Fórmulas de Estadística

Estadística Descriptiva

Tamaño muestral n número de individuos de la muestra.

Frecuencias

Frecuencia absoluta n_i .

Frecuencia relativa $f_i = n_i/n$.

Frec. absoluta acumulada $N_i = \sum_{k=0}^{i} n_i$.

Frec. relativa acumulada $F_i = N_i/n$.

Medidas de Representatividad

Media
$$\overline{x} = \frac{\sum x_i n_i}{n}$$
.

Mediana me Es el valor con frecuencia absoluta acumulada n/2, es decir, $N_{me} = n/2$.

Moda mo Es el valor con mayor frecuencia absoluta.

Medidas de Posición

cuartiles c_1, c_2, c_3 dividen la muestra en 4 partes iguales. Tienen frecuencias absolutas acumuladas $N_{c_1} = n/4, N_{c_2} = 2n/4 \text{ y } N_{c_3} = 3n/4 \text{ respecti-}$

Percenciltes p_1, p_2, \cdots, p_{99} dividen la distribución en 100 partes iguales. La frecuencia absoluta acumulada correspondiente a el percentil i es $N_{p_i} = \frac{i \cdot n}{100}$.

Medidas de Dispersión

Rango intercuartílico $RI = c_3 - c_1$.

Varianza
$$s^2 = \frac{\sum x_i^2 n_i}{n} - \overline{x}^2$$

Desviación típica $s = +\sqrt{s^2}$.

Coeficiente de variación $cv = \frac{s}{|\overline{x}|}$.

Medidas de Forma

Coeficiente de asimetría

$$g_1 = \frac{\sum (x_i - \overline{x})^3 f_i}{s^3}.$$

 $-g_1 = 0$ distribución simétrica.

 $-g_1 < 0$ distribución asimétrica a la izquierda.

 $-\ g_1>0$ distribución asimétrica a la derecha.

Coeficiente de apuntamiento

$$g_2 = \frac{\sum (x_i - \overline{x})^4 f_i}{s^4} - 3.$$

 $-g_2 = 0$ apuntamiento normal.

 $-g_2 < 0$ apuntamiento menor de lo normal.

 $-g_2 > 0$ apuntamiento mayor de lo normal.

Transformaciones Lineales

Propiedades de la transformación y = a + bx

1. $\overline{y} = a + b\overline{x}$.

2. $s_y = bs_x$.

Transformación de tipificación $y = \frac{x - \overline{x}}{\hat{x}}$.

Regresión y Correlación

Regresión

Covarianza $s_{xy} = \frac{\sum x_i y_j n_{ij}}{n} - \overline{xy}$.

Rectas de regresión

 $(y \text{ sobre } x) \ y = \overline{y} + \frac{s_{xy}}{s_x^2} (x - \overline{x}),$ (x sobre y) $x = \overline{x} + \frac{s_{xy}}{s_{xy}^2}(y - \overline{y}).$

Coeficientes de regresión

 $(y \text{ sobre } x) \ b_{yx} = \frac{s_{xy}}{s_x^2} \quad (x \text{ sobre } y) \ b_{xy} = \frac{s_{xy}}{s_x^2}$

Correlación

Coeficiente de determinación lineal

$$r^2 = \frac{s_{xy}^2}{s_x^2 s_y^2} \qquad 0 \le r^2 \le 1$$

 $-r^2 = 0$ no hay relación lineal. $-r^2 = 1$ relación lineal perfecta

$$r = \frac{s_{xy}}{s_x s_y}. \qquad -1 \le r \le 1$$

-r=0 no hay relación lineal.

-r = -1 relación lineal perfecta decreciente.

-r=1 relación lineal perfecta creciente.

Regresión no lineal

Modelo exponencial $y = e^{a+bx}$

Aplicar el logaritmo a la variable dependiente y calcular la recta $\log y = a + bx$.

Modelo logarítmico $y = a + b \log x$

Aplicar el logaritmo a la variable independiente y calcular la recta $y = a + b \log x$.

Relaciones entre atributos

Coeficiente de correlación de spearman Es coeficiente de correlación lineal aplicado a los órdenes de los valores de la variable.

Coeficiente chi-cuadrado

$$\chi^2 = \sum \frac{\left(n_{ij} - \frac{n_{x_i} n_{y_j}}{n}\right)^2}{\frac{n_{x_i} n_{y_j}}{n}},$$

Coeficiente de contingencia

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}} \qquad 0 \le C < 1$$

Probabilidad

Espacio muestral E conjunto de posibles resultados de un experimento.

Operaciones entre Sucesos

Unión $A \cup B$ Elementos de A más elementos de B.

Intersección $A \cap B$ Elementos comunes en A y B.

Contrario \overline{A} Elementos de E menos los de A.

Diferencia A-B Elementos de A menos los de B. $A-B=A\cap \overline{B}=A-(A\cap B).$

Sucesos incompatibles $A \cap B = \emptyset$.

Propiedades de las operaciones entre su-

Conmutativa $A \cup B = B \cup A$ y $A \cap B = B \cap A$.

Asociativa $A \cup (B \cup C) = (A \cup B) \cup C$ y $A \cup (B \cap C) = (A \cap B) \cap C$.

Elemento Neutro $A \cup \emptyset = A$ y $A \cap E = A$.

Elemento Antisimétrico $A \cup \overline{A} = E \ y \ A \cap \overline{A} = \emptyset$.

Elemento Absorbente $A \cup E = E \text{ y } A \cap \emptyset = \emptyset$.

Leyes de Morgan $\overline{A \cup B} = \overline{A} \cap \overline{B}$ y $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Probabilidad

Regla de Laplace

$$P(A) = \frac{n_A}{n_E} \quad \left(\frac{\text{casos favorables}}{\text{casos posibles}}\right)$$

Sólo se aplica cuando hay equiprobabilidad.

Probabilidad del contrario

$$P(\overline{A}) = 1 - P(A).$$

Probabilidad de la unión

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Probabilidad condicionada

$$P(A/B) = \frac{P(A \cap B)}{P(B)}.$$

Probabilidad de la intersección

$$P(A \cap B) = P(A)P(B/A).$$

Sucesos independientes P(A/B) = P(A).

Sistema completo de sucesos A_1, \ldots, A_n deben cumplir

$$-A_1 \cup \cdots \cup A_n = E.$$

- $A_i \cap A_j = \emptyset \text{ si } i \neq j.$

Teorema de la probabilidad total

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B/A_i).$$

Teorema de Bayes

$$P(A_i/B) = \frac{P(A_i)P(B/A_i)}{\sum_{i=1}^{n} P(A_i)P(B/A_i)}$$

Variables Aleatorias

Tamaño poblacional N número de individuos de la población.

Variables Aleatorias Discretas

Función de probabilidad $f(x_i) = P(X = x_i)$.

Función de distribución $F(x_i) = P(X \le x_i)$.

Media o esperanza $E[X] = \mu = \sum x_i f(x_i)$.

Varianza $V[X] = \sigma^2 = \sum x_i^2 f(x_i) - \mu^2$.

Desviación típica $\sigma = +\sqrt{\sigma^2}$.

Modelos de Distribución Discretos

Uniforme U(k)

$$f(x) = 1/k.$$

Binomial B(n, p)

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

$$\mu = n \cdot p \quad \sigma = \sqrt{n \cdot p \cdot (1-p)}.$$

Poisson $P(\lambda)$

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$
$$\mu = \lambda \quad \sigma = \sqrt{\lambda}$$

Variables Aleatorias Continuas

Función de densidad f(x) Debe cumplir

$$- f(x) \ge 0.$$

-
$$\int_{-\infty}^{\infty} f(x) dx = 1.$$

Función de distribución

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx.$$

Probabilidad de un intervalo

$$P(a \le X \le b) = \int_a^b f(x) dx = F(b) - F(a).$$

Media $E[X] = \mu = \int_{-\infty}^{\infty} x f(x) dx$.

Varianza $V[X] = \sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$.

Modelos de Distribución Continuos

Uniforme U(a,b)

$$f(x) = \frac{1}{b-a}.$$

Normal $N(\mu, \sigma)$.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$