

# DESARROLLO DE ALGORITMOS SENCILLOS

Recursividad



## Desarrollo de algoritmos

### **Objetivos**

Desarrollar pequeños programas en Python que utilicen funciones recursivas

### **Temporización**

40 minutos

#### **Enunciados**

1. Escribe una solución recursiva que calcule el algoritmo de Euclides, usado para calcular el máximo común divisor de dos enteros. El algoritmo de Euclides se describe del siguiente modo:

```
mcd(x, y) = x, si y = 0

mcd(x, y) = mcd(y, mod(x,y)) si y > 0 y x >= y
```

- 2. Construye una función recursiva que calcule la división entera de dos números mediante el métodos de restas sucesivas. Implementa un pequeño programa para probarla.
- 3. Codifica una función recursiva que permita sumar los dígitos de un número. Implementa un programa para probarla.

```
<u>Ejemplo</u>
Entrada: 124
Salida →7
```

4. Codifica una función recursiva que permita calcular el valor de  $\pi$  usando la serie de Leibniz:  $\pi = (4 - 4/3 + 4/5 - 4/7 + 4/9 - 4/11 + 4/13 ...)$ 

El programa recibirá como argumento el número "n" de términos a usar en la aproximación.



### **Soluciones**

### Ejercicio 1

```
# Programa que calcula el mcd mediante una función recursiva
import sys
def mcd(n, m):
    if m == 0:
        return n
    else:
        return mcd(m, n % m)
def main():
    if len(sys.argv) == 3:
        num1 = int(sys.argv[1])
        num2 = int(sys.argv[2])
        print(f'mcd({num1}, {num2})={mcd(num1, num2)}')
    else:
        print(f'Sintaxis incorrecta: {sys.argv[0]} <num1>
<num2>')
if __name__ == '__main__':
    main()
```

### Ejercicio 2

```
# División entera de dos número mediante el método de restas
sucesivas
import sys

def division(num1, num2):
   if num1 < num2:
      return 0
   else:
      return 1 + division(num1-num2, num2)</pre>
```



```
def main():
    if len(sys.argv) == 3:
        num1 = int(sys.argv[1])
        num2 = int(sys.argv[2])

        print(f'{num1}/{num2}={division(num1, num2)}')

    else:
        print(f'Sintaxis incorrecta: {sys.argv[0]} <num1>
<num2>')

if __name__ == '__main__':
    main()
```

### Ejercicio 3

```
# Programa que suma los digitos de un numero de manera
recursiva
import sys
def suma_digitos(numero):
    if numero == 0:
        return 0
    else:
        return numero % 10 + suma_digitos(numero//10)
def main():
    if len(sys.argv) == 2:
        numero = int(sys.argv[1])
        print(f'La suma de los digitos de {numero} es
{suma_digitos(numero)}')
    else:
        print(f'Sintaxis incorrecta: {sys.argv[0]} <numero>')
if name == ' main ':
    main()
```



### Ejercicio 4

```
# Programa que calcula el número pi usando la serie de
Leibniz
import sys
def serie_Leibniz(termino):
    if termino == 1:
        return 4
    elif termino % 2 == 0:
        return -4/(2*(termino-1)+1) + serie_Leibniz(termino-
1)
    else:
        return 4/(2*(termino-1)+1) + serie_Leibniz(termino-1)
def main():
    if len(sys.argv) == 2:
        termino = int(sys.argv[1])
        print(f'El valor de pi con una precision de {termino}
terminos es \
{serie_Leibniz(termino)}')
    else:
        print(f'Sintaxis incorrecta: {sys.argv[0]}
<termino>')
if __name__ == '__main__':
    main()
```

