## OS02 - Written Exam 2 - Theory of Estimation - Solutions

**Problem 1** ( $\approx$  6 points). The covariance between two jointly distributed (under  $P_{\xi,\eta}$ ) random variables  $\xi$  and  $\eta$  is defined as follows

$$\gamma = \mathbb{E}[(\xi - \mathbb{E}\xi)(\eta - \mathbb{E}\eta)].$$

The independent random vectors

$$\begin{pmatrix} \xi_1 \\ \eta_1 \end{pmatrix}, \begin{pmatrix} \xi_2 \\ \eta_2 \end{pmatrix}, \dots, \begin{pmatrix} \xi_n \\ \eta_n \end{pmatrix}$$

are assumed to come from the distribution  $P_{\xi,\eta}$ . It is also assumed that  $\mathbb{E}|\xi| < \infty$ ,  $\mathbb{E}|\eta| < \infty$  and  $\mathbb{E}|\xi\eta| < \infty$ . The sampling covariance is defined as follows

$$\widehat{\gamma} = \frac{1}{n} \sum_{i=1}^{n} (\xi_i - \overline{\xi})(\eta_i - \overline{\eta}), \quad \overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i, \quad \overline{\eta} = \frac{1}{n} \sum_{i=1}^{n} \eta_i.$$

- 1. Prove that  $\hat{\gamma}$  is a consistent estimator of  $\gamma$  (by using theorems and definitions).
- **1. Solution :** First of all, let us re-write the theoretical covariance  $\gamma$  and sampling covariance  $\widehat{\gamma}$  in the following manner

$$\gamma = \mathbb{E}[(\xi - \mathbb{E}\xi)(\eta - \mathbb{E}\eta)] = \mathbb{E}(\xi\eta) - \mathbb{E}(\xi) \cdot \mathbb{E}(\eta),$$

$$\widehat{\gamma} = \frac{1}{n} \sum_{i=1}^{n} (\xi_i - \overline{\xi})(\eta_i - \overline{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \xi_i \eta_i - \overline{\xi} \cdot \overline{\eta} = \frac{1}{n} \sum_{i=1}^{n} \xi_i \eta_i - \frac{1}{n} \sum_{i=1}^{n} \xi_i \cdot \frac{1}{n} \sum_{i=1}^{n} \eta_i.$$

Second, as it follows from the law of large numbers (assuming that  $\mathbb{E}|\xi| < \infty$ ,  $\mathbb{E}|\eta| < \infty$  and  $\mathbb{E}|\xi\eta| < \infty$ ), if  $n \to \infty$ , then

$$\frac{1}{n}\sum_{i=1}^n \xi_i \underset{\mathbb{P}}{\to} \mathbb{E}(\xi), \quad \frac{1}{n}\sum_{i=1}^n \eta_i \underset{\mathbb{P}}{\to} \mathbb{E}(\eta), \text{ and } \frac{1}{n}\sum_{i=1}^n \xi_i \eta_i \underset{\mathbb{P}}{\to} \mathbb{E}(\xi \cdot \eta).$$

Third, let us define the following continuous real function f of three real variables :

$$(x, y, z) \mapsto f(x, y, z) = x - y \cdot z.$$

Finally, by using the continuity theorem, we get (when  $n \to \infty$ )

$$\widehat{\gamma} = \frac{1}{n} \sum_{i=1}^{n} (\xi_i - \overline{\xi})(\eta_i - \overline{\eta}) = f\left(\frac{1}{n} \sum_{i=1}^{n} \xi_i \eta_i, \frac{1}{n} \sum_{i=1}^{n} \xi_i, \frac{1}{n} \sum_{i=1}^{n} \eta_i\right) \xrightarrow{\mathbb{P}} f\left(\mathbb{E}(\xi \eta), \mathbb{E}(\xi), \mathbb{E}(\eta)\right) = \gamma.$$

Hence, as it follows from the definition,  $\widehat{\gamma}$  is a consistent estimator of  $\gamma$ .



FIGURE 1 – Two different weighing procedures.

**Problem 2** ( $\approx$  7 points). Let us consider three objects A, B and C. The true masses of these objects are denoted by  $\alpha$ ,  $\beta$  and  $\gamma$ , respectively. We have a weighing scale (balance), see Figure 1. We wish to compare two different weighing procedures to estimate the unknown masses  $\alpha$ ,  $\beta$  and  $\gamma$ :

- 1. individual weighing: we repeat this procedure 3 times (for A, B and C). Only one object (A or B or C) is installed on the balance at once.
- 2. pair weighing : we repeat this procedure 3 times (for A+B, B+C and A+C). Two objects (A+B or B+C or A+C) are installed on the balance at once.

These procedures are illustrated in Figure 1. Let us consider the following additive measurement model of balance:

$$y = x + \xi, \quad \xi \sim \mathcal{N}(0, \sigma^2),$$

where x is the true mass of object, y is the measured (estimated) value of x and  $\xi$  is measurement noise. It is assumed that the variance of noise  $\sigma^2$  is constant (and independent of the true mass).

- 1. Write down the measurement models for both weighing procedures.
- 2. Find the estimators  $\widehat{\alpha}$ ,  $\widehat{\beta}$  and  $\widehat{\gamma}$  for the unknown masses  $\alpha$ ,  $\beta$  and  $\gamma$ , respectively, by the method of moments for both weighing procedures. The first order moment can be used (see the hint on page 3).
- 3. Calculate the variances of the estimators  $\widehat{\alpha}$ ,  $\widehat{\beta}$  and  $\widehat{\gamma}$  for each procedure.
- 4. Compare the variances of the first procedure with the variances of the second procedure. Which procedure is more precise (i.e. which variances are smaller)?

## **Solution:**

**1.** (**1 point**) The measurement model of procedure 1 :

$$\begin{cases} y_1 = \alpha + \xi_1 \\ y_2 = \beta + \xi_2 , \xi_i \sim \mathcal{N}(0, \sigma^2). \\ y_3 = \gamma + \xi_3 \end{cases}$$

The measurement model of procedure 2:

$$\begin{cases} y_1 = \alpha + \beta + \xi_1 \\ y_2 = \beta + \gamma + \xi_2 , & \xi_i \sim \mathcal{N}(0, \sigma^2). \\ y_3 = \alpha + \gamma + \xi_3 \end{cases}$$

**2.** (2.5 points) The method of moments estimator for procedure 1:

$$\begin{cases}
\mathbb{E}(y_1) = \alpha \\
\mathbb{E}(y_2) = \beta \\
\mathbb{E}(y_3) = \gamma
\end{cases}
\Rightarrow
\begin{cases}
\widehat{\alpha} = y_1 \\
\widehat{\beta} = y_2 \\
\widehat{\gamma} = y_3
\end{cases}$$

The method of moments estimator for procedure 2:

$$\begin{cases}
\mathbb{E}(y_1) = \alpha + \beta \\
\mathbb{E}(y_2) = \beta + \gamma
\end{cases}
\Rightarrow
\begin{cases}
\widehat{\alpha} + \widehat{\beta} = y_1 \\
\widehat{\beta} + \widehat{\gamma} = y_2 \\
\widehat{\alpha} + \widehat{\gamma} = y_3
\end{cases}$$

or

$$\widehat{\theta} = B^{-1}Y \iff \begin{pmatrix} \widehat{\alpha} \\ \widehat{\beta} \\ \widehat{\gamma} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

**3.** (2.5 points) The variances of the estimators for procedure 1 are :

$$\begin{cases} \widehat{\alpha} = \alpha + \xi_1 \\ \widehat{\beta} = \beta + \xi_2 , \xi_i \sim \mathcal{N}(0, \sigma^2) \Rightarrow \operatorname{var}(\widehat{\alpha}) = \operatorname{var}(\widehat{\beta}) = \operatorname{var}(\widehat{\gamma}) = \sigma^2. \\ \widehat{\gamma} = \gamma + \xi_3 \end{cases}$$

The expectation of the estimator for procedure 2 is

$$\mathbb{E}\left(\widehat{\theta}\right) = \mathbb{E}\left|B^{-1}\left(B\theta + \xi\right)\right] = \theta + \mathbb{E}\left[B^{-1}\xi\right] = \theta$$

and the variance-covariance matrix of the estimator is

$$cov\left(\widehat{\theta}\right) = \mathbb{E}\left[\left(\widehat{\theta} - \theta\right)\left(\widehat{\theta} - \theta\right)^{T}\right] = \mathbb{E}\left[B^{-1}\xi\xi^{T}B^{-T}\right] = \sigma^{2}B^{-1}B^{-T} \\
= \sigma^{2}\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \sigma^{2}\begin{pmatrix} \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \end{pmatrix}.$$

Hence, the variances of the estimators for procedure 2 are

$$\operatorname{var}\left(\widehat{\alpha}\right) = \operatorname{var}\left(\widehat{\beta}\right) = \operatorname{var}\left(\widehat{\gamma}\right) = \frac{3\sigma^2}{4}.$$

UTN - 3 - 13 April 2013

**4.** (1 point) The variances of procedure 2 are smaller :  $\frac{3\sigma^2}{4} < \sigma^2$ .

**Problem 3** ( $\approx$  7 points). The independent observations  $(\xi_1, \ldots, \xi_n)$  are assumed to come from the Poisson distribution  $\Pi(\lambda)$ , where  $\lambda > 0$  is a parameter. But we wish to estimate another parameter  $\theta$ , which is defined as the following function of  $\lambda$ :

$$\theta = \theta(\lambda) = \lambda e^{-\lambda},$$

by using the same observations  $(\xi_1, \dots, \xi_n)$ . Let us consider the two following heuristic estimators :

$$\widehat{\theta}_1 = \overline{\xi}e^{-\overline{\xi}}, \quad \text{where} \quad \overline{\xi} = \frac{1}{n}\sum_{i=1}^n \xi_i,$$

$$\widehat{\theta}_2 = \frac{1}{n} \sum_{j=1}^n \mathbb{I}_{\{\xi_j = 1\}}, \text{ where } \mathbb{I}_{\{\xi_j = 1\}} = \begin{cases} 1 & \text{si} & \xi_j = 1 \\ 0 & \text{si} & \xi_j \neq 1 \end{cases} \text{ is the indicator function of the event } \{\xi_j = 1\}.$$

- 1. Is the estimator  $\widehat{\theta}_1$  biased? If the answer is "yes", then calculate the mean error  $\lambda \to b_1(\lambda)$ . Is the estimator  $\widehat{\theta}_1$  asymptotically biased?
- 2. Is the estimator  $\widehat{\theta}_2$  biased? If the answer is "yes", then calculate the mean error  $\lambda \to b_2(\lambda)$ . Is the estimator  $\widehat{\theta}_2$  asymptotically biased?
- 3. Can  $\widehat{\theta}_2$  be interpreted as a method of moments estimator? If the answer is "yes", how to choose the function  $x \mapsto g(x)$ ?
- 4. Are the estimators  $\widehat{\theta}_1$  and  $\widehat{\theta}_2$  consistent?

**Hint.** If  $\xi_i \sim \Pi(\lambda)$ , then  $\sum_{i=1}^n \xi_i \sim \Pi(n\lambda)$ .

Hint.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 for  $|x| < \infty$ .

## **Solution:**

**1.** (3 points) Calculate the expectation of  $\hat{\theta}_1 = \overline{\xi}e^{-\overline{\xi}}$ :

$$\mathbb{E}\left(\widehat{\theta}_{1}\right) = \mathbb{E}\left(\overline{\xi}e^{-\overline{\xi}}\right) = \mathbb{E}\left(\frac{\zeta}{n}e^{-\frac{\zeta}{n}}\right),\,$$

where  $\zeta = n\overline{\xi}$ . If  $\xi_i \sim \Pi(\lambda)$ , then  $\zeta = n\overline{\xi} = \sum_{i=1}^n \xi_i \sim \Pi(n\lambda)$ . Therefore (taking into account the hints)

$$\mathbb{E}\left(\widehat{\theta}_{1}\right) = \sum_{k=0}^{\infty} \frac{k}{n} e^{-\frac{k}{n}} \mathbb{P}\left(\zeta = k\right) = \sum_{k=0}^{\infty} \frac{k}{n} e^{-\frac{k}{n}} \frac{(n\lambda)^{k}}{k!} e^{-n\lambda} = \frac{e^{-n\lambda}}{n} \sum_{k=1}^{\infty} \frac{(n\lambda e^{-\frac{1}{n}})^{k}}{(k-1)!}$$

$$= (n\lambda e^{-\frac{1}{n}}) \frac{e^{-n\lambda}}{n} \sum_{k=1=0}^{\infty} \frac{(n\lambda e^{-\frac{1}{n}})^{k-1}}{(k-1)!} = (n\lambda e^{-\frac{1}{n}}) \frac{e^{-n\lambda}}{n} e^{(n\lambda e^{-\frac{1}{n}})} = \lambda e^{n\lambda \left(e^{-\frac{1}{n}} - 1\right) - \frac{1}{n}}.$$

Finally, we get

$$\mathbb{E}\left(\widehat{\theta}_{1}\right) = \lambda e^{n\lambda\left(e^{-\frac{1}{n}}-1\right)-\frac{1}{n}} \neq \theta(\lambda) = \lambda e^{-\lambda},$$

hence, the estimator  $\widehat{\theta}_1$  is biased and the mean error is  $\lambda \to b_1(\lambda) = \lambda e^{n\lambda\left(e^{-\frac{1}{n}}-1\right)-\frac{1}{n}} - \lambda e^{-\lambda}$ . By using the hint, we get after simple algebra that

$$\lim_{n \to \infty} \lambda e^{n\lambda \left(\sum_{k=0}^{\infty} \frac{(-1/n)^k}{k!} - 1\right) - \frac{1}{n}} = \lambda e^{-\lambda}.$$

It implies that the estimator  $\widehat{\theta}_1$  is asymptotically unbiased.

**2.** (1 point) Calculate the expectation of  $\widehat{\theta}_2 = \frac{1}{n} \sum_{j=1}^n \mathbb{I}_{\{\xi_j = 1\}}$ :

$$\mathbb{E}\left(\widehat{\theta}_{2}\right) = \mathbb{E}\left(\frac{1}{n}\sum_{j=1}^{n}\mathbb{I}_{\{\xi_{j}=1\}}\right) = n\frac{1}{n}\mathbb{E}\left(\mathbb{I}_{\{\xi_{j}=1\}}\right) = \mathbb{P}(\xi_{i}=1) = \lambda e^{-\lambda} = \theta(\lambda).$$

Hence, the estimator  $\widehat{\theta}_2$  is unbiased.

- **3.** (1 point) Yes, the estimator  $\widehat{\theta}_2$  can be interpreted as a method of moments estimator. The function g is defined as follows  $x \mapsto g(x) = \mathbb{I}_{\{x=1\}}$ .
- **4.** (2 points) As it follows from the law of large numbers, if  $n \to \infty$ , then  $\overline{\xi} = \frac{1}{n} \sum_{i=1}^n \xi_i \xrightarrow{\mathbb{P}} \mathbb{E}(\xi) = \lambda$ . Taking into account the continuity theorem with the continuous function  $f(x) = xe^{-x}$ , we get

$$\widehat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n \xi_i e^{-\frac{1}{n} \sum_{i=1}^n \xi_i} \xrightarrow{\mathbb{P}} \lambda e^{-\lambda} = \theta(\lambda).$$

The estimator  $\widehat{\theta}_1$  is consistent.

Let us define a sequence of independent binary random variables  $\mathbb{I}_{\{\xi_1=1\}}, \mathbb{I}_{\{\xi_2=1\}}, \dots, \mathbb{I}_{\{\xi_n=1\}}$  ( $\mathbb{I}_{\{\xi_i=1\}}$  obeys a Bernoulli distribution). As it follows from the law of large numbers, if  $n \to \infty$ , then

$$\widehat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{\xi_i = 1\}} \xrightarrow{\mathbb{P}} \mathbb{E} \left( \mathbb{I}_{\{\xi_i = 1\}} \right) = \lambda e^{-\lambda} = \theta(\lambda).$$

The estimator  $\widehat{\theta}_2$  is consistent.