

DC Guidelines and Economic Assessment for DCS

14th Mar 2024

District Cooling Guidelines

Key Highlights – District Cooling Guidelines (launched at CEM-14/MI-8 in Goa)

The guidelines act as an information handbook on DCS for a range of stakeholders

Define District Cooling Systems (DCS) and its multiple benefits

Provide guidance on different stages of DC project development

Present roles and responsibilities of key stakeholders in DCS in India

Recommend state-level actions to promote DCS

Provide case studies of operational DCS projects in India

*The guideline is not intended to be a DC Code, however, it can be a precursor to the DC Code as and when developed

District Cooling Systems (DCS) and its Multiple Benefits

One Single Cooling Network, Distributing Chilled Water to a Cluster of Buildings as a Self-Sustaining Service

"

Reduction in Installed Cooling Capacity: Up to 50% reduction

Reduction in Peak Energy Demand (up to 40% reduction) and Avoidance of New Power Infrastructure

Energy Savings: Due to high-efficiency equipment and professional O&M

Cost Avoidance: Chillers, Cooling Towers, etc. are not required at the building level; ~20% lifetime cost reduction

Monetisation of Increased Leasable Area: Freed up rooftop and basement spaces

Better Refrigerant Management: Leakages could be completely eliminated and promotes transition to natural refrigerants

Reduction in Urban Heat Island Effect: Elimination of hot pockets within the liveable spaces

Complements Resource Circularity: Integration with other utilities, anchor loads for STP, waste to energy, distributed renewable energy, etc.

Key Components of DCS

- 1. District Cooling Plant
 - Chillers, Refrigerants, Thermal Energy Storage, Heat Rejection Systems, Other Plant Auxiliaries
- 2. Distribution Network
 - Underground and Above-ground Systems.
- 3. Energy Transfer Stations
 - Direct and Indirect Connection types
- 4. Instrumentation, Monitoring, and Control System
 - Management layer, System layer, Automation layer, and Instrument layer
- 5. Measurement and Billing System

Key design considerations while referring to nationally/globally accepted technical codes and standards

Key Stakeholders in DCS In India

Collaborative approach necessary for successful implementation

"

Enabling Actions Required from the Government

Designating DC service as a utility: Applicable taxes and incentives for DCS be treated on par with other public utilities such as PNG, electricity, and water.

Guidance on DC tariffs to ensure fairness and transparency: considering interests of all three key players, i.e., end-customers, real estate developers, and DC service providers.

Competitive electricity and water tariffs for DCS: Commensurate with prevailing tariffs for similar category of consumers.

Regulatory Mechanism can propel the adoption of DCS In India

Project Evaluation Criteria and District Cooling Project Cycle

Provides guidance on site selection criteria and evaluation methodology

Different stages of District Cooling Project Cycle

Source: DBEIS Heat Networks Delivery Unit

Economics of DCS and **Bidding Choices**

District Cooling Tariff Structure:

Consumption charge, Demand/fixed charge, Connection charge, etc.

Contracting between Customers and DC Service Provider

Business Models for DCS:

The selected models can be tailored to meet the project objectives and align with stakeholders needs

Bidding Objectives

Case Studies of Bidding Contracts:

Solar Grid Power and Transmission Projects

Bidding for DC Projects

State Level Actions for Promotion of DCS

Role of Municipalities / Town Planning Department

Integrate DCS in the city master plans; designate areas for district cooling

Case Studies of Operational DCS in India

Gift City, Gandhinagar

My Home Abhra, Hyderabad

both design and operational energy efficiency data are provided

Details of GIFT City Case Study

	DC System Details		
Location	Gandhinagar, Gujarat		
Building Types	Mixed-use development: offices, residential towers, hotels, retail, institutional, etc.		
Business Model	Full public ownership		
Operational Since	The first phase GIFT DC system has been operational since March 2015.		
Total Master Plan Land Area	886 acres		
Total Built-Up Area	Planned: (>62 Mn sqft; Current: (>3 Mr sqft)		
Number of Buildings Connected to DC System	Planned: (130); Current/under progress: (20+)		
Underground utility tunnel	8+ km		
Required vs installed cooling capacity	40% reduction from vapor 240,000 TR to 145,000 TR		
Thermal Energy Storage System	10,000 TR-h		
Required vs installed power demand	~50% from 240 MW to 130 MW		

Normative References

Load Calculations
Sustainable Building Design and Air-conditioning Systems
HVAC Systems for District Cooling
Chillers
Air Handling Units and Coils
Energy Recovery Ventilation
Dedicated Outdoor Air Systems (DOAS)
Plate Heat Exchangers
Water Pumps
Cooling Towers
Motor
Fans
Pipes and Fittings
Thermal Energy Storage
Refrigerants
Thermal Energy Meters
Commissioning
System Energy & Efficiency
Energy Services & Management
Risk Management
DC Guides and Other References

Comprehensive compilation of normative references for all technical design and operational aspects related to DCS projects

Knowledge Products by UNEP for More Details on DCS

Rapid Assessment and Prefeasibility Studies in India

District Energy in Cities Initiative: National District Cooling Potential Study for India

District Energy Projects: MRV Framework Guidance MRV framework guidance

District Energy in Cities: Unlocking the Potential of Energy Efficiency and Renewable Energy

District Cooling Systems eTraining - India

Key Takeaways of DC Guidelines

Help address the information gap especially dealing with relevant government departments

Introductory resource to know about DCS benefits and the key design and operational considerations

Anchor future discussions on framing supportive policies and regulations for greater adoption of DCS in India

Economic Assessment of DCS

Benefit-cost analysis of DCS compared to traditional cooling systems

Introduction

Economic assessment to evaluate the life cycle costs of DCS vis-à-vis comparable traditional "standalone - chilled water" cooling systems

For a mixed-use development - hotel, retail, and office areas - totaling 34 lakh square feet, coming up in a phased manner

NPV analysis of the life-cycle costs for owning and operating a cooling system was carried out for both scenarios- for both high side and low side

Parameters like cost of capital, interest on loans, depreciation, GST, and income tax were not considered in the initial assessment for both scenarios

All the inputs and assumptions have been validated through consultations with subject matter experts-facility management firms, OEMs, industry associations, dealers and distributors, DC service providers

Methodology

Steps to calculate the NPV of life-cycle costs

Cooling Demand

Installed Cooling Capacity

Energy and Water Consumption

CAPEX and OPEX

Net Present Value (NPV) of Life Cycle Costs

Sizing Assumptions

There is a ~40% reduction in the installed cooling capacity in the DCS scenario

	Reference Scenario	DCS Scenario
Cooling Requirement (TR)	9,714	9,714 (realised as 6,800)
Installed Cooling Capacity (TR)	11,600	7,200

Energy and Water Consumption

Improvement in operational energy efficiency: DCS 0.9 kW per TR; Traditional system 1.1 kW per TR

EFLH: 1500

	Reference Scenario	DCS Scenario	Saving or Reduction
Power Demand (MW)	12.29	7.11	5.18
Annual Electricity Consumption (MWh/year)	16,029	13,398	2,631
Cumulative Electricity Consumption in 30-years (MWh)	4,79,400	4,06,215	73,185

Reduction in power demand: 42%, saving ~2.5 Crore INR per year in demand charges alone

Reduction in annual electricity consumption: 16%, saving ~4 Crore INR per year

Reduction in potable water consumption: 5 Litre/TR-h from 7 Litre/TR-h, saving 0.8 Crore INR per year

CAPEX Assumptions

Input Parameter	Unit	Reference Scenario	DCS Scenario
High Side CAPEX	INR/TR	50,000	62,500 to 87,500
Low Side CAPEX	INR/TR	50,000	50,000
Additional Power Infrastructure	INR/kW	12,500	12,500
DG Infrastructure (attributable to HVAC)	INR/kW	15,000	15,000
CAPEX for DC Plant land (only applicable for DCS)	INR/sq.ft.	NA	3,200

OPEX Assumptions

Input Parameter	Unit	Reference Scenario	DCS Scenario
High Side Operations	INR/TR/year	1,000	700 to 900
Low Side Operations	INR/TR/year	800	800
High-Side Maintenance (done by OEMs)	INR/TR/year	2,100	1,050
Low-Side Maintenance (done by OEMs)	INR/TR/year		1,050
High-Side Asset Management	INR/TR/year	250	50
Low-Side Asset Management	INR/TR/year		125
High-Side Insurance Rate (including Distribution Network in DCS)	% of CAPEX	0.25%	0.25%
Replacement CAPEX Required over a 30-year contract duration	% of CAPEX	85%	85%
Refrigerant Top-up Cost due to Operational Leakages (excluding accidental leakages)	INR/TR/year	9.8	-
Fixed Electricity Demand Charges	INR/kW/month	300	300
Variable Electricity Tariff (with taxes & cesses)	INR/kWh	11.50	11.50
Treated Sewage Effluent (TSE) Water Cost	INR/Litre	0.20	0.20
Potable Water Cost	INR/Litre	0.24	0.24

Other Assumptions

Input Parameter	Unit	Reference Scenario	DCS Scenario
DCS contract duration (only applicable for DCS)	years	NA	30
Distribution Network Losses	°C per km of network length	-	0.1
Annual Cost Escalations (CAPEX, O&M, Electricity & Water Tariffs, Monetisation of Freed-up Space)	%	5%	5%
Discount Rate (for NPV analysis)	%	12%	12%
Space Required for Chilled Water Plant Installation	sq.ft./TR	2.00	2.00
Opportunity Value of Freed-up Space	INR/sq.ft./month	NA	25.00

• In DCS scenario, the rooftop and/or basement space at the individual building level, otherwise required for chilled water plant, can be released and repurposed

Overall Cooling Costs for DC Consumers

Apart from Cooling Tariff, DC consumers also have to pay the costs of installing, maintaining, and running the air-side equipment at the building level

Results of Benefit-Cost Analysis (from DC Consumer's Viewpoint)

 The NPV of DCS over the 30-years life of the project is 21% better compared to standalone chilled water systems

Incorporating GST and service fees levied by the DCS company will affect the cost advantages of DCS

