CERAMIC HEATER

Patent Number:

JP11317283

Publication date:

1999-11-16

Inventor(s):

OKUDA NORIO

Applicant(s):

KYOCERA CORP

Requested Patent:

☐ JP11317283

Application Number: JP19980122588 19980506

Priority Number(s):

IPC Classification:

H05B3/18; C23C14/24; C23C16/44; H01L21/324; H01L21/68

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To uniformly heat by burying a heating pattern in which a resistance heating group made of a plurality of wire heaters connected in parallel is formed in the specified portion in a ceramic body.

SOLUTION: A heating element 4 having a heating pattern S of a plurality of resistance heating groups q1 -q24 made of, for example, seven wire heaters 5 connected in parallel is buried in a disc ceramic body which is used in a ceramic heater of a film forming device or an etching device of a semiconductor wafer and has a power supply terminal 6 on the lower surface. They are continuously connected and formed almost concentrically or spirally. In the resistance heating groups q1 -q24, by cutting at least one of the wire heaters 5 so that each resistance value becomes almost the same value, the dispersion of temperatures on the placing surface to support a body-to-be-heated is reduced to \pm 1% or less. A ceramic body made mainly of boron nitride or aluminum nitride has high heat conductivity and corrosion resistance to halogen gas. The heating element 4 is formed in screen printing of conductive paste of high melting point metal for example.

Data supplied from the esp@cenet database - 12

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-317283

(43)公開日 平成11年(1999)11月16日

(51) Int.Cl.*		識別記号	FΙ					
H05B	3/18		H05B	3/18				
C 2 3 C	14/24		C 2 3 C 1	4/24		L		
	16/44		1	6/44		В		
H01L			H01L 2	1/324	, 1	К		
	21/68		2	1/68	1	N		
	_		審查請求	未請求	請求項の数1	OL	(全 7	頁)
(21)出顧書	}	特顏平10-122588	(71) 出願人	0000066 京セラŧ				
(22)出顧日		平成10年(1998) 5月6日			京都市伏見区竹E	日島羽尾	町6番	地
			(72)発明者					_
				鹿児島男	国分市山下町	L番1号	京セ	ラ株
				式会社歷	到 见岛国分工場内	A		
÷								

(54)【発明の名称】 セラミックヒータ

(57)【要約】

【課題】大型でかつ高温用のセラミックヒータ1であっても載置面3の温度バラツキを±1%以下に均熱化できるようにする。

【解決手段】並列接続された2本以上の線状発熱体5からなる抵抗発熱群q,,q,,・・・同士を連続的に接続した発熱パターンSをセラミック体2中に埋設してセラミックヒータ1を構成する。

1

【特許請求の範囲】

【請求項1】並列接続された2本以上の線状発熱体から なる抵抗発熱群を所要箇所に形成した発熱パターンをセ ラミック体中に埋設してなるセラミックヒータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、セラミックヒータ に関するものであり、特に、CVD、PVD、スパッタ リングなどの成膜装置やエッチング装置に用いられるセ クヒータとして好適なものである。

[0002]

【従来の技術】従来、CVD、PVD、スパッタリング などの成膜装置やエッチング装置には、半導体ウェハ等 の被加熱物を支持しながら所定の処理温度に加熱するた めにセラミックヒータが使用されている。

【0003】この種のセラミックヒータは、図4(a)

(b) に示すように、円盤状をしたセラミック体12か らなり、該セラミック体12中には例えば図5に示すよ うな1本の線状発熱体15からなる発熱バターンRを埋 20 設するとともに、上記セラミック体12の上面を被加熱 物の載置面13としたものがあった。なお、16は上記 セラミック体12中に埋設されている線状発熱体15へ 通電するための給電端子である。

【0004】また、このようなセラミックヒータ11 は、セラミックグリーンシート上に導体ペーストを印刷 により図5に示すような発熱パターンRに敷設し、該発 熱パターンRを覆うように別のセラミックグリーンシー トを積層してグリーンシート積層体を形成したあと焼成 12を製作し、該セラミック体12の一方の主面に研磨 加工等を施して載置面13を形成するとともに、他方の 主面に発熱体15と連通する凹部を設け、該凹部に給電 端子16を接合することにより製作したものがあった

(実開平2-56443号公報参照)。

[0005]

【発明が解決しようとする課題】ところで、近年、ウエ ハサイズが大きくなり、当初その直径が6 インチであっ たものが8インチ、さらには12インチと年々大きくな ータ 1 1 が要求されている。また、処理温度も年々高く なり、当初400℃程度であったものが550~850 **℃の高温が要求されるようになり、さらにはセラミック** ヒーターの載置面における温度バラツキ(平均温度に対 する最低温度と最高温度との差)を±1%以下と、高度 な均熱性が要求されていた。

【0006】しかしながら、前述した製法により図5に 示すような発熱バターンRを埋設してなるセラミックヒ ータ11では、このような特性を満足することができな かった。

【0007】即ち、セラミックグリーンシート上に発熱 体14をなす導体ペーストを印刷する工程において、印 刷機における精度の問題から印刷バラッキを小さくする には限界があり、この印刷バラッキによって発熱体14 の抵抗値が部分的にはらつくことから戴置面 13の温度 分布をさらに均一化することは難しくなっていた。

【0008】特に、載置面13の温度分布は発熱温度が 高くなればなるほど、また、セラミックヒータ11の大 きさが大きくなればなるほど均熱性が悪くなるといった ラミックヒータ、その中でも半導体製造装置用セラミッ 10 傾向があり、例えば発熱温度400℃における温度分布 が±1%であったセラミックヒータ11の発熱温度を8 00℃にまで上げるとその温度バラツキが±3%程度に まで悪化するというように、従来のセラミックヒータ1 1では均熱化の要求を満足することが難しかった。

[0009]

(課題を解決するための手段) そこで、本発明は上記課 題に鑑み、並列接続された2本以上の線状発熱体からな る抵抗発熱群を所要箇所に形成した発熱パターンをセラ ミック体中に埋設してセラミックヒータを構成したもの である。

[0010]

【発明の実施の形態】以下、本発明の実施形態について 説明する。図l(a)は本発明のセラミックヒータを示 す斜視図、(b)は(a)のX-X線断面図、図2は図 1のセラミックヒータに埋設する発熱パターンの一例を 示す平面図である。

【0011】図1に示すセラミックヒータ1は、発熱体 4を埋設してなる円盤状をしたセラミック体2からな り、 該セラミック体2の上面を半導体ウエハ等の被加熱 することにより発熱体15を埋設してなるセラミック体 30 物を支持する載置面3としたものであり、上記セラミッ ク体2の下面には上記発熱体4に通電するための給電端 子6を接合してある。

【0012】上記セラミック体2中に埋設する発熱体4 の発熱パターンとしては、例えば図2に示すような、並 列接続された7本の線状発熱体5からなる複数個の抵抗 発熱群々、、々、、々、、・・・同士を連続的に接続 し、略同心円状に構成したものであり、このように略同 心円状とすることで載置面3の温度分布をより均一にす ることができる。なお、発熱パターンSの形状は図2に っており、大型のウエハサイズに対応したセラミックヒ 40 示したものだけに限定されるものではなく、渦巻き状や 極歯状をしたものなどどのような形状をしたものであっ ても構わない。また、図2では抵抗発熱群 q1. q2. q」、・・・ととの線状発熱体5の数を7本とした例を 示したが、少なくとも2本以上であれば良い。

> (0013) そして、上記発熱パターンSを構成する各 抵抗発熱群々、、4、、4、、・・・においては、抵抗 **発熱群q₁, q₂, q₃, ····ととに必要に応じて各** 抵抗発熱群 q , , q , , ・・・を構成する線状発 熱体5の少なくとも1本以上を切断し、各抵抗発熱群 q

50 , , q, , q, , ・・・ととの抵抗値かほぼ一致するよ

10

うに調整してある。

【0014】即ち、載置面3の温度分布は発熱バターン Sを構成する線状発熱体5の抵抗値と密接な関係があ り、各抵抗発熱群々、、a、、a,、・・・ごとの抵抗 値にばらつきがあると、載置面3の温度分布を均一にす ることができないのであるが、本発明では各抵抗発熱群 Q1.Q1.Q1.Tomが並列接続された複数本の線 状発熱体5からなるため、その切断する本数を調整する ことにより各抵抗発熱群 q , , q , , ・・・の抵 抗値を容易に調整することができる。

【0015】その為、このセラミックヒータ1を発熱さ せれば、載置面3の温度分布を極めて均一にすることが できるため、被加熱物を均一に加熱することができる。 【0016】このようなセラミック体2を構成する材質 としては、アルミナ、窒化珪素、窒化硼素、窒化アルミ ニウム等を主成分として含むセラミックスを用いること ができ、これらの中でも高熱伝導率を有するとともに、 成膜装置やエッチング装置等で使用されているハロゲン 系の腐食性ガスに対して優れた耐蝕性を有する窒化硼素 や窒化アルミニウムを主成分として含むセラミックスを 20 用いることが好ましい。特に、窒化アルミニウムの含有 量が99.8重量%以上の高純度窒化アルミニウムセラ ミックスや窒化アルミニウム含有量が91~99重量% でかつY, O,やErなどの希土類元素の酸化物を1~ 9重量%の範囲で含む窒化アルミニウムセラミックスを 用いることが望ましい。

【0017】また、上記セラミック体2中に埋設する発 熱体4を構成する材質としては、タングステン、モリブ デン、レニュウム等の高融点金属やこれらの合金、ある いは周期律表第4a,5a,6a族元素の炭化物や窒化 30 物を用いることができる。

【0018】次に、図1に示すセラミックヒータ1の製 造方法について説明する。

【0019】まず、各種セラミック原料に対して溶媒や パインダー等を添加混練して泥漿を作製し、ドクターブ レード法等のテープ成型法にてセラミックグリーンシー トを複数枚形成する。このうち、数枚のセラミックグリ ーンシートを積み重ねた上に、導体ペーストをスクリー ン印刷機等にて図2に示す発熱パターンSに敷設する。 即ち、並列接続された7本の線状発熱体5からなる複数 40 個の抵抗発熱群 q、、 q、, q、, ・・・同士を連続的 に接続した略同心円状とする。

【0020】この時、スクリーン印刷機の精度の問題か ら各線状発熱体5には厚みばらつきがあるが、本発明は 各抵抗発熱群a、,a、、a,,・・・を構成する線状 発熱体5の断面積をそれぞれ測定し、例えば、同一円周 上にある各抵抗発熱群々、、aょ,a,,・・・ととの 断面積の合計を算出し、その値の最も小さい抵抗発熱群 を基準とし、この基準となる抵抗発熱群に対して断面預 が大きすぎる抵抗発熱群については線状発熱体5を切断 50 状発熱体7の断面積を基準として、各抵抗発熱群 q、.

して、各抵抗発熱群 q 1 , q 1 , q 1 , · · · でとの抵 抗値がほぼ一致するように調整する。

【0021】ただし、各抵抗発熱群q,,q,,q,, ・・・を構成する線状発熱体5の合計断面積に対して3 0%以上切断すると、局部的にその抵抗発熱群q,,q 1. q」、・・・の抵抗値が高くなりすぎ、載置面3の 均熱性を阻害することになるため、各抵抗発熱群q、、 Q1. Q1. · · · · の線状発熱体5を切断する場合は各 抵抗発熱群a..a..a,.・・・を構成する線状発 熱体5の合計断面積に対して30%未満とすることが必 要である。

【0022】また、図2に示す発熱パターンSについて は同一円周上に位置する抵抗発熱群ごとに抵抗値を調整 した例を示したが、発熱パターンSを構成する全ての抵 抗発熱群の中でも最も断面積の小さな抵抗発熱群を基準 とし、この基準となる抵抗発熱群に応じて他の抵抗発熱 群a..a..a,.・・・を構成する線状発熱体5を 切断し、全ての抵抗発熱群 q、, q、, q, , ・・・の 抵抗値がほぼ一致するように調整しても良い。

【0023】しかるのち、上記発熱パターンSを覆うよ うに残りのセラミックグリーンシートを積層してグリー ンシート積層体を形成し、このグリーンシート積層体を 各種セラミックス原料を焼結させることができる温度に て焼成することにより発熱パターンSを埋設してなるセ ラミック体2を製作し、得られたセラミック体2の一方 の主面に研磨加工等を施して載置面3を形成するととも に、セラミック体2の他方の主面に発熱体4まで貫通す る凹部を穿設し、該凹部に給電端子6をロウ付け等の手 段によって接合すれば良い。

【0024】かくして得られたセラミックヒータ1を発 熱させれば、発熱パターンSを構成する各抵抗発熱群g 1. q2. q1. ····の抵抗値が調整されていること から載置面3の温度バラツキを±1%以下に均熱化する ことができる。

【0025】なお、発熱パターンの構造としては、発熱 パターンの全体が抵抗発熱群q、, q、, q, , ・・・ により連続的に構成された例を示したが、本発明におい ては必ずしも発熱パターンの全体が抵抗発熱群 q 、 , q , . q , . · · · により連続的に構成されている必要は なく、発熱パターンの所要箇所に抵抗発熱群 q、,

q1,q1,···が連続的に形成されていれば良い。 例えば、スクリーン印刷によるバラツキが殆どない部分 がある場合には、図3に示すように印刷バラッキのない 部分を1本の線状発熱体1とし、印刷バラツキのある部 分を並列接続された2本以上の線状発熱体5からなる抵 **抗発熱群 q 、 q 、 q 、 ・・・により構成すること** ができる。この発熱パターンの場合、線状発熱体7の断 面積は、各抵抗発熱群な、、な、、な、、・・・を構成 する線状発熱体5の合計断面積より小さくしておき、線

Q1.Q1. ···の線状発熱体5を切断して断面積が ほぼ一致するように調整すれば良い。

【0026】 (実施例)以下、本発明の具体例について 説明する。

【0027】純度99.8%以上のA1N粉末に対して 溶媒、可塑剤、及びバインダーを加えて回転ミルにて2 4時間混合して泥漿を作製し、ドクターブレード法にて AINのグリーンシートを複数枚製作した。そして、数 枚のグリーンシートを積み重ねた上に、タングステンペ ーストをスクリーン印刷法でもって図2に示す発熱パタ 10 ーンSに敷設した。なお、各抵抗発熱群 q , , q , , q 1. ・・・を構成する並列接続された線状発熱体5の数 は7本とし、内側から5%、5%、10%、20%、2 0%、20%、20%の線幅とした。

【0028】次に、上記発熱パターンSを敷設したグリ ーンシートの積層体をX-Yテーブル上に載置し、各抵 抗発熱群 q 、 , q , , · · · を構成する線状発熱 体5の断面積を測定した。この断面積の測定にあたって は、レーザー変位計を使用し、印刷されたタングステン ペーストの高さを測定するとともに、X-Yテーブルか 20 らの移動距離をもとにタングステンペーストの線幅を求 めて断面積を算出した。この結果は表しに示す通りであ る。なお、表1は最外周パターンの抵抗発熱群 q,, q 1 · q 1 · · · · q 1 のみを示したものである。

(0029) そして、得られたデータより各抵抗発熱群 Q1.Q1,Q1, ···· ごとに断面積を計算し、断面 積の最も小さい抵抗発熱群q.,を基準として基準以外の 抵抗発熱群の断面積のばらつきを求めた。この結果、表 1において基準となる抵抗発熱群 q,,の断面積に近いも のは抵抗発熱群 q。, q,, q,,で、基準となる抵抗発 30 熱群 q 1,の断面積に対して非常に大きいものは抵抗発熱 群 (1 , (1 , (11, (11, (11, (11, (11, であっ

【0030】そして、これらのデータより、各抵抗発熱 群a..a..a,,・・・の抵抗値がほぼ一定になる ように、基準となる抵抗発熱群Q1,の断面積に対して非 常に大きい抵抗発熱群 q1 , q1 , q11 , q11 , q11 , Q1. Q1.を構成する線状発熱体5の少なくとも1本以 上を切断して抵抗値の調整を行った。その結果は表2に 示す通りである。との結果、断面積のばらつきが最大2 40 【0032】 6%であったものを5%にまで小さくすることができ tc.

[0031] 【表1]

				日本1一歳	保護が								
DAY AND AND	9	7.07291	7.00%	797991	707994	70000	704.00	3 6-000	304705	200	100	4 m . 7 7.	20,
-	ŝ	6128		5867	1555		30,			19767	cid ten /	7 1122 11/1	707177
•4	25	5443		0.000			004	2	2882	3	5718	55	6178
•	3	4 6		000	5	8000	8	4814	5148	5274	547	1695	5019
	5 5	067		10815	10324	9764	0221	9187	0857	10145	10698	700	3
٠.	\$	22450		21584	20362	19736	18504	18288	10155	6003	44.00		0 2 1 1
•	Ŕ	21460		20888	19784	18133	13010			7/ 601	94(07	92/17	22120
••	á	22551		71417	90600	200	1,610	28	2	19245	19829	20638	21803
_	Ø.	23420	1001	22730	00007	00881	18123	10174	19182	19949	21139	21883	27953
ンロシルH	1000	111909	Γ	1000	200	D AN	18893	19012	20333	20841	27084	22508	23971
というない。この意思を		1010		200	103347	98057	12328	92008	97784	100914	105690	109299	116019
100		7	7	=	.5	-	-	-	-	5	-		
女子 を使ん サーンNO	19	1,04-0.6	20.00							2	2	₹	2
-		27772	777.77	711757	175227	7711/7	201791	8/8/40/	2029620	153640,6	7.07/522	7.01.5	10.00
٠ ~	5 2	920	000	2862	2894	5343	5045	5084	5407	5475	5033	2013	1986
	5 3	*	0983	5781	22	5217	4826	4867	5228	5295	5844	5010	
	5 2	2	1126/	10821	10405	976	0289	8242	2698	10201	10822		3
, .	5	22330	22233	21469	20905	10201	18238	18087	10501	10045	21050	21560	
. •	5	21400	21408	20347	16343	18242	17148	17330	18635	103.60	90001	200	61130
	5	21589	21514	20759	19703	18816	17789	17.90	18547	10311	00100		5
J. D.A.K.A.L	5	23540	23199	22B-40	21791	20245	19320	19029	90289	21183	62107	2002	\$2812
1 日本の一、一大の一	5	118713	111774	108051	103300	99826	91736	81439	19974	6(100)	105425	108440	100k
(M. 17.7)		2	22	=	=	٦	0	0	-	2	2	2	35
						1							

【表2]

%である高純度窒化アルミニウムセラミックスからなる ものであった。

【0034】しかるのち、上記セラミック体2の一方の 主面を中心線平均租さ(Ra)0.8 μm以下に研磨加 工を施して載置面3を形成するとともに、上記セラミッ ク体2の他方の主面にセラミック体2中に埋設する発熱 体4に連通する凹部を設け、該凹部にFe-Co-Ni 合金からなる給電端子6をロウ付け固定して窒化アルミ ニウムセラミックスからなるセラミックヒータ1を製作 10 した。

【0035】そこで、抵抗発熱群q,,q,,q,,・ ・・どとに表2のように抵抗調整した本発明のセラミッ クヒータ1と、従来例として図5に示す発熱パターンR を埋設してなるセラミックヒータ11を用意し、それぞ れ800℃に発熱させて載置面3、13の温度バラッキ を測定したところ、従来のセラミックヒータは載置面1 3の温度バラツキが±10%もあったが、抵抗調整した 本発明のセラミックヒータ1は載置面3の温度バラツキ を±0.8%程度にまで抑えることができた。

20 [0036]

【発明の効果】以上のように、本発明によれば、並列接 続された2本以上の線状発熱体からなる抵抗発熱群を所 要箇所に形成した発熱パターンをセラミック体中に埋設 してセラミックヒータを構成したことから、セラミック 体中に発熱体を埋設する前に発熱パターンの抵抗値を容 易に調整することができ、載置面の温度バラツキを±1 %以下にまで均熱化することができる。

【図面の簡単な説明】

【図1】(a)は本発明の製法によるセラミックヒータ 30 を示す斜視図、(b)は(a)のX-X線断面図であ

【図2】図1のセラミックヒータに埋設する発熱バター ンの一例を示す平面図である。

- 【図3】発熱バターンの他の例を示す平面図である。
- 【図4】(a)は従来のセラミックヒータを示す斜視 図、(b)は(a)のY-Y線断面図である。
- 【図5】図4のセラミックヒータに埋設する発熱バター ンの一例を示す平面図である。

【符号の説明】

- - 3, 13 · · · 载置面 4 · · · 発熱体 5, 15 · · ・線状発熱体
 - 6. 16···給電端子 q1. q1. q1. ···抵 抗発熱群
 - S、R・・・発熱パターン

				第一と言い	900						Б	1 H 1 H 1	
立列を終った	*	18600	707983	7.00.081	7000	7.02	3046	70-442	200-06	2000	TO A ST		300
_	36	A120	1638	503	1	1			10110	1077	1 2017	11115	1.011/2
•	: :	3 :	3		3	8970	?	S	•	545	5)18	•	6116
•	ñ	245	2842	0	3	•	4818	4314	A148	40.65	=	KRDI	20
•7	8	11250	11059	•	ċ	3.0				5	,		5
•	Į	,		•	•	5	779	200	3	0	•	0	11275
•	5	•	30.7	2 384	20382	10736	25.5	16268	19165	19972	20748	21728	29790
•	Š	21400	• !	20699	19781	18333	17810	17548	1691	10245	90000	0000	
•••	2 02	22551	22081	21487	20590	1000	10101	70.00			07001	RCDCZ	50817
~	206	23430	.002	95756			63101	7	29191	19949	21138	21003	22853
19 VV		3	3	66133	N(1)	20000	2	19012	20333	2	22080	22508	•
	Š	30105	91329	92570	13024	92988	92326	92000	92489	80769	A9615	17765	1010
1 DE (27) 77+(M)		7	٥	-	7	2	-	-	-	-	-	-	
列集能 ハナーンNO	2	7,00,013	10	- 4/ 8 V-0.C	127 4-01	5,0	1000	1000			H	-	1
_	į	1		J.	000	111111	0076	71117	1 1177.010	1001801	7 07,	7 079 8.3	7 177.87 K
- •	6 3			٥.	2894	25	Š	2	9.3	5475	5033	5917	6260
•	Ď.	2884		5751	5459	0	4926	4867	5228	5295		•	8043
-	Š	1450		•	٥	9756	9289	49.42	600	:			
•	Š	22550		21480	30006	1000	4001		1	,		9	2
ur:	306	٠.					100	7800	200	1775		21580	22736
1	Ž	٠.		202	77.	18242	174	1330	18635	19360		20413	22041
)	\$ 2	200		20759	19703	10016	17789	06/21	16547	18311		20023	21824
HAIN THE	Ş	2340	23199	2284N	21791	20245	19320	19029	20289	21163	22 21	22085	C
1 10 C 2 2 2 1 2 1	S	21213	90260	91165	82895	01010	91736	91438	92262	90548		91499	90550
(M) 1/4 (M)		٥	7	٥	7	0	0	0	- 	- 		0	-

【0033】そして、このように抵抗値の調整を行った 40 1, 11・・・セラミックヒータ 2, 12・・・セラ 発熱パターンS上に残りのAINからなるセラミックグ リーンシートを積層してグリーンシート積層体を形成 し、該グリーンシート積層体を窒素雰囲気中にて190 0~2100℃の焼成温度で1~数時間程度焼成するこ とにより、発熱体4を埋設してなるセラミック体2を得 た。なお、このセラミック体2の組成を【CPにて測定 したところ、窒化アルミニウムの含有量が99.8重量

[図1]

ധാ

【図4】

【図5】

