Assignment 2b

EE698V - Machine Learning for Signal Processing

- Take a printout of this pdf and write your answers here. Or else, write your answers on A4 sheets at the same locations as in this pdf.
- You can attach extra sheets at the end. But these first three sheets should contain the final answer.
- Submissions should be hand-written and handed over to your TAs before the deadline.

Q1. DSP:

- a. Write your last name (surname): ARORA
- Plot a triangular wave signal x (amplitude spanning between -1 to +1) of 0.5s duration with frequency Fs (in Hz), where Fs=length of your last name (surname). Mark the axes limits and wherever the signal is 0.

F=5Hz 9n 0.52, we will see #yeles = 0.5×5 = 2.5

c. Sample x at a frequency 7Hz and quantize it to 4 levels between -1 to +1 to obtain x_1 . Plot the resulting time series x_1 .

$$|S| = -1$$

$$|S| \times |I| = \frac{0.7}{5} < \frac{2}{3}$$

$$|I| = \frac{1}{5} < \frac{2}{3} < \frac{2}{3}$$

$$|I| = \frac{1}{5} < \frac{2}{3} < \frac{2}{3} < \frac{2}{3} < \frac{2}{3}$$

$$|I| = \frac{1}{5} < \frac{2}{3} <$$

d. Sample x at a frequency Fs >> Nyquist frequency to obtain a time series x2. If you take an N-point DFT of x2, where N>Fs, you will get the most prominent peak at k in the magnitude of the DFT? Express k in terms of N and Fs. (4 Marks)

$$\chi(t) \approx \sin(2\pi f_0 t)$$

$$\chi(N) = \sin(2\pi f_0 \frac{n}{F_0}) = \text{Re}\left\{e^{2\pi f_0 \frac{n}{F_0}}\right\}$$

$$\chi(N) \propto \sum_{n} \left\{e^{2\pi f_0 \frac{n}{F_0}} \times e^{-2\pi r k \frac{n}{N}}\right\}$$

Q2. Evaluation Metrics

A classifier is designed to classify rose R, lotus L and jasmine J. There are 8 test samples, on which the classifier predicts the probability of each class as follows:

P(R)	P(L)	P(J)	True label		
0.37	0.63	0.	R		
0.56	0.27	0.17	R		
0.2	0.37	0.43	L		
0.33	0.26	0.42	L		
0.18	0.79	0.02	L		
0.41	0.25	0.34	J		
0.12	0.17	0.7	J		
0.49	0.16	0.35	R		

- a. If the hard label is decided as $y = arg \max_{l} P(l)$,
 - a. the accuracy of the classifier will be: (1 Marks) $\frac{4}{2} = 50\%$
 - b. the confusion matrix will look like: (2 Marks)

c. For lotus, the precision, recall and F1 measure will be: (3 Marks)

b. If I want to use this classifier to detect lotuses, I can decide the label using a threshold $\theta > 0$ as y = L, if $P(L) > \theta$. Draw the precision recall curve (PRC) by varying the values of θ . (4 Marks)

Q3. Image Filtering

An image is given as a matrix F. It is filtered with a filter matrix H.

a. Write the output G, which is a correlation of F and H, with zero padding. (4 Marks) Hint: See reference: http://www.robots.ox.ac.uk/~az/lectures/ia/lect1.pdf

		0.6	0.2	1.2	0.4	0.3
F	=	0.9	1.7	0.3	1.1	0.1
		0.6	0.8	1.1	0.2	0.5
		0.4	0.1	0.4	0	0.2

	0	0	0	1	1	1	1
H =	0	2	0	$-\frac{1}{9}$	1	1	1
	0	0	0		1	1	1

-0.1	-0.1	-0.2	-0.2	-0.2	-0.1	0	
-0.2	0.8	-0.1	1.9	0.4	0.4	0	
-0.2	1.3	2.6	-0.2	1.6	-0.1	-0.1	
-0.2	0.7	0.9	1.6	0	0.8	-0.1	
-0.1	0.6	-0.2	0.5	-0.3	0.3	-0.1	
-0.	-0.1	-0.1	-0.1	-0.1	0	0	

b. This operation is called as Sharpening

Q4. DFT

a. Prove that for the DFT of a real time series x, just half the spectrum (i.e., k=0 to Nfft/2) is sufficient to reconstruct the entire spectrum (i.e., for any k). (4 Marks) **Hint**: use the definition of X[k].

b. Does this hold for a complex time series too? (1 Mark)
$$\times (\mathbb{R}) = \sum_{n=0}^{\infty} x(n) e^{-j \frac{2\pi}{N}kn} - - - (1)$$

Consider, X*[K] = 5 x(n) ej2nkn

b) Does NOT hold for complex x[n]

: of assumption (a)

We know
$$|X^*| = |X|$$
 and $XX^* = -4X$, for all $X \in \mathbb{Z}$ (complex no.)