Name: <u>Caleb McWhorter — Solutions</u>

MATH 101 Fall 2023

HW 13: Due 11/06

"Teachers open the door, but you must enter by yourself."

- Chinese Proverb

Problem 1. (10pt) Find the inverse of the linear function $\ell(x) = \frac{5}{6} - 8x$. Use this inverse function to solve the equation $\ell(x) = 10$.

Solution. We know that $\ell(x) = \frac{5}{6} - 8x$ is a non-constant linear function (because $m = -8 \neq 0$); therefore, $\ell(x)$ has an inverse. To find the inverse of $\ell(x) = \frac{5}{6} - 8x$, we interchange the 'role' of ℓ and x, and then we solve for ℓ . The resulting function will be the inverse of $\ell(x)$:

$$\ell = \frac{5}{6} - 8x \rightsquigarrow x = \frac{5}{6} - 8\ell$$

$$6x = 5 - 48\ell$$

$$6x - 5 = -48\ell$$

$$\ell = \frac{6x - 5}{-48}$$

$$\ell = \frac{5 - 6x}{48}$$

Therefore, $\ell^{-1}(x) = \frac{5-6x}{48}$. We can even verify this:

$$(\ell^{-1} \circ \ell)(x) = \ell^{-1}(\ell(x)) = \ell^{-1}\left(\frac{5}{6} - 8x\right) = \frac{5 - 6 \cdot \left(\frac{5}{6} - 8x\right)}{48} = \frac{5 - 5 + 48x}{48} = \frac{48x}{48} = x$$
$$(\ell \circ \ell^{-1})(x) = \ell(\ell^{-1}(x)) = \ell\left(\frac{5 - 6x}{48}\right) = \frac{5}{6} - 8\left(\frac{5 - 6x}{48}\right) = \frac{5}{6} - \left(\frac{5 - 6x}{6}\right) = \frac{5}{6} - \frac{5}{6} + x = x$$

We can now use ℓ^{-1} to solve the equation $\ell(x) = 10$:

$$\ell(x) = 10$$

$$\ell^{-1}(\ell(x)) = \ell^{-1}(10)$$

$$x = \ell^{-1}(10)$$

$$x = \frac{5 - 6(10)}{48}$$

$$x = \frac{5 - 60}{48}$$

$$x = \frac{-54}{48}$$

$$x = -\frac{9}{8}$$

Problem 2. (10pt) Explain why the lines $\ell_1(x) = 8x + 3$ and $\ell_2(x) = 9 - 5x$ intersect. Find their point of intersection.

Solution. The slope of the line ℓ_1 is $m_1=8$ and the slope of the line ℓ_2 is $m_2=-5$. Because $m_1=8\neq -5=m_2$, the lines cannot be parallel. Therefore, the lines must intersect. If the lines intersect at (x_0,y_0) , then we know that $\ell_1(x_0)=y_0=\ell_2(x_0)$. But then...

$$\ell_1(x_0) = \ell_2(x_0)$$

$$8x_3 + 3 = 9 - 5x_0$$

$$13x_0 = 6$$

$$x_0 = \frac{6}{13}$$

But then using this in the first line, we have...

$$\ell_1\left(\frac{6}{13}\right) = 8 \cdot \frac{6}{13} + 3 = \frac{48}{13} + 3 = \frac{48}{13} + \frac{39}{13} = \frac{87}{13}$$

Therefore, the lines intersect at the point $\left(\frac{6}{13},\frac{87}{13}\right)\approx (0.461,6.692)$.

Problem 3. (10pt) Find the line perpendicular to the line $y = 7 - \frac{2}{3}x$ that contains the *x*-intercept of the line y = 7x + 3.

Solution. Because the line $y=7-\frac{2}{3}x$ is not horizontal (because the slope is $-\frac{2}{3}\neq 0$), the line in question is not vertical; therefore, the line has the form y=mx+b for some m,b. The line is perpendicular to the line $y=7-\frac{2}{3}x$. Perpendicular lines have negative reciprocal slopes. The slope of $y=7-\frac{2}{3}x$ is $-\frac{2}{3}$. Therefore, our line has slope $m=-\frac{1}{-\frac{2}{3}}=-(-\frac{3}{2})=\frac{3}{2}$. Then we know $y=\frac{3}{2}x+b$.

The line contains the x-intercept of the line y = 7x + 3. The x-intercept is the point(s) where the curve intersects the x-axis, where y = 0. But then...

$$0 = 7x + 3$$
$$7x = -3$$
$$x = -\frac{3}{7}$$

Therefore, the x-intercept of y=7x+3 is the point $(-\frac{3}{7},0)$. Therefore, the line in question contains the point $(-\frac{3}{7},0)$. But then y=0 when $x=-\frac{3}{7}$, so that...

$$y = \frac{3}{2}x + b$$

$$0 = \frac{3}{2} \cdot -\frac{3}{7} + b$$

$$0 = -\frac{9}{14} + b$$

$$b = \frac{9}{14}$$

Therefore, the line is...

$$y = \frac{3}{2}x + \frac{9}{14}$$

Problem 4. (10pt) Write down an expression that gives the equation for all linear functions passing through the point (3,5), then use this to find the line that passes through (3,5) and has x-intercept -6.

Solution. We know that the graph of a linear function is a line. Given a line with slope m that passes through a point (x_0, y_0) , we know that the equation of the line is $y = y_0 + m(x - x_0)$. Because the line contains the point (3, 5), we know that the linear function is y = 5 + m(x - 3). Therefore, every linear function containing the point (3, 5) must have the form y = m(x - 3) + 5 for some m.

If the line has x-intercept -6, then the line contains the point (-6,0)—namely, the x-intercept. But then the line contains the point (3,5) and the point (-6,0). Therefore, the slope is. . .

$$m = \frac{\Delta y}{\Delta x} = \frac{5 - 0}{3 - (-6)} = \frac{5}{9}$$

Therefore, the linear function is...

$$y = m(x - 3) + 5$$

$$y = \frac{5}{9}(x - 3) + 5$$

$$y = \frac{5}{9}x - \frac{5}{9} \cdot 3 + 5$$

$$y = \frac{5}{9}x - \frac{5}{3} + 5$$

$$y = \frac{5}{9}x - \frac{5}{3} + \frac{15}{3}$$

$$y = \frac{5}{9}x + \frac{10}{3}$$