Worksheet 2

GSI: Jackson Van Dyke

August 28, 2018

1 Based off HW 2

- 1. (a) Find an equation for the family of linear functions with slope 2 and sketch several members of the family.
 - (b) Find an equation for the family of linear functions such that f(2) = 1 and sketch several members of the family.
 - (c) Which function belongs to both families?
 - a. The family of linear functions with slope 2 consists of the functions of the form f(x) = 2x + a for any constant a. Some examples can be seen in fig. 1.
 - b. The family of linear functions such that f(2) = 1 consists of the functions of the form f(x) = bx + 1 2b for some constant b. Some examples can be see in fig. 2.
 - c. The function which belongs to both families is f(x) = 2x 3.
- 2. Find the cubic function such that f(1) = 6 and f(-1) = f(0) = f(2) = 0.

All cubic functions are of the form

$$f(x) = ax^3 + bx^2 + cx + d$$

for some constants a, b, c, d. The conditions given in the problem imply the following:

$$6 = a + b + c + d$$
 $0 = -a + b - c + d$
 $0 = d$ $0 = 8a + 4b + 2c + d$

this means we have already solved $\lfloor d=0 \rfloor$. This simplifies the problem to have only three constraints:

$$6 = a + b + c$$
 $0 = -a + b - c$ $0 = 4a + 2b + c$ (1)

Figure 1: The functions f(x) = 2x, 2x + 1, 2x + 2.

Figure 2: Plots of the functions f(x) = x - 1, 2x - 3, 3x - 5.

The middle equation implies a=b-c, which we can substitute into the first equation to get 6=b-c+b+c=2b, so $\boxed{b=3}$. This simplifies the constrains further to:

$$3 = a + c$$
 $4a + c = -6$

which can be solved to get $\boxed{c=6}$, and $\boxed{a=-3}$. Therefore we can write the final function as:

$$f(x) = -3x^3 + 3x^2 + 6x$$

- 3. Simplify the following:
 - (a) $a^8 (2a)^5$
 - (b) $(6a^3)^4/(2a^5)$
 - a. $2^5 a^{13} = 32a^{13}$
 - b. $6^4 a^7/2 = 648 a^7$
- 4. Is the function $x^2 2x$ one-to-one?

No, this function fails the horizontal line test for every value of y > -1.

5. Let $f(x) = 4 + x + e^x$. Find $f^{-1}(5)$.

First we notice that this function is one-to-one, and the inverse is well defined at 5. The answer to this question must be a number a such that f(a) = 5. But if this is true, then it must be the case that $4 + a + e^a = 5$, which means $a + e^a = 1$, and from this it is clear that a = 0, since $0 + e^0 = 1$.

2 Based off HW 3

1. Consider the following table of data:

x	2	4	6	8	10	12
y	0.08	0.12	0.18	0.26	0.35	0.53

- (a) Draw a scatter plot of the data points.
- (b) Make a semilog and log-log plot of the data.
- (c) Is a linear, power, or exponential function appropriate as a model?
- a. See fig. 3.
- b. See fig. 4.

Figure 3: Plot of the data with linear scales on both axes.

Figure 4: Semilog plot of the data.

Figure 5: log-log plot of the data.

- c. See fig. 5.
- 2. Let $a_n = 1 (0.1)^n$. Does this sequence converge? If so, what does it converge to, and if not, why not?

This sequence converges to 1.

- 3. Evaluate the following limits:
 - (a) $\lim_{x\to\infty} \frac{\sqrt{x}+x^2}{2x-x^2}$
 - (b) $\lim_{x\to\infty} \frac{1-e^x}{1+2e^x}$
 - (c) $\lim_{x\to\infty} \arctan x$
 - (d) $\lim_{x\to\pi/2^-} \tan x$
 - (e) $\lim_{x\to 1} \frac{3-x}{(x-1)^2}$
 - a. -1
 - b. -1/2
 - c. $\pi/2$
 - d. ∞
 - e. ∞
- 4. State the squeeze theorem.

Theorem 1. If $f(x) \le g(x) \le h(x)$ for all x near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g\left(x\right) = L \tag{2}$$

5. Show that $\lim_{x\to 0} x^2 \sin\frac{1}{x} = 0$. [Hint: You cannot use the fact that the limit of a product is the product of the limits (why?). Instead, you must use the squeeze theorem...]

We cannot just split this limit as a product, because the limit as $x \to 0$ of $\sin(1/x)$ does not exist. Because of this, we have to take a different route.

Proof. As suggested by the previous question, we use the squeeze theorem. Now we know $\sin(1/x)$ takes values between -1 and 1. Because of this, we can write:

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

which means we can apply the squeeze theorem for $f(x) = -x^2$ and $h(x) = x^2$. Since

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} h(x) = 0$$

we have

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

as desired.

6. Does the following limit exist?

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{|x|} \right)$$

If so, what is it, if not why does it not exist?

No, this limit does not exist, because the limit from the left is $-\infty$, and the limit from the right is 0, and the two-sided limit at 0 exists iff the two one-sided limits agree.