CODE No.: 19BT30403 SVEC-19

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech I Semester (SVEC-19) Regular Examinations February – 2021

SIGNALS AND SYSTEMS

[Electronics and Communication Engineering]

Time: 3 hours				Max. Marks: 60		
	Answer One Question from each Unit					
All questions carry equal marks						
(UNIT-I)						
1.	a)	Illustrate the following classifications of continuous time	6 Marks	L1	CO1	PO2
		sequences with examples. i) Static and Dynamic systems.				
		ii) Time variant verses and Time in-variant systems.				
	b)	Given a signal.	6 Marks	L2	CO1	PO2
		x(t) = t+2 $-2 < t < 2$				
		= 0 otherwise. Plot the following signals $x(2t)$, $x(-t)$, $x(t/2)$, $2x(-2t+3)$.				
		From the following signals $x(2t)$, $x(-t)$, $x(-t)$, $x(-t)$, $x(-t)$. (OR)				
2.	a)	Test whether the following signals are periodic signals or	6 Marks	L2	CO1	PO2
		aperiodic signals. In case of periodic signals, determine the				
		fundamental frequencies. i) $x(t) = 2\sin(2/3)t + 3\cos(2\pi/5)t$.				
		ii) $x(t) = 4\cos(3\pi t + \pi/2) + 2\sin(8\pi t + \pi/2)$.				
	b)	Find the energy of a rectangular pulse having unit height and unit	6 Marks	L3	CO1	PO2
		width centered at origin. Suppose now this signal is shifted right				
		side (or left side) by 1 unit. Find the new signals energy and power. Is there any change in the value of energy calculated?				
		Give the reasons.				
		UNIT-II				
3.	a)	i) State and prove the Time Reversal property of Fourier Transform	6 Marks	L1	CO2	PO1
		ii) Using that property find $x(t) = u(t) + u(-t)$	CM 1	т 2	CO2	DO 1
	b)	Find the Fourier Transform of $x(t) = e^{-at}u(t)$.	6 Marks	L2	CO2	PO1
4.		(OR) State and prove convolution property in Fourier Transform.	12 Marks	L2	CO2	PO2
4.		UNIT-III	12 Marks	L2	CO2	102
5.	a)	State and prove Parsevals's theorem. Explain its physical	6 Marks	L1	CO3	PO1
		significance.			~~•	
	b)	A filter has an input $x(t) = e^{-2t}u(t)$ and Transfer function	6 Marks	L1	CO3	PO1
		$H(w) = \frac{1}{1 + jw}$ and find the ESD of the output.				
	`	(OR)	() ()	т 1	GO2	DO 1
6.	a)	Fine the relation between convolution and correlation with examples.	6 Marks	L1	CO3	PO1
	b)	Fine the cross correlation between unit triangular and unit gate	6 Marks	L1	CO3	PO5
		pulse.				

UNIT-IV

- 7. a) The step response of an LTI system is found to be $2e^{-3t}u(t)$ 6 Marks L3 CO4 PO2
 - i) Find the impulse response h(t) of the system.
 - ii) Find the response of the system when the input is $e^{-t}u(t)$.
 - b) Find the Laplace Transform of the signal 6 Marks L2 CO4 PO2 $x(t) = e^{-2t}u(-t) + e^{-3t}u(-t)$ and also find its ROC.

(OR)

8. a) Using properties of Laplace Transform find:

6 Marks L2 CO4 PO2

- i) $x(t) = te^{-t}u(t)$.
- ii) $x(t) = e^{-2t} \cos(2\pi 100t) u(t)$.
- b) Find the inverse Laplace Transform of the following : 6 Marks L1 CO4 PO1 $X(S) = \frac{S+1}{(S+1)(S+1)+4}.$

UNIT-V

- 9. a) State and prove Sampling theorem. 6 Marks L1 CO5 PO1
 - b) An amplifier with Gain = 30dB and Bandwidth = 25KHZ is 6 Marks L3 CO5 PO4 found to have T = 120K. Noise figure = 2. Find output noise.

(OR)

- 10 a) Explain the reconstruction of a signal from its samples using 6 Marks L2 CO5 PO2 interpolation technique.
 - b) List out different types of Noises. 6 Marks L3 CO5 PO4

