

Modeling of Scope Performance in Turbulence

Turbulence Notes on this briefing

- The NVTherm model has NOT been developed to address the ansioplanatism. There are no fielded tactical systems with turbulence mitigation exploiting this aspect.
 - NVThermIP has limited application to SRVS BAA to:
 - •Demonstrate current day optic technology will support facial ID, BUT NOT in turbulence.
 - •Estimate resolution required to perform basic facial ID test (BAA Preps).
 - •Use in designing parts of the scope itself, not the processing.
 - •NVThermIP will NOT be applied to evaluate the image processing aspect of the SRVS systems or proposed processing concepts.

Turbulence

Ultra-narrow field-of-view (UNFOV) camera's resolution performance can be limited by atmospheric turbulence blur Observer Target Acquisition performance is degraded by turbulence blur/distortion Short Integration Time blur is instantaneous

Long Integration Time blur is spot "wandering"

Turbulence MTF_{turb} model

$$MTF_{\text{short}} = \exp\{57.4a\xi^{5/3}C_n^2\lambda^{-1/3}R[1-\mu(\xi\lambda/D)^{1/3}]\}$$

Where:

a is a wave shape constant (unity for plane wave and 3/8 for spherical)

 ξ is the spatial frequency in cycles per milliradian C_n^2 is index of refraction structure parameter

 λ is the wavelength

R is the path length

D is the imaging sensor aperture diameter μ is 0.5 in the far field and 1 in the near field.

Turbulence MTF

Blur is "range dependent"

 $Cn2=5E-13m^{(2/3)}, D=60mm$

MTF

Cyc/mr

Turbulence

Weiss-Wrana's data showed a characteristic day/night variation when temperatures were moderate:

Turbulence

Sample frequency of occurrence plots derived from the raw C_n^2 data:

System CTF

Noise on display

filtered by eye

Measured threshold of naked eye

$$CTF_{Sys}(\xi) = \frac{CTF(\xi)}{MTF(\xi)} \begin{bmatrix} 1 + \frac{\alpha^2 \sigma^2(\xi)}{S_{tmp}} \end{bmatrix}^{1/2}$$

Blur caused by system

Temp that generates average display brightness

 ξ = spatial frequency in (milliradian)⁻¹ MTF(ξ) is system modulation transfer function $\sigma(\xi)$ = noise filtered by display & visual system in units of Kelvin

 α is a calibration constant with units root-Hertz S_{tmp} units Kelvin (scene temperature that results in average display luminance)

0.3 0.2 -0.1

Target Acquisition

3

Range

0.5

1.5 2 2.5 3

△/N₅₀

3.5 4

V/V₅₀

Eye CTF

Eye CTF With 40X Mag

Cycles on Face for 90% Prob ID

It has been roughly determined that a 40X, 60mm spotter scop can ID a human face at 1000m

Facial Dimension is estimated at 7 inches by 9 inches Equal to 406cm² Characteristic Dimension is 20cm

We will do this in terms of N50 and V50

This estimate was related to extremely low turbulence

90% Facial ID W/No Turbulence

60mm Aperture 40X Mag Lim Freq at 0.2 Contrast = 70 cyc/mra

N90 Frequency is 70 cyc/mrad*0.2mrads = 14 cycles on target

V90
Frequency is 280cyc/mrad*0.2mrades
= 55 cycles on target

Range Prediction for 90% Facial ID W/5E-13 m(-2/3) CN

Note the Significant Reduction in the CTF of the System Due to the Turbulenc MTF (200 meters shown)

Range Prediction for 90% Facial ID W/5E-13 m(-2/3) CN

Conclusion

- Demonstrates current day optic technology will support facial ID, BUT NOT in turbulence.
- Estimates resolution required to perform basic facial ID test (for BAA Preps).
- Possibly useful model in designing elements of the scope itself