

# Arithmetic Progressions Ex 9.2 Q4

## Answer:

In the given problem, we need to show that the given sequence is an A.P and then find its common difference.

Here,

 $a_n = 5n - 7$ 

Now, to show that it is an A.P. we will find its few terms by substituting n = 1, 2, 3, 4, 5

Sn

Substituting n = 1, we get

 $a_1 = 5(1) - 7$ 

 $a_1 = -2$ 

Substituting n = 2, we get

 $a_2 = 5(2) - 7$ 

 $a_2 = 3$ 

Substituting n = 3, we get

 $a_3 = 5(3) - 7$ 

 $a_3 = 8$ 

Substituting n = 4, we get

 $a_4 = 5(4) - 7$ 

 $a_4 = 13$ 

Substituting n = 5, we get

 $a_5 = 5(5) - 7$ 

 $a_{r} = 18$ 

Further, for the given sequence to be an A.P.

We find the common difference (d)

$$d = a_2 - a_1 = a_3 - a_2$$

Thus,

 $a_2 - a_1 = 3 - (-2)$ 

= 5

Also,

 $a_3 - a_2 = 8 - 3$ 

= 5

Since  $a_2 - a_1 = a_3 - a_2$ 

Hence, the given sequence is an A.P and its common difference is d = 5.

Arithmetic Progressions Ex 9.2 Q5

#### Answer:

In the given problem, we need to show that the given sequence is not an A.P. Here.

$$a_n = 3n^2 - 5$$

Now, first we will find its few terms by substituting n = 1, 2, 3, 4, 5

So

Substituting n = 1, we get

$$a_1 = 3(1)^2 - 5$$

$$a_1 = -2$$

Substituting n = 2, we get

$$a_2 = 3(2)^2 - 5$$

$$a_2 = 7$$

Substituting n = 3, we get

$$a_3 = 3(3)^2 - 5$$

$$a_3 = 22$$

Substituting n = 4, we get

$$a_4 = 3(4)^2 - 5$$

$$a_4 = 43$$

Substituting n = 5, we get

$$a_5 = 3(5)^2 - 5$$

$$a_5 = 70$$

Further, for the given to sequence to be an A.P.

We find the common difference (d) =  $a_2 - a_1 = a_3 - a_2$ 

Thus.

$$a_2 - a_1 = 7 - (-2)$$
  
= 9

Also.

$$a_3 - a_2 = 22 - 7$$
  
= 15

So, 
$$a_2 - a_1 \neq a_3 - a_2$$

Hence, the given sequence is not an A.P.

## Arithmetic Progressions Ex 9.2 Q6

## Answer

In the given problem, we need to find that the given sequence is an A.P or not and then find its  $15^{th}$  term and the common difference.

Here,

$$a = -4n + 15$$

Now, to find that it is an A.P or not, we will find its few terms by substituting n = 1, 2, 3

So,

Substituting n = 1, we get

$$a_1 = -4(1) + 15$$

$$a_1 = 11$$

Substituting n = 2, we get

$$a_2 = -4(2) + 15$$

$$a_2 = 7$$

Substituting n = 3, we get

$$a_3 = -4(3) + 15$$

$$a_3 = 3$$

Further, for the given to sequence to be an A.P,

We find the common difference (d) =  $a_2 - a_1 = a_3 - a_2$ 

Thus,

$$a_2 - a_1 = 7 - 11$$

$$a_3 - a_2 = 3 - 7$$

$$= -4$$

Since 
$$a_2 - a_1 = a_3 - a_2$$

Hence, the given sequence is an A.P and its common difference is d = -4

Now, to find its 15<sup>th</sup> using the formula  $a_n = a + (n-1)d$ 

First term (a) = 11

$$n = 15$$

Common difference (d) = -4

Substituting the above values in the formula

$$a_{15} = 11 + (15 - 1)(-4)$$

$$a_{15} = 11 + (-56)$$

$$a_{15} = -45$$

Therefore, 
$$a_{15} = -45$$