Departamento de Matemática, Universidade de Aveiro

Cálculo I — Segundo Mini-Teste (27/11/2006)

Resolução

- 1. Considere a função f de domínio \mathbb{R}^+ definida por $f(x) = x^2 \ln \frac{1}{x}$.
 - (a) Estude f quanto à existência de extremos locais.

Indicações para a resolução:

Temos, para todo o $x \in \mathbb{R}^+$,

$$f'(x) = 2x \ln \frac{1}{x} + x^2 \frac{-\frac{1}{x^2}}{\frac{1}{x}}$$
$$= 2x \ln \frac{1}{x} - x$$
$$= x \left(2 \ln \frac{1}{x} - 1\right),$$

pelo que

$$f'(x) = 0 \iff x \left(2 \ln \frac{1}{x} - 1 \right) = 0$$

$$\iff \underbrace{x = 0}_{\text{Condição impossível em } \mathbb{R}^+} \lor 2 \ln \frac{1}{x} - 1 = 0$$

$$\iff \ln \frac{1}{x} = \frac{1}{2}$$

$$\iff -\ln x = \frac{1}{2}$$

$$\iff x = e^{-1/2}$$

Uma vez que $x \in \mathbb{R}^+$ temos que o sinal de f' coincide com o sinal do factor $2 \ln \frac{1}{x} - 1$. Atendendo a que

$$2\ln\frac{1}{x} - 1 > 0 \iff \ln\frac{1}{x} > \frac{1}{2}$$

$$\iff -\ln x > \frac{1}{2}$$

$$\iff \ln x < -\frac{1}{2}$$

$$\iff x < e^{-1/2}$$

temos

	0	$e^{-1/2}$	$+\infty$
$x\left(2\ln\frac{1}{x}-1\right)$	+	0	_
f'	+	0	_
f	7	máx. local	`\

Da análise do quadro anterior resulta que a função f tem um máximo local $f\left(\mathrm{e}^{-1/2}\right)=\frac{1}{2\mathrm{e}}$ em $x=\mathrm{e}^{-1/2}$.

Cálculo I — Segundo Mini-Teste (27/11/2006)

(b) Averigue se o gráfico de f admite assimptotas verticais.

Indicações para a resolução:

Uma vez que f tem domínio \mathbb{R}^+ e é contínua em \mathbb{R}^+ a recta de equação x=0 é a única candidata a assimptota vertical do gráfico de f.

Temos

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x^{2} \ln \frac{1}{x}$$

$$= \lim_{x \to 0^{+}} \frac{\ln \frac{1}{x}}{\frac{1}{x^{2}}}$$

$$= \lim_{x \to 0^{+}} \frac{-\frac{1}{x}}{-\frac{x}{x^{3}}}$$

$$= \lim_{x \to 0^{+}} \frac{x^{2}}{2}$$

$$= 0$$

o que permite concluir que o gráfico de f não admite assimptotas verticais.

2. Sejam $f \in g$ duas funções contínuas em [a,b] e diferenciáveis em]a,b[tais que f(a)=g(a) e f(b)=g(b). Mostre que existe $c \in]a,b[$ tal que f'(c)=g'(c). Sugestão: Considere a função h definida por h(x)=f(x)-g(x).

Indicações para a resolução:

Uma vez que:

- a função h é contínua em [a, b], já que é a diferença de duas funções contínuas em [a, b];
- a função h é diferenciável em [a, b[, já que é a diferença de duas funções diferenciáveis em [a, b[;
- h(a) = f(a) g(a) = 0 já que, por hipótese, f(a) = g(a);
- h(b) = f(b) g(b) = 0 já que, por hipótese, f(b) = g(b);

o Teorema de Rolle garante que existe $c \in]a, b[$ tal que h'(c) = 0.

Uma vez que, pelas propriedades das funções diferenciáveis, h'(x) = f'(x) - g'(x), para todo o $x \in]a,b[$, temos

$$g'(c) = 0 \iff f'(c) - g'(c) = 0$$

 $\iff f'(c) = g'(c)$.

Está então provado que existe $c \in]a,b[$ tal que f'(c)=g'(c), como se pretendia.

3. Utilizando o método de primitivação por partes calcule $\int x^2 e^{-x} dx$.

Indicações para a resolução:

Para efeitos de aplicação do método de primitivação por partes consideremos

$$f'(x) = e^{-x} \implies f(x) = -e^{-x}$$

 $g(x) = x^2 \implies g'(x) = 2x$

Resolução Página 2/3

Cálculo I — Segundo Mini-Teste (27/11/2006)

Temos então

$$\int x^{2} e^{-x} dx = -x^{2} e^{-x} - \int -2x e^{-x} dx$$
$$= -x^{2} e^{-x} + \int 2x e^{-x} dx$$

Utilizando uma vez mais o método de primitivação por partes e considerando

$$f'(x) = e^{-x} \implies f(x) = -e^{-x}$$

 $g(x) = 2x \implies g'(x) = 2$

temos

$$\int x^{2} e^{-x} dx = -x^{2} e^{-x} + \left(-2x e^{-x} - \int -2e^{-x} dx\right)$$
$$= -x^{2} e^{-x} - 2x e^{-x} - 2e^{-x} + C$$
$$= -e^{-x} (x^{2} + 2x + 2) + C, C \in \mathbb{R}$$

4. Utilizando a substituição definida por $x = \operatorname{tg} t$, com $t \in \left]0, \frac{\pi}{2}\right[$, calcule $\int \frac{1}{x^2\sqrt{x^2+1}} dx$.

Indicações para a resolução:

Utilizando a substituição indicada temos

$$\int \frac{1}{x^2 \sqrt{x^2 + 1}} dx = \int \frac{1}{\operatorname{tg}^2 t \sqrt{\operatorname{tg}^2 t + 1}} (\operatorname{tg} t)' dt$$

$$= \int \frac{1}{\operatorname{tg}^2 t \sec t} \sec^2 t dt$$

$$= \int \frac{\sec t}{\operatorname{tg}^2 t} dt$$

$$= \int \frac{\cos t}{\sin^2 t} dt$$

$$= -\frac{1}{\sin t} + C$$

$$= -\csc t + C$$

$$= -\frac{\sqrt{x^2 + 1}}{t} + C, \ C \in \mathbb{R}$$

Cálculos auxiliares: Uma vez que considerámos a substituição $x=\operatorname{tg} t$, com $t\in\left]0,\frac{\pi}{2}\right[$, temos que x>0. Consequentemente, podemos escrever $\cot t=\frac{1}{x}$.

Da relação fundamental da trigonometria resulta que $\operatorname{cosec}^2 t = 1 + \cot^2 t$. Como $t \in \left]0, \frac{\pi}{2}\right[$ temos $\operatorname{cosec} t > 0$ e, portanto, $\operatorname{cosec} t = \sqrt{1 + \cot^2 t}$. Temos então $\operatorname{cosec} t = \sqrt{1 + \frac{1}{x^2}} = \sqrt{\frac{1 + x^2}{x^2}}$ e, uma vez que x > 0, podemos escrever $\operatorname{cosec} t = \frac{\sqrt{1 + x^2}}{x}$.

Resolução Página 3/3