反応2N₂O₅(g)→4NO₂(g)+O₂(g)のN₂O₅の一次分解 反応の速度定数は、25°Cで*k*=3.38×10⁻⁵ s⁻¹である。 N₂O₅の半減期はいくらか。

反応 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g) のN_2O_5の一次分解反応の速度定数は、25°Cで<math>k=3.38\times10^{-5}$ s⁻¹である。 N_2O_5 の半減期はいくらか。

$$-\frac{d[A]}{dt} = 2k[A]$$

なので、半減期は、

$$t_{1/2} = \frac{\ln 2}{2k} = \frac{\ln 2}{2 \times 3.38 \times 10^{-5}} = 1.03 \times 10^4 \, s$$

反応 $CH_3COOC_2H_5 + OH^- \rightarrow CH_3COO^- + CH_3CH_2OH$ の2次の速度定数は $0.11 \text{ L mol}^-1 \text{ s}^-1$ である。初濃度が [NaOH] = $0.060 \text{ mol } \text{L}^-1$ で[$CH_3COOC_2H_5$] = $0.110 \text{ mol } \text{L}^-1$ となるように、酢酸エチルを水酸化ナトリウムに添加したとき、(i) 20 s後、(ii)15 min後のエステルの濃度はいくらか。

$$kt = \frac{1}{[B]_0 - [A]_0} ln \left(\frac{[B]/[B]_0}{[A]/[A]_0} \right)$$

x反応したとすると、[A], [B]の濃度はそれぞれ、

$$[B] = [B]_0 - x$$
$$[A] = [A]_0 - x$$

なので、代入して、

$$kt = \frac{1}{[B]_0 - [A]_0} ln \left(\frac{([B]_0 - x)/[B]_0}{([A]_0 - x)/[A]_0} \right)$$

整理すると、

$$kt([B]_0 - [A]_0) = ln \frac{[A]_0([B]_0 - x)}{[B]_0([A]_0 - x)}$$

$$e^{kt([B]_0 - [A]_0)} = \frac{[A]_0([B]_0 - x)}{[B]_0([A]_0 - x)}$$

$$x = \frac{[A]_0[B]_0(e^{kt([B]_0 - [A]_0)} - 1)}{[B]_0 e^{kt([B]_0 - [A]_0)} - [A]_0}$$

$$x = \frac{0.060 \times 0.110 \times (e^{0.11 \times 20 \times (0.110 - 0.060)} - 1)}{0.110 \times e^{0.11 \times 20 \times (0.110 - 0.060)} - 0.060}$$

 $= 0.0122 \text{ mol } L^{-1}$

$$[CH_3COOC_2H_5] = 0.110-0.0122 = 0.098 \text{ mol } L^{-1}$$

(ii) 15 minの時、

$$x = \frac{0.060 \times 0.110 \times (e^{0.11 \times 900 \times (0.110 - 0.060)} - 1)}{0.110 \times e^{0.11 \times 900 \times (0.110 - 0.060)} - 0.060}$$

 $= 0.060 \text{ mol } L^{-1}$

$$[CH_3COOC_2H_5] = 0.110-0.060 = 0.050 \text{ mol } L^{-1}$$

温度が24℃から49℃に上昇すると、化学反応の速度が3倍となった。活性化エネルギーを求めよ。

モノマーの初濃度が $10.0 \text{ mmol } \text{L}^{-1}$ で $k = 1.39 \text{ L mol}^{-1} \text{ s}^{-1}$ の逐次反応で生成される高分子のt = 5 hでの重合度と反応度を計算せよ。

モノマーの初濃度が $10.0 \text{ mmol } L^{-1}$ で $k = 1.39 \text{ L mol}^{-1}$ s^{-1} の逐次反応で生成される高分子のt = 5 hでの重合度と反応度を計算せよ。

$$< N > = \frac{1}{1-p} = 1 + kt[A]_0$$

 $< N > = 1 + 1.39 \times 5 \times 3600 \times 10 \times 10^{-3} = 251$

$$p = (\langle N \rangle - 1)/\langle N \rangle = (251-1)/251 = \underline{0.996}$$

逐次重合の速度論

R-OHとR-COOHの濃度に対して全体として速度 式は2次と考えられ、次のように書ける。

$$\frac{d[COOH]}{dt} = -k[COOH][OH]$$

$$< N > = \frac{1}{1-p} = 1 + kt[COOH]_0$$

反応率 (%)	反応度 p	重合度 <n></n>
0	0	1
50	0.5	2
90	0.9	10
95	0.95	20
99	0.99	100
99.9	0.999	1000
99.99	0.9999	10000

高分子量のものを得るためには、反応率が非常に大きいこと、言い換えると、反応をできるだけ完結させることが必要

連鎖過程で生成される高分子を考える。開始剤の 初濃度が2倍、モノマー濃度が1/2倍なら、重合速度 はどうなるか。

連鎖過程で生成される高分子を考える。開始剤の初濃度が2倍、モノマー濃度が1/2倍なら、重合速度はどうなるか。

$$v_p = k_p \left(\frac{f k_i}{k_t}\right)^{1/2} [I]^{1/2} [M]$$

$$\frac{v_2}{v_1} = \frac{[I]_2^{1/2} [M]_2}{[I]_1^{1/2} [M]_1} = \left(\frac{[I]_2}{[I]_1}\right)^{1/2} \left(\frac{[M]_2}{[M]_1}\right)$$

$$= 2^{1/2} \times 0.5$$

 $= 0.71$ 倍

生長速度

生長反応の速度は、

$$v_p = k_p[M][M \]$$

なので、鎖の生長速度は、

$$v_p = k_p \left(\frac{f k_i}{k_t}\right)^{1/2} [I]^{1/2} [M]$$

と書くことができる。

ATPアーゼの濃度が20 nmol L¹のとき、20℃でのATP上のATPアーゼの働きを次のように得た。

[ATP] (µmol L-1) 0.60	0.80	1.4	2.0	3.0	
ν (μmol L ⁻¹ s ⁻¹) 0.81	0.97	1.30	1.47	1.69	

酵素のミカエリス定数、反応の最大速度、ターン オーバー数、触媒効率を求めよ。

ATPアーゼの濃度が20 nmol L¹のとき、20℃でのATP上のATPアーゼの働きを次のように得た。

[ATP] (µmol L-1) 0.60	0.80	1.4	2.0	3.0
1/[ATP] 1.67	1.25	0.714	0.500	0.333
ν (μmol L ⁻¹ s ⁻¹) 0.81	0.97	1.30	1.47	1.69
1/v 1.23	1.03	0.769	0.680	0.592

酵素のミカエリス定数、反応の最大速度、ターンオーバー数、触媒効率を求めよ。

ラインウィーバーーバークのプロット

傾き 0.477 切片 0.433

$$v_{\text{max}} = (1/0.433) = 2.31 \, \mu \text{mol L}^{-1} \, \text{s}^{-1}$$

$$k_{\text{cat}} = k_{\text{b}} = v_{\text{max}} / [E]_0 = 2.31/0.020 = 115 \text{ s}^{-1}$$

$$K_{\rm M} = v_{\rm max} \times 0.477 = 1.10 \,\mu{\rm mol}\,L^{-1}$$

$$\eta = k_{\text{cat}}/K_{\text{M}} = 115/1.10 = 105 \text{ L} \,\mu\text{mol}^{-1} \,\text{s}^{-1}$$

・高濃度の[5]。が必要(低濃度域だと誤差が生じやすい)

酵素の触媒効率

酵素のターンオーバー頻度 k_{cat} はある時間内に活性部位で起こる触媒反応サイクル (ターンオーバー)の数をその時間で割った量である。この量は1次の速度定数と同じ単位で、ミカエリスーメンテン機構では酵素 – 基質複合体から生成物が離脱する速度定位数 k_{b} と同じ値である。

$$v_{max} = k_b[E]_0$$

なので、

$$k_{cat} = k_b = \frac{v_{max}}{[E]_0}$$

となる。