Course Title: Data Warehousing and Data Mining

Course no: CSC-451 Full Marks: 60+20+20

Credit hours: 3 Pass Marks: 24+8+8

Nature of course: Theory (3 Hrs.) + Lab (3 Hrs.)

Course Synopsis: Analysis of advanced aspect of data warehousing and data mining.

Goals: This course introduces advanced aspects of data warehousing and data mining, encompassing the principles, research results and commercial application of the current technologies

Unit	Course content-breakdown	Lecture	Remarks
	Course content-breakdown	Hours	
1	Introduction	5	
	What motivated Data mining? What is Data Mining?		
	 Types of databases (Relational database, Data 		
	Warehouses, Transactional Database)		
	 Functionalities of data mining – What kinds of Pattern 		
	can be mined?		
	 Association Analysis, Cluster Analysis, Outlier 		
	Analysis, Evolution Analysis		
	 Stages of Knowledge discovery in database(KDD) 		
	 Setting up a KDD environment 		
	 Issues in Data Warehouse and Data Mining 		
	 Application of Data Warehouse and Data Mining 		
2	Data Warehouse for Data mining	4	
	 Differences between operational database systems and 		
	data warehouses		
	 Data Warehouse Architecture 		
	 Distributed and Virtual Data Warehouse 		
	 Data Warehouse Manager 		
	 Data marts, Metadata, Multidimensional data model 		
	 From Tables and Spread Sheets to Data Cubes 		

	Star schema, Snowflake schema and Fact constellation	
	schema	
3	OLAP technology for Data Mining	6
	 On-line analytical processing models and operations 	
	(drill down, drill up, slice, dice, pivot)	
	 Types of OLAP Servers: ROLAP versus MOLAP 	
	versus HOLAP	
	■ OLTP	
4	Tuning for data warehouse	4
	 Computation of Data Cubes, modeling 	
	 OLAP data, OLAP queries 	
	 Data Warehouse back end tools 	
	 Tuning and testing of Data Warehouse 	
5	Data Mining techniques	4
	 Data Mining definition and Task 	
	 KDD versus Data Mining 	
	 Data Mining techniques, tools and application 	
6	Data mining query languages	5
	 Data mining query languages 	
	 Data specification, specifying knowledge, hierarchy 	
	specification, pattern presentation & visualization	
	specification	
	 Data mining languages and standardization of data 	
	mining	
7	Association analysis	6
	 Association Rule Mining (Market basket analysis) 	
	Why Association Mining is necessary?	
	 Pros and Cons of Association Rules 	
	 Apriori Algorithm 	
8	Cluster analysis, Classification and Predication	7
	• What is classification? What is predication?	

	 Issues regarding classification and prediction (Preparing 		
	the data for classification and prediction, Comparing		
	classification methods)		
	 Classification by decision tree induction (Extracting 		
	classification rules from decision trees)		
	 Bayesian Classification 		
	 Classification by back propagation 		
	 Introduction to Regression (Types of Regression) 		
	 Clustering Algorithm (K-mean and K-Mediod 		
	Algorithms)		
9	Advanced concepts in data mining	4	
	 Mining Text Databases 		
	 Mining the World Wide Web 		
	 Mining Multimedia and Spatial Databases 		

Laboratory:

- 1. Creating a simple data warehouse
- 2. Concepts of data cleaning and preparing for operation
- 3. Implementing classification and clustering algorithms in any programming language
- 4. Association rule mining though data mining tools
- 5. Data Classification through data mining tools
- 6. Clustering through data mining tools
- 7. Data visualization through data mining tools

Text Books:

- 1. Data Mining Concepts and Techniques, Morgan Kaufmann J. Han, M Kamber Second Edition ISBN: 978-1-55860-901-3
- 2. Data Warehousing in the Real World Sam Anahory and Dennis Murray, Pearson Edition Asia.

References:

- 1. Data Mining Techniques Arun K Pujari, University Press.
- 2. Data Mining- Pieter Adriaans, Dolf Zantinge
- 3. Data Mining, Alex Berson, Stephen Smith, Korth Theorling, TMH.
- 4. Data Mining, Adriaans, Addison-Wesley Longman.

Model Question

Full marks: 60 Pass marks: 24 Time: 3 hours.

Bachelor Level/Fourth Year/Eight Semester/Science

Data Warehousing and Data Mining (CSC-451)

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks. Group-A

Long Answer Questions (Attempt any Two questions)

[2x10=20]

- 1. Suppose that a data warehouse for Big University consists of the following four dimensions: student, course, semester, and instructor, and two measures count and avggrade. When at the lowest conceptual level (e.g., for a given student, course, semester, and instructor combination), the avg-grade measure stores the actual course grade of the student. At higher conceptual levels, avg-grade stores the average grade for the given combination.
 - a) Draw a snowflake schema diagram for the data warehouse.
 - b) Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each Big University Student.
 - c) If each dimension has five levels (including all), such as "student < major < status < university < all", how many cuboids will this cube contain (including the base and apex cuboids)?
- 2. A= {A1, A2, A3, A4, A5, A6}, Assume σ = 35%. Use A priori algorithm to get the desired solution.

A1	A2	A3	A4	A5	A6
0	0	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	1	0	1	0	0
1	0	1	0	1	1
0	1	1	1	0	1
0	0	0	1	1	0

0	1	0	1	0	1
1	0	0	1	0	0
1	1	1	1	1	1

3. What kind of data preprocessing do we need before applying data mining algorithm to any data set. Explain binning method to handle noisy data with example.

Group- B

	Answer Questions (Attempt any <u>Eight</u> questions) on number 13 is compulsory.	[8x5=40]
4.	Explain the use of frequent item set generation process.	[5]
5.	Differentiate between data marts and data cubes.	[5]
6.	Explain OLAP operations with example?	[5]
7.	List the drawbacks of ID3 algorithm with over-fitting and its remedy technique	es [5]
8.	Write the algorithm for K-means clustering. Compare it with k-neares	st neighbor
	algorithm.	[5]
9.	What is text mining? Explain the text indexing techniques.	[5]
10.	Describe genetic algorithm using as problem solving technique in data mining.	. [5]
11.	What do you mean by WWW mining? Explain WWW mining techniques.	[5]
12.	What is DMQL? How do you define Star Schema using DMQL?	[5]
13.	Write short notes (Any Two)	[2x2.5=5]
a)b)c)	Text Database Mining Back propagation Algorithm Regression	

d) HOLAP