第十六届全国青少年信息学奥林匹克联赛初赛试题

(提高组 C++语言 两小时完成)

●● 全部试题答案均要求写在答卷纸上,写在试卷纸上一律无效 ●●

_	、单项选择题	(共 10 题,每	题 1.5 分,	共计 15 分	·。每题有且	且仅有一个正	.确选项。)	
1.	与十六进制数 A. 101.2	A1.2等值的十 B.)	C. 161	. 125	D. 17	7. 25
	一个字节(by A. 8 都有可能)个二进f B. 16	制组成。		C. 32		D. 以
3.	以下逻辑表达: A. P V (¬ P / C. P V Q V (P	$\backslash Q) \vee (\mathbf{q} P \wedge \mathbf{q})$	(Q)		=) ∨ (P∧¬ (∧¬ Q) ∨(¬		
	Linux 下可执彳 A. exe 不是		展名是(B. com)。	C. d1	1	Ι). 以上
5.	如果在某个进 A. 100		41 成立,那么 144	么在该进制	下等式 12* C. 164	12= ()也成立。 D.	196
6.	提出"存储程 A. 克劳德•香					巴比奇	D. 冯•诺依	曼
7.	前缀表达式"-	+ 3 * 2 + 5	12 " 的	J值是() 。			
A. 5	23	В	. 25		C. 3	37		D. 6
根	主存储器的存 据局部性原理, 体的执行效率,	CPU 所访问的	存储单元通常					
	A. 寄存器	В. 🖡	高速缓存	С.	闪存		D. 外存	
结	完全二叉树的/ 构的数组中。假 放在数组中的(最定根结点存放	在数组的1					
	A 2k	1	R 2k+1		C k	/2 下取整	D	(k+1)/2

10. 以下竞赛活动中历史最悠久的是()。 A. 全国青少年信息学奥林匹克联赛(NOIP) B. 全国青少年信息学奥林匹克竞赛(NOI) C. 国际信息学奥林匹克竞赛(IOI) D. 亚太地区信息学奥林匹克竞赛(APIO)											
二、不定项选择题 (共 10 题,每题 1.5 分,共计 15 分。每题正确答案的个数不少于 1。多选或少选均不得分)。											
1. 元素 R1、R2、R3、R4、R5 入栈的顺序为 R1、R2、R3、R4、R5。如果第 1 个出栈的是 R3,那么第 5 个出栈的可能是()。											
	A. R1	B. R2		C. R4	D. R5						
2.		语言和 C++语言都属于(B. 自然语言). C.	解释性语言	D. 编译性语言						
3. 原地排序是指在排序过程中(除了存储待排序元素以外的)辅助空间的大小与数据规模无关的排序 算法。以下属于原地排序的有()。											
	A. 冒泡排序	B. 插入排序	С.	基数排序	D. 选择排序						
4.	. 在整数的补码表示法中,以下说法正确的是()。 A. 只有负整数的编码最高位为 1 B. 在编码的位数确定后,所能表示的最小整数和最大整数的绝对值相同 C. 整数 0 只有一个唯一的编码 D. 两个用补码表示的数相加时,如果在最高位产生进位,则表示运算溢出										
5. 一颗二叉树的前序遍历序列是 ABCDEFG, 后序遍历序列是 CBFEGDA, 则根结点的左子树的结点个数可能是()。											
	A. 0	B. 2	C. 4		D. 6						
6.	6. 在下列 HTML 语句中,可以正确产生一个指向 NOI 官方网站的超链接的是()。 A. 〈a url="http://www.noi.cn">欢迎访问 NOI 网站〈/a〉 B. 〈a href="http://www.noi.cn">欢迎访问 NOI 网站〈/a〉 C. 〈a〉http://www.noi.cn欢迎访问 NOI 网站〈/a〉										
7.	A. 所有连通的 A. 所有连通的 A. 对同一个图 C. 拓扑排序中 D.	下列说法正确的是(有向图都可以实现拓扑排 而言,拓扑排序的结构是 入度为 0 的结点总会排在 果序列中的第一个结点一	唯一的 入度大于0的								
8.	一个平面的法线)。	是指与该平面垂直的直线	붆。过点(1,1,	1), (0,3,0)	、(2,0,0)的平面的法线是						

- A. 过点(1, 1, 1)、(2, 3, 3)的直线
- B. 过点(1, 1, 1)、(3, 2, 1)的直线
- C. 过点(0, 3, 0)、(-3, 1, 1)的直线
- D. 过点(2,0,0)、(5,2,1)的直线
- 9. 双向链表中有两个指针域 llink 和 rlink,分别指向该结点的前驱及后继。设 p 指向链表中的一个结点,他的左右结点均为非空。现要求删除结点 p,则下列语句序列中正确的是()。
 - A. $p \rightarrow r link \rightarrow l link = p \rightarrow r link$;

p->11ink->r1ink=p->11ink; delete p;

B. p->11ink->rlink=p->rlink;

p->rlink->llink = p->llink; delete p;

- C. $p\rightarrow rlink\rightarrow llink = p\rightarrow llink$;
 - p->rlink->llink ->rlink = p->rlink; delete p;
- D. $p \rightarrow 11ink \rightarrow rlink = p \rightarrow rlink$;

p->11ink->rlink->link = p->1link; delete p;

- 10. 今年(2010年)发生的事件有()。
 - A. 惠普实验室研究员 Vinay Deolalikar 自称证明了 P≠NP
 - B. 英特尔公司收购计算机安全软件公司迈克菲(McAfee)
 - C. 苹果公司发布 iPhone 4 手机
 - D. 微软公司发布 Windows 7 操作系统

三. 问题求解(共2题,每空5分,共计10分)

1. LZW 编码是一种自适应词典编码。在编码的过程中,开始时只有一部基础构造元素的编码词典,如果在编码的过程中遇到一个新的词条,则该词条及一个新的编码会被追加到词典中,并用于后继信息的编码。

举例说明,考虑一个待编码的信息串: "xyx yy yy xyx"。初始词典只有 3 个条目,第一个为 x,编码为 1;第二个为 y,编码为 2;第三个为空格,编码为 3;于是串"xyx"的编码为 1-2-1 (其中-为编码分隔符),加上后面的一个空格就是 1-2-1-3。但由于有了一个空格,我们就知道前面的"xyx"是一个单词,而由于该单词没有在词典中,我们就可以自适应的把这个词条添加到词典里,编码为 4,然后按照新的词典对后继信息进行编码,以此类推。于是,最后得到编码:1-2-1-3-2-2-3-5-3-4。

我们可以看到,信息被压缩了。压缩好的信息传递到接受方,接收方也只要根据基础词典就可以完成对该序列的完全恢复。解码过程是编码过程的逆操作。现在已知初始词典的 3 个条目如上述,接收端收到的编码信息为 2-2-1-2-3-1-1-3-4-3-1-2-1-3-5-3-6,则解码后的信息串是

- 2. 无向图 G 有 7 个顶点,若不存在由奇数条边构成的简单回路,则它至多有_____条边。
- 3. 记 T 为一队列,初始时为空,现有 n 个总和不超过 32 的正整数依次入列。如果无论这些数具体为何值,都能找到一种出队的方式,使得存在某个时刻队列 T 中的数之和恰好为 9 ,那么 n 的最小值是_____。

四. 阅读程序写结果(共4题,每题8分,共计32分)

```
1.
#include<iostream>
using namespace std;
int main()
{
     const int SIZE=10;
     int data[SIZE],i,j,cnt,n,m;
     cin>>n>>m;
     for(i=1;i<=n;i++)
         cin>>data[i];
     for(i=1;i<=n;i++)
          cnt=0;
          for(j=1;j \le n;j++)
                if(\;(data[i]\!\!<\!\!data[j]) \parallel (data[j]\!\!=\!\!\!=\!\!data[i]\;\&\&\;j\!\!<\!\!i)\;)
          if (cnt==m)
                cout << data[i] << endl;
     }
     return 0;
}
输入:
5 2
96 -8 0 16 87
输出:_
2.
#include<iostream>
using namespace std;
int main()
     const int SIZE=100;
     int na,nb,a[SIZE],b[SIZE],i,j,k;
     cin>>na;
     for(i=1;i<=na;i++)
          cin >> a[i];
     cin>>nb;
     for(i=1;i \le nb;i++)
          cin >> b[i];
     i=1;
     j=1;
```

```
while( (i<=na)&&(j<=nb) )
         if(a[i] \le b[j])
              cout<<a[i]<<' ';
              i++;
          }
          else
              cout<<b[j]<<' ';
              j++;
          }
     if(i<=na)
        for(k=i;k<=na;k++)
             cout<<a[k]<<' ';
     if(j \le nb)
        for(k=j;k\leq nb;k++)
             cout<<b[k]<<' ';
     return 0;
}
输入:
13579
2 6 10 14
输出:
3.
#include<iostream>
using namespace std;
const int NUM=5;
int r(int n)
{
     int i;
     if(n \le NUM)
        return 0;
     for(i=1;i<=NUM;i++)
        if( r(n-i)<0)
            return i;
    return -1;
}
```

```
int main()
{
     int n;
     cin>>n;
     cout << r(n) << endl;
     return 0;
}
输入:
16
输出:
4.
#include<iostream>
#include<cstring>
using namespace std;
const int SIZE=100;
int n,m,r[SIZE];
bool map[SIZE][SIZE], found;
bool successful()
     int i;
     for(i=1;i \le n;i++)
          if(!map[r[i]][r[i%n+1]])
             return false;
     return true;
}
void swap(int *a,int *b)
     int t;
     t=*a;
     *a=*b;
     *b=t;
void perm(int left,int right)
     int i;
     if(found)
         return;
     if(left>right)
          if(successful())
               for(i=1;i \le n;i++)
                    cout<<r[i]<<' ';
```

```
found=true;
          }
         return;
     for(i=left;i<=right;i++)
         swap(r+left,r+i);
         perm(left+1,right);
         swap(r+left,r+i);
     }
}
int main()
{
     int x,y,i;
     cin>>n>>m;
     memset(map,false,sizeof(map));
     for(i=1;i<=m;i++)
     {
         cin>>x>>y;
         map[x][y]=true;
         map[y][x]=true;
     for(i=1;i<=n;i++)
        r[i]=i;
     found=false;
     perm(1,n);
     if(!found)
         cout<<"No solution!"<<endl;</pre>
     return 0;
}
输入:
9 12
1 2
23
3 4
4 5
5 6
6 1
17
2 7
38
48
59
```

五. 完善程序 (第1题,每空2分,第2题,每空3分,共28分)

1. (过河问题) 在一个月黑风高的夜晚,有一群人在河的右岸,想通过唯一的一根独木桥走到河的左岸.在伸手不见五指的黑夜里,过桥时必须借照灯光来照明,不幸的是,他们只有一盏灯.另外,独木桥上最多能承受两个人同时经过,否则将会坍塌.每个人单独过独木桥都需要一定的时间,不同的人要的时间可能不同.两个人一起过独木桥时,由于只有一盏灯,所以需要的时间是较慢的那个人单独过桥所花费的时间.现在输入 N(2<=N<1000)和这 N个人单独过桥需要的时间,请计算总共最少需要多少时间,他们才能全部到达河左岸.

例如,有3个人甲、乙、丙,他们单独过桥的时间分别为1、2、4,则总共最少需要的时间为7. 具体方法是:甲、乙一起过桥到河的左岸,甲单独回到河的右岸将灯带回,然后甲、丙在一起过桥到河的左岸,总时间为2+1+4=7.

```
#include<iostream>
#include<cstring>
using namespace std;
const int SIZE=100;
const int INFINITY = 10000;
const bool LEFT=true;
const bool RIGHT =false;
const bool LEFT TO RIGHT=true;
const bool RIGHT TO LEFT=false;
int n,hour[SIZE];
bool pos[SIZE];
int max(int a, int b)
{
   if(a>b)
      return a;
   else
      return b;
}
int go(bool stage)
   int i,j,num,tmp,ans;
   if(stage==RIGHT TO LEFT)
   {
       num=0;
       ans=0;
```

```
for(i=1;i<=n;i++)
     if(pos[i] == RIGHT)
     {
        num++;
        if( hour[i]>ans)
           ans=hour[i];
     }
      return ans;
   ans=INFINITY;
   for(i=1;i<=n-1;i++)
     if(pos[i] == RIGHT)
        for(j=i+1;j<=n;j++)
           if(pos[j] == RIGHT)
              pos[i]=LEFT;
              pos[j]=LEFT;
              if(tmp<ans)</pre>
                ans=tmp;
              pos[i]=RIGHT;
              pos[j]=RIGHT;
           }
  return ans;
if(stage==LEFT TO RIGHT)
  ans=INFINITY;
   for(i=1;i<=n;i++)
      if( <u>3</u> )
         pos[i] = RIGHT;
         tmp=_ 4
         if(tmp<ans)</pre>
            ans=tmp;
      }
```

```
return ans;
}
return 0;
}
int main()
{
  int i;
  cin>>n;
  for(i=1;i<=n;i++)
  {
     cin>>hour[i];
     pos[i]=RIGHT;
  }
  cout<<go[RIGHT_TO_LEFT)<<endl;
  return 0;
}</pre>
```

2. (烽火传递) 烽火台又称烽燧,是重要的军事防御设施,一般建在险要处或交通要道上。一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息;夜晚燃烧干柴,以火光传递军情。在某两座城市之间有 n 个烽火台,每个烽火台发出信号都有一定的代价。为了使情报准确地传递,在连续的 m 个烽火台中至少要有一个发出信号。现输入 n、m 和每个烽火台发出信号的代价,请计算总共最少花费多少代价,才能使敌军来袭之时,情报能在这两座城市之间准确传递。

例如,有 5 个烽火台,他们发出信号的代价依次为 1, 2, 5, 6, 2, 且 m 为 3, 则总共最少花费代价为 4, 即由第 2 个和第 5 个烽火台发出信号。

```
#include<iostream>
#include<cstring>
using namespace std;
const int SIZE=100;
int n,m,r,value[SIZE],heap[SIZE],
    pos[SIZE],home[SIZE],opt[SIZE];
    //hep[i]表示用顺序数组储存的堆 heap 中第 i 个元素的值
    //pos[i]表示 opt[i]在堆 heap 中的位置,即 heap[pos[i]]=opt[i]
    //home[i]表示 heap[i]在序列 opt 中的位置,即 opt[home[i]]=heap[i]
void swap(int i,int j)//交换堆中的第 i 个和第 j 个元素
{
    int tmp;
    pos[home[i]]=j;
    pos[home[j]]=i;
    tmp=heap[i];
    head[i]=head[j];
```

```
heap[j]=tmp;
     tmp=home[i];
     home[i]=home[j];
     home[j]=tmp;
}
void add(int k)//在堆中插入 opt[k]
     int i;
     r++;
     heap[r]=
     pos[k]=r;
     i=r;
     while((i>1) && (heap[i]<heap[i/2]))
     {
         swap(i,i/2);
         i/=2;
     }
}
void remove(int k)//在堆中删除 opt[k]
     int i,j;
     i=pos[k];
     swap(i,r);;
     r--;
     if(i==r+1)
        return;
     while (i>1) & (heap[i] < heap[i/2])
          swap(i,i/2);
         i/=2;
     while(i+i \le r)
         if((i+i+1 \le r) && (heap[i+i+1] \le heap[i+i]))
              j=i+i+1;
         else
         if(hea[i]>heap[j])
                        4
              i=j;
          }
          else
```

```
break;
}
int main()
{
     int i;
     cin>>n>>m;
     for(i=1;i \le n;i+++)
          cin>>value[i];
     r=0;
     for(i=1;i \le m;i++)
          opt[i]=value[i];
          add(i);
     for(i=m+1;i<=n;i++)
          opt[i]=
                           6
          remove(_
          add(i);
     cout<<heap[1]<<endl;</pre>
     return 0;
}
```