Лабораторная работа 1.2.2 Экспериментальная проверка закона вращательного движения на крестообразном маятнике

Злобина Вера 24 ноября 2020 г. Основное уравнение вращательного движения тела вокруг закреплённой оси:

$$I\ddot{\varphi} = M,\tag{1}$$

где $\ddot{\varphi} \equiv \dot{\omega} \equiv \beta$ — угловое ускорение (ω — угловая скорость), I — полный момент инерции тела относительно оси вращения, M — суммарный момент внешних сил относительно этой оси.

Цель работы: экспериментально проверить уравнение (1), получив зависимость углового ускорения от момента инерции и момента прикладываемых к системе сил, а также проанализировать влияние сил трения, действующих в оси вращения.

Экспериментальная установка: для экспериментального исследования закона вращательного движения (1) в работе используется крестообразный «маятник» , устройство которого изображено на рис. 1. Маятник состоит из четырёх тонких стержней радиуса a, укреплённых на втулке под прямым углом друг к другу. Втулка и два шкива различных радуисов (r_1 и r_2) насажены на общую ось. Ось закреплена в подшипниках, так что вся система может свободно вращаться вокруг горизонтальной оси. Момент инерции I маятника можно изменять, передвигая грузы $m_i(i=1,\ldots,4)$ вдоль стержней и меняя R_i . На один из шкивов маятника навита тонкая нить. Привязанная к ней лёгкая платформа известной массы m_{π} служит для размещения перегрузков m_{τ} .

Установка оснащена датчиком, позволяющим фиксировать моменты времени прохождения концов стержней через него. Данные с датчика передаются на компьютер для последующей обработки и получения зависимостей угла поворота $\varphi(t)$, угловой скорости $\omega \equiv \dot{\varphi}$ и углового ускорения маятника $\beta \equiv \ddot{\varphi}$ от времени, а также углового ускорения от угловой скорости $\beta(\omega)$.

Вывод уравнения движения маятника: рассмотрим силы, действующие на маятник. Основной вращающий момент поздаётся подвешенным на нити перегрузком. Непосредственно на маятник действует момент силы натяжения нити: $M_{\rm H}=rT$, где r – радиус шкива (r_1 или r_2). Силу T выразим из уравнения движения платформы $m_{\rm H}\ddot{y}=m_{\rm H}g-T$, где $m_{\rm H}=m_{\rm H}+m_{\rm r}$ – масса платформы с перегрузком. Ускорение платформы связано с угловым ускорением маятника условием нерастяжимости нити $\ddot{y}=\beta r$. Отсюда момент силы натяжения нити

$$M_{\rm H} = m_{\rm H} r(g - \beta r). \tag{2}$$

Рис. 1: Схема установки

Вращению маятника препятствует момент силы трения в оси $M_{\rm Tp}$. Таким образом, с учётом (2) уравнение (1) может быть записано как

$$(I + m_{\scriptscriptstyle \rm H} r^2)\beta = m_{\scriptscriptstyle \rm H} gr - M_{\scriptscriptstyle \rm TD}.\tag{3}$$

Заметим, что в наших опытах, как правило, $m_{\rm H} r^2 \ll I$, и соответственно $M_{\rm H} \approx m_{\rm H} g r$, то маятник будет раскручиваться с постоянным угловым ускорением $\beta_0 \approx m_{\rm H} g r/I$.

Поскольку зависимость момента силы трения от нагрузки на маятник и скорости его вращения не известна (её исследование — отдельная экспериментальная задача), методика измерения должна быть построена так, чтобы минимизировать или вовсе исключить влияние $M_{\rm Tp}$. Можно высказать следующие качественные соображения о природе и величине $M_{\rm Tp}$. Она может иметь как составляющую, пропорциональную силе реакции в оси N (сухое трение в подшипниках), так и составляющую, пропорциональную угловой скорости ω вращения маятника (вязкое трение в подшипниках и сопротивления воздуха). Учитывая, что сила реакции уравновешенного маятника равна $N=m_{\rm M}g+T\approx (m_{\rm M}+m_{\rm H})g\approx m_{\rm M}g$, где $m_{\rm M}$ — масса маятника (как правило, $m_{\rm M}\gg m_{\rm H}$), можно записать

$$M_{\rm TP} \simeq \left(1 + \frac{m_{\rm H}}{m_{\rm M}}\right) M_0 + \eta \omega \approx M_0 + \eta \omega,$$
 (4)

где M_0 — момент сил трения для покоящегося маятника при нулевой массе подвеса (минимальное значение силы трения), η — некоторый коэффициент, отвечающий за вязкое трение.

Результаты измерений и обработка данных

Оценим момент сил трения в подшипниках. Граничное значение складывается из массы перегрузка и массы платформы и равно $m_{\rm rp}=4.80({\rm r})+6.17({\rm r})=10.97({\rm r}).$

Измерения проводились на большом шкифе, радиус которого $r_1 = 1.78$ (см).

Тогда момент сил трения $M_0 = m_{\rm rp} g r_1 \approx 1.95 \cdot 10^{-3} ({\rm H\cdot M}).$

Проведём измерение коэффициентов прямой $\beta(\omega)$ k и β_0 , чтобы оценить случайную погрешность β_0 .

k, 1/c	β_0 , рад $/c^2$	$(\beta_{0\text{сред}} - \beta_{0i})^2, \text{рад}^2/c^4$
-0.0078 ± 0.0058	$0.5126 \pm 0,0012$	0.0015
-0.0072 ± 0.0021	0.4513 ± 0.0008	0.005
-0.0079 ± 0.0045	0.4388 ± 0.0018	0.0012
-0.0090 ± 0.0017	0.4666 ± 0.0085	0.0001
-0.0085 ± 0.0070	0.4737 ± 0.0016	0.0001
-0.0084 ± 0.0015	0.4999 ± 0.0014	0.0007
$-0,0088 \pm 0.0049$	0.4749 ± 0.0039	0.0001

$$eta_{0
m cpeq} pprox 0.4740 ({
m pag/c^2})$$
 $\sigma_{
m c, nyq} = \sqrt{\sum_{i=1}^n rac{(eta_{0
m cpeq} - eta_{0n})^2}{n(n-1)}} pprox 0.01 ({
m pag/c^2})$

Проведём измерения коэффициентов прямой $\beta(\omega)$ k и β_0 при разных массах перегрузка.

 $m_0=6.17(\Gamma)$ — масса платформы

 $r_1 = 1.78$ (см) – радиус большего шкива

 $r_2 = 0.90(c_{\rm M})$ – радиус меньшего шкива

$m_{\scriptscriptstyle \Gamma},{}_{\scriptscriptstyle \Gamma}$	k, 1/c	$\beta_0, \operatorname{pag}/c^2$	радиус шкива $r_{1,2}$, см	$M_T, \mathrm{H} \cdot \mathrm{M}$
68.17	-0.0113 ± 0.0021	0.669 ± 0.002	1.78	$1.21 \cdot 10^{-2}$
106.17	-0.0123 ± 0.0022	1.067 ± 0.007	1.78	$1.89 \cdot 10^{-2}$
146.17	-0.0172 ± 0.0029	1.658 ± 0.001	1.78	$2.6 \cdot 10^{-2}$
176.17	-0.0221 ± 0.0019	1.907 ± 0.003	1.78	$3.1 \cdot 10^{-2}$
206.17	-0.0253 ± 0.0041	2.300 ± 0.008	1.78	$3.7 \cdot 10^{-2}$
50.37	-0.0124 ± 0.0024	0.2275 ± 0.0090	0.90	$0.45 \cdot 10^{-2}$
106.17	-0.0200 ± 0.0076	0.6034 ± 0.0048	0.90	$0.96 \cdot 10^{-2}$
146.17	-0.0167 ± 0.0024	0.8333 ± 0.0032	0.90	$1.3 \cdot 10^{-2}$
168.17	-0.0187 ± 0.0031	0.9543 ± 0.0021	0.90	$1.5 \cdot 10^{-2}$
68.17	-0.0161 ± 0.0053	0.3482 ± 0.0019	0.90	$0.61 \cdot 10^{-2}$

где $M_{\rm T} = m_{\rm r} g r_{1,2}$ – момент силы натяжения нити

Постороим график $\beta_0(M_{\rm T})$ зависимости начального ускорения от момента силы натяжения. Полученная зависимость является прямой пропорциональностью, то есть $\beta_0 = a + bM_T$.

Коэффициенты a и b вычислим по МНК.

 $a \approx -0.0396 (\text{рад/c}^2)$

 $b \approx 63.316(1/\text{kg} \cdot \text{m}^2)$

Пересечение с осью абсцисс при $\beta_0=0 \Rightarrow M_0=-a/b \approx 0.63\cdot 10^{-3} ({\rm H}\cdot$

м) – момент сил трения. (Найденный ранее – $1.95 \cdot 10^{-3} (H \cdot M)$).

Вычислим $I = 1/b \approx 0.0158 (\text{кг} \cdot \text{м}^2)$.

Оценим погрешность
$$I$$
. Из формулы выше следует, что $\varepsilon_I = \varepsilon_b$.
$$\sigma_b = \frac{1}{\sqrt{n}} \sqrt{\frac{\left\langle \beta_0^2 \right\rangle - \left\langle \beta_0 \right\rangle^2}{\left\langle M_{\rm T}^2 \right\rangle - \left\langle {\rm M_T} \right\rangle^2} - b^2} \approx 1.74 (1/{\rm Kr\cdot M^2})$$

Тогда $\sigma_I = \varepsilon_I I = \varepsilon_b I \approx 0.005 (\text{кг} \cdot \text{м}^2)$

В итоге имеем:

$$I = (0.0158 \pm 0.0005)$$
кг · м²

Проведём измерения зависимости углового ускорения от момента инерции ситемы.

 $m_{\rm r} = 106.17({\rm r})$ – масса груза $r = 1.78({\rm cm})$ – радиус шкива По формуле (3) имеем:

$$(I + m_{\scriptscriptstyle \rm H} r^2)\beta = m_{\scriptscriptstyle \rm H} gr - M_{\scriptscriptstyle \rm TP}$$

$$I \gg m_{\scriptscriptstyle \mathrm{H}} r^2 \Rightarrow I_i pprox rac{m_{\scriptscriptstyle \mathrm{H}} gr - M_{\scriptscriptstyle \mathrm{Tp}}}{\beta_i}.$$

Полученные значения I_i занесём в таблицу и построим по ним график $I(\mathbb{R}^2)$.

R, cm	k, 1/c	β , рад/ c^2	I, kg·m ²
17	-0.0177 ± 0.0062	1.004 ± 0.0015	0.0182
15	-0.1540 ± 0.0030	1.1491 ± 0.0011	0.159
13	-0.0136 ± 0.0015	1.3941 ± 0.0011	0.0131
18	-0.0163 ± 0.0017	0.9090 ± 0.0023	0.2201

Полученные по МНК коэффициенты прямой $I = a + bR^2$ равны: $a \approx 0.00564 (\text{kg} \cdot \text{m}^2)$

 $b \approx 0.448 (\text{kg})$

Вычислим I по формуле:

$$I = I_0 + \sum_{i=1}^{4} (I_i + m_i R_i^2)$$

где I_0 – момент инерции системы без грузов, а $I_i = \frac{1}{12} m_i h^2 + \frac{1}{4} m_i (a_1^2 + a_2^2)$. Поскольку массы грузов и расстояния до центра масс почти не отличаются $\sum_{i=1}^4 \left(I_i + m_i R_i^2 \right) \approx 4 I_1$. Вычислим эту величину и получим, что $4I_1 \approx 7.98 \cdot 10^{-5} (\mathrm{Kr} \cdot \mathrm{M}^2) \ll a \Rightarrow I_0 \approx a$.

$$4I_1 \approx 7.98 \cdot 10^{-5} (\mathrm{Kr} \cdot \mathrm{M}^2) \ll a \Rightarrow I_0 \approx a.$$
Тогда $\sigma_I = \sigma_a = \sqrt{\frac{\langle I^2 \rangle - \langle I \rangle^2 - b^2 \left(\langle R^4 \rangle - \langle R^2 \rangle^2 \right)}{n}} \approx 0.00002 (\mathrm{Kr} \cdot \mathrm{M}^2)$
Имеем
$$I_0 = (0.00564 \pm 0.00002) (\mathrm{Kr} \cdot \mathrm{M}^2)$$

Найдём I_0 другим способм. Измерим k и β_0 при перегрузке массой $m_{\rm m}=106.17(\Gamma)$ без грузов на маятнике.Полученные данные занесём в таблицу.

k, 1/c	$\beta_0, ({\rm pag/c^2})$	
-0.0452 ± 0.0031	3.238 ± 0.006	
-0.0407 ± 0.0056	3.189 ± 0.009	
-0.0839 ± 0.001	3.776 ± 0.002	

$$\langle eta_0
angle = 3.401 (\mathrm{pag/c^2})$$
 $I_0 pprox rac{m_\mathrm{fl} gr - M_0}{eta_0} pprox 0.00537 (\mathrm{kg \cdot m^2})$

График зависимости $\beta_0 = a + b M_{\scriptscriptstyle
m T}$

График зависимости $I=a+bR^2$

Вывод

Мы убедились, что угловое ускорение маятника обратно пропорционально моменту инерции тела и прямо пропорционально моменту прикладываемых сил. Помимо этого было выяснено, какой вклад в общий момент сил вносит момент силы трения в оси вращения.