机器学习导论 第四讲 决策树

机器学习模型引线

- 基础机器学习模型: 线性模型
 - 高级模型: 支持向量机、神经网络等
 - 高级模型: 统计学习方法和理论

- 基础机器学习模型: 决策树
 - 高级模型: Adaboost, 随机森林, GBDT等

- 基础机器学习模型: 贝叶斯模型
 - 高级模型: 图模型等

大纲

• 决策树简介(基本流程)

• 决策树算法的关键: 划分选择

• 克服过拟合的问题: 剪枝处理

• 处理多种类型数据: 连续与缺失值

• 决策树的变体: 多变量决策树

基本流程

• 例子

基本流程

决策树基于树结构来进行预测

基本流程

- 决策过程中每个判定问题都是对某个属性的"测试"
- 决策过程的最终结论对应了我们所希望的判定结果
- 每个测试的结果或是导出最终结论,或者导出进一步的 判定问题;嵌套关系——当前节点考虑范围是在上次决 策结果的限定范围之内
- 从根结点到每个叶结点的路径对应了一个判定测试序列

决策树学习的目的是为了产生一棵泛化能力强, 即处理未见示例能力强的决策树

基本流程 - 递归过程

Algorithm 1 决策树学习基本算法

输入:

- 训练集 D = {(x₁, y₁),...,(x_m, y_m)};
- 属性集 $A = \{a_1, \ldots, a_d\}$.

过程: 函数 TreeGenerate(D, A)

- 1: 生成结点 node;
- 2: if D 中样本全属于同一类别 C then
- 3: 将 node 标记为 C 类叶结点; return
- 4: end if
- 5: if A = ∅ OR D 中样本在 A 上取值相同 then
- 6: 将 node 标记叶结点, 其类别标记为 D 中样本数最多的类; return
- 7: end if
- 8: 从 A 中选择最优划分属性 a*;
- 9: for a, 的每一个值 a, do
- 10: 为 node 生成每一个分枝; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
- 11: if D_v 为空 then
- 12: 将分枝结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
- 13: else
- 14: 以 TreeGenerate(D_v , $A \{a_*\}$) 为分枝结点
- 15: end if
- 16: end for

输出: 以 node 为根结点的一棵决策树

遇到如下三个停 止条件之一停止 递归

- (1)当前结点**包含的** <mark>样本全部属于同一类</mark> 别
- (2) 当前属性集为空, 或所有样本在所有属 性上取值相同
- (**3**) 当前结点包含的 样本集合为空

大纲

• 决策树简介(基本流程)

• 决策树算法的关键: 划分选择

• 克服过拟合的问题: 剪枝处理

• 处理多种类型数据: 连续与缺失值

• 决策树的变体: 多变量决策树

划分选择

- 决策树学习的关键在于如何选择最优划分属性。
- 一般而言,随着划分过程不断进行,我们希望决策树的 分支结点所包含的样本尽可能属于同一类别,即结点的 "纯度" (purity) 越来越高
- 从启发式想法到算法——经典的属性划分方法:
 - 信息增益
 - 增益率
 - 基尼指数

"信息熵" (information entropy)是度量样本集合纯度最常用的一种指标. 假定当前样本集合 D 中第 k 类样本所占的比例为 p_k ($k=1,2,\ldots,|\mathcal{Y}|$), 则 D 的信息熵定义为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$

Ent(D) 的值越小, 则 D 的纯度越高。

计算信息编码约定: 若 p=0, 则 plogap=0.

Ent(D) 约克小值为 0. 最大值为 log₃ [V].

假定离散属性 a 有 V 个可能的取值 $\{a^1, a^2, \dots, a^V\}$,若使用 u 来对样本集 D 进行划分,则会产生 V 个分支结点. 其中第 v 个分支结点包含了 D 中所有在属性 a 上取值为 a^v 的样本,记为 D^v . 我们可根据式(4.1) 计算出 D^v 的信息熵。再考虑到不同的分支结点所包含的样本数不同,给分支结点赋予权重 $|D^v|/|D|$,即样本数越多的分支结点的影响越大,于是可计算出用属性 a 对样本集 D 进行划分所获得的"信息增益" (information gain)

$$Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v)$$

为分支结点权重,样本数越多的分支结点的影响越大

$$Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v)$$

一般而言, 信息增益越大, 则意味着使用属性 a 来进行划分所获得的"纯度提升"越大, 因此, 我们可用信息增益来进行决策树的划分属性选择, 即在图 4.2 算法第 8 行选择属性 $a_* = \mathop{\mathrm{arg\,max}}_{a \in A} Gain(D_1 a)$ 。著名的 ID3 决策树学习算法 [Quinlan, 1986] 就是以信息增益为准则来选择划分属性。

信息增益实例

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青級	蜷缩	浊响	清晰	四陷	硬滑	是
2	当黑	蜷缩	沉闷	清晰	四陸	硬滑	是
3	乌黑	蜷缩	独响	清晰	凹陷	便滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	沙虫川旬	清晰	四條	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	鸟黑	利蜷	浊响	稍糊	稍凹	软粘	是
8	马黑	稍蜷	独响	清晰	利四	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平垣	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	介
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	TUT KÉT	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

该数据集包含17个 训练样本, $|\mathcal{Y}| = 2$, 其中正例占 $p_1 = \frac{8}{17}$, 反例占 $p_2 = \frac{9}{17}$,计 算得到根结点的信 息熵为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

• 以属性"色泽"为例,其对应的3个数据子集分别为 D¹ (色泽=青绿), D²(色泽=乌黑), D٤色泽=浅白)

子集 D^1 包含编号为 $\{1,4,6,10,13,17\}$ 的 6 个样例, 其中正例占 $p_1=\frac{3}{6}$,反例占 $p_2=\frac{3}{6}$; D^2 包含编号为 $\{2,3,7,8,9,15\}$ 的 6 个样例, 其中正、反例分别占 $p_1=\frac{4}{6}$, $p_2=\frac{2}{6}$; D^3 包含编号为 $\{5,11,12,14,16\}$ 的 5 个样例, 其中正、反例分别占 $p_1=\frac{1}{5}$, $p_2=\frac{4}{5}$ 。根据式(4.1)可计算出用"色泽"划分之后所获得的 3 个分支结点的信息熵为

Ent(
$$D^1$$
) = $-(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}) = 1.000$
Ent(D^2) = $-(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}) = 0.918$
Ent(D^3) = $-(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}) = 0.722$

• 属性"色泽"的信息增益为

Gain
$$(D, \textcircled{E})$$
 = Ent (D) - $\sum_{v=1}^{3} \frac{|D^v|}{|D|}$ Ent (D^v) = $0.998 - (\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722)$ = 0.109

• 类似的, 其他属性的信息增益为

Gain(D, 根蒂) = 0.143

Gain(D, 纹理) = 0.381

Gain(D, 脐部) = 0.289

Gain(D, 触感) = 0.006

• 显然,属性"纹理"的信息增益最大,其被选为划分属性

决策树学习算法将对每个分支结点做进一步划分,最终 得到的决策树如图:

不足:

若把"编号"也作为一个候选划分属性,则其信息增益一般远大于其他属性。

信息增益指标 偏好 取值数目较多的属性

显然,这样的决策树不具有泛化能力,无法对新样本进行 有效预测

划分选择-增益率

实际上, 信息增益准则对可取值数目较多的属性有所偏好, 为减少这种偏好可能带来的不利影响, 著名的 C4.5 决策树算法 [Quinlan, 1993] 不直接使用信息增益, 而是使用"增益率" (gain ratio) 来选择最优划分属性. 采用与式(4.2)相同的符号表示, 增益率定义为

$$Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)}$$
 相当于给信息增益做了
$$IV(a) = -\sum_{v=1}^{V} \frac{|D^v|}{|D|} \log_2 \frac{|D^v|}{|D|}$$
 一个规范化

称为属性 a 的"固有值" (intrinsic value) [Quinlan, 1993]. 属性 a 的可能取值数目越多(即 V 越大),则 IV(a) 的值通常会越大,例如,对表 4.1 的西瓜数据集 2.0,有 IV(触感) = 0.874 (V = 2),IV(色泽) = 1.580 (V = 3),IV(编号) = 4.088 (V = 17).

划分选择-增益率

• 存在的问题

增益率准则 偏好 取值数目较少的属性

- 取值多好, 还是少好呢? 少走极端 "不多不少最合适"
- 经典实现C4.5
 - 先找出 信息增益 高于平均水平的属性
 - 从中选 增益率 最高的属性

划分选择-基尼指数

CART 决策树 [Breiman et al., 1984] 使用"基尼指数"(Gini index) 长选择划分属性. 采用与式(4.1) 相同的符号, 数据集 D 的纯度可用基尼值来度量:

Gini(D) =
$$\sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'} = 1 - \sum_{k=1}^{|\mathcal{Y}|} p_k^2$$

反映了从数据集中随机抽取两个样本,其类别标记不一致的概率; 基尼指数越小,说明越纯

采用与式(4.2)相同的符号表示, 属性 a 的基尼指数定义为

$$Gini_index(D, a) = \sum_{v=1}^{V} \frac{|D^v|}{|D|} Gini(D^v) . \tag{4.6}$$

于是, 我们在候选属性集合 A 中, 选择那个使得划分后基尼指数最小的属性作为最优划分属性, 即 $a_* = \arg\min \ \mathrm{Gini_index}(D,a)$.

大纲

• 决策树简介(基本流程)

• 决策树算法的关键: 划分选择

• 克服过拟合的问题: 剪枝处理

• 处理多种类型数据: 连续与缺失值

• 决策树的变体: 多变量决策树

剪枝处理

- 决策树有什么不足? 为什么要剪枝?
 - 决策树很容易<mark>过拟合</mark>;决策树决策分支过多,以致于 把训练集自身的一些特点当做所有数据都具有的一般 性质而导致的过拟合

剪枝处理

- 剪枝是决策树学习算法对付"过拟合"的主要手段
- 剪枝的基本策略
 - 预剪枝
 - 后剪枝
- 判断决策树泛化性能是否提升的方法
 - 留出法: 预留一部分数据用作"验证集"以进行性能 评估

数据集

训练集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	独响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	四路	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍四	软粘	是
7	乌黑	稍蜷	纯响	稍糊	稍凹	软粘	是
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	独响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊坤	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	河间	清晰	凹陷	硬滑	是
5	浅白	蜷缩	独响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	独响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	独响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

验证集

剪枝处理

未剪枝决策树

思路:决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点记为叶结点,其类别标记为训练样例数最多的类别

边建树,边剪枝

(1) 针对上述数据集,基于信息增益准则,选取属性"脐部"划分训练集。

(2) 分别计算划分前(即直接将该结点作为叶结点)及划分后的验证集精度,判断是否需要划分。

(3) 若划分后能提高验证集精度,则划分,对划分后的属性,执行同样判断;否则,不划分

验	
证	
集	

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蟾缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	验缩	独加可	清晰	凹陷	硬滑	是
8	13. 00	稍蜷	独响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	便滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	独响	模糊	平坦	软粘	否
13	青绿	稍蜷	独项	稍糊	凹陷	硬滑	- 否

结点1: 若不划分,则将其标记为叶结点,类别标记为训练样例中最多的类别,即好瓜。验证集中, $\{4,5,8\}$ 被分类正确,得到验证集精度为 $\frac{3}{7} \times 100\% = 42.9\%$

验证集精度

"脐部=?" 划分前: 42.9%

验证集

编号	色泽	根蒂	敲声	纹理	脐部	他感	45-10
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	独响	清晰	凹陷	硬滑	是
8	马黑	稍蜷	独响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	独响	模糊	平坦	软粘	否
13	青绿	稍螆	独响	稍糊	凹陷	硬滑	否

结点1: 若划分,根据结点②,③,④的训练样例,将这3个结点分别标记为"好瓜"、"好瓜"、"好瓜"、"坏瓜"。此时,验证集中编号为 $\{4,5,8,11,12\}$ 的样例被划分正确,验证集精度为 $\frac{5}{7} \times 100\% = 71.4\%$

验	
证	
集	

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	独响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	独响	清晰	稍凹	硬滑	是
-9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	独响	稍糊	凹陷	硬滑	否

预剪枝决策:禁止划分

对结点②,③,④分别进行剪枝判断,结点②,③都禁止划分,结点。本身为叶子结点。最终得到仅有一层划分的决策树,称为"决策树桩"

预剪枝决策:禁止划分

预剪枝的优缺点

- 优点
 - 降低过拟合风险
 - 显著减少训练时间和测试时间开销
- 缺点
 - 一欠拟合风险:有些分支的当前划分虽然不能提升泛化性能,但在其基础上进行的后续划分却有可能导致性能显著提高。
 - 一 预剪枝基于"贪心"本质禁止这些分支展开,带来了 欠拟合风险

先建树,后剪枝

首先生成一棵完整的决策树,该决策树的验证集精度为42.9%

后剪枝首先考察图 4.5 中的结点⑥, 若将其领衔的分支剪除, 则相当于把⑥ 替换为叶结点. 替换后的叶结点包含编号为 {7,15} 的训练样本, 于是, 该叶结点的类别标记为"好瓜",此时决策树的验证集精度提高至 57.1%. 于是, 后剪枝策略决定剪枝, 如图 4.7 所示.

然后考察结点⑤、若将其领衔的子树替换为叶结点、则替换后的叶结点包含编号为 {6,7,15} 的训练样例: 叶结点类别标记为"好瓜", 此时决策树验证集精度仍为 57.1%. 于是, 可以不进行剪枝.

后剪枝首先考察图 4.5 中的结点⑥. 若将其领衔的分支剪除,则相当于把⑥ 替换为叶结点. 替换后的叶结点包含编号为 {7,15} 的训练样本,于是,该叶结点的类别标记为"好瓜",此时决策树的验证集精度提高至 57.1%. 于是,后剪枝策略决定剪枝,如图 4.7 所示.

剪枝处理-后剪枝

• 最终基于后剪枝策略得到的决策树如图所示

剪枝处理-后剪枝

后剪枝的优缺点

- 优点
 - 后剪枝比预剪枝保留了更多的分支,欠拟合风险小, 泛化性能往往优于预剪枝决策树
- 缺点
 - 训练时间开销大: 后剪枝过程是在生成完全决策树之后进行的, 需要自底向上对所有非叶结点逐一考察; 其训练时间要远大于预剪枝决策树

大纲

• 决策树简介(基本流程)

• 决策树算法的关键: 划分选择

• 克服过拟合的问题: 剪枝处理

• 处理多种类型数据: 连续与缺失值

• 决策树的变体: 多变量决策树

- 决策树只能处理离散属性,如何处理连续属性? 离散化
 - □ 连续属性离散化(二分法)
 - 第一步:假定连续属性a在样本集D上出现n个不同的取值,从小到大排列,记为 $a^1, a^2, ... a^n$,基于划分点 t,可将D分为子集 D_i^- 和 D_i^+ ,其中 D_i^- 包含那些在属性 a上取值不大于t的样本, D_i^+ 包含那些在属性 a上取值大于t的样本。考虑包含 n-1 个元素的候选划分点集合

$$T_a = \left\{ \frac{a^{i} + a^{i+1}}{2} \mid 1 \le i \le n-1 \right\}$$

即把区间 $[a^i,a^{i-1}]$ 的中位点 $\frac{a^i+a^{i+1}}{2}$ 作为候选划分点

- □ 连续属性离散化(二分法)
 - 第二步: 采用离散属性值方法, 考察这些划分点, 选取最优的划分点 进行样本集合的划分

$$Gain(D, a) = \max_{t \in T_a} Gain(D, a, t)$$

$$= \max_{t \in T_a} Ent(D) - \sum_{\lambda \in \{-, +\}} \frac{|D_t^{\lambda}|}{|D|} Ent(D_t^{\lambda})$$

其中 Gain(D,a,t) 是样本集D基于划分点 t 二分后的信息增益,于是,就可选择使 Gain(D,a,t) 最大化的划分点

连续值处理实例

编号	色泽	根蒂	敲庙	纹理	脐部	触感	密度	含糊率	好瓜
1	青绿	蜷缩	独响	清晰	凹陷	硬滑	0.697	0.460	足
2 3	乌黑	此结	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
3	马黑	雌维	独响	清晰	凹陷。	硬滑	0.634	0.264	是
4	青绿	婚館	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
5	线自	业经结	独响	清晰	凹陷	硬滑	0.556	0.215	是
6	青緑	稍蜷	独加	清晰	稻凹	软粘	0,403	0.237	是
7	13, 199	稍嵯	\$40.00g	稍糊	稍凹	软粘	0.481	0.149	是
8	乌黑	稍蜷	独响	清晰	稍凹	硬滑	0.437	0.211	是
9	乌黑	稍雌	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
10	青緑	硬挺	清脆	清晰	平川	软粘	0.243	0.267	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	0.245	0.057	香
12	浅白	业经验	独项	模糊	平坦	软粘	0.343	0.099	否
13	青绿	稍騰	独响	稍柳	凹陷	硬滑	0.639	0.161	77
14	找出	稍蜷	沉闷	稍糊	四陷	便州	0.657	0.198	否
15	马黑	稍蜷	独响	清晰	稍四	软粘	0.360	0.370	香
16	建自	雌缩	独加可	模糊	平坦	硬滑	0.593	0.042	否
17	青绿	避缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	香

对属性 "密度", 其候选划 分点集合包含16 个候选值: $T_{\text{密度}} = \{0.244, 0.294, 0.351, 0.381, 0.420, 0.459, 0.518, 0.574, 0.600, 0.621, 0.636, 0.648, 0.661, 0.681, 0.708, 0.746\}$ 可计算其信息增益为 0.262,对应划分点为 0.381

对属性 "含糖量"进行同样 处理

连续值下的决策树模型

与离散属性不同,若当前结点划分属性为连续属性,该属性还可作为其后代结点的划分属性

例如在艾结点上使用了 "密度≤0.381",不会禁 止在于结点上使用"密 度≤0.294"。

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩		清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	- 14	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	独响	清晰	4	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	-	稍凹	硬滑	是
9	乌黑	-	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	-	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	15	否
12	浅白	蜷缩	0	模糊	平坦	软粘	否
13	-	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	2	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	杏
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

- 决策树要求所有样本的属性都完整
- 现实应用经常出现不完整样本,即样本的属性值缺失
- 仅使用无缺失的样本进行学习?

对数据信息极大的浪费

• 使用有缺失值的样本,需要解决哪些问题?

Q1:在属性缺失的情况下,如何选择划分属性?

Q2:给定划分属性,若样本在该属性上的值缺失,如何对该样本进行划分?

给定训练集 D 和属性 a, 令 \bar{D} 表示 D 中在属性 a 上没有缺失值的样本子集. 对问题(1), 显然我们仅可根据 \bar{D} 来判断属性 a 的优劣. 假定属性 a 有 V 个可取值 $\{a^1, a^2, \ldots, a^V\}$, 令 \bar{D}^v 表示 \bar{D} 中在属性 a 上取值为 a^v 的样本子集, \bar{D}_k 表示 \bar{D} 中属于第 k 类 $(k = 1, 2, \ldots, |\mathcal{Y}|)$ 的样本子集, 则显然有 $\bar{D} = \bigcup_{k=1}^{|\mathcal{Y}|} \bar{D}_k$, $\bar{D} = \bigcup_{v=1}^{|\mathcal{Y}|} \bar{D}^v$. 假定我们为每个样本 x 赋予一个权重 w_x ,并定义

为每个样本x赋予一个权重 w_x , 并定义:

• 无缺失值样本所占的比例

$$\rho = \frac{\sum_{x \in \tilde{D}} w_x}{\sum_{x \in D} w_x}$$

无缺失值样本中第k类所占比例

在决策树学习开始阶段。 依能点中各样本的权量初 始化为 1.

$$\tilde{p}_k = \frac{\sum_{x \in \tilde{D}_k} w_x}{\sum_{x \in \tilde{D}} w_x} \quad (1 \le k \le |\mathcal{Y}|)$$

• 无缺失值样本中在属性 a 上取值 a v 的样本所占比例

$$\tilde{r}_v = \frac{\sum_{x \in \tilde{D}^v} w_x}{\sum_{x \in \tilde{D}} w_x} \quad (1 \le v \le V)$$

• 对于Q1问题:

基于上述定义, 我们可将信息增益的计算式(4.2)推广为

$$Gain(D, a) = \rho \times Gain(\tilde{D}, a)$$

$$= \rho \times \left(\text{Ent} \left(\tilde{D} \right) - \sum_{v=1}^{V} \tilde{r}_{v} \text{ Ent} \left(\tilde{D}^{v} \right) \right) , \qquad (4.12)$$

其中由式(4.1),有

$$\operatorname{Ent}(\tilde{D}) = -\sum_{k=1}^{|\mathcal{Y}|} \tilde{p}_k \log_2 \tilde{p}_k .$$

跟传统决策树一致,只不过仅在有属性值的子集上计算信息增益,不考虑无属性值的样本

• 对于Q2问题:

对问题(2), 若样本 x 在划分属性 a 上的取值已知, 则将 x 划入与其取值对应的子结点, 且样本权值在子结点中保持为 w_{av} . 若样本 x 在划分属性 a 上的取值未知, 则将 x 同时划入所有子结点, 且样本权值在与属性值 a^v 对应的子结点中调整为 r_v · w_{av} ; 直观地看, 这就是让同一个样本以不同的概率划入到不同的子结点中遇上中去.

直观地看,就是让同一个样本以不同的概率划入到不同的子节点中去

缺失值处理实例

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	-	蜷缩	独响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	-	是
3	乌黑	蜷缩	-	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	四陷	硬滑	是
5		蜷缩	独加可	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰		软粘	是
7	鸟黑	稍蜷	独响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响		稍凹	硬滑	是
9	乌黑		沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	-	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	7.3	1
12	浅白	蜷缩	-	模糊	平坦	软粘	否
13	-	稍蜷	浊响	稍糊	凹陷	硬滑	台
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	独响	清晰	-	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	片绿	7	流阀	稍糊	稍凹	硬滑	否

- 学习开始时,根结点包含 样本集D中全部17个样例, 各样例的权值均为1
- 以属性"色泽"为例,该属性上无缺失值的样例子集 D 包含14个样例, D 的信息熵为

$$\operatorname{Ent}(\tilde{D}) = -\sum_{k=1}^{2} \tilde{p}_k \log_2 \tilde{p}_k$$

$$= -\left(\frac{6}{14}\log_2\frac{6}{14} + \frac{8}{14}\log_2\frac{8}{14}\right) = 0.985$$

令 \tilde{D}^1 , \tilde{D}^2 与 \tilde{D}^3 分别表示在属性"色泽"上取值为"青绿""乌黑"以及"浅白"的样本子集, 有

$$\operatorname{Ent}(\tilde{D}^{1}) = -\left(\frac{2}{4}\log_{2}\frac{2}{4} + \frac{2}{4}\log_{2}\frac{2}{4}\right) = 1.000$$

$$\operatorname{Ent}(\tilde{D}^{2}) = -\left(\frac{4}{6}\log_{2}\frac{4}{6} + \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.918$$

$$\operatorname{Ent}(\tilde{D}^{3}) = -\left(\frac{0}{4}\log_{2}\frac{0}{4} + \frac{4}{4}\log_{2}\frac{4}{4}\right) = 0.000$$

因此, 样本子集 D 上属性"色泽"的信息增益为

$$\begin{aligned} \text{Gain}(\tilde{D}, 色泽) &= \text{Ent}(\tilde{D}) - \sum_{v=1}^{3} \tilde{r}_v \operatorname{Ent}(\tilde{D}^v) \\ &= 0.985 - \left(\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000\right) \\ &= 0.306 \ . \end{aligned}$$

于是, 样本集 D上属性"色泽"的信息增益为

$$\mathrm{Gain}(D, 色泽) = \rho \times \mathrm{Gain}(\tilde{D}, 色泽) = \frac{14}{17} \times 0.306 = 0.252 \ .$$

• 类似地可计算出所有属性在数据集上的信息增益

$$Gain(D, 色泽) = 0.252$$

$$Gain(D, 敲声) = 0.145$$

$$Gain(D, 脐部) = 0.289$$

$$Gain(D, 根蒂) = 0.171$$

$$Gain(D, 纹理) = 0.424$$

$$Gain(D, 触感) = 0.006$$

• 最终决策树

大纲

• 决策树简介(基本流程)

• 决策树算法的关键: 划分选择

• 克服过拟合的问题: 剪枝处理

• 处理多种类型数据: 连续与缺失值

• 决策树的变体: 多变量决策树

多变量决策树

- 单变量决策树分类边界:轴平行
- 多变量决策树

非叶节点不再是仅对某 个属性,而是对属性的线 性组合

• 每个非叶结点是一个形如 $\sum_{i=1}^{n}$ 的线性分类器,其中 w_i 是属性 a_i 的权值, w_i 和 t 可在该结点所含的样本集和属性集上学得

多变量决策树

• 单变量决策树

多变量决策树

• 多变量决策树

小结

- 决策树简介(基本流程)
 - 掌握决策树基本流程和原理
- 决策树算法的关键: 划分选择
 - 熟悉三种划分准则
- 克服过拟合的问题: 剪枝处理
 - 预剪枝 VS 后剪枝
- 处理多种类型数据: 连续与缺失值
 - 了解基本原理
- 决策树的变体: 多变量决策树
 - 了解基本原理