第8回 保護とセキュリティ(1)

入出力保護, アクセス制御

コンピュータシステムに対する脅威

- 災害:天災(地震・洪水)、人災(テロ・戦争)
- 故障:停雷、ハードウェア故障、ソフトウェア故障(バグ等)
- 操作ミス(偶発的な人為災害)
- 故意の人為災害(特に、これが厄介)
 - 不法侵入、盗聴
 - 不法アクセス
 - 不正プログラム、不正トラフィック
- 保護(protection):誤り(内部的な脅威)への対処
 - 信頼性、可用性などOSの機能が重要な役割
- セキュリティ(security)(注):故意による安全性への脅威への対処
 - 運用方法やアプリケーションを含めた対応が必要
- 注:機密保護とも訳されるが、意味が狭いため、近年は、カタカナで呼ばれる。 用法に注意(「セキュリティ対策」とは言わない)

p.166,167

- 信頼性(reliability):システムが故障せずに動く
 - ハードウェア故障、ソフトウェア故障=バグによる誤った動作

安全性に関する特性

- 信頼性向上:ハードウェア+OSを含めたソフトウェア
- 可用性(availability):システムが機能を維持し続ける
 - 冗長系による故障時の切り替え
 - 無停電電源装置(UPS)による停電時の動作維持
- セキュリティ(security):システムの安全を確保する(保安)
 - 侵入、不正使用、情報の窃盗・改ざん、破壊などへの対処
- 完全性(integrity):システムに欠陥が無く、意図どおりに機能する
 - セキュリティの問題を生じる安全性の欠陥:セキュリティホール

保護の目的と割り込み

- 多重プログラミング:複数の利用者によるコンピュータの共用
 - コンピュータの使用率が改善される反面、
 - 1つのプログラムのバグが多くのプログラムに影響
 - ・他人のカード(データ)を自分のものとして入力
 - ・他のプログラムのデータを変更、OSのデータさえも変更
- 不正なプログラムから、OS自身、他のプログラム、データを保護
- 他のプログラムの誤動作を引き起こさないことを保障
- プログラムの誤りの多くは、
 - ハードウェアによって検出され、 割り込みが重要な役割
- - OSによって処理される
 - 外部割込み:ハードウェアに起因する割り込み
 - ハードウェアの故障・エラー、I/O完了、<u>時計(タイマ)</u>
 - 内部割込み:プログラムの実行が原因で発生する割り込み - 不正命令、メモリ保護違反、システムコール

オヘッレーティングシステム(OS)の起動

- OS (正確にはカーネル)はイベント駆動(注)プログラムである
 - 何かが起こるのを待つ
 - マウスのクリック、文字の入力、印刷の終了、メモリのエ
- ハート・ウェアがイヘ・ントを検出し、割込みによりOS(カーネル)を起動
 - そのとき実行していたプログラムを中断し、OS(カーネル)の特定番地
 - このように、OS(カーネル)は、割込みによってのみ起動される
- 割り込みの種類
 - 外部割込み(external interrupt)
 - ・ ハードウェア割り込み (hardware interrupt) とも呼ばれる
 - 内部割込み(internal interrupt)
 - ソフトウェア割り込み(software interrupt)とも呼ばれる
 - 外部割込みを「割込み」、内部割込みを「割り出し(trap)」と言う人
- 注:イベント(event:事象)=出来事

基礎OSのスライド

外部割り込み

- 直接的にはプログラムの実行に起因しない割り込み (ハードウェアに起因する割り込み)
- 外部割込みの種類
 - マシンチェック割り込み
 - ハードウェアの故障
 - メモリの読み出しエラー(パリティチェックエラー)など
 - 入出力割り込み
 - ・ I/O装置からの動作終了通知
 - 異常通知など
 - 時計(タイマ)割り込み

内部割り込み

基礎OSのスライド

- プログラムの実行が原因で発生する割り込み
- 内部割込みの種類
 - プログラムの誤り
 - 演算例外(ゼロ除算、オーバフロー)
 - ・ 不正命令違反(定義されていない命令コードの使用)
 - ・メモリ保護違反(許可されていないメモリ領域へのアクセス)
 - 仮想記憶におけるページフォールトキ。この一種
 - システムによっては、ページフォールト専用の割込み番号を 持つもの有り
 - システムコール
 - その他(デバッグ用、エラー解析用など)

実行モードとCPU保護

- 非特権モード(ユー
 - 一般のAPを実行するモード。特権命令は実行不可
- 特権モード(カーネルモード
- OSのカーネルを実行するモード。特権命令も実行可能
- 特権命令

入力装置

- I/O命令 (入出力保護に関連)
- 記憶管理レジスタ変更命令 (記憶保護に関連)
- タイマ起動、停止、タイマ値変更命令 (CPU保護に関連)
- プログラムの実行制御のために用意された特別な命令
 - 割込み禁止命令、割込み禁止解除命令
 - ・実行モード切替命令
 - HALT命令(CPUを停止させる命令)
- CPU保護・特定のAPによるCPUの独占(無限ループ)に対する保護
 - APを実行中とする時にタイマを設定(タイマ値>量子時間)。
 - CPUバーストが続けば、無限ループと判断。

入出力保護

- 入出力保護:入出力誤りに対する保護
 - 入出力誤りの例
 - ・ 他人のデータを自分のものとして入力
 - 割り当てエリアをオーバした出力
 - 保護の方法
 - ・ 装置ドライバをOSが準備し、I/O要求の正当性を検査
- APのプログラマに対し、強制的に装置ドライバを使用させる必要がある
 - I/O命令を特権命令とする(APはI/O命令を使用不可)
 - APがI/O命令を実行すると不正命令の内部割込み
 - (APは非特権モードで実行するため)
 - I/O要求のシステムコールを提供する
 - OS(装置ドライバ)が起動され、特権モードでI/O命令実行

重要:入出力保護の実現(1)

APのプロセス(P1)が特権命令を直接実行するとエラーとなる

内部割込みによりOSに制御が渡る 割込み分析の結果(不正命令)、OSは利用者プログラムを終了させ、エラー処理 (その後、他のプログラムを実行させる)

● システムコール

● 特権命令

重要:入出力保護の実現(2)

内部割込みによりOSに制御が渡る

割込み分析の結果(システムコール)、OSはプロセスP1を待機状態にし、特権命令を実行

(OSの実行は特権モートで行われるので、エラーとはならない) I/O動作が終わると、外部割込み(I/O完了)によりOSに制御が渡る

割込み分析の結果、プロセスP1をレディ状態にする(P2が終わればP1が実行)

主記憶保護

資源へのアクセス制御機構

領域(アクセス主体) オブジェクト(資源) プリンタ 操作 ネットワーク 利用者 プロセス ファイル ホスト ディレクトリ 読み、書き、実行 メールホックス 追加、削除

保護の論理的なモデル:アクセス制御行列(実現には用いない) 行列:主体×オブジェクト。各要素は、オプジェクトに対し、主体が許されている操作。

実現法1:アクセス制御リスト

オブジェクト毎に、〈主体、操作〉の組からなるリストを持たせる Unix:主体(所有者、グループ、その他)、保護モード(rwx)の組 Windows:主体と許される操作、許されない操作のリスト(ACL)

実現法2:資格(Capability)リスト

主体に、<オブジェクト、操作>の組からなるリストを持たせる Unix:ファイルをオープンする際にプロセスにファイル識別子を渡す

モデル(アクセス制御行列)と実現法

モデル:アクセス制御行列

オブジェクト	ファイル1	ファイル2	ファイル3	カート゛リータ゛	プリンタ
領域	(F1)	(F2)	(F3)	(CR)	(P)
一般ユーサ [*] A	読み		読み		
一般ユーサ [*] B				読み	書き(印刷)
ク˙ルーフ˚C		読み	実行		
所有者D	読み・書き		読み・書き		

疎行列(sparse matrix:中身が殆ど空)なので、効率が悪い

実現法1:アクセス制御リスト F1:<A, r>, <D, rw> F2: <C, r> F3: <A. r>, <C. x>, <D. rw> CR: <B. r>

P: <B, w>

実現法2・資格リスト A:<F1,r>, <F3,r> B:<CR, r>, <P, w> C:<F1, w>, <F3,x> D:<F1, rw>, <F3, rw>

Unixのファイル保護(重要)

アクセス制御リスト方式:ファイル(オブジェクト)毎に、主体に許されるアクセス許可
モード(操作)を管理(所有者、グループ、他者に分け、操作の可否を管理)

- r:読出し(read) 該当ビットが w:書込み(write) 1:許可
- x:実行(execute) 0:不許可
- 所有者 グループ 他の利用者 d r w x r w x r w x
- d: ディレクトリ識別 1: ディレクトリ 0:ファイル

ディレクトリ、所有者は全て可(読み書き実行可)

drwx------11110000000 7 0 0 0) デルクリ、所有者は全て不可

 $-\mathbf{rw}-\mathbf$

 $\left. \begin{array}{ll} \mathbf{drwxr-x-x} \\ \mathbf{1111101001} \\ 7 & 5 & 1 \end{array} \right\}$ \vec{r} ルクトリ、所有者は全て可。

8進	rwx	意味
0		すべて不可
1	x	実行のみ可
2	-W-	書きのみ可
3	-wx	書き・実行可
4	r	読みのみ可
5	r-x	読み・実行可
6	rw-	読み・書き可
7	rwx	すべて許可

実現法の比較

	アクセス制御リスト	資格リスト
要求条件の記述	0	×
情報の局在化	×	0
効率	×	0

UNIXでは、領域は、利用者に対応する。 大規模システムでは、領域(利用者)数が多い。

保護の方法も重要だが、ここで最重要なのは、幾つかの方式を比較し、どれを採用するかの決定方法(上の表) 知識も必要だが (77セス制御リスト、資格リスト、情報の局在化、効率・というのは知ってますが、どちらの方式の方が良いかは分かりませんでは困る)、知 識を組み合わせて実務に適用する方法論の方が大事。 (情報卒は、ソフトを使ったシステムに従事する人も多いだろうから・・・)

ファイル入出力プログラムの例

ファイルへの書込み

ファイル記述子 int fd;

fd = open("foo", O_WRONLY|O_CREAT|O_TRUNC); write(fd, "hello\n", 6); close(fd);

ファイルの読出し

int n, fd; char buf[10]; fd = open("foo", O_RDONLY); n = read(fd, buf, 10);printf("n=%d, buf=|%s|\forall n", n, buf); close(fd);

簡単のため、エラー処理や文字列長の指定を省略