Finite State Automata

Finite-State Automata

- An RE is one way of describing a FSA.
- An RE is one way of characterizing a particular kind of formal language called a **regular language**.

REGULAR EXPRESSION	REGULAR LANGUAGES
(a.b*)	{a, ab, abb, abbb, abbbb,}
V*.C*	{ε, a ,aou, aiou, b, abcd}

FSA

- A finite automaton is formally defined by the following five parameters:
 - Q: a finite set of N states $q_0, q_1, ..., q_N$
 - Σ : a finite input alphabet of symbols
 - $-q_0$: the start state
 - F: the set of final states, $F \subseteq Q$
 - $\delta(q,i)$: the transition function or transition matrix between states. Given a state $q \in Q$ and input symbol $i \in \Sigma$, $\delta(q,i)$ returns a new state $q' \in Q$. δ is thus a relation from $Q \times \Sigma$ to Q;

FSA

- FSA is a 5-tuple consisting of
 - Q: set of **states** {q0,q1,q2,q3,q4}
 - ◆ ∑: an **alphabet** of symbols {a,b,!}
 - q0: Starting/Initial state
 - F: a set of final states in Q {q4}
 - δ(q,i): a transition function mapping Q x Σ to Q

Finite-State Automata Formal Languages

- A **formal language** is a set of strings, each string composed of symbols from a finite symbol-set call an **alphabet**.
- The usefulness of an automaton for defining a language is that it can express an infinite set in a closed form.
- A formal language may bear no resemblance at all to a real language (natural language), but
 - We often use a formal language to model part of a natural language, such as parts of the phonology, morphology, or syntax.

Determinism and Non-Determinism

- Deterministic: There is at most one transition that can be taken given a current state and input symbol.
- Non-deterministic: There is a choice of several transitions that can be taken given a current state and input symbol. (The machine doesn't specify how to make the choice.)

FSA:

- It recognize the regular languages represented by regular expressions
 - SheepTalk: /baa+!/

baa!
baaa!
baaaa!
baaaaa
!

	b	a	a a	!
$\overline{-q_0}$	q_1	q_2	q_3	q_4

q_0							
Ş	a	b	a	!	b		Z

,	Input		
State	b	а	!
0	1	0	0
1	Ø	2	0
2	Ø	3	0
3	0	3	4
4:	Ø	0	0

The transition-state table

FSA

FSA

FSA: Non-Deterministic FSAs

NFSA

NFSA

		Input			
State	b	а	!	3	
0	1	Ø	Ø	Ø	
1	Ø	2	Ø	Ø	
2	Ø	2,3	Ø	Ø	
3	Ø	Ø	4	Ø	
4	Ø	Ø	Ø	Ø	

* 13

NFSA

- Another technique
 - Epsilon transitions
 - these transitions do not examine or advance the tape during recognition

Formalities

Deterministic Finite Accepter (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q : set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F: set of final states

Input Aplhabet

 \sum

$$\Sigma = \{a, b\}$$

Set of States

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State

 q_0

••

Set of Final States

$$F = \{q_4\}$$

Transition Function

$$\delta: Q \times \Sigma \to Q$$

*

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function

δ	а	Ь
q_0	q_1	q ₅
q_1	q ₅	92
<i>q</i> ₂	q ₂	<i>q</i> ₃
<i>q</i> ₃	<i>q</i> ₄	q ₅
q_4	q ₅	q ₅
<i>q</i> ₅	<i>q</i> ₅	q ₅

.

Extended Transition Function (Reads the entire string)

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Example

$$L(M) = \{abba\}$$

Another Example

$$L(M) = \{ab, abba\}$$

M

L(M)= { all substrings with prefix **ab** }

FSA & RE

 $X \rightarrow (A \mid B) G H (P \mid Q)$

FSA & RE

Wordlist

clear
clever
ear
ever
fat
father

Network

34

Ref: L. Karttunen