehört, daß die maligne Transformation nicht-trophoblastären Gewebes stets mit der Expression von β hCG-Genen verbunden ist, die im Trophoblast normal transkribiert werden. Die Erforschung der β hCG-Gene, die durch nicht-trophoblastäres Gewebe exprimiert werden, führt zu dem Ergebnis: normales nicht-trophoblastäres Gewebe exprimiert nur β hCG-Gene vom Typ I (hCG β 7, β 6), während nach maligner

Transformation auch β hCG-Gene vom Typ II (hCG β 5, β 8, β 3) exprimiert wird. Der dazu verwendete CG117-Assay ist empfindlich genug, spezifisch eine auch nur geringe Menge vom β hCG-Transkript des Typs II zu erkennen, wodurch es möglich ist, Tumorgewebe im Umfeld von normalem Gewebe zu identifizieren.

In US-PS 6,194,154 wird ein Verfahren zur Bestimmung der malignen Transformation humaner Zellen beschrieben, das die Überexpression von β 3, β 5, β 8 und β 9-mRNA, welche die hCG- β -Kette codieren, mit deren Expression von β 7, β 6 in nicht-malignen Zellen vergleicht. Bestimmt wird auch die Steigerung der mRNA-Expression von β 3, β 5, β 8 und β 9-Genen im Verhältnis zur Gesamt- β -Genexpression in den malignen Zellen. Weiterhin wird ausgeführt, daß die Punktmutation in der mRNA-Nukleotidsequenz von Position 775 für β 5, β 8, β 3 ein A und für β 7, β 5 ein C anzeigt und in der Aminosäure-position 117 somit Aspartat (Asp, D) oder Alanin (Ala, A) codiert. Auf dieser Basis baut sich ein Testkit auf, der Verbreitung gefunden hat.

WO 0190344 nimmt Bezug auf den Promotor, Enhancer und andere Regulatoren, die die Expression des Proteins β hCG im testikulären Karzinom kontrollieren. Weiterhin erfolgen Ausführungen zur Gentherapie unter Einschleusung von Promotorgen- β hCG-DNA in verschiedene Zellen, z.B. in Liposomen. Das β hCG-Protein wird in verschiedenen Tumorgeweben als diagnostischer Parameter verwendet.

Die Recherchen zeigen die intensive Forschung über das humane Choriongonadotropin und die Differenzierung seiner β -Untereinheiten in Gensequenzen, denen unterschiedliche Eigenschaften zugeschrieben werden. Bisher sind die Gene β 6 und β 7 zur Implantationsdiagnostik nicht eingesetzt worden.

Unter Implantationsdiagnostik wird das Erkennen der Möglichkeit verstanden, daß für eine befruchtete Eizelle in der Uterusschleimhaut die Voraussetzung besteht, sich einzubetten und dort nachfolgend zu wachsen.

Die Erfindung hat das Ziel, ein Verfahren zur Implantationsdiagnostik anzugeben, das zuverlässig arbeitet, die Patientin nur gering belastet und einfach und schnell in seiner Durchführung ist.

Der Erfindung liegt die wissenschaftliche Erkenntnis zugrunde, daß ein zuverlässiger Indikator für eine mögliche erfolgreiche Implantation die Bewertung des Anteils der exprimierten 5'-nichttranslatierenden Promotorsequenzen des βhCG (Exon 1) von βhCG-

Gen β7, β6 absolut oder relativ zu β5, β8, β3 darstellt.

Die Gene hCG β 7 und β 6 des Genclusters werden hauptsächlich im normalen sekretorischen Epithelium der Uterusschleimhaut exprimiert. Die Gene hCG β 5, β 8, β 3 des Genclusters werden im normalen Trophoblast und im karzinom-transformierten Epithelium exprimiert. Lymphozyten (CD3) und Monozyten (CD14) exprimieren bei Normalpersonen hCG β 7 und β 6.

Zur Implantationsdiagnostik ist die Bestimmung von hCG β 6 und des allelen Gens β 7 prforderlich. Es wurde erkannt, daß deren Gehalt im körpereigenen epithelialen Gewebe oder Blutzellen den Erfolg einer Implantation wesentlich bestimmt, und daß deshalb die Kenntnis der Menge an hCG β 7 und β 6 absolut oder relativ betrachtet in Kenntnis des Quotienten aus hCG β 7, β 6 als Zähler und hCG β 5, β 8, β 3 als Nenner Aufschluß über den erfolgversprechenden Implantationsmoment gibt.

Zur Bestimmung des hCG β 7, β 6- und des hCG β 5, β 8, β 3-Anteils ist die quantitative RT-PCR geeignet.

Bei den Forschungsarbeiten wurde überraschenderweise gefunden, daß das Gen β wie das allele Gen β 7 nicht vollständig mit dem Gen übereinstimmen, das im Endometrium gebildet wird und von uns die Bezeichnung Gen β 6e erhält. Sein Aufbau ist von uns in SEQ ID NO 7 als Sequenz Endo beschrieben.

Dieses Gen β 6e (Endometrium) spielt eine wichtige Rolle in der Implantationsdiagnostik und wird deshalb hier angegeben.

Die Erfindung bezieht sich deshalb auch auf das Gen ß6e als solches und seine Verwendung als Implantationsindikator.

Dazu werden 4 bis 6 Tage nach der Ovulation Zellen mit einem Minikatheter aus der Gebärmutterhöhle, mit einem Wattebausch aus der Zervix oder mit einem Holzspatel

von der Mundschleimhaut gewonnen bzw. peripheres EDTA- bzw. Heparinblut entnommen. Aus den aufgenommenen Zellen wird die mRNA von ehCG isoliert, die cDNA amplifiziert und im RT-PCR-Prozeß quantitativ bestimmt.

Ein Nachweis der mRNA von ehCG zeigt an, daß sich das Endometrium in Richtung einer Implantationsreife differenziert.

Die Erfindung wird durchgeführt, wie in Anspruch 1 bis 7 beschrieben.

Die Erfindung wird nachstehend in Ausführungsbeispielen näher erläutert, ohne auf diese beschränkt zu sein.

Ausführungsbeispiel 1

Der Patientin werden zur Diagnostik Zellen mit einem Minikatheter aus der Gebärmutterhöhle oder mit einem Wattebausch aus der Zervix oder mit einem Holzspatel von der Mundschleimhaut entnommen. Die Zellen werden bis zur Weiterverarbeitung sofort bei minus 80° C eingefroren und gelagert. Zur Analyse wird aus den aufgenommenen Zellen eine Trizol-RNA-Extraktion durchgeführt, die cDNA des endometrialen hCG (ehCG) im nachfolgenden RT-PCR-Prozeß spezifisch amplifiziert und quantitativ erfaßt.

Es kann davon ausgegangen werden, daß die Anwesenheit von hCG β7, β86 und β6e ein Indikator für die optimale Implantation darstellt. Das Fehlen von hCG β7, β6 und β6e zeigt das Gegenteil an: eine mögliche Implantation kann in diesem menstruellen Zyklus ausgeschlossen werden. Von besonderer Bedeutung ist der Fakt, daß mit der βhCG-Diagnostik fehlendes oder hochaufgebautes sekretorisches Endometrium erkannt werden kann, so daß die Diagnose auch einen Therapiehinweis gibt. Zu beachten ist, daß hCG β6 und β6e im wesentlichen durch hCG β7 repräsentiert wird (vier Nukleotiddifferenzen im Exon 1). Andererseits kann der Nachweis von erhöhtem hCG β5, β8, und β3 im endometrialen Gewebe oder deren Zellen einen Hinweis auf eine Tumorerkrankung darstellen. Die Gewebeproben können auch analog nach der Methode der fraktionierten Abrasio gewonnen werden.

Endometriales Gewebe oder Zellen dieser Herkunft (10 - 100 mg) werden sofort nach Entnahme in Flüssigstickstoff oder bei -80° C eingefroren. Für die Untersuchung der drei exprimierten Anteile hCG β 7, β 6 und β 6e sowie hCG β 8, β 5, β 3 und Gesamt- β hCG wird die Total-RNA mit Trizol extrahiert und etwa 1 μ g der RNA für 60 min bei 42° C unter Standardbedingungen und Einsatz von Oligo-dT(15)-Primer reverse-transkribiert.

Nutzung von Methoden: Gewebeentnahme zur Diagnostik, Lagerung in Flüssigstickstoff, RNA-Extraktion (23), RT-PCR mit fluoreszenzmarkiertem Primerpaar, Erfassung der Gesamt-ßhCG-Expression β 5, β 8, β 3 und β 7, β 6 und β 6e über Exon1, Exon 2 und Exon 3, nested PCR mit unterschiedlich fluoreszenzmarkierten Primern jeweils für den β 7, β 6, β 6e- und eventuell β 5, β 8, β 3-Anteil; quantitative Auswertung als Quotient von β 7, β 6, β 6e-Anteil zum Gesamt-hCG-Anteil β 7, β 6- plus β 5, β 8, β 3-Anteil für die Bewertung des hochaufgebauten sekretorischen endometrialen Gewebes, Ergebnis 1 bei Normalgewebe und Ergebnis > 0 bis 1 unterwertigem oder fehlenden sekretorisch trandformierten Gewebes im Ausführungsbeispiel 1; absolute quantitative Auswertung der exprimierten Kopienzahlen für die genspezifischen β hCG-Amplifikate β 7, β 6, β 6e und Gesamt- β hCG nach Real time-RT-PCR im Vergleich zu β hCG-sequenzspezifischen Kalibratoren bei nicht-fluoreszenzmarkierten Primern für die Bewertung des normalen und neoplastischen Gewebes im Ausführungsbeispiel 2.

Nutzung von Geräten und Material: Gewebe in Flüssigstickstoff, Ultra Turrax-Gewebehomogenisation, Trizol-RNA-Extraktion, RT-PCR am Thermocycler, Fluoreszenzmessung des cDNA-Amplifikates am DNA Sequencer ABI 373A, Software Genescan 672 Fragment Analysis zur Auswertung, Flüssigstickstoff, Trizol, cDNA-Synthese-Kit, PCR-Amplifikationskit, βhCG-Primer für Gesamt-βhCG-Amplifikation und nested PCR für β7, β6, β6e und β5, β8, β3 zum Teil fluoreszenzmarkiert.

Beschreibung der Methode für Ausführungsbeispiel 1:

Extraktion der Gesamt-RNA: Das frische Gewebematerial wird sofort nach der Entnahme in Flüssigstickstoff eingefroren. Die Gesamt-RNA wird mit der Methode nach Chomczynski und Sacchi (24) extrahiert, die gewonnene RNA spektrophotometrisch bei 260 nm / 280 nm quantifiziert, sofort weiterbearbeitet oder bei - 80° C gelagert.

Auswahl der Oligonukleotidprimer: Die in der Abb. 1 aufgeführten Oligonukleotidprimer wurden derart ausgewählt, daß sie unter Verwendung der Gesamt-RNA und der RT-PCR Methode in einem ersten Amplifikationsschritt die gesamten ßhCG Transkripte $\beta 5$, $\beta 8$, $\beta 3$ und auch $\beta 7$, $\beta 6$ in gleicher Effizienz darstellen. Die gewählten Primer 1 und Primer 2 schließen die βLH -Amplifikation wegen eines differenten Nukleotid-Tripletts aus. Im folgenden nested PCR-Schritt wird unter Verwendung Primer 4 und Primer 2 das Transkript $\beta 7$, $\beta 6$, $\beta 6$ e und eventuell mit Primer 3 und Primer 2 das Transkript $\beta 5$, $\beta 8$, $\beta 8$ amplifiziert.

Reverse-Transkription: 1 µg Gesamt-RNA wird in einem Reaktionsmix mit dem Total-volumen von 5 µl nach der Standardmethode transkribiert: 10 mM Tris-HCl, pH 8,3, 50 mM KCl, 5 mM MgCl₂, 1mM jedes dNTP (dATP, dTTP, dCTP, dGTP), 200 ng Oligo dT-Primer pdT15, 12,5 U RNAse Inhibitor, 2,5 U AMV-Revertase. Inkubation des Reaktionsgemisches für 10 min bei 25 °C (Hybridisierung des Primers), 30 min bei 42 °C (Reversetranskription) und 5 min bei 95 °C (Denaturierung der Revertase und des RNAse-Inhibitors) sowie Abkühlen auf 4 °C.

PCR-Amplifikation der gesamten ßhCG-Transkripte: Zum cDNA-Produkt wird im selben Tube der PCR-Mix von 20 μl im Gesamtvolumen von 25 μl für die Amplifikation des Gesamt-ßhCG-Transkriptes zugegeben: Endkonzentration von 10 mM Tris-HCl mit pH 8,3, 50 mM KCl, 1,5 mM MgCl₂, 200 μM dNTP, 5 pmol Primer 1, 5 pmol Primer 2 und 2,5 U Taq-DNA-Polymerase. Die Amplifikationsbedingungen sind nach vorheriger 3 min-Inkubation bei 95 °C dann 30 sec 95 °C, 30 sec 65 °C, 60 sec 72 °C für 35 Zyklen mit abschließenden 7 min bei 72 °C und schnellem Abkühlen auf 4 °C.

Nested PCR nach der COP-Methode für ßhCG ß7, ß6- und ß5, ß8, ß3-Transkripte: 2 µl des 1:10.000 verdünnten PCR-Produktes werden zu einem Gesamtvolumen von 20 µl in ein PCR-Mix mit dem Endvolumen von 10 mM Tris-HCl, pH 8,3, 10 mM KCl, 3 mM MgCl₂, 50 µM dNTP, 0,1pmol Primer 2, 0,1 pmol Primer 3, 0,1 pmol des Primers 4 und 2 U Stoffel-Fragment Taq DNA Polymerase zugefügt. Die COP-Reaktion wird über 5 Zyklen am Thermocycler für je 30 sec bei 95 °C und 30 sec bei 65 °C durchgeführt.

Das erhaltene Produkt enthält die zwei Amplifikationsprodukte für ßhCG ß7, ß6, ß6e und eventuell von hCG ß5, ß8, ß3 mit je einem differenten Fluoreszenzmarker für Pri-

mer 4 und Primer 3, und beide Transkripte enthalten zusätzlich einen dritten gemeinsamen Fluoreszenzmarker des Primers 2

Für die Analyse am DNA Sequenzer (Perkin-Elmerm Modell 373A) werden 2,5 μ l des Produktes mit 2 μ l Loading buffer und 0,5 μ l Genescan Size Marker und der Elpho bei 8 % Acrylamid, 6 M Harnstoff und TBE-Puffer für 1 Stunde unterzogen. Die Ergebnisse werden mit der GeneScan 672 Software (Perkin-Elmer) analysiert unter Verwendung der ermittelten Fluoreszenzen für Gesamt- β hCG-Transkripte und den β 7, β 6, β 6e- sowie eventuell den β 5, β 8, β 3-Fragmenten.

Der Transkriptionsindex wird, wie bei Bellet et al. (17) beschrieben nach dieser Methode errechnet.

Ausführungsbeispiel 2

In diesem Ausführungsbeispiel wird die absolute quantitative Auswertung der exprimierten Kopienzahlen für die genspezifischen β hCG-Amplifikate β 7, β 6, β 6e und eventuell β hCG β 5, β 8, β 3 nach Real time-RT-PCR im Vergleich zu β hCG-spezifischen Kalibratoren bei nicht-fluoreszenzmarkierten β hCG-Primern für die Bewertung des normalen hochaufgebauten oder unterwertigen oder fehlenden sekretorisch transformierten endemetrialen Gewebes dargestellt.

Zur quantitativen Bestimmung der drei obengenannten βhCG-Expressionsanteile wird die Real time-PCR am Light Cycler (Roche) oder vergleichbaren Geräten anderer Firmen für die Amplifikation der Tumor-cDNA eingesetzt. Für die Synthese der RNA-Standards der drei βhCG-Expressionsanteile β7, β6, β6e sowie eventuell β5, β8, β3 und das Gesamt-βhCG werden die drei Kalibrationsfragmente unter Standard-PCR-Bedingungen aus Tumor-cDNA amplifiziert. Dafür werden wieder die drei genannten, jetzt unmarkierten βhCG Typ II-, βhCG Typ I- und Gesamt-βhCG-spezifischen forward-βhCG-Primer (Primer 1, 3 und 4) mit dem gemeinsamen reverse-βhCG-Primer (Primer 2) benutzt. Die erhaltenen PCR-Produkte werden im Plasmid-Vector pGEM-T geklont. Unter Verwendung der T7- und Sp6-Promotoren der pGEM-T-Vectors dient das Plas-

mid als Template für die in vitro-Bildung von RNA entsprechend des Herstellerprotokolls. Die gebildeten Standard-RNA werden gereinigt und seine Konzentration vermessen.

Die Real time-PCR-Amplifikation am Light Cycler (Roche) bestimmt die Anzahl der gebildeter Genkopien für die zwei genspezifischen βhCG -Expressionsgruppen Typ II ($\beta 8$, $\beta 5$, $\beta 3$) und Typ I ($\beta 7$, $\beta 6$) sowie Gesamt- βhCG im endometrialen Gewebe und in den RNA-Standards. Die PCR-Reaktion erfolgt im 20 μ I-Reaktionsvolumen in den Endkonzentrationen von 1 x PCR-Puffer von 50 mM Tris-HCI (pH 8,3), 200 μ M dNTPs, mit 0,5 μ M der jeweils spezifischen forward- und reverse- βhCG -Primer, 4-5 mM MgCl₂, 0,5 U Taq Polymerase, SYBR Green I mit 1:3000 der Standards bekannter Konzentration).

Die Erfindung beansprucht auch die Real time-Messung als one tube-RT-PCR oder die Verwendung anderer Methoden zur quantitativen Erfassung der Expression von spezifischer Genkopien neben SYBR Green I, wie zum Beipiel der Einsatz von genspezifischen Oligonukleotiden als Hybridisierungsproben mit unterschiedlichen Farbstoffoder Fluoreszenzmarker-Anbindung (TaqMan, FRET, Beacon).

Patentansprüche:

1. Verwendung des Gens β 7 und/oder β 6 der β -Untereinheit von humanem Choriongonadotropin entsprechend SEQ ID No 5 und SEQ ID No 6 als Marker zur Implantationsdiagnostik.

- 2. Verwendung der Gensequenz SEQ ID No 5 und SEQ ID No 6 als Marker zur Bestimmung eines günstigen Zeitpunktes für die Implantation einer befruchteten Eizelle in die Schleimhaut des Uterus durch Feststellen des Gehaltes an hCG β7, β6 und hCG β5, β8, β3 mit der Methode der quantitativen RT-PCR.
- 3. Verwendung *der Primersequenz* von SEQ ID No 4 und 3 oder sequenzversetzt als Marker zur Erfassung des Genclusters hCG β7, β6 oder des Genclusters hCG β5, β8, β3 sowie *der Primersequenz* von SEQ ID No 1 und 2 oder sequenzversetzt zur Erfassung der gesamten βhCG-Genexpression in Gewebe- und Blutzellen für die Feststellung des Gehaltes an hCG β7, β6-mRNA absolut und/oder durch Bildung des Quotienten von hCG β7, β6 zu hCG β5, β8, β3 oder zu hCG β gesamt mittels quantitativer RT-PCR.
- 4. Bestimmung der Implantationsreife der Uterusschleimhaut für einen Embryo durch Messung der hCG β 7, β 6-mRNA-Genexpression im Blut und Gewebe mittels quantitativer RT-PCR absolut oder als dem Quotient aus hCG β 7, β 6 zu β hCG gesamt oder hCG β 5, β 8, β 3.
- 5. Gen β 6e der β -Untereinheit von humanem Choriongonadotropin entsprechend SEQ ID No 7, Endo.
- 6. Verwendung des Gen β 6e der β -Untereinheit von hCG entsprechend SEQ ID No 7, Endo als Marker zur Implantationsdiagnostik.

7. Verwendung des Gen 6e der Untereinheit von hCG entsprechend SEQ ID No 7 und der Primer nach SEQ ID No 1 bis 4 oder sequenzversetzt zur Bestimmung der Implantationsreife der Uterusschleimhaut für einen Embryo durch Feststellen des Gehaltes der βhCG-mRNA-Genexpression β6, β6e, β7 im Blut und Gewebe absolut und/oder dem Bilden des Quotienten aus den Cluster-Anteilen von hCG β6 β6e, β7 zu hCG β5, β8, β3 oder hCG β gesamt mittels quantitativer RT-PCR.

- (1) J.C.Pierce, T.F.Parsons, Annu. Rev. Biochem., 50 (1981) 465-495
- (2) P.A.Rothman, V.A.Chao, M.R. Taylor, R.W.Kuhn, R.B.Jaffe und R.N.Taylor, *Mol.Reprod.Dev.*, **33** (1992) 1-6

- (3) S.Dirnhofer, M.Hermann, A.Hittmair, R.Hoermann, K.Kapelari und P.Berger, J.Clin.Endocrinol.Metab., 81 (1996) 4212-4217
- (4) Z.M.Lei, P.Toth, C.V.Rao und D.Pridham, *J.Clin.Endocrinol.Metab.*, **77** (1993) 863-972
- (5) T.Yokotani, T.Koizumi, R.Taniguchi, T.Nakagawa, T.Isobe, M.Yoshimura, N.Tsubota, K.Hasegawa, N.Ohsawa, S.Baba, H.Yasui und R.Nishimura, Int.J.Cancer, 71 (1997) 539-544
- (6) P.Berger, W.Kranewitter, S.Madersbacher, R.Gerth, S.Geley und S.Dirnhofer, FEBS Lett., 343 (1994) 229-233
- (7) I.Marcilliac, F.Troalen, J.-M.Bidart, P.Ghillani, V.Ribrag, B.Escudier, B.Malassagne, J.P.Droz, C.Lhomme, P.Rougier, P.Duvillard, M.Prade, P.-M.Lugagne et al., Cancer Res., 52 (1992) 3901-3907
- (8) H.Alfthan, C.Haglund, J.Dabek und U.H.Stenman, *Clin.Chem.*, **38** (1992) 1981-1987
- (9) V.Lazar, S.G.Diez, A.Laurent, Y.Giovangrandi, F.Radvanyi, D.Chopin, J.M.Bidart, D.Bellet und M.Vidaut, Cancer Res., 55 (1995) 3735-3738
- (10) P.N.Span, C.M.G.Thomas, J.J.Heuvel, R.R.Bosch, J.A.Schalken, L.Locht, E.J.B.M.Mensink und C.G.J.Sweep, *J.Endocrinol.*, **172** (2002) 489-495

(11) M.Lundin, S.Nordling, J.Lundin, H.Alfthan, U.-H.Stenman und C.Hagund, Int.J.Cancer, 95 (2001) 18-22

- (12) K.Hotakainen, B.Ljungberg, A.Paju, T.Rasmuson, H.Halthan und U.-H.Stenman, *Brit.J.Cancer*, **86** (2001) 185-189
- (13) D.S.Hoon, T.Sarantou, F.Doi, D.D.Chi, C.Kuo, A.J.Conrad, P.Schmid, R.Turner und A.Guiliano, *Int.J.Cancer*, **69** (1996) 369-374
- (14) M.Bo und I.J.Boime, J.Biol.Chem., 267 (1992) 3179-3184
- (15) K.Talmadge, N.C.Vamvakopoulus und J.C.Fiddes, *Nature*, **307** 1984) 37-40
- (16) P.Policastro, C.Ovitt, M.Hoshina, H.Fukuoka, M.R.Boothby und I.Boime, *J.Biol.Chem.*, **258** (1983) b11492-11499
- (17) D.Bellet, V.Lazar, I.Bieche, V.Paradis, Y.Giovangrandi, P.Paterlini, R.Lidereau, P.Bedossa, J.-M.Bidart und M.Vidaut, *Cancer Res.*, **57** (1997) 516-523
- (18) P.K.Hotakainen, E.M.Serlachius, S.I.Lintula, H.V.Halfthan, J.P.Schröder und U.-H.E.Stenman, *Mol.Cell.Endocrinol.*, **162** (2000) 79-85
- (19) A.K.Miller-Lindholm, C.J.Labenz, J.Ramey, E.Bedow und R.Ruddon, *Endocrinology*, **138** (1997) 5459-5465
- (20) S.Madersbacher, C.Kratzik, R.Gerth, S.Dirnhofer und P.Berger, *Cancer Res.*, **54** (1994) 5096-5100
- (21) R.Oyasu, L.Nan, P.Smith und H.Kawamata, *Arch.Pathol.Lab.Med.*, **119** (1994) 715-717

Sequenzprotokoll

SEQ ID NO 1

<110> Universität Leipzig Verwendung des Gens β 6 und/oder β 7 der β -Untereinheit von hCG als <120> Marker zur Implantationsdiagnostik <130> <160> <210> <211> 19 <212> **DNA** <213> βhCG gesamt <221> Lindholm-Miller, A.K., Labenz, C.J., Ramey, J., Bedows, E., Ruddon, <301> R.W., Human Chorionic Gonadotropin-β-Gene Expression in First Trimester <302> **Placenta** Endocrinology 138 (1997) 5459-5465 <303> <304> 138 <305> -12

<400> 1

<306>

<307>

tcacttcacc gtggtctcc (Primer 1, βhCG gesamt)

1 10 ; 19

5459-5465

SEQ ID NO 2

<400>

Universität Leipzig <110> Verwendung des Gens $\beta6$ und/oder $\beta7$ der β -Untereinheit von hCG als <120> Marker zur Implantationsdiagnostik <130> <160> <210> <211> 20 DNA <212> <213> βhCG gesamt <221> Lindholm-Miller, A.K., Labenz, C.J., Ramey, J., Bedows, E., Ruddon, <301> R.W., Human Chorionic Gonadotropin-β-Gene Expression in First Trimester <302> Placenta ¹ Endocrinology 138 (1997) 5459-5465 <303> <304> 138⁻ <305> 12 <306> 5459-5465 <307>

NED - tgcagcacgc gggtcatggt (Primer 2, βhCG gesamt)
tgcagcacgc gggtcatggt
1 10 20

SEQ ID NO 3

<110>	Universität Leip	zig
	•	

<120> Verwendung des Gens β6 und/oder β7 der β-Untereinheit von hCG als Marker zur Implantationsdiagnostik

<130> trophoblastäres hCG β5, β8, β3
<160> 7
<210> 3
<211> \20
<212> DNA

<213> βhCG β5, β8, β3

<221>

<400> 3

HEX - ggaccagtca gaggagaggg (Primer 3, βhCG β5, β8, β3) ggaccagtca gaggagaggg 1 10 20

SEQ ID NO 4

<110> Universität Leipzig

<120> Verwendung des Gens $\beta 6$ und/oder $\beta 7$ der β -Untereinheit von hCG als Marker zur Implantationsdiagnostik

<130> endometriales hCG β 7, β 6, β 6e

<160> 7

<210> 4

·. .

<211> 20

<212> DNA

<213> βhCG β7, β6, β6e

<221>

<400> 4

6FAM - agaccactga ggggagagga (Primer 4, βhCG β7, β6, β6e) agaccactga ggggagagga

- 1.0

<110> Universität Leipzig
<120> Verwendung des Gens β6 und/oder β7 der β-Untereinheit von hCG als
Marker zur Implantationsdiagnostik

<130> <160> <210> <211> 841 <212> DNA <213> βhCG β7 <221> <301> <302> <303> <304> <305> <306> <307>

<308>

<400> 5

(βhCG β7, Sequenz des Gens im Endometrium)

ageaetttee tegggteaeg geeteeteet ggtteecaag acceeaceat aggeagage aggeetteet acaccetaet etetgtgeet ecageetega etagteeta geactegaeg 120 actgagtete agaggteact teacegtggt etcegeetea teettggege tagaceactg 180 aggggagagg actggggtgc tccgctgagc cactcctgtg cctccctggc cttgtctact 240 tetegecece egaagggtta gtgteeaget cacteeagea teetacaace teetggtgge 300 cttgacgccc ccacaaaccc gaggtataaa gccaggtaca ccaggcaggg gacgcaccaa 360 ggatggagat gttccagggg ctgctgctgt tgctgctgct gagcatgggc gggacatggg 420 catccaagga gatgcttcgg ccacggtgcc gccccatcaa tgccaccctg gctgtggaga 480 aggagggctg ccccgtgtgc atcaccgtca acaccaccat ctgtgccggc tactgccca 540 ceatgacecg egtgetgeag ggggteetge eggecetgee teaggtggtg tgcaactace 600 gcgatgtgcg cttcgagtcc atccggctcc ctggctgccc gcgcggcgtg aaccccgtgg 660 tetectacge egtggetete agetgteaat gtgeaetetg eegeegeage accaetgaet 720 gcgggggtcc caaggaccac cccttgacct gtgatgaccc ccgcttccag gcctcctctt 780 cctcaaaggc ccctccccc agccttccaa gtccatcccg actcccgggg ccctcggaca 840 ccccgatcct cccacaataa a 861

SEQ ID No 6

<110> Universität Leipzig <120> Verwendung des Gens

Verwendung des Gens β 6 und/oder β 7 der β -Untereinheit von hCG als

Marker zur Implantationsdiagnostik

<130>

<160> 7

<210> 6

<211> 861

<212> DNA

.<213> βhCG β6

<221>;

<301>

<302>

<303>

<304>

<305>

<306>

<307>

<308>

<400> 6

(βhCG β6, Sequenz des Gens im Endometrium)

agcactttcc tcgggtcacg gcctcctcct ggttcccaag accccaccat aggcagaggc 60 aggeetteet acaccetact etetgtgeet ceageetega etagteeeta acactegaeg 120 actgagtete agaggteact teacegtggt eteegeetea teettggege tagaceactg 180 aggggagagg actggggtgc tecgetgage cacteetgtg cetecetgge ettgtetact 240 tetegecece egaagggtta gtgtegaget caetecagea teetacaace teetggtgge 300 cttgccgccc ccacaaccc gaggtatgaa gccaggtaca ccaggcaggg gacgcaccaa 360 ggatggagat gttccagggg ctgctgctgt tgctgctgct gagcatgggc gggacatggg 420 catccaagga gccacttcgg ccacggtgcc gccccatcaa tgccaccctg gctgtggaga 480 aggagggctg ccccgtgtgc atcaccgtca acaccaccat ctgtgccggc tactgcccca 540 ccatgacccg cgtgctgcag ggggtcctgc cggccctgcc tcaggtggtg tgcaactacc 600 gcgatgtgcg ettcgagtcc atccggctcc ctggctgccc gcgcggcgtg aaccccgtgg 660 tetectacge egtggetete agetgteaat gtgcactetg cegeogeage accaetgact 720 gegggggtee caaggaceae ceettgaeet gtgatgaeee eegetteeag geeteetett 780 cetcaaagge ceetceece ageettecaa gtecateeeg acteeegggg ceeteggaca 840 ccccgatcct cccacaataa a 861

SEQ ID No 7

	,	•	•	•			••
´<11	10> .	Universität L	eipzig	<i>:</i> •		1.	,
<12	20> · '	Verwendung	des Gens β	6 und/oder β	7 der β-Unte	reinheit von h	nCG als
. •	•		mplantations	•		. :	
٠	30.	1	•		•	•	
`<13		<u> </u>	1				
<16		7			٠,	. ,	• .
<2 1		7			•	•	
<21	11> .	861	•			·	
<21	12>	DNA		•	, , ,		
<21	13>	βhCG β6e	(e Endo	o, Endometri	um)		•
<22	21>						
<30)1>			•		•	•
. <30)2> ,		,			• •	
<30)3>		• •			· .	
<30)4>		•	•	. ·		• .
<30)5>			,	•		
<30				•		•	•
<30							
<30					;		•
-30	., ·		• •				
***40	· ~		- .	1 .			
<40	30> 7		βhCG β6e,	Sequenz de	es Gens im E	ndometrium)	, .
		,					
r agca	actttcc	tcgggtcacg	gcctcctcct	gatteceaag	accccaccat	200020200	60
aggo	CCTTCCT	acaccctact	ctctgtgcct	ccaqcctcga	ctagtcccta	gcactcgacg	120 .
aggg	ggagagg	actggggtgc	tcaccgtggt tccgctgagc	cactcctata	cetecetage	cttatctact	180 240
tctc	cgccccc	cgaagggtta	gtgtccagct	cactccagca	tectacaace	tectaataac	300
grat	togagat	gttccagagg	gaggtataaa ctgctgctgt	gccaggtaca	ccaggcaggg	gacgcaccaa	360
Catc	caagga	gatgcttcgg	ccacggtgcc	gccccatcaa	taccacceta	getatagaga	420 480 /
agga	agggctg	ccccgtgtgc	atcaccqtca	acaccaccat	ctataccaac	tactocccca	540
ccat	gacccg	cgtgctgcag	aggatectae	caaccctacc	tcaggtggtg	tecaactacc	600
tete	ctacac	cataactete	atcoggetee	ctggctgccc	gcgcggcgtg	accccgtgg accactgact	660
gcgg	gggtcc	caaggaccac	cccttgacct	graducterg	concttecan	accactgact	720 780
CCTC	caaaggc	ccctccccc	agccttccaa	gtccatcccg	actcccgggg	ccctcqqaca	840
cccc	gatcct	cccacaataa	a	3	229	JJ:	861
	•						

Universitätsfrauenklinik der Universität Leipzig Forschungslabor Humane Reproduktion und Endokrinologie

Transkriptionsstart BhCG LH4 CTT CAA TCC AGC ACT TTG CTC GGG TCA CGG CCT CCT CCT GGC TCC CG5 CTT CAG TCC AGC ACT TTC CTC GGG TCA CGG CCT CCT CCT GGT TCC CG6 CTT CAG TCC AGC ACT TTC CTC GGG TCA CGG CCT CCT CCT GGT TCC CG7 Endo CCT GGT TCC ~360 -330LH4 CAG GAC CCC ACC ATA GGC AGA GGC AGG CCT TCC TAC ACC CTA CTC CCT GTG CCT CCA GGC CAA GAC CCC ACC ATA GGC AGA GGC AGG CCT TCC TAC ACC CTA CTC TCT GTG CCT CCA GCC CG5 CG7 CAA GAC CCC ACC ATA GGC AGA GGC AGG CCT TCC TAC ACC CTA CTC TCT GTG CCT CCA GCC Endo CAA GAC CCC ACC ATA GGC AGA GGC AGG CCT TCC TAC ACC CTA CTC TCT GTG CCT CCA GCC -300 -270T.H4 TCG ACT AGT CCC TAG CAC TCG ACG ACT GAG TCT CTG AGG TCA CUTS CAGG TCA CUTS TCA GEORGE CG5 TCG ACT AGT CCC TAA CAC TCG ACG ACT GAG TCT CAG AGG TCA CTT CAC CGT GGT CTC CGC TCG ACT AGT CCC TAG CAC TCG ACG ACT GAG TCT CAG AGG TCA CTT CAC CGT GGT CTC CGC Endo TCG ACT AGT CCC TAG CAC TCG ACG ACT GAG TCT CAG AGG TCA CTT CAC CGT GGT CTC CGC -240 LH4 'C TC ·C G G Primer 3 G CA CG5 CTC ACC CTT GGC GCT GCA GRACIE AGA GRACIA GGC TGG GGC GCT CCG CTG AGC CAC TCC CG6 CTC ATC CTT GGC GCT AGA CCA CTG AGG GGA GAG GAC TGG GGT GCT CCG CTG AGC CAC TCC CG7 CTC ATC CTT GGC GCT AGA CCA CTC AGG GGA GAG GAC TGG GGT GCT CCG CTG AGC CAC TCC Endo CTC ATC CTT GGC GCT AGA CCA CTG AGG GGA GAG GAC TGG GGT GCT CCG CTG AGC CAC TCC -180 Primer 4 -150С G С G Ά TGC GCC CTG GCC TTG TCT ACC TCT TG- CCC CCG AAG GGT TAG TGT CGA GCT CAC CCC CG6 TGT GCC TCC CTG GCC TTG TCT ACT TCT CGC CCC CCG AAG GGT TAG TGT CGA GCT CAC TCC TGT GCC TCC CTG GCC TTG TCT ACT TCT CGC CCC CCG AAG GGT TAG TGT CCA GCT CAC /TCC ÇĠ7 Endo TGT GCC TCC CTG GCC TTG TCT ACT TCT CGC CCC CCG AAG GGT TAG TGT CCA GCT CAC TCC -120 LH4 . TC CG5 AG- CAT CCT ACA ACC TCC TGG TGG CCT TGC CGC CCC CAC AAC CCC GAG GTA TAA AGC CAG CG6 AG- CAT CCT ACA ACC TCC TGG TGG CCT TGC CGC CCC CAC AAC CCC GAG GTA TGA AGC CAG CG7 AG- CAT CCT ACA ACC TCC TGG TGG CCT TGA CGC CCC CAC AAA CCC GAG GTA TAA AGC CAG endo ag- cat cct aca acc tcc tgg tgg cct tgc cgc ccc cac aaa ccc gag gta taa agc cag -60 LH leu hCG met glu met phe gln ***** Intron ******* CG5 GTA CAC CAG GCA GGG GAC GCA CCA AGG ATG GAG ATG TTC CAG GTA AGA CTG CAG GTA CAC CAG GCA GGG GAC GCA CCA AGG ATG GAG ATG TTC CAG CG7 GTA CAC CAG GCA GGG GAC GCA CCA AGG ATG GAG ATG TTC CAG Endo GTA CAC CAG GCA GGG GAC GCA CCA AGG ATG GAG ATG TTC CAG

-1 +1

•	,		•	. • •																
LH																		21-	•	
hCG LH4	***	* ***	* ***	***	***	gly	lėu	leu	lev	leu	leu	leu	leu	ser	met	ġly	gly	thr	trp	ala
CG5 CG6	• • •	• • •	TTG	TCC	CAG	GGG	CTG	CTG	CTC	TTC	CTG	CTG	CTG	AGC	ATG	GGC	ĞGG	G ACA	TGG	GCA
CG7 Endo				,											•		,	A, A		
. Allac	,				+	16	CTĢ	CTG	CTG	+30		CTG	CTG	AGC	ATG	GGC	GGG	ACA	TGG	GCA +60
٠.		٠.			•			•						•						•
,	1			4			•			10						•				
LH ·	_	arg	ſ	-				trp	1	-his	ł				ile					20 '
hCG	ser	lys	glu	pro	leu	arg	pro	arg	cys			ile	asn	ala	thr	len	ala	TZ2]	alu.	luc
LH4		G		CCG	٠.			·T		A.		-		•	ጥ		,	•		
CG5	TCC	AAG	GAG	CCG	CTT	CGG	CCA	<u>c</u> gg	TGC	CGC	ccc	ATC	AAT	GCC	ACC	CTG	GCT	GTG	GAG	AAG
CG6 CG7	;	A		CCA	•		•	C		G					C	•	•			
Endo	TCC	A AAG	GAG			cee	CCA	C	. 1862 C	G		3000		~~~	C					
				met	-	000	·	CGG	igo	+90		ATC	AAT	GCC	ACC	CIG	GCT	GTG		
•							:						•						7	120
			. •		•	•	•			•				•		•				
LH	21			•		i		•		30	٠,	,				•	•	•		40
hCG	σlu	αlv	CVS	pro	wa İ	CVC	110	+2~	I		4. %				_	_			Prim	er 2
LH4	9	. ä-3	Cyc	, PLO	vaı	cys	ile	CHE	val	asn	tnr	tnr	ıтe	cys	ala	gly	tyr	cys	pro	thr
CG5	GAG	GGC	TGC	CCC	GTG	TGC	ATC	ACC	GTC	AAC	ACC	ACC	ATC	ጥርታቦ	GCC	ccr	ma c	Tree c	ccc	ACC
CG6							•								000	000	inc	160		
CG7										. 1										
Endo	GAG	GGC	TGC	CCC	GTG	TGÇ	ATC	ACC	GTC	AAC	ACC	ACC	ATC	TGT	GCC.	GGC	TAC	TGC	CCC	ACC
	•	•								+150	٠.	• •								+180
						•														
								_				•								
	41							•		٠.	•	•								
LĦ	41				•			•		٠.		•	•		• .					42
hCG	41 met	***	***	***	***	***	***	***	Į	ntro	n.	***		***	***	***	***	***	***	met
hCG LH4	met	***	***	***	***	***	***	***	Ţ	ntro	n.	***	, * * *	***	***	***	***	***	***	_
hCG LH4 CG5	•	*** GTG	*** AGC	*** TGC	*** CCG	*** GGG ⁽	*** CCG	***	Į.	ntro	n ••••	***	•		*** TCA	*** CAC	*** GGC	*** TTC	*** CAG	met thr
hCG LH4	met	*** GTG	*** AGC	*** TGC	*** CCG	*** GGG [*]	*** CCG	***	, T :	ntro	n.	***	•		*** TCA	*** CAC	*** GGC	*** TTC	*** CAG	met thr TG CC
hCG LH4 CG5 CG6	met	*** GTG	*** AGC	*** TGC	*** CCG	*** GGG [*]	*** CCG	***	,	ntro	n.	***	•		*** TCA	*** CAC	*** GGC	*** TTC	*** CAG	met thr TG CC CC
hCG LH4 CG5 CG6 CG7 Endo	met	*** GTG	*** AGC	*** TGC	*** CCG	*** GGG ⁻	*** CCG	***	, 1 ,	ntro	n •••	***	•		*** TCA	*** CAC	*** GGC	*** TTC	٠	met thr TG CC CC CC
hCG LH4 CG5 CG6 CG7 Endo	met	*** GTG	*** AGC	*** TGC	*** CCG	*** GGG ⁽	*** CCG	***	, T :	ntro	n ···	***	•		*** TCA	*** CAC	*** GGC	*** TTC	٠	met thr TG CC CC
hCG LH4 CG5 CG6 CG7 Endo	met	*** GTG	*** AGC	*** TGC	*** CCG	*** GGG ⁺	*** CCG	***		ntro	n	***	•		*** TCA	*** CAC	*** GGC	*** TTC	٠	met thr TG CC CC CC
hCG LH4 CG5 CG6 CG7 Endo	met	*** GTG		*** TGC	1	*** GGG [*]	*** CCG	***	•••	ntro	n ••••	***	•		*** TCA	-	*** GGC	*** TTC	٠	met thr TG CC CC CC
hCG LH4 CG5 CG6 CG7 Endo	met ATG +183	mer	2		ala				pro	•••	•••	•••	ccc	CAC	·	+h	, , ,	60	٠	met thr TG CC CC CC
LH LH LH LH hCG LH4	ATG +183 Pri	wer val	2 leu	gln	ala gly C	val	leu	pro	pro ala	leu	pro	gln	ccc	CAC val	суз	thr	tyr	60 arg	asp	met thr TG CC CC ACC -186
hCG LH4 CG5 CG6 CG7 Endo	ATG +183 Pri	wer val	2 leu	gln	ala gly C	val	leu	pro	pro ala	leu	pro	gln	ccc	CAC val	суз	thr	tyr	60 arg	asp	met thr TG CC CC ACC -186
LH CG5 CG6 CG7 Endo	ATG +183 Pri	wer val	2 leu	gln	ala gly C GGG G	val		pro	pro ala	leu	pro	gln	ccc	CAC val	суз	thr	tyr	60 arg	asp	met thr TG CC CC ACC -186
LH CG5 CG6 CG7 Endo	ATG +183 Pri arg	wer val	2 leu	gln	ala gly C GGG G	val GTC	leu CTG	pro CCG	pro ala c ecc	leu CTG	pro	gln CAG	val GTG	Val GTG	cys TGC	thr asn C AAC	tyr TAC	60 arg	asp GAT	met thr TG CC CC ACC -186
LH CG5 CG6 CG7 Endo	ATG +183 Pri arg	wer val	2 leu	gln	ala gly C GGG G	val GTC	leu CTG	pro CCG	pro ala c ecc	leu CTG	pro	gln CAG	val GTG	Val GTG	cys TGC	thr asn C AAC	tyr TAC	60 arg CGC	asp GAT	met thr TG CC CC ACC -186
LH CG5 CG6 CG7 Endo	ATG +183 Pri arg	wer val	2 leu	gln	ala gly C GGG G	val GTC	leu CTG	pro CCG	pro ala c ecc	leu CTG	pro	gln CAG	val GTG	Val GTG	cys TGC	thr asn C AAC	tyr TAC	60 arg	asp GAT	met thr TG CC CC ACC -186
LH CG5 CG6 CG7 Endo	ATG +183 Pri arg	wer val	2 leu	gln	ala gly C GGG G	val GTC	leu CTG	pro CCG	pro ala c ecc	leu CTG	pro	gln CAG	val GTG	Val GTG	cys TGC	thr asn C AAC	tyr TAC	60 arg CGC	asp GAT	met thr TG CC CC ACC -186
LH CG5 CG6 CG7 Endo LH hCG LH4 CG5 CG6 CG7	ATG +183 Pri arg	wer val	2 leu	gln	ala gly C GGG G	val GTC	leu CTG	pro CCG	pro ala c ecc	leu CTG	pro	gln CAG	val GTG	Val GTG	cys TGC	thr asn C AAC	tyr TAC	60 arg CGC	asp GAT	met thr TG CC CC ACC -186
LH CG5 CG6 CG7 Endo LH hCG LH4 CG5 CG6 CG7 Endo	met ATG +183 Pri arg CGC	war val	2 leu CTG	gln CAG	ala gly C GGG G GGGG	val GTC	leu CTG CTG	pro CCG CCG 210	pro ala C GCC G GCC	leu CTG	pro CCT	gln CAG	val GTG	CAC Val GTG	cys TGC	thr asn C AAC Ā A	tyr TAC TAC	60 arg CGC CGC 240	asp GAT	met thr TG CC CC ACC -186
LH hCG LH4 CG5 CG6 CG7 Endo	met ATG +183 Pri arg CGC	war val	2 leu CTG	gln CAG	ala gly C GGG G GGGG	val GTC	leu CTG CTG	pro CCG CCG 210	pro ala C GCC G GCC	leu CTG	pro CCT	gln CAG	val GTG	CAC Val GTG	cys TGC	thr asn C AAC Ā A	tyr TAC TAC	60 arg CGC CGC 240	asp GAT	met thr TG CC CC ACC -186
LH CG5 CG6 CG7 Endo LH hCG LH4 CG5 CG6 CG7 Endo	ATG +183 Pri arg CGC	wal GTG	2 leu CTG	gln CAG	ala gly C G G G G G G G	val GTC GTC	leu CTG •	pro CCG CCG 210	pro ala c GCC GCC	leu CTG CTG	pro CCT CCT	gln CAG	val GTG GTG	cac val GTG val	cys TGC TGC	thr asn C AAC A A AAC	tyr TAC TAC +	60 arg CGC CGC 240 80 val	asp GAT GAT	met thr TG CC CC ACC -186 Val GTG phe tyr
LH hCG LH4 CG5 CG6 CG7 Endo LH4 CG5 CG6 CG7 Endo	ATG +183 Pri arg CGC	wal GTG	2 leu CTG	gln CAG	ala gly C G G G G G G G	val GTC GTC	leu CTG CTG	pro CCG CCG 210	pro ala c GCC GCC	leu CTG CTG	pro CCT CCT	gln CAG	val GTG GTG	cac val GTG val	cya TGC TGC asp asn G AAC	thr asn C AAC A A AAC	tyr TAC TAC +	60 arg CGC CGC 240 80 val	asp GAT GAT	met thr TG CC CC ACC -186 Val GTG phe tyr
LH hCG LH4 CG5 CG6 CG7 Endo	ATG +183 Pri arg CGC	war val	2 leu CTG glu GAG	gln CAG ser TCC	ala gly C GGG G GGG	val GTC GTC	leu CTG + Leu	pro CCG 210 70 pro	pro ala c GCC G GCC	leu CTG CTG	pro CCT CCT	gln CAG CAG	val GTG GTG	val GTG wal GTG	cys TGC TGC asp asn GAAC A	thr asn C AAC A AAC	tyr TAC TAC + val	60 arg CGC 240 80 val	asp GAT GAT Ser TCC	met thr TG CC CC ACC -186 Val GTG phe tyr TAC
LH hCG LH4 CG5 CG6 CG7 Endo	ATG +183 Pri arg CGC	war val	2 leu CTG glu GAG	gln CAG ser TCC	ala gly C GGG G GGG	val GTC GTC	leu CTG + Leu	pro CCG 210 70 pro	pro ala c GCC G GCC	leu CTG CTG	pro CCT CCT	gln CAG CAG	val GTG GTG	val GTG wal GTG	cys TGC TGC asp asn GAAC A	thr asn C AAC A AAC	tyr TAC TAC + val	60 arg CGC 240 80 val	asp GAT GAT Ser TCC	met thr TG CC CC ACC -186 Val GTG phe tyr TAC
LH hCG LH4 CG5 CG7 Endo LH CG5 CG6 CG7 Endo	ATG +183 Pri arg CGC	war val	2 leu CTG glu GAG	gln CAG ser TCC	ala gly C GGG G GGG	val GTC GTC	leu CTG CTG Leu CTC	pro CCG 210 70 pro	pro ala c GCC G GCC	leu CTG CTG	pro CCT CCT	gln CAG CAG	val GTG GTG	val GTG wal GTG	cys TGC TGC asp asn GAAC A	thr asn C AAC A AAC	tyr TAC TAC val GTG	60 arg CGC 240 80 val	asp GAT GAT Ser TCC	met thr TG CC CC ACC -186 Val GTG phe tyr TAC

100 pro ala val ala leu ser cys gln cys ala leu cys arg arg ser thr thr asp cys gly gly GC G GCC GTG GCT CTC AGC TGT CAA TGT GCA CTC TGC CGC CGC AGC ACC ACT GAC TGC GGG GGT AA С AA С Endo GCC GTG GCT CTC AGC TGT CAA TGT GCA CTC TGC CGC CGC AGC ACC ACT GAC TGC GGG GGT +330

110 LH glu leu ser gly leu leu phe leu ter hCG pro lys asp his pro leu thr cys asp asp pro arg phe gln asp ser ser ser lys LH4 A C C CAAC TCT CAG GCC TCC TCT TCC TCT AAA CCC AAG GAC CAC CCC TTG ACC TGT GAT GAC CCC CG-C TTC CAG GAC TCC TCT TCC TCA AAG . G T G CG7 Endo CCC AAG GAC CAC CCC TTG ACC TGT GAT GAC CCC CG C TTC CAG GCC TCC TCT TCC TCA AAG

+390

130

ala

140

ala pro pro pro ser leu pro ser pro ser arg leu pro gly pro ser asp thr pro ile GCC CCT CCC CCC AGC CTT CCA AGT CCA TCC CGA CTC CCG GGG CCC TCG GAC ACC CCG ATC CG6 CG7

Endo GCC CCT CCC CCC AGC CTT CCA AGT CCA TCC CGA CTC CCG GGG CCC TCG GAC ACC CCG ATC

145

hCG leu pro gln CG5 CTC CCA CAA CG6 CG7

Endo CTC CCA CAA

LH

LH4

CG5 CG6

CG7

pro

GC

Fluoreszenzmarker: * NED, ** HEX, ***6-FAM

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.