Operational Interpretation of Rényi Information Measures via Composite Hypothesis Testing

Adway Girish
Information Theory Laboratory

June 21, 2023

- Simple Hypothesis Testing
- 2 Connection with Information Measures

- Simple Hypothesis Testing
- Connection with Information Measures
- Rényi Mutual Information

- Simple Hypothesis Testing
- Connection with Information Measures
- Rényi Mutual Information
- Composite Hypothesis Testing

- Simple Hypothesis Testing
- Connection with Information Measures
- Rényi Mutual Information
- Composite Hypothesis Testing
- Operational Interpretation

- Simple Hypothesis Testing
- Connection with Information Measures
- Rényi Mutual Information
- Composite Hypothesis Testing
- Operational Interpretation
- Closing remarks

F

 X^n

4

- Reject when true:
- Accept when false:

- Reject when true: $p_n = P^n\{T(X^n) = 0\}$
- Accept when false:

- Reject when true: $p_n = P^n\{T(X^n) = 0\} \longrightarrow \text{Type-I error}$
- Accept when false:

- Reject when true: $p_n = P^n\{T(X^n) = 0\} \longrightarrow \text{Type-I error}$
- Accept when false: $q_n = Q^n\{T(X^n) = 1\}$

- Reject when true: $p_n = P^n\{T(X^n) = 0\} \longrightarrow \text{Type-I error}$
- Accept when false: $q_n = Q^n\{T(X^n) = 1\} \longrightarrow \mathsf{Type}\mathsf{-II}$ error

• If $p_n \leq \epsilon$,

• If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nD_{KL}(P || Q) + o(n))$.

 $^{^{\}dagger} Herman$ Chernoff. "Large-sample theory: Parametric case". In: The Annals of Mathematical Statistics 1 (1956)

- If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nD_{\mathsf{KL}}(P || Q) + o(n))$.
- Mutual information $I(X; Y) = D_{KL}(P_{XY} || P_X P_Y)$.

- If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nD_{\mathsf{KL}}(P || Q) + o(n))$.
- Mutual information $I(X; Y) = D_{KL}(P_{XY} || P_X P_Y)$.
- Consider the following HT setup,

null hypothesis:

alternative hypothesis :

- If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nD_{\mathsf{KL}}(P || Q) + o(n))$.
- Mutual information $I(X; Y) = D_{KL}(P_{XY} || P_X P_Y)$.
- Consider the following HT setup,

null hypothesis : $(X^n, Y^n) \sim P_{XY}^n$, alternative hypothesis :

- If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nD_{\mathsf{KL}}(P || Q) + o(n))$.
- Mutual information $I(X; Y) = D_{KL}(P_{XY} || P_X P_Y)$.
- Consider the following HT setup,

null hypothesis : $(X^n, Y^n) \sim P_{XY}^n$, alternative hypothesis : $(X^n, Y^n) \sim P_X^n P_Y^n$.

- If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nD_{\mathsf{KL}}(P || Q) + o(n))$.
- Mutual information $I(X; Y) = D_{KL}(P_{XY} || P_X P_Y)$.
- Consider the following HT setup,

null hypothesis :
$$(X^n, Y^n) \sim P_{XY}^n$$
, alternative hypothesis : $(X^n, Y^n) \sim P_X^n P_Y^n$.

• If $p_n \leq \epsilon$,

- If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nD_{\mathsf{KL}}(P || Q) + o(n))$.
- Mutual information $I(X; Y) = D_{KL}(P_{XY} || P_X P_Y)$.
- Consider the following HT setup,

null hypothesis :
$$(X^n, Y^n) \sim P_{XY}^n$$
, alternative hypothesis : $(X^n, Y^n) \sim P_X^n P_Y^n$.

• If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nI(X; Y) + o(n))$.

- If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nD_{\mathsf{KL}}(P || Q) + o(n))$.
- Mutual information $I(X; Y) = D_{KL}(P_{XY} || P_X P_Y)$.
- Consider the following HT setup,

null hypothesis :
$$(X^n, Y^n) \sim P_{XY}^n$$
, alternative hypothesis : $(X^n, Y^n) \sim P_X^n P_Y^n$.

- If $p_n \le \epsilon$, then the optimal $q_n = \exp(-nI(X;Y) + o(n))$.
- Operational interpretation of I(X; Y).

• Rényi divergence of order α , for $\alpha > 0$, $\alpha \neq 1$

• Rényi divergence of order α , for $\alpha > 0$, $\alpha \neq 1$

$$D_{lpha}(P \,||\, Q) = rac{1}{lpha - 1} \log \mathbb{E}_P \left[\left(rac{P}{Q}
ight)^{lpha - 1}
ight].$$

• Rényi divergence of order α , for $\alpha > 0$, $\alpha \neq 1$

$$D_{lpha}(P \,||\, Q) = rac{1}{lpha - 1} \log \mathbb{E}_{P} \left[\left(rac{P}{Q}
ight)^{lpha - 1}
ight].$$

• If $q_n \le \exp(-nR)$ for some $0 < R < D_{\mathsf{KL}}(P \mid\mid Q)$,

• Rényi divergence of order α , for $\alpha > 0$, $\alpha \neq 1$

$$D_{lpha}(P \mid\mid Q) = rac{1}{lpha - 1} \log \mathbb{E}_{P} \left[\left(rac{P}{Q}
ight)^{lpha - 1}
ight].$$

• If $q_n \le \exp(-nR)$ for some $0 < R < D_{\mathsf{KL}}(P \mid\mid Q)$, then the optimal

$$p_n = \exp\left(-n \sup_{0 < \alpha < 1} \frac{1 - \alpha}{\alpha} (D_\alpha(P || Q) - R) + o(n)\right).$$

<i>I</i> (<i>X</i> ; <i>Y</i>)	$I_{\alpha}(X;Y)$

I(X;Y)	$I_{\alpha}(X;Y)$
$D_{KL}(P_{XY} P_X P_Y)$	
$\min_{Q_Y} D_{KL}(P_{XY} P_X Q_Y)$	
$\min_{Q_X,Q_Y} D_{KL}(P_{XY} Q_X Q_Y)$	

I(X;Y)	$I_{\alpha}(X;Y)$
$D_{KL}(P_{XY} P_X P_Y)$	$D_{\alpha}(P_{XY} P_X P_Y)$?
$\min_{Q_Y} D_{KL}(P_{XY} P_X Q_Y)$	$\min_{Q_Y} D_{\alpha}(P_{XY} P_X Q_Y)?$
$\min_{Q_X, Q_Y} D_{KL}(P_{XY} \mid\mid Q_X Q_Y)$	$\min_{Q_X, Q_Y} D_{\alpha}(P_{XY} \mid\mid Q_X Q_Y)?$

I(X;Y)	$I_{\alpha}(X;Y)$
$D_{KL}(P_{XY} P_X P_Y)$	$D_{\alpha}(P_{XY} P_X P_Y)$
$\min_{Q_Y} D_{KL}(P_{XY} P_X Q_Y)$	$\min_{Q_Y} D_{\alpha}(P_{XY} P_X Q_Y)$
$\min_{Q_X,Q_Y} D_{KL}(P_{XY} Q_X Q_Y)$	$\min_{Q_X,Q_Y}D_\alpha(P_{XY} Q_XQ_Y)$

$$\begin{array}{c|c} I(X;Y) & I_{\alpha}(X;Y) \\ \hline D_{\mathsf{KL}}(P_{XY} \parallel P_X P_Y) & D_{\alpha}(P_{XY} \parallel P_X P_Y) \\ \min_{Q_Y} D_{\mathsf{KL}}(P_{XY} \parallel P_X Q_Y) & \min_{Q_Y} D_{\alpha}(P_{XY} \parallel P_X Q_Y) \\ \min_{Q_X, Q_Y} D_{\mathsf{KL}}(P_{XY} \parallel Q_X Q_Y) & \min_{Q_X, Q_Y} D_{\alpha}(P_{XY} \parallel Q_X Q_Y) \\ \hline \text{Sibson's mutual information}^{\dagger} \end{array}$$

[†]Robin Sibson. "Information radius". In: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 2 (1969)

Simple hypothesis testing again

- Reject when true: $p_n = P^n \{ T(X^n) = 0 \} \longrightarrow \text{Type-I error}$
- Accept when false: $q_n = Q^n \{ T(X^n) = 1 \} \longrightarrow \mathsf{Type}\mathsf{-II}$ error

- Reject when true: $p_n = P^n \{ T(X^n) = 0 \} \longrightarrow \text{Type-I error}$
- Accept when false: $q_n = Q^n \{ T(X^n) = 1 \} \longrightarrow \mathsf{Type-II}$ error

- Reject when true: $p_n = P^n\{T(X^n) = 0\} \longrightarrow \text{Type-I error}$
- Accept when false: $q_n = Q^n\{T(X^n) = 1\} \longrightarrow \mathsf{Type-II}$ error

- Reject when true: $p_n = P^n\{T(X^n) = 0\} \longrightarrow \text{Type-I error}$
- ullet Accept when false: $\mathrm{q}_n = \max_{Q \in \mathcal{Q}_n} \, Q^n \{ \, T(X^n) = 1 \} \longrightarrow \mathsf{Type}\mathsf{-II}$ error

- Reject when true: $p_n = P^n\{T(X^n) = 0\} \longrightarrow \text{Type-I error}$
- ullet Accept when false: $\mathrm{q}_n = \max_{Q \in \mathcal{Q}_n} Q^n \{ T(X^n) = 1 \} \longrightarrow \mathsf{Type}\mathsf{-II}$ error

• $D_{\alpha}(P \mid\mid Q_n) \triangleq \min_{Q \in Q_n} D_{\alpha}(P \mid\mid Q).$

- $D_{\alpha}(P \mid\mid Q_n) \triangleq \min_{Q \in Q_n} D_{\alpha}(P \mid\mid Q).$
- †If $q_n \le \exp(-nR)$ for some $0 < R < D_{\mathsf{KL}}(P || \mathcal{Q}_n)$,

[†]Marco Tomamichel and Masahito Hayashi. "Operational Interpretation of Rényi Information Measures via Composite Hypothesis Testing Against Product and Markov Distributions". In: *IEEE Transactions on Information Theory* 2 (2018)

- $D_{\alpha}(P \mid\mid Q_n) \triangleq \min_{Q \in Q_n} D_{\alpha}(P \mid\mid Q).$
- ullet If $\mathrm{q}_n \leq \exp(-nR)$ for some $0 < R < D_{\mathsf{KL}}(P \mid\mid \mathcal{Q}_n)$, then the optimal

$$p_n = \exp\left(-n \sup_{0 < \alpha < 1} \frac{1 - \alpha}{\alpha} (D_{\alpha}(P \mid\mid Q_n) - R) + o(n)\right),$$

[†]Marco Tomamichel and Masahito Hayashi. "Operational Interpretation of Rényi Information Measures via Composite Hypothesis Testing Against Product and Markov Distributions". In: *IEEE Transactions on Information Theory* 2 (2018)

- $D_{\alpha}(P \mid\mid Q_n) \triangleq \min_{Q \in Q_n} D_{\alpha}(P \mid\mid Q).$
- ullet If $\mathrm{q}_n \leq \exp(-nR)$ for some $0 < R < D_{\mathsf{KL}}(P \mid\mid \mathcal{Q}_n)$, then the optimal

$$p_n = \exp\left(-n \sup_{0 < \alpha < 1} \frac{1 - \alpha}{\alpha} (D_{\alpha}(P \mid\mid Q_n) - R) + o(n)\right),$$

but *only* under some conditions on Q_n .

[†]Marco Tomamichel and Masahito Hayashi. "Operational Interpretation of Rényi Information Measures via Composite Hypothesis Testing Against Product and Markov Distributions". In: *IEEE Transactions on Information Theory* 2 (2018)

$$I_{\alpha}^{S}(X;Y) = \min_{Q_{Y}} D_{\alpha}(P_{XY} || P_{X}Q_{Y})$$

$$\bullet \ I_{\alpha}^{S}(X;Y) = \min_{Q_{Y}} D_{\alpha}(P_{XY} \mid\mid P_{X}Q_{Y})$$

• $D_{\alpha}(P || Q_n) = I_{\alpha}^{S}(X; Y)$ for the following HT setup,

null hypothesis:

alternative hypothesis :

$$I_{\alpha}^{S}(X;Y) = \min_{Q_{Y}} D_{\alpha}(P_{XY} || P_{X}Q_{Y})$$

• $D_{\alpha}(P || Q_n) = I_{\alpha}^{S}(X; Y)$ for the following HT setup,

null hypothesis :
$$(X^n, Y^n) \sim P_{XY}^n$$
, alternative hypothesis :

- $\bullet \ I_{\alpha}^{S}(X;Y) = \min_{Q_{Y}} D_{\alpha}(P_{XY} || P_{X}Q_{Y})$
- $D_{\alpha}(P || \mathcal{Q}_n) = I_{\alpha}^{S}(X; Y)$ for the following HT setup,

null hypothesis : $(X^n,Y^n)\sim P_{XY}^n,$ alternative hypothesis : $X^n\sim P_X^n,$ independent of $Y^n.$

- $\bullet \ I_{\alpha}^{\mathcal{S}}(X;Y) = \min_{Q_Y} D_{\alpha}(P_{XY} || P_X Q_Y)$
- $D_{\alpha}(P || Q_n) = I_{\alpha}^{S}(X; Y)$ for the following HT setup,

null hypothesis : $(X^n,Y^n)\sim P_{XY}^n,$ alternative hypothesis : $X^n\sim P_X^n,$ independent of $Y^n.$

• If $q_n \le \exp(-nR)$ for some $0 < R < \min_{Q_Y} D_{\mathsf{KL}}(P_{XY} \mid\mid P_X Q_Y)$,

- $\bullet \ I_{\alpha}^{\mathcal{S}}(X;Y) = \min_{Q_{Y}} D_{\alpha}(P_{XY} || P_{X}Q_{Y})$
- $D_{\alpha}(P || Q_n) = I_{\alpha}^{S}(X; Y)$ for the following HT setup,

null hypothesis : $(X^n,Y^n)\sim P_{XY}^n,$ alternative hypothesis : $X^n\sim P_X^n,$ independent of $Y^n.$

• If $q_n \le \exp(-nR)$ for some $0 < R < \min_{Q_Y} D_{\mathsf{KL}}(P_{XY} \mid\mid P_X Q_Y)$, then the optimal

$$p_n = \exp\left(-n\sup_{0<\alpha<1}\frac{1-\alpha}{\alpha}(I_\alpha^S(X;Y)-R)+o(n)\right).$$

• Extension of results from simple to composite hypothesis testing

- Extension of results from simple to composite hypothesis testing
- Operational interpretation of Sibson's mutual information

- Extension of results from simple to composite hypothesis testing
- Operational interpretation of Sibson's mutual information
- Future work:

- Extension of results from simple to composite hypothesis testing
- Operational interpretation of Sibson's mutual information
- Future work:
 - Relax conditions on Q_n and generalize these results

- Extension of results from simple to composite hypothesis testing
- Operational interpretation of Sibson's mutual information
- Future work:
 - Relax conditions on Q_n and generalize these results
 - Clearer interpretations

