ICT in Building Design

Final Project

Alessandro Ciociola s220698

OUTLINE

- Building general description
- Software general description
- Specific modules
 - Shading
 - Lighting
 - Air quality

Building general description - 1

studente Mamak P.Tootkaboni Danial Mohabat Doost Xisochen Song

rof, arch. marianna nigra sistems arch. tahtitio (toert of, arch. mario grosso sistems arch. glacomo chiesa

New Building for the Faculty of Architecture ilding and Planning at the University of Melbourne

Politecnico di Torino . Faculty of Architecture . Academic year 2014/15
Master in Architecture and Sustainability
Sustainable Design of a Building and its Services

4

Building general description - 3

Software general description - 1

Language, data sources and tools

Software general description – 2 Project Directory

Configuration

- research_room.py
- conference_room.py

Shading

- Design.py
- requirements.py

Lighting

- Design.py
- requirements.py

AirQuality

- Design.py
- Requirements.py

ControlSimulation.py(main.py)

Software general description – 2bis Project Directory

BUILDING SPECIFIC INFORMATIONS

Configuration

- research_room.py conference_room.py
- **Shading**
 - Design.pyrequirements.py
- Lighting
 - Design.pyrequirements.py
- **AirQuality**
 - Design.py
 - requirements.py

Developers Architects Analysts (...) SIMULATION OF CONTROL AND COMMUNICATION OVER TIME

ControlSimulation.py (main.py)

Users

Software general description – 2bis Project Directory

BUILDING SPECIFIC INFORMATIONS

Configuration

- research_room.py conference_room.py
- **Shading**
 - Design.pyrequirements.py
- Lighting
 - Design.pyrequirements.py
- **AirQuality**
 - Design.py
 - requirements.py

Developers Architects Analysts

(...)

-> <u>DEMO</u> USING THE *SPYDER* IDE AND *PANDAS* DATAFRAMES

SIMULATION OF CONTROL AND COMMUNICATION OVER TIME

ControlSimulation.py (main.py)

CONTROL MODULES

Shading - 1 Goals

- Satisfy requirements
- Adapt to building specific conditions
- Save energy
- Ensure thermal comfort
- Low cost
- Low power

Shading - 2 Methodology

- Get geographical information of building
- Model sunpath
- Size up shading devices
- Define control strategy
- Simulate control strategy

Shading - 3 Melbourne sunpath

Shading – 4 Shading angles and shading devices

Shading – 5 Configuration example

```
requirements.py (~/Downloads/ICT_for_Buildings/Project/Shading) - gedit
                                                                                                        ■ (6:36, 95%) ●)) mer lug 12 06:25:50 ☆
           research_room.py ×
                                                                                 requirements.py x
         1 room id = {
                                                                                  1 n devices = 10
                   "name": "Research room",
                   "code": "AAA"
                                                                                   shading_requirements = {
           floor = {
                      "b":16.7,
"surface":190.5,
"material":"dark parquet",
                                                                                               "spring": 0.5
                       "rho":0.25
          ceiling = {
                       "surface":190.5,
"material":"dark grey paint",
                       "rho":0.45
          wall = {
                       "material":"light grey paint",
                       "rho":0.65
          windows = [
                           "surface":15.67,
                           "tau":0.72,
                                                                                                          Python + Tab Width: 4 +
                                                                                                                                    Ln 1, Col 1 INS
```

Shading – 5bis Requirements algorithm

```
Design.py (~/Downloads/ICT_for_Buildings/Project/Shading) - gedit
           Design.py x
                  self.df["orientation"] = window["orientation"]
                  self.df["hsa"] = self.df["azimuth"] - self.df["orientation"]
                  self.shade_needed_index = self.df.loc[(self.df.altitude > 0)\
                                                    & (self.df.azimuth > -80)\
                                                    & (self.df.azimuth < 80)].index
                  self.df["vsa"] = 0.0
                  self.df.loc[self.shade_needed_index, "vsa"] = \
                                    (self.df["altitude"].apply(np.deg2rad).apply(np.tan)\
                                    /self.df["hsa"].apply(np.deg2rad).apply(np.cos))\
                                    .apply(np.arctan).apply(np.rad2deg)
                  self.df["h"] = 0
                  self.df.loc[self.shade needed index. "h"] = \
                            (self.device_depth * self.df["vsa"].apply(np.deg2rad).apply(np.tan))\
                            / (self.df["hsa"].apply(np.deg2rad).apply(np.cos))
                  self.df["season"] = ""
                  self.df.loc["2017-1-1":"2017-3-21", "season"] = "summer"
                  self.df.loc["2017-12-21":"2017-12-31", "season"] = "summer"
                  self.df.loc["2017-3-21":"2017-6-21", "season"] = "fall"
                  self.df.loc["2017-6-21":"2017-9-21", "season"] = "winter"
                  self.df.loc["2017-9-21":"2017-12-21", "season"] = "spring"
                  def compute angle (season, req):
                      self.df.loc[self.df.season == season, "gamma"] = \
                                 (req * (90.0 - self.df.vsa).apply(np.sin)).apply(np.deg2rad)\
                                 .apply(np.arcsin).apply(np.rad2deg)
                      self.df.loc[self.df.season == season, "angle"] =\
                                180.0 - (90.0 - self.df.vsa)\
                                - self.df.loc[:, "gamma"]
                  for season in ["summer", "winter", "fall", "spring"]:
                      compute_angle(season, requirements[season])
                                                                                                     Python * Tab Width: 4 *
                                                                                                                              Ln 1, Col 1
```

Shading – 6 Dataframe example

Index	altitude	azimuth	orientation	hsa	vsa	h	season	gamma	angle	
2017-01-01 11:00:00	44.3	86.2	Θ	86.2	Θ	Θ	summer	0	Θ	
2017-01-01 11:05:00	45.3	85.4	Θ	85.4	Θ	Θ	summer	0	Θ	
2017-01-01 11:10:00	46.3	84.5	Θ	84.5	Θ	Θ	summer	0	Θ	
2017-01-01 11:15:00	47.3	83.6	Θ	83.6	Θ	Θ	summer	0	Θ	
2017-01-01 11:20:00	48.2	82.7	Θ	82.7	Θ	Θ	summer	Θ	Θ	
2017-01-01 11:25:00	49.2	81.8	Θ	81.8	Θ	Θ	summer	0	Θ	
2017-01-01 11:30:00	50.2	80.9	Θ	80.9	Θ	0	summer	0	Θ	
2017-01-01 11:35:00	51.2	79.9	Θ	79.9	82	11.6	summer	5.61	166	
2017-01-01 11:40:00	52.1	78.9	Θ	78.9	81.5	9.93	summer	5.94	166	
2017-01-01 11:45:00	53.1	77.9	Θ	77.9	81.1	8.63	summer	6.25	165	
2017-01-01 11:50:00	54.1	76.8	Θ	76.8	80.6	7.58	summer	6.55	164	
2017-01-01 11:55:00	55	75.7	Θ	75.7	80.2	6.72	summer	6.83	163	
2017-01-01 12:00:00	56	74.6	Θ	74.6	79.8	5.99	summer	7.09	163	
2017-01-01 12:05:00	56.9	73.4	Θ	73.4	79.5	5.38	summer	7.34	162	
2017-01-01 12:10:00	57.9	72.2	0	72.2	79.1	4.86	summer	7.58	162	
2017-01-01 12:15:00	58.8	70.9	Θ	70.9	78.8	4.41	summer	7.81	161	
2017-01-01 12:20:00	59.7	69.6	Θ	69.6	78.5	4.02	summer	8.02	160	
2017-01-01 12:25:00	60.6	68.2	0	68.2	78.2	3.68	summer	8.22	160	
2017-01-01 12:30:00	61.6	66.8	0	66.8	77.9	3.38	summer	8.41	160	
2017-01-01 12:35:00	62.5	65.3	0	65.3	77.7	3.12	summer	8.58	159	
2017-01-01 12:40:00	63.4	63.7	0	63.7	77.4	2.88	summer	8.75	159	
2017-01-01 12:45:00	64.2	62	Θ	62	77.2	2.67	summer	8.91	158	

Shading - 7 Height of produced shades during the year

Shading – 8 Device angles during the year

Lighting – 1 Goals

- Satisfy requirements
- Adapt to building specific conditions
- Save energy
- Ensure light comfort
- Low cost
- Low power

Lighting - 2 Methodology

- Choose lighting device
- Get space index and total flux
- Compute number of sources
- Define control strategy
- Simulate control strategy

Lighting - 3 Choosen LED lamp

1930 1 €7KG ⊕ \$\vec{1}{2}\$ (€ \$\vec{1}{2}\$\$

Product information

This 1200mm x 300mm luminaire showcases everything that's innovative and exciting about Lumination™. Suspended from the ceiling, this strikingly beautiful luminaire combines brilliant aesthetics with space-filling light, all contained within a premium-quality aluminium. And when it's switched off, clear lens means there's no visible light source.

Applications

General Lighting

Office, Retail, Healthcare, Education

Features & Benefits

LED Technology

- Long life (50,000hrs @ L85)
- 76lm/W delivered at 4000K • Fully dimmable as standard (1-10V or DALI)
- · Rohs Compliant, mercury free

Uniform illuminated surface

- A Choice of Design Aesthetic and Superior performances

 Modern Design
- . A Uniform illuminating surface: no led "dots"
- Enhanced visual performance
- Enhanced emotional light experience Direct and Indirect Light

Green solutions

- A sustainable green choice for Energy Saving Durable and Reliable and Superior performances
- Compliant to photo biological safety standard No IR or UV radiation

Ease of install & maintenance

Robust Design Floating Light Source

Advanced design provides efficient functional downlighting and ambient uplighting.

Basic data

Product Code	Product Description	CCT	Beam Pattern	Dimming Controller	Certification
67646	EP147A1CVSLVR	3000K	Medium	1-107	CE
67644	EP147A2CVSLVR	3500K	Medium	1-107	CE
67645	EP147A3CVSLVR	4000K	Medium	1-107	CE
67649	EP147A1CDSLVR	3000K	Medium	DALI	CE
67647	EP147A2CD5LVR	3500K	Medium	DALI	CE
67648	EP147A3CD5LVR	4000K	Medium	DALI	CE

Specifications

Input Voltage	120-277V	Physical Speci	
Input Power	55W	Light Fixture Di	
Input Frequency (Hz)	50/60Hz	Driver Enclosus	
Power Factor	>0.9	Light Fixture W	
Lumen Output (Im)	3900lm (3000k) 4000lm (3500k)	Driver Enclosus	
	4200lm (4000K)	Environmental	
Efficiency Im/W)	71 (300040 73 (350040 76 (400040	Environmental Temperature R	
		- Environmental	
	3000, 3500, 4000	Inon-condensis	
Min CRI	80	Environmental	
Control	1-10V or DAU	IP Roting	
Life (LBS, h)	50,000		
Worronty	5 years		

Physical Specifications	
Light Fixture Dimensions	1206mm x 299mm x 35mm
Driver Enclosure Dimensions:	128.1mm × 380mm × 49.8mm
Light Fixture Weight	6.5kg
Driver Enclosure Weight:	2.0kg
Environmental Specifications	
Environmental Operating Temperature Range	-10C to +25C
Environmental Humidity Inon-condensingl	20 to 80% Non-condensing, dry 8 damp location rated
Environmental Storage Temperature Ronge	-40C to +60C
IP Rating	IP30

GE Lighting reserves the right to amend the technical data and the drawings.

Dimensions [mm]

Light Output

Spectral Distribution

www.gelighting.com/eu

Lighting – 4 Requirements and configuration

```
research_room.py (~/Downloads/ICT_for_Buildings/Project/Configuration) - gedit
                                                                                                    Dpen - Save 🖺 (a Undo A) X 📑
       requirements.pv x
                                                                            research_room.py x
        lighting_requirements = {
                                                                               windows = [
                                                                                              "surface": 15.67,
                                                                                              "epsilon":0.5,
                                                                                              "tau":0.72,
                                                                                              "surface": 15.67,
                                                                                              "width":6.82,
"orientation":0,
                                                                                              "surface":38.73,
                                                                                              "epsilon":0.5,
                                                                                              "tau":0.72,
                                                                                              "height": 2.85,
                                                                                              "orientation":180,
                                                                                              "surface":15.67,
                                                                                              "psi":0.85,
                                                                                                    Python * Tab Width: 4 *
                                                                                                                            Ln 7, Col 22
```

Lighting – 5 Requirements algorithm

```
Design.py (~/Downloads/ICT_for_Buildings/Project/Lighting) - gedit
          Design.py x
        import sys
         sys.path.append("/home/alecioc/Downloads/ICT for Buildings/Project")
         sys.path.append("/home/alecioc/Downloads/ICT_for_Buildings/Project/Configuration")
         import datetime
         import pandas as pd
         import matplotlib.pylab as plt
         plt.style.use('ggplot')
         from requirements import lighting_requirements
         from research_room import floor
        from research_room import ceiling
         from research room import wall
        from research room import windows
         from research room import desk
         rho_m = (floor["surface"] * floor["rho"]\
         + ceiling["surface"] * ceiling["rho"]\
         + wall["surface"] * wall["rho"])\
          / (floor["surface"] + ceiling["surface"] + wall["surface"])
         for w in windows:
            w["eta"] = w["height"] * w["width"] * w["psi"] * w["epsilon"] * w["tau"]
        eta_m = pd.Series([w["eta"] for w in windows]).sum()\
         / ((1.0 - rho_m) * (floor["surface"] + ceiling["surface"] + wall["surface"]))
        space_index = (floor["a"]*floor["b"])\
                      / ((floor["a"]+floor["b"])*(ceiling["height"] - desk["height"]))
         total_flux = (lighting_requirements["Em"] * floor["surface"])\
                     / (lighting_requirements["U"] * lighting_requirements["M"])
        n_sources = total_flux / lighting_requirements["lumen_output"]
                                                                                                   Python * Tab Width: 4 *
                                                                                                                           Ln 1, Col 1
```

Lighting – 6 Control simulation results

25

Air Quality – 1 Goals

- Satisfy requirements
- Adapt to building specific conditions
- Save energy
- Limit health risk
- Low cost
- Low power

Air Quality - 2 Methodology

- Choose materials for room
- Compute room occupation factors
- Define control strategy
- Simulate control strategy

Air Quality – 3 Requirements and configuration

```
It 🔻 № (100%) •1)) mer lug 12 08:02:31 😃
requirements.py (~/Downloads/ICT_for_Buildings/Project/AirQuality) - gedit
          conference_room.py ×
                                                                          requirements.py x
        room id = {
                                                                           1 air_quality_requirements = {
                 "name": "Conference room",
                "code": "BBB"
                                                                                       "qiaq":39.6,
                                                                                        "nhs":9,
         conference_room = {
                    "volume":15 * 6.85 * 5.68,
                    "wall_voc":48,
                    "floor_surface":15 * 6.85,
                    "ceiling surface":15 * 6.85,
                    "ceiling_voc":48
                                                                                                  Python * Tab Width: 4 *
                                                                                                                          Ln 1, Col 1
```

Air Quality – 4 Requirements algorithm

```
Design.py (~/Downloads/ICT_for_Buildings/Project/AirQuality) - gedit
          Design.py X
                        .drop(["boardid", "boardtype", "elevation", "Position"], axis=1)
         df["timestamp"] = df.index.values
         df["occupancy"] = pd.Series(np.random.randint(5,20,size=len(df)), index=df.index)
         df.loc[df.timestamp.apply(lambda d:d.hour) < 9, "occupancy"] = np.NaN
         df.loc[df.timestamp.apply(lambda d:d.hour) > 18, "occupancy"] = np.NaN
         df.loc[df.timestamp.apply(lambda d:d.hour) == 13, "occupancy"] = np.NaN
         df["f inst"] = df["occupancy"]
         df["iaq inst"] = air_quality_requirements["qiaq"] * df["f inst"] / conference_room["volume"]
         df["voc_wall"] = (conference_room["wall_voc"] * (conference_room["wall_surface"]/(0.9*conference_room["volume"])))\
                              / df["iag inst"]
         df["voc floor"] = (conference room["floor voc"] * (conference room["floor surface"]/(0.9*conference room["volume"])))\
                              / df["iaq inst"]
         df["voc ceiling"] = (conference room["ceiling voc"] * (conference room["ceiling surface"]/(0.9*conference room["volume"])))\
                              / df["iag inst"]
         df["voc"] = (df["voc_ceiling"] + df["voc_floor"] + df["voc_wall"]).fillna(0)
         df["ventilation_power"] = (df.voc.clip(lower=0.0, upper=100.0)).fillna(0)
         plt.figure(figsize=(15,6))
         plt.title("Room occupancy [number of people]")
         df.occupancy.fillna(0).plot(drawstyle="step")
         plt.savefig("occupancy.png")
         plt.figure(figsize=(15,6))
         plt.title("VOC and ventilation dimmer power")
         df.voc.fillna(0).plot(drawstyle="step", label="VOC [micro q/m3]")
         df.ventilation_power.fillna(0).plot(drawstyle="step", label="Ventilation dimmer power [V]")
 念
         plt.savefig("ventilation power.png")
         df.loc[:,["timestamp","voc", "ventilation_power"]].to_csv("df.csv")
                                                                                                      Python * Tab Width: 4 *
                                                                                                                              Ln 1, Col 1
```

Air Quality – 5 Control simulation results

Air Quality – 5bis Control simulation results

THANKS!

Any questions?

Live demonstration of the implemented software

