Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation

Sunghwan Hong^{1,*}, Seokju Cho^{1,*}, Jisu Nam¹, Stephen Lin², Seungryong Kim¹ (* Equal Contribution)

¹Korea University, Seoul, Korea ²Microsoft Research Asia, Beijing, China

This paper presents a novel cost aggregation network, called **Volumetric Aggregation with Transformers (VAT)**, for few-shot segmentation.

- The use of transformers can benefit correlation map aggregation through self-attention over a global receptive field.
- However, the tokenization of a correlation map for transformer processing can be detrimental, because the discontinuity at token boundaries reduces the local context available near the token edges and decreases inductive bias.
- To address this problem, we propose a 4D Convolutional Swin Transformer, where a high-dimensional Swin Transformer is preceded by a series of small-kernel convolutions that impart local context to all pixels and introduce convolutional inductive bias.
- We additionally boost aggregation performance by **applying transformers within a pyramidal structure**, where aggregation at a coarser level guides aggregation at a finer level.
- Noise in the transformer output is then filtered in the subsequent decoder with the help of the query's appearance embedding.

With this model, a new state-of-the-art is set for all the standard benchmarks in few-shot segmentation. It is shown that VAT attains state-of-the-art performance for semantic correspondence as well, where cost aggregation also plays a central role.

Fig. 1: Our VAT reformulates few-shot segmentation as semantic correspondence. VAT sets a new state-of-the-art in few-shot segmentation, and attains state-of-the-art performance for semantic correspondence as well.

Fig. 2: Overall network architecture. Our network consists of feature extraction and cost computation, a pyramidal transformer encoder, and an affinity-aware transformer decoder.

Fig. 3: Illustration of shifted 4D windows in VTM. It computes self-attention within the partitioned windows and considers inter-window interactions by shifting the windows.

Fig. 4: Overview of 4D Convolutional Swin Transformer. We replace the VEM with VCM and the output undergoes VTM for cost aggregation.

Backbone network	Methods	1-shot								1		# learnable				
		5^{0}	5^1	5^2	5^3	mIoU	FB-IoU	mBA	5°	51	5^2	5°	mIoU	FB-IoU	mBA	params
	HSNet	64.3	70.7	<u>60.3</u>	60.5	64.0	76.7	<u>53.9</u>	70.3	73.2	67.4	67.1	69.5	80.6	54.5	2.6M
ResNet50	CyCTR	<u>65.7</u>	<u>71.0</u>	59.5	59.7	64.0	-	-	<u>69.3</u>	<u>73.5</u>	63.8	63.5	67.5	-	-	-
	VAT (ours)	67.6	72.0	62.3	60.1	65.5	77.8	54.4	72.4	73.6	68.6	65.7	70.1	80.9	54.8	3.2M
	HSNet	67.3	72.3	62.0	<u>63.1</u>	66.2	<u>77.6</u>	53.9	71.8	74.4	<u>67.0</u>	68.3	70.4	80.6	54.4	2.6M
ResNet101	CyCTR	<u>67.2</u>	<u>71.1</u>	57.6	59.0	63.7	73.0	-	71.0	75.0	58.5	65.0	67.4	75.4	-	-
	VAT (ours)	70.0	72.5	64.8	64.2	67.9	79.6	54.7	75.0	75.2	68.4	69.5	72.0	83.2	54.8	3.3M

Table 1: Performance comparison on **PASCAL-5**ⁱ.

Backbone feature	Methods	1-shot								5-shot							
		20^{0}	20^{1}	20^{2}	20^{3}	mean	FB-IoU	mBA	20^{0}	20^{1}	20^{2}	20^{3}	mean	FB-IoU	mBA		
	HSNet	36.3	43.1	38.7	38.7	39.2	68.2	53.0	43.3	51.3	48.2	45.0	46.9	70.7	53.8		
ResNet50	CyCTR	<u>38.9</u>	43.0	<u>39.6</u>	39.8	40.3	-	-	41.1	48.9	45.2	47.0	45.6	-	-		
	VAT (ours)	39.0	43.8	42.6	<u>39.7</u>	41.3	68.8	$\bf 54.2$	44.1	<u>51.1</u>	50.2	46.1	47.9	72.4	54.9		

Table 2: Performance comparison on COCO-20ⁱ.

		Data Aug.	Cost Aggregation		SPai	r-71k		F	F-PA	SCA	$PF\text{-WILLOW}$ $PCK @ lpha_{ ext{bbox}}$			
Methods	F.T. Feat.			P	CK @	Ω $lpha_{ m bb}$	ox	F	PCK @	$@~lpha_{ m im}$				
				0.03	0.05	0.1	0.15	0.03	0.05	0.1	0.15	0.05	0.1	0.15
CATs	/	×	Transformer	10.2	21.6	43.5	55.0	41.6	67.5	89.1	94.9	46.6	75.6	87.5
CAIS	/	✓	Transformer	13.8	27.7	49.9	61.7	49.9	75.4	92.6	96.4	<u>50.3</u>	79.2	90.3
VAT	/	×	Transformer	14.9	28.3	48.4	59.1	54.6	72.9	91.1	95.6	46.0	78.8	91.3
VAI	/	✓	Transformer	19.6	35.0	55.5	65.1	62.7	78.2	92.3	96.2	52.8	81.6	91.4

Table 3: Quantitative results on SPair-71k, PF-PASCAL and PF-WILLOW.

