VIETNAM NATIONAL UNIVERSITY

UNIVERSITY OF SCIENCE

CSC14003 - Introduction to Artificial Intelligence

REPORT LAB 02

LOGIC

Student ID: 22120336

Student name: Vo Tuan Thanh

Instructor: Nguyen Ngoc Duc, M.S.

Contents

1	Cor	mpletion Level Self-Assessment
2	Tes	t Cases
	2.1	Test Case Structure
		2.1.1 Input format
		2.1.2 Output format
	2.2	Test Cases Analysis
		2.2.1 Test Case 1
		2.2.2 Test Case 2
		2.2.3 Test Case 3
		2.2.4 Test Case 4
		2.2.5 Test Case 5
3	Eva	aluation and Proposed Solution
	3.1	Advantages
	3.2	Disadvantages
	3.3	Optimization
		3.3.1 Structural Optimizations

1 Completion Level Self-Assessment

Algorithm	Self-Assessment
1. Logic	100%
2. Prepositional logic	100%
3. Who is the liar	100%
4. Inference	100%

2 Test Cases

2.1 Test Case Structure

2.1.1 Input format

• First line: The query α to be proved.

• **Second line**: Number of clauses (n) in the knowledge base.

• Next n lines: The clauses in the knowledge base.

2.1.2 Output format

• Step-wise Information:

- Number of new clauses generated in each step.
- The new clauses derived during that step.

• Final Result:

- **YES**: If the knowledge base (KB) entails the query (α) , denoted as KB $\models \alpha$.
- NO: If the query (α) cannot be proved from the knowledge base (KB).

2.2 Test Cases Analysis

2.2.1 Test Case 1

Input:	Output:
C	12
7	B OR C
A OR B	A OR C
-A OR C	-A OR F
-B OR C	-A
D OR E	-B OR F
-D OR C	-B
-E OR C	C OR E
-C OR F	C OR D
	-D OR F
	-D
	-E OR F
	-E
	10
	B OR F
	В
	A OR F
	A
	C

D OR F

D C OR F

3 F F {} YES

2.2.2 Test Case 2

Input:

Q 6 P OR -R -P OR Q R OR S -S OR Q T OR -Q -T

Output:

7 -R OR Q P OR S -P OR T -P Q OR R -S OR T -S 11 -R OR T -R P OR Q Q OR S R OR T R Q S OR T S P OR T P 4 Q OR T Q OR T T {} YES

2.2.3 Test Case 3

Input:

D 5

A OR B OR C

- -A OR D
- -B OR D
- -C OR D
- -D OR E

Output:

9

B OR C OR D

A OR C OR D

A OR B OR D

-A OR E

-A

-B OR E

-B

-C OR E

-C

12

B OR C OR E

B OR C

A OR C OR E

A OR C

A OR B OR E

A OR B

C OR D

B OR D

A OR D

C OR D OR E

B OR D OR E

A OR D OR E

8

D

D OR E

C OR E

B OR E

A OR E

С

В

A

3

Ε

E

{}

YES

2.2.4 Test Case 4

Input:	Output:
Z	12
8	W OR Y
X OR Y	W OR X
-X OR W	-A OR -X
-Y OR W	-B OR -X
W OR -Z	-A OR -Y
A OR B	-B OR -Y
-A OR -W	-A OR -Z
-B OR -W	-B OR -Z
Z	W
	-W OR B
	-W OR A
	{}
	YES

2.2.5 Test Case 5

Input:	Output:
input.	o at pat.
C	6
5	B OR C
A OR B	A OR C
-A OR C	-A
-B OR C	-В
D OR E	C OR D
-E OR C	-E
	4
	В
	A
	C
	D
	1
	{}
	YES

3 Evaluation and Proposed Solution

3.1 Advantages

- Complete and Sound Resolution
 - Guarantees finding proof if one exists
 - Maintains soundness through systematic clause resolution
- Efficient Data Structures

- Uses set operations for clause manipulation
- Fast membership testing and literal comparison

3.2 Disadvantages

- Time complexity is $\mathcal{O}(n^2)$
- No garbage collection mechanism

3.3 Optimization

3.3.1 Structural Optimizations

Clause Indexing:

- Index clauses by literals.
- Quick lookup for resolvable pairs.

Benefits:

- Reduces search space.
- Faster complementary literal finding.
- Avoids redundant comparisons.

Subsumption Checking:

- Remove subsumed clauses.
- Maintain minimal clause set.

Benefits:

- Smaller knowledge base.
- Fewer resolution steps.
- Better memory usage.

References

- 1. Russell, S., Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th edition).
- 2. Stanford Encylopedia of Philosophy. (n.d.). Logic-Based Artificial Intelligence. Retrieved November 18, 2024, from https://plato.stanford.edu/entries/logic-ai/.