V504

Thermische Elektronenemission

Tahir Kamcili Marina Andreß tahir.kamcili@udo.edu marina.andress@udo.edu

Durchführung: 13.04.2021 Abgabe: 20.04.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Durchführung	4
3	Auswertung	5
4	Diskussion	6

1 Zielsetzung

2 Durchführung

3 Auswertung

Die Wellenlänge λ kann mit der Formel () berrechnet werden, wobei die Hebelübersetzung mit $\ddot{U}=5,046$ berücksichtigt werden muss. Somit ergibt sich die Formel zu

$$\lambda = \frac{2\Delta d}{N\ddot{U}}.\tag{1}$$

Die aufgenommenen Messwerte und die daraus nach (1) berechneten Wellenlängen des Lasers sind in Tabelle (??) aufgeführt.

Tabelle 1: Messwerte und die berechneten Wellenlängen

$\Delta d / mm$	N	λ / nm
4.835	2743	698.639
5.060	3149	636.884
4.550	2855	631.667
5.005	3170	625.788
4.950	3134	626.021
4.955	3136	626.254
5.000	3133	632.546
5.010	3169	626.611
5.000	3149	629.332
5.000	3166	625.953

Daraus ergibt sich der Mittelwert und die Standardabweichung der Wellenlänge

$$\lambda = (635.9698 \pm 22.3299)$$
nm.

Der Brechungsindex von Luft kann nach Gleichung () berechnet werden. Es gilt:

$$\begin{aligned} \mathbf{p}_0 &= 1.0132 \text{bar} \\ \mathbf{T}_0 &= 273.15 \text{K} \\ \mathbf{T} &= 293.15 \text{K} \\ \mathbf{b} &= 50 \text{mm} \end{aligned}$$

Die aufgenommenen Messwerte und die daraus nach () berechneten Brechungsindizes von Luft sind in Tabelle (2) aufgeführt.

Tabelle 2: Messwerte und die berechneten Brechungsindizes

$\Delta p / 1$	N	n
610	27	1.000229
610	36	1.000306
610	17	1.000145
610	35	1.000298
610	18	1.000153
610	34	1.000289
610	18	1.000153
600	33	1.000285

Daraus ergibt sich der Mittelwert und die Standardabweichung des Brechungsindexes

$$n = 1.000232 \pm 0.000072.$$

4 Diskussion