

Wiring up ion traps for quantum information

Hartmut Häffner

Department of Physics, University of California, Berkeley Institute for Quantum Optics and Quantum Information, Innsbruck, Austria

Motivation

Ion-wire interaction

Characterization of the trap

Influence of the wire

Summary

Scaling of ion-trap quantum computers

Scaling of ion-trap quantum computers

Two trapped ions ...

Two trapped ions + a wire

No trace of the quantum information should remain in the wire

super conducting wire

Physics with this set-up

Physics:

- Decoherence in charge transport
- Wire mediated laser cooling to a few μK
- Cooling of LC resonators

Heinzen and Wineland, PRA PRA 47, 2977 (1990).

Technology:

- Scalable quantum computing with trapped ions/electrons
- Hybrid quantum computing
- Quantum detectors

Quantum control

Ion-wire interaction

Experiments

Summary

Ion-resistor interaction

Ion-resistor interaction

Coupling

with
$$I = \frac{q}{D}\dot{x}$$
, $L_{\rm ion} = \frac{mD^2}{q^2}$, $C_{\rm ion} = \frac{1}{\omega^2 L_{\rm ion}}$

Energy exchange rate:

$$rac{1}{T}=rac{1}{2\pi}rac{q^2}{mD^2}rac{1}{\omega}rac{1}{C_{\mathsf{Wire}}}$$

D.J. Wineland and H.G. Dehmelt, J. Appl. Phys **46**, 919 (1975).

D.J. Heinzen and D.J. Wineland, PRA 47, 2977 (1990).

Coupling

Projected numbers:

$$D_{eff} = 3.6 \times 50 \mu m$$

$$\omega = 2\pi \times 500 \text{ kHz}$$

$$C_{\text{wire}} = 6 \text{ fF } (I_{\text{wire}} = 0.5 \text{mm})$$

$$y = 2\pi X 100 Hz$$

Coupling

Current numbers:

$$D_{eff} = 3.6 \times 300 \mu m$$

$$\omega = 2\pi \times 500 \text{ kHz}$$

$$C_{wire} = 120 \text{ fF } (I_{wire} = 1 \text{ cm})$$

 γ would be 2π X 0.14 Hz

Projected numbers:

$$D_{\rm eff} = 3.6 \; X \; 50 \; \mu m$$

$$\omega = 2\pi \times 500 \text{ kHz}$$

$$C_{\text{wire}} = 6 \text{ fF } (I_{\text{wire}} = 0.5 \text{mm})$$

$$y = 2\pi X 100 Hz$$

Dissipation in the wire

Trap parameters: $\omega = 2\pi \cdot 500 \text{ kHz}$, $D = 3.6 \cdot 50 \mu \text{m}$, $R = 0.1 \Omega$

Induced current: $I = \frac{q}{D}\dot{x} = \frac{q}{D}\sqrt{\frac{\hbar\omega}{m}} \approx 10^{-16}\,A$ Dissipation rate for motional quantum: $\gamma = \frac{I^2R}{\hbar\omega} \approx 10^{-6}\,\frac{1}{s}$

But what about Johnson noise?

Dissipation in the wire

Trap parameters: $\omega = 2\pi \cdot 500 \text{ kHz}$, $D = 3.6 \cdot 50 \mu \text{m}$, $R = 0.1 \Omega$

Induced current:
$$I = \frac{q}{D}\dot{x} = \frac{q}{D}\sqrt{\frac{\hbar\omega}{m}} \approx 10^{-16} A$$

Induced current: $I = \frac{q}{D}\dot{x} = \frac{q}{D}\sqrt{\frac{\hbar\omega}{m}} \approx 10^{-16}\,A$ Dissipation rate for motional quantum: $\gamma = \frac{I^2R}{\hbar\omega} \approx 10^{-6}\,\frac{1}{s}$

Johnson noise heating

Heating rate :
$$\gamma_{\rm J}=\frac{P_{\rm J}}{\hbar\omega}=\frac{k_{\rm B}T\gamma}{\hbar\omega}\approx 14\frac{1}{s}$$

Expected coupling over 0.5 mm: $2\pi \times 100 \text{ 1/s}$

Three coupled harmonic oscillators:

Three coupled harmonic oscillators:

lion₁, wire, ion₁>

Anything else?

See: J.R. Zurita-Sánchez and C. Henkel, submitted to New J. Phys. (2008).

Anomalous heating

From: L. Deslauriers et al., PRL 97, 103007 (2006).

Anomalous heating

From: L. Deslauriers et al., PRL 97, 103007 (2006).

A surface trap

Nikos

Experimental set-up

Trap parameters

Trap parameters:

Ion height $\approx 220 \, \mu \text{m}$

$$\Omega_{\rm D} = 2\pi \cdot 15 \, \text{MHz}$$

$$V_{RF} \approx 100 \text{ V}$$

$$V_{DC} < 10 \text{ V}$$

$$\omega_{\rm H} \approx 2\pi \cdot 1.3 \text{ MHz}$$

$$\omega_{\rm v} \approx 2\pi \cdot 1.5 \, \text{MHz}$$

$$\omega_{\scriptscriptstyle A} \approx 2\pi \cdot 300 \text{ kHz}$$

Tilt
$$\approx 20^{\circ}$$

Experimental set-up

Heating rate measurement

Heating rate determined from difference in fluorescence

Preliminary result: 5 Quanta/ms

Trap characterization

Rob

Sankar

Nikos

Sönke

+ Andreas Wallraff, Peter Leek (Zürich)

Frank Ziesel, Uli Poschinger, Kilian Singer, Ferdinand Schmidt-Kaler (Ulm)

Drive a motional sideband (of the micromotion)

Compensated position:

 $\Delta x_v = 300 \text{ nm}$

 $A_{mm,v} = 38 \text{ nm}$

 $\Delta x_H = 47 \text{ nm}$

 $A_{mm,H} = 5.9 \text{ nm}$

can be improved

Compensation

Derived electric stay fields

Trap frequencies

Stability diagramm

Horizontal compensation (V)

Stability diagramm

Towards compensated trap

Experimental set-up

"Almost" all-metal arm

Wire

Separation of trapping and coupling

Trap

Moving the wire closer

Moving the wire in

Moving the wire in

Moving the wire in

Quantum sensors

Quantum sensor

Ultimate control and detection

Quantum sensors

Quantum sensor

Ultimate control and detection

Quantum sensors

© Nathan Flowers Jacobs, JILA

See: L. Tian, P. Zoller, PRL 93, 266403 (2004). W. K. Hensinger, PRA 72, 041405R (2005).

Hybrid devices

A vision

Summary

