

FIG. 1a

FIG. 2

09245432-1422000

FIG. 1 b

FIG. 1c

FIG. 3a

FIG. 3b

FIG. 4

FIG. 5

FIG. 6

R	G	R	G
G	B	G	B
R	G	R	G
G	B	G	B

FIG. 7a

Ye	Cy	Ye	Cy
G	Mg	G	Mg
Ye	Cy	Ye	Cy
G	Mg	G	Mg

FIG. 7b

```

If( IN[17]=1 or IN[16]=1) then
    OUT[9..0]=0x3FF;
else
    OUT[9..0]=IN[15..6];
end if;

```

```

If( IN[17]=1 or IN[16]=1 or IN[15]=1) then
    OUT[7..0]=0xFF;
else
    OUT[7..0]=IN[14..7];
end if;

```


FIG. 8

FIG. 10a

FIG. 10b

90837

HORIZONTAL
INTERPOLATION ↓NORMAL MODE

$$g_{12} = \frac{-R_{10} + 2G_{11} + 2R_{12} + 2G_{13} - R_{14}}{4}$$

SIMPLE MODE

$$g_{12} = \frac{G_{11} + G_{13}}{2}$$

FIG. 10d

OUTPUT OF HORIZONTAL INTERPOLATION

901	G02	903
B01	b02	B03

r11	R12	r13
G11	912	G13

921	922	923
B21	B22	B23

VERTICAL
INTERPOLATION ↓

r01	r02	r03
901	G02	903
B01	b02	B03

r11	R12	r13
G11	912	G13
b11	b12	b13

r21	r22	r23
921	922	923
B21	B22	B23

SIMPLE MODE

COLOR ADJUSTMENT
(NORMAL MODE) ↓

r̄01	r̄02	r̄03
901	G02	903
B01	b02	B03

r̄01	R̄02	r̄03
901	G02	903
B01	b02	B03

r11	R12	r13
G11	912	G13
b11	b12	b13

r11	R12	r13
G11	912	G13
B11	b12	B13

r̄21	r̄22	r̄23
921	922	923
B21	B22	B23

r̄21	R̄22	r̄23
921	922	923
B21	B22	B23

FIG. 10e

OUTPUT OF HORIZONTAL INTERPOLATION

Ye ₀₀	cy ₀₀	ye ₀₁	Cy ₀₁	Ye ₀₂	cy ₀₂
G ₁₀	mg ₀₀	9 ₁₁	Mg ₁₁	G ₁₂	mg ₁₂
Ye ₂₀	cy ₂₀	ye ₂₁	Cy ₂₁	Ye ₂₂	cy ₂₂

VERTICAL
INTERPOLATION

Ye ₀₀	cy ₀₀	ye ₀₁	Cy ₀₁	Ye ₀₂	cy ₀₂
9 ₀₀	mg ₀₀	9 ₀₁	mg ₀₁	9 ₀₂	mg ₀₂
ye ₁₀	cy ₁₀	ye ₁₁	cy ₁₁	ye ₁₂	cy ₁₂
G ₁₀	mg ₁₀	9 ₁₁	Mg ₁₁	G ₁₂	mg ₁₂
Ye ₂₀	cy ₂₀	ye ₂₁	Cy ₂₁	Ye ₂₂	cy ₂₂
9 ₂₀	mg ₂₀	9 ₂₁	mg ₂₁	9 ₂₂	mg ₂₂

COLOR ADJUSTMENT
(NORMAL MODE)

ye ₀₀	cy ₀₀	ye ₀₁	cy ₀₁	ye ₀₂	cy ₀₂	ye ₀₀	cy ₀₀	ye ₀₁	Cy ₀₁	Ye ₀₂	cy ₀₂
9 ₀₀	mg ₀₀	9 ₀₁	mg ₀₁	9 ₀₂	mg ₀₂	9 ₀₀	mg ₀₀	9 ₀₁	mg ₀₁	9 ₀₂	mg ₀₂
ye ₁₀	cy ₁₀	ye ₁₁	cy ₁₁	ye ₁₂	cy ₁₂	ye ₁₀	cy ₁₀	ye ₁₁	cy ₁₁	ye ₁₂	cy ₁₂
9 ₁₀	mg ₁₀	9 ₁₁	mg ₁₁	9 ₁₂	mg ₁₂	G ₁₀	mg ₁₀	9 ₁₁	Mg ₁₁	G ₁₂	mg ₁₂
ye ₂₀	cy ₂₀	ye ₂₁	cy ₂₁	ye ₂₂	cy ₂₂	Ye ₂₀	cy ₂₀	ye ₂₁	Cy ₂₁	Ye ₂₂	cy ₂₂
9 ₂₀	mg ₂₀	9 ₂₁	mg ₂₁	9 ₂₂	mg ₂₂	9 ₂₀	mg ₂₀	9 ₂₁	mg ₂₁	9 ₂₂	mg ₂₂

$$ye_{11} = \frac{ye_{01} + ye_{21}}{2}$$

$$cy_{11} = \frac{Cy_{01} + Cy_{21}}{2}$$

SIMPLE MODE

$$a = g_{11} + Mg_{11} - ye_{11} - cy_{11}$$

$$\overline{ye}_{11} = ye_{11} + \frac{a}{4}$$

$$\overline{cy}_{11} = cy_{11} + \frac{a}{4}$$

$$\overline{g}_{11} = g_{11} - \frac{a}{4}$$

$$\overline{Mg}_{11} = Mg_{11} - \frac{a}{4}$$

FIG. 10f

NOISE FILTER = OFF

$$\left\{ \begin{array}{l} L_{121} = R_{12} \\ R_{121} = g_{12} \\ L_{101} = \frac{G_{02} + G_{22}}{2} \\ R_{101} = \frac{b_{02} + b_{22}}{2} \end{array} \right.$$

NOISE FILTER = ON

$$\left\{ \begin{array}{l} L_{121} = R_{12} - g_{12} + \frac{G_{02} + 2g_{12} + G_{22}}{4} \\ R_{121} = \frac{G_{02} + 2g_{12} + G_{22}}{4} \\ L_{101} = \frac{G_{02} + G_{22}}{2} \\ R_{101} = \frac{b_{02} + b_{22}}{2} \end{array} \right.$$

FIG. 10g

FIG. 10h

FIG. 10i

FIG. 10j

15 0637

FIG. 10l

FIG. 11a

OUTPUT
ENHANCEMENT SIGNAL

FIG. 11b

180637

FIG. 12a

20 0637

FIG. 16

FIG. 17

FIG. 18b

03000000000000000000000000000000

220637

FIG. 22

FIG. 23a

FIG. 23b

23 06 37

FIG. 23c

FIG. 24

FIG. 25

FIG. 26

24 of 37

250677

FIG. 28

26 of 37

G(y,x) IS A DATA AT THE POSITION
"VERTICAL=y/HORIZONTAL=x"

FIG. 33a

FIG. 33b

FIG. 34

288637

FIG. 35a

FIG. 356

FIG. 37a

FIG. 37b

FIG. 38

FIG. 39a

FIG. 39b

FIG. 40

32 of 37

FIG. 41a

FIG. 41b

FIG. 42a

FIG. 42b

FIG. 42c

FIG. 42c

FIG. 42d

FIG. 43

FIG. 44

FIG. 45

FIG. 46a

FIG. 46b

FIG. 47

FIG. 49

FIG. 50

FIG. 51a

FIG. 51b

FIG. 48

370837

FIG. 52