05.02 9 клас

Тема. Розв'язування текстових задач складанням систем рівнянь з двома змінними

<u>Мета.</u> Вчитися розв'язувати задачі за допомогою систем рівнянь з двома змінними

Повторюємо

- Що буде розв'язком системи рівнянь з двома змінними?
- Які способи розв'язування систем рівнянь називають аналітичними?
- Що означає графічно розв'язати систему рівнянь?
- В яких випадках доцільно використовувати графічний метод?
- Як розв'язати задачу за допомогою системи рівнянь?

Алгоритм розв'язування текстової задачі за допомогою системи рівнянь

- 1. Проаналізувати умову задачі (основні величини, зв'язки між ними, вимоги задачі).
- 2. Створити математичну модель (у вигляді таблиці, рисунка, тексту тощо).
- 3. Скласти систему рівнянь до задачі.
- 4. Розв'язати отриману систему рівнянь.
- 5. Проаналізувати отримані результати з огляду на умову задачі.
- 6. Записати відповідь.

Розв'язування задач

Задача 1:

Катер проходить 69 км в стоячій воді та 72 км за течією річки за 3 год. Знайдіть швидкість течії та власну швидкість катера, якщо за 2 год в стоячій воді і за 30 хв за течією річки він проходить 116 км.

Розв'язання

Швидкість катера у стоячій воді буде дорівнювати власній швидкості катера. Візьмемо її за х. Швидкість течії за у. Тоді швидкість за течією буде дорівнювати х+у.

Для першої частини умови математична модель задачі буде виглядати так:

	Швидкість, км/год	Час, год	Відстань, км
За течією	x + y	$\frac{72}{x+y}$ 3	72
В стоячій воді	x	69	69

Для другої частини умови:

	Швидкість, км/год	Час, год	Відстань, км
За течією	x + y	2	2(x+y) 116
В стоячій воді	x	0,5	0,5x

Складемо систему рівнянь:

$$\begin{cases} \frac{69}{x} + \frac{72}{x+y} = 3\\ 2x + 0.5(x+y) = 116 \end{cases}$$

Розкриємо дужки в другому рівнянні системи та зведемо подібні доданки:

$$\begin{cases} \frac{69}{x} + \frac{72}{x+y} = 3\\ 2.5x + 0.5y = 116 \end{cases}$$

Помножимо друге рівняння на 2:

$$\begin{cases} \frac{23}{x} + \frac{24}{x+y} = 1\\ 5x + y = 232 \end{cases}$$

Виразимо з другого рівняння у та підставимо в перше:

$$\begin{cases} y = 232 - 5x \\ \frac{23}{x} + \frac{24}{232 - 4x} = 1 \end{cases}$$

Розв'язавши друге рівняння та підставивши розв'язки в перше, отримаємо:

$$x_1 = 29; x_2 = 46$$

 $y_1 = 87; y_2 = 2$

Так як швидкість течії не може бути більшою за власну швидкість катера, тому розв'язок (29; 87) не задовольняє умову задачі.

Відповідь: Власна швидкість катера 46 км/год, швидкість течії 2 км/год.

Задача 2:

Басейн наповнюють дві труби. Якщо відкрити обидві труби одночасно, то весь басейн заповниться за 6 годин. Якщо спочатку наповнювати басейн через першу трубу протягом 5 годин, а потім відкрити одночасно обидві труби на 2 години, то буде заповнено ⅔ басейну. За скільки годин можна наповнити басейн через кожну трубу?

Розв'язання

Так як немає об'єму басейну, то візьмемо його за 1. Необхідно знайти час, за який наповнять басейн перша та друга труба окремо. Візьмемо цей час для першої труби за х год, а для другої за у год.

Складемо математичну модель задачі у вигляді таблиці:

	За 1 годину	Час на весь басейн, год
Перша труба	$\frac{1}{x}$	x
Друга труба	$\frac{1}{v}$	у

Складемо систему рівнянь:

$$\begin{cases} 6\left(\frac{1}{x} + \frac{1}{y}\right) = 1\\ \frac{5}{x} + 2\left(\frac{1}{x} + \frac{1}{y}\right) = \frac{2}{3} \end{cases}$$

Розкриємо в обох рівняннях дужки та зведемо подібні доданки в другому рівнянні:

$$\begin{cases} \frac{6}{x} + \frac{6}{y} = 1\\ \frac{7}{x} + \frac{2}{y} = \frac{2}{3} \end{cases}$$

Зробимо заміну:

$$\frac{1}{x} = u; \frac{1}{y} = v$$

$$\begin{cases} 6u + 6v = 1\\ 7u + 2v = \frac{2}{3} \end{cases}$$

Домножимо друге рівняння на 3, щоб зробити однакові коефіцієнти перед v:

$$\begin{cases} 6u + 6v = 1 \\ 21u + 6v = 2 \end{cases}$$

Віднімемо від другого рівняння перше, отримаємо:

$$15u = 1$$

$$u=\frac{1}{15}$$

Підставимо отриманий розв'язок в рівність 7u + 2v = 3/3

$$\frac{7}{15} + 2v = \frac{2}{3}$$

$$2v = \frac{2}{3} - \frac{7}{15}$$

$$2v = \frac{3}{15}$$

$$v=\frac{1}{10}$$

Зробимо зворотню заміну:

$$\begin{cases} \frac{1}{x} = \frac{1}{15} \\ \frac{1}{y} = \frac{1}{10} \end{cases}$$

Отримали корені:

$$\begin{cases} x = 15 \\ y = 10 \end{cases}$$

Відповідь: 15 год для першої труби, 10 год для другої.

Поміркуйте

Порівняйте способи побудови моделей до задач на рух і на роботу: які спільні властивості можна виділити при побудові моделей?

Домашне завдання

- Опрацювати конспект
- Розв'язати задачі №569, 571

Джерело

Всеукраїнська школа онлайн