

CONCEPTS □ Schéma d'une relation ■ Ensemble d'attributs noté: R (A₁:D₁, A₂:D₂, ...,An:Dn) □ R est le nom de la relation □ A₁, A₂, ...,An sont des noms d'attributs □ Degré d'une relation ■ Nombre d'attributs du schéma de la relation

- Attribut d'une relation
 - Nom du rôle joué par un domaine D_i dans le schéma d'une relation.
 - Plusieurs attributs peuvent avoir le même domaine
 - On peut omettre les domaines s'ils peuvent être déduit des noms des attributs (impossible sur machine)
 - Exemples:
 - Domaine NomPersonne = chaîne de caractères
 - NomEtudiant: NomPersonne, NomProfesseur: NomPersonne

5/18
© Michel Soto

CONCEPTS

- ☐ [instance/extension de] Relation
 - variable au cours du temps
 - ensemble de n-uplets (tuples), noté r(R)
 - Définition 1:

$$\begin{split} r(R) &= \{t_1,\,t_2,\,\ldots,t_n\} \\ \text{avec } \textbf{tuple} \; t_i &= \{v_1,v_2,\ldots v_p\} \; \text{et} \; v_i \in \; \text{dom} \; (A_i) \\ \text{ou alors} \; v_i &= \textbf{null} \end{split}$$

Exemple d'extension de la relation

Véhicule (N° Véhicule, Marque, Type, Couleur)

 $t_1 = \{2048 \text{ RS } 48, \text{ BMW, Csi, noir}\}$ $t_2 = \{1855 \text{ AKZ } 75, \text{ Citroën, 2cv, vert}\}$

6/18

CONCEPTS ☐ Instance/extension de relation ☐ ensemble de n-uplets (tuples), noté r(R) ☐ Définition 2: r(R) = {dom(A₁) X dom(A₂) X...Xdom(Aռ)} ☐ ne contient que les tuples valides représentant l'état courant du monde réel Exemple: soit les domaines Modèle et puissance définis par: Modèle= {BMW 850 CSi, 2cv Citroën}, Puissance={2,3,32} Calculer Modèle X Puissance ? 7/18 © Michel Soto

- Ordre des tuples
 - une relation est un *ensemble* de tuples au sens mathématique du terme
 - il n'existe aucun ordre entre les éléments d'un ensemble
- Ordre des valeurs des attributs dans un tuple
 - aucune importance tant que la correspondance entre attribut et valeur est maintenue

9/18
© Michel Soto

CONCEPTS

- ☐ Super clé d'une relation
 - Tous les tuples d'une relation sont distincts
 - 2 tuples ne peuvent avoir la même combinaison de valeurs pour tous leurs attributs
 - Soit R (A₁,A₂,...A_n)
 S'il existe un **sous-ensemble** SK d'attributs de R tel que:

 \forall r(R); \forall t₁, t₂, on a: t₁[SK] \neq t₂[SK]

alors SK est une super clé de R

Toute relation possède au moins une super clé: l'ensemble de tous ses attributs

10/18

- ☐ Clé d'une relation
 - soit K un **sous ensemble** d'attributs de R(A₁,A₂,...A_n) K est une clé si:
 - M
- 1) K est une super clé
- 2) $\forall A_i \in K$

K - {A_i} n'est plus une super clé

- Une clé est une super clé minimale
 - ☐ Utilisée pour identifier de façon unique chaque tuple d'une relation
- Propriété du schéma de relation
 - □ vraie pour toute r(R)
- Déterminée à partir de la sémantique des attributs du schéma

11/18

© Michel Soto

CONCEPTS

- Clé candidate
 - Lorsqu'il existe plusieurs clés possibles pour une relation chaque clé est dite candidate
- ☐ Clé primaire
 - Choix arbitraire d'une clé, parmi les clés candidates, pour identifier chaque tuple d'une relation
 - Notation: dans une relation, on souligne les attributs qui appartiennent à la clé primaire

12/18

- ☐ Exemples de clé et de super clé Etudiant (N°, Nom, Adresse, Date Naissance)
 - {N°, Nom, Adresse}: super clé: oui

clé: non

■ {N°, Nom} : super clé: oui

clé: non

■ {N°, Adresse}: super clé: oui

clé: non

■ {Nom, Adresse} : super clé: non

clé: non

■ {N°}: super clé: oui

clé: oui

13/18 © Michel Soto

CONCEPTS

- Clé étrangère
 - Un **ensemble** d'attributs KR appartenant à R2 est une clé de étrangère si:
 - 1. il existe une relation R1 de clé primaire KP et que
 - 2. KR a pour domaine l'ensemble des valeurs de KP
 - Notation: dans R2 on fait précéder KR par le symbole #
 - Conséquence
 - Toutes les valeurs de KR EXISTENT dans KP

Ni les noms des attributs de KR et ni les noms des attributs de KP n'interviennent dans cette définition

CONCEPTS □ Clé étrangère (exemple) R2: Véhicule (N°Véhicule, Marque, Type, Couleur) R1: Propriétaire (N°Séc. Soc., #N°Véhicule, Date achat) ■ {N° Véhicule} (KR) est clé étrangère de la relation Propriétaire (R1). Elle réfère {N° Véhicule} (KP) la relation Véhicule (R2) ■ L'ensemble {N°Véhicule} (KR) de la relation Propriétaire (R1) a pour domaine les valeurs de l'ensemble {N°Véhicule} (KP) la relation Véhicule (R2)

CONCEPTS Contraintes d'intégrités elles sont définies par: les domaines les clés des prédicats des conditions lors des mises à jour

CONCEPTS Contraintes d'intégrités liées aux clés Contrainte d'entité: Chaque attribut de la clé primaire a une valeur différente de null. Contrainte de référence (existence): Chaque valeur d'une clé étrangère KR est: soit la valeur d'un clé primaire d'un tuple QUI EXISTE dans la relation référencée par KR soit la valeur NULL

CONCEPTS Schéma de base de données relationnelle Un schéma complet comprend obligatoirement: une liste de domaines une liste de schémas de relation une liste de contraintes d'intégrité