

FCC PART 15.407 TEST REPORT

For

Chengdu Vantron Technology, Ltd.

No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China 610045

Tested Model: VT-HMI-156-TEL FCC ID: 2AAGE156TEL

Report Type: Equipment Name:
Original Report 15.6-inch Computer

Report Number: RSC191209001-0B

Date of Report Issue: 2019-12-24

Reviewed By: Sula Huang

Bay Area Compliance Laboratories Corp. (Chengdu) No.5040, Huilongwan Plaza, No. 1, Shawan Road,

Prepared By: Jinniu District, Chengdu, Sichuan, China

Tel: +86-28-65525123 Fax: +86-28-65525125

www.baclcorp.com

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA, or any agency of the Federal Government. BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT EXERCISE SOFTWARE	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLEBLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENTS LIST	
FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS	
APPLICABLE STANDARDEUT SETUP	
EMI Test Receiver Setup	
CORRECTED AMPLITUDE & MARGIN CALCULATION	18
Test Procedure	18
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.209, §15.205 & §15.407(b) (1) (4)(i) (6) (7) – UNDESIRABLE EMISSION, RESTRIC	TED BANDS
APPLICABLE STANDARD	
EUT SETUP	24
EMI Test Receiver & Spectrum Analyzer Setup	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATIONTEST RESULTS SUMMARY	
TEST DATA	
FCC §15.407(a) (5) & (e) - 26dB & 6dB BANDWIDTH	40
APPLICABLE STANDARD	
Test Procedure	40
TEST DATA	
FCC §15.407(a) (1)(IV), (3), (4) – CONDUCTED TRANSMITTER OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §15.407(a) (1) (iv) (3) (5) - POWER SPECTRAL DENSITY	
APPLICABLE STANDARDTEST PROCEDURE	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Chengdu Vantron Technology, Ltd.
Product	15.6-inch Computer
Tested Model	VT-HMI-156-TEL
FCC ID	2AAGE156TEL
Frequency Range	5150~5250 MHz 5725~5850 MHz
Modulation Type	OFDM
Voltage Range	DC 12V from Adapter or DC 48V from POE
Measure approximately	395 mm (L) x 250 mm (W) x 35 mm (H)
Sample serial number	191209001/01 (assigned by the BACL, Chengdu)
Sample/EUT Status	The test sample was in good condition and received: 2019-12-09

Note: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Objective

This type approval report is prepared on behalf of **Chengdu Vantron Technology, Ltd.** in accordance with Part 2-Subpart J, Part 15-Subparts A, C and E of the Federal Communications Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, section subpart C, 15.203, 15.205, 15.207, 15.209 and Subpart E, 15.407 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DSS submissions with FCC ID: 2AAGE156TEL FCC Part 15.247 DTS submissions with FCC ID: 2AAGE156TEL

Report No.: RSC191209001-0B Page 3 of 74

Measurement Uncertainty

Item	Uncertainty		
AC power line conducte	ed emission		2.24 dB
	30MHz-200MHz	Н	4.47 dB
	30101112-200101112	V	4.73 dB
Radiated Emission(Field Strength)	2000411- 4011-	Н	4.87 dB
	200MHz-1GHz	V	5.93 dB
	1GHz-6GHz		4.51 dB
	6GHz-18GHz		4.49 dB
	18GHz-40GHz		5.48 dB
Conducted RF P	ower		±0.61dB
Power Spectrum D	ensity		±0.61dB
Occupied Bandwidth			±5%
Conducted Emission			±1.5dB
Humidity			±5%
Temperature			±1°C

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the corresponding inclusion factor K when the inclusion probability is about 95%.

Test Methodology

All measurements contained in this report were conducted with:

- 1. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- 2. KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.
- 3. KDB 662911 D01 Multiple Transmitter Output v02r01.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Chengdu) to collect test data is located No.5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, Sichuan, China.

Bay Area Compliance Laboratories Corp. (Chengdu) lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4324.01) and the FCC designation No. CN1186 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

Report No.: RSC191209001-0B Page 4 of 74

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

The system supports 802.11a/n-ht20/n-ht40/ac20/ac40/ac80, the 802.11ac20/ac40 were reduced since the identical parameters with 802.11n-ht20/n-ht40.

For 5150~5250 MHz band, channels are provided to test as follows:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240
42	5210	/	1

For 802.11a, 802.11n-HT20: Channel 36, 40 and 48 were tested

For 802.11n-HT40: Channel 38, 46 were tested

For ac80: Channel 42 was tested

For 5725~5850 MHz band, channels are provided to test as follows:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	157	5785
151	5755	159	5795
153	5765	161	5805
155	5775	165	5825

For 802.11a, 802.11n-HT20: Channel 149, 157 and 165 were tested.

For 802.11n-HT40: Channel 151, 159 were tested.

For ac80: Channel 155 was tested.

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations.

Report No.: RSC191209001-0B Page 5 of 74

EUT Exercise Software

The software "RF Test Tool" was used for testing, which was provided by manufacturer. The maximum power with maximum duty cycle was set as below:

	Softwa	RF Te	est Tool		
UNII Band	Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Power Level
		Low	5180	6	Default
	802.11a	Middle	5200	6	Default
		High	5240	6	Default
		Low	5180	MCS0	Default
5150-5250MHz	802.11n- HT20	Middle	5200	MCS0	Default
	11120	High	5240	MCS0	Default
	802.11n- HT40	Low	5190	MCS0	Default
		High	5230	MCS0	Default
	802.11ac80	/	5210	MCS0	Default
	802.11a	Low	5745	6	Default
		Middle	5785	6	Default
		High	5825	6	Default
		Low	5745	MCS0	Default
5725-5850MHz	802.11n- HT20	Middle	5785	MCS0	Default
	11120	High	5825	MCS0	Default
	802.11n-	Low	5755	MCS0	Default
	HT40	High	5795	MCS0	Default
	802.11ac80	/	5775	MCS0	Default

Duty Cycle information is below:

Mode	T _{on} (ms)	T _{on} +T _{off} (ms)	Duty Cycle (%)	Duty Cycle Factor (dB)
802.11a	1.40	1.44	97.49	0.11
802.11n-HT20	1.31	1.35	97.33	0.12
802.11n-HT40	0.65	0.69	94.19	0.26
802.11ac80	0.32	0.36	89.01	0.51

Report No.: RSC191209001-0B Page 6 of 74

06.DEC.2019 12:41:07 Date:

802.11ac80

Support Equipment List and Details

Manufacturer	Manufacturer Description		Serial Number
Kingston*2	USB Disk	DTSE9G2	Unknown
Huawei	Mobile phone	V10	Unknown
Unknown	Earphone	N/A	Unknown
DELL	Laptop	E75	PCOR364L
XinSPower	XinSPower Adapter A241-12020001		Unknown
Ubiquiti	POE	GP-H480-050G	1538-0029503

External I/O Cable

Cable Description	Length (m)	From	То
Shielded USB Cable	1.2m	Mobile phone	EUT
DC Power Cable	1.2m	Adapter	EUT
Unshielded Earphone Cable	1.2m	Earphone	EUT
Unshielded RJ45 Cable	8.0m	Laptop	EUT
Unshielded RJ45 Cable	1.2m	POE	EUT
Unshielded RJ45 Cable	8.0m	POE	Laptop

Report No.: RSC191209001-0B Page 9 of 74

Block Diagram of Test Setup

Powered by Adapter

Report No.: RSC191209001-0B Page 10 of 74

Powered by POE

Report No.: RSC191209001-0B Page 11 of 74

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.407(f) & §1.1310 & §2.1091	Maximum Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6)& §15.207(a)	Conducted Emissions	Compliance
§15.205& §15.209 §15.407(b) (1), (4)(i), (6), (7)	Undesirable Emission & Restricted Bands	Compliance
§15.407(a) (1),(3) & (e)	26dB & 6dB Bandwidth	Compliance
§15.407(a)(1),(3)	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1),(3),(5)	Power Spectral Density	Compliance

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Report No.: RSC191209001-0B Page 12 of 74

TEST EQUIPMENTS LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emission						
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2019-04-15	2020-04-14	
ROHDE&SCHWARZ	L.I.S.N.	ENV216	3560.6550.16	2019-02-25	2020-02-24	
HP	RF Limiter	11947A	3107A01270	2019-10-18	2020-10-17	
Unknown	Conducted Cable	L-E003	000003	2019-08-05	2020-08-04	
Rohde & Schwarz	EMC32	EMC32	V 8.52.0	NCR	NCR	
		Radiated Emission	on			
EMCT	Semi-Anechoic Chamber	966	001	2017-05-18	2020-05-17	
SONOMA INSTRUMENT	Amplifier	310 N	186684	2019-09-06	2020-09-05	
SUNOL SCIENCES	Broadband Antenna	JB3	A121808	2017-05-19	2020-05-18	
INMET	Attenuator	18N-6dB	N/A	2019-10-17	2020-10-16	
Rohde & Schwarz	EMI Test Receiver	ESR3	102456	2019-04-15	2020-04-14	
Rohde & Schwarz	Spectrum Analyzer	FSU26	200835	2019-04-15	2020-04-14	
EMCO	Horn Antenna	3115	2192	2019-09-25	2021-09-24	
Mini-circuits	Pre-Amplifier	ZVA-183-S+	771001215	2019-07-24	2020-07-23	
EM Electronics	RF Pre-Amplifier	EM18G40	060725	2019-07-24	2020-07-23	
Rohde & Schwarz	EMI Test Receiver	ESIB 40	100215	2019-04-15	2020-04-14	
A.H. Systems, Inc	Horn Antenna	SAS-574	510	2019-09-02	2021-09-01	
Sinoscite.,Co Ltd	Reject Band Filter	BSF 5150-5850MN	0899V2	2019-11-10	2020-11-09	
MICRO-TRONICS	High Pass Filter	HPM50111	G216	2019-11-10	2020-11-09	
Unknown	RF Cable (Below 1GHz)	L-E005	000005	2019-09-06	2020-09-05	
Unknown	RF Cable (Below 1GHz)	T-E128	000128	2019-10-17	2020-10-16	
MICRO-COAX	Flexible microwave cable	T-E237	233522-001	2019-07-19	2020-07-18	
Unknown	RF Cable (Above 1GHz)	T-E069	000069	2019-07-24	2020-07-23	
Micro-coax	RF Cable (Above 1GHz)	T-E209	MFR 64639 2310	2019-07-19	2020-07-18	
Rohde & Schwarz	EMC32	EMC32	V9.10.00	NCR	NCR	

Report No.: RSC191209001-0B Page 13 of 74

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conducted Te	est		
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2019-04-15	2020-04-14
WEINSCHEL ENGINEERING	Attenuator	1A 10dB	AB1165	2019-08-05	2020-08-04
E-Microwave	DC Block	EMDCB-00036	OE01304225	2019-08-05	2020-08-04
Agilent	USB Wideband Power Sensor	U2021XA	MY53320008	2019-01-17	2020-01-16
Unknown	RF Cable	Unknown	000007	Each Time	Each Time

Report No.: RSC191209001-0B Page 14 of 74

FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE

Applicable Standard

According to §15.407(f) and §1.1310 & §2.1091, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)									
0.3–1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f²)	30					
30–300	27.5	0.073	0.2	30					
300–1500	/	/	f/1500	30					
1500–100,000	/	/	1.0	30					

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Per 447498 D01 General RF Exposure Guidance v06, simultaneous transmission MPE test exclusion applies when the sum of the MPE for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modeled or measured field strengths or power density, is ≤ 1.0 .

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$

Where:

S = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Mode	Frequency Range	Ante	nna Gain		e-up ed Power	Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
	2412-2462	2.0	1.58	23.0	199.53	20	0.063	1.0
WLAN	5180-5240	3.0	2.00	9.5	8.91	20	0.004	1.0
	5745-5825	3.0	2.00	14.0	25.12	20	0.010	1.0
BT 3.0	2402-2480	2.0	1.58	9.0	7.94	20	0.002	1.0
BLE	2402-2480	2.0	1.58	5.0	3.16	20	0.001	1.0

Note: Wi-Fi & Bluetooth can't transmit simultaneously. **Result:** The device meets MPE at distance \geq 20cm.

Report No.: RSC191209001-0B Page 15 of 74

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

The EUT has one external WiFi/Bluetooth antenna, which uses a reverse SMA male connector and fulfill the requirement of this section. Please refer to the table below and EUT photos.

Manufacturer	Model Number	Maximum Gain	Antenna Type	Antenna Connector
Asian Creation antenna factory	AC-Q2458-24W	2.4G WiFi: 2.0dBi 5G WiFi: 3.0dBi Bluetooth: 2.0dBi	Monopole	Reverse SMA male

Result: Compliance.

Report No.: RSC191209001-0B Page 16 of 74

FCC §15.407 (b) (6) §15.207 (a) - CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207, §15.407(b) (6)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: RSC191209001-0B Page 17 of 74

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

 $C_f = A_C + VDF$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude

A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	21 °C
Relative Humidity:	63 %
ATM Pressure:	95.9 kPa

The testing was performed by Eric Xiao on 2019-12-17.

Test Mode: Transmitting

5150-5250MHz band: 802.11n20-high channel - worst case

Report No.: RSC191209001-0B

Powered by Adapter

AC120V/60Hz, Line

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.165693	47.1	200.0	9.000	L1	19.6	18.1	65.2
0.204199	42.2	200.0	9.000	L1	19.6	21.2	63.4
0.269807	37.6	200.0	9.000	L1	19.6	23.5	61.1
0.413877	29.6	200.0	9.000	L1	19.6	28.0	57.6
0.457178	31.9	200.0	9.000	L1	19.6	24.8	56.7
12.688908	34.9	200.0	9.000	L1	19.9	25.1	60.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.160820	31.1	200.0	9.000	L1	19.6	24.3	55.4
0.329215	24.7	200.0	9.000	L1	19.6	24.8	49.5
0.370968	24.7	200.0	9.000	L1	19.6	23.8	48.5
1.130656	22.3	200.0	9.000	L1	19.6	23.7	46.0
13.469532	27.0	200.0	9.000	L1	19.9	23.0	50.0
13.604227	27.6	200.0	9.000	L1	19.9	22.4	50.0

Report No.: RSC191209001-0B Page 19 of 74

AC120V/60Hz, Neutral

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154545	51.0	200.0	9.000	N	19.6	14.8	65.8
0.237069	41.7	200.0	9.000	N	19.6	20.5	62.2
0.329215	35.8	200.0	9.000	N	19.6	23.7	59.5
0.332508	35.5	200.0	9.000	N	19.6	23.9	59.4
0.500009	27.4	200.0	9.000	N	19.6	28.6	56.0
0.604065	24.8	200.0	9.000	N	19.6	31.2	56.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.160820	32.5	200.0	9.000	N	19.6	22.9	55.4
0.196231	27.4	200.0	9.000	N	19.6	26.4	53.8
0.313237	25.0	200.0	9.000	N	19.6	24.9	49.9
0.370968	24.3	200.0	9.000	N	19.6	24.2	48.5
1.153382	20.2	200.0	9.000	N	19.7	25.8	46.0
4.930532	20.5	200.0	9.000	N	19.7	25.5	46.0

Report No.: RSC191209001-0B Page 20 of 74

Powered by POE

AC120V/60Hz, Line

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.409780	43.7	200.0	9.000	L1	19.6	14.0	57.7
0.475741	46.0	200.0	9.000	L1	19.6	10.4	56.4
0.647640	41.4	200.0	9.000	L1	19.6	14.6	56.0
1.954366	37.7	200.0	9.000	L1	19.6	18.3	56.0
2.384698	42.3	200.0	9.000	L1	19.6	13.7	56.0
3.344723	38.1	200.0	9.000	L1	19.6	17.9	56.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.225563	36.5	200.0	9.000	L1	19.6	16.1	52.6
0.325956	33.3	200.0	9.000	L1	19.6	16.3	49.6
0.439339	28.3	200.0	9.000	L1	19.6	18.8	47.1
0.654116	31.5	200.0	9.000	L1	19.6	14.5	46.0
1.299660	28.7	200.0	9.000	L1	19.6	17.3	46.0
1.954366	27.5	200.0	9.000	L1	19.6	18.5	46.0

Report No.: RSC191209001-0B Page 21 of 74

AC120V/60Hz, Neutral

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.490157	44.1	200.0	9.000	N	19.6	12.1	56.2
0.673937	40.8	200.0	9.000	N	19.7	15.2	56.0
1.954366	40.3	200.0	9.000	N	19.6	15.7	56.0
2.384698	39.1	200.0	9.000	N	19.6	16.9	56.0
2.968272	38.7	200.0	9.000	N	19.7	17.3	56.0
3.961170	38.5	200.0	9.000	N	19.7	17.5	56.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.227819	34.2	200.0	9.000	N	19.6	18.3	52.5
0.325956	32.2	200.0	9.000	N	19.6	17.4	49.6
0.654116	30.5	200.0	9.000	N	19.6	15.5	46.0
1.299660	27.5	200.0	9.000	N	19.7	18.5	46.0
3.246355	28.7	200.0	9.000	N	19.7	17.3	46.0
3.694655	29.2	200.0	9.000	N	19.7	16.8	46.0

Note:

- 1) Corrected Amplitude = Reading + Correction Factor
- 2) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter
- 3) Margin = Limit Corrected Amplitude

FCC §15.209, §15.205 & §15.407(b) (1) (4)(i) (6) (7) – UNDESIRABLE EMISSION, RESTRICTED BANDS

Applicable Standard

FCC §15.407 (b) (1) (4)(i), (6), (7); §15.209; §15.205

FCC 15.407 (b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Report No.: RSC191209001-0B Page 23 of 74

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as:

E[dBuV/m] = EIRP[dBm] + 95.2, for d = 3 meters.

- 1) For 75 MHz above or below the band edge, a level of -27 dBm/MHz (68.2dBµV/m) was applied.
- 2) For 25MHz-75 MHz above or below the band edge, a level of 10 dBm/MHz (105.2dBµV/m) was applied.
- 3) For 5MHz-25 MHz above or below the band edge, a level of 15.6 dBm/MHz (110.8dBµV/m) was applied.
- 4) For 0 MHz-5 MHz above or below the band edge, a level of 27 dBm/MHz (122.2dBµV/m) was applied.

EUT Setup

Below 1 GHz:

Above 1 GHz:

Report No.: RSC191209001-0B Page 24 of 74

The radiated emission tests were performed in the 3 meters semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP

Frequency Range	RBW	Video B/W	Duty Cycle	Measurement
	1MHz	3 MHz	Any	PK
Above 1 GHz	1MHz	10Hz	>98%	AV
	1MHz	1/T	<98%	AV

Note: T is Transmission Duration

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1 GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

According to C63.10, the above 1G test result shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m

Distance extrapolation factor =20 log (specific distance [3m]/test distance [1.5m]) dB Extrapolation result = Corrected Amplitude ($dB\mu V/m$) - distance extrapolation factor (6dB)

Report No.: RSC191209001-0B Page 25 of 74

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Receiver Reading + Cable loss + Antenna Factor – Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit-Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, Section 15.205 and 15.209, Subpart E, Section 15.407.</u>

Test Data

Environmental Conditions

Temperature:	20°C
Relative Humidity:	55 %
ATM Pressure:	96.1 kPa

The testing was performed by Eric Xiao on 2019-12-19.

Test mode: Transmitting

Report No.: RSC191209001-0B Page 26 of 74

1) 30 MHz to 1 GHz:

5150-5250MHz band: 802.11n20-high channel - worst case

Powered by adapter

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
32.186100	32.38	40.00	7.62	200.0	120.000	133.0	٧	133.0	-6.7
38.284200	32.23	40.00	7.76	200.0	120.000	133.0	٧	245.0	-9.9
57.087800	32.56	40.00	7.44	200.0	120.000	114.0	٧	9.0	-17.2
167.995400	40.96	43.50	2.53	200.0	120.000	110.0	٧	42.0	-12.0
192.024300	35.85	43.50	7.65	200.0	120.000	115.0	V	101.0	-12.7
239.996500	40.43	46.00	5.59	200.0	120.000	120.0	Н	356.0	-12.4

Report No.: RSC191209001-0B Page 27 of 74

Powered by POE

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.492000	39.52	40.00	0.48	200.0	120.000	100.0	٧	350.0	-10.9
40.476000	37.36	40.00	2.64	200.0	120.000	100.0	٧	162.0	-17.3
48.430000	39.61	40.00	0.39	200.0	120.000	100.0	٧	92.0	-17.3
58.130000	39.18	40.00	0.82	200.0	120.000	100.0	V	302.0	-12.0
60.846000	38.59	40.00	1.41	200.0	120.000	100.0	V	329.0	-12.4
167.934000	39.76	43.50	3.74	200.0	120.000	100.0	Н	13.0	-1.4

Report No.: RSC191209001-0B Page 28 of 74

2) 1GHz-40GHz

(Note: Above 1GHz was performed at distance 1.5m)

For 5150-5250 MHz:

For 802.11a mode

	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation			
Frequency (MHz)	Reading (dBµV)	Measurement (PK /AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	Frequency: 5180 MHz										
5180	73.15	PK	V	33.75	5.29	0.00	112.19	106.19	N/A	N/A	
5180	64.22	AV	V	33.75	5.29	0.00	103.26	97.26	N/A	N/A	
5150	34.21	PK	V	33.71	5.27	0.00	73.19	67.19	74.00	6.81	
5150	17.99	AV	V	33.71	5.27	0.00	56.97	50.97	54.00	3.03	
10360	28.23	PK	V	38.31	7.66	26.89	47.31	41.31	68.20	26.89	
				Fre	equency:	5200 MHz					
5200	73.15	PK	V	33.78	5.31	0.00	112.24	106.24	N/A	N/A	
5200	64.16	AV	V	33.78	5.31	0.00	103.25	97.25	N/A	N/A	
10400	28.27	PK	V	38.28	7.68	26.89	47.34	41.34	68.20	26.86	
				Fre	equency:	5240 MHz					
5240	73.52	PK	V	33.84	5.34	0.00	112.70	106.70	N/A	N/A	
5240	64.21	AV	V	33.84	5.34	0.00	103.39	97.39	N/A	N/A	
5350	27.04	PK	V	33.99	5.42	0.00	66.45	60.45	74.00	13.55	
5350	14.55	AV	V	33.99	5.42	0.00	53.96	47.96	54.00	6.04	
10480	28.19	PK	V	38.22	7.70	26.88	47.23	41.23	68.20	26.97	

For 802.11n-HT20 mode

_	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Measurement (PK /AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
				Fr	equency:	5180 MHz				
5180	73.21	PK	V	33.75	5.29	0.00	112.25	106.25	N/A	N/A
5180	64.02	AV	V	33.75	5.29	0.00	103.06	97.06	N/A	N/A
5150	35.63	PK	V	33.71	5.27	0.00	74.61	68.61	74.00	5.39
5150	17.68	AV	V	33.71	5.27	0.00	56.66	50.66	54.00	3.34
10360	28.23	PK	V	38.31	7.66	26.89	47.31	41.31	68.20	26.89
				Fr	equency:	5200 MHz				
5200	73.44	PK	V	33.78	5.31	0.00	112.53	106.53	N/A	N/A
5200	65.01	AV	V	33.78	5.31	0.00	104.10	98.10	N/A	N/A
10400	28.30	PK	V	38.28	7.68	26.89	47.37	41.37	68.20	26.83
				Fr	equency:	5240 MHz				
5240	73.99	PK	V	33.84	5.34	0.00	113.17	107.17	N/A	N/A
5240	65.91	AV	V	33.84	5.34	0.00	105.09	99.09	N/A	N/A
5350	27.04	PK	V	33.99	5.42	0.00	66.45	60.45	74.00	13.55
5350	14.55	AV	V	33.99	5.42	0.00	53.96	47.96	54.00	6.04
10480	28.5	PK	V	38.22	7.70	26.88	47.54	41.54	68.20	26.66

Report No.: RSC191209001-0B Page 29 of 74

Bay Area Compliance Laboratories Corp. (Chengdu)

For 802.11n-HT40 mode

	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Measurement (PK/AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
				Fr	equency:	5190 MHz				
5190	70.81	PK	V	33.77	5.30	0.00	109.88	103.88	N/A	N/A
5190	60.8	AV	V	33.77	5.30	0.00	99.87	93.87	N/A	N/A
5150	37.14	PK	V	33.71	5.27	0.00	76.12	70.12	74.00	3.88
5150	18.16	AV	V	33.71	5.27	0.00	57.14	51.14	54.00	2.86
10380	28.27	PK	V	38.30	7.67	26.89	47.35	41.35	68.20	26.85
				Fr	equency:	5230 MHz				
5230	71.21	PK	V	33.82	5.33	0.00	110.36	104.36	N/A	N/A
5230	60.93	AV	V	33.82	5.33	0.00	100.08	94.08	N/A	N/A
5350	27.36	PK	V	33.99	5.42	0.00	66.77	60.77	74.00	13.23
5350	14.21	AV	V	33.99	5.42	0.00	53.62	47.62	54.00	6.38
10460	28.55	PK	V	38.23	7.70	26.88	47.60	41.60	68.20	26.60

For 802.11ac80 mode

Erogueney	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	1 !!4	
Frequency (MHz)	Reading (dBµV)	Measurement (PK /AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
				Fre	equency:	5210 MHz				
5210	68.51	PK	V	33.79	5.32	0.00	107.62	101.62	N/A	N/A
5210	58.23	AV	V	33.79	5.32	0.00	97.34	91.34	N/A	N/A
5150	36.81	PK	V	33.71	5.27	0.00	75.79	69.79	74.00	4.21
5150	19.61	AV	V	33.71	5.27	0.00	58.59	52.59	54.00	1.41
5350	27.43	PK	>	33.99	5.42	0.00	66.84	60.84	74.00	13.16
5350	14.52	AV	V	33.99	5.42	0.00	53.93	47.93	54.00	6.07
10420	28.11	PK	V	38.26	7.68	26.88	47.17	41.17	68.20	27.03

Note:

Corrected Amplitude = Corrected Factor + Reading
Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor
Margin = Limit- Corr. Amplitude

Report No.: RSC191209001-0B Page 30 of 74

Please refer to the below pre-scan plot of worst case:

802.11ac80 Mode_Horizontal_1GHz-18GHz

802.11ac80 Mode _Vertical_1GHz-18GHz

Report No.: RSC191209001-0B Page 31 of 74

802.11ac80 Mode _Horizontal_18GHz-26.5GHz

802.11ac80 Mode _Vertical_18GHz-26.5GHz

Report No.: RSC191209001-0B Page 32 of 74

802.11ac80 Mode _Horizontal_26.5GHz-40GHz

802.11ac80 Mode _Vertical_26.5GHz-40GHz

Report No.: RSC191209001-0B Page 33 of 74

For 5725-5850 MHz

For 802.11a mode

Frequency	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	Limit	Margin
(MHz)	Reading (dBµV)	Measurement (PK /AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result (dBµV/m)	(dBµV/m)	(dB)
				Fr	equency:	5745 MHz				
5745	72.93	PK	V	34.75	4.81	0.00	112.49	106.49	N/A	N/A
5745	63.65	AV	V	34.75	4.81	0.00	103.21	97.21	N/A	N/A
5650	25.67	PK	V	34.73	4.76	0.00	65.16	59.16	68.20	9.04
5700	26.13	PK	V	34.74	4.79	0.00	65.66	59.66	105.20	45.54
5720	36.68	PK	V	34.74	4.80	0.00	76.22	70.22	110.80	40.58
5725	39.36	PK	V	34.75	4.80	0.00	78.91	72.91	122.20	49.29
11490	27.54	PK	V	38.90	6.89	26.82	46.51	40.51	74.00	33.49
11490	17.3	AV	V	38.90	6.89	26.82	36.27	30.27	54.00	23.73
	•			Fr	equency:	5785 MHz				
5785	71.97	PK	V	34.76	4.83	0.00	111.56	105.56	N/A	N/A
5785	62.31	AV	V	34.76	4.83	0.00	101.90	95.90	N/A	N/A
5650	25.15	PK	V	34.73	4.76	0.00	64.64	58.64	68.20	9.56
5700	26.31	PK	V	34.74	4.79	0.00	65.84	59.84	105.20	45.36
5720	26.73	PK	V	34.74	4.80	0.00	66.27	60.27	110.80	50.53
5725	26.13	PK	V	34.75	4.80	0.00	65.68	59.68	122.20	62.52
11570	27.52	PK	V	38.91	6.91	26.80	46.54	40.54	74.00	33.46
11570	17.98	AV	V	38.91	6.91	26.80	37.00	31.00	54.00	23.00
				Fr	equency:	5825 MHz				
5825	71.47	PK	V	34.77	4.85	0.00	111.09	105.09	N/A	N/A
5825	63.12	AV	V	34.77	4.85	0.00	102.74	96.74	N/A	N/A
5850	36.47	PK	V	34.77	4.86	0.00	76.10	70.10	122.20	52.10
5855	33.69	PK	V	34.77	4.86	0.00	73.32	67.32	110.80	43.48
5875	26.9	PK	V	34.78	4.87	0.00	66.55	60.55	105.20	44.65
5925	26.06	PK	٧	34.79	4.89	0.00	65.74	59.74	68.20	8.46
11650	27.77	PK	V	38.93	6.94	26.79	46.85	40.85	74.00	33.15
11650	18.50	AV	V	38.93	6.94	26.79	37.58	31.58	54.00	22.42

Report No.: RSC191209001-0B Page 34 of 74

Bay Area Compliance Laboratories Corp. (Chengdu)

For 802.11n-HT20 mode

Frequency	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	Limit	Morgin
(MHz)	Reading (dBµV)	Measurement (PK /AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result (dBµV/m)	(dBµV/m)	Margin (dB)
				Fr	equency:	5745 MHz				
5745	72.19	PK	V	34.75	4.81	0.00	111.75	105.75	N/A	N/A
5745	63.48	AV	V	34.75	4.81	0.00	103.04	97.04	N/A	N/A
5650	26.10	PK	V	34.73	4.76	0.00	65.59	59.59	68.20	8.61
5700	27.35	PK	V	34.74	4.79	0.00	66.88	60.88	105.20	44.32
5720	38.11	PK	V	34.74	4.80	0.00	77.65	71.65	110.80	39.15
5725	39.45	PK	V	34.75	4.80	0.00	79.00	73.00	122.20	49.20
11490	27.54	PK	V	38.90	6.89	26.82	46.51	40.51	74.00	33.49
11490	17.30	AV	V	38.90	6.89	26.82	36.27	30.27	54.00	23.73
				Fr	equency:	5785 MHz				
5785	72.43	PK	V	34.76	4.83	0.00	112.02	106.02	N/A	N/A
5785	62.81	AV	V	34.76	4.83	0.00	102.40	96.40	N/A	N/A
11570	27.51	PK	V	38.91	6.91	26.80	46.53	40.53	74.00	33.47
11570	17.97	AV	V	38.91	6.91	26.80	36.99	30.99	54.00	23.01
				Fr	equency:	5825 MHz				
5825	72.65	PK	V	34.77	4.85	0.00	112.27	106.27	N/A	N/A
5825	63.46	AV	V	34.77	4.85	0.00	103.08	97.08	N/A	N/A
5850	36.05	PK	V	34.77	4.86	0.00	75.68	69.68	122.20	52.52
5855	32.13	PK	V	34.77	4.86	0.00	71.76	65.76	110.80	45.04
5875	27.32	PK	V	34.78	4.87	0.00	66.97	60.97	105.20	44.23
5925	27.21	PK	V	34.79	4.89	0.00	66.89	60.89	68.20	7.31
11650	28.34	PK	V	38.93	6.94	26.79	47.42	41.42	74.00	32.58
11650	17.64	AV	V	38.93	6.94	26.79	36.72	30.72	54.00	23.28

Report No.: RSC191209001-0B Page 35 of 74

For 802.11n-HT40 mode

Frequency (MHz)	Receiver		Rx Antenna		Cable	Amplifier	Corrected	Extrapolation				
	Reading (dBµV)	Measurement (PK /AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
Frequency: 5755 MHz												
5755	72.33	PK	V	34.75	4.81	0.00	111.89	105.89	N/A	N/A		
5755	62.51	AV	V	34.75	4.81	0.00	102.07	96.07	N/A	N/A		
5650	25.83	PK	V	34.73	4.76	0.00	65.32	59.32	68.20	8.88		
5700	26.12	PK	V	34.74	4.79	0.00	65.65	59.65	105.20	45.55		
5720	27.08	PK	V	34.74	4.80	0.00	66.62	60.62	110.80	50.18		
5725	26.16	PK	V	34.75	4.80	0.00	65.71	59.71	122.20	62.49		
11510	28.16	PK	V	38.90	6.89	26.81	47.14	41.14	74.00	32.86		
11510	17.32	AV	V	38.90	6.89	26.81	36.30	30.30	54.00	23.70		
Frequency: 5795 MHz												
5795	69.25	PK	V	34.76	4.83	0.00	108.84	102.84	N/A	N/A		
5795	60.36	AV	V	34.76	4.83	0.00	99.95	93.95	N/A	N/A		
5850	30.07	PK	V	34.77	4.86	0.00	69.70	63.70	122.20	58.50		
5855	28.67	PK	V	34.77	4.86	0.00	68.30	62.30	110.80	48.50		
5875	26.31	PK	V	34.78	4.87	0.00	65.96	59.96	105.20	45.24		
5925	26.34	PK	V	34.79	4.89	0.00	66.02	60.02	68.20	8.18		
11590	28.21	PK	V	38.92	6.92	26.80	47.25	41.25	74.00	32.75		
11590	17.53	AV	V	38.92	6.92	26.80	36.57	30.57	54.00	23.43		

For 802.11ac80 mode

Frequency (MHz)	Receiver		Rx Antenna		Cable	Amplifier	Corrected	Extrapolation	1 : 14			
	Reading (dBµV)	Measurement (PK /AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
Frequency: 5775 MHz												
5775	66.68	PK	V	34.76	4.82	0.00	106.26	100.26	N/A	N/A		
5775	56.77	AV	V	34.76	4.82	0.00	96.35	90.35	N/A	N/A		
5650	25.28	PK	V	34.73	4.76	0.00	64.77	58.77	68.20	9.43		
5700	25.65	PK	V	34.74	4.79	0.00	65.18	59.18	105.20	46.02		
5720	26.04	PK	V	34.74	4.80	0.00	65.58	59.58	110.80	51.22		
5725	26.31	PK	V	34.75	4.80	0.00	65.86	59.86	122.20	62.34		
5850	26.45	PK	V	34.77	4.86	0.00	66.08	60.08	122.20	62.12		
5855	25.59	PK	V	34.77	4.86	0.00	65.22	59.22	110.80	51.58		
5875	25.44	PK	V	34.78	4.87	0.00	65.09	59.09	105.20	46.11		
5925	26.12	PK	V	34.79	4.89	0.00	65.80	59.80	68.20	8.40		
11550	27.51	PK	V	38.91	6.91	26.81	46.52	40.52	74.00	33.48		
11550	18.01	AV	V	38.91	6.91	26.81	37.02	31.02	54.00	22.98		

Note:

Corrected Amplitude = Corrected Factor + Reading
Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor
Margin = Limit- Corr. Amplitude

Report No.: RSC191209001-0B Page 36 of 74

Please refer to the below pre-scan plot of worst case:

802.11n20 Mode _Horizontal_1GHz-18GHz

802.11n20 Mode _Vertical_1GHz-18GHz

Report No.: RSC191209001-0B Page 37 of 74

802.11n20 Mode _Horizontal_18GHz-26.5GHz

802.11n20 Mode _Vertical_18GHz-26.5GHz

Report No.: RSC191209001-0B Page 38 of 74

802.11n20 Mode _Horizontal_26.5GHz-40GHz

802.11n20 Mode _Vertical_26.5GHz-40GHz

Report No.: RSC191209001-0B Page 39 of 74

FCC §15.407(a) (5) & (e) – 26dB & 6dB BANDWIDTH

Applicable Standard

(a)(5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.

3.

(A) 26dB Bandwidth

Set RBW = approximately 1% of the emission bandwidth.

Set the VBW > RBW. Detector= Peak. Trace mode = max hold. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

(B) 6dB Bandwidth

Set RBW = 100 kHz. Set the video bandwidth (VBW) \ge 3 × RBW.

Detector = Peak. Trace mode = max hold. Sweep = auto couple. Allow the trace to stabilize. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

(C) 99% Occupied Bandwidth

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Use the 99 % power bandwidth function of the instrument.
- 4. Repeat above procedures until all frequencies measured were complete.

Report No.: RSC191209001-0B Page 40 of 74

Test Data

Environmental Conditions

Temperature:	21 °C
Relative Humidity:	51 %
ATM Pressure:	95.9 kPa

The testing was performed by Eric Xiao on 2019-12-06.

Test Result: Pass. Please refer to the following tables and plots.

Test mode: Transmitting

For 5150-5250 MHz:

Mode	Channel	Frequency (MHz)	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	Low	5180	21.72	17.56
802.11a	Middle	5200	21.72	17.39
	High	5240	21.88	17.23
	Low	5180	22.04	18.52
802.11n-HT20	Middle	5200	22.12	18.52
	High	5240	21.96	18.36
802.11n-HT40	Low	5190	39.76	36.55
	High	5230	39.92	36.55
802.11ac80	/	5210	80.16	75.95

Note: the 99% Occupied Bandwidth doesn't extend U-NII-2A band 5250-5350MHz.

Report No.: RSC191209001-0B Page 41 of 74

802.11a mode, 26 dB Bandwidth-5200 MHz

802.11a mode, 26 dB Bandwidth-5240 MHz

802.11n-HT20 mode, 26 dB Bandwidth-5180 MHz

802.11n-HT20 mode, 26 dB Bandwidth-5200 MHz

802.11n-HT20 mode, 26 dB Bandwidth-5240 MHz

802.11n-HT40 mode, 26 dB Bandwidth-5190 MHz

802.11n-HT40 mode, 26 dB Bandwidth-5230 MHz

802.11ac80 mode, 26 dB Bandwidth-5210 MHz

802.11a mode, 99% Occupied Bandwidth-5180 MHz

802.11a mode, 99% Occupied Bandwidth -5200 MHz

802.11a mode, 99% Occupied Bandwidth -5240 MHz

802.11n-HT20 mode, 99% Occupied Bandwidth-5180 MHz

802.11n-HT20 mode, 99% Occupied Bandwidth -5200 MHz

802.11n-HT20 mode, 99% Occupied Bandwidth -5240 MHz

802.11n-HT40 mode, 99% Occupied Bandwidth-5190 MHz

802.11n-HT40 mode, 99% Occupied Bandwidth-5230 MHz

802.11ac80 mode, 99% Occupied Bandwidth-5210 MHz

For 5725-5850 MHz:

Mode	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	Low	5745	16.43	17.39
802.11a	Middle	5785	16.43	17.31
	High	5825	16.35	17.47
	Low	5745	17.64	18.36
802.11n-HT20	Middle	5785	17.64	18.52
	High	5825	17.64	18.44
802.11n-HT40	Low	5755	36.39	36.55
	High	5795	36.39	36.71
802.11ac80	/	5775	75.75	75.75

Note: The 99% Occupied Bandwidth doesn't extend U-NII-2C band 5470-5725MHz.

Report No.: RSC191209001-0B Page 51 of 74

802.11a mode, 6 dB Bandwidth-5745 MHz

802.11a mode, 6 dB Bandwidth-5785 MHz

Report No.: RSC191209001-0B Page 52 of 74

802.11a mode, 6 dB Bandwidth-5825 MHz

802.11n-HT20 mode, 6 dB Bandwidth-5745 MHz

802.11n-HT20 mode, 6 dB Bandwidth-5785 MHz

802.11n-HT20 mode, 6 dB Bandwidth-5825 MHz

802.11n-HT40 mode, 6 dB Bandwidth-5755 MHz

802.11n-HT40 mode, 6 dB Bandwidth-5795 MHz

802.11ac80 mode, 6 dB Bandwidth-5775 MHz

802.11a mode, 99% Occupied Bandwidth-5745 MHz

802.11a mode, 99% Occupied Bandwidth -5785 MHz

802.11a mode, 99% Occupied Bandwidth -5825 MHz

802.11n-HT20 mode, 99% Occupied Bandwidth-5745 MHz

802.11n-HT20 mode, 99% Occupied Bandwidth-5785 MHz

802.11n-HT20 mode, 99% Occupied Bandwidth-5825 MHz

802.11n-HT40 mode, 99% Occupied Bandwidth-5755 MHz

802.11n-HT40 mode, 99% Occupied Bandwidth-5795 MHz

802.11ac80 mode, 99% Occupied Bandwidth-5775 MHz

FCC §15.407(a) (1)(IV), (3), (4) – CONDUCTED TRANSMITTER OUTPUT POWER

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
 - (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

NOTE TO PARAGRAPH (A)(3): The Commission strongly recommends that parties employing U-NII devices to provide critical communications services should determine if there are any nearby Government radar systems that could affect their operation.

(4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

Test Procedure

According to 789033 D02 General UNII Test Procedures New Rules v02r01

Report No.: RSC191209001-0B Page 61 of 74

Test Data

Environmental Conditions

Temperature:	21 °C
Relative Humidity:	51 %
ATM Pressure:	95.9 kPa

The testing was performed by Eric Xiao on 2019-12-06.

Test Mode: Transmitting

For 5150-5250 MHz:

Mode	Channel	Frequency (MHz)	Conducted Average Output Power (dBm)	Limit (dBm)
	Low	5180	8.14	24.00
802.11a	Middle	5200	8.50	24.00
	High	5240	9.20	24.00
	Low	5180	7.82	24.00
802.11n-HT20	Middle	5200	8.22	24.00
	High	5240	8.95	24.00
802.11n-HT40	Low	5190	7.27	24.00
602.11II-H140	High	5230	7.89	24.00
802.11ac 80	1	5210	7.47	24.00

Report No.: RSC191209001-0B Page 62 of 74

For 5725-5850 MHz:

Mode	Channel	Frequency (MHz) Conducted Average Power (dBm)		Limit (dBm)
	Low	5745	13.65	30.00
802.11a	Middle	5785	12.86	30.00
	High	High 5825 11.70		30.00
	Low	5745	13.29	30.00
802.11n-HT20	Middle	5785	12.60	30.00
	High	5825	11.55	30.00
802.11n-HT40	Low	5755	12.50	30.00
ου 2.1111-Π14 0	High	5795	11.66	30.00
802.11ac 80	1	5775	11.88	30.00

Note: The Duty Cycle Factor was calculated in result.

Report No.: RSC191209001-0B Page 63 of 74

FCC §15.407(a) (1) (iv) (3) (5) - POWER SPECTRAL DENSITY

Applicable Standard

- (a) Power limits:
 - (1) For the band 5.15-5.25 GHz.
 - (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
 - (5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Report No.: RSC191209001-0B Page 64 of 74

Test Data

Environmental Conditions

Temperature:	21 °C	
Relative Humidity:	51 %	
ATM Pressure:	95.9 kPa	

The testing was performed by Eric Xiao on 2019-12-06.

Test Mode: Transmitting

For 5150-5250 MHz:

1 01 0100-0200 WH12.						
Mode	Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	Duty Cycle Factor (dB)	Corrected (dBm/MHz)	Limit (dBm/MHz)
	Low	5180	1.23	0.11	1.34	11
802.11a	Middle	5200	1.47	0.11	1.58	11
	High	5240	1.88	0.11	1.99	11
	Low	5180	1.15	0.12	1.27	11
802.11n-HT20	Middle	5200	1.14	0.12	1.26	11
	High	5240	1.25	0.12	1.37	11
002 11n UT40	Low	5190	-2.17	0.26	-1.91	11
802.11n-HT40	High	5230	-1.82	0.26	-1.56	11
802.11ac80	/	5210	-5.58	0.51	-5.07	11

802.11a mode, Power Spectral Density-5180 MHz

Report No.: RSC191209001-0B Page 65 of 74

802.11a mode, Power Spectral Density-5200 MHz

802.11a mode, Power Spectral Density-5240 MHz

802.11n-HT20 mode, Power Spectral Density-5180 MHz

802.11n-HT20 mode, Power Spectral Density-5200 MHz

802.11n-HT20 mode, Power Spectral Density-5240 MHz

802.11n-HT40 mode, Power Spectral Density-5190 MHz

802.11n-HT40 mode, Power Spectral Density-5230 MHz

802.11ac 80 mode, Power Spectral Density-5210 MHz

For 5725-5850 MHz:

Mode	Channel	Frequency (MHz)	Power Spectral Density (dBm/500 kHz)	Duty Cycle Factor (dB)	Corrected (dBm/500 kHz)	Limit (dBm/500 kHz)
	Low	5745	-0.23	0.11	-0.12	30
802.11a	Middle	5785	-1.39	0.11	-1.28	30
	High	5825	-2.83	0.11	-2.72	30
	Low	5745	-0.57	0.12	-0.45	30
802.11n-HT20	Middle	5785	-1.78	0.12	-1.66	30
	High	5825	-3.58	0.12	-3.46	30
802.11n-HT40	Low	5755	-4.10	0.26	-3.84	30
	High	5795	-5.87	0.26	-5.61	30
802.11ac80	/	5775	-7.79	0.51	-7.28	30

802.11a mode, Power Spectral Density-5745 MHz

Report No.: RSC191209001-0B Page 70 of 74

802.11a mode, Power Spectral Density-5785 MHz

802.11a mode, Power Spectral Density-5825 MHz

Page 71 of 74

802.11n-HT20 mode, Power Spectral Density-5745 MHz

802.11n-HT20 mode, Power Spectral Density-5785 MHz

Page 72 of 74

802.11n-HT20 mode, Power Spectral Density-5825 MHz

802.11n-HT40 mode, Power Spectral Density-5755 MHz

Report No.: RSC191209001-0B Page 73 of 74

802.11n-HT40 mode, Power Spectral Density-5795 MHz

802.11ac80 mode, Power Spectral Density-5775 MHz

