Machine Learning Modelling in R:: CHEAT SHEET

Supervised & Unsupervised Learning

Meta-Algorithm, Time Series & Model Validation

ALGORITHM	DESCRIPTION	R PACKAGE::FUNCTION	SAMPLE CODE	ALGORITHM	DESCRIPTION	R PACKAGE::FUNCTION	SAMPLE CODE
Naïve Bayes classifier	A classification technique based on Bayes' Theorem with an assumption of independence among predictors. In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of	e1071::nalveBayes	naiveBayes(class ~ ., data = x)	Regularisation L1 (Lasso) L2 (Ridge)	Regularization adds a penalty on the different parameters of a model to reduce the freedom of the model. Hence, the model will be less likely to fit the noise of the training data and will improve the generalization abilities of the model	glmnet::glmnet	L1: g mnet{myMatrixA, myMatrixB, family = "gaussian", alpha = 1) L2: g mnet{myMatrixA, myMatrixB, family = "gaussian", alpha = 0)
<u> </u>	any other feature A non-parametric method used for classification and			800 Boosting	A process of iteratively refining, e.g. by reweighting, of estimated regression and classification functions (though it has primarily been applied to the latter), in order to improve	Paramatric model - mboost::glmboost	glmboost(Yen ~ ., data = curr1[trnidxs,])
k-Nearest Neighbours	regression. In both cases, the input consists of the k closest training examples in the feature space. The output depends on whether k-NN is used for classification or regression	class::knn	knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE)	Bagging Bagging	predictive ability. Bagging is a way to increase the power of a predictive statistical model by taking multiple random samples (with replacement) of the training data set, and using each of them to construct a separate model and separate predictions for the original test set	All models: foreach Tree models: ipred::bagging	foreach: d < data.frame(s=1:10, y=norm(10)) s < foreach(d=iter(d, by='row'), .combine=rbind) %dopar%d identica(s, d) jpred: bagging(formula, data, subset, na.action=na.rpar/ \dots)
Linear Regression	Model the linear relationship between a scalar dependant variable Y and one or more explanatory variables (or independent variables) denoted X	stats::lm	Im(dist ~ speed, data=cars)				
Logistic Regression	Used to predict a binary outcome (1/0, Yes / No, True / False) given a set of independent variables.	stats::glm	glm(Y~ ., family = binomial (link = 'logit'), data = X)	Pruning	Pruning is a technique that reduces the size of decision tree by removing sections of the tree that provide little power to classify instances. Pruning reduces the complexity of the final classifier and hence improves predictive accuracy by reducing overfitting	rpart::prune	prune(x, cp = 0.1)
Tree-Based Models	The idea is to consecutively divide (branch) the training dataset based on the input features until an assignment criterion with respect to the target variable into a "data bucket" (leaf) is reached	rpart::rpart	rpart(Kyphosis~Age+Number+Start, data=kyphosis)	Random Forrest	An ensemble learning method for classification, regression and other tasks, that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction	randomForest::randomForest	randomForest(X ~ . , data = Y , subset = mySub)
Artificial Neural Network	Neural networks are built from units called perceptrons. Perceptrons have one or more inputs, an activation function and an output. An ANN model is built up by combining perceptrons in structured layers.	neuralnet::neuralnet	neuralnet(f,data=train_hidden=c(5,3),linear.output=T)	Lead-lag analysis,	(regression) Random sampling of observations for training and testing a model can be an issue when faced with a times dimension.	stats xts forecast	Auto-correlation: acf(x, lag.max = NULL, type = c("correlation", "covariance", "partial")) Spectral Analysis: spec.pgram(myTs, spans = NULL)
Support Vector Machine	A data classification method that separates data using hyperplanes	e1071::svm	svm(formula, data = NULL,, subset, na.action = na.omit, scale = TRUE)	Spectral analysis, Time series clustering, Seasonality, Trend	Random sampling may either destroy serial correlation properties in the data which we would like to exploit	spectral TTR	Seasonal Decomposition of Time Series - stl(x, s.window = 7, t.window = 50, t.jump = 1)
Principal Component Analysis	A procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.	stats::prcomp stats::princomp FactoMineR::PCA ade4::dudi.pca amap::acp	stats: prcomp[formula, data = NULL, subset, na.action,) stats: princomp[formula, data = NULL, subset, na.action,) FactoMineR: PCA[decathlon, quanti.sup = 11:12, quall.sup=13) adea: dudi.pca[deugStab, center = deugScent, scale = FALSE, scan = FALSE) amap: acp[lubisch)	Performance metrics	Depends on the problem: Regression: squared errors, outliers, error rate Classification: Accuracy, precision, recall, F-score	Regression-stats::outlierTest, stats:: qqPlot Classification-ROCR:: Tree: caret:: confusionMatrix	Regresion: fit <- Im(Y"X,data=myData) outlierTest(fit) qqPlot(fit, main="QQ Plot")
				Biais-Variance Tradeoff	Simple models with few parameters are easier to compute but may lead to poorer fits (high bias). Complex models may provide more accurate fits but may over-fit the data (high variance)	Tailored to the analysis	Tailored to the analysis
k-Mean Clustering	Aims at partitioning $\it n$ observations into $\it k$ clusters in which each observation belongs to the cluster with the nearest mean	stats::kmeans	kmeans(x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), trace=FALSE)	Cross validation	Cross validation compares the test performances of different model realisations with different sets or values of parameters	caret::createDataPartition caret::createFolds	createDataPartition(classes, p = 0.8, list = FALSE)
Hierarchical Clustering	An approach which builds a hierarchy from the bottom-up, and doesn't require the number of clusters to be specified beforehand.	stats::hclust	hclust(d, method = "complete", members = NULL)	Learning Curves	Learning curves plot a model's training and test errors, or the chosen performance metric, depending on the training set size.	caret::learing_curve_dat	learing_curve_dat(dat, outcome = NULL, proportion = (1:10)/10, test_prop = 0, verbose = TRUE,)

Standard Modelling Workflow

Time Series View

