Confidential Computing with OpenBSD

Hans-Jörg Höxer

Confidential Computing with OpenBSD vmd(8)

Hans-Jörg Höxer

AboutHans-Jörg Höxer

- Mid-2000s:
 - hshoexer@openbsd.org
- genua GmbH (<u>www.genua.de</u>):
 - hshoexer@genua.de
 - OpenBSD
 - Firewalls
 - VNP-Appliances

Confidential Computing What is this all about?

- Problem:
 - Sensitive data in an untrusted environment
- Supposed solution:
 - "Turn public cloud into private cloud"

Untrusted Environments

Generic OS

Untrusted Environments

Virtualisation

Untrusted Environments

Confidential VM

Confidential Computing Claims

- Techniques to protect computing workload from its untrusted environment
 - Data confidentiality
 - Data integrity
 - Code integrity
- Isolation levels
 - Function or library isolation
 - Application isolation

Confidential Computing Hardware Support

- Hardware support:
 - ☆Runtime encryption
 - Attestation
 - Strong isolation
- Examples:
 - AMD SEV, Intel TDX, Arm CCA (virtual machines)
 - Intel SGX (library, function)

AMD Secure Encrypted Virtualisation

Confidential VM

Confidential VM

AMD SEVArchitecture

AMD SEVArchitecture

AMD SEV

Secure Encrypted Virtualisation

- Guest VM controls encryption!
 - Page tables:
 - "Crypt bit" (C-bit)
 - Private data
 - Public data shareable
- Departure from x86 security model:
 - Hypervisor < Guest VM

AMD SEV Memory Access

AMD SEV Memory Access

AMD SEV

Limitations

- Limitations:
 - VCPU state visible to hypervisor
 - No integrity protection
 - Local attestation
- Solutions:
 - SEV-ES
 - SEV-SNP

AMD SEV

Security

- AMD-SB-3011 Guest memory vulnerabilities:
 - CVE-2024-21978, CVE-2024-21980, CVE-2023-31355
- Attacks on PSP:
 - Buhren, Krachenfels, Jacob, Seifert, 2021, "One Glitch to Rule Them All: Fault Injection Attacks Against AMD's Secure Encrypted Virtualization"
 - Buhren, Werling, Seifert, 2019, "Insecure Until Proven Updated: Analysing AMD's SEV Remote Attestation"
- \(ツ)_/

OpenBSD Confidential VM

- Personal goal:
 - Learn about Confidential Computing
- OpenBSD as research/learn platform:
 - vmd(8)
 - vmm(4)
 - Run confidential OpenBSD guest on OpenBSD host
- → As simple as possible

The big picture

The big picture

How to start?

The plan — Simplicity first

- bsd.rd single-user as guest
- Fully encrypted
- No DMA, no virtio(4)
- Only IN/OUT instructions:
 - PIT i8253, RTC mc146818, PIC i8259, UART ns8250
- Hardcode everything C-bit
- 12/2023

Minimal psp(4) support

- Mailbox interface
- Simple commands:
 - INIT
 - PLATFORM_STATUS
- Launch protocol:
 - LAUNCH_START
 - LAUNCH UPDATE DATA
 - LAUNCH_MEASURE
 - LAUNCH_FINISH
- Some more

Minimal psp(4) support

- LAUNCH_UPDATE_DATA:
 - vmd(8) provides virtual address
 - psp(4) wires mapping (uvm_map_pageable(9))
 - Converts to physical address (pmap_extract(9))
 - PSP encrypts

Minimal vmd(8) and vmm(4) support

- vmd(8):
 - Only "direct kernel exec"
 - Page tables use predefined PG_CRYPT
 - Encrypt memory psp(4)
- vmm(4):
 - Set SEV enable flag in VMCB

Guest kernel bsd.rd

- Hard code:
 - PG_CRYPT 0x0008 0000 0000 0000 (bit 51)
 - PG_FRAME 0x0007 FFFF FFFF F000
 - Initial page tables in locore
 - pmap(9)
- ⇒bsd.rd boots single-user
- ~2 months (12/2023 to 01/2024)

Round Two The GENERIC kernel

- locore:
 - Detect SEV guest mode
 - C-bit position
 - Physical bit reduction
 - Configure pg_crypt and pg_frame similar to pg_nx
- pmap(9)
 - Use pg_crypt
 - Use pg_frame instead of PG_FRAME

DMA for virtio(4) — bounce buffers

DMA for virtio(4) — bounce buffers

bus_dma(9)

```
for each DMA xfer {
       bus dmamem alloc(); /* allocate some DMA'able memory
       bus dmamem map();
                           /* map it into the kernel address space */
                           /* initialize the segments of dmamap
       bus dmamap load();
       bus dmamap sync();
                            /* synchronize/flush any DMA cache
        for (i = 0; i < dm nsegs; i++) {
               /* Start the DMA, wait until it's done */
       bus dmamap sync(); /* synchronize/flush any DMA cache
       bus dmamap unload(); /* prepare dmamap for reuse
       bus dmamem unmap(); /* free kernel virtual address space
       bus dmamem free();
                           /* free DMA'able memory
                                                                    * /
```

bus_dma(9)

bus_dma_segment_t:

bus_dma(9)

bus_dma_segment_t:

bus_dma(9)

- bus_dmamap_create(9):
 - Allocates DMA segments
 - · Allocate bounce buffers
 - Map with PMAP_NOCRYPT
- bus_dmamem_map(9):
 - Map into kernel address space
- bus_dmamap_load_*(9):
 - Set _ds_va and _ds_bounce_va
 - Set ds_addr to bounce buffer
- bus_dmamap_sync(9):
 - bcopy() from/to _ds_va and _ds_bounce_va

Improve initial guest kernel load

- vmd(8) only encrypts:
 - ELF kernel image
 - Page tables
 - GDT
 - Initial stack
 - Boot arguments
 - Initial random seed

Self-hosting Confidential VM

- Same kernel for host and guest!
- Confidential VM works :-)
 - 05/2024
- ...almost :-(
 - vio(4) stalls
 - vioblk(4) crashes (during make build)

Round Three

Thank god, it's open source!

- virtio(4) debugging and fixing by sf@
- bus_dma(9) bounce buffer debugging and testing by bluhm@
- psp(4) <-> ccp(4) cleanup jsg@
- Input mlarkin@, dv@, kettenis@, dlg@
- Getting stuff committed by bluhm@
- ⇒Stable SEV enabled guest VM on OpenBSD hypervisor
 - make build survives
 - ~09/2024

Does SEV actually work?

The heat is on...

- Dump memory (RAM)
- Measure compressibility per page
- Plot heat map

*

hexdump Warm boot marker

Without SEV

With SEV

No encryption

SEV enabled

"Page zero hack"

ConclusionIt's a long way home

- Accomplished:
 - ☆SEV enabled OpenBSD guest on OpenBSD host
- Next steps:
 - SEV-ES:
 - Already in progress
 - Compatibility with KVM/qemu
 - · Fix all the bugs
 - Optimize DMA
 - Performance?
 - Attestation?
 - ...

Thanks!

- genua:
 - Mia Teschauer
 - Jan Klemkow (jan@)
 - Alexander Bluhm (bluhm@)
 - Stefan Fritsch (sf@)
- tech@openbsd:
 - mlarkin@, dv@, dlg@, kettenis@, jsg@, Hrvoje Popvski, ...

Questions?

Don't forget to remember!