Cloud Gaming:

Architecture and Performance

一、動機

隨著雲端技術的進步與資料中心的布建, cloud computing 不再僅限於簡單的運算工作。 得利於 cloud 的計算卸載(computational offload)技術,能顯著提升系統效率,並藉由策略性部署 cloud data center 以減少使用者於互動上的延遲,使 cloud gaming 得以實現。

玩家可透過網路將指令傳送至遊戲平台上的主程式,經平台運算後再將處理後的影像與回應傳回至玩家螢幕中。Cloud gaming 的架構能讓性能較弱的設備,如:智慧型手機、平板電腦等,透過 thin client 方式與應用程式互動,顯示運算部分只需要交由 cloud rendering sever即可,據此來運行高規格需求的遊戲,同時也可降低玩家須自行購買硬體的設備成本。

在遊戲開發商方面,由於遊戲的程式碼並不直接在玩家的 local machine 上執行,且 cloud computing 的硬體由 cloud gaming 提供商所控制,因此能擁有更好的數位版權管理,降低管理成本與盜版所帶來的損失,同時也能減少 customer support cost。

二、議題

Cloud gaming system 必須收集使用者的動作並傳送到 cloud server 進行處理,再根據結果 爲遊戲世界因動作而造成的改變進行編碼、壓縮後,以影片串流送回給玩家。這一系列的步 驟由於必須確保使用者的互動性,因此每個環節都必須在毫秒內完成。而由於使用者對於互 動上的延遲容忍度低,系統於進行上述如影像壓縮等步驟時的時間需要越短越好。此外,若 網路上的延遲越高,對於玩家互動體驗產生的負面影響也越高,以下將就兩點進行討論:

A. Interaction delay tolerance:

對於 cloud gaming 而言,無論是多人連線遊戲或是單人遊戲,由於所有遊戲的執行都是在遠端上進行,再將執行結果以串流傳回使用者的 thin client。然而,網路傳輸資料多少皆有延遲的問題,因此需將這些延遲控管在不影響玩家遊戲體驗範圍內,互動的延遲性也就成爲首要的關注重點。

下方 Table 1列出目前傳統常見遊戲類型與其所能接受的延遲,而 Table 2 為作者利用 Onlive 平台進行測試的結果,在 Onlive base processing time 僅有 36.7(ms)的情況下,cloud 產生的基本 overhead 就達到 100 ms,意味著在 Onlive 上進行需要低延遲的即時射擊遊戲時,玩家

遊玩體驗必定受到影響。而在 RPG 類與 RTS 遊戲上則相對是叫有機會於 Onlive 上順暢運行的,因此解決延遲問題的關鍵在於 cloud 處理能力,必須降低 cloud overhead 才得以將更多低延遲容忍度的遊戲整合至雲端上執行。

Example game type	Perspective	Delay threshold
First person shooter (FPS)	First person	100 ms
Role playing game (RPG)	Third person	500 ms
Real-time strategy (RTS)	Omnipresent	1000 ms

Table 1. Delay tolerance in traditional gaming.

Measurement	Processing time (ms)	Cloud overhead (ms)
Local render Onlive base Onlive (+10 ms) Onlive (+20 ms) Onlive (+50 ms) Onlive (+75 ms)	36.7 136.7 143.3 160.0 160.0 151.7	N/A 100.0 106.7 123.3 123.3 115.0

Table 2. Processing time and cloud overhead.

B. Video streaming and encoding:

Cloud gaming 中的影音串流與傳統串流機制不同, Cloud gaming 架構必須快速的對影片進行編碼(如:H.264)、渲染以及壓縮並將該影片回傳給使用者,且由於在雲端中的動作會在短時間內(100 ~ 200 ms)完成,因此在 client 端的緩衝並沒有太大的發揮空間而無法預先暫存資料。因而 cloud gaming 中的 sensitive real-time 編碼需求對於 cloud gaming 的提供商至關重要。

三、 研發方向

在本文中作者提出一套通用的 cloud gaming 架構,並解釋 cloud gaming 所需的功能和模組,其架構如下圖:

- i. <u>User Interaction</u>: 使用者對於應用程式所要求執行的命令,例如:在遊戲世界中飛行、施行法術,藉由網際網路傳送至 cloud gaming 平台。
- ii. <u>Thin client interaction:</u> 在 cloud gaming 平台上,負責接收由 thin client 傳送來的使用者 命令並轉換成遊戲中的動作(Game action)。
- iii. Game logic: 根據遊戲中的動作以遊戲邏輯解釋後得到遊戲世界中應產生的變化。
- iv. <u>GPU rendering:</u> 由 cloud system 中的圖像處理單元(GPU)將應產生的變化處理成爲要回 傳的 scene。
- v. Video encoder: 對 scene 進行編碼壓縮後傳送給影片串流模組。
- vi. Video streaming: 將 scene 以影片串流傳送回給 thin client。
- vii. Video decoder: thin client 將影片串流解碼後,以播放器顯示。
- viii. 在短時間內完成並重複(i) ~ (vii),達成使用者一連串的遊戲互動。

以上的架構將所有需要計算的部分全部皆交由 cloud 處理(computational offloading),讓使用者端的 thin client 部分僅需要專注於呈現遊戲影片。

四、 未來預測

本文深入檢視了 cloud gaming 的設計架構,同時也測量了具代表性的 cloud gaming platform 性能。根據在不同遊戲、電腦設備以及網路配置下的互動延遲以及串流品質的結果,顯示 cloud gaming 具有未來發展的潛力,同時也揭示了廣泛部署上的挑戰。

隨著 AR 與 VR 遊戲開發越趨蓬勃,所需最基本硬體規格也不斷向上調整,但倘若相關遊戲欲放上雲端則必須要有極短的延遲,才能確保玩家的遊戲體驗。此外智慧型手機的普及,使手遊市場也愈趨壯大,但受限於智慧型手機硬體能力,手由規模始終無法如傳統電腦遊戲一般,若是藉助 cloud gaming 或將可突破如此障礙。除了專注於遊戲互動延遲的議題上,thin client 的進步也可能帶來一些改變。當 thin client 可以執行簡單的遊戲邏輯和遊戲場景變化,能夠藉此隱藏互動上的延遲,或者將遊戲的執行分散到多個各司其職的 virtual machine 上 (distributed game execution),例如:當遊戲角色在施行法術的動作時,遊戲角色將進行一連串的動作,而這些動作可以由 thin client 完成,這過程應足夠掩蓋過互動上的延遲。

在硬體方面, cloud gaming 的發展也讓硬體商開始設計解決 cloud gaming 問題的硬體解決方案,例如: NVIDIA 推出同時 GeForce grid graphical processor, 該處理器爲具有 encoding solution 的圖像處理器,有能力同時 render 和 encode 四個遊戲,並宣稱能夠顯著減輕目前 cloud gaming 的延遲問題。配合軟體的優化再加上硬體的輔助,目前 NVIDIA 甚至能同時 render 四位玩家的畫面,且爲可接受的延遲。此外,在網路方面目前不易找到能將延遲控制在 200 毫秒以內的解決方案,但或許 LTE 或 5G 技術的發展能帶來相關突破。