PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-111904

(43) Date of publication of application: 24.04.1990

(51)Int.CI.

G02B 6/32

(21)Application number: 01-215116

(71)Applicant: PHILIPS GLOEILAMPENFAB:NV

(22)Date of filing:

23.08.1989

(72)Inventor: ANGENENT JOHANNES H

KHOE GIOK D

MAHON CATHAL J VAN DE GRIJP ABRAM POTTERS CORNELIS J T

WRIGHT KIERAN G

(30)Priority

Priority number: 88 8802094

Priority date: 25.08.1988

Priority country: NL

89 8901821

14.07.1989

NL

(54) LOW REFLECTION BALL LENS CONNECTOR PART

(57)Abstract:

PURPOSE: To provide the ball lens connector part of low reflection by executing machining so that a minimum angle formed by the vertical line of the end face of a fiber core and the center line of the fiber core in the area of a fiber end part is not equal to 0° and the center line of the circumference of the end part of a housing is matched with an optical axis.

CONSTITUTION: In the tube-like housing 2, the optical fiber 4 having an inclined end face 6 where the vertical line makes an angle α with the center line 18 of the core 5 of the optical fiber is fixed in the capillary hole of a glass tube 10. A direction that the end face is inclined is marked on the glass tube by a reference face 24. In the connector part, the end part 7 of the tube-like housing 2 is machined so that the optical axis of a light beam 11 emitted from the connector part is matched with the axis of the circumference of the end part 7. The matching of the light beam 11 and the machine shaft 17 can be decided by a photodetector 15, for example, and

the precise arrangement of the connector part for an eccentric sheet 13 can be decided by the mark on a capillary. Thus, the low reflection ball lens connector part where the emitted light beam is matched with the center line of the end part can be provided.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

® 日本国特許庁(JP)

① 特許出願公開

@ 公 開 特 許 公 報 (A) 平2-111904

⑤Int. Cl. ⁵

識別記号

庁内盔理番号

43公開 平成2年(1990)4月24日

G 02 B 6/32

8507-2H

審査請求 未請求 請求項の数 8 (全7頁)

図発明の名称 低反射球レンズコネクタ部

②特 願 平1-215116

②出 願 平1(1989)8月23日

優先権主張 201988年8月25日30オランダ(NL)308802094

⑫発 明 者 ヨハネス・ヘンドリク オランダ国5621 ベーアー アインドーフェン フルーネ

ス・アンヘネント パウツウエツハ1

⑫発 明 者 ヒオク・デイヤン・コ オランダ国5621 ペーアー アインドーフエン フルーネ

ーエ パウツウエツハ1

⑪出 顋 人 エヌ・ベー・フイリツ オランダ国5621 ベーアー アインドーフエン フルーネ

プス・フルーイランペ パウツウエツハ1

ンフアブリケン

四代 理 人 弁理士 杉村 暁秀 外1名

最終頁に続く

月期 世

- 1. 発明の名称 低反射球レンズコネクタ部
- 2. 特許請求の範囲
 - 1. 管状ハウジングと、このハウジングの一端 に設けられた球レンズと、前記ハウジング中 に固定された導光コアを有する光ファイバと を有し、ハウジング内に入れられたファイバ コアの端面の中心は実質的に球レンズの焦点 面に位置され、端部の領域における管状ハウ ジングの円周の中心はコネクタ部の光軸と一 致し、この光铀は、コネクタが用いられた時 に球レンズを経て出る平行な光ピームの中心 線として定義され、球レンズの中心はファイ バコアの中心線の延長上に位置された、光コ ネクタに用いる球レンズコネクタ郎において、 ファイバコアの端面の重線とファイバ端部の 領域におけるファイバコアの中心線とで形成 される最小角度は0°に等しくなく、ハウジ ングの嫡郎は該嫡郎の円周の中心線と光軸と が一致するように機械加工されたことを特徴

とする低反射球レンズコネクタ部。

- 2. ファイバコアの端面の重線とファイバの端部の領域におけるファイバコアの中心線とで形成される版小角度は7°と12°の間である 額求項1記載の低反射球レンズコネクタ部。
- 3. 1.6 を超える原折率を有する球レンズが用いられた請求項1または2記数の低反射球レンズコネクタ部。
- 4. 球レンズは、ファイバの嬉に面する側に平 らな面を有する請求項1乃至3の何れか1項 記載の低反射球レンズコネクタ部。
- 球レンズの平らな面の垂線とファイバコア の中心線とは4°と10°の間の角度である請 求項4記載の低反射球レンズコネクタ部。
- 6. 光ファイバの端部は毛管中心孔を有する管内に固定され、この管はハウジング内に固定された請求項1乃至5の何れか1項記載の低反射球レンズコネクタ部。
- 7. 光ファイバの嫡郎に傾斜端面を設け、しか る後この嫡郎を球レンズを有する管状ハウジ

ング内に固定し、かくして形成された球レンズコネクタ部を機械加工工具の偏心シートに対して位置決めし、コネクタ部の位置決めとシートの偏心度を、該コネクタ部の光軸が前記工具の機械軸と一致するように選び、しかる後コネクタ部を機械加工処理することを特徴とする低反射球レンズコネクタ部の製造方法。

8. 傾斜に先立って、光ファイバの端部を、端面が傾斜された方向を示す参照面をそなえた 毛管内に固定する請求項7記載の低反射球レンズコネクタ部の製造方法。 3. 発明の詳細な説明

(産業上の利用分野)

本発明は、管状ハウジングと、このハウジング の一端に設けられた球レンズと、前記ハウジング 中に固定された導光コアを有する光ファイバとを 有し、ハウジング内に入れられたファイバコアの 端面の中心は実質的に球レンズの焦点面に位置さ れ、端部の領域における管状ハウジングの円周の 中心はコネクタ部の光軸と一致し、この光軸は、 コネクタが用いられた時に球レンズを経て出る平 行な光ピームの中心線として定義され、球レンズ の中心はファイバコアの中心線の延長上に位置さ れた、光コネクタに用いる球レンズコネクタ部に 関するものである。本発明は更にこのような低反 射球レンズコネクタ部の製造方法に関するもので ある。ほレンズコネクタは、光源体および/また は光累子の迅速且つ効率のよい分離可能な結合が 重要な場合、例えば光通信装置に用いられる。

(従来の技術)

前記の種類の球レンズコネクタ部は欧州特許願

第207.522 号より既知である。そのコアが管状ハウジングの円周の中心線と実質的に一致した光ファイバが前記の欧州特許願に記載されたコネクク部の管状ハウジング内で連結される。ハウジング内にクランプされたファイバの端部の端面はファイバコアに直角に延在している、すなわち、前記の端面の重線とファイバコアの中心線は平行に延在し、したがって相互になす角は 0 * である。

射はやはり許容以上に大きいことがわかっている。 この欠点を除くために球レンズコネクタ部の前記 の反射を減らすことに努力が払われた。

(発明が解決しようとする課題)

本意明の一目的は、低反射の球レンズコネクク部を得ることにある。本発明の別の目的は、全体反射が一GOdB好ましくは一80dBよりも小さい球レンズコネクタ部を得ることにある。

(課題を解決するための手段)

前述およびその他の目的は、冒頭に記載したクイプの球レンズコネクタ部を次のようにすることができる、すなわち、ファイバコアの協面の垂線とファイバ端部の領域に外角は 0°に等しくなく、ハウジングの満部は協り、の円周の中心線と光軸とが一致するように機関部のではないので、この端面で反射に照射されることはない。ファイバコアの端

面の重線とファイバコアの中心線の間の角度の値 に応じて、反射光は大なり小なりファイバコーティングに照射される。

端面反射を減少する対物レンズをそなえた傾斜 端面を有する光ファイバを使用することそれ自体 は就中Electr. Letters 20, 973-974 (1984)よ り既知であることは注目に値する。もっともこの 場合には、ファイバの傾斜された端より出た光は、例えばx-yマニピュレータで制御されることのできるレンズにより手動でコリメートされる。けれども、このような構造は、効率的且つ迅速に結合を断ったりつくったりすることが可能でなければならないカップリングの用途には適しない。

迄使われなかった。

本発明の球レンズコネクタ部の別の好ましい実施腹様では、1.6 を超える屈折率を有する球レンズが用いられる。高い屈折率すなわち1.6 を超える屈折率を有する球レンズを用いると、これ等球レンズコネクタ部の2つより成るコネクタ内のレンズ収差の結果結合損失が極めて低いことがわかった。

本発明の球レンズコネクク部の更に別の好ましい実施照様では、球レンズは、ファイバ病に面する。平らな面を有する。平らな面した球がした球がである。この結果全体反射もまた、対は変しれる。この結果全体反射も部になる。な球レンズのの重線とファイののは、球レンズのである面のの重線としてある。といりもいるに低は、現在公知の任意のレーザは、現合せての使用に対して十分な低さである。は

ンズの平らな面の垂線とファイバコアの中心線との間の角度(角度 B)が 4 ° と10° の間では、全体反射の値への球レンズ反射の寄与は最少である。若し B が 4 ° よりも小さければ、球レンズ反射の減少はやはり寧ろ低いであろう。 B が 12° より大きい場合には技術的な問題が起きる。この場合には、球レンズに光ピームが入射される十分に大きな平らな面を得るために、球レンズを余りにも広く研削せねばならない。

本発明の球レンズコネクタ部の更に別の好ましい実施態様では、光ファイバの海部は毛管中心孔 を有する管内に固定され、この管はハウジングに 固定される。

本発明の球レンズコネクタ部の製造方は次の特徴を有する、すなわち、光ファイバの端部に傾斜端面を設け、しかる後この端部を球レンズを有する質状ハウジング内に固定し、かくして形成立った球レンズコネクタ部を機械加工工具の偏心であた。カスタタ部の位置決めとシートの偏心度を、該コネクタ部の光铀が向記工

具の機械軸と一致するように選び、 しかる後コネクタ部を機械加工処理する。

本発明の方法の好ましい実施態様では、傾斜に 先立って、光ファイバの端部を、端面が傾斜され た方向を示す参照面をそなえた毛管内に固定する。 このような参照面は、機械加工工具のシートに対 する球レンズコネクタ部の正確な位置次めを容易 にする。

(灾施例)

以下に本発明を添付の図面を参照して更に詳し く説明する。

図面の種々の構成要素および角度は見易くする ために寸法比通りのものでないことに留意され度 い

第1図に示した公知の球レンズコネクタ部1は、 管状ハウジング2、球レンズ3、およびファイバ 内に同心的に位置された導光コア5を有する光ファイバ4を有し、端面6は光ファイバの軸に対し て直角である。光ファイバ4は、同心的な毛管孔 を有するガラス管10内に固定される。光ファイバ 4の専光コア5は、少なくとも端部7の領域において管状ハウジングの円周の軸と一致している。 球レンズの中心8はこの触の延長上に位置している。光源9(例えばレーザ)よりの光が光ファイバ4に導入されると、協面6より出た光ビームは 光ファイバコアの延長にある。この出た光ビーム の中心線は光ビームの光軸11として定確される。 この光軸は球レンズ3の中心8を通過し、管状ハウジングの協部7の中心線12と一致する。

前述したように、球レンズを有する公知の管状ハウジング内に傾斜端面を有する光ファイが踏ることはそれだけでは不可能である。傾斜面を有する光ファイがが管状ハウジング内に固固光の内にのの円周の軸と一致しない。 光ビームは、光ビームは、光ビームは、光ビームは、光ビームは、光ビームは、光ビームの前にで中心を通過しない。 出てきた光ビームのはないの中心を通過しない。 このため、理想的な場

合には2つの軸は平行に延在する。シフトの量は、 協面が傾斜される程度によって決まる。前記の球 レンズコネクタ郎が用いられた球レンズコネクタ の場合効率が小さいことは明らかであろう。

第2図は、ファイバが傾斜端面を有し、前に挙 げた問題が克服された本発明の球レンズコネクク 部を示す。管状ハウジング2内には、その重線が 光ファイバのコア5の中心線18と角度αをなす傾 斜端面 6 を有する光ファイバ 4 がガラス管10の毛 管孔内に固定されている。端而が傾斜されている 方向は参照面24によってガラス管上にマークされ ている。このコネクタ部では、管状ハウジング2 の端部7は該コネクタ部より出る光ビーム11の光 蚰が端部7の円周の軸19と一致するように機械加 工される。この機械加工は、欧州特許第207,522 号に記載されたような適当な機械加工工具によっ. て行うことができる。出てきた光ピーム11の光軸 は球レンズ3の中心を通過しないので、この光ピ ームが機械物17と一致するように、アライメント において球レンズまたは第3図に示したように嫡 部7に対し位置された機械加工工具14のシート13 は、この工具の機械軸17に対し非対称に位置され ねばならない。光ピーム11と機械軸17との一致は 例えば光検出器15によって決めることができる。 第3図はこの状態を示す。偏心したシート13に対 するコネクタ部の正確な配置は、毛管上のマーク より決めることができる。撥枝軸に対するシート 13の偏心度は、球レンズの寸法、光ファイバと球 レンズの屈折率、およびファイバ端の傾斜の程度 より計算することができる。光ファイバの10°の 傾斜(角度α)とBK7材料の3m断面の球レンズ では、前記の偏心度は略々 200 / a である。例え ば回転カッター16での機械加工操作の後、出てく る光ピームが端郎の中心線と一致する低反射球レ ンズコネクタ部が得られる。このように、前記の 欧州特許に記載されたような角度補正とファイバ 端の傾斜の結果の光ピームのシフトの補正の両方 が川一の操作で実現されることができる。

次の表は、前述した本発明による球レンズコネクタ部の幾つかの計算値と測定測をファイバ端の

傾斜(角度α)の関数として示したものである。

角度	反射	値 (dB)
	8† II	湖定
0.	- 14	- 14
6.	- 52	- 53
10.	- 120	< - 60

第4図は本発明による別の球レンズコネクタ部を示す。このコネクタ部では、クランプされたファイバ10は10°(角度α)の傾斜端面 6 を有し、球レンズは平らな面 20を有する。第2図と第4図ではコネクタ部の同じ構成要素はできるだけ同一符号で示してある。球レンズの表面の法線と核球レンズの中心を通るファイバコアの中心線間の角度(角度β)はこの場合 5°である。この球レンズのタ部では、測定された反射は−90dBよりも小さい。

94 4 図に示したコネクタ部は次のようにつくられる。1.18の屈折率を打する球レンズ(LaSF-球レンズ、Scott)が所望の寸法を有する平らな面が得

られる迄研削され、次いで研磨された。この球レ ンズは、その平らな面で、真空ピペットを有する ·レンズ位置決め装置の基本参照面と所望の角度B をなす参照面上に置かれた。球レンズは前記のピ ペットによって基本参照面に対して直角に上げら れ、その中心線が前記の基本参照面と直角な空の 管状ハウジング内に置かれた。この結果、球レン ズを管状ハウジングの中心線に対して所望の角度 βでコネクタ郎の管状ハウジング内に配すること ができる。参照面21をハウジング2に設けること により、平らな表面20がハウジング2内でどのよ うに傾けられているかも知られる。 表面 6 と20は、 ガラス管の周囲に連結され且つファイバ4の端面 6の傾斜を示す引張り安全装置 (pull relief device)23 の参照面22によって正確にアラ イン されることができる。機械加工は、第2図のコネ クタ部に関して説明したのと同様にして行われる。

4. 図面の簡単な説明

第1図は公知の球レンズコネクク部の縦断面図、 第2図は本発明の球レンズコネクタ部の一実施 例の縦断面図、

第3図は機械加工時の本発明の球レンズコネク 夕部の縦断面図、

第4図は本発明の球レンズコネクタ部の別の実 施例の縦断面図である。

2… 質状ハウジング

3…球レンズ

4…光ファイバ

5 … 導光コア

6 … 洛丽

7 … 编部

8…球レンズの中心

10…ガラス管

11…光ビームの光軸

13…シート

14… 機械加工工具

16…回転カッタ

18…コア中心線 20…球レンズの平らな面 21,22,24…参照面

特 許 出 願 人 エヌ・ベー・フィリップス・ フルーイランベンファブリケン

代理人弁理士 杉 村 曉 秀

1 弁理士 杉 村 興 作

FIG.1

FIG. 2

第1頁の続き

優先権主張 〒1989年7月14日 1975 198901821

⑩発 明 者 カサル・ジョン・マホ デンマーク国2400 コペンハーゲン - エヌヴィ タゲンスウエジュ 235 - 3 ティ - エッチ

⑫発 明 者 アプラム・フアン・ オランダ国5621 ベーアー アインドーフェン フルーネ

- デ・フリエイプ - パウツウエツハ 1

m ditm m d to selections

⑫発 明 者 コーネリス・ヨハネ オランダ国5621 ベーアー アインドーフェン フルーネ

ス・テレシア・ポツタ パウツウエツハ 1

ース

⑫発 明 者 キーラン・ヘラルド・ オランダ国5621 ベーアー アインドーフェン フルーネ

ライト パウツウエッハ1