

## 1. BINOMIAL THEOREM



## SYNOPSIS

#### Binomial theorem for positive integral index and some key factors related to Binomial theorem

1. If n is a positive integer then

$$(x+a)^n = \sum_{r=0}^n {^nC_r} x^{n-r} a^r = {^nC_0} x^n + {^nC_1} x^{n-1} a + {^nC_2} x^{n-2} a^2 + \dots + {^nC_n} a^n$$

- i) The number of terms in the expansion  $(x+a)^n$  is n+1
- ii) The sum of the powers of x and a in any term in the expansion of  $(x+a)^n$  is n
- iii) The general term in the expansion of  $(x+a)^n$  is  $T_{r+1} = {}^nC_r x^{n-r} a^r$
- iv)  ${}^{n}C_{0}$ ,  ${}^{n}C_{1}$ ,  ${}^{n}C_{2}$ , ...... ${}^{n}C_{n}$  are binomial coefficients in the expansion of  $(x+a)^{n}$
- v) The binomial coefficients which are equidistant from the begining and from the ending are equal.

i.e. 
$${}^{n}C_{0} = {}^{n}C_{n}$$
,  ${}^{n}C_{1} = {}^{n}C_{n-1}$ ;  ${}^{n}C_{2} = {}^{n}C_{n-2}$ .....etc.

- vi) In the expansion of  $(x+a)^n$ ,  $r^{th}$  term from the end is equal to  $(n-r+2)^{th}$  term from the beginning.
- $2. \quad (x-a)^n = \sum_{r=0}^n (-1)^{r} \, {^nC_r} \, x^{n-r} a^r = \, {^nC_0} \, x^n {^nC_1} \, x^{n-1} a + \, {^nC_2} x^{n-2} \, a^2 \dots + (-1)^n \, {^nC_n} \, a^n$

The general term in this expansion is  $T_{r+1} = (-1)^r {^n}C_r x^{n-r} a^r$ 

*Note*: The expansions of  $(x+a)^n$  and  $(a+x)^n$  are equal but their respective terms are not equal.

3.  $(1+x)^n = \sum_{r=0}^n {}^nC_r x^r = {}^nC_0 + {}^nC_1 x + {}^nC_2 x^2 + \dots + {}^nC_n \cdot x^n$ 

The general term in the expansion  $T_{r+1} = {}^{n}C_{r} x^{r}$ 

4.  $(1-x)^n = \sum_{r=0}^n (-1)^r {^n} C_r x^r = {^n} C_0 - {^n} C_1 \cdot x + {^n} C_2 x^2 - \dots + (-1)^n {^n} C_n x^n$ 

The general term in the expansion  $T_{r+1} = (-1)^r {}^nC_r x^r$ 

### Number of terms

- 5. a) The number of non-zero terms in the expansion of  $\{(x+a)^n + (x-a)^n\}$  is
  - i)  $\frac{n+1}{2}$ , if *n* is an odd integer.
- ii)  $\frac{n}{2} + 1$ , if *n* is even integer.
- b) The number of non-zero terms in the expansion of  $\{(x+a)^n (x-a)^n\}$  is
  - i)  $\frac{n+1}{2}$ , if *n* is an odd integer.
- ii)  $\frac{n}{2}$ , if *n* is even integer.
- c) The number of terms in the expansion of  $(x + a)^n + (x a)^n + (x + ai)^n$  is  $\left[\frac{n+4}{4}\right]$ . When [.] is G.I.F.

### BINOMIAL THEOREM ....

## OBJECTIVE MATHEMATICS II A - Part 2

- 6. i) If n is odd there will be two middle terms in the expansion  $(x+a)^n$  which are  $\left(\frac{n+1}{2}\right)^{th}$  and  $\left(\frac{n+3}{2}\right)^{th}$  terms
  - ii) If *n* is even there will be only one middle term in the expansion  $(x+a)^n$ , which is  $\left(\frac{n}{2}+1\right)^{th}$  term
- 7. The coefficient of the middle term is the greatest binomal coefficient in the expansion of  $(x+a)^n$
- 8. i) If n is odd, there are two greatest binomial co-efficients in the expansion which are  ${}^{n}C_{\frac{n-1}{2}}$  and  ${}^{n}C_{\frac{n+1}{2}}$  also  ${}^{n}C_{n-1/2} = {}^{n}C_{\frac{n+1}{2}}$ .
  - ii) If n is even, there is only one greatest binomial coefficient in the expansion  $(x+a)^n$  which is  ${}^nC_{n/2}$
- 9. The coefficient of  $x^k$  in the expansion of  $\left(ax^p + \frac{b}{x^q}\right)^n$  is  ${}^nC_r a^{n-r} b^r$  where  $r = \frac{np-k}{p+q}$
- 10. The term independent of x in the expansion of  $\left(ax^p + \frac{b}{x^q}\right)^n$  is  ${}^nC_r a^{n-r} b^r$  where  $r = \frac{np}{p+q}$
- 11. a) A generalised multinomial theorem

$$(x_1 + x_2 + x_3 + \dots + x_m)^n = \sum \frac{n!}{n_1! n_2 \dots n_m!} x_1^{n_1} x_2^{n_2} \dots x_n^{n_m}$$

Where the summation is taken over all non negetive integers  $n_1$ ,  $n_2$  ......  $n_m$  such that  $n_1 + n_2 + \dots + n_m = n$ 

- b) The general term in the expansion of  $(x_1 + x_2 + ..... + x_m)^n$  is  $\frac{(n_1 + n_2 + ..... + x_m^{n_m})!}{n_1! n_2! .... n_m!} (x_1^{n_1} x_2^{n_2} .... x_p^{n_p})$
- c) No. of terms in the expansion of  $(x_1 + x_2 + \dots + x_m)^n$  is  ${n+m-1 \choose (m-1)}$
- d) The number of terms in the expansion of  $(x + y + z)^n$  is  $\frac{(n+1)(n+2)}{2}$ .
- e) The greatest coefficient in the expansion of  $(x_1 + x_2 + \dots + x_m)^n$  is equal to  $\frac{n!}{(q!)^{m-r}((q+1)!)^r}$

where q is the quotient and r is the remainder when n is divided by m

- 12. Numerically greatest term (N.G.T.) in the expansion of  $(1+x)^n$ 
  - i) If  $\frac{(n+1)|x|}{|x|+1} = P + f$ , then there exists only one N.G.T. which is  $(P+1)^{th}$  term and its value is  $|T_{P+1}|$ . (Where P is an integer and f is a proper fraction, 0 < f < 1)
  - ii) If  $\frac{(n+1)|x|}{|x|+1} = P$  is an integer then there are **two** numerically greatest terms which are  $P^{th}$  and  $(P+1)^{th}$  terms. Also  $|T_P| = |T_{P+1}|$ .

### OBJECTIVE MATHEMATICS II A - Part 2

→‡• •‡• BINOMIAL THEOREM

**Note:** To find numerically greatest term of  $(a+b)^n$  we write  $(a+b)^n = a^n(1+x)^n$  where  $x = \frac{b}{a}$  and proceed.

- 13. i) If n > 2,  $n \in \mathbb{N}$ , then  $(2n-1)^n + (2n)^n < (2n+1)^n$ 
  - ii) If the coefficients of  $x^{r-1}$ ,  $x^r$ ,  $x^{r+1}$  in  $(1+x)^n$  are in A.P. then  $(n-2r)^2 = n+2$ .
- 14. i)  $(1+\alpha)^n 1$  is divisible by  $M(\alpha)$ 
  - ii)  $(1+\alpha)^n n\alpha 1$  is divisible by  $M(\alpha^2)$
  - iii)  $(1+\alpha)^n {}^nC_2\alpha^2 n\alpha 1$  is divisible by  $M(\alpha^3)$
- 15. i) Coefficient of  $x^{n-1}$  in  $(x-\alpha_1)(x-\alpha_2)$ ..... $(x-\alpha_n)$  is  $-(\alpha_1+\alpha_2+.....+\alpha_n)$ 
  - ii) Coefficient of  $x^{n-1}$  in  $(x + \alpha_1)(x + \alpha_2)$ ...... $(x + \alpha_n)$  is  $(\alpha_1 + \alpha_2 + \dots + \alpha_n)$
  - iii) Coefficient of  $x^{n-2}$  in  $(x-\alpha_1)(x-\alpha_2).....(x-\alpha_n)$  is  $\frac{(\alpha_1+\alpha_2+.....+\alpha_n)^2-(\alpha_1^2+\alpha_2^2+.....+\alpha_n^2)}{2}$

#### Binomial Coefficients:

 $(x+a)^n = {}^nC_0 x^n + {}^nC_1 x^{n-1} a + {}^nC_2 x^{n-2} a^2 + \dots + {}^nC_r x^{n-r} a^r + \dots + {}^nC_n a^n$ , Here the coefficients  ${}^nC_0, {}^nC_1, {}^nC_2, \dots, {}^nC_r, \dots {}^nC_n$  are called binomial coefficients.

#### Note:

 $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_rx^r + \dots + {}^nC_nx^n$  the coefficients  ${}^nC_0$ ,  ${}^nC_1$ ,  ${}^nC_2$ , ...,  ${}^nC_r$ , ...,  ${}^nC_r$  are simply denoted by  $C_0$ ,  $C_1$ ,  $C_2$ , ...,  $C_r$ , ...,  $C_r$  respectively

i.e., 
$$(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_rx^r + \dots + C_nx^n$$

#### Standard results on Binomial coefficients

1. 
$$C_0 + C_1 + C_2 + \dots + C_n = 2^n \Rightarrow \sum_{r=0}^n c_r = 2^n$$

2. 
$$C_0 - C_1 + C_2 - C_3 + \dots + (-1)^n \cdot C_n = 0$$

3. 
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

4. 
$$a.C_0+(a+d).C_1+(a+2d).C_2+....+(a+nd).C_n=(2a+nd) 2^{n-1}$$

5. 
$$a.C_0 - (a+d).C_1 + (a+2d).C_2 - \dots = 0$$

6. 
$$C_1 + 2 \cdot C_2 + 3 \cdot C_3 + \dots + n \cdot C_n = n \cdot 2^{n-1} \Rightarrow \sum_{r=1}^{n} r \cdot {^nC_r} = n \cdot 2^{n-1}$$

7. 
$$C_1 - 2.C_2 + 3.C_3 - \dots = 0 \Rightarrow \sum_{r=1}^{n} (-1)^{r-1} r.^n C_r = 0$$

8. 
$$a.C_0^2 + (a+d).C_1^2 + (a+2d).C_2^2 + \dots + (a+nd).C_n^2 = \frac{1}{2}(2a+nd)^{-2n}C_n^2$$

9. 
$${}^{m}C_{0}{}^{n}C_{r}+{}^{m}C_{1}{}^{n}C_{r-1}+....+{}^{m}C_{r}{}^{n}C_{0}={}^{(m+n)}C_{r}$$

10. 
$$C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + \dots + (C_0 + C_1 + \dots + C_{n-1}) = n \cdot 2^{n-1}$$

11. 
$$C_0C_r + C_1C_{r+1} + \dots + C_{n-r}C_n = {}^{2n}C_{n-r}$$
 or  ${}^{2n}C_{n+r}$ 

12. 
$$C_0^2 + C_1^2 + C_2^2 + C_3^2 + \dots + C_n^2 = {}^{2n}C_n = \frac{(2n)!}{(n!)^2}$$

13. 
$$C_0^2 - C_1^2 + C_2^2 - \dots + (-1)^n C_n^2 = \begin{cases} 0, & \text{if } n \text{ is odd} \\ (-1)^{n/2} \cdot {}^n C_n, & \text{if } n \text{ is even} \end{cases}$$

14. 
$$C_0 + \frac{C_1}{2}x + \frac{C_2}{3}x^2 + \dots + \frac{C_n}{n+1}x^n = \frac{(1+x)^{n+1}-1}{(n+1)x}$$

15. 
$$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$$

16. 
$$\frac{C_1}{2} + \frac{C_3}{4} + \dots = \frac{2^n - 1}{n + 1}$$

17. 
$$\frac{C_0}{1} - \frac{C_1}{2} + \frac{C_2}{3} - \dots + \frac{(-1)^n \cdot C_n}{n+1} = \frac{1}{n+1}$$

18. 
$$\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \dots = \frac{2^n}{n+1}$$

19. a) 
$$\sum_{r=0}^{n} r^2 . c_r = n(n+1).2^{n-2}$$
 b)  $\sum_{r=0}^{n} (-1)^r r^2 . c_r = 0$ 

b) 
$$\sum_{r=0}^{n} (-1)^r r^2 . c_r = 0$$

20. a) 
$$\sum_{r=0}^{n} r^3 . c_r = n^2 (n+3).2^{n-3}$$
 b)  $\sum_{r=0}^{n} (-1)^r r^3 . c_r = 0$ 

b) 
$$\sum_{r=0}^{n} (-1)^{r} r^{3} \cdot c_{r} = 0$$

21. Let f(x) is any polynomial function which is expansion of any multinomial raised to some power,  $f(x) = a_0 + a_1 x + a_2 x^{21 + \dots + a_n} x_n$  is identity in x and they true for all real (or) complex

$$a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

- i) Sum of the Coefficients = f(1)
- ii) Sum of the Coefficients of x having even powers is  $\frac{f(1)+f(-1)}{2}$
- iii) Sum of the Coefficients of x having odd powers is  $\frac{f(1)-f(-1)}{2}$

iv) 
$$a_0 - a_2 + a_4 + \dots = \frac{f(i) + f(-i)}{2}$$

### OBJECTIVE MATHEMATICS II A - Part 2



v) 
$$a_0 + a_3 + a_6 + \dots = \frac{f(1) + f(w) + f(w^2)}{3}$$

vi) 
$$a_0 + a_4 + a_8 + \dots = \frac{f(1) + f(-1) + f(i) + f(-i)}{4}$$

vii) 
$$a_0 + a_n + a_{2n} + \dots = \frac{f(1) + f(\alpha) + f(\alpha^2) + \dots + f(\alpha^{n-1})}{n}$$

where  $1,\alpha,\alpha^2,\ldots,\alpha^{n-1}$  the n<sup>th</sup> roots of unity

viii) 
$$(a_0 - a_2 + a_4...)^2 + (a_1 - a_3 + a_5...)^2 = f(i)f(-i)$$

#### Binomial theorem for rational Index:

It n is not a positive integer and |x| < 1 then

1. 
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^r + \dots = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^r + \dots = \frac{n(n-1)(n-2)\dots(n-r+1)}{n!}x^r +$$

$$2. \quad (1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)(n+2)....(n+r-1)}{r!}x^r + \dots = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)(n+2)....(n+r-1)}{r!}x^r + \dots = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)(n+2)....(n+r-1)}{r!}x^r + \dots = 1 + nx + \frac{n(n+1)}{2!}x^2 + \dots + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)(n+2)....(n+r-1)}{r!}x^r + \dots = 1 + nx + \frac{n(n+1)(n+2)}{2!}x^2 + \dots + \frac{n(n+1)(n+2)}{n!}x^2 + \dots + \frac{n(n+1)($$

3. 
$$(1-x)^{-n} = 1 + {n \choose 1} x + {n+1 \choose 2} C_2 x^2 + \dots + {n+r-1 \choose r} C_r x^r + \dots + \infty$$
, if  $n$  is a positive integer

4. 
$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots + \infty$$

5. 
$$(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots + (-1)^r x^r + \dots + \infty$$

6. 
$$(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots + (r+1)x^r + \dots = 0$$

7. 
$$(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots + (-1)^r (r+1)x^r + \dots = 0$$

8. 
$$(1-x)^{-3} = \frac{1}{1.2} [1.2 + 2.3x + 3.4x^2 + (r+1)(r+2)x^r + \dots \infty]$$

9. 
$$(1+x)^{-3} = \frac{1}{1.2} [1.2 - 2.3x + 3.4x^2 ..... + (-1)^r (r+1) (r+2)x^r + ........]$$

10. 
$$(1-x)^{\frac{-p}{q}} = 1 + \frac{p}{1!} \left(\frac{x}{q}\right) + \frac{p(p+q)}{2!} \left(\frac{x}{q}\right)^2 + \frac{p(p+q)(p+2q)}{3!} \left(\frac{x}{q}\right)^3 + \dots + \dots$$

$$..... + \frac{p(p+q)(p+2q)......(p+(r-1)q)}{r!} \left(\frac{x}{q}\right)^{r} + .... \infty$$

11. 
$$(1+x)^{\frac{-p}{q}} = 1 - \frac{p}{1!} \left(\frac{x}{q}\right) + \frac{p(p+q)}{2!} \left(\frac{x}{q}\right)^2 - \frac{p(p+q)(p+2q)}{3!} \left(\frac{x}{q}\right)^3 + \dots + \dots$$

....+
$$(-1)^r \frac{p(p+q)(p+2q).....(p+(r-1)q)}{r!} \left(\frac{x}{q}\right)^r + ...\infty$$

# LECTURE SHEET



Binomial expansion for positive integral index, Middle term, Numerically greatest term, R-f factor relation & Multinomial theorem

|    |                                                                | R-1 factor relation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | & Multinomial theor                                             | em .                                                     |
|----|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|
|    |                                                                | LEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EL-I (MAIN)                                                     |                                                          |
|    |                                                                | Single answ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er type questions                                               |                                                          |
| 1. | The third term in the                                          | e expansion of $\left(\frac{1}{x} + x \log x\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(g_{10} x)^5$ is 1 then $x = $                                 |                                                          |
|    | 1) 1                                                           | 2) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3) 10 <sup>2</sup>                                              | 4) 10 <sup>3</sup>                                       |
| 2. | In the binomial exp                                            | ansion of $(a-b)^n$ , $n>5$ , th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e sum of 5th and 6th to                                         | erms is zero, then $\frac{a}{b}$ equals                  |
|    | 1) $\frac{n-4}{5}$                                             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3) $\frac{6}{n-5}$                                              | version of the second                                    |
| 3. | If the ratio of the $1/6$ , then $n =$                         | seventh term from beg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ginning in $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$ | to seventh term from end is                              |
|    | 1) 3                                                           | 2) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3) 12                                                           | 4) 9                                                     |
| 4. | If the sum of odd te                                           | rms and the sum of even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | terms in $(x+a)^n$ are $p$ a                                    | and $q$ respectively then $4pq =$                        |
|    | 1) $(x+a)^{2n} - (x-a)^{2n}$                                   | ) <sup>2</sup> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) $(x^2 - a^2)^{2n} + ($                                       | $(x+a)^{2n}$                                             |
|    | 3) $(x^2-a^2)^n-(x-a^2)^n$                                     | $a)^{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4) $(x^2 + a^2)^n + (x^2 + a^2)^n$                              | $(-a)^{2n}$                                              |
| 5. |                                                                | terms and the sum of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | even terms in $(x+a)^n$                                         | are $p$ and $q$ respectively then                        |
|    | $\frac{p^2 + q^2 =}{1}$ 1) $\frac{(x+a)^{2n} - (x-a)^{2n}}{2}$ | $(2^{2n})^{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2) $(x+a)^{2n} - (x-a)^{2n}$                                    | $-a)^{2n}$                                               |
|    | 3) $\frac{(x+a)^{2n} + (x-a)^{2n}}{2}$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4) $(x+a)^{2n} + (x-a)^{2n}$                                    | $-a)^{2n}$                                               |
| 6. | If T <sub>0</sub> , T <sub>1</sub> , T <sub>2</sub> ,          | $T_n$ represent the terms in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(x+a)^n$ , then                                                |                                                          |
|    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(T_0 - T_2 + T_4 - T_6)$                                       | $+$ ) <sup>2</sup> + $(T_1 - T_3 + T_5)$ <sup>2</sup> is |
|    | 1) $(x^2 - a^2)^2$                                             | 2) $(x^2 + a^2)^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3) $(a^2 - x^2)^n$                                              | 4) $(x^2 + a^2)^{2n}$                                    |
|    |                                                                | and the same of th | 12.2                                                            |                                                          |

7. The expression  $\left[x+(x^3-1)^{1/2}\right]^5+\left[x-(x^3-1)^{1/2}\right]^5$  is a polynomial of degree

1) 7

2) 4

3) :

4) 6

8. If the coefficient of  $(2r+4)^{th}$  term and  $(r-2)^{th}$  terms in the expansion of  $(1+x)^{18}$  are equal then r=

1) 9

2) 4

3) 6

4) 3

- 9. If the coefficient of  $x^7$  in  $\left(ax^2 + \frac{1}{bx}\right)^{11}$  equals the coefficient of  $x^{-7}$  in  $\left(ax \frac{1}{bx^2}\right)^{11}$ , then a and b satisfy the relation
  - 1) ab = 1
- 2)  $\frac{a}{L} = 1$
- 3) a + b = 1 4) a b = 1
- In the expansion of  $\left(\frac{1}{r^2} x^3\right)^n n \in \mathbb{N}$ , if the sum of the coefficients of  $x^5$  and  $x^{10}$  is 0, then n is:
  - 1) 25

2) 20

- 4) None of these
- If the constant term in the binomial expansion of  $\left(x^2 \frac{1}{x}\right)^n$ ,  $n \in \mathbb{N}$  is 15 then the value of n is equal to
  - 1) 6

2) 9

- 3) 12
- 4) 15

- 12. Term independent of x in  $\left(x-\frac{1}{x}\right)^4 \left(x+\frac{1}{x}\right)^3$  is
  - 1) 1

3) 0

- 4) 4
- 13. The term independent of x in the expansion of  $(1+x)^n \left(1+\frac{1}{x}\right)^n$  is
  - 1)  $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2$

3)  $\frac{1.3.5....(2n-1)}{n!}2^n$ 

- 4) all the above
- 14. The coefficient of  $x^{53}$  in  $\sum_{r=0}^{100} {}^{100}C_r(x-3)^{100-r} \cdot 2^r$  is
  - 1)  $^{100}C_{47}$
- 2)  $^{100}C_{52}$
- 3)  $-(^{100}C_{53})$

- 15. The coefficient of  $x^n$  in expansion of  $(1+x)(1-x)^n$  is
  - 1)(n-1)
- 2)  $(-1)^n(1-n)$  3)  $(-1)^{n-1}(n-1)^2$  4)  $(-1)^{n-1}n$
- 16. Coefficient of  $x^5$  in  $(1+x)^{21}+(1+x)^{22}+\dots+(1+x)^{30}$  is
  - 1) 51C5
- 2) 9 C=
- 3)  ${}^{31}C_6 {}^{21}C_6$  4)  ${}^{30}C_5 + {}^{20}C_5$
- 17. If  $r^{th}$  term is the middle term in the expansion of  $\left(x^2 \frac{1}{2x}\right)^{20}$ , then  $(r+3)^{th}$  term is:
  - 1)  ${}^{20}C_{14}\frac{x}{2^{14}}$

- 2)  ${}^{20}C_{12}x^22^{-12}$  3)  ${}^{-20}C_7x2^{-13}$  4) none of these
- 18. The middle term in the expansion of  $(1 3x + 3x^2 x^3)^{2n}$  is
  - 1)  ${}^{6n}C_{3n}(-x)^{3n}$

- 2)  ${}^{6n}C_{2n}(-x)^{2n+1}$  3)  ${}^{4n}C_{3n}(-x)^{3n}$  4)  ${}^{6n}C_{3n}(-x)^{3n-1}$

| BIN | OMIAL THEOREM                                                                                                 | ••••                                                              | OBJECTIVE MATE                         | HEMATICS II A - Part 2                 |
|-----|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|----------------------------------------|
| 19. | The coefficeint of the n                                                                                      | middle term in $(1+\alpha x)^4$                                   | and $(1-\alpha x)^6$ is same then      | 1 α =                                  |
|     | 1) – 5/3                                                                                                      | 2) 3/5                                                            | 3) -3/ 10                              | 4) 10/3                                |
| 20. |                                                                                                               |                                                                   | $(x - 6y)^{14}$ when $x = 2/5$ , $y =$ |                                        |
|     | 1) ${}^{14}C_6 2^8 . 3^6$                                                                                     | 2) ${}^{14}C_7 2^6 .3^8$                                          | 3) ${}^{14}C_6 2^6 .3^8$               | 4) ${}^{14}C_7 2^8 .3^6$               |
| 21. | The greatest coefficient                                                                                      | t (numerically) in $\left(2x - \frac{1}{2}\right)$                | $\left(\frac{1}{3x}\right)^{10}$ is    |                                        |
|     | 1) 5120                                                                                                       | 2) $\frac{1720}{3}$                                               | 3) 1618                                | 4) $\frac{5120}{3}$                    |
| 22. | If the middle term of (                                                                                       | $(1+x)^{2n}$ is the greatest te                                   | rm then $x$ lies between               |                                        |
|     | 1) $n-1 < x < n$                                                                                              | $2) \ \frac{n}{n+1} < x < \frac{n+1}{n}$                          | 3) $n < x < n+1$                       | $4) \frac{n+1}{n} < x < \frac{n}{n+1}$ |
| 23. | The greatest coefficient                                                                                      | in $\left(\frac{x^{3/2}y}{2} + \frac{2}{xy^{3/2}}\right)^{12}$ is |                                        |                                        |
|     | 1) 12(211)                                                                                                    | 2) 12(210)                                                        | 3) 12(2 <sup>22</sup> )                | 4) 33(29)                              |
| 24. | Integral part of (7 + 4)  1) an even number  2) an odd number  3) an even or an odd r  4) nothing can be said | $(3)^n$ is $(n \in N)$ number depending upon                      | the value of $n$                       |                                        |
| 25. | 1) an even number 2) an odd number 3) an even or an odd r 4) nothing can be said                              | number depending upon                                             | the value of n                         |                                        |
| 26. | If $R = (6\sqrt{6} + 14)^{2n+1}$ a                                                                            | $\operatorname{nd} f = R - [R], \text{ where } [.]$               | denotes the G.I.F., then R             | f =                                    |
|     | 1) 20 <sup>n</sup>                                                                                            | 2) 20 <sup>2n</sup>                                               | 3) $20^{2n+1}$                         | 4) 1                                   |
| 27. | The integral part of $(\sqrt{1})$ 198                                                                         | $(2+1)^6$ is 2) 196                                               | 3) 197                                 | 4) 199                                 |
| 28. | The greatest integer wl                                                                                       | hich divides the number                                           | $101^{100} - 1$ is                     |                                        |
|     | 1) 10 <sup>2</sup>                                                                                            | 2) 10 <sup>3</sup>                                                | 3)104                                  | 4) 105                                 |
| 29. | The remainder left out                                                                                        | when $8^{2n}$ – $(62)^{2n+1}$ is div                              | ided by 9 is                           |                                        |
|     | 1) 2                                                                                                          | 2) 7                                                              | 3) 8                                   | 4) 0                                   |
| 30. | The coefficient of $x^5$ in                                                                                   | the expansion of $(x^2 - x)$                                      | $-2)^5$ is                             |                                        |
|     | 1) -83                                                                                                        | 2) -82                                                            | 3) -81                                 | 4) 0                                   |
| 10  | •••••                                                                                                         | · · · · ELITE                                                     | SERIES for <b>Sri Chaita</b>           | <b>NY3</b> Sr. ICON Students           |

31. Coefficient of  $x^3y^4z^2$  in  $(2x - 3y + 4z)^9$  is

1) 
$$-\frac{9!}{4!4!}2^33^44^2$$
 2)  $-\frac{9!}{3!2!4!}2^33^44^2$  3)  $\frac{9!}{4!4!}2^33^44^2$  4)  $\frac{9!}{3!2!4!}2^33^44^2$ 

2) 
$$-\frac{9!}{3!2!4!}2^33^44^2$$

3) 
$$\frac{9!}{4!} 2^3 3^4 4^2$$

4) 
$$\frac{9!}{3!2!4!}2^33^44^2$$

32. No.of terms in  $(1+5\sqrt{2}x)^9+(1-5\sqrt{2}x)^9$  if x>0, is

33. No.of terms in  $(1+3x+3x^2+x^3)^6$  is:

34. The number of distinct terms in  $(a+b+c+d+e)^3$  is

35. No.of nonzero terms in  $(1+x)^{42} + (1-x)^{42} + (1+ix)^{42} + (1-ix)^{42}$  is

36. The number of irrational terms in the expansion of  $(\sqrt[5]{3} + \sqrt[3]{7})^{36}$  is

37. Sum of rational terms in  $(\sqrt{2} + \sqrt[5]{3})^{10}$  is

38.  $x + y = 1 \Rightarrow \sum_{r=0}^{n} r^{-n} C_r x^r y^{n-r} =$ 

39. If the coefficients of r, (r+1), (r+2) terms in  $(1+x)^{14}$  are in A.P. then r=

40. If  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$  are the coefficients of  $2^{nd}$ ,  $3^{rd}$ ,  $4^{th}$  and  $5^{th}$  terms of  $(1+x)^n$  respectively then  $\frac{a_1}{a_1 + a_2}$ ,  $\frac{a_2}{a_2 + a_3}$ ,  $\frac{a_3}{a_3 + a_4}$  are in

$$a_1 + a_2 = a_1$$

4) A.G.P.

41. For natural numbers m, n if  $(1-y)^m(1+y)^n = 1 + a_1y + a_2y^2 + \dots$ , and  $a_1 = a_2 = 10$ , then (m,n) is :

- 1) (35, 20)
- 2) (45, 35)
- 3) (35, 45)
- 4) (20, 45)

Numerical value type questions

42. If 7 divides 32<sup>32<sup>32</sup></sup>, then find the remainder

43. The sum  $\sum_{i=0}^{m} {10 \choose i} {20 \choose m-i}$  (where  $\frac{p}{q} = 0$ , if p < q) is maximum when m is the sum of the digits of m

44. If  $f(x) = \sum_{r=1}^{n} \{r^2 \binom{n}{r} C_r - \binom{n}{r} C_{r-1} + (2r+1)^n C_r\}$  and  $f(30) = 30(2)^n$ , then value of x is

## LEVEL-II (ADVANCED)

|     |                                                               | Single answer ty                                     | ype questions                             |                                    |
|-----|---------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|------------------------------------|
| L.  | If the 4 <sup>th</sup> term of $\left\{\sqrt{x^{1+}}\right\}$ | $\frac{1}{\log_{10} x} + 1\sqrt[3]{x}$ is equal to 2 | 200, $x > 1$ and the logari               | thm is common logarithm,           |
|     | then $x$ is not divisible is                                  |                                                      |                                           |                                    |
|     | a) 2                                                          | b) 5                                                 | c) 10                                     | d) 4                               |
| 2.  | If $p^4 + q^3 = 2$ $(p > 0, q)$                               | > 0), then the maximum                               | value of term independen                  | nt of x in the expansion of        |
|     | $\left(px^{\frac{1}{12}} + qx^{-\frac{1}{9}}\right)^{14}$ is  |                                                      |                                           |                                    |
|     | a) <sup>14</sup> C <sub>4</sub>                               | b) <sup>14</sup> C <sub>6</sub>                      | c) <sup>14</sup> C <sub>7</sub>           | d) <sup>14</sup> C <sub>12</sub>   |
| 3.  | If $f(x)$ is periodic with                                    | period 't' such that f(2)                            | (x + 3) + f(2x + 7) = 2, the              | en the coefficient of $m^{-3t}$ in |
|     | expansion of $\left(m + \frac{b}{m^3}\right)^2$               | is                                                   |                                           |                                    |
|     | a) ${}^{16}C_7b^7$                                            | b) ${}^{32}C_{30}b^{30}$                             | c) ${}^{16}C_5b^5$                        | d) ${}^{32}C_4b^4$                 |
| 4.  | The coefficient of $x^{301}$ in                               | the expansion of $(1 + x)$                           | $)^{500} + x(1+x)^{499} + x^2(1-x)^{499}$ | $(+x)^{498} + \dots x^{500}$ is    |
|     | a) <sup>501</sup> C <sub>301</sub>                            | b) 500C <sub>301</sub>                               | c) <sup>501</sup> C <sub>300</sub>        | d) none of these                   |
| 5.  | The coefficient of $x^{70}$ in                                | the product $(x-1)(x^2-$                             | $2)(x^3-3)(x^4-4)$ $(x^{12}-$             | - 12) is                           |
|     | a) 4                                                          | b) 6                                                 | c) 8                                      | d) 12                              |
| 6.  | Coefficient of $x^{2016}$ in (1                               | $+x+x^2+x^3+x^4$ ) <sup>1001</sup> (1-               | $(-x)^{1002}(1+7x^{14})$ is               |                                    |
|     | a) 0                                                          | b) $-7.^{1001}C_{999}$                               | c) $7.^{1001}C_{403}$                     | d) $^{1001}C_{598}$                |
| 7.  | Coefficient of $x^6$ in ((1+                                  | $x)(1+x^2)^2(1+x^3)^3(1+x^3)^3$                      | $(x^n)^n$ ) is                            |                                    |
|     | a) 26                                                         | b) 28                                                | c) 30                                     | d) 35                              |
| 8.  | The sum of all the coeff                                      | icients of those terms in                            | the expansion of (a+b+c                   | $(+d)^8$ which contains b but      |
|     | not c is                                                      |                                                      |                                           |                                    |
|     | a) 6305                                                       | b) 6561                                              | c) 256                                    | d) 4 <sup>8</sup>                  |
| 9.  | The number of distinct t                                      | erms in the expansion of                             | $(x + y^2)^{13} + (x^2 + y)^{14}$ is      |                                    |
|     | a) 27                                                         | b) 29                                                | c) 28                                     | d) 25                              |
| 10. | If n is an even integer $(a+b+c)^n + (a+b-c)^n$ is            | and a, b, c are distinct,                            | the number of distinct                    | terms in the expansion of          |

a)  $\left(\frac{n}{2}\right)^2$  b)  $\left(\frac{n+1}{2}\right)^2$  c)  $\left(\frac{n+2}{2}\right)^2$  d)  $\left(\frac{n+3}{2}\right)^2$ 

### OBJECTIVE MATHEMATICS II A - Part 2

♣\$. +\$. BINOMIAL THEOREM

- 11. The coefficient of  $x^4$  in the expansion of  $\left(1+2x+\frac{3}{x^2}\right)^6$  is
  - a) 240

- b) 250
- c) 260
- d) 230
- 12. The number of terms in the expansion of  $\left(x^3 + \frac{1}{x^3} + 1\right)^{100}$  is
  - a) 301

- b) 201
- c) 101
- d) None of these
- 13. The coefficient of  $a^{10}b^7c^3$  in the expansion of  $(bc + ca + ab)^{10}$  is
  - a) 30

b) 60

- c) 120
- d) 240

- 14. If  $x = (2 + \sqrt{3})^n$ ,  $n \in \mathbb{N}$  and f = x [x], then  $\frac{f^2}{1 f}$  is
  - a) an irrational number

b) a non-integer rational number

c) an odd number

- d) an even number
- 15. If n > 0 is an odd integer, and  $x = (\sqrt{2} + 1)^n$  and f = x [x], then  $\frac{1 f^2}{f}$  is
  - a) an irrational number

b) a non-integer rational number

c) an odd integer

- d) an even integer
- 16. If 6th term in the expansion of  $\left(\frac{3}{2} + \frac{x}{3}\right)^{11}$  is numerically greatest, when x = 3, then the sum of possible integral value of 'n' is
  - a) 23

b) 24

c) 25

- d) 26
- 17. The algebraically second largest term in the expansion of  $(3-2x)^{15}$  at  $x=\frac{4}{3}$ .
  - a) 5

b) 7

c) 9

d) 11

- 18. The remainder when  $27^{10} + 7^{51}$  is divided by 10
  - a) 4

b) 6

c) 9

d) 2

### More than one correct answer type questions

- 19. The 9th term of  $\left(\frac{\sqrt{10}}{(\sqrt{x})^{5\log_{10}x}} + x.x^{\frac{1}{2\log_{10}x}}\right)^{10}$  is 450, then the rational value of x is
  - a) 10

- b) 100
- c)  $\frac{1}{10}$
- d) (10)<sup>-2/5</sup>
- 20. If a, b, c, d are any four consecutive coefficients of  $(1+x)^n$  then which of the following is (are) correct
  - a)  $\frac{a}{a+b} + \frac{c}{c+d} = \frac{2b}{b+c}$

b)  $\left(\frac{b}{b+c}\right)^2 > \frac{ac}{(a+b)(c+d)}$ 

c)  $\left(\frac{b}{b+c}\right)^2 < \frac{ac}{(a+b)(c+d)}$ 

d)  $\left(\frac{b}{b+c}\right)^2 = \frac{ac}{(a+b)(c+d)}$ 

### BINOMIAL THEOREM \*\*\* \*\* OBJECTIVE MATHEMATICS II A - Part 2

- 21. If recursion polynomials  $P_k(x)$  are defined as  $P_1(x) = (x-2)^2$ ,  $P_2(x) = ((x-2)^2-2)^2$ ,  $P_3(x) = (((x-2)^2 - 2)^2 - 2)^2$ ,... (In general  $P_k(x) = (P_{k-1}(x) - 2)^2$ ), then
  - a) In  $P_{\nu}(x)$  constant term is 4

- b) In  $P_k(x)$  coefficient of x is  $4^k$
- c) In  $P_k(x)$  coefficient of x is  $-4^k$
- d) In  $P_k(x)$  coefficient of  $x^2$  is  $\frac{4^{2k-1}-4^{k-1}}{2}$
- 22. Which of the following statements is/are incorrect?
  - a) If  $(3+a\sqrt{2})^{100}+(3+b\sqrt{2})^{100}=7+5\sqrt{2}$ . Number of pairs (a,b) for which the equation is true is one (a,b are rational numbers)
  - b) The number of distance terms in the expansion of  $\left(x^3 + \frac{1}{x^3} + 1\right)^{200}$  is 401
  - c) In the expansion of  $\left(\frac{x}{\cos\theta} + \frac{1}{x\sin\theta}\right)^{16}$ . If  $l_1$  is the least value of the term independent of x when  $\frac{\pi}{8} \le \theta \le \frac{\pi}{4}$  and  $l_2$  is the least value of the term independent of x when  $\frac{\pi}{16} \le \theta \le \frac{\pi}{8}$  then  $\frac{\ell_2}{\ell_1}$  is 16
  - d) The sum of the roots (real or complex) of the equation  $x^{2001} + \left(\frac{1}{2} x\right)^{2001} = 0$  is 1000.

#### Linked comprehension type questions

#### Passage - I:

Let  $f(n) = 3^{2n} + 3^n + 1$  for every positive integer n, Answer the following questions:

- 23. Which of the following is true?
  - a)  $f(n+3) = 3^6 f(n) 702.3^n 728$
- b)  $f(n+3) = 3^6 f(n) 701.3^n 729$
- c)  $f(n+3) = 3^6 f(n) + 702.3^n 728$
- d) None of these
- 24. Which of the following is false?
  - a) f(100) is divisible by 13

b) f(1001) is divisible by 13

c) f(2007) is divisible by 13

- d) None of these
- 25. Which of the following is true?
  - a) f(50) leaves remainder 1 when divided by 13 b) f(51) leaves remainder 0 when divided by 13
  - c) f(51) leaves remainder 3 when divided by 13 d) None of these

#### Passage - II:

To find coefficient of  $x^r (0 \le r \le n-1)$  in the expansion  $(x+a)^{n-1} + (x+a)^{n-2}(x+b) + \dots + (x+a)(x+b)^{n-2} + (x+b)^{n-1}$  we first sum up the series

26. The coefficient of  $x^r (0 \le r \le n-1)$  in the expansion

$$E = (x+2)^{n-1} + (x+2)^{n-2}(x+1) + (x+2)^{n-3}(x+1)^2 + \dots + (x+1)^{n-1}$$

- b)  ${}^{n}C_{r}(2^{n-r}-1)$  c)  ${}^{n}C_{r}2^{n-r}$
- d) none of these

OBJECTIVE MATHEMATICS II A - Part 2 + + + + BINOMIAL THEOREM

- 27. The coefficient of  $x^{n-1}$  in the expansion of  $E = (2x+1)^{n-1} + (2x+1)^{n-2}(x+1) + \dots + (x+1)^{n-1}$  is
  - a)  $2^n$

- b)  $2^{n} 1$

- 28. The coefficient of  $x^r (0 \le r \le n)$  in the expansion of  $E = 2^n + 2^{n-1}(x+2) + 2^{n-2}(x+2)^2 + ... + (x+2)^n$ 
  - a)  $^{n+1}C_{r+1}2^{n-r}$
- b)  ${}^{n}C_{r}2^{n-r}$
- c) "C, 2"
- d) none of these

#### Matrix matching type questions

29. COLUMN - I

COLUMN-II

- A) 597 is divided by 52, then the remainder is
- p) 5
- B) 5353-333 is divided by 10, then the remainder is
- q) 6
- C) 2710+751 is divided by 10, then the remainder is
- r) 2
- D)1399-1993 is divided by 162, then the remainder is
- s) 0

30. COLUMN - I

#### COLUMN - II

A) Number of terms in  $(x+y-z+w)^6$  is

p) 67

B) Last two digits in 72011 is

- q) 84
- C) Number of rational terms in  $(\sqrt[3]{7} + \sqrt[5]{11})^{1001}$  is
- r) 4

D) Remainder when 22011 is divided by 127 is

s) 43

#### Integer answer type questions

- 31. The value of  $\left\{ \left( \sqrt{3} + \sqrt{2} + 1 \right)^6 + \left( \sqrt{3} + \sqrt{2} 1 \right)^6 + \left( \sqrt{3} \sqrt{2} + 1 \right)^6 + \left( -\sqrt{3} + \sqrt{2} + 1 \right)^6 \right\}$  is where  $\{x\}$ denotes fractional part of x
- 32. The number of distinct terms in the expansion of  $\left(x+y+z+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)^2$  is m and that in the expansion of  $\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2$  is n then |m-n|=
- 33. If  $x = (3 + 2\sqrt{2})^n$ ,  $y = (9 + 4\sqrt{5})^n$ ,  $n \in \mathbb{N}$  then the value of  $(x y) (x^2 y^2) + x[x] y[y]$  is where [.] denotes G.I.F
- 34. The remainder when  $x = 5^{55 \dots (24 \text{ times } 5)}$  is divided by 24 is
- 35. If  $5^{81} + \lambda$  is divisible by 26, then minimum positive value of  $\frac{\lambda}{3}$  must be
- 36.  $s = a + (a+d) + (a+2d) + \dots + (a+nd)$  and  $A = a + (a+d)^n C_1 + (a+2d)^n C_2 + \dots + (a+nd)^n C_n$  then  $(n+1)A = k^n S$  where k = -----

Properties of Binomial coefficients, Summation of series using multinomial coefficients & Multiple summations

#### Single answer type questions

1. 
$$C_0 + 4 \cdot C_1 + 7 \cdot C_2 + \dots (n+1)$$
 terms =

1) 
$$(3n+2)\cdot 2^{n-1}$$

1) 
$$(3n+2) \cdot 2^{n-1}$$
 2)  $(2n+2) \cdot 2^{n-1}$ 

3) 
$$(2n+2) \cdot 3^{n-1}$$
 4)  $(2n-2) \cdot 3^{n+1}$ 

4) 
$$(2n-2)\cdot 3^{n+1}$$

2. 
$$3 \cdot C_0 - 7 \cdot C_1 + 11 \cdot C_2 - \dots (n+1)$$
 terms =

$$2) - 1$$

3. 
$$\frac{(C_0 + C_1)(C_1 + C_2)(C_2 + C_3)....(C_{n-1} + C_n)}{C_0 C_1 C_2.....C_n} = 1) \frac{(n+1)^n}{n!} \qquad 2) \frac{n+1}{n!} \qquad 3) \frac{(n+1)^{n-1}}{n!}$$

1) 
$$\frac{(n+1)^n}{n!}$$

2) 
$$\frac{n+1}{n!}$$

3) 
$$\frac{(n+1)^{n-1}}{n!}$$

4) 
$$\frac{(n-1)^n}{n!}$$

4. 
$$\frac{{}^{n}C_{1} + {}^{(n+1)}C_{2} + {}^{(n+2)}C_{3} + \dots + {}^{(n+m-1)}C_{m}}{{}^{m}C_{1} + {}^{(m+1)}C_{2} + {}^{(m+2)}C_{3} + \dots + {}^{(m+n-1)}C_{n}} =$$

5. 
$$\sum_{r=0}^{n-1} \frac{C_r}{C_r + C_{r+1}} =$$

1) 
$$\frac{n}{2}$$

2) 
$$\frac{n}{3}$$

3) 
$$\frac{n}{4}$$

4) 
$$\frac{2n}{3}$$

1) 
$$\left[2^{15} - \frac{1}{2} \cdot {}^{16}C_8\right]$$
 2)  $\left[2^{15} + \frac{1}{2} \cdot {}^{6}C_2\right]$  3)  $\left[2^{15} - \frac{1}{2} \cdot {}^{6}C_2\right]$  4)  $\left[2^{15} - \frac{1}{4} \cdot {}^{6}C_2\right]$ 

2) 
$$\left[2^{15} + \frac{1}{2} \cdot {}^{6}C_{2}\right]$$

3) 
$$\left[2^{15} - \frac{1}{2} \cdot {}^{6}C_{2}\right]$$

4) 
$$\left[2^{15} - \frac{1}{4} \cdot {}^{6}C_{2}\right]$$

7. 
$${}^{(2n+1)}C_0 - {}^{(2n+1)}C_1 + {}^{(2n+1)}C_2 - \dots + {}^{(2n+1)}C_{2n} =$$

$$3) -1$$

8. 
$$^{15}C_2 + 2^{-15}C_3 + 3^{-15}C_4 + \dots + 14^{-15}C_{15} =$$

9. 
$$C_0 - [C_1 - 2 \cdot C_2 + 3 \cdot C_3 - \dots + (-1)^{n-1} \cdot n \cdot C_n] =$$

$$3) -1$$

10. 
$$2 \cdot C_2 + 6 \cdot C_3 + 12 \cdot C_4 + \dots + n(n-1) \cdot C_n =$$

1) 
$$n(n-1) \cdot 2^{n-1}$$
 2)  $2n(n-1) \cdot 2^{n-2}$  3)  $n(n-1) \cdot 2^{n-2}$  4)  $2n(n+1) \cdot 2^{n-1}$ 

2) 
$$2n(n-1)\cdot 2^{n-2}$$

3) 
$$n(n-1) \cdot 2^{n-2}$$

1) 
$$2n(n+1) \cdot 2^{n-1}$$

OBJECTIVE MATHEMATICS II A - Part 2

→ \*\* • \*\* BINOMIAL THEOREM

11.  $\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \dots + \frac{C_{16}}{17} =$ 

1) 
$$\frac{2^{15}}{14}$$

2) 
$$\frac{2^{16}}{17}$$

2) 
$$\frac{2^{15}}{16}$$

4) 
$$\frac{2^{20}}{22}$$

12.  $\frac{C_1}{2} + \frac{C_3}{4} + \dots + \frac{C_{15}}{16} =$ 

1) 
$$\frac{2^{15}-1}{16}$$

1) 
$$\frac{2^{15}-1}{16}$$
 2)  $\frac{2^{15}+1}{16}$ 

3) 
$$\frac{2^{14}+1}{16}$$
 4)  $\frac{2^{20}+1}{16}$ 

4) 
$$\frac{2^{20}+1}{16}$$

13.  $\frac{C_0}{2} + \frac{C_1}{2} + \frac{C_2}{4} + \dots + \frac{C_n}{n+2} =$ 

1) 
$$\frac{2n \cdot 2^{n+1} - 1}{(n-1)(n-2)}$$

1) 
$$\frac{2n \cdot 2^{n+1} - 1}{(n-1)(n-2)}$$
 2)  $\frac{n \cdot 2^{n+1} - 1}{(n-1)(n-2)}$  3)  $\frac{n \cdot 2^{n+1} - 1}{(n+1)(n-2)}$  4)  $\frac{n \cdot 2^{n+1} + 1}{(n+1)(n+2)}$ 

3) 
$$\frac{n \cdot 2^{n+1} - 1}{(n+1)(n-2)}$$

4) 
$$\frac{n \cdot 2^{n+1} + 1}{(n+1)(n+2)}$$

14.  $\frac{C_0}{2} + \frac{C_1}{6} + \frac{C_2}{12} + \dots + \frac{C_n}{(n+1)(n+2)} =$ 

1) 
$$\frac{2^{n+2}-n-2}{(n+1)(n+2)}$$

1) 
$$\frac{2^{n+2}-n-2}{(n+1)(n+2)}$$
 2)  $\frac{2^{n+2}-n-3}{(n+1)(n+2)}$  3)  $\frac{2^{n+1}-n-3}{(n+1)(n+2)}$  4)  $\frac{2^{n+1}-n-3}{(n-1)(n-2)}$ 

3) 
$$\frac{2^{n+1}-n-3}{(n+1)(n+2)}$$

4) 
$$\frac{2^{n+1}-n-3}{(n-1)(n-2)}$$

15.  $C_1^2 + 2 \cdot C_2^2 + 3 \cdot C_3^2 + \dots + n \cdot C_n^2 =$ 

1) 
$$n \cdot {}^{2n}C$$

2) 
$$\frac{n}{2} \cdot {}^{2n}C_{n-}$$

3) 
$$\frac{n}{2} \cdot {}^{2n}C_n$$

1) 
$$n \cdot {}^{2n}C_n$$
 2)  $\frac{n}{2} \cdot {}^{2n}C_{n-1}$  3)  $\frac{n}{2} \cdot {}^{2n}C_n$  4)  $\frac{n}{2} \cdot {}^{2n}C_{n+1}$ 

16. If  ${}^{2n}C_r = C_r$ , then  $C_1^2 - 2.C_2^2 + 3.C_3^2 - 4.C_4^2 + ..... + 2n.C_{2n}^2 =$ 

1) 
$$\frac{(-1)^{n-1} \cdot (2n)}{(n-1)!}$$

2) 
$$\frac{(-1)^n \cdot (2n)}{(n+1)!}$$

1) 
$$\frac{(-1)^{n-1} \cdot (2n)!}{(n-1)!}$$
 2)  $\frac{(-1)^n \cdot (2n)!}{(n+1)!}$  3)  $\frac{(-1)^{n-1} \cdot (2n)!}{n!(n-1)!}$  4)  $\frac{(-1)^n \cdot (2n)!}{(n+1)!n!}$ 

4) 
$$\frac{(-1)^n \cdot (2n)!}{(n+1)!n!}$$

17.  $C_0C_2 + C_1C_3 + C_2C_4 + \dots + C_{n-2}C_n =$ 

1) 
$${}^{2n}C_{n-2}$$
 2)  ${}^{2n}C_n$ 

2) 
$$^{2n}C_{,}$$

3) 
$${}^{2n}C_{n-1}$$

4) 
$${}^{2n}C_{2n-2}$$

18.  $({}^{2n}C_0)^2 - ({}^{2n}C_1)^2 + ({}^{2n}C_2)^2 - \dots + ({}^{2n}C_{2n})^2 =$ 

1) 
$$(-1)^n \cdot {}^{2n}C_n$$

1) 
$$(-1)^n \cdot {}^{2n}C_n$$
 2)  $(-1)^{2n} \cdot {}^{2n}C_n$  3)  $(-1)^n \cdot {}^{3n}C_n$  4)  $(-1)^n \cdot {}^nC_n$ 

3) 
$$(-1)^n \cdot {}^{3n}C_n$$

4) 
$$(-1)^n \cdot {}^nC_n$$

19.  $2n+1C_0^2 - 2n+1C_1^2 + (2n+1)C_2^2 - \dots - (2n+1)C_{2n+1}^2 =$ 

2) 
$$^{(2n+1)}C$$

3) 
$$-(^{2n+1}C_n)$$

2) 
$$(2n+1)C_n$$
 3)  $-(2n+1)C_n$  4)  $-\frac{1}{2}(2n)C_n$ 

20.  $C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + \dots + (C_0 + C_1 + C_2 + \dots + C_n) = (n \text{ is even})$ 

1) 
$$(n+2)2^{n-1}$$

2) 
$$(n+1)2^{n-1}$$

1) 
$$(n+2)2^{n-1}$$
 2)  $(n+1)2^{n-1}$  3)  $(n-2)2^{n-1}$  4)  $(n-2)2^{n+1}$ 

4) 
$$(n-2)2^{n+1}$$

### BINOMIAL THEOREM \*\*\* \*\* OBJECTIVE MATHEMATICS II A - Part 2

- 21. If  ${}^{10}C_1$ ,  ${}^{9}C_5 + {}^{10}C_2$ ,  ${}^{9}C_4 + {}^{10}C_3$ ,  ${}^{9}C_3 + {}^{10}C_4$ ,  ${}^{9}C_2 + {}^{10}C_5$ ,  ${}^{9}C_1 + {}^{10}C_6 = {}^{19}C_6 + x$  then x = 01) - 84
  - 2) 84

- 3) 81
- 4) 81

22. 
$$\sum_{r=1}^{n} (-1)^{r-1} {}^{n}C_{r}(a-r) =$$

1) a

2) -a

3) 2a

3a

23. 
$$\sum_{r=0}^{n} \frac{1}{{}^{n}C_{r}} = S_{n}, t_{n} = \sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}}$$
 then  $\frac{t_{n}}{S_{n}} = \frac{1}{1}$ 

- 1)  $\frac{1}{4}n$
- 2)  $\frac{1}{2}n$
- 3)  $\frac{1}{2}n$
- 4) n

24. Sum of coefficients of terms of even powers of x in 
$$(1 + x + x^2 + x^3)^5$$
 is

- 2) 516
- 3) 612
- 4) 234

25. Sum of coefficients of terms of odd powers of x in 
$$(1 + x - x^2 - x^3)^8$$
 is

2) 1

3) 2

4) -1

26. Sum of coefficients of all the integral powers of x in 
$$(1+2\sqrt{x})^{40}$$
 is

- 1)  $\frac{3^{40}-1}{2}$
- 2)  $\frac{3^{40}+1}{2}$
- 3)  $\frac{3^{38}-1}{2}$  4)  $\frac{3^{38}+1}{2}$

#### 27. If the sum of all the Binomial coefficients in $(x+y)^n$ is 512, then the greatest Binomial coefficient is

- 2)  ${}^{9}C_{4}$  or  ${}^{9}C_{5}$  3)  ${}^{11}C_{5}$  or  ${}^{11}C_{6}$

28. 
$$(1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{20}x^{20} \Rightarrow \frac{a_2}{a_1} =$$

- 1) 10.5
- 2) 21

4) 5.5

29. If 
$$a_r$$
 is the coefficient of  $x^r$  in the expansion of  $(1+x+x^2)^n$  then  $a_1-2a_2+3a_3-\ldots-2na_{2n}=$ 

1) 0

2) n

30. If 
$$a_k$$
 is the coefficient of  $x^k$  in the expansion of  $(1+x+x^2)^n$  for  $k=0,1,2,\ldots,2n$  then  $a_1+2a_2+3a_3+\ldots+2n$   $a_{2n}=$ 

- 1)  $-a_0$

- 3) n.3"

31. 
$$(1+x+x^2+.....+x^p)^n=a_0+a_1x+a_2x^2+.....+a_{np}x^{np} \Rightarrow a_1+2a_2+3a_3+.....+np$$
  $a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{np}=a_{$ 

- 1)  $\frac{np(p+1)^n}{2}$  2)  $\frac{np(p+1)^n}{4}$  3)  $\frac{np(p-1)^n}{4}$  4)  $\frac{np(p-1)^{2n}}{4}$

32. If 
$$(1+x-2x^2)^8 = 1 + a_1x + a_2x^2 + \dots + a_{16}x^{16}$$
, then  $a_2 + a_4 + a_6 + \dots + a_{16} = a_{16}x^{16}$ 

- 2) 123

### OBJECTIVE MATHEMATICS II A - Part 2 \*\*\* \*\*\* BINOMIAL THEOREM

33. If  $(1+x-2x^2)^8 = 1 + a_1x + a_2x^2 + \dots + a_{16}x^{16}$ , then  $a_1 + a_3 + a_5 + \dots + a_{15} = 1$ 

1)  $2^7$ 

- $2) 2^7$
- $3) 3^2$

4) 46

34. If  $(1+x+x^2)^8 = a_0 + a_1x + \dots + a_{16}x^{16}$  then  $a_0 - a_2 + a_4 - a_6 + \dots + a_{16} = a_{16}x^{16}$ 

1) 1

4) 4

35. If  $(1+x+x^2)^8 = a_0 + a_1x + \dots + a_{16}x^{16}$  then  $a_1 - a_3 + a_5 - a_7 + \dots - a_{15} = a_{15} + a_{15$ 

4) 0

36. If  $(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$  then  $a_0 + a_3 + a_6 + \dots =$ 

37. If  $(1+x)^{10} = \sum_{r=0}^{10} C_r x^r$  then  $(C_0 - C_2 + C_4 - C_6 + C_8 - C_{10})^2 + (C_1 - C_3 + C_5 - C_7 + C_9)^2 = C_1 + C_2 + C_3 + C_5 + C_7 + C_9$ 

38. If  $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$  then  $C_0 + C_4 + C_8 + \dots = 0$ 

- 1)  $2^{n-2} + 2^{\frac{n}{2}-1} \cos \frac{n\pi}{4}$  2)  $2^{n-2} + 2^{\frac{n}{2}-1} \sin \frac{n\pi}{4}$  3)  $2^{n-1} + 2^n \cos \frac{n\pi}{4}$  4)  $2^{n-1} + 2^{\frac{n}{2}} \sin \frac{n\pi}{4}$

39.  $\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{i+j+k}}$  is equal to (where |a| > 1)

- 1)  $(a-1)^{-3}$  2)  $\frac{3}{a-1}$
- 3)  $\frac{1}{a^3}$
- 4) None of these

40. The value of  $\sum_{1 \le i \le k} \sum_{k \le w} \sum_{n=1}^{\infty} 1$  is

- 2)  ${}^{n}C_{4} + {}^{n}C_{3} + {}^{n}C_{2}$  3)  ${}^{n}C_{4} + 2{}^{n}C_{3} + {}^{n}C_{2}$  4)  ${}^{n}C_{4} + {}^{n}C_{3} + 2{}^{n}C_{2}$

LEVEL-II (ADVANCED)

Single answer type questions

1. Consider the sequence  $\frac{{}^{n}C_{0}}{123}, \frac{{}^{n}C_{1}}{234}, \frac{{}^{n}C_{2}}{345}, \dots$ , if n = 50 then greatest term is

2. If  $(1+x)^n = {}^n C_0 + {}^n C_1 x + {}^n C_2 x^2 + \dots + {}^n C_n x^n$  where  ${}^n C_0, {}^n C_1, {}^n C_2, \dots$  are binomial coefficients, then  $2(C_0 + C_3 + C_6 + ....) + (C_1 + C_4 + C_7 + .....)(1 + \omega) + (C_2 + C_5 + C_8 + ....)(1 + \omega^2)$ , where  $\omega$  is the cube root of unity and n is a multiple of 3, then the above expression is equal to

$$\sum_{k=0}^{r} {}^{n}C_{2k}^{n-2k}C_{r-k}$$

- 3. Value of  $\frac{\sum_{k=0}^{r} {}^{n}C_{2k}{}^{n-2k}C_{r-k}}{\sum_{k=0}^{r} {}^{n}C_{k}{}^{2k}C_{2r} \left(\frac{3}{4}\right)^{n-k} \left(\frac{1}{2}\right)^{2k-2r} (n \ge 2r) \text{ is}}$ 
  - a) 1/2

c) 1

- d) None of these
- 4. The sum of the series  $\sum_{r=1}^{3n-1} \frac{(-1)^{r-1}r}{{}^{3n}C_r}$  is (where *n* is an even natural number)
  - a) 0

- b)  $\frac{3n}{3n+1}$
- c)  $\frac{3n+1}{2n+2}$
- 5. If  $C_0, C_1, C_2, ...$  are binomial coefficients in the expansion  $\sum_{r=0}^{n} C_r x^r$ , then value of the expression

(series) 
$$\frac{2C_0}{1} + \frac{3C_1}{2} + \frac{4C_2}{3} + \frac{5C_3}{4} + \dots$$
 is

- a)  $\frac{2^{n}+1}{1}$

- b)  $\frac{2^n 1}{n+1}$  c)  $\frac{2^n (n+3) 1}{n+1}$  d)  $\frac{2^n (n+2) 1}{n+1}$
- 6. Given  ${}^{8}C_{1}x(1-x)^{7} + 2{}^{8}.C_{2}x^{2}(1-x)^{6} + 3{}^{8}.C_{3}x^{3}(1-x)^{5} + \dots + 8.x^{8} = a_{0} + a_{1}x + a_{2}x^{2} + \dots + a_{8}x^{8}$  $a_0 + a_1$  is
  - a) 6

b) 5

c) 8

- d) 9
- 7. If  $\sum_{r=0}^{2n} a_r (x-2)^r = \sum_{r=0}^{2n} b_r (x-3)^r$  and  $a_k = 1 \ \forall \ k \ge n$  then  $b_n = 1$

- b)  $^{2n+1}C_{n+1}$
- d)  ${}^{2n}C_{n+1}$
- 8. If  $n \in \mathbb{N}$ , then  $\sum_{r=0}^{n} (-1)^r \cdot {^nC_r} \cdot \frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7^r}{2^{3r}} + \dots$  to m terms
- a)  $\frac{2^{mn}}{(2^n-1)2^m}$  b)  $\frac{2^{mn}+1}{(2^n-1)2^{mn}}$  c)  $\frac{2^{mn}-1}{(2^n-1)2^{mn}}$
- d) None

- 9. In a  $\triangle ABC \sum_{r=0}^{n} {^{n}C_{r}.a^{n-r}.b^{r}} \cos(rA (n-r)B) =$

- d)  $c^{2n}$
- 10. The largest integer k such that  $3^k$  divides  $2^{3^n} + 1$ ,  $n \in N$  is
  - a) 2

- d) n + 1
- 11. If  $(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$  then  $6(a_0 + a_6 + a_{12} + a_{18} + ...) =$ 
  - a)  $3^n 1 + 2^{n+1} \cos \frac{n\pi}{2}$

b)  $3^n + 1 + 2^{n+1} \cdot \cos \frac{n\pi}{3}$ 

c)  $3^n - 1 + 2^n \sin \frac{n\pi}{3}$ 

d)  $3^n + 1 + 2^n \sin \frac{n\pi}{3}$ 

12. The value of  $C_3 + C_7 + C_{11} + \dots$ , is

a) 
$$\frac{1}{2} \left( 2^{n-1} - 2^{n/2} \sin \frac{n\pi}{4} \right)$$

b) 
$$\frac{1}{2} \left( 2^{n-1} + 2^{n/2} \sin \frac{n\pi}{4} \right)$$

c) 
$$\frac{1}{4} \left( 2^{n+1} - 2^{n/2} \sin \frac{n\pi}{4} \right)$$

d) none

13. If k and n are positive integers and  $S_k = 1^k + 2^k + 3^k + ... + n^k$  then  $\sum_{r=0}^{m} {n+1 \choose r} (S_r)$  is equal to

a) 
$$(n+1)^{m+1} - (n+1)^{m+1}$$

a) 
$$(n+1)^{m+1} - (n+1)$$
 b)  $(n+1)^{m+1} + (n+1)$  c)  $(n-1)^{m+1} - (n-1)$  d) none

c) 
$$(n-1)^{m+1} - (n-1)$$

14. The sum of all the coefficients of those terms in the expansion of  $(a + b + c + d)^8$  which contains b but not c is

15. If  $(1+x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$  then  $a_0^2 - a_1^2 + a_2^2 - a_3^2 + \dots + a_{2n}^2$  is equals

a) 
$$\frac{1}{2}a_n$$

b) 
$$\frac{1}{2}a_{n+1}$$

c) 
$$a_{n+1}$$

d) a

16. The value of  $\sum_{0 \le i < j \le n} \sum_{n} i \cdot {\binom{n}{C_j}}$  is equal to

a) 
$$n(n+1)2^{n-3}$$

b) 
$$n^2 2^{n-3}$$

c) 
$$n(n-1)2^{n-3}$$

d) none

17. The value of the expression  $\sum_{0 \le i < j \le n} (-1)^{i+j-1} {}^{n}C_{i} {}^{n}C_{j} =$ 

a) 
$$^{2n-1}C_n$$

b) 
$$^{2n}C_n$$

c) 
$$^{2n+1}C_n$$

d) none

18. Let  $S_1 = \sum_{0 \le i \le l} \sum_{j \le 100} C_i C_j$ ,  $S_2 = \sum_{0 \le i \le l} \sum_{j \le 100} C_i C_j$  and  $S_3 = \sum_{0 \le i = l} \sum_{j \le 100} C_i C_j$  where  $C_r$  represents coefficient of

 $x^r$  in the binomial expansion of  $(1+x)^{100}$ . If  $S_1 + S_2 + S_3 = a^b$  where  $a,b \in \mathbb{N}$ , then the least value of (a+b) is

d) 52

More than one correct answer Type Questions

19.  ${}^{n}C_{0}{}^{2n}C_{m} - {}^{n}C_{1}{}^{2n-2}C_{m} + {}^{n}C_{2}{}^{2n-4}C_{m} - \dots =$ 

a) 
$$\binom{n}{m-n} 2^{2n-m}$$
 if  $m \ge n$  b) 0 if  $m < n$  c)  $\binom{n}{m-n} 2^{2n+m}$  if

b) 0 if 
$$m < n$$

c) 
$$\binom{n}{m-n} 2^{2n+m}$$
 if

d) 1 if

20. Which of the following is/are correct?

a) 
$$^{20}C_0 - ^{20}C_1 + ^{20}C_2 - \dots - ^{20}C_{15} = -^{19}C_{15}$$

b) 
$$^{20}C_0 - ^{20}C_1 + ^{20}C_2 - \dots - ^{20}C_{15} = -^{20}C_{14}$$

c) 
$$16^{20}C_0 - 15^{20}C_1 + 14^{20}C_2 - \dots - 2^{20}C_{14} - {}^{20}C_{15} = {}^{19}C_{14}$$

d) 
$$16^{20}C_0 - 15^{20}C_1 + 14^{20}C_2 - \dots - 2^{20}C_{14} - {}^{20}C_{15} = {}^{18}C_{15}$$

BINOMIAL THEOREM \*\*\* \*\* OBJECTIVE MATHEMATICS II A - Part 2

21. Let  $(1+\sqrt{2})^n = x_n + y_n\sqrt{2}$  where  $x_n$ ,  $y_n$  are integers, then

a) 
$$x_n^2 - 2y_n^2 = (-1)^n$$

a) 
$$x_n^2 - 2y_n^2 = (-1)^n$$
 b)  $x_n + 2y_n - x_{n+1} = 0$  c)  $x_n^2 - 2y_n^2 = 1$  d)  $y_{n+1} = x_n + y_n$ 

c) 
$$x_n^2 - 2y_n^2 = 1$$

d) 
$$y_{n+1} = x_n + y_n$$

22. If  $(x^{2006} + x^{2008} + 2)^{2010} = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$  then value of

$$a_0 - \frac{1}{2}a_1 - \frac{1}{2}a_2 + a_3 - \frac{1}{2}a_4 - \frac{1}{2}a_5 + a_6 + \dots$$
 is

- a) less than 2
- b) greater than 0
- c) equals 2
- d) none of these

23. If  $ac>b^2$ , then the sum of the coefficients in the expansion of  $(acx^2x^2 + 2bcx + c)^n$  is, where  $a,b,c,o,\in R$  and  $n\in N$ 

a) positive if a > 0

- b) positive if c > 0
- c) negative if a < 0 and n is odd
- d) positive if c < 0 and n is even

Linked comprehension type questions

Passage - I:

 $(1 + ax + bx^2 + cx^3)^{10} = 1 + p_1x + p_2x^2 + p_3x^3 + \dots + p_{30}x^{30}$  And the values of  $p_1, p_2, p_3$  respectively are 20,200,1000 respectively then

24. b =

25. c =

b) 
$$-15$$

$$c) +30$$

$$d) -32$$

26.  $p_A =$ 

Passage - II:

Let  $(1+x)^{20} = \sum_{r=0}^{20} a_r x^r$  when  $a_r = {}^{20} C_r$  Then

27.  $\sum_{0 \le i < j \le 20} \sum_{i \le 20} a_i . a_j =$ 

a) 
$$2^{40} - {}^{40}C_{20}$$

b) 
$$2^{39} - {}^{40}C_{20}$$

c) 
$$2^{39} - {}^{39}C_{20}$$

a) 
$$2^{40} - {}^{40}C_{20}$$
 b)  $2^{39} - {}^{40}C_{20}$  c)  $2^{39} - {}^{39}C_{20}$  d)  $2^{40} - {}^{39}C_{19}$ 

28.  $\sum_{0 \le i < i \le 20} (a_i - a_j)^2 =$ 

a) 
$$42.^{39}C_{10}-2^{40}$$

b) 
$$21.^{40}C_{20} - 2^{39}$$

b) 
$$21.^{40}C_{20} - 2^{39}$$
 c)  $21.^{39}C_{19} - 2^{40}$  d)  $21.^{40}C_{20} - 2^{40}$ 

d) 
$$21.^{40}C_{20} - 2^{40}$$

29.  $\sum_{0 \le i < j \le 20} \sum_{(i+j)a_i a_j} (i+j)a_i a_j$ 

a) 
$$40(2^{39} - {}^{39}C_{20})$$

b) 
$$20(2^{39} - {}^{39}C_{20}$$

a) 
$$40(2^{39} - {}^{39}C_{20})$$
 b)  $20(2^{39} - {}^{39}C_{20})$  c)  $40(2^{40} - {}^{40}C_{20})$  d)  $40(2^{40} - {}^{39}C_{19})$ 

d) 
$$40(2^{40}-^{39}C_{19})$$

22 \*\*\* \*\*\*

ELITE SERIES for **Sri Chaitanya** Sr. ICON Students

#### Matrix matching type question

30. COLUMN - I

COLUMN - II

A) 
$$({}^{32}C_0)^2 - ({}^{32}C_1)^2 + ({}^{32}C_2)^2 =$$
\_\_\_\_

B) 
$$({}^{32}C_0)^2 + ({}^{32}C_1)^2 + ({}^{32}C_2)^2 + .....({}^{32}C_{32})^2 =$$

C) 
$$\frac{1}{32} \left( 1 \left( {}^{32}C_1 \right)^2 + 2 \left( {}^{32}C_2 \right)^2 + 3 \left( {}^{32}C_3 \right)^2 + \dots 32 \left( {}^{32}C_{32} \right)^2 \right) = \underline{\qquad}$$

D) 
$$({}^{31}C_0)^2 - ({}^{32}C_1)^2 + ({}^{32}C_2)^2 - ({}^{31}C_3)^2 + \dots + ({}^{31}C_{31})^2 = \underline{\hspace{1cm}}$$

31. Let 
$$A = \sum_{r=1}^{50} \frac{50+r}{50} \frac{C_r(2r-1)}{50}$$
,  $B = \sum_{r=1}^{50} \left(\frac{50}{7}C_r\right)^2$ ,  $C = \sum_{r=1}^{100} (-1)^r \left(\frac{100}{7}C_r\right)^2$  then match the following

COLUMN - I

COLUMN - II

#### Integer answer type questions

32. If 
$$^{2015}C_1 - ^{2015}C_2\left(1 + \frac{1}{2}\right) + ^{2015}C_3\left(1 + \frac{1}{2} + \frac{1}{3}\right) - \dots + ^{2015}C_{2015}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2015}\right) = K$$
, then the sum of the digits of  $\left[\frac{1}{k}\right]$ , where [.] denotes G.I.F is \_\_\_\_\_\_

- 33. Let  $a = 3^{\frac{1}{223}} + 1$  and for all  $n \ge 3$ ,  $f(n) = {^nC_0}a^{n-1} {^nC_1}a^{n-2} + {^nC_2}a^{n-3}$  ......+ $(-1)^{n-1} \cdot {^nC_{n-1}} \cdot a^0$ . If the value of  $f(2007) + f(2008) = 3^k$  where  $k \in \mathbb{N}$ , then k = 1
- 34.  ${}^{n}C_{0}^{2n}C_{n}^{-n}C_{1}^{(2n-1)}C_{n}^{+n}C_{2}^{(2n-2)}C_{n}^{+}+\dots+(-1)^{n}{}^{n}C_{n}^{-n}C_{n}^{-n}$
- 35. If S be the sum of coefficients in the expansion of  $(px + qy rz)^n$  (where p, q, r > 0), then the value of  $\lim_{n \to \infty} \frac{S}{(S^{1/n} + 1)^n}$  is
- 36.  $C_0, C_1, C_2, \dots, C_n$  are binomial coefficients in the expansion of  $(1 + x)^n$  then

$$\lim_{n \to \infty} \left\{ C_n - C_{n-1} \left( \frac{2}{3} \right) + C_{n-2} \left( \frac{2}{3} \right)^2 - \dots + (-1)^n C_0 \left( \frac{2}{3} \right)^n \right\} =$$

- 37. In the expansion of  $(1+3x+2x^2)^6$ , then coefficient of  $x^{11}$  is  $k \times 2^6$ , then k is
- 38. If for  $1 \le m \le n$ ,  $f(m, n) = {}^{n}C_{0} {}^{n}C_{1} + {}^{n}C_{2} \dots + (-1)^{m-1}$ .  ${}^{n}C_{m-1}$ , then f(7, 8) is



#### Binomial theorem for rational index, Approximations & Summation of series using multinoial

### LEVEL-I (MAIN)

#### Single answer type questions

#### Rational index:

- 1. The range of x so that the expansion of  $(3-4x)^{1/2}$  is valid is
  - 1) -3/4 < x < 3/4
- 2) |x| < 3
- 3) |x| < 1/4
- 4) |x| < 1

- 2. If the expansion  $(4a-8x)^{1/2}$  were to possible then
  - 1)  $2 < \left| \frac{a}{r} \right|$
- 2)  $2 > \frac{a}{x}$  3)  $2 < \frac{x}{a}$
- 4)  $2 > \frac{x}{a}$
- 3. For  $|x| > \frac{3}{2}$ , the value of the third term in the expansion of  $(3 + 2x)^{3/5}$  is

- 1)  $\frac{27}{50} \cdot 2^{\frac{3}{5}} \cdot x^{\frac{9}{5}}$  2)  $\frac{27}{50} \cdot 2^{\frac{3}{5}} \cdot x^{\frac{7}{5}}$  3)  $\frac{27}{50} \cdot 2^{-\frac{2}{5}} \cdot x^{-\frac{7}{5}}$  4)  $-\frac{27}{50} \cdot 2^{-\frac{2}{5}} \cdot x^{\frac{7}{5}}$
- 4. If  $\frac{1}{(1-2x)(1+3x)}$  is to be expanded as a power series of x, then
  - 1) |x| < 1/2
- 2) |x| < 1/6
- 3) -1/3 < x < 1/2 4) |x| < 1/3
- 5.  $1+{}^{2}C_{1}x+{}^{3}C_{2}x^{2}+{}^{4}C_{3}x^{3}+.....$  to  $\infty$  terms can be summed up if
  - 1) x < 1
- 2) x > -1
- 3) -1 < x < 1
- 6. For |x| < 1, the  $(r+1)^{th}$  term in the expansion of  $\sqrt{1-x}$  is
  - 1)  $\frac{1 \cdot 3 \cdot 5 \dots (2r-3)}{r!} \left(\frac{x}{2}\right)^r$

2)  $-\frac{1 \cdot 3 \cdot 5 \dots (2r-3)}{r!} \left(\frac{x}{2}\right)^r$ 

3)  $-\frac{1\cdot 3\cdot 5....(2r-3)}{r!}(x)^r$ 

- 4)  $\frac{1 \cdot 3 \cdot 5 \dots (2r-3)}{r!} (x)^r$
- 7. The general term of  $(2a-3b)^{-1/2}$  is
  - 1)  $\frac{1.3.5...(2r-5)}{r!} \frac{1}{\sqrt{2a}} \left(\frac{3b}{4a}\right)^{r}$
- 2)  $\frac{1.3.5....(2r-3)}{r!} \frac{1}{\sqrt{2a}} \left(\frac{3b}{4a}\right)^r$
- 3)  $\frac{1.3.5....(2r-1)}{r!} \frac{1}{\sqrt{2a}} \left(\frac{3b}{4a}\right)^r$
- 4)  $\frac{1.3.5....(2r-3)}{r!} \frac{1}{\sqrt{a}} \left(\frac{3b}{4a}\right)^r$
- 8. If |x| < 1, then the coefficient of  $x^n$  in expansion of  $(1+x+x^2+x^3+...)^2$  is

- 2) n 1
- 3) n + 2
- 4) n + 1

### OBJECTIVE MATHEMATICS II A - Part 2 \*\*\* \*\*\* BINOMIAL THEOREM

- 9. The coefficient of  $x^{24}$  in  $(1 + 3x + 6x^2 + 10x^3 + ...... \infty)^{2/3}$  is

- 2) 125

- 10. If  $S_n$  denotes the sum of first *n* natural numbers then  $S_1 + S_2 x + S_3 x^2 + ... + S_n x^{n-1} + ... \infty$  terms =
- 2)  $(1 x)^{-2}$
- 3)  $(1-x)^{-3}$

- 11.  ${}^{4}C_{1} + {}^{5}C_{2} \cdot \left(\frac{1}{2}\right) + {}^{6}C_{3} \cdot \left(\frac{1}{2}\right)^{2} + \dots to = \text{terms}$

- 3) 900
- 4) 15

- 12. The coefficient of  $x^2$  in  $(1+x)^2(8-x)^{-1/3}$  is
- 2)  $\frac{2265}{4132}$
- 3)  $\frac{313}{576}$
- 4)  $\frac{3691}{6792}$

- 13. The coefficient of  $x^{-n}$  in  $(1+x)^n \left(1+\frac{1}{x}\right)^n$  is

- $3) 2^{n}$
- 4) 2nC
- 14. If  $|x| < \frac{1}{2}$ , then the coefficient of  $x^r$  in the expansion of  $\frac{1+2x}{(1-2x)^2}$  is
  - 1)  $r.2^{r}$

- 2)  $(2r-1) 2^r$
- 3)  $r \cdot 2^{2r+1}$
- 15. If the expansion in powers of x of the function  $\frac{1}{(1-ax)(1-bx)}$  is  $a_0+a_1x+a_2x^2+a_3x^3+\dots$  then  $a_n$  is:
  - 1)  $\frac{a^n b^n}{b}$
- 2)  $\frac{a^{n+1}-b^{n+1}}{b-a}$  3)  $\frac{b^{n+1}-a^{n+1}}{b-a}$  4)  $\frac{b^n-a^n}{b-a}$
- 16. The coefficient of  $x^{24}$  in the expansion of  $(1+x^2)^{12}(1+x^{12})$   $(1+x^{24})$  is
  - 1) 12C,
- 2) 12C<sub>c</sub>+2
- 3) 12C<sub>6</sub>+4
- 4) 12C<sub>6</sub>+6
- 17. If 0 < x < 1; then first negative term in the expansion of  $(1 + x)^{27/5}$  is
  - 1) 7th term
- 2) 5th term
- 3) 8th term
- 4) 6th term

### Approximations:

- 18. If x is so small that  $x^2$  and higher powers of x are neglected then  $\frac{\sqrt{1+x}+\sqrt[3]{1+4x}}{(1+x^2)} = \frac{\sqrt{1+x}+\sqrt[3]{1+4x}}{\sqrt{1+x^2}} = \frac{\sqrt{1+x}+\sqrt[3]{1+4x}}{\sqrt{1+x}+\sqrt[3]{1+4x}} = \frac{\sqrt[3]{1+x}+\sqrt[3]{1+4x}}{\sqrt[3]{1+x}+\sqrt[3]{1+4x}} = \frac{\sqrt[3]{1+x}+\sqrt[3]{1+4x}}{\sqrt[3]{1+x}+\sqrt[3]{1+x}} = \frac{\sqrt[3]{1+x}+\sqrt[3]{1+x}}{\sqrt[3]{1+x}+\sqrt[3]{1+x}} = \frac{\sqrt[3]{1+x}+\sqrt[3]{1+x}}{\sqrt[3]{1+x}+\sqrt[3]{1+x}} = \frac{\sqrt[3]{1+x}+\sqrt[3]{1+x}}{\sqrt[3]{1+x}+\sqrt[3]{1+x}} = \frac{\sqrt[3]{1+x}+\sqrt[3]{1+x}}{\sqrt[3]{1+x}} = \frac{\sqrt[3]{1+x}+\sqrt[3]{1+x}}{\sqrt[3]{1+x}} = \frac{\sqrt[3]{1+x}+\sqrt[3]{1+x}}{\sqrt[3]{1+x}} = \frac{\sqrt[3]{1+x}+\sqrt[3]{1+x}}{\sqrt[3]{1+x}} = \frac{\sqrt[3]{1+x}}{\sqrt[3]{1+x}} = \frac{\sqrt[3]{1+x}}{\sqrt$ 
  - 1)  $1 + \frac{11x}{12}$
- 2)  $2 + \frac{35x}{6}$  3)  $1 \frac{5x}{12}$
- 4)  $1 + \frac{5x}{12}$
- 19. If 'c' is small in comparison with l then  $\left(\frac{l}{l+c}\right)^{1/2} + \left(\frac{l}{l-c}\right)^{1/2} =$ 
  - 1)  $2 + \frac{3c}{4l}$
- 2)  $2 + \frac{3c^2}{4t^2}$  3)  $l + \frac{3c^2}{4t^2}$
- 4)  $l + \frac{3c}{4l}$
- 20. If p is nearly equal to q and n > 1 such that  $\frac{(n+1)p + (n-1)q}{(n-1)p + (n+1)q} = \left(\frac{p}{q}\right)^k$  then the value of k is

- 4) 1/n+1

- 21. If x is numerically so small so that  $x^2$  and higher powers of x can be neglected, then  $\left(1+\frac{2x}{3}\right)^2$   $(32+5x)^{\frac{1}{5}}$  is approximately equal to:
  - 1)  $\frac{32+31x}{64}$
- 2)  $\frac{32+32x}{64}$  3)  $\frac{31+32x}{64}$
- 4)  $\frac{1-2x}{64}$
- 22. If x is nearly equal to 1 then value of  $\frac{mx^m nx^n}{m-n}$  is nearly equal to
  - 1)  $x^{m+n}$
- 2)  $x^{m-n}$
- 3)  $\frac{1}{1-x}$
- 4)  $\frac{1}{1+r}$
- 23. If x is nearly equal to 1 then value of  $\frac{ax^b bx^a}{x^b x^a}$  is nearly equal to
- 2)  $\frac{1}{1-x}$
- 3)  $\frac{2}{1+x}$
- 4)  $\frac{2}{1-x}$

Summation of Infinite Series:

- 24. The sum of the series  $\frac{3}{4 \cdot 8} \frac{3 \cdot 5}{4 \cdot 8 \cdot 12} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12 \cdot 16} \dots$ 

  - 1)  $\sqrt{\frac{3}{2}} \frac{3}{4}$  2)  $\sqrt{\frac{2}{3}} \frac{3}{4}$  3)  $\sqrt{\frac{3}{2}} \frac{1}{4}$
- 4)  $\sqrt{\frac{2}{3}} \frac{1}{4}$

- 25.  $\frac{3}{6} + \frac{3}{6} \cdot \frac{5}{9} + \frac{3 \cdot 5 \cdot 7}{6 \cdot 9 \cdot 12} + \dots =$
- 2)  $3\sqrt{3} 2$
- 3)  $3\sqrt{3}-4$
- 4)  $2\sqrt{3} + 4$

- 26.  $\frac{5}{9.18} + \frac{5.8}{9.18.27} + \frac{5.8.11}{9.18.27.36} + \dots =$ 
  - 1)  $\frac{1}{2}\sqrt[3]{\frac{9}{4}} \frac{11}{18}$  2)  $\frac{3\sqrt[3]{18} 22}{12}$  3)  $\frac{3\sqrt[3]{9} 11}{12}$

- 4)  $\frac{\sqrt[3]{10}-5}{\sqrt{10}}$

- 27.  $1 + \frac{n}{2} + \frac{n(n-1)}{2 \cdot 4} + \frac{n(n-1)(n-2)}{2 \cdot 4 \cdot 6} + \dots + \infty =$ 
  - 1)  $1 + \frac{n}{3} + \frac{n(n-1)}{36} + \frac{n(n+1)(n+1)}{360} + \dots$
- 2)  $1 + \frac{n}{2} + \frac{n(n+2)}{2.6} + \frac{n(n+1)(n+1)}{2.6} + \dots$
- 3)  $1 + \frac{n}{3} + \frac{n(n+1)}{36} + \frac{n(n+1)(n+2)}{369} + \dots$
- 4)  $1 + \frac{n}{3} + \frac{n(n+2)}{3.6} + \frac{n(n+1)(n+2)}{3.60} + \dots$

#### Numerical value type questions

- If  $a_1$ ,  $a_2$ ,  $a_3$ , are the last three digits of  $17^{256}$  respectively then the value of  $4a_1 2a_2 a_3$  is equal to
- 29. Coefficient of  $x^{2009}$  in  $(1+x+x^2+x^3+x^4)^{1001}(1-x)^{1002}$  is
- 30. Given  $(1-2x+5x^2+10x^3)(1+x)^n=1+a_1x+a_2x^2$  .... and that  $a_1^2=2a_2$  then the value of n is
- 31. If  $n \in N$  and  $C_k = {}^nC_k$ , and  $\sum_{k=1}^n k^3 \left(\frac{{}^nC_k}{{}^nC_{k-1}}\right)^2 = \frac{n(n+1)^2(n+2)}{3n}$  then p is

| JECTIVE MAT | HEMATIC         | S II A - P   | art 2         | -            |              | ••••• B          | NOMIAL       | THEORE       |
|-------------|-----------------|--------------|---------------|--------------|--------------|------------------|--------------|--------------|
|             | •               | KEY S        | HEET (L       | ECTURE       | SHEET        | ·:-              |              |              |
|             |                 |              | EXER          | CISE- I      |              |                  |              |              |
| LEVEL-I     | 1) 2            | 2) 1         | 3) 4          | 4) 1         | 5) 3         | 6) 2             | 7) 1         | 8) 3         |
|             | 9) 1            | 10) 3        | 11) 1         | 12) 3        | 13) 4        | 14) 3            | 15) <b>2</b> | 16) 3        |
|             | 17) 3           | 18) <b>1</b> | 19) 3         | 20) 3        | 21) 4        | 22) 2            | 23) 4        | 24) 2        |
|             | 25) 1           | 26) <b>3</b> | 27) 3         | 28) <b>3</b> | 29)1         | 30) <b>3</b>     | 31) 4        | 32) <b>2</b> |
|             | 33) 2           | 34) 1        | 35) <b>1</b>  | 36) 2        | 37) 1        | 38) 2            | 39) 2        | 40) 1        |
|             | 41) 3           | 42) 4        | 43) 6         | 44) 5        |              |                  |              |              |
| LEVEL-II    | 1) d            | 2) <b>b</b>  | 3) a          | 4) a         | 5) a         | 6) <b>d</b>      | 7) b         | 8) a         |
|             | 9) c            | 10) c        | 11) 3         | 12) <b>b</b> | 13) <b>b</b> | 14) c            | 15) d        | 16) c        |
|             | 17) b           | 18) d        | 19) <b>bc</b> | 20) ab       | 21) acd      | 22) ad           | 23) a        | 24) c        |
|             | 25) c           | 26) b        | 27) <b>b</b>  | 28) a        | 29) A-p;     | B-q; C-r         | ; D-s        |              |
|             | 30) <b>A-c</b>  | ; B-s; C-    | p; D-r        | 31)0         | 32) 1        | 33) 0            | 34) 5        | 35) 7        |
|             | 36) 2           |              |               |              |              |                  |              |              |
|             |                 |              | EXER          | CISE-II      |              |                  |              |              |
| LEVEL-I     | 1) 1            | 2) 1         | 3) 1          | 4) 1         | 5) <b>1</b>  | 6) 2             | 7) 2         | 8) 2         |
|             | 9) 2            | 10) 3        | 11) 2         | 12) 1        | 13) 4        | 14) 2            | 15) 3        | 16) 3        |
|             | 17) 1           | 18) <b>1</b> | 19) 1         | 20) 1        | 21) 1        | 22) 1            | 23) 3        | 24) 1        |
|             | 25) <b>1</b>    | 26) <b>2</b> | 27) <b>2</b>  | 28) 1        | 29) 3        | 30) 4            | 31) 3        | 32) <b>3</b> |
|             | 33) <b>2</b>    | 34) 1        | 35) 4         | 36) 1        | 37) 1        | 38) 1            | 39) 1        | 40) 3        |
| LEVEL-II    | 1) b            | 2) <b>d</b>  | 3) <b>c</b>   | 4) d         | 5) c         | 6) <b>c</b>      | 7) b         | 8) c         |
|             | 9) c            | 10) a        | 11) b         | 12) a        | 13) a        | 14) a            | 15) d        | 16) c        |
|             | 17) a           | 18) a        | 19) ab        | 20) ad       | 21) abd      | 22) ab           | 23) abc      | 24) b        |
|             | 25) d           | 26) c        | 27) c         | 28) a        | 29) <b>b</b> | 30) <b>A-r</b> ; | B-s; C-p;    | D-q          |
|             | 31) <b>A-</b> p | ; B-r; C-    | r; D-s        | 32) 8        | 33) 9        | 34) 1            | 35) <b>0</b> | 36) <b>0</b> |
|             | 37) 9           | 38) 7        |               |              |              |                  |              |              |
|             |                 |              | EXER          | CISE-III     |              |                  |              |              |
| LEVEL-I     | 1) 1            | 2) 1         | 3) 4          | 4) 4         | 5) 3         | 6) 2             | 7) 3         | 8) 4         |
|             | 9) 1            | 10) 3        | 11)1          | 12) 3        | 13) 2        | 14) 4            | 15) 3        | 16) 2        |
|             | 17) 3           | 18) 2        | 19) 2         | 20) 2        | 21) 1        | 22) 1            | 23) 2        | 24) 2        |
|             | 25) 3           | 26) 1        | 27) 3         | 28) 7        | 29) 0        | 30) 6            | 31) 4        |              |



Binomial expansion for positive integral index, Middle term,

|    | Numerically (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | greatest term, R-f facto                                                           | or relation & Multinom                    | ial theorem                        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEVEL-I                                                                            | (MAIN)                                    |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single answer t                                                                    | ype questions                             |                                    |
| 1. | Coefficient of $x^{2009}$ in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the expansion of $(1+x+x)$                                                         | $(x^2 + x^3 + x^4)^{1001} (1 - x)^{1002}$ | is                                 |
|    | 1) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) $4.^{1001}C_{501}$                                                              | 3) -2009                                  | 4) none of these                   |
| 2. | If $\frac{t_2}{t_3}$ in the expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of $(a+b)^n$ and $\frac{t_3}{t_4}$ in                                              | the expansion of $(a + b)^n$              | $^{+3}$ are equal, then find $n$ . |
|    | 1) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) 4                                                                               | 3) 5                                      | 4) 6                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $18^3 + 7^3 + 3 \cdot 18$                                                          | 7.25                                      |                                    |
| 3. | The value of ${3^6 + 6 \cdot 2^4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $18^3 + 7^3 + 3 \cdot 18$ $43 \cdot 2 + 15 \cdot 81 \cdot 4 + 20 \cdot 27 \cdot 1$ | 8+15-9-16+6-3-32+64                       |                                    |
|    | 1) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) 3                                                                               | 3) 2                                      | 4) 1                               |
| 4. | The value of $(1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^4 + (1.02)^$ | (0.98)4 upto three places                                                          | of decimal is                             |                                    |
|    | 1) 2.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) 2.003                                                                           | 3) 2.04                                   | 4) 2.004                           |
| 5. | If the coefficient of $x$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\int_{1}^{1} \left( x^2 + \frac{A}{x} \right)^5$ is 270, then A                   | A = ?                                     |                                    |
|    | 1) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) 4                                                                               | 3) 5                                      | 4) 6                               |
| 6. | The coefficient of $x^4$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$ is                                 |                                           |                                    |
|    | 1) $\frac{405}{256}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) $\frac{504}{259}$                                                               | 3) $\frac{450}{263}$                      | 4) none of these                   |
| 7. | In the expansion of $\left(\frac{x}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\left(\frac{\frac{1}{3}}{2} + x^{\frac{-1}{5}}\right)^8$ , the term independent   | pendent of $x$ is :                       |                                    |
|    | 1) <i>t</i> <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) t <sub>6</sub>                                                                  | 3) t <sub>7</sub>                         | 4) none of these                   |
| 8. | The coefficient of $x^5$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the expansion of $(1+x)^2$                                                         | $x^{21} + (1+x)^{22} + \dots + (1+x)^{2}$ | <sup>30</sup> is:                  |
|    | 1) <sup>51</sup> C <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2) <sup>9</sup> C <sub>5</sub>                                                     | 3) ${}^{31}C_6 - {}^{21}C_6$              | 4) ${}^{30}C_5 + {}^{20}C_5$       |

- 9. If the coefficient of  $x^2$  and  $x^3$  in the expansion of  $(3+\alpha x)^9$  are the same, then the value of a is:
- 2)  $-\frac{9}{7}$  3)  $\frac{7}{9}$

| ОВ  | JECTIVE MATHEMATIC                                        | CS II A - Part 2                                            | *:**:                               | BINOMIAL THEOREM                        |
|-----|-----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|-----------------------------------------|
| 10. | If the coefficient of the (value of n is:                 | $(n+1)^{th}$ term and $(n+3)^{th}$                          | term in the expansion of            | $(1+x)^{20}$ are equal, then the        |
|     | 1) 10                                                     | 2) 8                                                        | 3) 9                                | 4) 7                                    |
| 11. | Given positive integers $n$ expansion of $(1+x)^{2n}$ are |                                                             | efficient of $(3r)^{th}$ and $(r+$  | +2) <sup>th</sup> terms in the binomial |
|     | 1) $n = 2r$                                               | 2) $n = 2r + 1$                                             | 3) $n = 3r$                         | 4) none of these                        |
| 12. | The middle term in the                                    | expansion of $\left(\frac{2x^2}{3} + \frac{3}{2x^2}\right)$ | is:                                 |                                         |
|     | 1) 251                                                    | 2) 252                                                      | 3) 250                              | 4) none of these                        |
| 13. | The middle term in the                                    |                                                             |                                     |                                         |
|     | 1) $^{2n}C_n$                                             | 2) $(-1)^{n} {}^{2n}C_n x^{-n}$                             | 3) ${}^{2n}C_{n}x^{-n}$             | 4) none of these                        |
| 14. | The middle term in $x^2$                                  | $+\frac{1}{x^2}+2$ ) <sup>n</sup> is                        |                                     |                                         |
|     | 1) $\frac{n!}{((n/2)!)^2}$                                | 2) $\frac{(2n)!}{((n/2)!)^2}$                               | 3) $\frac{1.3.5(2n+1)}{n!}$ 2       | 4) $\frac{(2n)!}{(n!)^2}$               |
| 15. | For $n \in N$ if two consec                               | cutive terms in the expans                                  | sion of $(p+q)^n$ are equal         | then $\frac{(n+1)q}{n+q}$ is            |
|     | 1) Negative integer                                       |                                                             |                                     | 4) a positive integer                   |
| 16. | The term in $(x + y)^{50}$ wh                             | nich is greatest in absolut                                 | e value if $1x = \sqrt{3}1y1$ is    |                                         |
|     | 1) T <sub>17</sub>                                        | 2) T <sub>19</sub>                                          | 3) T <sub>20</sub>                  | 4) T <sub>21</sub>                      |
|     | If the coefficients of three value of $n$ is              | ee consecutive terms in th                                  | e expansion of $(1+x)^n$ are        | e 45, 120 and 210 then the              |
|     | 1) 8                                                      | 2) 12                                                       | 3) 10                               | 4) 14                                   |
| 18. | The sum of rational term                                  | ns in the expansion of (                                    | $\sqrt{2} + 3^{1/5}$ ) is:          |                                         |
|     | 1) 41                                                     | 2) 40                                                       | 3) 39                               | 4) 42                                   |
| 19. | The number of integral to                                 | terms in the expansion of                                   | $(\sqrt{3} + \sqrt[8]{5})^{256}$ is |                                         |
|     | 1) 35                                                     | 2) 32                                                       | 3) 33                               | 4) 34                                   |
| 20. | In the expansion of $(\sqrt[5]{3})$                       | $+\sqrt[4]{2}$ ) <sup>24</sup> , the rational terms         | m is                                |                                         |
|     | 1) T <sub>14</sub>                                        | 2) T <sub>16</sub>                                          | 3) T <sub>15</sub>                  | 4) T <sub>7</sub>                       |
| 21. | No.of terms whose value                                   | ue depend on 'x' in $x^2$                                   | $-2+\frac{1}{x^2}\Big)^n$ is        |                                         |
|     | 1) 2n                                                     | 2) $2n + 1$                                                 | 3) 2 <i>n</i> – 1                   | 4) n + 1                                |
|     |                                                           |                                                             |                                     | A A                                     |

### BINOMIAL THEOREM \*\* \* OBJECTIVE MATHEMATICS II A - Part 2

- 22. Coefficient of  $a^8b^6c^4$  in  $(a+b+c)^{18}$  is
  - 1) 4! 10! 5!
- 2) 18!
- 3) 18!
- 4) 18!

- 23. The coefficient of  $x^9$  in (x-1)(x-4)(x-9)....(x-100) is
  - 1) -235
- 3) 385
- 4) -385

- 24. Coeff of  $x^{18}$  in  $(x^2 + 1)(x^2 + 4)(x^2 + 9).....(x^2 + 100)$  is
  - 1) -385
- 2) 385
- 3) 285
- 4) -285
- 25. If n is a positive integer then  $2^{4n} 15n 1$  is divisible by
  - 1) 64

- 2) 196
- 3) 225
- 4) 256

- 26. Larger of 9950+10050 and 10150 is
  - 1) 10150
- $2)99^{50} + 100^{50}$
- 3) Both are equal
- 4) can not be decided

- 27. If  $\{x\}$  denotes the fractional part of x then  $\left\{\frac{3^{1001}}{82}\right\}$  =
  - 1)  $\frac{9}{82}$

- 4)  $\frac{1}{82}$

### LEVEL-II (ADVANCED)

#### Single answer type questions

- 1. In the expansion of  $(x+y)^{15}$  the eleventh term is geometric mean of ninth and twelfth terms then  $k^{th}$ term of the expansion must be greatest then the value of k is
  - a) 8

b) 6

- The term independent of x in the expansion of  $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$  is
  - a) 210

- d) 112
- Middle term in the expansion of  $(1-3x+3x^2-x^3)^{3n}$  is
  - a)  $\frac{(6n)!x^n}{(3n)!(3n)!}$

b)  $\frac{(6n)!x^{3n}}{(3n)!}$ 

c)  $\frac{(6n)!}{(3n)!(3n)!}(-x)^{3n}$ 

- d)  $\frac{(6n)!}{(3n+1)!(3n-1)!}(-x)^{3n+1}$
- If n is even positive integer, then the condition that the greatest term in the expansion of  $(1+x)^n$ may have the greatest coefficient also is
  - a)  $\frac{n}{n+2} < x < \frac{n+2}{n}$  b)  $\frac{n+1}{n} < x < \frac{n}{n+1}$  c)  $\frac{n}{n+4} < x < \frac{n+4}{n}$  d) none of these

- The term independent of x in the product  $(4+x+7x^2)\left(x-\frac{3}{x}\right)^{11}$  is 5.
  - a) 7.11C<sub>5</sub>
- b)  $3^{6.11}C_6$
- c) 3<sup>5,11</sup>C<sub>5</sub>
- d) -12.211

### OBJECTIVE MATHEMATICS II A - Part 2 The term independent of 'x' in the expansion of $\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$ , x > 0, is $\alpha$ times the corresponding binomial coefficient. Then 'α' is c) $-\frac{1}{2}$ b) $\frac{1}{2}$ a) 3 d) 1 7. If $p^2+q=2$ then maximum value of the term independent of x in the expansion of $(px^{1/6}+qx^{-1/3})^9$ is (p > 0, q > 0)b) 82 a) 42 d) 84 8. The number of terms in the expansion of $(1+x)^{101} \cdot (1+x^2-x)^{100}$ is b) $50 \times 101$ a) 10100 d) 102 9. The coefficient of $a^8b^4c^9d^9$ in $\{ab(c+d)+cd(a+b)\}^{10}$ , is a) $\frac{(10)!}{8!4!9!}$ b) 10! c) 2520 d) none of these 10. The coefficient of $x^{50}$ in the expansion of $(1+x)^{1000}+2x(1+x)^{999}+3x^2(1+x)^{998}+....+1001x^{1000}=$ d) $^{1005}C_{49}$ a) 1002C50 b) 1002C51 11. If the last term in the binomial expansion of $\left(\sqrt{2} - \frac{1}{\sqrt{2}}\right)^n$ is $\left(\frac{1}{30^{1/3}}\right)^{\log_3^8}$ . Then middle term is

- a) <sup>10</sup>C<sub>5</sub>
- b)  $^{-10}C_5$
- c)  $\frac{1}{2}(^{10}C_4)$
- d)  $^{-10}C_6$
- 12. The sum of rational terms in  $(\sqrt{2} + \sqrt[3]{3} + \sqrt[6]{5})^{10}$  is equal to
  - a) 12632
- b) 7560
- c) 4232
- d) 11792

- 13. Last digit in  $2^{2^n} + 1 \forall n \in \mathbb{N}, n \neq 1$  is
  - a) 7

b) 3

c) 5

d) 1

- 14. If  $\{x\}$  represents fractional part of x, then  $\left\{\frac{5^{200}}{8}\right\} =$ 
  - a)  $\frac{1}{4}$

b)  $\frac{1}{8}$ 

c)  $\frac{3}{8}$ 

- d)  $\frac{5}{8}$
- 15. The remainder when  $(1!)^2 + (2!)^2 + (3!)^2 + .... + (100!)^2$  is divided by 144 is
  - a) 17

b) 31

c) 33

d) 41

#### More than one correct answer type questions

- 16. If in the expansion of  $\left(\frac{1}{x} + x \tan x\right)^5$  the ratio of 4th term to the 2nd term is  $\frac{2}{27}\pi^4$  then the value of x can be
  - a)  $\frac{-\pi}{6}$
- b)  $\frac{-\pi}{3}$
- c)  $\frac{\pi}{3}$
- d)  $\frac{\pi}{12}$

| DINIONIAL | THEODEM |    |       |  |
|-----------|---------|----|-------|--|
| BINUMIAL  | THEOREM | ** | * * * |  |

### OBJECTIVE MATHEMATICS II A - Part 2

- 17. If the middle term of  $\left(x + \frac{\sin^{-1} x}{x}\right)^8$  is equal to  $\frac{630}{16}$  then value of x is (are)
  - a)  $\frac{\pi}{3}$

- b)  $-\frac{\pi}{2}$
- $c) \frac{\pi}{\epsilon}$
- d)  $\frac{\pi}{6}$
- 18. The greatest coefficient in the expansion of  $(a+b+c)^7$  must be
  - a) 105

- b) odd
- c) even
- d) 210
- 19. In the expansion of  $(x^2+2x+2)^n$  when n is a positive integer then which is/are correct
  - a) coefficient of x is  $n.2^n$
  - b) coefficient of  $x^3$  is  $2^n \binom{n+1}{3}$
  - c) coefficient of  $x^2$  is  $n^2(2^{n-1})$
  - d) sum of all coefficients of different powers of x is  $4^n$

#### Linked comprehension type questions

#### Passage - I:

The expressions  $1+x,1+x+x^2,1+x+x^2+x^3,...,1+x+x^2+...,+x^{20}$  are multiplied together and the terms of the product thus obtained are arranged in increasing powers of x in the form of  $a_0 + a_1 x + a_2 x^2 + \dots$  then

- 20. Number of terms in the product is

- b) 211
- c) 231
- d) 215
- 21. If sum of the coefficients of even powers of x is k, sum of the coefficients of odd powers x is l and  $m = \frac{a_r}{a_{r-1}}$  where *n* is degree of the product then the value of (k+l+m) is
  - a)  $\frac{20!}{2}$

- b) 21!+1
- c)  $\frac{21!}{2}$
- d) 19!

#### Passage - II:

Let  $(x+1)(x+2)(x+3)...(x+n) = x^n + A_1x^{n-1} + A_2x^{n-2} + A_3x^{n-3} + .... + A_n$ 

- 22.  $A_1 + A_n =$ 
  - a)  $\frac{n}{2} + n!$
- b)  $\frac{n+1}{2} + n!$  c)  $\frac{n(n+1)}{2} + n!$  d) (n+1)!

- 23.  $A_{n} =$

- a)  $\frac{(n-1)n(n+1)}{12}$  b)  $\frac{n(n+1)(3n+1)}{12}$  c)  $\frac{(n+1)(3n+1)}{24}$  d)  $\frac{(n-1)n(n+1)(3n+2)}{24}$
- 24. A =
  - a)  $\frac{n^2(n-1)(n-2)(n+1)}{24}$

b)  $\frac{(n-1)(n-2)(n+1)^2}{24}$ 

c)  $\frac{(n-1)(n-2)n^2(n+1)^2}{24}$ 

d)  $\frac{(n-1)(n-2)(n+1)^2n^2}{48}$ 

#### Matrix matching type questions

#### COLUMN - I 25.

#### COLUMN - II

- A) The remainder, when  $(15^{23} + 23^{23})$  is divided by 19, is
- p) 0
- B) If  $(11)^{27} + (21)^{27}$  when divided by 16 leaves the remainder
- q) 01

C) Last Two digits of the number  $N = 7^{100} - 3^{100}$  are

r) 15

D) The last two digits of the number 3<sup>400</sup> are

s) 10

#### Remainder when N is divided by A 26.

#### COLUMN - I

A) 
$$N = 99^{100}$$
 and  $A = 10$ 

B) 
$$N = 2^{2007} + 2008$$
 and  $A = 9$ 

C) 
$$N = 9^{2009} - 8(2008) - 9$$
 and  $A = 64$ 

D) 
$$N = 7^{100}$$
 and  $A = 1000$ 

#### Integer answer type questions

- 27. When the terms in the binomial expansion of  $\left(\sqrt{x} + \frac{1}{2\sqrt[4]{x}}\right)^n (n \in \mathbb{N}, n \neq 1, x > 0)$  are arranged in decreasing powers of x, the coefficients of the first three terms are in arithmetic progression. The number of terms in the expansion with integer powers of x is
- 28. If a,b,c and d are the 3<sup>rd</sup>, 4<sup>th</sup>, 5<sup>th</sup> and 6<sup>th</sup> terms in the expansion of  $(1+x)^{100}$  and  $\frac{b^2 ac}{c^2 bd} = \frac{la}{kc}$  then l+k
- 29. If in the expansion of  $(x^3 1/x^2)^n$ ,  $n \in \mathbb{N}$ , sum of the coefficients of  $x^5$  and  $x^{10}$  is 0, value of n is 5m. then the value of m, is
- 30. The digit in the hundreds place of 3100 is
- 31. If [x] denotes the greatest integer less than or equal to x, then  $[(1+0.0001)^{10000}]$  equals
- 32. The remainder when  $(32^{32})^{32}$  is divided by 7 is
- 33. The last digit of the number (32)32 is
- 34. The unit digit of  $17^{1983} + 11^{1983} 7^{1983}$  is



### Properties of Binomial coefficients, Summation of series using multinomial coefficients & Multiple summations

### LEVEL-I (MAIN)

#### Single answer type questions

- 1.  ${}^{(2n+1)}C_0 + {}^{(2n+1)}C_1 + {}^{(2n+1)}C_2 + \dots + {}^{(2n+1)}C_n = 1$ 1)  $2^n$  2)  $2^{-n}$  3)  $2^{2n}$

- 4) 32n
- 2. The sum of the series  ${}^{20}C_0 {}^{20}C_1 + {}^{20}C_2 {}^{20}C_3 + \dots + {}^{20}C_{10}$  is
  - 1) 20 C<sub>10</sub>
- 2)  $-(^{20}C_{10})$  3)  $\frac{1}{2}\cdot(^{20}C_{10})$
- 4) 0

BINOMIAL THEOREM + + + + + + OBJECTIVE MATHEMATICS II A - Part 2

3.  $C_0 + C_1 + 2 \cdot C_2(3) + 3 \cdot C_3(3^2) + 4 \cdot C_4(3^3) + \dots + n \cdot C_n 3^{n-1} =$ 

4)  $n.4^{n+1}-1$ 

4.  $k - {n \choose 1}(k-1) + {n \choose 2}(k-2) - {n \choose 3}(k-3) + \dots + (-1)^{n-n} C_n(k-n) =$ 

4)0

5.  $\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots =$ 

1)  $\frac{2^{n-1}}{n!} \forall n \in \mathbb{N}$  2)  $\frac{2^{n-1}}{2n!} \forall n \in \mathbb{N}$  3)  $\frac{2^{2n-1}}{n!} \forall n \in \mathbb{N}$  4)  $\frac{2^{2n-1}}{n!} \forall n \in \mathbb{N}$ 

6.  $C_0 + \frac{C_1}{2}(4) + \frac{C_2}{3}(16) + \dots + \frac{C_n}{n+1}(2^{2n}) =$ 

- 1)  $\frac{5^{n+1}+1}{n-1}$  2)  $\frac{5^{n+1}-1}{4(n+1)}$  3)  $\frac{5^{n+1}+1}{4(n+1)}$  4)  $\frac{5^{n+1}+1}{4(n-1)}$

7. Let  $P_n$  denote product of binomial coefficients in  $(1+x)^n$  then  $\frac{P_{n+1}}{P_n}$  =

- 1)  $\frac{(n+1)^n}{n!}$  2)  $\frac{(n+1)^{2n}}{n!}$
- 3)  $\frac{(n+1)^{2n}}{(n!)^2}$  4)  $\frac{(n+1)^n}{(n!)^2}$

8.  $C_0^2 - C_1^2 + C_2^2 - \dots - C_{15}^2 =$ 

3) 3

4) 0

9. If  $C_K$  is the coefficient of  $x^K$  in  $(1+x)^{2005}$  and if  $a,d \in R$  then  $\sum_{K=0}^{2005} (a+Kd) \cdot C_K =$ 

- 1) (2a + 2005d)  $2^{2004}$  2) (2a + 2005d)  $2^{2005}$  3) (2a + 2004d)  $2^{2005}$  4) (2a + 2004d)  $2^{2005}$

10.  $1^{-20}C_1 - 2^{-20}C_2 + 3^{-20}C_3 - \dots - 20^{-20}C_{20} =$ 

4) 0

11.  $({}^{3}C_{3} + {}^{4}C_{3} + {}^{5}C_{3} + \dots + {}^{n}C_{3}) \times ({}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n}) =$ 

- $1)^{-(n+1)}C_4\cdot (2^n-n-1) \qquad 2)^{-(n-1)}C_4\cdot (2^n-n-1) \qquad 3)^{-(n-1)}C_4\cdot (2^n-n+1) \qquad 4)^{-(n-1)}C_4\cdot (2^n+n+1)$

12. The sum  $S_{10} = \sum_{k=0}^{10} (-1)^{k} {}^{30}C_k$  is

- 1) 29Co
- 2)  ${}^{29}C_{10}$
- 3)  ${}^{31}C_{11}$

13. The value of  ${}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + {}^{20}C_3 + {}^{20}C_4 + {}^{20}C_{12} + {}^{20}C_{13} + {}^{20}C_{14} + {}^{20}C_{15}$  equals to

1)  $2^{19} - \frac{\left(^{20}C_{10} + ^{20}C_{9}\right)}{2}$ 

2)  $2^{19} - \frac{\left({}^{20}C_{10} + 2 \times {}^{20}C_{9}\right)}{2}$ 

3)  $2^{19} - \frac{^{20}C_{10}}{^{2}}$ 

4) none

- 14. If *n* is a positive integer and  $C_k = {}^nC_k$  then the value of  $\sum_{k=1}^n k^3 \left(\frac{C_k}{C_{k+1}}\right)^2 =$
- 1)  $\frac{n(n+1)(n+2)}{12}$  2)  $\frac{n(n+1)^2(n+2)}{12}$  3)  $\frac{n(n+1)(n+2)^2}{12}$  4)  $\frac{n(n+1)}{2}$
- 15. Coefficient of  $x^{10}$  in  $(1+2x)^{21} + (1+2x)^{22} + \dots + (1+2x)^{30}$  is
  - 1)  $2^{10} \left( {}^{31}C_{11} {}^{21}C_{11} \right)$  2)  $2^{10} \left( {}^{30}C_{11} {}^{21}C_{11} \right)$  3)  $2^{9} \left( {}^{31}C_{11} {}^{21}C_{11} \right)$  4)  ${}^{31}C_{11}$

- 16. If a, b, c are in A.P then the sum of the coefficients of  $[1+(ax^2-2bx+c)^2]^{2009}$  is
  - 1) -2

2) -1

- 17. If  $a_1$ ,  $a_2$ ,  $a_3$ ..... $a_n$  are in A.P. with  $S_n$  as the sum of first 'n' terms ( $S_0$ =0), then  $\sum_{k=0}^{n} {^nC_kS_k} = 0$ 
  - 1)  $2^{n-2} [na_1 + s_n]$  2)  $2^n [a_1 + s_n]$
- 3)  $2[na_1+s_n]$
- 4)  $2^{n-1}[a_1+s_n]$

- 18. If  $\sum_{r=0}^{n} \left\{ \frac{{}^{n}C_{r-1}}{{}^{n}C_{r} + {}^{n}C_{r-1}} \right\} = \frac{25}{24}$ , then *n* is equal to

- 4) 6
- 19. For n > 3, 1.2  ${}^{n}C_{r} 2.3 {}^{n}C_{r-1} + \dots + (-1)^{r} (r+1)(r+2) =$ 
  - 1)  $^{n-3}C_{c}$
- 2) 2. <sup>n-3</sup>C.
- 3)  $^{n+3}C_{r+1}$
- 4)  $^{n-2}C$

- 20. Sum of the coefficients of  $(x+2y+z)^{10}$ =
  - $1) 4^5$

 $2).5^{4}$ 

- 3) 410
- 21. If  $(1+x)(1+x+x^2)(1+x+x^2+x^3)$ ......  $(1+x+x^2+.....+x^{n-1})=a_0+a_1x+a_2x^2+.....+a_mx^m$  then  $a_0 + a_1 + \dots + a_m =$ 
  - 1) n!

- 2) 2n!
- 3) 3n!
- 4) 4n!

- 22.  $(1+x)^{15} = a_0 + a_1 x + \dots + a_{15} x^{15} \Rightarrow \sum_{r=1}^{15} r \frac{a_r}{a_{r-1}} =$ 
  - 1) 110
- 2) 115
- 3) 120
- 4) 135

### LEVEL-II (ADVANCED)

### Single answer type questions

- 1. If the sum of the coefficients in the expansion of  $(b+c)^{20}[1+(a-2)x]^{20}$  is equal to square of the sum of the coefficients in the expansion of  $[2bcx - (b + c)y]^{10}$  where a, b, c are positive constants, then
  - a)  $a \ge \sqrt{bc}$
- b)  $\frac{b+c}{2} \ge a$  c) c, a and b are in G.P. d)  $\frac{1}{c}$ ,  $\frac{1}{a}$ ,  $\frac{1}{b}$  are in H.P.
- 2. Coefficient of  $x^{10}$  in  $(1+2x)^{21} + (1+2x)^{22} + \dots + (1+2x)^{30}$  is
  - a)  $2^{10} \left( {}^{31}C_{11} {}^{21}C_{11} \right)$  b)  $2^{10} \left( {}^{30}C_{11} {}^{21}C_{11} \right)$  c)  $2^{9} \left( {}^{31}C_{11} {}^{21}C_{11} \right)$  d)  ${}^{31}C_{11}$

- 3. If  $(1+x+x^2)^{100} = \sum_{r=0}^{200} a_r x^r$  which of the following is true
- b)  $a_{56} = a_{144}$
- d)  $a_{14} = a_{128}$
- 4.  $\sum \left(\frac{11-3r}{11-r}\right)^{10} \frac{C_r}{2^r}$  is  $\frac{1}{k}$  then the sum of the digits of k is

- d) 17
- 5. The value of  ${}^{404}C_4 {}^4C_1$ .  ${}^{303}C_4 + {}^4C_2$ .  ${}^{202}C_4 {}^4C_3$ .  ${}^{101}C_4 =$
- b) (101)4

- d) 1
- 6. If  $a_n = \sum_{k=0}^n \frac{(\log_e 10)^n}{k!(n-k)!}$  for  $n \ge 0$  then  $a_0 + a_1 + a_2 + a_3 + \dots$  upto  $\infty$  equal to

- d) 104

- 7.  $\sum_{r=1}^{10} C_r \cdot \frac{2^{r+1}}{r+1} = \text{ (where } C_r = {}^{10}C_r \text{)}$ 
  - a)  $\frac{3^{11}}{11}$

- b)  $\frac{2^{11}}{11}$  c)  $\frac{3^{11}-1}{11}$
- d)  $\frac{2^{11}-1}{11}$

- 8. The value of  $\sum_{r=0}^{n} r(n-r) {n \choose r}^2$  is equal to

- b)  $n^2 \cdot {}^{2n-2}C_n$  c)  $n^2 \cdot {}^{2n}C_{n-1}$  d)  $n^2 \cdot {}^{2n-1}C_n$
- 9. If n > 3 then  $xy.C_0 (x-1)(y-1).C_1 + (x-2)(y-2).C_2 (x-3)(y-3).C_3 + ... + (-1)^n(x-n)(y-n).C_n = 0$ 
  - a)  $xy \times 2^n$

- 10. The coefficient of  $x^{50}$  in the expansion of  $(1+x)^{1000}+2x(1+x)^{999}+3x^2(1+x)^{998}+....+1001x^{1000}=$
- c)  $^{1005}C_{50}$
- 11. The coefficient of  $x^{n-1}$  in the expansion of  $(1+2x+3x^2+4x^3+...+nx^{n-1})^2$  is

- 12.  $\sum_{K=1}^{10} \frac{(-1)^{K-1}}{K} \cdot \left(10_{C_k}\right) =$ 
  - a)  $1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{11}$

b)  $1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{10}$ 

c)  $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{9}$ 

d)  $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{12}$ 

- 13.  $\sum_{r=0}^{n} \frac{n-3r+1}{n-r+1} \frac{{}^{n}C_{r}}{2^{r}}$  is equal to
  - a)  $\frac{1}{2^n}$
- b)  $\frac{1}{2^n}$
- c)  $\frac{1}{4^n}$  d)  $\frac{1}{2^n} + 1$

### OBJECTIVE MATHEMATICS II A - Part 2

- 14. The value of  $\sum_{r=0}^{n} \sum_{s=1}^{n} {}^{n}C_{s}{}^{s}C_{r}$  is
- c) 3<sup>n</sup>

- 15. If p > 0, x > 0,  $p \ne 1$  and  $(1-p)(1+3x+9x^2+27x^3+81x^4+243x^5)=(1-p^6)$  then  $\frac{p}{x} = 1$ 
  - a)  $\frac{1}{2}$

b) 3

c)  $\frac{1}{2}$ 

- d) can not be determined
- 16. If a, b, c are in A.P then the sum of the coefficients of  $[1+(ax^2-2bx+c)^2]^{2009}$  is
  - a) -2

- 17. If  $a_1, a_2, a_3, \dots, a_n$  are in A.P. with  $S_n$  as the sum of first 'n' terms  $(S_0 = 0)$ , then  $\sum_{k=0}^{n} {}^{n}C_kS_k = 0$ 
  - a)  $2^{n-2} [na_1 + s_n]$
- b)  $2^{n} [a_1 + s_n]$
- c)  $2[na_1 + s_n]$

#### More than one correct answer type questions

- 18. The value of  $\frac{{}^{n}C_{0}}{n} + \frac{{}^{n}C_{1}}{n+1} + \frac{{}^{n}C_{2}}{n+2} + \dots + \frac{{}^{n}C_{n}}{2n}$  is equal to
- a)  $\int_{0}^{1} x^{n-1} (1-x)^{n} dx$  b)  $\int_{0}^{1} x^{n-1} (1+x)^{n} dx$  c)  $\int_{0}^{2} x^{n-1} (1+x)^{n} dx$  d)  $\int_{0}^{2} x^{n} (x-1)^{n-1} dx$
- 19. If  $(1+x)^n (1+x^2)^2 = \sum_{k=0}^{n+4} a_k x^k$  and  $a_1$ ,  $a_2$ ,  $a_3$  are in A.P then n=

- 20. If  $C_r = {}^nC_r$ , then the sum of the series  $S = C_0^2 + \frac{(C_1)^2}{2} + \frac{(C_2)^2}{3} + \dots$  upto (n+1) terms is
  - a)  $\frac{2^{n+1}C_{n+1}}{n+1}$
- b)  $\frac{2n+2}{2(n+1)}$  c)  $\frac{2n+1}{n+1}$

### Linked comprehension type questions

#### Passage - I:

When  $n \in N$ ,  $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_rx^r + \dots + C_nx^n$  where  $C_r = {}^nC_r$ .

- 21. If  $\frac{C_0}{2^n} + 2 \cdot \frac{C_1}{2^n} + 3 \cdot \frac{C_2}{2^n} + \dots + \frac{(n+1)C_n}{2^n} = 16$  then n = 1
  - a) 22

- c) 30
- d) 16

- 22.  $\sum_{r=0}^{2n} (-1)^r \frac{8^r}{49^n} {}^{2n}C_r$  is equal to

- c)  $\left(\frac{64}{49}\right)^n$
- d) 0
- 23. If  ${}^{2n}C_0 + {}^{2n}C_1 + {}^{2n}C_2 + \dots + {}^{2n}C_{2n} = ({}^{n}C_0 + {}^{n}C_0 + {}^{n}C_0 + \dots + {}^{n}C_0)^k$  then  ${}^{k}C_0 + {}^{k}C_1 + \dots {}^{k}C_k = a$  1 b) 4 c) 8 d) 16

#### Passage - II:

Let C denotes coefficient of 'x' in the expansion of  $(1+x)^{100}$  and

Let  $S_1 = \sum_{0 \le i \le 100} \sum_{j \le 100} C_i C_j$ ,  $S_2 = \sum_{0 \le i \le 100} \sum_{j \le 100} C_i C_j$ ,  $S_3 = \sum_{0 \le i = 100} \sum_{j \le 100} C_i C_j$ , then

- 24. The value of  $S_i$  is
- a)  $2^{100} {}^{200}C_{100}$  b)  $2^{200} {}^{200}C_{100}$  c)  $\frac{2^{200} {}^{200}C_{100}}{2}$
- d) None

- The value of  $S_2$  is

  - a)  $2^{100} {}^{200}C_{100}$  b)  $\frac{2^{200} {}^{200}C_{100}}{2}$  c)  $2^{200} {}^{200}C_{100}$
- d) None
- 26. If  $S_1 + S_2 + S_3 = a^b$ ,  $a, b \in N$  then least value of (a+b) is

d) 52

#### Matrix matching type question

27. COLUMN - I COLUMN - II

A) The sum  $\sum_{k=0}^{n} \sum_{k=0}^{n} (-1)^{k} {}^{n}C_{r}$ .  ${}^{r}C_{k} a^{r}$  is

- p) 1
- B) The sum  ${}^{404}C_4 {}^4C_1$ .  ${}^{303}C_4 + {}^4C_2$ .  ${}^{202}C_4 {}^4C_3$ .  ${}^{101}C_4 + {}^4C_4$ equals to  $(101)^k$ , where k is
- C)  $\frac{T_2}{T_3}$  in the expansion of  $(a + b)^n$  and  $\frac{T_3}{T_s}$  in

r) 5

- the expansion of  $(a + b)^{n+3}$  are equal, if n is
- s) 4
- D) The remainder when 22009 is divided by 17 is
- 28. Consider  $(1+x+x^2)^{2n} = \sum_{n=0}^{4n} a_n x^n$ , where  $a_0$ ,  $a_1$ ,  $a_2$ , .....,  $a_{4n}$  are real numbers and n is a +ve integer

#### COLUMN - I

COLUMN - II

A) The value of  $\sum_{r=0}^{n-1} a_{2r}$  is

p)  $(2n+1)C_2$ 

B) The value of  $\sum_{r=1}^{n} a_{2r-1}$ 

q)  $\frac{3^{2n}-1}{4}$ 

C) The value of  $a_2$  is

r)  $\frac{9^n - 2a_{2n} + 1}{4}$ 

D) The value of  $a_{4n-1}$ 

s) 2n

## OBJECTIVE MATHEMATICS II A - Part 2

#### Integer answer type questions

- 29. The sum of the series  $3^{-2007}C_0 8^{-2007}C_1 + 13^{-2007}C_2 18^{-2007}C_3 + ....$  up to 2008 terms is K, then K
- 30. Given  ${}^{8}C_{1}x(1-x)^{7} + 2 {}^{.8}C_{2}x^{2}(1-x)^{6} + 3 {}^{.8}C_{3}x^{3}(1-x)^{5} + \dots + 8 {}^{.}x^{8} = ax + b$ , then a + b = ax + b
- 31. Let  $1 + \sum_{r=1}^{10} (3^r \cdot {}^{10}C_r + r \cdot {}^{10}C_r) = 2^{10}(\alpha \cdot 4^5 + \beta)$  where  $\alpha, \beta \in N$  and  $f(x) = x^2 2x k^2 + 1$  if  $\alpha, \beta$  lies between the roots of f(x) = 0, then the smallest positive integral value of k is

|          | ***             | KEY SH        | IEET (PF       | RACTIC          | E SHEE       | T) •:•          |              |              |
|----------|-----------------|---------------|----------------|-----------------|--------------|-----------------|--------------|--------------|
|          |                 |               | EXER           | CISE-I          |              |                 |              |              |
| LEVEL-I  | 01) 1           | 02) 3         | 03) 4          | 04) 4           | 05) <b>1</b> | 06) 1           | 07) 2        | 08) 3        |
|          | 09) 4           | 10) 3         | 11) <b>1</b>   | 12) 2           | 13) 2        | 14) 4           | 15) 4        | 16) 2        |
|          | 17) 3           | 18) <b>1</b>  | 19) 3          | 20) 3           | 21) 1        | 22) 4           | 23) 4        | 24) <b>2</b> |
|          | 25) <b>3</b>    | 26) 1         | 27) 3          |                 |              |                 |              |              |
| LEVEL-II | 01) a           | 02) a         | 03) <b>c</b>   | 04) a           | 05) <b>b</b> | 06) <b>b</b>    | 07) <b>d</b> | 08) <b>c</b> |
|          | 09) <b>c</b>    | 10) a         | 11) b          | 12) <b>d</b>    | 13) <b>b</b> | 14) b           | 15) <b>d</b> | 16) bc       |
|          | 17) ab          | 18) cd        | 19) abc        | 20) <b>b</b>    | 21) b        | 22) c           | 23) d        | 24) d        |
|          | 25) <b>A-</b> p | ;B-p;C-p      | ;D-q           | 26) <b>A-</b> ı | ;B-q;C-c     | ;D-r            | 27) 3        | 28) 8        |
|          | 29) <b>3</b>    | 30) <b>0</b>  | 31) 2          | 32) 4           | 33) 6        | 34) 1           |              |              |
|          |                 |               | EXER           | CISE-II         |              |                 |              |              |
| LEVEL-I  | 01) 3           | 02) 3         | 03) 1          | 04) 4           | 05) <b>1</b> | 06) 2           | 07) <b>1</b> | 08) 4        |
|          | 09) 1           | 10) 4         | 11) 1          | 12) <b>2</b>    | 13) <b>2</b> | 14) 2           | 15) <b>1</b> | 16) <b>1</b> |
|          | 17) 1           | 18) 3         | 19) 2          | 20) 3           | 21) 1        | 22) 3           |              |              |
| LEVEL-II | 01) <b>b</b>    | 02) a         | 03) <b>b</b>   | 04) a           | 05) <b>b</b> | 06) <b>b</b>    | 07) c        | 08) <b>b</b> |
|          | 09) <b>d</b>    | 10) a         | 11) c          | 12) b           | 13) a        | 14) a           | 15) <b>b</b> | 16) <b>a</b> |
|          | 17) a           | 18) <b>bd</b> | 19) ab         | 20) abo         | d 21) c      | 22) b           | 23) <b>b</b> | 24) c        |
|          | 25) <b>b</b>    | 26) a         | 27) <b>A-p</b> | ;B-s;C-r        | ;D-q         | 28) <b>A-</b> r | ;B-q;C-p;    | D-s          |
|          | 29) 0           | 30) 8         | 31) 5          |                 |              |                 |              |              |

### ADDITIONAL EXERCISE +:

### LECTURE SHEET (ADVANCED)

#### Single answer type questions

- 1. Given  $(1-x^3)^n = \sum_{k=0}^n a_k x^k (1-x)^{3n-2k}$  then the value of  $3.a_{k-1} + a_k$  is
- c)  $^{(n+1)}C_{k}.3^{k-1}$  d)  $^{n}C_{k-1}.3^{k}$

- 2. The constant term in the expansion of  $\left(1+x+\frac{2}{x}\right)^{\alpha}$  is
  - a) 479

- 3. If  $(1+x)^n = \sum_{r=0}^n C_r x^r$  then the value of  $\frac{2^2 C_0}{1.2} + \frac{2^3 C_1}{1.2} + \frac{2^4 C_2}{3.4} + \dots + \dots + \frac{2^{n+2} C_n}{(n+1)(n+2)}$  equals
  - a)  $\frac{3^{n+2}-2n-5}{(n+1)(n+2)}$  b)  $\frac{3^n-2n-5}{n(n+2)}$  c)  $\frac{3^{n+1}+2n-5}{(n+1)(n+2)}$

- d) None of these
- 4. The value of the series, if  $C_0$ ,  $C_1$  ...  $C_n$  are binomial coefficients in  $(1+x)^n$ , then  $C_0 - \frac{C_1 2^3}{2} + \frac{C_2 2^6}{2} - \frac{C_3 2^9}{4} + \dots$  up to (n+1) terms equal
  - a)  $\frac{2^{n+1}-1}{1}$
- b)  $\frac{1-(-7)^{n+1}}{8(n+1)}$  c)  $\frac{1-(-7)^{n+1}}{3(n+1)}$
- d) None of these
- 5. The sum of the coefficients of all odd exponents of x in the product of
  - $(1-x+x^2-x^3+x^4+...-x^{49}+x^{50})\times(1+x+x^2+x^3+....+x^{50})$  equals

- d) None of these
- 6. If  $(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r = a_0 + a_1 x + a_2 x^2 + ... + a_1^{2n} x^{2n}$  and

$$P = a_0 + a_3 + a_6 + \dots$$
;  $Q = a_1 + a_4 + a_7 + \dots$ ;  $R = a_2 + a_5 + a_8 + \dots$ 

then the set of values of P,Q are respectively equals

- b)  $(3^n, 3^n, 3^n)$
- c)  $(3^{n+1}, 3^{n+1}, 3^{n+1})$  d)  $(3^{n-1}, 3^{n-1}, 3^{n-1})$
- 7. The coefficient of  $x^2y^2$ ,  $yzt^2$  and xyzt in the expansion of  $(x + y + z + t)^4$  are in the ratio
  - a) 4:2:1
- b) 2:4:1
- d) 2:3:4
- 8. If  $(1+x+x^2+x^3)^{100} = \sum_{r=0}^{300} b_r x^r$  and  $k = \sum_{r=0}^{300} b_r$  then  $\sum_{r=0}^{300} r b_r$  is
  - a) 50.4100
- b) 150.4100
- d) none of these

### OBJECTIVE MATHEMATICS II A - Part 2 \*\*\* \*\*\* BINOMIAL THEOREM

- 9. The coefficient of  $t^8$  in the expansion of  $(1+2t^2-t^3)^9$  is
  - a) 1680
- b) 2140
- d) 2730
- 10. The largest integer k such that  $3^k$  divides  $2^{3^n} + 1$ ,  $n \in N$  is

- 11. If coefficients of  $x^{20}$  in  $(1 + x x^2)^{20}$  and  $(1 + x + x^2)^{20}$  are respectively a and b, then

- 12.  $(1+x)(1+x+x^2)(1+x+x^2+x^3)....(1+x+x^2+.....+x^{100})$  when written in the ascending power of x then the highest exponent of x is
  - a) 505

- b) 5050
- c) 100
- d) 50
- 13. The coefficient of  $x^{20}$  in the product  $(1-x)(1-2x)(1-2^2x)(1-2^3x) \cdots (1-2^{21}x)$  is equal to given

that 
$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{21}} = p$$
 and  $1 + \frac{1}{2} + \frac{1}{2^4} + \dots + \frac{1}{2^{42}} = q$ 

- b)  $2^{230}(p^2-q)$  c)  $2^{230}(q-p^2)$
- d)  $2^{232}(p^2-q)$

#### More than one correct answer type questions

- 14. If  $(1-x+x^2)^n = a_0 + a_1x + a_2x^2 + ... + a_{2n}x^{2n}$  where  $a_0, a_1, a_2, ..., a_{2n}$  are in A.P then

- a)  $a_n = \frac{1}{2n+1}$  b)  $a_n = \frac{1}{2n-1}$  c)  $a_{2n} = \frac{1-2n}{2n+1}$  d)  $a_{2n} = \frac{1+2n}{2n+1}$
- 15. If  $f(m) = \sum_{i=0}^{m} {30 \choose 30-i} {20 \choose m-i}$  where  ${p \choose q} = {}^{p}C_{q}$  then
  - a) Maximum value of f(m) is  ${}^{50}C_{25}$
- b)  $f(0) + f(1) + \dots + f(50) = 2^{50}$
- c) f(m) is always divisible by 50
- d) The value of  $\sum_{m=0}^{50} [f(m)]^2 = {}^{100}C_{50}$
- 16. The value of  $\sum_{k=0}^{7} \left| \frac{\binom{r}{k}}{\binom{14}{k}} \sum_{r=k}^{14} \binom{r}{k} \binom{14}{r} \right|$ , where  $\binom{n}{r}$  denotes  $\binom{n}{r}$ , is
  - a) 67

- b) greater than 7<sup>6</sup> c) 8<sup>7</sup>

d) greater than 78

#### Linked comprehension type questions

#### Passage - I:

If  $(1+x)^n = \sum_{r=0}^n {^nC_r}x^r$  and  $\sum_{r=0}^n \frac{1}{{^nC_r}} = S_n$ ,  $n \in N, r = 0, 1, 2, ...n$  Based on the above information answer the following

- 17. The value of  $\sum_{n \in I_{n} \cap C_{n}} \sum_{n \in I_{n}} \left( \frac{1}{{}^{n}C_{n}} + \frac{1}{{}^{n}C_{n}} \right)$  is equal to

- b)  $\frac{(n-1)S_n}{2}$  c)  $\frac{nS_n}{2}$
- d)  $(n-1)S_n$

### BINOMIAL THEOREM ....

### OBJECTIVE MATHEMATICS II A - Part 2

18. Then the value of  $\sum_{0 \le i \le n} \sum_{n \le j \le n} \left[ \frac{i}{{}^{n}C_{i}} + \frac{j}{{}^{n}C_{j}} \right]$  is equal to

a) 
$$\frac{n^2S_n}{2}$$

b) 
$$\frac{n^2}{2S_n}$$

c) 
$$\frac{n}{2}S_n$$

d) None

19. The value of  $\sum_{r=1}^{n} \frac{1}{r(^{n}C_{r})}$  equals

a) 
$$\frac{1}{n}S_n$$

b) 
$$\frac{1}{n}S_{n-1}$$

c) 
$$\frac{1}{n-1}S_n$$

d) 
$$\frac{1}{n-1}S_{n-1}$$

Passage - II:

If  $(1 + px + x^2)^n = 1 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$ , where  $n \in \mathbb{N}$ ,  $p \in \mathbb{R}$ ,  $a_r = Co$  -efficient of  $x^r$ .

20. If n = 40, p = 3, r = 5 then which of the following is true.

a) 
$$135a_5 = 6a_6 + 4a_4$$

b) 
$$105a_5 = 6a_6 - 76a_4$$

c) 
$$105a_5 = 6a_6 - 36a_4$$

a)  $135a_5 = 6a_6 + 4a_4$  b)  $105a_5 = 6a_6 - 76a_4$  c)  $105a_5 = 6a_6 - 36a_4$  d)  $135a_5 = 6a_6 - 36a_4$ 

21. The remainder obtained when  $a_1 + 5a_2 + 9a_3 + 13a_4 + \dots + (8n-3)a_{2n}$  is divided by (p + 2) is

22. If p = -3 and n is even number, the value of  $a_1 + 3a_2 + 5a_3 + 7a_4 + \dots + (4n-1)a_{2n}$  is

b) 
$$2n - 1$$

c) 
$$2n - 1$$

Matrix matching type questions

COLUMN - I 23.

COLUMN - II

A) 
$$\sum_{0 \le i < j \le n} (i+j) (C_i \cdot C_j)$$
 is

B) 
$$\sum_{0 \le i < j \le n} \sum ({}^{n}C_{i} + {}^{n}C_{j})$$
 is equal to

C) 
$$\sum_{0 \le i < j \le n} \sum_{n} i \binom{n}{i} C_j$$
 is equal to

r) 
$$n(n-1)2^{n-3}$$

D) 
$$\sum_{r=0}^{n} r(^{n}C_{r})$$
 is equal to

s) 
$$\frac{n}{2} \cdot \left[ 2^{2n} - ^{2n} C_n \right]$$

COLUMN - I 24.

COLUMN - II

A) The number of zeros at the end of the sum  $101^{11} - 1$ 

p) 11

B) The number of terms in the expansion of 
$$\left(2x^{\frac{1}{3}} + 3y^{-\frac{1}{3}} - 2z\right)^n$$

q) 2

C) If 
$$\sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}} = \sum_{r=0}^{n} \frac{7}{{}^{n}C_{r}}$$
, Then  $n =$ 

D) If 
$$\frac{1}{1!9!} + \frac{1}{3!7!} + \frac{1}{5!5!} + \frac{1}{7!3!} + \frac{1}{9!1!} = \frac{2^n}{10!}$$
. Then  $n =$ 

#### Integer answer type questions

- 25.  $S = {}^{3}C_{0} {}^{4}C_{1} \cdot \frac{1}{2} + {}^{5}C_{2} \left(\frac{1}{2}\right)^{2} {}^{6}C_{3} \left(\frac{1}{2}\right)^{3} + \dots$ . If  $S = \left(\frac{2}{3}\right)^{k}$  then value of k is
- 26.  $\sum_{k=0}^{\infty} \sum_{i=1}^{k} {1 \choose i} {k \choose i} =$
- 27. If  $(1 + x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$ , then  $\begin{vmatrix} a_{n-3} & a_{n-1} & a_{n+1} \\ a_{n-6} & a_{n-3} & a_{n+3} \\ a_{n-14} & a_{n-7} & a_{n+7} \end{vmatrix}$  is
- 28. The value of  $\underset{n\to\infty}{Lt} \sum_{r=1}^{n} \left[ \sum_{r=1}^{r-1} \frac{1}{5^n} {^nC_r} \cdot {^rC_l} \cdot 3^t \right]$
- 29. If  $x + \frac{1}{x} = 1$  and  $p = x^{4000} + \frac{1}{x^{4000}}$  and q be the digit at unit place in the number  $2^{2^n} + 1, n \in \mathbb{N}$  and

#### PRACTICE SHEET (ADVANCED)

#### Single answer type questions

- 1. The greatest integer less than the number  $\left(\frac{2011}{2010}\right)^{2010}$  is

- d) 2
- 2. For all  $n \in N$ ,  $[(\sqrt{3} + 1)^{2n}] + 1$  is divisible by ....... [.] = G.I.F

- b)  $3^{n+1}$
- d) None
- 3. If  $n \in N$ , then  $121^n 25^n + 1900^n (-4)^n$  is divisible by
- b) 2000
- d) 2006
- 4. The coefficient of  $x^8$  in the expansion of  $\left[1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!}+\frac{x^8}{8!}\right]^2$  is
  - a)  $\frac{1}{315}$
- b) 315
- c) 8!

- d) 27
- 5. The coefficient of  $x^r$  is  $(x+2)^n + (x+2)^{n-1} \cdot (x+1) + (x+2)^{n-2} \cdot (x+1)^2 + \dots + (x+1)^n$  is
  - a) "C.
- b)  $^{n+1}C_{s}(2^{n+1-r}-1)$  c)  $n^{r}$

- d) 2n
- 6. Sum of the coefficients of the terms of degree m in the expansion of  $(1+x)^n (1+y)^n (1+z)^n$  is
  - a)  $({}^{n}C_{m})^{3}$
- b)  $3(^{n}C_{m})$
- d)  $^{3n}C_m$
- 7. If  $\omega \neq 1$  is a cube root of unity and  $(\omega + x)^n = 1 + 12\omega + 69\omega + ...$  then the values of n and x are respectively
  - a) 36, 1

- d) 18,  $\frac{1}{2}$
- 8. Then sum  $S_n = \sum_{k=0}^n (-1)^k \cdot {}^{3n}C_k$ , where  $n = 1, 2, \dots$  is
- b)  $(-1)^n \cdot {}^{3n-1}C_n$  c)  $(-1)^n \cdot {}^{3n-1}C_{n+1}$
- d) None of these

#### More than one correct answer type questions

- 9. If the 4<sup>th</sup> term in the expansion of  $\left(2+\frac{3x}{8}\right)^{10}$  has the maximum numerical value, then x can lie in the
  - a)  $\left(2, \frac{64}{21}\right)$
- b)  $\left(-\frac{60}{23}, -2\right)$  c)  $\left(-\frac{64}{21}, -2\right)$  d)  $\left(2, -\frac{60}{23}\right)$

- 10. If  $(1+x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$ , then
  - a)  $a_0 a_2 + a_4 a_6 + \dots = 0$ , if *n* is odd
- b)  $a_1 a_3 + a_5 a_7 + \dots = 0$ , if *n* is even

  - c)  $a_0 a_2 + a_4 a_6 + \dots = 0$ , if n = 4p,  $p \in I^+$  d)  $a_1 a_3 + a_5 a_7 + \dots = 0$ , if n = 4p + 1,  $p \in I^+$
- 11. If  $x \in R$ , and  $S = 1 C_1 \frac{1+x}{1+nx} + C_2 \frac{1+2x}{(1+nx)^2} C_3 \frac{1+3x}{(1+nx)^3} + \dots$  upto (n+1) terms then S
  - a) equals  $x^2$
- b) equals 1
- c) equals 0
- d) is independent of x

#### Linked comprehension type questions

#### Passage - I:

If 
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + C_n x^n$$
 then

- 12. The sum of the products of the binomial coefficients  $C_0, C_1, \dots, C_n$  taken two at a time is
  - a)  $2^{2n} {}^{2n}C_n$
- b)  $\frac{1}{2}(2^{2n}-2^{n}C_n)$  c)  $\frac{1}{2}(2^{2n}-2n)$  d)  $2^{2n-1}-2^{n}C_n$

- 13.  $\sum \sum_{0 \le i < j \le n} (C_i + C_j)^2 =$ 
  - a)  $(n-1)^{2n}C_n + 2^{2n}$  b)  $(n-1)^{2n}C_n 2^{2n}$  c)  $n^{2n}C_n 2^{2n}$  d)  $n^{2n}C_n + 2^{2n}$

- 14.  $\sum_{i=1}^{n} \sum_{j=1}^{n} (C_i C_j)^2 =$ 
  - a)  $(n-1)^{2n}C_n + 2^{2n}$  b)  $(n+1)^{2n}C_n 2^{2n}$  c)  $n^{2n}C_n 2^n$  d)  $n^{2n}C_n 2^n$

### Passage - II:

Consider the binomial expression  $(1+x)^n = \sum_{r=0}^n a_r x^r$  where  $a_p$ ,  $a_2$ ,  $a_3$  are in arithmetic progression. Consider the binomial expression  $A = (\sqrt[3]{2} + \sqrt[4]{3})^{14n}$  the expansion of A contains some rational terms  $T_{\alpha_1}, T_{\alpha_2}, T_{\alpha_3}, \dots, T_{\alpha_m}$  ( $\alpha_1 < \alpha_2 < \dots, \alpha_m$ ) Based on the above information answer the following

- 15. The value of  $a_1 + a_2 + a_3$ 
  - a) 60

b) 63

c) 70

- d) none
- 16.  $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_m$  are in arithmetic progression then the common difference of the A.P is

- b) 12
- c) 8

d) 14

- 17. The value of  $\alpha_m$  is

- b) 92
- c) 93

d) none

#### Matrix matching type questions

18. COLUMN - I

COLUMN - II

A) If 
$$\sum_{r=0}^{n} \left( \frac{{}^{n}C_{r-1}}{{}^{n}C_{r} + {}^{n}C_{r-1}} \right)^{3} = \frac{25}{24}$$
 then  $n = 1$ 

p) 2

B) The digit in the units place of the number 3400

q) 0

C) For integer n > 1, the digit in units place

r) 1

in the number  $\sum_{r=0}^{100} r! + 2^{2^n}$  is

D) The sum of the coefficients in the expansion

s) 5

 $(2-3cx+c^2x^2)^{12}$  vanishes then c is

Integer answer type questions

19. Let  $\lambda$  denote the term independant of x in the expansion of  $\left(x + \frac{\sin\left(\frac{1}{n}\right)}{x^2}\right)^{3n}$  then  $\int_{n \to \infty}^{n} \left(\frac{\lambda \cdot n!}{(3n)P_n}\right) = 1$ 

20. The value  $\lim_{n\to\infty} \sum_{t=0}^{n} \left[ \sum_{r=1}^{r-1} \frac{1}{7^n} . n_{c_r} . r_{c_t} . 5^t \right]$  is equal to

21. If  $\sum_{r=0}^{n} \frac{r+2}{r+1} {}^{n}C_{r} = \frac{2^{8}-1}{6}$  then *n* is equal to

22. The value of  $99^{50} - 99.98^{50} + \frac{99.98}{12}(97)^{50} + ... + 99 is$ 

23. The sum of the series  $3^{-2007}C_0 - 8^{-2007}C_1 + 13^{-2007}C_2 - 18^{-2007}C_3 + ...$  up to 2008 terms is K, then K is

## \*\* KEY SHEET (ADDITIONAL EXERCISE)

### LECTURE SHEET (ADVANCED)

- 1) b 2) d
- 3) a
- 4) b
- 5) b
- 6) d
- 7) c
- 10) a

- 11) c 12) b
- 13) b
- 14) ac
- 15) abd 16) ab 17) a
- 18) a
- 19) a 20) b

- 21) c 22) d
- 23) A-s;B-p;C-r;D-q
- 24) A-q;B-p;C-s;D-r
- 25) 4 26) 2

- 27)028) 1
- 29)6

### PRACTICE SHEET (ADVANCED)

- 1) d 2) a
- 3) b
- 4) a
- 5) b
- 6) d
- 7) c
- 8) b 9) ac 10) ab

11) cd 12) b

20) 1

19) 0

- 13) a 21)5
- 14) b 22)0
- 15) b 23)0
- 16) b
- 17) c
- 18) A-s;B-r;C-q;D-pr