11.16 Étudions le signe de $x^2 - x^4$ pour connaître d'une part là où $\sqrt{x^2 - x^4}$ est définie et d'autre part là où la courbe d'équation $y = \sqrt{x^2 - x^4}$ coupe l'axe des abscisses.

$$x^{2} - x^{4} = x^{2} (1 - x^{2}) = x^{2} (1 + x) (1 - x) = 0$$

	-1 0 1			
x^2	+	+ () +	+
1+x	– 0	+	+	+
1-x	+	+	+ 0	_
$x^2 - x^4$	- 0	+ (+ 0	_

$$\pi \int_{-1}^{1} \left(\sqrt{x^2 - x^4}\right)^2 dx = \pi \int_{-1}^{1} (x^2 - x^4) dx = \pi \left(\frac{1}{3}x^3 - \frac{1}{5}x^5 \Big|_{-1}^{1}\right)$$

$$= \pi \left(\left(\frac{1}{3} \cdot 1^3 - \frac{1}{5} \cdot 1^5\right) - \left(\frac{1}{3} \cdot (-1)^3 - \frac{1}{5} \cdot (-1)^5\right)\right)$$

$$= \pi \left(\left(\frac{1}{3} - \frac{1}{5}\right) - \left(-\frac{1}{3} + \frac{1}{5}\right)\right)$$

$$= \pi \left(\frac{2}{15} - \left(-\frac{2}{15}\right)\right) = \frac{4\pi}{15}$$

Analyse : intégrales Corrigé 11.16