Central Upwind Scheme for Hyperbolic Conservation Law

Yidi Chen

Department of Mathematics The Ohio State University

Dec 11, 2019

- Conservation Law
- Finite Volume Scheme with Lax-Friedrichs flux
- Central Upwind Scheme
- Numerical Experiments

Conservation of mass in 1D

Consider some gas in a tube where the density and velocity are constant across each cross section of the tube.

Let $\rho(x,t)$ represent the density of the gas and v(x,t) represent the velocity of the gas at some cross section of the tube.

mass in
$$[x_1, x_2] = \int_{x_1}^{x_2} \rho(x, t) dx$$
 (1)

the rate of mass flow
$$= \rho(x,t) \cdot v(x,t)$$
 (2)

the rate of change of mass in $[x_1, x_2]$

$$\frac{d}{dt} \int_{x_1}^{x_2} \rho(x,t) dx = \rho(x_1,t) v(x_1,t) - \rho(x_2,t) v(x_2,t)$$

Conservation of mass in 1D

Another Integral form

$$\int_{x_1}^{x_2} \rho(x, t_2) dx = \int_{x_1}^{x_2} \rho(x, t_1) dx + \int_{t_1}^{t_2} \rho(x_1, t) v(x_1, t) dt - \int_{t_1}^{t_2} \rho(x_2, t) v(x_2, t) dt$$
(3)

If $\rho(x,t)$ and v(x,t) are both differentiable, we then obtain

$$\int_{t_1}^{t_2} \int_{x_1}^{x_2} \left\{ \frac{\partial}{\partial t} \rho(x, t) + \frac{\partial}{\partial x} (\rho(x, t) v(x, t)) \right\} dx dt = 0$$
 (4)

and the differential form of the conservation law for the conservation of mass

$$\rho_t + (\rho v)_x = 0 \tag{5}$$

When v(x,t) is a known function of $\rho(x,t)$, the conservation of mass equation can be written as

$$\rho_t + f(\rho)_x = 0 \tag{6}$$

__

Finite Volume Scheme(BOOK)

Consider the conservation law in 1D,

$$u_t + f(u)_x = 0 (7)$$

Integrate it over $[x_{j-\frac{1}{2}},x_{j+\frac{1}{2}}]\times [t^n,t^{n+1}]$ where x_j and t_n come from the discretization grid.

$$\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} u(x, t_{n+1}) = \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} u(x, t_n) dx$$

$$- \left[\int_{t_n}^{t_{n+1}} f(u(x_{j+\frac{1}{2}}, t)) dt - \int_{t_n}^{t_{n+1}} f(u(x_{j-\frac{1}{2}}, t)) dt \right]$$

$$t^{n+1}$$

$$t^{n}$$

$$x_{j-\frac{1}{3}} \qquad x_{j+\frac{1}{3}}$$

$$x_{j+\frac{1}{3}}$$

$$(8)$$

With the definition of cell average at n-th time step and j-th spatial step

$$\bar{u}_{j}^{n} = \frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} u(x, t_{n}) dx$$
(9)

and the definition of numerical flux

$$F_{j+\frac{1}{2}}^{n} = F(u_{j}^{n}, u_{j+1}^{n}) = \frac{1}{\Delta t} \int_{t_{n}}^{t_{n+1}} f(u(x_{j+\frac{1}{2}}, t)) dt$$
 (10)

Finite volume method with Lax-Friedrich numerical flux

$$\bar{u}_j^{n+1} = \bar{u}_j^n - \frac{1}{\Delta x} \left[F_{j+\frac{1}{2}}^n - F_{j-\frac{1}{2}}^n \right]$$
 (11)

$$F_{j+\frac{1}{2}}^{n} = \frac{1}{2} ((f(u_{j}^{n}) + f(u_{j}^{n+1})) - \frac{\alpha}{2} (u_{j}^{n+1} - u_{j}^{n})$$
 (12)

where $\alpha = max(|f'(u_j^n)|,|f'(u_j^{n+1})|)$ is the local wave speed.^a

Finite volume method with Lax-Friedrich numerical flux can achieve second-order accuracy.

^aHes18.

Central Upwind Scheme is a finite-volume method so the semi-discretization follows the form below

$$\frac{d}{dt}\bar{u}_{j}^{n} = -\frac{1}{\Delta x} \left[H_{j+\frac{1}{2}}^{n} - H_{j-\frac{1}{2}}^{n} \right]$$
 (13)

Construct a piecewise linear polynomial by the cell average \bar{u}_j^n over $(x_{j-\frac{1}{\alpha}}, x_{j+\frac{1}{\alpha}})$

$$p_j^n(x) = \bar{u}_j^n + (u_x)_j^n(x - x_j)$$
(14)

$$\begin{aligned} &\text{where } (u_x)_j^n = \\ & \min (u_x)_j^n = \min_{j=1}^n \left(\frac{\bar{u}_j^n - \bar{u}_{j-1}^n}{\Delta x}, \frac{\bar{u}_{j+1}^n - \bar{u}_{j-1}^n}{2\Delta x}, \frac{\bar{u}_{j+1}^n - \bar{u}_j^n}{\Delta x}\right) \\ &\text{and minmod function is defined as follows} \\ &\min_{j=1}^n \{z_j\} \quad \text{if } z_j > 0 \\ &\max_{j=1}^n \{z_j\} \quad \text{if } z_j < 0 \end{aligned}$$

Approximate $u_{j+\frac{1}{2}}$ from u_{j+1} and u_{j}^{5}

$$u_{j+\frac{1}{2}}^{+} = p_{j+1}^{n}(x_{j+\frac{1}{2}}) = \bar{u}_{j+1}^{n} - (u_x)_{j+1}^{n} \frac{\Delta x}{2}$$
(15)

$$u_{j+\frac{1}{2}}^{-} = p_j^n(x_{j+\frac{1}{2}}) = \bar{u}_j^n + (u_x)_j^n \frac{\Delta x}{2}$$
 (16)

The propagation speeds from the left and right to $x_{j+\frac{1}{2}}$ are

$$a_{j+\frac{1}{2}}^{+} = \max\left\{\lambda_{N}\left(\frac{\partial f}{\partial u}(u_{j+\frac{1}{2}}^{-})\right), \lambda_{N}\left(\frac{\partial f}{\partial u}(u_{j+\frac{1}{2}}^{+})\right), 0\right\} \tag{17}$$

$$a_{j+\frac{1}{2}}^{-} = \min\left\{\lambda_1\left(\frac{\partial f}{\partial u}(u_{j+\frac{1}{2}}^{-})\right), \lambda_1\left(\frac{\partial f}{\partial u}(u_{j+\frac{1}{2}}^{+})\right), 0\right\} \tag{18}$$

where $\lambda_1 < \lambda_2 < ... \lambda_N$ are eigenvalues of the Jacobian $\frac{\partial f}{\partial u}$.

Let

$$x_{j+\frac{1}{2},l} = x_{j+\frac{1}{2}} + \Delta t a_{j+\frac{1}{2}}^{-}, x_{j+\frac{1}{2},r} = x_{j+\frac{1}{2}} + \Delta t a_{j+\frac{1}{2}}^{+}$$
(19)

The cell average over the interval $[x_{j-\frac{1}{2},r},x_{j+\frac{1}{2},l}] imes [t_n,t_{n+1}]$ is

$$\bar{w}_{j}^{n+1} = \frac{1}{x_{j+\frac{1}{2},l} - x_{j-\frac{1}{2},r}} \left[\int_{x_{j-\frac{1}{2},r}}^{x_{j+\frac{1}{2},l}} p_{j}^{n}(x) dx - \int_{t_{n}}^{t_{n+1}} \left(f(u(x_{j+\frac{1}{2},l},t)) dt - f(u(x_{j-\frac{1}{2},r},t)) \right) dt \right]$$
(20)

Similarly, the cell average over the interval $[x_{j-\frac{1}{2},l},x_{j+\frac{1}{2,r}}] imes [t_n,t_{n+1}]$ is

$$\bar{w}_{j+\frac{1}{2}}^{n+1} = \frac{1}{x_{j+\frac{1}{2},r} - x_{j+\frac{1}{2},l}} \left[\int_{x_{j+\frac{1}{2},l}}^{x_{j+\frac{1}{2}}} p_j^n(x,t) dx + \int_{x_{j+\frac{1}{2}}}^{x_{j+\frac{1}{2},r}} p_{j+1}^n(x,t) dx - \int_{t_n}^{t_{n+1}} \left(f(u(x_{j+\frac{1}{2},r},t)) dt - f(u(x_{j+\frac{1}{2},l},t)) \right) dt \right]$$
(21)

By projecting the above intermediate cell averages onto the original grid over interval $[x_{i-\frac{1}{6}},x_{i+\frac{1}{6}}]$, a piecewise polynomial interpolant \tilde{w} is constructed.

For
$$x\in[x_{j\pm\frac{1}{2},l},x_{j\pm\frac{1}{2},r}]$$
,

$$\tilde{w}_{j\pm\frac{1}{2}}^{n+1} = \bar{w}_{j\pm\frac{1}{2}}^{n+1} + \mathcal{O}(\Delta t)$$
 (22)

For
$$x \in [x_{j-\frac{1}{2},r}, x_{j+\frac{1}{2},l}]$$
,

$$\frac{1}{x_{j+\frac{1}{2},l} - x_{j-\frac{1}{2},r}} \int_{x_{j-\frac{1}{2},r}}^{x_{j+\frac{1}{2},l}} \tilde{w}_{j}^{n+1}(x) dx = \bar{w}_{j}^{n+1}(x)$$
 (23)

By projecting the above intermediate cell averages onto the original grid over interval $[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}]$, a piecewise polynomial interpolant \tilde{w} is constructed. The cell average

$$\bar{u}_{j}^{n+1} = \frac{1}{\Delta x} \left[\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \tilde{w}^{n+1}(x) dx \right]$$

$$= \frac{1}{\Delta x} \left[\int_{x_{j-\frac{1}{2}}}^{x_{j-\frac{1}{2}}} \tilde{w}^{n+1}(x) dx + \int_{x_{j-\frac{1}{2}},r}^{x_{j+\frac{1}{2},l}} \tilde{w}^{n+1}(x) dx + \int_{x_{j+\frac{1}{2},l}}^{x_{j+\frac{1}{2}}} \tilde{w}^{n+1}(x) dx \right]$$

$$= \frac{1}{\Delta x} \left[(x_{j-\frac{1}{2},r} - x_{j-\frac{1}{2}}) \bar{w}^{n+1}(x) + (x_{j+\frac{1}{2},l} - x_{j-\frac{1}{2},r}) \bar{w}^{n+1}(x) + (x_{j+\frac{1}{2}} - x_{j+\frac{1}{2},l}) \bar{w}^{n+1}(x) \right]$$

$$+ (x_{j+\frac{1}{2}} - x_{j+\frac{1}{2},l}) \bar{w}^{n+1}(x)$$

Semidiscrete Central Upwind Scheme

$$\frac{d}{dt}\bar{u}_{j}^{n} = -\frac{1}{\Delta x} \left[H_{j+\frac{1}{2}}^{n} - H_{j-\frac{1}{2}}^{n} \right]$$
 (25)

where

$$H_{j+\frac{1}{2}}(t) = \frac{a_{j+\frac{1}{2}}^{+}f(u_{j+\frac{1}{2}}^{-}) - a_{j+\frac{1}{2}}^{-}f(u_{j+\frac{1}{2}}^{+})}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}} + \frac{a_{j+\frac{1}{2}}^{+}a_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+} - a_{j+\frac{1}{2}}^{-}}[u_{j+\frac{1}{2}}^{+} - u_{j+\frac{1}{2}}^{-}]$$
 (26)

Remarks

- Central upwind scheme is a third-order accuracy scheme.
- If one takes $a_{j+\frac{1}{2}}^+=-a_{j+\frac{1}{2}}^-=a_{j+\frac{1}{2}}$, the numerical flux $H_{j+\frac{1}{2}}(t)$ becomes

$$H_{j+\frac{1}{2}}(t) = \frac{f(u_{j+\frac{1}{2}}^+) + f(u_{j+\frac{1}{2}}^-)}{2} - \frac{a_{j+\frac{1}{2}}}{2} [u_{j+\frac{1}{2}}^+ - u_{j+\frac{1}{2}}^-]$$
 (27)

В

Numerical Experiements

Apply central upwind scheme and Lax-Friedrichs scheme to the invisicid Burgers' equation with periodic condition.

$$u_t + \left(\frac{u^2}{2}\right)_x = 0, u(x,0) = \sin(x), x \in [0, 2\pi]$$
 (28)

Tables below demonstrate the error and converenge rates with different grid points N.

Central Upwind			Lax-Friedrichs	
N	error	rate	error	rate
40	2.6441e-04	-	6.9891e-04	-
80	3.6891e-05	2.8414	2.0895e-04	1.742
160	4.9314e-06	2.9032	5.6366e-05	1.8903
320	6.448e-07	2.9351	1.5317e-05	1.8797
640	8.2814e-08	2.9609	4.0741e-06	1.9105
1280	1.0531e-08	2.9753	1.0522e-06	1.9531

References

Jan S. Hesthaven. *Numerical Methods for Conservation Laws, from analysis to algorithms*. Society for Industrial and Applied Mathematics, 2018. URL: https://doi.org/10.1137/1.9781611975109.

Noelle S. Petrova G. Kurganov A. "Semidiscrete Central-Upwind Schemes For Hyperbolic Conservation Laws and Hamilton-Jacobi Equations". In: *SIAM J. SCI. Comput.* 23.3 (2001). URL: https://doi.org/10.1137/S1064827500373413.

A. Kurganov. "Central Schemes: a Powerful Black-Box-Solver for Nonlinear Hyperbolic PDEs". In: *Handbook of Numerical Methods for Hyperbolic Problems: Part A.* 2018.

Randall J. LeVeque. *Numerical Methods for Conservation Laws*. 2nd ed. ETH Zurich.Birkhauser-Verlag, 1992.