Copyright Copyright University of New 15th Vales 23 Arright

■ opyright Course materia

UNSW Sydney owns c copyright under Austr use by enrolled UNSW print or digitally, outsi the material for person materials be copied or UNSW Sydney.

rials (unless stated otherwise). The material is subject to under international treaties. The materials are provided for s, or any part, may not be copied, shared or distributed, in permission. Students may only copy a reasonable portion of for criticism or review. Under no circumstances may these commercial purposes without prior written permission of

Statement on classrechting CStutorcS

To ensure the free and open discussion of ideas, students may not record, by any means, classroom lectures, discussion and/or activities without the advance written permission of the instructor, and any such recording properly approved in advance can be used solely for the students own private use.

WARNING: Your failure to comply with the to a civil action or a criminal offence under the law.

THE ABOVE INFORMATION MUST NOT BE REMOVED FROM COURS MATERIAL OTHER

QQ: 749389476

https://tutorcs.com

Sample Answe

🗃 orial 5

1. (Error correction ar

The first VEC equation that $\Delta x_t = \gamma \Delta x_{t-1} + \eta_t$ with $\alpha_1 = 0$, $\phi_{11} = \gamma$ and $u_{1t} = \eta_t$ and $u_{1t} = \eta_t$ attion can be found from $y_t = \beta x_t + \varepsilon_t$

$$\Delta y_{t} = y_{t} - y_{t-1}$$

$$= -y W + \beta C_{t} + \alpha t: cstutorcs$$

$$= -(y_{t-1} - \beta x_{t-1}) + \beta x_{t} - \beta x_{t-1} + \varepsilon_{t}$$

$$= -(Assign + Project Exam Help)$$

$$= -(y_{t-1} - \beta x_{t-1}) + \beta \gamma \Delta x_{t-1} + (\beta \eta_{t} + \varepsilon_{t}).$$

Comparing the last expression against the second VEC equation leads to $\alpha_2 = 1$, $\phi_{21} = \beta \gamma$, and $u_{2t} = \beta \eta_t + \varepsilon_t$. In this example, occause x_t does not depend on the last period's cointegration error $(\alpha_1 = 0)$ and the adjustment toward long-run equilibrium is entirely done by y_t $(\alpha_2 = -1)$, x_t is the common trend that drives y_t moving along.

- 2. AR(p), MA(q) and ARMA(p,q) imply linear predictability. We learned that for financial return there is no linear predictability. Moreover, all these models have constant variance, while financial returns exhibit time-varying variance and volatility clustering. We will get to these exiting models very soon.
- 3. (Cointegration and error correction model)
- (a) The time series plot of R and INF does visually suggest that they move together in the sample period: both were high in 80s and low in post 1990 period.

The estimation results for $R_t = \beta_0 + \beta_1 INF_t + \varepsilon_t$ indicate that the residuals are strongly autocorrelated (tiny p-values for Q-stats in residual correlogram). The ADF unit-root test on residu1, using the Dickey-Fulle critical these (virth represent this confext, see part (c) below), strongly rejects the null hypothesis of a unit-root (p-value = .0007).

QQ: 749389476

https://tutorcarelation_Partial Correlation_AC_PAG

Method: Least Squares

Sample: 1984Q1 2012Q1
Included observations: 113

Variable Coefficie

Dependent Variable: R

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	4.727418	0.485456	9.738090	0.0000
INF	0.918825	0.103577	8.870954	0.0000
R-squared	0.414847	Mean dependent var		8.037522
Adjusted R-squared	0.409575	S.D. dependent var		4.296092
S.E. of regression	3.301080	Akaike info criterion		5.243917
Sum squared resid	1209.581	Schwarz criterion		5.292189
Log likelihood	-294.2813	F-statistic		78.69382
Durbin-Watson stat	0.701208	Prob(F-statistic)		0.000000

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
Autocorrelation	I I I I I I I I I I I I I I I I I I I	1 2 3 4 5 6 7	0.622 0.569 0.531 0.542 0.498 0.445	0.622 0.298 0.175 0.190 0.070 -0.002	44.834	0.000 0.000 0.000 0.000 0.000 0.000
: 🖃	:1:	8			242.30 254.13	
;		10			264.06	
; =	1 1	11 12			271.12 278.94	
· [[]	13	0.200	-0.009	284.14	0.000
¦ Б		14	0.194		289.08 293.17	
ı (1 1	16	0.160			0.000

AugmenterDicker-Filter Unapod testex ES 005编程辅导

Null Hypothesis: RESID01 has a unit root

Exogenous: None

Lag Length: 1 (Autom XLAG=12)

Augmented Dickey-Fi Test critical values: Location t-Statistic Prob.* -3.459213 0.0007 -2.585962 -1.943741 -1.614818			
Test critical values: -2.585962 -1.943741		t-Statistic	Prob.*
	Tutor CS	-2.585962 -1.943741	0.0007

^{*}MacKinnon (1996) one-sided p-values.

WeChat: cstutorcs

- The Engle-Granger cointegration test is just the ADF on the residual from part (b) without intercept and time trend However the critical values of the EG test differ from the Dickey-Fuller critical values because the test is performed on the residual from a regression involving I(1) time series. In fact, the 1%, 5%, 10% critical values for EG test involving two I(1) series are approximately -4.1, -3.4, -3.1 respectively. The critical values for EG test involving two I(1) series are approximately outlier or in residual (or spurious regression) at approximately 5% level. The reported p-value (0.0007) is under the Dickey-Fuller critical values and are invalid in this context.
- (d) Given that β_1 is positive, if the cointegration error $\varepsilon_t = R_t \beta_0 \beta_1 INF_t$ is positive at t, R_{t+1} and INF_{t+1} should move toward eliminating the error. Hence R_{t+1} would likely move downward or INF_{t+1} would likely move INF_{t+1} would likely move INF_{t+1} would likely INF_{t+1} would likely INF_{t+1} would INF_{t+1} would
- (e) The estimation results, where E = resid01, suggest that many of the coefficients on the lags of DR and DINF are statistically insignificant. For the adjustment coefficients on E(-1), α_1 is only statistically significant at about 15% (p-value=0.1342) and α_2 is at about 30% (p-value=0.2994).

Dependent Variable: DR Method: Least Squares

Sample (adjusted): 1984Q2 2012Q1 Included observations: 112 after adjustments Dependent Variable: DINF Method: Least Squares

Sample (adjusted): 1984Q2 2012Q1 Included observations: 112 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
_C	0.068242	0.094035	0.725707	0.4697	С	0.042511	0.221627	0.191814	0.8483
E(-1)	0.054172	0.035881	1.509753	0.1342	E(-1)	0.088206	0.084566	1.043033	0.2994
DR(-1)	0.095159	0.102556	0.927873	0.3557	DR(-1)	-0.949470	0.241710	-3.928138	0.0002
DR(-2)	0.013995	0.092036	0.152059	0.8794	DR(-2)	-0.381278	0.216916	-1.757718	0.0818
DR(-3)	0.217247	0.085789	2.532337	0.0129	DR(-3)	-0.021145	0.202192	-0.104581	0.9169
DR(-4)	-0.075634	0.083956	-0.900872	0.3698	DR(-4)	0.015634	0.197871	0.079013	0.9372
DINF(-1)	-0.029474	0.049132	-0.599890	0.5499	DINF(-1)	-0.712485	0.115797	-6.152859	0.0000
DINF(-2)	-0.044087	0.050898	-0.866183	0.3884	DINF(-2)	-0.544431	0.119958	-4.538509	0.0000
DINF(-3)	0.034231	0.049238	0.695219	0.4885	DINF(-3)	-0.446453	0.116047	-3.847159	0.0002
DINF(-4)	0.050601	0.039576	1.278605	0.2039	DINF(-4)	-0.161552	0.093274	-1.732026	0.0863
R-squared	0.181211	Mean deper	ndent var	0.083214	R-squared	0.411134	Mean deper	ndent var	0.006924
Adjusted R-squared	0.108965	S.D. depend	dent var	1.047904	Adjusted R-squared	0.359175	S.D. depen	dent var	2.912268
S.E. of regression	0.989165	Akaike info	criterion	2.901135	S.E. of regression	2.331315	Akaike info	criterion	4.615788
Sum squared resid	99.80168	Schwarz cri	iterion	3.143858	Sum squared resid	554.3731	Schwarz cri	iterion	4.858511
Log likelihood	-152.4635	F-statistic		2.508255	Log likelihood	-248.4841	F-statistic		7.912690
Durbin-Watson stat	2.007214	Prob(F-stati	istic)	0.012322	Durbin-Watson stat	2.055841	Prob(F-stati	istic)	0.000000

Hence the assumed country rain of best austical sustified at 29 necessary to have the error correction mechanism in place for the cointegration to hold. However the ad included too many irrelevant lags. Including too many model here may have or standard errors) of the OLS estimators. irrelevant lags may ha

ags of DR and DINF are statistically insignificant, the (f) As many of the ple, we can test the exclusion of the DINF lags from the model size can indeed Ind DR(-4) from the second equation. The Wald tests first equation and the below confirm that the exclusions cannot be rejected (large p-values). See Tutorial 2 for EViews clicks for the Wald test (tips iii). From the new estimation results, indeed, the standard errors on the adjustment coefficients are smaller than those impart (pt. The adjustment coefficient α_1 is now statistically significant at 5% (p-value=0.0231) whilst α_2 remains insignificant. An interpretation is that the interest rate makes adjustments according to the inflation and the latter acts as the common trend, which does not respond to the deviation from the long run relationship.

Email: tutorcs@163.com Wald Test: Equation: EQN4

Test Statistic	Value	df	Probability	Equation: EQN5		
F-statistic Chi-square	1.311(35)	(), 102)	4978	894 Test Statistic	Value	df
CIII-Square	5.24114	-	0.2020	F-statistic Chi-square	0.008300 0.016599	(2, 102)

Null Hypothesis Summary:

Dependent Variable: DR Method: Least Squares

Normalized Restriction (=	= 0)	lll	Value /			ypothesis Summary:	
---------------------------	------	-----	---------	--	--	--------------------	--

C(7) C(8)	-0.029474 -0.044087		Normalized Restriction (= 0)
C(9)	0.034231		C(5)
C(10)	0.050601	0.039576	C(6)

Dependent Variable: DINF Method: Least Squares

Sample (adjusted): 1984Q2 2012Q1 Included observations: 112 after adjustments

Variable Coefficient Std. Error t-Statistic Prob. 0.068053 0.094578 0.719543 0.4734 E(-1) DR(-1) 0.069750 0.030260 2.305005 0.0231 0 107074 1.097940

DR(-1) DR(-2) DR(-3) DR(-4)	-0.021571 0.226945 -0.084482	0.083630 -0.257930 0.081229 2.793907 0.082638 -1.022311		0.7970 0.0062 0.3090
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.139086 0.098477 0.994970 104.9363 -155.2730 2.000971	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	0.083214 1.047904 2.879875 3.025509 3.424994 0.006577

Sample (adjusted): 1984Q2 2012Q1 Included observations: 112 after adjustments

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	С	0.042457	0.219071	0.193804	0.8467
:	E(-1)	0.088531	0.082615	1.071600	0.2864
	DR(-1)	-0.943837	0.232946	-4.051751	0.0001
	DR(-2)	-0.382355	0.211139	-1.810916	0.0730
	DINF(-1)	-0.710166	0.111908	-6.345996	0.0000
	DINF(-2)	-0.541910	0.112432	-4.819876	0.0000
	DINF(-3)	-0.445855	0.110805	-4.023790	0.0001
_	DINF(-4)	-0.159725	0.089154	-1.791550	0.0761
	R-squared	0.411038	Mean deper	ndent var	0.006924
	Adjusted R-squared	0.371396	S.D. depend	dent var	2.912268
	S.E. of regression	2.308978	Akaike info	criterion	4.580236
	Sum squared resid	554.4634	Schwarz cri	terion	4.774415
	Log likelihood	-248.4932	F-statistic		10.36883
	Durbin-Watson stat	2.058307	Prob(F-stati	stic)	0.000000

Probability 0.9917 0.9917

Std. Err.

0.202192

0.197871

Value

-0.021145

0.015634

4. While the spec	cific refu	ts will be	differe	ndue to ra	om fumbe	编i轴	辅品	
SUMMARY OUTPUT								
Regression Sta	tistics							
Multiple R	0.45		~					
R Square	0.20		┪╬┖┶╌					
Adjusted R Square	0.20	经分类的	400					
Standard Error	6.46							
Observations	472	Tutor C		2				
ANOVA	<u> </u>	1.4	ГĄ					
	dj 🔳		₽₽₩₩	F	Significance F			
Regression		10/0/./0	10/0/./8	257.4169915	1.03657E-51			
Residual	998	41746.44	41.8301					
Total	999	52514.21						
	Coefficient	in fa r Err	าลา:	P-yQue	160 dr (5%)	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	16.0075	0.220029	72.75172	0	15.57572369	16.43926929	15.57572369	16.43926929
X Variable 1	0.169708	0.010578	16.04422	1.03657E-51	0.148951156	0.190464572	0.148951156	0.190464572

Assignment Project Exam Help The common theme will be that the coefficient estimates of the regression will be super significant.

The R² is also relatively high. However, the regression does not make any sense (we regress two totally unrelated random valls and we then to the Section of the s an example of spurious regression.

More cute examples of spirious regression: 389476

 $\underline{http://www.eco.uc3m.es/\sim} jgonzalo/teaching/timeseriesMA/examplesspuriousregression.pdf$

https://tutorcs.com *[Nice discussion and remedy "Is the Spurious Regression Problem Spurious?"

http://www.nber.org/papers/w15690.pdf]