Lecture 0: Notations, Expressions and Formulas

Tianpei Xie

Nov. 3rd., 2022

Contents

1	Notations and Symbols			
	1.1	Tangent Space and Differential at p	2	
	1.2	Cotangent Space	2	
	1.3	Tangent Bundle and Vector Field	3	
	1.4	Cotangent Bundle and Covector Field	4	
	1.5	Vector Bundle and Section	5	
	1.6	Submerision, Immersion and Embedding	6	
	1.7	Tensors	7	
	1.8	Symmetric Tensor Fields	9	
	1.9	Differential Forms	10	
	1.10	Connections	12	
	1.11	Curvatures	14	
2	Definitions and Theorems 16			
	2.1	Tangent Space and Differential at $p \dots \dots \dots \dots \dots \dots \dots$	16	
	2.2	Cotangent Space	17	
	2.3	Tangent Bundle and Vector Field	17	
	2.4	Cotangent Bundle and Covector Field	18	
	2.5	Tensor	19	
	2.6	Differential Form	19	
	2.7	Connections	20	
3	Computation 21			
	3.1	Tangent Space and Differential at $p \dots \dots \dots \dots \dots \dots \dots$	21	
	3.2	Cotangent Space	22	
	3.3	Tangent Bundle and Vector Field		
	3.4	Cotangent Bundle and Covector Field	24	
	3.5	Tensor	25	
	3.6		25	
	3.7		28	
	3.8	Geodesics and Parallel Transport	31	
	3.9	Divergence of Vector Field	32	

1 Notations and Symbols

1.1 Tangent Space and Differential at p

- (U,φ) : a smooth (coordinate) chart for M. $U \subseteq M$ is coordinate domain, $\varphi : U \to \widehat{U} \subseteq \mathbb{R}^n$ is coordinate map. $\varphi(p) = (x^1(p), \dots, x^n(p))$ is the coordinate representation of $p \in M$.
- $x^i: U \to \mathbb{R}$ is **the** *i***-th coordinate function**. It is also simplied as the coordinate value itself.

•

$$\frac{\partial}{\partial x^i}\Big|_p \in T_p M, \quad i = 1, \dots, n$$

is the partial derivative operation $C^{\infty}(M) \to \mathbb{R}$ with respect to the *i*-th coordinate. It is one of the basis vector in T_pM . It is the derivation operation at p along i-th basis vector in T_pM .

- $vf \equiv v(f) \in \mathbb{R}$ for $v \in T_pM$: This is the **derivation** of f at p **along direction of** v. Since $v \in T_pM$ is also a derivation operator at p on $C^{\infty}(M) \to \mathbb{R}$, it can **acts on** $f \in C^{\infty}(M)$.
- T_pM : the tangent space of M at p. It is also the vector space of all derivations operations on $C^{\infty}(M)$ at p. This is a n-dimensional space.
- dF_p : the differential of F at p. It is a linear map from the tangent spaces T_pM to $T_{F(p)}N$, for $F: M \to N$. It is also called the **pointwise pushforward** by F.
- $dF_p(v) \in T_{F(p)}N$: This is **the tangent vector** on **codomain** N at F(p).
- $dF_p(v)g \in \mathbb{R}$: This is the tangent vector on N at F(p) acts on g, which produce the directional derivatives of g along $dF_p(v)$ at F(p).
- $\gamma'(t)$: For a curve $\gamma: J \to M$, it is the differential of γ at t. It is also the tangent direction of γ at t. It is velocity of the curve at t.
- $\gamma'(t)f$: The directional derivatives of a function f along the tangent direction of curve. It is the rate of change of f along the curve γ .

1.2 Cotangent Space

- $dx^i|_p$: a linear functional $T_pM \to \mathbb{R}$. The set (dx^i) is also the dual basis in T_p^*M corresponds to $(\partial/\partial x^i)$. We can also see it as the differential of the coordinate function x^i at p, i.e. $dx^i|_p = dx_p^i$.
- $\omega \in T_p^*M$: a linear functional on T_pM , i.e. $T_pM \to \mathbb{R}$. It is called (tangent) covector, or cotangent vector
- $\omega(v) \in \mathbb{R}$: when a linear functional ω taking value at given tangent vector v, it returns a real value.
- df_p : for real-valued function $f \in \mathcal{C}^{\infty}(M)$. df_p can be thought as **the differential** of f at p, which is a linear map between T_pM to $T_{f(p)}\mathbb{R}$. It can also be thought as **the linear**

functional on T_pM , i.e. the linear map $T_pM \to \mathbb{R}$. Thus it is a **covector**. It is also **the differential** 1-**form** evaluated at p.

- $df_p(v)$: for $v \in T_pM$, this is a **real number** since df_p is a linear functional on T_pM and $df_p(v) = vf$. But it is also a linear operator on function on \mathbb{R} . This is also equal to the directional derivative of f along v, by definition of differentials.
- $df_p(v)g$: when df_p treated as linear operator, this is the derivation v act on the composite $g \circ f$, i.e. $v(g \circ f)$.
- T_p^*M : the tangent covector (cotangent) space. It is the vector space of all linear functionals on T_pM . It is the dual space of T_pM , i.e. $T_p^*M = (T_pM)^*$. This is a n-dimensional space.
- F^* : the pullback operator: $T^*_{F(p)}N \to T^*_pM$ for $F: M \to N$. It maps a covector on $T_{F(p)}N$ to a covector on T_pM .

1.3 Tangent Bundle and Vector Field

• TM: The $tangent\ bundle$ on M. It is the union of all $tangent\ spaces$ for all $p \in M$. $Tangent\ bundle$ itself is a 2n-manifold.

$$TM = \bigsqcup_{p \in M} T_p M$$

- π : The *natural projection* $\pi:TM\to M$ onto the manifold M. $\pi(p,v)=p$. It is a **smooth surjective submersion**. Each tangent space is **the level set** of π , i.e. $T_pM=\pi^{-1}(p)$.
- X: A vector field. It is a section of π , i.e. a continuous map $X: M \to TM$ so that $\pi \circ X = \mathrm{Id}_M$. That is, $\pi(X(p)) = p$. The value of X at p is denoted as $X_p := X(p) \in T_pM$. X_p is a tangent vector at p. A vector field X also defines a derivation operation on $\mathcal{C}^{\infty}(M)$, i.e. $X: \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M)$.
- $\mathfrak{X}(M) := \Gamma(TM)$: The **vector space** of all vector fields on M. $\Gamma(TM) =$ the vector space of all sections on tangent bundle TM. This is a *n*-dimensional space.
- $Xf \in \mathcal{C}^{\infty}(M)$: This is a **smooth function** since the derivation of a smooth function is another smooth function.
- $fX \in \mathfrak{X}(M)$: This is a **vector field**. At each point p, $(fX)_p = f(p)X_p$. f only multiplies the component function.

$$\frac{\partial}{\partial x^i} \in \mathfrak{X}(M), \quad i = 1, \dots, n$$

forms a set of basis in $\mathfrak{X}(M)$. It is called **the** (local) coordinate frames of M. Note that it drops dependency on p.

- $X_p f \in \mathbb{R}$: The same as v f where $v = X_p \in T_p M$.
- Xf(p): The same as X_pf . $Xf(p) = X_pf$.

- $fX(p) \in T_pM$: The same as $(fX)_p = f(p)X_p$. This is a tangent vector at p.
- XY: for both $X,Y \in \mathfrak{X}(M)$. It is **a linear map** $C^{\infty}(M) \to C^{\infty}(M)$ but it is **not necessarily is a vector field** since the product rule may not hold. That is, normally, $XY \notin \mathfrak{X}(M)$ since it contains a second-order derivative term.
- $XYf \in \mathcal{C}^{\infty}(M)$: It is a smooth function by linear map XY. It is Xg where g = Yf.
- $XYf(p) \in \mathbb{R}$: It is equal to $(XY)_p f = X_p Y_p f$.
- fXY(p): It is equal to $f(p)X_pY_p$. It is still a smooth linear operator $\mathcal{C}^{\infty}(M) \to \mathbb{R}$.
- $[X,Y] \in \mathfrak{X}(M)$: Lie bracket of vector fields X and Y. [X,Y] = XY YX is a vector field on M, even if neither XY nor YX is a vector field. The Lie bracket of vector fields X and Y is seen as the Lie direvative of Y along flow of X.
- $[X,Y]f \in \mathcal{C}^{\infty}(M)$: It is equal to XYf YXf.
- $[X,Y]_p f \in \mathbb{R}$: It is equal to $(XY YX)_p f = (XY)_p f (YX)_p f = X_p Y_p f Y_p X_p f$.
- $f[X,Y] \in \mathfrak{X}(M)$
- $f[X,Y](p) \in T_pM$: It is $f(p)[X,Y]_p = f(p)X_pY_p f(p)Y_pX_p$
- $[fX, gY] \in \mathfrak{X}(M)$: It is equal to fg[X, Y].

1.4 Cotangent Bundle and Covector Field

• T^*M : The **cotangent bundle** on M. It is the **union** of all cotangent spaces for all $p \in M$. Cotangent bundle itself is a 2n-manifold.

$$T^*M = \bigsqcup_{p \in M} T_p^*M$$

- π : The *natural projection* π : $T^*M \to M$ onto the manifold M. $\pi(p,\xi) = p$. It is a *smooth surjective submersion*. Each cotangent space is *the level set* of π , i.e. $T_p^*M = \pi^{-1}(p)$.
- ω : A **covector field**. It is a **section** of π , i.e. a continuous map $X: M \to T^*M$ so that $\pi \circ \omega = \mathrm{Id}_M$. That is, $\pi(\omega(p)) = p$. The value of ω at p is denoted as $\omega_p := \omega(p) \in T_p^*M$. ω_p is a tangent covector vector at p.
- $\mathfrak{X}^*(M) := \Gamma(T^*M)$: The **vector space** of all covector fields on M. $\Gamma(T^*M) =$ the vector space of all sections on cotangent bundle T^*M . This is a **n-dimensional space**.
- $f\omega \in \mathfrak{X}^*(M)$: at each point p, $(f\omega)_p = f(p)\omega_p$
- $f\omega(p) \in T_p^*M$: It is $(f\omega)_p$

 $dx^i\in \mathfrak{X}^*(M)$

forms a set of dual basis in $\mathfrak{X}^*(M)$. It is called **the** (local) coordinate coframes of M. Note that it drops dependency on p.

- $\omega(X) \in \mathcal{C}^{\infty}(M)$: defines **a smooth function** on M, i.e. $\omega(X) : M \to \mathbb{R}$ for each $X \in \mathfrak{X}(M)$.
- $\omega(X)(p) \in \mathbb{R}$: It is equal to $\omega_p(X_p)$
- $df \in \mathfrak{X}^*(M)$: It is a differential 1-form and also is a covector field.
- $g df \in \mathfrak{X}^*(M)$: This is the same as $g \omega$, where $\omega = df$.
- $df(X) \in \mathcal{C}^{\infty}(M)$: df(X) = Xf, it is also a linear function.
- $df(X)(p) \in \mathbb{R}$: $df_p(X_p) = X_p f$
- $Y(\omega(X)) \in \mathcal{C}^{\infty}(M)$: Note that $g := \omega(X) \in \mathcal{C}^{\infty}(M)$ is a smooth function on M for given X. Thus $Y(\omega(X)) = Yg$ is a smooth function on M
- $Y(\omega(X))(p)$: It is equal to $Y_p(\omega(X))$. That is, $Y_p f$, for smooth function $f = \omega(X)$.
- Y(df(X)): Y(df(X)) = YXf
- F^* : the pullback operator: $T^*N \to T^*M$ for $F: M \to N$. It maps a covector field $\omega \in \mathfrak{X}^*(N)$ to a covector field $\eta = F^*\omega \in \mathfrak{X}^*(M)$
- $F^*\omega \in \mathfrak{X}^*(M)$: it is a covector field on M where ω is a covector field on N.
- $F^*\omega(p) \in T_p^*M$: It is $(F^*\omega)_p$, which is a covector on M
- $(F^*\omega)_p(v) \in \mathbb{R}$: $(F^*\omega)_p(v) = \omega_p(dF_p(v))$
- F^*df : This is equal to $F^*df = d(f \circ F)$
- F^*du^j : $F^*df = d(u^j \circ F) = dF^j$

1.5 Vector Bundle and Section

• E: denote the **vector bundle**. The definition of vector bundle is for a pair (E, π) . A vector bundle is a generalization of tangent bundle,

$$E = \bigsqcup_{p \in M} E_p$$

E is also called the total space of vector bundle and M is its base.

- π : is the *surjective continuous map* (i.e. projection map) $\pi : E \to M$, which has two properties:
 - 1. its *fiber* $E_p = \pi^{-1}(p)$ is a **vector space** of (the same) dimension k
 - 2. There exists a **local homemorphism** from neighborhood $\pi^{-1}(U)$ in E to $U \times \mathbb{R}^k$; i.e. $\Phi: \pi^{-1}(U) \to U \times \mathbb{R}^k \subseteq M \times \mathbb{R}^k$ such that $\pi = \pi_U \circ \Phi$. Moreover, $\Phi|_{E_p}: E_p \to \{p\} \times \mathbb{R}^k$ is an **isomorphism**.
- E_p : the **fiber** of π at $p \in M$, i.e. $E_p = \pi^{-1}(p)$. This is a k-dimensional vector space. It is a generalization of tangent space T_pM ;
- k: the rank of vector bundle E, which is the dimension of each fiber.

• Φ : is called **a local trivialization** of E over $U \subseteq M$. It is a homemorphism $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k \subseteq M \times \mathbb{R}^k$ and for $(p,v) \in E$, $\pi_U(\Phi(p,v)) = p$. Restricting the local trivialization in each fiber will have an **isomorphism** $\Phi|_{E_p} : E_p \to \{p\} \times \mathbb{R}^k$. That is Φ will map each fiber to a k-dimensional Euclidean space. Φ is a **tool to build a coordinate map** of E.

For smooth vector bundle, Φ is a **diffeomorphism**. If U = M, then E is **globally trivial** since it admits a **global trivialization** over M.

- τ : is called **the transition function** between the local trivializations Φ and Ψ . It is the smooth map $\tau: U \cap V \to GL(k, \mathbb{R})$, for U, V both neighborhoods in M corresponding to two local trivializations Φ and Ψ . The map $\Phi \circ \Psi^{-1}(p, v) = (p, \tau(p)v)$.
- $\tau(p)$: for $p \in M$ is a **generalization** of **the Jacobian matrix** between two **coordinate maps** in vector bundle.
- σ : a **section** of vector bundle E, which is a section of π , i.e. a **continuous** map $\sigma: M \to E$ so that $\pi \circ \sigma = \mathrm{Id}_M$. $\pi(\sigma(p)) = p$ for all $p \in M$. A section is a **generalization** of **vector fields**.
- $\sigma(p)$: a **vector** in E_p . It is an abstraction of tangent vector in T_pM .
- $\Gamma(E)$: the **vector space** of all sections on E. For example, $\mathfrak{X}(M) = \Gamma(TM)$.
- $f\sigma \in \Gamma(E)$: a section on E. $(f\sigma)(p) = f(p)\sigma(p)$
- (σ_i) : a local frame for E over $U \subseteq M$ is a k-tuple $(\sigma_1, \ldots, \sigma_k)$ in $\Gamma(E)$ such that $(\sigma_1(p), \ldots, \sigma_k(p))$ forms a basis for the fiber E_p at each point $p \in U$. $(\sigma_1, \ldots, \sigma_k)$ forms the basis for all sections $\Gamma(E)$. It is often abbreviated as "a frame for M"
- $(\pi^{-1}(V), \widetilde{\varphi})$: **the smooth chart for** E, given smooth chart (V, φ) , local frames (σ_i) , $\widetilde{\varphi}: \pi^{-1}(V) \to \varphi(V) \times \mathbb{R}^k$ such that $\widetilde{\varphi}(v^i \sigma_i(p)) = (\varphi(p), v^1, \dots, v^k)$

1.6 Submerision, Immersion and Embedding

- ι : The *inclusion map* $\iota: S \hookrightarrow M$. The *canonical inclusion map* is $\widehat{\iota}(x^1, \ldots, x^m) = (x^1, \ldots, x^m, 0, \ldots, 0) \in \mathbb{R}^n$, i.e. to *pad zeros* until the output dimension matches. ι is an *injective linear map*. All *immersion* F has representation locally as the *canonical inclusion map*.
- π : The **projection map** $\pi: S \subseteq N \to M$. The **canonical projection map** is $\widehat{\pi}(x^1,\ldots,x^m,\ldots,x^n)=(x^1,\ldots,x^m)\in\mathbb{R}^m$, i.e. to **truncate** until the output dimension matches. π is an **surjective linear map**. All **submersion** F has representation locally as the canonical projection map.
- rank F at p: for **smooth function** $F: M \to N$. It is the rank of **differential** of F at p, i.e. rank dF_p or **the rank of Jacobian matrix** at p under coordinate representation. rank $F \le \min \{\dim M, \dim N\}$. If the equality holds, then F is **of full rank**.

1.7 Tensors

• $v_1 \otimes \ldots \otimes v_k$: for $v_i \in V_i$ vector space, $i = 1, \ldots, k$. This is a **tensor product of** k **vectors**. It is a k-**tuple** (v_1, \ldots, v_k) that also admits the **multi-linearity property**. That is $(v_1 \otimes \ldots \otimes (a \ v_i + b \ v_i') \otimes \ldots \otimes v_k) = a \ (v_1 \otimes \ldots \otimes v_i \otimes \ldots \otimes v_k) + b \ (v_1 \otimes \ldots \otimes v_i' \otimes \ldots \otimes v_k)$ for all $1 \leq i \leq k$ and $a, b \in \mathbb{R}$.

Therefore $v_1 \otimes \ldots \otimes v_k = \Pi(v_1, \ldots, v_k)$ for some (quotient) projection map Π .

- $V_1 \otimes \ldots \otimes V_k$: the **tensor product of spaces** $(V_i)_{i=1}^k$. The tensor product space $V_1 \otimes \ldots \otimes V_k$ can be obtained as **the quotient space** of $\mathcal{F}(V_1 \times \ldots \times V_k)/\mathcal{R}$ where $\mathcal{F}(S)$ is the set of all finite linear combinations of elements in S and $\mathcal{R} \subseteq \mathcal{F}(V_1 \times \ldots \times V_k)$ is the subspace spanned by the multi-linearity equation.
- $\omega^1 \otimes \ldots \otimes \omega^k$: for $\omega^i \in V_i^*$ dual vector space. This is a **tensor product of** k **covectors**. This is also a **multi-linear function** $\alpha: V_1 \times \ldots \times V_k \to \mathbb{R}$. The value of $\omega^1 \otimes \ldots \otimes \omega^k(v_1, \ldots, v_k) = \prod_{i=1}^k \omega^i(v_i)$
- $V_1^* \otimes \ldots \otimes V_k^*$: the tensor product of dual spaces $(V_i^*)_{i=1}^k$.
- T^kV : is called **the space of contravariant k-tensors** on V. This is equal to $V_1 \otimes ... \otimes V_k$ where $V_i = V$ are all equal. The **dimension** of this vector space is n^k where $n = \dim V$.
- T^kV^* : is called **the space of covariant k-tensors** on V. This is equal to $V_1^* \otimes ... \otimes V_k^*$ where $V_i^* = V^*$ are all equal. The **dimension** of this vector space is n^k where $n = \dim V^*$.
- $\omega^1 \otimes \ldots \otimes \omega^k \in T^k V^*$: is called a covariant k-tensor.
- k: is called the rank of tensor.
- $v_1 \otimes ... \otimes v_k \in T^kV$: is called **a** contravariant **k**-tensor. It is also identifies as a multi-linear functions on $(\omega^1, ..., \omega^k)$.
- $T^{(k,l)}V$: is called **the space of mixed** (k,l)-**tensors** on V. Its element is $v_1 \otimes \ldots \otimes v_k \otimes \omega^1 \otimes \ldots \otimes \omega^l$.
- $a_{i_1,...,i_k} \in \mathbb{R}$: for $\alpha = a_{i_1,...,i_k} \omega^{i_1} \otimes ... \otimes \omega^{i_k}$. It is a component for the covariant k-tensor. $a_{i_1,...,i_k} = \alpha(E_1,...,E_k)$ for (E_i) as basis for V_i .
- $T^kT_p^*M = T^k(T_p^*M)$: the space of all covariant k-tensors on $V = T_pM$ at p. This space has the finite dimension of n^k .
- $T^kT_pM = T^k(T_pM)$: the space of all contravariant k-tensors on $V = T_pM$ at p. This space has the finite dimension of n^k .
- T^kT^*M : is the **vector bundle of all covariant k-tensors** on M.

$$T^k T^* M = \bigsqcup_{p \in M} T^k T_p^* M$$

The vector bundle has a projection map $\pi: T^kT^*M \to M$.

• T^kTM : is the vector bundle of all contravariant k-tensors on M.

$$T^k TM = \bigsqcup_{p \in M} T^k T_p M$$

The vector bundle has a projection map $\pi: T^kTM \to M$.

• $T^{(k,l)}TM$: is the **vector bundle of all mixed** (k,l)-tensors on M.

$$T^{(k,l)}TM = \bigsqcup_{p \in M} T^{(k,l)}T_pM$$

- $T^{(0,0)}TM$: is equal to $M \times \mathbb{R}^k$
- $T^{(0,1)}TM$: is equal to the cotangent bundle T^*M .
- $T^{(1,0)}TM$: is equal to the tangent bundle TM.
- $T^{(k,0)}TM$: is equal to T^kTM .
- $T^{(0,k)}TM$: is equal to T^kT^*M .
- $\mathcal{T}^k := \Gamma(T^k T^* M)$: is called **the space of all covariant k-tensor fields**. It is the vector space of all sections on $T^k T^* M$. This is an **infinite dimensional space** for k > 1.
- $\Gamma(T^kTM)$: is called the space of all contravariant k-tensor fields. It is the vector space of all sections on T^kTM . This is an infinite dimensional space for k > 1.
- $\omega^1 \otimes \ldots \otimes \omega^k \in \Gamma(T^k T^* M)$: is a covariant k-tensor field on M. Each $\omega^i \in \Gamma(T^* M) := \mathfrak{X}^*(M)$ is a covector field on M.
- $(\omega^1 \otimes \ldots \otimes \omega^k)_p \in T^k T_p^* M$: a covariant k-tensor at p. It is equal to $(\omega_p^1 \otimes \ldots \otimes \omega_p^k)$, which is **a multi-linear function** as the tensor product of covectors at p.
- $X_1 \otimes ... \otimes X_k \in \Gamma(T^kTM)$: is a contravariant k-tensor field on M. Each $X_i \in \Gamma(TM) := \mathfrak{X}(M)$ is a vector field on M.
- $(X_1 \otimes \ldots \otimes X_k)(p) \in T^k T_p M$: is a contravariant k-tensor at p. It is equal to **the tensor product of tangent vectors** at p, i.e. $X_1(p) \otimes \ldots \otimes X_k(p)$.
- $dx^{i_1} \otimes ... \otimes dx^{i_k} \in \Gamma(T^kT^*M)$: is a covariant k-tensor field and is a **basis** for $\Gamma(T^kT^*M)$
- $(dx^{i_1} \otimes \ldots \otimes dx^{i_k})_p$: $= (dx^{i_1}_p \otimes \ldots \otimes dx^{i_k}_p)$ is a basis for $T^k T_p^* M$
- $\frac{\partial}{\partial x^{i_1}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_k}} \in \Gamma(T^kTM)$: is a contravariant k-tensor field and is a **basis** for $\Gamma(T^kTM)$
- $\frac{\partial}{\partial x^{i_1}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_k}}(p)$: $= \left(\frac{\partial}{\partial x^{i_1}}\Big|_p \otimes \ldots \otimes \frac{\partial}{\partial x^{i_k}}\Big|_p\right)$ is a basis for $T^k T_p M$
- $A(X_1, ..., X_k) \in \mathcal{C}^{\infty}(M)$: is a **smooth function** $M \to \mathbb{R}$ where $A \in \Gamma(T^k T^* M)$ is a covariant k-tensor field and $X_1, ..., X_k \in \mathfrak{X}(M)$ are smooth vector fields on M. It is a generalization of $\omega(X)$.
- $A(X_1, ..., X_k)(p) \in \mathbb{R}$: it is equal to $A_p(X_1|_p, ..., X_k|_p)$. This is close to $\omega(X)(p) = \omega_p(X_p)$.
- \mathcal{A} : is **a multi-linear map** over \mathcal{C}^{∞} induced by the covariant k-tensor field $A \in \Gamma(T^kT^*M)$. That is, $\mathcal{A}: \mathfrak{X}(M) \times \ldots \times \mathfrak{X}(M) \to \mathcal{C}^{\infty}(M)$ where $\mathcal{A}(X_1, \ldots, X_k) = A(X_1, \ldots, X_k)$ as above.
- F^* : is **the pullback operator** on covariant tensor fields. $F^*: \Gamma(T^kT^*N) \to \Gamma(T^kT^*M)$ where $F: M \to N$.
- F^*A : is a covariant k-tensor field on M when A is a covariant k-tensor field on N

• $F^*A(X_1, ..., X_k)$: is a smooth function on M where A is a covariant k-tensor field on N and (X_i) are vector fields on M.

1.8 Symmetric Tensor Fields

- $\Sigma^k(V^*) \subseteq T^kV^*$: is the vector space of all symmetric covariant k-tensors on V. A covariant k-tensor is symmetric if its value will not change when rearranging the order of its input vectors. It has dimension $\binom{n+k-1}{k}$ where $n = \dim V$.
- $\sigma \in S_k$: is a **permutation** of set $\{1, \ldots, k\}$. S_k is the permutation group for $\{1, \ldots, k\}$. $\sigma(i) = j$.
- $\operatorname{sgn}(\sigma) \in \{-1, +1\}$: is called the sign of permutation σ . Note that every permutation of a finite set can be expressed as the product of $\operatorname{transpositions}$. $\operatorname{sgn}(\sigma) = (-1)$ if σ is composed of odd number of transpositions; $\operatorname{sgn}(\sigma) = 1$ if σ is is composed of even number of transpositions.
- ${}^{\sigma}\alpha \in T^kV^*$: is the covariant k-tensor **after permutation on the indices** of its input ${}^{\sigma}\alpha(v_1,\ldots,v_k)=\alpha(v_{\sigma(1)},\ldots,v_{\sigma(k)}).$
- Sym $(\alpha) \in \Sigma^k(V^*)$: is the **symmetrization** of a tensor α . Sym : $T^kV^* \to \Sigma^k(V^*)$ is a projection of a covariant k-tensor α to its symmetrized version. It is the **average** of ${}^{\sigma}\alpha$ for all possible permutations in S_k . Sym $(\alpha) = \frac{1}{k!} \sum_{\sigma \in S_k} {}^{\sigma}\alpha$.
- $\alpha\beta \in \Sigma^{k+l}(V^*)$: is **the symmetric product** between two covariant k-tensors $\alpha \in T^kV^*$ and $\beta \in T^lV^*$. $\alpha\beta = \operatorname{Sym}(\alpha \otimes \beta)$.
- $\Sigma^k(T^*M) \subseteq T^kT^*M$: is the subbundle of symmetric covariant k-tensor fields on M.

$$\Sigma^k(T^*M) = \bigsqcup_{p \in M} \Sigma^k(T_p^*M)$$

- $\Gamma(\Sigma^k(T^*M)) \subseteq \Gamma(T^kT^*M)$: is the vector space of all symmetric covariant k-tensor fields on M.
- $dx^i dx^j \in \Gamma(\Sigma^2(T^*M))$: is the **symmetric product** between **two covector fields** $dx^i, dx^j \in \Gamma(T^*M)$. $dx^i dx^j$ is a **symmetric covariant 2-tensor field** on M, i.e. $dx^i dx^j = dx^j dx^i$. This is also one of basis in $\Sigma^2(T^*M)$.
- $g \in \Gamma(\Sigma^2(T^*M))$: is **the Riemannian metric**. A Riemannian metric is a **symmetric covariant** 2-**tensor** that is also **positive definite**.
- $(g_{i,j})$: the matrix (component function) of Riemannian metric, i.e. $g = g_{i,j} dx^i dx^j$. This is a positive definite (PSD) matrix.
- $(g^{i,j})$: the *inverse* of matrix $(g_{i,j})$.
- \widehat{g} : a **bundle homemorphism** $TM \to T^*M$. $\widehat{g}(X)$ is a covector field. And $\widehat{g}^{-1}(\omega)$ is a vector field.
- $\widehat{g}(X) = g(X, \cdot) \in \mathfrak{X}^*(M)$: is a **covector field called** X^{\flat} so that $\widehat{g}(X)(Y) = g(X, Y)$.
- $\widehat{g}^{-1}(\omega) \in \mathfrak{X}(M)$: is a vector field called ω^{\sharp} .

- \flat : is called the *flat operator*. $\flat : \mathfrak{X}(M) \to \mathfrak{X}^*(M)$ is an *isomorphism*, called *musical isomorphism*. Its inverse is \sharp .
- \sharp : is called the *sharp operator*. $\sharp : \mathfrak{X}^*(M) \to \mathfrak{X}(M)$ is an *isomorphism*, called *musical isomorphism*. Its inverse is \flat .
- $X^{\flat} \in \mathfrak{X}^*(M)$: is a **covector field** obtained from vector field X by **lowering an index**. $X^{\flat}(\cdot) = \langle X, \cdot \rangle_g$.
- $\bullet \ X^{\flat}(Y) \in \mathcal{C}^{\infty}(M) \colon \quad = g(X,Y) = \langle X\,,\,Y \rangle_q.$
- $\omega^{\sharp} \in \mathfrak{X}(M)$: is a **vector field** obtained from covector field ω by **raising an index**. $\omega^{\sharp}(\cdot) = \langle \omega, \cdot \rangle_{g^{-1}}$.
- $\omega^{\sharp} f \in \mathcal{C}^{\infty}(M)$: is a smooth function since ω^{\sharp} is a vector field which is a derivation operator.
- grad $f \in \mathfrak{X}(M)$: is the **gradient** of f, i.e. grad $f = (df)^{\sharp}$. It is a **vector field obtained** from df by raising an index.
- $(df)^{\sharp}$: = grad f is a vector field as above.
- $F^{\flat} \in \Gamma(T^{(k-1,l+1)}TM)$: for (k,l)-tensor field F, this is a (k-1,l+1)-tensor field.
- $F^{\sharp} \in \Gamma(T^{(k+1,l-1)}TM)$: for (k,l)-tensor field F, this is a (k+1,l-1)-tensor field.

1.9 Differential Forms

- $\Lambda^k(V^*) \subseteq T^kV^*$: is the vector space of all alternating covariant k-tensors on V. A covariant k-tensor is alternating if its value will change sign whenever two indices of its input vectors interchange. It has dimension $\binom{n}{k}$ where $n = \dim V$.
- Alt $(\alpha) \in \Lambda^k(V^*)$: is the **alternation** of a tensor α . Alt $: T^kV^* \to \Lambda^k(V^*)$ is a projection of a covariant k-tensor α to its alternating version. It is the **signed average** of ${}^{\sigma}\alpha$ for all possible permutations in S_k . Alt $(\alpha) = \frac{1}{k!} \sum_{\sigma \in S_k} (\operatorname{sgn}(\sigma))({}^{\sigma}\alpha)$. An alternating covariant k-tensor is also called a k-covector, exterior form, or multicovector.
- $\alpha \wedge \beta \in \Lambda^{k+l}(V^*)$: is **the wedge product** or **exterior product** between $\alpha \in \Lambda^k(V^*)$ and $\beta \in \Lambda^l(V^*)$. $\alpha \wedge \beta = \frac{(k+l)!}{k!l!} \text{Alt } (\alpha \otimes \beta)$.
- $I = (i_1, \ldots, i_k)$: is called a *multi-index*. If $1 \le i_1 \le \ldots \le i_k \le n$, then it is called an *increasing multi-index*.
- $I_{\sigma} = (i_{\sigma(1)}, \dots, i_{\sigma(k)})$: is a permutation of multi-index.
- $\epsilon^I \in \Lambda^k(V^*)$: is equal to $\epsilon^{i_1, \dots, i_k} = \epsilon^{i_1} \wedge \dots \wedge \epsilon^{i_k}$ where (ϵ^i) is dual basis in V^* .
- $a_I \in \mathbb{R}$: $:= a_{i_1, \dots, i_k}$.
- $\epsilon^{I}(v_1, \ldots, v_k) \in \mathbb{R}$: is the **determinant** of $k \times k$ sub-matrix $\det(\epsilon^{i}(v_j))_{i \in I, j \in J}$
- $\delta_J^I \in \{-1,0,1\}$: is equal to $\operatorname{sgn}(\sigma) = \pm 1$ if $J = I_{\sigma}$ for some $\sigma \in S_k$ and I,J do not have a repeated index; otherwise is equal to 0.
- $\sum_{I}' a_{I} \epsilon^{I}$: represent $\sum_{\{1 \leq i_{1} \leq ... \leq i_{k} \leq n\}} a_{I} \epsilon^{I}$; that is, summation over **all increasing multi**index.

- $IJ: = (i_1, \ldots, i_k, j_1, \ldots, j_k)$ is the **concatenation** of two multi-index $I = (i_1, \ldots, i_k)$ and $J = (j_1, \ldots, j_k)$.
- $\epsilon^{IJ} \in \Lambda^{k+l}(V^*)$: is a basis (k+l)-covector when $\epsilon^k \in \Lambda^k(V^*)$, $\epsilon^I \in \Lambda^l(V^*)$. We have formula $\epsilon^{IJ} = \epsilon^I \wedge \epsilon^J$.
- $\omega^1 \wedge \ldots \wedge \omega^k(v_1, \ldots, v_k) \in \mathbb{R}$: is the **determinant** of $k \times k$ sub-matrix $\det(\omega^i(v_j))_{i \in I, j \in J}$ where $i \in I$ is the row number, $j \in J$ is the column number.
- $\Lambda(V^*)$: is called the exterior algebra or Grassman algebra. It is the direct sum of vector space of all alternating covariant tensors of rank $k \leq n$ on V.

$$\Lambda(V^*) = \bigoplus_{k=1}^n \Lambda^k(V^*)$$

The exterior product \wedge is an operation in this algebra. This algebra is **graded** and **anticommutative**.

- ι_v : is called an *interior product/multiplication operatior* where $v \in V$. The map $\iota_v : \Lambda^k(V^*) \to \Lambda^{k-1}(V^*)$ as $\iota_v(\omega)(v_2, \ldots, v_k) = \omega(v, v_2, \ldots, v_k)$. It is also denoted as $v \sqcup \omega$ where $\omega \in \Lambda^k(V^*)$.
- $v \, \lrcorner \, \omega$: = $\iota_v(\omega)$ see above.
- $\Lambda^k(T^*M) \subseteq T^kT^*M$: is the subbundle of alternating covariant k-tensor fields.

$$\Lambda^k(T^*M) = \bigsqcup_{p \in M} \Lambda^k(T_p^*M)$$

- $\Omega^k(M) := \Gamma(\Lambda^k(T^*M)) \subseteq \Gamma(T^kT^*M)$: is the vector space of all alternating covariant k-tensor fields on M.
- $\omega \in \Omega^k(M)$: is called a differential k-form or just k-form. It is an alternating covariant k-tensor field.
- $\Omega^1(M)$: = $\mathfrak{X}^*(M)$ is the space of covector fields on M.
- $\Omega^0(M)$: $= \mathcal{C}^{\infty}(M)$ is the space of all smooth functions on M.
- $df \in \Omega^1(M) = \mathfrak{X}^*(M)$: is a **differential** 1-**form**.
- $\Omega^*(M)$: is **the exterior algebra** for **all differential** k-**forms** on M. It is **the direct** sum of all $\Omega^k(M)$. The exterior product \wedge is an operation of this algebra.
- $\bullet \ \omega \wedge \eta \in \Omega^{k+l}(M) \colon \quad \text{for } \omega \in \Omega^k(M) \text{ and } \eta \in \Omega^l(M).$
- $dx^{i_1} \wedge \ldots \wedge dx^{i_k} \in \Omega^k(M)$: is **a basis differential** k-form when $i_1 \leq \ldots \leq i_k$.
- dx^I : $= dx^{i_1} \wedge \ldots \wedge dx^{i_k}$
- $F^*\omega \in \Omega^k(M)$: is the **pullback** of $\omega \in \Omega^k(N)$ by $F: M \to N$.
- F^*dy : $= d(y \circ F)$.
- $dx^I(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}}) \in \{-1, 0, 1\}: = \delta^I_J.$
- ι_X : is **the interior multiplication**: $\Omega^k(M) \to \Omega^{k-1}(M)$ for any $X \in \mathfrak{X}M$.

- $\iota_X(\omega) = X \, \lrcorner \, \omega \in \Omega^{k-1}(M)$: is a differential (k-1)-form.
- $\iota_X(\omega)(p) = (X \sqcup \omega)_p \in \Lambda^k(T_p^*M)$: is a (k-1)-covector. $(X \sqcup \omega)_p = X_p \sqcup \omega_p$.
- d: is called the exterior derivative operation. It is a linear map $d: \Omega^k(M) \to \Omega^{k+1}(M)$ that satisfies:
 - 1. $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$
 - 2. $d \circ d \equiv 0$
 - 3. df(X) = Xf for $f \in \Omega^0(M) := \mathcal{C}^{\infty}(M)$ and $X \in \mathfrak{X}(M)$.
- $d\omega \in \Omega^{k+1}(M)$: is a (k+1)-form, where ω is a k-form
- d(u dx): $= du \wedge dx$.
- $F^*d\omega \in \Omega^{k+1}(M)$: is a (k+1)-form on M, where ω is a k-form on N.
- $d(F^*\omega)$: We have the formula $F^*d\omega = d(F^*\omega)$, which is called **the naturality of the** exterior derivative.
- $F^*(\omega \wedge \eta) \in \Omega^{k+l}(M)$: $= F^*\omega \wedge F^*\eta$
- $F^*f \in \Omega^0(M) = \mathcal{C}^{\infty}(M)$: $= f \circ F \text{ where } f \in \mathcal{C}^{\infty}(N) = \Omega^0(N)$
- $d\omega(X,Y) \in \mathcal{C}^{\infty}(M)$: where $\omega \in \mathfrak{X}^*(M) = \Omega^1(M)$, and $X,Y \in \mathfrak{X}(M)$. Note that $d\omega \in \Omega^2(M)$ is a differential 2-form. For $\alpha = d\omega$, we know that $\alpha(X,Y) : M \to \mathbb{R}$ is a smooth function on M such that $\alpha(X,Y)(p) = \alpha_p(X_p,Y_p) \in \mathbb{R}$.
- $X(\omega(Y)) \in \mathcal{C}^{\infty}(M)$: Note that $\omega(Y) \in \mathcal{C}^{\infty}(M)$ is a smooth function since ω is a differential 1-form. Then $X(\omega(Y)) = Xf$ where $f = \omega(Y)$.
- $\omega([X,Y]) \in \mathcal{C}^{\infty}(M)$: Note that $[X,Y] \in \mathfrak{X}(M)$ is a vector field, so $\omega([X,Y]) := \omega(Z)$ where Z = [X,Y]. Thus it is a smooth function on M.

1.10 Connections

- ∇ : the **connection** symbol. It is the (smooth) map $\mathfrak{X}(M) \times \Gamma(E) \to \Gamma(E)$ that denotes **the covariant derivative** of a section on vector bundle E along the (tangential) direction specified by a vector field. A connection operation satisfies 3 rules: 1) linear over $\mathcal{C}^{\infty}(M)$ in its first argument; 2) linear over \mathbb{R} in its second argument; 3) the product rule in its second argument.
- $\overline{\nabla}$: the *Euclidean connection symbol*. No rotation of axis during the directional derivative process.
- ∇^{\top} : the tangential connection on embedded Riemannian submanifold as the tangential projection of the Euclidean connection.
- $\nabla_X Y \in \Gamma(E)$ or $\mathfrak{X}(M)$: the covariant derivative of Y in the direction of X. Note that it is not a (1,2)-tensor since it is not linear in $\mathcal{C}^{\infty}(M)$ in its second argument.
- $\nabla^a_X Y \nabla^b_X Y \in \Gamma(T^{(1,2)}TM)$: it is a (1,2)-tensor.
- $\nabla_X f \in \mathcal{C}^{\infty}(M)$: = Xf, i.e. the covariant derivative of a smooth function $f \in \mathcal{C}^{\infty}(M)$

- along direction of X.
- $\nabla_X Y|_p \in T_p M$: $= \nabla_{X_p} Y_p$. It is equal to the *covariant derivatives* of vector field $Y \in \mathfrak{X}(M)$ along the direction X_p in $T_p M$.
- $\nabla_{fX}Y \in \mathfrak{X}(M)$: the covariant derivative of Y along direction of fX. $\nabla_{fX}Y = f \nabla_X Y$.
- $\nabla_X(fY) \in \mathfrak{X}(M)$: $= X(fY) + f \nabla_X Y$.
- $\Gamma_{i,j}^k$: the coefficient for connection on TM. They are n^3 smooth functions $U \to \mathbb{R}$. The lower two indices i,j corresponds to the basis of direction vector field and the basis of the target vector field, and the upper index k corresponds to the basis for the resulting vector field. If the connection is a metric connection, then these functions are called **the Christoffel Symbols**.
- $\nabla_{\partial_i}\partial_j \in \mathfrak{X}(M)$: $= \Gamma_{i,j}^k \partial_k$; It accounts for the rotation of basis vector ∂_j along the other basis direction ∂_i
- $\nabla_{(\nabla_X Y)} Z \in \mathfrak{X}(M)$: the covariant direvatives of Z along direction $W = \nabla_X Y$, which is also the directional derivatives of Y along X.
- $\nabla_{[X,Y]}Z \in \mathfrak{X}(M)$: the covariant direvatives of Z along direction [X,Y]. Note that if X,Y orthogonal, then [X,Y]=0, it will becomes 0.
- $\nabla_X \nabla_Y Z \in \mathfrak{X}(M)$: the **covariant direvatives** of Z first along direction Y and then taking covariant derivatives along X. (i.e. the **second-order** derivatives for two directions)
- $\nabla_Z\langle X, Y\rangle \in \mathcal{C}^{\infty}(M)$: $= Z\langle X, Y\rangle$ it is the covariant direvatives of the inner product $\langle X, Y\rangle \in \mathcal{C}^{\infty}(M)$ along direction Z
- $Z\langle X\,,\,Y\rangle\in\mathcal{C}^\infty(M)$: Note that $\langle X\,,\,Y\rangle\in\mathcal{C}^\infty(M)$. So this is just Zg where $g=\langle X\,,\,Y\rangle$.
- $\langle \nabla_Z X, Y \rangle \in \mathcal{C}^{\infty}(M)$: This is the inner product $\langle W, Y \rangle$ where $W = \nabla_Z X$. For **metric connection**, $Z \langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle$
- $\nabla F \in \Gamma(T^{(k,l+1)}TM)$: is called **the total covariant derivative of** F. It is a (k,l+1)-tensor field for a (k,l)-tensor field F. $\nabla F(\ldots,Y) = (\nabla_Y F)(\ldots)$
- $(\nabla F)^{\flat} \in \Gamma(T^{(k-1,l+2)}TM)$: for a (k,l)-tensor field $F, \nabla F$ is a (k,l+1)-tensor, then this is a (k-1,l+2)-tensor field;
- $(\nabla F)^{\sharp} \in \Gamma(T^{(k+1,l)}TM)$: for a (k,l)-tensor field F, ∇F is a (k,l+1)-tensor, then this is a (k+1,l)-tensor field;
- $\nabla Y(X) \in \mathfrak{X}(M)$: $= \nabla_X Y$ where $Y \in \Gamma(T^{(1,0)}TM)$. $\nabla Y \in \Gamma(T^{(1,1)}TM)$
- $\nabla \omega(X) \in \mathfrak{X}^*(M)$: $= \nabla_X \omega$ where $\omega \in \Gamma(T^{(0,1)}TM)$, so $\nabla \omega \in \Gamma(T^{(0,2)}TM)$
- $\nabla_X \omega \in \mathfrak{X}^*(M)$: Here ∇ is **the induced connection** in T^*M from ∇ in TM.
- $\nabla \omega(Y, X) \in \mathcal{C}^{\infty}(M)$: $= (\nabla_X \omega)(Y)$ where $\omega \in \Gamma(T^{(0,1)}TM)$, so $\nabla \omega \in \Gamma(T^{(0,2)}TM)$
- $(\nabla_X \omega)(Y) \in \mathcal{C}^{\infty}(M)$: $= \langle \nabla_X \omega, Y \rangle \neq \nabla_X(\omega(Y))$. This is just a covector field $\eta = \nabla_X \omega$ act on a vector field Y. In fact $(\nabla_X \omega)(Y) = \nabla_X(\omega(Y)) \omega(\nabla_X Y)$.
- $\nabla_X(\omega(Y)) \in \mathcal{C}^{\infty}(M)$: $= \nabla_X \langle \omega, Y \rangle$. It is the covariant derivatives of function $\omega(Y) \in \mathcal{C}^{\infty}(M)$ along X. Also it is equal to $(\nabla_X \omega)(Y) + \omega(\nabla_X Y)$

- $\nabla^2 F \in \Gamma(T^{(k,l+2)}TM)$: is called **the second covariant derivative of** F. It is a (k,l+2)-tensor field for a (k,l)-tensor field F. $\nabla F(\ldots,Y,X) = (\nabla^2_{X,Y}F)(\ldots)$. Note that we have $\nabla^2_{X,Y}F = \nabla_X\nabla_YF \nabla_{(\nabla_XY)}F$
- $\operatorname{tr}(F) \in \Gamma(T^{(k-1,l-1)}TM)$: is called *the contraction or trace* of F. For (k,l)-tensor F, this is equal to (k-1,l-1)-tensor. Note that $\operatorname{tr}(v\otimes\omega)=\omega(v)$ is the trace of the matrix representation of $v\otimes\omega=[\omega_i\,v^j]$
- $V(t) \in \mathfrak{X}(\gamma)$: is called **the vector field** V **along curve** γ . If \widetilde{V} is the extension of V in M then $V(t) = \widetilde{V}_{\gamma(t)}$.
- $\mathfrak{X}(\gamma)$: is the vector space of all vector field V(t) along curve γ .
- $\gamma'(t) \in \mathfrak{X}(\gamma)$: is **the velocity vector field** of curve γ , which is a vector field along the curve γ ;
- $\nabla_{\gamma'(t)}V \in \mathfrak{X}(M)$: is the covariant derivative of V along the velocity vector field γ' . V restricted on image of γ will be the vector field along curve.
- D_t : is the **covariant derivative along the curve** γ . It is a map $\mathfrak{X}(\gamma) \to \mathfrak{X}(\gamma)$, and $D_tV(t) = \nabla_{\gamma'(t)}\widetilde{V}$
- $\nabla_{\gamma'(t)}\gamma'(t) \in \mathfrak{X}(M)$: is called **the tangential acceleration**, when viewed as a vector field in M. It is the directional derivative of velocity vector field $\gamma'(t)$ along the direction of velocity vector field.
- $D_tV(t) \in \mathfrak{X}(\gamma)$: is the covariant derivative of vector field V(t) along the curve γ . For **parallel transport**, $D_tV(t) \equiv 0$ for all t.
- $D_t \gamma'(t) \in \mathfrak{X}(\gamma)$: is **the tangential acceleration**, when viewed as the vector field along γ .
- γ_v : is **the maximal geodesic curve** γ with initial point $\gamma(0) = p$ and $\gamma'(0) = v$. Note that for geodesic curve $D_t \gamma'(t) \equiv 0$.
- P_{t_0,t_1}^{γ} : is the map of **parallel transport** along γ from $t = t_0$ to $t = t_1$. $P_{t_0,t_1}^{\gamma} : \mathfrak{X}(\gamma) \to \mathfrak{X}(\gamma)$.
- $P_{t_0,t_1}^{\gamma}V(t) \in \mathfrak{X}(M)$: is the resulting vector field after parallel transport of V(t) along γ . $P_{t_0,t_1}^{\gamma}V(t) = (D_tV(t_0))|_{t_1}$.
- exp: is the exponential map: $\mathcal{E} \subseteq TM \to M$ that maps from a tangent vector v to a point in M that reached by the geodesic passing 0 with initial velocity given. $\exp(vt) = \gamma_v(t)$
- \exp_p : is the exponential map restricted at $p: \mathcal{E}_p \subseteq T_pM \to M$.
- $d(\exp_p)_0$: is the **differential** of the exponential map restricted at p evaluated at 0. This is an **identity map** $T_0(T_pM) \simeq T_pM \to T_pM$.

1.11 Curvatures

- $R \in \Gamma(T^{(1,3)}TM)$: a (1,3)-tensor called **Riemann curvature endomorphism**; $R : \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$.
- $R(X,Y)Z \in \mathfrak{X}(M)$: is a vector field that is $\nabla_X \nabla_Y Z \nabla_Y \nabla_X Z \nabla_{[X,Y]} Z$. Compare it with the second order covariant derivative $\nabla^2_{X,Y} Z = \nabla_X \nabla_Y Z \nabla_{(\nabla_X Y)} Z$

- $Rm \in \Gamma(T^{(0,4)}TM)$: is called the **Riemann curvature tensor**. It is a (0,4)-tensor. $Rm = R^{\flat}$ is obtained from the Riemann curvature endomorphism by lowering an index.
- $Rm(X,Y,Z,W) \in \mathcal{C}^{\infty}(M)$: It is the inner product of the (1,3)-tensor R(X,Y)Z with W. $Rm(X,Y,Z,W) = \langle R(X,Y)Z\,,\,W\rangle$

2 Definitions and Theorems

2.1 Tangent Space and Differential at p

• Given (U, φ) , $p \in U$, the basis vector in T_pM is defined via partial derivatives in \mathbb{R}^n via differential of parameterization map $d\varphi^{-1}$ at $\varphi(p)$

$$\frac{\partial}{\partial x^i}\Big|_p \equiv d(\varphi^{-1})_{\varphi(p)} \left(\frac{\partial}{\partial x^i}\Big|_{\varphi(p)}\right) \tag{1}$$

• The basis vector at T_pM acts on a smooth function f is the partial derivatives of f at p

$$\frac{\partial}{\partial x^i}\Big|_p f = \frac{\partial f}{\partial x^i}\Big|_p = \frac{\partial f}{\partial x^i}(p)$$

• For $F: M \to N$, where M, N are smooth manifolds, $v \in T_pM$, $g \in \mathcal{C}^{\infty}(N)$, the differential of F at p as a linear map is defined as

$$dF_{p}(v)g = v(g \circ F). \tag{2}$$

So $dF_p(v)g|_q = v\left(g(F(p))\right)|_p$ where q = F(p). $g \in \mathcal{C}^{\infty}(N)$ and $g \circ F \in \mathcal{C}^{\infty}(M)$.

Remark

$$dF_{p}(v) \xrightarrow{|_{F(p)}} dF_{p}(v)g$$

$$\uparrow dF_{p} \qquad \uparrow =$$

$$v \xrightarrow{|_{p}} v(g \circ F)$$

$$\uparrow acted on by$$

$$g \xrightarrow{\circ F} g \circ F$$

• For $\gamma: J \to M, f \in \mathcal{C}^{\infty}(M)$,

$$\gamma'(t) = d\gamma \left(\frac{d}{dt}\Big|_{t}\right)$$

$$\Rightarrow \gamma'(t)f \equiv d\gamma \left(\frac{d}{dt}\Big|_{t}\right)f$$

$$= \frac{d}{dt}\Big|_{t} (f \circ \gamma)$$
(4)

• The *chain rule* of differentials

$$d\left(G\circ F\right)_{p}=dG_{F(p)}\circ dF_{p}$$

Think of two systems that connected sequentially. dG takes output of dF_p as input. It also computes the evaluation point F(p).

• The **product rule** (Leibniz's Law) of derivations at $p: v \in T_pM, f, g \in \mathcal{C}^{\infty}(M)$

$$v(fg) = g(p)v(f) + f(p)v(g)$$

2.2 Cotangent Space

• Given $(\partial/\partial x^i|_p)$ as basis in T_pM , (dx_p^i) is its **dual basis**

$$dx_p^i \left(\frac{\partial}{\partial x^j} \Big|_p \right) = \delta_j^i \tag{5}$$

• For **real-valued** smooth function $f: M \to \mathbb{R}, df_p: T_pM \to \mathbb{R}, v \in T_pM$

$$df_p(v) := vf \tag{6}$$

In other word, df_p is a **linear functional** on T_pM , i.e. $df_p \in T_p^*M$.

• Let df_p acts on $\gamma'(0) \in T_{\gamma(0)}M$ where $p = \gamma(0)$

$$df_p(\gamma'(0)) := \gamma'(0)f = \frac{d}{dt}\Big|_{t=0} (f \circ \gamma)$$

• For $F: M \to N$, where M, N are smooth manifolds, the **pullback** of covector ω on $T_{F(p)}N$ by F is a covector on T_pM .

$$(F^*\omega)_p(v) = \omega(dF_p(v)) \tag{7}$$

Remark pullback at point p

$$(F^*\omega)_p \qquad (F^*\omega)_p(v)$$

$$\downarrow = \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

2.3 Tangent Bundle and Vector Field

• Every smooth vector field in $\mathfrak{X}(M)$ has a (local) coordinate representation based on the coordinate chart $(U,(x^i))$ and local coordinate frames

$$X = X^{i} \frac{\partial}{\partial x^{i}} = \nabla \cdot \mathbf{X}$$
 where $X^{i} = X(x^{i})$

We have product rule

$$X(fg) = g X(f) + f X(g)$$

• X_p can be computed via plug-in coordinate $\varphi(p) = x$ into the component function

$$X_p = X^i(p) \frac{\partial}{\partial x^i} \Big|_p$$

• If $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$ are F-related, for $F: M \to N$, then

$$Y_{F(p)} = dF_p(X_p) \tag{8}$$

In particular, if F is a diffeomorphism, then $F_*:TM\to TN$ is the **pushforward operator** so that F_*X is F-related to X.

$$(F_*X)_q = dF_p(X_p) = dF_{F^{-1}(q)}(X_{F^{-1}(q)})$$

where q = F(p), i.e. $p = F^{-1}(q)$.

Remark The pushforward operation for vector field

• For any smooth function $f \in \mathcal{C}^{\infty}(N)$ on N, Y is F-related to X, then

$$X(f \circ F) = (Yf) \circ F \tag{9}$$

2.4 Cotangent Bundle and Covector Field

• For any $\omega \in \mathfrak{X}^*(M)$, it can be represented via linear combination of its coframes (dx^i)

$$\omega = \omega_i dx^i$$
where $\omega_i = \omega \left(\frac{\partial}{\partial x^i} \right)$

Moreover, we have duality

$$dx^i \left(\frac{\partial}{\partial x^j} \right) = \delta^i_j.$$

• For $F: M \to N$, the pullback of ω by F is a linear map $F^*: T^*N \to T^*M$ so that

$$(F^*\omega)_p(X_p) = \omega_p \left(dF_p(X_p) \right)$$

Remark The pullback operation for covector field

2.5 Tensor

• Let $A \in \Gamma(T^kT^*M)$ be a **covariant** k-tensor field on M. A has the following coordinate representation:

$$A = a_{i_1 \dots i_k} dx^{i_1} \otimes \dots \otimes dx^{i_k} \tag{10}$$

where
$$a_{i_1,\dots,i_k} = A\left(\frac{\partial}{\partial x^{i_1}},\dots,\frac{\partial}{\partial x^{i_k}}\right)$$
 (11)

• Let $T \in \Gamma(T^kTM)$ be a **contravariant** k-**tensor field** on M. T has the following coordinate representation:

$$T = T^{i_1, \dots, i_k} \frac{\partial}{\partial x^{i_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_k}}$$
 (12)

where
$$T^{i_1, \dots, i_k} = T(x^{i_1}, \dots, x^{i_k})$$
 (13)

2.6 Differential Form

• Let $\omega \in \Omega^k(M)$ be a **differential** k-form on M. ω has the following coordinate reprsentation:

$$\omega = \omega_{i_1, \dots, i_k} \, dx^{i_1} \wedge \dots \wedge dx^{i_k} \tag{14}$$

where
$$\omega_{i_1,\dots,i_k} = \omega\left(\frac{\partial}{\partial x^{i_1}},\dots,\frac{\partial}{\partial x^{i_k}}\right)$$
 (15)
 $1 \le i_1 \le \dots \le i_k \le n$

Note that ω_{i_1,\ldots,i_k} is a determinant of $k \times k$ matrix whose row indexed by (i_1,\ldots,i_k) .

• Compute the pullback of a n-form by $F: M \to N$. If (x^i) and (y^j) are smooth coordinates locally, and u is a continuous real-valued function on V, then the following holds locally.

$$F^* \left(u \, dy^1 \wedge \ldots \wedge dy^n \right) = \left(u \circ F \right) \left(\det(DF) \right) dx^1 \wedge \ldots \wedge dx^n \tag{16}$$

where DF represents the Jacobian matrix of F in these coordinates.

Note that the pullback operator is equivalent to "plug-in of F whenever you see coordinate in codomain (y^j) ". The determinant of Jacobian det(DF) is the result of converting differential of composite $y^i \circ F$ into the coframes (dx^i) in domain M.

$$F^* \left(u \, dy^1 \wedge \ldots \wedge dy^n \right) = \left(u \circ F \right) d \left(y^1 \circ F \right) \wedge \ldots \wedge d \left(y^n \circ F \right)$$

• The following *invariant formula* holds for all $\omega \in \Omega^1(M) = \mathfrak{X}^*(M)$ and $X, Y \in \mathfrak{X}(M)$,

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y])$$
(17)

Note that both LHS and RHS are *smooth functions* and they can be written in terms of

its component functions:

$$\omega\left([X,Y]\right) = \left(X^{j} \frac{\partial Y^{i}}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}}\right) \omega_{i} \quad \text{contains only } w_{i} \text{ also 1-order derivative of } X_{i}, Y_{i}$$

$$X\left(\omega\left(Y\right)\right) = X^{j} \frac{\partial \omega_{i}}{\partial x^{j}} Y^{i} + X^{j} \frac{\partial Y^{i}}{\partial x^{j}} \omega_{i} \quad \text{contains mixed 0, 1-order derivatives of } w_{i}, Y_{i}$$

$$Y\left(\omega\left(X\right)\right) = Y^{j} \frac{\partial \omega_{i}}{\partial x^{j}} X^{i} + Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \omega_{i} \quad \text{contains mixed 0, 1-order derivatives of } w_{i}, X_{i}$$

$$d\omega\left(X,Y\right) = \left(\frac{\partial \omega_{j}}{\partial x^{i}} - \frac{\partial \omega_{i}}{\partial x^{j}}\right) X^{i}Y^{j} \quad \text{contains only 1-order derivatives of } w_{i}$$

2.7 Connections

• For ∇ a connection in TM, ∇ is a **metric connection** when

$$Z\langle X, Y \rangle = \nabla_Z \langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle \tag{18}$$

• For ∇ a connection in TM, ∇ is a **symmetric connection** when

$$\nabla_X Y - \nabla_Y X = [X, Y] \tag{19}$$

• The **second** covariant derivatives is computed as

$$\nabla_{X,Y}^2 Z = \nabla_X \nabla_Y Z - \nabla_{(\nabla_X Y)} Z \tag{20}$$

ullet The $Riemann\ curvature\ endomorphism$ is defined as

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z \tag{21}$$

3 Computation

3.1 Tangent Space and Differential at p

• The *coordinate representation of tangent vector* and the value after it acts on f:

$$v = v^{i} \frac{\partial}{\partial x^{i}} \Big|_{p}, \quad (v^{i}) \in \mathbb{R}^{n}$$
where $v^{i} = v (x^{i})$

$$\Rightarrow vf = v^{i} \frac{\partial}{\partial x^{i}} \Big|_{p} f = v^{i} \frac{\partial f}{\partial x^{i}} (p)$$
(22)

• For $F: M \to N$, where M, N are smooth manifolds and $(U, (x^i))$ and $(V, (y^j))$ are coordinate charts for M and N. The **coordinate representation** of dF_p is

$$dF_p\left(\frac{\partial}{\partial x^i}\Big|_p\right) = \frac{\partial F^j}{\partial x^i}(p)\frac{\partial}{\partial y^j}\Big|_{F(p)} \tag{23}$$

where $DF_p = [\frac{\partial F^j}{\partial x^i}(p)]_{i,j}$ is the **Jacobian matrix** of dF_p relative to the coordinates in M and N.

Then $dF_p(v)$ acts on g can be represented as

$$dF_p\left(\frac{\partial}{\partial x^i}\Big|_p\right)g = \frac{\partial F^j}{\partial x^i}(p)\frac{\partial g}{\partial y^j}(F(p))$$

• The *change of coordinate* formula between (\widetilde{x}^j) and (x^i) on M

$$\frac{\partial}{\partial x^i}\Big|_p = \frac{\partial \widetilde{x}^j}{\partial x^i}(p)\frac{\partial}{\partial \widetilde{x}^j}\Big|_p. \tag{24}$$

Then its component function

$$v = v^{i} \frac{\partial}{\partial x^{i}} \Big|_{p} = \widetilde{v}^{i} \frac{\partial}{\partial \widetilde{x}^{j}} \Big|_{p}$$

$$\Rightarrow \widetilde{v}^{j} = v \left(\widetilde{x}^{j} \right) = \left(v^{i} \frac{\partial}{\partial x^{i}} \Big|_{p} \right) \left(\widetilde{x}^{j} \right) = \frac{\partial \widetilde{x}^{j}}{\partial x^{i}} (p) v^{i}$$
(25)

• The **product rule** (Leibniz's Law) of derivations at $p: v \in T_pM, f, g \in \mathcal{C}^{\infty}(M)$

$$v(fq) = q(p)v(f) + f(p)v(q)$$

Thus for coordinate map (x^i) , and $v = v^i \frac{\partial}{\partial x^i}|_p$, $\boldsymbol{x} = (x^1, \dots, x^n)$,

$$v^i \frac{\partial}{\partial x^i} \Big|_{p} (fg) = g(\boldsymbol{x}) v^i \frac{\partial f}{\partial x^i}(\boldsymbol{x}) + f(\boldsymbol{x}) v^i \frac{\partial g}{\partial x^i}(\boldsymbol{x})$$

3.2 Cotangent Space

• For any $\omega \in T_p^*M$, the coordinate representation of ω

$$\omega = \omega_i \, dx_p^i \tag{26}$$

where
$$\omega_i = \omega \left(\frac{\partial}{\partial x^i} \Big|_p \right) \in \mathbb{R}$$
 (27)

• The computation of $\omega(v)$ via its coordinate representation is the inner product between their component functions:

$$\omega(v) = \left(\omega_i \, dx_p^i\right) \left(v^i \frac{\partial}{\partial x^i}\Big|_p\right)$$

$$= \omega_i \, v^i$$

$$:= \langle \omega \,, \, v \rangle$$
(28)

• A differential 1-form at $p, df_p \in T_p^*M$, under dual basis (dx_p^i) is

$$df_p = \frac{\partial f}{\partial x^i}(p) \, dx_p^i \tag{29}$$

• The **change of coordinate** formula for covector between (\tilde{x}^j) and (x^i) on M

$$\omega = \widetilde{\omega}_{j} d\widetilde{x}_{p}^{j} = \omega_{i} dx_{p}^{i}$$
where $\omega_{i} = \omega \left(\frac{\partial}{\partial x^{i}} \Big|_{p} \right)$

$$= \omega \left(\frac{\partial \widetilde{x}^{j}}{\partial x^{i}} (p) \frac{\partial}{\partial \widetilde{x}^{j}} \Big|_{p} \right)$$

$$\Rightarrow \omega_{i} = \frac{\partial \widetilde{x}^{j}}{\partial x^{i}} (p) \widetilde{\omega}_{j}$$
(30)

Note that the covariant trends i.e. from (\tilde{x}^j) to (x^i) for both the basis and function transformation. This is the opposite as compared to (24).

• The **pullback** of ω by F under coordinate map (x^i) for M and (y^j) for N is

$$F^* \left(\omega_j \, dy_{F(p)}^j \right) = (\omega_j \circ F)_p \, d \left(y^j \circ F \right)|_p \tag{31}$$

$$= (\omega_j \circ F)_p \ dF_p^j \tag{32}$$

$$= (\omega_j \circ F)_p \frac{\partial F^j}{\partial x^i}(p) dx_p^i$$
(33)

• df_p acts on $v \in T_pM$ under standard basis vector is

$$df_p \left(v^i \frac{\partial}{\partial x^i} \Big|_p \right) = v^i \frac{\partial f}{\partial x^i}(p). \tag{34}$$

3.3 Tangent Bundle and Vector Field

• For given smooth chart $(U,(x^i))$ in M and $(V,(y^j))$ in N, for $p \in U \cap F^{-1}(V)$, when Y are F-related to X

$$X = X^{i} \frac{\partial}{\partial x^{i}}$$

$$Y_{F(p)} = dF_{p} \left(X^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p} \right)$$

$$= X^{i}(p) dF_{p} \left(\frac{\partial}{\partial x^{i}} \Big|_{p} \right)$$

$$= X^{i}(p) \frac{\partial F^{j}}{\partial x^{i}}(p) \frac{\partial}{\partial y^{j}} \Big|_{F(p)}$$
(35)

That is, its component function

$$Y^{j} \circ F = \frac{\partial F^{j}}{\partial x^{i}} X^{i} \tag{36}$$

• Xf in a smooth function while fX is a vector field:

$$X = X^{i} \frac{\partial}{\partial x^{i}}$$

$$\Rightarrow Xf = X^{i} \frac{\partial f}{\partial x^{i}}$$
and $fX = fX^{i} \frac{\partial}{\partial x^{i}}$

• For any smooth function $f \in \mathcal{C}^{\infty}(N)$ on N, Y is F-related to X, then

$$X(f \circ F) = (Yf) \circ F$$

Note that $f \circ F \in \mathcal{C}^{\infty}(M)$, so the $X(f \circ F)$ is a smooth function on M. (Yf) is a smooth function on N. This equation implies that F can be "taken out of the bracket" while X is pushforwarded to become Y. Under the coordinates $(U,(x^i))$ in M and $(V,(y^j))$ in N

$$X(f \circ F) = X^{i} \frac{\partial (f \circ F)}{\partial x^{i}} = X^{i} \left(\frac{\partial f}{\partial y^{j}} \circ F\right) \frac{\partial F^{j}}{\partial x^{i}}$$

$$= \left(X^{i} \frac{\partial F^{j}}{\partial x^{i}}\right) \left(\frac{\partial f}{\partial y^{j}} \circ F\right)$$

$$= \left(Y^{j} \circ F\right) \left(\frac{\partial f}{\partial y^{j}} \circ F\right) \quad \text{(by (36))}$$

$$= \left(Y^{j} \frac{\partial f}{\partial y^{j}}\right) \circ F \tag{37}$$

• The coordinate representation of the pushforward of vector field X by F, i.e. F_*X is

$$X = X^{i} \frac{\partial}{\partial x^{i}}$$

$$\Rightarrow F_{*}X = \left(\left(\frac{\partial F^{j}}{\partial x^{i}} X^{i} \right) \circ F^{-1} \right) \frac{\partial}{\partial y^{j}}$$
(38)

• If $X, Y \in \mathfrak{X}(M)$, the Lie bracket $[X, Y] \in \mathfrak{X}(M)$ has the following coordinate representation:

$$X = X^{i} \frac{\partial}{\partial x^{i}}, \quad Y = Y^{j} \frac{\partial}{\partial x^{j}}$$

$$\Rightarrow [X, Y] = XY - YX$$

$$= \left(X^{i} \frac{\partial}{\partial x^{i}}\right) \left(Y^{j} \frac{\partial}{\partial x^{j}}\right) - \left(Y^{j} \frac{\partial}{\partial x^{j}}\right) \left(X^{i} \frac{\partial}{\partial x^{i}}\right)$$

$$= X^{i} \frac{\partial Y^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}} + X^{i} Y^{j} \frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}} - Y^{j} X^{i} \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{i}}$$

$$= X^{i} \frac{\partial Y^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}}$$

$$= \left(X^{j} \frac{\partial Y^{i}}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}}\right) \frac{\partial}{\partial x^{i}}$$

$$(39)$$

We also see that $XY \notin \mathfrak{X}(M)$, which can be seen in its coordinate representation.

$$XY = X^{i} \frac{\partial Y^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}} + X^{i} Y^{j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}$$

Note that every vector fields can be written as linear combination of $(\frac{\partial}{\partial x^j})$ but XY contains a **second-order derivative** term which does not belong to the tangent space at any point. In **Lie bracket**, this second order mixed derivative term is **cancelled out** so it is a vector field. XY is still **a linear smooth map** though.

3.4 Cotangent Bundle and Covector Field

• Let $X \in \mathfrak{X}(M)$ be a vector field.

$$X = X^{i} \frac{\partial}{\partial x^{i}}$$

$$dx^{i}(X) = dx^{i} \left(X^{i} \frac{\partial}{\partial x^{i}} \right)$$

$$= X^{i}$$
(40)

The differential 1-form is a covector field and its component function is the partial derivatives
of f

$$df = \frac{\partial f}{\partial x^i} dx^i$$

• The computation of $\omega(X)$ via its coordinate representation is the inner product between their component functions:

$$X = X^{i} \frac{\partial}{\partial x^{i}}, \quad \omega = \omega_{i} \, dx^{i}$$

$$\omega(X) = \left(\omega_{i} \, dx^{i}\right) \left(X^{i} \frac{\partial}{\partial x^{i}}\right)$$

$$= \omega_{i} \, X^{i} \tag{41}$$

• df(X) is a continuous function. In fact,

$$df(X) = Xf$$

$$\frac{\partial f}{\partial x^i} dx^i \left(X^j \frac{\partial}{\partial x^j} \right) = \frac{\partial f}{\partial x^i} X^i = \left(X^i \frac{\partial}{\partial x^i} \right) f$$

For $X = \gamma'(t)$ for smooth curve $\gamma: J \to M$, we have

$$df(\gamma'(t)) = \gamma'(t)f = \frac{d}{dt}(f \circ \gamma) = (f \circ \gamma)'$$

• The covector field ω acts on the Lie bracket [X,Y] has the form

$$\omega = \omega_{i} dx^{i} \quad [X, Y] = \left(X^{j} \frac{\partial Y^{i}}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \right) \frac{\partial}{\partial x^{i}}$$

$$\Rightarrow \omega \left([X, Y] \right) = \omega_{i} dx^{i} \left([X, Y] \right)$$

$$= \left(X^{j} \frac{\partial Y^{i}}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \right) \omega_{i}$$

$$(42)$$

• We compute the representation of function $X(\omega(Y))$ where $X,Y\in\mathfrak{X}(M)$ and $\omega\in\mathfrak{X}^*(M)$

$$X(\omega(Y)) = \left(X^{j} \frac{\partial}{\partial x^{j}}\right) \left(\omega_{i} dx^{i} \left(Y^{s} \frac{\partial}{\partial x^{s}}\right)\right)$$
$$= \left(X^{j} \frac{\partial}{\partial x^{j}}\right) \left(\omega_{i} Y^{i}\right)$$
$$= X^{j} \frac{\partial \omega_{i}}{\partial x^{j}} Y^{i} + X^{j} \frac{\partial Y^{i}}{\partial x^{j}} \omega_{i}$$

3.5 Tensor

• Let A acts on $X_i \in \mathfrak{X}(M)$, i = 1, ..., k. The Tensor Characterization Lemma states that A induced a smooth function as

$$A = a_{i_{1},...,i_{k}} dx^{i_{1}} \otimes ... \otimes dx^{i_{k}}, \quad X_{i} = X_{i}^{j} \frac{\partial}{\partial x^{j}}. \quad i = 1,...,k$$

$$\Rightarrow A(X_{1},...,X_{k}) = (a_{i_{1},...,i_{k}} dx^{i_{1}} \otimes ... \otimes dx^{i_{k}}) (X_{1},...,X_{k})$$

$$= a_{i_{1},...,i_{k}} dx^{i_{1}} (X_{1}) ... dx^{i_{k}} (X_{k})$$

$$= a_{i_{1},...,i_{k}} X_{1}^{i_{1}} ... X_{k}^{i_{k}}$$

$$(43)$$

Note that this is a composite of k derivations.

3.6 Differential Forms

• Let $\omega_p \in \Lambda^k(T_p^*M)$, and $v_1, \ldots, v_k \in T_pM$.

If
$$\omega_p = \omega_p^1 \wedge \ldots \wedge \omega_p^k$$
,

$$\Rightarrow \quad \omega_p(v_1, \ldots, v_k) = \det \begin{bmatrix} \omega_p^1(v_1) & \ldots & \omega_p^1(v_k) \\ \vdots & \ddots & \vdots \\ \omega_p^k(v_1) & \ldots & \omega_p^k(v_k) \end{bmatrix}. \tag{44}$$

• Furthermore, assume that $\omega \in \Omega^k(M)$ is **a** differential k-form, while each $\omega^s = dw^s = w^s_{i_s} dx^{i_s} \in \Omega^1(M)$ is a 1-form for $s = 1, \ldots, k$ and $v_j = v^{i_s}_j \frac{\partial}{\partial x^{i_s}} \in \mathfrak{X}(M)$ is a set of **vector** fields for $j = 1, \ldots, k$. $I := (i_1, \ldots, i_k) \subset \{1, \ldots, n\}$ is a multi-index of size k. The coordinate representation of (44) is

$$\omega = \left(w_{i_s}^1 dx^{i_s}\right) \wedge \dots \wedge \left(w_{i_s}^k dx^{i_s}\right) \\
= \sum_{I}' \omega_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}, \quad 1 \leq i_1 \leq \dots \leq i_k \leq n \\
\omega(v_1,\dots,v_k) = \left(\left(w_{i_s}^1 dx^{i_s}\right) \wedge \dots \wedge \left(w_{i_s}^k dx^{i_s}\right)\right) (v_1,\dots,v_k) \\
= \sum_{\sigma \in S_k} \operatorname{sgn}\left(\sigma\right) \left(\sigma\left(w_{i_s}^1 dx^{i_s}\right) \otimes \dots \otimes \left(w_{i_s}^k dx^{i_s}\right)\right) (v_1,\dots,v_k) \\
= \sum_{\sigma \in S_k} \operatorname{sgn}\left(\sigma\right) \prod_{j=1}^k \left(w_{i_s}^{\sigma(j)} dx^{i_s}\right) (v_j) \\
= \sum_{\sigma \in S_k} \operatorname{sgn}\left(\sigma\right) \prod_{j=1}^k v_j^{i_s} w_{i_s}^{\sigma(j)} \\
= \sum_{\sigma \in S_k} \operatorname{sgn}\left(\sigma\right) \prod_{j=1}^k v_j^{i_s} w_{i_s}^{\sigma(j)} \\
= \det \begin{bmatrix} v_1^{i_s} w_{i_s}^1 & \dots & v_k^{i_s} w_{i_s}^1 \\ \vdots & \ddots & \vdots \\ v_1^{i_s} w_{i_s}^k & \dots & v_k^{i_s} w_{i_s}^k \end{bmatrix} \\
= \det \left(\mathbf{W}^T \mathbf{V}\right), \tag{45}$$

where $V: M \to \mathbb{R}^{n \times k}$ is a matrix of component functions of vector fields (v_1, \dots, v_k) , and $W: M \to \mathbb{R}^{n \times k}$ is a matrix of component functions of covector fields $(\omega^1, \dots, \omega^k)$

$$oldsymbol{V} = [oldsymbol{v}_1, \ldots, oldsymbol{v}_k]_{n imes k} \ oldsymbol{W} = [oldsymbol{w}^1, \ldots, oldsymbol{w}^k]_{n imes k}$$

• Thus we can compute *the component function* of a k-form as

$$\omega = (w_{i_s}^1 dx^{i_s}) \wedge \ldots \wedge (w_{i_s}^k dx^{i_s})$$

$$= \omega_{i_1, \dots, i_k} dx^{i_1} \wedge \ldots \wedge dx^{i_k}, \quad (1 \le i_1 \le \ldots \le i_k \le n)$$

$$\Rightarrow \omega_{i_1, \dots, i_k} = \omega \left(\frac{\partial}{\partial x^{i_1}}, \dots, \frac{\partial}{\partial x^{i_k}}\right)$$

$$= \det \left(\mathbf{W}^T[\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_k}]\right) = \det(\mathbf{W}_I^T)$$

where W_I is a $k \times k$ submatrix of component matrix W by only selecting rows whose indices are in $I = \{(i_1, \ldots, i_k) : 1 \le i_1 \le \ldots \le i_k \le n\}$.

• The *exterior derivative* $d\omega \in \Omega^{k+1}(M)$ can be represented as

$$d\omega = d\left(\omega_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}\right)$$

$$= d\omega_{i_1,\dots,i_k} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}$$

$$= \left(\frac{\partial \omega_{i_1,\dots,i_k}}{\partial x^s}\right) dx^s \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}$$
(46)

For 1-form $\omega = \omega_j dx^j$, we have the 2-forms $d\omega$ can be written as

$$d\omega = d \left(\omega_{j} dx^{j}\right)$$

$$= d\omega_{j} \wedge dx^{j}$$

$$= \left(\frac{\partial \omega_{j}}{\partial x^{i}} dx^{i}\right) \wedge dx^{j} \quad \left(\text{note that } d\omega_{j} = \frac{\partial \omega_{j}}{\partial x^{i}} dx^{i}\right)$$

$$= \frac{\partial \omega_{j}}{\partial x^{i}} dx^{i} \wedge dx^{j}$$

$$= \sum_{i < j} \left(\frac{\partial \omega_{j}}{\partial x^{i}} - \frac{\partial \omega_{i}}{\partial x^{j}}\right) dx^{i} \wedge dx^{j}$$

$$(47)$$

• Let $X, Y \in \mathfrak{X}(M)$ be a vector field on $M, X = X^i \frac{\partial}{\partial x^i}$ and $Y = Y^j \frac{\partial}{\partial x^j}$. Let $\omega = \omega_i dx^i$ as the 1-form. Then

$$d\omega(X,Y) = \left(\frac{\partial \omega_{j}}{\partial x^{i}} dx^{i} \wedge dx^{j}\right) (X,Y)$$

$$= \sum_{i < j} \left(\frac{\partial \omega_{j}}{\partial x^{i}} - \frac{\partial \omega_{i}}{\partial x^{j}}\right) dx^{i} \otimes dx^{j} (X,Y)$$

$$= \sum_{i < j} \left(\frac{\partial \omega_{j}}{\partial x^{i}} - \frac{\partial \omega_{i}}{\partial x^{j}}\right) X^{i} Y^{j}$$
(48)

This is a differential operator that only contains the second-order derivative terms $X^i Y^j$ on smooth functions. The component function is in fact the determinant of a 2×2 submatrix of the Jacobian matrix $\left[\frac{\partial \omega_j}{\partial x^i}\right]_{j,i}$

• Let $X \in \mathfrak{X}(M)$ be a vector field on M. The *interior product* $X \cup (dx^1 \wedge ... \wedge dx^k)$ has the following representation:

$$X = X^{i} \frac{\partial}{\partial x^{i}}$$

$$X = \left(dx^{1} \wedge \dots \wedge dx^{k} \right) = \sum_{i=1}^{k} (-1)^{i-1} dx^{i}(X) dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{k}$$

$$= \sum_{i=1}^{k} (-1)^{i-1} X^{i} dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{k}$$

$$(49)$$

where $\widehat{dx^i}$ indicates that dx^i is **omitted**.

For $Y_2, \ldots, Y_k \in \mathfrak{X}(M)$, where $Y_j = Y_j^s \frac{\partial}{\partial x^s}$, $X = X^s \frac{\partial}{\partial x^s}$

$$X \, \lrcorner \, \left(dx^1 \wedge \ldots \wedge dx^k \right) (Y_2, \ldots, Y_k) = \left(dx^1 \wedge \ldots \wedge dx^k \right) (X, Y_2, \ldots, Y_k)$$
$$= \det \left[\boldsymbol{X} \mid \boldsymbol{Y} \right] \tag{50}$$

where $[X \mid Y] : M \to \mathbb{R}^{k \times k}$ is a matrix-valued function whose first column is from the component functions of X and the rest columns are component functions of (Y_i) .

$$\boldsymbol{Y} = [\boldsymbol{Y}_2, \dots, \boldsymbol{Y}_k]_{k \times (k-1)}$$

The equation (49) corresponds to the expansion by minors along the first columns

$$X \, \lrcorner \left(dx^1 \wedge \ldots \wedge dx^k \right) (Y_2, \ldots, Y_k) = \sum_{i=1}^k (-1)^{i-1} X^i \det(\boldsymbol{Y}_{-i}) \tag{51}$$

where Y_{-i} is obtained by dropping *i*-th row of Y.

• Compute the pullback of a n-form by $F: M \to N$. If (x^i) and (y^j) are smooth coordinates locally, and u is a continuous real-valued function on V, then the following holds locally.

$$F^* (u \, dy^1 \wedge \ldots \wedge dy^n) = (u \circ F) (\det(DF)) \, dx^1 \wedge \ldots \wedge dx^n$$

where DF represents the Jacobian matrix of F in these coordinates.

3.7 Connections

• Given coordinate system (x^i) , and ∇ is a connection on TM, the covariant derivative of $Y = Y^j \frac{\partial}{\partial x^j}$ in the direction of $X = X^i \frac{\partial}{\partial x^i}$ is

$$\nabla_{X}Y = \nabla_{X^{i}} \frac{\partial}{\partial x^{i}} (Y^{j} \frac{\partial}{\partial x^{j}})$$

$$= X^{i} \nabla_{\frac{\partial}{\partial x^{i}}} (Y^{j} \frac{\partial}{\partial x^{j}})$$

$$= X^{i} \left(\left(\nabla_{\frac{\partial}{\partial x^{i}}} Y^{j} \right) \frac{\partial}{\partial x^{j}} + Y^{j} \nabla_{\frac{\partial}{\partial x^{i}}} (\frac{\partial}{\partial x^{j}}) \right)$$

$$= X^{i} \left(\left(\frac{\partial}{\partial x^{i}} Y^{j} \right) \frac{\partial}{\partial x^{j}} + Y^{j} \Gamma_{i,j}^{k} \frac{\partial}{\partial x^{k}} \right)$$

$$= X^{i} \left(\frac{\partial}{\partial x^{i}} Y^{j} \right) \frac{\partial}{\partial x^{j}} + Y^{j} \Gamma_{i,j}^{k} \frac{\partial}{\partial x^{k}} \right)$$

$$= X^{i} \left(\frac{\partial}{\partial x^{i}} Y^{j} \right) \frac{\partial}{\partial x^{j}} + Y^{j} \Gamma_{i,j}^{k} \frac{\partial}{\partial x^{k}}$$

$$= \left(X(Y^{k}) + X^{i} Y^{j} \Gamma_{i,j}^{k} \right) \frac{\partial}{\partial x^{k}}$$

$$(52)$$

• The *inner product* of covariant derivative of Y in direction of X with Z gives:

$$\langle \nabla_X Y, Z \rangle_g = \left\langle \left(X(Y^k) + X^i Y^j \Gamma_{i,j}^k \right) \frac{\partial}{\partial x^k}, Z^l \frac{\partial}{\partial x^l} \right\rangle_g$$

$$= \left(X(Y^k) + X^i Y^j \Gamma_{i,j}^k \right) Z^l \left\langle \frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l} \right\rangle_g$$

$$= g_{k,l} \left(X(Y^k) + X^i Y^j \Gamma_{i,j}^k \right) Z^l$$

$$:= g_{k,l} X(Y^k) Z^l + \Gamma_{i,i,l} X^i Y^j Z^l$$
(54)

Note that

$$\Gamma_{i,j;k} := \left\langle \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \right\rangle_g = \left\langle \Gamma_{i,j}^l \frac{\partial}{\partial x^l}, \frac{\partial}{\partial x^k} \right\rangle_g$$

$$= g_{l,k} \Gamma_{i,j}^l \tag{56}$$

For metric connection ∇ ,

$$X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$

Thus

$$X\left(g_{k,l}Y^kZ^l\right) = g_{k,l}X(Y^k)Z^l + g_{k,l}Y^kX(Z^l) + X(g_{k,l})Y^kZ^l$$

$$\langle \nabla_X Y , Z \rangle = g_{k,l}X(Y^k)Z^l + \Gamma_{i,j;l}X^iY^jZ^l$$

$$\langle Y , \nabla_X Z \rangle = g_{k,l}X(Z^k)Y^l + \Gamma_{i,j;l}X^iZ^jY^l$$
since ∇ is a metric connection, the equation holds
$$X(g_{k,l})Y^kZ^l = \Gamma_{i,k;l}X^iY^kZ^l + \Gamma_{i,l;k}X^iY^kZ^l$$

$$\partial_i(g_{k,l})X^iY^kZ^l = \Gamma_{i,k;l}X^iY^kZ^l + \Gamma_{i,l;k}X^iY^kZ^l$$
set $X^i = 1, Y^k = 1, Z^l = 1, \forall i, k, l$

 $\Rightarrow \frac{\partial}{\partial m^i}(g_{j,k}) = \Gamma_{i,j;k} + \Gamma_{i,k;j} = g_{m,k}\Gamma^m_{i,j} + g_{m,j}\Gamma^m_{i,k}$

• The *difference* between two covariant derivatives $\nabla_X Y - \nabla_Y X$:

$$\nabla_{X}Y - \nabla_{Y}X = \left(X(Y^{k}) + X^{i}Y^{j}\Gamma_{i,j}^{k}\right) \frac{\partial}{\partial x^{k}} - \left(Y(X^{k}) + Y^{i}X^{j}\Gamma_{i,j}^{k}\right) \frac{\partial}{\partial x^{k}}$$

$$= \left(X(Y^{k}) - Y(X^{k}) + \left(X^{i}Y^{j} - Y^{i}X^{j}\right)\Gamma_{i,j}^{k}\right) \frac{\partial}{\partial x^{k}}$$

$$= [X, Y] + \left(\left(X^{i}Y^{j} - Y^{i}X^{j}\right)\Gamma_{i,j}^{k}\right) \frac{\partial}{\partial x^{k}}$$
(57)

Note that the Lie bracket is

$$[X,Y] = \left(X(Y^k) - Y(X^k)\right) \frac{\partial}{\partial x^k}$$

So the connection ∇ is **symmetric** if and only if $\Gamma_{i,j}^k = \Gamma_{i,i}^k$. If so, then

$$\nabla_{X}Y - \nabla_{Y}X = \left[X(Y^{k}) - Y(X^{k}) + \left(X^{i}Y^{j} - Y^{i}X^{j}\right)\Gamma_{i,j}^{k}\right] \frac{\partial}{\partial x^{k}}$$
when $\Gamma_{i,j}^{k} = \Gamma_{j,i}^{k}$

$$= \left(X(Y^{k}) - Y(X^{k})\right) \frac{\partial}{\partial x^{k}} + \left(X^{i}Y^{j}\Gamma_{i,j}^{k} - Y^{i}X^{j}\Gamma_{j,i}^{k}\right) \frac{\partial}{\partial x^{k}}$$

$$= [X, Y] + \left(X^{i}Y^{j}\Gamma_{i,j}^{k} - Y^{j}X^{i}\Gamma_{i,j}^{k}\right) \frac{\partial}{\partial x^{k}}$$

$$= [X, Y]$$

Thus the $torsion\ tensor\ au$ is computed as

$$\tau(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$
$$= \left(X^i Y^j \Gamma_{i,j}^k - Y^j X^i \Gamma_{i,j}^k\right) \frac{\partial}{\partial x^k}$$

That is the connection ∇ is **symmetric** if and only if

$$\nabla_X Y - \nabla_Y X = [X, Y]$$

• The covariant derivative of Z in direction of [X,Y]

$$\nabla_{[X,Y]}Z = \nabla_{\left(\left(X(Y^{k}) - Y(X^{k})\right)\frac{\partial}{\partial x^{k}}\right)}Z^{l}\frac{\partial}{\partial x^{l}}$$

$$= \left(X(Y^{k}) - Y(X^{k})\right)\nabla_{\frac{\partial}{\partial x^{k}}}\left(Z^{l}\frac{\partial}{\partial x^{l}}\right)$$

$$= \left(X(Y^{k}) - Y(X^{k})\right)\frac{\partial Z^{l}}{\partial x^{k}}\frac{\partial}{\partial x^{l}} + \left(X(Y^{k}) - Y(X^{k})\right)Z^{l}(\nabla_{\partial_{k}}\partial_{l})$$

$$= \left(X(Y^{i}) - Y(X^{i})\right)\frac{\partial Z^{k}}{\partial x^{i}}\frac{\partial}{\partial x^{k}} + \Gamma_{i,j}^{k}\left(X(Y^{i}) - Y(X^{i})\right)Z^{j}\frac{\partial}{\partial x^{k}}$$

$$= \left\{\left(X(Y^{i}) - Y(X^{i})\right)\frac{\partial Z^{k}}{\partial x^{i}} + \left(X(Y^{i}) - Y(X^{i})\right)Z^{j}\Gamma_{i,j}^{k}\right\}\frac{\partial}{\partial x^{k}}$$

$$= \left\{[X,Y](Z^{k}) + [X,Y]^{i}Z^{j}\Gamma_{i,j}^{k}\right\}\frac{\partial}{\partial x^{k}}$$
(58)

• The covariant derivative of ω in direction of X:

$$\nabla_X \omega(Y) = X(\omega(Y)) - \omega(\nabla_X Y)$$

Thus the coordinate representation is

$$\nabla_X \omega = \left(X(\omega_k) - \omega_i X^j \Gamma_{j,k}^i \right) dx^k. \tag{59}$$

• The total covariant derivative of a 1-form ω is

$$\nabla \omega(Y, X) = (\nabla_X \omega)(Y) = X(\omega(Y)) - \omega(\nabla_X Y)$$

 \bullet We check the formula for total covariant derivative for tensor F

$$\nabla_X F = \operatorname{tr} (\nabla F \otimes X)$$

- Example (The Covariant Hessian). Let u be a smooth function on M.
 - The <u>total covariant derivative of a smooth function is equal to its 1-form</u> $\nabla u = du \in \Omega^1(M) = \Gamma(T^{(0,1)}TM)$ since

$$\nabla u(X) = \nabla_X u = Xu = du(X)$$

- The 2-tensor $\nabla^2 u = \nabla(du)$ is called <u>the covariant Hessian of u</u>. Its action on smooth vector fields X, Y can be computed by the following formula:

$$\nabla^2 u(Y,X) = \nabla_{X,Y}^2 u = \nabla_X \nabla_Y u - \nabla_{(\nabla_X Y)} u = X(Yu) - (\nabla_X Y)(u)$$
 (60)

In any local coordinates, it is

$$\nabla^2 u = u_{;i,j} \, dx^i \otimes dx^j$$

where

$$u_{;i,j} = \frac{\partial^2 u}{\partial x^j \partial x^i} - \Gamma^k_{j,i} \frac{\partial u}{\partial x^k}$$

If ∇ is symmetric, i.e. $\nabla_X Y - \nabla_Y X = [X, Y]$ then

$$\nabla^{2}u(Y,X) = X(Yu) - (\nabla_{X}Y)(u)$$

$$= (XY)u - [X,Y](u) - \nabla_{Y}X(u)$$

$$= (YX)u - \nabla_{Y}X(u) := \nabla^{2}u(X,Y)$$
(61)

Thus $\nabla^2 u$ is a symmetric 2-tensor if ∇ is symmetric.

$$\nabla^2 u = u_{;i,j} \, dx^i \, dx^j$$

3.8 Geodesics and Parallel Transport

• The *parallel transport* of V along curve $\gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))$ is computed as

$$\nabla_{\gamma'(t)}V = \nabla_{\dot{\gamma}^i(t)\partial_i}V \equiv 0$$

$$\Leftrightarrow \left[\gamma'(t)(V^k) + \dot{\gamma}^i(t)V^j\Gamma^k_{i,j}\right]\partial_k \equiv 0$$

$$\Leftrightarrow \gamma'(t)(V^k) + \dot{\gamma}^i(t)V^j\Gamma^k_{i,j}(\gamma(t)) = 0$$

$$\Leftrightarrow \dot{V}^k(\gamma(t)) + \dot{\gamma}^i(t)V^j\Gamma^k_{i,j}(\gamma(t)) = 0, \quad k = 1, \dots, n$$

Let $V(t) = V_{\gamma(t)}$ be the vector field along curve γ , so that $V(t) = V^k(\gamma(t))\partial_k := V^k(t)\partial_k$.

$$\dot{V}^k = -\dot{\gamma}^i(t) \, \Gamma^k_{i,j}(\gamma(t)) V^j, \qquad k = 1, \dots, n. \tag{62}$$

For fixed γ , this is a system of n 1st-order linear ODEs for $(V^1(t), \ldots, V^n(t))$.

• To obtain the geodesic equations, note that $\nabla_{\gamma'(t)}V \equiv 0$ for $V = \gamma'(t) = \dot{\gamma}^k(t)\partial_k$. Thus we have **the geodesic equations**:

$$\ddot{\gamma}^k = -\dot{\gamma}^i \dot{\gamma}^j \Gamma^k_{i,j}(\gamma(t)), \qquad k = 1, \dots, n.$$
(63)

This is a system of n **2nd-order nonlinear ODEs** for $(\gamma^1(t), \ldots, \gamma^n(t))$.

It can reduce to a system of 2n 1st-order nonlinear ODEs

$$\dot{\gamma}^k = v^k$$

$$\dot{v}^k = -v^i v^j \Gamma_{i,j}^k(\gamma(t)), \qquad k = 1, \dots, n.$$
(64)

3.9 Divergence of Vector Field

• From the formula, $d(X \, \lrcorner \, dV) = \operatorname{div}(X) \, dV$, we can derive the coordinate representation of divergence of vector field X

$$X = X^{i} \frac{\partial}{\partial x^{i}}$$

$$dV = \rho dx^{1} \wedge \dots \wedge dx^{n}$$

$$\Rightarrow X \cup dV = X \cup \left(\rho dx^{1} \wedge \dots \wedge dx^{n}\right)$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \rho X^{i} dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{n}$$

$$\Rightarrow d\left(X \cup dV\right) = \sum_{i=1}^{n} (-1)^{i-1} d\left(\rho X^{i}\right) \wedge dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{n}$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \left(\sum_{s=1}^{n} \frac{\partial(\rho X^{i})}{\partial x^{s}} dx^{s}\right) \wedge dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{n}$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \left(\frac{\partial(\rho X^{i})}{\partial x^{i}} dx^{i}\right) \wedge dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{n}$$

$$= \frac{1}{\rho} \sum_{i=1}^{n} \left(\frac{\partial(\rho X^{i})}{\partial x^{i}} \rho dx^{1} \wedge \dots \wedge dx^{i} \wedge \dots \wedge dx^{n}\right)$$

$$= \frac{1}{\rho} \sum_{i=1}^{n} \frac{\partial(\rho X^{i})}{\partial x^{i}} dV = \left(\frac{1}{\rho} \sum_{i=1}^{n} \frac{\partial(\rho X^{i})}{\partial x^{i}}\right) dV$$

$$\Rightarrow \operatorname{div}(X) = \frac{1}{\rho} \sum_{i=1}^{n} \frac{\partial(\rho X^{i})}{\partial x^{i}}$$

References