

Parcours Data Scientist

Projet 7 : Classification de races de chiens

Sommaire

- Présentation et Objectifs
- Exploration/Préparation
- Modèles Classiques
- Réseaux de Neurones
- Kaggle
- Custom CNN
- API
- Pistes d'évolutions
- Conclusion

27/01/2018

Présentation et Objectifs

- Objectifs
 - Prédiction de la Race d'un chien sur une image
 - Méthode Classique
 - Réseaux de Neurones
 - Mise en place d'une API

- Présentation
 - Basé sur un dataset labélisé de photos de chiens
 - Classification d'images

Exploration/Préparation

- Dataset
 - 10 222 images (Kaggle: 10357 images de test)
 - 120 races
 - Balance correcte mais pas optimale
 - 66 -> 126 images / race
 - Dimensions
 - 120x102 -> 3264x2448
 - Portrait et Landscape
 - Ratio variable
 - <0,5 jusqu'à >2

Exploration/Préparation

- Préparation
 - Redimensionnement manuel
 - Si >2 ou <0,5

27/01/2018

MINE Nicolas

Exploration/Préparation

- Préparation
 - Data Augmentation
 - Flip Vertical
 - Supprimé (overfitting sur Pre-trained Network)

- Concaténation de 4 types de données
 - Détection de features
 - Attribut Couleur
 - Attribut Texture
 - Moments

27/01/2018

- Feature SIFT + Visual BoW
 - SIFT keypoints
 - Clustering
 - BoW

- SIFT
 - Extraire les points facilement « détectables »

- Clustering (pas de scaling)
 - Env. 1k features / images
 - Sélection: 100 Clusters
 - Optimal : 27 Clusters

- Attribut Couleur
 - Conversion RGB à HSV
 - Histogramme Hue/Saturation
 - 180 x 256 valeurs
 - Réduction PCA: 90% variance = 151 dimensions

27/01/2018

MINE Nicolas

- Attribut Texture
 - Analyse FFT
 - 1 valeur par pixel => 90k valeurs
 - Tentative 1 : réduction PCA
 - Variance 90 % = 4500 dimensions
 - Tentative 2 : Sélection patch au milieu + PCA
 - Variance 63% = 100 dimensions

- Attribut Texture
 - Histogramme FFT
 - 100 bins = 100 dimensions

Moments

- Récupération des moments par couleurs
- 3 * 24 features additionnelles
- Très variables (de 10^7 à 10^-7)
- Standard Scaling par features
- 10 Moments Ordre 1, 2, 3
- 7 Moments Centrés Ordre 1, 2, 3
- 7 Moments Centrés Normalisés Ordre 1, 2, 3

- Evaluation
 - Concaténation des matrices
 - $X = 10222 \times 423 (100 + 151 + 100 + 3*24)$
 - $Y = 10222 \times 120 (120 \text{ races})$
 - Dummy Classifieurs (Stratified)
 - Full Dataset:
 - 0,93 % (train)
 - 0,98% (test)
 - Réduction à 5 classes :
 - 20,8% (train)
 - 23,5%(test)

- Résultats
 - Multiples modèles testés
 - Tree, Ensemble, KNN, Modèle Linéaire (SGDC), Modèle Non linéaire (SVC)
 - Très gros overtiffing
 - Régulation
 - réduction du score test set
 - Similaire au Dummy Classifieur avec Reg.
 - Résultats
 - 2 à 3 % sur full dataset (env. 3 x mieux que naif)
 - 35 à 37% sur 5 classes (env. 1,7 x mieux que naif)

Modèle 2 :

- 1 classifieur par type de données
 - HS histogramme + PCA => KNN
 - Visual BoW => MultinomialNB
 - Histogrammes fréquences => KNN custom
 - Swain and Ballard, KL divergence ou chi2
 - Moments => Normalisation et KNN
- Somme des probabilités + normalisation
- 2,73 % sur test set Vs 2,61% précédemment

- 3 parties (Transfer Learning)
 - Extraction des features
 - Multiples modèles
 - Comparaison à classifieur unique
 - Test de Classifieurs

27/01/2018

MINE Nicolas

- Extraction des features
 - Pre-trained Models

- Extraction des features
 - Pre-trained Models

Model	Size	Params	Depth	Input	Output	
Xception	88Mo	22,9 M	126*	299x299	2048	
VGG16	528Mo	138,3 M	23	224x224	512	
ResNet50	99Mo	25,6 M	168*	224x224	2048	
InceptionV3	92Mo	23,8 M	159*	299x299	2048	
InceptionResNetV2	215Mo	55,8 M	572*	299x299	1536	
MobileNet	17Mo	4,2 M	88*	224x224	1024	

- Comparaison à classifieur unique
 - D512 D0,5 D512 D120+Softmax
 - Top 1 à 5

27/01/2018

Test de Classifieur

– SGDC : Reg. => Chute du %

– SVC : Top % - Mauvais Loss

- NN: D200+swish - D0,5 - D120+softmax

Modèle		Extra Info	Train %	Test %	Loss Train %	Loss Test %
Linéaire	SGCD	Sans Reg.	94,2	90,3	0,479	1,326
Non- Linéaire	SVC	Probability = True	91,6	91,5	0,841	0,88
Ensemble	ExtraTrees RandomForest	Plusieurs Depth	Env. 80%	Env. T – 5%	N/A	N/A
Non- Linéaire	Neural Network	Plusieurs Topologies	91,71	91,20	0.2816	0.2821

Kaggle

10357 images sans labels
204 / 847

199	▼ 18	psnjiki	9	0.25871	15	3mo
200	▼ 18	Kirill Talalaev (TFS)	Ē	0.26392	11	2mo
201	▼ 18	EE258_GC_IC	99	0.26461	25	1mo
202	▼ 18	BillJohnson	w.	0.26545	38	1mo
203	▼ 18	СТ	M	0.26811	3	2mo
204	177	Nicolas MINE	2	0.26867	7	3m
205	▼ 19	Roman Kornev		0.27036	4	2mo
206	▼ 19	mtcmr2	05	0.27128	14	2mo
207	▼ 19	PlodHL	9	0.27295	1	1mo
208	▼ 19	irving	•	0.27297	4	1mo
209	▼ 19	James Liu		0.27383	7	1mo
210	- 10	oarth AdNIE Nicolea	4	0.27201	17	1mo

Custom CNN

- 3 modèles testés
 - 1 léger (atteint 6-7%)
 - 4x (Conv2D + relu MaxPooling)
 - 1600 features
 - Classifieur simple (D200 + relu + D120 + softmax)
 - 1 medium (1,3% stable Vanishing gradient?)
 - 4x (2 Conv2D + relu Max Pooling)
 - 1536 features
 - Classifieur simple
 - Ré-entrainer MobileNet (2% stable ?)
 - Classifieur simple

Custom CNN

27/01/2018

MINE Nicolas

API

- Modèle CNN avec Transfer Learning
- 1 à N images
 - Pre-process 1 par 1
 - Merge (n, 299, 299, 3)
 - Extraction features (n, 1536)
 - Prediction (n, 120)
 - Affichage par image du top 5 avec %
- python classifieur.py img1 img2 ... imgN

27/01/2018

API

../test/0a4ef19459cd2100977b052de5f46231.jpg

Rank 1 - silky terrier (97.950%)

Rank 2 - australian_terrier (1.388%)

Rank 3 - yorkshire_terrier (0.529%)

Rank 4 - greater_swiss_mountain_dog (0.015%) Rank 5 - norfolk_terrier (0.011%)

../test/2f09a0cc0902a43ba8a410c259fb4309.jpg

Rank 1 - chihuahua (98.425%)

Rank 2 - papillon (0.715%)

Rank 3 - toy_terrier (0.543%)

Rank 4 - pomeranian (0.028%)

Rank 5 - mexican_hairless (0.025%)

- Modèle Classique
 - Fréquences sur image non réduites
 - Autre descripteurs au lieu de SIFT (SURF / ORB)
 - Contours?
 - Différentes focales

- CNN
 - Nettoyage images: Regression (YOLO)
 - Risque mauvais dimensions
 - CNN Custom: Mauvaises performances
 - Trop peu de données
 - Vanishing Gradient
 - Beaucoup d'images nécessaires (imagenet)
 - Ré-entrainement du pre-trained
 - Modifier layers de l'extracteur
 - Très lent : 1j = Env. 50 Epochs -> 64% Acc

- Analyse de l'overfitting
 - Class Activation Mapping
 - Possible sur VGG et MobileNet
 - Pas de classifieur Customisé
 - Remonte le réseau pour l'analyse

Grad-CAM for "Cat"

Grad-CAM for "Dog"

Conclusion

- Dataset complexe (classification pointue)
 - Uniquement des chiens
 - Beaucoup de races vs taille du dataset
- Modèle classique très peu performant
- CNN très performants (Transfer Learning)
- Performances réduites « en partant de zéro »
- Pas encore de moyen de contrôle sur les CNN
 - Hormis CAM sur quelques modèles précis

27/01/2018

27/01/2018