Report: Thai Numbers Recognition

1. Data collection

ทำการเก็บรวบรวมข้อมูลเป็นไฟล์รูปภาพที่เก็บตัวเลข ตั้งแต่เลข 0 ถึง 9 (เลขไทย)

- 2. Data cleansing
 - 2.1 Resize
 - ทำการหาขอบของรูปด้วยฟังก์ชัน count up, count down, count left และ count right

```
def Count_Up(img,img_check):
     count_up = 0
check_up = False
for i in range(28):
         for j in range(28):
    if img[i,j] < max(img_check):</pre>
              check_up = True
                   break
         if check_up == True:
         count_up += 1
    return count_up
def Count_Down(img,img_check):
     count_down = 0
     check_down = False
for i in range(27,0,-1):
         for j in range(28):
             if img[i,j] < max(img_check):</pre>
                   break
         if check_down == True:
         count_down += 1
return count_down
def Count_Left(img,img_check):
    count_left = 0
check_left = False
     for i in range(28):
         for j in range(28):
              if img[j,i] < max(img_check):
    check_left = True
    break</pre>
         if check_left == True:
         count_left += 1
    return count_left
def Count_Right(img,img_check):
    count_right = 0
    check_right = False
     for i in range(27,0,-1):
for j in range(27,0,-1):
             if img[j,i] < max(img_check):</pre>
                check_right = True
          if check_right == True:
         count right += 1
    return count_right
```

- ปรับรูปให้อยู่กึ่งกลางเฟรมด้วยฟังก์ชัน change_position

```
def change_position(img,img_check):
    crop\_img = img
    dummy = np.full(28,255,dtype='uint8')
dummy2 = np.full([28,1],255,dtype='uint8')
    count_array = []
    count_array.append(Count_Up(crop_img,img_check))
    \verb|count_array.append(Count_Down(crop_img,img_check))|\\
    count_array.append(Count_Left(crop_img,img_check))
    count_array.append(Count_Right(crop_img,img_check))
    #vertical_change_position
    avg\_vertical = (count\_array[0] + count\_array[1])/2
    while Count_Down(crop_img,img_check) - avg_vertical > 0.5:
        crop_img = crop_img[0:crop_img.shape[0]-1, :]
        crop_img = np.vstack([dummy,crop_img])
    #horizontal_change_position
    avg_horizontal = (count_array[2] + count_array[3])/2
    while Count_Left(crop_img,img_check) - avg_horizontal > 0.5:
       crop_img = crop_img[:,1:crop_img.shape[1]]
crop_img = np.hstack([crop_img,dummy2])
    while Count_Right(crop_img,img_check) - avg_horizontal > 0.5:
    crop_img = crop_img[:, 0:crop_img.shape[1]-1]
    crop_img = np.hstack([dummy2,crop_img])
    return crop_img
```

- ทำการ crop รูปออกมาเป็นไฟล์ใหม่ โดยไม่ว่าไฟล์ input จะอยู่ในรูปแบบไฟล์ .png , .jpeg จะถูกปรับให้เป็น ไฟล์ .png ขนาด 28x28 pixels

```
for j in range(0,10):
    for i in range(1,41):
         count_array = []
file = str(j) + "-" + str(i) + ".png"
         img = cv2.imread(file,cv2.IMREAD_GRAYSCALE)
         #img_check = img.flatten()
         img_check = [0,240]
crop_img = change_position(img,img_check)
         count_array.append(Count_Up(crop_img,img_check))
         count_array.append(Count_Down(crop_img,img_check))
         count_array.append(Count_Left(crop_img,img_check))
         \verb|count_array.append| (\verb|count_Right| (\verb|crop_img,img_check|)) \\
         crop_img = crop_img[min(count_array):crop_img.shape[0], :]
         crop_img = crop_img[0:crop_img.shape[0]-min(count_array), :]
         crop img = crop img[:, min(count_array):crop_img.shape[1]]
crop_img = crop_img[:, 0:crop_img.shape[1]-min(count_array)]
         crop_img = cv2.resize(crop_img,(28,28))
         newfile = "new_{-}" + str(j) + "-" + str(i) + ".png"
         cv2.imwrite(newfile,crop_img)
```


ตัวอย่างรูปก่อน (1) และหลัง (2) ทำการ Resize

2.2 Convert to csv

- ทำการ convert ไฟล์รูปภาพที่ resize เรียบร้อยแล้วแปลงเป็น csv เพื่อทำการสร้าง model ในขั้นตอนต่อๆ ไป

```
import cv2
# numpy กับ matplotlib เองก็ใช้ตลอดด้วย แนะนำให้ import ไปด้วยทุกครั้ง
import numpy as np
import matplotlib.pyplot as plt
import csv
import pandas as pd
lst = []
for i in range(1,785):
   name = 'pixel'+str(i)
   col.append(name)
newfile = "pixel_num_new.csv"
with open(newfile, 'a', newline='') as f:
       writer = csv.writer(f)
       writer.writerow(col)
for k in range(0,10):
    for i in range(1,41):
       file = "new_" + str(k) + "-" + str(i) + ".png"
       rup = cv2.imread(file,cv2.IMREAD_GRAYSCALE)
       rup = rup.flatten()
       lst = []
       lst.append(str(k))
       for j in rup:
          lst.append(j)
       with open(newfile, 'a', newline='') as f:
            writer = csv.writer(f)
            writer.writerow(lst)
```

3. EDA

```
[1] import pandas as pd import matplotiib,pyplot as plt import numpy as np from scipy,sparse import csr_matrix
```

นำเข้าข้อมูลทั้งหมดจากไฟล์ pixel_num_new.csv และแสดงข้อมูล 5 แถวแรก และดูรายละเอียดของข้อมูล

```
train = pd.read_csv('/content/place| num_new.csv')
print(train.nfo(j))
print(tynin.nfo(j))
print(tynin.nf
```

ดูข้อมูลทางสถิติของข้อมูลทั้งหมด

สร้างกราฟแท่งที่นับจำนวนตัวเลขแต่ละตัวจากข้อมลทั้งหมด

```
a = train.groupby('y'),size(),to_frame('count')
a = a.reset_index()
fig2 = px.bar(a, x='y'', y="count", title="Count by Number")
fig2.show()

Count by Number
```


4. Training model

เมื่อได้ csv ที่รวมรูปทั้งหมดแล้วอยู่ในไฟล์ชื่อ pixel_num_new.csv

```
[] # [Nambaya|Nag|lu df_num us: show วายละเอียดข้อมูล
df_num =pd.read_csv('pixel_num_new.csv')
df_num.info()
df_num.info()
df_num.head()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Columns: 785 entries, y to pixel784
dtypes: int64(785)
memory usage: 2.4 MB
```

	y	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	 pixel775	pixel776	pixel777	pixel778	pixel779	pixel780	pixel781	pixel782
0	0	255	255	255	255	255	255	255	255	254	 189	230	255	253	253	254	255	253
1	0	255	254	254	253	250	245	252	254	253	 255	255	254	251	249	252	254	253
2	0	255	255	255	255	255	255	255	255	255	 254	254	254	254	255	255	255	255
3	0	251	253	254	255	255	255	255	254	252	 255	255	255	255	255	255	255	255
4	0	252	252	253	253	253	252	250	250	253	 210	237	255	254	252	251	255	253
5 ro	ws:	× 785 colu	mns															

จากนั้นจะทำการแบ่งข้อมูลออกเป็น 2 ส่วน คือ ข้อมูลสำหรับการสร้าง model ที่เก็บอยู่ในตัวแปรชื่อ data และ ข้อมูลสำหรับ prediction ที่เก็บอยู่ในตัวแปรชื่อ data_unseen โดยแบ่งเป็นอัตราส่วน 80/20

```
[ ] # split train and test dataset
data = df_num.sample(frac=0.8, random_state=42)
data_unseen = df_num.drop(data.index)
data.reset_index(inplace=True, drop=True)
data_unseen.reset_index(inplace=True, drop=True)
print('Data for Modeling: ' + str(data.shape))
print('Unseen Data For Predictions: ' + str(data_unseen.shape))

Data for Modeling: (320, 785)
Unseen Data For Predictions: (80, 785)
```

และจะเริ่มสร้างโมเดล โดยใช้ Pycaret และต้อง install และ import ก่อนที่จะเริ่มใช้

```
[] !pip install pycaret

[] from pycaret.classification import *
```

และสร้างตัวแปรใหม่ที่ชื่อ numeric_feature ที่ใช้เก็บชื่อ feature ทั้งหมด

```
[ ] numeric_features = data.columns.tolist()
  numeric_features.remove('y')
  numeric_features[:5]
['pixel1', 'pixel2', 'pixel3', 'pixel4', 'pixel5']
```

การเริ่มการใช้งาน Pycaret ต้องเริ่มจาก Setup ข้อมูลหรือเตรียมข้อมูลโดยกำหนดข้อมูลที่ใช้กับชื่อ column ที่ ต้องการจะ predict เพื่อนำไปสร้างโมเดลในขั้นต่อไป และจะแบ่ง training set และ testing set เป็นอัตราส่วน 70/30 อัตโนมัติและจะบอกรายละเอียดการตั้งค่าออกมาดังนี้

```
[20] exp_name = setup(data = data, target = 'y'
                Description
                    Target
                 Target type
                             Multiclass
            Original data shape
                               (320, 785)
    4 Transformed data shape
     5 Transformed train set shape
                             (96, 785)
    6 Transformed test set shape
              Numeric features
            Preprocess True
    10 Numeric imputation
    11
          Categorical imputation
         Fold Generator StratifiedKFold
    12
                                  -1
    14
                CPU Jobs
                  Use GPU
                                  False
         Log Experiment False
            Experiment Name clf-default-name
    18 USI ab71
```

ต่อมาจะเป็นการสร้างโมเดลโดยจะใช้ compare_models() เพื่อดูว่าโมเดลอันไหนที่เหมาะสมกับข้อมูลชุดนี้มาก ที่สุด โดยดูจาก Model Evaluation ของแต่ละโมเดล

compare_	models()								
	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс	TT (Sec)
rf	Random Forest Classifier	0.9692	0.9983	0.9692	0.9735	0.9652	0.9656	0.9680	0.4950
et	Extra Trees Classifier	0.9646	0.9982	0.9646	0.9709	0.9602	0.9606	0.9632	0.4590
Ir	Logistic Regression	0.9514	0.9941	0.9514	0.9654	0.9499	0.9458	0.9478	1.2830
svm	SVM - Linear Kernel	0.9287	0.0000	0.9287	0.9363	0.9187	0.9205	0.9249	0.3940
lightgbm	Light Gradient Boosting Machine	0.9020	0.9903	0.9020	0.9102	0.8907	0.8906	0.8954	1.6490
lda	Linear Discriminant Analysis	0.8844	0.9823	0.8844	0.9163	0.8809	0.8711	0.8752	0.1730
xgboost	Extreme Gradient Boosting	0.8437	0.9820	0.8437	0.8457	0.8233	0.8257	0.8334	2.2140
ridge	Ridge Classifier	0.8350	0.0000	0.8350	0.8394	0.8199	0.8159	0.8214	0.1740
knn	K Neighbors Classifier	0.8079	0.9778	0.8079	0.8277	0.7911	0.7857	0.7934	0.5370
nb	Naive Bayes	0.8075	0.9070	0.8075	0.8409	0.7965	0.7854	0.7948	0.2410
gbc	Gradient Boosting Classifier	0.7899	0.9628	0.7899	0.8423	0.7868	0.7658	0.7748	12.1970
dt	Decision Tree Classifier	0.6872	0.8259	0.6872	0.6981	0.6661	0.6511	0.6607	0.3680
qda	Quadratic Discriminant Analysis	0.3178	0.6205	0.3178	0.2898	0.2808	0.2411	0.2498	0.1520
ada	Ada Boost Classifier	0.2816	0.8070	0.2816	0.2160	0.2074	0.2004	0.2359	0.6820
dummy	Dummy Classifier	0.0893	0.5000	0.0893	0.0080	0.0147	0.0000	0.0000	0.1340
▼	Randor	nForestCla	ssifier						
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features='sqrt', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=-1, oob_score=False, random_state=321, verbose=0, warm_start=False)									

จากการเปรียบเทียบจะเห็นโมเดลที่สร้างจาก Random Forest ค่า Model Evaluation มีค่ามากที่สุดคือโมเดล ที่ดีที่สุดกับข้อมูลชุดนี้ จึงสร้างโมเดลจากวิธี Random Forest

เมื่อได้โมเดลมาแล้วก็นำมาสร้าง ROC Curves และ Confusion matrix

ต่อมานำโมเดลมา predict กับข้อมูล training set และ testing set จะได้ค่าที่ predict ออกมาและคะแนนการ predict ของแต่ละค่า

และจะสรุปโมเดลด้วย finalize_model() และจะได้ออกมาเป็น workflow หรือ pipeline ในการสร้างโมเดล

และ save โมเดลด้วย save_model()