Probability Theory

VIII Conditional Expectation

Seongho, Joo

August 7, 2025

Seoul National University

Orthogonal Projection

If H is a finite dimensional inner product space, and $K\subseteq H$ is any subspace, there is an orthogonal projection $P_k:H\to K$ with the properties that

- $P_k(v) = v \quad \forall v \in K$
- $P_k(w) = 0 \text{ if } w \in K^\top$

If we can find an orthonormal basis $\{e_n\}$ for K, then

$$P_k(v) = \sum_{n} \langle v, e_n \rangle e_n$$

We will use this same idea in the Hilbert space $H=L^2(\Omega,\mathcal{F},\mathbb{P})$

A Hilbert Space is a complete inner product space.

E.g.
$$H = L^2(\Omega, \mathcal{F}, \mathbb{P})$$
 with $\langle X, Y \rangle := \mathbb{E} XY$.

In any inner product space, we have Pythagoras's Thm:

If
$$X \perp Y$$
, $||X + Y||^2 = ||X||^2 + ||Y||^2$

Also, we have the Parallelogram Law:

$$||X + Y||^2 + ||X - Y||^2 = 2(||X||^2 + ||Y||^2)$$

If $K \subset H$ is a linear subspace, it is also an inner product space. K is a Hilbert space if and only if K is closed in H.

A Hilbert Space is a complete inner product space.

E.g.
$$H = L^2(\Omega, \mathcal{F}, \mathbb{P})$$
 with $\langle X, Y \rangle := \mathbb{E} XY$.

In any inner product space, we have Pythagoras's Thm:

If
$$X \perp Y$$
, $||X + Y||^2 = ||X||^2 + ||Y||^2$

Also, we have the Parallelogram Law:

$$||X + Y||^2 + ||X - Y||^2 = 2(||X||^2 + ||Y||^2)$$

If $K \subset H$ is a linear subspace, it is also an inner product space. K is a Hilbert space if and only if K is closed in H.

Proposition 1

If $K\subseteq H$ is a closed subspace, and $X\in H$, there is a unique closest element $Y\in K$ to $\mathsf{Y}.$

$$||X - Y||^2 = d(x, K)^2 := \inf_{Z \in K} ||X - Z||^2$$

Proof.

Proposition 2

The unique closest point $Y \in K$ to X is also the unique element $Y \in K$ satisfying

$$X - Y \perp K$$
 i.e. $\langle X - Y, Z \rangle = 0 \ \forall Z \in K$

Proof. If Y is the closest point, for any $Z \in K$, consider

$$t \mapsto \alpha(t) = \|X - (Y + tZ)\|^2 = \|X - Y\|^2 - 2t \, \langle X - Y, Z \rangle + \|Z\|^2 \, t^2$$

by assumption, $\alpha(0) = \min \alpha \implies \alpha'(0) = 0 \implies -2 \langle X - Y, Z \rangle = 0$ Conversely, if $Y \in K$ with $X - Y \perp K$, then for any $Z \in K$,

$$||X - Z||^2 = \left||X - Y + \underbrace{Y - Z}_{\in K}\right||^2 = ||X - Y||^2 + ||Y - Z||^2 \ge ||X - Y||^2$$

 $\implies Y = \text{unique minimizer of } d(x, K).$

Theorem 1 (Orthogonal Projection)

Given a Hilbert space H and a closed subspace $K\subseteq H$, there is a unique linear transformation $P_k:H\to K$ such that

- \blacksquare P_k is Lip₁-cotinuous
- $P_k(Y) = Y \quad \forall Y \in K$
- $P_k(Z) = 0 \quad \forall Z \in K^\perp$

Moreover, if $L\subseteq K$ is another closed subapce, then $P_KP_L=P_LP_K=P_L$. The transformation P_K , the <u>orthogonal projection</u> onto K, can be defined by $P_K(X)=$ the unique element in K closest to X.

Proposition 3

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ -field. Then $L^2(\Omega, \mathcal{G}, \mathbb{P}) \subseteq (\Omega, \mathcal{F}, \mathbb{P})$ is a closed subspace.

Proof. Closed: If X_n is \mathcal{G} -measurable, $X_n \to X$ in L^2 , \exists subseq $X_{n_k} \to X$ a.s. $\Longrightarrow X$ is \mathcal{G} -measurable. $\therefore X \in L^2(\Omega, \mathcal{G}, \mathbb{P})$.

Proposition 3

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ -field. Then $L^2(\Omega, \mathcal{G}, \mathbb{P}) \subseteq (\Omega, \mathcal{F}, \mathbb{P})$ is a closed subspace.

Proof. Closed: If X_n is $\mathcal G$ -measurable, $X_n \to X$ in L^2 , \exists subseq $X_{n_k} \to X$ a.s. $\Longrightarrow X$ is $\mathcal G$ -measurable. $\therefore X \in L^2(\Omega, \mathcal G, \mathbb P)$.

Definition 1

If $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ is any sub σ -field, the <u>conditional expectation</u> $\mathbb{E}_{\mathcal{G}}[X]$ is the random variable $P_{L^2(\Omega, \mathcal{G}, \mathbb{P})}(X)$.

What is $\mathbb{E} X | \mathcal{G}$? It is the \mathcal{G} -measurable r.v. that is <u>closest</u> to X

$$||X - \mathbb{E}X|\mathcal{G}||_{L^2} = \min_{Y \in L^2(\Omega, \mathcal{G}, \mathbb{P})} ||X - Y||$$

I.e. it is the best guess for X, using only the information in G.

Question:: does it only make sense for L^2 ?

What is $\mathbb{E} X | \mathcal{G}$? It is the \mathcal{G} -measurable r.v. that is <u>closest</u> to X

$$\|X - \mathbb{E} X|\mathcal{G}\|_{L^2} = \min_{Y \in L^2(\Omega, \mathcal{G}, \mathbb{P})} \|X - Y\|$$

I.e. it is the best guess for X, using only the information in G.

Question:: does it only make sense for L^2 ?

Lemma 1

If
$$X\in L^2(\Omega,\mathcal{F},\mathbb{P})$$
, then $\mathbb{E}\left|\mathbb{E}_{\mathcal{G}}\left[X\right]\right|\leq \mathbb{E}\left|X\right|$

Proof. Use that $Z=\operatorname{sgn} Y,$ where $Y=\mathbb{E}_{\mathcal{G}}\left[X\right]$ is $\mathcal{G}\text{-measurable}.$

Note that $L^2\subseteq L^1$ is dense; given $X\in L^1$, $X\mathbf{1}_{|X|\leq n}$ is bounded and in L^2 , and $\left\|X-X\mathbf{1}_{|X|\geq n}\right\|_{L^1}=\mathbb{E}\,|X|\mathbf{1}_{|X|>n}\to 0$ by DCT.

Extension to L^1 r.v.

Definition 2

If $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$, define $\mathbb{E}_{\mathcal{G}}\left[X\right]$ as follows: Take any sequence $X_n \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ s.t. $\|X_n - X\|_{L^1} \to 0$ Define $\mathbb{E}_{\mathcal{G}}\left[X\right] := L^1 \ \lim_{n \to \infty} \mathbb{E}_{\mathcal{G}}\left[X_n\right]$

- ullet Note that $\{\mathbb{E}_{\mathcal{G}}\left[X_n
 ight]\}_{n=1}^{\infty}$ is L^1 -Cauchy.
- ullet. if $X_n,Y_n o X$ in L^1 , then

$$\|\mathbb{E}_{\mathcal{G}}\left[X_n
ight] - \mathbb{E}_{\mathcal{G}}\left[Y_n
ight]\|_{L^1} \leq \|X_n - Y_n\|_{L^1} o 0 \text{ as } n o \infty$$

therefore, it is well-defined.

Averaging property

Proposition 4

For $X\in L^1(\Omega,\mathcal{F},\mathbb{P})$ and $\mathcal{G}\subseteq\mathcal{F}$, $\mathbb{E}_{\mathcal{G}}\left[X\right]$ is the unique $L^1(\Omega,\mathcal{G},\mathbb{P})$ random variable with the property:

$$\mathbb{E}\,\mathbb{E}_{\mathcal{G}}\left[X\right]Y = \mathbb{E}\,XY \quad \forall Y \in \mathbb{B}(\Omega,\mathcal{G})\cdots(\dagger)$$

Proof. For the converse, take $Y = \mathrm{sgn}(Z_1 - Z_2) \mathbf{1}_{|Z_1 - Z_2| \leq n} \in \mathbb{B}(\Omega, \mathcal{G})$

Averaging property

Proposition 4

For $X\in L^1(\Omega,\mathcal{F},\mathbb{P})$ and $\mathcal{G}\subseteq\mathcal{F}$, $\mathbb{E}_{\mathcal{G}}\left[X\right]$ is the unique $L^1(\Omega,\mathcal{G},\mathbb{P})$ random variable with the property:

$$\mathbb{E}\,\mathbb{E}_{\mathcal{G}}\left[X\right]Y = \mathbb{E}\,XY \quad \forall Y \in \mathbb{B}(\Omega,\mathcal{G})\cdots(\dagger)$$

Proof. For the converse, take $Y = \operatorname{sgn}(Z_1 - Z_2) \mathbf{1}_{|Z_1 - Z_2| \le n} \in \mathbb{B}(\Omega, \mathcal{G})$

Theorem 2 (Properties of Conditional Expectation)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -field. The linear transformation $\mathbb{E}_{\mathcal{G}}$ satisfies:

- $\qquad \qquad \textbf{(Monotonicity) if } X \leq Y \text{ a.s. then } \mathbb{E}_{\mathcal{G}}\left[X\right] \leq \mathbb{E}_{\mathcal{G}}\left[Y\right] \text{ a.s.}$
- $(\triangle -ineq) |\mathbb{E}_{\mathcal{G}}[X]| \leq \mathbb{E}_{\mathcal{G}}[|X|]$
- $\qquad \qquad \textbf{(Averaging)} \ \mathbb{E} \, \mathbb{E}_{\mathcal{G}} \left[X \right] Y = \mathbb{E} \, XY \quad \forall Y \in \mathbb{B}(\Omega, \mathbb{G})$
- $\text{ (Product Rule) If } Y \in \mathbb{B}(\Omega,\mathcal{G}), \ \mathbb{E}_{\mathcal{G}}\left[XY\right] = \mathbb{E}_{\mathcal{G}}\left[X\right]Y$
- **5** (Tower Property) If $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ are all σ -fields, then

$$\mathbb{E}_{\mathcal{G}}\left[\mathbb{E}_{\mathcal{G}}\left[X\right]\right] = \mathbb{E}_{\mathcal{H}}\left[\mathbb{E}_{\mathcal{G}}\left[X\right]\right] = \mathbb{E}_{\mathcal{H}}\left[X\right]$$

Averaging property

Lemma 2

 $Z=\mathbb{E}_{\mathcal{G}}\left[X\right] \text{ if and only if } Z\in L^1(\Omega,\mathcal{G},\mathbb{P}) \text{ and } \mathbb{E}\,Z:B=\mathbb{E}\,X:B \ \forall B\in\mathcal{G}$

Proof. For the converse, use the Dynkin's Multiplicative System theorem.

Theorem 3

 $\mathbb{E}_{\mathcal{G}}$ satisfies the standard integral convergence results:

- (cMCT) If $0 \le X_n \le X_{n+1}$, then $\lim_{n \to \infty} \mathbb{E}_{\mathcal{G}}[X_n] = \mathbb{E}_{\mathcal{G}}[\lim_{n \to \infty} X_n]$ a.s.
- (CFatou) If $X_n \ge 0$ a.s, then $\mathbb{E}_{\mathcal{G}} \left[\liminf_{n \to \infty} X_n \right] \le \liminf_{n \to \infty} \mathbb{E}_{\mathcal{G}} \left[X_n \right]$ a.s
- (cDCT) If $X_n \to X$ a.s. and $|X_n| \le Y \in L^1$ a.s., then $\mathbb{E}_{\mathcal{G}}[X_n] \to \mathbb{E}_{\mathcal{G}}[X]$ a.s. and L^1 .

Theorem 4 (Conditional Jensen's Inequality)

Let $X_1 \in L^1(\Omega,\mathcal{F},\mathbb{P})$, and $\mathcal{G} \subseteq \mathcal{F}$ is sub- σ -field. If $\varphi: \mathbb{R} \to \mathbb{R}$ is convex, and $\varphi(X) \in L^1$, then $\varphi(\mathbb{E}_{\mathcal{G}}[X]) \in L^1(\Omega,\mathcal{G},\mathbb{P})$, and $\varphi(\mathbb{E}_{\mathcal{G}}[X]) \leq \mathbb{E}_{\mathcal{G}}[\varphi(X)]$ a.s.

Corollary 1

For $1 \leq p < \infty, \mathbb{E}_{\mathcal{G}}: L^p \rightarrow L^p$ is a contraction.

$$\begin{array}{l} \textbf{Proof. Given convex} \ \varphi_{p}(x) = |x|^{p}, \ \varphi_{p} \left(\mathbb{E}_{\mathcal{G}} \left[X\right]\right) \leq \mathbb{E}_{\mathcal{G}} \left[\varphi_{p}(X)\right] \\ \Longrightarrow \ \left\|\mathbb{E}_{\mathcal{G}} \left[X\right]\right\|_{p} \leq ||X||_{p} \end{array}$$

Conditional Expectation and Independence

 $\mathbb{E}_{\mathcal{G}}[X]$ is the best guess at X using only information in \mathcal{G} . What if \mathcal{G} has no information about X?

Proposition 5

Let $X:(\Omega,\mathcal{F}) \to (S,\mathcal{B})$ be a random variable, and let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ -field. If $\sigma(X),\mathcal{G}$ are independent, and $f:S \to \mathbb{R}$ is such that $f(X) \in L^1(\Omega,\mathcal{F},\mathbb{P})$, then $\mathbb{E}_{\mathcal{G}}\left[f(X)\right] = \mathbb{E}\left[f(X) \text{ a.s. } \cdots (\dagger)\right]$

Conversely. if † holds for all $f\in\mathbb{B}(S,\mathcal{B})$, then $\sigma(X),\mathcal{G}$ are independent.

Conditional expectation and independence

If X, Y are independent, Y is constant w.r.t X. We can make this precise as follows:

Proposition 6

Let $X:(\Omega,\mathcal{F}) o (S,\mathcal{B}).Y:(\Omega,\mathcal{F}) o T,\mathcal{C})$ be random variables. Let $\mathbb P$ be a probability measure on (Ω,\mathcal{F}) . If X,Y are independent, and $f \in \mathbb B$ $(S imes T,\mathcal{B} \otimes \mathcal{C})$, then $\mathbb E \, f(X,Y)|X=x=\mathbb E \, f(x,Y)$ $\mathbb E \, f(X,Y)|X=\mathbb E \, f(x,Y)|_{x=X}$

Question: What form the conditional expectation has w.r.t. the joint density $\rho(x,y)$?

Conditional expectation and density

Proposition 7

Let (X,Y) have density $\rho=\rho_{X,Y}$. Let $\rho_X(x)=\int \rho_{X,Y}(x,y)\,\mathrm{d}y$ be the marginal density of X. Define

$$\rho_{Y|X}(y|x) := \mathbf{1}_{0 < \rho_X < \infty} \frac{\rho_{X,Y}(x,y)}{\rho_X(x)}$$

Then for $f \in \mathbb{B}(\mathbb{R}^2)$,

$$\mathbb{E} f(X,Y)|X = g(X), \quad g(x) = \int f(x,y)\rho_{Y|X}(y|x) \,dy$$

Proof. Note that we see that g satisfies

$$g(x)
ho_X(x)=\int f(x,y)
ho_{X,Y}(x,y)\,\mathrm{d}y\quad ext{ for a.e. } x\in\mathbb{R}$$