Ley de Biot-Savart: Cálculo del Campo Magnético 3^{er} Laboratorio Computacional

Física II - IS

Objetivos

El objetivo de este laboratorio computacional es aplicar la Ley de Biot-Savart para calcular el campo magnético generado por configuraciones de corriente estacionarias rectilíneas y espiras. Analizar y visualizar el campo magnético calculado mediante algoritmos computacionales, teniendo en cuenta el principio de superposición.

1 Ley de Biot-Savart

1.1 Campo Magnético de configuraciones finitas

La Ley de Biot-Savart describe el campo magnético generado por una corriente estacionaria en un conductor. Matemáticamente, el campo magnético en un punto \mathbf{r} del espacio debido a un elemento de corriente I que circula por un pequeño segmento d \mathbf{l} de un conductor se expresa como:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\mathbf{l'} \times (\mathbf{r} - \mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|^3}$$
(1)

donde:

- B(r) es el campo magnético en la posición r.
- μ_0 es la permeabilidad del vacío.
- r' es la posición del elemento de corriente dl'.
- I es la corriente.
- dl' es el diferencial de longitud en la dirección de la corriente.

• $|\mathbf{r} - \mathbf{r}'|$ es la distancia entre el punto en el que se calcula el campo y el elemento de corriente.

Esta fórmula es utilizada para obtener el campo magnético generado por distintas configuraciones de corriente, como hilos rectos, espirales, o anillos. En este laboratorio, se abordarán tanto configuraciones lineales como espiras para resolver el campo magnético en puntos específicos del espacio.

1.2 Líneas de Campo Magnético

El campo magnético, representado por el vector **B**, es un campo vectorial que rodea una corriente eléctrica o un imán. Las líneas de campo magnético son una representación visual que muestra la dirección y la magnitud del campo en diferentes puntos del espacio. Estas líneas de campo tienen las siguientes propiedades:

- Las líneas de campo magnético son curvas que indican la dirección del campo magnético en cada punto. Es decir, en cada punto de una línea, el vector **B** es tangente a la línea.
- La densidad de las líneas de campo es proporcional a la magnitud del campo magnético en esa región. Es decir, donde las líneas están más juntas, el campo magnético es más fuerte.
- Las líneas de campo magnético no se cruzan entre sí.
- Para corrientes cerradas, las líneas de campo magnético son siempre cerradas; no tienen principio ni fin.

Las líneas de campo magnético son una herramienta poderosa para visualizar la dirección y magnitud del campo magnético en el espacio. Mediante la Ley de Biot-Savart, es posible calcular y representar el campo magnético generado por configuraciones simples de corriente, como hilos rectos y espiras. Estas líneas no solo ilustran la dirección del campo, sino que también permiten analizar cómo las distintas configuraciones afectan la intensidad y la distribución del campo magnético.

2 Resolución del Campo Magnético

El objetivo principal es calcular el campo magnético $\mathbf{B}(\mathbf{r})$ en un conjunto de puntos en el espacio utilizando la Ley de Biot-Savart. Se emplearán coordenadas cartesianas (x, y, z) para describir la posición de los elementos de corriente y los puntos de observación.

2.1 Metodología

- Generar las funciones que calculen el campo magnético de un alambre recto de longitud L y corriente estacionaria I_1 y una espira de radio a con corriente I_2 .
- Graficar en forma individual el campo magnético de cada configuración, un gráfico 3D y un 2D sobre un plano a elección.
- Calcular el campo magnético en forma algebraica para un punto (x_1,y_1,z_1) para cada configuración. Recuerde expresarlo en forma vectorial.
- Repetir los incisos anteriores para ambas configuraciones en conjunto. Donde el alambre se encuentre en el eje de la espira.
- ¿Se animan a generar las bobinas de Helmholtz? Indagar qué es, para qué se utiliza y analizar los resultados obtenidos.

Discutir brevemente los resultados encontrados, por ejemplo:

- ¿Cómo varía la magnitud del campo magnético con la distancia al conductor?
- ¿Son las líneas de campo magnético las esperadas?
- ¿Qué puede decir de la validez de los resultados obtenidos a partir de la Ley de Biot-Savart?

Condiciones y Fecha de entrega

- El trabajo debe realizarse en los grupos ya conformados.
- El trabajo debe ser entregado antes del 21 11 2024.
- Los comentarios, consultas y sugerencias respecto al Laboratorio se realizarán en horario de Práctica.
- Los trabajos se entregarán vía email a cariatore@gmail.com.