

Homework for the Lecture

Algebra and Dynamics of Quantum Systems

Stefan Waldmann

Winter Term 2023/2024

$\underset{\rm revision:\ 2023-09-28\ 15:43:46\ +0200}{Homework\ Sheet\ No\ 1}$

Last changes by Stefan@JMU on 2023-09-28 Git revision of algdyn-ws2324: fec8b7e (HEAD -> master)

17.10.2023

(24 Points. Submission deadline 24. 10. 2023)

Homework 1-1: The commutator

Let \mathcal{A} be an associative algebra over \mathbb{C} . We define the commutator

$$[a,b] = ab - ba \tag{1.1}$$

for $a, b \in \mathcal{A}$ as usual. Furthermore, we write $ad(a) : b \mapsto [a, b]$.

- i.) Prove that $[\cdot, \cdot]$ turns $\mathscr A$ into a Lie algebra. (1 Point)
- ii.) Let $\Phi \colon \mathscr{A} \longrightarrow \mathscr{B}$ be an algebra morphism into another associative algebra \mathscr{B} . Show that Φ is also a Lie algebra morphism with respect to the commutator Lie brackets. Conclude that this yields a functor from the category of associative algebras $\mathsf{alg}_{\mathbb{C}}$ into the category of Lie algebras over \mathbb{C} . (2 Points)
- iii.) Consider the left and right multiplications

$$\mathsf{L}_a, \mathsf{R}_b \colon \mathscr{A} \longrightarrow \mathscr{A}$$
 (1.2)

for a fixed algebra element $a \in \mathcal{A}$, i.e. $\mathsf{L}_a(b) = ab$ as well as $\mathsf{R}_a(b) = ba$. Show $[\mathsf{L}_a, \mathsf{R}_b] = 0$ as well as $\mathsf{ad}(a) = \mathsf{L}_a - \mathsf{R}_a$ for all $a, b \in \mathcal{A}$. (1 Point)

iv.) Let \mathfrak{g} be a Lie algebra. Prove that ad: $\mathfrak{g} \ni \xi \mapsto (\eta \mapsto \mathrm{ad}(\xi)\eta = [\xi, \eta]) \in \mathrm{End}(\mathfrak{g})$ yields a homomorphism of Lie algebras

$$ad: \mathfrak{g} \longrightarrow End(\mathfrak{g}),$$
 (1.3)

where we equip $\operatorname{End}(\mathfrak{g})$ with the commutator as Lie bracket. (2 Points)

- v.) Prove that the map $\operatorname{ad}(a)$ is a derivation of the associative product for $a \in \mathcal{A}$. Furthermore show that the set of derivations of \mathcal{A} constitutes a Lie subalgebra $\operatorname{Der}(\mathcal{A}) \subseteq \operatorname{End}(\mathcal{A})$ of all endomorphisms of \mathcal{A} . Finally, prove that $\operatorname{ad}: \mathcal{A} \longrightarrow \operatorname{Der}(\mathcal{A})$ is a Lie algebra homomorphism.

 (3 Points)
- vi.) Derivations of the form ad(a) are called *inner derivations*, whose set we denote by $InnDer(\mathcal{A})$. Show first that $InnDer(\mathcal{A})$ is a subspace of $End(\mathcal{A})$. Furthermore prove

$$[D, \operatorname{ad}(a)] = \operatorname{ad}(Da) \tag{1.4}$$

for every derivation $D \in \operatorname{Der}(\mathcal{A})$ and every algebra element $a \in \mathcal{A}$. Conclude that the quotient $\operatorname{OutDer}(\mathcal{A}) = \operatorname{Der}(\mathcal{A}) / \operatorname{InnDer}(\mathcal{A})$ carries a Lie algebra structure. The elements of $\operatorname{OutDer}(\mathcal{A})$ are called *outer derivations* of \mathcal{A} . (3 Points)

vii.) Let now \mathcal{A} be a *-algebra. Compute $[a, b]^*$ for $a, b \in \mathcal{A}$. Use this to characterize the elements $a \in \mathcal{A}$, for which ad(a) is a *-derivation. (1 Point)

Homework 1-2: A positive quadratic polynomial

Consider complex numbers $a, b, b', c \in \mathbb{C}$ with

$$p(z,w) = a\overline{z}z + bz\overline{w} + b'\overline{z}w + cw\overline{w} \ge 0 \tag{1.5}$$

for all $z, w \in \mathbb{C}$. Show that this implies $a \ge 0, c \ge 0, \overline{b} = b'$ and $ac \ge b\overline{b}$. (2 Points)

Homework 1-3: The polynomial calculus I

Let \mathcal{A} be a unital associative algebra over some field \mathbb{k} and let $a \in \mathcal{A}$ be a fixed element. For a polynomial $p \in \mathbb{k}[x]$ one defines $p(a) \in \mathcal{A}$ as usual by substituting the variable x by the algebra element a. If \mathcal{A} is not unital, then this is only possible for polynomials $p \in x\mathbb{k}[x]$ with vanishing constant part.

i.) (2 Points) Show that the map

$$\mathbb{k}[x] \ni p \mapsto p(a) \in \mathcal{A} \tag{1.6}$$

is a unital algebra homomorphism.

ii.) (1 Point) Show that if $\Phi: \mathcal{A} \longrightarrow \mathcal{B}$ is a unital homomorphism into some other unital associative algebra \mathcal{B} over \mathbb{k} , then

$$\Phi(p(a)) = p(\Phi(a)) \tag{1.7}$$

for all $a \in \mathcal{A}$ and $p \in \mathbb{k}[x]$. In which sense does this still hold in the non-unital situation?

Homework 1-4: The polynomial calculus II

Assume that \mathcal{A} is a unital *-algebra over \mathbb{C} and let $a \in \mathcal{A}$ be a normal element. Consider polynomials $\mathbb{C}[z,\overline{z}]$ in two variables.

- i.) (2 Points) Show that the algebra $\mathbb{C}[z,\overline{z}]$ becomes a *-algebra if one defines $z^*=\overline{z}$ for the generators, thereby explaining the notation.
- ii.) (1 Point) Define for $p \in \mathbb{C}[z,\overline{z}]$ the algebra element $p(a,a^*) \in \mathcal{A}$ by substituting z by a and \overline{z} by a^* . Show that this is well-defined by using the fact that a is normal.
- iii.) (2 Points) Show that the map

$$\mathbb{C}[z,\overline{z}] \ni p \mapsto p(a,a^*) \in \mathcal{A} \tag{1.8}$$

is a unital *-homomorphism.

iv.) (1 Point) Formulate and prove an analogous statement for the case where \mathcal{A} is non-unital.