Overview

BO is a tool to solve

$$\min_{\theta} J(\theta)$$

when θ is unknown, but a set of measurements $J(\theta_1), J(\theta_2), \dots, J(\theta_N)$ can be collected;

- It iteratively updates a Bayesian surrogate model of $J(\theta)$;
- ullet The measurements are collected to favor points with estimated good performance o exploitation and/or high variance o exploration

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

- The function $J(\theta)$ assumed Gaussian with prior mean $E[J(\theta)] = \mu(\theta)$ and covariance $\text{cov}[J(\theta_1), J(\theta_2)] = \kappa(\theta_1, \theta_2)$.
- The posterior mean and covariance given a new observation (θ_i, J_i) is obtained in closed form

Acquisition function

The GP provides the probability distribution of $J(\theta)$ for each parameter θ . This probability is used to define an acquisition function, e.g.,

Probability of Improvement

Expected improvement

$$A(\theta) = \operatorname{PI}(\theta) = p(J(\theta) \le J^{\min})$$
 $A(\theta) = \operatorname{EI}(\theta) = \operatorname{\mathbb{E}}[\max(0, J^{\min} - J(\theta))]$

4/7

Bayesian Optimization April 11, 2020

Overview

Steps of BO: for $i = 1, 2, \dots i_{\text{max}}$

- **1 Execute** experiment with θ_i , measure $J_i = J(\theta_i) + e_i$
- **② Update** the GP model $\theta \to J(\theta)$ with (θ_i, J_i)
- **3 Construct** acquisition function $A(\theta)$
- **Maximize** $A(\theta)$ to obtain next query point θ_{i+1}

Example

Example

Example

Example

iteration 9

Bayesian Optimization Example

Bayesian Optimization Example

iteration 20

