Construction

Let $(\mathfrak{A}_i)_{i\in\mathbb{N}}$ be structures, let \mathcal{U} be an ultrafilter, then define the ultraproduct $\mathfrak{U} := \prod_{i\in\mathbb{N}} \mathfrak{A}_i/\mathcal{U}$. For one fixed ultrafilter \mathcal{U}_1 write $\mathfrak{U}_{\mathcal{U}_1}$ instead.

Consider the definition of Interpretation of a model within a model, write " \mathfrak{a} " models that can be interpreted within \mathfrak{A} (or the respective capital letter) and call " $I_{\mathfrak{a}^n}^{\mathfrak{A}}$ " an interpretation function, for $\alpha \subseteq A^n$, $I_{\mathfrak{a}^n}^{\mathfrak{A}}: \alpha \to a$.

The symbol \equiv is a relation between structures and is denotes elementary equivalence. It is a symbol of the metalanguage, though consider the following definition:

Definition (
$$\equiv^{\mathfrak{B}}$$
). $\mathfrak{B} \models \mathfrak{b} \equiv \mathfrak{B} := \mathfrak{b} \equiv \mathfrak{B} + \exists_{n \in \mathbb{N}} \exists_{\beta \subseteq B^n} \exists_{I_{\mathfrak{b}^n}} I_{\mathfrak{b}^n}^{\mathfrak{B}}(\beta) = b$

Definition
$$(\mathfrak{U}^j)$$
. $\mathfrak{U}^j := \prod_{i \in \mathbb{N} \setminus \{j\}} \mathfrak{A}_i / \mathcal{U}$

Lemma (I.1).
$$\exists_{\mathcal{U}} \forall_{j \in \mathbb{N}} \mathfrak{U} \equiv \mathfrak{U}_{\mathcal{U}}^{j}$$

Proof. By Los Theorem and for $\phi \in \mathcal{L}_{\epsilon}$, note $(\mathfrak{U} \models \varphi \Leftrightarrow \mathfrak{U}_{\mathcal{U}}^{j} \models \varphi) \Leftrightarrow (\{i \in \mathbb{N} : \mathfrak{A}_{i} \models \varphi\} \in \mathcal{U} \Leftrightarrow \{i \in \mathbb{N} \setminus \{j\} : \mathfrak{A}_{i} \models \varphi\} \in \mathcal{U})$, now divide two cases (a): $\mathfrak{A}_{j} \models \varphi$ and (b): $\mathfrak{A}_{j} \not\models \varphi$. Consider the latter and note " \Leftarrow " follows from closure under supersets. Now for $A \in \mathcal{U}$ and $x \in A$, assume for contradiction $A \setminus \{x\} \not\in \mathcal{U}$, then $\bar{A} \cup \{x\} \in \mathcal{U}$, then $(\bar{A} \cup \{x\}) \cap A$, then $\{x\} \in \mathcal{U}$ and since \mathcal{U} is non-principal on \mathbb{N} and $\{x\} \mid < \aleph_{0}$ get contradiction; hence $A \in \mathcal{U} \land x \in A \Rightarrow A \setminus \{x\} \in \mathcal{U}$, then " \Rightarrow " follows. Now consider (a), $\mathfrak{A}_{j} \models \varphi$, and an ultrafilter containing $\mathbb{N} \setminus \{j\}$ and the claim follows trivially.

Theorem (I).
$$\exists_{\mathfrak{u}}\mathfrak{U} \models \mathfrak{u} \equiv \mathfrak{U}$$

Proof. By definition of "\equiv " and Los Theorem, $\forall_{j \in \mathbb{N}} (\exists_{\mathfrak{a}_j} (\mathfrak{a}_j \equiv \mathfrak{U} + \exists_{n \in \mathbb{N}} \exists_{\alpha_j \subseteq U^n} \exists_{I_{\mathfrak{a}_n^n}^{\mathfrak{U}}} I_{\mathfrak{a}_n^n}^{\mathfrak{U}} (\alpha_j) = a_j)) \Leftrightarrow \{j \in \mathbb{N} : \mathfrak{A}_j \models \exists_{\mathfrak{a}_j} \mathfrak{a}_j \equiv \mathfrak{U}\} = \mathbb{N} \Rightarrow \mathfrak{U} \models \exists_{\mathfrak{u}} \mathfrak{u} \equiv \mathfrak{U}. \text{ Hence consider two claims: first } \forall_{j \in \mathbb{N}} \exists_{\mathfrak{a}_j} \mathfrak{a}_j \equiv \mathfrak{U}, \text{ which holds for } \mathfrak{a}_j = \mathfrak{U}_j \text{ by (I.1); second } \forall_{j \in \mathbb{N}} (\exists_{n \in \mathbb{N}} \exists_{\beta \subseteq U^n} \exists_{I_{u_n}^{\mathfrak{U}_j}} I_{\mathfrak{U}_n^n}^{\mathfrak{U}} (\beta) = U_j).$

For $j \in \mathbb{N}$, consider for some $m \in \mathbb{N}$ and $\gamma \in A_j^m$, $I_{\mathfrak{A}_i^m}^{\mathfrak{U}_j} : \gamma \to U_j$

I have to find a way to define \mathfrak{U}_j within \mathfrak{A}_j . An obvious way would be to use the fact that \mathfrak{U}_j is an ultraproduct made by all models apart from \mathfrak{A}_j , though this would make \mathfrak{A}_j have any arbitrary \mathfrak{A}_i within itself and then, since I am ranging over all $j \in \mathbb{N}$, \mathfrak{A}_i would have \mathfrak{A}_j within itself, hence I implicitly assumed in the construction that \mathfrak{A}_j contains itself, which was the claim I wanted to prove. I need instead to find a way to define \mathfrak{U}_j that does not assume \mathfrak{A}_j to contain itself.