MATH 127 Calculus for the Sciences

Lecture 7

Today's lecture

Last time

Solving easy differential equations Piecewise defined functions

This time

Course note coverage Section 2.1.2

Absolute value functions

Quiz 3 is today:

6 multiple choice and 4 long answers.

Motivation

Absolute value functions is so easy, it's just

$$|x| = \begin{cases} x, & x \ge 0; \\ -x & x < 0. \end{cases}$$

But do you know how to express

$$f(x) = x|x^2 - 1| + 5|2x - 3|$$

to an alien who does not use of the absolute value symbol?

Expressing functions with absolute values

Question How did we get the expression

$$|x| = \begin{cases} x, & x \ge 0; \\ -x & x < 0. \end{cases}$$

in the first place?

Step 1: Where did the function change behavior?

Answer:

$$x = \square$$

This is called a **transition point**.

Step 2: Split the x-axis using the transition points and deal with each piece.

Expressing functions with absolute values

Question Express

$$f(x) = x|x^2 - 1| + 5|2x - 3|$$

without the use of the absolute value symbol.

Step 1: What are potential transition points? Transition points occur whenever one of the absolute value sign is 0. Therefore

Transition points happen when
$$= 0$$
 or $= 0$

So the transition points are

$$x =$$

Question Express

$$f(x) = x|x^2 - 1| + 5|2x - 3|$$

without the use of the absolute value symbol.

The transition points are

$$x = -1, 1, \frac{3}{2}.$$

Step 2: Cut the domain of the function using the transition points, and describe the functions on each domain.

For this example, we have a few cases:

$$x \le -1$$
, $-1 < x \le 1$, $1 < x \le \frac{3}{2}$, $\frac{3}{2} < x$

Question Express

$$f(x) = x|x^2 - 1| + 5|2x - 3|$$

without the use of the absolute value symbol.

Case 1: $x \le -1$. Then $x^2 - 1 \ge 0$ and $2x - 3 \le 0$, so

$$f(x) = x \cdot \boxed{ + 5 \cdot }$$

Case 2: $-1 < x \le 1$. Then $x^2 - 1 \le 0$ and $2x - 3 \le 0$, so

$$f(x) = x \cdot \boxed{ + 5 \cdot }$$

Case 3: $1 < x \le \frac{3}{2}$. Then $x^2 - 1 \ge 0$ and $2x - 3 \le 0$,

$$f(x) = x \cdot \boxed{ + 5 \cdot }$$

Case 4: $\frac{3}{2} < x$. Then $x^2 - 1 \ge 0$ and $2x - 3 \ge 0$, so

$$f(x) = x \cdot \boxed{ + 5 \cdot }$$

Question Express

$$f(x) = x|x^2 - 1| + 5|2x - 3|$$

without the use of the absolute value symbol.

Finally, combine all cases and get

$$f(x) = \begin{cases} x(x^2 - 1) - 5(2x - 3), & x \le -1; \\ -x(x^2 - 1) - 5(2x - 3), & -1 < x \le 1; \\ x(x^2 - 1) - 5(2x - 3), & 1 < x \le \frac{3}{2}; \\ x(x^2 - 1) + 5(2x - 3), & \frac{3}{2} < x. \end{cases}$$

Expressing errors with absolute values

Errors

Remark If $|x-y| \leq z$ for some number z, that means the difference between x and y is at most z. This idea is used to express a range for error.

Example Suppose I measured my height h to be 175cm, but my ruler has an error of at most 5cm. This means my height could be anything between 170cm to 180cm.

Which one below correctly records this error?

- 1. |h 175| = 5.
- 2. |h-175| < 5.
- 3. |h + 175| < 5.
- 4. |175 h| < 5.

Derivative of absolute value

Recall that

$$|x| = \sqrt{x^2}$$

so to find the derivative of the absolute value, we can use the chain rule.

Before we do that, let us also recall that |x| does not exist when _____, so whatever result we get should reflect that.

$$\left(\sqrt{x^2}\right)' = \frac{1}{2\sqrt{x^2}} \cdot (x^2)', \text{ because}$$

$$= \frac{2x}{2\sqrt{x^2}}$$

$$= \frac{x}{|x|}$$

Question Find the derivative of

$$f(x) = |e^x - \sin(x)|.$$

Challenge Find the transition points of

$$f(x) = |e^x - \sin(x)|.$$

On Friday, we have an example focused class, but this means you need to do some preparations for the thoery to be able to understand the methods.

• Read page 47	(10 minutes)
• Read page 49 (up to the end of Example 4)	(10 minutes)
• Read Page 51 (up to the end of Example 7)	(5 minutes)
• Read page 52 (only Theorem 1 at the bottom)	(3 minutes)
• Read page 53 (up to right before Example 12)	(5 minutes)