

Chapter 7

Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

7.3 Choosing Good Augmenting Paths

Choosing good augmenting paths

Use care when selecting augmenting paths

- Some choices lead to exponential algorithms
- Clever choice lead to polynomial algorithms

Pathology. When edge capacities can be irrational, no guarantee that Ford-Fulkerson terminates (or converges to a maximum flow)!

Goal. Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations

Figure Parts (a) through (d) depict four iterations of the Ford-Fulkerson Algorithm using a bad choice of augmenting paths: The augmentations alternate between the path P_1 through the nodes s, u, v, t in order and the path P_2 through the nodes s, v, u, t in order.

Choosing good augmenting paths

Choose augmenting paths with:

- Max bottleneck capacity ("fattest"). ← how to find?
- Fewest edges. ← ahead

Capacity-scaling algorithm

Overview. Choosing augmenting paths with "large" bottleneck capacity.

• Maintain scaling parameter Δ .

though not necessarily largest

- Let $G_f(\Delta)$ be the part of the residual graph containing only those edges with capacity $\geq \Delta$.
- Any augmenting path in $G_f(\Delta)$ has bottleneck capacity $\geq \Delta$.


```
Scaling Max-Flow  \begin{array}{l} \text{Initially } f(e) = 0 \text{ for all } e \text{ in } G \\ \text{Initially set } \Delta \text{ to be the largest power of 2 that is no larger} \\ \text{ than the maximum capacity out of } s \text{: } \Delta \leq \max_{\ell \text{ out of } s} c_{\ell} \\ \text{While } \Delta \geq 1 \\ \text{While there is an } s\text{-}t \text{ path in the graph } G_f(\Delta) \\ \text{Let } P \text{ be a simple } s\text{-}t \text{ path in } G_f(\Delta) \\ f' = \operatorname{augment}(f, P) \\ \text{Update } f \text{ to be } f' \text{ and update } G_f(\Delta) \\ \text{Endwhile} \\ \Delta = \Delta/2 \\ \text{Endwhile} \\ \text{Return } f \\ \end{array}
```

Capacity-scaling algorithm: proof of correctness

Assumption: All edge capacities are integers between 1 and C.

Invariant. The scaling parameter Δ is a power of 2.

Pf. Initially a power of 2 (largest power with $2^{\triangle} \le C$); each phase divides \triangle by exactly 2.

Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual capacity $c_f(e)$ is an integer.

Pf. Same as for genetic Ford-Fulkerson.

Theorem. If capacity-scaling algorithm terminates, then f is a max flow.

Pf.

- By integrality invariant, when $\Delta = 1 \rightarrow G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths.
- Result follows augmenting path theorem.

Capacity-scaling algorithm: analysis of running time

Lemma 1. There are $1 + \lfloor \log_2 C \rfloor$ scaling phases.

Pf. Initial $C/2 < \Delta \le C$; Δ decreases by a factor of 2 in each iteration.

Lemma 2. Let f be the flow at the end of a Δ -scaling phase, then the max-flow value $\leq v(f) + m\Delta$.

Pf. Next slide.

Lemma 3. There are \leq 2m augmentations per scaling phase. of a 2 Δ -scaling phase Pf.

or equivalently, at the end a 2 Δ-scaling phase

- Let f be the flow at the beginning of a Δ -scaling phase.
- Lemma 2 → max-flow value \leq v(f) + m(2 Δ).
- Each augmentation in a Δ -scaling phase increases v(f) by at least Δ .

Theorem. The capacity-scaling algorithm takes $O(m^2 \log C)$ time.

Pf.

- Lemma 1 + Lemma 3 →O(mlogC) augmentations.
- Finding an augmenting path takes O(m) time.

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a Δ -scaling phase, then the max-flow value $\leq v(f) + m\Delta$.

Pf.

- We show there exists a cut(A,B) such that cap(A,B) \leq v(f) + m Δ .
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of flow $f: t \notin A$.

$$\begin{aligned} val(f) &= \sum_{e \text{ out of } A} f(e) &- \sum_{e \text{ in to } A} f(e) \\ \text{low value} &\geq \sum_{e \text{ out of } A} (c(e) - \Delta) &- \sum_{e \text{ in to } A} \Delta \\ &\geq \sum_{e \text{ out of } A} c(e) &- \sum_{e \text{ out of } A} \Delta &- \sum_{e \text{ in to } A} \Delta \end{aligned}$$

 $cap(A,B) - m\Delta$

must have $f(e) > c(e) - \Delta$

Shortest augmenting path

- Q. How to choose next augmenting path in Ford-Fulkerson?
- A. Pick one that uses the fewest edges.

can find via BFS

SHORTEST-AUGMENTING-PATH(G)

FOREACH $e \in E$: $f(e) \leftarrow 0$.

 $G_f \leftarrow$ residual network of G with respect to flow f.

WHILE (there exists an $s \rightarrow t$ path in G_f)

$$P \leftarrow \text{BREADTH-FIRST-SEARCH}(G_f).$$

 $f \leftarrow AUGMENT(f, c, P)$.

Update G_f .

RETURN f.