Algoritmos para a Detecção de *Drifting* em Sensores de Poços de Petróleo

André Ambrósio Boechat

Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Florianópolis, Agosto de 2012

Sumário

Introdução

Estrutura de Sistemas de Manutenção CBM

Sistemas de Validação de Sensores

Ensaios

Dados de Simulação Dados Reais

Conclusão

Sumário

Introdução

Introdução

Estrutura de Sistemas de Manutenção CBM

Sistemas de Validação de Sensores

Ensaios

Dados de Simulação Dados Reais

Conclusão

- Desempenham importantes papéis
 - ações de controle
 - otimização da produção
 - monitoramento do poço
 - monitoramento do desempenho de equipamentos
 - tomada de decisões
- Crescimento do número de sensores
- Localizados em pontos críticos
 - difícil acesso
 - ambientes inóspitos

Problema

Introdução

As informações fornecidas pelos sensores são confiáveis?

Drift em Sensores

Desvio lento e contínuo das medições ao longo do tempo

- Um dos problemas mais comuns em sensores
- Difícil detecção

Introdução

- comparação com sinais de outros sensores
- detectável quando os desvios são grosseiros

"Leituras realizadas por um sensor instável ou com desvios excessivos normalmente são mais problemáticos a um operador que a falha completa do sensor." (Joseph Eck et al., 1999)

Introdução

Proposta do Trabalho

- Estratégia de manutenção CBM
- Modelos empíricos baseados em histórico

Sumário

Introdução

Estrutura de Sistemas de Manutenção CBM

Sistemas de Validação de Sensores

Ensaios

Dados de Simulação Dados Reais

Conclusão

Estratégias de Manutenção

CBM (Condition Based Maintenance) Manuntenção baseada na condição de funcionamento

Estratégia tradicional

- Manutenção periódica
- Manutenção reativa

CBM

- Monitoramento da condição de funcionamento
- Manutenção apenas quando realmente necessário
- Agendamento dinâmico de manutenções
- Planejamento de acordo com as condições
- Redução de manutenções reativas (menos surpresas)

Dificuldades

- Grande volume de dados coletados

- Facilidade de atualização de componentes
- Facilidade para se tornar um fornecedor de soluções

Dificuldades

- Grande volume de dados coletados
- Dados provindos de sistemas geograficamente dispersos
- Integração dos dados
- Escalabilidade
- Disponibilidade de conhecimentos especialistas

- Facilidade de atualização de componentes
- Facilidade para se tornar um fornecedor de soluções
- Redução de preços e custos

Dificuldades

- Grande volume de dados coletados
- Dados provindos de sistemas geograficamente dispersos
- Integração dos dados
- Escalabilidade
- Disponibilidade de conhecimentos especialistas

- Facilidade de atualização de componentes
- Facilidade para se tornar um fornecedor de soluções
- Redução de preços e custos

Dificuldades

- Grande volume de dados coletados
- Dados provindos de sistemas geograficamente dispersos
- Integração dos dados
- Escalabilidade
- Disponibilidade de conhecimentos especialistas

- Facilidade de atualização de componentes
- Facilidade para se tornar um fornecedor de soluções
- Redução de preços e custos

Dificuldades

- Grande volume de dados coletados
- Dados provindos de sistemas geograficamente dispersos
- Integração dos dados
- Escalabilidade
- Disponibilidade de conhecimentos especialistas

- Facilidade de atualização de componentes
- Facilidade para se tornar um fornecedor de soluções
- Redução de preços e custos

Dificuldades

- Grande volume de dados coletados
- Dados provindos de sistemas geograficamente dispersos
- Integração dos dados
- Escalabilidade
- Disponibilidade de conhecimentos especialistas

- Facilidade de atualização de componentes
- Facilidade para se tornar um fornecedor de soluções
- Redução de preços e custos

Dificuldades

- Grande volume de dados coletados
- Dados provindos de sistemas geograficamente dispersos
- Integração dos dados
- Escalabilidade
- Disponibilidade de conhecimentos especialistas

- Facilidade de atualização de componentes
- Facilidade para se tornar um fornecedor de soluções
- Redução de preços e custos

Dificuldades

- Grande volume de dados coletados
- Dados provindos de sistemas geograficamente dispersos
- Integração dos dados
- Escalabilidade
- Disponibilidade de conhecimentos especialistas

- Facilidade de atualização de componentes
- Facilidade para se tornar um fornecedor de soluções
- Redução de preços e custos

OSA-CBM

Resultado de um parceria entre indústrias, fabricantes, universidades e a Marinha Norte-Americana

Sumário

Introdução

Estrutura de Sistemas de Manutenção CBM

Sistemas de Validação de Sensores

Ensaios

Dados de Simulação Dados Reais

Conclusão

Avaliação do Desempenho de Sensores

Abordagem tradicional

- calibração manual periódica
 - não se conhece a real necessidade
 - instrumentos são retirados de operação

Manutenção baseada na condição (CBM)

- monitora-se a condição de funcionamento
- calibrações físicas apenas quando realmente necessário
- tendem a ser menos invasivas e mais eficazes
- redundância por hardware
- redundância analítica
 - equações fenomenológicas
 - modelos empíricos baseados em histórico

Abordagem por Modelos Baseados em Histórico

Validação de Sensores e a OSA-CBM

Predição das Leituras dos Sensores

AAKR - Regressão por kernel auto-associativa

- Estrutura auto-associativa
- Predições baseadas na similaridade entre as entradas e os vetores de memória
- Dois parâmetros de sintonia: número de vetores (n_m) e largura de banda (h)

SVM - Support Vector Machines

- Estrutura inferencial
- Processo de treinamento constrói uma f(r) ≈ y
- Três parâmetros de sintonia: ε , C e γ

Auto-associativa × Inferencial

Geração de Resíduos

 Diferenças entre as leituras dos sensores e as predições dos modelos

Sistema 1

Sistema 2

Monitoramento da Condição SPRT

Sequential Probability Ratio Test

- Algoritmo para detecção de propriedades estatísticas
- Testes para verificar qual a distruição de probabilidade
 - modo normal H₀: distribuição Normal, média zero e variância semelhante a do ruído
 - modo degradado H₁: distribuição Normal, média diferente de zero e variância semelhante a do ruído

$$\Lambda^{(i)} = \ln \frac{P(d^{(i)}|H_1)}{P(d^{(i)}|H_0)}$$

Parâmetro de sintonia M, diferença tolerável na média

Estima continuamente os desvios presentes no sensor

- · Considerações:
 - suavidade
 - crescimento lento
 - linear ou exponencial
 - descorrelacionado com desvios de outros sensores

Atualização das estimativas

$$d^{(k)} = d^{(k-1)} + v^{(k)}, \quad v^{(k)} \sim \mathcal{N}(0, \sigma_v)$$

Observação

$$z = d^{(k)} + q^{(k)}, \quad q^{(k)} \sim \mathcal{N}(0, \sigma_q)$$

$$z = r - \hat{r}$$

Sistemas Implementados

Sistema 1

Sistema 2

Sistema 3

Sumário

Introdução

Estrutura de Sistemas de Manutenção CBM

Sistemas de Validação de Sensores

Ensaios

Dados de Simulação Dados Reais

Conclusão

Análises dos Ensaios

- Objetivo
 Verificar a aplicabilidade dos sistemas a sensores de poços de petróleo
- Critérios
 - consistência e qualidade das predições
 - capacidade de detecção e isolamento de desvios
- Como foram realizados
 Uso de conjuntos de dados compostos por amostras de diferentes sensores correlacionados
 - dados gerados por simulação
 - dados reais

Métricas de Desempenho

Acurácia (E_a)

$$E_a = \frac{1}{N} \sum_{i=1}^{N} (\hat{r}^{(i)} - r^{(i)})^2$$

- Erro de predição na ocorrência de desvios (E_p)
- Auto-sensibilidade (S_A) do sensor p

$$S_{A_p} = \frac{1}{N} \sum_{i=1}^{N} \frac{\left| \hat{r}_{p,drift}^{(i)} - \hat{r}_{p}^{(i)} \right|}{\left| r_{p,drift}^{(i)} - r_{p}^{(i)} \right|}$$

Sensibilidade cruzada (S_C) do sensor p em relação a j

$$S_{C_{p,j}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\left| \hat{r}_{j,drift}^{(i)} - \hat{r}_{j}^{(i)} \right|}{\left| r_{p,drift}^{i} - r_{p}^{(i)} \right|}$$

Descrição dos Dados de Simulação

Modelo próximo de um poço real

- 4 sensores de pressão:
 - fundo do poço (PT_f)
 - topo do tubo de produção (PT_t)
 - topo do anular (PT_g)
 - a montante do choke de injeção (PT_m)
- Coletado durante 100 horas de produção
- Amostrado em 1 minuto
- Ruído branco de NSR (noise to signal ratio) igual a 0.3
- 60 horas como treinamento,
 20 de otimização e 20 de teste

Indicadores de Desempenho Dados de Simulação

	Ea	S_A	S_C	E_p
Sistema 1	0.0020	0.2675	0.2682	0.0105
Sistema 2	0.0039		0.3356	0.0139
Sistema 3	0.0023	0.2002	0.1997	0.0046

Predições para Desvios em PT_a

- Predições
- Entradas
- Verdadeiro

Detecção de Desvios nos Dados de Simulação Sistema 1

Detecção de Desvios nos Dados de Simulação Sistema 2

Detecção de Desvios nos Dados de Simulação Sistema 3

Descrição dos Dados Reais

- Pressão coletada de 3 sensores
 - no fundo do poço (PDG)
 - na árvore de natal (TPT)
 - a montante do choke de injeção (PT_m)
- Coletados durante 955 horas de produção
 - 400 primeiras horas para treinamento
 - 100 para otimização
 - 455 para teste
- Amostragem de 1 por minuto

Gráficos dos Dados Reais

Indicadores de Desempenho Dados Reais

	E_a	S_A	S_C	E_{p}
Sistema 1	0.0035	0.3106	0.2806	0.0078
Sistema 2	0.0069		0.4754	0.0190
Sistema 3	0.0040	0.2418	0.2189	0.0046

Predições para Desvios no PDG

- Predições
- Entradas
- Verdadeiro

Detecção de Desvios nos Dados Reais Sistema 1

Detecção de Desvios nos Dados Reais Sistema 2

Detecção de Desvios nos Dados Reais Sistema 3

Sumário

Introdução

Estrutura de Sistemas de Manutenção CBM

Sistemas de Validação de Sensores

Ensaios

Dados de Simulação Dados Reais

Conclusão

Conclusões

- Importância dos sensores na indústria de petróleo
- Problemas de drifts ou desvios
- Proposta do trabalho
- Implementação de 3 diferentes sistemas de detecção de desvios
 - Sistema 1: AAKR e SPRT
 - Sistema 2: SVM e SPRT
 - Sistema 3: AAKR, KF e SPRT
- Ensaios
 - simulação todos os sistemas detectaram desvios corretamente
 - dados reais
 o Sistema 2 apresentou problemas
 - KF tem uso promissor

Conclusões

Problemas com a abordagem por modelos baseados em histórico:

- Agrupamento ótimo de sensores
- Seleção dos dados de treinamento
 - livres de falhas
 - cobertura das condições de operação futuras
- Discernir entre mudanças no processo e falhas nos sensores

Trabalhos Futuros

- Agrupamento automático de sensores
- Validação dos modelos empíricos
- Modelos SVM para predição de séries temporais

Algoritmos para a Detecção de *Drifting* em Sensores de Poços de Petróleo

André Ambrósio Boechat

Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Florianópolis, Agosto de 2012