Výrokovologické spojky

2. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Ján Mazák

Letný semester 2021/2022

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Obsah 2. prednášky

Výrokovologické spojky

Boolovské spojky

Implikácia

Ekvivalencia

Syntax výrokovologických formúl

Sémantika výrokovologických formúl

Teórie a ich modely

Správnosť a vernosť formalizácie

Rekapitulácia

Minulý týždeň sme si povedali:

- čo sú symboly jazyka atomických formúl logiky prvého rádu;
- čo sú atomické formuly;
- čo sú štruktúry:
 - modely stavu sveta,
 - neprázdna doména + interpretačná funkcia,
 - konštanty označujú objekty,
 - predikáty označujú vzťahy a vlastnosti;
- kedy sú atomické formuly pravdivé v danej štruktúre.
- Jazyk atomických formúl je oproti slovenčine veľmi slabý.
- Môžu byť pravdivé vo veľmi čudných štruktúrach.

Výrokovologické spojky

Výrokovologické spojky

Atomické formuly logiky prvého rádu môžeme spájať do zložitejších tvrdení výrokovologickými spojkami.

- Zodpovedajú spojkám v slovenčine, ktorými vytvárame súvetia.
- Významom spojky je vždy boolovská funkcia, teda funkcia na pravdivostných hodnotách spájaných výrokov.
 Pravdivostná hodnota zloženého výroku závisí iba od pravdivostných hodnôt podvýrokov.

Príklad 2.1

Negácia, konjunkcia, disjunkcia, implikácia, ekvivalencia, ...

Nevýrokovologické spojky

Negatívny príklad

Spojka pretože nie je výrokovologická.

Dôkaz.

Uvažujme o výroku "Karol je doma, pretože Jarka je v škole".

Je pravdivý v situácii: Je 18:00 a Karol je doma, aby nakŕmil psíka. Ten by inak musel čakať na Jarku, ktorá šla dopoludnia do školy a vráti až o 19:30.

Nie je pravdivý v situácii: Jarka išla ráno do školy, ale Karol ostal doma, lebo je chorý. S Jarkinou prítomnosťou v škole to nesúvisí.

V oboch situáciách sú výroky "Karol je doma" aj "Jarka je v škole" pravdivé, ale pravdivostná hodnota zloženého výroku je rôzna.

Nezávisí iba od pravdivostných hodnôt podvýrokov (ale od existencie vzťahu príčina-následok medzi nimi).

Spojka *pretože* teda nie je <mark>funkciou</mark> na pravdivostných hodnotách.

Výrokovologické spojky

Boolovské spojky

Negácia

Negácia ¬ je unárna spojka — má jeden argument, formulu.

Zodpovedá výrazom nie, "nie je pravda, že ... ", predpone ne-.

Ľubovoľne vnárateľná.

Formula vytvorená negáciou sa nezátvorkuje.

Okolo argumentu negácie nepridávame zátvorky, ale môže ich mať on sám, ak to jeho štruktúra vyžaduje.

Príklad 2.2

```
¬doma(Karol) Karol nie je doma.

¬Jarka ≐ Karol Jarka nie je Karol.

¬¬¬poslúcha(Cilka) Nie je pravda, že nie je pravda, že Cilka neposlúcha.

(¬doma(Karol)) nesprávna

¬doma(Karol)) syntax
```

Konjunkcia

Konjunkcia ∧ je binárna spojka.

Zodpovedá spojkám a, aj, i, tiež, ale, avšak, no, hoci, ani, ba (aj/ani), ...

Formalizujeme ňou zlučovacie, stupňovacie a odporovacie súvetia:

- Jarka je doma aj Karol je doma. (doma(Jarka) ∧ doma(Karol))
- Jarka je v škole, no Karol je doma.
 (v_škole(Jarka) ∧ doma(Karol))
- Ani Jarka nie je doma, ani Karol tam nie je.
 (¬doma(Jarka) ∧ ¬doma(Karol))
- Nielen Jarka je chorá, ale aj Karol je chorý.
 (chorý(Jarka) ∧ chorý(Karol))

Zloženú formulu vždy zátvorkujeme.

Formalizácia viacnásobných vetných členov konjunkciou

Zlučovacie viacnásobné vetné členy tiež formalizujeme ako konjunkcie:

- Jarka aj Karol sú doma.
 (doma(Jarka) ∧ doma(Karol))
- Karol sa potkol a spadol.
 (potkol_sa(Karol) ∧ spadol(Karol))
- Jarka dostala Bobíka od mamy a otca.
 (dostal(Jarka, Bobík, mama) ∧ dostal(Jarka, Bobík, otec))

Podobne (jednoduché a viacnásobné zlučovacie) prívlastky vlastností:

- Eismann je ruský špión.
 (Rus(Eismann) ∧ špión(Eismann))
- Bobík je malý čierny psík.
 ((malý(Bobík) ∧ čierny(Bobík)) ∧ pes(Bobík))

Stratené v preklade

Zlučovacie súvetia niekedy vyjadrujú časovú následnosť, ktorá sa pri priamočiarom preklade do logiky prvého rádu stráca:

- Jarka a Karol sa stretli a išli do kina.
 (stretli_sa(Jarka, Karol) ∧
 (do_kina(Jarka) ∧ do_kina(Karol)))
- Jarka a Karol išli do kina a stretli sa.
 ((do_kina(Jarka) ∧ do_kina(Karol)) ∧
 stretli_sa(Jarka, Karol))

Disjunkcia

Disjunkcia v je binárna spojka, ktorá zodpovedá spojkám *alebo*, *či* v **inkluzívnom** význame (môžu nastať aj obe možnosti). Inkluzívnu disjunkciu vyjadruje tiež "*alebo aj/i"* a častice *respektíve*, *eventuálne*, *poprípade*, *prípadne*.

Disjunkciou formalizujeme vylučovacie súvetia s inkluzívnym významom:

- Jarka je doma alebo Karol je doma. (doma(Jarka) ∨ doma(Karol))
- Bobíka kúpe Jarka, prípadne ho kúpe Karol.
 (kúpe(Jarka, Bobík) ∨ kúpe(Karol, Bobík))

Zloženú formulu vždy zátvorkujeme.

Formalizácia viacnásobných vetných členov disjunkciou

Viacnásobné vetné členy s vylučovacou spojkou (v inkluzívnom význame) tiež prekladáme ako disjunkcie:

- Doma je Jarka alebo Karol.
 (doma(Jarka) ∨ doma(Karol))
- Jarka je doma alebo v škole.
 (doma(Jarka) v v_škole(Jarka))
- Jarka dostala Bobíka od mamy alebo otca.
 (dostal(Jarka, Bobík, mama) ∨ dostal(Jarka, Bobík, otec))
- Bobík je čierny či tmavohnedý psík.
 ((čierny(Bobík) ∨ tmavohnedý(Bobík)) ∧ pes(Bobík))

Exkluzívna disjunkcia

Konštrukcie "buď…, alebo…", "buď…, buď…", "alebo…, alebo…" spravidla (v matematike vždy) vyjadrujú exkluzívnu disjunkciu.

Buď je batéria vybitá alebo svieti kontrolka.

Exkluzívnu disjunkciu môžeme vyjadriť zložitejšou formulou:

Exkluzívna disjunkcia

Konštrukcie "buď…, alebo…", "buď…, buď…", "alebo…, alebo…" spravidla (v matematike vždy) vyjadrujú exkluzívnu disjunkciu.

• Buď je batéria vybitá alebo svieti kontrolka.

Exkluzívnu disjunkciu môžeme vyjadriť zložitejšou formulou:

```
((vybitá(batéria) \lor svieti(kontrolka)) \land \neg (vybitá(batéria) \land svieti(kontrolka))).
```

Niekedy aj samotné *alebo* spája možnosti, o ktorých vieme, že sú vzájomne výlučné (na základe znalostí o fungovaní domény alebo z kontextu):

Jarka sa nachádza doma alebo v škole.
 (Nemôže byť súčasne na dvoch miestach.)

Viď Znalosti na pozadí ďalej.

Jednoznačnosť rozkladu

Formuly s binárnymi spojkami sú vždy uzátvorkované. Dajú sa jednoznačne rozložiť na podformuly a interpretovať.

Slovenské tvrdenia so spojkami nie sú vždy jednoznačné:

- Karol je doma a Jarka je doma alebo je Bobík šťastný.
 - ② ((doma(Karol) ∧ doma(Jarka)) ∨ šťastný(Bobík))
 - ② (doma(Karol) ∧ (doma(Jarka) ∨ šťastný(Bobík)))
- Karol je doma alebo Jarka je doma a Bobík je šťastný.
 - $((doma(Karol) \lor doma(Jarka)) \land šťastný(Bobík))$
 - $(\text{doma}(\text{Karol}) \lor \frac{(\text{doma}(\text{Jarka}) \land \text{stastný}(\text{Bobík}))}{(\text{botik})}$

Jednoznačnosť rozkladu v slovenčine

Slovenčina má prostriedky podobné zátvorkám:

- Viacnásobný vetný člen (+obaja, niekto z):
 - Karol aj Jarka sú (obaja) doma alebo je Bobík šťastný.
 ((doma(Karol) ∧ doma(Jarka)) ∨ šťastný(Bobík))
 - Doma je Karol alebo Jarka a Bobík je šťastný.
 Niekto z dvojice Karol a Jarka je doma a Bobík je šťastný.
 ((doma(Karol) ∨ doma(Jarka)) ∧ šťastný(Bobík))
- Kombinácie spojok buď…, alebo…, alebo…; aj…, aj…;
 ani…, ani…; a pod.
 - Karol je doma a buď je doma Jarka, alebo je Bobík šťastný, alebo jedno aj druhé.
 Aj Karol je doma, aj je doma Jarka alebo je Bobík šťastný.
 (doma(Karol) ∧ (doma(Jarka) ∨ šťastný(Bobík)))
 - Buď je doma Karol, alebo je doma Jarka a Bobík je šťastný, alebo aj aj.
 (doma(Karol) ∨ (doma(Jarka) ∧ šťastný(Bobík)))

Oblasť platnosti negácie

Výskyt negácie sa vzťahuje na najkratšiu nasledujúcu formulu — oblasť platnosti tohto výskytu.

- $\bullet \ \left(\left(\neg \frac{\mathsf{doma}(\mathsf{Karol})}{\mathsf{doma}} \land \ \mathsf{doma}(\mathsf{Jarka}) \right) \lor \texttt{š\'tastn\'y}(\mathsf{Bob\'1k}) \right) \\$
- $(\neg (doma(Karol) \land doma(Jarka)) \lor šťastný(Bobík))$

Argument negácie je uzátvorkovaný práve vtedy, keď je priamo vytvorený binárnou spojkou:

- $\bigcirc \neg (\neg (doma(Karol) \land doma(Jarka)))$

Negácia rovnostného atómu

Rovnosť nie je spojka, preto:

- ¬ Jarka ≐ Karol Jarka nie je Karol.

Zátvorky sú zbytočné, lebo čítanie

"«Nie je pravda, že Jarka» sa rovná Karol" je nezmyselné:

- Syntakticky: Negácia sa vzťahuje na formulu.
 Konštanta nie je formula, rovnosť s oboma argumentmi je.
- Sémanticky: Negácia je funkcia na pravdivostných hodnotách. Konštanty označujú objekty domény.
 Objekty nie sú pravdivé ani nepravdivé.

Dohoda 2.3

Formulu $\neg \tau \doteq \sigma$ budeme skrátene zapisovať $\tau \not= \sigma$.

Výrokovologické spojky

Implikácia

Implikácia

Implikácia \rightarrow je binárna spojka približne zodpovedajúca podmienkovému podraďovaciemu súvetiu $ak \dots tak \dots$

Vo formule $(A \to B)$ hovoríme podformule A antecedent a podformule B konzekvent.

Formula vytvorená implikáciou je nepravdivá v jedinom prípade: antecedent je pravdivý a konzekvent nepravdivý.

Tomuto významu nezodpovedajú všetky súvetia ak ..., tak ...:

Napr. veta "Ak by Sarah prišla, Jim by prišiel tiež" je nepravdivá, keď ňou chceme povedať, že si myslíme, že išli rovnakým autobusom, ale v skutočnosti Jim išiel iným a zmeškal ho.

Implikácia plne nevystihuje prípady,

keď ak ..., tak ... vyjadruje (neboolovský) vzťah príčina-následok (ako pretože).

Ked ..., *potom* ... má často význam časovej následnosti, ktorý implikácia tiež nepostihuje.

Nutná a postačujúca podmienka

Implikáciu vyjadrujú aj súvetia:

Jim príde, <mark>ak</mark> príde Kim.

Jim príde, iba ak príde Kim.

Vedľajšie vety (príde Kim) sú podmienkami hlavnej vety (Jim príde).

Ale je medzi nimi podstatný rozdiel:

Jim príde, <mark>ak</mark> príde Kim. <mark>postačujúca</mark> podmienka Jim príde, <mark>iba ak</mark> príde Kim. nutná podmienka

Postačujúca podmienka

Jim príde, ak príde Kim.

- Na to, aby prišiel Jim, stačí, aby prišla Kim.
- Teda, ak príde Kim, tak príde aj Jim.
- Nepravdivé, keď Kim príde, ale Jim nepríde.
- Zodpovedá teda ($pride(Kim) \rightarrow pride(Jim)$).

Vo všeobecnosti:

$$A$$
, ak B . \Rightarrow $(B \to A)$

Iné vyjadrenia:

• Jim príde, pokiaľ príde Kim.

Nutná podmienka

Jim príde, iba ak príde Kim.

- Na to, aby prišiel Jim, je nevyhnutné, aby prišla Kim, ale nemusí to stačiť.
- Teda, ak Jim príde, tak príde aj Kim.
- Nepravdivé, keď Jim príde, ale Kim nepríde.
- Zodpovedá teda ($pride(Jim) \rightarrow pride(Kim)$).

Vo všeobecnosti:

$$A$$
, iba ak B . \rightsquigarrow $(A \rightarrow B)$

Iné vyjadrenia:

- Jim príde, iba pokiaľ s Kim.
- Jim príde iba spolu s Kim.
- Jim nepríde bez Kim.

Nutná a postačujúca podmienka rukolapne

Určite by sa vám páčilo, keby z pravidiel predmetu vyplývalo: Z logiky prejdete, **ak** odovzdáte všetky domáce úlohy.

Stačilo by odovzdať úlohy a nebolo by nutné urobiť nič iné.

Žiaľ, z našich pravidiel vyplýva: Z logiky prejdete, <mark>iba ak</mark> odovzdáte všetky domáce úlohy.

Odovzdať úlohy je nutné, ale na prejdenie to nestačí.

Súvetia formalizované implikáciou

 $(A \to B)$ formalizuje (okrem iných) zložené výroky:

- Ak *A*, tak *B*.
- Ak A, tak aj B.
- Ak A, B.
- Pokiaľ *A*, [tak (aj)] *B*.
- A, iba/len/jedine ak/pokial(/keď) B.
- A nastane iba spolu s B.
- A nenastane bez B.
- B, ak/pokiaľ(/keď) A.

Výrokovologické spojky

Ekvivalencia

Ekvivalencia

Ekvivalencia \leftrightarrow vyjadruje, že ňou spojené výroky majú rovnakú pravdivostnú hodnotu.

Zodpovedá slovenským výrazom ak a iba ak; vtedy a len vtedy, keď; práve vtedy, keď; rovnaký ... ako ...; taký ... ako

- Jim príde, ak a iba ak príde Kim.
 (príde(Jim) ↔ príde(Kim))
- Číslo n je párne práve vtedy, keď n² je párne.
 (párne(n) ↔ párne(n²))
- Müller je taký Nemec, ako je Stirlitz Rus.
 (Nemec(Müller) ↔ Rus(Stirlitz))

Ekvivalencia

Ekvivalencia $(A \leftrightarrow B)$ zodpovedá tvrdeniu, že A je nutnou aj postačujúcou podmienkou B.

Budeme ju preto považovať za skratku za formulu

$$((A \to B) \land (B \to A)).$$

Ďalšie spojky a vetné konštrukcie

V slovenčine a iných prirodzených aj umelých jazykoch sa dajú tvoriť aj oveľa komplikovanejšie podmienené tvrdenia:

- Karol je doma, ak je Jarka v škole, inak má Jarka obavy.
- Karol je doma, ak je Jarka v škole, inak má Jarka obavy, okrem prípadov, keď je Bobík s ním.

Výrokovologické spojky sa dajú vytvoriť aj pre takéto konštrukcie, ale väčšinou sa to nerobí.

Na ich vyjadrenie stačia aj základné spojky. Mohli by sme pre ne vymyslieť označenie a považovať aj ako skratky, podobne ako ekvivalenciu.

Výrokovologické spojky

Syntax výrokovologických formúl

Syntax a sémantika formúl s výrokovologickými spojkami

Podobne ako pri atomických formulách, aj pri formulách s výrokovologickými spojkami potrebujeme zadefinovať — presne a záväzne — ich syntax (skladbu) a sémantiku (význam).

Niektoré definície preberieme, iné rozšírime alebo modifikujeme, ďalšie pridáme.

Syntax výrokovologických formúl logiky prvého rádu špecifikuje:

- z čoho sa skladajú,
- čím sú a akú majú štruktúru.

Symboly výrokovologickej časti logiky prvého rádu

Definícia 2.4

Symbolmi jazyka $\mathcal L$ výrokovologickej časti logiky prvého rádu sú:

- mimologické symboly, ktorými sú
 - indivíduové konštanty z nejakej neprázdnej spočítateľnej množiny C_C
 - ullet a **predikátové symboly** z nejakej spočítateľnej množiny $\mathcal{P}_{\mathcal{L}};$
- logické symboly, ktorými sú
 - výrokovologické spojky ¬, ∧, ∨, → (nazývané, v uvedenom poradí, symbol negácie, symbol konjunkcie, symbol disjunkcie, symbol implikácie);
 a symbol rovnosti ≐:
 - pomocné symboly (,) a , (ľavá zátvorka, pravá zátvorka a čiarka).

Množiny $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$ sú disjunktné. Pomocné ani logické symboly sa nevyskytujú v symboloch z $\mathcal{C}_{\mathcal{L}}$ ani $\mathcal{P}_{\mathcal{L}}$.

Každému symbolu $P\in\mathcal{P}_{\mathcal{L}}$ je priradená $\mathrm{arita}\ \mathrm{ar}_{\mathcal{L}}(P)\in\mathbb{N}^+.$

Atomické formuly

Definícia atomických formúl je takmer rovnaká ako doteraz:

Definícia 2.5

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu.

Rovnostný atóm jazyka $\mathcal L$ je každá postupnosť symbolov $c_1 \doteq c_2$, kde c_1 a c_2 sú indivíduové konštanty z $\mathcal C_{\mathcal L}$.

 $\begin{array}{l} \textit{Predikátový atóm} \text{ jazyka } \mathcal{L} \text{ je každá postupnosť symbolov} \\ P(c_1, \dots, c_n), \text{ kde } P \text{ je predikátový symbol z } \mathcal{P}_{\mathcal{L}} \text{ s aritou } n \\ \text{a } c_1, \dots, c_n \text{ sú indivíduové konštanty z } \mathcal{C}_{\mathcal{L}}. \end{array}$

Atomickými formulami (skrátene **atómami**) jazyka $\mathcal L$ súhrnne nazývame všetky rovnostné a predikátové atómy jazyka $\mathcal L$.

Množinu všetkých atómov jazyka $\mathcal L$ označujeme $\mathcal A_{\mathcal L}.$

 $\mathsf{Majme} \ \mathsf{jazyk} \ \mathcal{L}, \, \mathsf{kde} \ \mathcal{C}_{\mathcal{L}} = \{ \mathsf{Kim}, \mathsf{Jim}, \mathsf{Sarah} \} \ \mathsf{a} \ \mathcal{P}_{\mathcal{L}} = \{ \mathsf{pride}^1 \}.$

Čo sú formuly tohto jazyka?

- Samotné atómy, napr. príde(Sarah).
- Negácie atómov, napr. ¬príde(Sarah).
- Atómy alebo aj ich negácie spojené spojkou, napr. (¬príde(Kim) ∨ príde(Sarah)).
- Ale negovať a spájať spojkami môžeme aj zložitejšie formuly, napr. (¬(príde(Kim) ∧ príde(Sarah)) → (¬príde(Kim) ∨ ¬príde(Sarah))).

Ako to presne a úplne popíšeme?

Čo sú výrokovologické formuly?

Ako presne a úplne popíšeme, čo je formula?

Induktívnou definíciou:

- Povieme, čo sú základné formuly, ktoré sa nedajú rozdeliť na menšie formuly.
 - Podobne ako báza pri matematickej indukcii.
- 2. Opíšeme, ako sa z jednoduchších formúl skladajú zložitejšie.
 - Podobne ako indukčný krok pri matematickej indukcii.
- 3. Zabezpečíme, že nič iné nie je formulou.

Formuly jazyka výrokovologickej časti logiky prvého rádu

Definícia 2.6

Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu. Množina $\mathcal{E}_{\mathcal{L}}$ formúl jazyka \mathcal{L} je (3.) najmenšia množina postupností symbolov, ktorá spĺňa všetky nasledujúce podmienky:

- 1. Každý atóm z $\mathcal{A}_{\mathcal{L}}$ je formulou z $\mathcal{E}_{\mathcal{L}}$.
- 2.1. Ak A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov $\neg A$ patrí do $\mathcal{E}_{\mathcal{L}}$ a nazývame ju negácia formuly A.
- 2.2. Ak A a B sú v $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosti symbolov $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ patria do $\mathcal{E}_{\mathcal{L}}$ a nazývame ich postupne konjunkcia, disjunkcia a implikácia formúl A a B.

Každý prvok A množiny $\mathcal{E}_{\mathcal{L}}$ nazývame formulou jazyka $\mathcal{L}.$

Dohody · Vytvorenie formuly

Dohoda 2.7

Formuly označujeme meta premennými A, B, C, X, Y, Z, podľa potreby aj s dolnými indexmi.

Dohoda 2.8

Pre každú dvojicu formúl $A, B \in \mathcal{E}_{\mathcal{L}}$ je zápis $(A \leftrightarrow B)$ skratka za formulu $((A \to B) \land (B \to A))$.

Technicky $(\cdot \leftrightarrow \cdot)$: $\mathcal{E}_{\mathcal{L}} \to \mathcal{E}_{\mathcal{L}}$ funkcia na formulách definovaná ako $(A \leftrightarrow B) = ((A \to B) \land (B \to A))$ pre každé dve formuly A a B.

Príklad 2.9

Ako by sme podľa definície 2.6 mohli dokázať, že (¬príde(Kim) → (príde(Jim) ∨ príde(Sarah))) je formula? Teda, ako by sme ju podľa definície 2.6 mohli vytvoriť?

Indukcia na konštrukciu formuly

Veta 2.10 (Princíp indukcie na konštrukciu formuly)

Nech P je ľubovoľná vlastnosť formúl ($P \subseteq \mathcal{E}_{\mathcal{L}}$). Ak platí súčasne

- 1. každý atóm z $\mathcal{A}_{\mathcal{L}}$ má vlastnosť P,
- 2.1. ak formula A má vlastnosť P, tak aj $\neg A$ má vlastnosť P,
- 2.2. ak formuly A a B majú vlastnosť P, tak aj každá z formúl $(A \land B)$, $(A \lor B)$ a $(A \to B)$ má vlastnosť P,

tak všetky formuly majú vlastnosť P ($P = \mathcal{E}_{\mathcal{L}}$).

Vytvárajúca postupnosť

Definícia 2.11

 $\mbox{\it Vytvárajúcou postupnosťou}$ nad jazykom $\mathcal L$ výrokovologickej časti logiky prvého rádu je ľubovoľná konečná postupnosť A_0,\ldots,A_n postupností symbolov, ktorej každý člen

- je atóm z $\mathcal{A}_{\mathcal{L}}$, alebo
- má tvar ¬A, pričom A je niektorý predchádzajúci člen postupnosti, alebo
- má jeden z tvarov (A ∧ B), (A ∨ B), (A → B), kde A a B sú niektoré predchádzajúce členy postupnosti.

 $\begin{cal}Vytvárajúcou postupnosťou pre $X$$ je ľubovoľná vytvárajúca postupnosť, ktorej posledným prvkom je \$X\$.}

Formula a existencia vytvárajúcej postupnosti

Tvrdenie 2.12

Postupnosť symbolov A je formulou vtt existuje vytvárajúca postupnosť pre A.

Osnova dôkazu.

(⇒) Indukciou na konštrukciu formuly

(⇐) Indukciou na dĺžku vytvárajúcej postupnosti

vtt skracuje "vtedy a len vtedy, ked".

Vytvárajúcu postupnosť by sme mohli použiť na alternatívnu definíciu formúl.

(Ne)jednoznačnosť rozkladu formúl výrokovej logiky

Čo keby sme zadefinovali "formuly" takto?

Definícia "formúl"

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu.

Množina $\mathcal{E}_{\mathcal{L}}$ "formúl" jazyka \mathcal{L} je (3.) najmenšia množina postupností symbolov, ktorá spĺňa všetky nasledujúce podmienky:

- 1. Každý atóm z $\mathcal{A}_{\mathcal{L}}$ je "formulou" z $\mathcal{E}_{\mathcal{L}}$.
- 2.1. Ak A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov $\neg A$ patrí do $\mathcal{E}_{\mathcal{L}}$.
- 2.2. Ak A a B sú v $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosti symbolov $A \wedge B$, $A \vee B$ a $A \to B$ patria do $\mathcal{E}_{\mathcal{L}}$.
- **2.3.** ak A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov (A) je v $\mathcal{E}_{\mathcal{L}}$.

Každý prvok A množiny $\mathcal{E}_{\mathcal{L}}$ nazývame "formulou" jazyka \mathcal{L} .

Čo znamená "formula" $(pride(Jim) \rightarrow pride(Kim) \rightarrow \neg pride(Sarah))$?

Jednoznačnosť rozkladu formúl výrokovej logiky

Pre našu definíciu formúl platí:

Tvrdenie 2.13 (o jednoznačnosti rozkladu)

Pre každú formulu $X\in\mathcal{E}_{\mathcal{L}}$ v jazyku \mathcal{L} platí práve jedna z nasledujúcich možností:

- X je atóm z $\mathcal{A}_{\mathcal{L}}$.
- Existuje práve jedna formula $A \in \mathcal{E}_{\mathcal{L}}$ taká, že $X = \neg A$.
- Existujú práve jedna dvojica formúl $A, B \in \mathcal{E}_{\mathcal{L}}$ a jedna spojka $b \in \{\land, \lor, \rightarrow\}$ také, že $X = (A \ b \ B)$.

Problémy s vytvárajúcou postupnosťou

Vytvárajúca postupnosť popisuje konštrukciu formuly podľa definície formúl:

```
pride(Jim), pride(Sarah), ¬pride(Jim), pride(Kim),
¬pride(Sarah), (¬pride(Jim) ∧ pride(Kim)),
((¬pride(Jim) ∧ pride(Kim)) → ¬pride(Sarah))
```

ale

- môže obsahovať "zbytočné" prvky;
- nie je jasné ktoré z predchádzajúcich formúl sa bezprostredne použijú na vytvorenie nasledujúcej formuly.

Akou "dátovou štruktúrou" vieme vyjadriť konštrukciu formuly bez týchto problémov?

Vytvárajúci strom

Konštrukciu si vieme predstaviť ako strom:

$$((\neg \texttt{pride}(\texttt{Jim}) \land \texttt{pride}(\texttt{Kim})) \rightarrow \neg \texttt{pride}(\texttt{Sarah})) \\ (\neg \texttt{pride}(\texttt{Jim}) \land \texttt{pride}(\texttt{Kim})) \quad \neg \texttt{pride}(\texttt{Sarah}) \\ \neg \texttt{pride}(\texttt{Jim}) \quad \texttt{pride}(\texttt{Kim}) \quad \texttt{pride}(\texttt{Sarah}) \\ \\ | \\ \texttt{pride}(\texttt{Jim})$$

Takéto stromy voláme vytvárajúce.

Ako ich presne a všeobecne popíšeme – zadefinujeme?

Podobne ako sa definuje napr. binárny vyhľadávací strom.

Vytvárajúci strom formuly

Definícia 2.14

Vytvárajúci strom T pre formulu X je binárny strom obsahujúci v každom vrchole formulu, pričom platí:

- v koreni *T* je formula *X*,
- ak vrchol obsahuje formulu ¬A, tak má práve jedno dieťa, ktoré obsahuje formulu A,
- ak vrchol obsahuje formulu (A b B), kde b je jedna z binárnych spojok, tak má dve deti, pričom ľavé dieťa obsahuje formulu A a pravé formulu B,
- vrcholy obsahujúce atómy sú listami.

Syntaktické vzťahy formúl

Uvažujme formulu:

$$((\neg \texttt{pride}(\texttt{Jim}) \land \texttt{pride}(\texttt{Kim})) \rightarrow \neg \texttt{pride}(\texttt{Sarah}))$$

Ako nazveme formuly, z ktorých vznikla?

```
\texttt{pride}(\texttt{Sarah}), \neg \texttt{pride}(\texttt{Jim}), (\neg \texttt{pride}(\texttt{Jim}) \land \texttt{pride}(\texttt{Kim})), ...
```

Ako nazveme formuly, z ktorých bezprostredne/priamo vznikla?

```
(\neg \texttt{pride}(\texttt{Jim}) \land \texttt{pride}(\texttt{Kim})) \quad \text{a} \quad \neg \texttt{pride}(\texttt{Sarah})
```

Ako tieto pojmy presne zadefinujeme?

Podformuly

Definícia 2.15 (Priama podformula)

Pre všetky formuly *A* a *B*:

- Priamou podformulou $\neg A$ je formula A.
- Priamymi podformulami $(A \land B)$, $(A \lor B)$ a $(A \to B)$ sú formuly A (ľavá priama podformula) a B (pravá priama podformula).

Definícia 2.16 (Podformula)

Vzťah byť podformulou je najmenšia relácia na formulách spĺňajúca pre všetky formuly X,Y a Z:

- X je podformulou X.
- Ak X je priamou podformulou Y, tak X je podformulou Y.
- Ak X je podformulou Y a Y je podformulou Z, tak X je podformulou Z.

Formula X je vlastnou podformulou formuly Y práve vtedy, keď X je podformulou Y a $X \neq Y$.

Meranie syntaktickej zložitosti formúl

Miera zložitosti/veľkosti formuly:

- Jednoduchá: dĺžka, teda počet symbolov
 - Počíta aj pomocné symboly.
 - Nič nemá mieru 0, ani atómy.
- Lepšia: počet netriviálnych krokov pri konštrukcii formuly
 - pridanie negácie,
 - spojenie formúl spojkou.

Túto lepšiu mieru nazývame stupeň formuly.

Príklad 2.17

```
Aký je stupeň formuly ((pride(Jim) \lor \neg pride(Kim)) \land \neg (pride(Sarah) \rightarrow pride(Jim)))?
```

Meranie syntaktickej zložitosti formúl

Ako stupeň zadefinujeme?

Podobne ako sme zadefinovali formuly — induktívne:

- 1. určíme hodnotu stupňa pre atomické formuly,
- 2. určíme, ako zo stupňa priamych podformúl vypočítame stupeň z nich zloženej formuly.

Stupeň formuly

Definícia 2.18 (Stupeň formuly)

Pre všetky formuly A a B a všetky n, n_1 , $n_2 \in \mathbb{N}$:

- Atomická formula je stupňa 0.
- Ak A je formula stupňa n, tak $\neg A$ je stupňa n + 1.
- Ak A je formula stupňa n_1 a B je formula stupňa n_2 , tak $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ sú stupňa $n_1 + n_2 + 1$.

Definícia 2.18 (Stupeň formuly presnejšie a symbolicky)

Stupeň $\deg(X)$ formuly $X \in \mathcal{E}_L$ definujeme pre všetky formuly A,

- $\deg(A) = 0$, ak $A \in \mathcal{A}_{\mathcal{L}}$,
- deg(A) = 0, deg(A) = 0. • $deg(\neg A) = deg(A) + 1$.

 $B \in \mathcal{E}_{\mathcal{L}}$ nasledovne:

• $\deg((A \land B)) = \deg((A \lor B)) = \deg((A \to B)) = \deg(A) + \deg(B) + 1.$

Indukcia na stupeň formuly

Pomocou stupňa vieme indukciu na konštrukciu formuly zredukovať na špeciálny prípad matematickej indukcie:

Veta 2.19 (Princíp indukcie na stupeň formuly)

Nech P je ľubovoľná vlastnosť formúl ($P\subseteq\mathcal{E}_{\mathcal{L}}$). Ak platí súčasne

- 1. báza indukcie: každá formula stupňa 0 má vlastnosť P,
- 2. indukčný krok: pre každú formulu X z predpokladu, že všetky formuly menšieho stupňa ako $\deg(X)$ majú vlastnosť P, vyplýva, že aj X má vlastnosť P,

tak všetky formuly majú vlastnosť P ($P=\mathcal{E}_{\mathcal{L}}$).

Výrokovologické spojky

Sémantika výrokovologických formúl

Význam formúl výrokovologickej časti logiky prvého rádu popíšeme podobne ako význam atomických formúl pomocou **štruktú**r.

Štruktúra pre jazyk

Definícia štruktúry takmer nemení:

Definícia 2.20

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu. <u>Štruktúrou</u> pre jazyk $\mathcal L$ nazývame dvojicu $\mathcal M=(D,i)$, kde D je ľubovoľná neprázdna množina nazývaná doména štruktúry $\mathcal M$; i je zobrazenie, nazývané <u>interpretačná funkcia</u> štruktúry $\mathcal M$, ktoré

- každému symbolu konštanty c jazyka \mathcal{L} priraďuje prvok $i(c) \in D$;
- každému predikátovému symbolu P jazyka $\mathcal L$ s aritou n priraďuje množinu $i(P)\subseteq D^n$.

Pravdivosť formuly v štruktúre

Definícia 2.21

Nech $\mathcal{M}=(D,i)$ je štruktúra pre jazyk \mathcal{L} výrokovologickej časti logiky prvého rádu. Reláciu *formula A je pravdivá* v štruktúre \mathcal{M} ($\mathcal{M} \models A$) definujeme induktívne pre všetky arity n>0, všetky predikátové symboly P s aritou n všetky konštanty $c_1, c_2, ..., c_n$, a všetky formuly A, B jazyka \mathcal{L} nasledovne:

- $\mathcal{M} \models c_1 \doteq c_2 \text{ vtt } i(c_1) = i(c_2),$
- $\bullet \ \mathcal{M} \models P(c_1, \dots, c_n) \ \mathsf{vtt} \ \big(i(c_1), \dots, i(c_n) \big) \in i(P),$
- $\mathcal{M} \models \neg A \text{ vtt } \mathcal{M} \not\models A$,
- $\mathcal{M} \models (A \land B)$ vtt $\mathcal{M} \models A$ a zároveň $\mathcal{M} \models B$,
- $\mathcal{M} \models (A \lor B) \text{ vtt } \mathcal{M} \models A \text{ alebo } \mathcal{M} \models B$,
- $\mathcal{M} \models (A \rightarrow B)$ vtt $\mathcal{M} \not\models A$ alebo $\mathcal{M} \models B$,

kde $\mathcal{M} \not\models A$ skracuje A nie je pravdivá v \mathcal{M} .

Vyhodnotenie pravdivosti formuly

{1, 3}

i(Jim)

```
Príklad 2.22 (Vyhodnotenie pravdivosti formuly v štruktúre)
Majme štruktúru \mathcal{M}=(D,i) pre jazyk o party, kde D=\{0,1,2,3\}, i(\mathtt{Kim})=1,i(\mathtt{Jim})=2,i(\mathtt{Sarah})=3,i(\mathtt{príde})=\{1,3\}.
Formuly vyhodnocujeme podľa definície postupom zdola nahor (od atómov cez zložitejšie podformuly k cieľovej formule):
```

```
(od atómov cez zložitejšie podformuly k cieľovej formule):  (\neg(\text{príde}(\text{Jim}) \lor \neg \text{príde}(\text{Kim})) \to \neg \text{príde}(\text{Sarah})) \\ \neg(\text{príde}(\text{Jim}) \lor \neg \text{príde}(\text{Kim})) & \neg \text{príde}(\text{Sarah}) \\ | (\text{príde}(\text{Jim}) \lor \neg \text{príde}(\text{Kim})) & \text{príde}(\text{Sarah}) \\ | (\text{príde}(\text{Jim}) \lor \neg \text{príde}(\text{Sarah})) \\ | (\text{príde}(\text{Jim}) \lor \neg \text{príde}(\text{Sarah})) \\ | (\text{príde}(\text{Jim}) \lor \neg \text{príde}(\text{Sarah})) \\ | (\text{príde}(\text{Jim}) \lor \neg \text{príde}(\text{Jim})) \\ | (\text{príde}(\text{Jim}) \lor \neg \text{príde}(\text{Ji
```

pride(Jim) $\neg pride(Kim) i(Sarah)$

i(príde) príde(Kim)

i(Kim) i(pride)

 $\{1, 3\}$

i(príde)

3 {1, 3}

Vyhodnotenie pravdivosti formuly

```
Príklad 2.22 (Vyhodnotenie pravdivosti formuly v štruktúre)
Majme štruktúru \mathcal{M} = (D, i) pre jazyk o party, kde D = \{0, 1, 2, 3\},
i(Kim) = 1, i(Jim) = 2, i(Sarah) = 3, i(pride) = \{1, 3\}.
Formuly vyhodnocujeme podľa definície postupom zdola nahor
(od atómov cez zložitejšie podformuly k cieľovej formule):
                \mathcal{M} \not\models (\neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \to \neg \text{pride}(\text{Sarah}))
        \mathcal{M} \models \neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \quad \mathcal{M} \not\models \neg \text{pride}(\text{Sarah})
         \mathcal{M} \not\models (pride(Jim) \lor \neg pride(Kim)) \mathcal{M} \models pride(Sarah)
        \mathcal{M} \not\models \text{pride}(\text{Jim}) \mathcal{M} \not\models \neg \text{pride}(\text{Kim}) i(\text{Sarah}) \in i(\text{pride})
       i(\text{Jim}) \notin i(\text{pride}) \quad \mathcal{M} \models \text{pride}(\text{Kim}) \qquad 3 \in \{1,3\}
```

 $1 \in \{1, 3\}$

 $2 \notin \{1,3\}$ $i(Kim) \in i(pride)$

Vyhodnotenie pravdivosti formuly

Príklad 2.23 (Vyhodnotenie pravdivosti formuly v štruktúre)

Majme štruktúru $\mathcal{M} = (D, i)$ pre jazyk o party, kde $D = \{0, 1, 2, 3\}$, i(Kim) = 1, i(Jim) = 2, i(Sarah) = 3, $i(\text{pride}) = \{1, 3\}$.

Vyhodnotenie pravdivosti môžeme zapísať aj tabuľkou:

$$p(J) \quad p(K) \quad \neg p(K) \quad (p(J) \vee \neg p(K)) \quad \neg (p(J) \vee \neg p(K)) \\ \hline \mathcal{M} \quad \not\models \quad \models \quad \not\models \quad \qquad \models \\ \\ \dots \quad \boxed{ p(S) \quad \neg p(S) \quad (\neg (p(J) \vee \neg p(K)) \rightarrow \neg p(S)) \\ \hline \mathcal{M} \quad \models \quad \not\models \quad \qquad \not\models \\ \\ \text{kde } p = \texttt{pride}, K = \texttt{Kim}, J = \texttt{Jim a } S = \texttt{Sarah}.$$

Všimnite si, že v záhlaví tabuľky ie vytvárajúca postupnosť vyhodnocovanej formuly.

Príklad 2.24 (Nájdenie štruktúry, v ktorej je formula pravdivá)

V akej štruktúre $\mathcal{M} = (D, i)$ je pravdivá formula

 $\mathcal{M} \models \big(\neg (\texttt{pride}(\texttt{Jim}) \lor \neg \texttt{pride}(\texttt{Kim})) \to \neg \texttt{pride}(\texttt{Sarah}) \big)?$

Na zodpovedanie je dobré postupovať podľa defínície pravdivosti zhora nadol (od cieľovej formuly cez podformuly k atómom):

 $\mathcal{M} \models \big(\neg (\texttt{pride}(\texttt{Jim}) \lor \neg \texttt{pride}(\texttt{Kim})) \to \neg \texttt{pride}(\texttt{Sarah}) \big) \\ \lor tt$

Príklad 2.24 (Náidenie štruktúry, v ktorej je formula pravdivá)

V akej štruktúre $\mathcal{M} = (D, i)$ je pravdivá formula

 $\mathcal{M} \models (\neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \rightarrow \neg \text{pride}(\text{Sarah}))?$

Na zodpovedanie je dobré postupovať podľa defínície pravdivosti zhora nadol (od cieľovei formuly cez podformuly k atómom):

 $\mathcal{M} \models (\neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \rightarrow \neg \text{pride}(\text{Sarah}))$ vtt $\mathcal{M} \not\models \neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim}))$ alebo $\mathcal{M} \models \neg pride(Sarah)$

vtt

Príklad 2.24 (Nájdenie štruktúry, v ktorej je formula pravdivá)

V akej štruktúre $\mathcal{M} = (D, i)$ je pravdivá formula $\mathcal{M} \models (\neg(\text{pride}(\text{Jim}) \lor \neg\text{pride}(\text{Kim})) \to \neg\text{pride}(\text{Sarah}))$?

Na zodpovedanie je dobré postupovať podľa defínície pravdivosti zhora nadol (od cieľovei formuly cez podformuly k atómom):

 $\mathcal{M} \models (\neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \to \neg \text{pride}(\text{Sarah}))$ $\forall \text{tt } \mathcal{M} \not\models \neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \text{ alebo}$ $\mathcal{M} \models \neg \text{pride}(\text{Sarah})$

 $\mathcal{M} \models \neg pride(Saran)$ vtt $\mathcal{M} \models (pride(Jim) \lor \neg pride(Kim))$ alebo $\mathcal{M} \not\models pride(Sarah)$ vtt

Príklad 2.24 (Nájdenie štruktúry, v ktorej je formula pravdivá)

V akej štruktúre $\mathcal{M} = (D, i)$ je pravdivá formula $\mathcal{M} \models (\neg(\text{pride}(\text{Jim}) \lor \neg\text{pride}(\text{Kim})) \to \neg\text{pride}(\text{Sarah}))$?

Na zodpovedanie je dobré postupovať podľa defínície pravdivosti zhora nadol (od cieľovei formuly cez podformuly k atómom):

 $\mathcal{M} \models (\neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \to \neg \text{pride}(\text{Sarah}))$ $\forall \text{tt } \mathcal{M} \not\models \neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \text{ alebo}$ $\mathcal{M} \models \neg \text{pride}(\text{Sarah})$

$$\label{eq:local_state} \begin{split} & \forall \mathsf{tt}\,\mathcal{M} \models (\mathsf{pride}(\mathsf{Jim}) \lor \neg \mathsf{pride}(\mathsf{Kim})) \, \mathsf{alebo}\,\mathcal{M} \not\models \mathsf{pride}(\mathsf{Sarah}) \\ & \forall \mathsf{tt}\,\mathcal{M} \models \mathsf{pride}(\mathsf{Jim}) \, \mathsf{alebo}\,\mathcal{M} \models \neg \mathsf{pride}(\mathsf{Kim}) \, \mathsf{alebo} \end{split}$$

vtt

Príklad 2.24 (Nájdenie štruktúry, v ktorej je formula pravdivá) V akej štruktúre $\mathcal{M} = (D, i)$ je pravdivá formula

 $\mathcal{M} \models (\neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \rightarrow \neg \text{pride}(\text{Sarah}))?$

Na zodpovedanie je dobré postupovať podľa defínície pravdivosti zhora nadol (od cieľovej formuly cez podformuly k atómom):

zhora nadol (od cieľovej formuly cez podformuly k atómom): $\mathcal{M} \models \big(\neg (\texttt{príde}(\texttt{Jim}) \lor \neg \texttt{príde}(\texttt{Kim})) \to \neg \texttt{príde}(\texttt{Sarah}) \big)$

 $\forall \mathsf{tt}\, \mathcal{M} \not\models \neg(\mathsf{pride}(\mathsf{Jim}) \lor \neg \mathsf{pride}(\mathsf{Kim})) \; \mathsf{alebo} \\ \mathcal{M} \models \neg \mathsf{pride}(\mathsf{Sarah})$

$$\label{eq:continuous_series} \begin{split} & \text{vtt } \mathcal{M} \models (\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \text{ alebo } \mathcal{M} \not\models \text{pride}(\text{Sarah}) \\ & \text{vtt } \mathcal{M} \models \text{pride}(\text{Jim}) \text{ alebo } \mathcal{M} \models \neg \text{pride}(\text{Kim}) \text{ alebo} \end{split}$$

 $\mathcal{M} \not\models \text{pride}(\text{Sarah})$ vtt $i(\text{Jim}) \in i(\text{pride})$ alebo $i(\text{Kim}) \not\in i(\text{pride})$ alebo $i(\text{Sarah}) \not\in i(\text{pride})$.

Výrokovologické spojky

Teórie a ich modely

Teórie v neformálnej logike

Medzi základnými logickými pojmami z úvodnej prednášky boli teória a model.

Neformálne je teória súbor tvrdení, ktoré pokladáme za pravdivé.

Zvyčajne popisujú našu predstavu o zákonitostiach platných v nejakej časti sveta a pozorovania o jej stave.

Príklad 2.25

Máme troch nových známych — Kim, Jima a Sarah.

Organizujeme párty a P0: chceme, aby na ňu prišiel niekto z nich.

Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

P1: Sarah nepríde na párty, ak príde Kim.

P2: Jim príde na párty, len ak príde Kim.

P3: Sarah nepríde bez Jima.

Výrokovologické teórie

V logike prvého rádu tvrdenia zapisujeme formulami.

Teóriu preto budeme chápať ako súbor (čiže množinu) formúl.

Definícia 2.26

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu.

Každú množinu formúl jazyka $\mathcal L$ budeme nazývať teóriou v jazyku $\mathcal L$.

Príklad 2.27

```
\begin{split} T_{\mathsf{party}} &= \{ ((\texttt{pride}(\texttt{Kim}) \lor \texttt{pride}(\texttt{Jim})) \lor \texttt{pride}(\texttt{Sarah})), \\ &\quad (\texttt{pride}(\texttt{Kim}) \to \neg \texttt{pride}(\texttt{Sarah})), \\ &\quad (\texttt{pride}(\texttt{Jim}) \to \texttt{pride}(\texttt{Kim})), \\ &\quad (\texttt{pride}(\texttt{Sarah}) \to \texttt{pride}(\texttt{Jim})) \} \end{split}
```

Modely teórií

Neformálne je *modelom* teórie stav vybranej časti sveta, v ktorom sú všetky tvrdenia v teórii pravdivé.

Pre logiku prvého rádu stavy sveta vyjadrujú štruktúry.

Príklad 2.28 (Model teórie o party)

```
\mathcal{M} = (\{k, i, s, e, h\}, i).
               i(Kim) = k, i(Jim) = j, i(Sarah) = s,
               i(pride) = \{k, j, e\};
\mathcal{M} \models ((\text{pride}(\text{Kim}) \lor \text{pride}(\text{Jim})) \lor \text{pride}(\text{Sarah}))
\mathcal{M} \models (pride(Kim) \rightarrow \neg pride(Sarah))
\mathcal{M} \models (pride(Jim) \rightarrow pride(Kim))
\mathcal{M} \models (pride(Sarah) \rightarrow pride(Jim))
```

Model teórie

Definícia 2.29 (Model)

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu a nech T je teória v jazyku $\mathcal L$ a $\mathcal M$ je štruktúra pre jazyk $\mathcal L$.

Teória T je $\operatorname{\textit{pravdivá}}$ v \mathcal{M} , skrátene $\mathcal{M} \models T$, vtt $\operatorname{každ\acute{a}}$ formula X z T je $\operatorname{pravdiv\acute{a}}$ v \mathcal{M} (teda $\mathcal{M} \models X$).

Hovoríme tiež, že $\mathcal M$ je modelom T.

Teória T je nepravdivá v \mathcal{M} , skrátene $\mathcal{M} \not\models T$, vtt T nie je pravdivá v \mathcal{M} .

Výrokovologické spojky

Správnosť a vernosť formalizácie

Skúška správnosti formalizácie

Správnou formalizáciou výroku je taká formula, ktorá je pravdivá za tých istých okolností ako formalizovaný výrok.

Formuly dokážeme vyhodnocovať iba v štruktúrach.

Preto za tých istých okolností znamená v tých istých štruktúrach.

Vernosť formalizácie

Výrok "Nie je pravda, že Jarka a Karol sú doma" sa dá správne formalizovať ako

$$\neg(doma(Jarka) \land doma(Karol)),$$

ale rovnako správna je aj formalizácia

$$(\neg doma(Jarka) \lor \neg doma(Karol)),$$

lebo je pravdivá v rovnakých štruktúrach.

Pri formalizácii sa snažíme o správnosť, ale zároveň uprednostňujeme formalizácie, ktoré vernejšie zachytávajú štruktúru výroku.

Zvyšuje to pravdepodobnosť, že sme neurobili chybu, a uľahčuje hľadanie chýb.

Prvá formalizácia je vernejšia ako druhá, a preto ju uprednostníme.

Znalosti na pozadí

Na praktických cvičeniach ste sa stretli so znalosťami na pozadí (background knowledge): vzájomná výlučnosť vlastností *je Nemec* a *je Rus*, ktorá v úlohe nebola explicitne uvedená.

Uprednostňujeme ich vyjadrovanie samostatnými formulami.

Rovnaké dôvody ako pre vernosť.

Skutočné súčasti významu a konverzačné implikatúry

Niektoré tvrdenia vyznievajú silnejšie, ako naozaj sú:

- "Prílohou sú zemiaky alebo šalát" môže niekomu znieť ako exkluzívna disjunkcia.
- "Prejdete, ak všetky úlohy vyriešite na 100 %" znie mnohým ako ekvivalencia.

Skutočnú časť významu tvrdenia nemôžeme poprieť v dodatku k pôvodnému tvrdeniu bez sporu s ním.

 Keď k tvrdeniu "Karol a Jarka sú doma" dodáme "Ale Karol nie je doma," dostaneme sa do sporu. Takže "Karol je doma" je skutočne časťou významu pôvodného výroku.

Skutočné súčasti významu a konverzačné implikatúry

Časť významu tvrdenia, ktorú <mark>môžeme poprieť</mark> dodatkami bez sporu s pôvodným tvrdením, sa nazýva *konverzačná implikatúra* (H. P. Grice). Nie je skutočnou časťou významu pôvodného tvrdenia.

- Prílohou sú zemiaky alebo šalát.
 Ale môžete si (pol na pol alebo za príplatok) dať aj oboje.
 Dodatok popiera exkluzívnosť, ale nie je v spore s tvrdením.
 Takže exkluzívnosť nie je súčasťou významu základného tvrdenia, je to iba konverzačná implikatúra.
- Prejdete, ak všetky úlohy vyriešite na 100 %.
 Ale nemusíte mať všetko na 100 %, aby ste prešli.
 Dodatok popiera implikáciu "Prejdete, iba ak všetky úlohy vyriešite na 100 %," ale nie je v spore s pôvodným tvrdením.
 Táto implikácia teda nie je skutočne časťou významu základného tvrdenia, je to len konverzačná implikatúra.