Learning From Data Lecture 2 (Part 2): Generalized Linear Models

Yang Li yangli@sz.tsinghua.edu.cn

September 19, 2024

eview: Exponential Family Generalized Linear Models

Outline

Generalized Linear Models (GLM)

- ► Review: Exponential Families
- ► GLM Construction and Examples

Summary: Linear models

What we've learned so far:

Learning task	Model	$p(y x;\theta)$
regression	Linear regression	$\mathcal{N}(h_{\theta}(x), \sigma^2)$
binary classification	Logistic regression	Bernoulli($h_{\theta}(x)$)
multi-class classification	Softmax regression	$Multinomial([h_{\theta}(x)])$

Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing linear models in which $y|x;\theta$ is from an **exponential family**.

Review: Exponential Family

Exponential Family of Distributions

Examples of distribution classes in the exponential family.

Exponential Family of Distributions

A class of distributions is in the **exponential family** if its density can be written in the *canonical form*:

$$p(y;\eta) = b(y)e^{\eta^T T(y) - a(\eta)}$$

- ▶ y: random variable
- η : natural/canonical parameter (that depends on distribution parameter(s))
- ightharpoonup T(y): sufficient statistic of the distribution
- \blacktriangleright b(y): a function of y
- $ightharpoonup a(\eta)$: log partition function (or "cumulant function")

Exponential Family

Log partition function $a(\eta)$ is the log of a normalizing constant. i.e.

$$p(y; \eta) = b(y)e^{\eta^T T(y) - a(\eta)} = \frac{b(y)e^{\eta^T T(y)}}{e^{a(\eta)}}$$

Function $a(\eta)$ is chosen such that $\sum_{y} p(y; \eta) = 1$ (or $\int_{y} p(y; \eta) dy = 1$).

$$a(\eta) = \log \left(\sum_{y} b(y) e^{\eta^{T} T(y)} \right)$$

Gaussian Distribution (unit variance)

Probability density of a Gaussian distribution $\mathcal{N}(\mu,1)$ over $y\in\mathbb{R}$:

$$p(y; \theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\mu)^2}{2}\right)$$

- $\eta = \mu$
- $b(y) = \frac{1}{\sqrt{2\pi}} \exp(-y^2/2)$
- ightharpoonup T(y) = y
- $a(\eta) = \frac{1}{2}\eta^2$

Two parameter example:

Gaussian Distribution

Probability density of a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ over $y \in \mathbb{R}$:

$$p(y;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

$$\eta = \begin{bmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{bmatrix}$$

$$b(y) = \frac{1}{\sqrt{2\pi}}$$

$$b(y) = \frac{1}{\sqrt{2\pi}}$$

$$T(y) = \begin{bmatrix} y \\ y^2 \end{bmatrix}$$

$$a(\eta) = \frac{\mu^2}{2\sigma^2} + \log \sigma$$

$$a(\eta) = \frac{\mu^2}{2\sigma^2} + \log \theta$$

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0,1\}$, such that

$$p(y; \phi) = \phi^{y} (1 - \phi)^{1-y}$$

eview: Exponential Family

Bernoulli Distribution

Bernoulli(ϕ): a distribution over $y \in \{0,1\}$, such that

$$p(y; \phi) = \phi^{y} (1 - \phi)^{1-y}$$

How to write it in the form of $p(y; \eta) = b(y)e^{\eta^T T(y) - a(\eta)}$?

Bernoulli Distribution

Bernoulli (ϕ) : a distribution over $y \in \{0,1\}$, such that

$$p(y;\phi) = \phi^{y}(1-\phi)^{1-y}$$

- b(y) = 1
- ightharpoonup T(y) = y

Poisson distribution: Poisson(λ)

Models the probability that an event occurring $y \in \mathbb{N}$ times in a fixed interval of time, assuming events occur independently at a constant rate

Probability density function of Poisson(λ) over $y \in \mathcal{Y}$:

$$p(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$

Poisson distribution Poisson(λ)

Probability density function of Poisson(λ) over $y \in \mathcal{Y}$:

$$p(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$

- $ightharpoonup \eta =$
- \blacktriangleright b(y) =
- ightharpoonup T(y) =
- ightharpoonup $a(\eta) =$

Generalized Linear Models

Example 1: Award Prediction

Predict y, the number of school awards a student gets given x, the math exam score.

Problems with linear regression:

Assumes $y|x; \theta$ has a Normal distribution.

Assumes change in x is proportional to change in y

Problems with linear regression:

- Assumes y|x; θ has a Normal distribution.
 Poisson distribution is better for modeling occurrences
- Assumes change in x is proportional to change in y
 More realistic to be proportional to the rate of increase in y (e.g. doubling or halving y)

Generalized Linear Model (GLM): a recipe for constructing linear models in which $y|x;\theta$ is from an exponential family.

Design motivation of GLM

- We can select a distribution for Response variables y
- Allow (the canonical link function of y) to vary linearly with the input values x

e.g.
$$log(\lambda) = \theta^T x$$

Nelder, John Ashworth, and Robert William Maclagan Wedderburn. 1972. Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General) 135 (3): 37084.

Formal GLM assumptions & design decisions:

- 1. $y|x; \theta \sim \text{ExponentialFamily}(\eta)$ e.g. Gaussian, Poisson, Bernoulli, Multinomial, Beta ...
- 2. The hypothesis function h(x) is $\mathbb{E}[T(y)|x]$ e.g. When T(y) = y, $h(x) = \mathbb{E}[y|x]$
- **3.** The natural parameter η and the inputs x are related linearly:
 - η is a number:

$$\eta = \theta^T x$$

 η is a vector:

$$\eta_i = \theta_i^T x \quad \forall i = 1, \dots, n \quad \text{ or } \quad \eta = \Theta^T x$$

Relate natural parameter η to distribution mean $\mathbb{E}\left[T(y)|x\right]$:

ightharpoonup Canonical response function g gives the mean of the distribution

$$g(\eta) = \mathbb{E}\left[T(y)|x\right]$$

- a.k.a. the "mean function"
- $ightharpoonup g^{-1}$ is called the **canonical link function**

$$\eta = g^{-1}(\mathbb{E}\left[T(y)|x\right])$$

GLM example: ordinary least square

Apply GLM construction rules:

1. Let $y|x; \theta \sim N(\mu, 1)$

$$\eta = \mu$$
, $T(y) = y$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E}[T(y)|x;\theta]$$
$$= \mathbb{E}[y|x;\theta]$$
$$= \mu = \eta$$

3. Adopt linear model $\eta = \theta^T x$:

$$h_{\theta}(x) = \eta = \theta^T x$$

Canonical response function: $\mu = g(\eta) = \eta$ (identity) Canonical link function: $\eta = g^{-1}(\mu) = \mu$ (identity)

GLM example: logistic regression

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Bernoulli}(\phi)$

$$\eta = \log\left(\frac{\phi}{1-\phi}\right), \ T(y) = y$$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E}[T(y)|x;\theta]$$
$$= \mathbb{E}[y|x;\theta]$$
$$= \phi = \frac{1}{1 + e^{-\eta}}$$

3. Adopt linear model $\eta = \theta^T x$:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Canonical response function: $\phi = g(\eta) = \operatorname{sigmoid}(\eta)$ Canonical link function : $\eta = g^{-1}(\phi) = \operatorname{logit}(\phi)$

GLM example: Poisson regression (Exercise)

Example 1: Award Prediction

Predict y, the number of school awards a student gets given x, the math exam score.

Use GLM to find the hypothesis function...

GLM example: Poisson regression (Exercise)

Apply GLM construction rules:

1. Let
$$y|x; \theta \sim \mathsf{Poisson}(\lambda)$$

 $\eta = \mathcal{T}(y) = 0$

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E}\left[T(y)|x;\theta\right]$$

3. Adopt linear model $\eta = \theta^T x$:

$$h_{\theta}(x) = g(\eta) =$$

Canonical response function: $\lambda = g(\eta) =$ Canonical link function : $\eta = g^{-1}(\lambda) =$

GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k outcomes

$$p(y; \phi) = \prod_{i=1}^{k} \phi_i^{1\{y=i\}}$$

Derive the exponential family form of Multinomial($\phi_1,..,\phi_k$): Note:

$$\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$$
 is not a parameter

$$T(y) = \begin{bmatrix} \mathbf{1}\{y=1\} \\ \vdots \\ \mathbf{1}\{y=k-1\} \end{bmatrix}$$
$$T(y)_i = \mathbf{1}\{y=i\} = \begin{cases} 0 & y \neq i \\ 1 & y=i \end{cases}$$
$$\mathbf{a}(\eta) = -\log(\phi_k) = \log\sum_{i=1}^k e^{\eta_i}$$

$$\eta = \begin{bmatrix} \log\left(\frac{\phi_1}{\phi_k}\right) \\ \vdots \\ \log\left(\frac{\phi_{k-1}}{\phi_k}\right) \end{bmatrix}$$

$$b(y) = 1$$

GLM example: Softmax regression

Apply GLM construction rules:

1. Let $y|x; \theta \sim \text{Multinomial}(\phi_1, \dots, \phi_k)$, for all $i = 1 \dots k - 1$

$$\eta_i = \log\left(\frac{\phi_i}{\phi_k}\right), \ T(y) = \begin{bmatrix} \mathbf{1}\{y=1\} \\ \vdots \\ \mathbf{1}\{y=k-1\} \end{bmatrix}$$

Compute inverse: $\phi_i = \frac{e^{\eta_i}}{\sum_{i=1}^k e^{\eta_j}} \leftarrow$ canonical response function

2. Derive hypothesis function:

$$h_{\theta}(x) = \mathbb{E} \begin{bmatrix} \mathbf{1}\{y=1\} \\ \vdots \\ \mathbf{1}\{y=k-1\} \end{bmatrix} x; \theta = \begin{bmatrix} \phi_1 \\ \vdots \\ \phi_{k-1} \end{bmatrix}$$
$$\phi_i = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$$

3. Adopt linear model $\eta_i = \theta_i^T x$:

$$\phi_i = rac{\mathrm{e}^{ heta_i^T imes}}{\sum_{i=1}^k \mathrm{e}^{ heta_i^T imes}} ext{ for all } i = 1 \dots k-1$$

$$h_{\theta}(x) = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x}} \begin{bmatrix} e^{\theta_{1}^{T} x} \\ \vdots \\ e^{\theta_{k-1}^{T} x} \end{bmatrix}$$

Canonical response function:
$$\phi_i = g(\eta) = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}}$$

Canonical link function :
$$\eta_i = g^{-1}(\phi_i) = \log\left(\frac{\phi_i}{\phi_k}\right)$$

GLM Summary

Sufficient statistic
$$T(y)$$

Response function $g(\eta)$
Link function $g^{-1}(\mathbb{E}[T(y);\eta])$

Exponential Family	\mathcal{Y}	T(y)	$g(\eta)$	$g^{-1}(\mathbb{E}[T(y);\eta])$
$\mathcal{N}(\mu,1)$	\mathbb{R}	У	η	μ
$Bernoulli(\phi)$	$\{0,1\}$	У	$rac{1}{1+e^{-\eta}}$	$\log rac{\phi}{1-\phi}$
$Multinomial(\phi_1,\dots,\phi_k)$	$\{1,\ldots,k\}$	$1\{y=i\}$	$\frac{\mathrm{e}^{\eta_i}}{\sum_{j=1}^k \mathrm{e}^{\eta_j}}$	$\eta_i = \log \left(rac{\phi_i}{\phi_k} ight)$

GLM is effective for modelling different types of distributions over y