Измерение удельной теплоёмкости воздуха при постоянном давлении

Цель работы

1) измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; 2) исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

Оборудование

теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр; вольтметр (цифровые мультиметры); термопара, подключённая к микровольтметру; компрессор; газовый счётчик; секундомер.

Экспериментальная установка

Теоретическая часть

Измерение теплоёмкости тел обычно производится в калориметрах, т. е. в сосудах, обеспечивающих теплоизоляцию исследуемого тела от внешней среды. При этом регистрируется изменение его температуры dT в зависимости от количества тепла δQ , полученного телом от некоторого нагревательного элемента внутри калориметра. Теплоёмкость тела в некотором

процессе определяется как их отношение:

$$C = \frac{\delta Q}{dT}. (1)$$

Надёжность измерения определяется, в основном, качеством калориметра. Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки. При измерении теплоёмкости газов эти требования выполнить довольно трудно — масса газа в калориметре и, следовательно, количество тепла, идущее на его нагревание, как правило, малы. Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры. Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в которой установлен нагревательный элемент. Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm = qdt, где q— массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q = (N - N_{\text{пот}}) dt$. С другой стороны, по определению теплоёмкости $\delta Q = cdm\Delta T$, где $\Delta T = T_2 - T_1$ — приращение температуры газа, c — удельная теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, потому можно принять, что $P_1 \approx P_2 = P_0$, где P_0 — атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_p . Таким образом, получаем

$$c_p = \frac{N - N_{\text{пот}}}{q\Delta T} \tag{2}$$

Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI. (3)$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары

расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй - в струе выходящего нагретого воздуха. Константановая проволка термопары расположена вдоль калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС пропорциональна разности температур ΔT спаев:

$$\mathcal{E} = \beta \Delta T$$
,

где $\beta=40.7\frac{\text{мкB}}{K}$ — чувствительность медно-константановой термопары в рабочем диапазоне температур. ЭДС регистрируется с помощью микровольтметра. Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком ГС. Для регулировки служит кран К. Время Δt прохождения некоторого объёма ΔV воздуха измеряется секундомером. Объёмный расход может быть найден как

$$q = \rho \frac{\Delta V}{\Delta t},$$

где ρ — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева-Клапейрона:

$$\rho_0 = \frac{\mu P_0}{RT_0},$$

где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu=29,0\frac{\Gamma}{\text{моль}}$ — средняя молярная масса (сухого) воздуха.

Учитывая особенности калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счёт нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T \ll T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{not}} = \alpha \ \Delta T$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур свящаны прямой пропорциональностью $(\Delta T(N))$ — линейная функция).

$$N = (c_P q + \alpha) \Delta T$$

В общем случае давление на входе может заметно превышать таковое на выходе (например, если труба достаточно узкая и

длинная). Рассмотрим течение газа более детально, чтобы выяснить пределы применимости P=const. Обозначим индексом 1 параметры газа на входе в трубку, индексом 2— на выходе из неё. Рассмотрим область, мысленно ограниченную двумя неподвижными плоскостями слева и справа от нагревателя и применим к ней закон сохранения энергии. Пусть за время dt газ сместился слева направо на малое расстояние вдоль трубки, такое что через левую границу прошёл газ объёмом dV_1 m а через правую — dV_2 . В силу закона сохранения массы имеем

$$m = \rho_1 dV_1 = \rho_2 dV_2,$$

где dm=qdt — масса газа, прошедшего через некоторое сечение трубки. Изменение внутренней энергия газа в рассматриваемой области за счёт переноса вещества составило $dU=(u_2-u_1)dm$, где $u_{1,2}$ — удельные внутренние энергии. Внешние силы совершили работу по перемещению газа $\partial A=P_1dV_1-P2dV_2$, или с учётом предыдущей формулы:

$$\partial A = -(\frac{P_2}{\rho_2} - \frac{P_1}{\rho_1})dm.$$

УЧтём также изменени кинетической энергии течения газа, равное $dK = \frac{1}{2}(v_2^2 - v_1^2)dm$, где $v_{1,2}$ — скорости течения. Наконец, пусть ∂Q — количество тепла, суммарно полученное газом в рассматриваемой области — включая тепло от нагревателя, теплопередачу через стенки и торцы, тепловыделение при трении и т. д. В стационарном состоянии энергия газа, заполняющего калориметр, неизменна, поэтому

$$dU - dA + dK = \partial Q$$

Полученное удобно записать в виде

$$(i_2 - i_1 + \frac{v_2^2}{2} - \frac{v_1^2}{2})dm = \partial Q,$$

где $i=u+\frac{P}{\rho}$ — удельная энтальпия газа. Это соотношение справедливо для любой стационарно текущей непрерывной среды и представляет собой обобщение известного уравнения Бернулли, учитывающее выделение и потери тепла. Оно справедливо при условии, что в системе устанавливается не только стационарное течение, но и стационарное распределение температуры. Последнее весьма важно для нашего опыта, поскольку время установления может быть довольно велико.

Если предположить, что кинетическая энергия течения мала по сравнени. с энергией нагрева $(dK \ll \partial Q)$, то получим

$$(i_2 - i_1)dm = \partial Q,$$

то есть полученное газом тепло идёт на приращение его энтальпии.

В условмях опыта газ с хорошей точностью можно считать идеальным: $P/\rho=RT/\mu$, а теплоёмкость c_p (или c_v) не зависящей от температуры. Тогда энальпия (и внутренняя энергия) газа зависит только от температуры и равна $\Delta i=c_p\Delta T$ (т. к. $\Delta u=c_V\Delta T$ и $c_p=c_v+\frac{R}{\mu}$). В таком случае, в этой лабораторной работе мы измеряем удельную теплоёмость газа при постоянном давлении.

Обработка результатов измерений

P_0 , мм. рт. ст.	T_{κ}, K	$\varphi,\%$	$\Delta t_{max}, c$	ΔV_{max} , дм ³	$P_{\text{н.п.}}$, к Π а
749.3 ± 0.5	294 ± 1	81 ± 1	26.0 ± 0.5	5 ± 0.1	2.48

Объёмный расход для каждого из опытов вычислим по формуле:

$$q = \rho_0 \frac{\Delta V}{\Delta t}$$

$$\rho_0 = \frac{\mu \left(P_0 - \varphi P_{\text{\tiny H. II.}}\right)}{RT_{\text{\tiny K}}} = 1.18 \pm 0.01 \, \frac{\text{\tiny K\Gamma}}{\text{\tiny M}^3};$$

$$\sigma$$

$\Delta t_1, c$	ΔV_1 , дм 3	$q_1, rac{\Gamma}{c}$	$\Delta t_2, c$	ΔV_2 , дм 3	$q_2, rac{\Gamma}{c}$
26.0 ± 0.5	5 ± 0.1	0.192 ± 0.03	44.8 ± 0.5	5 ± 0.1	0.112 ± 0.03

Посчитаем мощность нагрева N и разность температур ΔT по формулам:

$$N = UI;$$
$$\Delta T = \frac{\mathcal{E}}{\beta}.$$

При расходе q_1 :

	\mathcal{E} , мк B	$U_{\scriptscriptstyle \mathrm{H}},\mathrm{B}$	$I_{\scriptscriptstyle \mathrm{H}},{\scriptscriptstyle \mathrm{M}}\mathrm{A}$	$\Delta t, K$	N, BT	$R_{\rm H},~{ m Om}$
1	102	4.44	155.8	2.506	0.6918	28.50
2	138	5.20	182.7	3.391	0.9500	28.46
3	174	5.89	206.7	4.275	1.2175	28.50
4	210	6.46	226.8	5.160	1.4651	28.48
5	242	7.00	245.7	5.946	1.7199	28.49

При расходе q_2 :

	\mathcal{E} , мк B	$U_{\scriptscriptstyle \mathrm{H}},\mathrm{B}$	$I_{\scriptscriptstyle \mathrm{H}},{\scriptscriptstyle \mathrm{M}}\mathrm{A}$	$\Delta t, K$	N, BT	$R_{\rm H}, { m Om}$
1	38	2.55	89.3	0.934	0.2277	28.55
2	75	3.50	122.9	1.843	0.4302	28.48
3	126	4.41	154.7	3.096	0.6822	28.51
4	165	5.08	178.1	4.054	0.9047	28.52
5	217	5.77	202.3	5.332	1.1673	28.52

Построим графики зависимости $\Delta T(N)$ для каждого объёмного расхода воздуха q и найдём угловые коэффициенты наклона графиков:

Рис. 1: График зависимости $\Delta T(N)$ при объёмном расходе q_1

Рис. 2: График зависимости $\Delta T(N)$ при объёмном расходе q_2

Полученные зависиомсти из графиков:

$$y_1 = k_1 x_1 + b_1;$$
 $y_2 = k_2 x_2 + b_2;$
 $k_1 = 3.36 \pm 0.03;$ $b_1 = 0.19 \pm 0.04;$
 $k_2 = 4.66 \pm 0.04;$ $b_2 = -0.13 \pm 0.03;$

Найдем α и c_P , решив систему уравнений:

$$\begin{cases} c_P q_1 + \alpha = \frac{1}{k_1} \\ c_P q_2 + \alpha = \frac{1}{k_2} \end{cases}$$

Путем математических преобразований получаем:

$$c_P = \frac{k_2 - k_1}{(q_1 - q_2) k_1 k_2}; \qquad \alpha = \frac{k_2 - k_1 - c_P(q_1 + q_2)}{2 k_1 k_2}.$$

$$c_P = 1038 \frac{\text{Дж}}{\text{кг K}}; \qquad \alpha = 0.098 \frac{\text{Дж}}{K}$$

Оценим погрешности:

$$\sigma_{k_1} = 0.03; \qquad \sigma_{k_1} = 0.04;$$

$$\sigma_{c_P} \approx c_P \sqrt{\left(\frac{\sigma_{k_1}}{k_1}\right)^2 + \left(\frac{\sigma_{k_2}}{k_2}\right)^2} = 13$$

$$c_P = 1038 \pm 13 \frac{\text{Дж}}{\text{KT K}}$$

$$\alpha = 0.098 \pm 0.001 \frac{\text{Дж}}{K}$$

Вывод

Найденное значение молярной темлоёмкости c_P с учётом погрешности и потерь тепла совпадает с табличным значением $c_{P_{\text{табл}}}=1003~\frac{\mathcal{J}_{\text{ж}}}{\text{кг K}}.$ Мощность потерь тепла в единицу изменения температуры равна $N_{\text{пот}}=0.098~\mathcal{J}_{\text{ж}}.$