Name	Section	
	3 7 7 7 7 7 7	

Rec. Instr. _____

CALCULUS 1

Exam I February 17, 2005

Page 2	Page 3	Page 4	TOTAL
(30 pts.)	(30 pts.)	(30 pts.)	(100 pts.)
			Page 2 Page 3 Page 4 (30 pts.) (30 pts.) (30 pts.)

Below you will find 10 problems, each worth 10 points. Solve the problems in the space provided. When writing a solution to a problem, **show all work**. No books or notes are allowed.

Problem 1. Find the constants a and b, such that the function

$$f(x) = \begin{cases} x^2 - 1, & \text{if } x \le 0\\ ax + b, & \text{if } 0 < x \le 1\\ \frac{x^2 - 1}{x - 1}, & \text{if } x > 1 \end{cases}$$

is continuous on the entire real line.

Problem 2. Find the limit: $\lim_{x\to 0} \frac{\sin(2x^2)}{x^2+x}$.

Problem 3. Find the limit: $\lim_{x\to 3} \frac{\sqrt{2x+3}-3}{x^2-9}$.

Problem 4. Find the vertical asymptotes of the function $f(x) = \frac{x^2 - 3x + 2}{x^3 - x}$.

Problem 5. Describe the x-values where the function

$$f(x) = \begin{cases} -x, & \text{if } x \le 0\\ x^2, & \text{if } 0 < x < 1\\ x - 1, & \text{if } x \ge 1 \end{cases}$$

is differentiable. If there are any points where f(x) is **not** differentiable, explain why.

Problem 6. Find the derivative of the function: $f(x) = \frac{2\sqrt{x} - x}{x^2}$. (DO NOT SIMPLIFY.)

Problem 7. Find the derivative of the function: $f(x) = \sqrt[3]{x}(1 + \sin x)$. (DO NOT SIMPLIFY.)

Problem 8. Find the derivative of the function: $f(x) = \frac{\cos x}{x^2}$. (DO NOT SIMPLIFY.)

Problem 9. Find the equation of the tangent line to the graph of $y = 5\sqrt{x} + \frac{1}{\sqrt{x}}$, at the point (1,6).

Problem 10. Find the limit: $\lim_{x\to -\infty} \frac{2x-1}{\sqrt{x^2+2x+2}}$.