

Acid-Base Concept Part-02

Course: CHE101:Introduction To Chemistry Presented By-Muhammad Mahfuz Hasan

Quinonoid theory

- a) The acid-base indicators exist in two tautomeric forms having different structures. Two forms are in equilibrium. One form is termed **benzenoid form** (light colour) and the other **quinonoid form** (deep colour).
- b) The two forms have different colors. The color change in due to the interconversation of one tautomeric form into other
- c) One form mainly exists in acidic medium and the other in alkaline medium.

CH
$$=$$
 CH $=$ C

Relative strength of acids

The strength of an acid is defined as the concentration of H+ ions in its aqueous solution at a given temperature.

The strength of an acid depends on its ability to transfer its proton (H+) to a base to form its conjugate base. When a monoprotic acid (HA) dissolves in water, it transfers its proton to water (a Bronsted base) to form hydronium ion (H3O+) and a conjugate base.

ACIDS AND BASES

$$HA + H_2O \rightleftharpoons H_3O^+ + A^-$$
conjugate
base

For simplifying our discussion, we take

$$H_{3}O^{+}=H^{+}$$

Thus we can write the equilibrium reaction (1) as

$$HA + H_2O \implies H^+ + A^-$$

This equation represents the dissociation of the acid HA into H⁺ ion and A⁻ ion.

Applying the Law of Mass action to the acid dissociation equilibrium, we can write

$$K_a = \frac{[\mathrm{H}^+][\mathrm{A}^-]}{[\mathrm{HA}]}$$

Calculation of Relative strength of Weak acids from

Since [H⁺] is a measure of acid strength and it depends on the degree of dissociation α , we can write

$$\frac{\text{Strength of acid 1}}{\text{Strength of acid 2}} = \sqrt{\frac{K_1}{K_2}}$$

Evidently, the ratio $\sqrt{K_1/K_2}$ would give us the relative strengths of the two acids.

SOLVED PROBLEM 1. The dissociation constants of formic acid and acetic acid are 21.4×10^{-5} and 1.81×10^{-5} respectively. Find the relative strengths of the acids.

SOLUTION

$$\frac{\text{Strength of HCOOH}}{\text{Strength of CH}_3\text{COOH}} = \sqrt{\frac{K_{\text{HCOOH}}}{K_{\text{CH}_3\text{COOH}}}}$$

$$= \sqrt{\frac{21.4 \times 10^{-5}}{1.81 \times 10^{-5}}}$$

$$= 3.438$$

1-Apr-23 Thus formic acid is **3.438** times stronger than acetic acid.

SOLVED PROBLEM 2. Two hypothetical acids HA and HB have the dissociation constants 1×10^{-3} and 1×10^{-5} respectively in water at 25°C. Calculate the strength of HA with respect to HB.

SOLUTION

Strength of HA
Strength of HB
$$= \sqrt{\frac{K_{HA}}{K_{HB}}}$$

$$= \sqrt{\frac{1 \times 10^{-3}}{1 \times 10^{-5}}}$$

$$= 10$$

Thus HA is ten times stronger than HB.

Relative strength of bases

The strength of a base is defined as the concentration of OH- ions in its aqueous solution at a given temperature.

According to the Arrhenius concept, a base is a substance which produces OH ions in aqueous solution. The basic properties of such a substance are due to these hydroxyl ions. Let us consider a base BOH whose dissociation can be represented as

$$BOH \rightleftharpoons B^+ + OH^-$$
 ...(1)

Applying the Law of Mass action to the above equilibrium we can write the equilibrium expression as

$$K_b = \frac{[B^+][OH^-]}{[BOH]} \qquad ...(2)$$

From the equilibrium expression (2), it is evident that the concentration of OH $^-$ ions, [OH $^-$], depends on the value of K_b . Therefore, the value of K_b for a certain base is a measure of its base strength. In the aqueous solution of a strong base, practically all the original base is dissociated and the value of K_b is large. In the case of a weak base, it is dissociated in aqueous solution to a very small $^{1-A}$ Extent and the value of K_b is also small.

Relative Strengths of Acid and Bases

As acid strength decreases, base strength increases; the weaker the acid, the stronger its conjugate base.

As base strength decreases, acid strength increases; the weaker the base, the stronger its conjugate

BRAC UNIVERSITY

pH scale

The pH scale, (0 - 14), is the full set of pH numbers which indicate the concentration of H+ and OH-ions in water

pH Scale Principle

- H+ion concentration and pH relate inversely
- OH- ion concentration and pH relate directly.

a Increasing pH means the H+ ions are decreasing.

b.Decreasing pH means H+ ions are increasing.

cIncreasing pH means OH-

ions are.....?

d. Decreasing pH means OH-ions

are....?

<u>Buffer solution</u>

- ❖ A buffer solution is one which maintains its pH fairly constant even upon the addition of small amounts of acid or base.
- We can add a small amount of an acid or base to a buffer solution and the pH will change very little.
- a weak acid together with a salt of the same acid with a strong base. These are called Acid buffers e.g., CH3COOH + CH3COONa.
- * a weak base and its salt with a strong acid. These are called Basic buffers. e.g., NH₄OH + NH₄Cl.
- ❖ Acid Buffer= Weak acid + Its salt
- ❖ Base Buffer= Weak Base + Its salt

How a buffer operates:

Addition of H+

For a cid buffer

H+	OH-	Mechanism
1	0	Normal State
2	0	Addition of H+ (transition state)
1	0	Formation of CH ₃ COOH

Addition of OH-

H+	ОН-	Mechanism
1	0	Normal State
1	1	Addition of OH- (transition state)
0	0	Formation of H ₂ O (transition state)
1	0	Formation of H+ & CH3COO- from old CH3COOH

How a buffer operates:

For base buffer

- 1. Addition of H+
- 2. Addition of OH-

Color of METHYL ORANGE is ______in highly acidic pH.

a. Red

- a. Red
- b. Yellow
- c. Orange

Increasing pH means OH- ions are.....

- a. Decreasing
- b. Increasing
- c. Unchanged

A buffer solution is one which maintains its pH fairly constant even upon the addition of smal amounts of a cid or base.

Increasing

a. True

a. Tue

b. False

