

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, மார்ச்

Term Examination, March

தரம் :- 12 (2018)

இரசாயனவியல்

மூன்று மணித்தியாலங்கள்

பகுதி - I

எல்லா வீனாக்களுக்கும் வீடை தருக.

 $N_A = 6.022 x \ 10^{23} \ mol^{-1}$, $R = 8.314 J mol^{-1} K^{-1}$

- n=3 இற்கு l=2 கொண்டிருக்கக்கூடிய இலத்திரன்களின் எண்ணிக்கை எத்தனை? 1)
 - (1) 5
- (3) 12
- (4) 10
- (5) 14
- X,Y ஆகிய மூலகங்கள் சேர்ந்து உருவாக்கும் மூலக்கூறு XY_3 ஆகும். கீழ்வரும் கட்டமைப்பை 2) அடிப்படையாகக் கொண்டு பின்வருவனவற்றில் தவறான கூற்று எது?

- (1) X இன் மின்னெதிர்த்தன்மை Y இலும் உயர்வு.
- (2) இம்மூலக்கூறின் விளையுள் இருமுனைப்புத் திறன் பூச்சியமல்ல.
- (3) இலத்திரன் சோடிக் கேத்திரகணிதம் , வடிவம் முறையே நான்முகி, முக்கோணக் கூம்பகம் ஆகும்.
- (4) X,Y என்பன அல்லுலோக மூலகங்களாகும்.
- (5) மூலகம் X கூட்டம் VIல் அடங்கும்.
- 3) $C^aH_2 = C^b = C^cH C^dH_3$ என்ற மூலகத்தில் காபன் அணுவின் மின்னெதிர்த்தன்மை ஒழுங்கு எது?

- (1) c > d > b > a 2) b > c > d > a 3) b > c > a > d 4) c > a > b > d 5) a > d > b > c
- 4) தரப்பட்ட சேதன மூலக்கூறில் உள்ள C அணுவின் ஒட்சியேற்ற எண்ணாக அமையாதது எது?

- (1) -1
- (2) 0
- (3) +1
- (4) -2
- (5) +2
- நீர்மாதிரி ஒன்றில் ${
 m Fe}^{\ 2+}$ இன் அமைப்பு $14{
 m ppm}$ ஆகும். இம்மாதிரியில் ${
 m Fe}^{\ 2+}$ இன்செறிவு 5) mmoldm⁻³ இல் எவ்வளவு?
 - (1) 2.5
- (2) 0.25
- (3) 0.025
- (4) 0.50
- (5) 1.00

6)	$Al_{(s)}$, $S_{(s)}$, $SO_{2(g)}$ ஆகியவற்றின் தகன வெப்பவுள்ளுறைகள் முறையே a,b,c $kjmol^{-1}$ ஆகும். $Al_2(SO_4)_3$ இன் தோன்றல் வெப்பவுள்ளுறை மாற்றம் d $kJmol^{-1}$ $Al_2O_{3(s)} + 3SO_{3(s)} b$ $\longrightarrow Al_2$ $(SO_4)_{3(s)}$ எனும் தாக்கத்தின் தாக்க வெப்பவுள்ளுறை மாற்றமானது. $1. \ d-2a-3b-3c$ $2a+3b+3c-d$ $3. \ a-2b+c+d$ $4. \ d-a-b-c$ $5. \ பொருத்தமான விடையளிக்கவில்லை.$
7)	பின்வரும் கூற்றுக்களில் தவறானது எது?
	(1) அதியுயர் முதலாம் அயனாக்கற் சக்தியைக் கொண்ட அணு He ஆகும்.
	(2) ஆவர்த்தனங்களில் 4, 6 என்பன மூன்று பௌதீக நிலைகளிலும் மூலகங்களைக்
	கொண்டுள்ளன.
	(3) CO _{2(s)} முனைவில் மூலக்கூற்று சாலகமாகும்.
	(4) Ar திரவத்தில் முனைவில் பங்கீட்டு வலுப்பிணைப்பு உண்டு.
	(5) $ m H_2O_2$ ஒட்சியேற்றியாகவும் கிருமி நீக்கியாகவும் தொழிற்படும்.
8)	${ m HMnO_4}$ ஆனது ${ m H_2SO_4}$ கொண்ட ஊடகத்தில் ${ m KHC_2O_4}$. ${ m H_2C_2O_4}$ உடன் தாக்கமுற்று ${ m Mn}^{2+}$, ${ m K}^+$, ${ m CO_2}$, ${ m H_2O}$ என்பவற்றைக் விளைவாகக் கொடுக்கிறது. இத்தாக்கத்தைக் குறிக்கும் ஈடுசெய்த சமன்பாட்டில் ${ m KMnO_4}$, ${ m KHC_2O_4}$. ${ m H_2C_2O_4}$ இன் குணங்கள் முறையே (1) 4,5 (2) 8: 5 (3) 5,4 (4) 4,10 (5) 1,5
9)	அளவியிலிருந்து வெளிப்படும் ஒரு துளி நீரில் உள்ள ஒட்சிசன் அணுக்களின் எண்ணிக்கை எத்தனை?
	1) $\frac{1}{18^x} 6.022 \times 10^{23}$ 2) $\frac{1}{18^x} 6.022 \times 10^{22}$ 3) $\frac{5}{18^x} 6.022 \times 10^{21}$
	4) $\frac{5}{18}$ x 6.022x10 ²³ 5) $\frac{1}{18}$ x 6.022x10 ²¹
10)	
10)	பின்வரும் தாக்கங்களில் ஒட்சியேற்றல் - தாழ்த்தல் (Redox) தாக்கம் அல்லாதது எது?
	1) $3\text{CnO} + 2\text{NH}_3 \rightarrow 3\text{Cu} + \text{N}_2 + 3\text{H}_2\text{O}$ 2) $\text{Na}_2\text{S}_2\text{O}_8 + 2\text{NaI} \rightarrow \text{I}_2 + 2\text{Na}_2\text{SO}_4$
	3) $Mg + ZnSO_4 \rightarrow MgSO_4 + Zn$
	4) $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$
	5) $K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$
11)	$CH_3OH_{(2)} \rightleftharpoons CH_3OH_{(g)} \Delta H = +35.3kJmol^{-1}$
11)	$\Delta H = \pm 35.3 \mathrm{kJmol}^{-1}$ எனின் மெதனோல் ஆவியாகும் போது
	எந்திரப்பி மாற்றம் எவ்வளவு?
	1) - 104.4 JK ⁻¹ mo ⁻¹ 2) + 104.4 JK ⁻¹ mo ⁻¹ 3) + 208.8 JK ⁻¹ mo ⁻¹
	4) +52.2 JK ⁻¹ mo ⁻¹ 5)208.8 JK ⁻¹ mo ⁻¹
12)	0.025mol உலோக சல்பேற்று மாதிரி ஒன்றின் திணிவு 4.60g இவ் சல்பேற்று மாதிரியுள்ள உலோக அயனை இனம்காண்க. (1) Ca ²⁺ (2) Be ²⁺ (3) Sr ²⁺ (4) Ba ²⁺ (5) Mg ²⁺

- 13) பின்வரும் கூற்றுக்களில் தவறானது எது?
 - 1. தனிமையாக்கப்பட்ட தொகுதியில் சடப்பொருள், சக்தி, வேலை என்பன பரிமாற்றப்படாது.
 - 2. உயர் வெப்பநிலை, தாழ் அமுக்கத்தில் வாயுக்கள் இலட்சிய நடத்தையை அண்மிக்கும்.
 - 3. அயன் சேர்வைகள் திண்ம நிலையில் மின்னைக் கடத்துவதில்லை.
 - 4. வெப்பக்கொள்ளளவு ஒரு செறி இயல்பு ஆகும்.
 - 5. Ca_(s) இன் நியம வெப்பவுள்ளுறை பூச்சியமாகும்.
- 14) நான்கு P தொகுப்பு கூட்ட மூலகங்களின் ஜதரைட்டுக்களின் கொதிநிலைகள் மாற்றம் அடையும் வரைவு கீழே தரப்பட்டுள்ளது 14, 15, 16, 17 ஆம் கூட்டங்களிற்கு பொருத்தமான ஒழுங்கு முறை எது?

- 2) Z, X, Y, W
- 3) X, Y, W, Y
- 4) Z,Y,X,W
- 5) W,Z,X,Y

- $5.20 \, {\rm g\, Cu-Zn}$ கலப்பு உலோக மாதிரி ஒன்று ${\rm HCl}$ உடன் முற்றாக தாக்கமுறவிடப்பட்டது. $27^{\circ}{\rm C}$ இலும் $1 \, {\rm x} \, 10^{5} {\rm Nm^{2}}$ இலும் உருவான ஜதரசன் வாயுவின் கனவளவு $0.50 \, {\rm dm^{3}}$ எனில் கலப்புலோகத்திலுள்ள ${\rm Zn}$ இன் திணிவு சதவீதம்.எவ்வளவு?
 - (Cu , HCl உடன் தாக்கமடையவில்லை , Zn=65)
 - (1) 33.3%
- (2) 25%
- (3) 50%
- (4) 75%
- (5) 66.7%

💠 16 – 20 வரையான வினாக்களுக்கான அறிவுறுத்தல்

1	2	3	4	5
(a)யும் (b)யும் சரியானவை	(b) யும் (c) யும் சரியானவை	(C) யும் (d) யும் சரியானவை	(d) யும் (a) யும் சரியானவை	வேறு தெரிவுகள்
				சரியானவை

- 16) பின்வரும் கூற்றுக்களில் இயல்புகளின் அதிகரிக்கும் ஒழுங்குகளில் உண்மையானது, உண்மையானவை.
 - (a) C O பிணைப்பு நீளம் $CO < CO_2 < CO_3^{2-}$
 - (b) N இன் மின்னெதிர்த்தன்மை $NH_3 < NO_3 < NO_2$
 - (c) பிணைப்புக் கோணம் $S_1Cl_4 < ICl_4^- < NCl_3$
 - (d) உருகுநிலை KCl < NaCl < LiCl
- 17) NO_2^+ அயன்கள் பற்றிய உண்மையான கூற்று எது / எவை?
 - (a) இதில் இரண்டு N = 0 பிணைப்பு உண்டு.
 - $(b) NO_{2}^{+}$, $H_{2}S$ ஆகியன ஓரே வடிவமுடையன.
 - $(c)\ N_2O_5$ ஆனது திண்மநிலையில் NO_2^+ , NO_3^- அயன்களைக் கொண்டது.
 - (d) N இல் தனிச்சோடி இலத்திரன்கள் காணப்படாது.
- 18) மூன்று சோடியாக்கப்படாத இலத்திரன்களைக் கொண்டுள்ள அயன் / அயன்கள்.
 - (a) Cr^{3+}
- (b) Co^{2+}
- (c) Fe^{3+}
- (d) Ni^{2+}

 CH_3CH_2Cl இல் காணப்படும் துணையிடையீர்ப்பு விசைகள் எது / எவை?

(a) ஜதரசன் பிணைப்பு.

(b) லண்டன் விசை.

(c) இருமுனைவு - இருமுனைவுக்கவர்ச்சி விசை

(d) பங்கீட்டு வலுப்பிணைப்பு

20) வெப்பம் வெளிவிடுதலுடன் நிகழும் தாக்கமாக அமைவது / அமைவன.

(a) $CaC_2O_{4(s)} \rightarrow CaCO_3 + CO_{(S)}$

(b) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$

(c) $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$

(d) $Ba(OH)_2 + H_2SO_{4(m)} \rightarrow BaSO_{4(s)} + 2H_2O_{(l)}$

💠 21 ----- 25 வரையான வினாக்களுக்கான அறிவுறுத்தல்

முதலாம் கூற்று	இரண்டாம் கூற்று
(1) சரி	சரி தகுந்த விளக்கம்
(2) சரி	சரி தகுந்த விளக்கமல்ல
(3) சரி	பிழை
(4) பிழை	म्ती
(5) பிழை	பிழை

முதலாவது கூற்று

21) $Na_{(s)}$, N_2 வாயுடன் சூடாக்க $Na_3N_{(s)}$ உருவாகும்.

22) I_{2(s)} KI_(aq) இல் நன்கு கரையும்.

23) Xe இன் கொதிநிலை CH₄ இலும்

உயர்வு

 $\Delta G < 0$ ஆன தாக்கங்கள் சுயமாக நிகழக்கூடியன.

25) BeO வன்காரம் வன்அமிலத்தில் கரையும்.

இரண்டாவது கூற்று

N≡N பிணைப்புச் சக்தி உயர்வானது.

I-₃ அயன் உறுதியானது.

Xe இன் மூலர்திணிவு CH₄ இலும்உயர்வானது.

 Δ H , Δ S азітым розані Оруманій О தாக்கங்களில் எப்போதும் $\Delta G < 0$ ஆகும்.

BeO ஈரியல்புடையது.

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் Field Work Centre

தவணைப் பரீட்சை, மார்ச் - 2017

Term Examination, March - 2017

தரம் :-	12 ((2018)
---------	------	--------

இரசாயனவியல்

		பகுதி - II சுட்டெண் :
		A. அமைப்புக் கட்டுரை வினாக்கள்
		எல்லா வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக.
01)	(a)	ஆவர்த்தன அட்டவணையில் உள்ள சில மூலகங்களின் பட்டியல் உமக்கு வழங்கப்பட்டுள்ளது.
		L _i Be B C N O F Na Mg Al S _i P S Cl
		இப்பட்டியலிருந்து, (i) உயர் முதலாம் அயனாக்கற் சக்தியுடைய மூலகத்தை இனம்காண்க.
		(iii) உயர் வன்மையுடைய ஓரினப்பங்கீட்டு அணுச்சாலகத்தை தோற்றுவிக்கும் மூலகத்தை இனம்காண்க.
		(iv) உயர் பருமனுடைய அன்னயனை உருவாக்கும் மூலகத்தை இனஙமகாண்க.
		(v) P தொகுப்பு உலோக மூலகத்தை இனம்காண்க.
		(vi) உயர் உருகுநிலையுடைய மூலகத்தை இனம்காண்க.
	(b)	ஜசோசயனிக்கமில மூலக் கூற்றை (HNCO) அடிப்படையாகக் கொண்டு (1) தொடக்கம் (vi) வரையான பகுதிகளிற்கு விடையளிக்குக. இதன் அடிப்படைக்கட்டமைப்பு
		H - N - C - O
		(i) இம்மூலக்கூறின் மிகவும் ஏற்றுக்கொள்ளக்கூடிய லூயிஸ் கட்டமைப்பை வரைக.

0	நாணங்கள் <u>தந்</u> த	து பெடாசக்குக்.			
٠					
•					
•					
(iii) d	மேயுள்ள அட்ட	.ഖത്തെധിல் தரப்ப	பட்டுள்ள பின்வரு <u>.</u>	வனற்றைக் மு	தறிப்பிடுக.
, ,	(N, C அணுக்க				
		7/6	N		C
	இலத்திரன்	சோடி	N அணு		C அணு
	கத்திர க				
	II வடிவம்			1	
	16		<u> </u>		
II	I கலப்பாக்க	ف			
		னைவாக்கமுடையத		ommer	
(iv) (<u>ജനൻശേഷനി</u> ന്റെ				
	மேலே பகுகி ம	(-)	J		•
(v) (மேலே பகுதி (உருவாக்கத்துடன்	ர் தொடர்புடைய ج	அணு / கலப்பு ஒ	(14) 21(3) 33 33 311	
(v) (ு. உருவாக்கத்துடன்	ர் தொடர்புடைய ₋ ந்			
(v) (ு. உருவாக்கத்துடன் I H உம் N உய்				
(v)	். உருவாக்கத்துடன் I H உம் N உம் I N உம் C உம்				
(v)	். டருவாக்கத்துடன் I H உம் N உம் I N உம் C உம் II C உம் O உம்	b			
(v)	். டருவாக்கத்துடன் I H உம் N உம் I N உம் O உம் பி C உம் O உம்	ந் ந் ந் ரணங்களின் அண்	ணளவான பெறுப	மானங்களை	 குறித்துக்காட்டி
(v)	். டருவாக்கத்துடன் I H உம் N உம் I N உம் O உம் பி C உம் O உம்	b	ணளவான பெறுப	மானங்களை	 குறித்துக்காட்டி
(v)	். டருவாக்கத்துடன் I H உம் N உம் I N உம் O உம் பி C உம் O உம்	ந் ந் ந் ரணங்களின் அண்	ணளவான பெறுப	மானங்களை	 குறித்துக்காட்டி

02)	வா தா கா ஆ வீழ் பன்	லகம் A ஆனது குளிர்நீருடன் பரிகரிக்கும் போது மெதுவாக தாக்கமடைந்து நிறமற்றமணமற்ற பு B ஐ வெளிவிடுவதுடன் ஒரு கரைசல் C ஐயும் தந்தது. மூலகம் A வாயு B யுடன் க்கமடைந்து திண்ம விளைவு D ஐத் தந்தது. D யானது குளிர் நீருடன் தாக்கமடைந்து ரக்கரைசல் C ஐத் தந்தது. இக்கரைசலினூடாக CO ₂ வாயுவை செலுத்திய போது ரம்பத்தில் வெண்ணிற வீழ்படிவு E உருவாகியது. மிகை CO ₂ வாயுவைச் சேர்த்த போது நபடிவு E கரைந்து கரைசல் F உருவாகியது. வீழ்படிவு E செறிந்த HCl உடன் ஈரமாக்கப்பட்டு எசன் சுவாலைக்கு செங்கட்டி சிவப்பைக் கொடுத்தது. E ஆனது 1000°C க்கு சூடாக்கப்பட்ட எது வெண்சேர்வை G ஒன்று உருவானது. G ஐ காபனுடன் 2000°C இல் சூடாக்க ஒரு
	(i)	A,B,C,D,E,F,G,H ஜ இனம்காண்க.
		(A)(C)
		(D) (E) (F)
		(G)(H)
	(ii)	மேலே விபரிக்கப்பட்ட தாக்கங்களிற்கு சமன்படு <mark>த்</mark> திய சமன்பாடுகளைத்தருக.
	/** *\	
	(iii)	$\mathrm{NaCl},\mathrm{KCl}_{(\mathrm{s})}$ ஐ வேறுபிரித்து அறிவதற்கான சோதனை ஒன்றை தந்து விபரிக்குக.
	(b) (i)	பின்வரும் வெப்பப்பிரிகைத் தாக்கங்களின் சமப்படுத்திய சமன்பாடுகளை எழுதுக.
		[) NaNO ₃ →
	Ι	I) $Mg (NO_3)_2$ \longrightarrow
	II	
	I	√) LiOH →
	7	V) NaHCO₃ →

	பின்வரும் தாக்கங்களின் சமன்படுத்திய சமன்பாடுகளை எழுதுக. $igodots \mathbf{Sr}_{(\mathrm{s})} + \mathbf{O}_{2(\mathrm{s})}$
I	I) $Mg_{(s)} + H_2O_{(g)}$
	$II) L_{i(s)} + N_{2(g)} \longrightarrow$
	(100 புள்ளிகள்)
3) (a) (i)	தால்ரனின் பகுதி அமுக்கவிதியை கூறுக.
(ii)	$300 \mathrm{K}$ இல் $3.0 \mathrm{m}^3$ கனவளவுடைய கொள்கலனில் He வாயு காண்பிக்கும் அமுக்கம் $4.0 \mathrm{x} 10^5$ Nm^2 , $300 \mathrm{K}$ இல் $7.0 \mathrm{m}^3$ கொள்களனில் Ne வாயு காண்பிக்கும் அமுக்கம் $8.0 \mathrm{x} 10^5 \mathrm{Nm}^2$. இவ்விரு கொள்கலன்களும் இணைக்கப்பட்டு வாயுக்கள் ஒன்றோடு ஒன்று முற்றாக கலக்க விடப்பட்டன. வாயுக்கள் இலட்சிய நடத்தையுடையது எனக்கொண்டு,
	பின்வருவனவற்றை கணிக்க.
Ι	இணைக்கபட்டுள்ள கொள்கலனில் மொத்த அமுக்கம்.
II	He வாயுவின் மூல்பின்னம்
Ш	இணைக்கப்பட்ட கொள்கலனின் வெப்பநிலை 400Kற்கு உயர்த்தப்பட்டபோது He வாயுவின்
111	பகுதி அமுக்கம் இரு வெப்பநிலையிலும் மொத்தக் கனவளவு மாறாது பேணப்பட்டது.

- (b) (i) அமுக்கத்துடன் அமுக்கப்படுகாரணியின் மாறலை ஓர் இலட்சிய வாயுவிற்கும், மெய்வாயு ஒன்றிற்கும் கீழே வரைக. நீர்வரைந்த இவ் இரு வாயுவிற்குமான வரைபின் வேறுபாட்டிற்கான காரணங்களைத் தருக.
 - (ii) இருவேறு வெப்பநிலைகள் T_1K , T_2K ($T_1 < T_2$) இல் வாயு ஒன்றிக்கு மக்ஸ்வெல்-போட்ஸ்மான் வளையியை வரைந்து வளையியின் வேறுபாட்டிற்கான காரணத்தை தருக.

04) (a) பின்வரும் தாக்கத்தை கருதுக.

$$CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$$

 $25^{\circ}C$ இல் Δ $H^{\emptyset}_{\ \ f}$, S^{\emptyset} என்பவற்றிற்காக பின்வரும் தரவுகள் தரப்பட்டுள்ளன.

இரசாயனக் கூறுகள்	$\Delta H^{\emptyset}_{\ f} + kJmn^{-1}$	S ^Ø Jk ⁻¹ mol ⁻¹
$CaCO_{3(s)}$ $CaO_{(s)}$ $CO_{2(g)}$	-1206 - 635 - 394	93 40 210

(i)	25°C இல்	மேற்படி	தாக்கத்திற்கான	ΔH^{\emptyset}	^ற ஜக்கணிக்க.
-					

(ii)	$25^{\circ}\mathrm{C}$ இல் மேற்படி தாக்கத்திற்கான $\Delta\mathrm{S}^{\emptyset}$ ஐக்கணிக்க.
(iii)	$\Delta G,~\Delta H,\Delta S$ இற்கு இடையிலான தொடர்பை எழுதுக.
(iv)	500°C இல் ΔG ஜ கணித்து தாக்கம் சுயமாக நடைபெறுமா/இல்லையா? எனக்கூறுக
(b) (i)	எந்திரப்பி என்பதால் விளங்கிக் கொள்வது யாது?
]) பின்வரும் மாற்றங்களில் எந்நிரப்பி <mark>மாற்றம்</mark> குறையுமா/ அதிகரிக்குமா எனக் குறிப்பிடுக. $I \ H_2O_{(s)} \longrightarrow H_2O_{(l)} \qquad \qquad$
(c) பின்	ள்வரும் பதங்களுக்கு பொருத்தமான வெப்பஇரசாயன சமன்பாடுகளை எழுதுக.
(i)	கல்சியத்தின் நியம இரண்டாம் அயனாக்கம் வெப்பவுள்ளுறை
(ii) மக்னீசியம் புரோமைட்டின் நியமத் தோன்றல் வெப்பவுள்ளுறை.
(ii	i) ஒட்சிசனின் நியம முதலாம் இலத்திரனாட்ட வெப்பவுள்ளுறை.
(iv	z) புரோமினின் நியம பிணைப்பு கூட்டற்பிரிகை வெப்பவுள்ளுறை.
	. (100 புள்ளிகள்)

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, மார்ச் - 2017

Term Examination, March - 2017

தரம் :- 12 (2018)

இரசாயனவியல்

பகுதி - II B. கட்டுரை வினாக்கள்

- ❖ எவையேனும் இரண்டு வீனாக்களுக்கு மட்டும் வீடை எழுதுக.
- (01) (a) (i) இரு வழிவிகாரத்தாக்கம் என்றால் யாது விளங்குவீர்?
 - (ii) அமிலக் கரைசலில் மங்கனேற்று (VI) அயன் பின்வருமாறு இருவிழிவிகாரத்திற்கு உட்படுகிறன்றது.

 $3 MnO_4^{\ 2-}_{(aq)} + \ 4 H^+_{(aq)}$ \longrightarrow $2 MnO_4^{\ -}_{(aq)} + MnO_{2(s)} + 2 H_2 O_{(l)}$ இங்கு நிகழும் ஒட்சியேற்ற, தாழ்த்தல் அரைஅயன் சமன்பாடுகளை எழுதுக

(iii) இரு வழிவிகாரத்தாக்கத்திற்கு இரண்டு உதாரணங்களை சமன்படுத்திய சமன்பாடுகளாக எழுதுக

(b)

- (i) பின்வருவனவற்றால் $1 \mod H_2S$ ஐ S ஆக ஒட்சியேற்றுவதற்கு தேவையான மூல்களைக் கணிக்க பொருத்தமான முழுச்சமன்பாடுகளை சமன்படுத்தி எழுதுக.
 - (I) K_2CrO_4
- (II) FeCl₃
- (III) KMnO₄
- (ii) 0.940g திணிவுடைய மத்திரை ஒன்று ஜதான சல்பூரிக்கமிலத்தில் கரைக்கபட்டு பெறப்பட்ட விளையுள் கரைசல் 0.016moldm $^{-3}$ K_2 Cr $_2$ O $_7$ கரைசலால் நியமிக்கப்பட்ட போது முடிவுப்புள்ளியை அடைவதற்கு தேவைப்பட்ட கனவளவு திருத்தமாக 32.50cm 3 ஆகும். மாத்திரையிலுள்ள Fe^{2+} இன் திணிவு சதவீதத்தைக் கணிக்க. (Fe=56)
- (c) (i) 27.80g சோடியம் காபனேற்று பளிங்கு நீரில் கரைக்கப்பட்டு $1.0 {\rm dm}^3$ கரைசல் தயாரிக்கப் பட்டது. இதன் $25.0 {\rm cm}^3$ கரைசலை நடுநிலையாக்க $0.10 {\rm moldm}^{-3}$ செறிவுடைய HCl இன் $48.80 {\rm cm}^3$ தேவைப்பட்டது. ${\rm Na}_2 {\rm CO}_3$ xH $_2 {\rm O}$ சூத்திரத்தில் x ஐக் கணிக்க. (${\rm Na} = 23$, C=12, H=1, O=16)
 - (iii) காபனையும் ஐதரசனையும் மட்டும் மூலகங்களாகக் கொண்ட ஒரு சேர்வையின் 0.24mol இன் திணிவு 18.72g ஆகும். இந்த அளவுள்ள சேர்வை முற்றான தகனத்தில் 63.36g காபனீரொட்சைட்டையும் 12.96g நீரையும் விளைவாக்கியது. இச்சேர்வையின் மூலக்கூற்று சூத்திரத்தை துணிக.

(150 புள்ளிகள்)

(02) (a)

- (i) வாயுக்களின் மூலக்கூற்று இயக்கவியல் கொள்கை சமன்பாட்டைக் குறிப்பிட்டு அதில் உள்ள பதங்களை எழுதுக.
- (ii) வாயுவொன்றிற்கு $\sqrt{C^2} = 3RT$ என நிறுவுக.
- (iii) 27°C He வாயுவிற்கு இடை வர்க்க மூல கதியை கணிக.(He=4)
- (iv) வாயுக்களின் பரவல் வேக வீதத்தின் மீது செல்வாக்கு செலுத்தும் காரணிகள் 4 தருக.

(b)

- (i) எசுவின் விதியைக் கூறுக.
- (ii) இத்தாக்கத்திற்கான நியம வெப்பவுள்ளுறை மாற்றத்தை கணிக்க.

$$CO_{(g)} + 2H_{2(g)} \longrightarrow CH_3OH_{(2)}$$

இத்தரவுகளைப் பயன்படுத்துக.

$$CO_{(g)} + \frac{1}{2}O_{2(g)}$$
 \longrightarrow $CO_{2(g)}$ $\Delta H^{\emptyset} = -283 \text{KJmol}^{-1}$
 $H_{2(g)} + \frac{1}{2}O_{2(g)}$ \longrightarrow $H_{2}O_{(l)}$ $\Delta H^{\emptyset} = -286 \text{KJmol}^{-1}$

$$CH_3OH_{(2)} + 3/2 O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(l)} \Delta H^{\emptyset} = -715KJmol^{-1}$$

(iii) நியமநிலையிலுள்ள மூலகங்களிலிருந்து திண்ம KCl இன் நியமஆக்க வெப்பவுள்ளுறையை துணிவதற்கான போன் - ஏபர்சக்கரத்தை தருக.

பின்வரும் தரவுகளைப் பயன்படுத்தி $\mathrm{KCl}_{(s)}$ இன் நியம தோன்றல் வெப்பவுள்ளுறையைக் கணிக்க.

$$K_{(s)} \longrightarrow K_{(g)}$$
 $\Delta H^{\emptyset} = 90 \text{KJ} \text{mol}^{-1}$

$$K_{(g)} \longrightarrow K^{+}_{(g)} + e$$
 $\Delta H^{\emptyset} = 418 \text{KJmol}^{-1}$

$$\frac{1}{2} \operatorname{Cl}_{2(g)} \longrightarrow \operatorname{Cl}_{(g)} \qquad \Delta H^{\emptyset} = 122 \text{KJmol}^{-1}$$

$$Cl_{(g)} + e \longrightarrow Cl_{(g)}$$
 $\Delta H^{\emptyset} = -348 \text{KJmol}^{-1}$

$$Cl_{g)}^{-} + K_{(g)}^{+} \longrightarrow KCl_{(s)} \Delta H^{\emptyset} = -718 \text{KJmol}^{-1}$$

(150 புள்ளிகள்)

- (03) (a) மூலகம் M இன் முதல்மூன்று அயனாக்கற் வெப்பவுள்ளுறைகள் முறையே 738, 1449, 7728 kJmol⁻¹ ஆகும். இதன் ஏலைட்டு பன்சனுக்கு நிறமற்ற சுவாலையைக் கொடுத்தது. M இன் நைத்திரேற்றுக்கரைசல் சோடியம் ஐதரொட்சைட்டு கரைசலுடன் வெண்ணிற வீழ்படிவை கொடுத்தது. இது மிகை சோடியம் ஐதரொட்சைட்டில் கரையவில்லை. M ஆனது செறி HNO₃ உடன் NO₂ வைக்கொடுத்தது...
 - (i) மூலகம் M ஐ இனம்காண்க
 - (ii) M இன் இலத்திரன் நிலையமைப்பை எழுதுக.
 - (iii) M ஜ வளியில் எரிக்கும் போது நிகழும் தாக்கங்களின் சமன்படுத்திய சமன்பாடுகளை எழுதுக.
 - (iv) பகுதி a(iii)ல் பெற்ற விளைவுகளிற்கு நீர் சேர்க்கும் போது உருவாகும் வாயுவை இனம்காண்க
 - (v) M ற்கு செறி HNO_3 இற்கும் இடையிலான தாக்கத்தின் சமன்செய்த சமன்பாட்டை தருக.
 - (vi) M இன் பயன்பாடுகள் இரண்டு கூறுக.
 - (b) (i) உலோகங்களில் கூட்டம் 1,2 மூலகங்கள் தாழ் உருகுநிலை உடையவை. அதிலும் கூட்டம் 1 கூட்டம் 2 ஐ விட உருகுநிலை தாழ்வானது ஏன் என வினக்குக.
 - (ii) கூட்டம் 2 உலோகங்களில் அயன்சேர்வையை அதிகம் உருவாக்காத மூலகம் எது?
 - (iii) ஒவ்வொரு சோடிச் சேர்வைகளிலும் கரைதிறன் உயர்வான சேர்வையைத் தருக.
 - 1. மக்னீசியம் ஜதரொட்சைட்டு உம் பேரியம் ஜதரொட்சைட்டும்
 - 2. கல்சியம் சல்பேற்றும் துரந்தியம் சல்பேற்றும் (Sr SO₄)
 - (iv) "ருபீடியம் நைத்திரேற்று மக்னீசியம் நைத்திரேற்றிலும் உயர்வெப்ப உறுதியானது.இதற்கு இரண்டு காரணங்கள் தருக.
 - (c) (i) மூன்றாம் ஆவர்த்தன மூலகங்களின் ஜதரொட்சைட்டுகளின் சூத்திரங்களைத் தருக. அவற்றின் அமில மூல ஈரியல்பு நடத்தைகளை குறிப்பிடுக.
 - (ii) இவற்றில் ஈரியல்புடைய ஜதரொட்சைட்டு HCl, NaOH உடன் காட்டும் தாக்கங்களிற்கான சமன்படுத்திய சமன்பாடுகளை எழுதுக.

(150 புள்ளிகள்)

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- Biology
- C.Maths
- Physics
- Chemistry
 - + more

