Résumé dérivée

mercredi, 27 février 2019

Fonction implicite: $x^2 + y^2 = 0$

On peut dérivée une fonction de type $x^2 + y^2 = 1$ (fonction implicite) il suffit simplement de considérer y comme une fonction de x

$$fonction\ explicite: x^2 = y$$

$$x^2 + \left(y(x)\right)^2 = 1$$

$$2x + 2yy' = 0$$

$$y' = -\frac{2x}{2y} \to \frac{dx}{dy}$$

règle dérivation :

$$(xy)' = xy' + x'y$$

$$(x + y)' = (x' + y')$$

 $(f \cdot g)' = (f'g) * g'$

$$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$$

$$(f^n)' = nf^{n-1} * x'$$

$$(f^n)' = nf^{n-1} * x'$$

$$\frac{1'}{f} = -\frac{f'}{f^2}$$

$$\sqrt{f}' = \frac{f'}{2\sqrt{f}}$$

Dérivation:

Quand on parle de dérivé. on parle de la pente (dy/dx) (en un point)

pour qu'uen finction soit dériveable, il faut que la limite de $\lim x \to x_0$ $\frac{f(x) - f(x_0)}{x - x_0}$ éxiste et soit fini.

De fonction paramétrique :

$$\frac{dy}{dx} = \frac{dy}{dt} * \frac{dt}{dx}$$

De fonction implicite:

On dérive tout en partant du principe que y est une fonction et pas juste y et on fais de même pour x (mais à la fin on remplace x par 1)(car la pente se calculer avec $\frac{dy}{dx}$ =

 $\frac{dy}{1}$) et ensuite on isole la dérivé de y qui reste.

On choisis les coordonné x et y qui nous intéresse et on les mets dans la fonction qui vaut y' (donc la pente en ce point xy)

Règles de dérivation :

Trois règle général: addition, multiplication et composition

Nom	Règle	Conditions	
Linéarité	$(af+g)^\prime=af^\prime+g^\prime$	Quels que soient le réel a et les fonctions dérivables f et g .	
Produit	(fg)'=f'g+fg'	Quelles que soient les fonctions dérivables f et g .	
Inverse	$\left(rac{1}{g} ight)'=rac{-g'}{g^2}$	Quelle que soit la fonction dérivable g qui ne s'annule pas (cas particulier f =1 de la ligne suivante)	
Quotient	$\left(rac{f}{g} ight)'=rac{f'g-fg'}{g^2}$	Quelles que soient la fonction dérivable f et la fonction dérivable g qui ne s'annule pas	
Composée	$(g\circ f)'=(g'\circ f)\cdot f'$	Quelles que soient les fonctions dérivables (et composables) f et g	
Réciproque	$(f^{-1})' = rac{1}{f' \circ f^{-1}}$	Quelle que soit la fonction f bijective de réciproque f^{-1} , dérivable de dérivée ne s'annulant en aucun point	

pici les règles courantes se déduisant de la dérivée de composées

Nom	Règle	Conditions	
Puissance	$(f^{lpha})'=lpha f^{lpha-1}f'$	Quel que soit $lpha \in \mathbb{Z}$, et même quel que soit $lpha \in \mathbb{R}$ si $f>0$	
Racine	$\left(\sqrt{f}\right)' = \frac{f'}{2\sqrt{f}}$	Quelle que soit la fonction dérivable f strictement positive (cas particulier α =1/2 de la ligne précédente)	
Exponentielle	$(e^f)' = e^f \cdot f'$	Quelle que soit f dérivable	
Logarithme	$(\log_b f)' = \frac{f'}{f \cdot \ln b}$	Quelle que soit la fonction dérivable f strictement positive	
Logarithme	$(\ln f)' = \frac{f'}{f}$	Quelle que soit la fonction dérivable f strictement positive (cas b =e de la ligne précédente)	

Domaine de définition \mathcal{D}_f	Fonction $f(x)$	Domaine de dérivabilité D_{j^\prime}	Dérivée $f'(x)$	Condition ou remarque
R	k	R	0	k constante réelle
R	kx	R	k	k constante réelle
R	x^n	R	$n x^{n-1}$	n entier naturel
R*	$\frac{1}{x^n} = x^{-n}$	R*	$-nx^{-n-1} = -\frac{n}{x^{n+1}}$	n entier naturel
R ₊	$\sqrt[n]{x} = x^{1/n}$	R*	$(1/n)x^{(1/n)-1} = \frac{1}{n\sqrt[n]{x^{n-1}}}$	n entier naturel
R*+	x^{α}	R*	$\alpha x^{\alpha-1}$	$\alpha \text{ constante réelle. Fonction prolongeable par continuité en 0 si } \alpha \geq 0, \text{ et de prolongée dérivable en 0 si } \alpha \geq 1.$
R*	$\ln x $	R*	$\frac{1}{x}$	$\operatorname{Cas} a = \operatorname{ede} \log_a x $
R*	$\log_a x $	R*	$\frac{1}{x \ln a}$	$a>0$ et $a\neq 1$
R	e ^a	R	e ^z	$\operatorname{Cas} a = \operatorname{e} \operatorname{de} a^x$
R	a^{α}	R	$a^x \ln a$	a > 0
R	$\sin x$	R	$\cos x$	
R	cos x	R	$-\sin x$	
$\mathbb{R}\setminus\left(\frac{\pi}{2}+\pi\mathbb{Z}\right)$	$\tan x$	$\mathbb{R}\setminus\left(\frac{\pi}{2}+\pi\mathbb{Z}\right)$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	
$\mathbb{R} \setminus (\pi \mathbb{Z})$	$\cot x$	$\mathbb{R} \setminus (\pi \mathbb{Z})$	$-\frac{1}{\sin^2 x} = -1 - \cot^2 x$	
[-1, 1]	$\arcsin x$]-1,1[$\frac{1}{\sqrt{1-x^2}}$	
[-1,1]	$\arccos x$]-1,1[$-\frac{1}{\sqrt{1-x^2}}$	
R	$\arctan x$	R	$\frac{1}{1+x^2}$	
R	$\sinh x$	R	$\cosh x$	
R	$\cosh x$	R	$\sinh x$	
R	$\tanh x$	R	$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$	
R*	$\coth x$	R*	$\frac{-1}{\sinh^2 x} = 1 - \coth^2 x$	
R	arsinh x	R	$\frac{1}{\sqrt{1+x^2}}$	
[1, +∞[arcosh x]1,+∞[$\frac{1}{\sqrt{x^2-1}}$	
]-1,1[artarh x]-1,1[$\frac{1}{1-x^2}$	

Dérivé gauche et droite :

une fonction est dérivable a droite en X_0 si $\lim_{h \to 0+} \left(\frac{f(X_0+h)-f(X_0)}{h} \right)$ existe, on note alors cette limite $f'(X_0+)$. même chose pour la gauche mais X0-

Dérivée de valeur absolue :

$$\left|x^3+a^3\right|+3x=\sqrt{(x^3+a^3)^2}+3x$$

Voir comme une racine d'u nombre au carrée

$$f(x) = |x^3 + a^3| + 3x$$

$$\Rightarrow |x^3 + (-1.6)^3| + 3x$$

$$f'(x) = D\'{e}riv\'{e}(f)$$

$$\rightarrow \frac{3 x^2 \left| (-1.6)^3 + x^3 \right| + 3 (-1.6)^3 + 3 x^3}{(-1.6)^3 + x^3}$$

$$f(x) = |x^{3} + a^{3}| + 3x$$

$$\Rightarrow |x^{3} + (-1.6)^{3}| + 3x$$

$$f'(x) = \mathsf{D\acute{e}riv\acute{e}e}(f)$$

$$\rightarrow \frac{3 \times^2 \left| (-1.6)^3 + x^3 \right| + 3 (-1.6)^3 + 3 \times^3}{(-1.6)^3 + x^3}$$