

Capstone Project – 2 Seoul Bike Sharing Demand Prediction

Puneet Suthar

What are we talking about ?

Content:

- Introduction to Bike rentals
- Problem Statement
- General overview of the dataset
- Data cleaning
- Exploratory Data Analysis
- Web application
- Conclusion

Bike rentals have experienced a surge in popularity in recent years, with people using the service more frequently due to its relatively affordable rates and convenience of pick:up and drop:off at their own discretion. Ensuring the availability and accessibility of rental bikes to the public at the appropriate times reduces waiting time and ultimately provides a steady supply of bikes to the city. The objective of this project is to develop a machine learning model capable of forecasting the demand for rental bikes in Seoul.

How our dataset Look like?

General overview of the dataset

14 Columns

&

8760 Rows

General overview of the dataset

- **14 Columns**
- Date : year:month:day
- 2. Rented Bike count : Count of bikes rented at each hour
- 3. Hour : Hour of the day
- 4. Temperature : Temperature in Celsius
- 5. Humidity : %
- 6. Wind Speed : m/s
- 7. Visibility : 10m
- 8. Dew point temperature : Celsius
- 9. Solar radiation : MJ/m2
- 10. Rainfall : mm

General overview of the dataset

14 Columns

- 11. Snowfall : cm
- 12. Seasons : Winter, Spring, Summer, Autumn
- 13. Holiday : Holiday/No holiday
- 14. Functional Day : No(Non Functional Hours),
 - Yes(Functional hours)

ΑI

General overview of the dataset

- Some columns have very high No. of Zeros :
 - a. Solar Radiation (MJ/m2) 4300
 - b. Rainfall(mm) 8232
 - c. Snowfall (cm) 8317
- In a day we have 24 hours and we have 365 days a year so 365 X 24 = 8760,
 which are the no.of lines in the given dataset.
- 'Seasons', 'Holiday', 'Functioning Day', 'Hour' are the categorical columns.
- No null values
- No duplicated value.

EDA (Exploratory Data Analysis)

0.01

15 20 25

skewness 0.0075

EDA (Exploratory Data Analysis)

(Exploratory Data Analysis)

EDA

Outliers

Total No. of rows in dataframe - 8760 Total rows containing outliers in data - 1838

Percentage of total rows containing outliers in data - 20.98%

refeelitage of total for		utliers in data - 20.98% data above upper whisker	lower whisker	data_below_lower_whisker	outlier per
feature			_		
Rented_Bike_Count	2376.625	158	-1120.375	0	1.80
Hour	34.500	0	-11.500	0	0.00
Temperature	51.000	0	-25.000	0	0.00
Humidity	122.000	0	-6.000	0	0.00
Wind_speed	4.400	161	-1.200	0	1.84
Visibility	3590.000	0	-650.000	0	0.00
Dew_point_temperature	44.050	0	-33.950	0	0.00
Solar_Radiation	2.325	641	-1.395	0	7.32
Rainfall	0.000	528	0.000	0	6.03
Snowfall	0.000	443	0.000	0	5.06

Box Plot

Before outlier removal

Box plot of solar radiation between 5 am to 7pm

EDA

Before outlier removal

After replacing the outlier by median

EDA (Exploratory Data Analysis)

Most of the features Doesn't show any linear relationship with target column Only solar radiation and temperature shows a bit

There is a huge impact on Solar_Radiation, Rainfall and Snowfall in different months

As we can see the snow fall and rainfall are highly related to the seasons, so these are the outliers, but the data is correct.

- 1. Bike demand is lower in winter.
- Demand is higher in on non holiday.
- 3. Demand is lower on weekends, Sunday.

Correlation heatmap

EDA (Exploratory Data Analysis)

- 0.8

- 0.4

-0.2

-0.4

Handling skewed column

Applied square root transformation

Before

After

Model Building

Hyperparameter tuning


```
models_list = [LR,La,R, En, DT, RF,GBR]
   para_df = ModelSelection(X_data,y_data,models_list, model_hyperparameters,20,'neg_mean_absolute_error')
LinearRegression()
Lasso()
Ridge()
ElasticNet()
DecisionTreeRegressor()
RandomForestRegressor()
GradientBoostingRegressor()
```

	model used	highest neg_mean_absolute_error score	best hyperparameters
0	LinearRegression()	-5.687872	{'copy_X': True, 'fit_intercept': True, 'positive': False}
1	Lasso()	-5.687823	{'alpha': 0.0001, 'copy_X': True, 'fit_intercept': True, 'positive': False}
2	Ridge()	-5.688480	{'alpha': 0.1, 'fit_intercept': True, 'positive': False, 'solver': 'sag'}
3	ElasticNet()	-5.687823	{'alpha': 0.0001, 'copy_X': True, 'fit_intercept': True, 'l1_ratio': 1.0, 'positive': False}
4	DecisionTreeRegressor()	-4.300701	{'criterion': 'friedman_mse', 'max_depth': 16}
5	RandomForestRegressor()	-3.391525	{'max_features': None, 'n_estimators': 150}
6	GradientBoostingRegressor()	-3.315588	{'max_depth': 10, 'min_samples_leaf': 70, 'n_estimators': 150, 'random_state': 4}

Model comparision

3.485228 8.145631

3.483713 8.144663

3.212965

2.702963

2.566331

5.942551

5.448857

5.432127 3.725001

5.749882

5.749254

4.683842

3.645469

19.162500 96.543674

96.544308

73.825390

53.489935

55.023106

19.150181

19.233462

12.175893

10.698994

Python

[80]		<pre>models = [LR,La,R, En, DT, RF,GBR] results = CrossValidation_model_comparision(models,X_data,y_data,10,scaler)</pre>													
		Mod	els					Para	meters						
	0	Linear Regressi	on						0						
	1	Las	sso					(alpha=	0.0001)						
	2	Rid	lge	(alpha=0.1, solver='sag')											
	3	ElasticN	Net				(alpha=	0.0001, l1_rat	io=1.0)						
	4	DecisionTreeRegress	sor			(criterion:	='friedman_m	nse', max_dep	oth=16)						
	5	Random Forest Regress	sor			(max_fe	atures=None	e, n_estimator	rs=150)						
	6	GradientBoostingRegress	sor (max_o	depth=10, n	nin_samples	_leaf=70, n_e	stimators=15	50, random_s	tate=4)						
>				C	ommon l	Metrics R	eport Aft	er 10 Fold	l Cross Va	lidation					
			Mean A	Absolute Er	ror (MAE)	Me	an Squared I	Error (MSE)	Root Mean	Squared Err	or (RMSE)			r2_score	
			Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	
		Linear Regression	3.483169	8.144862	5.749263	19.148170	96.548506	55.128206	4.375862	9.825910	7.228983	-0.038652	0.726956	0.381590	
		Lasso	3.483713	8.144663	5.749254	19.150181	96.544308	55.125820	4.376092	9.825696	7.228818	-0.038761	0.726916	0.381629	

55.124779

55.125820

46.625189

27.430525

26.249838

4.377499

4.376092

4.385597

3.489397

3.270932

9.825664

9.825696

8.592170

7.313681

7.417756

7.228817

7.228818

6.716621

5.138280

4.991712

-0.039429

-0.038761

-0.326980

0.141370

0.390504

0.726739

0.726916

0.889928

0.882203

0.797834 0.434008

0.381608

0.381629

0.660291

0.695725

DecisionTreeRegressor

RandomForestRegressor

GradientBoostingRegressor

^{**}Blue are highest
**Red are Lowest

Best model

GradientBoostingRegressor (max_depth =10, min_samples_leaf =70, n_estimators =150, random_state =4)

	MSE	RMSE	MAE	Train_R2	Test_R2	Adjusted_R2
0	16.448202	4.055638	2.552573	0.916574	0.883052	0.881973

Web application

Rental bike count Prediction

Prediction Date Holiday or not Functioning_Day or not

2023/02/24 Yes

✓ Yes

2023-02-24

	Hour	Temperature	Humidity	Wind_speed	Visibility	Solar_Radiation	Rainfall	Snowfall	Seasor
	0	-1.3	93	3.7	24,140	29.5	0	0	Winter
1	1	0.4	80	3.3	24,140	210	0	0	Winter
2	2	2.7	64	5.8	24,140	376.5	0	0	Winter
	3	4.7	50	7.1	24,140	482.6	0	0	Winter
4	4	5.6	42	9.2	24,140	533.4	0	0	Winter
	5	5.9	38	10.5	24,140	521.5	0	0	Winter
	6	6	31	11.4	24,140	452.9	0	0	Winter
	7	5.5	30	11	24,140	328.2	0	0	Winter
8	8	4.7	29	9.6	24,140	168.7	0	0	Winter
	9	3.6	30	8.3	24,140	36.1	0	0	Winter

Predict

2	2	2.7	64	5.8	24,140	376.5	0	0	Winter
	3	4.7	50	7.1	24,140	482.6	0	0	Winter
4	4	5.6	42	9.2	24,140	533.4	0	0	Winter
	5	5.9	38	10.5	24,140	521.5	0	0	Winter
	6	6	31	11.4	24,140	452.9	0	0	Winter
	7	5.5	30	11	24,140	328.2	0	0	Winter
8	8	4.7	29	9.6	24,140	168.7	0	0	Winter
	9	3.6	30	8.3	24,140	36.1	0	0	Winter

Conclusion

Conclusion

We trained 7 models for our machine learning project to forecast bike rental demand based on weather conditions and other factors. We refined each model through hyperparameter tuning and found that the Gradient Boost model had the lowest RMSE, making it an excellent choice for accuracy-focused businesses. However, the decision tree model may be preferable for businesses that value model interpretability. Overall, our project developed accurate predictive models that can optimize rental operations and improve business outcomes.

Q&A