Global Constraint Catalog

PDF PL PNG XML

5.318. peak

DESCRIPTION LINKS AUTOMATON

Origin

Derived from inflexion.

Constraint

```
peak(N, VARIABLES)
```

Arguments

```
 \begin{tabular}{ll} N & dvar \\ VARIABLES & collection(var-dvar) \end{tabular}
```

Restrictions

```
N \ge 0
2 * N \le \max(|VARIABLES| - 1, 0)
required (VARIABLES, var)
```

Purpose

A variable V_k (1 < k < m) of the sequence of variables VARIABLES $= V_1, \cdots, V_m$ is a peak if and only if there exists an i (with $1 < i \le k$) such that $V_{i-1} < V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k > V_{k+1}$. $\mathbb N$ is the total number of peaks of the sequence of variables VARIABLES .

Example

```
(2,\langle 1,1,4,8,6,2,7,1\rangle)
(0,\langle 1,1,4,4,4,6,7,7\rangle)
(4,\langle 1,5,4,9,4,6,2,7,6\rangle)
```

The first peak constraint holds since the sequence 11486271 contains two peaks that respectively correspond to the variables that are assigned to values 8 and 7.

variables

Figure 5.318.1. Illustration of the first example of the Example slot: a sequence of eight variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 respectively fixed to values 1, 1, 4, 8, 6, 2, 7, 1 and its corresponding two peaks ($\mathbb{N} = 2$)

All solutions

Global Constraint Catalog: Cpeak

Figure 5.318.2 gives all solutions to the following non ground instance of the peak constraint: $\mathbb{N} \in [1,2]$, $V_1 \in [1,2]$, $V_2 = 2$, $V_3 \in [1,2]$, $V_4 \in [1,2]$, $V_5 \in [2,3]$, peak $(\mathbb{N}, \langle V_1, V_2, V_3, V_4, V_5 \rangle)$.

 V_3 V_4 V_5 V_6

Figure 5.318.2. All solutions corresponding to the non ground example of the peak constraint of the All solutions slot where each peak is coloured in orange

Typical

```
|VARIABLES| > 2
range(VARIABLES.var) > 1
```

Symmetries

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

- Functional dependency: N determined by VARIABLES.
- Contractible wrt. VARIABLES when N = 0.

Usage

Useful for constraining the number of peaks of a sequence of domain variables.

Remark

Since the arity of the arc constraint is not fixed, the peak constraint cannot be currently described with the graph-based representation. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for peak: domains 0..n

Solution density for peak

Length (n)	2	3	4	5	6	7	8	
Total	9	64	625	7776	117649	2097152	43046721	
Parameter value	0	9	50	295	1792	11088	69498	439791
	1 2 3	- - -	14 - -	330 - -	5313 671 -	73528 33033 -	944430 1010922 72302	11654622 24895038 6057270

Solution count for peak: domains 0..n

Solution density for peak

Solution density for peak


```
See also common keyword: highest _ peak, inflexion, min _ dist _ between _ inflexion, min _ width _ peak (sequence).

comparison swapped: valley.

generalisation: big _ peak (a tolerance parameter is added for counting only big peaks).

related: all _ equal _ peak, all _ equal _ peak _ max, decreasing _ peak, increasing _ peak, no _ valley.

specialisation: no _ peak (the variable counting the number of peaks is set to 0 and removed).
```

Keywords

```
characteristic of a constraint: automaton, automaton with counters, automaton with same input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.
```

Cond. implications

```
    peak(N, VARIABLES)
        with N > 0
        implies atleast _ nvalue (NVAL, VARIABLES)
        when NVAL = 2.
    peak(N, VARIABLES)
        implies inflexion (N, VARIABLES)
        when N = peak(VARIABLES. var) + valley(VARIABLES. var).
```

Automaton

```
Figure 5.318.3 depicts the automaton associated with the peak constraint. To each pair of consecutive variables (VAR<sub>i</sub>, VAR<sub>i+1</sub>) of the collection VARIABLES corresponds a signature variable S_i. The following signature constraint links VAR<sub>i</sub>, VAR<sub>i+1</sub> and S_i: (VAR<sub>i</sub> < VAR<sub>i+1</sub> \Leftrightarrow S_i = 0) \wedge (VAR<sub>i</sub> = VAR<sub>i+1</sub> \Leftrightarrow S_i = 1) \wedge (VAR<sub>i</sub> > VAR<sub>i+1</sub> \Leftrightarrow S_i = 2).
```

Figure 5.318.3. Automaton of the peak constraint

STATES SEMANTICS

s : stationary/decreasing mode $(\{>|=\}^*)$ u : increasing mode $(\{<|=\}^*)$

Figure 5.318.4. Hypergraph of the reformulation corresponding to the automaton of the peak constraint (since all states of the automaton are accepting there is no restriction on the last variable

Figure 5.318.5. Glue matrix of the peak constraint

Glue matrix where \overrightarrow{C} and \overrightarrow{C} resp. represent the counter value C at the end of a prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES.

Figure 5.318.6. Illustrating the use of the state pair (u,u) of the glue matrix for linking $\mathbb N$ with the counters variables obtained after reading the prefix 1,1,4,8 and corresponding suffix 8,6,2,7,1 of the sequence 1,1,4,8,6,2,7,1; note that the suffix 8,6,2,7,1 (in pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for i=0) and the evolution (for i>0) of the state of the automaton and of its counter C upon reading the prefix 1,1,4,8 (resp. the suffix 1,7,2,6,8).

glue matrix entry associated with the state pair (u, u):

$$N = \overrightarrow{C_3} + 1 + \overleftarrow{C_4} = 0 + 1 + 1 = 2$$

W3C: XHTML - last update: 2014-6-10. SD.