Analyse I

David Wiedemann

Table	e des	mat	ières

1	Intr 1.1	Poduction Buts du Cours	4				
2	Def : 2.1	efinir \mathbb{R} 1 Exemple d'utilisation					
3	Suit	tes et limites Convergence	12 12				
4	Lim 4.1	Suites de Cauchy	17 21				
5	Seri	ies 5.0.1 Un calcul naif (avec la série harmonique alternée)	22 28				
6	6.1	ctions Continuité	34 39				
	1	Theorème (env400)	4				
	2	Lemme (Lemme)	4				
	3	Axiom (Nombres Reels)	5				
	4	Lemme (Theorem name)	6				
	5	Proposition (Annulation de l'element neutre)	6				
	6	Corollaire (x fois moins 1 egale -x)	6				
	7	Axiom (Nombres Reels II)	7				
	1	Definition (valeur absolue)	7				
	8	Proposition (Inegalite du triangle)	7				
	2	Definition (Bornes)	8				
	9	Axiom (Axiome de completude)	8				
	3	Definition (Supremum)	8				

1	14	Proposition
1	15	Corollaire (Propriete archimedienne)
1	16	Theorème (La racine de deux existe)
1	18	Proposition (\mathbb{Q} est dense dans \mathbb{R})
1	19	Lemme
2	20	Proposition (Densite des irrationnels)
4	1	Definition (Suite)
Ę	5	Definition (Convergence de suites)
2	23	Lemme (Unicite de la limite)
6	3	Definition
2	25	Lemme
2	27	Proposition
2	28	Lemme
9	30	Proposition (Inversion d'une limite)
9	31	Corollaire
	32	Lemme
9	34	Proposition
ć	35	Proposition
	37	Lemme (Deux gendarmes)
7	7	Definition (Limsup et liminf)
	38	Theorème
	39	Theorème (Premiere regle de d'Alembert)
8	3	Definition (Sous-suite)
4	14	Proposition
4	45	Theorème (Bolzano-Weierstrass)
(9	Definition (Point d'accumulation)
1	10	Definition (Suites de Cauchy)
4	18	Lemme
4	19	Theorème (Convergence des suites de Caucjy)
Ę	50	Lemme
1	11	Definition (Serie)
Ę	53	Corollaire
Ę	54	Corollaire
Ę	55	Corollaire
Ę	56	Corollaire (Critere de Cauchy pour les séries)
Ę	58	Proposition
Ę	59	Proposition (Serie Geometrique)
(30	Proposition (Série Harmonique)
6	31	Proposition (Critère de Comparaison)
6	33	Corollaire
1	12	Definition (Séries Alternées)

64	Theorème	7
13	Definition	8
68	Lemme	9
69	Theorème	9
71	Theorème	0
72	Theorème (Critere de d'Alembert 2)	0
78	Proposition	2
79	Theorème (Critere de la racine)	2
83	Lemme	4
14	Definition	4
15	Definition	4
85	Theorème	5
87	Corollaire	5
88	Corollaire	6
89	Corollaire	6
90	Corollaire	6
91	Lemme	6
92	Corollaire	6
93	Corollaire (Cauchy)	7
94	Lemme	7
95	Corollaire	7
97	Proposition	8
16	Definition	9
99	Proposition	9
101	Corollaire	9
102	Corollaire	9
104	Proposition	9
17	Definition (Terminologie Supplémentaire) 4	0
18	Definition	0
19	Definition	0
20	Definition	0
21	Definition (Notation)	1
22	Definition (Notation)	1
106	Theorème	1
107	Theorème	1
108	Proposition	2

Lecture 1: Introduction

Mon 14 Sep

1 Introduction

1.1 Buts du Cours

Officiel:

Suites, series, fonctions, derivees, integrales, ...

Secrets:

Apprendre le raisonnement rigoureux

Creativite

Esprit Critique

Ne croyez rien tant que c'est pas prouve

On construit sur ce qu'on a fait, on recommence pas toujours a 0, par rapport a d'autres domaines(lettres par exemple)

Theorème 1 (env. -400)

Il n'existe aucin nombre (fraction) x tel que $x^2 = 2$.

Ca contredit pythagore nn?

On va demontrer le theoreme. ¹

Lemme 2 (Lemme)

Soit $n \in \mathbb{N}$ Alors n pair $\iff n^2$ pair.

Preuve

 \Rightarrow Si n pair \Rightarrow n² pair.

Hyp. $n = 2m (m \in \mathbb{N})$

Donc $n^2 = 4m^2$, pair.

Par l'absurde, n impair. $n = 2k + 1(k \in \mathbb{N})$.

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

impair. Donc si n est impair, alors n^2 est forcement impair. Absurde.

Preuve

Supposons par l'absurde $\exists x \ t.q. \ x^2 = 2 \ et \ x = \frac{a}{b}(a, b \in \mathbb{Z}, b \neq 0).$

On peut supposer a et b non tous pairs.(sinon reduire).

$$x^2 = 2 \Rightarrow \frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2 \Rightarrow a^2$$

^{1.} On demontre d'abord un lemme

pair.

Lemme : a pair, i.e. $a = 2n(n \in \mathbb{N})$.

$$a^2 = 4n^2 = 2b^2 \Rightarrow 2n^2 = b^2, i.e.b^2$$
 pair.

Lemme: b pair.

Donc a et b sont les deux pairs, on a une contradiction.

En conclusion, le theoreme est bel et bien vrai, et contredit donc pythagore. Donc les fractions (\mathbb{Q}) ne suffisent pas a decrire/mesurer les longueurs geometriques. Il faut les nombres reels, on les comprends seulement vraiment depuis 2 siecles

C'est important de chercher ce genre d'erreurs.

Prochain but : definir les nombres reels (\mathbb{R}) . L'interaction entre les fractions et les nombres reels.

$2\quad \text{Definir } \mathbb{R}$

On commence avec la definition axiomatique des nombres reels.

Axiom 3 (Nombres Reels)

 \mathbb{R} est un corps, en d'autres termes :

Ils sont munis de deux operations : plus et fois.

- Associativite $x + (y + z) = (x + y) + z(x, y, z \in \mathbb{R})^2$
- Commutativite x + y = y + x.
- Il existe un element neutre 0 t.q. $0 + x = x, x \in \mathbb{R}$.
- Distributivite x(yz) = (xy)z
- Il existe un element inverse, unique $-x \in \mathbb{R}$ t.q. x + (-x) = 0

Remarque : Il existe beaucoup d'autres corps que $\mathbb{R},$ par exemple $\mathbb{Q},\mathbb{C},$ $\{0,1,2\}\mod 3$

Attention: $\{0, 1, 2, 3\} \mod 4$ n'est pas un corps! Presque tous marchent, ils satisfont 8 des 9 axiomes.

 $^{2.\} L'associativite n'est pas forcement vraie$ (octonions)

^{3.} Il y a aucune difference entre les regles pour l'addition que pour la multiplication.

Lemme 4 (Theorem name)

 $\forall x \exists ! y \ t.q. \ x + y = 0.$

Preuve

Supposons x + y = 0 = x + y'

A voir : y = y'.

y = y + 0 = y + (x + y') = (y + x) + y'= (x + y) + y' = 0 + y' = y'

CQFD.

Exercice

Demontrer que 0 est unique.

Proposition 5 (Annulation de l'element neutre)

 $0 \cdot x = 0$

Preuve

 $x = x \cdot 1 = x(1+0) = x \cdot 1 + x \cdot 0 = x + x \cdot 0$

 $0 = x + (-x) = x + (-x) + x \cdot 0$

 $\Rightarrow 0 = x \cdot 0$

Corollaire 6 (x fois moins 1 egale -x)

 $x + x \cdot (-1) = 0$

Preuve

A voir : $x \cdot (-1)$ satisfait les proprietes de -x.

Or

 $x + x(-1) = x(1-1) = x \cdot 0 = 0.$

Exercice

Montrer que $\forall x : -(-x) = x$ et que ceci implique (-a)(-b) = ab.

Rien de tout ca n'a quelque chose a voir avec \mathbb{R} .

Il nous faut plus d'axiomes!!

4. a - b = a + (-b)

Axiom 7 (Nombres Reels II)

 \mathbb{R} est un corps ordonne. Ce qui revient a dire que les assertions suivantes sont verifiees.

- $\ x \leq y \ et \ y \leq z \ impliquent \ x \leq z$
- $-(x \le y e t y \le x) \Rightarrow x = y$
- pour tout couple de nombres reels x et y: ou bien $x \leq y$ ou bien $x \geq y$.

Exemple de corps ordonnnes :

 $(1) \mathbb{R}, (2) \mathbb{Q}, (3) \{0, 1, 2\} \mod 3$ n'est pas un corps ordonne.

Exercice

$$x \le y \iff -x \ge -y$$
 Exercice

$$x \le y$$
 et $z \ge 0 \Rightarrow xz \le yz$

$$x \le y$$
 et $z \le 0 \Rightarrow xz \ge yz$.

Il nous manque encore un axiome, et c'est le dernier : pour mercredi!

Lecture 2: Cours Mercredi

Wed 16 Sep

2.1 Exemple d'utilisation

Definition 1 (valeur absolue)

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Proposition 8 (Inegalite du triangle)

Elle dit que

$$\forall x, y : |x + y| \le |x| + |y|$$

Preuve

 $Cas\ x,y\geq 0\ :\ alors\ x+y\geq 0$

$$\iff x + y \le x + y$$

Ce qui est toujours vrai.

 $Cas \ x \geq 0 \ et \ y < 0.$

 $Si \ x + y \ge 0$, alors

$$\iff |x+y| \le x - y$$

$$\iff x + y \le x - y$$

$$y \le -y$$

c'est vrai car y < 0.

 $Si \ x + y < 0, \ alors$

$$\iff -x - y \le x - y$$

 $Donc - x \le x \ vrai \ car \ x \ge 0$.

Definition 2 (Bornes)

 $Terminologie: Soit \ A \subseteq E \ , \ E \ corps \ ordonne.$

— Une borne superieure (majorant) pour A et un nombre b tq

$$a \le b \forall a \in A$$
.

— Une borne inferieure (minorant) pour A et un nombre b tq

$$a \ge b \forall a \in A$$
.

On dira que l'ensemble A est borne si il admet une borne.

Axiom 9 (Axiome de completude)

$$\forall A\subseteq \mathbb{R}\neq\emptyset$$

et majoree $\exists s \in \mathbb{R} \ t.q$

- 1. s est un majorant pour A.
- 2. \forall majorant b de A, $b \geq s$.

Cet axiome finis la partie axiomatique du cours.

Remarque

- 1. $\forall s' < s \exists a \in A : a > s'$.
- 2. s est unique.

Definition 3 (Supremum)

Ce s s'appelle le supremum de A, note sup(A).

Remarque

 \exists (pour A minore et $\neq \emptyset$) une borne inferieure plus grande que toutes les autres, notee inf(A) (infimum).

$$\inf(A) = -\sup(-A)$$

Remarque

 $Si \sup(A) \in A$, on l'appelle le maximum.

Remarque

 $Si \inf(A) \in A$, on l'appelle le minimum.

Proposition 14

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n \ge x.$

Preuve

Par l'absurde,

Alors

$$\exists x \in \mathbb{R} \forall n \in \mathbb{N} : n < x$$

 $\Rightarrow \mathbb{N} \ borne \ et \neq \emptyset \Rightarrow \exists s = \sup(\mathbb{N})$

$$s - \frac{1}{2} < s \Rightarrow \exists n \in \mathbb{N} : n > s - \frac{1}{2}$$

 $n+1 \in \mathbb{N} \ et \ n+1 > s - \frac{1}{2} + 1 = s + \frac{1}{2}$

 $donc \ n+1 > s \ absurde.$

Corollaire 15 (Propriete archimedienne)

1. $\forall x \forall y > 0 \exists n \in \mathbb{N} : ny > x$.

2. $\forall \epsilon > 0 \exists n \in \mathbb{N} : \frac{1}{n} < \epsilon$

Preuve

Pour 2, appliquer la proposition a $x = \frac{1}{\epsilon} \exists n \in \mathbb{N} : n > x = \frac{1}{\epsilon}$

Alors

$$\Rightarrow \epsilon > \frac{1}{n}$$

Pour montrer le 1.

Considerer $\frac{x}{y}$

On peut maintenant montrer que la racine de deux existe.

Theorème 16 (La racine de deux existe)

$$\exists x \in \mathbb{R} : x^2 = 2$$

Preuve

$$A := \{y | y^2 < 2\}$$

Clairement $A \neq \emptyset$ car $1 \in A$. De plus, A est majore : 2 est une borne. (si $y > 2, y^2 > 4 > 2 \Rightarrow y \notin A$).

 $Donc \exists x = \sup(A)$

 $Supposons \ (\ par \ l'absurde) \ que \ x^2 < 2$

Soit $0 < \epsilon < 1, \frac{2-x^2}{4x}$.

Clairement, par hypothese $2-x^2>0$ et idem pour 4x car $x\geq 1$. Soit $y=x+\epsilon$, alors

$$y^2 = x^2 + 2\epsilon x + \epsilon^2 < x^2 + \frac{2 - x^2}{2} + \frac{2 - x^2}{2} = 2$$

 $\Rightarrow y \in A \ \textit{Mais} \ y = x + \epsilon > x. \ \textit{Absurde car} \ x = \sup(A). \ \textit{Donc} \ x^2 \geq 2.$ Deuxiemement, supposons (absurde) $x^2 > 2$.

Soit $0 < \epsilon < \frac{x^2 - 2}{2x} > 0$.

Posons $b = x - \epsilon$.

$$b < x \Rightarrow \exists y \in A : y > b$$

$$\Rightarrow y^2 > b^2 = x^2 - 2\epsilon x + \epsilon^2 > x^2 - \underbrace{2\epsilon x}_{< x^2 - 2}$$

$$> x^2 - (x^2 - 2) = 2.$$

 $Conclusion: y^2 > 2 \ contredit \ y \in a.$

$$Donc \ x^2 = 2.$$

Remarque

 $Preuve\ similaire\ :$

$$\forall y > 0 \exists ! x > 0 : x^2 = y$$

Proposition 18 (\mathbb{Q} est dense dans \mathbb{R})

$$\forall x < y \in \mathbb{R} \exists z \in \mathbb{Q} : x < z < y$$

Lemme 19

$$\forall x \exists n \in \mathbb{Z} : |n - x| \le \frac{1}{2}$$

Ou encore:

$$\forall x \exists [x] \in \mathbb{Z} tq$$

$$\begin{cases} [x] \le x \\ [x] + 1 > x \end{cases}$$

Preuve

$$\exists n \in \mathbb{Z} : n > x(Archimede).$$

$$Soit [x] = \inf\{n \in \mathbb{Z} : n > x\} - 1$$

Preuve (Preuve de la densite)

Archimede : $\exists q \in \mathbb{N} : q > \frac{1}{y-x}$.

Donc

$$qy - qx > 1.$$

$$\Rightarrow \exists p \in \mathbb{Z} : qx$$

 $par\ exemple\ :$

$$p = [qy]$$

 $si \ qy \notin \mathbb{Z} \ ou \ bien$

$$p = qy - 1$$

 $si\ qy\in\mathbb{Z}$

Lecture 3: Suites

Wed 23 Sep

0,999

0, 9

0.99

0.999

0.9999

:

Proposition 20 (Densite des irrationnels)

 $\mathbb{R} \setminus \mathbb{Q}$, les irrationnels sont dense dans \mathbb{R} .

Preuve

Soit x < y (dans \mathbb{R}).

Cherche $z \notin \mathbb{Q} \ tq \ x < z < y$.

$$\exists \frac{p}{q} \in \mathbb{Q} tqx < \frac{p}{q} < y$$

Propr. $archimedienne \Rightarrow \exists n \in \mathbb{N} :$

$$\underbrace{\frac{p}{q} + \sqrt{2}\frac{\sqrt{2}}{n}}_{:=z} < y$$

car

$$\exists n: \frac{1}{n} < \underbrace{y - \frac{1}{q}}_{>0} / \sqrt{2}$$

Il reste a voir que : $z = \frac{p}{q} + \sqrt{2}/n \notin \mathbb{Q}$

$$\sqrt{2} = n(z - \frac{p}{q})$$

$$z \in \mathbb{Q} \Rightarrow \sqrt{2} \in \mathbb{Q} \not z$$

3 Suites et limites

Definition 4 (Suite)

Une suite $(x_n)_{n=1}^{\infty}$ dans \mathbb{R} est une application (= fonction) $\mathbb{N} \to \mathbb{R}$

Remarque

Suite $(x_n) \neq ensemble \{x_n\}$ Il arrive qu'on indice x_n par une partie de \mathbb{N} . Mais suite = suite infinie

Exemple

$$x_n = \frac{1}{n}(n = 1, 2, ...)$$

 $x_n = (-1)^n; x_n = n!; F_n : 0, 1, 1, 2, 3, 5, 8, 13$
 $3, 3.1, 3.14, 3.141, 3.1415$

3.1 Convergence

Definition 5 (Convergence de suites)

L'expression $\lim_{n\to+\infty} x_n = l$ signifie :

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0 : |x_n - l| < \epsilon$$

On dit alors que (x_n) converge (vers l). Sinon, (x_n) diverge.

Lemme 23 (Unicite de la limite)

Si (x_n) converge, il existe un unique $l \in \mathbb{R}$ $tq \lim_{n \to +\infty} x_n = l$

Preuve

Supposons l, l' limites. Si $l \neq l'$, alors |l - l'| > 0 Donc $\exists n_0 \forall n > n_0 : |x_n - l| < \frac{|l - l'|}{2}$

De meme $\exists n_1 \forall n > n_1 : |x_n - l'| < \frac{|l - l'|}{2}$ Soit $n > n_0, n_1$ Alors :

$$|l - l'| = |l - x_n + x_n - l'| \le \underbrace{|l - x_n|}_{<|l - l'|/2} + \underbrace{|x_n - l'|}_{|x_n - l'|}$$

Donc

$$|l-l'|<2\cdot\frac{|l-l'|}{2}$$

₹ □

Exemple

1. Si (x_n) est constante $(\exists a \forall n : x_n = a)$ alors

$$\lim_{n\to +\infty}\frac{1}{n}=0$$

2. $\lim_{n\to+\infty} \frac{1}{n} = 0$ (Archimede)

Definition 6

Terminologie:

 (x_n) est bornee, majoree, minoree, rationnelle, ... etc si l'ensemble $\{x_n\}$ l'est.

La suite (x_n) est croissante si $x_n \leq x_{n+1} \forall n$ Idem decroissante Dans les deux cas, on dit que la suite (x_n) est monotone

Lemme 25

Toute suite convergente est bornee.

Preuve

Posons $\epsilon = 7$.

$$\exists N \in \mathbb{N} \forall n > N : |x_n - l| < 7$$

Soit $B_1 \ge |x_1|, |x_2|, \dots, |x_N|$

Posons $B = max(B_1, |l| + 7)$ Alors $|x_n| \le B \forall n$.

Attention la reciproque n'est pas vraie!!

Exemple

 $x_n = (-1)^n$ definit une suite bornee non convergente.

Preuve

Supposons $\lim_{n\to+\infty} (-1)^n = l$.

Posons $\epsilon = \frac{1}{10} \ alors \ \exists n_0 \forall n > n_0 : |(-1)^n - l| < \frac{1}{10}$

 $n > n_0$ pair $\Rightarrow |1 - l| < \frac{1}{10}$

 $n > n_0 \ impair \Rightarrow |-1 - l| < \frac{1}{10}$

 $ceci\ implique$

$$\Rightarrow |1 - (-1)| \le |1 - l| + |-1 - l| < \frac{1}{10} + \frac{1}{10} = \frac{1}{5}$$

Proposition 27

Supposons $\lim_{n\to+\infty} x_n = l$ et $\lim_{n\to+\infty} x'_n = l'$

Alors 1.: $\lim_{n\to+\infty} (x_n + x'_n) = l + l'$, et 2.: $\lim_{n\to+\infty} x_n \cdot x'_n = l \cdot l'$

Preuve

1:

Soit $\epsilon > 0$ Cherche n_0 tq $\forall n > n_0 : |x_n + x'_n - (l + l')| < \epsilon$.

Appliquons les deux hypothese a $\frac{\epsilon}{2}$: $\exists N \forall n > N : |x_n - l| < \frac{\epsilon}{2}$ et $\frac{\epsilon}{2}$: $\exists N' \forall n > N' : |x'_n - l| < \frac{\epsilon}{2}$ Posons $n_0 = \max(N, N')$ Si $n > n_0$, alors

$$|x_n + x'_n - (l + l')| \le |x_n - l| + |x'_n - l'| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

2:

Par le lemme, $\exists B \ tq. \ |x_n|, |x'_n| < B \forall n.$ Soit $\epsilon > 0$. Appliquons les hypotheses a $\frac{\epsilon}{2B}$.

$$\exists N \forall n > N : |x_n - l| < \frac{\epsilon}{2B}$$

 $Si \ n > n_0 := \max(N, N') :$

$$|x_n x_n' - ll'| \le |x_n x_n' - x_n l'| + |x_n l' - ll'|$$

$$= \underbrace{|x_n|}_{\leq B} \cdot \underbrace{|x_n' - l'|}_{\leq \frac{\epsilon}{2B}} + \underbrace{|l'|}_{\leq B} \cdot \underbrace{|x_n - l|}_{\leq \frac{\epsilon}{2B}} < \epsilon$$

Mon 28 Sep

Lemme 28

On a utilise : lemme Si $x_n \leq B \forall n$ et $\lim_{n \to +\infty} x_n = l$ alors $l \leq B$

Preuve

 $Par\ l'absurde:$

Si l > B, posons $\epsilon = l - B > 0$

 $\exists n_0 \forall n > n_0 : |x_n - l| < \epsilon$ en particulier $x_n > l - \epsilon = B \not$

Lecture 4: lundi

Remarque

- $\lim_{n\to+\infty} |x_n| = |\lim_{n\to+\infty} x_n|$, ce qui est sous-entendu ici est que la limite existe.
- $-(x_n)_{n=1}^{\infty}$ convergence et limite sont inchangees si on modifie un nombre fini de termes.

En particulier $(x_n)_{n=17}^{\infty}$, rien ne change.

- $-x_n \to l \ (n \to \infty), \ equivalent \ a \lim_{n \to +\infty} x_n = l$
- On dit que (x_n) converge vers $+\infty$ et on note $\lim_{n\to+\infty} x_n = +\infty$, si (x_n) diverge de la facon suivante :

$$\forall R \in \mathbb{R}, \exists n_0 \forall n > n_0 : x_n > R$$

La definition est la meme si x_n converge vers $-\infty$

Proposition 30 (Inversion d'une limite)

Supposons que (x_n) converge vers $l \neq 0$, alors $\lim_{n \to +\infty} \frac{1}{x_n} = \frac{1}{l}$

Corollaire 31

 $Si(x_n)$ converge vers l et

 $Si(y_n)$ converge vers $m \neq 0$ alors

$$\lim_{n \to +\infty} \frac{x_n}{y_n} = \frac{l}{m}$$

$$Car \ \frac{x_n}{y_n} = x_n \cdot \frac{1}{y_n}$$

Lemme 32

Sous les hypotheses de la proposition,

$$\exists n_0 \forall n \ge n_0 : x_n \ne 0$$

Preuve

Appliquons la convergence a $\epsilon = \frac{|l|}{2}$ (car $l \neq 0$)

$$|x_n - l| < \epsilon \Rightarrow x_n \neq 0$$

Preuve

Preuve de la proposition

Soit $\epsilon > 0$.

 $On\ veut\ estimer$

$$\left| \frac{1}{x_n} - \frac{1}{l} \right| = \underbrace{\frac{|l - x_n|}{|x_n - l|}}_{\geq \frac{|l|}{2}|l|} < ?\epsilon$$

pour n comme dans le lemme. On veut donc

$$|l - x_n| < \epsilon \frac{|l|^2}{2}$$

Donc $\exists n_1 \forall n \geq n_1$, on a bien $|l - x_n| < \epsilon$

Exemple

On peut a present calculer

$$\lim_{n \to +\infty} \frac{a_0 + a_1 n + a_2 n^2 + \ldots + a_d n^d}{b_0 + \ldots + b_f n^f}$$

$$a_d \neq 0, b_f \neq 0$$

$$Si \ d > f \ alors \ lim = \pm \infty$$

$$Si \ d < f \ alors \ lim = 0$$

$$Si\ d = f$$
, $alors\ lim = \frac{a_d}{b_f}$

Justification

La suite peut s'ecrire

$$\frac{a_d + a^{d-1} \frac{1}{n} + \ldots + a_0 \frac{1}{n^{d-1}}}{b_0 \frac{1}{n^d + \ldots + b_f n^{f-d}}}$$

$$Si\ f = d, \rightarrow \frac{a_d}{b_f}$$

$$Si \ f > d, \rightarrow 0$$

Si $f < d, \rightarrow \pm \infty$, selon signe de $\frac{a_d}{b_f}$

Proposition 34

Soit $a \in \mathbb{R}$ avec |a| < 1, alors

$$\lim_{n \to +\infty} a^n = 0$$

Proposition 35

 $Si(x_n)$ est monotone et bornee, alors elle converge.

Preuve

Soit (x_n) croissante. Affirmation, $x_n \to s := \sup\{x_n : n \in \mathbb{N}\}\$

Soit $\epsilon > 0$, $\exists n : x_n > s - \epsilon$ (def. de sup)

 $\forall n \ge n_0 : s - \epsilon < x_{n_0} \le x_n \le s \Rightarrow |x_n - s| < \epsilon$

Idem, si elle etait decroissante.

Preuve

Remarque: $(x_n) \to 0 \iff (|x_n| \to 0).$

$$\dots |x_n - 0| < \epsilon$$

Donc on va traiter le cas a > 0, alors $(a^n)_{n=1}^{\infty}$ est decroissante.

Bornee (par zero et 1) \Rightarrow elle admet une limite l.

 $Or \lim_{n \to +\infty} a^n = \lim_{\substack{n \to +\infty \ a \cdot \lim_{n \to +\infty} a^n}} a^{n+1} \quad Donc \ l = al. \ Si \ l \neq 0, \ 1 = a \ absurde, \ donc \ l$

nul.

Exemple

 $Def(x_n)en \ posant \ x_{n+1} = 2 + \frac{1}{x_n}$

Observons que $x_n \ge 2 > 0 \forall n$

 $Si(x_n)$ converge, alors

$$l = \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} (2 + \frac{1}{x_n}) = 2 + \frac{1}{l}$$

Donc

$$l^2 - 2l - 1 = 0 \Rightarrow 1 + \sqrt{1+1} = l$$

Or $l \ge 2 \Rightarrow l = 1 + \sqrt{2}$ si l existe.

A present, estimons $|x_n - l|$:

$$\left| x_n - 1 - \sqrt{2} \right| = \left| 2 + \frac{1}{x_{n-1}} = \left(2 + \frac{1}{l} \right) \right| = \frac{|l - x_{n-1}|}{x_{n-1}l} \le \frac{|x_{n-1} - l|}{4}$$

$$\le \dots \le \frac{|x_{n-2} - l|}{4^2} \le \frac{|2 - l|}{4^n} \to 0$$

 $car \frac{1}{4^n} \to 0$

Lemme 37 (Deux gendarmes)

Soit $(x_n), (y_n), (z_n)$ trois suites avec

$$\lim_{n \to +\infty} x_n = l = \lim_{n \to +\infty} z_n$$

 $si \ x_n \le y_n \le z_n \forall n, \ alors$

$$\lim_{n \to +\infty} y_n = l$$

Preuve

repose sur le fait que

$$|x_n - l|, |z_n - l| < \epsilon \Rightarrow l - \epsilon < x_n \le y_n \le z_n < l + \epsilon$$

montre $|y_n - l| < \epsilon$

4 Limsup et liminf

Definition 7 (Limsup et liminf)

Soit (x_n) une suite quelconque.

On definit la limite superieure par :

$$\limsup_{n \to \infty} x_n := \inf_n \sup \{x_k, k \ge n\}$$

Attention: Ici on convient que

$$\sup(A) = +\infty$$

 $si\ A\ non\ majore$

$$\inf(A) = -\infty$$

 $si\ A\ non\ minore$

On definit la limite superieure par :

$$\liminf_{n \to \infty} x_n := \sup_n \inf \{x_k, k \ge n\}$$

Notez : $z_n := \sup \{x_k : k \ge n\}$

Cela definit une suite decroissante et donc (z_n) converge vers son inf. Conclusion : $\limsup_{n\to\infty} x_n = \lim_{n\to+\infty} z + n = \lim_{n\to+\infty} \sup_{k\geq n} x_k$

Lecture 5: mercredi 30

Wed 30 Sep

Theorème 38

 (x_n) converge \iff $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$ Dans ce cas, la limite prend cette meme valeur.

Preuve

⇐ :

Soit $z_n = \sup \{x_p : p \ge n\},\$

$$y_n = \inf \left\{ x_p : p \ge n \right\}$$

Rappel: $(z_n) \to LS$ et $(y_n) \to LI$

Or, $y_n \le x_n \le z_n$. Donc par les 2 gendammes

$$\Rightarrow (x_n) \to LS = LI$$

 \Rightarrow :

 $Hypothese: \lim_{n\to+\infty} x_n = l.$

 $A \ voir : LS = LI = l.$

Montrons par exemple que

$$\lim_{n \to +\infty} z_n = l$$

(i.e. LS = l)

Soit $\epsilon > 0$.

$$\exists N \forall n \ge N : |x_n - l| < \frac{\epsilon}{2}$$

$$et \ \forall n \ge N : |z_n - LS| < \frac{\epsilon}{4}$$

Def. de $z_N \Rightarrow \exists p \geq N : |x_p| > z_N - \frac{\epsilon}{4}$

A present

$$|LS - l| \leq \underbrace{|LS - z_N|}_{<\frac{\epsilon}{4}} + \underbrace{|z_n - x_p|}_{<\frac{\epsilon}{4}} + \underbrace{|x_p - l|}_{<\frac{\epsilon}{2}}$$

avec $p \ge N$ et $N \ge N$ Donc $\forall \epsilon > 0$:

$$|LS - l| < \epsilon$$

 $Donc\ LS = l$

Theorème 39 (Premiere regle de d'Alembert)

Supposons $x_n \neq 0 \forall n$

Supposons que $\rho = \lim_{n \to +\infty} \left| \frac{x_{n+1}}{x_n} \right|$ existe Si $\rho < 1$, alors $\lim_{n \to +\infty} x_n = 0$

Si $\rho > 1$, alors (x_n) diverge.

Remarque

Si $\rho = 1$, on ne peut rien concluer

Exemple

$$-x_n = n$$
 diverge, mais $\lim_{n \to +\infty} \frac{n+1}{n} = 1$

$$-x_n = \frac{1}{n}$$
 converge mais $\lim_{n \to +\infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1$

Preuve

Supposons $\rho < 1$.

A voir: $x_n \to 0$.

Soit $\rho < r < 1$. Convergence pour $\epsilon = r - \rho$: $\left| \left| \frac{x_{n+1}}{x_n} \right| - \rho \right| < r - \rho$

$$\exists n_0 \forall n \ge n_0 : \left| \frac{x_{n+1}}{x_n} \right| < r$$

i.e. $|x_{n+1}| < r |x_n|$ de meme $|x_{n+2}| < r |x_{n+1}| < r^2 |x_n|$

Conclusion $\forall m \geq n_0 : |x_m| < r^{m-n_0} |x_{n_0}|$

Donc

$$\forall m \geq n_0 : |x_m| < r^m |x_{n_0}| r^{-n_0}$$

Onn sait que $\lim_{m\to+\infty} r^m = 0$ donc

$$0 \le |x_m| \le r^m c$$

avec c constante Cas $\rho > 1$.

On va montrer que $|x_n|$ est non bornee.

Soit $1 < r < \rho$.

$$\exists n_0 \forall n \geq n_0 : |x_{n+1}/x_n| > r$$

Donc

$$|x_{n+1}| > r |x_n|$$

 $comme\ avant$:

$$x_m > r^{m-n_0} \left| x_{n_0} \right| \qquad \qquad \Box$$

Remarque

Si r > 1, alors $\lim_{n \to +\infty} r^n = +\infty$ r^n est croissante donc il suffit de montrer que la suite est non bornee.

Si elle etait bornee, soit $l = \lim_{n \to +\infty} r^n \in \mathbb{R}$

Mais
$$l = \lim_{n \to +\infty} r^{n+1} = rl$$

Donc $l \neq 0 \Rightarrow 1 = r$ absurde.

Definition 8 (Sous-suite)

Soit $(x_n)_{n=1}^{\infty}$ une suite.

Une sous-suite de (x_n) est une suite de la forme $(x_{n_k})_{k=1}^{\infty}$, ou $(n_k)_{k=1}^{\infty}$ est une suite strictement croissante de N.

Exemple

 $Si(x_n)$ est une suite, considerer:

$$x_2, x_3, x_5, x_7, x_{11}, x_{13}, \dots$$

 $Ici, n_k = 2, 3, 5, 7, 11, \dots$

Proposition 44

 $Si \ x_n$ converge, alors toute sous-suite converge vers la meme limite.

Preuve

Soit $l = \lim_{n \to +\infty} x_n$. Soit $(x_{n_k})_{k=1}^{\infty}$ une sous-suite et $\epsilon > 0$.

$$A \ voir: \exists k_0 \forall k > k_0: |x_{n_k} - l| < \epsilon$$

$$Or \ \exists n_0 \forall n > n_0 : |x_n - l| < \epsilon.$$

Donc il suffit de choisir k_0 tq $n_{k_0} \ge n_0$.

(puisque la suite (n_k) est croissante.)

Theorème 45 (Bolzano-Weierstrass)

Toute suite bornee admet une sous-suite convergente

Preuve

On va construire une sous-suite qui converge vers $s := \limsup_{n \to \infty} x_n$ Ici, (x_n) est la suite en question et on pose

$$z_n = \sup \{x_p : p \ge n\}$$

Par recurrence, n_1 quelconque.

Supposons n_{k-1} construit et construisons n_k :

$$\exists N \forall n \ge N : |z_n - s| < \frac{1}{k}$$

Choisissons un $n \ge N$, $n_{k-1} + 1$

$$\exists p \ge n \ t.q. \ x_p > z_n - \frac{1}{k}$$

On definit $n_k = p$ ($n_k > n_{k-1}$)

$$Or, \underbrace{|x_{n_k} - s|}_{<\frac{1}{k}} \le \underbrace{|x_{n_k} - z_n|}_{<\frac{1}{k}} + \underbrace{|z_n - s|}_{<\frac{1}{k}}$$

$$One (x \rightarrow s(k \rightarrow \infty))$$

Definition 9 (Point d'accumulation)

x est un point d'accumulation de la suite x_n s'il existe une sous-suite qui $converge\ vers\ x.$

Exemple

$$x = \limsup_{n \to \infty} x_n$$

$$x = \liminf_{n \to \infty} x_n$$

4.1 Suites de Cauchy

Definition 10 (Suites de Cauchy)

La suite (x_n) est dire de Cauchy si

$$\forall \epsilon > 0 \exists N \forall n, n' \ge N : |x_n - x_{n'}| < \epsilon$$

Attention:

Il ne suffit pas de comparer x_n et x_{n+k} pour k fixe.

Exemple

$$x_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$

Cauchy
$$\iff \forall \epsilon > 0 \exists N \forall n \geq N \forall k \in \mathbb{N} : |x_n - x_{n+k}| < \epsilon$$

Lemme 48

 $Si(x_n)$ converge, elle est de Cauchy.

Preuve

Soit $\epsilon > 0$, soit l la limite.

Hypothese:

$$avec \ \frac{\epsilon}{2} : \exists N \forall n \ge N : |x_n - l| < \frac{\epsilon}{2}$$

$$Si \ n, n' \geq N$$

$$|x_n - x_{n'}| \le |x_n - l| + |x_{n'} - l| < \epsilon$$

Theorème 49 (Convergence des suites de Caucjy)

Toute suite de Cauchy converge

Preuve

Soit (x_n) de Cauchy.

Lemme 50

 (x_n) est bornee.

Preuve

Soit $\epsilon = 10$

$$\forall N \forall n, n' \ge N : |x_n - x_{n'}| < 10$$

 $Donc |(x_n)|$ est bornee par

$$\max(|x_N| + 10, |x_1|, |x_2|, \dots, |x_{N-1}|)$$

 $Appliquer\ Bolzano\text{-}Weierstrass$

$$\exists sous\text{-}suite (x_{n_k})$$

qui converge, soit l sa limite. A voir (x_n) converge vers l. soit $\epsilon > 0 \exists k_0 \forall k \geq k_0 |x_{n_k} - l| < \frac{\epsilon}{2}$

$$\exists N \forall n, n' \ge N : |x_n - x_{n'}| < \frac{\epsilon}{2}$$

 $Si \ n \geq N, n_{k_0} \ alors$

$$|x_n - l| \le |x_n - x_{n_k}| + |x_{n_k} - l| < \epsilon$$

Mon 05 Oct

Lecture 6: lundi

Remarque

Ecriture decimale: 3.1415... ou encore 0.333... veut dire

$$3 + \frac{1}{10} + \frac{4}{100} + \frac{1}{1000} + \frac{5}{10000} + \dots$$

une somme infinie de fractions. La difference entre le n ieme terme et le n^\prime ieme terme :

$$\leq 10^{-n} \to 0 \Rightarrow Cauchy$$

Cette limite est une "somme infinie".

5 Series

But : definir les "sommes infinies" .

$$\rightarrow \left\{ \begin{array}{l} \text{Existe?} \\ \text{Valeur?} \end{array} \right.$$

Exemple

$$e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots$$

ou encore

$$\exp(x) = \frac{1}{0!}x^0 + \frac{1}{1!}x^1 + \frac{1}{2!}x^2 + \dots$$

ou

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

Definition 11 (Serie)

Le symbole $\sum_{n=0}^{\infty} x_n$ représente

$$x_0 + x_1 + x_2 + \dots$$
 et est défini par

$$\sum_{n=0}^{\infty} x_n = \lim_{n \to +\infty} \sum_{k=0}^{\infty} x_k$$

On appelle

$$\sum_{n=0}^{\infty} x_n$$

une série et on dit qu'elle converge/diverge lorsque la suite $s_n := x_0 + \ldots + x_n$ le fait.

Corollaire 53

 $Si \sum_{n=0}^{\infty} x_n \ et \sum_{n=0}^{\infty} y_n \ existent, \ alors$

$$\sum_{n=0}^{\infty} (x_n + y_n) = \sum_{n=0}^{\infty} x_n + \sum_{n=0}^{\infty} y_n$$

Preuve

$$\sum_{n=0}^{\infty} x_n = \lim_{n \to +\infty} s_n, s_n = \sum_{k=0}^{n} x_k$$

$$\sum_{n=0}^{\infty} y_n = \lim_{n \to +\infty} t_n, t_n = \sum_{k=0}^{n} y_k$$

Alors

$$\sum_{n=0}^{\infty} (x_n + y_n) = \lim_{n \to +\infty} u_n, \ où$$

$$u_n = (x_0 + y_0) + \ldots + (x_n + y_n) = s_n + t_n$$

 $Donc\ la\ limite$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (s_n + t_n) = \sum_{n=0}^{\infty} x_n + \sum_{n=0}^{\infty} y_n$$

Corollaire 54

Pour $a \in \mathbb{R}$, $\sum_{n=0}^{\infty} ax_n = a \sum_{n=0}^{\infty} x_n$, si

$$\sum_{n=0}^{\infty} x_n$$

existe.

 $Sans\ preuve.$

Corollaire 55

$$\sum_{n=n_0}^{ify} x_n \text{ existe si } \sum_{n=0}^{\infty} x_n$$

existe et vaut

$$\sum_{n=0}^{\infty} x_n - (x_0 + x_1 + \ldots + x_{n_0-1})$$

n

Corollaire 56 (Critere de Cauchy pour les séries)

$$\sum_{n=0}^{\infty} x_n converge \iff \forall \epsilon > 0 \exists N \forall n > N : \left| \sum_{p=N}^{n} x_p \right| < \epsilon$$

(Dans ce cas,
$$\left|\sum_{n=N}^{\infty} x_n\right| \le \epsilon$$
)

Preuve

Appliquer Cauchy à la suite s_n :

$$\exists n_0 \forall n, n' > n_0 : |s_n - s_{n'}| < \epsilon$$

Alors

$$\left| \sum_{p=n'+1}^{n} x_p \right| < \epsilon$$

Exemple

Ecriture decimale,

Proposition 58

Si

$$\sum_{n=0}^{\infty} x_n$$

converge, alors

$$\lim_{n \to +\infty} x_n = 0$$

Preuve

Appliquer Cauchy à $\left|\underbrace{s_n - s_{n-1}}_{=x_n}\right|$

Attention, la réciproque est FAUSSE.

 ${\it 2\ Exemples}$

Proposition 59 (Serie Geometrique)

Soit $r \in \mathbb{R}$ avec |r| < 1, alors

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

Preuve

Soit

$$s_n = r^0 + r^1 + \ldots + r^n = \frac{1 - r^{n+1}}{1 - r^n}$$

Or

$$\lim_{n \to +\infty} r^{n+1} = 0$$

Donc $s_n \to \frac{1}{1-r}$.

$$\frac{1}{2} + \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{1}{2}^n = \frac{1}{1 - \frac{1}{2}} - 1 = 1$$

Proposition 60 (Série Harmonique)

$$\sum_{n=1}^{\infty} \frac{1}{n} \ diverge \ (\ vers \ + \infty)$$

Preuve

Consid'erons

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} + \underbrace{\frac{1}{2^n + 1} + \dots + \frac{1}{2^{n+1}}}_{2^{n+1} - 2^n = 2^n \text{ termes.}} + \dots$$

Tous ces termes sont $\geq \frac{1}{2^{n+1}}$

 $Cette\ somme\ est$:

$$s_{2^{n+1}} - s_{2^n} \ge 2^n \frac{1}{2^{n+1}} = \frac{1}{2}$$

Contradit Cauchy pour $\epsilon = \frac{1}{2}$.

Astuce utile:

$$\sum_{n=1}^{\infty} \frac{1}{n-1} - \frac{1}{n} = 1$$

Preuve

$$s_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n} = 1 - \frac{1}{n}$$

Donc ca converge.

C'est une série téléscopique

Proposition 61 (Critère de Comparaison)

Supposons $0 \le x_n \le y_n$.

Si

$$\sum_{n=0}^{\infty} y_n \ converge, \ alors \ \sum_{n=0}^{\infty} x_n \ aussi \ .$$

Preuve

$$s_n = x_0 + \ldots + x_n$$

est croissante. Donc converge \iff (s_n) bornée.

Mais $y_0 + \ldots + y_n$ converge \Rightarrow bornée et $s_n \leq y_0 + \ldots + y_n \Rightarrow (s_n)$ bornée \square

Remarque

De plus,

$$\sum_{n=0}^{\infty} x_n \le \sum_{n=0}^{\infty} y_n$$

Si, par contre,

$$\sum_{n=0}^{\infty} x_n \ diverge \ \Rightarrow \sum_{n=0}^{\infty} y_n \ diverge$$

Corollaire 63

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converge.

Preuve

$$\forall n \ge 2 : \frac{1}{n^2} \le \frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$$

Or

$$\sum_{n=2}^{\infty} \frac{1}{n-1} - \frac{1}{n} \ converge.$$

Donc, par comparaison, $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converge

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} \ converge \ .$$

Lecture 7: mercredi

Wed 07 Oct

Definition 12 (Séries Alternées)

 (x_n) est alternée si $x_n \cdot x_{n+1} \leq 0 \forall n$

Theorème 64

Soit (x_n) alternée, $|x_n|$ décroissante, et

$$\lim_{n \to +\infty} x_n = 0$$

Alors

$$\sum_{n=0}^{\infty} x_n \ converge.$$

Exemple

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

converge. (s'erie harmonique altern\'ee) 5

Preuve

On utilise cauchy.

Soit $n, m \in \mathbb{N}$.

$$\underbrace{x_n + x_{n+1}}_{\geq 0} + x_{n+2} + \dots + x_{n+m-1} + x_{n+m}$$

 $Cas x_n \geq 0$:

 $Cas\ où\ n\ pair$

$$0 \le \sum_{p=n}^{n_m} x_p \le x_n$$

 $Si\ m\ impair:$

idem

Que n soit pair ou impair

$$\left| \sum_{p=n}^{n+m} x_p \right| \le |x_n|$$

Or, soit $\epsilon > 0$

$$\lim_{n \to +\infty} x_n = 0 \Rightarrow$$

 $\exists N \forall n > N | |x_n| \le \epsilon.$

 $Donc \; \forall n > N, m |$

$$|x_n + \ldots + x_{n+m}| < \epsilon$$

^{5.} En fait la série converge vers $-\log 2$

5.0.1 Un calcul naif (avec la série harmonique alternée)

Soit $S = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, existe par le théorème.

Note : S < 0.

$$s_n = \underbrace{-1 + \frac{1}{2}}_{=-\frac{1}{2}} \underbrace{-\frac{1}{3} + \frac{1}{4}}_{<0} - \dots + \frac{(-1)^n}{n}$$

 $s_n < -\frac{1}{n}, \forall n \text{ pair } \Rightarrow S \leq -\frac{1}{2}$

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} + \dots$$

à chaque terme x_n , on associe x_{2n}

$$= -\frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \frac{1}{8} - \frac{1}{10} + \dots$$
$$= \frac{1}{2}(-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots) = \frac{1}{2}S$$

Donc $S = \frac{1}{2}S \Rightarrow S = 0$ Faux!

Conclusion:

On ne peut pas permuter (en général) les termes d'une série convergente (somme infinie)

Definition 13

On dit que la somme de

$$\sum_{n=0}^{\infty} x_n$$

 $converge\ absolument\ si$

$$\sum_{n=0}^{\infty} |x_n|$$

converge.

Note: la valeur

$$\sum_{n=0}^{\infty} |x_n|$$

ne nous intéresse pas

Remarque

Si $x_n \ge 0 \forall n$, aucune différence entre "convergence" et "convergence absolue".

Exemple

— La série harmonique alternée converge, mais pas absolument.

Lemme 68

Convergence absolue implique la convergence.

 $\forall n: 0 \le x_n + |x_n| \le 2|x_n|$

 $Donc\ convergence\ absolue \Rightarrow$

$$\sum (x_n + |x_n|)$$

converge.

 $Or - \sum_{n=0}^{\infty} |x_n| \ converge \ .$

Somme des deux sommes ci-dessus, implique que

$$\sum_{n=0}^{\infty} x_n$$

Theorème 69

Si

$$\sum_{n=0}^{\infty} x_n$$

converge absolument, alors toute permutation converge vers la même somme.

Exemple

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Clarification:

Soit σ une permutation de \mathbb{N} , i.e. bijection.

La nouvelle série sera

$$\sum_{n=0}^{\infty} y_n \ pour \ y_n = x_{\sigma(n)}$$

Notons $s_n = x_0 + \ldots + x_n$ et

$$t_n = y_0 + \ldots + y_n = x_{\sigma(0)} + \ldots + x_{\sigma(n)}$$

Le théorème dit : si $\sum_{n=0}^{\infty} |x_n|$ existe, alors $\lim s_n = \lim t_n$.

Preuve

1er cas "facile".

Supposons $x_n \ge 0 \forall n$.

Alors
$$\sum_{n=0}^{\infty} x_n = \sup \{s_n | n \in \mathbb{N}\}$$

On va montrer que $\sup_{n \to \infty} s_n \ge \sup_{n \to \infty} t_n$ et que $\sup_n s_n \le \sup_n t_n$

$$\underbrace{\frac{n}{=:s}}$$
 $\underbrace{\frac{n}{=:t}}$

Pour $s \geq t$:

Soit $\epsilon > 0$. Or , par déf, $\exists nt_n > t - \epsilon$

ie

$$y_0 + \ldots + y_n > t - \epsilon$$

ie

$$x_{\sigma(0)} + \ldots + x_{\sigma(n)} > t - \epsilon$$

Soit $m = \max_{i=0,...,n} \sigma(i)$, alors

$$s_m \ge t - \epsilon$$

donc

$$s = \sup s_n > t - \epsilon$$

 $vrai \ \forall \epsilon > 0 \Rightarrow s \geq t$

En considérant σ^{-1} , on obtien de même $t \ge s \Rightarrow s = t$, donc le théorème vrai $SI \ x_n \ge 0$.

 $2\grave{e}me\ cas: x_n \leq 0 \forall n,\ idem$

Cas général :

Posons $x_n = x_n' + x_n''$, ou $x_n' = \max(x_n, 0)$ et $x_n'' = \min(x_n, 0)$, alors

$$x_{\sigma(n)} = x'_{\sigma(n)} + x''_{\sigma(n)}$$

On conclut en appliquant le cas (1) a x'_n et (2) ou x''_n

Theorème 71

 $Supposons \ que$

$$\sum_{n=0}^{\infty} x_n$$

converge, mais pas absolument.

 $\forall l \in \mathbb{R} \exists permutation \sigma t.q.$

$$\sum_{n=0}^{\infty} x_{\sigma(n)} = l.$$

Lecture 8: Series fin

Mon 12 Oct

Theorème 72 (Critere de d'Alembert 2)

Supposons que $\lim_{n\to+\infty} \left|\frac{x_{n+1}}{x_n}\right| = \rho$ existe.

 $Si \ \rho < 1 \ alors$

$$\sum_{n=1}^{\infty} x_n$$

converge absolument.

 $Si \rho > 1$, alors elle diverge.

Preuve

Si $\rho > 1$, x_n diverge donc ne converge pas vers 0, donc $\sum x_n$ diverge.

Supposons $\rho < 1$. $\exists n_0 \forall n \geq n_0 : \frac{x_{n+1}}{x_n} < \frac{\rho+1}{2}$.

 $On\ d\'eduit\ que$

$$|x_n| \le \left(\frac{\rho+1}{2}\right)^{n-n_0} |x_{n_0}|$$

Donc

$$\sum_{n=n_0}^{\infty} |x_n|$$

peut etre comparee à

$$|x_{n_0}| \sum_{n=n_0}^{\infty} \left(\frac{\rho+1}{2}\right)^{n-n_0}$$

Or la série ci-dessus est une série géometrique avec $\frac{\rho+1}{2} < 1$, donc elle converge. Donc

$$\sum_{n=n_0}^{\infty} |x_n|$$

converge car la série géometrique converge, il suit que

$$\sum_{n=0}^{\infty} x_n$$

converge absolument.

Exemple

Soit $x \in \mathbb{R}$. Alors $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converge absolument.

Preuve

$$x_n = \frac{x^n}{n!}$$
, alors

$$\left|\frac{x_{n+1}}{x_n}\right| = \left|\frac{x}{n+1}\right| \to 0$$

Exemple

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

$$x_n = \frac{(-1)^{2n+1}x^{2n+1}}{(2n+1)!}$$

Alors

$$\left|\frac{x_{n+1}}{x_n}\right| = \left|\frac{x^2}{(2n+3)(2n+2)}\right| \to 0$$

Remarque

Si $\rho = 1$ on ne peut rien conclure.

Exemple

$$\sum \frac{1}{n} \ diverge, \ or \ \frac{x_{n+1}}{x_n} = \frac{n}{n+1} \to 1$$

 $Idem\ pour$

$$\sum n$$

Exemple

$$\sum \frac{1}{n^2}$$

converge, or

$$\frac{x_{n+1}}{x_n} = \frac{n^2}{(n+1)^2}$$

Proposition 78

On admet que

$$\forall x \ge 0 \exists ! x^{\frac{1}{n}} : (x^{\frac{1}{n}})^n = x$$

Alors

$$\lim_{n \to +\infty} n^{\frac{1}{n}} = 1$$

Preuve

Posons $\epsilon_n = n^{\frac{1}{n}} - 1$, (a voir : $\epsilon_n \to 0$).

$$n = ((1 + \epsilon_n)^{\frac{1}{n}})^n = 1 + n\epsilon_n + \frac{n(n-1)}{2}\epsilon^2 \underbrace{\dots}_{\geq 0}$$

$$\geq 1 + \frac{n(n-1)}{2}\epsilon_n^2$$

$$\Rightarrow \epsilon_n \leq \left(\frac{2}{n}\right)^{\frac{1}{2}}$$

Theorème 79 (Critere de la racine)

Soit $L = \limsup_{n \to \infty} (|x_n|)^{\frac{1}{n}}$.

Si L < 1, alors $\sum x_n$ converge absolument

Si L > 1, alors $\sum x_n$ diverge.

Exemple

Soit

$$x_n = \begin{cases} \frac{1}{n!} & \text{si } n \text{ pair} \\ 0 & \text{si } n \text{ impair} \end{cases}$$

Exemple

1.

$$\sum \frac{x_n}{n!}, alors$$

$$|x_n|^{\frac{1}{n}} = \frac{1}{n!}^{\frac{1}{n}} \ donc \ |x_n| \to 0 (\ exo \)$$

2.

$$\sum n \ diverge \ , n^{\frac{1}{n}} \to 1$$

3.

$$\sum \frac{1}{n^2}$$

converge, or

$$\frac{1}{n^2}^{\frac{1}{n}} = \frac{1}{n^{\frac{2}{n}}} \to 1$$

Preuve

Si L > 1,

 $alors\ \lim_{n\to +\infty}\sup\Big\{|x_k|^{\frac{1}{k}}:k\geq n\Big\}.\ Donc\ \exists n_0\forall n>n_0:z_n>1,\ i.e.$

$$\exists k \ge n : |x_k| > 1^k = 1$$

 x_n ne converge pas vers zero \implies la série ne converge pas.

Si L < 1,

 $\exists n_0 \forall n > n_0 : z_n; \frac{1+L}{2}, \text{ or }$

$$|x_n| \le z_n^n < \left(\frac{1+L}{2}\right)^n$$

On conclut par converge avec la série géometrique.

Exemple

Posons $x_0 = 0$, et $x_{n+1} = \frac{1 + nx_n}{2^{n+1}}$

Notons (exo par récurrence)

$$\forall n \leq 2^n$$

Donc

$$0 \le x_n \le 1$$

On a

$$x_n^{\frac{1}{n}} = \frac{(n+1)^{\frac{1}{n}}}{2 \cdot 2^{\frac{1}{n}}} \to \frac{1}{2}$$

 $Le\ crit\`ere\ s'applique: L<1.$

$$\lim_{n \to +\infty} \sqrt[n]{\frac{1}{n!}} = 0$$

Preuve

A voir: $(\sqrt[n]{n!})^2 \to +\infty$.

Or
$$n! = 1 \cdot 2 \cdot 3 \cdot \dots n \ge \frac{n}{2} (\frac{n}{2} + 1) \cdot \dots n$$

 $Si\ n\ pair.$

$$\frac{n}{2}(\frac{n}{2}+1)\cdot\dots n$$

$$\geq (\frac{n}{2})^{\frac{n}{2}}$$

Wed 14 Oct

$$Donc \sqrt[n]{(n!)^2} \ge \sqrt[n]{(\frac{n}{2}^n)} = \frac{n}{2} \to \infty$$

6 Fonctions

En général, fonctions = applications = map.

En analyse I, fonction = fonction de \mathbb{R} vers \mathbb{R} ou sur une partie $A \subseteq \mathbb{R}$. En analyse II, on ira de $\mathbb{R}^n \to \mathbb{R}^n$.

Lecture 9: mercredi

Definition 14

On dit qu'une fonction f est définie au voisinage de $x \in \mathbb{R}$, si $\exists \epsilon > 0$: f définie sur

$$|x - \epsilon, x[$$
 et $]x, x + \epsilon[$

Exemple

 $f(x_0) = \frac{1}{x_0}$ défini au voisinage de 0.

Definition 15

Soit f définie au voisinage de x_0 .

$$\lim_{x \to x_0} f(x) = l$$

signifie

$$\forall \epsilon > 0 \exists \delta > 0 \forall x$$

$$0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \epsilon$$

Theorème 85

Soit f définie au voisinage de x_0

$$\lim_{x \to x_0} f(x) = l \iff \forall \ suite \ (a_n)_{n=1}^{\infty}$$

qui converge vers x_0 et $a_n \neq x_0, \forall n$, on a

$$\lim_{n \to \infty} f(a_n) = 0$$

Remarque

A priori, f n'est pas définie en a_n , mais $\exists n_0, \forall n > n_0 : a_n \in domaine de définition car <math>f$ définie au voisinage de x_0

Preuve

 \Rightarrow

Soit $a_n \neq x_0$, une suite convergent vers x_0 . A voir : Soit $\epsilon > 0$, cherche $n_0 \forall n > n_0 : |f(a_n) - l| < \epsilon$.

Par hypothese, $\exists \delta > 0 \forall x$

$$0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \epsilon \quad (1)$$

Appliquer $\lim a_n = x_0 \ \dot{a} \ \delta$:

$$\exists n_0, \forall n > n_0 : |a_n - x_0| < \delta$$

Appliquer à présent 1 à $x = a_n$

(

Soit $\epsilon > 0$, on cherche $\delta > 0$

Supposons par l'absurde qu'aucun δ satisfait la définition.

En particulier, $\delta = \frac{1}{n}$

$$\exists x_n : 0 < |x_n - x_0| < \frac{1}{n} \ et \ |f(x_n) - l| \ge \epsilon$$

Or

$$x_n \neq x_0$$
 et $(x_n) \rightarrow x_0$

Par hypothèse

$$\lim_{n \to \infty} f(x_n) = l$$

En particulier, pour ϵ ,

$$\exists n_0 \forall n > n_0 : |f(x_n) - l| < \epsilon$$

Corollaire 87

 $Si \lim_{x \to x_0} l \ et \lim_{x \to x_0} f'(x) = l', \ alors$

$$\lim_{x \to x_0} f(x) + f'(x) = l + l'$$

 $Idem\ pour\ produit.$

Corollaire 88

 $Si \ f(x) \ge a$, $\forall x \ au \ voisinage \ de \ x_0 \ et$

$$\lim_{x \to x_0} f(x) = l, \ alors \ l \ge a$$

Corollaire 89

Si

$$\lim_{x \to x_0} f(x) = l$$

Alors

$$\lim_{x \to x_0} |f(x)| = |l|$$

Corollaire 90

Pour

$$\lim \frac{g(x)}{f(x)}$$

il suffit de traiter $\lim \frac{1}{f(x)}$.

Lemme 91

 $Si \lim_{x \to x_0} f(x) = l \neq 0, \ alors$

$$\exists \epsilon > 0 \forall x \in]x_0 - \epsilon, x_0[\cup]x_0, x_0 + \epsilon[$$

tel que $f(x) \neq 0$

Preuve

$$|f(x) - l| < \frac{|l|}{2}$$

dans un voisingae de x_0 , alors $f(x) \neq 0$

Corollaire 92

 $Si \lim f(x) = l = \lim g(x) \ et$

$$f(x) \leq h(x) \leq g(x) \forall x \ au \ voisinage \ de \ x_0$$

Alors

$$\lim_{x \to x_0} h(x) = l$$

Corollaire 93 (Cauchy)

Soit f définie au voisinage de x_0 , alors

$$\lim_{x \to x_0} f(x) \text{ existe } \iff \forall \epsilon > 0 \exists \delta > 0 \forall x_1, x_2 \text{ avec}$$

$$0 < |x_i - x_0| < \delta \quad (i = 1, 2)$$

on a

$$|f(x_i) - f(x_2)| < \epsilon$$

Lemme 94

 $Si \lim f(a_n)$ existe \forall suite $(a_n \neq x_0)$ convergeant vers x_0 , alors

$$\lim_{x \to x_0} f(x)$$

existe

Preuve

Il suffit de montrer que toutes ces limites $f(a_n)$ ont la même valeur.

En effet, on peut alors appliquer le théorème et $\lim_{x\to x_0} f(x) = l$

Sinon, $\lim_{n\to+\infty} f(a_n) = l \neq l' = \lim_{n\to+\infty} f(a_n')$ pour deux telles suites a_n et a_n' . A présent

$$b_n = \begin{cases} a_n & \text{si a pair} \\ a'_n & \text{si a impair} \end{cases}$$

or $f(b_n)$ converge absurde car elle admet deux sous-suites avec limites distinctes l, l'.

Preuve

Preuve du corollaire ci-dessus.

Grace au lemme, il suffit de montrerr que \forall suite $a_n \to x_0$, la suite $f(a_n)$ est de Cauchy.

Par hypothèse, $\exists \delta > 0 \forall x_1, x_2 : 0 < |x_i - x_0| < \delta \text{ implique}$

$$|f(x_1) - f(x_2)| < \epsilon$$

Or, $\exists n_0 \forall n > n_0 : |a_n - x_0| < \delta$.

Applique $a_n = x_1$ et $a_m = x_2$ donne que $f(a_n)$ est de cauchy.

Corollaire 95

 $Si \lim_{x \to x_0} f(x) = l \ et \lim_{x \to x_0} f(x) = l', \ alors \ l = l'.$

Remarque

On a implicitement utilisé les concept de $+,\cdot,\leq sur$ les fonctions.

Ce n'est pourtant pas un corps.

 $Par\ exemple,\ \forall x,y\in corps$

$$xy = 0 \Rightarrow x = 0$$
 ou $y = 0$

Les fonctions ont une opération supplémentaire

$$f \circ g$$

est définie par

$$f \circ g(x) = f(g(x))$$

Soit $g:A\to B$ des parties de \mathbb{R} , et $f:B\to\mathbb{R}$ avec g défini au voisinage de x_0 et f au voisinage de g_0 .

Proposition 97

Supposons $g(x) \neq g_0 \forall x \text{ au voisinage de } x_0$

 $Si \lim_{x \to x_0} g(x) = y_0 \text{ et } \lim_{y \to y_0} f(y) = l, \text{ alors}$

$$\lim_{x\to x_0}f\circ g(x)=l$$

Preuve

Soit $\epsilon > 0$, à voir $\exists \delta > 0 \forall x$:

$$0 < |x - x_0| < \delta \Rightarrow |f(g(x)) - l| < \epsilon$$

2eme hup nous dit

$$\exists \eta > 0 \forall y : |y - y_0| < \eta \Rightarrow |f(y) - l| < \epsilon$$

Idee : appliquer la premiere hypothèse à η et poser y=g(x). Ca marche, tant que $y\neq y_0$.

Exemple

Exemple délicat :

Soit

$$g(x) = \begin{cases} x \sin\frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Clairement $\lim_{x\to 0} = 0$.

On pose que

$$f(x) = \begin{cases} 0 \text{ si } x \neq 0 \\ 1 \text{ si } x = 0 \end{cases}$$

On voit que $\lim_{y\to 0} f(y) = 0$.

$$\lim_{x\to 0} f(g(x))$$

n'existe pas.

Lecture 10: fonctions

Mon 19 Oct

6.1 Continuité

Definition 16

Soit f définie au voisinage de x_0 . Alors f est dite continue en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Donc f continue (en x_0) si on peut "sortir f de la limite" (en x_0)

Proposition 99

f continue en $x_0 \iff$ toute suite a_n tendant vers x_0 , on a

$$\lim_{n \to +\infty} f(a_n) = f(x_0)$$

Preuve

Théorème de traduction pour $l = f(x_0)$

Remarque

Pour parler de continuité en x_0 , il faut que f soit définie en x_0 et au voisinage de x_0

Corollaire 101

Si f et g sont continues en x_0 , alors f + g et $f \cdot g$ aussi.

Preuve

Idem que avant

$Corollaire \ 102$

Si de plus $g(x_0) \neq 0$, alors $\frac{f}{g}$ est cont. en x_0 .

Remarque

On a montré que alors dans ce cas il existe un voisinage de x_0 où $g(x) \neq 0$

Proposition 104

Soit g continue en x_0 et f continue en $g(x_0)$, alors $f \circ g$ est continue en

 x_0 .

Preuve

Ecrivons la définition de g continue en x_0 :

$$\forall \epsilon > 0 \exists \delta > 0 \forall x: \quad |x - x_0| < \delta \Rightarrow |g(x) - g(x_0)| < \epsilon$$

Soit $\epsilon > 0$. Cherche $\eta > 0$ tq $\forall x$:

$$|x - x_0| < \eta \Rightarrow |f(\underbrace{g(x)}_{=y}) - f(g(x_0))| < \epsilon$$

Continuité de f en $g(x_0)$ appliquée à ϵ donne $\theta > 0$ tq $\forall y$

$$|y - g(x_0)| \Rightarrow |f(y) - f(g(x_0))| < \epsilon$$

continuité de g en x_0 appliquée à θ

$$\exists \eta > 0 \forall x \quad |x - x_0| < \eta \Rightarrow |g(x) - g(x_0)| < \theta \qquad \Box$$

Pour y = g(x) on a montré ce qu'il fallait.

Definition 17 (Terminologie Supplémentaire)

f est définie au voisinage à gauche de x_0 si $\exists \epsilon > 0$ tq f est définie sur $]x_0 - \epsilon, x_0[$. De même à droite : $]x_0, x_0 + \epsilon[$

Definition 18

Soit f définie au voisinage à droite de x_0

$$\lim_{x \to x_0 >} = l$$

signifie

$$\forall \epsilon > 0 \exists \delta > 0 \forall x > x_0 : |x - x_0| < \delta \Rightarrow |f(x) - l| < \epsilon$$

La limite à gauche est définie de la même manière.

Definition 19

f est continue à droite en x_0 si

$$\lim_{x \to x_0 > f(x) = f(x_0)$$

Idem à gauche.

Exercice 105

 $\lim_{x\to x_0} f(x) \ existe \ \Longleftrightarrow \ les \ limites \ \grave{a} \ gauche \ et \ \grave{a} \ droite \ existent \ et \ coincident.$

Definition 20

f est continue sur [a,b] si elle est continue sur]a,b[et continue à droite en a, à gauche en b.

Definition 21 (Notation)

$$\lim_{x \to x_0} f(x) = +\infty$$

si

$$\forall R \exists \delta > 0 \forall x : 0 < |x - x_0| < \delta \Rightarrow f(x) > R$$

 $Idem\ pour\ -\infty$

Definition 22 (Notation)

$$\lim_{x \to +\infty} f(x) = l$$

signifie

$$\forall \epsilon > 0 \exists n_0 \forall x > n_0 : |f(x) - l| < \epsilon$$

On note C([a,b]) ou parfois $C^0([a,b])$ l'ensemble des fonctions continues sur [a,b]

Theorème 106

Toute fonction continue sur [a,b] est bornée.

Preuve

Supposons par l'absurde f non-bornée (disons sans perte de généralité non majorée).

 $Donc \ \forall n \in \mathbb{N} \exists x_n : f(x_n) > n.$

On a une suite $(x_n)_{n=1}^{\infty}$ de [a,b]

Par Bolzano-Weierstrass implique qu'on a une sous-suite x_{n_k} qui converge vers $x \in [a,b]$

$$f \ continue \ en \ x \iff f(x) = \lim_{k \to +\infty} f(x_{n_k})$$

Theorème 107

Toute function $f:[a,b] \to \mathbb{R}$ continue atteint son sup donc max.

Preuve

On sait déjà que f est bornée, soit donc $s := \sup \{f(x) | x \in [a,b]\}$ Si par l'absurde $f(x) \neq s \forall x \in [a,b]$ posons

$$g(x) = \frac{1}{f(x) - s}$$

g est continue et donc g est bornée, disons par B.

Absurde car implique $|f(x) - s| > \frac{1}{B}$.

Proposition 108

 $Soient\ f, g\ deux\ fonctions\ continues\ sur\ un\ intervalle\ I.$

 $Soit\ A\ une\ partie\ dense.\ Si$

$$f|_A = g|_A$$

 $Alors \ f = g \ sur \ tout \ I$

Preuve

Soit $x \in I$. Par densité,

$$\exists (a_n)$$

suite de A avec $\lim_{n\to+\infty} a_n = x$.

Continuité
$$f(x) = \lim_{n \to +\infty} f(a_n) = \lim_{n \to +\infty} g(a_n) = g(x)$$