

Defect-free quantum disordering: a generalized symmetries perspective

Sal Pace

Summary

- 1. Generalized symmetries \mathcal{S}_{π} exist in ordered phases without defects (e.g., vortices, hedgehogs, etc)
 - \mathcal{S}_{π} is emergent in defect-suppressed ordered phases
- 2. Spontaneously breaking S_{π} drives a phase transition into a nontrivial disordered phase.
- 3. Proposal: defect-free disordered phases classifed by spontaneous symmetry breaking patterns of \mathcal{S}_{π}

S Pace, arXiv:2308.05730

S Pace, C Zhu, A Beaudry, X-G Wen arXiv:2310.08554

Example 1: Defect-free O(3) model

$$S = \frac{1}{2} \int dt \ d^d x \ (\partial_\mu \vec{n})^2 \qquad \vec{n} \cdot \vec{n} = 1 \qquad SO(3) \xrightarrow{\text{ssb}} SO(2)$$

2 + 1D: Defect-free condition

$$\partial_{\mu}J^{\mu} = 0$$

$$J^{\mu} = \frac{\epsilon^{\mu\nu\rho}}{8\pi}\vec{n}\cdot(\partial_{\nu}\vec{n}\times\partial_{\rho}\vec{n})$$

Skyrmion number $N = \int d^2\vec{x} \ J_0 \in \mathbb{Z}$ is conserved

 $\longrightarrow \mathcal{S}_{\pi} = U(1)$ symmetry

Defect-free disordered phase:

 \longrightarrow Spontaneously break \mathcal{S}_{π} : Skyrmion superfluid

3 + 1D: Defect-free condition

$$\partial_{\mu}J^{\mu\nu} = 0 \qquad \qquad J^{\mu\nu} = \frac{\epsilon^{\mu\nu\rho\sigma}}{8\pi} \vec{n} \cdot (\partial_{\rho}\vec{n} \times \partial_{\sigma}\vec{n})$$

"Skyrmion flux" $N(\Sigma) = \int_{\Sigma} \mathrm{d}S \; \hat{n}_k J_{0k} \in \mathbb{Z}$ is conserved

 $\longrightarrow \mathcal{S}_{\pi} = U(1)$ 1-form symmetry

Defect-free disordered phase:

 \longrightarrow Spontaneously break \mathcal{S}_{π} : Coulomb phase

Generalized symmetries 101

	Symmetry Operator	Fusion Rule
Ordinary	d-dimensional	$U_a U_b = U_{a \cdot b}$
<i>p</i> -form	(d-p)-dimensional	unspeci fied
Non-invertible	unspeci fied	$U_a U_b = \sum_{c} N_{ab}^c U_c$

Mathematical description?

Ordinary symmetries \Longrightarrow group GGeneralized symmetries \Longrightarrow higher category $\mathscr C$

Why call these symmetries?

- 1. Symmetry operator U_a obeys $U_aH = HU_a$
- 2. There exist symmetry defects (i.e., twist defects)
- 3. Characterize phases of matter (e.g., SPT and SSB)

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

Example 2: Defect-free nematic

Consider 2 + 1D magnet with SSB pattern:

$$SO(3) \xrightarrow{\mathrm{ssb}} \mathbb{Z}_2 \times \mathbb{Z}_2$$

Phase supports vortices classified by $[Q_8] = \{[1], [-1], [\pm i\sigma^x], [\pm i\sigma^y], [\pm i\sigma^z]\}$

Without vortices, there is a conserved flux whose quantum numbers are $[Q_8]$

- $\longrightarrow \mathcal{S}_{\pi} = \text{Rep}(Q_8)$ 1-form non-invertible symmetry
- \longrightarrow Symmetry operators labeled by representations of Q_8

Defect-free disordered phase:

- \longrightarrow Spontaneously break \mathcal{S}_{π} : Q_8 quantum double phase
- → Nonabelian topological order

The general story

Consider an ordered phase in d + 1D with spontaneous symmetry breaking pattern

$$G \xrightarrow{\mathrm{ssb}} H$$

- Lessons from examples 1 and 2:
- 1. Defect-free condition \Longrightarrow symmetry \mathcal{S}_{π}
- 2. \mathcal{S}_{π} symmetry numbers = defect's topological numbers
- Defects are classified by the homotopy d-type of G/H:
- 1. $\pi_1(G/H), \, \pi_2(G/H), \, \cdots, \, \pi_d(G/H)$
- 2. $\pi_1(G/H)$ action on $\pi_k(G/H)$
- 3. Postnikov k-invariants (special cocycles)
- Homotopy d-type data captured by a d-group $\mathbb{G}_{\pi}^{(d)}$:

$$(G/H)_{< d} \simeq B\mathbb{G}_{\pi}^{(d)}$$

 \implies G/H defects classification = $\mathbb{G}_{\pi}^{(d)}$ Magnetic defects: $\mathcal{S}_{\pi} = d\text{-Rep}(\mathbb{G}_{\pi}^{(d)})$

Schematic phase diagram

I: Ordered phase (defects confined)

II: Trivial disordered phase (defects proliferated)

III: Nontrivial disordered phase (defects deconfined)

 $\Longrightarrow \mathcal{S}_{\pi}$ SSB patterns classify these disordered phases