Assignment 3 (answer)

279/377 winter 2022

1. Use the recursion tree method to solve the recurrence:

$$T(n) = 2T(n/2) + n^2$$

answer

recursion tree for
$$T(n) = 2T(\frac{n}{2}) + n^2$$

	level	ut nodes	time
n²	0	ک۵	٨²
$\left(\frac{n}{2}\right)^2$ $\left(\frac{n}{2}\right)^2$	ı	2١	$2^{1} \cdot \left(\frac{n}{2}\right)^{2}$
$\left(\frac{n}{4}\right)^2 \left(\frac{n}{4}\right)^2 \left(\frac{n}{4}\right)^2 \left(\frac{n}{4}\right)^2$	2	Z²	$2^2 \left(\frac{n}{4}\right)^2$
$(\frac{8}{5})^2$ $(\frac{8}{5})^2$ $(\frac{8}{5})^2$ $(\frac{8}{5})^2$ $(\frac{8}{5})^2$ $(\frac{8}{5})^2$ $(\frac{8}{5})^2$ $(\frac{8}{5})^2$		2 ^{`\}	$2^{i}\left(\frac{1}{2^{2}}\right)^{i}\cdot n^{2}=\left(\frac{1}{2}\right)^{i}n^{2}$
· · · · · · · · · · · · · · · · · · ·	logn	2 (oy n	
		'n	

$$T(n) = \sum_{i=0}^{\lfloor \log n \rfloor - 1} \left(\frac{1}{2}\right)^{i} \cdot n^{2} + n$$

$$= \frac{1 - \left(\frac{1}{2}\right)^{\log n}}{1 - \frac{1}{2}} n^{2} + n$$

$$\leq 2n^{2} + n$$

$$= O(n^{2})$$

2. Use master theorem to solve (if master theorem can not be applied, write the reason):

a.
$$T(n) = 9T(n/3) + n$$

b.
$$T(n) = 9T(n/3) + 1000n^2$$

n^2logn

c.
$$T(n) = 9T(n/3) + 1000n^3$$

n^3

d.
$$T(n) = 9T(n/3) + n^2 \log n$$

not applied

e.
$$T(n) = 0.5T(n/2) + n$$

not applied

f.
$$T(n) = 2T(n/2) - n$$

not applied, f(n) should be positive function

g.
$$T(n) = nT(n/2) + nlogn$$

not applied

h.
$$T(n) = T(n-2) + n^2$$

not apply

i.
$$T(n) = T(7n/10) + n$$

logba = 0 so o(n)

j.
$$T(n) = 4T(n/2) + n^2 \log n$$
.

not applied