P525/2 CHEMISTRY Paper 2 July/August 2024 2¹/₂ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

CHEMISTRY

(Principal Subject)

Paper 2

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES;

- Answer five questions including three questions from section A and any two
 questions from section B.
- Write the answers in the answer booklet/sheets provided.
- Begin each question on a fresh page.
- Mathematical tables and graph papers are provided.
- Non programmable, silent scientific electronic calculators may be used.
- Illustrate your answers with equations where applicable.
- Where necessary use (C = 12, O = 16, H = 1, N = 14, Br = 80, Cl = 35.5, Sr. 87.6 Cr = 52, IF = 96500C)
- 1 mole of a gas at room temperature occupies 24 dm³.

Turn Over

SECTION A

Attempt only three questions from this section.

Any additional question answered will not be marked.

1.	(a) An organic compound W contains 70.59% by mass carbon, 5.88% by mass and the rest being oxygen. The vapour density of W is 68.04 gcm ⁻³ at room							
		temperature.						
		(i) Calculate the empirical formula of W	(03marks)					
		(ii) Determine the molecular formula of W.	(02marks)					
	(b)	When W was refluxed with dilute sodium hydroxide followed by acidificat	ion it					
	(0)	yielded compound X , C_6H_6O and compound Y , $C_2H_4O_2$. Both X and Y liberate						
		hydrogen gas when reacted with sodium metal. Y liberated carbon dioxide	when					
		treated with sodium carbonate while X did not. When X was completely hydrogenated						
		in presence of nickel catalyst at 200 °C, compound Z, C ₆ H ₁₂ O was formed						
		(i) Identify W, X, Y and Z	(02marks)					
		(ii) Write equation and suggest a mechanism for the reaction to show ho	w					
		W can be prepared in the laboratory.	(04marks)					
	(c)	Write the mechanism for the reaction between;						
	(0)	(i) X and 1-bromopropane in presence of sodium hydroxide solution.	(2½marks)					
		(ii) Z and hot concentrated orthophosphoric acid.	(3½marks)					
	(d)	Name a reagent that can be used to distinguish between X and Z and state	(2.1.2)					
	(u)	what would be observed when each compound was treated with the reagent	.(03marks)					
2.	(a)	Define the following terms:						
	(a)	(i) solubility product						
		(ii) common ion effect	(02marks)					
	(b)	Describe an experiment to determine the solubility product of strontium	(0233333)					
	(0)	chromate by titrimetric method.	(06marks)					
	(c)	The solubility product of strontium chromate at 25 °C is 3.6x10 ⁻⁵ mol ² dm ⁻⁶ .	(001111111)					
	(0)	Calculate the solubility of strontium chromate in grams per dm ³ ;						
		(i) in pure water	(02 marks)					
		(ii) in 0.15M sodium chromate solution.	(02 marks)					
	(d)	(i) Define the term molar conductivity	(01 mark)					
	(u)	(ii) The molar conductivities at infinite dilution of silver ions and phospi						
		ions at 25 °C are 61.9 and 240 Ω^{-1} cm ² mol ⁻¹ respectively. The electro						
		conductivity of a saturated solution of silver phosphate is	lytic					
		2.7336 x10 ⁻⁶ Ω^{-1} cm ⁻¹ and that of pure water is 1.5916 x10 ⁻⁶ Ω^{-1} cm ⁻¹ .						
		Calculate the solubility product of silver phosphate at 25 °C and state	2					
		its units.	(4½marks)					
	(-)		(01mark)					
	(e)	State two applications of common ion effect.	(Offilark)					
3.		mium, manganese, copper and zinc are d – block elements in the Periodic Tal						
	(a)	(i) What is meant by the term d- block element ?	(01mark)					
		(ii) Write the electronic configuration of the elements.						
		(Atomic numbers of chromium, manganese, copper and zinc are	(02 1)					
		24, 25, 29 and 30 respectively).	(02marks)					
	(b)	Zinc is a d- block element but it is not a typical transition element.						
		State two properties in which zinc shows;						
		(i) similarity to the rest of d- block elements	(01mark)					
		(ii) differences from the rest of the d- block elements.	(01mark)					
		© WAKISSHA Joint Mock Examinations 2024	2					

- (c) Explain the following observations,
 - (i) when zinc metal was added to copper (II) sulphate solution, the blue solution turns colourless and reddish brown solid formed. (03marks)
 - (ii) when few drops of concentrated sodium carbonate solution were added to aqueous chromium (III) sulphate solution, grey green precipitate was formed and bubbles of a colourless gas were produced. (04marks)
 - (iii) When a mixture of hydrogen peroxide and hexahydroxo chromate(III) ions was warmed, the green solution turns to yellow. (03marks)
- (d) State what would be observed and write equation for the reaction when;
 - (i) barium chloride solution was added to potassium chromate solution. (02marks)
 - (ii) dilute sulphuric acid was added to potassium manganate(VI) solution. (03marks)
- 4. (a) What is meant by the term weak base?

(01mark)

- (b) The base ionisation constant, K_b for dimethylamine, (CH₃)₂NH is 5.9 x 10⁻⁴ moldm⁻³ at 25⁰C and K_w for water is 1.0 x 10⁻¹⁴ mol²dm⁻⁶, at the same temperature
 - (i) Calculate the degree of ionisation of 0.025M dimethyl amine at 25 °C. (03marks)
 - (ii) Determine the pH of the solution in (b)(i) above.

(02marks)

- (c) $500 \text{ cm}^3 \text{ of } 0.1 \text{M}$ dimethylammonium chloride $(\text{CH}_3)_2 N^+ H_2 C l^-$ was added to $500 \text{ cm}^3 \text{ of solution in (b) above.}$
 - (i) Calculate the pH of the resultant mixture.

(04marks)

(ii) Comment on the pH values in (b)(ii) and (c)(i).

(04marks)

- (d) (i) Sketch a graph of pH against volume of hydrochloric acid when 50 cm³ of 0.025M dimethyl amine was titrated with 0.1M hydrochloric acid. (02marks)
 - (ii) Explain the shape of the graph in (d)(i) above.

(04marks)

SECTION B (40marks)

Answer any two questions from this section

5. Using equations only show how the following conversions can be effected.

(a)
$$C = N - OH$$
 from benzoic acid. (05marks)

(b) 2,2- dichloropropane from propan- 1- ol.

(05marks)

(c) cyclohexanone from benzene.

(05marks)

(d) 2,2-diphenylpropane-1,3- dioic acid from benzoyl chloride.

(05marks)

6. (a) What is meant by the term standard enthalpy of displacement?

(01mark)

(b) The table shows the results of an investigation of the reaction of copper(II) sulphate solution with two divalent metals X and Y.

Time (minutes)	0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
Temperature of mixture of X and 50 cm ³ of 0.5M CuSO ₄ (°C)	26.5	38.0	42.5	43.0	44.0	43.0	42.0	41.0
Temperature of mixture of Y and 50 cm ³ of 0.5M CuSO ₄ (°C)	26.5	29.0	35.0	36.0	37.0	38.0	38.0	38.0

Turn Over

	(i)	On the same axes plot graphs of temperature against time for the two						
		separate mixtures.	(04marks)					
	(ii)	From the graphs determine the maximum temperature attained by each	h mixture. (02marks)					
	Z1115	Galantan at a seal and a fall and a second motal	,					
	(iii)	Calculate the molar heat of displacement for each metal.	(04marks)					
	(iv)	Write equation for the reaction in each mixture.	(02marks)					
	(v)	What does 26.5 °C in the table represent?	(0½mark)					
- 10	(vi)	Which of the metals is more reactive? Give a reason for your answer.	(02marks)					
(d)		late the Gibbs free energy for the cell formed between each metal and						
		r(II) sulphate solution. Given that the standard reduction potentials	(41/1>					
	for the	chalf cells are; X is -0.76 V , Y is -0.44 V and copper is +0.34 V .	(4½marks)					
Donale	in the f	allawing absorptions						
		ollowing observations ne has two isotopes of mass numbers 35 and 37. However the mass						
(a)		•						
	spectru	um of chlorine gas consists of three peaks at $\frac{m}{e}$ of 70, 72 and 74	(03marks)					
(b)	Benzei	ne is inert towards bromine water whereas phenol readily reacts with	t.					
		-	(03marks)					
(c)	When	sodium hydroxide solution was added to lead(II) nitrate solution, a wl	nite					
	1	itate was formed which dissolved to form a colourless solution.	(05marks)					
(d)	•	a value of chloroethanoic acid is 1.4 x 10 ⁻³ moldm ⁻³ whereas that of						
(-)		ic acid is 1.74 x10 ⁻⁵ moldm ⁻³ at 25 °C.	(04marks)					
(e)		aqueous bromine was added to sodium thiosulphate solution,	(**************************************					
(0)		a sulphate was formed, however when aqueous iodine solution was						
		odium tetrathionate was formed.	(05marks)					
	uscu, s	outum tentimonate was formed.	(osmario)					
Sideri	te ore is	one of the ores from which iron is extracted. It is roasted in air before	e it is fed					
into th	ne blast	furnace.						
(a)	Explain	n why siderite has to be roasted. Write equation for the reaction if any	that					
	takes p	lace.	(03marks)					
(b)	Name	two major impurities in this ore and describe briefly how they are ren	noved.					
	Write equation(s) for the reactions leading to the removal of the impurities. (4½marks)							
(c)		s one of the raw materials for the extraction of iron. It is allowed to re						
,	with hot air. The reaction liberates a lot of heat and this makes the temperature							
		furnace to reach 170 °C.						
		Briefly explain how this temperature is maintained in the blast furnac	e.					
	(-)		(02marks)					
	(ii)	Write equations leading to the formation of iron from the roasted ore						
(d)		name is given to the iron from the blast furnace and state why it has li						
(u)	vv nat 1	iame is given to the from from the blast furnace and state why it has it	(01mark)					
(a)	Diegue	s the reaction of iron with:	(Olliark)					
(e)		s the reaction of iron with;						
	(i)	dry oxygen						

(e)

(ii)

(iii)

sulphuric acid

dry chlorine

7.

8.

(05marks)

4