TEMA 4 REDES CONMUTADAS E INTERNET

Fundamentos de Redes 2018/2019

➤ Bibliografía Básica:

CapítuloS 6 Y 9, Pedro García Teodoro, Jesús Díaz Verdejo y Juan Manuel López Soler. *TRANSMISIÓN DE DATOS Y REDES DE COMPUTADORES*, Ed. Pearson, 2014, ISBN: 978-0-273-76896-8

Apuntes de direccionamiento IP en web de la asignatura.

➤ Para saber más...

Capítulo 4 James F. Kurose y Keith W. Ross. *COMPUTER NETWORKING. A TOP-DOWN APPROACH*, 5ª Edición, Addison-Wesley, 2010, ISBN: 9780136079675.

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

FUNCIONALIDADES EN CAPA DE RED

- ➤ Funciones y servicios en TCP/IP
 - > Encaminamiento
 - Conmutación
 - > Interconexión de redes
 - > En OSI: control de congestión
- ➤ Ejemplos de protocolos de red:
 - > X.25 https://es.wikipedia.org/wiki/Norma_X.25
 - > IP

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

CONMUTACIÓN

- > Conmutación = acción de establecer un camino o comunicación extremo a extremo
- > Esquemas de conmutación
 - Circuitos
 - Paquetes: datagramas o circuitos virtuales
- > Conmutación de circuitos
 - Ej. Teléfono
 - Es un servicio orientado a conexión: Establecimiento de conexión previo a la transmisión

- Pasos: (i) Conexión, (ii) Transmisión, (iii) Desconexión
- > Recursos dedicados. Facilita comunicaciones tiempo-real. No hay contención (contienda por acceder al medio).
- Retraso para establecimiento de la llamada. Poca flexibilidad para adaptarse a cambios. Poco tolerante a fallos.

CONMUTACIÓN

➤ Conmutación de circuitos

Ventajas

- La transmisión se realiza en tiempo real, adecuado para voz
- Uso permanente de recursos, el circuito se mantiene durante toda la sesión
- No hay contención, no hay contienda para acceder al medio
- El circuito es fijo, no hay decisiones de encaminamiento una vez establecido
- Simplicidad en la gestión de los nodos intermedios.

Desventajas

- Retraso en el inicio de la comunicación.
- En ocasiones uso no eficiente de recursos.
- El circuito es fijo. No se reajusta la ruta de comunicación,

CONMUTACIÓN

- Conmutación de paquetes:
 - Envío en bloques (paquetes)
 - Conmutación mediante datagramas:
 - ➢ ej. IP
 - No hay conexión
 - Envío independiente, pueden seguir rutas diferentes
 - En cada salto: Almacenamiento y envío
 - Cada paquete debe contener las direcciones origen y destino

- Conmutación de paquetes con circuitos virtuales:
 - ej. ATM (troncales)
 - Pasos: (i) Conexión, (ii) Transmisión, (iii) Desconexión
 - Recursos no dedicados

4. Estime el tiempo involucrado en la transmisión de un mensaje de datos para la técnica de conmutación de paquetes mediante datagramas (CDP) considerando los siguientes parámetros:

M: longitud en bits del mensaje a enviar.

V: velocidad de transmisión de las líneas en bps.

P: longitud en bits de los paquetes.

H: bits de cabecera de los paquetes.

N: número de nodos intermedios entre las estaciones finales.

D: tiempo de procesamiento en segundos en cada nodo.

R: retardo de propagación, en segundos, asociado a cada enlace.

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

- ➤ IP v4 está especificado en el RFC 791:
 - > Es un protocolo para la interconexión de redes.
 - > Resuelve el direccionamiento en Internet.
 - ➤ Realiza la **retransmisión salto a salto** entre *hosts* y *routers*. Ofrece un servicio **no orientado a conexión y no fiable**:
 - ➤ No hay negociación o "handshake", no hay una conexión lógica entre las entidades.
 - > No existe control de errores ni control de flujo.
 - La unidad de datos (paquete) de IP se denomina datagrama.
 - ➤ IP es un protocolo de **máximo esfuerzo** ("best-effort"), es decir los datagramas se pueden: Perder, duplicar, retrasar, llegar desordenados.
 - > IP gestiona la "fragmentación".

Direcciones IP:

Servidor Webmail 130.206.192.39

www.youtube.com 172.194.34.206

Google.es también en: català galego euskara

www.google.com = 172.194.34.209

Servidor Spotify 78.31.8.101

www.ugr.es = 150.214.204.25 dns3.ugr.es = 150.214.191.10 pop.ugr.es = 150.214.20.3

Es un direccionamiento **jerárquico**. Dos partes: subred y dispositivo

a) Dirección IP
$$\rightarrow$$
 200.27.4.112 = 11001000.00011011.00000100.01110000

Para obtener la dirección de la subred:

$$200.27.4.112 = 11001000.00011011.00000100.01110000$$

&

255.255.255.0 = 111111111.11111111.11111111.00000000

.....

Subred → 200.27.4.0 = 11001000.00011011.00000100.00000000

Internet = conjunto de subredes interconectadas

Computer Networking. A Top-down Approach. de James F. Kurose y Keith W. Ross:

"Para determinar las subredes, separe cada interfaz de los hosts y routers, creando redes aisladas. Dichas redes aisladas se corresponden con las subredes."

¿Qué es una subred?

Computer Networking. A Top-down Approach. de James F. Kurose y Keith W. Ross:

"Para determinar las subredes, separe cada interfaz de los hosts y routers, creando redes aisladas. Dichas redes aisladas se corresponden con las subredes."

- ¿Cómo se elige la máscara? >> Según el número de dispositivos en la subred
 - Dirección IP → 200.27.4.112 = 11001000.00011011.00000100.01110000
 Máscara → 255.255.255.0 = 11111111.1111111111111111111000000000
 - # dispositivos = $2^{\text{# ceros}}$ 2 \rightarrow ej. 8 ceros (/24) permite 254 dispositivos
 - El -2 viene de que la primera y última son reservadas. Ej. 200.27.4.112/24
 - \triangleright 200.27.4.0 = 11001000.00011011.00000100.00000000 \rightarrow Reservada (subred)
 - ➤ 200.27.4.1 = 11001000.00011011.00000100.0000001 → Dispositivo #1
 - **>** ...
 - > 200.27.4.254 = 11001000.00011011.00000100.111111110 Dispositivo #254
 - \triangleright 200.27.4.255 = 11001000.00011011.00000100.11111111 \rightarrow Reservada (difusión)

- Direcciones públicas
 - Cada dirección se asigna a sólo 1 dispositivo en Internet. Se asignan centralizadamente
- Direcciones privadas

Sólo en intranets. Se pueden repetir. Las asigna

- Direcciones IP: CLASES (ver RFC 1166)
- Identificar universalmente entidades a nivel IP: *hosts* y nodos de encaminamiento.
- 32 bits, notación decimal con puntos. Ejemplo: 192.168.212.60
- 5 clases de direcciones IP
- Clases A,B,C → Jerárquicas a dos niveles:

identificador de *red* + identificador *host (o router)*

5 clases de direcciones (cont.):

Rangos:

```
A \rightarrow 0.0.0.0-127.255.255.255 \Rightarrow 128 redes x 16.777.216 hosts B \rightarrow 128.0.0.0-191.255.255.255 \Rightarrow 16.384 redes x 65.536 hosts C \rightarrow 192.0.0.0-223.255.255.255 \Rightarrow 2.097.152 redes x 256 hosts D \rightarrow 224.0.0.0-239.255.255.255 \Rightarrow para multicast usos futuros
```

Reglas especiales:

```
host = 0 ⇒ identifica una red, nunca es una dirección origen, no se usa para hosts
```

host = 11...1 \Rightarrow difusión en la red especificada es una dirección destino, no se usa para

hosts

127.0.0.0 \Rightarrow autobucle

Para evitar ambigüedades el id de host no debe ser ni 255 ni 0

Reserva de direcciones privadas (RFC1918):

```
Clase A \rightarrow 10.0.0.0 \rightarrow 1 Red privada clase A
```

Clase B \rightarrow 172.16.0.0 - 172.31.0.0 \rightarrow 16 redes privadas clase B

Clase $C \rightarrow 192.168.0.0 - 192.168.255.0 \rightarrow 256$ redes privadas clase C

Gestión/asignación: IANA (www.iana.org) ahora gestionada por ICANN (www.icann.org)

- > Ejercicio: Asignar direcciones
 - > Subredes corporativas: 30 dispositivos, direcciones privadas 192.168.0.0
 - Subred de acceso: dirección pública (ISP)

- > Ejercicio: Asignar direcciones
 - ➤ Subredes corporativas: 30 dispositivos, direcciones privadas 192.168.0.0 → 5 ceros, /27
 - ➤ Subred de acceso: dirección pública (ISP) → 2 ceros, /30, 150.214.190.0 (UGR)

> El encaminamiento

- > Llevar la información (paquetes) de un origen a un destino en una red conmutada.
- > Se decide paquete a paquete y salto a salto en función de la IP destino del paquete y de la tabla de encaminamiento residente en el router

- Retransmisión salto-a-salto:
 - > Resolución local del camino
 - > En el dispositivo origen y todos los intermedios

- ☐ El encaminamiento se realiza salto a salto y datagrama a datagrama (IP es no orientado a conexión).
- ☐ Modos de encaminamiento: directo y no directo. 150.100.0.1

Hacia Internet

- ☐ Cada nodo (*host o router*) tiene una tabla de encaminamiento.
- ☐ Un *router* suele estar en varias redes distintas, un *host* suele estar en solo una

Tabla de R1, * = routing directo

i	Destino (D_i)	Salto siguiente (S_i)	Máscara (M _i)	Flags	Interfaz (I_i)
1	127.0.0.1	*	255.255.255.255	Н	lo
2	192.100.12.0	*	255.255.255.0	-	eth0
•	192.100.13.0	*	255.255.255.0	-	eth1
	192.100.15.0	192.100.12.1	255.255.255.0	G	eth0
N	Default	150.100.0.222	0.0.0.0	G	eth2

☐ En caso de conflicto se elige la ruta con máscara más larga

- > Tabla de encaminamiento:
 - > Dirección de destino (DD): 192.168.0.66
 - Para cada entrada
 - DD & Máscara = A
 - > ¿A = Dirección de destino?

Elegir el Siguiente Nodo

Dirección IP destino	Máscara	Siguiente nodo
192.168.0.0	/27	-
192.168.0.32	/27	192.168.0.1
192.168.0.64	/27	192.168.0.1
150.214.190.0	/30	192.168.0.1

- > 192.168.0.66 & /27 = 11000000.10101000.00000000.010**00010** & /27 = 192.168.0.64
 - > ¿192.168.0.64 = 192.168.0.0? NO
- > 192.168.0.66 & /27 = 11000000.10101000.00000000.010**00010** & /27 = 192.168.0.64
 - > ¿192.168.0.64 = 192.168.0.32? NO
- > 192.168.0.66 & /27 = 11000000.10101000.00000000.010**00010** & /27 = 192.168.0.64
 - \rightarrow 192.168.0.64 = 192.168.0.64? Sí \rightarrow Siguiente Nodo = 192.168.0.1
- > 192.168.0.66 & /30 = 11000000.10101000.00000000.010000**10** & /30 = 192.168.0.64
 - > 192.168.0.64 = 150.214.190.0? NO
- ¿Colisión? La de máscara más restrictiva (+ 1s)

- > Tabla de encaminamiento:
 - Problemas:
 - ➤ No direcciona Internet (ej. www.google.com = 172.194.34.209)
 - ➤ Sólo un camino de salida → ¿necesitamos 4 entradas?

Dirección IP destino	Máscara	Siguiente nodo
192.168.0.0	/27	-
192.168.0.32	/27	192.168.0.1
192.168.0.64	/27	192.168.0.1
150.214.190.0	/30	192.168.0.1

¡¡Usar la entrada por defecto!! → /0

- Tabla de encaminamiento:
 - **Problemas:**
 - ➤ No direcciona Internet (ej. www.google.com = 172.194.34.209)
 - ➤ Sólo un camino de salida → ¿necesitamos 4 entradas?

Servidor Webmail 130.206.192.39

192,168,0,1

dns3.ugr.es = 150.214.191.10 pop.ugr.es = 150.214.20.3

Host C

EL PROTOCOLO IP

> Ejercicio: Diseñar la Tabla de encaminamiento en R2

- i) Incorporar todas las redes directamente conectadas.
- ii) Incorporar la entrada por defecto
- iii) Añadir todas las entradas adicionales necesarias.

Dirección IP

destino

Máscara

Siguiente nodo

7. Imagine una situación donde hay cinco routers RA-RE. RA, RB y RC se conectan cada uno a una red local A, B y C, siendo cada router única puerta de enlace de cada red. RA, RB y RD están conectados entre sí a través de un switch. RC, RD y RE están conectados entre sí a través de un switch. RE conecta a Internet a través de la puerta de acceso especificada por el ISP. Especifique tablas de encaminamiento en los routers. Asigne a voluntad las direcciones IP e interfaces necesarias.

- ☐ Para facilitar la administración y aumentar la escalabilidad Internet se jerarquiza en **Sistemas Autónomos** (SA).
- ☐ Un SA es un conjunto de redes y *routers* administrados por una autoridad.
- ☐ Cada SA informa a los otros SA de las redes accesibles. Existe un *router* responsable, denominado *router* exterior (R1, R2, Rn).
- ☐ Cada SA se identifica por un entero de 16 bits (DESDE 2007 ES 32-BITS).

Rediris = AS766

- >Intercambio de tablas
 - > Internet se jerarquiza en Sistemas Autónomos
 - > Dos niveles de encaminamiento (intercambio de tablas):
 - O Algoritmos IGP (el administrador tiene libertad de elección):

RIP, OSPF, HELLO, IS-IS, IGRP, EIGRP

O Algoritmos EGP (norma única en Internet): BGP

> Formato de datagrama

> Formato de datagrama

0	4	8	16	19 31		
V	LC	TS		longitud total		
i	dentif	icación	I	desplazamiento		
TTL protocolo			comprobación		cabecera	
dirección IP orig			origen			
dirección IP destino						
opciones relleno					ر ا	
datos						

- > Fragmentación IPv4:
 - > Tamaño máximo: $2^{16}-1 = 65.535$ bytes.
 - Adaptarse a la MTU (Maximum Transfer Unit)
 - > Ensamblado en destino final
 - desplazamiento: offset respecto del comienzo del paquete.
 - indicadores (I): "Don't Fragment", "More Fragments".

Nivel de enlace	MTU (bytes)
PPP normal	1500
PPP bajo retardo	296
X.25	1600 (RFC 1356)
Frame Relay	1600 (normalmente)
Ethernet DIX	1500
Ethernet LLC-SNAP	1492
Token Ring 4 Mb/s	4440 (THT 8ms)
Classical IP over ATM	9180

> Fragmentación IPv4:

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

- ➤ Direcciones MAC
 - ➤ Tras la redirección IP → Enviar a la MAC del siguiente nodo

- Direcciones MAC
 - > Tras la redirección IP Enviar a la MAC del siguiente nodo
 - Usadas en redes Ethernet y Wifi
 - ➤ Formato (6 bytes): HH-HH-HH-HH-HH-HH → ej. 00-24-21-A8-F7-6A
 - Únicas, asignadas por IEEE en lotes de 2²⁴ para cada fabrivante
 - > Dirección de difusión (broadcast) FF-FF-FF-FF-FF
 - Protocolo: Address Resolution Protocol (ARP)
 A
 B
 C

Obtener MAC a partir de IP: (a) y (b)

Protocolo: Rerverse ARP (RARP)

Obtener IP a partir de MAC: (a) y (c)

D

D

31

EL PROTOCOLO ARP

> Formato ARP:

Htipo		Ptipo			
Hlen	Plen	Operación			
	Hemisor (bytes 0-3)				
Hemisor (bytes 4-5)		Pemisor (bytes 0-1)			
Pemisor (bytes 2-3)		Hsol (bytes 0-1)			
Hsol (bytes 2-5)					
Psol (bytes 0-3)					

16

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

- ➤ ICMP (Internet Control Message Protocol)
 - ➤ Informa sobre situaciones de error → es un protocolo de señalización
 - > Suelen ir (excepto eco y solicitudes) hacia el origen del datagrama IP original
 - > ICMP se encapsula en IP

Mensajes ICMP:

- Cabecera de 32 bits
 - > Tipo (8 bits): tipo de mensaje
 - Código (8 bits): subtipo de mensaje
 - > Comprobación (16 bits)

0	8	16
tipo	código	comprobación

Camp o tipo	Mensaje ICMP
8/0	Solicitud/respuesta de eco
3	Destino inalcanzable
4	Ralentización del origen
5	Redireccionamiento
11	Tiempo de vida excedido
12	Problema de parámetros
13/14	Solicitud/respuesta de sello de tiempo
17/18	Solicitud/respuesta de máscara de red

- ➤ ICMP (Internet Control Message Protocol)
 - ➢ informa sobre situaciones de error → señalización
 - > Hacia el origen del datagrama IP.
 - Se encapsula en IP
 - Cabecera de 32 bits

TEMA 4 REDES CONMUTADAS E INTERNET

Fundamentos de Redes 2018/2019

