

I.T. Jolliffe

Principal Component Analysis

Second Edition

With 28 Illustrations

Contents

P	reface	e to the Second Edition	v
P	reface	e to the First Edition	ix
A	cknov	vledgments	xv
Li	st of	Figures	cxiii
Li	st of	Tables x	xvii
1	Intr	oduction	1
	1.1	Definition and Derivation of Principal Components	1
	1.2	A Brief History of Principal Component Analysis	6
2	Properties of Population Principal Components		10
	2.1	Optimal Algebraic Properties of Population	
		Principal Components	11
	2.2	Geometric Properties of Population Principal Components	18
	2.3	Principal Components Using a Correlation Matrix	21
	2.4	Principal Components with Equal and/or Zero Variances	27
3	Properties of Sample Principal Components		29
	3.1	Optimal Algebraic Properties of Sample	
		Principal Components	30
	3.2	Geometric Properties of Sample Principal Components .	33
	3.3	Covariance and Correlation Matrices: An Example	39
	3.4	Principal Components with Equal and/or Zero Variances	43

	A , ,
XVIII	Contents

		3.4.1 Example	43
	3.5	The Singular Value Decomposition	44
	3.6	Probability Distributions for Sample Principal Components	47
	3.7	Inference Based on Sample Principal Components	49
		3.7.1 Point Estimation	50
		3.7.2 Interval Estimation	51
		3.7.3 Hypothesis Testing	53
	3.8	Patterned Covariance and Correlation Matrices	56
		3.8.1 Example	57
	3.9	Models for Principal Component Analysis	59
4	Inter	preting Principal Components: Examples	63
	4.1	Anatomical Measurements	64
	4.2	The Elderly at Home	68
	4.3	Spatial and Temporal Variation in Atmospheric Science .	71
	4.4	Properties of Chemical Compounds	74
	4.5	Stock Market Prices	76
5	Gran	phical Representation of Data Using	
		cipal Components	78
	5.1	Plotting Two or Three Principal Components	80
		5.1.1 Examples	80
	5.2	Principal Coordinate Analysis	85
	5.3	Biplots	90
		5.3.1 Examples	96
		5.3.2 Variations on the Biplot	101
	5.4	Correspondence Analysis	103
		5.4.1 Example	105
	5.5	Comparisons Between Principal Components and	
other Methods		other Methods	106
	5.6	Displaying Intrinsically High-Dimensional Data	107
		5.6.1 Example	108
6	Cho	osing a Subset of Principal Components or Variables	111
	6.1	How Many Principal Components?	112
		6.1.1 Cumulative Percentage of Total Variation	112
		6.1.2 Size of Variances of Principal Components	114
		6.1.3 The Scree Graph and the Log-Eigenvalue Diagram	115
		6.1.4 The Number of Components with Unequal Eigen-	
		values and Other Hypothesis Testing Procedures	118
		6.1.5 Choice of m Using Cross-Validatory or Computa-	
		tionally Intensive Methods	120
		6.1.6 Partial Correlation	127
		6.1.7 Rules for an Atmospheric Science Context	127
		6.1.8 Discussion	130

		Contents	xix
	6.2	Choosing m , the Number of Components: Examples	133
		6.2.1 Clinical Trials Blood Chemistry	133
		6.2.2 Gas Chromatography Data	134
	6.3	Selecting a Subset of Variables	137
	6.4	Examples Illustrating Variable Selection	145
		6.4.1 Alate adelges (Winged Aphids)	145
		6.4.2 Crime Rates	147
7	Prin	cipal Component Analysis and Factor Analysis	150
	7.1	Models for Factor Analysis	151
	7.2	Estimation of the Factor Model	152
	7.3	Comparisons Between Factor and Principal Component	10=
	1.0	Analysis	158
	7.4	An Example of Factor Analysis	161
	7.5	Concluding Remarks	165
	1.0	Concluding Temarks	100
8		cipal Components in Regression Analysis	167
	8.1	Principal Component Regression	168
	8.2	Selecting Components in Principal Component Regression	173
	8.3	Connections Between PC Regression and Other Methods	177
	8.4	Variations on Principal Component Regression	179
	8.5	Variable Selection in Regression Using Principal Compo-	
		nents	185
	8.6	Functional and Structural Relationships	188
	8.7	Examples of Principal Components in Regression	190
		8.7.1 Pitprop Data	190
		8.7.2 Household Formation Data	195
9	Prin	cipal Components Used with Other Multivariate	
	Tech	niques	199
	9.1	Discriminant Analysis	200
	9.2	Cluster Analysis	210
		9.2.1 Examples	214
		9.2.2 Projection Pursuit	219
		9.2.3 Mixture Models	221
	9.3	Canonical Correlation Analysis and Related Techniques .	222
		9.3.1 Canonical Correlation Analysis	222
		9.3.2 Example of CCA	224
		9.3.3 Maximum Covariance Analysis (SVD Analysis),	
		Redundancy Analysis and Principal Predictors	225
		9.3.4 Other Techniques for Relating Two Sets of Variables	228

10	Outli	ier Detection, Influential Observations and	
	Robi	ıst Estimation	232
	10.1	Detection of Outliers Using Principal Components	233
		10.1.1 Examples	242
	10.2	Influential Observations in a Principal Component Analysis	248
		10.2.1 Examples	254
	10.3	Sensitivity and Stability	259
	10.4	Robust Estimation of Principal Components	263
	10.5	Concluding Remarks	268
11	Rota	tion and Interpretation of Principal Components	269
	11.1	Rotation of Principal Components	270
		11.1.1 Examples	274
		11.1.2 One-step Procedures Using Simplicity Criteria	277
	11.2	Alternatives to Rotation	279
		11.2.1 Components with Discrete-Valued Coefficients	284
		11.2.2 Components Based on the LASSO	286
		11.2.3 Empirical Orthogonal Teleconnections	289
		11.2.4 Some Comparisons	290
	11.3	Simplified Approximations to Principal Components	292
		11.3.1 Principal Components with Homogeneous, Contrast	
		and Sparsity Constraints	295
	11.4	Physical Interpretation of Principal Components	296
12	PCA	for Time Series and Other Non-Independent Data	299
	12.1	Introduction	299
	12.2	PCA and Atmospheric Time Series	302
		12.2.1 Singular Spectrum Analysis (SSA)	303
		12.2.2 Principal Oscillation Pattern (POP) Analysis	308
		12.2.3 Hilbert (Complex) EOFs	309
		12.2.4 Multitaper Frequency Domain-Singular Value	
		Decomposition (MTM SVD)	311
		12.2.5 Cyclo-Stationary and Periodically Extended EOFs	
		(and POPs)	314
		12.2.6 Examples and Comparisons	316
	12.3	Functional PCA	316
		12.3.1 The Basics of Functional PCA (FPCA)	317
		12.3.2 Calculating Functional PCs (FPCs)	318
		12.3.3 Example - 100 km Running Data	320
		12.3.4 Further Topics in FPCA	323
	12.4	PCA and Non-Independent Data—Some Additional Topics	328
		12.4.1 PCA in the Frequency Domain	328
		12.4.2 Growth Curves and Longitudinal Data	330
		12.4.3 Climate Change—Fingerprint Techniques	332
		12.4.4 Spatial Data	333
		12.4.5 Other Aspects of Non-Independent Data and PCA	335

13	Princ	cipal Component Analysis for Special Types of Data	338
	13.1	Principal Component Analysis for Discrete Data	339
	13.2	Analysis of Size and Shape	343
	13.3	Principal Component Analysis for Compositional Data .	346
		13.3.1 Example: 100 km Running Data	349
	13.4	Principal Component Analysis in Designed Experiments	351
	13.5	Common Principal Components	354
	13.6	Principal Component Analysis in the Presence of Missing	
		Data	363
	13.7	PCA in Statistical Process Control	366
	13.8	Some Other Types of Data	369
14	Gene	eralizations and Adaptations of Principal	
	Com	ponent Analysis	373
	14.1	Non-Linear Extensions of Principal Component Analysis	374
		14.1.1 Non-Linear Multivariate Data Analysis—Gifi and	
		Related Approaches	37 4
		14.1.2 Additive Principal Components	
		and Principal Curves	377
		14.1.3 Non-Linearity Using Neural Networks	379
		14.1.4 Other Aspects of Non-Linearity	381
	14.2	Weights, Metrics, Transformations and Centerings	382
		14.2.1 Weights	382
		14.2.2 Metrics	386
		14.2.3 Transformations and Centering	388
	14.3	PCs in the Presence of Secondary or Instrumental Variables	392
	14.4	PCA for Non-Normal Distributions	394
		14.4.1 Independent Component Analysis	395
	14.5	Three-Mode, Multiway and Multiple Group PCA	397
	14.6	Miscellanea	400
		14.6.1 Principal Components and Neural Networks	400
		14.6.2 Principal Components for Goodness-of-Fit Statis-	
		tics	401
		14.6.3 Regression Components, Sweep-out Components	
		and Extended Components	400
		14.6.4 Subjective Principal Components	404
	14.7	Concluding Remarks	405
A	Com	putation of Principal Components	407
	A.1	Numerical Calculation of Principal Components	408
In	\mathbf{dex}		458
Αı	ıthor	Index	478