Student Name:

SIS ID (starts with letter "e"):

1. For vector field $\mathbf{v} = x^2 z \,\hat{\mathbf{x}} + y^2 x \,\hat{\mathbf{y}} + (y + 2z) \,\hat{\mathbf{z}}$, calculate the divergence and curl of \mathbf{v} .

$$\nabla \cdot \vec{V} = \frac{\partial}{\partial x} (x^{2} + y^{2}) + \frac{\partial}{\partial y} (y^{2} + y^{2} + y^{2}) \\
= 2x + y^{2} + y^{2} + y^{2} \\
\nabla \cdot \vec{V} = \frac{\partial}{\partial x} (x^{2} + y^{2}) - \frac{\partial}{\partial x} (y^{2} + y^{2}) + y^{2} (y^{2} + y^{2} + y^{2}) \\
+ \frac{\partial}{\partial x} (y^{2} + y^{2}) - \frac{\partial}{\partial y} (x^{2} + y^{2}) = x^{2} + x^{2} y^{2} + y^{2} y^{2}$$

2. Consider the scalar field T = xyz, calculate the volume integral of T within the tetrahedron bounded by the planes x = 0, y = 0, z = 0, and z = 2 - x - y.

- For $\int_a^b dt$, $\alpha = 0$, b = 2 by examining the boundaries of the tetrahedron
- · For Spa, dy, need to consider bounds of y that are 7-dependent

Consider the triangle in the 2-y plane, \longrightarrow Within it, $y \in [0, 2-2]$, so p(7) = 0, f(7) = 2-2

For Scy, 7) dx Consider Lounds of x that are y - b 7-dependent Consider the transfer oriented along C(1,1,1) within i, $x \in [0, 2-2-y]$, so rcy, 7) = 0, Scy, 7) = 2-2-y