

Assignment 1

1. Variables and Arithmetic Operations:

Write a Python/MATLAB program that calculates the area of a circle given the radius. Use the formula $A = \pi r^2$ with r = 5.

2. Conditional Statements:

Write a Python/MATLAB program that asks the user for a number and prints whether it is a positive, negative, or zero. *Hint: use input() function to ask for input from user.*

3. Loops – For Loop:

Write a Python/MATLAB program that calculates the sum of all even numbers between 1 and a number n (you can use any number for n).

Assignment 1

4. Loops – While Loop:

Write a Python/MATLAB program that continuously asks the user for numbers and prints their cumulative sum. The loop should stop when the user enters a negative number.

5. Matrix Operations:

Create two 3×3 matrices and:

- a. Add the matrices
- b. Multiply the matrices
- c. Find the determinant of the second matrix

Assignment 1

6. Functions:

Write a Python/MATLAB function called `time_constants` that takes the damping coefficient ζ and natural frequency ω_n of a second-order system as inputs, and returns the system's settling time t_s and peak time t_n . The formulas are:

$$t_s = \frac{4}{\zeta \omega_n}, \qquad t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

Test the function with $\zeta = 0.5$ and $\omega_n = 2$.

7. Plotting Graphs:

Plot the function $y = \cos(x)$ for x ranging from 0 to 2π using Python or MATLAB. Add gridlines and labels to the plot.