What is claimed is:

1. A solid of formula $BiOI \cdot (BiOX)_j \cdot (BiOL)_k$ wherein

X is Cl, Br, F or a mixture $(Br)_m(Cl)_n(F)_o \times \frac{1}{m+n+o}$,

L is CN, NC, NCO, NCS, O-Z, S-Z or a mixture of different CN, NC, NCO, NCS, O-Z and/or S-Z,

Z is COR₁, COOR₁, CONR₁R₂, CN, CSR₁, COSR₁, CSOR₁, SO₂R₁, SO₃R₁, $\stackrel{R_3}{\underset{R_1}{\longleftarrow}}$,

or C_6 - C_{24} aryl or C_2 - C_{24} heteroaryl each unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₃R₄, NR₃R₄R₅⁺, NR₅COR₃, NR₅CONR₃R₄, R₃, OR₃, SR₃, CHO, CR₅OR₃OR₄, COR₃, SO₂R₃, SO₃-, SO₃R₃, SO₂NR₃R₄, COO-, COOR₃,

10 CONR₃R₄, PO₃, PO(OR₃)(OR₄), SiR₅R₆R₇, OSiR₅R₆R₇ and/or by SiOR₅OR₆OR₇;

j is a number from 0 to 4, preferably from 0.5 to 1.2, and k is a number from 0.005 to 3, preferably from 0.05 to 2, especially from 0.1 to 1; m, n and o are each a number from 0 to 10^6 , but m, n and o are not all simultaneously 0; preferably, m is 10^6 and n and o are from 0 to 10^5 ; especially, n is from 0 to 10^4 and o is from 0 to 10^2 :

SO₃, SO₃H, SO₃R₃ and/or by OSiR₅R₆R₇ or being C₆-C₂₄aryl, C₇-C₂₄aralkyl, C₈-C₂₄aralkenyl or C₂-C₂₄heteroaryl each unsubstituted or mono- or polysubstituted by halogen, NO₂, CN, NR₃R₄, NR₃R₄R₅*, NR₅COR₃, NR₅CONR₃R₄, R₃, OR₃, SR₃, CHO, CR₅OR₃OR₄, COR₃, SO₂R₃, SO₃, SO₃R₃, SO₂NR₃R₄, COO⁷. COOR₃, CONR₃R₄, PO₃, PO(OR₃)(OR₄), SiR₅R₆R₇, OSiR₅R₆R₇ and/or by SiOR₅OR₆OR₇:

20

 R_{2_1} independently of R_{1_1} being hydrogen or R_{1_2} , it being possible, if desired, for R_{1_2} and R_{2_2} to be linked to one another by means of a direct bond or a bridge $-O_{-}$, $-S_{-}$ or $-NC_1-C_8$ alkyl— so that altogether a five- or six-membered ring is formed;

R₃ and R₄ being each independently of the other hydrogen, CN, OR₅, COO⁻,

COOH, COOR₅, CONR₅R₆, COR₅, SO₂R₅, SO₃⁻, SO₃H, SO₃R₅ or OSiR₅R₆R₇; or C₁-C₂₄alkyl, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₃-C₂₄cycloalkyl, C₃-C₂₄cycloalkenyl or C₂-C₁₂heterocycloalkyl each unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₅R₆, NR₅R₆R₇⁺, NR₅COR₇, NR₅CONR₆R₇, OR₅, SR₅, COO⁻, COOH, COOR₅, CHO, CR₅OR₆OR₇, COR₅, SO₂R₅, SO₃⁻, SO₃H, SO₃R₅ and/or by

OSiR₅R₆R₇; or C₇-C₁₈aralkyl, C₆-C₁₄aryl or C₂-C₁₃heteroaryl each unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₅R₆, NR₅R₆R₇⁺, NR₅COR₆, NR₅CONR₆R₇, R₅, OR₅, SR₅, CHO, CR₅OR₆OR₇, COR₅, SO₂R₅, SO₃⁻, SO₂NR₅R₆, COO⁻, COOR₇, CONR₅R₆, PO₃⁻, PO(OR₅)(OR₆), SiR₅R₆R₇, OSiR₅R₆R₇ and/or by SiOR₅OR₆OR₇,

or NR₃R₄ being a five- or six-membered heterocycle which may optionally contain a further nitrogen or oxygen atom and which may be mono- or poly-substituted by C₁-C₈alkyl; and

 R_5 , R_6 and R_7 being each independently of the others hydrogen, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_7 - C_{18} aralkyl, C_6 - C_{14} aryl or C_2 - C_{13} heteroaryl, it being possible, if desired, for R_5 and R_6 and/or R_6 and R_7 to be linked to one another by means of a direct bond or a bridge $-O_7$, $-S_7$ - or $-NC_1$ - C_8 alkyl— so that altogether a five- or six-membered ring is formed.

2. A solid according to claim 1, wherein Z is CN, COR₁, SO₃R₁, $\stackrel{R_3}{\underset{R_*}{\longrightarrow}} \stackrel{R_4}{\underset{R_*}{\longleftarrow}}$ or

unsubstituted or substituted C₆-C₂₄aryl, especially COR₁ or SO₃R₁; R₁ is
unsubstituted or substituted C₃-C₂₄alkyl, C₃-C₂₄alkenyl, C₆-C₂₄aryl or
C₈-C₂₄aralkenyl; R₃ and R₄ are each independently of the other hydrogen, CN, OR₅,

20

COOR₅, CONR₅R₈ or COR₅, or unsubstituted or substituted C₁-C₂₄alkyl, C₇-C₁₈aralkyl or C₈-C₁₄aryl; or NR₃R₄ is a five- or six-membered heterocycle which may optionally contain a further nitrogen or oxygen atom and which may be monoor poly-substituted by C₁-C₈alkyl; R₅, R₈ and R₇ are each independently of the others hydrogen, C₁-C₂₀alkyl, C₂-C₂₀alkenyl, C₂-C₂₀alkynyl or C₇-C₁₈aralkyl, it being possible, if desired for R₅ and R₈ and/or R₆ and R₇ to be linked to one another by means of a direct bond or a bridge -O-, -S- or -NC₁-C₈alkyl- so that altogether a five- or six-membered ring is formed; and R₅, R₆ and R₇ themselves may, if desired, be substituted.

- 3. A solid according to claim 2, wherein R₁ is C₆-C₂₄aryl or C₈-C₂₄aralkenyl each substituted by one, two or three radicals selected from the group consisting of OR₃, NR₃R₄ and NO₂.
 - 4. A solid according to claim 1, 2 or 3, which is mainly or exclusively in the crystal lattice of bismuth halide.
- 5. A solid according to claim 1, 2, 3 or 4, wherein the sum j+k is from 0.1 to 3, preferably from 0.2 to 1.5 and the ratio m:n is from 3:2 to 5:1.
 - 6. A process for the preparation of a bismuth oxyhalide by combining I and, optionally, X with a solution of BiO or Bi ions in a solvent under conditions such that a solid which is insoluble in the solvent precipitates out, in which process L or LH is present in the solvent during precipitation of the solid, and the solid precipitating out is of formula BiOI \cdot (BiOX)_I \cdot (BiOL)_k, wherein j is a number from 0 to 4, preferably from 0.5 to 1.2, and k is a number from 0.005 to 3, preferably from 0.05 to 2, especially from 0.1 to 1.
- 7. A process according to claim 6, wherein the precipitation is carried out at a pH of from 1 to 9.
 - 8. Platelets having a length of from 2 μm to 5 mm, a width of from 2 μm to 2 mm and a thickness of from 50 nm to 1.5 μm , the ratio of length to height being at least

- 5:1, the ratio of width to height being at least 3:1, and the ratio of length to width being at most 5:1, which platelets are coated with a solid of formula $BiOI \cdot (BiOX)_j \cdot (BiOL)_k$, wherein j is a number from 0 to 4, preferably from 0.5 to 1.2, and k is a number from 0.005 to 3, preferably from 0.05 to 2, especially from 0.1 to 1.
- 9. Platelets according to claim 8, coated with from 1 to 1000 % by weight, preferably from 5 to 500 % by weight, especially from 10 to 200 % by weight, based on the uncoated platelets, of solid of formula $\text{BiOI} \cdot (\text{BiOX})_{j} \cdot (\text{BiOL})_{k}$.
- 10. A process for the coating of particles with bismuth oxyhallde by combining I and, optionally, X with a solution of BiO+ or Bi3+ ions in a solvent under conditions such that a solid which is insoluble in the solvent precipitates out, in which process L or LH is present in the solvent during precipitation of the solid, and the particles are coated with a solid of formula BiOI+ (BiOX)_j · (BiOL)_k, wherein j is a number from 0 to 4, preferably from 0.5 to 1.2, and k is a number from 0.005 to 3, preferably from 0.05 to 2, especially from 0.1 to 1.
 - 11. A process according to claim 10, wherein the particles are in suspension in the solvent during precipitation of the solid.
 - 12. A process according to claim 11, wherein the coating is carried out subsequently to preparation of the particles without intermediate isolation.
- 13. A substance composition comprising a solid according to claim 1, 2, 3, 4 or 5 or platelets according to claim 8 or 9 and also at least one further white, black, coloured or effect pigment.
- 14. A substance composition comprising a high molecular weight organic material and from 0.01 to 80 % by weight, preferably from 0.1 to 30 % by weight, based on
 25 the high molecular weight organic material, of a solid according to claim 1, 2, 3, 4 or
 5 or platelets according to claim 8 or 9.