# **Quantum Notes**

Release 1.38

Lei Ma

### CONTENTS

| 1 | Introduction      | 3 |
|---|-------------------|---|
| 2 | Table of Contents | 5 |
|   | 2.1 Collections   | 5 |

Some notes for quantum

CONTENTS 1

2 CONTENTS

| CHAPTER |  |
|---------|--|
| ONE     |  |

## INTRODUCTION

Some notes continued from the full theoretical physics notes are here.

### **TABLE OF CONTENTS**

#### 2.1 Collections

0. Fine Structure Constant

:math: 'alpha = frac{k\_mathrm{e} e^2}{hbar c} = frac{1}{(4 pi varepsilon\_0)} frac{e^2}{hbar c} = frac{e^2 c mu\_0}{2 h}'

In electrostatic cgs units, :math'alpha =  $frac\{e^2\}\{hbar c\}'$ .

In natural units, :math: 'alpha =  $frac\{e^2\}\{4 pi\}$ '.

1. Hydrogen Atom

Potential  $V(r) = -fracZe^2 4\pi\epsilon_0 r$ .

Energy levels: :math: ' $E_{n} = -left(frac\{Z^2 \ mu \ e^4\}\{32 \ pi^2epsilon_0^2hbar^2\}right)frac\{1\}\{n^2\} = -left(frac\{Z^2hbar^2\}\{2mu \ a_{mu}^2\}right)frac\{1\}\{n^2\} = frac\{mu \ c^2Z^2alpha^2\}\{2n^2\}.$ 

Ground state of hydrogen atom  $\psi_{100}(r)=rac{1}{\sqrt{\pi}}rac{1}{a^{3/2}}e^{-Zr/a}.$ 



This open source project is hosted on GitHub: quantum.