

Topic 8: Source terms

Raffael Düll
Technische Universität München
Faculty for Informatics
Munich, 30 January 2020

Burgers Equation

We consider the Burgers equation with source term:

$$\frac{\partial q}{\partial t} + \underbrace{\frac{1}{2} \frac{\partial q^2}{\partial x}}_{transport} = \underbrace{\psi(q, x)}_{source}$$

Operator *A* for the transport term:

$$\mathcal{A}q = -\frac{1}{2}\frac{\partial q^2}{\partial x}$$

Operator **B** for the source term:

$$\mathcal{B}q = \psi(q, x)$$

Burgers Equation

We consider the Burgers equation with source term:

$$\frac{\partial q}{\partial t} + \underbrace{\frac{1}{2} \frac{\partial q^2}{\partial x}}_{transport} = \underbrace{\psi(q, x)}_{source}$$

Operator *A* for the transport term:

$$\mathcal{A}q = -\frac{1}{2}\frac{\partial q^2}{\partial x}$$

Operator **B** for the source term:

$$\mathcal{B}q = \psi(q, x)$$

We can rewrite the problem to the form:

$$\frac{\partial q}{\partial t} = (A + B)q$$

The idea of splitting methods is to solve for \mathcal{A} and \mathcal{B} independently.

• For classical **unsplit methods**, we look for a numerical scheme $\mathcal{C}_{\Delta t}$ which directly approximates $(\mathcal{A} + \mathcal{B})q$

$$\frac{\partial q}{\partial t} = \underbrace{(A + B)q}_{Cq} \qquad \rightarrow \qquad Q(t + \Delta t) = \underbrace{C_{\Delta t}Q(t)}_{Cq}$$

• For classical **unsplit methods**, we look for a numerical scheme $C_{\Delta t}$ which directly approximates (A + B)q

$$\frac{\partial q}{\partial t} = \underbrace{(A + B)q}_{Ca} \qquad \rightarrow \qquad Q(t + \Delta t) = \underbrace{C_{\Delta t}Q(t)}_{Ca}$$

• For Godunov splitting, we first apply the operator A then B

$$\frac{\partial q}{\partial t} = \mathcal{B}(\mathcal{A}q)$$

It is now enough to only consider the two subproblems:

$$\frac{\partial q^*}{\partial t} = \mathcal{A}q^*$$
 and $\frac{\partial q^{**}}{\partial t} = \mathcal{B}q^{**}$

for which we can find the numerical schemes $\mathcal{A}_{\Delta t}$ and $\mathcal{B}_{\Delta t}$

$$Q^*(t + \Delta t) = \mathcal{A}_{\Delta t}Q^*(t)$$
 and $Q^{**}(t + \Delta t) = \mathcal{B}_{\Delta t}Q^{**}(t)$

To implement this scheme, we alternate $\mathcal{A}_{\Delta t}$ and $\mathcal{B}_{\Delta t}$. In each time step we apply:

- First step: $Q^*(t + \Delta t) = \mathcal{A}_{\Delta t}Q(t)$
- Second step: $Q(t + \Delta t) = \mathcal{B}_{\Delta t}Q^*(t + \Delta t)$

To implement this scheme, we alternate $\mathcal{A}_{\Delta t}$ and $\mathcal{B}_{\Delta t}$. In each time step we apply:

- First step: $Q^*(t + \Delta t) = \mathcal{A}_{\Delta t}Q(t)$
- Second step: $Q(t + \Delta t) = \mathcal{B}_{\Delta t} Q^*(t + \Delta t)$

No error if \mathcal{A} and \mathcal{B} commute! $\Leftrightarrow \mathcal{B}(\mathcal{A}q) = \mathcal{A}(\mathcal{B}q)$ In the general case the error is of the order $\mathcal{O}(\Delta t)$ BUT...

The accuracy of the method is decreased if the solvers A and B are of second order (or higher). We need a fractional step method of higher order!

Strang Splitting

In **Strang splitting**, we apply $\mathcal{A}_{\frac{\Delta t}{2}}$ for half a time step before and after $\mathcal{B}_{\Delta t}$. Thus:

- First step: $Q^*(t + \frac{\Delta t}{2}) = A_{\frac{\Delta t}{2}}Q(t)$
- Second step: $Q^{**}(t+\frac{\Delta t}{2})=\mathcal{B}_{\Delta t}Q^*(t+\frac{\Delta t}{2})$
- Third step: $Q(t+\Delta t)={\cal A}_{\frac{\Delta t}{2}}Q^{**}(t+\frac{\Delta t}{2})$

Strang Splitting

In **Strang splitting**, we apply $\mathcal{A}_{\frac{\Delta t}{2}}$ for half a time step before and after $\mathcal{B}_{\Delta t}$. Thus:

- First step: $Q^*(t + \frac{\Delta t}{2}) = \mathcal{A}_{\frac{\Delta t}{2}}Q(t)$
- Second step: $Q^{**}(t+\frac{\Delta t}{2})=\mathcal{B}_{\Delta t}Q^*(t+\frac{\Delta t}{2})$
- Third step: $Q(t+\Delta t)={\cal A}_{\frac{\Delta t}{2}}Q^{**}(t+\frac{\Delta t}{2})$

In the general case the error is of the order $\mathcal{O}(\Delta t^2)$

In practice, Godunov and Strang splitting yield very similar results despite the theoretical difference.

$$\frac{\partial q}{\partial t} + \frac{1}{2} \frac{\partial q^2}{\partial x} = \frac{1}{\tau} q(q - \beta)(1 - q)$$

Stable equilibrium at q=0 and q=1 Unstable equilibrium at $q=\beta$ τ regulates the stiffness

$$\frac{\partial q}{\partial t} + \frac{1}{2} \frac{\partial q^2}{\partial x} = \frac{1}{\tau} q(q - \beta)(1 - q)$$

Stable equilibrium at q=0 and q=1Unstable equilibrium at $q=\beta$ τ regulates the stiffness

Figure: Analytical solution after 20s

$$\frac{\partial q}{\partial t} + \frac{1}{2} \frac{\partial q^2}{\partial x} = \frac{1}{\tau} q(q - \beta)(1 - q)$$

Stable equilibrium at q=0 and q=1Unstable equilibrium at $q=\beta$ τ regulates the stiffness

Figure: Analytical solution after 20s

$$\frac{\partial q}{\partial t} + \frac{1}{2} \frac{\partial q^2}{\partial x} = \frac{1}{\tau} q(q - \beta)(1 - q)$$

Stable equilibrium at q=0 and q=1Unstable equilibrium at $q=\beta$ τ regulates the stiffness

Figure: Analytical solution after 20s

$$\frac{\partial q}{\partial t} + \frac{1}{2} \frac{\partial q^2}{\partial x} = \frac{1}{\tau} q(q - \beta)(1 - q)$$

Stable equilibrium at q=0 and q=1Unstable equilibrium at $q=\beta$ τ regulates the stiffness

Figure: Analytical solution after 20s

Implementation

Code implemented in MATLAB
Godunov splitting of the 1D Burgers equation with stiff source term
2 solvers for the transport equation and 5 solvers for the source term
Choice of the solver:

Implementation

Code implemented in MATLAB
Godunov splitting of the 1D Burgers equation with stiff source term
2 solvers for the transport equation and 5 solvers for the source term
Choice of the solver:

For the transport equation A_{∆t}: typical solvers for wave transport (Lax-Wendroff and Godunov schemes)

The **Godunov scheme** is preferred because it gave better results than **Lax-Wendroff**.

Implementation

Code implemented in MATLAB

Godunov splitting of the 1D Burgers equation with stiff source term

2 solvers for the transport equation and 5 solvers for the source term

Choice of the solver:

For the transport equation A_{∆t}: typical solvers for wave transport (Lax-Wendroff and Godunov schemes)

The Godunov scheme is preferred because it gave better results than Lax-Wendroff.

- For the source term equation $\mathcal{B}_{\Delta t}$: depends a lot on the source $\psi(q, x)$
 - Direct solver the easiest, not too much of interest
 - Explicit schemes tend to be unstable (e.g. explicit Euler, Runge-Kutta 2)
 - Implicit schemes usually stable, but expensive to compute (e.g. implicit Euler, trapezoidal rule, TR-BDF2)

Problem: Implicit schemes are not as reliable as expected for stiff source terms

Stability Issues

Results for different schemes after 20s simulation time

Figure: $\tau = 10^0$

Everything is fine

Stability Issues

Results for different schemes after 20s simulation time

Figure: $\tau = 10^{-1}$

- Explicit methods fail (except RK2)
- Implicit methods work fine

Stability Issues

Results for different schemes after 20s simulation time

Figure: $\tau = 10^{-2}$

- All explicit methods fail
- Trapezoidal rule fails (A-stable)
- Backwards Euler and TR-BDF2 work fine (L-stable)

Wrong Wave Propagation Speed

Figure: Implicit solvers at $\tau=10^{-2}$

Wrong Wave Propagation Speed

Figure: Implicit solvers at $\tau=10^{-2}$

We expect the wave travel speed to be $\beta = 0.6$ We get a wave travel speed of v = 1This is due to the Godunov-Strang splitting:

- 1. Godunov scheme forces first non-zero value to a value below β
- 2. The source term smears this value to 0

The wave travels at 1 grid point per timestep
As a result: unphysical wave propagation speed
for stiff source terms