Homework #3

AA 597: Networked Dynamics Systems Prof. Mehran Mesbahi Due: Feb 2, 2024 11:59pm Soowhan Yi

P1. How would one extend Exercise 3.6 to n particles in three dimensions?

P2. Consider vertex i in the context of the agreement protocol(3.1). Suppose that vertex i (the rebel) decides not to abide by the agreement protocol, and instead fixes its state to a constant value. Show that all vertices converge to the state of the rebel vertex when the graph is connected.

P3. Consider the system

$$\dot{\theta}_i(t) = \omega_i + \sum_{j \in N(i)} sin(\theta_j(t) - \theta_i(t)), \text{ for } i = 1, 2, 3, \dots, n$$

which resembles the agreement protocol with the linear term $x_j - x_i$ replaced by the nonlinear term $sin(\theta_j(t) - \theta_i(t))$. For $\omega_i = 0$, simulate (4.35) for n = 5 and various connected graphs on five nodes. Do the trajectories of (4.35) always converge for any initialization? How about for $\omega_i \neq 0$? (This is a "simulation-inspired question" so it is okay to conjecture!)

P4. Provide an example for an agreement protocol on a digraph that always converges to the agreement subspace (from arbitrary initialization), yet does not admit a quadratic Lyapunov function of the form 12 xT x, that testifies to its asymptotic stability with respect to the agreement subspace.

P5. Let $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ be the ordered eigenvalues of the graph Laplacian associated with an undirected graph. We have seen that the second eigenvalue λ_2 is important both as a measure of the robustness in the graph, and as a measure of how fast the protocol converges. Given that our job is to build up a communication network by incrementally adding new edges (communication channels) between nodes, it makes sense to try and make λ_2 as large as possible.

Write a program that iteratively adds edges to a graph (starting with a connected graph) in such a way that at each step, the edge (not necessarily unique) is added that maximizes λ_2 of the graph Laplacian associated with the new graph. In other words, implement the following algorithm:

Step 0: Given G0 a spanning tree on n nodes. Set k=0

Step 1: Add a single edge to produce Gnew from Gk such that lambda2(Gnew) is maximized. Set k=k+1, Gk=Gnew

Repeat Step 1 until Gk=Kn for n = 10, 20, and 50. Did anything surprising happen?