Nome:	n°	n°	
	DEPARTAMENTO DE ENGENHARIA INFO	RMÁTICA	
2023-2024	TEORIA DA COMPUTAÇÃO	8/nov./2023 16.00h	
Duração: 90m	1ª Frequência		
3°- Não responda branco têm p 4°- Para responda Quando a res		-	
1. Classifique as	seguintes afirmações como verdadeiras ou falsas:		
	do l_{I} e 12 linguagens regulares, então $l1$ - $l2$ também ser linguagem regular	F	
repres núme	mero mínimo de estados de um autómato para sentar uma linguagem será igual no mínimo ao ero de variáveis de uma gramática que representa linguagem.	F	
2. Comente a seg	guinte afirmação 'Uma linguagem Finita é sempre uma Lir	nguagem regular"	
	Verdadeira: □	/ Falsa: □	
3. Relacione os I	DFA's com os NFA's quanto à sua função de Transição		

Nome:	n°	
4. Prove pelo lema da bombagem que a seguinte Linguagem $L = \{w: n_a(w) = n_b(w), w \ge 2\}$ não é regular.		

Nome:	n°	
5- Desenhe o grafo de um autómato finito determinístico, com o menor número de estado possível, para a linguagem no alfabeto {a, b} composta pelas cadeias que contenha simultaneamente um número ímpar de ocorrências da sequência ba e não contém a sequência		
baa.	ar de ocorrencias da sequencia ba e não content a sequencia	

Nome:	n°	

6-Considere o seguinte autómato finito não determinístico, no alfabeto $\{0,1\}$ com o seguinte grafo de transições.

Determine o autómato finito determinístico equivalente ao autómato finito não determinístico mencionado.

	
7- Considere a seguinte Expressão Regular (b*a*ab+b*ab*)(ab+b*)* no alfabe Converta-a no seu NFA com o menor número de estados possível.	eto $\Sigma = \{a, b\}.$
8- Considere a linguagem descrita pela seguinte expressão regular:	
$ER = (ab)^* + (ab^* (ab)^*)^*$	
Escreva as produções de uma gramática regular que gere essa linguagem.	