Reducing the computational cost of solving ODE systems via machine learning

Tommaso Grassi (LMU)

F.Nauman, J.P.Ramsey, S.Bovino, G.Picogna, B.Ercolano

Reducing the computational cost of solving ODE systems via machine learning

Astronomy & Astrophysics manuscript no. main April 27, 2021

©ESO 2021

Reducing the complexity of chemical networks via interpretable autoencoders

T. Grassi^{1,2,*}, F. Nauman³, J. P. Ramsey⁴, S. Bovino⁵, G. Picogna^{1,2}, and B. Ercolano^{1,2}

arxiv: 2104.09516

Outline

- 1. Astrophysical Context
- System of Ordinary Differential Equations (ODEs)
- 3. ODE systems in (astro)chemistry
- 4. Deep Neural Networks (DNNs)
- DNN Autoencoders
- 6. Our Method: ODEs + Autoencoders

Context /1

Context /2

Computational Overhead

Chemistry

$$C + O = CO$$

$$\frac{dx_{C}}{dt} = \frac{dx_{O}}{dt} = -k_{1} x_{C} x_{O} + k_{2} x_{CO}$$

$$\frac{dx_{CO}}{dt} = +k_{1} x_{C} x_{O} - k_{2} x_{CO}$$

$$\dot{\bar{x}} = f(\bar{x}; k)$$

Synthetic Observations

Chemistry

Opacity

Cooling/Heating

Radiation/C

Hydro

Tgas

Solving ODEs

Advance x(t) in time with BDF solving $\dot{ar{x}}=f(ar{x};k)$

Typical networks

Species → Reactions

Primordial: $10 \rightarrow 30$

MC (hydro): $40 \rightarrow 300$

MC (0D): $450 \rightarrow 4500+$

Disk: $450+ \rightarrow 5000+$

This Example: 29 → 224

PROBLEM

Integrating for a (hydro) time-step

 $\dot{\bar{x}} = f(\bar{x};k)$ for each cell

AIM

reduce to zero the numerical impact of integrating

$$\dot{\bar{x}} = f(\bar{x}; k)$$

with standard ODE solvers (e.g. BDF)

Deep Neural Networks

weights (trainable parameters)

AUTOENCODERS

Reduce the dimensionality of the data

Solve compressed ODE

Operators

Implementation

Latent chemical network 5 species + 12 reactions

$$A + A \stackrel{\mathsf{p1}, \, \mathsf{p2}}{\rightleftharpoons} AA$$

$$A + B \stackrel{\mathsf{p3}, \, \mathsf{p4}}{\rightleftharpoons} AB$$

$$B + B \stackrel{::}{\rightleftharpoons} BB$$

$$AA + BB \stackrel{::}{\rightleftharpoons} AB + AB$$

$$AA + B \stackrel{::}{\rightleftharpoons} AB + A$$

$$BB + A \stackrel{::}{\rightleftharpoons} AB + B$$

Original chemical network 29 species + 224 reactions

Example Results

5 out of 5 "species" (A, B, AA, BB, AB)

6 out of 29 species (H, C, O, CO, CH, ...)

Conclusions

Advantages:

- x65 speed-up (but in practice: integration time \rightarrow 0)
- Interpretability of the latent space (it's a chemical network!)
- New perspective on the problem
- Promising (we also might learn something from latent space)

Limitations:

- g(z; p) needs to be designed beforehand (but...)
- It needs training data
- This case-study uses constant temperature, CRs, radiation, ...
- Training needs some fine-tuning
- Is the compression always guaranteed? We don't know