Evaluation des classifieurs

Méthodologie de validation

- Data = train data + test
 - Train data
 - Test data
 - = données pour évaluer le classifieur

Méthodologie de validation

Validation simple

- o On divise les données
- On mesure la performance sur les données test
- Problème (← raisonnement inductif)

Validation croisée

- o On divise n fois les données et on mesure les performances
- Moyenne des performances
- Techniques
 - × K-fold

Validation croisée

- Évaluer les performances sur des données non vues
 - o Séparer les données en train/test set
 - Validation croisée
 - \times k-fold (ici k = 5)
 - × Valeur habituelle: 10
 - × leave one out (loo)
 - Perf finale = moyenne des 5 perf
 - × Option
 - stratification

Evaluation des classifieurs

- Pourquoi ?
- Comment ?
- Matrice de confusion
 - O Pour un problème à 2 classes

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

• Performance = proportion d'exemples bien classés

Métriques

- o taux de bonnes prédictions (Accuracy)
 - x Résultat partiel!
 - × Exemple de classifieur
 - o prénom = Lucie si et seulement si Leucémie

	Leucémie	Non Leucémie	Total
Lucie	70	4930	5000
Non Lucie	3 930	981 070	995 000
Total	4 000	996 000	1 000 000

	Leucémie	Non Leucémie	Total
Lucie	70	4930	5000
Non Lucie	3 930	981 070	995 000
Total	4 000	996 000	1 000 000

Accurracy

 \circ (70 + 981070)/100 000 = 9.82!

	Leucémie	Non Leucémie	Total
Lucie	70	4930	5000
Non Lucie	3 930	981 070	995 000
Total	4 000	996 000	1 000 000

Rappel (recall)

- Mesure à quel point les prédictions de chaque classe sont exactes (pures)
 - \times 70/4000 = 0.01 pour la classe Leucémie
 - × 981 070/996 000 = 0.99 pour la classe Non Leucémie

	Leucémie	Non Leucémie	Total
Lucie	70	4930	5000
Non Lucie	3 930	981 070	995 000
Total	4 000	996 000	1 000 000

Précision (precision)

- o Mesure la proportion des exemples bien identifiés
 - \times 70/5000 = 0.01 pour la classe Leucémie
 - × 981 070/995 000 = 0.99 pour la classe Non Leucémie

- Combiner rappel et precision en 1 valeur
 - o Score f1: moyenne harmonique
 - \circ f1Score = p*r/(p+r)
- Prendre en compte le coût des erreurs
 - Métrique d'erreur vs métrique d'utilité
 - Ex: filtre anti spam

Méthodes ensemblistes

Principe

Produire un ensemble de n classifieurs

Pour prédire la classe de newx :

- o Récupérer les n prédictions
- o la classe attribuée à newx est établie par un vote à la majorité des classifieurs.

Perspectives

- Courbe ROC
- Courbe d'apprentissage
- Sur-apprentissage (over fitting)
- Classifieurs usuels
 - Principe
 - o forces et faiblesses
 - Paramètres et Grid Search