Breve introduzione ai Modelli del Pneumatico

Forze Pneumatico-Asfalto

La dinamica del veicolo dipende strettamente dalle forze e dai momenti sviluppati dal contatto pneumatico-asfalto:

- la forza longitudinale $F_{\scriptscriptstyle \chi}$
- la forza laterale F_{y}
- ullet il momento autoallineante della ruota M_z

È necessario un modello del pneumatico che permetta il calcolo dinamico delle forze e dei momenti $F_{\scriptscriptstyle X}$, $F_{\scriptscriptstyle V}$ e $M_{\scriptscriptstyle Z}$.

Modello di PACEJKA (magic formula):

fornisce le caratteristiche del pneumatico mediante interpolazione matematica delle caratteristiche ricavate da prove sperimentali o da modelli fisici.

Il modello più diffuso del pneumatico calcola le forze F_x , F_y e M_z per un dato asfalto in funzione di 4 parametri:

- scorrimento λ
- ullet angolo di scorrimento lpha
- ullet carico verticale N_z
- ullet angolo di camber γ

 \dot{V} è la velocità del baricentro del veicolo riportata nel punto di contatto tra pneumatico e asfalto.

Forze Pneumatico-Asfalto

- Il pneumatico presenta un comportamento nonlineare.
- Quasi tutti gli pneumatici hanno caratteristiche simili.
- Le strategie di controllo come traction control, ABS, ESP, si basano sul comportamento del pneumatico in funzione delle variabili λ , α , N_z e γ .

Forze Longitudinali Pneumatico-Asfalto

Forze Laterali Pneumatico-Asfalto

Momento Autoallineante Pneumatico-Asfalto

Momento Autoallineante Pneumatico-Asfalto (2)

Osservazione: in condizioni di aderenza limite (elevati λ e α) il momento autoallineante diminuisce, provocando un alleggerimento dello sterzo.

Scorrimento:

$$\lambda = \frac{\omega R_e - v_x}{v_x}$$

$$v_x$$

$$V_x$$

Regione di lavoro instabile: lo scorrimento aumenta fino allo slittamento della ruota

Regione quasi lineare:

- $F_{_{\scriptscriptstyle X}}$ rispetto a λ
- $F_{\scriptscriptstyle \mathrm{V}}$ rispetto ad lpha

Le forze esercitate dal pneumatico aumentano in modo quasi proporzionale con il carico verticale N_z .

Effetti del carico verticale sulle forze longitudinali

Effetti del carico verticale sulle forze laterali

Effetti del carico verticale sul momento autoallineante

Ellissi di aderenza

Rappresentando le forze longitudinali e laterali per tutti i possibili punti di lavoro (scorrimento e angolo di scorrimento) si ottene l'ellissi di aderenza che rappresenta su un unico grafico le forze che un pneumatico riesce a trasmettere a terra per un dato carico.

Ellissi di aderenza e carico verticale

Fx [N]

