

# MA5701 Optimización no Lineal Informe de la Tarea 3 Desarrollo y resultados

Autor: Manuel Torres.
Profesor: Jorge Amaya.
Auxiliar: Aldo Gutiérrez.
Ayudantes: Carolina Chiu

Mariano Vazquez

## Índice general

| 1. | Instrucciones                                          |  |
|----|--------------------------------------------------------|--|
|    | 1. Preliminares                                        |  |
|    | 1.1. Objetivo                                          |  |
|    | 1.2. Problema                                          |  |
|    | 2. Comentarios sobre el modelo                         |  |
| 2. | Respuestas                                             |  |
|    | 1. Preguntas de la tarea                               |  |
|    | 2. Conclusión                                          |  |
| Α. | Anexo                                                  |  |
|    | 1. Codificación de los métodos auxiliares              |  |
|    | 1.1. Codificación del método de direcciones admisibles |  |

## Capítulo 1

## **Instrucciones**

### 1.- Preliminares

### 1A.- Objetivo

El objetivo de esta tarea es implementar un código computacional que haga operacional el *método de direcciones admisibles (Zountendijk)*, para resolver el problema de optimización no lineal<sup>1</sup>

$$(P) \quad \min f(x) \\ Ax \le b \\ Ex = e.$$

#### 1B.- Problema

El algoritmo a implementar es el siguiente:

- (0) Sean  $\varepsilon > 0$ , k = 0,  $x_0 \in \mathbb{R}^n$  tal que  $Ax_0 \le b$ ,  $Ex_0 = e$ .
- (1) Sea la descomposición

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix},$$

tal que  $A_1 x_k = b_1, A_2 x_k < b_2$ .

(2) Resolver el problema lineal

$$(\mathcal{D}_k) \begin{cases} & \min \quad \nabla f(x_k)^T d \\ & \text{s.a.} \quad A_1 d \leq 0 \\ & Ed = 0 \\ & -1 \leq d_j \leq 1, \quad j = 1, \dots, n. \end{cases}$$

y sea  $d_k$  solución de  $(\mathcal{D}_k)$ .

- Si  $\|\nabla f(x_k)^T d_k\| < \varepsilon$ , entonces parar.
- En caso contrario, ir a (3).
- (3) Determinar el paso, resolviendo aproximadamente el problema de minimización unidimensional

$$(L) \begin{cases} \min & f(x_k + \lambda d_k) \\ \text{s.a} & \lambda \in [0, \tilde{\lambda}_k] \end{cases}$$

<sup>&</sup>lt;sup>1</sup> Aclaración: Cuando se habla de problema de optimización no lineal no quiere decir que necesariamente se excluyen los problemas lineales.

medinate el método de Armijo. Se usa

$$\tilde{\lambda}_k = \min \left\{ \frac{(b_2 - A_2 x_k)_i}{(A_2 d_k)_i} / (A_2 d_k)_i > 0 \right\},$$

y se considera  $\tilde{\lambda_k} = +\infty$  cuando  $(A_2 d_k)_i \leq 0$  para todo i.

Sea  $\lambda_k$  solución del subproblema (L). Hacer:

$$x_{k+1} = x_k + \lambda_k d_k, \quad k \leftarrow k + 1$$

e ir a (1).

Luego se propone aplicar el algoritmo para testear los siguientes problemas de optimización:

1. Comenzando del punto (0, 2),

$$(P_1) \begin{cases} \min & 8(x_1 - 6)^2 + (x_2 - 2)^4 \\ \text{s.a.} & -x_1 + 2x_2 \le 4 \\ & 3x_1 + 2x_2 \le 12 \\ & x_1, x_2 \ge 0 \end{cases}$$

2. Comenzando del punto (2, 2, 3, 2),

$$(P_2) \begin{cases} \min & x_1^4 - 2x_2^2 + 10x_1x_2^2 + x_4^2 \\ \text{s.a.} & x_1 + x_2 - x_3 = 1 \\ & x_1 = 4 \\ & x_1 + x_4 = 0 \\ & x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

#### 2.- Comentarios sobre el modelo

Se desea codificar en Python el algoritmo del *método de direcciones admisibles* descrito antes, para ello se utilizarán métodos auxiliares para los pasos (1), (2) y (3). En el anexo puede encontrar la codificación del *método de direcciones admisibles* y de los métodos auxiliares empleados.

## Capítulo 2

## Respuestas

## 1.- Preguntas de la tarea

A continuación se testea el método de direcciones admisibles implementado en A.4 con dos problemas. Los resultados obtenidos son los presentados a continuación.

 $P_1$ .- Comenzando del punto (0, 2),

$$(P_1) \begin{cases} \min & 8(x_1 - 6)^2 + (x_2 - 2)^4 \\ \text{s.a.} & -x_1 + 2x_2 \le 4 \\ & 3x_1 + 2x_2 \le 12 \\ & x_1, x_2 \ge 0 \end{cases}$$

**Resultados:** Para  $P_1$  se alcanzó el óptimo en 3 iteraciones del método. El valor óptimo es  $f(x^*)=46,9041227202609$  con solución  $x^*=(3,85346355 0,21980435)$ .

 $P_2$ . Comenzando del punto (2, 2, 3, 2),

$$(P_2) \begin{cases} & \min \quad x_1^4 - 2x_2^2 + 10x_1x_2^2 + x_4^2 \\ & \text{s.a.} & x_1 + x_2 - x_3 = 1 \\ & x_1 = 4 \\ & x_1 + x_4 = 0 \\ & x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

**Resultados:** Para  $P_2$  se alcanzó el óptimo en 3 iteraciones del método. El valor óptimo es  $f(x^*) = 13,047127462172996$  con solución  $x^* = (0,5358624 \quad 0,5358624 \quad 0,07172479 \quad 3,4641376)$ .

#### 2.- Conclusión

Como se ha visto en los resultados presentados antes, el método de direcciones admisibles consigue resolver los problemas  $(P_1)$  y  $(P_2)$  en muy pocos pasos.

## Apéndice A

## **Anexo**

#### 1.- Codificación de los métodos auxiliares

El primer método auxiliar recibe un sistema de desigualdades de la forma  $Ax \leq b$  y entrega una descomposición

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix},$$

tal que  $A_1 x_k = b_1, A_2 x_k < b_2$ .

```
def desigualdades_activas_inactivas(A,b,x):
      -Input: Sistema de inecuaciones Ax <= b.
      -Output: A1, A2, b1, b2 typo np.array.
      -Descripcion: Particiona el sistema de inecuaciones Ax <= b en las desigualdades
      activas y las desigualdades inactivas.
      # Declara los arreglos para guardar la particion
      A1, A2, b1, b2 = [], [], [], []
      for i in range(len(A)):
10
11
          # Igualdades alcanzadas
12
          if np.isclose(A[i]@x, b[i]):
              A1.append(A[i].tolist())
              b1.append(b[i].tolist())
14
15
          # Desigualdades que no alcanzan igualdad
          elif A[i]@x<b[i]:</pre>
16
              A2.append(A[i].tolist())
              b2.append(b[i].tolist())
18
      # Output en formato de arreglos
      \#return = A1,A2,b1,b2
20
21
      # Output en formato de arreglos de numpy (se transforman de array a np.array)
      return np.array(A1), np.array(A2), np.array(b1), np.array(b2)
```

Listing A.1: Método auxiliar (1)

El siguiente método resuelve el problema de optimización lineal

$$(\mathcal{D}_k) \begin{cases} & \min \quad \nabla f(x_k)^T d \\ & \text{s.a.} \quad A_1 d \le 0 \\ & Ed = 0 \\ & -1 \le d_j \le 1, \quad j = 1, \dots, n. \end{cases}$$

y sea  $d_k$  solución de  $(\mathcal{D}_k)$ .

APÉNDICE A. ANEXO 6

```
# Funcion objetivo: Se define a partir del vector gradiente
10
      funcion_objetivo = lambda d: gradiente(xk)@d
11
      # Cotas para xk
      cotas
                       = tuple([i for i in zip([-1 for _ in range(len(xk))],
                                                [1 for _ in range(len(xk))])
     restricciones
                       = []
14
      restricciones_E = []
15
      \# Si no hay restricciones del estilo Ex = 0
16
      if E is None:
          for i in range(len(A1)):
18
             restricciones.append(LinearConstraint(A1,[-np.inf]*A1.shape[0],[0]*A1.shape[0]))
19
20
      \# Si hay restricciones del estilo Ex = 0
21
     else:
22
          for i in range(len(E)):
             restricciones_E.append(0)
          cons.append(LinearConstraint(E, restricciones_E, restricciones_E))
24
25
      # Metodo optimizador: Se utiliza scipy.optimize.minimize
      resultado = minimize(funcion_objetivo,[1]*len(xk), method='trust-constr', bounds=cotas,
26
      constraints=restricciones)
27
     argmin = resultado.x # Output
  return argmin
```

Listing A.2: Método auxiliar (2)

Y finalmente, el siguiente método determina el paso visto en la parte (3) del método de direcciones admisibles, resolviendo aproximadamente el problema de minimización unidimensional

$$(L) \left\{ \begin{array}{ll} \min & f(x_k + \lambda d_k) \\ \text{s.a} & \lambda \in [0, \tilde{\lambda}_k] \end{array} \right.$$

medinate el método de Armijo. Se usa

$$\tilde{\lambda}_k = \min \left\{ \frac{(b_2 - A_2 x_k)_i}{(A_2 d_k)_i} / (A_2 d_k)_i > 0 \right\},$$

y se considera  $\tilde{\lambda_k} = +\infty$  cuando  $(A_2 d_k)_i \leq 0$  para todo i.

```
def metodo_de_armijo(f,gradiente,xk,dk,A2,b2,A,b):
      -Input:
      -Output:
      -Descripcion:
      sig = 0.6
      h = 0.01
      lambdas = []
10
      uwu = []
      for i in range(b2.shape[0]):
12
          if np.all(A2@dk \le 0) == True:
              lambdas.append(np.inf)
14
15
          elif A2[i]@dk > 0:
              uwu.append((b2[i] - np.array(A2[i])@ xk)/(A2[i]@dk))
16
      lambdas.append(min(uwu))
17
      while h * m <= lambdas[0]:</pre>
18
19
          if f(xk) + sig*m*h*gradiente(xk) @ dk >= f(xk + m*h*dk):
20
              m+=1
          else:
21
               if np.all(A@(xk+h*(m-1)*dk) \le b) == True:
                  return h*(m-1)
               else:
25
                  m - = 1
26
      else:
      return lambdas[0]
```

Listing A.3: Método auxiliar (3)

APÉNDICE A. ANEXO 7

#### 1A.- Codificación del método de direcciones admisibles

```
def metodo_direcciones_admisibles(eps, x0, f, A, b, E=None, e=None, max_cantidad_iteraciones=100):
3
      -Input:
      -Output:
      -Descripcion:
      # Contador de cantidad de iteraciones realizadas / conv = True mientras k no exceda
      # la cantidad maxima de iteraciones
     k, conv = 0, True
     # Punto inicial (viene propuesto un punto para comenzar junto con el problema)
10
11
     xk = x0
      "Iteraci n inicial"
13
      # Paso (1)
      A1, A2, b1, b2 = desigualdades_activas_inactivas(A, b, xk)
14
      # Paso (2)
15
16
      dk = problema_d_k(f, xk, A1, E)
      "Iteraciones hasta cumplir la condicion \\ \ln f(x_{k})^{T}d_{k}\\ <\infty
17
      while np.abs(nd.Gradient(f)(xk) @ dk) > eps:
18
          # Pasada una cantidad maxima de iteraciones se supondra que el problema
19
          # es irresoluble con el metodo de direcciones admisibles.
20
21
          if k > max_cantidad_iteraciones:
              print('Se agot el m ximo de iteraciones ({})'.format(max_iter))
22
23
              conv = False
              break
24
         # Paso (3)
25
         tk = metodo_de_armijo(f, nd.Gradient(f), xk,dk, A2, b2, A, b)
26
27
          if tk == 0:break
28
          xk = xk + tk*dk
          # Aumenta el contador de iteraciones
29
30
         k = k+1
          # Paso (1)
31
32
          A1, A2, b1, b2 = desigualdades_activas_inactivas(A, b, xk)
          # Paso (2)
33
          dk = problema_d_k(f, xk, A1, E)
34
    output = xk
36 return output
```

Listing A.4: Método de direcciones admisibles