

UNIVERSIDADE FEDERAL DE SÃO PAULO INSTITUTO DE CIÊNCIA ETECNOLOGIA CAMPUS SÃO JOSÉ DOS CAMPOS

ENGENHARIA MÉDICA APLICADA – semestre 2/2020

Prof. Adenauer G. Casali

ATIVIDADES – SEMANA 2

ATIVIDADE 1) PROBABILIDADE NORMAL E A SÍNDROME DO TÚNEL DO CARPO

No arquivo "semana2_prob1.mat" você encontrará uma matriz com 4 linhas e 200 colunas. Cada linha corresponde a uma medida de velocidade de condução nervosa (em m/s) que foi coletada em um grupo 200 indivíduos saudáveis. Reduções significativas nessas velocidades de condução podem estar associadas a diferentes condições patológicas, como doenças desmielinizantes, neurodegenerativas ou como a síndrome do túnel do carpo. Esta condição consiste no estreitamento da região do pulso por onde passa o nervo mediano (ver figura 1 abaixo). Um dos testes diagnósticos realizados envolve justamente comparar a condução nervosa dos pacientes com os dados obtidos em indivíduos saudáveis em um exame de eletroneurografia.

Figura 1: Esquerda: região do túnel do carpo, por onde passa o nervo mediano. Direita: compressão ao nervo mediano pode afetar a condução sensorial e motora dos dedos da mão.

Essas são as variáveis correspondentes à matriz contida no arquivo: Linha 1: medida de condução motora (CMAP) do nervo mediano (mCMAP); Linha 2: medida de condução sensorial (SNAP) do nervo mediano (mSNAP); Linha 3: CMAP do nervo ulnar (uCMAP), Linha 4: SNAP do nervo ulnar (uSNAP). Suponha que estes dados resultem de uma amostragem aleatória na população de indivíduos hígidos.

UNIVERSIDADE FEDERAL DE SÃO PAULO INSTITUTO DE CIÊNCIA ETECNOLOGIA CAMPUS SÃO JOSÉ DOS CAMPOS

- a) Inicialmente, trate essas quatro medidas separadamente e estime a velocidade de condução média para as fibras motoras e sensoriais de cada nervo e suas respectivas variâncias (Resposta: medias = 58.71m/s, 50.09m/s, 54.99m/s, 59.91m/s; variâncias = 5.07m²/s², 4.44m²/s², 1.97m²/s², 2.95m²/s²)
- b) Plote os histogramas para cada medida separadamente e teste a normalidade destas distribuições. Se você utilizar o Matlab, você pode usar o teste "Shapiro-Wilk" disponível no Moodle: "semana2_swtest.m"). Você deve rejeitar a hipótese de normalidade? (Resposta: não).
- c) Estas mesmas medidas foram coletadas em um paciente com suspeita de desmelienização seletiva nos nervos periféricos. Os resultados obtidos no paciente foram os seguintes: mCMAP = 56 m/s; mSNAP = 52 m/s; uCMAP = 54 m/s; uSNAP = 61 m/s. Plote esses valores junto às distribuições do item b (Resposta: ver figura 2 abaixo).
- d) Para cada variável isoladamente, estime a probabilidade de um indivíduo saudável possuir valores de condutividade abaixo dos valores obtidos neste paciente. Comparando esta probabilidade com um limiar de 5%, o que você pode concluir a respeito do paciente em relação a cada medida separadamente? [Dica: no matlab, explore a função "normcdf" e utilize-a para calcular a distribuição normal cumulada observe se o valor da medida no paciente está abaixo do limiar de 5% determinado] (Resposta: não é possível rejeitar a hipótese de que o paciente seja saudável).
- e) Agora estime a matriz de covariância entre as medidas na população de indivíduos hígidos. Com esta nova informação, e supondo que a população controle venha de uma distribuição gaussiana multivariada, o que você poderia concluir a respeito do paciente? [Dica: no matlab, explore a função "mvncdf" e utilize-a para calcular a probabilidade multivariada cumulada] (Resposta: agora podemos rejeitar a hipótese de que o paciente é saudável).

Figura 2: distribuições (em azul) das quatro medidas de velocidade (linhas da matriz) em sujeitos hígidos. Em vermelho os valores obtidos no paciente.

UNIVERSIDADE FEDERAL DE SÃO PAULO INSTITUTO DE CIÊNCIA ETECNOLOGIA CAMPUS SÃO JOSÉ DOS CAMPOS

ATIVIDADE 2) INFERÊNCIA E TESTES DIAGNÓSTICOS

O arquivo "semana2_prob2.mat" contem dados de 19476 homens com mais de 50 anos que foram submetidos a testes de câncer de próstata. Coluna 1: resultado do teste PSA (1 = positivo para a doença, 0 = negativo para a doença); Coluna 2: resultado do teste de toque retal DRE (1 = positivo para a doença, 0 = negativo para doença); Coluna 3 = resultado da biópsia (1 = paciente com a doença, 0 = paciente sem a doença). Estes dados podem ser utilizados para avaliar o potencial clínico de tais testes na população alvo.

- a) Estime a **sensibilidade** de ambos os testes, PSA e DRE. [**Resposta:** PSA = 25.57%, DRE = 17.76%].
- b) Estime a **especificidade** de ambos os testes, PSA e DRE. *[Resposta: PSA = 94.91%, DRE = 93.50%]*.
- c) Suponha que dados do ministério da saúde indiquem como sendo de 4,2% a prevalência do câncer de próstata em homens com mais de 50 anos. O PSA é medido em um determinado paciente de sexo masculino com mais de 50 anos: se o teste for positivo, qual a probabilidade do paciente estar doente? Repita a mesma análise para o DRE. [Resposta: o paciente tem 18.04% de chance de possuir câncer se o teste PSA for positivo e 10.70% de chance de possuir câncer se o teste DRE for positivo].
- d) Analise agora a combinação dos dois testes diagnósticos: qual a probabilidade de câncer se pelo menos um dos testes for positivo? E se ambos os testes forem positivos? [Resposta: apenas 35.47% se ambos forem positivos; 11.91% se ao menos um for positivo].
- e) Repita esta análise para o caso dos testes serem negativos: qual a probabilidade de câncer se o PSA for negativo? E se o DRE for negativo? E se ambos forem negativos? [Resposta: o paciente tem 3.71% de chance de possuir câncer se o teste DRE for negativo, 3.32% de chance de possuir câncer se o teste PSA for negativo e 3.17% se ambos testes forem negativos].