

Universidade Federal de Viçosa - Campus Florestal CCF 251 – Introdução aos Sistemas Lógicos Digitais Prof. José Augusto Miranda Nacif Trabalho Prático 2 - Circuitos Sequenciais

Alan Araújo dos Reis - 5096 Gabriel Rodrigues Marques - 5097

# INTRODUÇÃO

Neste trabalho prático, foi proposto o desenvolvimento, implementação e simulação de um sistema de jogo de loteria por meio do uso de lógica sequencial/combinacional e máquina de estados finita em Verilog, exibindo os resultados obtidos em uma FPGA. O objetivo final deste trabalho, além de simular um jogo de loteria, é determinar, de forma automática, se um jogo foi vencedor e, em caso afirmativo, identificar qual prêmio foi ganho.

O jogo de loteria proposto consiste na escolha sequencial de 5 números, e a loteria também sorteia outros 5 números. O número sorteado pela loteria é fixo para facilitar questões de implementação e é composto pela combinação de duas matrículas (50967). O quinto número funciona como uma segunda chance para ganhar os prêmios. Na loteria existem os seguintes prêmios com as respectivas condições de vitória:

Prêmio 0 - Não atender a nenhuma das condições de vitória.

Prêmio 1 - Acertar os 4 primeiros números sorteados.

Prêmio 1 - Acertar 3 números e o quinto número.

Prêmio 2 - Acertar 2 números consecutivos e o quinto número.

### **DESENVOLVIMENTO**

Inicialmente, foi elaborado um diagrama de transição de estados que apresenta o comportamento do circuito do sistema de jogo de loteria, foi utilizado a ferramenta JFlap para sua elaboração. O diagrama representa um "fluxo" de controle do jogo, transicionando os estados e verificando os números inseridos e qual foi o resultado do jogo realizado, retornando como saída o prêmio ganho.



Figura 1. Diagrama de transição de estados da máquina de estados finita.

s0 - Aguardando inserção do primeiro número.

s1 - Aguardando inserção do segundo número.

s2 - Aguardando inserção do terceiro número.

s3 - Aguardando inserção do quarto número.

s4 - Aguardando inserção do quinto número.

s5 - Finalizando e verificando o resultado do jogo.

s6 - Estado Prêmio 0.

s7 - Estado Prêmio 1.

s8 - Estado Prêmio 2.

INSERT - O número inserido é válido e o sinal de INSERT está ativo, vai para próximo estado.

NOT INSERT - O número inserido é inválido ou o sinal de INSERT não está ativo, permanece no estado.

FINISH - Sinal de FINISH está ativo, vai para próximo estado NOT FINISH - Sinal de FINISH não está ativo, permanece no estado. Com o diagrama de transições de estados devidamente elaborado, o módulo Loteria foi desenvolvido utilizando a linguagem de descrição de hardware Verilog. No módulo está contida toda a lógica necessária para o jogo de loteria. Nas tabelas (Tabela 1 e 2) abaixo, pode ser verificado os sinais de entrada, saída e variáveis auxiliares que foram utilizadas na implementação do módulo.

| Nome   | Tamanho | E/S     | Descrição                                                                                                                                        |  |  |  |
|--------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| clk    | 1 bit   | Entrada | Pulso de clock do sistema.                                                                                                                       |  |  |  |
| num    | 4 bits  | Entrada | Número entre 0 e 9 que compõem o número do jogo.                                                                                                 |  |  |  |
| insert | 1 bit   | Entrada | Sinal de controle insert que sincroniza a entrada de um número na máquina de estados. Deve ser acionado mediante a inserção de cada novo número. |  |  |  |
| finish | 1 bit   | Entrada | Sinal de controle que indica o fim da inserção dos números de um jogo, apresentando o seu resultado.                                             |  |  |  |
| reset  | 1 bit   | Entrada | Sinal reset responsável por colocar a máquina de estados de volta ao seu estado inicial.                                                         |  |  |  |
| prm    | 2 bit   | Saída   | Prêmio que foi ganho no jogo.                                                                                                                    |  |  |  |
| LEDR   | 9 bits  | Saída   | Estado atual da máquina de estados.                                                                                                              |  |  |  |
| HEX0   | 6 bits  | Saída   | Quinto número inserido.                                                                                                                          |  |  |  |
| HEX1   | 6 bits  | Saída   | Quarto número inserido.                                                                                                                          |  |  |  |
| HEX2   | 6 bits  | Saída   | Terceiro número inserido.                                                                                                                        |  |  |  |
| HEX3   | 6 bits  | Saída   | Segundo número inserido.                                                                                                                         |  |  |  |
| HEX4   | 6 bits  | Saída   | Primeiro número inserido.                                                                                                                        |  |  |  |
| HEX5   | 6 bits  | Saída   | Separador "-".                                                                                                                                   |  |  |  |
| HEX6   | 6 bits  | Saída   | Prêmio que foi ganho no jogo.                                                                                                                    |  |  |  |
| HEX7   | 6 bits  | Saída   | Letra "P".                                                                                                                                       |  |  |  |
| LEDG   | 1 bit   | Saída   | Vitória ou derrota.                                                                                                                              |  |  |  |

Tabela 1. Descrição dos sinais do módulo Loteria.

| Nome                               | Tamanho                    | Descrição                                                   |  |  |  |
|------------------------------------|----------------------------|-------------------------------------------------------------|--|--|--|
| b0, b1, b2, b3, b4                 | 4 bits/número              | Números entre 0 e 9 que compõe o número do sorteio          |  |  |  |
| s0, s1, s2, s3, s4, s5, s6, s7, s8 | 4 bits/estado              | Estados da FSM.                                             |  |  |  |
| num0, num1, num2, num3, num4       | 4 bits/número              | Números entre 0 e 9 inseridos que compõem o número do jogo. |  |  |  |
| hits                               | 3 bits                     | Número da sequência de acertos.                             |  |  |  |
| auxHits                            | 3 bits                     | Número da maior sequência de acertos.                       |  |  |  |
| lastTrue                           | 1 bit                      | Acertou ou errou o último número inserido.                  |  |  |  |
| win                                | 1 bit                      | Vitória ou derrota.                                         |  |  |  |
| p0                                 | 2 bits                     | Prêmio ganho no jogo.                                       |  |  |  |
| sdm                                | 12 segmentos<br>7 bits     | Mapa de segmentos do display.                               |  |  |  |
| lrm                                | 8 estados de LED<br>8 bits | Mapa de LED's.                                              |  |  |  |

Tabela 2. Descrição de variáveis auxiliares do módulo Loteria.

O módulo Loteria possui três blocos de código principais, sendo eles: bloco de inicialização, bloco da máquina de estados e bloco de atualização de saídas.

**Bloco de Inicialização:** inicializa todas as variáveis auxiliares do código, definindo estado inicial do módulo e valores padrão.

**Bloco da Máquina de Estados:** realiza o controle de fluxo da máquina de estado e do jogo com base nas entradas e no estado atual a cada borda de subida do clock. Aqui é realizada toda lógica do jogo, inicialmente verificando a validade e igualdade de cada número inserido e ao final as condições de vitória que direcionam ao prêmio ganho.

Bloco de Atualização de Saídas: atualiza os valores das saídas sempre que elas são alteradas, definindo prêmios, números inseridos e se o jogo foi vencido.

Os objetivos opcionais não foram implementados, para que outros aspectos fossem melhor lapidados. As entradas inválidas foram tratadas com a permanência no estado atual mesmo que o sinal de inserção fosse acionado, o estado só avança quando um número de 0 a 9 é inserido. Mais detalhes sobre como cada bloco de código funciona pode ser visto no código e no vídeo enviado juntamente com esta documentação.

Finalmente, com o módulo implementado foi preciso configurar todo ambiente para trabalhar com a FPGA. Foi utilizado uma FPGA Cyclone IV da Altera, modelo EP4CE115F29C7, e dois programas: Intel Quartus Prime Design Software e Terasic DE2-115 System Builder. No desenvolvimento, não foram necessárias mudanças no código previamente implementado e as conexões das entradas e saídas do módulo com a FPGA foram devidamente feitas, realizando sua compilação e síntese.

#### **RESULTADOS**

Como resultado tem-se um sistema de jogo de loteria funcional, que atende ao que foi solicitado. Além disso, alguns adicionais foram implementados como é possível ver na figura abaixo (Figura 2). Além do prêmio ganho ser exibido, um LED em verde é aceso em caso de vitória. Nos displays é exibido a sequência de números inseridos, que é atualizado a cada inserção. Os estados também estão sendo exibidos por meio de LED's, acendendo uma quantidade igual ao estado atual, isso foi feito para fins de controle.



Figura 2. FPGA.

AMARELO - Prêmio ganho (P0, P1, P2).

VERDE - Números que compõem o jogo.

AZUL - Vitória?

ROSA - Estado atual.

ROXO - Sinais de controle INSERT, FINISH, RESET.

VERMELHO - CLOCK.

|   | JOGO |    |    |    | SORTEIO |    |    |    |    | VENCEU | PRÊMIO |           |
|---|------|----|----|----|---------|----|----|----|----|--------|--------|-----------|
|   | N0   | N1 | N2 | N3 | N4      | В0 | В1 | B2 | В3 | B4     | S/N    | [0, 1, 2] |
| 1 | 5    | 0  | 9  | 6  | 7       | 5  | 0  | 9  | 6  | 7      | S      | 1         |
| 2 | 0    | 0  | 0  | 2  | 7       | 5  | 0  | 9  | 6  | 7      | N      | 0         |
| 3 | 7    | 0  | 9  | 3  | 7       | 5  | 0  | 9  | 6  | 7      | S      | 2         |
| 4 | 1    | 0  | 9  | 6  | 7       | 5  | 0  | 9  | 6  | 7      | S      | 1         |
| 5 | 9    | 0  | 1  | 6  | 7       | 5  | 0  | 9  | 6  | 7      | N      | 0         |

**Tabela 2.** Exemplos utilizados no vídeo da FPGA.

**OBS.:** mais detalhes sobre o desenvolvimento e resultados podem ser vistos no vídeo que foi enviado juntamente com esta documentação e no módulo desenvolvido, que contém diversos comentários ao longo do código.

### **CONCLUSÃO**

Por fim, com o término do desenvolvimento, implementação e simulação, utilizando todas as ferramentas disponíveis para sua execução, este trabalho foi bem-sucedido, atendendo as especificações do projeto, em seu objetivo final: simular um jogo de loteria, com a verificação/determinação automática de um jogo e de qual foi o prêmio ganho. O projeto demonstrou a aplicação prática de diversos conceitos trabalhados ao longo da disciplina CCF 251 - Introdução aos Sistemas Lógicos Digitais. Além disso, reforçou e ampliou nosso conhecimento em relação ao desenvolvimento de módulos Verilog e implementação e simulação em FPGA.

## REFERÊNCIAS

- [1] R. Katz, G. Borriello, Contemporary Logic Design, 2ª edição, Prentice Hall, 2004;
- [2] TANENBAUM, A.S. Organização Estruturada de Computadores. 5. ed. Editora Pearson Prentice Hall, 2007;
- [3] HDLBits Verilog Practice. Disponível em: <a href="https://hdlbits.01xz.net/wiki/Main-Page">https://hdlbits.01xz.net/wiki/Main-Page</a>
- [4] Github. Disponível em: <a href="https://github.com/gabridulol/CircuitosSequenciais">https://github.com/gabridulol/CircuitosSequenciais</a>;
- [5] Icarus Verilog;
- [6] JFlap;
- [7] Intel Quartus Prime Lite Edition Design Software;
- [8] Terasic DE2-115 System Builder;