How to find out the multiplicity in for the repeated roots?

Suppose
$$f \in C^{m+1}$$
 If $f(x) = 0$ has root $x = y$ with multiplicity in $= m+1$, then $f(x) = (x-y)^{m+1}g(x)$, $g(y) \neq 0$

[... $f(y) = 0$, $f'(y) = 0$, $f''(y) = 0$, ..., $f^{(m)}(y) = 0$.

$$f^{(m+1)}(y) \neq 0$$

Lecture #8

$$f(x) = \sin(x) + x^{2} \cos(x) - x^{2} - x = 0$$

$$Notice: x = 0 \text{ is a root since } f(0) = 0.$$

$$f'(0) = Cob(0) + 2 \cdot 0 \cos(0) + (0)^{2} (-\sin(0))$$

$$= 1 - 1 = 0$$

$$f''(0) = 0$$

$$f'''(0) = -1 \neq 0$$

$$\therefore Multiplicity of the root x = 0 is $m = 3$$$

$$\frac{1}{m} = \frac{3-1}{3} = \frac{2}{3}$$
Having Known \tilde{m} for our Specific $f(x)$, we can

modify the Newton's method to recover quadratie convengence

Theorem:

\[\int \cong \text{mfi} \left(\ta, b] \right) \]

f(x) = 0 has a roit x = r has multiplicity m > 1Len do: $x = x - m = f(x_k)$

Then do: $12_{K+1} = 2_K - m \frac{f(x_K)}{f'(x_K)}$ This will locally converge to x-r anabretically

Newton's method may locally settle Example: into an oscillation Solve for red root of:

 $f(x) := 4x^4 - 6x^2 - \frac{11}{4}$ $f(-\infty) = +\infty > 0$

$$f(x) := 1x - 7$$
 $f(-\infty) = +\infty > 0$
 $f(0) = 0 - 0 - \frac{11}{4} < 0$

 $f(+\infty) = +\infty > 0$

Make an initial guess x_6 Newton's method/necursion for this problem becomes:

$$\chi_{K+1} = \chi_{K} - \frac{f(\chi_{K})}{f'(\chi_{K})}$$

$$= \chi_{K} - \frac{4\chi_{K}^{4} - 6\chi_{K}^{2} - \frac{11}{4}}{16\chi_{K}^{3} - 12\chi_{K}}$$

$$12\chi_{K}^{4} - 6\chi_{K}^{2} + \frac{11}{4}$$

 $16x_{\nu}^{3} - 12x_{\kappa}$