Tabla de propiedades de la Transformada z

Dominio del tiempo, $x[n]$	Dominio de la variable $z, X(z)$	ROC
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	$R' = R_1 \cap R_2$
$x[n-n_0]$	$z^{-n_0}X(z)$	R' = R
$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R
$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	$z_0 R$
$a^n x[n]$	$X(a^{-1}z)$	R' = aR
$x^*[n]$	$X^*(z^*)$	R
$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection
		of R_1 and R_2
x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least the
		intersection of R and $ z > 0$
$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the
		intersection of R and $ z > 1$
nx[n]	$-z\frac{dX(z)}{dz}$	R

Tabla 1. Propiedades de la Transformada de z

Tabla de Transformadas z

Dominio del tiempo, $x[n]$	Dominio de la variable $z, X(z)$	ROC
$\delta[n]$	1	All z
u[n]	$ \frac{\frac{1}{1-z^{-1}}}{\frac{1}{1-z^{-1}}} $	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z^{-m}	All z except
		0 (if $m > 0$) or
		∞ (if $m < 0$)
$\alpha^n u[n]$	$\frac{\frac{1}{1-\alpha z^{-1}}}{\frac{1}{1-\alpha z^{-1}}}$	$ z > \alpha $
$-\alpha^n u[-n-1]$	$\frac{1}{1 - \alpha z^{-1}}$	$ z < \alpha $
$n \alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$ $\frac{\alpha z^{-1}}{\alpha z^{-1}}$	$ z > \alpha $
$-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2} \\ 1 - [\cos \Omega_0] z^{-1}$	$ z < \alpha $
$[\cos(\Omega_0 n)]u[n]$	$\frac{1 - [\cos \Omega_0] z^{-1}}{1 - [2 \cos \Omega_0] z^{-1} + z^{-2}}$	z > 1
$[\sin(\Omega_0 n)]u[n]$	$\frac{[\sin\Omega_0]z^{-1}}{1 - [2\cos\Omega_0]z^{-1} + z^{-2}}$	z > 1
$[r^n\cos(\Omega_0 n)]u[n]$	$\frac{1 - [r\cos\Omega_0]z^{-1}}{1 - [2r\cos\Omega_0]z^{-1} + r^2z^{-2}}$	z > r
$[r^n \sin(\Omega_0 n)] u[n]$	$\frac{[r\sin\Omega_0]z^{-1}}{1 - [2r\cos\Omega_0]z^{-1} + r^2z^{-2}}$	z > r

Tabla 2. Pares de la Transformada z