

Report No: CCISE160301103

FCC REPORT

(Bluetooth)

Applicant: NEXUS TELECOM SERVICES (HK) LIMITED

Address of Applicant: R112, 11/F Hollywood Plaza, Mangkok, Kowloon Hong Kong

Equipment Under Test (EUT)

Product Name: MOBILE PHONE

Model No.: GO400, GO400 SNAP

Trade mark: GOMOBILE

FCC ID: 2AHDFGO400

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 07 Mar., 2016

Date of Test: 07 Mar., to 18 Mar., 2016

Date of report issued: 18 Mar., 2016

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	18 Mar., 2016	Original

Tested by:

| | | CMG | Date: 18 Mar., 2016

Test Engineer

Reviewed by: Over her Date: 18 Mar., 2016

Project Engineer

3 Contents

		F	Page
1	C	OVER PAGE	1
2	V	/ERSION	2
3		CONTENTS	
3	_		
4	Т	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	т	EST RESULTS AND MEASUREMENT DATA	a
·			
	6.1	Antenna requirement	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	20DB OCCUPY BANDWIDTH	
	6.5 6.6	CARRIER FREQUENCIES SEPARATION	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
	0.5	.9.1 Conducted Emission Method	
	_	.9.2 Radiated Emission Method	
	6.10		
	6	.10.1 Conducted Emission Method	
	6	.10.2 Radiated Emission Method	57
7	Т	EST SETUP PHOTO	62
8	_	UT CONSTRUCTIONAL DETAILS	63
v		.U UUNU NUU IUNAL	03

4 Test Summary

1 cot cumilary						
Test Item	Section in CFR 47	Result				
Antenna Requirement	15.203/15.247 (c)	Pass				
AC Power Line Conducted Emission	15.207	Pass				
Conducted Peak Output Power	15.247 (b)(1)	Pass				
20dB Occupied Bandwidth	15.247 (a)(1)	Pass				
Carrier Frequencies Separation	15.247 (a)(1)	Pass				
Hopping Channel Number	15.247 (a)(1)	Pass				
Dwell Time	15.247 (a)(1)	Pass				
Radiated Emission	15.205/15.209	Pass				
Band Edge	15.247(d)	Pass				

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	NEXUS TELECOM SERVICES (HK) LIMITED		
Address of Applicant:	R112, 11/F Hollywood Plaza, Mangkok, Kowloon Hong Kong		
Manufacturer:	United Creation Technology Co.,Ltd.		
Address of Manufacturer:	Room 201, Block A, Science & Technology Building Phase-II, Nanhai Av. 1057, Nanshan, Shenzhen, China		
Factory:	HuiZhou YouLianXing Electronic Science & Technology Co., Ltd		
Address of Factory:	F2, Standard Fctory Building, No 3, Qunle Road, Ma an Town, Huicheng District, Huizhou City 516057, China		

5.2 General Description of E.U.T.

Product Name:	MOBILE PHONE
Model No.:	GO400, GO400 SNAP
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-1 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7 V-1300mAh
AC adapter:	Model: GO400 Input: AC100-240V 50/60Hz 0.12A Output: DC 5.0V, 500mA
Remark:	Item No.: GO400, GO400 SNAP were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being camera pixels.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No: CCISE160301103

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Report No: CCISE160301103

5.6 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	Spectrum analyzer 9k-30GHz Rohde & Schwarz		FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is -1 dBi.

6.2 Conducted Emissions

0.2	Conducted Linissions							
	Test Requirement:	FCC Part 15 C Section 15.207						
	Test Method:	ANSI C63.4:2009						
	Test Frequency Range:	150 kHz to 30 MHz						
	Class / Severity:	Class B						
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto					
	Limit:	5	Limit (c	dBuV)				
		Frequency range (MHz) Quasi-peak Average Outside to 56 to 46 to						
		0.15-0.5 66 to 56* 56 to 46						
		0.5-5	46					
		5-30	60	50				
		* Decreases with the logarithn	n of the frequency.					
	Test setup:	Reference Plane						
		Remark E.U.T Remark E.U.T Rest table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m						
	Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 						
	Test Uncertainty:	±3.28 dB						
	Test Instruments:	Refer to section 5.7 for details	3					
	Test mode:	Bluetooth (Continuous transm	itting) mode					
	Test results:	Pass						
		<u> </u>						

Measurement Data

Line:

Trace: 11

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : Mobile phone Site Condition

: Mobile phone

Model : GO400
Test Mode : BT mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark

Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark	
MHz	dBu∜	<u>dB</u>		dBu√	dBu₹	<u>dB</u>		_
0.182	27.14	0.26	10.77	38.17	54.42	-16.25	Average	
0.186	41.66	0.26	10.76	52.68	64.20	-11.52	QP	
0.242	39.75	0.26	10.75	50.76	62.04	-11.28	QP	
0.242	24.71	0.26	10.75	35.72	52.04	-16.32	Average	
0.307	22.64	0.26	10.74	33.64	50.06	-16.42	Average	
0.417	36.34	0.26	10.73	47.33	57.51	-10.18	QP	
0.431	21.24	0.26	10.73	32.23	47.24	-15.01	Average	
0.708	34.87	0.28	10.77	45.92	56.00	-10.08	QP	
0.712	20.53	0.28	10.78	31.59	46.00	-14.41	Average	
1.135	35.77	0.29	10.89	46.95	56.00	-9.05	QP	
1.135	21.68	0.29	10.89	32.86	46.00	-13.14	Average	
1.662	34.25	0.31	10.94	45.50	56.00	-10.50	QP	
	MHz 0. 182 0. 186 0. 242 0. 242 0. 307 0. 417 0. 431 0. 708 0. 712 1. 135 1. 135	Freq Level MHz dBuV 0.182 27.14 0.186 41.66 0.242 39.75 0.242 24.71 0.307 22.64 0.417 36.34 0.431 21.24 0.708 34.87 0.712 20.53 1.135 35.77 1.135 21.68	Freq Level Factor MHz dBuV dB 0.182 27.14 0.26 0.186 41.66 0.26 0.242 39.75 0.26 0.242 24.71 0.26 0.307 22.64 0.26 0.417 36.34 0.26 0.431 21.24 0.26 0.708 34.87 0.28 0.712 20.53 0.28 1.135 35.77 0.29 1.135 21.68 0.29	MHz dBuV dB dB 0.182 27.14 0.26 10.77 0.186 41.66 0.26 10.76 0.242 39.75 0.26 10.75 0.242 24.71 0.26 10.75 0.307 22.64 0.26 10.74 0.417 36.34 0.26 10.73 0.431 21.24 0.26 10.73 0.708 34.87 0.28 10.77 0.712 20.53 0.28 10.78 1.135 35.77 0.29 10.89 1.135 21.68 0.29 10.89	MHz dBuV dB dB dBuV 0.182 27.14 0.26 10.77 38.17 0.186 41.66 0.26 10.76 52.68 0.242 39.75 0.26 10.75 50.76 0.242 24.71 0.26 10.75 35.72 0.307 22.64 0.26 10.74 33.63 0.417 36.34 0.26 10.73 47.33 0.431 21.24 0.26 10.73 32.23 0.708 34.87 0.28 10.77 45.92 0.712 20.53 0.28 10.78 31.59 1.135 35.77 0.29 10.89 46.95 1.135 21.68 0.29 10.89 32.86	MHz dBuV dB dB dBuV dBuV 0.182 27.14 0.26 10.77 38.17 54.42 0.186 41.66 0.26 10.76 52.68 64.20 0.242 39.75 0.26 10.75 50.76 62.04 0.242 24.71 0.26 10.75 35.72 52.04 0.307 22.64 0.26 10.74 33.64 50.06 0.417 36.34 0.26 10.73 47.33 57.51 0.431 21.24 0.26 10.73 32.23 47.24 0.708 34.87 0.28 10.77 45.92 56.00 0.712 20.53 0.28 10.78 31.59 46.00 1.135 35.77 0.29 10.89 46.95 56.00 1.135 21.68 0.29 10.89 32.86 46.00	MHz dBuV dB dB dBuV dBuV dB 0.182 27.14 0.26 10.77 38.17 54.42 -16.25 0.186 41.66 0.26 10.76 52.68 64.20 -11.52 0.242 39.75 0.26 10.75 50.76 62.04 -11.28 0.242 24.71 0.26 10.75 35.72 52.04 -16.32 0.307 22.64 0.26 10.74 33.64 50.06 -16.42 0.417 36.34 0.26 10.73 47.33 57.51 -10.18 0.431 21.24 0.26 10.73 32.23 47.24 -15.01 0.708 34.87 0.28 10.77 45.92 56.00 -10.08 0.712 20.53 0.28 10.78 31.59 46.00 -14.41 1.135 35.77 0.29 10.89 46.95 56.00 -9.05 1.135 21.68 0.29	MHz

Neutral:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Mobile phone

: GO400 Model Test Mode : BT mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

Kemark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	₫B	dBu∀	dBu₹	<u>dB</u>	
1	0.182	43.35	0.17	10.77	54.29		-10.13	
2	0.186	31.84	0.16	10.76	42.76	54.20	-11.44	Average
3	0.246	30.13	0.16	10.75	41.04			Average
1 2 3 4 5 6 7 8 9	0.313	39.77	0.16	10.74	50.67	59.88	-9.21	QP
5	0.426	27.55	0.16	10.73	38.44	47.33	-8.89	Average
6	0.435	39.27	0.16	10.73	50.16	57.15	-6.99	QP
7	0.658	39.42	0.17	10.77	50.36	56.00	-5.64	QP
8	0.712	40.15	0.17	10.78	51.10	56.00	-4.90	QP
9	0.712	26.66	0.17	10.78	37.61	46.00	-8.39	Average
10	1.082	38.45	0.18	10.88	49.51	56.00	-6.49	QP
11	1.135	26.11	0.18	10.89	37.18	46.00	-8.82	Average
12	1.552	25.18	0.19	10.93	36.30	46.00	-9.70	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	5.82	21.00	Pass		
Middle	5.98	21.00	Pass		
Highest	5.47	21.00	Pass		
	π/4-DQPSK ι	mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	5.33	21.00	Pass		
Middle	5.48	21.00	Pass		
Highest	4.93	21.00	Pass		
	8DPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	5.36	21.00	Pass		
Middle	5.45	21.00	Pass		
Highest	4.97	21.00	Pass		

Test plot as follows:

Modulation mode: GFSK

Date: 8.MAR.2016 18:43:03

Lowest channel

Date: 8.MAR.2016 18:43:21

Middle channel

Date: 8.MAR.2016 18:43:42

Highest channel

Modulation mode: π/4-DQPSK

Date: 8.MAR.2016 18:44:19

Lowest channel

Date: 8.MAR.2016 18:44:33

Middle channel

Date: 8.MAR.2016 18:44:50

Highest channel

Modulation mode: 8DPSK

Date: 8.MAR.2016 18:45:18

Lowest channel

Date: 8.MAR.2016 18:45:36

Middle channel

Date: 8.MAR.2016 18:46:11

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

Toot channel	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	852	1128	1172
Middle	844	1120	1172
Highest	844	1124	1172

Test plot as follows:

Modulation mode: GFSK

Date: 8.MAR.2016 18:47:30

Lowest channel

Date: 8.MAR.2016 18:48:18

Middle channel

Date: 8.MAR.2016 18:49:01

Highest channel

Modulation mode: π/4-DQPSK

Date: 8.MAR.2016 18:50:04

Lowest channel

Date: 8.MAR.2016 18:51:09

Middle channel

Date: 8.MAR.2016 18:51:59

Highest channel

Modulation mode: 8DPSK

Date: 8.MAR.2016 18:52:55

Lowest channel

Date: 8.MAR.2016 18:53:45

Middle channel

Date: 8.MAR.2016 18:54:37

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1004	568.00	Pass
Middle	1000	568.00	Pass
Highest	1000	568.00	Pass
	π/4-DQPSK mo	de	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1004	752.00	Pass
Middle	1004	752.00	Pass
Highest	1004	752.00	Pass
	8DPSK mode		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1000	781.33	Pass
Middle	1000	781.33	Pass
Highest	1000	781.33	Pass

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	852	568.00
π/4-DQPSK	1128	752.00
8DPSK	1172	781.33

Test plot as follows:

Modulation mode: GFSK

Date: 8.MAR.2016 19:19:56

Lowest channel

Date: 8.MAR.2016 19:21:14

Middle channel

Date: 8.MAR.2016 19:22:23

Highest channel

Modulation mode: π/4-DQPSK

Date: 8.MAR.2016 19:24:03

Lowest channel

Date: 8.MAR.2016 19:25:00

Middle channel

Date: 8.MAR.2016 19:26:17

Highest channel

Modulation mode: 8DPSK

Date: 8.MAR.2016 19:28:08

Lowest channel

Date: 8.MAR.2016 19:29:23

Middle channel

Date: 8.MAR.2016 19:30:34

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

GFSK

Date: 8.MAR.2016 19:42:2

π/4-DQPSK

Date: 8.MAR.2016 19:47:50

8DPSK

Date: 8.MAR.2016 19:51:23

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case)

•	<u> </u>			
Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.21632		
GFSK	DH3	0.34368	0.4	Pass
	DH5	0.35413		
	2-DH1	0.23936		
π/4-DQPSK	2-DH3	0.36888	0.4	Pass
	2-DH5	0.33963		
	3-DH1	0.21312		
8DPSK	3-DH3	0.38208	0.4	Pass
	3-DH5	0.37803		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.676*(1600/(2*79))*31.6=216.32ms DH3 time slot=2.148*(1600/(4*79))*31.6=343.68ms DH5 time slot=3.320*(1600/(6*79))*31.6=354.13ms

2-DH1 time slot=0.748*(1600/ (2*79))*31.6=239.36ms 2-DH3 time slot=2.418*(1600/ (4*79))*31.6=368.88ms

2-DH5 time slot=3.184*(1600/ (6*79))*31.6=339.63 ms

3-DH1 time slot=0.666*(1600/ (2*79))*31.6=213.12ms

3-DH3 time slot=2.388*(1600/ (4*79))*31.6=382.08ms

3-DH5 time slot=3.544*(1600/ (6*79))*31.6=378.03ms

Test plot as follows:

Modulation mode: GFSK

Date: 8.MAR.2016 19:33:00

DH1

Date: 8.MAR.2016 19:34:46

DH3

Date: 8.MAR.2016 19:35:24

DH5

Modulation mode: π/4-DQPSK

Date: 8.MAR.2016 19:36:19

2-DH1

Date: 8.MAR.2016 19:36:58

2-DH3

Date: 8.MAR.2016 19:37:35

2-DH5

Modulation mode: 8DPSK

Date: 8.MAR.2016 19:38:19

3-DH1

Date: 8.MAR.2016 19:39:04

3-DH3

Date: 8.MAR.2016 19:39:50

3-DH5

Report No: CCISE160301103

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

GFSK

Lowest Channel

Date: 8.MAR.2016 18:56:24

No-hopping mode

Hopping mode

Highest Channel

Date: 8.MAR.2016 19:02:48

No-hopping mode

Date: 8.MAR.2016 19:16:19

Date: 8.MAR.2016 19:05:31

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

Date: 8.MAR.2016 18:57:42

No-hopping mode

Date: 8.MAR.2016 19:07:45

Hopping mode

Highest Channel

Date: 8.MAR.2016 19:01:07

No-hopping mode

Date: 8.MAR.2016 19:13:23 Hopping mode

8DPSK

Lowest Channel

Date: 8.MAR.2016 18:58:37

No-hopping mode

Hopping mode

Date: 8.MAR.2016 19:09:22

Highest Channel

Date: 8.MAR.2016 18:59:33

No-hopping mode

Date: 8.MAR.2016 19:11:17 Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15 205						
Test Method:	ANSI C63.10: 2								
Test Frequency Range:	2.3GHz to 2.5G								
Test site:	Measurement D								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
Receiver Setup.		Peak	1MHz	3MHz	Peak Value				
	Above 1GHz	RMS	1MHz	3MHz	Average Value				
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark				
	Above 1	IGHz	54.0		Average Value				
Test setup:	74.00 Peak Value								
	1. The EUT was placed on the top of a rotating table 0.8 meters above the								
Test Procedure:	ground at a 3 determine th 2. The EUT wa antenna, white tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum resonant to the specified Ba 6. If the emissic limit specified EUT would be 10dB margin.	B meter cambine position of the position of the set 3 meters in the set 4 meters in th	er. The table of the highest races away from the ted on the top ed from one maximum value arizations of the tuned to heighed from 0 de was set to Pea Maximum Hole EUT in peak of the could be stop therwise the early could be stop the rowise the early could be stop the rowing the	was rotated diation. The interference of a variable of the field one antenna was arranghts from 1 regrees to 36 at Detect Field Mode. The mode was apped and the missions the one using process to 36 at Detect Field Mode.	and degrees to ance-receiving ble-height antenna ar meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the function and and allower than the distrength and he peak values of the mat did not have beak, quasi-peak or				
Test Instruments:	Refer to section			-					
Test mode:	Non-hopping m								
Test results:	Passed								

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile phone Condition

EUT : GU4U0
Test mode : DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

Elliar	r .	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	_dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000				A 270 TO STATE OF THE STATE OF	49.76 37.57			The state of the s

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition

: Mobile phone

Model : GO400
Test mode : DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3000		Antenna Factor					
-	MHz	dBu∜	— <u>d</u> B/m	 <u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	 -
	2390.000 2390.000			0.00 0.00				

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Modele phone Condition

: Mobile phone

model : G0400

Test mode : DH1-H mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C

Test Engineer: YT

REMARK :

Huni:55% 101KPa

			Antenna Factor					Remark	
1/2	MHz	—dBu∀		 <u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
	2483.500 2483.500								

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition

EUT : GU400
Test mode : DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

1 2

		ReadAntenna		Cable	Preamp		Limit	Over			
	Freq		Factor								
-	MHz	dBu₹	dB/m	<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>			
	2483.500										
)	2483.500	7.86	23.70	6.85	0.00	38.41	54.00	-15.59	Average		

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone Model : GO400

Test mode : 2DH1-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK :

ILULIA	1 :									
	Freq		Antenna Factor							
-	MHz	dBu₹	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2390.000			6.63	10 TO	47.72		777777777777777777777777777777777777777		
4	2390.000	7.25	23.68	b. b.	0.00	J1.56	54.00	-16.44	Average	

Site 3m chamber

FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Mobile phone : GU400

rest mode : 2DH1-L mode

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C

Test Engineer: YT

REMARK Model : GO400

Huni:55% 101KPa

הזשוונים			Antenna Factor						
-	MHz	dBu∇	$-\frac{dB}{m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000					47.88 37.53			

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mobile phone EUT

Model : GO400
Test mode : 2DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C

Huni:55% 101KPa

Test Engineer: YT REMARK

מומוונים	97900		Antenna Factor					
-	MHz	dBu∜		 <u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	 -
1 2	2483.500 2483.500				50.10 38.51			

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone

: Mobile phone

Model : GO400
Test mode : 2DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

PHUTTO	9993		Antenna Factor						Remark	
	MHz	dBu∇	<u>dB</u> /m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
1 2	2483,500 2483,500				0.00 0.00			1,000 1000 1000 1000		

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mobile phone EUT Model G0400

Test mode : 3DH1-L mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: YT

REMARK

	Freq		Antenna Factor						Remark	
-	MHz	—dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		_
	2390.000 2390.000									

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : GO400
Test mode : 3DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK : : Mobile phone

المتمالات			Antenna Factor						Remark	
<i>9</i> -	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2390.000 2390.000									

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile phone Condition

: Mobile phone

Model : GO400
Test mode : 3DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

	200		Antenna Factor					
•	MHz	dBu∜	dB/π	 <u>dB</u>	$\overline{dBuV/m}$	dBu√/m	dB	
1 2	2483.500 2483.500			0.00 0.00				

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition

EUT Model G0400 Test mode : 3DH1-H mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa Test Engineer: YT

REMARK

шин		Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						
	MHz	dBu∇	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

GFSK

Lowest channel

Date: 7.MAR.2016 04:51:22

30MHz~25GHz

Middle channel

Date: 7.MAR.2016 04:51:56

30MHz~25GHz

Highest channel

Date: 7.MAR.2016 04:52:45

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 7.MAR.2016 04:53:48

30MHz~25GHz

Date: 7.MAR.2016 04:54:37

30MHz~25GHz

Highest channel

Date: 7.MAR.2016 04:55:17

30MHz~25GHz

8DPSK

Lowest channel

Date: 7.MAR.2016 04:56:33

30MHz~25GHz Middle channel

Date: 7.MAR.2016 04:57:25

30MHz~25GHz

Highest channel

Date: 7.MAR.2016 04:58:21

30MHz~25GHz

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	ection 15.209	9						
Test Method:	ANSI C63.10: 2009								
Test Frequency Range:	9 kHz to 25 GHz								
Test site:	Measurement Dis	tance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark								
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above IGHZ	RMS	1MHz	3MHz	Average Value				
Limit:	Frequen	су	Limit (dBuV/	m @3m)	Remark				
	30MHz-88I	MHz	40.0)	Quasi-peak Value				
	88MHz-216	MHz	43.5	5	Quasi-peak Value				
	216MHz-960	OMHz	46.0)	Quasi-peak Value				
	960MHz-10	GHz	54.0)	Quasi-peak Value				
	Above 1G	iHz –	54.0)	Average Value				
	Above 10	1112	74.0)	Peak Value				
	Above 1GHz Test setup: Below 1GHz Below 1GHz Antenna Search Antenna Ground Plane Above 1GHz Above 1GHz Above 1GHz Above 1GHz								

Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. **Test Uncertainty:** ±4.88 dB Test Instruments: Refer to section 5.7 for details

Report No: CCISE160301103

Remark:

Test mode:

Test results:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Non-hopping mode

Pass

Measurement data:

Below 1GHz

Vertical:

Site

3m chamber FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : Mobile phone : GU4U0
Test mode : BT mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

Erec						Limit		
rred	rever	ractor	F022	ractor	rever	Line	LIMIT	Kemark
MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBu√/m	₫B	
40.417	33.00	16.98	1.22	29.90	21.30	40.00	-18.70	QP
47.492	31.45	16.34	1.27	29.84	19.22	40.00	-20.78	QP
119.018	37.01	11.64	2.16	29.40	21.41	43.50	-22.09	QP
208.580	35.40	10.61	2.86	28.78	20.09	43.50	-23.41	QP
357.929	29.99	14.41	3.10	28.59	18.91	46.00	-27.09	QP
750.108	30.25	20.40	4.36	28.48	26.53	46.00	-19.47	QP
	MHz 40.417 47.492 119.018 208.580 357.929	MHz dBuV 40.417 33.00 47.492 31.45 119.018 37.01 208.580 35.40 357.929 29.99	MHz dBuV dB/m 40.417 33.00 16.98 47.492 31.45 16.34 119.018 37.01 11.64 208.580 35.40 10.61 357.929 29.99 14.41	Freq Level Factor Loss MHz dBuV dB/m dB 40.417 33.00 16.98 1.22 47.492 31.45 16.34 1.27 119.018 37.01 11.64 2.16 208.580 35.40 10.61 2.86 357.929 29.99 14.41 3.10	MHz dBuV dB/m dB dB 40.417 33.00 16.98 1.22 29.90 47.492 31.45 16.34 1.27 29.84 119.018 37.01 11.64 2.16 29.40 208.580 35.40 10.61 2.86 28.78 357.929 29.99 14.41 3.10 28.59	MHz dBuV dB/m dB dBuV/m 40.417 33.00 16.98 1.22 29.90 21.30 47.492 31.45 16.34 1.27 29.84 19.22 119.018 37.01 11.64 2.16 29.40 21.41 208.580 35.40 10.61 2.86 28.78 20.09 357.929 29.99 14.41 3.10 28.59 18.91	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m 40.417 33.00 16.98 1.22 29.90 21.30 40.00 47.492 31.45 16.34 1.27 29.84 19.22 40.00 119.018 37.01 11.64 2.16 29.40 21.41 43.50 208.580 35.40 10.61 2.86 28.78 20.09 43.50 357.929 29.99 14.41 3.10 28.59 18.91 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 40.417 33.00 16.98 1.22 29.90 21.30 40.00 -18.70 47.492 31.45 16.34 1.27 29.84 19.22 40.00 -20.78 119.018 37.01 11.64 2.16 29.40 21.41 43.50 -22.09 208.580 35.40 10.61 2.86 28.78 20.09 43.50 -23.41 357.929 29.99 14.41 3.10 28.59 18.91 46.00 -27.09

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : Mobile phone Model : GO400 Test mode : BT mode

Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK:

nnnn									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∇	<u>dB</u> /π		<u>ab</u>	dBu√/m	dBu√/m	<u>dB</u>	
1	41.860	30.01	17.17	1.24	29.88	18.54	40.00	-21.46	QP
1 2 3	46.503	29.84	16.96	1.28	29.85	18.23	40.00	-21.77	QP
3	101.644	37.08	10.13	1.95	29.52	19.64	43.50	-23.86	QP
4	202.810	41.81	10.34	2.87	28.81	26.21	43.50	-17.29	QP
5 6	245.951	38.91	11.86	2.81	28.56	25.02	46.00	-20.98	QP
6	742.259	27.94	20.24	4.33	28.51	24.00	46.00	-22.00	QP

Above 1GHz:

Te	st channel:		Lowest		Lev	vel:	Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	45.19	35.99	10.57	40.24	51.51	74.00	-22.49	Vertical		
4804.00	45.28	35.99	10.57	40.24	51.60	74.00	-22.40	Horizontal		
Te	st channel:		Lowest		Level:		Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	35.84	35.99	10.57	40.24	42.16	54.00	-11.84	Vertical		
4804.00	35.87	35.99	10.57	40.24	42.19	54.00	-11.81	Horizontal		

Te	st channel:		Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	44.38	36.38	10.66	40.15	51.27	74.00	-22.73	Vertical
4882.00	45.05	36.38	10.66	40.15	51.94	74.00	-22.06	Horizontal
Te	st channel:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	35.25	36.38	10.66	40.15	42.14	54.00	-11.86	Vertical
4882.00	34.69	36.38	10.66	40.15	41.58	54.00	-12.42	Horizontal

Te	st channel:		Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.02	36.71	10.73	40.03	52.43	74.00	-21.57	Vertical
4960.00	45.41	36.71	10.73	40.03	52.82	74.00	-21.18	Horizontal
Te	st channel:	•	Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.86	36.71	10.73	40.03	43.27	54.00	-10.73	Vertical
4960.00	35.47	36.71	10.73	40.03	42.88	54.00	-11.12	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.