## Summary

During the past week I implemented the proposed method in [1] called MDNNMD. I prepared the experiments that I will compare later with my proposed method. I improved my previous work about these method using the reviews I got. For example one of the reviews made me realize that the oversampling task was not applied for all the methods except for mine. And in order to have consistency I added this for all methods. Morover, adding MDNNMD to my experiments gives a more valid comparison since I will be comparing 5 methods with different integration stages: (1) Early stage by concatenation and using LR, SVM, RF; (2) Late stage by using MDNNMD; (3) Middle stage by applying the proposed method. Then the necessity of middle stage integration can be demonstrated since it can lead to extracting between modalities relations. Table 1 indicates the research progress timeline that I plan to follow durin this semester. Of course there might be some tasks that are unknown at this time and I will update this table in future.

| Classification Task       |          |                                                                                |  |  |  |  |
|---------------------------|----------|--------------------------------------------------------------------------------|--|--|--|--|
| Oct. 22                   | <b>√</b> | Implement other methods for comparison.                                        |  |  |  |  |
| Oct. 29                   | •        | Implement proposed method and compare with other methods.                      |  |  |  |  |
| Nov. 5                    | •        | Evaluate previous work using a new dataset and write the first draft of paper. |  |  |  |  |
| Biomarker Extraction Task |          |                                                                                |  |  |  |  |
| Nov. 12                   | •        | Implement weight extraction from a trained network and rank features (genes).  |  |  |  |  |
| Nov. 19                   | •        | Evaluation of top features.                                                    |  |  |  |  |
| :                         |          |                                                                                |  |  |  |  |
| Dec. 31                   | •        | Finish Paper                                                                   |  |  |  |  |

Table 1: Research Progress Timeline

## Data

Since I was implementing MDNNMD, I tried my best to do a similar job to theirs. Therefor for these experiments I used their exact preprocessed dataset which is a reduced version of METABRIC breast cancer categorized into short-term and long-term survival.

|           |                          | Long term (0) | Short term (1) |
|-----------|--------------------------|---------------|----------------|
|           | Whole                    | 1489          | 491            |
|           | Train after oversampling | 1072          | 1072           |
| MDNNMD    | Validation               | 268           | 89             |
|           | Test                     | 149           | 49             |
| SVM,LR,RF | Train after oversampling | 1340          | 1340           |
|           | Test                     | 149           | 49             |

Table 2: Dataset distribution in details

## **Results and Conclusions**

After implementing all the methods, the results seem to be contradicting with what is achieved in [1]. Below I mention a list of differences between my implementation and what was mentioned in [1]:

- Oversampling on training set. (not mentioned)
- Concatenation of modalities for LR, SVM, RF. (not mentioned)
- No validation set for LR, SVM, RF. (not mentioned)
- Percentage of dropout layer (not mentioned, I used 0.8)
- Network optimizer (only mentioned the initial rate = 0.001, I used Adadelta which uses an adaptive learning rate initiazed by 0.001)
- For ROC curve I used long term patients as positive class. (not mentioned)
- They did not mention specifically how they integrate the final result among modalities. What I did was to sum the prediction probability of the three networks using the weights they mentioned and then set the max probability as the predicted class.
- I mostly used Keras built in libraries to apply regularizer, dropout, loss function, etc. while [1] mostly implemented these themselves.

Since MDNNMD is a pretty straight forward method and there is not much complexity that could cause to misleading results, specially while using built-in packages, I think we can count on these result and still use them for comparison.

| Model  | %Acc. | %Pre. | %Spe. | %F1-Score |
|--------|-------|-------|-------|-----------|
| RF     | 74.24 | 78.91 | 72.40 | 76.51     |
| LR     | 80.56 | 81.61 | 72.16 | 81.08     |
| SVM    | 75.15 | 56.54 | 24.78 | 64.53     |
| MDNNMD | 76.72 | 75.55 | 55.47 | 76.13     |

Table 3: Comparision of Accuracy, Precision, Specificity, and F1-score for different model.



Figure 1: ROC curve of MDNNMD [1], LR, RF, SVM.



Figure 2: Confusion matrices for MDNNMD [1], LR, RF, SVM.

## References

[1] Dongdong Sun, Minghui Wang, and Ao Li. A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 2018.