- 3844 Ojasvi Tummala
- 3851 Preeti Raut
- 3853 Aparajita Sarkar

Problem statement:

Design of 4-way Traffic Light Controller based on Finite State Machine (FSM) using Verilog in the order of East, North, West and South.

Features:

- If there is an emergency vehicle on a road, signal for that road is turned green immediately.
- If there is jam on a road, signal for that road is turned green immediately.
- If there are no vehicles on a road, signal for that road is turned state.

Diagrammatic representation:

State diagram:

Description of states:

State	State (Binary)	State Name	East	North	West	South
0	000	East_green	Green	Red	Red	Red
1	001	East_yellow	Yellow	Red-Yellow	Red	Red
2	010	North_green	Red	Green	Red	Red
3	011	North_yellow	Red	Yellow	Red-Yellow	Red
4	100	West_green	Red	Red	Green	Red
5	101	West_yellow	Red	Red	Yellow	Red-Yellow
6	110	South_green	Red	Red	Red	Green
7	111	South vellow	Red-Yellow	Red	Red	Yellow

Emergency:

Description	Emergency			State			
	[3]	[2]	[1]	[0]	[2]	[1]	[0]
East	1	0	0	0	0	0	0
North	0	1	0	0	0	1	0
West	0	0	1	0	1	0	0
South	0	0	0	1	1	1	0

Jam:

Description	Jam			State			
	[3]	[2]	[1]	[0]	[2]	[1]	[0]
East	1	0	0	0	0	0	0
North	0	1	0	0	0	1	0
West	0	0	1	0	1	0	0
South	0	0	0	1	1	1	0

Verilog Code:

```
`timescale 1ns / 1ps
module Traffic (clk, rst, Emergency, Jam, Empty, East_road, North_road, West_road,
South_road);
  input clk;
  input rst;
  input [03:0] Emergency;
  input [03:0] Jam;
  input [03:0] Empty;
  output reg [02:0] East_road;
  output reg [02:0] North_road;
  output reg [02:0] West_road;
  output reg [02:0] South_road;
       parameter [2:0] east_green=3'b000;
       parameter [2:0] east_yellow=3'b001;
       parameter [2:0] north_green=3'b010;
       parameter [2:0] north_yellow=3'b011;
       parameter [2:0] west_green=3'b100;
       parameter [2:0] west_yellow=3'b101;
       parameter [2:0] south_green=3'b110;
       parameter [2:0] south_yellow=3'b111;
       reg [2:0] state;
       reg[4:0] count;
       reg[22:0] temp;
       always @ (posedge clk)
              temp<=temp+1;
       always @ (posedge temp[22], negedge rst)
       begin
              if (!rst)
                     count=5'b00000;
              else if (|Emergency)
              begin
                     state={Emergency[1] | Emergency[0], Emergency[2]|
Emergency[0],1'b0};
                     count=5'b00000;
              end
              else if(|Jam)
              begin
                     state = {Jam[1] | Jam[0], Jam[2] | Jam[0], 1'b0};
                     count=5'b00000;
              end
              else
              begin
                     case(state)
                             east_green:
                             begin
                                    if(count==5'b10011||Empty===4'b1000)
```

```
begin
              count=5'b00000;
              state=east_yellow;
       end
       else
       begin
              count=count+5'b00001;
              state=east_green;
       end
end
east_yellow:
begin
       if(count==5'b00011)
       begin
              count=5'b00000;
              state=north_green;
       end
       else
       begin
              count=count+5'b00001;
              state=east_yellow;
       end
end
north_green:
begin
       if (count==5'b10011 || Empty==4'b0100)
       begin
              count=5'b00000;
              state=north_yellow;
       end
       else
       begin
              count=count+5'b00001;
              state=north_green;
       end
end
north_yellow:
begin
       if(count==5'b00011)
       begin
              count=5'b00000;
              state=west_green;
       end
       else
       begin
              count=count+5'b00001;
              state=north_yellow;
       end
end
west_green:
```

```
begin
       if(count==5'b10011| |Empty==4'b0010)
       begin
              count=5'b00000;
              state=west_yellow;
       end
       else
       begin
              count=count+5'b00001;
              state=west_green;
       end
end
west_yellow:
begin
       if(count==5'b00011)
       begin
              count=5'b00000;
              state=south_green;
       end
       else
       begin
              count=count+5'b00001;
              state=west_yellow;
       end
end
south_green:
begin
       if(count==5'b10011| |Empty==4'b0001)
       begin
              count=5'b00000;
              state=south_yellow;
       end
       else
       begin
              count=count+5'b00001;
              state=south_green;
       end
end
south_yellow:
begin
       if(count==5'b00011)
       begin
              count=5'b00000;
              state=east_green;
       end
       else
       begin
              count=count+5'b00001;
              state=south_yellow;
       end
```

```
end
                    default:
                    begin
                           count=5'b00000;
                           state=east_green;
                    end
             endcase
      end
end
//red=100,yellow=010,green=001,red&yellow=110,none=000
always@(state)
begin
      if(!rst)
      begin
             East road=3'b000;
             North_road=3'b000;
             West_road=3'b000;
             South_road=3'b000;
      end
      else
      begin
             case(state)
                    east_green:
                    begin
                           East_road=3'b001;
                           North_road=3'b100;
                           West_road=3'b100;
                           South_road=3'b100;
                    end
                    east_yellow:
                    begin
                           East_road=3'b010;
                           North_road=3'b110;
                           West_road=3'b100;
                           South_road=3'b100;
                    end
                    north_green:
                    begin
                           East_road=3'b100;
                           North_road=3'b001;
                           West_road=3'b100;
                           South_road=3'b100;
                    end
                    north_yellow:
                    begin
                           East_road=3'b100;
                           North_road=3'b010;
                           West_road=3'b110;
                           South_road=3'b100;
```

```
end
                           west_green:
                           begin
                                  East road=3'b100;
                                  North_road=3'b100;
                                  West_road=3'b001;
                                  South_road=3'b100;
                           end
                           west_yellow:
                           begin
                                  East_road=3'b100;
                                  North_road=3'b100;
                                  West_road=3'b010;
                                  South_road=3'b110;
                           end
                           south_green:
                           begin
                                  East_road=3'b100;
                                  North_road=3'b100;
                                  West_road=3'b100;
                                  South_road=3'b001;
                           end
                           south_yellow:
                           begin
                                  East_road=3'b110;
                                  North_road=3'b100;
                                  West_road=3'b100;
                                  South_road=3'b010;
                           end
                    endcase
             end
      end
endmodule
```

Device utilization Summary:

Number of Slices:	53 out of 2448	2%
Number of Slice Flip Flops:	12 out of 4896	0%
Number of 4 input LUTs:	101 out of 4896	2%

Number of bonded IOBs: 26 out of 158 16% Number of GCLKs: 1 out of 24 4%

RTL Schematic:

Technology Schematic

Simulation Report:

• 4 Way Traffic Light Controller without Emergency, Jam:

• For Emergency in West Road:

• Jam condition in South Road:

• Empty Condition:

Implementation on FPGA XC3S250E: Pin Assignment:

I/O Name	DIP Switch	LOC
clk	-	P80
East_road[0]	avv.	P203
East_road[1]	SW1	P206
East_road[2]		P205
Emergency[0]		P196
Emergency[1]	SW1	P199
Emergency[2]		P197
Emergency[3]		P202
Empty[0]		P181
Empty [1]	SW2	P185
Empty [2]		P187
Empty [3]		P186
Jam[0]		P172
Jam [1]	SW3	P171
Jam [2]		P168
Jam [3]		P152
North_road[0]	CANA	P189
North_road [1]	SW2	P193
North_road [2]		P192
rst	SW4	P153
South_road [0]	avva	P163
South_road [1]	SW3	P167
South_road [2]		P165
West_road [0]	av.	P177
West_road [1]	SW4	P180
West_road [2]		P179

