28.10,2004

REC'D 0 4 JAN 2005

WIPO

PCT

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 6月11日

出 願 番 号 Application Number:

特願2004-174396

[ST. 10/C]:

[JP2004-174396]

出 願 人
Applicant(s):

株式会社東洋新薬

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年12月16日

特許庁長官 Commissioner, Japan Patent Office ハ リ

【書類名】

特許願

【整理番号】

PJ040611

【提出日】

平成16年 6月11日

【あて先】

特許庁長官殿

【国際特許分類】

A23L 1/30

【発明者】

【住所又は居所】

福岡県福岡市博多区博多駅前2丁目19番27号 株式会社東洋

新薬内

【氏名】

高垣 欣也

【特許出願人】

【識別番号】

398028503

【氏名又は名称】

株式会社東洋新薬

【代表者】

服部 利光

【先の出願に基づく優先権主張】

【出願番号】

特願2004-140142

【出願日】

平成16年 5月10日

【手数料の表示】

【予納台帳番号】

125266

【納付金額】

16,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】 【物件名】

図面 1 要約書 1

ページ: 1/E

【書類名】特許請求の範囲

【請求項1】

松樹皮抽出物を含有する脂質吸収抑制剤。

【請求項2】

前記松樹皮抽出物は、水および極性溶媒の少なくとも一種で松樹皮より抽出された抽出物である請求項1に記載の脂質吸収抑制剤。

【請求項3】

松樹皮抽出物を含有する体脂肪蓄積抑制低減剤。

【書類名】明細書

【発明の名称】脂質吸収抑制剤および体脂肪蓄積抑制低減剤

【技術分野】

[0001]

本発明は、松樹皮の抽出物を含有する脂質吸収抑制剤と、松樹皮の抽出物を含有する体脂肪蓄積抑制低減剤とに関する。

【背景技術】

[0002]

最近は飽食の時代と言われ、消費カロリー量に対して摂取カロリー量が多くなる傾向にあり、過剰に摂取されたカロリーは、体脂肪、皮下脂肪、あるいは肝臓中に脂肪として蓄積される。特に、中高年の人にとって脂肪の蓄積は、肥満の原因になり、またそれによって引き起こされる成人病、例えば、高血圧、脂肪肝、肝炎、あるいは肝硬変等があるが、これらのことは、社会問題にもなっている。このような背景から、脂肪の吸収を抑制し、体内の蓄積防止、脂質代謝改善を行おうとするさまざまな試みがなされている(特許文献1および2)。

【特許文献1】特開平8-259461号公報

【特許文献2】特願2000-31955号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

しかし、これらの効果は十分とは言えず、特に、リパーゼの阻害効果があったとしても、脂質の吸収を十分抑制し得ないといった問題があった。そこで、新たな脂質の吸収を抑制する植物由来の抽出物が望まれていた。

【課題を解決するための手段】

[0004]

本発明者らは、脂質の吸収抑制効果に優れた植物抽出物について鋭意検討を行って結果 、松樹皮の抽出物に優れた脂質吸収抑制効果があることを見出し、本発明にいたった。

[0005]

すなわち本発明は、松樹皮抽出物を含有する脂質吸収抑制剤に関する。

[0006]

好ましくは、前記松樹皮抽出物は、水および極性溶媒の少なくとも一種で松樹皮より抽出された抽出物である。

[0007]

さらに、本発明は、松樹皮抽出物を含有する体脂肪蓄積抑制低減剤に関する。

【発明の効果】

[0008]

本発明の松樹皮抽出物は、脂質の体内への吸収を抑制することができる。すなわち、生体内への吸収を抑制して、食後の血中脂質の上昇を抑制するとともに、体内への脂質の取り込みを防止することから、体脂肪の蓄積抑制並びに低減効果を有するものと考えられる。なお、本発明の松樹皮抽出物が、脂質の体内への吸収を抑制することができるのは、松樹皮抽出物が脂質の分解を抑制すること等によるものと考えられる。

[0009]

さらに、本発明の体脂肪蓄積抑制低減剤により、体脂肪の蓄積を抑制する、または、体 脂肪を低減することができる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 0\]$

本発明の松樹皮抽出物を得るための原料となる松の樹皮としては、フランス海岸松(Pinus Martima)、カラマツ、クロマツ、アカマツ、ヒメコマツ、ゴヨウマツ、チョウセンマツ、ハイマツ、リュウキュウマツ、ウツクシマツ、ダイオウマツ、シロマツ、カナダのケベック地方のアネダなどのマツ目に属する植物の樹皮の抽出物が好ましく

用いられる。中でも、フランス海岸松 (Pinus Martima) の樹皮抽出物が好 ましい。

[0011]

フランス海岸松は、南仏の大西洋沿岸の一部に生育している海洋性松をいう。このフラ ンス海岸松の樹皮は、フラバンー3ーオールおよび/またはフラバンー3,4ージオール を構成単位とする重合度が2以上の縮合型タンニンであるプロアントシアニジンをはじめ とするポリフェノール類や有機酸、糖類などの生理活性成分が含有されている。特に重合 度が2~4の縮合重合体(2~4量体)のプロアントシアニジンが豊富に含まれている。

[0012]

本明細書では、プロアントシアニジンの縮重合体のうち、フラバンー3ーオールおよび /またはフラバンー3,4 ージオールを構成単位とする重合度が2~4の重合体を、OP C (オリゴメリック・プロアントシアニジン; oligomeric proanthocyanidin) という。

[0013]

本発明の脂質吸収抑制剤または体脂肪蓄積抑制低減剤に含有される松樹皮抽出物は、上 記の松樹皮を水または有機溶媒、特に極性溶媒で抽出して得られる物が好ましい。また、 水を用いる場合には、温水または熱水を用いることが好ましい。これらの水には、抽出効 率を向上させる点から、塩化ナトリウムなどの塩を添加することが好ましい。抽出に用い る有機溶媒としては、食品あるいは薬剤の製造に許容される有機溶媒が用いられ、例えば 、メタノール、エタノール、1ープロパノール、2ープロパノール、1ーブタノール、2 - ブタノール、アセトン、ヘキサン、シクロヘキサン、プロピレングリコール、含水エタ ノール、含水プロピレングリコール、エチルメチルケトン、グリセリン、酢酸メチル、酢 酸エチル、ジエチルエーテル、ジクロロメタン、食用油脂、1,1,1,2ーテトラフル オロエタン、および1,1,2ートリクロロエテンが挙げられる。これらの水および有機 溶媒は単独で用いてもよいし、組合わせて用いてもよい。特に、水、熱水、および極性溶 媒のエタノールやプロピレングリコールまたは含水エタノール、含水プロピレングリコー ル等の水と極性溶媒の混合液が好ましく用いられる。

松樹皮からプロアントシアニジンを抽出する方法は、特に限定されないが、例えば、加温 抽出法、超臨界流体抽出法などが用いられる。

$[0\ 0\ 1\ 4\]$

超臨界流体抽出法は、物質の気液の臨界点(臨界温度、臨界圧力)を超えた状態の流体 である超臨界流体を用いて抽出を行う方法である。超臨界流体としては、二酸化炭素、エ チレン、プロパン、亜酸化窒素 (笑気ガス) などが用いられ、二酸化炭素が好ましく用い られる。超臨界流体抽出法は、目的成分を超臨界流体によって抽出する抽出工程および目 的成分と超臨界流体とを分離する分離工程からなる。分離工程では、圧力変化による抽出 分離、温度変化による抽出分離、または吸着剤・吸収剤を用いた抽出分離のいずれを行っ てもよい。

[0015]

また、エントレーナー添加法による超臨界流体抽出を行ってもよい。この方法は、超臨 界流体に、例えば、エタノール、プロパノール、n-ヘキサン、アセトン、トルエン、そ の他の脂肪族低級アルコール類、脂肪族炭化水素類、芳香族炭化水素類、またはケトン類 を2~20W/V%程度添加し、得られた抽出流体で超臨界流体抽出を行うことによって 、OPC、カテキン類(後述)などの目的とする被抽出物の抽出流体に対する溶解度を飛 躍的に上昇させる、あるいは分離の選択性を増強させる方法であり、効率的に松樹皮抽出 物を得る方法である。

$[0\ 0\ 1\ 6]$

超臨界流体抽出法は、比較的低い温度で操作できるため、高温で変質・分解する物質に も適用できるという利点;抽出流体が残留しないという利点;および溶媒の循環利用が可 能であり、脱溶媒工程などが省略でき、工程がシンプルになるという利点がある。

$[0\ 0\ 1\ 7]$

また、松樹皮からの抽出は、上記の方法以外に、液体二酸化炭素回分法、液体二酸化炭

素還流法、超臨界二酸化炭素還流法などにより行ってもよい。

[0018]

松樹皮からの抽出は、複数の抽出方法を組み合わせてもよい。複数の抽出方法を組み合わせることにより、種々の組成の松樹皮抽出物を得ることが可能となる。

[0019]

本発明において、プロアントシアニジンを主成分として含む松樹皮抽出物は、具体的には、以下のような方法によりに調製されるが、これは例示であり、この方法に限定されない。

[0020]

フランス海岸松の樹皮 1 k g を、塩化ナトリウムの飽和溶液 3 L に入れ、100℃にて30分間抽出し、抽出液を得る(抽出工程)。その後、抽出液を濾過し、得られる不溶物を塩化ナトリウムの飽和溶液 500mlで洗浄し、洗浄液を得る(洗浄工程)。この抽出液と洗浄液とを合わせて、松樹皮の粗抽出液を得る。

[0021]

次いで、この粗抽出液に酢酸エチル250mlを添加して分液し、酢酸エチル層を回収する工程を5回行う。回収した酢酸エチル溶液を合わせて、無水硫酸ナトリウム200gに直接添加して脱水する。その後、この酢酸エチル溶液を濾過し、濾液を元の5分の1量になるまで減圧濃縮する。濃縮された酢酸エチル溶液を2Lのクロロホルムに注ぎ、攪拌して得られる沈殿物を濾過により回収する。その後、この沈殿物を酢酸エチル100mlに溶解した後、再度1Lのクロロホルムに添加して沈殿させる操作を2回繰り返す洗浄工程を行う。この方法により、例えば、OPCを20重量%以上含み、かつカテキン類を5重量%以上含有する、約5gの松樹皮抽出物が得られる。

[0022]

また、食品、医薬品に用いるときの安全性の観点から、エタノールまたは水等を用いて、より好ましくは加温しながら松樹皮からプロアントシアニジンをはじめとする成分を抽出し、ポリフェノールに対して吸着性を示す樹脂(例えば、ダイアイオンHP-20、Sephadex Lember Le

[0023]

本発明においては、OPCを20重量%以上含有する松樹皮抽出物が好ましく用いられる。より好ましくは、30重量%以上である。

[0024]

また、植物(樹皮)抽出物中のプロアントシアニジンの含有量は特に制限されないが、植物(樹皮)抽出物中のプロアントシアニジン含有量が高濃度となると、プロアントシアニジン自身の生理活性が低くなることがあるため、抽出物中のプロアントシアニジン含有量が95重量%未満、好ましくは90重量%未満であることが好ましい。

[0025]

OPCは、上述のように抗酸化物質であるため、ガン・心臓病などの成人病の危険率を低下する効果、関節炎・アトピー性皮膚炎・花粉症などのアレルギー体質の改善効果、コラーゲンの酸化や分解の阻害効果なども有する。

[0026]

さらにOPCは、抗酸化作用のほか、血管の強度、弾力性を回復させる効果;血中コレステロールおよびLDLを低下させる効果;高血圧症に対して血圧を低下させる効果;コレステロールが付着することを防止する効果;活性酸素によって分解されたビタミンEを再生させる効果;ビタミンEの増強剤としての効果などを有することが知られている。

[0027]

上記植物抽出物には、プロアントシアニジン、特にOPCとともにカテキン(catechin)類が含まれている。カテキン類とは、ポリヒドロキシフラバン-3-オールの総称である。カテキン類としては、(+)-カテキン(狭義のカテキンといわれる)、(

-) -エピカテキン、(+) -ガロカテキン、(-) -エピガロカテキン、エピガロカテ キンガレート、エピカテキンガレート、アフゼレキンなどが知られている。天然物からは 、上記の(+)-カテキンの他、ガロカテキン、アフゼレキン、(+)-カテキンの3-ガロイル誘導体およびガロカテキンの3-ガロイル誘導体が単離されている。カテキン類 には、発癌抑制作用、動脈硬化予防作用、脂肪代謝異常の抑制作用、血圧上昇の抑制作用 、血小板凝集抑制作用、抗アレルギー作用、抗ウイルス作用、抗菌作用、虫歯予防作用、 口臭防止作用、腸内細菌叢正常化作用、活性酸素やフリーラジカルの消去作用、抗酸化作 用などがあることが知られている。カテキン類には、血糖の上昇を抑制する抗糖尿病効果 があることが知られている。カテキン類は、単独では水溶性が乏しく、その生理活性が低 いが、OPCの存在下で水溶性が増すと同時に、活性化する性質があり、OPCとともに 摂取することで効果的に作用する。

[0028]

カテキン類は、上記原料植物抽出物中に、5重量%以上含有されていることが好ましい 。より好ましくは、該抽出物中にOPCが20重量%以上、そしてカテキン類が5重量% 以上含有される。例えば、抽出物のカテキン類含量が5重量%未満の場合、カテキン類を 添加し、最終的な含量が5重量%以上となるように調製してもよい。OPCを20重量% 以上含有し、かつカテキン類を5重量%以上含有する松樹皮抽出物を用いることが最も好 ましい。

[0029]

このような松樹皮抽出物は、消化過程における脂質の分解を抑制すること等の作用によ り、消化管からの脂質の吸収を抑制すると考えられる。この抑制効果により、脂質の食後 における血中脂質の上昇を抑制し得、高脂血症を予防し得るだけでなく、生体内への脂肪 の蓄積を抑制し得る。このため、体脂肪の低減効果を得られるものと考えられる。つまり 、本発明の脂質吸収抑制剤は、消化過程における脂質の分解を抑制すること等により、吸 収を抑制し、過剰な脂質吸収の抑制並びに体脂肪への蓄積を抑制し得る。このため、体脂 肪を減少させる効果も得ることができる。

[0030]

なお、本発明の体脂肪蓄積抑制低減剤とは、体脂肪の蓄積を抑制することができる剤、 または、体脂肪を低減することができる剤のことである。本発明の体脂肪蓄積抑制低減剤 における作用機序としては、消化過程における脂質の分解を抑制すること等が考えられる 。そのような作用機序により、本発明の体脂肪蓄積抑制低減剤は、脂質の吸収を抑制して 、過剰な脂質吸収の抑制または体脂肪への蓄積を抑制することができる。さらに、本発明 の体脂肪蓄積抑制低減剤は、好ましくは、体脂肪を減少させる。

[0031]

また、本発明の脂質吸収抑制剤または体脂肪蓄積抑制低減剤を、食品、医薬品として用 いる場合は、例えば、賦形剤、増量剤、結合剤、増粘剤、乳化剤、滑沢剤、湿潤剤、懸濁 剤、着色料、香料、栄養成分、食品添加物などの通常食品または医薬品に用いられる種々 の成分を目的に応じて含んでいてもよい。栄養成分としては、ローヤルゼリー、ビタミン 、プロテイン、卵殻カルシウムなどのカルシウム、レシチン、クロレラ末、アシタバ末、 モロヘイヤ末などが挙げられる。食品添加物としては、ステビア末、抹茶パウダー、レモ ンパウダー、はちみつ、還元麦芽糖、乳糖、糖液などが挙げられる。

[0032]

本発明の脂質吸収抑制剤または体脂肪蓄積抑制低減剤として、食品または医薬品に配合 する松樹皮抽出物の量には、制限はない。例えば、松樹皮抽出物の1日あたりの摂取量に ついて、その下限値が、0.001g以上、好ましくは0.002g以上となるように、 食品または医薬品に含有させるのが良い。また、松樹皮抽出物の1日あたりの摂取量につ いて、その上限値が、0.2g以下、好ましくは0.15g以下、さらに好ましくは0. 08g以下となるように、食品または医薬品に含有させるのが良い。

[0033]

本発明の脂質吸収抑制剤または体脂肪蓄積抑制低減剤を、食品または医薬品等の組成物

中に配合する場合、その配合割合は、特に制限されない。例えば、本発明における脂質吸 収抑制剤または体脂肪蓄積抑制低減剤の配合割合の下限値は、0.001重量%以上、好 ましくは0.005重量%以上とするのが良い。また、本発明における脂質吸収抑制剤ま たは体脂肪蓄積抑制低減剤の配合割合の上限値は、50重量%以下、好ましくは20重量 %以下とするのが良い。

[0034]

上記の各成分を当業者が通常用いる方法によって混合し、本発明の脂質吸収抑制剤また は体脂肪蓄積抑制低減剤を、各種の形態に調製することができる。例えば、松樹皮抽出物 へ賦形剤などを加えて、錠剤もしくは丸剤などの形状に成形してもよく、あるいは、成形 せずに、散剤の形態や、その他の形態としてもよい。その他の形態としては、ハードカプ セル、ソフトカプセルなどのカプセル剤、粉末状、顆粒状、ティーバッグ状、飴状、液状 、ペースト状などの形態が挙げられる。中でも、液状(例えば、飲料)の形態が好ましい 。特に、食後または食中に、本発明の脂質吸収抑制剤または体脂肪蓄積抑制低減剤を摂取 しえる形態に調製すれば、より効果的に脂質の吸収を抑制し得る。

[0035]

また、本発明の脂質吸収抑制剤または体脂肪蓄積抑制低減剤を摂取する場合、その摂取 方法は、特に限定されないが、その形状または好みに応じて、そのまま飲食しても良いし 、あるいは水、湯、牛乳などに溶いて飲んでも良いし、成分を浸出させたものを飲んでも 良い。

【実施例】

[0036]

以下本発明をより詳細に説明するが、本発明は、この範囲に限定されるものではない。 [0037]

(実施例1:脂質吸収抑制効果)

まず、5週齢の雄性SDラット10匹を標準飼料(MF飼料:オリエンタル酵母工業株 式会社)で1週間馴化した後に、16時間絶食させ、平均体重がほぼ均一になるようにし たこと以外は、ランダムに1群5匹の2群に分けた。ついで、眼窩より採血を行い、血清 を得た後に、一群に対しては、綿実油0.5mLと共に、松樹皮よりエタノール及び水を 用いて抽出して得られた松樹皮抽出物 (OPCを30重量%含有、株式会社東洋新薬製) を100mg/Kg体重となるようにゾンデで強制経口投与した(これを「試験群」とす る)。一方、残りの一群については、綿実油0.5mLのみを投与した(これを「対照群 」とする)。

[0038]

次いで、上記投与から1時間後、2時間後および4時間後および8時間後に、再度眼窩 より採血し、中性脂肪測定キット(和光純薬株式会社)を用いて、血中の中性脂肪値を測 定した。なお、測定結果は、投与前の測定値を1として、投与後における各時間の測定値 を相対値として算出した。その算出結果(平均値および標準偏差)を、図1および表1に 示す。なお、図1には平均値を、表1には平均値と標準偏差との両方を示している。

[0039]

【表1】

	1時間後	2時間後	4時間後	8時間後
対照群	1. 97±0. 45	3. 17±2. 01	2. 84±0. 31	3. 41±0. 47
試験群	0. 90±0. 12	1. 48±0. 45	2. 10±0. 58	1. 65±0. 32

表中の値は、平均値土標準偏差を示しています。

[0040]

図1および表1に示すように、松樹皮抽出物は、綿実油投与に伴う血中の中性脂肪の上

昇を抑制し得ることが分かる。すなわち、松樹皮抽出物または松樹皮抽出物を含有する脂 質吸収抑制剤は、脂質の吸収を抑制することによって、血中の中性脂肪の上昇を抑制して いることが分かる。

[0041]

なお、投与から1時間後、2時間後、4時間後および8時間後の上記試験結果について 、二元配置の分散分析を行ったところ、試験群および対照群の間に、有意水準1%で有意 差が認められた。さらに、テューキーの方法による多重比較を行ったところ、試験群およ び対照群の間に、有意水準1%で有意差が認められた。

[0042]

(実施例2:体脂肪低減効果の検証)

体脂肪低減効果について、以下のようにして効果を検証した。まず、4週齢のSDラッ ト(株式会社日本チャールズリバー)21匹を、基本飼料(MF飼料、オリエンタル酵母 工業株式会社製)で1週間馴化した。

[0043]

次いで、平均体重がほぼ同一となるように3群に分けた。そして、コレステロールを1 重量%、コール酸ナトリウムを0.25重量%、そして、コーンオイルを10重量%の割 合となるように基本飼料に添加し、更にこれに松樹皮抽出物 (OPCを30重量%含有、 株式会社東洋新薬製)を0.02重量%または2.0重量%となるように加えて、2種類 の試験飼料を調製した。なお、対照飼料として、上記飼料と同様であるが、松樹皮抽出物 のみを含有しない飼料も調製した。

[0044]

上記群分けされたラットのうち、1群に対しては調製した試験飼料(松樹皮抽出物0. 02重量%)を、もう1つの群には試験飼料(松樹皮抽出物2.0重量%)を、残りの群 には対照飼料を与え、体脂肪低減効果について検証した。なお、各群において、飼料は、 自由摂取させた。

[0045]

摂取開始から28日目に各ラットの体重を測定した後に解剖し、腎周囲の脂肪組織を摘 出して脂肪重量を測定した。測定後、体重あたりの脂肪重量(%)を、下記式(I)にて 算出した。結果を表2に示す。

[0046]

【数1】

[0047]

【表2】

	試験飼料		対照飼料
松樹皮抽出物 (%)	0.02	2.0	_
体重あたり の脂肪重量 (%)	1.26±0.17	1.19±0.22	1.51±0.19

値は平均値土標準偏差

[0048]

表2の結果から、松樹皮抽出物を含有する試験飼料を摂取した群は、対照飼料を摂取した群に比べ、体重あたりの脂肪重量が減少していることが分かる。つまり、本発明の体脂肪蓄積抑制低減剤(松樹皮抽出物を含有する体脂肪蓄積抑制低減剤)は、優れた脂肪低減効果を有することが分かる。

【産業上の利用可能性】

[0049]

本発明によれば、松樹皮より得られた抽出物は、消化過程における脂質の吸収を抑制し、その作用機序の一は、消化過程における脂質分解の抑制等と考えられる。つまり、食品、医薬品等に松樹皮抽出物を配合することによって、過剰な脂質の摂取による脂質吸収の抑制と、血中における脂質の上昇の抑制とが可能となり、さらに、体脂肪の蓄積を予防できる。そのため、松樹皮抽出物を含有する脂質吸収抑制剤または体脂肪蓄積抑制低減剤は、極めて有用である。

【図面の簡単な説明】

[0050]

【図1】図1は、本発明の脂質吸収抑制剤(松樹皮抽出物を含有する脂質吸収抑制剤)が、綿実油投与に伴う血中の中性脂肪の上昇を抑制することを示すグラフである。

【書類名】要約書

【要約】

【課題】

新規な脂質吸収抑制剤、特に、脂質の吸収を十分に抑制することができる植物由来の抽 出物を提供する。

【解決手段】

脂質吸収抑制効果がある植物由来の抽出物として松樹皮から得られる抽出物を用いることにより、脂質の吸収を十分に抑制することができる新規の脂質吸収抑制剤を得た。好ましくは、松樹皮抽出物として、水および極性溶媒の少なくとも一種で松樹皮より抽出された抽出物を用いる。本発明の松樹皮抽出物は、脂質の体内への吸収を抑制することができる。すなわち、生体内への吸収を抑制して、食後の血中脂質の上昇を抑制するとともに、体内への脂質の取り込みを防止することから、体脂肪の蓄積抑制並びに低減効果を有する

【選択図】なし

特願2004-174396

出願人履歴情報

識別番号

[398028503]

1. 変更年月日

1998年 4月 6日

[変更理由]

新規登録

住 所

福岡県福岡市博多区博多駅前2丁目19番27号 九勧リクル

ート博多ビル6階

氏 名

株式会社東洋新薬