MAT02018 - Estatística Descritiva

Distribuições bidimensionais

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2022

Variáveis quantitativas

- Quando as variáveis envolvidas são ambas quantitativas, podemos "categorizá-las".
- Ou seja, agrupar as observações em intervalos de classe para cada uma das variáveis¹ e assim, analisá-las como variáveis qualitativas, apresentando a distribuição conjunta em tabelas de dupla entrada².
- Mas, além desse tipo de análise, as variáveis quantitativas são passíveis de procedimentos analíticos e gráficos mais refinados.
- ▶ O gráfico de dispersão é provavelmente o mais comum destes procedimentos .

 $^{^1\}mathrm{Da}$ mesma forma que foi apresentado e discutido nas notas de aula de Distribuição de Frequências.

²Se as variáveis de interesse não apresentam um número muito grande de valores distintos, uma alternativa seria não agrupar em intervalos de classe, e simplesmente utilizar uma tabela de dupla entrada considerando os próprios valores da variável.

Exemplo: suponha que vinte e cinco pacientes são atendidos em uma clínica oftalmológica e os seguintes valores são registrados para pressão intraocular (PIO) e idade.

Tabela 1: Tabela de dados brutos.

ID	ldade	PIO		
1	35	15		
2	40	17		
3	41	16		
4	44	18		
5	45	15		
6	48	19		
7	50	19		
8	50	18		
9	50	17		
10	52	16		
11	54	19		
12	55	18		

13	55	21
14	55	20
15	57	19
16	58	20
17	59	19
18	60	23
19	60	19
20	61	22
21	63	23
22	65	24
23	67	23
24	71	24
25	77	22

A figura abaixo apresenta a distribuição conjunta das variáveis idade e pressão intraocular por meio de um gráfico de dispersão.

- ▶ O gráfico de dispersão é construído pelo conjunto de pontos $\{(x_i, y_i); i = 1, 2, ..., n\}$ em que x representa a variável do eixo horizontal (no exemplo, a variável idade) e y representa a variável do eixo vertical (no exemplo, a variável pressão intraocular).
- Note que cada ponto corresponde aos valores observados para um indivíduo específico.
- Através do diagrama de dispersão é possível observar que, em geral, valores de idade mais altos são associados com valores de pressão intraocular mais altos (as variáveis parecem relacionadas).

Perguntas:

- Qual o tipo da relação entre as variáveis Idade e PIO?
- Qual a força desta relação?

A relação entre duas variáveis quantitativas pode ser descrito como positivo (direta) ou negativo (inversa), e linear ou não-linear.

- O gráfico de dispersão da esquerda mostra uma relação direta ou positiva entre as variáveis X e Y, tendência destacada pela declividade positiva da elipse tracejada.
- Perceba também, que o gráfico foi dividido em quatro "quadrantes".
- A grande maioria dos pontos está situada no primeiro e terceiro quadrantes.
- Nesses quadrantes as **coordenadas dos pontos têm o mesmo sinal**, e, portanto, o **produto** delas será sempre **positivo**.
- ➤ Somando-se o produto das coordenadas dos pontos, o resultado será um número positivo, pois existem mais produtos positivos do que negativos.

De forma análoga, o gráfico de dispersão da direita mostra uma relação inversa ou negativa, tendência também destacada pela declividade negativa da elipse tracejada, e procedendo-se como anteriormente, a soma dos produtos das coordenadas será negativa.

- A gráfico a seguir apresenta um exemplo de ausência de associação entre as variáveis.
- ▶ A soma dos produtos das coordenadas será zero, pois cada resultado positivo tem um resultado negativo simétrico, anulando-se na soma³.

³Note que a soma dos produtos das coordenadas depende, e muito, do número de pontos. Além disso, a unidade de medida também pode influenciar. E é por isso, que logo em seguida, vamos considerar uma medida de correlação **padronizada**.

- A "força" da relação se refere à proximidade dos pontos na nuvem.
- Se pudéssemos traçar uma curva ou uma reta subjacente, teríamos a força da relação associada a proximidade dos pontos com respeito a esta curva.

Coeficiente de correlação linear

Coeficiente de correlação linear

Coeficiente de correlação linear

- A força de uma associação entre duas variáveis quantitativas pode ser medida por um coeficiente de correlação.
- O coeficiente de correlação produto-momento é uma medida da intensidade de associação linear existente entre duas variáveis quantitativas.
- Também é conhecido como coeficiente de correlação de Pearson, pois sua fórmula de cálculo foi proposta por Karl Pearson em 1896.
- O coeficiente de correlação de Pearson é denominado por ρ na população e r na amostra.

Definição

▶ Dados n pares (na amostra) de valores $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, chamaremos de coeficiente de correlação entre as duas variáveis X e Y a

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right),$$

em que \bar{x} e \bar{y} são as médias de X e Y, e s_x e s_y são os desvios padrões de X e Y.

Ou seja, o coeficiente de correlação é a média dos produtos dos valores padronizados das variáveis.

- ▶ O coeficiente de correlação pode variar entre −1 e 1.
- ▶ Valores negativos de r indicam uma correlação do tipo inversa (negativa);
 - Interpretação: quando x aumenta, y em média diminui (ou vice-versa).
- Valores positivos para r ocorrem quando a correlação é direta (positiva);
 - ▶ Interpretação: x e y variam no mesmo sentido.

- ▶ O valor máximo (tanto r = 1 como r = -1) é obtido quando todos os pontos do diagrama de dispersão estão em uma linha reta inclinada (**correlação perfeita**).
- ▶ Quando não existe correlação (r = 0) entre x e y, os pontos se distribuem em nuvens circulares.
- Quando os pontos formam uma nuvem cujo eixo principal é uma curva (relação não-linear), o valor de r não mede corretamente a associação entre as variáveis.

Da definição do coeficiente de correlação obtemos a seguinte formulação alternativa⁴:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) = \frac{\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n \bar{x}^2\right) \left(\sum_{i=1}^{n} y_i^2 - n \bar{y}^2\right)}}.$$

O numerador da expressão acima, que mede o total da concentração dos pontos pelos quatro quadrantes, dá origem a uma medida bastante usada e que definimos a seguir.

⁴E dependendo da situação, mais prática.

Dado n pares (na amostra) de valores $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, chamaremos de **covariância** entre as duas variáveis X e Y a

$$cov_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1},$$

ou seja, a média ("estimada") dos produtos dos valores centrados das variáveis.

Com essa definição, obtemos a seguinte relação

$$r=\frac{cov_{xy}}{s_x\times s_y}.$$

Retomando o exemplo da pressão intraocular (PIO) e idade de 25 pacientes atendidos em uma clínica oftalmológica, podemos organizar a seguinte tabela para calcularmos o coeficiente de correlação entre estas duas variáveis.

Tabela 2: Cálculo do coeficiente de correlação.

ID	Idade (x)	PIO (<i>y</i>)	$x - \bar{x}$	$y-\bar{y}$	$\frac{x-\bar{x}}{s_X}=z_X$	$\frac{y-\bar{y}}{s_y}=z_y$	$z_x \cdot z_y$
 1	35	15	-19,88	-4,44	-2,01	-1,63	3,28
2	40	17	-14,88	-2,44	-1,51	-0,90	1,35
3	41	16	-13,88	-3,44	-1,41	-1,26	1,78
4	44	18	-10,88	-1,44	-1,10	-0,53	0,58
5	45	15	-9,88	-4,44	-1,00	-1,63	1,63
6	48	19	-6,88	-0,44	-0,70	-0,16	0,11
7	50	19	-4,88	-0,44	-0,49	-0,16	0,08
8	50	18	-4,88	-1,44	-0,49	-0,53	0,26
9	50	17	-4,88	-2,44	-0,49	-0.90	0,44
10	52	16	-2,88	-3,44	-0,29	-1,26	0,37
11	54	19	-0,88	-0,44	-0,09	-0.16	0.01
12	55	18	0,12	-1,44	0,01	-0,53	-0,01
13	55	21	0,12	1,56	0.01	0,57	0.01
14	55	20	0,12	0,56	0,01	0,21	0,00

	15	57	19	2,12	-0.44	0,21	-0,16	-0,03
					- /	,		,
	16	58	20	3,12	0,56	0,32	0,21	0,06
	17	59	19	4,12	-0,44	0,42	-0,16	-0,07
	18	60	23	5,12	3,56	0,52	1,31	0,68
	19	60	19	5,12	-0,44	0,52	-0,16	-0,08
	20	61	22	6,12	2,56	0,62	0,94	0,58
	21	63	23	8,12	3,56	0,82	1,31	1,07
	22	65	24	10,12	4,56	1,03	1,67	1,72
	23	67	23	12,12	3,56	1,23	1,31	1,60
	24	71	24	16,12	4,56	1,63	1,67	2,73
	25	77	22	22,12	2,56	2,24	0,94	2,11
Soma	325	1372	486	0,00	0,00			20,28

E assim, temos que:

- $\bar{x} = 1372/25 = 54,88$ anos e $s_x = 9,87$ anos.
- $\bar{y} = 486/25 = 19,44$ mmHg e $s_y = 2,73$ mmHg.
- O coeficiente de correlação é r = 20, 28/25 = 0, 81, uma relação direta (positiva)⁵ e relativamente forte.

⁵Maior a idade ⇒ Maior a pressão intraocular.

Próxima aula

- Distribuições bivariadas: uma variável qualitativa e uma variável quantitativa.
- ► ComplementaR.

Por hoje é só!

Bons estudos!

