Тема 21 Държавен изпит

специалност Приложна математика

Минимизация на детерминирани крайни автомати.

Анотация

Минимизация на детерминирани крайни автомати.

Дефиниции за краен автомат и автоматен език. Еквивалентни автомати. Детерминирани и тотални автомати. Недостижими и неразличими (еквивалентни) състояния. Дефиниция за минимален автомат. Намиране на минимален автомат, еквивалентен на даден тотален детерминиран автомат. Дясна полуконгруентност относно даден език и нейното приложение към въпроса за единственост (с точност до изоморфизъм) на минималния автомат, еквивалентен на даден тотален детерминиран автомат.

Описание на задачите. Задачи за минимизация на конкретно даден тотален детерминиран автомат (т.е. за намиране на минимален автомат, еквивалентен на дадения).

Дефиниция 1.1 (Краен Автомат - КА)

Краен автомат А наричаме наредената петорка ${}^{\dot{\iota}\, \varSigma, S, s_0, F, \mu > \dot{\iota}}$, където

- Σ е крайна азбука (крайно множество от символи)
- S е крайно множество от състояния
- s_0 е елемент на S и се нарича начално състояние
- F е подмножество на S и всеки негов елемент се нарича заключително с-е.

 $\mu \colon S \times \Sigma \to S$ е частична функция – функция на преходите. (допуска се многозначност)

 Π ример: Автоматът ${}^{\dot{\iota}\,\Sigma}, S, s_0, F, \mu {>} {}^{\dot{\iota}}$, зададен чрез

$$\Sigma = [0,1]$$

$$S=[A,B,C]$$

$$s_0 = A$$

$$F=|C|$$

$$\mu = \{ \ll A, 0 >, B >, \ll B, 1 >, B >, \ll B, 0 >, C > \}$$

е графично представен на следващата графика.

Фиг.1

Дефиниция 1.2 (Конфигурация на КА)

 (управляващо устройство), което чрез своята глава се придвижва по лентата. Във всеки един момент, УУ се намира в едно от състоянията S. Нека A е автомата от примера. Когато попадне на дадена буква (например 1) и е в някое състояние s, например B, понеже във функцията μ се

Фиг. 2

съдържа прехода ${}^{i}B,1>,B>i$, то УУ ще остане в същото състояние. След това главата ще се премести върху 0 и понеже ${}^{i}B,0>,C>\epsilon\mu$ то УУ ще мине в състояние С. След това главата ще застане върху клетката със специалния символ за край, който УУ разпознава. Понеже ${}^{C\epsilon F}$, тоест C е заключително, то думата ще е успешно прочетена от автомата. Ако пък C не е заключително , то думата няма да е автоматна; това, обаче, не е единствения случай, когато думата не е автоматна: можем да попаднем в конфигурация, от която УУ да не може да продължи, тъй като няма инструкции за това (${}^{\mu}$ не е тотална). За да формалзираме преходите на автомат от едно състояние в друго имаме нужда от следната

Дефиниция 1.3 (преход)

Нека $^{S,S'}$ са състояния на А. Нека $^{u\epsilon \, \Sigma^i}$, $a\epsilon \Sigma$. Казваме, че се извършва преход от

$$c= \dot{\iota}\, s, au > c'= \dot{\iota}\, s', u > \dot{\iota} \qquad cAc' \qquad \dot{\iota}\, c, c' > \epsilon \stackrel{\vdash}{A} \subset C \times C$$
 конфигурацията и бележим или
$$\mu(s,a) = s'$$

Заб. Да се има в предвид, че в конфигураците отдясно стои какво остава да се прочете, не какво е прочетено!

<u>Дефиниция 1.4</u> (достижимост)

Тема 21

$$\stackrel{*}{\vdash} A \stackrel{\vdash}{A}$$

Транзитивната и рефлексивна обвивка на , се нарича релация- достижимост. Имаме,

$$\stackrel{\circ}{c}Ac'$$

че тогава и само тогава, когато от конфигурацията можем да достигнем до конфигурацията $^{C\,'}$ чрез краен брой преходи в смисъл на дефиниция 1.3.

Най- накрая можем да дадем формална дефиниция кога един автомат разпознава дадена дума

Дефиниция 1.5 (език на автомат А)

Казваме, че думата $u \in \Sigma^{\epsilon}$ се pазпознава от автомата A ако съществува заключително

$$f \epsilon F$$
 $\langle s_0, u \rangle \stackrel{\circ}{A} \langle f, \varepsilon \rangle$

състояние , ч

. *Език на автомата* А наричаме

$$L(A)$$
:={ $u \in \Sigma^i \lor u$ се разпознава от A }

Езика на автомата може да се дефинира по още един основен начин:

Да додефинираме функцията $\mu: S \times \Sigma \to S$ до $\mu: S \times \Sigma^{i} \to S$ по следния начин:

- 1) $\mu(s,\epsilon)=s$
- 2) $\forall a \in \Sigma, \forall u \in \Sigma^i : u = u 'a, \mu(s, u) = \mu(\mu(s, u'), a)$

След тази дефиниция можем да запишем, че

$$L(A) = \{ u \epsilon \Sigma^i \lor \mu(s_0, u) \epsilon F \}$$

<u>Дефиниция 1.6</u> (еквивалентни автомати)

Казваме, че автоматите A и A ' са еквивалентни ако езикът им съвпада.

<u>Дефиниция 1.7</u> (детерминиран автомат)

Казваме, че автоматът A е детерминиран, ако функцията му на прехода $\ ^{\mu}$ е *еднозначна.* Автомата от примера е детерминиран.

<u>Дефиниция 1.8</u> (тотален автомат)

Казваме, че автоматът A е тотален ако функцията му μ е тотална, тоест зададени са всевъзможните преходи.

Автомата от примера не е тотален. Например не е зададен преход от вида ${}^{\dot{\iota}}A$, 1> , X > $\epsilon\mu$

5

Теорема 1.1

За всеки KA A, съществува краен детерминиран тотален автомат A', еквивалентен на A. Поради теорема 1.1 от сега ще разглеждаме само КДТА.

<u>Дефиниция 1.9</u> (недостижимо състояние)

Казваме, че за автомата A състоянието s е недостижимо, ако $\forall u \in \Sigma^i : \mu(s_0, u) \neq s$

Недостижимите състояния са тези, в кото никога не можем да стигнем. Поради това, чрез тях не се генерират думи. Следователно ако построим автомата A', в който премахнем от S и F всички недостижими състояния N, заедно с всички преходи от вида

$$in,a>,s>\epsilon\mu,n\epsilon N,s\epsilon S$$
 , то новополучения автомат ще е еквивалентен на A.

Намирането на недостжимите състояния е еквивалентно на обхождане на граф в дълбочина.

Дефиниция 1.10 (неразличими състояния)

Казвме, че състоянията р и q на автомата A са неразличими, ако думите, които могат да се прочетат, започвайки от р и думите, които могат да се прочетат, започвайки от q, съвпадат. Формално това условие е

$$\dot{c} \stackrel{\dot{c}}{=} \dot{c}(f, \epsilon) \}$$

$$\dot{c} \stackrel{\dot{c}}{=} \dot{c}(f, \epsilon) \} \equiv \{ u\epsilon \Sigma^{i} \lor \exists f \epsilon F : (q, u) \stackrel{\dot{c}}{A} \}$$

$$\{ u\epsilon \Sigma^{i} \lor \exists f \epsilon F : (p, u) \stackrel{\dot{c}}{A} \}$$

Нека имаме автомат A, в който състоянията p и q са неразличими. Тогава ако премахнем едното състояние и връзките, влизащи и излизащи от него, то новият автомат е със същия език. Обикновено останалото от двете състояние се прекъщава на (pq). Този процес може да продължи докато нямаме вече неразличими състояния.

Дефиниция 1.11 (минимален автомат)

Казваме, че КДТА е минимален, ако в него няма недостижими и неразличими състояния.

Дефиниция 1.12 (изоморфни автомати)

Казваме че автоматите А и А' над една и съща азбука са изоморфни ако чрез евентуално преименоване на състоянията, те са един и същ автомат.

Възниква въпроса съществуват ли неизоморфни, но еквивалентни минимални автомати? Отговорът на този въпрос е **не**. Поради тази причина се доказва, че

Теорема 1.2

Тема 21

Измежду всички автомати, разпознаващи даден език, минимален брой състояния има точно онези, които са *минимални* в смисъл на Дефиниция 1.11.

Въпроса за единственост на минималните автомати се разрешава с помощта на релацията "дясна полуконгруентност", която е дясно-инвариантна.

Дефиниция 1.13

$$L\subset \Sigma^i \qquad u,v\varepsilon \Sigma^i$$
 Нека . Нека . Дефинираме бинарна релация по следния начин:
$$u \stackrel{L}{v} \leq \dot{\iota} \ \forall \omega \varepsilon \Sigma^i : (u \, \omega \varepsilon L \leq \dot{\iota} \ v \omega \varepsilon L)$$

Интуитивно, и и v са в релацията т.с.т.к. каквато и дума да долепим от дясно на тях, новите думи са или едновременно в L или едновременно не са.

<u>Лема:</u> Нека A е КДТА. Нека L(A)=L. Тогава

$$\forall u, v \in \Sigma^i : \mu(s_0, u) \ \mu(s_0, v) \leq i u v$$

Тук $\mu(s_0,u)$ $\mu(s_0,v)$ е неразличимост на състояния.

Доказателство:

(=>)

Нека
$$u$$
 , $v \in \Sigma^i$ и $\mu(s_0,u)$ $\mu(s_0,v)$. Нека $\omega \in \Sigma^i$.

Нека
$$u \omega \epsilon L$$
 . Това означава, че $\mu(s_0, u \omega) = \mu(\mu(s_0, u), \omega) \epsilon F$. Но $\mu(s_0, u) \mu(s_0, v)$,

следователно
$$\mu(\mu(s_0,v),\omega)=\mu(s_0,v\,\omega)\,\epsilon F$$
 , но последното означава, че $v\,\omega\,\epsilon L$.

Доказахме, че
$$\ ^{u\,\omega\epsilon L}\ =>\ ^{v\,\omega\,\epsilon L}$$
 , обратното е аналогично. Така доказахме, че

$$orall \omega \epsilon arSigma^i : (u \omega \, \epsilon L \leq \Breve{i} \, v \, \omega \, \epsilon \, L)$$
 , тъй като ω беше произволно.

(<=)

Нека
$$\stackrel{\iota}{u}^{L}v$$
 . Допускаме, че не е вярно $\stackrel{\mu(s_0,u)}{\mu(s_0,v)}$. Следователно съществува

дума
$$\omega \epsilon \Sigma^{\iota}$$
 , за която $\mu(\mu(s_0,u),\omega)$ е заключително, но $\mu(\mu(s_0,v),\omega)$ не е .Но тогава

Тема 21

 $\mu(s_0,u\omega)$ е заключително , т.е. и ω е от езика L, а $\mu(s_0,v\omega)$ не е заключително, т.е.

v не е от езика L. Противоречие с $u^{L}v$.

<u>Следствие.</u> Множеството от състоянията на всеки КДТА има единствено разбиване на класове от неразличими състояния.

Комбинирайки този резултат и разсъждението след дефиницията на неразличими състояния се вижда, че минималния автомат, еквивалентен на даден, е единствен. Алгоритъм за минимизация на КДТА

- 1. Отстраняваме недостижимите състояния
- 2. Последователно съчленяваме две по две неразличимите състояния докато всички състояния са различими. В този момент всяко състояние отговаря на клас на еквивалентност, описан в следствието.

Следващите две твърдения служат за построяване на алгоритъм за справяне с точка 2 от алгоритъма за минимизация.

Твърдение 1.

Ако от състоянията р и q едното е заключително, а другото – не, то те не са неразличими.

Твърдение 2 (тест за едната буква)

Състоянията р и q не са неразличими, ако съществува буква а, че състоянията $\mu(p,a), \mu(q,a)$ не са неразличими.

И така, за да изпълним 2, може:

- 2.1 Дефинираме множествата $Q_1^0 = S/F, Q_2^0 = F$
- 2.2 Към всяко от тези множествата прилагаме теста за едната буква.
- **2.2.1** Ако получим ново подразбиване на някое от множествата, се връщаме към 2.2 за тези множества

8

- 2.2.2 В противен случай сме намерили класовете на еквивалентност
- 2.3 Извършваме действията, описани след Дефиниция 1.10

Примерна задача за ДИ:

Ще приложим алгоритъма за минимализация към КДТА, дефиниран чрез таблицата

		A	В	С	D	E	F	G
	0	В	В	D	D	В	С	F
Ī	1	D	С	Е	Е	С	G	Е

- 1. Състоянията F,G са недостижими. Премахваме ги заедно с преходите, които излизат от тях. Получаваме автомата на следващата фигура
- 2. Да означим множеството $EC=\{E,C\}$ и множеството $ABD=\{A,B,D\}$.

Да приложим теста за едната буква за всевъзможните букви в двете групи, отчитайки в кое множество отиваме:

AB	А	В	D	
D	A	Ь		
0	AB	AB	AB	
0	D	D	D	
1	AB	EC	EC	
1	D	EC		

E C	E	С
	4 D	ΛD
0	AB	AB
	D	D
1	EC	EC

Разбиваме ABD на $A=\{A\}$ и BD= $\{B,D\}$ и отново прилагаме теста за едната буква, понеже на предната стъпка поне едно множество се разби:

BD	В	D	EC	E	С	A	A
0	BD	BD	0	BD	BD	0	BD
1	EC	EC	1	EC	EC	1	BD

Във всяка една от новите групи, стълбовете са едни и същи, следователно теста за едната буква не може да разбива повече тези множества. С това получаваме класовете на еквивалентност. Остава последователно да обединим В и D, след това и С и Е.

Обединяване на В и D: След това обединяване на C,E

[1] Дискретна матема.....а, ...а...

Литература:

[2] Записки от лекциите по ДМ, спец. ПМ, А. Буда

Темата е разработена от Велико Дончев, уч. 2011/2012 г.