第五讲 大数定律与中心极限定理

综述

1. 收敛

2. 三个定律,两大定理 P147

一、依概率收敛

设 $\{X_n\}$ 为一r.v序列,X 为一r,v(或 a 为常数),

若 $\forall \varepsilon > 0$,恒有 $\lim_{n \to \infty} P\{ \mid X_n - X \mid < \varepsilon \} = 1$ 或 $\lim_{n \to \infty} P\{ \mid X_n - a \mid < \varepsilon \} = 1$,则称 $\{X_n\}$ 依概率收敛于 X 或 a,记: $X_n \overset{P}{\to} X$ 或 $X_n \overset{P}{\to} a$.

【例】设 $\{X_n\}, X_n \sim f_n(x) = \frac{n}{\pi(1+n^2x^2)}, -\infty < x < +\infty$,证明

 $X_n \stackrel{P}{\to} 0$, $\mathbb{P}\lim_{n\to\infty} P\{\mid X_n - 0 \mid < \varepsilon\} = 1$.

【分析】

$$p[-\xi < \chi_n < \xi] = \int_{-\xi}^{\xi} \frac{n}{\pi (1 + n^2 \chi^2)} d\chi$$

$$= \frac{1}{\pi} \cdot \operatorname{arctan} n \chi | \xi = \frac{2}{\pi} \operatorname{arctan} n \xi$$

二、大数定律

1. 切比雪夫大数定律

设 $\{X_n\}$ $(n=1,2,\cdots)$ 是相互独立的随机变量序列,若<u>方差 DX_k 存在</u>且一致有上 界,则

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \frac{1}{n} \sum_{i=1}^{n} EX_i = E\left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)$$
的上界,与水关

一致有界皆有共同的上界,与k无关.

2. 伯努利大数定律

设 u_n 是n重伯努利试验中事件A发生的次数,在每次试验中A发生的概率为p,则 $\frac{u_n}{n} \stackrel{P}{\to} p$.

3. 辛钦大数定律

设 $\{X_n\}$ 是独立同分布的随机变量序列,若 $EX_n = \mu$ 存在,则 $\frac{1}{n}\sum_{i=1}^{n}X_i \stackrel{P}{\rightarrow} \mu$.

【注】在满足一定条件的基础上,所有大数定律都在讲一个结论 $\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right).$

$$\bigcap_{n \neq i=1}^{\infty} X_i \to E\left(\bigcap_{n \neq i=1}^{\infty} X_i\right)$$
 【例 1】[取自《张宇概率论与数理统计 9 讲》P149,例 7. 2]

设 $X_1, X_2, \cdots, X_n, \cdots$ 是相互独立的随机变量序列, X_n 服从参数为n的指数分布(n

≥1),则下列随机变量序列中不服从切比雪夫大数定律的是($(A) X_1, \frac{1}{2} X_2, \cdots, \frac{1}{n} X_n, \cdots$

$$(C)X_1, 2X_2, \cdots, nX_n, \cdots$$

$$(C)X_1, 2X_2, \cdots, nX_n, \cdots$$

(D) $X_1, 2^2 X_2, \dots, n^2 X_n, \dots$

设总体 X 服从参数为 2 的指数分布, X_1 , X_2 ,..., X_n 为来自总体 X 的简单随机样

本,则当 $n \to \infty$ 时, $Y_n = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ 依概率收敛于_ 【分析】

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\xrightarrow{P}E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right)=EX_{i}^{2}$$

$$=DX_{i}^{2}+\left(EX_{i}\right)^{2}=\frac{1}{2^{2}}+\left(\frac{1}{2}\right)^{2}$$

$$=\frac{1}{2}$$

$$=\sqrt{n}$$

$$=\sqrt$$

不论 $X_i \stackrel{iid}{\sim} F(\mu, \sigma^2), \mu = EX_i, \sigma^2 = DX_i$

 $\leq X_i \sim N(\frac{n}{\lambda}, \frac{n}{\lambda^2})$

$$\frac{\sum_{i=1}^{n} \chi_{i} - \frac{1}{\lambda}}{\sqrt{n}} \sim \gamma(0,1) , \text{ ap}$$

$$\frac{\sum_{i=1}^{n} \chi_{i} - \frac{1}{\lambda}}{\sqrt{n}} < \chi = \sqrt{(\chi)}$$

$$\frac{\sum_{i=1}^{n} \chi_{i} - \frac{1}{\lambda}}{\sqrt{n}} < \chi = \sqrt{(\chi)}$$