

CLAIMS:

What is claimed is:

- 1 1. An electromagnetic gasket for shielding
2 electromagnetic interference (EMI), comprising:
 - 3 a metal shielding component comprising a
 - 4 longitudinal metal plate and a plurality of first ribs
 - 5 and a number of second ribs corresponding to and opposing
 - 6 the plurality of first ribs;
- 7 wherein the plurality of first ribs and second ribs
8 extend beyond opposite side surfaces of the metal
9 shielding component, are symmetric about the metal
10 shielding component, and curve back inward under
11 themselves; and
- 12 wherein the plurality of second ribs further include
13 an extended lip curving back outward underneath
14 themselves.
- 1 2. The electromagnetic gasket of claim 1, wherein the
2 plurality of first and second ribs of the electromagnetic
3 gasket include an extended lip.
- 1 3. The electromagnetic gasket of claim 1, wherein the
2 plurality of first and second ribs of the electromagnetic
3 gasket are mounted on a receiving device.
- 1 4. The electromagnetic gasket of claim 3, wherein the
2 receiving device is one of a chassis member and a module.

1 5. The electromagnetic gasket of claim 3, wherein the
2 receiving device is comprised of a steel, stainless
3 steel, aluminum, or metal-coated polymer.

1 6. The electromagnetic gasket of claim 1, wherein the
2 metal shielding component is comprised of thin beryllium
3 copper, phosphor bronze, brass, or stainless steel.

1 7. The electromagnetic gasket of claim 1, wherein the
2 metal shielding component includes a coating of tin, tin
3 and lead, cadmium, or zinc.

1 8. The electromagnetic gasket of claim 1, wherein the
2 length of the electromagnetic gasket is approximately the
3 length of a gap created by individual sides of the
4 receiving device and a mating chassis.

1 9. The electromagnetic gasket of claim 1, wherein the
2 width of the electromagnetic gasket is 2 centimeters or
3 less.

1 10. A method for facilitating electromagnetic energy
2 shielding, the method comprising:

3 positioning an electromagnetic interference gasket
4 over a receiving device,

5 wherein the receiving device includes slots for
6 receiving the electromagnetic interference gasket;

7 wherein the electromagnetic interference gasket
8 includes a metal shielding component comprising a
9 longitudinal metal plate and a plurality of first ribs

10 and a number of second ribs corresponding to and opposing
11 the plurality of first ribs;

12 wherein the plurality of first ribs and second ribs
13 extend beyond opposite side surfaces of the metal
14 shielding component, are symmetric about the metal
15 shielding component, and curve back inward under
16 themselves; and

17 wherein the plurality of second ribs further include
18 an extended lip curving back outward underneath
19 themselves; and

20 inserting the ribs of the electromagnetic
21 interference gasket into the slots of the receiving
22 device, wherein the extended lip facilitates the
23 insertion of the electromagnetic interference gasket into
24 the slots of the receiving device.

1 11. The method of claim 10, wherein the plurality of
2 first and second ribs of the electromagnetic interference
3 gasket include an extended lip.

1 12. The method of claim 10, wherein the receiving device
2 is one of a chassis member and a module.

1 13. The method of claim 10, wherein the receiving device
2 is comprised of a steel, stainless steel, aluminum, or
3 metal-coated polymer.

1 14. The method of claim 10, wherein the metal shielding
2 component is comprised of thin beryllium copper, phosphor
3 bronze, brass, or stainless steel.

1 15. The method of claim 10, wherein the metal shielding
2 component includes a coating of tin, tin and lead,
3 cadmium, or zinc.

1 16. A storage array for shielding electromagnetic
2 energy, comprising:

3 a frame;
4 at least one drive bay mounted within the frame;
5 at least one storage array module inserted into the
6 at least one drive bay;
7 at least one electromagnetic interference gasket
8 mounted onto the at least one disk array module;
9 wherein the at least one electromagnetic
10 interference gasket includes a metal shielding component
11 comprising a longitudinal metal plate and a plurality of
12 first ribs and a number of second ribs corresponding to
13 and opposing the plurality of first ribs;
14 wherein the plurality of first ribs and second ribs
15 extend beyond opposite side surfaces of the metal
16 shielding component, are symmetric about the metal
17 shielding component, and curve back inward under
18 themselves; and
19 wherein the plurality of second ribs further include
20 an extended lip curving back outward underneath
21 themselves, the extended lip facilitating the mounting of
22 the at least one electromagnetic interference gasket onto
23 the at least one storage array module.

1 17. The storage array of claim 16, wherein the plurality
2 of first and second ribs of the electromagnetic
3 interference gasket include an extended lip.

1 18. The storage array of claim 16, wherein the metal
2 shielding component is comprised of thin beryllium
3 copper, phosphor bronze, brass, or stainless steel.

1 19. The storage array of claim 16, wherein the metal
2 shielding component includes a coating of tin, tin and
3 lead, cadmium, or zinc.