Exercice 1 (cours)

Citer le théorème de transfert. Donner la formule de l'espérance. Donner les conditions pour qu'une fonction f soit la densité d'une variable aléatoire.

EXERCICE 2

Soit X et Y deux variables aléatoires indépendantes suivant toutes deux une loi uniforme sur [0,1]. Trouver la densité de X+Y. Calculer $\mathbb{P}(\frac{1}{2} \leq X+Y \leq \frac{3}{2})$.

Exercice 3

Soit X_1, \ldots, X_n des variables aléatoires indépendantes suivant la même loi exponentielle de paramètre λ . Étudier la loi de $\max(X_1, \ldots, X_n)$.

Exercice 4

Soit X une variable aléatoire suivant la loi uniforme sur [0,1[.

- 1. Montrer que $Y = -\ln(1-X)$ suit une lie exponentielle de paramètre 1.
- 2. En déduire une fonction Python qui retourne un nombre aléatoire suivant la loi exponentielle de paramètre 1.
- 3. Comment faire pour avoir les lois exponentielles de paramètre λ pour λ quelconque?

Exercice 5

Soit X une variable aléatoire dont la fonction de répartition s'écrit $F_X(x) = \begin{cases} 0 \text{ si } x \leq 0 \\ \alpha - e^{-x}(1+x) \text{ si } x > 0 \end{cases}$

- 1. Quelle est la valeur de α ?
- 2. Calculer $\mathbb{P}(-2 < X < 3)$.
- 3. X admet-elle une densité?

EXERCICE 6

Soit X une variable aléatoire de loi uniforme sur [a,b], calculer son espérance et sa variance. Même question avec la loi exponentielle de paramètre λ et la loi normale centrée réduite.

Exercice 7

Soit X_1, \ldots, X_n des variables aléatoires indépendantes suivant la loi uniforme sur [0,1]. Soit $U = \min(X_1, \ldots, X_n)$. Démontrer que U admet une densité (que l'on déterminera).

Exercice 8

Soit X une variable aléatoire suivant la loi exponentielle de paramètre λ . Déterminer la loi de \sqrt{X} , X^2 , X^3 .

Exercice 9

Soit X une variable aléaoire à densité dont la fonction de répartition F est strictement croissante. Déterminer la loi de Y = F(X).

Exercice 10

Soit X une variable aléatoire dont la fonction de répartition s'écrit $F_X(x) = \begin{cases} 0 \text{ si } x \leq 0 \\ 1 - \exp(\frac{x^2}{2}) \text{ si } x > 0 \end{cases}$. Montrer que X est une variable à densité et déterminer une densité de X.