変分法: 水素分子イオンの例

(5月22日のレジュメの文章を改変)

水素分子イオン H_2 +に適用する。水素分子イオンは電子を1つしかもたない。 波動関数 ϕ は、既知の水素原子の1s軌道 χ_A と χ_B の線形和で書く。(Ritzの変分法 大野P.78)

$$\phi = C_A \chi_A + C_B \chi_B$$

ただし、CACBは未定係数。ハミルトン演算子Hは、

$$\hat{H} = \frac{\hbar^2}{2m}\Delta + \frac{-e^2}{4\pi\epsilon_0 r_A} + \frac{-e^2}{4\pi\epsilon_0 r_B} + \frac{e^2}{4\pi\epsilon_0 R}$$

右辺第1項は運動量演算子、あとは原子核と電子のクーロン相互作用である。 ra, rb, Rは電子と水素原子核A,Bの距離および核間距離。

各電子は、次の波動方程式をみたす。

$$\hat{h}\phi = \epsilon\phi$$

変分原理によれば、基底状態の ϕ を得るためには、 ϵ を最小化すれば良い。(大野 P.78)

ここで調節可能なパラメータは C_q なので、すべての C_q について、 $\frac{\partial \epsilon}{\partial C_q} = 0$ となる C_q を求めれば良い。そこで、微分を実行すると、

$$\sum_{j=1}^{n} (H_{ij} - \epsilon S_{ij}) c_j = 0$$
(1)

という形の、2個の連立方程式が得られる。ただし、 H_{ij} と S_{ij} は次のような式を略したものである。

$$H_{ij} = \int \chi_i^* \hat{h} \chi_j dr,$$

$$S_{ij} = \int \chi_i^* \chi_j dr$$

HijとSijの意味はあとで説明する。

上の連立方程式が解を持つためには、下の永年方程式が成りたたなければいけない。

$$\begin{vmatrix} H_{11} - \epsilon S_{11} & H_{12} - \epsilon S_{12} & \cdots & H_{1n} - \epsilon S_{1n} \\ H_{21} - \epsilon S_{21} & H_{22} - \epsilon S_{22} & \cdots & H_{2n} - \epsilon S_{2n} \\ \vdots & \vdots & & \vdots \\ H_{n1} - \epsilon S_{n1} & H_{n2} - \epsilon S_{n2} & \cdots & H_{nn} - \epsilon S_{nn} \end{vmatrix} = 0,$$

これを解くことで、エネルギー固有値、そして波動関数を求める。

物理化学演習 2010年6月8日

- S_{ij} (重なり積分: i番目の波動関数とj番目の波動関数の重なりの程度): $i\neq j$ の場合S、i=jの場合1とする。
- Hii:
 - i=jの場合 (i番目の原子核とのクーロン相互作用を表し、クーロン積分と呼ぶ。) $H_{ii}=\alpha$ とする。
 - •i≠jの場合(共鳴積分と呼ぶ。) 直接結合している原子間はβ、それ以外は0と近似する。

すると、永年方程式は、次のようになる。

$$0 = \begin{vmatrix} H_{11} - \epsilon S_{11} & H_{12} - \epsilon S_{12} \\ H_{21} - \epsilon S_{21} & H_{22} - \epsilon S_{22} \end{vmatrix}$$
$$= \begin{vmatrix} \alpha - \epsilon & \beta - \epsilon S \\ \beta - \epsilon S & \alpha - \epsilon \end{vmatrix}$$

これを解くと、2つのエネルギー準位が得られる。(各自計算せよ)

$$\epsilon_A = \frac{\alpha - \beta}{1 - S},$$

$$\epsilon_B = \frac{\alpha + \beta}{1 + S},$$

S、 α 、 β の符号に注意せよ。($\underline{\alpha}$ 、 $\underline{\beta}$ は負、 \underline{S} は正で1より小さい) ε $\underline{\alpha}$ について、もとの連立方程式(1)を解くと、係数 \underline{C} A、 \underline{C} Bが得られる。、 $\underline{\varepsilon}$ Bも同様。

(大野、「量子化学演習」、岩波書店 p.98より転載)

Hückel近似

Hückel近似自体は汎用的な計算手法だが、 π 電子系(共役二重結合系)でよく用いられ、院試にもよく採用されている。重なり積分Sを0で近似することで、さらに容易に解くことができる。

過去の問題 (変分・摂動関連のみ抜粋)

	基礎物理化学	専門物理化学	物理
平成8年度		問8 円周上の電子+摂動磁場 c	
平成9年度		問8 アリルラジカル ABC	
平成10年度	第2ページ[(CH) ₃ -] Hückel ^B	問8 振動子の量子状態+摂動 AC 問9 時間依存のシュレディ ンガー方程式+摂動 D	
平成11年度		問8 アリルアニオン +Hückelと摂動 ^{BC} 水素原子 +摂動論 ^{AC}	
平成12年度			
平成13年度	第2ページ 箱の中の粒子、 摂動		
平成14年度		問6 ベンゼン 摂動論AC	
平成15年度		問6 H ₂ +変分法 E	
平成16年度	第2ページ エチレン Hückel 法 ^B		
平成17年度			
平成18年度		問6 アリルカチオン 摂動 +Huckel ^{ABC}	
平成19年度		問6 H ₃ Hückel ^B	問9 箱の中の粒子+摂動 ^C
平成20年度			
平成21年度		問6 ブタジエン、 摂動 +Huckel ^{ABC}	

A 分子を単純なモデルで近似する(9,10,11,14,18)

- B Hückel法により電子エネルギー順位を求める(9,10,11,16,18,19)
- C 摂動によるエネルギー変化を求める(8,9,10,11,14,18,19)
- D 摂動による波動関数の変化を求める(10)
- E 変分法(15)

物理化学演習 2010年6月8日

宿題第1問

直鎖状および環状のH3のエネルギー準位をHückel法により求めよ。クーロン積分、共鳴 積分をそれぞれ α 、 β とし、異なる核の間の重なり積分は0とする。 H_3 、 H_3 +、 H_3 -はどち らの分子形状をとるか。

宿題第2問

以下の中で常磁性を示す分子を選べ。Li₂, B₂, C₂, N₂, O₂, F₂

課題第1問答案

 F_2 は等核2原子分子なので、分子軌道のエネルギー準位は図のようになり、電子は π_0 * までの準位をすべて2電子ずつ専有する。 F_2 -になると、さらに反結合性軌道 σ_0 *に電子 が入るため、結合性が減少し、核間距離が伸張し、伸縮振動数が低くなる。

課題第2問答案

シクロブタジエンは4つの炭素原子が共役二重結合で環状に連結する。 永年行列式は、

$$\begin{vmatrix} \alpha - \epsilon & \beta & 0 & \beta \\ \beta & \alpha - \epsilon & \beta & 0 \\ 0 & \beta & \alpha - \epsilon & \beta \\ \beta & 0 & \beta & \alpha - \epsilon \end{vmatrix} = 0$$

これを解くと、 $\epsilon_1 = \alpha + 2\beta$, $\epsilon_2 = \epsilon_3 = \alpha$, $\epsilon_4 = \alpha - 2\beta$, α_4 つの解(エネルギー準 位)がえられる。

- (1) π 軌道には4つの電子があり、一番下の軌道に2つ、2、3番目にそれぞれ1つずつ入 る。 π 電子エネルギーは、 $2\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 4\alpha + 4\beta$.
- (2)規格化条件 $C_1^2 + C_2^2 + C_3^2 + C_4^2 = 1$ をみたす $C_1 \sim C_4$ を求める。 ε_1 に対応する、波動 関数の係数は $C_1=C_2=C_3=C_4=0.5$ 。 ε_2 と、 ε_3 の場合は、 $C_1=C_2=-C_3=-C_4=0.5$ あるい は C_1 = $-C_2$ = $-C_3$ = C_4 =0.5、 ε 4の場合は C_1 = $-C_2$ = C_3 = $-C_4$ =0.5。これらを π 電子密度の

$$q_r = \sum_i n_i C_{ri} C_{ri}$$
式 に代入すると、 $q_r=1$ ($r=1..4$)が求まる。

$$q_r = \sum_i n_i C_{ri} C_{ri}$$
 式 に代入すると、 q_r =1 $(r=1..4)$ が求まる。
$$p_{rs} = \sum_i n_i C_{ri} C_{si}$$
 (3) π 結合次数 ϵ 求める。すべて結合は等価で 0.5 となる。 なお、シクロブタジエンは実際には不安定な物質である。一般に HOMOが完全

なお、シクロブタジエンは実際には不安定な物質である。一般に、HOMOが完全に占 有されていない共役二重結合は反芳香族と呼ばれ、不安定である。