

Multi-Task Music Representation Learning from Multi-Label Embeddings

Alexander Schindler
Center for Digital Safety and Security
Austrian Institute of Technology
Vienna, Austria
alexander.schindler@ait.ac.at

Peter Knees
Faculty of Informatics
TU Wien
Vienna, Austria
peter.knees@tuwien.ac.at

MOTIVATION

- Learn a content-based representation for similarity retrieval of (Western) music
- Traditional approach: train Machine Learning model (most recently, Deep Neural Networks) on audio spectrogram input to learn
 - Genre labels or other tags (classification)
 - Rating/listening data from users (regression)
- Problem: Ground Truth
 - Where to get large quantities of labeled content in high quality?
 - Vocabulary: Which task categories are captured?
 - How to incorporate similarity of labels?

IN A NUTSHELL

- Contribution 1: New Label Assignments for the Million Song Dataset
 - Dataset of expert-level annotations in multiple categories; available to community
- Contribution 2: A Novel Approach to Music Representation Learning
 - Triplet network trained on similarity based on latent label topics
- Contribution 3: Multi-Task Learning and Evaluation
 - Our method improves precision up to factor 2.2 when learning across multiple tasks

Conclusions

It makes a lot of sense and works very well

Future Work

Applicable to digital libraries of historic and non-Western music

New Label Assignments for the Million Song Dataset (MSD)

Contribution 1

NEW MSD TAG-SET COLLECTIONS

- Million Song Dataset (MSD)
 - Currently largest music dataset
 - 1M tracks + metadata + pre-extracted features (Echonest)
- Issues
 - Harness Echonest Features (only officially provided content)
 - Capturing the temporal domain in echonest features for improved classification effectiveness.
 Alexander Schindler and Andreas Rauber.
 - Missing Ground-Truth Label Assignments
 - 2011 Lastfm-Tags, original MSD contribution
 - User generated tags, noisy
 - 2012 Facilitating comprehensive benchmarking experiments on the million song dataset.
 Alexander Schindler, Rudolf Mayer, and Andreas Rauber.
 - Genres, Multi-Class, custom balancing
 - 2015 Improving Genre Annotations for the Million Song Dataset. Hendrik Schreiber.
 - Aggregation of multiple label assignments, improved balancing

06.11.2019 5

NEW MSD TAG-SET COLLECTIONS

- New Label Assignments
 - Tag-Sets for:
 - Genres, Styles, Moods, Themes
 - Multi-Label assignments
 - + Expert annotated (All Music Guide)
 - + Closed vocabulary / Taxonomy
 - Weakly labelled (per album)

	Genres	Styles	Moods	Themes	
Unique Tags	21	939	286	166	
Tag Combinations	688	13.589	22.577	7.322	
Labelled Albums	75.339	52.304	32.148	19.375	
Labelled Tracks	504.502	364.326	229.510	145.555	

RANDOM ALLMUSIC BANDPAGE... FROM DUBLIN

NEW MSD TAG-SET COLLECTIONS

A NOVEL APPROACH TO MUSIC REPRESENTATION LEARNING

Contribution 2

TRIPLET NETWORKS

How do triplet networks work

Triplet Loss and Online Triplet Mining in TensorFlow https://omoindrot.github.io/triplet-loss

Facenet: A unified embedding for face recognition and clustering. Schroff, Florian, Dmitry Kalenichenko, and James Philbin. Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

TRIPLET SELECTION

- FaceNet original approach
 - Facenet: A unified embedding for face recognition and clustering. Schroff, Florian, Dmitry Kalenichenko, and James Philbin. Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
- Definition of Similarity

is_similar

is_similar

Online Triplet Selection

TRIPLET SELECTION

Similarity by Artist Identity

Representation learning of music using artist labels.
 J. Park, J. Lee, J. Park, J.-W. Ha, and J. Nam, in 19th
 International Society for Music Information Retrieval
 Conference (ISMIR 2018), 2018.

Anchor
Positive Example
Negative Example

ISSUES

- Similarity by Artist Identity
 - Problem
 - Not: Missing positive examples
 - But: Selection of inferior negative examples

- jetallic is_similar
- JETALLIC IS_SI

- Consequence
 - Model focuses on features to distinguish similar artists
 - Smallest common denominator between similar artists
 - = Intention of original FaceNet approach (Re-Identification)
 - Model fails to learn features to capture general similarity
 - Instruments, harmonics, rhythms, modes, keys, moods, themes, etc.

MOTIVATION

- How to assess Track-Similarity from Multi-Label Tag-Sets?
- Tag-Relatedness measures
 - Jaccard Index

$$J(A,B) = rac{|A \cap B|}{|A \cup B|}$$

Dice Coefficient

$$DSC = rac{2|X \cap Y|}{|X| + |Y|}$$

JACCARD INDEX

$$Track_A = Rap$$

 $Track_B = Rap$, Gangsta Rap

$$|A \cap B|$$
 = Rap
 $|A \cup B|$ = Rap, Gangsta Rap

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\text{Rap}}{\text{Rap, Gangsta Rap}} = 0.5$$

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\text{Rap}}{\text{Rap, Heavy Metal}} = 0.5$$

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\text{Rap}}{\text{Rap, Children Music}} = 0.5$$

JACCARD INDEX

Track_A = East Coast Rap Track_B = West Coast Rap

$$|A \cap B| = []$$

 $|A \cup B| = \text{East Coast Rap, West Coast Rap}$

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{[]}{\text{East Coast Rap, West Coast Rap}} = 0$$

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{[]}{\text{Classic, Techno}} = 0$$

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{[]}{\text{Happy, Sad}} = 0$$

TAG-RELATEDNESS MEASURE

- Goal: Define better Tag-Relatedness Measure
 - Take Tag-relationships into account

LATENT SEMANTIC INDEXING (LSI)

- Classic IR approach to discover latent topics in texts (Deerwester et al., 1990)
- Based on Singular Value Decomposition (SVD)
- Topic importance ordered according to Eigenvalues
 - Truncated SVD removes less relevant topics (noise), increases robustness
- Shown effective to deal with polysemy and homonymy
- Regarding our approach
 - provides a more robust (=less sparse) tag-similar, ity function via topics,

LSI TOPICS (EXAMPLES, STYLES)

Rap

Latin

LSI TOPICS (EXAMPLES, STYLES)

Jazz

Christian Music

LSI VECTORS (EXAMPLES, STYLES)

Miles Davis - Blue In Green (Blue Moods)

Annotated Styles: Cool, Hard Bop, Jazz Instrument, Trumpet Jazz

LSI-BASED ONLINE TRIPLET SELECTION

- FaceNet → Binary relations
- Our approach
 - Pairwise Cosine-Distance of LSI Vectors
 - continuous similarity (range [0,1])
- Create Filter-Mask
 - Positive Examples: $\cos(LSI_1^{ts}, LSI_2^{ts}) > 0.8$
 - Negative Examples: $\cos(LSI_1^{ts}, LSI_2^{ts}) < 0.5$
- Select Triplets

Anchor
Positive Example
Negative Example

MULTI-TASK LEARNING AND EVALUATION

Contribution 3

PARALLEL DEEP NEURAL NETWORK

- Parallel CNN Filter Stacks
 - Timbre
 - Pooling X-axis
 - Rhythm
 - Pooling Y-axis
- Rectangular Filter shapes
- Works well on small datasets
- Parallel convolutional neural networks for music genre and mood classification. Lidy, Thomas, and Alexander Schindler. MIREX2016 (2016).
- CQT-based convolutional neural networks for audio scene classification. Thomas Lidy and Alexander Schindler. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016), 2016.
- Comparing shallow versus deep neural network architectures for automatic music genre classification. Alexander Schindler, Thomas Lidy, and Andreas Rauber. In Proceedings of the 9th Forum Media Technology (FMT2016), St. Poelten, Austria, 2016.
- Multi-Temporal Resolution Convolutional Neural Networks for Acoustic Scene Classification. Alexander Schindler, Thomas Lidy and Andreas Rauber. In Proceedings of the Detection and Classification of Acoustic Scenes and Events Workshop (DCASE2017), November 2017.

EXPERIMENTAL SETUP

- Same model for all experiments
 - Controlled random processes (kernel intitializers, dropout, shuffle, etc.)
 - Batch-size 800 tracks
 - 100 epochs
- Identical splits for all experiments (train, val, test)
 - Grouped-Shuffle Split
 - Group-by Artist-ID (intrinsic Album-Filter to avoid "Album effect")
- Early stopping / save best model
 - Patience 20 epochs
- Evaluation Metric: Precision @100
 - Euclidean Distance
- Intersected Dataset
 - Labels for all 4 Tag-sets available

	Genres	Styles	Moods	Themes
Unique Tags	21	833	285	166
Tag Combinations	449	7.446	14.300	7.298
Labelled Albums	19.107	19.107	19.107	19.107
Labelled Tracks	143.587	143.587	143.587	³ 143.587

RESULTS

- Task: Similar Artist/Album Retrieval
 - Invariance to Artist/Album effects
 - Artist-Filter on Pairwise Cosine-Similarity Matrix

	Tag-Set	LSI Topics	Prec. Genres	Prec. Styles	Prec. Moods	Prec. Themes	Prec. Artists	Prec. Album
	genres	10						
	genres	3						
Single-Task	moods	160						x 1.83
7	moods	20						
펿	styles	200						
Sir	styles	20						
-	themes	60						
	themes	20						
								x 1.91
so.								
2-Tasks								
Ë								
6								
								x 2.05
								x 2.18
sks								
3-Tasks								
4								
								w 2 20
4-T.								x 2.20
4								

RESULTS

Task: Similar Genre Retrieval

• Task: Similar Style Retrieval

Task: Similar Mood Retrieval

Task: Similar Theme Retrieval

Evaluate influence of different Tag-sets on the specific tasks

	Tag-Set	LSI Topics	Prec. Genres	Prec. Styles	Prec. Moods	Prec. Themes	Prec. Artists	Prec. Album
Single-Task	genres genres	10 3	0.3951 0.3971	0.0091 0.0082	0.0060 0.0055	0.0076 0.0070		
2-Tasks								
3-Tasks								
4-T.								

CONCLUSION

- LSI-based representation learning works well, if
 - Diversity in Corpus is high enough
 - Otherwise density in cosine-similarity space is centered at 1
 - Similarity cannot be assessed satisfactory
 - Diversity in provided Tag-Set is high
 - Especially for Moods and Styles
 - Much higher in Free-text
 - Can be extended to project any semantic information from one corpus onto another
 - Free-Text Metadata (prepared for publishing)

FREE-TEXT METADATA FROM EUROPEANA

CONCLUSION

- LSI-based representation learning works well, if
 - Diversity in Corpus is high enough
 - Otherwise density in cosine-similarity space is centered at 1
 - Similarity cannot be assessed satisfactory
 - Diversity in provided Tag-Set is high
 - Especially for Moods and Styles
 - Much higher in Free-text
 - Can be extended to project any semantic information from one corpus onto another
 - Free-Text Metadata (prepared for publishing)
 - Album reviews (ongoing)
 - Lyrics (Future work)
 - Salient Visual Concepts (Future Work)

CONCLUSION

- MSD Ground-Truth Assignments
 - Proven effective in learning music representation
 - Music Tagging (Ongoing)
 - Transfer Learning (Ongoing)


```
Metallica - ...And Justice For All
Moods/Themes:
Y-TRUE: Aggressive, Angry, Bitter, Bleak, Cathartic, Cerebral, Confrontational, Crunchy, Dramatic, Earnest, Epic, Fierce, Fi
ery, Gloomy, Gritty, Harsh, Hostile, Intense, Malevolent, Maverick, Menacing, Nihilistic, Ominous, Rambunctious, Rebellious,
Revolutionary, Searching, Suffocating, Tense/Anxious, Theatrical, Thuggish, Uncompromising, Victory, Visceral, Volatile
Y-PRED: Aggressive, Angry, Bleak, Confrontational, Harsh, Hostile, Intense, Malevolent, Menacing, Nihilistic, Ominous, Visce
ral
Genres/Styles:
Y-TRUE: Hard Rock, Heavy Metal, Pop/Rock, Speed/Thrash Metal
Y-PRED: Heavy Metal, Pop/Rock
Green Day - When I Come Around (Album Version)
Moods/Themes:
Y-TRUE: Boisterous, Brash, Cool & Cocky, Cynical/Sarcastic, Drinking, Energetic, Exuberant, Freewheeling, Fun, Guys Night Ou
t, Hanging Out, Humorous, Irreverent, Paranoid, Playful, Poignant, Quirky, Raucous, Rebellious, Rollicking, Rousing, Rowdy,
TGIF, Wry
Y-PRED: Cynical/Sarcastic, Energetic, Fun, Hanging Out, Irreverent, Playful, Quirky, Rambunctious, Rousing
Genres/Styles:
Y-TRUE: Alternative Pop/Rock, Alternative/Indie Rock, Pop/Rock, Post-Grunge, Punk Revival, Punk-Pop
Y-PRED: Alternative Pop/Rock, Alternative/Indie Rock, Pop/Rock, Punk Revival, Punk-Pop
Rihanna - Don't Stop The Music
Y-TRUE: Amiable/Good-Natured, Boisterous, Brash, Carefree, Celebratory, Confident, Exuberant, Freedom, Fun, Girls Wight Out,
Happy, Innocent, Joyous, Partying, Playful, Sex, Sexy, Summer, Summery, Sweet, TGIF, Warm
Y-PRED: Carefree, Celebratory, Club, Energetic, Exuberant, Fun, Partying, Playful, Stylish
Genres/Styles:
Y-TRUE: Contemporary R&B, Dance-Pop, Pop, Pop/Rock
```

Y-PRED: Club/Dance, Dance-Pop, Electronic, Pop, Pop/Rock

THANK YOU!

Alexander Schindler, 04.09.2019

