## The $\eta$ -compounding random walk

### 1 Appendix - binomial sums

We will need finite sums of powers weighted by binomial coefficients:

$$S_k(T) = \sum_{n=0}^{T} {T \choose n} n^k, \tag{1}$$

which are essentially the moments of the binomial distribution with  $p=\frac{1}{2}.$  For k=0 we have  $S_0(T)=2^T$  from the definition of the binomial distribution. For  $k\geq 0$ , we can evaluate the sums sequentially by differentiating the binomial theorem,

$$(x+y)^{T} = \sum_{n=0}^{T} {T \choose n} x^{n} y^{T-n}$$

with respect to x and setting x = y = 1. For example, differentiating once with respect to x, we get

$$T(x+y)^{T-1} = \sum_{n=0}^{T} {T \choose n} nx^{n-1} y^{T-n}$$

and setting x=y=1 gives  $S_1(T)$ . We can now differentiate again and use the formula for  $S_1(T)$  to get  $S_2(T)$  and so on. The first few sums are:

$$\sum_{n=0}^{T} {T \choose n} = 2^{T} \tag{2}$$

$$\sum_{n=0}^{T} {T \choose n} n = \sum_{n=0}^{T} {T \choose n} (T-n) = T 2^{T-1}$$
 (3)

$$\sum_{n=0}^{T} \binom{T}{n} n^2 = \sum_{n=0}^{T} \binom{T}{n} (T-n)^2 = T (T+1) 2^{T-2}.$$
 Although this is well defined for all  $T$  even when  $\log_{\frac{1}{2}}(g) < 0$ , it is not continuously reachable from  $\eta = \frac{1}{2} \pm \epsilon$ . Further-

#### 2 Definition of $\eta$ -compounding

Adopting the notation in [3] to fit the way we usually write the isoelastic utility function, we define the generalised exponential and logarithm as

$$\exp_{\eta}(x) = \begin{cases} (1 + (1 - \eta)x)^{\frac{1}{1 - \eta}} & 0 \le \eta < 1 \\ \exp(x) & \eta = 1 \end{cases}$$
 (5)

$$\log_{\eta}(x) = \begin{cases} \frac{1}{1-\eta} \left( x^{1-\eta} - 1 \right) & 0 \le \eta < 1 \\ \log(x) & \eta = 1 \end{cases} . \tag{6}$$

Following [1] we define the generalised compounding operator,  $\otimes$ , as

$$x \otimes y = \exp_n \left[ \log_n(x) + \log_n(y) \right].$$
 (7)

An  $\eta$ -compounding process with growth factor, g, is one where the initial value is  $\eta$ -compounded by g at each step:

$$x_{t+1} = x_t \otimes g, \tag{8}$$

with  $x_0 = X_0$ . For  $T \ge 1$ , we have

$$x_T = X_0 \otimes \underbrace{g \otimes \ldots \otimes g}_{T\text{-times}}$$

$$= X_0 \otimes \exp_{\eta} \left[\underbrace{\log_{\eta}(g) + \ldots + \log_{\eta}(g)}_{T\text{-times}}\right]$$

$$= X_0 \otimes \exp_{\eta} \left[\log_{\eta}(g) T\right]. \tag{9}$$

From this we see that the growth rate (the quantity with a dimension of time $^{-1}$ ) is  $\log_{\eta}(g)$ . From Eq. (5), we see that  $\exp_{\eta}(x)$  is only well defined for

$$x \ge -\frac{1}{1-\eta} \qquad 0 \le \eta < 1$$
$$x > -\infty \qquad \eta = 1.$$

Hence, for general values of  $\eta \neq 1$ , Eq. (9) is only well-defined for all  $T \geq 1$  if  $\log_{\eta}(g) > 0$ . This implies that  $g \geq 1$ . Some confusion can arise for some rational values of  $\eta$  for which the branch point of Eq. (5) at  $x = -\frac{1}{1-\eta}$  disappears. For example, if  $\eta = \frac{1}{2}$ , we have

$$x_T = \exp_{\frac{1}{2}} \left[ \log_{\frac{1}{2}}(X_0) + T \log_{\frac{1}{2}}(g) \right]$$
$$= \left[ \sqrt{X_0} + \frac{T}{2} \log_{\frac{1}{2}}(g) \right]^2.$$

Although this is well defined for all T even when  $\log_{\frac{1}{2}}(g) < 0$ , it is not continuously reachable from  $\eta = \frac{1}{2} \pm \epsilon$ . Furthermore, this results in an unnatural model where a negative growth rate corresponds to increasing  $x_T$ . In what follows we will respect the constraint  $g \geq 1$  in order to avoid such pathologies.

### 3 The $\eta$ -compounding random walk

We are interested in studying the  $\eta$ -compounding random walk in discrete time. At each step, there are now two possible growth factors, g+r and g-r, which we assume occur with equal probability:

$$x_{t+1} = \begin{cases} x_t \otimes (g+r) & \text{with probability } \frac{1}{2} \\ x_t \otimes (g-r) & \text{with probability } \frac{1}{2}. \end{cases}$$
 (10)

with  $x_0=X_0$ . In order to keep everything well-defined we need g-r>1, assuming that g>0 and r>0.

We can generalise some of the calculations for the multiplicative random walk in [2] to the  $\eta$ -compounding random

walk. If, after playing T rounds of the game, we experience n "wins" (and T-n "losses"), then  $x_T$  will take the value

Thus the typical value of  $x_T$  is

The probability of this value is

$$p(n) = \binom{T}{n} \left(\frac{1}{2}\right)^T,\tag{11}$$

where  $\binom{T}{n}$  is the binomial coefficient - the number of ways in which n wins can occur in a sequence of T rounds of the game. The expectation value of  $x_T$  is therefore

$$\mathbb{E}\left[x_T\right] = \sum_{n=0}^T \binom{T}{n} \left(\frac{1}{2}\right)^T X_0 \otimes \exp_{\eta}\left[n \, \log_{\eta}(g_1)\right] \qquad \qquad \mathbb{E}\left[x_T\right] - \widetilde{x}_T = \\ + (T-n) \log_{\eta}(g_2)\right] \qquad \qquad \text{from Eq. (10), the quench of } \\ = \frac{1}{2^T} \sum_{n=0}^T \binom{T}{n} \left[X_0^{1-\eta} - T + ng_1^{1-\eta} + (T-n)g_2^{1-\eta}\right] \qquad \qquad y_{t+1} = \begin{cases} \frac{q}{2} \\ \frac{q}{2} \end{cases}$$

where, for brevity we have written  $g_1 = g + r$  and  $g_2 =$ g-r.

# Expectation value for the case of $\eta = \frac{1}{2}$

This sum can be done exactly at least for the case  $\eta = \frac{1}{2}$ :

$$\mathbb{E}[x_T] = \frac{1}{4} \left( \sqrt{g+r} + \sqrt{g-r} - 2 \right)^2 T^2$$

$$+ \left[ (\sqrt{g+r} + \sqrt{g-r} - 2) \sqrt{X_0} \right]$$

$$+ \frac{1}{4} (\sqrt{g+r} - \sqrt{g-r})^2 T$$

$$+ X_0.$$
(13)

For large T we find

$$\mathbb{E}[x_T] \sim \frac{1}{4} \left( \sqrt{g+r} + \sqrt{g-r} - 2 \right)^2 T^2.$$
 (14)

### Typical value for the $\eta$ -compounding random walk

The *typical* value of  $x_T$  can be found by finding  $n^*$ , the value of n that maximises the probability, Eq. (11). This is

$$n^* = \underset{n}{\arg\max} \binom{T}{n}$$
$$= \frac{T}{2}.$$

$$\widetilde{x}_T \sim \left(\frac{1}{2}\left((g+r)^{1-\eta} + (g-r)^{1-\eta} - 2\right)\right)^{\frac{1}{1-\eta}} T^{\frac{1}{1-\eta}}.$$
(16)

Note that for  $\gamma=\frac{1}{2}$ , this agrees with Eq. (14) which suggests that for the  $\frac{1}{2}$ -compounding random walk, the expected value is representative. For  $\eta = \frac{1}{2}$ , it turns out that the difference between the expected value and the typical value is sub-leading in T:

$$\mathbb{E}\left[x_T\right] - \widetilde{x}_T = \frac{1}{2}T\left(g - \sqrt{g - r}\sqrt{g + r}\right) \tag{17}$$

### Time-averaged growth rate

From Eq. (10), the quantity  $y_t = \log_{\eta} x_t$  follows a simple

$$y_{t+1} = \begin{cases} y_t + a & \text{with probability } \frac{1}{2} \\ y_t + b & \text{with probability } \frac{1}{2}, \end{cases}$$
 (18)

where

$$a = \log_{\eta}(g+r)$$
$$b = \log_{\eta}(g-r).$$

If, after playing T rounds of the game, we experience n"wins" (and T-n "losses"), then  $y_T$  will take the value

$$y_T = n a + (T - n) b.$$

The corresponding probability is again given by Eq. (11). The expectation value of  $y_T$  is

$$\mathbb{E}\left[y_T\right] = \sum_{n=0}^{T} {T \choose n} \left(\frac{1}{2}\right)^T \left[n \, a + (T-n) \, b\right]$$

$$= \frac{T}{2} \left(a \sum_{n=0}^{T} {T \choose n} \, n + b \sum_{n=0}^{T} {T \choose n} \left(T-n\right)\right)$$

$$= \frac{T}{2} \left(a + b\right)$$

$$= \frac{T}{2} \left(\log_{\eta}(g+r) + \log_{\eta}(g-r)\right). \tag{19}$$

where the second-but-last line follows from the identity Eq. (3). Thus the time averaged growth rate corresponds to the growth rate of the typical trajectory. We then find that

$$\exp_{\eta} \left( \mathbb{E} \left[ \log_{\eta}(x_T) \right] \right) = \exp_{\eta} \left[ \frac{T}{2} \left( \log_{\eta}(g+r) + \log_{\eta}(g-r) \right) \right]$$
$$= \left( \frac{1}{2} \left( (g-r)^{1-\eta} + (g+r)^{1-\eta} - 2 \right) \right)^{\frac{1}{1-\eta}}$$
(20)



Figure 1: Some sample trajectories for  $\eta=\frac{1}{2}$  with  $g=\frac{3}{2}$  and  $r=\frac{1}{2}.$ 

### **References**

- [1] Peter Carr and Umberto Cherubini. Generalized compounding and growth optimal portfolios reconciling Kelly and Samuelson. *The Journal of Derivatives*, 30(2):74–93, 2022.
- [2] Sidney Redner. Random multiplicative processes: An elementary tutorial. *American Journal of Physics*, 58(3):267–273, 1990.
- [3] Takuya Yamano. Some properties of q-logarithm and q-exponential functions in Tsallis statistics. *Physica A: Statistical Mechanics and its Applications*, 305(3-4):486–496, 2002.