

Computação Evolucionária

Gisele L. Pappa

Evolução

Introdução

- Métodos inspirados na teoria da evolução de Darwin, propostos pela primeira vez em 1958
- Anos 60
 - Algoritmos Genéticos (e Programação Evolucionária) vs Estratégias Evolutivas
- 1992
 - Programação Genética
- Anos 90 essas técnicas foram combinadas com o nome Computação Evolucionária

Introdução

- Historicamente, diferentes tipos de AEs têm sido associadas a diferentes tipos de representação
 - Vetores binários : Algoritmos Genéticos
 - Vetores de números reais : Estratégias Evolucionárias
 - Máquinas de estado finito: Programação Evolucionária
 - Árvores: Programação Genética
- Essas diferenças são irrelevantes, sendo a melhor estratégia
 - Escolher uma representação adequada para o problema
 - Escolher operadores genéticos que sejam adequados a representação escolhida

Biologia Evolucionária (1)

- O que é evolução?
 - Mudança das características (genéticas) de uma população de uma geração para a próxima
 - Mutação dos genes
 - Recombinação dos genes dos pais
 - Seleção natural é seu principal agente causador

Biologia Evolucionária (2)

• Estruturas básicas:

Biologia Evolucionária (3)

Cromossomos

- Carregam informações hereditárias de um organismo
- Podem ser dividido em genes
 - Um gene é uma região do DNA que controla uma característica hereditária

Genótipo

Material genético contido em uma célula ou organismo

Fenótipo

 Características físicas ou bioquímicas de um organismo que podem ser observadas, e que são determinadas tanto pelo genótipo quanto por influências do meio

Fitness

Probabilidade de reprodução de um indivíduo

Biologia Evolucionária (4)

- Variação genética
 - Cruzamento: troca de material genético entre dois cromossomos

Biologia Evolucionária (5)

- Variação genética
 - Mutação

Da biologia para computação

Idéias Básicas

- AE é um procedimento iterativo que evolui uma população de indivíduos
- Cada indivíduo representa uma solução candidata para um dado problema
- A cada iteração (geração):
 - Os melhores indivíduos são selecionados de acordo com uma função de aptidão (fitness)
 - Operadores genéticos são aplicados aos indivíduos selecionados, visando produzir novos indivíduos ("filhos")
 - Novas indivíduos são avaliados utilizando a função de aptidão

Exemplos de Aplicação

- Muitas para listar
 - Engenharia
 - Design de circuitos
 - Modelos financeiros
 - Jogos
 - Bioinformática
 - Modelagem
- Capazes de gerar resultados competitivos com aqueles encontrados por humanos.

Motivação

- Maneira declarativa de resolver um problema (o que fazer), em contraste com métodos procedurais (como fazer)
- Processamento paralelo
- Oferecem soluções robustas e adaptativas
- Necessidade de validar teorias e conceitos da biologia evolucionária
- Inteligência de máquinas
 - Possibilita incorporar conhecimento ao método sem explicitamente programá-lo
- Evolução automática de códigos de programas
- Busca global

Independência de Aplicação

- O que faz EAs serem robustos para os mais diversos tipos de aplicações?
 - O algoritmo em si é o mesmo para qualquer problema
 - Existem 3 componentes importantes que devem ser definidos de acordo com o problema em mãos:
 - Representação dos indivíduos
 - Função de aptidão (fitness)
 - Operadores genéticos novos operadores podem ser definidos especificamente para o problema

Algoritmos Genéticos

- Versão original têm 2 características principais:
 - usa uma representação binária e de tamanho fixo
 - Forte uso de cruzamento
- Desenvolveram-se muitas teoria a partir da versão original teoria dos esquemas
 - Gera a noção de building blocks
- Com o passar to tempo, outras representações foram propostas.
 - Representação real é muito utilizada hoje em dia

Estratégia Evolucionária

- Versão original:
 - Representada por vetores de números reais
 - Único indivíduo
 - Dirigida por mutações -> variações pequenas são melhores que variações grandes
- Durante seu processo de desenvolvimento:
 - Populacional usa um esquemas de *overproduction*
 - Seleção considera tanto os pais quanto os filhos
 - Reconheceu o uso de operadores de recombinação
 - Em várias versões, inclui valores de parâmetros nos indivíduos ex: taxa de mutação

Programação Evolucionária

- Representado por máquinas de estado finito
- Principal operador é a mutação

Programação Evolucionária

- Representado por máquinas de estado finito
- Principal operador é a mutação

Programação Genética

- Representação original baseada em árvores e de tamanho variável
- Ideia era evoluir programas automaticamente
- Versões mais recentes utilizam genomas lineares e grafos

Problema do Caxeiro Viajante (TSP)

• Problema de otimização combinatorial

Espaço de Busca

- Definido pelo número de soluções que podem ser geradas
- No caso do TSP:
 - Número de permutações de n cidades
- Filtro:
 - Exclua delas as que não começam na cidade desejada
- Por onde começar?

Problema do Caxeiro Viajante

- Representação dos indivíduos
 - Um vetor de inteiros ou caracteres, representando uma permutação entre cidades: I₁ A F C E D B G
- Função de fitness
 - Tamanho do caminho percorrido (função a ser minimizada)
 - Função objetiva
- Operadores genéticos
 - Deve-se considerar restrições do problema ?
 - Passar apenas uma vez por cada cidade?

Problema do Caxeiro Viajante

• Pseudocódigo:

- 1. Gerar permutações de cidades (soluções) aleatoriamente
- 2. Avaliar cada uma delas, calculando o tamanho do caminho percorrido

REPEAT

- 3. Selecionar as melhores permutações para reprodução (aquelas com caminho menor)
- 4. Criar novas permutações combinando partes das melhores soluções
- 5. Avaliar novas permutações
- UNTIL (boa solução encontrada ou número máximo de gerações encontrado)

Problema do CaxeiroViajante

- Cruzamento
 - Reconhecer uma solução inválida e substituir a cidade repetida pela ignorada

```
I<sub>1</sub> ABCDEFG C<sub>1</sub>ABCDEGB →ABCDEGF
I<sub>2</sub> CADFEGB C<sub>2</sub>CADFEFG →CADFEBG
```

- Primeira população não tem que ser necessariamente criada aleatoriamente
 - Podemos usar um método guloso
- "ABCDEFG" é igual a "GFEDCBA"

http://gencar.co

World Champion Cars: **0**

http://gencar.co

Cromossomo está dividido em 4 partes:

Forma (8 genes, um por vértice)

Tamanho da roda (2 genes)

Posição da roda (2 genes)

Densidade da roda (2 genes)

Função de Fitness

Pode ser testado contra um grupo fixo de pistas (oponentes)

Difícil escolher o nível de dificuldade correto

Pode ser testado contra um grupo adaptativo de agentes

Co-evolução

Design de antenas para missões da NASA [Hornby et al 2006]

- NASA vem utilizando AEs para evoluir antenas (design) com as mais diversas finalidades desde 1990.
- Exemplo: antenas para o programa ST5, que visa lançar 3 micro-satélites (53cm x 28cm e 25kg)
- Cada satélite possue 2 antenas, centralizadas nas partes de cima e de baixo
- Desenvolveram um EA para evoluir antena considerando especificações da órbita dos micro-satélites

• Objetivo:

- Desenhar uma antena de 4 braços, separados por um ângulo de 90 graus
- A antena deve ter um voltage standing wave ratio (VSWR) menor que 1.2 na frequencia transmissora (8470 MHz) e menor que 1.5 na frequencia receptora (7209.125 MHz)

Exemplo de antena desenvolvida

- Representação do Indivíduo
 - representa um braço, e na hora da avaliação o AE cria uma antena completa com 4 braços idênticos
 - representado por uma árvore, onde cada nó corresponde a um operador construtor de antena.
 A antena é criada executando os operadores em cada nó da árvore, começando pelo nó raiz
- Operadores construtores de antena :
 - forward(length, radius)
 - rotate-x(angle) / rotate-y(angle) /rotate-z(angle)

- Fitness
 - Fitness calculada em função do VSWR
- Órbita inicial foi modificada, e uma nova antena com apenas um braço requerida
- Objetivo:
 - Desenhar uma antena de 1 braço

• Apenas modificando a fitness do EA inicial e as restrições de design da antena, cientistas conseguiram desenvolver uma nova antena

Nova Antena

- Em comparação com técnicas tradicionais de design de antenas, a antena evoluída apresenta vantagens em termos de
 - gasto de energia,
 - tempo de fabricação
 - complexidade
 - performance
- Comparação com uma antena especialmente fabricada para missão por humanos (QHA):
 - 2 QHAs: 38% de eficiência
 - 1 QHA com uma antena evoluída: 80% de eficiência
 - 2 antenas evoluídas: 93% de eficiência

Agradecimento

 Alguns desses slides foram retirados do livro "Fundamentals of Natural Computing", de Leandro Nunes de Castro e outros das aulas de computação natural de Alex A. Freitas

Referências

• [Hornby et al 2006], Automated antenna design with evolutionary algorithms, AIAA Space 2006, disponível no LearnLoop

Leitura Recomendada

• Genetic Algorithms: An Overview, M. Mitchell, Complexity, 1 (1) 31-39, 1995.

