

GEL-4074 : Ingénierie de la compatibilité électromagnétique

Laboratoire 3 : Modèles des éléments discrets

Section 1 : condensateurs

Courbes obtenues expérimentalement :

Condensateur électrolytique

Résultats expérimentaux :

f [Hz]	20LOG(f)	Vout [mV]	Vin [mV]	Vout/Vin	ZL [Ohms]	20Log(ZL)
10000	80	366	707	0,51768034	53,6656891	34,5939342
20000	86,0205999	214	707	0,30268741	21,703854	26,7307372
30000	89,5424251	152	707	0,21499293	13,6936937	22,7304122
40000	92,0411998	121	707	0,17114569	10,3242321	20,2771552
50000	93,9794001	102	707	0,14427157	8,42975207	18,516296
60000	95,563025	89	707	0,12588402	7,20064725	17,1474307
70000	96,9019608	80	707	0,11315417	6,37958533	16,095849
80000	98,0617997	72	707	0,10183876	5,66929134	15,0705755
90000	99,0848502	68	707	0,09618105	5,32081377	14,5195612
100000	100	65	707	0,09193777	5,0623053	14,0869667
110000	100,827854	62	707	0,08769448	4,80620155	13,6360396
120000	101,583625	59	707	0,0834512	4,55246914	13,1649402
130000	102,278867	57	707	0,08062235	4,38461538	12,8386301
140000	102,922561	55	707	0,07779349	4,21779141	12,501702
150000	103,521825	54	707	0,07637907	4,13476263	12,3290117
160000	104,0824	53	707	0,07496464	4,05198777	12,1533625
170000	104,608978	52	707	0,07355021	3,96946565	11,974641
180000	105,10545	51	707	0,07213579	3,88719512	11,7927268
190000	105,575072	50	707	0,07072136	3,80517504	11,6074928
200000	106,0206	48,5	707	0,06859972	3,682612	11,3231193
300000	109,542425	45	707	0,06364922	3,39879154	10,6264906
400000	112,0412	44	707	0,06223479	3,31825038	10,418183
500000	113,9794	43	707	0,06082037	3,23795181	10,2054076
600000	115,563025	42	707	0,05940594	3,15789474	9,98795299
700000	116,901961	42	707	0,05940594	3,15789474	9,98795299
800000	118,0618	42	707	0,05940594	3,15789474	9,98795299
900000	119,08485	41	707	0,05799151	3,07807808	9,76559264
1000000	120	41	707	0,05799151	3,07807808	9,76559264
2000000	126,0206	39	707	0,05516266	2,91916168	9,30516298
3000000	,	38	707	0,05374823	2,84005979	9,06654966
4000000	132,0412	40	707	0,05657709	2,99850075	9,53808323
5000000	133,9794	41	707	0,05799151	3,07807808	9,76559264
6000000	135,563025	44	707	0,06223479	3,31825038	
7000000	136,901961	47	707	0,06647808	3,56060606	11,0304785
8000000	138,0618	51	707	0,07213579	3,88719512	11,7927268
9000000	139,08485	56	707	0,07920792	4,30107527	12,6715409
10000000	140	62	707	0,08769448	4,80620155	13,6360396
11000000	140,827854	68	707	0,09618105	5,32081377	14,5195612
12000000	141,583625	73	707	0,10325318	5,75709779	15,2040721
13000000	142,278867	79	707	0,11173975	6,28980892	15,972749
14000000	142,922561	88	707	0,12446959	7,1082391	17,0352405
15000000	143,521825	99	707	0,14002829	8,14144737	18,2140324

Page: 3/24

De 10⁴ Hz à 0.110 MHz : Comportement capacitif

$$Z_{C} = \frac{1}{c\omega} = \frac{1}{2\pi f}, f = 110kHz$$

$$Z_{C} = 10^{(3.683/20)} = 1.53\Omega$$

$$C = \frac{1}{2\pi fZ_{c}} = \frac{1}{2\pi * 10^{5} * 1.53} = 0.9\mu F$$

Page: 4/24

De 110Khz à 3 MHz comportement résistif

Pour f=3MHz:

$$Z_R = 10^{(2.84/20)} = 1.387\Omega$$

De 3 MHz à 15 MHz comportement inductif

Pour f = 12MHz:

$$Z_{L} = L\omega = 2\pi fL, f = 12MHz$$

$$Z_{L} = 10^{(6.29/20)} = 2.06\Omega$$

$$L = \frac{2.06}{2\pi * 12 * 10^{6}} = 27.31nH$$

Le modèle équivalent série du condensateur est :

Courbe théorique vs courbe expérimentale :

Condensateur céramique long

Résultats expérimentaux :

f [Hz]	20LOG(f)	Vout [mV]	Vin [mV]	Vout/Vin	ZL [Ohms]	20Log(ZL)
10000	80	378	707	0,189	11,6522811	21,3282191
20000	86,0205999	216	707	0,108	6,05381166	15,6405781
30000	89,5424251	148	707	0,074	3,99568035	12,0318147
40000	92,0411998	113	707	0,0565	2,99417064	9,52553095
50000	93,9794001	91,3	707	0,04565	2,3916802	7,57406217
60000	95,563025	76,2	707	0,0381	1,98045535	5,93530111
70000	96,9019608	65,3	707	0,03265	1,68760014	4,54539108
80000	98,0617997	56,4	707	0,0282	1,45091583	3,23284436
90000	99,0848502	50,2	707	0,0251	1,28731152	2,19367311
100000	100	45,3	707	0,02265	1,15874559	1,27976187
110000	100,827854	41,2	707	0,0206	1,05166428	0,4375425
120000	101,583625	37,2	707	0,0186	0,94762584	-0,4672621
130000	102,278867	35,1	707	0,01755	0,89317523	-0,98126664
140000	102,922561	32,1	707	0,01605	0,81559022	-1,77055978
150000	103,521825	30,3	707	0,01505	0,76915266	-2,27974904
160000	104,0824	27,9	707	0,01395	0,70736778	-3,00709451
170000	104,608978	26,5	707	0,01325	0,671396	-3,46042505
180000	105,10545	25,1	707	0,01255	0,63547521	-3,93802768
190000	105,575072	23,2	707	0,0116	0,58680696	-4,63009486
200000	106,0206	22,1	707	0,01105	0,55867334	-5,05684105
210000	106,444386	20,9	707	0,01045	0,52801779	-5,54702897
220000	106,848454	20,1	707	0,01005	0,50760139	-5,88954388
230000	107,234557	19,1	707	0,00955	0,48210409	-6,33718361
240000	107,604225	18,2	707	0,0091	0,45917852	-6,76036864
250000	107,9588	17,5	707	0,00875	0,44136192	-7,10410286
260000	108,299467	17,3	707	0,00865	0,43627377	-7,20481798
270000	108,627275	16,3	707	0,00815	0,41084841	-7,72636769
280000	108,943161	15,8	707	0,0079	0,39814535	-7,99916708
290000	109,24796	14,3	707	0,00715	0,36007453	-8,87215188
300000	109,542425	13,5	707	0,00675	0,33979361	-9,37569593
310000	109,827234	12,9	707	0,00645	0,32459363	-9,77320017
320000	110,103	12,5	707	0,00625	0,31446541	-10,0485424
330000	110,370279	12,1	707	0,00605	0,30434126	-10,3327832
340000	110,629578	11,8	707	0,0059	0,29675083	-10,5521612
350000	110,881361	11,3	707	0,00565	0,28410519	-10,9304165
360000	111,12605	11	707	0,0055	0,27652086	-11,1654419
380000	111,595672	10,6	707	0,0053	0,26641198	-11,4889249
400000	112,0412	10,5	707	0,00525	0,2638854	-11,5716928
420000	112,464986	9,73	707	0,004865	0,2444392	-12,236583
440000	112,869054	9,4	707	0,0047	0,23610972	-12,5377228
800000	118,0618	5,84	707	0,00292	0,14642757	-16,687543
900000	119,08485	5,92	707	0,00296	0,14843938	-16,5690173
1000000	120	6,13	707	0,003065	0,15372116	-16,2653272
1400000	122,922561	8,54	707	0,00427	0,21441555	-13,3748743
1600000	124,0824	10,1	707	0,00505	0,2537816	-11,9107975
2000000	126,0206	12,6	707	0,0063	0,31699708	-9,97889472
3000000	129,542425	19,1	707	0,00955	0,48210409	-6,33718361
4000000	132,0412	26	707	0,013	0,6585613	-3,62807592
5000000	133,9794	32,2	707	0,0161	0,81817258	-1,7431016
6000000	135,563025	39,2	707	0,0196	0,999592	-0,00354454
7000000	136,901961	46,6	707	0,0233	1,19279205	1,53129475
8000000	138,0618	54,8	707	0,0274	1,40859552	2,97572604
9000000	139,08485	62,8	707	0,0314	1,62089614	4,19510375
10000000	140	72	707	0,036	1,86721992	5,42390942
11000000	140,827854	81,3	707	0,04065	2,11862198	6,52106949
12000000	141,583625	91,5	707	0,04575	2,39717055	7,59397868
13000000	142,278867	102	707	0,04373	2,68703899	8,58547936
14000000	142,922561	113	707	0,0565	2,99417064	9,52553095
15000000	143,521825	125	707	0,0625	3,33333333	10,4575749
13000000	143,321025	125	/0/	0,0025	3,3333333	10,43/3/49

Page: 6/24

De 10Khz à 1MHz comportement capacitif :

$$Z_{C} = \frac{1}{c\omega} = \frac{1}{2\pi f}, f = 70kHz$$

$$Z_{C} = 10^{(4.545/20)} = 1.688\Omega$$

$$C = \frac{1}{2\pi fZ_{c}} = \frac{1}{2\pi * 70000 * 1.688} = 1.3\mu F$$

Page: 7/24

De 1 MHz à 15 MHz comportement inductif

Pour f = 10MHZ

$$Z_{L} = L\omega = 2\pi fL, f = 10MHz$$

$$Z_{L} = 10^{(5.424/20)} = 1.867\Omega$$

$$L = \frac{1.867}{2\pi * 10 * 10^{6}} = 29.71nH$$

Circuit équivalent :

La fréquence de résonnance (où l'impédance est minimum) est 800kHz

Courbe théorique vs courbe expérimentale :

Condensateur céramique court

Résultats expérimentaux

[Hz]	20LOG(f)	Vout [mV]	Vin [mV]	Vout/Vin	ZL [Ohms]	20Log(ZL)
10000	80	370	707	0,52333805	54,8961424	34,7908366
20000	86,0205999	210	707	0,2970297	21,1267606	26,4966582
30000	89,5424251	145	707	0,20509194	12,9003559	22,2120338
40000	92,0411998	111	707	0,15700141	9,31208054	19,3809345
50000	93,9794001	89,6	707	0,12673267	7,25623583	17,2142278
60000	95,563025	74,9	707	0,10594059	5,92469546	15,4533206
70000	96,9019608	64,3	707	0,09094767	5,0023339	13,9834535
80000	98,0617997	55,8	707	0,07892504	4,28439803	12,6377962
90000	99,0848502	50,1	707	0,0708628	3,81336581	11,6261694
100000	100	45,2	707	0,06393211	3,41492898	10,6676335
110000	100,827854	41,1	707	0,05813296	3,08604896	9,78805623
120000	101,583625	37,6	707	0,05318246	2,80848521	8,96944282
130000	102,278867	34,6	707	0,04893918	2,57287329	8,20836797
140000	102,922561	32,2	707	0,04554455	2,38589212	7,55301604
150000	103,521825	30,3	707	0,04285714	2,23880597	7,00032913
160000	104,0824	28,2	707	0,03988685	2,07719505	6,34954558
170000	104,608978	26,6	707	0,03762376	1,95473251	5,82174672
180000	105,10545	25,0	707	0,03536068	1,83284457	5,26251277
190000	105,575072	23,8	707	0,03366337	1,74180328	4,81998207
200000	106,0206	22,7	707	0,0321075	1,65862926	4,39498643
210000	106,444386	21,6	707	0,03055163	1,57572221	3,94959311
220000	106,848454	20,7	707	0,03033103	1,50808684	3,56852702
230000	107,234557	19,5	707	0,02327804	1,41818182	3,03463826
240000	107,604225	18,9	707	0,02738133	1,3733469	2,7556050
260000	108,299467	17,3	707	0,02446959	1,25416848	1,96711763
280000	•		707		-	
300000	108,943161	16,2	707	0,02291372	1,17255356	1,3826538
320000	109,542425	15,1	707	0,02135785	1,09119815	0,75807242
	110,103	14,3		0,02022631	1,03219287	
340000	110,629578	13,4	707	0,01895332	0,96597463	-0,30068564
360000	111,12605	12,8	707	0,01810467	0,92192452	-0,70609273
380000	111,595672	12	707	0,01697313	0,86330935	-1,27667108
400000	112,0412	11,5	707	0,01626591	0,82674335	-1,65258579
500000	113,9794	9,13	707	0,01291372	0,65413329	-3,68667495
600000	115,563025	7,8	707	0,01103253	0,55778032	-5,07073625
700000	116,901961	6,85	707	0,00968883	0,48918089	-6,2106103
800000	118,0618	6,14	707	0,00868458	0,43803327	-7,16985798
900000	119,08485	5,8	707	0,00820368	0,41357673	-7,66887819
1000000	120	5,53	707	0,00782178	0,39417224	-8,08627933
2000000	126,0206	6,86	707	0,00970297	0,48990202	-6,1978154
3000000	129,542425	9,8		0,01386139	0,70281124	-3,06322597
4000000	132,0412	13	707	0,01838755	0,93659942	-0,56892228
5000000	133,9794	14,8	707	0,02093352	1,06905519	0,5800025
6000000	135,563025	18,3	707	0,02588402	1,3285901	2,46782022
7000000	136,901961	21,8	707	0,03083451	1,59077642	4,03218287
8000000	138,0618	25,7	707	0,03635078	1,8861001	5,51129477
9000000	139,08485	29,6	707	0,04186704	2,18482433	6,78833046
10000000	140	34,1	707	0,04823197	2,53380889	8,075477
11000000	140,827854	38,6	707	0,05459689	2,88749252	9,2104173
12000000	141,583625	43,6	707	0,06166902	3,2861019	10,333620
13000000	142,278867	48,8	707	0,06902405	3,70707991	11,380639
14000000	142,922561	54,3	707	0,07680339	4,15964455	12,3811244
15000000	143,521825	60,1	707	0,08500707	4,6452311	13,3401465

Page: 9/24

De 10Khz à 1MHz comportement capacitive

$$Z_{C} = \frac{1}{c\omega} = \frac{1}{2\pi f}, f = 100kHz$$

$$Z_{C} = 10^{(10.67/20)} = 3.416\Omega$$

$$C = \frac{1}{2\pi fZ_{c}} = \frac{1}{2\pi * 100000 * 3.416} = 5.4\mu F$$

Page: 10/24

De 1 MHz à 15 MHz comportement inductif

$$Z_L = L\omega = 2\pi f L, f = 12MHz$$

 $Z_L = 10^{(10.30/20)} = 3.28\Omega$
 $L = \frac{3.28}{2\pi * 12 * 10^6} = 43.502nH$

La fréquence de résonnance (où l'impédance est minimum) est : 1MHz

L'inductance parasite de ce circuit est de 43.502nH.

Courbe théorique vs courbe expérimentale :

Page : 12/24

Section 2 : résistances

Courbes obtenues expérimentalement :

Résistance 1/8 W

Résultats expérimentaux :

f [Hz]	20LOG(f)	Vout [mV]	Vin [mV]	Vout/Vin	ZL [Ohms]	20Log(ZL)
10000	80	68,1	1,7677	0,03852464	2,00341257	6,03540788
20000	86,0205999	68,1	1,67	0,04077844	2,12560085	6,5496343
50000	93,9794001	68,1	1,67	0,04077844	2,12560085	6,5496343
90000	99,0848502	68	1,67	0,04071856	2,12234707	6,53632811
200000	106,0206	70	1,67	0,04191617	2,1875	6,79896123
400000	112,0412	77	1,67	0,04610778	2,4168236	7,66489907
1000000	120	81	1,67	0,04850299	2,54877281	8,12662252
3000000	129,542425	84,6	1,67	0,05065868	2,66809638	8,52403027
8000000	138,0618	88,8	1,67	0,05317365	2,80799393	8,96792329
9000000	139,08485	90,3	1,67	0,05407186	2,85813762	9,12166273
10000000	140	98,2	1,67	0,0588024	3,1238071	9,89368415
11000000	140,827854	126	1,67	0,0754491	4,08031088	12,2138651
12000000	141,583625	156	1,67	0,09341317	5,15191546	14,2393746
13000000	142,278867	217	1,67	0,12994012	7,46730902	17,4632825
14000000	142,922561	248	1,67	0,14850299	8,72011252	18,8104418
15000000	143,521825	277	1,67	0,16586826	9,94256999	19,9499731

Page: 13/24

De 10 KHz à 300KHz comportement résistif

Pour f=110KHz:

$$Z_R = 10^{(6.915/20)} = 2.22\Omega$$

De 300KHz à 15 MHz comportement inductif

$$Z_{L} = L\omega = 2\pi fL, f = 10MHz$$

$$Z_{L} = 10^{(26.09/20)} = 20.16\Omega$$

$$L = \frac{20.16}{2\pi * 10 * 10^{6}} = 3.2uH$$

Circuit équivalent :

Courbe théorique vs courbe expérimentale :

Résistance de puissance (5W)

Résultats expérimentaux :

f [Hz]	20LOG(f)	Vout [mV]	Vin [mV]	Vout/Vin	ZL [Ohms]	20Log(ZL)
10000	80	68,1	1,67	0,04077844	2,12560085	6,5496343
20000	86,0205999	68,1	1,67	0,04077844	2,12560085	6,5496343
300000	109,542425	70,9	1,67	0,04245509	2,21687199	6,91481232
500000	113,9794	77,4	1,67	0,04634731	2,4299887	7,71208507
600000	115,563025	81,1	1,67	0,04856287	2,55208006	8,13788587
700000	116,901961	84,6	1,67	0,05065868	2,66809638	8,52403027
800000	118,0618	88,8	1,67	0,05317365	2,80799393	8,96792329
900000	119,08485	90,3	1,67	0,05407186	2,85813762	9,12166273
1000000	120	98,2	1,67	0,0588024	3,1238071	9,89368415
1500000	123,521825	126	1,67	0,0754491	4,08031088	12,2138651
2000000	126,0206	156	1,67	0,09341317	5,15191546	14,2393746
2500000	127,9588	187	1,67	0,11197605	6,30478759	15,9934092
3000000	129,542425	217	1,67	0,12994012	7,46730902	17,4632825
3500000	130,881361	248	1,67	0,14850299	8,72011252	18,8104418
4000000	132,0412	277	1,67	0,16586826	9,94256999	19,9499731
5000000	133,9794	345	1,67	0,20658683	13,0188679	22,2914644
6000000	135,563025	412	1,67	0,24670659	16,3751987	24,2837316
700000	136,901961	480	1,67	0,28742515	20,1680672	26,0932856
8000000	138,0618	553	1,67	0,33113772	24,7538048	27,8728393
9000000	139,08485	622	1,67	0,37245509	29,6755725	29,4479821
10000000	140	701	1,67	0,41976048	36,1713106	31,1672849
11000000	140,827854	775	1,67	0,46407186	43,2960894	32,7289734
12000000	141,583625	861	1,67	0,51556886	53,2138443	34,5204927
13000000	142,278867	921	1,67	0,55149701	61,481976	35,7749563
14000000	142,922561	983	1,67	0,58862275	71,5429403	37,0913357
15000000	143,521825	1040	1,67	0,62275449	82,5396825	38,3332559

Page: 15/24

De 10 KHz à 8.5MHz comportement résistif

Pour f=110KHz

$$Z_R = 10^{(68.968/20)} = 2.81\Omega$$

Page: 16/24

De 8.5MHz à 15 MHz comportement inductif

$$Z_{L} = L\omega = 2\pi fL, f = 13MHz$$

$$Z_{L} = 10^{(17.46/20)} = 7.46\Omega$$

$$L = \frac{7.46}{2\pi * 13 * 10^{6}} = 91.33nH$$

Page: 17/24

Courbe théorique vs courbe expérimentale :

Boucle rectangulaire

Résultats expérimentaux :

<u>þ</u> [m]	<u>a</u> [m]	Vout [V]	Vout/Vin [V]	ZL [Ohms]	L [H]
0.05	0.01	0.510	0,289	10,27395	6,85E-07
0.06	0.02	0.500	0,282	10,1238	6,75E-07
0.07	0.03	0.484	0,273	9,92355	6,62E-07
0.08	0.04	0.454	0,257	9,54755	6,37E-07
0.09	0.05	0.407	0,23	8,855	5,90E-07

Page: 18/24

Courbes expérimentales et théoriques :

On observe que les 2 courbes ont la même allure, même si l'ordre de grandeur des valeurs diffère un peu.

Section 3 – Ferrite

1. l'inductance d'un segment de fil de longueur l = 5 cm et de rayon r = 2.5 mm

$$L = \frac{\mu_0 l}{2\pi} \left(\ln \frac{2l}{r} - 1 \right)$$

$$L = \frac{4\pi * 10^{-7} \frac{H}{m} * 0.05 m}{2\pi} \left(\ln \frac{2 * 0.05 m}{0.0025 m} - 1 \right)$$

$$L = 36.1 nH$$

Page: 19/24

2. l'impédance et l'inductance du bout de fil (f = 15 MHz)

$$Z_{L} = \frac{50 * \frac{V_{out}}{V_{in}}}{1 - \frac{V_{out}}{V_{in}}}$$
$$L = \frac{Z_{L}}{2\pi f}$$

$V_{in_rms}(V)$	1.768
$V_{out_rms}(V)$	1,250
$\frac{{V_{out}}_{rms}}{{V_{in}}_{rms}} \left(V \right)$	0.707
$Z_L^{(\Omega)}$	120
L(H)	$\frac{120}{1.28 * 10^{-6}}$

3. l'impédance et l'inductance du bout de fil avec la ferrite (f = 15 MHz)

$V_{in_rms}(V)$	1.768
$V_{out,rms}(V)$	1.18
$\frac{V_{out_{rms}}}{V_{in_{rms}}} (V)$	0.667
Z_L	100.2
L	$\frac{100.2}{1.06 * 10^{-6}}$

4. Impédance du système formé par le bout de fil et par la ferrite (f = 100 kHz à 15 MHz) Sans ferrite :

f	20LOG(F)	Vout	Vin	Vout/Vin	ZL	20Log(ZL)
100000	100	1,71	1,7677	0,96735871	1481,80243	63,415806
500000	113,9794	1,68	1,7677	0,95038751	957,810718	59,6255939
1000000	120	1,59	1,7677	0,89947389	447,38323	53,013594
1500000	123,521825	1,45	1,7677	0,82027493	228,202707	47,1664158

2000000	126,0206	1,35	1,7677	0,76370425	161,599234	44,168786
3000000	129,542425	1,3	1,7677	0,73541891	138,977977	42,8589197
15000000	143,521825	1,25	1,7677	0,70713356	120,726289	41,636037

Page: 20/24

Avec ferrite:

f	20LOG(F)	Vout	Vin	Vout/Vin	ZL	20Log(ZL)
100000	100	1,71	1,7677	0,96735871	1481,80243	63,415806
800000	118,0618	1,69	1,7677	0,95604458	1087,51609	60,7287138
900000	119,08485	1,68	1,7677	0,95038751	957,810718	59,6255939
1000000	120	1,68	1,7677	0,95038751	957,810718	59,6255939
1100000	120,827854	1,66	1,7677	0,93907337	770,659239	57,7372478
1200000	121,583625	1,65	1,7677	0,9334163	700,934579	56,9135497
1500000	123,521825	1,63	1,7677	0,92210217	591,866376	55,4444734
2000000	126,0206	1,59	1,7677	0,89947389	447,38323	53,013594
2500000	127,9588	1,56	1,7677	0,88250269	375,541647	51,4931621
3000000	129,542425	1,53	1,7677	0,86553148	321,834245	50,1526451
4000000	132,0412	1,48	1,7677	0,83724614	257,212374	48,2058372
5000000	133,9794	1,45	1,7677	0,82027493	228,202707	47,1664158
6000000	135,563025	1,4	1,7677	0,79198959	190,372586	45,5920882
7000000	136,901961	1,38	1,7677	0,78067545	177,972659	45,0070658
8000000	138,0618	1,36	1,7677	0,76936132	166,789306	44,443364
9000000	139,08485	1,33	1,7677	0,75239011	151,930546	43,632902
10000000	140	1,31	1,7677	0,74107597	143,106839	43,1132078
11000000	140,827854	1,29	1,7677	0,72976184	135,02198	42,6080895
12000000	141,583625	1,26	1,7677	0,71279063	124,089029	41,8746677
13000000	142,278867	1,23	1,7677	0,69581943	114,376046	41,1667016
14000000	142,922561	1,2	1,7677	0,67884822	105,689625	40,4806471
15000000	143,521825	1,2	1,7677	0,67884822	105,689625	40,4806471

Section 4 – Inductance

1. la résistance DC de l'inductance

La résistance DC de l'inductance a été mesuré à R_{DC} = 1.206 Ω .

2. Impédance d'une inductance en fonction de la fréquence

L'inductance est modélisée par un condensateur en parallèle avec une résistance et une inductance qui sont en série :

$$(R + j\omega L) / / \frac{1}{j\omega C}$$

$$Z_{eq} = \frac{(R + j\omega L) * \frac{1}{j\omega C}}{(R + j\omega L) + \frac{1}{j\omega C}} = \frac{R + j\omega L}{1 - jC\omega^2 + jRC\omega}$$

2. Impédance d'une inductance en fonction de la fréquence – résultats expérimentaux

f	20LOG(F)	Vout	Vin	Vout/Vin	ZL
1000	60	24	1,7677	0,01357696	0,68819178
10000	80	24	1,7677	0,01357696	0,68819178
50000	93,9794001	30	1,7677	0,01697121	0,86320999
60000	95,563025	30	1,7677	0,01697121	0,86320999
70000	96,9019608	54	1,7677	0,03054817	1,57553831
80000	98,0617997	114	1,7677	0,06449058	3,44681623
90000	99,0848502	157	1,7677	0,08881598	4,87365742
93000	99,369659	140	1,7677	0,07919896	4,30054678
94000	99,4625571	125	1,7677	0,07071336	3,80471176
95000	99,5544721	128	1,7677	0,07241048	3,90315302
97000	99,7354347	117	1,7677	0,0661877	3,54395105
98000	99,8245215	112	1,7677	0,06335917	3,38225524
99000	99,9127039	107	1,7677	0,06053063	3,22153309
100000	100	102	1,7677	0,0577021	3,06177583
105000	100,423786	85	1,7677	0,04808508	2,52570274
110000	100,827854	74	1,7677	0,04186231	2,18456633

DATE: 10/11/2019

AUTEURS : GOHI CONSTANT TIE DJÈ BI, DENIZ SOYSAL, SALIM SEDDIKI

	l			I	
115000	101,213957	65	1,7677	0,03677095	1,90873319
120000	101,583625	60	1,7677	0,03394241	1,75674884
130000	102,278867	53	1,7677	0,02998246	1,54545985
140000	102,922561	48	1,7677	0,02715393	1,39559225
150000	103,521825	46	1,7677	0,02602252	1,33588895
200000	106,0206	37	1,7677	0,02093115	1,06893165
300000	109,542425	35	1,7677	0,01979974	1,00998442
400000	112,0412	32	1,7677	0,01810262	0,92181829
500000	113,9794	32	1,7677	0,01810262	0,92181829
1000000	120	32	1,7677	0,01810262	0,92181829
2000000	126,0206	29	1,7677	0,0164055	0,8339564
3000000	129,542425	26	1,7677	0,01470838	0,7463972
4000000	132,0412	20	1,7677	0,01131414	0,57218058
5000000	133,9794	20	1,7677	0,01131414	0,57218058
6000000	135,563025	20	1,7677	0,01131414	0,57218058
7000000	136,901961	20	1,7677	0,01131414	0,57218058
8000000	138,0618	20	1,7677	0,01131414	0,57218058
9000000	139,08485	20	1,7677	0,01131414	0,57218058
10000000	140	20	1,7677	0,01131414	0,57218058
11000000	140,827854	20	1,7677	0,01131414	0,57218058
12000000	141,583625	20	1,7677	0,01131414	0,57218058
13000000	142,278867	20	1,7677	0,01131414	0,57218058
14000000	142,922561	20	1,7677	0,01131414	0,57218058
15000000	143,521825	20	1,7677	0,01131414	0,57218058

Page: 23/24

DATE: 10/11/2019

AUTEURS: GOHI CONSTANT TIE DJÈ BI, DENIZ SOYSAL, SALIM SEDDIKI

Page: 24/24

4. Les plages de fréquences

L'impédance agit comme :

Fréquence	Component
1kHz à 60kHz	une résistance
60kHz à 90kHz	une inductance
90kHz à 15MHz	un condensateur

5. L'effet de 50 ohms à l'entrée d'oscilloscope

En utilisant une entrée d'oscilloscope de 50 ohms, ce qui est >> Z_L, la system aura un comportement résistif. Donc la tension de sortie restera constante.