

The Intuitive Approach

by Sophia

WHAT'S COVERED

In this lesson, you will demonstrate the definition of a limit by finding the value of δ that corresponds to a given ϵ for a specific limit. Specifically, this lesson will cover:

- 1. Finding the Value of δ That Corresponds to a Given Value of ϵ for a Linear Function
- 2. Finding the Value of δ That Corresponds to a Given Value of ϵ for a Nonlinear Function

1. Finding the Value of δ That Corresponds to a Given Value of ϵ for a Linear Function

Recall a general limit statement: $\lim_{x \to a} f(x) = L$

Based on methods we talked about in this course so far, the general idea is that the value of f(x) gets closer to L as x gets closer to a.

We now take a more analytical approach to establishing limits. Consult the figure on the right:

- The symbol ε is the Greek letter epsilon.
- The symbol δ is the Greek letter delta.

The idea illustrated here is that if the value of f(x) is within ϵ units of the limit L, then there is a corresponding value of δ such that x is within δ units of a.

Written as distances, we have the following:

- f(x) is within ε units of the limit L: $|f(x) L| < \varepsilon$
- x is within δ units of a: $|x-a| < \delta$

These ideas are used to establish the Formal Definition of a Limit, which states:

 $\lim_{x\to a} f(x) = L$ means that for every given $\varepsilon > 0$, there exists $\delta > 0$ so that:

- If x is within δ units of a (and $X \neq 0$), then f(x) is within ϵ units of L.
- This translates to $|f(x) L| < \varepsilon$ whenever $0 < |x a| < \delta$.

The goal in this part of the challenge will be to find the value of δ for a given value of ϵ .

You may recall from algebra that |x| < a is equivalent to saying -a < x < a for any positive number a.

This means that $|f(x)-L| < \varepsilon$ can be rewritten $-\varepsilon < f(x)-L < \varepsilon$ and $|x-a| < \delta$ can be rewritten as $-\delta < x-a < \delta$

These ideas are useful in determining the value of δ for a given ϵ .

 \approx EXAMPLE Consider the limit statement: $\lim_{x\to 1} (5x-2) = 3$. What value of δ is required when $\epsilon = 1$?

Consider the picture shown below (the slanted line is the graph of f(x) = 5x - 2):

Remember that $\varepsilon = 1$ means that we desire f(x) to be within 1 unit of 3 (the limit). This means |f(x) - 3| < 1. Let's solve this:

$$|5x-2-3| < 1$$
 Replace $f(x)$ with $5x-2$.
 $|5x-5| < 1$ Simplify the expression.
 $-1 < 5x-5 < 1$ $|x| < a$ means $-a < x < a$.
 $4 < 5x < 6$ Add 5 to all three parts.
 $0.8 < x < 1.2$ Divide all three parts by 5.

Thus, |f(x)-3| < 1 implies that 0.8 < x < 1.2.

So, what is the value of δ ?

Recall that the goal is to find δ so that $|x-a| < \delta$. In this problem, a = 1, so this can be written as $|x-1| < \delta$.

Recall from algebra that this means $-\delta < x-1 < \delta$. Thus, it helps to get an inequality with x-1 in the middle. Then the left and right parts of the inequality give information as to what δ is.

We left off with 0.8 < x < 1.2. To get x - 1 in the middle, subtract 1 from all parts of the inequality. This gives -0.2 < x - 1 < 0.2. Thus, $\bar{\delta} = 0.2$.

In summary, we state the following: If x is within 0.2 units of 1, then f(x) is within 1 unit of 3. While a graph is helpful, let's try one now without the graph.

 \approx EXAMPLE Consider the limit statement: $\lim_{x\to 3} (4x-5) = 7$. Find the corresponding values of δ when ε = 0.5, 0.1, and 0.01.

For $\varepsilon = 0.5$, this means we want |4x-5-7| < 0.5. Now solve:

$$|4x-12| < 0.5$$
 Simplify.
 $-0.5 < 4x-12 < 0.5$ $|x| < a_{means} - a < x < a_{notice}$
 $11.5 < 4x < 12.5$ Add 12 to all three parts.
 $2.875 < x < 3.125$ Divide all three parts by 4.
 $-0.125 < x - 3 < 0.125$ Subtract 3 from all three parts to get $x - 3$ in the middle.

Thus, $\delta = 0.125$.

For $\varepsilon = 0.1$, this means we want |4x-5-7| < 0.1. Now solve:

$$|4x-12| < 0.1$$
 Simplify.
 $-0.1 < 4x-12 < 0.1$ $|x| < a_{means} - a < x < a_{notice}$
 $11.9 < 4x < 12.1$ Add 12 to all three parts.
 $2.975 < x < 3.025$ Divide all three parts by 4.
 $-0.025 < x - 3 < 0.025$ Subtract 3 from all three parts to get $x - 3$ in the middle.

Thus, $\delta = 0.025$.

For $\varepsilon = 0.01$, this means we want |4x-5-7| < 0.01. Now solve:

$$|4x - 12| < 0.01$$
 Simplify.

-0.01 < 4x - 12 < 0.01 $|x| < a_{means} - a < x < a_{.}$

11.99 < 4x < 12.01 Add 12 to all three parts.

2.9975 < x < 3.0025 Divide all three parts by 4.

-0.0025 < x - 3 < 0.0025 Subtract 3 from all three parts to get x - 3 in the middle.

Thus, $\delta = 0.0025$.

Note that as the value of ϵ gets smaller, so does δ . This is the essence of a limit. As one distance gets smaller, the other does as well.

As the chosen values of ε get closer to 0, the corresponding value of δ also gets closer to 0. When f(x) is a linear function, finding the value of δ is fairly straightforward since the final inequality always has the form $-\bar{\delta} < x - a < \bar{\delta}$.

When f(x) is a nonlinear function, this may not be the case, which means we have to think more critically to get the appropriate value of δ .

Formal Definition of a Limit

 $\lim_{x\to a} f(x) = L$ means that for every given $\varepsilon > 0$, there exists $\delta > 0$ so that:

- If x is within δ units of a (and $X \neq a$), then f(x) is within ϵ units of L.
- This translates to $|f(x) L| < \varepsilon$ whenever $0 < |x a| < \delta$.

2. Finding the Value of δ That Corresponds to a Given Value of ϵ for a Nonlinear Function

The following are inequalities that may be useful. In each case, assume that c and d are nonnegative numbers.

- If c < -x < d, then -d < x < -c.
- If $c < x^2 < d$, then $\sqrt{c} < x < \sqrt{d}$ (assuming x is positive).
- If $c < \sqrt{x} < d$, then $c^2 < x < d^2$.
- If $c < \frac{1}{x} < d$, then $\frac{1}{d} < x < \frac{1}{c}$.

 \approx EXAMPLE Consider the limit statement: $\lim_{x\to 64} \sqrt{x} = 8$. Let's find the corresponding value of δ when $\varepsilon = 2$.

We want $|\sqrt{x} - 8| < 2$.

$$-2 < \sqrt{x} - 8 < 2$$
 $|x| < a_{means} - a < x < a_{means}$

$$6 < \sqrt{x} < 10$$
 Add 8 to all three parts.

36 < x < 100 Square all parts of the inequality.

-28 < x - 64 < 36 Subtract 64 from all three parts to get x - 64 in the middle.

Notice that this inequality is not "balanced." This makes it unclear what to select for δ . Is the answer 28 or 36? Remember what we are trying to say:

In order for f(x) to be within 2 units of 8, x has to be within ____ units of 64.

Consider the graph shown to the right:

- The horizontal band shows that 6 < y < 10.
- The vertical band shows that 36 < x < 100.

The intersection is the "area of interest" for the limit.

If we move 28 units away from x = 64 in either direction, we stay inside the vertical band, which guarantees that f(x) is within 2 units of the limit.

If we move 36 units away from x = 64 in either direction, we could fall outside the vertical band on the left-hand side, which does not guarantee that f(x) is within 2 units of the limit.

To guarantee that f(x) is within 2 units of the limit (8), x needs to be within 28 units of 64. Thus, when $\varepsilon = 2$, $\bar{o} = 28$.

The following video provides an example for a linear function and a radical function.

Consider the limit statement $\lim_{x \to 3} x^2 = 9$.

Find the value of δ that corresponds to ϵ = 0.5. Round δ to the nearest hundredth.

We want $8.5 < x^2 < 9.5$, which means 2.915 < x < 3.082, which in turn means -0.085 < x - 3 < 0.082. To find δ , compare |-0.085| and |0.082| since we are examining the distances between x and 3. Since 0.082 < 0.085 USE $\delta = 0.082$

 \rightleftharpoons EXAMPLE Consider the limit statement: $\lim_{x \to 5} \frac{1}{2x} = \frac{1}{10}$. Let's find δ when $\varepsilon = 0.05$.

Start with $\left| \frac{1}{2x} - \frac{1}{10} \right| < 0.05$.

 $-0.05 < \frac{1}{2x} - \frac{1}{10} < 0.05$ $|x| < a_{\text{means}} - a < x < a_{\text{.}}$

 $\frac{1}{20} < \frac{1}{2x} < \frac{3}{20}$ Add $\frac{1}{10}$, and convert all to fractions.

 $\frac{20}{3} < 2x < 20$ $c < \frac{1}{x} < d_{\text{means}} \frac{1}{d} < x < \frac{1}{c}$.

 $\frac{10}{3}$ < x < 10 Divide by 2.

 $-\frac{5}{3} < x - 5 < 5$ Subtract 5.

It follows that $\bar{\delta} = \frac{5}{3}$ since $\left| -\frac{5}{3} \right| = \frac{5}{3}$ and $\frac{5}{3}$ is smaller than 5.

Ŷ

SUMMARY

In this lesson, you learned that by using the formal definition of a limit, you can observe the relationship between ε and δ , which emphasizes the idea of "f(x) getting closer to the limit as x gets closer to a." In this challenge, the goal was to find the value of δ that corresponds to a given value of ε for a linear function and a nonlinear function, and we observed that one getting smaller causes the other to get smaller. For linear functions, identifying δ is rather straightforward, but for nonlinear functions, more critical thinking is required to find the appropriate value of δ .

SOURCE: THIS WORK IS ADAPTED FROM CHAPTER 1 OF CONTEMPORARY CALCULUS BY DALE HOFFMAN.

TERMS TO KNOW

Formal Definition of a Limit

 $\lim_{x \to a} f(x) = L$ means that for every given $\epsilon > 0$, there exists $\delta > 0$ so that:

- If x is within δ units of a (and $x \neq a$), then f(x) is within ϵ units of L.
- This translates to $|f(x) L| < \varepsilon$ whenever $0 < |x a| < \overline{o}$