Amplitude Modulation (AM)

- Amplitude Modulation is the process of varying amplitude of the high frequency carrier signal inaccordance with the instantaneous amplitude of the low frequency message signal
- Carrier signal changes linearly with the message signal
- Advantages:
 - Easy generation and recovery of signals
 - Less bandwidth requirement of FM
 - Coverage area is high
 - Cheaper
- Disadvantages:
 - Wastage of power
 - Wastage of bandwidth
 - Noise interference is more
 - Less efficient

Why AM travels longer distance than FM?

Types of AM

DSBFC – Double Side Band Full Carrier (Simple AM)

DSBSC – Double Side Band Suppressed Carrier

SSBFC – Single Side Band Full Carrier

SSBSC – Single Side Band Suppressed Carrier

VSB – Vestigial Side Band

AM Envelope

Modulation index & Percent Modulation

$$m = \frac{E_m}{E_c}$$

Modulation index & Percent Modulation

Over Modulation

Let the modulating signal is mathematically expressed as

$$V_m(t) = E_m \cos(2\pi f_m t + \phi_m) - - - - (1)$$

$$V_m(t) \text{ is a cosine wave}$$

$$-E_m \max_{max} t_m$$

Let the modulating signal is mathematically expressed as

$$V_m(t) = E_m \cos(2\pi f_m t + \phi_m) - - - - (1)$$

$$V_m(t) \text{ is a casine wave}$$

$$V_m(t) \text{ is a casine wave}$$

Let the carrier signal is mathematically expressed as

$$V_c(t) = E_c \cos(2\pi f_c t + \phi_c) - - - - (2)$$

 The instantaneous amplitude of the modulated wave is mathematically expressed as

$$V_{AM}(t) = [E_c + V_m(t)]\cos 2\pi f_c t - - - (3)$$

 The instantaneous amplitude of the modulated wave is mathematically expressed as

$$V_{AM}(t) = [E_c + V_m(t)]\cos 2\pi f_c t - - - - (3)$$

Substitute Eq.(1) in Eq.(3)

$$V_{AM}(t) = [E_c + E_m \cos 2\pi f_m t] \cos 2\pi f_c t - - - - (4)$$

 The instantaneous amplitude of the modulated wave is mathematically expressed as

$$V_{AM}(t) = [E_c + V_m(t)]\cos 2\pi f_c t - - - - (3)$$

Substitute Eq.(1) in Eq.(3)

$$V_{AM}(t) = [E_c + E_m \cos 2\pi f_m t] \cos 2\pi f_c t - - - - (4)$$

$$= E_c [1 + \frac{E_m}{E_c} \cos 2\pi f_m t] \cos 2\pi f_c t - - - - (5)$$

 The instantaneous amplitude of the modulated wave is mathematically expressed as

$$V_{AM}(t) = [E_c + V_m(t)]\cos 2\pi f_c t - - - - (3)$$

Substitute Eq.(1) in Eq.(3)

$$V_{AM}(t) = [E_c + E_m \cos 2\pi f_m t] \cos 2\pi f_c t - - - - (4)$$

$$= E_c [1 + \frac{E_m}{E_c} \cos 2\pi f_m t] \cos 2\pi f_c t - - - - (5)$$

• Where $m=E_m/E_c$ is the modulation index

 The instantaneous amplitude of the modulated wave is mathematically expressed as

$$V_{AM}(t) = [E_c + V_m(t)]\cos 2\pi f_c t - - - - (3)$$

Substitute Eq.(1) in Eq.(3)

$$V_{AM}(t) = [E_c + E_m \cos 2\pi f_m t] \cos 2\pi f_c t - - - - (4)$$

$$= E_c [1 + \frac{E_m}{E_c} \cos 2\pi f_m t] \cos 2\pi f_c t - - - - (5)$$

- Where $m=E_m/E_C$ is the modulation index
- The above equation can be modified as

$$V_{AM}(t) = E_c[1 + m\cos 2\pi f_m t]\cos 2\pi f_c t - - - - (6)$$

The above equation can be modified as

$$V_{AM}(t) = E_c[1 + m\cos 2\pi f_m t]\cos 2\pi f_c t - - - - (6)$$

• Multiplying E_c and cos2πf_ct inside the bracket we get

$$V_{AM}(t) = E_c \cos 2\pi f_c t + m \cos 2\pi f_c t \cdot \cos 2\pi f_m t \cdot E_c ----(7)$$

The above equation can be modified as

$$V_{AM}(t) = E_c[1 + m\cos 2\pi f_m t]\cos 2\pi f_c t - - - - (6)$$

• Multiplying E_c and cos2πf_ct inside the bracket we get

$$V_{AM}(t) = E_c \cos 2\pi f_c t + m \cos 2\pi f_c t \cdot \cos 2\pi f_m t \cdot E_c -----(7)$$

$$V_{AM}(t) = E_c \cos 2\pi f_c t + \frac{mE_c}{2} \cos 2\pi (f_c + f_m)t +$$

$$\frac{mE_c}{2} \cos 2\pi (f_c - f_m)t -----(8)$$

- The above equation is called AM equation or AM voltage distribution or AM frequency spectrum equation
- First term is carrier, second term is USB and third term is LSB

Voltage spectrum of AM wave

AM bandwidth

The bandwidth required to transmit AM signal is mathematically expressed as

$$BW = f_U - f_L$$

$$= (f_c + f_m) - (f_c - f_m)$$

$$= 2f_{m,\text{max}}$$

Phasor diagram

