ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

- 2. Omów warunki i wyprowadź wzory na:
 - a) pierwszą prędkość kosmiczną,
 - b) drugą prędkość kosmiczną.

To zadanie dotyczy pierwszej i drugiej predkości kosmicznej.

a) Pierwsza Predkość Kosmiczna

Pierwsza predkość kosmiczna to minimalna predkość, jaka musi mieć ciało (np. satelita), aby wejść na orbite kołowa wokół Ziemi tuż nad jej powierzchnia, nie spadajac z powrotem na ziemie.

Warunki: - Ciało porusza sie po orbicie kołowej tuż nad powierzchnia Ziemi. - Siła grawitacji jest równoważona przez siłe odśrodkowa, wynikajaca z ruchu orbitalnego.

Wzór: Predkość (v_1) wynika z równowagi siły grawitacji i siły odśrodkowej:

$$\frac{G\cdot M\cdot m}{R^2}=\frac{m\cdot v_1^2}{R}$$

gdzie: - G to stała grawitacji (6.674 × 10^{-11} m $^3/\text{kg} \cdot \text{s}^2$), - M to masa Ziemi (5.972 × 10^{24} kg), - R to promień Ziemi (6.371 × 10^6 m), - m to masa ciała.

Przekształcajac wzór:

$$v_1 = \sqrt{\frac{G \cdot M}{R}}$$

Podstawiajac wartości stałych, otrzymujemy:

$$v_1 \approx 7.9 \,\mathrm{km/s}$$

b) Druga Predkość Kosmiczna

Druga predkość kosmiczna to predkość, jaka musi mieć ciało, aby pokonać siłe grawitacji Ziemi i opuścić ja bez konieczności dalszego napedu (predkość ucieczki).

Warunki: - Ciało musi pokonać energie potencjalna grawitacyjna Ziemi. - Całkowita energia mechaniczna ciała na powierzchni Ziemi wynosi zero.

Wzór: Predkość (v_2) wynika z równania energii (całkowita energia kinetyczna równa energii potencjalnej):

$$\frac{1}{2}mv_2^2 = \frac{G \cdot M \cdot m}{R}$$

Rozwiazujac równanie:

$$v_2 = \sqrt{\frac{2 \cdot G \cdot M}{R}}$$

Podstawiajac wartości stałych, otrzymujemy:

$$v_2 \approx 11.2 \,\mathrm{km/s}$$

Obydwie predkości sa kluczowe w kontekście misji kosmicznych i technologii satelitarnych.