

Medidas de associação Correlação e Regressão Linear Simples

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Medidas de associação Felipe

Figueiredo

Oomolagao

Regressao

mterpretação

Causalidade

Sumário

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson
- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²
- Interpretação
- Causalidade
- Resumo

Medidas de associação

Felipe Figueiredo

Correlação

Regressão

Interpretação

Causalidad

Sumário

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson
- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²
- Interpretação
- Causalidade
- 6 Resumo

Medidas de associação

Felipe Figueiredo

Correlação Associação

Covariância Pearson

Regressão

Interpretação

ancalidada

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

riegressae

Causalidade

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória
 Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

interpretação

Causalidade

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

iiitei pi etaçau

Causalidade

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

nterpretação

Causalidade

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação

Felipe Figueiredo

Associação Covariância

Regressão

Interpretação

Causalidade

- Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?
- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Medidas de associação

Felipe Figueiredo

Associação
Covariância

Regressão

Interpretação

Causalidade

Resumo

 Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?

- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

Interpretação

Causalidade

Resumo

 Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?

- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressao

nterpretação

Causalidade

Resumo

 Quando uma associação é forte, podemos identificá-la subjetivamente

- Para isto, analisamos o gráfico de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

. .

ausalidade

- Quando uma associação é forte, podemos identificá-la subjetivamente
- Para isto, analisamos o gráfico de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Pograna

Interpretação

Causalidade

Resumo

 Quando uma associação é forte, podemos identificá-la subjetivamente

- Para isto, analisamos o gráfico de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

Exemplo

x and y

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

Causalidad

Resumo

(Fonte: Triola)

x and y

Exemplo

(Fonte: Triola)

Exemplo

between x and y

(Fonte: Triola)

Medidas de associação

Felipe Figueiredo

Associação
Covariância

Regressão

ınterpretaçao

Causalidade

Resumo

between x and y

Sumário

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson
- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²
- Interpretação
- Causalidade
- 6 Resumo

Medidas de associação

Felipe Figueiredo

Correlação
Associação
Covariância

Regressão

Interpretação

ausalidade

Variância

 Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra

- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Medidas de associação

Felipe Figueiredo

Correlação
Associação
Covariância
Pearson

Regressão

Interpretação

. . . .

lacuma

Variância

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

Interpretação

 Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra

- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Variância

 Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra

- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Medidas de associação

Felipe Figueiredo

Associação
Covariância

Regressão

1.0g.000a0

0-----

Causalidade

Covariância entre duas amostras

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

Interpretaça

Causalidade

ocumo

Definition

A covariância entre duas variáveis X e Y é uma medida de quanto ambas variam juntas (uma em relação à outra).

 Obs: duas variáveis independentes tem covariância igual a zero!

Covariância entre duas amostras

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

ınterpretaça

Causalidade

Resumo

Definition

A covariância entre duas variáveis X e Y é uma medida de quanto ambas variam juntas (uma em relação à outra).

 Obs: duas variáveis independentes tem covariância igual a zero!

Medidas de associação

Felipe Figueiredo

Covariância

Definition

A correlação é a associação estatística entre duas variáveis.

Para medir essa associação, calculamos o coeficiente de correlação r.

Sumário

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson
- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²
- Interpretação
- Causalidade
- 6 Resumo

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

Interpretação

O - - - - 15 - 1 - - 1 -

ausalluau

Medidas de associação

Felipe Figueiredo

Pearson

Definition

O coeficiente de correlação *r* é a medida da direção e força da associação entre duas variáveis.

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

- Curson

Regressão

Interpretação

Causalidade

Resumo

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional ou ausência de proporcionalidade.

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Pearson

Regressão

Interpretação

Caucalidado

Resumo

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional, ou ausência de proporcionalidade.

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

Interpretação

Causalidade

Resumo

Definition

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional, ou ausência de proporcionalidade.

 O coeficiente de correlação de Pearson é a covariância normalizada

• Pode ser calculado para populações (ρ) ou amostras (r)

População

$$\rho = \frac{\mathsf{Cov}(\mathsf{X},\mathsf{Y})}{\sigma_{\mathsf{X}} \times \sigma_{\mathsf{Y}}}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente r para uma amostra Medidas de associação

Felipe Figueiredo

Correlação
Associação
Covariância
Pearson

Regressão

Interpretação

. . . .

 O coeficiente de correlação de Pearson é a covariância normalizada

Pode ser calculado para populações (ρ) ou amostras (r)

População

$$\rho = \frac{\mathsf{Cov}(\mathsf{X}, \mathsf{Y})}{\sigma_{\mathsf{X}} \times \sigma_{\mathsf{Y}}}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente r para uma amostra Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Caucalidada

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

_

.

- O coeficiente de correlação de Pearson é a covariância normalizada
- Pode ser calculado para populações (ρ) ou amostras (r)
- População

$$\rho = \frac{\mathsf{Cov}(\mathsf{X},\mathsf{Y})}{\sigma_{\mathsf{X}} \times \sigma_{\mathsf{Y}}}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente r para uma amostra

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Causalidada

Poeumo

 O coeficiente de correlação de Pearson é a covariância normalizada

- Pode ser calculado para populações (ρ) ou amostras (r)
- População

$$\rho = \frac{\mathsf{Cov}(\mathsf{X},\mathsf{Y})}{\sigma_{\mathsf{X}} \times \sigma_{\mathsf{Y}}}$$

 Utilizando uma fórmula semelhante, encontramos o coeficiente r para uma amostra

Medidas de associação

Felipe Figueiredo

Associação

Covariância Pearson

Regressão

. logi ocodo

. . . .

Dooume

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação

Felipe Figueiredo

Covariância

Pearson

Regressão

Interpretação

Causalidade

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação

Felipe Figueiredo

Covariância

Pearson

Regressão

3

Causalidada

Jausalidade

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

Interpretação

Caucalidada

Pocumo

 Uma forte associação positiva corresponde a uma correlação próxima de 1.

- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Caucalidada

Resumo

 Se tivéssemos os dados de toda a população, poderíamos calcular o parâmetro ρ

- Na prática, só podemos calcular a estatística r da amostra
- Utilizamos r como estimador para ρ, e testamos a significância estatística da forma usual

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

_ ~

Regressao

morprotagao

Causalidade

- Se tivéssemos os dados de toda a população, poderíamos calcular o parâmetro ρ
- Na prática, só podemos calcular a estatística r da amostra
- Utilizamos r como estimador para ρ, e testamos a significância estatística da forma usual

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

_ _

Regressao

ınterpretaçad

Caucalidada

Resumo

• Se tivéssemos os dados de toda a população, poderíamos calcular o parâmetro ρ

- Na prática, só podemos calcular a estatística r da amostra
- Utilizamos r como estimador para ρ, e testamos a significância estatística da forma usual

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Interpretação

Causalidade

Causalidad

Resumo

Example

Pesquisadores queriam entender por que a insulina varia tanto entre indivíduos. Imaginaram que a composição lipídica das células do músculo afetam a sensibilidade do músculo para a insulina. Para isto, eles injetaram insulina em 13 jovens adultos, e determinaram quanta glicose eles precisariam injetar nos sujeitos para manter o nível de glicose sanguínea constante. A quantidade de glicose injetada para manter o nível sanguíneo constante é, então, uma medida da sensibilidade à insulina.

(Fonte: Motulsky, 1995)

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

interpretação

Causalidade

Resumo

Example

Os pesquisadores fizeram uma pequena biópsia nos músculos para aferir a fração de ácidos graxos poliinsaturados que tem entre 20 e 22 carbonos (%C20-22). Como variável resposta, mediram o índice de sensibilidade à insulina.

Valores tabelados a seguir.

Table 17.1. Correlation Between %C20–22 and Insulin Sensitivity

% C20–22	
Polyunsaturated	Insulin Sensitivity
Fatty Acids	(mg/m²/min)
17.9	250
18.3	220
18.3	145
18.4	115
18.4	230
20.2	200
20.3	330
21.8	400
21.9	370
22.1	260
23.1	270
24.2	530
24.4	375

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

nterpretação

:ausalidade

Exemplo: Diagrama de dispersão dos dados

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Causalidade

esumo

Obs: na verdade, r = 0.77.

Medidas de associação

Felipe Figueiredo

Pearson

- O tamanho da amostra foi n=13
- Consultamos o valor crítico de r na tabela a seguir

Medidas de associação

Felipe Figueiredo

Pearson

- O tamanho da amostra foi n=13
- Consultamos o valor crítico de r na tabela a seguir

Medidas de associação

> Felipe Figueiredo

Pearson

• O tamanho da amostra foi n=13

- Consultamos o valor crítico de r na tabela a seguir
- Testamos a H₀ que não há relação entre as variáveis
- na população ($H_0: \rho = 0$).

TABLE A		Values of the Correlation
	Coeffic	ient <i>r</i>
n	$\alpha = .05$	$\alpha = .01$
4	.950	.999
5	.878	.959
6	.811	.917
7	.754	.875
8	.707	.834
9	.666	.798
10	.632	.765
11	.602	.735
12	.576	.708
13	.553	.684
14	.532	.661
15	.514	.641
16	.497	.623
17	.482	.606
18	.468	.590

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Deswees

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Causalidade

Resumo

 O valor crítico da tabela para uma amostra de tamanho 13 é r_c = 0.553

- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Causalidade

Resumo

O valor crítico da tabela para uma amostra de tamanho
 13 é r_c = 0.553

- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Causalidade

Resumo

O valor crítico da tabela para uma amostra de tamanho
 13 é r_c = 0.553

- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Causalidade

- O valor crítico da tabela para uma amostra de tamanho
 13 é r_c = 0.553
- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Dogradaão

riegressao

...........

Causalidade

- Pode-se também calcular o p-valor para o coeficiente de correlação r.
- Para este exemplo, teríamos p = 0.0021.
- Interpretação: se não houver relação entre as variáveis (H₀), existe apenas 0.21% de chance de observamos uma correlação tão forte com um estudo deste tamanho

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

.

- Pode-se também calcular o p-valor para o coeficiente de correlação r.
- Para este exemplo, teríamos p = 0.0021.
- Interpretação: se não houver relação entre as variáveis (H₀), existe apenas 0.21% de chance de observamos uma correlação tão forte com um estudo deste tamanho

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Pearson

Interpretação

Caucalidado

Resumo

 Pode-se também calcular o p-valor para o coeficiente de correlação r.

- Para este exemplo, teríamos p = 0.0021.
- Interpretação: se não houver relação entre as variáveis (H₀), existe apenas 0.21% de chance de observamos uma correlação tão forte com um estudo deste tamanho

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

Interpretação

Causalidade

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

Interpretação

`aucalidada

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

nterpretação

Causalidade

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

nterpretação

Causalidade

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Pearson

riegressao

iiilei pi elaçau

Causalidade

- Nunca devemos ignorar a última possibilidade (erro tipo I)!
- o p-valor indica quão rara é essa coincidência
- neste caso, em apenas 0.21% dos experimentos não haveria uma correlação real, e estaríamos cometendo um erro de interpretação

 Nunca devemos ignorar a última possibilidade (erro tipo I)!

o p-valor indica quão rara é essa coincidência

 neste caso, em apenas 0.21% dos experimentos não haveria uma correlação real, e estaríamos cometendo um erro de interpretação Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Pearson

Regressão

merpretação

Causalidade

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Pearson

Interpretação

Causalidade

- Nunca devemos ignorar a última possibilidade (erro tipo I)!
- o p-valor indica quão rara é essa coincidência
- neste caso, em apenas 0.21% dos experimentos não haveria uma correlação real, e estaríamos cometendo um erro de interpretação

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Coupolidada

- Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados
- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

nterpretação

0-----

Jausalidad

- Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados
- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

Interpretação

Causalidado

Resumo

 Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados

- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação

Felipe Figueiredo

Associação Covariância Pearson

Regressão

Interpretação

Causalidade

- Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados
- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Medidas de associação

Felipe
Figueiredo

Correlação
Associação
Covariância

Rogrossão

linta vinua ta a ã i

...,

Causalidad

Resumo

• No exemplo anterior, $r^2 = 0.59$

- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar
 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r²) também é utilizado na Regressão!

• No exemplo anterior, $r^2 = 0.59$

• no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico

- Ou seja: conhecer o conteúdo lipídico permite explicar
 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r^2) também é utilizado na Regressão!

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

Interpretação

Causalidade

• No exemplo anterior, $r^2 = 0.59$

 no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico

- Ou seja: conhecer o conteúdo lipídico permite explicar
 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r^2) também é utilizado na Regressão!

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

Interpretação

Causalidade

• No exemplo anterior, $r^2 = 0.59$

 no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico

- Ou seja: conhecer o conteúdo lipídico permite explicar
 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r^2) também é utilizado na Regressão!

Medidas de associação

Felipe Figueiredo

Associação Covariância

Pearson

Regressão

interpretação

Causalidade

• No exemplo anterior, $r^2 = 0.59$

 no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico

- Ou seja: conhecer o conteúdo lipídico permite explicar
 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r^2) também é utilizado na Regressão!

Medidas de associação

> Felipe Figueiredo

ssociação ovariância

Pearson

Regressão

Interpretação

Causalidade

Sumário

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson
- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²
- Interpretação
- Causalidade
- 5 Resumo

Medidas de associação

Felipe Figueiredo

Correlação

Regressão Modelos estatísticos

Н

. .

Causalidade

Modelos estatísticos

Medidas de associação

Felipe Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

Modelos servem para:

- representar de forma simplificada fenômenos, experimentos, dados, etc;
- possibilitar análise em cenários controlados, menos complexos que a realidade;
- extrapolar resultados e conclusões.

Medidas de associação

Felipe Figueiredo

Correlação

Regressão Modelos estatísticos

Interpretação

Causalidade

Resumo

Modelos servem para:

- representar de forma simplificada fenômenos, experimentos, dados, etc;
- possibilitar análise em cenários controlados, menos complexos que a realidade;
- extrapolar resultados e conclusões.

Medidas de associação Felipe

Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

Modelos servem para:

- representar de forma simplificada fenômenos, experimentos, dados, etc;
- possibilitar análise em cenários controlados, menos complexos que a realidade;
- extrapolar resultados e conclusões.

Medidas de associação Felipe

Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

Ao ajustar um modelo aos dados, podemos:

- fazer predições dentro do intervalo observado para dados que não foram obtidos (interpolação)
- fazer predições fora do intervalo observado (extrapolação)

Medidas de associação Felipe

Figueiredo

Correlação

Regressao

Modelos estatísticos

Interpretação

Causalidade

Resumo

Ao ajustar um modelo aos dados, podemos:

- fazer predições dentro do intervalo observado para dados que não foram obtidos (interpolação)
- fazer predições fora do intervalo observado (extrapolação)

Reta de regressão

Medidas de associação

Felipe Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

Definition

Uma reta de regressão (também chamada de reta de melhor ajuste) é a reta para a qual a soma dos erros quadráticos dos resíduos é o mínimo.

- É a reta que melhor se ajusta aos dados
- Minimiza os resíduos

Reta de regressão

Medidas de associação Felipe

Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

Definition

Uma reta de regressão (também chamada de reta de melhor ajuste) é a reta para a qual a soma dos erros quadráticos dos resíduos é o mínimo.

- É a reta que melhor se ajusta aos dados
- Minimiza os resíduos

Reta de regressão

Medidas de associação

Felipe Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

Definition

Uma reta de regressão (também chamada de reta de melhor ajuste) é a reta para a qual a soma dos erros quadráticos dos resíduos é o mínimo.

- É a reta que melhor se ajusta aos dados
- Minimiza os resíduos

Resíduos

Medidas de associação

Felipe Figueiredo

Correlação

Regressão

Modelos estatísticos

R*

0-----

200000

Definition

Resíduos são a distância entre o dado observado e a reta estimada (modelo).

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Correlação

Regressão Modelos estatísticos

Interpretação

Causalidade

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Correlação

Regressão

Modelos estatísticos

Interpretação

Causalidade

_

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Correlação

Regressao Modelos estatísticos

Interpretação

Causalidade

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Correlação

Regressao Modelos estatísticos

Interpretação

Causalidade

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Correlação

Regressão Modelos estatísticos

Interpretação

Causalidade

Medidas de associação
Felipe

Figueiredo

Oomolagao

Modelos estatísticos

Interpretação

Causalidade

Resumo

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação
Felipe

Figueiredo

Oomeração

Modelos estatísticos

Interpretação

Causalidade

Resumo

 Relembrando: a equação de uma reta é definida pela fórmula

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - b é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação Felipe

Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação *r* entre *X* e *Y*
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação Felipe

Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e \(\)
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação Felipe

Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e Y
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação Felipe

Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e Y
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação Felipe

Figueiredo

Correlação

Modelos estatísticos

Interpretação

Causalidade

Resumo

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e Y
- o tamanho da amostra n
- ...e algumas operações entre estes termos

Medidas de associação

Felipe Figueiredo

Correlação

Modelos estatísticos

Interpretação

Caucalidado

Resumo

 A qualidade do ajuste do modelo de regressão é determinado pelo coeficiente de determinação r²

Sumário

- Correlação
 - Associação entre duas variáveis
 - Covariância entre duas amostras
 - Coeficiente de correlação de Pearson
- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²
- Interpretação
- Causalidade
- 6 Resumo

Medidas de associação

Felipe Figueiredo

Correlação

Regressão

Modelos estatísticos

R²

Interpretação

Causalidade

Medidas de associação

Felipe Figueiredo

Correlação

Regressao

Modelos estatísticos

R²

Interpretação

Causalidade

Resum

Definition

O coeficiente de determinação r^2 é a relação da variação explicada com a variação total.

$$r^2 = \frac{\text{variação explicada}}{\text{variação total}}$$

• Lembrando: r^2 é o quadrado de r!

Medidas de associação

Felipe Figueiredo

Correlação

Regressao

Modelos estatísticos

R²

Interpretação

Causalidade

Resum

Definition

O coeficiente de determinação r^2 é a relação da variação explicada com a variação total.

$$r^2 = rac{\text{variação explicada}}{\text{variação total}}$$

• Lembrando: r^2 é o quadrado de r!

Coeficiente de Determinação r²

Medidas de associação

Felipe Figueiredo

Correlação

Regressao

Modelos estatísticos

R²

Interpretação

Causalidade

Resumo

 Qual é a porcentagem da variação dos dados pode ser explicada pela reta regressora?

- O coeficiente r² é a fração da variância que é compartilhada entre X e Y.
- Como r está sempre entre -1 e 1, r² está sempre entre 0 e 1.

Coeficiente de Determinação r²

Medidas de associação

Felipe Figueiredo

Correlação

Regressão

Modelos estatísticos

R²

Interpretação

Causalidade

- Qual é a porcentagem da variação dos dados pode ser explicada pela reta regressora?
- O coeficiente r² é a fração da variância que é compartilhada entre X e Y.
- Como r está sempre entre -1 e 1, r² está sempre entre 0 e 1.

Coeficiente de Determinação r²

Medidas de associação

Felipe Figueiredo

Correlação

Regressao

Modelos estatísticos

R²

Interpretação

Causalidade

Resumo

 Qual é a porcentagem da variação dos dados pode ser explicada pela reta regressora?

- O coeficiente r² é a fração da variância que é compartilhada entre X e Y.
- Como r está sempre entre -1 e 1, r² está sempre entre 0 e 1.

- Além disso, $r^2 \le |r|$
- Por que?

Compare os seguintes números entre 0 e 1:

$$\frac{1}{2} e \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow \frac{1}{4} \le \frac{1}{2}$$

$$\frac{1}{3} e \left(\frac{1}{3}\right)^2 = \frac{1}{9} \Rightarrow \frac{1}{9} \le \frac{1}{3}$$

Medidas de associação

Felipe Figueiredo

Correlação

Regressão

Modelos estatísticos

R²

nterpretação

Causalidade

- Além disso, $r^2 \le |r|$
- Por que?

Compare os seguintes números entre 0 e 1

$$\frac{1}{2} \operatorname{e} \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow \frac{1}{4} \leq \frac{1}{2}$$

$$\frac{1}{3} e \left(\frac{1}{3}\right)^2 = \frac{1}{9} \Rightarrow \frac{1}{9} \le \frac{1}{3}$$

Medidas de associação

Felipe Figueiredo

Correlação

Regressão

Modelos estatísticos

R²

nterpretação

Causalidade

- Além disso, $r^2 \le |r|$
- Por que?

Compare os seguintes números entre 0 e 1:

$$\frac{1}{2} e \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow \frac{1}{4} \leq \frac{1}{2}$$

$$\frac{1}{3} e \left(\frac{1}{3}\right)^2 = \frac{1}{9} \Rightarrow \frac{1}{9} \leq \frac{1}{3}$$

Medidas de associação

Felipe Figueiredo

Correlação

Regressão

Modelos estatísticos

R²

nterpretação

Causalidade

Interpretação

Medidas de associação

Felipe Figueiredo

Correlação

Interpretação

Causalidade

lesumo

 Se a correlação é 0, então X e Y não variam juntos (independentes)

- Se a correlação é positiva, então quando uma aumenta, a outra aumenta em proporção direta (linear
- Se a correlação é negativa, então quando uma aumenta, a outra diminui em proporção inversa (linear

Interpretação

Medidas de associação

Felipe Figueiredo

Correlação

Interpretação

. .

.

 Se a correlação é 0, então X e Y não variam juntos (independentes)

- Se a correlação é positiva, então quando uma aumenta, a outra aumenta em proporção direta (linear)
- Se a correlação é negativa, então quando uma aumenta, a outra diminui em proporção inversa (linear

Interpretação

Medidas de associação

Felipe Figueiredo

Correlação

Interpretação

Causalidada

Resumo

 Se a correlação é 0, então X e Y não variam juntos (independentes)

- Se a correlação é positiva, então quando uma aumenta, a outra aumenta em proporção direta (linear)
- Se a correlação é negativa, então quando uma aumenta, a outra diminui em proporção inversa (linear)

Cuidado!

 Duas variáveis podem parecer correlacionadas pois são influenciadas por uma terceira variável

 Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita

- Mas comprar mais telefones não vai salvar crianças!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Medidas de associação Felipe

Figueiredo

Correlação

Regressao

Interpretação

Causalidade

Cuidado!

 Duas variáveis podem parecer correlacionadas pois são influenciadas por uma terceira variável

 Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita

- Mas comprar mais telefones não vai salvar crianças!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Medidas de associação Felipe

Figueiredo

Correlação

riegressau

Interpretação

Jausanuau

Cuidado!

Medidas de associação Felipe

Figueiredo

Correlação

Interpretação

Na. 15 at a at a

Paguma

 Duas variáveis podem parecer correlacionadas pois são influenciadas por uma terceira variável

- Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita
- Mas comprar mais telefones n\u00e3o vai salvar crian\u00e7as!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Cuidado!

Medidas de associação Felipe

Figueiredo

Correlação

Interpretação

Coupolidad

- Duas variáveis podem parecer correlacionadas pois são influenciadas por uma terceira variável
- Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita
- Mas comprar mais telefones n\u00e3o vai salvar crian\u00e7as!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

 Se há uma relação de causalidade entre as duas variáveis, a correlação será não nula (positiva ou negativa)

 Quanto maior for a relação de dependência entre as variáveis, maior será o módulo da correlação.

 Se as variáveis não são relacionadas, a correlação será nula Medidas de associação Felipe

Figueiredo

Correlação

Regressão

Interpretação

Causalidade

 Se há uma relação de causalidade entre as duas variáveis, a correlação será não nula (positiva ou negativa)

- Quanto maior for a relação de dependência entre as variáveis, maior será o módulo da correlação.
- Se as variáveis não são relacionadas, a correlação será nula.

Medidas de associação
Felipe

Figueiredo

Correlação

Regressão

merpretação

Causalidade

Medidas de associação

Felipe Figueiredo

Correlação

negressau

ınterpretaçao

Causalidade

Resumo

 Se há uma relação de causalidade entre as duas variáveis, a correlação será não nula (positiva ou negativa)

- Quanto maior for a relação de dependência entre as variáveis, maior será o módulo da correlação.
- Se as variáveis não são relacionadas, a correlação será nula.

 Mas não podemos inverter a afirmativa lógica do slide anterior!

- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto n\u00e4o \u00e9 poss\u00edvel!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente

Correlação não implica em causalidade.

Medidas de associação Felipe

Figueiredo

Correlação

Regressão

merpretaçac

Causalidade

- Mas não podemos inverter a afirmativa lógica do slide anterior!
- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente

Correlação não implica em causalidade.

Medidas de associação Felipe

Figueiredo

Correlação

Regressão

nterpretação

Causalidade

 Mas não podemos inverter a afirmativa lógica do slide anterior!

 Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra

• Infelizmente isto não é possível!

 Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente

Correlação não implica em causalida

Medidas de associação Felipe

Figueiredo

Correlação

Regressao

Interpretação

Causalidade

 Mas não podemos inverter a afirmativa lógica do slide anterior!

 Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra

- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente Correlação não implica em causalidade. Medidas de associação

Felipe Figueiredo

Correlação

Regressão

nterpretação

Causalidade

 Mas não podemos inverter a afirmativa lógica do slide anterior!

 Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra

- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente

Correlação não implica em causalidade.

Medidas de associação Felipe

Figueiredo

Correlação

Regressão

Interpretação

Causalidade

Exemplo

Gasto com C&T (EUA) x Suicídios por enforcamento

Correlação: 0.992082

(Fonte: Spurious correlations)

Medidas de associação

Felipe Figueiredo

orreiação

...

Causalidade

ausalidade

acumo

Exemplo

Produção de mel x Prisões por posse de maconha

Correlação: -0.933389

(Fonte: Spurious correlations)

Medidas de associação

Felipe Figueiredo

Correlação

Interpretação

Causalidade

Jausanuaue

Exemplo

Afogamentos em piscina x Filmes com Nicholas Cage

Correlação: 0.666004

(Fonte: Spurious correlations)

Medidas de associação

Felipe Figueiredo

Correlação

Regressão

Interpretação

Causalidade

acuma

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- 2 Há uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- ⑤ É possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- é possível que a relação entre duas variáveis seja uma coincidência?

Medidas de associação
Felipe

Figueiredo

Correlação

Regressão

Interpretação

Causalidade

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- A uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- ⑤ É possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- É possível que a relação entre duas variáveis seja uma coincidência?

Medidas de associação Felipe

Figueiredo

Correlação

regressao

nterpretação

Causalidade

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- A uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- Sé possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- É possível que a relação entre duas variáveis seja uma coincidência?

Medidas de associação Felipe

Figueiredo

Correlação

Regressac

illei pi etação

Causalidade

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- A uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- Sé possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- é possível que a relação entre duas variáveis seja uma coincidência?

Medidas de associação Felipe

Figueiredo

Correlação

Regressao

nterpretação

Causalidade

Medidas de associação

Felipe Figueiredo

Correlação

Regressão

interpretação

Causalidade

Resumo

• É necessário investigar a relação entre as variáveis!

- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?

Medidas de associação

Felipe Figueiredo

Correlação

Regressao

interpretação

Jausalidade

Resumo

É necessário investigar a relação entre as variáveis!

- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?

Medidas de associação

Felipe Figueiredo

Correlação

negressau

ii itei pi etação

Jausandade

Resumo

É necessário investigar a relação entre as variáveis!

- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?

Medidas de associação

Felipe Figueiredo

Correlação

riegressao

.................

Jausailuaut

Resumo

É necessário investigar a relação entre as variáveis!

- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?