

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax. +86-755-26648637 Website:

Report Template Revision Date: Mar.1st, 2017

Report Template Version: V03

FCC Test Report

Report No.: CQASZ20181000013E-03

Applicant: Shenzhen Geniatech INC.,LTD.

Address of Applicant: 18th F, GDC Building, No 9th, Gaoxin Middle 3rd Rd. Nanshan District,

Shenzhen, China

Manufacturer: Shenzhen Geniatech INC.,LTD.

18th F. GDC Building, No 9th, Gaoxin Middle 3rd Rd. Nanshan District, Address of

Manufacturer: Shenzhen, China

Equipment Under Test (EUT):

Product: Enjoy TV

All Model No.: Please see page 6

Test Model No.: ATV495X

Brand Name: N/A

FCC ID: ZJU-E18DA5

Standards: 47 CFR Part 15, Subpart E **Date of Test:** 2018-10-15 to 2018-10-22

Date of Issue: 2018-10-29

Test Result: PASS*

Tested By: (Daisy Qin)

OU DO Reviewed By:

(Aaron Ma)

Approved By: (Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: CQASZ20181000013E-03

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20181000013E-03	Rev.01	Initial report	2018-10-29

Report No.: CQASZ20181000013E-03

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 FCC 47 CFR Part 15 Subpart C Section 15.407(a)(1) (2)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(6) FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
26 dB emission bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5)	KDB 789033 D02 v02r01 Section C.1	PASS
6 dB bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (e)	KDB 789033 D02 v02r01 Section C.2	PASS
Maximum conducted output power	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)	KDB 789033 D02 v02r01 Section E.3.a(Method PM)	PASS
Peak Power Spectral Density	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)	KDB 789033 D02 v02r01 Section F	PASS
Frequency stability	FCC 47 CFR Part 15 Subpart E Section 15.407 (g)	ANSI C63.10-2013	PASS
Radiated Emissions and Band Edge Measurement	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6) FCC 47 CFR Part 15 Subpart C Section 15.209/205	ANSI C63.10-2013	PASS
Dynamic Frequency Selection	FCC 47 CFR Part 15 Subpart E Section 15.407 (h)	KDB 905462 D03 Client Without DFS New Rules v01r02	N/A

Note: N/A: In this whole report not application.

Report No.: CQASZ20181000013E-03

3 Contents

			Page
1	VE	RSION	2
2	TE	ST SUMMARY	3
3	co	ONTENTS	4
4	GF	NERAL INFORMATION	5
•			
	4.1 4.2	CLIENT INFORMATION	
	4.2 4.3	GENERAL DESCRIPTION OF EUT	
	4.3 4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	TEST LOCATION	
	4.6	TEST FACILITY	
	4.7	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	4.8	DEVIATION FROM STANDARDS	
	4.9	ABNORMALITIES FROM STANDARD CONDITIONS	14
	4.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	14
	4.11	EQUIPMENT LIST	
5	TE	ST RESULTS AND MEASUREMENT DATA	
	5.1	ANTENNA REQUIREMENT	16
	5.2	CONDUCTED EMISSIONS	17
	5.3	CONDUCTED AVERAGE OUTPUT POWER	21
	5.4	26dB Bandwidth	
	5.5	6DB BANDWIDTH	
	5.6	Power Spectral Density	
	5.7	FREQUENCY STABILITY	
	5.8	RADIATED SPURIOUS EMISSIONS	
	5.8 5.8		
	5.0 5.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
_			
6	PH	OTOGRAPHS - EUT TEST SETUP	
	6.1	RADIATED SPURIOUS EMISSION	77
	6.2	CONDUCTED EMISSION	
7	DН	OTOCDADUS EUT CONSTDUCTIONAL DETAILS	70

Report No.: CQASZ20181000013E-03

4 General Information

4.1 Client Information

Applicant:	Shenzhen Geniatech INC.,LTD.
Address of Applicant:	18th F, GDC Building, No 9th, Gaoxin Middle 3rd Rd. Nanshan District, Shenzhen, China
Manufacturer:	Shenzhen Geniatech INC.,LTD.
Address of Manufacturer:	18th F, GDC Building, No 9th, Gaoxin Middle 3rd Rd. Nanshan District, Shenzhen, China

4.2 General Description of EUT

Product Name:	Enjoy TV	
Model No.:	Please see page 6	
Test Model No.:	ATV495X	
Trade Mark:	N/A	
Hardware version:	V1.0	
Software version:	V1.0	
Operation Frequency:	5180 ~ 5240 MHz, 5745 ~ 5825 MHz	
Channel Numbers:	5180 ~ 5240 MHz: 4 for 802.11a, 802.11ac (VHT20)	
	2 for 802.11ac (VHT40)	
	1 for 802.11ac (VHT80)	
	5745 ~ 5825 MHz: 5 for 802.11a, 802.11ac (VHT20)	
	2 for 802.11ac (VHT40)	
	1 for 802.11ac (VHT80)	
Type of Modulation:	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)	
	IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK)	
	IEEE 802.11ac: OFDM(256QAM, 64QAM, 16QAM, QPSK, BPSK)	
Channel Spacing:	IEEE 802.11a/n-HT20/ac-VHT20: 20 MHz	
	IEEE 802.11n-HT40/ac-VHT40: 40 MHz	
	IEEE 802.11ac-VHT80/: 80 MHz	
Sample Type:		
Test Software of EUT:	RF test (manufacturer declare)	
Antenna Type:	internal antenna	
Antenna Gain:	2dBi	
Power Supply:	Adaptor	
	Model: TS-A010-050020ADH	
	Input: AC100~240V 50/60Hz 0.4A, Output: DC5V 2A	

Report No.: CQASZ20181000013E-03

Note:

All model: ATV495X, APC390R, ATV390R, ATV495MAX, ATV598MAX, ATV599MAX, APC395X, ATV395X, APC1295, APC1967, ATV1660K, ATV135MAX, ATV195MAX, ATV168R, ATV195X, ATV315MAX, ATV315K, ATV329Q, ATV329A, ATV387, ATV315K, ATV1960, ATV1950A/T2/I, ATV1962A/T2/I, ATV1965A/T2/I/S2, ATV595X, ATV598E, ATV360, DB8, DB7, DB9, DB4Hub, TPC1010Q, TPC1560K, TPC1850T, TPC2150K, TPC3200K, TPC5500K, GTW350, GTW410, GTW389, GTW360, Flyfish, APC3399, DB4 IOT, ATV596X, ATV595X, ATV597E

Only the model ATV495X was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

Report No.: CQASZ20181000013E-03

	Operation Frequency Each of Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
F	For IEEE 802.11a/n-HT20/ac-VHT20 operation in the 5150 MHz to 5250 MHz band							
36	5180 MHz	40	5200 MHz	44	5220 MHz	48	5240 MHz	
F	or IEEE 802.1	1a/n-HT20/a	c-VHT20 oper	ation in the 5	725 MHz to 5	850 MHz ban	d	
149	5745 MHz	153	5765 MHz	157	5785 MHz	161	5805 MHz	
165	5825 MHz							
	For IEEE 802.	11n-HT40/ac	-VHT40 opera	tion in the 5	150 MHz to 52	250 MHz band	t	
38	5190 MHz	46	5230 MHz	-				
	For IEEE 802.	11n-HT40/ac	-VHT40 opera	tion in the 5	725 MHz to 58	50 MHz band	t	
151	5755 MHz	159	5795 MHz	-				
	For IEEE 802.11ac-VHT80 operation in the 5150 MHz to 5250 MHz band							
42	5210 MHz							
	For IEEE	802.11ac-VH	T80 operation	in the 5725	MHz to 5850 I	MHz band		
155	5775 MHz							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: CQASZ20181000013E-03

		Test RF Channel Lists			
Mode	Tx/Rx Frequency	Lowest(L)	Middle(M)	Highest(H)	
		Channel 36	Channel 44	Channel 48	
IEEE 802.11a	5150 MHz to 5250 MHz	5180 MHz	5220 MHz	5240 MHz	
IEEE 802.11n-HT20		Channel 149	Channel 157	Channel 165	
IEEE 802.11ac-VHT20	5725 MHz to 5850 MHz	5745 MHz	5785 MHz	5825 MHz	
	5150 MHz to 5250 MHz	Channel 38		Channel 46	
IEEE 802.11n-HT40		5190 MHz		5230 MHz	
IEEE 802.11ac-VHT40		Channel 151		Channel 159	
	5725 MHz to 5850 MHz	5755 MHz		5795 MHz	
			Channel 42		
	5150 MHz to 5250 MHz		5210 MHz		
IEEE 802.11ac-VHT80			Channel 155		
	5725 MHz to 5850 MHz		5775 MHz		

Note:

Software (RF test) provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

Report No.: CQASZ20181000013E-03

4.3 Test Environment and Mode

Operating Enviro	Operating Environment:				
Humidity:	52 % RH				
Atmospheric Pressure:	1008 mbar				
Test Condition	Temperature (°C)	Voltage (V)			
TN/VN	+15 to +35	5.0			
TL/VL	-20	4.5			
TH/VL	50	4.5			
TL/VH	-20	5.5			
TH/VH	50	5.5			

Remark:

1)The EUT just work in such extreme temperature of -20 °C to 50 °C and the extreme voltage of 4.5 V to 5.5 V, so here the EUT is tested in the temperature of -20 °C to 50 °C and the voltage of 4.5 V to 5.5 V.

2VN: Normal Voltage; TN: Normal Temperature;

TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;

VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.

Operated Mode for Worst Duty Cycle:	
Test Signal Duty Cycle(x)	Duty Cycle factor (dB)
96.96% - IEEE802.11a	0.13
96.76% - IEEE802.11n (HT20)	0.14
93.66% - IEEE802.11n (HT40)	0.28
96.77% - IEEE802.11ac (VHT20)	0.14
93.73% - IEEE802.11ac (VHT40)	0.28
88.01% - IEEE802.11ac (VHT80)	0.55

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);

Report No.: CQASZ20181000013E-03

Test plot as follows:

1 ms/

Date: 19.OCT.2018 18:36:47

Date: 20.OCT.2018 09:36:26

Center 5.18 GHz

Test Case: Duty Cycle

Mode: 11N20SISO Temperature: TN

Channel: MCH

Report No.: CQASZ20181000013E-03

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
PC	Lenovo	ThinkPad E450c	Provide by lab	ID

4.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• ISED Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

Report No.: CQASZ20181000013E-03

4.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

Test	Range	Uncertainty	Notes
Radiated Emission	Below 1GHz	±5.12dB	(1)
Radiated Emission	Above 1GHz	±4.60dB	(1)
Conducted Disturbance	0.15~30MHz	±3.34dB	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.8 Deviation from Standards

None.

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

Report No.: CQASZ20181000013E-03

4.11 Equipment List

Item	Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration
1	EMI Test Receiver	R&S	ESR7	CQA-005	Due Date 2019/9/25
2	Spectrum analyzer	R&S	FSU26	CQA-038	2019/9/25
3	Preamplifier	MITEQ	AFS4- 00010300-18- 10P-4	CQA-035	2019/9/25
4	Preamplifier	MITEQ	AMF-6D- 02001800-29- 20P	CQA-036	2019/9/25
5	Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2019/9/25
6	Bilog Antenna	R&S	HL562	CQA-011	2019/9/25
7	Horn Antenna	R&S	HF906	CQA-012	2019/9/25
8	Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2019/9/25
9	Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2019/9/25
10	Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2019/9/25
11	Antenna Connector	CQA	RFC-01	CQA-080	2019/9/25
12	RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2019/9/25
13	Power Sensor	KEYSIGHT	U2021XA	CQA-30	2019/9/25
14	N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2019/9/25
15	Power divider	MIDWEST	PWD-2533- 02-SMA-79	CQA-067	2019/9/25
16	EMI Test Receiver	R&S	ESPI3	CQA-005	2019/9/25
17	LISN	R&S	ENV216	CQA-003	2019/9/25
18	Coaxial cable (9KHz~300MHz)	CQA	N/A	CQA-C009	2019/9/25

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Report No.: CQASZ20181000013E-03

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /407

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is internal antenna with ipex connector. The best case gain of the antenna is 2dBi.

Report No.: CQASZ20181000013E-03

5.2 Conducted Emissions

Toot Boquiroment:	47 CED Dort 15 Subport C So	otion 15 207				
Test Requirement: Test Method:	47 CFR Part 15 Subpart C Section 15.207 ANSI C63.10: 2013					
	150kHz to 30MHz					
Test Frequency Range: Limit:	_ Limit (dBuV)					
Lilliit.	Frequency range (MHz)	,	,			
	0.45.0.5	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test Procedure:	 * Decreases with the logarithm of the frequency. The mains terminal disturbance voltage test was conducted in a shield room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω line impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground referen plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 					
Test Setup:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver			
Exploratory Test Mode:	Transmitting with all kind of	modulations, data rate	es at lowest, middle	and		

	highest channel.
Final Test Mode:	Through Pre-scan, find the 6.5Mbps of rate of 802.11n(HT20) at 48 channel is the worst case.
	Only the worst case is recorded in the report.
Test Voltage:	AC120V/60Hz
Test Results:	Pass

Report No.: CQASZ20181000013E-03

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBu√	dB	Detector	Comment
1	0.1539	34.51	9.73	44.24	65.79	-21.55	peak	
2	0.1556	19.28	9.73	29.01	55.70	-26.69	AVG	
3	0.1860	22.10	9.74	31.84	54.21	-22.37	AVG	
4	0.1940	35.10	9.74	44 .84	63.86	-19.02	peak	
5 *	0.2380	34.30	9.74	44.04	62.17	-18.13	peak	
6	0.2380	21.24	9.74	30.98	52.17	-21.19	AVG	
7	0.3268	14.97	9.74	24.71	49.53	-24.82	AVG	
8	0.3379	26.28	9.74	36.02	59.25	-23.23	peak	
9	0.6300	25.62	9.74	35.36	56.00	-20.64	peak	
10	0.6380	16.23	9.74	25.97	46.00	-20.03	AVG	
11	1.3860	13.14	9.75	22.89	46.00	-23.11	AVG	
12	1.4460	22.78	9.75	32.53	56.00	-23.47	peak	

Report No.: CQASZ20181000013E-03

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1700	35.58	9.79	45.37	64.96	-19.59	peak	
2	0.1700	17.50	9.79	27.29	54.96	-27.67	AVG	
3	0.2020	31.56	9.80	41.36	63.53	-22.17	peak	
4	0.2060	19.27	9.80	29.07	53.37	-24.30	AVG	
5	0.2540	30.68	9.80	40.48	61.63	-21.15	peak	
6	0.2540	17.67	9.80	27.47	51.63	-24.16	AVG	
7	0.6340	23.37	9.80	33.17	56.00	-22.83	peak	
8	0.6460	11.88	9.80	21.68	46.00	-24.32	AVG	
9	1.3860	12.30	9.84	22.14	46.00	-23.86	AVG	
10	1.4140	23.25	9.84	33.09	56.00	-22.91	peak	
11	3.6700	2.18	9.82	12.00	46.00	-34.00	AVG	
12	3.8620	18.37	9.81	28.18	56.00	-27.82	peak	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: CQASZ20181000013E-03

5.3 Conducted Average Output Power

Test Requirement:	47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)					
Test Method:	KDB 789033 D02 v02r01	KDB 789033 D02 v02r01 Section F				
Test Setup:	EUT	Power Meter				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates					
Final Test Mode:	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11a; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40); 6.5Mbps of rate is the worst case of 802.11ac(VHT20); 13.5Mbps of rate is the worst case of 802.11ac(VHT40); 29.3Mbps of rate is the worst case of 802.11ac(VHT80).					
	Only the worst case is recorded in the report.					
Limit:	U-NII-1	24dBm				
	U-NII-2A 24dBm					
	U-NII-2C	24dBm				
	U-NII-3 30dBm					
Test Results:	Pass					

Report No.: CQASZ20181000013E-03

Measurement Data

Test Mode	Test Channel	Level	Duty Cycle factor (dB)	Power [dBm]	Limit [dBm]	Verdict
11A	5180	10.81	0.13	10.94	24.00	PASS
11A	5200	10.98	0.13	11.11	24.00	PASS
11A	5240	11.76	0.13	11.89	24.00	PASS
11A	5745	10.14	0.13	10.27	30.00	PASS
11A	5785	10.1	0.13	10.23	30.00	PASS
11A	5825	9.99	0.13	10.12	30.00	PASS
11N20	5180	10.87	0.14	11.01	24.00	PASS
11N20	5200	11.1	0.14	11.24	24.00	PASS
11N20	5240	11.81	0.14	11.95	24.00	PASS
11N20	5745	10.28	0.14	10.42	30.00	PASS
11N20	5785	9.16	0.14	9.3	30.00	PASS
11N20	5825	9.73	0.14	9.87	30.00	PASS
11N40	5190	9.22	0.28	9.5	24.00	PASS
11N40	5230	10.6	0.28	10.88	24.00	PASS
11N40	5755	9.14	0.28	9.42	30.00	PASS
11N40	5795	9.26	0.28	9.54	30.00	PASS
11AC20	5180	10.28	0.14	10.42	24.00	PASS
11AC20	5200	10.84	0.14	10.98	24.00	PASS
11AC20	5240	11.64	0.14	11.78	24.00	PASS
11AC20	5745	10.29	0.14	10.43	30.00	PASS
11AC20	5785	10.17	0.14	10.31	30.00	PASS
11AC20	5825	10.2	0.14	10.34	30.00	PASS
11AC40	5190	10.21	0.28	10.49	24.00	PASS
11AC40	5230	10.82	0.28	11.1	24.00	PASS
11AC40	5755	10.02	0.28	10.3	30.00	PASS
11AC40	5795	9.92	0.28	10.2	30.00	PASS

11AC80	5210	10.54	0.55	11.09	24	PASS
11AC80	5775	9.96	0.55	10.51	30.00	PASS

Report No.: CQASZ20181000013E-03

5.4 26dB Bandwidth

Report No.: CQASZ20181000013E-03

Measurement Data

Measurement Data					
Test Mode	Test Channel	Ant	EBW[MHz]	Limit[MHz]	Verdict
11A	5180	Ant1	24.920		PASS
11A	5200	Ant1	25.480		PASS
11A	5240	Ant1	25.160		PASS
11N20	5180	Ant1	25.080		PASS
11N20	5200	Ant1	26.920		PASS
11N20	5240	Ant1	27.880		PASS
11N40	5190	Ant1	56.880		PASS
11N40	5230	Ant1	54.240		PASS
11AC20	5180	Ant1	25.480		PASS
11AC20	5200	Ant1	27.120		PASS
11AC20	5240	Ant1	27.440		PASS
11AC40	5190	Ant1	58.960		PASS
11AC40	5230	Ant1	57.280		PASS
11AC80	5210	Ant1	107.200		PASS

Report No.: CQASZ20181000013E-03

Test plot as follows:

Date: 19.0CT.2018 18:42:28

Report No.: CQASZ20181000013E-03

5.5 6dB Bandwidth

Report No.: CQASZ20181000013E-03

Measurement Data

Test Mode	Test Channel	Ant	EBW[MHz]	Limit[MHz]	Verdict
11A	5745	Ant1	16.360	0.5	PASS
11A	5785	Ant1	16.400	0.5	PASS
11A	5825	Ant1	16.400	0.5	PASS
11N20	5745	Ant1	16.720	0.5	PASS
11N20	5785	Ant1	16.400	0.5	PASS
11N20	5825	Ant1	17.640	0.5	PASS
11N40	5755	Ant1	35.280	0.5	PASS
11N40	5795	Ant1	35.920	0.5	PASS
11AC20	5745	Ant1	16.600	0.5	PASS
11AC20	5785	Ant1	16.760	0.5	PASS
11AC20	5825	Ant1	17.600	0.5	PASS
11AC40	5755	Ant1	35.600	0.5	PASS
11AC40	5795	Ant1	36.160	0.5	PASS
11AC80	5775	Ant1	75.680	0.5	PASS

5.6 Power Spectral Density

Test Requirement:	FCC 47 CFR Part 15 Sub	ppart E Section 15.407 (a)(1)(2)(3)			
Test Method:	KDB 789033 D02 v02r01	Section F			
Test Setup:					
	Remark:				
	Offset the High-Frequenc	ry cable loss in the spectrum analyzer.			
Exploratory Test Mode:	Transmitting with all kind	of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11a; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40); 6.5Mbps of rate is the worst case of 802.11ac(VHT20); 13.5Mbps of rate is the worst case of 802.11ac(VHT40); 29.3Mbps of rate is the worst case of 802.11ac(VHT80).				
Limit:	U-NII-1	11dBm/MHz			
	U-NII-2A	11dBm/MHz			
	U-NII-2C	11dBm/MHz			
	U-NII-3	30dBm/500KHz			
Test Results:	Pass				

Report No.: CQASZ20181000013E-03

Measurement Data

For U-NII-1 Band:

Test Mode	Test Channel	Meas PSD [dBm/MHz]	Duty Cycle Factor [dB]	PSD [dBm/MHz]	Limit [dBm/MHz]	Verdict
11A	5180	1.18	0.13	1.31	11.00	PASS
11A	5200	1.22	0.13	1.35	11.00	PASS
11A	5240	2.00	0.13	2.13	11.00	PASS
11N20	5180	0.91	0.14	1.05	11.00	PASS
11N20	5200	1.19	0.14	1.33	11.00	PASS
11N20	5240	1.77	0.14	1.91	11.00	PASS
11N40	5190	-3.21	0.28	-2.93	11.00	PASS
11N40	5230	-2.27	0.28	-1.99	11.00	PASS
11AC20	5180	0.11	0.14	0.25	11.00	PASS
11AC20	5200	0.73	0.14	0.87	11.00	PASS
11AC20	5240	1.60	0.14	1.74	11.00	PASS
11AC40	5190	-2.91	0.28	-2.63	11.00	PASS
11AC40	5230	-2.31	0.28	-2.03	11.00	PASS
11AC80	5210	-4.83	0.55	-4.28	11.00	PASS

Remark:

PSD = Meas PSD + Duty Cycle Factor

Report No.: CQASZ20181000013E-03

For U-NII-3 Band:

Test Mode	Test Channel	Meas PSD [dBm/500kHz]	Duty Cycle Factor [dB]	PSD [dBm/500kHz]	Limit [dBm/500kHz]	Verdict
11A	5745	-1.58	0.13	-1.45	17.00	PASS
11A	5785	-1.66	0.13	-1.53	17.00	PASS
11A	5825	-1.88	0.13	-1.75	17.00	PASS
11N20	5745	-1.61	0.14	-1.47	17.00	PASS
11N20	5785	-2.73	0.14	-2.59	17.00	PASS
11N20	5825	-2.47	0.14	-2.33	17.00	PASS
11N40	5755	-5.81	0.28	-5.53	17.00	PASS
11N40	5795	-5.92	0.28	-5.64	17.00	PASS
11AC20	5745	-1.41	0.14	-1.27	17.00	PASS
11AC20	5785	-1.57	0.14	-1.43	17.00	PASS
11AC20	5825	-1.48	0.14	-1.34	17.00	PASS
11AC40	5755	-5.04	0.28	-4.76	17.00	PASS
11AC40	5795	-5.39	0.28	-5.11	17.00	PASS
11AC80	5775	-8.07	0.55	-7.52	17.00	PASS

Remark:

PSD = Meas PSD + Duty Cycle Factor

Report No.: CQASZ20181000013E-03

Test plot as follows:

Maximum Power Spectral Density_TNVN_11A_5200_Ant1

Date: 19.0CT.2018 18:44:18

Report No.: CQASZ20181000013E-03

5.7 Frequency Stability

Report No.: CQASZ20181000013E-03

Measurement Data

Frequency Stability Versus Temp.							
	Operating Freq	uency: 5180 MHz					
Temp	Volta na	Measured Frequency	Frequency Drift				
(℃)	Volta ge	(MHz)	(ppm)				
50		5179.97	-5.79151				
40		5179.97	-5.79151				
30		5179.99	-2.89575				
20	\/AI	5179.97	-5.79151				
10	VN	5179.96	-8.68726				
0		5179.96	-8.68726				
-10		5180.00	0.00000				
-20		5179.99	-2.89575				

Frequency Stability Versus Temp.						
Operating Frequency: 5180 MHz						
		Measured Frequency	Frequency Drift			
Temp.	Volta ge	(MHz)	(ppm)			
	VL	5179.96	-8.68726			
TN	VN	5179.96	-8.68726			
	VH	5179.97	-5.79151			

Report No.: CQASZ20181000013E-03

5.8 Radiated Spurious Emissions

Test Requirement:	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6)							
	FCC 47 CFR Part 15 Subpart C Section 15.209/205							
Test Method:	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6							
Test Site:	Measurement Distance:	3m (Semi-Anechoi	c Chamber)					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	Above 1G112	Peak	1MHz	10Hz	Average			
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	54.0	Average	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total pea emission level radiated by the device.							

Report No.: CQASZ20181000013E-03

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

1) Below 1G: The EUT was placed on the top of a rotating table 0.8

Test Procedure:

- meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

to 4 m above the ground or reference ground plane.

- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for

	the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.			
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.			
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.			
	g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel			
	h. Repeat above procedures until all frequencies measured was complete.			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.			
	Transmitting mode.			
Final Test Mode:	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case			
	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11a; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40); 6.5Mbps of rate is the worst case of 802.11ac(VHT20); 13.5Mbps of rate is the worst case of 802.11ac(VHT40); 29.3Mbps of rate is the worst case of 802.11ac(VHT80).			
	For below 1GHz, through Pre-scan, find the 6.5Mbps of rate of 802.11n(HT20) at 48 channel is the worst case.			
	Only the worst case is recorded in the report.			
Test Results:	Pass			

5.8.1 Radiated emission below 1GHz

30MHz~1GHz		
Test mode:	Transmitting	Vertical

5.8.2 Transmitter emission above 1GHz

Test mode:		802.11a(6Mbps)		Test channel:		36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10360.000	51.21	2.13	53.34	74	-20.66	peak	Н
10360.000	36.86	2.13	38.99	54	-15.01	AVG	Н
15540.000	48.43	3.62	52.05	74	-21.95	peak	Н
15540.000	37.27	3.62	40.89	54	-13.11	AVG	Н
10360.000	48.62	2.13	50.75	74	-23.25	peak	V
10360.000	39.92	2.13	42.05	54	-11.95	AVG	V
15540.000	49.79	3.62	53.41	74	-20.59	peak	V
15540.000	35.00	3.62	38.62	54	-15.38	AVG	V

Test mode:		802.11a(6	Mbps)	Test channel:		40	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10400.00	50.54	2.23	52.77	74	-21.23	peak	Н
10400.00	37.85	2.23	40.08	54	-13.92	AVG	Н
15600.00	49.06	3.75	52.81	74	-21.19	peak	Н
15600.00	37.18	3.75	40.93	54	-13.07	AVG	Н
10400.00	49.39	2.23	51.62	74	-22.38	peak	V
10400.00	38.88	2.23	41.11	54	-12.89	AVG	V
15600.00	48.41	3.75	52.16	74	-21.84	peak	V
15600.00	36.50	3.75	40.25	54	-13.75	AVG	V

Test mode:		802.11a(6	Mbps)	Test channel:		48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
10480.000	49.28	2.31	51.59	74	-22.41	peak	Н
10480.000	36.17	2.31	38.48	54	-15.52	AVG	Н
15720.000	49.15	3.82	52.97	74	-21.03	peak	Н
15720.000	37.63	3.82	41.45	54	-12.55	AVG	Н
10480.000	50.23	2.31	52.54	74	-21.46	peak	V
10480.000	39.48	2.31	41.79	54	-12.21	AVG	V
15720.000	48.46	3.82	52.28	74	-21.72	peak	V
15720.000	36.53	3.82	40.35	54	-13.65	AVG	V

Test mode:		802.11a(6	Mbps)	Test channel:		149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
11490.000	50.70	2.42	53.12	74	-20.88	peak	Н
11490.000	37.92	2.42	40.34	54	-13.66	AVG	Н
17235.000	49.96	3.92	53.88	74	-20.12	peak	Н
17235.000	37.73	3.92	41.65	54	-12.35	AVG	Н
11490.000	48.71	2.42	51.13	74	-22.87	peak	V
11490.000	38.65	2.42	41.07	54	-12.93	AVG	V
17235.000	48.45	3.92	52.37	74	-21.63	peak	V
17235.000	35.59	3.92	39.51	54	-14.49	AVG	V

Report No.: CQASZ20181000013E-03

Test mode:		802.11a(6	Mbps)	Test chann	el:	157	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
11570.000	50.70	2.47	53.17	74	-20.83	peak	Н
11570.000	37.35	2.47	39.82	54	-14.18	AVG	Н
17355.000	48.38	3.96	52.34	74	-21.66	peak	Н
17355.000	38.51	3.96	42.47	54	-11.53	AVG	Н
11570.000	49.17	2.47	51.64	74	-22.36	peak	V
11570.000	39.01	2.47	41.48	54	-12.52	AVG	V
17355.000	50.01	3.96	53.97	74	-20.03	peak	V
17355.000	35.53	3.96	39.49	54	-14.51	AVG	V

Test mode:		802.11a(6	Mbps)	Test chann	el:	165	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Datastas	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	H/V
11650.000	49.37	2.55	51.92	74	-22.08	peak	Н
11650.000	36.44	2.55	38.99	54	-15.01	AVG	Н
17475.000	49.73	4.01	53.74	74	-20.26	peak	Н
17475.000	38.48	4.01	42.49	54	-11.51	AVG	Н
11650.000	48.49	2.55	51.04	74	-22.96	peak	V
11650.000	39.04	2.55	41.59	54	-12.41	AVG	V
17475.000	49.00	4.01	53.01	74	-20.99	peak	V
17475.000	35.26	4.01	39.27	54	-14.73	AVG	V

Remark:

- 1) The 6Mbps of rate of 802.11a is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 40GHz, The disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: CQASZ20181000013E-03

5.9 Restricted bands around fundamental frequency

Test Requirement:	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6)							
	FCC 47 CFR Part 15 Subpar	t C Section 15.209/205						
Test Method:	KDB 789033 D02 v02r01 Sec		3					
Test Site:	Measurement Distance: 3m ((Semi-Anechoic Chamber)						
Limit:	Applicable To	Limit						
	789033 D02 General U-	Field Strengt	n at 3 m					
	NII Test Procedures New	DI/: 74 (dDu\//m)	A\/: E4 (dDu\//m)					
	Rules v01r04	PK: 74 (dBµV/m)	AV: 54 (dBμV/m)					
	Applicable To	EIRP Limit	Equivalent Field Strength at 3 m					
	FCC 47 CFR Part 15 Subpart E Section 6.2.1.2	PK: -27 (dBm/MHz)	PK: 74 (dBμV/m)					
	FCC 47 CFR Part 15 Subpart E Section 6.2.2.2	15 2.2.2 PK: -27 (dBm/MHz) PK: 74 (dB						
	FCC 47 CFR Part 15 Subpart E Section 6.2.3.2	PK: -27 (dBm/MHz)	PK: 68.2 (dBµV/m)					
		27 dBm/MHz at						
		frequencies from the						
	27 freque band e	band edges decreasing						
		linearly to 15.6						
		dBm/MHz at 5 MHz						
		above or below the band						
		edges;						
		15.6 dBm/MHz at 5 MHz						
		above or below the band						
	FCC 47 CFR Part 15	edges decreasing	DK: 69.2 (dBu\//m)					
	Subpart E Section 6.2.4.2	linearly to 10 dBm/MHz	ΓΚ. 00.2 (αΒμν/π)					
		at 25 MHz above or						
		below the band edges;						
		10 dBm/MHz at 25 MHz						
		above or below the band						
		edges decreasing						
		linearly to -27 dBm/MHz						
		at 75 MHz above or	PK: 68.2 (dΒμV/m)					
		below the band edges;						
		-27 dBm/MHz at						

Report No.: CQASZ20181000013E-03

	quencies more than MHz above or below	
	the band edges.	
T 4 O - 4		

Test Setup:

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- g. Test the EUT in the lowest channel, the Highest channel

	h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case
	Through Pre-scan, find the 6Mbps of rate is the worst case of 802.11a; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40); 6.5Mbps of rate is the worst case of 802.11ac(VHT20); 13.5Mbps of rate is the worst case of 802.11ac(VHT40); 29.3Mbps of rate is the worst case of 802.11ac(VHT80).
	Only the worst case is recorded in the report.
Test Results:	Pass

Report No.: CQASZ20181000013E-03

Test data:

Worse case	mode:	802.11a(6Mbps)		Test chann	el:	36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5150.00	58.35	-3.63	54.72	74	-19.28	peak	Η
5150.00	44.14	-3.63	40.51	54	-13.49	AVG	Н
5150.00	59.57	-3.63	55.94	74	-18.06	peak	V
5150.00	46.93	-3.63	43.30	54	-10.70	AVG	V

Worse case	mode:	802.11a(6Mbps)		Test chann	el:	48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5350.00	57.55	-3.59	53.96	74	-20.04	peak	Н
5350.00	43.79	-3.59	40.20	54	-13.80	AVG	Н
5350.00	58.32	-3.59	54.73	74	-19.27	peak	V
5350.00	45.84	-3.59	42.25	54	-11.75	AVG	V

Worse case	mode:	802.11a(6Mbps)		Test chann	iel:	149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5650.00	58.96	-3.46	55.50	68.2	-12.70	peak	Н
5742.15	98.18	-3.44	94.74	122.2	-27.46	peak	Н
5650.00	59.39	-3.46	55.93	68.2	-12.27	peak	V
5742.37	88.87	-3.44	85.43	122.2	-36.77	peak	V

Worse case	mode:	802.11a(6Mbps)		Test chann	iel:	165	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5824.77	98.22	-3.42	94.80	122.2	-27.40	peak	Н
5925.00	60.00	-3.41	56.59	68.2	-11.61	peak	Н
5818.71	88.29	-3.42	84.87	122.2	-37.33	peak	V
5925.00	46.10	-3.41	42.69	68.2	-25.51	peak	V

Worse case	mode:	802.11n(HT20)(6.5M	lbps)	Test chann	el:	36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	58.93	-3.63	55.30	74	-18.70	peak	Н
5150.00	44.56	-3.63	40.93	54	-13.07	AVG	Н
5150.00	59.65	-3.63	56.02	74	-17.98	peak	V
5150.00	46.60	-3.63	42.97	54	-11.03	AVG	V

Worse case	mode:	802.11n(HT20)(6.5N	lbps)	Test chann	el:	48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type peak	H/V
5350.00	58.30	-3.59	54.71	74	-19.29	peak	Н
5350.00	43.97	-3.59	40.38	54	-13.62	AVG	Н
5350.00	58.24	-3.59	54.65	74	-19.35	peak	V
5350.00	46.29	-3.59	42.70	54	-11.30	AVG	V

Worse case	mode:	802.11n(HT20)(6.5M	lbps)	Test chann	el:	149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5650.00	58.44	-3.46	54.98	68.2	-13.22	peak	Н
5751.09	98.11	-3.44	94.67	122.2	-27.53	peak	Н
5650.00	59.48	-3.46	56.02	68.2	-12.18	peak	V
5744.27	88.96	-3.44	85.52	122.2	-36.68	peak	V

Worse case	mode:	802.11n(HT20)(6.5M	lbps)	Test channel:		165	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5823.41	98.21	-3.42	94.79	122.2	-27.41	peak	Н
5925.00	60.11	-3.41	56.70	68.2	-11.50	peak	Н
5824.65	88.53	-3.42	85.11	122.2	-37.09	peak	V
5925.00	45.80	-3.41	42.39	68.2	-25.81	peak	V

Worse case	mode:	802.11n(HT40)(13.5	Mbps)	Test chann	iel:	38	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	58.93	-3.63	55.30	74	-18.70	peak	Н
5150.00	44.97	-3.63	41.34	54	-12.66	AVG	Η
5150.00	59.95	-3.63	56.32	74	-17.68	peak	V
5150.00	46.37	-3.63	42.74	54	-11.26	AVG	V

Worse case	mode:	802.11n(HT40)(13.5	Mbps)	Test channel:		46	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	57.72	-3.59	54.13	74	-19.87	peak	Н
5350.00	44.34	-3.59	40.75	54	-13.25	AVG	Н
5350.00	58.30	-3.59	54.71	74	-19.29	peak	V
5350.00	45.91	-3.59	42.32	54	-11.68	AVG	V

Worse case	mode:	802.11n(HT40)(13.5	Mbps)	Test chann	iel:	151	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5650.00	58.51	-3.46	55.05	68.2	-13.15	peak	Н
5762.61	95.10	-3.44	91.66	122.2	-30.54	peak	Н
5650.00	59.66	-3.46	56.20	68.2	-12.00	peak	V
5741.70	85.70	-3.44	82.26	122.2	-39.94	peak	V

Worse case	mode:	802.11n(HT40)(13.5	Mbps)	Test chann	el:	159	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Type	H/V
5743.60	95.36	-3.42	91.94	122.2	-30.26	peak	Н
5925.00	59.24	-3.41	55.83	68.2	-12.37	peak	Н
5779.52	85.65	-3.42	82.23	122.2	-39.97	peak	V
5925.00	46.02	-3.41	42.61	68.2	-25.59	peak	V

Worse case	mode:	802.11ac(HT20)(6.5	Mbps)	Test channel:		36	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	59.21	-3.63	55.58	74	-18.42	peak	Н
5150.00	44.94	-3.63	41.31	54	-12.69	AVG	Н
5150.00	60.20	-3.63	56.57	74	-17.43	peak	V
5150.00	46.78	-3.63	43.15	54	-10.85	AVG	V

Worse case	mode:	802.11ac(HT20)(6.5	Mbps)	Test chann	iel:	48	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5350.00	58.33	-3.59	54.74	74	-19.26	peak	Н
5350.00	44.35	-3.59	40.76	54	-13.24	AVG	Н
5350.00	58.29	-3.59	54.70	74	-19.30	peak	V
5350.00	46.07	-3.59	42.48	54	-11.52	AVG	V

Worse case	mode:	802.11ac(HT20)(6.5	Mbps)	Test chann	el:	149	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5650.00	58.31	-3.46	54.85	68.2	-13.35	peak	Н
5743.54	98.89	-3.44	95.45	122.2	-26.75	peak	Н
5650.00	59.44	-3.46	55.98	68.2	-12.22	peak	V
5739.28	88.99	-3.44	85.55	122.2	-36.65	peak	V

Worse case	mode:	802.11ac(HT20)(6.5l	Mbps)	Test channel:		165	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5831.03	98.09	-3.42	94.67	122.2	-27.53	peak	Н
5925.00	59.36	-3.41	55.95	68.2	-12.25	peak	Н
5825.11	88.92	-3.42	85.50	122.2	-36.70	peak	V
5925.00	46.14	-3.41	42.73	68.2	-25.47	peak	V

Worse case	mode:	802.11ac(VHT40)(13	3.5Mbps)	Test chann	el:	38	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150.00	58.45	-3.63	54.82	74	-19.18	peak	Н
5150.00	44.75	-3.63	41.12	54	-12.88	AVG	Н
5150.00	59.90	-3.63	56.27	74	-17.73	peak	V
5150.00	46.00	-3.63	42.37	54	-11.63	AVG	V

Worse case	mode:	802.11ac(VHT40)(13	3.5Mbps)	Test channel:		46	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type .	H/V
5350.00	58.02	-3.59	54.43	74	-19.57	peak	Н
5350.00	44.36	-3.59	40.77	54	-13.23	AVG	Н
5350.00	57.50	-3.59	53.91	74	-20.09	peak	V
5350.00	46.11	-3.59	42.52	54	-11.48	AVG	V

Worse case	mode:	802.11ac(VHT40)(13	3.5Mbps)	Test channel:		151	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5650.00	58.55	-3.46	55.09	68.2	-13.11	peak	Η
5751.19	95.85	-3.44	92.41	122.2	-29.79	peak	Н
5650.00	59.58	-3.46	56.12	68.2	-12.08	peak	V
5741.72	85.22	-3.44	81.78	122.2	-40.42	peak	V

Worse case mode:		802.11ac(VHT40)(13.5Mbps)		Test channel:		159	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
5771.12	95.29	-3.42	91.87	122.2	-30.33	peak	Н
5925.00	59.57	-3.41	56.16	68.2	-12.04	peak	Н
5806.53	85.80	-3.42	82.38	122.2	-39.82	peak	V
5925.00	45.57	-3.41	42.16	68.2	-26.04	peak	V

Report No.: CQASZ20181000013E-03

Worse case mode:		802.11ac(VHT80)(29.3Mbps)		Test channel:		42	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
5150.00	59.22	-3.63	55.59	74	-18.41	peak	Н
5150.00	44.48	-3.63	40.85	54	-13.15	AVG	Н
5150.00	59.41	-3.63	55.78	74	-18.22	peak	V
5150.00	46.09	-3.63	42.46	54	-11.54	AVG	V
5350.00	58.15	-3.59	54.56	74	-19.44	peak	Н
5350.00	43.59	-3.59	40.00	54	-14.00	AVG	Н
5350.00	58.33	-3.59	54.74	74	-19.26	peak	V
5350.00	46.33	-3.59	42.74	54	-11.26	AVG	V

Worse case mode:		802.11ac(VHT80)(29.3Mbps)		Test channel:		155	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
5650.00	58.70	-3.46	55.24	68.2	-12.96	peak	Н
5766.32	90.91	-3.44	87.47	122.2	-34.73	peak	Н
5925.00	60.15	-3.46	56.69	68.2	-11.51	peak	Н
5650.00	60.18	-3.41	56.77	68.2	-11.43	peak	V
5754.64	80.94	-3.42	77.52	122.2	-44.68	peak	V
5925.00	45.79	-3.41	42.38	68.2	-25.82	peak	V

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

6.2 Conducted Emission

7 Photographs - EUT Constructional Details

Refer to Photographs of EUT Constructional Details for CQASZ20181000013E-01

THE END