README file for PA2 by Pranav Subramanian

Running the file on EC2 instances involves

- setting up on EC2 instances,
- Running the script
- running with Docker file

Please follow the steps below to setup and run the Python script

Setup on EC2

- 1. Install spark Can run the command sudo wget apache http://archive.apache.org/dist/spark/spark-2.0.0/spark-2.0.0-bin-hadoop2.7.tgz
- 2. Do sudo tar –zxvf spark-2.0.0-bin-hadoop2.7.tgz
- Install Hadoop –
 run the command sudo tar -zxvf hadoop to unzip tar file if needed
- Install PythonRun python 3 get-pip.py
- 5. Edit bashrc

Do Is —a and set HADOOP_HOME to be the location of the Hadoop folder Modify PATH to include Hadoop Home

```
# User specific environment

PATH="$HOME/.local/bin:$HOME/bin:$PATH"

export PATH=$PATH:$HADOOP_HOME/bin/

export HADOOP_HOME=/home/ec2-user/hadoop-2.7.3
```

6. Uploading to cloud (if needed)

For example, I uploaded the file using the command:

Sudo scip —I "instanconnect.pem" mnt/c/pranav/CS643_Cloud_Computing/TraininDataset.csv <u>EC2-user@EC2-3-89-57-96.compute-1.amazonaws.com:~/.</u>

7. Run the python script – you may need to edit lines 3 & 4 for os.environ and sys.path.append to your location for spark folder

Can run python3 PredictionModel.py pathtocsv

8. While running program may see output like this:

```
Setting default log level to "WARN".

To adjust logging level use sc.setloglevel(newLevel). For SparkR, use setLoglevel(newLevel).

DataFrame[Fisked acidity: double, volatile acidity: double, citric acid: double, residual sugar: double, chlorides: double, free sulfur dioxide: double, total sulfur dioxide: double, density: double possible, sulphates: double, alcohol: double, quality: bigint]

rost

|- risked acidity: double (nullable = true)
|- cliric acid: double (nullable = true)
|- public double (nullable = true)
|- sulphates: double (nullable = true)
|- sulphates: double (nullable = true)
|- acidity: long (nullable = true)
|- acidity: long (nullable = true)
```

acturcy votact	te acidity ci	tric acid residua	iz sugar c	hiorides	rree sultur dioxide	total sulfur dioxide	density	pH sulphat	es alcer	ioi duai.	ity features	rawPredictio	1		ty predict
	0.32	0.25	1.8	0.103	13.0		0.9957 3.				5 [5.2,0.32,0.25,1	[-2446.4517654991	[[0.0,0.0	,0.0,2.50.	
5.4	0.835	0.08		0.046	13.0	93.0	0.9924 3.			1.0	7 [5.4,0.835,0.08,1	[-2439.1489983386	[[0.0,0.6	,0.0,1.85.	
5.6	0.5	0.09		0.049	17.0		0.9937 3.			1.0	5 [5.6,0.5,0.09,2.3				
	0.5	8.89		0.049	17.0		0.9937 3.			e.e	5 [5.6,0.5,0.09,2.3				
	0.3	0.48	1.8	0.069	18.0		8.9959 3.			18.6	6 [6.3,0.3,0.48,1.8				
		0.01		0.06	17.0		0.9952 3			8.	6 [6.6,0.5,0.01,1.5				
	0.5	8.84		0.068	6.0		0.9955 3.			1.4	6 6.6,0.5,0.04,2.1				
	0.64	0.1		0.085	18.0		8.9956 3.			1.2	5 [6.8,0.64,0.1,2.1				
6.8	0.67	0.02	1.8	0.05	5.0		8.9962 3.			1.5	5 [6.8,0.67,0.02,1				
	8.4	0.14		0.085	21.0		0.9968 3.			1.7	6 [6.9,0.4,0.14,2.4				
	0.735	0.05	2.0	0.081	13.0	54.0	0.9966 3.			8.0	5 7.0,0.735,0.05,2	[-2448.8032421349	[0.0,0.0	,0.0,0.00.	
	0.39	0.31		0.074	9.0	46.0	8.9962 3.			7.4	6 [7.3,0.39,0.31,2				
	0.58	0.3		0.074	15.0	55.0	0.9968 3.			0.2	5 7.3,0.58,0.3,2.4	[-2449.4146399805	[[0.0,0.6	,0.0,0.00.	
	0.59	0.26		0.07	35.0		8.9981 3.			1.4	5 [7.3,0.59,0.26,7				
	0.52	0.42		0.087	8.0		8.9972 3.			9.5	6 7.5,0.52,0.42,2				
	0.63	0.12		0.111	50.0		0.9983 3.			1.4	5 7.5,0.63,0.12,5				
7.6	0.68	0.02		0.072	9.0	20.0	0.9965 3.				4 [7.6,0.68,0.02,1	[-2448.2706735279	[0.0,0.0	,0.0,1.92.	
	0.69	0.49	1.8	0.115	20.0	112.0	0.9968 3.			1.3	5 7.7,0.69,0.49,1	[-2449.1456412769	[[0.0,0.6	,0.0,8.98.	
	0.935	0.43		0.114	22.0	114.8	8.997 3.				5 7.7,0.935,0.43,2	[-2449.7164795445	[0.0,0.e	,0.0,0.00.	
	8.43		1.9	0.464	22.0	67.8	8.9974 3.			1.4	5 7.8,0.43,0.7,1.9	[-2450.7246608165	[0.0,0.6	,0.0,0.02.	
rawPrediction	prediction	probabili													
.4517654991 .1489983386 .1904513900 .1904513900	7.0 [5.0 [5.0 [0.0,0.0,0.0,2.50. 0.0,0.0,0.0,1.85. 0.0,0.0,0.0,7.61. 0.0,0.0,0.0,7.61. 0.0,0.0,0.0,1.09.													
.3996703902 .0983649147 .3248822971	6.0	0.0,0.0,0.0,7.24. 0.0,0.0,0.0,0.00. 0.0,0.0,0.0,7.88.													

9. Run with Docker

Using the dockerfile can create image by running a command like docker build –t image name .

Can run the docker file by running a command like docker run imagename

Link to Github

https://github.com/GitDeveloperLite/Models

Link to DockerHUb

https://hub.docker.com/repository/docker/ps789/models

Thank you for taking the time to read the README file for PA2!