Post-Strike Recap

Max Turgeon

STAT 3150-Statistical Computing

Changes to the assessment schedule i

- We have 3 assignments and 2 exams left.
- I'll provide flexibility: let me know if you need extensions.
- I also don't expect you to work during the Holiday break.

Assessment	New Date
Assignment 4	Dec 17
Midterm 2	Dec 21
Assignment 5	Jan 19
Assignment 6	Jan 19

Changes to the assessment schedule ii

· Some comments:

- Midterm 2 will be 80 minutes, but you can take it anytime during a 24h period.
- The midterm will cover the material from before the strike.
- Assignments 5 and 6 will be equivalent to a single assignment, but they will cover different topics.
- · A new final exam schedule will be provided soon.

Lectures in December

- I understand that some of you will be writing exams in the next few weeks.
 - · And attending lectures will be difficult.
- I've uploaded all the remaining material to UM Learn, including pre-recorded video lectures.
 - They're all ~30 minutes, so shorter than a typical Zoom recording.
- I will also upload Assignments 5 and 6 next week.

In other words, you could finish the course on your own before Christmas; or you could focus only on Assignment 4 and the Midterm and catch up in January; or anything in between. It's up to you.

Recap

Main theme

- Recall the main theme of the course: using computational techniques to solve statistical problems.
- · What kind of statistical problems?
 - Point estimation
 - Interval estimation
 - · Hypothesis testing

Numerical methods and Optimisation

- For the first two modules, we specifically looked at point estimation.
- · We talked about the following methods:
 - · Bisection/Brent's method for root finding in one dimension.
 - Newton-Raphson for optimisation in any dimension.

Generating random variates

- R has many built-in functions for generating random variates.
 - · runif, rnorm, etc.
- We discussed general techniques when these functions aren't enough.
 - Inverse transform, or generally any type of transformation.
 - · Accept-reject sampling.
- When would you need to generate random variates?
 - · Estimate expected values (i.e. Monte Carlo integration)
 - Estimate probability statements
 - Simulation studies

Monte Carlo integration i

- This topic mostly falls under point estimation.
- · Estimate quantities of the form

$$E(g(X)) = \int g(x)f(x)dx, \quad X \sim f.$$

- Trace plot = diagnose convergence issues
- Variance reduction
 - Antithetic variables
 - Control variates
 - · Importance sampling
- Confidence intervals in MC integration are based on the Central Limit Theorem

Monte Carlo integration ii

• Since our estimates are sample means, we need to divide by \sqrt{n} , where n is the number of variates in the sample mean.

· When would you use MC integration?

- · To estimate difficult integrals.
- Many, many estimators can be defined as expected values of transformations g(X) of a random variable X.

Importance sampling

- It's a form of variance reduction for Monte Carlo integration.
- Based on the following identity:

$$E_f(g(X)) = E_\phi\left(\frac{g(X)f(X)}{\phi(X)}\right),$$

as long as ϕ is nonzero on the support of f.

- We want to choose the importance function ϕ such that:
 - $\cdot \hspace{0.1cm} \phi$ is a density from which it is "easy" to sample.
 - the ratio $\frac{|g(X)|f(X)}{\phi(X)}$ is almost constant.
- · Why do we care so much about reducing variance anyway?
 - Because smaller variance means smaller confidence intervals, which means more accurate inference.

Monte Carlo methods for Inference

- This module was an interlude, connecting Monte Carlo integration and resampling methods.
 - · What is a statistic? An estimator? A sampling distribution?
 - What is a type I error? Type II error? Power?
- If we are willing to completely specify the data generating mechanism, we can study the consequences of these assumptions through Monte Carlo simulation.
 - · Which estimator is more efficient (i.e. has smallest variance)?
 - Does my confidence interval have the right coverage probability?
 - · Which hypothesis test has largest power?