Композиция методов. Бустинг.

Григорьева Ирина Владимировна, гр. 622

Санкт-Петербургский государственный университет Прикладная математика и информатика Статистическое моделирование

Санкт-Петербург, 2017г.

Постановка задачи

$$< X, Y, f, X^n>$$
, где

- \bullet X пространство объектов, Y множество ответов,
- ullet f:X o Y неизвестная целевая зависимость,
- $X^n = (x_1, \dots, x_n)$ обучающая выборка,
- $Y^n = (y_1, \dots, y_n)$ вектор ответов на обучающих объектах, где $y_i = f(x_i)$.

Требуется построить алгоритм a(x) = C(b(x)), аппроксимирующий целевую зависимость f на всем X, где

- ullet b: X o R базовый алгоритм,
- $C: R \to Y$ решающее правило,
- *R* пространство оценок.

В случае решения задачи классификации b(x) может являться вероятность принадлежности объекта x классу, которое решающее правило C переводит в номер класса.

B случае же регрессии C(b) = b.

Изменение постановки задачи

lacktriangle Вместо одного базового алгоритма b рассматривается b_1,\ldots,b_T .

 $\mathcal{B}(\Theta)=\{b(\cdot;\theta)|\theta\in\Theta\}$ — параметризованное множество базовых алгоритмов,

Выбор базового алгоритма: выбор $\theta \in \Theta$ и $b(x) = b(x; \theta) \in \mathcal{B}(\Theta)$:

- решающие деревья используются чаще всего;
- пороговые правила (data stumps): $b(x, \theta = \{i, s\}) = [f_i(x) \leq s]$.

Определение

Композиция базовых алгоритмов $b_1,\ldots,b_T\in\mathcal{B}$ имеет вид

$$a(x) = C(F(b_1(x), \ldots, b_T(x); \omega)),$$

где $F:R^{\mathrm{T}} \to R$ — корректирующая операция, параметризованная с помощью $\omega \in \Omega$.

Например, F — линейная, то есть $\omega = (\omega_1, \dots, \omega_T) \in \mathbb{R}^T$

$$F(b_1(x),\ldots,b_T(x);\omega)=\sum_{t=1}^T\omega_tb_t(x)$$

Задача: Подбор параметров ω и алгоритмов $\{b_t(x)\}_{t=1}^T$

Примеры

Примеры пространства оценок и решающих правил:

• Классификация на 2 класса, $Y = \{-1, 1\}$:

$$a(x) = \operatorname{sign}(b(x)),$$

где
$$R = \mathbb{R}, b: X \to \mathbb{R}, C(b) = \text{sign}(b(x)).$$

• Классификация на M классов, $Y = \{1, ..., M\}$:

$$a(x) = \operatorname*{argmax}_{y \in Y} b_y(x),$$

где
$$R = \mathbb{R}^M, b: X \to \mathbb{R}^M, \ C(b) = \operatorname{argmax}_{v \in Y} b_v(x).$$

Примеры корректирующих операций:

• Простое голосование:

$$F(b_1(x),...,b_T(x)) = \frac{1}{T} \sum_{t=1}^{T} b_t(x), x \in X.$$

• Взвешенное голосование:

$$F(b_1(x),\ldots,b_T(x))=\sum_{t=1}^I\omega_tb_t(x),x\in X,\omega_t\in\mathbb{R}.$$

Композиционные методы

Bagging:

Построение деревьев для bootstrap sample и создание единой предсказательной модели.

- Наблюдения имеют одинаковые шансы попасть в обучающую выборку.
- Каждое дерево строится независимо от других деревьев (параллельное обучение базовых алгоритмов).

Boosting:

Работает аналогичным образом, за исключением того, что

- Обучающая выборка на каждой итерации определяется, исходя из ошибок классификации на предыдущих итерациях.
- Каждое дерево строится с использованием информации из ранее выращенных деревьев (последовательное обучение базовых алгоритмов).

Основная идея бустинга

▶ Жадность алгоритма:

Пусть $T_0 < T$, выбрали $\{b_t(\mathbf{x})\}_{t=1}^{T_0}$ и параметры $\{\omega_t\}_{t=1}^{T_0}$.

На (T_0+1) шаге выбираем ω_{T_0+1} и базовый алгоритм b_{T_0+1} так, чтобы исправить ошибки композиции, основанной на на первых T_0 алгоритмах

$$a(x) = C\Big(\sum_{t=1}^{T_0} \omega_t b_t(x)\Big).$$

При этом базовые алгоритмы $\{b_t\}_{t=1}^{T_0}$ и параметры корректирующей функции $\{\omega_t\}_{t=1}^{T_0}$ остаются без изменений.

Пример работы бустинга для регрессии

Задача регрессии: $C(b)=b,\ Y=\mathbb{R},\ R=\mathbb{R}.$ Рассмотрим $\mathcal{B}(\Theta)$ — семейство неглубоких решающих деревьев, где θ — число терминальных узлов дерева. Пусть

$$F(b_1(x),...,b_T(x)) = \sum_{t=1}^{I} b_t(x), x \in X.$$

Обучим алгоритм

$$b_1(x) = \operatorname*{argmin}_{b \in \mathcal{B}} \frac{1}{n} \sum_{i=1}^{n} (b(x_i) - y_i)^2.$$

Добавим b_2 , исправляющий ошибки b_1 : $b_1(x_i)+b_2(x_i)=y_i$. Поправка $y_i-b_1(x_i),\ i=1,\ldots,n$.

$$b_2(x) = \underset{b \in \mathcal{B}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (b(x_i) - (b_1(x_i) - y_i))^2,$$

$$b_T(x) = \underset{b \in \mathcal{B}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (b(x_i) - (\sum_{t=1}^{T-1} b_t(x_i) - y_i))^2.$$

Бустинг для задачи классификации на два класса

Пусть $Y=\{-1,1\}$, $C(b)=\mathrm{sign}(b)$, $b_t:X\to\{-1,0,1\},\ b_t\in\mathcal{B}(\Theta),\ b_t(x)=0$ — отказ базового алгоритма от классификации x.

Положим

$$F(b_1(x),\ldots,b_T(x))=\sum_{t=1}^T\omega_tb_t(x),$$

Тогда

$$a(x) = \operatorname{sign}(\sum_{t=1}^{T} \omega_t b_t(x)), \ x \in X.$$

Функционал качества композиции — число ошибок на X^n :

$$Q_{T} = \sum_{i=1}^{n} [y_{i} \sum_{t=1}^{T} \omega_{t} b_{t}(x_{i}) < 0]$$

 Q_T мажорируется некоторой непрерывно дифференцируемой функцией, поддающейся эффективной оптимизации. Выбор функции зависит от характера задачи.

Гладкие аппроксимации пороговой функции потерь [z<0]

Экспоненциальная аппроксимация. Алгоритм AdaBoost

Оценка функционала Q_T сверху имеет вид:

$$Q_T \leq \tilde{Q}_T = \sum_{i=1}^n \underbrace{\exp\{-y_i \sum_{t=1}^{T-1} \omega_t b_t(x_i)\}}_{v_i} \exp\{-y_i \omega_T b_T(x_i)\}.$$

Нормированные веса: $ilde{V}_n = (ilde{v}_1, \dots, ilde{v}_n), \ ilde{v}_i = v_i / \sum_{j=1}^n v_j$

Введем функционалы качества алгоритма b на выборке X^n , Y^n с нормированным вектором весов $U_n = (u_1, \ldots, u_n)$ — суммарный вес ошибочных (negative) и правильных (positive) классификаций:

$$N(b, U_n) = \sum_{i=1}^n u_i[b(x_i) = -y_i], \ P(b, U_n) = \sum_{i=1}^n u_i[b(x_i) = y_i].$$

При отсутствии отказов b от классификации: N+P=1.

Oсновная теорема бустинга (для AdaBoost)

Teopeма (Freund, Shapire, 1996)

Пусть для любого нормированного вектора весов U_n существует алгоритм $b \in \mathcal{B}(\Theta)$, классифицирующий выборку немного лучше, чем наугад: $P(b,U_n) > N(b,U_n)$. Тогда минимум функционала \tilde{Q}_T достигается при

$$egin{align} b_T &= rgmax ig(\sqrt{P(b, ilde{V_n})} - \sqrt{N(b, ilde{V_n})}ig), \ &\omega_T = rac{1}{2} \ln rac{P(b_T, ilde{V_n})}{N(b_T, ilde{V_n})}. \end{split}$$

Следствие. Классический вариант AdaBoost

Пусть $b_t: X \to \{-1; 1\}$. Тогда P = 1 - N.

Teopeмa (Freund, Shapire, 1995)

Пусть для любого нормированного вектора весов U_n существует алгоритм $b\in \mathcal{B}(\Theta)$, классифицирующий выборку немного лучше, чем наугад: $N(b,U_n)<\frac{1}{2}$.

Тогда минимум функционала $ilde{Q}_T$ достигается при

$$b_T = \underset{b \in \mathcal{B}}{\operatorname{argmin}} N(b, \tilde{V}_n),$$

$$\omega_{\mathcal{T}} = \frac{1}{2} \ln \frac{1 - N(b_{\mathcal{T}}, \tilde{V}_n)}{N(b_{\mathcal{T}}, \tilde{V}_n)}.$$

Алгоритм AdaBoost

$$a(x) = \operatorname{sign}(\omega_1 b_1(x) + \ldots + \omega_T b_T(x)), \ x \in X.$$

Алгоритм AdaBoost

Вход: X^n , T — максимальное число базовых алгоритмов. **Выход**: базовые алгоритмы b_t и их веса ω_t , $t=1,\ldots,T$.

- 1: $v_i := \frac{1}{n}, i = 1, ..., n;$
- 2: для всех t = 1, ..., T
- 3: обучить базовый алгоритм:

$$b_t := \operatorname{argmin}_{b \in \mathcal{B}} N(b, \tilde{V}_n);$$

4:
$$\omega_t := \frac{1}{2} \ln \frac{1 - N(b_t, \tilde{V}_n)}{N(b_t, \tilde{V}_n)};$$

5: обновить веса объектов:

$$v_i := v_i \exp\{-\omega_t y_i b_t(x_i)\}, i = 1, \ldots, n;$$

6: нормировать веса объектов:

$$v_0 := \sum_{j=1}^n v_i;$$

$$v_i := \frac{v_i}{v_0}, \ i = 1, \ldots, n.$$

Рекомендации

ullet Модификация формулы для ω_t на случай N=0:

$$\omega_t := \frac{1}{2} \ln \frac{1 - N(b_t, \tilde{V}_n) + \frac{1}{n}}{N(b_t, \tilde{V}_n) + \frac{1}{n}}.$$

- Объекты с большими весами v_i выбросы. Исключаем их и строим композицию заново.
- Требуемая длина обучающей выборки оценивается величиной порядка 10⁴...10⁶.
- Базовые алгоритмы должны быть слабыми, из сильных хорошую композицию не построить:
 - Сильный алгоритм, давая нулевую ошибку на обучающих данных, не адаптируется и композиция будет состоять из одного базового алгоритма.
 - Один, даже сильный, алгоритм может дать «плохое» предсказание на данных тестирования, давая «хорошие» результаты на обучающих данных.

Обобщение бустинга. Gradient Boosting

Алгоритм бустинга обобщается на тот случай, когда пороговая функция потерь Q_T оценивается сверху произвольный невозрастающей функцией $\mathcal{L}(a,y)$.

 b_t возвращают произвольные вещественные значения, не обязательно ± 1 , то есть $R=\mathbb{R}$.

$$a(x) = \sum_{t=1}^{T} \omega_t b_t(x), \ x \in X, \ \omega_t \in \mathbb{R}_+$$

Функционал качества:

$$Q_{T} \leq \tilde{Q}_{T} = \sum_{i=1}^{n} \mathcal{L}\left(\underbrace{y_{i} \sum_{t=1}^{T-1} \omega_{t} b_{t}(x_{i})}_{f_{T-1,i}} + y_{i} \omega_{T} b_{T}(x_{i})\right),$$

где $\mathcal{L}(a,y)$ — произвольная функция потерь, $f_{T-1}=\left(f_{T-1,i}\right)_{i=1}^n$ — текущее приближение, $f_T=\left(f_{T,i}\right)_{i=1}^n$ — следующее приближение.

Обобщение бустинга. Gradient Boosting

Рассмотрим функцию потерь ${\mathcal L}$ как функцию от параметра $\omega_{\mathcal T}$:

$$\lambda(\omega_T) := \mathcal{L}(f_{T-1,i} + y_i \omega_T b_T(x_i)).$$

Линеаризуем $\lambda(\omega_T)$ в окрестности $\omega_T=0$, разложив в ряд Тейлора и отбросив старшие члены:

$$\lambda(\omega_T) \approx \lambda(0) + \omega_T \lambda'(0),$$

что приведет в линеаризации $ilde{Q}_{\mathcal{T}}$ по параметру $\omega_{\mathcal{T}}$:

$$\tilde{Q}_T \approx \sum_{i=1}^n \mathcal{L}(f_{T-1,i}) - \omega_T \sum_{i=1}^n \underbrace{-\mathcal{L}'(f_{T-1,i})}_{v_i} y_i b_T(x_i),$$

где v_i — веса объектов.

Обобщение бустинга. Gradient Boosting

Для минимизации функционала качества \tilde{Q}_T ищут такой базовый алгоритм b_T , что $\{b_T(x_i)\}_{i=1}^n$ приближает вектор антиградиента $\{-\mathcal{L}(f_{T-1,i})\}_{i=1}^n$:

$$b_T := \underset{b \in \mathcal{B}}{\operatorname{argmin}} \sum_{i=1}^n \left(b(x_i) + \mathcal{L}'(f_{T-1,i}) \right)^2.$$

После построения b_T , параметр ω_T определяется путем одномерной минимизации функционала \tilde{Q}_T .

Итерации этих двух шагов приводят к обобщенному алгоритму бустинга AnyBoost.

lacktriangle AnyBoost переходит в AdaBoost при $b_t: X o \{-1,1\}$ и $\mathcal{L}(f) = e^{-f}$

Алгоритм AnyBoost

 \mathbf{B} ход: X^n , Y^n — обучающая выборка, Т — максимальное число базовых алгоритмов. **Выход**: базовые алгоритмы b_t и их веса ω_t , $t=1,\ldots,T$. 1: $f_i := 0, i = 1, \ldots, n$; 2: для всех t = 1, ..., T3: найти базовый алгоритм, приближающий градиент: $b_t := \operatorname{argmin}_{b \in \mathcal{B}} \sum_{i=1}^n (b(x_i) + \mathcal{L}'(f_i))^2;$ 4: $\omega_t := \operatorname{argmin}_{\omega > 0} \sum_{i=1}^n \mathcal{L}(f_i + y_i \omega b_t(x_i));$ 5: обновить значения f_i на объектах выборки: $f_i := f_i + \omega_t b_t(x_i) y_i, i = 1, \dots, n.$

Стохастический градиентный бустинг (SGB): на шагах 3-5 использовать не всю выборку X^n , а случайную подвыборку без возвращений.

Достоинства

- Градиентный бустинг наиболее общий из всех бустингов:
 - произвольная функция потерь \mathcal{L} ,
 - произвольное пространство оценок R,
 - подходит для регрессии, классификации, ранжирования.
- Хорошая обобщающая способность.
- Временная сложность построения композиции определяется временем обучения базовых алгоритмов.
- Простота реализации.
- Возможность идентифицировать выбросы.

Недостатки

- Жадная стратегия приводит к построению неоптимального набора базовых алгоритмов. Для улучшения композиции можно периодически возвращаться к ранее построенным алгоритмам и обучать их заново.
- Построение громоздких композиций, исключающих возможность содержательной интерпретации.
- Требуются большие ресурсы памяти для хранения базовых алгоритмов и существенные затраты времени на вычисление классификаций.