EXPLORING THE POWER OF

EMBEDDINGS WITH CLUSTERING INSIGHTS SAVING **GROOTENDORST, MAARTEN BERTopic** COST + LIFE EMBEDDING

RAW DATA

BUILDING BRIDGES BETWEEN DATA & INSIGHTS IN THE AI ERA

DECISION

HTTPS://GITHUB.COM/INSIGHTBUILDER

CHALLENGE SOLVED: WHERE & HOW EMBEDDINGS ARE USED

- REAL LIFE APPLICATION:
 - MARKET SEGMENTATION
 - IMAGE SEGMENTATION (CANCER CELL DETECTION)
 - ANAMOLY DETECTION (CREDIT CARD / NETWORK ANALYSIS)
 - LAND / NETWORK USAGE ANALYSIS
 - **O SEARCH ENGINES**
 - CROSS ENCODERS
 - **O IMAGE SEARCH**
- ANY APPLICATION THAT WILL REQUIRE
 CLUSTERING IN VOICE, VIDEO ALSO CAN WORK

- CLUSTERING ALGORITHMS / PROCESSES:
 - PARTITION CLUSTERING
 - K-MEANS
 - DENSITY BASED CLUSTERING
 - MEAN-SHIFT ALGORITHM
 - DISTRIBUTION MODEL-BASED CLUSTERING
 - DENSITY BASED SPATIAL CLUSTERING & NOISE
 - HIERARCHICAL CLUSTERING
 - AGGLOMERATIVE CLUSTERING
 - AFFINITY PROPOGATION
 - FUZZY CLUSTERING

HTTPS://GITHUB.COM/INSIGHTBUILDER

OPEN SOURCE LIBARIES: CHALLENGES THEY SOLVE

- SENTENCE-TRANSFORMERS: PROVIDE EMBEDDING (HTTPS://WWW.SBERT.NET)
- BERTOPIC: TOPIC MODELING + VISUALISATION (HTTPS://MAARTENGR.GITHUB.IO/BERTOPIC)
- PICKLE: SAVE THE EMBEDDING DATA AS FILE
- SAFETENSOR: SAFER ALTERNATIVE OF SAVING EMBEDDING DATA
- KEYBERT: EXTRACTING KEYWORDS FROM CORPUS
- SKLEARN: PROVIDE ML ALGORITHMS FOR CLUSTERING
- HDBSCAN: LIBRARY FOR DOING DBSCAN CLUSTERING + LOT MORE (HTTPS://HDBSCAN.READTHEDOCS.IO/)
- TRANSFORMERS: LOAD NEURAL NETWORK MODELS, TRAIN & PREDICT OUTPUT
- PYTORCH: CREATE NEURAL NETWORK MODEL AND TRAIN + PREDICT OUTPUT
- HUGGINGFACE_HUB: SAVE AND LOAD NEURAL NETWORK MODELS IN THE HUB
- RAPIDS: MOVE THE ML OPERATIONS TO GPU (RAPIDS.AI)

HTTPS://GITHUB.COM/INSIGHTBUILDER

CLUSTERING: DOES NATURE CREATE CLUSTERS

- NATURE JUST CREATES, MATH ALGORITHMS PLACE
 THE CIRCLES OVER THE CREATIONS TO MAKE LIFE OF
 THE OBSERVER EASIER
- WHAT TO DO WITH THE OUTLIERS? WHY DO THE EXIST
- MODEL THAT CAN CHOOSE WHICH BAG THE DATA
 POINT WILL GO IS EASY TO CREATE.
- WHEN THE NUMBER OF POINTS INCREASES THEN THE QUESTION OF WHETHER TO INCREASE THE BAGS ARISES
- CAN THERE BE CLUSTERS WITHIN CLUSTERS? HIERARCHY.
- WHAT IF I DON'T KNOW ANYTHING ABOUT NUMBER OF CLUSTERS AVAILABLE

AND WHAT ABOUT THE
TOPICS OF THESE
CLUSTERS?

OPIC MODELS:
TYPES &
METHODS
PROXIMATE TOPIC DISTRIBUTION

WITH SLIDING WINDOW ON DOCS ONLINE TOPIC MODELING IS USED

WHEN DATA IS FLOWING

- INCREMENTALLY SEMI-SUPERVISED CAN HELP IF YOU
- HAVE SOME CATEGORIES AVAILABLE. • SUPERVISED MODELING INVOLVES
- **REGRESSION TO TRAIN**
- MANUAL MODE SKIPS DIM REDUCTION & CLUSTERING. HEADS TO TOPIC
- GUIDING THE TOPICS WITH SIMILARITY
- USING C-TF-IDF TO CREATE

SEARCH

HIERARCHICAL CLUSTERING LOOKING AT THE TOPIC CHANGING

1 - 1	CI	110	Ju	

Online Topic Modeling

Manual Topic Modeling

Dynamic Topic Modeling

Method

Topic Distribution Approximation

.approximate_distribution(docs)

.partial_fit(doc)

Code

.fit(docs, y=y)

.fit(docs, y=y)

Semi-supervised Topic Modeling

.fit(docs, y=y)

Multimodal Topic Modeling

.fit(docs, images=images)

Topic Modeling per Class

.topics_over_time(docs, timestamps)

.hierarchical_topics(docs)

.topics_per_class(docs, classes)

Hierarchical Topic Modeling

Guided Topic Modeling BERTopic(seed_topic_list=seed_topic_list)

WITH DYNAMIC TOPIC MODELING

Supervised Topic Modeling

THANKS FOR WATCHING REMEMBER TO PRACTICE WITH EXAMPLES

LIKE SHARE SUBSCRIBE