

## Congruent Triangles Ex 10.3 Q6 Answer:

In the following figure it is given that sides AB and PQ are parallel and BP is bisector of  $\angle ABC$ . We have to prove that  $\triangle BPQ$  is an isosceles triangle.



 $\angle 1 = \angle 2$  (Since BP is the bisector of  $\angle ABC$ ) ......(1)

 $\angle 1 = \angle 3$  (Since PQ and BA are parallel) .....(2)

Now from equation (1) and (2) we have

 $\angle 2 = \angle 3$ 

So PQ = BQ

Now since PQ and BQ is a side of  $\Delta BPQ$  .

And since two sides PQ and BQ are equal, so

PQ = BQ

Hence  $\Delta BPQ$  is an isosceles triangle.

Congruent Triangles Ex 10.3 Q7

## Answer:

We have to prove each angle of an equilateral triangle is  $60^{\circ}$ .



Here

AB = AC (Side of equilateral triangle)

$$\angle C = \angle B$$
 .....(1)

And

BC = AC (Side of equilateral triangle)

$$\angle A = \angle B$$
 .....(2)

From equation (1) and (2) we have

$$\angle A = \angle C$$

Hence  $\angle A = \angle B = \angle C$ 

Now 
$$\angle A + \angle B + \angle C = 180^{\circ}$$

That is 
$$3\angle A = 180^{\circ}$$
 (since  $\angle A = \angle B = \angle C$ )

$$\angle A = 60^{\circ}$$

Hence  $\angle A = \angle B = \angle C = 60^{\circ}$  Proved.

Congruent Triangles Ex 10.3 Q8

## Answer:

It is given that

$$\angle A = \angle B = \angle C$$



We have to prove that triangle  $\triangle ABC$  is equilateral.

Since  $\angle A = \angle B$  (Given)

So, BC = AC .....(1)

And  $\angle B = \angle C$  (given)

So CA = AB .....(2)

From equation (1) and (2) we have

BC = AB

Now from above equation if  $\angle A = \angle B = \angle C$  we have

AB = BC = AC

Given condition satisfy the criteria of equilateral triangle.

Hence the given triangle is equilateral.

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*\*