WIEDERHOLUNG

ER-MODELLE

AUFGABE

ERSTELLEN SIE EIN ER-MODELL AUS FOLGENDEN RELATIONEN

- > *Id SIND DIE PRIMÄRSCHLÜSSEL JEDER RELATION.
- VIRD *Id IN EINER ANDEREN RELATION BENUTZT, HEIßT DAS, DASS HIER EINE FREMDSCHLÜSSELBEZIEHUNG VORLIEGT.

```
Haus = {Strasse, Hausnummer, Stockwerk, HausId}
Stock = {StockId, Name, Etage, HausID}
Zimmer = {Name, StockId, ZimmerId, Fensteranzahl}
Flur = {FlurId, StockId, Name}
Zimmer_Flur = {ZimmerId, FlurId}
```

TRIGGER

```
CREATE [OR REPLACE] TRIGGER [user.]triggername
{BEFORE | AFTER| INSTEAD OF}
{INSERT | UPDATE [OF column [, column] ... ] | DELETE}
[OR {INSERT | UPDATE [OF column [, column] ... ] | DELETE} ]
ON [user. ] {TABLE | VIEW}
[FOR EACH {ROW | STATEMENT}]
[WHEN Bedingung]
Anweisungsblock
```

```
CREATE OR REPLACE TRIGGER personal_gehalt
BEFORE UPDATE ON personal
FOR EACH ROW
DECLARE
  neuer_betrag number;
BEGIN
  SELECT betrag
  into neuer_betrag
  FROM gehalt
  WHERE geh_stufe=:NEW.geh_stufe;
  :NEW.geh_betrag := neuer_betrag;
END;
```

AUFGABEN

- 1. DER TRIGGER SOLL ALLE ANDERUNGEN AN PERSONEN, DIE DEN NACHNAMEN ÄNDERN, ABBRECHEN.
- 2. DER TRIGGER SOLL EINE ERHÖHUNG UM MEHR ALS 10% AN DEN BETRÄGEN DER TABELLE GEHALT VERHINDERN.
- 3. DER TRIGGER SOLL EINE ERFOLGSMELDUNG IN DEN DBMS OUTOUT SCHREIBEN. WENN EINE TABELLE ERFOLGREICH ANGELEGT WURDE.
 - 4. DER TRIGGER SOLL DAS LÖSCHEN VON MASCHINEN VERHINDERN.

LOS GEHT'S

CAP-THEOREM

C-KONSISTENZ

A - VERFÜGBARKEIT

P-PARTITIONSTOLERANZ

IN VERTEILTEN SYSTEMEN KÖNNEN NUR ZWEI DIESER DREI ANFORDERUNGEN GLEICHZEITIG VOLLSTÄNDIG ERFÜLLT WERDEN

CAP-Konfiguration	Relational	Key-Value	Spaltenorientiert	Dokumentorientiert
Consistent + Available (CA)	Microsoft SQL Server, Oracle, MySQL, Postgres, Sybase		Vertica	
Consistent + Partition-Tolerant (CP)		Scalaris, Berkeley DB, memcached, Redis	BigTable, HBase	MongoDB
Available + Partition-Tolerant (AP)		Dynamo	Cassandra	SimpleDB, CouchDB

BEISPIEL: JIMDO

SPALTEN

GRAPH

MULTI-MODEL

KEY-VALUE-STORE

shop.settings.vat=19

shop.country="de_DE"

REDIS

```
% cd src
% ./redis-cli
redis> ping
PONG
redis> set foo bar
OK
redis> get foo
"bar"
redis> incr mycounter
(integer) 1
redis> incr mycounter
(integer) 2
redis>
```

DOKUMENTEN-ORIENTIERT

BEISPIEL: COUCHDB-DOKUMENT

```
" id" : "00a271787f89c0ef2e10e88a0c0001f4"
"_rev": "5509377776",
"name": "Peter Lustig",
"address": {
    "street": "Teststr.",
    "city": "Hamburg"
```

DAS WARS FUR