Search for Dark Matter in Proton-Proton Collisions at a Center-of-Mass Energy of 13 TeV in the Higgs Boson associated b-anti-b quark channel

Jue Chen

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

ABSTRACT

Search for Dark Matter in Proton-Proton Collisions at a Center-of-Mass Energy of 13 TeV in the Higgs Boson associated b-anti-b quark channel

Jue Chen

The abstract goes here. The abstract goes here.

Table of Contents

I	Introduction						
1							
II	Tł	ne stan	ndard model and Dark Matter	3			
2	The standard model						
	2.1	Introd	luction	. 4			
		2.1.1	Sample subsection	. 4			
	2.2	Challe	$_{ m enges}$. 5			
		2.2.1	Sample subsection	. 5			
3	The	Dark	Matter	6			
	3.1	Two-E	Higgs-doublet model	. 6			
		3.1.1	Sample subsection	. 6			
II.	I T	he LE	HC and ATLAS experiment	7			
4	The	LHC		8			
	4.1	The LHC: Instrument					
		4.1.1	The LHC layout	. 8			
		4.1.2	The LHC performance	. 8			
	4.2	The L	HC: Operation	. 9			
		4.2.1	The LHC accelerator	. 9			

_	m)	4.2.2	The LHC beam	9
5			AS experiment	10
	5.1		S detector system	10
		5.1.1	Inner detector	10
			5.1.1.1 Pixel detector	10
			5.1.1.2 Semiconductor Tracker	11
			5.1.1.3 Transition Radiation Tracker	11
		5.1.2	Calorimeter	11
			5.1.2.1 Liquid Argon Calorimeter	11
			5.1.2.2 Tile Calorimeter	11
		5.1.3	Muon Spectrometer	11
			5.1.3.1 Thin Gap Chambers	12
			5.1.3.2 Resistive Plate Chambers	12
			5.1.3.3 Monitored Drift Tubes	12
			5.1.3.4 Cathode Strip Chambers	12
	5.2	Event	${\bf reconstruction} \ \ldots \ $	12
		5.2.1	Tracks	13
		5.2.2	Electrons	13
		5.2.3	Jets	13
		5.2.4	Missing transverse momentum	13
		5.2.5	Muons	13
	5.3	Event	simulation	13
		5.3.1	Event generator	14
		5.3.2	Detector simulation	14
IJ	7 D	ark N	Matter search in the Higgs Boson associated $b\bar{b}$ decay	15
	_			
6	\mathbf{Intr}	oducti	ion	16

7	Boo	sted X	Tbb tagging	17				
	7.1	Sample	e section	17				
		7.1.1	Sample subsection	17				
		7.1.2	Sample subsubsection	17				
	7.2	Sampl	e section	18				
		7.2.1	Sample subsection	18				
8	Signal selection							
	8.1	Sampl	e section	19				
		8.1.1	Sample subsection	19				
		8.1.2	Sample subsubsection	19				
	8.2	Sample	e section	20				
		8.2.1	Sample subsection	20				
9	Background estimation							
	9.1	Sample	e section	21				
		9.1.1	Sample subsection	21				
		9.1.2	Sample subsubsection	21				
	9.2	Sampl	e section	22				
		9.2.1	Sample subsection	22				
10) Result							
	10.1	Sampl	e section	23				
		10.1.1	Sample subsection	23				
		10.1.2	Sample subsubsection	23				
	10.2	Sample	e section	24				
		10.2.1	Sample subsection	24				
\mathbf{V}	Co	onclusi	ions	25				
11	Con	clusio	ns	26				

V	I A	ppen	dices		27
\mathbf{A}	AS detector service work		28		
	A.1	Sampl	le section \ldots	•	28
		A.1.1	Sample subsection		28
		A.1.2	Sample subsubsection	•	29
	A.2	Sampl	le section		29
		A.2.1	Sample subsection		29
В	Ana	alysis s	supplementary materials		30
	B.1	pp o 1	$Hbar{b}$		30
		B.1.1	Sample subsection	•	30
		B.1.2	Sample subsubsection	•	31
	B.2	$pp \rightarrow 0$	$qar{q}bar{b}$		31
		B.2.1	Sample subsection		31
V	II]	Biblio	graphy		32
Bi	Bibliography				33

List of Figures

List of Tables

Acknowledgments

The acknowledgments go here. The acknowledgments go here.

Dedication text

Part I

Introduction

Introduction

The introduction goes here. The introduction goes here.

Part II

The standard model and Dark Matter

The standard model

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text sample text sample text. Sample text sample text sample text. [Grosz and Sidner, 1986]

2.1 Introduction

Sample text sample text sample text. Sample text sample text. Sample text sample text.

2.1.1 Sample subsection

2.2 Challenges

Sample text sample text sample text. Sample text sample text. Sample text sample text.

2.2.1 Sample subsection

The Dark Matter

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text sample text sample text. Sample text sample text sample text. [Grosz and Sidner, 1986]

3.1 Two-Higgs-doublet model

Sample text sample text sample text. Sample text sample text. Sample text sample text.

3.1.1 Sample subsection

Part III

The LHC and ATLAS experiment

The LHC

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text. Sample text sample text sample text. Sample text sample text sample text. [Grosz and Sidner, 1986]

4.1 The LHC: Instrument

Sample text sample text sample text. Sample text sample text. Sample text sample text.

4.1.1 The LHC layout

Sample text sample text sample text. Sample text sample text. Sample text sample text.

4.1.2 The LHC performance

Sample text sample text sample text. Sample text sampl

sample text. Sample text sample text sample text.

4.2 The LHC: Operation

Sample text sample text sample text. Sample text sample text. Sample text sample text.

4.2.1 The LHC accelerator

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

4.2.2 The LHC beam

The ATLAS experiment

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text. Sample text sample text sample text. Sample text sample text sample text. [Grosz and Sidner, 1986]

5.1 ATLAS detector system

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.1 Inner detector

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

5.1.1.1 Pixel detector

Sample text sample text sample text. Sample text sample text. Sample text samp

sample text. Sample text sample text.

5.1.1.2 Semiconductor Tracker

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

5.1.1.3 Transition Radiation Tracker

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.2 Calorimeter

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.2.1 Liquid Argon Calorimeter

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.2.2 Tile Calorimeter

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.3 Muon Spectrometer

Sample text sample text sample text. Sample text sampl

sample text. Sample text sample text.

5.1.3.1 Thin Gap Chambers

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

5.1.3.2 Resistive Plate Chambers

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.3.3 Monitored Drift Tubes

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.1.3.4 Cathode Strip Chambers

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.2 Event reconstruction

5.2.1 Tracks

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.2.2 Electrons

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.2.3 Jets

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.2.4 Missing transverse momentum

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.2.5 Muons

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.3 Event simulation

5.3.1 Event generator

Sample text sample text sample text. Sample text sample text. Sample text sample text.

5.3.2 Detector simulation

Part IV

Dark Matter search in the Higgs Boson associated $b\bar{b}$ decay

Introduction

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

Boosted Xbb tagging

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text sample text sample text. Sample text sample text sample text. [Grosz and Sidner, 1986]

7.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

7.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

7.1.2 Sample subsubsection

Sample text sample text sample text. Sample text sampl

sample text. Sample text sample text sample text.

7.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

7.2.1 Sample subsection

Signal selection

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text sample text sample text. Sample text sample text sample text. [Grosz and Sidner, 1986]

8.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

8.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

8.1.2 Sample subsubsection

Sample text sample text sample text. Sample text sampl

sample text. Sample text sample text sample text.

8.2 Sample section

Sample text sample text sample text. Sample text sample text sample text. Sample text sample text.

8.2.1 Sample subsection

Background estimation

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text. Sample text sample text sample text. Sample text sample text sample text. [Grosz and Sidner, 1986]

9.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

9.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

9.1.2 Sample subsubsection

Sample text sample text sample text. Sample text sampl

sample text. Sample text sample text sample text.

9.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

9.2.1 Sample subsection

Result

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text sample text sample text. Sample text sample text sample text. [Grosz and Sidner, 1986]

10.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

10.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

10.1.2 Sample subsubsection

Sample text sample text sample text. Sample text sampl

sample text. Sample text sample text.

10.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

10.2.1 Sample subsection

$\mathbf{Part}\ \mathbf{V}$

Conclusions

Conclusions

The general conclusions go here. The general conclusions go here.

Part VI

Appendices

Appendix A

The ATLAS detector service work

Sample text sample text sample text. Sample text sampl

A.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

A.1.1 Sample subsection

A.1.2 Sample subsubsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

A.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

A.2.1 Sample subsection

Appendix B

Analysis supplementary materials

Sample text sample text sample text. Sample text sampl

B.1 $pp \rightarrow Hb\bar{b}$

Sample text sample text sample text. Sample text sample text. Sample text sample text.

B.1.1 Sample subsection

B.1.2 Sample subsubsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

B.2
$$pp \rightarrow q\bar{q}b\bar{b}$$

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

B.2.1 Sample subsection

Part VII

Bibliography

BIBLIOGRAPHY 33

Bibliography

[Grosz and Sidner, 1986] Barbara Grosz and Candace Sidner. Attention, intention, and the structure of discourse. *Computational Linguistics*, 12(3):175–204, July-September 1986.