(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 August 2002 (01.08.2002)

PCT

(10) International Publication Number WO 02/059294 A1

(51) International Patent Classification⁷: C12N 15/09, 15/63

5/09,

(21) International Application Number: PCT/AU02/00073

(22) International Filing Date: 24 January 2002 (24.01.2002)

English

(26) Publication Language:

(25) Filing Language:

English

US

(30) Priority Data:

60/264,067 26 January 2001 (26.01.2001) 60/333,743 29 November 2001 (29.11.2001)

(71) Applicant (for all designated States except US): COM-MONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH O RGANISATION [AU/AU]; Limestone Avenue, Campbell, Australian Capital Territory 2601 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WESLEY, Susan [IN/AU]; 18 Pambula Street, Kaleen, Australian Capital Territory 2617 (AU). WATERHOUSE, Peter [AU/AU]; 5 Banjine Street, O'Connor, Australian Capital Territory 2602 (AU). HELLIWELL, Christopher [AU/AU]; 25A

Bingham Circuit, Kaleen, Australian Capital Territory 2617 (AU).

- (74) Agents: OLIVE, Mark, R. et al.; FB RICE & CO, 139 Rathdowne Street, Carlton, Victoria 3053 (AU).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND MEANS FOR PRODUCING EFFICIENT SILENCING CONSTRUCT USING RECOMBINA-TIONAL CLONING

(14)

AttB2

(14)

(57) Abstract: Methods and means are provided for producing chimeric nucleic acid constructs capable of producing dsRNA for silencing target nucleic acid sequences of interest using recombinational cloning.

Methods and means for producing efficient silencing construct using recombinational cloning.

Field of the invention.

This invention relates to efficient methods and means for producing chimeric nucleic acid constructs capable of producing dsRNA useful for silencing target nucleic acid sequences of interest. The efficiency of the disclosed methods and means further allows high throughput analysis methods to determine the function of isolated nucleic acids, such as ESTs, without a known function and may further be put to use to isolate particular genes or nucleotide sequences from a preselected group of genes.

General

This specification contains nucleotide and amino acid sequence information prepared using PatentIn Version 3.1, presented herein after the claims. Each nucleotide

15 sequence is identified in the sequence listing by the numeric indicator <210>
followed by the sequence identifier (e.g. <210>1, <210>2, <210>3, etc). The length and type of sequence (DNA, protein (PRT), etc), and source organism for each nucleotide sequence, are indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide sequences referred to in the specification are defined by the term "SEQ ID NO:", followed by the sequence identifier (eg. SEQ ID NO: 1 refers to the sequence in the sequence listing designated as <400>1).

The designation of nucleotide residues referred to herein are those recommended by
the IUPAC-IUB Biochemical Nomenclature Commission, wherein A represents
Adenine, C represents Cytosine, G represents Guanine, T represents thymine, Y
represents a pyrimidine residue, R represents a purine residue, M represents Adenine
or Cytosine, K represents Guanine or Thymine, S represents Guanine or Cytosine, W
represents Adenine or Thymine, H represents a nucleotide other than Guanine, B
represents a nucleotide other than Adenine, V represents a nucleotide other than
Thymine, D represents a nucleotide other than Cytosine and N represents any
nucleotide residue.

As used herein the term "derived from" shall be taken to indicate that a specified integer may be obtained from a particular source albeit not necessarily directly from that source.

2

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated step or element or integer or group of steps or elements or integers but not the exclusion of any other step or element or integer or group of elements or integers.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations or any two or more of said steps or features.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended for the purposes of exemplification only.

Functionally-equivalent products, compositions and methods are clearly within the scope of the invention, as described herein.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that such prior art forms part of the common general knowledge in Australia.

Background art.

10

Increasingly, the nucleotide sequence of whole genomes of organisms, including

Arabidopsis thaliana, has been determined and as these data become available they

provide a wealth of unmined information. The ultimate goal of these genome projects
is to identify the biological function of every gene in the genome.

Attribution of a function to a nucleic acid with a particular nucleotide sequence can be achieved in a variety of ways. Some of the genes have been characterized directly using the appropriate assays. Others have been attributed with a tentative function through homology with (parts of) genes having a known function in other organisms.

- Loss-of-function mutants, obtained e.g. by tagged insertional mutagenesis have also been very informative about the role of some of these unknown genes (AzpiroLeehan and Feldmann 1997; Martienssen 1998) particularly in the large scale analysis of the yeast genome (Ross-MacDonald et al., 1999).
- Structural mutants resulting in a loss-of-function may also be mimicked by interfering with the expression of a nucleic acid of interest at the transcriptional or post-transcriptional level. Silencing of genes, particularly plant genes using anti-sense or co-suppression constructs to identify gene function, especially for a larger number of targets, is however hampered by the relatively low proportion of silenced individuals obtained, particularly those wherein the silencing level is almost complete.

Recent work has demonstrated that the silencing efficiency could be greatly improved both on quantitative and qualitative level using chimeric constructs encoding RNA capable of forming a double stranded RNA by basepairing between the antisense and sense RNA nucleotide sequences respectively complementary and homologous to the target sequences.

Fire et al., 1998 describe specific genetic interference by experimental introduction of double-stranded RNA in *Caenorhabditis elegans*. The importance of these findings for functional genomics has been discussed (Wagner and Sun, 1998).

WO 99/32619 provides a process of introducing an RNA into a living cell to inhibit gene expression of a target gene in that cell. The process may be practiced ex vivo or in vivo. The RNA has a region with double-stranded structure. Inhibition is sequence-specific in that the nucleotide sequences of the duplex region of the RNA and or a portion of the target gene are identical.

WO 02/059294

PCT/AU02/00073

4

Waterhouse et al. 1998 describe that virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and anti-sense RNA. The sense and antisense RNA may be located in one transcript that has self-complementarity.

5 Hamilton et al. 1998 describes that a transgene with repeated DNA, i.e. inverted copies of its 5' untranslated region, causes high frequency, post-transcriptional suppression of ACC-oxidase expression in tomato.

WO 98/53083 describes constructs and methods for enhancing the inhibition of a target gene within an organism which involve inserting into the gene silencing vector an inverted repeat sequence of all or part of a polynucleotide region within the vector.

WO 99/53050 provides methods and means for reducing the phenotypic expression of a nucleic acid of interest in eukaryotic cells, particularly in plant cells, by introducing chimeric genes encoding sense and antisense RNA molecules directed towards the target nucleic acid, which are capable of forming a double stranded RNA region by base-pairing between the regions with the sense and antisense nucleotide sequence or by introducing the RNA molecules themselves. Preferably, the RNA molecules comprise simultaneously both sense and antisense nucleotide sequences.

20

WO 99/49029 relates generally to a method of modifying gene expression and to synthetic genes for modifying endogenous gene expression in a cell, tissue or organ of a transgenic organism, in particular to a transgenic animal of plant. Synthetic genes and genetic constructs, capable of forming a dsRNA which are capable of repressing, delaying or otherwise reducing the expression of an endogenous gene or a target gene in an organism when introduced thereto are also provided.

WO 99/61631 relates to methods to alter the expression of a target gene in a plant using sense and antisense RNA fragments of the gene. The sense and antisense RNA fragments are capable of pairing and forming a double-stranded RNA molecule, thereby altering the expression of the gene. The present invention also relates to plants, their progeny and seeds thereof obtained using these methods.

WO 00/01846 provides a method of identifying DNA responsible for conferring a particular phenotype in a cell which method comprises a) constructing a cDNA or genomic library of the DNA of the cell in a suitable vector in an orientation relative to (a) promoter(s) capable of initiating transcription of the cDNA or DNA to double 5 stranded (ds) RNA upon binding of an appropriate transcription factor to the promoter(s); b) introducing the library into one or more of cells comprising the transcription factor, and c) identifying and isolating a particular phenotype of a cell comprising the library and identifying the DNA or cDNA fragment from the library responsible for conferring the phenotype. Using this technique, it is also possible to 10 assign function to a known DNA sequence by a) identifying homologues of the DNA sequence in a cell, b) isolating the relevant DNA homologus(s) or a fragment thereof from the cell, c) cloning the homologue or fragment thereof into an appropriate vector in an orientation relative to a suitable promoter capable of initiating transcription of dsRNA from said DNA homologue or fragment upon binding of an appropriate transcription factor to the promoter and d) introducing the vector into the cell from step a) comprising the transcription factor.

WO 00/44914 also describes composition and methods for in vivo and in vitro attenuation of gene expression using double stranded RNA, particularly in zebrafish.

20

WO 00/49035 discloses a method for silencing the expression of an endogenous gene in a cell, the method involving overexpressing in the cell a nucleic acid molecule of the endogenous gene and an antisense molecule including a nucleic acid molecule complementary to the nucleic acid molecule of the endogenous gene, wherein the overexpression of the nucleic acid molecule of the endogenous gene and the antisense molecule in the cell silences the expression of the endogenous gene.

Smith et al., 2000 as well as WO 99/53050 described that intron containing dsRNA further increased the efficiency of silencing.

30

However, the prior art has not solved the problems associated with the efficient conversion of any nucleotide sequence of interest into a chimeric construct capable of

producing a dsRNA in eukaryotic cells, particularly in plant cells, and preferably in a way amenable to the processing of large number of nucleotide sequences.

These and other problems have been solved as described hereinafter in the different embodiments and claims.

Summary of the invention.

It is an object of the invention to provide vectors comprising the following operably 10 linked DNA fragments a) an origin of replication allowing replication in microorganisms (1), preferably bacteria; particularly Escherichia coli; b) a selectable marker region (2) capable of being expressed in microorganisms, preferably bacteria; and c) a chimeric DNA construct comprising in sequence (i) a promoter or promoter region (3) capable of being recognized by RNA polymerases of a eukaryotic cell, preferably a plant-expressible promoter; (ii) a first recombination site (4), a second recombination site (5), a third recombination site (6) and a fourth recombination site (7); and (iii) a 3' transcription terminating and polyadenylation region (8) functional in the eukaryotic cell; wherein the first recombination site (4) and the fourth recombination site (7) are capable of reacting with a same recombination site, 20 preferably are identical, and the second recombination site (5) and the third recombination site (6), are capable of reacting with a same recombination site, preferably are identical; and wherein the first recombination site (4) and the second recombination site (5) do not recombine with each other or with a same recombination site or the third recombination site (6) and the fourth recombination 25 site (7) do not recombine with each other or with a same recombination site. Optionally the vector may further include additional elements such as: a second selectable marker gene (9) between the first (4) and second recombination site (5) and/or a third selectable marker gene (10) between the third (6) and fourth recombination site (7) and/or a region flanked by intron processing signals (11), 30 preferably an intron, functional in the eukaryotic cell, located between the second recombination site (5) and the third recombination site (6) and/or a fourth selectable marker gene (19), located between the second (5) and third recombination site (6) and/or left and right border T-DNA sequences flanking the chimeric DNA construct

plant, cells, preferably located between the left and the right T-DNA border sequences and/or an origin of replication capable of functioning in Agrobacterium spp. Selectable marker genes may be selected from the group consisting of an antibiotic resistance gene, a tRNA gene, an auxotrophic marker, a toxic gene, a phenotypic marker, an antisense oligonucleotide; a restriction endonuclease; a restriction endonuclease cleavage site, an enzyme cleavage site, a protein binding site, an a sequence complementary PCR primer. Preferably the first (4) and fourth recombination site (7) are attR1 comprising the nucleotide sequence of SEQ ID No 4 and the second (5) and third (6) recombination site are attR2 comprising the nucleotide sequence of SEQ ID No 5 or the first (4) and fourth recombination site (7) are attP1 comprising the nucleotide sequence of SEQ ID No 10 and the second (5) and third (6) recombination site are attP2 comprising the nucleotide sequence of SEQ ID No 11.

It is another objective of the invention to provide a kit comprising an acceptor vector according to invention, preferably further comprising at least one recombination protein capable of recombining a DNA segment comprising at least one of the recombination sites.

It is yet another objective of the invention to provide a method for making a chimeric 20 DNA construct capable of expressing a dsRNA in a eukaryotic cell comprising the steps of

a) combining in vitro:

25

30

- i) an acceptor vector as herein before described;
- ii) an insert DNA, preferably a lineair or circular insert DNA, comprising a DNA segment of interest (12) flanked by
 - (a) a fifth recombination site (13) which is capable of recombining with the first (4) or fourth recombination site (7) on the vector; and
 - (b) a sixth recombination site (14) which is capable of recombining with the second (5) or third recombination site (6) on the vector;
 - iii) at least one site specific recombination protein capable of recombining the first
 - (4) or fourth (7) and the fifth recombination site (13) and the second (5) or third
 - (6) and the sixth recombination site (14);

WO 02/059294 PCT/AU02/00073

- b) allowing recombination to occur in the presence of at least one recombination protein, preferably selected from Int and IHF and (ii) Int, Xis, and IHF, so as to produce a reaction mixture comprising product DNA molecules, the product DNA molecule comprising in sequence:
- i) the promoter or promoter region (3) capable of being recognized by RNA polymerases of the eukaryotic cell;
 - ii) a recombination site (15) which is the recombination product of the first (4) and the fifth recombination site (13);
 - iii) the DNA fragment of interest (12);
- iv) a recombination site (16) which is the recombination product of the second (4) and the sixth recombination site (14);
 - v) a recombination site (17) which is the recombination product of the third (5) and the sixth recombination site (14);
 - vi) the DNA fragment of interest in opposite orientation (12);
 - vii) a recombination site (18) which is the recombination product of the fourth (7) and the fifth recombination site (13); and
 - viii) the 3' transcription terminating and polyadenylation region (8) functional in the eukaryotic cell;
 - c) selecting the product DNA molecules, preferably in vivo.

20

15

The method allows that multiple insert DNAs comprising different DNA fragments of interest are processed simultaneously.

The invention also provides a method for preparing a eukaryotic non-human organism, preferably a plant, wherein the expression of a target nucleic acid of interest is reduced or inhibited, the method comprising:

- a) preparing a chimeric DNA construct capable of expressing a dsRNA in cells of the eukaryotic non-human organism according to methods of the invention;
- b) introducing the chimeric DNA construct in cells of the eukaryotic nonhuman organism; and
 - c) isolating the transgenic eukaryotic organism

PCT/AU02/00073

It is also an objective of the invention to provide a method for isolating a nucleic acid molecule involved in determining a particular trait

9

- preparing a library of chimeric DNA constructs capable of expressing a a) dsRNA in cells of the eukaryotic non-human organism according to any one of the methods of the invention;
- introducing individual representatives of the library of chimeric DNA b) constructs in cells of the eukaryotic non-human organism;
- isolating a eukaryotic organism exhibiting the particular trait; and c) isolating the nucleic acid molecule.

10 The invention also provides a eukaryotic non-human organism, preferably a plant comprising a chimeric DNA construct obtainable through the methods of the

15 Brief description of the figures.

invention.

Figure 1. Schematic representation of vectors and method used in a preferred embodiment of the invention.

Figure 1A: A nucleic acid of interest (12) is amplified by PCR using primers 20 comprising two different recombination sites (13, 14) which cannot react with each other or with the same other recombination site. This results in "insert DNA" wherein the nucleic acid of interest (12) is flanked by two different recombination sites (13, 14).

25 Figure 1B. Using at least one recombination protein, the insert DNA is allowed to recombine with the acceptor vector between the recombination sites, whereby the first (4) and fourth recombination site (7) react with one of the recombination sites (13) flanking the PCR amplified DNA of interest (12) and the second (5) and third (6) recombination site on the acceptor vector recombine with the other recombination 30 site (14) flanking the DNA of interest (12). The desired product DNA can be isolated by selecting for loss of the selectable marker genes (9) and (10) located between respectively the first (4) and second (5) recombination sites and the third (6) and fourth (7) recombination sites. Optionally, an additional selectable marker gene may be included between the second (5) and third (6) recombination site to allow selection for the presence of this selectable marker gene and consequently for the optional intron sequence, which is flanked by functional intron processing signal sequences (11). The acceptor vector, as well as the product vector further comprises a origin of replication (Ori; (1)) and a selectable marker gene (2) to allow selection for the presence of the plasmid.

This result in a chimeric DNA construct with the desired configuration comprising a eukaryotic promoter region (3); a recombination site (15) produced by the

10 recombination between recombination sites (4) and (13); a first copy of the DNA of interest (12); a recombination site (16) produced by the recombination between recombination sites (5) and (14); optionally an intron sequence flanked by intron processing signals (11); a recombination site (17) produced by the recombination between recombination sites (6) and (14); a second copy of the DNA of interest (12) in opposite orientation to the first copy of the DNA of interest; a recombination site (18) produced by the recombination between recombination sites (7) and (13); a eukaryotic transcription terminator and polyadenylation signal (8).

Figure 2A: A nucleic acid of interest (12) is amplified by PCR using primers
comprising two different recombination sites which upon recombination with the
recombination sites on an intermediate vector (Figure 2B) will yield recombination
sites compatible with the first (4) and fourth (5) and with the second (6) and third (7)
recombination site on the acceptor vector respectively.

Figure 2B: The insert DNA obtained in Figure 2A is allowed to recombine with the intermediate vector in the presence of at least one recombination protein to obtain an intermediate DNA wherein the DNA of interest (12) is flanked by two different recombination sites (13, 14) and which further comprises an origin of replication (1) and a selectable marker gene (2).

30

Figure 2C: The intermediate DNA is then allowed to recombine with the acceptor vector using at least one second recombination protein (basically as described for Figure 1B).

Figure 3: Schematic representation of the acceptor vector "pHELLSGATE"

Figure 4: Schematic representation of the acceptor vectors "pHELLSGATE 8" 5 "pHELLSGATE 11" and "pHELLSGATE 12".

Detailed description of preferred embodiments.

The current invention is based on the unexpected finding by the inventors that recombinational cloning was an efficient one-step method to convert a nucleic acid fragment of interest into a chimeric DNA construct capable of producing a dsRNA transcript comprising a sense and antisense nucleotide sequence capable of being expressed in eukaryotic cells. The dsRNA molecules are efficient effectors of genesilencing. These methods improves the efficiency problems previously encountered to produce chimeric DNAs with long inverted repeats.

15

25

30

Thus, in a first embodiment, the invention provides a method for making a chimeric DNA construct or chimeric gene capable of expressing an RNA transcript in a eukaryotic cell, the RNA being capable of internal basepairing between a stretch of nucleotides corresponding to a nucleic acid of interest and its complement (i.e. the stretch of nucleotides in inverted orientation) located elsewhere in the transcript (and thus forming a hairpin RNA) comprising the following steps:

- Providing an "acceptor vector" comprising the following operably linked DNA fragments:
 - a) an origin of replication allowing replication in a host cell (1),
- b) a selectable marker region (2) capable of being expressed in the host cell; and
 - c) a chimeric DNA construct comprising in sequence:
 - i) a promoter or promoter region (3) capable of being recognized by RNA polymerases of a eukaryotic cell;
 - ii) a first recombination site (4), a second recombination site (5), a third recombination site (6) and a fourth recombination site (7) whereby
 - (1) the first (4) and fourth recombination site (7) are capable of reacting with the same other recombination site and preferably are identical to each other;

- (2) the second (5) and third (6) recombination site are also capable of reacting with the same other recombination site and preferably are identical to each other
- (3) the first (4) and second (5) recombination site do not recombine with each other or with the same other recombination site; and
- (4) the third (6) and fourth (7) recombination site do not recombine with each other or with the same other recombination site; and
- iii) a 3' transcription terminating and polyadenylation region (8) functional in a eukaryotic cell.

10

15

25

5

- 2. Providing an "insert DNA" comprising the DNA segment of interest (12) flanked by
 - a) a fifth recombination site (13) which is capable of recombining with the first(4) or fourth (7) recombination site but preferably not with the second (5) or third (6) recombination site;
- b) a sixth recombination site (14) which is capable of recombining with the second
 (5) or third (6) recombination site but preferably not with the first (4) or fourth
 (7) recombination site.
- 3. Combining in vitro the insert DNA and the acceptor vector in the presence of at
 least one specific recombination protein and allowing the recombination to occur
 to produce a reaction mixture comprising inter alia "product DNA" molecules
 which comprise in sequence
 - i) the promoter or promoter region (3) capable of being recognized by RNA polymerases of a eukaryotic cell;
 - ii) a recombination site (15) which is the recombination product of the first (4) and fifth recombination site (13);
 - iii) a first copy of the DNA fragment of interest (12);
 - iv) a recombination site (16) which is the recombination product of the second(4) and the sixth recombination site (14);
- v) a recombination site (17) which is the recombination product of the third (5) and the sixth recombination site (14);
 - vi) a second copy of the DNA fragment of interest in opposite orientation (12) with regard to the first copy;

WO 02/059294 PCT/AU02/00073

vii) a recombination site (18) which is the recombination product of the fourth (7) and the fifth recombination site (13); and

13

viii) a 3' transcription terminating and polyadenylation region (8) functional in a eukaryotic cell;

5

4. Selecting the product DNA molecules.

This method is schematically outlined in Figure 1, with non-limiting examples of recombination sites and selectable markers.

10

As used herein, a "host cell" is any prokaryotic or eukaryotic organism that can be a recipient for the acceptor vector or the product DNA. Conveniently, the host cell will be a *Escherichia coli* strain commonly used in recombinant DNA methods.

A "recombination protein" is used herein to collectively refer to site specific recombinases and associated proteins and/or co-factors. Site specific recombinases are enzymes that are present in some viruses and bacteria and have been characterized to have both endonuclease and ligase properties. These recombinases (along with associated proteins in some cases) recognize specific sequences of bases in DNA and exchange the DNA segments flanking those segments. Various recombination proteins are described in the art(see WO 96/40724 herein incorporated by reference in its entirety, at least on page 22 to 26).

Examples of such recombinases include Cre from bacteriophage P1 and Integrase from bacteriophage lambda.

Cre is a protein from bacteriophage P1 (Abremski and Hoess, 1984) which catalyzes the exchange between 34 bp DNA sequences called *lox*P sites (see Hoess et al., 1986. Cre is available commercially (Novagen, Catalog 69247-1).

30

Integrase (Int) is a protein from bacteriophage lambda which mediates the integration of the lambda genome into the *E. coli* chromosome. The bacteriophage lambda Int recombinational proteins promote irreversible recombination between its substrate *att*

sites as part of the formation or induction of a lysogenic state. Reversibility of the recombination reactions results from two independent pathways for integrative or excisive recombination. Cooperative and competitive interactions involving four proteins (Int, Xis, IHF and FIS) determine the direction of recombination. Integrative recombination involves the Int and IHF proteins and attP (240bp) and attB (25b) recombination sites. Recombination results in the formation of two new sites: attL and attR. A commercial preparation comprising Int and IHF proteins is commercially available (BP clonaseTM; Life Technologies). Excisive recombination requires Int, IHF, and Xis and sites attL and attR to generate attP and attB. A commercial preparation comprising Int, IHF and Xis proteins is commercially available (LR clonaseTM; Life Technologies).

A "recombination site" as used herein refers to particular DNA sequences, which a recombinase and possibly associated proteins recognizes and binds. The 15 recombination site recognized by Cre recombinase is loxP which is a 34 base pair sequence comprised of two 13 base pair inverted repeats (serving as recombinase binding sites) flanking an 8 base pair core sequence. The recombination sites attB, attP, attL and attR are recognized by lambda integrase. AttB is an approximately 25 base pair sequence containing two 9 base pair core-type Int binding sites and a 7 base 20 pair overlap region. AttP is an approximately 240 base pair sequence containing coretype Int binding sites and arm-type Int binding sites as well as sites for auxiliary proteins IHF, FIS and Xis (Landy 1993). Each of the att sites contains a 15 bp core sequence with individual sequence elements of functional significance lying within, outside and across the boundaries of this common core (Landy, 1989) Efficient 25 recombination between the various att sites requires that the sequence of the central common region is substantially identical between the recombining partners. The exact sequence however is modifiable as disclosed in WO 96/40724 and the variant recombination sites selected from

- i) attB1: AGCCTGCTTTTTTGTACAAACTTGT (SEQ ID No 1);
- ii) attB2: AGCCTGCTTTCTTGTACAAACTTGT (SEQ ID No 2);
- iii) attB3: ACCCAGCTTTCTTGTACAAACTTGT (SEQ ID No 3);
- iv) attR1: GTTCAGCTTTTTTGTACAAACTTGT (SEQ ID No 4);
- v) attR2: GTTCAGCTTTCTTGTACAAACTTGT (SEQ ID No 5);

WO 02/059294 PCT/AU02/00073

- vi) attR3: GTTCAGCTTTCTTGTACAAAGTTGG (SEQ ID No 6);
- vii) attL1: AGCCTGCTTTTTTGTACAAAGTTGG (SEQ ID No 7);
- viii) attL2: AGCCTGCTTTCTTGTACAAAGTTGG (SEQ ID No 8);
- ix) attL3: ACCCAGCTTTCTTGTACAAAGTTGG (SEQ ID No 9);

5

- x) attP1: GTTCAGCTTTTTTGTACAAAGTTGG (SEQ ID No 10); or
- xi) attP2,P3: GTTCAGCTTTCTTGTACAAAGTTGG (SEQ ID No 11)

allow more flexibility in the choice of suitable pairs or recombination sites which are capable to recombine (as indicated by their index number).

10 It will be clear to the skilled artisan that a correspondence is required between the recombination site(s) used and the recombination proteins used.

In one embodiment the following combinations of recombination sites for the acceptor vector are present in the acceptor vector:

- the first (4) and fourth (7) recombination sites are identical and comprise attP1 comprising the nucleotide sequence of SEQ ID No 10 and the second (5) and third (6) recombination site are also identical and comprise attP2 comprising the nucleotide sequence of SEQ ID No 11; or
- the first (4) and fourth (7) recombination sites are identical and comprise attR1 comprising the nucleotide sequence of SEQ ID No 4 and the second (5) and third (6) recombination site are also identical and comprise attR2 comprising the nucleotide sequence of SEQ ID No 5; and

the following combinations of recombination sites for the insert DNA are used:

- the fifth (13) recombination site comprises attB1 comprising the nucleotide

 25 sequence of SEQ ID No 1 and the sixth (14) recombination site comprises attB2

 comprising the nucleotide sequence of SEQ ID No 2, the combination being suitable

 for recombination with the first acceptor vector mentioned above; or
- the fifth (13) recombination site comprises attL1 comprising the nucleotide sequence of SEQ ID No 7 and the sixth (14) recombination site comprises attL2
 comprising the nucleotide sequence of SEQ ID No 8, the combination being suitable for recombination with the second acceptor vector mentioned above.

It has been unexpectedly found that product DNA molecules (resulting from recombination between the above mentioned second acceptor vector with attR recombination sites (such as pHELLSGATE 8) and insert DNA flanked by attL recombination sites) wherein the gene inserts in both orientations are flanked by attB recombination sites are more effective in silencing of the target gene(both quantitatively and qualitatively) than product DNA molecules (resulting from recombination between the above mentioned first acceptor vector with attP recombination sites (such as pHELLSGATE or pHELLSGATE 4) and insert DNA flanked by attB recombination sites) wherein the gene inserts in both orientations are flanked by attL recombination sites. Although not intending to limit the invention to a particular mode of action it is thought that the greater length of the attL sites and potential secondary structures therein may act to inhibit transcription yielding the required dsRNA to a certain extent. However, acceptor vectors such as the above mentioned first acceptor vectors with attP sites may be used when target gene silencing to a lesser extent would be useful or required.

The dsRNA obtained by the chimeric DNA construct made according to the invention may be used, to silence a nucleic acid of interest, i.e. reduce its phenotypic expression, in a eukaryotic organism, particularly a plant, either directly or by transcription of the chimeric DNA construct in the cells of the eukaryotic organism. When this is the case, the following considerations may apply.

The length of the nucleic acid of interest (12) may vary from about 10 nucleotides (nt) up to a length equaling the length (in nucleotides) of the target nucleic acid whose phenotypic expression is to be reduced. Preferably the total length of the sense nucleotide sequence is at least 10 nt, or at least 19 nt or at least 21 nt or at least 25 nt, or at least about 50 nt, or at least about 100 nt, or at least about 150 nt, or at least about 200 nt, or at least about 500 nt. It is expected that there is no upper limit to the total length of the sense nucleotide sequence, other than the total length of the target nucleic acid. However for practical reason (such as e.g. stability of the chimeric genes) it is expected that the length of the sense nucleotide sequence should not exceed 5000 nt, particularly should not exceed 2500 nt and could be limited to about 1000 nt.

It will be appreciated that the longer the total length of the nucleic acid of interest (12), the less stringent the requirements for sequence identity between the nucleic acid of interest and the corresponding sequence in the target gene. Preferably, the nucleic acid of interest should have a sequence identity of at least about 75% with the corresponding target sequence, particularly at least about 80%, more particularly at least about 85%, quite particularly about 90%, especially about 95%, more especially about 100%, quite especially be identical to the corresponding part of the target nucleic acid. However, it is preferred that the nucleic acid of interest always includes a sequence of about 10 consecutive nucleotides, particularly about 25 nt, more particularly about 50 nt, especially about 100 nt, quite especially about 150 nt with 100% sequence identity to the corresponding part of the target nucleic acid. Preferably, for calculating the sequence identity and designing the corresponding sense sequence, the number of gaps should be minimized, particularly for the shorter sense sequences.

15

For the purpose of this invention, the "sequence identity" of two related nucleotide or amino acid sequences, expressed as a percentage, refers to the number of positions in the two optimally aligned sequences which have identical residues (x100) divided by the number of positions compared. A gap, i.e. a position in an alignment where a 20 residue is present in one sequence but not in the other is regarded as a position with non-identical residues. The alignment of the two sequences is performed by the Needleman and Wunsch algorithm (Needleman and Wunsch 1970) The computerassisted sequence alignment above, can be conveniently performed using standard software program such as GAP which is part of the Wisconsin Package Version 10.1 25 (Genetics Computer Group, Madision, Wisconsin, USA) using the default scoring matrix with a gap creation penalty of 50 and a gap extension penalty of 3. Sequences are indicated as "essentially similar" when such sequence have a sequence identity of at least about 75%, particularly at least about 80 %, more particularly at least about 85%, quite particularly about 90%, especially about 95%, more especially about 30 100%, quite especially are identical. It is clear than when RNA sequences are the to be essentially similar or have a certain degree of sequence identity with DNA sequences, thymine (T) in the DNA sequence is considered equal to uracil (U) in the RNA sequence.

The "insert DNA" may conveniently be provided using DNA amplification procedures, such as PCR, of the nucleic acid of interest, using as primers oligonucleotide sequences incorporating appropriate recombination sites as well as oligonucleotide sequences appropriate for the amplification of the nucleic acid of interest. However, alternative methods are available in the art to provide the nucleic acid of interest with the flanking recombination sites, including but not limited to covalently linking oligonucleotides or nucleic acid fragments comprising such recombination sites to the nucleic acid(s) of interest using ligase(s).

10

30

The providing of the appropriate flanking recombination sites to the nucleic acid may also proceed in several steps. E.g. in a first step the flanking sites provided to the nucleic acid of interest may be such that upon recombination with the recombination sites in an intermediate vector new recombination sites are created flanking the nucleic acid of interest, now compatible for recombination with the acceptor vector. This scheme is outlined in Figure 2, with non-limiting examples of recombination sites and selectable markers. It goes without saying that the insert DNA may be in a circular form or in a linear form.

- As used herein, an "origin of replication" is a DNA fragment which allows replication of the acceptor vector in microorganisms, preferably bacteria, particularly *E. coli* strains, and ensures that upon multiplication of the microorganism, the daughter cells receive copies of the acceptor vector.
- 25 "Selectable marker (gene)" is used herein to indicate a DNA segment which allows to select or screen for the presence or absence of that DNA segment under suitable conditions. Selectable markers include but are not limited to
 - (1) DNA segments that encode products which provide resistance against otherwise toxic compounds (e.g. antibiotic resistance genes, herbicide resistance genes)
 - (2) DNA segments encoding products which are otherwise lacking in the recipient cell (e.g. tRNA genes, auxotrophic markers)

PCT/AU02/00073

- (3) DNA segments encoding products which suppress the activity of a gene product;
- (4) DNA segments encoding products which can readily be identified (e.g. β-galactosidase, green fluorescent protein (GFP), β-glucuronidase (GUS));
- (5) DNA segments that bind products which are otherwise detrimental to cell survival and/or function;
- (6) DNA segments that are capable of inhibiting the activity of any of the DNA segments described in Nos 1 to 5 (e.g. antisense oligonucleotides);
- (7) DNA segments that bind products that modify a substrate (e.g. restriction endonuclease);
- (8) DNA segments that can be used to isolate a desired molecule (e.g. specific protein binding sites);
- (9) DNA segments that encode a specific nucleotide sequence which can be otherwise non-functional (e.g. for PCR amplification of subpopulations of molecules;
- (10) DNA segments, which when absent, directly or indirectly confer sensitivity to particular compound(s);
- (11) DNA segments, which when absent, directly or indirectly confer resistance to particular compound(s);

20

5

10

15

Preferred first selectable markers (2) are antibiotic resistance genes. A large number of antibiotic resistance genes, particularly which can be used in bacteria, are available in the art and include but are not limited to aminoglycoside phosphotransferase I and II, chloramphenicol acetyltransferase, beta-lactamase, aminoglycoside

25 adenosyltransferase.

Preferred second selectable marker (9) and third selectable markers (10) are selectable markers allowing a positive selection when absent or deleted after recombination (i.e. in the product DNA) such as but not limited to ccdB gene the product of which interferes with *E. coli* DNA gyrase and thereby inhibits growth of most *E. coli* strains. Preferably, the second and third marker are identical.

In one embodiment of the invention, the acceptor comprises a fourth selectable marker (19) between the second (5) and third (6) recombination site, preferably a marker allowing positive selection for the presence thereof, such as a antibiotic resistance gene, e.g. chloramphenicol resistance gene. Preferably, the fourth selectable marker should be different from first selectable marker and different from the second and third selectable marker. The presence of a fourth selectable marker allows to select or screen for the retention of the DNA region between the second (5) and third (6) recombination site in the product DNA, thereby increasing the efficiency with which the desired product DNAs having the nucleic acid of interest cloned in inverted repeat and operably linked to eukaryotic expression signals may be obtained. However, it has been found that with most of the acceptor vectors tested, the presence of a selectable marker is not required and has little influence on the ratio of expected and desired product DNA molecules (which usually exceeds about 90% of obtained product DNA molecules) to undesired product DNA molecules.

15

It goes without saying that a person skilled in the art has a number of techniques available for recognizing the expected and desired product DNA molecules, such as but not limited to restriction enzyme digests or even determining the nucleotide sequence of the recombination product.

20

In another embodiment of the invention, the acceptor vector further comprises a pair of intron processing signals (11) or an intron sequence functional in the eukaryotic cell, preferably located between the second (5) and third (6) recombination site.

However, the pair of intron processing signals or the intron may also be located elsewhere in the chimeric construct between the promoter or promoter region (3) and the terminator region (8). As indicated in the background art, this will improve the efficiency with which the chimeric DNA construct encoding the dsRNA will be capable of reducing the phenotypic expression of the target gene in the eukaryotic cell. A particularly preferred intron functional in cells of plants is the pdk intron (Flaveria trinervia pyruvate orthophosphate dikinase intron 2; see WO99/53050 incorporated by reference). The fourth selectable marker (19) may be located between the intron processing signals or within the intron (if these are located between the

WO 02/059294 PCT/AU02/00073

second and third recombination site), but may also be located adjacent to the intron processing signals or the intron.

21

A person skilled in the art will recognize that the product DNA molecules resulting
from a recombination with an acceptor vector as herein described which comprise a
region between the second (5) and third (6) recombination will fall into two classes
which can be recognized by virtue of the orientation of that intervening region. In the
embodiments wherein the acceptor vector also comprises an intron, the different
orientation may necessitate an additional step of identifying the correct orientation.

To avoid this additional step, the acceptor vector may comprise an intron which can
be spliced out independent of its orientation (such as present in pHELLSGATE 11) or
the acceptor vector may comprise an spliceable intron in both orientations (such as
present in pHELLSGATE 12).

As used herein, the term "promoter" denotes any DNA which is recognized and bound (directly or indirectly) by a DNA-dependent RNA-polymerase during initiation of transcription. A promoter includes the transcription initiation site, and binding sites for transcription initiation factors and RNA polymerase, and can comprise various other sites (e.g., enhancers), at which gene expression regulatory proteins may bind.

20

The term "regulatory region", as used herein, means any DNA, that is involved in driving transcription and controlling (i.e., regulating) the timing and level of transcription of a given DNA sequence, such as a DNA coding for a protein or polypeptide. For example, a 5' regulatory region (or "promoter region") is a DNA sequence located upstream (i.e., 5') of a coding sequence and which comprises the promoter and the 5'-untranslated leader sequence. A 3' regulatory region is a DNA sequence located downstream (i.e., 3') of the coding sequence and which comprises suitable transcription termination (and/or regulation) signals, including one or more polyadenylation signals.

30

As used herein, the term "plant-expressible promoter" means a DNA sequence which is capable of controlling (initiating) transcription in a plant cell. This includes any promoter of plant origin, but also any promoter of non-plant origin which is capable

of directing transcription in a plant cell, i.e., certain promoters of viral or bacterial origin such as the CaMV35S, the subterranean clover virus promoter No 4 or No 7, or T-DNA gene promoters but also tissue-specific or organ-specific promoters including but not limited to seed-specific promoters (e.g., WO89/03887), organ-primordia specific promoters (An et al., 1996), stem-specific promoters (Keller et al., 1988), leaf specific promoters (Hudspeth et al., 1989), mesophyl-specific promoters (such as the light-inducible Rubisco promoters), root-specific promoters (Keller et al., 1989), tuber-specific promoters (Keil et al., 1989), vascular tissue specific promoters (Peleman et al., 1989), stamen-selective promoters (WO 89/10396, WO 92/13956), dehiscence zone specific promoters (WO 97/13865) and the like.

The acceptor vector may further comprise a selectable marker for expression in a eukaryotic cell. Selectable marker genes for expression in eukaryotic cells are well known in the art, including but not limited to chimeric marker genes. The chimeric 15 marker gene can comprise a marker DNA that is operably linked at its 5' end to a promoter, functioning in the host cell of interest, particularly a plant-expressible promoter, preferably a constitutive promoter, such as the CaMV 35S promoter, or a light inducible promoter such as the promoter of the gene encoding the small subunit of Rubisco; and operably linked at its 3' end to suitable plant transcription 3' end 20 formation and polyadenylation signals. It is expected that the choice of the marker DNA is not critical, and any suitable marker DNA can be used. For example, a marker DNA can encode a protein that provides a distinguishable colour to the transformed plant cell, such as the A1 gene (Meyer et al., 1987), can provide herbicide resistance to the transformed plant cell, such as the bar gene, encoding resistance to phosphinothricin (EP 0,242,246), or can provide antibiotic resistance to the transformed cells, such as the aac(6') gene, encoding resistance to gentamycin (WO94/01560).

The acceptor vector may also further comprise left and right T-DNA border sequences
flanking the chimeric DNA construct, and may comprise an origin of replication
functional in *Agrobacterium spp.* and/or a DNA region of homology with a helper Tiplasmid as described in EP 0 116 718.

The efficiency and ease by which any nucleic acid of interest may be converted into a chimeric DNA construct comprising two copies of the nucleic acid of interest in inverted repeat and operably linked to eukaryotic 5' and 3' regulatory regions using the means and methods according to the invention, makes these particularly apt for automation and high throughput analysis.

PCT/AU02/00073

It will be clear to the person skilled in the art that the acceptor vectors as hereinbefore described can be readily adapted to provide a vector which can be used to produce in vitro large amounts of double stranded RNA or RNAi comprising a complementary 10 sense and antisense portion essentially similar to a target gene of choice as described elsewhere in this application, by exchanging the promoter capable of being expressed in a eukaryotic cell for a promoter recognized by any RNA polymerase. Very suitable promoters to this end are the promoters recognized by bacteriophage single subunit RNA polymerases such as the promoters recognized by bacteriophage single subunit 15 RNA polymerase such as the RNA polymerases derived from the E. coli phages T7, T3, [II, [III, W31, H, Y, A1, 122, cro, C21, C22, and C2; Pseudomonas putida phage gh-1; Salmonella typhimurium phage SP6; Serratia marcescens phage IV; Citrobacter phage ViIII; and Klebsiella phage No.11 [Hausmann, Current Topics in Microbiology and Immunology, 75: 77-109 (1976); Korsten et al., J. Gen Virol. 43: 57-73 (1975); 20 Dunn et al., Nature New Biology, 230: 94-96 (1971); Towle et al., J. Biol. Chem. 250: 1723-1733 (1975); Butler and Chamberlin, J. Biol. Chem., 257: 5772-5778 (1982)]. Examples of such promoters are a T3 RNA polymerase specific promoter and a T7 RNA polymerase specific promoter, respectively. A T3 promoter to be used as a first promoter in the CIG can be any promoter of the T3 genes as described by McGraw et 25 al, Nucl. Acid Res. 13: 6753-6766 (1985). Alternatively, a T3 promoter may be a T7 promoter which is modified at nucleotide positions -10, -11 and -12 in order to be recognized by T3 RNA polymerase [(Klement et al., J. Mol. Biol. 215, 21-29(1990)]. A preferred T3 promoter is the promoter having the "consensus" sequence for a T3 promoter, as described in US Patent 5,037,745. A T7 promoter which may be used 30 according to the invention, in combination with T7 RNA polymerase, comprises a promoter of one of the T7 genes as described by Dunn and Studier, J. Mol. Biol. 166: 477-535 (1983). A preferred T7 promoter is the promoter having the "consensus"

10

15

20

24

sequence for a T7 promoter, as described by Dunn and Studier (supra). Thus, the invention also provides an acceptor vector comprising

- a) origin of replication allowing replication in a host cell (1),
- b) a selectable marker region (2) capable of being expressed in the host cell; and
- c) a chimeric DNA construct comprising in sequence:
 - i) a promoter or promoter region (3) capable of being recognized by a bacteriophage single subunit RNA polymerase;
 - ii) a first recombination site (4), a second recombination site (5), a third recombination site (6) and a fourth recombination site (7) whereby
 - (1) the first (4) and fourth recombination site (7) are capable of reacting with the same other recombination site and preferably are identical to each other:
 - (2) the second (5) and third (6) recombination site are also capable of reacting with the same other recombination site and preferably are identical to each other
 - (3) the first (4) and second (5) recombination site do not recombine with each other or with the same other recombination site; and
 - (4) the third (6) and fourth (7) recombination site do not recombine with each other or with the same other recombination site; and
 - (5) a 3' transcription terminating and polyadenylation region (8) functional in a eukaryotic cell.

The acceptor vector may be used to convert a DNA fragment of interest into an inverted repeat structure as described elsewhere in the application and dsRNA can be 25 produced in large amounts by contacting the acceptor vector DNA with the appropriate bacteriophage single subunit RNA polymerase under conditions well known to the skilled artisan. The so-produced dsRNA can then be used for delivery into cells prone to gene silencing, such as plant cells, fungal cells or animal cells. dsRNA may be introduced in animal cells via liposomes or other transfection agents 30 (e.g. Clonfection transfection reagent or the CalPhos Mammalian transfection kit from ClonTech) and could be used for methods of treatment of animals, including humans, by silencing the appropriate target genes.

The acceptor vectors may also be equipped with any prokaryotic promoter suitable for expression of dsRNA in a particular prokaryotic host. The prokaryotic host can be used as a source of dsRNA, e.g. by feeding it to an animal, such as a nematode, in which the silencing of the target gene is envisioned.

5

The promoter capable of expression in eukaryotic cell may also be a promoter capable of expression in a mammalian cell and vectors according to the invention may transiently be delivered using a retroviral delivery system or other animal transfection system.

10

In another embodiment of the invention, a method is provided for making a eukaryotic organism, particularly a plant, wherein the phenotypic expression of a target nucleic acid of interest is reduced or inhibited, comprising the steps of preparing a chimeric DNA construct comprising a nucleic acid of interest (12)

comprising a nucleotide sequence of at least 19 bp or 25 bp having at least 70% sequence identity to the target nucleic acid of interest and capable of expressing a dsRNA in cells of the eukaryotic organism, particularly a plant according to the methods of the current invention and introducing the chimeric DNA construct in cells of the eukaryotic organism, and isolating eukaryotic organism transgenic for the chimeric DNA construct.

As used herein, "phenotypic expression of a target nucleic acid of interest" refers to any quantitative trait associated with the molecular expression of a nucleic acid in a host cell and may thus include the quantity of RNA molecules transcribed or replicated, the quantity of post-transcriptionally modified RNA molecules, the quantity of translated peptides or proteins, the activity of such peptides or proteins.

A "phenotypic trait" associated with the phenotypic expression of a nucleic acid of interest refers to any quantitative or qualitative trait, including the trait mentioned, as well as the direct or indirect effect mediated upon the cell, or the organism containing that cell, by the presence of the RNA molecules, peptide or protein, or posttranslationally modified peptide or protein. The mere presence of a nucleic acid in a host cell, is not considered a phenotypic expression or a phenotypic trait of that

nucleic acid, even though it can be quantitatively or qualitatively traced. Examples of direct or indirect effects mediated on cells or organisms are, e.g., agronomically or industrial useful traits, such as resistance to a pest or disease; higher or modified oil content etc.

5

As used herein, "reduction of phenotypic expression" refers to the comparison of the phenotypic expression of the target nucleic acid of interest to the eucaryotic cell in the presence of the RNA or chimeric genes of the invention, to the phenotypic expression of the target nucleic acid of interest in the absence of the RNA or chimeric genes of the invention. The phenotypic expression in the presence of the chimeric RNA of the invention should thus be lower than the phenotypic expression in absence thereof, preferably be only about 25%, particularly only about 10%, more particularly only about 5% of the phenotypic expression in absence of the chimeric RNA, especially the phenotypic expression should be completely inhibited for all practical purposes by the presence of the chimeric RNA or the chimeric gene encoding such an RNA.

A reduction of phenotypic expression of a nucleic acid where the phenotype is a qualitative trait means that in the presence of the chimeric RNA or gene of the invention, the phenotypic trait switches to a different discrete state when compared to a situation in which such RNA or gene is absent. A reduction of phenotypic expression of a nucleic acid may thus, i.a. be measured as a reduction in transcription of (part of) that nucleic acid, a reduction in translation of (part of) that nucleic acid or a reduction in the effect the presence of the transcribed RNA(s) or translated polypeptide(s) have on the eucaryotic cell or the organism, and will ultimately lead to altered phenotypic traits. It is clear that the reduction in phenotypic expression of a target nucleic acid of interest, may be accompanied by or correlated to an increase in a phenotypic trait.

30 As used herein a "target nucleic acid of interest" refers to any particular RNA molecule or DNA sequence which may be present in a eucaryotic cell, particularly a plant cell whether it is an endogenous nucleic acid, a transgenic nucleic acid, a viral nucleic acid, or the like.

PCT/AU02/00073

Methods for making transgenic eukaryotic organisms, particularly plants are well known in the art. Gene transfer can be carried out with a vector that is a disarmed Tiplasmid, comprising a chimeric gene of the invention, and carried by Agrobacterium. 5 This transformation can be carried out using the procedures described, for example, in EP 0 116 718. A particular kind of Agrobacterium mediated transformation methods are the so-called in planta methods, which are particularly suited for Arabidopsis spp. transformation (e.g. Clough and Bent 1998). Alternatively, any type of vector can be used to transform the plant cell, applying methods such as direct gene transfer (as 10 described, for example, in EP 0 233 247), pollen-mediated transformation (as described, for example, in EP 0 270 356, WO85/01856 and US 4,684,611), plant RNA virus-mediated transformation (as described, for example, in EP 0 067 553 and US 4,407,956), liposome-mediated transformation (as described, for example, in US 4,536,475), and the like. Other methods, such as microprojectile bombardment, as described for corn by Fromm et al. (1990) and Gordon-Kamm et al. (1990), are suitable as well. Cells of monocotyledonous plants, such as the major cereals, can also be transformed using wounded and/or enzyme-degraded compact embryogenic tissue capable of forming compact embryogenic callus, or wounded and/or degraded immature embryos as described in WO92/09696. The resulting transformed plant cell 20 can then be used to regenerate a transformed plant in a conventional manner.

The obtained transformed plant can be used in a conventional breeding scheme to produce more transformed plants with the same characteristics or to introduce the chimeric gene for reduction of the phenotypic expression of a nucleic acid of interest 25 of the invention in other varieties of the same or related plant species, or in hybrid plants. Seeds obtained from the transformed plants contain the chimeric genes of the invention as a stable genomic insert.

In another embodiment the invention provides a method for isolating a nucleic acid 30 molecule involved in determining a particular phenotypic trait of interest. The method involves the following steps:

WO 02/059294 PCT/AU02/00073 28

- a) preparing a library of chimeric DNA constructs capable of expressing a dsRNA in cells of the eukaryotic non-human organism using the methods and means described in the current invention;
- b) introducing individual representatives of this library of chimeric DNA constructs in cells of the eukaryotic non-human organism, preferably by stable integration in their genome, particularly their nuclear genome;
- c) isolating a eukaryotic organism exhibiting the particular trait; and
- d) isolating the corresponding nucleic acid molecule present in the eukaryotic organism with the trait of interest, preferably from the aforementioned library.

10

30

5

It goes without saying that the methods and means of the invention may be used to determine the function of an isolated nucleic acid fragment or sequence with unknown function, by converting a part or the whole of that nucleic acid fragment or sequence according to the methods of the invention into a chimeric construct capable of making a dsRNA transcript when introduced in a eukaryotic cell, introducing that chimeric DNA construct into a eukaryotic organism to isolate preferably a number of transgenic organisms and observing changes in phenotypic traits.

The invention also provides acceptor vectors, as described in this specification as well as kits comprising the such vectors.

It goes without saying that the vectors, methods and kits according to the invention may be used in all eukaryotic organisms which are prone to gene silencing including yeast, fungi, plants, animals such as nematodes, insects and arthropods, vertebrates including mammals and humans.

Also provided by the invention are non-human organisms comprising chimeric DNA constructs comprising in sequence the following operably linked DNA fragments

- i) a promoter or promoter region (3) capable of being recognized by RNA polymerases of the eukaryotic cell;
- ii) a recombination site (15) which is the recombination product of the first (4) recombination site on the acceptor vector and the fifth recombination site
 (13) flanking the DNA of interest;

- iii) a first DNA copy of the nucleic acid fragment of interest (12);
- iv) a recombination site (16) which is the recombination product of the second(4) recombination site on the acceptor vector and the sixth recombinationsite (14) flanking the DNA of interest;
- v) a recombination site (17) which is the recombination product of the third
 (5) recombination site on the acceptor vector and the sixth recombination
 site (14) flanking the DNA of interest;
- vi) a second DNA copy of the nucleic acid fragment of interest in opposite orientation (12) compared to the first copy;
- vii) a recombination site (18) which is the recombination product of the fourth (7) recombination site on the acceptor vector and the fifth recombination site (13) flanking the DNA of interest; and
- viii) a 3' transcription terminating and polyadenylation region (8) functional in a eukaryotic cell.

10

5

As used herein "comprising" is to be interpreted as specifying the presence of the stated features, integers, steps or components as referred to, but does not preclude the presence or addition of one or more features, integers, steps or components, or groups thereof. Thus, e.g., a nucleic acid or protein comprising a sequence of nucleotides or amino acids, may comprise more nucleotides or amino acids than the actually cited ones, i.e., be embedded in a larger nucleic acid or protein. A chimeric gene comprising a DNA region which is functionally or structurally defined, may comprise additional DNA regions etc.

The term "gene" means any DNA fragment comprising a DNA region (the "transcribed DNA region") that is transcribed into a RNA molecule (e.g., a mRNA) in a cell operably linked to suitable regulatory regions, e.g., a plant-expressible promoter. A gene may thus comprise several operably linked DNA fragments such as a promoter, a 5' leader sequence, a coding region, and a 3' region comprising a polyadenylation site. A plant gene endogenous to a particular plant species (endogenous plant gene) is a gene which is naturally found in that plant species or which can be introduced in that plant species by conventional breeding. A chimeric gene is any gene which is not normally found in a plant species or, alternatively, any gene in which the

promoter is not associated in nature with part or all of the transcribed DNA region or with at least one other regulatory region of the gene.

The term "expression of a gene" refers to the process wherein a DNA region which is operably linked to appropriate regulatory regions, particularly to a promoter, is transcribed into an RNA which is biologically active i.e., which is either capable of interaction with another nucleic acid or which is capable of being translated into a polypeptide or protein. A gene is the to encode an RNA when the end product of the expression of the gene is biologically active RNA, such as e.g. an antisense RNA, a ribozyme or a replicative intermediate. A gene is the to encode a protein when the end product of the expression of the gene is a protein or polypeptide.

A nucleic acid is "capable of being expressed", when the nucleic acid, when introduced in a suitable host cell, particularly in a plant cell, can be transcribed (or replicated) to yield an RNA, and/or translated to yield a polypeptide or protein in that host cell.

The following non-limiting Examples describe the construction of acceptor vectors and the application thereof for the conversion of nucleic acid fragments of interest 20 into chimeric DNA constructs capable of expressing a dsRNA transcript in eukaryotic cells. Unless stated otherwise in the Examples, all recombinant DNA techniques are carried out according to standard protocols as described in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, NY and in Volumes 1 and 2 of Ausubel et al. (1994) Current 25 Protocols in Molecular Biology, Current Protocols, USA. Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R.D.D. Croy, jointly published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications, UK. Other references for standard molecular biology techniques include Sambrook and Russell (2001) Molecular Cloning: A 30 Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, NY, Volumes I and II of Brown (1998) Molecular Biology LabFax, Second Edition, Academic Press (UK). Standard materials and methods for polymerase chain reactions can be found in Dieffenbach and Dveksler (1995) PCR Primer: A Laboratory Manual, Cold Spring

WO 02/059294 PCT/AU02/00073

Harbor Laboratory Press, and in McPherson at al. (2000) PCR - Basics: From Background to Bench, First Edition, Springer Verlag, Germany.

Throughout the description and Examples, reference is made to the following

5	sequences:	·
	SEQ ID No 1:	core sequence of recombination site attB1
	SEQ ID No 2:	core sequence of recombination site attB2
	SEQ ID No 3:	core sequence of recombination site attB3
	SEQ ID No 4:	core sequence of recombination site attR1
10	SEQ ID No 5:	core sequence of recombination site attR2
	SEQ ID No 6:	core sequence of recombination site attR3
	SEQ ID No 7:	core sequence of recombination site attL1
	SEQ ID No 8:	core sequence of recombination site attL2
	SEQ ID No 9:	core sequence of recombination site attL3
15	SEQ ID No 10:	core sequence of recombination site attP1
	SEQ ID No 11:	core sequence of recombination sites attP2,P3
	SEQ ID No 12:	nucleotide sequence of chalcone synthase gene of
		Arabidopsis
	SEQ ID No 13:	nucleotide sequence of the acceptor vector "pHELLSGATE"
20	SEQ ID No 14:	oligonucleotide attB1 "forward" primer used for
		amplification of 400bp and 200 bp CHS fragments.
	SEQ ID No 15:	oligonucleotide attB2 "reverse" primer for amplification of
		the 400 bp CHS fragment.
	SEQ ID No 16:	oligonucleotide attB2 "reverse" primer for amplification of
25		the 200 bp CHS fragment.
	SEQ ID No 17:	oligonucleotide attB1 "forward" primer used for
		amplification of 100 bp CHS fragment.
	SEQ ID No 18:	oligonucleotide attB2 "reverse" primer for amplification of
		the 100 bp CHS fragment.
30	SEQ ID No 19:	oligonucleotide attB1 "forward" primer used for
		amplification of 50 bp CHS fragment.
	SEQ ID No 20:	oligonucleotide attB2 "reverse" primer for amplification of
		the 50 bp CHS fragment.

WO 02/059294 PCT/AU02/00073

oligonucleotide attB1 "forward" primer for amplification of SEQ ID No 21:

the 25 bp CHS fragment.

oligonucleotide attB2 "reverse" primer for the 25 bp SEQ ID No 22:

fragment.

nucleotide sequence of the acceptor vector "pHELLSGATE 5 SEQ ID No 23:

4"

nucleotide sequence of the acceptor vector "pHELLSGATE SEQ ID No 24:

811

nucleotide sequence of the acceptor vector "pHELLSGATE SEQ ID No 25:

11" 10

> nucleotide sequence of the acceptor vector "pHELLSGATE SEQ ID No 26:

> > 12"

Examples

15

Example 1

Construction of the acceptor vector pHELLSGATE

With the completion of the Arabidopsis genome project, the advent of micro-array technology and the ever-increasing investigation into plant metabolic, perception, and response pathways, a rapid targeted way of silencing genes would be of major 20 assistance. The high incidence and degree of silencing in plants transformed with chimeric genes containing simultaneously a sense and antisense nucleotide sequence, as well as a functional intron sequence suggested that such vectors could form the basis of a high-throughput silencing vector. However, one of the major obstacles in using such conventional cloning vectors for a large number of defined genes or a 25 library of undefined genes would be cloning the hairpin arm sequences for each gene in the correct orientations.

Attempts to clone PCR products of sense and antisense arms together with the appropriately cut vector as a single step four-fragment ligation failed to give efficient 30 or reproducible results. Therefore a construct (pHELLSGATE) was made to take advantage of Gateway™ (Life Technologies). With this technology, a PCR fragment is generated, bordered with recombination sites (attB1 and attB2) which is directionally recombined, in vitro, into a plasmid containing two sets of suitable recombination

sites (attP1 and attP2 sites) using the commercially available recombination protein preparation.

33

The pHELLSGATE vector was designed such that a single PCR product from primers with the appropriate attB1 and attB2 sites would be recombined into it simultaneously to form the two arms of the hairpin. The ccdB gene, which is lethal in standard E.coli strains such as DH5α (but not in DB3.1), was placed in the locations to be replaced by the arm sequences, ensuring that only recombinants containing both arms would be recovered. Placing a chloramphenicol resistance gene within the intron, gives a selection to ensure the retention of the intron in the recombinant plasmid.

pHELLSGATE comprises the following DNA fragments:

15

30

- a spectinomycin/streptomycin resistance gene(SEQ ID No 13 from the nucleotide at position 7922 to the nucleotide sequence at 9985);
- a right T-DNA border sequence (SEQ ID No 13 from the nucleotide at position 10706 to the nucleotide sequence at 11324);
- a CaMV35S promoter (SEQ ID No 13 from the nucleotide at position 11674 to the nucleotide sequence at 13019);
- an attP1 recombination site (complement of the nucleotide sequence of SEQ ID No 13 from the nucleotide at position 17659 to the nucleotide sequence at 17890);
 - a *ccd*B selection marker (complement of the nucleotide sequence of SEQ ID No 13 from the nucleotide at position 16855 to the nucleotide at position 17610)
- an attP2 recombination site (complement of the nucleotide sequence of SEQ ID No
 13 from the nucleotide at position 16319 to the nucleotide at position 16551)
 - pdk intron2 (SEQ ID No 13 from the nucleotide at position 14660 to the nucleotide at position 16258) flanked by the intron splice site (TACAG*TT (SEQ ID No 13 from the nucleotide at position 16254 to the nucleotide sequence at 16260) and the intron splice site (TG*GTAAG) (SEQ ID No 13 from the nucleotide at position 14660 to the nucleotide sequence at 14667) and comprising a chloramphenical resistance gene (SEQ ID No 13 from the nucleotide at position 15002 to the nucleotide at position 15661);

WO 02/059294

PCT/AU02/00073

34

- an attP2 recombination site (SEQ ID No 13 from the nucleotide at position 14387 to the nucleotide at position 14619)
- a ccdB selection marker (complement of the nucleotide sequence of SEQ ID No 13 from the nucleotide at position 13675 to the nucleotide at position 13980)
- an attP1 recombination site (SEQ ID No 13 from the nucleotide at position 13048 to the nucleotide at position 13279)
 - a octopine synthase gene terminator region (SEQ ID No 13 from the nucleotide at position 17922 to the nucleotide sequence at 18687);
 - a chimeric marker selectable in plants comprising:
- a nopaline synthase promoter (SEQ ID No 13 from the nucleotide at position 264 to the nucleotide sequence at 496);
 - a nptII coding region (SEQ ID No 13 from the nucleotide at position 497 to the nucleotide sequence at 1442); and
 - a nopaline synthase gene terminator (SEQ ID No 13 from the nucleotide at position 1443 to the nucleotide sequence at 2148);
 - a left T-DNA border sequence (SEQ ID No 13 from the nucleotide at position 2149 to the nucleotide sequence at 2706);
 - an origin of replication
 - a kanamycin resistance gene

20

15

The complete nucleotide sequence of pHELLSGATE is represented in the sequence listing (SEQ ID No 13) and a schematic figure can be found in Figure 3.

Example 2

Use of the pHELLSGATE to convert nucleic acid fragments of interest into dsRNA producing chimeric silencing genes.

To test the acceptor vector pHELLSGATE an about 400bp, 200bp, 100bp, 50 bp and 25 bp fragment of the Arabidopsis thaliana chalcone synthase isomerase coding sequence (Seq ID No 12) (having respectively the nucleotide sequence of SEQ ID No 12 from the nucleotide at position 83 to the nucleotide at position 482; the nucleotide sequence of SEQ ID No 12 from the nucleotide at position 83 to the nucleotide at position 222; the nucleotide sequence of SEQ ID No 12 from the nucleotide at position 83 to the nucleotide at position 182; the nucleotide sequence of SEQ ID No 12 from

WO 02/059294 PCT/AU02/00073

the nucleotide at position 83 to the nucleotide at position 132; and the nucleotide sequence of SEQ ID No 12 from the nucleotide at position 83 to the nucleotide at position 107) were used as nucleic acid fragments of insert for construction of chimeric genes capable of producing dsRNA.

5

This gene was chosen because its mutant allele has been reported in Arabidopsis to give distinct phenotypes. The CHS tt4(85) EMS mutant (Koornneef, 1990) produces inactive CHS resulting in no anthocyanin pigment in either the stem or seed-coat. Wildtype plants produce the purple-red pigment in both tissues.

10

In a first step, the respective fragments were PCR amplified using specific primers further comprising attB1 and attB2 recombination sites. AttB1 and attB2 specific primers were purchased from Life Technologies. The 25 and 50 bp fragments flanked by att sites were made by dimerization of the primers.

15

The following combinations of primers were used:

For the 400 bp fragment

Forward primer:

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCACTGCTAACCCTGAGAACCATGTG

20 CTTC (SEQ ID No 14); and

Reverse primer:

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCTTGACGGAAGGACGAGACCAAGAAGC (SEQ ID No 15).

25 For the 200 bp fragment

Forward primer:

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCACTGCTAACCCTGAGAACCATGTG
CTTC (SEQ ID No 14); and

Reverse primer:

30 GGGGACCACTTTGTACAAGAAAGCTGGGTAGGAGCCATGTAAGCACACATGTGTG GGTT (SEQ ID No 16).

36

For the 100 bp fragment

Forward primer:

5 GGGGACAAGTTTGTACAAAAAAGCAGGCTGCACTGCTAACCCTGAGAACCATGTG CTTCAGGCGGAGTATCCTGACTACTTCCGCATCACCAACAGT (SEQ ID No 17); and

Reverse primer:

For the 50 bp fragment

Forward primer:

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCACTGCTAACCCTGAGAACCATGTG

15 CTTCAGGCGGAGTATCCTGACTAC (SEQ ID No 19); and

Reverse primer:

GGGGACCACTTTGTACAAGAAAGCTGGGTGTAGTCAGGATACTCCGCCTGAAGCA CATGGTTCTCAGGGTTAGCAGTGC (SEQ ID No 20).

20 For the 25 bp fragment

Forward primer:

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCACTGCTAACCCTGAGAACCATGT (SEQ ID No 21); and

Reverse primer:

25 GGGGACCACTTTGTACAAGAAAGCTGGGTACATGGTTCTCAGGGTTAGCAGTGC (SEQ ID No 22).

PCR amplification and recombination using the GATEWAY™ technology with the commercially available BP Clonase (Life Technologies) were performed according to the manufacturer's instructions (manual available on http://www.lifetech.com/content.cfm?pageid=2497).

37

Bacterial colonies obtained on chloramphenicol-containing plates spread with *E. coli* DH5α bacteria, transformed (by electroporation or by heatshocking RbCl2 treated competent *E. coli* cells) with the *in vitro* recombination reaction were screened. Colonies containing the desired recombinant plasmid were obtained in each case. For the about 400 bp fragment 24 colonies were screened and 23 contained the desired construct with the 400 bp in inverted repeat, operably linked to the CaMV35S promoter. For the about 200 bp fragment 36 colonies were screened and 35 contained the desired construct with the 200 bp in inverted repeat, operably linked to the CaMV35S promoter. For the about 50 bp fragment 6 colonies were screened and 4 contained the desired construct with the 50 bp in inverted repeat, operably linked to the CaMV35S promoter. For the 25 bp fragment, 6 colonies were screened and 1 contained the desired construct with the 400 bp in inverted repeat, operably linked to the CaMV35S promoter. In a number of cases the structure was confirmed by sequence analysis.

15

These results show that this vector facilitates the rapid, efficient, and simple production of hpRNA (hairpin RNA constructs). pHELLSGATE is a T-DNA vector, with a high-copy-number origin of replication for ease of handling. Recombinant pHELLSGATE constructs can be directly transformed into Agrobacterium for transformation of the chimeric construct into plants. This system can be used in high throughput applications.

Example 3

Evaluation of plants comprising the chimeric genes of Example 2.

- The vectors containing the dsRNA producing chimeric constructs with the 400, 200, 100, 50 and 25 nucleotides of chalcone synthase in inverted repeat (Example 2) were introduced into *Agrobacterium tumefaciens* strain AGL1, GV3101 or LBA4404 either by electroporation or tri-parental mating.
- Transgenic Arabidopsis lines are obtained by transformation with these Agrobacteria using the dipping method of Clough and Bent (1998).

Chalcone synthase activity is monitored by visual observation of stem and leaf color (normally in plants grown under high light, and by unaided or microscope assisted visual observation of seed-coat color.

Most of the transgenic lines transformed with the above mentioned CHS silencing
constructs show pronounced silencing. The seed colour of most of these lines is
virtually indistinguishable from seed of the tt4(85) mutant to the naked eye.

Examination of the seed under a light microscope reveals that the degree of
pigmentation is generally uniform in the cells of the coat of an individual seed, and
among seeds of the same line.

10

found in Figure 4.

Example 4

Construction of the acceptor vectors pHELLSGATE 4, pHELLSGATE 8, pHELLSGATE 11 and pHELLSGATE 12.

pHELLSGATE 4 was made by excising the DNA fragment comprising the *pdk* intron and chloramphenical resistance gene from pHELLSGATE (Example 1) with *HindIII* and *EcoRI* and replacing it with a *HindIII/EcoRI* DNA fragment containing only the *pdk* intron. The complete nucleotide sequence of pHELLSGATE 4 is represented in the sequence listing (SEQ ID No 23).

pHELLSGATE 8 was made by PCR amplification using pHellsgate DNA as a template and oligonucleotides with the sequence 5'GGGCTCGAGACAAGTTTGTACAAAAAAGCTG 3' and 5'GGCTCGAGACCACTTTGTACAAGAAAGC 3' as primers. These primers modify the attP sites within pHellsgate to attR sites. The resulting fragment was sequenced and inserted into the XhoI site of a vector upstream of a DNA fragment containing the pdk intron fragment. Similarly an XboI/XbaI fragment amplified with the oligonucleotides 5'GGGTCTAGACAAGTTTGTACAAAAAAGCTG 3' and 5' GGGTCTAGACCACTTTGTACAAGAAAGC 3' as primers and pHEllSGATE as template DNA to modify the attP sites of this cassette to attR sites. This fragment was sequenced and inserted into the XboI site of the intermediate described above downstream of the pdk intron. The complete nucleotide sequence of pHELLSGATE 8 is represented in the sequence listing (SEQ ID No 24) and a schematic figure can be

pHELLSGATE 11 is similar to pHELLSGATE 8 except that the pdk intron has been engineered to contain a branching point in the complementary strand such that splicing of the intron is independent of its orientation (a so-called "two-way intron"). The complete nucleotide sequence of pHELLSGATE 11 is represented in the sequence 5 listing (SEQ ID No 25) and a schematic representation thereof can be found in Figure 4.

39

pHELLSGATE 12 is also similar to pHELLSGATE 8 except that the pdk intron has been duplicated as an inverted repeat. The complete nucleotide sequence of 10 pHELLSGATE 12 is represented in the sequence listing (SEQ ID No 26) and a schematic representation thereof can be found in Figure 4.

Example 5

15

Use of the different pHELLSGATE vectors to generate dsRNA chimeric silencing genes targeted towards three different model target genes.

The efficiency in gene silencing of the different pHELLSGATE vectors was tested by inserting fragments of three target genes Flowering locus C (FLC) Ethylene insensitive 20 2 (EIN2) and Phytoene desaturase (PDC). For FLC a 390 bp fragment was used (from the nucleotide at position 303 to the nucleotide at position 692 of the nucleotide sequence available as Genbank Accession Nr AF116527) . For EIN2 a 580 bp fragment was used (from the nucleotide at position 541 to the nucleotide at position 1120 of the nucleotide sequence available as Genbank Accession Nr AF141203). For PDS a 432 bp 25 fragment was used (from the nucleotide at position 1027 to the nucleotide at position 1458 of the nucleotide sequence available as Genbank Accession Nr L16237). Genes of interest were amplified using gene specific primers with either a 5' attB1 extension (GGGGACAAGTTTGTACAAAAAAGCAGGCT) or an attB2 extension (GGGACCACTTTGTACAAGAAAGCTGGGT) using F1 Taq DNA polymerase (Fisher 30 Biotec, Subiaco, WA, Australia) according to the manufacturer's protocol. PCR products were precipitated by adding 3 volumes TE and two volumes 30% (w/v) PEG 3000, 30mM MgCl, and centrifuging at 13000 g for 15 minutes. Recombination reaction of PCR products with either pDONR201 (Invitrogen, Groningen, The

Netherlands) or pHELLSGATE 4 were carried out in a total volume of 10 μ L with 2 μ L BP clonase buffer (Invitrogen), 1-2 μ L PCR product 150 ng plasmid vector and 2 μ L BP clonase (Invitrogen). The reaction was incubated at room temperature (25°C) for 1 h to overnight. After the incubation, 1 μL proteinase K (2 $\mu g/\mu L$; Invitrogen) was added and 5 incubated for 10 min at 37°C. 1-2 μL of the mix was used to transform DH5 α , colonies were selected on the appropriate antibiotics. Clones were checked either by digestion of DNA minipreps or PCR. Recombination reactions from pDONR201 clones to pHellsgate 8, 11 or 12 were carried out in 10 μL total volume with 2 μL LR clonase buffer (Invitrogen), 2 μ L pDONR201 clone (approximately 150 ng), 300 ng pHellsgate 10 8, 11 or 12 and 2 μ L LR clonase (Invitrogen). The reaction was incubated overnight at room temperature, proteinase-treated and used to transform E. coli DH5 α as for the BP clonase reaction. Transformation of Arabidopsis was perfomed according to via the floral dip method (Clough and Bent, 1998). Plants were selected on agar solidified MS media supplemented with 100 mg/l timentin and 50 mg/l kanamycin. For FLC and 15 PDS constructs the C24 ecotype was used; for EIN2 constructs Landsberg erecta was used. For scoring of EIN2 phenotypes transformed T1 plants were transferred to MS media containing 50 μ M 1-aminocyclopropane-1-carboxylic acid (ACC) together with homozygous EIN2-silenced lines and wild type Landberg erecta plants. T1 FLC hpRNA plants were scored by transferring to MS plates and scoring days to flower or 20. rosette leaves at flowering compared to C24 wild type plants and flc mutant lines. T1 PDS hpRNA plants were scored by looking at bleaching of the leaves. The results of the analysis of plants transformed with the different pHELLSGATE vectors are shown in Table 1.

25 All plants transformed with pHellsgate 4-FLC and pHellsgate 8-FLC flowered significantly earlier than wildtype C24 and in both cases plants flowering with the same number of rosette leaves as the flc-20 line (carrying a stable Ds insertion in the first intron of the FLC gene) were observed. There was no clear difference in rosette leaves at flowering between the sets of plants transformed with the pHELLSGATE 4-30 FLC and pHellsgate 8-FLC constructs.

A difference in the effectiveness of the pHELLSGATE 4-EIN2 and pHELLSGATE 8-EIN2 plants was observed. Of 36 transformants for pHG4-EIN2 there were no plants

with an observable ACC-resistant phenotype under the conditions used for this experiment, whereas 8 of the 11 plants carrying the pHG8-EIN2 transgene showed some degree of ACC-resistance. The extent to which the pHG8-EIN2 plants were resistant to ACC was variable indicating that the severity of silencing varies between transformants.

The great majority of plants carrying pHG4-PDS and pHG8-PDS showed a phenotype consistent with the loss of photoprotection due to the absence of carotenoids. The weakest phenotype was a bleaching of the cotyledons, with the true leaves not bleaching at any stage in the life cycle. The bleached cotyledon phenotype was only seen in plants transformed with PDS hpRNA constructs; we confirmed that the plants with this phenotype also contained the PDS hpRNA construct (data not shown) strongly suggesting that this phenotype is due to PDS silencing and not bleaching from the kanamycin selection. Plants transformed with the pHELLSGATE 4-PDS construct gave only this weak bleached cotyledon phenotype. In contrast the five of the pHELLSGATE 8-PDS plants had the weak phenotype and three showed a stronger phenotype with extensive or complete bleaching of the true leaves.

Table 1

Construct	Test genes	T1 plants	Rate of silencing
HELLSGATE 4	FLC	13	12
	EIN2	36	0
	PDS	12	11
HELLSGATE 8	FLC	6	6
	EIN2	11	8
	PDS	9	8
	1		
HELLSGATE 11	FLC	2	2
•	EIN2	30	11
	PDS	11	11
HELLSGATE 11	FLC	8	6
(intervening	EIN2		,
region in inverse	PDS	·	
orientation)			
HELLSGATE 12	FLC	13	11
	EIN2	26	12
	PDS		
HELLSGATE 12	FLC	9	8
(intervening	EIN2	5	2
region in inverse	PDS		
orientation)	CHS		

References

An et al. (1996) The Plant Cell 8, 15-30

AzpiroLeehan and Feldmann (1997) Trends Genet. 13: 152-156

5 Clough and Bent (1998) Plant J. 16: 735-743

Fire et al. (1998) Nature 391: 806-811

Fromm et al. (1990) Bio/Technology 8: 833

Gordon-Kamm et al. (1990) The Plant Cell 2: 603

Hamilton et al. (1998) Plant J. 15: 737-746

10 Hoess et al. (1986) Nucl. Acids Res. 14: 2287

Hudspeth et al. (1989) Plant Mol. Biol. 12: 579-589

Keil et al. (1989) EMBO J. 8: 1323-1330

Keller et al. (1988) EMBO J. 7: 3625-3633

Keller et al. (1989) Genes & Devel. 3: 1639-1646

15 Koornneef (1990) Theor. Appl. Gen. 80: 852-857

Landy (1993) Current Opinions in Genetics and Development 3: 699-707

Landy (1989) Ann. Rev. Biochem. 58: 913

Martienssen (1998) Proc. Natl. Acad. Sci. USA 95: 2021-2026

Meyer et al. (1987) Nature 330: 677

20 Needleman and Wunsch (1970) J. Mol. Biol. 48: 443-453

Peleman et al. (1989) Gene 85: 359-369

Ross-MacDonald et al. (1999) Nature 402: 413-418

Smith et al. (2000) Nature 407: 319-320

Wagner and Sun (1998) Nature 391: 744-745

25 Waterhouse et al (1998) Proc. Natl. Acad. Sci. USA 95: 13959-13964

Claims:

10

15

20

25

30

- 1. A vector comprising the following operably linked DNA fragments:
 - a) an origin of replication allowing replication in a recipient cell (1), preferably in bacteria; particularly in Escherichia coli.

- b) a selectable marker region (2) capable of being expressed in said recipient cell; 5 and
 - c) a chimeric DNA construct comprising in sequence:
 - i) a promoter or promoter region (3) capable of being recognized by RNA polymerases of a eukaryotic cell;
 - ii) a first recombination site (4), a second recombination site (5), a third recombination site (6) and a fourth recombination site (7);
 - iii) a 3' transcription terminating and polyadenylation region (8) functional in said eukaryotic cell;
 - wherein said first recombination site (4) and said fourth recombination site (7) are capable of reacting with a same recombination site, preferably are identical, and said second recombination site (5) and said third recombination site (6), are capable of reacting with a same recombination site, preferably are identical; and wherein said first recombination site (4) and said second recombination site (5) do not recombine with each other or with a same recombination site or said third recombination site (6) and said fourth recombination site (7) do not recombine with each other or with a same recombination site.
 - 2. The vector of claim 1, wherein said first (4) and second recombination site (5) flank a second selectable marker gene (10) and said third (6) and fourth recombination site (7) flank a third selectable marker gene (9).
 - 3. The vector of claim 1 or 2, wherein said chimeric DNA construct comprises a region flanked by intron processing signals (11), functional in said eukaryotic cell, located between said second recombination site (5) and said third recombination site (6).
 - 4. The vector of claim 3, wherein said region flanked by intron processing signals is an intron sequence functional in said eukaryotic cell.

5. The vector of any one of claims 3 or 4, further comprising a fourth selectable

marker gene (19), located between said second (5) and third recombination site (6).

- 5 6. The vector of any one of claims 1 to 5, wherein said selectable marker genes are selected from the group consisting of an antibiotic resistance gene, a tRNA gene, an auxotrophic marker, a toxic gene, a phenotypic marker, an antisense oligonucleotide; a restriction endonuclease; a restriction endonuclease cleavage site, an enzyme cleavage site, a protein binding site, an a sequence complementary PCR primer.
 - 7. The vector of any one of claims 1 to 6, wherein said promoter (3) is a plantexpressible promoter.
- 15 8. The vector of any one of claim 7, wherein said chimeric DNA construct is flanked by left and right border T-DNA sequences.
- The vector of claim 8, further comprising a selectable marker gene capable of being expressed in plant cells located between said left and said right T-DNA border
 sequences.
 - 10. The vector of claim 8 or claim 9, further comprising an origin of replication capable of functioning in Agrobacterium sp.
- 25 11. The vector of any one of claims 1 to 10, wherein said first (4) and fourth recombination site (7) is attR1 comprising the nucleotide sequence of SEQ ID No 4 and said second (5) and third (6) recombination site is attR2 comprising the nucleotide sequence of SEQ ID No 5.
- 12. The vector of any one of claims 1 to 10, wherein said first (4) and fourth recombination site (7) is attP1 comprising the nucleotide sequence of SEQ ID No 10 and said second (5) and third (6) recombination site is attP2 comprising the nucleotide sequence of SEQ ID No 11.

5

20

- 13. A vector comprising the sequence of SEQ ID No 13.
- 14. A vector comprising the sequence of SEQ ID No 23.
- 15. A vector comprising the sequence of SEQ ID No 24.
- 16. A vector comprising the sequence of SEQ ID No 25.
- 10 17. A vector comprising the sequence of SEQ ID No 26.
 - 18. A vector comprising the following operably linked DNA fragments:
 - a) an origin of replication allowing replication in a recipient cell (1), preferably in bacteria; particularly in Escherichia coli.

PCT/AU02/00073

- b) a selectable marker region (2) capable of being expressed in said recipient cell; 15 and
 - c) a chimeric DNA construct comprising in sequence:
 - i) a promoter or promoter region (3) capable of being recognized by a prokaryotic RNA polymerase;
 - ii) a first recombination site (4), a second recombination site (5), a third recombination site (6) and a fourth recombination site (7);
 - iii) a 3' transcription terminating and polyadenylation region (8) functional in said eukaryotic cell;

wherein said first recombination site (4) and said fourth recombination site (7) are 25 capable of reacting with a same recombination site, preferably are identical, and said second recombination site (5) and said third recombination site (6), are capable of reacting with a same recombination site, preferably are identical; and wherein said first recombination site (4) and said second recombination site (5) do not recombine with each other or with a same recombination site or said third recombination site (6) 30 and said fourth recombination site (7) do not recombine with each other or with a same recombination site.

19. The vector of claim 18, wherein said RNA polymerase is a bacteriophage single subunit RNA polymerase.

47

- 20. A kit comprising the vector according to any one of claims 1 to 19.
- 21. The kit of claim 20, further comprising at least one recombination protein capable of recombining a DNA segment comprising at least one of said recombination sites.
- 22. A method for making a chimeric DNA construct capable of expressing a dsRNA in
 a eukaryotic cell comprising the step of
 - a) combining in vitro:

5

15

20

25

- i) a vector according to any one of claims 1 to 19;
- ii) an insert DNA comprising a DNA segment of interest (12) flanked by
 - (1) a fifth recombination site (13) which is capable of recombining with said first (4) or fourth recombination site (7) on said vector; and
 - (2) a sixth recombination site (14) which is capable of recombining with said second (5) or third recombination site (6) on said vector;
- iii) at least one site specific recombination protein capable of recombining said first (4) or fourth (7) and said fifth recombination site (13) and said second (5) or third (6) and said sixth recombination site (14);
- b) allowing recombination to occur so as to produce a reaction mixture comprising product DNA molecules, said product DNA molecule comprising in sequence:
 - i) said promoter or promoter region (3) capable of being recognized by RNA polymerases of said eukaryotic cell;
 - ii) a recombination site (15) which is the recombination product of said first(4) and said fifth recombination site (13);
 - iii) said DNA fragment of interest (12);
 - iv) a recombination site (16) which is the recombination product of said second(4) and said sixth recombination site (14);
- v) a recombination site (17) which is the recombination product of said third
 (5) and said sixth recombination site (14);
 - vi) said DNA fragment of interest in opposite orientation (12);

- vii) a recombination site (18) which is the recombination product of said fourth (7) and said fifth recombination site (13); and
- viii) said 3' transcription terminating and polyadenylation region (8) functional in said eukaryotic cell;
- 5 c) selecting said product DNA molecules.
 - 23. The method according to claim 22, wherein said selecting is carried out in vivo.
- 24. The method according to claim 22 or 23, wherein said insert DNA is a linear DNA molecule.
 - 25. The method according to claim 22 or 23, wherein said insert DNA is a circular DNA molecule.
- 26. The method according to any of claims 22 to 25, wherein said at least one recombination protein is selected from (i) Int and IHF and (ii) Int, Xis, and IHF.
 - 27. The method according to any one of claims 22 to 25, wherein multiple insert DNAs comprising different DNA fragments of interest are processed simultaneously.
 - 28. A method for preparing a eukaryotic non-human organism wherein the phenotypic expression of a target nucleic acid of interest is reduced or inhibited, said method comprising:
- a) preparing a chimeric DNA construct comprising a nucleic acid of interest (12) comprising a nucleotide sequence of at least 19 bp with at least 70% sequence identity to said target nucleic acid capable of expressing a dsRNA in cells of said eukaryotic non-human organism according to any one of the methods of claims 22 to 27:
- 30 b) introducing said chimeric DNA construct in cells of said eukaryotic non-human organism; and
 - c) isolating said eukaryotic organism

- 29. The method of claim 28, wherein said eukaryotic organism is a plant.
- 30. A method for isolating a nucleic acid molecule involved in determining a particular trait
- a) preparing a library of chimeric DNA constructs capable of expressing a dsRNA in cells of said eukaryotic non-human organism according to any one of the methods of claims 22 to 27;
 - b) introducing individual representatives of said library of chimeric DNA constructs in cells of said eukaryotic non-human organism;
- 10 c) isolating a eukaryotic organism exhibiting said particular trait; and
 - d) isolating said nucleic acid molecule.
 - 31. The method according to claim 30, wherein said eukaryotic organism is a plant.
- 32. A eukaryotic non-human organism comprising a chimeric DNA construct obtainable through the methods of any one of claims 22 to 27.
 - 33. The non-human eukaryotic organism according to claim 31 which is a plant.

1/6

-igure 1A

2/6

ure 1B

4/6

5/6

SEQUENCE LISTING

5	<110>	COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION	
J	<120>	Method and means for producing efficient silencing constructs recombinational cloning	using
10	<130>	500255/MRO	
		US60/264,067 2001-01-26	
15		US60/333,743 2001-11-29	
20	<160> <170>	26 PatentIn version 3.1	
	<210> <211> <212>	25	
25	<213> <220>	Artificial sequence	
	<223>	core sequence of recombination site attBl	
30	<400> agcctg	1 cttt tttgtacaaa cttgt	25
35	<210> <211> <212> <213>	25	
40		core sequence of recombination site attB2	
	<400> agcctg	2 cettt ettgtacaaa ettgt	25
45	<210> <211> <212> <213>		
50		core sequence of recombination site attB3	
55	<400>	3 gcttt cttgtacaaa cttgt	25
80	<210> <211> <212>	25	
DI I	< / 133	ALLITICIAL CACHANCE	

	<220> <223>	core sequence of recombination site attR1	
5		4 cttt tttgtacaaa cttgt	25
10	<210> <211> <212> <213>	25 .	
15	<220> <223>	core sequence of recombination site attR2	
	<400> gttcag	5 cttt cttgtacaaa cttgt	25
20			
	<210>	6	
	<211>		
	<212>	DNA	
	<213>	Artificial sequence	
25			
	<220>	and the second sec	
	<223>	core sequence of recombination site attR3	
	<400>	6	
30		cttt cttgtacaaa gttgg	25
	•		
	<210>		
35	<211> <212>		
33		Artificial sequence	
	(210)	and a second	
	<220>		
	<223>	core sequence of recombination site attL1	
40			
	<400>	7	25
	ageetg	cttt tttgtacaaa gttgg	
45	<210>	8	
	<211>	25	
	<212>		
	<213>	Artificial sequence	
50	<220>		
•		core sequence of recombination site attL2	
		u	
	<400>	8	25
	agcctg	cttt cttgtacaaa gttgg	25
55			
	<210>	9	
	<211>	25	
	<212>	DNA	
60	<213>	Artificial sequence	
	4000 5		•
	<220>		

WO 02/059294			
	-	•	

PCT/AU02/00073

	<223> core sequence of recombination site attL3	
	<400> 9 acccagcttt cttgtacaaa gttgg	25
5		
	<210> 10 <211> 25	
10	<212> DNA <213> Artificial sequence	
	<220>	
	<223> core sequence of recombination site attP1	
15	<400> 10 gttcagcttt tttgtacaaa gttgg	25
	gettagette tetgenean gettg	
20	<210> 11 <211> 25	
20	<212> DNA <213> Artificial sequence	
	<220>	
25	<pre><220> <223> core sequence of recombination site attP2,P3</pre>	
	<400> 11	25 .
30	gttcagcttt cttgtacaaa gttgg	25 .
ŞÜ	<210> 12	
	<211> 1188 <212> DNA	
35	<213> Artificial sequence	
	<pre><220> <223> cDNA sequence of the Arabidopsis thaliana chalcone synthase</pre>	e codin
40	g region	
40	<pre><400> 12 atggtgatgg ctggtgcttc ttctttggat gagatcagac aggctcagag agctgatgga</pre>	60
	cctgcaggca tcttggctat tggcactgct aaccctgaga accatgtgct tcaggcggag	120 .
45	tatcctgact actacttccg catcaccaac agtgaacaca tgaccgacct caaggagaag	180
	ttcaagcgca tgtgcgacaa gtcgacaatt cggaaacgtc acatgcatct gacggaggaa	240
50	ttcctcaagg aaaacccaca catgtgtgct tacatggctc cttctctgga caccagacag	300
50	gacatcgtgg tggtcgaagt ccctaagcta ggcaaagaag cggcagtgaa ggccatcaag	360
	gagtggggcc agcccaagtc aaagatcact catgtcgtct tctgcactac ctccggcgtc	420
55	gacatgcctg gtgctgacta ccagctcacc aagcttcttg gtctccgtcc ttccgtcaag	480
	cgtctcatga tgtaccagca aggttgcttc gccggcggta ctgtcctccg tatcgctaag	540
60	gatetegeeg agaacaaceg tggageaegt gteetegttg tetgetetga gateaeagee	600
00	gttaccttce gtggtccctc tgacacccac cttgactccc tcgtcggtca ggctcttttc	660

	agtgatg	gcg ccgccgcact c	attgtgggg	tcggaccctg	acacatctgt	cggagagaaa	720
	cccatct	ttg agatggtgtc t	gccgctcag	accatccttc	cagactctga	tggtgccata	780
5	gacggac	att tgagggaagt t	ggtctcacc	ttccatctcc	tcaaggatgt	tcccggcctc	840
	atctcca	aga acattgtgaa g	gagtctagac	gaagcgttta	aacctttggg	gataagtgac	900
40	tggaact	ccc tcttctggat a	gcccaccct	ggaggtccag	cgatcctaga	ccaggtggag	960
10	ataaagc	tag gactaaagga a	gagaagatg	agggcgacac	gtcacgtgtt	gagcgagtat	1020
	ggaaaca	tgt cgagcgcgtg c	gttctcttc	atactagacg	agatgaggag	gaagtcagct	1080
15	aaggatg	gtg tggccacgac a	aggagaaggg	ttggagtggg	gtgtcttgtt	tggtttcgga	1140
	ccaggtc	tca ctgttgagac a	gtcgtcttg	cacagcgttc	ctctctaa		1188
20	<211> <212>	13 18691 DNA Artificial seque	ence				
25	<220> <223>	acceptor vector	pHELLSGATI	2			•
30	<220> <221> misc_feature <222> (7922)(9985) <223> spectinomycin resistance						
35	<222>	misc_feature (10706)(11324) right T-DNA bord		nt			
40		misc_feature (11674)(13019 CaMV35S promote					
45		misc_feature					
50		(17890)(17659 attPl recombina		(complement)		
55	<222>	misc_feature (17610)(16855 ccdB selection		mplement)			
		misc_feature (16551)(16319 attP2 recombina) tion site	(complement)		

```
<220>
    <221> misc_feature
<222> (14660)..(16258)
 5 <223> pdk2 intron 2
     <220>
     <221> misc_feature
10 <222> (15002)..(15661)
<223> chloramphenicol resistance gene
    <220>
15 <221> misc_feature
    <222> (14387)..(14619)
<223> attP2 recombination site
20 <220>
    <221> misc_feature
     <222> (13675)..(13980)
<223> ccdB selection marker (complement)
25
     <220>
    <221> misc_feature
<222> (13048)..(13279)
<223> attPl recombination site
30
     <220>
     <221> misc feature
     <222> (17922)..(18687)
35 <223> octopine synthase gene terminator region
     <220>
     <221> misc_feature
40 <222> (264)..(496)
<223> nopaline synthase gene promoter
     <220>
45 <221> misc_feature
     <222> (497)..(1442)
<223> nptII coding region
50 <220>
     <221> misc_feature
     <222> (1443)..(2148)
     <223> nopaline synthase gene terminator
55
     <220>
     <221> misc_feature
<222> (2149)..(2706)
<223> a left T-DNA border region
60
     <400> 13
```

60 ggccgcacta gtgatatccc gcggccatgg cggccgggag catgcgacgt cgggcccaat 120. tcgccctata gtgagtcgta ttacaattca ctggccgtcg ttttacaacg tcgtgactgg 5 gaaaaccctg gcgttaccca acttaatcgc cttgcagcac atccccttt cgccagctgg 180 cgtaatagcg aagaggcccg caccgatcgc ccttcccaac agttgcgcag cctgaatggc 240 300 gaatggaaat tgtaaacgtt aatgggtttc tggagtttaa tgagctaagc acatacgtca 10 gaaaccatta ttgcgcgttc aaaagtcgcc taaggtcact atcagctagc aaatatttct 360 tgtcaaaaat gctccactga cgttccataa attcccctcg gtatccaatt agagtctcat 420 480 15 atteactete aateeaaata atetgeaatg geaattacet tateegeaac ttetttaeet 540 atttccgccc ggatccgggc aggttctccg gccgcttggg tggagaggct attcggctat gactgggcac aacagacaat cggctgctct gatgccgccg tgttccggct gtcagcgcag 600 20 660 gggcgcccgg ttcttttgt caagaccgac ctgtccggtg ccctgaatga actgcaggac 720 gaggeagege ggetategtg getggecaeg aegggegtte ettgegeage tgtgetegae 780 25 gttgtcactg aagcgggaag ggactggctg ctattgggcg aagtgccggg gcaggatctc ctgtcatctc accttgctcc tgccgagaaa gtatccatca tggctgatgc aatgcggcgg 840 900 ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag 30 960 cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga cgaagagcat caggggctcg cgccagccga actgttcgcc aggctcaagg cgcgcatgcc cgacggcgag 1020 1080 35 gatctcgtcg tgacccatgg cgatgcctgc ttgccgaata tcatggtgga aaatggccgc ttttctggat tcatcgactg tggccggctg ggtgtggcgg accgctatca ggacatagcg 1140 1200 ttggctaccc gtgatattgc tgaagagctt ggcggcgaat gggctgaccg cttcctcgtg 40 ctttacggta tcgccgctcc cgattcgcag cgcatcgcct tctatcgcct tcttgacgag 1260 ttcttctgag cgggactctg gggttcgaaa tgaccgacca agcgacgccc aacctgccat 1320 1380 cacgagattt cgattccacc gccgccttct atgaaaggtt gggcttcgga atcgttttcc 1440 gggacgccgg ctggatgatc ctccagcgcg gggatctcat gctggagttc ttcgcccacc ccgatccaac acttacgttt gcaacgtcca agagcaaata gaccacgaac gccggaaggt 1500 50 1560 tgccgcagcg tgtggattgc gtctcaattc tctcttgcag gaatgcaatg atgaatatga tactgactat gaaactttga gggaatactg cctagcaccg tcacctcata acgtgcatca 1620 55 tgcatgccct gacaacatgg aacatcgcta tttttctgaa gaattatgct cgttggagga 1680 tgtcgcggca attgcagcta ttgccaacat cgaactaccc ctcacgcatg cattcatcaa 1740 tattattcat gcggggaaag gcaagattaa tccaactggc aaatcatcca gcgtgattgg 1800 60 taacttcagt tccagcgact tgattcgttt tggtgctacc cacgttttca ataaggacga 1860

1920 gatggtggag taaagaagga gtgcgtcgaa gcagatcgtt caaacatttg gcaataaagt ttcttaagat tgaatcctgt tgccggtctt gcgatgatta tcatataatt tctgttgaat 1980 2040 5 tacgttaagc atgtaataat taacatgtaa tgcatgacgt tatttatgag atgggttttt atgattagag tcccgcaatt atacatttaa tacgcgatag aaaacaaaat atagcgcgca 2100 2160 aactaggata aattatcgcg cgcggtgtca tctatgttac tagatcgaat taattccagg 10 2220 cggtgaaggg caatcagctg ttgcccgtct cactggtgaa aagaaaaacc accccagtac attaaaaacg teegeaatgt gttattaagt tgtetaageg teaatttgtt tacaceacaa 2280 15 tatatectge caccagecag ecaacagete ecegacegge ageteggeae aaaateacea 2340 2400 ctcgatacag gcagcccatc agtccgggac ggcgtcagcg ggagagccgt tgtaaggcgg 2460 cagactttgc tcatgttacc gatgctattc ggaagaacgg caactaagct gccgggtttg 20 2520 aaacacggat gatctcgcgg agggtagcat gttgattgta acgatgacag agcgttgctg cctgtgatca aatatcatct ccctcgcaga gatccgaatt atcagccttc ttattcattt 2580 2640 25 ctcgcttaac cgtgacaggc tgtcgatctt gagaactatg ccgacataat aggaaatcgc tggataaagc cgctgaggaa gctgagtggc gctatttctt tagaagtgaa cgttgacgat 2700 2760 gtcgacggat cttttccgct gcataaccct gcttcggggt cattatagcg atttttcgg 30 2820 tatatccatc ctttttcqca cqatatacag gattttqcca aagggttcqt gtagactttc 2880 cttggtgtat ccaacggcgt cagccgggca ggataggtga agtaggccca cccgcgagcg 2940 35 ggtgttcctt cttcactgtc ccttattcgc acctggcggt gctcaacggg aatcctgctc 3000 tgcgaggctg qccggctacc qccggcgtaa caqatgaggg caagcggatg gctgatgaaa 3060 ccaagccaac caggggtgat gctgccaact tactgattta gtgtatgatg gtgtttttga 40 3120 ggtgctccag tggcttctgt ttctatcagc tgtccctcct gttcagctac tgacggggtg gtgcgtaacg gcaaaagcac cgccggacat cagcgctatc tctgctctca ctgccgtaaa 3180 45 acatggcaac tgcagttcac ttacaccgct tctcaacccg gtacgcacca gaaaatcatt 3240 3300 gatatggcca tgaatggcgt tggatgccgg gcaacagccc gcattatggg cgttggcctc aacacgattt tacgtcactt aaaaaactca ggccgcagtc ggtaacctcg cgcatacagc 3360 50 cgggcagtga cqtcatcqtc tgcgcggaaa tggacqaaca qtqqqgctat gtcggggcta 3420 3480 aatcgcgcca gcgctggctg ttttacgcgt atgacagtct ccggaagacg gttgttgcgc 55 acgtattcgg tgaacqcact atggcgacgc tggggcgtct tatgagcctg ctgtcaccct 3540 ttgacgtggt gatatggatg acggatggct ggccgctgta tgaatcccgc ctgaagggaa 3600 agctgcacgt aatcaqcaaq cgatatacgc agcgaattga gcggcataac ctgaatctga 3660 60 ggcagcacct ggcacggctg ggacggaagt cgctgtcgtt ctcaaaatcg gtggagctgc 3720

	atgacaaagt	catcgggcat	tatctgaaca	taaaacacta	tcaataagtt	ggagtcatta	3780
	cccaaccagg	aagggcagcc	cacctatcaa	ggtgtactgc	cttccagacg	aacgaagagc	3840
5	gattgaggaa	aaggcggcgg	cggccggcat	gagcctgtcg	gcctacctgc	tggccgtcgg	3900
	ccagggctac	aaaatcacgg	gcgtcgtgga	ctatgagcac	gtccgcgagc	tggcccgcat	3960
10	caatggcgac	ctgggccgcc	tgggcggcct	gctgaaactc	tggctcaccg	acgacccgcg	4020
10	cacggcgcgg	ttcggtgatg	ccacgatcct	cgccctgctg	gcgaagatcg	aagagaagca	4080
	ggacgagctt	ggcaaggtca	tgatgggcgt	ggtccgcccg	agggcagagc	catgactttt	4140
15	ttagccgcta	aaacggccgg	ggggtgcgcg	tgattgccaa	gcacgtcccc	atgcgctcca	4200
	tcaagaagag	cgacttcgcg	gagctggtat	tcgtgcaggg	caagattcgg	aataccaagt	4260
20	acgagaagga	cggccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	4320
20	tggacaccaa	ggcaccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	4380
	tcggggcaat	cccgcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	4440
25	aagaactgat	cgacgcgggg	tttccgccg	aggatgccga	aaccatcgca	agccgcaccg	4500
	tcatgcgtgc	gccccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	4560
30	ccaagatcga	gcgcgacagc	gtgcaactgg	ctccccctgc	cctgcccgcg	ccatcggccg	4620
50	ccgtggagcg	ttcgcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	4680
	tcgacacgcg	aggaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	4740
35	aacaggtcag	cgaggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	4800
	aaatgcagct	ttccttgttc	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	4860
40	acgacacggc	ccgctctgcc	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	4920
40	tgcaaaacaa	ggtcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	4980
	agctgcgggc	cgacgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	5040
45	cccctatcgg	cgagccgatc	accttcacgt	tctacgagct	ttgccaggac	ctgggctggt	5100
	cgatcaatgg	ccggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	5160
50	cgatgggctt	cacgtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	5220
30	tccgcgtcct	ggaccgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	5280
	tcgtcgtgct	gtttgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	5340
55	tgtcgccgac	ggcccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	5400
	tcaagctgga	aaccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	5460
60	gcgagcaggt	cggcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	5520
00	gggtcaatga	tgacctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	5580

	ggggttcagc	agccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	5640
	cttgcttcgc	tcagtatcgc	tcgggacgca	cggcgcgctc	tacgaactgc	cgataaacag	5700
5	aggattaaaa	ttgacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	5760
	gcaggatttc	cgcgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	5820
10	cgtttacgag	cacgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	5880
10	cgtggcattc	ggcgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	5940
	ggacggcccc	aaggacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	6000
15	gcgaggccga	ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	6060
	gatgatcgtc	cgacagattc	caacgggaat	ctggtggatg	cgcatcttca	tecteggege	6120
20	acttaatatt	tcgctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	6180
20	ggtcgcggcg	acggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	6240
	gctaggtagc	ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	6300
25	ggcgctgttg	gtgttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	6360
	ggcgggggcg	gtttccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	6420
30	gcctctgctc	acctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	6480
30	agctttagtg	tttgatccgc	caatcccgat	gcctacagga	accaatgttc	teggeetgge	6540
	gtggctcggc	ctgatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	6600
35	actcgaacct	acagttgttt	ccttactggg	ctttctcagc	cgggatggcg	ctaagaagct	6660
	attgccgccg	atcttcatat	gcggtgtgaa	ataccgcaca	gatgcgtaag	gagaaaatac	6720
40	cgcatcaggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	6780
40	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	6840
	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	6900
45	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	aaatcgacgc	6960
	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tccccctgga	7020
50	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	7080
50	ctcccttcgg	gaagcgtggc	gctttctcaa	tgctcacgct	gtaggtatct	cagttcggtg	7140
	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	7200
55	gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	7260
	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	7320
60	ttgaagtggt	ggcctaacta	cggctacact	agaaggacag	tatttggtat	ctgcgctctg	7380
JU	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	acaaaccacc	7440

	gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatat	7500
	caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	agtggaacga	aaactcacgt	7560
5	taagggattt	tggtcatgag	attatcaaaa	aggatcttca	cctagatcct	tttaaattaa	7620
	aaatgaagtt	ttaaatcaat	ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	7680
40	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	catagttgcc	7740
10	tgactccccg	tcgtgtagat	aactacgata	cgggagggct	taccatctgg	ccccagtgct	7800
	gcaatgatac	cgcgagaccc	acgctcaccg	gctccagatt	tatcagcaat	aaaccagcca	7860
15	gccggaaggg	ccgagcgcag	aagtggtcct	gcaactttat	ccgcctccat	ccagtctatt	7920
	aaacaagtgg	cagcaacgga	ttcgcaaacc	tgtcacgcct	tttgtgccaa	aagccgcgcc	7980
20	aggtttgcga	tccgctgtgc	caggcgttag	gcgtcatatg	aagatttcgg	tgatccctga	8040
20	gcaggtggcg	gaaacattgg	atgctgagaa	ccatttcatt	gttcgtgaag	tgttcgatgt	8100
	gcacctatcc	gaccaaggct	ttgaactatc	taccagaagt	gtgagcccct	accggaagga	8160
25	ttacatctcg	gatgatgact	ctgatgaaga	ctctgcttgc	tatggcgcat	tcatcgacca	8220
	agagcttgtc	gggaagattg	aactcaactc	aacatggaac	gatctagcct	ctatcgaaca	8280
20	cattgttgtg	tcgcacacgc	accgaggcaa	aggagtcgcg	cacagtetca	tcgaatttgc	8340
30	gaaaaagtgg	gcactaagca	gacagctcct	tggcatacga	ttagagacac	aaacgaacaa	8400
	tgtacctgcc	tgcaatttgt	acgcaaaatg	tggctttact	ctcggcggca	ttgacctgtt	8460
35	cacgtataaa	actagacctc	aagtctcgaa	cgaaacagcg	atgtactggt	actggttctc	8520
	gggagcacag	gatgacgcct	aacaattcat	tcaagccgac	accgcttcgc	ggcgcggctt	8580
40	aattcaggag	ttaaacatca	tgagggaagc	ggtgatcgcc	gaagtatcga	ctcaactatc	8640
40	agaggtagtt	ggcgtcatcg	agcgccatct	cgaaccgacg	ttgctggccg	tacatttgta	8700
	cggctccgca	gtggatggcg	gcctgaagcc	acacagtgat	attgatttgc	tggttacggt	8760
45	gaccgtaagg	cttgatgaaa	caacgcggcg	agctttgatc	aacgaccttt	tggaaacttc	8820
	ggcttcccct	ggagagagcg	agattctccg	cgctgtagaa	gtcaccattg	ttgtgcacga	8880
5 0	cgacatcatt	ccgtggcgtt	atccagctaa	gcgcgaactg	caatttggag	aatggcagcg	8940
50	caatgacatt	cttgcaggta	tcttcgagcc	agccacgatc	gacattgatc	tggctatctt	9000
	gctgacaaaa	gcaagagaac	atagcgttgc	cttggtaggt	ccagcggcgg	aggaactctt	9060
55	tgatccggtt	cctgaacagg	atctatttga	ggcgctaaat	gaaaccttaa	cgctatggaa	9120
	ctcgccgccc	gactgggctg	gcgatgagcg	aaatgtagtg	cttacgttgt	cccgcatttg	9180
60	gtacagcgca	gtaaccggca	aaatcgcgcc	gaaggatgtc	gctgccgact	gggcaatgga	9240
60	gcgcctgccg	gcccagtatc	agcccgtcat	acttgaagct	aggcaggctt	atcttggaca	9300

	agaagatcgc	ttggcctcgc	gcgcagatca	gttggaagaa	tttgttcact	acgtgaaagg	9360
	cgagatcacc	aaggtagtcg	gcaaataatg	tctaacaatt	cgttcaagcc	gacgccgctt	9420
5	cgcggcgcgg	cttaactcaa	gcgttagaga	gctggggaag	actatgcgcg	atctgttgaa	9480
	ggtggttcta	agcctcgtac	ttgcgatggc	atcggggcag	gcacttgctg	acctgccaat	9540
10	tgttttagtg	gatgaagctc	gtcttcccta	tgactactcc	ccatccaact	acgacatttc	9600
10	tccaagcaac	tacgacaact	ccataagcaa	ttacgacaat	agtccatcaa	attacgacaa	9660
	ctctgagagc	aactacgata	atagttcatc	caattacgac	aatagtcgca	acggaaatcg	9720
15	taggcttata	tatagcgcaa	atgggtctcg	cactttcgcc	ggctactacg	tcattgccaa	9780
	caatgggaca	acgaacttct	tttccacatc	tggcaaaagg	atgttctaca	ccccaaaagg	9840
20	ggggcgcggc	gtctatggcg	gcaaagatgg	gagcttctgc	ggggcattgg	tcgtcataaa	9900
20	tggccaattt	tcgcttgccc	tgacagataa	cggcctgaag	atcatgtatc	taagcaacta	9960
	gcctgctctc	taataaaatg	ttaggagctt	ggctgccatt	tttggggtga	ggccgttcgc	10020
25	ggiccgagggg	cgcagcccct	ggggggatgg	gaggcccgcg	ttagcgggcc	gggagggttc	10080
	gagaaggggg	ggcaccccc	ttcggcgtgc	gcggtcacgc	gccagggcgc	agccctggtt	10140
30	aaaaacaagg	tttataaata	ttggtttaaa	agcaggttaa	aagacaggtt	agcggtggcc	10200
30	gaaaaacggg	cggaaaccct	tgcaaatgct	ggattttctg	cctgtggaca	gcccctcaaa	10260
	tgtcaatagg	tgcgcccctc	atctgtcagc	actctgcccc	tcaagtgtca	aggatcgcgc	10320
35	ccctcatctg	tcagtagtcg	cgcccctcaa	gtgtcaatac	cgcagggcac	ttatccccag	10380
	gcttgtccac	atcatctgtg	ggaaactcgc	gtaaaatcag	gcgttttcgc	cgatttgcga	10440
40	ggctggccag	ctccacgtcg	ccggccgaaa	tcgagcctgc	ccctcatctg	tcaacgccgc	10500
40	gccgggtgag	teggeeeete	aagtgtcaac	gtccgcccct	catctgtcag	tgagggccaa	10560
	gttttccgcg	aggtatccac	aacgccggcg	geeggeegeg	gtgtctcgca	cacggcttcg	10620
45	acggcgtttc	tggcgcgttt	gcagggccat	agacggccgc	cagcccagcg	gcgagggcaa	10680
	ccagcccggt	gagcgtcgga	aagggtcgac	atcttgctgc	gttcggatat	tttcgtggag	10740
50	ttcccgccac	agacccggat	tgaaggcgag	atccagcaac	tcgcgccaga	tcatcctgtg	10800
50	acggaacttt	ggcgcgtgat	gactggccag	gacgtcggcc	gaaagagcga	caagcagatc	10860
	acgattttcg	acagcgtcgg	atttgcgatc	gaggattttt	cggcgctgcg	ctacgtccgc	10920
55	gaccgcgttg	agggatcaag	ccacagcagc	ccactcgacc	ttctagccga	cccagacgag	10980
	ccaagggatc	tttttggaat	gctgctccgt	cgtcaggctt	tccgacgttt	gggtggttga	11040
60	acagaagtca	ttatcgtacg	gaatgccagc	actcccgagg	ggaaccctgt	ggttggcatg	11100
00	cacatacaaa	tggacgaacg	gataaacctt	ttcacgccct	tttaaatatc	cgttattcta	11160

ataaacgctc ttttctctta ggtttacccg ccaatatatc ctgtcaaaca ctgatagttt 11220 aaactgaagg cgggaaacga caatctgatc atgagcggag aattaaggga gtcacgttat 11280 5 gacccccgcc gatgacgcgg gacaagccgt tttacgtttg gaactgacag aaccgcaacg 11340 attqaaqqaq ccactcaqcc ccaatacgca aaccgcctct ccccgcgcgt tggccgattc 11400 11460 10 ttaatgtgag ttagctcact cattaggcac cccaggcttt acactttatg cttccggctc 11520 gtatgttgtg tggaattgtg agcggataac aatttcacac aggaaacagc tatgaccatg 11580 15 attacgccaa gctatttagg tgacactata gaatactcaa gctatgcatc caacgcgttg 11640 ggagetetee catategace tgeaggegge egetegaega attaatteea ateccacaaa 11700 aatctgagct taacagcaca gttgctcctc tcagagcaga atcgggtatt caacaccctc 11760 20 11820 atatcaacta ctacgttgtg tataacggtc cacatgccgg tatatacgat gactggggtt 11880 gtacaaaggc ggcaacaaac ggcqttcccg gagttgcaca caagaaattt gccactatta 11940 25 cagaggcaag agcagcagct gacgcgtaca caacaagtca gcaaacagac aggttgaact tcatccccaa aggagaaget caactcaage ccaagagett tgctaaggee ctaacaagee 12000 12060 caccaaaqca aaaaqcccac tqqctcacqc taggaaccaa aaggcccagc agtgatccag 30 ccccaaaaga gatctccttt gccccggaga ttacaatgga cgatttcctc tatctttacg 12120 atctaggaag gaagttcgaa ggtgaaggtg acgacactat gttcaccact gataatgaga 12180 35 aggttagcct cttcaatttc agaaagaatg ctgacccaca gatggttaga gaggcctacg 12240 12300 cagcaggtct catcaagacg atctacccga gtaacaatct ccaggagatc aaataccttc 12360 ccaagaaggt taaagatgca gtcaaaagat tcaggactaa ttgcatcaag aacacagaga 40 aagacatatt totcaagato agaagtacta ttocagtatg gacgattcaa ggottgotto 12420 ataaaccaag gcaagtaata gagattggag tctctaaaaa ggtagttcct actgaatcta 12480 45 aggccatgca tggagtctaa gattcaaatc gaggatctaa cagaactcgc cgtgaagact 12540 12600 ggcgaacagt tcatacagag tcttttacga ctcaatgaca agaagaaaat cttcgtcaac atggtggagc acgacactct ggtctactcc aaaaatgtca aagatacagt ctcagaagac 12660 50 caaagggcta ttgagacttt tcaacaaagg ataatttcgg gaaacctcct cggattccat 12720 12780 tgcccagcta tctgtcactt catcgaaagg acagtagaaa aggaaggtgg ctcctacaaa 55 tgccatcatt gcgataaagg aaaggctatc attcaagatc tctctgccga cagtggtccc 12840 aaagatggac ccccacccac gaggagcatc gtggaaaaag aagacgttcc aaccacgtct 12900 tcaaagcaag tggattgatg tgacatctcc actgacgtaa gggatgacgc acaatcccac 12960 60 tatccttcgc aagacccttc ctctatataa ggaagttcat ttcatttgga gaggacacgc

	tcgaggctag	catggatctc	gggccccaaa	taatgatttt	attttgactg	atagtgacct	13080
	gttcgttgca	acaaattgat	gagcaatgct	tttttataat	gccaactttg	tacaaaaaag	13140
5	ctgaacgaga	aacgtaaaat	gatataaata	tcaatatatt	aaattagatt	ttgcataaaa	13200
	aacagactac	ataatactgt	aaaacacaac	atatccagtc	actatgaatc	aactacttag	13260
10	atggtattag	tgacctgtag	tcgaccgaca	gccttccaaa	tgttcttcgg	gtgatgctgc	13320
10	caacttagtc	gaccgacagc	cttccaaatg	ttcttctcaa	acggaatcgt	cgtatccagc	13380
	ctactcgcta	ttgtcctcaa	tgccgtatta	aatcataaaa	agaaataaga	aaaagaggtg	13440
15	cgagcctctt	ttttgtgtga	caaaataaaa	acatctacct	attcatatac	gctagtgtca	13500
	tagtcctgaa	aatcatctgc	atcaagaaca	atttcacaac	tcttatactt	ttctcttaca	13560
20	agtcgttcgg	cttcatctgg	attttcagcc	tctatactta	ctaaacgtga	taaagtttct	13620
20	gtaatttcta	ctgtatcgac	ctgcagactg	gctgtgtata	agggagcctg	acatttatat	13680
	tccccagaac	atcaggttaa	tggcgttttt	gatgtcattt	tcgcggtggc	tgagatcagc	13740
25	cacttcttcc	ccgataacgg	agaccggcac	actggccata	tcggtggtca	tcatgcgcca	13800
	gctttcatcc	ccgatatgca	ccaccgggta	aagttcacgg	gagactttat	ctgacagcag	13860
30	acgtgcactg	gccaggggga	tcaccatccg	tcgcccgggc	gtgtcaataa	tatcactctg	13920
50	tacatccaca	aacagacgat	aacggctctc	tcttttatag	gtgtaaacct	taaactgcat	13980
	ttcaccagtc	cctgttctcg	tcagcaaaag	agccgttcat	ttcaataaac	cgggcgacct	14040
35	cagccatccc	ttcctgattt	teegetttee	agcgttcggc	acgcagacga	cgggcttcat	14100
	tctgcatggt	tgtgcttacc	agaccggaga	tattgacatc	atatatgcct	tgagcaactg	14160
40	atagctgtcg	ctgtcaactg	tcactgtaat	acgctgcttc	atagcacacc	tctttttgac	14220
10	atacttcggg	tagtgccgat	caacgtctca	ttttcgccaa	aagttggccc	agggcttccc	14280
	ggtatcaaca	gggacaccag	gatttattta	ttctgcgaag	tgatcttccg	tcacaggtat	14340
45	ttattcggcg	caaagtgcgt	cgggtgatgc	tgccaactta	gtcgactaca	ggtcactaat	14400
	accatctaag	tagttgattc	atagtgactg	gatatgttgt	gttttacagt	attatgtagt	14460
50	ctgtttttta	tgcaaaatct	aatttaatat	attgatattt	atatcatttt	acgtttctcg	14520
00	ttcagctttc	ttgtacaaag	ttggcattat	aagaaagcat	tgcttatcaa	tttgttgcaa	14580
	cgaacaggtc	actatcagtc	aaaataaaat	cattatttgc	catccagctg	cagetecteg	14640
55	aggaattcgg	taccccaatt	ggtaaggaaa	taattattt	cttttttcct	tttagtataa	14700
	aatagttaag	tgatgttaat	tagtatgatt	ataataatat	agttgttata	attgtgaaaa	14760
60	aataatttat	aaatatattg	tttacataaa	caacatagta	atgtaaaaaa	atatgacaag	14820
50	tgatgtgtaa	gacgaagaag	ataaaagttg	agagtaagta	tattatttt	aatgaatttg	14880

		taagatgata					14940
	aagatcacta	ccgggcgtat	tttttgagtt	atcgagattt	tcaggagcta	aggaagctaa	15000
5	aatggagaaa	aaaatcactg	gatataccac	cgttgatata	tcccaatggc	atcgtaaaga	15060
	acattttgag	gcatttcagt	cagttgctca	atgtacctat	aaccagaccg	ttcagctgga	15120
10	tattacggcc	tttttaaaga	ccgtaaagaa	aaataagcac	aagttttatc	cggcctttat	15180
	tcacattctt	gcccgcctga	tgaatgctca	tccggaattc	cgtatggcaa	tgaaagacgg	15240
	tgagctggtg	atatgggata	gtgttcaccc	ttgttacacc	gttttccatg	agcaaactga	15300
15	aacgttttca	tcgctctgga	gtgaatacca	cgacgatttc	cggcagtttc	tacacatata	15360
	ttcgcaagat	gtggcgtgtt	acggtgaaaa	cctggcctat	ttccctaaag	ggtttattga	15420
20	gaatatgttt	ttcgtctcag	ccaatccctg	ggtgagtttc	accagttttg	atttaaacgt	15480
20	ggccaatatg	gacaacttct	tcgcccccgt	tttcaccatg	ggcaaatatt	atacgcaagg	15540
	cgacaaggtg	ctgatgccgc	tggcgattca	ggttcatcat	gccgtctgtg	atggcttcca	15600
25	tgtcggcaga	atgcttaatg	aattacaaca	gtactgcgat	gagtggcagg	gcggggcgta	15660
	atcgcgtgga	tccggcttac	taaaagccag	ataacagtat	gcgtatttgc	gcgctgattt	15720
20	ttgcggtata	agaatatata	ctgatatgtc	gggcccataa	tagtaattct	agctggtttg	15780
30	atgaattaaa	tatcaatgat	aaaatactat	agtaaaaata	agaataaata	aattaaaata	15840
	atatttttt	atgattaata	gtttattata	taattaaata	tctataccat	tactaaatat	15900
35	tttagtttaa	aagttaataa	atattttgtt	agaaattcca	atctgcttgt	aatttatcaa	15960
	taaacaaaat	attaaataac	aagctaaagt	aacaaataat	atcaaactaa	tagaaacagt	16020
40	aatctaatgt	aacaaaacat	aatctaatgc	taatataaca	aagcgcaaga	tctatcattt	16080
40	tatatagtat	tattttcaat	caacattctt	attaatttct	aaataatact	tgtagtttta	16140
	ttaacttcta	aatggattga	ctattaatta	aatgaattag	tcgaacatga	ataaacaagg	16200
45	taacatgata	gatcatgtca	ttgtgttatc	: attgatctta	catttggatt	gattacagtt	16260
	gggaaattgg	gttcgaaatc	gataagcttg	gatectetag	agagctgcag	ctggatggca	16320
	aataatgatt	ttattttgac	tgatagtgad	: ctgttcgttg	caacaaattg	ataagcaatg	16380
50	ctttcttata	atgccaactt	tgtacaagaa	agctgaacga	gaaacgtaaa	atgatataaa	16440
	tatcaatata	ttaaattaga	ttttgcataa	aaaacagact	: acataatact	gtaaaacaca	16500
55	acatatccag	tcactatgaa	tcaactactt	agatggtatt	agtgacctgt	agtcgactaa	16560
	gttggcagca	tcacccgacg	cactttgcg	cgaataaata	cctgtgacgo	g aagatcactt	16620
	cgcagaataa	ataaatcctg	gtgtccctgt	: tgataccggg	aagccctgg	ccaacttttg	16680
60						ttctcttaca	16740

	agtcgttcgg	cttcatctgg	attttcagcc	tctatactta	ctaaacgtga	taaagtttct	16800
5	gtaatttcta	ctgtatcgac	ctgcagactg	gctgtgtata	agggagcctg	acatttatat	16860
	tccccagaac	atcaggttaa	tggcgttttt	gatgtcattt	tcgcggtggc	tgagatcagc	16920
	cacttcttcc	ccgataacgg	agaccggcac	actggccata	tcggtggtca	tcatgcgcca	16980
10	gctttcatcc	ccgatatgca	ccaccgggta	aagttcacgg	gagactttat	ctgacagcag	17040
	acgtgcactg	gccaggggga	tcaccatccg	tcgcccgggc	gtgtcaataa	tatcactctg	17100
	tacatccaca	aacagacgat	aacggctctc	tcttttatag	gtgtaaacct	taaactgcat	17160
15	ttcaccagtc	cctgttctcg	tcagcaaaag	agccgttcat	ttcaataaac	cgggcgacct	17220
	cagccatccc	ttcctgattt	tccgctttcc	agcgttcggc	acgcagacga	cgggcttcat	17280
20	tctgcatggt	tgtgcttacc	agaccggaga	tattgacatc	atatatgcct	tgagcaactg	17340
	atagctgtcg	ctgtcaactg	tcactgtaat	acgctgcttc	atagcacacc	tctttttgac	17400
٠	atacttctgt	tcttgatgca	gatgattttc	aggactatga	cactagcgta	tatgaatagg	17460
25	tagatgtttt	tattttgtca	cacaaaaaag	aggctcgcac	ctctttttct	tatttctttt	17520
	tatgatttaa	tacggcattg	aggacaatag	cgagtaggct	ggatacgacg	attccgtttg	17580
30	agaagaacat	ttggaaggct	gtcggtcgac	taagttggca	gcatcacccg	aagaacattt	17640
	ggaaggctgt	cggtcgacta	caggtcacta	ataccatcta	agtagttgat	tcatagtgac	17700
	tggatatgtt	gtgttttaca	gtattatgta	gtctgttttt	tatgcaaaat	ctaatttaat	17760
35	atattgatat	ttatatcatt	ttacgtttct	cgttcagctt	ttttgtacaa	agttggcatt	17820
	ataaaaaagc	attgctcatc	aatttgttgc	aacgaacagg	tcactatcag	tcaaaataaa	17880
40	atcattattt	ggggcccgag	atccatgcta	gctctagagt	cctgctttaa	tgagatatgc	17940
	gagacgccta	tgatcgcatg	atatttgctt	tcaattctgt	tgtgcacgtt	gtaaaaaacc	18000
	tgagcatgtg	tagctcagat	ccttaccgcc	ggtttcggtt	cattctaatg	aatatatcac	18060
45	ccgttactat	cgtattttta	tgaataatat	tctccgttca	atttactgat	tgtaccctac	18120
	tacttatatg	tacaatatta	aaatgaaaac	aatatattgt	gctgaatagg	tttatagcga	18180
50	catctatgat	agagcgccac	aataacaaac	aattgcgttt	tattattaca	aatccaattt	18240
	taaaaaaagc	ggcagaaccg	gtcaaaccta	aaagactgat	tacataaatc	ttattcaaat	18300
	ttcaaaaggc	cccaggggct	agtatctacg	acacaccgag	cggcgaacta	ataacgttca	18360
55	ctgaagggaa	ctccggttcc	ccgccggcgc	gcatgggtga	gattccttga	agttgagtat	18420
	tggccgtccg	ctctaccgaa	agttacgggc	accattcaac	ccggtccagc	acggcggccg	18480
60	ggtaaccgac	ttgctgcccc	gagaattatg	cagcattttt	ttggtgtatg	tgggccccaa	18540
	atgaagtgca	ggtcaaacct	tgacagtgac	gacaaatcgt	tgggcgggtc	cagggcgaat	18600

<220>

tttgcgacaa catgtcgagg ctcagcagga cctgcaggca tgcaagctag cttactagtg 18660 18691 atgcatattc tatagtgtca cctaaatctg c 5 <210> 14 <211> 59 <212> DNA <213> Artificial sequence 10 <220> <223> forward primer used for the amplification of 200 and 400 bp CHS f ragments 15 <400> 14 ggggacaagt ttgtacaaaa aagcaggctg cactgctaac cctgagaacc atgtgcttc 59 <210> 15 20 <211> 59 <212> DNA <213> Artificial sequence <220> 25 <223> reverse primer for amplification of 400 bp CHS fragment <400> 15 ggggaccact ttgtacaaga aagctgggtc gcttgacgga aggacggaga ccaagaagc 59 30 <210> 16 <211> 59 <212> DNA <213> Artificial sequence 35 <220> <223> reverse primer for amplification of 200bp CHS fragment <400> 16 59 40 ggggaccact ttgtacaaga aagctgggta ggagccatgt aagcacacat gtgtgggtt <210> 17 <211> 100 45 <212> DNA <213> Artificial sequence <220> <223> forward primer for amplification of 100bp CHS fragment 50 <400> 17 ggggacaagt ttgtacaaaa aagcaggctg cactgctaac cctgagaacc atgtgcttca 60 100 ggcggagtat cctgactact acttccgcat caccaacagt 55 <210> 18 <211> 100 <212> DNA 60 <213> Artificial sequence

<211> 15

WO 02/059294 PCT/AU02/00073

17

<223> reverse primer for amplification of 100 bp CHS fragment ggggaccact ttgtacaaga aagctgggta acttctcctt gaggtcggtc atgtgttcac 60 100 tgttggtgat gcggaagtag tagtcaggat actccgcctg <210> 19 10 <211> 79 <212> DNA <213> Artificial sequence 15 <223> forward primer for amplification of 50 bp CHS fragment <400> 19 ggggacaagt ttgtacaaaa aagcaggctg cactgctaac cctgagaacc atgtgcttca 60 20 ggcggagtat cctgactac 79 <210> 20 <211> 79 25 <212> DNA <213> Artificial sequence <220> <223> reverse primer for 50 bp CHS fragment 30 <400> 20 ggggaccact ttgtacaaga aagctgggtg tagtcaggat actccgcctg aagcacatgg 60 ttctcagggt tagcagtgc 79 35 <210> 21 <211> 54 <212> DNA 40 <213> Artificial sequence <220> <223> forward primer for amplification of the 25 bp CHS fragment 45 <400> 21 54 ggggacaagt ttgtacaaaa aagcaggctg cactgctaac cctgagaacc atgt <210> 22 50 <211> 54 <212> DNA <213> Artificial sequence <220> 55 <223> reverse primer for amplification of the 25 bp CHS fragment 54 ggggaccact ttgtacaaga aagctgggta catggttctc agggttagca gtgc 60 <210> 23

18

<212> DNA <213> Artificial sequence <220> 5 <223> acceptor vector pHELLSGATE4 <400> 23 15 aaaaaaaaa aaaaa 10 <210> 24 <211> 17476 <212> DNA <213> Artificial sequence 15 <220> <223> acceptor vector pHELLSGATE8 <400> 24 60 20 ggccgcacta gtgatatccc gcggccatgg cggccgggag catgcgacgt cgggcccaat tcgccctata gtgagtcgta ttacaattca ctggccgtcg ttttacaacg tcgtgactgg 120 180 gaaaaccctg gcgttaccca acttaatcgc cttgcagcac atcccccttt cgccagctgg 25 240 cgtaatagcg aagaggcccg caccgatcgc ccttcccaac agttgcgcag cctgaatggc 300 gaatggaaat tgtaaacgtt aatgggtttc tggagtttaa tgagctaagc acatacgtca 360 30 gaaaccatta ttgcgcgttc aaaagtcgcc taaggtcact atcagctagc aaatatttct 420 tgtcaaaaat gctccactga cgttccataa attcccctcg gtatccaatt agagtctcat attcactctc aatccaaata atctgcaatg gcaattacct tatccgcaac ttctttacct 480 35 atttccgccc ggatccgggc aggttctccg gccgcttggg tggagaggct attcggctat 540 600 gactgggcac aacagacaat cggctgctct gatgccgccg tgttccggct gtcagcgcag 660 40 gggcgcccgg ttctttttgt caagaccgac ctgtccggtg ccctgaatga actgcaggac gaggcagcgc ggctatcgtg gctggccacg acgggcgttc cttgcgcagc tgtgctcgac 720 780 gttgtcactg aagcgggaag ggactggctg ctattgggcg aagtgccggg gcaggatctc 45 840 ctgtcatctc accttgctcc tgccgagaaa gtatccatca tggctgatgc aatgcggcgg 900 ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag 960 cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga cgaagagcat caggggeteg egecageega actgttegee aggeteaagg egegeatgee egaeggegag 1020 gatctcgtcg tgacccatgg cgatgcctgc ttgccgaata tcatggtgga aaatggccgc 1080 55 ttttctggat tcatcgactg tggccggctg ggtgtggcgg accgctatca ggacatagcg 1140 ttggctaccc gtgatattgc tgaagagctt ggcggcgaat gggctgaccg cttcctcgtg 1200 1260 60 ctttacggta tegeogetee egattegeag egeategeet tetategeet tettgacgag ttcttctgag cgggactctg gggttcgaaa tgaccgacca agcgacgccc aacctgccat 1320

cacgagattt cgattccacc gccgccttct atgaaaggtt gggcttcgga atcgttttcc 1380 gggacgccgg ctggatgatc ctccagcgcg gggatctcat gctggagttc ttcgcccacc 1440 5 1500 ccgatccaac acttacgttt gcaacgtcca agagcaaata gaccacgaac gccggaaggt tgccgcagcg tgtggattgc gtctcaattc tctcttgcag gaatgcaatg atgaatatga 1560 10 tactgactat gaaactttga gggaatactg cctagcaccg tcacctcata acgtgcatca 1620 1680 tgcatgccct gacaacatgg aacatcgcta tttttctgaa gaattatgct cgttggagga tgtcgcggca attgcagcta ttgccaacat cgaactaccc ctcacgcatg cattcatcaa 1740 15 1800 tattattcat qcqqqqaaaq qcaaqattaa tccaactqqc aaatcatcca qcqtqattqq 1860 taacttcagt tccagcgact tgattcgttt tggtgctacc cacgttttca ataaggacga 20 gatggtggag taaagaagga gtgcgtcgaa gcagatcgtt caaacatttg gcaataaagt 1920 1980 ttcttaagat tqaatcctgt tqccqqtctt qcqatqatta tcatataatt tctgttgaat 2040 tacgttaagc atgtaataat taacatgtaa tgcatgacgt tatttatgag atgggttttt 25 2100 atgattagag tcccgcaatt atacatttaa tacgcgatag aaaacaaaat atagcgcgca aactaggata aattategeg egeggtgtea tetatgttae tagategaat taatteeagg 2160 2220 30 eggtgaaggg caatcagctg ttgcccgtct cactggtgaa aagaaaaacc accccagtac 2280 attaaaaacg tccgcaatgt gttattaagt tgtctaagcg tcaatttgtt tacaccacaa tatateetge caccagecag ccaacagete eccgacegge ageteggeac aaaateacca 2340 35 2400 ctcgatacag gcagcccatc agtccgggac ggcgtcagcg ggagagccgt tgtaaggcgg cagactttgc tcatgttacc gatgctattc ggaagaacgg caactaagct gccgggtttg 2460 2520 40 aaacacggat gatctcgcgg agggtagcat gttgattgta acgatgacag agcgttgctg cctgtgatca aatatcatct ccctcgcaga gatccgaatt atcagccttc ttattcattt 2580 2640 ctcgcttaac cqtqacaqqc tqtcgatctt gagaactatg ccgacataat aggaaatcgc 45 2700 tggataaagc cgctgaggaa gctgagtggc gctatttctt tagaagtgaa cgttgacgat 2760 gtcgacggat cttttccgct gcataaccct gcttcggggt cattatagcg attttttcgg 2820 50 tatatccatc ctttttcgca cgatatacag gattttgcca aagggttcgt gtagactttc 2880 cttggtgtat ccaacqqcqt cagccgggca ggataggtga agtaggccca cccgcgagcg 2940 ggtgttcctt cttcactgtc ccttattcgc acctggcggt gctcaacggg aatcctgctc 55 tgcgaggctg gccggctacc qccggcgtaa cagatgaggg caagcggatg gctgatgaaa 3000 3060 ccaagccaac caggggtgat gctgccaact tactgattta gtgtatgatg gtgtttttga 3120 60 ggtgctccag tggcttctgt ttctatcagc tgtccctcct gttcagctac tgacggggtg

gtgcgtaacg gcaaaagcac cgccggacat cagcgctatc tctgctctca ctgccgtaaa

3180

	acatggcaac	tgcagttcac	ttacaccgct	tctcaacccg	gtacgcacca	gaaaatcatt	3240
_	gatatggcca	tgaatggcgt	tggatgccgg	gcaacagccc	gcattatggg	cgttggcctc	3300
5	aacacgattt	tacgtcactt	aaaaactca	ggccgcagtc	ggtaacctcg	cgcatacagc	3360
	cgggcagtga	cgtcatcgtc	tgcgcggaaa	tggacgaaca	gtggggctat	gtcggggcta	3420
10	aatcgcgcca	gcgctggctg	ttttacgcgt	atgacagtct	ccggaagacg	gttgttgcgc	3480
	acgtattcgg	tgaacgcact	atggcgacgc	tggggcgtct	tatgagcctg	ctgtcaccct	3540
15	ttgacgtggt	gatatggatg	acggatggct	ggccgctgta	tgaatcccgc	ctgaagggaá	3600
13	agctgcacgt	aatcagcaag	cgatatacgc	agcgaattga	gcggcataac	ctgaatctga	3660
	ggcagcacct	ggcacggctg	ggacggaagt	cgctgtcgtt	ctcaaaatcg	gtggagctgc	3720
20	atgacaaagt	catcgggcat	tatctgaaca	taaaacacta	tcaataagtt	ggagtcatta	3780
	cccaaccagg	aagggcagcc	cacctatcaa	ggtgtactgc	cttccagacg	aacgaagagc	3840
25	gattgaggaa	aaggcggcgg	cggccggcat	gagcctgtcg	gcctacctgc	tggccgtcgg	3900
20	ccagggctac	aaaatcacgg	gcgtcgtgga	ctatgagcac	gtccgcgagc	tggcccgcat	3960
	caatggcgac	ctgggccgcc	tgggcggcct	gctgaaactc	tggctcaccg	acgacccgcg	4020
30	cacggcgcgg	ttcggtgatg	ccacgatect	cgccctgctg	gcgaagatcg	aagagaagca	4080
	ggacgagctt	ggcaaggtca	tgatgggcgt	ggtccgcccg	agggcagagc	catgactttt	4140
35	ttagccgcta	aaacggccgg	ggggtgcgcg	tgattgccaa	gcacgtcccc	atgcgctcca	4200
00	tcaagaagag	cgacttcgcg	gagctggtat	tcgtgcaggg	caagattcgg	aataccaagt	4260
	acgagaagga	cggccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	4320
40	tggacaccaa	ggcaccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	4380
	teggggcaat	cccgcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	4440
45	aagaactgat	cgacgcgggg	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	4500
10	tcatgcgtgc	gccccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	4560
	ccaagatcga	gcgcgacagc	gtgcaactgg	ctcccctgc	cctgcccgcg	ccatcggccg	4620
50	ccgtggagcg	ttcgcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	4680
	tcgacacgcg	aggaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	4740
55	aacaggtcag	cgaggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	4800
00	aaatgcagct	ttccttgttc	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	4860
	acgacacggc	ccgctctgcc	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	4920
60	tgcaaaacaa	ggtcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	4980
	agctgcgggc	cgacgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	5040

	cccctatcgg	cgagccgatc	accttcacgt	tctacgagct	ttgccaggac	ctgggctggt	5100
5	cgatcaatgg	ccggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	5160
3	cgatgggctt	cacgtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	5220
	tccgcgtcct	ggaccgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	5280
10	tcgtcgtgct	gtttgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	5340
	tgtcgccgac	ggcccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	5400
15	tcaagctgga	aaccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	5460
10	gcgagcaggt	cggcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	5520
	gggtcaatga	tgacctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	5580
20	ggggttcagc	agccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	5640
	cttgcttcgc	tcagtatcgc	tcgggacgca	cggcgcgctc	tacgaactgc	cgataaacag	5700
25	aggattaaaa	ttgacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	5760
20	gcaggatttc	cgcgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	5820
	cgtttacgag	cacgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	5880
30	cgtggcattc	ggcgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	5940
	ggacggcccc	aaggacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	6000
35	gcgaggccga	ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	6060
33	gatgatcgtc	cgacagattc	caacgggaat	ctggtggatg	cgcatcttca	tecteggege	6120
	acttaatatt	tegetattet	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	6180
40	ggtcgcggcg	acggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	6240
	gctaggtagc	ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	6300
45	ggcgctgttg	gtgttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	6360
40	ggcgggggcg	gtttccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	6420
	gcctctgctc	acctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	6480
50	agctttagtg	tttgatccgc	caatcccgat	gcctacagga	accaatgttc	teggeetgge	6540
	gtggctcggc	ctgatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	6600
	actcgaacct	acagttgttt	ccttactggg	ctttctcagc	cgggatggcg	ctaagaagct	6660
55	attgccgccg	atcttcatat	gcggtgtgaa	ataccgcaca	gatgcgtaag	gagaaaatac	6720
	cgcatcaggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	6780
60	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	6840
	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	6900

	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	aaatcgacgc	6960
E	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tcccctgga	7020
5	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	7080
	ctcccttcgg	gaagcgtggc	gctttctcaa	tgctcacgct	gtaggtatct	cagttcggtg	7140
10	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	7200
	gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	7260
15	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	7320
10	ttgaagtggt	ggcctaacta	cggctacact	agaaggacag	tatttggtat	ctgcgctctg	7380
	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	acaaaccacc	7440
20	gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatat	7500
	caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	agtggaacga	aaactcacgt	7560
25	taagggattt	tggtcatgag	attatcaaaa	aggatettea	cctagatcct	tttaaattaa	7620
20	aaatgaagtt	ttaaatcaat	ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	7680
	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	catagttgcc	7740
30	tgactccccg	tcgtgtagat	aactacgata	cgggagggct	taccatctgg	ccccagtgct	7800
	gcaatgatac	cgcgagaccc	acgctcaccg	gctccagatt	tatcagcaat	aaaccagcca	7860
35	gccggaaggg	ccgagcgcag	aagtggtcct	gcaactttat	ccgcctccat	ccagtctatt	7920
00	aaacaagtgg	cagcaacgga	ttcgcaaacc	tgtcacgcct	tttgtgccaa	aagccgcgcc	7980
	aggtttgcga	tccgctgtgc	caggcgttag	gcgtcatatg	aagatttcgg	tgatccctga	8040
40	gcaggtggcg	gaaacattgg	atgctgagaa	ccatttcatt	gttcgtgaag	tgttcgatgt	8100
	gcacctatcc	gaccaaggct	ttgaactatc	taccagaagt	gtgagcccct	accggaagga	8160
45	ttacatctcg	gatgatgact	ctgatgaaga	ctctgcttgc	tatggcgcat	tcatcgacca	8220
10	agagcttgtc	gggaagattg	aactcaactc	aacatggaac	gatctagcct	ctatcgaaca	8280
	cattgttgtg	tcgcacacgc	accgaggcaa	aggagtcgcg	cacagtctca	tcgaatttgc	8340
50	gaaaaagtgg	gcactaagca	gacageteet	tggcatacga	ttagagacac	aaacgaacaa	8400
	tgtacctgcc	tgcaatttgt	acgcaaaatg	tggctttact	ctcggcggca	ttgacctgtt	8460
55	cacgtataaa	actagacctc	aagtctcgaa	cgaaacagcg	atgtactggt	actggttctc	8520
	gggagcacag	gatgacgcct	aacaattcat	tcaagccgac	accgcttcgc	ggcgcggctt	8580
	aattcaggag	ttaaacatca	tgagggaagc	ggtgatcgcc	gaagtatcga	ctcaactatc	8640
60	agaggtagtt	ggcgtcatcg	agcgccatct	cgaaccgacg	ttgctggccg	tacatttgta	8700
	cggctccgca	gtggatggcg	gcctgaagcc	acacagtgat	attgatttgc	tggttacggt	8760

gaccgtaagg cttgatgaaa caacgcggcg agctttgatc aacgaccttt tggaaacttc . 8820 8880 ggcttcccct ggagagagcg agattctccg cgctgtagaa gtcaccattg ttgtgcacga 5 cgacatcatt ccgtggcgtt atccagctaa gcgcgaactg caatttggag aatggcagcg 8940 caatgacatt cttgcaggta tcttcgagcc agccacgatc gacattgatc tggctatctt 9000 10 gctgacaaaa gcaagagaac atagcgttgc cttggtaggt ccagcggcgg aggaactctt 9060 9120 tgatccggtt cctgaacagg atctatttga ggcgctaaat gaaaccttaa cgctatggaa ctcgccgccc gactgggctg gcgatgagcg aaatgtagtg cttacgttgt cccgcatttg 9180 15 gtacagegea gtaaceggea aaategegee gaaggatgte getgeegaet gggeaatgga 9240 9300 gcgcctgccg gcccagtatc agcccgtcat acttgaagct aggcaggctt atcttggaca 20 agaagatcgc ttggcctcgc gcgcagatca gttggaagaa tttgttcact acgtgaaagg 9360 cgagatcacc aaggtagtcg gcaaataatg tctaacaatt cgttcaagcc gacgccgctt 9420 9480 cqcqqcqcqq cttaactcaa qcqttagaga gctggggaag actatgcgcg atctgttgaa 25 9540 ggtggttcta agcctcgtac ttgcgatggc atcggggcag gcacttgctg acctgccaat 9600 tgttttagtg gatgaagctc gtcttcccta tgactactcc ccatccaact acgacatttc 9660 30 tocaagcaac tacgacaact ccataagcaa ttacgacaat agtccatcaa attacgacaa 9720 ctctgagagc aactacgata atagttcatc caattacgac aatagtcgca acggaaatcg taggettata tatagegeaa atgggteteg caetttegee ggetaetaeg teattgecaa 9780 35 9840 caatgggaca acgaacttct tttccacatc tggcaaaagg atgttctaca ccccaaaagg 9900 ggggcgcggc gtctatggcg gcaaagatgg gagcttctgc ggggcattgg tcgtcataaa 9960 40 tggccaattt tcgcttgccc tgacagataa cggcctgaag atcatgtatc taagcaacta gcctgctctc taataaaatg ttaggagctt ggctgccatt tttggggtga ggccgttcgc 10020 10080 ggccgagggg cgcagccct ggggggatgg gaggcccgcg ttagcgggcc gggagggttc 45 10140 gagaaggggg ggcaccccc ttcggcgtgc gcggtcacgc gccagggcgc agccctggtt 10200 aaaaacaagg tttataaata ttggtttaaa agcaggttaa aagacaggtt agcggtggcc 10260 gaaaaacggg cggaaaccct tgcaaatgct ggattttctg cctgtggaca gcccctcaaa 50 tgtcaatagg tgcgccctc atctgtcagc actctgcccc tcaagtgtca aggatcgcgc 10320 ccctcatctg tcagtagtcg cgccctcaa gtgtcaatac cgcagggcac ttatccccag 10380 55 gcttgtccac atcatctgtg ggaaactcgc gtaaaatcag gcgttttcgc cgatttgcga 10440 ggctggccag ctccacgtcg ccggccgaaa tcgagcctgc ccctcatctg tcaacgccgc 10500 10560 60 gccgggtgag tcggccctc aagtgtcaac gtccgcccct catctgtcag tgagggccaa gttttccgcg aggtatccac aacgccggcg gccggccgcg gtgtctcgca cacggcttcg 10620

	acggcgtttc	tggcgcgttt	gcagggccat	agacggccgc	cagcccagcg	gcgagggcaa	10680
_	ccagcccggt	gagcgtcgga	aagggtcgac	atcttgctgc	gttcggatat	tttcgtggag	10740
5	ttcccgccac	agacccggat	tgaaggcgag	atccagcaac	tcgcgccaga	tcatcctgtg	10800
	acggaacttt	ggcgcgtgat	gactggccag	gacgtcggcc	gaaagagcga	caagcagatc	10860
10	acgattttcg	acagcgtcgg	atttgcgatc	gaggatttt	cggcgctgcg	ctacgtccgc	10920
	gaccgcgttg	agggatcaag	ccacagcagc	ccactcgacc	ttctagccga	cccagacgag	10980
45	ccaagggatc	tttttggaat	gctgctccgt	cgtcaggctt.	tccgacgttt	gggtggttga	11040
15	acagaagtca	ttatcgtacg	gaatgccagc	actcccgagg	ggaaccctgt	ggttggcatg	11100
	cacatacaaa	tggacgaacg	gataaacctt	ttcacgccct	tttaaatatc	cgttattcta	11160
20	ataaacgctc	ttttctctta	ggtttacccg	ccaatatatc	ctgtcaaaca	ctgatagttt	11220
	aaactgaagg	cgggaaacga	caatctgatc	atgagcggag	aattaaggga	gtcacgttat	11280
05	gacccccgcc	gatgacgcgg	gacaagccgt	tttacgtttg	gaactgacag	aaccgcaacg	11340
25	attgaaggag	ccactcagcc	ccaatacgca	aaccgcctct	ccccgcgcgt	tggccgattc	11400
	attaatgcag	ctggcacgac	aggtttcccg	actggaaagc	gggcagtgag	cgcaacgcaa	11460
30	ttaatgtgag	ttagctcact	cattaggcac	cccaggcttt	acactttatg	cttccggctc	11520
	gtatgttgtg	tggaattgtg	agcggataac	aatttcacac	aggaaacagc	tatgaccatg	11580
0.5	attacgccaa	gctatttagg	tgacactata	gaatactcaa	gctatgcatc	caacgcgttg	11640
35	ggagctctcc	catatcgacc	tgcaggcggc	cgctcgacga	attaattcca	atcccacaaa	11700
	aatctgagct	taacagcaca	gttgctcctc	tcagagcaga	atcgggtatt	caacaccctc	11760
40	atatcaacta	ctacgttgtg	tataacggtc	cacatgccgg	tatatacgat	gactggggtt	11820
	gtacaaaggc	ggcaacaaac	ggcgttcccg	gagttgcaca	caagaaattt	gccactatta	11880
4 12	cagaggcaag	agcagcagct	gacgcgtaca	caacaagtca	gcaaacagac	aggttgaact	11940
45	tcatccccaa	aggagaagct	caactcaagc	ccaagagctt	tgctaaggcc	ctaacaagcc	12000
	caccaaagca	aaaagcccac	tggctcacgc	taggaaccaa	aaggcccagc	agtgatccag	12060 ⁻
50	ccccaaaaga	gatctccttt	gccccggaga	ttacaatgga	cgatttcctc	tatctttacg	12120
	atctaggaag	gaagttcgaa	ggtgaaggtg	acgacactat	gttcaccact	gataatgaga	12180
	aggttagcct	cttcaatttc	agaaagaatg	ctgacccaca	gatggttaga	gaggcctacg	12240
55	cagcaggtct	catcaagacg	atctacccga	gtaacaatct	ccaggagatc	aaataccttc	12300
	ccaagaaggt	taaagatgca	gtcaaaagat	tcaggactaa	ttgcatcaag	aacacagaga	12360
60	aagacatatt	tctcaagato	agaagtacta	ttccagtatg	gacgattcaa	ggcttgcttc	12420
	ataaaccaag	gcaagtaata	gagattggag	r tctctaaaaa	ggtagttcct	actgaatcta	12480

aggocatgoa tggagtotaa gattoaaato gaggatotaa cagaactogo ogtgaagact 12600 ggcgaacagt tcatacagag tcttttacga ctcaatgaca agaagaaaat cttcgtcaac 5 atggtggagc acgacactct ggtctactcc aaaaatgtca aagatacagt ctcagaagac 12660 caaagggcta ttgagacttt tcaacaaagg ataatttcgg gaaacctcct cggattccat 12720 10 tgcccagcta tctgtcactt catcgaaagg acagtagaaa aggaaggtgg ctcctacaaa 12780 tgccatcatt gcgataaagg aaaggctatc attcaagatc tctctgccga cagtggtccc 12840 aaagatggac ccccacccac gaggagcatc gtggaaaaag aagacgttcc aaccacgtct 15 tcaaagcaag tggattgatg tgacatctcc actgacqtaa gggatgacgc acaatcccac 12960 tatccttcgc aagacccttc ctctatataa ggaagttcat ttcatttgga gaggacacgc 13020 20 tcgagacaag tttgtacaaa aaagctgaac gagaaacgta aaatgatata aatatcaata 13080 tattaaatta gattttgcat aaaaaacaga ctacataata ctgtaaaaca caacatatcc 13140 agtcactatg aatcaactac ttagatggta ttagtgacct gtagtcgacc gacagccttc 13200 25 caaatgttet tegggtgatg etgecaactt agtegacega eageetteea aatgttette 13260 tcaaacggaa tcgtcgtatc cagcctactc gctattgtcc tcaatgccgt attaaatcat 13320 30 aaaaagaaat aagaaaaaga ggtgcgagcc tcttttttgt gtgacaaaat aaaaacatct 13380 acctattcat atacgctagt gtcatagtcc tgaaaatcat ctgcatcaag aacaatttca 13440 13500 caactcttat acttttctct tacaagtcgt tcggcttcat ctggattttc agcctctata 35 cttactaaac gtgataaagt ttctgtaatt tctactgtat cgacctgcag actggctgtg 13560 13620 tataagggag cctgacattt atattcccca gaacatcagg ttaatggcgt ttttgatgtc 40 attttcgcgg tqqctgagat caqccacttc ttccccgata acggagaccg gcacactggc 13680 13740 catateggtg gtcatcatge gccagettte atcccegata tgcaccaceg ggtaaagtte acgggagact ttatctgaca gcagacgtgc actggccagg gggatcacca tccgtcgccc 45 13860 gggcgtgtca ataatatcac tctqtacatc cacaaacaga cgataacggc tctctctttt 13920 ataggtgtaa accttaaact gcatttcacc agtccctgtt ctcgtcagca aaagagccgt 50 tcatttcaat aaaccgggcg acctcagcca tcccttcctg attttccgct ttccagcgtt 13980 14040 cggcacgcag acqacggct tcattctgca tggttgtgct taccagaccg gagatattga catcatatat qccttqaqca actqatagct gtcgctgtca actqtcactq taatacgctg 14100 55 14160 cttcatagca cacctctttt tqacatactt cgggtagtgc cgatcaacgt ctcattttcg 14220 ccaaaagttg gcccagggct tcccggtatc aacagggaca ccaggattta tttattctgc 14280 60 gaagtgatct tccqtcacaq qtatttattc ggcgcaaagt gcgtcgggtg atgctgccaa cttagtcgac tacaggtcac taataccatc taagtagttg attcatagtg actggatatg 14340

ttgtgtttta cagtattatg tagtctgttt tttatgcaaa atctaattta atatattgat 14400 atttatatca ttttacgttt ctcgttcagc tttcttgtac aaagtggtct cgaggaattc 14460 5 ggtaccccag cttggtaagg aaataattat tttctttttt ccttttagta taaaatagtt 14520 aagtgatgtt aattagtatg attataataa tatagttgtt ataattgtga aaaaataatt 14580 10 tataaatata ttgtttacat aaacaacata gtaatgtaaa aaaatatgac aagtgatgtg 14640 taagacgaag aagataaaag ttgagagtaa gtatattatt tttaatgaat ttgatcgaac atgtaagatg atatactagc attaatattt gttttaatca taatagtaat tctagctggt 14760 15 ttgatgaatt aaatatcaat gataaaatac tatagtaaaa ataagaataa ataaattaaa 14820 ataatatttt tttatgatta atagtttatt atataattaa atatctatac cattactaaa 14880 20 tattttagtt taaaagttaa taaatatttt gttagaaatt ccaatctgct tgtaatttat 14940 15000 caataaacaa aatattaaat aacaagctaa agtaacaaat aatatcaaac taatagaaac agtaatctaa tgtaacaaaa cataatctaa tgctaatata acaaagcgca agatctatca 15060 25 ttttatatag tattattttc aatcaacatt cttattaatt tctaaataat acttgtagtt 15120 15180 ttattaactt ctaaatggat tgactattaa ttaaatgaat tagtcgaaca tgaataaaca 30 aggtaacatg atagatcatg tcattgtgtt atcattgatc ttacatttgg attgattaca 15240 gttgggaagc tgggttcgaa atcgataagc ttggatcctc tagaccactt tgtacaagaa 15300 agctgaacga gaaacgtaaa atgatataaa tatcaatata ttaaattaga ttttgcataa 15360 35 aaaacagact acataatact gtaaaacaca acatatccag tcactatgaa tcaactactt 15420 agatggtatt agtgacctgt agtcgactaa gttggcagca tcacccgacg cactttgcgc cgaataaata cctgtgacgg aagatcactt cgcagaataa ataaatcctg gtgtccctgt 15540 tgataccggg aagccctggg ccaacttttg gcgaaaatga gacgttgatc ggatttcaca 15600 15660 actettatac ttttetetta caagtegtte ggetteatet ggatttteag cetetatact 45 tactaaacgt gataaagttt ctgtaatttc tactgtatcg acctgcagac tggctgtgta 15720 taagggagcc tgacatttat attccccaga acatcaggtt aatggcgttt ttgatgtcat 15780 50 tttcgcggtg gctgagatca gccacttctt ccccgataac ggagaccggc acactggcca 15840 15900 tatcggtggt catcatgcgc cagctttcat ccccgatatg caccaccggg taaagttcac 15960 gggagacttt atctgacagc agacgtgcac tggccagggg gatcaccatc cgtcgcccgg 55 gcgtgtcaat aatatcactc tgtacatcca caaacagacg ataacggctc tctctttat 16020 aggtgtaaac cttaaactgc atttcaccag tccctgttct cgtcagcaaa agagccgttc 16080 16140 60 atttcaataa accgggcgac ctcagccatc ccttcctgat tttccgcttt ccagcgttcg gcacgcagac gacgggcttc attctgcatg gttgtgctta ccagaccgga gatattgaca 16200

	tcatatatgc	cttgagcaac	tgatagctgt	cgctgtcaac	tgtcactgta	atacgctgct	16260
5	tcatagcaca	cctctttttg	acatacttct	gttcttgatg	cagatgattt	tcaggactat	16320
	gacactagcg	tatatgaata	ggtagatgtt	tttattttgt	cacacaaaa	agaggctcgc	16380
	acctctttt	cttatttctt	tttatgattt	aatacggcat	tgaggacaat	agcgagtagg	16440
10	ctggatacga	cgattccgtt	tgagaagaac	atttggaagg	ctgtcggtcg	actaagttgg	16500
	cagcatcacc	cgaagaacat	ttggaaggct	gtcggtcgac	tacaggtcac	taataccatc	16560
16	taagtagttg	attcatagtg	actggatatg	ttgtgtttta	cagtattatg	tagtctgttt	16620
15	tttatgcaaa	atctaattta	atatattgat	atttatatca	ttttacgttt	ctcgttcagc	16680
	ttttttgtac	aaacttgtct	agagtcctgc	tttaatgaga	tatgcgagac	gcctatgatc	16740
20	gcatgatatt	tgctttcaat	tctgttgtgc	acgttgtaaa	aaacctgagc	atgtgtagct	16800
	cagatcctta	ccgccggttt	cggttcattc	taatgaatat	atcacccgtt	actatcgtat	16860
0=	ttttatgaat	aatattctcc	gttcaattta	ctgattgtac	cctactactt	atatgtacaa	16920
25	tattaaaatg	aaaacaatat	attgtgctga	ataggtttat	agcgacatct	atgatagagc	16980
	gccacaataa	caaacaattg	cgttttatta	ttacaaatcc	aattttaaaa	aaagcggcag	17040
30	aaccggtcaa	acctaaaaga	ctgattacat	aaatcttatt	caaatttcaa	aaggccccag	17100
	gggctagtat	ctacgacaca	ccgagcggcg	aactaataac	gttcactgaa	gggaactccg	17160
2-	gttccccgcc	ggcgcgcatg	ggtgagattc	cttgaagttg	agtattggcc	gtccgctcta	17220
35	ccgaaagtta	cgggcaccat	tcaacccggt	ccagcacggc	ggccgggtaa	ccgacttgct	17280
	gccccgagaa	ttatgcagca	tttttttggt	gtatgtgggc	cccaaatgaa	gtgcaggtca	17340
4 0	aaccttgaca	gtgacgacaa	atcgttgggc	gggtccaggg	cgaattttgc	gacaacatgt	17400
	cgaggctcag	caggacctgc	aggcatgcaa	gctagcttac	tagtgatgca	tattctatag	17460
	tgtcacctaa	atctgc					17476
4 5							
	<210> 25 <211> 174	EO					
	<211> 1/4 <212> DNA						
50		ificial seq	uence				
	<220> <223> acc	eptor vecto	r pHELLSGAT	E11			
		opidi voot	- F				
55	<400> 25 ggccgcacta	gtgatatece	gcggccatgg	cggccgggag	catgcgacgt	cgggcccaat	60
	tcgccctata	gtgagtcgta	ttacaattca	ctggccgtcg	ttttacaacg	tcgtgactgg	120
60	gaaaaccctg	gcgttaccca	acttaatcgc	cttgcagcac	atcccccttt	cgccagctgg	180
	cgtaatagcg	aagaggcccg	caccgatcgc	ccttcccaac	agttgcgcag	cctgaatggc	240

	gaatggaaat	tgtaaacgtt	aatgggtttc	tggagtttaa	tgagctaagc	acatacgtca	300
5	gaaaccatta	ttgcgcgttc	aaaagtcgcc	taaggtcact	atcagctagc	aaatatttct	360
J	tgtcaaaaat	gctccactga	cgttccataa	attcccctcg	gtatccaatt	agagtctcat	420
	attcactctc	aatccaaata	atctgcaatg	gcaattacct	tatccgcaac	ttctttacct	480
10	atttccgccc	ggatccgggc	aggttctccg	gccgcttggg	tggagaggct	attcggctat	540
	gactgggcac	aacagacaat	cggctgctct	gatgccgccg	tgttccggct	gtcagcgcag	600
15	gggcgcccgg	ttctttttgt	caagaccgac	ctgtccggtg	ccctgaatga	actgcaggac	660
15	gaggcagcgc	ggctatcgtg	gctggccacg	acgggcgttc	cttgcgcagc	tgtgctcgac	720
	gttgtcactg	aagcgggaag	ggactggctg	ctattgggcg	aagtgccggg	gcaggatctc	780
20	ctgtcatctc	accttgctcc	tgccgagaaa	gtatccatca	tggctgatgc	aatgcggcgg	840
	ctgcatacgc	ttgatccggc	tacctgccca	ttcgaccacc	aagcgaaaca	tcgcatcgag	900
25	cgagcacgta	ctcggatgga	agccggtctt	gtcgatcagg	atgatctgga	cgaagagcat	960
25	caggggctcg	cgccagccga	actgttcgcc	aggctcaagg	cgcgcatgcc	cgacggcgag	1020
	gatctcgtcg	tgacccatgg	cgatgcctgc	ttgccgaata	tcatggtgga	aaatggccgc	1080
30	ttttctggat	tcatcgactg	tggccggctg	ggtgtggcgg	accgctatca	ggacatagcg	1140
	ttggctaccc	gtgatattgc	tgaagagctt	ggcggcgaat	gggctgaccg	cttcctcgtg	1200
35	ctttacggta	tegeegetee	cgattcgcag	cgcatcgcct	tctatcgcct	tcttgacgag	1260
33	ttcttctgag	cgggactctg	gggttcgaaa	tgaccgacca	agcgacgccc	aacctgccat	1320
	cacgagattt	cgattccacc	gccgccttct	atgaaaggtt	gggcttcgga	atcgttttcc	1380
40	gggacgccgg	ctggatgatc	ctccagcgcg	gggatctcat	gctggagttc	ttcgcccacc	1440
	ccgatccaac	acttacgttt	gcaacgtcca	agagcaaata	gaccacgaac	gccggaaggt	1500
45	tgccgcagcg	tgtggattgc	gtctcaattc	tctcttgcag	gaatgcaatg	atgaatatga	1560
45	tactgactat	gaaactttga	gggaatactg	cctagcaccg	tcacctcata	acgtgcatca	1620
	tgcatgccct	gacaacatgg	aacatcgcta	tttttctgaa	gaattatgct	cgttggagga	1680
50	tgtcgcggca	attgcagcta	ttgccaacat	cgaactaccc	ctcacgcatg	cattcatcaa	1740
	tattattcat	gcggggaaag	gcaagattaa	tccaactggc	aaatcatcca	gcgtgattgg	1800
	taacttcagt	tccagcgact	tgattcgttt	tggtgctacc	cacgttttca	ataaggacga	1860
55	gatggtggag	taaagaagga	gtgcgtcgaa	gcagatcgtt	caaacatttg	gcaataaagt	1920
	ttcttaagat	tgaatcctgt	tgccggtctt	gcgatgatta	tcatataatt	tctgttgaat	1980
60	tacgttaagc	atgtaataat	taacatgtaa	tgcatgacgt	tatttatgag	atgggttttt	2040
	atgattagag	tcccgcaatt	atacatttaa	tacgcgatag	aaaacaaaat	atagcgcgca	2100

PCT/AU02/00073 WO 02/059294 29

	aactaggata	aattatcgcg	cgcggtgtca	tctatgttac	tagatcgaat	taattccagg	2160
5	cggtgaaggg	caatcagctg	ttgcccgtct	cactggtgaa	aagaaaaacc	accccagtac	2220
3	attaaaaacg	tccgcaatgt	gttattaagt	tgtctaagcg	tcaatttgtt	tacaccacaa	2280
	tatatcctgc	caccagccag	ccaacagctc	cccgaccggc	agctcggcac	aaaatcacca	2340
10	ctcgatacag	gcagcccatc	agtccgggac	ggcgtcagcg	ggagagċcgt	tgtaaggcgg	2400
	cagactttgc	tcatgttacc	gatgctattc	ggaagaacgg	caactaagct	gccgggtttg	2460
15	aaacacggat	gatctcgcgg	agggtagcat	gttgattgta	acgatgacag	agcgttgctg	2520
15	cctgtgatca	aatatcatct	ccctcgcaga	gatccgaatt	atcagccttc	ttattcattt	2580
	ctcgcttaac	cgtgacaggc	tgtcgatctt	gagaactatg	ccgacataat	aggaaatcgc	2640
20	tggataaagc	cgctgaggaa	gctgagtggc	gctatttctt	tagaagtgaa	cgttgacgat	2700
	gtcgacggat	cttttccgct	gcataaccct	gcttcggggt	cattatagcg	attttttcgg	2760
25	tatatccatc	ctttttcgca	cgatatacag	gattttgcca	aagggttcgt	gtagactttc	2820
25	cttggtgtat	ccaacggcgt	cagccgggca	ggataggtga	agtaggccca	cccgcgagcg	2880
	ggtgttcctt	cttcactgtc	ccttattcgc	acctggcggt	gctcaacggg	aatcctgctc	2940
30	tgcgaggctg	gccggctacc	gccggcgtaa	cagatgaggg	caagcggatg	gctgatgaaa	3000
	ccaagccaac	caggggtgat	gctgccaact	tactgattta	gtgtatgatg	gtgtttttga	3060
35	ggtgctccag	tggcttctgt	ttctatcagc	tgtccctcct	gttcagctac	tgacggggtg	3120
33	gtgcgtaacg	gcaaaagcac	cgccggacat	cagcgctatc	tctgctctca	ctgccgtaaa	3180
	acatggcaac	tgcagttcac	ttacaccgct	tctcaacccg	gtacgcacca	gaaaatcatt	3240
40	gatatggcca	tgaatggcgt	tggatgccgg	gcaacagccc	gcattatggg	cgttggcctc	3300
	aacacgattt	tacgtcactt	aaaaaactca	ggccgcagtc	ggtaacctcg	cgcatacagc	3360
45	cgggcagtga	cgtcatcgtc	tgcgcggaaa	tggacgaaca	gtggggctat	gtcggggcta	3420
45	aatcgcgcca	gcgctggctg	ttttacgcgt	atgacagtct	ccggaagacg	gttgttgcgc	3480
	acgtattcgg	tgaacgcact	atggcgacgc	tggggcgtct	tatgagcctg	ctgtcaccct	3540
50	ttgacgtggt	gatatggatg	acggatggct	ggccgctgta	tgaatcccgc	ctgaagggaa	3600
	agctgcacgt	aatcagcaag	cgatatacgc	agcgaattga	gcggcataac	ctgaatctga	3660
55	ggcagcacct	ggcacggctg	ggacggaagt	cgctgtcgtt	ctcaaaatcg	gtggagctgc	3720
99	atgacaaagt	catcgggcat	tatctgaaca	taaaacacta	tcaataagtt	ggagtcatta	3780
	cccaaccagg	aagggcagcc	cacctatcaa	ggtgtactgc	cttccagacg	aacgaagagc	3840
60	gattgaggaa	aaggcggcgg	cggccggcat	gagcctgtcg	gcctacctgc	tggccgtcgg	3900
	ccagggctac	aaaatcacgg	gcgtcgtgga	ctatgagcac	gtccgcgagc	tggcccgcat	3960

caatggcgac ctgggccgcc tgggcggcct gctgaaactc tggctcaccg acgacccgcg 4020 4080 cacggcgcgg ttcggtgatg ccacgatect cgccctgctg gcgaagateg aagagaagca 5 4140 ggacgagett ggcaaggtca tgatgggegt ggtccgcccg agggcagage catgactttt ttagccgcta aaacggccgg ggggtgcgcg tgattgccaa gcacgtcccc atgcgctcca 4200 4260 10 tcaagaagag cgacttcgcg gagctggtat tcgtgcaggg caagattcgg aataccaagt 4320 acgagaagga cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag 4380 15 tcggggcaat cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc 4440 4500 aagaactgat cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg 4560 20 tcatgcgtgc gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga gcgcgacagc gtgcaactgg ctccccctgc cctgcccgcg ccatcggccg 4620 4680 ccgtggagcg ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca 25 4740 tcgacacgcg aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg 4800 4860 30 aaatgcagct ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacgge cegetetgee etgtteacea egegeaacaa gaaaateeeg egegaggege 4920 4980 tgcaaaacaa ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg 35 5040 agctgcgggc cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca 5100 cccctatcgg cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt 5160 cgatcaatgg ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg 5220 cgatgggctt cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa 5280 45 5340 tcgtcgtgct gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc 5400 tgtcgccgac ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc 5460 50 tcaagctgga aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc 5520 gcgagcaggt cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct 5580 gggtcaatga tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg 55 5640 ggggttcagc agccagcgct ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgcttcgc tcagtatcgc tcgggacgca cggcgcgctc tacgaactgc cgataaacag 5700 60 aggattaaaa ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt 5760 5820 gcaggatttc cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc

	cgtttacgag	cacgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	5880
5	cgtggcattc	ggcgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	5940
J	ggacggcccc	aaggacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	6000
	gcgaggccga	ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	6060
10	gatgatcgtc	cgacagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	6120
	acttaatatt	tcgctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	6180
15	ggtcgcggcg	acggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	6240
10	gctaggtagc	ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	6300
	ggcgctgttg	gtgttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	6360
20	ggcgggggcg	gtttccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	6420
	gcctctgctc	acctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	6480
05	agctttagtg	tttgatccgc	caatcccgat	gcctacagga	accaatgttc	teggeetgge	6540
25	gtggctcggc	ctgatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	6600
	actcgaacct	acagttgttt	ccttactggg	ctttctcagc	cgggatggcg	ctaagaagct	6660
30	attgccgccg	atcttcatat	gcggtgtgaa	ataccgcaca	gatgcgtaag	gagaaaatac	6720
	cgcatcaggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	6780
25	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	6840
35	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	6900
	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	aaatcgacgc	6960
40	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tccccctgga	7020
	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	7080
45	ctcccttcgg	gaagcgtggc	gctttctcaa	tgctcacgct	gtaggtatct	cagttcggtg	7140
45	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	7200
	gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	7260
50	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	7320
	ttgaagtggt	ggcctaacta	cggctacact	agaaggacag	tatttggtat	ctgcgctctg	7380
- -	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	acaaaccacc	7440
55	gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatat	7500
	caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	: agtggaacga	aaactcacgt	7560
60	taagggattt	tggtcatgag	attatcaaaa	aggatcttca	cctagatcct	tttaaattaa	7620
	aaatgaagtt	ttaaatcaat	ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	7680

7740 tgcttaatca gtgaggcacc tatctcaqcg atctgtctat ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct 7800 5 gcaatgatac cgcgagaccc acqctcaccg gctccagatt tatcagcaat aaaccagcca 7860 7920 gccggaaggg ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt 10 aaacaagtgg cagcaacgga ttcgcaaacc tgtcacgcct tttgtgccaa aagccgcgcc 7980 aggtttgcga tccgctgtgc caggcgttag gcgtcatatg aagatttcgg tgatccctga 8040 8100 gcaggtggcg gaaacattgg atgctgagaa ccatttcatt gttcgtgaag tgttcgatgt 15 8160 gcacctatcc gaccaagget ttgaactate taccagaagt gtgageceet accggaagga ttacatctcg gatgatgact ctgatgaaga ctctgcttgc tatggcgcat tcatcgacca 8220 8280 20 agagettgte gggaagattg aacteaacte aacatggaac gatetageet etategaaca cattgttgtg tcgcacacgc accgaggcaa aggagtcgcg cacagtctca tcgaatttgc 8340 8400 gaaaaagtgg gcactaagca gacagctcct tggcatacga ttagagacac aaacgaacaa 25 8460 tgtacctgcc tgcaatttgt acgcaaaatg tggctttact ctcggcggca ttgacctgtt 8520 cacgtataaa actagacctc aagtctcgaa cgaaacagcg atgtactggt actggttctc 8580 30 gggagcacag gatgacgeet aacaatteat teaageegae acegettege ggegeggett 8640 aattcaggag ttaaacatca tgagggaagc ggtgatcgcc gaagtatcga ctcaactatc 8700 agaggtagtt ggcgtcatcg agcgccatct cgaaccgacg ttgctggccg tacatttgta 35 cggctccgca gtggatggcg gcctgaagcc acacagtgat attgatttgc tggttacggt 8760 8820 gaccgtaagg cttgatgaaa caacgcggcg agctttgatc aacgaccttt tggaaacttc 8880 40 ggcttcccct ggagagagcg agattctccg cgctgtagaa gtcaccattg ttgtgcacga 8940 cgacatcatt ccgtggcgtt atccagctaa gcgcgaactg caatttggag aatggcagcg caatgacatt cttgcaggta tcttcgagcc agccacgatc gacattgatc tggctatctt 9000 45 9060 gctgacaaaa gcaagagaac atagcgttgc cttggtaggt ccagcggcgg aggaactctt 9120 tgatccggtt cctgaacagg atctatttga ggcgctaaat gaaaccttaa cgctatggaa 50 ctcgccgccc gactgggctg gcgatgagcg aaatgtagtg cttacgttgt cccgcatttg 9180 gtacagcgca gtaaccggca aaatcgcgcc gaaggatgtc gctgccgact gggcaatgga 9240 9300 gcgcctgccg gcccagtatc agcccgtcat acttgaagct aggcaggctt atcttggaca 55 9360 agaagatcgc ttggcctcgc gcgcagatca gttggaagaa tttgttcact acgtgaaagg cgagatcacc aaggtagtcg gcaaataatg tctaacaatt cgttcaagcc gacgccgctt 9420 9480 60 cgcggcgcgg cttaactcaa gcgttagaga gctggggaag actatgcgcg atctgttgaa 9540 ggtggttcta agcctcgtac ttgcgatggc atcggggcag gcacttgctg acctgccaat

9600 tgttttagtg gatgaagete gtcttcccta tgactactee ccatccaact acgacattte 9660 tccaagcaac tacgacaact ccataagcaa ttacgacaat agtccatcaa attacgacaa 5 ctctgagagc aactacgata atagttcatc caattacgac aatagtcgca acggaaatcg 9720 9780 taggettata tatagegeaa atgggteteg caetttegee ggetaetaeg teattgeeaa 9840 10 caatgggaca acgaacttet tttccacate tggcaaaagg atgttetaca ecceaaaagg 9900 ggggcgcggc gtctatggcg gcaaagatgg gagcttctgc ggggcattgg tcgtcataaa 9960 tggccaattt tcgcttgccc tgacagataa cggcctgaag atcatgtatc taagcaacta 15 gcctgctctc taataaaatg ttaggagctt ggctgccatt tttggggtga ggccgttcgc 10020 ggccgagggg cgcagccct ggggggatgg gaggcccgcg ttagcgggcc gggagggttc 10080 20 gagaaggggg ggcaccccc ttcggcgtgc gcggtcacgc gccagggcgc agccctggtt 10140 10200 aaaaacaagg tttataaata ttggtttaaa agcaggttaa aagacaggtt agcggtggcc gaaaaacggg cggaaaccct tgcaaatgct ggattttctg cctgtggaca gcccctcaaa 10260 25 tgtcaatagg tgcgccctc atctgtcagc actctgcccc tcaagtgtca aggatcgcgc 10320 10380 ccctcatctg tcagtagtcg cgcccctcaa gtgtcaatac cgcagggcac ttatccccag 30 gcttgtccac atcatctgtg ggaaactcgc gtaaaatcag gcgttttcgc cgatttgcga 10440 10500 ggctggccag ctccacgtcg ccggccgaaa tcgagcctgc ccctcatctg tcaacgccgc gccgggtgag tcggccctc aagtgtcaac gtccgccct catctgtcag tgagggccaa 10560 35 10620 gttttccgcg aggtatccac aacgccggcg gccggccgcg gtgtctcgca cacggcttcg 10680 acggcgtttc tggcgcgttt gcagggccat agacggccgc cagcccagcg gcgagggcaa 10740 40 ccagcccggt gagcgtcgga aagggtcgac atcttgctgc gttcggatat tttcgtggag 10800 ttcccgccac agacccggat tgaaggcgag atccagcaac tcgcgccaga tcatcctgtg 10860 acqqaacttt qqcqcqtqat qactgqccag qacqtcqqcc gaaagagcga caagcagatc 45 10920 acgattttcg acagcgtcgg atttgcgatc gaggattttt cggcgctgcg ctacgtccgc gaccgcgttg agggatcaag ccacagcagc ccactcgacc ttctagccga cccagacgag 10980 11040 50 ccaagggate tttttggaat getgeteegt egteaggett teegaegttt gggtggttga 11100 acagaagtca ttatcgtacg gaatgccagc actcccgagg ggaaccctgt ggttggcatg cacatacaaa tggacgaacg gataaacctt ttcacgccct tttaaatatc cgttattcta 11160 55 11220 ataaacgctc ttttctctta ggtttacccg ccaatatatc ctgtcaaaca ctgatagttt aaactgaagg cgggaaacga caatctgatc atgagcggag aattaaggga gtcacgttat 11280 60 gaccccgcc gatgacgcgg gacaagccgt tttacgtttg gaactgacag aaccgcaacg 11340 attgaaggag ccactcagcc ccaatacgca aaccgcctct ccccgcgcgt tggccgattc 11400 WO 02/059294 PCT/AU02/00073

	attaatgcag	ctggcacgac	aggtttcccg	actggaaagc	gggcagtgag	cgcaacgcaa	11460
5	ttaatgtgag	ttagctcact	cattaggcac	cccaggcttt	acactttatg	cttccggctc	11520
J	gtatgttgtg	tggaattgtg	agcggataac	aatttcacac	aggaaacagc	tatgaccatg	11580
	attacgccaa	gctatttagg	tgacactata	gaatactcaa	gctatgcatc	caacgcgttg	11640
10	ggagctctcc	catatcgacc	tgcaggcggc	cgctcgacga	attaattcca	atcccacaaa	11700
	aatctgagct	taacagcaca	gttgctcctc	tcagagcaga	atcgggtatt	caacaccctc	11760
15	atatcaacta	ctacgttgtg	tataacggtc	cacatgccgg	tatatacgat	gactggggtt	11820
10	gtacaaaggc	ggcaacaaac	ggcgttcccg	gagttgcaca	caagaaattt	gccactatta	11880
	cagaggcaag	agcagcagct	gacgcgtaca	caacaagtca	gcaaacagac	aggttgaact	11940
20	tcatccccaa	aggagaagct	caactcaagc	ccaagagctt	tgctaaggcc	ctaacaagcc	12000
	caccaaagca	aaaagcccac	tggctcacgc	taggaaccaa	aaggcccagc	agtgatccag	12060
25	ccccaaaaga	gatctccttt	gccccggaga	ttacaatgga	cgatttcctc	tatctttacg	12120
20	atctaggaag	gaagttcgaa	ggtgaaggtg	acgacactat	gttcaccact	gataatgaga	12180
	aggttagcct	cttcaatttc	agaaagaatg	ctgacccaca	gatggttaga	gaggcctacg	12240
30	cagcaggtct	catcaagacg	atctacccga	gtaacaatct	ccaggagatc	aaataccttc	12300
	ccaagaaggt	taaagatgca	gtcaaaagat	tcaggactaa	ttgcatcaag	aacacagaga	12360
35	aagacatatt	tctcaagatc	agaagtacta	ttccagtatg	gacgattcaa	ggcttgcttc	12420
00	ataaaccaag	gcaagtaata	gagattggag	tctctaaaaa	ggtagttcct	actgaatcta	12480
	aggccatgca	tggagtctaa	gattcaaatc	gaggatctaa	cagaactcgc	cgtgaagact	12540
40	ggcgaacagt	tcatacagag	tcttttacga	ctcaatgaca	agaagaaaat	cttcgtcaac	12600
	atggtggagc	acgacactct	ggtctactcc	aaaaatgtca	aagatacagt	ctcagaagac	12660
45	caaagggcta	ttgagacttt	tcaacaaagg	ataatttcgg	gaaacctcct	cggattccat	12720
40	tgcccagcta	tctgtcactt	catcgaaagg	acagtagaaa	aggaaggtgg	ctcctacaaa	12780
	tgccatcatt	gcgataaagg	aaaggctatc	attcaagatc	tctctgccga	cagtggtccc	12840
50	aaagatggac	ccccacccac	gaggagcatc	gtggaaaaag	aagacgttcc	aaccacgtct	12900
	tcaaagcaag	tggattgatg	tgacatctcc	actgacgtaa	gggatgacgc	acaatcccac	12960
EE	tatccttcgc	aagacccttc	ctctatataa	ggaagttcat	ttcatttgga	gaggacacgc	13020
55	tcgagacaag	tttgtacaaa	aaagctgaac	gagaaacgta	aaatgatata	aatatcaata	13080
	tattaaatta	gattttgcat	aaaaaacaga	ctacataata	ctgtaaaaca	caacatatcc	13140
60	agtcactatg	aatcaactac	ttagatggta	ttagtgacct	gtagtcgacc	gacagccttc	13200
	caaatgttct	tcgggtgatg	ctgccaactt	agtcgaccga	cagccttcca	aatgttcttc	13260

WO 02/059294 PCT/AU02/00073

	tcaaacggaa	tcgtcgtatc	cagcctactc	gctattgtcc	tcaatgccgt	attaaatcat	13320
5	aaaaagaaat	aagaaaaaga	ggtgcgagcc	tctttttgt	gtgacaaaat	aaaaacatct	13380
3	acctattcat	atacgctagt	gtcatagtcc	tgaaaatcat	ctgcatcaag	aacaatttca	13440
	caactcttat	acttttctct	tacaagtcgt	tcggcttcat	ctggattttc	agcctctata	13500
10	cttactaaac	gtgataaagt	ttctgtaatt	tctactgtat	cgacctgcag	actggctgtg	13560
	tataagggag	cctgacattt	atattcccca	gaacatcagg	ttaatggcgt	ttttgatgtc	13620
15	attttcgcgg	tggctgagat	cagccacttc	ttccccgata	acggagaccg	gcacactggc	13680
	catatcggtg	gtcatcatgc	gccagctttc	atccccgata	tgcaccaccg	ggtaaagttc	13740
	acgggagact	ttatctgaca	gcagacgtgc	actggccagg	gggatcacca	tccgtcgccc	13800
20	gggcgtgtca	ataatatcac	tctgtacatc	cacaaacaga	cgataacggc	tctctcttt	13860
	ataggtgtaa	accttaaact	gcatttcacc	agtccctgtt	ctcgtcagca	aaagagccgt	13920
25	tcatttcaat	aaaccgggcg	acctcagcca	tecetteetg	attttccgct	ttccagcgtt	13980
20	cggcacgcag	acgacgggct	tcattctgca	tggttgtgct	taccagaccg	gagatattga	14040
	catcatatat	gccttgagca	actgatagct	gtcgctgtca	actgtcactg	taatacgctg	14100
30	cttcatagca	cacctctttt	tgacatactt	cgggtagtgc	cgatcaacgt	ctcattttcg	14160
	ccaaaagttg	gcccagggct	tcccggtatc	aacagggaca	ccaggattta	tttattctgc	14220
35	gaagtgatct	tccgtcacag	gtatttattc	ggcgcaaagt	gcgtcgggtg	atgctgccaa	14280
00	cttagtcgac	tacaggtcac	taataccatc	taagtagttg	attcatagtg	actggatatg	14340
	ttgtgtttta	cagtattatg	tagtctgttt	tttatgcaaa	atctaattta	atatattgat	14400
40	atttatatca	ttttacgttt	ctcgttcagc	tttcttgtac	aaagtggtct	cgaggaattc	14460
	ggtaccaact	gtaaggaaat	aattattttc	ttttttcctt	ttagtataaa	atagttaagt	14520
45	gatgttaatt	agtatgatta	taataatata	gttgttataa	ttgtgaaaaa	atäatttata	14580
40	aatatattgt	ttacataaac	aacatagtaa	tgtaaaaaaa	tatgacaagt	gatgtgtaag	14640
	acgaagaaga	taaaagttga	gagtaagtat	attattttta	atgaatttga	tcgaacatgt	14700
50	aagatgatat	actagcatta	atatttgttt	taatcataat	agtaattcta	gctggtttga	14760
	tgaattaaat	atcaatgata	aaatactata	gtaaaaataa	gaataaataa	attaaaataa.	14820
55	tatttttta	tgattaatag	tttattatat	aattaaatat	ctataccatt	actaaatatt	14880
55	ttagtttaaa	agttaataaa	tattttgtta	gaaattccaa	tctgcttgta	atttatcaat	14940
	aaacaaaata	ttaaataaca	agctaaagta	acaaataata	tcaaactaat	agaaacagta	15000
60	atctaatgta	acaaaacata	atctaatgct	aatataacaa	agcgcaagat	ctatcatttt	15060
	atatagtatt	attttcaatc	aacattctta	ttaatttcta	aataatactt	gtagttttat	15120

	taacttctaa	atggattgac	tattaattaa	atgaattagt	cgaacatgaa	taaacaaggt	15180
5	aacatgatag.	atcatgtcat	tgtgttatca	ttgatcttac	atttggattg	attacagtta	15240
5	cttaccttaa	gcttggatcc	tctagaccac	tttgtacaag	aaagctgaac	gagaaacgta	15300
	aaatgatata	aatatcaata	tattaaatta	gattttgcat	aaaaaacaga	ctacataata	15360
10	ctgtaaaaca	caacatatcc	agtcactatg	aatcaactac	ttagatggta	ttagtgacct	15420
	gtagtcgact	aagttggcag	catcacccga	cgcactttgc	gccgaataaa	tacctgtgac	15480
15	ggaagatcac	ttcgcagaat	aaataaatcc	tggtgtccct	gttgataccg	ggaagccctg	15540
10	ggccaacttt	tggcgaaaat	gagacgttga	tcggatttca	caactcttat	acttttctct	15600
	tacaagtcgt	tcggcttcat	ctggattttc	agcctctata	cttactaaac	gtgataaagt	15660
20	ttctgtaatt	tctactgtat	cgacctgcag	actggctgtg	tataagggag	cctgacattt	15720
	atattcccca	gaacatcagg	ttaatggcgt	ttttgatgtc	attttcgcgg	tggctgagat	15780
25	cagccacttc	ttccccgata	acggagaccg	gcacactggc	catatcggtg	gtcatcatgc	15840
20	gccagctttc	atccccgata	tgcaccaccg	ggtaaagttc	acgggagact	ttatctgaca	15900
	gcagacgtgc	actggccagg	gggatcacca	tccgtcgccc	gggcgtgtca	ataatatcac	15960
30	tctgtacatc	cacaaacaga	cgataacggc	tctctcttt	ataggtgtaa	accttaaact	16020
	gcatttcacc	agtccctgtt	ctcgtcagca	aaagagccgt	tcatttcaat	aaaccgggcg	16080
35	acctcagcca	tcccttcctg	attttccgct	ttccagcgtt	cggcacgcag	acgacgggct	16140
33	tcattctgca	tggttgtgct	taccagaccg	gagatattga	catcatatat	gccttgagca	16200
	actgatagct	gtcgctgtca	actgtcactg	taatacgctg	cttcatagca	cacctctttt	16260
40	tgacatactt	ctgttcttga	tgcagatgat	tttcaggact	atgacactag	cgtatatgaa	16320
	taggtagatg	tttttatttt	gtcacacaaa	aaagaggctc	gcacctcttt	ttcttatttc	16380
45	tttttatgat	ttaatacggc	attgaggaca	atagcgagta	ggctggatac	gacgattccg	16440
40	tttgagaaga	acatttggaa	ggctgtcggt	cgactaagtt	ggcagcatca	cccgaagaac	16500
	atttggaagg	ctgtcggtcg	actacaggtc	actaatacca	tctaagtagt	tgattcatag	16560
50	tgactggata	tgttgtgttt	tacagtatta	tgtagtctgt	tttttatgca	aaatctaatt	16620
	taatatattg	atatttatat	cattttacgt	ttctcgttca	gcttttttgt	acaaacttgt	16680
==	ctagagtcct	gctttaatga	gatatgcgag	acgcctatga	tcgcatgata	tttgctttca	16740
55	attctgttgt	gcacgttgta	aaaaacctga	gcatgtgtag	ctcagatcct	taccgccggt	16800
	ttcggttcat	tctaatgaat	atatcacccg	ttactatcgt	atttttatga	ataatattct	16860
60	ccgttcaatt	tactgattgt	accctactac	ttatatgtac	aatattaaaa	tgaaaacaat	16920
	atattgtgct	gaataggttt	atagcgacat	ctatgataga	gcgccacaat	aacaaacaat	16980

tgcgttttat tattacaaat ccaattttaa aaaaagcggc agaaccggtc aaacctaaaa 17040 gactgattac ataaatctta ttcaaatttc aaaaggcccc aggggctagt atctacgaca 17100 5 caccgagcgg cgaactaata acgttcactg aagggaactc cggttccccg ccggcgcgca 17160 tgggtgagat tccttgaagt tgagtattgg ccgtccqctc taccgaaagt tacgggcacc 17220 10 attcaacccg gtccagcacg gcggccgggt aaccgacttg ctgccccgag aattatgcag 17280 catttttttg gtgtatgtgg gccccaaatg aagtgcaggt caaaccttga cagtgacgac 17340 aaatcgttgg gcgggtccag ggcgaatttt gcgacaacat gtcgaggctc agcaggacct 17400 15 gcaggcatgc aagctagctt actagtgatg catattctat agtgtcacct aaatctgc 17458 <210> 26 20 <211> 17681 <212> DNA <213> Artificial sequence <220> 25 <223> acceptor vector pHELLSGATE12 <400> 26 ggccgcacta gtgatatccc gcggccatgg cggccgggag catgcgacgt cgggcccaat 60 30 togocotata gigagiogia tiacaatica ciggoogicg tittacaacg togigacigg 120 180 gaaaaccctg gcgttaccca acttaatcgc cttgcagcac atcccccttt cgccagctgg cgtaatagcg aagaggcccg caccgatcgc ccttcccaac agttgcgcag cctgaatggc 240 35 gaatggaaat tgtaaacgtt aatgggtttc tggagtttaa tgagctaagc acatacgtca 300 360 gaaaccatta ttgcgcgttc aaaagtcgcc taaggtcact atcagctagc aaatatttct 420 40 tgtcaaaaat gctccactga cgttccataa attcccctcg gtatccaatt agagtctcat 480 atteactete aateeaaata atetgeaatg geaattacet tateegeaac ttetttacet atttccgccc ggatccgggc aggttctccg gccgcttggg tggagaggct attcggctat 540 45 600 gactgggcac aacagacaat cggctgctct gatgccgccg tgttccggct gtcagcgcag 660 gggcgcccgg ttctttttgt caagaccgac ctgtccggtg ccctgaatga actgcaggac 50 gaggcagege ggetategtg getggeeaeg aegggegtte ettgegeage tgtgetegae 720 780 gttgtcactg aagcgggaag ggactggctg ctattgggcg aagtgccggg gcaggatctc 840 ctgtcatctc accttgctcc tgccgagaaa gtatccatca tggctgatgc aatgcggcgg 900 ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga cgaagagcat 960 60 caggggctcg cgccagccga actgttcgcc aggctcaagg cgcgcatgcc cgacggcgag 1020 gatctcgtcg tgacccatgg cgatgcctgc ttgccgaata tcatggtgga aaatggccgc 1080 WO 02/059294 PCT/AU02/00073 38

	ttttctggat	tcatcgactg	tggccggctg	ggtgtggcgg	accgctatca	ggacatagcg	1140
E	ttggctaccc	gtgatattgc	tgaagagctt	ggcggcgaat	gggctgaccg	cttcctcgtg	1200
5	ctttacggta	tcgccgctcc	cgattcgcag	cgcatcgcct	tctatcgcct	tcttgacgag	1260
	ttcttctgag	cgggactctg	gggttcgaaa	tgaccgacca	agcgacgccc	aacctgccat	1320
10	cacgagattt	cgattccacc	gccgccttct	atgaaaggtt	gggcttcgga	atcgttttcc	1380
	gggacgccgg	ctggatgatc	ctccagcgcg	gggatctcat	gctggagttc	ttcgcccacc	1440
15	ccgatccaac	acttacgttt	gcaacgtcca	agagcaaata	gaccacgaac	gccggaaggt	1500
15	tgccgcagcg	tgtggattgc	gtctcaattc	tctcttgcag	gaatgcaatg	atgaatatga	1560
	tactgactat	gaaactttga	gggaatactg	cctagcaccg	tcacctcata	acgtgcatca	1620
20	tgcatgccct	gacaacatgg	aacatcgcta	tttttctgaa	gaattatgct	cgttggagga	1680
	tgtcgcggca	attgcagcta	ttgccaacat	cgaactaccc	ctcacgcatg	cattcatcaa	1740
25	tattattcat	gcggggaaag	gcaagattaa	tccaactggc	aaatcatcca	gcgtgattgg	1800
20	taacttcagt	tccagcgact	tgattcgttt	tggtgctacc	cacgttttca	ataaggacga	1860
	gatggtggag	taaagaagga	gtgcgtcgaa	gcagatcgtt	caaacatttg	gcaataaagt	1920
30	ttcttaagat	tgaatcctgt	tgccggtctt	gcgatgatta	tcatataatt	tctgttgaat	1980
	tacgttaagc	atgtaataat	taacatgtaa	tgcatgacgt	tatttatgag	atgggttttt	2040
25	atgattagag	tcccgcaatt	atacatttaa	tacgcgatag	aaaacaaaat	atagcgcgca	2100
35	aactaggata	aattatcgcg	cgcggtgtca	tctatgttac	tagatcgaat	taattccagg	2160
	cggtgaaggg	caatcagctg	ttgcccgtct	cactggtgaa	aagaaaaacc	accccagtac	2220
40	attaaaaacg	tccgcaatgt	gttattaagt	tgtctaagcg	tcaatttgtt	tacaccacaa	2280
	tatatectge	caccagccag	ccaacagctc	cccgaccggc	agctcggcac	aaaatcacca	2340
45	ctcgatacag	gcagcccatc	agtccgggac	ggcgtcagcg	ggagagccgt	tgtaaggcgg	2400
45	cagactttgc	tcatgttacc	gatgctattc	ggaagaacgg	caactaagct	gccgggtttg	2460
	aaacacggat	gatctcgcgg	agggtagcat	gttgattgta	acgatgacag	agcgttgctg	2520
50	cctgtgatca	aatatcatct	ccctcgcaga	gatccgaatt	atcagccttc	ttattcattt	2580
	ctcgcttaac	cgtgacaggc	tgtcgatctt	gagaactatg	ccgacataat	aggaaatcgc	2640
==	tggataaagc	cgctgaggaa	gctgagtggc	gctatttctt	tagaagtgaa	cgttgacgat	2700
55	gtcgacggat	cttttccgct	gcataaccct	gcttcggggt	cattatagcg	attttttcgg	2760
	tatatccatc	ctttttcgca	cgatatacag	gattttgcca	aagggttcgt	gtagactttc	2820
60	cttggtgtat	ccaacggcgt	cagccgggca	ggataggtga	agtaggccca	cccgcgagcg	2880
	ggtgttcctt	cttcactgtc	ccttattcgc	acctggcggt	gctcaacggg	aatcctgctc	2940

WO 02/059294 PCT/AU02/00073

	tgcgaggctg	gccggctacc	gccggcgtaa	cagatgaggg	caagcggatg	gctgatgaaa	3000
5	ccaagccaac	caggggtgat	gctgccaact	tactgattta	gtgtatgatg	gtgtttttga	3060
อ	ggtgctccag	tggcttctgt	ttctatcagc	tgtccctcct	gttcagctac	tgacggggtg	3120
	gtgcgtaacg	gcaaaagcac	cgccggacat	cagcgctatc	tctgctctca	ctgccgtaaa	3180
10	acatggcaac	tgcagttcac	ttacaccgct	tctcaacccg	gtacgcacca	gaaaatcatt	3240
	gatatggcca	tgaatggcgt	tggatgccgg	gcaacagccc	gcattatggg	cgttggcctc	3300
15	aacacgattt	tacgtcactt	aaaaactca	ggccgcagtc	ggtaacctcg	cgcatacagc	3360
10	cgggcagtga	cgtcatcgtc	tgcgcggaaa	tggacgaaca	gtggggctat	gtcggggcta	3420
	aatcgcgcca	gcgctggctg	ttttacgcgt	atgacagtct	ccggaagacg	gttgttgcgc	3480
20	acgtattcgg	tgaacgcact	atggcgacgc	tggggcgtct	tatgagcctg	ctgtcaccct	3540
	ttgacgtggt	gatatggatg	acggatggct	ggccgctgta	tgaatcccgc	ctgaagggaa	3600
25	agctgcacgt	aatcagcaag	cgatatacgc	agcgaattga	gcggcataac	ctgaatctga	3660
20	ggcagcacct	ggcacggctg	ggacggaagt	cgctgtcgtt	ctcaaaatcg	gtggagctgc	3720
	atgacaaagt	catcgggcat	tatctgaaca	taaaacacta	tcaataagtt	ggagtcatta	3780
30	cccaaccagg	aagggcagcc	cacctatcaa	ggtgtactgc	cttccagacg	aacgaagagc	3840
	gattgaggaa	aaggcggcgg	cggccggcat	gagcctgtcg	gcctacctgc	tggccgtcgg	3900
35	ccagggctac	aaaatcacgg	gcgtcgtgga	ctatgagcac	gtccgcgagc	tggcccgcat	3960
00	caatggcgac	ctgggccgcc	tgggcggcct	gctgaaactc	tggctcaccg	acgacccgcg	4020
	cacggcgcgg	ttcggtgatg	ccacgatcct	cgccctgctg	gcgaagatcg	aagagaagca	4080
4 0	ggacgagctt	ggcaaggtca	tgatgggcgt	ggtccgcccg	agggcagagc	catgactttt	4140
	ttagccgcta	aaacggccgg	ggggtgcgcg	tgattgccaa	gcacgtcccc	atgcgctcca	4200
45	tcaagaagag	cgacttcgcg	gagctggtat	tcgtgcaggg	caagattcgg	aataccaagt	4260
20	acgagaagga	cggccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	4320
	tggacaccaa	ggcaccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	4380
50	tcggggcaat	cccgcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	4440
	aagaactgat	cgacgcgggg	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	4500
55	tcatgcgtgc	gccccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	4560
	ccaagatcga	gcgcġacagc	gtgcaactgg	ctcccctgc	cctgcccgcg	ccatcggccg	4620
	ccgtggagcg	ttcgcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	4680
60	tcgacacgcg	aggaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	4740
	aacaggtcag	cgaggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	4800

		aaatgcagct	ttccttgttc	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	4860
	5	acgacacggc	ccgctctgcc	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	4920
	อ	tgcaaaacaa	ggtcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	4980
		agctgcgggc	cgacgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	5040
	LO	cccctatcgg	cgagccgatc	accttcacgt	tctacgagct	ttgccaggac	ctgggctggt	5100
		cgatcaatgg	ccggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	5160
		cgatgggctt	cacgtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	5220
	15	tccgcgtcct	ggaccgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	5280
		tcgtcgtgct	gtttgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	5340
;	20	tgtcgccgac	ggcccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	5400
		tcaagctgga	aaccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	5460
		gcgagcaggt	cggcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	5520
	25	gggtcaatga	tgacctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	5580
		ggggttcagc	agccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	5640
,	30	cttgcttcgc	tcagtatcgc	tcgggacgca	cggcgcgctc	tacgaactgc	cgataaacag	5700
		aggattaaaa	ttgacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	5760
		gcaggatttc	cgcgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	5820
	35	cgtttacgag	cacgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	5880
		cgtggcattc	ggcgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	5940
	4 0	ggacggcccc	aaggacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	6000
		gcgaggccga	ggggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	6060
		gatgatcgtc	cgacagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	6120
	45 ·	acttaatatt	tcgctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	6180
		ggtcgcggcg	acggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	6240
	50	gctaggtagc	ccgatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	6300
		ggcgctgttg	gtgttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	6360
			gtttccatgg					6420
	55		acctttaccg		,			6480
			tttgatccgc					6540
	60		ctgatcggag					6600
			acagttgttt					6660
			-					

	attgccgccg	atcttcatat	gcggtgtgaa	ataccgcaca	gatgcgtaag	gagaaaatac	6720
5	cgcatcaggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	6780
Э	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	6840
	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	6900
10	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	aaatcgacgc	6960
	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tcccctgga	7020
15	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	7080
10	ctcccttcgg	gaagcgtggc	gctttctcaa	tgctcacgct	gtaggtatct	cagttcggtg	7140
	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	7200
20	gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	7260
	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	7320
ne.	ttgaagtggt	ggcctaacta	cggctacact	agaaggacag	tatttggtat	ctgcgctctg	7380
25	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	acaaaccacc	7440
	gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatat	7500
30	caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	agtggaacga	aaactcacgt	7560
	taagggattt	tggtcatgag	attatcaaaa	aggatcttca	cctagatcct	tttaaattaa	7620
25	aaatgaagtt	ttaaatcaat	ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	7680
35	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	catagttgcc	7740
	tgactccccg	tcgtgtagat	aactacgata	cgggägggct	taccatctgg	ccccagtgct	7800
40	gcaatgatac	cgcgagaccc	acgctcaccg	gctccagatt	tatcagcaat	aaaccagcca	7860
	gccggaaggg	ccgagcgcag	aagtggtcct	gcaactttat	ccgcctccat	ccagtctatt	7920
45	aaacaagtgg	cagcaacgga	ttcgcaaacc	tgtcacgcct	tttgtgccaa	aagccgcgcc	7980
45	aggtttgcga	tccgctgtgc	caggcgttag	gcgtcatatg	aagatttcgg	tgatccctga	8040
	gcaggtggcg	gaaacattgg	atgctgagaa	ccatttcatt	gttcgtgaag	tgttcgatgt	8100
50	gcacctatcc	gaccaaggct	ttgaactatc	taccagaagt	gtgagcccct	accggaagga	8160
	ttacatctcg	gatgatgact	ctgatgaaga	ctctgcttgc	tatggcgcat	tcatcgacca	8220
55	agagcttgtc	gggaagattg	aactcaactc	aacatggaac	gatctagcct	ctatcgaaca	8280
55	cattgttgtg	tcgcacacgc	accgaggcaa	aggagtcgcg	cacagtetca	tcgaatttgc	8340
·	gaaaaagtgg	gcactaagca	gacagetect	tggcatacga	. ttagagacac	aaacgaacaa	8400
60	tgtacctgcc	tgcaatttgt	acgcaaaatg	tggctttact	ctcggcggca	ttgacctgtt	8460
	cacgtataaa	actagacctc	aagtctcgaa	cgaaacagcg	, atgtactggt	actggttctc	8520

gggagcacag gatgacgcct aacaattcat tcaagccgac accgcttcgc ggcgcggctt 8580 aattcaggag ttaaacatca tgagggaagc ggtgatcgcc gaagtatcga ctcaactatc 8640 5 8700 agaggtagtt ggcgtcatcg agcgccatct cgaaccgacg ttgctggccg tacatttgta 8760 cggctccgca gtggatggcg gcctgaagcc acacagtgat attgatttgc tggttacggt 10 gaccgtaagg cttgatgaaa caacgcggcg agctttgatc aacgaccttt tggaaacttc 8820 8880 ggcttcccct ggagagagcg agattctccg cgctgtagaa gtcaccattg ttgtgcacga 8940 cgacatcatt ccgtggcgtt atccagctaa gcgcgaactg caatttggag aatggcagcg 15 9000 caatgacatt cttgcaggta tcttcgagcc agccacgatc gacattgatc tggctatctt 9060 gctgacaaaa gcaagagaac atagcgttgc cttggtaggt ccagcggcgg aggaactctt 9120 20 tgatccggtt cctgaacagg atctatttga ggcgctaaat gaaaccttaa cgctatggaa ctcgccgccc gactgggctg gcgatgagcg aaatgtagtg cttacgttgt cccgcatttg 9180 9240 gtacagcqca qtaaccqqca aaatcqcqcc qaaqqatqtc gctgccqact gggcaatgga 25 9300 gcgcctgccg gcccagtatc agcccgtcat acttgaagct aggcaggctt atcttggaca 9360 agaagatcgc ttggcctcgc gcgcagatca gttggaagaa tttgttcact acgtgaaagg 9420 30 cgagatcacc aaggtagtcg gcaaataatg tctaacaatt cgttcaagcc gacgccgctt 9480 cqcqqcqcqq cttaactcaa qcqttaqaqa qctqqqqaaq actatgcgcg atctgttgaa 9540 ggtggttcta agcctcgtac ttgcgatggc atcggggcag gcacttgctg acctgccaat 35 9600 tgttttagtg gatgaagete gtetteeeta tgactaetee ceatecaaet acgacattte tccaagcaac tacgacaact ccataagcaa ttacgacaat agtccatcaa attacgacaa 9660 9720 40 ctctqaqaqc aactacqata ataqttcatc caattacqac aatagtcgca acggaaatcg 9780 taggettata tatagegeaa atgggteteg caetttegee ggetactaeg teattgeeaa caatgggaca acgaacttct tttccacatc tggcaaaagg atgttctaca ccccaaaagg 9840 45 9900 ggggcgcggc gtctatggcg gcaaagatgg gagcttctgc ggggcattgg tcgtcataaa 9960 tggccaattt tcgcttgccc tgacagataa cggcctgaag atcatgtatc taagcaacta 10020 50 gcctgctctc taataaaatg ttaggagctt ggctgccatt tttggggtga ggccgttcgc ggccgagggg cgcagccct ggggggatgg gaggcccgcg ttagcgggcc gggagggttc 10080 10140 gagaaggggg qqcaccccc ttcqqcqtgc gcggtcacgc gccagggcgc agccctggtt 55 10200 aaaaacaagg tttataaata ttggtttaaa agcaggttaa aagacaggtt agcggtggcc 10260 gaaaaacggg cggaaaccct tgcaaatgct ggattttctg cctgtggaca gcccctcaaa 10320 60 tgtcaatagg tgcgccctc atctgtcagc actctgcccc tcaagtgtca aggatcgcgc 10380 ccctcatctg tcagtagtcg cgccctcaa gtgtcaatac cgcagggcac ttatccccag

ĺ

	gcttgtccac	atcatctgtg	ggaaactcgc	gtaaaatcag	gcgttttcgc	cgatttgcga	10440
_	ggctggccag	ctccacgtcg	ccggccgaaa	tcgagcctgc	ccctcatctg	tcaacgccgc	10500
5	gccgggtgag	tcggcccctc	aagtgtcaac	gtccgcccct	catctgtcag	tgagggccaa	10560
	gttttccgcg	aggtatccac	aacgccggcg	gccggccgcg	gtgtctcgca	cacggcttcg	10620
10	acggcgtttc	tggcgcgttt	gcagggccat	agacggccgc	cagcccagcg	gcgagggcaa	10680
	ccagcccggt	gagcgtcgga	aagggtcgac	atcttgctgc	gttcggatat	tttcgtggag	10740
15	ttcccgccac	agacccggat	tgaaggcgag	atccagcaac	tcgcgccaga	tcatcctgtg	10800
15	acggaacttt	ggcgcgtgat	gactggccag	gacgtcggcc	gaaagagcga	caagcagatc	10860
	acgattttcg	acagcgtcgg	atttgcgatc	gaggatttt	cggcgctgcg	ctacgtccgc	10920
20	gaccgcgttg	agggatcaag	ccacagcagc	ccactcgacc	ttctagccga	cccagacgag	10980
	ccaagggatc	tttttggaat	gctgctccgt	cgtcaggctt	tccgacgttt	gggtggttga	11040
	acagaagtca	ttatcgtacg	gaatgccagc	actcccgagg	ggaaccctgt	ggttggcatg	11100
25	cacatacaaa	tggacgaacg	gataaacctt	ttcacgccct	tttaaatatc	cgttattcta	11160
	ataaacġctc	ttttctctta	ggtttacccg	ccaatatatc	ctgtcaaaca	ctgatagttt	11220
30	aaactgaagg	cgggaaacga	caatctgatc	atgagcggag	aattaaggga	gtcacgttat	11280
	gacccccgcc	gatgacgcgg	gacaagccgt	tttacgtttg	gaactgacag	aaccgcaacg	11340
٠,	attgaaggag	ccactcagcc	ccaatacgca	aaccgcctct	ccccgcgcgt	tggccgattc	11400
35	attaatgcag	ctggcacgac	aggtttcccg	actggaaagc	gggcagtgag	cgcaacgcaa	11460
	ttaatgtgag	ttagctcact	cattaggcac	cccaggcttt	acactttatg	cttccggctc	11520
40	gtatgttgtg	tggaattgtg	agcggataac	aatttcacac	aggaaacagc	tatgaccatg	11580
	attacgccaa	gctatttagg	tgacactata	gaatactcaa	gctatgcatc	caacgcgttg	11640
	ggagctctcc	catatcgacc	tgcaggcggc	cgctcgacga	attaattcca	atcccacaaa	11700
45	aatctgagct	taacagcaca	gttgctcctc	tcagagcaga	atcgggtatt	caacaccctc	11760
	atatcaacta	ctacgttgtg	tataacggtc	cacatgccgg	tatatacgat	gactggggtt	11820
50	gtacaaaggc	ggcaacaaac	ggcgttcccg	gagttgcaca	caagaaattt	gccactatta	11880
	cagaggcaag	agcagcagct	gacgcgtaca	caacaagtca	gcaaacagac	aggttgaact	11940
	tcatccccaa	aggagaagct	caactcaagc	ccaagagctt	: tgctaaggcc	ctaacaagcc	12000
55	caccaaagca	aaaagcccac	tggctcacgo	taggaaccaa	aaggcccagc	agtgatccag	12060
		gateteett					12120
60		gaagttcgaa					12180
	aggttagcct	cttcaatttc	: agaaagaatg	ctgacccaca	a gatggttaga	gaggcctacg	12240

WO 02/059294 PCT/AU02/00073

							12300
					ccaggagatc		
5	ccaagaaggt	taaagatgca	gtcaaaagat	tcaggactaa	ttgcatcaag	aacacagaga	12360
•	aagacatatt	tctcaagatc	agaagtacta	ttccagtatg	gacgattcaa	ggcttgcttc	12420
	ataaaccaag	gcaagtaata	gagattggag	tctctaaaaa	ggtagttcct	actgaatcta	12480
10	aggccatgca	tggagtctaa	gattcaaatc	gaggatctaa	cagaactcgc	cgtgaagact	12540
	ggcgaacagt	tcatacagag	tcttttacga	ctcaatgaca	agaagaaaat	cttcgtcaac	12600
	atggtggagc	acgacactct	ggtctactcc	aaaaatgtca	aagatacagt	ctcagaagac	12660
15	caaagggcta	ttgagacttt	tcaacaaagg	ataatttcgg	gaaacctcct	cggattccat	12720
	tgcccagcta	tctgtcactt	catcgaaagg	acagtagaaa	aggaaggtgg	ctcctacaaa	12780
20	tgccatcatt	gcgataaagg	aaaggctatc	attcaagatc	tctctgccga	cagtggtccc	12840
	aaagatggac	cccacccac	gaggagcatc	gtggaaaaag	aagacgttcc	aaccacgtct	12900
	tcaaagcaag	tggattgatg	tgacatctcc	actgacgtaa	gggatgacgc	acaatcccac	12960
25	tatccttcgc	aagacccttc	ctctatataa	ggaagttcat	ttcatttgga	gaggacacgc	13020
	tcgagacaag	tttgtacaaa	aaagctgaac	gagaaacgta	aaatgatata	aatatcaata	13080
30	tattaaatta	gattttgcat	aaaaaacaga	ctacataata	ctgtaaaaca	caacatatcc	13140
	agtcactatg	aatcaactac	ttagatggta	ttagtgacct	gtagtcgacc	gacagccttc	13200
	caaatgttct	tcgggtgatg	ctgccaactt	agtcgaccga	cagccttcca	aatgttcttc	13260
35	tcaaacggaa	tcgtcgtatc	cagcctactc	gctattgtcc	tcaatgccgt	attaaatcat	13320
	aaaaagaaat	aagaaaaaga	ggtgcgagcc	tctttttgt	gtgacaaaat	aaaaacatct	13380
40					ctgcatcaag	•	13440
	caactcttat	acttttctct	tacaagtcgt	toggottcat	ctggattttc	: agcctctata	13500
						actggctgtg	13560
45						: ttttgatgtc	13620
						gcacactggc	13680
50						ggtaaagttc	13740
						teegtegeee	13800
						totototttt	13860
55						a aaagagccgt	13920
						ttccagcgtt	13980
60						g gagatattga	14040
32						g taatacgctg	14100
		J 9 - 9 - 0 - 0 - 0 - 0 - 0 - 0 -					

	cttcatagca	cacctctttt	tgacatactt	cgggtagtgc	cgatcaacgt	ctcattttcg	14160
5	ccaaaagttg	gcccagggct	tcccggtatc	aacagggaca	ccaggattta	tttattctgc	14220
3	gaagtgatct	tccgtcacag	gtatttattc	ggcgcaaagt	gcgtcgggtg	atgctgccaa	14280
	cttagtcgac	tacaggtcac	taataccatc	taagtagttg	attcatagtg	actggatatg	14340
10	ttgtgtttta	cagtattatg	tagtctgttt	tttatgcaaa	atctaattta	atatattgat	14400
	atttatatca	ttttacgttt	ctcgttcagc	tttcttgtac	aaagtggtct	cgaggaattc	14460
45	ggtaccccag	cttggtaagg	aaataattat	tttcttttt	ccttttagta	taaaatagtt	14520
15	aagtgatgtt	aattagtatg	attataataa	tatagttgtt	ataattgtga	aaaaataatt	14580
	tataaatata	ttgtttacat	aaacaacata	gtaatgtaaa	aaaatatgac	aagtgatgtg	14640
20	taagacgaag	aagataaaag	ttgagagtaa	gtatattatt	tttaatgaat	ttgatcgaac	14700
	atgtaagatg	atatactagc	attaatattt	gttttaatca	taatagtaat	tctagctggt	14760
05	ttgatgaatt	aaatatcaat	gataaaatac	tatagtaaaa	ataagaataa	ataaattaaa	14820
25	ataatatttt	tttatgatta	atagtttatt	atataattaa	atatctatac	cattactaaa	14880
	tattttagtt	taaaagttaa	taaatatttt	gttagaaatt	ccaatctgct	tgtaatttat	14940
30	caataaacaa	aatattaaat	aacaagctaa	agtaacaaat	aatatcaaac	taatagaaac	15000
	agtaatctaa	tgtaacaaaa	cataatctaa	tgctaatata	acaaagcgca	agatctatca	15060
0.5	ttttatatag	tattattttc	aatcaacatt	cttattaatt	tctaaataat	acttgtagtt	15120
35	ttattaactt	ctaaatggat	tgactattaa	ttaaatgaat	tagtcgaaca	tgaataaaca	15180
	aggtaacatg	atagatcatg	tcattgtgtt	atcattgatc	ttacatttgg	attgattaca	15240
40	gttgggaagc	tgggttcgaa	atcgataagc	ttgcgctgca	gttatcatca	tcatcataga	15300
	cacacgaaat	aaagtaatca	gattatcagt	taaagctatg	taatatttgc	gccataacca	15360
45	atcaattaaa	aaatagatca	gtttaaagaa	agatcaaagc	tcaaaaaaat	aaaaagagaa	15420
45	aagggtccta	accaagaaaa	tgaaggagaa	aaactagaaa	tttacctgca	caagcttgga	15480
	tcctctagac	cactttgtac	aagaaagctg	aacgagaaac	gtaaaatgat	ataaatatca	15540
50	atatattaaa	ttagattttg	cataaaaaac	agactacata	atactgtaaa	acacaacata	15600
	tccagtcact	atgaatcaac	tacttagatg	gtattagtga	cctgtagtcg	actaagttgg	15660
	cagcatcacc	: cgacgcactt	tgcgccgaat	aaatacctgt	gacggaagat	cacttcgcag	15720
55	aataaataaa	tectggtgte	cctgttgata	ccgggaagcc	ctgggccaac	: ttttggcgaa	15780
	aatgagacgt	tgatcggatt	tcacaactct	tatacttttc	: tcttacaagt	cgttcggctt	15840
60	catctggatt	ttcagcctct	atacttacta	aacgtgataa	agtttctgta	atttctactg	15900
	tatogacoto	cagactggct	gtgtataagg	gagcctgaca	tttatattco	: ccagaacatc	15960

PCT/AU02/00073 WO 02/059294

46

	aggttaatgg	cgtttttgat	gtcattttcg	cggtggctga	gatcagccac	ttcttccccg	16020
_	ataacggaga	ccggcacact	ggccatatcg	gtggtcatca	tgcgccagct	ttcatccccg	16080
5	atatgcacca	ccgggtaaag	ttcacgggag	actttatctg	acagcagacg	tgcactggcc	16140
	agggggatca	ccatccgtcg	cccgggcgtg	tcaataatat	cactctgtac	atccacaaac	16200
10	agacgataac	ggctctctct	tttataggtg	taaaccttaa	actgcatttc	accagtccct	16260
	gttctcgtca	gcaaaagagc	cgttcatttc	aataaaccgg	gcgacctcag	ccatcccttc	16320
	ctgattttcc	gctttccagc	gttcggcacg	cagacgacgg	gcttcattct	gcatggttgt	16380
15	gcttaccaga	ccggagatat	tgacatcata	tatgccttga	gcaactgata	gctgtcgctg	16440
	tcaactgtca	ctgtaatacg	ctgcttcata	gcacacctct	ttttgacata	cttctgttct	16500
20	tgatgcagat	gattttcagg	actatgacac	tagcgtatat	gaataggtag	atgtttttat	16560
	tttgtcacac	aaaaaagagg	ctcgcacctc	tttttcttat	ttctttttat	gatttaatac	16620
	ggcattgagg	acaatagcga	gtaggctgga	tacgacgatt	ccgtttgaga	agaacatttg	16680
25	gaaggctgtc	ggtcgactaa	gttggcagca	tcacccgaag	aacatttgga	aggctgtcgg	16740
	tcgactacag	gtcactaata	ccatctaagt	agttgattca	tagtgactgg	atatgttgtg	16800
30	ttttacagta	ttatgtagtc	tgtttttat	gcaaaatcta	atttaatata	ttgatattta	16860
	tatcatttta	cgtttctcgt	tcagcttttt	tgtacaaact	tgtctagagt	cctgctttaa	16920
	tgagatatgc	gagacgccta	tgatcgcatg	atatttgctt	tcaattctgt	tgtgcacgtt	16980
35	gtaaaaaacc	tgagcatgtg	tagctcagat	ccttaccgcc	ggtttcggtt	cattctaatg	17040
	aatatatcac	ccgttactat	cgtatttta	tgaataatat	tctccgttca	atttactgat	17100
40	tgtaccctac	tacttatatg	tacaatatta	aaatgaaaac	aatatattgt	gctgaatagg	17160
	tttatagcga	catctatgat	agagcgccac	aataacaaac	aattgcgttt	tattattaca	17220
	aatccaattt	taaaaaagc	ggcagaaccg	gtcaaaccta	aaagactgat	tacataaatc	17280
45	ttattcaaat	ttcaaaaggc	cccaggggct	agtatctacg	acacaccgag	cggcgaacta	17340
	ataacgttca	ctgaagggaa	ctccggttcc	ccgccggcgc	gcatgggtga	gattccttga	17400
50	agttgagtat	tggccgtccg	ctctaccgaa	agttacgggc	accattcaac	ccggtccagc	17460
	acggcggccg	ggtaaccgac	ttgctgccc	gagaattatg	cagcatttt	: ttggtgtatg	17520
	tgggccccaa	atgaagtgca	ggtcaaacct	: tgacagtgac	gacaaatcgt	tgggcgggtc	17580
55						tgcaagctag	17640
		atgcatatto					17681

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU02/00073

CLASSIFICATION OF SUBJECT MATTER Int. Cl. 7: C12N 15/09 15/63 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) SEE ELECTRONIC DATABASE BOX BELOW Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SEE ELECTRONIC DATABASE BOX BELOW Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Medline, Chem Abs, Biosis, WPIDS keywords: gene silencing, genetic vector, dsRNA, multiple recombination sites, recombinatorial cloning, RNAi GenBank, EMBL: sequence IDs 13, 23-26 C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category* 1-33 PX WESLEY, S. V. et al (2001) "Construct design for efficient, effective and high-throughput gene silencing in plants" The Plant Journal, 27(6), 581-590. MONTGOMERY, M. K. et al (1998) "Double-stranded RNA as a mediator A in sequence-specific genetic silencing and co-suppression" TIG 14(7), 255-258 AU-A-43685/99 (Novartis AG) 2 December 1999 Α X See patent family annex Further documents are listed in the continuation of Box C Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to "A" document defining the general state of the art which is understand the principle or theory underlying the invention not considered to be of particular relevance document of particular relevance; the claimed invention cannot "E" earlier application or patent but published on or after be considered novel or cannot be considered to involve an the international filing date inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) document of particular relevance; the claimed invention cannot or which is cited to establish the publication date of be considered to involve an inventive step when the document is another citation or other special reason (as specified) combined with one or more other such documents, such "O" document referring to an oral disclosure, use, exhibition combination being obvious to a person skilled in the art or other means document member of the same patent family "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 0 4 MAR 2002 15 February 2002 Authorized officer Name and mailing address of the ISA/AU AUSTRALIAN PATENT OFFICE PO BOX 200, WODEN ACT 2606, AUSTRALIA PHILIPPA WYRDEMAN E-mail address: pct@ipaustralia.gov.au Facsimile No. (02) 6285 3929 Telephone No: (02) 6283 2554

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. PCT/AU02/00073

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

	nt Document Cited in Search Report			Pate	ent Family Member		
AU HU	43685/99 0102103	WO PL	99/61631 344312	BR	9910729	EP	1080208
		<u> </u>					END OF ANNE