Exercises for Module 6: Topology and Linear Algebra

	-	Ce			0		
1. Let (X, \mathcal{T}) be a topological space and $A \subseteq X$	be dense.	Show t	that if A	$\subseteq B \subseteq X$, then	B is dense a	s well
2. Let (X, \mathcal{T}) be a Hausdorff topological space. Show that the complement is open.	Show the	at the s	ingleton	$\{x\}$ is clo	osed fo	$x \in X$.	Hint

3. Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) and (Z, \mathcal{T}_Z) be topological spaces and let $f: X \to Y$, $g: Y \to Z$ be continuous. Show that $g \circ f: X \to Z$ is continuous as well.

4. Let (X,d) be a metric space and $K \subset X$ compact. Show that for all $\epsilon > 0$ there exists $\{x_1, x_2, \dots, x_n\} \subseteq K$ such that for all $y \in K$ we have $d(y, x_i) < \epsilon$ for some $i = 1, \dots, n$.

5. Suppose that $\alpha \in \mathbb{F}, \mathbf{v} \in V$, and $\alpha \mathbf{v} = \mathbf{0}$. Prove that a = 0 or v = 0.

6. Prove the following: Let V be a vector space and let $U_1, U_2 \subseteq V$ be subspaces. Then $U_1 \cap U_2$ is also a subspace of V.

7. Let U_1 and U_2 be subspaces of a vector space V. Prove that $U_1 \cup U_2$ is a subspace of V if and only if $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$.