

Fakultät Elektrotechnik und Informationstechnik, Lehrstühle für AT, MST, PLT, RST

1. Verteidigung Hauptseminar AMR WS19/20

Gruppe HSAMR1:

Sebastian Schwabe (Perception)

Dresden, den 05.11.2019

Inhalte

der Zwischenpräsentation

- 1 Untersuchung der Sensoren
- 1.1 Lichtsensor
- **1.2 Sharp Triangulationssensor**
- 1.3 Motrencoder
- 2 Adaption an den Roboter

1.1 Untersuchung der Sensoren

Kalibrierung der Lichtsensoren

- Vorgegebene Kalibrierung in der Klasse PerceptionPMP fasch
- Kalibrierung nicht mit den Rohdaten sondern auf bereits Normierte Werte
- Änderung der methoden updateLeftLineSensor(), updateRightLineSensor() sowie getLeftLineSensorValue() und getRightLineSensorValue()

```
private void updateLeftLightSensor() {
        LeftLineSensor = leftLight.readNormalizedValue();
}

private void updateRightLightSensor() {
        RightLineSensor = rightLight.readNormalizedValue();
}
```

```
public int getLeftLineSensorValue() {
        if(this.LSlwhite-this.LSlblack == 0) {
            return leftLight.readNormalizedValue();
        }
        return leftLight.readValue();
}

public int getRightLineSensorValue() {
        if(this.LSrwhite-this.LSrblack == 0) {
            return rightLight.readNormalizedValue();
        }
        return rightLight.readValue();
}
```


1.2 Untersuchung der Sensoren

systematische Messabweichung der Lichtsensoren

1.2 Untersuchung der Sensoren

zufällige Messabweichung der Lichtsensoren

1.2 Untersuchung der Sharp Triangulationssensoren

Kalibrierung der Sensoren

1.2 Sharp Triangulationssensoren

Kalibrierung der Sensoren

- Sampeln von 15Messwerten pro cm
- Rekursion 5. Grades
- Auswertung mit Python

1.2 Sharp Triangulationssensoren

Kalibrierung der Sensoren Umkehrfunktion

$$d(U) = 70,093U^5 - 57,194U^4 - 310,432U^3 + 596,717U^2 - 405,701U + 117,280$$

1.2 Sharp Triangulationssensoren

Kalibrierung der Sensoren

1.3 Motorencoder

Vermessung PWM – RPM – Zusammenhang (ohne Belastung)

Ergebnis des Fits:

linker Motor:

PWM(rpm)=0,640*rpm+2,521

rechter Motor: PWM(rpm) = 0,695 * rpm + 1,423

1.3 Motorencoder

Vermessung PWM – RPM – Zusammenhang (mit Belastung)

- Ergebnis des Fits:

linker Motor:

PWM(rpm)=0,728*rpm+8,617

rechter Motor: PWM(rpm) = 0,779 * rpm + 8,404

