Tuesday, July 27, 2021 1:11 AM

Pr I-V characteristics of MOSFET devices:

Current & Voltage

V4: Threshold voltage VE>0

$$\beta = \mu_n \frac{\epsilon_{ox}}{t_{ox}} \left(\frac{w}{L}\right)_n$$

	2. pM05	<u>-</u>		
9	5 —d[d	Isd =	; V _{s0} =	≥0

Vip: Threshold voltage 4p<0

$$\beta_p = \mu_p \frac{\epsilon_{ox}}{t_{ox}} \left(\frac{w}{L}\right)_p$$

$$I_{sd} = f_p \left(v_{sg} - |v_{sp}| - \frac{v_{sd}}{2} \right) v_{sd}$$
 $I_{ds} = \frac{f_P}{2} \left(v_{sg} - |v_{sp}| \right)^2$

	Vgs < Vt	Vgs ≥ Vt
Vds < Vds(sat)	Cutoff	Linear
Vds ≥ Vds(sat)	Cutoff	Saturation

	Vsg < Vtp	Vsg ≥ Vtp
Vsd < Vsd(sat)	Cutoff	Linear
Vsd ≥ Vsd(sat)	Cutoff	Saturation

$$I_{ds} = \begin{cases} O & \longrightarrow \text{ out off} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2} \right) V_{ds} \rightarrow \text{ linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t} \right)^{2} & \longrightarrow \text{ saturation} \end{cases}$$

$$I_{sd} = \begin{cases} \rho \left(V_{sg} - |V_{tp}| - \frac{V_{sd}}{2} \right) V_{sd} \rightarrow \text{linear} \\ \frac{\beta \rho}{2} \left(V_{sg} - |V_{tp}| \right)^2 \longrightarrow \text{saturation} \end{cases}$$

Problem 1

Consider an n-channel MOSFET with the following parameters:

 $V_t = 0.4 \text{ V}$, $W = 20 \mu \text{m}$, $L = 0.8 \mu \text{m}$, $\mu_n = 650 \text{ cm}^2/\text{V} - \text{s}$, $t_{ox} = 200 \text{ Å}$, and $\epsilon_{ox} = (3.9)(8.85 \times 10^{-14}) \text{ F/cm}$. Calculate B. Then determine the operating mode and the current through the transistor (Ids) for the following cases:

$$\beta = \mu_{n} \frac{\epsilon_{ox}}{\epsilon_{ox}} \frac{W}{L} = 650 \times \frac{3.9 \times 8.854 \times 10^{-14}}{200 \times 10^{-8}} \times \frac{20}{0.8} \frac{cm^{2}}{v \cdot k} \times \frac{f}{dm} \cdot \frac{1}{cm} \times \frac{ym}{ym}$$

$$= 0.0027105 \frac{A}{V^2} = 2.7105 \frac{mA}{V^2} + tox = 200 Å \qquad [Å = 10^{-10} M]$$

$$1 = 10^{-10} \text{m}$$

= 10^{-8}cm

 $I = C \frac{1}{2} + A = f \cdot \frac{\sqrt{3}}{3}$

(a)
$$V_{gs} = 0.8V$$
 $V_{fs} > V_{f} \Rightarrow 0N$ W

$$V_{ds} = 0.2 < V_{ds}(sat) = 0.4 \Rightarrow linear$$

$$I_{ds} = \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2} \right) V_{ds} = 0.0027105 \times \left(0.8 - 0.4 - \frac{0.2}{2} \right) \times 0.2 \frac{A}{yx} x^{2}$$

$$= 0.00016263 A = 0.16263 mA$$

$$V_{ds(sat)} = V_{gs} - V_{t} = (1.6 - 0.4)V = 1.2V$$
 $V_{ds} = 2V$ $V_{ds} > V_{ds(sat)} \Rightarrow sutration$

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 = \frac{0.0027105}{2} \times \left(1.6 - 0.4 \right)^2 \frac{A}{V^2} V^2$$

$$= 0.001952 A = 1.952 mA$$

This value was wrongly calculated in bux 1

Problem 2

For a 0.8- μ m process technology, t_{ox} = 15 nm, μ = 275 cm²/V.s, ϵ_{ox} = (3.9)(8.85 × 10⁻¹⁴) F/cm and V_t = - 0.7 V.

- (a) Judging from the value of $V_t\,$ and μ , comment on whether the MOSFET is NMOS or PMOS
- (b) Calculate Cox

(c) For a MOSFET with W/L = 20 calculate the values of β , V_{sg} and $V_{sd(min)}$ needed to operate the transistor in the saturation region with a dc current of Id = 0.1 mA Vsd (min) = Vsg - Nt

(a) since
$$V_4 = -0.7 \vee$$
; $V_4 < 0 \Rightarrow pMOS$. $U = 2.75 = 12$

(b)
$$C_{0x} = \frac{\mathcal{E}_{0x}}{t_{0x}} = \frac{3.9 \times 8.854 \times 10^{-14}}{15 \times 10^{-8}} \frac{f/ym}{ym} = 0.000002302 f 2$$

(c)
$$\beta = \mu \frac{\xi_{0X}}{t_{0X}} \frac{W}{L} = 275 \times 2.302 \times 10^{-6} \times 20^{-\frac{4}{2}} = 0.012661 \frac{A}{12} \Rightarrow v_{Sg} = \sqrt{\frac{2J_0}{B}} + |v_t|$$

solvetion region andition for pNOS: $V_{SJ} > V_{SJ} > V_{S$

saturation region condition for pMOS; | Vgd > Vsd (sort) (= Vgs - V+)

$$Vsd(min) = Vsg - |Vt| = 0.82568 - 0.7 V = 0.1278 V $\nabla vsg = 0.8256 V$$$

Consider an nMOS transistor in a 65 nm process with a minimum drawn channel length of 50 nm ($\lambda = 25$ nm). Let $W/L = 4/2 \lambda$ (i.e., 0.1/0.05 μ m). In this process, the gate oxide thickness is 10.5 A. Estimate the high-field mobility of electrons to be 80 cm²/V·s at 70 °C. The threshold voltage is 0.3 V. Plot I_{ds} vs. V_{ds} for $V_{gs} = 0$, 0.2, 0.4, 0.6, 0.8, and 1.0 V using the long-channel model.

Vas=0.4V -> Vgs>Ve -> ON WIds +0: Vds(sat)=Vgs-VE = 0.1V

$$\frac{v_{ds} < 0.1}{l_{ds}} = \beta \left(v_{gs} - v_t - \frac{k_g}{2} \right) v_{ds}$$

Vg5=0.6 → Vg5>Vt >0N → Vas(sat)=0.6-0.3 =0.3

$$\beta = 80 \times \frac{3.9 \times 8.854 \times 10^{-14}}{10.5 \times 10^{-8}} \times \frac{4}{2} \frac{A}{V^{2}}$$

$$= 526 \frac{MA}{V^{2}}$$

in sath region.

= 0.82568 V

 $I_{d} = \frac{\beta}{2} \left(\sqrt{sg} - \left(\sqrt{t} \right) \right)^{2}$

Homework: try for pMOS

Problem 4

polysilican crossing diffusion creates transishors &

Using the figure given below, answer the following questions:

a. Draw the schematic diagram of the circuit (that results in this layout) and then clearly mark the length and width of each of the transistors.

b. Find the current flowing through each of the transistors, if $\mu_n C_{ox} = 120 \,\mu\text{A/V}^2$, $V_t = 1 \,\text{V}$

$$\frac{(b)}{V_{qS}} = \frac{1}{5} V_{e} = \frac{1}{V_{e}} V_{e} = \frac{1}{5} V_{e} = \frac{1}{5}$$

 $l_{ds} = \frac{\beta}{2} \left(\sqrt{g_{3}} - \sqrt{t} \right)$ $= \frac{1}{2} \frac{Mn \left(x_{3} \times \sqrt{t} \right)}{L} \left(\sqrt{g_{3}} - \sqrt{t} \right)$ $= \frac{1}{2} \times 120 \times \frac{10}{3} \left(5 - 1 \right)$ $= 60 \times \frac{10}{3} \times 16$ = 3200 AA = 3.2 MA

T2:

$$|_{ds} = \frac{\beta}{2} (v_{gs} - v_{t})^{L}$$

$$= \frac{1}{2} \times 120 \times \frac{W}{L} \times (v_{gs} - v_{t})^{L}$$

$$= \frac{1}{2} \times 120 \times \frac{10}{2} \times 16 \quad \text{uA}$$

$$= 4800 \text{ uA} = 4.8 \text{ mA}. \quad \Box$$