BM 305 Biçimsel Diller ve Otomatlar (Formal Languages and Automata)

Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Sets, Relations

Bir küme nesnelerden oluşur

 $L = \{a, b, c, d\}$ a, b, c, d kümenin elemanları veya üyeleridir

 $b \in L$, $z \notin L$

Elemanların sırası ve tekrarı önemli değildir

{red, blue, red} ile {red, blue} aynıdır {3, 1, 9}, {9, 1, 3} ve {3, 9, 1} aynıdır

Empty ve singleton

Bir elemana sahip küme *singleton*, hiç elemanı olmayan küme *empty* olarak adlandırılır.

{1}, {blue} singleton

{ }, Ø empty set

Sonsuz küme

 $N = \{0, 1, 2, 3, ...\}$ doğal sayılar kümesi

Kümeler özellikleriyle de tanımlanabilir

$$I = \{1, 3, 9\}$$
 $G = \{3, 9\}$

 $G = \{x: x \in I \text{ and } x \text{ is greater than } 2\}$

 $O = \{x: x \in N \text{ and } x \text{ is not divisible by } 2\}$ odd numbers

Altküme

 $A \subseteq B$, A kümesi B kümesinin altkümesi (A = B olabilir)

 $A \subset B$, A kümesi B kümesinin proper altkümesi $(A \neq B)$

Sets, Relations

Union (Birleşim)

 $A \cup B = \{x: x \in A \text{ or } x \in B\}$

Intersection (Kesişim)

 $A \cap B = \{x: x \in A \text{ and } x \in B\}$

Difference (Fark)

 $A - B = \{x: x \in A \text{ and } x \notin B\}$ $\{1, 3, 9\} - \{3, 5, 7\} = \{1, 9\}$

Disjoint

 $A \cap B = \{\}, \emptyset$

_

Sets, Relations

Küme işlemleri

Idempotency $A \cup A = A$

 $A \cap A = A$

Commutativity $A \cup B = B \cup A$

(Değişme) $A \cap B = B \cap A$

Associativity $(A \cup B) \cup C = A \cup (B \cup C)$ (İlişkisellik) $(A \cap B) \cap C = A \cap (B \cap C)$

Distributivity $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ (Dağılma) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Absorption $(A \cup B) \cap A = A$

 $(A \cap B) \cup A = A$

DeMorgan's laws $A - (B \cup C) = (A - B) \cap (A - C)$

 $A - (B \cap C) = (A - B) \cup (A - C)$

Sets, Relations

 $S = \{\{a, b\}, \{b, c\}, \{b, c, d\}\},\$

 $A = \{a, b, c, d\}$

Birden fazla kümede birleşim

 $\bigcup_{S = \{x: x \in P \text{ for some set } P \in S\}} \bigcup_{S = \{a, b, c, d\}}$

Birden fazla kümede kesişim

 $\bigcap S = \{x : x \in P \text{ for each set } P \in S\} \qquad \bigcap S = \{b\}$

Power set

Bir kümenin boş kümede dahil tüm altkümeleri

 2^{A} , A kümesinin power kümesi

 $A = \{c, d\}$ ise $2^{\{c, d\}} = \{\{c, d\}, \{c\}, \{d\}, \emptyset\}$

Partition

 Π power kümenin altkümesidir, boş kümeyi içermez ve A kümesinin her elemanını sadece bir kez bulundurur

- ∏ içindeki her eleman boş kümeden farklıdır
- ∏ içindeki farklı elemanlar disjoint kümedir
- $\bigcup \Pi = A$ {{a, b}, {c}, {d}} partition, {{b, c}, {c, d}} partition degil

Ordered pair

Nesneler arasındaki ilişkiler kümelerle gösterilmes *sıralı çiftler (ordered pair)* ile gösterilir

(a, b) sıralı çifti için a ve b components olarak adlandırılır (a, b) ile $\{a, b\}$ farklıdır

(a, b) ile (b, a) farklıdır. $\{a, b\}$ ile $\{b, a\}$ aynıdır

İki sıralı çift (a, b) ve (c, d) eşittir eğer a = c ve b = d ise

Cartesian product (Kartezyen çarpımı)

A ve B kümelerinin kartezyen çarpımı AxB ile gösterilir ve (a, b) sıralı çiftidir $(a \in A \ ve \ b \in B)$

 $\{1, 3\} \times \{b, c\} = \{(1, b), (1, c), (3, b), (3, c)\}$

Sets, Relations

Binary relation

A ve B kümeleri arasında binary relation AxB 'nin altkümesidir Örnek:

 $\{1, 3\}$ ve $\{b, c\}$ kümeleri arasında $\{(1, b), (3, b)\}$ bir binary relation olarak tanımlanır.

 $\{(i, j): i, j \in N \text{ } ve \text{ } i < j\}$ küçüktür ilişkisi olup NxN'nin altkümesidir $\{(1, 2), (1, 3), (2, 6), ...\}$ şeklinde sonsuz elemana sahiptir

Tuples and relations

 $(a_1, a_2, a_3, ..., a_n)$ ordered tuple olarak adlandırılır (n-tuple) n=2 için ordered pairs, n=3 için ordered triples n=4 için quadruples, n=5 için quintuples

n=1 için unary relation n=2 için binary relation n=3 için ternary relation n-ary relation

Function

A ve B kümeleri arasında bir fonksiyon, binary relation R = (a, b)'dir ve her $a \in A$ için kesinlikle sadece bir ordered pair vardır.

 $f: A \rightarrow B, A'$ dan B' ye tanımlanmış f fonksiyonu

Domain ve Image

A domain olarak adlandırılır

f(a) image olarak adlandırılır ve her a için unique değerdir

Arguments ve Value

 $f: A_1 \times A_2 \times ... \times A_n \rightarrow B$ fonksiyon ise $f(a_1, a_2, ..., a_n) = b$ şeklinde gösterilir ve $a_i \in A_i$, i = 1, ..., n ve $b \in B$ 'dir.

Burada a_i arguments ve b ise value olarak adlandırılır.

Sets, Relations

One-to-one

Bir $f: A \to B$ fonksiyonu one-to-one'dır eğer her farklı $a, a' \in A$ için $f(a) \neq f(a')$ ise

Onto

Bir $f:A\to B$ fonksiyonu onto'dur eğer B'nin her elemanı f fonksiyonu altında A'nın bazı elemanları için image ise

Bijection

Bir $f: A \rightarrow B$ fonksiyonu bijection'dir eğer f fonksiyonu hem one-to-one hemde onto ise

Inverse

 $R \subseteq AxB$ binary ilişkisinin tersi $R^{-1} \subseteq BxA$ şeklinde tanımlanır

Graph

- *A* bir küme ve *R*⊆*A*x*A* ise *A* üzerinde bir binary ilişki olsun. Bu ilişki bir directed graph ile gösterilebilir.
- Graph üzerinde her bir node A'nın bir elemanını gösterir.
- Her $(a, b) \in R$ için a'dan b'ye bir ok (kenar edge) çizilir.

 $R = \{(a, b), (b, a), (a, d), (d, c), (c, c), (c, a)\}$ ilişkisine ait graph

Sets, Relations

Graph

 $R = \{(i, j): i, j \in N \text{ } ve \text{ } i \leq j\} \text{ ilişkisine ait graph }$

Reflexive

Bir ilişki $R \subseteq AxA$ reflexive'dir eğer her bir $a \in A$ için $(a, a) \in R$ ise Figure 1 reflexive değildir ancak figure 2 reflexive'dir.

Symmetric

Bir ilişki $R \subseteq AxA$ symmetric'tir eğer $(a, b) \in R$ iken $(b, a) \in R$ ise

Antisymmetric

Bir ilişki $R \subseteq AxA$ antisymmetric'tir eğer herhangi bir ordered pair $(a, b) \in R$ iken $(b, a) \notin R$ ise

Sets, Relations

Transitive

Bir ilişki $R \subseteq AxA$ transitive'dir eğer $(a, b) \in R$ ve $(b, c) \in R$ iken $(a, c) \in R$ ise

Equivalence relation

Bir ilişki reflexive, symmetric ve transitive ise equivalence relation olarak adlandırılır.

Partial order

Bir ilişki reflexive, antisymmetric ve transitive ise partial order olarak adlandırılır.

Total order

Bir partial order $R \subseteq AxA$ total order'dır eğer $a, b \in A$ iken $(a, b) \in R$ veya $(b, a) \in R$ ise

4

Sets, Relations

Path

Bir binary ilişkideki path(yol) $(a_1, a_2, ..., a_n)$ sıralı serisidir ve bu seride her $(a_i, a_{i+1}) \in R'dir$.

Length

Bir yol $(a_1, a_2, ..., a_n)$ için length n'dir.

Cycle

Bir yol $(a_1, a_2, ..., a_n)$ cycle'dır eğer $(a_n, a_1) \in R$ ise ve tüm a_i 'ler farklı ise

Sets, Relations

Reflexive transitive closure

Eğer bir R ilişkisi reflexive ve transitive değilken, R ilişkisini içeren R^* ilişkisi reflexive ve transitive ise, R^* ilişkisi R ilişkisinin reflexive transitive closure'u olarak adlandırılır. (R^* ilişkisi mümkün olan en az kenara sahiptir.)

Tanım

 $R \subseteq A^2$ ' de tanımlı

 $R^* = \{(a, b) : a, b \in A \text{ ve } R'\text{de } a' \text{ dan } b'\text{ye bir } path(yol) \text{ varsa}\}$

Ödev

- Problemleri çözünüz 1.1.1 1.1.4 (sayfa 8-9)
- Problemleri çözünüz 1.3.1, 1.3.2, 1.3.4, 1.3.7, 1.3.9 (sayfa 20-21)