DIT Department de Ingenieria e Investigaciones Tecnológicas

Cuerpo rígido | Tensores de inercia

1. Péndulo de torsión desbalanceado

El sistema que se muestra en la ilustración para t=0 presenta pesos en los extremos de dos brazos. La barra dispuesta verticalmente se mantiene en tal dirección con rulemanes que posibilitan que el eje rote sin fricción con velocidad angular Ω constante respecto el marco inercial O_{xyz} . Para este análisis la masa de brazos y ejes es despreciable frente a la de los pesos m. Calcule:

- a) tensor de inercia respecto a A en función del tiempo $\overline{\overline{I}}_A(t)$
- b) momento angular $\vec{L}_A(t) = \overline{\bar{I}}_A(t)\vec{\Omega}$ y torque $\vec{\tau}(t) = \dot{\vec{L}}(t)$.

Resultados:

$$\begin{split} \overline{\overline{I}}_A = \begin{bmatrix} \ell^2 m \left(-\cos^2\left(\phi\right)\cos^2\left(\Omega t\right) - \cos^2\left(\Omega t\right) + 2 \right) & -\ell^2 m \left(\cos^2\left(\phi\right) + 1\right)\sin\left(\Omega t\right)\cos\left(\Omega t\right) & \frac{\ell^2 m (\sin\left(\Omega t - 2\phi\right) - \sin\left(\Omega t + 2\phi\right))}{4} \\ -\ell^2 m \left(\cos^2\left(\phi\right) + 1\right)\sin\left(\Omega t\right)\cos\left(\Omega t\right) & \ell^2 m \left(\sin^2\left(\phi\right)\sin^2\left(\Omega t\right) - 2\sin^2\left(\Omega t\right) + 2\right) & -\frac{\ell^2 m (\cos\left(\Omega t - 2\phi\right) - \cos\left(\Omega t + 2\phi\right))}{4} \\ \ell^2 m \left(\cos^2\left(\phi\right) + 1\right) & -\frac{\ell^2 m (\cos\left(\Omega t - 2\phi\right) - \cos\left(\Omega t + 2\phi\right))}{4} & \ell^2 m \left(\cos^2\left(\phi\right) + 1\right) \end{bmatrix} \end{split}$$

$$\vec{L}_A = \begin{bmatrix} \frac{\Omega \ell^2 m (\sin\left(\Omega t - 2\phi\right) - \sin\left(\Omega t + 2\phi\right))}{4} \\ -\frac{\Omega \ell^2 m (\cos\left(\Omega t - 2\phi\right) - \cos\left(\Omega t + 2\phi\right))}{4} \\ \Omega \ell^2 m \left(\cos^2\left(\phi\right) + 1\right) \end{bmatrix} \\ \vec{\tau}_A = \begin{bmatrix} \frac{\Omega^2 \ell^2 m (\cos\left(\Omega t - 2\phi\right) - \cos\left(\Omega t + 2\phi\right))}{4} \\ \frac{\Omega^2 \ell^2 m (\sin\left(\Omega t - 2\phi\right) - \sin\left(\Omega t + 2\phi\right))}{4} \\ 0 \end{bmatrix} \end{split}$$

2. Molécula de agua

Calcule los momentos de inercia en el SI para una molécula de $\rm H_2O$. En CNPT se abre con un ángulo de $104,5^{\circ}$ y median $95,84\,\mathrm{pm}$ entre O y H. Resultado:

