

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Informatyki

PRACA DYPLOMOWA

Tytuł zgodny z tematyką/dziedziną pracy dyplomowej

Title consistent with the topic/field of the thesis

Autor: Imiona i nazwisko dyplomanta

Kierunek: Informatyka

Opiekun pracy: Stopień lub tytuł naukowy imiona i nazwisko promotora

Kraków, 2024

 $Tutaj\ możesz\ umieścić\ treść\ podziękowań.\ Tutaj\ możesz\ umieścić\ treść$ podziękowań. Tutaj możesz umieścić treść podziękowań. Tutaj możesz umieścić treść podziękowań. Tutaj możesz umieścić treść podziękowań.

Streszczenie po polsku	Streszczenie

Α	bstract	ŀ.
_	Dougac	υ

Abstract in english . . .

Spis treści

S p	DIS TYSUNKOW	XI
Sp	pis tabel	xiii
Lis	sta kodów źródłowych	xvii
1.	Wstęp 1.1. Cel i zakres pracy	1
2.	Część literaturowa	3
3.	Część badawcza	5
4.	Zakończenie	7
Do	A.1. Tabele	9 11 11 12 12 13 13 14 15
U۱	wagi Autora	17
Bi	ibliografia	19

Zawartość spisu treści — tytuły rozdziałów oraz ich liczba zależą od tematyki pracy — należy ustalić z opiekunem pracy.

Spis rysunków

A.1.	Prosty rysunek $TikZ$	11
A.2.	Bardziej złożony rysunek $TikZ$	11
A.3.	Logo Wydziału Informatyki	12

Spis tabel

A.1.	Pomiary zużycia energii elektrycznej	9
A.2.	Tabela, która zawiera dużą liczbę wierszy.	9
A.3.	Tabela zawierająca długi tekst.	10

Lista algorytmów

1 T	· · · · · · · · · · · · · · · · · · ·	1															1	
1. L	Jisjoint	decompo	Sition.									 					14	4

Lista kodów źródłowych

A.1.	Przykładowy	kod źródłowy sformatowany za pomocą pakietu 'listings'	12
A.1.	Przykładowy	listing sformatowany za pomoca pakietu 'minted'	13

1. Wstęp

Uwaga 1.1. Tytuł oraz strukturę rozdziału należy ustalić z opiekunem pracy.

Wprowadzenie w tematykę pracy.

1.1. Cel i zakres pracy

Streszczenie specyfikacji wymagań Promotora.

2. Część literaturowa

Uwaga 2.1. Tytuł oraz strukturę rozdziału należy ustalić z opiekunem pracy.

Aktualny stan wiedzy, na dany temat, na podstawie dostępnej literatury naukowej oraz specjalistycznej.

3. Część badawcza

Uwaga 3.1. Tytuł oraz strukturę rozdziału należy ustalić z opiekunem pracy.

- Problemy / pytania badawcze.
- Opis idei / metod rozwiązania postawionego problemu.
- Opis przebiegu badań.
- Interpretacja uzyskanych wyników.

4. Zakończenie

Uwaga 4.1. Tytuł oraz strukturę rozdziału należy ustalić z opiekunem pracy.

- 1. Podsumowanie.
- 2. Możliwości dalszego rozwoju.
- 3. Potencjalne obszary zastosowania pracy.

Dodatek A.

Typowe elementy składowe pracy dyplomowej z informatyki

A.1. Tabele

Uwaga A.1.

- Każda tabela powinna być opisana w treści pracy.
- Podpis ma być przed tabelą.

W tabeli A.1 przedstawiono wyniki pomiarów.

Tabela A.1.: Pomiary zużycia energii elektrycznej.

L.p.	Wartość
1	12345,6789
	45,89
2	45,678901

Jeżeli tabela zawiera dużą liczbę wierszy i może nie zmieścić się na stronie — patrz tabela A.2 — należy skorzystać z pakietu longtable [1].

Tabela A.2.: Tabela, która zawiera dużą liczbę wierszy.

	1	2	3	4	5	6	7	8	
Student 1									

	1	2	3	4	5	6	7	8	
Student 2									
Student 3		<u> </u>	<u> </u>	<u> </u>	<u> </u>				
Student 3									
Student 4									
Student 5		1	<u> </u>						
Student 5									
Student 6									
Student 7			<u> </u>						
Student 1									
Student 8									

Tabele, w których występuje długi tekst, a co za tym idzie może się on nie zmieścić — musi zostać zawinięty, należy składać za pomocą środowiska 'tabularx' [2] zamiast 'tabular' — patrz tabela A.3.

Tabela A.3.: Tabela zawierająca długi tekst.

			_
Wpis	s wielokolumnowy!	TRZY	CZTERY
jeden	Szerokość tej	trzy	Kolumna czwarta
	kolumny zależy od		będzie
	szerokości tabeli.		zachowywać się w
			taki sam sposób
			jak druga
			kolumna o tej
			samej szerokości.

A.2. Rysunki

Uwaga A.2.

- Rysunki powinny być przerysowane samodzielnie albo używane tylko te, których twórcy zezwolili na ich rozpowszechnianie oraz kopiowanie, czyli np. rysunki objęte licencją Creative Commons.
- Każdy rysunek powinien być opisany w treści pracy.

A.2.1. Wewnętrzne

Klasa agh-wi, automatycznie, dołącza pakiet TikZ [3] — dostarcza on komend pozwalających na tworzenie grafik. Przykładowe grafiki pokazano na rysunku A.1 oraz A.2.

Rysunek A.1.: Prosty rysunek TikZ.

Rysunek A.2.: Bardziej złożony rysunek TikZ.

A.2.2. Zewnętrzne

Oczywiście możliwe jest również dołączanie rysunków zewnętrznych — pakiet *graphicx* [4] pozwala na wstawianie grafik zapisanych w plikach: '.png', '.jpg' oraz '.pdf'. Rysunek A.3 wstawiono przy użyciu tego pakietu.

Rysunek A.3.: Logo Wydziału Informatyki.

A.3. Kody źródłowe

Najpopularniejszymi pakietami, które umożliwiają składanie kodów źródłowych programów, są:

listings [5] — kod źródłowy jest formatowany bezpośrednio przez L^AT_EX-a — nie jest używany żaden, zewnętrzny, formater kodu.

Kod źródłowy A.1: Przykładowy kod źródłowy sformatowany za pomocą pakietu 'listings'.

```
/* Pierwszy program w C++ */

#include <iostream>

int main() {
    std::cout << "Hello World!";
    return 0;
}</pre>
```

minted [6] — formatuje kod źródłowy przy użyciu biblioteki języka Python o nazwie *Pygments* [7].

Kod źródłowy A.1.: Przykładowy listing sformatowany za pomocą pakietu 'minted'.

```
/* Pierwszy program w C++ */

#include <iostream>

int main() {
    std::cout << "Hello World!";
    return 0;
}</pre>
```

Uwaga A.3.

- Podpis ma być przed kodem źródłowym.
- Proszę używać tylko jednego z tych pakietów; w przeciwnym razie otrzymasz taki efekt, jak w przykładowej pracy obydwa listingi mają ten sam numer.

Kod źródłowy w C++ sformatowany przy użyciu pakietu *listings*, pokazano na listingu A.1; sformatowany przy użyciu pakietu *minted*, pokazano na listingu A.1.

A.4. Algorytmy

Pakiet *algorithm2e* [8] pozwala zapisywać algorytmy w formie pseudokodu — patrz algorytm 1 na stronie 14.

Uwaga A.4. Podpis ma być przed algorytmem.

A.5. Wzory

IŁTEX bardzo dobrze sprawdza się w przypadku prac dyplomowych zawierających wzory matematyczne¹.

¹W przypadku złożonych wzorów warto zastosować pakiet amsmath [9].

```
input: A bitmap Im of size w \times l
   output: A partition of the bitmap
 1 special treatment of the first line;
 2 for i \leftarrow 2 to l do
       special treatment of the first element of line i;
 3
       for j \leftarrow 2 to w do
 4
           left \leftarrow FindCompress(Im[i, j-1]);
 \mathbf{5}
           up \leftarrow FindCompress(Im[i-1,]);
 6
           this \leftarrow FindCompress(Im[i, j]);
 7
           if left compatible with this then // O(left, this) == 1
 8
               if left < this then Union(left,this);</pre>
 9
               else Union(this,left);
10
           end
11
                                                                                 // O(up, this) == 1
           if up compatible with this then
12
               if up < this then Union(up,this);</pre>
13
```

// this is put under up to keep tree as flat as possible

A.5.1. Przykłady

end

end

Wzór $E = mc^2$ jest częścią zdania.

else Union(this,up);

// this linked to up

foreach element e of the line i do FindCompress(p);

Algorytm 1: Disjoint decomposition.

$$\left| \sum_{i=1}^{n} a_i b_i \right| \leqslant \left(\sum_{i=1}^{n} a_i^2 \right)^{1/2} \left(\sum_{i=1}^{n} b_i^2 \right)^{1/2} \tag{A.1}$$

Wartości zmiennej opisano wzorem A.2.

$$x = \begin{cases} y & \text{dla } y > 0\\ \frac{z}{y} & \text{dla } y \le 0 \end{cases} \tag{A.2}$$

14

15

16

17 | f 18 end Wzór A.3 to wzór wielowierszowy.

$$2x^{2} + 3(x - 1)(x - 2) = 2x^{2} + 3(x^{2} - 3x + 2)$$

$$= 2x^{2} + 3x^{2} - 9x + 6$$

$$= 5x^{2} - 9x + 6$$
(A.3)

Uwaga A.5. Należy używać tylko dwóch rodzajów wzorów:

- 1. "W linii".
- 2. Eksponowane, numerowane.

A.6. Twierdzenia i podobne struktury

Twierdzenie nr 1 opublikował, w roku 1691, francuski matematyk Michel Rolle.

Twierdzenie 1 (Rolle'a) Jeśli dana funkcja $f: \mathbb{R} \to \mathbb{R}$ jest:

- 1. $ciagla\ w\ przedziale\ [a,b]$
- 2. jest różniczkowalna w przedziale (a, b)
- 3. na końcach przedziału [a,b] przyjmuje równe wartości: f(a) = f(b),

to w przedziale (a,b) istnieje co najmniej jeden punkt c taki, że f'(c) = 0.

Teraz coś z informatyki ...

Definicja 1 Bit to najmniejsza jednostka informacji w komputerze.

Definicja 2 Bajtem nazywamy ciąg ośmiu bitów.

Uwagi Autora

- Aktualna wersja klasy jest dostępna pod adresem https://github.com/polaksta/LaTeX/tree/master/agh-wi.
- Skoro Twoja praca dyplomowa powstała w L^ATEXu, to zachęcam Cię również do przygotowania prezentacji (na obronę pracy magisterskiej) w tym języku. Najpopularniejszą klasą do tworzenia tego typu dokumentów jest beamer [10].
- Pod adresem https://github.com/polaksta/LaTeX/tree/master/beamerthemeAGH¹ możesz znaleźć, stworzony przeze mnie, nasz uczelniany szablon dla prezentacji I⁴TEX Beamer.
- Treść wszystkich rozdziałów tej, przykładowej, pracy dyplomowej znajduje się w jednym pliku **nie jest to polecane rozwiązanie**. W przypadku pisania własnej pracy warto umieścić zawartość każdego z rozdziałów w osobnych plikach, a następnie dołączać je do dokumentu głównego patrz opis na stronie https://www.dickimaw-books.com/latex/thesis/html/include.html.
- Jeżeli pewne elementy mają być wyróżniane w jednakowy sposób, to proponuję nie używać bezpośredniego stylowania, tzn.
- \colorbox{red!50}{jednakowy} \colorbox{red!50}{sposób}

ale zdefiniować własną komendę stylującą, np. \alert,

\newcommand{\alert}[1]{\colorbox{red!50}{#1}}

a następnie użyć jej w dokumencie.

| \alert{jednakowy} \alert{sposób}

Dzięki temu, jeżeli będziesz chciał / chciała zmienić sposób stylowania tych elementów, np. niebieskie tło zamiast czerwonego, to wystarczy zmodyfikować, tylko, definicję komendy, zamiast zastępować, w tekście pracy dyplomowej, wybrane (niekoniecznie wszystkie!) wystąpienia tekstu red, tekstem blue.

Stanisław Polak

 $^{^{1}}W\ przypadku\ Overleaf-a\ jest\ on\ pod\ adresem\ https://www.overleaf.com/read/fkjdthnbrfhj\#9c6184$

Bibliografia

- [1] The longtable package. URL: http://mirrors.ctan.org/macros/latex/required/tools/longtable.pdf.
- [2] The tabularx package. URL: http://mirrors.ctan.org/macros/latex/required/tools/tabularx.pdf.
- [3] The TikZ and PGF Packages. URL: http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf.
- [4] Packages in the 'graphics' bundle. URL: http://mirrors.ctan.org/macros/latex/required/graphics/grfguide.pdf.
- [5] The Listings Package. URL: http://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf.
- [6] The minted package: Highlighted source code in LaTeX. URL: http://mirrors.ctan.org/macros/latex/contrib/minted/minted.pdf.
- [7] Strona WWW biblioteki "Pygments". URL: https://pygments.org/.
- [8] algorithm2e.sty package for algorithms. URL: http://mirrors.ctan.org/macros/latex/contrib/algorithm2e/doc/algorithm2e.pdf.
- [9] User's Guide for the amsmath Package. URL: http://mirrors.ctan.org/macros/latex/required/amsmath/amsldoc.pdf.
- [10] The beamer class. URL: http://mirrors.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf.