	Numer indeksu:	Grupa ¹ :
Wersja: $oldsymbol{A}$	000000	s. 4 s. 5 s. 103 s. 104 s. 105 s. 139 s. 140 s. 141
	Logika dla informatyk	
	Kolokwium nr 2, 15 grudn Czas pisania: 30+60 mi	
tautologią rachunku p		(x)) $\Rightarrow ((\forall x p(x)) \Rightarrow (\exists x q(x)))$ jes vpisz jej dowód w systemie naturalne ntrprzykład.
Zadanie 2 (2 punk	ty). Jeśli inkluzja $\bigcap_{i=1}^{\infty} (A_i \cup B_i) \subseteq \bigcap_{i=1}^{\infty} (A_i \cup B_i)$	$\bigcap_{i=1}^{\infty} A_i \cup \bigcap_{i=1}^{\infty} B_i \text{ zachodzi dla dowolnyc}$
	n zbiorów $\{A_i \mid i \in \mathbb{N}\}$ i $\{B_i \mid i \in \mathbb{N}\}$ vm przypadku wpisz odpowiedni kon	$i=0$ $i=0$ }, to w prostokąt poniżej wpisz słow trprzykład.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Atomowymi kombinacjami zbiorów A, B i C nazwiemy następujące siedem zbiorów: $K_1 = (A \setminus B) \setminus C$, $K_2 = (B \setminus C) \setminus A$, $K_3 = (A \cap B) \setminus C$, $K_4 = (C \setminus A) \setminus B$, $K_5 = (C \cap A) \setminus B$, $K_6 = (B \cap C) \setminus A$ oraz $K_7 = A \cap B \cap C$. Wtedy zbiór $A \cap B$ można przedstawić jako sumę atomowych kombinacji zbiorów A, B i C, mianowicie jako $K_3 \cup K_7$. Jeśli zbiór $(B \cup C) \setminus A$ można przedstawić jako sumę atomowych kombinacji zbiorów A, B i C, to w prostokąt poniżej wpisz taką sumę. W przeciwnym przypadku wpisz słowo "NIE".

$$K_2 \cup K_4 \cup K_6$$

Zadanie 4 (2 punkty). Jeśli istnieje taki zbiór A i dwie silnie antysymetryczne relacje R i S na zbiorze A, że R;S nie jest relacją silnie antysymetryczną, to w prostokąt poniżej wpisz dowolny przykład takiego zbioru i takich relacji. W przeciwnym przypadku wpisz słowa "NIE ISTNIE-JĄ".

$$A = \{a, b\}, R = \{\langle a, b \rangle\}, S = \{\langle b, a \rangle\}$$

Zadanie 5 (2 punkty). Rozważmy funkcje $f: A \to B$ i $g: B \to C$. Nie używając operatora składania funkcji (w szczególności, nie używając napisu "gf") wpisz w prostokąt poniżej formułę mówiącą, że złożenie gf funkcji f i g nie jest funkcją różnowartościową.

$$\exists a_1 \in A \ \exists a_2 \in A. \ a_1 \neq a_2 \land g(f(a_1)) = g(f(a_2))$$

Wersja:	$oldsymbol{A}$
---------	----------------

Num	er indeksu:	
	000000	

Grupa ¹ :			
s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Mówimy, że rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest wstępująca, jeżeli dla wszystkich $n\in\mathbb{N}$ zachodzi inkluzja $A_n\subseteq A_{n+1}$. Udowodnij indukcyjnie (względem j), że jeśli $\{A_n\}_{n\in\mathbb{N}}$ jest wstępującą rodziną zbiorów, to dla wszystkich elementów x oraz dla wszystkich $i,j\in\mathbb{N}$ zachodzi implikacja $x\in A_i\Rightarrow x\in A_{i+j}$. Następnie udowodnij, że dla dowolnych wstępujących rodzin $\{A_n\}_{n\in\mathbb{N}}$ i $\{B_n\}_{n\in\mathbb{N}}$ zachodzi inkluzja $\bigcap_{i=0}^{\infty}(A_i\cup B_i)\subseteq\bigcap_{i=0}^{\infty}A_i\cup\bigcap_{i=0}^{\infty}B_i$.

Zadanie 7 (5 punktów). Rozważmy dowolne zbiory A, B i C. Udowodnij, że $A \cap B = C$ wtedy i tylko wtedy, gdy $C \subseteq A$, $C \subseteq B$ oraz $(A \setminus C) \cap (B \setminus C) = \emptyset$. Czy istnieją takie zbiory A, B i C, że $(A \setminus C) \cap (B \setminus C) = \emptyset$ i $A \cap B = C$? Uzasadnij odpowiedź. Uwaga: intencją autora zadania było pytanie o takie zbiory A, B i C, że $(A \setminus C) \cap (B \setminus C) = \emptyset$ i $A \cap B \neq C$. W obecnej wersji zadanie się strywializowało, ale i tak zadziwiająco dużo osób nie umiało na nie odpowiedzieć.

Zadanie 8 (5 punktów). Powiemy, że binarna relacja $R \subseteq A \times A$ jest *euklidesowa*, jeśli dla wszystkich $a, b, c \in A$ zachodzi implikacja $aRb \wedge aRc \Rightarrow bRc$.

- (a) Czy każda relacja symetryczna jest euklidesowa? Uzasadnij odpowiedź.
- (b) Czy każda relacja symetryczna i przechodnia jest euklidesowa? Uzasadnij odpowiedź.

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.

Nume		Numer indeksu:	Grupa ¹ :			
Wersja: D	\Box	000000	s. 4	s. 5	s. 103	s. 104
	D		s. 105	s. 139	s. 140	s. 141
		Logika dla informatyków	7			
Kolokwium nr 2, 15 grudnia 2017 Czas pisania: 30+60 minut						
Zadanie	1 (2 punkt	ty). Jeśli inkluzja $\bigcup_{i=1}^{\infty}A_{i}\cap\bigcup_{i=1}^{\infty}B_{i}\subseteq\bigcup_{i=1}^{\infty}A_{i}$		zachod	zi dla do	owolnych

zadame i (2 punkty). Jesh inkluzja $\bigcup_{i=0}^{A_i+1}\bigcup_{i=0}^{B_i}\subseteq\bigcup_{i=0}^{(A_i+1)}(A_i+1)$ zachodzi dla dowolnych indeksowanych rodzin zbiorów $\{A_i\mid i\in\mathbb{N}\}$ i $\{B_i\mid i\in\mathbb{N}\}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Zadanie 2 (2 punkty). Jeśli istnieje taki zbiór A i dwie relacje symetryczne R i S na zbiorze A, że R;S nie jest relacją symetryczną, to w prostokąt poniżej wpisz dowolny przykład takiego zbioru i takich relacji. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJĄ".

 $A = \{a, b, c\}, R = \{\langle a, b \rangle, \langle b, a \rangle\}, S = \{\langle b, c \rangle, \langle c, b \rangle\}$

 $^{^{1}\}mathrm{Prosz}$ ę zakreślić właściwą grupę ćwiczeniową.

		Numer indeksu:	$Grupa^{1}$:		
Wersja:	$oxed{\mathbf{D}}$	000000	s. 4	s. 5	s. 103
			s. 105	s. 139	s. 140

Zadanie 6 (5 punktów). Rozważmy dowolne zbiory A, B i C. Udowodnij, że $A \cup B = C$ wtedy i tylko wtedy, gdy $A \subseteq C$, $B \subseteq C$ oraz $(C \setminus A) \setminus B = \emptyset$. Czy istnieją takie zbiory A, B i C, że $(C \setminus A) \setminus B = \emptyset$ i $A \cup B = C$? Uzasadnij odpowiedź.

s. 104

s. 141

Uwaga: intencją autora zadania było pytanie o takie zbiory A, B i C, że $(C \setminus A) \setminus B = \emptyset$ i $A \cup B \neq C$. W obecnej wersji zadanie się strywializowało, ale i tak zadziwiająco dużo osób nie umiało na nie odpowiedzieć.

Zadanie 7 (5 punktów). Mówimy, że rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest zstępująca, jeżeli dla wszystkich $n\in\mathbb{N}$ zachodzi inkluzja $A_n\supseteq A_{n+1}$. Udowodnij indukcyjnie, że jeśli $\{A_n\}_{n\in\mathbb{N}}$ jest zstępującą rodziną zbiorów, to dla wszystkich elementów x oraz dla wszystkich $j\in\mathbb{N}$ zachodzi implikacja $x\not\in A_0\Rightarrow x\not\in A_j$. Następnie udowodnij, że dla dowolnych zstępujących rodzin $\{A_n\}_{n\in\mathbb{N}}$ i $\{B_n\}_{n\in\mathbb{N}}$ zachodzi inkluzja $\bigcup_{i=0}^{\infty}A_i\cap\bigcup_{i=0}^{\infty}B_i\subseteq\bigcup_{i=0}^{\infty}(A_i\cap B_i)$.

Zadanie 8 (5 punktów). Powiemy, że binarna relacja $R \subseteq A \times A$ jest *euklidesowa*, jeśli dla wszystkich $a, b, c \in A$ zachodzi implikacja $aRb \wedge aRc \Rightarrow bRc$.

- (a) Czy każda relacja euklidesowa jest relacją równoważności? Uzasadnij odpowiedź.
- (b) Czy każda relacja zwrotna i euklidesowa jest relacją równoważności? Uzasadnij odpowiedź.

¹Proszę zakreślić właściwą grupę ćwiczeniową.