FORMACIÓN DE BINARIAS DE AGUJEROS NEGROS Y SU RELACIÓN CON LAS ONDAS GRAVITACIONALES. VIAI-2021

Dr. Aldo Batta Clarissa I. Avilés Niebla Enrique Galicia Pineda

ONDAS GRAVITACIONALES

Principales características

Masses in the Stellar Graveyard

in Solar Masses

¿Qué información nos brindan las ondas gravitacionales?

- Masa
- Espín
- Locación
- Orientación

LIGO Scientific and VIRGO Collaborations*,**

ESPÍN EFECTIVO

$$\chi_{\text{eff}} = \frac{m_1 \chi_1 \cos \theta_1 + m_2 \chi_2 \cos \theta_2}{m_1 + m_2}$$

 $\begin{array}{lll} \chi_1 = \text{espines de los} & \theta_1 \\ \chi_2 & \text{agujeros negros} & \theta_2 \\ & & \theta_2 \end{array} \quad \begin{array}{ll} = \text{ángulos de} \\ & \text{inclinación de la} \\ & \text{alineación de los} \\ & \text{espines} \end{array}$

Credit – Northwestern Visualization, Carl Rodriguez

Abbot et al. (2021)

¿CÓMO SE FORMAN LAS BINARIAS DE AGUJEROS NEGROS?

Credit - Northwestern Visualization, Carl Rodriguez

FORMACIÓN DE BINARIAS DE AGUJEROS NEGROS Y SU RELACIÓN CON LAS ONDAS GRAVITACIONALES

Objetivo del proyecto:

¿Se pueden formar binarias con espín efectivo negativo a partir de binarias aisladas con un agujero negro y una estrella a punto de formar el segundo agujero negro?

Explosión de estrellas en sistemas binarios

Cambios energéticos provocan cambios en la binaria

- Pérdida súbita de masa
- Transferencia de masa a la compañera
- Asimetría de la explosión

- Masa de las estrellas
- Periodo
- Longitud de semiejes
- Excentricidad
- Velocidad Orbital

Janka, H.T. (2013)

Cambios en el semieje mayor

Efectos de la pérdida de masa en la binaria

Probabilidad de que la binaria de deshaga

- Cambio en el semieje mayor
- Cambio en la excentricidad
- Cambios en la distancia entre las componentes

Efectos de la asimetría en la explosión

Después de la explosión tres escenarios son posibles:

- Separación del sistema
- Sistema continúe ligado
- Fusión de la binaria

Efectos de la asimetría en la explosión

La energía del sistema post-supernova:

$$E = -\frac{GM_1'M_2'}{2a}[2 - m(1 + 2v\cos\theta\cos\phi + v^2)] < 0$$

Para que el sistema continúe ligado:

$$\cos\theta\cos\phi < \frac{1}{2v} \left[\frac{2}{m} - 1 - v^2 \right]$$

104 Final orbital period (Days) 10° 10 15 20 25 Initial orbital period (Days)

Cambios en el periodo orbital

Consideramos una binaria con órbita circular formada por estrella 1 de 5 masas solares y estrella 2 de 15 masas solares.

La estrella 1 experimenta una supernova que deja un objeto 1.4 masas solares experimentando una patada de magnitud de 450km/s

Efectos de la patada en la binaria

Cambios en la separacion orbital

- 0.2
- Cambio en la excentricidad

- Cambio en el periodo orbital
- Cambios en la excentricidad
- Cambios en la separación orbital

¿Cómo es que un agujero negro puede recibir una patada?

Las distribuciones de en las velocidades de patada de los agujeros negros son similares a las de las estrellas de neutrones, donde ambas son consecuencia de asimetrías en la explosion de supernova¹

Velocidades de expulsión de masa estelar

Utilizando un modelo estelar de 50 Masas solares obtenido de MESA web calculamos las velocidades a la que es expulsado el material remanente.

Estas velocidades son dependientes de la estructura estelar

$$\frac{v_f}{v_s} = \left(\frac{v_f}{v_s}\right)_p \left(1 - 0.51x_0^{1/3} + 0.76x_0^{2/3} - 1.19x_0\right)$$

Donde:

$$x_0=rac{1-r_0}{R_*},\,\left(rac{v_f}{v_s}
ight)_p$$
 es una constante relativa a cómo se propaga la velocidad de choque.

Explosiones asimétricas en una estrella aislada Simulaciones hidrodinámicas de SPH

Se utilizaron dos simulaciones utilizando el código Gadget de un agujero negro con una masa inicial de 3 Masas solares rodeado de gas con una masa inical de 25 masas solares.

Entre las dos simulaciones se varió el ancho de la asimetría de la explosión w=0.3, w=0.15

Cambios en la masa del agujero negro:

Perfil de velocidades del gas con w=0.15

Velocidad del gas con w=0.3

Evolución de la norma de la velocidad y la velocidad radial del gas en km/s

Evolución de la velocidad de escape y la velocidad radial del gas en km/s

Cantidad de masa expulsada

¿Qué sigue?

De ambas simulaciones no encontramos diferencias significativas en los las transferencias de masa y velocidades asociadas.

Explorados los procesos que modifican los parámetros de las binarias, el siguiente paso es considerar al segundo agujero negro, la cantidad de masa que absorve de la explosion y las configuraciones de spin individuales y efectivo.

Referencias:

Brandt, N., Podsiadlowski, P. (1995)

Hills, J.G. (1982)

Matzner, C. D., Mckee, C. F. (1999)

Postnov, K. A., Yungelson, L. R. (2014)

Janka, H.T. (2013)

LIGO and Virgo collaboration et al. (2016)

Belczynski et al. (2016)

Abbot et al. (2021)

https://www.einstein-online.info/en/spotlight/gw_waves/

https://www.ligo.caltech.edu/

https://bhdynamics.com/2018/01/02/black-hole-spins/