Bài giảng Giải tích 1

Vũ Hữu Nhự

29th November 2023

Chương 4: Lý thuyết chuỗi

4.1.1. Điều kiện cần và đủ của chuỗi hội tụ

4.1.1. Điều kiện cần và đủ của chuỗi hội tụ

Definition (Chuỗi số)

Biểu thức

$$u_1 + u_2 + u_3 + \cdots + u_n + \cdots \tag{1}$$

được gọi là chuỗi số và ký hiệu là $\sum_{n=1}^{\infty} u_n$.

4.1.1. Điều kiện cần và đủ của chuỗi hội tụ

Definition (Chuỗi số)

Biểu thức

$$u_1 + u_2 + u_3 + \cdots + u_n + \cdots \tag{1}$$

được gọi là chuỗi số và ký hiệu là $\sum_{n=1}^{\infty} u_n$.

- Số hạng tổng quát: u_n
- Tổng riêng thứ $n: S_n = \sum_{k=1}^n u_k$.

4.1.1. Điều kiện cần và đủ của chuỗi hội tụ

Definition (Chuỗi số)

Biểu thức

$$u_1 + u_2 + u_3 + \cdots + u_n + \cdots \tag{1}$$

được gọi là chuỗi số và ký hiệu là $\sum_{n=1}^{\infty} u_n$.

- Số hạng tổng quát: u_n
- Tổng riêng thứ $n: S_n = \sum_{k=1}^n u_k$.
- Nếu tồn tại $\lim_{n\to\infty} S_n = S$, thì ta nói rằng chuỗi (1) **hội tụ và**

có tổng là S và viết

$$\sum_{n=1}^{\infty} u_n = S.$$

- Xét chuỗi (1) có tổng là S. Phần dư thứ n: $R_n = S - S_n \to 0$ khi $n \to \infty$.

- Xét chuỗi (1) có tổng là S. Phần dư thứ n:
- $R_n = S S_n \to 0$ khi $n \to \infty$.
- Nếu chuỗi (1) không hội tụ, ta nói chuỗi (1) **phân kỳ.**

Example

Xét chuỗi

$$\sum_{n=1}^{\infty} aq^{n-1} \quad (a \neq 0).$$

- Xét chuỗi (1) có tổng là S. Phần dư thứ n:
- $R_n = S S_n \to 0$ khi $n \to \infty$.
- Nếu chuỗi (1) không hội tụ, ta nói chuỗi (1) **phân kỳ.**

Example

Xét chuỗi

$$\sum_{n=1}^{\infty} aq^{n-1} \quad (a \neq 0).$$

$$\sum_{n=1}^{\infty} aq^{n-1} = egin{cases} rac{a}{1-q} & ext{n\'eu} \; |q| < 1 \ ext{chu\'ei} \; ext{phân kỳ} & ext{n\'eu} \; |q| \geq 1 \end{cases}$$

Theorem (Điều kiện cần)

Nếu chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ, thì

$$\lim_{n\to\infty}u_n=0.$$

Theorem (Điều kiện cần)

Nếu chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ, thì

$$\lim_{n\to\infty}u_n=0.$$

Chú ý: Nếu $u_n \rightarrow 0$ thì chuỗi $\sum_{n=1}^{\infty} u_n$ phân kỳ.

Theorem (Điều kiện cần)

Nếu chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ, thì

$$\lim_{n\to\infty}u_n=0.$$

Chú ý: Nếu $u_n \rightarrow 0$ thì chuỗi $\sum_{n=1}^{\infty} u_n$ phân kỳ.

Example

Xét sự hội tụ của chuỗi

$$\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt[3]{n^3+2}}$$

Theorem (Tiêu chuẩn Cauchy)

Chuỗi $\sum_{n=1}^{\infty}u_n$ hội tụ nếu và chỉ nếu với mọi $\epsilon>0$ tồn tại số $n_0\in\mathbb{N}$ sao cho

$$|u_{n+1}+u_{n+2}+\cdots+u_{n+p}|<\epsilon\quad\forall n\geq n_0, p\geq 1.$$

Theorem (Tiêu chuẩn Cauchy)

Chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ nếu và chỉ nếu với mọi $\epsilon>0$ tồn tại số $n_0\in\mathbb{N}$ sao cho

$$|u_{n+1}+u_{n+2}+\cdots+u_{n+p}|<\epsilon\quad\forall n\geq n_0, p\geq 1.$$

Example

Xét sự hội tụ của chuỗi điều hòa

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

Tính chất.

Tính chất.

- 1. Nếu $\sum_{n=1}^{\infty} u_n = S$ thì $\sum_{n=1}^{\infty} au_n = aS$ với mọi $a \in \mathbb{R}$.
- 2. Nếu $\sum_{n=1}^{\infty} u_n = S_1$ và $\sum_{n=1}^{\infty} v_n = S_2$ thì

$$\sum_{n=1}^{\infty} (u_n + v_n) = S_1 + S_2.$$

- 3. Nếu $\sum_{n=1}^{\infty} |u_n|$ hội tụ thì $\sum_{n=1}^{\infty} u_n$ cũng hội tụ.
- 4. Chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ (hay phân kỳ) $\Leftrightarrow \sum_{n=n_0}^{\infty} u_n$ hội tụ (hay phân kỳ).

4.1.2. Chuỗi số dương. Các tiêu chuẩn hội tu.

4.1.2. Chuỗi số dương. Các tiêu chuẩn hội tụ.

Theorem (Tiêu chuẩn so sánh 1)

Xét hai chuỗi số dương $\sum_{n=1}^{\infty} u_n$ và $\sum_{n=1}^{\infty} v_n$ thỏa mãn

$$u_n \leq v_n \quad \forall n \geq n_0.$$

Khi đó:

- Nếu chuỗi $\sum_{n=1}^{\infty} v_n$ hội tụ, thì chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ.
- Nếu chuỗi $\sum_{n=1}^{\infty} u_n$ phân kỳ, thì chuỗi $\sum_{n=1}^{\infty} v_n$ phân kỳ.

Example

Xét sự hội tụ của các chuỗi sau:

$$\sum_{n=1}^{\infty} \frac{n}{(3n+1)2^n} \quad \text{và} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n+1}}.$$

Theorem (Tiêu chuẩn so sánh 2)

Xét hai chuỗi số dương $\sum_{n=1}^{\infty} u_n$ và $\sum_{n=1}^{\infty} v_n$ thỏa mãn

$$k = \lim_{n \to \infty} \frac{u_n}{v_n} \in (0, +\infty).$$

Khi đó hai chuỗi số dương $\sum_{n=1}^{\infty} u_n$ và $\sum_{n=1}^{\infty} v_n$ hoặc cùng hội tụ; hoặc cùng phân kỳ.

Theorem (Tiêu chuẩn so sánh 2)

Xét hai chuỗi số dương $\sum_{n=1}^{\infty} u_n$ và $\sum_{n=1}^{\infty} v_n$ thỏa mãn

$$k = \lim_{n \to \infty} \frac{u_n}{v_n} \in (0, +\infty).$$

Khi đó hai chuỗi số dương $\sum_{n=1}^{\infty} u_n$ và $\sum_{n=1}^{\infty} v_n$ hoặc cùng hội tụ; hoặc cùng phân kỳ.

Example

Xét sự hội tụ của các chuỗi sau:

$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right) \quad \text{và} \quad \sum_{n=1}^{\infty} \tan \frac{1}{3^n}.$$

Theorem (Tiêu chuẩn D'Alembert)

Cho chuỗi số dương $\sum_{n=1}^{\infty} u_n$. Giả sử tồn tại

$$L=\lim_{n\to\infty}\frac{u_{n+1}}{u_n}.$$

Khi đó:

- Nếu L < 1, thì chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ.
- Nếu L > 1, thì chuỗi $\sum_{n=1}^{\infty} u_n$ phân kỳ.

Theorem (Tiêu chuẩn D'Alembert)

Cho chuỗi số dương $\sum_{n=1}^{\infty} u_n$. Giả sử tồn tại

$$L=\lim_{n\to\infty}\frac{u_{n+1}}{u_n}.$$

Khi đó:

- Nếu L < 1, thì chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ.
- Nếu L > 1, thì chuỗi $\sum_{n=1}^{\infty} u_n$ phân kỳ.

Example

Xét sự hội tụ của các chuỗi sau:

$$\sum_{n=1}^{\infty} \frac{n!}{n^n} \text{ và } \sum_{n=1}^{\infty} \frac{3^n}{2^n (n+1)^2}$$

Theorem (Tiêu chuẩn Cauchy)

Cho chuỗi số dương $\sum_{n=1}^{\infty} u_n$. Giả sử tồn tại

$$L=\lim_{n\to\infty}\sqrt[n]{u_n}.$$

Khi đó:

- ▶ Nếu L < 1, thì chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ.
- Nếu L > 1, thì chuỗi $\sum_{n=1}^{\infty} u_n$ phân kỳ.

Example

Xét sự hội tụ của các chuỗi sau:

$$\sum_{n=1}^{\infty} \left(\frac{3n+2}{4n+3} \right)^n \quad \text{và} \quad \sum_{n=1}^{\infty} \left(\frac{3n-2}{n+4} \right)^n.$$

Theorem (Tiêu chuẩn tích phân)

Cho hàm số f(x) liên tục, dương, giảm trên $[1, +\infty)$ và $f(x) \to 0$ khi $x \to +\infty$. Đặt $u_n = f(n)$. Khi đó chuỗi $\sum_{n=1}^{\infty} u_n$ và tích phân suy rộng $\int_1^{\infty} f(x) dx$ hoặc cùng hội tụ; hoặc cùng phân kỳ.

Theorem (Tiêu chuẩn tích phân)

Cho hàm số f(x) **liên tục, dương, giảm** $trên [1, +\infty)$ và $f(x) \to 0$ khi $x \to +\infty$. Đặt $u_n = f(n)$. Khi đó chuỗi $\sum_{n=1}^{\infty} u_n$ và tích phân suy rộng $\int_1^{\infty} f(x) dx$ hoặc cùng hội tụ; hoặc cùng phân kỳ.

Example

Xét sự hội tụ của các chuỗi Riemann:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \quad (\alpha \in \mathbb{R}).$$

Theorem (Tiêu chuẩn tích phân)

Cho hàm số f(x) liên tục, dương, giảm $trên [1, +\infty)$ và $f(x) \to 0$ khi $x \to +\infty$. Đặt $u_n = f(n)$. Khi đó chuỗi $\sum_{n=1}^{\infty} u_n$ và tích phân suy rộng $\int_1^{\infty} f(x) dx$ hoặc cùng hội tụ; hoặc cùng phân kỳ.

Example

Xét sự hội tụ của các chuỗi Riemann:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \quad (\alpha \in \mathbb{R}).$$

Kết luân:

- + Nếu $\alpha > 1$, thì chuỗi hội tụ.
- + Nếu $\alpha \leq 1$, thì chuỗi phân kỳ.

Xét chuỗi $\sum_{n=1}^{\infty} u_n$ với u_n có dấu bất kỳ.

Xét chuỗi $\sum_{n=1}^{\infty} u_n$ với u_n có dấu bất kỳ.

Theorem

Nếu chuỗi $\sum_{n=1}^{\infty} |u_n|$ hội tụ, thì chuỗi $\sum_{n=1}^{\infty} u_n$ cũng hội tụ.

Xét chuỗi $\sum_{n=1}^{\infty} u_n$ với u_n có dấu bất kỳ.

Theorem

Nếu chuỗi $\sum_{n=1}^{\infty} |u_n|$ hội tụ, thì chuỗi $\sum_{n=1}^{\infty} u_n$ cũng hội tụ.

Example

Xét sư hôi tu của chuỗi

$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin 2n}{n^3}.$$

Definition

Chuỗi số $\sum_{n=1}^{\infty} u_n$ được gọi là:

- **hội tụ tuyệt đối** nếu chuỗi $\sum_{n=1}^{\infty} |u_n|$ hội tụ.
- **bán hội tụ** nếu nếu chuỗi $\sum_{n=1}^{\infty} u_n$ hội tụ và $\sum_{n=1}^{\infty} |u_n|$ phân kỳ.

4.1.4. Chuỗi đan dấu. Tiêu chuẩn Leibniz.

4.1.4. Chuỗi đan dấu. Tiêu chuẩn Leibniz.

Definition

Chuỗi đan dấu là chuỗi có dạng:

$$u_1 - u_2 + u_3 - u_4 + \dots + (-1)^{n-1}u_n + \dots \quad (u_n > 0 \ \forall n)$$

hoặc $-u_1 + u_2 - u_3 + \dots + (-1)^n u_n + \dots \quad (u_n > 0 \ \forall n).$

4.1.4. Chuỗi đan dấu. Tiêu chuẩn Leibniz.

Definition

Chuỗi đan dấu là chuỗi có dạng:

$$u_1-u_2+u_3-u_4+\cdots+(-1)^{n-1}u_n+\cdots \quad (u_n>0 \ \forall n)$$

hoặc $-u_1+u_2-u_3+\cdots+(-1)^nu_n+\cdots \quad (u_n>0 \ \forall n).$

Theorem (Leibniz)

Cho $u_n>0$ và $u_n\searrow 0$ khi $n\to +\infty$. Khi đó chuỗi dan dấu $\pm (u_1-u_2+u_3-u_4+\cdots)$

hôi tu.

Example

Xét sự hội tụ, bán hội tụ và hội tụ tuyệt đối của chuỗi sau

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

4.2. Chuỗi lũy thừa. Chuỗi Taylor. Chuỗi MacLaurin.

4.2.1. Chuỗi hàm.

4.2. Chuỗi lũy thừa. Chuỗi Taylor. Chuỗi MacLaurin.

4.2.1. Chuỗi hàm.

Definition

Cho dãy hàm số $f_n(x)$ xác định trên (a,b). Ta gọi

$$\sum_{n=1}^{+\infty} f_n(x) \tag{2}$$

là một chuỗi hàm số.

- + Số hạng tổng quát: $f_n(x)$
- + Tổng riêng thứ n:

$$S_n(x) = \sum_{k=1}^n f_k(x).$$

- + Điểm $x_0 \in (a, b)$ được gọi là **điểm hội tụ** (hay phân kỳ) nếu chuỗi $\sum_{n=1}^{+\infty} f_n(x_0)$ hội tụ (phân kỳ).
- + Tập các điểm hội tụ của chuỗi (2) được gọi là **miền hội tụ.**

Example

Tìm miền hội tụ của các chuỗi hàm sau:

1.
$$\sum_{n=1}^{\infty} x^{n-1}$$
, 2. $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2 + x^2}$, 3. $\sum_{n=1}^{\infty} \frac{x^n}{n!}$.

Xét chuỗi

$$\sum_{n=1}^{+\infty} f_n(x) \qquad (2)$$

$$\sum_{n=1}^{+\infty} f_n(x) \qquad (2)$$

Definition (Hội tụ đều)

Chuỗi hàm (2) được gọi là **hội tụ đều** trên tập D nếu: $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ sao cho

$$|S_{n+p}(x) - S_n(x)| < \epsilon \quad \forall x \in D, \forall n \ge n_0, p \ge 1.$$

Xét chuỗi

$$\sum_{n=1}^{+\infty} f_n(x) \qquad (2)$$

Definition (Hội tụ đều)

Chuỗi hàm (2) được gọi là **hội tụ đều** trên tập D nếu: $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ sao cho

$$|S_{n+p}(x) - S_n(x)| < \epsilon \quad \forall x \in D, \forall n \geq n_0, p \geq 1.$$

Theorem (Tiêu chuẩn Weierstrass)

Giả sử $|f_n(x)| \le u_n$ với mọi $x \in D$, $n \ge 1$. Khi đó

$$\sum_{n=1}^{\infty} u_n \ hội \ tụ \Rightarrow \sum_{n=1}^{\infty} f_n(x) \ hội \ tụ đều trên D.$$

Example

Chứng minh rằng chuỗi hàm $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2+x^2+1}$ hội tụ tuyệt đối và hội tụ đều trên \mathbb{R} .

Xét

$$f(x) := \sum_{n=1}^{+\infty} f_n(x) \tag{3}$$

Xét

$$f(x) := \sum_{n=1}^{+\infty} f_n(x) \tag{3}$$

Giả sử chuỗi (3) hội tụ đều trên tập D. Khi đó:

Xét

$$f(x) := \sum_{n=1}^{+\infty} f_n(x)$$
 (3)

Giả sử chuỗi (3) hội tụ đều trên tập D. Khi đó:

- Nếu hàm $f_n(x)$ liên tục trên D, thì f(x) liên tục trên D.
- Nếu hàm $f_n(x)$ khả vi trên D, thì f(x) cũng khả vi trên D và

$$f'(x) = \sum_{n=1}^{+\infty} f'_n(x)$$

Nếu $f_n(x)$ khả tích trên $[a,b]\subset D$, thì f(x) khả tích trên [a,b] và

$$\int_{a}^{b} f(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x)dx.$$

Definition

Chuỗi lũy thừa có dạng:

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (4)

Definition

Chuỗi lũy thừa có dạng:

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (4)

Theorem (Abel)

Nếu chuỗi lũy thừa (4) hội tụ tại $x=x_0\neq 0$, thì nó hội tụ tuyệt đối tại mọi x với $|x|<|x_0|$.

Definition

Chuỗi lũy thừa có dạng:

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (4)

Theorem (Abel)

Nếu chuỗi lũy thừa (4) hội tụ tại $x=x_0\neq 0$, thì nó hội tụ tuyệt đối tại mọi x với $|x|<|x_0|$.

Corollary

Nếu chuỗi lũy thừa (4) phân kỳ tại $x = x_1$, thì nó phân kỳ tại mọi x với $|x| > |x_1|$.

Bán kính hội tụ.

Bán kính hội tụ.

Definition

Ta gọi số R là **bán kính hội tụ** của chuỗi lũy thừa (4) nếu chuỗi (4) hội tụ tuyệt đối trong (-R,R) và phân kỳ trong khoảng $(-\infty,-R)\cup(R,+\infty)$.

Xét chuỗi lũy thừa $\sum_{n=0}^{\infty} a_n x^n$

Theorem

Nếu đặt

$$\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} \quad \left(\text{hoặc } \rho = \lim_{n \to \infty} \sqrt[n]{|a_n|} \right).$$

Khi đó ta có công thức tính bán kính hội tụ của chuỗi lũy thừa (4) như sau:

$$R = \begin{cases} \frac{1}{\rho} & \text{n\'eu } 0 < \rho < +\infty, \\ 0 & \text{n\'eu } \rho = +\infty \\ +\infty & \text{n\'eu } \rho = 0. \end{cases}$$

Example

Tìm miền hội tụ của các chuỗi số sau:

$$1. \sum_{n=1}^{\infty} \frac{x^n}{(2n+1)}$$

2.
$$\sum_{n=0}^{\infty} \frac{(2x+1)^n}{4^n + 3^n}$$

3.
$$\sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{n!}$$

Tính chất của chuỗi lũy thừa

Tính chất của chuỗi lũy thừa

- ► Chuỗi lũy thừa $\sum_{n=0}^{\infty} a_n x^n$ hội tụ đều trên đoạn [a,b](-R < a < b < R), R là bán kính hội tụ.
- ightharpoonup Đặt $S(x):=\sum_{n=0}^{\infty}a_nx^n$. Khi đó S(x) liên tục trên (-R,R).
- P Có thể lấy đạo (cấp 1, cấp 2,...) hàm từng số hạng của chuỗi lũy thừa $S(x):=\sum_{n=0}^{\infty}a_nx^n$ tại mọi $x\in(-R;R)$ và chuỗi

$$S'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + \dots$$

có khoảng hội tụ là (-R;R).

Có thể lấy tích phân từng số hạng trên mọi đoạn $[a, b] \subset (-R, R)$ và

$$\int_a^b S(x) dx = \sum_{n=0}^\infty \int_a^b a_n x^n dx.$$

Example

Tính

$$f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots \quad (x \in MHT)$$

Example

Tính

$$f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots \quad (x \in MHT)$$

Ta có: R=1 nên f(x) có miền hội tụ là (-1,1] và đạo hàm trên khoảng (-1,1] của f(x) là

$$f'(x) = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots = \frac{1}{x+1}, \quad x \in (-1)^n x^n + \dots = \frac{1}{x+1}$$

Từ đó suy ra

$$f(x) = \ln(1+x) + C$$

Thay x=0 ta được C=0. Vậy $f(x)=\ln(1+x)$

4.2.3. Chuỗi Taylor. Chuỗi Mac Laurin.

Giả sử hàm số f(x) có đạo hàm mọi cấp trong một lân cận $(x_0-\delta,x_0+\delta)$ của x_0 . Khi đó với mọi $x\in(x_0-\delta,x_0+\delta)$, ta xét chuỗi

$$S(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \cdots$$
 (5)

4.2.3. Chuỗi Taylor. Chuỗi Mac Laurin.

Giả sử hàm số f(x) có đạo hàm mọi cấp trong một lân cận $(x_0-\delta,x_0+\delta)$ của x_0 . Khi đó với mọi $x\in(x_0-\delta,x_0+\delta)$, ta xét chuỗi

$$S(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \cdots$$
 (5)

Chuỗi lũy thừa (5) được gọi là **chuỗi Taylor** của hàm số f(x).

Nếu $x_0 = 0$, ta có

$$S(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \cdots$$
(6)

Nếu $x_0 = 0$, ta có

$$S(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \cdots$$
 (6)

Chuỗi lũy thừa (6) được gọi là **chuỗi Mac Laurin** của hàm số f(x).

Nếu $x_0 = 0$, ta có

$$S(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \cdots$$
 (6)

Chuỗi lũy thừa (6) được gọi là **chuỗi Mac Laurin** của hàm số f(x).

Question: Khi nào thì

$$f(x) = S(x)$$
????

Theorem

Nếu f(x) có đạo hàm mọi cấp trong lân cận $(x_0-\delta,x_0+\delta)$ và tồn tại số M>0 sao cho

$$|f^{(n)}(x)| \leq M \quad \forall x \in (x_0 - \delta, x_0 + \delta).$$

Khi đó f(x) = S(x) với mọi $x \in (x_0 - \delta, x_0 + \delta)$, tức là f(x) có thể khai triển thành chuỗi Taylor trong khoảng $(x_0 - \delta, x_0 + \delta)$:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \cdots$$

Khai triển một số hàm sơ cấp thành chuỗi lũy thừa

Khai triển một số hàm sơ cấp thành chuỗi lũy thừa

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots, x \in \mathbb{R},$$

$$\sin x = \frac{x}{1!} - \frac{x^{3}}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots, x \in \mathbb{R},$$

$$(8)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + \dots, x \in \mathbb{R}$$

$$(9)$$

$$\frac{1}{1+x} = 1 - x + x^{2} - \dots + (-1)^{n-1} x^{n} + \dots, -1 < x < 1.$$

$$(10)$$

4.3. Chuỗi Fourier.

4.3. Chuỗi Fourier.

4.3.1. Chuỗi lượng giác. Chuỗi lượng giác có dạng

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx). \tag{11}$$

4.3. Chuỗi Fourier.

4.3.1. Chuỗi lượng giác. Chuỗi lượng giác có dạng

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx). \tag{11}$$

+ Số hạng tổng quát $u_n=a_n\cos nx+b_n\sin nx$ là hàm tuần hoàn với chu kỳ $T=\frac{2\pi}{n}$ và khả vi mọi cấp.

4.3. Chuỗi Fourier.

4.3.1. Chuỗi lượng giác. Chuỗi lượng giác có dạng

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx). \tag{11}$$

+ Số hạng tổng quát $u_n=a_n\cos nx+b_n\sin nx$ là hàm tuần hoàn với chu kỳ $T=\frac{2\pi}{n}$ và khả vi mọi cấp.

Chú ý:

- Nếu chuỗi $\sum_{n=1}^{\infty} |a_n|$ và $\sum_{n=1}^{\infty} |b_n|$ hội tụ, thì chuỗi (11) hội tụ đều và hội tụ tuyệt đối trên \mathbb{R} .
- Nếu $a_n \searrow 0$ và $b_n \searrow 0$, thì chuỗi (11) hội tụ tại $x \neq 2k\pi$, $k \in \mathbb{Z}$.

4.3.2. Khai triển Fourier của hàm số tuần hoàn chu kỳ 2π .

4.3.2. Khai triển Fourier của hàm số tuần hoàn chu kỳ 2π .

Cho hàm số f(x) xác định trên $\mathbb R$ và tuần hoàn với chu kỳ 2π . Đặt

$$\begin{cases} a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \\ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx & (n \ge 1) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx & (n \ge 1). \end{cases}$$
 (12)

4.3.2. Khai triển Fourier của hàm số tuần hoàn chu kỳ 2π .

Cho hàm số f(x) xác định trên $\mathbb R$ và tuần hoàn với chu kỳ 2π . Đặt

$$\begin{cases} a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \\ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx & (n \ge 1) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx & (n \ge 1). \end{cases}$$
 (12)

Khi đó, chuỗi Fourier của hàm f(x) là

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$
 (13)

Các hệ số: a_0 , a_n , b_n gọi là **hệ số Fourier**.

Khi nào thì

$$S(x) = f(x)$$
???

Khi nào thì

$$S(x) = f(x)$$
???

Theorem (Dirichlet)

Cho hàm số f(x) tuần hoàn với chu kỳ 2π và thỏa mãn một trong các điều kiện sau:

- (i) f(x) và f'(x) liên tục từng khúc trên $[-\pi, \pi]$.
- (ii) f(x) đơn điệu từng khúc và bị chặn trên $[-\pi, \pi]$. Khi đó các khẳng định sau là đúng :
- 1. Nếu f(x) liên tục tại x_0 , thì

$$f(x_0)=S(x_0).$$

2. Nếu f(x) gián đoạn tại x_0 , thì

$$S(x_0) = \frac{1}{2} \left(\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x) \right)$$

Example

Khai triển thành chuỗi Fourier của các hàm f(x) tuần hoàn với chu kỳ 2π :

$$1. \quad f(x) = x \quad \text{v\'oi} \ -\pi \leq x < \pi,$$

2.
$$f(x) = \begin{cases} x & \text{v\'oi } 0 \le x \le \pi \\ 2\pi - x & \text{v\'oi } \pi \le x \le 2\pi \end{cases}$$

4.3.2. Khai triển Fourier của hàm số tuần hoàn chu kỳ 2T.

4.3.2. Khai triển Fourier của hàm số tuần hoàn chu kỳ 2T.

Cho hàm số f(x) xác định trên $\mathbb R$ và tuần hoàn với chu kỳ 2T. Khi đó chuỗi Fourier của f(x) là

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi n x}{T} + b_n \sin \frac{\pi n x}{T} \right). \tag{14}$$

Với các hệ số Fourier là

$$\begin{cases} a_0 = \frac{1}{T} \int_{-T}^{T} f(x) dx \\ a_n = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{\pi n x}{T} dx & (n \ge 1) \\ b_n = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{\pi n x}{T} dx & (n \ge 1). \end{cases}$$
(15)

Theorem (Dirichlet)

Cho hàm số f(x) tuần hoàn với chu kỳ 2T và thỏa mãn một trong các điều kiện sau:

- $\overline{(i)} f(x)$ và f'(x) liên tục từng khúc trên [-T, T].
- (ii) f(x) đơn điệu từng khúc và bị chặn trên [-T, T].. Khi đó các khẳng định sau là đúng :
- 1. Nếu f(x) liên tục tại x_0 , thì

$$f(x_0)=S(x_0).$$

2. Nếu f(x) gián đoạn tại x_0 , thì

$$S(x_0) = \frac{1}{2} \left(\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x) \right)$$

Example

Khai triển thành chuỗi Fourier hàm số f(x) tuần hoàn chu kỳ 2T = 2 và

$$f(x) = \begin{cases} x^2 & 0 \le x \le 1\\ (x-2)^2 & 1 \le x \le 2 \end{cases}$$

Giả sử hàm số f(x) xác định trên tập D = [a, b], (a, b), [a, b), (a, b]. \Rightarrow Ta muốn xây dựng chuỗi Fourier của hàm f(x) trên D????

Giả sử hàm số f(x) xác định trên tập D = [a, b], (a, b), [a, b), (a, b]. \Rightarrow Ta muốn xây dựng chuỗi Fourier của hàm f(x) trên D???? + Xây dựng hàm mở rộng g(x) tuần hoàn chu kỳ $2T \geq (b-a)$ sao cho

$$g(x) = f(x) \quad \forall x \in D.$$

Giả sử hàm số f(x) xác định trên tập D = [a,b], (a,b), [a,b), (a,b]. \Rightarrow Ta muốn xây dựng chuỗi Fourier của hàm f(x) trên D???? + Xây dựng hàm mở rộng g(x) tuần hoàn chu kỳ $2T \geq (b-a)$ sao cho

$$g(x) = f(x) \quad \forall x \in D.$$

+ Xây dựng chuỗi Fourier S(x) của g(x).

Giả sử hàm số f(x) xác định trên tập D = [a,b], (a,b), [a,b), (a,b]. \Rightarrow Ta muốn xây dựng chuỗi Fourier của hàm f(x) trên D???? + Xây dựng hàm mở rộng g(x) tuần hoàn chu kỳ $2T \geq (b-a)$ sao cho

$$g(x) = f(x) \quad \forall x \in D.$$

+ Xây dựng chuỗi Fourier S(x) của g(x). Khi đó: Nếu hàm f(x) liên tục tại $x_0 \in D$ thì

$$S(x_0)=f(x_0).$$

Chú ý.

- Nếu g(x) là hàm chẵn thì chuỗi Fourier chỉ gồm các hàm cosin.
- Nếu g(x) là hàm lẻ, thì chuỗi Fourier chỉ gồm các hàm sin.
- lacktriangle Ta hay chọn chu kỳ 2T=(b-a) hoặc 2T=2(b-a)

Example

Khai triển thành chuỗi Fourier của hàm

$$f(x) = \begin{cases} x & 0 < x \le 1\\ 1 & 1 < x \le 2 \end{cases}$$

sao cho:

- 1. Chuỗi Fourier chỉ chứa các hàm cosin.
- 2. Chuỗi Fourier chỉ chứa các hàm sin.
- 3. Hàm mở rộng g(x) có chu kỳ 2T = 2.