TP3 Pression - Vasapolli Sibilo	Pt		A E	С	D Note	
I. Régulation de pression simple boucle						
1 Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	0,5	Α		П	0,	5
2 Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.	0,5	Α			0,	5
3 Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α				3
Déterminer un correcteur PI (avec Ti = τ) qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel EASYREG. On donnera la réponse théorique obtenue.	2	С			0,	7 T(p) à revoir
5 Donner pour ce réglage les valeurs théoriques du temps de réponse à ±5%, ainsi que la valeur du premier dépassement.	1,5	Α			1,	5
6 Déduire de la question 4 les valeurs de Xp, Ti et Td du régulateur mixte.	1	D	П		0,0	5
7 Comparer les performances théoriques avec les performances réelles.	1	С			0,3	5
II. Supervision						
1 commande, la consigne et le mode de fonctionnement par l'intermédiaire d'Intouch. La mesure s'affichera en temps	3	В			2,2	5
III. Profil de consigne						
1 Ajouter un bouton "Start" sur la vue du superviseur.	0,5	Α			0,	5
2 Proposer une solution qui réponde au cahier des charges.	3	В		П	2,2	5
3 Implémenter votre solution sur le régulateur.	1	Α				1
4 Réaliser des mesures qui permettent la validation de votre solution.	3	В		П	2,2	5
		Note	: 14	,85/2	20	

I. Régulation de pression simple boucle

1. Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

ENTREE

PID

Block: 02P01_08	Comment Connections			
TagName	02P01_08		LIN Name	02P01_08
Туре	AO_UIO		DBase	<local></local>
Task	3 (110ms)		Rate	0
MODE	AUTO		Alarms	
Fallback	AUTO		Node	>00
			Sitello	2
→ OP	0.0	%	Channel	1
HR	100.0	%	OutType	mA
LR	0.0	%	HR_out	20.00
			LR_out	4.00
Out	0.0	o/	40	0.00

SORTIE

2. Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.

1		F			
× B	lock: PIC Comment	Connections			
	Mode	MANUAL		Alarms	
	FallBack	MANUAL			
				HAA	100.0
	→ P V	50.0	95	LAA	0.0
	SP	0.0	%	HDA	100.0
	OP	50.0	%	LDA	100.0
	SL	0.0	%		
	TrimSP	0.0	%	TimeBase	Secs
	RemoteSP	0.0	%	XP	100.0
Properties	Track	0.0	%	TI	0.00
ě				TD	0.00
ř	un en	100.0	o/		İ

3. Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.

$$K = \frac{\Delta X}{\Delta Y} = K = \frac{16}{10} = 1.6$$

$$T=2.8(t1-t0)-1.8(t2-t0)$$

$$T=1,2s$$

$$t=5,5(t2-t1)$$

$$t=5,5(45-44)$$

$$t=5.5s$$

4. Déterminer un correcteur PI (avec $Ti = \tau$) qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel <u>EASYREG</u>. On donnera la réponse théorique obtenue.

	$T(p) = \frac{N(p)}{D(p)}e^{-Rp}$
N(p) = 1.6	
D(p) = 1+5.5p)
R = 1.2	
Constante d	le temps pour le calcul (en s) 1
	Résultats des calculs
ω _{min} = 0.2 ;	ω_{max} = 20 ; raison = 1.05
Argument _{mi}	n = -1438.8309053813 ° Argument _{max} = -61.477350004742 °
Module _{min} =	36.581709029581 db Module _{max} = 0.63847691626739 db
x _{min} = 0 %	: X _{max} = 59.538193215389 %
	0jl87m8o4oqhne9ueisdvoutb3

A=2,27

$$Xp = \frac{100}{2,27} = 44\%$$

Ti=t=5,5s

Td=0s car PI

5. Donner pour ce réglage les valeurs théoriques du temps de réponse à $\pm 5\%$, ainsi que la valeur du premier dépassement.

95% de 38 = 36,1%

105% de 38 = 39,9%

T5%=22,5s Aucun dépassement.

6. Déduire de la question 4 les valeurs de Xp, Ti et Td du régulateur mixte.

A=
$$\frac{0,83}{K}$$
 X(0,4+ $\frac{1}{Kr}$)
A= $\frac{0,83}{1,6}$ X(0,4+ $\frac{1}{0,22}$)
A=2,56

$$Xp = \frac{100}{2,56}$$

 $Xp = 39\%$

$$Td = \frac{T}{Kr + 2,5}$$

$$Td = \frac{1,2}{0,22 + 2,5}$$

$$Td = 0,44s$$

7. Comparer les performances théoriques avec les performances réelles.

t0=37min4sec

T=26sec pas de dépassement

II. Supervision

1. Réaliser la programmation du superviseur en respectant le synopsis ci-dessous. On devra pouvoir contrôler la commande, la consigne et le mode de fonctionnement par l'intermédiaire d'Intouch. La mesure s'affichera en temps réel.

III. Profil de consigne

1)Ajouter un bouton "Start" sur la vue du superviseur.

2)Proposer une solution qui réponde au cahier des charges.

3)Implémenter votre solution sur le régulateur.

4)Réaliser des mesures qui permettent la validation de votre solution.

