Highly accurate protein structure prediction with AlphaFold (AlphaFold2) ---- Nature

Accurate prediction of protein structures and interactions using a three-track neural network (RoseTTAFold) ---- Science

1. Preamble

2. AlphaFold2

1. Preamble

2. AlphaFold2

Protein Structure

The Physical Interactions

Interaction forces between thousands of atoms of amino acids.(Computational and modelling challenges)

The Evolutionary History

Many protein sequences in biology can be used. **Deep Learning**

the Process of Protein Production

the Four Structures of Proteins

The Performance of Alphafolds and RoseTTAFold

Accuracy: **GDT** (Global Distance Test), A GDT score of around 90 is considered to be competitive with human experimental methods.

The Result of Alphafold2

The Result of **RoseTTAFold**

CSAP: The CASP assessment is a blind test

1. Preamble

2. AlphaFold2

Alphafolds (end-end)

Model Architecture of Alphaflods

- **s**, number of sequences
- **r**, number of residues
- **c**, number of channels

multiple sequence alignments

Residue Pair •

Alphafolds

Alphafolds - Evoformer module

Protein Structure Prediction

Alphafolds - Evoformer module

Extraction of protein feature from MSA

Protein Structure Prediction Nature & Science 2021.09.16 11/20

Alphafolds - Detailed Evoformer module

nature portfolio

https://doi.org/10.1038/s41586-021-03819-2

Supplementary information

Highly accurate protein structure prediction with AlphaFold

In the format provided by the authors and unedited

Alphafolds – Structure modules

Protein Structure Prediction

Alphafolds-Loss Function

Frame aligned point error (FAPE)

Green, predicted structure; grey, true structure; (Rk, tk), frames; xi, atom positions.

Alphafolds- Models

Model	initial training 1	first fine-tuning		second fine-tuning				
		1.1	1.2	1.1.1	1.1.2	1.2.1	1.2.2	1.2.3
arameters initialized from	Random	Model 1		Model 1.1		Model 1.2		
Number of templates N_{templ}	4	4	0	4		0		
equence crop size $N_{\rm res}$	256			384				
Number of sequences $N_{\rm seq}$	128	512						
Number of extra sequences $N_{\rm extra_seq}$	1024			5120	1024	5120		1024
nitial learning rate	10^{-3}	$5 \cdot 10^{-4}$						
earning rate linear warm-up samples	128000	0						
tructural violation loss weight	0.0	1.0						
Experimentally resolved" loss weight	0.0	0.01						
raining samples $(\cdot 10^6)$	9.2	1.1	1.7	0.3	0.6	1.4	1.1	2.4
raining time	6d 6h	1d 10h	2d 3h	20h	1d 13h	4d 1h	3d	5d 12h

Templates are used Templates are not used

Alphafold2- Limitations

1. Prediction of multi-protein complexes

2. Protein interactions with DNA, RNA and small molecules

3. Precise position of amino acid side chains

1. Preamble

2. AlphaFold2

RoseTTAFold

RoseTTAFold architecture with 1D, 2D, and 3D attention tracks.

Multiple connections between tracks allow the network to simultaneously learn relationships within and between **sequences**, **distances**, **and coordinates** (see methods and fig. S1 for details).

Enabling structure determination with RoseTTAFold

RoseTTAFold models provide insights into function

RoseTTAFold

Complex structure prediction using RoseTTAFold

Protein Structure Prediction Nature & Science 2021.09.16 20/20