- GUDIVADA JAYANTH

21BAI1853

import numpy as np import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

data=pd.read_csv('Titanic-Dataset.csv') data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	71.2
4										-

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

Data	COTUMITS (COL	ai iz coiumns).					
#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
<pre>dtypes: float64(2), int64(5), object(5)</pre>							
memo	ry usage: 83.	7+ KB					

data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.0
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.2
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.€
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.0
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.9
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.4
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.0
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.3 •

corr=data.corr()

corr

		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fi
Passen	gerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012

sns.heatmap(corr,annot=True)

data.Cabin.value_counts()

```
B96 B98
G6
               4
C23 C25 C27
               4
C22 C26
               3
F33
E34
C7
C54
               1
E36
               1
C148
               1
```

Name: Cabin, Length: 147, dtype: int64

data.Embarked.value_counts()

S 644 C 168 Q 77

Name: Embarked, dtype: int64

data.Parch.value_counts()

0	678
1	118
2	80
5	5
3	5
4	4
6	1

Name: Parch, dtype: int64

data.isnull().any()

_
False
True
False
False
False
False
True

```
Embarked True dtype: bool data.isnull().sum()

PassengerId 0
```

PassengerId Survived 0 Pclass 0 Name 0 0 Sex Age 177 SibSp 0 Parch 0 Ticket 0 0 Fare Cabin 687 Embarked 2 dtype: int64

```
data["Age"].fillna(data["Age"].mean(),inplace=True)
data["Cabin"].fillna(data["Cabin"].mode()[0],inplace=True)
data["Embarked"].fillna(data["Embarked"].mode()[0],inplace=True)
```

data.isnull().sum()#I removed all null values

PassengerId 0 Survived 0 Pclass Name 0 Sex 0 Age SibSp 0 0 Parch Ticket 0 Fare 0 Cabin 0 Embarked dtype: int64

sns.scatterplot(x=data["Survived"],y=data["Parch"])

<AxesSubplot:xlabel='Survived', ylabel='Parch'>

sns.scatterplot(x=data["Survived"],y=data["Fare"])

<AxesSubplot:xlabel='Survived', ylabel='Fare'>

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.2

Cumings,
Mrs. John

1 2 1 1 Bradley
(Florence 0 38.0 1 0 PC 17599 71.2

sns.boxplot(data['Pclass'])

data.head()

<AxesSubplot:xlabel='Pclass'>

sns.boxplot(data['Age'])

 $\verb|C:\Users\harsh\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future \verb|Warnin|| \\$ warnings.warn(
<AxesSubplot:xlabel='Age'>

sns.boxplot(data['SibSp'])

C:\Users\harsh\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin
warnings.warn(
<AxesSubplot:xlabel='SibSp'>

sns.boxplot(data['Parch'])

C:\Users\harsh\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin

```
sns.boxplot(data['Fare'])
```

 $\verb| C:\Users \land anaconda \lib \le -packages \le aborn _ decorators.py: 36: Future \verb| Warnings.warn(| warnings.$

<AxesSubplot:xlabel='Fare'>

sns.boxplot(data['Embarked'])

<AxesSubplot:xlabel='Embarked'>


```
q1=data.Age.quantile(0.25)
q3=data.Age.quantile(0.75)
print(q1)
```

print(q1)

22.0

35.0

iqr=q3-q1 iqr

13.0

upperlimit = q3+1.5*iqr
upperlimit

upperlimit

54.5

```
lowerlimit=q1-1.5*iqr
lowerlimit
data.median()
     C:\Users\harsh\AppData\Local\Temp\ipykernel_11488\4184645713.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reducti
       data.median()
     PassengerId
                    446.000000
                      0.000000
     Survived
                      3.000000
     Pclass
     Sex
                      1.000000
                     29.699118
     Age
     SibSp
                      0.000000
                      0.000000
     Parch
                     14.454200
     Fare
                      2.000000
     Embarked
     dtype: float64
data['Age']=np.where(data['Age']>upperlimit,29.699118,data['Age'])
data['Age'] = np.where(data['Age'] < lowerlimit,29.699118, data['Age'])</pre>
sns.boxplot(data['Age'])
     C:\Users\harsh\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarnin
       warnings.warn(
     <AxesSubplot:xlabel='Age'>
                                                             ******
         ******
                 10
                            20
                                                    40
                                                               50
                                        30
                                      Age
q1=data.SibSp.quantile(0.25)
q3=data.SibSp.quantile(0.75)
print(q1)
print(q3)
     0.0
     1.0
iqr=q3-q1
     1.0
upperlimit = q3+1.5*iqr
upperlimit
     2.5
lowerlimit=q1-1.5*iqr
lowerlimit
```

-1.5

```
data['SibSp']=np.where(data['SibSp']>upperlimit,0.000000,data['SibSp'])
sns.boxplot(data['SibSp'])
    warnings.warn(
    <AxesSubplot:xlabel='SibSp'>
                                      1.25
       0.00
             0.25
                   0.50
                          0.75
                                1.00
                                             1.50
                                                   1.75
                                                         2.00
                                SibSp
q1=data.Parch.quantile(0.25)
q3=data.Parch.quantile(0.75)
print(q1)
print(q3)
    0.0
    0.0
iqr=q3-q1
iqr
    0.0
upperlimit = q3+1.5*iqr
upperlimit
    0.0
lowerlimit=q1-1.5*iqr
lowerlimit
    0.0
data['Parch']=np.where(data['Parch']>upperlimit,0.000000,data['Parch'])
sns.boxplot(data['Parch'])
```

```
C:\Users\harsh\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarnin
       warnings.warn(
     <AxesSubplot:xlabel='Parch'>
q1=data.Fare.quantile(0.25)
q3=data.Fare.quantile(0.75)
print(q1)
print(q3)
     7.8958
     30.0
                                       I
iqr=q3-q1
iqr
     22.1042
      -
upperlimit = q3+1.5*iqr
upperlimit
     63.1563
    4
lowerlimit=q1-1.5*iqr
lowerlimit
     -25.2605
data.median()
     C:\Users\harsh\AppData\Local\Temp\ipykernel_11488\4184645713.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reducti
       data.median()
     PassengerId
                    447.500000
                      0.000000
     Survived
     Pclass
                      3.000000
     Sex
                      1.000000
     Age
                     29.699118
     SibSp
                      0.000000
     Parch
                      0.000000
                     14.054150
     Fare
     Embarked
                      2.000000
     dtype: float64
data['Fare']=np.where(data['Fare']>upperlimit,14.054150,data['Fare'])
sns.boxplot(data.Fare)
     C:\Users\harsh\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarnin
       warnings.warn(
     <AxesSubplot:xlabel='Fare'>
         0
                  10
                            20
                                     30
                                               40
                                                        50
                                                                  60
                                     Fare
```

```
y=data["Survived"]
```

X=data.drop(columns=["Name","PassengerId","Survived","Ticket","Cabin"],axis=1)

y.head()

0 0 1 1

2 1 3 1 4 0

Name: Survived, dtype: int64

from sklearn.preprocessing import MinMaxScaler
ms=MinMaxScaler()

X_Scaled=ms.fit_transform(X)

 $\label{eq:columns} X_Scaled=pd.DataFrame(ms.fit_transform(X),columns=X.columns)$

X_Scaled.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1.0	1.0	0.372549	0.5	0.0	0.116975	1.0
1	0.0	0.0	0.686275	0.5	0.0	0.226756	0.0
2	1.0	0.0	0.450980	0.0	0.0	0.127865	1.0
3	0.0	0.0	0.627451	0.5	0.0	0.856739	1.0
4	1.0	1.0	0.627451	0.0	0.0	0.129882	1.0

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(X_Scaled,y,test_size =0.2,random_state =0)

print(x_train.shape,x_test.shape,y_train.shape,y_test.shape)

(699, 7) (175, 7) (699,) (175,)