Алгебра 3

Igor Engel

1

X - множество, на котором задана бинарная операция $(\cdot): X \times X \mapsto X$

- (\cdot) ассоциативна, если $\forall a,b,c\in X \quad (a\cdot b)\cdot c=a\cdot (b\cdot c)$
- (\cdot) коммутотивна, если $\forall a,b \in X \quad a \cdot b = b \cdot a$

 $\mathbf{Y}\left(\cdot\right)$ есть нейтральный элемент, если $\exists 1\in X \quad \forall x\in X \quad 1\cdot X$

 $x\in X$ обратим, если $\exists x^{-1}\in X$ $x\cdot x^{-1}=x^{-1}\cdot x=1$. x^{-1} называется обратным к x.

$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_n$$

Нейтральный элемент единственнен.

Определение 1.1. Пара $\langle X, \cdot \rangle$ называется моноидом, если:

- · ассоциативна
- Сещуствует нейтральный элемент

Лемма 1.1.1. Если X - моноид, а $x,y\in X$ - обратимые элементы, и $x\cdot y$ - обратимо, то $(x\cdot y)^{-1}=y^{-1}\cdot x^{-1}.$

Доказательство. Рассмотрим произведение

$$(x\cdot y)\cdot y^{-1}\cdot x^{-1}.$$

$$x\cdot y\cdot y^{-1}\cdot x^{-1}=x\cdot 1\cdot x^{-1}=1.$$

Лемма 1.1.2. Если X - моноид, то обраиный элемент единственнен

Лемма 1.1.3. Если x обратим, $x^{-1^{-1}} = x$

Определение 1.2. (G,\cdot) называется группой, если:

 $\langle G, \cdot \rangle$ - мониод

Любой $g \in G$ обратим

• X - множество. Рассмотрим $S_X = \{f: X \mapsto X \mid f$ - обратима $\}$. Тогда $\langle S_X, \circ \rangle$ - группа

Определение 1.3. $\langle G,\cdot \rangle$ - абелева группа, если:

 $\langle G,\cdot \rangle$ - группа

 (\cdot) - коммутативна

Примеры:

- $\langle Z_{/n}, \cdot \rangle$
- $\langle \mathbb{Z}|\mathbb{Q}|\mathbb{R}, + \rangle$

Определение 1.4. Пусть G - группа.

 $H \subset G$.

H - подгруппа G, если:

- 1. $\forall a, b \in H \quad a \cdot b \in H$
- 2. $\forall a \in H \quad a^{-1} \in H$
- 3. $1 \in H$

Примеры:

- Плоскость \mathbb{R}^2 , $S_{\mathbb{R}^2} = \{ f : \mathbb{R}^2 \mapsto \mathbb{R}^2 \mid f$ биекция $\}$. Подгруппа: Isom $_{\mathbb{R}^2} = \{ f \in S_{\mathbb{R}^2} \mid \forall \langle x, y \rangle \in \mathbb{R}^2 \mid \|f(x) f(y)\| = \|x y\| \}$.
- Рассмотрим подгруппу внутри $\operatorname{Ison}_{\mathbb{R}^2}$. $H = \{ f \in \operatorname{Ison}_{\mathbb{R}^2} \mid f(x_0) = x_0 \}$

Определение 1.5. Если $X = \{1, \dots, n\}$, то S_X называется группой перестановок и обазначатеся S_n .

Если $n \ge 3$, то группа перестановок неабелева.

Определение 1.6. Пусть G_1, G_2 - группы. Рассмотрим группу $G_1 \times G_2$. Операция этой группы:

$$\langle g_1, g_2 \rangle \cdot \langle h_1, h_2 \rangle = \langle g_1 h_1, g_2 h_2 \rangle.$$

Нейтральный элемент:

$$\langle 1_1, 1_2 \rangle$$
.

Обратный к $\langle g_1, g_2 \rangle$:

$$\langle g_1^{-1}, g_2^{-1} \rangle$$
.

Определение 1.7. Пусть G - группа. $x \in \mathbb{G}$.

Определим x^n , $n \in \mathbb{Z}$:

$$x^{n} = \begin{cases} x^{n}, & n > 0\\ 1, & n = 0\\ (x^{-1})^{|n|}, & n < 0 \end{cases}$$
$$x^{n+m} = x^{n}x^{m}.$$
$$(x^{n})^{m} = x^{nm}.$$

Определение 1.8. Набор $\langle R, +, \cdot \rangle$ - кльцо, если:

- \bullet < R, + > абелева группа
- $\forall a, b, c \in R$ $(a+b) \cdot c = c \cdot (a+b) = a \cdot c + b \cdot c$

Кольцо R - ассициативное, если (\cdot) - ассоциативна Кольцо R - коммутативное, если (\cdot) - коммутативно Кольцо R - кольцо с единицей, если у (\cdot) существует нейтральный элемент.

Лемма 1.8.1. Если R - кольцо, то:

$$a\cdot 0=0\cdot a=0.$$
 $a\cdot (-b)=(-a)\cdot b=-(a\cdot b).$ $(-1)\cdot a=a\cdot (-1)=-a,$ если R - кольцо с единицей.

Доказательство.

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 \implies a \cdot 0 = 0.$$

$$a \cdot (b+(-b)) = a \cdot 0 = 0.$$

$$a \cdot (b+(-b)) = a \cdot b + a \cdot -b = 0 \implies a \cdot (-b) = -(a \cdot b).$$

Лемма 1.8.2. Если R - коммутатвное кольцо и $b \in R$ обратим, то $\frac{a}{b} = a \cdot b^{-1}$.

Определение 1.9. R - коммутативное ассоциативное кольцо является полем, если:

$$\forall r \in R \setminus \{0\}$$
 r - обратимо.

Примеры:

- $\langle \mathbb{Q} | \mathbb{R}, +, \cdot \rangle$
- $\langle \mathbb{Z}_{/p}, +, \cdot \rangle$, если $p \in \mathbb{P}$