1. Write the power set of the set $S = \{1, 2\}$.

Answer:

$$\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$$

2. If $A = \{1, 2\}$ and $B = \{2, 1\}$, are the sets A and B equal? Explain.

Answer: Yes, they are equal because sets are unordered; the elements are the same.

3. Are \emptyset and $\{\emptyset\}$ the same set? Explain.

Answer: No. \emptyset is the empty set (having no elements) whereas $\{\emptyset\}$ is a set with one element (the empty set).

4. Is the set (2,3] equal to the statement $2 < x \le 3$? Explain.

Answer: Yes. Both notations describe the set of real numbers x such that $2 < x \le 3$.

5. If n is an integer and n > 3.1, what stronger inequality must n satisfy?

Answer: Since n is an integer, n > 3.1 implies that $n \ge 4$.

6. Determine the complement of the set S = (2, 5).

Answer: The complement of S (with respect to \mathbb{R}) is

$$(-\infty,2]\cup[5,\infty).$$

7. Consider the function $f:[0,2]\to [0,10]$ defined by $f(x)=x^2$. What is the range of f? Explain.

Answer: The function $f(x) = x^2$ is continuous and increasing on the interval [0,2] because its derivative, f'(x) = 2x, is nonnegative for $x \ge 0$. This means the smallest value is at x = 0 and the largest at x = 2. Evaluating these endpoints gives:

$$f(0) = 0^2 = 0$$
 and $f(2) = 2^2 = 4$.

Thus, the range of f is all values between 0 and 4

8. Is the function $f(x) = x^2$ injective? Explain.

Answer: No, not on all of \mathbb{R} because distinct numbers (x and -x) can have the same square. (Note: f is injective on $[0, \infty)$.)

9. Show that

$$f: \{0,1\}^2 \to \{0,1\}^2; \quad f(a,b) = (a, a \oplus b)$$

is bijective. Also show that the functions

$$g: \{0,1\}^2 \to \{0,1\}^2; \quad f(a,b) = (a, a \land b)$$

and

$$h: \{0,1\}^2 \to \{0,1\}^2; \quad f(a,b) = (a, a \lor b)$$

are not bijective. Explain how this relates to the array storage question from Homework 1.

Answer:

$$f(a,b) = (a, a \oplus b),$$

$$g(a,b) = (a, a \wedge b),$$

$$h(a,b) = (a, a \vee b).$$

For f:

The first component of f(a,b) is a, and the second is $a \oplus b$. Given an output $(a, a \oplus b)$, we can recover b uniquely by computing

$$b = a \oplus (a \oplus b).$$

Thus, f is one-to-one and onto (bijective).

For q:

When a = 0, regardless of whether b = 0 or b = 1,

$$0 \wedge b = 0$$
,

so both (0,0) and (0,1) map to (0,0). Hence, g is not injective (and so not bijective).

For h:

When a = 1, regardless of the value of b,

$$1 \lor b = 1$$
,

so both (1,0) and (1,1) map to (1,1). Thus, h is not injective.

Relation to Array Storage Question from Homework 1:

An addressing function in array storage must be injective to prevent collisions, and while f is bijective (thus collision-free), g and h are not, leading to potential data loss due to mapping different inputs to the same output.

10. Find all real solutions of

$$1 \le \lfloor 3x + 5 \rfloor < 3.$$

Justify all your steps.

Answer: Since the floor function $\lfloor 3x + 5 \rfloor$ must equal either 1 or 2 (the only integers in [1,3)), consider both cases:

• If |3x + 5| = 1:

$$1 \le 3x + 5 < 2 \implies -4 \le 3x < -3 \implies -\frac{4}{3} \le x < -1.$$

• If |3x + 5| = 2:

$$2 \le 3x + 5 < 3 \quad \Rightarrow \quad -3 \le 3x < -2 \quad \Rightarrow \quad -1 \le x < -\frac{2}{3}.$$

Thus, the solution is

$$x \in \left[-\frac{4}{3}, -1 \right) \cup \left[-1, -\frac{2}{3} \right) = \left[-\frac{4}{3}, -\frac{2}{3} \right).$$

11. Simplify

$$60 + 61 + 62 + 63 + 64 + 65 + 66 + 67$$

using a formula covered in lecture. Do not evaluate your final answer.

Answer: Using the arithmetic series sum formula,

$$S = n\left(\frac{a_1 + a_n}{2}\right),\,$$

with n = 8, $a_1 = 60$, and $a_n = 67$, the sum is

$$8\left(\frac{60+67}{2}\right).$$

12. Suppose the sequence $\{a_n\}$ is arithmetic with $a_3=5$ and $a_{11}=87$. What is the common difference?

Answer: The common difference is

$$d = \frac{a_{11} - a_3}{11 - 3} = \frac{87 - 5}{8} = \frac{82}{8} = \frac{41}{4}.$$

13. Evaluate

$$\sum_{k=2}^{1000} \frac{3^{2k+4}}{2^{3k+5}}.$$

algebraically and simplify as much as possible. Show all steps and leave large powers unevaluated.

Step 1: Write

$$3^{2k+4} = 3^4 \cdot 3^{2k} = 81 \cdot 9^k$$
, $2^{3k+5} = 2^5 \cdot 2^{3k} = 32 \cdot 8^k$.

Which simplifies to,

$$\frac{3^{2k+4}}{2^{3k+5}} = \frac{81}{32} \left(\frac{9}{8}\right)^k.$$

Step 2: Then,

$$S = \frac{81}{32} \sum_{k=2}^{1000} \left(\frac{9}{8}\right)^k.$$

Let j = k - 2 so that when k = 2, j = 0; then

$$\sum_{k=2}^{1000} \left(\frac{9}{8}\right)^k = \left(\frac{9}{8}\right)^2 \sum_{j=0}^{998} \left(\frac{9}{8}\right)^j.$$

Step 3: Using the geometric series formula,

$$\sum_{j=0}^{998} \left(\frac{9}{8}\right)^j = \frac{1 - \left(\frac{9}{8}\right)^{999}}{1 - \frac{9}{8}} = \frac{1 - \left(\frac{9}{8}\right)^{999}}{-\frac{1}{8}} = -8\left[1 - \left(\frac{9}{8}\right)^{999}\right].$$

Step 4: Therefore,

$$\sum_{k=2}^{1000} \left(\frac{9}{8}\right)^k = \left(\frac{9}{8}\right)^2 \cdot \left[-8\left(1 - \left(\frac{9}{8}\right)^{999}\right)\right] = -\frac{81}{64} \cdot 8\left(1 - \left(\frac{9}{8}\right)^{999}\right) = -\frac{81}{8}\left(1 - \left(\frac{9}{8}\right)^{999}\right).$$

Step 5: Substituting back,

$$S = \frac{81}{32} \cdot \left[-\frac{81}{8} \left(1 - \left(\frac{9}{8} \right)^{999} \right) \right] = -\frac{6561}{256} \left(1 - \left(\frac{9}{8} \right)^{999} \right).$$

Rewriting,

$$S = \frac{6561}{256} \left[\left(\frac{9}{8} \right)^{999} - 1 \right].$$

$$S = \frac{6561}{256} \left[\left(\frac{9}{8} \right)^{999} - 1 \right].$$

14. (Extra Credit) Let $S = \{0, 1, \dots, 20\}$. The function $f: S \to S$ is given by the table:

