

Semester: February 2021 – June 2021 Examination: ESE Examination						
Programme code: 01 Programme: B.TECH		C	lass: FY	Semester: II (SVU 2020)		
Name of the Constituent College: K. J. Somaiya College of Engineering			Name of the Department COMP/ETRX/EXTC/IT/MECH			
Course Code: 116U06C108	Name of the Course: Applied Mathematics – II					
Duration: 1 Hour 45 Minutes	Maximum Marks: 50					
Instructions:						
1)Draw neat diagrams 2) Assume suitable data if necessary						

Question No.		Max Marks		
Q1 (A)	Choose One correct Option for the following Questions (2 marks Each)	10		
(i)	If t^n is an integrating factor for the differential equation			
	$(t^2 + y^2 + 1)dt - 2ty dy = 0 \text{ then value of } n \text{ is}$			
	(a) 2 (b) -2 (c) 3 (d) -3			
(ii)	Expansion of $2x^3 + 7x^2 + x - 1$ in powers of $(x - 2)$ is			
	(a) $45 + 53(x - 2) + 19(x - 2)^2 + 2(x - 2)^3 + \cdots$			
	(b) $45 - 53(x - 2) + 19(x - 2)^2 - 2(x - 2)^3 + \cdots$			
	(c) $45 + 53(x - 2) - 19(x - 2)^2 + 2(x - 2)^3 + \cdots$			
	(d) $45 + 53(x - 2) + 19(x - 2)^2 - 2(x - 2)^3 + \cdots$			
(iii)	$\int_0^\infty \frac{y^3}{3^y} \ dy = \cdots$			
	(a) $\frac{3}{(\log 3)^4}$ (b) $\frac{3!}{(\log 3)^4}$ (c) $\frac{3}{(\log 3)^3}$ (d) $\frac{3!}{(\log 3)^3}$			
(iv)	Which of the following expresses the total perimeter of the curve			
	$(x^2 + y^2)^2 = a^2(x^2 - y^2)?$			
	(a) $s = \int_0^{\frac{\pi}{4}} \frac{a}{\sqrt{\cos 2\theta}} d\theta$ (b) $s = \int_0^{\frac{\pi}{2}} \frac{a}{\sqrt{\cos 2\theta}} d\theta$			
	(c) $s = 4 \int_0^{\frac{\pi}{4}} \frac{a}{\sqrt{\cos 2\theta}} d\theta$ (d) $s = 2 \int_0^{\pi} \frac{a}{\sqrt{\cos 2\theta}} d\theta$			
(v)	Value of $\int_{x=0}^{1} \int_{y=2}^{5} x^2 y^2 dx dy$ is			
	(a) $\frac{125}{3}$ (b) $\frac{125}{9}$ (c) 13 (d) 15			
Q1 (B)	Attempt any FIVE questions out of the following (2 marks Each)			
(i)	Solve $2(1+x^2\sqrt{y})ydx + (x^2\sqrt{y}+2)x dy = 0$			
(ii)	Solve $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 12y = 0$			

(iii)	Find n^{th} derivatives of sin^2xcos^3x .	
(iv)	Evaluate $\int_0^{\pi/6} \sin^7 3\theta \ d\theta$	
(v)	Evaluate $\iint x^2 dx dy$ over the area of the triangle whose vertices are $(0,1)$, $(1,1)$, $(1,2)$.	
(vi)	Find the area of the smaller region bounded by $x^2 + y^2 = 4$ and	
	x + y = 2.	
(vii)	Evaluate $\int_0^{2\pi} \int_0^1 \int_0^r r^2 \sin \theta \ dz \ dr \ d\theta$	
Q. 2	Attempt any TWO questions out of the following (5 marks Each)	
(a)	The differential equation of a circuit is $R \frac{dq}{dt} + \frac{q}{c} = 40e^{-3t} + 20e^{-6t}$. If	
	R = 20 ohms, $C = 0.01$ farad and $q = 0$ at $t = 0$ show that the minimum	
	charge on the capacitor is 0.25 coulombs.	
(b)	Solve $(D^2 - D - 2)y = 2\log x + \frac{1}{x} + \frac{1}{x^2}$	
(c)	If $y = \cos^{-1}\left(\frac{x-x^{-1}}{x+x^{-1}}\right)$, prove that	
	$y_n = 2(-1)^{n-1}(n-1)! \sin^n \theta \sin n \theta$, where $\theta = \tan^{-1}(1/x)$.	
Q. 3	Attempt any TWO questions out of the following (5 marks Each)	10
(a)	Prove that $B(n, n + 1) = \frac{1}{2} \cdot \frac{(\overline{ n})^2}{\overline{ 2n}}$. Hence, deduce that	
	$\int_0^{\pi/2} \left(\frac{1}{\sin^3 \theta} - \frac{1}{\sin^2 \theta} \right)^{1/4} \cos \theta d\theta = \frac{\left(\overline{1/4} \right)^2}{2\sqrt{\pi}}$	
(b)	Prove that $\int_0^\infty \frac{e^{-x} - e^{-\alpha x}}{x \sec x} dx = \frac{1}{2} \log \left(\frac{\alpha^2 + 1}{2} \right)$ Using DUIS	
(c)	Find the total length of the loop of the curve $9y^2 = (x + 9)(x + 6)^2$	
Q. 4	Attempt any TWO questions out of the following (5 marks Each)	10
(a)	Find the volume of the triangular prism formed by the planes	
	2y = 3x, y = 0, x = 2 from $z = 0$ to $z = 4 + xy$.	
(b)	Evaluate $\iint \sqrt{\left[\frac{36-9x^2-4y^2}{36+9x^2+4y^2}\right]} dx dy$ where R is the region bounded by the	
	ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$	
(c)	Evaluate $\int_0^5 \int_{2-x}^{2+x} x dy dx$ by changing the order of integration.	