EV Power - Lab 4 Project Report

Example Solution 1

Part 0: libraries

```
#install.packages("sf")
library(sf)

Linking to GEOS 3.13.0, GDAL 3.8.5, PROJ 9.5.1; sf_use_s2() is TRUE

#install.packages("rnaturalearth")
library(rnaturalearth)
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union

library(ggplot2)
library(stringr)
```

Part 1: Defining Research Question

Chosen Question: Are EV registrations concentrated in states with cleaner energy mixes? Brainstorming: - I will probably want to get ratios of renewable energy use out of total energy use per state. - Can then look at # of EV registration by state, see if it correlates to the ratio of renewable/total energy - I could make a correlation plot and fit a regression. Can also make two maps, coloring one map with ratio of renewable/total and other map with # EV registrations. -> see how similar these two maps look.

Part 2: Data Preparation and Cleaning

data I'll need: ev-registrations-by-state-2023.csv renew-use-2023.csv - actually maybe don't need since total-use includes it. total-use-2023.csv

```
renew_use_2023 <- read.csv("/Users/dmitrieva/Desktop/STAT133_fall2025/project4/
ev-power-AnnaDmitrieva7/data/renew-use-2023.csv")
head(renew_use_2023)</pre>
```

```
State Energy Source Renewable Use 2023
                               3404 kWh
    ΑK
             Biomass
2
    ΑK
          Geothermal
                                  186.0
3
    ΑK
          Hydropower
                                   6051
    AK Solar Energy
4
                                     67
5
    AK Wind Energy
                                    380
    AL
             Biomass
                             189040 kWh
```

```
total use 2023 <- read.csv("/Users/dmitrieva/Desktop/STAT133 fall2025/project4/
ev-power-AnnaDmitrieva7/data/total-use-2023.csv")
ev registrations 2023 <- read.csv("/Users/dmitrieva/Desktop/STAT133 fall2025/
project4/ev-power-AnnaDmitrieva7/data/ev-registrations-by-state-2023.csv")
ev registrations 2023
                         <-
                                rename(ev registrations 2023,
electric.vehicle.registrations by state..2023.) #Renaming first column
ev registrations 2023 <- rename(ev registrations 2023, Ev registrations = X)
#Renaming second column
ev_registrations_2023 <- ev_registrations_2023[-c(1,2), ] #Removing blank first
row
ev registrations 2023$State <- state.abb[match(ev registrations 2023$State,</pre>
state.name)] #Converting state names to abbreviations to match total use file
ev_registrations_2023 <- ev_registrations_2023 |>
 mutate(Ev registrations = str remove all(Ev registrations, "[#~]"),
         Ev_registrations = str_extract(Ev_registrations, "\\d+"),
         Ev registrations = as.numeric(Ev registrations))
head(ev registrations 2023) #Looks good!
```

```
State Ev registrations
3
    AL
                   13047
4
     ΑK
                   2697
5
    ΑZ
                   89798
6
    AR
                    7108
7
     CA
                 1256646
8
     C0
                   90083
```

	State	
3	AL	
4	AK	
5	AZ	
6	AR	
7	CA	
8	C0	
9	СТ	
10	DE	
11	<na></na>	
12	FL	
13 14	GA HI	
15	ID	
16	IL	
17	IN	
18	IA	
19	KS	
20	KY	
21	LA	
22	ME	
23	MD	
24	MA	
25	MI	
26	MN	
27	MS	
28	MO	
29	MT	
30	NE	
31	NV	
32	NH	
33	NJ	
34	NM NY	
35 36	NC	
37	ND	
38	0H	
39	0K	
40	0R	
41	PA	
42	RI	
43	SC	
44	SD	
45	TN	
46	TX	

47	UT	39998
48	VT	7816
49	VA	84936
50	WA	152101
51	WV	2758
52	WI	24943
53	WY	1139
54	<na></na>	3555445

Part 3: Joining / Pivoting Datasets for Analysis

```
#I'll need to pivot total_use_2023 file
#I want to first use pivot_longer to get states into one column and then
pivot_wider to ensure I have one row per state.
```

Part 4: Mapping Visualization

```
#I'm sorry I didn't get to this part :((
```