# **MAPPO**

The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games

#### Index

- Introduction
- Agent Setting
- Experiment setup
- Experiment Result
- Factors influential to PPO's performance
  - Value Normalization
  - Input Representation to Value Function
  - Empirical Analysis
  - Training Data Usage
  - PPO Clipping
  - PPO Batch Size
- Conclusion

#### Introduction

- The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games, 2021 BAIR 쪽 arXiv 등록 논문, 인용수 129
- MARL 환경에서 큰 성공(Alpha Star, OpenAl Five) 등이 대규모 리소스를 바탕으로 on-policy 알고리즘 활용
- Academic Level 에서는 대규모 리소스를 활용할 수 없기 때문에 sample efficient 를 위해 off-policy 알고리즘 위주 연구 진행
- 본 논문에서 MARL 에 PPO 가 효과적인 성능을 발휘할 수 있는 factor 들과 실험결과 제시

※ 주의 : MARL 을 위한 PPO 알고리즘의 변형 혹은 개선이 아닌 MARL 환경에서 잘 동작하기 위한 Tuning 요소와 실험결과 제시

# **Agent Setting**

• Decentralized-POMDP 가정

$$\langle \mathcal{S}, \mathcal{A}, O, R, P, n, \gamma \rangle$$
.

- O: global state s에 대한 I 번째 agent 의 local observation O (s, i)
- P: trasition (s' | s, a)
- R : shared reward function R (s, a)
- PPO 구조를 거의 그대로 활용하고 Value Function 만 Centralized value function 활용하는 형태 (CTDE)

#### **Experiment setup**

• On-policy: MAPPO (Multi-Agent PPO), IPPO(Independent PPO)

off-policy: MADDPG, QMix, RODE, QPlex, SAD 간 비교

• RL env : MPE, SMAC, Hanabi, GRF 활용





• Hardware: 64-core CPU, 128 RAM for experiments, RTX 3090 GPU 1EA for training

• MPE Result



Figure 1: Performance of different algorithms in the MPEs.

- MAPPO, IPPO, MADDPG, QMix 결과 비교
- MPE 에서는 global state 를 제공하지 않기 때문에 local observation 을 concat 하여 활용
- 10개 이상 seed 실험 결과 비교
- MAPPO 결과가 MADDPG, QMix 와 비슷하거나 상회하고 IPPO 보다 조금 더 일찍 수렴

• SMAC Result

| Map              | MAPPO(FP)          | MAPPO(AS)          | IPPO               | QMix               | RODE*                    | MAPPO*(FP)                 | MAPPO*(AS)                   |
|------------------|--------------------|--------------------|--------------------|--------------------|--------------------------|----------------------------|------------------------------|
| 2m vs_1z         | <b>100.0</b> (0.0) | 100.0(0.0)         | <b>100.0</b> (0.0) | <b>95.3</b> (5.2)  | /                        | <i>100.0</i> (0.0)         | <i>100.0</i> (0.0)           |
| 3m               | <b>100.0</b> (0.0) | <b>100.0</b> (1.5) | <b>100.0</b> (0.0) | 96.9(1.3)          | /                        | <i>100.0</i> (0.0)         | <i>100.0</i> (1.5)           |
| 2svs1sc          | <b>100.0</b> (0.0) | <b>100.0</b> (0.0) | <b>100.0</b> (1.5) | 96.9(2.9)          | 100.0(0.0)               | <i>100.0</i> (0.0)         | <i>100.0</i> (0.0)           |
| 2s3z             | <b>100.0</b> (0.7) | <b>100.0</b> (1.5) | <b>100.0</b> (0.0) | 95.3(2.5)          | 100.0(0.0)               | <b>96.9</b> (1.5)          | 96.9(1.5)                    |
| 3svs3z           | <b>100.0</b> (0.0) | <b>100.0</b> (0.0) | <b>100.0</b> (0.0) | <b>96.9</b> (12.5) |                          | <i>100.0</i> (0.0)         | <i>100.0</i> (0.0)           |
| 3svs4z           | <b>100.0</b> (1.3) | <b>98.4</b> (1.6)  | <b>99.2</b> (1.5)  | <b>97.7</b> (1.7)  | /                        | <i>100.0</i> (2.1)         | <i>100.0</i> (1.5)           |
| so many baneling | <b>100.0</b> (0.0) | <b>100.0</b> (0.7) | <b>100.0</b> (1.5) | 96.9(2.3)          | /                        | 100.0(1.5)                 | 96.9(1.5)                    |
| 8m               | <b>100.0</b> (0.0) | <b>100.0</b> (0.0) | <b>100.0</b> (0.7) | 97.7(1.9)          | 1                        | 100.0(0.0)                 | <i>100.0</i> (0.0)           |
| MMM              | <b>96.9</b> (0.6)  | 93.8(1.5)          | <b>96.9</b> (0.0)  | <b>95.3</b> (2.5)  | /                        | 93.8(2.6)                  | <i>96.9</i> <sub>(1.5)</sub> |
| 1c3s5z           | <b>100.0</b> (0.0) | 96.9(2.6)          | <b>100.0</b> (0.0) | 96.1(1.7)          | 100.0(0.0)               | 100.0(0.0)                 | $\overline{96.9}_{(2.6)}$    |
| bane vs bane     | <b>100.0</b> (0.0) | <b>100.0</b> (0.0) | <b>100.0</b> (0.0) | <b>100.0</b> (0.0) | 100.0(46.4)              | 100.0(0.0)                 | <i>100.0</i> (0.0)           |
| 3svs5z           | <b>100.0</b> (0.6) | <b>99.2</b> (1.4)  | <b>100.0</b> (0.0) | <b>98.4</b> (2.4)  | 78.9(4.2)                | 98.4 <sub>(5.5)</sub>      | $\overline{100.0}_{(1.2)}$   |
| 2cvs64zg         | <b>100.0</b> (0.0) | <b>100.0</b> (0.0) | 98.4(1.3)          | 92.2(4.0)          | 100.0(0.0)               | 96.9 <sub>(3.1)</sub>      | 95.3(3.5)                    |
| 8mvs9m           | <b>96.9</b> (0.6)  | <b>96.9</b> (0.6)  | <b>96.9</b> (0.7)  | 92.2(2.0)          | 1                        | <b>84.4</b> (5.1)          | <i>87.5</i> (2.1)            |
| 25m              | <b>100.0</b> (1.5) | <b>100.0</b> (4.0) | <b>100.0</b> (0.0) | 85.9(7.1)          | /                        | 96.9 <sub>(3.1)</sub>      | $\overline{93.8}_{(2.9)}$    |
| 5mvs6m           | <b>89.1</b> (2.5)  | <b>88.3</b> (1.2)  | <b>87.5</b> (2.3)  | 75.8(3.7)          | <i>71.1</i> (9.2)        | 65.6(14.1)                 | 68.8(8.2)                    |
| 3s5z             | <b>96.9</b> (0.7)  | <b>96.9</b> (1.9)  | <b>96.9</b> (1.5)  | 88.3(2.9)          | 93.8 <sub>(2.0)</sub>    | $\overline{71.9}_{(11.8)}$ | 53.1(15.4)                   |
| 10mvs11m         | <b>96.9</b> (4.8)  | <b>96.9</b> (1.2)  | <b>93.0</b> (7.4)  | <b>95.3</b> (1.0)  | 95.3 <sub>(2.2)</sub>    | 81.2(8.3)                  | <i>89.1</i> (5.5)            |
| MMM2             | <b>90.6</b> (2.8)  | <b>87.5</b> (5.1)  | <b>86.7</b> (7.3)  | <b>87.5</b> (2.6)  | 89.8(6.7)                | 51.6(21.9)                 | 28.1(29.6)                   |
| 3s5zvs3s6z       | <b>84.4</b> (34.0) | 63.3(19.2)         | <b>82.8</b> (19.1) | <b>82.8</b> (5.3)  | 96.8(25.11)              | <i>75.0</i> (36.3)         | 18.8(37.4)                   |
| 27mvs30m         | <b>93.8</b> (2.4)  | <b>85.9</b> (3.8)  | 69.5(11.8)         | 39.1(9.8)          | <b>96.8</b> (1.5)        | 93.8 <sub>(3.8)</sub>      | <b>89.1</b> (6.5)            |
| 6hvs8z           | <b>88.3</b> (3.7)  | <b>85.9</b> (30.9) | <b>84.4</b> (33.3) | 9.4(2.0)           | 78.1(37.0)               | $\overline{78.1}_{(5.6)}$  | <u>81.2</u> (31.8)           |
| corridor         | <b>100.0</b> (1.2) | <b>98.4</b> (0.8)  | <b>98.4</b> (3.1)  | 84.4(2.5)          | $\overline{65.6}$ (32.1) | 93.8(3.5)                  | <u>93.8</u> (2.8)            |

- MAPPO(FP), MAPPO(AS), IPPO, RODE, QMix win rate median 값 비교
- FP 는 Feature Pruned input, AS 는 Agent-specific centralized input
- 같은 training sample 을 사용한 RODE(\*표시) 와 비교 했을 때 비슷하거나 상회

Hanabi Result

| # Players | Metric       | MAPPO                                   | IPPO                                               | SAD                                                | VDN                        |
|-----------|--------------|-----------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|
| 2         | Avg.<br>Best | 23.89(0.02)<br>24.23(0.01)              | <b>24.00</b> (0.02) 24.19(0.02)                    | 23.87 <sub>(0.03)</sub><br>24.01 <sub>(0.01)</sub> | 23.83(0.03)<br>23.96(0.01) |
| 3         | Avg.<br>Best | <b>23.77</b> (0.20) <b>24.01</b> (0.01) | 23.25(0.33)<br>23.87(0.03)                         | 23.69(0.05)<br>23.93(0.01)                         | 23.71(0.06)<br>23.99(0.01) |
| 4         | Avg.<br>Best | <b>23.57</b> (0.13) 23.71(0.01)         | 22.52(0.37)<br>23.06(0.03)                         | 23.27(0.26)<br>23.81(0.01)                         | 23.03(0.15)<br>23.79(0.00) |
| 5         | Avg.<br>Best | <b>23.04</b> (0.10) <b>23.16</b> (0.01) | 20.75 <sub>(0.56)</sub><br>22.54 <sub>(0.02)</sub> | 22.06(0.23)<br>23.01(0.01)                         | 21.28(0.12)<br>21.80(0.01) |

Table 2: Best and Average evaluation scores of MAPPO, IPPO, SAD, and VDN on Hanabi-Full. Results are reported over at-least 3 seeds.

- MAPPO, IPPO, SAD, VDN 간 최소 3 seed, 10B 정도 step 학습 결과 비교
- Hanabi 에서 좋은 성능을 보인다는 것은 다른 player 의 action 으로 부터 intent 를 잘 파악한다는 의미
- Player 가 늘어날 수록 IPPO 보다 MAPPO 가 좋은 성능을 보임

• GRF Result

| Scen.    | MAPPO               | QMix        | CDS                 | TiKick      |
|----------|---------------------|-------------|---------------------|-------------|
| 3v.1     | <b>88.03</b> (1.06) | 8.12(2.83)  | 76.60(3.27)         | 76.88(3.15) |
| CA(easy) | <b>87.76</b> (1.34) | 15.98(2.85) | 63.28(4.89)         | /           |
| CA(hard) | <b>77.38</b> (4.81) | 3.22(1.60)  | 58.35(5.56)         | 73.09(2.08) |
| Corner   | <b>65.53</b> (2.19) | 16.10(3.00) | 3.80(0.54)          | 33.00(3.01) |
| PS       | <b>94.92</b> (0.68) | 8.05(3.66)  | <b>94.15</b> (2.54) | /           |
| RPS      | <b>76.83</b> (1.81) | 8.08(4.71)  | 62.38(4.56)         | 79.12(2.06) |

Table 3: Average evaluation success rate and standard deviation (over six seeds) on GRF scenarios for different methods. All values within 1 standard deviation of the maximum success rate are marked in bold. We separate TiKick from the other methods as it uses pretrained models and thus does not constitute a direct comparison.

- MAPPO(IPPO), QMix, CDS, Tikick 간 25M ~ 50M 학습 결과 비교
- 거의 모든 task 에서 MAPPO 가 우세

- Value Normalization
  - 학습 환경에 따라 실제 받는 reward 편차가 클 수 있기 때문에 Value Normalization 진행 (0 to 1)
  - 실제로 MPE Spread 환경은 리워드 range 가 -200 ~ 0 으로 Value Normalization 효과가 좋았음



Figure 2: Impact of value normalization on MAPPO's performance in SMAC and MPE.

- Input Representation to Value Function
  - 전형적으로 2가지 유형의 Global State 를 CTDE 구조의 Value Function input 으로 활용
    - Concatenation of local observation(CL) : local agent observation 을 concat, unobserved 정보 생략 가능성 존재
    - Environment Provided global state(EP):
      environment 에서 주어지는 global state, 중요한 agent specific 정보 생략 가능성 존재
  - CL 과 EP 약점을 극복하기 위해 EP + agent specific info 인 Agent-Specific Global State(AS) 에 불필요한 정보 중복을 제거한 Featured-Pruned Agent-Specific Global State(FP) 활용



Figure 3: Different value function inputs with example features contained in each state (SMAC-specific). *IND* refers to using decentralized inputs (agents' local observations), *EP* refers to the environment provided global state, *AS* is an agent-specific global state which concatenates *EP* and *IND*, and *FP* is an agent-specific global state which prunes overlapping features from *AS*. *EP* omits important local data such as agent ID and available actions.



Figure 4: Effect of different value function input representations (described in Fig. 3).

- Training Data Usage
  - 일반적으로 Single-agent continuous control domain 에서 10 epoch 동안 sample data 를 32~ 64 minibatch 로 쪼개서 사용
  - Multi-agent domain 에서 sample data 를 자주 재사용하면 오히려 성능이 떨어지는 것을 확인

• Easy task 의 경우 15 epoch, difficult task 의 경우 5 ~ 10 epoch 및 최대 2 mini-batch 로 쪼개는 것이 적절 MMM2 10m vs. 11m corridor 5m vs. 6m 3s5z vs. 3s6z



Figure 5: Effect of epoch and mini-batch number on MAPPO's performance in SMAC.



(a) effect of different training epochs.

(b) effect of different mini-batch numbers.

Figure 6: Effect of epoch and mini-batch number on MAPPO's performance in MPE.

- PPO Clipping
  - PPO 에서는 Training iter 마다 너무 큰 policy, value 변화를 방지하기 위해 clipping 사용
  - Multi-agent 에서도 마찬가지로 모든 agent 에 대해 policy, value 변화가 불안정하게 변하는 것을 막기 위해 작은 값의 E 사용 (under 0.2)



Figure 7: Effect of different clipping strengths on MAPPO's performance in SMAC.

- PPO Batch Size
  - On-policy 의 경우 batch size 가 크면 gradient 를 더 정확하게 계산이 가능하지만 많은 리소스 필요
  - Sample-efficiency 를 잘 고려하여 큰 batch-size 활용



Figure 8: Effect of batch size on MAPPO's performance in SMAC and GRF. Red bars show the final win-rates. The blue bars show the number of environment steps required to achieve a strong win-rate (80% or 90% in SMAC and 60% in GRF) as a measure of sample efficiency. "NaN" means such a win-rate was never reached. The x-axis specifies the batch-size as a multiple of the batch-size used in our main results. A sufficiently large batch-size is required to achieve the best final performance/sample efficiency; further increasing the batch size may hurt sample efficiency.

#### Conclusion

- MAPPO 라는 단어에 무색하게 기존 PPO 대비 극적으로 새로운 점을 발견하지 못함
- Discrete action, All cooperative env, homogeneous agents 등 제한적 환경
- Tuning Factor 역시 조금은 일반적인 요소들을 언급

#### 하지만...

- 학습 시 오히려 간과하기 쉬운 일반적인 요소를 명시적으로 제시
- 이론적으로 설명하기 어려운 체득의 결과를 무수히 많은 실험을 통해 공유