Calculs, logique et nombres complexes - consolidation

I - Formules et résultats à connaître par coeur

1) Donner la valeur des sommes $\sum_{k=1}^{n} k$, $\sum_{k=1}^{n} k^2$ et $\sum_{k=0}^{n} z^k$.

2) Énoncer le binôme de Newton.

3) Compléter : $a^n - b^n = \cdots$.

4) Compléter : $\sum_{k=1}^{n} z_{k+1} - z_k = \cdots$.

5) Donner les lois de De Morgan.

6) Compléter : $\mathbb{U}_n = \cdots$.

II - Exercices à maîtriser

Exercice 1 Calculer $\binom{9}{4}$ grâce au triangle de Pascal.

Exercice 2 Calculer $\sum_{1 \leqslant i < j \leqslant 6} i - j$.

Exercice 3 Soit $a, b, c \in \mathbb{R}$. Donner l'ensemble des solutions du système suivant :

$$\begin{cases} 2x +7y +3z = a \\ 3x +9y +4z = b \\ x +5y +3z = c \end{cases}$$

Exercice 4 Nier la proposition $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x \geqslant y \text{ et } (x \geqslant 0 \Rightarrow y > 2).$

Exercice 5 Soit I un intervalle de $\mathbb R$ et $f:I\to\mathbb R$ une fonction définie sur I à valeurs réelles. Exprimer à l'aide de quantificateurs les assertions suivantes :

a) la fonction f s'annule ;

c) f ne peut s'annuler qu'une seule fois ;

b) la fonction f est la fonction nulle ;

d) f n'est pas une fonction constante.

Exercice 6 Donner les racines carrées de 2 + 3i sous forme algébrique.