Definición de derivada

$$y' = \lim_{h o 0} rac{f(h+x)-f(x)}{h}$$

Tabla de derivadas

Función	Derivada
y = k	y'=0
y = x	y'=1
y = f(x) + g(x)	$y^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
$y = k \cdot f(x)$	$y'=k\cdot f'(x)$
$y=x^n$	$y'=nx^{n-1}$
$y=e^x$	$y'=e^x$
$y=a^x$	$y' = a^x \cdot \ln a$
$y = \ln x$	$y' = \frac{1}{x}$
$y = \log_a x$	$y' = \frac{1}{x} \cdot \log_a e = \frac{1}{x \cdot \ln a}$
y = sen(x)	y'=cos(x)
y = cos(x)	y' = -sen(x)

Multiplicación y división

$$egin{aligned} ext{Mult:} & y = f(x) \cdot g(x)
ightarrow y' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \ & Div \colon & y = rac{f(x)}{g(x)}
ightarrow y' = rac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2} \end{aligned}$$

Transformación a/de potencias

A potencia	De potencia
$\sqrt[n]{x^k} o x^{k/n}$	$x^{k/n} o \sqrt[n]{x^k}$
$rac{1}{x^n} o x^{-n}$	$x^{-n} o rac{1}{x^n}$
$rac{1}{\sqrt[n]{x^k}} o x^{-k/n}$	$x^{-k/n} o rac{1}{\sqrt[n]{x^n}}$

Tabla de derivadas con regla de la cadena

Función	Derivada
$y=f(x)^n$	$y' = n \cdot f(x)^{n-1} \cdot f'(x)$
$y = e^{f(x)}$	$y' = e^{f(x)} \cdot f'(x)$
$y=a^{f(x)}$	$y' = a^{f(x)} \cdot \ln a \cdot f'(x)$
$y = \ln f(x)$	$y'=rac{1}{f(x)}\cdot f'(x)=rac{f'(x)}{f(x)}$
$y = \log_a f(x)$	$y' = rac{1}{f(x)} \cdot \log_a e \cdot f'(x) = rac{f'(x)}{f(x)} \cdot \log_a e^\star$
y = sen(f(x))	$y' = cos(f(x)) \cdot f'(x)$
y=cos(f(x))	$y' = -sen(f(x)) \cdot f'(x)$

^{*}al igual que en la primera tabla, el $\log_a e$ lo podemos escribir como $\frac{1}{\ln a}$