Université de Mons Faculté des Sciences Département d'Informatique Réseaux et Télécommunications

Conception et évaluation d'une architecture hybride de réseaux de capteurs reposant sur les technologies radio LoRa et IEEE 802.15.4

Directeur : M^r Bruno QUOITIN Mémoire réalisé par Arnaud PALGEN

Rapporteurs : M^r Prénom NOM en vue de l'obtention du grade de M^r Prénom NOM Master en Sciences Informatiques

Remerciements

Nous remercions ...

Table des matières

0.1	Plateformes de développement	2
	RTOS	

Table des figures

1	Zolertia RE-Mote révision B [5]	2
	RN2483 [3]	
3	Schéma-bloc du RN2483 [1]	4
4	Raspberry Pi 3B+ [2]	5

0.1 Plateformes de développement

Zolertia RE-Mote

Pour ce mémoire, la plateforme Zolertia RE-Mote revision ${\bf B}({\rm Fig.~1})$ est utilisée.

Cette plateforme, basée sur un system on chip (SoC) CC2538 ARM Cortex-M3, a été conçue par des universités et des industriels dans le but de permettre aux chercheurs et makers de développer des applications IoT et des objets connectés.

Le Zolertia RE-Mote a été choisi car elle est équipée de deux radios compatibles IEEE 802.15.4, permet une consommation électrique faible et possède de nombreux pins de connexion qui peuvent être utilisés pour y connecter des capteurs, actuateurs, radios, etc.

Le prix du consturcteur pour cette plateforme est de 93,95€ [5].

Figure 1 – Zolertia RE-Mote révision B [5].

La table 1 reprend les principales spécifications du Zolertia RE-Mote rev.b et sa table ... la consommation électique.

Element	Spécification
Radio	Deux radios IEEE 802.15.4 à 2.4 GHz et 863-950 MHz
CPU	ARM® Cortex® -M3 jusqu'à 32 MHz
RAM	32 KB (16 KB pour tous les Power Modes)
Flash programmable	512KB
I/O	RGB led, boutton user et reset, USB 2.0 à 12Mbps, Real-Time Clock

Table 1 – Spécifications du Zolertia RE-Mote rev.b [4]. reprend la consommation de courant du RN2483

RN2483

Le RN2483 (Fig. 2) est un modem LoRa compatible LoRaWANTM basse énergie. La communication avec ce modem ce fait par des commandes ASCII envoyée via une interface UART. Il prend en charge les modulations FSK, GFSK et LoRa. Il possède également 14 GPIOs? ?pour le contrôle et le status, partagés avec 14 inputs analogiques. ??Ses fréquences opérationnelles sont situées dans les bandes de fréquences 433 MHz et 868 MHz. D'après la datasheet, sa portée maximale est de 15km en agglomération et 5km en zone urbaine. Comme l'illustre la figure. 2, pour ce mémoire, le RN2483 a été monté sur un carte d'interface réalisée par B.Quoitin qui comporte deux leds, une petite antenne ainsi que les connecteurs permettant d'utiliser des câbles de prototypages.

FIGURE 2 - RN2483 [3].

La figure 3 reprend le schéma-bloc du RN2483. Il contient notemment l'interface UART, les antennes 433 MHz et 868Mhz ainsi que les GPIOs et la stack LoRaWan.

FIGURE 3 – Schéma-bloc du RN2483 [1].

La table 2 reprend la consommation électrique du RN2483 en fonction de son mode de fonctionnement.

Mode	Courant (mA)			
	m VDD = 2.1V	VDD = 3.3V	VDD = 3.6V	
Idle	1.7	2.8	3.1	
Transmit	28.6	38.9	44.5	
Sleep	0.0015	0.0016	0.0016	
Receive	12.96	14.22	14.69	

Table 2 – Consommation de courant (à 25 °C) [1].

Raspberry Pi

Le Raspberri Pi est un ordinateur monocarte. Le modèle utilisé pour ce projet est un Raspberry Pi 3 modèle B+ (Fig. 4). La table 3 reprend les principales caractéristiques de ce modèle.

FIGURE 4 – Raspberry Pi 3B+ [2].

Element	Spécification
CPU	Broadcom BCM2837B0, Cortex-A53 64-bit SoC à 1.4GHz
Mémoire	1GB LPDDR2 SDRAM
Connectivité	 IEEE 802.11.b/g/n/ac, Bluetooth 4.2, BLE Gigabit Ethernet over USB 2.0 4 × USB 2.0 ports
Alimentation	5V/2.5A DC

TABLE 3 – Spécifications du Raspberry Pi 3B+ [2].

0.2 RTOS

Un RTOS (Real Time Operating System) est un sytème d'exploitation temps réels principalement destiné aux systèmes embarqués.

Etant donné que ce projet utilise le protocole 802.15.4 ainsi que TSCH, le RTOS choisis, doit supporter la couche physique 802.15.4, le mode TSCH pour la couche MAC de 802.15.4.

Le RTOS choisis doit également posséder une implémentation d'un ou plusieurs algorithme d'ordonnancement de TSCH. Il est également préférable, que le RTOS choisis, supprote déja la plateforme utilisée. Une implémentation de la LoRa n'est pas nécessaire car les communications Lora sont réalisées via la RN2483 qui est controlé par UART.

Pour effectuer ce choix, les RTOS les plus connus ont été analysés : Contiki OS, FreeRTOS, RIOT OS et Zephyr.

Le tableau ci-dessous illustre la comparaison de différents RTOS. Les critères de comparaison sont les suivants : L'implémentation du protocole 802.15.4,

Contiki oS est un RTOS mature, qui dispose de tout ce qui peut etre utile pour ce mémoire.

RTOS	802.15.4	ord. TSCH	LoRa	IPv6	routage IP	comp.
Contiki OS		6Tisch, Orchestra	Projet KRATOS		RPL	
FreeRTOS	×	×			×	×
RIOT OS		×			RPL	$\sqrt{}$
Zephyr		×			Thread	×

Table 4 – Comparatif de différents RTOS.

Bibliographie

- [1] Microchip. Low-Power Long Range LoRa ® Technology Transceiver Module, 6 2020. Rev. E.
- [2] Raspberry Pi 3 Model B+. https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/. [Accès en ligne le 15 juin 2021].
- [3] RN2483. https://www.microchip.com/wwwproducts/en/RN2483. [Accès en ligne le 14 juin 2021].
- [4] Zolertia. Zolertia RE-Mote Revision B Internet of Things hardware development platform, for 2.4-GHz and 863-950MHz IEEE 802.15.4, 6LoW-PAN and ZigBee® Applications, 9 2016. v.1.0.0.
- [5] Zolertia RE-Mote. https://zolertia.io/product/re-mote/. [Accès en ligne le 14 juin 2021].