Théorie des Langages

Expressions régulières et Grammaires

Claude Moulin

Université de Technologie de Compiègne

Printemps 2013

Sommaire

- Langages
- 2 Grammaires

Sommaire

- Langages
 - Définitions
 - Expressions régulières
 - ER et langages
 - Exercices
- @ Grammaires
 - Introduction
 - Dérivation
 - Types de grammaires
 - Expressions régulières et grammaires

Alphabet

Définition:

Un alphabet est un ensemble fini non vide de symboles appelés également lettres de l'alphabet.

$$left$$
 - $\Sigma_1 = \{0, 1\}$

$$\bullet$$
 - $\Sigma_2 = \{a, b, ..., z\}$

Chaîne

Définition:

Une chaîne est une suite finie de symboles choisis dans un alphabet.

- - 01011, 111, 00, ...
- 2 $\Sigma_2 = \{a, b, c, ..., z\}$
 - abc, aa, xyzt, ...
- ϵ : chaîne vide ; chaîne ne contenant aucun symbole.

Fonction - Opération

 La longueur d'une chaîne est le nombre de symboles la composant.

$$|abc| = 3;$$

 $|\epsilon| = 0$

Concaténation

 $u = x_1 x_2 ... x_n$ et $v = y_1 y_2 ... y_m$ deux chaînes $\neq \epsilon$ définies sur le même alphabet Σ ,

 $uv = x_1x_2...x_ny_1y_2...y_m$ concaténation de u et de v.

Concaténation

- Propriétés de la concaténation
 - associative : $\forall u, \forall v, \forall w, (uv)w = u(vw)$
 - ullet élément neutre : ϵ
 - |uv| = |u| + |v|
 - non commutative. En général, $uv \neq vu$.
- Préfixe Suffixe
 ∀u ≠ ε, ∀v ≠ ε, ∀w ≠ ε
 Lorsque w = uv, u est un préfixe de w et v est un suffixe de w.

Langage

Définition:

Un langage défini sur un alphabet Σ est un ensemble de chaînes définies sur Σ .

- Σ_2 est le langage composé de toutes les chaînes de longueur 2 sur Σ
- Σ* est le langage composé de toutes les chaînes constructibles sur l'alphabet Σ
- Pour tout langage L construit sur un alphabet Σ on a : $L \subset \Sigma^*$

Opérations

- Réunion, Intersection de deux langages
 Soient L₁ et L₂ deux langages définis sur un alphabet Σ.
 L₁ ∪ L₂ et L₁ ∩ L₂ sont aussi deux langages définis sur Σ.
- Concaténation de deux langages
 Soient L₁ et L₂ deux langages définis sur un alphabet Σ.
 L₁L₂ = {uv/u ∈ L₁, v ∈ L₂} est le langage obtenu par concaténation de L₁ et de L₂.

Clôture de Kleene

Soit L un langage défini sur un alphabet Σ .

Clôture de Kleene

La clôture de Kleene du langage L, notée L^* est l'ensemble des chaînes qui peuvent être formées en prenant un nombre quelconque (éventuellement 0) de chaînes de L et en les concaténant.

- $L^0 = \{\epsilon\}$
- $L^1 = L$
- $L^2 = LL$
- $L^i = LL...L$, la concaténation de i fois L
- $L^* = \bigcup_{i>0} L^i$

Expressions régulières

Sommaire

- Langages
 - Définitions
 - Expressions régulières
 - ER et langages
 - Exercices
- @ Grammaires
 - Introduction
 - Dérivation
 - Types de grammaires
 - Expressions régulières et grammaires

Opérateurs

Les expressions régulières sont une façon déclarative de décrire la formation des chaînes d'un langage. On note L(E) le langage engendré par une expression régulière E.

- Opérateur * (fermeture)
 - 0 * représente : $\{\epsilon, 0, 00, 000, \dots\}$
 - 110*1 représente : {111,1101,11001,...}
- Opérateur | (disjonction)
 - 0* | 1* représente les chaînes formées par 0* et par 1*
 - \bullet ϵ , 0, 00, 000, 1, 11, 111, ...

Règles

- la chaîne vide, ϵ , et l'ensemble vide, \emptyset , sont des expressions régulières.
 - $L(\epsilon) = \{\epsilon\}$ et $L(\emptyset) = \emptyset$.
- $\forall a \in \Sigma$, la chaîne formée de l'unique symbole a est une expression régulière.
 - $L(a) = \{a\}.$

Construction

- Si E et E' sont des expressions régulières alors :
 - EE' est une expression régulière, concaténation de E et E'. Elle décrit L(EE') = L(E)L(E')
 - $E \mid E'$ est une expression régulière. Elle décrit $L(E \mid E') = L(E) \cup L(E')$
 - (E) est une expression régulière, décrivant le même langage que E.
 L((E)) = L(E).
 - E^* est une expression régulière. $L(E^*) = L(E)^*$

Exemples

- ab*; a*b
- (ab)*
- (a | b)*
- a*b(a*b)*
- Questions
 - $(a^* | b^*) = (a | b)^*$?
 - $(a | b)^* b = (a | b)^* ?$
 - (a*b)* = (a | b)*b?

Expressions régulières

Exemples

- Opérateur unaire + : au moins une fois $F^+ = FF^*$
- Opérateur unaire ? : 0 ou 1 fois $E? = E \mid \epsilon$
- Classes de caractères :

Priorité des opérateurs

- + et * sont des opérateurs unaires et ont la plus forte priorité
- La concaténation est un opérateur binaire et a la seconde priorité
- l est un opérateur binaire et a la plus faible priorité
- Concaténation et | sont associatives à gauche
- Exemple :
 - (a) $| ((b)^*(c)) = a | b^*c$

Lois algébriques

- $E \mid E' = E' \mid E$
- $E \mid (E' \mid E'') = (E \mid E') \mid E''$
- E | E = E
- E(E'E'') = (EE')E''
- $\epsilon E = E \epsilon = E$
- $\emptyset E = E\emptyset = \emptyset$
- $E(E' \mid E'') = EE' \mid EE''$
- $(E \mid E')E'' = EE'' \mid E'E''$

Conséquences

•
$$(E^*)* = E^*$$

$$\bullet$$
 $\epsilon^* = \epsilon$

•
$$E^+ = EE^* = E^*E$$

•
$$E^+ \mid \epsilon = E^*$$

•
$$E$$
? = $E \mid \epsilon$

•
$$p(qp)* = (pq)*p$$

•
$$(p|q)* = (p*|q*)*$$

•
$$(p*q*)* = (p|q)* = (p*|q*)*$$

Définitions régulières

- lettre → [A-Za-z]
- chiffre → [0-9]
- id → lettre (lettre | chiffre)*
- chiffres → chiffre (chiffre)*
- ullet fraction \longrightarrow . chiffres $\mid \epsilon$
- exposant \longrightarrow E(+ | | ϵ) chiffres | ϵ
- nombre chiffres fraction exposant
- id reconnaît : a, a0b, begin
- nombre reconnaît : 0. 1.0. 2E4. 1.5E-8. 0.25E-0
- nombre ne reconnaît pas : 0., .1, 1E2.0

Sommaire

- Langages
 - Définitions
 - Expressions régulières
 - ER et langages
 - Exercices
- 2 Grammaires
 - Introduction
 - Dérivation
 - Types de grammaires
 - Expressions régulières et grammaires

ER et langages - 1

- Dans les langages de programmation les expressions régulières ont deux utilisations :
 - Elles permettent de vérifier qu'une chaîne respecte une forme donnée :
 - Elles permettent de rechercher des chaînes d'un type particulier à l'intérieur d'un texte.

ER et langages - 2

- Les expressions régulières étendent les opérateurs de base avec :
 - des classes de caractères :
 - des définitions de groupes ;
 - des conditions de limites (mots, ligne, fichier);
 - des facteurs de répétitions ;
 - des motifs prospectifs.

Classes de caractères - 1

[]	Union des caractères entre les crochets
[^]	Complémentaire des symboles entre les crochets
[x-y]	L'un des symboles entre x et y
\d	[0-9]
\D	[^0-9]
\w	[a-zA-Z0-9]
\W	[^a-zA-Z0-9]
\s ou \p{Space}	[\t\n\x0B\f\r]
\S	[^\t\n\x0B\f\r]

Exemple : \d\D\w 20-juin-2012 0-ј

Classes de caractères - 2

\p{Lower}	Un caractère minuscule
\p{Upper}	Un caractère majuscule
\p{ASCII}	Un caractère dont le code ascii est compris entre 0 et 128
\p{Alpha}	Un caractère minuscule ou majuscule
\p{Alnum}	\p{Alpha} ∪ \p{Digit}
\p{Punct}	[! "#\$%&'()*+,/:;<=>?@[\]^_`{ }~]
\p{Print}	$p{Alnum} \cup p{Punct}$
\p{Blank}	Caractères espace ou tabulation
\p{XDigit}	Un chiffre hexadécimal [0-9a-fA-F]
	Un caractère quelconque
< c/1 > < c/2 >	Union des classes cl1 et cl2
[< c/1 > & & < c/2 >]	Intersection des classes cl1 et cl2

Groupe - 1

- Les parenthèses dans une expression régulière sont des méta symboles permettant de délimiter des groupes dans une chaîne satisfaisant l'expression.
- Un groupe est une suite de caractères à l'intérieur d'une chaîne satisfaisant l'expression.
- Chaque groupe possède un rang unique.
- Le rang d'un groupe dans une expression régulière est égal au nombre de parenthèses ouvrantes le précédant.

Groupe - 2

- Un groupe peut-être non capturant. Il n'a pas de rang attribué.
- Le rang d'un groupe est égal au nombre de parenthèses ouvrantes le précédant - le nombre de groupes non capturant le précédant.
- Il est possible de faire référence à un groupe capturant précédent et de l'insérer dans le patron.

()	Groupe capturant
(?:)	Groupe non capturant
\n	Référence arrière au groupe capturant de rang n

Conditions aux limites

^ ou ∖a	Début de chaîne
\$ ou \z	Fin de chaîne
(?m)^	Début de ligne ou de chaîne
(?m)\$	Fin de ligne ou de chaîne
\b	Début ou fin de mot
∖B	Absence de début ou de fin de mot
∖G	Fin du précédent groupe satisfaisant le gabarit

Exemple 1 : $\w-(\d(\d))$ | 20-juin-2012 n-20 20

Exemple 2: \d\b 20-juin-2012

Facteurs de répétition

{n}	Exactement n occurrences d'une classe de caractères
+	Au moins 1 occurrence d'une classe de caractères
{n,}	Au moins n occurrences d'une classe de caractères
{n,p}	De n à p occurrences d'une classe de caractères
?	0 ou 1 occurrence
*	Un nombre quelconque de fois, éventuellement zéro

Opérateurs avides (gloutons)

Opérateur avide

Un opérateur est dit avide lorsque l'algorithme sous-jacent utilise le maximum de caractères pour satisfaire le facteur de répétition en tenant compte du contexte.

*, +, {n,p} sont avides.

Patron	\d {2,6}3 \d+
Chaîne	25331
\d {2,6}	253

Opérateurs passifs

Opérateur passif

Un opérateur est dit passif lorsque l'algorithme sous-jacent utilise le minimum de caractères pour satisfaire le facteur de répétition en tenant compte du contexte.

 $\{n,p\}$?, *?, +? sont passifs.

Patron	\d {2,6}?3 \d+
Chaîne	25331
\d {2,6}?	25

Opérateurs possessifs

Opérateur possessif

Un opérateur est dit possessif lorsque l'algorithme sous-jacent utilise le maximum de caractères pour satisfaire le facteur de répétition sans tenir compte du contexte.

$${n,p}+, *+, ++ sont possessifs.$$

Patron	$d \{2,7\} + 3 d\{2\}$
Chaîne	25331734
\d {2,7}+	2533173
3 et \d{2}	Non satisfait

Motifs prospectifs

 Les motifs prospectifs (lookahead) servent à tester si un élément d'une expression régulière est suivi d'un sous motif particulier.

(?=)	Prévision positive avant
(?!)	Prévision négative avant
(?<=)	Prévision positive arrière
(?)</th <th>Prévision négative arrière</th>	Prévision négative arrière

Code Java

```
public static void test1() {
   String patternString = "\\d+";
   String text = "rge5r43";
   Pattern p = Pattern.compile(patternString);
   Matcher m = p.matcher(text);
   boolean found = m.find();
   System.out.println("Succès : " + found);
   System.out.println("Position début : " + m.start());
   System.out.println("Sélection : " + m.group());
   // System.out.println("Groupe : " + m.group(1));
   System.out.println("Position fin : " + m.end());
}
```

Méthodes de la classe Matcher

- find: analyse la chaîne d'entrée en cherchant la prochaine séquence qui satisfait le patron.
- matches : essaie de satisfaire la chaîne entière en regard du patron.
- start : retourne le rang du premier caractère de la séquence qui satisfait le patron.
- end : retourne le rang du dernier caractère de la séquence qui satisfait le patron.
- group : retourne la chaîne qui satisfait le patron.
- groupCount : retourne le nombre de groupes dans la chaîne qui satisfait le patron.
- group (int n): retourne le groupe de rang n dans la chaîne qui satisfait le patron.

Sommaire

- Langages
 - Définitions
 - Expressions régulières
 - ER et langages
 - Exercices
- @ Grammaires
 - Introduction
 - Dérivation
 - Types de grammaires
 - Expressions régulières et grammaires

Exercice 1

- Une séquence de 1 à 3 lettres, suivie d'une séquence de 1 à deux chiffres, suivie de la même séquence de chiffres suivie de la première séquence de lettres.
- Exemples: ab55ab, -abC4141aBc-

Exercice 1

- Une séquence de 1 à 3 lettres, suivie d'une séquence de 1 à deux chiffres, suivie de la même séquence de chiffres suivie de la première séquence de lettres.
- Exemples : ab55ab, -abC4141aBc-

Réponse : $(?i)(\w{1,3})(\d{1,2})\2\1$

Exercice 2

- Test d'un mot de passe : il doit contenir au moins un chiffre, au moins une lettre et au moins un caractère de ponctuation. De plus il doit avoir au moins 8 caractères.
- Exemple : abce.fr/ty2

Exercice 2

- Test d'un mot de passe : il doit contenir au moins un chiffre, au moins une lettre et au moins un caractère de ponctuation. De plus il doit avoir au moins 8 caractères.
- Exemple : abce.fr/ty2

Réponse :
$$(?i)(? = .* \d)(? = .*[a-z])(? = .* \p{Punct}).{8,}$$

Sommaire

- Langages
- 2 Grammaires

Sommaire

- Langages
 - Définitions
 - Expressions régulières
 - ER et langages
 - Exercices
- 2 Grammaires
 - Introduction
 - Dérivation
 - Types de grammaires
 - Expressions régulières et grammaires

Langages non réguliers

- Le langage : $L_{01} = \{0^n 1^n \mid n \ge 1\}$ est non régulier
- Raisonnement par l'absurde : soit un AFD représentant ce langage.
 - Il existe deux nombres différents i et j tels que après avoir lu les préfixes 0ⁱ et 0^j, l'AFD soit dans le même état.
 - A partir de cet état, l'AFD lit un certain nombre de 1 et arrive dans un état final.
 - On aurait $0^i 1^p \in L_{01}$ et $0^j 1^p \in L_{01}$ avec $i \neq j$
- Les expressions régulières ne sont pas suffisantes pour représenter les langages de programmation

Grammaire

```
\begin{array}{l} \mathsf{S} \longrightarrow \epsilon \\ \mathsf{S} \longrightarrow \mathsf{0} \\ \mathsf{S} \longrightarrow \mathsf{1} \\ \mathsf{S} \longrightarrow \mathsf{0} \\ \mathsf{S} \longrightarrow \mathsf{1} \\ \mathsf{S} \longrightarrow \mathsf{1} \\ \mathsf{S} \end{array}
```

Cette grammaire permet de définir le langage des palindromes sur $\{0,1\}$

```
Niveau 1 : \epsilon, 0, 1
Niveau 2 : 00, 000, 010, 11, 101, 111
Niveau 3 : 0000, 00000, 00100, 0110, 01010, 01110
1001, 10001, 10101, 1111, 11011, 11111
```


Définition

- T : un alphabet, ou ensemble des symboles terminaux ou terminaux.
- V : Un ensemble fini non vide de variables, ou non terminaux ou catégories syntaxiques. T ∩ V = ∅.
- S, unique : une variable appelée symbole de départ
- P : un ensemble fini non vide de règles de production
 - de forme $A \longrightarrow \alpha$
 - où A est une variable et α une chaîne de 0 ou plus terminaux et variables.
 - Les parties gauche et droite de la flèche sont appelées la tête et le corps de la production.
 - $P \subset \{(A, \alpha) \mid A \in V; \alpha \in (V \cup T)*\}$

Grammaire des palindromes

```
 V = \{S\} \\ S : \text{symbole de départ}   P = \{ \\ S \longrightarrow \epsilon \\ S \longrightarrow 0 \\ S \longrightarrow 1 \\ S \longrightarrow 0S0 \\ S \longrightarrow 1S1 \\ \}
```

 $T = \{0, 1\}$

Exemple

```
T = \{ d_m, d_f, nom_m, nom_f, vb \}

W = \{ PH, GN, N, V, D \}

S = PH
```

$$\begin{array}{l} PH \longrightarrow GN \ V \ GN \\ GN \longrightarrow D \ N \\ N \longrightarrow nom_m \\ N \longrightarrow nom_f \\ D \longrightarrow d_m \\ D \longrightarrow d_f \\ V \longrightarrow vb \end{array}$$

```
T = \{a, e, b, c, d, g, h, I, r, t, ' '\}
W = \{ s, d_m, d_f, nom_m, nom_f, vb \}
S = s
```

```
s \longrightarrow d_m | d_f | nom_m | nom_f | vb | ' ' ' d_m \longrightarrow le d_f \longrightarrow la nom_m \longrightarrow chat nom_f \longrightarrow balle vb \longrightarrow regarde
```


Exemple

```
 T = \{ d_m, d_f, nom_m, \\ nom_f, vb \}   T = \{ a, e, b, c, d, g, h, l, r, t, ' ' \}   W = \{ PH, GN, N, V, D \}   S = PH   T = \{ a, e, b, c, d, g, h, l, r, t, ' ' \}   W = \{ s, d_m, d_f, nom_m, nom_f, vb \}   S = s
```

• le chat regarde la balle (sémantiquement correct)

Exemple

```
 T = \{ d_m, d_f, nom_m, \\ nom_f, vb \}   T = \{ a, e, b, c, d, g, h, l, r, t, ' ' \}   W = \{ PH, GN, N, V, D \}   S = PH   T = \{ a, e, b, c, d, g, h, l, r, t, ' ' \}   W = \{ s, d_m, d_f, nom_m, nom_f, vb \}   S = s
```

la balle regarde le chat (sémantiquement incorrect)

Exemple

```
 \begin{array}{ll} T = \{ \ d\_m, \ d\_f, \ nom\_m, \\ nom\_f, \ vb \ \} \\ W = \{ \ PH, \ GN, \ N, \ V, \ D \ \} \\ S = PH \end{array} \qquad  \begin{array}{ll} T = \{ a, \ e, \ b, \ c, \ d, \ g, \ h, \ l, \ r, \ t, \ ' \ ' \} \\ W = \{ \ s, \ d\_m, \ d\_f, \ nom\_m, \ nom\_f, \ vb \ \} \\ S = s \end{array}
```

le chat regarde le balle (accord incorrect)

Dérivation

G = (T, V, S, P) une grammaire ; $\alpha A\beta$ une chaîne :

- $\alpha \in (V \cup T)^*$
- $\beta \in (V \cup T)^*$
- A ∈ V

Dérivation

G = (T, V, S, P) une grammaire; $\alpha A\beta$ une chaîne :

- $\alpha \in (V \cup T)^*$
- $\beta \in (V \cup T)^*$
- A ∈ V

 $A \longrightarrow \gamma$ une règle de production de G avec $\gamma \in (V \cup T)^*$

Dérivation

G = (T, V, S, P) une grammaire; $\alpha A\beta$ une chaîne :

- $\alpha \in (V \cup T)^*$
- $\beta \in (V \cup T)^*$
- A ∈ V

 $A \longrightarrow \gamma$ une règle de production de G avec $\gamma \in (V \cup T)^*$

 $\alpha A\beta$ se dérive en $\alpha \gamma \beta$: $(\alpha A\beta \Rightarrow \alpha \gamma \beta)$ ou $(\alpha A\beta \Rightarrow \alpha \gamma \beta)$

Dérivation

G = (T, V, S, P) une grammaire; $\alpha A\beta$ une chaîne:

- $\alpha \in (V \cup T)^*$
- $\beta \in (V \cup T)^*$
- A ∈ V

 $A \longrightarrow \gamma$ une règle de production de G avec $\gamma \in (V \cup T)^*$

 $\alpha A\beta$ se dérive en $\alpha\gamma\beta$: $(\alpha A\beta\underset{G}{\Longrightarrow}\alpha\gamma\beta)$ ou $(\alpha A\beta\underset{G}{\Longrightarrow}\alpha\gamma\beta)$

Exemple : $S \underset{G}{\Rightarrow} 0S0 \underset{G}{\Rightarrow} 00S00 \underset{G}{\Rightarrow} 001S100 \underset{G}{\Rightarrow} 0011100$

Extension

On étend la relation \Rightarrow en $\stackrel{*}{\Rightarrow}$ pour représenter 0, 1 ou plusieurs pas de dérivation.

Pour tout $\alpha \in (V \cup T)^*$ on écrit :

- $(\alpha \stackrel{*}{\Rightarrow} \alpha)$
- Si $(\alpha \stackrel{*}{\Rightarrow} \beta)$ et $(\beta \Rightarrow \gamma)$ alors $(\alpha \stackrel{*}{\Rightarrow} \gamma)$
- $S \stackrel{*}{=} 001 S 100$

Définition

Défintion

Le langage défini par la grammaire G = (T, V, S, P) appelé L(G) est l'ensemble des chaînes dérivées du symbole de départ :

$$L(G) = \{ w \in T^* \mid S \underset{G}{\overset{*}{\Longrightarrow}} w \}$$

- Etant donnée une grammaire G = (T, V, S, P), un syntagme α est une chaîne de $(T \cup V)$ * telle que $S \stackrel{*}{\Rightarrow} \alpha$.
- Une dérivation terminale w est un syntagme appartenant à
 T*: S ^{*}⇒ w (un programme correct).

Sommaire

- Langages
 - Définitions
 - Expressions régulières
 - ER et langages
 - Exercices
- ② Grammaires
 - Introduction
 - Dérivation
 - Types de grammaires
 - Expressions régulières et grammaires

Dérivation

Réécriture des règles

- \bullet $I \longrightarrow a$
- \bullet $I \longrightarrow b$
- se réécrivent en : I → a | b
- \bullet $I \longrightarrow \epsilon$
- \bullet $I \longrightarrow b$
- se réécrivent en : $I \longrightarrow b$?

Dérivation la plus à gauche

$$T = \{a, b, 0, 1, +, \times, (,)\}.$$
 Variables : $V = \{E, I\}.$

Symbole de départ *E*.

Règles de production *P* :

$$E \longrightarrow I \mid E + E \mid E \times E \mid (E)$$

$$I \longrightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Dérivation la plus à gauche de : $a \times (b + a0)$

$$E \underset{lm}{\Longrightarrow} E \times E \underset{lm}{\Longrightarrow} I \times E \underset{lm}{\Longrightarrow} a \times E \underset{lm}{\Longrightarrow} a \times (E) \underset{lm}{\Longrightarrow} a \times (E+E)$$

$$\underset{lm}{\Longrightarrow} a \times (I+E) \underset{lm}{\Longrightarrow} a \times (b+E) \underset{lm}{\Longrightarrow} a \times (b+I)$$

$$\underset{lm}{\Longrightarrow} a \times (b+I0) \underset{lm}{\Longrightarrow} a \times (b+a0)$$

Dérivation la plus à droite

$$T = \{a, b, 0, 1, +, \times, (,)\}.$$
 Variables : $V = \{E, I\}.$

Symbole de départ *E*.

Règles de production *P* :

$$E \longrightarrow I \mid E + E \mid E \times E \mid (E)$$

$$I \longrightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Dérivation la plus à droite de : $a \times (b + a0)$

$$E \underset{m}{\Longrightarrow} E \times E \underset{m}{\Longrightarrow} E \times (E) \underset{m}{\Longrightarrow} E \times (E+E) \underset{m}{\Longrightarrow} E \times (E+I)$$

$$\underset{m}{\Longrightarrow} E \times (E+I0) \underset{m}{\Longrightarrow} E \times (E+a0) \underset{m}{\Longrightarrow} E \times (I+a0)$$

$$\underset{m}{\Longrightarrow} E \times (b+a0) \underset{m}{\Longrightarrow} I \times (b+a0) \underset{m}{\Longrightarrow} a \times (b+a0)$$

Arbre de dérivation

$$T = \{a, b, 0, 1, +, \times, (,)\}.$$

Symbole de départ E.

Règles de production P:

$$E \longrightarrow I \mid E + E$$

$$E \longrightarrow E \times E \mid (E)$$

$$I \longrightarrow a \mid b \mid Ia \mid Ib$$

$$I \longrightarrow I0 \mid I1$$

$$a \times (a + b00)$$

Variables : $V = \{E, I\}$.

Définition: Arbre de dérivation

Définition

On appelle arbre de dérivation (ou arbre syntaxique), tout arbre tel que :

- la racine est le symbole de départ.
- les feuilles sont des symboles terminaux ou ϵ .
- les nœuds sont des non-terminaux.
- les fils d'un nœud X sont Y₀, Y₁,..., Y_n si et seulement s'il existe une règle de production :

$$X \longrightarrow Y_0 Y_1 \dots Y_n \ (Y_i \in T \cup V).$$

Ambiguïté

$$T = \{id, +, \times, (,)\}$$
 Variables : $V = \{E\}$.

Symbole de départ E.

Règles de production :

$$E \longrightarrow E + E \mid E \times E \mid (E) \mid id$$

$$id \times id + id$$

$$E$$

$$\downarrow$$

$$id$$

$$E$$

$$\downarrow$$

$$id$$

$$id$$

Dérivation

Arbre Syntaxique Abstrait

 $a \times (a + b00)$ peut être représenté par une autre structure d'arbre où les noeuds sont des symboles terminaux.

Types de grammaires

Sommaire

- Langages
 - Définitions
 - Expressions régulières
 - ER et langages
 - Exercices
- ② Grammaires
 - Introduction
 - Dérivation
 - Types de grammaires
 - Expressions régulières et grammaires

Forme de Backus-Naur (BNF)

- La notation de Backus-Naur a été utilisée dès 1960 pour décrire le langage ALGOL 60, et depuis est employée pour définir de nombreux langages de programmation.
- Le symbole des règles de réécriture est " : :=".
- Les symboles désignant les variables sont inclus entre chevrons : "<" et ">".
- Un ensemble de règles dont les parties gauches sont identiques, telles que :

Types de grammaires

Extension de la forme BNF

 Les items optionnels sont placés entre les méta symboles "[" et "]".

 Les items à répéter (opérateur *) sont placés entre les méta symboles "{" et "}".

```
<identifier> ::= <letter> { <letter> | <digit> }
```


- Grammaires régulières à droite.
 - Forme des règles : A → aB ou A → a avec A, B ∈ V et a ∈ T.
- Grammaires régulières à gauche.
 - Forme des règles : A → Ba ou A → a avec A, B ∈ V et a ∈ T.
- Le membre de gauche de chaque règle est constitué d'un seul symbole non terminal,
- Le membre de droite est constitué d'un symbole terminal éventuellement suivi (respectivement précédé) d'un seul non terminal

- Grammaires hors-contexte.
- Forme des règles :
 - \bullet $A \longrightarrow \alpha$
 - $A \in V$ et $\alpha \in (V \cup T)^*$.
 - α peut valoir ϵ
- Le membre de gauche de chaque règle est constitué d'un seul symbole non terminal.
- Le membre de droite est une séquence de symboles terminaux et de variables

- Grammaires contextuelles (CSG).
- Forme des règles :
 - $\alpha A\beta \longrightarrow \alpha \gamma \beta$
 - $A \in V$; $\alpha, \beta \in (V \cup T)^*$ et $\gamma \in (V \cup T)^+$.
- Le symbole non terminal A n'est remplacé par la forme γ de (V ∪ T)⁺ que si les contextes α et β sont présents à gauche et à droite.
- La longueur de la partie gauche de toute règle est inférieure ou égale à celle de sa partie droite.
- Exception : la forme $S \longrightarrow \epsilon$ est autorisée si S n'apparaît pas dans la partie droite d'une règle (seul l'axiome est nullifiable).

- Pas de restrictions sur les règles.
- Forme des règles :
 - $\bullet \ \alpha \longrightarrow \beta$
 - $\alpha \in (V \cup T)^+, \beta \in (V \cup T)^*.$

$$G_{T_0}\supset G_{T_1}\supset G_{T_2}\supset G_{T_3}$$

Exemple (type 0)

```
T = \{a, b, c\} Variables : V = \{A, B, C, S\}.
```

Axiome S.

Règles de production :

$$S \longrightarrow ABC \mid ASBC$$

$$CB \longrightarrow BC$$

$$A \longrightarrow a$$

$$aB \longrightarrow ab$$

$$bB \longrightarrow bb$$

$$bC \longrightarrow bc$$

$$\mathit{cC} \longrightarrow \mathit{cc}$$

Quelle est la forme des mots du langage?

Mots

Types de grammaires

$$S \longrightarrow ABC \mid ASBC ; CB \longrightarrow BC ;$$

 $A \longrightarrow a ; aB \longrightarrow ab ; bB \longrightarrow bb ; bC \longrightarrow bc ; cC \longrightarrow cc$
 $S \longrightarrow ABC \longrightarrow aBC \longrightarrow abC \longrightarrow abc$
 $S \longrightarrow ASBC \longrightarrow aSBC \longrightarrow aABCBC \longrightarrow aaBCBC$
 $\longrightarrow aabCBC \longrightarrow aabcBC : impasse$

$$S \Rightarrow ASBC \Rightarrow aSBC \Rightarrow aABCBC \Rightarrow aaBCBC$$

 $\Rightarrow aaBBCC \Rightarrow aabBCC \Rightarrow aabbcC \Rightarrow aabbcC \Rightarrow aabbcC$

Types de grammaires

Forme

```
S \longrightarrow ABC \mid ASBC ; CB \longrightarrow BC ;

A \longrightarrow a ; aB \longrightarrow ab ; bB \longrightarrow bb ; bC \longrightarrow bc ; cC \longrightarrow cc

Forme a^n b^n c^n?
```

Comment obtenir : aaabbbccc ?

```
S \Rightarrow ASBC \Rightarrow aSBC \Rightarrow aASBCBC \Rightarrow aaSBCBC

\Rightarrow aaABCBCBC \Rightarrow aaaBCBCBC \Rightarrow aaaBBCCBC

\Rightarrow aaaBBCBCC \Rightarrow aaaBBBCCC \Rightarrow aaabBBCCC

\Rightarrow aaabbBCCC \Rightarrow aaabbbcCC \Rightarrow aaabbbcCC

\Rightarrow aaabbbccC \Rightarrow aaabbbccc
```


Sommaire

- Langages
 - Définitions
 - Expressions régulières
 - ER et langages
 - Exercices
- ② Grammaires
 - Introduction
 - Dérivation
 - Types de grammaires
 - Expressions régulières et grammaires

Expressions régulières et grammaires ER et grammaires

Pour toute expression régulière R, il existe une grammaire G telle que L(G) = L(R).

Soit R une expression régulière sur un alphabet Σ

- Pas d'opérateurs (n = 0) $R = \emptyset$ ou $R = \epsilon$ ou R = x avec $x \in \Sigma$
- On crée un symbole S et une grammaire G = (T, V, S, P): $T = \Sigma, V = \{S\}$
- Règles
 - R = ∅, pas de règle, L(G) = ∅
 - R = ϵ , 1 règle, $S \longrightarrow \epsilon$, L(G) = $\{\epsilon\}$
 - R = x, 1 règle, $S \longrightarrow x$, L(G) = $\{x\}$

Récurrence

On suppose l'hypothèse de récurrence vraie pour des expressions comportant au plus n occurrences d'opérateurs.

Soit R une expression ayant n+1 occurrences d'opérateurs.

$$R=R_1|R_2$$
 ou $R=R_1R_2$ ou $R=R_1*$

 R_1 et R_2 possèdent au plus n occurrences d'opérateurs.

Il existe
$$G_1=(T,V_1,S_1,P_1)$$
 et $G_2=(T,V_2,S_2,P_2)$ telles que $L(R_1)=L(G_1)$ et $L(R_2)=L(G_2)$

Disjonction

•
$$R = R_1 | R_2$$

• P' =
$$\{S \longrightarrow S_1 | S_2 \}$$

•
$$G = (T, V, S, P)$$

•
$$V = V_1 \cup V_2 \cup \{S\}$$

$$P = P_1 \cup P_2 \cup P'$$

$$\bullet \ \ L(G) = L(R_1) \cup L(R_2)$$

Concaténation

•
$$R = R_1 R_2$$

$$\bullet P' = \{S \longrightarrow S_1 S_2 \}$$

•
$$G = (T, V, S, P)$$

•
$$V = V_1 \cup V_2 \cup \{S\}$$

$$\bullet \ P = P_1 \cup P_2 \cup P'$$

$$L(G) = L(R_1)L(R_2)$$

Fermeture

•
$$R = R_1 *$$

• P' =
$$\{S \longrightarrow S_1 S | \epsilon \}$$

•
$$G = (T, V, S, P)$$

•
$$V = V_1 \cup \{S\}$$

$$P = P_1 \cup P'$$

•
$$L(G) = L(R_1)*$$

Exemples

- R = (a|b)*• $S \longrightarrow aS|bS|\epsilon$
- R = (a|b) * abb(a|b) *
 - $S \longrightarrow TabbT$; $T \longrightarrow aT|bT|\epsilon$
 - $S \longrightarrow aS|bS|T$; $T \longrightarrow abbU$; $U \longrightarrow aU|bU|\epsilon$