

BRAINHACK TIL 2021: TEAM DELTA

Team members:

- Nguyen Cao Duy
- Tran Xuan An
- Tan Song Ze
- Lance Nathan Beltran Mosura
- Bryan Chua Bing Huan

PRESENTATION OUTLINE

CHALLENGE RECAP

OBJECT DETECTION

- Create bounding boxes around the animals in the photo
- Classify the detected animals into different classes such as 'Snake', 'Dog', etc.

AUDIO CLASSIFICATION

 Classify the sound files into difference single word commands such as 'One', 'Forward', 'Snake', etc.

FRAMEWORK OVERVIEW

FASTAI

 A deep learning library built on top of PyTorch which provides high-level components that can quickly and easily provide state-of-the-art results.

ICEVISION

 An agnostic fastai-like framework specific for computer vision

FASTAUDIO

 An extension of fastai for audio-related tasks

OBJECT DETECTION

PIPELINE

EXTERNAL DATA

Increase the original dataset by 10-20 times!

DATA AUGMENTATION

- HorizontalFlip
- ShiftScaleRotate
- RGBShift
- RandomBrightnessContrast
- Blur

MODEL TRAINING

- Different pretrained models were considered: RetinaNet, Faster R-CNN, EfficientDet
- Chosen model: YOLOv5 (extra-large)
- Best training/testing time & mAP
- Pretrained on the COCO dataset (from `ultralytics`)

MODEL TRAINING

- Optimizer: Adam
- Loss function: BCEWithLogitsLoss (class probability and object score)
- Focal Loss was also considered to address the imbalanced dataset
- 2-stage training:
- 1) Freeze the model body, train the model head for a few epochs
- 2) Unfreeze the model body, then train the entire model for at least 30 epochs
- Mixed precision training was used to reduce memory usage (explained later)
- Learning rate finder was used to find the most optimal learning rate (explained later)
- 1cycle training policy was also used (explained later)
- Save model callback is used to log the model with the best validation loss

MIXED PRECISION TRAINING

- Main idea: forward pass and gradient computation in half precision fp16 (to go fast), but backpropagation in single precision fp32 (to maintain precision)
- Benefits:
- 1) Only 1 line of code change with `fastai` training loop
- 2) Allows us to increase our batch size, thus reducing training time

LEARNING RATE FINDER

- Main idea: launch a mock training on a few batches of date while varying the learning rate and plot the correspondence training loss
- Benefit: systematically determine the optimal learning rate without guessing

1CYCLE TRAINING POLICY

- Main idea: increasing learning rate at the beginning, then decreasing learning rate
- Benefit: faster convergence

AUDIO CLASSIFICATION

PIPELINE

DATA PREPARATION

External data

MODEL TRAINING

ResNet, DenseNet, etc.

EXTERNAL DATA

- Two additional datasets: Free Spoken Digit Dataset (FSDD), Speech Commands
- Increase the original dataset by 5-10 times!

DATA AUGMENTATION

MaskTime

- MaskFreq
- SignalShifter
- ChangeVolume
- SignalCutout

MODEL TRAINING

- 5 different models were chosen
- 3 were pretrained on ImageNet: ResNet, DenseNet, VGG
- 2 were trained from scratch: XResNeXt, XSE_ResNet
- => To have different diverse models for ensembling
- Optimizer: Ranger (explained later)
- Loss function: CrossEntropyLoss
- 1-stage training:
- Unfreeze the model body, then train the entire model for at least 15 epochs
- Similar task-independent technique were also used: mixed precision training, learning rate finder, 1cycle training policy, save model callback

RANGER OPTIMIZER

- Main idea: a combination of Rectified Adam (RAdam) with Lookahead optimizer
- RAdam is an improved version of Adam regarding the adaptive momentum mechanism
- "On the Variance of the Adaptive Learning Rate and Beyond"
- Lookahead is a safety mechanism to reduce variance in training
- "Lookahead Optimizer: k steps forward, 1step back"
- Benefit: better convergence compared to Adam (especially when training models from scratch)

TEST TIME AUGMENTATION (TTA)

- Random augmentation transforms are applied on each image before prediction
- Repeat this process for n times
- Calculate the average prediction probabilities

MODEL ENSEMBLING

- Main idea: average the predictions of all 5 models after TTA (n = 5)
- The final prediction for each image is a combination of 25 different predictions!

Model	Max Accuracy (Validation) (c1)
resnet18	0.98687
densenet121	0.98856
vgg19	0.98899
xresnext18	0.98645
xse_resnet18	0.98772
ensembling	0.99168

THANK YOU FOR ATTENTION

ABD

We would love to answer your questions!