Chapter 0: Abstract

Introduction

Lecturer

- Gunhyuk Park (Office: EECS Building C-201)
- Contact: 2261, maharaga@gist.ac.kr
- TA: Minwook Lee, minwook-lee@gist.ac.kr

Time

- Mon/Wed 9:00 AM 10:15 AM
- Office Hour: Wed 3:00 PM 5:00 PM (by Zoom)
- Introduction to PintOS Projects: Irregularly, not confirmed yet (by Zoom)

Reference

- "Operating System Concepts", A. Silberschatz, P. B. Galvin, and G. Gagne <- Read the book!

Evaluation

Participation (10%), Project (20%), Midterm (30%), Final (40%) You should participate in the class at least 66% Your final grade is given by normalized absolute score

Silberschatz, Galvin and Gagne ©2013

Course Overview

- W1: Introduction to Operating Systems
- W2: Operating System Structure & GitHub Introduction <- project team building
- W3: Process <- 1st project
- W4: Threads
- W5: CPU Scheduling <- 1st due, 2nd project
- W6: Process Synchronization
- W7: Deadlock and Starvation <- 2nd project due
- W8: Midterm Exam
- W9: Main Memory Management <- 3rd project
- W10: Virtual Memory Management
- W11: File-System Interface <- 3rd project due
- W12: File-System Implementation <- 4th project
- W13: Mass-Storage Structure
- W14: I/O Systems <- 4th due
- W15: Protection & Security
- W16: Final Exam

What is Operating System?

A software that acts as an intermediary between a user of a computer and its hardware

OS, Integration of Basics

- Software
 - Computer Programming
 C language, basic data structures, pointer, system calls (write, open, ...)
 - Object-Oriented Programming
 C++/Java, class, instance, graphical user interface
 - Data Structure and Algorithms
 Efficient way of solving problems, array, list, time complexity
- Hardware
 - Digital System Design
 Flip-flops, logic gates, boolean algebra, state machine, ALU
 - Computer Architecture von Neumann architecture, BUS, buffer, synchronous/asynchronous
- Operating system handles computer hardware with various software techniques for efficiency, robustness, and accuracy

Computer System Organization

- Computer-system operation
 - One or more CPUs and device controllers are connected through a common bus that provides access to shared memory
 - Concurrent execution of applications in CPUs and devices competes for memory cycles

Operating System Abstract

- Booting from Power Off
 - Bootstrap from ROM or EEPROM
 - Checks peripheral devices and main system
 - Runs an operating system stored in a disk

Operating System Abstract (2)

#include <stdio.h>
int main() {
 printf("Hello World!\n");
 return 0;
}

After Running an Application

```
Data: 'Hello World!'
 Max
          64 24 00 00
          77 6F 72 6C
Interrupt: 6C 6C 6F 20
          CD 21 48 65
 int 21h
          21 B8 00 4C Store address
          BA OE OO CD in EDX register
          OE 1F B4 09 Interrupt set:
          00 00 00 00
                          09h
          1C 00 00 00 Print String
          00 00 00 00
          00 10 00 00
          FF FF 02 00
          02 00 00 01
          01 00 00 00
                             Program
```

Hello World Application

A user generates a code and let a computer compiles it to generate a program in machine language

Program: HelloWorld.exe in a disk

Process: Corresponding hex code is loaded in main memory

These hex codes are generated differently by your compiler and CPU

Hello World Application in Hex Code

Operating System Abstract (3)

Main Memory
After Running an Application

Data: 'Hello World!' Max 64 24 00 00 77 6F 72 6C Interrupt: 6C 6C 6F 20 CD 21 48 65 int 21h 21 B8 00 4C Store address BA OE OO CD in EDX register OE 1F B4 09 Interrupt set: 00 00 00 00 09h 1C 00 00 00 Print String 00 00 00 00 00 10 00 00 FF FF 02 00 02 00 00 01 01 00 00 00 **Program** 4D 5A 3B 00 ◀ Counter

Hello World Application in Hex Code

- In 32-bit system, on demands, 4 bytes of data are loaded at the program counter in main memory to the instruction register
- Each instruction varies from 1 byte to several bytes

So... PintOS

- What's PintOS?
 - Educational operating system for x86 architecture
 - Developed by Ben Pfaff at 2004
 - Built on a x86 simulator (QEMU, bochs)
- Why PintOS?
 - You can learn concepts and mechanisms of OS components in the course, but it does not mean you 'understand' how it works
 - -> The same concept can be differently implemented (same policy, different mechanism)
 - PintOS is a small, simple, short, and easy-to-understand operating system

PintOS Structure

PintOS Projects

- # of team members: 2-3,
- Four projects will be announced:
 - 1. Pintos Installation and Alarm Clock
 - 2. Process Schedulers
 - 3. System Calls
 - 4. Virtual Memory
- In the project announcing week, TA will give an introductory talk with you
 - You can ask TA for details of projects
 - Participation is optional
 - Let's set the meeting time slot with TA
- Keep in mind
 - Do not copy any of codes; Once your plagiarism is detected, you get F

