第二十二章 曲面积分

第二节 第二型曲面积分

第二十二章 曲面积分

第二节 第二型曲面积分

- 1. 第二型曲面积分的概念
- 2. 第二型曲面积分的计算

双侧曲面: 设连通曲面 S 上到处都有连续变动的切平面(或法线), M 为曲面 S 上的一点, 曲面在 M 处的法线有两个方向: 当取定其中一个指定为正方向时, 则另外一个为负方向.

设 M_0 为 S 上任意一点, L 为 S 上任一经过 M_0 , 且不超出 S 边界的闭曲线. 又设 M 为动点, 它在 M_0 处与 M_0 有相同的法线方向, 且有如下特性: 当 M 从 M_0 出发沿 L 回到 M_0 时, 若这时 M 的法线方向仍与 M_0 的法线方向相一致, 则说这曲面 S 是**双侧曲面**;若与 M_0 的法线方向相反, 则说 S 是单侧曲面.

定义: 设 P,Q,R 为定义在双侧曲面 S 上的函数, 在 S 所指定的一侧做 分割 T, 它把 S 分为 n 个小曲面块 S_i , $i = 1, 2, \dots$, 分割 T 的细度为 $\|T\|=\max_{1\leq i\leq n}\{S_i$ 的直径}, 以 $\Delta S_{i_{yz}}$, $\Delta S_{i_{zx}}$, $\Delta S_{i_{xy}}$ 分别表示 S_i 在三个坐 标面上投影区域的面积, 它们的符号与 S_i 指定侧**法方向与坐标轴夹角余弦** 一致. 例如, $\Delta S_{i_{r_n}} = \Delta S_i \cos(\gamma_i)$. 在 S_i 上任取一点 (ξ_i, η_i, ζ_i) . 若极限

$$\lim_{\|T\| \to 0} \sum_{i=1}^{n} P(\xi_i, \eta_i, \zeta_i) \Delta S_{i_{yz}} + Q(\xi_i, \eta_i, \zeta_i) \Delta S_{i_{zx}} + R(\xi_i, \eta_i, \zeta_i) \Delta S_{i_{xy}}$$

存在且极限与分割 T 与点 (ξ_i, η_i, ζ_i) 的取法无关, 则称此极限为 P, Q, R在 S 上的**第二型曲面积分**. 记为

$$\iint_{S} Pdydz + Qdzdx + Rdxdy.$$

3 / 13

性质1: 设 S 为光滑曲面, 指定其法向量为 \vec{n} , 令 -S 表示 S 的反向, 即指定法向量为 $-\vec{n}$. 则

$$\iint_{S} Pdydz + Qdzdx + Rdxdy = -\iint_{-S} Pdydz + Qdzdx + Rdxdy.$$

性质1: 设 S 为光滑曲面. 指定其法向量为 \vec{n} . 令 -S 表示 S 的反向. 即指 定法向量为 $-\vec{n}$, 则

$$\iint_{S} Pdydz + Qdzdx + Rdxdy = -\iint_{-S} Pdydz + Qdzdx + Rdxdy.$$

设 S 为光滑曲面, 指定其法向量为 $\vec{n} = (\cos \alpha, \cos \beta, \cos \gamma)$,则

$$\iint_{S} Pdydz + Qdzdx + Rdxdy = \iint_{S} (P\cos\alpha + Q\cos\beta + R\cos\gamma) dS.$$

定理22.2: 设 R 是定义在光滑曲面

$$S: z = z(x, y), \quad (x, y) \in D,$$

上的连续函数, 若指定 S 方向为上侧, $(\vec{n} \mid z \mid z \mid d, d, m)$, 则

$$\iint_{S} R(x, y, z) dx dy = \iint_{D} R(x, y, z(x, y)) dx dy.$$

然而, 若指定 S 方向为下侧, $(\vec{n} 与 z 成钝角)$, 则

$$\iint_{S} R(x, y, z) dx dy = -\iint_{D} R(x, y, z(x, y)) dx dy.$$

例题1: 计算积分

$$\iint\limits_{S} xyzdxdy,$$

其中 S 是球面 $x^2+y^2+z^2=1$ 在 $x\geq 0$, $y\geq 0$ 的部分, 取球面外侧.

例题2: 计算积分

$$\iint\limits_{S} x^3 \, \mathrm{d}y \mathrm{d}z,$$

其中 S 是椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的上半部并选取外侧.

两类曲面积分的联系

定理22.3: 设 S 为光滑曲面, 指定其法向量为 $\vec{n}=(\cos\alpha,\cos\beta,\cos\gamma)$,则

$$\iint_{S} Pdydz + Qdzdx + Rdxdy = \iint_{S} (P\cos\alpha + Q\cos\beta + R\cos\gamma) dS.$$

两类曲面积分的联系

定理22.4: 设 S 为光滑曲面 z=z(x,y), $(x,y)\in D$, 并以 S 的上侧为正侧, 则

$$\iint_{S} P dy dz + Q dz dx + R dx dy =$$

$$= \iint_{D} \left(P(x, y, z(x, y))(-z_{x}) + Q(x, y, z(x, y))(-z_{y}) + R(x, y, z(x, y)) \right) dx dy.$$

例题3: 计算积分

$$\iint\limits_{S} (2x+z)dydz + zdzdx,$$

其中 S 是抛物面 $z=x^2+y^2$, $z\in[0,1]$ 的上侧.

例题4: 计算积分

$$\iint\limits_{S} (x+y)dydz + (y+z)dzdx + (z+x)dxdy,$$

其中 S 为以正方体

$$\{(x, y, z) : |x| \le 1, |y| \le 1, |z| \le 1\}$$

的整个表面的外侧.

刘强 (数学与计算科学学院)

例题5: 计算积分

$$\iint\limits_{S} x dy dz + y dz dx + z dx dy,$$

其中 S 是半球面 $z = \sqrt{1 - x^2 - y^2}$ 的上侧.

本节作业

作业:

第 269 页: 第1题:(3),(4).

第 269 页: 第2题.