МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №8 по дисциплине «Машинное обучение»

Студенты гр. 6304	Тимофеев А.А.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Цель работы

Ознакомиться с методами классификации модуля Sklearn

Ход работы

Загрузка данных

- 1. Был создан датафрейм Pandas на основе загруженного датасета (https://archive.ics.uci.edu/ml/datasets/iris)
- 2. Были выделены данные и их метки, тексты меток были преобразованы к числам при помощи *LabelEncoder*.
- 3. Выборка была разбита на обучающую и тестовую при помощи *train_test_split*.

Линейны дискриминантный анализ

1. Была проведена классификация данных методом LinearDiscriminantAnalysis, выведено количество неправильно классифицированных наблюдений (представлено на рисунке 1).

Wrong classified: 2

Рисунок 1 – Количество неправильно классифицированных наблюдений

2. Описание параметров и атрибутов метода *LinearDiscriminantAnalysis* представлено в таблицах 1 и 2 соответственно.

Таблица 1 – Описание параметров метода *LinearDiscriminantAnalysis*

Название	Описание	Принимаемые	Значение
		значения	по
			умолчанию
solver	Метод решения	svd, lsqr, eigen	svd
shrinkage	Параметр усадки	auto, float	None
priors	Априорные вероятности	array-like of shape	None
	классов	(n_classes,)	

n_components	Число компонент для	int	None
	уменьшения размерности		
store_covariance	Явно вычислить	Bool	False
	взвешенную		
	ковариационную матрицу		
	внутри класса при		
	solver=svd		
tol	Абсолютный порог для	float	1.0e-4
	того, чтобы сингулярное		
	число Х считалось		
	значимым		
covariance_estimator	Используется для оценки	covariance_estimator	None
	ковариационных матриц		
	вместо того, чтобы		
	полагаться на		
	эмпирическую оценку		
	ковариации		

Таблица 2 — Описание атрибутов метода LinearDiscriminantAnalysis

Название	Описание	Тип возвращаемого
		значения
coef_	Вектор(ы) веса	ndarray of shape
		(n_features,) or
		(n_features,) or (n_classes, n_features)
intercept_	Массив прерывания	ndarray of shape
		(n_classes,)

covariance_	Взвешенная матрица ковариаций	array-like of shape
	внутри класса	(n_features,
		n_features)
explained_variance_ratio_	Процент дисперсии,	ndarray of shape
	объясняемый каждым из	(n_components,)
	выбранных компонентов	
means_	Средние по классам	array-like of shape
		(n_classes, n_features)
priors_	Априорные вероятности по	array-like of shape
	классам	(n_classes,)
scalings_	Масштабирование признаков в	array-like of shape
	пространстве, охватываемом	(rank, n_classes - 1)
	центроидами классов.	
xbar_	Общее среднее	array-like of shape
		(n_features,)
classes_	Уникальные метки классов	array-like of shape
		(n_classes,)

- 3. Была определена точность классификации с помощью метода *score, она составила 98%*.
- 4. Были построены графики зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки для метода *LinearDiscriminantAnalysis*. Графики представлен на рисунке 2.

Рисунок 2 — Графики для метода Linear Discriminant Analysis

Точность классификации не падает с увеличением тестовой выборки. Скорее всего такая хорошая классифицируемость данных связана с их распределением в выборке.

5. Метод *transform* используется для проецирования данных с целью максимизации дисперсии. График полученной проекции представлен на рисунке 3

Рисунок 3 – Результат метода transform

6. Было проведено исследование классификации с различными параметрами solver. Результаты представлены на рисунках 4-6.

Рисунок 4 -Результаты c solver = svd

Рисунок 5 -Результаты с solver = lsqr

Рисунок 6 – Результаты с solver = eigen

- Как видно из графиков классификация с разными параметрами solver дает практически идентичные результаты.
- 7. Эксперименты с параметром усадки показали небольшое ухудшение результатов классификации с его увеличением.
- 8. Была проведена классификация с вручную заданными априорными вероятностями классов. Результат представлен на рисунке 7.

Рисунок 7 – Результаты классификации

Результат идентичен результату без указания вероятностей.

Метод опорных векторов

- 1. Была выполнена классификация методом *SVC* на тех же данных. Точность составила 95%.
- 2. Были выведены опорные вектора, их индексы и количество опорных векторов для каждого класса.
- 3. Были построены графики зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки для метода *SVC*. Графики представлен на рисунке 8.

Рисунок 8 – Графики для метода *SVC*

4. Было проведено исследование работы метода с разными значениями параметра *kernel*. Лучшие результаты для каждого ядра представлены в таблице 3.

Таблица 3 – Метод *SVC* с разными ядрами

Ядро	Неправильно	Точность
	классифиц.	
linear	0	100%
poly	2	98%
rbf	2	95%
sigmoid	76	33%

5. Было проведено исследование работы метода с разными значениями параметра *degree*. Лучшие результаты для каждого значения представлены в таблице 3.

Таблица 4 – Метод *SVC* с разными степенями функции ядра

Степень	Неправильно	Точность
	классифиц.	
1	2	96%
2	0	100%
3	2	98%

4	2	96%

6. Было проведено исследование работы метода с разными значениями параметра *max_iter*. Лучшие результаты для каждого значения представлены в таблице 3.

Таблица 4 – Метод *SVC* с разным ограничением итераций

Ограничение	Неправильно	Точность
	классифиц.	
1	4	97%
3	3	98%
5	2	98%
9	0	100%

7. Было проведено сравнение методов *SVC*, *NuSVC*, *LinearSVC*. Лучшие результаты для каждого метода представлены в таблице 3.

Таблица 4 – Метод *SVC* с разным ограничением итераций

Метод	Неправильно	Точность
	классифиц.	
SVC	2	96%
NuSVC	5	95%
LinearSVC	5	96%

Метод LinearSVC идентичен методу SVC с линейным ядром. Метод NuSVC в отличие от метода SVC имеет параметр, отвечающий за количество опорных векторов, а также использует в себе другие математические вычисления.

Выводы

В ходе выполнения данной лабораторной работы было произведено знакомство с методами классификации модуля Sklearn. Классификация

производилась с помощью методов LinearDiscriminantAnalysis, SVC, NuSVC u LinearSVC.