MAT1011 - Calculus for Engineers (MATLAB), Fall Semester 2020-2021

Digital Assignment SL. 1, Experiment – 1A: Mean value theorem

By: Jonathan Rufus Samuel (20BCT0332) Date: 17.12.2020

(Note: Reason for late submission – Ma'am, I had joined classes on the 16th of November and was unaware of the format for submission. Hence I had submitted a handwritten answer for the first 2 assignments, scheduled for submission on the 18th of November. This is the finished copy including the MatLab program for the given question. Thanking You.)

Q1) Verify mean value theorem for the function $f(x) = x^3 - 3^*x^2 + 2^*x + 1$ in the interval [-5,8]

A: Code is as follows:

```
%Verify mean value theorem for the function f(x) = x^3 - 3x^2 + 2x + 1
% in the interval [-5,8]
clear
clc
syms x y
f(x) = x^3-3*x^2+2*x+1; % Input the function and interval
I=[-5,8];
a=I(1);b=I(2);
Df=diff(f,x);
m=(f(b)-f(a))/(b-a); %Slope of Secant Line
c=solve(Df==m, x);
c=c(a<=c&c<=b);
disp('Values of c lying in the interval I are');
disp(double(c));
T=f(c)+m*(x-c); %Tangents at x=c
disp('The Tangent Lines at c are');
disp(vpa(y==T,4));
figure
fplot(f,I); grid on; hold on;
fplot(T, I, 'r'); %Tangent Lines
plot(c, double(f(c)), 'ko');
plot(I, double(f(I)), 'm'); %Secant Line
xlabel('x'); ylabel('y');
title('Mean value theorem');
```

Output (via Command Window):

```
Values of c lying in the interval I are -2.7859
4.7859
```

The Tangent Lines at c are

y == 42.0*x + 67.53y == 42.0*x - 149.5

