Análisis de línea de espera en un banco con un único cajero

Barrera Bahena Cesia Sunem; Solis Procopio Uriel

Julio 2023

¿Qué es el modelo M/M/1?

El modelo M/M/1 es un modelo de colas que describe un sistema con una única cola y un solo servidor. Se utiliza para analizar y predecir el rendimiento de sistemas de colas en los que los clientes llegan al sistema siguiendo un proceso de Poisson y los tiempos de servicio siguen una distribución exponencial.

Características principales del modelo M/M/1

- El modelo de colas M/M/1 es utilizado para analizar sistemas de línea de espera con una única cola y un solo servidor.
- Las llegadas de los clientes siguen una distribución Poisson.
- El tiempo de servicio también sigue una distribución exponencial.
- ullet El modelo M/M/1 cumple con las propiedades del proceso de Markov.

Parámetros del Modelo

En el modelo de colas M/M/1, tenemos los siguientes parámetros:

- Tasa de llegada promedio (λ): Se calcula como el inverso del tiempo medio entre llegadas.
- Tasa de servicio promedio (μ): Se calcula como el inverso del tiempo medio de servicio.
- Factor de utilización (ρ): Representa la fracción del tiempo en que el servidor estará ocupado.
- Tiempo medio de espera en la cola (Wq): Es el tiempo promedio que un cliente debe esperar en la cola antes de ser atendido.

Parámetros

Para calcular los parámetros del modelo M/M/1, utilizamos las siguientes ecuaciones:

- ullet Tasa de llegada promedio: λ
- ullet Tasa de servicio promedio: μ
- Factor de utilización: $ho = \frac{\lambda}{\mu}$
- ullet Tiempo medio de espera en la cola: $W_q=rac{
 ho}{\mu-\lambda}$
- Tiempo medio de servicio: $W=rac{1}{\mu-\lambda}$
- Número promedio de clientes en el sistema: $L_s = \lambda W$
- ullet Número promedio de clientes en la cola: $L_q = \lambda W_q = L_s
 ho$

Problema del Banco con un único cajero

Consideremos un banco con un único cajero y un total de 50 clientes. Cada cliente tiene una paciencia mínima de 4 unidades de tiempo y una paciencia máxima de 6 unidades de tiempo. Utilizaremos el modelo M/M/1 para analizar el rendimiento de este sistema de colas.

Cálculos

ullet La tasa de llegada promedio λ se calcula de la siguiente manera

$$\lambda = \frac{15 \ \textit{clientes}}{60 \ \textit{mimutos}} = 0.25 \ \textit{clientes por minuto}$$

ullet Tasa de servicio promedio μ

$$\mu=1$$
 cliente por minuto

ullet Tiempo promedio entre llegadas W_q

$$W_q = \frac{1}{\lambda} = \frac{1}{0.25} = 4$$
 minutos

ullet Tiempo promedio de espera en la cola W

$$W=W_q+rac{1}{\mu}=4$$
 minutos $+rac{1}{1}=5$ minutos

Cálculos

• Número promedio de clientes en el sistema L_s

$$L_s = \lambda W = 0.25(5) = 1.25$$
 clientes

• Número promedio de clientes en la cola L_q

$$L_q = \lambda W_q = 0.25(4) = 1$$
 cliente

Tabla de Resultados del programa

A continuación, se presenta una tabla con los resultadospara el caso específico del banco con 15 clientes, paciencia mínima de 4 y paciencia máxima de 6.

Table: Resultados de tiempos para 15 clientes

Número de cliente	Tiempo de llegada	Tiempo de espera
Cliente1	0.000000	0.000000
Cliente2	8.784683	0.000000
Cliente3	15.922514	0.000000
Cliente4	18.144526	1.142013
Cliente5	32.447668	0.000000
Cliente6	85.015903	0.000000
Cliente7	85.981330	0.605527
Cliente8	92.606598	0.000000
Cliente9	111.480483	5.295841
Cliente10	125.365176	4.249718
Cliente11	133 479466	√ □ ► 5 423885 √ 3 ► ►

Gráfica

