Redesign of a spark gap switch assembly towards ease of assembly and reduction of volume and weight

B Mohanraj

180021601068
B. S. Abdur Rahman Crescent Institute of Technology,
Chennai

Guided by

Dr P Srikrishna, Scientist – F MTRDC, DRDO, Bengaluru

Mr Rajendran, Associate Professor

B. S. Abdur Rahman Crescent Institute of Technology,
Chennai

Requirements for the switch assembly

- Switch important constituent for high voltage impulse generators
- Switch should discharge at 80 kV
- Assembly pressurised to 5 bar with N₂ gas
 - Gas pressure variation flexibility to vary voltage of discharge
- Spacing between electrode 12 to 14 mm based on electrical design
- Switch internal volume 0.3 litre minimum for adequacy of N₂ gas
- Provision for electrical connections

Parameters	Values
High voltage(kV)	75-80
Volume (m³)	3x10 ⁻⁴ (0.3 litre)
Electrode spacing (mm)	12 to 14
Pressure (bar)	5 (7.5)

Existing switch assembly

- Electrodes of stainless steel integral with flanges
- Nylon enclosure at the centre
- Flanges fastened to enclosure by M6 bolts x
 16 mm long 6 Nos. on each side
- IN/OUT connectors for gas in both the flanges – to vary inside pressure
- O-rings on either side to prevent gas leakage
- Corrugations on enclosure to avoid insulator breakdown (creepage of high voltage)

Part	Material	Quantity	Weight (g)	
Bolt - M6 x 16 mm long	Stainless steel	12	196.8	
Electrodes integral with flanges	Stainless steel	2	2622	
Enclosure	Nylon 6-6	1	496	
Total			3314.8	

Exploded view of the existing switch assembly

Need for redesign

- Leakage after repetitive usage
 - Probable reason Degradation of threads in nylon enclosure
- Lack of provision for fastening the assembly in the final impulse generator
 - Needed for the mobile fieldable system
- Time of assembly, weight and volume to be reduced
 - 8 assemblies to be used in one impulse generator hence 8 times the benefits
- Minimize the high voltage breakdown paths
 - Possible short path between the bolts fastening the flanges

Though the internal threads have helicoil/recoil inserts.

The helicoil is suspected to loosen from the nylon material after prolonged usage.

Material selection

- Alternate material for Nylon enclosure explored
 - · Nylon retained due to better Yield strength, Hardness, Dielectric strength apart from machinability
- Ceramics not considered as the assembly design is evolving Only machinable material considered
 - Needed for the mobile fieldable system
- Stainless steel was replaced by aluminium for the flanges to make the assembly lighter
 - Electrodes stainless steel (higher melting point) retained to avoid erosion during sparking

	Material	Density (kg/m³)	Young's Modulus E (MPa)	Poisson's ratio - ν	Yield Strength (MPa)	Hardness (Rockwell)	Dielectric Strength (MV/m)
	Polyamide (Nylon 6-6)	1150	1850	0.4	110-120	115-120	25
metal	Delrin	1410	3100	0.35	75	120	17.3
Non	Polycarbonate	1200	2400	0.36	39.7	114-126	16-335
	Perspex	1180	2855	0.35-0.4	70	90	20
Metal	Stainless steel	8000	193000	0.33	205	88	NA
Me	Al 6061 T6	2700	68900	0.33	276	95	NA

Analytical design

v = Poisson's ratio of the cylinder material

 σ = Permissible tensile stress for the cylinder material

 σ_{tb} = Permissible tensile stress for the bolt material

p = *Pressure in the cylinder*

 $P = Load on the cylinder cover = \frac{\pi}{4} (D_i^2)p$

t = Thickness of the cylinder

 t_1 = Thickness of the cylinder cover plate

 t_2 = Thickness of the cylinder flange

 $D_i = Cylinder inner diameter$

D_o= End cover outer diameter

 D_p = Pitch circle diameter for the bolts

 d_1 = Bolt hole diameter

d_c= Core diameter of the bolts

 $M = Bending moment = 0.053P(D_p)$

 $w = Width of the cover plate = D_o - 2d_i$

 $e = Eccentricity in flange = \frac{D_p}{2} - \left(\frac{d_1}{2} + t\right)$

 $Z = Section modulus of the plate = \frac{1}{6} w(t_1^2)$

n = Number of bolts

d/t < 15 thick cylinder – nylon enclosure

$$t = \frac{D_i}{2} \left(\sqrt{\frac{\sigma + (1 - 2\vartheta) * p}{\sigma - (1 + \vartheta) * p}} - 1 \right); \quad t = 0.7 \text{ mm with FOS of 3}$$

Number of bolts - M6 bolts considered

$$\frac{\pi}{4} (D_i^2) p = \frac{\pi}{4} (d_c^2) * \sigma_{tb} * n; \quad n = 1$$

n = 4 chosen

10 mm chosen

Outer diameter of the cover and flange

$$D_0 = D + 2t + 6d_1$$
;

$$D_o = 136 \; mm$$

125 mm chosen

Thickness of the cover

$$\sigma t_1 = M/Z$$
;

$$t_1 = 2.0 \text{ mm}$$

13 mm chosen for threads

Thickness of the flange

$$M = \frac{P}{n} * e ; w = \frac{2\pi R}{n}; R = (D/2)+t$$

$$\sigma t_2 = M/Z$$
;

$$t_2 = 3.3 \text{ mm}$$

10 mm chosen for threads

Formulae from Machine Design Hand book

Finite Element Analysis – Model

Mesh sensitivity of the FE model

Analysis type – Static structural

Element type – Solid 187 mid-side nodes included 90° symmetry model considered for analysis

Bonded contact pairs – simulate the holted joints

Bonded contact pairs – simulate the bolted joints

Boundary conditions

- Pressure at internal walls
- Fixed support

Finite Element Analysis – Results

Maximum deflection

0.25 mm at centre of the enclosure

Between cover plate and nylon enclosure < 0.08 mm

- O-ring compression nearly 0.5 mm

Maximum equivalent stress

151 MPa at the bolted joint at backing ring

- lesser than yield strength of Al. alloy

Deformation animation

Von-mises stress plot

Proposed switch assembly

- Electrode of stainless steel threaded on to the
 Al. alloy flange/cover plate on one end
- Enclosure redesigned to have stainless steel
 electrode at other end one SS flange reduced
- Backing ring of Al. alloy provided to avoid threads in non-metallic enclosure
- IN/OUT gas connectors gas located on the same side
- No. of bolts reduced to 4 from 12 Nos.
- Weight reduced to 1.2 kg from 3.3 kg

Part	Material	Quantity	Weight (g)	
Bolt - M6 x 16 mm long	Stainless steel	4	65.6	
Nut - M10	Stainless steel	1	12.5	
Electrode 1	Stainless steel	ess steel 1		
Electrode 2	Stainless steel	1	110	
Cover plate	Al. alloy	1	403	
Backing ring	Al. alloy	1	109	
Enclosure	Nylon 6-6	Nylon 6-6 1		
Total			1215.1	

Exploded view of the proposed switch assembly

Conclusions

Existing design

Part	Material	Existing design		Proposed design		
		Qty	Wt (g)	Qty	Wt (g)	
Electrode integral with flange	Stainless steel	2	2622	Nil		
Bolt - M6 x 16 mm long	Stainless steel	12	196.8	4	65.6	
Nut - M10	Stainless steel	Nil		1	12.5	
Electrode 1	Stainless steel	Nil		1	89	
Electrode 2	Stainless steel	Nil		1	110	
Cover plate	Al. alloy	Nil		1	403	
Backing ring	Al. alloy	Nil		1	109	
Enclosure	Nylon 6-6	1	496	1	426	
Total weight		13	3314.8	10	1215.1	
Number of threaded joints		14		8 (Reduced time to assemble)		
Creepage distance (high voltage breakdown)		32/149 mm		140 mm		

Proposed design

substantially increased through insulator

Existing design

Proposed design

Learnings from the project

- Design of pressure vessel and cover plate
- Design of bolts for the above
- Selection of O-ring and groove dimensions
- Design for manufacturability
- CAD modelling using Solidworks 2021
- Finite element analysis Static structural analysis in Ansys R2016
- Mechanical considerations for high voltage electrical assemblies
- Fabrication drawings and tolerance design considerations

