

TEST REPORT

FCC ID: 2AIYVML350

Product: Bluetooth Speaker

Model No.: ML350

Additional Model No.: N/A

Trade Mark: face.you

Report No.: TCT160627E006

Issued Date: Aug. 03, 2016

Issued for:

GuangZhou Tai Le communication equipment co., LTD 2F, No.94, Cha Dong Road, Shi Ji Town, Panyu District, Guang Zhou City

Issued By:

Shenzhen Tongce Testing Lab.

1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1. Test Certification	
2. Test Result Summary	4
3. EUT Description	5
4. Genera Information	6
4.1. Test environment and mode	6
4.2. Description of Support Units	6
5. Facilities and Accreditations	7
5.1. Facilities	7
5.2. Location	
5.3. Measurement Uncertainty	7
6. Test Results and Measurement Data	8
6.1. Antenna requirement	
6.2. Conducted Emission	9
6.3. Conducted Output Power	
6.4. 20dB Occupy Bandwidth	18
6.5. Carrier Frequencies Separation	23
6.6. Hopping Channel Number	
6.7. Dwell Time	
6.8. Pseudorandom Frequency Hopping Sequence	34
6.9. Conducted Band Edge Measurement	
6.10. Conducted Spurious Emission Measurement	39
6.11.Radiated Spurious Emission Measurement	43
Appendix A: Photographs of Test Setup	
Appendix B: Photographs of EUT	

TESTING CENTRE TECHNOLOGY Report No.: TCT160627E006

1. Test Certification

Product:	Bluetooth Speaker
Model No.:	ML350
Additional Model:	N/A
Applicant:	GuangZhou Tai Le communication equipment co., LTD
Address:	2F, No.94, Cha Dong Road, Shi Ji Town, Panyu District, Guang Zhou City
Manufacturer:	GuangZhou Tai Le communication equipment co., LTD
Address:	2F, No.94, Cha Dong Road, Shi Ji Town, Panyu District, Guang Zhou City
Date of Test:	Jun. 27 – Aug. 01, 2016
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: But There Date: Aug. 01, 2016

Beryl Zhao

Reviewed By: Date: Aug. 03, 2016

Joe Zhou

Approved By: Date: Aug. 03, 2016

Tomsin

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS (C
Band Edge	§15.247(d)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product Name:	Bluetooth Speaker			
Model:	ML350			
Additional Model:	N/A			
Trade Mark:	face.you			
Operation Frequency:	2402MHz~2480MHz			
Transfer Rate:	1/2/3 Mbits/s			
Number of Channel:	79			
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK			
Modulation Technology:	FHSS			
Antenna Type:	Internal Antenna			
Antenna Gain:	4dBi			
Power Supply:	DC7.4V via battery			

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK

•							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
(0)		5)	&	(C)		(C)	%
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
((6)	((C)		(.c ²)		
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-

Remark: Channel 0, 39 &78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.

4. Genera Information

4.1. Test environment and mode

Operating Environment:								
Temperature:	25.0 °C							
Humidity:	56 % RH							
Atmospheric Pressure:	1010 mbar							
Test Mode:								
Engineering mode: Keep the EUT in continuous transmitting by schannel and modulations								

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	GA150010			SINYANG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.
- 4. Adapter Information:

Input: AC 100-240V, 50/60Hz

Output: DC 15V, 1A

Page 6 of 61

Report No.: TCT160627E006

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 572331

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

CNAS - Registration No.: CNAS L6165
 Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005
 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

Tel: 86-755-36638142

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

Report No.: TCT160627E006

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an internal antenna which permanently attached, and the best case gain of the antenna is 4dBi.

Page 8 of 61

6.2. Conducted Emission

6.2.1. Test Specification

<u> </u>						
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4:2014					
Frequency Range:	150 kHz to 30 MHz	(4)				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto			
	Frequency range (MHz)	Limit (Quasi-peak	dBuV) Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Reference	e Plane	1201			
Test Setup:	Remark: E.U.T AC power Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test Mode:	Refer to item 4.1					
Test Procedure:	 The E.U.T and simulation power through a line (L.I.S.N.). This proimpedance for the magnetic power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.4: 2014 or 	e impedance stable impedance stable ovides a 500hm neasuring equipm ces are also connects. SN that provides with 500hm term diagram of the line are checked ince. In order to fine positions of equipments are change in the change in the change in the change impedance in the change impedance in the change in the change impedance in the change in the change in the change impedance in the change in the	pilization network n/50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all of led according to			
Test Result:	PASS					

TESTING CENTRE TECHNOLOGY Report No.: TCT160627E006

6.2.1. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Equipment Manufacturer Model Serial Number Calibration									
EMI Test Receiver	R&S	ESCS30	100139	Sep. 11, 2016					
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 16, 2016					
Coax cable	TCT	CE-05	N/A	Sep. 11, 2016					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.2.2. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site Chamber #2	Phase:	L1	Temperature	: 23 (C)
Limit: FCC Part 15B Class B Conduction(QP)	Power:	AC 120V/60Hz	Humidity:	54 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		0.1500	41.11	11.49	52.60	65.99	-13.39	QP	
2		0.1500	23.81	11.49	35.30	55.99	-20.69	AVG	
3		0.1695	39.25	11.48	50.73	64.98	-14.25	QP	
4		0.1695	22.21	11.48	33.69	54.98	-21.29	AVG	
5		0.2983	33.87	11.41	45.28	60.29	-15.01	QP	
6	*	0.2983	27.03	11.41	38.44	50.29	-11.85	AVG	
7		0.8336	15.88	11.19	27.07	56.00	-28.93	QP	
8		0.8336	13.74	11.19	24.93	46.00	-21.07	AVG	
9		1.0485	15.08	11.19	26.27	56.00	-29.73	QP	
10		1.0485	12.78	11.19	23.97	46.00	-22.03	AVG	
11		2.9038	15.04	11.36	26.40	56.00	-29.60	QP	
12		2.9038	11.37	11.36	22.73	46.00	-23.27	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

: FC	C Part 15	B Class B C	Conduction	(QP)	Powe	er: AC	120V/60Hz		Humidity:	54 %	
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment			
*	0.1500	40.27	11.49	51.76	65.99	-14.23	QP				
	0.1500	22.27	11.49	33.76	55.99	-22.23	AVG				
	0.1617	38.93	11.49	50.42	65.37	-14.95	QP				
	0.1617	21.11	11.49	32.60	55.37	-22.77	AVG				
	0.1773	37.03	11.48	48.51	64.61	-16.10	QP				
	0.1773	18.89	11.48	30.37	54.61	-24.24	AVG				
	0.2987	33.69	11.41	45.10	60.28	-15.18	QP				
	0.2987	23.32	11.41	34.73	50.28	-15.55	AVG				
	0.5211	20.36	11.29	31.65	56.00	-24.35	QP				
	0.5211	9.94	11.29	21.23	46.00	-24.77	AVG				
	0.7477	16.11	11.21	27.32	56.00	-28.68	QP				
	0.7477	9.58	11.21	20.79	46.00	-25.21	AVG				
	Mk.	Mk. Freq. MHz * 0.1500 0.1500 0.1617 0.1617 0.1773 0.1773 0.2987 0.2987 0.5211 0.5211 0.7477	Mk. Freq. Reading Level MHz dBuV/m * 0.1500 40.27 0.1500 22.27 0.1617 38.93 0.1617 21.11 0.1773 37.03 0.1773 18.89 0.2987 33.69 0.2987 23.32 0.5211 20.36 0.5211 9.94 0.7477 16.11	Mk. Freq. Reading Level Factor MHz dBuV/m dB * 0.1500 40.27 11.49 0.1500 22.27 11.49 0.1617 38.93 11.49 0.1617 21.11 11.49 0.1773 37.03 11.48 0.1773 18.89 11.48 0.2987 33.69 11.41 0.2987 23.32 11.41 0.5211 20.36 11.29 0.5211 9.94 11.29 0.7477 16.11 11.21	Mk. Freq. Level Factor ment MHz dBuV/m dB dBuV/m * 0.1500 40.27 11.49 51.76 0.1500 22.27 11.49 33.76 0.1617 38.93 11.49 50.42 0.1617 21.11 11.49 32.60 0.1773 37.03 11.48 48.51 0.1773 18.89 11.48 30.37 0.2987 33.69 11.41 45.10 0.2987 23.32 11.41 34.73 0.5211 20.36 11.29 31.65 0.5211 9.94 11.29 21.23 0.7477 16.11 11.21 27.32	Mk. Freq. Reading Level Level Factor Correct Factor Ment Factor Measurement Measurement Measurement Limit Measurement * 0.1500 40.27 11.49 51.76 65.99 0.1500 22.27 11.49 33.76 55.99 0.1617 38.93 11.49 50.42 65.37 0.1617 21.11 11.49 32.60 55.37 0.1773 37.03 11.48 48.51 64.61 0.1773 18.89 11.48 30.37 54.61 0.2987 33.69 11.41 45.10 60.28 0.5211 20.36 11.29 31.65 56.00 0.5211 9.94 11.29 21.23 46.00 0.7477 16.11 11.21 27.32 56.00	Mk. Freq. Reading Level Correct Factor Measurement Measurement Limit Over * 0.1500 40.27 11.49 51.76 65.99 -14.23 0.1500 22.27 11.49 33.76 55.99 -22.23 0.1617 38.93 11.49 50.42 65.37 -14.95 0.1617 21.11 11.49 32.60 55.37 -22.77 0.1773 37.03 11.48 48.51 64.61 -16.10 0.1773 18.89 11.48 30.37 54.61 -24.24 0.2987 33.69 11.41 45.10 60.28 -15.18 0.5211 20.36 11.29 31.65 56.00 -24.35 0.5211 9.94 11.29 21.23 46.00 -24.77 0.7477 16.11 11.21 27.32 56.00 -28.68	Mk. Freq. Reading Level Correct Factor Measurement Measurement Limit Measurement Over * 0.1500 40.27 11.49 51.76 65.99 -14.23 QP 0.1500 22.27 11.49 33.76 55.99 -22.23 AVG 0.1617 38.93 11.49 50.42 65.37 -14.95 QP 0.1617 21.11 11.49 32.60 55.37 -22.77 AVG 0.1773 37.03 11.48 48.51 64.61 -16.10 QP 0.1773 18.89 11.48 30.37 54.61 -24.24 AVG 0.2987 33.69 11.41 45.10 60.28 -15.18 QP 0.5211 20.36 11.29 31.65 56.00 -24.35 QP 0.5211 9.94 11.29 21.23 46.00 -24.77 AVG 0.7477 16.11 11.21 27.32 56.00 -28.68 QP	Mk. Freq. Reading Level Correct Factor Factor ment Measure ment Limit Measure ment Limit Over * 0.1500 40.27 11.49 51.76 65.99 -14.23 QP 0.1500 22.27 11.49 33.76 55.99 -22.23 AVG 0.1617 38.93 11.49 50.42 65.37 -14.95 QP 0.1617 21.11 11.49 32.60 55.37 -22.77 AVG 0.1773 37.03 11.48 48.51 64.61 -16.10 QP 0.1773 18.89 11.48 30.37 54.61 -24.24 AVG 0.2987 33.69 11.41 45.10 60.28 -15.18 QP 0.5211 20.36 11.29 31.65 56.00 -24.35 QP 0.5211 9.94 11.29 21.23 46.00 -24.77 AVG 0.7477 16.11 11.21 27.32 56.00 -28.68 QP	Mk. Freq. Reading Level Level Correct Factor ment Factor ment Limit Limit Limit Discrete Over Limit Discrete * 0.1500 40.27 11.49 51.76 65.99 -14.23 QP 0.1500 22.27 11.49 33.76 55.99 -22.23 AVG 0.1617 38.93 11.49 50.42 65.37 -14.95 QP 0.1617 21.11 11.49 32.60 55.37 -22.77 AVG 0.1773 37.03 11.48 48.51 64.61 -16.10 QP 0.1773 18.89 11.48 30.37 54.61 -24.24 AVG 0.2987 33.69 11.41 45.10 60.28 -15.18 QP 0.5211 20.36 11.29 31.65 56.00 -24.35 QP 0.5211 9.94 11.29 21.23 46.00 -24.77 AVG 0.7477 16.11 11.21 27.32 56.00 -28.68 QP </td <td> Reading Correct Factor Measure Limit Over </td>	Reading Correct Factor Measure Limit Over

Note1:

Freq. = Emission frequency in MHz

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and GFSK) was submitted only.

Page 12 of 61

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.3. Conducted Output Power

6.3.1. Test Specification

	/ A) / A)			
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and DA00-705			
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.			
Test Result:	PASS			

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016
RF Cable	TCT	RE-06	N/A	Sep. 12, 2016
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.3.3. Test Data

GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-1.43	21.00	PASS			
Middle	-0.10	21.00	PASS			
Highest	-0.87	21.00	PASS			

Pi/4DQPSK mode							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	-2.58	21.00	PASS				
Middle	-1.94	21.00	PASS				
Highest	-2.91	21.00	PASS				

8DPSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-1.92	21.00	PASS			
Middle	-1.54	21.00	PASS			
Highest	-2.40	21.00	PASS			

Test plots as follows:

Lowest channel

Date: 22.JUL.2016 17:53:43

Middle channel

Date: 22.JUL.2016 17:56:43

Highest channel

Date: 22.JUL.2016 17:59:05

Lowest channel

Date: 8.AUG.2016 12:10:12

Middle channel

Date: 8.AUG.2016 12:11:20

Date: 8.AUG.2016 12:12:30

Lowest channel

Date: 8.AUG.2016 12:15:36

Middle channel

Date: 8.AUG.2016 12:17:16

Highest channel

Date: 8.AUG.2016 12:18:23

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013 and DA00-705				
Limit:	N/A				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test Result:	PASS				

6.4.2. Test Instruments

RF Test Room							
Equipment Manufacturer Model Serial Number Calibration Du							
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016			
RF cable	тст	RE-06	N/A	Sep. 12, 2016			
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4.3. Test data

Test channel	20dB Occupy Bandwidth (kHz)					
rest channel	GFSK π/4-DQPSK		8DPSK	Conclusion		
Lowest	919.87	1250.00	1208.33	PASS		
Middle	846.15	1227.56	1224.36	PASS		
Highest	923.08	1211.54	1221.15	PASS		

Test plots as follows:

Lowest channel

Date: 22.JUL.2016 17:15:21

Middle channel

Date: 22.JUL.2016 17:19:07

Highest channel

Date: 22.JUL.2016 17:21:30

Lowest channel

Date: 22.JUL.2016 17:26:24

Middle channel

Date: 22.JUL.2016 17:30:23

Highest channel

Date: 22.JUL.2016 17:34:03

Lowest channel

Date: 22.JUL.2016 17:41:16

Middle channel

Date: 22.JUL.2016 17:44:55

Highest channel

Date: 22.JUL.2016 17:47:58

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013 and DA00-705				
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW≥1% of the span; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test Result:	PASS				

6.5.2. Test Instruments

RF Test Room							
Equipment Manufacturer Model Serial Number Calibration Du							
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016			
RF cable	тст	RE-06	N/A	Sep. 12, 2016			
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.5.3. Test data

GFSK mode						
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Lowest	1000	615.39	PASS			
Middle	1019.23	615.39	PASS			
Highest	993.59	615.39	PASS			

Pi/4 DQPSK mode					
Test channel Carrier Frequencies Limit (kHz) Result					
Lowest	996.79	833.33	PASS		
Middle	996.79	833.33	PASS		
Highest	996.79	833.33	PASS		

8DPSK mode					
Test channel Carrier Frequencies Limit (kHz) Result					
Lowest	1009.62	816.24	PASS		
Middle	1169.87	816.24	PASS		
Highest	993.59	816.24	PASS		

Note: According to section 6.4

Note. According to section 6.4	<u> </u>	X y
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	923.08	615.39
π/4-DQPSK	1250.00	833.33
8DPSK	1224.36	816.24

Test plots as follows:

Lowest channel

Date: 22.JUL.2016 18:14:55

Middle channel

Date: 22.JUL.2016 18:16:29

Highest channel

Date: 22.JUL.2016 18:18:14

Lowest channel

Date: 22.JUL.2016 18:22:29

Middle channel

Date: 25.JUL.2016 12:13:07

Highest channel

Date: 22.JUL.2016 18:26:57

Lowest channel

Date: 22.JUL.2016 18:33:16

Middle channel

Date: 22.JUL.2016 18:34:22

Highest channel

Date: 22.JUL.2016 18:35:28

6.6. Hopping Channel Number

6.6.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)			
ANSI C63.10:2013 and DA00-705			
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Spectrum Analyzer EUT			
Hopping mode			
 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW ≥1% of the span; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data derived from spectrum analyzer. 			
PASS			

6.6.2. Test Instruments

C.N						
RF Test Room						
Equipment Manufacturer Model Serial Number Calibration Du						
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016		
RF cable	TCT	RE-06	N/A	Sep. 12, 2016		
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 12, 2016		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.6.3. Test data

Mode	Hopping channel numbers	Limit	Result
GFSK, P/4-DQPSK, 8DPSK	79	15	PASS

Date: 22.JUL.2016 18:40:57

Pi/4DQPSK

Date: 22.JUL.2016 18:43:08

Date: 22.JUL.2016 18:45:36

6.7. Dwell Time

6.7.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)			
(2)(1)			
ANSI C63.10:2013 and DA00-705			
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.			
Spectrum Analyzer EUT			
Hopping mode			
 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
PASS			

6.7.2. Test Instruments

C.N						
RF Test Room						
Equipment Manufacturer Model Serial Number Calibration Du						
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016		
RF cable	TCT	RE-06	N/A	Sep. 12, 2016		
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 12, 2016		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7.3. Test Data

Mode	Packet	Hops Over Occupancy Time (hops)	Package Transfer Time (ms)	Dwell time (second)	Limit (second)	Result
GFSK	DH5	106.67	2.96	0.32	0.4	PASS
Pi/4 DQPSK	2-DH5	106.67	2.97	0.32	0.4	PASS
8DPSK	3-DH5	106.67	2.97	0.32	0.4	PASS

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67 \text{ hops}$

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Test plots as follows:

Date: 22.JUL.2016 18:52:24

Pi/4DQPSK

Date: 22.JUL.2016 18:53:53

Date: 22.JUL.2016 18:55:09

6.8. Pseudorandom Frequency Hopping Sequence

Test Requirement:

FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and DA00-705				
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fain the restricted bands must also comply with the radiated emission limits.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 				
Test Result:	PASS				
-, *)					

6.9.2. Test Instruments

RF Test Room							
Equipment Manufacturer Model Serial Number Calibration Due							
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016			
RF cable	тст	RE-06	N/A	Sep. 12, 2016			
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.9.3. Test Data

Report No.: TCT160627E006

GFSK Modulation

Pi/4DQPSK Modulation

Report No.: TCT160627E006

8DPSK Modulation

Report No.: TCT160627E006

