Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....: CHTEW19070080

Report verification:

Project No.....: SHT1906076101EW

FCC ID.....: YPVITALCOMGUMBO

Applicant's name.....: ITALCOM GROUP

Manufacturer..... Emocom Technology Co., Limited

Museum Road, Tsimshatsui, Kowloon, Hong Kong.

Test item description: Smart watch

Trade Mark NYX Mobile

Model/Type reference...... GUMBO

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample........... Jun 28, 2019

Date of testing...... Jun 29, 2019- Jul 17, 2019

Result.....: PASS

Compiled by

(Position+Printed name+Signature) : File administrators Silvia Li

Silvia Li

Supervised by

(Position+Printed name+Signature): Project Engineer Aaron Fang

Aaron.Fang

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Page: 1 of 32

Report No.: CHTEW19070080 Page: 2 of 32 Issued: 2019-07-18

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	<u> </u>
	Test Standards	2
1.1. 1.2.	Report version	3 3
1.2.	Report Version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
_		-
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna Requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	18
5.6.	Restricted band	20
5.7.	Band edge and Spurious Emissions (conducted)	22
5.8.	Spurious Emissions (radiated)	27
<u>6.</u>	TEST SETUP PHOTOS	31
7.	EXTERANAL AND INTERNAL PHOTOS	32

Report No.: CHTEW19070080 Page: 3 of 32 Issued: 2019-07-18

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards: FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

KDB 558074 D01 15.247 Meas Guidance v05r01: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2019-07-18	Original

Report No.: CHTEW19070080 Page: 4 of 32 Issued: 2019-07-18

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	PASS	Jeremy Zhang
Line Conducted Emissions (AC Main)	15.207	PASS	Jeremy Zhang
Conducted Peak Output Power	15.247(b)(3) PASS		Bruce Wong
Power Spectral Density	15.247(e)	PASS	Bruce Wong
6dB Bandwidth	15.247(a)(2)	PASS	Bruce Wong
Restricted band	15.247(d)/15.205	PASS	Tony Duan
Spurious Emissions	15.247(d)/15.209	PASS	Tony Duan

Note: The measurement uncertainty is not included in the test result.

Report No.: CHTEW19070080 Page: 5 of 32 Issued: 2019-07-18

3. **SUMMARY**

3.1. Client Information

Applicant:	ITALCOM GROUP	
Address:	1728 Coral Way, Coral Gables, Miami, Florida, United States	
Manufacturer:	Emocom Technology Co., Limited	
Address:	Unit 17,9/F., Tower A, New Mandarin Plaza, No.14 Science Museum Road, Tsimshatsui, Kowloon, Hong Kong.	

3.2. Product Description

Name of EUT:	Smart watch		
Trade Mark:	NYX Mobile		
Model No.:	GUMBO		
Listed Model(s):	-		
Power supply:	DC 3.7V		
Adapter information:	Input:100-240Va.c., 50/60Hz, 0.15A Output:5.0Vd.c., 500mA		
Hardware version:	NYX_GUMBO_001		
Software version:	GUMBO_AMXNYX_V001R		
Bluetooth			
Version:	Supported BT4.0+BLE		
Modulation:	GFSK		
Operation frequency:	2402MHz~2480MHz		
Channel number:	40		
Channel separation:	2MHz		
Antenna type:	PIFA Antenna		
Antenna gain:	1.3dBi		

Report No.: CHTEW19070080 Page: 6 of 32 Issued: 2019-07-18

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
00	2402
01	2404
:	::
19	2440
i i	:
38	2478
39	2480

Test mode

For	RF	- tec	st ite	ms
ı Oı	1 / 1	ıcs	סו ווכ	

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

• - supplied by the manufacturer

 - sup 	plied	by t	he	lab
---------------------------	-------	------	----	-----

		Manufacturer:	/	
		7	Model No.:	/
		1	Manufacturer:	/
		7	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CHTEW19070080 Page: 7 of 32 Issued: 2019-07-18

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: CHTEW19070080 Page: 8 of 32 Issued: 2019-07-18

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Conducted Disturbance 150kHz~30MHz	3.02 dB	(1)
Radiated Emissions below 1GHz	4.90 dB	(1)
Radiated Emissions above 1GHz	4.96 dB	(1)
Occupied Bandwidth	70 Hz	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW19070080 Page: 9 of 32 Issued: 2019-07-18

4.5. Equipments Used during the Test

•	Conducted Emission					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	ESCI	101247	2018/10/27	2019/10/26
•	Artificial Mains	SCHWARZBECK	NNLK 8121	573	2018/10/27	2019/10/26
•	Pulse Limiter	R&S	ESH3-Z2	100499	2018/10/27	2019/10/26
•	RF Connection Cable	HUBER+SUHNER	EF400	N/A	2018/11/15	2019/11/14
•	Test Software	R&S	ES-K1	N/A	N/A	N/A
0	Single Balanced Telecom Pair ISN	FCC	FCC-TLISN-T2-02	20371	2018/10/28	2019/10/27
0	Two Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T4-02	20373	2018/10/28	2019/10/27
0	Four Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T8-02	20375	2018/10/28	2019/10/27
0	V-Network	R&S	ESH3-Z6	100211	2018/10/27	2019/10/26
0	V-Network	R&S	ESH3-Z6	100210	2018/10/27	2019/10/26
0	2-Line V-Network	R&S	ESH3-Z5	100049	2018/10/27	2019/10/26

•	Radiated Emission-6th test site										
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-02	N/A	2018/09/30	2021/09/29					
•	EMI Test Receiver	R&S	ESCI	100900	2018/10/28	2019/10/27					
•	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19					
•	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	546	2017/04/05	2020/04/04					
•	Pre-Amplifer	SCHWARZBECK	BBV 9742	N/A	2018/11/15	2019/11/14					
•	RF Connection Cable	HUBER+SUHNER	N/A	N/A	2018/09/28	2019/09/27					
•	RF Connection Cable	HUBER+SUHNER	SUCOFLEX104	501184/4	2018/09/28	2019/09/27					
•	Test Software	R&S	ES-K1	N/A	N/A	N/A					
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A					
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A					

•	Radiated emission-7th test site										
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29					
•	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26					
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/03/27	2020/03/26					
•	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13					
•	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13					
•	Broadband Pre- amplifier	SCHWARZBECK	BBV 9718	9718-248	2019/04/26	2020/04/25					
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14					
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14					
•	Test Software	Audix	E3	N/A	N/A	N/A					

Report No.: CHTEW19070080 Page: 10 of 32 Issued: 2019-07-18

•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

•	RF Conducted Method										
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2018/10/28	2019/10/27					
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/09/29	2019/09/28					
0	Radio communication tester	R&S	CMW500	137688-Lv	2018/09/29	2019/09/28					
0	Test software	Tonscend	JS1120-1(LTE)	N/A	N/A	N/A					
0	Test software	Tonscend	JS1120-2(WIFI)	N/A	N/A	N/A					
0	Test software	Tonscend	JS1120-3(WCDMA)	N/A	N/A	N/A					
0	Test software	Tonscend	JS1120-4(GSM)	N/A	N/A	N/A					

Report No.: CHTEW19070080 Page: 11 of 32 Issued: 2019-07-18

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

⊠ Passed	☐ Not Applicable
----------	------------------

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: CHTEW19070080 Page: 12 of 32 Issued: 2019-07-18

5.2. Conducted Emissions (AC Main)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Transd = Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- Margin = Limit Level

Report No.: CHTEW19070080 Page: 13 of 32 Issued: 2019-07-18

ne:			L				
Level [dBµV]							
80							
70		- + - + - - +			+-+-+-		
60		-					ļ
50 🗓							ı
40 /	2 _A	_					
30 1 - 1	~ V V V V	۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸ ۸	الأألاسا المديد				
1 4 M 2 W 1				1		of the bidge of the co	ling collision
20	11/1/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MANAGAMAN	Mylmhhmm Mall		- Control of the state of the state of	- ⁴⁴ مالسرينيار مسين
10		- - - - - - - - - - 	·\\ \\ 		{ <u></u>	d'ila a la	A STATE OF THE PARTY OF
0 150k 300	k 400k 600k	800k 1M	2M	3M 4M 5	M 6M 8M 10M	201	M 30M
			Frequency	[Hz]			
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	-1D - 77	1-	_				
PIIIZ	dΒμV	dB	dΒμV	dB			
0.159000	авµv 52.80	аВ 10.1	dBµV	dB 12.7	QP	L1	GNE
	•		•		QP QP	L1 L1	GNE GNE
0.159000	52.80	10.1	66	12.7			
0.159000 0.528000	52.80 43.40 37.80 38.20	10.1	66 56	12.7 12.6	QP	L1	GNE
0.159000 0.528000 1.059000 2.116500 2.197500	52.80 43.40 37.80 38.20 38.50	10.1 10.0 10.0 10.0	66 56 56 56	12.7 12.6 18.2 17.8 17.5	QP QP QP QP	L1 L1 L1 L1	GNE GNE GNE GNE
0.159000 0.528000 1.059000 2.116500	52.80 43.40 37.80 38.20	10.1 10.0 10.0 10.0	66 56 56 56	12.7 12.6 18.2 17.8	QP QP QP	L1 L1 L1	GNE GNE GNE
0.159000 0.528000 1.059000 2.116500 2.197500 4.479000	52.80 43.40 37.80 38.20 38.50	10.1 10.0 10.0 10.0	66 56 56 56	12.7 12.6 18.2 17.8 17.5 20.3	QP QP QP QP QP	L1 L1 L1 L1	GNE GNE GNE GNE
0.159000 0.528000 1.059000 2.116500 2.197500 4.479000	52.80 43.40 37.80 38.20 38.50 35.70	10.1 10.0 10.0 10.0 10.0	66 56 56 56 56	12.7 12.6 18.2 17.8 17.5	QP QP QP QP	L1 L1 L1 L1 L1	GNE GNE GNE GNE GNE
0.159000 0.528000 1.059000 2.116500 2.197500 4.479000 Frequency	52.80 43.40 37.80 38.20 38.50 35.70 Level	10.1 10.0 10.0 10.0 10.0 10.0 Transd	66 56 56 56 56 56 Limit	12.7 12.6 18.2 17.8 17.5 20.3 Margin	QP QP QP QP QP	L1 L1 L1 L1 L1	GNE GNE GNE GNE GNE
0.159000 0.528000 1.059000 2.116500 2.197500 4.479000 Frequency	52.80 43.40 37.80 38.20 38.50 35.70 Level dBµV	10.1 10.0 10.0 10.0 10.0 10.0 Transd dB	66 56 56 56 56 56 Limit dBµV	12.7 12.6 18.2 17.8 17.5 20.3 Margin dB	QP QP QP QP QP Detector	L1 L1 L1 L1 L1	GNE GNE GNE GNE FE
0.159000 0.528000 1.059000 2.116500 2.197500 4.479000 Frequency MHz	52.80 43.40 37.80 38.20 38.50 35.70 Level dBµV	10.1 10.0 10.0 10.0 10.0 10.0 Transd dB	66 56 56 56 56 56 Limit dBµV	12.7 12.6 18.2 17.8 17.5 20.3 Margin dB	QP QP QP QP QP Detector	L1 L1 L1 L1 L1 Line	GNI GNI GNI GNI FE
0.159000 0.528000 1.059000 2.116500 2.197500 4.479000 Frequency MHz 0.163500 0.532500	52.80 43.40 37.80 38.20 38.50 35.70 Level dBµV 41.30 36.10	10.1 10.0 10.0 10.0 10.0 10.0 Transd dB	66 56 56 56 56 56 Limit dBµV	12.7 12.6 18.2 17.8 17.5 20.3 Margin dB	QP QP QP QP QP Detector	L1 L1 L1 L1 L1 Line	GNE GNE GNE GNE PE GND GND
0.159000 0.528000 1.059000 2.116500 2.197500 4.479000 Frequency MHz 0.163500 0.532500 0.613500	52.80 43.40 37.80 38.20 38.50 35.70 Level dBµV 41.30 36.10 30.70	10.1 10.0 10.0 10.0 10.0 Transd dB 10.1 10.0 10.0	66 56 56 56 56 56 Limit dBµV 55 46 46	12.7 12.6 18.2 17.8 17.5 20.3 Margin dB 14.0 9.9 15.3	QP QP QP QP QP Detector AV AV	L1 L1 L1 L1 L1 Line L1 L1	GNE GNE GNE GNE PE GND GND GND

Report No.: CHTEW19070080 Page: 14 of 32 Issued: 2019-07-18

ne:			N				
Level [dBµV]							
80							
70	+	+-+- -+		+	+-+-+-		:
60	1 1 1		1		1 1 1 1 1	1 1	
^						i	ļ
50		 	-	-	1 1 1 1	İ	- 11
40	ヘニ/₩ ᡛ-N- ᡛД-⅓-						<mark>-</mark> J
30	╌╴╫╱╁╢╖╫	∖÷₩₩₩₩₩	ĸMWht.	Halish addir allah	P. Hambahahaa		
20	₩ <u>₩</u>	∖ ₹₩₩ <i>ĸ</i> ₽	₩ ₩₩		Ting a trival bag han page	History of the little bearings and the little bearings	III. III. XXX
10	 	 		<u>""" </u>			
0		1 1 1 1					
150k 300k	400k 600k	800k 1M	2M Frequency [И 6M 8M 10M	20N	1 30M
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
_	Level dBµV		Limit dBµV	_	Detector	Line	PE
_				_	Detector QP	Line N	PE GNE
MHz	dΒμV	dB	dΒμV	dB			
MHz 0.163500	dBμV 54.50	dB 10.1	dBμV 65	dB 10.8	QP	N	GNE
MHz 0.163500 0.537000 0.618000 3.309000	dBμV 54.50 44.30	dB 10.1 10.0	dВµV 65 56	dB 10.8 11.7	QP QP	N N	GNE GNE GNE
MHZ 0.163500 0.537000 0.618000 3.309000 25.242000	dBμV 54.50 44.30 37.60 39.10 19.60	dB 10.1 10.0 10.0 10.0 10.5	dBμV 65 56 56 56 60	dB 10.8 11.7 18.4 16.9 40.4	QP QP QP QP QP	N N N N	GNE GNE
MHz 0.163500 0.537000 0.618000 3.309000	dBμV 54.50 44.30 37.60 39.10	dB 10.1 10.0 10.0 10.0	dBμV 65 56 56	dB 10.8 11.7 18.4 16.9	QP QP QP QP	N N N	GNE GNE GNE
MHZ 0.163500 0.537000 0.618000 3.309000 25.242000 26.308500	dBμV 54.50 44.30 37.60 39.10 19.60 19.50	dB 10.1 10.0 10.0 10.0 10.5	dBμV 65 56 56 60 60	dB 10.8 11.7 18.4 16.9 40.4 40.5	QP QP QP QP QP QP	N N N N N	GNE GNE GNE GNE GNE
MHz 0.163500 0.537000 0.618000 3.309000 25.242000 26.308500 Frequency	dBµV 54.50 44.30 37.60 39.10 19.60 19.50 Level	dB 10.1 10.0 10.0 10.0 10.5 10.5	dBμV 65 56 56 60 60 Limit	dB 10.8 11.7 18.4 16.9 40.4 40.5	QP QP QP QP QP	N N N N	GNE GNE GNE GNE GNE
MHZ 0.163500 0.537000 0.618000 3.309000 25.242000 26.308500	dBμV 54.50 44.30 37.60 39.10 19.60 19.50	dB 10.1 10.0 10.0 10.0 10.5	dBμV 65 56 56 60 60	dB 10.8 11.7 18.4 16.9 40.4 40.5	QP QP QP QP QP QP	N N N N N	GNE GNE GNE GNE GNE
MHz 0.163500 0.537000 0.618000 3.309000 25.242000 26.308500 Frequency MHz	dBμV 54.50 44.30 37.60 39.10 19.60 19.50 Level dBμV	dB 10.1 10.0 10.0 10.5 10.5 Transd dB	dBμV 65 56 56 60 60 Limit dBμV	dB 10.8 11.7 18.4 16.9 40.4 40.5 Margin dB	QP QP QP QP QP QP QP	N N N N N	GNE GNE GNE GNE GNE FE
MHz 0.163500 0.537000 0.618000 3.309000 25.242000 26.308500 Frequency MHz 0.163500	dBμV 54.50 44.30 37.60 39.10 19.60 19.50 Level dBμV	dB 10.1 10.0 10.0 10.0 10.5 10.5 Transd dB 10.1	dBμV 65 56 56 60 60 Limit dBμV	dB 10.8 11.7 18.4 16.9 40.4 40.5 Margin dB	QP QP QP QP QP QP Detector	N N N N N Line	GNE GNE GNE GNE GNE PE
MHZ 0.163500 0.537000 0.618000 3.309000 25.242000 26.308500 Frequency MHZ 0.163500 0.537000	dBμV 54.50 44.30 37.60 39.10 19.60 19.50 Level dBμV 40.70 35.00	dB 10.1 10.0 10.0 10.5 10.5 Transd dB 10.1 10.0	dBμV 65 56 56 60 60 Limit dBμV	dB 10.8 11.7 18.4 16.9 40.4 40.5 Margin dB 14.6 11.0	QP QP QP QP QP QP Detector	N N N N N Line	GNE GNE GNE GNE GNE GNE GNE GND
MHZ 0.163500 0.537000 0.618000 3.309000 25.242000 26.308500 Frequency MHz 0.163500 0.537000 0.618000	dBμV 54.50 44.30 37.60 39.10 19.60 19.50 Level dBμV 40.70 35.00 28.90	dB 10.1 10.0 10.0 10.5 10.5 Transd dB 10.1 10.0 10.0	dBμV 65 56 56 60 60 Limit dBμV 55 46 46	dB 10.8 11.7 18.4 16.9 40.4 40.5 Margin dB 14.6 11.0 17.1	QP QP QP QP QP QP Detector AV AV	N N N N N Line N	GNE GNE GNE GNE GNE GNE GND GND
MHZ 0.163500 0.537000 0.618000 3.309000 25.242000 26.308500 Frequency MHZ 0.163500 0.537000	dBμV 54.50 44.30 37.60 39.10 19.60 19.50 Level dBμV 40.70 35.00	dB 10.1 10.0 10.0 10.5 10.5 Transd dB 10.1 10.0	dBμV 65 56 56 60 60 Limit dBμV	dB 10.8 11.7 18.4 16.9 40.4 40.5 Margin dB 14.6 11.0	QP QP QP QP QP QP Detector	N N N N N Line	GNE GNE GNE GNE GNE FE

Report No.: CHTEW19070080 Page: 15 of 32 Issued: 2019-07-18

5.3. Conducted Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30 dBm

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Type	Channel	Channel Output power (dBm)		Result
	00	-3.44		
BT-BLE	19	-2.91	≤30.00	Pass
	39	-3.54		

Report No.: CHTEW19070080 Page: 16 of 32 Issued: 2019-07-18

5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- 2. Configure the spectrum analyzer as shown below:

Center frequency=DTS channel center frequency

Span =1.5 times the DTS bandwidth

RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW

Sweep time = auto couple

Detector = peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	Power Spectral Density(dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-19.01		
BT-BLE	19	-18.51	≤8.00	Pass
	39	-19.13		

Test plot as follows:

Report No.: CHTEW19070080 Page: 17 of 32 Issued: 2019-07-18

Report No.: CHTEW19070080 Page: 18 of 32 Issued: 2019-07-18

5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	Channel 6dB Bandwidth(MHz)		Result
	00	0.69		
BT-BLE	19	0.70	≥500	Pass
	39	0.69		

Test plot as follows:

Report No.: CHTEW19070080 Page: 19 of 32 Issued: 2019-07-18

Report No.: CHTEW19070080 Page: 20 of 32 Issued: 2019-07-18

5.6. Restricted band

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Final level= Read level + Factor
- The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

Report No.: CHTEW19070080 Page: 21 of 32 Issued: 2019-07-18

Test channel				CH00			
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin(dB)	Polarization	Test value
2310.00	53.54	-2.34	51.20	74.00	22.80	Vertical	Peak
2390.00	51.79	-2.41	49.38	74.00	24.62	Vertical	Peak
2310.00	52.14	-2.34	49.80	74.00	24.20	Horizontal	Peak
2390.00	52.97	-2.41	50.56	74.00	23.44	Horizontal	Peak
2310.00	47.08	-2.34	44.74	54.00	9.26	Vertical	Average
2390.00	45.45	-2.41	43.04	54.00	10.96	Vertical	Average
2310.00	46.10	-2.34	43.76	54.00	10.24	Horizontal	Average
2390.00	45.91	-2.41	43.50	54.00	10.50	Horizontal	Average

Test channel				CH39				
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin(dB)	Polarization	Test value	
2483.50	54.17	-2.15	52.02	74.00	21.98	Vertical	Peak	
2500.00	53.54	-2.10	51.44	74.00	22.56	Vertical	Peak	
2483.50	52.41	-2.15	50.26	74.00	23.74	Horizontal	Peak	
2500.00	52.81	-2.10	50.71	74.00	23.29	Horizontal	Peak	
2483.50	46.89	-2.15	44.74	54.00	9.26	Vertical	Average	
2500.00	44.65	-2.10	42.55	54.00	11.45	Vertical	Average	
2483.50	46.65	-2.15	44.50	54.00	9.50	Horizontal	Average	
2500.00	46.40	-2.10	44.30	54.00	9.70	Horizontal	Average	

Report No.: CHTEW19070080 Page: 22 of 32 Issued: 2019-07-18

5.7. Band edge and Spurious Emissions (conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Establish a reference level by using the following procedure Center frequency=DTS channel center frequency

The span = 1.5 times the DTS bandwidth.

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

3. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 5. Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: CHTEW19070080 Page: 23 of 32 Issued: 2019-07-18

Report No.: CHTEW19070080 Page: 24 of 32 Issued: 2019-07-18

Report No.: CHTEW19070080 Page: 25 of 32 Issued: 2019-07-18

Report No.: CHTEW19070080 Page: 26 of 32 Issued: 2019-07-18

Report No.: CHTEW19070080 Page: 27 of 32 Issued: 2019-07-18

5.8. Spurious Emissions (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value	
30MHz~88MHz	40.00	Quasi-peak	
88MHz~216MHz	43.50	Quasi-peak	
216MHz~960MHz	46.00	Quasi-peak	
960MHz~1GHz	54.00	Quasi-peak	
Above 1GHz	54.00	Average	
Above IGHZ	74.00	Peak	

TEST CONFIGURATION

> 9 kHz ~ 30 MHz

> 30 MHz ~ 1 GHz

Above 1 GHz

Report No.: CHTEW19070080 Page: 28 of 32 Issued: 2019-07-18

TEST PROCEDURE

- The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

oxtime Passed	□ Not Applicable
⊠ Passed	

Note:

- 1) Above 1GHz Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.

9 kHz ~ 30 MHz

The EUT was pre-scanned the frequency band (9 kHz \sim 30 MHz), found the radiated level lower than the limit, so don't show on the report.

> 30 MHz ~ 1000 MHz

Have pre-scan all modulation mode, found the BT-BLE mode CH39 which it was worst case, so only the worst case's data on the test report.

Report No.: CHTEW19070080 Page: 29 of 32 Issued: 2019-07-18

> 30 MHz ~ 1 GHz

zation:					Vertical			
Level [dBµV/m]								
80								
70				!				
							<u> </u>	
60							ii	
50				<u>-</u>		-	<u> </u>	· ÷
40	1 1 1						1	. 4 J 4
				[[1	Mark Market Mark
30	-++	++		Д		+	man harm	**************************************
20		~ ` }~ <u></u> *^	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					+
	1 1 1						1 11	
10								
	50M 60M 70	M 100	DM	2001	M	300M 40	00M 500M 60	00M 800M 10
	50M 60M 70	M 100		200I requency [Hz		300M 40	00M 500M 60	00M 800M 10
0 30M 40M 5	50M 60M 70	M 100				300M 40	DOM 500M 60	00M 800M 10
0 30M 40M 5		M 100				300M 40	DOM 500M 60	00M 800M 10
0 30M 40M 5	106212_red		F	requency [Hz	:]	300M 40	DOM 500M 60	00M 800M 10
0 30M 40M 5 x x x MES GM1907 MEASUREMENT	106212_red		F		:]	300M 40	DOM 500M 60	00M 800M 10
0 30M 40M 5 x x x MES GM1907 MEASUREMENT 7/10/2019 9:	106212_red RESULT 53PM	: "GM19	F 9071062:	requency [Hz	:]			
0 30M 40M 5 x x x MES GM1907 MEASUREMENT 7/10/2019 9: Frequency	RESULT 33PM Level	: "GM19	0 071062 Limit	requency [Hz 12_red" Margin	:]	Height	Azimuth	Polarizati
0 30M 40M 5 x x x MES GM1907 MEASUREMENT 7/10/2019 9:	106212_red RESULT 53PM	: "GM19	F 9071062:	requency [Hz	:]			
0 30M 40M 5 x x x MES GM1907 MEASUREMENT 7/10/2019 9: Frequency	RESULT 33PM Level	: "GM19	0 071062 Limit	requency [Hz 12_red" Margin	:]	Height	Azimuth	
0 30M 40M 5 x x x MES GM1907 MEASUREMENT 7/10/2019 9: Frequency MHz	RESULT 53PM Level dBµV/m	: "GM19 Transd dB	00710623 Limit dBµV/m	12_red" Margin dB	Det.	Height cm	Azimuth deg	Polarizati
0 30M 40M 5 x x x MES GM1907 MEASUREMENT 7/10/2019 9:5 Frequency MHz 33.880000	RESULT 53PM Level dBµV/m 27.80	: "GM19 Transd dB -8.7	00710623 Limit dBμV/m	12_red" Margin dB	Det. QP	Height cm	Azimuth deg	Polarizati VERTICAL
0 30M 40M 5 X X X MES GM1907 MEASUREMENT 7/10/2019 9: Frequency MHz 33.880000 62.980000	RESULT 53PM Level dBμV/m 27.80 31.60	: "GM19 Transd dB -8.7 -6.9	00710623 Limit dBμV/m 40.0 40.0	12_red" Margin dB 12.2 8.4	Det. QP QP	Height cm 100.0 100.0	Azimuth deg 359.00 153.00	Polarizati VERTICAL VERTICAL
0 30M 40M 5 x x x MES GM1907 MEASUREMENT 7/10/2019 9:5 Frequency MHz 33.880000 62.980000 127.000000	7 RESULT 53PM Level dBµV/m 27.80 31.60 29.40	: "GM19 Transd dB -8.7 -6.9 -9.2	D0710623 Limit dBμV/m 40.0 40.0 43.5	12_red" Margin dB 12.2 8.4 14.1	Det. QP QP QP QP	Height cm 100.0 100.0 100.0	Azimuth deg 359.00 153.00 205.00	Polarization VERTICAL VERTICAL VERTICAL

Report No.: CHTEW19070080 Page: 30 of 32 Issued: 2019-07-18

> 1 GHz ~ 25 GHz

Test channel				CH00				
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value	
1499.3750	43.07	-5.63	37.44	74.00	36.56	Vertical	Peak	
3181.0938	33.81	0.74	34.55	74.00	39.45	Vertical	Peak	
5113.9688	30.78	8.83	39.61	74.00	34.39	Vertical	Peak	
6722.2500	30.31	13.41	43.72	74.00	30.28	Vertical	Peak	
1499.3750	38.05	-5.63	32.42	74.00	41.58	Horizontal	Peak	
3602.6250	32.82	1.45	34.27	74.00	39.73	Horizontal	Peak	
7026.2813	30.16	15.24	45.40	74.00	28.60	Horizontal	Peak	
8035.3125	31.29	18.24	49.53	74.00	24.47	Horizontal	Peak	

Test channel				CH19				
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value	
1499.3750	43.00	-5.63	37.37	74.00	36.63	Vertical	Peak	
1750.5313	39.58	-5.95	33.63	74.00	40.37	Vertical	Peak	
4880.4375	38.12	7.15	45.27	74.00	28.73	Vertical	Peak	
7108.5313	31.44	15.48	46.92	74.00	27.08	Vertical	Peak	
1750.5313	36.70	-5.95	30.75	74.00	43.25	Horizontal	Peak	
4050.5938	33.27	3.14	36.41	74.00	37.59	Horizontal	Peak	
5808.6875	30.98	9.59	40.57	74.00	33.43	Horizontal	Peak	
7042.4375	30.97	15.28	46.25	74.00	27.75	Horizontal	Peak	

Test channel				CH39				
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value	
1499.3750	45.25	-5.63	39.62	74.00	34.38	Vertical	Peak	
4194.5313	31.37	3.79	35.16	74.00	38.84	Vertical	Peak	
4959.7500	36.39	7.58	43.97	74.00	30.03	Vertical	Peak	
6143.5625	30.05	10.79	40.84	74.00	33.16	Vertical	Peak	
1750.5313	36.53	-5.95	30.58	74.00	43.42	Horizontal	Peak	
3730.4063	33.84	1.71	35.55	74.00	38.45	Horizontal	Peak	
5058.1563	31.88	8.40	40.28	74.00	33.72	Horizontal	Peak	
6694.3438	30.93	13.45	44.38	74.00	29.62	Horizontal	Peak	

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: CHTEW19070080 Page: 31 of 32 Issued: 2019-07-18

6. TEST SETUP PHOTOS

Conducted Emissions (AC Mains)

Radiated Emissions

Report No.: CHTEW19070080 Page: 32 of 32 Issued: 2019-07-18

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No. CHTEW19070077

-----End of Report-----