Kalman Filtering (I)

Autonomous Unmanned System

Dr HD (Hyondong) Oh

Introduction

Filtering

- > A filter extracts useful contents from the signal corrupted by noise
- Filter design is focused on how to extract the necessary contents efficiently or optimally (e.g. high-pass or low-pass filter)
- Kalman filter predicts the behaviour of a dynamic system when there exist uncertainties in the system and sensor noises

History

- ➤ Kalman filter (KF) was proposed by R.E. Kalman in the early 1960's for optimal state estimation of stochastic systems
- Previous frequency-domain techniques (e.g., Wiener filtering) were not much successful (KF is time-domain)

Introduction Example

❖ 1-D Position estimation of aircraft with a radar

- Prior knowledge
 - □ Motion of aircraft $\frac{dp(t)}{dt} = s(t), \quad \frac{ds(t)}{dt} = u(t)$?
 - □ Measurement equation (position radar) z(t) = p(t) + v(t)
- \triangleright Measurements: discrete position measurement $z_{t_0}, z_{t_1}, \dots, z_{t_k}$

Questions

- How to get a good estimation of position with noisy measurements?
- Can we get the estimate of the velocity?
- Can we quantify how accurate the estimate is?
- Is it possible to consider the sensor accuracy into estimation?
- Can these be done optimally and in real time?

Introduction

- **❖** Kalman filter answers all questions! (Projection and Correction)
 - Projection (Prediction)
 - Prediction of the next time state vector according to the model (system dynamics and statistical properties of noise); a priori value (not accurate as the system is uncertain)
 - □ How you think the system will evolve in time based on your theories and best knowledge so far

Introduction

- **❖** Kalman filter answers all questions!!!
 - Correction (update)
 - Improve the estimation of the state vector according to the new measurement; a posteriori value
 - □ Predicted value is corrected by the new measurement
 - Recursive nature: optimal combination of the previous estimate/knowledge and the recent measurement recursively (Remind recursive Bayesian update!)

Position Estimation by KF

Velocity Estimation by KF

Recap of the Kalman Filter

Applications

- > Avionics (guidance, navigation and control of vehicles)
 - Integrated/aided Navigation (e.g., GPS aided INS system)
 - Attitude and orbit determination of aircraft/spacecraft
- Air-traffic control (aircraft trajectory)
- Surveillance (moving target tracking)
- Missile guidance / Fire control
- Motion capture system
- Stock-market analysis
- Other signal processing and econometrics (which needs prediction and estimation in an uncertain and noisy environment)

Predicting Market Data with KF

Kalman filter to forecast stock price movements by combining the daily price change model and stock data

$$x_{k|k-1} = 3(x_{k-1} - x_{k-2}) + x_{k-3}$$

$$X_{k|k} = X_{k|k-1} + K_k(z_k - X_{k|k-1})$$

Data and trend

R. Martinelli & N. Rhoads, Predicting Market Data Using the KF, Stocks & Commodities, 28(1), 2010.

State Estimation

Definition

- Estimation of the state vector of a dynamic system
- Three types of information are necessary for state estimation:
 - System model (a priori knowledge on the system)
 - Measurement data
 - Estimation criteria

Predict with a system model & update by combining a priori and measurements optimally!

System Model

- State equation (process/system dynamics) in a state-space form
- Measurement equation
- Noise characteristics

$$\underline{x}_{k+1} = F_k \underline{x}_k + G_k \underline{w}_k$$

$$\underline{z}_{k+1} = H_{k+1} \underline{x}_{k+1} + \underline{v}_{k+1}$$

System Model Example

1-D Constant velocity model with noisy acceleration

$$\begin{aligned}
x_{1_{k+1}} &= x_{1_k} + Tx_{2_k} + \frac{T^2}{2} w_k, \ N \sim (0, \sigma_w^2) \\
x_{2_{k+1}} &= x_{2_k} + Tw_k \\
z_{k+1} &= x_{1_{k+1}} + v_k, \ N \sim (0, \sigma_v^2)
\end{aligned}
\qquad \qquad \underbrace{x_{k+1}} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \underline{x_k} + \begin{bmatrix} \frac{T^2}{2} \\ T \end{bmatrix} w_k \\
z_{k+1} &= \begin{bmatrix} 1 & 0 \end{bmatrix} \underline{x_k} + v_k
\end{aligned}$$

Recall
$$\underline{x}_{k+1} = F_k \underline{x}_k + G_k \underline{w}_k$$

State-Space! $\underline{z}_{k+1} = H_{k+1} \underline{x}_{k+1} + \underline{v}_k$

Noise Modelling and Error

Assumption for KF: white Gaussian noise

White noise: serially uncorrelated random variables with zero mean and finite variance

> Gaussian: normal distribution

$$E[\underline{w}_{k}] = \underline{0}, \quad E[\underline{w}_{k} \underline{w}_{i}^{T}] = \begin{cases} Q(i = k) \\ [0](i \neq k) \end{cases}$$

$$E[\underline{v}_{k}] = \underline{0}, \quad E[\underline{v}_{k} \underline{v}_{k}^{T}] = \begin{cases} R(i = k) \\ [0](i \neq k) \end{cases}$$

$$E(\underline{w}_k\underline{v}_i^T) = [0]$$

True state Estimate

Error

- ightharpoonup Estimation error $\underline{e}_k \equiv \underline{x}_k \hat{\underline{x}}_k$
- From covariance $\underline{P}_k \equiv E[(\underline{x}_k \hat{\underline{x}}_k)(\underline{x}_k \hat{\underline{x}}_k)^T] = E[\underline{e}_k \underline{e}_k^T]$

$$\underline{w}_k \sim N(0, Q_k)$$

$$\underline{v}_k \sim N(0, R_k)$$

KF maintains:

Unbiased estimation

i)
$$E[\underline{e}_k] = 0$$
 or $E[\hat{\underline{x}}_k] = \underline{x}_k$

ii) Minimum variance P_{k}

Noise Modelling and Error

Gaussians

$$p(x) \sim N(\mu, \sigma^2):$$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-1(x-\mu)^2}{2\sigma^2}}$$

Univariate

$$p(\mathbf{x}) \sim N(\mu, \Sigma):$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^t \Sigma^{-1}(\mathbf{x} - \mu)}$$

Multivariate

Noise Modelling and Error

❖ Mean & covariance matrix of process noise

$$E[\underline{w}_{k}] = \underline{0}, \quad Q = E[\underline{w}_{k} \underline{w}_{k}^{T}] = \begin{bmatrix} E[w_{1_{k}}^{2}] & 0 & \cdots & 0 \\ 0 & E[w_{2_{k}}^{2}] & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & E[w_{n_{k}}^{2}] \end{bmatrix}$$

❖ Mean & covariance matrix of measurement noise

$$E[\underline{v}_{k}] = \underline{0}, \quad R = E\left[\underline{v}_{k}\underline{v}_{k}^{T}\right] = \begin{pmatrix} E\left[v_{1_{k}}^{2}\right] & 0 & \cdots & 0 \\ 0 & E\left[v_{2_{k}}^{2}\right] & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & E\left[v_{n_{k}}^{2}\right] \end{pmatrix}$$

Estimation Criteria for the KF

- ☐ The Kalman filter algorithm can be derived by several mathematical concepts, resulting in the same algorithm for linear Gaussian cases.
 - ➤ Bayesian Approach (conditional density function)
 - Orthogonal Projection
 - Minimum Variance Filter
 - Weighted Least-Square Estimation (deterministic concept)
 - ➤ Maximum-a-Posterior (MAP) Estimation

Estimation Criteria for the KF

☐ Conditional mean (Bayesian Approach):

$$\hat{x} = E[x \mid z] = \int \xi f_{x|z}(\xi \mid \zeta) d\xi$$

☐ Minimum mean square estimate(MMSE):

$$\min_{\xi} J = E[(x - \xi)^T W(x - \xi)]$$

- \Rightarrow the conditional mean is the MMSE for any pdf.
- ☐ Minimum variance linear unbiased estimate:

$$\min_{\xi} J = E[\operatorname{tr}\{(x - \xi)(x - \xi)^{T}\}]$$

⇒ identical to the conditional mean for linear Gaussian cases

- Orthogonal projection:
 - \Rightarrow a linear filter which gives the projection of x on the subspace spanned by the measurements

Estimation Criteria for the KF

☐ Maximum a posteriori(MAP) estimate:

$$\min_{\xi} J = f_{x|z}(\xi \mid \eta) \qquad \Rightarrow \qquad \hat{x} = \text{mode of the cond. pdf}$$

■ Maximum likelihood estimate(MLE):

$$\min_{\xi} J = L(\xi, \eta)$$

- \triangleright MLE depends on the likelihood function L.
- ➤ Classical likelihood function is given as

$$L(\xi,\eta) = f_{z|x}(\eta \mid \xi)$$

1-D Example 1

\diamond Equation of a constant x (no dynamics and no uncertainty)

Measurement (sensor) equation $z_{k+1} = F_k x_k + G_k w_k = x_k$ $z_1 = x + v, \ v \sim N(0, P)$

Figure Given
$$z_1$$
 is your measurement, the best estimate of x , denoted as \hat{x}
$$\hat{x} = z_1$$

 \triangleright Estimation error and its covariance: $e = x - \hat{x}$

$$E[e] = [x - (x + v)] = E[v] = 0$$

 $E[e^2] = E[(x - x - v)^2] = E[v^2] = P$

1-D Example 2 (1)

Section Estimation of *x* from two sensor measurements

 \triangleright Now, new measurement z_2

$$z_1 = x + v_1, \ v_1 \sim N(0, P)$$

$$z_2 = x + v_2, \ v_2 \sim N(0, R)$$

 \triangleright Then, how to combine z_1 and z_2 ?

$$\hat{x} = k_1 z_1 + k_2 z_2$$

ightharpoonup The gain k_1 and k_2 should be determined with some optimal sense

1-D Example 2 (2)

\diamond Determination of k_1 and k_2

- $z_1 = x + v_1, \ v_1 \sim N(0, P)$
- $z_2 = x + v_2, \ v_2 \sim N(0, R)$

- > Requirements:
 - □ Unbiased estimation error: $E[x \hat{x}] = 0$ $(E[\hat{x}] = x)$
 - \square Minimum error variance: $E[(x-\hat{x})^2]$ is minimal
- Unbiased estimator

$$E[\hat{x}] = E[k_1(x+v_1) + k_2(x+v_2)] = (k_1+k_2)x \implies k_1+k_2 = 1$$

Minimum variance estimator

min
$$E[e^2] = k_1^2 P + k_2^2 R = k_1^2 P + (1 - k_1)^2 R \implies k_1 = \frac{R}{P + R}, k_2 = \frac{P}{P + R}$$

1-D Example 2 (3)

Optimal estimate

$$\hat{x} = k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= z_1 + \frac{P}{P+R} (z_2 - z_1) = z_1 + R(z_2 - z_1)$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= z_1 + \frac{P}{P+R} (z_2 - z_1) = z_1 + R(z_2 - z_1)$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{P}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{P+R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{P+R} z_1 + \frac{R}{R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 = \frac{R}{R} z_1 + \frac{R}{R} z_2 + \frac{R}{R} z_2$$
New measurement
$$= k_1 z_1 + k_2 z_2 + \frac{R}{R} z_1 + \frac{R}{R} z_2 + \frac{R}{R} z_1 + \frac{R}{R} z_2 + \frac{R}{R} z_2 + \frac{R}{R} z_1 + \frac{R}{R} z_2 + \frac{R}{R} z_1 + \frac{R}{R} z_2 + \frac{R}{R} z_2 + \frac{R}{R} z_1 + \frac{R}{R} z_2 + \frac{R}{R} z_1 + \frac{R}{R} z_2 + \frac{R}{R} z_2 + \frac{R}{R} z_1 + \frac{R}{R} z_1 + \frac{R}{R} z_2 + \frac{R}{R} z_1 + \frac{R}{R} z_2 + \frac{R}{R} z_1 + \frac{R}{R} z_1 + \frac{R}{R} z_1 + \frac{R}{$$

$$\hat{P} = E[e^2] = \left(\frac{R}{P+R}\right)^2 P + \left(1 - \frac{R}{P+R}\right)^2 R = (1-K)P$$

Error covariance: how reliable the estimation is

1-D Example 3

Sequential estimation

- What if we have another measurement?
 - \square A priori estimate: $N(\hat{x}, \hat{P})$ (best knowledge before processing z_3)
 - \square Measurement: $z_3 = x + v_3$, $v_3 \sim N(0, R_1)$
- Optimal estimate

$$\hat{x} = z_1 + \frac{P}{P+R}(z_2 - z_1) = z_1 + K(z_2 - z_1)$$

$$\hat{P} = (1-K)P$$

$$\hat{x} = z_1 + \frac{P}{P+R}(z_2 - z_1) = z_1 + K(z_2 - z_1)$$

$$\hat{P} = (1-K)P$$

$$\hat{x}^+ = \hat{x} + \frac{\hat{P}}{\hat{P} + R_1}(z_3 - \hat{x}) = \hat{x} + K^+(z_3 - \hat{x})$$

$$\hat{P}^+ = (1-K^+)\hat{P}$$

$$\hat{x}^{+} = \hat{x} + \frac{\hat{P}}{\hat{P} + R} (z_{new} - \hat{x}) = \hat{x} + K^{+} (z_{new} - \hat{x})$$

Extension to the General Case

Kalman filter algorithm

A priori estimate: $N(\overline{x}, \overline{P})$

Measurement: $z = H\underline{x} + v$, $v \sim N(0, R)$

$$\underline{x} = [x_1 \quad x_2]^T, \quad x_1 : pos / x_2 : vel$$

$$z = [1 \quad 0] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + v = x_1 + v$$

A posteriori estimate: $N(\hat{x}, \hat{P})$

$$K = \overline{P}H^{T}(H\overline{P}H^{T} + R)^{-1}$$

$$\underline{\hat{x}} = \underline{\overline{x}} + K(z - H\underline{\overline{x}})$$

$$\hat{P} = (I - KH)\overline{P}$$

$$K = \overline{P}(\overline{P} + R)^{-1}$$

$$\hat{x} = \overline{x} + K(z - \overline{x})$$

$$\hat{P} = (I - K)\overline{P}$$

Dynamic Model of Interest

Discrete LTI (Linear Time Invariant) model

$$\underline{x}_{k+1} = F_k \underline{x}_k + G_k \underline{w}_k$$

$$\underline{x}_{k+1}(t) = \begin{bmatrix} x_{1,k+1} \\ x_{2,k+1} \end{bmatrix} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1,k} \\ x_{2,k} \end{bmatrix} + \begin{bmatrix} \frac{T^2}{2} \\ T \end{bmatrix} w_k$$

 $x_1: pos / x_2: vel$

State and error covariance prediction

$$\hat{\underline{x}}_{k|k} \longrightarrow$$

$$\frac{\hat{\underline{x}}_{k|k}}{P_{k|k}} \longrightarrow \frac{\hat{\underline{x}}_{k+1|k}}{P_{k+1|k}} = F_k \hat{\underline{x}}_{k|k}
P_{k+1|k} = E[(\underline{x}_{k+1} - \hat{\underline{x}}_{k+1|k})(\underline{x}_{k+1} - \hat{\underline{x}}_{k+1|k})^T]
= F_k P_{k|k} F_k^T + G_k Q_k G_k^T$$

$$k \mid k \rightarrow k+1 \mid k \rightarrow k+1 \mid k+1$$

A priori

Time prediction

Correction

Description of Kalman Filter

Time project ("Predict")

(1) Project state ahead:

$$\underline{x}_{k+1|k} = F_k \underline{x}_{k|k}$$

(2) Project the error covariance ahead:

$$P_{k+1|k} = F_k P_{k|k} F_k^T + G_k Q_k G_k^T$$

Measurement Update ("Correct")

(1) Compute Kalman gain:

$$K_{k+1} = P_{k+1|k} H_{k+1}^{T} (H_{k+1} P_{k+1|k} H_{k+1}^{T} + R_{k+1})^{-1}$$

(2) Update estimate with measurements z_{k+1}

$$\underline{\underline{\mathbf{x}}}_{k+1|k+1}^{\perp} = \underline{\mathbf{x}}_{k+1|k} + K_{k+1}(\underline{\mathbf{z}}_{k+1} - H_{k+1}\underline{\mathbf{x}}_{k+1|k})$$

(3) Update the error covariance:

$$P_{k+1|k+1} = (I - K_{k+1}H_{k+1})P_{k+1|k}$$

Structure of KF

KF Algorithms

- STEP 1: Set parameters of model & noise (F, G, H, Q, R)
- **The Step 2: Initialise P₀₁₀ and \underline{\mathbf{x}}_{010} (Initial guess)**

 $\underline{x}_{k+1} = F_k \, \underline{x}_k + G_k \, \underline{w}_k$

❖ STEP 3: Calculate <u>x₁|0</u> and P₁|0

 $\underline{z}_{k+1} = H_{k+1} \underline{x}_{k+1} + \underline{v}_{k+1}$

- ❖ STEP 4: Calculate K₁
- **❖ STEP 5: Take measurement z**₁ and calculate **x**_{1|1}
- **❖ STEP 6: Calculate P**_{1|1}
- **❖** STEP 7: Return to STEP 3 and repeat the cycle recursively

KF Example

1D target tracking

$$x_{1_{k+1}} = x_{1_k} + Tx_{2_k} + \frac{T^2}{2} w_k, \quad N \sim (0, \sigma_w^2)$$

$$x_{2_{k+1}} = x_{2_k} + Tw_k$$

$$z_{k+1} = x_{1_{k+1}} + v_k, \quad N \sim (0, \sigma_v^2)$$

$$\underline{x}_{k+1} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \underline{x}_k + \begin{bmatrix} \frac{T^2}{2} \\ T \end{bmatrix} w_k$$

$$z_{k+1} = \begin{bmatrix} 1 & 0 \end{bmatrix} \underline{x}_k + \nu_k$$

❖ True IC

$$x_{1_0} = 0 m$$

$$x_{2_0} = 5 \, m \, / \, s$$

Recall State-Space!

$$\underline{x}_{k+1} = F_k \underline{x}_k + G_k \underline{w}_k$$

$$\underline{z}_{k+1} = H_{k+1} \underline{x}_{k+1} + \underline{v}_k$$

Noise

$$\sigma_{w} = 2m/s^{2} \longrightarrow Q = 2^{2}$$

$$\sigma_{v} = 20m \qquad R = 20^{2}$$

Position Estimation by KF

Velocity Estimation by KF

General Discussion

Observations from the 1-D KF equations

Error covariance: implies a posteriori state estimate is always better than a priori state estimate

$$\frac{P_{k+1|k+1}}{P_{k+1|k}} = 1 - K_{k+1} = \frac{R_{k+1}}{P_{k+1|k} + R_{k+1}} < 1$$

$$K_{k+1} = P_{k+1|k} (P_{k+1|k} + R_{k+1})^{-1}$$

$$\frac{\hat{x}_{k+1|k+1}}{\hat{x}_{k+1|k}} = \frac{\hat{x}_{k+1|k}}{\hat{x}_{k+1|k}} + K_{k+1} (\underline{z}_{k+1} - \frac{\hat{x}_{k+1|k}}{\hat{x}_{k+1|k}})$$
 $P_{k+1|k+1} = (1 - K_{k+1}) P_{k+1|k}$

- In case of $R \to \infty$: $K \to 0$, $\hat{\underline{x}}_{k+1|k+1} \to \hat{\underline{x}}_{k+1|k}$ as the measurement noise becomes very intense, we do not use the measurement much to update the estimate as it is unreliable
- In case of $R \to 0: K \to 1$, $\hat{\underline{x}}_{k+1|k+1} \to \underline{z}_{k+1}$ as the measurement noise is low, we rely more on the new measurement
- How about Q? (system uncertainty)(as Q increases, P & K increases)

$$\frac{\hat{x}_{k+1|k}}{\hat{x}_{k+1|k}} = F_k \frac{\hat{x}_{k|k}}{\hat{x}_{k|k}} + G_k \underline{u}_k$$

$$P_{k+1|k} = F_k P_{k|k} F_k^T + G_k Q_k G_k^T$$

KF Derivations and Variations

Kalman filter algorithm derivation

- Bayesian approach (conditional density function)
- Orthogonal projection
- Minimum variance filter
- Weighted least-square estimation (deterministic concept)
- ⇒ resulting in the same KF algorithm for a linear and Gaussian system

Variations

- Extended Kalman Filter (EKF) / Unscented Kalman Filter (UKF)
- Particle Filter (Sequential Monte Carlo methods)
- Sensor fusion techniques (how to combine multiple sensor measurement systematically in an optimal sense)

KF Design Procedure

- Develop process/error models for relevant systems
- Determine measurement equations
 - Position (radar, radio, GPS, laser), velocity (doppler), or altitude
- Investigate the measurement and process noise characteristic
- Discretise the error state space models
- Design Kalman filtering algorithm
- Simulation
- Validation

$$\dot{x}(t) = Ax(t) \Leftrightarrow x_{k+1} = e^{AT} x_k$$
where $e^{AT} = I + AT + \frac{(AT)^2}{2} + \cdots$

Recap of the Kalman Filter

❖ KF: a recursive linear state estimator

> The gain of KF is optimally chosen s.t.

$$\underline{\hat{x}}_k$$
 minimises $E[(\underline{x}_k - \underline{\hat{x}}_k)(\underline{x}_k - \underline{\hat{x}}_k)^T]$

Why popular?

- Incorporate noise effects (both measurement and modelling)
- Recursive computational structure (real time application)
- Explicit description of process and observations allows different sensor models to be incorporated within the basic KF algorithm

* KF performs better than any other linear filter

> In the right situations: Gaussian noise and accurate modelling

