

Outline

- Introduce the two flavors of multiple mediator model
 - Parallel Multiple Mediator Models
 - Serial Multiple Mediator Models
- Discuss methods for testing for statistical differences in the multiple indirect effects

Simple Mediation

Simple Mediation is Too Simple

We can justify multiple mediator models by asking: "What mediates the effects in a simple mediation model?"

- Mediation of the direct effect leads to parallel multiple mediator models.
- Mediation of the a or b paths produces serial multiple mediator models.

To get all of the information in the preceding diagram, we need to fit four equations:

$$Y = i_Y + b_1 M_1 + b_2 M_2 + b_3 M_3 + c' X + e_Y$$

$$M_1 = i_{M1} + a_1 X + e_{M1}$$

$$M_2 = i_{M2} + a_2 X + e_{M2}$$

$$M_3 = i_{M3} + a_3 X + e_{M3}$$

In general, a parallel mediator model with K mediator variables will required K+1 separate equations.

Path modeling can make this task much simpler.

• Also allows us to explicitly estimate the correlations between parallel mediators.

Let's reconsider the example from last week:

QUESTION: What might be mediating the residual direct effect?

POTENTIAL ANSWER:

A Quick Note on Inference

In simple mediation:

- We have one indirect effect: ab.
- The total effect is equal to the direct effect plus the indirect effect c = c' + ab

In parallel multiple mediation:

- We have K specific indirect effects, where K is the number of mediators: $a_1b_1, a_2b_2, \ldots, a_Kb_K$.
- The Total Indirect Effect is equal to the sum of all the specific indirect effects: $IE_{tot} = \sum_{k=1}^{K} a_k b_k$.
- The Total Effect is equal to the direct effect plus the total indirect effect: $c = c' + IE_{tot}$

Inference for the specific indirect effects is basically the same as it is for the sole indirect effect in simple mediation.

 CAVEAT: Each specific indirect effect must be interpreted as conditional on all other mediators in the model.


```
library(lavaan)
## Read in the data
dataDir ← "../data/"
\texttt{fileName} \; \leftarrow \; \texttt{"adamsKlpsScaleScores.rds"}
dat1 ← readRDS(pasteO(dataDir, fileName))
nBoot \leftarrow 2500 \text{ # Number of bootstrap samples}
bootType \leftarrow "bca.simple" # Type of CI
## Parallel Multiple Mediator Model:
mod1.1 \leftarrow "
policy \sim b1*sysRac + b2*indRac + b3*merit + cp*polAffil
sysRac \sim a1*polAffil
indRac \sim a2*polAffil
merit \sim a3*polAffil
sysRac \sim indRac + merit
indRac \sim merit
ab1 := a1*b1
ab2 := a2*b2
ab3 := a3*b3
totalIE := ab1 + ab2 + ab3
```



```
## Fit the model:
out1.1 
sem(mod1.1, data = dat1, se = "boot", boot = nBoot)
## Look at results:
summary(out1.1)
```

```
lavaan (0.5-20) converged normally after 21 iterations
 Number of observations
                                                      87
 Estimator
                                                      MT.
 Minimum Function Test Statistic
                                                  0.000
 Degrees of freedom
 Minimum Function Value
                                     0.0000000000000
Parameter Estimates:
 Information
                                               Observed
 Standard Errors
                                              Bootstrap
 Number of requested bootstrap draws
                                                   2500
 Number of successful bootstrap draws
                                                   2500
```


Regressions:						
		Estimate	Std.Err	Z-value	P(> z)	
policy \sim						
sysRac	(b1)	0.601	0.138	4.356	0.000	
indRac	(b2)	0.143	0.106	1.344	0.179	
merit	(b3)	-0.036	0.147	-0.246	0.805	
polAffil	(cp)	0.125	0.078	1.616	0.106	
$\texttt{sysRac} \sim $	_					
polAffil	(a1)	0.170	0.063	2.696	0.007	
$\mathtt{indRac} \sim $						
polAffil	(a2)	-0.004	0.078	-0.055	0.956	
merit \sim						
polAffil	(a3)	-0.266	0.061	-4.342	0.000	
Covariances:						
		Estimate	Std.Err	Z-value	P(> z)	
$\texttt{sysRac} \sim \!$						
indRac		-0.076	0.100	-0.752	0.452	
merit		-0.217	0.093	-2.334	0.020	
$\mathtt{indRac} \sim \! \! \sim $						
merit		0.154	0.098	1.572	0.116	
Variances:						

	Estimate	Std.Err	Z-value	P(> z)	
policy	0.963	0.177	5.432	0.000	
sysRac	0.755	0.110	6.866	0.000	
indRac	1.188	0.157	7.565	0.000	
merit	0.719	0.113	6.362	0.000	
Defined Parameters	:				
	Estimate	Std.Err	Z-value	P(> z)	
ab1	0.102	0.044	2.306	0.021	
ab2	-0.001	0.015	-0.042	0.967	
ab3	0.010	0.041	0.236	0.813	
totalIE	0.111	0.052	2.151	0.031	

parameterEstimates(out1.1, boot = bootType)[, -c(1 : 3)]

	label	est	se	z	pvalue	ci.lower	ci.upper	
1	b1	0.601	0.138	4.356	0.000	0.304	0.860	
2	b2	0.143	0.106	1.344	0.179	-0.067	0.357	
3	ъ3	-0.036	0.147	-0.246	0.805	-0.295	0.288	
4	ср	0.125	0.078	1.616	0.106	-0.036	0.265	
5	a1	0.170	0.063	2.696	0.007	0.039	0.290	
6	a2	-0.004	0.078	-0.055	0.956	-0.165	0.148	
7	a3	-0.266	0.061	-4.342	0.000	-0.386	-0.147	
8		-0.076	0.100	-0.752	0.452	-0.276	0.120	
9		-0.217	0.093	-2.334	0.020	-0.429	-0.058	
10		0.154	0.098	1.572	0.116	-0.037	0.347	
11		0.963	0.177	5.432	0.000	0.693	1.421	
12		0.755	0.110	6.866	0.000	0.567	1.012	
13		1.188	0.157	7.565	0.000	0.920	1.566	
14		0.719	0.113	6.362	0.000	0.531	0.980	
15		2.444	0.000	NA	NA	2.444	2.444	
16	ab1	0.102	0.044	2.306	0.021	0.028	0.208	
17	ab2	-0.001	0.015	-0.042	0.967	-0.040	0.025	
18	ab3	0.010	0.041	0.236	0.813	-0.081	0.083	
19	totalIE	0.111	0.052	2.151	0.031	0.016	0.224	

Comparing Specific Indirect Effects

When we have multiple specific indirect effects in a single model, we can test if they are statistically different from one another.

QUESTION: How might we go about doing such a test (assuming we're using path modeling)?

Comparing Specific Indirect Effects

When we have multiple specific indirect effects in a single model, we can test if they are statistically different from one another.

QUESTION: How might we go about doing such a test (assuming we're using path modeling)?

Answer: There are, at least, two reasonable methods:

- 1. Use nested model $\Delta \chi^2$ tests
- 2. Define a new parameter corresponding to the null hypothesis and use bootstrapping


```
## Test differences in specific indirect effects:
mod1.2 ← "
policy \sim b1*sysRac + b2*indRac + b3*merit + cp*polAffil
sysRac \sim a1*polAffil
indRac \sim a2*polAffil
merit \sim a3*polAffil
sysRac \sim indRac + merit
indRac \sim merit
ab1 := a1*b1
ab2 := a2*b2
ab3 := a3*b3
totalIE := ab1 + ab2 + ab3
ab1 == ab2
out1.2 ←
    sem(mod1.2, data = dat1, se = "boot", boot = nBoot)
summary(out1.2)
```


lavaan	(0.5-20)	converged	normally	after	278	iterations	
--------	----------	-----------	----------	-------	-----	------------	--

Number of observations 87

Estimator ML

Minimum Function Test Statistic 6.738

Degrees of freedom 1

P-value (Chi-square) 0.009

Parameter Estimates:

Information	Observed
Standard Errors	Bootstrap
Number of requested bootstrap draws	2500
Number of successful bootstrap draws	2500

Regressions:

		Estimate	Sta.Err	Z-value	P(Z Z)
policy \sim					
sysRac	(b1)	0.575	0.204	2.816	0.005
indRac	(b2)	0.192	0.130	1.473	0.141
merit	(b3)	-0.055	0.156	-0.351	0.726

polAffil sysRac \sim	(cp)	0.125	0.082	1.534	0.125	
polAffil	(a1)	0.027	0.067	0.410	0.682	
$\begin{array}{c} \mathtt{indRac} \; \sim \\ \mathtt{polAffil} \end{array}$	(a2)	0.082	0.092	0.892	0.372	
merit \sim	(-2)	0.047	0 000	0 400	0.004	
polAffil	(a3)	-0.217	0.063	-3.433	0.001	
Covariances:			a =		5 (c. l. 1)	
sysRac \sim		Estimate	Std.Err	Z-value	P(> z)	
indRac		-0.106				
merit indRac \sim		-0.234	0.098	-2.396	0.017	
merit		0.164	0.100	1.637	0.102	
Variances:						
		Estimate	Std.Err	Z-value	P(> z)	
policy		0.967	0.182	5.319	0.000	
sysRac		0.804	0.123	6.565	0.000	
indRac		1.206	0.158	7.618	0.000	
merit		0.724	0.112	6.466	0.000	


```
Defined Parameters:
                Estimate
                         Std.Err Z-value P(>|z|)
   ab1
                   0.016 0.019 0.820 0.412
   ab2
                 0.016 0.019 0.820 0.412
   ab3
                 0.012 0.037 0.318 0.750
   totalIE
                 0.043
                          0.059 0.730 0.465
Constraints:
                                         | Slack |
   ab1 - (ab2)
                                          0.000
```

```
## Conduct a chi-squared difference test:
chiDiff 		 fitMeasures(out1.2)["chisq"] -
    fitMeasures(out1.1)["chisq"]
dfDiff 		 fitMeasures(out1.2)["df"] -
    fitMeasures(out1.1)["df"]
pchisq(chiDiff, dfDiff, lower = FALSE)
```

```
chisq
0.009440083
```



```
## Test differences in specific indirect effects:
mod1.3 ← "
policy \sim b1*sysRac + b2*indRac + b3*merit + cp*polAffil
sysRac \sim a1*polAffil
indRac \sim a2*polAffil
merit \sim a3*polAffil
sysRac \sim indRac + merit
indRac \sim merit
ab1 := a1*b1
ab2 := a2*b2
ab3 := a3*b3
totalIE := ab1 + ab2 + ab3
test1 := ab2 - ab1
out1.3 ←
    sem(mod1.3, data = dat1, se = "boot", boot = nBoot)
summary(out1.3)
```


lavaan	(0.5-20)	converged	normally	after	21	iterations
--------	----------	-----------	----------	-------	----	------------

Number of observations 87 Estimator MT. 0.000 Minimum Function Test Statistic Degrees of freedom Minimum Function Value

0.000000000000

Parameter Estimates:

Information	Observed
Standard Errors	Bootstrap
Number of requested bootstrap draws	2500
Number of successful bootstrap draws	2499

Regressions:

		Estimate	Sta.Err	Z-value	P(Z Z)
policy \sim					
sysRac	(b1)	0.601	0.141	4.251	0.000
indRac	(b2)	0.143	0.109	1.315	0.189
merit	(b3)	-0.036	0.152	-0.239	0.811

polAffil sysRac \sim	(cp)	0.125	0.077	1.639	0.101	
polAffil	(a1)	0.170	0.066	2.599	0.009	
$\begin{array}{c} \mathtt{indRac} \; \sim \\ \mathtt{polAffil} \end{array}$	(a2)	-0.004	0.077	-0.055	0.956	
merit \sim						
polAffil	(a3)	-0.266	0.060	-4.438	0.000	
Covariances:						
		Estimate	Std.Err	Z-value	P(> z)	
$\texttt{sysRac} \sim \!\!\!\!\!\!\!\sim$						
indRac		-0.076	0.101	-0.747	0.455	
merit		-0.217	0.090	-2.403	0.016	
$\texttt{indRac} \sim \!\!\!\!\!\!\sim$						
merit		0.154	0.099	1.555	0.120	
Variances:						
variances.		Estimate	C+d Enn	Z-value	D(>1-1)	
, .						
policy		0.963				
sysRac			0.107			
indRac		1.188	0.154	7.708	0.000	
merit		0.719	0.110	6.539	0.000	

Defined Parameters	:				
	Estimate	Std.Err	Z-value	P(> z)	
ab1	0.102	0.046	2.227	0.026	
ab2	-0.001	0.014	-0.042	0.966	
ab3	0.010	0.041	0.236	0.813	
totalIE	0.111	0.052	2.127	0.033	
test1	-0.103	0.050	-2.074	0.038	

parameterEstimates(out1.3, boot = bootType)[, -c(1 : 3)]

	label	est	se	z	pvalue	ci.lower	ci.upper	
1	b1	0.601	0.141	4.251	0.000	0.327	0.884	
2	b2	0.143	0.109	1.315	0.189	-0.080	0.346	
3	ъ3	-0.036	0.152	-0.239	0.811	-0.324	0.289	
4	ср	0.125	0.077	1.639	0.101	-0.027	0.274	
5	a1	0.170	0.066	2.599	0.009	0.030	0.288	
6	a2	-0.004	0.077	-0.055	0.956	-0.162	0.145	
7	a3	-0.266	0.060	-4.438	0.000	-0.396	-0.159	
8		-0.076	0.101	-0.747	0.455	-0.287	0.109	
9		-0.217	0.090	-2.403	0.016	-0.429	-0.066	
10		0.154	0.099	1.555	0.120	-0.033	0.359	
11		0.963	0.178	5.406	0.000	0.695	1.461	
12		0.755	0.107	7.043	0.000	0.577	1.014	
13		1.188	0.154	7.708	0.000	0.926	1.553	
14		0.719	0.110	6.539	0.000	0.532	0.969	
15		2.444	0.000	NA	NA	2.444	2.444	
16	ab1	0.102	0.046	2.227	0.026	0.032	0.225	
17	ab2	-0.001	0.014	-0.042	0.966	-0.035	0.026	
18	ab3	0.010	0.041	0.236	0.813	-0.079	0.085	
19	totalIE	0.111	0.052	2.127	0.033	0.018	0.224	
20	test1	-0.103	0.050	-2.074	0.038	-0.222	-0.020	

To get all of the information in the preceding diagram, we need to fit three equations:

$$Y = i_Y + b_1 M_1 + b_2 M_2 + c' X + e_Y$$

$$M_2 = i_{M2} + d_{21} M_1 + a_2 X + e_{M2}$$

$$M_1 = i_{M1} + a_1 X + e_{M1}$$

As with parallel mediator models, a serial mediator model with K mediator variables will required K+1 separate equations.

Again, path modeling can make this task much simpler.

• Also allows us to fit more parsimonious, restricted models.

Okay, back to our simple mediation example:

QUESTION: What could be mediating the a path?

POTENTIAL ANSWER:

A Quick Note on Inference

Parallel multiple mediation operates much like a number of combined simple mediation models, serial multiple mediation is not so straight-forward.

In serial multiple mediation:

- Every possible path from X to Y that passes through, at least, one mediator is a specific indirect effect.
 - With the saturated two-mediator model shown above, we have: $IE_{spec} = \{a_1b_1, a_2b_2, a_1d_{21}b_2\}$
- The Total Indirect Effect is, again, equal to the sum of all the specific indirect effects: $IE_{tot} = \sum_{k=1}^{|\{IE_{spec}\}|} IE_{spec,k}$.
- The *Total Effect* is equal to the direct effect plus the total indirect effect: $c = c' + IE_{tot}$

A Quick Note on Inference

Inference for the specific indirect effects is basically the same as it is for the sole indirect effect in simple mediation, when using path modeling or bootstrapping.

- Caveat: Normal-theory, Sobel-Type, standard errors for the specific indirect effects that involve more than two constituent paths can be very complex.
 - This isn't really a problem since you should always use bootstrapping, anyway!


```
## Serial Multiple Mediator Model:
mod2.1 \leftarrow "
policy ~ b1*merit + b2*sysRac + cp*polAffil
sysRac \sim d21*merit + a2*polAffil
merit \sim a1*polAffil
ab1 := a1*b1
ab2 := a2*b2
fullIE := a1*d21*b2
totalIE := ab1 + ab2 + fullIE
out2.1 \leftarrow
    sem(mod2.1, data = dat1, se = "boot", boot = nBoot)
summary(out2.1)
```


lavaan (0.5-20) converged normal	ly after 16 iterations						
Number of observations	87						
Estimator	ML						
Minimum Function Test Statisti	.c 0.000						
Degrees of freedom	0						
Parameter Estimates:							
Information	Observed						
Standard Errors Bootstrap							
Number of requested bootstrap	draws 2500						
Number of successful bootstrap	draws 2499						
Regressions:							
Estimate Std	l.Err Z-value P(> z)						
policy \sim							
merit (b1) -0.008 0	0.145 -0.052 0.959						
sysRac (b2) 0.595 0							
polAffil (cp) 0.134 0	0.076 1.763 0.078						
${\tt sysRac} \sim $							

merit	(d21)	-0.301	0.110	-2.733	0.006	
polAffil	(a2)	0.090	0.072	1.253	0.210	
merit \sim						
polAffil	(a1)	-0.266	0.061	-4.384	0.000	
•						
Variances:						
		Estimate	Std.Err	Z-value	P(> z)	
policy		0.987	0.164	6.013	0.000	
sysRac		0.689	0.094	7.309	0.000	
merit		0.719	0.112	6.389	0.000	
merit		0.719	0.112	0.369	0.000	
Defined Param	neters	:				
		Estimate	Std.Err	Z-value	P(> z)	
ab1		0.002	0.040	0.050	0.960	
ab2		0.053	0.044	1.215	0.225	
fullIE		0.048	0.026	1.822	0.068	
totalIE		0.103	0.048	2.145	0.032	
JUGITE		0.100	0.040	2.110	0.002	

parameterEstimates(out2.1, boot = bootType)[, -c(1 : 3)]

		label	est	se	z	pvalue	ci.lower	ci.upper
:	1	b1	-0.008	0.145	-0.052	0.959	-0.286	0.275
:	2	b2	0.595	0.142	4.184	0.000	0.317	0.861
;	3	ср	0.134	0.076	1.763	0.078	-0.019	0.281
4	4	d21	-0.301	0.110	-2.733	0.006	-0.508	-0.076
į	5	a2	0.090	0.072	1.253	0.210	-0.073	0.220
(6	a1	-0.266	0.061	-4.384	0.000	-0.384	-0.148
•	7		0.987	0.164	6.013	0.000	0.733	1.390
8	3		0.689	0.094	7.309	0.000	0.537	0.919
9	9		0.719	0.112	6.389	0.000	0.535	0.980
	10		2.444	0.000	NA	NA	2.444	2.444
	11	ab1	0.002	0.040	0.050	0.960	-0.080	0.081
	12	ab2	0.053	0.044	1.215	0.225	-0.031	0.146
	13	fullIE	0.048	0.026	1.822	0.068	0.012	0.117
	14	${\tt totalIE}$	0.103	0.048	2.145	0.032	0.011	0.202

Restricted Models

In this example, the a_2 and b_1 paths are non-significant as are the simple specific indirect effects a_1b_1 and a_2b_2 .

• There is a school of thinking that would prescribe constraining the a_2 and b_1 paths to zero as in:

- This model will ascribe a larger effect size to $a_1 d_{21} b_2$ since it must convey all of the indirect influence of X on Y.
 - We should first fit a saturated model, but subsequently culling non-significant paths can, sometimes, be appropriate.


```
mod2.2 \leftarrow "
policy \sim cp*polAffil + b2*sysRac
merit \sim a1*polAffil
sysRac \sim d21*merit

fullIE := a1*d21*b2
"
out2.2 \leftarrow
    sem(mod2.2, data = dat1, se = "boot", boot = nBoot)
summary(out2.2)
```

```
lavaan (0.5-20) converged normally after 13 iterations

Number of observations 87

Estimator ML
Minimum Function Test Statistic 1.991
Degrees of freedom 2
P-value (Chi-square) 0.370

Parameter Estimates:
```

R

De

Information Observed										
Standard Err	ors		Bootstrap							
Number of requested bootstrap draws 250										
Number of successful bootstrap draws 2500										
egressions:										
		Estimate	Std.Err	Z-value	P(> z)					
policy \sim										
polAffil	(cp)	0.135	0.083	1.638	0.102					
sysRac	(b2)	0.597	0.137	4.359	0.000					
merit \sim										
polAffil	(a1)	-0.266	0.061	-4.353	0.000					
${\tt sysRac} \sim $										
merit (d21)	-0.367	0.098	-3.764	0.000					
ariances:										
arrances.		Estimate	C+d Emm	71	P(> z)					
policy			0.166							
merit		0.719	0.116	6.218	0.000					
sysRac		0.705	0.094	7.520	0.000					
efined Parame	ters:									
		Estimate	Std.Err	Z-value	P(> z)					

fullIE 0.058 0.025 2.318 0.020

parameterEstimates(out2.2, boot = bootType)[, -c(1 : 3)]

_							
	label	est	se	z	pvalue	ci.lower	ci.upper
1	ср	0.135	0.083	1.638	0.102	-0.031	0.286
2	b2	0.597	0.137	4.359	0.000	0.311	0.858
3	a1	-0.266	0.061	-4.353	0.000	-0.392	-0.148
4	d21	-0.367	0.098	-3.764	0.000	-0.546	-0.166
5		0.987	0.166	5.946	0.000	0.731	1.402
6		0.719	0.116	6.218	0.000	0.527	0.991
7		0.705	0.094	7.520	0.000	0.552	0.926
8		2.444	0.000	NA	NA	2.444	2.444
9	${\tt fullIE}$	0.058	0.025	2.318	0.020	0.019	0.123

As in parallel multiple mediation, we can test for differences in the specific indirect effects of a serial multiple mediator model:

```
## Test Differences between Indirect Effects
## in Serial Multiple Mediator Model (Method 1):
mod2.3 \leftarrow "
policy ~ cp*polAffil + b1*merit + b2*sysRac
merit \sim a1*polAffil
sysRac \sim a2*polAffil + d21*merit
ab1 := a1*b1
ab2 := a2*b2
fullIE := a1*d21*b2
totalIE := ab1 + ab2 + fullIE
fullIE == ab1
fullIE == ab2
out2.3 \leftarrow
    sem(mod2.3, data = dat1, se = "boot", boot = nBoot)
summary(out2.3)
```


3 iterations
87
ML
1.334
2
0.513
Observed
Bootstrap
2500
2500
ıe P(> z)
ne P(> z)
ne P(> z)

	merit \sim						
	polAffil	(a1)	-0.271	0.057	-4.750	0.000	
	${\tt sysRac} \sim $						
	polAffil	(a2)	0.078	0.025	3.125	0.002	
	merit	(d21)	-0.287	0.075	-3.814	0.000	
	Variances:						
			Estimate	Std.Err	Z-value	P(> z)	
	policy		1.001	0.171	5.854	0.000	
	merit		0.719	0.114	6.330	0.000	
	sysRac		0.690	0.090	7.632	0.000	
	Defined Param	neters	:				
			Estimate	Std.Err	Z-value	P(> z)	
	ab1		0.041	0.014	2.983	0.003	
	ab2		0.041	0.014	2.983	0.003	
	fullIE		0.041	0.014	2.983	0.003	
	totalIE		0.122	0.041	2.983	0.003	
	Constraints:						
						Slack	
	fullIE -	(ab1)				0.000	
	fullIE -	(ab2)				0.000	
- 1							


```
## Conduct a chi-squared difference test:
chiDiff 		 fitMeasures(out2.3)["chisq"] -
    fitMeasures(out2.1)["chisq"]
dfDiff 		 fitMeasures(out2.3)["df"] -
    fitMeasures(out2.1)["df"]
pchisq(chiDiff, dfDiff, lower = FALSE)
```

```
chisq
0.5131246
```


Okay, so we've supported an interesting hypothesis with the following model, but why stop there?

QUESTION: What might mediated the b_2 path?

POTENTIAL ANSWER:

QUESTION: How many equations do we need to get the information in the preceding diagram?

QUESTION: How many equations do we need to get the information in the preceding diagram?

$$Policy = i_Y + b_1 Merit + b_2 SysRac + b_3 RevDisc + c'PolAff + e_Y$$

$$RevDisc = i_{M3} + d_{31} Merit + d_{32} SysRac + a_3 PolAff + e_{M3}$$

$$SysRac = i_{M2} + d_{21} Merit + a_2 PolAff + e_{M2}$$

$$Merit = i_{M1} + a_1 PolAff + e_{M1}$$

Which produces the following set of specific indirect effects:

- \bullet a_1b_1
- \bullet a_2b_2
- a_3b_3

- $a_1 d_{31} b_3$
- \bullet $a_1 d_{21} b_2$
- \bullet $a_2 d_{32} b_3$

- \bullet $a_1 d_{21} d_{32} b_3$


```
## Serial Multiple Mediator Model with 3 Mediators:
mod3.1 ← "
policy ~ b1*merit + b2*sysRac + b3*revDisc + cp*polAffil
revDisc ~ d31*merit + d32*sysRac + a3*polAffil
sysRac \sim d21*merit + a2*polAffil
merit \sim a1*polAffil
ab1 := a1*b1
ab2 := a2*b2
ab3 := a3*b3
partIE1 := a1*d31*b3
partIE2 := a1*d21*b2
partIE3 := a2*d32*b3
fullIE := a1*d21*d32*b3
totalIE := ab1 + ab2 + ab3 + partIE1 + partIE2 + partIE3 +
    fullIE
out.3.1 ←
    sem(mod3.1, data = dat1, se = "boot", boot = nBoot)
```


summary(out3.1)

lavaan (0.5-	20) conv	erged n	ormally af	ter 23	iterations		
Number of	observat	ions			87		
Estimator					ML		
Minimum Fu	nction T	est Sta	tistic		0.000		
Degrees of	freedom				0		
Parameter Es	timates:						
Informatio	n				Observed		
Standard E	rrors			1	Bootstrap		
Number of	requeste	d boots	trap draws		2500		
Number of	successf	ul boot	strap draw	s	2498		
Regressions:							
	E	stimate	Std.Err	Z-value	P(> z)		
policy \sim							
merit	(b1)	0.005	0.144	0.035	0.972		
sysRac					0.000		

revDisc	(b3)	-0.026	0.080	-0.330	0.741	
polAffil	(cp)	0.130	0.080	1.616	0.106	
revDisc \sim	-					
merit	(d31)	0.473	0.190	2.490	0.013	
sysRac	(d32)	-0.196	0.243	-0.806	0.420	
polAffil				-1.140	0.254	
$\texttt{sysRac} \sim$	(,					
merit	(d21)	-0.301	0.109	-2.765	0.006	
polAffil			0.071		0.204	
merit ~	(42)	0.000	0.011	1.2.0	0.201	
polAffil	(a1)	-0.266	0.061	-4.340	0.000	
POIRIII	(41)	0.200	0.001	4.040	0.000	
Variances:						
variances.		Estimate	Std.Err	7-22120	D(\ z)	
policy		0.985	0.164			
revDisc		2.361				
sysRac		0.689	0.091	7.612	0.000	
merit		0.719	0.111	6.482	0.000	
Defined Param	neters	:				
		Estimate	Std.Err	Z-value	P(> z)	
ab1		-0.001	0.040	-0.033	0.973	
ab2		0.053	0.043	1.224	0.221	

ab3	0.004	0.016	0.244	0.807
partIE1	0.003	0.012	0.273	0.785
partIE2	0.047	0.026	1.831	0.067
partIE3	0.000	0.003	0.150	0.881
fullIE	0.000	0.002	0.191	0.849
totalIE	0.107	0.052	2.052	0.040

parameterEstimates(out3.1, boot = bootType)[, -c(1 : 3)]

ĺ		label	est				ci.lower	ci.upper	
	1	b1	0.005	0.144	0.035	0.972	-0.270	0.299	
	2	b2	0.589	0.151	3.895	0.000	0.281	0.877	
	3	b3	-0.026	0.080	-0.330	0.741	-0.198	0.121	
	4	ср	0.130	0.080	1.616	0.106	-0.036	0.283	
	5	d31	0.473	0.190	2.490	0.013	0.073	0.827	
	6	d32	-0.196	0.243	-0.806	0.420	-0.660	0.306	
	7	a3	-0.149	0.131	-1.140	0.254	-0.398	0.099	
	8	d21	-0.301	0.109	-2.765	0.006	-0.506	-0.080	
	9	a2	0.090	0.071	1.270	0.204	-0.052	0.227	
	10	a1	-0.266	0.061	-4.340	0.000	-0.383	-0.147	
	11		0.985	0.164	6.023	0.000	0.740	1.443	
	12		2.361	0.307	7.698	0.000	1.869	3.106	
	13		0.689	0.091	7.612	0.000	0.549	0.907	
	14		0.719	0.111	6.482	0.000	0.536	0.981	
	15		2.444	0.000	NA	NA	2.444	2.444	
	16	ab1	-0.001	0.040	-0.033	0.973	-0.085	0.075	
	17	ab2	0.053	0.043	1.224	0.221	-0.022	0.155	
	18	ab3	0.004	0.016	0.244	0.807	-0.014	0.062	
ı	19	partIE1	0.003	0.012	0.273	0.785	-0.013	0.038	
	20	partIE2	0.047	0.026	1.831	0.067	0.011	0.115	
	21	partIE3	0.000	0.003	0.150	0.881	-0.001	0.018	
	22	fullIE	0.000	0.002	0.191	0.849	-0.002	0.009	
	23	totalIE	0.107	0.052	2.052	0.040	0.010	0.213	

Hybrid Multiple Mediation

We can also combine parallel and serial mediation models:


```
## Hybrid Multiple Mediator Model:
mod4.1 ← "
policy \sim b1*merit + b21*sysRac + b22*revDisc + cp*polAffil
sysRac \sim d211*merit + a21*polAffil
revDisc \sim d221*merit + a22*polAffil
merit \sim a1*polAffil
sysRac \sim revDisc
ab1 := a1*b1
ab21 := a21*b21
ab22 := a22*b22
fullIE21 := a1*d211*b21
fullIE22 := a1*d221*b22
totalIE := ab1 + ab21 + ab22 + fullIE21 + fullIE22
out4.1 \leftarrow
    sem(mod4.1, data = dat1, se = "boot", boot = nBoot)
summary(out4.1)
```


lavaan	(0.5-20)	converged	normally	after	22	iterations	

Number of observations 87

Estimator ML

Minimum Function Test Statistic 0.000

Degrees of freedom 0

Minimum Function Value 0.0000000000000

Parameter Estimates:

Information	Observed
Standard Errors	Bootstrap
Number of requested bootstrap draws	2500
Number of successful bootstrap draws	2499

Regressions:

		Estimate	Std.Err	Z-value	P(> z)
policy \sim					
merit	(b1)	0.005	0.142	0.035	0.972
sysRac	(b21)	0.589	0.150	3.924	0.000
revDisc	(b22)	-0.026	0.080	-0.328	0.743

	(cp)	0.130	0.080	1.627	0.104	
$\texttt{sysRac} \sim $						
merit	(d211)	-0.301	0.111	-2.721	0.006	
polAffl	(a21)	0.090	0.070	1.282	0.200	
revDisc \sim						
merit	(d221)	0.532	0.192	2.777	0.005	
polAffl	(a22)	-0.167	0.138	-1.214	0.225	
merit \sim						
polAffl	(a1)	-0.266	0.061	-4.337	0.000	
-						
Covariances	:					
		Estimate	Std.Err	Z-value	P(> z)	
sysRac \sim						
revDisc		-0.135	0.157	-0.859	0.390	
Variances:						
		Estimate	Std.Err	Z-value	P(> z)	
policy		0.985	0.162	6.098	0.000	
sysRac		0.689	0.092	7.463	0.000	
revDisc		2.388	0.303	7.881	0.000	
merit		0.719	0.113	6.378	0.000	
Defined Para	ameters	:				

	Estimate	Std.Err	Z-value	P(> z)	
ab1	-0.001	0.039	-0.034	0.973	
ab21	0.053	0.043	1.247	0.212	
ab22	0.004	0.018	0.251	0.801	
fullIE21	0.047	0.025	1.871	0.061	
fullIE22	0.004	0.014	0.276	0.783	
totalIE	0.107	0.052	2.047	0.041	

parameterEstimates(out4.1, boot = bootType)[, -c(1 : 3)]

	label	est	se	z	pvalue	ci.lower	ci.upper	
1	b1	0.005	0.142	0.035	0.972	-0.266	0.285	
2	b21	0.589	0.150	3.924	0.000	0.301	0.891	
3	b22	-0.026	0.080	-0.328	0.743	-0.186	0.129	
4	ср	0.130	0.080	1.627	0.104	-0.029	0.283	
5	d211	-0.301	0.111	-2.721	0.006	-0.520	-0.085	
6	a21	0.090	0.070	1.282	0.200	-0.045	0.222	
7	d221	0.532	0.192	2.777	0.005	0.137	0.899	
8	a22	-0.167	0.138	-1.214	0.225	-0.447	0.099	
9	a1	-0.266	0.061	-4.337	0.000	-0.396	-0.153	
10		-0.135	0.157	-0.859	0.390	-0.459	0.165	
11		0.985	0.162	6.098	0.000	0.750	1.477	
12		0.689	0.092	7.463	0.000	0.538	0.904	
13		2.388	0.303	7.881	0.000	1.894	3.158	
14		0.719	0.113	6.378	0.000	0.535	1.003	
15		2.444	0.000	NA	NA	2.444	2.444	
16	ab1	-0.001	0.039	-0.034	0.973	-0.081	0.074	
17	ab21	0.053	0.043	1.247	0.212	-0.019	0.151	
18	ab22	0.004	0.018	0.251	0.801	-0.018	0.064	
19	fullIE21	0.047	0.025	1.871	0.061	0.013	0.123	
20	fullIE22	0.004	0.014	0.276	0.783	-0.015	0.042	
21	totalIE	0.107	0.052	2.047	0.041	0.005	0.218	

Practice

List all of the specific indirect effects present in this model:

