

## Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn



Shayne Zhu Cron Con

# **TEST REPORT**

**Report Reference No.....: TRE1703026201** R/C.....: 84079

FCC ID.....: 2AK5H-Z3-Z5-1

Applicant's name.....: AvantSonic Technology Co.,Ltd.

Manufacturer...... AvantSonic Technology Co.,Ltd.

Test item description...... Bladder Scanner

Trade Mark..... AvantSonic

Model/Type reference...... PadScan Z5

Listed Model(s)..... PadScan Z3

Standard...... FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample.......... Mar. 29, 2017

Date of testing...... Mar. 30, 2017- Apr. 18, 2017

Date of issue...... Apr. 18, 2017

Result..... PASS

Compiled by

( position+printedname+signature)...: File administrators Shayne Zhu

Supervised by

(position+printedname+signature)....: Project Engineer Lion Cai

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name .....: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No.: TRE1703026201 Page: 2 of 38 Issued: 2017-04-18

## **Contents**

| <u>1.</u>    | TEST STANDARDS AND REPORT VERSION           | <u>3</u> |
|--------------|---------------------------------------------|----------|
|              | Annilla alula Otan danda                    | 2        |
| 1.1.<br>1.2. | Applicable Standards Report version         | 3<br>3   |
| 1.2.         | Report Version                              | 3        |
| <u>2.</u>    | TEST DESCRIPTION                            | 4        |
| <u>3.</u>    | SUMMARY                                     | 5        |
| <u>3.</u>    | JUMINARI                                    | <u> </u> |
| 3.1.         | Client Information                          | 5        |
| 3.2.         | Product Description                         | 5        |
| 3.3.         | Operation state                             | 6        |
| 3.4.         | EUT configuration                           | 6        |
| 3.5.         | Modifications                               | 6        |
| <u>4.</u>    | TEST ENVIRONMENT                            | 7        |
| 4.1.         | Address of the test laboratory              | 7        |
| 4.2.         | Test Facility                               | 7        |
| 4.3.         | Equipments Used during the Test             | 8        |
| 4.4.         | Environmental conditions                    | 9        |
| 4.5.         | Statement of the measurement uncertainty    | 9        |
| <u>5.</u>    | TEST CONDITIONS AND RESULTS                 | 10       |
| 5.1.         | Antenna requirement                         | 10       |
| 5.2.         | Conducted Emission (AC Main)                | 11       |
| 5.3.         | Conducted Peak Output Power                 | 14       |
| 5.4.         | Power Spectral Density                      | 15       |
| 5.5.         | 6dB bandwidth                               | 17       |
| 5.6.         | Restricted band                             | 19       |
| 5.7.         | Band edge and Spurious Emission (conducted) | 21       |
| 5.8.         | Spurious Emission (radiated)                | 23       |
| <u>6.</u>    | TEST SETUP PHOTOS OF THE EUT                | 28       |
| 7.           | EXTERNAL AND INTERNAL PHOTOS OF THE EUT     | 30       |

Report No.: TRE1703026201 Page: 3 of 38 Issued: 2017-04-18

## 1. Test standards and Report version

## 1.1. Applicable Standards

The tests were performed according to following standards: FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: AmericanNationalStandardforTestingUnlicensedWirelessDevices

<u>KDB558074 D01 DTS Meas Guidance v03r05:</u>Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under § 15.247

### 1.2. Report version

| Version No. | Date of issue | Description |
|-------------|---------------|-------------|
| 00          | Apr. 18, 2017 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Report No.: TRE1703026201 Page: 4 of 38 Issued: 2017-04-18

# 2. Test Description

| Test Item                         | FCC Rule          | Result |
|-----------------------------------|-------------------|--------|
| Antenna requirement               | 15.203/15.247 (c) | Pass   |
| Line Conducted Emission (AC Main) | 15.207            | Pass   |
| Conducted Peak Output Power       | 15.247 (b)(3)     | Pass   |
| Power Spectral Density            | 15.247 (e)        | Pass   |
| 6dB Bandwidth                     | 15.247 (a)(2)     | Pass   |
| Restricted band                   | 15.247(d)/15.205  | Pass   |
| Spurious Emission                 | 15.247(d)/15.209  | Pass   |

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1703026201 Page: 5 of 38 Issued: 2017-04-18

# 3. **SUMMARY**

## 3.1. Client Information

| Applicant:    | AvantSonic Technology Co.,Ltd.                               |  |
|---------------|--------------------------------------------------------------|--|
| Address:      | No.394 Jingdongfang Avenue Beibei District, Chongqing,China  |  |
| Manufacturer: | AvantSonic Technology Co.,Ltd.                               |  |
| Address:      | No.394 Jingdongfang Avenue Beibei District, Chongqing, China |  |

## 3.2. Product Description

| Name of EUT                                      | Bladder Scanner                    |
|--------------------------------------------------|------------------------------------|
| Trade Mark:                                      | AvantSonic                         |
| Model No.:                                       | PadScan Z5                         |
| Listed Model(s):                                 | PadScan Z3                         |
| Power supply:                                    | DC 11.1V from internal battery     |
|                                                  | Model: FY1355000                   |
| Adapter information:                             | Input: 100-240Va.c., 50/60Hz, 1.2A |
|                                                  | Output: 13.5Vd.c., 5000mA          |
| Bluetooth                                        |                                    |
|                                                  |                                    |
| Version:                                         | Supported BT4.0+BLE                |
| Version: Modulation:                             | Supported BT4.0+BLE  GFSK          |
|                                                  |                                    |
| Modulation:                                      | GFSK                               |
| Modulation: Operation frequency:                 | GFSK<br>2402MHz~2480MHz            |
| Modulation: Operation frequency: Channel number: | GFSK 2402MHz~2480MHz 40            |

Report No.: TRE1703026201 Page: 6 of 38 Issued: 2017-04-18

## 3.3. Operation state

#### > Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

| Channel | Frequency (MHz) |
|---------|-----------------|
| 00      | 2402            |
| 02      | 2404            |
| i:      | :               |
| 19      | 2440            |
| i       | :               |
| 38      | 2478            |
| 39      | 2480            |

#### Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit(dutycycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For RF test axis

EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

## 3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- $\bigcirc$  supplied by the lab

|  | Length (m):   | / |
|--|---------------|---|
|  | Shield:       | / |
|  | Detachable:   | / |
|  | Manufacturer: | / |
|  | Model No.:    | / |

#### 3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1703026201 Page: 7 of 38 Issued: 2017-04-18

## 4. TEST ENVIRONMENT

## 4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

## 4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478.

IC-Registration No.: 5377B

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B.

#### **ACA**

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1703026201 Page: 8 of 38 Issued: 2017-04-18

## 4.3. Equipments Used during the Test

| Cond | Conducted Emission (AC Main) |               |             |            |            |
|------|------------------------------|---------------|-------------|------------|------------|
| Item | Test Equipment               | Manufacturer  | Model No.   | Serial No. | Last Cal   |
| 1    | Artificial Mains             | Rohde&Schwarz | ESH2-Z5     | 100028     | 2016/11/13 |
| 2    | EMI Test Receiver            | Rohde&Schwarz | ESCI3       | 100038     | 2016/11/13 |
| 3    | Pulse Limiter                | Rohde&Schwarz | ESHSZ2      | 100044     | 2016/11/13 |
| 4    | EMI Test Software            | Rohde&Schwarz | ES-K1 V1.71 | N/A        | N/A        |

| Radia | Radiated Emission          |                              |                        |            |            |
|-------|----------------------------|------------------------------|------------------------|------------|------------|
| Item  | Test Equipment             | Manufacturer                 | Model No.              | Serial No. | Last Cal   |
| 1     | Ultra-Broadband<br>Antenna | ShwarzBeck                   | VULB9163               | 538        | 2016/11/13 |
| 2     | EMI TEST RECEIVER          | Rohde&Schwarz                | ESI 26                 | 100009     | 2016/11/13 |
| 3     | EMI TEST Software          | Audix                        | E3                     | N/A        | N/A        |
| 4     | TURNTABLE                  | ETS                          | 2088                   | 2149       | N/A        |
| 5     | ANTENNA MAST               | ETS                          | 2075                   | 2346       | N/A        |
| 6     | EMI TEST Software          | Rohde&Schwarz                | ESK1                   | N/A        | N/A        |
| 7     | HORNANTENNA                | ShwarzBeck                   | 9120D                  | 1011       | 2016/11/13 |
| 8     | Amplifer                   | Sonoma                       | 310N                   | E009-13    | 2016/11/13 |
| 9     | JS amplifer                | Rohde&Schwarz                | JS4-00101800-<br>28-5A | F201504    | 2016/11/13 |
| 10    | High pass filter           | Compliance Direction systems | BSU-6                  | 34202      | 2016/11/13 |
| 11    | HORNANTENNA                | ShwarzBeck                   | 9120D                  | 1012       | 2016/11/13 |
| 12    | Amplifer                   | Compliance Direction systems | PAP1-4060              | 120        | 2016/11/13 |
| 13    | Loop Antenna               | Rohde&Schwarz                | HFH2-Z2                | 100020     | 2016/11/13 |
| 14    | TURNTABLE                  | MATURO                       | TT2.0                  |            | N/A        |
| 15    | ANTENNA MAST               | MATURO                       | TAM-4.0-P              |            | N/A        |
| 16    | Horn Antenna               | SCHWARZBECK                  | BBHA9170               | 25841      | 2016/11/13 |
| 17    | ULTRA-BROADBAND<br>ANTENNA | Rohde&Schwarz                | HL562                  | 100015     | 2016/11/13 |

|         | mum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF |               |         |              |            |
|---------|---------------------------------------------------------------------------------------------|---------------|---------|--------------|------------|
| EIIIISS | nission / Spurious RF Conducted Emission                                                    |               |         |              |            |
| Item    | tem Test Equipment Manufacturer Model No. Serial No. Last Cal                               |               |         |              |            |
| 1       | Spectrum Analyzer                                                                           | Rohde&Schwarz | FSP     | 1164.4391.40 | 2016/11/13 |
| 2       | Power Meter                                                                                 | Anritsu       | ML2480B | 100798       | 2016/11/13 |
| 3       | Power Sensor                                                                                | Anritsu       | MA2411B | 100258       | 2016/11/13 |

The Cal.Interval was one year

Report No.: TRE1703026201 Page: 9 of 38 Issued: 2017-04-18

## 4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature:     | 15~35°C     |
|------------------|-------------|
| lative Humidity: | 30~60 %     |
| Air Pressure:    | 950~1050mba |

## 4.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

| Test Items                              | MeasurementUncertainty | Notes |
|-----------------------------------------|------------------------|-------|
| Transmitter power conducted             | 0.57 dB                | (1)   |
| Transmitter power Radiated              | 2.20 dB                | (1)   |
| Conducted spurious emission 9KHz-40 GHz | 1.60 dB                | (1)   |
| Radiated spurious emission 9KHz-40 GHz  | 2.20 dB                | (1)   |
| Conducted Emission 9KHz-30MHz           | 3.39 dB                | (1)   |
| Radiated Emission 30~1000MHz            | 4.24 dB                | (1)   |
| Radiated Emissio 1~18GHz                | 5.16 dB                | (1)   |
| Radiated Emissio 18-40GHz               | 5.54 dB                | (1)   |
| Occupied Bandwidth                      |                        | (1)   |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1703026201 Page: 10 of 38 Issued: 2017-04-18

## 5. TEST CONDITIONS AND RESULTS

## 5.1. Antenna requirement

#### Requirement

#### FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

## FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### **TEST RESULTS**

| □ Passed | ☐ Not Applicable |
|----------|------------------|
|----------|------------------|

The antenna is integral antenna, the best case gain of the antenna is 0dBi, please refer to the below antenna photo.



Report No.: TRE1703026201 Page: 11 of 38 Issued: 2017-04-18

## 5.2. Conducted Emission (AC Main)

#### **LIMIT**

FCC CFR Title 47 Part 15 Subpart C Section 15.207

| Frequency range (MHz) | Limit (dBuV) |           |  |
|-----------------------|--------------|-----------|--|
|                       | Quasi-peak   | Average   |  |
| 0.15-0.5              | 66 to 56*    | 56 to 46* |  |
| 0.5-5                 | 56           | 46        |  |
| 5-30                  | 60           | 50        |  |

<sup>\*</sup> Decreases with the logarithm of the frequency.

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- The EUT was setup according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

#### TEST MODE:

Please refer to the clause 3.3

#### **TEST RESULTS**

#### 

Note:

- 1) Transd=Cable lose+Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level

Report No.: TRE1703026201 Page: 12 of 38 Issued: 2017-04-18



Report No.: TRE1703026201 Page: 13 of 38 Issued: 2017-04-18



Report No.: TRE1703026201 Page: 14 of 38 Issued: 2017-04-18

## 5.3. Conducted Peak Output Power

### **LIMIT**

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

#### **TEST CONFIGURATION**



### **TEST PROCEDURE**

- The EUT was tested according to KDB 558074 D01 V03R03 for compliance to FCC 47CFR 15.247requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

#### TEST MODE:

Please refer to the clause 3.3

## **TEST RESULTS**

| Type   | Channel | PK Output power (dBm) | Limit (dBm) | Result |
|--------|---------|-----------------------|-------------|--------|
|        | 00      | -1.79                 |             |        |
| BT-BLE | 19      | -1.70                 | 30.00       | Pass   |
|        | 39      | -1.82                 |             |        |

Report No.: TRE1703026201 Page: 15 of 38 Issued: 2017-04-18

## 5.4. Power Spectral Density

### **LIMIT**

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e): 8dBm/3KHz

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### **TEST CONFIGURATION**



## **TEST PROCEDURE**

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- 2. Configurethe spectrum analyzer as shown below:

Center frequency=DTS channel center frequency

Span =1.5 times the DTS bandwidth

RBW =  $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$ , VBW  $\ge 3 \times \text{RBW}$ 

Sweep time = auto couple

Detector = peak

Trace mode = max hold

- Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

### TEST MODE:

Please refer to the clause 3.3

#### **TEST RESULTS**

| Туре   | Channel | Power Spectral<br>Density(dBm/3KHz) | Limit (dBm/3KHz) | Result |
|--------|---------|-------------------------------------|------------------|--------|
|        | 00      | -17.31                              |                  |        |
| BT-BLE | 19      | -17.25                              | 8.00             | Pass   |
|        | 39      | -17.33                              |                  |        |

Test plot as follows: