

Report No: CCISE171000605

FCC REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE mobile phone

Model No.: N5702L, G2, G3

Trade mark: NUU

FCC ID: 2ADINN5702L

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 09 Oct., 2017

Date of Test: 09 Oct., to 03 Nov., 2017

Date of report issued: 06 Nov., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	06 Nov., 2017	Original

Tested by: Date: 06 Nov., 2017

Test Engineer

Reviewed by: Date: 06 Nov., 2017

Project Engineer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5		ERAL INFORMATION	
	5.1	CLIENT INFORMATION	-
	5.1	GENERAL DESCRIPTION OF E.U.T.	
	5.2 5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5. <i>1</i> 5.8	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	19
	6.6	BAND EDGE	23
	6.7	Spurious Emission	27
	6.7.1	Restricted Band	27
	6.7.2	Unwanted Emissions out of the Restricted Bands	31
	6.8	FREQUENCY STABILITY	38
7	TES	T SETUP PHOTO	40
ጸ	FUT	CONSTRUCTIONAL DETAILS	41

4 Test Summary

(a) Pass Pass iv) Pass
iv) Pass
Pass
iv) Pass
Pass
Pass
Pass
ξ

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	SUNCUPID (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

5.2 General Description of E.U.T.

Product Name:	LTE mobile phone
Model No.:	N5702L,G2, G3
Operation Frequency:	Band 1: 5150MHz-5250MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Data speed (IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps,MCS1:13Mbps,MCS2:19.5Mbps,MCS3:26Mbps, MCS4:39Mbps,MCS5:52Mbps,MCS6:58.5Mbps,MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps,MCS1:30Mbps,MCS2:45Mbps,MCS3:60Mbps, MCS4:90Mbps,MCS5:120Mbps,MCS6:135Mbps,MCS7:150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-3.18 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-3000mAh
AC adapter :	Model: HNEM050200UU Input: AC100-240V, 50/60Hz, 0.35A Output: DC 5.0V, 2000mA
Remark:	Model No.: N5702L, G2, G3 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel						
Band 1						
802.11a/802.11n20 802.11n40 /					/	
Channel	Frequency	Channel	Frequency	/	/	
36	5180MHz	38	5190MHz	/	/	
40	5200MHz	46	5230MHz			
44	5220MHz					
48	5240MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/8	802.11a/802.11n20 802.11n40		1		
Channel	Frequency	Channel	Frequency	/	/
Lowest channel	5180MHz	Lowest channel	5190MHz	/	/
Middle channel	5200MHz	Highest channel	5230MHz		
Highest channel	5240MHz				

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar		
Test mode:				
Continuously transmitting mode	ode Keep the EUT in 100% duty cycle transmitting with modulation.			
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:				
Per-scan all kind of data rate, and found the follow list were the worst case.				
Mode		Data rate		
802.11a		6 Mbps		
802.11n20		6.5 Mbps		
802.11n40		13.5 Mbps		

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	4.56 dB (k=2)

Report No: CCISE171000605

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2017	02-24-2018
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A
Pre-amplifier	HP	8447D	2944A09358	02-25-2017	02-24-2018
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018
Cable	ZDECL	Z108-NJ-NJ-81	1608458	02-25-2017	02-24-2018
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	02-25-2017	02-24-2018	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	02-25-2017	02-24-2018	
LISN	CHASE	MN2050D	1447	02-25-2017	02-24-2018	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018	
Cable	HP	10503A	N/A	02-25-2017	02-24-2018	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -3.18 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 19	5.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	,	
	0.15-0.5	66 to 56*	0.15-0.5	
	0.5-5	56	0.5-5	
	5-30	60	5-30	
Test procedure	* Decreases with the logs 1. The E.U.T and simu	arithm of the frequency. Jators are connected to th		
	line impedance s 50ohm/50uH couplin 2. The peripheral device a LISN that provide termination. (Please photographs). 3. Both sides of A.C. li interference. In orde positions of equipment	stabilization network (L. ing impedance for the measures are also connected to sa 50ohm/50uH coupling a refer to the block diagrame are checked for maximum ent and all of the interface 263.10: 2013 on conducted	I.S.N.). It provides a suring equipment. the main power through impedance with 50ohm m of the test setup and the conducted assion, the relative cables must be changed	
Test setup:	Reference Plane			
	AUX Equipment Test table/Insulation p Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilizat Test table height=0.8m	.U.T EMI Receiver	AC power	
Test Instruments:	Refer to section 5.8 for d	etails		
Test mode:	Refer to section 5.3 for d	etails.		
Test results:	Passed			

Measurement Data:

Line:

Site

CCIS Shielding Room FCC PART 15.407 QP LISN LINE Condition

EUT LTE mobile phone : N5702L : 5G WIFI mode Model Test Mode

Power Rating: AC120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark LISN Cable Read Over Limit Level Factor Freq Loss Level Line Limit Remark MHz dBuV dB dB dBuV dBuV dB 65.78 -17.99 QP 55.78 -20.55 Average 63.54 -23.40 QP 58.78 -16.57 QP 48.78 -17.17 Average 56.71 -13.60 QP 46.71 -13.53 Average 46.00 -16.08 Average 46.00 -17.50 Average 56.00 -12.86 QP 46.00 -17.98 Average 60.00 -11.00 QP 47.79 35.23 40.14 42.21 0.154 0.154 0.202 -0.56 -0.56 -0.52 10.78 37.57 123456789 25.01 29.90 10.78 10.76 0.358 31.98 -0.50 10.73 0.358 21.38 -0.5010.73 31.61 32.86 22.93 19.63 0.459 -0.4910.74 43.11 0.459 0.614 -0.49 -0.48 10.74 10.77 33.18 29.92 0.871 28.50 43.14 18. 16 32. 70 17. 56 -0.49 10.83 10 -0.4710.91 1.433 -0.4610.92 28.02 60.00 -11.00 QP 7.526 38.14 0.03 10.83 49.00

Neutral:

Notes:

9 10

11

22. 64 20. 84 32. 41

38.18

-0.30

-0.29 -0.28

0.20

10.76

10.83 10.90

10.83

0.561

0.866 1.276

7.646

1. An initial pre-scan was performed on the live and neutral lines with peak detector.

33.10

31.38 43.03

49.21

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

46.00 -14.62 Average 56.00 -12.97 QP

3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)				
Test Method:	ANSI C63.10: 2013, KDB789033				
Limit:	Band 1: 24dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

mododi omoni bata.									
Band 1									
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result					
	Lowest	-0.48	24.00	Pass					
802.11a	Middle	-0.53	24.00	Pass					
	Highest	-0.76	24.00	Pass					
	Lowest	-1.26	24.00	Pass					
802.11n20	Middle	-1.57	24.00	Pass					
	Highest	-1.05	24.00	Pass					
902 11p10	Lowest	-2.23	24.00	Pass					
802.11n40	Highest	-2.35	24.00	Pass					

6.4 Occupy Bandwidth

orr cocupy Danaman					
Test Requirement:	FCC Part15 E Section 15.407 (a) (5)				
Test Method:	ANSI C63.10:2013 and KDB 789033				
Limit:	Band 1: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Band 1:

Test	26	Limit	Result		
Channel	802.11a	802.11n20	802.11n40	LIIIIII	Result
Lowest	20.16	20.40	40.00		
Middle	20.08	20.40		N/A	PASS
Highest	20.08	20.40	40.16		
Test	99	9% Occupy Bandwidth (MH	Limit	Result	
Channel	802.11a	802.11n20	<u>'</u>	LIIIIII	Result
Lowest	17.12	18.00	36.32		
Middle	17.20	18.00		N/A	PASS
Highest	17.12	18.00	36.32		

Test plot as follows: Band 1:

Highest channel

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 11 dBm/MHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

	Band 1										
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result							
	Lowest	-12.34	11.00	Pass							
802.11a	Middle	-12.41	11.00	Pass							
	Highest	-12.57	11.00	Pass							
	Lowest	-12.74	11.00	Pass							
802.11n20	Middle	-12.75	11.00	Pass							
	Highest	-12.82	11.00	Pass							
000 11510	Lowest	-16.40	11.00	Pass							
802.11n40	Highest	-16.42	11.00	Pass							

Test plot as follows:

Band 1:

Date: 31.OCT.2017 11:51:29

_

Date: 31.OCT.2017 11:51:47

Middle channel

Date: 31.0CT.2017 11:52:04

Date: 31.OCT.2017 11:52:33

Highest channel

Test mode:802.11n20

Date: 31.0CT.2017 11:52:53

Lowest channel

Middle channel

Date: 31.OCT.2017 11:53:23

Highest channel

Test mode:802.11n40

Date: 31.0CT.2017 11:50:59

Lowest channel

Highest channel

Date: 31.OCT.2017 11:50:33

6.6 Band Edge

0.0 Band Edge								
Test Requirement:	FCC Part 15 E Sect	ion 15.407 (b)						
Test Method:	ANSI C63.10:2013,	KDB 789033						
Receiver setup:	Detector	RBW	VBW	Remark				
·	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	RMS	1MHz	3MHz	Average Value				
Limit:	Band		V/m @3m)	Remark				
	Band 1		.20	Peak Value				
		54	.00	Average Value				
	Remark:							
	1. Band 1 limit:	D[dD] + 0E 0 C0	0 dD: \//rr for E1	DD[dDas1 07dDas				
Test Procedure:	1. The EUT was perthe ground at a to determine the 2. The EUT was sentenna, which tower. 3. The antenna he the ground to describe Both horizontal make the meases and then the meters and the to find the maximum Specified Band 6. If the emission the limit specifier of the EUT would have 10dB marks.	 E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 						
Test setup:	- 139cm	(Turntable) Ground Re Test Receiver	Horn Artenna Antenna Antenna Antenna Antenna Antenna Controller	Tower				
Test Instruments:	Refer to section 5.8	for details	-					
Test mode:	Refer to section 5.3							
Test results:	Passed							
	-							

Band 1:

802.11a									
Test channel		Lowest		Level		F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	55.03	36.23	10.96	40.06	62.16	68.20	-6.04	Horizontal	
5150.00	55.17	36.23	10.96	40.06	62.30	68.20	-5.90	Vertical	
				802.11a					
Test cl	nannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	39.62	36.23	10.96	40.06	46.75	54.00	-7.25	Horizontal	
5150.00	38.51	36.23	10.96	40.06	45.64	54.00	-8.36	Vertical	
				802.11a					
Test cl	nannel	Highest		Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	46.58	35.37	11.19	40.18	52.96	68.20	-15.24	Horizontal	
5350.00	50.16	35.37	11.19	40.18	56.54	68.20	-11.66	Vertical	
				802.11a					
Test cl	nannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	38.26	35.37	11.19	40.18	44.64	54.00	-9.36	Horizontal	
5350.00	37.41	35.37	11.19	40.18	43.79	54.00	-10.21	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20									
Test ch	Test channel		Lowest		Level		Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	54.58	36.23	10.96	40.06	61.71	68.20	-6.49	Horizontal	
5150.00	55.36	36.23	10.96	40.06	62.49	68.20	-5.71	Vertical	
			8	02.11n-HT20)				
Test ch	nannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	39.21	36.23	10.96	40.06	46.34	54.00	-7.66	Horizontal	
5150.00	38.58	36.23	10.96	40.06	45.71	54.00	-8.29	Vertical	
			8	02.11n-HT20)				
Test ch	nannel	Highest			Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	48.21	35.37	11.19	40.18	54.59	68.20	-13. 6 1	Horizontal	
5350.00	51.29	35.37	11.19	40.18	57.67	68.20	-10.53	Vertical	
			8	02.11n-HT20)				
Test ch	nannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	38.21	35.37	11.19	40.18	44.59	54.00	-9.41	Horizontal	
5350.00	39.05	35.37	11.19	40.18	45.43	54.00	-8.57	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40									
Test cl	Test channel		Lowest		Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	55.11	36.23	10.96	40.06	62.24	68.20	-5.96	Horizontal	
5150.00	56.03	36.23	10.96	40.06	63.16	68.20	-5.04	Vertical	
			8	02.11n-HT40)				
Test cl	nannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	39.62	36.23	10.96	40.06	46.75	54.00	-7.25	Horizontal	
5150.00	37.21	36.23	10.96	40.06	44.34	54.00	-9.66	Vertical	
			8	02.11n-HT40)				
Test cl	nannel	Highest			Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	46.63	35.37	11.19	40.18	53.01	68.20	-15.19	Horizontal	
5350.00	49.01	35.37	11.19	40.18	55.39	68.20	-12.81	Vertical	
			8	02.11n-HT40)				
Test cl	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	39.26	35.37	11.19	40.18	45.64	54.00	-8.36	Horizontal	
5350.00	37.51	35.37	11.19	40.18	43.89	54.00	-10.11	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1 Restricted Band									
Test Requirement:	FCC Part15 E So	FCC Part15 E Section 15.407(b)							
Test Method:	ANSI C63.10: 20	ANSI C63.10: 2013							
Test Frequency Range:	4.5 GHz to 5.15	4.5 GHz to 5.15 GHz and 5.35GHz to 5.46GHz							
Test site:	Measurement Di	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW					
	Above 1GHz	Peak RMS	1MHz 1MHz	3MH: 3MH:					
Limit:	Frequency		it (dBuV/m @:		Remark				
	Above 1GH		74.00		Peak Value Average Value				
Test Procedure:	the ground a to determine 2. The EUT was antenna, who tower. 3. The antennathe ground a Both horizon make the m 4. For each succase and the meters and to find the m 5. The test-recessive Specified Base of the EUT whave 10dB in the modern succession of the EUT whave 10dB in the modern succession of the EUT whave 10dB in the modern succession of the EUT whave 10dB in the EUT what was an experienced and the EUT what was an experienced and the EUT what was an experienced and the EUT was antenna, which is the EUT was antenna	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
		(Turntable)	Ground Reference Plane	ier Controller					
Test Instruments:	Refer to section	5.8 for details							
Test mode:	Refer to section	5.3 for details							
Test results:	Passed								

Band 1:

802.11a

Test ch	nannel		Lo	west		Le	vel		Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	49.25	29.30	6.80	3.29	42.05	46.59	74.00	-27.41	Horizontal
4500.00	48.01	29.30	6.80	3.29	42.05	45.35	74.00	-28.65	Vertical
Test ch	nannel		Lo	west		Le	vel	A	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.29	29.30	6.80	3.29	42.05	33.63	54.00	-20.37	Horizontal
4500.00	37.44	29.30	6.80	3.29	42.05	34.78	54.00	-19.22	Vertical
Test ch	nannel		Highest			Le	vel		Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	45.29	30.54	7.18	3.39	41.85	44.55	74.00	-29.45	Horizontal
5460.00	45.11	30.54	7.18	3.39	41.85	44.37	74.00	-29.63	Vertical
Test ch	nannel		Hig	hest		Le	vel	A	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.07	30.54	7.18	3.39	41.85	35.33	54.00	-18.67	Horizontal
5460.00	36.95	30.54	7.18	3.39	41.85	36.21	54.00	-17.79	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test ch	nannel		Lo	west		Le	vel		Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	48.29	29.30	6.80	3.29	42.05	45.63	74.00	-28.37	Horizontal
4500.00	46.10	29.30	6.80	3.29	42.05	43.44	74.00	-30.56	Vertical
Test ch	nannel		Lo	west		Le	Line (dBuV/m) (dB)		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Line	Limit	Polarization
4500.00	37.85	29.30	6.80	3.29	42.05	35.19	54.00	-18.81	Horizontal
4500.00	36.12	29.30	6.80	3.29	42.05	33.46	54.00	-20.54	Vertical
Test ch	nannel		Hig	hest		Le	vel		Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Line	Limit	Polarization
5460.00	46.87	30.54	7.18	3.39	41.85	46.13	74.00	-27.87	Horizontal
5460.00	45.29	30.54	7.18	3.39	41.85	44.55	74.00	-29.45	Vertical
Test ch	nannel		Hig	hest		Le	vel	A	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.24	30.54	7.18	3.39	41.85	34.50	54.00	-19.50	Horizontal
5460.00	36.20	30.54	7.18	3.39	41.85	35.46	54.00	-18.54	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test ch	nannel		Lo	west		Le	vel		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	47.59	29.30	6.80	3.29	42.05	44.93	74.00	-29.07	Horizontal	
4500.00	46.02	29.30	6.80	3.29	42.05	43.36	74.00	-30.64	Vertical	
Test ch	nannel		Lo	west		Le	vel	A [,]	verage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	38.29	29.30	6.80	3.29	42.05	35.63	54.00	-18.37	Horizontal	
4500.00	36.01	29.30	6.80	3.29	42.05	33.35	54.00	-20.65	Vertical	
Test ch	nannel		Hig	hest		Le	Level Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	46.52	30.54	7.18	3.39	41.85	45.78	74.00	-28.22	Horizontal	
5460.00	44.13	30.54	7.18	3.39	41.85	43.39	74.00	-30.61	Vertical	
Test ch	nannel		Hig	hest		Le	vel	A	Limit Polarization (dB) -28.22 Horizontal	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
				1 11	44.0-	0 = 00	5400	40.04	11-21-1	
5460.00	36.70	30.54	7.18	3.39	41.85	35.96	54.00	-18.04	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C Se	ection 15	.209 a	and 15.205					
Test Method:	ANSI C63.10: 20	13							
Test Frequency Range:	30MHz to 40GHz	<u>,</u>							
Test site:	Measurement Dis	stance: 3	m						
Receiver setup:	Frequency	Detec	tor	RBW	VE	3W	Remark		
·	30MHz-1GHz	Quasi-p	eak	100kHz	300)kHz	Quasi-peak Value		
	Above 1GHz	Peal		1MHz		1Hz	Peak Value		
		RMS		1MHz		<u>/Hz</u>	Average Value		
Limit:	Frequency		Lin	nit (dBuV/m @3	sm)	_	Remark		
	30MHz-88MH			40.0			uasi-peak Value		
	88MHz-216M			43.5			uasi-peak Value		
	216MHz-960M			46.0			uasi-peak Value		
	960MHz-1GF	1Z		54.0		Q	uasi-peak Value		
	Above 1GH:	z		68.20			Peak Value		
	54.00 Average Value								
	Remark:								
	Above 1GHz limit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm.								
Test Procedure:				e top of a rota					
rest i locedule.							eter camber. The		
							on of the highest		
	radiation.								
				away from th					
	· ·	ich was i	mount	ed on the top	of a va	ariable-	height antenna		
	tower.	الفطاءة أمطا			-44-		t - v		
				aximum value			neters above the		
							e set to make the		
	measureme		μι ρυια	inzations of th	c and	illia aiv	c set to make the		
			emissi	ion, the EUT v	vas ar	ranged	to its worst case		
							eter to 4 meters		
			ıs turn	ed from 0 deg	rees t	o 360 d	degrees to find the		
	maximum re	_			_	_			
				as set to Pea			ction and		
	Specified Bandwidth with Maximum Hold Mode. 6 If the emission level of the FUT in peak mode was 10dB lower than the								
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the								
	EUT would be reported. Otherwise the emissions that did not have								
	10dB margin would be re-tested one by one using peak, quasi-peak or								
	average method as specified and then reported in a data sheet.								
Test setup:	Below 1GHz								

Below 1GHz

Horizontal:

Site : 3m chamber

: FCC PART 15.407 3m VULB9163(30M2G) HORIZONTAL Condition

EUT

: LTE mobile phone : N5702L Model Test mode : 5g WiFi mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa Test Engineer: YT REMARK :

	Read	ûntenna	Cable	Preamp		Limit	Over	
Freq								Remark
MHz	dBu₹	<u>dB</u> /m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
30.531	45.44	11.20	0.78	29.98	27.44	40.00	-12.56	QP
54.643	32.68	13.44	1.34	29.80	17.66	40.00	-22.34	QP
98.833	35.76	11.93	1.97	29.53	20.13	43.50	-23.37	QP
201.393	45.72	11.30	2.87	28.82	31.07	43.50	-12.43	QP
278.067	36.57	12.72	2.88	28.49	23.68	46.00	-22.32	QP
397.633	34.57	14.78	3.08	28.77	23.66	46.00	-22.34	QP
	MHz 30.531 54.643 98.833 201.393 278.067	Freq Level MHz dBuV 30.531 45.44 54.643 32.68 98.833 35.76 201.393 45.72 278.067 36.57	Freq Level Factor MHz dBuV dB/m 30.531 45.44 11.20 54.643 32.68 13.44 98.833 35.76 11.93 201.393 45.72 11.30 278.067 36.57 12.72	Freq Level Factor Loss MHz dBuV dB/m dB 30.531 45.44 11.20 0.78 54.643 32.68 13.44 1.34 98.833 35.76 11.93 1.97 201.393 45.72 11.30 2.87 278.067 36.57 12.72 2.88	MHz dBuV dB/m dB dB 30.531 45.44 11.20 0.78 29.98 54.643 32.68 13.44 1.34 29.80 98.833 35.76 11.93 1.97 29.53 201.393 45.72 11.30 2.87 28.82 278.067 36.57 12.72 2.88 28.49	MHz dBuV dB/m dB dB dB dBuV/m 30.531 45.44 11.20 0.78 29.98 27.44 54.643 32.68 13.44 1.34 29.80 17.66 98.833 35.76 11.93 1.97 29.53 20.13 201.393 45.72 11.30 2.87 28.82 31.07 278.067 36.57 12.72 2.88 28.49 23.68	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 30.531 45.44 11.20 0.78 29.98 27.44 40.00 54.643 32.68 13.44 1.34 29.80 17.66 40.00 98.833 35.76 11.93 1.97 29.53 20.13 43.50 201.393 45.72 11.30 2.87 28.82 31.07 43.50 278.067 36.57 12.72 2.88 28.49 23.68 46.00	30.531 45.44 11.20 0.78 29.98 27.44 40.00 -12.56 54.643 32.68 13.44 1.34 29.80 17.66 40.00 -22.34 98.833 35.76 11.93 1.97 29.53 20.13 43.50 -23.37 201.393 45.72 11.30 2.87 28.82 31.07 43.50 -12.43

Vertical:

Site

: 3m chamber : FCC PART 15.247 3m VULB9163(30M2G) VERTICAL : LTE mobile phone Condition

EUT

: N5702L
Test mode : 5g WiFi mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

Freq								Remark
MHz	dBu∀	<u>dB</u> /m	<u>ab</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
30.745	48.13	11.20	0.78	29.98	30.13	40.00	-9.87	QP
52.760	44.21	13.76	1.29	29.81	29.45	40.00	-10.55	QP
83.230	45.25	9.34	1.79	29.61	26.77	40.00	-13.23	QP
200.688	42.85	11.30	2.87	28.83	28.19	43.50	-15.31	QP
344.386	38.19	14.60	3.08	28.55	27.32	46.00	-18.68	QP
502.940	35.43	16.70	3.64	28.96	26.81	46.00	-19.19	QP
	MHz 30.745 52.760 83.230 200.688 344.386	Freq Level MHz dBuV 30.745 48.13 52.760 44.21 83.230 45.25 200.688 42.85	Freq Level Factor MHz dBuV dB/m 30.745 48.13 11.20 52.760 44.21 13.76 83.230 45.25 9.34 200.688 42.85 11.30 344.386 38.19 14.60	Freq Level Factor Loss MHz dBuV dB/m dB 30.745 48.13 11.20 0.78 52.760 44.21 13.76 1.29 83.230 45.25 9.34 1.79 200.688 42.85 11.30 2.87 344.386 38.19 14.60 3.08	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 30.745 48.13 11.20 0.78 29.98 52.760 44.21 13.76 1.29 29.81 83.230 45.25 9.34 1.79 29.61 200.688 42.85 11.30 2.87 28.83 344.386 38.19 14.60 3.08 28.55	MHz dBuV dB/m dB dB <t< td=""><td>MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 30.745 48.13 11.20 0.78 29.98 30.13 40.00 52.760 44.21 13.76 1.29 29.81 29.45 40.00 83.230 45.25 9.34 1.79 29.61 26.77 40.00 200.688 42.85 11.30 2.87 28.83 28.19 43.50 344.386 38.19 14.60 3.08 28.55 27.32 46.00</td><td>MHz dBuV dB/m dB dB dBuV/m <t< td=""></t<></td></t<>	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 30.745 48.13 11.20 0.78 29.98 30.13 40.00 52.760 44.21 13.76 1.29 29.81 29.45 40.00 83.230 45.25 9.34 1.79 29.61 26.77 40.00 200.688 42.85 11.30 2.87 28.83 28.19 43.50 344.386 38.19 14.60 3.08 28.55 27.32 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m <t< td=""></t<>

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	42.26	40.10	15.37	41.34	56.39	68.20	-11.81	Vertical			
10360.00	41.20	40.10	15.37	41.34	55.33	68.20	-12.87	Horizontal			
		802.11a	mode Lowe	st channel	(Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	32.06	40.10	15.37	41.34	46.19	54.00	-7.81	Vertical			
10360.00	31.59	40.10	15.37	41.34	45.72	54.00	-8.28	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	42.26	40.00	15.42	41.27	56.41	68.20	-11.79	Vertical			
10400.00	41.77	40.00	15.42	41.27	55.92	68.20	-12.28	Horizontal			
		802.11	a mode Midd	le channel	(Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	32.20	40.00	15.42	41.27	46.35	54.00	-7.65	Vertical			
10400.00	31.49	40.00	15.42	41.27	45.64	54.00	-8.36	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	42.59	39.70	15.55	41.10	56.74	68.20	-11.46	Vertical			
10480.00	41.02	39.70	15.55	41.10	55.17	68.20	-13.03	Horizontal			
		802.11a	mode Highe	est channe	l (Average V	'alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	31.65	39.70	15.55	41.10	45.80	54.00	-8.20	Vertical			
10480.00	31.44	39.70	15.55	41.10	45.59	54.00	-8.41	Horizontal			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	42.20	40.10	15.37	41.34	56.33	68.20	-11.87	Vertical			
10360.00	41.63	40.10	15.37	41.34	55.76	68.20	-12.44	Horizontal			
		802.11n2	20 mode Low	est chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	32.59	40.10	15.37	41.34	46.72	54.00	-7.28	Vertical			
10360.00	31.01	40.10	15.37	41.34	45.14	54.00	-8.86	Horizontal			

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	42.81	40.00	15.42	41.27	56.96	68.20	-11.24	Vertical		
10400.00	42.09	40.00	15.42	41.27	56.24	68.20	-11.96	Horizontal		
		802.11n2	20 mode Mid	dle channe	el (Average '	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	32.51	40.00	15.42	41.27	46.66	54.00	-7.34	Vertical		
10400.00	31.46	40.00	15.42	41.27	45.61	54.00	-8.39	Horizontal		

	802.11n20 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	42.27	39.70	15.55	41.10	56.42	68.20	-11.78	Vertical		
10480.00	41.99	39.70	15.55	41.10	56.14	68.20	-12.06	Horizontal		
		802.11n2	:0 mode High	nest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	32.02	39.70	15.55	41.10	46.17	54.00	-7.83	Vertical		
10480.00	31.49	39.70	15.55	41.10	45.64	54.00	-8.36	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n40 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	41.59	40.00	15.42	41.31	55.70	68.20	-12.50	Vertical		
10380.00	41.33	40.00	15.42	41.31	55.44	68.20	-12.76	Horizontal		
		802.11n4	10 mode Low	est chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	30.26	40.00	15.42	41.31	44.37	54.00	-9.63	Vertical		
10380.00	31.58	40.00	15.42	41.31	45.69	54.00	-8.31	Horizontal		

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	41.20	39.80	15.51	41.17	55.34	68.20	-12.86	Vertical
10460.00	41.69	39.80	15.51	41.17	55.83	68.20	-12.37	Horizontal
	802.11n40 mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	32.29	39.80	15.51	41.17	46.43	54.00	-7.57	Vertical
10460.00	31.44	39.80	15.51	41.17	45.58	54.00	-8.42	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)	
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the	
Test setup:	Spectrum analyzer FUT Variable Power Supply Note: Measurement setup for testing on Antenna connector	
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test co	onditions	Francisco (MILL)	May Davieties (nom)
Temp(℃)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)
	3.50V	5179.997960	0.39
20	3.80V	5179.981576	3.56
	4.35V	5179.949603	9.73

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Francisco (MIII-)	May Davistian (mmm)	
Voltage(ac)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)	
-	-20	5179.998123	0.36	
	-10	5179.987480	2.42	
	0	5179.954903	8.71	
2.01/	10	5179.978014	4.24	
3.8V	20	5179.965108	6.74	
	30	5179.989065	2.11	
	40	5179.956901	8.32	
	50	5179.981297	3.61	