

"Who experiences large model decay and why?"

A Hierarchical Framework for Diagnosing Heterogeneous Performance Drift

Harvineet Singh¹, Fan Xia¹, Alexej Gossmann², Andrew Chuang¹, Julian Hong¹, Jean Feng¹ ¹ University of California, San Francisco, ² Independent

Motivation

 To understand differences in performance between a source domain (D=0) and target domain (D=1), existing methods decompose the average performance difference into contributions from covariate vs outcome shifts:

outcome shifts:
$$\mathbb{E}_1[\mathcal{E}(Y,f(X))] - \mathbb{E}_0[\mathcal{E}(Y,f(X))]$$

$$= \mathbb{E}_1[Z_0(X)] - \mathbb{E}_0[Z_0(X)]$$

$$+ \mathbb{E}_1[Z_1(X)] - \mathbb{E}_1[Z_0(X)]$$

$$\mathbb{E}_1[\mathscr{C}(Y,f(X))] - \mathbb{E}_0[\mathscr{C}(Y,f(X))]$$

where $Z_D(X) = \mathbb{E}_D[\mathscr{C}(Y,f(X)) | X]$.

• However, performance differences can vary significantly across subgroups.

Key contributions

- To help model developers better diagnose and mitigate large performance gaps, this work develops SHIFT, a hierarchical hypothesis testing framework that answers:
 - 1. (Who) Have covariate or outcome shifts led to unacceptably worse performance in any meaningfully large subgroup?
- 2. (Why) If so, can these performance drops be explained by a sparse subset of variables in X?
- Unlike existing methods, SHIFT
- Is nonparametric
- Provides valid uncertainty quantification, even in settings with potentially limited data
- Does not require detailed causal knowledge

SHIFT: Subgroup-scanning Hierarchical Inference Framework for performance drifT

Aggregate Covariate Shift Hypothesis

 H_0 : For all subgroups A with size $\geq \epsilon$, the performance drift in A due to the aggregate covariate shift is no larger than pre-specified tolerance $\tau \geq 0$, i.e.

 $\mathbb{E}_{1}[Z_{0}(X) | X \in A] - \mathbb{E}_{0}[Z_{0}(X) | X \in A] \leq \tau.$

X_{ς} -specific Covariate Shift Hypothesis

 H_0 : For all subgroups A with size $\geq \epsilon$, the candidate covariate shift solely with respect to variable subset X_s explains the performance change in A, i.e.

 $\mathbb{E}_1[Z_0(X) \mid X \in A] - \mathbb{E}_s[Z_0(X) \mid X \in A] \leq \tau.$

Shift Hypothesis Aggregate (

 H_0 : For all subgroups A with size $\geq \epsilon$, the performance drift in A due to the aggregate is no larger than pre-specified tolerance $\tau \geq 0$, i.e.

 $\mathbb{E}_1[Z_1(X) | X \in A] - \mathbb{E}_1[Z_0(X) | X \in A] \leq \tau.$

$X_{\rm c}$ -specific (**Shift Hypothesis**

 H_0 : For all subgroups A with size $\geq \epsilon$, the candidate o me shift solely with respect to explains the performance change in A, i.e.

 $\mathbb{E}_1[Z_1(X) \mid X \in A] - \mathbb{E}_1[Z_s(X) \mid X \in A] \leq \tau.$

SHIFT step-by-step

Step 1. Split data into train vs test:

Train		Test
Nuisance Parameters	Candidate subgroups	Test statistic
$\hat{Z}_0, \hat{Z}_1, \hat{Z}_S, \hat{\pi}, \hat{\pi}_S$	$\hat{A}_{agg}, \hat{A}_{s}$	e.g. $E[(\mathcal{E} - Z_0(X) - \tau)1\{X \in \hat{A}\}]$

Step 2. Estimate nuisance parameters (outcome and density ratio models) and identify candidate subgroups using ML.

Step 3. Construct test statistics using double-debiased ML. Obtain p-values using multiplier bootstrap.

SHIFT flags aggregate tests that are rejected to indicate a subgroup has been detected and flags X_{c} -specific tests that are not rejected as potential explanations.

Experiment: Diagnosing a readmission prediction model

. The views presented in this work are solely the responsibility of the author(s) and do not necessarily represent the views of the PCORI®, its Board of Governors, or Methodology Committee.