

Electroweak penguins and radiative *B* decays at Belle II

Cyrille Praz (KEK), on behalf of the Belle II collaboration 57th Rencontres de Moriond, 20.03.2023

Motivation

Why studying electroweak penguins and radiative B decays?

- Flavor-changing neutral-current transitions $b \to s$ forbidden at tree level in the standard model.
- Resulting B decays are rare (loop or box diagrams):
 - Branching fractions $\mathcal{B} \approx \mathcal{O}(10^{-7}) \sim \mathcal{O}(10^{-4})$.
- New physics may affect measured branching fractions and angular distributions of final-state particles.

The Belle II experiment

The SuperKEKB B factory

- \cdot e^+e^- collider in Tsukuba, Japan.
- $\sqrt{s} = 10.6 \, \text{GeV} = \text{m}(\Upsilon(4S)).$
- $\mathcal{B}(\Upsilon(4S) \to B\bar{B}) > 96\%$.

$$\int_{25.03.2019}^{22.06.2022} \mathcal{L}_{\sqrt{s}=m(\Upsilon(4S))} dt = 362 \,\text{fb}^{-1}.$$

- · $N_{\mathrm{B}\bar{\mathrm{B}}}=3.87\times10^{8}.$
- · Similar to Babar sample and half of Belle's.
- Maximum instantaneous luminosity: $4.7 \times 10^{34} \, \mathrm{cm^{-2} s^{-1}}$ (world record).
- Target instantaneous luminosity: $6 \times 10^{35} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$.

Strengths of Belle II for EW penguins and radiative B decays

- Belle II suited for measurements with neutral or missing energy.
 - Knowledge of initial energy-momentum in e^+e^- collisions.
 - · Moderate backgrounds.
 - Close to 4π coverage.
 - · Photons: high detection efficiency and good energy resolution.
- Good and similar identification of electrons and muons. [BELLE2-CONF-PH-2022-003]

B decays

Electroweak penguins and radiative

Identifying $B\bar{B}$ -meson production

- Knowing that B mesons are produced in $e^+e^- o \Upsilon(4S) o B\bar{B}$ events is valuable.
- When missing kinematic information in the signal decay $(B \to K \nu \overline{\nu}$, inclusive $B \to X_s \gamma$), accompanying B $(B_{\rm tag})$ is used to constrain the signal.

- Hadronic tagging: B_{tag} is reconstructed in a hadronic decay. [Comp Soft Big Sci 3, 6 (2019)]
 - Small tagging efficiency $\approx 0.1\% \sim 0.5\%$, full kinematic information.
- Inclusive tagging: no explicit reconstruction of $B_{
 m tag}$. [PRL 127 (2021) 18, 181802]
 - High tagging efficiency, limited kinematic information.

EW penguins and radiative B decay studies at Belle II

- A variety of $b \rightarrow s$ processes test the standard model in different ways.
 - In this talk
 - · Not in this talk.
- Larger branching fraction of $B o X_{\rm s} \gamma$ allows to study it with limited dataset.

	Decay	$\mathcal{O}(\mathcal{B})$	Note	${\rm Dataset}[{\rm fb}^{-1}]$	Documentation
A Walter	Fully inclusive $B \to X_s \gamma$	10^{-4}	hadronic tagging	189	[2210.10220]
1	$B \to J/\psi(\ell^+\ell^-)K$	10^{-4}	control, $not b \rightarrow s$	189	[2207.11275]
1	$B \to K^*(892)\ell^+\ell^-$	10^{-6}	-	189	[2206.05946]
	$B^+ \to K^+ \nu \overline{\nu}$	10^{-6}	inclusive tagging	63	
	$B \to K^*(892)\gamma$	10^{-6}		63	
	$B^+ \to K^+ \ell^+ \ell^-$	10^{-7}		63	
	Fully inclusive $B \to X_s \gamma$	10^{-4}		63	

Fully inclusive $B o X_s \gamma$

Fully inclusive $B o X_{\rm s} \gamma$ with hadronic tagging I [2210.10220]

- Sensitive to new physics (differently from $b \to s\ell\ell$).
- · Unique to B factories.
- Fully inclusive \rightarrow avoid form factor and fragmentation uncertainties.
- · Sensitive to b-quark motion inside B.

[PRL 127, 102001]

- Challenge: suppress and subtract large background contributions from $e^+e^- \to B\bar{B}$ and $e^+e^- \to a\bar{a}$ (q=u,d,c,s).
- Hadronic-tagging used only once for $B \to X_s \gamma$, by Babar. [PRI

[PRD 77 (2008) 051103]

Fully inclusive $B \to X_s \gamma$ with hadronic tagging II [2210.10220]

- Event selection strategy:
 - Reconstruct B_{tag} in a hadronic decay.
 - Select signal γ candidate with highest energy in B_{sig} frame (E_{γ}^{B}) .
 - Suppress γ from π^0 and η decays with boosted-decision-tree classifier.
 - Suppress $e^+e^- o q\overline{q}$ with boosted-decision-tree classifier.

Fully inclusive $B \to X_s \gamma$ with hadronic tagging III [2210.10220]

- Perform simultaneous fit of tag-side $M_{\rm bc}$ in bins of E_{γ}^{B} to determine $B\bar{B}$ yields.
 - Tag-side $M_{
 m bc} \equiv \sqrt{(\sqrt{s}/2)^2 p_{
 m B_{tag}}^{*2}}.$
- Resulting $B\bar{B}$ yields include:
 - Events with a $B \to X_{s+d} \gamma$ decay.
 - Other correctly-tagged $B\bar{B}$ processes.
- Size of remaining $B\bar{B}$ background estimated from simulation.
- $B\bar{B}$ background subtracted from data in bins of E_{γ}^{B} to determine the signal yield.

Fully inclusive $B \to X_s \gamma$ with hadronic tagging IV [2210.10220]

- After background subtraction, results integrated for multiple E^B_{γ} thresholds.
- Background mis-modelling dominates systematic uncertainties.

$\textit{E}^\textit{B}_{\gamma}$ threshold [GeV]	$\mathcal{B}(B \to X_s \gamma) [10^{-4}]$	Experiment	$\mathrm{L}[\mathrm{fb}^{-1}]$	Signal Yield	Reference
1.8 2.0	$3.54 \pm 0.78 \pm 0.83 \ 3.06 \pm 0.56 \pm 0.47$		189 189	$\begin{aligned} 343 \pm 122 \\ 285 \pm 68 \end{aligned}$	[2210.10220] [2210.10220]
1.9	$3.66 \pm 0.85 \pm 0.60$	BaBar	210		PRD 77 (2008) 051103
1.6	3.49 ± 0.19	World average			PDG 2022

 Result competitive with the only other hadronic-tagging measurement (BaBar), and consistent with world average (including all tagging techniques).

$$B o J/\psi(\ell^+\ell^-)$$
K as control fo

[2207.11275]

- $B \to J/\psi K$ involves a $b \to c$ transition, but is a control channel for $B \to K \ell^+ \ell^-$ studies.
- Reconstruct $B \to J/\psi (\ell^+\ell^-)K$ with $\ell = e, \mu$.
- · Measure signal yield with 2D fit:
 - $M_{\rm bc}$
 - $\Delta E \equiv E_B^* \sqrt{s}/2$.
- Compute $R_K(J/\psi) \equiv \frac{\mathcal{B}(B \to J/\psi(\mu^+\mu^-)K)}{\mathcal{B}(B \to J/\psi(e^+e^-)K)}$.

Mode	$N_{J/\psi o \mu^+ \mu^-}$	$N_{J/\psi ightarrow e^+e^-}$	$R_K(J/\psi)$
$B^+ \rightarrow J/\psi K^+$ $B^0 \rightarrow J/\psi K_s^0$			$1.009 \pm 0.022 \pm 0.008$ $1.042 \pm 0.042 \pm 0.008$

 Lepton ID systematic uncertainty (<1%) smaller than Belle's [JHEP 03 (2021) 105].

- Reconstruct $K^* \to K^+\pi^-, \ K^+\pi^0, \ K_{\rm S}^0\pi^+$ and $\ell^+\ell^- \ (\ell=e, \ \mu).$
- Veto dilepton-mass regions containing $B \rightarrow J/\psi K^*, \ \psi(2S)K^*, \ \gamma K^*.$
- · Suppress background with boosted tree.
- Measure signal yield with $(M_{\rm bc}, \Delta E)$ fit.

Observable	Signal Yield	Measured value $[10^{-6}]$	$PDG [10^{-6}]$
$\mathcal{B}(B \to K^* \mu^+ \mu^-)$	22 ± 6	$1.19 \pm 0.31^{+0.08}_{-0.07}$	1.06 ± 0.09
$\mathcal{B}(B o K^*e^+e^-)$	18 ± 6	$1.42 \pm 0.48 \pm 0.09$	1.19 ± 0.20

• Similar performance for e^+e^- and $\mu^+\mu^-$ modes.

Summary

- Electroweak penguins and radiative *B* decays offer multiple opportunities to search for new physics.
- Fully inclusive $B \to X_s \gamma$:
 - First $b \to s \gamma$ measurement with hadronic tagging from Belle/Belle II.
 - Competitive with the only other hadronic-tagging measurement.
- $B \to K^*(892)\ell^+\ell^-$, $B \to J/\psi(\ell^+\ell^-)K$:
 - · Good and similar identification of electrons and muons.
 - Prepare the ground for precision measurements of rare decays at Belle II when more data will be collected.

Belle II contributions to Moriond 2023

- · Sascha Dreyer: Dark sector and tau physics results at Belle II.
- · Sagar Hazra: Hadronic B decays and charm at Belle II.
- Kazuki Kojima: Belle II results related to $b \rightarrow c$ anomalies.
- Cyrille Praz: Electroweak penguins and radiative B decays at Belle II.
- · Christoph Schwanda: Semileptonic B decays at Belle II.
- · Michele Veronesi: Time-dependent CP violation results at Belle II.

Thank you for your attention.

Backup

· Good and similar identification of electrons and muons at Belle II.

• Perform simultaneous fit of tag-side $M_{\rm bc}$ in bins of E_{γ}^{B} to determine $B\bar{B}$ yields.

• The uncertainties are expressed in units of 10^{-4} .

E_{γ}^{B} [GeV]	$\frac{1}{\Gamma_{\rm B}}\frac{d\Gamma_{\rm j}}{dE_{\gamma}^{\rm B}}(10^{-4})$	Statistical	Systematic	Fit procedure	Signal efficiency	Background modelling	Other
1.8 - 2.0	0.48	0.54	0.64	0.42	0.03	0.49	0.09
2.0 - 2.1	0.57	0.31	0.25	0.17	0.06	0.17	0.07
2.1 - 2.2	0.13	0.26	0.16	0.13	0.01	0.11	0.01
2.2 - 2.3	0.41	0.22	0.10	0.07	0.05	0.04	0.02
2.3 - 2.4	0.48	0.22	0.10	0.06	0.06	0.02	0.05
2.4 - 2.5	0.75	0.19	0.14	0.04	0.09	0.02	0.09
2.5 - 2.6	0.71	0.13	0.10	0.02	0.09	0.00	0.04

· Relative systematic uncertainties (in %).

Source	$\mathcal{B}\left(B\toKJ/\psi\right)$			R_K		Aı		
	K+	K ⁺	K _S ⁰	K_S^0	K ⁺	K^0		
	e^+e^-	$\mu^+\mu^-$	e^+e^-	$\mu^+\mu^-$			e^+e^-	$\mu^+\mu^-$
Number of $B\overline{B}$ events	1.5	1.5	1.5	1.5	-	-	-	-
PDF shape	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1
Electron identification	0.6	-	0.6	-	0.6	0.6	-	-
Muon identification	-	0.4	-	0.4	0.4	0.4	-	-
Kaon identification	0.2	0.2	-	-	-	-	0.1	0.1
K_S^0 reconstruction	-	-	3.0	3.0	-	-	1.5	1.5
Tracking efficiency	0.9	0.9	1.2	1.2	-	-	0.4	0.4
Simulation sample size	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$\Upsilon(4S)$ branching fraction	2.6	2.6	2.6	2.6	-	-	2.6	2.6
(au_{B^+}/ au_{B^0})	-	-	-	-	-	-	0.2	0.2
Total	3.2	3.2	4.4	4.4	0.8	0.8	3.0	3.0

• Relative systematic uncertainties (in %).

Course	Customatic (07)
Source	Systematic (%)
Kaon identification	0.4
Pion identification	2.5
Muon identification	$^{+1.9}_{-0.8}$
Electron identification	+0.9 -0.5
$K_{\rm S}^0$ identification	2.0
π^0 identification	3.4
Tracking	1.2 - 1.5
MVA selection	1.3 - 1.7
Simulated sample size	< 0.5
Signal cross feed	< 1%
Signal PDF shape	0.5 - 1.0%
$\mathcal{B}(\Upsilon(4S) \to B^+B^-)[(\mathcal{B}(\Upsilon(4S) \to B^0\overline{B^0}))$	1.2
Number of $B\overline{B}$ pairs	2.9
Total	+6.7 -6.0

Long-shutdown activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- installation of 2-layered pixel vertex detector
- o improved data-quality monitoring and alarm system
- o completed transition to new DAQ boards (PCle40)
- o accelerator improvements: injection, non-linear collimators, monitoring
- replacement of aging components
- additional shielding and increased resilience against beam bckg

Currently working on pixel detector installation:

- ==> shipping to KEK in ~mid March
- ==> final tests at KEK scheduled in April

On track to resume data taking next winter with new pixel detector