

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000188608 A

(43) Date of publication of application: 04.07.00

(51) Int. CI

H04L 12/56 G06F 17/30 H04L 12/28

(21) Application number: 10362987

(22) Date of filing: 21.12.98

(71) Applicant:

HITACHI LTD

(72) Inventor:

NOMI MOTOHIDE SAKO YOSHITO SUKAI KAZUO

(54) INFORMATION RELAY METHOD AND SYSTEM

(57) Abstract:

PROBLEM TO BE SOLVED: To realize high speed retrieval of a path where tree structural data are used for a path control table.

SOLUTION: A router relays information through a computer network consists of a path management section F0 that manages path information by means of a path management table TBL0 adopting a binary tree structure and of a path retrieval section F1 that has path information in a form of a path retrieval table TBL1 adopting a 2 to the p-th power tree structure and retrieves and decides a transfer destination (a port 50 to which information is to be outputted) by means of destination address information in a packet 51 received from one of a plurality of ports 50. The path management section F0 updates each node of a binary tree structure of the path management table TBLO, in response to addition or the like of a path information entry E and conducts maintenance processing to reflect the updated result on 2 to the p-th power tree structure of the path retrieval table TBL1.

THIS PAGE BLANK (USPTO)

S PAGE BLANK (USPTO)

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-188608 (P2000-188608A)

(43)公開日 平成12年7月4日(2000.7.4)

(51) Int.Cl. ⁷	識別記号	F I		テーマコート・(参考)
H04L 12/56		H04L 11/20	102D	5B075
G06F 17/30		G06F 15/413	310A	5 K O 3 O
H04L 12/28		H04L 11/00	3 1 0 Z	5 K O 3 3

審査請求 未請求 請求項の数3 OL (全 19 頁)

(21)出願番号	特顧平10-362987	(71)出顧人	000005108
			株式会社日立製作所
(22)出顧日	平成10年12月21日(1998.12.21)	* .	東京都千代田区神田駿河台四丁目6番地
		(72)発明者	能見 元英
			神奈川県海老名市下今泉810番地 株式会
			社日立製作所サーバ開発本部内
		(72)発明者	左古。義人
			神奈川県海老名市下今泉810番地 株式会
			社日立製作所サーバ開発本部内
		(74)代理人	100080001
			弁理士 簡井 大和

最終頁に続く

(54) 【発明の名称】 情報中継方法および装置

(57) 【要約】

【課題】 経路制御テーブルに木構造データを用いる経 路検索の高速化を実現する。

【解決手段】 コンピュータネットワークで情報中継を行うルータ装置を、経路情報を2分木構造の経路管理テーブルTBL0で管理する経路管理部F0と、経路情報を2のp乗分木構造の経路検索テーブルTBL1で持ち、複数のポート50の一つから受信したパケット51内の宛先アドレス情報にて検索し転送先(出力すべきーつのポート50)を決定する経路検索部F1とで構成し、経路管理部F0は、経路情報エントリEの追加等に応じて経路管理テーブルTBL0の2分木構造の各ノードを更新した後、更新結果を経路検索テーブルTBL1の2のp乗分木構造に反映させるメンテナンス処理を行う。

【特許請求の範囲】

【請求項1】 コンピュータネットワーク内におけるパ ケットの中継を行う複数の情報中継装置の各々に、前記 パケットを次に送信すべき中継先のアドレスおよび当該 中継先に対応した回線情報を含む経路情報を保持する経 路制御テーブルを持たせ、個々の前記情報中継装置で は、受信した前記パケットの宛先アドレスにて前記経路 制御テーブルを検索して得られた前記経路情報に基づい て次に前記パケットを送出すべき前記中継先を決定する 情報中継方法であって、

前記経路制御テーブルを、

前記経路情報を前記アドレスのマスク長の昇順で2分木 構造の各2分木ノードに格納し、前記経路情報を持つ2 分木ノードと分岐が発生する2分木ノードを残して縮退 した構成をとる経路管理テーブルと、

1つの2分木ノードと、その直下につながる(p-1) 段分の合計 (2のp乗-1) 個分の2分木ノードを1つ の2のp乗分木ノードに集約し、集約した最下段の2の (p-1) 乗個の2分木ノードに、その2分木ノードよ り上段の2分木ノードに割り付けた前記経路情報を埋め 込み、2のp乗分木ノードを、2分木を2の (p-1) 乗個分併せた形で構成する2のp乗分木構造に前記アド レスのマスク長の昇順で格納し、前記経路情報を持つ2 のp 乗分木ノードと分岐が発生する2のp 乗分木ノード を残して縮退した構造をとる経路検索テーブルと、 で構成し、

前記経路情報の追加、削除、変更が発生した場合に、前 記経路管理テーブルの前記2分木構造における2分木ノ ード間の親子関係から追加、削除、変更を行うべき2分 木ノードの位置を決定して前記2分木構造を更新し、前 記2分木構造の更新結果に基づいて、前記経路検索テー ブルの前記2のp乗分木構造に対して追加、削除、変更 の必要な前記2のp乗分木ノードを更新し、

受信した前記パケットの宛先アドレスにて前記経路検索 テーブルの前記2のp乗分木ノードを検索して得られた 前記経路情報に基づいて次に前記パケットを送出すべき 前記中継先を決定することを特徴とする情報中継方法。

【請求項2】 請求項1記載の情報中継方法において、 前記経路検索テーブルでは、マスク長mピットの初段ノ ード2のm乗個分をそれぞれ、宛先アドレスの第0ビッ トから第m-1ピットまでが取りうる値に1対1に対応 させるとき、マスク長0ビットから(m-1)ビットま での前記経路情報について追加を行う場合、当該経路情 報のマスク長で前記初段ノードのアドレスをマスクする と、当該経路情報のアドレスと一致する複数個の前記初 段ノードが経路情報を持たない時に当該経路情報を設定 し、マスク長0ビットから (m-1) ビットまでの前記 経路情報について削除を行う場合、当該経路情報を持つ 前記初段ノードの経路情報を削除することで前記初段ノ ードを更新する操作、

前記経路検索テーブルの2のp乗分木ノードを1エント リ毎に追加、削除、変更を行うとき、1つの前記経路情 報の追加のため親子関係にあるノード間にノードを追加 する場合、追加対象ノードと子ノードとを接続後、親ノ ードと追加対象ノードを接続し、1つの経路情報の削除 のため親と子を持つノードを削除する場合、削除対象ノ ードの親ノードを削除対象ノードの子ノードと接続後、 削除対象ノードを削除することで、経路検索に必要なノ ードを木構造から分離すること無くノードの追加、削除 を実現する操作、

パケット中継に必要な前記経路情報以外の制御経路情報 を前記経路情報と等化な形式で経路検索テーブルに追加 登録するとともに、前記制御経路情報に対応した特定の 付加機能を担う付加機構に前記パケットが転送されるよ うに前記制御経路情報に含まれる前記アドレスおよび回 線情報を設定し、受信したパケットの宛先アドレスにて 前記経路検索テーブルに登録されている前記経路情報お よび前記制御経路情報を検索し、前記制御経路情報と一 致する場合には前記付加機構にパケットを転送して、前 記付加機能を実現する操作、

の少なくとも一つの操作を行うことを特徴とする情報中 継方法。

【請求項3】 コンピュータネットワーク内のパケット を中継する情報中継装置であって、

前記パケットを次に送信すべき中継先のアドレスおよび 当該中継先に対応した回線情報を含む経路情報を保持す る経路制御テーブルと、前記経路制御テーブルの内容を 更新する経路管理部と、受信した前記パケットの宛先ア ドレスにて前記経路制御テーブルを検索して得られた前 記経路情報に基づいて次に前記パケットを送出すべき前 記中継先を決定する経路検索部と、を備え、

前記経路管理部では、前記経路制御テーブルとして、前 記経路情報を前記アドレスのマスク長の昇順で2分木構 造の各2分木ノードに格納し、前記経路情報を持つ2分 木ノードと分岐が発生する2分木ノードを残して縮退し た構成をとる経路管理テーブルを持ち、

前記経路検索部では、前記経路制御テーブルとして、1 つの2分木ノードと、その直下につながる (p-1) 段 分の合計(2のp乗一1)個分の2分木ノードを1つの 2のp乗分木ノードに集約し、集約した最下段の2の (p-1) 乗個の2分木ノードに、その2分木ノードよ り上段の2分木ノードに割り付けた前記経路情報を埋め 込み、2のp乗分木ノードを、2分木を2の(p-1) 乗個分併せた形で構成する2のp乗分木構造に前記アド レスのマスク長の昇順で格納し、前記経路情報を持つ2 のp乗分木ノードと分岐が発生する2のp乗分木ノード を残して縮退した構造をとる経路検索テーブルを持ち、 前記経路管理部は、前記経路情報の追加、削除、変更が 発生した場合に、前記経路管理テーブルの前記2分木構 造における2分木ノード間の親子関係から追加、削除、

変更を行うべき2分木ノードの位置を決定して前記2分 木構造を更新し、前記2分木構造の更新結果に基づい て、前記経路検索テーブルの前記2のp乗分木構造に対 して追加、削除、変更の必要な前記2のp乗分木ノード を更新する操作を行い、

前記経路検索部は、受信した前記パケットの宛先アドレスにて前記経路検索テーブルを検索して得られた前記経路情報に基づいて次に前記パケットを送出すべき前記中継先を決定する操作を行う、ようにしたことを特徴とする情報中継装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、情報中継技術に関し、特に、コンピュータネットワークシステム内のパケットを中継するルータ装置等において、受信したパケットの宛先アドレスから、当該パケットを次に送信すべき中継先を決定するために使用する経路情報テーブル作成技術等に適用して有効な技術に関する。

[0002]

【従来の技術】コンピュータ技術および情報ネットワーク技術の進歩に呼応して、いわゆるインターネット等に代表されるように、複数のコンピュータを情報ネットワークを介して接続したコンピュータネットワークが広音及してきている。さらにこのコンピュータネットワーク内で授受されるデータとして、映像や音声等のいわゆるマルチメディアデータのように、大容量でかつ実時間性が重要なデータが増えつつあり、コンピュータネットワーク内におけるデータの中継を行うルータ装置等の情報中継装置においても、通信媒体そのものの通信速度並の中継動作の高速化が要求されている。

【0003】本発明の参考技術である情報中継技術を以下、図22に従い説明する。参考技術のルータ装置は経路検索部F100、制御経路検索部F200、付加機構部F300を保持する。

【0004】経路検索部F100は次に送信すべき装置 のアドレス及びその装置が接続されている回線情報を持 つ経路情報エントリEを登録する経路検索テーブルTB L100を保持する。経路情報エントリEはサブネット ワークアドレスとマスク長、及び回線情報、次ホップア ドレス、サブネットワークが直接接続されているか否か の情報(以後次ホップ情報と称す)より構成される。経 路検索部F100はユーザが設定したり、ルーティング プロトコルなどでルータ装置間の接続情報のやりとりに よって得られた経路情報エントリEを経路検索テーブル TBL100に追加、削除を行う。また経路検索部F1 00はパケットを受信した場合に経路検索テーブルTB L100の経路情報エントリEのサブネットワークアド レスとマスク長の組を検索キーとして、パケットの宛先 アドレスと比較し、一致する経路情報エントリEが存在 するか検索する。

【0005】制御経路検索部F200はパケット中継に必要な経路情報以外の制御経路情報エントリCEを登録する制御経路テーブルTBL200を保持する。制御経路情報エントリCEは付加機構部に転送すべき、制御経路大学レスより構成される。制御経路検索部F200は経路検索部F100で受信したパケットの検索処理を行った後に、制御経路検索テーブルTBL200の制御経路情報エントリCEの制御経路でデレスとパケットのを先アドレスを比較し、一致する制御経路情報エントリCEが存在するか検索する。一致する制御経路情報エントリCEが存在すれば、パケットを付加機構部F300に転送する。一致する制御経路情報エントリCEが存在しなければ、経路検索部F100の検索結果に従い、パケットを送信する。

【0006】上記の検索仕様に従った経路検索方法として2分木構成によるRadishアルゴリズムがある。Radishアルゴリズムは、左右にポインタを持つ複数の頂点(ノード)をポインタでつないだ木から構成される木構造の各ノードに経路エントリをマップし、この木を辿るときには、各ノードの左右のどちらかのポインタを辿り次のノードに移動することにより、目的の経路エントリがマップされたノードにたどり着くアルゴリズムである。

【0007】まず、図23を用い、木の構造を説明する。考え方はビット長には依存しないので、図23では、理解し易いようアドレス長を3ビットとして説明する。

【0008】図23に示すように、各ノードを、木の上から順に、マスク長0ビット、1ビット、2ビット、3 ビットのノードと呼ぶ。

【0009】マスク長0ビットのノードN0000では 宛先アドレスの第0ビットが0か1かに従い左/右のポインタを辿ることによりマスク長1ビットのノードN0001, N1001に移り、マスク長1ビットのノードでは第1ビットが0か1かに従い左/右のポインタを辿ることによりマスク長2ビットのノードN0002, N1102に移り、マスク長2ビットのノードでは第2ビットが0か1かに従い左/右のポインタを辿ることによりマスク長3ビットのノードN0003, N0113, N1003, N1013, N1103, N1113に移る。

【0010】検索したい宛先アドレスについて、この木のマスク長0ビットのノードN0000から順に、各ビットが0か1かに従いポインタを辿った場合、マスク長0ビットのノードは宛先アドレスがどの場合にも通過し、マスク長1ビットのノードN0001は左から順に宛先アドレスの各ビットが0XX,1XXの場合に通過し、マスク長2ビットのノードN0002,N0102,N1102は左から順に

宛先アドレスの各ピットが00X,01X,10X,1 Xの場合に通過し、マスク長3ピットのノードN0003,N0013,N1003,N1113は左から順に3,N1013,N1103,N1113は左から順に宛先アドレスの各ピットが000,001,010,011,1100,111の場合に通過する。ここで、Xは、そのピット値が0または1のどちらでも良いことを示す。

【0011】従って、マスク長0ピットのノードN00 00は、宛先アドレスがサブネットワークアドレス00 0/0に属する場合に通過し、マスク長1ビットのノー ドN0001,N1001は、宛先アドレスがサブネッ トワークアドレス000/1,100/1に属する場合 に通過し、マスク長2ピットのノードN0002、N0 102, N1002, N1102は、宛先アドレスがサ プネットワークアドレス000/2,010/2,10 0/2, 110/2に属する場合に通過し、マスク長3 ピットのノードN0003, N0013, N0103, N0113, N1003, N1013, N1103, N 1113は、宛先アドレスがサブネットワークアドレス 000/3,001/3,...,111/3に属する 場合に通過する。ここで、表記法″sss/m″の″s s s ″ はサブネットワークアドレス,mはマスク長を表 すものとする。

【0012】上記の通り、この木の各ノードは、サブネットワークアドレスとマスク長が異なる全サブネットに1対1に対応している。

【0013】そこで、図24に示す経路情報エントリに対応するノードN0000, N0013, N0102, N1001, N1103に"**を付け、検索したい宛先アドレスDA011を、この木の上から各ピットがのか1かに従いポインタを辿ったときに通過する"**を検索で一致するエントリに対応することが分かる。そこを終って、経路情報エントリが複数一致した場合は最もマスクで、経路情報エントリが複数一致した場合は最もマスクにし、一致した"**付きノードN0000, N010 2の内、最も末端に近いノードN0102に割り付けられた経路情報を、経路テーブルの検索結果とする。

【0014】上記検索方法から分かるように、"*"が付いておらず、かつ"*"付きのノードにたどり着くたりのの途中経路にもなっていないノードN0003, N0103, N1013, N1003, N1013, N1113, N1002は木から取り除いても、検索結果にはないときは最下まで移動せずに検索が終了するために効率的である。そこで、"*"が付いておらず、かつ"ていないノードを木から取り除くと図25のようになった。

【0015】更に左右の片方のポインタだけに次のノードがつながり、かつ経路情報がマップされていないノードN0002, N1102を木から取り除き、N0001, N1001の直ぐ下にそれぞれノードN0013, N1103を付ける。その結果、図26に示す形になる。このように途中のノード列を取り除くことを、以後、木の縮退と呼ぶ。

【0016】2分木構造をとる経路管理テーブルへ経路情報エントリの追加、削除する方法について説明する。 【0017】図27は2分木への経路情報追加例である。図27(a)はエントリ追加後の経路管理テーブル、図27(b)はエントリ追加後の経路管理テーブルである。図27を用いて、2分木構造をとる経路管理テーブルーブルに経路情報エントリ及び制御を登ります。 アーブルに経路情報エントリをである。 図27を用いて、2分木構造をとる経路管理テーブルである。 図27を用いて、2分木構造をとる経路管理テーブルである。 図27を用いて、2分木構造をとる経路管理テーブルに経路情報エントリ追加後の経路でである。 以下発生するノードの追加位置を決定するがあるとで発生するノードの追加位置を決定するがあるとで発生する。 以下現在ノード (以下現在ノードと称す)と追を出する。以下の判定条件を示す。

【0018】 (A-1) 現在ノードのサブネットワークアドレスとマスク長が一致した時。

【0019】 (A-2) 現在ノードとサブネットワーク アドレスが不一致になった時。

【0020】(A-3)マスク長が現在ノードのマスク長より大きく、現在ノードのサブネットワークアドレスと一致しており、次に検索すべき子ノード方向のポインタがNULLである時。

【0021】 (A-4) マスク長が現在ノードのマスク 長よりも小さく、サブネットワークアドレスが一致した 時。

【0022】ただし、ネットワークアドレスの比較は、 現在ノードと追加ノードのどちらか小さい方のマスク長 により比較される。4つの判定条件にそれぞれ当てはま る例を以下に示す。

 $\begin{bmatrix} 0 & 0 & 2 & 3 \end{bmatrix}$ 追加するエントリのサプネットワークアドレス、マスク長が1 & 3 & 3 & 5 & 1 & 6 & 0 / 2 & 1 & 0 切定条件 (A-1) に当てはまる。図2 & 7 (a) において現在ノードをノード $S & 1 \rightarrow S & 2 \rightarrow S & 4 \rightarrow S & 5 & 2 \rightarrow S & 3 \rightarrow S$

(b) に示すように追加する経路情報ノードは分岐ノードであるため、分岐ノードS5のエントリに経路情報を書き込み、経路情報ノードS5に変更する。

 $[0\ 0\ 2\ 4]$ 追加するエントリのサブネットワークアドレス、マスク長が $1\ 3\ 3$. 5. $1\ 9$. $0\ / 2\ 4$ の場合、判定条件 (A-2) に当てはまる。図 $2\ 7$ (a) において現在ノードをノードS $1\rightarrow$ S $2\rightarrow$ S $4\rightarrow$ S $5\rightarrow$ S6と移動していき、ノードS6で判定条件 (A-2) に当て

はまる。判定条件(A-2)に当てはまる場合、図27(b)に示すように経路情報ノードSA1を追加し、現在ノードS6と経路情報ノードSA1を分岐する親ノードが存在しないので分岐ノードSA2を追加し、分岐ノードSA2の親ノードになったノードS5の左の子ノード方向のポインタをノードS6からノードSA2に変更する。

【0025】追加するエントリのサブネットワークアド レス、マスク長が133.4.1.0/24の場合、判 定条件(A-3)に当てはまる。図27(a)において 現在ノードをノードS1→S2→S3と移動していき、 ノードS3で判定条件(A-3)に当てはまる。判定条 件(A-3)に当てはまる場合、図27(b)に示すよ うに経路情報ノードSA3を追加し、経路情報ノードS A3の親ノードにあたるS3の左の子ノード方向のポイ ンタをNULしから経路情報ノードSA3に変更する。 【0026】追加するエントリのサブネットワークアド レス、マスク長が133.5.22.0/23の場合、 判定条件(A-4)に当てはまる。図27(a)におい て現在ノードをノードS1→S2→S4→S5→S7と 移動していき、ノードS7で判定条件(A-4)に当て はまる。判定条件(A-4)に当てはまる場合、図27 (b) に示すように経路情報ノードSA4を追加し、経 路情報ノードSA4の親ノードにあたるノードS5の左 の子ノード方向のポインタをノードS7から経路情報ノ ードSA4に変更する。

【0027】図28は2分木への経路情報削除例である。図28(a)はエントリ削除前の経路管理テーブル、図28(b)はエントリ削除後の経路管理テーブルである。図28を用いて、2分木構造をとる経路管理テーブルから経路情報エントリ及び制御経路情報エントリを削除する方法について説明する。エントリを削除する方法について説明する。エントリを削除することで発生するノードの削除位置を決定するために初段ノードから下段方向に検索していき、削除するエントリのサブネットワークアドレスとマスク長が一致する現在ノード(以下削除対象ノードと称す)を検出する。現在ノードが以下に示す4つの判定条件のうち、1つに当てはまる。

【0028】 (D-1) 削除対象ノードが2つの子ノードを持つ時。

【0029】(D-2)削除対象ノードが子ノードを持たず、親ノードが経路情報を持たない(但し初段ノードは除く)時。

【0030】(D-3)削除対象ノードが子ノードを持たず、親ノードが経路情報を持っている時。

【0031】(D-4)削除対象ノードが1つの子ノードを持つ時。

【0032】4つの判定条件にそれぞれ当てはまる例を 以下に示す。

【0033】削除するエントリのサブネットワークアド

レス、マスク長が133.5.16.0/21 の場合、判定条件 (D-1) に当てはまる。図28(a) において現在ノードをノードS $1\to S2\to S4\to S5$ と移動していき、ノードS5で判定条件 (D-1) に当てはまる。判定条件 (D-1) に当てはまる場合、図28

(b) に示すように削除する経路情報ノードS5は分岐 ノードでもあるため、ノードS5のエントリの経路情報 を削除し、分岐ノードS5に変更する。

【0034】削除するエントリのサブネットワークアドレス、マスク長が133.5.19.0/24の場合、判定条件(D-2)に当てはまる。図28(a)において現在ノードをノード $S1 \rightarrow S2 \rightarrow S4 \rightarrow S5 \rightarrow SD2 \rightarrow SD1 と移動していき、ノードSD1で判定条件(<math>D-2$)に当てはまる。判定条件(D-2)に当てはまる。判定条件(D-2)に当てはまる。判定条件(D-2)に当てはまる。とノードSD2の親ノードののポインをノードSD2からノードSD2を削除し、削除対象ノードSD1を削除する。

【0035】削除するエントリのサブネットワークアドレス、マスク長が133.4.1.0/24の場合、判定条件(D-3)に当てはまる。図28(a)において現在ノードをノードS $1\rightarrow$ S $2\rightarrow$ S $3\rightarrow$ SD3と移動していき、ノードSD3で判定条件(D-3)に当てはまる。判定条件(D-3)に当てはまる。

(b) に示すように削除対象ノードSD3は末端ノードのため、削除対象ノードSD3の親ノードにあたるノードS3の左の子ノード方向のポインタを削除対象ノードSD3からNULLに変更し、削除対象ノードSD3を削除する。

【0036】削除するエントリのサブネットワークアドレス、マスク長が133.5.22.0/23の場合、判定条件(D-4)に当てはまる。図28(a)において現在ノードをノード $S1 \rightarrow S2 \rightarrow S4 \rightarrow S5 \rightarrow SD4$ と移動していき、ノードSD4で判定条件(D-4)に当てはまる。判定条件(D-4)に当てはまる。場定条件(D-4)に当てはまる場合、図28(b)に示すように削除対象ノードSD4の親ノードのたるノードS50をの子ノード方向のポインタを削除対象ノードSD4から削除対象ノードの子ノードS7に更新し、削除対象ノードSD4を削除する。

【0037】2分木構成によるRadishアルゴリズムを更に高速化する方法として以下に述べる「ネットワークの次転送先高速検索技術」がある。図29に示すように「ネットワークの次転送先高速検索技術」の経路検索テーブルはマスク長mビットの初段ノードを2のm乗個保持する2のp乗分木構造をとる。参考技術の2分木構成によるRadishアルゴリズムは検索を宛先アドレスの上位ビットから1ビットずつ検索していくのに対し、図29の「ネットワークの次転送先高速検索技術」

は2分木のp段分を一つの2のp乗分木にし、2分木のp段を1回の検索で行うことにより、検索処理時間を1/pに短縮し、検索処理の高速化を図っている。また、ビットの初段ノードを2のm乗個、記憶手段上のメモントの初段ノードを2のm乗個、記憶手段上のメモントの初段ノードを2のm乗のでスク長mビットのノードを2のm乗の第0ビットから第(mーた位置に展開し、それぞれのマスク長mビットから第(mーの宛先アドレスの第0ビットから第(mーの宛先アドレスの第0ビットから第(mー1)ビットの経路情報エントリののってがあることにより、最初のmビット分の検索時間をとして検索処理の高速化を図っている。

【発明が解決しようとする課題】上述の参考技術のように経路検索テーブルとして、マスク長mビットの初段ノードを2のm乗個保持する2のp乗分木構造を採用した場合には、検索処理の高速化が可能であるが、コンピュータネットワークの構成の変化に応じて動的に経路検索ークスのp乗分木構造に対して実行する必要があるため、更新処理の間は経路検索が停止され、検索速度が低下するという懸念がある。

【0039】経路検索テーブルの2のp乗分木ノードを 1エントリ毎に追加、削除、変更を行う場合には、追加、削除、変更の対象となっているノードが木構造から分離されている間に検索を行うと誤検索が懸念され、やはり、経路検索を停止する必要がある。

【0040】さらに、参考技術では、プロードキャスト等の特別なパケットについては、通常のパケットとは別の検索テーブルに登録して処理していたため、コンピュータネットワークの機能拡張の作業や検索処理が煩雑になる、という技術的課題もある。

【0041】本発明の目的は、2分木構造によるRadish Treeを2のp乗分木構造に動的に変換して高速化を図ることが可能な情報中継技術を提供することにある。

【0042】本発明の目的は、経路制御情報の更新に伴う経路検索停止時間を短縮して、中継制御の高速化を実現することが可能な情報中継技術を提供することにある。

【0043】本発明の他の目的は、2分木構造によるRadish Treeを2のp乗分木構造に変換して高速化を図る場合において、2のp乗分木構造の動的な更新を、より短い経路検索停止時間で的確に行うことが可能な情報中継技術を提供することにある。

【0044】本発明の他の目的は、経路検索テーブルの2のp乗分木ノードを1エントリ毎に追加、削除、変更を行う場合において、経路検索に必要なノードを木構造から分離すること無くノードの追加、削除を行うことで、検索中断時間を最小化することが可能な情報中継技

術を提供することにある。

【0045】本発明の他の目的は、コンピュータネットワークの特別な機能に割り当てられた制御経路情報を経路検索テーブルに付加することにより、コンピュータネットワークの機能の拡張を容易にすることが可能な情報中継技術を提供することにある。

【課題を解決するための手段】本発明では、ルータ装置 等の情報中継装置において、経路検索部を、受信したパ ケットの転送先を検索する経路検索部と経路情報エント リの追加、削除を行う経路管理部に分離する。経路管理 部は経路検索部が保持する2のp乗分木構成による経路 検索テーブルを生成するための2分木構成による経路管 理テーブルを保持する。経路検索テーブルの各々の2の P 乗分木ノードは経路検索に必要な子ノードの情報のみ を保持し、経路管理テーブルの2分木ノードは親ノー ド、子ノードの情報を保持する。この親ノード、子ノー ド情報を基に経路管理部は経路情報の追加、削除処理が 発生した場合に、経路管理テーブルの2分木ノード間の 親子関係から追加、削除、変更をする2分木ノードの位 置を決定して2分木構造を更新する。次に該2分木ノー ドのサプネットワークアドレスとマスク長から該2分木 ノードを含む2のp乗分木ノードの位置を決定する。次 に該2のp乗分木ノード内に存在する2分木ノードの保 持する親ノードと子ノード情報により、親ノード方向の ノードの経路情報よりも、子ノード方向のノードの経路 情報を優先させ、子ノード方向のノードが経路情報を持 たない時に、親ノード方向のノードが経路情報を持つ時 はその経路情報を受け継ぐことで2のp乗分木ノードの 経路情報を設定する。次に2のp乗分木ノード内に存在 する2分木ノード数より、2のp乗分木の追加、削除、 変更を決定する。0個から1個になる時は新規に2の $_{
m D}$ 乗分木ノードを追加、1個から0個になる時は2のp乗 分木ノードを削除、それ以外の個数の変化時は2のp乗

【0047】2のm乗個のマスク長mビットを持つ初段ノードをそれぞれ、アドレスの第0ビットから第m-1ビットまでが取りうる値に1対1に対応させた制御機構の経路情報の追加を行う場合、該経路情報のマスク長であり、一下のアドレスをマスクした値と、経路情報のでスクードのアドレスをマスクした値と、経路情報を持たない時に追加する経路情報を持たない時に追加する経路情報を持たない時に追加する経路情報を持ての経路情報を持つが場合、該経路情報を持つの経路情報を削除を行う場合、該経路情報を持つの経路情報を削除を行う場合、該経路情報を持つの更新を行う。

【0048】また、経路検索テーブルの2のp乗分木ノードを1エントリ毎に追加、削除、変更を行う制御機構において、1つの経路情報の追加のため親子関係にある

ノード間にノードを追加する場合、該追加対象ノードと子ノードを接続後、親ノードと該追加対象ノードを接続する。1つの経路情報の削除のため親と子を持つノードを削除する場合、該削除対象ノードの親ノードを該削除対象ノードのテノードと接続後、該削除対象ノードを削除する。このノードの追加、削除方式により経路検索に必要なノードを木構造から分離すること無くノードの追加、削除を実現する。

【0049】経路管理機能と経路探索機能に更に機能を追加する場合、付加機構を新たに追加し、パケット中継に必要な経路情報以外の制御経路情報を経路検索テーブルに追加登録し、受信したパケットの宛先アドレスが制御経路情報と一致すると経路検索機能から付加機構にパケットを転送し、付加機能を実現する。

[0050]

【発明の実施の形態】以下、本発明の実施の形態を図面 を参照しながら詳細に説明する。

【0051】図1は、本発明の情報中継方法を実施する情報中継装置の一実施の形態であるルータ装置の構成の一例を示す機能プロック図である。

【0052】本実施の形態のルータ装置の構成について説明する。本実施の形態のルータ装置は経路管理部F0、経路検索部F1、付加機構部F3を備えている。経路管理部F0は次に送信すべき他のルータ装置のアドレス及びそのルータ装置が接続されている回線情報を持つ経路情報エントリEと、パケット中継に必要な経路情報以外の制御経路情報エントリCEを登録する経路管理デーブルTBL0を保持する。経路管理テーブルTBL0は経路情報を2分木構造に格納し、経路情報を持つノードと分岐が発生するノードを残して縮退した構成をとり、ノードは経路情報及び親ノードと子ノードの情報を保持する。

【0053】経路検索部F1は経路管理テーブルTBL 0の経路情報及び制御経路情報を反映する経路検索テーブルTBL1を保持する。経路検索テーブルTBL1は 経路情報を2分木ノードのp段分を1つにまとめた2の p乗分木構造に格納し、経路情報を持つノードと分岐が 発生するノードを残して縮退した構造をとり、ノードは 経路情報及び子ノード情報を保持する。

【0054】図2に、経路管理テーブルTBL0の2分木ノードの構成の一例を示す。本実施の形態の場合、経路管理テーブルTBL0における個々の2分木ノード100は、上位の親ノードへのポインタ101、下位の二つの子ノードをそれぞれ指す子ノードへのポインタ102、子ノードへのポインタ103、当該子ノードが経路情報を持つか否か、等を示すフラグ104、フラグ105、および当該子ノードのマスク長106、マスク長107、さらには当該ノードに設定されたサブネットワークアドレス108、経路情報としての次ホップアドレス109、複数のポート50の一つを特定する出力ポート

番号110、等の情報を持つ。

【0055】図3に、経路検索テーブルTBL1の2の p乗分木ノードの構成の一例を示す。本実施の形態の場合、経路検索テーブルTBL1における個々の2のp乗 分木ノード200は、2のp乗個の子ノードへのポイン タ201、各々の子ノードにおける経路情報の設定の有 無を示す2のp乗個のフラグ202、当該子ノードのマスク長203、さらには当該ノードに設定されたサブネットワークアドレス204、経路情報としての次ホップアドレス205、複数のポート50の一つを特定する出力ポート番号206、等の情報を持つ。

【0056】次に本実施の形態のルータ装置の有する機 能の一例について説明する。経路管理部F0は経路情報 エントリEと制御経路情報エントリCEを、経路管理テ ープルTBL0および経路検索テーブルTBL1からな る経路情報テーブルに対して追加、削除を行う。経路管 理部FOはエントリを経路管理テーブルTBLOにおけ る2分木構造に格納するために追加、削除、変更を行う ノードの位置をノードの親ノード、子ノード情報より割 り出し、2分木を更新する。経路管理部F0は更新した 経路管理テーブルTBL0を基に経路検索テーブルTB L1を更新する。エントリの追加の場合は追加または変 更した2分木ノードを含む2のp乗分木ノードの位置を 割り出し、経路検索テーブルTBL1に割り出した2の p乗分木ノードを追加または変更する。エントリの削除 の場合は削除または変更した2分木ノードを含む2のp 乗分木ノードの位置を割り出し、経路検索テーブルTB L1に割り出した2のp乗分木ノードを削除または変更

【0057】経路検索部F1は、複数のポート50の一 つからパケット51を受信した場合に経路検索テーブル TBL1に登録している経路情報エントリEや制御経路 情報エントリCEのサブネットワークアドレスを、受信 したパケット51の宛先アドレスと比較し、一致するエ ントリが存在するかを経路検索テーブルTBL1の初段 2のp 乗分木ノードからノードの持っている子ノード情 報を基に下段方向に検索していく。一致するエントリの 中で一番マスク長が長いエントリを検索結果とする。検 索結果が経路情報エントリEの場合はエントリの出力ポ ート番号、次ホップアドレス情報に従って、複数のポー ト50の中で出力ポート番号に対応した一つのポート5 0からパケット51を送信する。検索結果が制御経路情 報エントリCEの場合はパケット51を付加機構部F3 に転送する。付加機構部F3はパケット51を受け取る とパケット51の内容に従って処理する。

【0058】図4のフローチャートに従って、経路情報の追加、削減を契機にした経路管理部の動作を以下で説明する。

【0059】経路情報の追加、削除が発生すると、上述の図22以降の参考技術で説明したように、経路情報テ

ープルの 2 分木ノードの更新(図 4 のステップFC 0) を行う。

【0060】次に追加、削除する経路情報のマスク長が m以上か否かを判別し(図4のステップFC1)、m以 上である場合(図4のステップFC9)、更新した2分 木ノードを含む2のp乗分木ノードの経路情報を更新 (図4のステップFC2)する方法について説明する。 図5に4段分の2分木を16分木へ変換する例を示す。 図5 (a) は4段分の2分木ノードである。2分木には 経路情報があるノードと経路情報がないノードが存在す る。図5(b)は4段分の2分木を一つにまとめた16 分木ノードである。16分木ノードは2分木ノードの第 4段目だけの大きさにする。2分木ノードの経路情報を 16分木ノードで設定するためには、マスク長が異なる 複数の経路情報エントリが一致した場合はマスク長の長 い経路情報エントリを採用するという経路検索の仕様に 従い行う。この仕様を踏まえた16分木ノード内に存在 する2分木ノードの保持する親ノードと子ノード情報を 使った経路情報を設定する規則は2つある。1つ目は親 ノード方向のノードの経路情報よりも、子ノード方向の ノードの経路情報を優先させることであり、2つ目は子 ノード方向のノードが経路情報を持たない時に、親ノー ド方向のノードが経路情報を持つ時はその経路情報を受 け継ぐ(具体的には自分の次ホップアドレス205およ び出力ポート番号206のエントリを受け継ぐ先の情報 で上書きする)ことである。この規則に従い、図5 (a) の2分木を16分木に変換すると図5(b) にな

る。.

【0061】次に経路情報の追加が発生した場合の経路 情報の設定方法を図6を用いて説明する。図6は図5の 状態から経路情報を追加した例である。経路情報の追加 の場合は子ノード方向のノードに経路情報が存在するか 確認するため、子ノードの情報を必要とする。そのた め、経路管理テーブルTBL0の2分木ノード100は 子ノード情報(図2の子ノードへのポインタ102、1 03) を保持する。経路情報を追加するノードA00の 子ノードA001が経路情報を持つ場合は図6(b)の 16分木ノードのA001は*A001の経路情報を優 先する。経路情報を追加するノードA11の子ノードA 110が経路情報を持たない場合は図6(b)の16分 木ノードのA110に*A11の経路情報を設定する。

【0062】次に経路情報の削除が発生した場合の経路 情報の設定方法を図7を用いて説明する。図7は図5の 状態から経路情報を削除した例である。経路情報の削除 の場合は親ノード方向のノードに経路情報が存在するか 確認するため、親ノードの情報を必要とする。そのた め、経路管理テーブルの2分木ノード100は親ノード 情報(図2の親ノードへのポインタ101)を保持す る。経路情報を削除するノードA1の子ノード方向のノ ードA100が経路情報を持つ場合は図7(b)の16

分木ノードのA100は*A100の経路情報をそのま ま優先する。経路情報を削除するノードA010の親ノ ードA01が経路情報を持っている場合は図7(b)の 16分木ノードのA010に*A01の経路情報を設定

【0063】次に2のp乗分木ノード200に存在する 2分木ノードの数の変化(図4のステップFC4)によ って、該2のp乗分木ノードの追加、削除、変更の内、 1つを選択する方法について説明する。

【0064】2のp乗分木ノードの追加と削除について 説明する。経路管理部F0は経路情報エントリの追加、 削除によって、経路検索テーブルTBL1の初段を除い た2のp乗分木ノード200に対して追加、削除、もし くは変更を行う。2のp乗分木ノードの追加、削除、変 更は更新した後の2のp乗分木ノード内に含まれている 2分木ノードの数によって決定する。経路情報エントリ の追加、削除によって発生する4つのパターンを図8を 用いて説明する。

【0065】図8 (a) は追加した2分木ノードSA1 を含む2のp乗分木ノードLA1内に2分木ノードSA 1以外にノードが存在しない場合(図4のステップF C 11)である。この場合、新規に2のp乗分木ノードL A1を作成し、経路検索テーブルTBL1に追加する (図4のステップFC5)。

【0066】図8 (b) は追加した2分木ノードSA1 を含む2のp乗分木ノードL1内に2分木ノードSA1 以外にノードS1が存在する場合(図4のステップFC 13) である。この場合、既に2のp乗分木ノードL1 は存在しているので、2のp乗分木ノードL1に経路情 報を割り当てて、経路検索テーブルTBL1の2のp乗 分木ノードL1を変更する(図4のステップFC7)。

【0067】図8 (c) は削除した2分木ノードSD1 を含む2のp乗分木ノードLD1内に2分木ノードが存 在しなくなった場合(図4のステップFC12)であ る。この場合、2のp乗分木ノードLD1は2分木ノー ドを持たなくなったので、経路検索テーブルTBL1の 2のp乗分木ノードLD1を削除する(図4のステップ FC6).

【0068】図8 (d) は削除した2分木ノードSD1 を含む2のp乗分木ノードL1内に2分木ノードが存在 する場合(図4のステップFC13)である。この場 合、2のp乗分木ノードL1は2分木ノードを持ってい るので、経路検索テーブルTBL1の2のp乗分木ノー ドL1を変更する(図4のステップFC7)。

【0069】次に経路検索テーブルTBL1の2のp乗 分木の更新(図4のステップFC8)方法について説明

【0070】まず、2のp乗分木構造をとる経路検索テ ープルTBL1に経路情報エントリEを追加する方法に ついて説明する。上述の参考技術の説明で2分木構造に

エントリを追加すると4つの追加パターンで2分木ノードの更新が発生することを説明したが、2のp乗分木にその更新を反映させるためには1つまたは複数の2のp乗分木ノードを更新する必要がある。そのため、経路検索テーブルTBL1に対して2のp乗分木ノードを1つずつ追加、削除、変更を行う本実施の形態のルータ装置は、経路情報の追加の時は更新を必要とするノードの中で、親ノードから子ノード方向へ順番に更新することで、ノードの更新と更新の間に経路検索処理を可能にする。

【0071】図9を用いて、経路検索テーブルTBL1における2のp乗分木ノードの追加方法を示す。図9(a)のノードL1, L2はノードL1が親ノードでノードL2が子ノードの関係である。図9(b)はノードL2を子ノードにした追加ノードLA1を経路検索テーブルTBL1上に書き込んだ状態である。この状態で経路検索処理を実行したとしても、ノードL1→L2の順に検索するので、通常と同様に検索処理を実行できる。図9(c)はノードL1の子ノードのポインタをノードL2からノードLA1に変更し、ノードの追加処理を完了する。

【0072】以下にこのノードの追加順番規則に従って、4つの追加パターンの各々毎に更新する2のp乗分木ノードと順番について例を示す。

【0073】図10は(A-1) における2のp乗分木の更新方法について示す。更新したノードはノードS1の1つである。図10は1つの2のp乗分木ノードを更新する場合である。ノードS1を含む2のp乗分木ノードL1を変更する。

【0074】図11は(A-2)における2のp乗分木の更新方法について示す。更新した2分木ノードはノードS1,SA1,SA2の3つである。図11(a)は1つの2のp乗分木ノードを更新する場合である。ノードS1,SA1、SA2を含む2のp乗分木ノード上を変更する。図11(b)は2つの2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノード上A1を追加し、ノードS1、SA2を含む2のp乗分木ノード上A1を追加し、ノードポインタにノード上A1を変更する。図11(c)は2つの2のp乗分木ノードを更新する場合である。ノードSA1、SA2を含む2のp乗分木ノードLA1を追加し、ノードS1を含む2のp乗分木ノード上A1を追加し、パードS1を含む2のp乗分木ノードとA1を更新する場合である。ノードSA1を含む2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノードを見からな

(d) は3つの2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノードLA1を追加し、ノードSA2を含む2のp乗分木ノードLA2を追加し、ノードS1を含む2のp乗分木ノードL1の子ノードポインタにノードLA2を繋げるように変更する。

【0075】図12は(A-3)における2のp乗分木

の更新方法について示す。更新した2分木ノードはノードS1、SA1の2つである。図12(a)は1つの2のp乗分木ノードを更新する場合である。ノードS1、SA1を含む2のp乗分木ノードL1を変更する。図12(b)は2つの2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノードLA1を追加し、ノードS1を含む2のp乗分木ノードL1の子ノードポインタにノードLA1を繋げるように変更する。

【0076】図13は(A-4)における2のp乗分木の更新方法について示す。更新した2分木ノードはノードS1,SA1の2つである。図13(a)は1つの2のp乗分木ノードを更新する場合である。ノードS1,SA1を含む2のp乗分木ノードと更新する場合である。ノードSA1を含む2のp乗分木L2を変更し、ノードS1を含む2のp乗分木L1は更新しない。図13(c)は2つの2のp乗分木ノードを更新する場合である。ノードSA1を含む2のp乗分木ノードと取新する場合である。ノードSA1を含む2のp乗分木ノードしA1を追加し、ノードS1を含む2のp乗分木ノードLA1を追加し、ノードS1を含む2のp乗分木ノードL1の子ノードポインタにノードLA1を繋げるように変更する。

【0077】次に2のp乗分木構造をとる経路検索テープルTBL1から経路情報エントリを削除する方法について説明する。上述の参考技術の説明で2分木構造にエントリを削除すると4つの削除パターンで2分木ノードの更新が発生する説明したが、エントリ追加時と同様に、2のp乗分木にその更新を反映させるためには1つまたは複数の2のp乗分木ノードを更新する必要がある。更新するノードの順番は更新するノードの中で子ノードから親ノードの方向へ更新することで、ノードの更新と更新の間に経路検索処理を可能にする。

【0078】図14を用いて、経路検索テーブルTBL1における2のp乗分木ノードの追加方法を示す。図14(a)のノードL1, LD1, L2はノードL1の子ノードがノードLD1、ノードLD1の子ノードがノードL2の関係である。図14(b)はノードL1の子ノードのポインタをノードLD1からノードL2に変更した状態である。この状態で経路検索処理を実行したとしても、ノードL1→L2の順に検索するので、通常と同様に検索処理を実行できる。図14(c)はノードLD1を削除し、ノードの削除処理を完了した状態を示す。

【0079】以下にこのノードの削除順番規則に従って、4つの削除パターンの各々毎に更新する2のp乗分木ノードと順番について例を示す。

【0080】図15は(D-1)における2のp乗分木の更新方法について示す。更新したノードはノードS1の1つである。図15は1つの2のp乗分木ノードを更新する場合である。ノードS1を含む2のp乗分木ノードL1を変更する。

【0081】図16は (D-2) における2のp乗分木 の更新方法について示す。更新した2分木ノードはノー ドS1,SD1,SD2の3つである。図16(a)は 1つの2のp乗分木ノードを更新する場合である。ノー ドS1,SD1,SD2を含む2のp乗分木ノードL1 を変更する。図16(b)は2つの2のp乗分木ノード を更新する場合である。ノードS1, SD2を含む2の p 乗分木ノードL 1 の子ノードポインタをノードL D 1 からノードL2に変更し、ノードSD1を含む2のp乗 分木ノードLD1を削除する。図16 (c) は2つの2 の p 乗分木ノードを更新する場合である。 ノード S 1 を 含む2のp乗分木ノードL1の子ノードポインタをノー ドLD1からノードL2に変更し、ノードSD1, SD 2を含む2のp乗分木ノードLD1を削除する。図16 (d) は3つの2のp乗分木ノードを更新する場合であ る。ノードS1を含む2のp乗分木ノードL1の子ノー ドポインタをノードLD2からノードL2に変更し、ノ ードSD2を含む2のp乗分木ノードLD2を削除し、 ノードSD1を含む2のp乗分木ノードLD1を削除す

【0082】図17は (D-3) における2のp乗分木の更新方法について示す。更新した2分木ノードはノードS1, SD1の2つである。図17 (a) は1つの2のp乗分木ノードを更新する場合である。ノードS1, 7 (b) は2つの2のp乗分木ノードを更新する場合で16) は2つの2のp乗分木ノードを更新する場合である。ノードS1を含む2のp乗分木ノードL1の子ノードポインタをノードLD1からNULLに変更し、ノードSD1を含む2のp乗分木ノードLD1を削除する。

【0083】図18は (D-4) における2のp乗分木の更新方法について示す。更新した2分木ノードはノードS1, SD1の2つである。図18 (a) は1つの2のp乗分木ノードを更新する場合である。ソードS1, 8 (b) は2つの2のp乗分木ノードを更新する場合で入一ドS1を含む2のp乗分木上1を変更し、8 (c) は2つの2のp乗分木上1は更新しない。図18 (c) は2つの2のp乗分木ノードを更新する場合でノードS1を含む2のp乗分木ノードを更新する場合でノードS1を含む2のp乗分木ノード上1の子ノードポインタをノードLD1からノードL2に変更し、スードSD1を含む2のp乗分木ノードLD1を削除する。

経路情報よりも、子ノード方向のノードの経路情報を優先させ、子ノード方向のノードが経路情報を持たない時に、親ノード方向のノードが経路情報を持つ時はその経路情報を受け継ぐようにする。

【0085】図19を用いて、マスク長0ビットから (m-1) ビットの経路情報を追加する方法について説明する。図19 (a) は2分木における初段ノードから第12段ノードを16分木における2の13乗個の初段ノードとしている。図19 (a) の状態からノードS1に経路情報を追加すると図19 (b) に示すようにL1, L2内で経路情報を設定していなかったノードA000, A101, A110, A111, B000, B001に経路情報*S1を設定する。

【0086】図20を用いて、マスク長0ビットから (m-1) ビットの経路情報を削除する方法について説明する。図20 (a) は2分木における初段ノードから 第12段ノードを16分木における2の13乗個の初段 スードにまとめている。図20 (a) の状態からノード L1、L2内の経路情報に*S1を持つノードA000、A101、A110、A111、B000、B001の経路情報は無くなる。

【0087】次に受信したパケット51の宛先アドレスと制御経路情報を比較する処理方法について説明する。従来の経路検索テーブルはパケット中継に必要な経路情報のみを保持しているため、ルータが受信したパケット51の宛先アドレスに対して、経路検索処理を行った後に、更にパケット中継に必要な経路情報以外の制御経路情報であるか確認する処理を行っていたが、本実施の形態のルータ装置では経路検索テーブルTBL1に制御経路情報も追加登録し、経路検索処理と制御経路情報であるかの確認を一度にできるようにした。

【0088】図21に付加機構部にパケットを転送する 例を示す。プロードキャストアドレスを宛先アドレスと するパケット51に対して付加機構部F3で処理を実行 したい場合、経路検索テーブルTBL1に制御経路情報 したパケット51の宛先アドレスがプロードキャストアドレスで登録することで受信 ドレスである場合、そのパケット51を経路検索部F1 の経路検索処理でプロードキャストパケットであることを 識別し、経路検索部F1はパケット51を付加機構部 F3に転送する。

【0089】以上、詳細に説明したように本実施の形態のルータ装置によれば、初段を2のm乗個保持する2の P乗分木構造で経路情報を格納する経路検索テーブルT 2分木構造で格納する経路管理テーブルTBL0を保持な、経路情報の追加、削除が発生した場合に、経路管理テーブルTBL0の2分木を、経路検索テーブルTBL1の2のp乗分木に変換する機能を有する経路管理部下

0を設けることで、経路検索テーブルTBL1のメンテナンスを実現することができる。これにより、参考技術の経路検索方法では、アドレスの上位ピットから1ピットずつ検索していく2分木検索のテーブルで検索していたのに対して、2分木ノードp段分を1つの2のp乗分木ノードに集約した経路検索テーブルTBL1を用いて、p段の検索を1回で行うことが可能になり、経路検索の高速化を図るのに効果がある。

【0090】また、経路情報の追加、削除によって複数の経路情報を保持するノードの更新が発生した場合、図14に例示したようにノードを更新する順番を考慮することで、経路検索に必要なノードを木構造から分離すること無くノードの追加、削除を実現することができる。これにより、検索処理中断時間を最小化する効果がある。

【0091】また、パケット中継に必要な経路情報以外の制御経路情報を経路検索テーブルTBL1に追加登録することで、付加機構部F3に転送すべきパケット51を受信した場合に、受信した経路検索部F1から付加機構部F3にパケット51を転送し、付加機能を実現することができる。この実現により、制御経路情報の検索を経路情報の検索とは別に行わせる場合等に比較して、制御経路情報と経路情報の検索を同時に実行可能になり、検索処理の簡略化を図る効果がある。

【0092】上記した特許請求の範囲に記載された以外の本発明の特徴を列挙すれば以下の通りである。

【0093】すなわち、<1> コンピュータネットワ

ークシステム内のパケットを中継するルータ装置におい て、次に送信すべき装置のアドレス及びその装置が接続 されている回線情報(以下経路情報と称す)を保持する 経路検索テーブルを持ち、受信したパケットの宛先アド レスから、次に送信すべきルータ装置のアドレス及びそ のルータ装置が接続されている回線情報または宛先アド レスが示すホストが接続されている回線情報を経路検索 テーブルより検索する経路検索機能と、経路管理テーブ ルを持ち、経路検索テーブルの経路情報の更新を行う経 路管理機能と、を有し、経路管理テーブルは、経路情報 をアドレスのマスク長の昇順で2分木構造に格納し、経 路情報を持つノードと分岐が発生するノードを残して縮 退した構成をとり、経路検索テーブルは、1つの2分木 ノードと、その直下につながる (p-1) 段分の合計 (2のp乗-1)個分の2分木ノードを一つの2のp乗 分木ノードに集約し、集約した最下段の2の<math>(p-1)乗個の2分木ノードに、そのノードより上段のノードに 割り付けた経路情報を埋め込み、2のp乗分木ノード を、2分木を2の(p-1) 乗個分併せた形で構成する 2の p 乗分木構造に、アドレスのマスク長の昇順で格納 し、経路情報を持つノードと分岐が発生するノードを残 して縮退した構造をとり、経路管理部は、経路情報の追 加、削除処理が発生した場合に、経路管理テーブルの2

分木構造における2分木ノード間の親子関係から追加、 削除、変更をする2分木ノードの位置を決定して2分木 構造を更新し、2分木構造の更新結果より経路検索テー ブルの2のp乗分木構造に対して追加、削除、変更の必 要な2のp乗分木ノードを更新することを特徴とする経 路検索テーブル作成方式。

【0094】<2> 項目<1>に記載の経路検索テーブル作成方式において、マスク長mビットの初段ノード2のm乗個分をそれぞれ、宛先アドレスの第0ビットから第m-1ビットまでが取りうる値に1対1に対応させるとき、マスク長0ビットから (m-1) ビットまでの経路情報について追加、削除を行う場合、該経路情報のアドレスをマスクすると、経路情報のアドレスと一致する複数個の初段ノードが経路情報を持たない時に該経路情報を設定し、マスク長0ビットから (m-1) ビットまでの経路情報について削除を行う場合、該経路情報を持つ初段ノードの経路情報を削除することで初段ノードを更新することを特徴とする経路検索テーブル作成方式。

【0095】<3> 項目<1>に記載の経路検索テーブル作成方式において、経路検索テーブルの2のp乗分木ノードを1エントリ毎に追加、削除、変更を行う場合において、1つの経路情報の追加のため親子関係にあるノード間にノードを追加する場合、追加対象ノードを接続後、親ノードと追加対象ノードを接続し、1つの経路情報の削除のため親と子を持つノードを削除する場合、削除対象ノードの親ノードを削除することで、経路検索に必要なノードを木構造から分離すること無くノードの追加、削除を実現することを特徴とする経路検索テーブル作成方式。

【0096】<4> 項目<1>または<2>に記載の経路検索テーブル作成方式において、経路管理機能と経路探索機能に更に機能を追加する場合、付加機構を新たに追加し、パケット中継に必要な経路情報以外の制御経路情報を経路検索テーブルに追加登録し、受信したパケットの宛先アドレスが制御経路情報と一致すると経路検索機能から付加機構にパケットを転送することで付加機能を実現することを特徴とする経路検索テーブル作成方式。

【0097】以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。

[0098]

【発明の効果】本発明の情報中継方法によれば、2分木構造によるRadish Treeを2のp乗分木構造に動的に変換して高速化を図ることができる、という効果が得られる。

【0099】本発明の情報中継方法によれば、経路制御

情報の更新に伴う経路検索停止時間を短縮して、中継制 御の高速化を実現することができる、という効果が得ら れる。

【0100】本発明の情報中継方法によれば、2分木構 造によるRadish Treeを2のp乗分木構造に 変換して高速化を図る場合において、2のp乗分木構造 の動的な更新を、より短い経路検索停止時間で的確に行 うことができる、という効果が得られる。

【0101】本発明の情報中継方法によれば、経路検索 テーブルの2のp乗分木ノードを1エントリ毎に追加、 削除、変更を行う場合において、経路検索に必要なノー ドを木構造から分離すること無くノードの追加、削除を 行うことで、検索中断時間を最小化することができる、 という効果が得られる。

【0102】本発明の情報中継方法によれば、コンピュ ータネットワークの特別な機能に割り当てられた制御経 路情報を経路検索テーブルに付加することにより、コン ピュータネットワークの機能の拡張を容易にすることが できる、という効果が得られる。

【0103】また、本発明の情報中継装置によれば、2 分木構造によるRadish Treeを2のp乗分木 構造に動的に変換して高速化を図ることができる、とい う効果が得られる。

【0104】本発明の情報中継装置によれば、経路制御 情報の更新に伴う経路検索停止時間を短縮して、中継制 御の高速化を実現することができる、という効果が得ら れる。

【0105】本発明の情報中継装置によれば、2分木構 造によるRadish Treeを2のp乗分木構造に 変換して高速化を図る場合において、2のp乗分木構造 の動的な更新を、より短い経路検索停止時間で的確に行 うことができる、という効果が得られる。

【0106】本発明の情報中継装置によれば、経路検索 テーブルの2のp乗分木ノードを1エントリ毎に追加、 削除、変更を行う場合において、経路検索に必要なノー ドを木構造から分離すること無くノードの追加、削除を 行うことで、検索中断時間を最小化することができる、 という効果が得られる。

【0107】本発明の情報中継装置によれば、コンピュ ータネットワークの特別な機能に割り当てられた制御経 路情報を経路検索テーブルに付加することにより、コン ピュータネットワークの機能の拡張を容易にすることが できる、という効果が得られる。 【図面の簡単な説明】

【図1】本発明の情報中継方法を実施する情報中継装置 の一実施の形態であるルータ装置の構成の一例を示す機 能ブロック図である。

【図2】本発明の情報中継方法を実施する情報中継装置 の一実施の形態であるルータ装置における経路管理テー ブルの2分木ノードのデータ構造の一例を示す概念図で

ある。

【図3】本発明の情報中継方法を実施する情報中継装置 の一実施の形態であるルータ装置における経路検索テー ブルの2のp乗分木ノードのデータ構造の一例を示す概 念図である。

【図4】本発明の情報中継方法を実施する情報中継装置 の一実施の形態であるルータ装置における経路情報の追 加、削減を契機にした動作の一例を示すフローチャート

【図5】 (a) および (b) は、本発明の情報中継方法 を実施する情報中継装置の一実施の形態であるルータ装 置における経路情報の2分木から16分木への変換例を 示す概念図である。

【図6】(a)および(b)は、本発明の情報中継方法 を実施する情報中継装置の一実施の形態であるルータ装 置において、経路情報の追加が発生した場合の処理の-例を示す概念図である。

【図7】 (a) および (b) は、本発明の情報中継方法 を実施する情報中継装置の一実施の形態であるルータ装 置において、経路情報の削除が発生した場合の処理の一 例を示す概念図である。

【図8】 (a) ~ (d) は、本発明の情報中継方法を実 施する情報中継装置の一実施の形態であるルータ装置に おいて、経路情報の追加、削除によって発生する2のp 乗分木の追加、削除、変更例を示す概念図である。

【図9】 (a) ~ (c) は、本発明の情報中継方法を実 施する情報中継装置の一実施の形態であるルータ装置に おける経路検索テーブルでの2のp乗分木ノードの追加 方法の一例を示す概念図である。

【図10】本発明の情報中継方法を実施する情報中継装 置の一実施の形態であるルータ装置において、経路情報 の追加によって発生する2のp乗分木ノードの更新処理 の一例を示す概念図である。

【図11】(a)~(d)は、本発明の情報中継方法を 実施する情報中継装置の一実施の形態であるルータ装置 において、経路情報の追加によって発生する2のp乗分 木ノードの更新処理の一例を示す概念図である。

【図12】 (a) および (b) は、本発明の情報中継方 法を実施する情報中継装置の一実施の形態であるルータ 装置において、経路情報の追加によって発生する2のp 乗分木ノードの更新処理の一例を示す概念図である。

【図13】(a)~(c)は、本発明の情報中継方法を 実施する情報中継装置の一実施の形態であるルータ装置 において、経路情報の追加によって発生する2のp乗分 木ノードの更新処理の一例を示す概念図である。

【図14】(a)~(c)は、本発明の情報中継方法を 実施する情報中継装置の一実施の形態であるルータ装置 における経路検索テーブルでの2のp乗分木ノードの削 除方法の一例を示す概念図である。

【図15】本発明の情報中継方法を実施する情報中継装

置の一実施の形態であるルータ装置における経路検索テーブルでの経路情報の削除によって発生する2のp乗分木ノードの更新処理の一例を示す概念図である。

【図16】(a)~(d)は、本発明の情報中継方法を実施する情報中継装置の一実施の形態であるルータ装置における経路検索テーブルでの経路情報の削除によって発生する2のp乗分木ノードの更新処理の一例を示す概念図である。

【図17】(a) および(b) は、本発明の情報中継方法を実施する情報中継装置の一実施の形態であるルータ装置における経路検索テーブルでの経路情報の削除によって発生する2のp乗分木ノードの更新処理の一例を示す概念図である。

【図18】(a)~(c)は、本発明の情報中継方法を実施する情報中継装置の一実施の形態であるルータ装置における経路検索テーブルでの経路情報の削除によって発生する2のp乗分木ノードの更新処理の一例を示す概念図である。

【図19】(a) および(b)は、本発明の情報中継方法を実施する情報中継装置の一実施の形態であるルータ装置における経路情報の追加処理の一例を示す概念図である。

【図20】(a) および(b) は、本発明の情報中継方法を実施する情報中継装置の一実施の形態であるルータ装置における経路情報の削除処理の一例を示す概念図である。

【図21】本発明の情報中継方法を実施する情報中継装置の一実施の形態であるルータ装置における受信パケットの付加機構部への転送手順の一例を示す概念図である。

【図22】本発明の参考技術であるルータ装置の構成お

よび作用の一例を示す概念図である。

【図23】本発明の参考技術であるルータ装置における 経路制御テーブルで用いられるデータ構造を説明する概 念図である。

【図24】本発明の参考技術であるルータ装置における 経路情報テーブルの構成を説明する概念図である。

【図25】本発明の参考技術であるルータ装置の作用を 説明する概念図である。

【図26】本発明の参考技術であるルータ装置の作用を説明する概念図である。

【図27】(a) および(b) は、本発明の参考技術であるルータ装置の作用を説明する概念図である。

【図28】(a)および(b)は、本発明の参考技術であるルータ装置の作用を説明する概念図である。

【図29】本発明の参考技術であるルータ装置の作用を説明する概念図である。

【符号の説明】

50…ポート、51…パケット、100…2分末ノード、101…親ノードへのポインタ、102…子ノードへのポインタ、103…子ノードへのポインタ、104…フラグ、105…フラグ、106…子のノードのマスク長、107…子のノードのマスク長、108…サブネットワークアドレス、109…次ホップアドレス、110…出力ポート番号、200…2のp乗分木ノード、201…子ノードへのポインタ、202…フラグ、203…子のノードのマスク長、204…サブネットワークアドレス、205…次ホップアドレス、206…出力ポート番号、CE…制御経路情報エントリ、E…経路情報エントリ、F0…経路管理部、F1…経路検索部、F3…付加機構部、TBL0…経路管理テーブル、TBL1…経路検索テーブル。

【図20】

図 20 (a)

(b)

【図21】

図 21

【図26】

図 26

[図22]

図 22

【図23】

【図29】

図 29

【図25】

【図27】

図 27

【図28】

図 28

フロントページの続き

(72) 発明者 須貝 和雄

神奈川県海老名市下今泉810番地 株式会社日立製作所サーバ開発本部内

Fターム(参考) 5B075 ND02 ND36 NK44 NK54 PQ05

QS11

5K030 GA01 HA08 HB11 HD03 KA05 LB05

5K033 AA02 BA04 CC01 DA16 DB12

DB19 EC02 EC04

THIS PAGE BLANK (USPTO)