UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE CIENCAS EXACTAS, NATURALES Y AGRIMENSURA

FUNCIONES

Algebra (Para Agrimensura) Ciclo lectivo 2010

Esp. Prof. Liliana N. Caputo Paula Daniela Bordón

TEMA 4

FUNCIONES DE UNA VARIABLE

Definición 1: Sean A y B dos conjuntos y una relación f, de A en B.

f: A \rightarrow B es **función** si, y sólo si, se cumplen las siguientes condiciones:

- 1) Existencia: Cada elemento de A tiene imagen en B es decir, que el alcance de f coincide con su dominio. En símbolos: $\forall x \in A$: $f(x) \in B$.
- 2) <u>Unicidad</u>: Cada elemento de A tiene una única imagen en B. En símbolos: $f(x) = y \land f(x) = z \Rightarrow x = y$.

Notaciones:

- a) x se llama variable independiente y f(x) denota la imagen de x por la función f.
- b) Si f: A \rightarrow B es función, denotamos con f(A) al conjunto de imágenes de elementos de A es decir, y \in f(A) $\Leftrightarrow \exists x \in A/y = f(x)$.
- c) Si f: A \rightarrow B es función y E \subset B, denotamos con f⁻¹(E) al conjunto de preimágenes de elementos de E es decir, $x \in f^{-1}(E) \Leftrightarrow \exists y \in E / y = f(x)$.

UN PRIMER EJEMPLO: LA FUNCION IDENTIDAD

Vemos que i_A : $A \to A/i_A(x) = x$, cualquiera sea A, es función. En efecto: $\forall x \in A$: $i_A(x) = x \in A$.

Además: $i_A(x) = y \land i_A(x) = z \Rightarrow x = y \land x = z \Rightarrow y = z$.

REPRESENTACION GRAFICA

Como las funciones son relaciones, pueden representarse gráficamente de la misma manera que las relaciones binarias: mediante diagramas de Venn o de gráficos cartesianos.

Cuando se trata de funciones con dominio y/o rango en conjuntos infinitos, no pueden utilizarse diagramas de Venn y, necesariamente, debe usarse gráficos cartesianos para poder entender su comportamiento en todo el dominio.

Según el dominio o el rango de una función sean \mathbb{N} , \mathbb{Z} , \mathbb{Q} o \mathbb{R} , para representarla gráficamente se usan puntos aislados, líneas de puntos o contínuas.

Veamos la gráfica de i_A : $A \rightarrow A$, cuando $A = \mathbb{N}$, $A = \mathbb{Z}$, $A = \mathbb{Q}$ y $A = \mathbb{R}$:

Si $A = \mathbb{N}$: i_A : $A \rightarrow A/i_A(x) = x$ queda representada por un conjunto de puntos aislados como el siguiente:

Si $A = \mathbb{Z}$: i_A : $A \rightarrow A/$ $i_A(x) = x$ queda representada por un conjunto de puntos aislados como el siguiente:

Si $A = \mathbb{Q}$, la gráfica de i_A : $A \rightarrow A/i_A(x) = x$ es:

En cambio, si $A = \mathbb{R}$, la gráfica de i_A : $A \rightarrow A/i_A(x) = x$ es:

IGUALDAD DE FUNCIONES: Sean dos funciones $f : A \rightarrow B$ y g:D \rightarrow C. Diremos que $f = g \Leftrightarrow A = D \land \forall x \in A$: f(x) = g(x).

CLASIFICACION DE FUNCIONES: Sea f: A → B una función:

Definición 2: f es inyectiva
$$\Leftrightarrow$$
 (f(x) = f(x') \Rightarrow x = x') \Leftrightarrow (x \neq x' \Rightarrow f(x) \neq f(x')).

Es decir, en una función inyectiva, a elementos distintos del dominio les corresponden imágenes distintas.

Definición 3: f es sobreyectiva
$$\Leftrightarrow$$
 $(\forall y \in B, \exists x \in A/y = f(x)) \Leftrightarrow Rgo(f) = f(A)$.

Podemos decir pues, que si una función es sobreyectiva, todo elemento del rango tiene, al menos, una preimagen en el dominio.

<u>Definición 4</u>: f es biyectiva ⇔ f es inyectiva y sobreyectiva.

ALGUNAS FUNCIONES PARTICULARES:

<u>Función identidad</u>: Ya hemos definido i_A : $A \rightarrow A/i_A(x) = x$ y probamos que es función. Veamos a continuación, que cualquiera sea A, i_A es biyectiva. Para ello, debemos probar que:

- a) i_A es inyectiva: Sean x, $x' \in A/i_A(x) = i_A(x') \Rightarrow x = x'$ (por def.de i_A).
- b) i_A es sobreyectiva: Sea $y \in A$. Entonces, $\exists x \in A / x = y \land y = x = i_A(x)$. Por a y b, i_A es biyectiva.

<u>Función constante</u>: Sean A y B conjuntos no vacíos, $b \in B$. Se llama función constante a la siguiente: c_b : $A \rightarrow B / \forall x \in A$: $c_b(x) = b$.

Si x, $x' \in A / x \neq x'$, resulta que $c_b(x) = b = c_b(x')$, luego la función no es inyectiva. (Probamos que $x = x' \land c_b(x) = c_b(x')$ - que es la negación de $x \neq x' \Rightarrow \Rightarrow c_b(x) \neq c_b(x')$ - es verdadera). En cambio, sólo es sobreyectiva, si $B = \{b\}$.

Función factorial: Se define como:

$$!: \mathbb{N}_0 \longrightarrow \mathbb{N}/x! = \begin{cases} 1 & \text{si } x = 0 \ \forall x = 1 \\ \prod_{i=1}^x x & \text{si } x > 1 \end{cases}$$

Función signo: Se define como

$$s: \mathbb{R} \to \{-1, 0, 1\} / s(x) = \begin{cases} 1 \text{ si } x > 0 \\ 0 \text{ si } x = 0 \\ -1 \text{ si } x < 0 \end{cases}$$

Función valor absoluto: Se define como

$$\|: \mathbb{R} \to \mathbb{R}/|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Función lineal: Se define como $f: \mathbb{R} \to \mathbb{R}/f(x) = ax + b$, $con a, b \in \mathbb{R}$ Su gráfica es una línea recta que corta al eje vertical en el punto de coordenadas (0,b) y que forma con el semieje positivo de las x un ángulo cuya tangente es a. Nótese, que la identidad en \mathbb{R} es un caso particular de la función lineal, en la cual a = 1 y b = 0.

Función cuadrática:

Se define como $f: \mathbf{R} \to \mathbf{R}/f(x) = ax^2 + bx + c$, cona, b, $c \in \mathbf{R}$, $a \neq 0$. Su gráfica es una curva llamada **parábola**. En toda parábola puede distinguirse un punto llamado vértice, de coordenadas $\left(\frac{-b}{2a}, f(\frac{-b}{2a})\right)$. Si a > 0, la imagen del vértice es el valor mínimo de la función, mientras que si a < 0, es el máximo.

<u>Funciones a trozos</u>: Son funciones en las cuales para distintos subconjuntos del dominio las imágenes se determinan de distintas maneras. Ejemplos: la función signo, el factorial de un natural o cero, el valor absoluto de un número real, etc. Otro ejemplo:

$$f: \mathbb{R} \to \mathbb{R}/f(x) = \begin{cases} 2x + 1 & \text{si } x > \sqrt{2} \\ x^2 & \text{si } x \le \sqrt{2} \end{cases}$$

FUNCION INVERSA DE UNA DADA

Al estudiar relaciones, vimos que dada una relación, siempre puede hallarse su inversa. Como las funciones son relaciones, dada una función de A en B, su relación inversa (de B en A) existe, pero no necesariamente es, a su vez, función.

Recordemos que si f:A \rightarrow B, su inversa es f⁻¹: B \rightarrow A, tal que:

$$f(x) = y \Leftrightarrow f^{-1}(y) = x (I)$$

Teorema 1: Dada una función $f:A \rightarrow B$, $(f^{-1})^{-1} = f$.

Como f está definida de A en B, su inversa, f^{-1} , está definida de B en A y, a su vez, $(f^{-1})^{-1}:A \rightarrow B$ (1)

Sea x ε A. Como f es función, \exists y ε B/y = f(x). Luego, por definición de relación inversa, x = f⁻¹(y). Entonces, nuevamente por definición de relación inversa, y = $(f^{-1})^{-1}(x)$. De donde, \forall x \in A: f(x) = y = $(f^{-1})^{-1}(x)$ (2)

Por (1) y (2) y definición de igualdad de funciones, $(f^{-1})^{-1} = f$.

Teorema 2: Dada una función f:A \rightarrow B, su inversa f⁻¹:B \rightarrow A es función si, y sólo si, f es biyectiva.

FACENA - UNNE

Algebra (Para Agrimensura)

Esp. Prof. Liliana Caputo, Paula Daniela Bordón

Año Lectivo 2010

Probemos primero que si f es biyectiva, f⁻¹ es función.

Sea y ε B. Entonces, por ser f sobreyectiva, $\exists x \varepsilon A / y = f(x)$. Luego, por (I), $f^{-1}(y) = x \varepsilon A$. Entonces, cualquiera sea y ε B, hemos probado que existe su imagen por f^{-1} en A. (II)

Si y ε B y existen x, x' ε A tales que f⁻¹(y) = x \wedge f⁻¹(y) = x', por (I), resulta que f(x) = y = f(x'). Luego, como por hipótesis f es inyectiva, debe ser x = x'(III).

De (II) y (III), f⁻¹ es función.

Recíprocamente, si f¹ es función, probemos que debe ser f biyectiva:

Sean x, x' \in A/ f (x) = f (x') = y. Por (I), debe ser f⁻¹(y) = x \wedge f⁻¹(y) = x'; como por hipótesis, f⁻¹ es función, y debe tener una única imagen, por lo cual debe ser x = x'. Luego, f es inyectiva (IV).

Sea y ε B. Como f¹ es función, $\exists x \varepsilon A / f^1(y) = x$. Luego, por (I), y = f(x). Hemos probado pues, que f es sobreyectiva (V).

De (IV) y (V), f es biyectiva.

Corolario: f es función biyectiva si, y sólo si, su inversa, f⁻¹ también lo es.

Sea f una función biyectiva. Como (p \Leftrightarrow q) \Leftrightarrow (\sim p \Leftrightarrow \sim q), tenemos que el hecho de que f⁻¹ no sea biyectiva es, por el teorema anterior, equivalente a que f no es función. Como f es función biyectiva, debe ser f⁻¹ función biyectiva.

COMPOSICION DE FUNCIONES

Definición 5: Sean dos funciones, f: A \rightarrow B y g: E \rightarrow C, tales que f(A) \subset E. Definimos la **composición de f y g,** como la función siguiente: $g \circ f : A \rightarrow C/(g \circ f)(x) = g[f(x)].$

Veamos a continuación un ejemplo: Sean A = {1, 2, 3}, B = {-3, -2, -1, 0} y C = {-2, -1, 0, 1}, f: A →B/f(x) = -x, g: B →C/g(x) = x + 1. Si representamos en diagramas de Venn, vemos que $g_0f = \{(1,0), (2,-1), (3,-2)\}$:

$$\therefore g \circ f : A \to C/(g \circ f)(x) = g\big[f(x)\big] = g(-x) = -x + 1$$

A continuación, usaremos funciones f, g y h tales que Rgo(f) = Dm(g) y Rgo(g) = Dm(h), a fin de simplificar la notación.

Propiedades de la composición de funciones:

Sean $f: A \rightarrow B$, $g: B \rightarrow C$ y h: $C \rightarrow D$, functiones.

1. La composición de funciones no es conmutativa.

FACENA - UNNE

Algebra (Para Agrimensura)

Esp. Prof. Liliana Caputo, Paula Daniela Bordón

Año Lectivo 2010

- La composición de funciones es asociativa. Es decir: (h₀g)of = h₀(g₀f).
- 3. Si f y g son biyectivas, también gof es biyectiva.
- 4. Si f es biyectiva, $f^{-1} \circ f = i_A \wedge f \circ f^{-1} = i_B$.
- 5. Sify g son biyectivas, $(g_0f)^{-1} = f^{-1}_0g^{-1}$.

Demostraciones:

1. Para que realmente podamos ver que $g_0f \neq f_0g$, demos un ejemplo en el cual A = B = C, es decir, que f y g sean funciones de A en A.

Si $f:\mathbb{R} \to \mathbb{R} / f(x) = x + 1$ y $g:\mathbb{R} \to \mathbb{R} / g(x) = x^2$, se tiene que:

gof:
$$\mathbb{R} \to \mathbb{R} / gof(x) = g[f(x)] = g(x + 1) = (x + 1)^2$$
.

$$f_0g: \mathbb{R} \to \mathbb{R} / f_0g(x) = f[g(x)] = f(x^2) = x^2 + 1.$$

Entonces, gof \neq fog, pues $\exists 1 \in \mathbb{R} / (g \circ f)(1) = (1 + 1)^2 = 4 \neq 2 = 1^2 + 1 = (f \circ g)(1)$.

2. Como $f: A \rightarrow B$, $g: B \rightarrow C$ y h: $C \rightarrow D$, hog: $B \rightarrow D$ y gof: $A \rightarrow C$. En consecuencia, (hog)of: $A \rightarrow D$ y ho(gof): $A \rightarrow D$. (A)

Sea $x \in A$. Entonces, por ser función, existe $y \in B$ tal que y = f(x) (*). Luego, como h₀g es función de B en D, existe $z \in D/$ (h₀g)(y) = z = h[g(y)]. Pero, por (*), resulta: z = h[g(y)] = h[g(f(x))]. (**)

Veamos ahora la imagen de x por (hog)of:

$$[(h_0g)_0f](x) = (h_0g)[f(x)] = (h_0g)(y) = z (Por * y **). (B)$$

 $[h_0(g_0f)](x) = h[(g_0f)(x)] = h[g(f(x))] = z$, por definición de composición de funciones (dos veces) y por (**). (C)

De (A), (B) y (C), resulta $(h \circ g)$ of $= h \circ (g \circ f)$.

- 3. Sean f y g biyectivas. Probaremos que:
- a) g_0f es inyectiva: Sean $x, x' \in A/(g_0f)(x) = (g_0f)(x')$. Entonces: $(g_0f)(x) = (g_0f)(x') \Rightarrow g[f(x)] = g[f(x')] \Rightarrow f(x) = f(x') \Rightarrow x = x'$ (por definición de funciones, por ser g inyectiva y por inyectividad de f, respectivamente).
- b) g_0f es sobreyectiva: Sea $y \in B$. Como g es sobreyectiva, $\exists z \in B/y = g(z)$. Pero como también f es sobreyectiva, $\exists x \in A/z = f(x)$. Luego se tiene que: $y = g(z) = g[f(x)] = (g_0f)(x)$.
- 4. Si f es biyectiva, su inversa f^{-1} es función de B en A. Luego, $f \circ f^{-1} : B \to B$ y $f^{-1} \circ f : A \to A$.

Sea $x \in A$. Entonces, como f es función, existe $y \in B$, tal que y = f(x). Además, por definición de relación inversa, $x = f^{-1}(y)$. Entonces, resulta que:

$$(f^{-1}\circ f)(x) = f^{-1}[f(x)] = f^{-1}(y) = x = i_A(x).$$

De la misma manera, $(f \circ f^{-1})(y) = f[f^{-1}(y)] = f(x) = y = i_B(y)$.

5. Por lo probado en 3, si f y g son biyectivas, la composición también lo es y, en consecuencia, existen y son funciones f⁻¹: B \rightarrow A, g⁻¹: C \rightarrow B, (g₀f)⁻¹:C \rightarrow A y f⁻¹₀g⁻¹:C \rightarrow A.

Sea $x \in C$. Como g^{-1} es función, $\exists z \in B/g^{-1}(x) = z \ y \ x = g(z)$. Ahora bien, como también f^{-1} es función, $\exists y \in A/f^{-1}(z) = y \land y \ z = f(y)$.

Luego: $(f^{-1} \circ g^{-1})(x) = f^{-1}[g^{-1}(x)] = f^{-1}(z) = y$.

De la misma manera, $(g_0f)(y) = g[f(y)] = g(z) = x$. Luego, $(g_0f)^{-1}(x) = y$.

BIBLIOGRAFIA CONSULTADA

- ESPINOSA ARMENTA, R. (2010). Matemáticas discretas. 1ª Edición. Alfaomega Grupo Editor, S.A. de C.V. México.
- JOHNSONBAUGH, R. (2005). Matemáticas Discretas. 6ª Edición. Pearson Educación. MÉXICO.
- ROJO, A. (1996). Algebra I. El Ateneo. Argentina.