Push Down Automata (PDA)

- Non-deterministic PDA
 - Languages accepted by NPDA
- Deterministic PDA
 - Languages accepted by DPDA

Push Down Automata (PDA)

- A class of automata associated with CFLs
- An FSA, being at a certain state advances to the next state based on the input it reads
- A PDA advances to the next state based on the input it reads and the top most symbol in the stack.
- Unlike FSA, PDA has a memory in the form of a stack
- Two types of PDA: NPDA & DPDA

Non-deterministic PDA (NPDA)

- Definition: NPDA is a 7-tuple M=(Q, Σ, V, P, q₀, Z₀, F) where
 - 1. Q: finite set of states
 - Σ : input alphabet
 - 3. V: symbols on the stack (stack alphabet)
 - P: is a total function called pushdown function and is given by P:QXVX(ΣU $\{\lambda\}$) \rightarrow QXV*
 - $q_0 \in Q$ is the start state
 - E_0 : stack initializer symbol
 - 7. F C Q : set of final states

- Note that the arguments of P are
 - The current state
 - The current input symbol
 - The current symbol on top of the stack
- The result is a set of pairs (q, x) where q is the next state and x is a string which is put on top of the stack in place of the single symbol there before
- λ-transition is possible, i.e. the second argument may be empty (λ)
- No move is possible if the stack is empty.

NPDA operations (execution)

- Read an input
- Pop the top element from the stack
- Push element(s) to the stack
- Enter next state
- The operations can be represented as follows: (q', s, x; q'', y) where
 - q': current state
 - s : element popped from the stack
 - x: incoming input
 - q": next state
 - y: symbol pushed on to the stack

- the operations can also be represented using a transition diagram
 (q', s, x; q", y) is represented in such a way that the arc from state q' to state q" is labeled with s, x; y
- Example: suppose the set of transition rules of an NPDA contain p(q1, a, b) = {(q2, cd), (q3, λ)}
 Hence, if at any time the automata is in state q1, the input symbol read is a, and the symbol on top of the stack is b, then either:
 - the automata goes into state q2 and the string **cd** replaces **b** on top of the stack, or
 - it goes into state q3 with the symbol b removed from the top of the stack

- Instantaneous Description (ID)
 An ID of a PDA M is (q, x, α) where qEQ, xEΣ* and αEV*
- An initial ID is (q_0, x, Z_0) , i.e. the PDA is at state q_0 , the input string to be processed is x and the stack contains Z_0
- a move relation (denoted by |-) between IDs is defined as:
 - $(q, a_1 a_2 ... a_n, Z_1 Z_2 ... Z_m) \models (q', a_2 ... a_n, \beta Z_2 ... Z_m)$ if $P(q, a_1, Z_1)$ contains (q', β)

Acceptance of strings by NPDA

- The set of strings accepted by NPDA M is denoted by L(M) and defined as follows:
- 1. $L(M) = \{x \mid (q0, x, Z0) \mid x \mid (q, \lambda, v) \text{ for some q in } F \text{ and } v \text{ in } V^*\} \text{ (acceptance by Final Sate)}$
- L(M) = {x | (q0, x, Z0) | +* (q, λ, λ) for some q in Q} (acceptance by Empty Stack)
- Note that in (1), the stack content (v) is irrelevant. i.e. all strings that can put M into a final state at the end of the string are accepted.

Example 1:

Construct NPDA that accepts the language $L = \{xcx^r \mid xE\{a, b\}\}, x^r \text{ is the reverse of } x.$

an example of a string in L can be:

w = abbcbba

- Solution:
 - The NPDA operates as follows:
- as it reads symbols to the left of the symbol c, it pushes the symbol read and remains in the same state
- when it 'sees' c, it enters a new state without doing anything on the stack
- it compares the incoming symbol with the top element on the stack. If there is a match, it pops off the top element. Otherwise, the operation stops.

- The pushdown function (P) will have:
- 1. $(q0, a, v) = (q0, av), a \in \{a, b\}, v \in V^*$
- (q0, c, v) = (q1, v)
- 3. $(q1, b, bv) = (q1, v), b \in \{a, b\}, v \in V^*$
- 4. $(q1, \lambda, Z0) = (q2, \lambda)$ Thus, $M=(Q, \Sigma, V, P, q0, Z0, F)$ where $Q = \{q0, q1, q2\}$ Z0 = # $\Sigma = \{a, b, c\}$ $V = \{a, b, Z0\}$ $F = \{q2\}$ and P is given above.

Example:

Let w = abbcbba. Trace manually to check whether w is accepted by M or not.

Solution

State	Input	Stack
q0	abbcbba	#
q0	bbcbba	a#
q0	bcbba	ba#
q0	cbba	bba#
q1	bba	bba#
q1	ba	ba#
q1	а	a#
q1	λ	#
q2	λ	λ (input is accepted)

Exercise 1:

Construct NPDA for the following language.

$$L = \{ w \in \{a, b\}^* : n_a(w) = n_b(w) \}$$

Exercise 2:

Construct an NPDA for accepting the language:

```
L = \{ww^r : w \in \{a, b\}^+\}
```

NPDA – CFG equivalence

Theorem: If L is a CFL, then there exists NPDA M such that L = L(M). proof (by construction) Let CFG G = (N, T, P, S)Define $M = (Q, \Sigma, V, P', q0, \#, \{q2\})$ where: $Q = \{q0, q1, q2\}, P' \text{ is given by:}$ $P'(q0, \lambda, \#) = (q1, S\#)$ P'(q1, λ , A) = {(q1, β) | A $\rightarrow \beta$ \in P and A \in N} P'(q1, a, a) = (q1, λ) for all a $\in \Sigma$ $P'(q1, \lambda, \#) = (q2, \lambda)$ such that $x \in L(G)$ iff $x \in L(M)$

NPDA – CFG equivalence: cont'd

Example: Given G = (N, T, P, S) with S = E, $T = \{a, b, c, +, -, *, /, (,)\}, N = \{E, F, T\} \text{ and } P$: $E \rightarrow T \mid E + T \mid E - T$ $T \rightarrow F \mid T * F \mid T / F$ $F \rightarrow a \mid b \mid c \mid (E)$ Construct NPDA M that simulates left most derivation of the grammar (to accept a+(b*c)).

NPDA – CFG equivalence: cont'd

Theorem: If L = L(M) for some NPDA M, then L is a CFL.

Deterministic PDA (DPDA)

- A DPDA is a 7-tuple machine with the following properties:
- P(q, a, A) contains at most one element, where q ∈ Q, a ∈ Σ U {λ}, A ∈ V
 (i.e. for any given input symbol and any stack top, at most one move can be made)
- if P(q, λ, A) ≠ Ø then P(q, a, A) = Ø for all a ∈ Σ
 (i.e. when a λ-move is possible for some configuration, no input-consuming alternative is available)
- A language accepted by DPDA is called Deterministic
 CFL or simply deterministic language.

Example: The language L = {aⁿbⁿ : n >= 0} is a deterministic CFL.

DPDA M = $(\{q0, q1, q2\}, \{a, b\}, \{0, 1\}, P, 0, \{q0\})$ with

P(q0, a, 0) = (q1, 10)

P(q1, a, 1) = (q1, 11)

 $P(q1, b, 1) = (q2, \lambda)$

 $P(q2, \lambda, 0) = (q0, \lambda)$

 $P(q2, b, 1) = (q2, \lambda)$

NPDA – DPDA equivalence

In contrast to FSA, DPDA and NPDA are not equivalent. There are CFLs that are nondeterministic.