SENG2250/6250 System and Network Security School of Electrical Engineering and Computing Semester 2, 2020

Lab 6: User Authentication and Access Control

Objectives

- 1) Review the knowledge of user authentication and access control.
- 2) Analyse and resolve security issues of the two-factor authentication protocol.
- 3) Apply access control models.
- 4) Programming exercises.

Part 1 Review Questions

- 1. What is multi-factor authentication?
- 2. Describe the (X.509) 3-way authentication. Does it require time synchronization? Why?
- 3. What is the difference between the verification mode and identification mode in biometric authentication? Give an application scenario for each.
- 4. What is the goal of access control?
- 5. What is the mandatory access control (MAC)?

Part 2 Exercises

6. **Two-factor Authentication**. Consider the following two-factor (password + biometric) authentication. System time is synchronised between the user and the server. Is it a secure two-factor authentication? Justify your answer.

$$User \rightarrow Server: N_u, E_k(ID, h(TS||pwd), E_k(Bio||N_u))$$

N_u	A nonce picked by user.
ID	User's identity.
E	A secure symmetric-key encryption scheme.
k	A session key.
h	A secure hash function.
TS	Timestamp.
Bio	User's biometric information. It is known to server.
pwd	A 12-character password including letters, digits and special characters.
	Concatenation of two bit strings.

7. Implement the BLP model which takes as input 1) access control matrix (ACM); 2) security label of subjects; 3) security label of objects. Output the accessible objects (with the permissions) of each subject. Test your program using the following input.

"-" means no permission is granted; "r" – read; "w" – write.

	Key	Sys	Banner
	File	Log	Info
Alice	rw	rw	rw
Bob	rw	r	W
Carrie	•	W	W

ACM

	Security Label		
Alice	Top-Secret		
Bob	Secret		
Carrie	Secret		

Subject Labels

	Security Label
Key File	Top-Secret
Sys Log	Secret
Banner Info	Unclassified

Object Labels

The output content should be:

	Key File	Sys Log	Banner Info
Alice	rw	r	r
Bob	w	r	-
Carrie	-	W	-

8.

- a. What is HMAC? Is it good for user authentication?
- b. Implement the HMAC algorithm. Please refer to L2-S61 (Cryptographic Techniques, Slide 61). For the underlying hash functions, use a standard hash function such as sha-1 and sha-256. There are libraries for hash functions. For example,
 - Java: java.security.MessageDigest
 https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.ht
 ml
 - Python: hashlib

https://docs.python.org/3/library/hashlib.html

• **C++**: Crypto++ https://cryptopp.com/

Part 3 Discovery

9. Self-study: Role-based Access Control (RBAC) model

Refer to the file: "rbac.pdf" under lab 06

- a. What is the relationship between RBAC and MAC (e.g., ACM) model?
- b. What advantages and/or disadvantages can you think of about RBAC?