Class 13: RNA-Seq Part 1

Dylan Mullaney (A16869793)

Today we will analyze from a published RNA-Seq experiment where airway smooth muscle tissue cells were treated with dexamenthasone, a synthetic glucocortocoid steroid with anti-inflammatory effects (Himes et. al, 2014).

Import countData and colData

There are two datasets I need to import/read

- countData the trenascript counts per gene (rows) in the different experiments
- colData information (ie. methods) about the columns (ie experiments) in countData

```
counts <- read.csv("airway_scaledcounts.csv", row.names=1)
metadata <- read.csv ("airway_metadata.csv")</pre>
```

We can have a peek at these with head()

head(counts)

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG0000000003	723	486	904	445	1170
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG0000000003	1097	806	604		
ENSG0000000005	0	0	0		
ENSG00000000419	781	417	509		
ENSG00000000457	447	330	324		
ENSG00000000460	94	102	74		
ENSG00000000938	0	0	0		

metadata

```
id
                dex celltype
                                  geo_id
1 SRR1039508 control
                       N61311 GSM1275862
2 SRR1039509 treated
                       N61311 GSM1275863
3 SRR1039512 control
                      N052611 GSM1275866
4 SRR1039513 treated
                     N052611 GSM1275867
5 SRR1039516 control
                      N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
7 SRR1039520 control N061011 GSM1275874
8 SRR1039521 treated N061011 GSM1275875
```

Q1. How many genes are in this dataset?

38694

nrow(counts)

[1] 38694

Q2. How many 'control' cell lines do we have?

4 control cells

table(metadata\$dex)

```
control treated 4 4
```

```
#sum(metadata$dex == "control")
```

How do I start to analyze or compare all this data? Let's take the average of values under similar treatments. -> mean value per gene for all "control" and compare to those for all "treated".

- Extract all "control" columns from the counts data (this is tough because the part we can comprehend exists in the metadata)
- Find the mean value for each gene -> across the rows

1.

```
control.inds <- metadata$dex == "control"
control.counts <- counts[ ,control.inds]</pre>
```

2.

```
control.mean <- rowSums(control.counts)/ ncol(control.counts)
head(control.mean)</pre>
```

```
ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
900.75 0.00 520.50 339.75 97.25
ENSG00000000938
0.75
```

Q3. How would you make the above code in either approach more robust? Is there a function that could help here?

Instead of div by 4 for column number, use ncol()

Q4. Follow the same procedure for the treated samples (i.e. calculate the mean per gene across drug treated samples and assign to a labeled vector called treated.mean)

```
treated.inds <- metadata$dex == "treated"
treated.counts <- counts[ ,treated.inds]
treated.mean <- rowSums(treated.counts)/ ncol(treated.counts)
head(treated.mean)</pre>
```

```
ENSG00000000003 ENSG0000000005 ENSG000000000419 ENSG000000000457 ENSG000000000460
658.00 0.00 546.00 316.50 78.75
ENSG00000000938
0.00
```

Let's plot the values

```
meancounts <- data.frame (control.mean, treated.mean)
head(meancounts)</pre>
```

	control.mean	treated.mean
ENSG0000000003	900.75	658.00
ENSG0000000005	0.00	0.00
ENSG00000000419	520.50	546.00
ENSG00000000457	339.75	316.50
ENSG00000000460	97.25	78.75
ENSG00000000938	0.75	0.00

Q5 (a). Create a scatter plot showing the mean of the treated samples against the mean of the control samples. Your plot should look something like the following.

plot(meancounts)

Q5 (b). You could also use the ggplot2 package to make this figure producing the plot below. What geom_?() function would you use for this plot?

geom_point()

```
ggplot(meancounts) +
  aes(control.mean, treated.mean) +
  geom_point()
```


If a point is on the diagonal, there is no difference in control vs. treated. Any departure from the diagonal indicates a change in expression. If a point is above the diagonal, there is an increase in gene expression.

Q6. Try plotting both axes on a log scale. What is the argument to plot() that allows you to do this?

Add log after your data, set equal to "x", "y", or "xy" for both.

plot(meancounts, log = "xy")

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot

We most often work in log2 units as this makes the math easier. For example, this is a doubling, a logfold change of 1 when treated is 2x the amount of control. If treated is half as much as control, it will create a -1 output.

```
# treated/ control
log2(40/20)
```

[1] 1

QUESTION 7 QUESTION 7

We can add a "log2 fold change" value to our mean counts dataset and create it as a new column. NaN stands for not a number, ie log of 0/0. -Inf refers to the log of 0/any number

meancounts\$log2fc <- log2(meancounts\$treated.mean/ meancounts\$control.mean)
head (meancounts)</pre>

log2fc	treated.mean	control.mean	
-0.45303916	658.00	900.75	ENSG00000000003
NaN	0.00	0.00	ENSG00000000005

ENSG000000	00419	520.50	546.00	0.06900279
ENSG000000	00457	339.75	316.50	-0.10226805
ENSG000000	00460	97.25	78.75	-0.30441833
ENSG000000	00938	0.75	0.00	-Inf

We need to filter out zero count values because they're messing up the data.

How many genes are "up" regulated at the common log 2 fold-change threshold of +2.

Q8. Using the up.ind vector above can you determine how many up regulated genes we have at the greater than 2 fc level?

1846

```
up.inds <- meancounts$log2fc > 2
sum(up.inds, na.rm=T)
```

[1] 1846

Q9. Using the down.ind vector above can you determine how many down regulated genes we have at the greater than 2 fc level?

23348

```
down.inds <- meancounts$log2fc < 2
sum(down.inds, na.rm=T)</pre>
```

[1] 23348

Q10. Do you trust these results? Why or why not?

No because we're using averages and not taking into account outliers.

DESeq2 Analysis

To do this the right way we need to consider the significance of the differences not just their magnitude.

```
library(DESeq2)
```

To use this package, it wants countData and colData in a specific format.

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

Extract my results

```
res <- results (dds)
head(res)</pre>
```

log2 fold change (MLE): dex treated vs control

Wald test p-value: dex treated vs control

DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG0000000003	747.194195	-0.3507030	0.168246	-2.084470	0.0371175
ENSG0000000005	0.000000	NA	NA	NA	NA
ENSG00000000419	520.134160	0.2061078	0.101059	2.039475	0.0414026
ENSG00000000457	322.664844	0.0245269	0.145145	0.168982	0.8658106
ENSG00000000460	87.682625	-0.1471420	0.257007	-0.572521	0.5669691

```
ENSG00000000938
                  0.319167
                               -1.7322890 3.493601 -0.495846 0.6200029
                     padj
                <numeric>
ENSG00000000003
                 0.163035
ENSG0000000005
                       NA
ENSG00000000419
                 0.176032
ENSG00000000457
                 0.961694
ENSG00000000460
                 0.815849
ENSG00000000938
                       NA
```

Check out the pvalues, looks like there's definitely some false positives.

Plot of fold-change vs P-value(adjusted for multiple testing)

```
plot(res$log2FoldChange, log(res$padj))
```


Flip the axis so it's easier to look at

```
plot(res$log2FoldChange, -log(res$padj),
    xlab= "Log2 Fold Change",
    ylab= "-log (P-value)")
```


Let's save our work to date

```
write.csv(res, file="myresults.csv")
```

Let's make a nicer version of our volcano plot above - Add the log2 threshold lines at +2/-2 - Add P-value threshold lines at 0.05 - Add color to highlight the subset of genes that meet both the above thresholds

```
mycols <- rep("grey", nrow(res))

mycols [res$log2FoldChange>=2] <- "red"
mycols [res$log2FoldChange<=-2] <- "orange"

mycols[res$padj > 0.05] <- "grey"</pre>
```

```
ggplot(res) +
  aes(log2FoldChange, -log(padj))+
  geom_point(col=mycols) +
  geom_hline(yintercept=0.05, col="darkgreen") +
  geom_vline(xintercept=c(2,-2), col="yellow")
```

Warning: Removed 23549 rows containing missing values or values outside the scale range (`geom_point()`).

The orange and red points are the ones that are interesting, where change is occurring.