Notes on Metric and Normed Spaces

$\label{lem:mathew} Mathew \ Calkins \\ \verb|mathewpcalkins@gmail.com| \\$

December 6, 2018

Contents

1	Metrics and norms	1
2	Convergence	3
3	Upper and lower bounds	3
4	Continuity	4
5	Open and closed sets	5
6	The completion of a metric space	6
7	Compactness	7
8	Maxima and minima	8
9	Exercises	8

1 Metrics and norms

- 1. $d(x,y) \ge 0$
- 2. d(x,y) = d(y,x)

Claim The unit ball in any normed linear space is convex.

Proof Let X be a linear space with norm $\|\cdot\|$. As usual, denote by \overline{B} the unit ball

$$\overline{B} = \{ x \in X : ||x|| \le 1 \}.$$

To demonstrate convexity, fix arbitrary $x,y\in \overline{B}$ and $t\in [0,1].$ We claim that

$$tx + (1 - t)y \in \overline{B}$$

or equivalently that

$$||tx + (1-t)y|| \le 1.$$

Indeed,

$$||tx + (1 - t)y|| \le ||tx|| + ||(1 - t)y||$$

$$= t ||x|| + (1 - t) ||y||$$

$$\le t \cdot 1 + (1 - t) \cdot 1$$

$$= 1.$$

QED

Claim If $(X, \|\cdot\|)$ is a normed linear space, then

$$d(x,y) = \frac{\|x - y\|}{1 + \|x - y\|}$$

defined a nonhomogenous, translation-invariant metric on X.

Proof We proof that $d: X \times X \to \mathbb{R}$ is a metric one property at a time. Since the top and bottom of our fraction are always nonnegative, we have that $d(x,y) \geq 0$ for all $x,y \in X$. And the only time d(x,y) = 0 is when ||x-y|| = 0, which occurs only when x = y, so $d(x,y) = 0 \iff x = y$. Symmetry (d(x,y) = d(y,x)) is clear by inspection.

The triangle inequality is harder. Fix $x, y, z \in X$. We wish to show that

$$\frac{\|x-y\|}{1+\|x-y\|} + \frac{\|y-z\|}{1+\|y-z\|} \ge \frac{\|x-z\|}{1+\|x-z\|}.$$

2 Convergence

Definition 1.12 A sequence (x_n) in a metric space (X, d) is Cauchy if $\forall \epsilon > 0, \exists N \text{ such that } m, n \geq N \in \mathbb{N} \implies d(x_n, x_m) < \epsilon$.

Definition 1.16 (Usual definition of convergence in a metric space)

Claim In a general metric space, every convergent sequence in is Cauchy.

Proof Let $(X, \|\cdot\|)$ be a metric space and let $\{x_n\}$ be a sequence in X converging to $x \in X$. Fix $\epsilon > 0$. So there exists N such that $n \geq N \implies d(x, x_n) < \epsilon/2$. Then for all $m, n \geq N$ the triangle inequality implies

$$d(x_n, x_m) \le d(x, x_n) + d(x, x_m)$$

$$< \epsilon/2 + \epsilon/2$$

$$= \epsilon.$$

QED

Definition 1.17 A metric space (X, d) is *complete* if every Cauchy sequence in X converges to a limit in X. A subset Y is *complete* if the metric subspace $(Y, d|_Y)$ is complete. A *Banach space* is a normed linear space which is complete with respect to the norm-induced metric.

3 Upper and lower bounds

Definition 1.20 (defitions of upper bound, lower bound, bounded from above, bounded from below for subsets of \mathbb{R})

Definition 1.121 (definitions of supremum / least upper bound and infimum / greatest lower bound)

Note that Hunter uses monotone increasing to mean non-decreasing $(n > m \implies x_n \ge x_m)$ and likewise for monotone decreasing.

Given a sequence (x_n) in \mathbb{R} , we define

$$\lim \sup x_n = \lim_{n \to \infty} \left[\sup \{ x_k \mid k \ge n \} \right].$$

Notice that the sequence (y_n) on the inside of the RHS given by

$$y_n = \sup\{x_k \mid k \ge n\}$$

is monotone increasing (i.e., never decreasing). We similarly define

$$\lim \inf x_n = \lim_{n \to \infty} \left[\inf \{ x_k \mid k \ge n \} \right].$$

Both of these values always exist, as long as we allow $\pm \infty$ in addition to real values. Observe the useful sandwiching

$$\sup\{x_k \mid k \ge 1\} \ge \sup\{x_k \mid k \ge n\} \ge x_n \ge \inf\{x_k \mid k \ge n\} \ge \inf\{x_k \mid k \ge 1\}.$$

Notice that (x_n) is convergent if and only if $\lim \inf x_n = \lim \sup x_n$, in which case it converges to their common value.

4 Continuity

Definition 1.26 (continuity in a metric space) $f: X \to Y$ is *continuous* at $x_0 \in X$ if $\forall \epsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \epsilon.$$

 $f: X \to Y$ is *continuous on* X if it is continuous at every points in X.

Example 1.27 (distance is continuous) Fix $a \in X$ and define $f : X \to \mathbb{R}$ by f(x) = d(x, a). Then f is continuous on A.

Proof Per the premise, let (X, d) be a metric space with some $a \in X$ and define $f: X \to \mathbb{R}$ by the rule f(x) = d(x, a). To show continuity, fix arbitrary $x_0 \in X$ and $\epsilon > 0$. Being carefully about which metrics are used where, we wish to find $\delta > 0$ such that

$$d_X(x,x_0) < \delta \implies d_{\mathbb{R}}(f(x),f(x_0)) < \epsilon.$$

From the definition of f, this is equivalent to the condition

$$d_X(x, x_0) < \delta \implies |d_X(x, a) - d_X(x_0, a)| < \epsilon.$$

But according to the following corrolary of the triangle inequality:

$$d(x_1, x_2) \ge |d(x_1, x_3) - d(x_2, x_3)|.$$

It suffices to set $\delta = \epsilon$. QED

Definition 1.30 (uniform continuity in a metric space) A function $f: X \to Y$ is uniformly continuous on X if for all $\epsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \epsilon$$

for all $x, y \in X$. This differs from regular continuity in that δ is independent of $x, y \in X$.

Example 1.32 A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine if

$$f(tx + (1-t)y) = tf(x) + (1-t)f(y) \ \forall x, y \in \mathbb{R}^n \text{ and } t \in [0,1].$$

Every affine function is uniformly continuous and has the form $x \mapsto Ax + b$ for some constant matrix M and constant vector b.

Definition 1.33 A function $f: X \to Y$ is sequentially continuous at $x \in X$ if, for every sequence (x_n) converging to $x \in X$, the sequence $(f(x_n))$ converges to $f(x) \in Y$.

Proposition 1.34 Let X, Y be metric spaces. Then $f: X \to Y$ is continuous at $x \in X$ if and only if it is sequentially continuous at that point.

5 Open and closed sets

Open and closed balls in a metric space (X, d):

$$B_r(a) = \{ x \in X \mid d(x, a) < r \},\$$

 $\overline{B}_r(a) = \{ x \in X \mid d(x, a) \ge r \}.$

Definition 1.36 (open and closed sets in a metric space) Let (X, d) be a metric space. A subset $G \subset X$ is *open* if $\forall x \in G$, there exists r > 0 such that $B_r(x) \subset G$. A subset $F \subset X$ is *closed* if its complement $F^c = X - F$ is open.

Example 1.39 (rationals have Lebesgue measure zero) Let $\{q_n \mid n \in \mathbb{N}\}$ be an enumeration of \mathbb{Q} and fix $\epsilon > 0$. For each $n \in \mathbb{N}$, consider the open interval

 $I_n = \left(q_n - \frac{\epsilon}{2^n}, q_n + \frac{\epsilon}{2^n}\right).$

The union $\bigcup_{n\in\mathbb{N}} I_n$ is very interesting: it covers \mathbb{Q} , and yet the sum of the lengths of the intervals is 2ϵ , where ϵ can be made as small as we want. A subset of \mathbb{R} has Lebesgue measure zero if $\forall \epsilon > 0$, there exists a countable collection of open intervals whose unions contains the subset and such that the sum of the lengths of the intervals is less than ϵ .

Proposition 1.41 (closed sets in terms of sequences) A subset F of a metric space is closed if and only if every convergent sequence of elements of F has its limit in F. That is, if $x_n \to x$ and $x_n \in F \ \forall n \in \mathbb{N}$, then $x \in F$.

Definition (closure) In general topology, the closure \overline{A} of a subset $A \subset X$ is the intersection of all closed sets containing A (a sort of minimal closed superset of A). In a metric space, we can construct this set by appending to A every point in X that can be reached as a limit of points in A.

$$\overline{A} = \{x \in X \mid \text{ there exists a sequence } (a_n) \text{ in } X \text{ with } a_n \to x\}.$$

Definition 1.43 (dense subset) A subset A of a metric space X is dense in X if $\overline{A} = X$.

Definition 1.44 A metric space is *separable* if it contains a countable dense subset.

(more definitions to come)

6 The completion of a metric space

In this section we discuss how to produce a complete metric space from an incomplete one.

Definition 1.49 A map $\iota: X \to Y$ is called an *isometry* or an *isometric embedding* of X into Y if it satisfies

$$d_Y(\iota(x_1), \iota(x_2)) = d_X(x_1, x_2)$$

for all $x_1, x_2 \in X$. If $\iota : X \to Y$ is onto (and thus bijective) we call it a *metric* space isomorphism or more briefly an isomorphism if the metric structure is clear from context. As usual, if such an ι exists we say that X and Y are isomorphic.

Note that an isometry is automatically continuous (simply assign $\delta = \epsilon$ in the definition of continuity).

Example The map $\iota: \mathbb{C} \to \mathbb{R}^2$ with $x+iy \mapsto (x,y)$ is a metric spac isomorphism.

Definition 1.51 A metric space (\tilde{X}, \tilde{d}) is called the *completion* of the metric space (X, d) if the following conditions hold:

- There exists an isometric embedding $\iota: X \to \tilde{X}$.
- The image $\iota(X) \subset \tilde{X}$ is dense in X.
- (\tilde{X}, \tilde{d}) is complete.

Theorem 1.52 Every metric space has a completion. Furthermore, the completion is unique up to isomorphism.

Proof of Theorem 1.52 This proof is looning. Read the proof in the book, I won't write it here.

7 Compactness

Definition 1.54 A subset K of a metric space X is sequentially compact if every sequence in K has a convergent subsequence whose limit belongs to K.

Theorem 1.56 (Heine-Borel) A subset of \mathbb{R}^n is sequentially compact iff it is closed and bounded.

Proof of 1.56 The proof in one direction is easy: suppose some subset $X \subset \mathbb{R}^n$ is closed and bounded and let (x_n) be a sequence in X. By Bolzano-Weierstrass (proved next), (x_n) has some convergence subsequence (y_n) (call the limit $y \in \mathbb{R}^n$). Since X is closed, we have $y \in X$. **Theorem 1.57** (Bolzano Weierstrass) Every bounded sequence in \mathbb{R}^n has a convergent

subsequence.

Proof of 1.57 Recall the telescoping technique used to prove that every sequence contained in $[a,b] \subset \mathbb{R}$ contains a convergent subsequence. This technique generalizes naturally to $[a_1,b_1] \times [a_2,b_2] \subset \mathbb{R}^2$ if we use quadrants rather than halves, and likewise to higher dimensions. So given any bounded sequence in \mathbb{R}^n , pick any bounded hyper-rectangle and apply this telescoping technique to furnish a convergent subsequence. QED

Definition (ϵ -nets) Let X be a metric space with subspace A. Let $\epsilon > 0$. A collect of subsets $\{x_{\alpha}\}$ of X is called an ϵ -net of A if the family of open balls $\{x_{\alpha}\}$ covers A.

Definition 1.58 A subset of a metric space is *totally bounded* if it has a finite ϵ -net for every $\epsilon > 0$.

8 Maxima and minima

9 Exercises

Exercise 1.2 Give an $\epsilon - \delta$ proof that

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x},$$

when |x| < 1.

Solution We begin by obtaining a nice expression for the nth partial sum

$$s_n(x) = \sum_{n=0}^k x^k = 1 + x + x^2 + \dots + x^k.$$

To do so, observe that

$$xs_n(x) = x \sum_{n=0}^{k} x^k$$

= $x + x^2 + \dots + x^{k+1}$
= $s_n(x) + x^{k+1} - 1$.

Solving for $s_n(x)$ gives

$$s_n(x) = \frac{1 - x^{k+1}}{1 - x}.$$

In other words,

$$s_n(x) = \frac{1 - x^{k+1}}{1 - x}$$
$$= \frac{1}{1 - x} - \frac{x^{k+1}}{1 - x}.$$

So it finally suffices to show that $\lim_{n\to\infty} x^n = 0$ for |x| < 1. For $\epsilon > 0$, we need to find $N \in \mathbb{N}$ such that $n \geq N$ implies $|x^n| < \epsilon$. To do so, simply set $N > \log_x(\epsilon)$. QED

Exercise 1.3 (Nov 25) If x, y, z are points in a metric space (X, d), show that

$$d(x,y) \ge |d(x,z) - d(y,z)|$$

Solution The triangle inequality tells us that

$$d(x,z) \ge d(x,y) + d(y,z)$$

and

$$d(y,z) \ge d(x,y) + d(x,z).$$

Isolating d(x,y) in both inequalities gives

$$d(x,y) \le d(x,z) - d(y,z), d(x,y) \le -((d,z) - d(y,z)).$$

Equivalently,

$$d(x,y) \le |d(x,z) - d(y,z)|.$$

QED

Exercise 1.4 (Nov 26) Suppose that (X, d_X) and (Y, d_Y) are metric spaces. Prove that the Cartesian product $Z = X \times Y$ is a metric space with metric $d: Z \times Z \to \mathbb{R}$ defined by

$$d(z_1, z_2) = d_X(x_1, x_2) + d_Y(y_1, y_2)$$

where $z_i = (x_i, y_i)$.

Solution Without any actual calculation we have

$$d(z_1, z_2) = d(z_2, d_1)$$
 (symmetry).

Since d_X and d_Y only give nonnegative values, so does d.

$$d(z_1, z_2) \ge 0.$$

And for the same reason, d vanishes if and only if d_X and d_Y do

$$d(z_1, z_2) = 0$$
 iff $z_1 = z_2$.

As for the triangle inequality, we already know that

$$d_X(x_1, x_3) \le d_X(x_1, x_2) + d_X(x_2, x_3),$$

$$d_Y(y_1, y_3) \le d_Y(y_1, y_2) + d_Y(y_2, y_3).$$

Adding these two equations gives

$$d(z_1, z_3) \le d(z_1, z_2) + d(z_2, z_3).$$

QED

Exercise 1.8 (Nov 27) Let (x_n) be a bounded sequence of real numbers.

Part (a) Prove that for every $\epsilon > 0$ and every $N \in \mathbb{N}$ there are $n_1, n_2 \geq N$, such that

$$\limsup x_n \le x_{n_1} + \epsilon, \ x_{n_2} - \epsilon \le \liminf x_n.$$

Solution to (a) Notice that we only need to prove the statement about lim sup, since the proof for lim inf is logically identical. We introduce the nicer notation

$$\sup_{n} = \sup\{x_k \mid k \ge n\}$$

so that

$$\lim \sup x_n = \lim_{n \to \infty} \sup_n$$

and similarly for \inf_n and \liminf . Now fix $\epsilon > 0$ and $N \in \mathbb{N}$. We want to prove that there exists $n_1 \geq N$ such that

$$\limsup x_n \le n_1 + \epsilon.$$

Suppose that were false. Then we would have

$$\limsup x_n - \epsilon > x_{n_1}$$

for all $n_1 \geq N$. In other words, all terms past the Nth term would be bounded above by $\limsup x_n - \epsilon$. But then we would have \sup_n and we would have

$$\sup_{n_1} \le \lim \sup x_n - \epsilon$$

for all $n_1 \geq N$. This contraditions the fact that $\sup_{n_1} \to \limsup_{n_1} x_n$ as $n_1 \to \infty$, which must be true by definition, so our supposition is false. QED

Part (b) Prove that for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$x_m \le \limsup x_n + \epsilon,$$

 $x_m \ge \liminf x_n - \epsilon$

for all $m \geq N$.

Solution to (b) Again by symmetry we only need to prove the first statement. So fix $\epsilon > 0$. From the definition

$$\limsup x_n = \lim_{m \to \infty} \sup_m = \lim_{m \to \infty} \sup \{x_k \mid k \ge m\}$$

and the definition of a limit, there must exist $N \in \mathbb{N}$ such that

$$m \ge N \implies |\sup_m - \limsup x_n| < \epsilon.$$

Since (\sup_m) is monotic decreasing, the absolute value bars are superfluous:

$$m \ge N \implies \sup_m -\limsup_n x_n < \epsilon.$$

And by definition we have

$$x_m < \sup_m$$
.

So we conclude that, for all $m \geq N$,

$$x_m - \limsup x_n < \epsilon$$
.

QED

Part (c) Prove that (x_n) converges if and only if

$$\lim\inf x_n = \lim\sup x_n$$

Solution to (c) One direction of this equivalence amounts to the sandwich thereom: Assume $\liminf x_n = \limsup x_n$ and call the common $\liminf L \in \mathbb{R}$. Observe the convenient bounding

$$\inf_{n} \le x_n \le \sup_{n} \text{ for all } n \in N.$$

Then for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$n \ge N \implies L - \epsilon < \inf_n \le x_n \le \sup_n \le L + \epsilon$$

and we have

$$\lim_{n \to \infty} x_n = L.$$

The opposite direction follows immediately from parts (a) and (b). QED

Exercise 1.11 (Nov 28) If $(x_n), (a_n), (b_n)$ are sequences of real numbers such that

$$\lim_{n \to \infty} x_n = x$$

and such that

$$a_n < x_n < b_n \ \forall n \in \mathbb{N}$$

prove that

$$\limsup a_n \le x \le \liminf b_n$$
.

Solution First, observe that (x_n) converges and is thus bounded, so (a_n) is bounded above and (b_n) is bounded below. This still allows for the possibility that $\limsup a_n = -\infty$ or $\liminf b_n = \infty$, but in those cases our claimed inequalities are trivially satisfied. So without loss of generality, we assume that $\limsup a_n \in \mathbb{R}$ and $\liminf b_n \in \mathbb{R}$, or equivalently that (a_n) is also bounded below and (b_n) above.

From the inequality

$$a_n \le x_n \ \forall n \in \mathbb{N}$$

we see that

$$\sup\{a_k \mid k \ge n\} \le \sup\{x_k \mid k \ge n\}$$

which holds in the limit $n \to \infty$.

$$\limsup a_n \le \limsup x_n.$$

But since (x_n) is a convergent series we know its \limsup agrees with its \liminf :

$$\lim\sup x_n=x.$$

So we conclude

$$\limsup a_n \leq x$$
.

By identical reasoning, we have

$$x \leq \liminf b_n$$
.

QED

Exercise 1.12 (Nov 28) Let (X, d_X) , (Y, d_Y) , and (Z, d_Z) be metric spaces and let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Show that the composition

$$h = q \circ f : X \to Z$$

is also continuous.

Solution This problem is messy if we use the $\epsilon - \delta$ criterion for continuity but easy if we use the topological criterion: a function is continuous iff its preimages of open sets are open. So let $U \subset Z$ be open and let $V \subset X$ be its preimage under h. We wish to show that V is open. But we have

$$V = h^{-1}(U)$$

= $(g \circ f)^{-1}(U)$
= $f^{-1}(g^{-1}(U))$

g is continuous, so $g^{-1}(U) \subset Y$ is open in Y. And f is continuous, so $f^{-1}(g^{-1}(U)) \subset X$ is open in X. QED