Двойной интеграл

8 Приложения двойного интеграла

1.
$$\iint_D dS = S(D)$$

2. Если $f(x,y)\geqslant 0$ в D, то $\iint_D f(x,y)\,dS=V(\text{цил.})$ — объём криволинейного цилиндра с образующими, параллельными оси Oz, основанием D, лежащим в плоскости Oxy, ограниченного сверху поверхностью z=f(x,y).

3. Если $\rho(x,y)$ — плотность распределения массы на плоской пластине D ($\rho(x,y)\geqslant 0$ в D), то $\iint_D \rho(x,y)\,dS = m - \text{масса пластины } D.$

Тройной интеграл

1 Объём пространственной фигуры

Рассмотрим ограниченное пространственное множество (тело) Ω ($\Omega \subset \mathbb{R}^3$). Пусть P — произвольный вложенный в Ω многогранник ($P \subseteq \Omega$) и Q — произвольный многогранник, объемлющий Ω ($Q \supseteq \Omega$). Обозначим V(P) объём многогранника P.

Определение 1. Внутренним объёмом тела Ω называется точная верхняя грань объёмов многогранников, вложенных в Ω :

$$V_*(\Omega) = \sup_{P \subseteq \Omega} V(P).$$

Внешним объёмом тела Ω называется точная нижняя грань объёмов многогранников, объемлющих Ω :

$$V^*(\Omega) = \inf_{Q \supseteq \Omega} V(Q).$$

Тело Ω называется *кубируемым*, если его внутренний и внешний объёмы совпадают. Общее значение внутреннего и внешнего объёмов называется *объёмом кубируемого тела* Ω :

$$V(\Omega) := V_*(\Omega) = V^*(\Omega).$$

Kритерии кубируемости тела Ω :

- 1) $\forall \varepsilon > 0 \ \exists P \subseteq \Omega \ \exists \Omega \supseteq D : V(Q) V(P) < \varepsilon \ (P, Q \text{многогранники});$
- 2) граница множества Ω , $\partial\Omega$, имеет объём ноль, т.е.

$$\forall \varepsilon > 0 \; \exists$$
многогранник $R \supseteq \partial \Omega \; : \; V(R) < \varepsilon.$

Основные свойства объёма

1. Монотонность:

$$\forall \Omega_1, \Omega_2 \quad (\Omega_1 \subseteq \Omega_2 \Rightarrow V(\Omega_1) \leqslant V(\Omega_2))$$

2. Аддитивность:

$$\forall \Omega_1, \Omega_2 \quad (\mathring{\Omega}_1 \cap \mathring{\Omega}_2 = \emptyset \implies V(\Omega_1 \cup \Omega_2) = V(\Omega_1) + V(\Omega_2))$$

3. Инвариантность: объёмы конгруэнтных тел равны

Т.О. объём есть Жорданова мера пространственных множеств.

2 Определение тройного интеграла

Пусть Ω — кубируемое тело и пусть функция f(x, y, z) определена на Ω .

Разобьём множество Ω произвольным образом на n кубируемых тел, не имеющих общих внутренних точек:

$$\Omega = \bigcup_{i=1}^n \Omega_i : \Omega_i -$$
кубируемо, $\mathring{\Omega}_i \cap \mathring{\Omega}_j = \emptyset$ при $i \neq j$.

Построенные таким образом множества $\{\Omega_i\}_{i=1}^n$ называют разбиением тела Ω . Будем обозначать его τ .

Для каждого участка разбиения Ω_i найдём

$$V(\Omega_i)$$
 — объём и $d_i = \sup_{M,N \in \Omega_i}
ho(M,N)$ — диаметр.

Введём диаметр разбиения:

$$d = \max_{i=\overline{1,n}} d_i.$$

Выберем произвольную точку на каждом участке разбиения: $N_i(\xi_i, \eta_i, \zeta_i) \in \Omega_i$. Составим *интегральную сумму*:

$$\sigma = \sigma(\tau, \{N_i\}) = \sum_{i=1}^{n} f(N_i)V(\Omega_i). \tag{1}$$

Определение 2. Если существует предел I интегральных сумм (1), не зависящий от способа τ разбиения тела Ω на части (указанным образом) и от выбора точек N_i , то функция f называется интегрируемой по множеству Ω , а число I называется интегралом от функции f по множеству Ω , обозначается:

$$I = \iiint_{\Omega} f(N) dV = \iiint_{\Omega} f(x, y, z) dx dy dz.$$

3 Вычисление тройного интеграла

Случай 1: Ω — прямоугольный параллелепипед: $\Omega = [a,b] \times [c,d] \times [k,l]$. Обозначим $\Pi = [a,b] \times [c,d]$ проекцию Ω на плоскость Oxy.

Теорема. Пусть функция f(x,y,z) интегрируема на Ω и пусть для каждой точки $(x,y)\in\Pi$ существует интеграл $\int_{k}^{l} f(x,y,z)\,dz = I(x,y)$. Тогда функция I(x,y) интегрируема на Π и

$$\iiint_{\Omega} f(x, y, z) dxdydz = \iint_{\Pi} I(x, y) dxdy$$

или

$$\iiint_{\Omega} f(x, y, z) dxdydz = \iint_{\Pi} dxdy \int_{k}^{l} f(x, y, z) dz.$$

Замечание. Если при этом функция I(x,y) при каждом $x \in [a,b]$ интегрируема по y на отрезке [c,d], то

$$\iint_{\Omega} f(x, y, z) dxdydz = \int_{a}^{b} dx \int_{c}^{d} dy \int_{k}^{l} f(x, y, z) dz.$$

Случай 2: Ω — цилиндрическая область с образующей, параллельной оси Oz, сечением D, ограниченная снизу поверхностью $z=z_1(x,y)$ и сверху поверхностью $z=z_2(x,y)$.

Теорема. Пусть функция f(x,y,z) интегрируема на Ω и пусть для каждой точки $(x,y)\in D$ существует интеграл $\int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z)\,dz = I(x,y)$. Тогда функция I(x,y) интегрируема на D и

$$\iiint_{\Omega} f(x, y, z) dxdydz = \iint_{D} I(x, y) dxdy$$

ИЛИ

$$\iiint_{\Omega} f(x,y,z) \, dx dy dz = \iint_{D} \, dx dy \int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) \, dz.$$

Замечание. Если при этом область D имеет вид $D = \{(x,y)|\ y_1(x) \leqslant y \leqslant y_2(x),\ x \in [a,b]\}$ и для каждого $x \in [a,b]$ существует интеграл $\int_{y_1(x)}^{y_2(x)} I(x,y)\,dy = J(x),$ то

$$\iint_{\Omega} f(x, y, z) \, dx dy dz = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} dy \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) \, dz.$$

4 Замена переменных в тройном интеграле

Пусть переменные x, y, z связаны с переменными u, v, w некоторыми соотношениями

$$x = \varphi(u, v, w), \quad y = \psi(u, v, w), \quad z = \chi(u, v, w), \quad (u, v, w) \in \omega, \tag{*}$$

относительно которых предполагается:

- 1) функции системы (*) осуществляют взаимно-однозначное соответствие между ω и Ω ;
- 2) функции φ, ψ, χ непрерывны в ω вместе со своими частными производными первого порядка;
- 3) якобиан системы (*) не равен нулю в ω :

$$J(u, v, w) = \frac{D(x, y, z)}{D(u, v, w)} \neq 0, \quad (u, v, w) \in \omega.$$

Тогда справедлива формула

$$\iiint\limits_{\Omega} f(x;y;z) dx\,dy\,dz = \iiint\limits_{\omega} f\Big(\varphi(u,v,w);\psi(u,v,w);\chi(u,v,w)\Big)\,|J|\,du\,dv\,dw.$$

Цилиндрическая СК (r, φ, z) :

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi, \\ z = z, \end{cases} \quad r \geqslant 0, \quad \varphi \in [0, 2\pi), \quad z \in \mathbb{R}.$$

Сферическая СК (r, φ, ψ) :