Кислотно-основные свойства некоторых р-элементов

В работе используются: пробирки, хлорид олова, гидроксид натрия,

1. Гидроксид олова (II)

- 1. SnCl₂+NaOH→Sn(OH)₂↓+NaCl получили белый осадок.
- 2. $Sn(OH)_2+2HNO_3 \rightarrow Sn(NO_3)_2+2H_2O$ (pH<7) обесцвечивание через некоторое время.
- 3. $Sn(OH)_{2(r)} + 2NaOH \rightarrow Na_2[Sn(OH)_4] (pH>7)$ белый осадок растворился.

2. Гидроксид свинца (II)

- 1. $Pb(CH_3COO)_2$ +2NaOH → $Pb(OH)_2$ ↓ + 2CH₃COOH белый студенистый осадок.
- 2. $Pb(OH)_2+2HNO_3 \rightarrow Pb(NO_3)_2+2H_2O$ (pH<7) наблюдаем мгновенное растворение осадка.
- 3. $Pb(OH)_2 + 2NaOH \rightarrow Na_2[Pb(OH)_4]$ (pH>7) белый осадок растворился спустя некоторое время.

3. Восстановительные свойства ионов Cl⁻, Br⁻, I⁻

- 1. $8KI+5H_2SO_4=4K_2SO_4+4I_2+H_2S+4H_2O$ выпал бурый осадок.
- $4 \mid 2I^- 2\overline{e} \rightarrow I_2^0$
- $1 \mid S^{6+} + 8\overline{e} \rightarrow S^{2-}$
- 2. $2KBr+4H_2SO_4=2KSO_4+Br_2+2SO_2+4H_2O$ выпал оранжевый осадок.
- $1 \mid 2Br^- 2\overline{e} \rightarrow Br_2$
- $1 \mid S^{6+} + 2\overline{e} \to S^{4+}$

4. Реакции с участием перекиси водорода H₂O₂

1. $2KI+H_2SO_4+H_2O_2=I_2+2H_2O+K_2SO_4$ – усилилось выделение осадка.

$$2I - 2\overline{e} \rightarrow I_2$$

$$O_2^{2-} + 2\overline{e} \rightarrow 2O^{2-}$$

$$2I - 2\overline{e} \to I_{2}$$

$$O_{2}^{2-} + 2\overline{e} \to 2O^{2-}$$

$$2I^{-} + O_{2}^{2-} \to I_{2} + 2O^{2-}$$

2. $2KMnO_4+3H_2SO_4+5H_2O_2=2MnSO_4+K_2SO_4+5O_2+8H_2O_2$ – произошло обесцвечивание.

$$2 \mid Mn^{7+} + 5\overline{e} \rightarrow Mn^{2+}$$

$$5 \mid O_2^{2-} - 2\overline{e} \to O_2$$

$$\begin{array}{c|c}
2 & Mn^{7+} + 5\overline{e} \rightarrow Mn^{2+} \\
5 & O_2^{2-} - 2\overline{e} \rightarrow O_2 \\
Mn^{7+} + O_2^{2-} \rightarrow Mn^{2+} + O_2
\end{array}$$