

List of equations in fluid mechanics

This article summarizes equations in the theory of fluid mechanics.

Definitions

Here $\hat{\mathbf{t}}$ is a <u>unit vector</u> in the direction of the flow/current/flux.

Flux **F** through a <u>surface</u>, d**S** is the <u>differential</u> <u>vector area</u> element, **n** is the <u>unit normal</u> to the surface. **Left:** No flux passes in the surface, the maximum amount flows normal to the surface. **Right:** The reduction in flux passing through a surface can be visualized by reduction in **F** or d**S** equivalently (resolved into <u>components</u>, θ is angle to normal **n**). **F**•d**S** is the component of flux passing through the surface, multiplied by the area of the surface (see <u>dot product</u>). For this reason flux represents physically a flow *per unit area*.

Quantity (common name/s)	(Common) symbol/s	Defining equation	SI units	Dimension
Flow velocity vector field	u	$\mathbf{u}=\mathbf{u}\left(\mathbf{r},t ight)$	m s ⁻¹	[L][T] ⁻¹
Velocity pseudovector field	ω	$\boldsymbol{\omega} = abla imes \mathbf{v}$	s ⁻¹	[T] ⁻¹
Volume velocity, volume flux	$arphi_V$ (no standard symbol)	$\phi_V = \int_S \mathbf{u} \cdot \mathrm{d}\mathbf{A}$	$m^3 s^{-1}$	[L] ³ [T] ⁻¹
Mass current per unit volume	s (no standard symbol)	$s=\mathrm{d} ho/\mathrm{d}t$	kg m ⁻³ s ⁻¹	[M] [L] ⁻³ [T] ⁻¹
Mass current, mass flow rate	I _m	$I_{ m m}={ m d}m/{ m d}t$	kg s ⁻¹	[M][T] ⁻¹
Mass current density	j _m	$I_{ extbf{m}} = \iint \mathbf{j}_{ extbf{m}} \cdot ext{dS}$	kg m ⁻² s ⁻¹	[M][L] ⁻² [T] ⁻¹
Momentum current	I _p	$I_{ m p}={ m d}\left {f p} ight /{ m d}t$	kg m s ⁻²	[M][L][T] ⁻²
Momentum current density	j p	$I_{ m p} = \iint {f j}_{ m p} \cdot { m d}{f S}$	kg m s ⁻²	[M][L][T] ⁻²

Equations

Physical situation	Nomenclature	Equations
Fluid statics, pressure gradient	$\mathbf{r} = \text{Position}$ $\rho = \rho(\mathbf{r}) = \text{Fluid density at gravitational}$ equipotential containing \mathbf{r} $\mathbf{g} = \mathbf{g}(\mathbf{r}) = \text{Gravitational field strength at point } \mathbf{r}$ $\nabla P = \text{Pressure gradient}$	$ abla P = ho \mathbf{g}$
Buoyancy equations	$ ho_{\rm f}$ = Mass density of the fluid $V_{\rm imm}$ = Immersed volume of body in fluid ${\bf F}_{\rm b}$ = Buoyant force ${\bf F}_{\rm g}$ = Gravitational force ${\bf W}_{\rm app}$ = Apparent weight of immersed body ${\bf W}$ = Actual weight of immersed body	$rac{ ext{Buoyant force}}{ extbf{F}_{ ext{b}} = - ho_f V_{ ext{imm}} extbf{g} = - extbf{F}_{ ext{g}}}$ $rac{ ext{Apparent weight}}{ extbf{W}_{ ext{app}} = extbf{W} - extbf{F}_{ ext{b}}}$
Bernoulli's equation	p_{constant} is the total pressure at a point on a streamline	$p + ho u^2/2 + ho gy = p_{ m constant}$
Euler equations	ρ = fluid mass density u is the flow velocity vector E = total volume energy density U = internal energy per unit mass of fluid ρ = pressure \otimes denotes the tensor product	$rac{\partial ho}{\partial t} + abla \cdot (ho \mathbf{u}) = 0$

		$egin{aligned} rac{\partial ho \mathbf{u}}{\partial t} + abla \cdot (\mathbf{u} \otimes (ho \mathbf{u})) + abla p = 0 \ rac{\partial E}{\partial t} + abla \cdot (\mathbf{u} \left(E + p ight)) = 0 \ E = ho \left(U + rac{1}{2} \mathbf{u}^2 ight) \end{aligned}$
Convective acceleration		$\mathbf{a} = (\mathbf{u} \cdot abla) \mathbf{u}$
Navier-Stokes equations	 T_D = Deviatoric stress tensor f = volume density of the body forces acting on the fluid ∇ here is the del operator. 	$ ho \left(rac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot abla \mathbf{u} ight) = - abla p + abla \cdot \mathbf{T}_{\mathrm{D}} + \mathbf{f}$

See also

- Defining equation (physical chemistry)
- List of electromagnetism equations
- List of equations in classical mechanics
- List of equations in gravitation
- List of equations in nuclear and particle physics
- List of equations in quantum mechanics
- List of photonics equations
- List of relativistic equations
- Table of thermodynamic equations

Sources

- P.M. Whelan, M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). *The Cambridge Handbook of Physics Formulas* (https://archive.org/details/cambridgehandboo0000woan). Cambridge University Press. ISBN 978-0-521-57507-2.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C.B. Parker (1994). *McGraw Hill Encyclopaedia of Physics* (https://archive.org/details/mcgrawhillencycl1993park) (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
- P.A. Tipler, G. Mosca (2008). *Physics for Scientists and Engineers: With Modern Physics* (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
- L.N. Hand, J.D. Finch (2008). *Analytical Mechanics*. Cambridge University Press. <u>ISBN</u> <u>978-</u>0-521-57572-0.
- T.B. Arkill, C.J. Millar (1974). *Mechanics, Vibrations and Waves*. John Murray. <u>ISBN</u> <u>0-7195-</u> 2882-8.

■ H.J. Pain (1983). *The Physics of Vibrations and Waves* (3rd ed.). John Wiley & Sons. ISBN 0-471-90182-2.

Further reading

- L.H. Greenberg (1978). *Physics with Modern Applications* (https://archive.org/details/physics withmoder0000gree). Holt-Saunders International W.B. Saunders and Co. <u>ISBN</u> 0-7216-4247-0.
- J.B. Marion, W.F. Hornyak (1984). *Principles of Physics*. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). *Concepts of Modern Physics* (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H.D. Young, R.A. Freedman (2008). *University Physics With Modern Physics* (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.

Retrieved from "https://en.wikipedia.org/w/index.php? title=List_of_equations_in_fluid_mechanics&oldid=1189740927"