Quiz 3

Name: Time: Feb 11, 2016

Instructions: Please write down the correct answer for each question in the following box.

institutions. Thease write down the correct answer for each question in the following box.								
1	2	3	4	5	6	7	8	Total Score

- 1. For a (deterministic or nondeterministic) finite automaton $M=(Q,\Sigma,\delta,q_0,F)$, recall that $\delta_M:Q\times \Sigma^*\to 2^Q$ is a function that given a state q and string w returns the set of all states that M could be in after reading w from state q. Formally, $\hat{\delta}_M(q,w)=\{q'\mid q\xrightarrow{w}_M q'\}$. Which of the following statements is true?
 - (A) If M is a deterministic finite automaton, then for any $q \in Q$ and $a \in \Sigma$, $\hat{\delta}_M(q, a) = \delta(q, a)$.
 - (B) If M is a deterministic finite automaton, then for any $q \in Q$, $\hat{\delta}_M(q,\epsilon) = \{q\}$.
 - (C) If M is a nondeterministic finite automaton, then for any $q \in Q$ and $a \in \Sigma$, $\hat{\delta}_M(q, a) = \delta(q, a)$.
 - (D) If M is a nondeterministic finite automaton, then for any $q \in Q$, $\hat{\delta}_M(q, \epsilon) = \{q\}$.
- 2. Let L be recognized by a DFA M and an NFA N. Which of the following statements is necessarily true?
 - (A) M and N are the exact same machines.
 - (B) M and N have the same number of states.
 - (C) N has transitions on ϵ .
 - (D) There is an NFA N' that recognizes L which has the same number of states as M.
- 3. Which of the following statements is true?
 - (A) There are languages that can be recognized by an NFA which cannot be recognized by a DFA.
 - (B) Languages recognized by NFAs cannot be recognized by DFAs because they can have infinitely many active threads at any given time.
 - (C) If L is a language recognized by an NFA then there is a DFA that can recognize L.
 - (D) Every language is recognized by an NFA because they are subsets of Σ^* .
- 4. Let M be a DFA with m states, and N be an NFA with n states such that $\mathbf{L}(M) = \mathbf{L}(N)$. Which of the following statements is necessarily true?
 - (A) $2^n \leq m$
 - (B) $m < 2^n$
 - (C) $n \leq m$
 - (D) None of the above
- 5. Let $L = \{0\}$. Which of the following statements is true?
 - (A) $L^* = (LL)^*$
 - (B) $L^* = L(L^*)$

- (C) $L^* = (L^*)L$
- (D) $L^* = L^*L^*$
- 6. Consider $r = a(ab^*a \cup b^*)^*$. Which of the following is true about $\mathbf{L}(r)$?
 - (A) $a \in \mathbf{L}(r)$
 - (B) $aa \in \mathbf{L}(r)$
 - (C) Every string in $\mathbf{L}(r)$ has at least one b.
 - (D) None of the above.
- 7. Let R_1 and R_2 be two regular expressions with $\mathbf{L}(R_1) = \mathbf{L}(R_2)$. Let N_1 and N_2 be the NFA constructed by the inductive algorithm described in lecture 6, for R_1 and R_2 , respectively. Which of the following statements is necessarily true about R_1 , R_2 , N_1 , and N_2 ?
 - (A) R_1 and R_2 must be syntactically the same regular expression.
 - (B) N_1 and N_2 have the same number of states.
 - (C) N_1 and N_2 have the same number of transitions.
 - (D) If R_1 and R_2 are syntactically the same then N_1 and N_2 will have the same number of states and transitions.
- 8. Which of the following facts is *not* true about GNFAs?
 - (A) A GNFA has exactly one final state.
 - (B) The initial state of a GNFA could also be a final state.
 - (C) The initial state of a GNFA has no incoming transitions.
 - (D) The final state of a GNFA has no outgoing transitions.