2018/2019 SEMESTER ONE EXAMINATION

Diploma in Electrical and Electronic Engineering (DEEE) 2nd Year Full-Time (DEEE) Diploma in Energy Systems and Management (DESM) 2nd Year Full-Time (DESM)

ELECTRICAL INSTALLATION DESIGN

Time Allowed: 2 hours

Instructions to Candidates:

- 1. The examination rules set out on the last page of the answer booklet are to be complied with.
- This paper consists of TWO sections:

Section A: 6 Short Questions, 10 marks each. Section B: 2 Long Questions, 20 marks each.

- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the answer booklet. Start each question in Section A and Section B on a new page.
- 5. This examination paper consists of 4 pages with another 6 pages of Extracts from CP5 Tables making a total of 10 pages.

/18/19 S1 Page 1 of 10

SECTION A: [10 Marks Each]

- 1(a) A terrace house needs 22kVA of electricity at power factor of 0.8. State the voltage, frequency and number of wires that Singapore Power Services Limited will provide. What type of earthing system will be used? Calculate the maximum current that can be drawn from Singapore Power. (7 marks)
- 1(b) Sketch a single-phase electrical installation adopting the TNS earthing system, clearly labelled all parts. (3 marks)
- Socket Outlet Assembly (SOA) are mandated for use in Temporary Electrical Installations.
 - (i) State the four areas where SOA is compulsory.
 - (ii) State the requirements relating to the enclosure of the assembly and type of protective devices used for the SOA.
 - (iii) State the maximum length for flexible cables used for handheld equipment when connecting to SOA.
 - (iv) Explain whether it is correct to loop from an existing industrial socket outlet fitted on the SOA to two 13A switched socket outlets.

(10 marks)

- 3(a) Determine the size (diameter) for the conduit as in Figure Q 3(a) needed to accommodate the following circuits. (Using the cable factor method.) (6 marks)
 - 1 numbers of single-phase circuit using 2.5 mm² single core PVC-insulated stranded cables with 1.5mm² single core PVC insulated cables for the protective conductors
 - 1 number of three-phase 3-wire circuit using 4.0 mm² single core PVC-insulated stranded cables with 2.5mm² single core PVC insulated cables for the protective conductors.

- 3(b) Can an ohmmeter be used to measure insulation resistance for electrical installation? The overall insulation resistance of the electrical installation with a total of 200 points (lighting and socket outlets) is $0.3 \text{ M}\Omega$. Does the overall insulation resistance value comply with CP5:1998? (4 marks)
- Design a manual traffic light control circuit which has the following operations.

 The green light will always be on until the single push button is pressed.

 Upon the pressing of the push button the green light will goes off after 10 seconds, the red light will be on for 25 seconds and then goes off and the green light on again.

 The system will then be ready for the pressing of the push button again. (10 marks)

/18/19 S1 Page 2 of 10

- 5 Refer to the single line diagram in Figure Q5 below:
 - (i) Determine the corresponding tripping time for the I_n Type C MCB and the 2xI_n Type B MCB when a current of 4xI_n flows in Load A and briefly explain whether discrimination is achieved. State the tripping mechanism(s) that will operates the MCBs under this condition. (6 marks)
 - (ii) If $I_n = 20A$ determine the minimum cable size for load A and load B. Assume that ambient temperature is 30°C, no grouping and no thermal insulation. Multicore PVC insulated copper cable is to be used in surface conduit. (4 marks)

(Only Type C MCB Time/current characteristic graph is provided)

Figure Q5

- 6(a) Give a brief explanation of Direct contact, Indirect contact and Electrical Separation in the context of electrical installation. (6 marks)
- 6(b) Determine the earth fault loop impedance of the circuit in Figure Q6 (b) at the 13A switched socket outlet. (4 marks)

Figure Q6(b)

/18/19 S1 Page 3 of 10

SECTION B: [20 Marks Each]

- An office unit is supplied by three-phase 400V/230V 50 Hz supply. It has the following electrical loads:
 - 40 nos. 2 x 18W fluorescent lamps with 2x9W loss ballast pf =0.8
 - 15 nos. of 50W, 50V tungsten halogen down lights
 - **5 radial circuits** connected to 100 nos. 13A switched socket outlets, each protected by a 20A MCB (Estimated demand of each circuit is 3,000W)
 - 2 nos. storage water heaters, each rated 1.5 kW
 - 2 nos. of MULTI SPLIT air-conditioning units where the electrical load can be considered to be a three-phase motor, each rated 9.0 kW with an efficiency of 90% and a power factor of 0.85 running all the time at the same time.

Using the diversity factor given in Table 4B, draw a load list table as per sample below. (1 mark)

		D.F	
Description	Connected Load		Current Demand

Hence calculate:

- (i) the **three phase** maximum demand
- (ii) the suitable size of the main circuit breaker, assuming 10% spare capacity is allowed for future expansion

(Standard circuit breaker rating: 30A, 40A, 50A, 63A, 80A, 100A). (19 marks)

- B2(a) A 3-phase, 400V motor control centre(MCC) has an estimated power of 32kW at power factor of 0.85. The length of the cable is 40m from the main switchboard and it is to be wired in multi-core PVC insulated copper cables sharing a trunking with one other similar circuits. The ambient temperature is 39°C. Determine:
 - (i) The design current of the MCC, hence the nominal rating of a suitable Type C MCB (Standard MCB rating: 15A, 20A, 25A, 30A, 40A, 50A, 63A)
 - (ii) A suitable size of cable for the MCC.
 - (iii) The actual voltage drop and check whether the cable size selected can meet the CP5 requirement. Re-select cable size if necessary.

(11 marks)

- B2(b) A single-phase 230V, induction motor is wired in single-core 2.5mm^2 PVC insulated copper conductor and 1.5mm^2 PVC insulated copper conductor for circuit protective conductor (CPC). The circuit is protected by a 32A BS88 fuse with a thermal overload device set at 20A, the circuit length is 30 meters long. The value of Z_E is given as 0.8 O.
 - (i) Determine if the given size of CPC meets the requirement for shock protection, resize the CPC if necessary. (5 marks)
 - (ii) Calculate the actual earth fault loop impedance for the size of CPC selected and determine the earth fault current. Hence check whether the CPC selected can withstand the earth fault current. (Given k =115.) (4 marks)

" ****** End of Paper ****** "

/18/19 S1 Page 4 of 10

(Extracts from CP5 Tables pages 5 to 10)

 $Table\ 12C$ Cable factors for long straight runs or runs incorporating bends

	(Single core PVC cables)	
Type of	Conductor cross-	
Conductor	sectional area (mm2)	Factor
	1	16
	1.5	22
Solid or	2.5	30
stranded	4	43
	6	58
	10	105

	Table 12D Conduit factors for runs incorporating bends																			
						Con	auit i		ondui					nus						\neg
engtn run (m	16	20	25	32	16	20	25	32	16	20	25	32	16	20	25	32	16	20	25	32
of r			ight			One bend					ends			hree					pends	
1					188	303	543	947	177	286	514	900	158	256	463	818	130	213	388	692
1.5	(Cover	ed by	,	182	294	528	923	167	270	487	857	143	233	422	750	111	182	333	600
2		Table	12A		177	286	514	900	158	256	463	818	130	213	388	692	97	159	292	529
2.5		and	12B		171	278	500	878	150	244	442	783	120	196	358	643	86	141	260	474
3					167	270	487	857	143	233	422	750	111	182	333	600				
3.5	179	290	521	911	162	263	475	837	136	222	404	720	103	169	311	563				
4	177	286	514	900	158	256	463	818	130	213	388	692	97	159	292	529				
4.5	174	282	507	889	154	250	452	800	125	204	373	667	91	149	275	500				
5	171	278	500	878	150	244	442	783	120	196	358	643	86	141	260	474				
6	167	270	487	857	143	233	422	750	111	182	333	600								
7	162	263	475	837	136	222	404	720	103	169	311	563								
8	158	256	463	818	130	213	388	692	97	159	292	529								
9	154	250	452	800	125	204	373	667	91	149	275	500								
10	150	244	442	783	120	196	358	643	86	141	260	474								

					TAE	BLE	4C1									
Correction fa	actors for am	bient	temp	eratu	re wh	nere p	rotec	tion i	s not	asem	i-enc	losed	fuse	to BS	3036	
							Am	bient t	emper	ature	(°C)					
Type of insulation	Operating temperature	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95
Rubber (flexible cables only)	60°C	1.04	1.0	0.91	0.82	0.71	0.58	0.41	-	-	-	-	-	-	-	-
General purpose pvc	70°C	1.03	1.0	0.94	0.87	0.79	0.71	0.61	0.50	0.35	-	-	-	-	-	-
Paper	80°C	1.02	1.0	0.95	0.89	0.84	0.77	0.71	0.63	0.55	0.45	0.32		-	-	-
Rubber	85°C	1.02	1.0	0.95	0.90	0.85	0.80	0.74	0.67	0.60	0.52	0.43	0.30	-	-	-
Heat resisting pvc *	90°C	1.03	1.0	0.97	0.94	0.91	0.87	0.84	0.80	0.76	0.71	0.61	0.50	0.35	-	-
Thermosetting	90°C	1.02	1.0	0.96	0.91	0.87	0.82	0.76	0.71	0.65	0.58	0.50	0.41	0.29	-	-
Mineral	70°C sheath	1.03	1.0	0.93	0.85	0.77	0.67	0.57	0.45	0.31	-	-	-	-	-	-
	105°C sheath	1.02	1.0	0.96	0.92	0.88	0.84	0.80	0.75	0.70	0.65	0.60	0.54	0.47	0.40	0.32
NOTES:																
 Correction factors 	for flexible co	rds an	d for	85oC c	r 150c	C rub	ber-ins	sulated	d flexib	le cab	les are	e giver	in the	relev	ant tab	le
of current-carrying																
This table also ap			_													
* These factors a	re applicable o	nly to	ratings	s in co	lumns	2 to 5	of Tab	le 4D1								

/18/19 S1 Page 5 of 10

TABLE 4B1:Correction factors for groups of more than one circuit of single-core cables, or more than one multicore cable

			Correction factor (C _g)												
Reference method of install	ation				Nun	nber	of circ	cuits	or mu	ıltico	re cal	bles			
see Table 4A)		2	3	4	5	6	7	8	9	10	12	14	16	18	20
Enclosed (Method 3 or 4)	or bunched								***************************************						
and clipped direct to a non- surface (Method 1)	-metallic	0.80	0.70	0.65	0.60	0.57	0.54	0.52	0.50	0.48	0.45	0.43	0.41	0.39	0.38
Single layer clipped to a non-metallic surface	Touching	0.85	0.90	0.75	0.73	0.72	0.72	0.71	0.70	-	-	-	-	-	-
(Method 1)	Spaced*	0.94	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Single layer multicore on a perforated metal cable	Touching	0.86	0.81	0.77	0.75	0.74	0.73	0.73	0.72	0.71	0.70	-	-	-	-
tray, vertical or horizontal (Method 11)	Spaced*#	0.91	0.89	0.88	0.87	0.87	-	-	-	-	-	-	-	-	-
Single layer single-core on a perforated metal	Horizontal	0.90	0.85	-	-	-	-	-	-	-	-	-	-	-	-
cable tray, touching (Method 11)	Vertical	0.85	-	-	-	-	-	-	-	-	-	-	-	-	-
Single layer multicore touch on ladder supports (Metho	_	0.86	0.82	0.80	0.79	0.78	0.78	0.78	0.77	-	-	-	-	-	-

/18/19 S1 Page 6 of 10

/18/19 S1 Page 7 of 10

TABLE 4D2A

Multicore pvc insulated cables, non armoured (COPPER CONDUCTORS)

CURRENT-CARRYING CAPACITY (amperes)

Ambient temperature 30 $^{\rm O}$ C Conductor operating temperature 70 $^{\rm O}$ C

Conductor cross- sectional area	(enclos	e Method 4 ed in an wall, etc.)	(enclosed on a wall	Method 3 in conduit or ceiling unking)	A CONTRACTOR OF THE PARTY OF TH	e Method 1 d direct)	Reference Method 11 (on a perforated cable tray) or Reference Method 13 (free air)		
1	1 two core	1 three core	1 two core	1 three core	1 two core	1 three core	1 two core	1 three core	
	cable*,	cable* or 1	cable*,	cable* or 1	cable*	cable* or 1	cable*,	cable* or 1	
	single	single	single	four core	single	four core	single	four core	
	phase a.c	phase	phase	cable, three	phase	cable, three	phase	cable, three	
	or d.c.	a.c. or d.c.	a.c. or d.c.	phase a.c.	a.c. or d.c.	phase a.c.	a.c. or d.c.	phase a.c.	
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	
1	11	10	13	11.5	15	13.5	17	14.5	
1.5	14	13	16.5	15	19.5	17.5	22	18.5	
2.5	18.5	17.5	23	20	27	24	30	25	
4	25	23	30	27	36	32	40	34	
6	32	29	38	34	46	41	51	43	
10	43	39	52	46	63	57	70	60	
16	57	52	69	62	85	76	94	80	
25	75	68	90	80	112	96	119	101	
35	92	83	111	99	138	119	148	126	
50	110	99	133	118	168	144	180	153	
70	139	125	168	149	213	184	232	196	
95	167	150	201	179	258	223	282	238	
120	192	172	232	206	299	259	328	276	
150	219	196	258	225	344	299	379	319	
185	248	223	294	255	392	341	434	364	
240	291	261	344	297	461	403	514	430	
300	334	298	394	339	530	464	593	497	
400	<u>u</u>	(A)	470	402	634	557	715	597	

Conductor cross- sectional	Two core cable, d.c.					ree or four core cable, three phase a.c.		
area 1	2	3			4			
(mm²) 1 1.5	(mV/A/m) 44 29	(mV/A/m) 44 29				(mV/A/m) 38 25		
2.5 4 6 10 16	18 11 7.3 4.4 2.8	r	18 11 7.3 4.4 2.8 x	z	r	15 9.5 6.4 3.8 2.4 x	z	
25 35 50 70 95	1.75 1.25 0.93 0.63 0.46	1.75 1.25 0.93 0.63 0.47	0.170 0.165 0.165 0.160 0.155	1.75 1.25 0.94 0.65 0.50	1.50 1.10 0.80 0.55 0.41	0.145 0.145 0.140 0.140 0.135	1.50 1.10 0.81 0.57 0.43	
120 150 185 240 300	0.36 0.29 0.23 0.180 0.145	0.38 0.30 0.25 0.190 0.155	0.155 0.155 0.150 0.150 0.145	0.41 0.34 0.29 0.24 0.21	0.33 0.26 0.21 0.165 0.135	0.135 0.130 0.130 0.130 0.130	0.35 0.29 0.25 0.21 0.185	
400	0.105	0.115	0.145	0.185	0.100	0.125	0.160	

/18/19 S1 Page 8 of 10

TABLE 41B1 (L)

Maximum earth fault loop impedance ($Z_{\rm s}$) for fuses, for 0.4s disconnection time with $U_{\rm o}$ of 230 V (see Clause 413-02-10)

(a)	General	purpose	(gG)	fuses	to BS	88	Parts:	2 and	6	
-----	---------	---------	------	-------	-------	----	--------	-------	---	--

Rating (amperes)	6	10	16	20	25	32	40	50
Z _s (ohms)	8.51	5.10	2.70	1.77	1.43	1.04	0.82	0.60

TABLE 41D (L)

Maximum earth fault loop impedance ($Z_{\rm s}$) for 5 s disconnection time with U_o 230 V (see Clauses 413-02-13 and 413-02-14)

(a) Genera	l purpose	(gG) fu	ses to BS	88 Parts	2 and 6			
Rating (amperes)	6	10	16	20	25	32	40	50
Z_s (ohms)	13.51	7.41	4.17	2.91	2.30	1.84	1.35	1.04

Table 4B
Allowance for diversity

	Allowance	for diversity	
Purpose of final circuit		Type of premises	
fed from conductors or switchgear to which diversity applies	Individual household installations, including individual dwellings of a block	Small shops, stores, offices and business premises	Small hotels, boarding houses, guest houses, etc.
1. Lighting	66% of total current demand	90% of total current demand	75% of total current demand
Heating and power (but see 3 to 8 below)	100% f.l. of total demand up to 10A + 50% of any current demand in excess of 10A	100% f.l. of largest appliance + 75% f.l. of remaining appliances	100% f.l. of largest appliance + 80% f.l. of 2 nd largest appliance + 60% f.l. of remaining appliances
Cooking appliances	10A + 30% f.l. of connected cooking appliances in excess of 10A + 5A if socket outlet incorporated in unit	100% f.l. of largest appliances + 80% f.l. of 2 nd largest appliance + 60% f.l. of remaining appliances	100% f.l. of largest appliances + 80% f.l. of 2 nd largest appliance + 60% f.l. of remaining appliances
Motors (other than lift motors which are subject to special consideration)		100% f.l. of largest motor + 80% f.l. of 2 nd largest motor + 60% f.l. of remaining motor	100% f.l. of largest motor + 50% f.l. of remaining motor
5. Water heater (instantaneous type)	100% f.l. of largest appliance + 100% f.l. of 2 nd largest appliance + 25% f.l. of remaining appliances	100% f.l. of largest appliance + 100% f.l. of 2 nd largest appliance + 25% f.l. of remaining appliances	100% f.l. of largest appliance + 100% f.l. of 2 nd largest appliance + 25% f.l. of remaining appliances
Water heater (thermostatically controlled)		No diversity allowable	
7. Floor warming installations		(Reserved for future use)	
8.Thermal storage space heating installations		(Reserved for future use)	
Standard arrangement of final circuits (13A switched socket outlets)	100% of current demand of largest circuit + 40% of current demand of every other circuit	100% of current demand of lar demand of every other circuit	gest circuit + 50% of current
Socket outlets other than include in 9 above and stationary equipment other than those listed above	100% of current demand of largest point of utilisation + 40% of current demand of every other point of utilisation	100% of current demand of largest point of utilisation + 75% of current demand of every other point of utilisation	100% of current demand of largest point of utilisation + 75% of current demand of every point in main rooms (dining rooms, etc) + 40% of current demand of every other point of utilisation

/18/19 S1 Page 9 of 10

 $Table~17A \\ Values~of~resistance/metre~for~copper~and~aluminium~conductors\\ and~of~(R1+R2)/metre~at~20^{\circ}C~in~milliohms/metre$

	nal area (mm²)	Resistance/metre or (R ₁ + R ₂)/ metre					
Phase	Protective	Plain copper	Aluminium				
conductor	conductor	$(m\Omega/m)$					
1	-	18.10					
1	1	36.20					
1.5	-	12.10					
1.5	1	30.20					
1.5	1.5	24.20					
2.5	-	7.41					
2.5	1	25.51					
2.5	1.5	19.51					
2.5	2.5	14.82					
4	-	4.61					
4	1.5	16.71					
4	2.5	12.02					
4	4	9.22					
6	-	3.08					
6	2.5	10.49					
6	4	7.69					
6	6	6.16					
10	-	1.83					
10	4	6.44					
10	6	4.91					
10	10	3.66					
16	-	1.15	1.91				
16	6	4.23	-				
16	10	2.98	-				
16	16	2.30	3.82				
25	-	0.727	1.2				
25	10	2.557	-				
25	16	1.877	-				
25	25	1.454	2.4				
35	-	0.524	0.868				
35	16	1.674	2.778				
35	25	1.251	2.068				
35	35	1.048	1.736				

Table 17B - Multipliers to be applied to Table 17A

Insulation Material	p.v.c.	85° C Rubber	90° C Thermosetting
Multiplier	1.38	1.53	1.60
-	(1.30)	(1.42)	(1.48)
Note: The values in brackets are applicable to the resistance of circuit protective			

ote: The values in brackets are applicable to the resistance of circuit protective Conductors where Table 54B applies.

The multipliers given in Table 17B are based on the simplified formula given in BS 6360 for both copper and aluminium conductors namely that the resistance temperature coefficient is 0.004 per °C at 20°C.

/18/19 S1 Page 10 of 10