EE463

Operating System Lab.

King Abdulaziz University

Faculty of Engineering - ECE

/ 10

Id: 1946282

Lab. #8

Name: Abdulaziz Ebrahim

Solution

Simulator: pagetrans.py

Command: python ./pagetrans.py -a 16k -p 2k -r 128k -s 107

Solution:

Virtual Address Trace

VA 0x00003a08 (decimal:	14856) →	RA 0x00016a08 [VPN= 7]	
VA 0x000011f1 (decimal:	4593) →	$RA\ 0x0000f1f1\ [VPN=2]$	
VA 0x0000140f (decimal:	5135) →	$RA\ 0x0000f40f\ [VPN=2]$	
VA 0x00000bfc (decimal:	3068) →	RA 0x0001f3fc [VPN= 1]	
VA 0x000025be (decimal:	9662) →	Invalid [VPN= 4]	

Simulator: pagetablesize.py

Command: python ./pagetablesize.py -v 32 -e 8 -p 2K

Solution:

Virtual Address (VA) = [vvvvvvvvvvvvvvvvvv | 00000000000]

VA (bits)	VPN (bits)	D (bits)	pte (byte)
32	21	11	2048

Calculate (Linear Page Table Size) and write the results in the simplest readable form (e.g. byte, KB, MB, GB, and TB)

Solution Steps:

-
$$2^{\text{(VPN bits)}} = 2^{21} = 2,097,152$$

- Size of every page
$$= 8$$

-
$$8 * 2,097,152 = 16,777,216 B$$

Linear Page Table Size =
$$KB \Rightarrow \frac{16,777,216}{1024} = 16384 \text{ KB}$$
 $MB \Rightarrow \frac{16384}{1024} = 16 \text{ MB}$