SF1901: SANNOLIKHETSTEORI OCH
STATISTIK
FÖRELÄSNING 7
NORMALFÖRDELNING.
LINJÄRKOMBINATION AV OBEROENDE
NORMALFÖRDELADE S.V.
CENTRALA GRÄNSVÄRDESSATSEN.

Tatjana Pavlenko

12 september 2018

Plan för dagens föreläsning

- Linjära kombinationer av s.v.: repetition (Kap. 5.5)
- ▶ Stora talens lag: repetition (Kap. 5.6)
- ► Standardiserad och allmän normalfördelning (Kap. 6.2-6.3)
- Linjärkombinationer av oberoende normalfördelade s.v. (Kap. 6.5)
- ► Centrala gränsvärdessatsen och normalfördelningsapproximation (Kap. 6.7)

STORA TALENS LAG (REP.)

Sats: Låt X_1, X_2, \ldots vara en följd av oberoende (likafördelade) s.v., alla med samma väntevärde $E(X_i) = \mu$ och std $D(X_i) = \sigma < \infty$. Låt

$$\bar{X}_n = \frac{1}{n}(X_1 + \dots X_n)$$

vara medelvärdet av de n första variablerna. Då gäller, för godtyckligt $\varepsilon>0$, att

$$P(|\bar{X}_n - \mu| > \varepsilon) \to 0$$
 då $n \to \infty$.

▶ Detta säger att s.v \bar{X}_n , bestående av medelvärdet av de n s.v. X_1, \ldots, X_n har en fördelning som koncentrerar sig runt $\mu = E(X_i)$.

STORA TALENS LAG (REP.)

FIGUR: Fördelningen för medelvärdet $\bar{X}_n = (X_1 + \dots X_n)/n$, där de enskilda observationerna är Po(1), för n = 1, 10, 100 och 1000. Den diskreta fördelningen koncentreras alltmer runt värdet 1, dvs väntevärdet.

STORA TALENS LAG (REP.)

- ► *Tolkning:* medelvärde är en bra uppskattning av väntevärde!
- Stora talens lag är en av grundstenarna inom empirisk vetenskap. Om man gör många oberoende observationer av någon s.v., t ex hållfastheten hos en metall, blodtrycket hos patienter behandlade med en ny medicin, eller livslängden hos personer i ett försäkringskollektiv, då kommer medelvärdena av dessa observationer att ligga nära det sanna väntevärdet.
- Om vi inte vet det sanna väntevärdet kan vi gissa, eller skatta väntevärdet med medelvärdet. Detta förhållande är en viktig ingrediens i statistik delen av kursen.

STORA TALENS LAG (FRÅN FLS. 6).

- ▶ Stora talens lag är ett av de viktigaste resultaten inom sannolikhetsteorin.
- Denna lag, först formulerad av den schweiziske matematikern Jacob Bernoulli (1654–1705), utsäger att aritmetiska medelvärdet av flera oberoende s.v. med samma väntevärde μ ligger nära μ, bara antalet är tillräckligt stort.

STORA TALENS LAG (FRÅN FLS. 6)

JACOBI BERNOULLI, Projett Baftl. & strindigue Societ. Reg. Scientian. Gall. & Proff. Social.

ARS CONJECTANDI

OPUS POSTHUMUM.

TRACTATUS DE SERIEBUS INFINITIS.

Et Eristola Gallice (cripta
DE LUDO PILÆ
RETICULARIS.

BASILEE,
Impendis THURNISIORUM, Featrum.

FIGUR: Jacob Bernoulli grundlade sannolikhetsläran med den postumt utgivna *Ars Conjectandi (Konsten att gissa* (1713)) där de stora talens lag presenteras för första gången.

Normalfördelning

- Normalfördelningen, den viktigaste av alla fördelningar, är även kallad Gauss-fördelningen och klockkurvan. Benämningen Gauss-fördelning hänsyftar på den tyske matematikern Carl Friedrich Gauss (1777-1855).
- ▶ Def: En kontinuerlig s.v. X sägs vara normalfördelad med parametrar μ och σ , $(\sigma > 0)$ om täthetsfunktionen ges av

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty.$$

- ▶ Beteckning: $X \in N(\mu, \sigma)$.
- Anm. Det finns en normalfördelning för varje par μ och $\sigma > 0$. Å andra sidan, givet μ och $\sigma > 0$ så är fördelningen helt preciserad och har täthet som ovan.

NORMALFÖRDELNING: TÄTHETSFUNKTION.

FIGUR: Täthetsfunktionen för en $N(\mu,\sigma)$ -fördelning för några olika värden på μ och σ .

- ▶ Effekten av att ändra μ : täthetens läge förskjuts.
- Effekten av att ändra σ : fördelning blir mer koncentrerad när σ är liten, respektive mer utspridd när σ är stor.

NORMALFÖRDELNING: FÖRDELNINGSFUNKTION.

FIGUR: Fördelningsfunktionen för en $N(\mu,\sigma)$ -fördelning för några olika värden på μ och σ .

Fördelningsfunktionen $F_X(x)$ ges av

$$F_X(x) = \int_{-\infty}^x \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

▶ Denna integral har inget slutet uttryck. För givna μ , σ och x kan den beräknas numeriskt.

STANDARDISERAD NORMALFÖRDELNING.

- ▶ Def: En normalfördelad s.v. Z med parametrar $\mu = 0$ och $\sigma = 1$ sägs vara standardiserad normalfördelad, $Z \in N(0,1)$.
- ▶ Täthetsfunktionen $f_Z(z)$ och fördelningsfunktionen $F_Z(z)$ för Z har egna beteckningar, $\phi(z)$ respektive $\Phi(z)$ och definieras av

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \quad -\infty < z < \infty,$$

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

Vi ska se senare att det räcker att kunna räkna ut dessa funktioner för att kunna beräkna $F_X(x)$ för en godtycklig normalfördelning.

STANDARDISERAD NORMALFÖRDELNING: EGENSKAPER.

- $\phi(-z) = \phi(z)$, $\Phi(-z) = 1 \Phi(z)$
- Areatolkning och numeriska exempel på tavlan.
- ▶ För $Z \in N(0,1)$ gäller att

$$P(a < Z \le b) = \Phi(b) - \Phi(a).$$

Eftersom fördelningen är kontinuerlig kan man byta \leq mot < eller omvänt utan att sannolikheten ändras.

- ▶ Kvantiler för N(0,1) förekommer så ofta att dessa gets en egen beteckning, λ_{α} .
- ▶ Def: α -kvantilen, λ_{α} , för en standardiserad normalfördelning definieras som lösningen till $P(Z>\lambda_{\alpha})=\alpha$. Men $P(Z>\lambda_{\alpha})=1-\Phi(\lambda_{\alpha})$ så λ_{α} löser tydligen

$$\Phi(\lambda_{\alpha}) = 1 - \alpha.$$

STANDARDISERAD NORMALFÖRDELNING: EGENSKAPER (FORTS.)

▶ $Om\ Z \in N(0,1)$ så gäller att

$$E(Z) = 0$$
, $D(Z) = 1$.

Bevis: Eftersom $\phi(\cdot)$ är symmetrisk kring 0 så får man

$$E(Z) = \int_{-\infty}^{\infty} z\phi(z)dz = \int_{-\infty}^{\infty} z \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = 0.$$

För att få D(Z) använder vi Stas 5.6: $V(Z) = E(Z^2) - (E(Z))^2$. Genom partiell integration fås

$$E(Z^2) = \int_{-\infty}^{\infty} z^2 \phi(z) dz = \int_{-\infty}^{\infty} z^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

$$= -z \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = 0 + 1 = 1.$$

ALLMÄN NORMALFÖRDELNING

- ▶ Sats: $X \in N(\mu, \sigma)$ om och endast om $Z = \frac{X \mu}{\sigma} \in N(0, 1)$.
- ▶ Tolkning av μ och σ . Enligt sats får vi

$$E(X) = E(\sigma Z + \mu) = \sigma E(Z) + \mu = \mu,$$

$$V(X) = V(\sigma Z + \mu) = \sigma^2 V(Z) = \sigma^2,$$

dvs är parametrarna μ och σ väntevärde respektive standardavvikelse för $N(\mu, \sigma)$ -fördelad s.v.

▶ Vidare gäller att

$$f_X(x) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right), \quad F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right),$$

$$P(a < X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right).$$

Kort ex på tavlan!

ALLMÄN NORMALFÖRDELNING (FORTS.)

- Användbarhet av resultat ovan.
- Exempel: Vid en industri produceras järnbalkar som väger 2000 kg. Vikten för en enskild balk kan beskrivas av en normalfördelning med $\mu=2000$ kg och $\sigma=2.3$ kg.
 - A) De balkarna som avviker med mer än 5 kg från avsedd vikt efterbehandlas för att få en vikt närmare 2000 kg. Bestäm andelen balkar som behöver efterbehandlas.
 (Svar: 0.030)
 - B) Bestäm sannolikheten att en balk väger mindre än 1997 kg. (Svar: 0.0968)
 - C) Bestäm sannolikheten att en balk väger mer är 2007 kg. (Svar: 0.0012)

ALLMÄN NORMALFÖRDELNING (FORTS.)

▶ I statistiska sammanhang vill man ofta ange symmetriska intervall så att $Z \in N(0,1)$ ligger inom intervallet med en förutbestämd sannolikhet. Exempel: vilket tal z > 0 som gör att

$$P(-z \le Z \le z) = 0.95$$
?

- ▶ Lösning till detta kan uttryckas med hjälp av kvantiler: z måste ges av $\lambda_{0.025}=1.96$ och -z blir $-\lambda_{0.025}=-1.96$. Bild med $\phi(z)$ på tavlan.
- ▶ Allmänna förmeln: för $Z \in N(0,1)$ gäller att

$$P(-\lambda_{\alpha/2} \leq Z \leq \lambda_{\alpha/2}) = 1 - \alpha.$$

ALLMÄN NORMALFÖRDELNING (FORTS.)

- För en godtycklig $X \in \mathcal{N}(\mu, \sigma)$ kan man uttrycka α -kvantilen x_{α} med hjälp av motsvarande kvantil λ_{α} för den standardiserade $Z \in \mathcal{N}(0,1)$: $P(Z > \lambda_{\alpha}) = \alpha$.
- Vi söker x_{α} som satisfierar $P(X > x_{\alpha}) = \alpha$.

$$P(X > x_{\alpha}) = P\left(\underbrace{\frac{X - \mu}{\sigma}}_{Z \in N(0,1)} > \underbrace{\frac{x_{\alpha} - \mu}{\sigma}}_{\lambda_{\alpha}}\right) = P(Z > \lambda_{\alpha}) = \alpha.$$

- ▶ Detta ger $x_{\alpha} = \mu + \sigma \lambda_{\alpha}$.
- Dessutom

$$P\left(-\lambda_{\alpha/2} \leq \frac{X-\mu}{\sigma} \leq \lambda_{\alpha/2}\right) = 1-\alpha,$$

eller

$$P(\mu - \sigma \lambda_{\alpha/2} \le X \le \mu + \sigma \lambda_{\alpha/2}) = 1 - \alpha.$$

LINJÄR TRANSFORMATION AV NORMALFÖRDELNING

- En viktig egenskap hos normalfördelningen är att den bevaras under linjära transformationer.
- ▶ Sats: Om $X \in N(\mu, \sigma)$, så gäller att

$$Y = aX + b \in N(a\mu + b, |a|\sigma).$$

▶ Sats: Om $X_1, X_2, ..., X_n$ är oberoende och respektive $N(\mu_1, \sigma_1), N(\mu_2, \sigma_2), ..., N(\mu_n, \sigma_n)$ och konstanterna $a_1, a_2, ..., a_n, b$ är givna, så gäller att

$$\textstyle\sum_{i=1}^n a_i X_i + b \in \textit{N}\left(\sum_{i=1}^n a_i \mu_i + b, \sqrt{\sum_{i=1}^n a_i^2 \sigma_i^2}\right).$$

Speciallt, om $X_1, X_2, ..., X_n$ är oberoende $N(\mu, \sigma)$ och $a_1 = a_2 = \cdots = a_n = 1/n$ samt b = 0, så gäller att

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in N(\mu, \sigma/\sqrt{n}).$$

CENTRALA GRÄNSVÄRDESSATSEN (CGS).

- Satsen är den viktigaste resultaten inom sannolikhetsteorin: En summa av oberoende lika fördelade s.v. med godtycklig fördelning är ungefär normalfördelad, bara antalet komponenter i summan är tillräckligt stort.
- ▶ Sats (CGS): Låt X_1, \ldots, X_n, \ldots vara en oändlig följd av oberoende, likafördelade s.v. med väntevärde μ och och standardavvikelse $0 < \sigma < \infty$. Sätt

$$Y_n = X_1 + \cdots + X_n$$
.

Då gäller för givna a < b att

$$P\left(a < \frac{Y_n - n\mu}{\sqrt{n}\sigma} \le b\right) \longrightarrow \Phi(b) - \Phi(a) \quad d\mathring{a} \ n \to \infty.$$

► CGS uttalar sig alltså om *fördelningen av Y_n då antalet n växer mot* oändligheten: Y_n är ungefär $N(n\mu, \sqrt{n\sigma})$ -fördelad. Beteckning:

$$Y_n \in AsN(n\mu, \sqrt{n}\sigma).$$

CENTRALA GRÄNSVÄRDESSATSEN (FORTS.)

▶ Observera att $E(Y_{nfls6_vt17.tex}) = n\mu$ och $D(Y_n) = \sqrt{n}\sigma$. För varje givet n är

$$\frac{Y_n - n\mu}{\sqrt{n}\sigma}$$

en standardiserad s.v. Den har väntevärde lika med noll och standardavvikelse lika med 1 som en standardiserad normalfördelad s.v.

► Enligt CGS: när *n* går mot oändligheten kommer hela fördelningen för den angivna standardiserade s.v. att gå mot en *standardiserad normalfördelning*, dvs

$$rac{Y_n-n\mu}{\sqrt{n}\sigma}\in \mathit{AsN}(0,1).$$

CENTRALA GRÄNSVÄRDESSATSEN (FORTS.)

▶ Följdsats: För en oändlig följd av oberoende likafördelade s.v. X_1, \ldots, X_n, \ldots med $E(X_i) = \mu$ och $D(X_i) = \sigma$ ($0 < \sigma < \infty$) gäller att

$$ar{X}_n = rac{1}{n} \sum_{i=1}^n X_i \in \mathit{AsN}\left(\mu, rac{\sigma}{\sqrt{n}}
ight) \quad \mathrm{då} \quad n o \infty,$$

dvs aritmetisk medelvärdet \bar{X}_n är approximativt normalfördelat för tillräckligt stort n.

Normalfördelningsapproximation. Enligt CGS: $\sum_{i=1}^n X_i \in AsN(n\mu, \sqrt{n}\sigma) \text{ och } \bar{X}_n \in AsN\left(\mu, \sigma/\sqrt{n}\right). \text{ Detta ger approximationerna}$

$$P\left(a < \sum_{i=1}^{n} X_i \leq b\right) \approx \Phi\left(\frac{b - n\mu}{\sqrt{n}\sigma}\right) - \Phi\left(\frac{a - n\mu}{\sqrt{n}\sigma}\right),$$

$$P(c < \bar{X}_n \le d) \approx \Phi\left(\frac{d-\mu}{\sigma/\sqrt{n}}\right) - \Phi\left(\frac{c-\mu}{\sigma/\sqrt{n}}\right).$$

CENTRALA GRÄNSVÄRDESSATSEN (FORTS.)

FIGUR: Fördelningen för $\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$ för n = 1, n = 10, n = 100 och n = 1000, där

$$\bar{X}_n = (X_1 + \cdots + X_n)/n$$

och X_1,\ldots,X_n,\ldots är oberoende Po(1)-variabler (så att $\mu=\sigma=1$). Då $n\to\infty$ liknar sannolikhetsfunktionen alltmer den standardiserade normalfördelningstäthet.

