УДК 66.048.3.069.833:536.423.4

ДИНАМИЧЕСКАЯ НАСАДКА ТЕПЛО- И MACCOOБMEHHЫХ ПРОЦЕССОВ •••••• DYNAMIC PACKING OF HEAT AND MASS TRANSFER PROCESSES

Голованчиков Александр Борисович

доктор технических наук, профессор, профессор кафедры процессы и аппараты химических производств, Волгоградский государственный технический университет natasha292009@yandex.ru

Прохоренко Наталья Андреевна

аспирант кафедры процессы и аппараты химических производств, Волгоградский государственный технический университет natasha292009@yandex.ru

Слабун Консантин Владимирович

студент кафедры процессы и аппараты химических производств, Волгоградский государственный технический университет constvs900@gmail.ru

Ахмаджонов Шохрух Хасанбой угли

студент кафедры процессы и аппараты химических производств, Волгоградский государственный технический университет hash0xa593b@yandex.ru

Аннотация. Данная статья посвящена разработанной конструкции динамических насадочных контактных устройств, которые позволяют увеличить производительность массообменной колонны на промышленном производстве.

Ключевые слова: кольца Рашига, насадка, массообменная колонна, ректификация, контактные устройства, резонанс.

Golovanchikov Alexander Borisovich

Doctor of Technical Sciences, Professor, Professor of the Department Processes and Apparatuses of Chemical Production, Volgograd state technical university natasha292009@yandex.ru

Prokhorenko Natalya Andreyevna

Postgraduate student of the department Processes and devices of chemical production, Volgograd state technical university natasha292009@yandex.ru

Slabun Konctantin Vladimirovich

Student of the department Processes and devices of chemical production, Volgograd state technical university constvs900@gmail.ru

Achmadjonov Shokhrukh Hasanboy ugli

Student of the department Processes and devices of chemical production, Volgograd state technical university hash0xa593b@yandex.ru

Annotation. This article is devoted to the developed design of dynamic packed contact devices that can increase the productivity of the mass transfer columns in industrial production.

Keywords: Raschig rings, nozzle, mass transfer column, rectification, contact devices, resonance.

з известных типовых конструкций промышленных насадок [1–4] наиболее распространёнными являются кольца Рашига. Существует большое количество и других насадочных контактных устройств для тепло- и массообменных аппаратов, но в основном они объемно отличаются неподвижными, не изменяющими своей формы и объема в аппаратах.

Авторы разработали ряд конструкций динамических насадочных контактных устройств, которые изменяют свое положение в процессе работы аппарата под действием потоков жидкости или газе (пара). Также колебания, вибрации узлов или отдельных элементов динамических насадочных устройств увеличивает скорость тепло- и массопереноса между жидкостью и газом (паром) и увеличивает производительность аппаратов ректификационных и абсорбирующих головок, смесителей эмульгаторов и других аппаратов.

Целью работы является создание новой конструкции динамического контактного насадочного устройства, позволяющего интенсифицировать тепло- и массообменные операции между жидкой и газовой (паровой) фазами.

На рисунке 1 в разрезе изображено кольцо Рашига с внутренним телом вращения, в разрезе на рисунке 2 показано упорядоченно уложенная насадка предлагаемой конструкции в массообменном аппарате.

Насадка для тепло- и массообменных процессов состоит из наружного кольца 1 с внутренним диаметром D и высотой H и внутреннего тела вращения с внешним диаметром d и высотой h, разделенным на две части- верхнюю 2 и нижнюю 3. Отношение внешнего диаметра d внутреннего тела

вращения, разделенного на две части- верхнюю 2 и нижнюю 3, к внутреннему диаметру D наружного кольца 1 равно 0,7. Наружное кольцо 1 и внутреннее тело вращения, разделенного на две части- верхнюю 2 и нижнюю 3, выполнены из одного и того же материала, обладающего эффектом памяти формы. Верхние 2 и нижние 3 части внутреннего тела вращения соединены между собой двумя пружинками 4. Наружные кольца 1 упорядоченно установлены на опорных решетках внутри колонны, а внутри каждого наружного кольца 1 установлены внутренние тела вращения, разделенные на две части- верхнюю 2 и нижнюю 3.

Рисунок 1 – Кольцо Рашига с внутренним телом вращения

Рисунок 2 — Упорядоченно уложенная насадка предлагаемой конструкции в массообменном аппарате

Торцы наружных колец 1 не взаимодействуют с торцами внутренних тел вращения, разделенные на две части- верхнюю 2 и нижнюю 3, и последние могут свободно колебаться на пружинках 4 внутри наружных колец 1.

Насадка для тепло- и массообменных процессов работает следующим образом. Крупные наружные кольца 1 укладываются правильными рядами со сдвигом верхних рядов относительно нижних, при этом послойно внутри каждого наружного кольца 1, устанавливается внутреннее тело вращения, разделенного на две части- верхнюю 2 и нижнюю 3, соединенных между собой пружинками 4. Сверху насадка орошается жидкостью, а снизу подается газ (пар). Под действием потока газа каждое внутреннее тело вращения, разделенного на две части- верхнюю 2 и нижнюю 3, совершает осевые колебания, которые передаются всплывающими пузырьками газа. Это обстоятельство приводит к интенсификации тепло- и массообмена на границе раздела фаз газа и жидкости и к увеличению производительности

тепло- и массообменных процессов в целом. Под действием тепла наружного кольца 1 вместе с внутренним телом вращения, разделенного на две части- верхнюю 2 и нижнюю 3, выполненные из одного материала, обладающего эффектом памяти, начинает увеличивать свою длину, что приводит к увеличению поверхности тепло- массопередачи. Особенно эффективно в использовании предлагаемой конструкции насадки в массообменных насадочных колоннах с пульсирующей подачей газа или пара.

При завершении цикла работы снижается температура, внешние кольца Рашига и внутреннее тело вращения, выполненные из материала обладающего эффектом памяти, начинают уменьшаться в длине на 10–20 %. Это приводит к растрескиванию термических отложений и способствует их удалению из насадки при продувке воздухом или промывке водой. Это уменьшает время подготовки насадочной колонны к основному циклу работы и соответственно к увеличению производительности.

Таким образом, изготовление наружного кольца 1 вместе с внутренним телом вращения, разделенные на две части- верхнюю 2 и нижнюю 3, и последние могут свободно колебаться на пружинках 4 внутри наружных колец 1, позволяет насадке совершать осевые колебания, что приводит к увеличению производительности. За счет того, что наружное кольцо 1 вместе с внутренним телом вращения, разделенные на две части- верхнюю 2 и нижнюю 3, не соединены жестко между собой, их можно свободно разбирать и проводить регенерацию. Это уменьшает время очистки и увеличивает время основной работы, а значит и производительность.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-38-90002.

Литература

- 1. Оборудование и нефтегазопереработки, химических и нефтехимических производств : учебник для вузов в двух книгах / А.С. Тимонин, Г.В. Божко [и др.]; под общей редакцией А.С. Тимонина. М. : Инфра-Инженерия, 2019. Кн. 2. 476 с.
 - 2. Коган В.Б. Теоретические основы типовых процессов химической технологии. Л.: Химия. 1977. 592 с.
- 3. Общий курс процессов и аппаратов химической технологии / под редакцией В.Г. Анштейна. М. : Логос, Высшая школа, 2001.
- 4. Багатуров С.А. Основы теории и расчета перегонки и ректификации. М. : Химия, 1974. Изд. 3-е, перераб. 440 с.

References

- 1. Equipment and oil and gas processing, chemical and petrochemical industries: a textbook for universities in two books / A.S. Timonin, G.V. Bozhko [et al.]; under general editorship of A.S. Timonin. M.: Infra-Engineering, 2019. Book 2. 476 p.
 - 2. Kogan V.B. Theoretical bases of typical processes of chemical technology. L.: Chemistry, 1977. 592 p.
- 3. General Course of Processes and Devices of Chemical Technology / edited by V.G. Anshtein. M.: Logos, Higher School. 2001.
- 4. Bagaturov S.A. Basics of theory and calculation of distillation and rectification. M.: Chemistry, 1974. Izd. 3, interrupting. 440 p.