후보과제(RFP) 기획서

과제명: 차량용 임베디드 소프트웨어 플랫폼 기술 개발

VESP (Vehicular Embedded Software Platform)

가. 개요

□ 개념 및 정의

o 파워트레인, 샤시, 바디 등 다양한 분야의 차량용 전장 시스템 및 인포테인먼트 단말기에 적용할 수 있는 실시간 운영체제, 미들웨어 및 지원도구 등을 국제 표준 에 맞게 개발하고, 이를 기반으로 ASV(Advanced Safety Vehicle) 서비스를 시 범 구현하여, 차세대 차량 안전 토탈 솔루션의 구축을 지원

- ADAS : Advanced Driver Assistance System
- AUTOSAR : AUTomotive Open System ARchitecture
- DCN: Distributed and Collaborative Navigation
- ECU : Electronic Control Unit
- HMI: Human Machine Interface
- OSEK/VDX: Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug / Vehicle Distributed eXecutive

< 차량용 임베디드 SW 플랫폼 개념도 >

□ 지원 필요성

- o 미래 자동차 산업의 경쟁 구조는 HW에서 SW화로 전환되는 추세
 - 차량 개발원가 중 SW의 비중이 2002년 37.9%에서 2005년 52.4%로 급증 (2005, VDC)
 - 현재 차랑 가격의 20%를 차지하는 전장부품이 2015년에 40%로 확대 예측
 - 전장부품의 75% 이상이 SW에 의해 제어될 것으로 예측
 - ASV 서비스에 IT 기술의 적용을 통해 사고예방 및 피해 최소화 추구 필요 (2006. 10, 서해대교 29 중 추돌 사건)
- o 자동차 생산 세계 5위국으로서, 자동차 생산원가 절감, 수입대체, 수익률 향상을 위해 전장부품 SW의 국산화 필요
 - H사는 2005년 전장부품의 70%를 Siemens, Bosch, Delphi 등에 의존
 - H사의 이익률은 5~8%, BMW의 이익률은 10~15% 수준
 - 자동차 고장 중 전자부품에 의한 비율은 2004년의 경우 40% 수준 (2004, 독일 자동차협회 보고서)
- o 세계 자동차 선진국은 전장부품의 종류가 확대되고, 부품들 사이 인터페이스 가 복잡해짐에 따라 임베디드 SW 간의 호환성 및 재사용성 향상을 위한 SW 공통 구조 및 표준 규격 개발을 추진하고 있음
 - 독일의 VECTOR사 등 유럽 자동차관련 업체들은 OSEK/VDX 및 AUTOSAR 표준규격에 기반한 ECU용 임베디드 SW 플랫폼을 개발하고 있음
 - 일본 자동차 제조사 중심으로 2004년 JASPAR를 구성해 AUTOSAR 등 국제 표준에 영향력 행사
 - IBM은 전장 SW 개발 및 유지 보수에 필요한 통합솔루션 ASF를 개발하여 보급
- o 자동차 산업의 개발 경쟁력 확보를 위해 완성차 업체 및 전장부품 업체가 공 통으로 적용할 수 있는 전장부품 임베디드 SW 개발 환경의 구축 필요
 - 미래 자동차 산업의 경쟁력은 전장부품 임베디드 SW의 품질, 통합 용이성, 재사용성 등이 결정
 - 전장부품 임베디드 SW의 품질 및 개발 생산성 향상을 지원하는 차량용 임 베디드 SW 플랫폼 기술 확보가 시급함
 - H사의 경우 20,000여 부품업체 중 2,000개 1차 부품업체 적용 가능

- o 자동차 전장부품은 국가 신 성장 동력 산업으로의 발전 필요
 - 전장부품 기술의 핵심으로 부각되고 있는 차량용 임베디드 SW의 기술 확보 가 중요하며, 이를 국책 사업으로 지원하는 것이 필요함
 - IT839 전략을 통해 확보된 임베디드 SW 핵심기술을 전장부품 임베디드 SW 개발에 적용하고, 확장 하는 것이 필요함

나. 연구목표 및 내용

- □ 최종 목표 및 내용
 - o 최종 목표

파워트레인, 샤시, 바디 등 다양한 분야의 차량용 전장 시스템 및 인포테인먼트 단말기에 탑재되는 임베디드 SW들의 호환성, 재사용성을 높일 수 있도록 SW 공통 구조 및 규격을 정하고, 이를 따르는 개발 방법론 및 도구가 지원되는 미래 차량용 임베디드 SW 플랫폼 (VESP, Vehicular Embedded SW Platform) 기술 개발

< VESP 개발 목표 개념도 >

< VESP 계층별 기술 구성도 >

- o 확보기술 내용
 - 자체개발 기술
 - · 차량용 임베디드 운영체제 기술
 - ① 차량 전장용 실시간 커널 기술
 - ② 마이크로 컨트롤러 추상화 및 드라이버 기술
 - ③ ECU(Electronic Control Unit) 추상화 기술
 - ④ 통신 추상화 및 드라이버
 - ⑤ I/O 추상화 및 드라이버 (전장 및 인포테인먼트용 운영체제 간 연동 기술)
 - · 차량용 임베디드 미들웨어 기술
 - ① 전장 HW 아키텍처에 독립적인 VESP 런타임 환경 기술
 - ② 전장 ECU 사이의 연동 제어 미들웨어 기술
 - ③ 응용 모듈의 동적 로딩 및 실행 관리 기술
 - ④ HMI (Human Machine Interface) 미들웨어 기술
 - ⑤ 인포테인먼트 단말용 GUI/Multimedia 기술

- . 차량용 임베디드 시스템 개발 방법론 및 지원도구 기술
 - ① SW 개발 방법론 기술
 - ② 소스코드 자동 생성 지원 도구 기술
 - ③ SW 검증 지원 도구 기술
 - ④ 시스템 설정 관리 도구 기술
 - ⑤ SW 개발 프로세스 지원 도구 기술
- · 응용 및 서비스
 - ① ASV를 위한 예방형/능동형/수동형 안전 기술
 - ② 차간 실시간 통신 기술
 - ③ 지능형 차량안전 판단/학습 기술
 - ④ 차세대 네비게이션(DCN, Distributed & Collaborative Navigation) 기술
 - ⑤ 자동인식에 의한 끊김없는 멀티미디어 재생 기술
- · 시범 임베디드 시스템
 - ① 전자 제어 시스템(브레이크 제어, 엔진 제어 등)
 - ② ADAS 단말
- 기존기술 활용

〈주관 연구기관〉

- · 리눅스 기반 임베디드 운영체제(Qplus)
- · Qplus 기반 SW 개발 지원도구(Esto)
- · 텔레매틱스 단말 SW 플랫폼 기술
- · 제품계열 기반 임베디드 시스템 개발방법론(마르미-EM)
- · 컴포넌트 기반 개발방법론(마르미-III)

<참여 연구기관>

- · 차량 ECU 제어 기술
- · 차량 센서 기술
- 차량용 테스트 베드 구축 및 운용 기술
- · 네비게이션 시스템 기술

< 추진 마일스톤 1/2 >

구분	2007년	2008년	2009년
<u>연도별</u>		o VESP 상세설계 및 핵심	
연구목표	및 기본 설계	기능 구현	및 테스트 베드 구축
	설계 - 마이크로 컨트롤러 및	o 차량용 임베디드 OS 기술 - 차량용 운영체제 실시간 커널 구현 및 메모리/ 통신 드라이버 개발 - 차량용 운영체제 인포테인먼트 하드웨어용 BSP 개발	실시간 커널 구현 및 메모리/통신 드라이버 개발
	- VESP 런타임 환경 API 및 엔진 설계	미들웨어 기술 - VESP 런타임 환경 구현	/Multimedia 미들웨어 개발
연도별 연구내용	개발 방법론 및 지원도 구 개발 - 차량용 임베디드 시스템 개발방법론 버전 1.0 개발 - 프로세스 지원도구 프로 토타입 개발		템 개발 방법론 및 지원 도구 개발 - 소스코드 자동 생성 지 원도구 버전 1.0 개발
	개념/기본 설계 - 능동 안전 기술 시스템 개념/기본 설계 - 시범 단말 및 전자 제어 시스템 요구기능 정의	 이 응용 및 서비스 - 예방 안전 기술 시스템 개발 및 시험 - 능동 안전 기술 시스템 개발 - 수동 안전 기술 시스템 개념/기본 설계 - 시범 단말 및 전자 제어 시스템 프로토타입 개발 	시험 - 수동 안전 기술 시스템 개발 - 1차 테스트 베드 구축 및 운용 - 시범 단말 및 전자 제어
연도별 주요결과물	설계서 o 차량용 임베디드 시스템 개발방법론 버전 1.0 o 프로세스 지원도구 프로 토타입 o 예방 안전 기술 시스템 설계서	 프로세스 지원도구 버전 1.0 예방 안전 기술 시스템 모듈 소스코드 예방 안전 기술 시스템 시험절차서 	운영체제 V1.0 o 연동 제어 및 GUI/Multimedia 미들웨어 o 소스코드 자동 생성 지

< 추진 마일스톤 2/2 >

구분	2010년	2011년	비고
연도별	o VESP 확장 및 실차	o VESP 안정화 및 상용화	
연구목표	적용	추진	
217#	o 차량용 임베디드 OS 기술 - 차량용 운영체제 실시간 성능 검증 및 안정화 - 차량 제어 전장 시스템용 시제품 개발 o 차량용 임베디드 미들웨어 기술 - 연동제어 보안 기능 확장 및 HMI 미들웨어 개발 - 동적 응용 관리 기술	 ○ 차량용 임베디드 OS 기술 차량용 운영체제 검증 및 안정화 ○ 차량용 임베디드 미들웨어 기술 차량용 미들웨어 검증 및 	
연도별 연구내용	- 테스트 케이스 자동 생성 도구 개발 - 소스코드 테스트 도구 개 발 o 응용 및 서비스 - 수동 안전 기술 시스템 시험 - 2차 테스트 베드 구축 및 운용 - 1차 통합 시험(실차 적용)		차량 제어 정보테스트 베드 (장비)시제차 (장비/시설)
연도별 주요결과물	o 수동 안전 기술 시스템 시험절차서 o 2차 테스트베드 규격서 o 1차 통합시험 절차서 o 시범 단말 및 전자 제어	모델 기반 테스팅 도구소스코드 테스트 도구 개발3차 테스트베드 규격서	
	시스템 보완 및 확장	o 2차 통합시험 절차서 o 시범 단말 및 전자 제어 시스템 상용화 버전	

o 1차년도(2007년)

- 연구목표 : VESP 요구사항 분석 및 기본 설계
- 연구내용:
 - . 차량용 임베디드 운영체제 개발
 - ① 차량용 실시간 멀티태스킹 커널 설계
 - ② 마이크로 컨트롤러 및 메모리 추상화 설계 및 코어 구현
 - ③ VESP 런타임 환경 API 및 엔진 설계
 - . 차량용 임베디드 미들웨어 개발
 - ① VESP 런타임 환경 API 및 엔진 설계
 - . 차량용 임베디드 시스템 개발 방법론 및 지원도구 개발
 - ① 차량용 임베디드 시스템 개발방법론 버전 1.0 개발
 - ② 프로세스 지원도구 프로토타입 개발
 - . 응용 및 서비스
 - ① 예방형 안전 기술 시스템 개념/기본 설계
 - ② 능동형 안전 기술 시스템 개념/기본 설계
 - ③ 시범 단말 및 전자 제어 시스템 설계

결과물	발생시기 (월)	목표수준	목표달성여부 측정방법	현재기술 상황	기술적 장애요인
차량용 임베디드	9월	차량 제어 실시간	차량 제어	개발	없음
운영체제 요구사항		등 성능 및 기능상	실시간 성능 및		
분석서		요구사항 명세	기능 포함 여부		
차량용 임베디드 시스템 개발방법론 버전 1.0	10월	시범 도메인을 선정하여 적용	시범 도메인 적용을 통한 검증	개발	없음
프로세스 지원도구 프로토타입	11월	개발방법론 버전 1.0 지원 프로세스 구축	ISO 9126 SW 품질 메트릭을 통한 평가	개발	없음
예방형 안전 기술	12월	예방형 안전 기술	예방형 안전	개발	없음
시스템 설계서		시스템 요구사항	기술 시스템		
		분석 및 설계	요구사항 도출		
			및 설계 여부		
능동형 안전 기술	12월	능동형 안전 기술	능동형 안전	초기	자동차 제조사의
시스템 설계서		시스템 요구사항	기술 시스템		기술적 지원
		분석 및 설계	요구사항 도출		필요
			및 설계 여부		
시범 단말 및 전자 제어 시스템 설계서					

o 2차년도(2008년)

- 연구목표 : VESP 상세설계 및 핵심 기능 구현
- 연구내용:
 - . 차량용 임베디드 운영체제 개발
 - ① 차량용 운영체제 실시간 커널 구현 및 메모리/통신 드라이버 개발
 - ② 차량용 운영체제 인포테인먼트 하드웨어용 BSP 개발
 - . 차량용 임베디드 미들웨어 개발
 - ① VESP 런타임 환경 구현
 - . 차량용 임베디드 시스템 개발 방법론 및 지원도구 개발
 - ① 차량용 임베디드 시스템 개발방법론 버전 2.0 개발
 - ② 프로세스 지원도구 버전 1.0 개발
 - . 응용 및 서비스
 - ① 예방형 안전 기술 시스템 개발 및 시험
 - ② 능동형 안전 기술 시스템 개발
 - ③ 수동형 안전 기술 시스템 개념/기본 설계

결과물	발생시기 (월)	목표수준	목표달성여부 측정방법	현재기술 상황	기술적 장애요인
차량 전장용 실시간 커널	12월	차량 전장 시스템의 실시간 성능 지원	차량 전장 시스템의 실시간 성능 지원 여부	개발	없음
VESP 런타임 환경 엔진	12월	국제 표준(AUTOSAR) 호환 하드웨어 아키텍처 독립 실행 환경 제공	하드웨어 아키텍처 독립 실행 환경 제공 여부	초기	없음
차량용 임베디드 시스템 개발방법론 버전 2.0	10월	ECU 및 인포테인먼트 개발에 적용	개발방법론 채택 현황 및 산출물 활용도 평가	개발	없음
프로세스 지원도구 버전 1.0 개발	11월	개발방법론 버전 1.0 지원 프로세스 구축	ISO 9126 품질 평가 메트릭을 통한 평가	개발	없음
예방형 안전 기술 시스템 모듈 소스코드	12월	설계서 항목에 준한 기능 구현	시험절차서에 따른 시험	개발	없음
예방형 안전 기술 시스템 시험절차서	12월	설계서에서 정의한 요구사항 및 설계항목을 모두 만족	설계서의 내용과 비교를 통해 검증	개발	자동차 제조사의 기술적 지원 필요
능동형 안전 기술 시스템 모듈 소스코드	12월	설계서 항목에 준한 기능 구현	시험절차서에 따른 시험	초기	자동차 제조사의 기술적 지원 필요
수동형 안전 기술 시스템 설계서	12월	수동형 안전 기술 시스템 요구사항 분석 및 설계	수동형 안전 기술 시스템 요구사항 도출 및 설계 여부	초기	자동차 제조사의 기술적 지원 필요

o 3차년도(2009년)

- 연구목표 : VESP 프로토타입 개발 및 테스트 베드 구축
- 연구내용:
 - . 차량용 임베디드 운영체제 개발
 - ① 차량용 운영체제 실시간 커널 구현 및 메모리/통신 드라이버 개발
 - ② 차량용 운영체제 버전 1.0 개발 및 적용 시험
 - . 차량용 임베디드 미들웨어 개발
 - ① 연동 제어 및 GUI/Multimedia 미들웨어 개발
 - . 차량용 임베디드 시스템 개발 방법론 및 지원도구 개발
 - ① 소스코드 자동 생성 지원도구 버전 1.0 개발
 - . 응용 및 서비스
 - ① 능동형 안전 기술 시스템 시험
 - ② 수동형 안전 기술 시스템 개발
 - ③ 1차 테스트베드 구축 및 운용

결과물	발생시기 (월)	목표수준	목표달성여부 측정방법	현재기술 상황	기술적 장애요인
차량용 임베디드 운영체제 버전 1.0	12월	차량 제어 전장 및 인포테인먼트 단말 지원	차량 제어 전장 및 인포테인먼트 단말 지원 여부	개발	없음
ECU 연동제어 미들웨어	9월	ECU 사이의 연동 제어 지원, 응용 및 하드웨어 독립	ECU 사이의 연동 제어 지원 여부	초기	없음
VESP 버전 1.0	12월	차량 제어 전장 및 인포테인먼트 적용 지원	차량 제어 전장 및 인포테인먼트 적용 가능 여부	초기	없음
소스코드 자동 생성 지원도구 버전 1.0 개발	10월	소스코드 자동 생성율 70% 이상	코드 자동 생성율	개발	없음
시스템 설정 관리 도구 버전 1.0 개발	11월	GUI를 통한 시스템 설정의 편리성 제공	ISO 9126 품질 평가 메트릭을 통한 평가	개발	없음
능동형 안전 기술 시스템 시험절차서	12월	설계서에서 정의한 요구사항 및 설계항목을 모두 만족	설계서의 내용과 비교를 통해 검증	초기	자동차 제조사의 기술적 지원 필요
수동형 안전 기술 시스템 모듈 소스코드	12월	설계서 항목에 준한 기능 구현	시험 절차서에 따른 시험	초기	자동차 제조사의 기술적 지원 필요

o 4차년도(2010년)

- 연구목표 : VESP 확장 및 실차 적용

- 연구내용:

- . 차량용 임베디드 운영체제 개발
 - ① 차량용 운영체제 실시간 성능 검증 및 안정화
 - ② 차량 제어 전장 시스템용 시제품 개발
- . 차량용 임베디드 미들웨어 개발
 - ① 연동제어 보안 기능 확장 및 HMI 미들웨어 개발
 - ② 동적 응용 관리 기술 개발
- . SW 검증 도구 개발
 - ① 테스트 케이스 자동 생성 도구 개발
 - ② 소스코드 테스트 도구 개발
- . 응용 및 서비스
 - ① 수동형 안전 기술 시스템 시험
 - ② 2차 테스트베드 구축 및 운용
 - ③ 1차 통합시험

결과물	발생시기 (월)	목표수준	목표달성여부 측정방법	현재기술 상황	기술적 장애요인
보안 확장 연동제어 미들웨어	12월	ECU 사이의 연동 제어 보안기능 제공	연동제어 보안 기능 제공 여부	초기	없음
동적 응용 관리 미들웨어	12월	응용 모듈의 동적 로딩 및 자원 할당 지원	응용 프로그램 모듈의 동적 로딩 가능 여부	초기	없음
테스트케이스 자동 생성 도구	10월	테스트케이스 자동생성율 90% 이상	테스트케이스 자동생성율	개발	없음
테스팅 도구	11월	커버리지 및 결함 분석	커버리지율	개발	없음
수동형 안전 기술 시스템 시험절차서	12월	설계서에서 정의한 요구사항 및 설계항목을 모두 만족	설계서의 내용과 비교를 통해 검증	초기	자동차 제조사의 기술적 지원 필요
2차 테스트베드 규격서	12월	예방/능동 안전 시스템 시험을 위한 테스트베드	예방형/능동형 안전 기능 시험 가능 여부 검증	초기	자동차 제조사의 기술 및 자원 지원이 필요
1차 통합시험 절차서	12월	실차기반 서비스 연동형(예방형/능동 형) 시험	자동차 제조사 시제차 선행기술시험 기준 만족	개발	자동차 제조사의 기술 및 자원 지원이 필요

o 5차년도(2011년)

- 연구목표 : VESP 안정화 및 상용화 추진

- 연구내용 :

. 차량용 임베디드 운영체제 개발

① 차량용 운영체제 검증 및 안정화

. 차량용 임베디드 미들웨어 개발

① 차량용 미들웨어 검증 및 안정화

. SW 검증 도구 개발

① 모델 기반 테스팅 도구 개발

② 소스코드 테스트 도구 개발

. 응용 및 서비스

① 3차 테스트베드 구축 및 운용

② 2차 통합시험

결과물	발생시기 (월)	목표수준	목표달성여부 측정방법	현재기술 상황	기술적 장애요인
VESP V2.0	12월	차량 제어 전장 및 인포테인먼트 적용 최적화	차량 제어 전장 및 인포테인먼트 적용 검증 여부	초기	없음
모델 기반 테스팅 도구	10월	설계명세로부터 테스트케이스 자동생성 및 테스트 실행	테스트케이스 자동생성율	개발	없음
3차 테스트베드 구축 및 운용	12월	능동형/수동형 안전 시스템 시험을 위한 테스트베드	능동/수동 안전 기능 시험 가능 여부 검증	초기	자동차 제조사의 기술 및 자원 지원이 필요
2차 통합시험 절차서	12월	실차기반 서비스 연동(예방형/능동형/ 수동형)시험	자동차 제조사 실차 선행기술시험 기준 만족	개발	자동차 제조사의 기술 및 자원 지원이 필요

다. 추진체계 및 사유

□ 추진체계

o 주관연구기관 : 출연연

o 공동연구기관 : 산업체(자동차 제조사, 전장부품업체, 자동차 IT업체 등)

□ 추진체계 결정 사유

o 주관연구기관

본 과제는 차량용 임베디드 시스템 개발을 위한 임베디드 SW 개발 플랫폼을 개발하는 것으로 개발 범위는 차량용 임베디드 OS, 미들웨어, 시스템 개발 방법론 및 지원도구 개발을 포함하고 있다. 따라서 주관연구기관은 임베디드 OS 및 미들웨어, SW 공학 기술에 대한 개발 및적용 경험이 있어야 하며, 이러한 기술들을 산업체에 지속적으로 보급할 수 있는 전문 인력및 지원 체제를 갖추고 있어야 함

o 공동연구기관

- 공동연구기관은 본 과제 수행을 위한 사용자 요구사항을 제시하고, 특정 서브시스템 또는 모듈을 개발하고, 개발 결과물을 검증 할 수 있는 테스트 베드 환경을 구축할 수 있는 기관
- 본 과제 결과물을 상용화 할 수 있는 자동차 완성차 업체 또는 자동차 전장 부품 개발 업체

라. 연구기간 및 연구비

□ 연구기간 : 2007년 ~ 2011년(5년간)

□ 연구비

(단위: 억원)

구분	2007년	2008년	2009년	2010년	2011년	총액
정부	100	100	100	100	100	500
민간	40	40	40	40	40	200
계	140	140	140	140	140	700

< 세부내역 >

구분	2007년	2008년	2009년	2010년	2011년	계
- 인건비 및 간접비	65	75	75	65	50	330
- 연구기자재 및 시설비	20	15	10	10	10	65
- 재료비	20	15	15	15	10	75
- 시작품제작비	15	15	20	20	30	100
- 기타	20	20	20	30	40	130
계	140	140	140	140	140	700

마. 특허현황 및 대웅방안

특허 대상 핵심 기술 구분	OS 기술	미들웨어기술	도구 기술	ECU 통합제어기술	차량 안전 기술	차량정보 기술
기술개요	인 포 테 인 먼 트 단말에 적용 가 능한 임베디드	제공하는 미들	차량용 임베디 드 시스템 개발 을 지원하는 개 발방법론, 코드 자동 생성, 검 증 도구 기술	해당 모듈들의 ECU상에 적용 된 기능에 따라 액 츄 에 이 터 를 작동시키는 기 술		군인사와 답증
특허주기	탄생기→성장기	탄생기	탄생기→성장기	탄생기→성장기	탄생기→성장기	탄생기→성장기
특허성숙기 예측	2009	2009	2008	2009	2011	2007
상용화 시기	2011	2011	2008	2011	2013	2009
관련 제품	Metrowerks OSEKturbo, QNX	3Soft tresos-ECU, Vector Davinci	Davinci Tool Suite	ESP(보쉬)	Pre-Crash Safety System (도요타)	모젠(현대자동 차) OnStar(GM)
추진방향 및 대응방안	특허 출원 - 병행특허	특허 출원 - 병행특허	특허 출원 - 병행특허	특허 출원 - 병행특허	특허 출원 - 병행특허	특허 출원 - 병행특허
국내외 관련특허 기구	States Patent and Trademark	and Trademark Office, Japan	States Patent and Trademark	States Patent and Trademark Office, Japan	States Patent and Trademark Office, Japan	States Patent and Trademark

바. 과제의 특성

연구목표	경쟁우위 유지	│	가가치	기반	신시	장 선	점수	입대체 및 국신	화
진丁국 <u>표</u>						\bigcirc		\circ	
연구단계	기초연-	7		응용	연구			개발	
친구단계								0	
기술성숙도	연구전			연구	·초기		본격연구		
세 계							0		
국 내			0						
시장성숙도	시장 형성	시기	,	시장 성	장 시기		시장	상 성숙 시기	
세 계	2008			20	09			2010	
국 내	2009		2010		10			2011	
우리의	Clear Leader	Strong	g	Favo	rable	Т	enable	Weak	
경쟁위치		0							

사. 기대효과

□ 기술적 기대효과

- o 전장부품의 임베디드 SW 개발용 플랫폼 기술의 선도적 확보
 - 표준규격에 기반한 플랫폼 기술 개발 선도
 - Qplus 및 VESP 등 임베디드 SW 플랫폼 기술 축적을 통한 전문화 추진
- o 전장부품용 임베디드 SW의 신뢰성 증대를 위한 검증 기술 확보
 - 전장부품 SW 오류에 대한 책임 소재가 명확해지고, 품질 관리 용이
 - SW 정형적 모델링, 코드 자동 생성, 검증 기술 개발로 전장부품의 경쟁력 확보
- o 인포테인먼트 단말 HW, 차량 미들웨어 SW, HMI 등 다양한 분야의 핵심기술 확보 및 전문 인력의 양성이 기대됨

< 기술격차 축소 >

주요 기술분야	기술 선도국 및 기업/연구소	구분	기술격차(년)	상대적 수준(%)
차량용 임베디드	미국/IBM	현재	1	90
시스템 개발방법론		종료연도	0	100
차량용 임베디드	도이/Veeter	현재	3	60
시스템 개발 지원도구	독일/Vector	종료연도	1	80
ECU 연동제어 기술	일본/Toyota,	현재	3	75
LCO 한당세이 기골	미국/Ford	종료연도	0	100
차량 안전 기술	일본/Toyota,Honda,	현재	5	50
사랑 한잔 기골	독일/BMW,미국/GM	종료연도	1	90
차량 정보 기술	일본/Toyota,	현재	1	90
사항 영모 기술	미국/Ford	종료연도	0	100

□ 경제적 기대효과

- o 전장부품의 임베디드 SW 개발기술 확보로 자동차 산업의 경쟁력 향상
 - 전장부품 임베디드 SW의 품질 확보는 경쟁력 향상의 관건
 - 자동차 결함의 많은 부분이 전장부품의 IT화 및 SW화로 인해 점차 증가하는 추세이나, VESP의 적용을 통해 임베디드 SW의 품질 검증을 지원
- o 전장부품 임베디드 SW의 국산화 및 세계 시장 진출 촉진
 - 국내 전장부품의 SW 국산화 향상을 통해 전장부품 산업의 개방화, 세계화 및 선진국 수준의 전장부품 업체 육성을 위한 토대 확보

- 2010년 900억불 수준인 자동차 임베디드 SW 세계 시장 중 약 90억불, 10% 의 시장 점유가 가능할 것으로 예측(2004년 점유율 5%, 18억불)
- o 네트워크 기반 Automotive IT 기술 관련 2015년 시장 규모는 국내 236억불 국외 2,892억불 정도로 예상되며, 본 과제의 결과물로 국내 시장의 50%와 국외 시장의 3% 정도를 점유할 수 있을 것으로 기대되고, 고용 창출 효과는 약 8만7천명으로 예측됨

(금액: MU\$)

구 분	연 도	2010	2011	2012	2013	2014	2015
국외	총규모	127,579	145,495	170,715	201,742	241,445	289,237
시장	점유액	2,255	3,045	4,105	5,136	6,553	8,527
국내 시장	총규모	8,043	9,583	11,694	14,590	18,448	23,595
시장	점유액	1,837	2,653	3,868	5,618	8,238	11,685
총 점유액		4,092	5,699	7,973	10,754	14,791	20,212
고용효과[명]		16,204	28,493	33,127	45,425	73,957	87,426

(출처: 아래 출처1~3의 자료를 근거로 ETRI에서 재작성)

출처1. 2005. 1, Global Industry Analysts

출처2. 2006. 1, McKinsey & Company, IC Insight & Infineon, Emerging IC market 2005

출처3. 2005. 9, KISTI, 텔레매틱스 시장 전망

- o 국내 텔레매틱스 시장은 2010년 단말기 분야 208M US\$, 서비스 분야 55M US\$, 국외 시장은 단말기 분야 34,100M US\$, 서비스 분야는 20,300M US\$의 시장이 형성될 것으로 예측됨(출처: ETRI, 2005. 1. IDC, 2005. 1.)
- o Global Industry Analysis에 의하면 차량 충돌 방지용 SRS 시스템 시장은 2010년 21,900M US\$, 2013년 35,800M US\$, 2015년 50,000M US\$로 예상되며, 약 5% 시장 점유 시 2015년 약 2,700M US\$의 수입대체 및 수출이 예상됨. 또한 고용 창출 효과는 13,000명에 이를 것으로 보임

□ 기타 기대효과

- o 삶의 질 향상이라는 미래사회의 기술 추세를 감안할 때 교통사고 발생에 따른 경제적 손실뿐 만 아니라 인명 피해를 줄여 안전하고 살기 좋은 복지 국가 실현에 초석이 됨
- o 언제 어디서나 정보와 서비스를 이용 가능하고, 지능형 교통시스템 및 텔레 매틱스 기술의 융·복합을 통하여 국민의 삶의 질 향상을 통한 편리성을 증대 시킬 것으로 기대됨

- o 차세대 네비게이션을 통하여 운전자의 안전 운전을 지원할 수 있으므로, 교 통사고율 및 인명/재산 피해를 감소시킴
- o IT839 전략 사업의 성과물인 임베디드 SW 핵심 기술을 타 부처의 기술 개발 사업에 확장 및 보급
- o 전장 부품의 국제 표준화 활동을 기반으로 임베디드 시스템 표준화 활동을 가속화함

<참고>

※ 약어 목록

약어	영문 이름	한글 이름
ADAS	Advanced Driver Assistance System	
API	Application Program Interface	응용 프로그램 인터페이스
ASF	Automotive Software Foundry	
AUTOSAR	AUTomotive Open System ARchitecture	국제 표준화 기구
BSP	Board Support Package	
DCN	Distributed and Collaborative Navigation	차세대 네비게이션
ECU	Electronic Control Unit	전자 제어 장치
ESP	Electronic Stability Program	전자식 주행 안정성 프로그램
ESTO	Embedded Software TOolkit	Qplus 기반의 통합 개발환경
GUI	Graphic User Interface	그래픽 사용자 인터페이스
HMI	Human Machine Interface	
ISO	International Standardization Organization	국제 표준화 기구
JASPAR	Japanese Automotive Software Platform & Architecture	일본 표준화 기구
OS	Operating System	운영체제
OSEK	Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug	
SRS	Supplemental Restraint System	
VDC	Venture Development Corporation	
VDX	Vehicle Distributed eXecutive	
VESP	Vehicular Embedded SW Platform	미래 차량용 임베디드 SW 플랫폼
TTA	Telecommunication Technology Association	한국정보통신기술협회

〈참고〉

- o 국가 기간산업에서 SW 개발원가가 차지하는 비중이 급격히 증가하고 있음
 - ※ 산업별 SW 개발원가 비중 (VDC 2002) : 통신장비(39.3%), 자동차(37.9%), 국방/ 항공(39.7%)
 - ** 산업별 SW 개발원가 비중 (VDC 2005) : 통신장비(54.3%), 자동차(52.4%), 국방/항공(51.4%), 산업전자기기(51.5%), 정보가전(45.7%), 의료기기(40.9%)