苏州大学 物理化学(一) 课程期中试卷 共6页

考试形式 闭 卷 2017 年 11 月

院系:	材料与化学化工学部	年级:	2015 级	专业:	
	_	·-			
W 🖂		1.1 -		n /+	

学号:______ 成绩:_____

一、选择题 (共10题每题2分,共20分)

得	分
	得

题号	1	2	3	4	5	6	7	8	9	10
答案										

- 1. 2分
 - $\Delta H = Q_p$,此式适用于下列那个过程:

()

- (A) 理想气体从 1013250 Pa 反抗外压 101 325 Pa 膨胀到 101 325 Pa
- (B) 在等温等压下电解 CuSO₄ 水溶液
- (C) 0℃下,101 325 Pa 下冰融化成水
- (D) 某一气体从 (298 K,101 325 Pa) 可逆变化到 (373 K,10 132.5 Pa)
- 2. 2分

()

- (A) 水的生成热即是氧气的燃烧热
- (B) 水蒸气的生成热即是氧气的燃烧热
- (C) 水蒸气的生成热即是氢气的燃烧热
- (D) 水的生成热即是氢气的燃烧热
- 3.2 分

()

 $\Delta_{\rm r} H_{\rm m} = -107.2 \text{ kJ mol}^{-1}$

 $\Delta_{\rm r} H_{\rm m} = 179.5 \, {\rm kJ \ mol}^{-1}$

反应 (3)
$$C_2H_4(g) + H_2O(l) \longrightarrow C_2H_5OH(l)$$
; $\Delta_rH_m = -44.08 \text{ kJ mol}^{-1}$

反应 (4) $CS_2(l) + 3O_2(g) \longrightarrow CO_2(g) + 2SO_2(g)$; $\Delta_r H_m = -897.6 \text{ kJ mol}^{-1}$

其中热效应 $Q_p < Q_V$ 的反应是:

- (A) (1)
- (B) (2)
- (C) (3)
- (D) (4)

4. 2 分 1 mol 液态苯在其正常沸点(353.2 K)和 101.325 kPa 下蒸发为苯蒸气,该过程的 $\Delta_{\rm vap}A$ 等	手于
(A) 23.48 kJ (B) 5.87 kJ (C) 2.94 kJ (D) 1.47 kJ	
5. 2 分 在下列状态变化中,哪些可以应用公式 d G =-Sd T + V d p ? ()	
(A) NO ₂ 气体以一定速度膨胀,解离出来的 NO+ $\frac{1}{2}$ O ₂ 总是落后于平衡组成	
(B) SO_3 气体在不解离为 $SO_2+\frac{1}{2}O_2$ 的条件下膨胀	
(C) 等温等压下电解水 (D) 水在-10℃时等温结冰	
6. 2分 在一简单的(单组分,单相,各向同性)封闭体系中,等压只做膨胀功的条件下,吉布斯自能值随压力的升高如何变化? (A) $(\partial G/\partial p)_T > 0$	由)
(B) $(\partial G/\partial p)_T < 0$ (C) $(\partial G/\partial p)_T = 0$ (D) 视具体体系而定	
7. 2 分 263 K, 101.325 kPa 时,冰的化学势比水的化学势: ((A) 高 (B) 低 (C) 相等 (D) 不可比较)
8. 2 分 关于偏摩尔量,下面的叙述中不正确的是: (A) 偏摩尔量的数值可以是正数、负数和零 (B) 溶液中每一种容量性质都有偏摩尔量,而且都不等于其摩尔量 (C) 除偏摩尔吉布斯自由能外,其他偏摩尔量都不等于化学势 (D) 溶液中各组分的偏摩尔量之间符合吉布斯一杜亥姆关系式	
9. 2 分 已知 373 K 时,液体 A 的饱和蒸气压为 10 ⁵ Pa,液体 B 的饱和蒸气压为 5×10 ⁴ Pa,A B 构成理想液体混合物,当 A 在溶液中的物质的量分数为 0.5 时,气相中 B 的物质的量 数为:	
(A) 2/3 (B) 1/6 (C) 2/5 (D) 1/3	

10. 2分

下列表达式中不正确的是:

(A) $(\partial U/\partial V)_S = -p$

(适用于任何物质)

(B) $dS = Cpdln(T/K) - nRdln(p/p^{\ominus})$

(适用于任何物质)

(C) $(\partial S/\partial V)_T = (\partial p/\partial T)_V$

(适用于任何物质)

(D) $(\partial U/\partial p)_T = 0$

(适用于理想气体)

得分

二、计算题 (共 6 题 60 分)

1. (10分)

已知 $CO_2(g)$ 的临界温度、临界压力和临界摩尔体积分别为: Tc=304.3K, $p_c=73.8\times10^5Pa$, $V_{m,c}=0.0957dm^3\ mol^{-1}$,试计算

- (1) CO₂(g)的 van der Waals 常数 a, b 的值;
- (2) 313K 时,在容积为 0.005m³ 的容器内含有 0.1kgCO₂(g),用 van der Waals 方程计算气体的压力;

2. (10分)

将 $1 \text{molO}_2(g)$ 从 298 K, 100 kPa 的始态,绝热可逆压缩到 600 kPa,试求该过程的 W, ΔU , ΔH , ΔS , ΔG 。设 $O_2(g)$ 为理想气体,已知 $O_2(g)$ 的 $C_{p,m}=3.5 \text{R}$, $S_m^{\;\Theta}(O_2,g)=205.14 \text{J} \; \text{K}^{-1} \; \text{mol}^{-1}$ 。

3. (10分)

在 293K 时,氨的水溶液 A 中 NH_3 与 H_2O 的量之比为 1:8.5,溶液 A 上方 NH_3 的分压为 10.64kPa; 氨的水溶液 B 中 NH_3 与 H_2O 的量之比为 1:21,溶液 B 上方 NH_3 的分压为 3.597kPa。试求在相同温度下

- (1)从大量的溶液 A 中转移 $1 \text{molNH}_3(g)$ 到大量的溶液 B 中的 ΔG ;
- (2)将处于标准压力下的 $1 \text{molNH}_3(g)$ 溶于大量的溶液 B 中的 ΔG 。

4. (10分)

请计算 1 mol 苯的过冷液体在 -5°C, p°下凝固的 Δ G 和 Δ S。已知 -5°C 时,固态苯和液态苯的饱和蒸气压分别为 0.0225p°和 0.0264p°; -5°C, p°时,苯的摩尔熔化热 9.860 kJ mol $^{-1}$ 。 (压力变化对过冷液体苯和过冷固体苯产生的 Δ G 忽略不计)

5. (10分)

在 300K 时,将葡萄糖($C_6H_{12}O_6$)溶于水中,得葡萄糖的质量分数为 0.044 的溶液。试求

- (1) 该溶液的渗透压
- (2) 若用葡萄糖不能透过的半透膜,将溶液和纯水隔开,试问在溶液一方需要多高的水柱才能使之平衡。设这时溶液的密度为 $1.015 \times 10^3 {\rm kg \ m}^{-3}$ 。

6. (10分)

在 600 K,100kPa 压力下, 生石膏的脱水反应为

$$CaSO_4 2H_2O(s) = CaSO_4(s) + 2H_2O(g)$$

试计算: 在 600 K,100kPa 压力下该反应进度为 1mol 时的 Δ_r U_m, Δ_r H_m, Δ_r S_m, Δ_r G_m。已知各物质在 298K,100kPa 的热力学数据为:

物质	$\Delta_f H_m^{\theta}/(kJ \cdot mol^{-1})$	$S_m^{ heta}/(J\cdot K^{-1}\cdot mol^{-1})$	$C_{p,m}/(J \cdot mol^{-1} \cdot K^{-1})$
CaSO ₄ 2H ₂ O(s)	-2021.12	193.97	186.20
CaSO ₄ (s)	-1432.68	106.70	99.60
H ₂ O(g)	-241.82	188.83	33.58

得分

三、问答题 (共 2 题 20 分) 1、(10 分) 试证明

$$C_p - C_V = -\left(\frac{\partial p}{\partial T}\right)_V \left[\left(\frac{\partial H}{\partial p}\right)_T - V\right]$$

2、(10分)

稀溶液在凝固点时若析出的是纯溶剂,从化学势角度定性分析稀溶液凝固点下降的原因。

苏州大学 物理化学(一) 课程期中试卷参考答案

一、选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	C	D	C	C	В	A	В	В	В	В

二、计算题

- 1、已知 $CO_2(g)$ 的临界温度、临界压力和临界摩尔体积分别为: Tc=304.3K, $p_c=73.8\times10^5 Pa$, $V_{m,c}=0.0957 dm^3 mol^{-1}$,试计算
- (1) CO₂(g)的 van der Waals 常数 a, b 的值;

a: 0.366Pa m⁶ mol⁻² b: 4.29×10^{-5} m³ mol⁻¹

- (2)313K 时,在容积为 0.005m^3 的容器内含有 $0.1\text{kgCO}_2(g)$,用 van der Waals 方程 计算气体的压力; $1.13 \times 10^6 \text{Pa}$
- 2、将 1molO₂(g)从 298K,100kPa 的始态,绝热可逆压缩到 600kPa,试求该过程的 W, Δ U, Δ H, Δ S, Δ G。设 O₂(g)为理想气体,已知 O₂(g)的 $C_{p,m}$ =3.5R, $S_m^{\Theta}(O_2,g)$ =205.14J K^{-1} mol $^{-1}$ 。

W: 4140.79J, ΔU: 4140.79J, ΔH: 5797.1J,

 ΔS : -0J, ΔG :-35670.89J

- 3、在 293K 时,氨的水溶液 A 中 NH_3 与 H_2 O 的量之比为 1:8.5,溶液 A 上方 NH_3 的分压为 10.64kPa;氨的水溶液 B 中 NH_3 与 H_2 O 的量之比为 1:21,溶液 B 上方 NH_3 的分压为 3.597kPa。试求在相同温度下
- (1)从大量的溶液 A 中转移 $1 \text{molNH}_3(g)$ 到大量的溶液 B 中的 ΔG ; $\underline{-2.64 \text{kJ mol}^{-1}}$
- (2)将处于标准压力下的 $1 \text{molNH}_3(g)$ 溶于大量的溶液 B 中的 ΔG 。-8.13kJ mol^{-1}
- 4、请计算 1 mol 苯的过冷液体在 -5°C, p[©]下凝固的 Δ G 和 Δ S。已知 -5°C 时,固态苯和液态苯的饱和蒸气压分别为 0.0225p[©]和 0.0264p[©]; -5°C, p[©]时,苯的摩尔熔化热 $9.860~{\rm kJ~mol}^{-1}$ 。 (压力变化对过冷液体苯和过冷固体苯产生的 Δ G 忽略不计) $\Delta G = -356.4~{\rm J}, \qquad \qquad \Delta S = -35.44~{\rm J~K}^{-1}$
- 5、在 600 K,100kPa 压力下, 生石膏的脱水反应为

 $CaSO_4 2H_2O(s) \rightarrow CaSO_4(s) + 2H_2O(g)$

试计算:该反应进度为 1mol 时的 ΔU_m , ΔH_m , ΔS_m , ΔG_m 。已知各物质在

298K,100kPa 的热力学数据为:

 $\Delta U_{\underline{m}}:88.95 \text{kJ mol}^{-1}$, $\Delta H_{\underline{m}}:98.93 \text{kJ mol}^{-1}$, $\Delta S_{\underline{m}}:276.79 \text{J mol}^{-1}$, $\Delta G_{\underline{m}}:-67.144 \text{kJ mol}^{-1}$

- 三、问答题
- 1、略
- 2、略