

1 Cel ćwiczenia

Zapoznanie się z podstawowymi bramkami logicznymi i funkcjami logicznymi oraz skonstruowanie tablic prawdy dla bramek AND, OR, NOR, NAND, XOR, XNOR.

2 Przebieg ćwiczenia

2.1 Tabele prawdy

W programie Multisim przetestowałem podane bramki logiczne:

p	q	AND	OR	XOR	NAND	NOR	XNOR
0	0	0	0	0	1	1	1
0	1	0	1	1	1	0	0
1	0	0	1	1	1	0	0
1	1	1	1	0	0	0	1

Tabela 1: Tabela prawdy dla podanych bramek logicznych

2.2 Pięciowejściowa bramka AND

Aby zbudować pięciowejściową bramkę AND potrzeba 4 zwykłych dwuwejściowych bramek. Każde z wejść musi być w stanie wysokim, aby na wyjściu również był stan wysoki.

2.3 Czterowejściowa bramka OR

Zaobserwowałem, że gdy dowolne wejście jest w stanie wysokim, wyjście również przyjmuje stan wysoki.

2.4 Trzywejściowa bramka NAND

Ta bramka na wyjściu daje stan niski tylko jeśli każde z wejść jest w stanie wysokim.

2.5 Wyprowadzenia

$2.5.1 ext{ Y} = \text{not A}$

$2.5.2 \quad Y = \text{not A and B}$

2.5.3 Y = A or B

$2.5.4 \quad Y = A \text{ xor } B$

