

LAPORAN KEMAJUAN PROGRAM KREATIVITAS MAHASISWA

JUDUL PROGRAM

PEASE (*Pendulum Earthquake Sensor*): Alat Otomatisasi Detektor Getaran Berbasis Sistem Sensor Pendulum dan Mipho (*Micro Photovoltaic*) sebagai Solusi Sistem Peringatan Dini Bencana Gempa Bumi

BIDANG KEGIATAN:

PKM KARSA CIPTA

Diusulkan oleh:

 Septya Hananta Widyatama
 160511609245/2016

 Yusuf Aji Wicaksono
 160514610050/2016

 Rangga Ega Santoso
 130511616268/2013

 Fitri Ika Mardiyanti
 130523606399/2013

UNIVERSITAS NEGERI MALANG MALANG 2017

PENGESAHAN LAPORAN KEMAJUAN PKM KARSA CIPTA

1. Judul Kegiatan

: PEASE (Pendulum Earthquake Sensor)
Alat Otomatisasi Detektor Getaran
Berbasis Sistem Sensor Pendulum dan
Mipho (Micro Photovoltaic) sebagai
Solusi Sistem Peringatan Dini Bencana
Gempa Bumi

2. Bidang Kegiatan

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap

b. NIM

c. Jurusan

d. Universitas

e. Alamat Rumah dan No Tel./HP

f. Alamat email

4. Anggota Pelaksana Kegiatan

5. Dosen Pendamping

a. Nama Lengkap dan Gelar

b. NIDN

c. Alamat Rumah dan No Tel./HP

: Septya Hananta Widyatama

: 160511609245

· PKM-KC

: Teknik Mesin

: Universitas Negeri Malang

: Jalan Niaga Matahari 23 Malang

/085706596917

: septyahananta01@gmail.com

: 4 orang

: Drs. Imam Sudjono, M.T.

: 0027036007

: Jl. Bondowoso Barat No. 3,

RT/RW. 09/02 Kel. GadingKasri, Kota Malang/ 081 2331 7259

Kota Malalig/ 001

6. Biaya Kegiatan Total

a. Dikti

b. Sumber lain

7. Jangka Waktu Pelaksanaan

: Rp 10.000.000,00

: Rp 0 .-

: 4 bulan

Malang, 24 Mei 2017

Menyetujui

Dosen Pendamping,

(Drs. Imam/Sudjono, M.T.)

NIDN. 0027036007

Wakil Rektor, III,

(Septya Mananta Widyatama)

Ketua Pelaksana Kegiatan,

NIM. 160511609245

(Dr. Syamsu) Hadi, M.Pd., M.Ed.) NIP. 19610822 198703 1 001

RINGKASAN

Dalam kurun waktu tahun 2015 terjadi bencana gempa bumi sebanyak 27 kali, dan jumlah tersebut mengalami peningkatan dibanding tahun 2014. Banyak fasilitas umum yang rusak dan tidak sedikit pula yang harus meregang nyawa akibat gempa bumi. Salah satu penyebab tingginya dampak yang ditimbulkan oleh gempa bumi adalah terputusnya pesawat komunikasi di daerah bencana. Gangguan listrik akibat padamnya pasokan listrik dari PLN saat terjadi gempa bumi. Apalagi pada daerah pegunungan yang keadaan alamnya berkontur, menyebabkan penyebaran gelombang elektromagnetik tidak merata (terjadi banyak pantulan. Hal itu menyebabkan komunikasi antara BNPB (Badan Nasional Penanggulangan Bencana), SAR, relawan bencana, dan korban bencana tidak berjalan dengan baik. Sehingga dampak utama dari tidak berjalannya komunikasi tersebut adalah pemberitahuan informasi evakuasi saat terjadinya gempa tidak tersampaikan, dan pada akhirnya berefek domino pada jatuhnya korban jiwa. Tujuan dari penelitian ini adalah merancang PEASE (Pendulum Earthquake Sensor) sebagai strategi implementasi Early Warning System (EWS). Metode penelitian yang dilakukan menggunakan metode SDLC (Systems Development Life Cycle) yang terdiri dari proses merancang, menganalisa, mendesain, mengimplementasikan, dan proses pemeliharaan. Berdasarkan hasil pengujian menggunakan metode black-box, sistem yang dirancang mempunyai error 0%, sehingga dapat melaksanakan fungsi early warning system bencana gempa bumi. Alat ini dapat bekerja secara mandiri dan bisa melakukan peringatan dini terhadap bencana gempa bumi. Impelementasi alat ini juga akan menekan dampak negatif yang ditimbulkan gempa bumi.

DAFTAR ISI

	Halaman
PENGESAHAN LAPORAN KEMAJUAN PKM KARSA CIPTA	i
RINGKASAN	ii
DAFTAR ISI	iii
DAFTAR GAMBAR	ivv
DAFTAR TABEL	iv
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan	2
1.4 Luaran yang Diharapkan	2
1.5 Kegunaan Program	2
BAB 2 TARGET LUARAN	3
BAB 3 METODE PELAKSANAAN	3
3.1 Lokasi Penelitian	3
3.2 Pengumpulan Data	3
3.3 Metode Penelitian	4
3.3.1 Menganalisa	4
3.3.2 Merancang dan Mendesain	4
2.3.3 Implementasi dan Pengujian Alat	4
BAB 4 HASIL YANG DICAPAI	5
4.1 PEASE (Pendulum Earthquake Sensor)	5
4.2 Analisa Implementasi PEASE	7
4.3 Keunggulan PEASE	7
4.4 Cara Kerja PEASE	7
4.5 Ketercapaian Target Luaran	7
BAB 5 POTENSI HASIL	8
BAB 6 RENCANA TAHAPAN BERIKUTNYA	8
DAFTAR PUSTAKA	9
LAMPIRAN-LAMPIRAN	10
Lampiran 1. Penggunaan Dana	10
Lampiran 2. Dokumentasi Kegiatan	12

DAFTAR GAMBAR

	Halaman
Gambar 1. Seismograf horisontal dan vertikal	1
Gambar 2. Diagram blok kerja PEASE	4
Gambar 3. Desain fitingan PEASE	6
Gambar 4. Desain pendulum PEASE	6
D. 1771 D. 77 1777	
DAFTAR TABEL	
	Halaman
Tabel 1. Rincian harga bahan PEASE (update harga pasar Juni 2017)	7
Tabel 2. Kegiatan yang telah dicapai	7
Tabel 3. Rincian penggunaan dana	10

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Indonesia terletak di 3 lempeng bumi yang bergerak aktif, yaitu lempeng Eurasia, lempeng Indo-Australia, dan lempeng Pasifik (Mahardhika et al., 2015). Kondisi geografis yang demikian, menjadikan Indonesia merupakan negara dengan intensitas bencana yang cukup tinggi. Bencana alam yang sering terjadi di antaranya seperti gempa bumi, tsunami, letusan gunung berapi, tanah longsor, banjir, angin puting beliung, dan sebagainya. Salah satu bencana yang sering terjadi adalah gempa bumi. Menurut Nugroho (2016) dalam kurun waktu tahun 2015 terjadi bencana gempa bumi sebanyak 27 kali, dan jumlah tersebut mengalami peningkatan dibanding tahun 2014. Menaiknya intensitas terjadinya gempa bumi tersebut juga berbanding lurus dengan jumlah dampak yang diakibatkan oleh gempa bumi tersebut. Banyak fasilitas umum yang rusak dan tidak sedikit pula yang harus meregang nyawa akibat gempa bumi (Rakhman et al., 2012). Salah satu penyebab tingginya dampak yang ditimbulkan oleh gempa bumi adalah terputusnya pesawat komunikasi di daerah bencana. Hal itu menyebabkan komunikasi antara BNPB, SAR, relawan bencana, dan korban bencana tidak berjalan dengan baik. Sehingga dampak utama dari tidak berjalannya komunikasi tersebut adalah pemberitahuan informasi evakuasi saat terjadinya gempa tidak tersampaikan, dan pada akhirnya menyebabkan banyak korban jiwa yang berjatuhan.

Solusi yang pernah ditawarkan untuk mengatasi permasalahan komunikasi untuk kebutuhan evakuasi adalah dengan memasang seismograf dan menggunakan pesawat komunikasi. Seismograf adalah alat yang digunakan untuk mendeteksi dan mencatat getaran-getaran yang terjadi kulit bumi (gempa). Catatan getaran gempa yang berbentuk goresan patah-patah disebut seismogram, yang dapat mengukur tekanan dan frekuensi getaran gempa (Susilawati, 2008). Komponen utama seismograf adalah (1) massa stasioner, benda yang peka terhadap getaran bumi, namun tidak berpindah posisi, (2) jarum pencatat, pena yang bersentuhan dengan silinder berjelaga dan dipasang pada massa stasioner, (3) silinder berjelaga, pita roll tempat seismo-gram dicatat. Gerak silinder berjelaga searah jarum jam. Berikut gambar sesimograf.

Gambar 1. Seismograf horisontal dan vertikal

Rekapan seismograf yang mendeteksi akan terjadinya gempa kemudian dikomunikasikan ke masyarakat untuk keperluan evakuasi. Alat komunikasi yang umum digunakan adalah *handphone* dan HT. Seperti yang diketahui di atas pada bahasan konstruksi seismograf, alat ini hanya mendeteksi terjadinya gempa, dan tidak bisa langsung mengkomunikasikannya kepada masyarakat. Hal ini menjadi salah satu kelemahan yang dimiliki seismograf yaitu masih menggantungkan pada manusia untuk menyampaikan deteksi akan terjadinya gempa. Kelemahan-kelemahan lain yang dimiliki seismograf adalah (1) dimensi alat seismograf yang agak besar membuatnya sulit untuk diimplementasikan pada daerah yang terpencil (Pulungan *et al.*, 2012), (2) masih membutuhkan manusia sebagai

operator yang menjalankan, (3) biaya pemasangan seismograf yang tidak murah, (4) persediaan alat yang masih sulit dicari.

Alat komunikasi yang digunakan oleh operator seismograf pun juga sebatas alat komunikasi berbasis listrik dan HT yang notabenenya jika terjadi gempa, maka sering terjadi gangguan listrik akibat padamnya pasokan listrik dari PLN saat terjadi gempa bumi. Apalagi pada daerah pegunungan yang keadaan alamnya berkontur, menyebabkan penyebaran gelombang elektromagnetik tidak merata (terjadi banyak pantulan) (Nugroho, 2016). Berdasarkan hal itulah, dirancang PEASE yang menjadi solusi untuk permasalahan koordinasi dan komunikasi pra kebencanaan khususnya pada bencana gempa bumi.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas berikut berbagai rumusan masalah yang akan diselesaikan terkait dengan implementasi PEASE.

- 1. Bagaimana konsep penerapan PEASE sebagai solusi yang inovatif untuk detektor gempa bumi?
- 2. Bagaimana rangkaian sensor yang digunakan pada PEASE?
- 3. Bagaimana karakteristik dari alat-alat instrumen pendukung yang digunakan pada PEASE?
- 4. Bagaimana cara kerja PEASE?
- 5. Apa hasil yang dicapai dari implementasi PEASE?

1.3 Tujuan

Berdasarkan rumusan masalah di atas, berikut beberapa tujuan yang ingin dicapai dari implementasi PEASE.

- 1. Menjelaskan konsep penerapan PEASE sebagai solusi yang inovatif untuk detektor gempa bumi.
- 2. Menjelaskan rangkaian sensor yang digunakan pada PEASE.
- 3. Menjelaskan karakteristik dari alat-alat instrumen pendukung yang digunakan pada PEASE.
- 4. Menjelaskan cara kerja PEASE.
- 5. Memaparkan hasil yang dicapai dari implementasi PEASE.

1.4 Luaran yang Diharapkan

Luaran program ini adalah (1) artikel ilmiah, (2) produk, (3) poster, dan (4) *draft* paten.

1.5 Kegunaan Program

Adapun kegunaan yang didapat dari implementasi PEASE adalah sebagai berikut.

- 1. Bagi Masyarakat
 - a. Membantu masyarakat untuk segera tanggap evakuasi jika terjadi bencana gempa bumi.
 - b. Membantu meningkatkan kewaspadaan terhadap terjadinya bencana gempa bumi.
 - c. Memberikan rasa aman terhadap masyarakat yang tinggal di daerah rawan gempa.

2. Bagi Mahasiswa

a. Meningkatkan kreatifitas mahasiswa dalam pengembangan IPTEK.

b. Menjadi sebuah langkah awal untuk membentuk partisipasi mahasiswa dalam usaha membangun masyarakat.

3. Bagi pemerintah

- a. Memberikan solusi terhadap permasalahan komunikasi untuk evakuasi jika terjadi bencana gempa bumi.
- b. Membantu pemerintah untuk memproduksi alat pra kebencanaan.

4. Bagi perkembanagn IPTEK

- a. Sebagai acuan untuk pengembangan sensor detektor gempa bumi.
- b. Menambah khazanah dalam kepustakaan Indonesia khususnya bidang ilmu teknologi kebencanaan.

BAB 2 TARGET LUARAN

Adapun target luaran yang akan dihasilkan dari implementasi PEASE adalah sebagai berikut.

- 1. Prototipe PEASE.
- 2. Paten PEASE.
- 3. Desain PEASE.
- 4. Artikel Ilmiah PEASE.
- 5. Video dokumentasi impelementasi PEASE sebagai media sosialisasi.
- 6. Buku panduan operasional PEASE sebagai media sosialisasi.

BAB 3 METODE PELAKSANAAN

3.1 Lokasi Penelitian

Penelitian untuk perintisan PEASE dilakukan dengan observasi dan mengkaji masalah yang ada pada daaerah terpencil di Desa Pandansari Kecamatan Ngantang Kabupaten Malang. Desa ini pernah mengalami dampak terberat akibat terjadinya gempa bumi di tahun 2014 silam, berdasarkan hal itulah dipilih desa ini untuk pengkajian permasalahan komunikasi untuk evakuasi jika terjadi bencana gempa bumi.

3.2 Pengumpulan Data

Metode yang dilakukan dalam penggalian data dimulai dengan cara mengamati alur komunikasi jika terjadi bencana gempa bumi pada Desa Pandansari Kecamatan Ngantang. Penggalian data dilanjutkan dengan melakukan observasi, wawancara, dan dokumentasi kegiatan yang meliputi alur komunikasi evakuasi jika terjadi bencana gempa bumi. Perangkat yang digunakan dalam pengumpulan data adalah *handphone*, *tape recorder* dan catatan lapangan. Data wawancara yang terkumpul akan dilakukan pengkodean untuk mempermudah dalam menganalisis dan mengkaitkan dengan data yang diperoleh dari observasi. Sehingga data baku yang dihasilkan akan digeneralisasikan dengan sumber–sumber yang relevan dari buku–buku maupun jurnal untuk penyusunan solusi permasalahan. Proses terakhir dari penggalian data adalah *brainstorming* ide untuk pemecahan masalah berdasarkan data dan fakta yang ditemukan di lapangan. Solusi yang berhasil dibuat adalah merancang PEASE.

3.3 Metode Penelitian

Metode penelitian yang dilakukan menggunakan metode SDLC (*Systems Development Life Cycle*) yang terdiri dari proses merancang, menganalisa, mendesain, mengimplementasikan, dan proses pemeliharaan (Blanchard dan Fabrycky, 2006). Pada tahap awal dilakukan proses menganalisa kekurangan metode konvensional jika terjadi bencana gempa bumi (Wahono, 2007); (Priyadi, 2014); (Novianta, 2012). Pada tahap ini alat yang dirancang akan dianalisa kebutuhannya untuk menanggulangi kekurangan pada metode konvensional, sehingga alat yang dirancang menjadi lebih optimal. Observasi dilakukan di Desa Pandansari, Kecamatan Ngantang yang tergolong rawan bencana gempa bumi dan tanah longsor (Kemenkes, 2016); (Surya Malang, 2016); (Malang Voice, 2016).

Tahap selanjutnya mendesain dan mengimplementasikan sistem yang telah dikembangkan sesuai dengan proses analisa dan rancangan yang telah dilakukan. Pada tahap ini sistem yang telah.

3.3.1 Menganalisa

Tahapan analisa ini dimulai dengan observasi dan mengkaji masalah yang ada pada daaerah terpencil di Desa Pandansari Kecamatan Ngantang Kabupaten Malang. Fokus permasalahan yang dikaji mendalam adalah permasalahan komunikasi untuk evakuasi jika terjadi bencana gempa bumi.

3.3.2 Merancang dan Mendesain

Tahapan perancangan ini bertujuan untuk mendapatkan *design* dan mekanisme alat yang tepat, agar alat ini dapat berfungsi dengan efektif dengan memperhatikan studi literatur dan data hasil observasi. Adapun rancangan konsep penerapan PEASE dapat dilihat pada diagram berikut.

Gambar 2. Diagram blok kerja PEASE

Setelah digram bok kerja telah dibuat, proses dilanjutkan ke perancangan sistem kelistrikannya terlebih dahulu yang dibuat di *software* CX-*One*, hal ini dilakukan untuk mendapatkan gambar rangkaian terlebih dahulu sehingga lebih mempermudah kerja dalam merangkai komponen nantinya. Setelah gambar sistem kelistikan alat didapatkan, proses dilanjutkan dengan merangkai komponen pada PCB *layout*. Komponen yang dibutuhkan adalah mikrokontrol, transistor, resistor, kondensator, lampu LED, pendulum, kawat, kabel jumper, dan *buzzer*. Sedangkan perlengkapan yang dibutuhkan adalah solder, AVO meter, dan lampu belajar. Setelah rangkaian kelistrikan telah terangkai, proses dilanjutkan desain mendesain kemasan alat yang pertama dilakukan dengan menggambarnya pada *software* Autodesk Inventor. Dalam merancang desain produk hal-hal yang harus dipertimbangkan adalah dimensi alat dan gambaran peletakannya pada kemasan yang akan dipakai. Proses diakhiri dengan mencetak kemasan detektor dan lanjutkan dengan memasang rangkaian alat detektor pada kemasan produk.

2.3.3 Implementasi dan Pengujian Alat

Pada tahap ini dilakukan pengujian PEASE langsung di Desa Pandansari. Pengujian dilakukan dengan cara mengetes kepekaan sensor dan keberfungsian alat secara menyeluruh meliputi sistem elektronik, *output*, dan *buzzer*. Pengujian ini terus dilakukan sampai sekira rangkaian PEASE diketahui paling efektif dalam memberikan peringatan gempa bumi pada

masyarakat dalam 1 rumah. Pengujian juga dilakukan pada rangkaian sumber energi yang dipakai di PEASE dengan cara mengetes pemakaian suplai dayanya pada PEASE. Setelah pengujian dilakukan, tahap selanjutnya adalah pengujian setiap fungsi bagiannya dengan menggunakan metode pengujian *black-box* (Nidhra dan Dondeti, 2012). Dan tahapan terakhir pengujian ini adalah validasi ahli yang pertama oleh dosen pembimbing dan setelahnya oleh ahli elektronika. Serangkaian pengujian di atas dilakukan untuk mendapatkan rancangan alat yang dapat digunakan dengan baik.

BAB 4 HASIL YANG DICAPAI

4.1 PEASE (Pendulum Earthquake Sensor)

PEASE merupakan suatu peralatan detektor gempa bumi dengan pemakaian konsep pendulum (1,2,3) sebagai komponen sensor utama. Pendulum yang digunakan sebagai sensor dikemas rapi dalam fitingan lampu khusus (bagian 2), sedangkan sirkuit elektronik yang menjadi otak operasi alat juga terpasang pada fitingan (bagian 1). Pengintegrasian sensor pendulum dengan fitingan lampu didasarkan atas beberapa maksud yaitu (1) mendapatkan peletakan yang kesejarannya baik agar tidak mempengaruhi kepekaan sensor dalam mendeteksi getaran, (2) menghindari tersentuh oleh orang maupun hewan, (3) tempat yang bagus untuk penyebaran suara sirine untuk peringatan karena pemasangan fitingan lampu utama rumah pasti di lokasi tengah rumah yang strategis, dan (4) menjadikan suplai daya detektor getaran terintegrasi dengan suplai daya lampu.

Peralatan menurut invensi ini bisa dilihat pada gambar 4 yaitu pada sistem deteksi getarannya yang berbentuk silindris dengan diameter 5 mm dan tinggi 34 mm (1 dan 2). Di bawah logam silindris terdapat sebuah beban berbentuk kerucut (3) yang difungsikan sebagai pengayun dengan cara memanfaatkan sensitifitasnya pada getaran. Komponen selanjutnya adalah fitingan 3 bagian yang didesain khusus untuk pemasangan detektor getaran (1,2, dan 3).

Dengan mengacu pada gambar 3 unsur utama peralatan ini adalah desain produknya yang berupa fitingan lampu 3 bagian. Bagian 1 fitingan berukuran panjang x lebar x tinggi berurutan adalah 150 mm x 155 mm x 45 mm, bagian 1 ini berfungsi untuk meletakkan sirkuit elektronik yang mengendalikan perelatan sensor. Bagian 2 fitingan berukuran panjang x lebar x tinggi berurutan adalah 145 mm x 150 mm x 100 mm, bagian 2 ini berfungsi untuk meletakkan peralatan sensor pendulum. Di bagian 2 ini juga terdapat lubang dengan diameter 75 mm sebagai tempat menaruh audio buzzer yang berfungsi sebagai media pemberi peringatan. Dan yang terakhir adalah bagian 3 berukuran panjang x lebar x tinggi berurutan adalah 84 mm x 70 mm x 20 mm, bagian 3 ini berfungsi sebagai tempat ulir untuk pemasangan lampu. Berikut adalah desain gambar pendulum dan desain fitingan lampu.

Gambar 4. Desain pendulum PEASE

4.2 Analisa Implementasi PEASE

Sebelum perancangan PEASE dilakukan, perlu diketahui terlebih dahulu parameter harga yang akan dipenuhi untuk kebutuhan perbandingan nilai ekonomis alat detektor gempa. Berikut rincian parameter harga untuk perancangan PEASE.

Tabel 1. Rincian harga bahan PEASE (update harga pasar Juni 2017)

Material	Keterangan	Qty	Harga Satuan (Rp)	Jumlah (Rp)
Baterai	9 v	2	12.000	24.000
Kawat	Diameter 4-5mm	1m	5.000	5.000
Kabel jumper	-	1 m	1.000	1.000
Kondensator	1 mikro farat	1	300	300
LED	1 watt	4	100	400
Resistor	1 kilo ohm	1	300	300
Timah	Kawat $d = 2mm$	1 m	1.000	1.000
Buzzer	12x8,5mm 16 ohm	1	3.000	3.000
PCB layout	Tanpa bakar	1	2.000	2.000
Mikrokontrol	Arduino UNO	1	85.000	85.000
			TOTAL	122.000

Dengan harganya yang memiliki nilai ekonomis, PEASE sangat aplikatif jika diterapkan di daerah terpencil. Harga ini jauh lebih murah dari pada pengeluaran yang harus dikeluarkan untuk merancang sistem deteksi gempa yang berbasis seismograf.

4.3 Keunggulan PEASE

Invovasi utama PEASE yang sekaligus menjadi keunggulannya dibanding dengan alat yang lain adalah (1) memiliki sumber energi mandiri, (2) sangat optimal untuk diterapkan di daerah pegunungan yang notabenenya tidak memungkinkan untuk dipasang perangkat seismograf, (3) memiliki sistem pendeteksi yang efektif dan efisien tanpa melibatkan manusia maupun pos pantau untuk menyalurkan pesan, (4) sedikit pengawasan dan minimnya biaya pengoperasian yang dapat menekan terjadinya pembengkakan alokasi dana, dan (5) sistem kelistrikan alat yang cukup sederhana memungkinkan masyarakat untuk membetulkan perangkat ketika terjadi *trouble*.

4.4 Cara Kerja PEASE

Operasional alat ini cukup mudah, dimulai dengan mengalirkan suplai daya (dari listrik AC maupun baterai) ke sirkuit elektronik. Setelah sirkuit teraliri listrik, maka dipastikan sistem alat telah berfungsi. Jika terjadi gempa bumi, maka silinder pendulum (1 dan 2) akan bergerak menyamping ke kiri dan ke kanan, sehingga gerakan itu akan menimbulkan sentuhan antara silinder dengan ring yang mengelilingi silinder. Sentuhan itu akan mengirimkan output berupa perintah untuk menyalakan buzzer untuk memperingatkan warga dan mengajak segera melakukan evakuasi dini. Buzzer yang berfungsi akan mati secara otomatis setelah ± 25 detik berbunyi.

4.5 Ketercapaian Target Luaran

Hasil yang telah dicapai oleh tim mulai dari awal pelaksanaan program yang dimulai pada tanggal 19 April 2017 hingga pembuatan laporan kemajuan PKM-KC ini bisa di lihat dari beberapa indicator yang sudah berhasil di tempuh pada tabel di bawah ini:

Tabel 2. Kegiatan yang telah dicapai

Waktu	Kegiatan	Hasil
19 April 2017	Rapat demi menentukan desain PEASE	Terlaksana

26 April 2017	Rapat Perdana dengan seluruh anggota	Terlaksana
1 Mei2017	1 Mei2017 Perakitan awal PEASE	
3 Mei 2017	Persiapan MONEV internal jurusan	Terlaksana
4 Mei 2017	MONEV Internal Jurusan Mesin	Terlaksana
9 Mei 2017	Pengetesan salah satu komponen PEASE	Terlaksana
10 Mei 2017	Pembelian sisa bahan / komponen	Terlaksana
16 Mei 2017	Perancangan sistem hybrid pada PEASE	Terlaksana

BAB 5 POTENSI HASIL

Hasil yang akan dicapai oleh PEASE ke depannya ialah:

- 1. Mendapat Hak Paten
- 2. Manfaat / dampak yang akan didapat oleh masyarakat umum yakni:
 - a. Segera mengetahui bahaya bencana gempa bumi
 - b. Suara yang dihasilkan begitu keras sehingga bisa membangunkan orang yang sedang tertidur agar bisa segera berlindung
 - c. Mencegah terjadinya korban meningeal
 - d. Mengurangi jumlah korban meninggal maupun luka-luka
- 3. Potensi pengembangan usaha
 - a. PEASE merupakan sebuah terobosan baru dimana setelah sekian banyak alat serupa diciptakan oleh segelintir orang mulai dari SD sampai professor, PEASE memiliki kelebihan dimana harga yang jauh lebih murah dengan spesifikasi yang begitu modern, hanya akan berfungsi jika getaran dari gempa berada diatas 4 SR dimana pada daya segitu gempa bisa dianggap membahayakan dan mampu menghancurkan sebuah bangunan.
 - b. Desain PEASE yang begitu menarik, kecil, ekonomis, dan mobile bisa ditaruh dimanapun pengguna suka dan aman dari hewan penggangu maupun anak-anak.
 - c. PEASE juga sebagai jawaban atas ketakutan masyarakat akan bencana gempa bumi di Indonesia. Perlu diketahui Indonesia merupakan Negara yang cukup sering dilanda gempa bumi.

BAB 6 RENCANA TAHAPAN BERIKUTNYA

Berdasarkan hasil pencapaian program yang telah dicapai hingga pembuatan laporan kemajuan ini dibuat, maka rencana tahapan berikutnya yang akan dilaksanakan adalah:

- 1. Penyempurnaan alat.
- 2. Pengujian alat dan testimony dari masyarakat
- 3. Pengerjaan laporan akhir dari hasil yang telah dicapai mulai sejak awal hingga akhir.

DAFTAR PUSTAKA

- Blanchard, B. S., and Fabrycky, W. J. 2006. *Systems engineering and analysis (4th ed.)* New Jersey: Prentice Hall.
- Kementrian Kesehatan. 2016. *Informasi Awal Bencana Tanah Longsor di Kabupaten Malang*. (online). (http://penanggulangankrisis.kemkes.go.id/longsor-di-kecngantang-malang). Diakses 14/5/2017
- Nidhra, S., and Dondeti, J., *Black Box and White Box Testing Techniques A Literature Review*. International Journal of Embedded Systems and Applications (IJESA), Vol. 2, No. 2, pp. 29-50. June 2012
- Novianta, M.A. Sistem Deteksi Dini Gempa Bumi Dengan Piezo Elektrik Berbasis Mikrokontroller AT89C51. Simposium Nasional RAPI FT UMS. 2012. ISSN: 1412-9612.
- Nugroho, Sutopo Purwo. 2016. Evaluasi Penanggulangan Bencana 2015 dan Prediksi Bencana 2016. [pdf-online]. https://www.humanitarianresponse.info/.../disaster_evaluation_2015. Diakses tanggal 7 September 2016.
- Mahardhika, Christian. Ramdhani, Mohammad. Andi, Dwi. 2015. Design and Implementation of Portable VHF Band Radio Communication Repeater Station for Natural Disasters. Fakultas Ilmu Terapan: Universitas Telkom.
- Malangvoice. 2016. Bencana Longsor Paling Banyak Terjadi di Kabupaten Malang. (online). (http://malangvoice.com/bencana-longsor-paling-banyak-terjadi-kabupaten-malang/). Diakses 14/5/2017
- Priyadi, I., Wijaya, M., 2014. *Perancangan Alat Pendeteksi dan Peringatan Gempa Berpotensi Tsunami Dengan Transmisi Sinyal Audio Melalui Media Jala-Jala Listrik*. Bengkulu: Universitas Bengkulu
- Pulungan et al., 2012. Pengembangan Dan Pemanfaatan Alat Seismik Untuk Pengukuran Beban Dinamik Pada Lereng Tambang Batubara. Bandung: Puslitbang Teknologi Mineral Dan Batubara.
- Rakhman, Arie Noor. Kuswardani, Istiana. 2012. Studi Kasus Gempa Bumi Yogyakarta 2006: Pemberdayaan Kearifan Lokal Sebagai Modal Masyarakat Tangguh Menghadapi Bencana. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III, ISSN: 1979-911X.
- Surya Malang. 2016. Beragam Bencana Terjang 22 Kecamatan di Kabupaten Malang. (online). (http://suryamalang.tribunnews.com/2016/12/30/beragam-bencana-terjang-22-kecamatan-di-kabupaten-malang-selama-2016). Diakses 14/5/2017
- Susilawati. 2008. Penerapan Penjalaran Gelombang Seismik Gempa pada Penelaahan Struktur Bagian Dalam Bumi. Medan: Universitas Sumatera Utara.
- Wahono, B.S. 2007. Sistem Deteksi Gempa Bumi Berbasis Jaringan Sensor Nirkabel. Surabaya: Institute Teknologi Sepuluh November

LAMPIRAN-LAMPIRAN

Lampiran 1. Penggunaan Dana

`Berikut rincian penggunaan dana untuk implementasi penelitian.

Tabel 3. Rincian penggunaan dana

No	Tanggal	Item Pembelian	Jumlah	Harga Satuan	Satuan	Tatal (Rp)
a	b	С	d	e	f	g
1	Kamis, 13 April 2017	Elcoo 100 μF 25 V	3	15000	buah	45000
2	Kamis, 13 April 2017	Resistor 1kµ	3	8000	buah	24000
3	Kamis, 13 April 2017	Resistor 100 kµ	3	8000	buah	24000
4	Kamis, 13 April 2017	Resistor 10 kµ	3	8000	buah	24000
5	Kamis, 13 April 2017	PCB	2	25000	buah	50000
6	Kamis, 13 April 2017	Akomodasi	2,7	7400	liter	20000
7	Senin, 24 April 2017	Jus Buah	6	7000	gelas	42000
8	Senin, 24 April 2017	Pembayaran jasa konsep rangkaian alat	1	500000	orang	500000
9	Jum'at, 28 April 2017	Arduino Competible	2	175000	buah	350000
10	Jum'at, 28 April 2017	SD Module	2	150000	buah	300000
11	Jum'at, 28 April 2017	Speacker	2	75000	buah	150000
12	Sabtu, 29 April 2017	R	20	5000	buah	100000
13	Sabtu, 29 April 2017	BL	20	5000	buah	100000
14	Sabtu, 29 April 2017	Tinta	4	40000	buah	160000
15	Sabtu, 29 April 2017	Kertas A4	1	35000	rim	35000
16	Sabtu, 29 April 2017	Lalapan ayam	6	10000	bungkus	60000
17	Sabtu, 29 April 2017	Air Mineral	6	2500	bungkus	15000
18	Jum'at, 5 Mei 2017	TIP 21	10	7500	buah	75000
19	Jum'at, 5 Mei 2017	TIP 42	10	7500	buah	75000
20	Jum'at, 5 Mei 2017	Kabel	5	7000	buah	35000
21	Jum'at, 5 Mei 2017	Power Ampliver	4	25000	buah	100000
22	Jum'at, 5 Mei 2017	Pembayaran jasa perangkaian alat	1	500000	orang	500000
23	Sabtu, 6 Mei 2017	KIT Bomer's mini	2	60000	buah	120000
24	Rabu, 10 Mei 2017	Akomodasi	2,666	7500	liter	20000
25	Rabu, 10 Mei 2017	Mikro SD	2	45000	buah	90000
26	Rabu, 10 Mei 2017	Speaker	2	75000	buah	150000
27	Rabu, 10 Mei 2017	Papan	2	45000	lonjor	90000
28	Rabu, 10 Mei 2017	Cat kayu	2	55000	buah	110000
29	Rabu, 10 Mei 2017	MMC V-Gen 4 GB	2	150000	buah	300000
30	Minggu, 21 Mei 2017	Lalapan ayam	6	10000	bungkus	60000
31	Minggu, 21 Mei 2017	Jus Buah	6	7000	gelas	42000
32	Minggu, 21 Mei 2017	Pembayaran jasa software Arduino Uno	1	500000	orang	500000
33	Rabu, 24 Mei 2017	Emal 0.7	5	25000	meter	125000
34	Jum'at, 26 Mei 2017	Batre Power	2	75000	buah	150000
35	Jum'at, 26 Mei 2017	Charger	2	150000	buah	300000

36	Sabtu, 27 Mei 2017	Kabel AC	3	15000	meter	45000
37	Sabtu, 27 Mei 2017	Kabel DC	3	15000	meter	45000
38	Sabtu, 27 Mei 2017	Sakur	3	30000	meter	90000
39	Sabtu, 27 Mei 2017	Baut	25	750	buah	18750
40	Minggu, 28 Mei 2017	Timah	3	15000	buah	45000
41	Minggu, 28 Mei 2017	Castol	3	5000	buah	15000
42	Senin, 29 Mei 2017	Print digital	28	170	lembar	4760
43	Senin, 29 Mei 2017	Foto copy A4	5	150	lembar	750
44	Senin, 29 Mei 2017	Jilid Mika	1	2500	buah	2500
45	Senin, 29 Mei 2017	Elcoo 100 μF 25 V	3	15000	buah	45000
46	Senin, 29 Mei 2017	Resistor 1kµ	3	8000	buah	24000
47	Senin, 29 Mei 2017	Resistor 100 kµ	3	8000	buah	24000
48	Senin, 29 Mei 2017	Resistor 10 kµ	3	8000	buah	24000
49	Senin, 29 Mei 2017	PCB	2	25000	buah	50000
50	Senin, 29 Mei 2017	SD Module	2	150000	buah	300000
51	Senin, 29 Mei 2017	SD Module	2	150000	buah	300000
52	Selasa, 30 Mei 2017	KIT Bomer's mini	2	60000	buah	120000
53	Selasa, 30 Mei 2017	Mikro SD	2	45000	buah	90000
54	Rabu, 31 Mei 2017	Emal 0.7	5	25000	meter	125000
55	Rabu, 31 Mei 2017	Batre Power	2	75000	buah	150000
56	Rabu, 31 Mei 2017	Charger	2	150000	buah	300000
57	Rabu, 31 Mei 2017	Kabel AC	3	15000	meter	45000
58	Rabu, 31 Mei 2017	Kabel DC	3	15000	meter	45000
59	Rabu, 31 Mei 2017	Sakur	3	30000	meter	90000
60	Rabu, 31 Mei 2017	Baut	25	750	buah	18750
61	Rabu, 31 Mei 2017	Print dan Jilid	3	5000	buah	15000
62	Kamis, 1 Juni 2017	Materai 6000	2	7000	buah	14000
63	Kamis, 1 Juni 2017	Speaker	2	75000	buah	150000
64	Kamis, 1 Juni 2017	Pembayaran tukang kayu	1	250000	orang	250000
65	Jum'at, 2 Juni 2017	Pembayaran desaign eksterior	1	300000	orang	300000
66	Sabtu, 3 Juni 2017	TIP 21	10	7500	buah	75000
67	Sabtu, 3 Juni 2017	TIP 42	10	7500	buah	75000
68	Sabtu, 3 Juni 2017	Kabel	5	7000	buah	35000
70	Sabtu, 3 Juni 2017	Charger	2	150000	buah	300000
					Jumlah	8072510

Lampiran 2. Dokumentasi Kegiatan

`Berikut paparan dokumentasi kegiatan penelitian.

