		T			1			Т								
· <u>X</u>	2 He	10 Ne	18	Ar	39,95 36	Kr	83,80	54	Xe	131,30	98	Rn	(222)			
•		9 4,0 F	17 3,0		35,45 35 2.8	Br	79,90	53 2,5	Ι	126,90	85 2,2	At	(210)			
		8 3,5	16 2,5	S S	32,07 34 2.4	Se	78,96	52 2,1	Te	127,60	84 2,0	P_0	(209)			
* <u>*</u>		7 3,0 N	14,01 15 2,1	L	30,97 33 2.0	As	74,92	51 1,9	Sp	121,75	83 1,9	Bi	208,98			
•*		6 2,5 C	12,01 14 1,8	S	28,09 32 1.6	Ge	72,64	50 1,8	Sn	118,70	82 1,8	Pb	207,20			
*		5 2,0 B	13 1,5	AI	26,98 31 1.6	Ga	69,72	49 1,7	In	114,82	81 1,8		204,37			
			1		30 1.6	Zn	65,38	48 1,7	Cq	112,40	80 1,9	Hg	200,60	112	Uub	(285)
	ents				29 1.9	Cn	63,55	47 1,9	Ag	107,87	79 2,4	Au	196,97	1111	Unn	(272)
	élén	moyenne			28 1.9	Ż	58,69	46 2,2	Pd	106,40	78 2,2	Pt	195,10	110	Ds	(281)
	e des	rité ue relative moyenne			27 1.9	Co	58,93	45 2,2	Rh	102,91	77 2,2	Ir	192,22	109	Mt	(366)
	dique	 électronégativité masse atomique 			26 1.6	Fe	55,85	44 2,2	Ru	101,07	76 2,2	OS		108	Hs	(265)
	<u>oério</u>	ele-			25 1.5		54,94	43 1,9	Tc	98,91	75 1,9	Re	186,21	107	Bh	(264)
	tion 1	\mathbf{z}	7		24 1.6	\mathbf{Cr}	52,00	42 1,8	Mo	95,94	74 1,7	>	183,85	106	S	(263)
	ifica	•			23 1.6	>	50,94	41 1,6	R	92,91	73 1,5	Ta	180,95	105	Dp	(262)
	Classification périodique des éléments	numéro atomique			22 1.5		47,87	40 1,4	Zr	91,22	72 1,3	Hf	178,49		Rf	(261)
		numér			21 1.3		44,96	39 1,3	>	88,91	57 1,1	La	138,91	89 1,1	Ac	(227)
*		Be	2,01 12 1,2		24,31		40,08	38 1,0	Sr	87,62	6 '0 95	Ba	137,34	6,0 88	Ra	226,03

3 Na 22,99 19 0,8

4

3 1,0

Li 6,94

7

1,01

H

CS132,91 **87** 0,7

9

Fr (223)

39,10 37 0,8 **Rb** 85,47 55 0,7

~

62 1,1 63 1,0 64 1,1 65 1,2 66 1,2 67 1,2 68 1,2 69 1,2 70 1,1 71 1,2	I Yb Lu	173,04	102	l No Lr	
69 1,2	Tm	168,93	101	Md	258,10
68 1,2	0 Er 7	167,26	100	Fm	
67 1,2	H	164,	66	Es	252,08
66 1,2	Dy	162,50	86	ш	251,08
65 1,2	Tb Dy	158,93	L6	Bk	247,07
64 1,1	C q	157,25	96	Cm	247,07
63 1,0	Eu	151,96	95	Am	243,06
62 1,1	Sm		94 1,	Pu	244,06
61 1,1	Pm	146,92	90 1,1 91 1,1 92 1,2 93 1,2	Np	237,05
58 1,1 59 1,1 60 1,2 61 1	PN	144,24	92 1,2	$\mathbf{\Omega}$	232,04 231,04 238,03 237,05
59 1,1	Pr	140,91	91 1,1	Pa	231,04
58 1,1	Ce Pr Nd Pn	140,12	90 1,1	Th	232,04
	lanthanides			actinides	

V.D. – CE2D et CESS – Tableau périodique des éléments

Table des valeurs des potentiels standard de	itiels standard de
réduction E_0 (en volts) à 25°C et 1013	C et 1013 millibars.

(V)	0,52	0,45	0,40	0,34	0,20	0,15	0,15	0,14	0,09	0,00	-0,04	-0,12	-0,13	-0,14	-0,23	-0,40	-0,41	-0,42	-0,51	-0,74	-0,76	-0,83	-1,71	-2,38	-2,71	-2,76	-2,90	-2,92	-3,05	
X / Red	Cu	S	-HO	Cu	H_2SO_3	Cu ⁺	Sn^{2+}	H_2S	$S_2O_3^{2-}$	H_2	Fe	Cr^{3+}	Pb	Sn	Ņ	Cd	Fe	Cr^{2+}	\mathbf{S}^{2-}	Ċ	Zn	H_2	Al	Mg	Na	Ca	Ва	Ж	Ľ	
Couple Ox / Red	Cu+ /	H ₂ SO ₃ /	O ₂ /	Cu^{2+} /	SO_4^{2-} /	Cu^{2+} /	$ m Sn^{4+}$ /	/ S	$S_4O_6^{2-}$ /	/ ₊ H	Fe^{3+} /	CrO ₄ ²⁻ /	Pb^{2+} /	Sn^{2+} /	$ m Ni^{2+}$	Cd^{2+} /	Fe^{2+} /	$^{ m Cr}^{3+}$	/ S	$^{ m Cr}^{3+}$	Zn^{2+} /	H_2O	Al^{3+}	${ m Mg}^{2+}$ /	Na ⁺ /	Ca^{2+} /	Ba^{2+} /	K ⁺	Li ⁺ /	
(S)	2,87	2,05	1,84	1,78	1,63	1,59	1,52	1,50	1,49	1,49	1,46	1,36	1,33	1,23	1,21	1,19	1,07	96,0		0,94		0,00	0,85	0,81		0,80	0,77	99'0	0,58	0,54
Couple Ox / Red	_	$S_2O_8^{2-}$ / SO_4^{2-}	`	\	_	HBrO / Br ₂	BrO ₃ - / Br ₂	Au^{3+} / Au	$\mathrm{MnO_{4^-}}$ / $\mathrm{Mn^{2^+}}$	ClO ₃ - / Cl ₂	PbO_2 / Pb^{2+}	Cl _{2(g)} / Cl-	$Cr_2O_7^{2-}$ / Cr^{3+}	$O_{2(g)}$ / H_2O	MnO_2 / Mn^{2+}	$1O_{3}$ / I_{2}	Br ₂ / Br ⁻	NO ₃ - / NO	(HNO3 à 30 %)	NO ₃ - / HNO ₂	(HNO ₃ à 50 %)	C10- / C1-	${ m Hg^{2+}}$ / ${ m Hg}$	NO ₃ - / NO ₂	(HNO ₃ à 75 %)	_	`	O_2 / H_2O_2	_	I ₂ / I ⁻

Table des valeurs de Kps de quelques composés peu solubles à 25 °C.

Table des Ka et pKa de quelques acides à 25 °C

Base conjuguée

Acide

AgBr	$7,7.10^{-13}$	Fe(OH) ₂	$1,0.10^{-15}$
AgCl	$1,6.10^{-10}$	FeS	$3,2 \cdot 10^{-18}$
AgI	$1,5 \cdot 10^{-16}$	$Fe(OH)_3$	$3.8 \cdot 10^{-38}$
$ m Ag_2S$	$6,3 . 10^{-50}$	${ m Hg_2Br_2}$	$1,3.10^{-21}$
$AgBrO_3$	$5.8 \cdot 10^{-5}$	${ m Hg_2Cl_2}$	$2,0.10^{-18}$
${ m Ag_2CO_3}$	•	${ m Hg_2I_2}$	$1,2.10^{-28}$
${ m Ag}_2{ m CrO}_4$	$1,1 \cdot 10^{-12}$	$_{ m LgS}$	$4,0.10^{-53}$
$\mathrm{Ag_2Cr_2O_7}$	$2,0.10^{-7}$	Li_2CO_3	•
${ m Ag_3PO_4}$	$1,3 \cdot 10^{-20}$	${ m MgCO_3}$	$1,0.10^{-5}$
AgSCN	$1,2 \cdot 10^{-12}$	${ m MgC}_2{ m O}_4$	
${ m Ag_2SO_4}$	7,7. 10-5	${ m Mg}({ m OH})_2$	$5,0.10^{-12}$
$Al(OH)_3$	$3.7 \cdot 10^{-33}$	MnS	$1,4.10^{-15}$
${f BaF}_2$	$1,7.10^{-6}$	$Mn(OH)_2$	$4,0.10^{-14}$
BaCO_3	$8,0.10^{-9}$	NiS	•
$\mathrm{BaC}_2\mathrm{O}_4.\mathrm{H}_2\mathrm{O}$	$1,6.10^{-7}$	${ m PbBr}_2$	
$\mathrm{BaCrO_4}$	$2,4 \cdot 10^{-10}$	$PbCl_2$	$1,6.10^{-5}$
$\mathrm{BaSO_4}$	$1,1 \cdot 10^{-10}$	PbI_2	
$CaCO_3$	$8,7.10^{-9}$	PbS	$2,5.10^{-27}$
$CaC_2O_4.H_2O$	$2,6.10^{-9}$	PbC_2O_4	$3,2.10^{-11}$
CaF_2	$4,0 .\ 10^{-11}$	$PbCO_3$	
$\mathrm{Ca}_3(\mathrm{PO}_4)_2$	$9.8 \cdot 10^{-26}$	$PbCrO_4$	$1,8.10^{-14}$
${ m CaSO_4.H_2O}$	$6,1.10^{-5}$	$PbSO_4$	$2,2.10^{-8}$
CdS	$7.9 \cdot 10^{-27}$	SnS	•
CoS	$2,0.10^{-25}$	$\mathrm{Sn}(\mathrm{OH})_2$	$5,0.10^{-26}$
CuBr	•	$SrCO_3$	•
CuCl	$1,9.10^{-6}$	$SrCrO_4$	$3,5.10^{-5}$
CuI		$SrSO_4$	•
Cu_2S	$2.5 \cdot 10^{-48}$	ZnS	$1,2.10^{-23}$
$Cu(IO_3)_2$		ZnCO_3	$6,3.10^{-9}$
CuC_2O_4		$\operatorname{Zn}(\operatorname{OH})_2$	$1,0.10^{-17}$
Cu(OH) ₂	$5,6.10^{-20}$		
CuS	$\widetilde{\kappa}$		
FeC_2O_4	$2,1.10^{-7}$		

 $\frac{1.5 \cdot 10^{-2}}{1,25 \cdot 10^{-3}}$

1,9

 $1,6.10^{-2}$

1,0 1,3 1,8

HCrO₄-H₂PO₂-HC₂O₄-HSO₃-H₂PO₃-SO₄²-CIO₂-

55.5 $2.0 \cdot 10^{-1}$

 \approx - 2 - 1,74

HSO₄-NO₃-H₂O IO₃-

 $\mathrm{H}_{3}\mathrm{O}^{+}$

 HIO_3

H₂SO₄ HNO₃

HCI

 $\approx 4.10^8$

 $\approx - 8,6$

 $pprox 10^{10}$

 $\approx 10^8$

 $\approx 10^6$ $\approx 10^4$ $\approx 10^2$

 $2,0.10^{-1}$

8,0

 H_2CrO_4

 H_3PO_2

 $H_2C_2O_4$

H₂SO₃ H₃PO₃ HSO₄-HClO₂

 $1,0.10^{-2}$ $6,3.10^{-3}$

H₂AsO₄-H₂PO₄-

 H_3PO_4

H3AsO4

 $6,3.10^{-3}$

 $6,3 \cdot 10^{-4}$ $5,0 \cdot 10^{-4}$

3,2 3,3 3,75

1,8.10⁻⁴
6,3.10⁻⁵
5,0.10⁻⁵
1,8.10⁻⁵
1,25.10⁻⁵
7,0.10⁻⁷

4,2 4,3 4,75 4,9

C₆H₅COO-

C₆H₅COOH

HC00H

 HNO_2

HF

 $C_2O_4^{2-}$

HC00-

 NO_{2}^{-}

占

CH₃CH₂COO-

CH₃CH₂COOH

 CH_3COOH

HC₂O₄-

 HPO_{3}^{2} -

HCO₃-CrO₄²-

 H_2CO_3

HCrO₄-H₂AsO₄-

 H_2PO_3 -

 CH_3COO

 $6.0 \cdot 10^{-10}$ $5.0 \cdot 10^{-10}$

 $3,2.10^{-10}$ $2,0.10^{-10}$

9,5

 C_2H_5O -

HSiO₃-CO₃²-

 H_2SiO_3

HCO₃-HPO₄²-

 C_2H_5OH

HCN

 NH_4^+

9,7

 $1,25.10^{-13}$

 $\approx 10^{-27}$

CH3CH2O

CH₃CH₂OH

PH₂-NH₂-

NH3

CH₃CO-

СН3СНО

HS-

 H_2O

PO₄3-S²- $\approx 10^{-35}$

 $5,0.10^{-13}$

 $5,0.10^{-11}$

10,3 12,3 12,9 14,5

 $3.2 \cdot 10^{-8}$ $6.0 \cdot 10^{-10}$

CIO-H2BO3-NH3 CN-

 H_3BO_3

 $6,3.10^{-8}$ $6,3.10^{-8}$

 SO_3^{2-} HPO 4^{2-}

HSO₃-H₂PO₄-HClO

 $1,0.10^{-7}$

 $1,0.10^{-7}$

6,2 6,4 6,5 7,0 7,2 7,2 7,2 7,5

HAsO₄²-

HS-

 H_2S

 $3,2.10^{-7}$

 $4,0.10^{-7}$

V.D. - CESS