Dynamic Programming

S. M. Ahsanul Kabir 1505102 Waqar Hassan Khan 1505107

July 22, 2018

Table of Contents

1 Introduction

- 2 Properties
- 3 A problem solved using DP

We are going to see

1 Introduction

- 2 Properties
- 3 A problem solved using DP

Dynamic Programming

Algorithm technique that systematically records the answers to sub-problems and reuses them those recorded result.

Dynamic Programming

- Algorithm technique that systematically records the answers to sub-problems and reuses them those recorded result.
- A simple example: Calculating the n-th Fibonacci number Fib(n) = Fib(n-1) + Fib(n-2)

continued.

- The method was developed by Richard Bellman in the 1950s
- It breaks down a complicated problem into simpler sub-problems in a recursive manner.
- If optimal solutions can be found recursively for the sub-problems, then it is said to have optimal substructure

continued.

- The method was developed by Richard Bellman in the 1950s
- It breaks down a complicated problem into simpler sub-problems in a recursive manner.
- If optimal solutions can be found recursively for the sub-problems, then it is said to have optimal substructure.

continued.

- The method was developed by Richard Bellman in the 1950s
- It breaks down a complicated problem into simpler sub-problems in a recursive manner.
- If optimal solutions can be found recursively for the sub-problems, then it is said to have optimal substructure.

We are going to see

- 1 Introduction
- 2 Properties
- 3 A problem solved using DP

Properties of Dynamic Programming

Such problems exhibits following two properties:

- Optimal Substructure
- Overlapping sub-problems

Optimal Substructure

A problem is said to have optimal substructure if an optimal solution can be constructed from optimal solutions of its sub-problems.

e.g. in Floyd-Warshall algorithm, travelling from node i to j using node k, dist[i][j]=dist[i][k]+dist[k][j]

Overlapping sub-problems

A problem has overlapping sub-problems if finding its solution involves solving the same sub-problem multiple times. Example: Calculating n-th Fibonacci number F(n)

Example of Overlapping sub-problems

Figure: Overlapping Sub-problems in determination of Fibonacci series

We are going to see

1 Introduction

- 2 Properties
- 3 A problem solved using DP

problem statement: ways to select r objects from n objects regardless of the ordering

- Naive approach : calculating $\frac{n!}{r!(n-r)!}$
- Problem: overflow will be caused calculating factorials, unsigned long long wouldn't be enough. May be BigInteger would do but not efficient.
- Solution: using dynamic programming.

- Naive approach : calculating $\frac{n!}{r!(n-r)!}$
- Problem: overflow will be caused calculating factorials, unsigned long long wouldn't be enough. May be BigInteger would do but not efficient.
- Solution: using dynamic programming

- Naive approach : calculating $\frac{n!}{r!(n-r)!}$
- Problem: overflow will be caused calculating factorials, unsigned long long wouldn't be enough. May be BigInteger would do but not efficient.
- Solution : using dynamic programming.

C(n,r) having dynamic programming properties

Optimal Substructure: C(n,r) can be recursively calculated using the formula,

$$C(n,r) = C(n-1,r-1) + C(n-1,r)$$

with base cases, $C(n,0) = C(n,n) = 1$ and $C(n,1) = n$

C(n,r) having dynamic programming properties

Overlapping Sub-problems: let n=5, r=2

Algorithm for C(n,r)

```
Function nCr (n,r)
if r==1 then
    return n;
end
if r=n or r=0 then
    return 1;
end
if dp[n][r] already calculated then
    return dp[n][r]; //use of memoization
end
dp[n][r]=nCr(n-1,r)+nCr(n-1,r-1);
return dp[n][r];
```


Thanks !! Any Questions??