Part 2 – Assignment

Danail Obreschkow

2025-08-05

This assignment is worth 50 marks in total. Solutions must be written in \mathbf{R} markdown and submitted both as Rmd-file and compiled pdf-file. Use equation environments (\dots or \dots) if you wish to show analytical calculations, and use embedded \mathbf{R} -code for numerical calculations.

Warm-up [10 marks]

Numerically evaluate the mean and the skewness of the distance between two random points sampled from a uniform unit sphere. The result should have an absolute error below 0.001.

Permutations [10 marks]

Consider N types of distinct objects. There is exactly 1 object of the 1st type, there are 2 indistinguishable objects of the 2nd, 3 of the 3rd, etc. Let f(N) be the number of distinct ways of arranging these objects in an ordered sequence.

- a) Evaluate all digits of f(10). [5 marks]
- b) Evaluate the smallest integer N such that f(N) exceeds $10^{10^{12.2}}$? [5 marks]

Galactic disk [10 marks]

Consider a self-gravitating flat exponential disk of mass M and scale radius R. Compute the (mass-weighted) line-of-sight velocity moments $\mu_m = \langle (v_{LOS} - \langle v_{LOS} \rangle)^m \rangle$ for m=2, m=3 and m=4, as measured by an observer looking at the galaxy edge-on. Express the solutions in terms of a numerical constant, M, R and the gravitational constant G. For full marks, numerical values must be correct to six significant digits.

Himmelblau's function [10 marks]

Numerically evaluate the locations (x, y) of all the minima and maxima of the modified Himmelblau's function, $f(x, y) = (x^2 + y - 4)^2 + (x + y^2 - 5)^2$. To get full points, your results must be correct to at least three significant digits. Also show a contour plot with all extrema marked by crosses.

Monte Carlo integration [10 marks]

Compute the gravitational binding energy of a solid cube of side length L and mass density $\rho(r) = \rho_0 \exp(-r^3/L^3)$, where r is the distance from the centre of the cube. Express the solution in terms of a numerical constant, L, ρ_0 and G. The numerical part should be correct to three significant digits.