

ESCUELA POLITECNICA NACIONAL DEPARTAMENTO DE FORMACIÓN BASICA **FISICA**

TAREA#

NOMBRE: Fernancio Eliceo GRUPO: GR-11 F. ENTREGA: 18/11/2022
TEMA: Vectores Luille villegómez

- 1. Calcular: modulo, vector unitario, modulo del vector unitario, ángulos directores y gráfica de los siguientes vectores.
 - 1) $\vec{A} = 40 \vec{i}$

Módulo		
	1A1 = V(407)2+(07)2+(0R)2	
	(A) = 40	
Vector Unitario	710- 1107	
	HO	
	$ \overline{V}_{A} = \frac{40\overline{c}}{40} $ $ \overline{V}_{A} = 1\overline{c} $	
Módulo del vector unitario	$ \vec{U}_a = \sqrt{12^{-1}}$	
	1	
	T ₄ = 1	
Ángulos directores	COSN - AX Q COS-1(Ay) Y=cos	1 /AZ
	$\beta = 203 \left(\frac{1}{4}\right)$	14
	$Cos \ d = \frac{Ax}{A} \qquad \beta = cos^{-1} \left(\frac{Ay}{A}\right) Y = cos^{-1}$ $d = cos^{-1} \left(\frac{40i}{40}\right) \beta = cos^{-1} \left(\frac{O}{40}\right) Y = cos^{-1}$	(20)
	$[\alpha = 0^{\circ}]$ $[\beta = 90^{\circ}]$ $[r = 90^{\circ}]$	
Gráfica		
Granca	4	-
	30+	
	20-	
All the second	171 = 40 0 = 0	
	10 20 30 40	
	1 10 10 50 40	
		l

$2) \vec{B} = -5j$

Módulo	1B1= V(-5j)2
	1B1 = 53
Vector Unitario	$\vec{V}_A = -5\vec{3}$
	$\vec{V}_A = \frac{-5\vec{J}}{5}$ $\vec{V}_A = -1\vec{J}$
Módulo del vector unitario	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ángulos directores	$\cos \alpha = \frac{Ax}{A}$ $\beta = \cos^{1} \frac{Ay}{4}$ $Y = \cos^{1} \frac{Ay}{4}$ $\alpha = \cos^{1} \frac{Ay}{5}$ $\beta = \cos^{1} \frac{Ay}{5}$ $Y = \cos^{1} \frac{Ay}{5}$ $\alpha = \cos^{1} \frac$
Gráfica	180° -2 -2 -3 -4 -5

3) $\vec{c} = 14\vec{\imath} + 42\vec{\jmath}$

Módulo	10 1 = V(147)2+C423)2 10 1 = 44,27
Vector Unitario	Vc = 147 + 423 +4,27 +4,27 Vc = 0,322 + 0,953

Módulo del vector unitario	Vel = V10,32712+(0,953)27	
Ángulos directores	Gen β = $\frac{42}{44.27}$ Cos d = $\frac{42}{44.27}$ r = $\frac{44.27}{44.27}$ d = cos' (48/44.27) r = $\frac{8}{44.27}$ (48/44.27) γ = $\frac{8}{44.27}$ (48/44.27) (7 = 90)	ως-1 <u>Α</u> 2 ως-1 <u>Ο</u> μη. 27
Gráfica	35 21 21 21 14 14 157° 21 21 21 21 21 21 21 21 21 21 21 21 21	

4) $\vec{D} = 120\vec{\imath} - 80\vec{\jmath}$

Módulo	1D1= V(1208+(-805)2 1D1=144,22
Vector Unitario	$ \overline{V}_{D} = \frac{120\overline{L}}{144.22} + \frac{(-80\overline{J})}{144.22} $ $ \overline{V}_{D=0.83\overline{L}} - 0.55\overline{J} $
Módulo del vector unitario	$ \vec{v_0} = \sqrt{(0.837)^2 + (0.553^2)^2}$ $ \vec{v_0} = 1$
Ángulos directores	$\beta = \frac{(0.5^{-1}(\frac{-80}{144.22}))}{\beta = 12369}$ $\theta = \frac{12369}{80}$ $\theta = \frac{12369}{80}$ $6.31 + 3.69 + 90 = 180$ $\theta = 33.69$

5) $\vec{E} = 10\vec{i} + 25\vec{j} - 15\vec{k}$

Módulo	(IE) = V(10x)2+(253)2+(15x)2
	IEI= 30,82
Vector Unitario	$\vec{V}_{E} = \frac{10\vec{t}}{30.82} + \frac{25\vec{t}}{30.82} + \frac{(-15\vec{k})}{30.82}$
	VE = 0,321 + 0,815 -0,49 1
Módulo del vector unitario	1 NE 1 = √(0,327)2+(0,817)2+ (-0,49K)2
4	$ \vec{\mathcal{T}}_{E} = 1$
Ángulos directores	50-1 ⁵
$\cos \alpha = \frac{10i}{30.82}$	45- 40-
30,82	35-
$d = \cos^4 \frac{10}{30.82}$	30-
(a=71.07)	20-1 20-37
China 1 05	15 90
$\beta = \cos^{-1} \frac{25}{30.52}$	5 5 10-1
(a=35,793 ←	5 10 15 20 25 30 35
	1

$$r = \cos^{-1}\left(\frac{-5}{33,19}\right)$$
 $r = 98.51$