Title for Super Fancy Stuff

Generic Name

Some Super Fancy Institution

November 11, 2024

ToC

- This is the First Section
 - Taxonomy of Proximal type of Methods
 - The Proximal Operator
 - Strong Smoothness
 - A Major Assumption
- 2 A New Fancy Section
 - A Fancy Subsetction for Algorithm
- References

Frame Title

Formula Presented in Block

$$\min_{x} g(x) + h(x) \tag{1}$$

- 1. Throughout this presentation, we assume the objective of a function *f* is the sum of 2 functions.
- 2. We are interested in the paper: FISTA (Fast Iterative-Shrinkage Algorithm) by Beck and Teboulle [?].
- 1. When $h = \delta_Q$ with Q closed and convex with $Q \subseteq \text{ri} \circ \text{dom}(g)$, we use projected subgradient.
- 2. When g is **strongly smooth** and h is **closed convex proper** whose proximal oracle is easy to compute, we consider the use of FISTA.

Frame Title

Formula Presented in Block

$$\min_{x} g(x) + h(x) \tag{1}$$

- 1. Throughout this presentation, we assume the objective of a function *f* is the sum of 2 functions.
- 2. We are interested in the paper: FISTA (Fast Iterative-Shrinkage Algorithm) by Beck and Teboulle [?].
- 1. When $h = \delta_Q$ with Q closed and convex with $Q \subseteq \text{ri} \circ \text{dom}(g)$, we use projected subgradient.
- 2. When g is **strongly smooth** and h is **closed convex proper** whose proximal oracle is easy to compute, we consider the use of FISTA.

Frame Title

Definition (Definition of Something)

Let f be convex closed and proper, then the proximal operator parameterized by $\alpha>0$ is a non-expansive mapping defined as:

$$\operatorname{prox}_{f, \alpha}(x) := \arg \min_{y} \left\{ f(y) + \frac{1}{2\alpha} \|y - x\|^2 \right\}.$$

Remark

When f is convex, closed, and proper,

Prox is the Resolvant of Subgradient

Lemma (The Lemma)

When the function f is convex closed and proper, the $\operatorname{prox}_{\alpha,f}$ can be viewed as the following operator $(I + \alpha \partial f)^{-1}$.

Proof.

Minimizer satisfies zero subgradient condition,

$$\mathbf{0} \in \partial \left[f(y) + \frac{1}{2\alpha} ||y - x||^2 \middle| y \right] (y^+)$$

$$\mathbf{0} \in \partial f(y^+) + \frac{1}{\alpha} (y^+ - x)$$

$$\frac{x}{\alpha} \in (\partial f + \alpha^{-1} I)(y^+)$$

$$x \in (\alpha \partial f + I)(y^+)$$

$$y \in (\alpha \partial f + I)^{-1}(x).$$

Equivalence of Strong Smoothness and Lipschitz Gradient

Theorem (Lipschitz Gradient Equivalence under Convexity)

Suppose g is differentiable on the entire of $\mathbb E$. It is closed convex proper. It is strongly smooth with parameter α if and only if the gradient ∇g is globally Lipschitz continuous with a parameter of α and g is closed and convex.

$$\|\nabla g(x) - \nabla g(y)\| \le \alpha \|x - y\| \quad \forall x, y \in \mathbb{E}$$

Proof.

Using line integral, we can prove Lipschitz gradient implies strong smoothness without convexity. The converse requires convexity and applying generalized Cauchy Inequality to (iv) in Theorem 5.8 for Beck's textbook [?].

A Major Assumption

Assumption (Convex Smooth Nonsmooth with Bounded Minimizers)

We will assume that $g: \mathbb{E} \mapsto \mathbb{R}$ is **strongly smooth** with constant L_g and $h: \mathbb{E} \mapsto \bar{\mathbb{R}}$ is **closed convex and proper**. We define f:=g+h to be the summed function and $ri \circ dom(g) \cap ri \circ dom(h) \neq \emptyset$. We also assume that a set of minimizers exists for the function f and that the set is bounded. Denote the minimizer using \bar{x} .

The Accelerated Proximal Gradient Method

Momentum Template Method

Algorithm Template Proximal Gradient Method With Momentum

- 1: **Input:** $x^{(0)}, x^{(-1)}, L, h, g$; 2 initial guesses and stepsize L
- 2: $y^{(0)} = x^{(0)} + \theta_k(x^{(0)} x^{(-1)})$
- 3: **for** $k = 1, \dots, N$ **do**
- 4: $x^{(k)} = \operatorname{prox}_{h,L^{-1}}(y^{(k)} + L^{-1}\nabla g(y^{(k)})) =: \mathcal{P}_{L^{-1}}^{g,h}(y^{(k)})$
- 5: $y^{(k+1)} = x^{(k)} + \theta_k(x^{(k)} x^{(k-1)})$
- 6: end for

References