Enhancing human navigation ability using an active wearable exoskeleton

Scan for a video demo

^{1,2}Carlos Carrasquillo, ^{1,2}Aakash Bajpai, ¹Divya Iyengar, ¹Killian Collins, ^{1,2}Anirban Mazumdar, ^{1,2}Aaron Young ¹George W. Woodruff School of Mechanical Engineering, ²Institute for Robotics and Intelligent Machines

Goal of This Project

How can we promote safe navigation when visibility is low?

- Visibility may be impaired by dust, smoke, dense fog, or poor eyesight.
- Existing tactile and auditory devices require single-purpose hardware.

Hypothesis: Tactile feedback from an active exoskeleton can improve navigation ability compared to vision alone.

How the Controller Works

Experiment

- N = 10
- Performed in virtual reality
- 7 conditions, 16 levels/condition
- 3 obstacle danger levels, d

Results

Collisions Collisions were

significantly reduced with exo in all visibilities except clear.

exo on exo off

Health Metric

Performance with exo on was significantly better in all visibilities except clear.

distance to obstacle *k*

x (m)

AB19

Level 34

Clear

Sample Trials

exo on

exo off

Blind

Obstacle Danger Levels

mild

Decreased Visibility

References & Acknowledgements