Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Convocatòria 2015

Tecnologia industrial

Sèrie 5

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

L'alumini té una densitat $\rho = 2\,700\,\mathrm{kg/m^3}$. Quin és el pes d'una barra massissa de secció circular de 140 mm de diàmetre i 1,3 m de llargària? (Preneu $g = 10\,\mathrm{m/s^2}$.)

- *a*) 688,0 N
- **b**) 540,3 N
- c) 216,1 N
- d) 3 088 N

Qüestió 2

En el plànol de la figura, les toleràncies per a les dimensions angulars són \pm 0° 30′ per a α_1 i \pm 0° 20′ per a α_2 . Quina és la tolerància per a β ?

a)
$$\begin{pmatrix} +0^{\circ}30' \\ -0^{\circ}20' \end{pmatrix}$$
 b) $\pm 0^{\circ}50'$

c)
$$\begin{pmatrix} +0^{\circ}30' \\ -0^{\circ}0' \end{pmatrix}$$
 d) $\pm 0^{\circ}10'$

Qüestió 3

Un transportista porta en un camió un màxim de 48 palets de 500 kg. Per cada palet, cobra al client 50 € fixos, més 0,40 € per kilòmetre recorregut. Si les despeses del camió i de gestió són de 6,30 € per kilòmetre recorregut, quants kilòmetres ha de recórrer amb el camió ple per a obtenir un benefici de 25 000 €?

- *a*) 1752 km
- **b**) 56 500 km
- c) 1938 km
- d) 3 968 km

Qüestió 4

El motor d'una motocicleta de 125 cm 3 de quatre temps té una cursa de 50,6 mm i una relació de compressió rc = 7,1. Quin és el volum de la cambra de combustió?

- a) 125 cm^3
- **b)** $20,49 \text{ cm}^3$
- c) $17,61 \text{ cm}^3$
- d) $10,47 \text{ cm}^3$

Qüestió 5

L'aliatge de titani Ti-6Al-7Nb que s'utilitza en pròtesis internes conté un 6,1 % d'alumini (Al), un 7,3 % de niobi (Nb), un 0,99 % d'altres components (C, H, Fe, N, O, Ta) i la resta és titani (Ti). Quina quantitat de titani (Ti) hi ha en 25 kg d'aquest aliatge?

- *a*) 21,40 kg
- **b**) 1,525 kg
- c) 21,65 kg
- d) 3,35 kg

Exercici 2

[2,5 punts en total]

La divisió entera de dos nombres per 3 fa que es puguin escriure $z_1 = 3q_1 + r_1$ i $z_2 = 3q_2 + r_2$, on r_1 i r_2 s'anomenen *residus* i poden ser iguals a 0, 1 o 2. La suma dels dos nombres $s = z_1 + z_2$ pot ser múltiple de 3 o no. Responeu a les qüestions que hi ha a continuació utilitzant les variables d'estat següents:

$$\begin{split} z_{_{1}} & \text{ m\'ultiple de 3: } m_{_{1}} = \left\{ \begin{array}{l} 1\text{: s\'i} \\ 0\text{: no} \end{array}; \ z_{_{2}} & \text{m\'ultiple de 3: } m_{_{2}} = \left\{ \begin{array}{l} 1\text{: s\'i} \\ 0\text{: no} \end{array}; \right. \\ & \text{residus } r_{_{1}} \text{ i } r_{_{2}}\text{: } i = \left\{ \begin{array}{l} 1\text{: } r_{_{1}} = r_{_{2}} \\ 0\text{: } r_{_{1}} \neq r_{_{2}} \end{array}; \right. & s \text{ m\'ultiple de 3: } m_{_{s}} = \left\{ \begin{array}{l} 1\text{: s\'i} \\ 0\text{: no} \end{array}; \right. \end{split}$$

- a) Escriviu la taula de veritat del sistema i indiqueu els casos que no són possibles. [1 punt]
- b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
- c) Dibuixeu l'esquema de contactes equivalent. [0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

 $U_{\text{LED}} = 3.1 \text{ V}$ $I_{\text{LED}} = 2500 \text{ mA}$

Una llanterna consta de tres LED connectats en paral·lel. La caiguda de tensió de cada LED és $U_{\rm LED}=3,1~\rm V$. La llanterna es pot alimentar amb dues o tres bateries connectades en sèrie. Cada bateria proporciona una tensió $U_{\rm bat}=3,7~\rm V$ i té una capacitat $c_{\rm bat}=3\,000~\rm mA~h$. Entre les bateries i els LED hi ha una resistència R. Quan hi ha les tres bateries connectades, per cada LED hi passa un corrent $I_{\rm LED}=2\,500~\rm mA$. Determineu:

a) El valor de la resistència *R*.

[0,5 punts]

- **b**) L'energia consumida pel conjunt E_{total} en el temps t = 0.5 h de funcionament quan les tres bateries estan connectades. [0.5 punts]
- c) La intensitat I_{LED2} que circula per cada LED quan només hi ha dues bateries connectades. [0,5 punts]
- d) El temps t_{hat} que duren les bateries en cadascuna de les dues configuracions. [1 punt]

Exercici 4

[2,5 punts en total]

Una estufa de butà té una potència calorífica màxima $P_{\text{màx}} = 3,05 \,\text{kW}$. El butà es distribueix liquat, en bombones que contenen una massa de butà $m_b = 12,5 \,\text{kg}$ i que tenen una forma aproximadament cilíndrica de diàmetre $d = 300 \,\text{mm}$ i alçària $h = 450 \,\text{mm}$. El poder calorífic del butà és $c_b = 49,61 \,\text{MJ/kg}$ i té una densitat, abans del procés de liquació, de $\rho = 2,52 \,\text{kg/m}^3$. Determineu:

a) El consum *c* en kg/h, si funciona a la màxima potència.

[0,5 punts]

b) La durada d'una bombona t_b si funciona a la màxima potència.

[0,5 punts]

c) La reducció de volum, en tant per cent, que experimenta el butà en el procés de liquació per a introduir-lo a la bombona. [0,5 punts]

Per a una potència de l'estufa 1 kW $\leq P \leq 3,05$ kW, dibuixeu:

d) El gràfic de la durada d'una bombona en hores, en funció de la potència *P*, indicant les escales. [1 punt]

OPCIÓ B

Exercici 3

[2,5 punts en total]

La placa d'acer de la figura, de gruix e = 5 mm, està articulada en el punt O i es manté en repòs mitjançant el cable PQ de secció nominal $s = 2.7 \text{ mm}^2$.

a) Dibuixeu el diagrama de cos lliure de la placa.

[0,5 punts]

Determineu:

b) La massa m de la placa ($\rho_{acer} = 7.850 \text{ kg/m}^3$). [0,5 punts]

c) La força T que fa el cable i les forces vertical $F_{\rm v}$ i horitzontal $F_{\rm h}$ en l'articulació O. [1 punt]

d) La tensió normal σ del cable a causa de la força que fa.

[0,5 punts]

Exercici 4

[2,5 punts en total]

Una porta de garatge enrotllable és accionada per un motor reductor de rendiment global $\eta_{\text{tot}} = 0.33$. El motor reductor està format per un motor elèctric de rendiment $\eta_{\text{motor}} = 0.83$ i un reductor de relació de transmissió $\tau = \omega_s/\omega_e = 1/285$. El motor s'alimenta amb una tensió U = 230 V i, en un instant concret, consumeix una intensitat I = 1.8 A quan la porta s'enrotlla a $n_s = 10 \,\mathrm{min^{-1}}$ en un tambor de diàmetre $d = 220 \,\mathrm{mm}$. Determineu:

a) La potència P_{motor} i el parell Γ_{motor} a l'eix de sortida del motor. b) La potència P_{s} i el parell Γ_{s} a l'eix del tambor (eix de sortida del reductor). [1 punt]

[1 punt]

c) La massa màxima m que pot tenir la part que penja de la porta. [0,5 punts]

