```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
from sklearn.preprocessing import StandardScaler
In [2]: df=pd.read_csv("WineQT.csv")

In [3]: df
```

Out[3]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	ld
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5	0
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5	1
	2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5	2
	3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6	3
	4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5	4
	•••													
	1138	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6	1592
	1139	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	0.82	9.5	6	1593
	1140	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5	1594
	1141	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6	1595
	1142	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5	1597

1143 rows × 13 columns

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1143 entries, 0 to 1142
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1143 non-null	float64
1	volatile acidity	1143 non-null	float64
2	citric acid	1143 non-null	float64
3	residual sugar	1143 non-null	float64
4	chlorides	1143 non-null	float64
5	free sulfur dioxide	1143 non-null	float64
6	total sulfur dioxide	1143 non-null	float64
7	density	1143 non-null	float64
8	рН	1143 non-null	float64
9	sulphates	1143 non-null	float64
10	alcohol	1143 non-null	float64
11	quality	1143 non-null	int64
12	Id	1143 non-null	int64

dtypes: float64(11), int64(2)

memory usage: 116.2 KB

In [5]: df.describe()

_			
\cap	+	15	١.
UU		-	

•	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
count	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000
mean	8.311111	0.531339	0.268364	2.532152	0.086933	15.615486	45.914698	0.996730	3.311015	0.657708
sto	1.747595	0.179633	0.196686	1.355917	0.047267	10.250486	32.782130	0.001925	0.156664	0.170399
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000
25%	7.100000	0.392500	0.090000	1.900000	0.070000	7.000000	21.000000	0.995570	3.205000	0.550000
50%	7.900000	0.520000	0.250000	2.200000	0.079000	13.000000	37.000000	0.996680	3.310000	0.620000
75%	9.100000	0.640000	0.420000	2.600000	0.090000	21.000000	61.000000	0.997845	3.400000	0.730000
max	15.900000	1.580000	1.000000	15.500000	0.611000	68.000000	289.000000	1.003690	4.010000	2.000000

In [6]: df.head()

Out[6]:

]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	ld
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	0
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5	1
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5	2
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6	3
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	4

In [7]: df.shape

Out[7]: (1143, 13)

In [9]: df.shape[0]

```
Out[9]: 1143
In [10]: print(df.isnull().sum())
       fixed acidity
                               0
       volatile acidity
                               0
        citric acid
       residual sugar
                               0
       chlorides
       free sulfur dioxide
       total sulfur dioxide
       density
        рΗ
                               0
        sulphates
                               0
        alcohol
                               0
        quality
                               0
        Ιd
        dtype: int64
In [12]: plt.figure(figsize=(12, 8))
         sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
         plt.title('chemical attributes and wine quality')
         plt.show()
```

chemical attributes and wine quality

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

	chemical accidates and wine quality												
fixed acidity -	1	-0.25	0.67	0.17	0.11	-0.16	-0.11	0.68	-0.69	0.17	-0.075	0.12	-0.28
volatile acidity -	-0.25	1	-0.54	-0.0058	0.056	-0.002	0.078	0.017	0.22	-0.28	-0.2	-0.41	-0.0079
citric acid -	0.67	-0.54	1	0.18	0.25	-0.058	0.037	0.38	-0.55	0.33	0.11	0.24	-0.14
residual sugar -	0.17	-0.0058	0.18	1	0.071	0.17	0.19	0.38	-0.12	0.017	0.058	0.022	-0.046
chlorides -	0.11	0.056	0.25	0.071	1	0.015	0.048	0.21	-0.28	0.37	-0.23	-0.12	-0.088
free sulfur dioxide -	-0.16	-0.002	-0.058	0.17	0.015	1	0.66	-0.054	0.073	0.034	-0.047	-0.063	0.095
total sulfur dioxide -	-0.11	0.078	0.037	0.19	0.048	0.66	1	0.05	-0.059	0.027	-0.19	-0.18	-0.11
density -	0.68	0.017	0.38	0.38	0.21	-0.054	0.05	1	-0.35	0.14	-0.49	-0.18	-0.36
pH -	-0.69	0.22	-0.55	-0.12	-0.28	0.073	-0.059	-0.35	1	-0.19	0.23	-0.052	0.13
sulphates -	0.17	-0.28	0.33	0.017	0.37	0.034	0.027	0.14	-0.19	1	0.094	0.26	-0.1
alcohol -	-0.075	-0.2	0.11	0.058	-0.23	-0.047	-0.19	-0.49	0.23	0.094	1	0.48	0.24
quality -	0.12	-0.41	0.24	0.022	-0.12	-0.063	-0.18	-0.18	-0.052	0.26	0.48	1	0.07
ld -	-0.28	-0.0079	-0.14	-0.046	-0.088	0.095	-0.11	-0.36	0.13	-0.1	0.24	0.07	1
	fixed acidity -	volatile acidity -	citric acid -	residual sugar -	chlorides -	ree sulfur dioxide -	tal sulfur dioxide -	density -	- Hd	sulphates -	alcohol -	quality -	- p

```
In [37]: plt.figure(figsize=(12, 8))
    sns.heatmap(df.corr(), annot=False, cmap='coolwarm')
    plt.title('chemical attributes and wine quality')
    plt.show()
```



```
In [18]: plt.figure(figsize=(8, 6))
    sns.countplot(x='quality', data=df)
    plt.title('Wine Quality Distribution')
    plt.show()
```



```
In [19]: plt.figure(figsize=(8, 6))
    sns.countplot(x='alcohol', data=df)
    plt.title('Wine Quality Distribution')
    plt.show()
```

Wine Quality Distribution


```
In [21]: plt.figure(figsize=(8, 6))
sns.countplot(x='Id', data=df)
```

```
plt.title('Wine Quality Distribution')
plt.show()
```



```
In [23]: X = df.drop('quality', axis=1)
y = df['quality']

In [24]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
In [25]: scaler = StandardScaler()
         X train = scaler.fit transform(X train)
        X test = scaler.transform(X test)
In [26]: rf model = RandomForestClassifier(n estimators=100, random state=42)
         rf model.fit(X train, y train)
         rf pred = rf model.predict(X test)
In [27]: print("Random Forest Classifier Accuracy:", accuracy score(y test, rf pred))
         print("Confusion Matrix:\n", confusion matrix(y test, rf pred))
         print("Classification Report:\n", classification report(y test, rf pred))
        Random Forest Classifier Accuracy: 0.6899563318777293
        Confusion Matrix:
        [[0 3 3 0 0]
        [ 0 72 24 0 0]
        [ 0 24 70 5 0]
        [ 0 0 10 16 0]
        [0 0 2 0 0]]
        Classification Report:
                      precision
                                  recall f1-score
                                                     support
                          0.00
                                    0.00
                                             0.00
                                                          6
                          0.73
                                    0.75
                                             0.74
                                                         96
```

0.64

0.76

0.00

0.43

0.67

7

accuracy macro avg

weighted avg

0.71

0.62

0.00

0.41

0.69

0.67

0.68

0.00

0.69

0.42

0.68

99

26

2

229

229

229

```
C:\Users\rushi\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics\ classification.py:1531: UndefinedMetr
        icWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to
        control this behavior.
          warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
        C:\Users\rushi\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics\ classification.py:1531: UndefinedMetr
        icWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to
        control this behavior.
         warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
        C:\Users\rushi\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics\ classification.py:1531: UndefinedMetr
        icWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to
        control this behavior.
          warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
In [28]: sgd model = SGDClassifier(random state=42)
         sgd model.fit(X train, y train)
         sgd pred = sgd model.predict(X test)
        print("\nStochastic Gradient Descent Accuracy:", accuracy score(y test, sgd pred))
In [29]:
         print("Confusion Matrix:\n", confusion matrix(y test, sgd pred))
         print("Classification Report:\n", classification report(y test, sgd pred))
```

```
Stochastic Gradient Descent Accuracy: 0.5851528384279476
Confusion Matrix:
[[0 2 4 0 0]
[ 0 75 12 8 1]
[ 0 31 39 29 0]
[0 2 4 20 0]
[0 0 0 2 0]]
Classification Report:
              precision
                           recall f1-score
                                              support
                  0.00
                            0.00
                                      0.00
          4
                                                   6
           5
                  0.68
                            0.78
                                      0.73
                                                  96
                  0.66
                                      0.49
                            0.39
                                                  99
          7
                  0.34
                            0.77
                                      0.47
                                                  26
                  0.00
                            0.00
                                      0.00
                                                   2
   accuracy
                                      0.59
                                                 229
                  0.34
                            0.39
                                      0.34
                                                 229
  macro avg
weighted avg
                  0.61
                            0.59
                                      0.57
                                                 229
C:\Users\rushi\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics\ classification.py:1531: UndefinedMetr
icWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to
control this behavior.
 warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
C:\Users\rushi\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics\ classification.py:1531: UndefinedMetr
```

warn prf(average, modifier, f"{metric.capitalize()} is", len(result))

control this behavior.

control this behavior.

```
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

In [30]: svc_model = SVC(random_state=42)
    svc_model.fit(X_train, y_train)
    svc_pred = svc_model.predict(X_test)

In [31]: print("\nSupport Vector Classifier Accuracy:", accuracy score(y test, svc_pred))
```

icWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to

C:\Users\rushi\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to

```
In [31]: print("\nSupport Vector Classifier Accuracy:", accuracy_score(y_test, svc_pred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, svc_pred))
    print("Classification Report:\n", classification_report(y_test, svc_pred))
```

```
Support Vector Classifier Accuracy: 0.6550218340611353
Confusion Matrix:
[[0 3 3 0 0]
[ 0 72 24 0 0]
[ 0 27 69 3 0]
[0 1 16 9 0]
[0 0 1 1 0]]
Classification Report:
              precision
                           recall f1-score
                                             support
                  0.00
                            0.00
                                      0.00
          4
                                                  6
          5
                  0.70
                            0.75
                                      0.72
                                                  96
                  0.61
                                      0.65
                            0.70
                                                  99
          7
                                      0.46
                  0.69
                            0.35
                                                  26
                  0.00
                            0.00
                                      0.00
                                                  2
   accuracy
                                      0.66
                                                229
                  0.40
                                      0.37
                                                229
  macro avg
                            0.36
weighted avg
                  0.64
                                      0.64
                                                 229
                            0.66
```

C:\Users\rushi\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

C:\Users\rushi\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

C:\Users\rushi\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

```
plt.title('Rushikesh karpe')
plt.show()
```

