Bartosz Antczak Instructor: Eric Schost January 19, 2017

Today's Plan

Today we'll observe the average case analysis of two algorithms, quick-select and quick-sort. Note that this will probably be the hardest algorithm analysis in this course (according to Prof. Schost).

Recall

The **selection problem** states

Given an array A of n numbers, and $0 \le k < n$, find the element in position k of the sorted array

We'll look at the two previously mentioned algorithms to solve this problem

6.1 Solving the Selection Problem

6.1.1 Partition Algorithm

Algorithm Description

The **partition** algorithm takes an input of one array A and an arbitrary integer p. It rearranges A such that all of the elements smaller than the element at index p are to the left of it and the elements larger than it are to the right.

The algorithm is structured as:

```
// A - array of size n
// p - arbitrary integer that represents our pivot
partition(A, p) {
 swap(A[0], A[p])
  i = 1
  j = n-1
  loop
    while i < n and A[i] <= A[0] do
      i = i + 1
    while j >= 1 and A[j] > A[0] do
     j = j - 1
    if (j < i) then break</pre>
    else swap(A[i], A[j])
  end loop
 swap(A[0], A[j])
  return j // the new position of the pivot
```

Let's analyse this algorithm through an example. Let A = [7, 3, 6, 9, 2, 1, 5] and p = 0. After each iteration of the big loop, we have

```
1. [7,3,5,9,2,1,6], i=2, j=6
```

2.
$$[7,3,5,6,2,1,9], i = 3, j = 6$$

```
3. [7,3,5,9,1,2,6], i = 4, j = 5
```

4.
$$[7,3,5,6,1,2,9], i = 5, j = 5$$

5. [2,3,5,6,1,7,9], i=6, j=5 and then exit and return the value of j, 5

Observe that the value 7 was our pivot. After the algorithm, 7 is now in its correct position. The returned value (5) is the position of the pivot after partitioning.

6.1.2 QuickSelect Algorithm

Algorithm Description

The quick select algorithm returns the kth smallest element an array. The structure is as follows:

```
// A - array of size n
// k - arbitrary integer such that 0 <= k < n
quick-select1(A, k) {
  p = choosePivot(A)
  i = partition(A, p)
  if (i = k) then
    return A[i]
  else if i > k then
    return quick-select1(A[0, 1, ..., i-1], k)
  else if i < k then
    return quick-select1(A[i+1, i+2, ..., n-1], k-i-1)
}</pre>
```

A few words about correctness. After line i = partition(A, p), i contains the position of the pivot in the partitioned array, which is also the position it would have in the sorted array. So if k = i, we are done, we return the pivot. If k < i, we have to look on the left side of the array (so we restrict the search to A[0,1,...,i-1] and we don't change k). If k > i, we have to look on the right side of the array, so we restrict the search to A[i+1,1,...,n-1], but we need to subtract from k the number of elements we skipped, which is i+1.

Algorithm Analysis

The recurrence relation for this algorithm is:

$$T(n) = \begin{cases} T(n-1) + cn & n \ge 2\\ d & n = 1 \end{cases}$$

(cn represents the time to partition the array, which takes linear time)

The worst-case analysis will have a recursive call that will always have size n-1. We calculate it to be

$$T(n) = cn + c(n-1) + \dots + c \cdot 2 + d \in \Theta(n^2)$$

Proof

Simply use the recurrence relation from n down to 2:

$$T(n) = cn + T(n-1) = cn + c(n-1) + T(n-2) = \cdots = cn + c(n-1) + \cdots + c \cdot 2 + T(1)$$
.

The **best-case** analysis will have the first chosen pivot being the kth element. This means there are no recursive calls and the runtime is

$$\Theta(n)$$

.

Average Case Analysis

Warning: this proof is difficult. I (É.S.) wish I knew how to simplify it, but I don't. What I would expect you to remember from this: the result itself (that the expected runtime is linear) and possibly Lemma ?? below.

A priori, it is not straightforward to speak of the average case running time of quick-select: for a given input length n, there are infinitely many choices for $A[0], \ldots, A_{\lceil n-1 \rceil}$ (so we would not be dealing with a finite sum to compute our average).

To simplify things a bit, we make a first assumption: all entries in A are pairwise distinct (no repetitions are allowed). Then, we are going to use the following remark: the behavior of the algorithm does not depend on the actual values in A; rather, it depends on their *order*. For instance [2,3,10,5] and [1,2,4,3] are identical for the quick-select algorithm (i.e., the array is sorted up to the second last index).

For an input consisting of array A and integer k, let us call T(A, k) the runtime of quick-select on input A, k. The remark in the previous paragraph means that T([2,3,10,5],k) = T([1,2,4,3],k) (for any k); we also equalities such as T([3,4],1) = T([1,2],1) and T([4,3],1) = T([4,3],1). Since we are assuming that there are no repetitions, for an input size n, we can do as if the entries in A were a permutation of $1,2,\ldots,n$. Then, the average we want to compute is

$$T(n,k) = \frac{1}{n!} \sum_{A \text{ permutation of } [1,\ldots,n]} T(A,k).$$

A few examples:

• For n=1, we can only have k=0 (since $0 \le k \le n-1$), and we have

$$T(1,0) = T([1],0),$$

since there is only one permutation of [1].

• For n=2, we can only have k=0 or k=1, and we have

$$T(2,k) = \frac{1}{2} \left(T([1,2],k) + T([2,1],k) \right).$$

• For n=3, we can have k=0,1,2, and we have

$$T(3,k) = \frac{1}{6} \left(T([1,2,3],k) + T([1,3,2],k) + (T([2,1,3],k) + T([2,3,1],k) + (T([3,1,2],k) + T([3,2,1],k)) \right). \tag{6.1}$$

We want to prove that $T(n,k) \in O(n)$, for any given k. Let us define $T(n) = \max_{0 \le k \le n-1} T(n,k)$; we will actually prove that T(n) is in O(n). Since $T(n,k) \le T(n)$ holds for all k, this will prove what we want.

We will rely on the following result.

Lemma 1. If a function F(n) satisfies a "sloppy" recurrence $F(n) \le kn + F(\alpha n)$, for some constants k and α , with $\alpha < 1$, then $F(n) \in O(n)$.

Proof

We only do the proof for $\alpha = 1/2$ and n being a power of 2 (but the result is true in general).

$$F(n) \le kn + F\left(\frac{1}{2}n\right)$$

$$\le kn + k\frac{n}{2} + F\left(\frac{1}{4}n\right)$$

$$\le kn + kn/2 + kn/4 + \dots + d$$

$$< kn(1 + 1/2 + 1/4 + 1/8 \dots) + d.$$

Since $1 + 1/2 + 1/4 + 1/8 \dots \le 2$, $F(n) \in O(n)$.

To prove that T(n) is in O(n), we are going to prove that T(n) satisfies an inequality of the form $T(n) \leq kn + T(3n/4)$, for some constant k; then, the lemma above will imply that T(n) is indeed in O(n). To start with, we let c be a constant such that for any input of size n, choosing the pivot and partitioning take time cn. Then, the runtime of quickselect on input $A = [A[0], \ldots, A[n-1]]$ and k looks like

$$T(A,k) = \begin{cases} cn & k=i\\ cn+T([A'[0],\ldots,A'[i-1],k) & ki, \end{cases}$$
(6.2)

where i is the position of the pivot, found in the first step, and A' represents the array A after partition.

We make here a second assumption: after the partition, the elements less than the pivot are in the same order as before the partition, and similarly for the elements greater than the pivot. For instance, consider A = [2, 5, 3, 1, 6, 4]. If we let the pivot index p equal 2 (A[p] = 3), then we expect the array after the partition to look like this:

$$A = [2, 1, 3, 5, 6, 4],$$

with the pivot written in bold. This assumption may not be satisfied for our partition function, but it is not hard to write a partition function that ensures this, and still takes linear time.

This assumption will be handy to understand how the recursive calls look like. For instance, suppose our input it A = [3, 2, 1, 4], with pivot index p = 0, A[p] = 3, and i = 2 (the position of the pivot after

partition); then, the array after partition must be [2, 1, 3, 4]. Then, T([3, 2, 1, 4], 1) = 4c + T([2, 1], 1), since the recursive call is done on the left, with inputs [2, 1] and 1.

We see that if we want to compute the average of all T(A, k)'s, we have to take the index i into account. One way to do this is to subdivide our set of n! inputs. Among the n! permutations of $[1, \ldots, n]$, there are (n-1)! for which index i above (the position of the pivot after partition) is 0, (n-1)! for which index i is $1, \ldots, (n-1)!$ for which index i is n-1. For instance, for n=3, we have [1,2,3] and [1,3,2], for which i will be [1,2,3] and [2,3,1], for which [1,3,2] and [2,3,1], for which [1,3,2] and [3,2,1], for which [3,2,1] are write

$$T(n,k) = \frac{1}{n} \sum_{i=0}^{n-1} T(n,k,i), \tag{6.3}$$

where T(n, k, i) is the average run-time of quick-select over all A's that are permutations of [1, ..., n] and for which the position of the pivot, computed at the first step, is i (we saw that there are (n-1)! of those). For instance, with n=3, we have

$$T(n,k,0) = \frac{1}{2}(T([1,2,3],k) + T([1,3,2],k)),$$

$$T(n,k,1) = \frac{1}{2}(T([2,1,3],k) + T([2,3,1],k)),$$

$$T(n,k,2) = \frac{1}{2}(T([3,1,2],k) + T([3,2,1],k)),$$

and plugging these into (??) gives us the sum in (??).

Let us plug the recursive formula $(\ref{eq:condition})$ into the definition of T(n,k,i). Let us deal with the case k < i, for instance.

$$\begin{split} T(n,k,i) &= \frac{1}{(n-1)!} \sum_{\substack{A \text{ permutation of } [1,\ldots,n] \text{ with pivot position } i}} T(A,k) \\ &= \frac{1}{(n-1)!} \sum_{\substack{A \text{ permutation of } [1,\ldots,n] \text{ with pivot position } i}} cn + T(A'[0],\ldots,A'[i-1],k) \\ &= cn + \frac{1}{(n-1)!} \sum_{\substack{A \text{ permutation of } [1,\ldots,n] \text{ with pivot position } i}} T(A'[0],\ldots,A'[i-1],k). \end{split}$$

For example, look at n = 3, k = 1 and i = 2. We saw that there the inputs having i = 2 are [3, 1, 2] and [3, 2, 1], which become [1, 2, 3] and [2, 1, 3] after partition (I am using my second assumption here). With k = 1, the costs are respectively T([3, 1, 2], 1) = 3c + T([1, 2], 1) and T([3, 2, 1], 1) = 3c + T([2, 1], 1). Finally

$$T(3,1,2) = 3c + \frac{1}{2}(T([1,2],1) + T([2,1],1)),$$

and we saw previously that the second term is T(2,1). So finally, T(3,1,2) = 3c + T(2,1). Since $T(2,1) \le T(2)$ (by definition of T!), we have

$$T(3,1,2) \le 3c + T(2).$$

This fact is true in general: from the expression above giving T(n, k, i), and using our assumption on the partition function, we can prove the following:

Lemma 2.

$$T(n, k, i) \le cn + \begin{cases} 0 & k = i \\ T(i) & k < i \\ T(n - i - 1) & k > i. \end{cases}$$

From now on, I am going to pretend that T is a non-decreasing function, and I will finish the proof under this assumption. I could do without it, but it would make everything even more complicated. This assumption gives us in particular

$$T(n,k,i) \le cn + T(\max(i,n-i-1)).$$

Let us plug this in (??); we get

$$T(n,k) \le cn + \frac{1}{n} \sum_{i=0}^{n-1} T(\max(i, n-i-1)).$$

The right-hand side does not depend on k, so I can take the max over all k's on the left, and I get

$$T(n) \le \frac{1}{n} \sum_{i=0}^{n-1} T(\max(i, n-i-1)). \tag{6.4}$$

We finish by doing a case discussion on i (and we pretend that n is a multiple of 4)

• If i < n/4, then I will simply using the fact that both i and n - i - 1 are at most n, so (because we assume that T is non-decreasing)

$$T(\max(i, n - i - 1)) \le T(n).$$

Same thing with $i \geq 3n/4$; altogether, there are n/2 such values of i.

• The sweet spot is when $n/4 \le i < 3n/4$. In that case, we have both i < 3n/4 and n - i - 1 < 3n/4, so their max is less than 3n/4, and (because we assume that T is non-decreasing)

$$T(\max(i, n - i - 1)) \le T(3n/4).$$

These account for the other n/2 values of i.

Bottom line, for n/2 values of i, we plainly have $T(\max(i, n-i-1)) \leq T(n)$, and for the other n/2 we have $T(\max(i, n-i-1)) \leq T(3n/4)$. Plugging this into $(\ref{eq:spin})$, we obtain

$$T(n) \le cn + \frac{1}{2}T(n) + \frac{1}{2}T(3n/4),$$

which is equivalent to

$$T(n) \le 2cn + T(3n/4)$$
.

As promised we can then use Lemma ?? to conclude that T(n) is in O(n).