# Countable 2-arc-transitive bipartite graphs via partially ordered sets

Robert Gray

Centro de Álgebra da Universidade de Lisboa

Workshop on Homogeneous Structures University of Leeds, Friday 22nd July 2011





# Partially ordered sets

**Question:** What is a treelike partially ordered set?

## Semilinear orders

## Definition

A semilinear order (sometimes called a 'tree') is a partial order with the property that each principal ideal is totally ordered and any two elements have a common lower bound.



## Semilinear order classification

Droste (1985): Classification of countable 2-homogeneous semilinear orders.

▶ There are  $\aleph_0$  many.

#### Definition

A semilinear order T is 2-CS-homogeneous if its automorphism group is transitive on pairs  $\alpha, \beta$ , with  $\alpha < \beta$ .

Droste, Holland, Macpherson (1989): Classification of countable 2-CS-homogeneous trees.

▶ There are  $2^{\aleph_0}$  many.

# Cycle-free partial orders (*CFPO*s)

#### Intuition...

- Semilinear order: a poset which may branch as we move upwards through it, but never on going downwards.
- ► *CFPO*: we may branch upwards and downwards, and repeatedly, but no return to one's starting point is allowed.

## Cycle-free partial orders (*CFPO*s)

Some properties one would expect of *CFPO*s:

- (C1) substructures of cycle-free partial orders should be cycle-free;
- (C2) semilinear orders should be cycle-free;
- (C3) the diagram representing such an order should be 'treelike'.

## Definition (first attempt)

A poset is cycle-free if its Hasse diagram does 'not contain any cycles'.



# The Dedekind-MacNeille completion

▶ A poset is called Dedekind–MacNeille complete (*DM*-complete) if each non-empty upper bounded subset has a supremum (equivalently, each non-empty lower bounded subset has an infimum).

# The Dedekind–MacNeille completion

- ▶ A poset is called Dedekind–MacNeille complete (*DM*-complete) if each non-empty upper bounded subset has a supremum (equivalently, each non-empty lower bounded subset has an infimum).
- For any poset M there is a unique (up to isomorphism fixing M pointwise) extension  $M^D$  of M which is Dedekind–MacNeille complete, called the Dedekind–MacNeille completion  $M^D$  of M.

# The Dedekind–MacNeille completion

- ▶ A poset is called Dedekind–MacNeille complete (*DM*-complete) if each non-empty upper bounded subset has a supremum (equivalently, each non-empty lower bounded subset has an infimum).
- ▶ For any poset M there is a unique (up to isomorphism fixing M pointwise) extension  $M^D$  of M which is Dedekind–MacNeille complete, called the Dedekind–MacNeille completion  $M^D$  of M.
- ▶  $M^D$  may be realised as the family of all (Dedekind) ideals of M ordered by inclusion, with  $M \hookrightarrow M^D$  the principal ideals.
  - (an ideal  $J \subseteq M$  is an upper bounded subset that is equal to the set of lower bounds of its set of upper bounds)



## Cycle-free partial orders (*CFPO*s)

Warren (1997)

This motivates...

## Definition (second attempt)

A poset M is cycle-free if the Hasse diagram of its Dedekind–MacNeille completion  $M^D$  does 'not contain any cycles'.

## Cycle-free partial orders (*CFPO*s)

Warren (1997)

P - poset,  $a, b \in P$ 

A connecting set from a to b in P is a sequence  $(a_0, a_1, \dots, a_n)$ :

$$a = a_0$$
,  $b = a_n$ ,  $a_r \& a_{r+1}$  comparable for all  $r$ .

Then a path from a to b is a set  $A_0 \cup A_1 \cup A_2 \cup \cdots \cup A_{n-1}$  such that:

- ►  $A_r$  is a maximal chain in  $[a_r, a_{r+1}]$ ;
- ▶  $A_r \cap A_{r+1} = \{a_{r+1}\}$  are the only non-empty intersections.

*P* is connected if there is a connecting set between any two points.

#### Definition

A poset M is a cycle-free partial order if in  $M^D$  there is exactly one path between any two points.

# Classification of k-CS-homogeneous CFPOs

#### **Definition**

A poset  $(P, \leq)$  is k-CS-homogeneous if any isomorphism between two connected substructures of P of size k extends to an automorphism of P.

## *k*-CS-homogeneous *CFPO*s

- ▶ In non-trivial cases  $k \le 4$  Warren (1997).
- ▶ Classification of countable *k*-CS-tansitive *CFPO*s for  $k \ge 2$ :
  - Warren (1997), Truss (1998), Creed, Truss, Warren (1999), RG, Truss (2008)
- ▶ Natural division into finite chain and infinite chain cases.

R. Warren. The structure of k-CS-transitive cycle-free partial orders. *Mem. Amer. Math. Soc.*, 129(614):x+166, 1997.

## Finite chain *CFPO*s

Connection between *CFPO*s and graphs:

## Theorem (The bipartite theorem, Warren (1997))

Let M be an infinite CFPO all of whose chains are finite. If M is k-CS-transitive for some  $k \ge 2$  and C is a maximal chain in M, then |C| = 2.

- ▶ It follows that finite chain *CFPO*s can be thought of both as partial orders and as bipartite graphs.
- ► Cycle-free  $\Rightarrow$  intervals in  $M^D$  are all chains.
- ▶ M has finite chains  $\neq M^D$  has finite chains.

There are many interesting 3-CS-homogeneous examples.

 $1 + \mathbb{Z} + 1$ 

























## Locally 2-arc-transitive bipartite graphs from CFPOs

**Fact.** Let *M* be a connected 2-level partial order. Then *M* is

- 3-CS-homogeneous as a poset  $\Leftrightarrow$  M is locally 2-arc-transitive when viewed as a bipartite graph.
  - ▶ (locally) *k*-arc-transitive finite graphs have received a lot of attention: e.g. Tutte (1947, 1959), Weiss (1981), Giudici, Li, Praeger (2004).

#### So..

- ► The 3-CS-transitive *CFPO* classification gives a new interesting family of countable locally 2-arc-transitive graphs.
  - ▶ (observation originally made by P. M. Neumann)
- ► This family of examples is of particular significance since they have no obvious finite analogues.
  - (i.e. they are not simply examples that arise by taking some known finite family and allowing a parameter to go to infinity)

# Locally 2-arc-transitive bipartite graphs via posets

Outline of approach

Let M be a countable connected locally 2-arc-transitive bipartite graph, viewed as a 2-level partial order  $M = X \cup Y$  with X the set of minimal points and Y the set of maximal points.

#### Lemma

- ► For all  $x, x' \in X$  and  $y, y' \in Y$  with x < y and x' < y' we have  $[x, y]^{M^D} \cong [x', y']^{M^D}$ .
- ▶ Denote this interval by I(M).

### General approach:

- (I) Identify the possible partial orders that can arise as intervals I(M) where M is a countable locally 2-arc-transitive bipartite graph.
- (II) For each possible interval I (or class of intervals) investigate (classify) those countable locally 2-arc-transitive bipartite graphs such that  $I(M) \cong I$ .

## The case of chain intervals

The 3-CS-homogeneous CFPOs are our motivating examples. They all have the property that I(M) is a chain. A natural next step:

▶ Investigate locally 2-arc-transitive bipartite graphs M such that I(M) is a chain.

Let M be a countable connected locally 2-arc-transitive bipartite graph, viewed as a 2-level partial order  $M = X \cup Y$  with X the set of minimal points and Y the set of maximal points.

- (I) Identify the possible chains that can arise as intervals I(M).
- (II) For each possible such chain I investigate (classify) those countable locally 2-arc-transitive bipartite graphs such that  $I(M) \cong I$ .

# (I) Identifying possible chain intervals

Finite chains

#### Definition

A partial linear space is a pair (P, L) consisting of a set P of points and a set L of lines such that

- (i) every line contains at least two points, and
- (ii) any two distinct points are on at most one line.

#### Lemma

Let M be a countable connected bipartite graph, viewed as a 2-level partial order. Then

*M* is *DM*-complete  $\Leftrightarrow$  *M* is the incidence graph of a partial linear space.

# (I) Identifying possible chain intervals

Finite chains

## Proposition

Let *M* be a countable connected locally 2-arc-transitive bipartite graph. If I = I(M) is a finite chain then |I| = 2 or |I| = 3. Moreover:

- (i) If |I| = 3 then M is complete bipartite.
- (ii) If |I| = 2 then M is the incidence graph of a partial linear space S such that Aut(S) is transitive on configurations of the form  $(p_1, l, p_2)$ , where l is a line incident with  $p_1$   $p_2$ , and on configurations  $(l_1, p, l_2)$  where p is a point incident with  $l_1$  and  $l_2$ .
  - ► There are  $2^{\aleph_0}$  countable examples (e.g. projective planes over countable fields).
  - ▶ No classification is known. Related work:
    - Classification of finite connected 4-homogeneous partial linear spaces Devillers (2002), (2005), (2008).
    - Some countably infinite examples of partial linear spaces satisfying these conditions arise from the work of Tent (2000) on 'generalized n-gons'.

# (I) Identifying possible chain intervals

Infinite chains

Let M be a countable connected locally 2-arc-transitive bipartite graph, viewed as a 2-level partial order  $M = X \cup Y$  with X the set of minimal points and Y the set of maximal points.

$$\uparrow \operatorname{Ram}(M) = \{a \land b : a, b \in M, a \parallel b\}, \quad \downarrow \operatorname{Ram}(M) = \{a \lor b : a, b \in M, a \parallel b\}$$
$$M^+ = M \cup \uparrow \operatorname{Ram}(M) \cup \downarrow \operatorname{Ram}(M)$$

**Fact.** Aut(M) acts transitively on each of  $\uparrow Ram(M)$  and  $\downarrow Ram(M)$ .

**Fact.** *M* countable  $\Rightarrow M^+$  countable.

#### Lemma

I(M) is a chain if and only if the maximal chains  $I^+(M)$  of  $M^+$  are chains, in which case I(M) is the DM-completion of  $I^+(M)$ .

► These facts together with Morel (1965) classification of countable transitive linear orders allow us to list the possible chain types  $I^+(M)$ .

# The special case of $\mathbb{Z}$ intervals

Let M be a connected countable locally 2-arc-transitive bipartite graph such that the intervals of  $I^+(M)$  is isomorphic to  $1 + \mathbb{Z} + 1$ .

#### Examples?

- ► *CFPO*s built up by gluing together chains  $1 + \mathbb{Z} + 1$ .
- ► Any others?









# $1 + \mathbb{Z} + 1$ chain *CFPO*s alternative point of view

- ▶ Build the 'scaffolding' *T* first by gluing together copies of the alternating poset ALT in a treelike way.
- ▶ Choose for each point of *T* a maximal chain passing through that point, and put one point above and below each such chain (i.e. choose a countable 'dense' set of maximal chains of *T*).

#### But...

if we view ALT as a directed bipartite graph, then this is the highly arc-transitive digraph given by the universal covering construction DL(ALT) of Cameron, Praeger, Wormald (1992).

# The digraphs $DL(\Delta)$

- Examples may be obtained from the universal covering digraphs  $DL(\Delta)$  of Cameron, Praeger, Wormald (1992).
- ▶ The digraphs  $DL(\Delta)$  arise in the study of highly arc-transitive digraphs, meaning the automorphism group is transitive on the set of directed paths of length n for every  $n \in \mathbb{N}$ .

#### $\Delta$ - bipartite digraph

 $DL(\Delta)$  - a certain infinite digraph obtained by guling together copies of  $\Delta$  in a tree-like way.

**Example.**  $\Delta = 6$ -cycle.











# $1 + \mathbb{Z} + 1$ chain *CFPO*s alternative point of view

### Example

- ▶ Consider  $DL(\Delta)$  where  $\Delta$  is a 6-crown.
- ▶ Let  $P(DL(\Delta))$  be  $DL(\Delta)$  viewed as a poset.
- ▶ Choose a countable 'dense' set of maximal chains in  $P(DL(\Delta))$  and put one point above and below each such chain.





What makes this example work?

**Idea:** Given a "sufficiently nice" countable highly arc-transitive digraph D, it can be used to construct a countable locally 2-arc-transitive bipartite graph M, with  $I^+(M) \cong 1 + \mathbb{Z} + 1$  intervals, using the above approach.

Sufficiently nice means satisfying the following (and their duals):

- (D1) The substructures induced by the descendants are trees.
- (D2) Intersection of any pair of descendant sets is again a descendant set.
- (D3) Automorphism group acts transitively on infinite *Y*-configurations.





#### Theorem

Let D be a countable connected highly arc-transitive digraph satisfying (D1), (D2) and (D3). Then there is a connected countable locally 2-arc-transitive bipartite graph M such that the digraph  $D(M^+ \setminus M)$  naturally defined from the partial order  $M^+ \setminus M$  is isomorphic to D.

#### Theorem

Let D be a countable connected highly arc-transitive digraph satisfying (D1), (D2) and (D3). Then there is a connected countable locally 2-arc-transitive bipartite graph M such that the digraph  $D(M^+ \setminus M)$  naturally defined from the partial order  $M^+ \setminus M$  is isomorphic to D.

Conversely, if  $\Gamma$  is a countable connected locally 2-arc-transitive bipartite graph such that the interval  $I^+(M)$  is isomorphic to  $1 + \mathbb{Z} + 1$ , then the digraph  $D(M^+ \setminus M)$  naturally defined from the partial order  $M^+ \setminus M$  is a connected highly arc-transitive digraph satisfying properties (D1), (D2), and (D3) for finite Y configurations (and their duals).

#### Conclusion

The classification problem for intervals  $1 + \mathbb{Z} + 1$  comes down to classifying a certain family of countable highly arc-transitive digraphs.

Constructing many examples

#### Theorem

There are  $2^{\aleph_0}$  connected countable locally 2-arc-transitive bipartite graphs M with I(M) of order-type  $1 + \mathbb{Z} + 1$ .

## Idea of proof

Consider the digraphs  $DL(\Delta)$  where  $\Delta$  ranges through the countable connected DM-complete 2-level locally 2-arc-transitive bipartite graphs. Prove there are  $2^{\aleph_0}$  such  $\Delta$ , and distinct  $\Delta$  give rise to distinct  $DL(\Delta)$  which in turn give rise to distinct bipartite graphs  $M = X \cup Y$ .

▶ Contrasts with the case of *CFPO*s for which, with the same interval type, there are only  $\aleph_0$  many.

### Other chain intervals

For the other possible order-types of chain intervals the connection with highly arc-transitive digraphs is lost.

**Non-dense cases:**  $I^+(M)$  has order type  $1 + \mathcal{Z} + 1$  where  $\mathcal{Z}$  is one of  $\mathbb{Z}^{\alpha}$  or  $\mathbb{Q}.\mathbb{Z}^{\alpha}$  for a countable ordinal  $\alpha > 0$ , or  $\mathbb{Q}.2$ .

**Dense cases:**  $I^+(M)$  has order-type  $1 + \mathbb{Q} + 1$  or  $1 + \mathbb{Q}_2 + 1$ .

#### Theorem

For each of the order-types  $\mathcal{I}$  listed above, there are  $2^{\aleph_0}$  connected countable locally 2-arc-transitive bipartite graphs M with I(M) of order-type  $\mathcal{I}$ .

### **Future directions**

- ► Classify countable locally 2-arc-transitive bipartite graphs whose DM-completions have intervals of type  $1 + \mathbb{Z} + 1$ .
  - ▶ Describe the HAT digraphs that can arise as  $M^+$ .
  - May only be possible modulo a classification of DM-complete locally 2-arc-transitive bipartite graphs (equivalently, partial linear spaces).
- Classify countable locally 2-arc-transitive bipartite graphs whose DM-completions have chain intervals.
- ▶ Investigate locally 2-arc-transitive bipartite graphs whose *DM*-completions have infinitely many 'ends' (for a suitably defined notion of ends for partially ordered sets).
  - Relationship between ends of graphs and CFPOs were investigated in RG, Truss (2009).
- ► Look at automorphism groups.
  - ► Automorphism groups of semilinear orders: Droste (1985), Droste, Holland, Macpherson (1989): examples with "many normal subgroups";
  - Automorphism groups of CFPOs: Droste, Truss, Warren (1997): many are infinite simple groups.