1. Introduction (20%)

實作 EEGNet和 DeepConvNet, 解決2-class classification的問題, (x11b和s4b) 並以BCI competition dataset作為本次的datasets, 舉其中一筆dataset為例:

x11b channel 1:

x11b channel 2:

dataset shape為 (1080, 1, 2, 750) 1080筆data,C=1,H=2,W=750

2. Experiment Setup (30%)

1) The detail of your model(EEGNet, DeepConvNet)

EEGNet 架構為:

first Convolution → depthwise Convolution → separable Convolution EEGNet 所採用的depthwise-separable Convolution設計,比傳統的Convolution 降低更多的參數數量,提升train和evaluate的速度,但又不太影響accuracy

DeepConvNet 架構為:

Conv2D

- → (Conv2D + BatchNorm + Activation + MaxPooling + Dropout)
- → (Conv2D + BatchNorm + Activation + MaxPooling + Dropout)
- → (Conv2D + BatchNorm + Activation + MaxPooling + Dropout)
- → (Conv2D + BatchNorm + Activation + MaxPooling + Dropout)
- → Fully connected Layer

跟傳統的Convolution的架構差不多

```
class EEGNet(nn.Module):
def __init__(self,activation=nn.ELU()):
     super(EEGNet,self).__init__()
     self.firstconv=nn.Sequential(
         nn.Conv2d(1,16,kernel\_size=(1,51),stride=(1,1),padding=(0,25),bias=False),
         nn.BatchNorm2d(16,eps=1e-5,momentum=0.1,affine=True,track_running_stats=True)
     self.depthwiseConv=nn.Sequential(
        nn.Conv2d(16,32,kernel_size=(2,1),stride=(1,1),groups=16,bias=False),
        nn.BatchNorm2d(32,eps=1e-5,momentum=0.1,affine=True,track_running_stats=True),
        nn.AvgPool2d(kernel_size=(1,4),stride=(1,4),padding=0),
        nn.Dropout(p=0.25)
     self.seperableConv=nn.Sequential(
        nn.Conv2d(32,32,kernel_size=(1,15),stride=(1,1),padding=(0,7),bias=False),
         nn.BatchNorm2d(32,eps=1e-5,momentum=0.1,affine=True,track_running_stats=True),
         activation,
        nn. AvgPool2d(kernel\_size=(1,8), stride=(1,8), padding=0),\\
        nn.Dropout(p=0.25)
     self.classify=nn.Linear(736,2)
def forward(self,X):
    out=self.firstconv(X)
    out=self.depthwiseConv(out)
    out=self.seperableConv(out)
    out=out.view(out.shape[0],-1)
    out=self.classify(out)
     return out
```

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	$\bmod e = \mathrm{valid}, \max \mathrm{norm} = 2$
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	$\bmod e = \mathrm{valid}, \max \mathrm{norm} = 2$
BatchNorm			2 * 25		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * C + 50	Linear	$\bmod e = \mathrm{valid}, \max \mathrm{norm} = 2$
BatchNorm			2 * 50		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	$\bmod e = \mathrm{valid}, \max \mathrm{norm} = 2$
BatchNorm			2 * 100		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	$\bmod e = valid, \max norm = 2$
BatchNorm			2 * 200		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	$\max \text{ norm} = 0.5$

2) Explain the activation function (ReLU, Leaky ReLU, ELU)

ReLU: f(x) = max(0, x)

Leaky ReLU: f(x) = max(0.01x, x) ELU: $f(x) = \alpha(e^x - 1)$, if x < 0

ReLU, Leaky ReLU, ELU這三個差別在於x小於0的時候不一樣, ReLU 會有Dead ReLU Problem, 在training時某些神經元可能永遠不會被 activate,導致相應的參數永遠不能被更新,所以在做backpropagation時, Leaky ReLU和ELU在訓練上會有比較好的結果, 因為當x小於0時還是有值

3. Experiment Results (30%)

1) The highest testing accuracy

EEGNet

DeepConvNet

ReLU_train max acc: 97.96296296296296 ReLU_test max acc: 87.68518518518519 LeakyReLU_train max acc: 97.96296296296 ELU_train max acc: 91.48148148148148 ELU_test max acc: 82.87037037037037

ReLU_train max acc: 94.35185185185185 ReLU_test max acc: 84.44444444444444 LeakyReLU_train max acc: 94.9074074074074 LeakyReLU_test max acc: 84.35185185185 ELU_train max acc: 98.24074074074075 ELU_test max acc: 82.31481481481481

Testing data accuracy:

	ReLU	Leaky ReLU	ELU
EEGNet	87.69%	86.67%	82.87%
DeepConvNet	84.44%	84.35%	82.31%

2) Comparison figure

4. Discussion (20%)

- 1. 一開始以為data是一張張的圖片, 後來發現他的shape是(1080, 1, 2, 750), 所以我想很久為什麼一張圖片會是四維的
- 2.一開始用read_bci_data讀完data後, 不知道要怎麼讓data input到 pytorch training,後來才知道要用torch.utils.data import DataLoader()跟 Tensordataset(),所以流程是用 read_bci_data讀完data後, 放到Tensordataset(), 再放到DataLoader(), 算是pytorch的 一個語法
- 3.x的type是torch.float, y的type是torch.long