Homework

Hand in to Frank Thursday 5 September:

- 7. T/F, with reason: Every group has maximal cyclic subgroups.
- 8. Let G be an abelian group. Show that $T:=\{x\in G: |x|<\infty\}$ is a subgroup.

Hand in for the grader Tuesday 10 September:

- 9. T/F, with reason. For any group G, the set T of torsion elements of Problem 8 is a subgroup.
- 10. A group G is abelian if and only if the map $G \to G$ given by $a \mapsto a^{-1}$ is an automorphism.
- 11. Let Q be the group of complex matrices generated by

$$A \ := \ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \quad \text{and} \quad B \ := \ \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array} \right) \ ,$$

where $i^2 = -1$. Show that Q is a nonabelian group of order 8, called the *quaternion group*. (Hint: Show that $BA = A^3B$, and $A^4 = B^4 = I$, where I is the identity matrix.)

- 12. The dihedral group D_{2n} is the group of symmetries of the regular n-gon in the plane. Show that this group has order 2n, and that it is generated by two elements ρ and σ where $\rho^2 = \sigma^2 = e$ and $\rho\sigma$ has order n. Identify these elements and their product as explicit symetries of the n-gon. Your answer will be incorrect if you use any other definition of a dihedral group without first proving that it satisfies the definition given above.
- 13. Is $D_8 \simeq Q$?
- 14. Let $S \subset G$ be a subset of a group G and define the relation \sim by $a \sim b$ if and only if $ab^{-1} \in S$. Show that \sim is an equivalence relation if and only if S is a subgroup of G.
- 15. The center of a group G is the set $C(G) := \{a \in G \mid ag = ga \text{ for all } g \in G\}$. For $g \in G$, the centralizer of g is the set $C_G(g) := \{a \in G \mid ag = ga\}$. Prove that C(G) and $C_G(g)$ are subgroups of G.