ტ

Ŋ

After this lesson, you should be able to:

- Identify secant and tangent lines
- Identify secant and tangent segments
- Distinguish between two types of tangent circles
- Recognize common internal and common external tangents

Given: Circle X.

Definitions

- 1. Secant a line that intersects a circle at exactly two points.
 - a. Every secant contains a chord of the circle.
 - b. Name the secant in the diagram.
 - c. Name the chord that is contained in the above secant.
- 2. Tangent a line that intersects a circle at *exactly* one point.
 - a. Name the tangent in the diagram.
 - b. The *point of tangency* is the point of contact between a tangent and a circle.
 - c. Name the point of tangency in the diagram.
- 3. Tangent segment the part of the tangent line between the point of contact and a point outside the circle.

C

- a. Name the tangent segment in the diagram.
- 4. Secant segment the part of a secant line that joins a point outside the circle to the farther intersection point of the secant and the circle.
 - a. Name the secant segment in the diagram.
- 5. External part of a secant segment the part of a secant line that joins the outside point to the nearer intersection point.
 - a. Name the external part of a secant segment in the diagram.

Postulate: A tangent line is perpendicular to the radius drawn to the point of tangency.

6. The radius of circle A is 8 cm. Tangent segment \overline{BC} is 15 cm long. Find the length of \overline{AC} .

Postulate: If a line is perpendicular to a radius at its outer endpoint, then it tangent to the circle.

7. Concentric circles with radii 8 and 10 have center P. $\overline{XY} \perp \overline{ZP}$. Find \overline{XY} .

- 8. Tangent circles intersect each other at exactly one point.
 - a. Two circles are *externally tangent* if each of the tangent circles lies outside the other.
 - b. Circle A and circle B are externally tangent. Name their point of tangency.
 - c. What must be true about \overline{AB} and \overline{CE} ?
 - d. \overrightarrow{CE} is a *common internal tangent* because it lies between the circles.

- e. Two circles are *internally tangent* if one of the tangent circles lies inside the other.
- f. Circle F and circle G are internally tangent. Name their point of tangency.
- g. What must be true about \overline{FH} and \overline{IH} ?
- h. \overrightarrow{IH} is a *common external tangent* because it is not between the circles.

- 9. Given circle J and circle K, name the following:
 - a. common internal tangent
 - b. common external tangent
 - c. line of centers

10. Given: \overrightarrow{BA} and \overrightarrow{BC} are tangent to circle X. What can you prove about \overrightarrow{BA} and \overrightarrow{BC} ?

Two-Tangent Theorem: If two segments from the same exterior point are tangent to a circle, then those segments are congruent.

Two-Tangent Theorem: If two segments from the same exterior point are tangent to a circle, than those segments are congruent.

11. Walk around problem

Given: Polygon ABCD is *circumscribed* about circle X.

$$AB = 15, AD = 7, DC = 3$$

Find BC.

12. Given: Circle P, tangents \overline{AC} and \overline{BC} , points of tangency A and B, mBQ = 60, AB = 24, $\overline{AB} \perp \overline{PC}$.

Find the radius of the circle.

13. The centers of two circles of radii 11 cm and 6 cm are 13 cm apart. Find the length of a common external tangent.

Common-Tangent Procedure

This procedure works for both common internal and common external tangents.

- a. Draw the segment joining the centers.
- b. Draw the radii to the points of contact.
- c. Through the center of the smaller circle, draw a line parallel to the common tangent. This line will intersect the radius of the larger circle (you may need to extend the radius) to forma rectangle and a right triangle.
- d. Use the Pythagorean Theorem and properties of a rectangle.