INDUCTANCE AND CAPACITANCE

Introduction

- Energy storage elements
- Passive
- Capacitance
 - Energy in electric fields
- Inductance
 - Energy in magnetic fields

Parallel Plate Capacitor Construction

Capacitance

Elastic membrane

(a) As current flows through a capacitor, charges of opposite sign collect on the respective plates

(b) Fluid-flow analogy for capacitance

- As charge builds up, voltage appears across capacitor
- Charge accumulated on one plate is stored in the capacitor

Capacitance

$$q = Cv$$

$$q(t) = \int_{t_0}^{t} i(t)dt + q(t_0)$$

$$i = \frac{dq}{dt} = C\frac{dv}{dt}$$

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i(t)dt + v(t_0)$$

Stored Energy and Power

$$p(t) = v(t)i(t) = Cv\frac{dv}{dt}$$

$$w(t) = \int_{t_0}^{t} p(t)dt = \int_{t_0}^{t} Cv \frac{dv}{dt} dt = \int_{0}^{v(t)} Cv dv = \frac{1}{2}Cv^{2}(t)$$

$$w(t) = \frac{1}{2}Cv^{2}(t) = \frac{1}{2}v(t)q(t) = \frac{q^{2}(t)}{2C}$$

$\square \underset{v(t)}{10} \mu F$ capacitor

□ 0.1 µF capacitor

Example Exercise (Solution)

(c)

(d)

Capacitance in Parallel

□ Why?

□ Hint:
$$i = \frac{dq}{dt} = C\frac{dv}{dt}$$

Capacitance in Series

$$C_{\text{eq}} = \frac{1}{1/C_1 + 1/C_2 + 1/C_3}$$

□ Why?

Physical Characteristics of Capacitors

- □ Ideal parallel plate
- Practical
 - Rolled
 - Electrolytic
 - Parasitic effects

Parallel-Plate Capacitor

$$C = \frac{\varepsilon A}{d} \qquad A = WL$$

If $d \ll W$ and L

$$\varepsilon_0 \cong 8.85 \times 10^{-12} \text{ F/m}$$

Dielectric constant for vacuum

$$\varepsilon = \varepsilon_r \varepsilon_0$$

With relative dielectric constant

Practical Capacitors

- Dimension too large for ideal
- Rolled up metal plates
- Dielectric materials become conductors at high electric field intensity

Electrolytic Capacitors

 One plate is metallic, dielectric is oxide layer and other "plate" is electrolytic solution

Parasitic Effects

□ Before t=0, $v_1=100$ V, $v_2=0$ V. Compute total energy stored before and after t=0.

Why are they different?

Inductance

- Coil of wire along some form
- Current flow through coil creates flux
- Time varying flux induces voltage across coil

(a) Toriodal inductor

(b) Coil with an iron-oxide slug that can be screwed in or out to adjust the inductance

(c) Inductor with a laminated iron core

Inductance

- Unit of Henries (H) equivalent to volt seconds per ampere.
- As current increases, energy is stored in the magnetic field.

$$v(t) = L \frac{di}{dt}$$

$$L \bigotimes_{t}^{i(t)} v(t)$$

Inductance

 $v(t) = L \frac{di}{dt}$

$$v(t) = L \frac{di}{dt}$$

$$i(t) = \frac{1}{L} \int_{t_0}^{t} v(t)dt + i(t_0)$$

$$p(t) = Li(t) \frac{di}{dt}$$

$$w(t) = \frac{1}{2} Li^2(t)$$

□ Current through a 5 H inductor. Plot V, p, w.

□ Voltage across 150 µH. Plot current

Inductance in Series

□ Mhàs

Inductance in Parallel

□ Mhàs

Parasitic Effects

Mutual Inductance

 Magnetic flux produced by one coil links the others (aid or oppose)

$$v_{1} = L_{1} \frac{di_{1}}{dt} - M \frac{di_{2}}{dt}$$

$$v_{2} = -M \frac{di_{1}}{dt} + L_{2} \frac{di_{2}}{dt}$$

Linear Variable Differential Transformer

- □ With the core centered, $v_o(t)=0$
- □ Ideally $v_o(t)$ =Kx cos(ωt) where x is the displacement of the core

