

## INTRODUCTION TO ROBOTICS

## Learning and Decision Making

Adapted from 2022 course handouts

Pedro U. Lima
Instituto Superior Técnico/Instituto de Sistemas e Robótica

October 2024

Course handouts
All rights reserved





## Markov Chains and Markov Decision Processes

A Markov Chain (which by definition satisfies the Markov Property) with transition probabilities dependent on actions, and with added rewards, is known as Markov Decision Process (MDP)

Example: conditional joint probability of state and reward:

$$\Pr\{x_{t+1} = x', r_{t+1} = r \middle| x_t, u_t, r_t, x_{t-1}, u_{t-1}, \dots, r_1, x_0, u_0\} = \Pr\{x_{t+1} = x', r_{t+1} = r \middle| x_t, u_t\}$$





## **Markov Decision Process (MDP)**

#### Given:

- States x
- Actions u
- Transition probabilities p(x'|u,x)
- Reward function r(x,u)
- Initial state x<sub>0</sub>
- Discount factor γ
- Horizon T

#### Goal:

 Find policy π(x) that maximizes the expected sum of discounted rewards accumulated over time

$$\max_{\pi} \mathbb{E} \left( \sum_{\tau=0}^{T} \gamma^{\tau} r_{\tau} \mid \pi \right)$$



## **Markov Decision Process (MDP)**



#### Probabilistic Policy function

$$\pi(x_t, u_t) = P(u = u_t | x = x_t), \forall u_t \in U(x_t)$$



Goal: choose the policy that maximizes the

Value function 
$$V_\pi(x) = \mathbb{E}\left(\sum_{\tau=0}^T \gamma^\tau r_\tau \, | \pi, x_0 = x \right)$$

## States, Actions, and Rewards

- State: complete description of the state of the world.
  - whole chess board information in a chess game.
  - position, velocity, angle, angular velocity of a cart-pole system.
- Action: possible actions in the environment.
  - discrete: left, right, up, down.
  - continuous: robot wheel velocities.
- Reward:  $r(x_t, a_t)$  measure how "good" an action for a particular state is.
  - angle of the cart-pole close to zero.
- Discounted cumulative reward:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$



#### **MDP Rewards and Policies**

Policy (fully observable case) is a map of states onto actions:

$$\pi: x_t \rightarrow u_t$$

Expected discounted cumulative reward / payoff:

$$R_T = E \left[ \sum_{\tau=0}^T \gamma^{\tau} r_{t+\tau+1} \right], \quad 0 < \gamma \le 1$$

- T=0: greedy policy
- T>0: finite horizon case, typically no discount
- T=∞: infinite-horizon case, finite reward if discount γ < 1</li>

#### TÉCNICO LISBOA

#### **Exact methods**

- Goal: Find policy π(x) that maximizes the expected cumulative reward
- Two methods for finding the optimal policy:
  - value iteration
  - policy iteration



#### Policies cont'd.

• Expected cumulative payoff of policy  $\pi$ , for a given state x:

$$R_T^{\pi}(x) = E\left[\sum_{t=0}^T \gamma^t r_t | x_0 = x, \pi\right]$$

Optimal value function:

$$V^*(x) = \max_{\pi} R_T^{\pi}(x) = \max_{\pi} E \left[ \sum_{t=0}^{T} \gamma^t r_t | x_0 = x, \pi \right]$$

Optimal policy:

$$\pi^* = \arg\max_{\pi} R_T^{\pi}(x)$$



#### Value Iteration

1-step optimal value function and policy

$$V_1^*(x) = \max_{u} \sum_{x'} P(x'|x, u) r(x, u, x')$$
$$\pi_1^*(x) = \arg\max_{u} \sum_{x'} P(x'|x, u) r(x, u, x')$$

2-step optimal value function and policy:

$$V_2^*(x) = \max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V_1^*(x'))$$
  
$$\pi_2^*(x) = \arg\max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V_2^*(x'))$$



## k-step Value Iteration

Optimal Value function:

$$V_k^*(x) = \max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V_{k-1}^*(x'))$$

Optimal Policy:

$$\pi_k^*(x) = \arg\max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V_{k-1}^*(x'))$$

#### TÉCNICO LISBOA

#### **Infinite Horizon**

Optimal policy, infinite horizon:

$$V_{\infty}^{*}(x) = \max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V_{\infty}^{*}(x'))$$

- Bellman equation
- Fixed point is optimal policy
- Necessary and sufficient condition:

induced policy is optimal iff value function satisfies the above condition



#### **Value Iteration**

#### Algorithm

For all x

$$V_0^*(x) = 0$$

For all x

For all x

$$V_k^*(x) = \max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V_{k-1}^*(x'))$$



#### Value Iteration

Value iteration converges to the optimal value function, which satisfies the Bellman equation.

$$V_k^* \to V^*(x)$$

$$V^*(x) = \max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V^*(x'))$$

The optimal policy is given by

$$\pi^*(x) = \arg\max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V^*(x'))$$



## **Value Iteration for Motion Planning**







## Value Function and Policy Iteration

- Often the optimal policy has been reached long before the value function has converged.
- Policy iteration calculates a new policy based on the current value function and then calculates a new value function based on this policy.
- This process often converges faster to the optimal policy.



## **Policy Iteration**

#### repeat

repeat (keeping the same policy)

for all x

$$V_{i+1}^{\pi_k}(x) = \sum_{x'} P(x'|x, \pi_k(x)) (r(x, \pi_k(x), x') + \gamma V_i^{\pi_k}(x'))$$
policy evaluation

until value function has converged

update policy

for all x

$$\pi_{k+1}(x) = \arg\max_{u} \sum_{x'} P(x'|x,u)(r(x,u,x') + \gamma V^{\pi_k}(x'))$$

policy improvement

until policy has converged



## Reinforcement Learning

Previous (DP) methods to solve MDPs assume full knowledge of p(x'|u,x) and r(u,x)

#### **Dynamic Programming (DP)**

- To determine V for |X| = N, a system of N non-linear equations must be solved.
- Well-established mathematical method.
- A complete model of the environment is required (P and R known).
- Often faces the "curse of dimensionality" [Bellman, 1957]



## **Reinforcement Learning**

Alternative approaches, if we do not know p(x'|u,x) and r(u,x)

#### **Monte Carlo**

- Similar to DP, but P and R<sub>s</sub> unknown.
- P and R determined from the average of several trial-and-error trials.
- Unappropriate for a step-by-step incremental approximation of V<sup>\*</sup>.

#### **Temporal Differences**

- Knowledge of P e R is not required
- Step-by-step incremental approximation of V.
- Mathematical analysis more complex.
- examples: Q-learning, SARSA, ...



## Reinforcement Learning

#### Should one learn $V^*(x)$ ?

- The agent should prefer a state with higher V, because the future cumulative reward will be greater
- But the agent chooses actions, not states
- All fine, then

$$\pi^*(x) = \operatorname{argmax}_{u} \{ r(x, u) + E[\gamma V^*(\delta(x, u))] \}$$

**Unknown!** 



#### **Value Functions**

state value for policy  $\pi$ :

$$V_{\infty}^{\pi}(x) = \mathbf{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | x_{t} = x \right\}$$

Expected value of starting in state x and following policy  $\pi$  thereafter.

NOTE: value of final state, if any, is always zero.

(state, action) value for policy  $\pi$ :

$$Q_{\infty}^{\pi}(x,u) = \mathbf{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | x_{t} = x, u_{t} = u \right\}$$

Expected value of starting in state x, carrying out action u, and following policy  $\pi$  thereafter.

Learn Q\*(x,u) instead!



#### Value Functions cont'd

#### relation between state value and Q function for policy $\pi$ :

Q is such that its value is the maximum discounted cumulative reward that can be achieved starting from state x and applying action u as the first action

$$Q(x,u) = E[r_{t+1} + \gamma V^*(x_{t+1}) | x_t = x, u_t = u]$$
  
$$\pi^*(x) = argmax_u \ Q(x,u)$$

$$V^*(x) = max_u Q(x, u)$$
  

$$\therefore Q(x, u) = E[r_{t+1} + \gamma max_{u}, Q(x', u') | x_t = x, u_t = u]$$



#### Value Functions cont'd

Bellman equation for *V* and *Q* (discrete action and state spaces, deterministic policy)

$$V^*(x) = \max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V^*(x'))$$

$$Q^*(x, u) = \sum_{x'} P(x'|x, u)(r(x, u, x') + \max_{u'} \gamma Q^*(x', u'))$$

#### Value iteration

$$V_k^*(x) = \max_{u} \sum_{x'} P(x'|x, u) (r(x, u, x') + \gamma V_{k-1}^*(x'))$$

#### Q-value iteration

$$Q_{k+1}(x, u) = \sum_{x'} P(x'|x, u)(r(x, u, x') + \max_{u'} \gamma Q_k(x', u'))$$



#### Value Functions cont'd

#### Q-value iteration

$$Q_{k+1}(x, u) = \sum_{x'} P(x'|x, u)(r(x, u, x') + \max_{u'} \gamma Q_k(x', u'))$$

#### Rewritten as an expectation

$$Q_{k+1}(x, u) = E_{x' \sim P(x'|x, u)}[r(x, u, x') + \max_{u'} \gamma Q_k(x', u')]$$

#### Tabular Q-learning:

Replace expectation by samples

$$x' \sim P(x'|x,u)$$

Compute error w.r.t Bellman equation and iterate Q-value

$$Q_{k+1}(x,u) = Q_k(x,u) + \alpha \left[ r(x,u,x') + \max_{u'} \gamma Q_k(x',u') - Q_k(x,u) \right]$$
Learning rate



## Tabular Q-Learning - Algorithm

```
Algorithm: Initialize Q_0\left(x,u\right) for all x and u Initialize current state x For k=1,2,... until convergence Sample action u Execute action u, get r and x' Compute Q_{k+1}\left(x,u\right) Q_{k+1}\left(x,u\right) = Q_{k}\left(x,u\right) + \alpha \left[r(x,u,x') + \max_{u'} \gamma Q_{k}(x',u') - Q_{k}(x,u)\right] Update current state x \leftarrow x'
```

 $\alpha_n$  constant allows adaptability to slow environment changes but it does not guarantee convergence – only possible with a temporal decay under given circumstances.



## **Algorithm Convergence**

- All states and actions are visited infinitely often
- Learning rate is such that

$$0 < \alpha_k < 1$$

$$\sum_{k=0}^{\infty} \alpha_k(x, u) = \infty$$

$$\sum_{k=0}^{\infty} \alpha_k(x, u)^2 < \infty$$

Then 
$$\forall x, u \ P[\lim_{k \to \infty} Q_k(x, u) = Q^*(x, u)] = 1$$



# Action Selection: Exploration vs Exploitation

Exploration: less promising actions, which may lead to good results, are tested.

Exploitation: takes advantage of tested actions which are more promising, i.e., which have a larger Q(x,u).

•  $\varepsilon$ - greedy: at each step n, picks the best action so far with probability 1- $\varepsilon$ , for small  $\varepsilon$ , but can also pick with probability  $\varepsilon$ , in an uniformly distributed random fashion, one of the other actions.

• softmax: at each step n, picks the action to be executed according to a Gibbs or Boltzmann distribution:  $Q_n(x,u)/\tau$ 

$$\pi_n(x,u) = \frac{e^{Q_n(x,u)/\tau}}{\sum_{u'(x)} e^{Q_n(x,u')/\tau}}$$



## **Q-Learning** – an Example





$$\begin{array}{l}
Q_n^{\pi}(x, u) \\
\alpha_n = 1 \\
\gamma = 0.9
\end{array}$$



## **Q-Learning** – an Example





$$Q_n^{\pi}(X,U)$$



## **Q-Learning** – Grid World

http://cs.stanford.edu/people/karpathy/reinforcejs/index.html

Exploration epsilon: 0.2

| 0.00 | 0.00 | 0.00 | 0.00             | 0.00 | 0.00          | 0.00             | 0.00 | 0.00             | 0.00<br><b>1</b> |
|------|------|------|------------------|------|---------------|------------------|------|------------------|------------------|
| 0.00 | 0.00 | 0.00 | 0.00             | 0.00 | 0.00          | 0.00             | 0.00 | 0.00             | 0.00             |
| 0.00 |      |      |                  |      | 0.00          |                  |      |                  | 0.00             |
| 0.00 | 0.00 | 0.00 | 0.00<br>+        |      | 0.00          | 0.00             | 0.00 | 0.00             | 0.00             |
| 0.00 | 0.00 | 0.00 | 0.00             |      | 0.00<br>+     | 0.00<br><b>A</b> | 0.00 | 0.00             | 0.00             |
| 0.00 | 0.00 | 0.00 | 0.00             |      | 0.00<br>+     | 0.00<br>+        | 0.00 | 0.00<br><b>A</b> | 0.00             |
| 0.00 | 0.00 | 0.00 | 0.00             |      | 0.00          | 0.00             | 0.00 | 0.00<br>R-1.0    | 0.00             |
| 0.00 | 0.00 | 0.00 | 0.00<br><b>A</b> |      | 0.00<br>R-1.0 | 0.00<br><b>A</b> | 0.00 | 0.00             | 0.00             |
| 0.00 | 0.00 | 0.00 | 0.00             | 0.00 | 0.00          | 0.00             | 0.00 | 0.00             | 0.00             |
| 0.00 | 0.00 | 0.00 | 0.00             | 0.00 | 0.00          | 0.00             | 0.00 | 0.00             | 0.00             |

| 0.22 |                | 25<br><b>+</b>         | 0.27 | 0.31            | 0.34 | 0.38                 | 0.34<br>• <del>•</del> | 0.31<br>* | 0.34                 | 0.38 |
|------|----------------|------------------------|------|-----------------|------|----------------------|------------------------|-----------|----------------------|------|
| 0.25 | → 0.2          | <sup>27</sup> →        | 0.31 | 0.34            | 0.38 | 0.42                 | 0.38                   | 0.34      | 0.38                 | 0.42 |
| 0.2  |                |                        |      |                 |      | 0.46                 |                        |           |                      | 0.46 |
| 0.20 | 0.2            | 22<br><b>+</b>         | 0.25 | -0.78<br>TR-1.0 |      | 0.52                 | 0.57                   | 0.64      | 0.57<br>•            | 0.52 |
| 0.22 | <b>→</b> 0.2   | 25<br><b>+</b>         | 0.27 | 0.25            |      | 0.08<br>R -1.        | -0.36<br>R -1.0        | 0.71      | 0.64                 | 0.57 |
| 0.25 |                | <sup>27</sup> <b>↓</b> | 0.31 | 0.27            |      | 1.20<br><b>R</b> 1.0 | 0.08<br>← R-1.0        | 0.79      | -0.29<br>←<br>R -1.0 | 0.52 |
| 0.27 | <b>→</b> 0.3   | 31<br><b>F</b>         | 0.34 | 0.31            |      | 1.08                 | 0.97                   | 0.87      | -0.21<br>← R-1.0     | 0.57 |
| 0.31 | , <b>→</b> 0.3 | \$ ♣                   | 0.38 | -0.58<br>R -1.  |      | -0.0β<br>R -1.0      | -0.13<br>R -1.0        | 0.7       | 0.71                 | 0.64 |
| 0.34 | <b>→</b>       | 38                     | 0.42 | 0.46            | 0.52 | 0.57                 | 0.64                   | 0.7       | 0.64                 | 0.57 |
| 0.31 | 0.0            | <sup>34</sup> .        | 0.38 | 0.42            | 0.46 | 0.52                 | 0.57                   | 0.64      | 0.57                 | 0.52 |

| 0.15                                                                                                            | 0.28         |
|-----------------------------------------------------------------------------------------------------------------|--------------|
| 0.15 0.17 0.21 0.24 0.28 0.32 0.28 0.24 0.28                                                                    |              |
| 0.15 0.17 0.21 0.24 0.28 0.32 0.28 0.24 0.28                                                                    | +            |
| $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ | 0.32         |
|                                                                                                                 | ↓            |
| 0.12 0.36                                                                                                       | 0.36         |
|                                                                                                                 | ↓            |
| 0.10 0.12 0.15 -0.88 0.42 0.47 0.54 0.47                                                                        | 0.42         |
| R-1                                                                                                             | <b></b>      |
| 0.12 0.15 0.17 0.15 -0.02 -0.46 0.61 0.54                                                                       | 0.36         |
| F-1.0 R-1.0                                                                                                     | ↓            |
| 0.15 0.17 0.20 0.17 1.10 -0.02 0.69 -0.39                                                                       | 0.42         |
| R1.0 R-1.0 R-1.0                                                                                                | ↓            |
| 0.17 0.20 0.24 0.20 0.98 0.87 0.77 -0.31                                                                        | 0.47         |
|                                                                                                                 | $\downarrow$ |
| 0.20 0.24 0.28 -0.68 -0.13 -0.23 0.69 0.61                                                                      | 0.54         |
| R-1.0 R-1.0                                                                                                     |              |
| 0.24 0.28 0.32 0.36 0.42 0.47 0.54 0.61 0.54                                                                    | 0.47         |
|                                                                                                                 |              |
|                                                                                                                 | 0.42         |
| 0.20 0.24 0.28 0.34 0.34 0.44 0.47 0.54 0.47                                                                    | 1 . T        |

Setup

**Dynamic Programming** 

Q-Learning



#### Tabular methods do not scale

#### Discrete environments (number of states)

• Tetris: 10^60

Atari games: 10^308

#### Discretized continuous environments

Inverted pendulum: 10^2

Hopper: 10^10

Humanoid: 10^100

#### Alternative to tabular representation:

• Parametrized Q function  $Q_{\theta}(x,u)$ Typically a neural network.



## From tabular Q-learning to DQN

Alternative to tabular representation:

• Parametrized Q function  $Q_{\theta}(x,u)$  Typically a neural network.



New update rule on the parameters (gradient-based)

$$\theta_{k+1} = \theta_k - \alpha \Delta_{\theta} \left[ \frac{1}{2} (Q_{\theta_k}(x, u) - r(x, u, x') - \gamma \max_{u'} Q_{\theta_k}(x', u'))^2 \right]$$

Alternative to sampling once and updating the Q-function

- Sample and store several actions in a replay memory
- Select a small batch from the replay memory and perform gradient descent using that batch

#### TÉCNICO LISBOA

## Many methods out there

- Deep Q-learning (DQN)
  - Learn the Q function (parametrized by  $\theta$ )
  - Policy  $\pi$  is generated directly from Q
- Policy gradient methods
  - Directly learn  $\pi$  (parametrized by  $\theta$ )
  - TRPO (Trust Region Policy Optimization)
  - PPO (Proximal Policy Optimization)
- Actor Critic methods
  - Neural nets for the value function and the policy
  - DDPG (Deep Deterministic Policy Gradient)
  - SAC (Soft Actor Critic)



## Real Robot RL (Q-learning)





# Real Robot System (MDP + RL)





#### References:

- Sutton, Richard S., and Andrew G. Barto. Introduction to reinforcement learning. Vol. 135. Cambridge: MIT Press, 1998.
- Mitchell, Thomas M. "Machine Learning." (1997).
- Sebastian Thrun, Wolfram Burgard and Dieter Fox, Probabilistic Robotics, 2005 The MIT Press
- M. T. J. Spaan, "Partially Observable Markov Decision Processes", in Reinforcement Learning: State of the Art, M. A. Wiering and M. van Otterlo, editors, Springer Verlag, 2012.