

Centralna Komisja Egzaminacyjna

EGZAMIN MATURALNY 2012

MATEMATYKA POZIOM PODSTAWOWY

Kryteria oceniania odpowiedzi

CZERWIEC 2012

Zadanie 1. (0-1)

Obszar standardów	Opis wymagań	Poprawna odpowiedź (1 p.)
Wykorzystanie i interpretowanie informacji	Usuwanie niewymierności z mianownika (I.1.a)	D

Zadanie 2. (0-1)

Wykorzystanie i interpretowanie informacji	Wykorzystanie pojęcia wartości bezwzględnej do sprawdzenia czy dane liczby są rozwiązaniami równania typu $ x-a =b$ (I.1.f)	A
---	---	---

Zadanie 3. (0–1)

i interpretowanie informacji	Odczytanie z postaci iloczynowej równania wielomianowego jego rozwiązań (I.3.d)	A	

Zadanie 4. (0-1)

Modelowanie matematyczne	Wykonanie obliczeń procentowych (III.1.d)	C
--------------------------	---	---

Zadanie 5. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wskazanie wykresu funkcji kwadratowej danej wzorem (II.4.a)	A
---	---	---

Zadanie 6. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wyznaczenie współrzędnych wierzchołka paraboli będącej wykresem funkcji kwadratowej (II.4.b)	D
---	--	---

Zadanie 7. (0–1)

-	,	Znalezienie związków miarowych w figurach płaskich. Zastosowanie rachunku kątów w trójkącie (III.7.c)	C	
		rachanka katow w trojkacie (111.7.6)		

Zadanie 8. (0-1)

Wykorzystanie i interpretowanie reprezentacji
--

7	•	Λ.	/A	1
Zada	nia	4	I I I	_ I \
Laua	.111	J. 1	ı v−	- I J

i interpretowanie reprezentacji	Znalezienie związków miarowych w figurach płaskich. Zastosowanie twierdzenia Pitagorasa (II.7.c)	C
---------------------------------	--	---

Zadanie 10. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie związków między kątem wpisanym i środkowym (II.7.a)	D
--	---	---

Zadanie 11. (0-1)

Wykorzystanie interpretowanie informacji (I.	Vskazanie trójkąta przystający do danego I.7.c)	В
--	---	---

Zadanie 12. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wskazanie równania okręgu o podanym środku i promieniu (II.8.g)	A
---	---	---

Zadanie 13. (0-1)

Wykorzystanie i interpretowanie reprezentacji (I	Obliczenie różnicy wyrażeń wymiernych II.2.f)	A
---	---	---

Zadanie 14. (0-1)

Wykorzystanie i interpretowanie informacji	Obliczenie wyrazu ciągu liczbowego określonego wzorem ogólnym (I.5.a)	A
--	---	---

Zadanie 15. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Obliczenie wyrazu ciągu geometrycznego z wykorzystaniem własności ciągu (II.5.c)	В	
--	--	---	--

Zadanie 16. (0-1)

Zadanie 17. (0-1)

Użycie i tworzenie strategii	Określenie wzoru funkcji o podanej dziedzinie (IV.4.a)	D
------------------------------	--	---

7	•	10	(0	41
Zada	nie	18.	(1)-	-1)

Wykorzystanie i interpretowanie reprezentacji	Zinterpretowanie znaków współczynników <i>a</i> i <i>b</i> we wzorze funkcji liniowej (II.4.g)	C
--	--	---

Zadanie 19. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie współrzędnych środka odcinka (II.8.f)	A
--	---	---

Zadanie 20. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wyznaczenie mediany zbioru danych (II.10.a)	C
---	---	---

Zadanie 21. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wykorzystanie wzoru skróconego mnożenia (II.2.a)	C
--	--	---

Zadanie 22. (0-1)

Modelowanie matematyczne	Obliczenie objętości stożka (III.9.b)	C
--------------------------	---------------------------------------	---

Zadanie 23. (0-1)

Użycie i tworzenie strategii	Obliczenie prawdopodobieństwa zdarzenia z zastosowaniem klasycznej definicji prawdopodobieństwa (IV.10.b)	D
------------------------------	---	---

Zadanie 24. (0-1)

1	Wyznaczenie związków miarowych w walcu (III.9.b)	В
---	--	---

Zadanie 25. (0-2)

Wykorzystanie i interpretowanie reprezentacji	Rozwiązanie nierówności kwadratowej (II.3.a)
--	--

• prawidłowo obliczy pierwiastki trójmianu kwadratowego $x_1 = -2, x_2 = 5$ i na tym poprzestanie lub dalej popełni błędy,

albo

• rozłoży trójmian kwadratowy $x^2 - 3x - 10$ na czynniki liniowe i zapisze nierówność (x+2)(x-5) < 0 i na tym poprzestanie lub dalej popełni błędy,

albo

• popełni błąd rachunkowy przy obliczaniu pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność, np., $x_1 = 2$, $x_2 = -5$, stąd $x \in (-5, 2)$,

albo

• doprowadzi nierówność do postaci $\left|x-\frac{3}{2}\right| < \frac{7}{2}$ (na przykład z postaci $\left(x-\frac{3}{2}\right)^2 - \frac{49}{4} < 0$ otrzymuje $\left(x-\frac{3}{2}\right)^2 < \frac{49}{4}$, a następnie $\left|x-\frac{3}{2}\right| < \frac{7}{2}$) i na tym poprzestanie lub dalej popełni błędy.

• poda zbiór rozwiązań nierówności w postaci: -2 < x < 5 lub (-2,5) lub $x \in (-2,5)$

albo

• sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: x > -2, x < 5

albo

• poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów:

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

1. Jeśli zdający poprawnie obliczy pierwiastki trójmianu x = -2, x = 5 i zapisze np.: $x \in (2,5)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to za takie rozwiązanie otrzymuje **2 punkty**.

Zadania 26. (0-2)

Modelowanie matematyczne	Zastosowanie definicję średniej arytmetycznej
-	do wyznaczenia liczby elementów zbioru danych (III.10.a)

I sposób rozwiązania

Niech x oznacza liczbę studentów w danej grupie. Wtedy łączna liczba lat studentów w danej grupie wynosi 23x, zaś łączna liczba lat studentów i opiekuna to 23x+39. Zatem średnia wieku studentów wraz z opiekunem jest równa: $\frac{23x+39}{x+1}$.

Otrzymujemy równanie $\frac{23x+39}{x+1} = 24$ stąd 23x+39 = 24(x+1), a więc x = 15.

Odpowiedź: W tej grupie jest 15 studentów.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje1 pkt gdy zapisze nową średnią wieku studentów wraz z opiekunem: $\frac{23x+39}{x+1}$ i na tym poprzestanie lub dalej popełni błędy. Zdający otrzymuje2 pkt gdy obliczy liczbę studentów w grupie: 15 osób.

II sposób rozwiązania

Zapisujemy zależności pomiędzy liczbą studentów danej grupy, a łączną liczbą lat wszystkich studentów. Niech x oznacza liczbę studentów w grupie, zaś S łaczną liczbę lat studentów.

Zapisujemy układ równań: $\begin{cases} \frac{S}{x} = 23\\ \frac{S+39}{x+1} = 24 \end{cases}$ Rozwiązujemy układ równań $\begin{cases} S = 23x \\ \frac{23x + 39}{x + 1} = 24 \end{cases}$ 23x + 39 = 24(x+1)x = 15

Odpowiedź: W tej grupie jest 15 studentów.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje1 pkt

gdzie x jest liczbą studentów w danej grupie, zaś S jest łączną liczbą lat studentów, i na tym poprzestanie lub dalej popełni błędy.

Zdający otrzymuje2 pkt gdy obliczy liczbę studentów w danej grupie: 15 studentów.

III sposób rozwiązania

Różnicę wieku opiekuna i średniej wieku studentów rozdzielamy między *x* studentów i jednego opiekuna.

- Obliczamy różnicę wieku opiekuna i średniej wieku studentów 39 23 = 16.
- Ponieważ średnia wieku wzrosła o 1 rok, więc te 16 lat rozdzielamy pomiędzy studentów i opiekuna, każdemu dodając 1 rok.
- Zatem $16 = x \cdot 1 + 1$, stad x = 15.
- Zapisujemy odpowiedź: W tej grupie jest 15 studentów.

Schemat oceniania III sposobu rozwiązania

Zadanie 27. (0-2)

Użycie i tworzenie strategii	Obliczenie pole trapezu prostokątnego. Zastosowanie
	funkcji trygonometrycznych (IV.7.c)

Rozwiązanie

Obliczamy wysokość trapezu h, korzystając z faktu, że tangens kata ostrego jest równy 3:

$$\frac{h}{4} = 3$$
, stad $h = 12$.

Zatem pole trapezu jest równe $\frac{(6+10)\cdot 12}{2} = 96$.

Schemat oceniania

- obliczy wysokość trapezu h = 12 i na tym poprzestanie lub błędnie obliczy pole, albo
 - obliczy wysokość trapezu z błędem rachunkowym i konsekwentnie do popełnionego błędu obliczy pole trapezu.

Zadania 28. (0-2)

Rozumowanie i argumentacja	Uzasadnienie tożsamości trygonometrycznej z zastosowaniem prostych związków między funkcjami
	trygonometrycznymi kata ostrego (V.6.c)

I sposób rozwiązania

$$\frac{\sin^4 \alpha - \sin^2 \alpha = \cos^4 \alpha - \cos^2 \alpha}{\sin^2 \alpha \left(\sin^2 \alpha - 1\right) = \cos^2 \alpha \left(\cos^2 \alpha - 1\right)}$$

$$\sin^2 \alpha \left(-\cos^2 \alpha\right) = \cos^2 \alpha \left(-\sin^2 \alpha\right)$$

$$L = P$$

Schemat oceniania I sposobu rozwiązania

II sposób rozwiązania

$$\sin^4 \alpha - \cos^4 \alpha = \sin^2 \alpha - \cos^2 \alpha$$

$$\left(\sin^2 \alpha + \cos^2 \alpha\right) \left(\sin^2 \alpha - \cos^2 \alpha\right) = \sin^2 \alpha - \cos^2 \alpha$$

$$1 \cdot \left(\sin^2 \alpha - \cos^2 \alpha\right) = \sin^2 \alpha - \cos^2 \alpha$$

$$L = P$$

Schemat oceniania II sposobu rozwiązania

gdy przeprowadzi pełne rozumowanie i uzasadni, że tożsamość jest prawdziwa.

III sposób rozwiązania

$$L = \sin^4 \alpha + \cos^2 \alpha = \sin^2 \alpha \cdot \sin^2 \alpha + \cos^2 \alpha = \sin^2 \alpha \cdot (1 - \cos^2 \alpha) + \cos^2 \alpha =$$

$$= \sin^2 \alpha - \sin^2 \alpha \cdot \cos^2 \alpha + \cos^2 \alpha = 1 - (1 - \cos^2 \alpha) \cdot \cos^2 \alpha = 1 - \cos^2 \alpha + \cos^4 \alpha =$$

$$= \sin^2 \alpha + \cos^4 \alpha = P$$

Schemat oceniania III sposobu rozwiązania

IV sposób rozwiązania

$$\sin^{2}\alpha \cdot \sin^{2}\alpha + \cos^{2}\alpha = \sin^{2}\alpha + \cos^{4}\alpha$$

$$(1 - \cos^{2}\alpha) \cdot (1 - \cos^{2}\alpha) + \cos^{2}\alpha = (1 - \cos^{2}\alpha) + \cos^{4}\alpha$$

$$1 - 2\cos^{2}\alpha + \cos^{4}\alpha + \cos^{2}\alpha = 1 - \cos^{2}\alpha + \cos^{4}\alpha$$

$$1 - \cos^{2}\alpha + \cos^{4}\alpha = 1 - \cos^{2}\alpha + \cos^{4}\alpha$$

$$L = P$$

lub

$$\sin^4 \alpha + \cos^2 \alpha = \sin^2 \alpha + \cos^2 \alpha \cdot \cos^2 \alpha$$

$$\sin^4 \alpha + (1 - \sin^2 \alpha) = \sin^2 \alpha + (1 - \sin^2 \alpha) \cdot (1 - \sin^2 \alpha)$$

$$\sin^4 \alpha - \sin^2 \alpha + 1 = \sin^2 \alpha + 1 - 2\sin^2 \alpha + \sin^4 \alpha$$

$$\sin^4 \alpha - \sin^2 \alpha + 1 = \sin^4 \alpha - \sin^2 \alpha + 1$$

$$L = P$$

Schemat oceniania IV sposobu rozwiązania

V sposób rozwiazania

Daną równość zapisujemy w postaci $\sin^4 \alpha - \cos^4 \alpha = \sin^2 \alpha - \cos^2 \alpha$. Przekształcamy: $L = \sin^4 \alpha - \cos^4 \alpha = \left(\sin^2 \alpha\right)^2 - \cos^4 \alpha = \left(1 - \cos^2 \alpha\right)^2 - \cos^4 \alpha = 1 - 2\cos^2 \alpha + \cos^4 \alpha - \cos^4 \alpha = 1 - 2\cos^2 \alpha = 1 - \cos^2 \alpha - \cos^2 \alpha = \sin^2 \alpha - \cos^2 \alpha = P$

Schemat oceniania V sposobu rozwiązania

Zadanie 29. (0-2)

Rozumowanie i argumentacja	Przeprowadzenie dowodu algebraicznego (V.1.a)
----------------------------	---

I sposób rozwiązania

Weźmy trzy kolejne liczby całkowite n-1, n, n+1. Wówczas $(n-1)^2 + n^2 + (n+1)^2 = n^2 - 2n + 1 + n^2 + n^2 + 2n + 1 = 3n^2 + 2$, więc reszta z dzielenia sumy ich kwadratów przez 3 jest równa 2.

Schemat oceniania I sposobu rozwiązania

II sposób rozwiązania

Weźmy trzy kolejne liczby całkowite n, n+1, n+2. Wówczas $n^2 + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5 = 3(n^2 + 2n + 1) + 2$, więc reszta z dzielenia sumy ich kwadratów przez 3 jest równa 2.

Schemat oceniania II sposobu rozwiązania

Uwaga

Mogą się zdarzyć rozwiązania wykorzystujące kongruencje:

wśród trzech kolejnych liczb jest jedna podzielna przez 3 (oznaczymy ją przez a), jedna dająca przy dzieleniu przez 3 resztę 1 (oznaczymy ją przez b) i jedna dająca przy dzieleniu przez 3 resztę 2 (oznaczymy ją przez c).

Mamy zatem $a \equiv 0 \pmod{3}$, $b \equiv 1 \pmod{3}$, $c \equiv 2 \pmod{3}$.

Wówczas $a^2 + b^2 + c^2 \equiv 0^2 + 1^2 + 2^2 = 5 \equiv 2 \pmod{3}$.

Zadanie 30. (0-2)

arytmetycznego (III.5.c)		Zastosowanie wzoru na <i>n</i> -ty wyraz i sumę ciągu arytmetycznego (III.5.c)
--------------------------	--	--

I sposób rozwiązania

Obliczamy wartości sum częściowych:

$$S_1 = a_1 = 1 - 2 = -1$$

$$S_2 = a_1 + a_2 = 4 - 4 = 0$$
.

Zatem
$$a_2 = 0 - (-1) = 1$$
 oraz $r = a_2 - a_1 = 1 - (-1) = 2$.

Korzystamy ze wzoru na *n*-ty wyraz ciągu arytmetycznego i otrzymujemy:

$$a_n = a_1 + (n-1)r = -1 + (n-1) \cdot 2 = 2n-3$$

Odpowiedź: *n*-ty wyraz ciągu (a_n) wyraża się wzorem $a_n = 2n - 3$.

Schemat oceniania I sposobu rozwiązania

$$S_1 = a_1 = 1 - 2 = -1$$

$$S_2 = a_1 + a_2 = 4 - 4 = 0$$

i na tym poprzestanie lub dalej popełnia błędy.

Uwagi

- 1. Zdający może od razu zapisać układ $\begin{cases} a_1 = -1 \\ a_1 + a_2 = 0 \end{cases}$
- 2. Jeżeli zdający zapisze układ $\begin{cases} a_1 = -1 \\ a_2 = 0 \end{cases}$, to otrzymuje **0 punktów**.

II sposób rozwiązania

Zauważamy, że dla n > 1 mamy $a_n = S_n - S_{n-1}$.

$$S_{n-1} = (n-1)^2 - 2(n-1) = n^2 - 4n + 3$$

Obliczamy
$$a_n = S_n - S_{n-1} = n^2 - 2n - (n^2 - 4n + 3) = 2n - 3$$
 oraz $a_1 = S_1 = -1$.

Zauważamy ponadto, że wzór $a_n = 2n - 3$ dla n = 1 daje otrzymaną wartość $a_1 = -1$.

Zatem dla każdego $n \ge 1$ otrzymujemy $a_n = 2n - 3$.

Schemat oceniania II sposobu rozwiązania

Uwaga

Przyznajemy **2 punkty** nawet wtedy, gdy zdający nie sprawdzi, czy $a_1 = -1$.

III sposób rozwiązania

Zauważamy, że $\frac{a_1 + a_n}{2} \cdot n = n^2 - 2n$ i wyznaczamy $a_n = 2n - 4 - a_1$.

Obliczamy $a_1 = S_1 = -1$. Stąd otrzymujemy $a_n = 2n - 4 + 1$, czyli $a_n = 2n - 3$.

gdy ze wzoru $\frac{a_1 + a_n}{2} \cdot n = n^2 - 2n$ wyznaczy $a_n = 2n - 4 - a_1$ i na tym poprzestanie lub dalej popełni błędy.

Zdający otrzymuje2 pkt gdy wyznaczy n-ty wyraz ciągu: $a_n = 2n - 3$.

- 1. Zdający może od razu zapisać, że $a_n = 2n 4 a_1$.
- 2. Jeśli zdający zapisze, że $\frac{a_1 + a_n}{2} \cdot n = n^2 2n$, wyznaczy z błędem rachunkowym a_n np.: $a_n = 2n - 2 - a_1$ i z tym błędem doprowadzi rozwiązanie do końca, to otrzymuje **1 punkt**.

Zadanie 31. (0-2)

Użycie i tworzenie strategii Wykorzystanie związków miarowych w fi (IV.7.c)

I sposób rozwiązania

Z warunków zadania otrzymujemy układ równań:

$$\begin{cases} a \cdot h = 50\sqrt{2} \\ \frac{h}{a} = \sin 45^{\circ} \end{cases}$$

Zatem
$$h = a \cdot \sin 45^{\circ} = \frac{\sqrt{2}}{2} a \text{ oraz } a \cdot \frac{\sqrt{2}}{2} a = 50\sqrt{2}$$
.

Wobec tego $a^2 = 100$, a = 10, $h = 10 \frac{\sqrt{2}}{2} = 5\sqrt{2}$.

Odpowiedź: Wysokość rombu jest równa $5\sqrt{2}$.

Schemat oceniania I sposobu rozwiązania

II sposób rozwiązania

Ze wzoru na pole równoległoboku, gdy dane są jego dwa sąsiednie boki oraz kąt między nimi zawarty, mamy $a^2 \cdot \sin 45^\circ = 50\sqrt{2}$. Zatem $a^2 \cdot \frac{\sqrt{2}}{2} = 50\sqrt{2}$, $a^2 = 100$, a = 10.

Z innego wzoru na pole równoległoboku mamy $a \cdot h = 50\sqrt{2}$.

Wobec tego $10 \cdot h = 50\sqrt{2}$ oraz $h = 5\sqrt{2}$.

Schemat oceniania II sposobu rozwiązania

Zadanie 32. (0-4)

Użycie i tworzenie strategii	Wyznaczenie punktu przecięcia się prostych prostopadłych
	(IV.8.b, 8.c, 8.d)

I sposób rozwiazania

Wyznaczamy równanie prostej AB: y = 2x + 7.

Wyznaczamy równanie prostej *CD* prostopadłej do prostej *AB* i przechodzącej przez punkt *C*: $y = -\frac{1}{2}x + 17$.

Zapisujemy układ równań: $\begin{cases} y = 2x + 7 \\ y = -\frac{1}{2}x + 17 \end{cases}$

Rozwiązujemy układ równań i zapisujemy współrzędne punktu D: D = (4, 15).

Schemat oceniania I sposobu rozwiązania

• Wyznaczenie równania prostej *AB*: y = 2x + 7

albo

• obliczenie współczynnika kierunkowego prostej AB: a = 2.

Rozwiązanie, w którym jest istotny postęp......2 pkt Wyznaczenie równania prostej CD prostopadłej do prostej AB i przechodzącej przez punkt C $y = -\frac{1}{2}x + 17$.

Pokonanie zasadniczych trudności zadania......3 pkt Zapisanie układu równań: $\begin{cases} y = 2x + 7 \\ y = -\frac{1}{2}x + 17 \end{cases}$

Rozwiązanie pełne4 pkt Rozwiązanie układu równań i zapisanie współrzędnych punktu D: D = (4, 15).

Uwagi

- 1. Jeśli zdający źle wyznaczy równanie prostej AB i konsekwentnie do popełnionego błędu rozwiąże zadanie do końca, to otrzymuje **3 punkty** (współczynnik kierunkowy prostej AB powinien być jednak liczbą dodatnią).
- 2. Jeśli zdający odczyta współrzędne punktu D na podstawie dokładnie sporządzonego rysunku to otrzymuje 4 punkty.
- 3. Jeśli zdający poda współrzedne punktu D bez dokładnego rysunku lub uzasadnienia to otrzymuje 0 punktów.

II sposób rozwiązania

Obliczamy pole trójkąta ABC: $P_{ABC} = 15$. Obliczamy długość podstawy AB trójkąta ABC: $|AB| = 6\sqrt{5}$. Ze związku $P_{ABC} = \frac{1}{2}|CD|\cdot|AB|$ obliczamy wysokość CD trójkąta ABC: $|CD| = \sqrt{5}$. Wyznaczamy równanie prostej AB: y = 2x + 7. Zapisujemy współrzędne punktu D w zależności od zmiennej x: D = (x, 2x + 7). Wyrażamy związek $|CD| = \sqrt{5}$ za pomocą

równania $\sqrt{(x-6)^2 + (2x+7-14)^2} = \sqrt{5}$, gdzie x oznacza pierwszą współrzędną punktu D. Rozwiązujemy równanie i otrzymujemy x = 4. Zapisujemy zatem współrzędne punktu D: D = (4, 15).

Schemat oceniania II sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania1 pkt Obliczenie pola trójkąta ABC: $P_{ABC} = 15$.

Rozwiązanie, w którym jest istotny postęp......2 pkt Obliczenie wysokości *CD* trójkąta *ABC*: $|CD| = \sqrt{5}$.

Pokonanie zasadniczych trudności zadania......3 pkt Zapisanie współrzędnych punktu D w zależności od jednej zmiennej: D = (x, 2x + 7)

i zapisanie równania $\sqrt{(x-6)^2 + (2x+7-14)^2} = \sqrt{5}$.

Rozwiązanie pełne4 pkt Rozwiązanie równania i zapisanie współrzędnych punktu D: D = (4,15).

Uwaga

Jeżeli zdający popełni błąd rachunkowy przy obliczaniu pola trójkąta ABC i konsekwentnie do popełnionego błędu rozwiąże zadanie do końca, to otrzymuje 3 punkty.

Zadanie 33. (0–4)

=	Zliczenie obiektów w prostej sytuacji kombinatorycznej (IV.10.b)
	()

I sposób rozwiązania

Zauważamy, że dla poprawnego rozwiązania zadania istotne są **trzy grupy cyfr**: cyfra 7, cyfry parzyste bez zera oraz cyfry nieparzyste różne od 7.

- Miejsce dla cyfry 7 możemy wybrać na 5 sposobów.
- Miejsce dla cyfry parzystej możemy wybrać na 4 sposoby.
- Cyfrę parzystą do wpisania na wybranym miejscu możemy wybrać spośród 4 cyfr parzystych, czyli na 4 sposoby.
- Na pozostałych trzech miejscach możemy wpisać cyfry nieparzyste różne od 7.
 Możemy to zrobić na 4³ = 64 sposoby.

Zatem wszystkich liczb pięciocyfrowych spełniających warunki zadania jest:

 $5 \cdot 4 \cdot 4 \cdot 4^3 = 5 \cdot 4^5 = 5 \cdot 1024 = 5120$.

Schemat oceniania I sposobu rozwiązania

- Miejsce dla cyfry 7 na 5 sposobów.
- Miejsce dla cyfry parzystej na 4 sposoby.
- Cyfre parzystą do wpisania na wybranym miejscu na 4 sposoby.
- Cyfry nieparzyste różne od 7 na pozostałych trzech miejscach na $4^3 = 64$ sposoby.

II sposób rozwiazania

Rozpatrujemy następujące trzy warianty ustawień cyfr:

- 1) na pierwszym miejscu cyfra 7, na jednym z czterech miejsc cyfra parzysta, a na każdym z pozostałych trzech miejsc cyfra nieparzysta różna od 7. Każdą z czterech cyfr parzystych możemy umieścić na jednym z czterech miejsc na 4·4 sposobów, zaś każdą z czterech pozostałych cyfr nieparzystych (bez cyfry 7) możemy rozmieścić na trzech miejscach na 4·4·4 = 4³ sposobów. Zatem liczba możliwych ustawień cyfr w tym wariancie równa się: 4·4·4³ = 4⁵ = 1024.
- 2) na pierwszym miejscu cyfra parzysta różna od 0, na jednym z czterech pozostałych miejsc cyfra 7, zaś na każdym z pozostałych trzech miejsc cyfra nieparzysta różna od 7. Na pierwszym miejscu możemy ustawić każdą z czterech cyfr parzystych różnych od zera, zaś na każdym z pozostałych czterech miejsc możemy umieścić cyfrę 7, stąd otrzymujemy 4·4 możliwości ustawień cyfry parzystej oraz cyfry 7. Natomiast każdą z czterech pozostałych cyfr nieparzystych różnych od 7 możemy rozmieścić na pozostałych trzech miejscach na 4·4·4 = 4³ sposobów. Zatem liczba możliwych ustawień cyfr w tym wariancie jest równa:
 4·4·4³ = 4⁵ = 1024

3) na pierwszym miejscu cyfra nieparzysta różna od 7, na jednym z pozostałych czterech miejsc cyfra parzysta, na jednym z trzech pozostałych miejsc cyfra 7, a na pozostałych dwóch miejscach cyfra nieparzysta różna od 7.

Każdą z czterech cyfr nieparzystych (różną od 7) możemy umieścić na pierwszym miejscu (4 sposoby). Na każdym z czterech pozostałych miejsc możemy umieścić każdą z czterech cyfr parzystych na 4·4 sposobów. Cyfrę 7 możemy umieścić na każdym z trzech pozostałych miejsc, zaś każdą z czterech pozostałych cyfr nieparzystych różnych od 7 umieścimy na dwóch miejscach na $3 \cdot 4 \cdot 4 = 3 \cdot 4^2$ sposobów. Zatem, w tym wariancie, liczba możliwych ustawień jest równa: $4 \cdot 4 \cdot 4 \cdot 3 \cdot 4^2 = 3 \cdot 4^5 = 3072$

Liczba wszystkich możliwych ustawień jest sumą liczb ustawień w poszczególnych wariantach i równa się: 1024 + 1024 + 3072 = 5120.

Schemat oceniania II sposobu rozwiązania

Przyznajemy po 1 punkcie za obliczenie liczby możliwych ustawień cyfr w każdym z trzech wariantów i 1 punkt za obliczenie sumy tych możliwości.

Zadanie 34. (0–4)

Użycie i tworzenie strategii	Obliczenie objętości graniastosłupa z zastosowaniem
	związków miarowych w wielościanach (IV.9.b)

I sposób rozwiązania

Niech
$$G$$
 będzie środkiem krawędzi AB . Rysujemy wysokość FG trójkąta ABF . Pole trójkąta ABF jest równe: $P_{ABF} = \frac{|AB| \cdot |FG|}{2} = \frac{8 \cdot |FG|}{2} = 4 \cdot |FG| = 52$. Stąd $|FG| = 13$.

W trójkącie równobocznym ABC mamy $|CG| = 4\sqrt{3}$. Korzystamy z twierdzenia Pitagorasa w trójkącie FCG do obliczenia |CF|: $|CF|^2 + |CG|^2 = |FG|^2$, stąd |CF| = 11.

Obliczamy objętość graniastosłupa:
$$V = \frac{\left|AB\right|^2 \sqrt{3}}{4} \cdot \left|CF\right| = \frac{64 \cdot \sqrt{3}}{4} \cdot 11 = 176\sqrt{3}$$
.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania 1 pkt

- Narysowanie wysokości CG trójkąta ABC i obliczenie długości odcinka CG wysokości trójkąta równobocznego ABC, podstawy graniastosłupa prawidłowego: $|CG| = 4\sqrt{3}$ albo
- obliczenie wysokości trójkąta ABF: |FG| = 13.

Rozwiązanie, w którym jest istotny postęp2 pkt

- Narysowanie wysokości CG trójkąta ABC i obliczenie długości odcinka CG wysokości trójkąta równobocznego ABC, podstawy graniastosłupa prawidłowego: $|CG| = 4\sqrt{3}$ oraz
- obliczenie wysokości trójkąta ABF: |FG| = 13.

II sposób rozwiązania

Niech G będzie środkiem krawędzi AB. Rysujemy wysokość FG trójkąta ABF.

Pole trójkąta
$$ABF$$
: $P_{ABF} = \frac{|AB| \cdot |FG|}{2} = 52$, stąd $|FG| = 13$.

Korzystamy z twierdzenia Pitagorasa dla trójkąta AFG i obliczamy kwadrat długości odcinka AF: $\left|AF\right|^2=13^2+4^2=185$.

Następnie korzystamy z twierdzenia Pitagorasa w trójkącie ACF, aby obliczyć wysokość graniastosłupa CF: $|CF|^2 + |AC|^2 = |AF|^2$, czyli $|CF|^2 = 185 - 64 = 121$. Zatem |CF| = 11.

Obliczamy objętość graniastosłupa: $V = \frac{\left|AB\right|^2 \sqrt{3}}{4} \cdot \left|CF\right| = \frac{64 \cdot \sqrt{3}}{4} \cdot 11 = 176\sqrt{3}$.

Schemat oceniania II sposobu rozwiązania	
Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego	
rozwiązania zadania	1 pk1
Obliczenie wysokości FG trójkąta ABF : $ FG = 13$.	
Rozwiązanie, w którym jest istotny postęp	2 pkt
Obliczenie długości przekątnej ściany bocznej lub kwadrat jej długości: $ AF ^2 = 185$.	
Pokonanie zasadniczych trudności zadania	3 pkt
Obliczenie wysokości CF graniastosłupa: $ CF = 11$.	
Rozwiązanie pełne	4 pkt
Obliczenie obietości graniastosłupa: $V = 176\sqrt{3}$.	