Sà se calculere diferența divisată

[to, thought, the second of the seco

dacă $t_0, t_n, ..., t_m$ sunt cole m+1 soluții ale ecuației $t^{m+1} + t^m + 1 = 0$ $\left(t_i^{m+1} - t_i^m + 1 = 0, \forall i = 0, m\right)$

Rezolvare.

Vom soue pe x^{m+3} a I. să aibă legătură cu ecuația $x^{m+1} - x^m + 1$. Amume $x^{m+3} - x^{m+2} + x^2 + x^{m+2} - x^2 = x^2(x^{m+1} - x^m + \lambda) + x^{m+2} - x^2$

 $= \sum_{n=1}^{\infty} \left[t_{0}, t_{1}, \dots, t_{m}; X^{m+3} \right] = \left[t_{0}, t_{1}, \dots, t_{m}; X^{2} \left(x^{m+1} - x^{m} + 1 \right) \right] + \left[t_{0}, t_{1}, \dots, t_{m}; X^{m+2} \right] - \left[t_{0}, t_{1}, \dots, t_{m}; X^{m} \right]$

Dar $[t_0, t_1, ..., t_m; X^2] = 0$ $[t_0, t_1, ..., t_m; X^2(X^{m+1}, X^m + 1)] = \sum_{i=0}^m \frac{t_i^2(t_i^{m+1} - t_i^m + 1)}{\ell'(t_i)} = 0$ unde $\ell(x) = (x - t_0)(x - t_1) ... (x - t_m)$

 $\begin{bmatrix} \pm_{0}, \pm_{\lambda_{1}}, ..., \pm_{m}; X^{m+2} \end{bmatrix} = S_{1}^{2} - S_{2} = \left(\underbrace{S}_{i=0}^{m} \pm_{i} \right)^{2} - \left(\underbrace{S}_{0 \leq i \neq j \leq m} \pm_{i} \right) = 1 - 0$ $= \sum_{i=0}^{n} \pm_{i} \cdot \sum_{j=0}^{n} \pm_{i} \cdot \sum$

pembru că ecuația $t^{m+1} - t^m + 1 = 0$ are surnele $S_1 = 1$, $S_2 = 0$

=> [to, te, ..., tm; Xm+3] = 1