射频PCB设计规则

1. 概述

本设计规则专为协助客户在无线模块设计过程中涉及到的PCB LAYOUT设计而提出,以下列各项设计规则对照检查PCB设计的合理性,适用于各类无线模块。

2. 射频 (RF) PCB设计总则

- 2.1 严格隔离与良好区分
- 2.2 合理布局
- 2.3 走线满足阻抗要求,且尽可能短
- 2.4 空间满足PCB天线的设计

3. 问题点及解决方法

图1 正确设计案例 图2 缺陷设计案例 0 0 图1(a) 图2(a) 0 0 图2(b) 图1(b)

检查规则	适用范围	正确设计解析及案例对照	缺陷分析		
(1)隔离与区分:与其它易干扰部分分区及隔离,需远 离可能有强电磁辐射区域,如大线圈、变压器、开关器件 (尤其是需频繁开关的器件)等等	模块及 芯片级设计				
(2) PCB板净空空间:天线下方的PCB板需要净空,不能 敷铜;天线附近最好不要有高的金属器件。	模块及 芯片级设计				
(3)根据实际产品的结构及结合规则(1)和规则(2) 选择合适的天线输入输出口位置	模块及 芯片级设计				
(4) 走线阻抗控制: -双面板参考推荐值,四层及多层板则需视叠层结构要求走线阻抗满足50ohm。 -RF走线就短原则	模块	FR4双面板推荐值 (H=板厚,W=线宽, D=走线与敷铜间距): 更多设计可以参考NB-IoT模块应用手册 中的资料	图2 RF线宽未按实际板厚来设计		
(5) 模块至天线端口的天线匹配电路布局: 天线匹配器件C1.C2.L1要求与RF trace在同一路径上,不分支	模块	C1. C2. L1与RF走线经过的路径在同一路 径上	图2(a)的C1和图2(b)的L1和L2在RF走线的分支上,空间允许的情况下不建议采用此设计		
(6) 采用芯片设计中,注意事项如下:	芯片级设计	正确设计参看图1(b)			
-感性器件应防止互感,多个电感放置时需注意放置方向及空间距离,避免电感线圈同向(即电感间最好垂直放置,或平行放置时保持一定的间距) -RF走线一般不宜并行布线,如需并行布线,应在2条线间加一条地线(地线打过孔,确保良好接地) -差分线:走平行线,两条平行线外侧加打了过孔的地线					

-TX/RX走线间需保留一定的空间,且布打了过孔的地线

(7) 过孔: 在RF trace周围的敷铜,需在靠近RF走线附近打上不规则GND过孔	模块及 芯片级设计		图2 过孔远离RF走线甚至周围没有过孔,且数量太 少
(8) 过孔位置:模块与底板上的天线匹配电路不在同一层时需用到过孔,过孔应位于模块的RF焊盘最外侧,不建议位于焊盘中心 (9) RF走线上的过孔:尽量不用过孔,如需用到,则孔径不宜太大,孔径不大于走线宽度,建议过孔设置如右图所示	芯片级设计 模块及	图1 (a) 过孔位于两走线层的首尾 Hole Size 0.3mm Diameter 0.5mm	图2(a)过孔位于焊盘中心,相当于此处的RF线多了一小段分支

(10) 敷铜: RF走线下必须有GND敷铜; 实心敷铜,不建议网格状的敷铜方式	模块及 芯片级设计	图2(a)RF走线下无GND敷铜,且敷铜方式为网格状; 图3(b)RF走线下及周围无GND敷铜。
(11)天线净空区及GND的敷铜方式:任何天线均需严格 遵守规则(2)中的要求		
-陶瓷天线需查看该天线数据手册上对此有无特殊要求,若有,需严格按手册要求来设计PCB;	陶瓷天线	
-弹簧天线, 需严格遵守规则(2)中的要求	弹簧天线	

案例分析一:

- 问题: 1.线宽、线间距不符合;
 - 2. RF周围敷铜不完整;
 - 3. RF走线周围无GND的过孔;
 - 4. 器件位置不合理;
 - 5. RF周围的敷铜存在过小面积,容易产生天线效应

合理设计:正反面

案例分析二:

问题:

- 1. 敷铜间距不合理;
- 2. 器件位置不合理;
- 3. RF走线不可从模块底部引出,需要从模块外面引出;
- 4. 反面无GND的敷铜。

合理设计:

案例分析三:

问题:

- 1. 过孔分布位置不合理;
- 2. RF电路上方有小面积的GND敷铜未增加过孔,容易产生天线效应;
- 3. 采用弹簧天线,空间允许的情况下最好将天线周围的GND远离天线。

合理设计:

