

EVIDENCE & ANALYSIS OF DATA.....8

LIMITATIONS OF MY PROJECT 18

FUTURE ENHANCEMENTS 19

PLAGIARISM CHECK22

EVIDENCE & ANALYSIS OF DATA Dataset used in the project: Average Health Claim Policyholder Claim Frequency Score (1-Age ID Amount (per year) 10) (₹) 17 Calculations using DESCRIPTIVE STATISTICS

Central Tendency Calculations

<u>Age</u>

Mean of ages of the above policy holders

Mean= Sum Of All Ages/No of Datapoints

$$=983/25 = 39.32$$

Median of ages of the above policy holders

Median

Sort the values:

Median= 13th value i.e, <u>38</u>

Mode of ages of the policy holders

Mode= Highest frequency value

In the dataset the most recurring value is <u>25</u>

Health Score (1-10)

Mean of health scores of the above policy holders

Mean= Sum Of All Health Scores/No of Datapoints

$$=168/25 = 6.72$$

Median of health scores of the above policy holders

Median

9/9	3729°0376°0376°0376°0
1 1 2 3 3 - D ⁴ 5	X
- D ₅ 6 7 8 9 10 11	3 45 6 3 7000
	Max(age)-Min(age) $= 55-25 = 30$ Range of Health Score $Max(Health score)-Min(Health score)$
92	=9-5 = 4 Range of Claim Frequency Max(Claim Frequency)-Min(Claim Frequency)
17	= 5-1 = 4 Variance
5 8	The calculation was done using excel the result along with screen shot is being placed here.
6	The formula used in excel sheet is VAR.S(list of variables)
59	
3	1867135649253

Poisson Distribution P(X)=

For x = 0, 1, 2, 3, 4:

$$P(0) = \frac{1.76^{0} \cdot e^{-1.76}}{0!} = \frac{1 \cdot 0.172044}{1} = 0.201897$$

Claim Frequency (x)	P(x)
0	0.201897
1	0.323034
2	0.258428
3	0.137828
4	0.055131

$$\lambda = \frac{\text{Sum of Claim Frequency}}{\text{Number of Rows}} = \frac{44}{25} = 1.76$$

$$\mu = 7308, \quad \sigma = 1557.89$$

8 /3 :	Policy	900	Z- value(z)	Probability	37
© ILL	Holder	Amount (x)		(P(Z <z))< th=""><th>1/5</th></z))<>	1/5
aT	Id 1	5000	-0.612088077	0.27	6
47	2	4500	-0.832899072	0.20	20
1)) [3	7000	0.271155901	0.61	2
	4	10000	1.596021869	0.94	2
5	5	6000	-0.170466088	0.43	3)
291	6	12000	2.479265848	0.99	
-25	7	8000	0.712777891	0.76	NN
(O) 57	8	9500	1.375210874	0.92	04/2
1015/5	9	4000	-1.053710066	0.15	50
	10	4200	-0.965385668	0.17	2)
(a) u	11	6100	-0.126303889	0.45	-
2)1	12	7500	0.491966896	0.69	6 9
R	13	9800	1.507697471	0.93	0/1
2	14	3900	-1.097872265	0.14	570
4	15	7400	0.447804697	0.67	L3
77	16	8100	0.75694009	0.78	657
// //	17	4300	-0.92122347	0.18	175
" // ®	18	5600	-0.347114884	0.36	000
5// @	19	6200	-0.08214169	0.47	M
	20	5900	-0.214628287	0.42	75
24	21	4000	-1.053710066	0.15	60
(5)	22	6000	-0.170466088	0.43	La
0	23	7400	0.447804697	0.67	0
6 35	24	8000	0.712777891	0.76	18
90	25	10500	1.816832864	0.97	// 🔘
512	863	135	62	925	7 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

