C: 13π . -21π e -7π .

D:
$$-\frac{5\pi}{2}$$
, $\frac{7\pi}{2}$ e $-\frac{25\pi}{2}$.

b)

c)

4. a) Hexágono.

b) Perímetro: 6 u.c.; Área: $\frac{3\sqrt{3}}{2}$ u.a.

5. a) Negativo.

d) Positivo.

b) Positivo.

e) Negativo.

c) Negativo.

f) Positivo.

c)
$$\frac{\sqrt{3}}{2}$$
 e) $-\frac{\sqrt{3}}{2}$

b) V

d)
$$-\frac{1}{2}$$
 f) $-\frac{\sqrt{2}}{2}$

7. a) V

c) F

e) F

8. a) $p = 2\pi$; Im = [-2, 2].

b) $p = 2\pi$; Im = [-1, 1].

c) $p = \frac{2\pi}{3}$; Im = [-1, 1].

d) $p = 2\pi$; Im = [2, 4].

e) $p = 4\pi$; Im = [1, 3].

9. $\{t \in \mathbb{R} \mid -3 \le t \le 1\}$

$$\mathbf{10.} \ \left\{ m \in \mathbb{R} \ \middle| \ \frac{3}{2} \le m \le 2 \right\}$$

11. a) $\frac{\pi}{2}$

b) 5

12. a) 6 m

d) 24 s

b) 8,8 m

e) 11 voltas.

c) 2 m

13. a) −1

c) 0

b) 1

d) 0

14. a) $-\frac{1}{2}$

f) $-\frac{\sqrt{2}}{2}$

15.
$$y = -\frac{\sqrt{2}}{4}$$

$$16. \left\{ m \in \mathbb{R} \mid -\frac{5}{2} \le m \le 0 \right\}$$

17. 0

18. a) $p = 2\pi$; Im = [-2, 2].

b) $p = 2\pi$; Im = [1, 3].

c) $p = 4\pi$; Im = [-1, 1].

d) $p = \frac{2\pi}{3}$; Im = [-1, 1].

e) $p = \frac{2\pi}{3}$; Im = [1, 3].

19. a) F; $\cos\left(\frac{\pi}{6} + k2\pi\right) = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$

c) F; o valor mínimo é -2.

d) F; f é uma função afim.

e) V

f) V

20. a) 2020: 418 milhões (US\$); 2025: 409 milhões (US\$); 2030: 391 milhões (US\$).

b) 3 vezes; 382 milhões (US\$).

21. a) D = \mathbb{R} ; Im = [-1, 1]; p = $\frac{2\pi}{3}$

b) D = \mathbb{R} ; Im = [-3, 3]; p = 2π .

c) D = \mathbb{R} ; Im = [-3, 1]; p = 4π .

d) $D = \mathbb{R}$; $Im = \mathbb{R}$; **f** não é periódica.

e) D = \mathbb{R} ; Im = [-4, 4]; p = $\frac{\pi}{3}$.

23. Alternativa b.

Desafio

Matrizes

Exercícios

1. a) 3 × 2 b) 1×4 **c)** 2 × 2 **d)** 3 × 3

c) 1

e) 3 × 1 **f)** 3 × 4

2. a) 4

b) ∄

d) 1

4.
$$B = \begin{bmatrix} 4 & 5 \\ 5 & 6 \\ 6 & 7 \end{bmatrix}$$

- **6.** a) $A^{t} = \begin{bmatrix} 7 & 1 \\ -4 & 0 \end{bmatrix}$
 - **b)** $B^{t} = \begin{bmatrix} 6 & 1 & 4 \\ 2 & 0 & -1 \end{bmatrix}$
 - **c)** $C^{t} = \begin{bmatrix} 0 & 0 \\ 3 & -1 \\ -9 & 5 \end{bmatrix}$
 - **d)** $D^{t} = \begin{pmatrix} -8 \\ 7 \\ 5 \end{pmatrix}$
 - **e)** $E^{t} = \begin{pmatrix} 0 & 1 & 0.5 & 3 \\ -2 & 11 & 7 & 4.1 \end{pmatrix}$

 - **g)** $G^t = \begin{bmatrix} 2 & -3 & 3 \\ 1 & 1 & -1 \\ -2 & 2 & 2 \end{bmatrix}$
- **7.** $A^{t} = \begin{bmatrix} 5 & 7 & 9 \\ 8 & 10 & 12 \end{bmatrix}$
- **8.** 3
- **9.** Principal: 1, 4 e 9.
- Secundária: 3, 4 e 3. **10.** a) 1485
 - c) R\$ 27135,00
- **b)** 190 **11.** a) X e Y: 15 km
 - **Z** e **X**: 27 km **Y** e **Z**: 46 km
- **12.** $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- **13.** a) $A = \begin{bmatrix} -1 & 0 \\ 1 & 1 \\ -1 & -1 \end{bmatrix}$
 - **b)** $A^t = \begin{bmatrix} -1 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix}$
- 14. a) Canadá 0 × 1 México
- b) Argentina; 3 pontos.
- **15.** a) m = 3 e n = 4.
 - **b)** $q_{23} = 875$; em 100 g de queijo mozarela há 875 mg de cálcio.
 - $q_{31} = 35,6$; em 100 g de queijo parmesão há 35,6 g de proteínas.
 - **c)** 9360 mg
 - d) Mais que a metade.
- **16.** a) Traço de A = -6Traço de B = 9

Traço de C = 36

- **b)** $\theta = \frac{\pi}{6}$ ou $\theta = \frac{5\pi}{6}$
- **17.** a = 2, b = 1, c = 6 e d = 4.
- **18.** x = 4, y = 3 e z = 2.
- **19.** a) Não existe $m \in \mathbb{R}$.
- **b)** m = -3
- **20.** p = q = 3
- **21.** a = -3, b = -2, c = -1, d = 0, e = 5 e f = 0.
- 22. a) A e C.
 - **b)** 3

- **23.** a) $\begin{pmatrix} 11 & 5 \\ 14 & 12 \end{pmatrix}$ c) (-5 1 8 3)

 - **b)** $\begin{vmatrix} 11 & 16 \\ 2 & 7 \\ 1 & 5 \end{vmatrix}$ **d)** $\begin{bmatrix} 5 & -1 & 0 \\ 1 & 5 & -1 \\ 4 & 1 & 5 \end{bmatrix}$
- **24.** a) 21; 27
- **b)** $c_{ii} = 3i$
- **25.** a) $X = \begin{pmatrix} 1 & -3 \\ 1 & 2 \\ 5 & 0 \end{pmatrix}$
 - **b)** $X = \begin{pmatrix} 0 & 6 & 18 \\ -5 & 9 & -2 \end{pmatrix}$
- **26.** a) $\begin{bmatrix} 3 & 3 & 0 & 5 & 5 \\ 1 & 1 & 3 & 4 & 2 \\ 8 & 5 & 5 & 4 & 5 \end{bmatrix}$
 - **b) C**, **C** e **A**
- 27. a) Sim; não.
 - **b)** Não existe $m \in \mathbb{R}$ que satisfaz a condição.
- **28.** $X = \begin{bmatrix} -3 & 3 \\ -1 & 6 \\ -1 & -1 \end{bmatrix}$
- **29.** a) $\begin{pmatrix} 4 & 8 & 12 \\ -12 & 20 & -4 \end{pmatrix}$

 - c) $\begin{pmatrix} -2 & -4 & -6 \\ 6 & -10 & 2 \end{pmatrix}$
- **30.** a) $\begin{pmatrix} 9 & 10 \\ 2 & 21 \\ 9 & 29 \end{pmatrix}$

 - **b)** $\begin{pmatrix} -7 & 10 \\ 4 & -13 \\ -27 & -17 \end{pmatrix}$
- **31.** $\begin{pmatrix} 9 & -1 & 1 \\ 1 & 4 & 4 \end{pmatrix}$
- **33.** $X = \begin{bmatrix} -3 & 1 \\ -1 & 2 \\ -4 & -1 \end{bmatrix}$
- **34.** a) $\begin{bmatrix} -2 & 5 \\ -2 & 13 \end{bmatrix}$
 - **b)** $\begin{bmatrix} 0 & 3 & 2 & 7 \\ -10 & 9 & 6 & -19 \end{bmatrix}$

 - $\mathbf{d}) \begin{bmatrix} -2 \\ -4 \\ -6 \end{bmatrix}$

- $\mathbf{f}) \begin{pmatrix} 12 & -4 & 16 \\ 18 & -6 & 24 \\ 30 & -10 & 40 \end{pmatrix}$
- q) Não existe.
- **h)** $\begin{pmatrix} 10 & -4 & 3 \\ 13 & -1 & 3 \\ 9 & 6 & 3 \end{pmatrix}$
- **35.** a) $\begin{pmatrix} 11 & 4 \\ 4 & 2 \\ 10 & 3 \end{pmatrix}$
 - **b)** Não existe.
- **36.** a) 3 **b)** 17 c) Não existe
- **37.** 22
- **38.** x = 2 e y = -4.
- **39.** a) $\begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$ b) $\begin{pmatrix} 11 & 12 & 2 \\ 20 & 33 & 12 \\ 5 & 18 & 34 \end{pmatrix}$
- - **b)** $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ **e)** $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- **41.** m = 3
- **42.** $\begin{bmatrix} 4 & 6 & 7 \\ 9 & 3 & 2 \\ 7 & 8 & 10 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 99 \\ 91 \\ 147 \end{bmatrix}$
- **43.** $\begin{pmatrix} -4 & 2 \\ -64 & 19 \end{pmatrix}$
- **44.** a) 24
 - **b)** $\begin{bmatrix} 22 & 18 \\ 36 & 22 \\ 24 & 28 \end{bmatrix} \cdot \begin{bmatrix} 4,50 \\ 6,00 \end{bmatrix} = \begin{bmatrix} 207 \\ 294 \\ 276 \end{bmatrix}$
- **45.** $x = \frac{15}{2} e y = \frac{2}{5}$
- **46.** $x = \frac{3}{2} e y = -\frac{3}{4}$
- 47. Resposta pessoal; qualquer matriz da forma $\begin{pmatrix} x & y \\ -2y & x \end{pmatrix}$, com $x \in \mathbb{R}$ e $y \in \mathbb{R}$, serve como exemplo.
- 48. a) Bicarbonato: 23,8 kg; carbonato: 5 kg; ácido: 21,2 kg.
 - **b)** $\begin{pmatrix} 2,3 & 2,5 \\ 0,5 & 0,5 \\ 2,2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 6000 \\ 4000 \end{pmatrix}$
 - c) 9500 envelopes na versão T e 5500 envelopes na versão E.
- **49.** a) $X = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$ b) $X = \begin{pmatrix} -4 & -7 \\ 13 & 25 \end{pmatrix}$

- **50.** 1ª semana: R\$ 31,28 2ª semana: R\$ 29,85
- **51.** a) 346 297 553 130 197 167
 - **b)** c₁₂ = 297; 297 mg é a quantidade total de cálcio encontrada na receita II.
 - c) c₂₃ = 167; 167 mg é a quantidade total de magnésio encontrada na receita III.
- **52.** Sim.
- **53.** $\begin{pmatrix} 0 & 1 \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$
- **54.** Não existe.
- **55.** x = 1
- **56.** a) $\begin{pmatrix} 1 & -1 \\ -4 & 7 \end{pmatrix}$ c) $\begin{pmatrix} \frac{11}{3} & \frac{7}{3} \\ 3 & 2 \end{pmatrix}$ b) $\begin{pmatrix} 6 & -7 \\ 0 & 11 \end{pmatrix}$
- **57.** x = 7 e y = 1.
- **58.** x = 1
- **59.** a) $A^{-1} = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix}$ b) $X = \begin{pmatrix} -5 & -16 \\ 12 & 28 \end{pmatrix}$
- **61.** $X = \begin{pmatrix} \frac{3}{7} & -\frac{5}{7} \\ \frac{1}{7} & -\frac{4}{7} \end{pmatrix}$

Desafio

- a) $\left(x = 0, y = -\frac{\sqrt{2}}{2} e z = \frac{\sqrt{2}}{2}\right)$ ou $\left(x = 0, y = \frac{\sqrt{2}}{2} e z = -\frac{\sqrt{2}}{2}\right)$.
- b) Resposta pessoal; demonstração.

CAPÍTULO 6

Sistemas lineares

Exercícios

- **1.** a, c, f, h.
- **2.** a) Sim.
- c) Sim.
- **b)** Não.
- c) Não.
- a) Sim.b) Não.
- **d)** Sim.
- **4.** -8
- **5.** a) 80x + 120y = 25200
 - **b)** Sim; não.
 - c) Não; sim.
- **6.** $m = -\frac{15}{19}$

- 7. Entre outras, são soluções:
 - a) $\left(0, -\frac{5}{3}\right)$ ou (-2, 1).
 - **b)** (0, 1, 1) ou (1, 1, 2).
 - **c)** (0, 2) ou (1, 1).
 - **d)** $\left(0, 0, \frac{16}{5}\right)$ ou (2, 2, 2).
- 8.
- **9. a)** 18
- **b)** 10
- **10.** a) -4x + 3y = -1, por exemplo. b) Resposta pessoal.
- **11.** a) $S = \{(3, -1)\}$; S.P.D.

b) $S = \left\{ \left(\frac{2}{3}, -\frac{1}{3} \right) \right\}$; S.P.D.

c) $S = \{(x, 5 - x); x \in \mathbb{R}\}$ ou $S = \{(5 - y, y); y \in \mathbb{R}\}; S.P.I.$

d) $S = \emptyset$; S.I.

- **12.** 30 unidades.
- **13.** R\$ 28.40
- **14.** R\$ 360,00
- **15.** a) 51 pontos.
 - **b)** 11 erros.
 - c) Não é possível.
- **16.** m $\neq \frac{5}{2}$
- **17.** 11
- **18.** m = −4 e n = 2.

- **19.** a) (3, -2) é solução e $\left(-\frac{1}{3}, \frac{4}{3}\right)$ não é solução.
 - $\mathbf{b}) \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- **20.** *k*
- **21.** a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 1 & 0 & 7 \\ 1 & 0 & 1 & 8 \\ 0 & 1 & 1 & 9 \end{bmatrix}$
 - **b)** $A = \begin{bmatrix} 4 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{bmatrix} e B = \begin{bmatrix} 4 & -1 & 1 & -1 \\ 1 & 2 & -1 & -2 \\ 1 & 0 & -1 & -5 \end{bmatrix}$
 - c) $A = \begin{bmatrix} 3 & 2 \\ 1 & -1 \\ 4 & 1 \end{bmatrix} e B = \begin{bmatrix} 3 & 2 & -4 \\ 1 & -1 & -7 \\ 4 & 1 & 2 \end{bmatrix}$
 - **d)** A = $\begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & 10 \end{bmatrix}$ e B = $\begin{bmatrix} 2 & 1 & 3 & -13 \\ -1 & 1 & 10 & 4 \end{bmatrix}$.
- 22. a) $\begin{cases} 3x + 2y = 0 \\ 2x + 5y = 2 \end{cases}$ b) $\begin{cases} 5x + 7y 2z = 11 \\ x y + 3z = 13 \end{cases}$ c) $\begin{cases} x + y + z = 3 \\ 2x 4y + 3z = 11 \\ -3x 3y 3z = 10 \end{cases}$
- **23.** a) m = 1 c) m = 3 b) m = 3
- **24.** a) $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$
 - **b)** Verificação.
 - c) Verificação.
 - **d)** -25
- **25.** *a* e *c* estão escalonados.
- **26.** a) $S = \{(-3, 7)\}$; S.P.D.
 - **b)** $S = \{(3, 3, -4)\}; S.P.D.$
 - **c)** $S = \{(7 + \alpha, 2 + 3\alpha, \alpha); \alpha \in \mathbb{R}\}; S.P.I.$
 - **d)** $S = \{(6, 0, 3, 2)\}; S.P.D.$
 - e) $S = \emptyset$; S.I.
- **27.** $\alpha = 3$, $\beta = 2$, $\gamma = -6$.
- **28.** a) x y = 8
 - b) Resposta pessoal.
 - c) $S = \{(8 + \alpha, \alpha); \alpha \in \mathbb{R}\}; S.P.I.$
- **29.** $S = \{(1 + \alpha, -1 + 2\alpha, \alpha); \alpha \in \mathbb{R}\}$
- **30.** a) $S = \{(1, 3, 2)\}; S.P.D.$
 - **b)** $S = \{(-11, -6, -3)\}; S.P.D.$
 - c) $S = \emptyset$; S.I.
 - **d)** $S = \left\{ \left(\frac{-1 + \alpha}{2}, \frac{5 3\alpha}{2}, \alpha \right); \alpha \in \mathbb{R} \right\}$; S.P.I.
- **31.** a) $S = \left\{ \left(\frac{-7\alpha + 13}{11}, \frac{8 + 5\alpha}{11}, \alpha \right); \alpha \in \mathbb{R} \right\}$
 - **b)** $S = \{(5, -2, -1)\}$
 - 16 0
 - c) $S = \emptyset$
 - **d)** $S = \{(1, 1, 1)\}$
- **32.** Quibe: R\$ 4,50; esfirra: R\$ 2,20; suco: R\$ 6,00.
- **33.** R\$ 88,00
- 34. 14 questões erradas.