- **1.1.** Пусть X хаусдорфово топологическое пространство. Всегда ли верно, что $\overline{A \cap B} = \overline{A} \cap \overline{B}$ для любых $A, B \subset X$ (черта означает замыкание)?
- **1.2.** Пусть $X = \mathbb{N} \cup \{\infty\}$; введем топологию на X следующим образом: подмножество $U \subset X$ назовем открытым, если оно либо не содержит ∞ , либо для некоторого $N \in \mathbb{N}$ содержит множество $\{n \in \mathbb{N} : n \geqslant N\} \cup \{\infty\}$. Пусть теперь Y другое топологическое пространство и $f : \mathbb{N} \to Y$ отображение. Докажите, что последовательность (f(n)) имеет предел в Y тогда и только тогда, когда f продолжается до непрерывного отображения $\tilde{f} : X \to Y$.
- **1.3.** Пусть X топологическое пространство. Подмножество $Y \subset X$ называется локально замкнутым, если у всякой точки $y \in Y$ существует такая окрестность $U \ni y, U \subset X$, что $U \cap Y$ замкнуто в U (в индуцированной топологии). Покажите, что следующие условия равносильны.
 - (1) $Y \subset X$ локально замкнуто.
 - (2) Y разность двух замкнутых множеств.
 - (3) Y разность двух открытых множеств.
 - (4) Y открытое подмножество своего замыкания \overline{Y} (в индуцированной топологии).
- **1.4.** Снабдим пространство $\mathbb{R}^{\mathbb{R}}$ всех функций из \mathbb{R} в \mathbb{R} топологией произведения (она же топология поточечной сходимости). Найдите замыкание в $\mathbb{R}^{\mathbb{R}}$ множества всех многочленов без свободного члена.
- **1.5.** Пусть A и B замкнутые подмножества топологического пространства X, причем $A \cup B$ и $A \cap B$ связны. Докажите, что A и B связны. Верно ли это, если не требовать замкнутости A и B?