

Problem Definition

Table of Contents

Data Overview

Model Results

Conclusion

Problem Definition

l. How do we measure **Success?** 🦃

2. Which numerical feature can we base our predictions on?

3. Compare model accuracies (Logistic Regression & Random Forest)

4. What financing option are more successful in predicting the success of a company?

Analysis

Outreach

Status Distribution

- As we can see we have 4.9% of our companies that are our "Successful" / IPO
- 63% that we can classify as "Successful Acquisition" / Acquired
- 31.7% that we can classify as "Failed" / Closed

Major Investor Distribution

new_status	
IPO	49.190000
acquired	34.032930
closed	24.995953

- 34 months between between the first and the last round of funding for acquired
- 25 months between the first and the last round of funding for closed

Distribution of the Major Financing Options

We can observe that most of the total funding comes from Private Equity, then Venture Capital and thirdly Debt Financing

0.0

0.0

0.0

0.0

0.0

0.0

How would we predict success?

0.0

6760000.0

25.766667

Machine Learning

Random Forest

from sklearn.ensemble import RandomForestClassifier

validate_model(train_X, train_y, test_X, test_y, RandomForestClassifier)

This model achieved an accuracy score of: 0.6707

Logistic Regression

- accuracy_score(test_y, pred)
- : 0.6443089430894309


```
rf = RandomForestClassifier(**tune_rf.best_params_)
rf.fit(train_X, train_y)
pred_rf = rf.predict(test_X)
print(f""This model achieved an accuracy score of: {round(accuracy_score(test_y, pred_rf), 4)}""")
This model achieved an accuracy score of: 0.7073
```

5. Check variable importance and interpret

. . .

```
# get importance
importance = rf.feature importances
# summarize feature importance
for i,v in enumerate(importance):
    print('Feature: %0d, Score: %.5f' % (i,v))
# plot feature importance
plt.bar([x for x in range(len(importance))], importance)
plt.show()
Feature: 0, Score: 0.06767
Feature: 1, Score: 0.06615
Feature: 2, Score: 0.24025
Feature: 3, Score: 0.00000
Feature: 4, Score: 0.00347
Feature: 5, Score: 0.00288
Feature: 6, Score: 0.01499
Feature: 7, Score: 0.01904
Feature: 8, Score: 0.00205
Feature: 9, Score: 0.00304
Feature: 10, Score: 0.07196
Feature: 11, Score: 0.01435
Feature: 12, Score: 0.00061
Feature: 13, Score: 0.00000
Feature: 14, Score: 0.34339
Feature: 15, Score: 0.15013
```

```
035
030
025
020
015
010
```

```
[36]: train X.info()
     <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1968 entries, 0 to 1967
     Data columns (total 16 columns):
          Column
                                   Non-Null Count Dtype
           funding rounds
                                   1968 non-null
                                                   float64
           seed
                                   1968 non-null
                                                   float64
                                   1968 non-null
                                                  float64
           venture
          equity crowdfunding
                                   1968 non-null
                                                  float64
          undisclosed
                                                   float64
                                   1968 non-null
          convertible note
                                   1968 non-null
                                                   float64
          debt financing
                                   1968 non-null
                                                  float64
          angel
                                   1968 non-null
                                                   float64
                                   1968 non-null
                                                   float64
          grant
          private equity
                                  1968 non-null
                                                  float64
                                                  float64
          post ipo equity
                                   1968 non-null
       11 post ipo debt
                                   1968 non-null
                                                   float64
       12 secondary market
                                   1968 non-null
                                                   float64
       13 product crowdfunding
                                  1968 non-null
                                                  float64
       14 investor funding total 1968 non-null
                                                  float64
       15 month between funding
                                                   float64
                                   1968 non-null
     dtypes: float64(16)
     memory usage: 246.1 KB
```


Model criticism & Open discussion

EDA	Model develop	ment	Model results.
equited quit.	# Con	mpany milestones	
1-58	5-10	SIF	
1B	1-5	A	Success
0.58			Failure.
o 100M 2001 Total far	on mou	seover, user wi	11 get additional in

EDA	1	Model develo	pment Model results	
Model Sel	ection: D	ropdown of 2-3	user can select different models	
Hyperpar	ameters : :	Input different	hyper-parameters.	
		No. of trees		
		1		
			~	
Train mos	iei and e	valuate.		
			user can tweak the	
			hyper-parameters and	
TPR		ROC Carve	re-train the model until Batisfied with the freedback	
1/				
¥ -	FPR			