

Introduction to Machine Learning

Kernel Methods

林彦宇 教授 Yen-Yu Lin, Professor

國立陽明交通大學 資訊工程學系 Computer Science, National Yang Ming Chiao Tung University

Outline

- Dual representations
- Constructing kernels
- Support vector machines for classification
- Support vector machines for regression

Outline

- Dual representations
- Constructing kernels
- Support vector machines for classification
- Support vector machines for regression

Parametric vs. non-parametric model

- Parametric methods
 - > A linear model for regression
 - \triangleright We learn a model $y(\mathbf{x}, \mathbf{w})$ that maps input \mathbf{x} to output $y(\mathbf{x}, \mathbf{w})$
 - Training data are thrown away after training
- Non-parametric methods
 - Nearest neighbor classifier
 - We predict a test data by searching its nearest neighbor
 - > Training data are kept
- Kernel methods derive non-parametric models
 - Support vector machines, Gaussian processes, kernel PCA, ...
 - Predictions are based on linear combinations of a kernel function evaluated at the training data points

Dual representations: Problem statement

 Consider a linear regression model whose parameters are determined by minimizing a regularized sum-of-squares error function given by

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n) - t_n \right\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \quad \text{where } \lambda \ge 0$$

- Data are nonlinearly transformed via functions
- Setting the derivative of $J(\mathbf{w})$ w.r.t. \mathbf{w} to zero, the optimal solution takes the form of

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) - t_n \right\} \boldsymbol{\phi}(\mathbf{x}_n)$$

Dual representations of a linear model

The optimal solution is a linear combination of training data

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} {\{\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) - t_n\} \boldsymbol{\phi}(\mathbf{x}_n)}$$
$$= \sum_{n=1}^{N} a_n \boldsymbol{\phi}(\mathbf{x}_n) = \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{a}.$$

$$ightharpoonup$$
 where $a_n = -\frac{1}{\lambda} \{ \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) - t_n \}$

$$\mathbf{\Phi}: \left[\begin{array}{c} \vdots \\ \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \\ \vdots \end{array}\right] \qquad \mathbf{a} = (a_1, \dots, a_N)^{\mathrm{T}}$$

Dual representations: Gram matrix

- Instead of working with parameter vector w, we can reformulate the least squares algorithms w.r.t. parameter vector a, giving rise to a dual representation
- If we substitute $\mathbf{w} = \Phi^{\mathrm{T}} \mathbf{a}$ into $J(\mathbf{w})$, we obtain

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}}\mathbf{a} - \mathbf{a}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}}\mathbf{t} + \frac{1}{2}\mathbf{t}^{\mathrm{T}}\mathbf{t} + \frac{\lambda}{2}\mathbf{a}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathrm{T}}\mathbf{a}$$

- \triangleright Where $\mathbf{t} = (t_1, \dots, t_N)^{\mathrm{T}}$
- We define the Gram (Kernel) matrix $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^{\mathrm{T}}$, which is an $N \times N$ symmetric matrix

$$K_{nm} = \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$$

 \triangleright where $k(\mathbf{x}_n, \mathbf{x}_m)$ is the kernel function

Dual representations: Solution and inference

 In terms of the Gram matrix, the regularized sum-of-squares error function can be written as

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{\mathrm{T}} \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a}^{\mathrm{T}} \mathbf{K} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\mathrm{T}} \mathbf{t} + \frac{\lambda}{2} \mathbf{a}^{\mathrm{T}} \mathbf{K} \mathbf{a}$$

• Setting the derivative of $J(\mathbf{a})$ w.r.t. \mathbf{a} to zero, the optimal solution is

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$$

• After getting the solution, we make the prediction for input \mathbf{x}

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \mathbf{a}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\phi}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathrm{T}} \left(\mathbf{K} + \lambda \mathbf{I}_{N} \right)^{-1} \mathbf{t}$$

 \triangleright where $\mathbf{k}(\mathbf{x})$ is with elements $k_n(\mathbf{x}) = k(\mathbf{x}_n, \mathbf{x})$

Dual representations: Analysis

- There are M (data dimensionality) optimization variables in \mathbf{w}
- There are N (data number) optimization variables in its dual representation $\mathbf{\Phi}^{\mathrm{T}}\mathbf{a}$
- In the cases where N > M
 - Dual representations are less efficient
 - Dual representations are not parametric
 - Dual representations can be sparse
 - ightharpoonup Dual representations can be expressed entirely in terms of kernel functions -> It can avoid explicit introduction of the features $\phi(\mathbf{x})$, which allows us to implicitly use feature spaces of very high, even infinite, dimensionality

Outline

- Dual representations
- Constructing kernels
- Support vector machines for classification
- Support vector machines for regression

How to construct a kernel function/matrix?

 One approach is to choose a feature space mapping and then construct the kernel

$$k(x, x') = \boldsymbol{\phi}(x)^{\mathrm{T}} \boldsymbol{\phi}(x') = \sum_{i=1}^{M} \phi_i(x) \phi_i(x')$$

- \triangleright where $\phi_i(x)$ is a basis function
- Another approach is to construct the kernel functions directly
- It is required that the constructed kernel is valid. Namely it corresponds to the inner product in some feature space

Examples of explicitly constructing kernels

- Upper figure: Several curves, one for each basis function
- Lower figure: kernel function k(x, x') with x' = 0 by varying x

Is it a valid kernel?

Let's consider the following function. Is it a kernel function?

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathrm{T}} \mathbf{z})^2$$

- Check if there exists a space where the output value is equal to the inner product of the data points
- With the derivation

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathrm{T}} \mathbf{z})^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2}$$

$$= x_{1}^{2}z_{1}^{2} + 2x_{1}z_{1}x_{2}z_{2} + x_{2}^{2}z_{2}^{2}$$

$$= (x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})(z_{1}^{2}, \sqrt{2}z_{1}z_{2}, z_{2}^{2})^{\mathrm{T}}$$

$$= \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{z}).$$

- ightharpoonup The feature space exists $\phi(\mathbf{x})=(x_1^2,\sqrt{2}x_1x_2,x_2^2)^{\mathrm{T}}$
- ➤ Note that the kernel function is computed in the input space, but it corresponds to the inner product in some high-dimensional space

A theory for checking if a function is a kernel function

- The necessary and sufficient condition for $k(\mathbf{x}, \mathbf{x}')$ to be a valid kernel: Gram matrix $\mathbf{K} = [k(\mathbf{x}_n, \mathbf{x}_m)]_{nm}$ should be positive semidefinite for all possible choices of the set
- A matrix is positive semidefinite means that all of its eigenvalues are non-negative
- **K** is symmetric. Thus, we have $\mathbf{K} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$
 - \triangleright where ${\bf V}$ is an orthonormal matrix ${\bf v}_t$ and the diagonal matrix ${\bf \Lambda}$ contains the eigenvalues λ_t of ${\bf K}$
 - > If K is positive semidefinite, all eigenvalues are non-negative
 - \triangleright Consider the feature map: $\phi: \mathbf{x}_i \mapsto (\sqrt{\lambda_t} v_{ti})_{t=1}^n \in \mathbb{R}^n$
 - We find that

$$\phi(\mathbf{x}_i)^{\mathrm{T}}\phi(\mathbf{x}_j) = \sum_{t=1}^{n} \lambda_t v_{ti} v_{tj} = (\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}})_{ij} = K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$(6.13)$$

$$(6.14)$$

$$(6.15)$$

$$(6.16)$$

$$(6.17)$$

$$(6.18)$$

$$(6.19)$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$(6.21)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$(6.22)$$

where c>0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x}=(\mathbf{x}_a,\mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

Polynomial kernel

Polynomial kernel

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\mathrm{T}}\mathbf{x}' + c)^{M}$$

- \triangleright where M is the degree and c is a positive constant
- Proof: Polynomial kernel is valid
 - ▶ 1. $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)$ is a valid kernel with feature map $\mathbf{x} \to \begin{bmatrix} \mathbf{x} \\ \sqrt{c} \end{bmatrix}$
 - 2. According to

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}') \tag{6.18}$$

we can find that $k(\mathbf{x}, \mathbf{x}') = \left(\mathbf{x}^{\mathrm{T}}\mathbf{x}' + c\right)^{M}$ is a valid kernel

Gaussian kernel (RBF kernel)

Gaussian kernel

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\|\mathbf{x} - \mathbf{x}'\|^2 / 2\sigma^2\right)$$

- \triangleright where σ^2 is a positive constant
- > The corresponding feature vector has infinite dimensionality
- Proof: Gaussian kernel is valid

$$ightharpoonup 1. \|\mathbf{x} - \mathbf{x}'\|^2 = \mathbf{x}^T \mathbf{x} + (\mathbf{x}')^T \mathbf{x}' - 2\mathbf{x}^T \mathbf{x}'$$

$$\geq$$
 2. $k(\mathbf{x}, \mathbf{x}') = \exp(-\mathbf{x}^{\mathrm{T}}\mathbf{x}/2\sigma^{2}) \exp(\mathbf{x}^{\mathrm{T}}\mathbf{x}'/\sigma^{2}) \exp(-(\mathbf{x}')^{\mathrm{T}}\mathbf{x}'/2\sigma^{2})$

3. According to

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}')) \tag{6.16}$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}') \tag{6.14}$$

Gaussian kernel is valid

Sigmoidal kernel

Sigmoidal kernel

$$k(\mathbf{x}, \mathbf{x}') = \tanh\left(a\mathbf{x}^{\mathrm{T}}\mathbf{x}' + b\right)$$

- \triangleright where a and b are two constants
- The Gram matrix of this function in general is not positive semidefinite
 - No corresponding feature mapping
- However, this form of kernel has been used in practice

Outline

- Dual representations
- Constructing kernels
- Support vector machines for classification
 - Maximum margin classifier
 - Overlapping class distributions
 - Multi-class SVMs
 - SVMs vs. logistic regression
- Support vector machines for regression

Linearly separable, binary-class classification

- Training data:
 - \triangleright N training data points: $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$
 - \triangleright The corresponding target label: $t_1, t_2, ..., t_N$, where $t_n \in \{-1,1\}$
- The decision function of SVMs

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$$

- $\triangleright \phi(\mathbf{x})$ denotes a fixed feature-space transformation
- \triangleright **w** is the weight vector and b is the bias parameter
- \triangleright Binary classification: sign $(y(\mathbf{x}))$
- Linearly separable case
 - \triangleright Correctly classify a positive data: $y(\mathbf{x}) > 0$
 - \triangleright Correctly classify a negative data: $y(\mathbf{x}) < 0$
 - We can achieve $t_n y(\mathbf{x}_n) > 0$ for all training data points

An example of a linearly separable training set

- For a linearly separable (in the feature space) data set, we may have many models that correctly classify all training data
- Which of these classifiers is optimal?

Distance from a data point to decision boundary

• How to compute the distance between a positive point \mathbf{x} and the decision boundary y=0?

$$\mathbf{x} = \mathbf{x}_{\perp} + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

$$\begin{cases} y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0 \\ y(\mathbf{x}_{\perp}) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_{\perp} + w_0 = 0 \end{cases}$$

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = \mathbf{w}^{\mathrm{T}}\mathbf{x}_{\perp} + w_0 + r\frac{\mathbf{w}^{\mathrm{T}}\mathbf{w}}{\|\mathbf{w}\|}$$
$$r = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}$$

Margin

- The margin of an SVM classifier is the smallest distance between the decision boundary and any of the training points
- When multiple classifiers correctly all training data, we choose the one with the maximum margin

Maximum margin classifier

 Margin is the perpendicular distance between the decision boundary and the closest point

Maximizing the margin leads to particular choice of the classifier

Margin maximization

• The perpendicular distance of a point \mathbf{x}_n from a hyperplane $y(\mathbf{x}) = 0$ is given by

$$\frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$$

 The objective function of the maximum margin solution is found by solving

$$\underset{\mathbf{w},b}{\operatorname{arg\,max}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) \right] \right\}$$

> Directly optimizing this objective function is very complex!

An equivalent optimization problem

- Recall the distance $\frac{t_n(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$
- If we make the rescaling $\mathbf{w} \to \kappa \mathbf{w}$ and $b \to \kappa b$, the distance from any point \mathbf{x}_n to the decision surface is unchanged.
- We rescale \mathbf{w} and b, which sets

$$t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) = 1$$

for the point that is closest to the surface

 In this case, all training data will stratify the following constraints

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)+b\right)\geqslant 1, \qquad n=1,\ldots,N.$$

An equivalent optimization problem

Original optimization problem

$$\underset{\mathbf{w},b}{\operatorname{arg\,max}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) \right] \right\}$$

An equivalent optimization problem

$$\underset{\mathbf{w},b}{\arg\min} \frac{1}{2} ||\mathbf{w}||^2$$
subject to $t_n \left(\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n) + b \right) \geqslant 1, \qquad n = 1, \dots, N.$

- Quadratic programming
 - Quadratic objective function with linear constraints
 - \triangleright Computational complexity is $O(M^3)$, where M is the number of optimization variables (number of data dimensionality)

Optimization using Lagrange multipliers

The constrained optimization

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{w}||^2$$
subject to $t_n \left(\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n) + b \right) \geqslant 1, \qquad n = 1, \dots, N.$

- We introduce Lagrange multipliers $\{a_n \ge 0\}$, with one multiplier a_n for each constraint $t_n\left(\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}_n) + b\right) \geqslant 1$
- The Lagrangian function

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b) - 1 \right\}$$

Optimization using Lagrange multipliers

The Lagrangian function

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b) - 1 \right\}$$

- Several constraints
 - ightharpoonup Lagrange multiples are non-negative $a_n \ge 0$

$$ightharpoonup \frac{\partial L(\mathbf{w},b,\mathbf{a})}{\partial b} = 0 \implies 0 = \sum_{n=1}^{N} a_n t_n$$
 dual representation

Dual form of the optimization problem

 By eliminating w and b from L(w, b, a), we get the dual representation of the maximum margin problem in which we maximize

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \boxed{k(\mathbf{x}_n, \mathbf{x}_m)}$$
 subject to $a_n \geqslant 0, \qquad n = 1, \dots, N, \qquad \boxed{kernel function}$
$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{x}')$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

• It can be solved by using quadratic programming with complexity $O(N^3)$, where N is the number of training data

Testing phase

Decision function of SVMs

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) + b$$

Dual representation of SVMs

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \boldsymbol{\phi}(\mathbf{x}_n)$$

For a test point x, we classify it using a kernel function

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

How to determine the value of b?

KKT conditions

- KKT (Karush-Kuhn-Tucker) conditions
- The solution to the problem of maximizing $f(\mathbf{x})$ subject to $g(\mathbf{x}) \geqslant 0$ obtained by optimizing the Lagrangian function $L(\mathbf{x},\lambda) \equiv f(\mathbf{x}) + \lambda g(\mathbf{x})$ w.r.t. optimization variables \mathbf{x} and Lagrange multiplier λ subject to the conditions

$$g(\mathbf{x}) \geqslant 0$$

$$\lambda \geqslant 0$$

$$\lambda g(\mathbf{x}) = 0$$

KKT conditions in SVM optimization

Karush-Kuhn-Tucker (KKT) conditions in SVMs:

$$a_n \geqslant 0$$

$$t_n y(\mathbf{x}_n) - 1 \geqslant 0$$

$$a_n \{t_n y(\mathbf{x}_n) - 1\} = 0.$$

- For every data point \mathbf{x}_n , either $a_n = 0$ or $t_n y(\mathbf{x}_n) = 1$
 - $a_n = 0$: This data point plays no role in making predictions for new data points in the decision function

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

- $t_n y(\mathbf{x}_n) = 1$: This data point is called a support vector and lies on the maximum margin hyperplane in feature space
- > Only the support vectors retain, while the rest can be discarded

How to determine the value of b

For a test point x, we classify it using the decision function

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

• For any support vector \mathbf{x}_n , we have $t_n y(\mathbf{x}_n) = 1$, i.e.,

$$t_n\left(\sum_{m\in\mathcal{S}}a_mt_mk(\mathbf{x}_n,\mathbf{x}_m)+b\right)=1$$

ullet The threshold b can be determined by calculating

$$b = \frac{1}{|\mathcal{S}|} \sum_{n \in \mathcal{S}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

 \triangleright S: index set of support vectors; |S|: number of support vectors

How to determine the value of b

• For any support vector \mathbf{x}_n , we have

$$t_n \left(\sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b \right) = 1$$

Derivation

$$t_n^2 \left(\sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b \right) = t_n$$

$$\Rightarrow \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b = t_n$$

$$\Rightarrow \sum_{n \in \mathcal{S}} \left\{ \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right\} + |\mathcal{S}| b = \sum_{n \in \mathcal{S}} t_n$$

$$\Rightarrow b = \frac{1}{|\mathcal{S}|} \sum_{n \in \mathcal{S}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

Testing

The decision function has been determined

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

- Given a new input x, we can use y(x) to predict the class of x according to sign(y(x))
- So far we assume the training data are linearly separable.
 What if the data are not linearly separable?

An example

- Two-class synthetic data in a two-dimensional input space
- Gaussian kernel function
- Decision boundary, margin boundaries, and support vectors

Outline

- Dual representations
- Constructing kernels
- Support vector machines for classification
 - Maximum margin classifier
 - Overlapping class distributions
 - Multi-class SVMs
 - SVMs vs. logistic regression
- Support vector machines for regression

Overlapping class distributions

- In practice, the class-conditional distributions may overlap
 - Not linearly separable in the feature space
- We need a way to modify SVMs where misclassifying some training data is allowed
- Introduce a slack variable $\xi_n \geq 0$ for each training data \mathbf{x}_n
 - \triangleright Linearly separable case: $t_n y(\mathbf{x}_n) \ge 1$, i.e.,

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)+b\right)\geqslant 1, \qquad n=1,\ldots,N.$$

- \triangleright Not linearly separable case: $t_n y(\mathbf{x}_n) \ge 1 \xi_n$
- Soft margin, which allows some training data to be misclassified

Slack variable

- Introduce slack variables, $\xi_n \ge 0$ where $n = 1, \dots, N$
 - \triangleright New constraint: $t_n y(\mathbf{x}_n) \ge 1 \xi_n$
 - $\geq \xi_n$ = 0 for data point \mathbf{x}_n on or inside the correct margin boundary
 - $> 0 < \xi_n < 1$ for data point \mathbf{x}_n inside the margin, but on the correct side of the decision boundary
 - $\triangleright \xi_n = 1$ if \mathbf{x}_n is on the decision boundary
 - $\geq \xi_n > 1$ if \mathbf{x}_n is wrongly classified
- The value of ξ_n indicates the degree of misclassification

Soft margin optimization: Primal form

Hard margin optimization for linearly separable cases

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2$$
subject to $t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) \geqslant 1, \qquad n = 1, \dots, N.$

Soft margin optimization for general cases

$$\begin{array}{ll} \underset{\mathbf{w},\,b,\,\{\xi_n\}}{\text{arg min}} & C\sum_{n=1}^N \xi_n + \frac{1}{2}\|\mathbf{w}\|^2 \\ \text{subject to} & t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n & n=1,\dots,N \\ & \xi_n \geqslant 0 & n=1,\dots,N \end{array}$$

where C is a positive constant

Lagrangian function

Primal form

arg min
$$C\sum_{n=1}^N \xi_n + \frac{1}{2}\|\mathbf{w}\|^2$$
 subject to $t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n$ $n=1,\ldots,N$ $\xi_n \geqslant 0$ $n=1,\ldots,N$

ullet Lagrangian function with Lagrange multipliers $\{a_n\}$ and $\{\,\mu_{\,\,n}\}$

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n \left\{ t_n y(\mathbf{x}_n) - 1 + \xi_n \right\} - \sum_{n=1}^{N} \mu_n \xi_n$$

Lagrangian function

Lagrangian function

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n \{t_n y(\mathbf{x}_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n$$

Some constraints

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} a_n t_n = 0$$

$$\frac{\partial L}{\partial \xi_n} = 0 \quad \Rightarrow \quad a_n = C - \mu_n.$$

Soft margin optimization: Dual form

Dual form

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to
$$0 \le a_n \le C$$
 $n = 1, ..., N$
$$\sum_{n=1}^{N} a_n t_n = 0$$

 This optimization problem can be solved by quadratic programming

Optimizing b via KKT conditions

KKT conditions:

$$a_n \geqslant 0$$

$$t_n y(\mathbf{x}_n) - 1 + \xi_n \geqslant 0$$

$$a_n (t_n y(\mathbf{x}_n) - 1 + \xi_n) = 0$$

$$\mu_n \geqslant 0$$

$$\xi_n \geqslant 0$$

$$\mu_n \xi_n = 0$$

• Consider a training data point \mathbf{x}_n with $0 < a_n < C$.

$$t_n y(\mathbf{x}_n) = 1 - \xi_n$$

$$\succ \xi_n = 0$$

$$t_n y(\mathbf{x}_n) = 1$$

$$\frac{\partial L}{\partial \xi_n} = 0 \quad \Rightarrow \quad a_n = C - \mu_n$$

Optimizing b via KKT conditions

• Consider a training data point \mathbf{x}_n with $0 < a_n < C$

$$ightharpoonup t_n y(\mathbf{x}_n) = 1$$
 , i.e.,

$$t_n \left(\sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b \right) = 1$$

A numerically stable solution

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

- \triangleright *M*: the set of indices of data points having $0 < a_n < C$
- \triangleright S: the set of indices of the support vectors

An example

Optimization solvers for SVMs

- Quadratic programming
 - Many off-the-shelf solvers
 - Often infeasible due to the demanding computations and memory requirement
- Chunking (Vapnik, 1982) & protected conjugate gradients (Burges, 1998)
 - Try to remove the rows and columns of the kernel matrix that correspond to zero-valued Lagrange multipliers
- Decomposition methods (Osuna et al., 1996)
 - > Solve a series of smaller quadratic programming problems
- Sequential minimal optimization (SMO) (Platt, 1999)
 - Consider two Lagrange multipliers at a time
 - ➤ Iterative processing: At each iteration, choose a pair of Lagrange multipliers and update their values

A linear model for classification or regression

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n) - t_n \right\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \quad \text{where } \lambda \ge 0$$

 The dual representation of the linear model: a linear combination of training data

$$\mathbf{w} = \sum_{n=1}^{N} a_n \boldsymbol{\phi}(\mathbf{x}_n) = \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{a}$$

The optimization variables change from w to a

- Why dual representation?
- The decision function is calculated in terms of kernel functions

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \mathbf{a}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\phi}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathrm{T}} \left(\mathbf{K} + \lambda \mathbf{I}_{N} \right)^{-1} \mathbf{t}$$

A kernel function

$$K_{nm} = \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$$

- Compute the inner product between two data points in a very high (even infinite) dimensional feature space
- Access data points in the low-dimensional input space
- \triangleright Allow the PR or ML algorithms to work on a high dimensional feature space without explicitly computing $\phi(\mathbf{x})$

Polynomial kernel

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\mathrm{T}}\mathbf{x}' + c)^{M}$$

- \triangleright where M is the degree and c is a positive constant
- Gaussian (RBF) kernel

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\|\mathbf{x} - \mathbf{x}'\|^2 / 2\sigma^2\right)$$

- \triangleright where σ^2 is a positive constant
- Sigmoidal kernel

围色主涌 大些

$$k(\mathbf{x}, \mathbf{x}') = \tanh\left(a\mathbf{x}^{\mathrm{T}}\mathbf{x}' + b\right)$$

- \triangleright where a and b are two constants
- The values of these hyperparameters are often determined by using cross-validation

- SVMs a maximum margin classifier
- The primal form of the optimization problem

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{w}||^2$$
subject to $t_n \left(\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n) + b \right) \geqslant 1, \qquad n = 1, \dots, N.$

Using Lagrange multipliers, we obtain its dual form

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \boxed{k(\mathbf{x}_n, \mathbf{x}_m)}$$
 subject to $a_n \geqslant 0$, $n = 1, \dots, N$, $\sum_{n=1}^{N} a_n t_n = 0$

- Soft margin extension where slack variables are included
- Primal form

$$\underset{\mathbf{w}, b, \{\xi_n\}}{\text{arg min}} \quad C \sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$$

subject to
$$t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n$$
 $n = 1, \dots, N$ $\xi_n \geqslant 0$ $n = 1, \dots, N$

Dual form

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to $0 \le a_n \le C$ n = 1, ..., N

$$\sum_{n=1}^{N} a_n t_n = 0$$

- We use quadratic programming or SMO to optimize $\{a_n\}$
- We exploit KKT conditions to determine the value of b
- For a test point \mathbf{x} , we classify it using the decision function

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

Outline

- Dual representations
- Constructing kernels
- Support vector machines for classification
 - Maximum margin classifier
 - Overlapping class distributions
 - ➤ Multi-class SVMs
 - SVMs vs. logistic regression
- Support vector machines for regression

Multiclass SVMs

- Support vector machine is fundamentally a two-class classifier
- In practice, we often deal with multi-class (K > 2) classification tasks
- Additional mechanism is required to combine multiple twoclass SVM classifiers to handle multi-class classification
 - ➤ One-versus-the-rest
 - One-versus-one
 - DAGSVM (directed acyclic graph SVM)
 - > ECOC (error-correcting output codes)

One-versus-the-rest

- Construct K two-class SVM classifiers, where K is the number of classes
- The kth SVM classifier $y_k(\mathbf{x})$ is trained by using data from class C_k as the positive examples and the data from the remaining K-1 classes as the negative data, for k=1,2,...,K
- Make the prediction for an input data point x by

$$y(\mathbf{x}) = \max_{k} y_k(\mathbf{x})$$

- Simple and intuitive
- Classifiers are trained separately, but comparing their decision values is used in prediction
- Imbalanced training data when training each classifier

One-versus-one

- Train an SVM classifier for each pair of classes i and j
 - \triangleright Totally, K(K-1)/2 SVM classifiers are trained
- Classify a test point according to which class has the highest number of votes
- Simple. No issue regarding imbalanced training data
- Decision ambiguities: Two or multiple classes get the same number of votes
- Computational issue: K(K-1)/2 SVM classifiers

DAGSVM (directed acyclic graph SVM)

- Train an SVM classifier for each pair of classes
 - \triangleright Totally, K(K-1)/2 SVM classifiers are trained
- Organize these classifiers into a directed acyclic graph (a tree)
- Classify a test point by going through from the root to a leaf
- DAGSVM is more efficient than one-versus-one during testing

Platt et al. NIPS'00

ECOC (error-correcting output codes)

- Multi-class classification is carried out based on errorcorrecting output codes
- Partition K classes into two disjoint sets. Train an SVM classifier by using data from one set as positive data and the rest as the negative data
- Repeat the above procedure n times
 - n SVM classifiers are trained
- Apply the n SVM classifiers to a test point
- Assign this test point to the class with the smallest Hamming distance

ECOC (error-correcting output codes)

- An example of K = 5 and n = 15
- A code matrix of size K by n
 - > Each column represents a class partition
 - > Each row is the code of the corresponding class

Outline

- Dual representations
- Constructing kernels
- Support vector machines for classification
 - Maximum margin classifier
 - Overlapping class distributions
 - Multi-class SVMs
 - > SVMs vs. logistic regression
- Support vector machines for regression

Hinge error

The primal form of soft margin SVMs

arg min
$$C\sum_{n=1}^N \xi_n + \frac{1}{2}\|\mathbf{w}\|^2$$
 subject to $t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n$ $n=1,\ldots,N$ $\xi_n \geqslant 0$ $n=1,\ldots,N$

- Two cases for a training data point \mathbf{x}_n
 - ightharpoonup Case 1: $t_n y(\mathbf{x}_n) \ge 1 \implies \xi_n = 0$
 - ightharpoonup Case 2: $t_n y(\mathbf{x}_n) < 1 \implies \xi_n = 1 t_n y(\mathbf{x}_n)$
 - \triangleright For simplicity, y_n denotes $y(\mathbf{x}_n)$
- Hinge error: $E_{SV}(y_n t_n) = [1 y_n t_n]_+$
 - \triangleright $[\cdot]_+$ returns the positive part

Hinge error

The primal form of soft margin SVMs

arg min
$$C\sum_{n=1}^N \xi_n + \frac{1}{2}\|\mathbf{w}\|^2$$
 subject to $t_n y(\mathbf{x}_n) \geqslant 1 - \xi_n$ $n=1,\ldots,N$ $\xi_n \geqslant 0$ $n=1,\ldots,N$

An equivalent objective based on Hinge loss

$$\sum_{n=1}^{N} E_{SV}(y_n t_n) + \lambda ||\mathbf{w}||^2$$

 \triangleright where $\lambda = (2C)^{-1}$

Logistic regression

 Logistic regression estimates posterior probability for two-class classification [page 57 of slides "linear model for classification"]

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$
$$= \frac{1}{1 + \exp(-y)} = \sigma(y)$$

- \triangleright where $y = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$
- $\triangleright \sigma$ is the logistic sigmoid function

$$\sigma(y) = \frac{1}{1 + \exp(-y)}$$

ightharpoonup A property: $\sigma(-y) = 1 - \sigma(y)$

Logistic regression

Negative log likelihood is used during training

$$-\ln \prod_{n=1}^{N} \sigma(y_n t_n) = -\sum_{n=1}^{N} \ln \sigma(y_n t_n)$$

- \blacktriangleright Note that for comparison with SVMs, we use target labels $t\in\{-1,1\}$
- Taking the negative log likelihood with a quadratic regularizer, gives the form

$$\sum_{n=1}^{N} E_{LR}(y_n t_n) + \lambda ||\mathbf{w}||^2$$

where

$$E_{LR}(yt) = \ln\left(1 + \exp(-yt)\right)$$

SVMs vs. Logistic regression

SVMs

$$\sum_{n=1}^{N} E_{SV}(y_n t_n) + \lambda \|\mathbf{w}\|^2$$

where

$$E_{\rm SV}(y_n t_n) = [1 - y_n t_n]_+$$

Logistic regression

$$\sum_{n=1}^{N} E_{LR}(y_n t_n) + \lambda ||\mathbf{w}||^2$$

where

$$E_{LR}(yt) = \ln\left(1 + \exp(-yt)\right)$$

SVMs vs. Logistic regression

- Black curve
 - misclassification error
- Red curve
 - Logistic regression error

$$E_{LR}(yt) = \ln\left(1 + \exp(-yt)\right)$$

- Blue curve
 - Hinge error

$$E_{SV}(y_n t_n) = [1 - y_n t_n]_+$$

Outline

- Dual representations
- Constructing kernels
- Support vector machines for classification
- Support vector machines for regression

Regression

- Training data:
 - \triangleright N training data points: $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$
 - \triangleright The corresponding target values: $t_1, t_2, ..., t_N$
- In simple linear regression, we minimize a regularized error function given by

$$\frac{1}{2} \sum_{n=1}^{N} \{y_n - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

- Sum-of-squared error
- A quadratic regaularizer

Error function in support vector regression

• In support vector regression (SVR), we define an ε -insensitive error function, which gives zero error if the absolute difference between the prediction $y(\mathbf{x})$ and the target t is less than ε where $\varepsilon > 0$

$$E_{\epsilon}(y(\mathbf{x}) - t) = \begin{cases} 0, & \text{if } |y(\mathbf{x}) - t| < \epsilon; \\ |y(\mathbf{x}) - t| - \epsilon, & \text{otherwise} \end{cases}$$

Green line: quadratic error

Red line: ε -insensitive error

Objective function for SVR

Objective function in SVR

$$C\sum_{n=1}^{N} E_{\epsilon}(y(\mathbf{x}_n) - t_n) + \frac{1}{2} ||\mathbf{w}||^2$$

- \triangleright where decision value $y(\mathbf{x})$ is given by $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$
- > The first term in the objective minimizes the regression error
- ➤ The second term is a quadratic term for regularization, which helps maximize the margin in classification
- $\triangleright C$ is a positive constant

How to re-express the ε -insensitive error?

• In support vector classification, a constraint is associated with a training data \mathbf{x}_n , and a slack variable is added for soft margin

$$t_n y(\mathbf{x}_n) \ge 1 - \xi_n$$

ε-insensitive error function

$$E_{\epsilon}(y(\mathbf{x}) - t) = \begin{cases} 0, & \text{if } |y(\mathbf{x}) - t| < \epsilon; \\ |y(\mathbf{x}) - t| - \epsilon, & \text{otherwise} \end{cases}$$

• For \mathbf{x}_n , removing absolute value operator yields two constraints

$$y_n - \epsilon \leqslant t_n \leqslant y_n + \epsilon$$

• Two slack variables ξ_n and $\hat{\xi}_n$ are added for soft margin

$$t_n \leqslant y(\mathbf{x}_n) + \epsilon + \xi_n$$

 $t_n \geqslant y(\mathbf{x}_n) - \epsilon - \widehat{\xi}_n.$

Optimization problem for SVR

Original objective:

$$C\sum_{n=1}^{N} E_{\epsilon}(y(\mathbf{x}_n) - t_n) + \frac{1}{2} ||\mathbf{w}||^2$$

Primal form of SVR

$$C\sum_{n=1}^{N}(\xi_{n}+\widehat{\xi}_{n})+\frac{1}{2}\|\mathbf{w}\|^{2}$$
 subject to $t_{n}\leqslant y(\mathbf{x}_{n})+\epsilon+\xi_{n} \qquad n=1,\ldots,N$
$$t_{n}\geqslant y(\mathbf{x}_{n})-\epsilon-\widehat{\xi}_{n} \qquad n=1,\ldots,N$$

$$\xi_{n}\geqslant 0 \quad \widehat{\xi}_{n}\geqslant 0 \qquad n=1,\ldots,N$$

Lagrangian function for SVR

Primal form

$$C\sum_{n=1}^{N}(\xi_{n}+\widehat{\xi}_{n})+\frac{1}{2}\|\mathbf{w}\|^{2}$$
 subject to $t_{n}\leqslant y(\mathbf{x}_{n})+\epsilon+\xi_{n} \qquad n=1,\ldots,N$
$$t_{n}\geqslant y(\mathbf{x}_{n})-\epsilon-\widehat{\xi}_{n} \qquad n=1,\ldots,N$$

$$\xi_{n}\geqslant 0 \quad \widehat{\xi}_{n}\geqslant 0 \qquad n=1,\ldots,N$$

• Lagrangian function with Lagrange multipliers $\{a_n\}$, $\{\hat{a}_n\}$, $\{\mu_n\}$, and $\{\hat{\mu}_n\}$

$$L = C \sum_{n=1}^{N} (\xi_n + \widehat{\xi}_n) + \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} (\mu_n \xi_n + \widehat{\mu}_n \widehat{\xi}_n)$$

$$-\sum_{n=1}^{N} a_n(\epsilon + \xi_n + y_n - t_n) - \sum_{n=1}^{N} \widehat{a}_n(\epsilon + \widehat{\xi}_n - y_n + t_n)$$

Lagrangian function for SVR

Lagrangian function

$$L = C \sum_{n=1}^{N} (\xi_n + \widehat{\xi}_n) + \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} (\mu_n \xi_n + \widehat{\mu}_n \widehat{\xi}_n)$$
$$- \sum_{n=1}^{N} a_n (\epsilon + \xi_n + y_n - t_n) - \sum_{n=1}^{N} \widehat{a}_n (\epsilon + \widehat{\xi}_n - y_n + t_n)$$

Some constraints

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{n=1}^{N} (a_n - \hat{a}_n) \phi(\mathbf{x}_n) \qquad \frac{\partial L}{\partial \xi_n} = 0 \quad \Rightarrow \quad a_n + \mu_n = C$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} (a_n - \hat{a}_n) = 0 \qquad \qquad \frac{\partial L}{\partial \hat{\xi}_n} = 0 \quad \Rightarrow \quad \hat{a}_n + \hat{\mu}_n = C$$

Dual form for SVR

Dual form for SVR

$$\widetilde{L}(\mathbf{a},\widehat{\mathbf{a}}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (a_n - \widehat{a}_n)(a_m - \widehat{a}_m)k(\mathbf{x}_n, \mathbf{x}_m)$$

$$-\epsilon \sum_{n=1}^{N} (a_n + \widehat{a}_n) + \sum_{n=1}^{N} (a_n - \widehat{a}_n)t_n$$
subject to $0 \leqslant a_n \leqslant C$ $n = 1, \dots, N$

$$0 \leqslant \widehat{a}_n \leqslant C$$
 $n = 1, \dots, N$

$$\sum_{n=1}^{N} (a_n - \widehat{a}_n) = 0$$

 This optimization problem can be solved by quadratic programming

Decision function of SVR

The decision function of SVR

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) + b$$

The dual representation of weight vector w

$$\mathbf{w} = \sum_{n=1}^{N} (a_n - \widehat{a}_n) \boldsymbol{\phi}(\mathbf{x}_n)$$

The prediction for a new test point x

$$y(\mathbf{x}) = \sum_{n=1}^{N} (a_n - \widehat{a}_n)k(\mathbf{x}, \mathbf{x}_n) + b$$

How to determine the value of b?

Optimizing b via KKT conditions

The corresponding KKT conditions of SVR

$$a_n(\epsilon + \xi_n + y_n - t_n) = 0$$

$$\widehat{a}_n(\epsilon + \widehat{\xi}_n - y_n + t_n) = 0$$

$$(C - a_n)\xi_n = 0$$

$$(C - \widehat{a}_n)\widehat{\xi}_n = 0$$

- Consider a training data point \mathbf{x}_n with $0 < a_n < C$
 - ightharpoonup According to $(C-a_n)\xi_n=0$, it implies $\xi_n=0$
 - ightharpoonup According to $a_n(\epsilon+\xi_n+y_n-t_n)=0$, we have $\epsilon+y_n-t_n=0$

$$b = t_n - \epsilon - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)$$
$$= t_n - \epsilon - \sum_{m=1}^{N} (a_m - \widehat{a}_m) k(\mathbf{x}_n, \mathbf{x}_m)$$

Optimizing b via KKT conditions

- For each training data ${\bf x}_n$ with $0 < a_n < C$ or $0 < \widehat{a}_n < C$, we can estimate the value of b
- In practice, it is better to average over all such estimates of b

An example

Summary of SVR

- 1. Choose a kernel function
- 2. Solve the Lagrange multipliers $\{a_n\}$ and $\{\hat{a}_n\}$ in the dual form of SVR by using quadratic programming or SMO

$$\widetilde{L}(\mathbf{a},\widehat{\mathbf{a}}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (a_n - \widehat{a}_n)(a_m - \widehat{a}_m)k(\mathbf{x}_n, \mathbf{x}_m)$$

$$-\epsilon \sum_{n=1}^{N} (a_n + \widehat{a}_n) + \sum_{n=1}^{N} (a_n - \widehat{a}_n)t_n$$
subject to $0 \leqslant a_n \leqslant C$ $n = 1, \dots, N$

$$0 \leqslant \widehat{a}_n \leqslant C$$
 $n = 1, \dots, N$

$$\sum_{n=1}^{N} (a_n - \widehat{a}_n) = 0$$

Summary of SVR

- 3. Optimize b via KKT conditions
- 4. Make a prediction for a testing data point x via

$$y(\mathbf{x}) = \sum_{n=1}^{N} (a_n - \widehat{a}_n)k(\mathbf{x}, \mathbf{x}_n) + b$$

References

- Dual representations
 - Chapter 6.1 in the PRML textbook
- Constructing kernels
 - Chapter 6.2 in the PRML textbook
- Support vector machines for classification
 - > Chapters 7.1, 7.1.1, 7.1.2, and 7.1.3 in the PRML textbook
- Support vector machines for regression
 - Chapter 7.1.4 in the PRML textbook
- Lagrange multipliers and KKT conditions (optional)
 - Appendix E in the PRML textbook

Thank You for Your Attention!

Yen-Yu Lin (林彥宇)

Email: lin@cs.nycu.edu.tw

URL: https://www.cs.nycu.edu.tw/members/detail/lin

