565

e y cerca de (1, 1, 1, 1).
$$Df(1,1) = \begin{bmatrix} -7/4 & 1\\ 17/2 & -5 \end{bmatrix}.$$

- **41.** Las ecuaciones para un punto crítico, $\partial s/\partial m = \partial s/\partial b = 0$ resueltas dan para m y b $m = (y_1-y_2)/(x_1-x_2)$ y $b = (y_2x_1-y_1x_2)/(x_1-x_2)$. La recta y = mx + b pasa entonces por (x_1, y_1) y (x_2, y_2) .
- **43.** En un punto de mínimo de s, tenemos $0 = \partial s/\partial b = -2\sum_{i=1}^{n} (y_i mx_i b)$.
- **45.** $y = \frac{9}{10}x + \frac{6}{5}$.
- **47.** Sea $\alpha=(ax-4a^3t)$. Calcular $u_t=8a^3\tanh\alpha$ y $u_x=-2au\tanh\alpha$ de modo que $u_t+4a^2u_x=0$. Después calcular $u_{xx}=4a^2u-u^2/2$. Luego $u_{xxx}=4a^2u_x-uu_x$, así obtenemos $u_t+u_{xxx}+uu_x=u_t+4a^2u_x=0$.
- **49.** $T' + kc_1T = 0$, $\Theta'' + c_2\Theta = 0$, $r^2R'' + rR' c_3R = 0$ para las constantes $c_1, c_2 y c_3$.

Capítulo 4

Sección 4.1

- **1.** $\mathbf{r}'(t) = -(\sec t)\mathbf{i} + 2(\cos 2t)\mathbf{j}, r'(0) = 2\mathbf{j},$ $\mathbf{a}(t) = -(\cos t)\mathbf{i} - 4(\sec 2t)\mathbf{j}, \mathbf{a}(0) = -\mathbf{i},$ $\mathbf{l}(t) = \mathbf{i} + 2t\mathbf{j}.$
- 3. $\mathbf{r}'(t) = \sqrt{2}\mathbf{i} + e^t\mathbf{j} e^{-t}\mathbf{k}, \mathbf{r}'(0) = \sqrt{2}\mathbf{i} + \mathbf{j} \mathbf{k},$ $\mathbf{a}(t) = e^t\mathbf{j} + e^{-t}\mathbf{k},$ $\mathbf{a}(0) = \mathbf{j} + \mathbf{k}, \ \mathbf{l}(t) = \sqrt{2}t\mathbf{i} + (1+t)\mathbf{j} + (1-t)\mathbf{k}.$
- **5.** $(e^t e^{-t}, \cos t \sin t, -3t^2)$.
- **7.** $[-3t^2(2 \operatorname{sen} t + \cos t) t^3(2 \cos t \operatorname{sen} t)]\mathbf{i} + [3t^2(2e^t + e^{-t}) + t^3(2e^t e^{-t})]\mathbf{j} + [e^t(\cos t \operatorname{sen} t) e^{-t}(-\operatorname{sen} t + \cos t)]\mathbf{k}.$
- **9.** Calcular $\mathbf{v} = (-a \operatorname{sen} t, a \cos t, b)$, luego $\mathbf{a} = (-a \cos t, -a \operatorname{sen} t, 0)$. Puesto que la componente z de \mathbf{a} es idénticamente cero, \mathbf{a} siempre es paralelo al plano xy.
- **11.** Las trayectorias en (a) y (c) son regulares, mientras que la trayectoria de (b) no lo es.

13.
$$(0, -12, -1)$$
 y $(0, -26, -8)$.

- **15.** m(0,6,0).
- **17.** $-24\pi^2(\cos(2\pi t/5), \sin(2\pi t/5))/25$.

19.
$$\frac{d}{dt}(\|\mathbf{v}\|^2) = \frac{d}{dt}(\mathbf{v} \cdot \mathbf{v}) = 2\mathbf{v} \cdot \frac{d\mathbf{v}}{dt} = 2\mathbf{v} \cdot \mathbf{a} = 0.$$

21. 6 129 segundos.

23.
$$\mathbf{c}(t) = \left(\frac{t^2}{2}, e^t - 6, \frac{t^3}{3} + 1\right).$$

- **25.** (a) $\mathbf{c}(t) = (t, e^t), -\infty < t < \infty$. La imagen de esta trayectoria es la gráfica $y = e^x$.
 - (b) $\mathbf{c}(t) = (\frac{1}{2}\cos t, \sin t), 0 \le t \le 2\pi$, una elipse.
 - (c) $\mathbf{c}(t) = (at, bt, ct)$.
 - (d) $\mathbf{c}(t)=(\frac{2}{3}\cos t,\frac{1}{2}\sin t), 0\leq t\leq 2\pi,$ una elipse.
- **27.** $\mathbf{c}(t) \times \mathbf{c}'(t)$ es normal al plano de la órbita en el instante t. Como en el Ejercicio 26, su derivada es 0 y por tanto el plano orbital es constante.

Sección 4.2

- 1. $2\sqrt{5}\pi$.
- 3. $2(2\sqrt{2}-1)$.

5.
$$\frac{6-\sqrt{3}}{\sqrt{2}} + \frac{1}{2} \log \left[\frac{2\sqrt{2}+3}{\sqrt{2}+\sqrt{3}} \right].$$

- 7. $2\sqrt{2}$.
- **9.** (a) $\mathbf{c}(t) = (1 t, 2 t, -t), \ t \in [0, 1].$ (b) $\sqrt{3}$ (c) $\sqrt{3}$.
- **11.** $2\pi(\sqrt{5}+\sqrt{2})$.
- **13.** $3 + \log 2$.
- **15.** (a) Dado que α es estrictamente creciente, es biyectiva de [a,b] en $[\alpha(a),\alpha(b)]$. Por definición, \mathbf{v} es la imagen de \mathbf{c} si y solo si existe un t en [a,b] tal que $\mathbf{c}(t) = \mathbf{v}$. Existe un punto s en $[\alpha(a),\alpha(b)]$ tal que $s = \alpha(t)$, de modo que $\mathbf{d}(s) = \mathbf{c}(t) = \mathbf{v}$. Por tanto, la imagen de \mathbf{c} está contenida en la imagen de \mathbf{d} . Utilizar α^{-1} de forma similar para la probar la inclusión contraria.