

Universidade Federal de Santa Catarina Campus Araranguá - ARA Centro de Ciências, Tecnologias e Saúde Departamento de Computação Plano de Ensino

SEMESTRE 2020.2

I. IDENTIFICAÇÃO DA DISCIPLINA							
CÓDIGO	NOME DA DISCIPLINA		Nº DE HORAS-AULA SEMANAIS - TEÓRICAS	Nº DE HORAS-AULA SEMANAIS - PRÁTICAS			
DEC7546	Circuitos Digitais		72	0			
TOTAL DE HORAS- AULA SEMESTRAIS	HORÁRIO TURMAS TEÓRICAS	HOR	ÁRIO TURMAS PRÁTICAS	MODALIDADE			
72	06655 3.1010-2 5. 5.1010-2 01655 3.1420-2 5.1420-2			Remota Assíncrona e Síncrona			

II. PROFESSOR(ES) MINISTRANTE(ES)

Fábio Rodrigues de la Rocha

Fabio.rocha.ufsc@gmail.com

Horário de atendimento: Segunda-feira e Quarta-feira das 10:00 às 12:00 -por vídeo conferência (sala virtual a ser definida)

III. PRÉ-REQUISITO(S)

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

ENGENHARIA DE COMPUTAÇÃO [Campus Araranguá]

V. JUSTIFICATIVA

Entender a estrutura dos sistemas computacionais e realizar operações utilizando diversos sistemas de numeração

VI. EMENTA

Sistemas Numéricos. Álgebra de Boole (teoremas). Portas lógicas. Circuitos combinacionais. Técnicas de minimização de hardware. Implementação de dispositivos elementares de memória (latchs e flip-flops). Circuitos

Seguenciais. Implementação de módulos básicos. Ambiente de simulação.

VII. OBJETIVOS

Representar equações lógicas, efetuar simplificações por mapas de Karnaugh; Implementar funções lógicas

utilizando portas lógicas; Projetar circuitos eletrônicos fazendo dos principais dispositivos; Compreender o funcionamento de registradores, memórias e fazer associações em série e em paralelo; Conhecer o funcionamento

interno dos principais dispositivos.

VIII. CONTEÚDO PROGRAMÁTICO

UNIDADE 1: Sistema de numeração e códigos especiais [08 horas-aula]

- * Sistema numérico decimal
- * Sistema decimal, binário, hexadecimal, conversão de bases
- * operações Aritméticas básicas
- * Representação de números negativos

UNIDADE 2: Álgebra de Boole [20 horas-aula]

- * Representar funções lógicas por meio de equações
- * Realizar simplificações aplicando teoremas fundamentais e mapas K (minimização)
- * Implementar funções lógicas através de portas lógicas

UNIDADE 3: Circuitos Combinacionais Básicos [8 horas-aula]

* Estudar os dispositivos fundamentais: multiplexadores, demultiplexadores, decodificadores, comparadores e codificadores.

UNIDADE 4: somadores [08 horas-aula]

- * Circuitos aritméticos somadores, subtratores
- * Projeto de circuitos lógicos combinacionais
- * Codificadores e decodificadores

UNIDADE 5: Circuitos Sequenciais [16 horas-aula]

- * latches, flipflops
- * máquinas de estado

UNIDADE 6: Registradores [4 horas-aula]

- * série, paralelo, associação
- * Cls

UNIDADE 7: Contadores [4 horas-aula]

- * Up, Down, reversível
- * Síncrono, assíncrono, sequencia não natural

UNIDADE 8: Memória [04 horas-aula]

- * Tipos de memória e seu funcionamento interno.
- * Associação de memória

IX. COMPETÊNCIAS/HABILIDADES

X. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Aulas teóricas: desenvolvidas em sala e com emprego de meios audiovisuais tais como transparências e apresentações sobre PC portátil de produção própria expostas com projetor. Todo o material didático estará

disponível "a priori" para os alunos na página do professor: fabiodelarocha.paginas.ufsc.br Requisitos de infraestrutura necessários para ministrar as aulas:

- Acesso à Internet;
- Ambiente Virtual de Aprendizagem Moodle;
- Disponibilidade de um sistema de vídeo conferência.

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

* A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente - FS), ficando nela reprovado o aluno que não

comparecer a mais de 25% das atividades (Freguência Insuficiente - FI).

* A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da

Res. no 17/CUn/1997).?

* O aluno com Frequência Suficiente (FS) e média das notas de avaliações do semestre MF entre 3,0 e 5,5 terá

direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 20.

Nota Final (NF) será calculada por meio da média aritmética entre a média das notas das avaliações parciais

(MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. no 17/CUn/1997).

Ao aluno que não efetuar às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0

(zero). (Art. 70, § 4o da Res. no 17/CUn/1997)

Avaliações

* Trabalho 1 (T1) (atividade assíncrona que se inicia no horário regular da disciplina com prazo máximo para

a conclusão de 24 horas)

* Trabalho 2 (T2) (atividade assíncrona que se inicia no horário regular da disciplina com prazo máximo para a

conclusão de 24 horas)

* Trabalho 3 (T3) (atividade assíncrona que se inicia no horário regular da disciplina com prazo máximo para a

conclusão de 24 horas)

* MF = (T1 + T2 + T3)/3

O registro de frequência será efetuado para aulas assíncronas e síncronas. No primeiro caso serão disponibilizadas

atividades com tempo de execução de 48 horas em que, a partir da execução destas, os alunos terão a presença

registrada. Para o segundo caso ao final das aulas será realizado o registro. Na eventual impossibilidade do aluno

estar presente será aplicada a regra da aula assíncrona.

*Observações:

Avaliação de recuperação

* Não há avaliação de recuperação nas disciplinas de caráter prático que envolve atividades de laboratório (Res.17/CUn/97).

Nova avaliação

* O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas

previstas no plano de ensino, deverá formalizar pedido à Chefia do Departamento de Ensino ao qual a disciplina

pertence, dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de lnova

avaliação deverá ser formalizado na Secretaria Integrada de Departamentos.

XII. CRONOGRAMA		
SEMANA	DATAS	ASSUNTO
1	01/02/2021 a	Apresentação do plano de ensino, site da disciplina, sistemas
	07/02/2021	numéricos (aula síncrona)
2	08/02/2021 a	Sistemas numéricos, Postulados , Lei da dualidade , Teoremas
	14/02/2021	fundamentais , Funções Booleanas, Portas lógicas (aula
		assíncrona e síncrona)
3	15/02/2021 a	Equivalência de portas (aula assíncrona e síncrona)
	21/02/2021	Equivalente à porta "NAND" , Equivalente à porta "NOR" ,
		Equivalente à porta "NOT" , Equivalente à porta "AND" ,
		Equivalente à porta "OR"

4	22/02/2021 a 28/02/2021	Implementação de funções (aula assíncrona e síncrona)
5	01/03/2021 a 07/03/2021	Formas padrões , Equivalente decimal, Notações simplificadas Forma padrão x Tabela verdade (aula assíncrona e síncrona)
6	08/03/2021 a 14/03/2021	Minimização de funções , Mapa para quatro variáveis , Nomenclatura das celas, Grupo de celas (aula assíncrona e síncrona)
7	15/03/2021 a 21/03/2021	Teoria dos conjuntos e os mapas, Representação de função no mapa , Minimização de funções , Mapas para 2, 3, 5 e 6 variáveis , Funções incompletas (aula assíncrona e síncrona)
8	22/03/2021 a 28/03/2021	Exercícios sobre a matéria (aula assíncrona) Trabalho T1 (atividade assíncrona) Multiplexadores Circuitos Multiplexadores MSI: 74XX153/253, 74XX157/257, 74XX151, 74XX150/251, Aplicações de Multiplexadores: Geração de funções booleanas, Associação, Seletor de palavras, Demultiplexadores
9	29/03/2021 a 04/04/2021	Demultiplexador: Circuitos Integrados MSI, Circuito Integrado 74155. Uso como Demultiplexador. Exercícios sobre multiplexadores. (aula assíncrona)
10	05/04/2021 a 11/04/2021	Decodificadores (aula assíncrona) Projeto de um Decodificador 2/4: Decodificador Decimal: Circuito Integrado 7442, 74XX42 Decodificador Hexadecimal Associação de Decodificadores Decodificadores para Sete Segmentos Comparadores Codificador: Circuito codificador com 3 saídas 74LS148
11	12/04/2021 a 18/04/2021	Circuitos Aritméticos e Códigos Especiais (aula assíncrona) Adição Projeto do Somador para quatro "bits": Somador Incompleto, Somador Completo ("Full-Adder") Somador Paralelo
12	19/04/2021 a 25/04/2021	Circuito Integrado - 74LS83 (aula assíncrona) Subtração Trabalho T2 (atividade assíncrona)
13	26/04/2021 a 02/05/2021	Análise e Síntese de Circuitos Seqüenciais (aula assíncrona) "Latch" RS, "Latch" RS Síncrono, "Latch" D, "Flip-Flop" D "Flip-Flop" JK "Master-Slave"
14	03/05/2021 a 09/05/2021	Duplo "flip-flop" D: 74LS74, 74HC/HCT74 (aula assíncrona) Quádruplo "Latches" D: 74LS75, 74HC/HCT75 Duplo "flip-flop" JK "edge-triggered":7476, 74LS76, 74C76, 74HC/HCT76 Duplo "Flip-Flop" JK "edge-triggered" com "Set" e "Reset": 74LS112, 74F112, 74LVC112 Duplo "Flip-Flop" JK "edge-triggered" com "Set" e "Reset": 74LS109, 74F109, 74LVC109 Seis "flip-flops" D: 74LS174, 74HC/HCT174 Contadores Análise e Síntese de Circuitos Seqüências Síncronos Modelos de Máquinas Seqüenciais de Estado. Análise de uma FSM de Mealy com "Flip-flop" D Análise de uma FSM de Moore com "Flip-flop" D Análise de uma FSM de Mealy com "Flip-flop" JK (aula assíncrona)
15	10/05/2021 a 16/05/2021	Registradores (aula assíncrona) Memórias RAM Memória RAM Estática SRAM Síncrona SRAM Síncrona, Sinais na Leitura/Escrita, Memórias ROM, ROM com Matriz de Diodos ROM programável pelo usuário – PROM, ROM Programável e Apagável pelo Usuário, "EPROM", EEPROM
16	17/05/2021 a 23/05/2021	Memórias RAM (aula assíncrona) Memória RAM Estática SRAM Síncrona SRAM Síncrona, Sinais na Leitura/Escrita, Memórias ROM, ROM com Matriz de Diodos ROM programável pelo usuário – PROM, ROM Programável e Apagável pelo Usuário, "EPROM", EEPROM Trabalho T3 (atividade assíncrona) Prova de recuperação e divulgação das notas (atividades assíncrona) ajustes de acordo com as necessidades das atividades

Obs: O caléndario está sujeito a pequenos ajustes de acordo com as necessidades das atividades XIII. FERIADOS PREVISTOS PARA O SEMESTRE

15/02/2021	Ponto facultativo Carnaval
16/02/2021	Carnaval
02/04/2021	Sexta-feira Santa
03/04/2021	Aniversário de Araranguá
21/04/2021	Tiradentes
01/05/2021	Dia do Trabalho
04/05/2021	Dia da Padroeira de Araranguá
03/06/2021	Corpus Christi

XIV. BIBLIOGRAFIA BÁSICA

- 1. Introduction to Digital Eletronics, John Crowe and Barrie Hayes-Gill, ISBN 978-0-340-64570-3, Elsevier, 1998, acesso disponível pela UFSC no site
- https://www.sciencedirect.com/book/9780340645703/introduction-to-digital-electronics
- 2. Lessons In Electric Circuits, Tony R. Kuphaldt, 2015, Volume IV Digital 4th Edition, disponível gratuitamente em: http://www.ibiblio.org/kuphaldt/electricCircuits/
- 3. Digital Circuit Projects: An Overview of Digital Circuits Through Implementing Integrated Circuits, Charles W. Kann, Gettysburg College
- 2014, Publisher: Gettysburg College. Disponível gratuitamente em:
- https://open.umn.edu/opentextbooks/textbooks/digital-circuit-projects-an-
- overview-of-digital-circuits-through-implementing-integrated-circuits

XV. BIBLIOGRAFIA COMPLEMENTAR

- 1. FERREIRA, José Manuel Martins. Introdução ao projeto com sistemas digitais e microcontroladores. Porto: FEUP, 1998. 371 p. ISBN 9727520324
- 2. WILSON, Peter. The circuit designer's companion. 3rd ed. Amsterdam: Elsevier, 2012. xv, 439 p. ISBN 9780080971384
- 3. PEDRONI, Volnei A. Eletrônica digital moderna e VHDL. Rio de Janeiro: Elsevier, c2010. 619 p. ISBN 9788535234657
- 4. IDOETA, Ivan V.; CAPUANO, Francisco G. Elementos de eletrônica digital. 41. ed. rev.
- e atual. São Paulo: Livros Erica Ed., c2012. 544 p. ISBN 9788571940192
- 5. ARAUJO, Celso de; CRUZ, Eduardo Cesar Alves; CHOUERI JUNIOR, Salomão.

Eletrônica digital. 1. ed. São Paulo: Érica, c2014. 168 p. (Série Eixos Controle e processos industriais). ISBN 9788536508177.

Professor(a):

Aprovado pelo Colegiado do Curso em 18/12/2020 Presidente do Colegiado: