JOINT PROBABILITY DISTRIBUTION

Nandini Rai

In many trials we study two characteristics of an outcome and we need a pair of numbers to describe the outcome. For example,

we may select a student at random from a group and measure his height (h) and weight (w).

We may select a worker from a factory and note his age(x) and salary (y).

We may select a couple at random and note the age of the husband (x) and the age of the wife (y).

We may select a student at random and note the marks in Mathematics (x) and marks in Statistics (y).

In such cases we need a pair of numbers to record the outcome. Such experiments are called **two dimensional.**

- We consider two function which associate a pair of real numbers to an outcome of an experiment of this type.
 These two functions taken jointly are called a two dimensional discrete random variable.
- If X and Y assume finite or countable infinite values, then (X, Y) is called a two dimensional discrete random variable.

Definition: Let (X,Y) be a two dimensional discrete random variable. With each possible outcome (x_i, y_j) we associate a number p_{ij} representing the probability of the event that $X = x_i$ and $Y = y_j$ and satisfying the conditions:

(i)
$$p(x_i, y_j) \ge 0$$
 for all i, j

(ii)
$$\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} p(x_i, y_j) = 1$$

The function p defined for all (x_i, y_j) is called the joint **probability mass function** of (X, Y).

The set of values of (x_i, y_j) together with their probabilities p_{ij} is called the **probability distribution** of (X, Y)

• Probability Distribution of (X, Y) is given by

X/Y	y_1	y_2	 	y_m
x_1	p_{11}	p_{12}	 	p_{1m}
x_2	p_{21}	p_{22}	 	p_{2m}
x_3	p_{31}	p_{32}	 	p_{3m}
x_n	p_{n1}	p_{n2}	 	p_{nm}

- A two dimensional probability distribution gives us the probability that X will take a particular value and Y will take a particular value.
- But we may also be interested in the probability that X will take a particular value irrespective of the values of Y.
- This is called marginal probability distribution of X.
- Or we may be interested in the probability that Y will take a particular value irrespective of the values of X.
- This is called marginal probability distribution Y
- Marginal probabilities distributions in the case of discrete two dimensional distributions are easily obtained by summing probabilities vertically or horizontally.

• In general, consider the following probability distribution of (X,Y).

X/Y	y_1	y_2	 	${\mathcal Y}_m$	Total
x_1	p_{11}	p_{12}	 	p_{1m}	p_1
x_2	p_{21}	p_{22}	 	p_{2m}	p_2
x_3	p_{31}	p_{32}	 	p_{3m}	p_3
x_n	p_{n1}	p_{n2}	 	p_{nm}	p_n
Total	${p_1}'$	${p_2}'$	 	$p_m{'}$	1

• If we find the probabilities $p_1, p_2, ... p_i p_n$ of $x_1, x_2 x_i x_n$ only, irrespective of the values taken by Y, the probabilities distribution so obtained is called the marginal probability distribution of X.

Thus, the marginal probability distribution of x is:

X	$x_1, x_2, \dots, x_i, \dots, x_n$	Sum
P(X)	$p_1, p_2, \dots, p_i, \dots, p_n$	1

- Similarly, if we find the probabilities $p'_1, p'_2, \dots, p'_j \dots p'_m$ of $y_1, y_2, \dots, y_j \dots, y_m$ irrespective of the values taken by X, the probability distribution so obtained is called the marginal probability distribution of Y.
- Thus, the marginal probability distribution of Y is:

Y	$y_1, y_2, \dots, y_i, \dots, y_n$	Sum
P(Y)	$p_1', p_2', \dots, p_i', \dots, p_m'$	1

Conditional Probability Distribution

•
$$P(X = x_i | Y = y_i) = \frac{P(X = x_i, Y = y_i)}{P(Y = y_i)}$$

The joint probability distribution of X and Y is given by

$$P(X = x, Y = y) = \frac{x+3y}{24}, x = 1,2; y = 1,2$$

Find the joint p.m.f s of X and Y, Also Find the Marginal Probability distributions of X and Y.

Solution:

X/Y	1	2	Total
1	1/6	7/24	11/24
2	5/24	1/3	13/24
Total	3/8	5/8	1

The Marginal Probability Distribution of X & Y is given by

X	1	2
P(X)	11/24	13/24

Y	1	2
P(Y)	3/8	5/8

• The joint probability distribution of X_1 and X_2 is given by $P(X_1 = x_1, X_2 = x_2) = \frac{1}{27}(x_1 + 2x_2)$, $x_1 = 0$, 1, 2, $x_2 = 0$, 1, 2 Find the joint p.m.f s X_1 and X_2 , Also Find the Marginal Probability distributions of X_1 and X_2

Solution:

X_1/X_2	0	1	2	Total
0	0	2/27	4/27	2/9
1	1/27	1/9	5/27	1/3
2	2/27	4/27	2/9	4/9
Total	1/9	1/3	5/9	1

• The Marginal Probability Distribution of $X_1 \& X_2$ is given by _____

X_1	0	1	2
P(<i>X</i> ₁)	2/9	1/3	4/9

X_{2}	0	1	2
P(X ₂)	1/9	1/3	5/9

3 balls are drawn at random without replacement from a box containing 2 white, 4 black and 3 red balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, find

- (i) Joint probability distribution of X and Y
- (ii) $P(X \le 1)$, $P(X \le 1, Y \le 2)$, $P(Y \le 2 | X \le 1)$, $P(X + Y \le 2)$
- (iii) Marginal Probability distribution of X
- (iv) Marginal Probability distribution of Y
- (v) Conditional distribution of X given Y=1 Also check whether X & Y are independent variables.

(i)
$$P(X = 0, Y = 0) = P(all\ 3\ balls\ are\ black)$$

$$= \frac{4c_3}{9c_3} = \frac{1}{21}$$
(ii) $P(X = 0, Y = 1) = P(1\ red\ ball\ \&2\ black\ balls)$

$$= \frac{3c_1 \times 4c_2}{9c_3} = \frac{3}{14}$$
(iii) $P(X = 0, Y = 2) = P(2\ red\ balls\ \&1\ black\ ball)$

$$= \frac{3c_2 \times 4c_1}{9c_3} = \frac{1}{7}$$
(iv) $P(X = 0, Y = 3) = P(all\ 3\ balls\ are\ red)$

$$= \frac{3c_3}{9c_3} = \frac{1}{84}$$

And so on ...

The joint probability distribution of X and Y is given by

X/Y	0	1	2	3	total
0	1/21	3/14	1/7	1/84	35/84
1	1/7	2/7	1/14	0	42/84
2	1/21	1/28	0	0	7/84
total	5/21	15/28	3/14	1/84	1

• (ii)
$$P(X \le 1) = P(X = 0) + P(X = 1) = \frac{35}{84} + \frac{42}{84} = \frac{77}{84}$$

• $P(X \le 1, Y \le 2)$
• $= P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2) + P(X = 1, Y = 0) + P(X = 1, Y = 1) + P(X = 1, Y = 2)$
 $= \frac{1}{21} + \frac{3}{14} + \frac{1}{7} + \frac{1}{7} + \frac{2}{7} + \frac{1}{14} = \frac{19}{21}$

$$P(Y \le 2 | X \le 1) = \frac{P(Y \le 2, X \le 1)}{P(X \le 1)}$$
$$= \frac{19/21}{77/84} = \frac{76}{77}$$

$$P(X + Y \le 2)$$

$$= P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$$

$$+ P(X = 1, Y = 0) + P(X = 1, Y = 1)$$

$$+ P(X = 2, Y = 0)$$

$$= \frac{1}{21} + \frac{3}{14} + \frac{1}{7} + \frac{1}{7} + \frac{2}{7} + \frac{1}{21} = \frac{37}{42}$$

• (iii) Marginal Probability distribution of X

X	0	1	2	Total
P(X)	35/84	42/84	7/84	1

• (iv) Marginal Probability distribution of Y

Y	0	1	2	3	Total
P(Y)	5/21	15/28	3/14	1/84	1

 (v) Conditional probability of X given Y=1 = P(X = 0|Y = 1) + P(X = 1|Y = 1) + P(X = 2|Y = 1) $= \frac{P(X=0,Y=1)}{P(Y=1)} + \frac{P(X=1,Y=1)}{P(Y=1)} + \frac{P(X=2,Y=1)}{P(Y=1)}$ $= \frac{3/14}{15/28} + \frac{2/7}{15/28} + \frac{1/28}{15/28} = 1$ (vi) Conditional probability of Y if X=2 = P(Y = 0|X = 2) + P(Y = 1|X = 2) $= \frac{P(Y=0, X=2)}{P(X=2)} + \frac{P(Y=1, X=2)}{P(X=2)}$ $=\frac{1/21}{7/84}+\frac{1/28}{7/84}=1$

- (vii) Check whether X & Y are independent variables
- X and Y are said to be independent if
- $P(X,Y) = P(X) \times P(Y) \ \forall X \& Y$

Here consider X = 0, Y = 1

$$P(X = 0, Y = 1) = \frac{3}{14}$$

And
$$P(X = 0) \times P(Y = 1) = \frac{35}{84} \times \frac{15}{28} = \frac{25}{108}$$

Hence X & Y are not independent variables.

Two dimensional continuous Probability Distribution

Let (X, Y) be a two dimensional continuous variable and let $f_{XY}(x, y)$ be function of (x, y) such that

(i)
$$f_{XY}(x,y) \geq 0$$
,

(ii)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1$$

(iii) $\int_a^b \int_c^d f_{XY}(x,y) dx dy$ represents the probability that $P(a \le X < b, c \le Y \le d)$

then $f_{XY}(x, y)$ is called two dimensional probability density function.

(a) The marginal probability density function of X is obtained by integrating two dimensional p.d.f $f_{XY}(x,y)$ w.r.t y from $-\infty$ to ∞

Thus, the marginal p..d.f of X is $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy$ where $f_X(x) \ge 0$ and $\int_{-\infty}^{\infty} f_X(x) dx = 1$

(b) The marginal probability density function of Y is obtained by integrating two dimensional p.d.f $f_{XY}(x, y)$ w.r.t x from $-\infty$ to ∞ .

Thus, the marginal p.d.f of Y is $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$ where $f_Y(y) \ge 0$ and $\int_{-\infty}^{\infty} f_Y(y) dy = 1$

The joint probability density of two random variables is

given by
$$f_{XY}(x,y) = \begin{cases} 15e^{-3x-5y}, & x > 0, y > 0 \\ 0, & eleswhere \end{cases}$$

- (a) Find the probability that
- (i) 1 < X < 2 and 0.2 < Y < 0.3 (ii) X < 2 and Y > 0.2
- **(b)** Find marginal probability distributions of X and Y.

(i)
$$P(1 < x < 2, 0.2 < y < 0.3)$$

= $\int_{1}^{2} \int_{0.2}^{0.3} 15e^{-3x-5y} dxdy$
= $15 \int_{1}^{2} e^{-3x} dx \int_{0.2}^{0.3} e^{-5y} dy$
= 0.00684
(ii) $P(x < 2, y > 0.2)$
= $\int_{0}^{2} \int_{0.2}^{\infty} 15e^{-3x-5y} dxdy$
= $15 \int_{0}^{2} e^{-3x} dx \int_{0.2}^{\infty} e^{-5y} dy$
= 0.367

(iii) Marginal Probability distribution of X

$$f_X(x) = \int_0^\infty 15e^{-3x} (e^{-5y}) dy$$
$$= -3e^{-3x} (0-1)$$

$$f_X(x) = \begin{cases} 3e^{-3x}, & x > 0 \\ 0, & otherwise \end{cases}$$

Marginal Probability distribution of Y

$$f_Y(y) = \int_0^\infty 15e^{-5y}(e^{-3x})dx$$

= $-5e^{-5y}(0-1)$

$$\therefore f_Y(y) = \begin{cases} 5e^{-5y}, & y > 0 \\ 0, & otherwise \end{cases}$$

Given
$$f_{xy}(x,y) = \begin{cases} cx(x-y), & 0 < x < 2, -x < y < x \\ 0, & otherwise \end{cases}$$

(i) Evaluate c (ii) find $f_x(x)$ (iii) find $f_{\frac{y}{x}}(\frac{y}{x})$

Solution: by the property of joint probability distribution

$$\int \int f_{xy}(x, y) dx dy = 1$$

$$\Rightarrow \int_0^2 \int_{-x}^x cx(x - y) dx dy = 1$$

$$\Rightarrow c = \frac{1}{8}$$

$$(ii) f_{x}(x) = \int_{-x}^{x} f_{xy}(x, y) dy$$
$$= \int_{-x}^{x} \frac{1}{8} x(x - y) dy$$

$$=\frac{x^3}{4} \ 0 < x < 2$$

(iii) $f_{\frac{y}{x}}\left(\frac{y}{x}\right)$ = conditional density function of y given x

$$= \frac{f_{xy}(x,y)}{f_x(x)}$$

$$= \frac{\frac{1}{8}x(x-y)}{\frac{x^3}{4}}$$

$$= \frac{\frac{1}{8}x(x-y)}{\frac{x^3}{4}}$$

$$= \frac{x-y}{2x^2}, -x < y < x$$

$$f_{xy}(x,y) = xy^2 + \frac{x^2}{8}$$
, $0 \le x \le 2, 0 \le y \le 1$

Compute (i)
$$P(x > 1)$$
 (ii) $P(y < \frac{1}{2})$ (iii) $P(x > 1, y < \frac{1}{2})$

(iv)
$$P\left(y < \frac{1}{2} | x > 1\right)$$
 (v) $P(x < y)$ (vi) $P(x + y \le 1)$

Solution:

(i)
$$P(x > 1) = \iint f_{xy}(x, y) dx dy$$

$$= \int_{y=0}^{1} \int_{x=1}^{2} \left(xy^2 + \frac{x^2}{8} \right) dx dy$$

$$= \frac{19}{24}$$

(ii)
$$P\left(y < \frac{1}{2}\right) = \iint f_{xy}(x, y) \, dx \, dy$$

$$= \int_{y=0}^{1/2} \int_{x=0}^{2} \left(xy^2 + \frac{x^2}{8}\right) \, dx \, dy$$

$$= \frac{1}{4}$$
(iii) $P\left(x > 1, y < \frac{1}{2}\right) = \int_{y=0}^{1/2} \int_{x=1}^{2} \left(xy^2 + \frac{x^2}{8}\right) \, dx \, dy$

$$= \frac{5}{24}$$
(iv) $P\left(y < \frac{1}{2} \middle| x > 1\right) = \frac{P\left(x > 1, y < \frac{1}{2}\right)}{P\left(x > 1\right)} = \frac{5/24}{19/24} = \frac{5}{19}$

(v)
$$P(x < y) = \int_{x=0}^{1} \int_{y=x}^{1} \left(xy^2 + \frac{x^2}{8} \right) dx dy$$

= $\frac{53}{480}$

(vi)
$$P(x + y \le 1) = \int_{x=0}^{1} \int_{y=0}^{1-x} \left(xy^2 + \frac{x^2}{8} \right) dx dy$$
$$= \frac{13}{480}$$

