Math Lab: Transformations of Parent Graphs

Use your graphing calculator to sketch each graph as accurately as possible. Trace over each curve in red and identify each type of function.

Type of Function:

Domain: Range:

Type of Function: Quidratic Domain: (>> , 1, >>)

Range: (0, 4)

$f(x) = x^3$

Type of Function: Domain: (📣 📣)

Range: (- ,)

$$f(x) = |x|$$

Type of Function: Abs Value

Domain: (-\infty \infty)

Range: [0,00]

$$f(x) = \sqrt{x}$$

Type of Function: Radual

Domain: $[0, \infty)$

Range: [0] 🛇

Type of Function: Rition al Domain: (-w) (0, w)

Range: (- < , ○) ∪ (o, < △)

= [x]

Type of Function:

Domain: Range:

What do all of these parent graphs have in common?

All go through (1,1)

- Greatest integer less thes

Equation of Parent Function	Description of Transformation	Equation of Transformed Function	Graph of Transformed Function (in red)	Domain and Range of Transformed Function
$f(x) = x^2$	Translate up 3 Units	$f(x) + 3 = $ $x^{2} + 3$		0: (-0, w) R:[3, w)
f(x) = x	Translate Down 5 units	f(x) - 5 = [X]-5	2-	D(-0, 20) R[-5, 00)
$f(x) = x^3$	Right by 4.	$f(x-4) = \left(\chi - 4\right)^3$	2-	D:(-0, +0)
$f(x) = \sqrt{x}$	Left by 5	$f(x+5) = \sqrt{\chi+5}$	2-	$D: [s, \infty)$ $R: [o, \infty)$
$f(x) = \sqrt{x}$	Left by 3, Dornby 4.	$f(x+3)-4=$ $\sqrt{\chi +3} -4$	2	D:[-3, +00] R:[-4, +00]

Equation of Parent Function	Description of Transformation	Equation of Transformed Function	Graph of Transformed Function (in red)	Domain and Range of Transformed Function
f(x) = [x]	flip upside down	$-f(x) = - \lfloor \chi \rfloor$	5 4 3 2 -5 -4 -3 -2 110 1 2 3 4 5 -5 -4 -3 -2 110 1 2 3 4 5 -5 -4 -3 -2 110 1 2 3 4 5	D: (-W, 400)
$f(x) = x^2$	slip apride down	$-f(x) = -\chi$	2 2 2 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	D)(-0,0) R: [-2,0]
$f(x) = \sqrt{x}$	Slip apside dun	-f(x) =	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0. (o, o) R: (o, o)
$f(x) = \sqrt{x}$	flip sidevays	f(-x) =	2	D: (-s, 0) R: [0, s),
$f(x) = \sqrt{x}$	flip site vays und psite down.	$-f(-x) = - \int_{-\infty}^{\infty}$	2	D: (-0,0] R: (-0,0]

Equation of Parent Function	Description of Transformation	Equation of Transformed Function	Graph of Transformed Function (in red)	Domain and Range of Transformed Function
f(x) = x	"narrows"	3·f(x) = 3·(X)	27-	D:(-07+00) R:[0,00)
$f(x) = x^2$	"widens"	$\frac{1}{2} \cdot f(x) =$	2-2-3-4-4-	D(-2, 400) R:[0, A)
$f(x) = \llbracket x \rrbracket$	Narrows Horizontal.	$f(2x) =$ $\bigcup X$	5 4 3 2 1 0 0 1 2 3 1 0 1 2 3 1 0 1 2 3 4 5 3 4 5 6 6 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 (-0, +w)
f(x) = [x]	Willens	$f\left(\frac{1}{3}x\right) = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$	5	D:(-0, 40)
$f(x) = x^2$	harrows	$6 \cdot f(x) = \begin{cases} \chi & \exists \\ \chi & \exists \\ \end{pmatrix}$	2	D (-0, 40)

Equation of Parent Function	Description of Transformation	Equation of Transformed Function	Graph of Transformed Function (in red)	Domain and Range of Transformed Function
$f(x) = \sqrt{x}$	Reflected or wand y aris - Right 3 - Up 2	f(-(x-3))+2= V-(x-3)+2=		Domain (—∞, 3] Range [2, ∞)
f(x1=x	Reflect in X Right 2 - Down 4	$-f(x-2) - 4$ $f(x) = -(x-2)^3 - 4$		$\beta = (-\infty, \infty)$ $\beta : (-\infty, -\infty)$
	Reflection in x - Right 2 - up 3	-f(+1)+3 -1x=21+3	2-2	DI-12,200) B. (-0,3)
fin=x	vertical by stretch by 3 - Shift Down by	3f(x)-3= 3x ² -3	(-1,0) (1,0)	D(-0, ~0) R[-3, ∞)
for= x	A rational function has been translated up 4 units and 3 units to the right.	f(x-3).14= L 4 x-3	73	D.(-0,3)U(3,00

For each of the following, describe the transformation happening to the function.

Rigid Transformations				
Function Notation	Description of transformation			
f(x) = f(x) + c	Translate UP C			
f(x) = f(x) - c	down C			
f(x) = f(x+c)	left c			
f(x) = f(x - c)	Right C			
f(x) = -f(x)	Reflect in X axis			
f(x) = f(-x)	Reflect in 4-axis			

Non-rigid Transformations				
Function Notation	Description of tra	nsformation		
$f(x) = c \cdot f(x)$	Vertical	stretch		
$f(x) = \frac{1}{c} \cdot f(x)$	Vostein	Shrinh		
f(x) = f(cx)	Horiz	strink		
$f(x) = f\left(\frac{1}{c}x\right)$	ltoriz	shelch		
)			

Based on the tables, what is the difference between a rigid transformation and a non-rigid transformation?

Rigid Trans do NOT change shape.

Non-Rigid Trans. <u>change</u> slegge

Extend your thinking

Use the graph of f to sketch each graph. Label each ordered pair.

(Hint: Think about how the transformation affects the x and y-coordinate of each anchor point on the graph.)

