Investigations in Exact Inference for Hierarchical Translation

Wilker Aziz¹ Marc Dymetman² Sriram Venkatapathy²

¹University of Wolverhampton Wolverhampton, UK w.aziz@wlv.ac.uk

2Xerox Research Centre Europe Grenoble, France {first.last}@xrce.xerox.com

August 9, 2013

Table of Contents I

- Motivation
- 2 Approach
- Results
 - Optimisation
 - Sampling
- Remarks

Results

Optimisation in hierarchical translation

Hierarchical phrase-based translation

- SCFG compactly encodes the translation equivalences
- incorporate the language model requires intersecting a wFSA
 - while this is guaranteed polynomial in time and space
 - it is **prohibitive** even for low order LMs
 - "requires" approximation [Chiang, 2007]

1/17

Proposal

Avoid performing the full intersection, but without losing exactness

- 1 start from an optimistic unigram LM
- ② incorporate higher-order *n*-grams on the basis of evidence of the need to do so

Exact inference over a tractable proxy representation of the target distribution (dynamic programming)

Using a technique that is also directly applicable to sampling

Motivation

Sampling

During **decoding**, when a single output is required, **optimisation** is a natural choice However.

- Minimum Bayes Risk decoding is based on samples
- samples are also useful for exploring different modes of the distribution

During **learning**, samples are necessary for training the parameters

- however, often *n*-best lists are used as a proxy e.g. MERT, minimum risk training
 - [Blunsom and Osborne, 2008, Arun et al., 2009]

3 / 17

Exact optimisation and sampling with OS*

A unified view on optimisation and sampling

- A cross between Adaptive Rejection Sampling and A* optimisation
- An exact alternative to the usual approximate MCMC sampling techniques (e.g. Gibbs)

OS* [Dymetman et al., 2012]

5 / 17

- translation hypergraph without the LM: G(f) wCFG
 - language model: A wFSA

 $G(f) \cap A$ intractable space of weighted translations of the input [Dyer, 2010]

- defines an unnormalised probability distribution over target derivations
- number of rules in the intersected grammar grows exponentially with the order of A

5 / 17

Remarks

$$p = G(f) \cap A$$

intractable \rightarrow dynamic programming

OS* for hierarchical SMT

Simpler and optimistic proposal

$$q^{(0)} = G(f) \cap A^{(0)}$$

tractable o dynamic programming

- ullet $A^{(0)}$ is an optimistic unigram version of the full LM
- Progress by lowering the upper-bound based on observed samples
- Efficient "Earley intersection" [Dyer, 2010]

6/17

OS* for hierarchical SMT

Sample from $q^{(0)}$

- Accept sample with probability $r = p(x)/q^{(0)}(x)$
- Poor acceptance rate
- Rejected samples are used to refine the proxy

6 / 17

Motivation

OS* for hierarchical SMT

Obtain a better proxy by intersecting with a small "refinement" automaton $A^{(1)}$

$$q^{(1)} = q^{(0)} \cap A^{(1)}$$

ullet $A^{(1)}$ accounts for a more precise context

$$w(two)w(dog) \rightarrow w(two)w(dog|two)$$

- $m{q}^{(1)}$ is only slightly more complex than $m{q}^{(0)}$ thus dynamic programming remains feasible
- leads to a better acceptance rate

Results

Repeat the process (sample + refine) until:

• Sampling: a pre-defined acceptance rate is reached

OS* for hierarchical SMT

Repeat the process (sample + refine) until:

- Sampling: a pre-defined acceptance rate is reached
- ullet Optimisation: maximum from $q^{(t)}$ is sufficiently close to p

An upper-bound on the LM distribution

Maximise away the history of an *n*-gram [Carter et al., 2012]

$$w_1(a) \equiv \max_h p_{lm}(a|h)$$
 $w_2(a|a_{-1}) \equiv \max_h p_{lm}(a|h, a_{-1})$
 $w_3(a|a_{-2}a_{-1}) \equiv \max_h p_{lm}(a|h, a_{-2}a_{-1})$

Pre-computed

Initial proposal

The initial proposal $q^{(0)}$ incorporates only unigrams

- $A^{(0)}$ is a very simple automaton
- $q^{(0)} = G(f) \cap A^{(0)}$ has the same size of G(f)

the/ α_1 two/ α_2 dog/ α_3

Incremental updates

Down-weight occurrences of dog in the context of two

Affects derivations yielding strings that contain occurrences of "two dog" Each such occurrence is now scaled by α

Illustration (sampling)

Due to refinements

better acceptance rate

Illustration (optimisation)

Motivation

i	Rules	Optimum	
0	311	<s> one last observation . </s>	
1	454	<s> one <u>last</u> observation . </s>	
2	628	<s> one last observation . </s>	
3	839	<s> one final observation <u>.</u> </s>	
4	1212	<s> one final <u>observation</u> . </s>	
12	3000	<s> a final observation . </s>	
13	3128	<s> one final observation </s>	

Optimisation

Length	ctxt	count	$\frac{ R_f }{ R_0 }$
4	1	20.3	74.6 ± 53.9
	2	19.2	
	3	5.4	
5	1	21.9	145.4 ± 162.6
	2	32.9	
	3	7.5	
6	1	34.7/75	535.8 ± 480.0
	2	54.9/2000	
	3	13.2	
		4-gram LM	•

Needs to account for very few contexts

Optimisation

Needs to account for very few contexts

Sampling

Motivation

Sampling

Input	ctxt	count	$\frac{ R_f }{ R_0 }$
5	1	1.0	1.9 ± 1.0
6	1	6.3	17.6 ± 13.6
	2	0.3	
7	1	12.9/90	93.8 ± 68.9
	2	1.5/3000	
	3	0.1	
		4-gram LM	

Needs to account for very few contexts (mostly lower-order)

14 / 17

00

Sampling

Motivation

Sampling

Needs to account for very few contexts (mostly lower-order)

Summary

Motivation

Contributions

- common framework for optimisation and sampling
- exactness
- anytime guarantees: acceptance rate / distance to optimum
- explore only a sub-space of the possible n-grams

Challenge: control the time \rightarrow complexity of the intersection

Thanks!

Motivation

Questions/comments?

Incremental intersection

Reuse chart items compatible with the new automaton Motivating example

about a third of the time

Making refinements more local

Distinguish instances of terminals Motivating example: 47 types [506 instances]

1-word context:

- types: 314 (62%) instances are affected
- instances: 65 (7%) instances are affected

Ongoing work

Exact **O**ptimisation an **S**ampling with Connections to A^* (OS*) [Dymetman et al., 2012]

- Coarse-to-fine strategy
- Tractable form of adaptive rejection sampling

OS* (sampling)

Ongoing work

We upper-bound the target distribution p by a simpler proposal q and proceed in a adaptive rejection sampling fashion

• we can optimise/sample from q directly

OS* (sampling)

In sampling, we sample from q

• x_1 is accepted with probability $r = p(x_1)/q(x_1)$

OS* (sampling)

Ongoing work

In sampling, we sample from q

Evidence that we are being too optimistic! However, not everywhere, rather at around $x = x_2$

- x_1 is accepted with probability $r = p(x_1)/q(x_1)$
- x₂ is rejected

OS* (sampling)

Ongoing work

Rejected samples are used to motivate an increase in the complexity of q

- accounts for some underspecified context
- brings the proxy closer to the target
- increases the rate of acceptance

OS* (optimisation)

In optimisation, we find the maximum of q

• x_1 is rejected due to low ratio $r = p(x_1)/q(x_1)$

OS* (optimisation)

Ongoing work

Rejected maxima are used to motivate an increase in the complexity of q

- accounts for some underspecified context
- brings q's maximum closer to the true maximum

OS* (convergence)

In sampling

 longer contexts are incorporate till a pre-defined acceptance rate is achieved

OS* (convergence)

In sampling

 longer contexts are incorporate till a pre-defined acceptance rate is achieved

In optimisation

• contexts are incorporated while q(x) differs sufficiently from p(x) for $x = \operatorname{argmax}_x q(x)$ i.e.

$$r(x) = p(x)/q(x) < \epsilon$$

23 / 17

In
$$G' \equiv G(f) \cap A$$

In
$$G' \equiv G(f) \cap A$$

• rules have same length, structure and terminals of those in G(f)

In
$$G' \equiv G(f) \cap A$$

- rules have same length, structure and terminals of those in G(f)
- but nonterminals are indexed versions of those in G(f)[Bar-Hillel et al., 1961] e.g. (i, N, j) where
 - i and j are states in A
 - N is a nonterminal in the original grammar

In
$$G' \equiv G(f) \cap A$$

- rules have same length, structure and terminals of those in G(f)
- but nonterminals are indexed versions of those in G(f)[Bar-Hillel et al., 1961] e.g. (i, N, j) where
 - i and j are states in A
 - N is a nonterminal in the original grammar
- number of states in A grows exponentially with the order of the LM

Related work

 Rush and Collins [2011] address exact decoding in HPB-SMT using Dual Decomposition

Related work

- Rush and Collins [2011] address exact decoding in HPB-SMT using Dual Decomposition
- Blunsom and Osborne [2008] address probabilistic inference (at both decoding and training)
 they sample derivations from a cube pruned space

S* Related work Approach Results References

Related work

- Rush and Collins [2011] address exact decoding in HPB-SMT using Dual Decomposition
- Blunsom and Osborne [2008] address probabilistic inference (at both decoding and training)
 they sample derivations from a cube pruned space
- Arun et al. [2009] introduce a Gibbs sampler for PB-SMT MBR training/decoding and approximate "max-translation"

•
$$q^{(0)} = G(f) \cap A^{(0)}$$

- $q^{(0)} = G(f) \cap A^{(0)}$
- $q^{(1)} = q^{(0)} \cap A^{(1)}$

Produce a sequence of "proposal" grammars which all upper-bound p

- $q^{(0)} = G(f) \cap A^{(0)}$
- $q^{(1)} = q^{(0)} \cap A^{(1)}$

- $q^{(0)} = G(f) \cap A^{(0)}$
- $q^{(1)} = q^{(0)} \cap A^{(1)}$
- . .
- $q^{(t)} = q^{(t-1)} \cap A^{(t)}$

Produce a sequence of "proposal" grammars which all upper-bound p

- $q^{(0)} = G(f) \cap A^{(0)}$
- $q^{(1)} = q^{(0)} \cap A^{(1)}$
- ..
- $q^{(t)} = q^{(t-1)} \cap A^{(t)}$

 $A^{(0)}$ is an optimistic unigram version of the full LM

- $q^{(0)} = G(f) \cap A^{(0)}$
- $q^{(1)} = q^{(0)} \cap A^{(1)}$
- . .
- $q^{(t)} = q^{(t-1)} \cap A^{(t)}$
- $A^{(0)}$ is an optimistic unigram version of the full LM
- $A^{(t)}$ is a small automaton that refines $q^{(t-1)}$ relative to some k-gram context not yet made explicit

Produce a sequence of "proposal" grammars which all upper-bound p

- $q^{(0)} = G(f) \cap A^{(0)}$
- $a^{(1)} = a^{(0)} \cap A^{(1)}$
- $a^{(t)} = a^{(t-1)} \cap A^{(t)}$

 $A^{(0)}$ is an optimistic unigram version of the full LM

 $A^{(t)}$ is a small automaton that refines $q^{(t-1)}$ relative to some k-gram context not yet made explicit

Note that for some large M

$$\bigcap_{t=0}^{M} A^{(t)} = A$$

Refining automata

Ongoing work

Substring searching construction [Cormen et al., 2001] Makes a specific **context** explicit

 lower all possible continuations of the history e.g. "**b** a", "**b** c", "**b** d"

 note that this does not increase the computational cost of the intersection

27 / 17

Algorithm

Algorithm 1 OS* for Hierarchical Translation: Optimisation (left) and Sampling (right).

```
1: t ← 0
                                                                              1: t \leftarrow 0, AR \leftarrow 0
 2: q<sup>(0)</sup> ← G(f) ∩ A<sup>(0)</sup>
                                                                              2: q^{(0)} \leftarrow G(f) \cap A^{(0)}
 3: while not an x has been accepted do
                                                                              3: while not AR > threshold do
        Find maximum x in q^{(t)}
                                                                                      Sample x \sim q^{(t)}
        r \leftarrow p(x)/q^{(t)}(x)
                                                                                    r \leftarrow p(x)/q^{(t)}(x)
 5:
        Accept-or-Reject x according to r
                                                                                     Accept-or-Reject x according to r
 6:
 7.
        if Rejected(x) then
                                                                                     if Rejected(x) then
            define A^{(t+1)} based on x and q^{(t)}
                                                                                         define A^{(t+1)} based on x and q^{(t)}
 8:
            a^{(t+1)} \leftarrow a^{(t)} \cap A^{(t+1)}
                                                                                         a^{(t+1)} \leftarrow a^{(t)} \cap A^{(t+1)}
9:
10:
            t \leftarrow t + 1
                                                                             10:
                                                                                         t \leftarrow t + 1
                                                                             11: return already accepted x's along with q^{(t)}
11: return x
```


Experiment

Small scale experiment: short sentences Properties of G

Sampling performance: 4-gram LM

- 20 sentences of length 6
- time to draw 1M samples
- including the time to produce the sampler

Optimisation (closer look): 2-gram LM

Optimisation (closer look): 3-gram LM

Optimisation (closer look): 4-gram LM

References I

Ongoing work

Abhishek Arun, Chris Dyer, Barry Haddow, Phil Blunsom, Adam Lopez, and Philipp Koehn. Monte carlo inference and maximization for phrase-based translation. In *Proceedings of the Thirteenth Conference on Computational Natural Language Learning*, CoNLL '09, pages 102–110, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-29-9. URL http://dl.acm.org/citation.cfm?id=1596374.1596394.

Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir. On formal properties of simple phrase structure grammars. *Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung*, (14):143–172, 1961.

References II

Ongoing work

Phil Blunsom and Miles Osborne. Probabilistic inference for machine translation. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, EMNLP '08, pages 215–223, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics. URL

http://dl.acm.org/citation.cfm?id=1613715.1613746.

Simon Carter, Marc Dymetman, and Guillaume Bouchard. Exact Sampling and Decoding in High-Order Hidden Markov Models. In *Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning*, pages 1125–1134, Jeju Island, Korea, July 2012. Association for Computational Linguistics.

OS* Related work Approach Results References

References III

- David Chiang. A hierarchical phrase-based model for statistical machine translation. In *Proceeding of the 43rd Annual Meeting of the Association for Computational Linguistics*, pages 263–270, 2005.
- David Chiang. Hierarchical Phrase-Based Translation. Computational Linguistics, 33:201—228, 2007. URL http://www.mitpressjournals.org/doi/abs/10.1162/coli.2007.33.2.201.
- Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. *Introduction to Algorithms*. McGraw-Hill Higher Education, 2nd edition, 2001. ISBN 0070131511.

OS* Related work Approach Results References

References IV

Ongoing work

Christopher Dyer. A Formal Model of Ambiguity and its Applications in Machine Translation. PhD thesis, University of Maryland, 2010.

Marc Dymetman, Guillaume Bouchard, and Simon Carter.

Optimization and sampling for nlp from a unified viewpoint. In Proceedings of the First International Workshop on Optimization Techniques for Human Language Technology, pages 79–94, Mumbai, India, December 2012. The COLING 2012 Organizing Committee. URL http://www.aclweb.org/anthology/W12-6106.

References V

Ongoing work

Alexander M. Rush and Michael Collins. Exact decoding of syntactic translation models through lagrangian relaxation. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1*, HLT '11, pages 72–82, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics. ISBN 978-1-932432-87-9. URL http://dl.acm.org/citation.cfm?id=2002472.2002482.

References VI

Dekai Wu. Stochastic inversion transduction grammars with application to segmentation, bracketing, and alignment of parallel corpora. In *Proceedings of the 14th international joint conference on Artificial intelligence*, volume 2, pages 1328–1335, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

