In [53]: import pandas as pd
In [54]: data = pd.read_csv("/home/placement/Downloads/TelecomCustomerChurn.csv")
In [55]: data.describe()

Out[55]:

	SeniorCitizen	tenure	MonthlyCharges
count	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692
std	0.368612	24.559481	30.090047
min	0.000000	0.000000	18.250000
25%	0.000000	9.000000	35.500000
50%	0.000000	29.000000	70.350000
75%	0.000000	55.000000	89.850000
max	1.000000	72.000000	118.750000

In [56]: data.head()

Out[56]:

: _	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DeviceProtec
	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	
	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	
;	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	
;	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	
	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	

5 rows × 21 columns

```
In [58]: data['TotalCharges'] = pd.to numeric(data['TotalCharges'],errors='coerce')
         data.dtypes
Out[58]: customerID
                              object
         gender
                              obiect
         SeniorCitizen
                               int64
         Partner
                              object
         Dependents
                              object
         tenure
                               int64
         PhoneService
                              object
         MultipleLines
                              object
         InternetService
                              object
         OnlineSecurity
                              object
         OnlineBackup
                              object
         DeviceProtection
                              object
         TechSupport
                              object
         StreamingTV
                              object
         StreamingMovies
                              object
         Contract
                              obiect
         PaperlessBilling
                              object
         PaymentMethod
                              object
         MonthlyCharges
                             float64
                             float64
         TotalCharges
         Churn
                              object
         dtype: object
```

```
In [59]: data.isna().sum()
Out[59]: customerID
                              0
                               0
         gender
         SeniorCitizen
         Partner
         Dependents
         tenure
         PhoneService
         MultipleLines
         InternetService
         OnlineSecurity
         OnlineBackup
         DeviceProtection
         TechSupport
         StreamingTV
         StreamingMovies
         Contract
         PaperlessBilling
         PaymentMethod
                              0
         MonthlyCharges
                              0
         TotalCharges
                             11
         Churn
                              0
         dtype: int64
In [62]: data['TotalCharges']=data['TotalCharges'].fillna(data['TotalCharges'].median())
In [63]: data['SeniorCitizen']=data['SeniorCitizen'].map({0:'No',1:'Yes'})
```

In [64]: data.tail(20)

Out[64]:

]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DevicePro
-	7023	1035- IPQPU	Female	Yes	Yes	No	63	Yes	Yes	Fiber optic	No	
	7024	7398- LXGYX	Male	No	Yes	No	44	Yes	Yes	Fiber optic	Yes	
	7025	2823- LKABH	Female	No	No	No	18	Yes	Yes	Fiber optic	No	
	7026	8775- CEBBJ	Female	No	No	No	9	Yes	No	DSL	No	
	7027	0550- DCXLH	Male	No	No	No	13	Yes	No	DSL	No	
	7028	9281- CEDRU	Female	No	Yes	No	68	Yes	No	DSL	No	
	7029	2235- DWLJU	Female	Yes	No	No	6	No	No phone service	DSL	No	
	7030	0871- OPBXW	Female	No	No	No	2	Yes	No	No	No internet service	 No
	7031	3605-JISKB	Male	Yes	Yes	No	55	Yes	Yes	DSL	Yes	
	7032	6894- LFHLY	Male	Yes	No	No	1	Yes	Yes	Fiber optic	No	
	7033	9767- FFLEM	Male	No	No	No	38	Yes	No	Fiber optic	No	
	7034	0639- TSIQW	Female	No	No	No	67	Yes	Yes	Fiber optic	Yes	
	7035	8456- QDAVC	Male	No	No	No	19	Yes	No	Fiber optic	No	
	7036	7750- EYXWZ	Female	No	No	No	12	No	No phone service	DSL	No	
	7037	2569- WGERO	Female	No	No	No	72	Yes	No	No	No internet service	 No
	7038	6840- RESVB	Male	No	Yes	Yes	24	Yes	Yes	DSL	Yes	

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DevicePro
7039	2234- XADUH	Female	No	Yes	Yes	72	Yes	Yes	Fiber optic	No	
7040	4801-JZAZL	Female	No	Yes	Yes	11	No	No phone service	DSL	Yes	
7041	8361- LTMKD	Male	Yes	Yes	No	4	Yes	Yes	Fiber optic	No	
7042	3186-AJIEK	Male	No	No	No	66	Yes	No	Fiber optic	Yes	

20 rows × 21 columns

```
In [65]: #backup
databackup=data.copy()

In [67]: x=data.drop(['customerID','Churn'],axis=1)
y=data['Churn']

In [68]: x=pd.get_dummies(x)
```

```
In [69]: x.head()
Out[691:
             tenure MonthlyCharges TotalCharges gender Female gender Male SeniorCitizen No SeniorCitizen Yes Partner No Partner Yes Dependents
                                                                                                       0
          0
                 1
                           29.85
                                      29.85
                                                      1
                                                                 0
                                                                               1
                                                                                              n
                                                                                                                  1
                34
                           56.95
                                     1889.50
                                                      0
                                                                 1
                                                                               1
                                                                                              0
                                                                                                       1
                                                                                                                  O
           2
                                                                               1
                                                                                              n
                 2
                           53.85
                                     108.15
                                                      0
                                                                 1
                                                                                                       1
           3
                45
                           42.30
                                     1840.75
                                                                 1
                                                                               1
                                                                                              0
                                                                                                       1
                                                                                                                  0
                 2
                           70.70
                                     151.65
                                                      1
                                                                 0
                                                                               1
                                                                                              0
                                                                                                       1
                                                                                                                  0
          5 rows × 46 columns
In [70]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [72]: from sklearn.model selection import GridSearchCV #GridSearchCV is for parameter tuning
         from sklearn.ensemble import RandomForestClassifier
         cls=RandomForestClassifier()
         n estimators=[25,50,75,100,125,150,175,200] #number of decision trees in the forest, default = 100
          criterion=['gini','entropy'] #criteria for choosing nodes default = 'gini'
         max depth=[3,5,10] #maximum number of nodes in a tree default = None (it will go till all possible nodes)
         parameters={'n estimators': n estimators, 'criterion':criterion, 'max depth':max depth} #this will undergo 8*2
         RFC cls = GridSearchCV(cls, parameters)
         RFC cls.fit(x train,y train)
Out[72]: GridSearchCV(estimator=RandomForestClassifier(),
                       param grid={'criterion': ['gini', 'entropy'],
                                    'max depth': [3, 5, 10],
                                    'n estimators': [25, 50, 75, 100, 125, 150, 175, 200]})
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [73]: RFC cls.best params
Out[73]: {'criterion': 'gini', 'max depth': 10, 'n estimators': 150}
In [74]: | cls=RandomForestClassifier(n estimators=150, criterion='entropy', max depth=10)
In [75]: cls.fit(x train,y train)
Out[75]: RandomForestClassifier(criterion='entropy', max_depth=10, n_estimators=150)
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [78]: rfy pred=cls.predict(x test)
In [79]: rfy pred
Out[79]: array(['Yes', 'No', 'No', ..., 'Yes', 'No', 'No'], dtype=object)
In [80]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,rfy pred)
Out[80]: array([[1541, 156],
                 [ 292, 33611)
In [81]: from sklearn.metrics import accuracy score
         accuracy_score(y_test,rfy_pred)
Out[81]: 0.8073118279569892
```

```
In [85]: import warnings
    warnings.filterwarnings('ignore')
    from sklearn.linear_model import LogisticRegression
    classifier=LogisticRegression()
    classifier.fit(x_train,y_train)
```

Out[85]: LogisticRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In []: im