(00094412) הסתברות מ' ותרגול 11

שם: איל

March 28, 2024

נושא התרגול: התפלגות גאמה, טרנספורמציות חח"ע, טרנספורמציות דו-מימדיות, וקטור מקרי נורמלי

נושא ראשון - התפלגות גאמה:

- $X \sim Gamma\left(lpha,\lambda
 ight)$ נסמן התפלגות אמה , $lpha \in \mathbb{R}$ ו ו $\lambda \in \mathbb{N}$ כאשר $lpha,\lambda > 0$.
 - $f_{X}\left(x
 ight)=egin{cases} rac{\lambda^{lpha}\cdot x^{lpha-1}\cdot e^{-\lambda x}}{\Gamma(lpha)} & x\geq0 \ 0 & else \end{cases}$ הצפיפות שלו היא
 - י חרוווח י
- $X_i \sim exp\left(\lambda
 ight)$ משתנים לכל לכל מעריכית, מעריכית מקריים בלתי מקריים מקריים מקריים מקריים מעריכית, כלומר לנו
 - אופן סימון: iid באותו אופן סימון
 - $Gamma(1,\lambda) = exp(\lambda)$.2
- $X_1+X_2\sim Gamma\left(lpha_2+lpha_2,\lambda
 ight)$ אם אז $X_1\sim Gamma\left(lpha_2,\lambda
 ight)$ וגם $X_1\sim Gamma\left(lpha_1,\lambda
 ight)$ והם בלתי תלויים אז $X_1\sim Gamma\left(lpha_1,\lambda
 ight)$
 - $lpha_1,lpha_2\in\mathbb{R}$ זה נכון לכל –
 - : האינטואיציה של זה היא
- $X_{B}=X_{1},X_{2},\ldots,X_{n_{2}}\sim$ ו- $X_{A}=X_{1},X_{2},\ldots,X_{n_{1}}\sim iid\ exp\left(\lambda\right)$ אז אם יש לנו ($Gamma\left(1,\lambda\right)=exp\left(\lambda\right)$ יש היינון ש ($iid\ exp\left(\lambda\right)$

$$X_A + X_B = \sum_{i=1}^{n_1} X_i + \sum_{i=1}^{n_2} X_i$$

שאלה 1 - התפלגות גאמה

- $X,Y\sim Exp\left(\lambda
 ight)$ משתנים מקריים בלתי תלויים המקיימים משתנים ייהיו
 - Z=X+Yיהי •
 - $Z\sim Gamma\left(2,\lambda
 ight)$ א. הוכיחו כי מתקיים
 - Z ב. חשבו תוחלת ושונות של

פיתרון 1. א.

 $f_{Z}\left(z
ight)$ את מנת למצוא ונגזור על ונגזור את הצא יונגזור $F_{Z}\left(z
ight)$

$$F_Z(z) = P(Z \le z) = P(X + Y \le z)$$

- : יש שתי דרכים לפתור
- 1. או לעשות אינטגרל כפול
- . או להתנות על Y ולהשתמש בהסתברות השלמה.
- נפתור בדרך השנייה, תוך שימוש בכלל ההסברות השלמה במקרה הרציף:

$$= \int_{-\infty}^{\infty} P(X + Y \le z \mid Y = y) \cdot f_Y(y) dy$$

$$= \int_{-\infty}^{\infty} P(X + y \le z \mid Y = y) \cdot f_Y(y) dy$$

x נשים לב שy הוא מספר עכשיו ומכיוון שX,Y בלתי תלויים, אפשר למחוק את Y מההתניה:

$$= \int_{-\infty}^{\infty} P(X + y \le z) \cdot f_Y(y) dy$$

: ולכן $[0,\infty]$ א מקבל ערכים בין $Y\sim exp\left(\lambda\right)$ ולכן *

$$=\int\limits_{0}^{\infty} \overbrace{P(X\leq z-y)}^{F_X(z-y)} \cdot \lambda e^{-\lambda y} \ dy$$

$$F_X\left(x
ight)=egin{cases} 1-e^{-\lambda x} & x\geq 0 \ 0 & x<0 \end{cases}$$
 ולכן $X\sim Exp\left(\lambda
ight)$ * $x<0$. עלינו לדרוש $z>u$ כלומר $z>u$ כלומר $z>u$.

: נשנה את גבולות האינטגרל בהתאם

$$= \int_{0}^{z} \left(1 - e^{-\lambda(z-y)}\right) \cdot \lambda e^{-\lambda y} dy$$

$$=1-e^{-\lambda z}-\lambda ze^{-\lambda y}$$

 $f_{Z}\left(z
ight)$ את כדי לקבל ינגזור כדי נגזור י

$$f_{Z}(z) = \begin{cases} \lambda^{2}z \cdot e^{-\lambda z} & z \geq 0\\ 0 & else \end{cases}$$

 $Z \sim Gamma\left(2,\lambda
ight)$ ולכן י

פיתרון 1. ב.

- נציב בנוסחה כדי למצוא את התוחלת והשונות:
 - מלינאריות התוחלת מתקיים:

$$E[Z] = \frac{2}{\lambda} = E[X] + E[Y] = \frac{1}{\lambda} + \frac{1}{\lambda}$$

: מתקיים מתקיים בלתי תלויים מתקיים – X,Y

$$Var(Z) = \frac{2}{\lambda^2} = Var(X) + Var(Y) = \frac{1}{\lambda^2} + \frac{1}{\lambda^2}$$

נושא שני - טרנספורמציות חח"ע:

- . וגוזרים. אח מוצאים מוצאים אז היינו $g\left(X\right)=Y=3\cdot X^{2}$ וגוזרים משתנה אם היה לנו עכשיו, עד עכשיו
- $g\left(X
 ight)$ ישירות בעזרת אלא למצוא את ולגזור אותה את למצוא את למצוא את למצוא את היום למצוא את $F_{Y}\left(y
 ight)$
 - [a,b]- יהי משתנה מקרי רציף Xהמקבל ערכים -
 - [a,b]-ב (ממש) ב-(כלומר מונוטונית גזירה וחח"ע פונקציה $g:\mathbb{R} o \mathbb{R}$ היי פונקציה •

: אזי מתקיים

$$f_{Y}(y) = \begin{cases} f_{X}\left(g^{-1}(y)\right) \cdot \left| \left(g^{-1}(y)\right)' \right| & y \text{ is between } g\left(a\right) \text{ and } g\left(b\right) \\ 0 & else \end{cases}$$

:2 שאלה

- $.X\sim Exp\left(1
 ight)$ יהי •
- $.f_{Y}\left(y
 ight)$ את מצאו $Y=\sqrt{X}$ מצאו •

פיתרון 2.

• במבחן, לפעמים מומלץ לחשב (ואז לגזור):

$$F_Y(y) = P(Y \le y) = P(\sqrt{X} \le y) = P(X \le y^2) = F_X(y^2)$$

- :נתון $X\sim Exp\left(1
 ight)$ ולכן
 - $x \in [0, \infty]$ –
- $f_{X}\left(x
 ight)=e^{-x}$ הצפיפות של X היא
- $[0,\infty]$ היא חח"ע וגזירה בקטע פ $g\left(x
 ight)=\sqrt{x}$ הפונקציה
 - $g^{-1}\left(y
 ight)=y^{2}$ היא g^{-1} שלה,
 - לפי הנוסחה, מתקיים:

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| (g^{-1}(y))' \right|$$
$$= f_X(y^2) \cdot |2y|$$

 $y \le 0$ נקבל: – מכיוון ש

$$= \begin{cases} e^{-y^2} \cdot 2y & 0 \le y \\ & else \end{cases}$$

נושא שלישי - טרנספורמציות דו-מימדיות:

- $f_{X,Y}\left(x,y\right)$ עם צפיפות (X,Y) אם יש לנו וקטור אם
 - $P\left((X,Y)\in D
 ight)
 eq 0$ שבו $D\subseteq\mathbb{R}^2$ ויש תחום •
- . נניח שקיימת ל-g טרנספורמציה הופכית שהנגזרות סרנספורמציה סרנספורמציה פיימות.
- נגדיר את היעקוביאן, שהיא הדטרמיננטה של מטריצת הנגזרת החלקיות.

שאלה 3:

- . משתנים מקריים בלתי תלויים $Y \sim Gamma\left(\alpha_2,\lambda\right)$ ו- $X \sim Gamma\left(\alpha_1,\lambda\right)$ יהיי
 - $V = rac{X}{X+Y}$ ונגדיר U = X + Y
 - U,V א. מצאו את הצפיפות המשותפת של
 - ב. האם U,V בלתי תלויים.
 - $.f_{U}\left(u
 ight)$ את כלומר כלומר , $U\sim Gamma\left(lpha_{1}+lpha_{2},\lambda
 ight)$ ג. הראו כי

פיתרון 3. א.

- : נסמן
- $g_1\left(x,y\right) = x + y$ פונקציה –
- ד $g_{2}\left(x,y\right) =rac{x}{x+y}$ פונקציה
 - $V=rac{X}{U}$ לפי הנתון •
 - $X = V \cdot U$ ולכן –
- $Y=U-U\cdot V$ ולכן ולכן א בנוסף, לפי הנתון מתקיים *
 - כלומר קיבלנו:

$$x = h_1(u, v) = u \cdot v$$

$$y = h_1(u, v) = u - u \cdot v$$

: היעקוביאן הוא

$$\det\begin{pmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{pmatrix}$$

$$= \det \begin{pmatrix} v & u \\ (1-v) & -u \end{pmatrix}$$

: מכיוון ש-X,Y בלתי תלויים, מתקיים

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

• נציב בנוסחה ונקבל:

$$f_{U,V}(u,v) = f_{X,Y}(x,y) \cdot \left| \det \begin{pmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{pmatrix} \right|$$

$$= f_{U,V}(h_1(u,v), h_2(u,v)) \cdot |-u|$$

$$= f_{U,V}(u \cdot v, u - u \cdot v) \cdot |-u|$$

- $U \in [0,1]$ וכי $U \in [0,\infty)$ וכי לב כי $U \in [0,\infty)$ וכי $U \in [0,\infty)$ וכי -
 - : התשובה הסופית יוצאת –

$$= \ldots = \frac{\lambda^{\alpha_1 + \alpha_2} \cdot u^{\alpha_1 + \alpha_2 - 1} \cdot e^{-\lambda u}}{\Gamma\left(\alpha_1 + \alpha_2\right)} \cdot \frac{\Gamma\left(\alpha_1 + \alpha_2\right) \cdot V^{\alpha_1 - 1} \cdot \left(1 - v\right)^{\alpha_2 - 1}}{\Gamma\left(\alpha_1\right) \cdot \Gamma\left(\alpha_2\right)}$$

פיתרון 3. ב.

- נשים לב שבסעיף א' קיבלנו ש(u,v) ניתנת לכתיבה כמכפלה של שתי פונקציות, אחת בv והתחומים שלהם לא תלויים $t_{U,V}(u,v)$ ניתנת לכתיבה $v \in [0,1]$. ו $v \in [0,\infty)$ אחד בשני כי
 - . בלתי משפט של U,V בלתי קודם נקבל מתרגול משפט לכן לפי

פיתרון 3. ג.

- . עד כדי כפל בקבוע, עד הצפיפות של האפיפות היא האפיפות היא הפונקציה שהפונקציה שהפונקציה היא הפיפות היא הפיפות של יU
 - $f_{U}\left(u
 ight)=rac{\lambda^{lpha_{1}+lpha_{2}}\cdot u^{lpha_{1}+lpha_{2}-1}\cdot e^{-\lambda\,u}}{\Gamma(lpha_{1}+lpha_{2})}$ ולכן קיבלנו ש

נושא רביעי - וקטור מקרי נורמלי:

- :Cov הסבר על מטריצת •
- Σ : איסמן ב-Cov שנסמן היא , $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ היא לדוגמה עבור הוקטור

$$\Sigma = \begin{pmatrix} Cov\left(X,X\right) & Cov\left(X,Y\right) & Cov\left(X,Z\right) \\ Cov\left(Y,X\right) & Cov\left(Y,Y\right) & Cov\left(Y,Z\right) \\ Cov\left(Z,X\right) & Cov\left(Z,Y\right) & Cov\left(Z,Z\right) \end{pmatrix}$$

. המטריצה הזו סימטרית כי Cov זו תכונה סימטרית \star

:הערה

- : וקטור מקרי הבאים התנאים אז וקטור מקרי וקטור באים אם י $\underline{X} \sim N\left(\mu, \Sigma\right)$ אם
 - .1 Σ אלכסונית
 - . בלתי תלויים X_1, X_2, \ldots, X_n .2
 - . בלתי מתואמים X_1, X_2, \ldots, X_n .3
 - . נשים לב שתנאי 3 לא אמור לגרור את תנאי 2 במקרה הרגיל.
 - . וקטור מקרי אוסי
טיר אוסי. $\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ וקטור מקרי גאוסי
 - במקרה הזה מתקיים:

$$\underline{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$Cov\left(X_1, X_2\right) = 0$$

$$Cov\left(X_2, X_3\right) = 0$$

$$Cov\left(X_{1},X_{3}\right)=0$$

: ולכן *

$$\Sigma = \begin{pmatrix} \sigma_{X_1}^2 & 0 & 0\\ 0 & \sigma_{X_2}^2 & 0\\ 0 & 0 & \sigma_{X_3}^2 \end{pmatrix}$$

שאלה 4:

- . משתנים בלתי מקריים נורמליים מסנדרטיים בלתי משתנים בלתי יהיו Z_1,Z_2
 - \cdot נסמן -1 <
 ho < 1 נסמן •

$$X = Z_1$$

$$Y = \rho Z_1 + Z_2 \sqrt{1 - \rho^2}$$

- $f_{X,Y}\left(x,y
 ight)$ כלומר ,X,Y של המשותפת הצפיפות הצפיפות פונקציית את מצאו את
 - .Y-ו וואת הקורלציה בין את ב.
 - ג. הראו שהמשתנה המקרי $X \mid Y$ מפולג נורמלי.

פיתרון 4. א.

: בעזרת דו-מימדית בעזרת בעזרת $f_{X,Y}\left(x,y
ight)$ את

$$g_1\left(z_2,z_2\right) = z_1 -$$

$$g_2(z_1, z_2) = \rho \cdot z_1 + z_2 \cdot \sqrt{1 - \rho^2} -$$

- נמצא את הטרנספורמציות ההפוכות:

$$h_1(x,y) = X$$

$$h_2(x,y) = \frac{1}{\sqrt{1-\rho^2}} \cdot Y - \frac{\rho}{\sqrt{1-\rho^2}} \cdot X$$

: נמצא את היעקוביאן

$$J_{X,Y} = \begin{pmatrix} \frac{\partial h_1}{\partial x} & \frac{\partial h_1}{\partial y} \\ \frac{\partial h_2}{\partial x} & \frac{\partial h_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{\rho}{\sqrt{1-\rho^2}} & \frac{1}{\sqrt{1-\rho^2}} \end{pmatrix} = \frac{1}{\sqrt{1-\rho^2}}$$

- כעת נקבל:

$$f_{X,Y}(x,y) = f_{Z_1,Z_2}(h_1(x,y),h_2(x,y)) \cdot |J_{X,Y}|$$

: מתקיים, מתקיים Z_1, Z_2 בלתי מלויים, *

$$f_{Z_1,Z_2}(z_1,z_2) = f_{Z_1}(z_1) \cdot f_{Z_2}(z_2)$$

$$= \frac{1}{\sqrt{2\pi}} e^{-(z_1)^2} \cdot \frac{1}{\sqrt{2\pi}} e^{-(z_2)^2}$$

: נציב ונקבל

$$f_{X,Y}(x,y) = \frac{1}{\sqrt{2\pi}} e^{-(h_1(x,y))^2} \cdot \frac{1}{\sqrt{2\pi}} e^{-(h_2(x,y))^2} \cdot \left| \frac{1}{\sqrt{1-\rho^2}} \right|$$

$$= \frac{1}{\sqrt{2\pi}} e^{-(X)^2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{1}{\sqrt{1-\rho^2}} \cdot Y - \frac{\rho}{\sqrt{1-\rho^2}} \cdot X\right)^2} \cdot \left| \frac{1}{\sqrt{1-\rho^2}} \right|$$

: התשובה הסופית יוצאת

$$= \dots = \frac{1}{2\pi \cdot \sqrt{1 - \rho^2}} \cdot e^{-\frac{(x + 2\rho xy + y^2)}{2\sqrt{1 - \rho^2}}}$$

 (Z_1,Z_2) -ם מסריצה מטריצה לשהי ב-((Z_1,Z_2) במכפלה של מטריצה לשהי הוקטור ((Z_1,Z_2) - מכיוון ש-

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \rho & \sqrt{1 - \rho^2} \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$

. הוא גם וקטור מקרי (לפי תכונה 4 בדפים של התרגול). (X,Y) הוא גם וקטור מקרי (אוסי לפי תכונה 4 בדפים של

פיתרון 4. ב.

• לפי הגדרה:

$$Corr\left(X,Y\right) = \frac{Cov\left(X,Y\right)}{\sqrt{Var\left(X\right)} \cdot \sqrt{Var\left(Y\right)}}$$

 $:Var\left(X
ight)$ את -

$$Var\left(X\right) =1$$

: נקבל, תלויים בלתי תלויים לחשב את ומכיוון ש $Var\left(Y\right)$ את בלתי -

$$Var(Y) = Var(\rho Z_1) + Var(\sqrt{1-\rho^2}Z_2) = \rho^2 + 1 - \rho^2 = 1$$

 $:Cov\left(X,Y\right)$ נחשב את -

$$Cov\left(X,Y
ight) =E\left[X\cdot Y
ight] -\overbrace{E\left[X
ight] \cdot E\left[Y
ight] }^{=0}$$

:Y-ו א נציב X נציב *

$$= E\left[Z_1 \cdot \left(\rho Z_1 + \sqrt{1 - \rho^2} Z_2\right)\right]$$

$$= Var(Z_1) = 1$$

$$= \rho \underbrace{E\left[Z_1\right]}_{} + \sqrt{1 - \rho^2} \cdot E\left[Z_1 Z_2\right]$$

:ומכיוון ש Z_1,Z_2 בלתי תלויים י

$$0 = Cov\left(Z_{1}, Z_{2}\right) = E\left[Z_{1}Z_{2}\right] - \overbrace{E\left[Z_{1}\right] \cdot E\left[Z_{2}\right]}^{=0}$$

$$\Rightarrow 0 = E[Z_1 Z_2]$$

ולכן קיבלנו:

$$Cov\left(X,Y
ight) =
ho \overbrace{E\left[Z_{1}
ight]}^{=Var\left(Z_{1}
ight) = 1} + \sqrt{1-
ho^{2}} \cdot E\left[Z_{1}Z_{2}
ight]$$

$$= \rho \cdot 1 + \sqrt{1 - \rho^2} \cdot 0$$

 $= \rho$

- כלומר *-*

$$Corr\left(X,Y\right) = \frac{Cov\left(X,Y\right)}{\sqrt{Var\left(X\right)} \cdot \sqrt{Var\left(Y\right)}} = \frac{\rho}{1 \cdot 1} = \rho$$

• לפי תכונה מספר 3 בדפים של התרגול

פיתרון 4. ג.

• נפתור לפי נוסחת הכפל (או ההגדרה), כלומר:

$$f_{X|Y}\left(x,y
ight) = \dfrac{\overbrace{f_{X,Y}\left(x,y
ight)}^{we \ found \ already}}{f_{Y}\left(y
ight)}$$

: משתנים של הוא בלתי תלויים ומתקיים – נשים לב ש-Y הוא הוא סכום של האוסיים –

$$Y = \begin{pmatrix} \rho & \sqrt{1 - \rho^2} \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$

- . מטריצה עם מאראי אקראי וקטור מכפלה על ידי מתקבל על ידי מכפלה \star
 - . לכן Y הוא נורמלי \star
 - \cdot מתפלג: Y מתפלג נמצא את הפרמטרים בהם
 - $E\left[Y
 ight]=0$ נקבל כי $E\left[Z_{1}
 ight]=E\left[Z_{2}
 ight]=0$ * מכיוון ש
 - 'א כפי שמצאנו בסעיף א $Var\left(Y
 ight) =1$ א ומאחר \star
 - $Y \sim N\left(0,1\right)$ כלומר –
 - $.f_{Y}\left(y
 ight)$ את נמצא \star