

Fibonacci Modified

Problem Submissions Leaderboard Discussions Editorial

A series is defined in the following manner:

Given the nth and (n+1)th terms, the (n+2)th can be computed by the following relation

$$T_{n+2} = (T_{n+1})^2 + T_n$$

So, if the first two terms of the series are 0 and 1:

the third term = $1^2 + 0 = 1$

fourth term = $1^2 + 1 = 2$

fifth term = $2^2 + 1 = 5$

... And so on.

Given three integers \mathbf{A} , \mathbf{B} and \mathbf{N} , such that the first two terms of the series (1st and 2nd terms) are \mathbf{A} and \mathbf{B} respectively, compute the \mathbf{N}^{th} term of the series.

Input Format

You are given three space separated integers A, B and N on one line.

Input Constraints

0 <= A,B <= 2

3 <= **N** <= 20

Output Format

One integer.

This integer is the N^{th} term of the given series when the first two terms are A and B respectively.

Note

• Some output may even exceed the range of 64 bit integer.

Sample Input

0 1 5

Sample Output

5

Explanation

The first two terms of the series are 0 and 1. The fifth term is 5. How we arrive at the fifth term, is explained step by step in

the introductory sections.

Submissions: 19129

Difficulty: Moderate

Max Score: 45

More

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Privacy Policy | Request a Feature