Multiplexers

- A multiplexer or MUX is a combinational circuit with more than one input line, one output line and more than one selection line.
- In general, for n selection lines, there are 2^n data lines, and the multiplexer is referred to as a 2^n -to-1 MUX or $2^n \times 1$ MUX.
- The multiplexer sends the binary information present on any of the input line to the data line depending on the binary status of the select lines.

Time Division Multiplexing (TDM)

A) 2×1 MUX (with ENABLE input)

B) 4×1 MUX (with ENABLE input)

Implementing Boolean Functions with Multiplexers:

Ex. Implement $F(X, Y, Z) = \sum m(2, 4, 5)$ using 8-to-1 MUX.

Ex. Implement $F(A, B, C, D) = \prod M(1, 6, 8, 11)$ using 16-to-1 MUX.

Ex. Implement $F(X,Y,Z) = \sum m(0,1,4,7)$ using 4-to-1 MUX.

Ex. $\label{eq:final_problem} \mbox{Implement } F(A,B,C,D) = \sum m(3,4,5,8,9,12,14,15) \\ \mbox{using 8-to-1 MUX.}$

Ex. Implement $F(X,Y,Z) = \sum m(3,5,6)$ using 2-to-1 MUX.

