Pumping Lemma - Slide

Gabriel Rovesti

Testo degli Esercizi

- 1. $L_{3n} = \{ 1^{3n+2} \mid n \ge 0 \}$: stabilire se è regolare.
- 2. $L_{mn} = \{ 0^n 1^m 0^n \mid m+n > 0 \}$: stabilire se è regolare.
- 3. $L_{mnp} = \{ 0^n 1^m 0^p \mid m+n+p > 0 \}$: stabilire se è regolare.
- 4. $L_{2ab} = \{ w \in \{a, b\}^* \mid \#a(w) = 2 \times \#b(w) \}$: stabilire se è regolare.

Soluzioni

1)
$$L_{3n} = \{ 1^{3n+2} \mid n \ge 0 \}$$

Soluzione

Osserviamo che il linguaggio L_{3n} è:

$$L_{3n} = \{1^2, 1^5, 1^8, 1^{11}, \dots\},\$$

cioè tutte le stringhe di 1 la cui lunghezza è congruente a 2 modulo 3.

Dimostrazione di regolarità: Possiamo costruire un automa a stati finiti (anche deterministico) che lavora sui resti mod 3 della lunghezza della stringa letta. In particolare, bastano 3 stati per ricordare il resto. Lo stato finale sarà quello associato al resto "2". Ad esempio:

- Stato q_0 : resto = 0 (iniziale)
- Stato q_1 : resto = 1
- Stato q_2 : resto = 2 (finale)

Quando leggiamo un simbolo "1", passiamo da q_0 a q_1 , da q_1 a q_2 , da q_2 a q_0 ; così ciclicamente. Lo stato finale è q_2 , giacché accettiamo solo se la lunghezza totale è 2 (mod 3). L'insieme di tali stringhe è quindi regolare.

2) $L_{mn} = \{ 0^n 1^m 0^n \mid m+n > 0 \}$

Soluzione

Questo linguaggio contiene stringhe della forma "un blocco di 0, poi un blocco di 1, poi un blocco di 0" con la condizione che il numero di 0 nel primo blocco sia uguale a quello del terzo blocco. Un tipico esempio: $0^3 1^5 0^3$.

Intuizione: riconoscere l'uguaglianza di due blocchi di 0 separati da un certo numero (qualunque) di 1 non è possibile con un automa a stati finiti, perché per memorizzare quanti 0 vanno poi "riconfrontati" successivamente servirebbe memoria illimitata. Ciò suggerisce che L_{mn} è **non regolare**.

Dimostrazione (Pumping Lemma):

- 1. Supponiamo, per assurdo, che L_{mn} sia regolare. Sia p il pumping length.
- 2. Consideriamo la stringa $s = 0^p 1^0 0^p = 0^p 0^p$ (due blocchi di 0 lunghi p). Tale stringa è in L_{mn} , ed ha lunghezza $2p \ge p$.
- 3. Dividiamo s in xyz con $|xy| \le p$, |y| > 0. La parte y conterrà solo 0 dal primo blocco di zero (poiché $|xy| \le p$).
- 4. Se "pompiano" verso il basso (i=0) o verso l'alto (i>1), la parte y aggiunta o rimossa sbilancia il conteggio dei 0 nella prima porzione rispetto alla terza. In particolare, riducendo y (cioè rimuovendola) si ottiene un blocco iniziale di 0 più corto di quello finale, uscendo così da L_{mn} . Contraddizione.

Concludiamo che L_{mn} non è regolare.

3) $L_{mnp} = \{ 0^n 1^m 0^p \mid m+n+p > 0 \}$

Soluzione

Qui la stringa ha la forma: un blocco di 0, poi un blocco di 1, poi un blocco di 0, senza alcuna richiesta di uguaglianza o relazioni particolari. L'unica condizione è che non sia la stringa vuota (m+n+p>0 significa che almeno uno dei blocchi è di lunghezza positiva).

Verifica di regolarità: Si può costruire un NFA o un'espressione regolare. Ad esempio, consideriamo:

$$L_{mnp} = \{0^*1^*0^*\} \setminus \{\varepsilon\}.$$

Il linguaggio $0^*1^*0^*$ è sicuramente regolare (si tratta di un blocco di 0, poi un blocco di 1, poi un blocco di 0, inclusa la stringa vuota). $\{\varepsilon\}$ è anch'esso regolare, e i linguaggi regolari sono chiusi rispetto alla differenza. Quindi L_{mnp} è l'intersezione di $0^*1^*0^*$ con il compl. di $\{\varepsilon\}$, oppure semplicemente $0^*1^*0^*$ meno la vuota. Comunque, in qualunque modo lo si veda, è regolare.

Costruendo direttamente un automa, bastano 3 fasi: leggi 0 finché vuoi (stato 0), poi leggi 1 finché vuoi (stato 1), poi leggi 0 finché vuoi (stato 2). Per assicurarsi di non accettare la stringa vuota, imponiamo di passare almeno una volta a consumare qualche simbolo. In pratica, l'automa è banale e conferma la regolarità.

4) $L_{2ab} = \{ w \in \{a, b\}^* \mid \#a(w) = 2 \cdot \#b(w) \}$

Soluzione

Qui abbiamo la condizione che il numero di a nella stringa sia *esattamente* doppio del numero di b. Un automa a stati finiti non può tenere traccia di quest'uguaglianza (rapporti tra contatori illimitati) in modo finito.

Dimostrazione (Pumping Lemma):

- 1. Assumiamo che L_{2ab} sia regolare, con pumping length p.
- 2. Scegliamo una stringa s con #a(s) = 2p e #b(s) = p in cui tutti i a e b siano "gruppati" in modo da poter poi pompare. Per esempio:

$$s = a^p b^p a^p$$
,

che ha in totale 2p+p=3pa e b
. In tale stringa, #a=2pe #b=p, quind
i $s\in L_{2ab}.$

- 3. Dividiamo s = xyz con $|xy| \le p$, |y| > 0. Poiché $|xy| \le p$, la parte y contiene a (o comunque si concentra nella sezione iniziale di a).
- 4. Se "pompiano" la sottostringa y (sia rimuovendola che duplicandola), la quantità di a cambia, mentre il numero di b rimane invariato. Dunque $\#a \neq 2 \#b$ nella stringa pompata. Contraddizione.

Ne segue che L_{2ab} non è regolare.

Riassunto Finale:

- L_{3n} : Regolare (basta un DFA mod 3).
- L_{mn} : Non regolare (simile a $0^n 1^m 0^n$, si dimostra col Pumping Lemma).
- L_{mnp} : Regolare (forma 0*1*0*, eccetto la stringa vuota).
- L_{2ab} : Non regolare (il a = 2 b non è memorizzabile in modo finito).