Computer Models

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #16: Wednesday, Sept. 27 2018

Midterm Exam

- In class next Wednesday (Oct. 3)
- Bring #2 pencils, eraser, and calculator
- Test will provide important numbers and equations:
- You need to know how to tell:
 - which equations, numbers to use,
 - how to interpret them.
- Mostly conceptual questions, not so many with math
- Practice test with answers on Brightspace

Climate and Economy

Climate and Economy How well do markets manage global warming?

- How well do markets manage supply and price of bread?
- What is different about global warming?
- Externalities:
 - What is an externality?
 - Are externalities good or bad?
 - What challenges to they pose for markets?
 - How can market-based economies manage externalities better?

Energy, Economy, Emissions

Energy, Economy, Emissions

Kaya Identity

Kaya Identity

$$P \times \frac{G}{P} \times \frac{E}{G} \times \frac{F}{E} = F$$

where

 $F = CO_2$ emissions

E = energy use

G = gross domestic product

P = population

Kaya Identity

$$F = P \times \frac{G}{P} \times \frac{E}{G} \times \frac{F}{E}$$
$$= P \times g \times e \times f$$

where

```
P = \text{population}
g = G/P = \text{per-capita GDP}
e = E/G = \text{energy intensity of economy}
f = F/E = \text{CO}_2 intensity of energy supply
```

Kaya Identity in Practice

Computer Models of Climate

Computer Models

Computer Models

Principles of Computer Modeling

- Make models as simple as possible:
 - Start simple
 - Add complexity only as needed
 - Different models for different purposes
 - Check model against real world

Transient vs. Equilibrium Response

Transient vs. Equilibrium Response

- Gradually raise co, and then stop.
- Planet takes time to heat up
 - Oceans absorb heat
 - Like pot of water on stove
- Transient response:
 Δτ when co, stops changing
- Equilibrium response:
 Stable temperature (much later)
 - Green: Atmosphere & surface ocean
 - Red: Atmosphere, surface ocean, & deep ocean.
- Equilibrium takes many decades.

Modeling for Science vs. Policy

Modeling for Science vs. Policy Integrated Assessment Models (IAMS)

- Combine climate system and world economy
 - Emissions as a consequence of economic activity
 - Energy use for production (factories, etc.)
 - Energy use for consumption (households, etc.)
 - Farming: fertilizers, livestock, paddy fields, etc.
 - Climatic impacts on economy
 - Cost of severe weather
 - Sea level rise
 - Droughts & heat waves
 - 0
- Optimize for greatest net economic output

Climate Projections

- Biggest uncertainty in predicting future climates is GHG emissions
 - We can predict consequences of emissions
 - We can't predict what emissions will be
- Scenarios and Pathways:
 - Scenario: possible future,
 - Story of economic & political development → resulting emissions
 - Pathway: possible future,
 - □ Trajectory of emissions → economic activity that might cause them
- Projections:
 - Conditional predictions:
 - o "If emissions do this, then climate will do that."

Projections for future emissions in US:

	2010	2050	Growth rate (% per year)
g (\$/person)	42,300	83,700	1.7
ef (tons/\$million)	432	226	-1.6
P (millions)	309	399	0.6
Total Emissions F (million tons CO ₂)	5,640	7,550	1.7 - 1.6 + 0.6 = 0.7

Projections for future world emissions:

	2010	2050	Growth rate (% per year)
g (\$/person)	9,780	22,400	2.1
ef (tons/\$million)	522	278	-1.6
P (millions)	6,410	9,170	0.9
Total Emissions F (million tons CO ₂)	34,900	57,600	2.1 - 1.6 + 0.9 = 1.4

Uncertainties in Projections

Projections for future world emissions:

	2010	2050	2100	Growth rate
g	9,780	22,400	64,737	2.1
ef	522	278	123	-1.6
P	6,410	9,170	14,409	0.9
Emissions	34,900	57,600	115,366	1.4

Uncertainties in Projections

Projections for future world emissions with slightly different growth rates:

	2010	2050	2100	Growth rate
g	9,780	24,540	77,505	2.3
ef	522	298	148	-1.4
P	6,410	9,563	15,766	1.0
Emissions	34,900	69,973	180,930	1.9
Difference (%)		22%	57%	