Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 08.05.2015

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note
							-
	Aufgabe	1	2	3	4	Σ	
	erreichbare Punkte	11,5	8,5	10	10	40	
	erreichte Punkte						
$\mathbf{Bitte}\$							
tragen Sie	Name, Vorname und	Matrik	ælnumr	ner auf	dem I	eckbla [*]	tt ein,
rechnen S	ie die Aufgaben auf se	eparatei	n Blätte	ern, ni e	c ht auf	dem A	Angabeblatt,
beginnen	Sie für eine neue Aufg	gabe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Namen	sowie d	lie Mat	rikelnu	mmer a	an,
begründer	n Sie Ihre Antworten a	ausführ	lich und	d			
	ie hier an, an welchem könnten (<i>unverbindlich</i>		genden	Termi	ne Sie z	zur mür	ndlichen Prüfung
	Fr., 15.05.2015	□ Mo.,	18.05.	2015		Di., 19	0.05.2015

1. Bearbeiten Sie folgende Teilaufgaben:

11,5 P.

a) Gegeben ist das nichtlineare System

4 P.

$$\dot{x}(t) = x(t)\cos(ax(t)) - x(t)u(t), x(t_0) = x_0,
 y(t) = x(t)^2 + u(t).$$
(1)

i. Bestimmen Sie sämtliche Ruhelagen x_R des Systems für einen konstanten 1 P. Eingang $u=u_R$. Geben Sie auch den zulässigen Wertebereich von u_R für die jeweiligen Ruhelagen an.

Lösung:

Offensichtlich ist $x_R = 0$ für jedes u_R eine Ruhelage von (0.5 Punkte)

$$\dot{x}(t) = x(t)(\cos(ax(t)) - u_R).$$

Sofern $-1 \le u_R \le 1$ erfüllt ist, ist eine unendliche Zahl von Ruhelagen durch

$$\cos(ax_R) = u_R$$

gegeben (0.5 Punkte). Diese lassen sich als $\left\{\frac{\arccos(u_R)+2k\pi}{a}, \frac{-\arccos(u_R)+2k\pi}{a}\right\}$ zusammenfassen, wenn $0 \le \arccos(u_R) \le \pi$ gilt.

ii. Linearisieren Sie das System um eine allgemeine Ruhelage x_R für $u(t)=1\,\mathrm{P.}|u_R.$

Lösung:

Das linearisierte System resultiert zu

$$\Delta \dot{x}(t) = \underbrace{(\cos(ax_R) - u_R - ax_R \sin(ax_R))}_{a} \Delta x + \underbrace{(-x_R)}_{b} \Delta u, (0.5 \text{ Punkte})$$

$$\Delta y = \underbrace{2x_R}_{c} \Delta x + \underbrace{1}_{d} \Delta u. (0.5 \text{ Punkte})$$

iii. Geben Sie für a=0 das Abtastsystem zum nichtlinearen System (1) für 2 P.| die Abtastzeit T_a unter Verwendung des bekannten Haltegliedes nullter Ordnung an.

Lösung:

Die Differentialgleichung vereinfacht sich für a = 0 zu

$$\dot{x}(t) = x(t)(1 - u(t)), \qquad x(t_0) = x_0.$$

Für einen konstanten Eingang $u(t) = u_C$ hat sie die Lösung

$$x(t) = x_0 e^{(1-u_C)(t-t_0)}.(1 \text{ Punkt})$$

Wird für den Zeitraum $kT_a \leq t < (k+1)T_a$ die Stellgröße $u(t) = u_k$ und der Anfangswert $x(kT_a) = x_k$ gesetzt, so resultiert für die Lösung zum Zeitpunkt $t = (k+1)T_a$

$$x_{k+1} = x_k e^{(1-u_k)T_a}.$$

Damit resultiert das gesuchte Abtastsystem

$$x_{k+1} = x_k e^{(1-u_k)T_a}$$
, (0.5 Punkte)
 $y_k = x_k^2 + u_k$.(0.5 Punkte)

$$G(s) = \frac{s^2}{s^2 - 2s + 4}, \qquad G(z) = \frac{z - 2}{(z + \frac{1}{2})(z + 2)}, \qquad G^{\#}(q) = \frac{10 - \frac{1}{2}q}{10 + q}$$

hinsichtlich BIBO-Stabilität und Sprungfähigkeit. Für die Abtastsysteme gilt eine Abtastzeit $T_a=0.1$. Begründen Sie ihre Antwort hinreichend!

Lösung:

- G(s) ist sprungfähig aber nicht BIBO-stabil (kein Hurwitzpolynom). (0.5 Punkte)
- G(z) ist nicht sprungfähig und nicht BIBO-stabil (Polstelle außerhalb des Einheitskreises). (0.5 Punkte)
- $G^{\#}(q)$ ist nicht sprungfähig (Nullstelle bei $\Omega_0 = \frac{2}{T_a} = 20$) aber BIBOstabil. (1 Punkt)
- c) In Abbildung 1 sind die Impulsantworten (für $u(t) = \delta(t)$) von zwei Varianten 5,5 P.| von Haltegliedern erster Ordnung dargestellt.

Abbildung 1: Sprungantworten der Halteglieder.

i. Stellen die beiden Halteglieder kausale Systeme dar? Begründen Sie Ihre 1 P.| Antwort hinreichend!

Lösung:

Offensichtlich ist das Halteglied 1 kein kausales System, da die Impulsantwort bereits vor dem Impuls am Eingang startet (0.5 Punkte). Beim Halteglied 2 startet die Impulsantwort erst nach dem Impuls, weshalb es sich um ein kausales System handelt (0.5 Punkte).

ii. Berechnen Sie die Übertragungsfunktion $G_2(s)$ von Halteglied 2. 2 P.

Lösung:

Die Impulsantwort lässt sich als

$$g_2(t) = \frac{t}{T_a} (\sigma(t) - \sigma(t - T_a)) + (1 - \frac{t - T_a}{T_a}) (\sigma(t - T_a) - \sigma(t - 2T_a))$$

$$= \frac{t}{T_a} \sigma(t) - 2\frac{t - T_a}{T_a} \sigma(t - T_a) + \frac{t - 2T_a}{T_a} \sigma(t - 2T_a) \quad (1 \text{ Punkt})$$

formulieren. Die Laplace-Transformation dieses Ausrucks liefert

3

$$G_2(s) = \frac{1}{T_a s^2} - \frac{2}{T_a s^2} e^{-T_a s} + \frac{1}{T_a s^2} e^{-2T_a s}$$
$$= \frac{\left(1 - e^{-T_a s}\right)^2}{T_a s^2}.(1 \text{ Punkt})$$

iii. Bestimmen Sie für die in Abbildung 2 dargestellte Impulsfolge $(u_k)=2.5\,\mathrm{P.}$ $2\delta(t)+3\delta(t-T_a)$ das zugehörige Ausgangssignal $y_2(t)$ von Halteglied 2 und skizzieren Sie es in Abbildung 2.

Abbildung 2: Systemantwort auf Impulsfolge.

Lösung:

Die Laplace-Transformation von
$$u(t) = (u_k) = 2\delta(t) + 3\delta(t - T_a)$$
 liefert $\hat{u}(s) = 2 + 3e^{-T_a s}, (0.5 \text{ Punkte})$

woraus

$$\begin{split} \hat{y}_2(s) &= G_2(s)\hat{u}(s) = \frac{2}{T_a s^2} - \frac{4}{T_a s^2} e^{-T_a s} + \frac{2}{T_a s^2} e^{-2T_a s} \\ &\quad + \frac{3}{T_a s^2} e^{-T_a s} - \frac{6}{T_a s^2} e^{-2T_a s} + \frac{3}{T_a s^2} e^{-3T_a s} \\ &= \frac{2}{T_a s^2} - \frac{1}{T_a s^2} e^{-T_a s} - \frac{4}{T_a s^2} e^{-2T_a s} + \frac{3}{T_a s^2} e^{-3T_a s} (1 \text{ Punkt}) \end{split}$$

und in weiterer Folge

$$y_2(t) = \frac{2t}{T_a}\sigma(t) - \frac{t - T_a}{T_a}\sigma(t - T_a) - 4\frac{t - 2T_a}{T_a}\sigma(t - 2T_a) + 3\frac{t - 3T_a}{T_a}\sigma(t - 3T_a)(0.5 \text{ Punkte})$$

resultiert. Das Resultat ist in Abbildung 3 dargestellt (0.5 Punkte).

Abbildung 3: Systemantwort auf Impulsfolge - Lösung.

Alternativer Lösungsansatz: Das Problem lässt sich auch mittels Faltungsintegral lösen. Mit der Impulsantwort

$$g_2(t) = \frac{t}{T_a} \left(\sigma(t) - \sigma(t - T_a) \right) + \left(1 - \frac{t - T_a}{T_a} \right) \left(\sigma(t - T_a) - \sigma(t - 2T_a) \right)$$

$$= \frac{t}{T_a} \sigma(t) - 2 \frac{t - T_a}{T_a} \sigma(t - T_a) + \frac{t - 2T_a}{T_a} \sigma(t - 2T_a)$$

folgt

$$\begin{aligned} y_2(t) &= \int_0^t u(t-\tau)g_2(\tau)\mathrm{d}\tau = \int_0^t (2\delta(t-\tau) + 3\delta(t-\tau-T_a))g_2(\tau)\mathrm{d}\tau \\ &= 2g_2(t) + 3g_2(t-T_a) \\ &= \frac{2t}{T_a}\sigma(t) - 4\frac{t-T_a}{T_a}\sigma(t-T_a) + 2\frac{t-2T_a}{T_a}\sigma(t-2T_a) \\ &+ \frac{3(t-T_a)}{T_a}\sigma(t-T_a) - 6\frac{t-2T_a}{T_a}\sigma(t-2T_a) + 3\frac{t-3T_a}{T_a}\sigma(t-3T_a) \\ &= \frac{2t}{T_a}\sigma(t) - \frac{t-T_a}{T_a}\sigma(t-T_a) - 4\frac{t-2T_a}{T_a}\sigma(t-2T_a) + 3\frac{t-3T_a}{T_a}\sigma(t-3T_a). \end{aligned}$$

2. Bearbeiten Sie folgende Teilaufgaben:

8,5 P.|

a) Gegeben ist das lineare, zeitkontinuierliche System

4 P.|

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & \alpha \\ 0 & \beta \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \quad \mathbf{x}(0) = \mathbf{x}_0$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}.$$
(2)

i. Überprüfen Sie mit Hilfe der Erreichbarkeitsmatrix in welchem Wertebereich α und β liegen müssen, damit das System (2) vollständig erreichbar ist.

Lösung:

Die Erreichbarkeitsmatrix lautet

$$\mathcal{O} = \begin{bmatrix} 0 & \alpha \\ 1 & \beta \end{bmatrix}.$$

Sie hat vollen Rang wenn $\alpha \neq 0$ erfüllt ist (0.5 Punkte) (β darf beliebige Werte annehmen (0.5 Punkte)). In diesem Fall ist das System (2) vollständig erreichbar.

ii. Für welchen Wertebereich von α und β ist für u = 0 die Ruhelage $\mathbf{x}_R = \mathbf{0}$ 1 P.| des Systems (2) global asymptotisch stabil?

Lösung:

Aus dem charakteristischen Polynom der Dynamikmatrix

$$p(\lambda) = \det \begin{pmatrix} \begin{bmatrix} \lambda + 1 & -\alpha \\ 0 & \lambda - \beta \end{bmatrix} \end{pmatrix} = (\lambda + 1)(\lambda - \beta)$$

ergeben sich die Eigenwerte $\lambda_1 = -1$ und $\lambda_2 = \beta$ (0.5 Punkte). Daher ist das System (2) für $\beta < 0$ global asymptotisch stabil, wobei der Parameter α beliebige Werte annehmen darf (0.5 Punkte).

iii. Leiten Sie für $\alpha = 1$ und $\beta = 0$ die Transitionsmatrix

2 P.

$$\mathbf{\Phi}(t) = \begin{bmatrix} e^{-t} & 1 - e^{-t} \\ 0 & 1 \end{bmatrix}.$$

zum System (2) her.

Lösung:

Aus

$$\mathbf{A}^2 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix},$$
$$\mathbf{A}^3 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}$$

lässt sich

$$\mathbf{A}^k = \begin{bmatrix} (-1)^k & (-1)^{k+1} \\ 0 & 0 \end{bmatrix} \qquad \text{für } k > 0 \quad (1 \text{ Punkt})$$

schließen. Damit resultiert die Transitionsmatrix

$$\Phi(t) = \sum_{k=0}^{\infty} \mathbf{A}^k \frac{t^k}{k!} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \sum_{k=1}^{\infty} (-1)^k \frac{t^k}{k!} & -\sum_{k=1}^{\infty} (-1)^k \frac{t^k}{k!} \\ 0 & 0 \end{bmatrix} \\
= \begin{bmatrix} \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} & 1 - \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{-t} & 1 - e^{-t} \\ 0 & 1 \end{bmatrix}. \quad (1 \text{ Punkt})$$

Alternativer Lösungsansatz: Wegen (für u = 0)

$$\hat{\mathbf{x}}(s) = (s\mathbf{E} - \mathbf{A})^{-1}\mathbf{x}_0$$

lässt sich die Transitionsmatrix gemäß

$$\Phi = \mathcal{L}^{-1} \left\{ \begin{bmatrix} s+1 & -1 \\ 0 & s \end{bmatrix}^{-1} \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{s(s+1)} \begin{bmatrix} s & 1 \\ 0 & s+1 \end{bmatrix} \right\} = \mathcal{L}^{-1} \left\{ \begin{bmatrix} \frac{1}{s+1} & \frac{1}{s(s+1)} \\ 0 & \frac{1}{s} \end{bmatrix} \right\} \\
= \begin{bmatrix} e^{-t}\sigma(t) & \int_0^t e^{-\tau} d\tau \sigma(t) \\ 0 & \sigma(t) \end{bmatrix} = \begin{bmatrix} e^{-t} & 1 - e^{-t} \\ 0 & 1 \end{bmatrix} \sigma(t)$$

auch mit Hilfe der (inversen) Laplace-Transformation errechnen.

b) Für das vollständig beobachtbare lineare, zeitkontinuierliche System

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \qquad \mathbf{x}(0) = \mathbf{x}_0$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

sind die Zeitverläufe der Transitionsmatrix Φ , der Stellgröße u und der Ausgangsgröße y für $t \geq 0$ bekannt

$$\mathbf{\Phi} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}, \qquad u = t, \qquad y = 1 + 2t + \frac{t^3}{6}.$$

Ermitteln Sie hieraus den Anfangszustand \mathbf{x}_0 des Systems.

$2 \,\mathrm{P.}|$

Lösung:

Aus der allgemeinen Lösung

$$y(t) = \mathbf{c}^{T} \mathbf{\Phi}(t) \mathbf{x}_{0} + \int_{0}^{t} \mathbf{c}^{T} \mathbf{\Phi}(t - \tau) \mathbf{b} u(\tau) d\tau,$$

$$y(t) = x_{0,1} + t x_{0,2} + \int_{0}^{t} (t - \tau) \tau d\tau,$$

$$y(t) = x_{0,1} + t x_{0,2} + \frac{t^{3}}{2} - \frac{t^{3}}{3},$$

$$y(t) = x_{0,1} + t x_{0,2} + \frac{t^{3}}{6} \quad (1 \text{ Punkt})$$

lässt sich durch Koeffizientenvergleich mit dem gegebenen Verlauf der Ausgangsgröße $x_{0,1}=1$ (1 Punkt) und $x_{0,2}=2$ bestimmen.

c) Entwerfen Sie für das vollständig beobachtbare lineare, zeitdiskrete System 2,5 P.

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 5 \\ 2 \\ 7 \end{bmatrix} u_k,$$
$$y_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}_k$$

einen Zustandsbeobachter, welcher jeden Anfangsfehler $\mathbf{e}_0 = \hat{\mathbf{x}}_0 - \mathbf{x}_0$ in höchstens 3 Schritten in $\mathbf{0}$ überführt.

Lösung:

Das charakteristische Polynom zur Dynamik
matrix des Fehlersystems $\mathbf{\Phi}+\hat{\mathbf{k}}\mathbf{c}^T$ ergibt sich zu

$$p(\lambda) = \det \left(\lambda \mathbf{E} - (\mathbf{\Phi} + \hat{\mathbf{k}} \mathbf{c}^T) \right) = \det \left(\begin{bmatrix} \lambda - 1 - k_1 & -1 & 0 \\ -k_2 & \lambda - 1 & -1 \\ -k_3 & 0 & \lambda \end{bmatrix} \right)$$
$$= (\lambda - 1 - k_1)(\lambda - 1)\lambda - k_3 - k_2\lambda$$
$$= \lambda^3 + \lambda^2(-1 - 1 - k_1) + \lambda(1 + k_1 - k_2) - k_3$$
$$= \lambda^3 + \lambda^2(-2 - k_1) + \lambda(1 + k_1 - k_2) - k_3.$$

Um auf das gewünschte charakteristische Polynom $p^*(\lambda) = \lambda^3$ zu kommen, muss das Gleichungsssystem

$$A: -2 - k_1 = 0$$

$$B: 1 + k_1 - k_2 = 0$$

$$C: k_3 = 0$$

gelöst werden. Mit $k_1 = -2$ und $k_3 = 0$ resultiert aus B

$$k_2 = -1.$$

Alternativer Lösungsansatz: Die Aufgabe lässt sich auch mit Hilfe der Formel von Ackermann lösen. Hierzu werden in weiterer Folge die Matrizen

$$\Phi^{2} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

$$\Phi^{3} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

benötigt. Die Beobachtbarkeitsmatrix lautet

$$\mathcal{O}(\mathbf{c}^T, \mathbf{\Phi}) = egin{bmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 1 & 2 & 1 \end{bmatrix}.$$

Mit ihrer Determinante $det(\mathcal{O}) = 1$ ergibt sich ihre Inverse zu

$$\mathcal{O}(\mathbf{c}^T, \mathbf{\Phi})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}.$$

Hieraus folgt

$$\hat{\mathbf{v}}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

woraus sich für das gewünschte charakteristische Polynom $p^*(\lambda) = \lambda^3$ der Vektor

$$\hat{\mathbf{k}} = -\Phi^3 \hat{\mathbf{v}}_1 = \begin{bmatrix} -2\\ -1\\ 0 \end{bmatrix}$$

ergibt.

3. Für die folgenden Teilaufgaben liegt ein einfacher offener Regelkreis mit Ausgangs- 10 P.| störung zugrunde, siehe Abbildung 4.

Abbildung 4: Strukturschaltbild des offenen Regelkreises.

a) Es wird angenommen, dass die Störung d(t) messbar ist.

4 P.

i. Entwerfen Sie allgemein eine exakte Störgrößenkompensation für den offenen Kreis in Abbildung 4, indem sie am Ausgang des Reglers R(s) die Größe $R_d(s)d(s)$ subtrahieren. Legen Sie die Übertragungsfunktion $R_d(s)$ so aus, dass der Einfluss der Störung d(t) am Ausgang y(t) exakt kompensiert wird. **Lösung:**

$$y = Gu + G_d d$$
$$u = Rr - Rdd$$

daraus folgt

$$u = Rr - Rdd$$
$$y = GRr - GR_dd + Gdd$$
$$Rd = \frac{G_d}{G}.$$

ii. Welche Voraussetzungen müssen die Zähler- und Nennerpolynome von 2 P. G(s) und $G_d(s)$ hinsichtlich Grad und Lage der Nullstellen erfüllen, damit $R_d(s)$ stabil und realisierbar ist? **Lösung:**

$$Rd = \frac{G_d}{G} = \frac{z_d n}{n_d z}.$$

G muss minimalphasig sein, G_d stabil. $\operatorname{grad}(z_d n) \leq \operatorname{grad}(n_d z)$.

b) Die Übertragungsfunktionen der Strecke und des Reglers in Abbildung 4 lauten 6 P.|

$$G(s) = \frac{60000}{(s+3)(s+2000)}$$
 bzw. $R(s) = K_P + \frac{K_I}{s}$,

mit $K_P = 1/20$ und $K_I = 1$.

i. Zeichnen Sie approximativ das Bode-Diagramm des offenen Kreises $L(s) = 3 \,\mathrm{P.}|$ R(s)G(s) in die angehängte Vorlage. Geben Sie charakteristische Frequenzen an und zeichnen Sie die jeweiligen Asymptoten.

Lösung Teil b): Regler: $PT1 \text{ mit } \omega_1 = 20 \text{ rad s}^{-1} + Integrator$ Strecke: V = 10, $PT1 \text{ mit } \omega_1 = 3 \text{ rad s}^{-1}$, $PT1 \text{ mit } \omega_1 = 2000 \text{ rad s}^{-1}$.

ii. Skizzieren Sie die Sprungantwort h(t) des geschlossenen Regelkreises für einen Führungssprung $r(t) = \sigma(t)$ und d(t) = 0. Bestimmen Sie dazu mit Hilfe des Bode-Diagramms der offenen Strecke L(s) näherungsweise die Anstiegszeit t_r und das prozentuale Überschwingen \ddot{u} . Hinweis: Sollten Sie die Parameter nicht aus dem Bode-Diagramm ablesen können, verwenden Sie ersatzweise die Parameter $\omega_c = 5 \, \mathrm{rad} \, \mathrm{s}^{-1}$ und $\arg L(\mathrm{I}\omega_c) = -135^{\circ}.$

Lösung Teil c): ω_c liegt bei $5 \text{ rad s}^{-1} \rightarrow t_r = 1.5/5 = 0.3 \text{ s}.$

 $\arg G(j\omega_c) = -135^{\circ}, \rightarrow \Delta\Phi = 45^{\circ}, \rightarrow \ddot{U}berschwingungen \ddot{u} = 70 - 45 =$

25%.

iii. Der geschlossene Kreis wird mit einer Führungsrampe r(t) = t beauf- 1 P.| schlagt. Bestimmen Sie den zu erwartenden Regelfehler $e_{\infty|r(t)=t}$ für $t \to \infty$.

Lösung Teil d): Bleibende Regelabweichung (1 Punkt):

$$e(s) = r(s) - y(s) = (1 - T(s))r(s) = \frac{1}{1 + L(s)}r(s)$$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} e(s)s = \lim_{s \to 0} s \frac{1}{1 + L(s)} \frac{1}{s^2} = \frac{1}{\lim_{s \to 0} s + \lim_{s \to 0} s L(s)} = \frac{1}{10}$$

4. Bearbeiten Sie die folgenden Teilaufgaben. Begründen Sie Ihre Ergebnisse.

10 P.

a) Gegeben ist die Regelstrecke

7,5 P.

$$G(s) = \frac{s-1}{s^3 + 2s^2 + s + 4}.$$

Die Strecke soll in einem Standard-Regelkreis mit einem P-Regler $R(s) = K_P$ geregelt werden.

i. Prüfen Sie mit dem Routh-Hurwitz Verfahren die Stabilität der Strecke 2 P. | G(s). **Lösung:** Routh-Schema:

 $s^3: 1 1$ $s^2: 2 4$ $s^1: -1 0$ $s^0: 4$

Ein VZ-Wechsel in Pivotspalte, Übertragungsfunktion ist nicht stabil.

ii. Die folgende Abbildung zeigt das Bild der imaginären Achse $s=\mathrm{I}\omega$ von L(s)=R(s)G(s) in der $L(\mathrm{I}\omega)$ -Ebene für $K_P=1$. Der so geschlossene Regelkreis ist stabil. Ortskurve mit Lösung:

A. Die Strecke G(s) besitzt eine Polstelle mit negativem Realteil und zwei 1,5 P.| Polstellen mit positivem Realteil. Welche stetige Winkeländerung muss demnach $1+L(\mathrm{I}\omega)$ haben, wenn der geschlossene Kreis stabil ist? $\boldsymbol{L}\ddot{o}$ -sung:

$$\Delta \arg(1 + L(I\omega)) = (\max(\gcd(z_L), \gcd(n_L)) - N_-(n_L) + N_+(z_L))\pi$$

= $(3 - 1 + 2)\pi = 4\pi$.

- B. Markieren Sie den Bildpunkt von s=10 und den Punkt -1. **Lösung:** 1,5 P.| s. Ortskurve.
- C. Kennzeichnen Sie qualitativ, was für $\omega \to \pm \infty$ geschieht. **Lösung:** s. 1,5 P.| Ortskurve.
- D. Markieren Sie durch Pfeile die Laufrichtung von $L(I\omega)$ für wachsende 1 P.| ω . Hinweis: Nehmen Sie das Ergebnis aus A. zu Hilfe. **Lösung:** s. Ortskurve.

b) Gegeben sind die folgenden Differentialgleichungen zur Beschreibung eines Systems bestehend aus einer Strecke und einem Stellglied,

$$\ddot{w} = \left(ae^w - \frac{b\ddot{w}}{\sqrt{w}}\right)\sin v + c\dot{v}^2, \quad \dot{p} = \arctan(wv), \quad w^2z = gv.$$

Dabei können die Größen w und p sowie ihre Ableitungen der Strecke und die Größe v und ihre Ableitung dem Stellglied zugeordnet werden. Die Größe z ist messbar und a, b, c und g sind konstante Parameter.

Bringen Sie die Differentialgleichungen auf die Form $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u), \ y = h(\mathbf{x}, u).$ 2,5 P.| Führen Sie dazu einen geeigneten Zustandsvektor \mathbf{x} , eine Eingangsgröße u und eine Ausgangsgröße y ein.

Lösung: Zustandsvektor (1,25 Punkte):

$$\mathbf{x} = [w, \dot{w}, \ddot{w}, p, v], \quad u = \dot{v}, \quad y = z,$$

, Zustandssystem (1,25 Punkte):

$$\dot{\mathbf{x}} = \begin{bmatrix} x_2 \\ x_3 \\ (ae^{x_1} - \frac{bx_3}{\sqrt{x_1}})\sin x_5 + cu^2 \\ \arctan(x_1x_5) \\ u \end{bmatrix}, \quad y = (gx_5)/x_1^2$$

