Honours Analysis Notes

Anthony Catterwell

April 17, 2019

Contents

1	The	Real Number System
	1.1	Introduction
	1.2	Ordered Field Axioms
	1.3	Completeness Axiom
	1.4	Mathematical Induction
	1.5	Inverse Functions and Images
	1.6	Countable and Ungountable Sata

1 The Real Number System

1.1 Introduction

1.2 Ordered Field Axioms

• Postulate 1 Field Axioms

There are functions + and \cdot defined on $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$, which satisfy the following properties $\forall a, b, c \in \mathbb{R}$

- Closure Properties: a + b, $a \cdot b \in \mathbb{R}$
- Associative Properties: a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Commutative Properties: a + b = b + a and $a \cdot b = b \cdot a$
- Distributive Law: $a \cdot (b+c) = a \cdot b + a \cdot c$
- Existence of Additive Identity: There is a unique element $0 \in \mathbb{R}$ such that 0 + a = a for all $a \in \mathbb{R}$
- Existence of Multiplicative Identity: There is a unique element $1 \in \mathbb{R}$ such that $1 \neq 0$ and $1 \cdot a = a$ for all $a \in \mathbb{R}$
- Existence of Additive Inverses: For every $x \in \mathbb{R}$ there is a unique element $-x \in \mathbb{R}$ such that

$$x + (-x) = 0$$

- Existence of Multiplicative Inverses: For every $x \in \mathbb{R} \setminus \{0\}$ there is a unique element $x^{-1} \in \mathbb{R}$ such that

$$x \cdot (x^{-1}) = 1$$

• Postulate 2 Order Axioms

There is a relation < on $\mathbb{R} \times \mathbb{R}$ that has the following properties:

- Trichotomy Property: Given $a, b \in \mathbb{R}$, one and only one of the following statements hold:

$$a < b, b < a, \text{ or } a = b$$

- Transitive Property: For $a, b, c \in \mathbb{R}$

$$a < b \text{ and}; c \implies a < c$$

- Additive Property: For $a, b, c \in \mathbb{R}$

$$a < b \text{ and } c \in \mathbb{R} \implies a + c < b + c$$

- Multiplicative Properties: For $a, b, c \in \mathbb{R}$

$$a < b \text{ and } c > 0 \implies ac < bc$$

and

$$a < b \text{ and } c < 0 \implies bc < ac$$

• Remark 1.1

We will assume that the sets \mathbb{N} and \mathbb{Z} satisfy the following properties:

- 1. If $n, m \in \mathbb{Z}$, then n + m, n m and mn belong to \mathbb{Z}
- 2. If $n \in \mathbb{Z}$, then $n \in \mathbb{N}$ if and only if $n \geq 1$

- 3. There is no $n \in \mathbb{Z}$ that satisfies 0 < n < 1
- Definition 1.4 Absolute Value

The absolute value of a number $a \in \mathbb{R}$ is the number

$$|a| := \begin{cases} a & a \ge 0 \\ -a & a < 0 \end{cases}$$

- Remark 1.5 The absolute value is multiplicative; that is, $|ab| = |a||b| \ \forall a, b, \in \mathbb{R}$
- Theorem 1.6 Fundamental Theorem of Absolute Values Let $a \in \mathbb{R}$ and $M \ge 0$. Then $|a| \le M \iff -M \le a \le M$.
- **Theorem 1.7** The absolute value satisfies the following three properties:
 - 1. Positive Definite: For all $a \in \mathbb{R}$, |a| > 0 with |a| = 0 if and only if a = 0.
 - 2. Symmetric: For all $a, b \in \mathbb{R}$, |a b| = |b a|,
 - 3. Triangle Inequalities: For all $a, b \in \mathbb{R}$,

$$|a+b| \le |a| + |b|$$
 and $||a| - |b|| \le |a-b|$

• Theorem 1.9 Let $x, y, a \in \mathbb{R}$

1.
$$x < y + \epsilon \ \forall \epsilon > 0 \iff x < y$$

2.
$$x > y - \epsilon \ \forall \epsilon > 0 \iff x > y$$

3.
$$|a| < \epsilon \ \forall \epsilon > 0 \iff a = 0$$

1.3 Completeness Axiom

• Definition 1.10 Upper bounds

Let $E \subset \mathbb{R}$ be non-empty

- 1. The set E is said to be bounded above if and only if there is an $M \in \mathbb{R}$ such that $a \leq M$ for all $a \in E$, in which case M is called an upper bound of E.
- 2. A number s is called a *supremum* of the set E if and only if s is an upper bound of E and $s \leq M$ for all upper bounds M of E. (In this case we shall say that E has a *finite supremeum* s and write $s = \sup E$)
- Remark 1.12 If a set has one upper bound, it has infinitely many upper bounds.
- Remark 1.13 If a set has a supremum, then it has only one supremum.
- Theorem Approximation Property for Suprema If E has a finite supremum and $\epsilon > 0$ is any positive number, then there is a point $a \in E$ such that

$$\sup E - \epsilon < a \le \sup E$$

• Theorem 1.15

If $E \subset \mathbb{Z}$ has a supremum, then $\sup E \in E$. In particular, if the supremum of a set, which contains only integers, exists, that supremum must be an integer.

• Postulate 3 Completeness Axiom

If E is a nonempty subset of \mathbb{R} that is bounded above, then E has a finite supremum.

• Theorem 1.16 The Archimedean Principle Given real numbers a and b, with a > 0, there is an integer $n \in \mathbb{N}$ such that b < na.

- Theorem 1.18 Density of Rationals If $a, b \in \mathbb{R}$ satisfy a < b, then there is a $q \in \mathbb{Q}$ such that a < q < b.
- Definition 1.19 Upper bounds

Let $E \in \mathbb{R}$ be nonempty

- 1. The set E is said to be bounded below if and only if there is an $m \in \mathbb{R}$ such that $a \geq E$, in which case m is called a lower bound of the set E.
- 2. A number t is called an *infimum* of the set E if and only if t is a lower bound of E and t > m and write $t = \inf E$.
- 3. E is said to be bounded if and only if it is bounded both above and below.
- Theorem 1.20 Reflection Principle

Let $E \in \mathbb{R}$ be nonempty

1. E has a supremum if and only if -E has an infimum, in which case

$$\inf(-E) = -\sup E$$

2. E has an infimum if and only if -E has a supremum, in which case

$$\sup(-E) = -\inf E$$

• Theorem 1.21 Monotone Property

Suppose that $A \subseteq B$ are nonempty subsets of \mathbb{R} .

- 1. If B has a supremum, then $\sup A \leq \sup B$.
- 2. If B has an infimum, then $\inf A \ge \inf B$.

1.4 Mathematical Induction

• Theorem 1.22 Well-Ordering Principle

If E is a nonempty subset of N, then E has a least element (i.e. E has a finite infimum and inf $E \in E$).

• Theorem 1.23

Suppose for each $n \in \mathbb{N}$ that A(n) is a proposition which satisfies the following two properties:

- 1. A(1) is true.
- 2. For every $n \in \mathbb{N}$ for which A(n) is true, A(n+1) is also true.

Then A(n) is true for all $n \in \mathbb{N}$.

• Theorem 1.26 Binomial Formula

If $a, b \in \mathbb{R}, n \in \mathbb{N}$ and 0^0 is interpreted to be 1, then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

1.5 Inverse Functions and Images

• **Definition 1.29** Injection, Surjection, Bijection Let X and Y be sets and $f: X \to Y$

1. f is said to be *injective* if and only if

$$x_1, x_2 \in X \text{ and } f(x_1) = f(x_2) \implies x_1 = x_2$$

2. f is said to be *surjective* if and only if

$$\forall y \in Y \ \exists x \in X \ni y = f(x)$$

3. f is called *bijective* if and only if it is both injective and surjective

• Theorem 1.30

Let X and Y be sets and $f: X \to Y$. Then the following three statements are equivalent.

- 1. f has an inverse;
- 2. f is injective from X onto Y;
- 3. There is a function $g: Y \to X$ such that

$$g(f(x)) = x \quad \forall x \in X$$

and

$$f(g(y)) = y \quad \forall y \in Y$$

Moreover, for each $f: X \to Y$, there is only one function g that satisfies these. It is the inverse function f^{-1} .

• Remark 1.31

Let I be an interval and let $f: I \to \mathbb{R}$. If the derivative of f is either always positive on I, or always negative on I, then f is injective on I.

• Definition 1.33 Image

Let X and Y be sets and $f: X \to Y$. The *image* of a set $E \subseteq X$ under f is the set

$$f(E) := \{ y \in Y : y = f(x) \text{ for some } x \in E \}$$

The *inverse image* of a set $E \subseteq Y$ under f is the set

$$f^{-1}(E) := \{x \in X : f(x) = y \text{ for some } y \in E\}$$

• Definition 1.35 Union, Intersection

Let $\mathcal{E} = \{E_{\alpha}\}_{{\alpha} \in A}$ be a collection of sets.

1. The union of the collection \mathcal{E} is the set

$$\bigcup_{\alpha \in A} E_{\alpha} := \{x : x \in E_{\alpha} \text{ for some } \alpha \in A\}$$

2. The intersection of the collection \mathcal{E} is the set

$$\bigcap_{\alpha \in A} E_{\alpha} := \{x : x \in E_{\alpha} \text{ for all } \alpha \in A\}.$$

• Theorem 1.36 DeMorgan's Laws

Let X be a set and $\{E_{\alpha}\}_{{\alpha}\in A}$ be a collection of subsets of X. If for each $E\subseteq X$ the symbol E^c represents the set $X\setminus E$, then

$$\left(\bigcup_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} E_{\alpha}^{c}$$

and

$$\left(\bigcap_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} E_{\alpha}^{c}$$

• Theorem 1.37

Let X and Y be sets and $f: X \to Y$.

1. If $\{E_{\alpha}\}_{\alpha} \in A$ is a collection of subsets of X, then

$$f\left(\bigcup_{\alpha\in A} E_{\alpha}\right) = \bigcup_{\alpha\in A} f(E_{\alpha}) \text{ and } f\left(\bigcap_{\alpha\in A} E_{\alpha}\right) \subseteq \bigcap_{\alpha\in A} f(E_{\alpha})$$

- 2. If B and C are subsets of X, then $f(C) \setminus f(B) \subseteq f(C \setminus B)$
- 3. If $\{E_{\alpha}\}_{{\alpha}\in A}$ is a collection of subsets of Y, then

$$f^{-1}\left(\bigcup_{\alpha\in A}E_{\alpha}\right)=\bigcup_{\alpha\in A}f^{-1}(E_{\alpha})$$
 and $f^{-1}\left(\bigcap_{\alpha\in A}E_{\alpha}\right)=\bigcap_{\alpha\in A}f^{-1}(E_{\alpha})$

- 4. If B and C are subsets of Y, then $f^{-1}(C \setminus B) = f^{-1}(C) \setminus f^{-1}(B)$.
- 5. If $E \subseteq f(x)$, then $f(f^{-1}(E)) = E$, but if $E \subseteq X$, then $E \subseteq f^{-1}(f(E))$.

1.6 Countable and Uncountable Sets

- **Definition 1.38** Countable Uncountable Let E be a set.
 - 1. E is said to be *finite* if and only if either $E = \emptyset$ or there exists an injective function which takes $\{1, 2, ..., n\}$ onto E, for some $n \in \mathbb{N}$.
 - 2. E is said to be *countable* if and only if there exists and injective function which takes \mathbb{N} onto E.
 - 3. E is said to be at most countable if and only if E is either finite or countable.
 - 4. E is said to be *uncountable* if and only if E is neither finite nor countable.
- Remark 1.39 Cantor's Diagonalisation Argument The open interval (0, 1) is uncountable.

• Lemma 1.40

A nonempty set E is at most countable if and only if there is a function g from \mathbb{N} onto E.

• Theorem 1.41

Suppose A and B are sets.

- 1. If $A \subseteq B$ and B is at most countable, then A is at most countable.
- 2. If $A \subseteq B$ and A is uncountable, then B is uncountable.
- 3. \mathbb{R} is uncountable.

• Theorem 1.42

Let A_1, A_2, \ldots be at most countable sets.

- 1. Then $A_1 \times A_2$ is at most countable.
- 2. If

$$E = \bigcup_{j=1}^{\infty} A_j := \bigcup_{j \in \mathbb{N}} A_j := \{x : x \in A_j \text{ for some } j \in \mathbb{N}\},\$$

then E is at most countable.

• Remark 1.43

The sets \mathbb{Z} and \mathbb{Q} are countable, but the set of irrationals is uncountable.