

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА ИУ7 «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

HA TEMY:

Свёрточные нейронные сети

Студент	ИУ7-51Б	 _ Н.А. Беляев
Руководител	ІЬ	 _ А.С. Кострицкий

СОДЕРЖАНИЕ

BI	зед	ЕНИЕ	4
1	Ана	литический раздел	Ę
	1.1	Основные понятия	٦
	1.2	Вехи развития	6
	1.3	Задача генерации признаков	7
	1.4	Некоторые архитектуры свёрточных сетей	Ć
	1.5	Сравнение перечисленных архитектур	10
3 <i>P</i>	ΑΚЛ	ЮЧЕНИЕ	11
CI	ТИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	12
ПІ	РИ.Л	ОЖЕНИЕ А	1.9

ВВЕДЕНИЕ

Человеческое внимание — ограниченный и несовершенный ресурс. Существует широкий класс задач, требующий точного обнаружения объектов в потоке входных данных. К таким задачам относится распознавание объектов на фото и видео, определение некоторых признаков в последовательности сигналов. Зачастую человек не способен справиться с подобного рода задачами с требуемой точностью. Для решения этой проблемы были разработаны методы автоматизации обнаружения объектов. Наибольшее применение в данной сфере получили свёрточные нейронные сети.

Цель работы – сравнить архитектуры свёрточных нейронных сетей. Для достижения поставленной цели необходимо решить следующие задачи:

- проанализировать предметную область;
- формализовать задачу генерации признаков;
- перечислить разновидности свёрточных нейронных сетей, сформулировать критерии сравнения;
- сравнить перечисленные разновидности сетей на основании сформулированных критериев.

1 Аналитический раздел

1.1 Основные понятия

Свёрточная нейронная сеть (*CHC*) – это вычислительная модель, предназначенная для эффективного распознавания объектов. Распознавание объекта происходит за счёт выявления присущих ему признаков. Входное данное (изображение, сигнал и т.д.), в котором необходимо определить объект, представляется в виде тензора.

Тензор — это многомерный массив чисел, характеризующийся рангом q [1]. При q=0 тензор — это скаляр $(t\in\mathbb{R})$, при q=1 — вектор $(t\in\mathbb{R}^d)$, при q=2 — матрица $(t\in\mathbb{R}^{d_1\times d_2})$ и так далее.

Веса w свёрточной сети f_w — это числовые коэффициенты, которые отвечают за распознавание признаков объектов. Установка весов происходит на этапе обучения сети на тестовой выборке.

Тестовая выборка $\{(x_i,y_i)\}_{i=1}^N$ – это набор данных где y_i – истинный ответ для входного данного x_i .

Обучение – процесс минимизации разницы между ответом сети f_w при текущих весах w и эталонным ответом из тестовой выборки. Разница описывается функцией ошибки $\mathcal{L}(f_w(x_i), y_i)$, а задача обучения формализуется согласно формуле (1.1):

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f_w(x_i), y_i). \tag{1.1}$$

Вид функции ошибки зависит от задачи.

Процесс обработки входного тензора свёрточной нейронной сетью состоит из двух этапов:

- 1) определение присущих объекту признаков;
- 2) установление факта принадлежности объекта некоторой группе на основе его признаков.

На рисунке 1.1 показана структура свёрточной нейронной сети.

Рисунок 1.1 – Структура свёрточной нейронной сети

1.2 Вехи развития

Эволюция свёрточных нейронных сетей берет свое начало в работе 1959 года нейрофизиологов Визеля Торстена и Дэвиа Хьюбела. Учёные обнаружили, что зрительная кора головного мозга содержит сложные клетки. Данный тип клеток активируется при зрительном распознавании некоторой геометрической формы вне зависимости от её положения в обозримой части пространства.

В 1980 году Кунихико Фукусима на основе открытых сложных клеток коры головного мозга построил математическую модель двухслойной системы «Neocognitron», которая могла определять объект на изображении без привязки к его положению на изображении и незначительных изменениях в форме.

В 1990 году Ян Лекун продемонстрировал то, что свёрточные сети, основанные на принципах модели «Neocogniton», способны решать широкий класс задач, связанных с распознаванием изображений. Первой значимой решённой задачей стала классификация рукописных символов.

В 2010-2013 году начало появляться аппаратное обеспечение, которое обладало достаточной для работы нейронных сетей вычислительной мощностью. Появились новые архитектуры свёрточных сетей: AlexNet~(2012),~VGG~(2014),~ResNet~(2015) и другие.

1.3 Задача генерации признаков

Генерация признаков – процесс извлечения признаков объекта из входного тензора. Процесс генерации признаков состоит в поочерёдном применении операций свёртки и выборки [2].

Свёртка

Свёртка выполняется путем применения тензора фильтра $K \in \mathbb{R}^{k_H \times k_W \times C}$ к входному тензору $X \in \mathbb{R}^{H \times W \times C}$. Веса, составляющие фильтр, устанавливаются в процессе обучения. Фильтр скользит по входному тензору с заданным шагом. На каждом шаге вычисляется скалярное произведение значений фильтра и соответствующих элементов входного тензора согласно формуле (1.2):

$$Y_{i,j,d} = \sum_{c=1}^{C} \sum_{u=1}^{k_H} \sum_{v=1}^{k_W} X_{i+u-1,j+v-1,c} \cdot K_{u,v,c,d},$$
(1.2)

где $Y \in \mathbb{R}^{H' \times W' \times D}$ — выходной тензор. Каждый фильтр извлекает один признак, представленный на выходе. Рисунок 1.2 демонстрирует пример вычисления выходного тензора.

Рисунок 1.2 – Пример вычисления выходного фильтра

Расчёт значения для текущего фрагмента приведён в выражении (1.3):

$$x = 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 = 4.$$
 (1.3)

Ключевое свойство свёртки – обнаружение признаков без привязки к их положению в тензоре.

Выборка

Задача выборки – понизить размерность тензора, полученного после выполнения свёртки. Данная операция позволяет оставить для последующей обработки только наиболее значимые признаки. Пренебрежение выборкой может привести к переобучению – ситуации, когда признаков становится слишком много, и ошибка в ходе последующей классификации увеличивается.

Критерий выборки зависит от реализации сети, наиболее широко применяется выборка максимума и выборка среднего.

Выборка максимума происходит на основе формулы (1.4):

$$Y_{i,j,d} = \max_{(u,v)\in P} X_{i+u-1,j+v-1,d}.$$
(1.4)

Выборка среднего происходит на основе формулы (1.5):

$$Y_{i,j,d} = \frac{1}{|P|} \sum_{(u,v)\in P} X_{i+u-1,j+v-1,d}.$$
 (1.5)

 $P = k_H \times k_W$ – количество элементов в фильтре.

Количество слоёв свёртки и выборки, размеры и количество фильтров, а также критерий для выборки зависят от реализации конкретной СНС.

1.4 Некоторые архитектуры свёрточных сетей LeNet

Архитектура LeNet (1998) стала первой реализованной свёрточной нейронной сетью, показавшей выдающиеся результаты в классификации изображений. Обучение и тестирование на наборе данных MNIST, содержащем 60.000 изображений рукописных цифр, показало ошибку предсказания порядка 0.95 %. Данная сеть содержала два слоя свёртки и выборки. В ходе выборки применялась выборка среднего. Архитектура LeNet заложила базовые принципы построения свёрточных сетей, на которых были основаны поздние модели [lenet].

AlexNet

Архитектура AlexNet (2012) совершила прорыв в области машинного обучения за счёт возможности обработки объемных входных данных. Архитектура основана на использовании 96 фильтров размера 5×5 и 11×11 и выборке максимума на этапе выборки. Использование больших фильтров позволяет определять объемные признаки, за счёт получения большей информации от соседних значений тензора. В данной архитектуре используется пять слоёв свёртки и применяются методы для нейтрализации переобучения [3].

VGG-16

Архитектура VGG (2014) выступает антагонистом AlexNet в вопросе количества слоёв свёртки и размера фильтров. VGG использует 16 слоёв свёртки и фильтры размером 3×3 . Очередной слой свёртки содержит информацию о предыдущих, а информация из первого слоя уточняется с ростом числа слоёв. Данный факт позволил ещё сильнее повысить точность предсказаний, однако потребовал большее количество вычислительных мощностей [4].

ResNet-50

На сегодняшний день ResNet (2015) является наиболее совершенной свёрточной нейронной сетью. Впервые именно данная сеть смогла превзойти человека в способности распознавать изображения. Данная сеть имеет 50 слоёв свёртки и порядка 25 миллионов весов. Стоит отметить, что прогресс в

области разработки нейронных сетей идёт в ногу с развитием аппаратного обеспечения. Существование приложений для таких моделей обусловлено возможностью аппаратной поддержки в виде графических процессоров GPU, которые оптимизированы для выполнения матричных операций [5].

1.5 Сравнение перечисленных архитектур

Сравнение перечисленных архитектур будет проведено на основе следующих критериев:

- средний процент ошибки из пяти лучших результатов;
- число весов;
- число операций умножения и сложения MAC;
- количество слоёв свёртки.

В таблице 1.1 приведена сравнительная таблица описанных методов [6]:

Таблица 1.1 – Сравнение рассмотренных архитектур

Архитектура	Ошибка	Количество весов, млн.	MAC, млн.	Количество слоёв свёртки, шт.
LeNet	23.4%	0.431	2.3	2
AlexNet	15.3%	61	724	5
VGG-16	7.3%	138	15500	16
ResNet-50	3.6%	25.5	3900	50

ЗАКЛЮЧЕНИЕ

В ходе выполнения научно-исследовательской работы были выполнены задачи:

- предметная область проанализирована;
- задача генерации признаков формализована;
- перечислены некоторые разновидности СНС, сформулированы критерии сравнения;
- перечисленные методы CHC сравнены по сформулированным критериям.

Цель работы достигнута: проведено сравнение разоичных архитектур свёрточных нейронных сетей.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Шарипов Р. Введение в тензорный анализ. БХВ, 2004.
- 2. Katiyar S. Comparative evaluation of CNN architectures for image caption generation // IJACSA. 2020.
- 3. Alex Krizhevsky I. S. ImageNet classification with deep convolutional neural networks // University of Toronto. 2012.
- 4. Karen Simonyan A. Z. Very deep convolutional networks for large-scale image recognition // ICLR. 2015.
- 5. Kaimig He Xiangyu Zhang S. R. Deep residual learngin for image recognition // Microsoft research. 2015.
- 6. Patel S. A comperhensive analysis of convolutional neural network models // Charotar University of Science and Technology. 2020.

приложение а

Презентация к научно-исследовательской работе состоит из 3 слайдов.