Plugin Kilauea

SUMÁRIO

1. PERIFÉRICOS DISPONÍVEIS	2
2. DIAGRAMA FUNCIONAL	3
3. ALIMENTAÇÃO DA PLUGIN KILAUEA	4
4. RECURSOS DE HARDWARE	4
4.1 Sensor de Temperatura e Umidade	4
4.2 Sensor de Luminosidade	4
4.3 Memória EEPROM	4
4.4 Sensor de movimento	4
4.5 TPM	4
4.6 Elemento de criptografia	5
4.7 LED Endereçável	5
4.8 LEDs de sinalização de alimentação	5
4.9 Entradas	5
4.10 Saídas Digitais	6
4.11 Botões de Uso Geral	6
5. CONDIÇÕES RECOMENDADAS DE OPERAÇÃO	7
6. REFERÊNCIAS MECÂNICAS	8
7. ABREVIAÇÕES	9
8 REVISÕES DO DOCUMENTO	a

DESCRIÇÃO

O Plugin Kilauea é uma placa eletrônica criada pela Embtech Tecnologia Embarcada, com o objetivo de expandir as funcionalidades e aplicações da placa CPU Volcano (vendida separadamente). Com este plugin, a CPU Volcano passa a oferecer TPM (*Trusted Platform Module*), elemento de criptografia, chaves tácteis, LED endereçável, sensor de temperatura e umidade, sensor de movimento, memória EEPROM de 2Kb, buzzer, sensor de luminosidade, saídas digitais e entrada analógica*.

* Algumas funcionalidades podem não estar disponíveis em todos os modelos da Plugin Kilauea. Em caso de dúvidas, consulte nosso suporte técnico.

1. PERIFÉRICOS DISPONÍVEIS

Figura 1 - Periféricos da Plugin Kilauea do lado Superior

Figura 2 - Periféricos da Plugin Kilauea do lado inferior

2. DIAGRAMA FUNCIONAL

Figura 3 - Diagrama funcional da Plugin Kilauea

3. ALIMENTAÇÃO DA PLUGIN KILAUEA

A placa Plugin Kilauea é alimentada pelo conector CN16 PLUGIN BOARD, localizado na placa Volcano, e pelo conector CN3, encontrado na própria plugin. A Volcano fornece as tensões de 5V, 3.3V e 1.8V necessárias para a correta alimentação dos circuitos.

4. RECURSOS DE HARDWARE

A seguir, são descritos os principais recursos de hardware disponíveis na Plugin Kilauea. Estes recursos podem variar de acordo com a montagem da placa.

4.1 Sensor de Temperatura e Umidade

O sensor de temperatura e umidade on-board SHT40-CD1B-R3 possui uma faixa de medição de -40°C a +125°C com precisão típica de ±0.2°C (na faixa de 0°C a +65°C). A umidade relativa (RH) varia de 0 a 100% com uma acurácia típica de ±1.8 % (na faixa de 20 a 70%). A comunicação é feita via I2C.

Endereço I2C de 7 bits: 0b1000 101.

Sinais utilizados na interface I2C:

Nome	Verdin sodiмм
I2C1_SDA	12
I2C1_SCL	14

4.2 Sensor de Luminosidade

O sensor de luminosidade on-board QSB34CGR possui uma alta sensibilidade que vai de 400nm a 1100nm com uma área sensível de 2,55 mm x 2,55 mm. O sensor possui baixa capacitância de 25 pF a VR = 3 V e corrente fotográfica de 25-37 μ A com Ee = 1 mW/cm², VCE = 5 V.

Sinais utilizados na interface do sensor:

Nome	Verdin sodimm
ADC2	4

4.3 Memória EEPROM

A memória EEPROM <u>24FC02-I/SN</u> possui capacidade de armazenamento de 2 Kbits (256 x 8 bits) A comunicação é feita via I2C, compatível com velocidades de 100 kHz, 400 kHz e 1 MHz.

Endereço I2C de 7 bits: 0b1010 000.

Sinais utilizados na interface I2C:

Nome	Verdin sodiмм
I2C1_SDA	12
I2C1_SCL	14

4.4 Sensor de movimento

O <u>IIM-42652</u> é um sensor de movimento de 6 eixos que combina um giroscópio de 3 eixos e um acelerômetro de 3 eixos. Suas faixas de medição são de ±15.625 a ±2000º/seg para o giroscópio e de ±2g a ±16g para o acelerômetro. A comunicação com a placa Volcano é via I2C (até 1 MHz). Possui um consumo de energia otimizado com FIFO de 2 KB. Adequado para aplicações industriais, como agricultura de precisão e robótica.

Endereço I2C de 7 bits: 0b1101 000.

Sinais utilizados na interface I2C:

Nome	Verdin sodiмм
I2C1_SDA	12
I2C1_SCL	14
GPIO_3 (Pino 4 INT do IIM-42652)	210

4.5 TPM

O <u>ST33HTPH2X32AHE4</u> é um chip de criptografia TPM. Possui módulo de Plataforma Confiável (TPM) baseado em memória flash. É compatível com as especificações da Trusted Computing Group (TCG) para TPM 2.0.

Firmware tolerante a falhas, garantindo que o TPM permaneça funcional mesmo quando o processo de carregamento é interrompido (auto-recuperação),

conformidade com os requisitos de proteção, detecção e recuperação SP800-193.

As certificações alvo incluem Common Criteria (CC) de acordo com o TPM 2.0 PP em EAL4+ (com AVA_VAN.5 e ALC_FLR.1), FIPS 140-2 nível 2 (segurança física nível 3) e certificação TCG..

No quesito segurança, o chip possui sensores ativos de blindagem e ambientais, monitoramento de parâmetros ambientais (energia), proteção contra injeção de falhas (hardware e software), gerador de bits aleatórios determinístico (DRBG) compatível com FIPS SP800-90A e AIS20, gerador de números aleatórios verdadeiros (TRNG) compatível com FIPS SP800-90B e AIS31, além de algoritmos criptográficos (RSA, SHA, AES, TDES e ECC).

Compatível com Microsoft Windows 10 e 11, drivers Linux e tecnologia Intel vPro. Aprovado nos testes da TCG para TPM 2.0 e na implementação TSS de código aberto.

Endereço SPI programável. Sinais utilizados na interface SPI:

Nome	Verdin sodimm
SPI1_CLK	196
SPI1_MISO	198
SPI1_MOSI	200
SPI1_CS	202
GPIO 4 (Pino 17 SPI_RST do TPM)	212

4.6 Elemento de criptografia

O <u>ATSHA204A</u> é um chip de criptografia para a segurança de dispositivos eletrônicos. Com sua integração, é possível garantir autenticação robusta e proteção contra falsificações. Sua EEPROM de 4,5 Kb permite armazenamento seguro de chaves e dados, enquanto a interface I2C simplifica a comunicação. Além disso, o ATSHA204A é projetado para resistir a ataques físicos, tornando-o ideal para aplicações críticas.

Endereço I2C programável.

Sinais utilizados na interface I2C:

Nome	Verdin sodiмм
I2C1_SDA	12
I2C1_SCL	14

4.7 LED Endereçável

LED RGB endereçável WS2812 (5050) de propósito geral identificado na placa como DS1 e conectado ao pino 208 do módulo Verdin.

Devido ao circuito que opera o sinal conectado ao pino DIN do led endereçável, ao se aplicar um nível lógico alto no pino 208, o pino DIN do led receberá OV. No caso de nível baixo no mesmo pino, DIN receberá o sinal de 5V.

4.8 LEDs de sinalização de alimentação

A placa Plugin Kilauea possui LEDs que indicam a presença de tensões e a habilitação de determinados recursos de hardware:

O1: Indica o acionamento da saída DO1;

O2: Indica o acionamento da saída DO2.

4.9 Entradas

A placa possui três entradas sendo duas digitais do tipo NPN e um analógica, podendo ser identificadas na placa como DI1 , DI2 e ANI conectadas aos seguintes pinos do módulo Verdin:

Entrada	Nome	Verdin sodimm
DI1	UART2_TXD	139
DI2	UART2_RTS	141
ANI	ADC1	2

A entrada analógica ANI possui um resistor de pull-up de 10K Ohms para permitir a leitura de sensores de temperatura do tipo NTC.

Já as entradas digitais possuem um resistor de pull-down de 10K Ohms.

O teste da entrada ANI pode ser realizado conectando um resistor variável entre ANI e GND.

Parâmetros das entradas:

Parâmetros		Min	Max	Unid
Alimentação				
Entrada (Digital)	- ~	-	24	V_{DC}
Entrada (Analógica)	Tensão	0	3.3	V _{DC}

4.10 Saídas Digitais

A placa possui duas saídas digitais de propósito geral acionadas por MOSFET canal N, identificadas como DO1 e DO2, conectadas aos seguintes pinos do módulo Verdin:

Saída	Nome	Verdin SODIMM
DO1	PWM2	16
DO2	GPIO1	206

As saídas digitais necessitam de alimentação externa que deve ser conectada no pino VOUT. A corrente máxima permitida é de 100mA por saída. A proteção da saída é feita através de um PTC com I Hold de 120mA em 23°C.

Parâmetros de saída:

Parâmetros		Min	Max	Unid
Alimentação				
Saída	Tensão (DO1, DO2)	-	VOUT	V _{DC}
	Corrente	-	100	mA
Alimentação Externa	Tensão (VOUT)	3	24	V _{DC}

4.11 Botões de Uso Geral

A placa possui duas chaves tácteis de propósito geral, identificadas como SW1 e SW2, conectadas aos seguintes pinos do módulo Verdin:

Botão	Nome	Verdin sodimm
SW1	UART2_RXD	137
SW2	UART2_CTS	143

4.12 Buzzer

A placa possui o buzzer PKMCS0909E4000-R1 conectado ao seguinte pino do módulo Verdin:

Buzzer	Nome	Verdin SODIMM
BZ1	PWM_1	15

Conforme consta no datasheet do componente, o buzzer não possui oscilador interno devendo ser acionado por onda quadrada (PWM) na frequência desejada.

5. CONDIÇÕES RECOMENDADAS DE OPERAÇÃO

Parâmetros		Max	Unid		
Temperatura					
Temperatura de Operação	0	60	°C		
Tensão Máxima					
Entradas Digitais	-	24	V _{DC}		
Entrada Analógica	-	3.3	V _{DC}		
Alimentação externa das saídas digitais (VOUT)	-	24	V _{DC}		
Corrente Máxima					
Saídas Digitais (a 23°C)	-	100	mA		

6. REFERÊNCIAS MECÂNICAS

Figura 10 - Dimensões - Vista Superior

Figura 11 - Dimensões - Vista Lateral

7. ABREVIAÇÕES

Sigla	Descrição
ADC	Analog to Digital Converter
GND	Ground
GPIO	General Purpose Input/Output
I2C	Inter-Integrated Circuit
1/0	Input/Output
PWM	Pulse-Width Modulation
PWR	Power
SoM	System on a Module
SPI	Serial Peripheral Interface Bus
UART	Universal Asynchronous Receiver/
	Transmitter

8. REVISÕES DO DOCUMENTO

Rev:01: Versão inicial.
Data: 26/07/2024

• Rev:02: Atualizações e melhorias.

Data: 16/08/2024

Última Atualização em 16/08/2024.

EMBTECH TECNOLOGIA EMBARCADA S/A 2023

Informações sujeitas a alteração sem aviso prévio. Para maiores informações, acesse: www.embtech.com.br

