CPU SCHEDULER

Dr. Renuka S. Gound

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

CPU Scheduler

□ Short-term scheduler selects from among the processes in ready queue, and allocates the CPU to one of them ☐ Queue may be ordered in various ways ☐ CPU scheduling decisions may take place when a process: 1. Switches from running to waiting state 2. Switches from running to ready state 3. Switches from waiting to ready 4. Terminates ☐ Scheduling under 1 and 4 is nonpreemptive ☐ All other scheduling is **preemptive** ☐ Consider access to shared data ☐ Consider preemption while in kernel mode ☐ Consider interrupts occurring during crucial OS activities

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

- CPU utilization keep the CPU as busy as possible
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for timesharing environment)

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	<u>Burst Time</u>
P_{1}	24
P_2	3
P_3	3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2$$
, P_3 , P_1

• The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time
- SJF is optimal gives minimum average waiting time for a given set of processes
 - The difficulty is knowing the length of the next CPU request
 - Could ask the user

Example of SJF

<u>Process</u>	<u>Burst Time</u>
P_{1}	6
P_2	8
P_3	7
P_4	3

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Determining Length of Next CPU Burst

- Can only estimate the length should be similar to the previous one
 - Then pick process with shortest predicted next CPU burst
- Can be done by using the length of previous CPU bursts, using exponential averaging 1. t_n = actual length of n^{th} CPU burst

 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define: $\tau_{n=1} = \alpha t_n + (1 \alpha)\tau_n$.
- Commonly, α set to $\frac{1}{2}$
- Preemptive version called shortest-remaining-timefirst

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

- $\alpha = 0$
 - $\tau_{n+1} = \tau_n$
 - Recent history does not count
- $\alpha = 1$
 - $\tau_{n+1} = \alpha t_n$
 - Only the actual last CPU burst counts
- If we expand the formula, we get:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\alpha t_{n-1} + ...$$

$$+ (1 - \alpha)^j \alpha t_{n-j} + ...$$

$$+ (1 - \alpha)^{n+1} \tau_0$$

• Since both α and (1 - α) are less than or equal to 1, each successive term has less weight than its predecessor

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	<u>Arrival</u> Time	<u>Burst Time</u>
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

• Preemptive SJF Gantt Chart

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is priority scheduling where priority is the inverse of predicted next CPU burst time
- Problem

 Starvation low priority processes may never execute
- Solution ≡ Aging as time progresses increase the priority of the process

Example of Priority Scheduling

<u>Process</u>	Burst Time	<u>Priority</u>
P_{1}	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are *n* processes in the ready queue and the time quantum is *q*, then each process gets 1/*n* of the CPU time in chunks of at most *q* time units at once. No process waits more than (*n*-1)*q* time units.
- Timer interrupts every quantum to schedule next process
- Performance
 - $q \text{ large} \Rightarrow \text{FIFO}$
 - q small ⇒ q must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 4

<u>Process</u>	<u>Burst Time</u>
P_{1}	24
P_2	3
P_3	3

The Gantt chart is:

- Typically, higher average turnaround than SJF, but better *response*
- q should be large compared to context switch time
- q usually 10ms to 100ms, context switch < 10 usec