R crash course: A quick introduction to R

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Santiago Perez-Hoyos

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca

Readme

- License: Creative Commons
 Attribution-NonCommercial-ShareAlike 4.0 International
 License http://creativecommons.org/licenses/by-nc-sa/4.0/
- You are free to:
 - Share : copy and redistribute the material
 Adapt : rebuild and transform the material
- Under the following conditions:
 - Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made.
 - NonCommercial: You may not use this work for commercial purposes.
 - Share Alike: If you remix, transform, or build upon this work, you must distribute your contributions under the same license to this one

Section 1

A Crash Course in R

Outline

- Why R
 - R basics
 - How does one work with R and Rstudio
- Getting Started
 - A primer of data import
 - Variables and data types
 - Functions, Packages and more stuff
- Working with data
 - Selecting, Filtering and ordering datasets
 - A primer of statistics and plots
 - R Notebooks and RMarkdown

Motivation

- We (you) all work with data, most of the time and often we need to do "things" with those data.
 - I have three lists of genes and I would like to see which genes they have in common (or which ones appear only in one list).
 - We have received the data from that lab but I only want to work with a subset of the samples.
 - Is it possible to repeat that plot changing the line colors, the font size etc?
 - I have some scripts tu re-run an analysis but I don't know how to start
- These, and many other things can be done with a basic knowledge of R.

What is R?

- R is a language and environment for statistical computing and graphics.
- R provides a wide variety of statistical and graphical techniques, and is highly extensible.
- It can be used fro simple tasks to highly complex reproducible projects.
- It compiles and runs on a wide variety of UNIX platforms and similar systems Windows and MacOS.

How is R used

 Different ways to use R, but the best trade-off simplicity-efficiency is provided by Rstudio

Exercise

- Get to know R. Visit the R-project page and see what can be found there.
- If you haven't done it before, download and install R and Rstudio in your computer
- Open R studio. Look at the panels and figgure out what can we do at each window.

Section 2

Using R

Commands, Objects and Functions

- Shortly, using R consists of
 - Working with objects using commands and functions

Variables and data types

- Data managed in R . . .
 - is stored as variables
- Variables can be of distinct types
 - Numerical
 - numeric (13.7)
 - int (3)
 - Character
 - "R is cute"
 - Factors
 - A,B,C,D
 - WT, Mut

R packages

- R can be used for many different types of data processing and analysis from distinct fields, besides statistics such as Ecology, Omics Sciences, Psychology etc.
- All these capabilities are not present from the begining because most of them will never be used by most users.
- Instead, thay can be added when needed by
 - installing and
 - loading the appropriate packages.

Installing and loading packages

We want to analyze some data using cox proportional hazards model.

```
res.cox <- coxph(Surv(time, status) ~ sex, data = lung)</pre>
```

```
Error in coxph(Surv(time, status) ~ sex, data = lung)
: could not find function "coxph"
```

We need to install and load the package before we can use it.

```
install.packages("survival")
library(survival)
res.cox <- coxph(Surv(time, status) ~ sex, data = lung)</pre>
```

Bioconductor

- Packages analyse all kinds of Genomic data (>800)
- Compulsory documentation (vignettes) for each package
- 6-month release cycle
- Course Materials
- Example data and workflows
- Common, re-usable framework and functionality
- Available Support
 - Often you will be able to interact with the package maintainers
 / developers and other power-users of the project software

The tidyverse

- The tidyverse is an opinionated collection of R packages designed for data science.
- All packages share an underlying design philosophy, grammar, and data structures.
- The complete tidyverse collection can be installed with:

```
install.packages("tidyverse")
```

https://www.tidyverse.org/

Section 3

Getting data into R

Importing data with Rstudio

- The easiest way to get data into R is to click on the import Datasets button.
- Alternatively R code can be written using functions from Base R or the tidyverse
 - Base R functions start with read.: read.table, read.csv
 - tidyverse functions start with read_: read_delim, read_csv or read_excel

Reading Excel or csv files

- Files can be read from any location, let it be a physical support or a web site.
- To read files from disk be sure to indicate their location.
- Alternatively the default working directory can be set to the folder where the file is located.

Reading Excel or csv files (continued)

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Santiago Pe

- Assume files TIO2+PTYR-human-MSS+MSIvsPD.XLSX has been downloaded to your working directory
- Start setting the default directory to the folder where you have saved the file.
 - Session --> Set Working directory --> To source file location...
- Import the TIO2+PTYR-human-MSS+MSIvsPD.XLSX with the default options
- Code generated for reading the files can be reused any time changing the file name if needed.

```
# Read Excel file
library(readxl)
otherData <= read excel("otherFiles")</pre>
```

R crash course: A quick introduction to R

Interlude: Summarizing data

• Once a dataset is available it is easy to "have a look at it"

```
head(phosphoprotData)
str(phosphoprotData)
summary (phosphoprotData)
```

Section 4

Dynamic output with Rmarkdown

Reproducible research with R notebooks

- R and Rstudio are strongly involved in promoting reproducibility and reproducible research.
- This is implemented in R notebooks
- A notebook combines
 - Natural language text, e.g. describing what we are doing in our own words.
 - R code with the instructions needed to do the data management or the analysis.
 - The output of the analysis

Creating Notebooks

- A notebook can be created in Rstudio with
 - File --> New File --> R Notebook
- The notebook contains example text and code so it is straightforwoard to adapt it to your analysis.
- To produce an html file with text, code and output:
 - Press the button "Preview"
 - Or Select "Knitr to Html"

Section 5

Resources and exercises

Introductory materials

The web is full of all types of materials about R

Below there are a couple of brief introductions:

- A short introduction to R
- Getting started with R

Exercise

- Select a dataset with which you wish to work along the course.
- Read it into R
 - How many variables are there in it
 - What are their types
- Try to summarize it briefly
- Create an R notebook to encapsulate all your steps and share it with somebody.