Individual Events

SI	a	900	I1	a	35	I2	a	7	I3	α	8	I4	t	13	I5	a	30
	b	7		b	7		b	3		b	16		s	4		b	150
	c	3		c	10		c	9		\boldsymbol{A}	128		a	3		n	12
	d	5		d	2		d	5		d	7		c	12		k	24

Group Events

SG	a	2	G6	n	8	G7	\boldsymbol{G}	1	G8	y	7	G9	x	40	G10	a	6
	b	9		k	5		D	8		k	-96		y	3		x	3
	p	23		и	35		\boldsymbol{L}	2		a	1		k	8		k	2
	k	3		a	1		\boldsymbol{E}	5		m	2		r	5		y	4

Sample Individual Event

SI.1 In the given diagram, the sum of the three marked angles is a° . Find the value of a.

Reference: 1984 FSI.1 1987 FSG.3

Sum of interior angles of a triangle = 180° angle sum of three vertices = $3 \times 360^{\circ} = 1080^{\circ}$ a = 1080 - 180 = 900

SI.2 The sum of the interior angles of a convex *b*-sided polygon is a° . Find the value of b.

Reference 1984 FSI.2

$$a = 900 = 180 \times (b - 2)$$

$$b = 7$$

SI.3 If $27^{b-1} = c^{18}$, find the value of c.

$$3^{3(7-1)} = c^{18}$$

$$c = 3$$

SI.4 If $c = \log_d 125$, find the value of d.

$$3 = c = \log_d 125$$

$$d^3=125$$

$$d = 5$$

Individual Event 1

I1.1 The obtuse angle formed by the hands of a clock at 10:30 is $(100 + a)^{\circ}$. Find the value of a.

Reference 1984 FG7.1, 1985 FI3.1, 1987 FG7.1, 1990 FG6.3, 2007 HI1

At 10:00, the angle between the arms of the clock = 60°

From 10:00 to 10:30, the hour-hand had moved $360^{\circ} \times \frac{1}{12} \times \frac{1}{2} = 15^{\circ}$.

The minute hand had moved 180°.

$$100 + a = 180 - 60 + 15 = 135 \Rightarrow a = 35$$

I1.2 The lines ax + by = 0 and x - 5y + 1 = 0 are perpendicular to each other. Find the value of b.

$$-\frac{35}{b} \times \frac{1}{5} = -1$$

$$\Rightarrow b = 7$$

I1.3 If $(b+1)^4 = 2^{c+2}$, find the value of c.

$$8^4 = 2^{c+2}$$

$$2^{3(4)} = 2^{c+2}$$

$$\Rightarrow c = 10$$

I1.4 If $c - 9 = \log_c (6d - 2)$, find the value of d.

$$10 - 9 = 1 = \log_{10} (6d - 2)$$

$$\Rightarrow 6d - 2 = 10$$

$$\Rightarrow d = 2$$

Individual Event 2

I2.1 If $1000a = 85^2 - 15^2$, find the value of a.

$$1000a = (85 + 15)(85 - 15) = 100 \times 70$$

$$\Rightarrow a = 7$$

I2.2 The point (a, b) lies on the line 5x + 2y = 41. Find the value of b.

$$5(7) + 2b = 41$$

$$\Rightarrow b = 3$$

12.3 x + b is a factor of $x^2 + 6x + c$. Find the value of c.

Put
$$x = -3$$
 into $x^2 + 6x + c = 0$

$$(-3)^2 + 6(-3) + c = 0$$

$$\Rightarrow c = 9$$

I2.4 If d is the distance between the points (c, 1) and (5, 4), find the value of d.

$$d^2 = (9-5)^2 + (1-4)^2 = 25$$

$$\Rightarrow d = 5$$

- **Individual Event 3**
- **I3.1** If $\alpha + \beta = 11$, $\alpha\beta = 24$ and $\alpha > \beta$, find the value of α . α and β are the roots of the equation $x^2 11x + 24 = 0$ (x 3)(x 8) = 0

$$\alpha > \beta$$

$$\therefore \alpha = 8$$

I3.2 If $\tan \theta = \frac{-\alpha}{15}$, $90^{\circ} < \theta < 180^{\circ}$ and $\sin \theta = \frac{b}{34}$, find the value of b.

In the figure, P = (8, -15) $r^2 = 8^2 + (-15)^2$ (Pythagoras' theore

$$r^2 = 8^2 + (-15)^2$$
 (Pythagoras' theorem)
 $r = 17$

$$\sin\theta = \frac{8}{17} = \frac{16}{34}$$

$$b = 16$$

Last updated: 25 June 2018

I3.3 If A is the area of a square inscribed in a circle of diameter b, find the value of A.

Reference: 1984 FG10.1, 1985 FSG.4

Let the square be *BCDE*.

$$BC = 16 \cos 45^{\circ} = 8\sqrt{2}$$

$$A = (8\sqrt{2})^2 = 128$$

13.4 If $x^2 + 22x + A = (x + k)^2 + d$, where k, d are constants, find the value of d. $x^2 + 22x + 128 = (x + 11)^2 + 7$ d = 7

I4.1 The average of p, q, r is 12. The average of p, q, r, t, 2t is 15. Find the value of t.

$$p + q + r = 36$$

$$p + q + r + t + 2t = 75$$

$$3t = 75 - 36 = 39$$

$$t = 13$$

14.2 k is a real number such that $k^4 + \frac{1}{k^4} = t + 1$, and $s = k^2 + \frac{1}{k^2}$. Find the value of s.

$$k^4 + \frac{1}{k^4} = 14$$

$$k^4 + 2 + \frac{1}{k^4} = 16$$

$$(k^2 + \frac{1}{k^2})^2 = 16$$

$$\Rightarrow s = k^2 + \frac{1}{k^2} = 4$$

I4.3 M and N are the points (1, 2) and (11, 7) respectively. P(a, b) is a point on MN such that

$$MP: PN = 1: s$$
. Find the value of a .

$$MP : PN = 1 : 4$$

$$a = \frac{4+11}{1+4} = 3$$

I4.4 If the curve $y = ax^2 + 12x + c$ touches the x-axis, find the value of c.

$$y = 3x^2 + 12x + c$$

$$\Delta = 12^2 - 4(3)c = 0$$

$$\Rightarrow c = 12$$

Individual Event 5

I5.1 In the figure, find the value of a.

Reference: 1997 FG1.1, 2005 FI2.3

Label the vertices A, B, C, D, E, P, Q, R, S, T as shown.

$$\angle AEP = 40^{\circ} + 45^{\circ} = 85^{\circ} \text{ (ext. } \angle \text{ of } \triangle SQE)$$

$$\angle EAP = 30^{\circ} + 35^{\circ} = 65^{\circ} \text{ (ext. } \angle \text{ of } \Delta TRA)$$

In
$$\triangle AEP$$
, $85^{\circ} + 65^{\circ} + a^{\circ} = 180^{\circ}$ (\angle s sum of \triangle)

$$a = 30$$

I5.2 If
$$\sin(a^{\circ} + 210^{\circ}) = \cos b^{\circ}$$
, and $90^{\circ} < b < 180^{\circ}$, find the value of b.

$$\sin 240^\circ = -\frac{\sqrt{3}}{2} = \cos b^\circ$$

$$b = 150$$

I5.3 Each interior angle of an
$$n$$
-sided regular polygon is b° . Find the value of n .

Each exterior angle = 30° (adj. \angle s on st. line)

$$\frac{360}{n}$$
 = 30 (sum of exterior angles of polygon)

$$\Rightarrow n = 12$$

I5.4 If the
$$n^{th}$$
 day of March in a year is Friday. The k^{th} day of March in the same year is Wednesday, where $20 < k < 25$, find the value of k .

12th March is Friday

17th March is Wednesday

24th March is Wednesday

$$\Rightarrow k = 24$$

Sample Group Event

SG.1 If $2at^2 + 12t + 9 = 0$ has equal roots, find the value of a.

$$(12)^2 - 4(2a)(9) = 0$$

$$\Rightarrow a = 2$$

SG.2 If ax + by = 1 and 4x + 18y = 3 are parallel, find the value of b.

Reference: 1986 FI4.2, 1987 FSG.4

$$-\frac{2}{b} = -\frac{4}{18}$$

$$\Rightarrow b = 9$$

SG.3 The b^{th} prime number is p. Find the value of p.

Reference: 1985 FSG.2, 1990 FI5.4

$$p = 23$$

SG.4 If $k = \frac{4\sin\theta + 3\cos\theta}{2\sin\theta - \cos\theta}$ and $\tan\theta = 3$, find the value of k.

Reference: 1986 FG10.3, 1987 FG8.1, 1989 FG10.3, 1990 FG7.2

$$k = \frac{(4\sin\theta + 3\cos\theta) \div \cos\theta}{(2\sin\theta - \cos\theta) \div \cos\theta}$$

$$=\frac{4\tan\theta+3}{2\tan\theta-1}$$

$$=\frac{4(3)+3}{2(3)-1}$$

G6.1 An n-sided convex polygon has 20 diagonals. Find the value of n.

Reference: 1984 FG10.3, 1985 FG8.3, 1988 FG6.2, 1991 FI2.3, 2001 FI4.2, 2005 FI1.4

Number of diagonals =
$$C_2^n - n = \frac{n(n-1)}{2} - n = 20$$

$$n^2 - 3n - 40 = 0$$

$$(n-8)(n+5)=0$$

$$\Rightarrow n = 8$$

G6.2 Two dice are thrown. The probability of getting a total of *n* is $\frac{k}{36}$. Find the value of k.

$$Total = 8$$

Favourable outcomes =
$$\{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)\}$$

$$P(\text{total} = 8) = \frac{5}{36}$$

$$k = 5$$

G6.3 A man drives at 25 km/h for 3 hours and then at 50 km/h for 2 hours.

His average speed for the whole journey is u km/h. Find the value of u.

$$u = \frac{25 \times 3 + 50 \times 2}{3 + 2} = 35$$

G6.4 If $a\Delta b = ab + 1$ and $(2\Delta a)\Delta 3 = 10$, find the value of a.

$$2\Delta a = 2a + 1$$

$$(2\Delta a)\Delta 3 = (2a+1)\Delta 3 = 3(2a+1) + 1 = 10$$

$$6a + 4 = 10$$

$$a = 1$$

Group Event 7

In the attached calculation, different letters represent different integers		G	0	L	D	E	N
ranging from 1 to 9.	×						I
If the letters O and J represent 4 and 6 respectively, find the values of							-
G7.1 <i>G</i> .		D	E	N	G	0	L
G7.2 D.		1	4	L	8	$\boldsymbol{\mathit{E}}$	N
G7.3 L.	×						6
G7.4 <i>E</i> .		8		N	1	1	L
Carry digit in the 100000 digit is 2		0	L	1 V	1	4	L
G = 1, D = 8							
Carry digit in the hundreds digit is 3		1	4	2	8	5	7
E = 5	×						6
Carry digit in the tens digit is 4 $N = 7, L = 2$							
		8	5	7	1	4	2
G = 1, D = 8, L = 2, E = 5							

G8.1 If y is the greatest value of $\frac{14}{5+3\sin\theta}$, find the value of y.

$$2 \le 5 + 3 \sin \theta \le 8$$

$$\frac{14}{8} \le \frac{14}{5 + 3\sin\theta} \le \frac{14}{2}$$

$$\Rightarrow$$
 y = 7

G8.2 In the figure, $100 \cos \alpha = k$. Find the value of k.

$$Hypotenuse = 25$$

$$k = -100 \cos(\alpha - 180^{\circ})$$

$$=-100\cdot\frac{24}{25}=-96$$

G8.3 When $3x^2 + 4x + a$ is divided by x + 2, the remainder is 5. Find the value of a.

$$3(-2)^2 + 4(-2) + a = 5$$

$$a = 1$$

G8.4 The solution for $3t^2 - 5t - 2 < 0$ is $-\frac{1}{3} < t < m$. Find the value of m.

$$(3t+1)(t-2) < 0$$

$$\Rightarrow -\frac{1}{3} < t < 2$$

$$\Rightarrow m = 2$$

G9.1 In the figure, $\angle BAC = 70^{\circ}$ and $\angle FDE = x^{\circ}$. Find the value of x.

$$\angle AFC = 90^{\circ} = \angle ADC$$
 (given)

ACDF is a cyclic quad (converse, \angle s in the same seg.)

$$\angle BDF = \angle BAC = 70^{\circ}$$
 (ext. \angle , cyclic quad.)

$$\angle AEB = 90^{\circ} = \angle ADB$$
 (given)

ABDE is a cyclic quad (converse, \angle s in the same seg.)

$$\angle CDE = \angle BAC = 70^{\circ}$$
 (ext. \angle , cyclic quad.)

$$\angle FDE = 180^{\circ} - \angle BDF - \angle CDE$$
 (adj. \angle s on st. line)
= $180^{\circ} - 70^{\circ} - 70^{\circ} = 40^{\circ}$

$$\Rightarrow x = 40$$

G9.2 A cuboid is y cm wide, 6 cm long and 5 cm high. Its surface area is 126 cm^2 .

Find the value of
$$y$$
.

$$2(5y + 6y + 5 \times 6) = 126$$

$$11y = 33$$

$$y = 3$$

G9.3 If $\log_9(\log_2 k) = \frac{1}{2}$, find the value of k.

$$\log_2 k = \sqrt{9} = 3$$

$$k = 2^3 = 8$$

G9.4 If a:b=3:8, b:c=5:6 and a:c=r:16, find the value of r.

$$a:b:c=15:40:48$$

$$a: c = 15: 48 = 5: 16$$

$$\Rightarrow r = 5$$

G10.1 If
$$\frac{6\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} = 3\sqrt{a} + 6$$
, find the value of a .

Reference: 2014 FI4.1

$$\frac{6\sqrt{3}(3\sqrt{2} + 2\sqrt{3})}{18 - 12} = 3\sqrt{a} + 6$$
$$3\sqrt{6} + 6 = 3\sqrt{a} + 6$$
$$a = 6$$

G10.2 In the figure, find the value of x.

Reference: 1994 FI4.3

By similar triangles

$$6:9=a:(a+b)$$

$$a = 2k, b = k$$

$$x: 1 = (a + b): b = 3:1$$

$$x = 3$$

Reference: 1986 FG10.3, 1987 FG8.1, 1989 FSG.4, 1990 FG7.2

$$k = \frac{\left(6\cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta\right) \div \cos^2\theta}{\left(\cos^2\theta + \sin\theta\cos\theta + \sin^2\theta\right) \div \cos^2\theta}$$
$$= \frac{6 + 2\tan\theta + \tan^2\theta}{1 + \tan\theta + \tan^2\theta}$$
$$= \frac{6 + 2(2) + 2^2}{1 + 2 + 2^2}$$
$$= 2$$

G10.4 If $y = \frac{3(2^k) - 4(2^{k-2})}{2^k - 2^{k-1}}$, find the value of y.

$$y = \frac{3(2^{k}) - 4(2^{k-2})}{2^{k} - 2^{k-1}}$$
$$= \frac{3-1}{1 - \frac{1}{2}}$$
$$= 4$$

