§ 6.2 抽样分布

确定统计量的分布——抽样分布,是数理统计的基本问题之一. 采用求随机向量的函数的分布的方法可得到抽样分布.

由于正态总体是最常见的总体,故本节介绍的几个抽样分布均基于正态总体.

统计中常用分布

(1) 正态分布

若
$$X_1, X_2, \dots, X_n$$
 i.i.d. $N(\mu_i, \sigma_i^2)$

则
$$\sum_{i=1}^n a_i X_i \sim N \left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2 \right)$$

则
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

(2) $\chi^2(n)$ 分布 (n为自由度)

定义 设 X_1, X_2, \cdots, X_n 相互独立,

且都服从标准正态分布N(0,1),则 $\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$

$$n=1$$
 时,其密度函数为

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} x^{-\frac{1}{2}} e^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

一般地,自由度为n的 $\chi^2(n)$ 的密度函数为

χ²(n) 分布的性质

1°
$$E(\chi^2(n)) = n, D(\chi^2(n)) = 2n$$

$$2^{\circ}$$
 若 $X_1 = \chi^2(n_1), X_2 = \chi^2(n_2), X_1, X_2$ 相互独立, 则 $X_1 + X_2 \sim \chi^2(n_1 + n_2)$

$$3^{\circ}$$
 $n \to \infty$ 时, $\chi^2(n) \to$ 正态分布

证
$$1^{\circ}$$
 设 $\chi^{2}(n) = \sum_{i=1}^{n} X_{i}^{2}$ $X_{i} \sim N(0,1)$ $i = 1,2,\cdots,n$

 $\overline{X_1, X_2, \cdots, X_n}$ 相互独立,

则

$$E(X_i) = 0$$
, $D(X_i) = 1$, $E(X_i^2) = 1$

$$E(\chi^{2}(n)) = E\left(\sum_{i=1}^{n} X_{i}^{2}\right) = n$$

$$E(X_i^4) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^4 e^{-\frac{x^2}{2}} dx = 3$$

$$D(X_i^2) = E(X_i^4) - E^2(X_i^2) = 2$$

$$D(\chi^{2}(n)) = D\left(\sum_{i=1}^{n} X_{i}^{2}\right) = 2n$$

(3) t 分布 (Student 分布)

定义 设 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, X, Y 相互独立,

$$T = \frac{X}{\sqrt{Y/n}}$$

则T所服从的分布称为自由度为 n 的T分 布其密度函数为

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{\frac{n+1}{2}} - \infty < t < \infty$$

t分布的图形(红色的是标准正态分布)

(4) F分布

则F所服从的分布称为第一自由度为n,第二自由度为m的F分布,其密度函数为

$$f(t,n,m) = \begin{pmatrix} \Gamma\left(\frac{n+m}{2}\right) \\ \Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right) \\ \Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right) \\ 0, \\ t \le 0 \end{pmatrix}$$

$$m = 10, n = 4$$

 $m = 10, n = 10$
 $m = 10, n = 15$

$$m = 4, n = 10$$

 $m = 10, n = 10$
 $m = 15, n = 10$

F分布的性质 若 $F \sim F(n,m)$,则 $\frac{1}{F} \sim F(m,n)$

抽样本分布的某些结论

(I) 单正态总体抽样分布定理

设
$$X \sim N(\mu, \sigma^2)$$
 $E(X) = \mu$, $D(X) = \sigma^2$ 总体的样本为 (X_1, X_2, \dots, X_n) , 则

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

(II) 双正态总体

设
$$X_1, X_2, \dots, X_n$$
来自正态总体 $X \sim N(\mu_1, \sigma_1^2)$ 相互独立 Y_1, Y_2, \dots, Y_m 来自正态总体 $Y \sim N(\mu_2, \sigma_2^2)$

 $\Rightarrow \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$

$$\overline{Y} = \frac{1}{m} \sum_{j=1}^{m} Y_{j}$$

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 $S_2^2 = \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y})^2$

$$S_2^2 = \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y})^2$$

$$\frac{(n-1)S_1^2}{\sigma_1^2} \sim \chi^2(n-1) \qquad \frac{(m-1)S_2^2}{\sigma_2^2} \sim \chi^2(m-1)$$

$$\frac{(m-1)S_2^2}{\sigma_2^2} \sim \chi^2(m-1)$$

例1 设总体 $X \sim N(72,100)$,为使样本均值 大于70 的概率不小于 90% ,则样本容量

$$n = 42$$

解 设样本容量为n,则 $X \sim N(72, \frac{100}{n})$

故 $P(\overline{X} > 70) = 1 - P(\overline{X} \le 70) = \Phi(0.2\sqrt{n})$

令 $\Phi(0.2\sqrt{n}) \ge 0.9$ 查表得 $0.2\sqrt{n} \ge 1.29$

即 $n \ge 41.6025$ 所以取 n = 42

(1)
$$\Re P\left(0.37\sigma^2 \le \frac{1}{20}\sum_{i=1}^{20} (X_i - \overline{X})^2 \le 1.76\sigma^2\right)$$

(2)
$$\Re P\left(0.37\sigma^2 \le \frac{1}{20}\sum_{i=1}^{20}(X_i - \mu)^2 \le 1.76\sigma^2\right)$$

解 (1)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
即 $\frac{19S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \overline{X})^2 \sim \chi^2(19)$

故
$$P\left(0.37\sigma^2 \le \frac{1}{20}\sum_{i=1}^{20} (X_i - \overline{X})^2 \le 1.76\sigma^2\right)$$

$$= P\left(7.4 \le \frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \overline{X})^2 \le 35.2\right)$$

$$= P\left(\frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \overline{X})^2 \ge 7.4\right) - P\left(\frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \overline{X})^2 \ge 35.2\right)$$

查表

$$= 0.99 - 0.01 = 0.98$$

(2)
$$\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(20)$$

故
$$P\left(0.37\sigma^2 \le \frac{1}{20}\sum_{i=1}^{20}(X_i - \mu)^2 \le 1.76\sigma^2\right)$$

$$= P \left(7.4 \le \sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma} \right)^2 \le 35.2 \right)$$

$$= P\left(\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma}\right)^2 \ge 7.4\right) - P\left(\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma}\right)^2 \ge 35.2\right)$$

$$= 0.995 - 0.025 = 0.97$$

例3 X 与 Y相互独立, $X \sim N(0,16)$, $Y \sim N(0,9)$, $X_1, X_2, ..., X_9$ 与 $Y_1, Y_2, ..., Y_{16}$ 分别来自 X与 Y,求统 计量

$$\frac{X_1 + X_2 + \dots + X_9}{\sqrt{Y_1^2 + Y_2^2 + \dots + Y_{16}^2}}$$
 所服从的分布。

解 $X_1 + X_2 + \dots + X_9 \sim N(0, 9 \times 16)$

$$\frac{1}{3\times 4}(X_1 + X_2 + \dots + X_9) \sim N(0,1)$$

$$\frac{1}{3}Y_i \sim N(0,1), i = 1,2,\dots,16$$
 $\sum_{i=1}^{16} \left(\frac{1}{3}Y_i\right)^2 \sim \chi^2(16)$

$$\text{Min} \frac{X_1 + X_2 + \dots + X_9}{\sqrt{Y_1^2 + Y_2^2 + \dots + Y_{16}^2}} = \frac{\frac{1}{3 \times 4} (X_1 + X_2 + \dots + X_9)}{\sqrt{\frac{\sum_{i=1}^{16} \left(\frac{1}{3} Y_i\right)^2}{16}}} \sim t(16)$$

例7 设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$

的简单随机样本, X 是样本均值,

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, \qquad S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2,$$

$$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2, \qquad S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2,$$

则服从自由度为n-1的 t分布的随机变量为:

(A)
$$\frac{\overline{X} - \mu}{S_1} \sqrt{n-1}$$
 (B) $\frac{\overline{X} - \mu}{S_2} \sqrt{n-1}$ (C) $\frac{\overline{X} - \mu}{S_3} \sqrt{n}$ (D) $\frac{\overline{X} - \mu}{S_4} \sqrt{n}$

解
$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$
 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1)$ $\frac{X - \mu}{\sqrt{n}}$ $\frac{\sigma}{\sqrt{n}}$ $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim t(n-1)$ $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim t(n-1)$

故应选(B)

作业 习题6

A组: 10, 11, 12, 13

B组: 3

