Name:	Date:

Note: The purpose of the following questions is:

Class 2: Finite Automata

- 1. [Slide 2-3] What is the Deterministic Finite Accepters (dfa)? In common with all automata, a deterministic accepter has internal states, rules for transitions from one state to another, some input, and ways of making decisions.
- 2. [Slide 4] Consider the following dfa:

Does it accepts or rejects the following input strings

- a) abba [Slide 5-10]
- b) aba [slide 11-15]
- c) λ [Slide 16-17]
- 3. Consider the following dfa:

Does it accepts or rejects the following input strings

- a) aab [Slide 18-22]
- b) bab [Slide 23-27]

4.	[Slide 28-36] For the dfa defined	in question	#2, all	of these	are incorporated	in the
	following definition.					

$$M = (Q, \Sigma, \delta, q_0, F)$$

Define the following:

$$Q =$$

$$\Sigma =$$

$$\delta =$$

$$q_o =$$

$$F =$$

$$\delta(q_0,a)=$$

$$\delta(q_0,b)=$$

$$\delta(q_2,b)=$$

5. [Slide 37] For the dfa in question #2, the transition Function δ , complete the following table

δ	а	b
q_0		
q_1		
q_2		
q_3		
q_4		
q_5		

6. [Slide 38-41] Extended Transition Function δ^* is defined as

$$\delta^*: Q \times \Sigma^* \to Q$$

For the dfa in question #2:

$$\delta * (q_0, ab) =$$

$$\delta * (q_0, abba) =$$

$$\delta * (q_0, abbbaa) =$$

- 7. [Slide 44-45] In question #2, show how δ^* could be used recursively to prove that $\delta^*(q_0, ab) = q_2$
- 8. [Slide 46] $L(M) = \{ \text{ strings that drive } M \text{ to a final state} \}$ Define L(M) for the Machine in question #2.

9. Find dfa's for the following languages on $\Sigma = \{a, b\}$.

a)
$$L(M) = \{\lambda, ab, abba\}$$
 [Slide 47-48]

b)
$$L(M) = \{a^n b : n \ge 0\}$$
 [Slide 51]

c)
$$L(M) = \{all \ strings \ with \ prefix \ ab\}$$
 [Slide 52]
d) $L(M) = \{awa: w \in \{a, b\}^*\}$ [Slide 56]

10. [Slide 53] Find dfa's for the following languages on
$$\Sigma = \{0, 1\}$$
. $L(M) = \{all \ strings \ without \ substring \ 001\}$

11. [Slide 55] Define regular languages, and give few examples for some regular languages.

Reading:

An Introduction to Formal Language and Automata, Peter Linz, 5th edition, Sec 2.1

Selected Exercises:

Section 2.1: 2(c), 5(a), 7(a, d), 9(a, d), 13, 14, 23(a, b), 25.