实验名称: 两点边值问题的有限差分格式

一、实验目的及要求

实验目的

1.应用 Matlab 编写求解常微分方程两点边值问题差分法程序。

和要求

2.能够应用差分方法处理给定的实际问题,并对实验结果给出合理解释。

二、实验描述及实验过程

1.PC 机;

2.计算软件 Matlab R2016a;

3.问题:应用二阶差分格式求解常微分方程两点边值问题

$$-u''(x) + \left(x - \frac{1}{2}\right)^2 u(x) = \left(x^2 - x + \frac{5}{4}\right) \sin x, \ x \in \left(0, \frac{\pi}{2}\right),$$
$$u(0) = 0, \quad u\left(\frac{\pi}{2}\right) = 1.$$

已知其精确解为 $u(x,y) = \sin x$.

实验要求: (1) 写出该问题的二阶格式,及其矩阵向量形式。

- (2) 应用二阶格式计算填充表 1 和表 2。
- (3) 画出不同步长时解曲线图和误差曲线图,进行对比。

实

验

述

描

```
实验代码
    %% The right hand-side function
    function y = Rfun(x)
    y = (x^2-x+5/4)*sin(x);
    clc
实
    clear
    close all
验
    M = 8;
    xa = 0; xb = pi/2;
过
    h = (xb-xa)/M;
    x = xa:h:xb; \ \ x = x';
程
    alpha = 0; beta = 1;
    U = zeros(M+1, 1);
与
    U(1) = alpha; U(M+1) = beta;
    a = ones(M-1, 1);
步
    a(1:M-1) = -1;
    b = ones(M-1, 1);
骤
    for i=1:M-1
    b(i, 1) = (x(i+1, 1)-1/2)^2*h^2+2;
    end
    c = ones(M-1, 1); c(1:M-1) = -1;
    H = spdiags([a, b, c], -1:1, M-1, M-1);
```

```
g = zeros(M-1, 1);
for i=2:M-2
g(i, 1)=h^2*(x(i+1, 1)^2-x(i+1, 1)+5/4)*sin(x(i+1, 1));
end
g(1) = h^2*(x(2, 1)^2-x(2, 1)+5/4)*sin(x(2, 1))+alpha;
g(M-1) = h^2*(x(M, 1)^2-x(M, 1)+5/4)*sin(x(M, 1))+beta;
%% Main solve
U(2:M, 1) = H\backslash g;
% Exact solution
u_exa = sin(x);
% Error
Err = abs(U-u exa);
%% Plot
figure(1)
plot(x, U, 'ro')
hold on
plot(x, u_exa, 'b-')
grid, xlabel('步长h'), ylabel('因变量 U');
% Numerical error curves
figure(2)
MaxErr = max(Err);
plot(x, Err, 'o--')
xlabel('x'); ylabel('|u(x)-u|h(x)|')
grid, xlabel('步长 h'), ylabel('误差');
```

三、实验结果与解释

(1). 二阶格式及其矩阵向量形式

用 u_i 代替 $u(x_i)$, f_i =(x_i^2 - x_i +5/4) $sinx_i$,得到微分格式 - u_{i-1} +(2+ h^2 (x_i -1/2)) u_i - u_{i+1} = h^2 f_i , i=1,2,……,M-1 矩阵向量形式

$$\begin{bmatrix} b_1 & c_1 & 0 & \cdots & 0 \\ a_2 & b_2 & c_2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & a_{M-2} & b_{M-2} & c_{M-2} \\ 0 & 0 & 0 & a_{M-1} & b_{M-1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{M-2} \\ u_{M-1} \end{bmatrix} = \begin{bmatrix} g_1 - a_1 u_0 \\ g_2 \\ \vdots \\ g_{M-2} \\ g_{M-1} - c_{M-1} u_M \end{bmatrix}$$

(2). 计算结果数据表

表 1 部分结点处的精确解和取不同步长时所得的数值解

$h \setminus x$	$\frac{\pi}{16}$	$\frac{2\pi}{16}$	$\frac{3\pi}{16}$	$\frac{4\pi}{16}$	$\frac{5\pi}{16}$	$\frac{6\pi}{16}$	$\frac{7\pi}{16}$
$\frac{\pi}{16}$	0.19530	0.38309	0.55613	0.70774	0.83210	0.92440	0.98110
	836527	616071	049056	601351	235551	859276	574985
	4540	0934	7241	0565	3667	1278	8440
$\frac{\pi}{32}$	0.19514	0.38278	0.55571	0.70726	0.83162	0.92401	0.98086
	476107	645804	008312	637200	763889	173515	541748
	1841	8700	2524	1639	6759	0437	6975
$\frac{\pi}{64}$	0.19510	0.38270	0.55560	0.70714	0.83150	0.92391	0.98080
	392746	917935	518264	666587	910956	257974	531620
	7688	9131	2827	7589	1176	1381	4064
精确解	0.19509	0.38268	0.55557	0.70710	0.83146	0.92387	0.98078
	032201	343236	023301	678118	961230	953251	528040
	6128	5090	9602	6548	2545	1287	3230

(3). 数值解曲线图、精确解曲线图和误差曲线图。

实验结果与解释

四、总结及评阅

实验总结及心得体会

相同情况下,步长越小,数值解与精确解越接近。同时计算量也越大。但并不是步长越小越好,随着步长的不断减小与精确值靠拢的也变得缓慢。