INFS7450 SOCIAL MEDIA ANALYTICS Tutorial Week 6

School of ITEE

The University of Queensland

Outlines

- Quiz 3
- Knowledge Extension to Lecture 6
- Code Demo
- Q&A

Section 1: Quiz 3

A typical shape of a power-law distribution

Power-Law Degree Distribution

- When the frequency of an event changes as a power of an attribute
 - The frequency follows a power-law

$$\ln p_d = -b \ln d + \ln a$$

	-
Question	To test whether a network exhibits a power-law distribution, we should: 1, Plot a log-log graph, where the x-axis represents <i>lnk</i> and the y-axis represents <i>lnp_k</i> 2, Pick a popularity measure and compute it for the whole network 3, If a power-law distribution exists, we should observe a straight line 4, Compute the fraction of individuals having popularity k.
Answer	A. 1,2,3,4
	C. 2,3,1,4
	D. 3,1,2,4
Correct Feedback	you are correct
Incorrect Feedback	B is correct

To test whether a network exhibits a power-law distribution

- 1. Pick a popularity measure and compute it for the whole network
 - Example: number of friends for all nodes
- 2. Compute p_k , the fraction of individuals having popularity k.
- 3. Plot a log-log graph, where the x-axis represents $\ln k$ and the y-axis represents $\ln p_k$.
- 4. If a power-law distribution exists, we should observe a straight line

This is not a systematic approach!

1. Other distributions could also exhibit this pattern

For a systematic approach see:

Clauset, Aaron, Cosma Rohilla Shalizi, and Mark EJ Newman. "Power-law distributions in empirical data." *SIAM review* 51(4) (2009): 661-703.

Diameter: The maximum (shortest path)
distance between any pair of nodes in a graph

Shortest paths:

(A,B):1

(A,C):1

(A,D):2

(B,C):1

(B,D):2

(C,D):1

Average shortest path length for a connected graph (component) or a strongly connected (component of a) directed graph

$$\overline{h} = \frac{1}{2E_{\text{max}}} \sum_{i, j \neq i} h_{ij}$$

 $\overline{h} = rac{1}{2E_{\max}} \sum_{i, \ i
eq i} h_{ij}$ where h_{ij} is the distance from node i to node j E_{max} is max number of edges (total number of node pairs) = n(n-1)/2

Shortest paths:

(A,C):1 (C,A):1
(A,D):2 (D,A):2
(B,C):1 (C,B):1
$$E_{max} = \frac{n(n-1)}{2} = \frac{4 \times (4-1)}{2} = 6$$

$$\bar{h} = \frac{1}{2 \times 6} \times 16 = \frac{4}{3}$$

Question

What is the clustering coefficient of node C in the following graph?

Answer

B. 1/2

C. 1

D. A, B, C are all wrong

Correct Feedback

you are correct

Incorrect Feedback

A is correct

•
$$C_i \in [0,1]$$

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

where e_i is the number of edges between the neighbors of node i

 $C_i \! = \! 0$ If the degree of node i is 1.

Average clustering coefficient: $C = \frac{1}{N} \sum_{i=1}^{N} C_{i}$

$$C = \frac{1}{N} \sum_{i}^{N} C_{i}$$

$$C_i = \frac{2e_i}{k_i(k_i - 1)} = \frac{2 \times 1}{3(3 - 1)} = \frac{1}{3}$$

Question Which of the following values is closest to the average clustering coefficient of the following graph?

$$C_A = \frac{2e_i}{k_i(k_i - 1)} = 0$$

$$C_B = \frac{2e_i}{k_i(k_i - 1)} = \frac{2 \times 1}{2(2 - 1)} = 1$$

$$C_C = \frac{2e_i}{k_i(k_i - 1)} = \frac{2 \times 1}{3(3 - 1)} = \frac{1}{3}$$

$$C_D = \frac{2e_i}{k_i(k_i - 1)} = \frac{2 \times 1}{3(3 - 1)} = \frac{1}{3}$$

you are correct

D. 1/5

$$C_E = \frac{2e_i}{k_i(k_i - 1)} = \frac{2 \times 0}{3(3 - 1)} = 0$$

Incorrect Feedback

Correct Feedback

Answer

C is correct

$$C_F = \frac{2e_i}{k_i(k_i - 1)} = 0$$

$$C_G = \frac{2e_i}{k_i(k_i - 1)} = 0$$

• $C_i \in [0,1]$

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

 $C_i = \frac{2e_i}{k_i(k_i - 1)}$ where e_i is the number of edges between the neighbors of node i

 $C_i = 0$ If the degree of node *i* is 1.

$$C = 1/2$$

• Average clustering coefficient:
$$C = \frac{1}{N} \sum_{i=1}^{N} C_{i}$$

$$C = \frac{1}{7} \left(1 + \frac{1}{3} + \frac{1}{3} \right) = 0.238$$

Question	How many components does the fo	 A component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the
Answer	✓ A. 3, 22B. 3,10C. 4,22	original graph. It is not a component
Correct Feedback	D. A,B,C are all wrong you are correct	A Graph with 3 Components
Correct reedback	you are correct	
Incorrect Feedback	A is correct	

Section 2

- •In-class Quiz about random graph.
- •Why is the (average) clustering coefficient of a regular lattice $\frac{3(c-2)}{4(c-1)}$
- •Properties of the configuration model.
- •How to calculate Pearson correlation.

In-class Quiz about Random Graph

QUESTION 7

Exercise Question

Question	Which of the following is correct accord	ding to the random graph model?
Answer	A. The graph is a result of a randor	m process.
	B. The degree distribution is binon	nial.
	C. random graph can grow very lar	ge but nodes will be just a few hop
	D. A,B,C are all correct.	 <u>Fact:</u> Degree distril Let P(k) denote the
Correct Feedback	you are correct	degree k :
Incorrect Feedback	D is correct	$P(k) = \binom{n-1}{k} p^{k}$

Fact: Degree distribution of G_{np} is binomial.

Let P(k) denote the fraction of nodes with degree k:

will be just a few hops apart.

Mean, variance of a binomial distribution

$$c = \overline{k} = p(n-1)$$

$$\sigma^2 = p(1-p)(n-1)$$

https://en.wikipedia.org/wiki/Binomial_distribution

Exercise Question

Question	Which of the following is WRONG according to the Random Graph Model?
Answer	A. The graph is a result of a random process, and we can have many different realizations given the same n (node number) and p (edge probability).
	B. The average path length in a random graph is close to $\frac{\ln V }{\ln c}$, where V is the node set, and C is the expected degree.
	C. In random graphs, as we increase p , a large fraction of nodes start getting connected.
	\odot D. In random graph, when $p=0$, the size of the giant component is n.
Correct Feedback	you are correct
Incorrect Feedback	D is correct • In random graphs:

The average path length in a random graph is

$$h pprox rac{\ln |V|}{\ln c}$$

Droof

in random graphs:

$$-p=0$$

• the size of the giant component is 0

$$- p = 1$$

• the size of the giant component is *n*

Exercise Question

Question	In random graphs, as we increase p (edge appears i.i.d. with probability p), a large fraction of nodes start getting connected. What's the size of the giant component when p=1?
Answer	A. the size of the giant component is 0 B. the size of the giant component is n. n is the number of nodes.
	C. the size of the giant component is between 0-n. n is the number of nodes. D. the size is uncertain
Correct Feedback	you are correct
Incorrect Feedback	B is correct

- The phase transition we focus on happens when
 - average node degree c = 1 (or when p = 1/(n-1))

Probability (p)	0.0	0.088	0.11	1.0
Average Node Degree (c)	0.0	0.8	≈1	n-1=9
Diameter	0	2	6	1
Giant Component Size	0	4	7	10
Average Path Length	0.0	1.5	2.66	1.0

Regular Lattice

- In real-world interactions, many individuals have a limited and often at least, a fixed number of connections
- In graph theory terms, this assumption is equivalent to embedding users in a regular network
- A regular (ring) lattice is a special case of regular networks where there exists a certain pattern on how ordered nodes are connected to one another
- In a regular lattice of degree c, nodes are connected to their previous c/2 and following c/2 neighbors
- Formally, for node set $V=\{v_1, v_2, v_3, ..., v_n\}$, an edge exists between node i and j if and only if

$$0 \le \min(n - |i - j|, |i - j|) \le c/2$$

Homework

 Why is the (average) clustering coefficient of a regular lattice? Try to prove it.

$$\frac{3(c-2)}{4(c-1)}$$

If we want to calculate the clustering coefficient of node v_i , we first list its neighbor nodes.

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$
 where e_i is the number of edges between the neighbors of node i

We start calculate e_i from the previous c/2 neighbors

We calculate the number of common neighbor nodes between node v_i and node $v_{i-\frac{c}{2}}$

$$V_{i-\frac{c}{2}}, V_{i-\frac{c}{2}+1}, \dots, V_{i-2}, V_{i-1}, v_{i}, V_{i+1}, V_{i+2}, \dots, V_{i+\frac{c}{2}-1}, V_{i+\frac{c}{2}}$$
Previous c/2 neighbors

Following c/2 neighbors

Previous c/2 neighbors part

Following c/2 neighbors

$$e_{i} = \frac{\frac{c}{2}(\frac{c}{2} - 1)}{2} + (\frac{c}{2} - 1)\frac{c}{4}$$

$$= \frac{3(c^{2} - 2c)}{2}$$

$$\boldsymbol{v}_{i-\frac{c}{2}}, \, \mathbf{V}_{i-\frac{c}{2}+1} \, \dots, \, \mathbf{V}_{i-2}, \, \mathbf{V}_{i-1}, \, \boldsymbol{v}_{i}, \, \boldsymbol{v}_{i+1}, \, \boldsymbol{v}_{i+2}, \, \dots, \, \mathbf{V}_{i+\frac{c}{2}-1}, \, \mathbf{V}_{i+\frac{c}{2}}, \, \mathbf{V}_{i+\frac{c}{2}+1}$$

$$C = \frac{2e_i}{c(c-1)}$$

$$= 2 \times \frac{3(c^2 - 2c)}{8} \times \frac{1}{c(c-1)}$$

$$= \frac{3(c-2)}{4(c-1)}$$

$$C = \frac{2e_{i}}{c(c-1)}$$

$$= 2 \times \frac{3(c^{2}-2c)}{8} \times \frac{1}{c(c-1)}$$

$$= \frac{3(c-2)}{c(c-1)}$$

$$v_{i-\frac{c}{2}}, v_{i-\frac{c}{2}+1}, v_{i-\frac{c}{2}+1}, v_{i+\frac{c}{2}+1}, v_{i+\frac{c}{2}+1}, v_{i+\frac{c}{2}+1}, v_{i+\frac{c}{2}+1}, v_{i+\frac{c}{2}+2}, v_{i+\frac{c}{2}+1}, v_{i+\frac{c}{2}+2}, v_{i+\frac{c}{2}+1}, v_{i+\frac{c}{2}+2}, v_{i+\frac{c}{2}+1}, v_{i$$

$$v_{i-\frac{c}{2}}$$

$$v_{i-\frac{c}{2}}, v_{i-\frac{c}{2}+1}, \dots, v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, \dots, v_{i+\frac{c}{2}-1}, v_{i+\frac{c}{2}}, v_{i+\frac{c}{2}+1}, v_{i+\frac{c}{2}+2}, \dots$$

$$\frac{c}{2}$$
, $V_{i+\frac{c}{2}+1}$, $V_{i+\frac{c}{2}+2}$, ...

Properties of the Configuration Model

The probability that node v_i gets connected to node v_i is approximately

$$\frac{d_i d_j}{2m}$$

Proof:

- There are d_i instances of v_i that it could be next to
- The probability of being next to v_j is $\frac{d_j}{2m-1}$
- There are d_i instances of v_i ; therefore, the total probability is $(d_id_j)/(2m-1) \approx (d_id_j)/2m$

How to generate a Configuration model

- 1. Create a list where each node v_i with degree d_i is repeated d_i times
- 2. Shuffle the list
- 3. Starting from the first index, join adjacent nodes

Example: Degree sequence (2,2,2)

Random Shuffle 1: v_1 v_2 v_2 v_3 v_3 v_1 Random Shuffle 2:
Random Shuffle 2:
$egin{array}{ c c c c c c c c c c c c c c c c c c c$

1. Assume that there are m edges in the graph, so the total number of degree is 2m

— Handshake Theorem: Let G=(V,E) be an undirected graph with m edges. Then $2m = \sum_{v \in V} \deg(v)$

Proof: Each edge contributes twice to the total degree count of all vertices. Thus, both sides of the equation equal to twice the number of edges.

Properties of the Configuration Model

The probability that node v_i gets connected to node v_i is approximately

$$\frac{d_i d_j}{2m}$$

Proof:

- There are d_i instances of v_i that it could be next to
- The probability of being next to v_j is $\frac{d_j}{2m-1}$
- There are d_i instances of v_i ; therefore, the total probability is $(d_id_j)/(2m-1) \approx (d_id_j)/2m$

1. Assume that there are *m* edges in the graph, so the total number of degree is 2*m*

2. The number of all possible values that this position can take is $\frac{1}{2m-1}$.

Properties of the Configuration Model

The probability that node v_i gets connected to node v_i is approximately

$$\frac{d_i d_j}{2m}$$

Proof:

- There are d_i instances of v_i that it could be next to
- The probability of being next to v_j is $\frac{d_j}{2m-1}$
- There are d_i instances of v_i ; therefore, the total probability is $(d_id_i)/(2m-1) \approx (d_id_i)/2m$

1. Assume that there are m edges in the graph, so the total number of degree is 2m

- 2. The number of all possible values that this position can take is $\frac{1}{2m-1}$.
- 3. The probability of being next to v_j is $\frac{d_j}{2m-1}$.

Properties of the Configuration Model

The probability that node v_i gets connected to node v_i is approximately

$$\frac{d_i d_j}{2m}$$

Proof:

- There are d_i instances of v_i that it could be next to
- The probability of being next to v_j is $\frac{d_j}{2m-1}$
- There are d_i instances of v_i ; therefore, the total probability is $(d_id_j)/(2m-1) \approx (d_id_j)/2m$

1. Assume that there are m edges in the graph, so the total number of degree is 2m

- 2. The number of all possible values that this position can take is $\frac{1}{2m-1}$.
- 3. The probability of being next to v_j is $\frac{d_j}{2m-1}$.
- 4. There are d_i instances of v_i . Therefore, the total probability is $\frac{d_i d_j}{2m-1}$.

Properties of the Configuration Model

The probability that node v_i gets connected to node v_i is approximately

$$\frac{d_i d_j}{2m}$$

Proof:

- There are d_i instances of v_i that it could be next to
- The probability of being next to v_j is $\frac{d_j}{2m-1}$
- There are d_i instances of v_i ; therefore, the total probability is $(d_id_j)/(2m-1) \approx (d_id_j)/2m$

Pearson correlation $\rho(X,Y)$ is the normalized version of covariance

$$\rho(X_L, X_R) = \frac{\sigma(X_L, X_R)}{\sigma(X_L)\sigma(X_R)}.$$

$$\sigma(X_L) = \sigma(X_R)$$

Standard deviation

In our case:
$$\sigma(X_L) = \sigma(X_R)$$
 $\sigma_X^2 = \mathrm{E}[(X - \mathrm{E}[X])^2] = \mathrm{E}[X^2] - [\mathrm{E}[X]]^2$ Standard deviation

How to calculate it?

$$\rho(X_L, X_R) = -0.67$$

Pearson correlation $\rho(X,Y)$ is the normalized version of covariance

$$\rho(X_L, X_R) = \underbrace{\frac{\sigma(X_L, X_R)}{\sigma(X_L)\sigma(X_R)}}.$$

In our case: $\sigma(X_L) = \sigma(X_R)$

$$\sigma(X_L) = \sigma(X_R)$$

$$\sigma_X^2 = \mathrm{E}[(X - \mathrm{E}[X])^2] = \mathrm{E}[X^2] - [\mathrm{E}[X]]^2$$

Standard deviation

$$X_L = \left[egin{array}{c} 18 \ 21 \ 21 \ 20 \end{array}
ight] \qquad X_R = \left[egin{array}{c} 21 \ 18 \ 20 \ 21 \end{array}
ight]$$

$$\rho(X_L, X_R) = -0.67$$

$$\sigma(X_L, X_R) = \mathbf{E}[X_L X_R] - \mathbf{E}[X_L] \mathbf{E}[X_R]$$

$$= \frac{\sum_{ij} A_{ij} x_i x_j}{2m} - \frac{\sum_{ij} d_i d_j x_i x_j}{(2m)^2}$$

$$= \frac{1}{2m} \sum_{ij} (A_{ij} - \frac{d_i d_j}{2m}) x_i x_j$$

```
In [6]: A = [[0,0,1],
             [0,0,1],
             [1,1,0]]
        d = [1,1,2]
        x = [18, 20, 21]
        m = 2
        def cal cov(A,d,x,m):
            value = 0
            for i in range(len(A)):
                for j in range(len(A[i])):
                    value += (A[i][j]-(d[i]*d[j])/(2*m))*x[i]*x[j]
            value = value/(2*m)
            return value
        cov = cal cov(A,d,x,m)
        print(cov)
```

Pearson correlation $\rho(X,Y)$ is the normalized version of covariance

$$\rho(X_L, X_R) = \frac{\sigma(X_L, X_R)}{\sigma(X_L)\sigma(X_R)}$$

In our case:
$$\sigma(X_L) = \sigma(X_L)$$

In our case:
$$\sigma(X_L) = \sigma(X_R)$$
 $\sigma_X^2 = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - [\mathbb{E}[X]]^2$

Standard deviation

Variance

$$E(X_L) = E(X_R)$$

$$E(X_L) = E(X_R) = \frac{\sum_{i} (X_L)_i}{2m} = \frac{\sum_{i} d_i x_i}{2m}$$

400.0

$$X_L = \left[egin{array}{c} 18 \ 21 \ 21 \ 20 \end{array}
ight] \qquad X_R = \left[egin{array}{c} 21 \ 18 \ 20 \ 21 \end{array}
ight]$$

$$\rho(X_L, X_R) = -0.67$$

$$\sigma_X^2 = \mathrm{E}[(X - \mathrm{E}[X])^2] = \mathrm{E}[X^2] - (\mathrm{E}[X])^2$$

```
x 1 = [18, 21, 20]
d 1 = [1,2,1]
m=2
def cal e xl 2(x l,d l,m):
    value = 0
    for i in range(len(x 1)):
        value += d l[i]*x l[i]*x l[i]
    value = value/(2*m)
    return value
e \times 1 = cal \times 2 \times 1, d \cdot 1, m
print(e_xl_2)
```

```
x 1 = [18, 21, 20]
d 1 = [1,2,1]
m=2
def cal e xl(x l,d l,m):
     value = 0
     for i in range(len(x 1)):
          value += d_l[i]*x_l[i]
     value = value/(2*m)
     return value
e \times 12 = cal e \times 1(x \cdot 1, d \cdot 1, m) * cal e \times 1(x \cdot 1, d \cdot 1, m)
print(e x12)
```

Pearson correlation $\rho(X,Y)$ is the normalized version of covariance $\rho(X_L,X_R) = \frac{\sigma(X_L,X_R)}{\sigma(X_L)\sigma(X_R)}$.

$$\rho(X_L, X_R) = \frac{\sigma(X_L, X_R)}{\sigma(X_L)\sigma(X_R)}.$$

$$\sigma(X_L) = \sigma(X_R)$$

Standard deviation

In our case:
$$\sigma(X_L) = \sigma(X_R)$$
 $\sigma_X^2 = \mathrm{E}[(X - \mathrm{E}[X])^2] = \mathrm{E}[X^2] - [\mathrm{E}[X]]^2$ Standard deviation

$$X_L = \left[egin{array}{c} 18 \ 21 \ 21 \ 20 \end{array}
ight] \qquad X_R = \left[egin{array}{c} 21 \ 18 \ 20 \ 21 \end{array}
ight]$$

$$\rho(X_L, X_R) = -0.67$$

$$\rho(X_L, X_R) = \frac{-1}{\sqrt{1.5}\sqrt{1.5}} = -\frac{2}{3} = -0.67$$

See you next week©