

⑪ 公開特許公報 (A)

昭63-145735

⑤Int.Cl.⁴
C 22 C 16/00識別記号
厅内整理番号
6411-4K

⑥公開 昭和63年(1988)6月17日

審査請求 未請求 発明の数 1 (全4頁)

⑦発明の名称 ジルコニウム合金

⑧特願 昭61-291749

⑨出願 昭61(1986)12月8日

⑩発明者 穴田 博之 兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式会社総合技術研究所内

⑪発明者 志田 善明 兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式会社総合技術研究所内

⑫発明者 小玉 強 兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式会社総合技術研究所内

⑬出願人 住友金属工業株式会社 大阪府大阪市東区北浜5丁目15番地

⑭代理人 弁理士 広瀬 章一

明細書

1. 発明の名称

ジルコニウム合金

2. 特許請求の範囲

重量%で、

Nb:0.1~1.2%、Sn:0.2~1.2%、

さらに、

Fe:0.25%以下、Cr:0.20%以下、および

Ni:0.3%以下のうち1種もしくは2種以上、

残部がジルコニウムおよび付随不純物

からなる組成を有する、耐ノジュラーコロージョン性にすぐれたジルコニウム合金。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、耐ノジュラーコロージョン性に優れたジルコニウム合金に関する。

(従来の技術)

ジルコニウム合金は、本来ジルコニウムが有する耐食性をさらに向上させたものであり、熱中性子吸収断面積が小さいこと、高温水中あるいは高

温水蒸気中での耐食性が良好である等の長所を有しているので、水冷却型原子炉の燃料被覆管等の構造用材料として用いられている。

現在商業的に最も広く用いられているジルコニウム合金にはASTM、JIS等に規定されているジルカロイ-2およびジルカロイ-4がある。ジルカロイ-2は沸騰水型原子炉の燃料被覆管として、またジルカロイ-4は加圧水型原子炉の燃料被覆管および沸騰水型原子炉のチャンネルボックスとして用いられている。ジルカロイ-2、ジルカロイ-4以外のジルコニウム合金としてはソ連で燃料被覆管として実用されていると言われる1wt%のNbを含むZr-1Nb合金、重水型原子炉の圧力管として使用されている2.5wt%のNbを含むZr-2.5Nb等がある。

しかしながら、これら合金の耐食性は必ずしも十分ではなく、例えば、水冷却型炉の燃料被覆管に用いた場合には、ノジュラーコロージョンと呼ばれる異常な腐食現象が発生することがあった。この現象は沸騰水型原子炉のジルカロイ-2の被

覆管に発生しやすいと言われており、正常であれば高温水または水蒸気との反応による黒色の緻密な酸化皮膜が均一に生成するのであるが、ノジュラーコロージョン現象（以下、単に「ノジュラー」ともいう）が生ずると、白色の斑点状酸化物が生成し、これら被覆管の健全な肉厚の減少が急速に進むため、重大な問題とされているものである。

このノジュラーコロージョンについては各種の研究が行なわれており、その防止対策についていくつかの方法が提案されている。それらの提案としては、例えば、

①ジルカロイ-2 またはジルカロイ-4（以下、単に「ジルカロイ合金」という）の素管または中間段階で外面のみを $(\alpha + \beta)$ または β 域まで加熱した後、急冷熱処理をしてジルカロイ合金中に生成する金属間化合物の析出形態を変化させ耐ノジュラーコロージョン性を得ようとする方法と、

②ジルカロイ-2 またはジルカロイ-4 の組成に 0.05~1.0 % の Nb を含有させて耐ノジュラーコ

通常炉外試験で行なわるノジュラーコロージョンに対する抵抗性評価テスト(500℃、105 気圧、高温高圧水蒸気中)にみられるような過酷条件下でのノジュラーコロージョンの発生を抑制することはできなかった。

かくして、本発明の目的は、従来よりすぐれた耐ノジュラーコロージョン性を有するより安価なジルコニウム合金を提供することである。

（問題点を解決するための手段）

本発明者らは、上記欠点を解決すべく、各種合金成分の耐ノジュラーコロージョン性に及ぼす影響について種々検討を重ねた結果、次のような新しい知見を得た。

①耐ノジュラーコロージョン性の観点から特に Fe、Cr、Ni を同時に含有する場合に Sn 量を少なくする方が良い効果が得られること。但し、強度の向上のために Sn の添加を必要とする場合は、1.2 wt% までは特に耐食性の低下をおこさず含有させることができること。

②Sn は N が耐食性を低下させるのを抑制する効果

ロージョン性を得ようとする方法（特開昭60-36640 号）があげられる。

（発明が解決しようとする問題点）

しかしながら、前記提案はそれぞれ次のようないくつかの問題を包含している。第1の提案方法では、外面のみ急冷熱処理するという面倒な工程を加えねばならず、温度コントロールも注意を払う必要があり、この提案方法を用いることは、設備を増やし、さらに工程を増やすため、製造費用および検査費用の増加などの相当なコストアップが予想される。

次の第2の提案方法は、ジルカロイ合金が純ジルコニウムよりも耐食性に優れていることと、Nb を含有させることにより耐食性が向上するという2つの従来知見を組み合せたものと考えられる。したがって、ジルカロイ合金をベースとして Nb を含有させた前記提案方法により得られた合金は、従来のジルカロイ合金に比べて耐食性の向上がみられるが、この第2の提案方法による Nb の所定量をジルカロイ合金ベースに含有させるだけでは、

があるとされているが、現状のスponジおよび溶解技術からは N は通常 20 ppm 程度含有するにすぎないことから、この N が耐食性を低下させるのを抑えるためには 0.2 % 含有されれば十分であること。

以上のように、本発明者らは従来あまり注目されなかった Sn 添加による効果の検討を行い、得られた前述の新たな知見に基づき本発明を完成した。

ここに、本発明の要旨とするところは、重量 % で、

Nb: 0.1~1.2 %, Sn: 0.2~1.2 %,

さらに、

Fe: 0.25 % 以下、Cr: 0.20 % 以下、および Ni: 0.3 % 以下のうち 1 種もしくは 2 種以上、殻部がジルコニウムおよび付随不純物からなる組成を有する、耐ノジュラーコロージョン性にすぐれたジルコニウム合金である。

次に、本発明をさらに詳しく説明する。

（作用）

本発明におけるジルコニウム合金の組成成分を

上述の如く限定する理由を下記に説明する。

(a) Nb: Nbは通常の耐ノジュラーコロージョン性を改善する目的で加えられるが、本発明のように従来のジルカロイ合金よりSn含有量が少なく、Fe、CrおよびNiが共存して含有される条件下では、Nb含有量が0.1重量%から本発明合金における耐ノジュラーコロージョン性の効果が現れる。したがって、Nbが0.1重量%より多く加えられるに従い、前記合金の耐食性改善効果がさらに向上し、また強度も同時に向上する。

しかしながら、Nbは高価な元素であり、また中性子吸収も大きいため含有量が少ない方が望ましい。本発明では、上記の点を考慮して、Nb含有量の上限を1.2重量%とする。

(b) Sn: Snは少量の含有で本発明合金の耐食性改善効果が得られ、耐食性向上のためには好ましい元素である。しかし、Snは同時にその含有量が多くなると逆に耐食性を低下させる性質を有する。本発明においてSn含有量を少量とするのは不純物としてのNが有する耐食性を低下さ

量が0.2重量%を超えると逆に耐食性の低下を示す。特に焼鈍温度に敏感に影響されるのであまり多量の含有は好ましくない。したがって、本発明では、Cr含有量の上限を0.2重量%とする。

(c) Ni: NiもFe、Crと同様に本発明合金の耐食性向上に有効な元素であり、その含有量の増加に伴ない耐食性向上効果が得られる。しかし、含有量が0.3重量%を超えると逆に耐食性の低下を示す。したがって本発明では、Ni含有量の上限を0.3重量%とする。

さらに、本発明にあっては、耐食性、機械的性質、中性子吸収を考慮して以下に述べる添加成分の組成範囲とするのが好ましい。

$$\Sigma M = Nb + Sn + (Fe + Cr + Ni)$$

上記式のΣMは本発明合金に含有する化学成分の含有量の総和量を表わすものである。本発明合金の機械的性質を考慮して、その総和量は0.7重量%以上であればよい。Sn量はNb量とFe、CrおよびNi量から上記総和量ΣM

せる影響を抑えるためである。本発明では0.2重量%のSn含有でその抑制効果を示す。

Snの含有量と得られる合金との間の特性について調べたところ予想外にも、少量のSnが有効であり、Sn含有量が1.2重量%までは耐食性を低下させないことが確認できた。したがって、本発明のSn含有量の上限を1.2重量%とする。好ましくは、0.8%である。

また、Snは強度向上にも有効な元素であるため、強度向上が必要な場合には、本発明の範囲内で、より多量に含有させるのが好ましい。

(d) Fe: Feもまた本発明合金の耐食性向上に有効な元素であり、その含有量の増加に伴ない耐食性向上の効果が得られる。しかし、Fe含有量が多くなると逆に耐食性の低下を示す。したがって、本発明では、Fe含有量の上限を0.25重量%とする。

(e) Cr: CrはFeと同様に本発明合金の耐食性向上に有効な元素であり、その含有量の増加に伴ない耐食性向上の効果が得られる。しかしその含有

量が0.7重量%以上になるように、0.2~1.2重量%の範囲で設定する。

(実施例)

本実施例の試験片はArアーカボタン溶解炉を用いて第1表に示す化学成分を有する合金を溶製し、下記のフローチャートに示す加工工程を経て得られた厚さ2mmの板材を用いた。前記板材を試験片として循環水蒸気オートクレーブ試験に基づき腐食性の評価を行った。腐食性の評価は前記試験に基づくノジュラーコロージョンの発生有無（具体的には、直径0.1mm以上の白色球状酸化物を目視検査で判定した）。

なお、前記試験は530℃、105気圧、100時間のオートクレーブ条件で行った。

板材加工工程

β処理 (1050℃ × 1hr → HQ (水冷)) → 热間圧延 (700℃ × 2hr, Rd (加工度) ≈ 50%) → 中間焼鈍 (650℃ × 2hr) → 冷間圧延 (Rd ≈ 70%) → 最終焼鈍 (577℃ × 3hr) → 板材 (試験片)

第1表 一 本発明材と比較材の耐食性比較

No	Nb	Sn	Fe	Cr	Ni	ノジュラー有無	備考
1	—	1.53	0.14	0.11	0.07	×	ジルカロイ-2 比較材
2	—	1.55	0.20	0.12	—	×	ジルカロイ-4
3	0.21	1.55	0.13	0.10	0.08	×	(ジルカロイ-2) + Nb
4	0.22	1.53	0.18	0.11	—	×	(ジルカロイ-4) + Nb (特開昭50-36640号)
5	0.21	1.55	0.15	0.15	—	×	高Sn比較材
6	0.24	1.32	0.20	0.11	0.09	×	
7	0.50	1.70	0.15	0.10	0.15	×	
8	0.48	1.40	0.20	0.15	0.08	×	
9	1.03	1.10	0.27	0.11	0.10	×	高Fe比較材
10	0.90	1.05	0.15	0.12	0.10	○	以下本発明材
11	1.05	0.77	0.11	0.09	0.08	○	
12	1.10	0.43	0.08	0.16	0.03	○	
13	1.10	0.25	0.05	0.09	0.03	○	
14	0.53	0.47	0.10	0.05	0.25	○	
15	0.49	0.48	0.11	0.27	0.14	×	高Cr比較材
16	0.48	0.50	0.13	0.20	0.10	○	以下本発明材
17	0.45	0.50	0.25	0.05	0.03	○	
18	0.47	0.51	0.22	0.17	0.07	○	
19	0.51	0.50	0.24	0.10	0.18	○	
20	0.54	0.53	0.20	0.11	0.35	×	高Ni比較材

(表1)

(表2)

No	Nb	Sn	Fe	Cr	Ni	ノジュラー有無	備考
21	0.48	0.52	0.20	0.13	0.30	○	以下本発明材
22	0.51	0.50	0.18	0.09	0.14	○	
23	0.53	0.50	0.18	0.05	0.07	○	
24	0.55	0.53	0.10	—	0.08	○	
25	0.49	0.51	0.05	0.05	0.20	○	
26	0.22	1.10	0.25	0.10	—	○	
27	0.21	0.97	0.18	0.09	0.10	○	
28	0.15	0.61	0.25	0.15	0.08	○	
29	0.21	0.38	—	0.15	0.15	○	
30	0.13	0.22	0.25	0.15	0.08	○	
31	0.31	1.00	0.24	—	—	○	
32	0.30	0.99	—	0.14	—	○	
33	0.25	0.50	—	—	0.25	○	
34	0.05	0.42	0.20	0.13	0.19	×	低Nb比較材
35	0.08	1.05	0.23	0.18	0.26	×	

(注) ○: ノジュラーなし

×: ノジュラー発生

第1表に本発明合金材と比較用合金材の耐腐食性の評価の結果をまとめて示した。

第1表からわかるように、前記試験条件で試験No.1、2、3、4に示すジルカロイ合金および従来のジルカロイ+Nb合金、すなわち、比較合金材はいずれもノジュラーコロージョンの発生が確認され、また試験No.5～8に示す本発明のNb含有範囲にある合金ではあるがSn量が本発明の範囲の1.2重量%を超える比較合金材は同様にノジュラーコロージョンの発生が確認された。また試験No.9、15、20に示す合金は、それぞれ、Fe、Cr、Ni量が本発明の範囲を越えており、さらに試験No.34、35はNb量が本発明の範囲を越えており、いづれもノジュラーコロージョンの発生が確認された。しかし本発明の範囲にある試験No.10～14、16～19、21～33に示す本発明合金材にはいずれもノジュラーコロージョンの発生が確認されなかった。

したがって、本発明の範囲内の組成成分を有する合金材は従来より耐ノジュラーコロージョン性が確認されている比較用合金材に比べ、さらに優

れた耐ノジュラーコロージョン性を有することがわかった。

(発明の効果)

以上のように、本発明によれば、耐ノジュラーコロージョン性にすぐれているといわれる従来のジルコニウム合金よりもSn含有量を大幅に減らしても、他の添加成分Fe、Cr、Niを任意に1種以上選択して本発明で限定する量だけ添加することにより、むしろ従来に比べさらに一段優れた耐ノジュラーコロージョン性が得られるのである。

したがって、本発明によれば、従来よりもさらに過酷な条件下でも耐ノジュラーコロージョン性を有する優れたジルコニウム合金材が供給できる。

出願人 住友金属工業株式会社

代理人 弁理士 広瀬 章一

COPY

NATIONAL INDUSTRIAL PROPERTY OFFICE (JP)

PUBLICATION OF PATENT (A)

PUBLIC filing [illegible]

Year 1988 - 145735

Publication: 17-Jun-1988

Int. CL Ref.
C 22 C 16/00

Specific Code

Internal Ref.
8411 - 4K

Invention No: 1 (5 pages)
Verification request: No

Title of invention: Zirconium Alloy

Application no.: Year 1986 - 291749

Filed: 08-Dec-1986

Inventor: ANADA, Hiroyuki, Technical Research Institute, Metal Industrial Co., Ltd., 1-3,
Hondori Nishi Nagasu Amagasaki, Hyougoken, Japan.

Inventor: SHIDA, Yoshiaki, Technical Research Institute, Sumotomo Metal Industrial Co.,
Ltd., 1-3, Hondori Nishi Nagasu Amagasaki, Hyougoken, Japan.

Inventor: KODAMA, Tsuyoshi, Technical Research Institute, Sumotomo Metal Industrial
Co., Ltd., 1-3, Hondori Nishi Nagasu Amagasaki, Hyougoken, Japan.

Assignee: Sumotomo Metal Industrial Co., Ltd., 5-15 Kitahama, Higashiku, Osakashi,
Osaka, Japan.

Attorney, agent or firm: Patent Agent Shouichi HIROSE.

Abstract

1. Title of Invention:

Zirconium Alloy

2. Scope of Patent:

Zirconium alloy having nodular corrosion resistant properties with the following
composition: (% by weight)

- 0.1 - 1.2% Nb, and 0.2 - 1.2% Sn
- one or more elements:
 - Fe: less than 0.25%
 - Cr: less than 0.20%
 - Ni: less than 0.3%
- zirconium and impurities (remainder)

3. Detailed description of the invention:

(Field of industrial use)

This invention relates to a zirconium alloy having nodular corrosion resistant properties.

(Standard technique used)

ATTACHMENT B

Zirconium alloy is more resistant to corrosion than zirconium. Its thermal neutron absorption cross-section is smaller, and it is resistant to corrosion from water or high-temperature steam. For this reason this alloy is used to manufacture watertight nuclear fuel tubes for use in water reactors.

The different types of zirconium alloy currently in use are zircaloy-2 and zircaloy-4, in accordance with ASTM and JIS standards. Zircaloy-2 is used to manufacture watertight nuclear fuel tubes for use in boiling water reactors. Zircaloy-4, on the other hand, is used to manufacture watertight nuclear fuel tubes for use in pressurized water reactors, and pipe casings for boiling water reactors. In addition to the two zircaloys, there are also Zr-1Nb, which contains 1% Nb and is said to be used to manufacture watertight tubes in the USSR; and Zr-2.5Nb, which contains 2.5% Nb and is used to manufacture high-pressure pipes for use in heavy water reactors (HWR).

However, these zirconium alloys are not perfectly corrosion resistant. For example, an abnormal corrosion phenomenon, nodular corrosion, is observed with the alloys used for watertight tubes in water reactors. This nodular corrosion phenomenon is said to be likely to occur with a zircaloy-2 tube for a boiling water reactor. A black, oxidized skin normally appears after reaction with water or high-temperature steam. The nodular corrosion phenomenon, however, causes white patches of oxidation to form, thinning the healthy part of the tube, which is a very serious problem.

Several studies of the nodular corrosion phenomenon propose processes for preventing nodular corrosion, e.g.:

1. The nodular corrosion resistant property can be obtained through a process whereby the separation structure of the intermetallic compounds that form in the alloy (zircaloy-2 or zircaloy-4, hereinafter referred to by the term "alloy") is changed after undergoing the following heat treatments:
 - Heat treatment of the outside of the tube (raw or intermediate tube), limiting the treatment area to zone (a+b), or b alone;
 - Quenching by sudden cooling.
2. A method whereby the nodular corrosion resistant property is obtained by incorporating 0.05 - 1.0% Nb into the alloy (Patent no. S.60 [1985] - 36640).

(Problems this invention attempts to solve)

However, there are certain problems with the proposed methods described above. In the first method, a complex heat treatment that is difficult to control from the temperature standpoint is required, calling for special facilities that can only result in an increase in manufacturing costs.

The second method is a combined method that harnesses the corrosion resistant property of the zirconium alloy and the property of Nb as a corrosion resistance enhancement agent. While it is true that the alloy containing Nb obtained by this method offers better corrosion resistance with respect to the alloy without Nb, the quantity of Nb proposed by this method did not yield satisfactory results in the corrosion resistance property evaluation we carried out outside the reactor. We observed the nodular corrosion phenomenon under severe conditions (steam at 500°C and pressure of 105 Atm).

The purpose of this invention is therefore to provide a method of manufacturing low-cost zirconium alloy with nodular corrosion resistant properties.

(Means of resolving the problems)

After some research and testing on the influence of materials on nodular corrosion resistant properties, we arrived at the following conclusions:

1. From the nodular corrosion resistance standpoint, when the alloy contains all three elements - i.e., Fe, Cr and Ni - better results are obtained with the least possible amount of Sn. However, if Sn is needed to increase the hardness of the alloy, it can be used up to 1.2% by weight without negatively impacting the corrosion resistance property.
2. While we know that Sn interferes with the action of N, which lowers corrosion resistance performance, the N level is generally only 20 ppm for the melting and sponge technique currently used, such that an Sn level of 0.2% would be amply sufficient to prevent the undesirable effect of diminished corrosion resistant properties.

It is clear from the above that our research focused specifically on the Sn property, which was previously unknown. Based on the findings of such research, we developed the following invention:

Zirconium alloy having nodular corrosion resistant properties with the following composition: (% by weight)

- 0.1 - 1.2% Nb, and 0.2 - 1.2% Sn
- one or more elements:
 - Fe: less than 0.25%
 - Cr: less than 0.20%
 - Ni: less than 0.3%
- zirconium and impurities (remainder)

(Action)

The reasons for choosing the above composition parameters is explained below.

(a) Nb - Nb is generally added to improve nodular corrosion resistance. Its action as a corrosion resistance enhancement agent starts at the level of 0.1% by weight, under the following existing conditions:

- the Sn level in the zircaloy is lower than usual;
- the alloy contains all three elements: Fe, Cr and Ni.

Starting at an Nb level of 1.0%, the alloy's corrosion resistance is enhanced as the alloy becomes harder.

However, Nb is a very expensive element that absorbs a substantial amount of neutrons, so it is best to limit its use. As such, we decided upon an upper Nb usage limit of 1.2%.

(b) Sn - Very small quantities of Sn enhance corrosion resistance. However, this element unfortunately has the opposite effect if more than a certain amount is used. The corrosion resistance effect starts at an Sn level of 0.2%.

Tests were performed with different levels of Sn to study the effects on the properties of the alloy. Surprisingly, a low level of Sn provides a high level of corrosion resistance, and the resistance only begins falling off at a level of 1.2%. As such, we set the upper limit at 1.2%, but the desired level is 0.8%.

The element Sn also increases hardness. If a harder alloy is desired, it can be added up to the limit set above.

• Fe - The element Fe also enhances corrosion resistance. Increasing its usage level improves resistance up to an upper limit, beyond which it has the opposite effect. We thus decided upon an upper limit of 0.25% for it.

(d) Cr - Like Fe, Cr enhances corrosion resistance. The effect increases with the usage level, but reverses beyond 0.2%. Since this element is very sensitive to annealing temperature, it is not desirable to use a large amount. As such, we set the upper limit at 0.2%.

(e) Ni - Like Fe and Cr, Ni enhances corrosion resistance. Its effect increases with the level, but reverses beyond 0.3%. As such, we set the upper limit at 0.2%.

After studying all the relevant criteria, i.e., corrosion resistance, mechanical properties and neutron absorption, we determined the parameters for using the following elements:

$$\Sigma M = Nb + Sn + (Fe + Cr + Ni)$$

ΣM stands for the total amount of chemical elements contained in this alloy. Given the mechanical properties of the alloy, the total amount must be less than 0.7%. The amount of Sn is determined by subtracting the amounts of the other elements from the total amount, within the 0.2-1.2% range.

(Example)

The test sample, a 2-mm sheet of material, is manufactured according to the process described below in an arc furnace with various parameters for the component elements (see table 1). Tests were performed in a circular steam system autoclave to evaluate corrosion resistance. Corrosion evaluation is based on whether white nodular corrosion patches appear. In practical terms, the corrosion threshold is a white patch measuring 0.1 mm in diameter that can be detected by visual examination.

The test conditions are:

- Temperature 530°C
- Pressure 105 Atm de
- Duration 100h

Manufacturing Process

- β treatment ($1050^{\circ}\text{C} \times 1\text{h}$, and WG water-quenched)
- Hot rolling ($700^{\circ}\text{C} \times 2\text{h}$, Rd degree of treatment = 50%)
- Intermediate annealing ($650^{\circ}\text{C} \times 2\text{h}$)
- Cold rolling (Rd degree of treatment = 70%)
- Final annealing ($577^{\circ}\text{C} \times 3\text{h}$)
- Sheet of material

Table 1: Findings of comparative nodular corrosion tests

No.	Nb	Sn	Fe	Cr	Ni	Nodular Corrosion	
1	—	1.53	0.14	0.11	0.07	x	zircaloy-2 (example for comparison)
2	—	1.55	0.20	0.12	—	x	zircaloy-4 (example for comparison)
3	0.21	1.55	0.13	0.10	0.08	x	zircaloy 2 + Nb
4	0.22	1.53	0.18	0.11	—	x	zircaloy 4 + Nb (Patent S.80-36640)
5	0.21	1.55	0.15	0.15	—	x	Example with high level of Sn
6	0.24	1.32	0.20	0.11	0.09	x	Example with high level of Sn
7	0.50	1.70	0.15	0.10	0.15	x	Example with high level of Sn
8	0.48	1.40	0.20	0.15	0.08	x	Example with high level of Sn
9	1.03	1.10	0.27	0.11	0.10	x	Example with high level of Fe
10	0.90	1.05	0.15	0.12	0.10	o	Example of our invention
11	1.05	0.77	0.11	0.09	0.08	o	Example of our invention
12	1.10	0.43	0.08	0.18	0.03	o	Example of our invention
13	1.10	0.25	0.05	0.09	0.03	o	Example of our invention
14	0.53	0.47	0.10	0.06	0.25	o	Example of our invention
15	0.49	0.48	0.11	0.27	0.14	x	Example with high level of Fe
16	0.48	0.50	0.13	0.20	0.10	o	Example of our invention
17	0.45	0.50	0.25	0.05	0.03	o	Example of our invention
18	0.47	0.61	0.22	0.17	0.07	o	Example of our invention
19	0.53	0.50	0.24	0.10	0.18	o	Example of our invention
20	0.54	0.53	0.20	0.11	0.35	x	Example with high level of Ni
21	0.48	0.52	0.20	0.13	0.30	o	Example of our invention
22	0.51	0.50	0.18	0.09	0.14	o	Example of our invention
23	0.53	0.50	0.18	0.05	0.07	o	Example of our invention
24	0.55	0.53	0.10	—	0.08	o	Example of our invention
25	0.49	0.51	0.05	0.05	0.20	o	Example of our invention
26	0.22	1.10	0.25	0.10	—	o	Example of our invention
27	0.21	0.97	0.18	0.09	0.10	o	Example of our invention
28	0.16	0.61	0.25	0.15	0.09	o	Example of our invention
29	0.21	0.38	—	0.15	0.15	o	Example of our invention
30	0.13	0.22	0.25	0.15	0.08	o	Example of our invention
31	0.31	1.00	0.24	—	—	o	Example of our invention
32	0.30	0.99	—	0.14	—	o	Example of our invention
33	0.25	0.50	—	—	0.25	o	Example of our invention
34	0.05	0.42	0.20	0.13	0.19	x	Example with low level of Fe
35	0.08	1.05	0.23	0.18	0.26	x	Example with low level of Nb

Note O: No nodular corrosion phenomenon

X: Nodular corrosion phenomenon observed

The table shows the findings of the comparison between the materials according to our invention and the specific examples given.

In cases 1, 2, 3 and 4, which relate to zircaloys and zircaloys + Nb, nodular corrosion was observed.

Cases 5 through 8 shows examples of our invention with, however, an Sn level above the set limit. These examples showed nodular corrosion.

In examples 9, 15 and 20, the levels of the elements Fe, Cr and Ni fall outside the set parameters. Likewise, cases 34 and 35 have Nb levels that exceed the limit set in our invention. Corrosion was observed in all these cases. By contrast, no nodular corrosion occurred with the examples with levels of the elements falling within the parameters.

We thus drew the conclusion that the alloy according to our invention is more resistant to nodular corrosion than is observed with a standard alloy.

(Outcome of our invention)

As a result, an alloy produced using our method is more resistant to nodular corrosion than zirconium alloy, which is considered resistant, even with a low level of Sn. This can be achieved to the degree that one or more elements, including Fe, Cr and Ni, are used within the proportional parameters defined above. The alloys according to our invention are even resistant to nodular corrosion under severe usage conditions.

Assignee: Metal Industrial Co., Ltd.

Attorney, Agent or Firm: Patent Agent Shouichi HIROSE.

COPY

④ 日本国特許庁 (JP)

① 特許出願公開 publication No

② 公開特許公報 (A)

昭63-145735

③ Int. Cl.
C 22 C 16/00

識別記号 厅内登録番号
6411-4K

④ 公開 昭和63年(1988)6月17日 → //
Year Month Date

審査請求 未請求 発明の数 1 (全4頁)

Date

⑤ 発明の名称 ジルコニウム合金

⑥ Title

⑦ 特願 昭61-291749 → application No.

⑧ 出願 昭61(1986)12月8日 → // Date

⑨ 発明者 穴田 博之 兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式会社総合技術研究所内

⑩ 発明者 志田 善明 兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式会社総合技術研究所内

⑪ 発明者 小三 強 兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式会社総合技術研究所内

⑫ 出願人 住友金属工業株式会社 大阪府大阪市東区北浜5丁目15番地

⑬ 代理人 弁理士 広瀬一章

Attorney

Sumitomo Metal Industrial Co., Ltd.

明細書

1. 発明の名称 → Title
ジルコニウム合金 — Zirconium Alloy

2. 特許請求の範囲 — Claims

並びに、

Nb: 0.1~1.2 %, Sn: 0.2~1.2 %,

さらに、

Fe: 0.25 %以下, Cr: 0.20 %以下, および

Ni: 0.3%以下のうち1種もしくは2種以上、

且部がジルコニウムおよび付属不純物からなる組成を有する、耐ノジュラーコロージョン性にすぐれたジルコニウム合金。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、耐ノジュラーコロージョン性にすぐれたジルコニウム合金に関する。

(従来の技術)

ジルコニウム合金は、本来ジルコニウムが有する耐食性をさらに向上させたものであり、熱中性子吸收断面積が小さいこと、高溫水中あるいは

温水蒸気中の耐食性が良好である等の長所を有

しているので、水冷炉型原子炉の燃料被覆管等の構造用材料として用いられている。

現在世界的に最も広く用いられているジルコニ

ウム合金にはASTM, JIS 等に規定されているジル

カロイ-2 およびジルカロイ-4 がある。ジルカ

ロイ-2 は沸騰水型原子炉の燃料被覆管として、

またジルカロイ-4 は加圧水型原子炉の燃料被

覆管および沸騰水型原子炉のチャンネルボックスと

して用いられている。ジルカロイ-2, ディルカロ

イ-4 以外のジルコニウム合金としてはソ連で燃

料被覆管として実用されていると言われる1.6%

のMoを含むNi-1 合金、重水型原子炉の圧力管

として使用されている2.5 %のMoを含むZr-2.

Mo-2Bがある。

しかしながら、これら合金の耐食性は必ずしも十分ではなく、例えば、水冷炉型炉の燃料被覆管

に用いた場合には、ノジュラーコロージョンと呼

ばれる異常な腐食現象が発生することがあった。

この現象は沸騰水型原子炉のジルカロイ-2 の被

ATTACHMENT B

は青玉水 Best Available Copy 黒色の斑点
な改変皮膜が均一に生成するのであるが、ノジュ
ラーコロージョン現象（以下、単に「ノジュラー
」ともいう）が生ずると、白色の斑点状改変皮
膜が生成し、これらは覆面の健全な肉厚の減少が急速
に進むため、重大な問題とされているものである。

このノジュラーコロージョンについては各種の
研究が行なわれており、その防止対策についてい
くつかの方針が提唱されている。それらの提唱と
しては、例えば、

①ジルカロイ-2 またはジルカロイ-4（以下、單
に「ジルカロイ合金」という）の需賀または中
國産品で外面のみを ($\alpha + \beta$) または β 鋼まで
加熱した後、急冷熱処理をしてジルカロイ合金
中に生成する金属性化合物の析出形態を変化さ
せしノジュラーコロージョン性を得ようとする
方法と、

②ジルカロイ-2 またはジルカロイ-4 の組成に
0.05~1.0 % のNb を含有させて耐ノジュラーコ

ロジン外試験で行なわるノジュラーコロージョン
に対する抵抗性評価テスト（300度、105 気圧、高
温高圧水蒸気中）にみられるような過酷条件下で
のノジュラーコロージョンの発生を抑制すること
はできなかった。

かくして、本発明の目的に、従来よりすぐれた
耐ノジュラーコロージョン性を有するより安価な
ジルコニウム合金を提供することである。

（問題点を解決するための手段）

本発明では、上記欠点を解決すべく、各組合
金成分の耐ノジュラーコロージョン性に及ぼす影
響について種々検討を重ねた結果、次のような新
しい知見を得た。

①耐ノジュラーコロージョン性の観点から特に Fe、
Cr、Ni を同時に含有する場合に Mn量を少なくす
る方が良い効果が得られること。更に、強度の
向上のために Mnの添加を必要とする場合は、1.
2~1.5 % までは特に耐食性の低下をおこさず含
させることができること。

② Mn が耐食性を低下させるのを抑制する効果

36640 うう がらげられよ..

（発明が解決しよぶとアセ問題点）

しかしながら、同記提出はそれぞれ次のような
問題を包含している。第1の提正方法では、外面
のみを加熱処理するという面倒な工程を加えねば
ならず、温度コントロールも注意を払う必要があり、この提正方法を用いることは、設備を増やし、
さらに工程をも増やすため、製造費用および検査
費用の増加などの相当なコストアップが予想され
る。

次の第2の提正方法は、ジルカロイ合金が純ジ
ルコニウムよりも耐食性に優れていることと、Mn
を含有させることにより耐食性が向上するという
2つの従来知見を組み合せたものと考えられる。
したがって、ジルカロイ合金をベースとして Mnを
含有させた同記提正方法により得られた合金は、
従来のジルカロイ合金に比べて耐食性の向上がみ
られるが、この第2の提正方法によるMnの所定量
をジルカロイ合金ベースに含有させるだけでは、

があるとされているが、現状のスポンジおよび
溶解技術からはMnに通常20ppm程度含有するに
すぎないことから、このMnが耐食性を低下させ
るのを抑えるためには0.2 %含有されれば十分
であること。

以上のように、本発明者は従来のMn含有さ
れなかっただけでによる効果の検討を行い、得ら
れた前述の新たな知見に基づき本発明を完成した。
ここに、本発明の要旨とするところは、重量%

Nb: 0.1~1.2 %, Mn: 0.2~1.2 %,

さらに、

Fe: 0.25 %以下, Cr: 0.20 %以下、および
Ni: 0.3%以下のうち1種もしくは2種以上、
且つがジルコニウムおよび付随不純物
からなる組成を有する、耐ノジュラーコロージ
ョン性にすぐれたジルコニウム合金である。
次に、本発明をさらに詳しく説明する。

（作用）

本発明におけるジルコニウム合金の組成成分を

上述の如く限定する理由を下記に説明する。

(i)Nb: Nbは通常の耐ノジュラーコロージョン性を改善する目的で加えられるが、本発明のように従来のジルカロイ合金よりSe含有量が少なく、Fe、CrおよびNiが共存して含有される条件下では、Nb含有量が0.1 重量%から本発明合金における耐ノジュラーコロージョン性の効果が現れる。したがって、Nbが0.1 重量%よりも多く加えられるに従い、前記合金の耐食性改善効果がさらに向上し、また強度も同時に向上する。

しかしながら、Nbは高価な元素であり、また中性子吸収も大きいため含有量が少ないと望ましい。本発明では、上記の点を考慮して、Nb含有量の上限を1.2 重量%とする。

(ii)Se: Seは少量の含有で本発明合金の耐食性改善効果が得られ、耐食性向上のためには好ましい元素である。しかし、Seは同時にその含有量が多すぎるとかえって耐食性を低下させる性質を有する。本発明においてSe含有量を少量とするのは不純物としてのNが有する耐食性を低下さ

量が0.2 重量%を超えると逆に耐食性の低下を示す。特に焼成温度に敏感に影響されるのであまり多量の含有は好ましくない。したがって、本発明では、Cr含有量の上限を0.2 重量%とする。

(iii)TiもFe、Crと共に本発明合金の耐食性向上に有効な元素であり、その含有量の増加にはない耐食性向上効果が得られる。しかし、含有量が0.3 重量%を超えると逆に耐食性の低下を示す。したがって本発明では、Ti含有量の上限を0.3 重量%とする。

さらに、本発明にあっては、耐食性、機械的性質、中性子吸収を考慮して以下に述べる添加成分の組成範囲とするのが好ましい。

$$ΣM = Nb + Se + (Fe + Cr + Ti)$$

上記式のΣMは本発明合金に含有する化学成分の含有量の総和を表わすものである。

本発明合金の機械的性質を考慮して、その総和は0.7 重量%以上であればよい。Se量はNb量とFe、CrおよびTi量から上記総和量ΣM

せる必要を用意するためである。本発明では0.2 重量%のSe含有でその効果を示す。

Seの含有量と得られる合金との間の特性について調べたところ予想外にも、少量のSeが有効であり、Se含有量が1.2 重量%までは耐食性を低下させないことが確認できた。したがって、本発明のSe含有量の上限を1.2 重量%とする。

好ましくは0.8 %である。

また、Seは強度向上にも有効な元素であるため、強度向上が必要な場合に、本発明の範囲内で、より多量に含有させるのが好ましい。

(iv)Fe: Feもまた本発明合金の耐食性向上に有効な元素であり、その含有量の増加にはない耐食性向上の効果が得られる。しかし、Fe含有量が多すぎると逆に耐食性の低下を示す。したがって、本発明では、Fe含有量の上限を0.25 重量%とする。

(v)Cr: CrはFeと同様に本発明合金の耐食性向上に有効な元素であり、その含有量の増加にはない耐食性向上の効果が得られる。しかしその含有

量が0.7 重量%以上になると逆に耐食性の低下を示す。特に焼成温度に敏感に影響されるのであまり多量の含有は好ましくない。

(実施例) Embodiment

本実施例の試験片はArアーカボタン溶解炉を用いて第1段に示す化学成分を有する合金を溶解し、下記のフローチャートに示す加工工程を経て得られた厚さ2mmの板材を用いた。前記板材を試験片として電気水蒸気オートクレーブ試験に送り耐食性の評価を行った。耐食性の評価は前記試験に基づくノジュラーコロージョンの発生有無(具体的には、直径0.1mm以上の白色斑状鉱化物を目視検査で判定した)。

なお、前記試験は530℃、105気圧、100時間のオートクレーブ条件で行った。

板材加工工程

①熱処理(1050℃×1hr→40℃(水冷))→熱間圧延(700℃×2hr、24(加工度)=50%)→中間焼純(650℃×2hr)→冷間圧延(24=70%)→最終焼純(577℃×3hr)→板材(試験片)

おつ
〔見
そ
Cu
同
Srn
とく
〔見
上
Fe
時
ジ
I
C
一
時
質
處
の
し

No.	Mn	Si	Fe	Best Available Copy		試験
				ジルカロイ-2	ジルカロイ-4	
1	—	1.53	0.14	0.11	0.07	x
2	—	1.53	0.20	0.12	—	x
3	0.21	1.53	0.13	0.10	0.08	x
4	0.22	1.53	0.18	0.11	—	x
5	0.21	1.53	0.15	0.15	—	x
6	0.21	1.52	0.20	0.11	0.09	x
7	0.50	1.70	0.15	0.10	0.15	x
8	0.48	1.40	0.20	0.15	0.08	x
9	1.03	1.10	0.27	0.11	0.10	v
10	0.50	1.05	0.15	0.12	0.10	o
11	1.05	0.77	0.11	0.09	0.08	o
12	1.10	0.43	0.08	0.16	0.03	o
13	1.10	0.35	0.05	0.09	0.03	o
14	0.53	0.47	0.10	0.05	0.25	o
15	0.49	0.48	0.11	(0.2)	0.14	v
16	0.48	0.50	0.13	0.20	0.10	o
17	0.45	0.50	0.25	0.05	0.03	o
18	0.47	0.51	0.22	0.17	0.07	o
19	0.51	0.50	0.24	0.10	0.18	o
20	0.54	0.53	0.20	0.11	(0.35)	v
						試験結果

(22)

No.	Mn	Si	Fe	Cr	Ni	ノジュラーコロージョン性	試験
21	0.48	0.52	0.20	0.14	0.30	○	試験結果
22	0.51	0.50	0.18	0.09	0.14	○	
23	0.53	0.50	0.18	0.05	0.07	○	
24	0.55	0.53	0.10	—	0.08	○	
25	0.49	0.51	0.05	0.05	0.20	○	
26	0.22	1.10	0.25	0.10	—	○	
27	0.21	0.37	0.18	0.09	0.10	○	
28	0.15	0.61	0.25	0.15	0.08	○	
29	0.21	0.38	—	0.15	0.15	○	
30	0.13	0.22	0.25	0.15	0.08	○	
31	0.31	1.00	0.24	—	—	○	
32	0.30	0.99	—	0.14	—	○	
33	0.25	0.50	—	—	0.25	○	
34	0.05	0.42	0.20	0.13	0.19	x	試験結果
35	0.02	1.05	0.23	0.18	0.25	x	

(23) ○: ノジュラーコロージョン性
x: ノジュラーコロージョン性
- : Occurred

第1表に本発明合金材と比較用合金材の耐腐食性の評価の結果をまとめて示した。

第1表からわかるように、前記は該条件で試験 No. 1, 2, 3, 4 に示すジルカロイ合金および従来のジルカロイ+3%合金、すなわち、比較合金材はいずれもノジュラーコロージョンの発生が確認され、また試験No. 5 ~ 8 に示す本発明のMn含有範囲にある合金ではあるがSi量が本発明の範囲の1, 2 範囲外を超える比較合金材は同様にノジュラーコロージョンの発生が確認された。また試験No. 9, 15, 20 に示す合金は、それぞれ、Fe, Cr, Ni量が本発明の範囲を越えており、さらに試験No. 34, 35 にSi量が本発明の範囲を越えており、いづれもノジュラーコロージョンの発生が確認された。しかし本発明の範囲にある試験No. 10 ~ 14, 16 ~ 19, 21 ~ 33 に示す本発明合金材にはいづれもノジュラーコロージョンの発生が確認されなかった。

したがって、本発明の範囲内の組成成分を有する合金材は従来より耐ノジュラーコロージョン性が確認されている比較用合金材に比べ、さらに優

れた耐ノジュラーコロージョン性を有することがわかった。

(発明の効果)

以上のように、本発明によれば、耐ノジュラーコロージョン性にすぐれているといわれる従来のジルコニウム合金よりもSi含有量を大幅に減らしても、他の組成成分Fe, Cr, Niを任意に1種以上選択して本発明で規定する量だけ添加することにより、むしろ従来に比べさらに一段優れた耐ノジュラーコロージョン性が得られるのである。

したがって、本発明によれば、従来よりもさらに過酷な条件下でも耐ノジュラーコロージョン性を有する優れたジルコニウム合金材が供給できる。

出願人 住友金属工業株式会社

代理人 弁理士 広瀬章一