plain Proof definition . .5em definition

Абстрактная схема игрового процесса

BetLab

2014

Вступление

Формализация абстрактного понятия игры мотивировано созданием в полученной формалистике описательного языка, предоставляющего возможность четкой постановки задач, исключающей возможность неоднозначной трактовки.

Минимальные требования: описания должны быть конечными текстами; способ составления описания игры должен быть вычислимой функцией, т.е. задаваться алгоритмом.

1 Базовые определения

Будем рассматривать множество игр \mathcal{G} и множество слов (текстов¹) T_{ω} над алфавитом² ω .

Cхемой описания назовем тройку $(\mathcal{G}, T_{\omega}, \alpha: \mathcal{G} \to T_{\omega})$ (дальше просто cхема).

На множестве схем введем отношение эквивалентности. Назовем схемы $(\mathcal{G}, T_{\omega}, \alpha)$ и $(\mathcal{G}, T_{\omega}, \beta)$ эквивалентными $((\mathcal{G}, T_{\omega}, \alpha) \simeq (\mathcal{G}, T_{\omega}, \beta))$, если существует биекция $f: T_{\omega} \to T_{\omega}$, такая, что $\alpha \circ f = \beta$.

 $^{^{1}}$ Текст является словом в алфавите, дополненном символами форматирования - пробел, переход строки и т.д.

 $^{^{2}}$ Алфавитом можно считать набор символов, при помощи которых записываются программы.

Также введем на множестве схем отношение порядка ≽. Будем говорить, что

$$(\mathcal{G}, T_{\omega}, \alpha) \succcurlyeq (\mathcal{G}, T_{\omega}, \beta)$$

если существует функция $f:T_\omega\to T_\omega$, такая, что следующая диаграмма коммутативна:

Такую функцию f будем называть трансляцией схемы $(\mathcal{G}, T_{\omega}, \alpha)$ в схему $(\mathcal{G}, T_{\omega}, \beta)$. Множество трансляций является полугруппой относительно операции суперпозиции.

Заметим, что

$$(\mathcal{G}, T_{\omega}, \alpha) \simeq (\mathcal{G}, T_{\omega}, \beta) \iff ((\mathcal{G}, T_{\omega}, \alpha) \succcurlyeq (\mathcal{G}, T_{\omega}, \beta)) \cup ((\mathcal{G}, T_{\omega}, \alpha) \preccurlyeq (\mathcal{G}, T_{\omega}, \beta))$$

Будем говорить, что схема $(\mathcal{G}, T_{\omega}, \alpha)$ уточняет схему $(\mathcal{G}, T_{\omega}, \beta)$, если имеет место:

$$(\mathcal{G}, T_{\omega}, \alpha) \succcurlyeq (\mathcal{G}, T_{\omega}, \beta).$$

Дальше будем рассматривать схемы с точностью до эквивалентности. На множестве классов эквивалентности естественным образом вводится отношение \succ :

если представители классов эквивалентности находятся в отношении \succcurlyeq и при этом не принадлежат одному классу эквивалентности, то соответствующие классы находятся в отношении \succ .

Описанные классы эквивалентности будем называть *обобщенными схемами*.

Таким образом имеем отношение строгого порядка на частично упорядоченном множестве обобщенных схем.

2 Полное описание

Назовем схему описания $(\mathcal{G}, T_{\omega}, \alpha)$ полной, если α - инъекция. Соответствующую данной схеме обобщенную схему также будем называть полной. Дальше будем исходить из допущения, что для данных $\langle \mathcal{G}, T_{\omega} \rangle$ полная схема существует.

Назовем схему описания $(\mathcal{G}, T_{\omega}, \alpha)$ пустой, если $E_{\alpha} = \emptyset$.

Theorem 2.1 Множество обобщенных схем, содержащее полную и пустую схемы является полной решеткой.