标题 title

作者 author

2023年8月25日

前言

目录

前言		i
第一部分	分 科学的逻辑	1
第一章	合情推理	2
§1.1	回顾:命题逻辑的演绎推理	2
§1.2	合情推理的数学模型	4
	1.2.1 似然,合情推理的原则	4
	1.2.2 似然与概率	6
§1.3	合情推理的归纳强论证	8
	1.3.1 先验与基率谬误	8
	1.3.2 归纳强论证	9
	1.3.3 有效论证和归纳强论证的比较	12
第二章	Markov 链与决策	15
§2.1	Markov 链	15
§2.2	Markov 奖励过程(MRP)	19
§2. 3	Markov 决策过程(MDP)	22
§2.4	隐 Markov 模型(HMM)	26
	2.4.1 评估问题	27
	2.4.2 解释问题	28
第二部分	分 信息与数据	30
第三章	信息论基础	31

§3.1	熵	31	
	3.1.1 概念的导出	31	
	3.1.2 概念与性质	34	
	3.1.3 熵与通信理论	39	
§3.2	Kullback-Leibler 散度	42	
	3.2.1 定义	42	
	3.2.2 两个关于信息的不等式	44	
	3.2.3 在机器学习中的应用:语言生成模型	45	
§3.3	附录: Shannon 定理的证明	46	
§3.4	习题	47	
§3 . 5	章末注记	49	
第四章	Johnson-Lindenstrauss 引理	51	
	机器学习中的数据	51	
§4.2	矩法与集中不等式	52	
	J-L 引理的陈述与证明	56	
§4.4	J-L 引理的应用	60	
§4.5	习题	61	
§4. 6	章末注记	61	
第五章	差分隐私	62	
	数据隐私问题	62	
	差分隐私的定义与性质	64	
	差分隐私的应用	68	
	5.3.1 随机反应算法	68	
	5.3.2 全局灵敏度与 Laplace 机制	69	
	5.3.3 DP 版本 Llyod 算法	71	
§5.4	差分隐私与信息论	72	
	习题	73	
	章末注记	73	
第三部分 决策与优化 7			
第六章	凸分析	75	

§6.1	决策与优化的基本原理	75
	6.1.1 统计决策理论	75
	6.1.2 优化问题	76
	6.1.3 例子: 网格搜索算法	79
§6 . 2	凸函数	81
§6 . 3	凸集	84
	6.3.1 基本定义和性质	84
	6.3.2 分离超平面定理	86
第七章	对偶理论	88
§7 . 1	条件极值与 Lagrange 乘子法	89
§7 . 2	Karush-Kuhn-Tucker 条件	92
§7 . 3	Lagrange 对偶	95
	7.3.1 Lagrange 定理	95
	7.3.2 弱对偶定理,强对偶定理	99
§7 . 4	应用: 支持向量机 (SVM)	103
第八章	不动点理论	106
		106 106
§8.1	Banach 不动点定理	
§8.1 §8.2	Banach 不动点定理	106
\$8.1 \$8.2 \$8.3	Banach 不动点定理	106 109
\$8.1 \$8.2 \$8.3 第四部	Banach 不动点定理 Brouwer 不动点定理 不动点的一般视角 分 逻辑与博弈 1	106 109 112
§8.1 §8.2 §8.3 第四部 第九章	Banach 不动点定理 Brouwer 不动点定理 不动点的一般视角 分 逻辑与博弈 1	106 109 112 113
§8.1 §8.2 §8.3 第四部 第九章 §9.1	Banach 不动点定理 Brouwer 不动点定理 不动点的一般视角 分 逻辑与博弈 1 动态博弈 1 输赢博弈	106 109 112 113
\$8.1 \$8.2 \$8.3 第四部 第九章 \$9.1 \$9.2	Banach 不动点定理 Brouwer 不动点定理 不动点的一般视角 分 逻辑与博弈 动态博弈 输赢博弈 随机博弈 (Markov 博弈)	106 109 112 113 114
\$8.1 \$8.2 \$8.3 第四部 第九章 \$9.1 \$9.2	Banach 不动点定理 Brouwer 不动点定理 不动点的一般视角 分 逻辑与博弈 动态博弈 输赢博弈 随机博弈(Markov 博弈) 静态博弈	106 109 112 113 114 114 119
\$8.1 \$8.2 \$8.3 第四部 第九章 \$9.1 \$9.2	Banach 不动点定理 Brouwer 不动点定理 不动点的一般视角	106 109 112 113 114 114 119
\$8.1 \$8.2 \$8.3 第四部 第九章 \$9.1 \$9.2	Banach 不动点定理 Brouwer 不动点定理 不动点的一般视角	106 109 112 113 114 114 119 125 125

第五部分 认知逻辑	134
第十一章 模态逻辑基础	135
§11.1 模态逻辑的起源	135
11.1.1 三段论	135
11.1.2 非经典逻辑	136
§11.2 模态语言	137
§11.3 Kripke 语义与框架语义	140
§11.4 模态可定义性	145
第十二章 认知逻辑与共同知识	147
§12.1 "泥泞的孩童"谜题	147
§12.2 认知逻辑的基本模型与性质	149
12.2.1 "泥泞的孩童"再回顾	153
12.2.2 Aumann 结构	154
§12.3 对不一致达成一致	155
§12.4 Rubinstein 电子邮件博弈	158
附录 A 线性代数基础	162
§A.1 线性空间	162
§A.2 线性映射	166
§A.3 矩阵	171
§A.4 双线性型与二次型	176
§A.5 带内积的线性空间	180
§A.6 行列式	185
§A.7 算子范数与谱理论	187
附录 B 微分学基础	193
§B.1 点集拓扑	193
B.1.1 度量空间,范数	193
B.1.2 开集与闭集	196
B.1.3 紧集,收敛性,完备性	199
B.1.4 连续映射	202
B.1.5 与实数有关的性质	205
§B.2 一元函数的微分学	207

附录 C	B.3.3 概率统	隐函数定理	220 224
		微分学基本定理	
	B.3.1	微分、偏导数与导数的定义	213
§B.3	多元函	数的微分学	212
	B.2.2	微分学基本定理	210
	B.2.1	导数与微分的定义	207

第一部分

科学的逻辑

第二部分

信息与数据

第三部分 决策与优化 第四部分

逻辑与博弈

第五部分

认知逻辑

附录 B 微分学基础

本书中的积分学使用非常少,并且集中在概率论部分,所以在本附录中我们只讨论微分学,积分学的内容在概率论中简单介绍. 尽管我们的视角非常一般且抽象,我们主要讨论的是 Euclid 空间 \mathbb{R}^n 相关的微分学.

§B.1 点集拓扑

本部分讨论极限、连续、紧致等概念,这些概念是微分学的基础.

B.1.1 度量空间, 范数

实数集 \mathbb{R} 上面的元素可以被看成一些点,这些点之间有距离的概念. 这是 \mathbb{R} 最重要的几个性质之一. 我们把这种性质抽象出来,得到度量空间的概念.

定义 B.1 (度量空间) 设 X 是一个集合, $d: X \times X \to \mathbb{R}$ 是一个函数, 如果满足

- 1. 非负性: 对任意 $x,y \in X$, $d(x,y) \ge 0$, 且 d(x,y) = 0 当且仅当 x = y;
- 2. 对称性: 对任意 $x, y \in X$, d(x, y) = d(y, x);
- 3. 三角不等式: 对任意 $x,y,z \in X$, $d(x,z) \le d(x,y) + d(y,z)$.

则称 (X,d) 是一个度量空间, d 称为度量.

下面给出一些度量的例子,但我们不给出验证.

例B.1 考虑实数集 ℝ,要成为度量空间,可以装备以下度量:

- 平凡的离散度量: $\forall x_1 \neq x_2 d(x_1, x_2) \equiv 1, d(x, x) = 0.$
- $d(x_1, x_2) = |x_1 x_2|$.

考虑向量空间 \mathbb{R}^n , 要成为度量空间, 可以装备以下度量:

- Minkowski 度量 $(L^p \, \underline{\mathfrak{g}} \, \underline{\mathfrak{g}}): d(x_1, x_2) = (\sum_{i=1}^n |x_1^i x_2^i|^p)^{1/p} \, (p \ge 1).$
- Manhattan 度量 $(L^1$ 度量) : $d(x_1, x_2) = \sum_{i=1}^n |x_1^i x_2^i|$.
- Euclid 度量 $(L^2 \, \underline{g} \, \underline{\exists})$: $d(x_1, x_2) = \sqrt{\sum_{i=1}^n |x_1^i x_2^i|^2}$.
- Chebyshev 度量(L^{∞} 度量): $d(x_1, x_2) = \max_i |x_1^i x_2^i| = \lim_{p \to \infty} (\sum_{i=1}^n |x_1^i x_2^i|^p)^{1/p}$.

再看一个抽象的例子. 假设 (X,d_X) 和 (Y,d_Y) 是两个度量空间,我们可以定义 $X\times Y$ 上的度量 d 为

$$d((x_1, y_1), (x_2, y_2)) = d_{\mathbb{R}^2}(0, (d_X(x_1, x_2), d_Y(y_1, y_2))).$$

其中 $d_{\mathbb{R}^2}$ 为 \mathbb{R}^2 上的某个度量. 容易验证这也是一个度量.

上面关于 \mathbb{R}^n 的例子都有一个特点,他们都是用向量 $x_1 - x_2$ 某种意义上的长度定义的,这种长度的概念在数学中有一个统一的抽象,就是范数的概念.

定义 B.2 (范数, 赋范空间) 设 X 是一个向量空间, $\|\cdot\|: X \to \mathbb{R}$ 是一个函数, 如果满足

- 1. 非负性与非退化: 对任意 $x \in X$, $||x|| \ge 0$, 且 ||x|| = 0 当且仅当 x = 0;
- 2. 齐次性: 对任意 $x \in X$, $\lambda \in \mathbb{R}$, $\|\lambda x\| = |\lambda| \|x\|$;
- 3. 三角不等式: 对任意 $x,y \in X$, $||x+y|| \le ||x|| + ||y||$.

则称 $\|\cdot\|$ 是 X 上的一个范数, $(X,\|\cdot\|)$ 称为一个赋范空间.

我们不进行验证,但是指出,例**B.1**中的度量都自然地导出了一个范数,即 ||x|| = d(x,0). 我们可以自然地称呼这些范数,例如 L^p 范数就是 L^p 度量所有诱导的范数. 实际上,很多无穷维线性空间都是先有范数才有空间本身的. 例如, ℓ^p 实际上就是由 L^p 范数划定的:

$$\ell^p = \left\{ x \in \mathbb{C}^\infty : \|x\|_p = \left(\sum_{i=1}^\infty |x_i|^p \right)^{1/p} < \infty \right\}.$$

此外,函数空间 C[a,b] 也可以定义范数,例如

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|.$$

反之,任何一个范数都可以导出一个度量,即 d(x,y) = ||x-y||. 这一结论可以总结为如下性质:

命题 B.1 设 X 是一个向量空间, $\|\cdot\|$ 是 X 上的一个范数,则 $d(x,y) = \|x-y\|$ 是 X 上的一个度量,称之为**范数诱导的度量**. 反之,如果 d 是 X 上的一个度量,则 $\|x\| = d(x,0)$ 是 X 上的一个范数当且仅当对任意 $x,y,z \in X$, $\lambda \in \mathbb{R}$,有

- 1. 平移不变性: d(x+z,y+z) = d(x,y);
- 2. 相似性: $d(\lambda x, \lambda y) = |\lambda| d(x, y)$.

尽管都是 \mathbb{R}^n ,但是不同的 p 对应的 L^p 范数大小是不一样的. 他们之间有如下的关系:

命题 B.2 设 1 ≤ p ≤ q ≤ ∞ ,则对任意 x ∈ \mathbb{R}^n ,有

$$||x||_p \geq ||x||_q$$
.

这一命题的证明依赖于 Hölder 不等式,这里不给出细节了. 要想对这一不等式有更好的直观,我们可以考虑 n=2 时 $p=1,2,\infty$ 的极端情形,如下图所示,想象我们要从原点到点 x. 绿色的是 $\|x\|_1=|x_1|+|x_2|$,相当于沿着坐标轴走;而橙色的是 $\|x\|_2=\sqrt{x_1^2+x_2^2}$,相当于沿着对角线走,肯定比沿着坐标轴走要快;紫色的是 $\|x\|_\infty=\max\{|x_1|,|x_2|\}$,相当于挑了较长的那条边走,仿佛虫洞一样,走完了就到了,所以甚至比对角线还快.

然而,从拓扑学的角度来说,这些度量并没有本质的区别,这是因为:

命题 B.3 设1≤p≤q≤ ∞ ,则存在正常数 $c_{p,q}$ 和 $C_{p,q}$,对任意x,y∈ \mathbb{R}^n ,

$$c_{p,q} \|x\|_q \leq \|x\|_p \leq C_{p,q} \|x\|_q$$
.

这一证明也依赖于 Hölder 不等式,所以也略去. 这一命题说明,虽然不同的范数对应的 度量不同,但是他们之间的关系是最多差个常数倍. 我们后面会看到,这一性质表明 L^p 范数定义的所有拓扑性质都是完全相同的. 这一性质也可以一般化:

定义 B.3 (等价范数) 设 X 是一个向量空间, $\|\cdot\|_1$ 和 $\|\cdot\|_2$ 是 X 上的两个范数,如果存在 正常数 c, C,使得对任意 $x \in X$,有

$$c \|x\|_1 \leq \|x\|_2 \leq C \|x\|_1$$

则称 ||·||1 和 ||·||2 是等价的.

B.1.2 开集与闭集

接下来我们进一步进行讨论 \mathbb{R}^n 空间的拓扑性质. 拓扑学是关于开集的学问, 给定所有的开集, 我们就可以研究一个空间的拓扑性质.

在 \mathbb{R} 中,很早就已经有了 开区间的概念,它指的是集合 $(a,b) = \{x \in \mathbb{R} : a < x < b\}$. 实际上, \mathbb{R} 中的开集定义很简单,就是若干开区间的并集。在更一般的拓扑空间中,开集的定义也是如此。我们将视角聚焦在度量空间中。我们可以把开区间 (a,b) 看成一个圆心在 (a+b)/2,半径为 (b-a)/2 的一维开球。从这个视角看,开集的定义是从开球给出的。这样的定义是有一般性的:

定义 **B.4** (开球,开集,拓扑空间)设 (X,d) 是一个度量空间, $x \in X$,r > 0,定义

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

则称 B(x,r) 是以 x 为球心, r 为半径的开球.

集合 $U \subseteq X$ 被称为开集,如果它是若干开球的并集.

X 连同它的所有开集,被称为拓扑空间 1 .

在通常的微积分教科书上,我们会看到另一种开集的定义,即开集是任意一点都可以找到一个开球包含在这个集合中.这两种定义是等价的:

命题 B.4 设 (X,d) 是一个度量空间, $U \subseteq X$,则 U 是开集当且仅当对任意 $x \in U$,存在 r > 0,使得 $B(x,r) \subseteq U$.

¹一般拓扑空间的定义是给出所有开集的集合,并要求他们满足某种封闭性,然而我们这里只关心度量空间,所以不具体给出这些封闭性条件了.

证明 \implies : 设 U 是开集, $x \in U$, $U = \bigcup_{i \in I} B(x_i, r_i)$,则存在 $i \in I$,使得 $x \in B(x_i, r_i)$,取 $r = r_i - d(x, x_i)$,显然 r > 0,并且 $B(x, r) \subseteq B(x_i, r_i) \subseteq U$.

 \iff : 设对任意 $x \in U$,存在 $r_x > 0$,使得 $B(x, r_x) \subseteq U$,则 $U = \bigcup_{x \in U} B(x, r_x)$,是开集.

我们给的定义是一个更拓扑、更整体的定义: 开集就是由基本的开集(开球)经过任意次的并得到的集合,这一定义关心的集合而不是具体的元素. 而等价的定义,我们称之为点定义,是更局部的定义,这一定义关心的是点而不是集合. 今后的定义,我们都尝试用两种方式给出,特别地,拓扑的定义只使用开集而不使用度量.

我们给几个开集的例子:

例 B.2 (范等价拓扑空间) 设 X 是一个线性空间,它上面有两个等价的范数 $\|\cdot\|_1$ 和 $\|\cdot\|_2^2$,则两个赋范空间 $(X,\|\cdot\|_1)$ 和 $(X,\|\cdot\|_2)$ 定义了相同的拓扑空间.因此,在拓扑意义下, \mathbb{R}^n 空间到底装备了哪个 L^p 范数是不重要的,因此对于同一个数学对象(集合、序列、函数)来说,收敛性、完备性以及连续性在 L^p 范数下都是完全一样的.

事实上,设 U 是 $(X, \|\cdot\|_1)$ 中的开集, $x \in U$,则存在 r > 0,使得 $B_1(x,r) \subseteq U$,由范数等价,存在 c,C > 0,使得 $c \|x\|_2 \le \|x\|_1 \le C \|x\|_2$,则 $B_2(x,r/c) \subseteq B_1(x,r) \subseteq U$,所以 U 是 $(X, \|\cdot\|_2)$ 中的开集. 反之亦然.

例 B.3 (乘积拓扑空间) 设 (X_1,d_1) 和 (X_2,d_2) 是两个度量空间,则 $X_1 \times X_2$ 上的开集有两种方式给出:

- 1. 规定 $X_1 \times X_2$ 上的度量 d, 然后利用这个度量给出开集;
- 2. 对任意开集 $U_1 \subseteq X_1$ 和 $U_2 \subseteq X_2$,定义 $U_1 \times U_2$,则 $U_1 \times U_2$ 是 $X_1 \times X_2$ 上的开集,然后利用这些基本的开集给出所有开集.

如果我们把度量d定义为

$$d((x_1, y_1), (x_2, y_2)) = ||(d_1(x_1, x_2), d_2(y_1, y_2))||.$$

其中 $\|\cdot\|$ 是 \mathbb{R}^2 的某个 \mathbb{L}^p 范数,可以证明,这两种方式给出的 $X_1 \times X_2$ 上的拓扑完全相同. 因此,以后出现带有"拓扑空间 $X \times Y$ "这暗示的地方,所指的拓扑空间都是由这两种等价方式给出的. 这一结论可以推广到任意有限个度量空间的乘积.

开集的重要性质是:

 $^{^{2}}$ 注意,对一般空间来说,这样的记号不意味着 L^{1} 或者 L^{2} 范数.

命题 B.5 设 (X,d) 是一个非空度量空间,则

- 1. X和 Ø 是开集;
- 2. 任意个开集的并集是开集;
- 3. 有限个开集的交集是开集.

证明 1. 取 $x \in X$,则 $X = \bigcup_{r>0} B(x,r)$,是开集. Ø 是零个(也是若干个)开集的并集,是开集.

- 2. 设 $\{U_i\}_{i\in I}$ 是一族开集, $U_i = \bigcup_{j\in J_i} B(x_j, r_j)$,显然 $U = \bigcup_{i\in I} U_i = \bigcup_{i\in I, j\in J_i} B(x_j, r_j)$,是开集。
- 3. 设 $U_1, ..., U_n$ 是开集, $U = \bigcap_{i=1}^n U_i$,对任意 $x \in U$,对任意 i = 1, ..., n, $x \in U_i$,由开集的点定义,存在 $r_i > 0$,使得 $B(x, r_i) \subseteq U_i$,取 $r = \min_{i=1}^n r_i$,则 $B(x, r) \subseteq U_i$,所以 U 是开集.

注意,开集只对有限交封闭. 可以看一个简单的例子: $\bigcap_{n=1}^{\infty} (-1/n, 1/n) = \{0\}$,但是 $\{0\}$ 不是开集,因为这个集合不可能包含任何开球.

与开集相对应的是闭集的概念. 闭集的定义是:

定义 **B.5** (闭集) 设 (X,d) 是一个度量空间, $F \subseteq X$,如果 $X \setminus F$ 是开集,则称 F 是闭集. 闭集的定义是开集的对偶,所以有如下性质:

命题 B.6 设 (X,d) 是一个非空度量空间,则

- 1. X和 Ø 是闭集;
- 2. 任意个闭集的交集是闭集;
- 3. 有限个闭集的并集是闭集.

需要注意的是,开集似乎可以简单理解为开区间的推广,然而闭集完全不是这样的,闭集是把若干开区间挖出来得到的集合,并不是闭区间的简单推广,所以比起把开区间拼起来会复杂得多,例如 Cantor 集就是一个性质非常奇怪的闭集.

B.1.3 紧集,收敛性,完备性

接下来我们讨论一个更微妙的概念,紧集.紧性与极限、收敛、连续等概念有着密切的联系,然而如何恰当的定义紧性是一个很难的问题.我们这里不讨论历史,只给出历史的答案.简单来说,紧这个词的概念是压缩,将无穷多的东西变成有限个.我们的逻辑推理通常只能处理有限的东西,所以紧性是沟通无穷和有限的桥梁.下面给出紧集的定义:

定义 B.6 (开覆盖,紧集) 设 (X,d) 是一个度量空间, $F \subseteq X$,如果存在一族开集 $\{U_i\}_{i \in I}$,使得 $F \subseteq \bigcup_{i \in I} U_i$,则称 $\{U_i\}_{i \in I}$ 是 F 的一个开覆盖.

如果对任意 F 的开覆盖 $\{U_i\}_{i\in I}$,都存在有限子覆盖 $\{U_{i_j}\}_{j=1}^n$,使得 $F\subseteq\bigcup_{j=1}^n U_{i_j}$,则称 F 是紧集.

这当然是一个非常抽象的定义. 然而,我们没有办法将它还原为更直观的定义了. 例如,即便在最基本的集合 \mathbb{R} 上,紧集的存在性也只能被作为与实数公理³等价的命题存在:

命题 B.7 (Heine-Borel 有限覆盖原理) 设 F 是 \mathbb{R} 的一个闭区间,对任意 F 开覆盖 $\{U_i\}_{i\in I}$,存在有限子覆盖 $\{U_{i_i}\}_{i=1}^n$.

这一原理说明,闭区间是紧集,因而给出了紧集的存在性.

在度量空间上,紧集与收敛性密切相关.为此,我们需要形式地定义度量空间中的收敛概念.我们先使用 $\epsilon-N$ 语言定义:

定义 B.7 (收敛, 极限) 设 (X,d) 是一个度量空间, $\{x_n\}_{n=1}^{\infty}$ 是 X 中的一个序列, $x \in X$,如果对任意 $\epsilon > 0$,存在 $N \in \mathbb{N}$,使得对任意 n > N, $d(x_n,x) < \epsilon$,则称 $\{x_n\}_{n=1}^{\infty}$ 收敛 到 x,记作 $\lim_{n\to\infty} x_n = x$ 或 $x_n \to x$, $n \to \infty$,x 称为 $\{x_n\}_{n=1}^{\infty}$ 的极限.

直观上说,这一定义在刻画一列点越来越接近某个点 x. 如果我们将定义中的 N 取掉,这一直观会更清楚:对任意 $\epsilon > 0$,除掉有限个 n (也就是前 N 个),都有 $x_n \in B(x,\epsilon)$. 所谓越来越接近,指的就是画任意一个球 $B(x,\epsilon)$,除去有限个 x_n ,剩下的所有 x_n 都在这个球里面. 这一想法给出了只基于开集的等价定义:

命题 B.8 设 (X,d) 是一个度量空间, $\{x_n\}_{n=1}^{\infty}$ 是 X 中的一个序列, $x \in X$,则 $\{x_n\}_{n=1}^{\infty}$ 收敛到 x 当且仅当对任意包含 x 的开集 U,存在 $N \in \mathbb{N}$,使得对任意 n > N, $x_n \in U$.

 $^{^3}$ 当然,这样的说法把实数集作为一个数学对象,试图用公理定义出来,而不是从已有的数学对象构造出来(例如 Dedekind 分割).

证明 \implies : 设 $\{x_n\}_{n=1}^{\infty}$ 收敛到 x,U 是包含 x 的开集,由开集的点定义,存在 r > 0,使得 $B(x,r) \subseteq U$,由收敛的定义,存在 $N \in \mathbb{N}$,使得对任意 n > N, $d(x_n,x) < r$,所以 $x_n \in B(x,r) \subseteq U$.

 \iff : 设对任意包含 x 的开集 U,存在 $N \in \mathbb{N}$,使得对任意 n > N, $x_n \in U$,则对任意 $\epsilon > 0$,取 $U = B(x,\epsilon)$,则存在 $N \in \mathbb{N}$,使得对任意 n > N, $x_n \in B(x,\epsilon)$,即 $d(x_n,x) < \epsilon$,所以 $\{x_n\}_{n=1}^{\infty}$ 收敛到 x.

在更一般的拓扑空间中,甚至没有度量的概念,然而,开集定义收敛依然是可以的:这 正是这一命题的意义.

下面给一些收敛的经典例子:

- **例 B.4** 在 \mathbb{R} 中, $\{1/n\}_{n=1}^{\infty}$ 收敛到 0,然而,序列 $\{n\}_{n=1}^{\infty}$ 则不收敛. 这个例子表明,极限未必需要在序列中出现,以及趋于无穷是一种特殊的不收敛.
 - 在 \mathbb{R}^n 和 \mathbb{L}^p 范数下, $\{x_n\}_{n=1}^\infty$ 收敛到 x,当且仅当对任意 $i=1,\ldots,n$, $\{x_n^i\}_{n=1}^\infty$ 收敛到 x^i . 这个例子表明,高维空间中的收敛性可以从每个分量看.
 - 在 C([0,1]) 和 L^{∞} 范数下, $f_n \to f$ 实际上是所谓一致收敛的概念,即对任意 $\epsilon > 0$,存在不依赖 x 的 $N \in \mathbb{N}$,使得对任意 n > N,任意 $x \in [0,1]$, $|f_n(x) f(x)| < \epsilon$. 在这一概念下, $\{x^n\}_{n=1}^{\infty}$ 就不收敛(尽管它逐点收敛).

度量空间中紧集可以完全由收敛性来刻画:

定理 B.1 设 (X,d) 是一个度量空间, $F \subseteq X$,则 F 是紧集当且仅当 F 中的任意序列都有收敛子列.

这一定理的证明并不算困难,但是需要陈述的事实较多,且与本书关联不大,所以这里都略去.

这一定理足以表明紧集这一概念的重要性了,然而,这一定理的成立只需要度量空间,度量空间是一个非常弱的概念,我们关心的 \mathbb{R}^n 空间实际上有更强的性质,这一性质是完备性. 要定义完备性,我们需要 Cauchy 列.

定义 B.8 (Cauchy 列) 设 (X,d) 是一个度量空间, $\{x_n\}_{n=1}^{\infty}$ 是 X 中的一个序列,如果对任意 $\epsilon > 0$,存在 $N \in \mathbb{N}$,使得对任意 m,n > N, $d(x_m,x_n) < \epsilon$,则称 $\{x_n\}_{n=1}^{\infty}$ 是一个 *Cauchy* 列.

Cauchy 列描述了另一种收敛的概念,它要求的是序列中的点越来越相互接近,而不是越来越接近某个点.注意,这一定义没有办法像收敛性一样给一个纯拓扑的定义,所以Cauchy 列的概念是依赖于度量的.自然,收敛的点列是 Cauchy 列:

命题 **B.9** 设 (X,d) 是一个度量空间, $\{x_n\}_{n=1}^{\infty}$ 是 X 中的一个序列,如果 $\{x_n\}_{n=1}^{\infty}$ 收敛,则 $\{x_n\}_{n=1}^{\infty}$ 是 Cauchy 列.

证明 设 $\{x_n\}_{n=1}^{\infty}$ 收敛到 x,则对任意 $\epsilon > 0$,存在 $N \in \mathbb{N}$,使得对任意 n > N, $d(x_n, x) < \epsilon/2$,所以对任意 m, n > N, $d(x_m, x_n) \le d(x_m, x) + d(x, x_n) < \epsilon$,所以 $\{x_n\}_{n=1}^{\infty}$ 是 Cauchy 列.

反过来, Cauchy 列是否一定收敛呢?这一问题的答案是不一定.实际上,在 R上,就如同有限覆盖原理,这件事情的成立只能作为与实数公理等价的命题存在!完备性指的就是 Cauchy 列一定收敛的性质:

定义 **B.9** (完备度量空间) 设 (X,d) 是一个度量空间,如果 X 中的任意 Cauchy 列都收敛,则称 (X,d) 是一个完备度量空间.

我们不加证明地给出完备度量空间的例子:

例 B.5 • 有限维空间的例子: L^p 范数下 \mathbb{R}^n 是完备的.

- 反面的例子: 使用度量 $d(x_1, x_2) = |x_1 x_2|$,则 $X = \mathbb{R} \setminus \{0\}$ 不是完备度量空间. 考虑 $\{x_n = \frac{1}{n} : n \in \mathbb{N}\}$,它是 Cauchy 列,但该点列在 X 中没有极限(极限是 0).
- 无穷维空间的的例子: [0,1] 到自身的连续函数空间 C([0,1]) 在 L^{∞} 范数下是完备的.
- 无穷维空间的另一个例子: ℓ^p 空间是完备的.

最后我们指出,尽管完备度量空间已经足够发展微积分了,但是它和 \mathbb{R}^n 依然有一个本质的区别,这一区别在于紧集. 首先,在有限维情况下,紧集与有界闭集是等价的:

命题 B.10 设 \mathbb{R}^n 装备了 \mathbb{L}^p 范数,设 $F \subseteq \mathbb{R}^n$,那么 F 是紧集当且仅当 F 是有界闭集,有界指的是存在 M > 0,使得对任意 $x \in F$, $\|x\|_p \leq M$.

这一命题的证明依赖于 Heine-Borel 有限覆盖原理,这里就不给出细节了. 然而,在无穷维空间中,这一命题不一定成立:

命题 **B.11** 考虑 ℓ^2 的标准正交基 $\{e_i\}_{i=1}^{\infty}$,考虑单位球面 $E = \{x \in \ell^2 : ||x||_2 = 1\}$,则 E 是有界闭集,但不是紧集.

证明 因为对任意 $x \in E$,||x|| = 1,所以 $||x||_2 \le 1$,所以 E 是有界集. 取 $x \in \ell^2 \setminus E$. 如果 ||x|| = r < 1,那么开球 $B(x, (1-r)/2) \subseteq B(0,1) \subseteq \ell^2 \setminus E$;对于 r > 1 可以同理讨论. 这就证明了 E 是闭集. 最后证明 E 不是紧集. 考虑序列 $\{e_i\}_{i=1}^{\infty}$,它是 E 中的序列,因为对任意不同的 m, n, $||e_m - e_n|| = 2$,因此 $\{e_i\}$ 的任何子列都不是 Cauchy 列,根据命题 B.9 的逆否命题, $\{e_i\}$ 没有任何收敛子列,因而根据定理 B.1,E 不是紧集.

B.1.4 连续映射

接下来我们讨论两个拓扑空间之间的映射. 我们说过, 拓扑空间完全由开集给出, 所以某种程度保持拓扑性质的映射也会与开集有关系. 对于微积分来说, 连续性是其中最重要的一种. 遵循先前的惯例, 我们先给出更像微积分的 δ - ϵ 语言的点定义, 然后再给出更像拓扑的定义.

 δ - ϵ 语言的定义实际上给出了映射的极限这一概念:

定义 B.10 (映射的极限) 设 (X, d_X) 和 (Y, d_Y) 是两个度量空间, $f: X \to Y$ 是一个映射, $x_0 \in X, y \in Y$,如果对任意 $\epsilon > 0$,存在 $\delta > 0$,使得对任意 $x \in X$,如果 $0 < d_X(x, x_0) < \delta$,则 $d_Y(f(x), y) < \epsilon$,则称 $y \in X$ 在 x_0 处的极限,记作 $\lim_{x \to x_0} f(x) = y$ 或 $f(x) \to y$, $x \to x_0$.

注意到,定义中我们实际上划定了x的范围,即 $x \neq x_0$,或者说去心邻域 $B(x_0, \delta) \setminus \{x_0\}$,这样做允许极限并不等于 $f(x_0)$ 本身.

注. 映射的极限还可以定义自变量趋于无穷、单侧极限以及其他情况,我们后面会使用这些概念,他们的直观含义都是明确的,这里我们不再给出正式定义,我们只给出他们的记号:

- 趋于无穷: $\lim_{x\to\infty} f(x) = y$ 或 $f(x) \to y$, $x \to \infty$;
- 如果定义域是 \mathbb{R} , 还可以定义趋于正、负无穷: $\lim_{x\to +\infty} f(x) = y$ 或 $f(x)\to y$, $x\to +\infty$, $\lim_{x\to -\infty} f(x) = y$ 或 $f(x)\to y$, $x\to -\infty$;
- 单调递增趋于: $x \uparrow x_0$, 单调递减趋于: $x \downarrow x_0$. 这些记号既可以出现在自变量中, 也可以出现在函数值中, 例如我们可以写 $n/(n+1) \uparrow 1$, $n \to \infty$.
- 如果定义域是 \mathbb{R} ,还可以定义单侧极限,从负向趋于某点(左极限): $\lim_{x\uparrow x_0} f(x) = y$ 或 $f(x) \to y$, $x \uparrow x_0$,以及从正向趋于某点(右极限): $\lim_{x\downarrow x_0} f(x) = y$ 或 $f(x) \to y$, $x \downarrow x_0$.

由此,我们可以定义连续映射:

定义 B.11 (连续映射) 设 (X, d_X) 和 (Y, d_Y) 是两个度量空间, $f: X \to Y$ 是一个映射,考虑点 $x \in X$,如果对任意 $y \in Y$,如果 $\lim_{x \to x'} f(x) = y$,则称 f 在 x 处连续,如果 f 在 X 的每一点都连续,则称 f 是连续映射.

直观上说,连续映射是指,x 和 y 足够接近的时候 f(x) 和 f(y) 也足够接近. 然而,数学定义其实是反过来的:想让 f(x) 和 f(y) 足够接近,我们只需要让 x 和 y 足够接近,更精确一些来说,如果我们画了一个 f(x) 的任意小的范围,我们只需要找到一个 x 的范围,使得 x 的范围里的点都被映射到 f(x) 的范围里. 这一定义可以用开集来表述,为此,我们需要先引入一些关于映射的概念.

定义 B.12 (像, 原像) 设 $f: X \to Y$ 是一个映射, $A \subseteq X$, 则 $f(A) = \{f(x): x \in A\}$ 称 为 A 的像, 如果 $B \subseteq Y$, 则 $f^{-1}(B) = \{x \in X: f(x) \in B\}$ 称为 B 的原像.

于是,我们可以用开集表述极限和连续性了:

命题 B.12 设 (X,d_X) 和 (Y,d_Y) 是两个度量空间, $f:X\to Y$ 是一个映射, 则

- 1. $\lim_{x\to x_0} f(x) = y$ 当且仅当对任意包含 y 的开集 $U\subseteq Y$,存在包含 x_0 的开集 $V\subseteq X$,使得 $f(V\setminus \{x_0\})\subseteq U$;
- 2. f 在 $x \in X$ 处连续当且仅当对任意包含 f(x) 的开集 $U \subseteq Y$,存在包含 x 的开集 $V \subseteq X$,使得 $f(V) \subseteq U$.

这一命题的证明非常类似命题 B.4,我们这里就不给出了. 注意,极限的开集定义所用的集合 $V \setminus \{x_0\}$ 也是一个开集,它是 x_0 的去心邻域. 连续映射的定义也可以完全由拓扑给出:

命题 B.13 设 (X,d_X) 和 (Y,d_Y) 是两个度量空间, $f:X\to Y$ 是一个映射,则下列表述等价:

- 1. f 是连续映射;
- 2. 对任意 Y 中的开集 U, 原像 $f^{-1}(U)$ 是 X 中的开集;
- 3. 对任意 Y 中的闭集 F, 原像 $f^{-1}(F)$ 是 X 中的闭集.

利用命题 B.12、命题 B.6 以及开集的定义,很容易证明这一命题,我们就不再证明了.

例 B.6 在不给任何额外定义的时候,我们有一个非常自然的连续函数的例子,那就是**度**量. 设 (X,d) 是一个度量空间,我们证明度量 $d: X \times X \to \mathbb{R}$ 是一个连续函数.

我们利用点连续的定义,证明 d 在每一点都连续. 设 $(x_1,y_1) \in X \times X$. 我们利用命题 B.12 和原始定义的混合版本. 注意到要证明所有包含 $d_0 = d(x_1,y_1)$ 的开集 U 满足条件,根据 U 的构造,只需要证明,对任意 $\epsilon > 0$, $B(d_0,\epsilon)$ 满足条件. 为此,取一个包含 (x_1,y_1) 的开集 $V = B(x_1,\epsilon/2) \times B(y_1,\epsilon/2)$ (关于这个为什么是开集,详细讨论见例 B.3),则对任意 $(x_2,y_2) \in V$,有 $d(x_1,x_2) < \epsilon/2$, $d(y_1,y_2) < \epsilon/2$,所以根据三角不等式,

$$d(x_2, y_2) \le d(x_1, y_1) + d(x_1, x_2) + d(y_1, y_2) < d_0 + \epsilon/2 + \epsilon/2 = d_0 + \epsilon.$$

另一方面,

$$d_0 = d(x_1, y_1) \le d(x_2, y_2) + d(x_1, x_2) + d(y_2, y_1) < d(x_2, y_2) + \epsilon$$

$$\implies d(x_2, y_2) > d_0 - \epsilon.$$

所以, $d(x_2,y_2) \in B(d_0,\epsilon)$,即 $V \subseteq B(d_0,\epsilon)$,所以 d 在 (x_1,y_1) 连续. 因为 (x_1,y_1) 是任意的,所以 d 是连续的.

最后,一个直接的推论是,范数 ||.|| 也是连续函数.

连续性的定义实际分为了两部分,一个是局部的、点的连续性,另一个是整体的、只依赖开集而不依赖具体点的定义.他们也对应了连续不同的性质.我们首先讨论局部连续的性质,以下命题我们都不再给出证明.

首先,极限也可以用收敛性刻画:

命题 B.14 设 (X, d_X) 和 (Y, d_Y) 是两个度量空间, $f: X \to Y$ 是一个映射, $x_0 \in X, y \in Y$, 则下列表述等价:

- 1. $\lim_{x \to x_0} f(x) = y$;
- 2. 对任意 $\{x_n\}_{n=1}^{\infty}$, 如果 $x_n \to x_0$, 则 $f(x_n) \to y$.

利用这一条,很快就可以得到连续的序列版本:

推论 B.1 设 (X, d_X) 和 (Y, d_Y) 是两个度量空间, $f: X \to Y$ 是一个映射,则下列表述等价:

1. f 是连续映射;

2. 对任意 $x \in X$, 对任意 $\{x_n\}_{n=1}^{\infty}$, 如果 $x_n \to x$, 则 $f(x_n) \to f(x)$.

其次,连续对复合是封闭的:

命题 **B.15** 设 (X,d_X) 、 (Y,d_Y) 和 (Z,d_Z) 是三个度量空间, $f:X\to Y$ 在 $x\in X$ 连续, $g:Y\to Z$ 在 $f(x)\in Y$ 连续, 则 $g\circ f:X\to Z$ 在 x 连续.

利用以上两个性质,在赋范空间中,我们得到如下结论:

推论 B.2 设 $(X, \|\cdot\|_X)$ 是赋范空间,则数乘是 $X \to X$ 的连续映射,向量加法是 $X \times X \to X$ 的连续映射.因此,有限维线性空间到有限维线性空间的线性映射都是连续映射.

根据推论 B.1,这一结论也有对应的序列版本,我们就不再列出了.特别要注意的是,这一结论也适用于 \mathbb{R} ,从数乘来看,对于 \mathbb{R} 来说,乘法 $\times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ 和除法 ÷ : $\mathbb{R} \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}$ 也都是连续映射⁴.

最后,连续意味着有界:

命题 B.16 设 (X, d_X) 和 (Y, d_Y) 是两个度量空间, $f: X \to Y$ 在 $x \in X$ 连续, 则在 x 的某个邻域上 f 有界, 即存在 r, M > 0, 对任意 $y \in B(f(x), r)$, 有 $d_Y(f(x), y) \le M$.

接下来我们讨论连续映射整体的性质,这些性质都与紧集有关.首先,连续映射将紧集映射为紧集:

命题 **B.17** 设 (X,d_X) 和 (Y,d_Y) 是两个度量空间, $f:X\to Y$ 是一个连续映射, $F\subseteq X$ 是紧集,则 f(F) 是紧集.

其他性质将在下一节给出.

B.1.5 与实数有关的性质

本节要讨论的性质都限制映射的值是实数,即 $f: X \to \mathbb{R}$. 这样的映射我们称之为实值函数或简单称为函数. \mathbb{R}^n 区别于 \mathbb{R}^n 最大的不同是实数可以比大小而实数向量不行,实数与大小相关的性质有很多,我们列出其中两个与实数公理等价的. 这些性质需要用到界和确界的概念,这一概念将会频繁出现在我们的讨论中,所以这里单独给出:

⁴尽管从证明的逻辑顺序来说,应该是先有了实数的四则运算连续性,然后才有了赋范空间的连续性. 我们这样写是为了避免不必要的冗余,直接从一个一般的视角出发来讨论.

定义 B.13 (上界,上确界,下界,下确界) 设 $A \subseteq \mathbb{R}$,如果存在 $M \in \mathbb{R}$,使得对任意 $a \in A$, $a \le M$,则称 $M \not\in A$ 的一个上界,如果 $M \not\in A$ 的上界,且对任意 M' < M,存在 $a \in A$,使得 a > M',则称 $M \not\in A$ 的一个上确界,记作 sup A.

类似地,如果存在 $M \in \mathbb{R}$,使得对任意 $a \in A$, $a \ge M$,则称 $M \not\in A$ 的一个下界,如果 $M \not\in A$ 的下界,且对任意 M' > M,存在 $a \in A$,使得 a < M',则称 $M \not\in A$ 的一个下确界,记作 inf A.

如果一个集合有上(下)界,则称这个集合上(下)有界,如果它既有上界又有下界,则称这个集合有界.

上确界这个概念,直观上就是在说"最小可能的上界",下确界也有类似的解读.

现在我们就可以阐述这两个实数的性质了. 第一个是说单调有界的序列一定收敛.

命题 B.18 (单调有界原理) 设 $\{x_n\}$ 是一个单调有界的实数列,则 $\{x_n\}$ 收敛.

接下来一个是说有上(下)界的实数集一定有上(下)确界,即最小可能的上(下)界是一个确实存在的实数,这也是一种完备性的体现.

命题 B.19 (确界原理) 设 $A \subseteq \mathbb{R}$, 如果 A 有上界,则 $\sup A$ 存在;如果 A 有下界,则 $\inf A$ 存在.

确界原理给了一种求确界的方式:

命题 B.20 设 $A \subseteq \mathbb{R}$, 如果 A 有上界,则存在一列 $\{a_n\}$,使得 $a_n \in A$,且 $\lim_{n\to\infty} a_n = \sup A$.

证明 设 $M = \sup A$ (由确界原理知 M 存在),对任意 $n \in \mathbb{N}$,由 M - 1/n 不是 A 的上界,存在 $a_n \in A$,使得 $M - 1/n < a_n \le M$. 根据极限的定义易知 $\lim_{n \to \infty} a_n = M$. \square

对于实值函数来说,我们还需要比较在极限情况下两个函数的渐进大小,这就是o 和O符号. 我们先给出这一概念在序列上的定义:

定义 **B.14** (阶,无穷小,等价) 设 $\{x_n\}_{n=1}^{\infty}$ 和 $\{y_n\}_{n=1}^{\infty}$ 是两个序列,如果 $\lim_{n\to\infty}\frac{x_n}{y_n}=0$,则称 $\{x_n\}_{n=1}^{\infty}$ 是 $\{y_n\}_{n=1}^{\infty}$ 的高阶无穷小,记作 $x_n=o(y_n)$;如果存在一个正常数 C 使得除去有限个 n 都有 $|x_n| \leq C|y_n|$,则称 $\{x_n\}_{n=1}^{\infty}$ 的阶不高于 $\{y_n\}_{n=1}^{\infty}$,记作 $x_n=\mathcal{O}(y_n)$.

如果 $x_n = \mathcal{O}(y_n)$ 且 $y_n = \mathcal{O}(x_n)$,那么称 $\{x_n\}_{n=1}^{\infty}$ 和 $\{y_n\}_{n=1}^{\infty}$ 是同阶的. 如果进一步 $\lim_{n\to\infty}\frac{x_n}{y_n}=1$,则称 $\{x_n\}_{n=1}^{\infty}$ 和 $\{y_n\}_{n=1}^{\infty}$ 是等价的,记作 $x_n\sim y_n$.

上述定义可以非常自然迁移到函数上,我们不再赘述.下面是一些例子:

例 **B.7** • $n \to \infty$ 时, $n^2 = o(2^n)$, $n^{1/n} \sim 1$, $n^2 \sim n^2 + \log n$.

- $x \to 0$ 时, $\sin x \sim x$, $1/x = o(1/x^2)$.
- $n \to \infty$ 时, $\sum_{k=1}^{n} \frac{1}{n} \sim \ln n$.

最后,我们回到连续的整体性质上来.首先是 Weierstrass 最值定理:

定理 B.2 (Weierstrass 最值定理) 紧集上的连续函数 $f: F \to \mathbb{R}$ 在该紧集 F 的某个点取最大(最小)值.

然后是介值定理:

定理 B.3 (介值定理) 设 $f:[a,b] \to \mathbb{R}$ 是一个连续函数, f(a) < f(b), 则对任意 $y \in (f(a), f(b))$, 存在 $x \in (a,b)$, 使得 f(x) = y.

实际上,介值定理成立并不需要区间 [a,b],任何一个连通的拓扑空间都可以,但是连通性的表述不是很直观,所以我们这里就不给出了.

§B.2 一元函数的微分学

接下来,我们进入微分学的部分,同样,我们先从最基本的一元函数的情况 (即 $\mathbb{R} \to \mathbb{R}$ 的函数)入手.

B.2.1 导数与微分的定义

从近似的角度来说, 微分或者导数的概念, 本身在描述在某个点函数的线性近似, 因此微分和导数本身也是一个(线性)映射. 在一元函数中, 我们或许无法看出来这一点, 但是在更加一般的微分学中, 这样的观点非常重要. 因此, 即便在一元部分, 我们也尝试将这样的观点引入.

考虑一个函数 $f: \mathbb{R} \to \mathbb{R}$,和点 $x_0 \in \mathbb{R}$,我们希望找到一个线性映射 $df_{x_0}: \mathbb{R} \to \mathbb{R}$,使得 f(x) 在 x_0 附近的行为很接近这线性映射,即

$$f(x) \approx f(x_0) + \mathrm{d}f_{x_0}(x - x_0).$$

更精确来说,我们希望两边的误差是一个关于 $x - x_0$ 的高阶无穷小:

$$f(x) = f(x_0) + df_{x_0}(x - x_0) + o(x - x_0).$$

这一记号的含义可以通过一些变换看出来:

$$df_{x_0}(1) = \frac{f(x) - f(x_0)}{x - x_0} + o(1).$$
(B.1)

注意 $\mathrm{d}f_{x_0}(x) = kx$,所以左边就是 k,而右边是割线的斜率.式 (B.1) 的含义其实就是说 k 就是割线斜率的极限,直观上这就是切线的斜率,这就是导数的几何含义.这一过程可以见下图:

我们将这些讨论整理为如下定义:

定义 B.15 (微分,导数) 设 $f: \mathbb{R} \to \mathbb{R}, \ x_0 \in \mathbb{R}, \$ 如果存在一个线性映射 d $f_{x_0}: \mathbb{R} \to \mathbb{R},$ 使得

$$f(x) = f(x_0) + df_{x_0}(x - x_0) + o(x - x_0),$$

则称 f 在 x_0 处可微或者可导, df_{x_0} 是 f 在 x_0 处的微分. 微分具有形式 $df_{x_0}(x)=kx$,其中 k 称为 f 在 x_0 处的导数,记作 $f'(x_0)$.

如果 f 在 \mathbb{R} 的每一点都可微,则称 f 是可微的或者可导的, $\mathrm{d}f$ 是 f 的微分, f' 是 f 的导(函)数,也记作 $\mathrm{d}f$ 或 \dot{f} .

关于导数的符号也有一些注. 最能体现几何意义的是 $\frac{\mathrm{d}f}{\mathrm{d}x}$,它是由 Leibniz 发明的. 符号 d 的意思就是"微",可以理解为无穷小的变化量,所以导数就是自变量和函数值无穷小变化量的比值. 另一方面,这个符号也可以理解为"切",表示切向量的意思,例如 $\mathrm{d}x$ 就是沿着 x 轴的任意切向量(实际上就是正方向或者负方向),而 $\mathrm{d}y$ 就是相应地沿着 y 轴的切向量. 从这个角度来说, $\frac{\mathrm{d}f}{\mathrm{d}x}$ 就是 x 轴切向量到 y 轴切向量的一个线性映射. 因此,微分其

实就是所谓的**切映射**,即从切向量到切向量的映射.这一视角在更抽象的微分学中是更本质的.

导数的定义也可以用更常见的形式给出:

命题 B.21 设 $f: \mathbb{R} \to \mathbb{R}, x_0 \in \mathbb{R},$ 那么 f 在 x_0 处可微当且仅当如下极限存在:

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}.$$

这个极限就是f在 x_0 处的导数.因而,微分或者说导数是唯一的.

下面我们不加证明地列举导数的一些性质,这些性质自然也导出了微分的性质.

命题 **B.22** 设 $f,g:\mathbb{R}\to\mathbb{R}$ 在 x_0 处可微,则

- f 在 x₀ 处连续;
- $(f+g)'(x_0) = f'(x_0) + g'(x_0);$
- $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$
- 如果 $g(x_0) \neq 0$,则

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2};$$

- 链式法则: 如果 f 在 x_0 处可微, g 在 $f(x_0)$ 处可微, 则 $g \circ f$ 在 x_0 处可微, 且 $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$;
- 如果f存在反函数 f^{-1} ,则 f^{-1} 在 $f(x_0)$ 处可微,且 $(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$.

在 Leibniz 记号下,如果 z = z(y), y = y(x),那么链式法则可以写作

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x}.$$

反函数的导数则可以写作

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^{-1}.$$

我们再次看到这种记号的天才之处,它将复杂的计算简化为了一种直观的形式. 我们指出,链式法则和反函数求导法则在微分下有更加清晰的含义:

命题 B.23 设 $f: \mathbb{R} \to \mathbb{R}$ 在 x_0 处可微, $g: \mathbb{R} \to \mathbb{R}$ 在 $f(x_0)$ 处可微, 则

- dx = id;
- $d(g \circ f)_{x_0} = dg_{f(x_0)} \circ df_{x_0}.$
- 如果f存在反函数 f^{-1} ,则 $d(f^{-1})_{f(x_0)} = (df_{x_0})^{-1}$.

从这个意义上说,微分号 d 相当于把 $\mathbb{R} \to \mathbb{R}$ 的函数变成了另外一个 $\mathbb{R} \to \mathbb{R}$ 的函数 (即切映射),同时保持函数复合运算的单位元(id)、复合和逆元关系. 利用这一性质,我们可以用更加代数的方法研究微分(微分函子),但这超出了本书的范围,我们就不再详细讨论了.

最后,我们讨论高阶导数的概念.高阶微分是一个相当抽象的概念,所以我们这里就不深入讨论了.我们只给出高阶导数的定义:

在 Leibniz 的记号下, n 阶导数可以写作

$$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = \underbrace{\frac{\mathrm{d}}{\mathrm{d} x} \cdots \frac{\mathrm{d}}{\mathrm{d} x}}_{n \uparrow \uparrow} y.$$

从这里我们可以看出,d/dx 这个记号又仿佛是一个算子,它作用在函数上,得到一个新的函数,这个视角结合谱理论,发展出了非常重要的数学理论,成为了量子力学的基础. 当然,这也不在本书的讨论范围之内了.

我们将在集合 $X \perp n$ 次连续可微的函数的集合记作 $C^n(X)$,任意次连续可微的函数的集合记作 $C^\infty(X)$. 在后面更一般的微分学中,X 可以不是 \mathbb{R} 的子集,但我们依然沿用此记号,如果我们讨论的映射取值不在 \mathbb{R} 上,而是在抽象的集合 Y 上,我们将 $C^n(X,Y)$ 记作 n 次连续可微的从 X 到 Y 的映射的集合, $C^\infty(X,Y)$ 记作任意次连续可微的从 X 到 Y 的映射的集合,这些概念的定义将在后面给出。

B.2.2 微分学基本定理

微分学几乎都与极值联系在一起,刻画这些关系的定理就是微分学的基本定理.我们依然只罗列定理,不给出证明.首先我们给出极值的定义.

定义 B.17 (极大值,严格极大值,极小值,严格极小值) 设 $f: X \to \mathbb{R}, x_0 \in X$,如果存在包含 x_0 的开集 U,使得对任意 $x \in U$,有 $f(x) \leq f(x_0)$,则称 $f(x_0)$ 是 f 在 x_0 处的一个极大值点.如果 $f(x) = f(x_0)$ 只在 x_0 处成立,则称 $f(x_0)$ 是 f 在 x_0 处的一个严格极大值, x_0 是 f 的一个严格极大值点.

如果不等式反向,则称 $f(x_0)$ 是 f 在 x_0 处的一个极小值, x_0 是 f 的一个极小值点. 如果 $f(x) = f(x_0)$ 只在 x_0 处成立,则称 $f(x_0)$ 是 f 在 x_0 处的一个严格极小值, x_0 是 f 的一个严格极小值点.

如果 $f(x_0)$ 是 f 在 x_0 处的一个极大(小)值,则称 $f(x_0)$ 是 f 在 x_0 处的一个极值, x_0 是 f 的一个极值点.

首先是 Fermat 引理, 他其实就是极值的一阶必要条件:

引理 B.1 (Fermat 引理) 设 $f: X \to \mathbb{R}, x_0 \in X \not = f$ 的一个极值点,且 f 在 x_0 处可微,则 $f'(x_0) = 0$.

接下来是一系列中值定理,我们这里只给出 Lagrange 中值定理:

定理 B.4 (Lagrange 中值定理) 设 $f:[a,b]\to\mathbb{R}$ 是一个连续函数,且在 (a,b) 内可微,则存在 $\xi\in(a,b)$,使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

这一定理给出了割线斜率和切线斜率的关系,可以用下图来理解:

我们将在后面指出,这一定理只适用于实值函数,假如想对向量值函数使用,需要对其进行适当的修改:

定理 B.5 (Lagrange 有限增量定理) 设 $f:[a,b]\to\mathbb{R}$ 是一个连续函数,且在 (a,b) 内可微,则

$$|f(b) - f(a)| \le |b - a| \sup_{\xi \in (a,b)} |f'(\xi)|.$$

接下来我们讨论高阶导数与极值的关系. 这样的关系是由 Taylor 公式给出的. 我们说过,微分是用线性函数去近似函数的过程,而 Taylor 公式则是用多项式去近似函数的过程. 考虑函数 $f: \mathbb{R} \to \mathbb{R}$,如果 f 在 x_0 处 n 次可微,我们尝试用一个 n 次多项式去近似 (f, \mathbb{R})

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o((x - x_0)^n).$$

容易求出, $a_0 = f(x_0)$, $a_1 = f'(x_0)$, $a_2 = \frac{f''(x_0)}{2}$, $a_3 = \frac{f'''(x_0)}{6}$, \cdots , $a_k = \frac{f^{(k)}(x_0)}{n!}$,因此我们得到了 Taylor 公式:

定理 **B.6** 设 $f: \mathbb{R} \to \mathbb{R}$ 在 x_0 处 n 次可微,则

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$

我们将这个n次多项式称为Taylor展开.

利用高阶导数,我们可以得到极值判定的充分条件:

定理 B.7 设 $f:(a,b)\to\mathbb{R}$ 在 x_0 处 n 次 可微,且 $f'(x_0)=f''(x_0)=\cdots=f^{(n-1)}(x_0)=0$, $f^{(n)}(x_0)\neq 0$,则

- 如果n 为奇数, f 在 x_0 处没有极值;
- 如果n 为偶数, f 在 x_0 处有极值, 且当 $f^{(n)}(x_0) > 0$ 时, f 在 x_0 处有严格极小值, 当 $f^{(n)}(x_0) < 0$ 时, f 在 x_0 处有严格极大值.

§B.3 多元函数的微分学

这一部分讨论 $\mathbb{R}^n \to \mathbb{R}^m$ 的微分学,当 m=1,我们称之为实值函数;当 $m \geq 2$,我们称之为向量值函数. 这一部分需要很多线性代数的知识,请参阅附录 A.

B.3.1 微分、偏导数与导数的定义

沿袭一元函数的情况,我们希望找到一个线性映射 $df_x: \mathbb{R}^n \to \mathbb{R}^m$,使得 f 在 x 附近的行为很接近这个线性映射,而这件事情本身就可以作为微分的定义:

定义 **B.18** (微分) 设 $f: \mathbb{R}^n \to \mathbb{R}^m$, $x \in \mathbb{R}^n$, 如果存在一个线性映射 $\mathrm{d} f_x: \mathbb{R}^n \to \mathbb{R}^m$, 使得

$$f(x+h) = f(x) + df_x h + o(h),$$

则称 f 在 x_0 处可微或者可导, df_{x_0} 是 f 在 x_0 处的微分. 这里 o(h) 理解为一个向量值函数 $\alpha: \mathbb{R}^n \to \mathbb{R}^m$, 它满足 $\lim_{h\to 0} \|\alpha(h)\| / \|h\| = 0^5$.

如果 f 在 \mathbb{R}^n 的每一点都可微,则称 f 是可微的或者可导的, $\mathrm{d}f$ 是 f 的微分.

现在我们来解释这一定义的含义. 微分的定义依然是将一个关于 x 的函数转变到一个关于 h 的线性映射,这个线性映射表明了函数在 x 处的线性近似,而这个线性近似的误差是一个关于 h 的高阶无穷小. 从这个角度来说,微分的定义和一元函数的情况是一样的,只不过这里的误差是一个向量值函数而已. 微分的作用是将

h 被称为切向量(想象一下一维的情况),所有允许 h 的集合记为 $T\mathbb{R}_x^n$,称为在 x 点处的切空间. 当然,此时 h 可以取遍所有 \mathbb{R}^n 的向量,所以其实 $T\mathbb{R}_x^n = \mathbb{R}^n$. 然而在第七章中,我们会看到,当定义域不是整个 \mathbb{R}^n ,而只是某个子集的时候,切空间的定义就变得不平凡了. 于是,从切线的视角来看,微分其实是一个切映射,即从切向量到切向量的映射,这可以用下图来表示:

$$f: \qquad \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$$\downarrow^{d}$$

$$df_x: \qquad T\mathbb{R}^n_x \longrightarrow T\mathbb{R}^m_{f(x)}$$

接下来的问题就是,如何表示线性映射 d f_x ? 我们先从实值函数开始. 考虑 \mathbb{R}^n 的标准正交基 $\{e_i\}_{i=1}^n$,自然,它也是切空间 $T\mathbb{R}_x^n$ 的标准正交基,根据 Riesz 表示定理(定理 A.12),存在一个向量 g,使得

$$\mathrm{d}f_x h = \langle g, h \rangle$$
.

这个向量 g 被称为 f 在 x 处的梯度,记作 $\operatorname{grad} f(x)$. 我们需要进一步将梯度的坐标 $(g_1,\ldots,g_n)^\mathsf{T}$ 求出来. 考虑一个具体的分量 e_i ,根据定义,

$$f(x + te_i) = f(x) + tdf_x(te_i) + o(te_i) = f(x) + g_i t + o(t).$$

 $^{^5}$ 在例 B.2 中我们提到过, L^p 范数下的 \mathbb{R}^n 的拓扑都是一样的. 但是,为了利用内积的性质,之后我们写出符号 $\|\cdot\|$ 的时候,都指 L^2 范数.

因此,

$$g_i = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t}.$$

我们给这样的导数一个名字,称为 f 在 x 对 x_i 的偏导数,记作 $\frac{\partial f}{\partial x_i}(x)$ 或 $\partial_i f(x)$,于是我们得到了梯度的坐标:

$$\left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)^{\mathsf{T}}.$$

沿着这个思路,我们不一定要沿着 e_i 去算导数,我们可以沿着任意单位向量 u 去算,于是我们得到了 f 在 x 处沿着 u 的**方向导数**:

$$\frac{\partial f}{\partial u}(x) = \lim_{t \to 0} \frac{f(x+tu) - f(x)}{t}, \quad ||u|| = 1.$$

有了梯度,我们可以很快算出任意方向导数:

命题 B.24 设 $f: \mathbb{R}^n \to \mathbb{R}$ 在 x 处可微, u 是单位向量, 则

$$\frac{\partial f}{\partial u}(x) = \langle \operatorname{grad} f(x), u \rangle.$$

在微积分中,我们总是假设在标准正交基下进行计算,在这种情况下,我们有更简便的 表示方式,形式上,记

$$\nabla = e_1 \frac{\partial}{\partial x_1} + \dots + e_n \frac{\partial}{\partial x_n},$$

则

$$\operatorname{grad} f(x) = \nabla f(x).$$

符号 ∇ 被称为 **nabla** 算子,它就是标准正交基下梯度的具体表示. 通常,我们会更简单 地将 ∇ 记为 $(\partial_1, \ldots, \partial_n)^\mathsf{T}$.

接下来我们讨论向量值函数微分的表示问题. 选取 \mathbb{R}^m (也就是 $T\mathbb{R}^n_x$) 的标准正交基 e_i ,选取 \mathbb{R}^m (也就是 $T\mathbb{R}^m_{f(x)}$) 的标准正交基 e_i ,则根据附录 A.3的讨论,我们可以用一个 $m \times n$ 的矩阵来表示 $\mathrm{d} f_x$,这个矩阵被称为 f 在 x 处的 Jacobi 矩阵,记作 $J_f(x)$. 下面我们计算 $J_f(x)$ 的具体表示. 假设 f(x) 的坐标是 $(f_1(x),\ldots,f_m(x))^\mathsf{T}$,考虑 $h\in T\mathbb{R}^n_x$,它的坐标是 $(h_1,\ldots,h_n)^\mathsf{T}$, $\mathrm{d} f_x h$ 的坐标应该是

$$\begin{pmatrix} df_{1,x}h \\ \vdots \\ df_{m,x}h \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} \partial_{i}f_{1}(x)h_{i} \\ \vdots \\ \sum_{i=1}^{n} \partial_{i}f_{m}(x)h_{i} \end{pmatrix} = \begin{pmatrix} \partial_{1}f_{1}(x) & \cdots & \partial_{n}f_{1}(x) \\ \vdots & \ddots & \vdots \\ \partial_{1}f_{m}(x) & \cdots & \partial_{n}f_{m}(x) \end{pmatrix} \begin{pmatrix} h_{1} \\ \vdots \\ h_{n} \end{pmatrix}.$$

因此,我们得到了Jacobi 矩阵:

$$J_f(x) = (\partial_j f_i) = \begin{pmatrix} \partial_1 f_1(x) & \cdots & \partial_n f_1(x) \\ \vdots & \ddots & \vdots \\ \partial_1 f_m(x) & \cdots & \partial_n f_m(x) \end{pmatrix}.$$

在 m = n 的特殊情况下, $J_f(x)$ 的行列式被称为 f 在 x 处的 **Jacobi** 行列式,记作

$$\frac{\partial(f_1,\ldots,f_n)}{\partial(x_1,\ldots,x_n)}(x).$$

在例 B.15 中我们会看到,Jacobi 行列式表明了坐标变换时相应体积变化的比率。这一事实使得它在积分学的变量替换中有着核心作用。

总结来说,实值函数的微分可以用行向量 $(\partial_1 f_1(x),\ldots,\partial_n f_1(x))$ 和切向量相乘表示,而向量值函数的微分可以用 Jacobi 矩阵 $J_f(x)$ 和切向量相乘来表示,我们将这些符号统称 f 在 x 处的导数,记为 f'(x) 或 $\frac{\mathrm{d}f}{\mathrm{d}x}(x)$,于是,在坐标表示下,我们可以将微分简单写作 $df_x=f'(x)\mathrm{d}x$,这里我们将 $\mathrm{d}x$ 理解为一个切向量(列向量).

接下来,我们不加证明地列举微分的一些性质:

命题 **B.25** 设 $f,g:\mathbb{R}^n\to\mathbb{R}^m$ 在 x 处可微,则

- f 在 x 处连续;
- 对任意 $\lambda_1, \lambda_2 \in \mathbb{R}$, $d(\lambda_1 f_r + \lambda_2 g_r) = \lambda_1 df_r + \lambda_2 dg_r$;
- 如果m=1, 那么 $d(f \cdot g)_x = g(x)df_x + f(x)dg_x$;
- 如果m=1, 并且 $g(x) \neq 0$, 则

$$d\left(\frac{f}{g}\right)_{x} = \frac{1}{g(x)^{2}} \left(g(x)df_{x} - f(x)dg_{x}\right);$$

- 如果m = n, 那么 dx = id;
- 链式法则: 如果f 在x 处可微,g 在f(x) 处可微,则 $g \circ f$ 在x 处可微,且 $d(g \circ f)_x = dg_{f(x)} \circ df_x$;
- 如果f存在反函数 f^{-1} ,则 f^{-1} 在f(x)处可微,且 $\mathbf{d}(f^{-1})_{f(x)}=(\mathbf{d}f_x)^{-1}$.

同样,最后三条说明了微分保持了复合单位元、复合和逆元关系. 而第二条则说明微分是一个函数空间($\mathbb{R}^n \to \mathbb{R}^m$)到函数空间($T\mathbb{R}^n_x \to T\mathbb{R}^m_{f(x)}$)的线性映射.

链式法则与反函数求导法则可以用导数写出:

$$(f \circ g)'(x) = f'(g(x))g'(x), \quad (f^{-1})'(f(x)) = (f'(x))^{-1}.$$

这里我们都将导数理解为矩阵. 同样,在 Leibniz 记号下,如果 z=z(y), y=y(x),那么链式法则可以写作

 $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x}.$

反函数的导数则可以写作

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^{-1}.$$

他们的含义都非常清晰.

我们看几个重要的例子.

例 B.8 线性映射和线性函数本身的导数也非常简单:

$$\frac{\mathrm{d}(Ax)}{\mathrm{d}x} = A, \quad \frac{\mathrm{d}(b^{\mathsf{T}}x)}{\mathrm{d}x} = b^{\mathsf{T}}.$$

其中 A 是一个矩阵, b 是一个向量.

例 B.9 考虑一个多元实值函数 $g(x) = f(u_1(x), ..., u_k(x))$, 先求 f 对 $u = (u_i)$ 的导数:

$$\frac{\mathrm{d}f}{\mathrm{d}u} = \left(\frac{\partial f}{\partial u_1}, \dots, \frac{\partial f}{\partial u_k}\right).$$

再求 u 对 x 的导数 $du/dx = (u'_1(x), \ldots, u'_k(x))^T$. 根据链式法则,

$$\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x} = \left(\frac{\partial f}{\partial u_1}, \dots, \frac{\partial f}{\partial u_k}\right) \begin{pmatrix} u_1'(x) \\ \vdots \\ u_k'(x) \end{pmatrix} = \sum_{i=1}^k \frac{\partial f}{\partial u_i} u_i'(x).$$

例 B.10 我们来看一个更复杂的例子,这个例子可以表明所谓**求导链**的意义. 考虑函数 $f(x,y,z) = z \exp(x+y)$,其中 z(x,y) = x+y. 我们来求 f 对 x 的偏导数. 首先,我们把变量之间的依赖关系用如下图表示出来,其中 $z \to y$ 表示 z 依赖 y.

我们要求f 对x 的偏导数,首先找到从f 出发可以到达x 的全部路径,即 $f \to z \to x$ 和 $f \to x$,然后将路径上的相邻变量的偏导数相乘再相加,即

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial x} + \frac{\partial f}{\partial x} = \exp(x + y) \cdot 1 + z \exp(x + y).$$

这里两边都出现了 $\partial f/\partial x$,但他们的含义是不同的,左边的 $\partial f/\partial x$ 是 f 对 x 这个变量的偏导数,右边的 $\partial f/\partial x$ 是 f 对第一个位置偏导数,即 $\partial_1 f$,一个不容易引起困惑但不太直观的写法是

$$\frac{\partial f}{\partial x} = \partial_3 f \cdot \partial_1 z + \partial_1 f.$$

这就是著名的**反向传播算法**的一个简单例子,它是神经网络中最重要的算法之一,也是很多神经网络框架优化的重点.

例 B.11 考虑二次型 $f(x) = x^{\mathsf{T}} A x$ (因此假设 A 是对称矩阵),我们来求 f'(x). 为此,考虑一个新函数 $g(x,y) = x^{\mathsf{T}} A y$,则 f(x) = g(x,x),于是

$$f'(x) = g'(x,x) = \partial_1 g(x,x) \cdot \frac{\partial x}{\partial x} + \partial_2 g(x,x) \cdot \frac{\partial x}{\partial x} = \partial_1 g(x,x) + \partial_2 g(x,x).$$

我们来计算 $\partial_1 g(x,x)$, $g(x,y) = (Ay)^\mathsf{T} x$, 因此根据例 B.8, $\partial_1 g(x,y) = (Ay)^\mathsf{T}$, 于 是 $\partial_1 g(x,x) = x^\mathsf{T} A^\mathsf{T}$, 同理 $\partial_2 g(x,x) = x^\mathsf{T} A$, 因此 $f'(x) = x^\mathsf{T} A + x^\mathsf{T} A^\mathsf{T} = (2Ax)^\mathsf{T}$.

注. 在求向量对向量的导数的时候,很容易搞不清楚Jacobi矩阵的行列顺序,一个简单的检查方法是看看导数的维度是否正确,例如我们可以试试这一个矩阵是否可以乘自变量,然后得到因变量的维数,例如例 B.11 中,如果我们求出来导数是 2Ax,那么 2Axx 是一个无意义的量,说明我们的导数求错了,应该要进行转置.矩阵行列如何排列其实不影响导数值,但是在进行链式法则的时候,正确的排列可以机械地写出链式法则的结果,这样才能实现自动求导器.

最后,我们讨论高阶导数的概念. 对于向量值函数来说,高阶导数是一个非常难以理解的概念,所以我们只局限在实值函数讨论这一问题. 考虑一个实值函数 $f: \mathbb{R}^n \to \mathbb{R}$,它对第 i 个坐标的偏导数是 $\partial_i f$,注意到这本身又是一个 \mathbb{R}^n 到 \mathbb{R} 实值函数,我们可以继续讨论它的偏导数性质,于是我们得到了二阶偏导数: $\partial_i(\partial_i f)$,也记为

$$\frac{\partial^2 f}{\partial x_i \partial x_i}, \quad \partial_{j,i} f(x).$$

一般地,我们也可以归纳定义 k 阶偏导数,这里就不再赘述. 关于二阶偏导数一个重要的性质是,一般情况下它可交换求偏导的顺序:

命题 B.26 设 $f: \mathbb{R}^n \to \mathbb{R}$ 具有下列两个二阶偏导数

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(x), \frac{\partial^2 f}{\partial x_i \partial x_j}(x),$$

并且在 x 处他们都连续,则两个偏导数相等.

一个直接的推论是,对于 $C^k(X)$ 的函数来说,求 k 阶偏导数不依赖于求导的顺序。 我们来看一个重要的例子。

例 B.12 设函数 $f \in C^k(\mathbb{R}^n)$, $x,h \in \mathbb{R}^n$, 考虑 g(t) = f(x+th), $t \in [0,1]$, 我们来求 $g^{(m)}(t)$, 其中 $m \leq k$. 先求一阶导数,根据链式法则,

$$g'(t) = \sum_{i=1}^{n} \partial_i f(x+th) h_i.$$

利用 nabla 算子,我们可以写作 $g'(t)=(h^{\mathsf{T}}\nabla)f$. 再求二阶导数,根据命题 B.26 和链式法则,

$$g''(t) = \sum_{i=1}^n h_i \frac{\mathrm{d}}{\mathrm{d}t} (\partial_i f(x+th)) = \sum_{i=1}^n h_i \sum_{j=1}^n \partial_j (\partial_i f(x+th)) h_j = \sum_{i,j=1}^n h_i h_j \partial_{j,i} f(x+th).$$

用 nabla 算子, 我们可以写作 $g''(t) = (h^T \nabla)^2 f(x+th)$. 一般地, 我们有

$$g^{(m)}(t) = \sum_{i_1,\dots,i_m} \partial_{i_m,\dots,i_1} f(x+th) h_{i_1} \cdots h_{i_m} = (h^\mathsf{T} \nabla)^m f(x+th).$$

接下来,我们定义二阶导数⁶. 注意到,一个实值函数的一阶导数可以表示成一个向量值函数,即 grad f,因此,这个向量值函数的导数就是一个矩阵,我们将这个矩阵称为 f 的 **Hessian** 矩阵,记作 $H_f(x)$,实际上,Hessian 矩阵就是二阶导数. 很容易算出,Hessian 矩阵为

$$H_f(x) = \begin{pmatrix} \partial_{1,1} f(x) & \cdots & \partial_{1,n} f(x) \\ \vdots & \ddots & \vdots \\ \partial_{n,1} f(x) & \cdots & \partial_{n,n} f(x) \end{pmatrix}.$$

显然, Hessian 矩阵是一个对称矩阵, 因而可以构成某个二次型. 例 B.12 中二阶导数其实已经暗示了这一点, 我们可以将二阶导数写成一个二次型的形式:

$$g''(t) = h^{\mathsf{T}} H_f(x + th) h.$$

⁶更高阶的导数定义需要更加复杂的线性代数概念,我们这里就不引入了.

B.3.2 微分学基本定理

类似一元函数,我们讨论极值与导数的关系,我们也不给出具体证明.注意,一元函数的极值的定义可以很自然推广到多元函数,这里就不给出了.首先是 Fermat 引理的推广:

引理 B.2 (Fermat 引理) 设 $f: \mathbb{R}^n \to \mathbb{R}$, $x_0 \in \mathbb{R}^n$ 是 f 的一个极值点,且 f 在 x_0 处可微,则 $f'(x_0) = 0$.

接下来是一系列中值定理,我们这里依然只给出 Lagrange 中值定理:

定理 B.8 (Lagrange 中值定理) 设 $f: \mathbb{R}^n \to \mathbb{R}$ 是一个实值函数,在闭区间 $[x,x+h] = \{x+th: t \in [0,1]\}$ 上连续,开区间 $(x,x+h) = \{x+th: t \in (0,1)\}$ 上可微,则存在 $\xi \in (x,x+h)$,使得

$$f(x+h) - f(x) = f'(\xi)h.$$

用参数的形式, ξ 可以写作 $\xi = x + \theta h$, 其中 $\theta \in (0,1)$.

接下来我们讨论向量值函数的中值定理.下面的例子表明,向量值函数上中值定理不一定成立:

例 B.13 考虑匀速圆周运动, $r(t) = (\cos t, \sin t)$,它的速度向量是 $r'(t) = (-\sin t, \cos t)$. 当绕一个周期之后,位置又回到了原点,于是 $r(2\pi) - r(0) = 0$,然而r'(t) 恒不为0,因此不存在 $\xi \in (0,2\pi)$ 使得 $r(2\pi) - r(0) = r'(\xi)(2\pi - 0)$.

然而,中值定理的弱化版本,有限增量定理,是成立的:

定理 B.9 (Lagrange 有限增量定理) 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是一个函数,在闭区间 [x, x+h] 上连续,开区间 (x, x+h) 上可微,则

$$||f(x+h) - f(x)|| \le ||h|| \sup_{\xi \in (x,x+h)} ||f'(\xi)||.$$

注意,这里的 $f'(\xi)$ 可能是一个矩阵,此时 $||f'(\xi)||$ 的含义是矩阵范数,具体的讨论参见 附录 **A.7.**

例 B.14 这个例子探讨如何用二阶导数控制一阶导数的差. 这一部分需要算子范数和谱理论的知识,请参阅附录A.7.

假设 $f \in C^2(X)$, $X \subseteq \mathbb{R}^n$, 那么对任意 $x,y \in X$ 满足 $[x,y] \in X$, 根据定理 B.9和 Hessian 矩阵的定义,我们有

$$\left\|\operatorname{grad} f(x) - \operatorname{grad} f(y)\right\| \le \left\|x - y\right\| \sup_{\xi \in (x,y)} \left\|H_f(\xi)\right\|.$$

我们讨论两种情况,首先假设 X 是紧集. 因为 $H_f(x)$ 连续,根据例 B.6, $\|\cdot\|$ 连续,再根据命题 B.15, $\|H_f(x)\|$ 连续. 由于 X 是紧集,根据 Weierstrass 最值定理(定理 B.2) $\|H_f(x)\|$ 在 X 上取到最大值 M,因此,我们有

$$\|\operatorname{grad} f(x) - \operatorname{grad} f(y)\| \le M \|x - y\|.$$

满足这一条件的函数被称为 Lipschitz 连续,这是一种非常重要的函数类.这一推导表明 紧集上的 C^2 函数的梯度是 Lipschitz 连续的.

在第二种情况下,假设 $X = \mathbb{R}^n$, 我们使用 L^2 范数, 于是根据命题 A.17, 我们有

$$\|\operatorname{grad} f(x) - \operatorname{grad} f(y)\| \le \sup_{\lambda \in \sigma(H_f(z), z \in (x,y))} |\lambda| \cdot \|x - y\|.$$

这里 $\sigma(A)$ 是矩阵A的谱.

因此,只要知道了 Hessian 矩阵的谱, 我们就可以控制梯度的变化, 这一点对于凸优化算法非常重要, 具体讨论见例 8.5.

最后,我们要讨论高阶导数与极值的关系.首先,利用例 B.12 和一元的 Taylor 公式,我们可以得到多元函数的 Taylor 公式:

定理 B.10 (Taylor 展开) 设 $f \in C^k(U)$, $[x,x+h] \subseteq U$, 那么

$$f(x+h) = \sum_{j=0}^{k} \frac{1}{j!} (h^{\mathsf{T}} \nabla)^{j} f(x) + o(\|h\|^{k}).$$

根据这一定理,我们可以得到二阶导数判定极值的充分条件:

定理 B.11 设 $f \in C^2(U)$, U 是开集, $x_0 \in U$ 且 $f'(x_0) = 0$, 则

- 如果 $H_f(x_0)$ 是正定的,则f在 x_0 处取极小值;
- 如果 $H_f(x_0)$ 是负定的,则f在 x_0 处取极大值;
- 如果 $H_f(x_0)$ 不定 (既非半正定也非半负定),则f在 x_0 处不取极值.

B.3.3 隐函数定理

微积分中,还有一类非常重要的问题,那就是解方程,我们看一个非常简单的例子。设 $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + y^2 - 1$,我们来求解方程 f(x,y) = 0,也就是求单位圆的方程. 由于 f 是一个二次型,因此我们可以直接求出它的根:

$$y = \pm \sqrt{1 - x^2}.$$

比如考虑圆周上的点 (0.6,0.8) 的附近,x 就可以把 y 表示出来: $y = \sqrt{1-x^2}$. 如果考虑点 (0.6,-0.8) 的附近,我们也可以写出 $y = -\sqrt{1-x^2}$ 。

总而言之,只要给定圆周上一个点 (x_0, y_0) ,我们就可以找到一个邻域,在这个邻域上确认一个 y 和 x 的函数关系 y = y(x).

更一般地,给定函数方程 F(x,y)=0,它确定了一个平面上的曲线 $C=\{(x,y)\in\mathbb{R}^2: F(x,y)=0\}$ 。任取一点 $(x_0,y_0)\in C$,如果在 (x_0,y_0) 的某个邻域 U 上,我们可以确认一个 y 和 x 的函数关系 y=y(x),使得 $U\cap C$ 中的所有点都可以用这个关系表示,那么我们其实就把一个隐藏在 F(x,y)=0 中的函数 y 解出来了,这就是隐函数的概念.

下面,我们考虑维数更高的情况。设 $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$,F(x,y) = 0,其中 $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ 。任取一点 (x_0,y_0) 满足 $F(x_0,y_0) = 0$,同样,我们希望在 (x_0,y_0) 的某个邻域 U 上,将 F(x,y) = 0 转化为一个等价的函数关系 y = y(x).

首先我们指出,在一般情况下,k = m 的时候讨论才有意义,这可以从线性方程组的理论看出,相关的线性代数理论可以参见附录 A。假如说 F(x,y) = 0 就是一个线性方程组:

$$a_{11}x_1 + \dots + a_{1n}x_n + b_{11}y_1 + \dots + b_{1m}y_m - c_1 = 0,$$

$$\dots$$
(B.2)

$$a_{k1}x_1 + \cdots + a_{kn}x_n + b_{k1}y_1 + \cdots + b_{km}y_m - c_k = 0.$$

我们也可以写成矩阵形式:

$$Ax + By = c$$
.

其中 A 是一个 $k \times n$ 的矩阵, B 是一个 $k \times m$ 的矩阵, C 是一个 k 维向量.

如果 k < m,那么线性映射 $y \mapsto By$ 的秩是 k < m,根据推论 A.1,这个映射的核不是 $\{0\}$,所以对于任意一个满足 $Ax_0 + By_0 = c$ 的 (x_0, y_0) 来说,总可以再加上一个 $y \neq 0$ 使得 $Ax_0 + B(y + y_0) = c$,因此在任何情况下都不会有 y = y(x) 的函数关系.

如果 k > m,那么 F(x,y) = 0 很有可能是空集。比如,下列线性方程组就没有解:

$$x_1 + x_2 = 0,$$

 $x_1 + x_2 = 1.$

对于非线性方程组的情况,如果 F(x,y) 是可微的,那么在一个点的局部函数的性质可以用线性映射近似,于是也应该有 k=m. 这一事实可以简单归结为:要解 m 个未知数(即 y),应该恰好有 m 个方程(即 F(x,y)=0).

我们继续来看线性方程组的情况,即 (B.2),如果 k=m,c=0,B 可逆,很快就可以解出

$$y = -B^{-1}Ax.$$

对于一般的 F,在它的每一个局部,我们都可以用一个线性映射近似,根据微分的偏导数表示,这一线性映射恰好形如

$$\underbrace{\frac{\partial F}{\partial x}}_{A} h_x + \underbrace{\frac{\partial F}{\partial y}}_{B} h_y.$$

这里 h_y 和 h_x 就应该理解为映射在这一点的切向量。于是,假如 $\frac{\partial F}{\partial y}$ 可逆,那么我们就可以解出

$$h_y = -\left(\frac{\partial F}{\partial y}\right)^{-1} \frac{\partial F}{\partial x} h_x.$$

注意,这里的 h_y 和 h_x 不是别的,正是切向量,假设我们可以解出函数关系 y = f(x),根据导数的定义,我们有

$$f'(x) = -\left(\frac{\partial F}{\partial y}\right)^{-1} \frac{\partial F}{\partial x}.$$

确定了导数就可以确定这个函数本身,这就是**隐函数定理**的内容.下面,我们正式给出它的陈述。

定理 **B.12** (隐函数定理) 设 $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, F(x,y) = 0, 其中 $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, 考 虑点 (x_0,y_0) 的邻域 U, 如果:

- $F \in C^p(U; \mathbb{R}^m), p \ge 1;$
- $F(x_0, y_0) = 0$;
- $\frac{\partial F}{\partial y}(x_0, y_0)$ 可逆,

那么存在开球 $B(x_0,r)\subseteq \mathbb{R}^n$,开球 $B(y_0,s)\subseteq \mathbb{R}^m$,以及一个函数 $f\in C^p(B(x_0,r);\mathbb{R}^m)$,使得对任意 $x\in B(x_0,r)$, $y\in B(y_0,s)$,都有

$$F(x,y) = 0 \iff y = f(x).$$

此外, f 的导数可以用F 的偏导数表示:

$$f'(x) = -\left(\frac{\partial F}{\partial y}\right)^{-1} \frac{\partial F}{\partial x}.$$

定理 **B.13** (反函数定理) 设 $f \in C^p(U; \mathbb{R}^n)$, $p \ge 1$, U 是开集, $f'(x_0)$ 可逆, 那么存在 x_0 的邻域 V, 以及 $f(x_0)$ 的邻域 W, 使得 $f: V \to W$ 是一个双射, 且 $f^{-1} \in C^p(W; \mathbb{R}^n)$, 此外, f^{-1} 的导数可以用 f 的导数表示, 对于 $x \in U, y = f(x) \in V$, 我们有

$$f^{-1}(y)' = (f'(x))^{-1}.$$

作为一个注,反函数定理中可逆性的判断可以利用 Jacobi 行列式是否非零来判断。

反函数定理最重要的用途是坐标变换。我们之前的坐标变换都是线性的基到线性的基,然而在微积分中非线性的"基"也非常常用,比如极坐标、球坐标等,这些坐标变换都是非线性的,因此我们需要反函数定理来处理这些坐标变换.我们考虑极坐标的例子。

例 B.15 (极坐标) 考虑一个半平面 $\mathbb{R}_{\geq 0} \times \mathbb{R} = \{(r, \phi) \in \mathbb{R} \times \mathbb{R} : r \geq 0\}$. 我们将它映射 到 \mathbb{R}^2 平面上,映射 f 定义为 $f(r, \phi) = (r\cos\phi, r\sin\phi)$. 我们也可以写得更像坐标变换一些:

$$x = r\cos\phi,$$
$$y = r\sin\phi.$$

这个变换的 Jacobi 行列式是 r,因此除了 r=0 的点,这个变换都是可逆的,于是在 \mathbb{R}^2 的任何局部上,我们都可以用极坐标来表示平面上的点.

我们借着这个例子来看一下Jacobi 行列式的几何意义。上述坐标变换的微分形式是:

$$\begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} \cos \phi & -r \sin \phi \\ \sin \phi & r \cos \phi \end{pmatrix} \begin{pmatrix} dr \\ d\phi \end{pmatrix} = J_f \begin{pmatrix} dr \\ d\phi \end{pmatrix}.$$

这里对诸如 dx 的符号,我们有两种理解方式,一种是把他们理解为切向量,另一种是把他们理解为一段微小位移。不论哪一种,最终结果都是将 f 在局部近似为了一个线性映射。根据附录A.6的讨论,这一线性映射将平行六面体 $\Pi(dr,d\phi)$ 映射为平行六面体 $\Pi(dx,dy)$,而 Jacobi 行列式就是他们有向体积变化的比率。如果我们把 $\Pi(dr,d\phi)$ 的有向体积记为 $\partial(r,\phi)$,那么我们有

$$\frac{\partial(x,y)}{\partial(r,\phi)}=\det J_f.$$

这正是 Jacobi 行列式这一符号的意义。我们还可以用 Leibniz 的记号更加形象地表达这件事情。作为坐标,我们认为 dxdy 表示的正好就是长方形 $\Pi(dx,dy)$ 的面积 (长乘宽),而 $drd\phi$ 表示的正好就是长方形 $\Pi(dr,d\phi)$ 的面积,于是我们有

$$\frac{\mathrm{d}x\mathrm{d}y}{\mathrm{d}r\mathrm{d}\phi} = \frac{\partial(x,y)}{\partial(r,\phi)} \iff \mathrm{d}x\mathrm{d}y = \frac{\partial(x,y)}{\partial(r,\phi)}\mathrm{d}r\mathrm{d}\phi.$$

在积分学中,这一符号(再加上绝对值)实际上直接给出了变量替换的公式.

参考文献

- [Bre57] Leo Breiman. The Individual Ergodic Theorem of Information Theory. *The Annals of Mathematical Statistics*, 28(3):809–811, 1957.
- [CT12] Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 2012.
- [Huf52] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. *Proceedings of the IRE*, 40(9):1098–1101, September 1952.
- [Inf] Information | Etymology, origin and meaning of information by etymonline. https://www.etymonline.com/word/information.
- [Jay02] Edwin T. Jaynes. *Probability Theory: The Logic of Science*. Cambridge University Press, 2002.
- [KL51] S. Kullback and R. A. Leibler. On Information and Sufficiency. *The Annals of Mathematical Statistics*, 22(1):79–86, 1951.
- [LLG⁺19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, October 2019.
- [McM53] Brockway McMillan. The Basic Theorems of Information Theory. *The Annals of Mathematical Statistics*, 24(2):196–219, June 1953.
- [RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations*, pages 318–362. MIT Press, Cambridge, MA, USA, January 1986.

- [Rob49] Robert M. Fano. The Transmission of Information. March 1949.
- [Sha48] C. E. Shannon. A mathematical theory of communication. *The Bell System Technical Journal*, 27(3):379–423, July 1948.
- [Shi96] A. N. Shiryaev. *Probability*, volume 95 of *Graduate Texts in Mathematics*. Springer, New York, NY, 1996.
- [Tin62] Hu Kuo Ting. On the Amount of Information. *Theory of Probability & Its Applications*, 7(4):439–447, January 1962.
- [Uff22] Jos Uffink. Boltzmann's Work in Statistical Physics. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, summer 2022 edition, 2022.
- [李10] 李贤平. 概率论基础. 高等教育出版社, 2010.

索引

Cauchy 列, 200	L^{∞} \sim , 194
Haning tilt 210	$L^p \sim$, 194
Hessian 矩阵, 218	Chebyshev \sim , 194
Jacobi 矩阵, 214	Euclid ~ , 194
Jacobi 行列式, 215	Manhattan \sim , 194
The state of the same	Minkowski ~ , 194
Lipschitz 连续, 220	离散~,193
nabla 算子, 214	绝对值~,193
5. 47	度量空间,193
Taylor 展开, 212, 220	开球, 196
上界, 206	开覆盖,199
上确界, 206	开集,196
下界, 206	微分, 207, 208, 213
下确界, 206	拓扑空间 , 196
1 1907 7 200	收敛, 199
偏导数, 214, 217	一致~, 200
像, 203	·
切向量, 213	方向导数, 214
切映射, 209, 213	无穷小, 206
切空间, 213	极值, 211
原像, 203	极限, 199, 202
反向传播算法,217	梯度,213
完备度量空间,201	求导链, <mark>216</mark>
导数, 207, 208, 210, 215	等价, 206
度量,193	紧集,199
$L^1 \sim$, 194	古粉 104
$L^2 \sim 194$	范数, 194
	等价~,196

赋范空间, 194

连续映射, 202

闭集, 198

阶, 206

隐函数, 221

隐函数定理,222