AML701 Mechanics and Mathematics

Major Test

Duration: 2 hr (1:00 PM - 3:00 PM)

Total Marks: 40

Date: 23-Nov-2017

Instructions:

(a) Write all answers clearly. Copy is strictly prohibited. Mobile is not allowed in the exam hall.

Problem 1: A slender rod CDE of length L and mass M is attached to a pin support at its midpoint D. A second identical rod AB is rotating about a pin support at A with an angular velocity $\vec{\Omega}$ when its end B strikes end C of rod CDE. Denoting by e the coefficient of restitution between the rods, determine the angular velocity of each rod immediately after the impact. (12)

Problem 2: A homogeneous disk of mass m and radius r is welded to a vertical shaft AB with which it forms an angle $\beta=45^{0}$ as shown in figure. Knowing that the shaft rotates with an angular velocity $\vec{\omega}$. Determine the kinetic energy of the disk. (Given $I_{xx}^{G}=mr^{2}/4$, $I_{yy}^{G}=mr^{2}/2$, $I_{zz}^{G}=mr^{2}/4$, G is centre of mass of disk.)

Problem 3: A rod BC of mass m is attached by pins to two uniform disks as shown. Disk-1 has mass m_1 and radius r_1 while disk-2 has mass m_2 and radius r_2 . Knowing that the system is released from rest in the position shown. Determine the velocity of the rod after disk-1 has rotated through 90^0 in clockwise direction. Assume rolling without friction at the contact with ground. (10)

Fig: 3

Problem 4: A model of submarine of mass m=200kg travels under a sea such that the propeller at B rotates with an angular velocity $10 \ rad/s$ and an angular acceleration $2.6 \ rad/s^2$ with respect to the submarine as shown in figure. At that instant, the submarine is also able to roll, yaw and pitch with angular velocities $\omega_x=1 \ rad/s$, $\omega_y=2 \ rad/s$ and $\omega_z=3 \ rad/s$ and angular accelerations $\dot{\omega}_x=4 \ rad/s^2$, $\dot{\omega}_y=5 \ rad/s^2$ and $\dot{\omega}_z=6 \ rad/s^2$ in x,y and z directions respectively with respect to the fixed frame as shown in figure. Suppose that x,y and z axes are principal axes at the centre of mass C with $I_{xx}^C=120kg.m^2$, $I_{yy}^C=90kg.m^2$ and $I_{zz}^C=100kg.m^2$. Determine the rate of change of angular momentum at P with respect to the fixed frame, i.e $\frac{d\vec{H}_P}{dt}|_F$ (Given $PC=4\hat{i}$ and ignore the mass of propeller. Assume all rotations are anti-clockwise directions).

