Cardinalidade

Revisão

Domínios e Codomínios

- Toda função f tem dois conjuntos associados a ela: seu domínio e seu codomínio.
- Uma função f só pode ser aplicada a elementos de seu domínio.
 Para qualquer x no domínio, f(x) pertence ao codomínio.

A função deve ser definida para cada elemento do domínio.

A saída da função deve estar sempre no codomínio, mas nem todos os elementos do codomínio devem ser produzidos como saídas.

Composição de Funções

- Se f: A → B e g: B → C são funções, a composição de f e g, denotada g ∘ f, é uma função
 - cujo domínio é A,
 - cujo codomínio é C, e
 - que é avaliada como $(g \circ f)(x) = g(f(x))$.

Funções Injetivas

- Uma função f: A → B é chamada injetiva (ou um-para-um) se cada elemento do codomínio tem no máximo um elemento do domínio que mapeia para ele.
 - Uma função com esta propriedade é chamada de injeção.
- Formalmente, f: A → B é uma injeção se esta declaração de lógica de primeira ordem for verdadeira:

```
\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2))
("Se as entradas são diferentes, as saídas são diferentes")
```

• Equivalentemente:

```
\forall a_1 \in A. \ \forall a_2 \in A. \ (f(a_1) = f(a_2) \rightarrow a_1 = a_2)
("Se as saídas são as mesmas, as entradas são as mesmas")
```

• Teorema: A composição de duas injeções é uma injeção.

Funções Injetivas

- Uma função f: A → B é chamada injetiva (ou um-para-um) se cada elemento do codomínio tem no máximo um elemento do domínio que mapeia para ele.
 - Uma função com esta propriedade é chamada de injeção.
- Formalmente, f: A → B é uma injeção se esta declaração de lógica de primeira ordem for verdadeira:

```
\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2))
("Se as entradas são diferentes, as saídas são diferentes")
```

• Equivalentemente:

```
\forall a_1 \in A. \ \forall a_2 \in A. \ (f(a_1) = f(a_2) \rightarrow a_1 = a_2)
("Se as saídas são as mesmas, as entradas são as mesmas")
```

• Teorema: A composição de duas injeções é uma injeção.

Funções Sobrejetoras

- Uma função f: A → B é chamada sobrejetiva (ou onto) se cada elemento do codomínio é "coberto" por pelo menos um elemento do domínio.
 - Uma função com essa propriedade é chamada de sobrejetora.
- Formalmente, f: A → B é uma sobreposição se esta declaração de lógica de primeira ordem for verdadeira:

$$\forall b \in B. \exists a \in A. f(a) = b$$

("Para cada saída possível, há pelo menos uma entrada possível que a produz")

 Teorema: A composição de duas sobreposições é uma sobrejeção.

Bijeções

- Uma função que associa cada elemento do codomínio a um elemento único do domínio é chamada de bijetiva.
 - Essa função é uma bijeção.
- Formalmente, uma bijeção é uma função tanto injetiva quanto sobrejetora.
- Teorema: A composição de duas bijeções é uma bijeção.

Funções Inversas

Funções Inversas

- Em alguns casos, é possível "inverter uma função".
- Seja f: A → B uma função. Uma função f-1: B → A é chamada de inverso de f se as seguintes afirmações de lógica de primeira ordem são verdadeiras sobre f e f-1

$$\forall a \in A. (f-1(f(a)) = a)$$
 $\forall b \in B. (f(f-1(b)) = b)$

- Em outras palavras, se f mapeia a para b, então f-1 mapeia b de volta para a e vice-versa.
- Nem todas as funções têm inversos (acabamos de ver alguns exemplos de funções sem inversos).
- Se f é uma função que tem um inverso, então dizemos que f é invertível.

Onde Estamos

- Agora sabemos
 - o que são injeção, sobrejeção e bijeção;
 - que a composição de duas injeções, sobrejeções e bijeções também é uma injeção, sobrejeção ou bijeção, respectivamente; e
 - que as bijeções são invertíveis e as funções invertíveis são bijeções.

Revisando Cardinalidade

Cardinalidade

- Lembre-se de que a cardinalidade de um conjunto é o número de elementos que ele contém.
- Se S for um conjunto, denotamos sua cardinalidade por |S|.
- Para conjuntos finitos, as cardinalidades são números naturais:
 - $|\{1, 2, 3\}| = 3$
 - $|\{100, 200\}| = 2$
- Para conjuntos infinitos, introduzimos cardinais infinitos para denotar o tamanho dos conjuntos:

Definindo Cardinalidade

- É difícil dar uma definição rigorosa do que realmente são as cardinalidades.
 - O que é 4? O que é **☆**?
- Idéia: Defina a cardinalidade como uma relação entre dois conjuntos, em vez de uma quantidade absoluta.

Comparando Cardinalidades

- Aqui está a definição formal do que significa dois conjuntos terem a mesma cardinalidade:
 - S = T | se existe uma bijeção f: S → T

Comparando Cardinalidades

- Aqui está a definição formal do que significa dois conjuntos terem a mesma cardinalidade:
 - S = T | se existe uma bijeção f: S → T

Mais sobre Cardinalidade

Atualização de Terminologia

- Sejam a e b números reais onde a ≤ b.
- A notação [a, b] denota o conjunto de todos os números reais entre a e b, inclusivo.

$$[a, b] = \{ x \in \mathbb{R} \mid a \le x \le b \}$$

 A notação (a, b) denota o conjunto de todos os números reais entre a e b, exclusivo.

$$(a, b) = \{ x \in \mathbb{R} \mid a \le x \le b \}$$

Casa no Intervalo

$$f:[0, 1] \rightarrow [0, 2]$$

 $f(x) = 2x$

Teorema: |[0, 1]| = |[0, 2]|

Prova: Considere a função f: $[0, 1] \rightarrow [0, 2]$ definida como f(x) = 2x. Vamos provar que f é uma bijeção.

Primeiro, mostraremos que f é uma função bem definida. Escolha qualquer $x \in [0, 1]$. Isso significa que $0 \le x \le 1$, então sabemos que $0 \le 2x \le 2$. Consequentemente, vemos que $0 \le f(x) \le 2$, então $f(x) \in [0, 2]$.

A seguir, mostraremos que f é injetivo. Escolha qualquer $x_1, x_2 \in [0, 1]$ onde $f(x_1) = f(x_2)$. Mostraremos que $x_1 = x_2$. Para ver isso, observe que como $f(x_1) = f(x_2)$, vemos que $2x_1 = 2x_2$, que por sua vez nos diz que $x_1 = x_2$, conforme necessário.

Finalmente, mostraremos que f é sobrejetora. Para fazer isso, considere qualquer $y \in [0, 2]$. Mostraremos que existe algum $x \in [0, 1]$ onde f(x) = y.

Seja x = y/2. Como y \in [0, 2], sabemos $0 \le y \le 2$ e, portanto, que $0 \le y/2 \le 1$. Escolhemos x = y/2, portanto sabemos que $0 \le x \le 1$, o que por sua vez significa x \in [0, 1]. Além disso, observe que

$$f(x) = 2x = 2(y/2) = y$$

Então f(x) = y, conforme necessário.

Casa no Intervalo

0 • 1

0 - k

(Para qualquer k > 0)

Isso significa que a cardinalidade (quantos pontos existem) é uma ideia diferente da massa f: [0, 1] → [0, k]

(quanto pesam esses pontos).

$$f(x) = kx$$

Mais um Exemplo

Coloque um Anel Nisso

Algumas Propriedades da Cardinalidade

Teorema: Para qualquer conjunto A, temos |A| = |A|.

Prova: Considere qualquer conjunto A e seja $f: A \rightarrow A$ a função definida como f(x) = x. Vamos provar que f é uma bijeção.

Primeiro, mostraremos que f é uma função bem definida. Para ver isso, observe que para qualquer $x \in A$, temos $f(x) = x \in A$, conforme necessário.

A seguir, mostraremos que f é injetivo. Escolha qualquer x_1 , $x_2 \in A$ onde $f(x_1) = f(x_2)$. Precisamos mostrar que $x_1 = x_2$. Como $f(x_1) = f(x_2)$, vemos por definição de f que $x_1 = x_2$, conforme necessário.

Finalmente, mostraremos que f é sobrejetora. Considere qualquer $y \in A$. Provaremos que existe algum $x \in A$ onde f(x) = y. Escolha x = y. Então $x \in A$ (já que $y \in A$) e f(x) = x = y, conforme necessário.

Teorema: Se A, B e C forem conjuntos onde |A| = |B| e |B| = |C|, então |A| = |C|.

Prova: Considere quaisquer conjuntos A, B e C, onde |A| = |B| e |B| = |C|. Precisamos provar que |A| = |C|. Para isso, precisamos mostrar que há uma bijeção de A a C.

Uma vez que |A| = |B|, sabemos que existe alguma bijeção f : A \rightarrow B. Da mesma forma, uma vez que |B| = |C| sabemos que existe pelo menos uma bijeção g : B \rightarrow C.

Considere a função $g \circ f : A \to C$. Como $g \in f$ são bijeções e a composição de duas bijeções é uma bijeção, vemos que $g \circ f$ é uma bijeção de A a C. Assim, |A| = |C|, conforme necessário.

Cardinalidades Desiguais

- Lembre-se: |A| = |B| se a seguinte afirmação for verdadeira:
 - Existe uma bijeção f : A → B
- O que isso significa para |A| ≠ |B| ser verdadeiro?
 - Cada função f : A → B não é uma bijeção.
- Esta é uma declaração forte! Para provar |A| ≠ |B|, precisamos mostrar que nenhuma função possível de A a B pode ser injetiva e sobrejetiva.

Teorema de Cantor Revisitado

Teorema de Cantor

- Em nossa primeira aula, esboçamos uma prova do teorema de Cantor, que diz que
 - Se S for um conjunto, então |S| < |ρ(S)|.
- Essa prova era visual e bem executada à mão.
 Vamos ver se podemos voltar e formular ela!

Para Onde Estamos Indo

 Hoje, vamos provar formalmente o seguinte resultado:

Se S for um conjunto, então $|S| \neq |\wp(S)|$.

O Caminho

- Hoje, vamos provar formalmente o seguinte resultado:
 Se S for um conjunto, então |S| ≠ |℘(S)|.
- Funcionará da seguinte forma:
 - Escolha um conjunto arbitrário S.
 - Escolha uma função arbitrária $f: S \to \wp(S)$.
 - Mostre que f n\u00e3o \u00e9 sobrejetiva usando um argumento diagonal.
 - Conclua que não há bijeções de S para $\wp(S)$.
 - Conclua que $|S| \neq |\wp(S)|$.

 $X_0 \leftarrow \{x_0, x_2, x_4, \dots\}$

$$X_1 \leftarrow \{X_0, X_3, X_4, \dots\}$$

$$X_2 \longleftrightarrow \{x_4, \dots\}$$

$$X_3 \leftarrow \{X_1, X_4, \dots\}$$

$$X_4 \longleftrightarrow \{x_0, x_5, \dots\}$$

$$X_5 \longleftrightarrow \{x_0, x_1, x_2, x_3, x_4, x_5, ...\}$$

• • •

Este é um desenho da nossa função $f: S \rightarrow \wp(S)$

	X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	•••
X ₀	S	N	S	N	S	N	•••
X ₁	S	N	N	S	S	N	•••
X ₂	N	N	N	N	S	N	•••
X ₃	N	S	N	N	S	N	•••
X ₄	S	N	N	N	N	S	•••
X ₅	S	S	S	S	S	S	•••
•••	•••	•••	•••	•••	•••	•••	•••

	X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	•••
X ₀	S	N	S	N	S	N	•••
X ₁	S	N	N	S	S	N	•••
X ₂	N	N	N	N	S	N	•••
X ₃	N	S	N	N	S	N	•••
X ₄	S	N	N	N	N	S	•••
X ₅	S	S	S	S	S	S	•••
•••	•••	•••	•••	•••	•••	•••	•••

$$\left\{ \begin{bmatrix} X_0, & X_5, & \dots \end{bmatrix} \right\}$$

	X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	•••
X ₀	S	N	S	N	S	N	•••
X ₁	S	N	N	S	S	N	•••
X ₂	N	N	N	N	S	N	•••
X ₃	N	S	N	N	S	N	•••
X ₄	S	N	N	N	N	S	•••
X ₅	S	S	S	S	S	S	•••
•••	•••	•••	•••	•••	•••	•••	•••

Virar todos os S's para N's e vice-versa para obter um novo conjunto

N S S S S N ...

	X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	•••
X ₀	S	N	S	N	S	N	•••
X ₁	S	N	N	S	S	N	•••
X ₂	N	N	N	N	S	N	•••
X ₃	N	S	N	N	S	N	•••
X ₄	S	N	N	N	N	S	•••
X ₅	S	S	S	S	S	S	•••
•••	•••	•••	•••	•••	•••	•••	•••

Qual linha na tabela está emparelhada com este conjunto?

N S S S S N ...

	X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	•••
X ₀	S	N	S	N	S	N	•••
X ₁	S	N	N	S	S	N	•••
X ₂	N	N	N	N	S	N	•••
X ₃	N	S	N	N	S	N	•••
X ₄	S	N	N	N	N	S	•••
X ₅	S	S	S	S	S	S	•••
•••	•••	•••	•••	•••	•••	•••	•••

Que conjunto é esse?

N S S S N ...

	X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	• • •
X ₀	S	N	S	N	S	N	•••
X ₁	S	N	N	S	S	N	•••
X ₂	N	N	N	N	S	N	•••
X ₃	N	S	N	N	S	N	•••
X ₄	S	N	N	N	N	S	•••
X ₅	S	S	S	S	S	S	•••
•••	•••	•••	•••	•••	•••	•••	•••

f(x₀)

N S S S N ...

	X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	•••
X ₀	S	*	S	7	S	Z	•••
X ₁	S	N	Z	S	S	Z	•••
X ₂	Z	Z	Z	Z	S	Z	•••
X ₃	Z	S	Z	Z	S	Z	•••
X_4	S	Z	Z	Z	Z	S	•••
X ₅	S	S	S	S	S	S	•••
•••	•••	•••	•••	•••	•••	•••	•••

 $x_0 \in f(x_0)$?

 $-x_0 \notin f(x_0)$?

	X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	•••
X ₀	S	N	S	N	S	Z	•••
X ₁	S	N	N	S	S	N	•••
X ₂	N	N	N	N	S	N	•••
X ₃	N	S	N	N	S	N	•••
X ₄	S	N	N	N	N	S	/
X ₅	S	S	S	S	S	S	
•••	•••	•••	•••	•••	•••	•••	••
							T

 $x \notin f(x)$?

	X ₀	X ₁	X ₂	X ₃	X ₄	X ₅	•••
X ₀	S	N	S	N	S	N	•••
X ₁	S	N	N	S	S	N	•••
X ₂	N	N	N	N	S	N	•••
X ₃	N	S	N	N	S	N	
X ₄	S	N	N	N	Ŋ	S	•••
X ₅	S	S	S	S/	S	S	•••
•••	•••	•••	•••	.,	•••	•••	•••
				•			
	N	S	S	S	S	N	•••

 $\longrightarrow \{x \in S \mid x \notin f(x)\}$

O Conjunto Diagonal

 Para qualquer conjunto S e função f : S → ℘(S), podemos definir um conjunto D da seguinte forma:

$$D = \{x \in S \mid x \notin f(x)\}$$

("O conjunto de todos os elementos x onde x não é um elemento do conjunto f(x).")

- Esta é uma formalização do conjunto que encontramos na imagem anterior.
- Usando esta escolha de D, podemos provar formalmente que nenhuma função f : S → ℘(S) é uma bijeção.

Teorema: Se S for um conjunto, então $|S| \neq |\wp(S)|$.

Prova: Seja S um conjunto arbitrário. Vamos provar que $|S| \neq |\wp(S)|$ mostrando que não há bijeções de S para $\wp(S)$. Para fazer isso, escolha uma função arbitrária $f: S \rightarrow \wp(S)$. Provaremos que f não é sobrejetora.

Começando com f, definimos o conjunto

D =
$$\{x \in S \mid x \notin f(x)\}.$$
 (1)

Mostraremos que não existe $y \in S$ tal que f(y) = D. Para fazer isso, procedemos por contradição. Suponha que haja algum $y \in S$ tal que f(y) = D. Pela definição de D, sabemos que

$$y \in D \text{ if } y \notin f(y).$$
 (2)

Por suposição, f(y) = D. Combinado com (2), isso nos diz

- $y \in D$ if $y \notin D$. (3)
- Isto é impossível. Chegamos a uma contradição, então nossa suposição deve estar errada. Portanto, não existe y ∈ S tal que f(y) = D, então f não é sobrejetiva. Isso significa que f não é uma bijeção e, como nossa escolha de f foi arbitrária, concluímos que não há bijeções entre S e ℘(S). Assim, |S| ≠ |℘(S)|, conforme necessário.

Recapitulando

- Definimos cardinalidade igual em termos de bijeções entre conjuntos.
- Muitos conjuntos diferentes de tamanho infinito têm a mesma cardinalidade.
- A cardinalidade atua como uma relação de equivalência mas apenas porque podemos provar propriedades específicas de como ela se comporta, baseando-nos em propriedades de função.
- O teorema de Cantor pode ser formalizado em termos de sobrejetividade.