

Ricorsione

- Una funzione può invocare tutte le funzioni dichiarate prima di lei.
- In particolare, può richiamare anche se stessa.
- ... ma ...

serve a qualcosa???

Esempio: determinante

 Il determinante di una matrice è definito in base al determinante di matrici più piccole

Esempio: determinante

- Il determinante di una matrice è definito in base al determinante di matrici più piccole
- · Come fare a calcolarlo?
- · Sarebbe bello scrivere

```
int det(matrice)
{ scegli una riga
    per tutti gli elementi
    { calcola det(sottomatr)
        moltiplica per l'elemento
        (eventualm cambia di segno)
        aggiungi il risultato
    }
    return risultato
```

Es: Espressioni

- Quindi se voglio scrivere un programma che valuta delle espressioni, devo scrivere qualcosa del tipo:

```
int valuta(esp)
{ scomponi espressione in esp1 op esp2
  ris1=valuta(esp1);
  ris2=valuta(esp2);
  se (op=='+') return ris1+ris2;
  se (op=='*') return ris1*ris2;
  ...
}
```

Es: calcolo della derivata

$$\frac{d(f(x) + g(x))}{dx} = \frac{df(x)}{dx} + \frac{dg(x)}{dx}$$

$$\frac{d(f(x) \cdot g(x))}{dx} = \frac{df(x)}{dx}g(x) + f(x)\frac{dg(x)}{dx}$$

LA RICORSIONE

 Pensate a come si potrebbe disegnare la figura a lato (triangolo di Sierpinski)

Quando mi fermo?

Se non stabilisco un criterio per terminare, l'elaborazione continua in eterno!

Terminazione

 Tutte le funzioni ricorsive devono avere un caso "base" in cui riesco a calcolare il risultato senza invocare la funzione ricorsivamente

Espressioni

<espressione> ::=

<variabile> |

<costante> |

<espressione><operatore><espressione>|

<operatore_unario><espressione>

Es: calcolo della derivata

$$\frac{d(f(x) + g(x))}{dx} = \frac{df(x)}{dx} + \frac{dg(x)}{dx}$$

$$\frac{d(f(x) \cdot g(x))}{dx} = \frac{df(x)}{dx}g(x) + f(x)\frac{dg(x)}{dx}$$

In pratica ...

- TUTTE le procedure e funzioni che richiamano se stesse devono avere (almeno) un caso base
- · In pratica, cominciano sempre con una selezione
- if (condizione di uscita) risultato caso base else chiamata ricorsiva

PROGRAMMAZIONE TOP-DOWN

- In molti casi, il problema dato è troppo difficile per scrivere il programma "di getto"
- Scomponiamo il problema in raffinamenti successivi:
 - 1. livello di specifica
 - 2. livello di specifica 3. ...
- Le funzioni ci aiutano in questa scomposizione
 - prima scriviamo il main() usando funzioni che definiremo poi
 - poi definiamo le funzioni usate dal main() usando altre funzioni,
 - poi definiamo le funzioni ancora non definite,

ESEMPIO

```
int g(int x)
 { return sin(x)+3;
int f(int x)
{ return g(x)+g(x-1);
main()
{/* definizione variabili */
       a=f(x);
}
```

LA RICORSIONE

- In particolare, anche nella definizione di una funzione f() può essere utile riutilizzare la funzione f() stessa
- E` lo stesso principio usato in matematica:

Principio di Induzione

- se una proprietà P vale per n=n₀ CASO BASE
 e si può provare che, assumendola valida per n, allora vale per n+1

allora P vale per ogni n≥n₀

LA RICORSIONE

- Una funzione matematica è definita *ricorsivamente* quando nella sua definizione compare un riferimento a
- La ricorsione consiste nella possibilità di definire una funzione in termini di se stessa.
- È basata sul principio di induzione matematica: se si può provare che una proprietà P

 - vale per n=n₀ (CASO BASE)
 e, assumendola valida per n, allora vale per n+1 allora *P* vale per ogni *n*≥*n*₀

IL PRINCIPIO DI INDUZIONE

- Es. ho una seguenza infinita di pezzi del domino disposti come in figura

 - il primo cade Il primo fa cadere il secondo
 - il secondo fa cadere il terzo
 - Come faccio a dimostrare che cadono tutti?
- Col principio di induzione posso farlo, sapendo che

 - se cade l'n-esimo, allora cade l'(n+1)-esimo

IL PRINCIPIO DI INDUZIONE

Teorema: la somma dei primi x numeri dispari è uguale ad x^2 .

Dimostrazione:

- è vera per x=1, infatti $1^2=1$
- supponiamo che per n sia vera, cioè $1+3+5+...+(2n-1) = n^2$ e dimostriamo che è vera per *n*+1: sommiamo (2n+1) ad entrambi i termini: $1 + 3 + 5 + ... + (2n-1) + (2n + 1) = n^2 + 2n + 1$

LA RICORSIONE

- Possiamo usare il principio di induzione anche per definire degli oggetti, non solo per dimostrare proprietà
- In matematica, la funzione fattoriale viene definita così:
 - n! = 1se n=0
 - n! = n*(n-1)! altrimenti
- Scomponiamo il problema:

 - troviamo un caso semplice, in cui la soluzione è immediata ci riconduciamo a casi precedenti quando la soluzione non è
- Nei linguaggi di programmazione moderni, viene fornita la stessa possibilità
- Questo ci permette di scrivere semplicemente algoritmi che sarebbero molto difficili

LA RICORSIONE: ESEMPIO

Esempio: il fattoriale di un numero

```
fact(n) = n!
  n!: Z \rightarrow N
    n! vale 1
                        se n \leq 0
    n! vale n*(n-1)! se n > 0
Codifica:
int fact(int n)
    if (n<=0) return 1;
     else return n*fact(n-1);
}
```

LA RICORSIONE: ESEMPIO

```
int fact(int n)
   if (n<=0) return 1;
    else return n*fact(n-1);
main()
    int fz, z = 5;
   fz = fact(z-2);
}
```

LA RICORSIONE: ESEMPIO

• Servitore & Cliente:

```
int fact(int n) {
     if (n<=0) return 1;
     else return n*fact(n-1):
                                Si valuta l'espressione che
                               costituisce il parametro attuale
(nell'environment del main) e si
main(){
     int fz, z = 5;
    int fz, z = 5;

fz = fact(z-2);

fz = fact(z-2);

copia del valore così ottenuto (3).
```

LA RICORSIONE: ESEMPIO

• Servitore & Cliente:

```
int fact(int n) {
    if (n<=0) return 1;
    else return n*fact(n-1):
                             La funzione fact lega il parametro n
                             a 3. Essendo 3 positivo si passa al ramo else. Per calcolare il risultato
main(){
    int fz, z = 5;
                             della funzione e' necessario
    fz = fact(z-2)
                             effettuare una nuova chiamata di
                             funzione, n-1 nell'environment di
                             fact vale 2 quindi viene chiamata
                             fact(2)
```

LA RICORSIONE: ESEMPIO

• Servitore & Cliente:

LA RICORSIONE: ESEMPIO

. Servitore & Cliente:

```
int fact(int n) {
    if (n<=0) return 1;
    else return n*fact(n-1);
}
main() {
    int fz, z = 5;
    fz = fact(z-2);
}

### If nuovo servitore lega il parametro
n a 1. Essendo 1 positivo si passa al
ramo else. Per calcolare il risultato
della funzione e' necessario
effettuare una nuova chiamata di
funzione. n-1 nell'environment di
fact vale 0 quindi viene chiamata
fact(0)</pre>
```

LA RICORSIONE: ESEMPIO

• Servitore & Cliente:

LA RICORSIONE: ESEMPIO

• Servitore & Cliente:

LA RICORSIONE: ESEMPIO

• Servitore & Cliente:

```
int fact(int n) {
   if (n<=0) return 1;
   else return n*fact(n-1);
}
main() {
   int fz, z = 5;
   fz = fact(z-2);
   }
   int fz, z = 5;
   (valutando n nel suo environment dove vale 2) ottenendo come risultato 2 e terminando.</pre>
```

LA RICORSIONE: ESEMPIO

• Servitore & Cliente:

Calcolo della somma dei primi N numeri interi positivi

Problema

- · Ora, supponiamo di sapere in quante regioni è diviso il piano con n-1 rette
- Aggiungiamo la retta n
- · Quante nuove regioni vengono create?

LA RICORSIONE: ESEMPIO

Problema:

calcolare la somma dei primi N interi

Specifica:

Considera la somma 1+2+3+...+(N-1)+N come

composta di due termini:

Il primo termine non è altro che lo stesso problema in un caso più senzali con la companda i composito compliante al companda i semplice: calcolare la somma dei

N
 Valore noto

primi N-1 interi

Esiste un caso banale ovvio: CASO BASE

• la somma fino a 1 vale 1.

LA RICORSIONE: ESEMPIO

Problema:

calcolare la somma dei primi N interi

Algoritmo ricorsivo

Se N vale 1 allora la somma vale 1 altrimenti la somma vale N + il risultato della somma dei primi N-1 interi

LA RICORSIONE: ESEMPIO

Problema:

calcolare la somma dei primi N interi

Codifica:

```
int sommaFinoA(int n)
    if (n==1) return 1;
    else return sommaFinoA(n-1)+n;
}
```

Operativame problema co comporta

In un certo senso, può essere visto come un'implementazione del principio del "divide et impera"

1. identificare un soluzione sia/

LA R

2. riuscire a esprimere la soluzione al caso generico *n* in termini dello *stesso* problema in uno o più casi più semplici (n-1, n-2, etc).

Somma elementi di un array

· Si scriva una funzione ricorsiva somma(int a[], int n); che calcola la somma degli elementi dell'array a dall'indice 0 fino all'indice n

Ricerca in array ordinato

- · Sapendo che il vettore è ordinato, la ricerca può essere ottimizzata.
 - Vettore ordinato in senso non decrescente:
 - Esiste una relazione d'ordine totale sul dominio degli elementi del vettore e:
 - Se i<j si ha $v[i] \le v[j]$
- 2 3 5 5 7 8 10 11
- Vettore ordinato in senso crescente:
 - Se i<j si ha v[i]<v[j]
- In modo analogo si definiscono l'ordinamento in senso non crescente e decrescente.

RICERCA BINARIA

- Ricerca binaria di un elemento in un vettore ordinato in senso non decrescente in cui il primo elemento è first e l'ultimo last.
- · La tecnica di ricerca binaria rispetto alla ricerca esaustiva consente di eliminare ad ogni passo metà degli elementi del vettore.

RICERCA BINARIA

- Se first<=last
 - Confronta l'elemento cercato el con quello mediano del vettore, V [med].
 - Se el ==V[med], fine della ricerca
 - Altrimenti,
 - se el<v[med], ripeti la ricerca nella prima metà del vettore (indicida first a med-1);
 - se el>V[med], ripeti la ricerca nella seconda metà del vettore (indici da med+1 a last).

Ricerca Binaria

Si cerca il valore e1=7

Ricerca Binaria

Si cerca il valore e1=4

```
2 3 5 5 7 8 10 11
first
  2 3 5 5 7 8 10 11
  0 1 2 3
↑ ↑ ↑
first med last
  2 3 5 5 7 8 10 11
  0 1 2 3
first|last
    1 2 3 4 5 6 7
```

RICERCA BINARIA

```
int ricerca bin(int vet[], int el, int first,
 int last)
{ int med = (first+last)/2;
 if (first>last) return -1;
 if (vet[med]==el)
     return med;
  if (el < vet[med])</pre>
     return ricerca bin(vet,el,first,med-1);
  else
     return ricerca_bin(vet,el,med+1,last);
```

ESERCIZIO: Ricerca di un elemento

```
#include <stdio.h>
#define N 15
int ricerca_bin (int[],int,int,int);

main ()
{int i,n,pos;
int a[N];
printf("Inserisci valori ordinati\n");
n=leggi_vettore(a);
printf ("Valore da cercare: ");
scanf ("%d",&i);
pos=ricerca_bin(a,i,0,n);
if (pos<0) printf("\nNon Trovato\n");
    else printf("\nTrovato in pos %d\n",pos);
}</pre>
```

RICERCA BINARIA

- · Un array contiene
 - nome (stringa di 20 caratteri)
 - via (stringa di 20 caratteri)
 - numero civico (intero)

per un insieme di persone.

- l'array è ordinato per il campo nome
- Si scriva una funzione ricorsiva che effettua la ricerca binaria sull'array

Ricerca binaria su file

Esercizio:

- · Un file binario INDIRIZZI.IND contiene
 - nome (stringa di 20 caratteri)
 - via (stringa di 20 caratteri)
 - numero civico (intero)

per un insieme di persone.

- Il file è ordinato per il campo nome
- Si scriva una funzione ricorsiva che effettua la ricerca binaria sul file
- Suggerimento: Si utilizzi la fseek per posizionarsi sull'elemento corretto nel file

Esercizio

- Si scriva una funzione ricorsiva che calcola la potenza n^m usando il seguente algoritmo:
- se m = 0, allora $n^m = 1$
- se m è dispari, allora $n^m = n^{m-1} n$
- se m è pari, allora $n^m = (n^{m/2})^2$

Procedure Cuick Conf.A First Last). A is an array be a conted for demente First to Lastinclusine. Via a variable type corresponding the contexy of array, and foot disast such use usefully Push 2 and Pop2. sp. so a table pointer to a read foot disast such use usefully Push 2 and Pop2. sp. so a table pointer to a read foot disast such use may 1. ECGA. (Context of the Context of the Context

UN ESEMPIO PIU' COMPLESSO

- La ricorsione è utile per rendere semplici problemi complessi
- Esempio: Scrivere un programma che stampa tutte gli anagrammi di una stringa data
- Es lia → ial ail ali lai ila lia
- Caso base: una stringa di 1 solo carattere ha solo un anagramma (se stesso)
- Condizione di ricorsione:
 - ho già la funzione che stampa le stringhe in cui sono permutati solo i primi n-1 caratteri
 - metto in fondo (al posto n) il primo carattere e stampo le permutazioni dei primi n-1
 - роі metto in fondo il secondo e stampo le permutazioni dei primi n-1
 - ...
 - metto in fondo l'n-esimo e stampo le permutazioni dei primi n-1 caratteri

```
Problema:
calcolare l'N-esimo numero di Fibonacci

0, se n=0
1, se n=1
fib(n-1) + fib(n-2), altrimenti
```

```
Problema:
calcolare l'N-esimo numero di Fibonacci

Codifica:
unsigned fibonacci (unsigned n)
{ if (n<2) return n;
else return fibonacci (n-1)+fibonacci (n-2);
}

Ricorsione non lineare: ogni
invocazione del servitore causa
due nuove chiamate al servitore
medesimo.
```


Una riflessione

- La ricorsione permette di affrontare problemi complessi
- · però introduce alcune inefficienze
 - memoria (catene di record di attivazione)
 - tempo (creazione del nuovo record)
- Ci possono essere casi in cui non è necessario creare un nuovo record di attivazione?

ESERCIZIO

 calcolare se un array è costituito da valori tutti nulli

Sfruttiamo le ottimizzazioni!

- Se ho un compilatore ottimizzante, vale la pena usarlo!
- Riusciamo a riscrivere la funzione fattoriale in modo da riuscire a sfruttare le ottimizzazioni del compilatore?
- Dobbiamo fare in modo che l'ultima operazione sia la chiamata ricorsiva

RICORSIONE TAIL

UNA RIFLESSIONE

 Nel caso del fattoriale si inizia a sintetizzare il risultato solo dopo che si sono aperte tutte le chiamate, "a ritroso", mentre le chiamate si chiudono.

Le chiamate ricorsive decompongono via via il problema, <u>ma non calcolano nulla</u>

- Il risultato viene sintetizzato <u>a partire dalla fine</u>, perché prima occorre arrivare al caso "banale":
 - il caso "banale" <u>fornisce il valore di partenza</u>
 - poi si sintetizzano, "a ritroso", i successivi risultati parziali.

Processo computazionale effettivamente ricorsivo

Rendiamo più efficiente (4) • Quindil main deve dare int fact(int n, int RIS) { if (n==0) il valore iniziale di return RIS; questo parametro else main() { RIS = n*RIS; { int f,x=3; return fact(n-1,RIS); f=fact(x,1); } } fact(3,1) fact(2,3*1) fact(1,2*3*1) fact(0,1*2*3*1) fact(3) fact(2) fact(1) fact(0)

• Sia data la seguente funzione che calcola la potenza di un numero double rec_pow(double base, long int esp) { double p; if (esp==0) return 1; else return rec_pow(base,esp-1)*base; } • si modifichi la funzione in modo che la chiamata ricorsiva sia l'ultima operazione effettuata

SOLUZIONE

```
double tail_pow(double base, long int esp, double acc)
{
   if (esp==0)
     return acc;
   else
     return tail_pow(base,esp-1,acc*base);
}
```

gcc

- Il gcc con l'opzione –O2 fa varie ottimizzazioni, fra cui l'ottimizzazione tail
- gcc -O2 power.c
- · calcolo della potenza, con esponente 350.000:

	rec_pow	tail_pow
gcc power.c	Segmentation fault	Segmentation fault
gcc -O2 power.c	Segmentation fault	Ok!

FATTORIALE ITERATIVO

- Per rendere tail-ricorsiva una funzione, si può partire dalla versione iterativa
- Il fattoriale si può anche calcolare con un algoritmo iterativo

FATTORIALE ITERATIVO

PROCESSO COMPUTAZIONALE ITERATIVO

- In questo caso il risultato viene sintetizzato "in avanti"
- Ogni processo computazionale che computi "in avanti", per accumulo, costituisce una <u>ITERAZIONE</u> ossia è un processo computazionale iterativo.
- La caratteristica fondamentale di un processo computazionale ITERATIVO è che <u>a ogni passo è</u> <u>disponibile un risultato parziale</u>
 - dopo k passi, si ha a disposizione il risultato parziale relativo al caso k
 - questo <u>non è vero nei processi computazionali ricorsivi,</u> in cui nulla è disponibile finché non si è giunti fino al caso elementare.

Processo computazionale iterativo

- Un processo computazionale iterativo si può realizzare anche tramite funzioni ricorsive
- Si basa sulla disponibilità di una variabile, detta accumulatore, destinata a esprimere in ogni istante la soluzione corrente
- Si imposta identificando quell'operazione di modifica dell'accumulatore che lo porta a esprimere, dal valore relativo al passo k, il valore relativo al passo k+1.

FATTORIALE ITERATIVO

Definizione:

```
n! = 1 * 2 * 3 *... * n

Detto v_k = 1 * 2 * 3 *... * k:

1! = v_1 = 1
(k+1)! = v_{k+1} = (k+1)* v_k per k \ge 1
n! = v_n per k = n
```

ITERAZIONE E RICORSIONE TAIL

- · il corpo del ciclo rimane immutato
- il ciclo diventa un if con, in fondo, la chiamata tail-ricorsiva.

Naturalmente, può essere necessario aggiungere nuovi parametri nell'intestazione della funzione tailricorsiva, per "portare avanti" le variabili di stato.

FATTORIALE ITERATIVO

LA RICORSIONE

Al passo i-esimo viene calcolato il fattoriale di i. Quando i = n l'attivazione della funzione corrispondente calcola il fattoriale di n. NOTA: ciascuna funzione che effettua una chiamata ricorsiva si sospende, aspetta la terminazione del servitore e poi termina, cioè NON EFFETTUAALTRE OPERAZIONI DOPO come succedeva nel caso del fattoriale ricorsivo vero e proprio che dopo la fine del servitore si doveva effettuare una moltiplicazione

RIASSUMENDO....

 La soluzione ricorsiva individuata per il fattoriale è sintatticamente ricorsiva ma dà luogo a un processo computazionale ITERATIVO

Ricorsione apparente detta RICORSIONE TAIL

- Il risultato viene sintetizzato in avanti
 - ogni passo decompone <u>e calcola</u>
 - e <u>porta in avanti il nuovo risultato parziale</u> quando le chiamate si chiudono non si fa altro che riportare indietro, fino al cliente, il risultato ottenuto.

RICORSIONE TAIL

- Una ricorsione che realizza un processo computazionale ITERATIVO è una ricorsione apparente
- la chiamata ricorsiva è sempre <u>l'ultima istruzione</u>
 - i calcoli sono fatti prima
 - la chiamata serve solo, dopo averli fatti, per proseguire la computazione
- questa forma di ricorsione si chiama <u>RICORSIONE</u> <u>TAIL</u> ("ricorsione in coda")