CS105 Discrete Structures: Propositions, Theorems and Proofs Exercise Problem Set 1

Part 1

- 1. Give the converse and contrapositive for the following propositions:
 - (a) If it rains today, then my hostel room will leak.
 - (b) If |x| = x, then $x \ge 0$.
 - (c) If n is greater than 3, then n^2 is greater than 9.

Which of the above statements/propositions are true? Are their converses also true?

- 2. True or False
 - (a) A proposition is equivalent to its contrapositive.
 - (b) A proposition is equivalent to its converse.
 - (c) A proposition is equivalent to the converse of its converse.
- 3. For each of the following propositions, write their negation, such that the negated proposition begins with the quantifier: "there exists a natural number n" or "for all natural numbers n". Also convince yourself the negation is false if the original proposition is true, and vice-versa.
 - (a) For all natural numbers n, n is a multiple of 2 or n is a multiple of 3.
 - (b) For all natural numbers n, if n is prime, then it is odd.
 - (c) There exists a natural number n which is greater than 100.
 - (d) There exists a natural number n such that $n^2 = 7$.
- 4. For each of the following propositions, write its negation. Is the negation true?
 - (a) If it rains today, then my hostel room will leak.
 - (b) There exists $n \in \mathbb{N}$ such that n > 5 and $n^2 < 25$.
 - (c) For all $n \in \mathbb{N}$, n is a prime or n^2 is a prime, but n^3 is not a prime.
 - (d) All computer science students like coffee.
- 5. Prove or disprove the following:
 - (a) For any real number x, if x^3 is irrational, then so is x.
 - (b) For any real number x, if x is irrational, then so is x^3 .
 - (c) There exists a nonnegative integer $n^2 > 10^{1000}$. Is your proof constructive or non-constructive?

Part 2

- 6. Prove, by contradiction, that for all $a, b \in \mathbb{Z}$, we have $a^2 4b \neq 2$.
- 7. Prove or disprove: there is no rational solution to the equation $x^5 + x^4 + x^3 + x^2 + 1 = 0$.
- 8. Assume that the symbols >, < and = are given their natural interpretations as the "greater than", "less than" and "equal to" binary relations, and that the domain of discourse is over reals \mathbb{R} .
 - (a) Convert the following to English.
 - i. $(\forall x(x^2 > x)) \land (\exists x(x^2 = 2))$
 - ii. $\forall x \forall y \exists z ((x < y) \rightarrow ((x < z) \land (z < y)))$
 - iii. $\forall x \forall y \forall z (((x = y) \land (y = z)) \rightarrow (x = z))$
 - (b) Also, for each of the above statements, write their negation as propositions with quantifiers.