Statystyczna analiza danych

Prezentacje tabelaryczne

Prezentacje graficzne

Miary położenia (średnie, tendencji centralnej)

Miary rozproszenia (zmienności)

Miary asymetrii

Miary zależności

Próba prosta (dane indywidualne)

$$X_1, X_2, \dots, X_n$$
 $(X_{1:n} \le X_{2:n} \le \dots \le X_{n:n})$

Szereg rozdzielczy (dane skumulowane)

Przedział	Liczebność	Liczebność
klasowy		skumulowana
$x_0 - x_1$	n_1	$n_{(1)}$
$x_1 - x_2$	n_2	$n_{(2)}$
•	• •	• •
$x_{k-1} - x_k$	$n_{m{k}}$	$n_{(k)}$

Niech $0 \le p \le 1$

 x_p : początek przedziału z obserwacją o numerze $p \cdot n$ n_p : liczebność przedziału z obserwacją o numerze $p \cdot n$ h_p : długość przedziału z obserwacją o numerze $p \cdot n$ $n_{(p)}$: liczebność skumulowana przedziału poprzedzającego przedział o początku x_p $\dot{x}_i = (x_{i-1} + x_i)/2$

Mierniki położenia (próba prosta) średnia

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} X_i$$

mediana

$$Me = \begin{cases} X_{(n+1)/2:n} & \text{n nieparzyste} \\ (X_{n/2:n} + X_{n/2+1:n})/2 & \text{n parzyste} \end{cases}$$

dolny kwartyl

$$Q_1 = X_{[n/4]:n}$$

górny kwartyl

$$Q_3 = X_{[3n/4]:n}$$

dominanta (moda)

D = najczęściej występująca wartość

minimum

$$Min = X_{1:n}$$

maksimum

$$Max = X_{n:n}$$

Mierniki położenia (szereg rozdzielczy) średnia

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} \dot{x}_i n_i$$

mediana

$$Me = x_{0.5} + \frac{h_{0.5}}{n_{0.5}} \left(\frac{n}{2} - n_{(0.5)} \right)$$

dolny kwartyl

$$Q_1 = x_{0.25} + \frac{h_{0.25}}{n_{0.25}} \left(\frac{n}{4} - n_{(0.25)} \right)$$

górny kwartyl

$$Q_3 = x_{0.75} + \frac{h_{0.75}}{n_{0.75}} \left(\frac{3n}{4} - n_{(0.75)} \right)$$

dominanta (moda)

$$D = x_D + h_D \frac{n_D - n_{D-1}}{2n_D - n_{D+1} - n_{D-1}}$$

minimum

$$Min = x_0$$

maksimum

$$Max = x_k$$

Mierniki rozproszenia wariancja

$$S^{2} = \begin{cases} \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{x})^{2} \\ \frac{1}{n} \sum_{i=1}^{k} n_{i} (\dot{x}_{i} - \bar{x})^{2} \end{cases}$$

odchylenie standardowe

$$S = \sqrt{S^2}$$

współczynnik zmienności

$$V = \frac{\mathcal{S}}{\bar{x}} 100\%$$

rozstęp

$$R = Max - Min$$

odchylenie przeciętne

$$d = \begin{cases} \frac{1}{n} \sum_{i=1}^{n} |X_i - \bar{x}| \\ \frac{1}{n} \sum_{i=1}^{k} n_i |\dot{x}_i - \bar{x}| \end{cases}$$

odchylenie ćwiartkowe

$$Q = \frac{Q_3 - Q_1}{2}$$

Mierniki asymetrii

trzeci moment centralny

$$e_3 = \begin{cases} \frac{1}{n} \sum_{i=1}^n (X_i - \bar{x})^3 \\ \frac{1}{n} \sum_{i=1}^k n_i (\dot{x}_i - \bar{x})^3 \end{cases}$$

współczynnik asymetrii

$$A = \frac{e_3}{S^3}$$

pozycyjny współczynnik asymetrii

$$A_1 = \frac{Q_3 - 2Me + Q_1}{2Q}$$

współczynnik skośności

$$A_3 = \frac{\bar{x} - D}{S}$$

Przykład. Badano przebieg opon samochodowych wycofanych z eksploatacji.

Przebieg	Liczba		Odsetek
$x_{i-1} - x_i$	n_{i}	$n_{(i)}$	
25 - 30	20	20	10.00%
30 - 35	40	60	20.00%
35 - 40	95	155	47.50%
40 - 45	25	180	12.50%
45 - 50	15	195	7.50%
50 - 55	5	200	2.50%

Średni przebieg dwustu opon

$$\bar{x} = \frac{27.5 \cdot 20 + 32.5 \cdot 40 + \dots + 52.5 \cdot 5}{200} = 37.25$$

Dominanta przebiegu dwustu opon

$$x_D = 35$$
 $h_D = 5$
$$n_D = 95$$
 $n_{D-1} = 40$ $n_{D+1} = 25$
$$D = 35 + 5 \cdot \frac{95 - 40}{2 \cdot 95 - 40 - 25} = 37.2$$

Mediana przebiegu dwustu opon

$$\frac{n}{2} = 100 \quad x_{0.5} = 35$$

$$h_{0.5} = 5 \quad n_{0.5} = 95 \quad n_{(0.5)} = 60$$

$$Me = 35 + \frac{5}{95} \cdot (100 - 60) = 37.11$$

Dolny kwartyl przebiegu dwustu opon

$$\frac{n}{4} = 50 \quad x_{0.25} = 30$$

$$h_{0.25} = 5 \quad n_{0.25} = 40 \quad n_{(0.25)} = 20$$

$$Q_1 = 30 + \frac{5}{40} \cdot (50 - 20) = 33.75$$

Górny kwartyl przebiegu dwustu opon

$$\frac{3n}{4} = 150 \quad x_{0.75} = 35$$

$$h_{0.75} = 5 \quad n_{0.75} = 95 \quad n_{(0.75)} = 60$$

$$Q_3 = 35 + \frac{5}{95}(150 - 60) = 39.74$$

Minimalny przebieg dwustu opon

$$Min = 25$$

Maksymalny przebieg dwustu opon

$$Max = 55$$

Wariancja

$$S^{2} = \frac{1}{200} (20(27.5 - 37.25)^{2} + 40(32.5 - 37.25)^{2} + \cdots + 5(52.5 - 37.25)^{2}) = 31.18$$

Odchylenie standardowe

$$S = \sqrt{S^2} = 5.58$$

Współczynnik zmienności

$$V = \frac{5.58}{37.25} \cdot 100\% = 14.99\%$$

Rozstęp

$$R = 55 - 25 = 30$$

Odchylenie przeciętne

$$d = \frac{1}{200}(20|27.5 - 37.25| + 40|32.5 - 37.25| + \cdots + 5|52.5 - 37.25|) = 3.85$$

Odchylenie ćwiartkowe

$$Q = \frac{39.74 - 33.75}{2} = 2.99$$

Trzeci moment centralny

$$e_3 = \frac{1}{200} (20(27.5 - 37.25)^3 + 40(32.5 - 37.25)^3 + \cdots + 5(52.5 - 37.25)^3) = 73.406$$

Współczynnik asymetrii

$$A = \frac{73.406}{5.58^3} = 0.059$$

Pozycyjny współczynnik asymetrii

$$A_1 = \frac{39.74 - 2 \cdot 37.11 + 33.75}{2 \cdot 2.99} = -0.121$$

Współczynnik skośności

$$A_3 = \frac{37.25 - 37.2}{5.58} = 0.004$$

Koncentracja Lorentza

Przedział	Liczebność	Częstość
$x_0 - x_1$	n_1	$w_1 = n_1/n$
$x_1 - x_2$	n_2	$w_2 = n_2/n$
• •	• •	• •
$x_{k-1} - x_k$	n_{k}	$w_k = n_k/n$
Razem	n	1

Środek	t_i	z_i	$z_{(i)}$
\dot{x}_1	$t_1 = n_1 \dot{x}_1$	$z_1 = t_1/t$	$z_{(1)}$
\dot{x}_2	$t_2 = n_2 \dot{x}_2$	$z_2 = t_2/t$	$z_{(2)}$
:	•	:	
\dot{x}_k	$t_k = n_k \dot{x}_k$	$z_k = t_k/t$	$z_{(k)}$
	t	1	

$$z_{(i)} = z_1 + \dots + z_{i-1}$$

Współczynnik koncentracji Lorentza

$$K = 1 - \sum_{i=1}^{k} [z_{(i)} + z_{(i-1)}] w_i$$

Przykład. Wyznaczyć i porównać koncentrację utargów w dwóch sieciach sklepów

Sie	ć 1	Sieć 2		
utargi	sklepy	utargi	sklepy	
2 - 4	4	2 - 4	45	
4 - 6	10	4 - 6	5	
6 - 8	3	6 - 8	0	
8 - 10	2	8 - 10	5	
10 - 12	1	10 - 12	45	

Sieć 1

n_i	w_{i}	środek	t_i	z_i	$z_{(i)}$
4	0.20	3	12	0.11	0.11
10	0.50	5	50	0.45	0.55
3	0.15	7	21	0.19	0.74
2	0.10	9	18	0.16	0.90
1	0.05	11	11	0.10	1.00
20	1.00		112	1.00	

Współczynnik koncentracji: K=0.194643

Sieć 2

n_{i}	w_i	środek	t_i	z_i	$z_{(i)}$
45	0.45	3	135	0.19	0.19
5	0.05	5	25	0.04	0.23
0	0.00	7	0	0.00	0.23
5	0.05	9	45	0.06	0.29
45	0.45	11	495	0.71	1.00
100	1.00		700	1.00	

Współczynnik koncentracji: K=0.284286

