Electronics

Fundamentals of Electronics

01.01	What is the letter not (a) T	ation of diode in Pla (b) OC	esser machine (c) n	(d) f
01.02	What is the symbol of	of NPN Transistor.		
	(a)	(b)	(c)	(d) none
01.03	What is the symbol of (a)	of EX-OR gate. (b)	(c)	(d) none
01.04	What is the letter not (a) R	ation of PCB in Plasse (b) P	er machine electrical dr (c) U	awing? (d) N
01.05	What is the letter not (a) P	ation of lining in Plass (b) N	ser machine electrical d	lrawing? (d) E
01.06	Which denotes connection (a) a, b, c,	ectors of PCB in Plasse (b) x, y, z	er Machine? (c) d, b, z	(d) p, n, r
01.07	EK means	(Plug in Ty	pe PCB/Connection Ty	pe PCB).
01.08	V means	(Digital (Control PCB/Analog Co	ontrol PCB)
01.09	X means	(Input to	Programmer / out put f	rom programmer)
01.10	Q means	(Input to	Programmer / out put f	rom programmer)
01.11	What is the full form	of ALC		
01.12	What is the full form	of GVA		
01.13	DV means data sende	er and receiver PCB		True/False
01.14	R means lining contr	ol circuit		True/False
01.15	Notation A is not rela	ated DC motor control	PCB	True/False
01.16		ts are(b) Small and light	(c) high voltage oper	ated (d) None
01.17	Which charge carrier (a) Electrons only	is in electronic composition (b) Holes only	onent. (c) Both	(d) None

01.18	Which is the passive of	component.	.18 Which is the passive component.		
	(a) Diode	(b) Transistor	(c) Op-amp	(d) Capacitor	
01.19	Which is the active co (a) Resistor	omponent. (b) Capacitor	(c) Diode	(d) Inductor	
01.20	Ic is a		(Passive component/A	Active Component).	
01.21	Zener Diode is a		.(Passive component/A	Active Component).	
01.22	Capacitor is used to s	tore the electrical energ	gy	True/False	
01.23	Op-amp is a passive component.			True/False	
01.24	The supply voltage in	electrical system are s	single phase, multiphas	se or polly phase. T/F	
01.25	Active components ca	an not amplify and pro	cess the signal.	True/False	

Semiconductor Theory

02.01	The conduction band is- (a) Same as forbidden energy (b) Generally located on the top of the crystal (c) Generally located on the bottom of the crystal (d) A range of energy corresponding the energy of the free electron.			
02.02	The forbidden energy gap in semico (a) Is always Zero (b) Lies just below the valence band (c) Lies between the valence band a (d) Lies just above the conduction b	d and the conduction band		
02.03	An electrically neutral semiconduct (a) No free electrons (c) No minority carries			
02.04	The electron in outermost orbit is ca (a) Valence electron (b) Covalent		Electron (d) Donor Electron	
02.05	The semiconductors have			
02.06	In larger orbit the electron has (a) Negligible (b) Lower		(d) none	
02.07	In N type semiconductors free elect (a) Minority (b) Majority			
02.08	The merging of a free electron and (a) Recombination (b) Neutralization		(d) Zeroing	
02.09	Which of the following results in th (a) Movement of neutrons (c) A vacancy is filled by a valance	(b) Movement		
02.10	Addition of a small amount of antimony to germanium will result in- (a) Formation of N type semiconductor (b) Move free electrons than holes in semiconductor (c) Antimony concentrating on the edge of the crystals (d) Increased resistance.			
02.11	Forbidden energy gap in semicondu (a) 1 ev (b) 1 5ev	actor is- (c) 2 ev	(d) 3 ev	
02.12	A donor type impurity must have- (a) No charge (c) Only three valence electrons	(b) positive charge(d) Only five valence	electrons	
02.13	A accepter type impurity must have (a) No charge (c) Only three valence electrons	(b) Negative charge (d) Only five valence	electrons	

02.14		or is doped its electrical lirect ratio of the doped niverse ratio of the dop	d material		
	(d) Remains unaltered	-	eu materiai		
02.15	- · · ·	forward as well as rev forward as well as rev ward direction only.			
02.16	In P-N junction the recalled- (a) Transition Zone	egion containing the ur (b) Depletion region.	_		
02.17	· /		_		
02.17	In a reverse biased P- (a) Zero voltage	(b) 1.2V.	(c) 0.72V		
02.18	Which of the following (a) Boron	ng element does not ha (b) Aluminium.		lectrons-) Phosphorous	
02.19	Which of the following (a) Si	ng element has four va (b) Ge.	lence electrons- (c) Both ((a & b). (c	d) None
03.20	One electron volt is e (a) 1.6 x 10 ⁻¹⁰ Joule	quivalent to- (b) 1.12 x 10 ⁻¹⁶ Joule	(c) 3.2 x 10 ⁻¹⁹ Jou	ule (d) 1.6 x	10 ⁻¹⁹ Joule
02.21	The forbidden energy (a) 0.12 ev	gap for silicon- (b) 1.12 ev	(c) 0.72 ev	(d) 0.92	ev
02.22	The forbidden energy (a) Semiconductors	• ·	band and conducti Insulators	on band will b (d) none	
02.23	A semiconductor in it (a) Intrinsic semicond (c) P-type semicondu	luctor (b) Ex	trinsic semiconductory		
02.24	At absolute Zero temp (a) An insulator (b)	perature a semiconduc A super conductor		tor (d) A var	riable resistor
02.25	(b) Positive temperatu	e- coefficient of resistanc are Coefficient of resistance ture coefficient of resistance	stance		
02.26	The process of delibe (a) Im-purification	rately adding impurity (b) Pollution	to a semiconducto (c) Deion		alled- d) Doping

Semiconductor Diode

03.01 In a semiconductor diode P-side is grounded and N-side is applie through a resistance of 100Ω . The diode shall -			ed a potential of -5V	
	(a) Conduct fully	(b) Not conduct	(c) Conduct partially	(d) None of these
03.02	Knee voltage of a silication (a) 0.1V	con diode is - (b) 0.2V	(c) 0.3V	(d) 0.7V
03.03	Knee voltage of a ger (a) 0.1 V	manium diode is- (b) 0.2V	(c) 0.3V	(d) 0.7V
03.04	In case of semiconduc (a) Merging of two or (c) Merging of an elec	more electrons	is (b) Merging of two of (d) Depletion region	
03.05	When a P-N junction is reverse biased- (a) Holes and electrons move away from the junction (b) Holes and electrons move towards the junction (c) Movement of Holes and electrons seized (d) Depletion region decreases.			
03.06	In case a PN –junction is forward biased- (a) Holes and electrons seize to move (b) Electron and holes move towards the junction (c) Movement of holes and electrons seized (d) none.			
03.07	The depletion layer of (a) Only free Mobile (b) Only free mobile (c) Both free mobile (d) Neither free Mobile (d)	Electrons. holes. 10les as well as electr	ons.	
03.08	With the rise in temporal (a) Width of depletion (c) Reverse leakage c	n layer (b) Ju	on, which of the follow unction barrier voltage Il	ring will increase-
03.09	 An ideal diode- (a) Should have zero resistance in the forward bias as well as reverse bias (b) Should have zero resistance in the forward bias and an infinite resistance in reverse bias. (c) Should have in fine resistance in forward bias and zero resistance in reverse bias. (d) All 			
03.10	Power diodes are gen (a) Silicon diode	erally- (b) Germanium diod	le (c) Both	(d) None
03.11	In a reverse biased P- (a) Zero voltage	N junction, the currer (b) 1.2V	nt through the junction (c) .7V	increases abruptly at- (d) Break down voltage
03.12	In a P-N junction, the (a) Transition Zone	_	ceptor and donor ions i (c) Neutral region	s called- (d) Active region

03.13		forward as well as revin forward as well as reverse direction only.		
03.14	Diode is a unidirection	onal device-		True/False
03.15	PIV is not a rating of	diode		True/False
03.16	How many diodes in (a) 2	half wave rectifier- (b) 1	(c) 3	(d) 4
03.17	How many diodes in (a) 1	full wave rectifier- (b) 2	(c) 3	(d) 4
03.18	How many diodes in (a) 1	Bridge rectifier- (b) 2	(c) 3	(d) 4
03.19	Rectifier converts (a) DC to DC	(b) AC to DC	(c) DC to AC	(d) AC to AC
03.20	The maximum rectification (a) 100%	cation efficiency in ca (b) 81.2%	se of full wave rectified (c) 66.6%	r is- (d) 40.6%.
03.21	The maximum rectification (a) 100%	cation efficiency in ca (b) 81.2%	se of half wave rectifie (c) 66.6%	er- (d) 40.6%
03.22		ive half cycle of input tive half cycle of input	signal.	
03.23	The ripple factor for (a) 1.21	full wave rectifier is- (b) 0.96	(c) 0.64	(d) 0.482
03.24	The ripple factor for (a) 1	half wave rectifier is- (b) 0.96	(c) 0.64	(d) 0.482
03.25	(a) Only for the posit	es the load current flow ive half cycle of the in tive half cycle of the in	put signal	
03.26	In a full wave rectifie	er centre tap transforme	er is used.	True/False
03.27	Diode is not used as a	a polarity protection de	evice.	True/False
03.28	Bridge rectifier is use	ed for Audio and Vedio	o signals.	True/False
03.29	Bridge rectifier is not	used in alternator.		True/False
03.30	In rectifier step up tra	ansformer is used		True/False

		high (b) light dopin	ng (c) breakdow	n at low reverse voltage
03.32	A zener diode is used (a) Forward bias	in- (b) Reverse bias	(c) Zero bias	(d) None
03.33	A Zener diode is used (a) Regulator	d as a- (b) Inverter	(c) Converter	(d) None.
03.34	Which of the following (a) Signal diode	ng diode is designed to (b) Power diode	operate in the break d (c) Zener diode	own region (d) None
03.35	Light emitting diode (a) Unbiased	produces light when- (b) Forward biased	(c) Reverse bias	(d) None
03.36	What is the operating (a) less than 1V	voltage of LED- (b) 1 to 3V	(c) 3 to 4V	(d) 5V
03.37	What is the maximum (a) 5 to 10 mA	n current rating of LED (b) 3 to 4mA		(d) 16mA
03.38	Photo diode is used in (a) Forward bias	n- (b) Reverse bias	(c) Zero bias	(d) None
03.39	Photo diode is made (a) Cadmium sulfide		senide (d) None	
03.40	(a) Combination of L	ED and photo diode or ener diode and transist ED and Zener diode.	-	
03.41	LED emits no light w	hen reverse bias		True/False
03.42	Ga As LED emits red	l light		True/False
03.43	Photo diode is not us	sed in fire alarm circuit		True/False
03.44	Opto coupler is used	for isolation of analog	and digital.	True/False
03.45	Main advantage of L	ED is low power consu	imption.	True/False

Transistor

04.01	A PNP Transistor is made of- (a) Carbon (b) selinium (c) Either silicon	or Germanium	(d) None of these	
04.02		physically larger that To distinguish it from To reduce resistand	om other regions	
04.03	In a transistor which of the following region is (a) Emitter (b) Base (c)	very lightly doped a) Collector	nd is very thin- (d) None of these.	
04.04	In a NPN transistor the function of the emitter is (a) To emit or inject holes into the collector (b) To emit or inject electrons into the collector (c) To emit or inject electrons into base (d) None of these			
04.05	In a PNP transistor, with normal bias the emitter (a) Is always reverse bias (b) has vec (c) Has low resistance (d) Remains	ery high resistance		
04.06	In a NPN transistor, when emitter junction is for reverse bias, the transistor will operate in- (a) Active region (b) Saturation region (c)		ector junction is (d) Inverted region	
04.07	· 1) Metallic casing	(d) None of these	
04.08	In a transistor leakage current mainly depends (a) Doping of base (b) Size of emitter (c)		r (d) Temperature	
04.09	In a NPN transistor of the emitter junction is re reverse bias, the transistor will operate in- (a) Active region (b) Saturation region (c)		ctor junction is also (d) Inverted region	
04.10	How many junctions in a transistor are-) One	(d) Four	
		Collector at the collector	(d) None of these. True/False	
	For amplification purpose transistor is used in a		True/False	
	Common base configuration is less used because (a) It has low input impedance (b) It has	_	ce	
04.15	Common emitter transistor has- (a) High current gain and high voltage gain (b) Low current gain and low voltage gain (c) High current gain and low voltage gain (d) none.			
04.16	- · · · · - · · · · · · · · · · · · · ·	be around-) Few hundred micro) Few hundred mili	_	

04.17	Input and output sign (a) Equal	al for CE amplifier are (b) In phase	always (c) Out of phase	(d) Non of these
04.18	Which transistor contains (a) Common emitter	figuration is preferred in (b) Common base	for high input and low (c) Common collecto	
04.19	The common-emitter (a) Ic/I_E	forward current ampli (b) Ic/I_B	fication factor β is given (c) I_E / I_B	en by- (d) I_B / I_E
04.20	The value of total col (a) $Ic = \alpha I_E$	llector current in CB ci (b) α I _E + I _{CBO}		$=$ βI_{E}
04.21	What is the current g (a) Less than 1	ain of C.B. (b) More than 1	(c) Equal to 1	(d) None of these
04.22	What is the current g (a) Approx 50	gain of C.E. (b) Approx 100	(c) Approx 800	(d) Less than 1
04.23	What the input resista (a) Approx 1KΩ		(20Ω) (c) 120KΩ	(d) 50KΩ
04.24	The voltage gain of a amplifier will beau) 400	n amplifier is 100 and (b) 200	the current gain is 2 th	e power gain of (d) 1000
04.25	In case of a transistor a) positive and > 1	α is (b) positive and α (c)	(c) negative and > 1	(d) negative and < 1
04.26	Which of the amplifical Common emitter	er circuits using junction (b) Common base	on transistor has best g (c) Common collecto	
04.27	As compared to a CB a) Lower current amp (c) Lower input resist		ier has- (b) Higher current an (d) All	nplification
04.28	CC is used in impeda	nce matching and buff	ers	True/False
04.29	Gain of CC is not less	s than 1		True/False

Transducer

05.01	Transducer converts- (a) Electrical energy to (c) chemical energy to	o mechanical energy o mechanical energy		y to electrical energy ne of these.
05.02	In track machine which (a) Variable inductant (c) Variable resistance	• •	sed- (b) Variable capacitar (d) none of these	nce type
05.03	What is the rate of ou (a) 19mv/mm	tput of Tamping depth (b) 11mv/mm	transducer? (c) 90mm/mm	(d) 23mn/mm
05.04	What is resistance value (a) 2.5 $K\Omega$	lue of potentiometer us (b) 5 K Ω	sed in transducer- (c) 6 K Ω	(d) 7.5 KΩ
05.05	In portable tamping d (a) -4.6V	epth transducer output (b) +7.5V	voltage will be (c) -7.5V	(d) -10V
05.06		lucer convertsof tamping unit or for		
05.07	What is multicheck as (a) F13	ddress of LHS tamping (b) F14	g unit- (c) F15	(d) F10
05.08	Output voltage of por (a) -7.5	table tamping depth tra (b) -10V	ansducer in 09-3X mac (c) -4.6V	chine- (d) -5V
05.09	How many tamping d (a) 2	epth transducer in 09-3 (b) 3	3X machine- (c) 5	(d) 4
05.10	How many voltage in (a) -10V	red colour wire in tra (b) +10V	nsducer- (c) +5V	(d) -2.5V
05.11	How many tamping da) 2	epth transducer in UN (b) 3	I-4S (c) 4	(d) 5
05.12	During calibration of lower position.	portable tamping deptl	h transducer. Tamping	Unit should be in True/False
05.13	Tamping depth transc	lucer is a passive type	transducer.	True/False
05.14	Lining Transducer me (a) H ₁ value of versin (c) Both H ₁ and H ₂ va	e	(b) H ₂ Value (d) None of the	
05.15	What is the multiched (a) F02	ek address of Lining Tr (b) F01	ransducers-? (c) F06	(d) F00
05.16	Lining transducer cor (a) 90mV/mm	nverts H ₁ versine to ele (b) 11mV/mm	ctrical signal at the rate (c) 2.3.1mV/mm	e of- (d) 25mV/mm
05.17	Measuring transducer (a) H ₁ value of versin (c) Both H ₁ & H ₂ value	e	(b) H₂ value of versin(d) None of these.	e

05.18	What is the multiched (a) F02	(b) F01	g transducer- (c) F06	(d) F00
05.19	Satellite transducer co (a) 23.1mV/mm	onverts displacement of (b) 11mV/mm	of satellite to electrical (c) 2.3.1mV/mm	signal at the rate- (d) 90mV/mm
05.20	What should be out p position-?	ut of satellite transduc	er in CSM, when satel	llite is in front lock
	(a) -8.2V	(b) +8.2V	(c) -8.6V	(d) + 8.6V
05.21	What should be out p position-	ut of satellite transduc	er in 09-3X when sate	llite is in rear lock
	(a) -8.2V	(b) +8.2V	(c) -8.6V	(d) + 8.6V
05.22	Hook transducer is us (a) UNIMAT	sed in- (b) CSM	(c) Duomatic	(d) 09-3X
05.23	Hook transducer cove (a) 23mV/mm	erts displacement of ho (b) 25mV/mm	ook to electrical signal (c) 11mV/mm	at the rate of- (d) 90mV/mm
05.24	What is the multiched a) $F_{18} \& F_{19}$	ck address of Hook tra (b) F ₁₄ & F ₁₅	nsducer- (c) $F_{01} \& F_{02}$	(d) $F_{06} \& F_{07}$
05.25	What should be output (a) -1.8V	at of Hook transducer (b) -2.2V	when hook is in fully $(c) +2.2$	upper position- (d) +8.2V
05.26	Satellite is used in UI	NIMAT machine		True/False
05.27	Hook transducer is al	so used in UNIMAT c	ompact machine.	True/False
05.28	Pendulum converts-			
	(a) Cross level error t (c) Versine values to		(b) Slew value (d) none of the	ne to electrical signal nese.
05.29	(a) Cross level error t	electrical signal	(d) none of the	•
05.29 05.30	(a) Cross level error to (c) Versine values to Pendulum initially get (a) 25mV/mm	electrical signal nerates electrical signa	(d) none of the rate of- (c) 2mV/mm	nese. (d) 90mV/mm
	(a) Cross level error to (c) Versine values to Pendulum initially ge (a) 25mV/mm PCB in pendulum am (a) 2mV/mm	electrical signal enerates electrical signa (b) 23mV/mm aplifies the initially go	(d) none of the all at the rate of (c) 2mV/mm enerated signal at the rate of (c) 19mV/mm	(d) 90mV/mm
05.30 05.31	(a) Cross level error to (c) Versine values to Pendulum initially get (a) 25mV/mm PCB in pendulum am (a) 2mV/mm How many pendulum	electrical signal enerates electrical signa (b) 23mV/mm aplifies the initially ge (b) 25mV/mm as in 09-CSM machine (b) 1	(d) none of the al at the rate of- (c) 2mV/mm enerated signal at the r (c) 19mV/mm	(d) 90mV/mm rate of- (d) 23mV/mm
05.30 05.31	(a) Cross level error to (c) Versine values to Pendulum initially get (a) 25mV/mm PCB in pendulum am (a) 2mV/mm How many pendulum (a) 2 How many pendulum (a) 2	electrical signal enerates electrical signa (b) 23mV/mm eplifies the initially ge (b) 25mV/mm es in 09-CSM machine (b) 1 es in 09-3X machine-	(d) none of the all at the rate of- (c) 2mV/mm enerated signal at the r (c) 19mV/mm (c) 3	(d) 90mV/mm rate of- (d) 23mV/mm (d) 4
05.30 05.31 05.32	(a) Cross level error to (c) Versine values to Pendulum initially ge (a) 25mV/mm PCB in pendulum am (a) 2mV/mm How many pendulum (a) 2 How many pendulum (a) 2 How many pendulum (a) 2	electrical signal enerates electrical signa (b) 23mV/mm eplifies the initially ge (b) 25mV/mm es in 09-CSM machine (b) 1 es in 09-3X machine (b) 1 eneters in pendulum PC (b) 3 enverts- I to electrical signal	(d) none of the last the rate of- (c) 2mV/mm enerated signal at the r (c) 19mV/mm (c) 3 (c) 3 B-	(d) 90mV/mm rate of- (d) 23mV/mm (d) 4 (d) 4 (d) 4

05.36 What is the multicheck address of height transducer-				
	(a) F0D & F0E	(b) F01 & F02	(c) F14 & F15	(d) F04 & F06
05.37	How many numbers	of height transduc	cers in tamping machines-	
	(a) 3	(b) 4	(c) 2	(d) 1
05.38	Encoder converts-			
(a) Dis	splacement of machine	e to digital signal	(b) Displacement of sate	llite to digital signal
· /	(c) Both	2 2	(d) None of these	8 8
05.39		*	hine to digital signal at the	
	(a) 100 Pulse/meter	(b) 1000 Pulse/r	meter (c) 10 Pulse/meter)	(d) None of these
05.40	In which machine en	ecoder is not used-		
03.40		(b) CSM	(c) 09-3X	(d) DGS
	(#) 61 (11/11 11	(8) 821.1	(0) 05 011	(0) 2 00
05.41	During calibration of	f height transduce	r leveling chord tension is	not provided True/False
05.42	During calibration of	f nandulum Mach	anical adjustment should b	na dona first Trua/Falsa
05.42	During Canbration of	i pendulum, Micen	amear aujustinent snoutu t	oc done mst. Truc/Taisc

Operational Amplifier

06.01	Operational amplifier (a) Direct coupled	r is an (b) R.C. Coupled	-	(d) None of these.	
06.02	Operational amplifier (a) 1	r hasIn (b) 2	nput terminals- (c) 3	(d) 4	
06.03	Operational amplifies (a) 1	r hasou (b) 2	utput terminals- (c) 3	(d) 4	
06.04	Power supply of op-a (a) $\pm 5V$	amplifier is(b) $\pm 10V$		(d) none	
06.05	Open loop gain of pr (a) 10^6	actical op-amp is (b) 10^7	(c) 10 ⁸	(d) 10 ⁹	
06.06	Open loop gain of ide (a) 0	eal op-amp is (b) ∝	(c) 10^8	(d) 10 ⁹	
06.07	Input resistance of id (a) 1Ω	eal op-amp is (b) 10Ω	(c) 100Ω	(b) ∞	
06.08	Input resistance of pr (a) $10^6 M\Omega$	ractical op-amp is (b) $10^8 \mathrm{M}\Omega$	(c) 10 ⁹ MΩ	(b) ∞	
06.09	Output resistance of (a) 0Ω	ideal op-amp is (b) 100Ω	(c) 1000Ω	$(d) \propto \Omega$	
06.10	Output resistance of (a) 100Ω	practical op-amp is- (b) 75Ω	(c) 1000Ω	(d) $10^6\Omega$	
06.11	Positive feed backing (a) Amplifiers	g of op-amp is used in. (b) Switching circuits		(d) None of these	
06.12	Negative feed backin (a) Amplifiers	ng of op-amp is used in (b) Switching circuits		(d) None of these	
06.13	Op-amp has one inpu	it terminal and two out	put terminal	True/Fals	e
06.14	Ideal op-amp has zer	o input impedance.		True/Fals	e
06.15	Ideal op-amp has infi	nite gain.		True/Fals	e
06.16	Ideal op-amp has flat	band width.		True/Fals	e

06.17 Output of following Op –Amp is....

- (a) -2.8V (b) -1.4V (c) +2.8V (d) -700 my
- 06.18 Output of following op-amp is.....-

- 06.19 Maximum output voltage of operational amplifier is......
 - (a) $\pm 14V$
- (b) $\pm 15V$
- $(c) \pm 10$
- (d) ± 24
- 06.20 The following circuit represents.....

- (a) Differentiator
- (b) Adder
- (c) Buffer
- (d) Multiplier

06.21 The following circuit represents

06.22 The following circuit represents

06.23 Output of following op-amp is.....

06.24 Output of following op-amp is.....

06.25 Output of following op-amp is.....

06.26 Output of following op-amp is.....

06.27 Schmitt trigger coverts any type of wave shapes signal to square wave signal- True/False

06.28 Comparator is a circuit which does not compare signals.

True/False

06.29 Subtractor subtracts the input signals

True/False

06.30 Limiter is not used in Tamping Unit control circuit True/False

06.31 Op-amp can not performs mathematical calculations True/False

06.32 Integrator provides on output voltage which is proportional to the integral of input voltage.

True/False

06.33 Differentiator provides on output voltage which is proportional to the rate of change of the input voltage.

True/False

06.35 Op-741 Ic is a.....

(a) Single op-amp (b) Dual op-amp (c) Quad op-amp (d) None of these

06.38	Op 747 Ic has			
	(a) 3 op-amp	(b) 4 op-amp	(c) 6 op-amp	(d) 2 op-amp
06.39	Op 11 Ic is a (a) Single op-amp		(c) Six op-amp	(d) Quad op-amp
06.40	Op 7474 Ic has (a) 2 op-amp		(c) 3 op-amp	(d) 1 op-amp
06.41	Op 11 Ic is a	Ic. (b) 8 pin	(c) 12 pin	(d) 14 pin
06.42	Op-02 is not used in o	different PCBs of macl	hine.	True/False
06.43	In machine op-amp Io	es ±15V supply is use	ed.	True/False

Digital Electronics

07.01	The number of levels (a) One	in a digital signa (b) Two	l is (c) Four	(d) Ten.
07.02	The high voltage leve (a) 1	el of a digital sign (b) 0	al in positive logic is (c) Either 1 or 0	(d) None of these
07.03	A device that convert (a) Decoder	s from decimal to (b) Encoder	binary number is calle (c) CPU	d- (d) Converter
07.04	Decimal 15 in binary (a) 1111	system can be wi	ritten as- (c) 1100	(d) 1000
07.05	In decimal system the (a) 0	e base or radix is. (b) 1	(c) 9	(d) 10
07.06	A binary system has a (a) 0	radix of (b) 1	(c) 2	(d) None of these
07.07	The radix of a hexade (a) 2	ecimal system is- (b) 8	(c) 10	(d) 16
07.08	octal 16 is equal to de (a) 13	ecimal (b) 14	(c) 15	(d) 16
07.09	The decimal equivale (a) 348	nt of Hexadecima (b) 2583	al number (ABC) ₁₆ is (c) 2748	(d) 33
07.10	The number of binary (a) 4	bits required to (b) 8	represent a hexadecima (c) 3	l number is- (d) 16
07.11	The number of binary (a) 24	bits required to 1 (b) 3	represent octal number (c) 16	is- (d) 8
07.12	A logic gate is an elec (a) Makes logic decis (c) Works on binary a	ion (ich- b) Allows electron flow d) None of these	only in one direction
07.13	The output of a 2-inp (a) Both inputs are 0			re 1 (d) Either input is 0
07.14	An X OR gate production (a) High	ces an output only (b) Low	when its two input are (c) Different	(d) None of these
07.15	A NOR gate is ON or (a) Low	nly when all its in (b) Positive	-	None of these
07.16	(a) It is used by every(b) Many digital com	body puter use NAND	-	

07.17	If any or all inputs ar (a) Low	e low then output is in (b) High	NAND gate- (c) Both	(d) None of these
07.18	In any flip flop when (a) 0	the Q output is 1, what (b) 1	t is the state of the \overline{Q} to (c) either O or 1	erminal- (d) None of these
07.19	A flip –Flip is basic n	nemory element.		True/False
07.20	Digital circuits operat	es with pulses.		True/False
07.21	In binary number syste	em there are three digit	s 0,1 and 2	True/False
07.22	Binary 111 equivalent	to decimal 7		True/False
07.23	Binary system is not u	sed in digital computer	r.	True/False
07.24	In the microprocesso (a) Computing power	r micro word indicates (b) Physical size	its- (c) Memory size	(d) Non of these.
07.25	The first microproces (a) 1968	ssor was introduced in (b) 1970	INTEL corpora (c) 1971	ation USA (d) 1980
07.26	The first Indian Micr (a) 8085	oprocessor is- (b) 8080	(c) SCL6502	(d) 8086
07.27	In which machine, M (a) Unomatic	icroprocessor based sy (b) UNIMAT	vstem is not used- (c) CSM	(d) DGS
07.28	1 Byte is equal to (a) 6 bits	 (b) 8 bits	(c) 4 bits	(d) 16 bits
07.29	1 Nibble is equal to- (a) 6 bits	(b) 8 bits	(c) 4 bits	(d) 16 bits
07.30	What is memory add (a) 1 K byte	ressing capacity of 16 (b) 1 Megabyte	bit wide address bus m (c) 64 kilobyte	nicroprocessor- (d) 512 bits
07.31	RAM is a	ory(b) Volatile memor	y (c) Magnetic memor	y(d) None of these
07.32	ROM is a(a) Nonvolatile memory	ory(b) Volatile memor	y (c) Magnetic memor	y(d) None of these
07.33	Memory address is u (a) A decimal number	•	(c) Octal number (d) Hexa decimal number
07.34		n be erased by exposing (b) Ultraviolet light		tion (d) None of these
07.35	Hard disc is a(a) Semiconductor m	emory (b) Magnetic	Memory (c) Both	(d) None of these
07.36	A multiplexer- (a) Has multiple input (c) Stores data in mu		(b) Has a single input(d) Multiply 4 bit dat	

07.37	RAM is a read and write memory.	True/False
07.38	ROM is not a read only memory	True/False
07.39	Pentium is not a microprocessor	True/False
07.40	Magnetic memory is volatile memory	True/False
07.41	A group of wire is called bus	True/False
07.42	Magnetic memory is slower than semiconductor memory	True/False
07.43	A number of binary digits that makes the word is the word length.	True/False

Electronics Circuits and PCBs

08.01	Which is not the adva (a) Rectification of fa (c) Manufacturing is e	ult is easy		wer rating of circuit is	high
08.02	Which is not the adva (a) Cheaper than discr (c) Occupied very less	rete circuits		ght weight nrepairable	
08.03	PCB calculates- (a) Back time	(b) Track para	meter	(c) Track error	(d) None
08.04	Full form of Ic is - (a) Internal combustion	on(b) Industrial	control	(c) Integrated Circuit	(d) Indian Culture
08.05	Pendulum control PC (a) EK348LV	B in CSM is (b) EK346LV		(c) EK347LV	(d) EK345LV
08.06	Satellite compensation (a) EK345LV			 (c) EK347LV	(d) EK348LV
08.07	Programmer PCB in C (a) EK501P	CSM is (b) EK502P	-	(c) EK503P	(d) None
08.08	Tamping Unit control (a) EK16V	PCB in 09-3X (b) EK1AP7	machir	ne is (c) EK1AP13	(d) EK176V
08.09	Multiplexer PCB in 0 (a) EK28V	9-3X machine (b) EK207V	is	(c) EK24V	(d) None
08.10	Hook control PCB in (a) EK144V		S-	(c) EK120V	(d) None
08.11	Levelling control PCI (a) EK2041LV	3 in WST is- (b) EK2042LV	V	(c) EK3069LV	(d) None
08.12	Lining control PCB in (a) EK2038LV	n WST is- (b) EK2286LV	V	(c) EK2173LV	(d) EK2072LV
08.13	Tamping Unit control (a) EK176V	PCB in UNIM (b) EK132V	IAT-4S	is- (c) EK1AP7	(d) EK1AP13
08.14	Which one is related to (a) EL-T 631	to intercom sys (b) EL-T 277	tem	(c) EL-T 7045	(d) EL-T 7010
08.15	Dual in line package of	of Ic is used in	machine	e	True/False
08.16	Full form of PCB is p	oublic control be	oarb		True/False
08.17	In Ics terminal numb	pering is counti	ng in an	ti clock wise direction	n from mark, grooved
	or nose				True/False

Power Supply

09.01	±15V is used for- (a) Digital display	(b) Op-amp	(c) Programmer PCB	(d) Transducers.	
09.02	±10V is used for- (a) Digital display	(b) Op-amp	(c) Programmer PCB	(d) Transducers.	
09.03	±12V is used for- (a) Digital display	(b) Op-amp	(c) Programmer PCB	(d) Transducers.	
09.04	+5V is used for- (a) Digital display	(b) Op-amp	(c) Transducers. (d) No	ne	
09.05	Power supply PCB is (a) Converter	called- (b) Inverter	(c) Rectifier	(d) None	
09.06	What is the output of (a) $\pm 10V$, $\pm 5V$	EK813SV- (b) ±15V, ±10	V (c) ± 15 V, ± 12 V	(d) ±5V, ±12V	
09.07	Power supply PCB EI (a) CSM	K816 SV is use (b) UNIMAT	d in- (c) 09-3X	(d) None	
09.08	Power supply PCB EI (a) 09-3X	K819SV is used (b) CSM	l in- (c) UNIMAT-4S	(d) UNIMAT-3S	
09.09	DC to DC converters	are not a regula	ted power supply PCBs-	True/False	
09.10	1 1 11 7				
09.11	What is the output of (a) +24V, +12V	power supply F (b) +15V	PCB EK812SV- (c) ±15V, ±10V	True/False (d) $\pm 10 \text{V}$	
09.12	Output of power pack (a) ±10V	is- (b) ±15V	(c) +12	(d) +5V	
09.13	How many No. of pov (a) 3	wer supply PCE (b) 4	B EK813SV in CSM- (c) 6	(d) 5	
09.14	How many No. of pov (a) 2	wer supply PCE (b) 3	B EK813SV in 09-3X- (c) 4	(d) 5	
09.15	How many No. of pov (a) 2	wer supply PCE (b) 3	B EK813SV in UNIMAT- (c) 4	(d) 5	
09.16	Which PCB output is (a) EK813SV	±10V, ±15V & (b) EK815SV	(c) EK812	(d) EK819SV	
09.17	How many power pace (a) 2	ek is used in EK (b) 1	(c) 3	(d) None	
09.18	Which power supply (a) EK813SV	PCB is used in (b) EK816 SV	Lining control circuit in 09-32 (c) EK812SV	ζ- (d) EK851SV	

09.19		PCB is used for note b (b) EL-T 7155	ook in 09-3X- (c) EK805 SV	(d) EK819SV
09.20		is used for P-500 prog (b) EK812SV	-	(d) EK819SV
09.21	Which PCB is used in (a) EK816SV	a auto positioning circu (b) EK812SV		(d) EK805SV
09.22			control circuit in 09-3X (c) EK805SV	
09.23	What is the output of (a) $+12V$, $+5V$		(c) +15V (d) +1	0V
09.24	1 11	is used for digital disp (b) EK812SV	•	(d) None
09.25	Which is the output of (a) $\pm 10V$, $\pm 15V$	f EK819SV- (b) ±5, ±10V	(c) $+5$, ± 15 V, ± 10 V	(d) None
09.26		PCB is used in import (b) EK819SV		(d) None
09.27	Which PCB is used in (a) EK813SV		circuit in imported Duc (c) EK819SV	omatic- (d) None

Programmer unit and Logic Plan.

10.01. Programer F	10.01. Programer PCB used in CSM.					
(a) EK501P	(b) EK502P	(c) EK503P	(d) EK553P			
10.02. Programer F (a) EK501P	PCB used in Unimat (b) EK502P	2S (c) EK503P	(d) EK553P			
10.03. Programer F	PCB used in 09-3X.					
(a) EK553P	(b) EK502P	(c) EK650P	(d) EK554P			
10.04. Programer F	PCB used in WST.					
(a) EK601P	(b) EK650P	(c) EK653P	(d) EK654P			
10.05. PLC stands	for					
10.06. EPROM sta	nds for					
10.07. Version of F	Programmer used in	CSM and Unimat 2	S &3S (Old) is			
10.08. Version of F	Programmer used in	09-3X and WST is.				
10.09. Input output	PCB used in CSM	and Unimat 2S is				
(a) EK501P	(b) EK552P	(c) EK554P	(d) EK553P			
10.10. Input output	PCB used in 09-3X	and WST is.				
(a) EK653P	(b) EK602P	(c) EK654P	(d) EK553P			
10.11. In programn	ner unit X stands for	r.				
(a) Input (b) (Output (c	e) Subroutine	(d) Time Delay			
10.12. In programm	ner unit Q stands for	ſ				
(a) Input (b) (Output (c	c) Load Output	(d) Time Delay			
10.13. In programm	ner unit inputs are ir	ndicated by				
(a) Yellow LED	(b) Red LED	(c) Green LED	(d) Blue LED			
10.14. In programmer unit outputs are indicated by						
(a) Yellow LED (b) Red LED (c) Green LED (d) Blue LED						
10.15. How many l	inputs are there in E	K553P				
(a) 8Nos (b) 1	16Nos (c) 32No	s (d) 64Nos				

10.16. How m	any Outputs ar	e there in EK5:	53P	• • • • • • • • • • • • • • • • • • • •	••••
(a) 8Nos	(b) 16Nos	(c) 32Nos	(d) 64	Nos	
10.17. In which	ch codes inputs	and outputs of	EK553	P are indicated	
(a) Binary	(b) Octal	(c) Hexadecin	nal	(d) None of th	ese
10.18. Load re	elay PCB in Un	imat 2S/3S is			
(a) EK502P	(b) EK	552P	(c) Ek	X554P	(d) EK654P
10.19. Load o	utputs are indic	ated by			
(a) X	(b) Q	(c) QL	(d) S		
10.20. How m	any Outputs ar	e there in EK55	54P		
(a) 8Nos	(b) 16Nos	(c) 32Nos	(d) 64	Nos	
10.21. How many LEDs are there in EK554P					
(a) 8Nos	(b) 16Nos	(c) 32Nos	(d) 64	Nos	
10.22. How m	any yellow LE	Ds are there in	EK554	Р	
(a) 8Nos	(b) 16Nos	(c) 32Nos	(d) 64	Nos	
10.23. How m	any red LEDs	are provided in	EK554	P	
(a) 16Nos	(b) 32Nos	(c) 64Nos	(d) 12	8Nos	
10.24. How m	any relays are	provided in EK	.554P		
(a) 6Nos	(b) 16Nos	(c) 26Nos	(d) 36	Nos	
10.25. How m	any fuses are p	rovided in EK	554P		
(a) 8Nos	(b) 16Nos	(c) 32Nos	(d) 64	Nos	
10.26. Which	relay is used in	EK554P			
(a) ELT 663	(b) ELT7002/	S2 (c) ELT12	218	(d) ELT7002/	S4
10.27. Time d	elay PCB in CS	SM and Unimat	t 2S/3S	is	•••••
(a) EK502P	(b) EK	552P	(c) Ek	X554P	(d) EK654P
10.28. Time d	elay outputs are	e indicated by			
(a) X 10.29. How m	(b) Q any yellow LE	(c) QL Ds are provide	(d) Q d in EK	.552P	
(a) 8Nos	(b) 16Nos	(c) 32Nos	(d) 64	Nos	

10.30. How	many red LED	s are provided	in EK552P
(a) 2Nos	(b) 4Nos	(c) 8Nos	(d) 16Nos
	many time dela		potentiometers are provided in
(a)18Nos	(b) 16Nos	(c) 32Nos	(d) 8Nos
10.32. How	many program	mer PCBs are J	provided in CSM
(a) 1No	(b) 2Nos	(c) 3Nos	(d) 4Nos
10.33. How	many EK553P	PCBs are prov	rided in CSM
(a) 4No	(b) 5Nos	(c) 7Nos	(d) 9Nos
10.34. How	many EK552P	PCBs are prov	rided in CSM
(a) 1No	(b) 2Nos	(c) 3Nos	(d) 4Nos
10.35. Which	ch one is subrou	tine output in	CSM
(a) Q01	(b) Q10	(c) Q20	(d) Q30
10.36. Which	ch one is not a s	ubroutine outp	ut in CSM
(a) Q01	(b) Q61	(c) Q9F	(d) Q11
10.37. In Lo	ogic Plan 1X10	stand for	
10.38. In Lo	ogic Plan 2X19	stands for	
10.39. In Lo	ogic Plan 2X4E	stands for	
10.40. In Lo	ogic Plan Q10 s	tands for	
10.41. In Lo	ogic Plan Q20 s	tands for	
10.42. In Lo	ogic Plan Q35 s	tands for	
10.43. In Lo	ogic Plan QL20	stands for	
10.44. In Lo	ogic Plan QL26	stands for	
10.45. In Lo	ogic Plan Q80	stands for	
10.46. In C	SM which signa	l does give pro	ogramme run indication
(a) Q01	(b) Q1E	(c) Q9F	(d) X1E
10.47. In lo	gic chart which	symbol does si	how "AND" function
(a) v	(b) Z	(c) ^	(d)

10.48. In logic chart which symbol does show "OR" function					
(a) V	(b) ∑	(c) ^	(d) ⁻		
10.49. In logi	c chart which sy	mbol does sho	w "Not allowed" function	١	
	4.)		(1)		
(a)v	(b) ∑	(c) ^	(d)		
10.50. In logi	c chart signal 11	shows			
(a) X	(b) Q	(c) OI	(d) O'		
(a) A	(b) Q	(c) QL	(u) Q		
10.51. Timing	g range in time d	elay PCB is			
(a) 1-2 sec	(b) .2-3.5 sec	(c) 2-3.5 mse	c (d) 3-5 sec		
(a) 1 2 see	(0) .2 3.3 500	(c) .2 3.3 Hist	c (d) 5 5 5cc		
10.52 OL is	controlled by O			True/False	
10.32. QL 18 0	10.52. QL is controlled by Q. True/False				
10.53. EK 553P can be replaced with EK 653P. True/False					
10.54. All input/output PCBs can be checked at '0' no. port only. True/False					
10.54. All inp	out/output PCBs	can be checked	u at o no. portoniy.	True/False	
10.55. CSM h	10.55. CSM has EK 653P PCB. True/False				

Multi-check/ Multiplexer PCB

11.01. Multip	lex PCB is use	ed to check	••••	
(a) Output of	Transducer (b) Output of Pot	entiometers (c) Input –	Output of PCBs (d) All a,b,c
11.02. Multip	lex PCB used	in CSM, Unima	at 2S	
(a) EK28V	(b) E	K16V	(c) EK24V	(d) EK207V
11.03. No./s o	of Multiplex I	PCB used in CS	M/Unimat2S/3S/WST	
(a) 1	(b) 2	(c) 3	(d) 4	
11.04. Multip	lex PCB used	in Tamping Ex	press 09-3X is	
(a) EK28V	(b) E	K16V	(c) EK24V	(d) EK207V
1105. How m	any Multiplex	PCB used in T	amping Express 09-33	K
(a) 1	(b) 2	(c) 3	(d) 4	
11.06. Maxim	num no. of sig	nals can be chec	cked by Multiplex PCF	B used in CSM
(a) 16	(b) 32	(c) 48	(d) 40	
11.07. Maxim		gnals can be che	cked by Multiplex PC	Bs used in 09-3X
(a) 48	(b) 64 (c) 80 (d) 1	92	
11.08. Multic	heck signals a	re denoted by		
(a) X	(b) Q	(c) QL	(d) F	
11.09. How m	nany Yellow I	EDs are there i	n a Multiplex PCB	
(a) 8 Nos	(b) 16 Nos	(c) 32 Nos	(d) 64 Nos	
11.10. How n	nany Red LED	s are there in a	Multiplex PCB	
(a) 2 Nos	(b) 4Nos	(c) 8Nos	(d) 16Nos	
11.11. How m	nany Blue swi	tches are there i	n Multiplex PCB	
(a) 8Nos	(b) 16Nos	(c) 32Nos	(d) 64Nos	
11.12. How m	nany Red swite	ches are there in	n Multiplex PCB	
(a) 2 Nos	(b) 3Nos	(c) 4Nos	(d) 5Nos	

11.13. Multiposition selector switch should be kept in which position while checking signal by multicheck PCB					
(a) 1st	(b) 2 nd	(c) 3rd	(d) 4 th		
-	osition selector l display		be kept in which position while checking signal		
(a) 1st	(b) 2 nd	(c) 3rd	(d) 4th		
11.15. Multich	neck Address of	f lining Transd	ucer in CSM is		
(a) F01	(b) F02	(c) F03	(d) F04		
11.16. Multicheck Address of Measuring Transducer in CSM is					
(a) F00	(b) F01	(c) F02	(d) F03		
11.17. In multicheck F10 stands for					
TITE IN INSTITUTE OF SMILES FOR					

Tamping Unit Control Circuit UNO/DUO/ CSM/3X /Unimat

12.01. Polarity of sign	nal from tamping depth	n transducer in upper pe	osition is
(a) Positive	(b) Neutral	(c) Not fixed	(d) Negative
12.02. Value of suppl	ly P50 is		
(a) -15V	(b) +15V	(c) -10V	(d) +10V
12.03. Value of suppl	ly P51 is		
(a) + 15V	(b) -15V	(c) -10V	(d) +10V
12.04. Value of suppl	ly P52 is		
(a) +10V	(b) +15V	(c) -10V	(d) -15V
12.05. Value of suppl	ly P53 is		
(a) -15V	(b) +15V	(c) -10V	(d) +10V
12.06. Value of suppl	ly P2 is		
(a) -15V	(b) +15V	(c) -10V	(d) 24V
12.07. Signal rate of o	depth selector is		
(a) 25mV/mm	(b) -19mV/mm	(c) -25mV/mm	(d) 19mV/mm
12.08. Value of one s	tep of squeezing timer	will be	
(a) .4 sec	(b) .1 sec	(c) 0.3 sec	(d) .2 sec
12.09. Tamping Cont	rol PCB in Unimat2S i	s	
(a) EK28V	(b) EK16V	(c) EK24V	(d) EK132V
12.10. Tamping Cont	rol PCB in 09-3X is		
(a) EK1AP7	(b) EK1AP4	(c) EK24V	(d) EK132V
12.11. Tamping Cont	rol PCB in WST		
(a) EK28V	(b) EK16V	(c) EK176V	(d) EK132V
12.12. In Uppper pos	ition of Tamping unit v	which LED glows	
(a) Red	(b) Green	(c) Yellow	(d) None of these
12.13. In Uppper pos	ition of Tamping unit v	which relay operates in	EK-16V
(a) Re6	(b) Re3	(c) Re4	(d) Re5

12.14.In Uppper position of Tamping unit what inputs go to programmer in CSM					
(a) X13 & X14	(b) X15 & X16	(c) X17 & X18	(d) X19& X20		
12.15. Which pote	ntiometer is used to set	Uppper position of Tan	nping unit		
(a) P1	(b) P5	(c) P9	(d) P11		
12.16. In Middle p	osition of Tamping uni	t which LED glows			
(a) Red	(b) Green	(c) Yellow	(d) None of these		
12.17.In Middle p	osition of Tamping uni	t which relay operates			
(a) Re6	(b) Re3	(c) Re4	(d) Re5		
12.18. In Middle p	osition of Tamping uni	t what input go to progr	ammer		
(a) X13 & X14	(b) X19& X1A	(c) X17 & X18	(d) X15 & X16		
12.19. Which pote	ntiometer is used to set	Middle position of Tan	nping unit		
(a) P4	(b) P5	(c) P9	(d) P11		
12.20.Which funct	tion starts in Middle p	osition of Tamping unit			
(a) Squeezing	(b) Driving	(c) lifting & Lining	(d) None of These		
12.21.Lower posit	tion of Tamping unit is	setbefore ta	arget depth.		
(a) 30mm	(b) 60mm	(c) 90mm	(d) 100mm		
12.22.In Lower position of Tamping unit which LED glows					
(a) Red	(b) Green	(c) Yellow	(d) None of these		
12.23.In Lower position of Tamping unit which relay operates					
(a) Re6	(b) Re3	(c) Re4	(d) Re5		
12.24.In Lower position of Tamping unit what input go to programmer					
(a) X13 & X14	(b) X15 & X16	(c) X19& X1A (c	d) X17 & X18		
12.25. Which potentiometer is used to set Lower position of Tamping unit					
(a) P10	(b) P11	(c) P12	(d) P13		
12.26. Which function starts in Lower position of Tamping unit					
(a)Lining (b)	Driving (c) L	ifting (d) Squeezing	5		

12.27. Maximum cu	rent rating of Propo	ruonai vaive	: 18	•••••		
(a) 750mA (b) 600	OmA (c) 65	0mA (d) 700mA			
12.28. In CSM lower	ring current of propo	ortional valv	e for Tamping	Unit is set		
(a) 550mA (l	b) 600mA	(c) 650mA		(d) 750mA		
12.29. In CSM lifting	g current of proportion	onal valve fo	or Tamping U	nit is set		
(a) 550mA (b	o) 600mA	(c) 650mA		(d) 750mA		
12.30. In CSM Basic	c current of proportion	onal valve fo	or Tamping Ui	nit is set		
(a) 200mA (l	b) 400mA	(c) 350mA		(d) 250mA		
12.31. In 09-3X low	ering current of prop	ortional val	ve for Tampin	g Unit is set		
(a) 550mA	b) 600mA	(c) 650mA		(d) 750mA		
12.32. In Unimat lift	ing current of propo	rtional valve	e for Tamping	Unit is set		
(a) 550mA (b	o) 600mA	(c) 650mA		(d) 750mA		
12.33.Tamping contr	rol PCB controls					
(a) Tamping depth (b) Lowering speed (c) Lifting speed (d) All a,b,c						
12.34.Tamping Contr	rol PCB in CSM is					
(a) EK28V	(b) EK16V	(c) EK24	4V	(d) EK207V		
12.35. How many Tamping control PCB used in CSM						
(a) 1 (b) 2	(c) 3	(d) 4				
12.36.Tamping Contra (a) Unomatic	rol PCB EK16V is us (b) Duomatic	sed in (c) CSM		(d) All a,b,c		
12.37. Tamping Control PCB EK132V is used in						
(a) Unimat-2S	(b) Unimat-3S (old) (c) Unor	natic	(d) a & b		
12.38. How many rel (a) 2	ays are there in PC	B EK16V (c) 6		(d) 8		
12.39. How many rel (a) 6	ays are there in PC (b) 8	B EK132V. (c) 10		(d) 12		
12.40. Which outputs are generated by Programmer for lowering of Tamping unit in CSM $\&$ Unimat $2S/3S$						
(a) Q10 & Q11	(b) Q12 &	Q13 (c) Q14 & Q1	5 (d) Q16 & Q17		

EK16V and EK132V	7				
(a) Re5,Re4,Re6	(b) Re1,Re2,	Re5 (c) Re5	,Re6,Re3	(d) Re3,Re4,Re6	
12.42. Which relay is	is used to operate Propo (b) Re2,	ortional Valve in (c) Res		and EK132V (d) Re4	
12.43. What is the c (a) 1A	current rating of fuse us (b) 2A	sed in PCB EK10 (c) 3A		2V (d) 4A	
12.44. Tamping Con	trol PCB in MPT is				
(a) EK1AP4	(b) EK16V	(c) EK176V	(d) EK	1 AP7	
12.45. How many Ta	amping control PCB us	ed in 09-3X			
(a) 1 (b) 2	(c) 3	(d) 4			
12.46. How many Ta	amping control PCB us	ed in WST			
(a) 1 (b) 2	(c) 3	(d) 4			
12.47. How many Ta	amping control PCB us	sed in MPT			
(a) 1 (b) 2	(c) 3	(d) 4			
12.48. How many re	lays are there in PCB	EK1AP7			
(a) 8	(b) 4	(c) 6	(d) 9		
12.49. How many re	lays are there in PCB	EK176V			
(a) 6	(b) 9	(c) 10	(d) 12		
12.50. Which outputs are generated by Programmer for lowering of Tamping unit in WST					
(a) Q10 & Q11	(b) Q12 & Q	(c) Q14	₽ & Q15	(d) Q16 & Q17	
12.51. Which relays are operated by output from Programmer for lowering of Tamping unit in EK1AP7 and EK176V					
(a) Re5	(b) Re1	(c) ,Re3	i	(d) Re4	
12.52. Which relay is used to operate Proportional Valve in PCB EK1AP7 and EK176V					
(a) Re1 & Re5	(b) Re2 & Re	e3,	(c) Re3&Re4	(d) Re4&Re5	
12.53. What is the current rating of fuse used in PCB EK1AP7 and EK176V					
(a) 1A	(b) 2A	(c) 3A	(d) 4A		
12.54. Zero depth of Tamping Tools are set below rail Head					
(a) 20-25mm	(b) 10-15 mm (c) 15	5-30mm ((d) 0-10mm		

12.41. Which relays are operated by output from Programmer for lowering of Tamping unit in

12.55. Zero depth is adjusted by which potentiometer in tamping control PCB							
(a)	P1	(b) P2	(c) P3	(d) P4			
12.56	. Target	depth is set.by which p	potentiometer in tamp	ing controls PCBs			
(a) P1	.0	(b) P11	(c) P12	(d) P13			
		ch machines there are mm) of Tamping units.		sitions, Position1(150mm) &			
(a) 09	9-3X	(b) WST	(c) MPT	(d) All a, b&c			
		potentiometer is used τ	to Adjust Uppper cut o	off position(1) of Tamping unit in 09-			
(a) P2	21	(b) P22	(c) P23	(d) P24			
		potentiometer is used t	to Adjust Uppper cut o	off position (2) of Tamping unit in 09			
(a) P2	21	(b) P22	(c) P23	(d) P24			
12.60. Middle position of Tamping unit is setbelow center mark in all tamping machines.							
(a) 60	mm	(b) 100mm	(c) 120mm	(d) 150mm			
12.61. Which potentiometer is used to Adjust Lowering Current in tamping Control PCB in CSM/Duo/WST							
(a) P1	.1	(b) P12	(c) P13	(d) P7			
12.62. Which potentiometer is used to Adjust Lowering Current in tamping Control PCB in 09-3X/Unomatic/Uni2S/3S/MPT							
(a) P7	7	(b) P8	(c) P9	(d) P10			
12.63. Which potentiometer is used to Adjust lifting Current in tamping Control PCB in CSM/Duo/WST							
(a) P1	.1	(b) P12	(c) P13	(d) P14			
12.64. Which potentiometer is used to Adjust lifting Current in tamping Control PCB in 09-3X/Unomatic/Uni2S/3S/MPT							
(a) P7	7	(b) P8	(c) P9	(d) P12			
12.65. Which potentiometer is used to Adjust Basic Current in tamping Control PCB in all tamping machines.							
(a) P7	1	(b) P8	(c) P9	(d) P12			

12.66.Multicheck address of Depth Selector is					
(a) F10	(b) F11	(c) F12	(d) F13		
	tamping unit is not goir /Unimat2S/3S/WST .	ng down, which outpu	ut of programmer should be		
(a) Q10	(b) Q11	(c) Q12	(d) Q13		
	le tamping unit is not go Unimat2S/3S/WST.	oing down which sub	routine of programmer should be		
(a) Q10	(b) Q11	(c) Q12	(d) Q13		
12.69. If Left/Fro checked in 09-3X		not going down which	n output of programmer should be		
(a) Q120	(b) Q121	(c) Q122	(d) Q123		
12.70. if Left/Rea checked in 09-33	1 0	ot going down which	output of programmer should be		
(a) Q120	(b) Q121	(c) Q122	(d) Q123		
12.71. If Right/Front side tamping unit is not going down which output of programmer should be checked in 09-3X.					
(a) Q120	(b) Q121	(c) Q122	(d) Q123		
12.72. If Right/Rear side tamping unit is not going down which output of programmer should be checked in 09-3X.					
(a) Q120	(b) Q121	(c) Q122	(d) Q123		
12.73. If left side tamping unit is not going down, Q10 is also not coming which subroutine of programmer should not come in CSM.					
(a) Q6C	(b) Q6D	(c) Q6E	(d) Q6B		
12.74. If right side tamping unit is not going down, Q11 is also not coming which subroutine of programmer should not come in CSM.					
(a) Q6C	(b) Q6D	(c) Q6E	(d) Q6B		
12.75. Which subroutine output of programmer should be checked if left or right or both tamping units are not going down in CSM/WST.					
(a) Q0A	(b) Q0B	(c) Q0C	(d) Q0D		
12.76. In CSM/WST Input to programmer from pedal switch is.					
(a) X10	(b) X11	(c) X12	(d) X13		

(a) X16	(b) X17	(c) X18	(d) X19			
12.78. In CSM Input from lining without tamping switch to programmer is.						
(a) X3C	(b) X3D	(c) X3E	(d) X3F			
12.79. In CSM Input	s from Limit switches	of tamping unit Lock to	o programmer are.			
(a) X5A & X5B	(b) X5C & X5D	(c) X5E & X5F	(d) X6A & X6B			
12.80. Which subroutine output of programmer should be checked if left or right or both tamping units are not coming upwards in CSM. during auto cycle.						
(a) Q0A	(b) Q0B	(c) Q0C	(d) Q0D			
12.81. Which subroutine output of programmer should be checked if auto squeezing is not taking place during tamping in CSM?						
(a) Q01	(b) Q02	(c) Q03	(d) Q04			

12.77. In CSM Input to programmer from Tamping system on switch is.

Lining Control Circuit, UNO/DUO/ CSM/3X /Unimat

13.01 .Lining Cont	trol PCB in CSM is		
(a) EK349LV	(b) EK2038LV	(c) EK335LV	(d) EK2361LV
13.02 Lining Contr	rol PCB in 09-3X is		
(a) EK349LV	(b) EK2038LV	(c) EK335LV	(d) EK2361LV
13.03 Lining Contr	rol PCB in Unomatic/D	Duomatic is	
a) EK349LV	(b) EK2038LV	(c) EK335LV	(d) EK2361LV
13.04. Lining Cont	trol PCB in Unimat 2S	is	
a) EK349LV	(b) EK2038LV	(c) EK335LV	(d) EK2361LV
13.05. Lining Cont	trol PCB in Unimat3S i	s	
(a) EK2173LV	(b) EK2038LV	(c) EK335LV	(d) EK2361LV
13.06. Lining Cont	crol PCB in WST is		
(a) EK2286LV	(b EK2361LV	(c) EK2041L	V (d) EK2042LV
13.07. Lining Cont	crol PCB in MPT is		
(a) EK1AP4	(b) EK1.1/17LV	(c) EK2173L	V (d EK2361LV
13.08. Over Slew I	PCB in Unomatic/Duon	natic/ CSM/Unimat2S is	
(a) EK290LV	(b) EK229LV	(c) EK2072LV	(d) EK2361LV
13.09. Over Slew/A	Auxilary output Lining	PCB in PCB in 09-3X/	/Unimat3S/MPT is
(a) EK290LV	(b) EK2140 LV	(c) EK2072LV	(d) EK2361LV
13.10. Over Slew	PCB in WST is		
(a) EK2286LV	(b EK2361LV	(c) EK2041L	(d) EK2195LV
13.11. How many	Lining control PCB used	d in CSM/Duomatic	
(a) 1 (b) 2	2 (c) 3	(d) 4	
13.12. How many	relays are there in PCl	B EK349LV/EK335LV	
(a) 2	(b) 4	(c) 6	(d) 7
13.13. Which outp	uts is generated by Prog	grammer for automatic lin	ing in CSM
(a) Q0A	(b) Q0B	(c) Q0C	(d) Q0D

13.14. Which relays are operated by 3pt.Lining switch in EK349LV/EK335?							
(a) Re1 & Re2	(b) Re1&Re4	(c) Re	3 & Re1	(d) l	Re4&Re2		
13.15. Which relay is (a) Re1	operated by dat	tum switch in El (b) Re4	K349LV/EK33 (c) l			(d)	Re2
13.16. Which relay is	operated by M	Ianual lining swi	tch left side in	EK349L	V/EK335LV	V	
(a) Re5		(b) Re6	(c)]	Re7		(d)	Re2
13.17. Which relay is operated by Manual lining switch Right side in EK349LV/EK335LV							
(a) Re5		(b) Re6	(c)]	Re7		(d)	Re2
13.18. Which relay is	used to operate l	bypass valve in	EK349LV/EK3	335LV			
(a) Re5		(b) Re6	(c)]	Re7		(d)	Re2
13.19. Which relay is (a) Re1	operated in au	ntomatic lining in (b) Re4	n EK349LV/ER (c) l			(d)	Re2
13.20. What is the current rating of fuse used in PCB EK349LV/EK335 (a) 1A (b) 2A (c) 3A (d) 4A							
13.21. How many rela	ays are there in	PCB EK2038	S/EK2286LV				
(a) 2	(b) 4	(c) 6		(d)	7		
13.22. Which outputs	is generated by	Programmer	for automatic	lining in	Unimat2S	/3S	&WST
(a) Q1A	(b) Q1B	(c) Q	IC	(d)	Q1D		
13.23. Which relays	are operated by	7 3pt.Lining swi	tch in EK2038	8/EK2286	5LV		
(a) Re1 & Re2	(b) Re	e1&Re4	(c) Re3 & R	tel (d)	Re4&Re2		
13.24. Which relay is (a) Re1	operated by da	atum switch in I (b) Re4	EK2038/EK22 (c) l			(d)	Re2
13.25. Which relay is operated by Manual lining switch left side in EK2038/EK2286LV							
(a) Re5		(b) Re6	(c)]	Re7		(d)	Re2
13.26. Which relay is operated by Manual lining switch Right side in EK2038/EK2286LV							
(a) Re5		(b) Re6	(c)]	Re7		(d)	Re2
13.27. Which relay o	perates bypass	valve in EK203	8/EK2286LV.				
(a) Re5		(b) Re6	(c)]	Re7		(d)	Re2
13.28. What is the c (a) 1A	urrent rating of (b) 2A		CB EK2038/ (c) 3A	EK22861	LV(d) 4A		

13.29. Part no. of Rel	ays Re1 to Re6	in PCBEK34	9LV/EK335LV	V/ EK20:	38/EK2286LV is	
(a) ELT663	(b) EL	T277	(c) ELT1218		(d) ELT7045	
13.30. Part no. of Rel	ays Re7 in PC	CBEK349LV/E	K335LV/ EK20	038/EK22	286LV is	
(a) ELT663	(b) EL	T7002/S4	(c) ELT1218		(d) ELT7045	
13.31. How many rela	ays are there in	PCB EK2173	LV/EK2361LV			
(a) 2	(b) 4	(c) 6		(d) 7		
13.32. What is the output from programmer for lining in 09-3X						
(a) Q115	(b) Q116	(c) Q1	17	(d) Q1	18	
13.33. Which relays a	re operated by	3pt.Lining swite	ch in EK2173LV	//EK2361	LV	
(a) Re1 & Re2	(b) Re1&Re4	(c)Re1,Re3,	Re5&Re6		(d) Re4&Re2	
13.34. Which relay is	operated by da	tum switch in El	K2173LV/EK236	51LV		
(a) Re1 13.35. Which relay is	operated in aut	(b) Re4 comatic lining in	(c) Re EK2140LV	3	(d) Re2	
(a) Re1		(b) Re2	(c) Re	3	(d) Re4	
13.36. Which relay is	operated in Ma	anual lining left s	side in EK2140I			
(a) Re2		(b) Re3	(c) Re	4	(d) Re5	
13.37. Which relay is	operated in Ma	nual lining Righ	t side in EK214	0LV		
(a) Re1		(b) Re2	(c) Re	3	(d) Re4	
13.38. Which relay is	operated to swi	itch on Oversle	w in EK2140L	v		
(a) Re1		(b) Re2	(c) Re	3	(d) Re4	
13.39. Maximum curr	rent of Servo va	alve is set				
(a) 1.5mA	(b) 15mA	(c) 150mA	(d) 1.5	Ā		
13.40. Maximum Vol	tage of Servo v	valve is set				
(a) 3 mV	(b) 30r	nV	(c) 300mV		(d) 3V	
13.41. In CSM/WST lining PCB	which potentio	meter is used to	o set maximum	current	of servo valve in	
(a) P1	(b) P2		(c) P3		(d) P4	

PCB	I which potentiometer is us	sed to set Gain of ser	vo valve in lining
(a) P1	(b) P2	(c) P3	(d) P4
13.43. In CSM/WS in lining PCB	-	sed for electrical "nu	ll" adjustment of servo valve
(a) P1	(b) P2	(c) P3	(d) P4
13.44. In 09-3X/Un PCB EK2140LV	•	er is used to set maxi	mum current of servo valve in
(a) P4	(b) P5	(c) P6	(d) P7
13.45. In 09-3X/Un EK2140LV	nimat3S which potentiomete	er is used to set Gain	of servo valve in PCB
(a) P4	(b) P5	(c) P6	(d) P7
13.46. In 09-3X/Un valve in PCB EK2	-	er is used for electric	al "null" adjustment of servo
(a) P4	(b) P5	(c) P6	(d) P7
13.47. Multicheck	Address of lining Transduce	er in CSM/WST/Uni	mat2S/3S is
(a) F01	(b) F02	(c) F03	(d) F04
13.48. Multicheck	Address of Measuring Trans	sducer in CSM/09-32	X/WST/Unimat2S/3S
(a) F00	(b) F01	(c) F02	(d) F03
13.49. Multicheck	Address of lining Transduce	er in 09-3X is	
(a) F00	(b) F02	(c) F03	(d) F04
13.50. Lining & @	_	nvert lining error/v	ersine to electrical signal
(a) 21.2mv/mm	(b) 22.3 mv/mm	(c) 23.1mv/mm	(d) 25.1mv/mm
13.51. Slew and Ve @	rsine Potentiometers conver	rt Slew and versine v	value to electrical signal
(a) 25mv/mm	(b) 50mv/mm (c) 75	śmv/mm	(d) 100mv/mm
13.52. Multicheck a is	address of Versine Potention	meter in CSM/WST/	Unimat2S/3S
(a) F00	(b) F02	(c) F03	(d) F04

13.53. Multicheck address of Slew Potentiometer in CSM/WST/Unimat 2S/3S is						
(a) F03	(b) F04	(c) F05	(d) F06			
13.54. Versine ratio left side in Lining PCB EK335LV/EK349LV/EK2038LV &EK2286LV is adjusted bypotentiometer.						
(a) P11	(b) P12	(c) P13	(d) P14			
	right side in Lining PCpotentiometer.	B EK335LV/EK349LV	V/EK2038LV &EK2286LV is			
(a) P11 13.56. Versine ratio potentio	(b) P12 left side in Lining PCB ometer.	(c) P13 ss EK2173LV/EK23611	(d) P14 LV is adjusted by			
(a) P3	(b) P5	(c) P6	(d) P7			
13.57. Versine ratiopotentio	right side in Lining PC ometer.	B EK2173LV/EK2361	LV is adjusted by			
(a) P3	(b) P5	(c) P6	(d) P7			
13.58.Lining transducer value(180mm) left side in Lining PCB EK335LV/EK349LV/EK2038LV &EK2286LV is adjusted bypotentiometer.						
(a) P9	(b) P10	(c) P11	(d) P12			
_	ducer value(180mm) ri V/EK2038LV &EK228	_	potentiometer.			
(a) P9	(b) P10	(c) P11	(d) P12			
_	ducer value(180mm) lepotentiometer.	ft side in Lining PCBs	EK2173LV/EK2361LV is			
(a) P1	(b) P2	(c) P3	(d) P4			
13.61. Lining transducer value(180mm) right side in Lining PCB EK2173LV/EK2361LV is adjusted bypotentiometer.						
(a) P1	(b) P2	(c) P3	(d) P4			
13.62.Lining offset adjustment in 3pt. left side datum in Lining PCB EK335LV/EK349LV/EK2038LV &EK2286LV is adjusted bypotentiometer.						
(a) P5	(b) P6	(c) P7	(d) P8			
	t adjustment in 3pt. rigb N/EK2038LV &EK228					
(a) P5	(b) P6	(c) P7	(d) P8			

13.64. Lining offset adjustment in 4pt. left side datum in Lining PCB EK335LV/EK349LV/EK2038LV &EK2286LV is adjusted bypotentiometer.					
(a) P5	(b) P6	(c) P7	(d) P8		
13.65. Lining offset adjustment in 4pt. right side datum in Lining PCB EK335LV/EK349LV/EK2038LV & EK2286LV is adjusted bypotentiometer.					
(a) P5	(b) P6	(c) P7	(d) P8		
_	t adjustment in 3pt. leftpotentiometer.	side datum in Lining P	CB EK2173LV/EK2361LV is		
(a) P17	(b) P18	(c) P19	(d) P20		
_	t adjustment in 3pt. rigl potentiometer.	nt side datum in Lining	PCB EK2173LV/EK2361LV is		
(a) P17	(b) P18	(c) P19	(d) P20		
	t adjustment in 4pt. leftpotentiometer.	side datum in Lining P	CB EK2173LV/EK2361LV is		
_	(b) P18 t adjustment in 4pt. riglpotentiometer.	(c) P19 nt side datum in Lining	(d) P20 PCB EK2173LV/EK2361LV is		
(a) P17	(b) P18	(c) P19	(d) P20		
	er deflection in Liningpotentiometer.	PCB EK335LV/EK349l	LV/EK2038LV &EK2286LV is		
(a) P4	(b) P5	(c) P6	(d) P7		
13.71. Galvanomet	~	PCBs EK2140LV is adj	usted by		
(a) P1	(b) P2	(c) P3	(d) P4		
$13.72.\ If\ automatic\ lining\ is\ not\ taking\ place,\ which\ output\ of\ programmer\ should\ be\ checked\ in\ CSM/Unimat2S/Unimat3S\ .$					
(a) Q0A	(b) Q0B	(c) Q0C	(d) Q0D		
13.73. If automatic 09-3X.	lining is not taking pla	ce, which output of prog	grammer should be checked in		
(a) Q113	(b) Q114	(c) Q115	(d) Q116		
13.74. If automatic WST .	lining is not taking pla	ce, which output of prog	grammer should be checked in		
(a) Q1A	(b) Q1B	(c) Q1C	(d) Q1D		

13.75. In automatic lining if output from programmer is coming but lining is not taking place, which relay should be checked/replaced in lining PCB in CSM/Unimat2S/WST.						
(a) Re1	(b) Re2	(c) Re3	(d) Re4			
13.76. In automatic lining if output from programmer is coming but lining is not taking place, which relay should be checked/replaced in lining PCB in 09-3X/Unimat3S.						
(a) Re1	(b) Re2	(c) Re3	(d) Re4			
	nal Lining left side is n CSM/Unimat2S/WST.		, which relay should be checked/replaced in			
(a) Re5	(b) Re6	(c) Re7	(d) Re8			
	nal Lining right side is in CSM/Unimat2S/W		e, which relay should be checked/replaced			
(a) Re5	(b) Re6	(c) Re7	(d) Re8			
	ıal Lining left side is n 09-3X/Unimat3S.	ot taking place.	, which relay should be checked/replaced in			
(a) Re2	(b) Re3	(c) Re4	(d) Re5			
13.80. If Manual Lining right side is not taking place, which relay should be checked/replaced in lining PCB in 09-3X/Unimat3S.						
(a) Re2	(b) Re3	(c) Re4	(d) Re5			
13.81. If Bypass valve is not operating which relay should be checked/replaced in lining PCB in CSM/Unimat2S/WST.						
(a) Re5	(b) Re6	(c) Re7	(d) Re8			

Front Input Circuit: UNO/DUO/ CSM/3X /Unimat

14.01.Front Input Co	ontrol PCB in CSM is	3	
(a) EK349LV	(b) EK345LV	(c) EK335LV	(d) EK2072LV
14.02 .Front Input PO	CB in 09-3X is		
(a) EK 2343LV	(b) EK2072LV	(c) EK335LV	(d) EK2361LV
14.03. Front Input C	Control PCB in Unima	at 2S /3S is	
a) EK345LV	(b) EK2072LV	(c) EK335LV	(d) EK2343LV
14.04. Slew value/Ge	eneral lift potentiomet	er generates electrical s	signal @
(a) 25mv/mm	(b) 30mv/mm	(c) 50mv/mm	(d) 100mv/mm
14.05. In Design linin	ng F _D value is fed in.		
(a) Versine Potention(c) Cant Potentiomet		(b) Slew Potentiomet (d) General Lift Poten	
14.06. In fourpoint li	ning versine compens	ation value (V _m) is fe	ed in
(a) Versine Potention(c) Cant Potentiomet		(b) Slew Potentiomet (d) General Lift Poten	
14.07.ALC stands for	r		
14.08.Operating system	em used in ALC is		
14.09 .GVA stands for	or		
14.10.Operating system	em used in GVA was		
14.11.Software used	in ALC is		
14.12.ALC can work	in	and	mode.
14.13.ALC is provide	ed in		Cabin.
14.14Earlier Laser l	lining system was prov	vided on	
14.15. Presently Lase	er lining system is pro	vided on	
14.16. LASER Gun t	rolley is set at a maxii	mum distance of	m from Front trolley.
	nt potentiometer for slo (b) P12	ew value in front input (c) P13	PCB EK345LV is (d) P14
	nt potentiometer for G (b) P2	eneral Lift value in from	nt input PCB EK345LV is (d) P4

14.19.Null adjustme	ent potentiometer for F	ront Pendulam in front i	nput PCB EK345LV is
(a) P22	(b) P23	(c) P24	(d) P25
14.20.Null adjustme	ent potentiometer for ca	ant value in front input	PCB EK345LV is
(a) P22	(b) P23	(c) P24	(d) P25
14.21. Which relays	operated for cant selec	tion in front input PCB	EK345LV
(a) Da a 1 0 D a 2	(I-) D - D - 2	(-) D-4 0 D-5	(4) D - D - C
(a) Ree1&Re2	(b) ReRe3	(c) Re4 &Re5	(d) Re Re6
14 22 Null adjustme	ent potentiometer for Fi	ront Pendulam in front i	nput PCB EK2072LV is
(a) P22	(b) P23	(c) P24	(d) P25
(u) 122	(0)125	(0) 12 1	(u) 1 20
14.23.Null adjustme	ent potentiometer for ca	ant value in front input	PCB EK2072LV is
(a) P22	(b) P23	(c) P24	(d) P25
14.24. Which relays	operated for cant selec	ction in front input PCB	EK2072LV
(a) Re1&Re2	(b) ReRe3	(c) Re4 &Re5	(d) ReRe6

Leveling & Lifting Control Circuit of UNO/DUO/ CSM/3X /Unimat

15.01. Lifting Contro	l PCB in CSM is		
(a) EK349LV	(b) EK347LV	(c) EK2041LV	V (d) EK3069LV
15.02. Lifting Contro	1 PCB in 09-3X is		
(a) EK2351LV	(b) EK347LV	(c) EK2041LV	V (d) EK3069LV
15.03 Lifting Control	PCB in Unomatic/Duo	omatic is	
(a) EK229LV	(b) EK2041LV	(c) EK335LV	(d) EK3069LV
15.04. Lifting Contro	1 PCB in Unimat 2S &	3S is	
a) EK347LV	(b) EK2038LV	(c) EK2041LV(d) EK	Z2042LV
15.05. Lifting Contro	ol PCB in WST is		
(a) EK2286LV EK2041LV	(b EK2361LV	(c) EK2042L	V (d)
15.06. Lifting Contro	ol PCB in MPT is		
a) EK347LV	(b) EK2038LV	(c) EK2041LV(d) EK	Z2042LV
15.07. Pendulam cont	trol PCB in CSM is		
(a) EK345LV	(b) EK346LV	(c) EK347LV	(d) EK348LV
15.08. Pendulam cont	trol PCB in 09-3X is		
(a) EK2351LV	(b) EK347LV	(c) EK2041LV	V (d) EK3069LV
15.09. Pendulam cont	trol PCB in Unimat 2	S &3S, WST, MPT i	is
a) EK347LV	(b) EK2038LV	(c) EK2041LV(d) EK	X2042LV
15.10. How many PC	B EK347LV are there	in CSM	
(a) 1	(b) 2	(c) 3	(d) 4
15.11. How many rela	ays are there in PCB I	EK347LV/	
(a) 2	(b) 4	(c) 6	(d) 7
15.12. Which relay is	operated for Lifting &	Lining Unit Manual I	Down switch in EK347LV?
(a) Re1	(b) Re2	(c) Re3	(d) Re4
15.13. Which relay is	operated for Lifting &	Lining Unit Manual U	Up switch in EK347LV?

(a) Re1	(b) Re4	(c) Re3	(d) Re2		
15.14 Which relay is	operated for Auto Li	fting in EK347LV/			
(a) Re1	(b) Re4	(c) Re3	(d) Re2		
15.15. Which relay is	operated for Lifting la	amp indicator in EK34	7LV		
(a) Re1	(b) Re4	(c) Re3	(d) Re2		
15.16. What is the current rating of fuse used in PCB EK347LV					
(a) 1A	(b) 2A	(c) 3A	(d) 4A		
15.17. How many PC	CB EK346LV in CSM				
(a) 1	(b) 2	(c) 3	(d) 4		
15.18. How many rel	ays are there in PCB	EK346LV/			
(a) 2	(b) 4	(c) 6	(d) 7		
15.19. Relays operate	ed for left side cant by	cant switch in EK34	6LV		
(a) Re1,Re2,Re4	(b) Re2,Re5,Re3	(c) Re3,Re4,I	Re5 (d) Re4,Re5,Re6		
15.20. Relays operate	ed for settlement comp	ensation in EK346LV			
(a) Re1, Re2,	(b) Re2, Re5	(c) Re	e3, Re4 (d) Re3, Re6		
15.21. How many PC (a) 1	CB EK2041LV are used (b) 2	d in Unimat 2S/3S/WS (c) 3	T (d) 4		
15.22. How many rel (a) 2	ays are there in PCB (b) 4	EK2041LV (c) 6	(d) 7		
15.23. Which relay i EK2041LV	s operated for Lifting	& Lining Unit Manual	Down switch in PCB		
(a) Re1	(b) Re2	(c) Re3	(d) Re4		
15.24. Which relay is (a) Re1	s operated for Lifting (b) Re4	& Lining Unit Manual (c) Re3	Up switch in PCB EK2041LV (d) Re2		
15.25 Which relay is (a) Re1	operated for Auto Li (b) Re4	ifting in PCB EK2041 (c) Re3	LV (d) Re2		
15.26. Which relay is (a) Re1	operated for Lifting (b) Re4	lamp indicator in PC (c) Re3	B EK2041LV (d) Re2		
15.27. What is the cu (a) 1A	arrent rating of fuse us (b) 2A	ed in PCB PCB EK20 (c) 3A	041LV (d) 4A		

15.28. Pendulam Cor (a) EK2041LV	ntrol PCB in Unimat 2S (b) EK347LV	6/3S/WST is (c) EK2042LV	
15.29. How many PC	CB EK2042LV in Uni	imat 2S/3S/WST	
(a) 1	(b) 2	(c) 3	(d) 4
15.30. How many rel (a) 2	ays are there in PCB I (b) 3	EK2042LV (c) 4	(d) 5
15.31. Relays operate	ed for left side cant by	cant switch in PCB	EK2042LV
(a) Re2	(b) Re3	(c) Re5	(d) Re6
15.32. Relays operat (a) Re1,Re2,	_		042LV(d) Re3,Re6
15.33. How many PC (a) 1	CB EK3069LV are used (b) 2	in 09-3X (c) 3	(d) 4
15.34. How many rel (a) 2	ays are there in PCB l (b) 4	EK3069LV (c) 6	(d) 7
15.35. Which relay i (a) Re1	s operated for Lifting (b) Re2	& Lining Unit Manual (c) Re3	Down switch in EK3069LV (d) Re4
15.36. Which relay i (a) Re1	s operated for Lifting (b) Re4	& Lining Unit Manual (c) Re3	Up switch in PCB EK3069LV (d) Re2
15.37. Which relay i (a) Re1	s operated for Auto L (b) Re4	ifting in PCB EK3069 (c) Re3	OLV (d) Re2
15.38.Which relay is (a) Re1	s operated for Lifting (b) Re4	lamp indicator in PCI (c) Re3	3 EK3069LV (d) Re2
15.39.Pendulam Cor (a) EK2042LV	ntrol PCB in 09-3X i (b) EK346LV		(d) EK2351LV
15.40. How many PC (a) 1	CB EK2351LV in 093 (b) 2	(c) 3	(d) 4
15.41. How many rel (a) 2	ays are there in PCB l (b) 4	EK2351LV (c) 5	(d) 6
15.42. Relays operat	ed for left side cant by	y cant switch in PCI	3 EK2351LV
(a) Re1,Re2, (b) R	e2,Re5,Re3	(c) Re3,Re4,Re5	(d) Re4,Re5,Re6
15.43. Relay operate (a) Re1	ed for leveling correction (b) Re5	on right in PCB EKA (c) Re3	2351LV (d) Re6
15.44. Micro Control (a) EK526MC	ler PCB in 09-3X is (b) EK527MC	(c) EK528MC	C (d) EK529MC

15.45. Height transcadjusted by		K229LV/EK347LV/EK2	041LV & EK3069LV is
(a) P1	(b) P2	(c) P3	(d) P4
	adjustment (all inputs sted bypote (b) P2		V/EK347LV/EK2041LV & (d) P4
15.47. Electrical nu adjusted by		valve in PCB EK347LV	V/EK2041LV & EK3069LV is
(a) P6	(b) P7	(c) P8	(d) P9
15.48. Electrical ga		n PCB EK347LV/EK204	41LV & EK3069LV is adjusted
(a) P6	(b) P7	(c) P8	(d) P9
15.49. Maximum co		valve in PCB EK347L	V/EK2041LV & EK3069LV is
(a) P9	(b) P10	(c) P8	(d) P6
15.50.Null adjustm bypotentiomet	-	in PCB EK346LV & EF	X2351LV is done
(a) P1	(b) P2	(c) P3	(d) P4
	ent for super elevation bypotentiometer	potentiometer in EK34	6LV,EK2042LV &
(a) P1	(b) P2	(c) P3	(d) P4
15.52.Null adjustm done bypotent		ım in PCB EK346LV,E	K2042LV & EK2351LV is
(a) P7	(b) P8	(c) P9	(d) P10
	lifting left side is not submitted is not submitted lifting left side is not submitted lifting left side.		out of programmer should be
(a) Q06	(b) Q07	(c) QQ1C	(d) Q16
	lifting right side is no Inimat2S/Unimat3S/W		tput of programmer should be
(a) Q06	(b) Q07	(c) Q1C	(d) Q16
	ting left side is not tak Inimat2S/Unimat3S/W		t of programmer should be
(a) Q13	(b) Q14	(c) Q1C	(d) Q16

(a) Q1A	(b) Q1B	(c) Q1C	(d) Q1D	
15.57. If Manual Lowering left side is not taking place, which output of programmer should be checked in CSM/Unimat2S/Unimat3S /WST.				
(a) Q13	(b) Q14	(c) Q1C	(d) Q16	
15.58. If Manual Lowering right side is not taking place, which output of programmer should be checked in CSM/Unimat2S/Unimat3S /WST.				
(a) Q17	(b) Q18	(c) Q19	(d) Q1A	

15.56. If Manual lifting right side is not taking place, which output of programmer should be checked in CSM/Unimat2S/Unimat3S /WST.

Satellite Control Circuit

16.01. Satellite c	ontrol PCB in CSM			
(a) EK28V	(b) EK16V	(c) EK24V	(d) EK132V	
16.02. Satellite c	ontrol PCB in 09-3X	Z		
(a) EK28V	(b) EK16V	(c) EK24V	(d) EK202V	
16.03. How man	y Satellite control PO	CBs are used in CSM		
(a) 1 (b	(c) 3	(d) 4		
16.04. How man	y Satellite control PO	CBs are used in 09-3X		
` '	c) 3 (c) 2 ransducer converts d	(d) 1 isplacement of satellite	to electrical signal @	
(a) 25mv/mm	(b) 23mv/mm	(c) 11mv/mm	(d) 50mv/mm	
16.06. How man	y Satellite transduce	r(s) is/ are used in CSM	/09-3X	
(a) 1 (b)	(c) 3	(d) 4		
16.07. Front pos	ition of satellite is se	t mm from fro	om front lock positionin CSM.	
(a) 60mm	(b) 100mm	(c) 120mm	(d) 150mm	
16.08. Middle po	osition of satellite is s	set mm from f	Front lock position im CSM	
(a) 60mm	(b) 100mm	(c) 120mm	(d) 340mm	
16.09. In front po	osition of satellite wh	nich LED glows in satel	lite control PCB	. .
(a) Red	(b) Green	(c) Yellow	(d) None of these	
16.10. In front po	osition of satellite wh	nich relay operates		
(a) Re6	(b) Re3	(c) Re4	(d) Re5	
16.11. In front po	osition of satellite wh	nich input goes to progra	ammer	
(a) X1C 16.12. In front pe	(b) X1A osition of satellite wh	(c) X1B nich Brake is applied	(d) X1D	
(a) 2bar	(b) 3bar	(c) 4bar	(d) 5bar	
16.13. In middle	position of satellite	which LED glows in sat	ellite control PCB	
(a) Red	(b) Green	(c) Yellow	(d) None of these	
16.14. In middle	position of satellite	which relay operates		
(a) Re6	(b) Re3	(c) Re4	(d) Re5	

16.13. In iniddle p	osition of satellite v	mich input goes to progra	ammer	
(a) X1C	(b) X1A	(c) X1B	(d) X1D	
16.16. In middle p	osition of satellite w	which Brake is applied		
(a) 2bar	(b) 3bar	(c) 4bar	(d) 5bar	
16.17. How many	relays are there in S	atellite control PCB in C	SM	
(a) 6	(b) 3	(c) 4	(d) 5	
16.18. In CSM/09	9-3X forward curren	t of proportional valve fo	or satellite is set	
(a) 550mA	(b) 600mA	(c) 650mA	(d) 750mA	
16.19. In CSM/09	9-3X Basic current o	of proportional valve for s	satellite is set	
(a) 200mA	(b) 250mA	(c) 350mA	(d) 400mA	
16.20. In EK24V	, which relays are op	perated for forward move	ment of satelite	
(a) Re1 & Re2	(b) Re1 &	Re3 (c) Re3&Re4	(d) Re4 &Re6	
16.21. In EK24V satellite	• •	cifically used to operate	transistor in forward movemen	ıt of
(a) Re1	(b) Re2	(c) Re3	(d) Re4	
16.22. In EK24V	, which Op-Amp is	used as integrator/Ramp	Generator	
(a) OP8A	(b) OP6A	(c) OP7A	(d) OP5A	
16.23. In EK24V	, what time duration	is set for Ramp Generate	or	
(a) 200ms	(b) 300ms	(c) 400ms	(d) 500ms	
16.24. In EK24V	, which Op-Amp is	used as oscillator circuit.		
(a) OP8	(b) OP9	(c) OP7	(d) OP5	
16.25. In EK24V	, frequency of signal	generated by oscillator	circuit is	
(a) 200Hz	(b) 300Hz	(c) 400Hz	(d) 500Hz	
16.26. What is the	e current rating of fu	ise used in EK24V		
(a) 2A	(b) 3A	(c) 4A	(d) 5A	

16.27. How many re	elays are there in Satelli	te control PCB	in 09-3X	
(a) 4	(b) 5	(c) 6	(d) 7	
16.28. How many T	ransistors are there in S	Satellite control	PCB in 09-3X.	
(a) 4	(b) 5	(c) 6	(d) 7	
16.29. In 09-3X in EK202V	front position of satell	ite, which inpu	nt goes to progra	mmer from
(a) X123	(b) X124	(c) X	125	(d) X126
16.30. In 09-3X in EK202V	middle position of sate	ellite , which in	put goes to prog	grammer from
(a) X123	(b) X124	(c) X	125	(d) X126
16.31. In EK202V,	which relays are operate	ted for forward	movement of sa	itelite
(a) Re1,Re3 & Re4	(b) Re1 ,Re2& Re3	(c) Re1,Re3	&Re5	(d) Re2,Re4 &Re6
16.32. In EK202V, satelite	•	operate propo	tional valve for	forward movement of
(a) Re1	(b) Re2	(c) Re3		(d) Re4
16.33. In EK202V, satelite	•	operate propo	otional valve for	reverse movement of
(a) Re1	(b) Re2	(c) Re3		(d) Re4
16.34. In EK202V,	which Op-Amp is used	as integrator/R	amp Generator.	
(a) OP4A	(b) OP4B	(c) OP4	C	(d) OP4D
16.35. In place of E	K202V	.PCB is used in	n new 09-3X	
(a) EK1AP7 16.36. In EK202V,	(b) EK1AP12 which Op-Amp is used		AP13 iether circuit	
(a) OP8	(b) OP9	(c) OP7		(d) OP6
16.37. In EK202V,t	frequency of oscilation	of oscillator/D	eiether circuit	
(a) 100Hz	(b) 200Hz	(c) 3001	Hz	(d) 400Hz

16.38. What is the	current rating of fus	e used in EK202V		
(a) 2A	(b) 3A	(c) 4A	(d) 5A	
16.39. Which poter	ntiometer is used to a	djust front position	of satellite in EK24V/EK202V?	
(a) P1	(b) P5	(c) P9	(d) P10	
16.40. Which poter	ntiometer is used to a	djust Middle posit	ion of satellite in EK24V/EK202V	
(a) P3	(b) P4	(c) P5	(d) P6	
16.41. In EK24V potentiometer		current of propor	tional valve for satellite is set	by
(a) P4	(b) P5	(c)P6	(d) P7	
16.42. In EK24V potentiometer		irrent of proport	onal valve for satellite is set	by
(a) P5	(b) P6	(c) P7	(d) P8	
16.43. In CSM out	tput voltage of satelli	te transducer in fro	nt lock poition is set	
(a) 2.5V	(b) 8V	(c) 6V	(d) -8V	
16.44. In 09-3X or	utput voltage of satel	lite transducer in re	ar lock poition is set	
(a) -8.6V	(b) 8.2V	(c) +8.6VV	(d) 5V	
16.45. If satellite is CSM.	s not moving forward	, which output of j	programmer should be checked in	
(a) Q61	(b) Q62	(c) Q63	(d) Q64	
16.46. If satellite is should be checked/	C	, output from prog	rammer is coming which relay/s	
(a) Re1	(b) Re2	(c) Re3	(d) Re1 & Re2	
	bar brake is not applyreplaced		ammer is also not coming which rela	у
(a) Re1	(b) Re2	(c) Re3	(d) Re4	
	bar brake is not applyreplaced		nmmer is also not coming which rela	У
(a) Re1	(b) Re2	(c) Re3	(d) Re4	
16.49. If satellite is 3X?	s not moving forward	, which output of p	rogrammer should be checked in 09-	-
(a) Q126	(b) Q125	(c) Q124	(d) Q129	

(a) Re1	(b) Re3	(c) Re5	(d) Re1 ,Re3, 1	Re5
16.51. In 09-3X in fi	cont position of satellite,	which input go	es to programn	ner from
(a) X123	(b) X124	(c) X12	25	(d) X126
16.52. In 09-3X in n EK202V	niddle position of satelli 	te, which input	goes to progran	nmer from
(a) X123	(b) X124	(c) X12	25	(d) X126
	front position of satellite	e input to progr	rammer is not g	oing which transistor
(a) TA1-A	•	(c) TA2	2-A	(d) T1
	middle position of satell checked/replaced		grammer is not	going which
(a) TA1-A	_		2-A	(d) T1

16.50. If satellite is not moving forward, output from programmer is coming which relay should be checked/replaced in 09-3X .

Work Drive Control Circuit

17.01. Work drive	control PCB in C	SM			
(a) EK345LVV	(b) EK	346LV	(c) EK	24V	(d) EK319LV
17.02. Work drive	control PCB in 09	9-3X			
(a) EK2345LV	(b) EK	Z2349LV	(c) EK	24V	(d) EK319LV
17.03. How many	Work drive PCBs	are used in CS	SM	••••	
(a) 1 (b)	2 (c) 3	(d) 4			
17.04. How many	Work drive PCBs	are used in 09	9-3X		
(a) 4 (b)	3 (c) 2	(d) 1			
17.05. Encoder PC	CB in CSM				
(a) ELT 5032	(b) EL	Т 5033	(c) EL	Γ 5034	(d) ELT 5035
17.06. Variable pu	ımp proportional v	alve amplifier	PCB in	CSM	
(a) VT 3002	(b) VT3003	(c) V	Г3004	(d) VT3005	
17.07. Encoder co	nverts displaceme	nt of machine	to digital	signal @	
(a) 1000impulse/n	netre (b) 100 imp	oulse /metre	(c) 10 im	pulse /metre	(d) 1 impulse /metre
17.08. Frequency	of output signal of	Encoder			
(a) 177.7Hz	(b) 27'	7.7Hz		(c) 377.7Hz	(d) 477,7Hz
17.09. In EK319I (a) Inverter (c) Integrater 17.10. In EK319I	(b) Adder (d) Frequenvy to	voltage conve		I.	
(a) 177.7mV	(b) 277.7mV	(c) 377.7mV	(d)	477.7mV	
17.11. In EK319I	LV, out put of IC2	B is	@ 1KMI	PH.	
(a) 1V	(b) 2V	(c) 3V	(d) 4	4V	
17.12. In EK2349	LV, IC5 ia a				
(a) Inverter(c) Integrater	(b) Adder (d) Frequenvy to	voltage conve	erter		
17.13. In EK2349	DLV, out put of IC:	5 is	@ 1KMP	H.	
(a) 177.7mV	(b) 277.7mV	(c) 377.7mV	(d)	477.7mV	

17.14. In EK2349I	LV, out put of IC3	D is@	ЗКМРН.	
(a) 1V	(b) 2V	(c) 3V	(d) 4V	
17.15. Multicheck a	address of of outpu	at of PCB EK319	LV is	
(a) F1A	(b) F1B	(c) F1C	(d) F1D	
17.16. Multicheck	address of of speed	l potentiometer is	;	
(a) F1A	(b) F1B	(c) F1C	(d) F1D	
17.17. In EK319L potentiometer shou		PCB at multich	heck F1B is not 1V @ 1KMPH v	which
(a) P1	(b) P2	(c) P3	(d) P4	
17.18. In EK319L potentiometer shou		f PCB at 24db	or26db is not .62V @ 1KMPH v	which
(a) P1	(b) P2	(c) P3	(d) P4	
17.19. Machine is r	not moving forwar	d, which output o	of programmer should be checked in C	CSM.
(a) Q08	(b) Q09	(c) Q06	(d) Q07	
17.20. Machine is r	not moving reverse	e, which output of	f programmer should be checked in Co	SM.
(a) Q08	(b) Q09	(c) Q06	(d) Q07	

Hook Control Circuit

18.01. Hooks are use (a) MPT	d in- (b) UNIMAT	(c) WST	(d) Both (a) & (b)
18.02. Hook control of (a) To control the mode (c) To control the dep	vement of clamp		(b) To control the depth of hook (d) None
18.03 Hook can be ap (a) Rail head only	oplied to lift the rail on (b) Rail foot only	(c) Both	(d) None
18.04. Hook control l (a) EK132V	PCB used in UNI-2S is (b) EK120V	(c) EK144V	(d) E16V
18.05. Hook control l (a) EK132V	PCB used in UNI-3S is (b) EK120V	(c) EK144V	(d) E16V
18.06 Hook transduce (a) 25mv/mm	er converts displaceme (b) 95mv/mm	nt of hook to el (c) 23.1mv/m	•
18.07 What is the mu (a) F18	lticheck address of LH (b) F19	(S hook transdu (c) F14	(d) F15
18.08. When hook is (a) 1.5V	in up position what vo (b) -2.2V	ltage should co	me- (d) -1.5V
18.09. What is the me (a) F18	ulticheck address of ho (b) F16	ook depth prese (c) F17	t LHS- (d) F19
18.10. What is the me (a) F16	ulticheck address of ho (b) F19	ook depth presence (c) F18	t RHS (d) F17
18.11. How many No.	o. of hook transducer in (b) 3	UNIMAT-4S (c) 1	(d) 4
18.12. When hoo True/False	k transducer output	is less tha	an-2V, machine cannot be drive
18.13.Hook top and b True/False	pottom position cannot	be adjusted by	potentiometer.
18.14. Theoretical de (a) 23f1 potentiometer potentiometer	pth for rail head is set er (b) 23f2 potention	•	3 potentiometer (d) 23f4
18.15. Maximum the (a) +2V	oretical voltage set for (b) +3V	rail head is- (c) +5	.5V (d) -3V
18.16 Maximum theo (a) +3V	oretical voltage set for to (b) -3V	rail foot is- (c) +5	.5V (d) -5.3V
18.17. Theoretical out	tput for LHS rail head (b) P ₉	is set by- (c) P ₁₀	(d) P ₁₁

18.18. Theoretical out (a) P ₈	tput for RHS rail head (b) P ₉	is set by- (c) P_{10}	(d) P ₁₁
18.19 Theoretical out (a) P ₈	put for RHS rail foot is (b) P ₉	s set by- (c) P ₁₀	(d) P ₁₁
18.20. Op-amp OP 14 (a) Buffer	A in PCB EK 144V is- (b) Adder	(c) Comparator	(d) Sub-tractor
18.21. Op-amp OP 2F (a) Buffer	3 in PCB EK 120V is- (b) Adder	(c) Comparator	(d) Sub-tractor
18.22. Op-amp OP 3F (a) Buffer	3 in PCB EK 120V is- (b) Adder	(c) Comparator	(d) Sub-tractor
18.23. Which one is h (a) X40	nook lowering LHS inp (b) X41	out- (c) X42	(d) X43
18.24. Which one is h (a) X40	nook lifting RHS input (b) X41	(c) X42	(d) X43
18.25. Which one is h (a) Q12	nook lifting LHS outpu (b) Q13	t-? (c) Q14	(d) Q15
18.26. Which one is h (a) Q12	nook lifting RHS outpu (b) Q13	t-? (c) Q14	(d) Q15
	on of opto-coupler in H ET (b) To operate log	look control circuit- gic valve (c) both (d) Non	ne of these
18.28 Input voltage of (a) -2V	f Op 3D or Op 3C is- (b) -10V	(c) +10V	(d) +2V
18.29. During calibra (a) In lower position	tion position of hook sl (b) In middle posi		n (d) None of these
18.30. What subrouting (a) Q01 \rightarrow X01	ne should come for LH (b) $Q00 \rightarrow X00$		Q03 → X03
18.31 What subroutin (a) Q01 \rightarrow X01	e should come for RH (b) Q00→ X00		$Q03 \rightarrow X03$
18.32. When RH hoo (a) QL71	k is not going outward, (b) QL72	what QL output should cl (c) QL73 (d)	neck- QL74
18.33. When LH hool (a) QL71	k is not going outward, (b) QL72	what Q_L output should ch (c) QL73 (d)	eck- QL74
18.34 When LH hook (a) QL72	is not coming inward, (b) QL74	what Q_L output should ch (c) QL75 (d)	eck- QL71
18.35. When RH hool (a) QL72	k is not coming inward (b) QL74	, what Q _L output should cl (c) QL71 (d)	neck- QL73

18.36. When hook transducer output is zero then what will happen(a) Hook movement will fast
b) Hook movement will slow

(c) Hook movement stop (d) None of these-

18.37. When theoretical depth potentiometer will faulty then hook will malfunctioning

True/False

18.38. Top and bottom depth of hook can not be adjusted-

True/False

Panel Boxes & Cable List 19.01. Front inputs panel no. in front cabin of Uno/Duo/CSM/09-3X/Unimat 2S/3S.

19.01. FIOIII IIIJ	puts paner no. in from	it cabin of Ono/Duo/CSN	1/09-3A/UIIIIIat 23/33	• • • • •
(a) B2	(b) B3	(c) B4	(d) B5	
19.02. Driving	control panel in rear	cabin of Uno/Duo/CSM/	09-3X/Unimat 2S/3S	
(a) B2	(b) B3	(c) B4	(d) B5	
19.03. Driving	control panel in fron	t cabin in Uno/Duo/CSM	7/09-3X/Unimat 2S/3S	
(a) B10	(b) B11	(c) B12	(d) B13	
19.04. Junction	box for Engine circu	uit in Uno/Duo/WST/CS	M/09-3X/Unimat 2S/3S	
(a) B10	(b) B11	(c) B12	(d) B13	
19.05. Measuri	ng and multicheck Pa	anel in CSM/Unimat 2S/	3S	
(a) B17	(b) B18	(c) B19	(d) B20	
19.06. Program	mer PCBs slide mod	lule in CSM/09-3X/Unin	aat 2S/3S	
(a) B17	(b) B18	(c) B19	(d) B20	
19.07. Junction	box for ZF gearbox	control circuit in CSM/0	9-3X/Unimat 2S/3S	· •
(a) B27	(b) B28	(c) B29	(d) B30	
19.08. Working	g control panel R.H.S	S.in working cabin in CSI	М	
(a) B2	(b) B3	(c) B4	d) B5	
19.09. Working	g control panel L.H.S	in working cabin in CSI	М	
(a) B17	(b) B18	(c) B19	(d) B20	
19.10. Working	g control panel R.H.S	S.in working cabin in Uni	mat 2S/3S	
(a) B20	(b) B21	(c) B22	(d) B23	
19.11. Working	g control panel middl	e.in working cabin.Unim	at 2S/3S	
(a) B20	(b) B21	(c) B22	(d) B23	
19.12. Intercon	n Box in CSM/09-3X	X/Unimat 2S/3S		
(a) B10	(b) B20	(c) B30	(d) B40	

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
01.01	c	01.10	Out from	01.19	С
			programmer		
01.02	a	01.11	Automatic Guiding	01.20	Active
			computer		component
01.03	a	01.12	Geometric value	01.21	Active
			assessment		component
01.04	c	01.13	T	01.22	T
01.05	c	01.14	T	01.23	\mathbf{F}
01.06	c	01.15	${f F}$	01.24	T
01.07	Plug in type PCB	01.16	b	01.25	F
01.08	Digital control PCB	01.17	c		
01.09	Input to programmer	01.18	d		

Answer Sheet No.-02

Q. No.	Ans.						
02.01	d	02.08	a	02.15	c	02.22	c
02.02	С	02.09	c	02.16	b	02.23	a
02.03	d	02.10	a	02.17	d	02.24	a
02.04	a	02.11	a	02.18	d	02.25	С
02.05	b	02.12	d	02.19	c	02.26	d
02.06	С	02.13	c	02.20	d		
02.07	b	02.14	a	02.21	b		

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
03.01	a	03.17	b	03.33	a
03.02	d	03.18	d	03.34	c
03.03	c	03.19	b	03.35	b
03.04	c	03.20	b	03.36	b
03.05	a	03.21	d	03.37	a
03.06	b	03.22	a	03.38	b
03.07	d	03.23	a	03.39	a
03.08	c	03.24	d	03.40	a
03.09	b	03.25	с	03.41	T
03.10	a	03.26	T	03.42	\mathbf{F}
03.11	d	03.27	F	03.43	F
03.12	b	03.28	T	03.44	T
03.13	d	03.29	F	03.45	T
03.14	T	03.30	F		
03.15	F	03.31	с		
03.16	b	03.32	b		

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
04.01	c	04.11	a	04.21	a
04.02	a	04.12	F	04.22	b
04.03	b	04.13	T	04.23	a
04.04	c	04.14	a	04.24	b
04.05	c	04.15	a	04.25	b
04.06	a	04.16	a	04.26	a
04.07	b	04.17	c	04.27	b
04.08	d	04.18	c	04.28	T
04.09	c	04.19	b	04.29	F
04.10	a	04.20	b		

Answer Sheet No.-05

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
05.01	b	05.15	b	05.29	С
05.02	c	05.16	c	05.30	b
05.03	a	05.17	b	05.31	с
05.04	b	05.18	a	05.32	c
05.05	c	05.19	b	05.33	b
05.06	up/down movement of tamping unit	05.20	b	05.34	a
05.07	b	05.21	c	05.35	b
05.08	c	05.22	a	05.36	a
05.09	d	05.23	a	05.37	с
05.10	b	05.24	a	05.38	a
05.11	с	05.25	b	05.39	b
05.12	F	05.26	F	05.40	a
05.13	T	05.27	T	05.41	F
05.14	a	05.28	a	05.42	T

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
06.01	a	06.16	T	06.31	F
06.02	b	06.17	a	06.32	T
06.03	a	06.18	b	06.33	T
06.04	c	06.19	b	06.34	a
06.05	a	06.20	c	06.35	a
06.06	b	06.21	С	06.36	b
06.07	d	06.22	d	06.37	a
06.08	a	06.23	c	06.38	d
06.09	a	06.24	c	06.39	d
06.10	b	06.25	d	06.40	b
06.11	b	06.26	b	06.41	d
06.12	a	06.27	T	06.42	F
06.13	F	06.28	F	06.43	T
06.14	F	06.29	T		
06.15	T	06.30	F		

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
07.01	b	07.16	c	07.31	b
07.02	a	07.17	b	07.32	a
07.03	b	07.18	a	07.33	b
07.04	a	07.19	T	07.34	b
07.05	d	07.20	T	07.35	b
07.06	c	07.21	F	07.36	a
07.07	d	07.22	T	07.37	T
07.08	b	07.23	F	07.38	F
07.09	c	07.24	b	07.39	F
07.10	a	07.25	c	07.40	F
07.11	b	07.26	c	07.41	T
07.12	a	07.27	a	07.42	T
07.13	a	07.28	b	07.43	T
07.14	c	07.29	c		
07.15	a	07.30	c		

Answer Sheet No.-08

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
08.01	d	08.08	b	08.15	T
08.02	d	08.09	b	08.16	F
08.03	c	08.10	c	08.17	T
08.04	c	08.11	a		
08.05	b	08.12	b		
08.06	d	08.13	d		
08.07	a	08.14	a		

Q. No.	Ans.	Q. No.	Ans.	Q. No.	Ans.
09.01	b	09.10	T	09.19	b
09.02	d	09.11	a	09.20	b
09.03	c	09.12	b	09.21	b
09.04	a	09.13	d	09.22	a
09.05	a	09.14	a	09.23	a
09.06	b	09.15	c	09.24	a
09.07	c	09.16	d	09.25	c
09.08	c	09.17	a	09.26	b
09.09	F	09.18	b	09.27	a

Q.No.	Answer	Q.No.	Answer	Q.No.		Answer	
10.01	a	10.20	b	10.37	1 X	1	0
10.01		10.20	Ü	10.07		I/O PCB 1	Yellow LED No
10.02	b	10.21	С	10.38	2 X	1	9
					PanelNo2 Input	I/O PCB 1	Yellow LED No
10.03	С	10.22	b	10.39	2 X	4	Е
					PanelNo2 Input	I/O PCB 4	Yellow LED No
10.04	b	10.23	a	10.40	Q	1	0
					Output	I/O PCB 1	Red LED No
10.05	Programmable	10.24	b	10.41	Q	2	0
	Logic controller				Output I	I/O PCB 2	Red LED No
10.06	Erasable	10.25	a	10.42	Q	3	5
	Programmable				Output I	I/O PCB 3	Red LED No
	Read Only						
	Memory						
10.07	P500	10.26	d	10.43	QL	2	0
						QL PCB 2	Yellow LED No
10.08	P600	10.27	b	10.44	QL	2	6
						QL PCB 2	Yellow LED No
10.09	d	10.28	d	10.45	Q'	8	0
					Time Delay T.Dela	ayPCB 8 Y	Yellow & Red LED No
10.10	a	10.29	a	10.46	b		
10.11	a	10.30	c	10.47	c		
10.12	b	10.31	d	10.48	a		
10.13	a	10.32	a	10.49	d		
10.14	b	10.33	d	10.50	a		
10.15	b	10.34	a	10.51	b		
10.16	b	10.35	a	10.52	True		
10.17	c	10.36	d	10.53	False		
10.18	С			10.54	True		
10.19	c			10.55	False		

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
11.01	d	11.07	С	11.13	b
11.02	a	11.08	d	11.14	a
11.03	a	11.09	b	11.15	a
11.04	d	11.10	a	11.16	c
11.05	b	11.11	b	11.17	F 1 0
					M. Input Ist Red switch zero Blue Switch
11.06	d	11.12	b	11.18	F 0 1
					M. Input Zero Red switch Ist Blue Switch

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
12.01	d	12.28	С	12.55	a
12.02	b	12.29	b	12.56	d
12.03	b	12.30	d	12.57	d
12.04	a	12.31	b	12.58	b
12.05	С	12.32	a	12.59	С
12.06	d	12.33	d	12 .60	b
12.07	С	12.34	b	12 .61	d
12.08	d	12.35	b	12 .62	a
12.09	d	12.36	d	12 .63	b
12.10	a	12.37	d	12 .64	d
12.11	С	12.38	С	12 .65	b
12.12	b	12.39	a	12.66	d
12.13	a	12.40	a	12.67	a
12.14	a	12.41	b	12.68	b
12.15	d	12.42	b	12.69	a
12.16	С	12.43	b	12.70	b
12.17	b	12.44	с	12.71	С
12.18	d	12.45	d	12.72	d
12.19	a	12.46	b	12.73	c
12.20	С	12.47	b	12.74	b
12.21	a	12.48	d	12.75	b
12.22	a	12.49	b	12.76	a
12.23	С	12.50	a	12 .77	d
12.24	d	12.51	b	12.78	c
12.25	a	12.52	b	12 .79	a
12.26	d	12.53	b	12.80	d
12.27	a	12.54	b	12 .81	a

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
13.01	a	13.28	b	13.55	d
13.02	d	13.29	a	13.56	a
13.03	С	13. 30	b	13.57	b
13.04	b	13.31	С	13.58	b
13.05	a	13. 32	a	13.59	a
13.06	a	13.33	с	13.60	b
13.07	b	13.34	b	13.61	a
13.08	a	13.35	b	13.62	b
13.09	b	13.36	С	13.63	a
13.10	d	13.37	С	13.64	d
13.11	a	13. 38	a	13.65	С
13.12	d	13.39	b	13.66	С
13.13	a	13.40	a	13.67	d
13.14	a	13.41	a	13.68	a
13.15	С	13.42	b	13.69	b
13.16	a	13.43	С	13.70	a

13.17	b	13.44	c	13.71	a
13.18	с	13.45	b	13.72	a
13.19	b	13.46	a	13.73	c
13.20	b	13.47	a	13.74	a
13.21	d	13.48	c	13.75	d
13.22	a	13.49	a	13.76	b
13.23	a	13.50	c	13.77	a
13.24	С	13.51	b	13.78	b
13. 25	a	13.52	a	13.79	С
13.26	b	13.53	d	13.80	b
13.27	С	13.54	c	13.81	С

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
14.01	b	14.09	Geometric Value	14.17	С
14.02	a	14.10	Assesment DOS	14.18	a
14.03	b	14.11	WinALC	14.19	d
14.04	c	14.12	Geometry & Measuring	14.20	b
			Run Mode		
14.05	b	14.13	Front Cabin	14.21	С
14.06	a	14 .14	CSM	14.22	d
14.07	Automatic Guiding	14.15	09-3X	14.23	b
	Computer				
14.08	Windows 95, 98,2000	14 .16	300m	14.24	С

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
15.01	b	15.21	b	15.41	c
15.02	d	15.22	b	15.42	a
15.03	a	15.23	d	15.43	b
15.04	c	15.24	c	15.44	a
15.05	d	15.25	d	15.45	a
15.06	c	15.26	a	15.46	b
15.07	b	15.27	c	15.47	d
15.08	a	15.28	c	15.48	c
15.09	d	15.29	a	15.49	b
15.10	b	15.30	b	15.50	a
15.11	b	15.31	a	15.51	d
15.12	d	15.32	d	15.52	a
15.13	С	15.33	b	15.53	a
15.14	d	15.34	b	15.54	b
15.15	a	15.35	d	15.55	c
15.16	С	15.36	c	15.56	d
15.17	a	15.37	d	15.57	d
15.18	С	15.38	a	15.58	a

15.19	a	15.39	d	
15.20	d	15.40	a	

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
16.01	c	16.19	b	16.37	a
16.02	d	16.20	a	16.38	a
16.03	a	16.21	b	16.39	d
16.04	d	16.22	С	16.40	b
16.05	c	16.23	b	16.41	d
16.06	a	16.24	b	16.42	d
16.07	c	16.25	a	16.43	b
16.08	d	16.26	a	16.44	a
16.09	a	16.27	d	16.45	a
16.10	c	16.28	b	16.46	d
16.11	a	16.29	С	16.47	d
16.12	a	16.30	b	16.48	c
16.13	С	16.31	С	16.49	a
16.14	b	16.32	c	16.50	d
16.15	С	16.33	b	16.51	c
16.16	d	16.34	b	16.52	b
16.17	d	16.35	b	16.53	b
16.18	b	16.36	d	16.54	a

Answer Sheet No.-17

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
17.01	d	17.08	b	17.15	b
17.02	b	17.09	d	17.16	С
17.03	a	17.10	b	17.17	a
17.04	d	17.11	a	17.18	c
17.05	c	17.12	d	17.19	a
17.06	d	17.13	b	17.20	b
17.07	a	17.14	b		

Q. No.	Answer	Q. No.	Answer	Q. No.	Answer
18.01	d	18.15	b	18.29	c
18.02	b	18.16	c	18.30	b
18.03	c	18.17	a	18.31	a
18.04	c	18.18	c	18.32	b
18.05	b	18.19	d	18.33	d
18.06	d	18.20	a	18.34	С
18.07	a	18.21	С	18.35	d
18.08	b	18.22	С	18.36	С
18.09	b	18.23	a	18.37	T
18.10	d	18.24	d	18.38	F
18.11	a	18.25	a		

18.12	T	18.26	c	
18.13	F	18.27	a	
18.14	a	18.28	b	

Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
19.01	С	19.05	b	19.09	С
19.02	d	19.06	d	19.10	С
19.03	b	19.07	b	19.11	d
19.04	d	19.08	a	19.12	d