

Михаил Васильев

Deep learning engineer

Опыт

2023—н.в. **Старший специалист по машинному обучению**, *Маквес Групп*, Москва

Проект: создание комплексного решения для обеспечения безопасности в корпоративной сети на основе неструктурированных данных.

Инструменты: python, transformers, EfficientNet, MobileNet, YOLO, PyOD, pandas, sklearn, pytorch, lightning, numpy, matplotlib, plotly, huggingface, onnx, fastapi, uvicorn, pyinstaller, pywin32, optimum, airflow, mlflow, cvat, natasha, deeppavlov, BERT, whisper, Ollama.

- реализовал нейросетевой модуль для поиска нарушений закона о персональных данных, количество детектируемых классов увеличено с 14 до 36, ассигасу top 1 увеличена до 98.9
- о подготовил модуль для анализа содержимого отсканированных документов: поиск текста, таблиц, печатей, подписей и корпоративных бланков, количество классов увеличено с 5 до 19, mAP@.5 улучшен с .89 до .94
- реализовал поиск чувствительных данных в текстовых файлах, добавил модуль NER
- о создал ансамбль алгоритмов для поиска аномалий на табличных данных, в том числе на временных рядах
- 🔾 реализовал поиск чувствительных данных в аудио-файлах
- собрал и организовал разметку 8 датасетов для задач классификации и object detection

Пет-проекты

2024 **Тим-лид и технический эксперт**, *CheckDocAI*, Москва Проект: Телеграм-бот с ИИ модулем для контроля качества оформления документов для ООО «Гольфстрим»

Инструменты: aiogram, yolo, onnx, albumentations, cvat

- руководил командой из двух дата-сайнтистов и бекендразработчика
- о проект завершён и внедрён в коммерческую эксплуатацию
- ежемесячная экономия 40 человеко-часов

Хакатоны

2024 VK HSE Data Hack, 1 место, Москва

Хакатон по классификации новостных статей на 21 класс. В нашем решении комбинируются результаты работы небольшого классификатора на базе трансформерной архитектуры и предсказания LLM

Инструменты: transformers, Saiga3 8b, taiga dataset, streamlit

- о обогатил датасет
- о подобрал zero-shot classification модель
- о обучил модель-классификатор
- о обеспечил координацию работы команды
- о презентовал результаты

Выступления

25.06.2024 Опыт обучения и применения нейросетей в качестве модуля российской DCAP системы, Moscow Python Meetup, Москва, Компания Makves (входит в группу компаний «Гарда») разрабатывает российскую DCAP (data-centric audit and protection) систему для защиты корпоративных данных. Для анализа неструктурированных данных необходимо применять нейросети. В докладе я рассказал о проблемах, с которыми мы столкнулись при создании нейросетей, от этапа сбора и разметки данных и до создания нескольких микросервисов.

Образование

- 2024 **Анализ данных на языке SQL**, *УЦ «Специалист»*, Москва, повышение квалификации
- 2022—2023 **Computer Vision Engineer**, *Deep Learning School ΦΠΜИ МΦΤИ*, Москва, профессиональная переподготовка
 - 2022 **Специалист по Data Science**, *Яндекс Практикум*, Москва, профессиональная переподготовка
- 2021—2022 **Введение в искусственный интеллект и нейросети для авиационных приложений**, *МАИ*, Москва, повышение квалификации
- 2005—2008 **Перевод и переводоведение**, *МАИ*, Москва, специалитет
- 2003—2009 Авиационная и ракетно-космическая теплотехника, MAU, Москва, специалитет

Языки

 Русский
 Продной

 Английский
 В2

 Немецкий
 В2

 Эсперанто
 В2

Навыки и технологии

 Deep Learning 	Python	Pytorch
o NLP, NER	o SQL	 Lightning
 Computer 	Linux	 Pandas
Vision	 Docker 	NumPy
 Speech 	o YOLO	 Sklearn
Recognition	 Natasha 	FastAPI
 Machine 	o ONNX	uvicorn
learning	 HuggingFace 	o PyOD
 Anomaly 	 Ollama 	PySAD
Detection	 DeepPavlov 	 Optimum
 Data analysis 	AirFlow	o pywin32
o Data	MLFlow	 CatBoost
visualisation	o CVAT	 XGBoost
 Statistics 	Plotly	 PostgreSQL