Regionally Influential Users in Location-Aware Social Networks

Panagiotis Bouros¹ Dimitris Sacharidis² Nikos Bikakis³

¹Humboldt-Universität zu Berlin, Germany bourospa@informatik.hu-berlin.de

2Institute for the Management of Information Systems — "Athena" R.C, Greece
dsachar@imis.athena-innovation.gr

National Technical University of Athens, Greece
bikakis@dblab.ntua.gr

22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems November 4-7, 2014, Dallas, Texas, USA

Motivation

- ► Motivated by word-of-mouth and viral marketing
- ► Most influential users within a spatial region
- ▶ Best people to spread the word and raise largest possible attention

2. Problem Definition

Location-Aware Social Network

 \triangleright Set of users U, set of locations L, set of check-ins C, social graph G(U,E)

Propagation model MIAwoT

- ► Propagation probability
- $ightharpoonup p_{xy}$ for edge (u_x, u_y) of social graph G, degree of influence
- $ho(\pi_{XY})$ for path $\pi_{XY}(u_X, \dots u_Y)$ on social graph
- ▶ User u_X influences u_Y only via maximum influence path (mip) π_{XY}^*

$$p(\pi_{xy}^*) = max_{\forall \pi_{xy} \in G} \{p(\pi_{xy})\}$$

Regional users U_R

► Set of users checked-in at a location inside spatial region *R*

Locality γ_R

► Probability of checking-in inside region *R*

$$\gamma_R(u_X) = \frac{|C(u_X) \text{ inside } R|}{|C(u_X)|}$$

Regional influence I_R

► Likelihood of influencing regional users

$$I_R(u_X) = \sum_{\forall u_i \in U_R} p(\pi_{Xi}^*) \cdot \gamma_R(u_i)$$

Problem k-RIL

Find subset of k regional users $\mathcal{T} \subseteq U_R$: $\forall u_i \in \mathcal{T}$ and $\forall u_i \in U_R \setminus \mathcal{T}, \ I_R(u_i) \geq I_R(u_i)$

Example

Locations L

Check-ins C

Social graph G(U, E)

Propagation probabilities

$$egin{array}{ll} p_{12} = 1 & p_{48} = 2/3 \ p_{23} = 1/2 & p_{56} = 1/2 \ p_{25} = 2/3 & p_{58} = 1/2 \ p_{34} = 3/4 & p_{67} = 3/5 \ p_{35} = 2/3 & p_{89} = 3/4 \ \end{array}$$

- ightharpoonup Regional users, $U_R = \{u_1, u_4, u_5, u_6\}$
- ► Propagation model
- \rightarrow mips for u_1

$$\pi_{11}^*(u_1), \ \pi_{14}^*(u_1, u_2, u_3, u_4), \ \pi_{15}^*(u_1, u_2, u_5), \ \pi_{16}^*(u_1, u_2, u_5, u_6)$$

▶ Distance matrix *D*

	u_1	<i>u</i> ₄	u 5	u 6
u_1	0	1	0.4	1.1
		0		
u 5	0.4	0.7	0	0.7
u 6	1.1	0.7 1.4	0.7	0

▶ Regional influence (for simplicity, $\gamma_R(\cdot) = 1$)

$$I_R(u_1) = 1 + 3/8 + 2/3 + 1/3 = 2.375$$

 $I_R(u_4) = 3/8 + 1 + 1/2 + 1/4 = 2.125$
 $I_R(u_5) = 2/3 + 1/2 + 1 + 1/2 = 2.666$
 $I_R(u_6) = 1/3 + 1/4 + 1/2 + 1 = 2.083$

3. Computing Regional Influence

- ► Based on closeness centrality
- ► Set of edges weights *W*
- For edge (u_X, u_Y) of social graph G, $w_{XY} = -\ln p_{XY}$
- Social distance $d(u_X, u_Y)$, sum of weights on shortest path from u_X to $u_{\scriptscriptstyle V}$ on G
- ► Propagation probability of an mip

$$p(\pi_{xy}^*) = e^{-d(u_x, u_y)}$$

► Regional influence

$$I_R(u_X) = \sum_{\forall u_i \in U_R} e^{-d(u_X, u_i)} \cdot \gamma_R(u_i)$$

4. The DRIC algorithm

Input: social graph G(U, E); set of weights W; set of locations L; set of check-ins C; spatial region R; value k

Output: top-k list T

Variables: set of regional users U_R , social distance matrix D

 $U_R \leftarrow \text{GetRegionalUsers}(U, L, C, R)$;

foreach $u_i \in U_R$ do

 $D \leftarrow \text{Dijkstra}(u_i, G, W, U_R)$;

 $I_R(u_i) \leftarrow \text{ComputeRegionalInfluence}(u_i, U_R, D);$

push u_i to \mathcal{T} ;

return \mathcal{T} :

5. Experiments

Dataset	U	E	L	<i>C</i>
Gowalla	197K	950K	1.3M	6.4M
Brightkite	58K	214K	773K	4.5M
Foursquare1	18K	116K	43K	2M
Foursquare2	11K	47K	187K	1.4M

Response time (sec) varying query selectivity, k = 5

Dataset	$ U_R / U (\%)$					
Dataset	0.1	0.2	0.3	0.4	0.5	
Gowalla	140.6	262.1	432.5	590.6	1148.6	
Brightkite	9.6	17.9	26.8	42.1	71.5	
Foursquare1	0.9	2.3	3.2	5.8	11.2	
Foursquare2	0.2	0.4	0.6	0.9	1.9	