Module Exercise 7.5: CS 5012: RA Banking

H. Diana McSpadden (hdm5s)

Banking DB Schema

- branch (<u>branch-name</u>, branch-city, assets)
- customer (<u>customer-name</u>, customer-street, customercity)
- account (account-number, branch-name (FK), balance)
- loan (loan-number, branch-name (FK), amount)
- depositor (<u>customer-name</u>, account-number (FK))
- borrower (customer-name, loan-number (FK))

Questions

- 1. Find all loans over \$1200.
 - a. $\sigma_{(amount>1200)}Loan$
 - b. Results in:

loan-number	branch-name	amount
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
L-23	Redwood	2000

- 2. Find the loan number for each loan of an amount greater than \$1200.
 - a. $\pi_{loan-number}(\sigma_{(amount>1200)}Loan)$
 - b. Results in:

loan-number
L-14
L-15
L-16
L-23

- 3. Find the names of all customers who have a loan, an account, or both from the bank.
 - a. $\pi_{(customer-name)}((Customer \bowtie Depositor) = \bowtie = (Customer \bowtie Borrower))$
 - b. Results in:

customer-name
Hayes
Johnson
Jones
Lindsay
Smith
Turner
Adams
Curry
Jackson
Williams

- ⋈ enforces equality on shared attributes (customer-name)
- =⋈=pads with nulls any accounts-number or loan-number that isn't available for the join on customer-name
- π removes duplicates
- 4. Find the names of all customers who have a loan and an account at the bank.
 - a. $\pi_{(customer-name)}(Depositor \bowtie Borrower)$
 - b. Results in:

customer-name	
Hayes	
Jones	
Smith	

- c. ⋈ enforces equality on shared attributes (customer-name)
- 5. Find the names of all customers who have a loan at the Perryridge branch.
 - a. $\pi_{(customer-name)}(Borrower \bowtie \sigma_{(branch-name="Perryridge")}Loan)$
 - b. Results in:

customer-name	
Hayes	
Adams	

- c. ⋈ enforces equality on shared attributes (loan-number)
- 6. Find the names of all customers who have a loan at the Perryridge branch, but no account at any branch of the bank.
 - a. $\pi_{(customer-name)}(Borrower \bowtie \sigma_{(branch-name=Perryridge)}Loan) \pi_{(customer-name)}(Depositor)$
 - b. Results in:

customer-name	
Adams	

c. — finds tuples in the first projection but not the second.

- 7. Find the names of all customers who have an account at the Downtown and Mianus branches.
 - a. $\pi_{(customer-na)}((Depositor \bowtie \sigma_{(branch-name="Downtown")}Account) \bowtie (Depositor \bowtie \sigma_{(branch-name="Mianus")}Account))$
 - b. Results in an empty tuple.
- 8. Find the total amount each branch has in accounts.
 - a. $\pi_{(branch-nam,assets)}(Branch)$
 - b. The above assumes that total amount the branch has in its accounts is the amount in the assets column of the relation.
- 9. Find the average loan amount of each customer.
 - a. customer-name \mathcal{G} $avg_{(amount)}(\pi_{(customer-name,amount)}(\textit{Borrower} \bowtie \pi_{(loa})(Loan))$
 - b. Left join the Borrower relation on the projection of loan-number and amount from the Loan relation. From that join, project customer-name and amount. Then, by customer-name, aggregate the average loan amount.
- 10. Find the names of all customers who have an account at every branch located in Brooklyn.
 - a. $\pi_{(customer-name)}(\pi_{(customer-name,branch-nam)}(Depositor \bowtie Account)\% \left(\pi_{(branch-nam)}(\sigma_{(branch-city=Brooklyn)}Branch)\right))$
 - b. Use the division operator to only return records that match both the branch-names in branches from Brooklyn.