

密训资料

计算机网络原理

微信扫码关注

自考锦鲤学霸集训地 尚德学术精英大本营

目录

目录	
第一章 计算机网络概述	
第二章 网络应用	2
第三章 传输层	3
第四章 网络层	4
第五章 数据链路层与局域网	5
第六章 物理层	6
第七章 无线与移动网络	6
第八章 网络安全基础	7

第一章 计算机网络概述

			第一年 月升和内谷视处					
知识点名称			知识点内容					
协议的定义	协议是网络通信实体之间在数据交换过程中需要遵循的规则或约定,是计算机网							
*	络有序运行的	络有序运行的重要保证。						
	语法 定	定义实体之间交换信息的格式与结构。						
协议的3个	语义 定	义实体	之间交换的信息中需要发送哪些控制信息,这些信息的具体含					
基本要素			4对不同含义的控制信息,接收信息端应如何响应。					
***			步,定义实体之间交换信息的顺序以及如何匹配或适应彼此的					
	, , ,	速度。						
计算机网络	硬件资源共		如云计算、云存储。					
的功能	软件资源共		如软件即服务(SaaS)。					
***	信息资源共		如信息交换。					
	星形拓扑结构	•	比较多见于局域网、个域网中					
	总线型拓扑组		在早期的局域网中比较多见。					
验和北外			多见于早期的局域网、园区网和城域网中。 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
按拓扑结构	环形拓扑结构							
分类	网状拓扑结构	•	比较多见于广域网、核心网络等。					
***	树形拓扑结构	ય	目前,很多局域网采用这种拓扑结构。					
	混合拓扑结构	勾	绝大多数实际网络的拓扑都属于混合拓扑结构,比如					
		D D	Internet.					
	1 m 2 1 m		出现的一种交换方式。					
	电路交换	优点:实时性高,时延和时延抖动都较小。						
			点:不适用于突发性数据传输,信道利用率低,且传输速率单一。					
			计算机网络没有采用。					
	报文交换	优点:相对电路交换,报文交换线路利用率高。						
数据交换技		缺点: 不适用于实时通信, 不得不丢弃报文。						
术		目前计算机网络广泛采用的技术。						
**		优点: (1) 交换设备存储容量要求低(2) 交换速度快(3) 可靠传						
			率高(4)更加公平。					
	分组交换	分组长度的确定:分组长度与延迟时间:在其他条件相同的情况下,						
		分组长度越长,延迟时间越长。分组长度与误码率:最佳分组长度						
		Lopt= $\int_{\mathbf{R}}^{\mathbf{h}}$ 。最高信道利用率可以表示为 η max= $(1-\sqrt{hP_e})$ 2						
·1 故 1. → ··			V _{Pe}					
计算机网络	1. 统上 中心。	84 bil A 2	<i>让口小叭刀为口</i> 14~11 <i>从往</i> 1					
体系结构的	计异机网络	川划分的	的层次以及各层协议的集合。					
含义★★								
	r r/		フィスティップ 与提供给用户的网络服务相关。在 Internet 上常见的一些网络应用大多在这一层。					
	信回	7 座	利层 与提供结用户的网络服务相关。在 Internet 上常见的一些网络应用大多在这一层。例如:www 服务:HTTP;文件传输:FTP;电子邮件:SMTP 和 POP3					
	(信息处理服务)	6 表	↑ 大工工工工工工工工工厂(例 17 / 18 / 18 / 18 / 18 / 18 / 18 / 18 /					
	端到端层 外理服务)	\asymp						
		5 <u>会</u> ì	舌层 会话层是指用户与用户的连接,通过在两台计算机间建立、管理和终止通信来完成对话。					
081 参考模	(4 传	前层 进程-进程层次。功能:复用/分解、端到端的可靠数据传输、连接控制、流量控制					
型★★								
	结 数 风	3 网络	各层 将分组通过交换网络传送至目的主机。功能:数据转发与路由。整个 TCP/IP 参考模型的核心。核心协议:IP 协议。					
	(数据交换和传输) 特点到结点层	2 数	功能:实现相邻结点之间数据可靠而有效的传输。有:帧同步功能,流量控制、链路链路层 路管理、寻址。					
	层 传 层	1 物班	功能:在传输介质上实现无结构比特流传输;规定数据终端设备(DTE)与数据通					
			是完全的。 					

第二章 网络应用

知识点名称		知识点内容							
		/服务器				基本;通信只在客户与服务	www 应用、文件传输		
 计算机网络	结构网络应用			器间边			FTP、电子邮件		
	纯 P2P 结构网络应			所有i	通信者	7在对等的通行方之间直接	Gnutella、		
构★	用	用					BitTorent		
177	混入	结构网织	攻応田	存在名	客户与	服务器之间传统 C/S 结构	IPTV		
			•			存在客户之间的通信。			
网络应用通	典型的	的网络原	应用编程	接口是	套接	字,标识套接字的编号叫端口	コ号,IP 地址用于唯		
信基本原理	一标记	识一个。	主机或路	由器接	美口。				
★	TCP	面向运	连接、提	供可靠	数据	流传输的传输控制协议。			
^	UDP	无连扣	妾不提供	可靠数	据传统	输的用户数据报协议。			
层次化域名 空间★★	"三级域名.二级域名.顶级域名",各标号分别代表不同级别的域名。						级别的域名。		
	根域名服 最重要			三要的域名服务器,共 13 个,从 a 一直到 m。					
	70	र्क्टी	国家顶级域名			cn(中国), us(美国), uk(英国)。			
	顶级城名		. , ,		'	com(公司和企业), net(网络服务机构), org(非			
			通用顶级域名			盈利性组织), edu(教育机构), gov(政府部门),			
域名服务器	服务	务器				mil(军事部门), int(国际组织)			
***			基础结构域名 arpa(用于反向域名解析)						
	权威	域名		负责一个区的域名服务器,保存该区中的所有主机的域名到 IP 地址					
		务器		的映射。					
		域名	既不是	不是根域名服务器,也不是顶级域名服务器和权威域名服务器的					
	服务	务器	域名服	务器。					
域名解析过	递归	解析	依次查	询		若本地域名服务器没有被引	查询域名信息,都需		
程★★	迭代	解析	直接响	应结果		要从根域名服务器查询。			
	浏り	览器	Web 应	用的客	户端车	欠件			
万维网应用	Web 那	及务器	Web 应	用的服	务器车	欠件			
结构			客户与服务器之间的交互基于应用层协议。						
***	НТ	TP	每个 Web 页面的寻址: URL 地址=主机域名(或 IP 地址) + 对象的						
			路径名。						
电子邮件系	邮件	+服务 功能是发送和接收邮件,向发信人报告邮件传送情况,是电子邮件							
电丁邮件系 统	器 体系结构的核心。								
* ★★★	简单	邮件	特点	,	1、只	能传送 7 位 ASC 码文本内	容。【多用途互联网		
^^^	传输	协议	44 Y		邮件表	广展 (MIME) 定义了将非7位	ASCII 码内容转换为		

		-				
	(SMTP)		7位 ASCII 码的编码规则。MIME 主要包括 3 个部分:(1)			
			5个 MIME 邮件首部字段(2)定义了多种邮件内容的格			
			式(3)定义了邮件传送编码。】			
			2、传送的邮件内容中不能包含"CRLF. CRLF"。			
			3、SMTP 是"推动"协议。			
			4、SMTP 使用 TCP 连接是持久的。			
		发送过程	握手阶段、邮件传输阶段、关闭阶段			
	用户代理					
		POP3	使用传输层 TCP。POP3协议交互过程可以分为3个阶段:			
	邮件读取	PUPS	授权、事务处理和更新。			
	协议	IMAP	IMAP 服务器维护了 IMAP 会话的用户状态信息,允许用			
	沙区	IMAF	户代理只读邮件的部分内容。			
		HTTP	HTTP 是 Web 邮件系统的邮件读取协议。			
	分类	数据报类型套接字 SOCK_DGRAM(面向 UDP)				
		流式套接字 SOCK_STREAM(面向 TCP)				
		原始套接字 SOCK_RAM				
		socket()	创建套接字			
		close()	关闭一个套接字			
		bind()	绑定套接字的本地端点地址			
		connect()	将客户套接字与服务器连接			
Socket 编程		listen()	置服务器端的流(TCP)为监听状态			
基础			从监听状态的流套接字的客户连接请求队列中, 取			
**	常用API函	accept()	出排在最前的一个客户请求, 并且创建一个新的套			
	数功能		接字来与客户套接字建立 TCP 连接。			
		send()				
		sendto()	及心效仍			
		recv()	接收数据			
		recvfrom()	──			
		setsockopt	() 设置套接字选项			
		getsockopt	() 读取套接字选项			

第三章 传输层

知识点名称	知识点内容						
传输层功能 构★★	传输层的核心任务是为应用进程之间提供端到端的逻辑通信服务。						
端口号的分	服务端使用的端口号	熟知端口号		0~1023			
場口 ラ 印 万		登记端口号		1024~49151			
大人	客户端使用的端口号	客户端口号或暂时端口号	1,7	49152~65535			
	HTTP 超文本传输协议(Wel	0服务器的默认端口号)	8	0			
	SMTP 简单邮件传输协议	2	5				
	P0P3 邮局协议版本 3		1	110			
当日は かと	FTP 文件传送协议	2	1 控制连接(默认)				
常用协议与端口号的对	FIP 文件传送协议	2	20 数据连接				
一	DNS 域服务器所开放的端口	1	5	3			
	DHCP 动态主机配置协议		DHCP 客户端 68				
~ ~ ~	DHUP 初芯土机癿且炒仅	DHCP 服务器端 67					
	Telnet 远程终端协议	23					
	RIP信息协议	5	20				
	SNMP 简单网络管理协议		g	et UDP 161 (默认)			

				t	rap UDP 162
	关键: IP地 无连 提供		协议	UDP	
 传输层的复	址和端口号 接	唯一	标识	く目的 IP 地址, 目的	的端口号>
传删层的复 用与分解★	能够唯一标页	提供	协议	TCP	
ハラカギス	识一个全接	接	标识	〈源 IP 地址, 目的 I	P地址,源端口号,目的端
	字	7女		口号〉	
滑动窗口协	选择重传(SR)	协议	发送窗	窗口 Ws>1	接收窗口 Wr>1
议★★★	回退N步(GBN)	协议	发送窗	窗口 Ws>=1	接收窗口 Wr=1
	0 1	6	31		
	源端口号	目的端口	号		
UDP 数据报	长度	校验和			
结构★★					
	应用	数据		V. 30 V. 4 & 35 20	F & 25 (7) 1 = 4 25 24 ()
	└────────────────────────────────────				
	计算内容包括	UDP 伪首	部、UDF	D 首部和应用层数据	
UDP 校验和		(1)参-	与运算的	勺内容按 16 位对齐求	和。(2) 求和过程中遇到
*	计算规则	任何溢出	(即进	位)都被回卷(即进位	位与和的最低为再加),最
		后得到的	和取反	码。	

第四章 网络层

知识点名称		知识点内容						
	网络层的功能:	转发、路由选择、连接建立						
	仅在网络层提供连接服务:虚电路(VC)网络【通信之前,双							
网络层服务	连接建立	需要先建立虚电路(网络层逻辑运	连接),通信结束后再拆除虚电					
**	(分组交换网	路。】						
	络)	仅在网络层提供无连接服务:数排	居报网络【按照目的主机地址进					
		行路由选择的网络。】						
	项目	虚电路交换	数据报交换					
	端到端连接	需要先建立连接	不需要建立连接					
	地址	每个分组含有一个短的虚电路	每个分组包含源和目的端					
		号	地址					
	分组顺序	按序发送,按序接收	按序发送,不一定按序接收					
	路由选择	建立 VC 时需要路由选择,之后	对每个分组独立选择					
数据报网络		所有分组都沿此路由转发						
与虚电路网	转发结点失	所有经过失效结点的 VC 终止	除了崩溃时丢失分组外, 无					
络的比较	效的影响	1 7 1 - 0 11 6 +	其他影响					
**	差错控制	由通信网络负责	由端系统负责					
	流量控制	由通信网络负责	由端系统负责					
	拥塞控制	若有足够的缓冲区分配给已经 建立的 VC,则容易控制	由端系统负责					
		建立的每条虚电路都要求占用						
	状态信息	经过的每个结点的表空间	网络不存储状态信息					
	通信类型	传输质量要求高的通信	数据通信,非实时通信					
	典型网络	X. 25、帧中继、ATM	因特网					
	网络层	路由器						
异构网络互	数据链路层	交换机和网桥(交换机就是多端口的网桥,是目前应用最广泛的						
连★★★	双加	数据链路层设备。)						
	物理层	集线器和中继器						
拥塞控制措	流量感知路由	将网络流量引导到不同的链路上,	均衡网络负载,从而避免拥塞					
施★★	加王心不知山	发生。						

		是一	种广泛应用于虚电路网络的拥塞预防技术。				
	准入控	制 审核	新建虚电路, 如果新虚电路会导致网络拥塞	,那么网络拒绝			
		建立	建立该新虚电路。				
	流量调	在	络发生拥塞时, 可以通过调整发送方向网络	发送数据的速率			
	加里 炯	来消	除拥塞。抑制分组、背压				
	负载脱	· 通过	有选择地主动丢弃一些数据报, 来减轻网络	负载,从而缓解			
	贝权ル	或消	或消除拥塞。				
	类	前缀长度	前缀	首字节			
	Α	8位	0xxxxxx	0~127			
分类地址	В	16位	10xxxxxx xxxxxxxx	128~191			
***	C	24 位	110xxxxx xxxxxxxx xxxxxxx	192~223			
	D	不可用	1110xxxx xxxxxxxx xxxxxxx xxxxxxx	224~239			
	E	不可用	1111xxxx xxxxxxxx xxxxxxx xxxxxxx	240~255			
ICMP	ICMP 包	L括3个字段	类型、代码和校验和。				
↑	差错报	告报文	终点不可达、源点抑制、时间超时、参数问题	烫、路由重定向。			
**	询问报	文	回声 (echo) 请求/应答、 时间戳请求/应	答。			
IPv6 数据报	地址长	度为128位。	IPv4 地址:地址长度为 32 位。				
格式	通常采	用8组冒号分	隔的十六进制数地址形式表示。对于连续的	多组 "0000",			
***	可以利	用连续的两个	":" (即 "::") 代替,但在一个 IPv6 地址	业中只能用一次			
^^^	"::"	٥					
	单播		各中的一个主机或路由器网络接口。				
	地址	可以作为 IPv	/6 数据报的源地址和目的地址。				
	组播	标识网络中的一组主机。					
IPv6 地址	地址		/6 数据报的目的地址。(向一个组播地址发达	. , ,			
***	70,2		R的多播组每个成员都会收到一个该 IP 数据	报的一个副本)			
	任播	标识网络中的					
	地址		16数据报的目的地址。(但当向一个任播地址				
	سرت ا	时,只有该信	£播地址标识的任播组的某个成员收到该 IP ៖	数据报。)			

第五章 数据链路层与局域网

知识点名称				知识点内容		
		随机噪	声	引起随机差错或独立差错。通常呈现为随机的比特差错。		
差错控制	噪声			指突然发生的噪声。引起的差错称为突发差错。差错通常		
***	分类	冲击噪	声	集中发生在某段信息。突发错误发生的第一位错误与最后		
				一位错误之间的长度称为 突发长度 。		
差错编码的	检错编	码 如果	编码	集的汉明距离 ds=r+1,则该差错编码可以检测 r 位的差错。		
检错与纠错	纠错编	和 加里	绘 孤′	集的汉明距离 ds=2r+1, 则该差错编码可以检测 r 位的差错。		
能力★	> 1日 > 冊 /	为 和木	/HJ /	未时人列亚因 US-21·1,则以左相溯与 1 从位例 1 区明左相。		
	频分多	路复用(F	DM)	频域划分制, 优点分路方便, 缺点串扰。		
信道划分				同步时分多路复用(STDM):按照固定顺序把时隙分配给		
MAC 协议	时公名:	路复用(1	.DM.)	各路信号。易造成信道资源浪费。		
***	11/1/21	何 久 川 (1	DIII /	异步时分多路复用(ATDM):也叫作统计时分多路复用		
^^^				(STDM),用户的数据并不是按照固定的时间间隔发送的。		
	波分多路复用 (WDM)			广泛应用于 光纤 通信中。		
	码分多	路复用((CMD(基于扩频技术,利用更长的相互正交的码组		
分散式控制	环网上最严重的两种错误:令牌丢失和数据帧无法撤销。					
***	外門工					
MAC 地址	MAC 地均	MAC 地址长度为 6 字节,即 48 位。采用十六进制表示法(用 A~F 表示 10~15):				
**	每个字:	节表示一	个十岁	六进制数,"-"或":"连接起来。		

	6字节	5 6字	6字节 2字		46~1500=	节 4字节	i			
以太网帧结 构	目的地	址 源地	址	き型	数据	CRC				
***					人太网帧中的	数据字段最	_ 少要 46 字节(如			
	果不足 46	5 字节,则氰	需要填充)	0						
虚拟局域网	划分虚拟	局域网的方	法:基于交	こ換机端口	1划分、基于	MAC 地址划	分、基于上层协			
***	议类型或	地址划分。								
		字节填充	技术(遇到	01111110)填充控制轴	5义字节:01	111101)			
点对点链路	PPP	1字节	1字节	1字节	1字节或2字节	可变长度 2字节	市或4字节 1字节			
协议★★		标志 01111110	地址 11111111	控制 00000011) 协议	信息	校验和 标志 01111110			
*		位填充技术(零比特填充)								
	HDLC				帧、无序号帧	贞。				

第六章 物理层

		707 1 70 - 7					
知识点名称		知识点内容					
物理介质	引导型传	输介质 架空明线 2、双绞线 3、同轴电缆 4、光纤					
*	非引导型位	输介质 1、地波传输2、天波传输3、视线传输					
信道传输特	恒参信道	1) 对信号幅值产生固定的衰减。2) 对信号输出产生固定的时延。					
作員作制行	随参信道	信号的传输衰减随时间随机变化。2) 信号的传输时延随时间随机					
1年 🗮		变化。3) 存在多径传播现象。					
	机械特性	机械特性 也叫物理特性,指明通信实体间硬件连接接口的机械特点。					
	电气特性 规定了在物理连接上,导线的电气连接及有关电路的特性						
 物理层接口	功能特性	指明物理接口各条信号线的用途,包括接口信号线功能的规定方法以					
特性	勿肥行任	及接口信号线的功能分类					
村性 ★★		即通信协议,指明利用接口传输比特流的全过程,以及各项用于传输					
**	规程特性	的事件发生的合法顺序,包括事件的执行顺序和数据传输方式,即在					
	况任行任	物理连接建立、维持和交换信息时, DTE、DCE 双方在各自电路上的					
		动作序列等。					

第七章 无线与移动网络

知识点名称		知识点内容						
无线网络基 本结构 **	2、F 没有	无线网络主要包括:无线主机、无线链路、基站、网络基础设施。 自组织网络、或称为特定网络,也称为 Ad Hoc 网络:无线主机不通过基站(即有基站),直接与另一个无线主机直接通信的无线网络模式。 出设施模式:无线主机与基站关联。						
无线链路与 无线网络特 性★★		「线网络与无线网络的重要区别主要在:数据链路层和物理层。 E线链路有别于有线链路的主要表现:信号强度的衰减、干扰、多径传播。						
移动结点的 路由选择	(1)	(1) 间接路由选择 (2) 直接路由选择						
	3种	3 种类型: 控制帧、数据帧和管理帧。IEEE 802.11 的 MAC 协议采用 CSMA/CA 协议。						
IEEE 802. 11	4 个地址		去往 AP	来自 AP	地址1	地址 2	地址3	地址4
帧★★★	,		0	1	目的地址	AP 地址	源地址	
	字段		1	0	AP 地址	源地址	目的地址	
	2G 代表性体制是 GSM 系统,采用的是 FDMA(频分多址)和 TDMA(时分多混合接入的方式。						十分多址)	
移动通信								
2G/3G/4G/5	3G	最关键的技术是无线传输技术。除了卫星接口技术外,被分为 CDMA (码分						
G 网络★	Su	多址)和 TDMA(时分多址)两大类,其中 CDMA 占主导地位。						
	4G	LTE 系统。特征:高速率传输、智能化、业务多样化、无缝接入、后向兼容、						

		经济。			
	5G	有望共用一标准。			
	WiMax	全球微波互联接入(WiMax) 称为 IEEE 802.16 标准, 目的是在更大范围			
其他典型无	WIWAX	内为用户提供可以媲美有线网络的无线通信解决方案。			
线网络简介	蓝牙	IEEE 802.15.1 网络以小范围、低功率和低成本运行。			
**	ZigBee	IEEE 第二个个人区域网络标准是 IEEE 802.15.4, 称为 ZigBee。ZigBee			
		e 主要以低功率、低数据速率、低工作周期应用为目标。			

第八章 网络安全基础

	第八章 网络安全基础						
知识点名称	知识点内容						
	密码	密码编码 学	指将	客密码变化的客观规律应用于编制密码来保守通信秘密。			
	学	密码分析	研究	已密码变化客观规律中的固有缺陷, 并应用于破译密码以			
		学	获取	又通信情报。			
	传统加密方式			替代密码			
				换位密码			
数据加密				DES 加密算法			
***	欢	} 称秘钥加密		三重 DES			
				AES 加密			
				IDEA			
	非对和	你/公开秘钥力	口密	比较典型的公开密钥加密算法有 Diffie-Hellman 算法和 RSA 算法。			
	(解决	と了对称加密,	算法	公开密钥密码的一个重要特性:			
	秘	钥分发问题)		$K_{R}^{-}(K_{R}^{+}(m)) = m = K_{R}^{+}(K_{R}^{-}(m))$			
典型的散列	MD5	MD5 对报文	散列	后,得到 128 位的散列值。			
函数 ★★	SHA-1 可产生一个 160 位的散列值。SHA-1 是典型的用于创建数字签名的单向散列算法。						
报文认证★	对报文 m 应用散列函数 H, 得到一个固定长度的散列码, 称为报文摘要, 记为 H(m)。						
报义认证	报文摘要可以作为报文丽的数字指纹。						
	•			一加密,而认证就是利用公开密钥进行正确地解密,所以			
数字签名★				的基础。当接收者和发送者之间有利害冲突时,此时须			
	借助满足前述要求的数字签名技术。						
密匙分发中	秘 钥	分发中心		你密钥分发的典型解决方案是,通信各方建立一个大家都			
心与证书认	(KDC) 信			的 KDC,并且每一方和 KDC 之间都保持一个长期的共享			
证机构) - 1 1/ / - · ·	密旬				
证书认证机		证机构(CA)					
防火墙分类	无状态分组过滤器(无状态分组过滤器是典型的部署在内部网络和网络边缘路由						
**	器上的	防火墙。)、	有状	态分组过滤器和应用网关。			
	SSL 更	改密码规格协	か议	用于通信过程,通信双方修改密码组,标志着加密策略的改变。最后报文内容会封装到记录协议报文之中。			
	SSL 警告协议			用于在握手过程或者数据加密等出错或者发生异常时,			
				为对等实体传递 SSL 警告或者终止当前连接。			
SSL 协议栈				协议包含两个字节:警告级别和警告代码。			
*				协商密码组和建立密钥,在协商确认后,才能进行派生			
	s	SL 握手协议		密钥的导出等操作,协商结果是 SSL 记录协议的基础。			
	JOE 14 1 W M			在 SSL3.0 版本中, 握手过程用到 3 个协议: SSL 握手协			
	_			议、SSL更改密码规格协议、SSL警告协议。			
	S	SL 记录协议		描述了 SSL 信息交换过程中的消息格式, 前面的 3 个协			

	1	义都需要记录协议进行封装与传输。		
IPSec 体系 简介 ★	封装安全载荷协议 (ESP)	AH和ESP是核心。与两种模式(传输模式、隧道模式)		
	21 27 31 (AII) 14 20	结合起来共有 4 种组合:传输模式 AH、隧道模式 AH、		
	认证头(AH)协议	传输模式 ESP、隧道模式 ESP。		
	点人子取(CA)	在发送数据之前,需要在发送实体和接收实体之间进		
	安全关联(SA) 	行安全关联 SA。		
	密钥交换与管理(IKE)	是 IPsec 唯一的密钥管理协议。		