Lecture 9 Convolutional neural networks

Information Systems (Machine Learning) Andrey Filchenkov

22.11.2018

Lecture plan

- Brief overview of ImageNet
- Earlier approaches in computer vision
- Convolutional neural networks
- Deconvolution and visualization of neurons
- Architecture overview
- Computer vision problems
- The presentation is prepared with materials of D. Polykovsky and K. Khrabrov "Neural networks in machine learning"
- Slides are available online: goo.gl/BspjhF

Lecture plan

- Brief overview of ImageNet
- Earlier approaches in computer vision
- Convolutional neural networks
- Deconvolution and visualization of neurons
- Architecture overview
- Computer vision problems

Today history (reminder)

- 2012 Hinton, Krizhevsky, and Sutskever suggest Dropout
- 2012 They win ImageNet (and two less known competitions). Deep learning era begins.

IS (Machine learning). Lecture 9. Convolutional. 22.11.2018.

Imagenet Challenge

- 1000 images per class
- 1000 classes
- Today, 14 mln images

Examples of images

Lecture plan

- Brief overview of ImageNet
- Earlier approaches in computer vision
- Convolutional neural networks
- Deconvolution and visualization of neurons
- Architecture overview
- Computer vision problems

Short history of computer vision

IS (Machine learning). Lecture 9. Convolutional. 22.11.2018.

Core concepts

- Local perception: each neuron sees a small part of the object. Use kernels (filters) to capture 1-D or 2-D structure of objects. For instance, capture all pixel neighbors for an image.
- Weight sharing: use small and the same sets of kernels for all objects, this leads to reduction of number of adjusting parameters in comparison with MLP
- **Subsampling/pooling**: use dimensionality reduction for images in order to provide invariance to scale

Discrete kernel

What kernels can do?

blur

	ė.	_		_	
	S :	U	${}_{\mathbb{S}}1_{\mathbb{S}}$	U	3 -
*		1	-4	1	33
		0	1	0	
	3	-	3-3		3-

edge detection

sharpen

Lecture plan

- Brief overview of ImageNet
- Earlier approaches in computer vision
- Convolutional neural networks
- Deconvolution and visualization of neurons
- Architecture overview
- Computer vision problems

Convolution

Convolution of array m with kernel a is an array $ma[k] = \sum_{i=-w}^{w} m[k+i] a[-i]$

Convolution properties

- Associative property
- Commutative property
- Linearity

Padding

Zero shift

0 0 **A B C** 0 0

Border extension

A A **A B C** C C

Mirror shift

B A **A B C** C B

C B **A B C** B A

Cyclic shift

B C **A B C** A B

2-D convolution

Convolutional tensors

IS (Machine learning). Lecture 9. Convolutional. 22.11.2018.

Pooling

Pooling is used to reduce dimensionality

Single depth slice

x	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

VGG-16 conceptual scheme

VGG-16 technical scheme

Lecture plan

- Brief overview of ImageNet
- Earlier approaches in computer vision
- Convolutional neural networks
- Deconvolution and visualization of neurons
- Architecture overview
- Computer vision problems

Deconvolution neural network

Visualization of neuron activation

Visualization of neuron activation

Visualization of neuron activation

Lecture plan

- Brief overview of ImageNet
- Earlier approaches in computer vision
- Convolutional neural networks
- Deconvolution and visualization of neurons
- Architecture overview
- Computer vision problems

LeNet

AlexNet

VGG-16

ConvNet Configuration							
Α	A-LRN	В	С	D	E		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224 × 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
	maxpool						
FC-4096							
FC-4096							
FC-1000							
soft-max							

Inception

Width of **inception modules** ranges from 256 filters (in early modules) to 1024 in top inception modules.

Inception aka GoogleNet

ResNet (1/2)

Additional layers not always help

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

ResNet (2/2)

Adding skip layers may help

Figure 2. Residual learning: a building block.

 $\mathcal{H}(\mathbf{x})$ is the true function we want to learn

Let's pretend we want to learn

$$\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}$$
 instead.

The original function is then

$$\mathcal{F}(\mathbf{x}) + \mathbf{x}$$

Network comparison

Lecture plan

- Brief overview of ImageNet
- Earlier approaches in computer vision
- Convolutional neural networks
- Deconvolution and visualization of neurons
- Architecture overview
- Computer vision problems

CV tasks

Semantic segmentation

U-Net

IS (Machine learning). Lecture 9. Convolutional. 22.11.2018.

Object localization

Object detection. Pascal VOC

Detection via R-CNN

Detection via YOLO

