LATEX

SOOCHOW UNIVERSITY

戰 亳 甪

目录		5.6	引用功能	20
口水		5.7	列表	21
第一章 IATEX 基础······	1		5.7.1 常规列表	21
1.1 IATEX 书写环境	1		5.7.2 排序列表	21
1.2 命令	1		5.7.3 解说列表	23
1.2.1 自定义/修改命令	1		5.7.4 带圈数字列表	23
1.2.2 命令的嵌套	2	5.8	附录	23
1.2.3 数学命令的处理	2	5.9	代码环境	23
1.3 符号	2	第六章	数学排版 · · · · · · · · · · · · ·	26
1.4 长度与间距	2	6.1	数学模式	26
1.4.1 正确处理单词间距	3	6.2	数学宏包	26
1.4.2 数学符号中的间距	4	6.3	数学符号	26
1.5 行、段落、页面	5		6.3.1 上标与下标	26
1.6 页面	5		6.3.2 画线补充	26
1.7 字体	5		6.3.3 分式	27
1.7.1 全局字体设置	6		6.3.4 斜线分式和斜线除号 .	27
1.7.2 局部字体设置	7		6.3.5 根式	27
1.7.3 在数学环境中使用中文	7		6.3.6 嵌套	27
1.7.4 汉字"斜体"	7		6.3.7 定界符	28
1.8 字符	7		6.3.8 数学字体	29
第二章 版面和格式 · · · · · · · · · · ·	9		6.3.9 希腊字母	29
2.1 文本格式	9		6.3.10 符号	29
2.2 标题	9		6.3.11 转置符号	29
2.3 页眉页脚	9	6.4	公式环境	29
2.3.1 版式	9		6.4.1 单行公式 equation	30
2.3.2 fancyhdr 宏包	10		6.4.2 公式组 align 和 alignat	30
2.4 颜色	11		6.4.3 公式组 gather	31
2.5 标题	11		6.4.4 多行公式 multline	31
第三章 <mark>表格</mark> · · · · · · · · · · · · · · · · · · ·	12		6.4.5 多行公式 split	31
3.1 浮动体	12		6.4.6 breqn 宏包	32
3.2 array 宏包	12		6.4.7 公式块	32
3.3 booktabs 宏包	13	6.5	矩阵环境	32
3.4 表格	13	6.6	定理环境	33
3.4.1 跨行和跨列表格	14	第七章	宏包 · · · · · · · · · · · · · · · · · ·	34
3.4.2 彩色表格	15	7.1	mhchem	34
3.4.3 斜线表头	16	7.2	Chemfig	36
3.4.4 表格标题	16	7.3	CT _E Xzhnumber	36
第四章 <mark>插图</mark> ······	18	7.4	xpinyin	37
第五章 正文工具・・・・・・・・・・・	19	7.5	siunitx	37
5.1 目录	19		7.5.1 数字	37
5.2 脚注	19		7.5.2 单位	38
5.3 边注	19		7.5.3 单位命令	38
5.4 参考文献	19		7.5.4 在表格中使用单位命令	38
5.5 链接	20	7.6	pgfplots	38

目录 II/46

7.7	matht	ools	38	第八章	剽窃代	码收集区	41
	7.7.1	单花括号环境	38	8.1	LATEX :	实现类似中括号的方框.	41
	7.7.2	更好的矩阵环境	39	8.2	脚注的]带圈数字解决方案	42
	7.7.3	长分式	40		8.2.1	自用的旧的 titlesec 设置	43

插图

3.1	一副图像	17
5.1	Demo of bar plot on a polar axis	21
5.2	列表长度参数图	22
8.1	LATEX 实现类似中括号的方框	41
8.2		43
8.3	带圈脚注示意图	43
	表格	
	1 处1百	
1.1	一些 LATEX 的基本命令	2
1.2	T _E X 中常用的长度单位	3
1.3	长度设置命令——一些常用的产生水平间距的命令	3
1.4	长度设置命令——一些常用的产生垂直空白的命令	4
1.5	数学模式下常用的空白间距 ^①	4
1.6	部分水平空白间距全称和简写对照	5
2.1	fancyhdr 宏包常用命令	10
3.1	array 宏包基本参数	12
3.2	Ozone decomposition of SHB mechanism	13
3.3	Weather statistics	13
3.4	彩色表格演示	15
3.5	一张课表	16
5.1	TrX 家族标识符	21

第一章 LATEX 基础

1.1 IATEX 书写环境

TEX 环境是TeX Live 2016,想要下载速度快可以到清华的镜像站下载。https://mirrors.tuna.tsinghua.edu.cn/CTAN/systems/texlive/Images/

IDE 使用的是TeXstudio,整个笔记的目录树如下所示,配有详细的注释。

Study-LaTeX

fig	图片文件夹
(name.pdf/png or other suffix)	
body	章节文件夹
cover.pdf	
(chapter name.tex)	
main.tex	主编译文件
Zousiyu.cls	样式文件
Zousiyu.bib	参考文献数据库
gb7714-2015.bbx	biblatex 参考文献样式
gb7714-2015.cbx	biblatex 参考文献样式
编译使用的是脚木、velatev eve main tey能直接完成编译。	加入synctey=-1这个参数

编译使用的是脚本,xelatex .exe main.tex能直接完成编译,加入——synctex=—1这个参数可以配置 TeXstudio 的反向搜索。

```
:: Copyright (c) 2012-2016 Zousiyu

@echo off
:: compile the tex file
xelatex.exe --synctex=-1 main.tex

::pause
biber main

::pause
xelatex.exe --synctex=-1 main.tex

:: clear aux files
call clear
```

clear 脚本用来清理编译时产生的辅助文件,视情况添加后缀。

```
@echo off
del /q *.aux *.bbl *.bcf *.blg *.listing *.log *.out *.xml *.toc
```

1.2 命令

1.2.1 自定义/修改命令

命令使用\cmd{参数1}{参数2}来调用。

 cmd
 不能重名,必须复合命名规则。

 args
 参数数量,0~9,默认为0。

default 设定第一个参数的默认值,同时表示该参数是可选参数,新命令中最多只

能有一个可选参数。

def 定义,涉及到参数时使用#n表示第 n 个参数。

带星号的命令称为短命令,其中参数不能有换段或空行,否则编译报错,但是短命令有利于排错。

```
% 定义新命令
\newcommand{cmd}[args][default]{def}
\newcommand*{cmd}[args][default]{def}
% 修改已有命令
\renewcommand{cmd}[args][default]{def}
\renewcommand*{cmd}[args][default]{def}
```

1.2.2 命令的嵌套

可以在新命令的定义中写入已有命令来完成排版要求,在定义中使用#n来指定参数的传递。同样,定义命令也可以嵌套,外层参数用#n,内层参数用##n,依次类推,例如:

\newcommand{\A}{\renewcommand{\B}{def}}

1.2.3 数学命令的处理

在命令中如果包含数学命令,那么这条命令只能用于文本模式,不能用于数学模式(因为在数学模式中会被多加了一层\$\$导致报错)。所以,在定义数学命令时,使用\ensuremath{code}来定义,这样的命令在数学模式中时code本身,在文本模式中时\$code\$。

表 1.1 所示的是一些 LATEX 定义的基本命令。

命令	作用
\the	用于显示 数据命令 的值
表 1.1	一些 LATEX 的基本命令

1.3 符号

LATEX 中的大多数符号的输入方法可以参见该文档——The Comprehensive LATEXSymbol List -Symbols accessible from LATEX。

- 单位符号, siunitx
- 化学符号,mhchem、chemfig、Clemens Niederbergerz
- T_EX 家族符号, hologo

1.4 长度与间距

通用长度单位

首先介绍一下 T_EX 中几个通用的长度单位。其中 ex、em 是**相对长度单位**,其数值大小正比于字体尺寸,当字体尺寸改变,绝对长度会随之改变。其他单位是绝对长度单位。

专用长度单位

fil、fill、filll 这三个长度单位均表示任意长,伸展能力依次递增。这几种长度单位主要用在长度无法预知或不便计算的情况下,例如将一段文字两侧用空白填满或将版面所剩空间用空白填满。

刚性长度与弹性长度

刚性长度 不会随排版情况变化而变化的长度,典型的如 pt、em 等单位。

单位	名称	说明
pt	点,磅	欧美传统排版的长度单位,1pt=0.351mm
pc	派卡	相当于四号字大小,1pc=12pt=4.218mm
in	英寸	inch 英寸,1in=72.27pt=25.4mm
bp	大点	big point, 1in=72bp
cm,mm	都学过	1cm=28.453pt, 1mm=2.845pt
em	em	当前字体中 M 的宽度,一个的长度
ex	ex	当前字体中 x 的高度

表 1.2 TeX 中常用的长度单位

弹性长度 可根据排版长度有一定程度伸缩的长度,如:2mm plus 0.2mm minus 0.3mm,相当于工程标注: $2^{+0.2}_{-0.3}mm$ 。

可伸缩的弹性长度是 LATEX 的重要排版理念之一,但是,弹性长度不能与数字相乘,否则弹性消失变为刚性长度 0pt。

长度命令

LATEX 的长度命令分为三种。

- (1) 长度数据命令,仅仅代表某一长度,可以赋值或作为其他命令中的长度
- (2) 长度赋值命令,给列表(1)的长度数据命令赋值。
- (3) 长度设置命令,生成一定高度或宽度的空白。

常用的三类长度命令见《 $IAT_{E}X2_{\varepsilon}$ 完全学习手册》[1]。

表 1.3 长度设置命令——一些常用的产生水平间距的命令

命令	作用
	产生一段宽度为 1em 的水平空白
\qquad	的两倍
\hspace{length}	产生指定宽度的水平空白
\hspace*{length}	产生不可被忽略的空白
\hfill	产生撑满整行的空白
\hphantom{text}	幻影命令,产生的空白等于 text 的宽度
\thinspace	不可换行,¹/6 em
\enskip	不可换行
\enspace	不可换行

注意: 和水平间距的情况不同, 垂直间距需要加换行才会有效果。

stretch 的应用

1.4.1 正确处理单词间距

英文排版时 T_EX 通常默认句号。表示一句话的结束,因此 T_EX 在处理句号时会留出稍宽一点的水平间距。但是有些情况下,句号并不代表句子的结尾,比如「i.e. a word」和「e.g. a word」。按照 T_EX 默认规则,排版出的宽度会比正常句中单词之间的间隔稍大一些,因此我们

^①来源: http://texblog.org/2014/04/09/whitespace-in-math-mode/

主 11	长度设置命令-	——一些常用的产生垂直空白的命令
X 1.4		——李禹用的厂工来自了口的的之

命令	作用
\smallskip	产生高度为 3pt plus 1pt minus 1pt 的垂直空白
\medskip	\smallskip 的两倍
\bigskip	\smallskip 的四倍
<pre>\vspace{length}</pre>	产生指定高度的垂直空白
<pre>\vspace*{length}</pre>	在页面顶部产生垂直空白
\vfill	插入指定高度的垂直空白
\vphantom{text}	幻影命令,产生的空白等于 text 的高度,和 text 的长度无关的

表 1.5 数学模式下常用的空白间距①

名称	命令	例子
default space		$abc \rightarrow \leftarrow abc$
thin space		$abc \rightarrow \leftarrow abc$
thin neg. space	\!	abc → abc
medium space	\ :	$abc \rightarrow \leftarrow abc$
large space	\ ;	$abc \rightarrow \leftarrow abc$
0.5em space	\enspace	$abc \rightarrow \leftarrow abc$
1em space		$abc \rightarrow \leftarrow abc$
2em space	\qquad	$abc \rightarrow \leftarrow abc$
custom space	\hspace{3em}	$abc \rightarrow \leftarrow abc$
fill empty space	\hfill	$abc \rightarrow \cdots$

需要使用使用\,即一个反斜杠 + 空格,来消除这个过大的间距: i.e.\ a word 以及 e.g.\ a word。 仔细观察下面例子的排版效果。

i.e. a word\par	i.e. a word
i.e.\ a word	i.e. a word

句号跟在一个大写字母的后面,此时 $T_{E}X$ 会认为这个句号表示人名缩写的间隔符,因此仍然按照正常间距来排版,比如「A. Einstein」。然而这个看似贴心的规则在一些情况下会适得其反,比如一句话明明以缩略语结尾, $T_{E}X$ 反而认为这并不是一句话的结尾: 「… in NBA. He…」。此时,排版出的「He」之前的空格会小于正常的句间间距。这种情况下,需要使用 Q_{e} ,反斜杠 Q_{e} ,反斜杠 Q_{e} ,它斜杠 Q_{e} ,它对方的结尾。

```
... played in NBA. He was ...\par ... played in NBA. He was ... ... played in NBA. He was ... ... played in NBA. He was ...
```

以上规则除句号外,同样适用于感叹号和问号等其他符号。

1.4.2 数学符号中的间距

数学公式中,积分符号 dx^2 前应该加入一个间距!,,同时在公式结尾的标定符号与公式之间也应该插入一个间距!,。此外,积分符号 \int 与被积分项之间的间距在默认情况下过大,完美的排版需要利用\!来缩小这个间距。如下 \int 与f(x),f(x) 与dx, α 与.之间的间距都值得注意。

②积分符号是直立还是斜体尚有争论

简写
١,
\!
\:
\ ;

表 1.6 部分水平空白间距全称和简写对照

\[\int_a^bf(x)dx = \alpha. \]\par \[\int_a^b\!f(x)\,dx = \alpha\,. \]

$$\int_{a}^{b} f(x)dx = \alpha.$$

$$\int_{a}^{b} f(x) \, dx = \alpha \, .$$

1.5 行、段落、页面

避免数字出现在行首

使用~来代替空格可以避免交叉引用或者输入人名时尴尬地被打破成两行,例如 ... **如图**~\ ref {Fig1}所示 ... ,或者 ... A.~ Einstein said ... 。

中英混排时空格的使用

中英文混排时,XqLAT_EX 能在中文与英文(或数字)之间,没有必要手动敲入一个空格,编译时会自动为中文与英文(或数字)之间添加合适的间距。但是有一个情况比较特殊,就是在交叉引用时,这个空格是需要手动敲入的,否则这个间距会消失。

换行 LATEX 会自动换行, 若需强制换行, 可使用\\或\newline。\\后面可以带长度, 以增加当前行与新行之间的距离, 参数可正可负, 如:\\[3 mm], \\[-5 pt]。

分段 两个连续回车(即一个空行)或\par。

分页 LATEX 会自动分页若需强制分页, 可用命令\newpage或\clearpage。

1.6 页面

1.7 字体

等宽字体 Typewriter Family 英文的 a 和 i 在非等宽字体里面肯定宽度不一样,这样

在大段文本里就不好辨认,等宽字体的所以字母宽度一样,笔画的起止还

有装饰衬线 (所以等宽字体多数属于衬线字体), 易读性高

等线字体 无字头字脚,笔画圆润,粗细均匀,例如 Windows 自带的 Arial、黑体和

幼圆

衬线字体 serif 在字的笔画开始、结束的地方有额外的装饰,而且笔画的粗细会有所

不同, 宋体就是一种最标准的 serif 字体

无衬线字体 sans serif 在字的笔画开始、结束的地方没有这些额外的装饰,而且笔画的

粗细差不多

等宽字体一般用来书写代码,特别是使用缩进控制语法的 python 语言,更需要等宽字体来书写代码了。

科学书写中文文档的第一步应该是调用 CT_EX 宏包, 其提供四种命令来调用在中文文档中常用的四种字体。

{\songti 爆竹声中一岁除,春风送暖入屠苏。}

```
{\fangsong 家家乞巧望秋月,穿尽红丝几万条。}
{\heiti 黄沙百战穿金甲,不破楼兰终不还。}
{\kaishu 君不见走马川行雪海边,平沙莽莽黄入天。}
```

效果如下:

爆竹声中一岁除,春风送暖入屠苏。 家家乞巧望秋月,穿尽红丝几万条。 **黄沙百战穿金甲,不破楼兰终不还**。 君不见走马川行雪海边,平沙莽莽黄入天。

汉字很少使用粗体和斜体字形,中文文献中的粗体一般用黑体代替,斜体一般用楷书代替。IATeX 可以自动做到这一点,当你使用\textbf {文本}或者\bfseries 这两种粗体命令来强调汉字时,会自动使用黑体汉字做为强调;同样,使用\textit {}或者\itshape这两种斜体命令来强调汉字时,会自动使用楷书汉字做为强调。由于 xeCJK 宏包提供了设置备用字体的功能,所以代码实现比较简单,如下所示:

\setCJKmainfont[BoldFont={SimHei},ItalicFont={KaiTi}]{SimSun}

其中,汉字字体名称可以使用如下命令查找,将列出所有的中文字体的字体族名。

```
fc-list -f "%{family}\n" :lang=zh > zhfont.txt
%常见的中文字体字体族名
Microsoft YaHei, 微软雅黑
KaiTi, 楷体
SimHei,黑体
LiSu, 隶书
YouYuan, 幼圆
FangSong, 仿宋
SimSun, 宋体
STLiti,华文隶书
STSong,华文宋体
STKaiti,华文楷体
STFangsong,华文仿宋
STXingkai,华文行楷
STXihei,华文细黑
STZhongsong,华文中宋
```

fontspec 和 xeCJK 也可以使用字体的文件名访问字体。例如 Windows 下的宋体也可以使用命令:

\setCJKmainfont{simsun.ttc}

来设置。前提是字体已经被安装或者存在与 T_EX 索引的目录内,否则需要另行指定路径,这里不再讨论,毕竟学术论文的写作所需字体很少,研究太多并无太大益处。

分全局和局部字体设置。

1.7.1 全局字体设置

中文的文档都要调用 ctex 宏包,该宏包提供一个简单的参数可以设置全部正文的字体。

```
\setmainfont{Times New Roman}  %设置主字体,仅对西文起作用
\setCJKmainfont{SimSun}    %设置主字体,仅对中文起作用
```

有时候需要改变 LATEX 默认的等宽字体,如本文档的等宽字体设置。更改等宽字体之后,将会影响\texttt {},\ttfamily,\tt这些命令所作用的字体,还会影响默认使用等宽字体(如脚

注, 抄录环境) 的环境。

\setmonofont{Source Code Pro} %英文等宽 \setCJKmonofont{simfang.ttf} %中文等宽,仿宋

1.7.2 局部字体设置

\newfontfamily\daima{Consolas} %使用\daima直接调用

1.7.3 在数学环境中使用中文

默认情况下,数学环境中是不允许输入汉字的。当我们需要输入汉字作为变量的标识时, 可以使用\text {要输入的汉字字符}来完成这项工作。

\$t_{\text{高温}}\$

 $t_{$ 高温

1.7.4 汉字"斜体"

汉字没有加斜体。平常我们看到的加斜汉字,通常是几何变换得到的结果,非常的粗糙, 并不严格满足排版要求,而真正的字形是需要精细的设计的。同时,汉字字体里面也很少有 加粗体的设计。但是,有时候却又有所谓的"斜体"需求。IATeX 也是可以实现这种伪斜体的。 虽然可以实现,但排版规范并并不推荐我们使用斜体来强调某个元素。如果想要强调某个元 素,可以使用黑体。

汉字伪斜体

{\CJKfontspec[FakeSlant=0.4]{SimSun}\zihao{1}汉字伪斜体}

1.8 字符

在 LATFX 的文本内容中,大部分字符都可以直接输入,但是 #,\$,%, &, {,},_,^,~, <,>, |, \这几个字符由于有特殊用途不能直接输入。

\#, \\$, \%, \&, \{, \}, _, \^{}, \~{}, \ textless, \textgreater, \textbar, \ textbackslash

#, \$, %, &, {, }, _, ^, ~, <, >, |, \

英文的单引号并不是两个'符号,双引号也并不是两个"组成的。英文下的引号嵌套需要 英文引号 借助\thinspace命令分隔。另外,双引号的右半边用" 和"的效果是一样的。同样,还可以使用 Unicode 字符来输入引号,输入方法麻烦,但是更加标准。

``\thinspace`Max' is here.''\par Pumas are ``large, cat-like animals'' which are `found in America'.\par \textquotedblleft Unicode \ textquotedblright \par \textquoteleft Unicode \textquoteright

"'Max' is here."

Pumas are "large, cat-like animals" which are 'found in America'.

"Unicode"

'Unicode'

用一个例子解释一下为什么英文的引号需要这样输入。能看出'打出的都是右引号!

'wrong'\\ `right'

'wrong' 'right'

英文引号的错误用法

短横

英文的短横可以产生三种符号:

通常用来连接复合词,输入一个短横,-,效果如 daughter-in-law 连字符

数学起止符 通常用来表示范围,输入两个短横, -, 效果如 page 1-2, 如果真的希望 连续输入两个连字符,使用{-}{-}

英文破折号 是一个正规的标点符号,用来表示转折或者承上启下。破折号与其前后的 单词之间不应该存在空格,输入三个短横: 一,效果如 Listen—I'm serious 注意:排版中的减号应该比连字符要长,因此用来表示减号或者负号时,请严格使用数学模式 而不要使用文字模式。

以上符号区别如下,注意前面讲过的数学符号中的间距这个小细节:

daughter-in-law\par
page 1--2\par
Listen---I'm serious\par
The temperature is \$ -5\,^{\circ}\mathrm{C}
\$

daughter-in-law page 1–2 Listen—I'm serious The temperature is -5 °C

省略号

中文破折号,省略号一般直接用中文输入法输入,英文的省略号一般使用\ldots或者\dots来输入。

hello\ldots\par Thanks\dots hello... Thanks...

摄氏度

角度符号,摄氏度符

这两个符号需要借助数学模式\$... \$来输入:

\$30\,^{\circ}\$\\ \$37\,^{\circ}\mathrm{C}\$ 30°

37 °C

第二章 版面和格式

2.1 文本格式

LATEX 将多个空格视为一个,多个换行也会被视为一个。一般习惯使用~产生一个空格,使用mbox{}产生一个空白段落(实际上就是一个空白行),使用\par产生一个带缩进的新段,使用\\来强制换行,但下一段的缩进会消失。

段落之间的距离一般这样控制:

\setlength{\parskip}{0pt plus 1pt}%默认值

用\newpage命令开始新的一页。

用\clearpage命令清空浮动体队列 5,并开始新的一页。

用\cleardoublepage命令清空浮动体队列,并在偶数页上开始新的一页。注意:以上命令都是基于\vfill 的。如果要连续新开两页,请在中间加上一个空的箱,如:

\newpage\mbox{}\newpage

LATEX 默认使用两端对齐来排版,我们可以用\ flushleft ,\ flushright ,\ center这三个环境来构造居左,居右,居中三种版式。特殊情况可以使用\ centering ,\ raggedleft ,\ raggedright来实现居中,居右,居左。

2.2 标题

2.3 页眉页脚

2.3.1 版式

LATEX 系统包含如下几种常用的页面样式:

empty 无页眉页脚。

plain 无页眉,页脚有居中的页码,report 和 article 文类默认版式。

headings 偶数页页眉左端是页码,右端是章标题;奇数页页眉左端是节标题,右端

是页码;章标题页的板式为 plain, book 文类默认版式。

myheadings 自定义的页眉页脚样式,不推荐,我们还是用宏包比较方便。

一般使用系统命令\pagestyle {code}设置板式。写在导言区会设置全局版式,写在正文区会设置当前页及后续页面的版式,推荐写在导言区。在正文中设置当前页版式一般用\thispagestyle {code},该命令不影响后续页面版式。例如,通常使用\thispagestyle {empty}清空封面页眉页脚。

系统默认的页码计数形式有alph,Alph,arabic,roman,Roman,使用\pagenumbering{numstyle }设置页码样式,都能顾名思义。一般而言,论文封面之后——摘要、目录等页码用大写罗马数字,正文及参考文献使用阿拉伯数字。如果需要在某一页重置页码计数器,可在该页源文件处使用命令\setcounter{page}{num}重置计数器,page 是系统定义的页码计数器,num 按意愿填写。

另外,book 文类提供三条分区命令,分区命令之后的区域分别为序、文、跋。

```
\frontmatter
% 序
\mainmatter
% 文
\backmatter
% 跋
```

表	2.1	fancy	vhdr	宏	包常	用台	令

命令	作用
\fancyhead[position]{header}	设置页眉版式
\fancyfoot[position]{footer}	设置页脚版式
\fancyhf[position]{header/footer}	可同时设置页眉页脚,使用H、F指定页眉还是页脚
E	偶数页,左页
O	奇数页,右页
L、C、R	顾名思义,左、中、右
H、F	页眉、页脚
\rightmark	较低级别的标题,section
\leftmark	较高级别的信息,chapter

2.3.2 fancyhdr 宏包

一般来说,设置页眉页脚比较广泛的宏包是 *fancyhdr*。该宏包定义了一个额外的版式——fancy。对单页文档来说,其将页眉页脚分为了左中右三个部分,分布用\[lcr] head和\[lcr] foot 控制。修改版式之前一般习惯性清空原有版式,清空版式只需要将命令的参数空置即可。

```
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhf{}%清空页眉页脚
\lhead{}
\chead{}
\rhead{\bfseries zousiyu}
\lfoot{Leftfoot}
\cfoot{\thepage}
\rfoot{Rightfoot}
```

对双页文档来说,使用奇数页、偶数页、页眉、页脚、左、中、右组合将页面分为 12 个区域进行细致的控制,一般采用\fancy[head,foot,hf]三条命令进行设置,例如:

```
\fancyhead[LE,R0]{\slshape\rightmark}
\fancyhead[L0,RE]{\slshape\leftmark}
\fancyfoot[C]{\thepage}
```

fancyhdr 宏包常用命令如表 2.1 所示:

我们可以将章节标题和序号插入到页眉或者页脚中去,其格式与正文中章节标题的定义一样。如果需要更改,要重新定义。例如,可以使用如下代码重新定义页眉内的章标题样式,用在在本书中,这将会使页眉的"第 X 章版式"更改为"X 版式"。

具体更改页眉页脚区域章节显示样式的代码如下。

```
\renewcommand{\chaptermark}[1]{\markleft{\thesection.\#1}}%两种一样,\markleft影响\leftmark,而\makeboth影响两着,需要选一\renewcommand{\chaptermark}[1]{\markboth{\thechapter.\ #1}{节样式空置表示修改章样式}}\renewcommand{\chaptermark}[1]{\markboth{章样式}{节样式}}
```

在 book 文件类别下,\leftmark自动存录各章之章名,\rightmark记录节标题。所以,想要在页眉上显示章节标题是很容易实现的。

```
\lhead{\leftmark}%左页眉显示章
```

11/46 2.4 颜色

\rhead{\rightmark}%右页眉显示节

另外,还可以使用\fancypagestyle {code}{ style } 更改系统自带的 4 种版式或者自定义自己的版式。例如,我们专门给**章标题**所在页定义一个版式^①,然后在各章标题页手动指定该页版式为chapterpage,使之与其他页面版式相似。效果见各章章标题所在页。

```
% 章标题所在页专用版式
\fancypagestyle{chapterpage}{%
    \chead{\color{title}\slshape\leftmark}
    \lhead{\color{title}\bfseries\itshape\thepage/\pageref{LastPage}}
    \rhead{\color{title}\sffamily\LaTeXe{}学习笔记}
}
```

2.4 颜色

一般来说,我们调用下xcolor这个宏包。如果对内置的颜色了解,或者现有RGB颜色值,一般使用如下代码直接调用颜色。

Color Text 中文测试

```
\color[RGB]{204, 128, 92}{Color Text中文测试}
```

但是每次调用颜色都写颜色代码似乎不方便,我们可以先定义,基本定义形式如下。

```
\usepackage{xcolor}%颜色宏包
\definecolor{backcolor}{RGB}{242,242,242}%背景色
\definecolor{comment}{RGB}{0,128,0}%注释
\definecolor{keyword}{RGB}{0,0,255}%关键词
\definecolor{name名字随意}{model色值类型}{color-spec色值范围}
```

然后,我们就可以直接调用我们定义的颜色名称来设定颜色了。

function, return, if, true, false

\color{keyword}{\slshape function, return, if, true, false}

2.5 标题

CT_EX 宏包提供标题修改功能,所以中文文档很容易实现标题的修改。如果是直接使用 CT_EX 提供的文类,标题是可以直接修改的;如果仅仅只是调用了 CT_EX 宏包,需要给宏包加 上调用参数才能修改标题。

```
\usepackage[
heading=true,%启用修改章节标题的接口
]{ctex}
```

实际使用中发现 CT_EX 宏包和某个宏包冲突,修改标题间距并不起作用,暂时改用 titlesec 宏包定制标题样式。

```
\titleformat{\chapter}[hang]%
{\centering\color{title}\heiti\zihao{1}}%格式
{第\, \thechapter 节}%标签
{20pt}%标签和标题间距
{}%
[\vspace{5mm}]%
```

^①章标题所在页默认版式为 plain,见页 9

第三章 表格

3.1 浮动体

在学习 LATEX 表格和图片的编排之前,了解一下什么是浮动体。**图片和表格有时会很大,在插入的位置不一定放得下,因此需要浮动调整,这样一个浮动调整的环境就成为浮动体。**注意:因为有浮动体的存在,图片编排的位置是不确定的,所以要避免在文中使用「下图」、「上图」的说法,而是使用 ref 命令生成图表的编号。

浮动体将图或表与其标题定义为整体,然后动态排版,以解决图、表卡在换页处造成的过长的垂直空白的问题。但有时它也会打乱你的排版意图,因此使用与否需要根据情况决定。图片的浮动体是 figure 环境,而表格的浮动体是 table 环境。

对表格来说,输出表格内容的是 tabular 环境,table 只是一个会浮动体(到处乱跑的盒子)而已。没有 tabular 环境,table 环境一样会乱跑;没有 table 环境,tabular 环境一样会输出表格内容。图片浮动体与表格是一样的。图片和表格的浮动体环境如下所示:

! 表示忽略内部参数(比如内部参数对一页中浮动体数量的限制); h 当前位置 (here), t 顶部 (top), b 底部 (bottom), p 单独成页 (p)。 LATEX 的默认参数是 tbp。另外需要注意的是 label 命令写在 caption 命令下方,否则交叉引用会出现问题。

3.2 array 宏包

数组宏包 array 改进和扩展了 LATEX 的 tabular、tabular*、array 环境的功能,增强了列格式的功能和一些其他表格参数的调整功能。

	Ton unity Z Deptilos
选项	说明
1	左对齐
С	居中
r	右对齐
p{列宽}	顶对齐
m{列宽}	居中对齐
b{列宽}	底对齐
@{声明}	该列每行都插入声明中的文本
>{声明}	命令或需要插入列元素前的文本
<{声明}	命令或需要插入列元素后的文本
	在列边或列间插入垂直线

在列间插入声明要求的样式

!{声明}

表 3.1 array 宏包基本参数

3.3 booktabs 宏包

这个宏包是用来专门排版三线表的。其形式简洁、功能分明、阅读方便,广泛用在科技论文写作中排版实验测量和计算数据。booktabs 宏包就是一个非常适合用来排版三线表的宏包。用法非常简单,代码如下,表 3.2是一个三线表示例。

```
\begin{tabular}{lll}
\toprule[2pt]
表格内容
\midrule[0.5pt]
表格内容
\bottomrule[0.5pt]

{tabular}
```

其中,每个表格只有一条 toprule 和 bottomrule,但 midrule 可以添加任意多。

State	Equation	Reaction rate constant
Chain initiation	$O_3 + OH^- \longrightarrow HO_2 \cdot + O_2 \cdot$	$k_1 = 70 \mathrm{L/mol \cdot s}$
Chain transfer	$HO_2 \cdot \longrightarrow O_2^- \cdot + H^+$	$k_2 = 7.9 \times 10^5 \mathrm{L/(mol \cdot s)^{25}}$
	$O_2^- \cdot + H^+ \longrightarrow HO_2 \cdot$	$k_3 = 5 \times 10^{10} \mathrm{L/(mol \cdot s)^{25}}$
	$O_3 + O_2^- \cdot \longrightarrow O_3^- \cdot + O_2$	$k_4 = 1.6 \times 10^9 \text{L/(mol} \cdot \text{s)}$
	$O_3^- + H^+ \longrightarrow HO_3 \cdot$	$k_5 = 5.2 \times 10^{10} \mathrm{L/(mol \cdot s)}$
	$HO_3 \cdot \longrightarrow O_3^- + H^+$	$k_6 = 3.3 \times 10^2 \mathrm{s}^{-1}$
		•••
Chain termination	$HO_4 \cdot + HO_4 \cdot \longrightarrow H_2O_2 \cdot + 2O_3$	$k_{10} = 5 \times 10^9 \text{L/(mol \cdot s)}^{25}$
	$HO_4 \cdot + HO_3 \cdot \longrightarrow H_2O_2 \cdot + O_2 + O_3$	$k_{11} = 5 \times 10^9 \text{L/(mol \cdot s)}^{25}$

表 3.2 Ozone decomposition of SHB mechanism

\cmidrule能用来画局部水平线,可以用来制作跨列表格。局部水平线可以有多条,但需要在其他 cmidrule 前添加\morecmidrules命令,否则多条局部水平线重叠为一条。

	weather		
months	rain	sunny	cloudy
1	2	1	0
2	3	2	1

表 3.3 Weather statistics

3.4 表格

LATEX 原生的表格功能非常有限,甚至不支持单元格跨行和表格跨页,我们必须通过宏包来解决。如有需求,可在 tabular 环境外定义全部表格线的粗细,例如,\setlength {\arrayrulewidth }{2pt}或者直接写\arrayrulewidth=2pt。

整体表格线宽		
7	5	3
6	1	8

如果需要单独定义某一条表格线的粗细,必须要做额外的设置。比如我们要更改垂直表格线的粗细,可以利用 array 宏包提供的新列格式选项定义命令。其中的新选项名只能用一个字母来表示。使用该命令更改中间两条垂直线粗细为 2pt。

```
\newcolumntype{新选项名称}[参数数量]{列格式}
\newcolumntype{I}{!{\vrule width 4pt}}
```

```
\centering
\newcolumntype{I}{!{\vrule width 2pt}}
\begin{tabular}
    {|c|c|c|}
    \hline
    \multicolumn{3}{IcI}{垂直线粗细}\\
    \hline
    7&5&3\\
    \hline
    6&1&8\\
    \hline
\end{tabular}
```

垂直线粗细			
7	5	3	
6	1	8	

水平表格线的粗细较难修改,需要使用 booktabs 宏包,该宏包可以任意修改水平线粗细,还可以在其上、下方附加一段垂直空白。

```
水平线宽
7 5 3
6 1 8
```

array 包重新实现了 tabular 环境,加了不少新选项进去。比如我们可以定义 F 为一个居中且在数学环境中的列类型。然后在 tabular 中调用 F 即可在表格环境中排出数学样式。

```
\newcolumntype{F}{>{$}c<{$}}
\centering
\begin{tabular}{FFF}
    \alpha & \beta & \gamma \\
    \delta & \epsilon & \upsilon \\
    \sigma & \tau & \phi \\
\end{tabular}</pre>
```

 $\begin{array}{cccc}
\alpha & \beta & \gamma \\
\delta & \epsilon & \nu \\
\sigma & \tau & \phi
\end{array}$

3.4.1 跨行和跨列表格

既跨行又跨列时,必须把\multirow{number of rows}{width}{ text}命令放在\multicolumn{ code}{pos}{ text}内部,始终记住**跨列享受最高的优先级**。

15/46 3.4 表格

```
跨行跨列abc123跨行跨列XYZxyz
```

```
\centering
\begin{tabular}{|ccc|}
   \hline
   2 & 9 & 4 \\
   7 & \multicolumn{2}{c|}{\multirow}
   {2}{*}{?}}\\
   6& & \\ \hline
\end{tabular}
```

2	9	4
7	7	,
6	•	

```
\centering
\begin{tabular}{ccccc}
    \toprule
    \multirow{2}{*}{text} & \multicolumn
    {2}{c}{text} & \multicolumn{2}{c}{text}
    \\
    \cmidrule(lr){2-3} \cmidrule(lr){4-5}
    & 1 & 2 & 3 & 4 \\
    \midrule
    first & second & third & fourth & fifth
    \\
    \bottomrule
\end{tabular}
```

text		ct te		t
ιεχι	1	2	3	4
first	second	third	fourth	fifth

3.4.2 彩色表格

利用 xcolor 宏包的颜色功能, colortbl 宏包上给表格上色。提前定义好所需要的颜色。

```
%表格颜色
\definecolor{oddrows}{RGB}{243,246,246}%奇数行
\definecolor{evenrows}{RGB}{228,228,228}%偶数行
\definecolor{header}{RGB}{0,104,183}%表头
```

使用\rowcolor{color}单独给某一行行上色,使用 xcolor 宏包提供的\rowcolors{ start }{ oddrows}{evenrows}快速设定奇偶行颜色。LATEX 毕竟是做科技排版的,太花哨的彩色表格没有多大意义,用 LATEX 做起来也难受,不要深究。表 3.4 这种表头设定深色,奇偶行颜色交替的表格在科技排版中应用较多。

表 3.4 彩色表格演示

姓名	学号	性别
张三	2016121	Male
李四	2016122	Male
王五	2016123	Male
赵六	2016124	Male

3.4.3 斜线表头

虽然斜线表头是不符合国标的,但在非正式场合用得还挺多的。制作斜线表头需要 diagbox 宏包, 刘海洋写的,中文说明。

```
\centering
\begin{tabular}{|l|ccc|}
    \hline
    \diagbox{Time}{Room}{Day}
        &Mon&Tue&Wed\\
    \hline
    Morning&used&used&\\
    Afternoon& &used&used\\
    \hline
\end{tabular}
```

Room Day Time	Mon	Tue	Wed
Morning	used	used	
Afternoon		used	used

3.4.4 表格标题

表格标题命令默认只能在浮动体内使用,在导言中添加如下命令,便可以在浮动体外使用\figcaption和\tabcaption命令来为图标添加标题。为了防止标题和图表不在一页,我们也可以用minipage环境把它们包起来。

```
\makeatletter
\newcommand\figcaption{\def\@captype{figure}\caption}
\newcommand\tabcaption{\def\@captype{table}\caption}
\makeatother
```

表 3.5 一张课表

时间	星期		
	1	1 1	
8:30	化学	物理	
9:30	韩语	数学	

17/46 3.4 表格

图 3.1 一副图像

第四章 插图

第五章 正文工具

5.1 目录

5.2 脚注

脚注是对正文中词语的补充说明。系统提供的脚注命令如下,序号用于自行设定脚注序号,通常不需要给出。

\footnote[number]{text}

例如,为本文作者^①添加脚注。

如果要在脚注中输入带反斜杠的字符串,可使用等宽字体命令加字符串命令输入②。代码如下。如果需要更多的设置,可以调用脚注宏包 *footmisc*,对脚注命令\footnote进行扩展功能。

\footnote{\texttt{\string\footnote}}

5.3 边注

LATEX 本身提供边注命令:

```
\marginpar[左边注]{右边注}
```

边注测试。

这是边注啊

从这一行开始是用于

重新定义边注的代码

调用 *marginnote* 宏包,新定义一个边注。使用\bz 调用,将会在与段落平齐的地方生成一个边注。例如:

```
% 边注和索引,来自重庆大学LaTeX团队
\renewcommand*{\marginfont}{\color{Note}\sffamily\heiti}
\DeclareDocumentCommand{\bz}{s o m}{%
   \IfBooleanTF {#1}
   {%ture
     \IfNoValueTF{#2}{\marginnote[#3]{#3}}{\marginnote[#2]{#3}}
   }{%false
   \IfNoValueTF{#2}{\marginnote[#3]{#3}}{\marginnote[#2]{#3}}
   \index{#3}
}%
}
```

5.4 参考文献

中文著作肯定要符合《GB7714-2015 信息与文献参考文献著录规则》的要求,我习惯使用 biblatex 来生成参考文献。在导言区或者自定义的类文件中添加如下 1–5 行的代码,调用 biblatex 宏包并指定 bib 数据库路径³和名称。在正文中使用⁴第 7 行代码打印参考文献。

本书主要参考了刘海洋 $^{[2]}$ 和胡伟 $^{[1]}$ 编写的教程。使用的参考文献样式是胡振震编写的,源码托管在 Github hushidong/biblatex-gb7714-2015上。

```
\usepackage[
backend=biber,%处理方式
style=gb7714-2015%样式
]{biblatex}
```

^①邹思宇,男,LAT_FX 爱好者

②脚注命令\footnote

 $^{^{\}circ}$ 文中采用的是相对路径,即数据库为我编译的 tex 文件的同一目录下的 Zousiyu.bib 文件

^④一般写在\end{document} 之前

```
\addbibresource{Zousiyu.bib}
\printbibliography%打印参考文献
```

bib 参考文献数据格式如下所示,为分字段显示。各字段可以顾名思义,第一行的"刘海洋"是参考文献标识,你在文中引用参考文献时需要使用此标识。

```
@book{刘海洋,
title={LATEX入门},
author={刘海洋},
publisher={电子工业出版社},
year={2013},
}
```

参考文献使用范例,单独列出^{[2][1]},一起列出^[1,2] 范例中使用参考文献标识引用参考文献,具体实现如下。

```
单独列出\cite{刘海洋}\cite{胡伟}
一起列出\cite{刘海洋,胡伟}
```

5.5 链接

这部分内容主要用 hyperref 宏包来实现。

5.6 引用功能

在论文写作中,章节、插图、表格、公式和文本经常要前后调整或增添删减,这些引用的位置难以一次确定,所以不能进行直接编号。LATEX 提供很智能的方法来解决这个问题,你不用担心引用的编号问题,只管引用就好了,LATEX 系统会帮你编号。

交叉引用是个很有意思的东西,有时想要引用标签,有时又想引用标题,还有时想要标签标题一起引用。TeX 默认只引用标签中的编号^①,好在 hyperref 宏包提供了引用整个标签的\autoref{label}命令,在你的导言区添加如下代码,重新定义自动引用的名字为中文。

```
\AtBeginDocument{%
    \def\figureautorefname{图}
    \def\tableautorefname{表}
    \def\partautorefname{卷}
    \def\appendixautorefname{附录}
    \def\equationautorefname{式}
    \def\Itemautorefname{列表}
    \def\chapterautorefname{章}
    \def\sectionautorefname{节}
    \def\subsectionautorefname{小节}
    \def\subsubsectionautorefname{条目}
    \def\paragraphautorefname{自然段}
    \def\Hfootnoteautorefname{脚注}
    \def\AMSautorefname{ 式 }
    \def\theoremautorefname{定理}
    \def\pageautorefname{页}
}
```

现在,我们就可以使用这个命令引用一个表格、公式、图片等的整个标签。如使用如下命令分别引用一张表和一个带编号的公式。引用结果:如页 20,节 5.6中式 5.6.1,表 5.1,图 5.1所

[◎]标签由编号和类型组成,如「图 1」,「图」是类型,「1」是编号。

21/46 5.7 列表

示。

```
\ref{tools-equation}
\ref{tools-tabular}
```

如果想要引用标题,可以使用 nameref 宏包提供的\nameref{label}命令。如 TeX 家族标识符。

如果想要同时引用标签和标题,我们可以重新定义一个命令^①。在正文中使用\fullref { tools – tabular}来同时引用标签和标题,如节 5.6 引用功能中,图 5.1 Demo of bar plot on a polar axis。

\newcommand*{\fullref}[1]{\hyperref[{#1}]{\autoref*{#1}}}

再谈一谈页面引用的事情,\autopageref{label}只能实现「页 2」这样的效果,无法实现「第 2 页」这样的效果,目前没有较好的解决方法,只能手打。还有,中文文档里面常常需要实现「第 2 页,共 87 页」这样的效果,这时需要借助 lastpage 宏包,该宏包提供一个 LastPage 标签,用于输出文档的最后一页的页码。

第\pageref{tools-ref}
$$\pi$$
, 共\pageref{LastPage} π 。

第20页, 共46页。

$$\int \operatorname{arccsc} x \, dx = x \operatorname{arccsc} x + \ln(x + \sqrt{x^2 - 1} + C) \tag{5.6.1}$$

表 5.1 T_FX 家族标识符

TeX 家族标识符		
IAT _E X	$\text{LAT}_{ extbf{E}} X 2_{\mathcal{E}}$	
T _E X	$X_{\overline{1}}$ EX	

图 5.1 Demo of bar plot on a polar axis

5.7 列表

5.7.1 常规列表

^①来源于http://tex.stackexchange.com/questions/121865/nameref-how-to-display-section-name-and-its-number

5.7.2 排序列表

LATEX 自带的列表环境可调整的样式很有限,调整起来也很麻烦。所以最好直接用别人写好的宏包来调整列表环境。记住一句话,要随心所欲定制 LATEX 输出的样式,就要用自由度最高的宏包,不要嫌麻烦,否则达不到想要的定制效果。enumitem 宏包在定制列表环境方面做得很不错,可调样式很多,能满足大部分需求。借用 wklchris^①绘制的 enumitem 列表长度参数图。

图 5.2 列表长度参数图

enumitem 提供的参数很多,想每一项都弄明白得花点时间,我不解释每一项参数,而是 从例子开始入手。

中文文章的要求一般是,序号前缩进两个字符,列表项目之间无额外行距,列表换行后无缩进。对 itemsep、topsep 赋值,分别消除列表项目之间的间距、列表与上下文(正文)之间的间距;对 leftmargin 赋值,消除列表项目换行后的缩进,对 labelindent 赋值,控制序号前缩进两个字符,同时对 listparindent 赋值,控制条目换段后缩进两个字符;因为标签长度不太可控,itemindent 的值不好计算,所以设置其值为自动计算比较稳妥。另外,中文文稿一般需要用汉字来编号,这时可以调用 CTEX 宏包套件提供的命令\zhnum命令来更改计数器。

\begin{enumerate}[label=(\zhnum*),itemsep=0pt,parsep=0pt,topsep=0pt,leftmargin=0pt,labelindent=\parindent,listparindent=\parindent,itemindent=*]
\item 列表条目
\end{enumerate}

(一)《采桑子·辘轳金井梧桐晚》辘轳金井梧桐晚,几树惊秋。昼雨新愁,百尺虾须在玉钩。琼窗春断双蛾皱,回首边头。欲寄鳞游,九曲寒波不溯流。

《采桑子·亭前春逐红英尽》亭前春逐红英尽,舞态徘徊。细雨霏微,不放双眉时暂开。绿窗冷静芳音断,香印成灰。可奈情怀,欲睡朦胧入梦来。

(二)《长相思·一重山》一重山,两重山。山远天高烟水寒,相思枫叶丹。菊花开,菊花 残。塞雁高飞人未还,一帘风月闲。

^①https://github.com/wklchris/Note-by-LaTeX

23/46 5.8 附录

(三)《相见欢·无言独上西楼》无言独上西楼,月如钩。寂寞梧桐深院,锁清秋。剪不断,理还乱,是离愁。别是一般滋味,在心头。

5.7.3 解说列表

该类型列表用于对专业术语进行解释。

5.7.4 带圈数字列表

在许多文章中,特别是中文文章中,我们会见到带有圆圈的数字。它们有点是单独出现的,有点作为列表的计数出现。这里给出一个利用 TikZ 绘制的方法,既能在正文中调用,也能在列表中调用。基本的思路是定义一个新命令,接受一个数字参数,用 TikZ 在它周围画圈。同时要考虑基线和对齐的问题。代码实现如下^①:

```
\usepackage{tikz}
\usepackage{etoolbox}
\newcommand{\circled}[2][]{\tikz[baseline=(char.base)]
      {\node[shape = circle, draw, inner sep = 1pt]
            (char) {\phantom{\ifblank{#1}{#2}{#1}}};%
            \node at (char.center) {\makebox[0pt][c]{#2}};}}
\robustify{\circled}
```

这个新定义的命令可以按照\circled 方法在正文中使用。

```
Numbers aligned with the text: \circled{1} \circled{2} \circled{3} end.
```

Numbers aligned with the text: (1) (2) (3) end.

如果需要用在列表中,则因为「脆弱命令」的问题,需要处理一下。这里我们选择使用 etoolbox 宏包提供的\robustify 命令来处理一下,同时结合 enumitem 宏包,给出示例用法如下:

```
\begin{enumerate}[label=\dcircled{\arabic *}, noitemsep]
   \item 力微任重久神疲,再竭衰庸定不支 \item 苟利国家生死以,岂因祸福避趋之 \item 谪居正是君思厚,养拙刚于戍卒宜 \item 戏与山妻谈故事,试吟断送老头皮 \end{enumerate}
```

- 1) 力微任重久神疲, 再竭衰庸定不支
- (2) 苟利国家生死以,岂因祸福避趋之
- (3) 谪居正是君恩厚, 养拙刚于戍卒宜
- (4) 戏与山妻谈故事, 试吟断送老头皮

5.8 附录

5.9 代码环境

首先载入 listings 宏包,定义基础代码环境,我取名为 CodeBase,这个基础代码环境定义的样式能被后续的代码环境调用,免去重复设置。也正是因为基础代码环境的通用性,所以这里只适合定义在所有代码环境中都适用的样式,如字体、各种边距、换行和标识等。

```
\lstdefinestyle{CodeBase}
{
    basicstyle=\small\ttfamily,
    frame=l,
    aboveskip=0pt,%上边距
    belowskip=0pt,%下边距
    lineskip=0pt,
    tabsize=4,%设置tab空格数
    showtabs=false,%Tab
    showspaces=false,%空格标识
```

^①此法来源于tikz pgf - Good way to make textcircled numbers? - TeX - LaTeX Stack Exchange

```
showstringspaces=false,
numbers=left,
numbersep=5pt,%行号与代码距离
numberstyle=\small\ttfamily,
rulecolor=\color{cyan},
boxpos=c,
xleftmargin=lem,%左边距
xrightmargin=0pt,
breaklines=true,%自动换行
breakindent=0pt,%换行后缩进为0
extendedchars=false,%解决代码跨页时,章节标题,页眉等汉字不显示的问题
framesep=3pt,
rulesep=2pt,
framerule=1pt,
%代码颜色设置
backgroundcolor=\color{gray!5},
stringstyle=\color{green!40!black!100},
keywordstyle=\bfseries\color[RGB]{0,0,255},
commentstyle=\slshape\color{black!60},
```

接下来,我们就可以用这个基本样式来定义一个专用于 LATEX 代码书写的样式和相应的环境。

```
%LaTeX代码环境用
\lstdefinestyle{LaTeX}
{
    style=CodeBase,
    language=[LaTeX]TeX,
    classoffset=0,
    morekeywords={addplot, begin, end},
}
%定义latex代码专用环境
\lstnewenvironment{latex}[1]{\lstset{style=LaTeX}}{}
```

最后,直接在正文中使用新定义的环境 latex 框住所需要展示的代码即可。

上面定义了一个 LATEX 专用的代码环境,实际使用肯定不只 LATEX 代码需要展示,还有诸如 Python,MATLAB 等大量其他代码需要展示。这里我们在定义一个用于展示 MATLAB 代码的环境,同样也是从基础样式 CodeBase 进行衍生,只需要几条简单的命令即可。

```
%matlab代码展示
\lstdefinestyle{Matlab}{
    style=CodeBase,
    language=Matlab
}
%定义Matlab代码专用环境
\lstnewenvironment{Matlab}[1]{\lstset{style=Matlab}}{}
```

MATLAB 代码高亮测试。

```
t=0:pi/10:2*pi;
[X,Y,Z]=cylinder(4*cos(t));
```

```
subplot(1,2,1);mesh(X);title('X');
subplot(1,2,2);mesh(Y);title('Y');
```

从 CodeBase 定义的新样式 X, 其设置可以覆盖 CodeBase 中的设置, 如下面这段 Python 代码高亮测试中,我们在代码中定义了一句keywordstyle=\slshape\color [RGB]{0,0,255},让 Python 代码中的关键词变为斜体, 其他代码环境不受影响。

```
\lstdefinestyle{python}{
    style=CodeBase,
    keywordstyle=\slshape\color[RGB]{0,0,255},%%%%就是这句
    language=Python,
    morekeywords={def},
}
\lstnewenvironment{python}[1]{\lstset{style=python}}{}
```

Python 代码展示。

```
def ffmpeg_concat_av(files, output, ext):
    print('Merging video parts...', end="", flush=True)
    params = [FFMPEG] + LOGLEVEL
    for file in files:
        if os.path.isfile(file): params.extend(['-i', file])
    params.extend(['-c:v', 'copy'])
    if ext == 'mp4':
        params.extend(['-c:a', 'aac'])
    elif ext == 'webm':
        params.extend(['-c:a', 'vorbis'])
    params.extend(['-strict', 'experimental'])
    params.append(output)
    return subprocess.call(params)
```

listings 宏包识别的代码关键词肯定是有限的,但好在它提供一个参数可以扩充关键词。 比如我们为 c++ 语言添加更多的关键词,只需要在设置里面写下如下代码。关键词想要多少 都行,依据实际情况补充。

```
\lstset{
    morekeywords={alignas,continute,friend,register,true,alignof,decltype,
    goto,reinterpret_cast,try,asm,defult,if,return,typedef,auto,delete,inline
    ,short,typeid,bool,do,int,signed,typename,break,double,long,sizeof,union,
    case,dynamic_cast,mutable,static,unsigned,catch,else,namespace,static_
    assert,using,char,enum,new,static_cast,virtual,char16_t,char32_t,explict,
    noexcept,struct,void,export,nullptr,switch,volatile,class,extern,operator
    ,template,wchar_t,const,false,private,this,while,constexpr,float,
    protected,thread_local,const_cast,for,public,throw,std}
},
```

当 listings 展示环境显示行号时,复制代码时会将行号也复制进去,可以使用如下代码解决。编译的 PDF 必须使用 Acrobat 等功能足够完善的 PDF 阅读器来查看,在 SumatraPDF 中复制代码仍然会复制到行号。

```
%复制listings生成的代码时不复制行号
\usepackage{accsupp}
\newcommand{\emptyaccsupp}[1]{\BeginAccSupp{ActualText={}}#1\EndAccSupp{}}
\lstset{%
numberstyle=\small\ttfamily\emptyaccsupp,}
```

第六章 数学排版

终于到了 LATEX 最擅长的部分,数学排版。

6.1 数学模式

分行内公式和行间公式。

行内公式,即: $s=1^{n}a_i$,得到: $\sum_{i=1}^{n}a_i$.

行间公式, 即: \[\ sum_{i=1}^n{a_i}\], 得到:

$$\sum_{i=1}^{n} a_i$$

6.2 数学宏包

6.3 数学符号

6.3.1 上标与下标

上下标一般写在数学符号的右上、右下方,如果需要将它们写在正下、正上方,可以使用\limits。

如果是行间公式,上下标默认就在正下、正上方。另外,使用\substack命令可以加入多行的上下标,举个例子。

6.3.2 画线补充

想划线,就拿\ overline 和\ underline命令就可以了,划线的部分最好以花括号括起来。想 画箭头则将 line 替换为 arrow。想打双向箭头或其他,那么把 left/right 改成 leftright $^{\circ}$ 。举个例子。

```
$ \overleftarrow{abc} $\par

$ \underline{xy} $\par

$ a \leftrightarrow b $\par

$ \overleftrightarrow{abc} $

abc
```

如果想在数学环境里面写中文 2 ,那么记住两件事,一是在开头引用 $CT_{E}X$ 宏包,二是在引用中文的之前使用\text命令,举一个例子。

^①连写,先 left 后 right

②并不推荐这样做,只是为了符合国情才有教材在数学公式里面排版中文

6.3.3 分式

使用命令\frac写出正常的分式而不是 a/b 这种的,命令之后有两个参数,如果分子分母均只有一个字符,则可以不加花括号。举例如下。

如果你想玩点花样,随意使用行内公式和行间公式,那么这里的\frac可以分支为\dfrac和\tfrac,t即text(行内,文本模式),d即display(行间,显示模式)。我们可以用这两个命令调节嵌套分式的大小,举个例子。

6.3.4 斜线分式和斜线除号

对于一些需要用到斜除号的地方,如果斜除号两边的字符比较高,用常规的/会导致式子很不协调,这个时候可以使用\middle/来使得斜除号的高度与两侧字符高度相匹配。如下所示:

\$x=a^\frac{1}{2}/b\$\\
\$x=\left.a^\frac{1}{2}\middle/b\right.\$
$$x = a^{\frac{1}{2}}/b$$

$$x = a^{\frac{1}{2}}/b$$

此外,有时候还需要用到行内斜线分式.通常,我们输入斜线分数都是键入 X/Y,但是这个真心有点难看。我们可以用专业的 xfrac 宏包来处理这些斜线分式,它提供一个命令:

\sfrac{}{}

注意: 这个命令可以在数学环境外使用, 即在文本模式中直接使用

6.3.5 根式

开方的次数^①用方括号[]括起来。注意,根式的开方次数如果过大,写在左边就很影响美观,这个时候一般都改为指数形式。

```
\[ \sqrt{x^2+1}\quad \sqrt[3]{x^4+1} \] \sqrt{x^2+1} \quad \sqrt[3]{x^4+1}
```

6.3.6 嵌套

所有的公式都可以做到嵌套,这样子就可以形成相对比较复杂的公式。

```
\[ \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\\ \lim\lim\limits_{x\to 0}\frac \\ \{x\cdot \frac{\cos x -1}{\cos x}}\x^{3}\\ \]
```

除了在分式中会经常用到嵌套以外,矩阵里这种情况也很常见,比如分块矩阵,举个例子。当然,我们也可以把零弄大一点,我们只需要将 0 修改为\text {\ large {0}} 就好

①非数学专业,不知道用次数表达是否合理,欢迎指正

```
\[
A=\begin{pmatrix}
\begin{matrix}
1 & 0 \\
0 & 1
\end{matrix} & 0 \\
\text{\large{0}} & \begin{matrix}
1 & 0 \\
0 & 1
\end{matrix}
\end{pmatrix}
\]
```

$$A = \begin{pmatrix} 1 & 0 & & 0 \\ 0 & 1 & & & \\ & & 1 & 0 \\ & & & 0 & 1 \end{pmatrix}$$

 $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}$

 $\langle \{[(xyz)]\} \rangle$

6.3.7 定界符

Big] \bigg\} \Bigg> \]

嵌套多了式子会变得非常复杂,也就会变得越来越大!可是这个时候如果你使用括号你会发现,它的大小并没有什么变化,这就显得非常的 low,影响美观,因此我们会在括号外加一个 left 或者是 right 进行大小的控制。举例如下。

```
\[ \lim\limits_{x\to 0}\left(\frac \\ \a^{x}+b^{x}+c^{x}}{3}\right) \\ \[ \Bigg< \bigg\{ \Big[ \big( xyz \big) \\ \\ \]
```

学了定界符之后,就可以完全实现矩阵的部分形态了,比方说排版一个增广矩阵。

定界符必须成对出现,对公式组而言,定界符需要用在公式组环境(align、alignat、gather、aligned、alignedat、gathered)外面。另外,定界符必须成对出现,没有定界符的一侧使用\left.或者\right.来代替。了解定界符之后,我们就可以利用定界符和公式组环境做出如下排版,和高数书上的公式效果差不多!

$$\begin{cases} \frac{\partial c_i}{\partial t} + \nabla \cdot (-D_i \nabla c_i) + u \cdot \nabla c_i = R_i \\ N_i = -D_i \nabla c_i + u c_i \end{cases}$$
(6.3.1)

```
\begin{equation}
\left\{
\begin{gathered}
\frac{\partial c_i}{\partial t}+\nabla \cdot (-D_{i} \nabla c_{i})+u \cdot
\nabla c_{i}=R_i \\
N_{i}=-D_{i}\nabla c_{i}+uc_{i}
\end{gathered}
\right.
\end{equation}
```

6.3.8 数学字体

标准的 LAT_EX 提供的数学字体有以下几种。简单的文档中,这些字体已经够用了,如果要使用更高级的字体,可查阅 CT_EX 宏包说明。

```
\[
\mathit{ABCDE}\]
\[
\mathrm{ABCDE}\\\]
\[
\mathbf{ABCDE}\\\]
\[
\mathsf{ABCDE}\\\]
\[
\mathsf{ABCDE}\\\]
\[
\mathtf{ABCDE}\\\]
\[
\mathtf{ABCDE}\\\]
\[
\mathtf{ABCDE}\\\]
\[
\mathtf{ABCDE}\\\]
\[
\mathtf{ABCDE}\\\]
```

6.3.9 希腊字母

有时间排个表在这,不着急。

6.3.10 符号

规范的函数符号输入是使用命令来输入,比如指数、对数以及简单的三角函数符号等。

\$ \sin~\cos~\exp~\log \$\\
\[\mathcal{L}(X_i|\lambda) = \sum\limits_{j}
=1}^{n_i}\log p(x_{ij}|\lambda) \]

$$\mathcal{L}(X_i|\lambda) = \sum_{i=1}^{n_i} \log p(x_{ij}|\lambda)$$

调用 amsmath 宏包后,大多数函数符号能够使用反斜杠加名称直接打出,例如:

\$ \sin \quad \ln \quad \arccos \$

sin ln arccos

sin cos exp log

像 arcsec arccot arccsc 这三个函数, amsmath 宏包就没有定义, 这就需要我们自己定义 这样一个新的函数命令。

```
%定义一些amsmath没有定义的函数
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
```

\ldots是**列举**中用的省略号,而\cdots是**运算(连加、连乘)**中用的省略号,二者主要区 关于数学环境中的省略号,二者主要区 略号 别在于位置一高一低,切勿混用。

```
\begin{gather*}
\{ (X_1,y_1), \ldots, (X_i,y_i), \ldots, (
X_{N_{B}},y_{N_{B}}) \}\\
N_I=n_1 +n_2 + \cdots +n_T
\end{gather*}
```

$$\{(X_1, y_1), \dots, (X_i, y_i), \dots, (X_{N_B}, y_{N_B})\}$$

$$N_I = n_1 + n_2 + \dots + n_T$$

6.3.11 转置符号

转置符号并没有严格的规定,好几种都在普遍被使用。但是有一点是明确的,转置符号不能是斜体。常见的转置符号大概有四种。

推荐使用第三或者第四个,其中\intercal 符号需要使用 $\mathcal{A}_{M}\mathcal{S}$ - $\mathbf{T}_{F}\mathbf{X}$ 宏包。

6.4 公式环境

6.4.1 单行公式 equation

无论公式多长,都被排版成一行,并给出一个序号。其间,换行命令无效,换段非法并会 报错。

\begin{equation} \frac{\partial c_i}{\partial t}+\nabla \ $cdot (-D_{i} \nabla c_{i})+u \cdot \nabla$ c {i}=R i \end{equation}

$$\frac{\partial c_i}{\partial t} + \nabla \cdot (-D_i \nabla c_i) + u \cdot \nabla c_i = R_i \quad (6.4.1)$$

6.4.2 公式组 align 和 alignat

该环境可以使公式组或者多行公式关于某个字符对齐,\\换行,&用于分列,奇数列会右 对齐, 偶数列会左对齐, 公式组的每一行都会有一个编号。

\begin{align} $\langle x = 1 \leq x \leq 1$ = &\lim\limits_{x\to 1}\left(\frac{x^2+x-2}{1-x^3}\right) \\ = & \lim\limits_{x\to 1}\frac{(x+2)(x-1)}{(1-x)(x^2+x+1)}\\ = & \lim\limits_{x\to 1}\frac{-(x+2)}{x^2+x+1}\\ = & -1 \end{align}

$$\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{3}{1 - x^3} \right) \tag{6.4.2}$$

$$= \lim_{x \to 1} \left(\frac{x^2 + x - 2}{1 - x^3} \right) \tag{6.4.3}$$

$$= \lim_{x \to 1} \frac{(x+2)(x-1)}{(1-x)(x^2+x+1)}$$

$$= \lim_{x \to 1} \frac{-(x+2)}{x^2+x+1}$$
(6.4.4)

$$= \lim_{x \to 1} \frac{-(x+2)}{x^2 + x + 1} \tag{6.4.5}$$

$$=-1$$
 (6.4.6)

\begin{align} $A_{1} & = B_{1}B_{2} & A_{2} & =B_{2} \$ $A_{3} & = B_{3} & A_{3}A_{4} & =B_{4}$ \end{align}

$$A_1 = B_1 B_2 A_2 = B_2 (6.4.7)$$

$$A_3 = B_3 A_3 A_4 = B_4 (6.4.8)$$

注意: 列对之间的空白与列对两侧的空白相等, 像这种公式比较短的情况下就很丑。这时可以 使用 alignat 环境手动控制公式间的空白,该环境必须在参数中指定列队个数。

\begin{alignat}{2} $A_{1} \& = B_{1}B_{2} \quad A_{2} \& =B_{2} \$ $A_{3} & = B_{3} & A_{3}A_{4} & =B_{4}$ **\end**{alignat}

$$A_1 = B_1 B_2 \qquad A_2 = B_2 \tag{6.4.9}$$

$$A_3 = B_3 \qquad A_3 A_4 = B_4 \tag{6.4.10}$$

6.4.3 公式组 gather

用于编写中心对称的公式组,以\\换行以区分每个公式,每个公式都会被编号。

$$\frac{\partial c_i}{\partial t} + \nabla \cdot (-D_i \nabla c_i) + u \cdot \nabla c_i = R_i$$
(6.4.11)

$$N_i = -D_i \nabla c_i + uc_i \tag{6.4.12}$$

6.4.4 多行公式 multline

适用于长公式在公式中间直接换行的情况,长公式换行并无规矩,通常在关系符(如 =) 和二元符之后换行。

```
\begin{multline}
\frac{\rho}{\epsilon_p} \left(\frac{\partial u}{\partial t}+(u \cdot \nabla)
\frac{u}{\epsilon_p}\right)=\\
\nabla \cdot \left[ -pl+\frac{\mu}{\epsilon_p}\left( \nabla u+(\nabla u)^T
\right)-\frac{2\mu}{3\epsilon_p}(\nabla \cdot u)\right]-\left( \mu \kappa
^{-1} + \beta_{F}u+ \frac{0_{br}}{\epsilon^{2}_{p}} \right)u+F
\end{multline}
```

$$\frac{\rho}{\epsilon_{p}} \left(\frac{\partial u}{\partial t} + (u \cdot \nabla) \frac{u}{\epsilon_{p}} \right) =
\nabla \cdot \left[-pl + \frac{\mu}{\epsilon_{p}} \left(\nabla u + (\nabla u)^{T} \right) - \frac{2\mu}{3\epsilon_{p}} (\nabla \cdot u)l \right] - \left(\mu \kappa^{-1} + \beta_{F} u + \frac{Q_{br}}{\epsilon_{p}^{2}} \right) u + F \quad (6.4.13)$$

6.4.5 多行公式 split

适用于关于某个符号对齐的长公式,例如,我们将式(6.4.2)用 split 环境排版,用 equation 环境赋予其编号,整个公式只会得到一个编号,更符合排版规范。该环境以 & 分列,至多两列,以\\换行。

注意: split 环境不能产生编号,需要外在的公式环境提供; split 环境不能与 multline 嵌套; autoref 可以生成"式 1.1", eqref 可以生成"(1.1)", 视情况使用,展示无法做到直接引用成"式 (1.1)"

```
\begin{equation}
\begin{split}
&\lim\limits_{x\to 1}\left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)\\
= &\lim\limits_{x\to 1}\left(\frac{x^2+x-2}{1-x^3}\right) \\
= & \lim\limits_{x\to 1}\frac{(x+2)(x-1)}{(1-x)(x^2+x+1)}\\
= & \lim\limits_{x\to 1}\frac{-(x+2)}{x^2+x+1}\\
= & -1
\end{split}
\end{equation}
```

$$\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{3}{1 - x^3} \right)$$

$$= \lim_{x \to 1} \left(\frac{x^2 + x - 2}{1 - x^3} \right)$$

$$= \lim_{x \to 1} \frac{(x + 2)(x - 1)}{(1 - x)(x^2 + x + 1)}$$

$$= \lim_{x \to 1} \frac{-(x + 2)}{x^2 + x + 1}$$

$$= -1$$
(6.4.14)

6.4.6 breqn 宏包

冲突太多,有待测试。

6.4.7 公式块

align(alignat)、gather 产生的公式组只能出现在行间,无法做为一个块出现在行内,而很多情况下我们需要一个公式组做为块出现在行间。这时我们可以使用 aligned(alignedat)、gathered 公式块环境来完成,每一行可以放置多个公式块,但块环境不提供编号。

```
\begin{equation}
\begin{aligned}
f(x,y) &=0 \setminus
z & =c
\end{aligned}
                                                                          x = t \cos t
                                                      f(x,y)=0
\quad \text{以及} \quad
                                                                   以及
                                                                                        (6.4.15)
\begin{gathered}
                                                                           z = at
x=t\cos t \\
z=at
\end{gathered}
\end{equation}
```

我们可以用公式块做一些怪东西,比如让 f(x,y)=0 以及 $(x=t\cos t)$ 做为行间公式出现 z=c z=at 在一行。让人想起了高数书上的排版呢!! 需要注意的是**公式块环境只能用在数学环境中**,实现的代码如下。

```
$\begin{aligned}f(x,y) & =0 \\z & =c\end{aligned}$
~以及~
$\begin{gathered}x=t\cos t \\z=at\end{gathered}$
```

6.5 矩阵环境

矩阵的环境和表格有点相似,所以用法也和列表几乎相同,举个最简单的矩阵例子。

```
\[ A=\begin{matrix} & a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \dots & 0 & 0 & 0 \\
```

那我要写带括号的呢? 没关系,不同的矩阵环境会形成不同的括号。这里的 matrix 就不形成括号, pmatrix 形成小括号, bmatrix 形成中括号, vmatrix 形成竖线(行列式形式), Bmatrix 形成大括号, Vmatrix 形成双竖线。

```
\begin{gather*}
% 居 中 的 公 式 组 环 境, 不 编 号
\begin{pmatrix}1 & 2\\
3 & 4\end{pmatrix}1 & 2\\
3 & 4\end{bmatrix}1 & 2\\
3 & 4\end{matrix}1 & 2\\
4 & 3 & 4\end{matrix}1 & 2\\
4 & 3 & 4\end{matrix}1 & 2\\
4 & 3 & 4\end{matrix}1 & 2\\
6 & 3 & 4\end{matrix}1 & 2\\
7 & 4 & 6\end{matrix}1 & 2\\
8 & 4\end{matrix}1 & 2\\
9 & 4 & 6\end{matrix}1 & 2\\
9 & 6 & 7\end{matrix}1 & 2\\
9 & 7 & 7
```

矩阵的元素有时候会很多,需要使用省略号去忽略,而省略号在 tex 中有专门的命令,列举如下。

```
] /
\ldots \cdots \vdots \ddots \dotsc
                                                                                          ... ... : ...
\[\begin{bmatrix}
1
        & 2
                      & \cdots & 4
                                               //
                                                                                       \begin{bmatrix} 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \end{bmatrix}
          & 6
                      & \cdots & 5
                                              //
 \vdots & \vdots & \vdots \\
 8 & 9
                      & \cdots & 0
                                              \\
\end{bmatrix}\]
```

6.6 定理环境

第七章 宏包

LATEX 的强大之处在于有各种各样的宏包进行扩展,这些宏包能帮助 LATEX 完成多样的排版任务。

例如,在文本中排版化学式,有两个宏包比较流行,mhchem 和 chemfig。前者功能简单,用法也简单,书写无机化学式首选;后者功能众多,用法也较为繁复,主要用来书写复杂的有机化学式。

7.1 mhchem

使用下面的语句调用 mhchem 宏包,添加version=4参数是为了使用宏包的一些新特性,编写的文档如果要照顾老旧的 LATeX 版本用户,可以酌情降低版本。

\usepackage[version=4]{mhchem}

化学方程式

```
\ce{CO2 + C -> 2 CO}\par
\ce{Hg^2+ ->[I-] HgI2
->[I-] [Hg^{[I]}14]^2-}
```

$$CO_2 + C \longrightarrow 2CO$$

 $Hg^{2+} \xrightarrow{I^-} HgI_2 \xrightarrow{I^-} [Hg^{II}I_4]^{2-}$

化学分子式

分子式可用在文本模式、数学模式和标题里面。

氧化价态

离子

\ce{Fe^{II}Fe^{III}204}

 $\mathrm{Fe^{II}\mathrm{Fe^{III}}_2O_4}$

 Y^{99+}

 $2H_2O$

 $2H_2O$

化学计量数 \ce{2H20}\par

 $ce{Y^{99+}}$

\ce{2H2O}\par \ce{2 H2O}\par \ce{0.5H2O}\par \ce{1/2H2O}\par \ce{(1/2)H2O}\par

 $0.5 \, \text{H}_2\text{O}$ $\frac{1}{2} \, \text{H}_2\text{O}$

\ce{\$n\$H20}

 $(1/2) H_2 O$ $n H_2 O$

同位素 \ce{^{227}_{90}Th+}\par

 $ce{H2(aq)}\par$

\ce{CO3^2-{}_{(aq)}}\par
\ce{NaOH(aq,\$\infty\$)}

\ce{^227_90Th+}\par \ce{^{0}_{-1}n^{-}}\par \ce{^0_-1n-} ²²⁷₉₀Th⁺ ²²⁷₉₀Th⁺

 $_{-1}^{0}$ n⁻

括弧,方括号,花括号

(),[]可以正常表示,但需要使用\{\}输出花括号。大型的花括号只能在数学环境里面使用。

大花括号

 $\[\ce{CH4 + 2 }\end{fit} \ \ce{02 + 79/21 N2} \end{fit}$

$$CH_4 + 2\left(O_2 + \frac{79}{21}N_2\right)$$
 $H_2(aq)$
 $CO_3^{2-}{}_{(aq)}$
 $NaOH(aq, \infty)$

聚合态

35/<mark>46</mark> 7.1MHCHEM

```
OCO^{\bullet-}
                                                                                                             未成对电子, 自由基
\ce{0C0^{.-}}\par
\ce{NO^{(2.)-}}
                                                          NO^{(2\bullet)-}
                                                                                                              变量
    排版约定,变量使用斜体排版,而其他元素(如化学式)则使用直立字体排版。
                                                          NO_x
ce{N0_x}\approx par
$\ce{Fe^n+}$
                                                          Fe^{n+}
$\ce{x Na(NH4)HP04 ->[\Delta] (NaP03)_x + x NH3 ^ + x H20}$
                      x \text{ Na(NH}_4)\text{HPO}_4 \xrightarrow{\Delta} (\text{NaPO}_3)_x + x \text{ NH}_3 \uparrow + x \text{ H}_2\text{O}
                                                          μ-Cl
                                                                                                              希腊字符
\ce{\mu-Cl}\par
\ce{[Pt(\eta^2-C2H4)Cl3]-}
                                                          [Pt(\eta^2-C_2H_4)Cl_3]^{-1}
                                                          KCr(SO_4)_2 \cdot 12 H_2O
                                                                                                             加成化合物
\ce{KCr(S04)2*12H20}\par
                                                          KCr(SO_4)_2 \cdot 12 H_2O
\ce{KCr(S04)2.12H20}\par
\ce{KCr(S04)2 * 12 H20}
                                                          KCr(SO_4)_2 \cdot 12 H_2O
                                                          C_6H_5 – CHO
                                                                                                             化学键
ce{C6H5-CH0}\par
                                                          A-B=C≡D
ce{A-B=C\#D}\par
\sffamily\bfseries\ce{A-B=C#D}
                                                          A - B = C \equiv D
                                                          A-B=C≡D
ce{A\bond{-}B\bond{=}C\bond{#}D}\par
                                                          A-B=C\equiv D
ce{A\bond{1}B\bond{2}C\bond{3}D}\par
                                                          A - B = C
ce{A\bond{~}B\bond{~~}C}\par
ce{A\bond{---}B\bond{---}D}\par
                                                          A≡B≡C≡D
ce{A\bond{...}B\bond{...}C}\par
                                                          A \cdots B \cdots C
ce{A\bond{--}B\bond{<-}C}
                                                          A \rightarrow B \leftarrow C
                                                          A \longrightarrow B
                                                                                                              反应箭头
\ce{A -> B}\par
                                                          A ← B
ce{A <- B}\par
                                                          A \leftarrow \rightarrow B
\ce{A <-> B}\par
\ce{A <--> B}\par
                                                          A \rightleftharpoons B
ce{A <=>> B}\par}
                                                          A \rightleftharpoons B
ce{A <<=> B}
                                                          A \rightleftharpoons B
                                                          A \xrightarrow{H_2O} B
                                                                                                             带参数的反应箭头
ce{A \rightarrow [H20] B}\par
                                                          A \xrightarrow{\text{text above}} B
\ce{A ->[{text above}][{text below}] B}\par
ce{A ->[$x$][$x_i$] B}\par
                                                          A \xrightarrow{x} B
ce{A -> [${x}$] B}
                                                          A \xrightarrow{x} B
                                                          A + B
                                                                                                             化学方程式计算符
ce{A + B}\par
                                                          A - B
\ce{A - B}\par
ce{A = B}\operatorname{par}
                                                          A = B
ce{A \neq B}
                                                          A + B
                                                          SO_4^{2-} + Ba^{2+} \longrightarrow BaSO_4 \downarrow
                                                                                                             沉淀和气体
ce{504^2- + Ba^2+ -> BaS04 v}\par
ce{A v B (v) -> B ^ B (^)}
                                                          A \downarrow B \downarrow \longrightarrow B \uparrow B \uparrow
                                                                                                              极好的示例
ce{Zn^2+}
      <=>[+ 20H-][+ 2H+]
      $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$
      <=>[+ 20H-][+ 2H+]
      \displaystyle \frac{\text{Text}(Hydroxozikat)}{(ce{[Zn(0H)4]^2-})}
```

 $K = \frac{\{(ce\{Hg^2+\})[(ce\{Hg\})\}\{(ce\{Hg^2^2+\})\}\}}$

```
$K = \ce{\frac{[Hg^2+][Hg]}{[Hg2^2+]}}$
\ce{Hg^2+ ->[I-]
    $\underset{\mathrm{red}}{\ce{HgI2}}$
    ->[I-]
    $\underset{\mathrm{red}}{\ce{[Hg^{II}]}4]^2-}}$
}
```

$$Zn^{2+} \xrightarrow{+2OH^{-}} Zn(OH)_{2} \downarrow \xrightarrow{+2OH^{-}} [Zn(OH)_{4}]^{2-}$$

$$K = \frac{[Hg^{2+}][Hg]}{[Hg_{2}^{2+}]}$$

$$K = \frac{[Hg^{2+}][Hg]}{[Hg_{2}^{2+}]}$$

$$Hg^{2+} \xrightarrow{I^{-}} HgI_{2} \xrightarrow{I^{-}} [Hg^{II}I_{4}]^{2-}$$

$$red$$

7.2 Chemfig

7.3 CT_EXzhnumber

以中文格式输出数字。这里的数字可以是整数、小数和分数。

```
\zhnumber{2012020120}\\
\zhnumber{2 012 020 120}\\
\zhnumber{2,012,020,120}\\
\zhnumber{2012.020120}\\
\zhnumber{2012.}\\
\zhnumber{2012}\\
\zhnumber{20120/20120}\\
\zhnumber{2012}\\
\zhnumber{2012}\\
\zhnumber{2012}\\
\zhnumber{2012}\\
```

将阿拉伯数字转换为中文字符串。

\zhdigits{2012020120}\\ \zhdigits*{2012020120}

将LATEX计数器数值转换为中文。

```
二十亿零一千二百零二万零一百二十
二十亿零一千二百零二万零一百二十
二十亿零一千二百零二万零一百二十
二千零一十二点零二零一二零
二千零一十二点零
零点二零一二
二万零一百二十分之二万零一百二十
二千零一十二分之零
零分之二千零一十二
二百零一又一百二十分之二千零二十
```

二〇一二〇二〇一二〇 二零一二零二零一二零

```
\zhnum{section}
```

输出当天的星期。

\zhweekday{2012/5/20}

以中文格式输出日期。

\zhdate{2012/5/21}\\ \zhdate*{1995/01/26}

以中文输出当天日期。

\zhtoday

以中文输出时间。

\zhtime{23:56}

输出当前时间。

星期日

2012年5月21日 1995年1月26日星期四

2017年3月8日

23 时 56 分

37/46 7.4XPINYIN

\num{2.2D-9} \\

\num{E9} \\

\num{-e10}

\zhcurrtime 10时55分 输出天干计数,数字范围是 1-10。 \zhtiangan{1} \zhtiangan{2} \zhtiangan{3} \zhtiangan{4} 甲乙丙丁戊癸 \zhtiangan{5} \zhtiangan{10} 输出地支计数,数字范围 1-12。 \zhdizhi{1} \zhdizhi{2} \zhdizhi{3} 子丑寅卯辰亥 \zhdizhi{4} \zhdizhi{5} \zhdizhi{12} 输出干支计数,数字范围 1-60。 \zhganzhi{1} \zhganzhi{2} 甲子 乙丑 丙寅 $\zhganzhi{3}\\ \zhganzhi{4}$ 丁卯 戊辰 癸亥 $\zhganzhi{5} \zhganzhi{60}$ 输出公元纪年对应的干支纪年,公元前用负数。 \zhganzhinian{1898} 戊戌 乙卯 \zhganzhinian{-246} \\ \zhganzhinian{-2697} 甲子丁酉 \zhganzhinian{\year} zhnumsetup 的样式控制选项。 **Simplified** 以简体中文输出数字(对 Big5 编码无效) **Traditional** 以繁体中文输出数字(对 Big5 编码无效) **Normal** 以小写形式输出中文数字 以大写形式输出中文数字 **Financial** 以廿输出 20,以卅输出 30,以卌输出 40,以皕输出 200 **Ancient** \zhnumsetup{ style={Traditional,Normal}} 六萬二千零一十二點三 \zhnumber{62012.3}\\ #-\zhnumsetup{style=Ancient} $\t \sum_{i=1}^{n} |z_i|^2$ \zhnumsetup{ style={Traditional,Financial}} 陸萬貳仟零壹拾貳點叁 \zhnumber{62012.3}\\ #-\zhnumsetup{style=Ancient} \zhnumber{21} 7.4 xpinyin 7.5 siunitx 这是一个用于书写标准国际单位制的宏包。 7.5.1 数字 数字输入 使用 d, D 代表 $\times 10^x$,使用 e, E 代表 10^x ,英文的逗号, 和句号. 均可以做为小数点。 12345 \num{12345} \\ 0.123 \num{0.123} \\ 0.1234 $\lceil 0,1234 \rceil$ 0.12345\num{.12345} \\ $\setminus \{3.45d-4\} \setminus \{$ 3.45×10^{-4}

 2.2×10^{-9}

 10^{9}

 -10^{10}

数字列表和范围

```
\numlist{10;30;50;70} \numrange{10}{30} 10, 30, 50 and 70 10 to 30
```

角度

使用英文的分号;分割角度(度分秒),英文的逗号,和句号.均可以做为小数点。

7.5.2 单位

当仅仅输入单位时,使用\si,英文.和~隔开的单位会被视为相邻单位。

很多时候,数字和单位是在一起的,同时输入使用\SI命令。\SI命令结合了\num和\si两者的作用。可以使用可选参数输入一个前置单位,该单位将会排版在数字之前。

注意:在 siunitx 宏包环境外使用 siunitx 宏包的命令需要小心,因为如果其他宏包定义了相同的命令,就会有命名冲突。

\per有多种模式,可以是分数形式。

```
$$ \SI[mode=text]_{1.23}_{J.mol^{-1}.K^{-1}} \ 1.23 \ J \ mol^{-1} \ K^{-1} \ SI[.23e7]_{\candela} \ SI[per-mode=symbol]_{1.99}_{\per} \ SI[per-mode=fraction]_{1,345}_{\coulomb\per} \ 1.345 \ \frac{C}{mol} \ 1.345 \ \frac{C}{mol}
```

带单位的数字列表和 范围

```
\SIlist{10;30;45}{\metre}
\SIrange{10}{30}{\metre}
```

 $10 \,\mathrm{m}$, $30 \,\mathrm{m}$ and $45 \,\mathrm{m}$ $10 \,\mathrm{m}$ to $30 \,\mathrm{m}$

7.5.3 单位命令

7.5.4 在表格中使用单位命令

7.6 pgfplots

这是一个用于 2D/3D 图像绘制的宏包。

7.7 mathtools

这是一个数学宏包,主要填补了AMS-TeX 宏包的不足。

7.7.1 单花括号环境

mathtools 提供了更好的单花括号环境,用法与*A_MS*-T_EX 宏包提供的别无二致,但显示的效果更完美。&用于分列,**奇数列会右对齐,偶数列会左对齐**。

```
\begin{dcases} & \end{dcases}
\begin{dcases*} & \end{dcases*}
\begin{rcases} & \end{rcases}
\begin{rcases*} & \end{rcases*}
\begin{drcases} & \end{drcases}
\begin{drcases} & \end{drcases}
\begin{drcases*} & \end{drcases*}
\begin{cases*} & \end{drcases*}
```

```
\[
\begin{dcases}
E = m c^2 & c \approx 3.00\times 10^{8}\,\
mathrm{m}/\mathrm{s} \\
\int x-3\, dx & \text{Integral is display}
style}
\end{dcases}
\]
```

```
\begin{cases} E = mc^2 & c \approx 3.00 \times 10^8 \,\mathrm{m/s} \\ \int x - 3 \,dx & \text{Integral is display style} \end{cases}
```

带*的环境有个细微的差别,就是第二列会默认用罗马体(直立的)显示,更加方便输入 纯文字。

```
\[
a= \begin{dcases*}
E = m c^2 & c≈3.00×10e8~m/s \\
\int x-3\, dx & Integral is display style
\end{dcases*}
\]
```

$$a = \begin{cases} E = mc^2 & c \approx 3.00 \times 10e8 \text{ m/s} \\ \int x - 3 \, dx & \text{Integral is display style} \end{cases}$$

```
\[
\begin{rcases*}
x^2 & for $x>0$\\
x^3 & else
\end{rcases*} \quad \Rightarrow \cdots
\]
```

$$\begin{cases} x^2 & \text{for } x > 0 \\ x^3 & \text{else} \end{cases} \Rightarrow \cdots$$

7.7.2 更好的矩阵环境

A_MS-T_EX 宏包提供的矩阵默认是每列都居中的,mathtools 宏包提供了一些带星号的矩阵环境,可以手动设置列对齐的方式。

```
\begin{matrix*} [position] \end{matrix*}%无括号
\begin{pmatrix*}[position] \end{pmatrix*}%圆括号
\begin{bmatrix*}[position] \end{bmatrix*}%方括号
\begin{Bmatrix*}[position] \end{Bmatrix*}%花括号
\begin{vmatrix*}[position] \end{vmatrix*}%单竖线,行列式形式
\begin{Vmatrix*}[position] \end{Vmatrix*}%双竖线
```

对比一下两者的排版效果, mathtools 可按需求设置对齐方式, 排版效果要更好。

```
\[\begin{pmatrix*}[r]
-1 & 3 \\
2 & -4
\end{pmatrix*}\]
\[\begin{pmatrix}
-1 & 3 \\
2 & -4
\end{pmatrix}\]
```

$$\begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 3 \\ 2 & -4 \end{pmatrix}$$

mathtools 还提供小矩阵环境,做为行内公式时更加协调,例如: $\begin{bmatrix} a & -b \\ -c & d \end{bmatrix}$ 。其用法与行间矩阵完全一致,带*的可调整对齐方式。

```
\begin{smallmatrix} \end{smallmatrix}
\begin{smallmatrix*} [position] \end{smallmatrix*}
\begin{psmallmatrix} \end{psmallmatrix}
\begin{psmallmatrix*} [position] \end{psmallmatrix*}
\begin{bsmallmatrix} \end{bsmallmatrix}
\begin{bsmallmatrix*} [position] \end{bsmallmatrix*}
\begin{Bsmallmatrix} \end{Bsmallmatrix}
\begin{Bsmallmatrix} \end{Bsmallmatrix}
\begin{bsmallmatrix*} [position] \end{Bsmallmatrix*}
\begin{vsmallmatrix} \end{vsmallmatrix}
\end{vsmallmatri
```

```
\begin{vsmallmatrix*}[position] \end{vsmallmatrix*}
\begin{Vsmallmatrix} \end{Vsmallmatrix}
\begin{Vsmallmatrix*}[position] \end{Vsmallmatrix*}
```

7.7.3 长分式

有时候遇到的分式分子特别长,长到爆的那一种。这时候就需要分子能换行书写了。mathtools 宏包提供两个命令用来书写分子过长的分式。

```
\splitfrac
\splitdfrac
```

第八章 剽窃代码收集区

这个章节主要存放一些从网上剽窃的代码,诸如知乎,stackexchange······我会尽量注明 代码来源,如果读者要用这些代码,也请注明原始来源,以示尊重,谢谢合作。

8.1 LATEX 实现类似中括号的方框

方案 1: ITFX 如何实现类似于中括号的方框?-知乎

```
\documentclass{article}
\usepackage{tcolorbox}
\tcbuselibrary{most}
\usepackage{lipsum}
\newtcolorbox{mybox}{%
    freelance,
    breakable,
frame code={%
    \draw[line width = 2pt]
    ([xshift=0.5cm]frame.north west) --
    (frame.north west) --
    (frame.south west) --
    ([xshift=0.5cm]frame.south west);
    \draw[line width = 2pt]
    ([xshift=-0.5cm]frame.north east) --
    (frame.north east) --
    (frame.south east) --
    ([xshift=-0.5cm]frame.south east);
},
    colback=white
\begin{document}
\lipsum[4]
\begin{mybox}
\lipsum[4]
\end{mybox}
\lipsum[4]
\end{document}
```

效果如图 8.1 所示:

Quisque ullam
corper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum
 dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue.
 Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin,
 felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl.
 Vivamus quis tortor vitae risus porta vehicula.

图 8.1 IATEX 实现类似中括号的方框

方案 2: 如何实现类似于中括号的方框提示框-ETFX 工作室

```
\documentclass[UTF8, openany,twoside]{ctexbook}
```

```
\usepackage[tikz]{bclogo,rotating}
\usepackage{tikz}
\usepackage{mdframed}
\usepackage{geometry}
\usepackage{graphicx}
\usetikzlibrary{calc}
\DeclareGraphicsRule{.mps}{eps}{.mps}{}
\geometry{left=2.5cm, right=2.5cm, top=2.5cm, bottom=2.5cm}
\newenvironment{attention}[1]
{\par\medskip\noindent
   \begin{tikzpicture}
    \node[inner sep = 0pt] (box) \bgroup%
    \begin{minipage}[t]{.99\textwidth}%
    \begin{minipage}{.3\textwidth}
    \centering
    \tikz[scale = 5]\node[scale = 3, rotate = 30]{\bclampe};
    \end{minipage}%
    \begin{minipage}{.65\textwidth}
    \textbf{#1}\par\smallskip
    \surroundwithmdframed
    [topline=false, bottomline=false, leftline=false, rightline=false,
    backgroundcolor=lbcolor]
    {minted}}% former part
{%
    \end{minipage}\hfill
    \end{minipage}%
    \egroup;
    \draw[black,line width=3pt]
    ( \$ (box.north \ east) + (-5pt,3pt) \$ ) -- ( \$ (box.north \ east) + (0,3pt) \$
    ) -- ( $ (box.south east) + (0,-3pt) $ ) -- + (-5pt,0);
    \draw[black,line width=3pt]
    ( \$ (box.north west) + (5pt,3pt) \$ ) -- ( \$ (box.north west) + (0,3pt) \$
    ) -- ( $ (box.south west) + (0,-3pt) $ ) -- + (5pt,0);
    \end{tikzpicture}
    \par\medskip}
\begin{document}
    \begin{attention}{Attention}
        如何用 LaTeX 实现这种方框,要求方框的高度能够随着中间内容的多少自动调
    \end{attention}
\end{document}
```

效果如图 8.2 所示:

8.2 脚注的带圈数字解决方案

来源: TFX 的脚注怎么设置比较合理? -知乎

LATEX 默认的脚注是上标数字,如果对字母或数字进行脚注解释,很容易背误解为「幂」,如 P^1 , 42^2 。关于带圈数字有不少解决方案,目前我用得比较舒服的是重庆大学毕业论文模版

Attention

如何用 L^{AT}EX 实现这种方框,要求方框的高度能够随着中间内容的多少自动调整。

图 8.2 IATEX 实现类似中括号的方框

里的方法^①,优点是带圈数字和\rmfamily字体一致,但是数字不能超过 10。

这里提供的刘海洋的解决方法,数字可以超过10,但是带圈数字字体由ipag.ttf提供,与罗马字族字体不一致。对中文文档,xeCJK将20以内的带圈数字认做西文符号,20以上的带圈数字认做CJK符号,因此需要分别设置字体(或者改变这些符号的类型)。

\usepackage{xunicode-addon}

\newfontfamily\fnmarkfont{ipag.ttf} % 带圈 0 到 20 被认做西文符号\newCJKfontfamily\fnCJKmarkfont{ipag.ttf} % 带圈数字超过 20 是 CJK 符号\renewcommand\thefootnote{{\fnmarkfont\fnCJKmarkfont\textcircled{\arabic{footnote}}}}

效果如图 8.3 所示:

```
^{\scriptsize \textcircled{1}} aa
                                                                       <sup>4</sup> bb
                       <sup>②</sup> bb
                                                                                               <sup>⑤</sup> aa
                                                                                                                       <sup>®</sup> bb
                       ^{\scriptsize \textcircled{1}} aa
                                                                       ^{\scriptsize{\textcircled{1}\!\textcircled{3}}} aa
                                                                                                                       ^{\odot} aa
                                                                                                                                                                      ^{\scriptsize{\textcircled{\tiny{1}}}} aa
® bb
                                               <sup>®</sup> bb
                                                                                              <sup>®</sup> bb
                                                                                                                                              ^{\circ} bb
                                                                                                                                                                                              ® bb
                                               ^{ \mathfrak{D} } aa
                                                                       ^{22} bb
                                                                                                                      <sup>20</sup> bb
                                                                                                                                              aa
                                                                                                                                                                      6 bb
                       <sup>20</sup> bb
                                                                                               <sup>®</sup> aa
^{\mathfrak{J}} aa
                       <sup>29</sup> aa
                                               ^{30} bb
                                                                                               <sup>32</sup> bb
                      <sup>38</sup> bb
```

图 8.3 带圈脚注示意图

8.2.1 自用的旧的 titlesec 设置

```
\titleformat{\chapter}[hang]%
{\centering\color{title}\heiti\zihao{1}}%格式
{}
% {第\,\thechapter 节}%标签
{20pt}%标签和标题间距
{}%
```

^①GitHub - nanmu42/CQUThesis: 重庆大学毕业论文 LaTeX 模板

```
[\vspace{5mm}]%
\titleformat{\section}[hang]%
    {\color{title}\heiti\zihao{-4}}%
    {\thesection.}%
    {5pt}%
    {}%
    []%
\verb|\titleformat{\subsection}[hang]|
    {\color{title}\heiti\zihao{-4}}%
    {\thesubsection.}%
    {5pt}%
    {}%
    []%
\titlespacing{\chapter}{0pt}{0pt}{0pt}
\titlespacing{\section}{Opt}{Opt}{Opt}
\titlespacing{\subsection}{0pt}{0pt}{0pt}
```

参考文献

- [1] 胡伟. LATEX2e 完全学习手册 (第 2 版)[M]. [S.l.]: 清华大学出版社, 2013.
- [2] 刘海洋. LATEX 入门[M]. [S.l.]: 电子工业出版社, 2013.

索引

\multicolumn, 14

\multirow, 14