Návrh robustního regulátoru \mathcal{H}_{∞} metodami 4

MRAL - Robustní řízení

Lukáš Pohl

19. dubna 2016

Návrh kombinace \mathcal{H}_{∞} regulátorů

Inverzní kyvadlo - popis soustavy

Stavové rovnice systému:

$$\left(\frac{M}{m} + \sin^2 \phi\right) \ddot{x} = -g \sin\phi \cos\phi + l(\dot{\phi})^2 \sin\phi + \frac{F}{m}$$
$$l\left(\frac{M}{m} + \sin^2 \phi\right) \ddot{\phi} = (M+m)g \sin\phi - ml\dot{\phi}\sin\phi\cos\phi - F\cos\phi$$

Stavy: $x_1 = x$, $\dot{x}_1 = \dot{x}$, $\dot{x}_2 = \ddot{x}$, $x_3 = \phi$, $\dot{x}_3 = \dot{\phi}$, $\dot{x}_4 = \ddot{\phi}$

Vstup: F - síla působící na vozík

Výstupy: x, ϕ

l = 0.305, m = 0.21, M = 0.455

Po linerizaci a dosazení stavových veličin dostaneme následující systémové matice:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{mg}{M} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{(M+m)g}{IM} & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \frac{1}{M} \\ 0 \\ -\frac{1}{IM} \end{bmatrix} C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Zadání

Stabilizujte inverzní kyvadlo ve vzpřímené poloze. U stabilizované soustavy zaveď te řízení polohy vozíku.

- \bullet Definice soustavy s výstupem od úhlu a vstupem F
- Definice rozdílového členu $F = F_2 F_1$
- Definice vah citlivostní a komplementární citlivostní funkce pro stabilizující regulátor, vstup pro W_P je F, vstupem pro W_T je ϕ
- Sestavení stabilizující regulační smyčky (regulace úhlu kyvadla), součástí smyčky jsou váhovací funkce pro stabilizující smyčku, soustava, rozdílový člen $F = F_2 F_1$, vstup síla F_2 (vnější veličina "žádaná hodnota"), síla F_1 (akční veličina), výstupy výstupy z vah a z úhlu (měřená veličina)

Obrázek 1: Zapojení pro stabilizaci úhlu

- Syntéza stabilizujícího regulátoru pomocí hinfsyn, pojmenování v/v regulátoru, vstupem je úhel, výstupem síla F_1 .
- Zapojení regulace úhlu (S z ${\cal F}_2$ na ${\cal F}$ a T z ${\cal F}_2$ na úhel)
- Simulace S a T
- Úprava soustavy přidání výstupu od polohy
- Definice PD regulátoru polohy, v
stup odchylka polohy, výstup síla ${\cal F}_2$
- Sestavení polohové regulační smyčky (regulace polohy vozíku), součástí smyčky jsou váhovací funkce pro polohovou smyčku, soustava, stabilizující regulátor, reg. odchylka polohy, rozdílový člen $F=F_2-F_1$, nastavitelný regulátor polohy , vstup požadovaná poloha, výstupy výstupy z vah
- Získání regulátoru pomocí getBlockValue, pojmenování v/v
- Zapojení regulace polohy (S z r na e a T z r na polohu)
- Simulace S a T

Obrázek 2: Zapojení pro regulaci polohy