CART分类树:

分类树的建树的一般步骤:

- 1. 读取数据集
- 2. 进行训练
- 3. 进行验证

- 1. 读取数据集一要有简单的可视化
- 2. 对特征进行处理
- 3. 进行训练
- 4. 进行验证

CART分类树:

将离散型特征变成连续性特征

import pandas as pd pd. get_dummies() #将离散特征变成多列连续特征

4 回归树:

- 1. mean_squar_error(groups) 最小均方误差#修改
- 2. split(data,index,value) 划分数据集
- 3. get_split(data) 获得最优特征与二分标准##修改
- 4. toLeafNode(labelList) 变成叶子节点#需要 修改的
- 5. createTree(data,max_depth,min_size,depth,stop) 递归建树,每个节点记录 {index, value, left, right, stop} #需要添加stop
- 6. predict(tree ,example) 递归解树,进行预测
- 7. m_s_e(tree, test_data, test_label)计算预测的均方误差

4.1 水雷-岩石数据

将水雷作为数值0,岩石作为数值1进行回归 然后预测值小于0.5是水雷,大于0.5是岩石

预测值小于0.4是水雷,大于等于0.4是岩石可以吗?

预测值小于0.6是水雷,大于等于0.6是岩石可以吗?

5 准确率、精确率和召回率

预	真实结果				
测		正类	负类		
结 集	正	TP	FP		
	负	FN	TN		

(总体) 准确率 (accuracy) = (TP+TN)/(TP+FN+FP+TN)

(正类的)精确率 (precision) = TP/(TP+FP)

(正类的) 召回率 (recall) = TP/(TP+FN)

5.1 真正率和假正率

	真实结果					
预测		正类	负类			
结果	正	TP	FP			
	负	FN	TN			

真正率

假正率

True positive rate False positive rate

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

$$FPR = \frac{FP}{FP + TN}$$

假负率 False negative rate 真负率Ture negative rate

$$FNR = \frac{TP}{TP + FN}$$
 $TNR = \frac{FP}{FP + TN}$

5.2 ROC曲线

受试者工作特征曲线(receiver operating characteristic curve, 简称ROC曲线),又称为感受性曲线(sensitivity curve)

ROC曲线 横坐标是FPR 纵坐标是TPR

- 1. 以连续值(概率)表示 分类结果
- 2. 截断点或阈值

5.2 截断点

ROC曲线不容易理解主要是因为TPR和FPR的关系隐含着"截断点"。

机器学习算法对D样本集进行预测后,可以输出各样本对某个类别的置信度。比如d1是P类别的概率为0.3,一般我们认为概率低于0.5,d1就属于类别N。这里的0.5,就是"截断点"。

当"截断点"取值不同时,TPR和FPR是随之变化的

真实	1	1	1	0	0	0	1	0	0	0
预测	0.49	0.94	0.56	0.05	0.53	0.27	0.9	0.58	0.32	0.21
断点: 0.25	1	1	1	0	1	1	1	1	1	0
断点: 0.5	0	1	1	0	1	0	1	1	0	0
断点: 0.8	0	1	0	0	0	0	1	0	0	0

5.2 截断点

截断点取不同的值,TPR和FPR的计算结果也不同。将 截断点不同取值下对应的TPR和FPR结果画于二维坐标 系中得到的曲线,就是ROC曲线。

截断点	TP&FN	FP&TN	TPR&FNR	FPR&TNR
0. 25	4	4	1	0.67
	0	2	0	0.33

TP是预测为1,真实也为1;FP是预测为1,但真实为0 FN是预测为0,但真实为1; TN是预测为0,真实也为0

0.5	3	2	0.75	0.33	
	1	4	0.25	0.67	

5.2 截断点

截断点	TP&FN	FP&TN	TPR&FNR	FPR&TNR
0. 25	4	4	1	0.67
	0	2	0	0.33
0.5	3	2	0.75	0.33
	1	4	0.25	0.67
0.8	2	0	0.5	0
	2	6	0.5	1

对不同截断点情况总结

对每一种情况: TP+FN都是相等的,都等于真实的正类数

对每一种情况: TPR+FNR=1

随着截断点的增大,TPR和FPR只减不增

2.2 ROC曲线

截断点	FPR	TPR
0	1	1
0. 25	0.67	1
0. 5	0.33	0.75
0.8	0	0.5
1	0	0

- 1. 截断点选哪个值,是最优的
- 一般情况正负样本的均衡,要求**假正率(FPR**)等于**假 负率(FNR)**是合适的截断点选取位置。
- 2. ROC曲线越光滑,用模型对新的测试样本的分类效果越稳定

2. 3 AUC值

如何通过ROC曲线判断不同模型的预测结果的优劣

真实	1	1	1	0	0	0	1	0	0	0
预测1	0.49	0.94	0.56	0.05	0.53	0.27	0.9	0.58	0.32	0.21
预测2	0.75	0.52	0.83	0.30	0.13	0.48	0.40	0.14	0.38	0.30

2.3 AUC值

使用AUC值判断两个二分类模型的效果 AUC是Area Under Curve的首字母缩写,就是ROC曲线下区域的面积

假设分类器的输出是样本属于正类的socre(置信度),则AUC的意义为,任取一对(正、负)样本,正样本的score 大于负样本的score的概率

AUC值越大,模型越好 AUC = 1,是完美分类器, 0.5 < AUC < 1, AUC = 0.5,跟随机猜测一 样(例:丢铜板),模型 没有预测价值。 一般模型的AUC值处于