Reinforcement Learnig: Homework 1

Raphaël Avalos

November 11, 2018

1 Dynamic Programming

1.1 Question 1

The optimal policy π^* is easy to find because their is only 3 (state, action) that have a reward. And their is only three steps.

$$\pi^*=[1,1,2]$$

1.2 Question 2

Figure 1: $\|v^k - v^*\|_{\infty}$

The value iteration find the same policy π^* and:

$$v^* = [15.204, 16.361, 17.819]$$

1.3 Question 3

The exact policy iteration returned the same policy.

To compare both algorithm we used the *timeit* module of python.

	Mean of 100 runs
VI	0.00208620
PI	0.00179925

- Value Iteration
 - Pros: each iteration is very computationally efficient.
 - Cons: convergence is only asymptotic.
- Policy Iteration
 - Pros: converge in a finite number of iterations (often small in practice).
 - Cons: each iteration requires a full policy evaluation and it might be expensive.

2 Reinforcement Learning

2.1 Question 4

2.2 Question 5

The parameters choosed for the Q learning algorithm are the following.

- $\gamma = 0.95$
- $\alpha_n(x,a) = \frac{1}{n}$ because it is easier to make it independent of (x,a) and we know that it satisfies the usual stochastic approximation requirements.
- ϵ represent the tradeoff between exploration and exploitation. We decided to try with $\epsilon = 0.95, 0.7, 0.6$

Figure 3: $||v^k - v^*||_{\infty}$ and mean of cummulated reward over a 100 episodes for $\epsilon = 0.95$

Figure 4: $||v^k - v^*||_{\infty}$ and mean of cumulated reward over a 100 episodes for $\epsilon = 0.7$

Figure 5: $||v^k - v^*||_{\infty}$ and mean of cumulated reward over a 100 episodes for $\epsilon = 0.6$

We clearly see that ϵ has an important effect on the convergence. A higher ϵ makes the convergence slower but gives a better reward.

2.3 Question 6

The optimal policy of a MDP is not affected by the the change of the initial distribution if all the states are still visited an infinit number of time.