Performance analysis of algorithms

What is Programming?

Programming is to represent data and

solve the problem using the data.

What is Data Structure?

Definition

- It is a way of collecting and organizing data in a computer.
- An aggregation of atomic and composite data into a set with defined relationships.

What is Algorithm?

- Definition: a finite set of instructions that should satisfy the following:
 - **Input**: zero or more inputs
 - Output: at least one output
 - **Definiteness**: clear and unambiguous instructions
 - **Finiteness**: terminating after a finite number of steps
 - **Effectiveness** (Machine-executable): enough to be carried out
- In computational theory, algorithm and program are different
 - Program does not satisfy 4): eg. OS

Algorithm Specification

- How to express algorithms
 - **■** High-level description
 - Natural language
 - Graphic representation, e.g., flowcharts
 - Pseudocode: informal language-dependent description
 - **Implementation description**
 - C, C++, Java, and etc.

Natural Language vs. Graphic Chart

■ Example: Selection Sort

From those integers that are currently unsorted, find the smallest value. Place it next in the sorted list.

Pseudocode (C-like Language)

■ Example: Selection Sort

```
for (i=0; i<n; i++) {
    Examine numbers in list[i] to list[n-1].
    Suppose that the smallest integer is at list[min].
    Interchange list[i] and list[min].
}</pre>
```

Implementation in C

■ Example: Selection Sort

```
void sort(int list[], int n)
{
    int i, j, min;
    for (i = 0; i < n - 1; i++) {
        min = i;
        for (j = i + 1; j < n; j++)
              if (list[j] < list[min])
              min = j;
        SWAP(list[i], list[min]);
    }
}</pre>
```

Algorithm Analysis

- How do we evaluate algorithms?
 - Does the algorithm use the storage efficiently?
 - Is the running time of the algorithm acceptable for the task?

```
void search(int arr[], int len, int target) {
    for (int i = 0; i < len; i++) {
        if (arr[i] == target)
            return i;
    }
    return -1
}</pre>
```

- Performance analysis
 - Estimating **machine-independent** time and space

Space complexity: an amount of memory needed

Time complexity: an amount of time taken for an algorithm to finish

Space Complexity

Definition

■ (machine-independent) space required by an algorithm

Example

```
int abc(int a, int b, int c)
{
    return a + b + b*c + 4.0;
}
```

```
char* give_me_memory(int n)
{
    char *p = malloc(n);
    return p;
}
```

Space Complexity

■ What is better for space complexity?

```
float sum(float *list, int n)
{
    float tempsum = 0;
    for (int i = 0; i < n; i++)
        tempsum += *(list + i);
    return tempsum;
}</pre>
```

```
float rsum(float *list, int n)
{
    if (n > 0)
        return rsum(list, n - 1) + list[n - 1];
    else
        return 0;
}
```

Definition

- (machine-independent) time required by an algorithm
- Time is not easy to estimate!

10 Additions, 10 subtractions, 10 multiplications $10C_a + 10C_s + 10C_m$

C_a: time for one addition

C_s: time for one subtraction

C_m: time for one multiplication

■ Alternative

■ Count the number of program steps instead of time.

10 Additions, 10 subtractions, 10 multiplications \Rightarrow

Program steps

- Syntactically or semantically meaningful program segment whose execution time is independent of the number of inputs
- Any one basic operation \Rightarrow one step
 - +, -, *, /, assignment, jump, comparison, etc.
- Any combination of basic operations \Rightarrow one step
 - \blacksquare +=, *=, /=, (a+c*d), etc.

Example

```
int abc(int a, int b, int c)
{
    return a + b + b*c + 4.0;
}
```

```
void add(int a[][MAX_SIZE], ...)
{
   int i, j;
   for (i = 0; i < rows; i++)
      for (j = 0; j < cols; j++)
      c[i][j] = a[i][j] + b[i][j];
}</pre>
```

■ What is better for time complexity?

```
float sum(float *list, int n)
{
    float tempsum = 0;
    for (int i = 0; i < n; i++)
        tempsum += *(list + i);
    return tempsum;
}</pre>
```

```
float rsum(float *list, int n)
{
    if (n > 0)
        return rsum(list, n - 1) + list[n - 1];
    else
        return 0;
}
```

Asymptotic Notation

■ Do we need to calculate exact numbers?

We have three algorithms, A, B, and C for the same problem.

- The time complexity of A: n²+n+1
- The time complexity of B: n²
- The time complexity of C: 200*n*log(n)
- What is a important factor? INCREASING SPEED!!
 - The highest term is enough to represent the complexity.
 - Constants is not important.

	10	100	1,000	10,000
A	111	10,101	1,001,001	???
В	100	10,000	1,000,000	???
С	2000	40,000	600,000	???

Asymptotic Notation

- What is better?
 - (10n+10)

- VS.
- $(0.01n^2+10)$

- (2000n+3)
- VS.
- (nlogn+1000)

 \blacksquare (n³)

- VS.
- $(10n^2+1000000n)$

Simple rule:

- 1. Ignore any constants.
- 2. Compare only the term of the highest order.

Asymptotic Notation

- Three notations for complexity
 - Big-O notation : O(f(n))
 - The complexity is not increasing faster than f(n).
 - \blacksquare f(n) is an upper bound of the complexity.
 - Big- Ω notation : $\Omega(f(n))$
 - The complexity is not increasing slower than f(n).
 - \blacksquare f(n) is a lower bound of the complexity.
 - Big- Θ notation : $\Theta(f(n))$
 - The complexity is equally increasing to f(n).

Big-O Notation

Definition

$$f(n) = O(g(n))$$

$$\Leftrightarrow f(n) \text{ is not increasing faster than } g(n)$$

- \Leftrightarrow For a large number n_o , $c^*g(n)$ will be larger than f(n)
 - \Leftrightarrow There exist positive constants c and n_o such that

$$f(n) \leq \mathbf{c}^* g(n)$$
 for all $n > \mathbf{n_o}$

Example

- $3n + \log n + 2 = O(n)$, because $3n + \log n + 2 \le 5n$ for $n \ge 2$
- $10n^2 + 4n + 2 = O(n^4)$, because $10n^2 + 4n + 2 \le 10n^4$ for $n \ge 2$

Example: Asymptotic Notation

■ Three asymptotic notations for space complexity

```
float sum(float *list, int n) 

{
    float tempsum = 0;
    for (int i = 0; i < n; i++)
        tempsum += *(list + i);
    return tempsum;
}
```

Example: Asymptotic Notation

■ Three asymptotic notations for time complexity

```
float sum(float *list, int n)
                                                                       \Theta(n)
{
    float tempsum = 0;
    for (int i = 0; i < n; i++)
                                                                       O(n)
                                                     2n+3
         tempsum += *(list + i);
    return tempsum;
                                                                       \Omega(\mathbf{n})
void add(int a[][MAX SIZE], ...)
                                                                      \Theta(r*c)
{
    int i, j;
                                                 \rightarrow 2*r*c + 2*r + 1
                                                                      O(r*c)
    for (i = 0; i < r; i++)
         for (j = 0; j < c; j++)
                                                                      \Omega(r*c)
              c[i][j] = a[i][j] + b[i][j];
}
```

Discussion: Asymptotic Notation

- Big-O notation is widely used.
 - Big- Θ notation is the most informative, but the exact value is hard to know.
 - Big- Ω notation is the least informative. Why?
 - Big-O notation is good for rough description.

There is algorithm A. The exact complexity is very hard to evaluate. However, we know that $n^2 \leq \text{complexity} \leq n^3.$

Then, we can say the complexity is $O(n^3)$.

Comparison: Asymptotic Notation

■ Which is more costly?

O(1), $O(\log n)$, $O(n \log n)$, $O(n^2)$, $O(n^3)$, $O(2^n)$, O(n!), etc..

O(1): constant

O(log₂n): logarithmic

O(n): linear

 $O(n \cdot \log_2 n)$: log-linear

O(n²): quadratic

O(n³): cubic

O(2ⁿ): exponential

O(n!): factorial

Loops

■ The number of iterations * the running time of the statements inside the loop

```
// executes n times
for (int i = 0; i < n; i++)
    m = m + 1; // constant time, c
// Total time = c * n = O(n)</pre>
```

```
// outer loop executed n times
for (int i = 0; i < n; i++)
    // inner loop executed n times
    for (int j = 0; j < n; j++)
        m = m + 1; // constant time, c
// Total time = c * n * n = O(n²)</pre>
```

- Consecutive statements
 - Add the time complexities of each statement.

```
// executes n times
for (int i = 0; i < n; i++)
    m = m + 1; // constant time, c<sub>1</sub>

// outer loop executed n times
for (int i = 0; i < n; i++)
    // inner loop executed n times
    for (int j = 0; j < n; j++)
        k = k + 1; // constant time, c<sub>2</sub>

// Total time = c<sub>1</sub> * n + c<sub>2</sub> * n<sup>2</sup> = O(n<sup>2</sup>)
```

■ If-then-else statements

■ Consider the worst-case running time among the if, else-if, or else part (whichever is the larger).

```
// executes n times
if (len > 0)
    for (int i = 0; i < n; i++)
        m = m + 1; // constant time, c_1
else {
    // outer loop executed n times
    for (int i = 0; i < n; i++)
        if (i > 0)
             k = k + 2 // constant time, c_2
        else
            // inner loop executed n times
            for (int j = 0; j < n; j++)
                 k = k + 1; // constant time, c_3
// Total time = n * n * c_3 = O(n^2)
```

■ Logarithmic complexity

■ An algorithm is $O(\log n)$ if it takes a constant time to cut the problem size by a fraction (usually by $\frac{1}{2}$).

```
// At kth step, 2k = n and come out of loop.
for (int i = 1; i < n; i*=2)
    m = m + 1; // constant time, c
// Because k = log<sub>2</sub>n, total time = O(log n)
```

```
// The same condition holds for decreasing sequence.
for (int i = n; i > 0; i/=2)
    m = m + 1; // constant time, c
// Because k = log<sub>2</sub>n, total time = O(log n)
```