Generative Models for Classification

CS4780/5780 – Machine Learning Fall 2019

Nika Haghtalab & Thorsten Joachims
Cornell University

Reading: UML 24.2, 24.3

Generative vs. Conditional vs. ERM

- Empirical Risk Minimization
 - Find $h = \underset{h \in H}{\operatorname{argmin}} Err_{S}(h)$ s.t. overfitting control
 - Pro: directly estimate decision rule
 - Con: need to commit to loss, input, and output before training
- Discriminative Conditional Model
 - Find P(Y|X), then derive h(x) via Bayes rule
 - Pro: not yet committed to loss during training
 - Con: need to commit to input and output before training; learning conditional distribution is harder than learning decision rule
- Generative Model
 - Find P(X,Y), then derive h(x) via Bayes rule
 - Pro: not yet committed to loss, input, or output during training; often computationally easy
 - Con: Needs to model dependencies in X

Bayes Decision Rule

- Assumption:
 - learning task P(X,Y)=P(Y|X) P(X) is known
- Question:
 - Given instance x, how should it be classified to minimize prediction error?
- Bayes Decision Rule (for zero/one loss):

$$h_{bayes(\vec{x})} = argmax_{y \in Y}[P(Y = y | X = \vec{x})]$$

Example: Modeling Flu Patients

Data:

fever (h,l,n)	cough (y,n)	pukes (y,n)	flu?
high	yes	no	1
high	no	yes	1
low	yes	no	-1
low	yes	yes	1
high	no	yes	???

• Approach: One model for flu, one for not-flu.

Bayes Theorem

- It is possible to "switch" conditioning according to the following rule
- Given any two random variables X and Y, it holds that

$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

Note that

$$P(X = x) = \sum_{y \in Y} P(X = x | Y = y) P(Y = y)$$

Naïve Bayes' Classifier (Multivariate)

Model for each class

$$P(X = \vec{x}|Y = +1) = \prod_{i=1}^{N} P(X_i = x_i|Y = +1)$$

$$P(X = \vec{x}|Y = -1) = \prod_{i=1}^{N} P(X_i = x_i|Y = -1)$$

fever cough pukes flu? (h,l,n) (y,n) (y,n)high 1 ves no high no ves low -1 yes no low ves ves ??? high ves no

Prior probabilities

$$P(Y = +1), P(Y = -1)$$

Classification rule:

$$h_{naive}(\vec{x}) = \underset{y \in \{+1,-1\}}{\operatorname{argmax}} \left\{ P(Y = y) \prod_{i=1}^{N} P(X_i = x_i | Y = y) \right\}$$

Estimating the Parameters of NB

- Count frequencies in training data
 - n: number of training examples
 - n_{+} / n_{-} : number of pos/neg examples
 - #(X_i=x_i, y): number of times feature
 X_i takes value x_i for examples in class y
 - |X_i|: number of values attribute X_i
 can take
- Estimating P(Y)
 - Fraction of positive / negative examples in training data

$$\hat{P}(Y = +1) = \frac{n_+}{n}$$
 $\hat{P}(Y = -1) = \frac{n_-}{n}$

- Estimating P(X|Y)
 - Maximum Likelihood Estimate

$$\widehat{P}(X_i = x_i | Y = y) = \frac{\#(X_i = x_i, y)}{n_y}$$

Smoothing with Laplace estimate

$$\widehat{P}(X_i = x_i | Y = y) = \frac{\#(X_i = x_i, y) + 1}{n_y + |X_i|}$$

fever (h,l,n)	cough (y,n)	pukes (y,n)	flu?
high	yes	no	1
high	no	yes	1
low	yes	no	-1
low	yes	yes	1
high	no	yes	???

Linear Discriminant Analysis

Spherical Gaussian model with unit variance for each class

$$P(X = \vec{x}|Y = +1) \sim \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu}_{+})^{2}\right)$$

$$P(X = \vec{x}|Y = -1) \sim \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu}_{-})^{2}\right)$$

Prior probabilities

$$P(Y = +1), P(Y = -1)$$

Classification rule

$$h_{LDA}(\vec{x}) = \underset{y \in \{+1,-1\}}{\operatorname{argmax}} \left\{ P(Y = y) exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu}_y)^2\right) \right\}$$

$$\underset{y \in \{+1,-1\}}{\operatorname{argmax}} \left\{ \log(P(Y = y)) - \frac{1}{2}(\vec{x} - \vec{\mu}_y)^2 \right\}$$

Estimating the Parameters of LDA

- Count frequencies in training data
 - $-(\vec{x}_1,\vec{y}_1),\dots,(\vec{x}_n,\vec{y}_n)\sim P(X,Y)$: training data
 - n: number of training examples
 - $-n_{+}/n_{-}$: number of positive/negative training examples
- Estimating P(Y)
 - Fraction of pos / neg examples in training data

$$\widehat{P}(Y = +1) = \frac{n_+}{n}$$
 $\widehat{P}(Y = -1) = \frac{n_-}{n}$

Estimating class means

$$\vec{\mu}_{+} = \frac{1}{n_{+}} \sum_{\{i:y_{i}=1\}} \vec{x}_{i}$$
 $\vec{\mu}_{-} = \frac{1}{n_{-}} \sum_{\{i:y_{i}=-1\}} \vec{x}_{i}$

Naïve Bayes Classifier (Multinomial)

• Application: Text classification $(x = (w_1, ..., w_l)$ sequence)

text	CS?
$x_1 = (The, art, of, Programming)$	+1
$x_2 = (Introduction, to, Calculus)$	-1
$x_3 = (Introduction, to, Complexity, Theory)$	+1
$x_4 = (Introduction, to, Programming)$??

Assumption

$$P(X = x | Y = +1) = \prod_{i=1}^{l} P(W = w_i | Y = +1)$$

$$P(X = x | Y = -1) = \prod_{i=1}^{l} P(W = w_i | Y = -1)$$

Classification Rule

$$h_{naive}(x) = \underset{y \in \{+1,-1\}}{\operatorname{argmax}} \left\{ P(Y = y) \prod_{i=1}^{l} P(W = w_i | Y = y) \right\}$$

Estimating the Parameters of Multinomial Naïve Bayes

 $x_1 = (The, art, of, Programming)$

 $x_3 = (Introduction, to, Complexity, Theory)$

 $x_2 = (Introduction, to, Calculus)$

CS?

+1

+1

??

- Count frequencies in training data
 - n: number of training examples
 - $-n_{+}/n_{-}$: number of pos/neg examples
 - #(W=w, y): number of times word w occurs in examples of class y
 - $-I_{+}/I_{-}$: total number of words in pos/neg examples
 - | V |: size of vocabulary
- Estimating P(Y)

$$\hat{P}(Y = +1) = \frac{n_{+}}{n}$$
 $\hat{P}(Y = -1) = \frac{n_{-}}{n}$

text

Estimating P(X|Y) (smoothing with Laplace estimate):

$$\widehat{P}(W = w|Y = y) = \frac{\#(W = w, y) + 1}{l_v + |V|}$$