Bolin He, PID: A53316428, Hw02

Table of Contents

Problem 1. Adaptive Histogram Equalization	1
Problem 2. Binary Morphology	3
Problem 3. Lloyd-Max Quantizer	8

Nov 06,2019

Problem 1. Adaptive Histogram Equalization

```
clear all;
close all;
clc;
B = imread('beach.png');
%original
figure(1)
imshow(B)
title('original')
%HE
figure(2)
subplot(2,2,1)
B_HE=histeq(B);
imshow(B_HE)
title('simple HE')
%win_size=33
subplot(2,2,2)
AHE(B, 33)
title('AHE & winsize=33')
%win size=65
subplot(2,2,3)
AHE(B,65)
title('AHE & winsize=65')
%win_size=129
subplot(2,2,4)
AHE(B, 129)
title('AHE & winsize=129')
% function [ ] = AHE(im,win_size)
% impad = padarray(im,[(win_size-1)/2,(win_size-1)/2],'symmetric');
% [x,y] = size(im);
% output = zeros(x,y);
% for i = 1:x
```

```
%
     for j = 1:y
응
         rank = 0;
응 응
           contextual_region = im(i:i+win_size-1,j:j+win_size-1);
        for k = i:i+win size-1
            for t = j:j+win_size-1
응
                 if impad((win_size-1)/2+i,(win_size-1)/2+j) >
응
impad(k,t)
                     rank = rank+1;
%
                 end
응
            end
응
         end
         output(i,j) = rank*255/(win_size*win_size);
응
     end
% end
응
% enhanced_image = imshow(output,[])
% (1) Both HE and AHE can enhance the contrast, while AHE can get
    more details than HE.
% (2) I think AHE works better than HE for the beach image.
     However, choosing AHE or HE depends on the image.
```

original

simple HE

AHE & winsize=33

AHE & winsize=65

AHE & winsize=129

Problem 2. Binary Morphology

```
close all;
clear all;
clc;
CL = imread('circles_lines.jpg');
CL = im2bw(CL);
L = imread('lines.jpg');
L = im2bw(L);
%%%%% Part(i) %%%%%
% Process Image circles_lines .jpg
se = strel('disk',5);
OpenCL = imopen(CL,se);
[x,y] = bwlabel(OpenCL);
for i = 1:y
    [row,col] = find(i == x);
    centroid_x1(i) = mean(row);
    centroid_y1(i) = mean(col);
    area(i) = length(row);
end
% plot figures
```

```
figure(1)
subplot(1,2,1)
imshow(CL)
title('Original')
subplot(1,2,2)
imshow(OpenCL)
title('Image after opening')
figure(2)
imagesc(x)
title('Connected component labeling')
% table
Centroid = [centroid_x1',centroid_y1'];
Area = area';
table(Centroid, Area)
%%%%% Part(ii) %%%%%
% Process Image lines.jpg
se2 = strel('line',8,90);
OpenL = imopen(L,se2);
[x2,y2] = bwlabel(OpenL);
for i = 1:y2
    [row2,col2] = find(i == x2);
   centroid_x2(i) = mean(row2);
   centroid_y2(i) = mean(col2);
    length(i) = max(row2)-min(row2);
end
% plot figures
figure(3)
subplot(1,2,1)
imshow(L)
title('Original')
subplot(1,2,2)
imshow(OpenL)
title('Image after opening')
figure(4)
imagesc(x2)
title('Connected component labeling')
% table
Centroid = [centroid_x2',centroid_y2'];
Length = length';
table(Centroid,Length)
% The type and size for opening are:
응
      'disk',5
      'line',8,90
```

ans =

30×2 table

Cent	Centroid	
120	9.5	78
41	12.5	78
62	25	69
154	25	69
93	26	69
37	28	95
6.7283	36	92
126	40	69
96.324	57.199	136
140	61	69
60	63	69
31	65	69
49	81.5	78
13.5	83.5	108
100	85	69
138	87	69
73	92	69
116.5	100.5	82
92	109.5	78
42	110.5	78
67	111	69
16	126	69
130	126	69
35	134	69
76.5	139	78
46	152	69
106.5	153	78
145	156	69
19	160	69
76	162	69

ans =

6×2 table

Centroid		Length
57.374	21.508	112
63.5	53.039	41
149.1	59.017	70
36.834	78.049	50
106.3	96.019	52
132.62	126.51	91

Problem 3. Lloyd-Max Quantizer

```
close all;
clear all;
clc;
D = imread('diver.tif');
L512 = imread('lena512.tif');
%%%%% Part(i) %%%%%
figure
s = 1:7;
MSE\_Uni\_1 = myF(D,s);
subplot(2,4,1)
imshow(D)
title('Original')
ylabel('Uniform Quantizer')
figure
MSE\_Uni\_2 = myF(L512,s);
subplot(2,4,1)
imshow(L512)
title('Original')
ylabel('Uniform Quantizer')
% function [] = myF(I,s)
      I = double(I);
응
      [x,y] = size(I);
      Store = zeros(x,y);
      interval = 255./2.^s;
응
      for i = 1:length(s)
          T = round(0:interval(i):255);
응
          for j = 1:length(T)-1
              Store(I>T(j) & I<=T(j+1)) = (T(j)+T(j+1))/2;
응
          end
          subplot(2,4,i+1)
          Store = uint8(Store);
          imshow(Store)
          title(['bit=',num2str(i)])
      end
% end
%%%%% Part(ii) %%%%%
[m1,n1] = size(D);
training_set_1 = double(reshape(D,n1*m1,1));
[m2,n2] = size(L512);
training_set_2 = double(reshape(L512,n2*m2,1));
figure
subplot(2,4,1)
imshow(D)
```

```
title('Original')
ylabel('Lloyd-Max Quantizer')
for s = 1:7
    len = 2.^s;
    [partition_1, codebook_1] = lloyds(training_set_1, len);
    [idx_1,quantv_1] = quantiz(training_set_1,partition_1,codebook_1);
    idx_1 = idx_1/len*255;
    idx 1 = uint8(reshape(idx 1,[m1,n1]));
    subplot(2,4,s+1)
    imshow(idx_1)
    title(['bit=',num2str(s)])
    MSE_1(s) = sum(sum((double(idx_1)-double(D)).^2))/numel(D);
end
figure
subplot(2,4,1)
imshow(L512)
title('Original')
ylabel('Lloyd-Max Quantizer')
for s = 1:7
    len = 2.^s;
    [partition 2, codebook 2] = lloyds(training set 2, len);
    [idx_2,quantv_2] = quantiz(training_set_2,partition_2,codebook_2);
    idx 2 = idx 2/len*255;
    idx_2 = uint8(reshape(idx_2,[m2,n2]));
    subplot(2,4,s+1)
    imshow(idx_2)
    title(['bit=',num2str(s)])
    MSE_2(s) = sum(sum((double(idx_2)-double(L512)).^2))/numel(L512);
end
્ટ
figure
plot(1:7,MSE Uni 1)
hold on
plot(1:7,MSE 1)
legend('LM','Uniform')
title('Diver')
ylabel('MSE')
xlabel('bit')
figure
plot(1:7,MSE_Uni_2)
hold on
plot(1:7,MSE 2)
legend('LM','Uniform')
title('lena512')
ylabel('MSE')
xlabel('bit')
%%%%% Part(iii) %%%%%
```

```
a = histeq(D, 256);
b = histeq(L512, 256);
% Uniform
s = 1:7;
a = double(a);
[x,y] = size(a);
Store1 = zeros(x,y);
interval = 255./2.^s;
for i = 1:length(s)
    T = round(0:interval(i):255);
    for j = 1:length(T)-1
        Store1(a>T(j) & a<=T(j+1)) = (T(j)+T(j+1))/2;
    MSE_Uni_a(i) = sum(sum((double(Store1)-double(a)).^2))/numel(a);
end
s = 1:7;
b = double(b);
[x,y] = size(b);
Store2 = zeros(x,y);
interval = 255./2.^s;
for i = 1:length(s)
    T = round(0:interval(i):255);
    for j = 1:length(T)-1
        Store2(b>T(j) & b<=T(j+1)) = (T(j)+T(j+1))/2;
    end
    MSE_Uni_b(i) = sum(sum((double(Store2)-double(b)).^2))/numel(b);
end
a = histeq(D, 256);
b = histeq(L512, 256);
% LM
[m1,n1] = size(a);
training_set_1 = double(reshape(a,n1*m1,1));
[m2,n2] = size(b);
training_set_2 = double(reshape(b,n2*m2,1));
for s = 1:7
    len = 2.^s;
    [partition_1, codebook_1] = lloyds(training_set_1, len);
    [idx_1,quantv_1] = quantiz(training_set_1,partition_1,codebook_1);
    idx_1 = idx_1/len*255;
    idx_1 = reshape(idx_1,[m1,n1]);
    MSE a(s) = sum(sum((double(idx 1)-double(a)).^2))/numel(a);
end
for s = 1:7
    len = 2.^s;
    [partition_2, codebook_2] = lloyds(training_set_2, len);
    [idx_2,quantv_2] = quantiz(training_set_2,partition_2,codebook_2);
    idx_2 = idx_2/len*255;
    idx_2 = reshape(idx_2,[m2,n2]);
```

```
MSE_b(s) = sum(sum((double(idx_2)-double(b)).^2))/numel(L512);
end
응
figure
plot(1:7,MSE_Uni_a)
hold on
plot(1:7,MSE_a)
legend('LM','Uniform')
ylabel('MSE')
xlabel('bit')
title('Diver after global histogram equalization')
figure
plot(1:7,MSE_Uni_b)
hold on
plot(1:7,MSE_b)
legend('LM','Uniform')
ylabel('MSE')
xlabel('bit')
title('lena512 after global histogram equalization')
%%%%% Part(iv) %%%%%
% Generally, LM quantizer should be better than the uniform quantizer.
% Based on the images we processed, because lena512 has a more uniform
% internsity histogram than diver, so the result is different between
them.
% (iii)
% After global histogram equalization, the MSE of two images are very
% close for the same quantizers. But for the same images, the gap
becomes
% larger. This is because HE made histogram equally distributed. The
% is different between them.
% (iv)
% As the bits increase, it makes sense that the MSE will decrease.
% When it comes to 7 bits, the error between each pixel is within 1,
% which is relatively small compared with the lower bits.
% Moreover, with different quantizers processing, the histogram
distribution
% becomes more uniform, which will decrease the error among them.
```

Uniform Quantizer

bit=4

Uniform Quantizer

bit=4

Lloyd-Max Quantizer

Lloyd-Max Quantizer

Published wi	ith MATLAB®) R2018a