CS2010 – Data Structures and Algorithms II

Lecture 06 – Minimum Spanning Tree stevenhalim@gmail.com

Outline

- What are we going to learn in this lecture?
 - Continuation of leftover materials from Lecture 05
 - Minimum Spanning Tree (MST), CP2.5 Section 4.3
 - Motivating Example & Some Definitions
 - Algorithms to solve MST (you have a choice!)
 - Prim's
 - Introduction to greedy algorithm
 - Priority Queue!!
 - Kruskal's
 - Sorting graph edges based on weight
 - Data structure to prevent cycle: Union-Find Disjoint Sets
 - » (This UFDS is not examinable)

Admins

- PSBonus (Name TBA) will be opened on Saturday, 22 September 2012, after Quiz 2 until Saturday, 29 September 2011, 8am
 - Non CS2010R students do NOT have to do it...
 - This PS is optional and very? hard!
 - You can get to level 15 without touching this PS at all!
- PS4 (Out For a Walk) will be opened on Thursday, 27 September 2012 but PS4 will only due on Week08, Tuesday, 09 October 2012, 8am
 - You have time to deal with your other modules' midtests during Week07 ☺

Review

- Definitions that we have learned before
 - Tree T
 - T is a connected graph that has V vertices and V-1 edges
 - One unique path between any two pair of vertices in T
 - Spanning Tree ST of connected graph G
 - ST is a tree that spans (covers) every vertices in G
 - Recall the BFS and DFS Spanning Tree
- Sorting problem & several sorting algorithms
 - Rearrange set of objects so that every pair of objects (a, b;
 a < b) in the final arrangement satisfies that a is before b

Is This A Tree?

- 1. Yes, why
- 2. No, why _

0 of 120

Are the edges highlighted in red part of a spanning tree of the original graph?

- 1. Yes, why
- 2. No, why

0 of 120

Motivating Example

- Government Project
 - Want to link rural villages
 with roads
 - The cost to build a road depends on the terrain, etc
 - You only have limited budget
 - How are you going to build the roads?

More Definitions (1)

- Weighted Graph: G(V, E), w(u, v): E→R
 - See below for w(u, v)
- Vertex V (e.g. street intersections, houses, etc)
- Edge **E** (e.g. streets, roads, avenues, etc)
 - Generally undirected (e.g. bidirectional road, etc)
 - Weighted (e.g. distance, time, toll, etc)
- Weight function $w(u, v): E \rightarrow R$
 - Sets the weight of edge from u to v
- Connected undirected graph G
 - There is a path from any vertex u to any other vertex v in G

More Definitions (2)

Spanning Tree ST of G

- $w(ST) = \sum_{(u,v) \in ST} w(u,v)$
- Let w(ST) denotes the total weight of edges in ST
- Minimum Spanning Tree (MST) of connected undirected weighted graph G
 - MST of G is an ST of G with min possible w(ST)
- The (standard) MST Problem
 - Input: A connected undirected weighted graph G(V, E)
 - Select some edges of G such that the graph is still connected, but with min total weight
 - Output: Minimum Spanning Tree (MST) of G

Example

The Original Graph

A Spanning Tree Cost: 4+4+6+6=20

An MST Cost: 4+6+6+2 = 18

Are the edges highlighted in red part of an MST of the original graph?

No, we must replace edge 0-3 with edge 2-3

2. No, we must replace edge 1-2 with 0-2

3. Yes

MST Algorithms

- MST is a well-known Computer Science problem
- Several efficient (polynomial) algorithms:
 - Jarnik's/Prim's greedy algorithm
 - We will use PriorityQueue Data Structure taught in Lecture04!
 - Kruskal's greedy algorithm
 - We will learn two new Data Structures :O
 - Boruvka's greedy algorithm (not discussed here)
 - And a few other more advanced variants/special cases...

Do you still remember Prim's/Kruskal's algorithms from CS1231?

- Yes and I also know how to implement them
- 2. Yes, but I have not try implementing them yet
- I forgot that particular CS1231 material... but I know it exists
- 4. Eh?? These two algorithms were covered before in CS1231??
- 5. I haven't took CS1231 ⊗

Prim's Algorithm

Pseudo code (very simple)

```
T ← {s}, a starting vertex s (usually vertex 0)
enqueue edges connected to s (only the other ending
   vertex and edge weight) into a priority queue PQ
   that orders element based on increasing weight
while there are unprocessed edges left in PQ
   take out the front most edge e
   if vertex v linked with this edge e is not taken yet
        T ← T ∪ v
        enqueue edges connected to v (as above)
T is an MST
```

Let's see how it works first...

Prim's Animation (1)

 $PQ = \{(4,1),(4,2),(6,3),(6,4)\}$

The original graph, start from vertex 0

 $PQ = \{(2,2),(4,2),(6,3),(6,4)\}$

Connect 0 and 1
As this edge is smallest

 $PQ = \{(4,2),(6,3),(6,4),(8,3)\}$

Connect 1 and 2
As this edge is smallest

Note: The sorted order of the edges determines how the MST formed. Observe that we can also choose to connect vertex 0 and 2 also with weight 4! is no longer considered as vertex 2 is already taken

Prim's Animation (2)

 $PQ = \{(6,4),(8,3),(9,4)\}$

Connect 0 and 3
As this edge is smallest

Note: The sorted order of the edges determines how the MST formed. Observe that we can also choose to connect vertex 0 and 4 also with weight 6! $PQ = \{(8,3),(9,4)\}$

Connect 0 and 4 MST is formed

Visualization

• Let's take a look at MST visualization:

www.comp.nus.edu.sg/~stevenha/visualization/mst.html

Java Implementation

- You just need to use two known Data Structures to be able to implement Prim's algorithm:
 - A priority queue (we can use Java PriorityQueue), and
 - A Boolean array (to decide if a vertex has been taken or not)
- With these DSes, we can run Prim's in O(E log V)
 - We process each edge once, O(E)
 - Each time, we Insert/ExtractMax from a Binary Heap/
 Priority Queue in O(log E) = O(2 log V) = O(log V)
- Let's have a quick look at PrimDemo.java

Why Prim's Works? (1)

- First, we have to realize that Prim's algorithm
 is a greedy algorithm
 - This is because at each step, it always try to select the next valid edge e with minimal weight (greedy!)
 - Greedy algorithm is usually simple to implement
 - However, it usually requires "proof of correctness"
 - You will see such proof like this again in CS3230
 - Here, we will just see a quick proof

Why Prim's Works? (2)

- Let T be the spanning tree of graph G generated by Prim's algorithm and T* be the spanning tree of G that is known to have minimal cost
- If T == T*, we are done
- If T != T*
 - Let $e_k = (u, v)$ be the first edge chosen by Prim's algorithm at the k-th iteration that **is not** in T*
 - Let P be the path from u to v in T^* , and let e^* be an edge in P such that one endpoint is in the tree generated at the (k-1)-th iteration of Prim's algorithm and the other is not
 - i.e. one endpoint of e^* is u or one endpoint is v, but the endpoints are not u and v

Why Prim's Works? (3)

- If T != T* (continued)
 - If the weight of e^* is less than the weight of e_k , then Prim's algorithm would have chosen e^* on its k-th iteration
 - So, it is certain that $w(e^*) \ge w(e_k)$
 - When e^* has weight equal to that of e_k , the choice between the e^* or e_k is arbitrary
 - Whether the weight of e^* is greater than or equal to e_k , e^* can be substituted with e_k while preserving minimal total weight of T^*
 - This process can be repeated until T^* is equal to T
 - Thus we can show that the spanning tree generated by any instance of Prim's algorithm is a minimal spanning tree

Visual Explanation

Our Prim's algorithm reports this MST T

6 $e_1 = (0-1)$ at iteration 1 $P = 0-2-1 \text{ in } T^*$ e* is (0-2) If we substitute e₁ with e*, we can transform T to T*

Suppose that this is the optimal MST T*

After this..., two more "new" data structures :O

5 MINUTES BREAK

Kruskal's Algorithm (1)

Pseudo code (very simple)

```
sort E edges by increasing weight
T 	 { }
while there are unprocessed edges left
  pick an unprocessed edge e with min cost
  if adding e to T does not form a cycle
    add e to T
T is an MST
```

Let's see how it works first...

Kruskal's Animation (1)

Note: The sorted order of the edges determines how the MST formed. Observe that we can also choose to connect vertex 2 and 0 also with weight 4!

Kruskal's Animation (2)

Cannot connect 0 and 2
As it will form a cycle

Connect 0 and 3
The next smallest edge

Connect 0 and 4 MST is formed...

Note: Again, the sorted order of the edges determines how the MST formed; Connecting 0 and 4 is also a valid next move

Kruskal's Animation (3)

But (standard) Kruskal's algorithm will still continue

However, it will not modify anything else

This is the final MST with cost 18

Why Kruskal's Works? (1)

- Kruskal's algorithm is also a greedy algorithm
 - This is because at each step, it always try to select the next unprocessed edge e with minimal weight (greedy!)
- Simple proof on how this greedy strategy works
 - Loop invariant: Every edge e that is added into T
 by Kruskal's algorithm is part of the MST

Why Kruskal's Works? (2)

Cannot connect 0 and 2
As it will form a cycle

Loop invariant: Every edge **e** that is added into **T** by Kruskal's algorithm is part of the MST.

```
sort E edges by increasing weight
T ← {}
while there are unprocessed edges left
  pick an unprocessed edge e with min cost
  if adding e to T does not form a cycle
    add e to T
T is an MST
```

Kruskal's algorithm has a special **cycle check** before adding an edge **e** into **T**. Edge **e** will never form a cycle.

At the start of every loop, **T** is always part of **MST**.

At the end of the loop, we have selected **V-1** edges from a connected weighted graph **G** without having any cycle. This implies that we have a **Spanning Tree**.

Why Kruskal's Works? (3)

Connect 0 and 3
The next smallest edge

Loop invariant: Every edge **e** that is added into **T** by Kruskal's algorithm is part of the MST.

```
sort E edges by increasing weight
T ← {}
while there are unprocessed edges left
  pick an unprocessed edge e with min cost
  if adding e to T does not form a cycle
    add e to T
T is an MST
```

By keep adding the next unprocessed edge e with min cost, w(T U e) ≤ w(T U any other unprocessed edge that does not form cycle).

At the start of every loop, **T** is always part of **MST**.

At the end of the loop, the Spanning Tree **T** must have minimal weight **w(T)**, so **T** is the final **MST**.

Kruskal's Algorithm (2)

```
sort E edges by increasing weight // O(E log E)
T ← {}
while there are unprocessed edges left // O(E)
  pick an unprocessed edge e with min cost // O(1)
  if adding e to T does not form a cycle // O(X)
    add e to the T // O(1)
T is an MST
```

- To sort the edges:
 - We use a new way to store graph information: EdgeList
 - Then use "any" sorting algorithm that we have seen before
- To test for cycles:
 - We will use a new data structure: Union-Find Disjoint Sets

Edge List

- Format: array EdgeList of E edges
- For each edge i, EdgeList[i] stores an (integer) triple {weight (u, v), u, v}

For unweighted graph, the weight can be stored as 0 (or 1),
 or simply store an (integer) pair

- Space Complexity: O(E)
 - Remember, $E = O(V^2)$
- Adjacency Matrix/List that we have learned earlier are not suitable for edge-sorting task!

i	w	u	v
0	2	1	2
1	4	0	1
2	4	0	2
3	6	0	3
4	6	0	4
5	8	2	3
6	9	3	4

Java Implementation (1)

- Introducing class IntegerTriple (similar as IntegerPair)
 - Used to store 3 attributes: weight(u, v), u, v
 - Class IntegerTriple implements Comparable
 - This allows a collection of this class to be sorted
 - Class IntegerTriple has toString() method to show its content
- To implement EdgeList, we can just use
 Vector < IntegerTriple >
- We can sort EdgeList by using one liner
 Java Collections.sort :O
 - After all efforts for teaching you merge/quick sort... :O

Java Implementation (2)

- Your Lab TA will present a bit more details about the non-examinable Union-Find Data Structure (UFDS) during Lab Demo of Week07
- For now, let's assume that the cost to test for cycle using UFDS is "very small", can be assumed as O(1)

Kruskal's Algorithm (3)

```
sort E edges by increasing weight // O(E log E) T \leftarrow {} while there are unprocessed edges left // O(E) pick an unprocessed edge e with min cost // O(1) if adding e to T does not form a cycle // O(\alpha(V) = O(1) add e to the T // O(1) T is an MST
```

- To sort the edges, we need O(E log E)
- To test for cycles, we need $O(\alpha(V))$ small, assume constant O(1)
- In overall
 - Kruskal's runs in O(E log E + $\frac{E \alpha(V)}{V}$) // E log E dominates!
 - As $E = O(V^2)$, thus Kruskal's runs in $O(E \log V^2) = O(E \log V)$
- Let's have a quick look at KruskalDemo.java

If given an MST problem, I will...

- 1. Use/code Kruskal's algorithm
- 2. Use/code Prim's algorithm
- 3. No preference...

Summary

- Re-introducing the MST problem (covered in CS1231)
- Discussing the implementation of Prim's algorithm
 - Revisiting PriorityQueue ADT
- Discussing the implementation of Kruskal's algorithm
 - Introducing the EdgeList and technique to sort edges
 - A preview of Union-Find Disjoint Sets DS
- You may learn MST/Prim's/Kruskal's again in CS3230

Your To Do List around Recess Week

- Quiz 1 (15%) this Saturday
- PSBonus is released this Saturday
- PS3 is due next Tuesday
- Steven is away during recess week (IOI 2012)
- PS4 is released next Thursday
- PSBonus is due next Saturday
- Nothing due on Week07 for CS2010 ☺