Engineering Maths IV

Nov-Dec 2024

(COITAI)

Time (3 hours) Max Marks: 80

Note: (1) Question No. 1 is Compulsory

- (2) Answer any three questions from Q.2 to Q.6
- (3) Figures to the right indicate full marks

1. (a) If
$$A = \begin{bmatrix} -1 & 2 & 38 \\ 0 & 2 & 37 \\ 0 & 0 & -2 \end{bmatrix}$$
 find the Eigen values of $A^3 + 5A + 8I$ (5)

Solution:

$$A = \begin{bmatrix} -1 & 2 & 38 \\ 0 & 2 & 37 \\ 0 & 0 & -2 \end{bmatrix}, |A| = 4$$

The characteristic equation,

$$|A - \lambda I| = 0$$

$$|-1 - \lambda \quad 2 \quad 38$$

$$0 \quad 2 - \lambda \quad 37$$

$$0 \quad 0 \quad -2 - \lambda$$

$$|-3| \quad [\text{sum of diagonals}]^{12} + [\text{sum of diagonals}]^{12$$

 $\lambda^3 - [sum \ of \ diagonals]\lambda^2 + [sum \ of \ minors \ of \ diagonals]\lambda - |A| = 0$

$$\lambda^{3} - \left[-1 + 2 - 2 \right] \lambda^{2} + \left[\begin{vmatrix} 2 & 37 \\ 0 & -2 \end{vmatrix} + \begin{vmatrix} -1 & 38 \\ 0 & -2 \end{vmatrix} + \begin{vmatrix} -1 & 2 \\ 0 & 2 \end{vmatrix} \right] \lambda - 4 = 0$$

$$\lambda^3 + \lambda^2 - 4\lambda - 4 = 0$$

$$\lambda = -1,2,-2$$

The eigen values of A is -1,2,-2

The eigen values of A^3 is $(-1)^3$, $(2)^3$, $(-2)^3$ i.e. -1.8, -8

The eigen values of 5A is 5(-1), 5(2), 5(-2) i.e. -5, 10, -10

The eigen values of 8I is 8(1), 8(1), 8(1) i.e. 8,8,8

Thus, the eigen values of $A^3 + 5A + 8I$ is

$$-1 - 5 + 8; 8 + 10 + 8; -8 - 10 + 8$$

i.e.
$$2,26,-10$$

(b) Integrate the function $f(z) = x^2 + ixy$ from A(1,1) to B(2,4) along $y = x^2$ 1. (5)

Solution:

$$I = \int f(z)dz = \int_{(1,1)}^{(2,4)} (x^2 + ixy)(dx + idy)$$

Along the curve,

$$y = x^2$$

$$dy = 2x dx$$

The integral becomes,

$$I = \int_{1}^{2} (x^{2} + ix(x^{2}))(dx + i \ 2xdx)$$

$$I = \int_{1}^{2} (x^{2} + ix^{3})(1 + 2ix)dx$$

$$I = \int_{1}^{2} (x^{2} + 2ix^{3} + ix^{3} + 2i^{2}x^{4}) dx$$

$$I = \int_{1}^{2} (x^{2} - 2x^{4}) + i3x^{3} dx$$

$$I = \left[\frac{x^3}{3} - \frac{2x^5}{5} + 3i\frac{x^4}{4}\right]_1^2$$

$$I = -\frac{151}{15} + \frac{45}{4}i$$

1. (c) Find the Z transform of
$$f(k) = a^{-k}, k \ge 0$$
 (5)

Solution:

We have,

$$f(k) = a^{-k}, k \ge 0$$

By definition,

$$Z\{f(k)\} = \sum_{-\infty}^{\infty} f(k)z^{-k}$$

$$Z\{a^{-k}\} = \sum_{0}^{\infty} a^{-k}.z^{-k}$$

$$Z\{a^{-k}\} = \sum_{0}^{\infty} a^{-k} \cdot z^{-k}$$

$$Z\{a^{-k}\} = a^{0}z^{0} + a^{-1}z^{-1} + a^{-2}z^{-2} + a^{-3}z^{-3} + \cdots \dots$$

$$Z\{a^{-k}\} = 1 + \frac{1}{az} + \frac{1}{a^2z^2} + \frac{1}{a^3z^3} + \cdots \dots$$

$$Z\{a^{-k}\} = \left[1 - \frac{1}{az}\right]^{-1}$$

$$Z\{a^{-k}\} = \left[\frac{az-1}{az}\right]^{-1}$$

$$Z\{a^{-k}\} = \frac{az}{az-1}$$

(d) If a random variable X follows Poisson distribution such that 1.

$$P(X = 1) = 2P(X = 2)$$
 Find mean and variance of the distribution. (5)

Solution:

By Poisson distribution,

$$P(X=r) = \frac{e^{-m} \cdot m^r}{r!}$$

It is given that,

$$P(X=1)=2P(X=2)$$

$$\frac{e^{-m}.m^1}{1!} = 2.\frac{e^{-m}.m^2}{2!}$$

$$m=m^2$$

$$m = 1$$

(a) Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \end{bmatrix}$ 2. (6)

Solution:

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}, |A| = 45$$

The characteristic equation,

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} -2 - \lambda & 2 & -3 \\ 2 & 1 - \lambda & -6 \end{vmatrix} = 0$$

$$\begin{vmatrix} -1 & -2 & 0 - \lambda \\ \lambda^3 - [sum \ of \ diagonals] \lambda^2 + [sum \ of \ minors \ of \ diagonals] \lambda - |A| = 0$$

$$\lambda^{3} - \left[-2 + 1 + 0 \right] \lambda^{2} + \left[\begin{vmatrix} 1 & -6 \\ -2 & 0 \end{vmatrix} + \begin{vmatrix} -2 & -3 \\ -1 & 0 \end{vmatrix} + \begin{vmatrix} -2 & 2 \\ 2 & 1 \end{vmatrix} \right] \lambda - 45 = 0$$

$$\lambda^3 + \lambda^2 - 21\lambda - 45 = 0$$

$$(\lambda - 5)(\lambda + 3)(\lambda + 3) = 0$$

$$\lambda = 5, -3, -3$$

(i) For $\lambda = -3$, $[A - \lambda I]X = 0$ gives

$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

By
$$R_2 - 2R_1$$
, $R_3 + R_1$

$$\begin{bmatrix} 1 & -2 & 3 & 1 & 1 & 3 \\ \text{By } R_2 & -2R_1, R_3 & +R_1 \\ \begin{bmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\therefore x_1 + 2x_2 - 3x_3 = 0$$

The rank (r) of the matrix is 1 and number of unknowns (n) is 3

Thus, n - r = 3 - 1 = 2 vectors to be formed

Let
$$x_3 = t \& x_2 = s$$
, $x_1 = -2s + 3t$

$$\therefore X = \begin{bmatrix} -2s + 3t \\ s \\ t \end{bmatrix} = \begin{bmatrix} -2s + 3t \\ s + 0t \\ 0s + t \end{bmatrix} = \begin{bmatrix} -2s \\ s \\ 0s \end{bmatrix} + \begin{bmatrix} 3t \\ 0t \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

Hence, corresponding to $\lambda = -3$ the eigen vectors are

$$X_1 = [-2,1,0]' \& X_2 = [3,0,1]'$$

(ii) For
$$\lambda = 5$$
, $[A - \lambda I]X = 0$ gives

$$\begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-7x_1 + 2x_2 - 3x_3 = 0$$

$$2x_1 - 4x_2 - 6x_3 = 0$$

Solving the above equations by Crammers rule, we get

$$\frac{x_1}{\begin{vmatrix} 2 & -3 \\ -4 & -6 \end{vmatrix}} = -\frac{x_2}{\begin{vmatrix} -7 & -3 \\ 2 & -6 \end{vmatrix}} = \frac{x_3}{\begin{vmatrix} -7 & 2 \\ 2 & -4 \end{vmatrix}}$$

$$\frac{x_1}{-24} = -\frac{x_2}{48} = \frac{x_3}{24}$$

$$\frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{-1}$$

Hence, corresponding to $\lambda=5$ the eigen vector is $X_3=[1,2,-1]'$

2. (b) Find the Z-transform of
$$\cos\left(\frac{\pi}{4} + k\alpha\right)$$
 where $k \ge 0$ (6)

Solution:

We have,

$$f(k) = \cos\left(\frac{\pi}{4} + k\alpha\right)$$

$$f(k) = \cos\frac{\pi}{4}\cos k\alpha - \sin\frac{\pi}{4}\sin k\alpha$$

$$Z\{f(k)\} = \cos\frac{\pi}{4}Z\{\cos k\alpha\} - \sin\frac{\pi}{4}Z\{\sin k\alpha\}$$

$$Z\{f(k)\} = \frac{1}{\sqrt{2}}\left[\frac{z^2 - z\cos\alpha}{z^2 - 2z\cos\alpha + 1}\right] - \frac{1}{\sqrt{2}}\left[\frac{z\sin\alpha}{z^2 - 2z\cos\alpha + 1}\right]$$

$$Z\{f(k)\} = \frac{1}{\sqrt{2}}\cdot\frac{z^2 - z\cos\alpha - z\sin\alpha}{z^2 - 2z\cos\alpha + 1}$$

$$Z\{f(k)\} = \frac{z^2 - z\cos\alpha - z\sin\alpha}{\sqrt{2}(z^2 - 2z\cos\alpha + 1)}$$

(c) Use dual simplex method to solve the LPP 2.

Minimise
$$z = 2x_1 - x_2 + 3x_3$$

Subject to $3x_1 - x_2 + 3x_3 \le 7$
 $2x_1 - 4x_2 \ge 12$
 $x_1, x_2, x_3 \ge 0$ (8)

Solution:

The standard form,

Min
$$z = 2x_1 - x_2 + 3x_3 + 0s_1 + 0s_2$$

 $z - 2x_1 + x_2 - 3x_3 + 0s_1 + 0s_2 = 0$
s.t. $3x_1 - x_2 + 3x_3 + s_1 + 0s_2 = 7$
 $-2x_1 + 4x_2 + 0x_3 + 0s_1 + s_2 = -12$

Simplex table,

Iteration No.	Basic		Coeff	icier	nt of		RHS	Formula
iteration no.	Var	x_1	x_2	x_3	s_1	s_2	MIIS	Torrida
0	Z	-2	1	-3	0	0	0	$X-\frac{1}{4}Y$
s_2 leaves	s_1	3	-1	3	1	0	7	$X + \frac{1}{4}Y$
x_2 enters	s_2	-2	4	0	0	1	-12	$Y \div 4$
Ratio		1	1/4	-	-	-	ı	
1	Z	-3/2	0	-3	0	-1/4	3	X-3Y
s_1 leaves	S_1	5/2	0	3	1	1/4	4	X + 5Y
x_2 enters	x_2	-1/2	1	0	0	1/4	-3	-2Y
Ratio		3	-	-	1	-	ı	
2	Z	0	-3	-3	0	-1	12	
x_2 leaves	s_1	0	5	3	1	3/2	-11	
x_1 enters	x_1	1	-2	0	0	-1/2	6	
Ratio		-	-	-	-	-	-	

The solution is unbounded

3. (a) Evaluate
$$\int_C \frac{z+8}{z^2+5z+6} dz$$
 where C is a circle $|z|=5$

Solution:

$$I = \int_{c} \frac{z+8}{z^2+5z+6} dz$$
 If $z^2+5z+6=0$, we get $z=-2$, $z=-3$ For $C:|z|=5$

We see that z = -2 and z = -3 both lies inside C

$$\frac{1}{(z+2)(z+3)} = \frac{A}{z+2} + \frac{B}{z+3}$$

$$1 = A(z+3) + B(z+2)$$

Putting
$$z = -2$$
, we get $A = 1$

Putting
$$z = -3$$
, we get $B = -1$

$$I = \int_{c} \frac{z+8}{(z+2)(z+3)} dz$$

$$I = \int_{c} \frac{z+8}{(z+2)} dz + \int_{c} \frac{-(z+8)}{(z+3)} dz$$

By CIF,
$$\int_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$

$$I = 2\pi i f(-2) + 2\pi i f(-3)$$

$$I = 2\pi i [-2 + 8] + 2\pi i [-(-3 + 8)]$$

$$I = 2\pi i [6 - 5]$$

$$I=2\pi i$$

(b) Verify Cayley Hamilton theorem and hence find A^{-1} & A^4 where $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ 3. (6)

Solution:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}, |A| = 3$$

The characteristic equation,

$$\lambda^{3} - [2+1+2]\lambda^{2} + \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \lambda - 3 = 0$$

$$\lambda^{3} - 5\lambda^{2} + 7\lambda - 3 = 0$$

By Cayley Hamilton theorem
$$A^3 - 5A^2 + 7A - 3I = 0$$

Consider,

Consider,
$$A^{2} = A.A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{bmatrix}$$

$$A^{3} = A^{2}.A = \begin{bmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 14 & 13 & 13 \\ 0 & 1 & 0 \\ 13 & 13 & 14 \end{bmatrix}$$

$$L.H.S. = A^{3} - 5A^{2} + 7A - 3I$$

$$= \begin{bmatrix} 14 & 13 & 13 \\ 0 & 1 & 0 \\ 13 & 13 & 14 \end{bmatrix} - 5 \begin{bmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = R.H.S.$$

Thus, Cayley Hamilton theorem is verified

Now,

$$A^3 - 5A^2 + 7A - 3I = 0$$

Pre-multiplying by A^{-1} , we get

$$A^2 - 5A + 7I - 3A^{-1} = 0$$

$$3A^{-1} = A^2 - 5A + 7I$$

$$3A^{-1} = \begin{bmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{bmatrix} - 5 \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$3A^{-1} = \begin{bmatrix} 2 & -1 & -1 \\ 0 & 3 & 0 \\ -1 & -1 & 2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ 0 & 3 & 0 \\ -1 & -1 & 2 \end{bmatrix}$$
 Also, $A^3 - 5A^2 + 7A - 3I = 0$
Pre-multiplying by A , we get
$$A^4 - 5A^3 + 7A^2 - 3A = 0$$
$$A^4 = 5A^3 - 7A^2 + 3A$$
$$A^4 = 5\begin{bmatrix} 14 & 13 & 13 \\ 0 & 1 & 0 \\ 13 & 13 & 14 \end{bmatrix} - 7\begin{bmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{bmatrix} + 3\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
$$A^4 = \begin{bmatrix} 41 & 40 & 40 \\ 0 & 1 & 0 \\ 40 & 40 & 41 \end{bmatrix}$$

3. (c) Solve the LPP by Big M method

Maximise
$$z = x_1 + 2x_2 + 3x_3 - x_4$$

subject to $x_1 + 2x_2 + 3x_3 = 15$
 $2x_1 + x_2 + 5x_3 = 20$
 $x_1 + 2x_2 + x_3 + x_4 = 10$
 $x_1, x_2, x_3, x_4 \ge 0$ (8)

Solution:

The standard form,

Max
$$z = x_1 + 2x_2 + 3x_3 - x_4 - MA_1 - MA_2 - MA_3$$

Max $z - x_1 - 2x_2 - 3x_3 + x_4 + MA_1 + MA_2 + MA_3 = 0$ (1)
s.t. $x_1 + 2x_2 + 3x_3 + A_1 = 15$ (2)
 $2x_1 + x_2 + 5x_3 + A_2 = 20$ (3)
 $x_1 + 2x_2 + x_3 + x_4 + A_3 = 10$ (4)

Multiplying eqn (2), (3), (4) by M and subtracting all with eqn (1), we get $z + (-1 - 4M)x_1 + (-2 - 5M)x_2 + (-3 - 9M) + (1 - M)x_4 + 0A_1 + 0A_2 + 0A_3 = -45M$ Simplex table,

Jimpiex		,		· · · ·							
Iteration Basic		Coefficient of			RHS	Ratio	Formula				
No.	Var	x_1	x_2	x_3	x_4	A_1	A_2	A_3			2 214
0	Z	-1-4M	-2-5M	-3-9M	1-M	0	0	0	-45M	-	$X - \frac{-3-9M}{5}Y$
4 1	A_1	1	2	3	0	1	0	0	15	5	$X - \frac{-3 - 9M}{5}Y$ $X - \frac{3}{5}Y$
A_2 leaves x_3 enters	A_2	2	1	5	0	0	1	0	20	4	$Y \div 5$
λ_3 enters	A_3	1	2	1	1	0	0	1	10	10	$X-\frac{1}{5}Y$
1	Z	1/5 -2M/5	-7/5-16M/5	0	1-M	0		0	12-9M	-	$X - \frac{-7 - 16M}{7}Y$ $\frac{5}{7}Y$
	A_1	-1/5	7/5	0	0	1		0	3	15/7	$\frac{5}{7}Y$
A_1 leaves x_2 enters	x_3	2/5	1/5	1	0	0		0	4	20	$X - \frac{1}{7}Y$ $X - \frac{9}{7}Y$
n ₂ circus	A_3	3/5	9/5	0	1	0		1	6	10/3	$X-\frac{9}{7}Y$
2	\boldsymbol{z}	-6M/7	0	0	1-M			0	15-15M/7	-	X + MY
	x_2	-1/7	1	0	0			0	15/7	-	$X + \frac{1}{6}Y$
A_3 leaves x_1 enters	x_3	3/7	0	1	0			0	25/7	25/3	$X-\frac{1}{2}Y$
x_1 enters	A_3	6/7	0	0	1			1	15/7	5/2	$\frac{7}{6}Y$
3	Z	0	0	0	1				15		
	x_2	0	1	0	1/6				5/2		
	x_3	0	0	1	-1/2				5/2		
	x_1	1	0	0	7/6				5/2		

Thus,

$$x_1 = x_2 = x_3 = \frac{5}{2}$$
, $x_4 = 0$, $z_{max} = 15$

4. (a) Find inverse Z transform of
$$F(z) = \frac{1}{(z-2)(z-3)}$$
 for i) $|z| < 2$ ii) $|z| > 3$ (6)

Solution:

We have,

$$F(z) = \frac{1}{(z-3)(z-2)}$$
Let $\frac{1}{(z-3)(z-2)} = \frac{A}{z-3} + \frac{B}{z-2}$

$$1 = A(z-2) + B(z-3)$$

Comparing the coefficients, we get

$$A + B = 0$$
$$-2A - 3B = 1$$

On solving, we get A = 1, B = -1

$$F(z) = \frac{1}{z-3} - \frac{1}{z-2}$$

(i)
$$|z| < 2$$

$$F(z) = \frac{1}{-3+z} - \frac{1}{-2+z}$$

$$F(z) = \frac{1}{-3+z} - \frac{1}{-2+z}$$

$$F(z) = \frac{1}{-3\left[1-\frac{z}{3}\right]} - \frac{1}{-2\left[1-\frac{z}{2}\right]}$$

$$F(z) = -\frac{1}{3} \left[1 - \frac{z}{3} \right]^{-1} + \frac{1}{2} \left[1 - \frac{z}{2} \right]^{-1}$$

$$F(z) = -\frac{1}{3} \left[1 + \frac{z}{3} + \frac{z^2}{3^2} + \frac{z^3}{3^3} + \cdots \right] + \frac{1}{2} \left[1 + \frac{z}{2} + \frac{z^2}{2^2} + \frac{z^3}{2^3} + \cdots \right]$$

$$F(z) = \begin{bmatrix} -\frac{1}{3} - \frac{z}{3^2} - \frac{z^2}{3^3} - \frac{z^3}{3^4} - \cdots \end{bmatrix} + \begin{bmatrix} \frac{1}{2} + \frac{z}{2^2} + \frac{z^2}{2^3} + \frac{z^3}{2^4} + \cdots \end{bmatrix}$$

$$F(z) = \begin{bmatrix} -3^{-1}z^0 - 3^{-2}z^1 - 3^{-3}z^2 - \cdots \end{bmatrix} + \begin{bmatrix} 2 & 2 & 2^2 & 2^3 \\ \frac{1}{2} + \frac{z}{2^2} + \frac{z^2}{2^3} + \frac{z^3}{2^4} + \cdots \end{bmatrix}$$

$$F(z) = \begin{bmatrix} -3^{-1}z^0 - 3^{-2}z^1 - 3^{-3}z^2 - \cdots \end{bmatrix} + \begin{bmatrix} 2^{-1}z^0 + 2^{-2}z^1 + 2^{-3}z^2 + \cdots \end{bmatrix}$$

From first series,

Coefficient of
$$z^k = -3^{-(k+1)}$$
, $k \ge 0$

Coefficient of
$$z^{-k} = -3^{k-1}, k \le 0$$

From second series,

Coefficient of
$$z^k = 2^{-(k+1)}$$
, $k \ge 0$

Coefficient of
$$z^{-k} = 2^{k-1}$$
, $k \le 0$

(ii)
$$|z| > 3$$

$$F(z) = \frac{1}{z-3} - \frac{1}{z-2}$$

$$F(z) = \frac{1}{z-3} - \frac{1}{z-2}$$

$$F(z) = \frac{1}{z\left[1 - \frac{3}{z}\right]} - \frac{1}{z\left[1 - \frac{2}{z}\right]}$$

$$F(z) = \frac{1}{z} \left[1 - \frac{3}{z} \right]^{-1} - \frac{1}{z} \left[1 - \frac{2}{z} \right]^{-1}$$

$$F(z) = \frac{1}{z} \left[1 + \frac{3}{z} + \frac{3^2}{z^2} + \frac{3^3}{z^3} + \dots \right] - \frac{1}{z} \left[1 + \frac{2}{z} + \frac{2^2}{z^2} + \frac{2^3}{z^3} + \dots \right]$$

$$F(z) = \left[\frac{1}{z} + \frac{3}{z^2} + \frac{3^2}{z^3} + \frac{3^3}{z^4} + \dots \right] + \left[-\frac{1}{z} - \frac{2}{z^2} - \frac{2^2}{z^3} - \frac{2^3}{z^4} - \dots \right]$$

 $F(z) = [3^{0}z^{-1} + 3^{1}z^{-2} + 3^{2}z^{-3} - \dots] + [-2^{0}z^{-1} - 2^{1}z^{-2} - 2^{2}z^{-3} + \dots]$

From first series,

Coefficient of $z^{-k} = 3^{(k-1)}$, k > 0

From second series,

Coefficient of $z^{-k} = -2^{k-1}$, k > 0

Thus,

$$Z^{-1}\left\{\frac{1}{(z-3)(z-2)}\right\} = 3^{k-1} - 2^{k-1}, k > 0$$

(b) A certain drug administered to 12 patients resulted in the following changes in their 4. blood pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4. Can we conclude that the drug increase the blood pressure? (6)

Solution:

00.00	
x	χ^2
5	25
2	4
8	64
-1	1
3	9
0	0
6	36
-2	4
1	1
5	25
0	0
4	16
Total = 31	Total = 185

$$n = 12$$

$$\overline{x} = \frac{\sum x}{n} = \frac{31}{12} = 2.5833$$

$$\sigma = \sqrt{\frac{\sum x^2}{n} - (\overline{x})^2} = \sqrt{\frac{185}{12} - (2.5833)^2} = 2.9569$$

- (i) Null Hypothesis: $\mu = 0$ (no change) Alternative Hypothesis: $\mu \neq 0$
- (ii) Test statistic:

lest statistic:

$$t = \left| \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n-1}}} \right| = \left| \frac{2.5833 - 0}{\frac{2.9569}{\sqrt{12-1}}} \right| = 2.897$$

- (iii) L.O.S.: $\alpha = 0.05$ (assumed)
- (iv) Degree of freedom: $\emptyset = n 1 = 12 1 = 11$
- (v) Critical value: $t_{\alpha} = 2.201$
- (vi) Decision: Since, the calculated value of t is more than the critical value, null hypothesis is rejected. Thus, there is rise in BP.

(c) Find all possible Laurent's series expansion of the function $f(z) = \frac{1}{(z+1)(z-2)}$ about 4. z=0 indicating the region of convergence in each case (8)

We have,
$$f(z) = \frac{1}{(z+1)(z-2)}$$

Let $\frac{1}{(z+1)(z-2)} = \frac{A}{z+1} + \frac{B}{z-2}$
 $1 = A(z-2) + B(z+1)$

Comparing the coefficients, we get

$$A + B = 0$$
$$-2A + B = 1$$

On solving, we get

$$A = -\frac{1}{3}, B = \frac{1}{3}$$

$$f(z) = \frac{-\frac{1}{3}}{z+1} + \frac{\frac{1}{3}}{z-2}$$

(i)
$$|z| < 1$$

$$f(z) = \frac{-\frac{1}{3}}{1+z} + \frac{\frac{1}{3}}{-2+z}$$
$$f(z) = \frac{-\frac{1}{3}}{[1+z]} + \frac{\frac{1}{3}}{-2[1-\frac{z}{2}]}$$

$$f(z) = -\frac{1}{3}[1+z]^{-1} - \frac{1}{6}\left[1-\frac{z}{2}\right]^{-1}$$

$$f(z) = -\frac{1}{3} \left[1 - z + z^2 - z^3 + \dots \right] - \frac{1}{6} \left[1 + \frac{z}{2} + \frac{z^2}{2^2} + \frac{z^3}{2^3} + \dots \right]$$

(ii)
$$1 < |z| < 2$$

$$f(z) = \frac{-\frac{1}{3}}{z+1} + \frac{\frac{1}{3}}{-2+z}$$

$$f(z) = \frac{\frac{-1}{3}}{z\left[1+\frac{1}{z}\right]} + \frac{\frac{1}{3}}{-2\left[1-\frac{z}{2}\right]}$$

$$f(z) = -\frac{1}{3z} \left[1 + \frac{1}{z} \right]^{-1} - \frac{1}{6} \left[1 - \frac{z}{2} \right]^{-1}$$

$$f(z) = -\frac{1}{3z} \left[1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \dots \right] - \frac{1}{6} \left[1 + \frac{z}{2} + \frac{z^2}{2^2} + \frac{z^3}{2^3} + \dots \right]$$

(iii)
$$|z| > 2$$

$$f(z) = \frac{\frac{1}{3}}{z+1} + \frac{\frac{1}{3}}{z-2}$$

$$f(z) = \frac{-\frac{1}{3}}{z\left[1 + \frac{1}{z}\right]} + \frac{\frac{1}{3}}{z\left[1 - \frac{2}{z}\right]}$$

$$f(z) = -\frac{1}{3z} \left[1 + \frac{1}{z} \right]^{-1} + \frac{1}{3z} \left[1 - \frac{2}{z} \right]^{-1}$$

$$f(z) = -\frac{1}{3z} \left[1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \dots \right] + \frac{1}{3z} \left[1 + \frac{2}{z} + \frac{2^2}{z^2} + \frac{2^3}{z^3} + \dots \right]$$

(a) Determine all basic solutions to the following problem. 5.

Maximise
$$z = x_1 - 2x_2 + 4x_3$$

subject to $x_1 + 2x_2 + 3x_3 = 7$
 $3x_1 + 4x_2 + 6x_3 = 15$
 $x_1, x_2, x_3 \ge 0$ (6)

Solution:

	Non-basic	Basic	Equations	Is the	Is the	Value	Is the
No	var = 0		&	solution	solution	of	solution
	var – u	var	solutions	feasible?	degenerate?	\mathbf{Z}	optimal?
			$x_1 + 2x_2 = 7$				
1	$x_3 = 0$	x_{1}, x_{2}		Yes	No	-5	No
			$x_1 = 1, x_2 = 3$				
			$x_1 + 3x_3 = 7$				
2	$x_2 = 0$	x_1, x_3	$3x_1 + 6x_3 = 15$	Yes	No	9	Yes
			$x_1 = 1, x_3 = 2$				
			$2x_2 + 3x_3 = 7$				
3	$x_1 = 0$	x_{2}, x_{3}	$4x_2 + 6x_3 = 15$	-	-	-	-
			Unbounded solution				

(b) If X is a normal variate with mean 10 & s.d. 4. Find (i) $P(5 \le X \le 18)$ (ii) $P(X \le 12)$ 5. (6)

Solution:

$$\mu = 10, \sigma = 4$$

$$z = \frac{x - \mu}{\sigma} = \frac{x - 10}{4}$$
(i) $P(5 \le x \le 18) = P\left(\frac{5 - 10}{4} \le z \le \frac{18 - 10}{4}\right)$

$$= P(-1.25 \le z \le 2)$$

$$= A(2) - A(-1.25)$$

$$= A(2) + A(1.25)$$

$$= 0.4772 + 0.3944$$

$$= 0.8716$$
(ii) $P(x \le 12) = P\left(z \le \frac{12 - 10}{4}\right)$

$$= P(z \le 0.5)$$

$$= A(0.5) - A(-\infty)$$

$$= A(\infty) + A(0.5)$$

$$= 0.5 + 0.1915$$

= 0.6915

5. (c) Solve the N.L.P.P.

Optimise
$$z = 12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23$$
 subject to $x_1 + x_2 + x_3 = 10$ $x_1, x_2, x_3 \ge 0$ (8)

Solution:

Let
$$f = 12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23$$
 and $h = x_1 + x_2 + x_3 - 10$

Consider the Lagrangian function,

$$L = f - \lambda h$$

$$L = (12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23) - \lambda(x_1 + x_2 + x_3 - 10)$$

$$L_{x_1} = 0 \Rightarrow 12 - 2x_1 - \lambda = 0 \Rightarrow x_1 = \frac{12 - \lambda}{2}$$

$$L_{x_2} = 0 \Rightarrow 8 - 2x_2 - \lambda = 0 \Rightarrow x_2 = \frac{8 - \lambda}{2}$$

$$L_{x_3} = 0 \Rightarrow 6 - 2x_3 - \lambda = 0 \Rightarrow x_3 = \frac{6 - \lambda}{2}$$

$$L_{\lambda} = 0 \Rightarrow -(x_1 + x_2 + x_3 - 10) = 0$$

$$x_1 + x_2 + x_3 = 10$$

$$\frac{12 - \lambda}{2} + \frac{8 - \lambda}{2} + \frac{6 - \lambda}{2} = 10$$

$$\frac{26 - 3\lambda}{2} = 10$$

$$\lambda = 2$$

 $\therefore x_1 = 5, x_2 = 3, x_3 = 1$

$$\Delta_{3} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{vmatrix} = 4$$

$$\Delta_{4} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & 0 & -2 & 0 \\ 1 & 0 & 0 & -2 \end{vmatrix} = -1 \begin{vmatrix} 1 & 0 & 0 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{vmatrix} + 1 \begin{vmatrix} 1 & -2 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & -2 \end{vmatrix} - 1 \begin{vmatrix} 1 & -2 & 0 \\ 1 & 0 & 0 \end{vmatrix}$$

$$\Delta_{4} = -4 - 4 - 4 = -12$$

Since both Δ_3 is positive and Δ_4 is negative, it is a maxima

$$z_{max} = 12(5) + 8(3) + 6(1) - (5)^{2} - (3)^{2} - (1)^{2} - 23$$

$$z_{max} = 32$$

S.E/Paper Solutions By: Kashif Shaikh 16

(a) Show that given matrix is diagonalizable and hence find diagonal form and 6. transforming matrix where $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ (6)

Solution:

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}, |A| = 45$$

The characteristic equation,

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} -2 - \lambda & 2 & -3 \\ 2 & 1 - \lambda & -6 \\ -1 & -2 & 0 - \lambda \end{vmatrix} = 0$$

$$\lambda^{3} - [sum of diagonals]\lambda^{2} + [sum of minors of diagonals]\lambda - |A| = 0$$

$$\lambda^{3} - \left[-2 + 1 + 0 \right] \lambda^{2} + \left[\begin{vmatrix} 1 & -6 \\ -2 & 0 \end{vmatrix} + \begin{vmatrix} -2 & -3 \\ -1 & 0 \end{vmatrix} + \begin{vmatrix} -2 & 2 \\ 2 & 1 \end{vmatrix} \right] \lambda - 45 = 0$$

$$\lambda^3 + 1\lambda^2 - 21\lambda - 45 = 0$$

$$\lambda = -3, -3, 5$$

The Algebraic Multiplicity of $\lambda = -3$ is 2 and that of $\lambda = 5$ is 1

(i) For
$$\lambda = -3$$
, $[A - \lambda I]X = 0$ gives

$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

By
$$R_2 - 2R_1$$
, $R_3 + R_1$

$$\begin{bmatrix} 1 & -2 & 3 & 1 & x_3 \\ \text{By } R_2 - 2R_1, R_3 + R_1 \\ \begin{bmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\therefore x_1 + 2x_2 - 3x_3 = 0$$

The rank (r) of the matrix is 1 and number of unknowns (n) is 3

Thus,
$$n - r = 3 - 1 = 2$$
 vectors to be formed

The Geometric Multiplicity of $\lambda = -3$ is 2

Since, Algebraic Multiplicity = Geometric Multiplicity,

matrix A is diagonalizable.

Let
$$x_3 = t \& x_2 = s$$
, $x_1 = -2s + 3t$

$$\therefore X = \begin{bmatrix} -2s + 3t \\ s \\ t \end{bmatrix} = \begin{bmatrix} -2s + 3t \\ s + 0t \\ 0s + t \end{bmatrix} = \begin{bmatrix} -2s \\ s \\ 0s \end{bmatrix} + \begin{bmatrix} 3t \\ 0t \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

Hence, corresponding to $\lambda = -3$ the eigen vectors are

$$X_1 = [-2,1,0]' \& X_2 = [3,0,1]'$$

(ii) For
$$\lambda = 5$$
, $[A - \lambda I]X = 0$ gives

$$\begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-7x_1 + 2x_2 - 3x_3 = 0$$
$$2x_1 - 4x_2 - 6x_3 = 0$$

Solving the above equations by Crammers rule, we get

$$\frac{x_1}{\begin{vmatrix} 2 & -3 \\ -4 & -6 \end{vmatrix}} = -\frac{x_2}{\begin{vmatrix} -7 & -3 \\ 2 & -6 \end{vmatrix}} = \frac{x_3}{\begin{vmatrix} -7 & 2 \\ 2 & -4 \end{vmatrix}}$$

$$\frac{x_1}{-24} = -\frac{x_2}{48} = \frac{x_3}{24}$$

$$\frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{-1}$$

Hence, corresponding to $\lambda = 5$ the eigen vector is $X_3 = \begin{bmatrix} 1,2,-1 \end{bmatrix}'$ Thus, matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ is diagonalised to $D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$ transformation $M^{-1}AM = D$ where $M = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

(b) Based on the following determine if there is a relation between literacy and smoking: 6.

	Smokers	Non-smokers
Literates	83	57
Illiterates	45	68

(6)

Solution:

The observed frequency table as given:

, .						
	Smokers	Non-smokers	Total			
Literates	83	57	140			
Illiterates	45	68	113			
Total	128	125	253			

(i) Null Hypothesis: There is no relation between literacy and smoking Alternative Hypothesis: There is a relation between literacy and smoking

(ii) Test Statistic:

0	E	O-E	$(O-E)^2$	$\frac{(O-E)^2}{E}$
83	$\frac{140 \times 128}{253} = 71$	12	144	144/71
57	$\frac{125 \times 140}{253} = 69$	-12	144	144/69
45	$\frac{128\times113}{253} = 57$	-12	144	144/57
68	$\frac{125 \times 113}{253} = 56$	12	144	144/56
	9.213			

(iii) Degree of freedom: $\emptyset = (r-1)(c-1) = (2-1)(2-1) = 1$

(iv) L.O.S: $\alpha = 0.05$

(v) Critical value: $\chi_{\alpha}^2 = 3.841$

(vi) Decision: since, the calculated value is more than the critical value, null hypothesis is rejected. Thus, there is a relation between literacy and smoking

6. (c) Max
$$z = 2x_1^2 - 7x_2^2 + 12x_1x_2$$
 subject to $2x_1 + 5x_2 \le 98$, $x_1, x_2 \ge 0$ by K.T. condition (8)

Solution:

Let
$$f = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

Let $h = 2x_1 + 5x_2 - 98$
Consider, $L = f - \lambda h$
 $L = 2x_1^2 - 7x_2^2 + 12x_1x_2 - \lambda(2x_1 + 5x_2 - 98)$
According to Kuhn Tucker conditions,
 $L_{x_1} = 0 \Rightarrow 4x_1 + 12x_2 - 2\lambda = 0$ (1)

$$L_{x_2} = 0 \Rightarrow -14x_2 + 12x_1 - 5\lambda = 0$$
(2)
 $\lambda h = 0 \Rightarrow \lambda(2x_1 + 5x_2 - 98) = 0$ (3)

$$h \le 0 \Rightarrow 2x_1 + 5x_2 - 98 \le 0$$
(4)
 $x_1, x_2, \lambda \ge 0$ (5)

Case I: If
$$\lambda = 0$$

From (1),
$$4x_1 + 12x_2 = 0$$

From (2),
$$12x_1 - 14x_2 = 0$$

$$x_1 = 0, x_2 = 0$$

$$z_{max} = 2(0)^2 - 7(0)^2 + 12(0)(0) = 0$$

Case II: If
$$\lambda \neq 0$$

From (1),
$$4x_1 + 12x_2 - 2\lambda = 0$$

From (2),
$$12x_1 - 14x_2 - 5\lambda = 0$$

From (3),
$$2x_1 + 5x_2 + 0\lambda = 98$$

On solving,

$$x_1 = 44, x_2 = 2, \lambda = 100$$

$$z_{max} = 2(44)^2 - 7(2)^2 + 12(44)(2) = 4900$$

Thus, the optimal solution is

$$z_{max} = 4900$$
 at $x_1 = 44, x_2 = 2$