064169

Moy kuth

(Rm410)

S NACA TN D 2207

NASA TECHNICAL NOTE

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

THERMODYNAMIC AND TRANSPORT PROPERTIES FOR THE

 $N_2O_4 = 2NO_2 = 2NO+O_2$ SYSTEM

by Roger A. Svehla and Richard S. Brokaw

Lewis Research Center, Cleveland, Ohio

20020411 108

THERMODYNAMIC AND TRANSPORT PROPERTIES FOR THE

 $N_2O_4 = 2NO_2 = 2NO + O_2$ SYSTEM

By Roger A. Svehla and Richard S. Brokaw

Lewis Research Center Cleveland, Ohio

THERMODYNAMIC AND TRANSPORT PROPERTIES FOR THE

 $N_2O_4 \stackrel{\text{\tiny{d}}}{=} 2NO_2 \stackrel{\text{\tiny{d}}}{=} 2NO + O_2$ SYSTEM

by Roger A. Svehla and Richard S. Brokaw
Lewis Research Center

SUMMARY

Thermodynamic and transport properties, including enthalpy, entropy, heat capacity, molecular weight, viscosity, and thermal conductivity, have been calculated for the $N_2O_4 \neq 2NO_2$ equilibrium and also the $N_2O_4 \neq 2NO_2 \neq 2NO+O_2$ equilibrium from 300^0 to 1280^0 K and from 0.01 to 100 atmospheres. The Prandtl number, Lewis number, isentropic exponent, and two derivatives involving the molecular weight, pressure, and temperature were also calculated. The Chapman-Enskog theory of monatomic gases was applied in the transport property calculations, with an Eucken-type correction to the thermal conductivity to account for internal degrees of freedom. An expression for the thermal conductivity due to chemical reaction was also included. The transport cross sections were calculated for the Lennard-Jones (12-6) potential, the parameters being obtained from analysis of experimental viscosity and thermal conductivity data. Also included in the calculations is a parameter, which may be useful in analyzing to what extent chemical reaction in the gas phase affects thermal conduction. This parameter is tabulated over the same pressure and temperature range over which the thermodynamic and transport properties were calculated.

INTRODUCTION

The dissociation of N_2O_4 has been of interest in heat-transfer studies because the effects of chemical reaction in the gas phase occur at pressures and temperatures convenient for experimental work (refs. 1 to 7). The chemical reactions describing the dissociation from the boiling point of N_2O_4 (294.3° K) to about 1300° K are given by

(I)
$$N_2O_4 \neq 2NO_2$$

(II)
$$2NO_2 \neq 2NO+O_2$$

Reaction I goes essentially to completion before reaction II becomes important. At about 1300° K the NO begins to decompose.

Previous calculations are available for the thermodynamic and transport properties for this system (refs. 6 and 8). However, these previous calculations are for only a pressure of 1 atmosphere (ref. 8) or do not include the NO_2 dissocation (ref. 6). Furthermore, new measurements of the viscosity have become available (ref. 9), allowing more accurate estimates of the interaction potentials, and from these potentials improved transport property calculations. Therefore, thermodynamic and transport properties have been calculated over a wide pressure range (0.01 to 100 atm) and up to 1280° K, at which point the NO_2 is almost completely dissociated. Frozen and equilibrium properties have been calculated, first assuming only reaction I occurs, and second assuming both reactions I and II occur.

EXPERIMENTAL DATA ANALYSIS

Experimental measurements have been reported on both the viscosity and thermal conductivity from room temperature to almost 500° K (refs. 9 to 12), the temperature range where reaction I is predominant. However, the experimental viscosity data of the various workers has shown some large differences. Therefore, the data of the various authors were analyzed in terms of rigorous transport theory for the viscosity of gas mixtures (ref. 13) in order to clarify these differences. The analysis consisted of fitting the experimental viscosity data to the Lennard-Jones (12-6) potential, using the derived constants to calculate both the viscosity and the thermal conductivity, and then comparing the experimental and calculated results. When possible, the derived constants were compared to constants of other molecules of similar size and shape. The constants derived from the experimental viscosity data of Petker and Mason (ref. 9) appeared to be the most reasonable when compared to constants of similar molecules. Furthermore, better agreement between the experimental and calculated viscosity data was found for the data of Petker and Mason than for the experimental viscosity data of references 10 and 11. That is, the constants obtained from the data of reference 9 more closely reproduced the experimental data from which they were derived than did the constants obtained from the data of references 10 and 11.

In the analysis two cases were considered. The gas was assumed to be composed of (1) an equilibrium mixture of NO_2 and N_2O_4 and (2) an equilibrium mixture of NO_2 , N_2O_4 , NO, and O_2 .

The force constants for the $N_2O_4 \neq 2NO_2$ equilibrium system were determined by the following procedure. For the N_2O_4 - N_2O_4 interaction ϵ/k was estimated from the following relationship (ref. 14):

$$\frac{\epsilon}{k} = 1.18 T_b \tag{1}$$

(Symbols are defined in appendix A.) For the NO_2 - NO_2 interaction ϵ/k was assigned four trial values of 190, 210, 230, and 250. This range of 190 to 250 for ϵ/k was selected because it encompassed the range considered reasonable for $(\epsilon/k)_{NO_2-NO_2}$. For each trial value $(\epsilon/k)_{NO_2-N_2O_4}$ was determined by the usual combining rule (ref. 13)

$$\left(\frac{\epsilon}{k}\right)_{12} = \sqrt{\left(\frac{\epsilon}{k}\right)_{11}\left(\frac{\epsilon}{k}\right)_{22}} \tag{2}$$

For each trial value the three corresponding values of σ , namely, $\sigma_{NO_2-NO_2}$, $\sigma_{NO_2-N_2O_4}$, and $\sigma_{N_2O_4-N_2O_4}$ were determined simultaneously by a least-squares fit of the experimental viscosity data. The best set of constants (in a least squares sense) was then selected from among the four sets. The entire procedure was then repeated, the only difference being that $\sigma_{NO_2-N_2O_4}$ was determined from the combining rule (ref. 13)

$$\sigma_{12} = \frac{1}{2} \left(\sigma_{11} + \sigma_{22} \right) \tag{3}$$

That is, only $\sigma_{NO_2-NO_2}$ and $\sigma_{N_2O_4-N_2O_4}$ were determined by a simultaneous least-squares fit of the viscosity data, and $\sigma_{NO_2-N_2O_4}$ was subject to the constraint of equation (3). The best set of constants among these four was then selected. This then completed the analysis of the $N_2O_4 \neq 2NO_2$ equilibrium.

Next the $\rm N_2O_4$ = 2NO₂ = 2NO+O₂ equilibrium system was examined. For this system force constant for the NO₂-NO₂, NO₂-N₂O₄, and N₂O₄-N₂O₄ interactions were determined the same way as for the N₂O₄ = 2NO₂ system. Now, however, force constants for the additional interactions NO-NO, O₂-O₂, NO₂-NO, NO₂-O₂, N₂O₄-NO, N₂O₄-O₂, and NO-O₂ were also needed. For the NO-NO and O₂-O₂ interactions the force constants given in reference 14 were used. These particular constants were determined from experimental viscosity data of pure NO and O₂. In each case the experimental viscosity data used in reference 14 covered a temperature range very nearly the same as that considered herein, and therefore the derived constants should be appropriate for the present calculations. For the other five unlike interactions (NO₂-NO, NO₂-O₂, N₂O₄-NO, N₂O₄-O₂ and NO-O₂) the combining rules, equations (2) and (3), were used.

Therefore, four different situations were examined, the equilibrium $N_2O_4 \neq 2NO_2$

system, the equilibrium $N_2O_4 = 2NO_2 = 2NO + O_2$ system, and for each equilibrium two methods of determining $\sigma_{NO_2-N_2O_4}$.

The results showed that a slightly better fit to the viscosity data was obtained by assuming only reaction I occurred. This was found to be true for $\sigma_{NO_2-N_2O_4}$ obtained from the combining rule and also for $\sigma_{NO_2-N_2O_4}$ obtained by least squares. This would suggest that reaction II had not appreciably progressed to the right during the course of the experimental measurements. This notion is supported by experimental kinetic data (refs. 15 to 17), which indicate that the rate of decomposition of NO_2 is rather slow and becomes appreciable only at the highest temperatures and pressures considered by Petker and Mason. (Their experimental viscosity data covered the range 0.5 to 5 atm and 25° to 170° C.) However, even for the condition most favorable for decomposition from thermodynamic considerations (0.5 atm and 170° C), at equilibrium only 2 percent of the NO_2 is decomposed, and for the condition most favorable from kinetic considerations, (5 atm and 170° C) NO_2 decomposition is only 1 percent. Therefore, since it is known that reaction I reaches equilibrium very rapidly, the constants derived assuming an equilibrium mixture of $NO_2-N_2O_4$ were considered the more realistic Lennard-Jones (12-6) parameters and were used in the calculations herein.

In order to compare the two methods of determining $\sigma_{NO_2-N_2O_4}$, transport properties were calculated using the $\sigma_{NO_2-N_2O_4}$ determined by both methods. Necessarily the value obtained by least squares gave a better fit to the viscosity data. The improvement was so slight, however, that the $\sigma_{NO_2-N_2O_4}$ determined by least squares could not be judged a better value. The thermal conductivity data calculated for each $\sigma_{NO_2-N_2O_4}$

TABLE I. - LENNARD-JONES (12-6) POTENTIAL FORCE CONSTANTS FOR ${\rm THE~NO-NO_2-O_2-N_2O_4~SYSTEM}$

Interaction	σ, Å	ε/k, ^O K	Method of determination of σ and ϵ/k
NO-NO	3.492	116.7	Ref. 14
NO-NO2	3.628 ₅	156.5	Eqs. (2) and (3)
NO-N ₂ O ₄			Eqs. (2) and (3)
NO-O2	3.479	111.6	Eqs. (2) and (3)
NO2-NO2	3.765	210	Least-squares fit of viscosity data for σ and ϵ/k
$NO_2^2-N_2O_4$	4.193	270	Eqs. (2) and (3)
NO2-02	3.616	149.7	Eqs. (2) and (3)
$N_2O_4-N_2O_4$	4.621	347	Least-squares fit of viscosity data for σ and eq. (1) for ϵ/k
N ₂ O ₄ -O ₂	4.044	192.4	Eqs. (2) and (3)
$N_2O_4-O_2$ O_2-O_2	3.467	106.7	Ref. 14

were also compared. Since the contribution of the thermal conductivity due to chemical reaction is particularly sensitive to the unlike interactions, comparison of the calculated conductivity data should provide a critical test of the relative merits of the two $\sigma_{NO_2-N_2O_4}$. As was found for the viscosity, however, the two sets of calculations were in close agreement. Therefore, in order to be consistent with the method of determining the constants of the other unlike interactions and to minimize the number of adjustable parameters, $\sigma_{NO_2-N_2O_4}$ was calculated by equation (3).

Table I gives a summary of the force constants used in the calculations herein and the method of determining each.

When compared to constants of similar molecules, such as N_2O and CO_2 , the constants for NO_2 appear reasonable. However, since it was found in the analysis that there was a range of sets of force constants, which reproduced the experimental viscosity data about equally well, these constants should not be considered the ''true'' constants, but merely as suitable ones, which will reproduce the experimental data about as well as, or better than, any other set.

As expected, the constants for N_2O_4 are substantially larger than those for NO_2 . An approximate value of $\sigma_{N_2O_4}$ can be estimated from the boiling point density. Using equations proposed in references 13 (2/3 $\pi N \sigma^3 = 2.0 \, V_b$) and 14 (2/3 $\pi N \sigma^3 = 2.0 \, V_b$ - 5), and a boiling point density of 1.443 (interpolated from N_2O_4 liquid densities given in refs. 18 and 19), gives values of σ of 4.66 and 4.60, respectively. Since the value given in table I lies between these two, it does appear to be reasonable.

CALCULATION OF PROPERTIES

The thermodynamic and transport properties were calculated using the program described in reference 20. Calculations were performed for both the equilibrium $NO_2-N_2O_4$ system and the equilibrium $NO_2-N_2O_4-NO-O_2$ system from 300^O to 1280^O K and from 0.01 to 100 atmospheres. The properties designated as frozen are for the equilibrium composition at the corresponding temperature and pressure.

Briefly, the rigorous Chapman-Enskog theory for gas mixtures was applied for the transport property calculations herein. Though the theory assumes only binary collisions of monatomic gases, it has been shown to apply satisfactorily to the viscosity of mixtures of polyatomic gases as well as to the viscosity and thermal conductivity of mixtures of monatomic gases (ref. 21). For the thermal conductivity the contribution of the translational conductivity was calculated from the theory which is rigorous for a mixture of monatomic gases. A modified Eucken-type expression was added to account for the contribution of the internal energy states, and the thermal conductivity due to chemical reaction was calculated from the equation developed in references 22 and 23.

TABLE II. - STANDARD STATE (ZERO PRESSURE) ENTHALPIES AT $0^{\rm O}$ AND 298. $15^{\rm O}$ K (REF. 26)

Molecule	Standard state entha	lpy, H_{T}^{0} , cal/g-mole
	$_{\rm H_o^0}$	H ^O _{298.15} (a)
NO NO ₂ N ₂ O ₄ O ₂	19 402.955 5 570.344 -1 569.312 -2 074.739	21 600.000 8 007.475 2 348.836 0

^aValues at 298.15⁰ K are also heats of formation at this temperature.

The transport cross sections were all calculated for the Lennard-Jones (12-6) potential and included the third approximation for the viscosity (ref. 13). The force constants for the various interactions have been summarized in table I.

The details of the thermodynamic property calculations may be found in references 24 and 25. Values of standard state enthalpies of the pertinent molecules are given in table II for convenience in converting enthalpies to a different reference value.

DISCUSSION OF RESULTS

The thermodynamic and transport properties are given in tables III and IV, respectively. Equilibrium properties, for reaction I have been calculated for 0.01, 0.1, 1, 10, and 100 atmospheres from 300° to 1280° K at 20° K intervals. Properties designated as frozen are for the equilibrium composition. Similar calculations are also included for pressures of 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, and 100 atmospheres, assuming both reactions I and II occur.

The thermodynamic properties of table III are in substantial agreement with the data of Brokaw (ref. 6) and Fan and Mason (ref. 8). However, the viscosity and thermal conductivity data of table IV are somewhat higher than the calculated data of reference 6; they are also higher than that of reference 8 in the lower temperature region, where NO_2 and N_2O_4 are the predominant constituents. These differences in the transport properties are attributed to the differences in the Lennard-Jones (12-6) force constants used in the calculations, especially the constants for the NO_2 - NO_2 and N_2O_4 - N_2O_4 interactions. Whereas the force constants used herein were obtained from the experimental data of reference 9, the data of references 6 and 8 were calculated using estimated constants (ref. 6) for the NO_2 - NO_2 and N_2O_4 - N_2O_4 interactions. The viscosities calculated from these estimated constants are lower than the experimental data of Petker and Mason (ref. 9). At the higher temperatures the NO_2 is dissociated into NO and O_2 . Since the force constants used in reference 8 for the NO-NO and O_2 - O_2 interactions and those used in the calculation of table IV are about the same, the transport properties are in substantial agreement at the higher temperatures.

Table V, given in appendix B, presents values of a chemical kinetic parameter $\,\, arphi \,$

for the N_2O_4 = $2NO_2$ and $2NO_2$ = $2NO+O_2$ reactions. This parameter indicates the extent to which gas phase chemical reaction affects thermal conduction or heat transfer in reacting gas systems. It is defined as

$$\varphi = \left[\left(\frac{\lambda_{e}}{\lambda_{r} \lambda_{f}} \right) \left(\frac{\Delta H}{RT} \right)^{2} RR \right]^{1/2}$$
(4)

where ${\mathfrak R}$ is the reaction rate in either direction at equilibrium and ΔH is the heat of reaction at temperature T. The calculation of this parameter is discussed in appendix B.

The dimensionless quantity $(\varphi \ell)^2$, where ℓ is a dimension characteristic of the system, involves among other things a ratio of a diffusion time to a chemical relaxation time (ref. 27). Consequently, it is closely related to Damköhlers first group, which is the ratio of a time associated with a flow to a chemical time.

The values of $\,\, \varphi \,\,$ from table V (p. 19) have been used to correct the experimentally

Figure 1. - Experimental and calculated viscosity as a function of temperature.

observed heat conductivities for the ${\rm N_2O_4} \pm 2{\rm NO_2}$ system to equilibrium values, as described in appendix B. Appendix C provides an example of how the chemical kinetic parameter φ may be useful in predicting convective heat transfer in situations where the chemistry is neither completely at equilibrium nor completely frozen.

Figure 1 (p. 7) shows the calculated viscosity data, assuming the equilibrium $NO_2-N_2O_4$ mixture, at pressures of 0.5, 2, and 5 atmospheres from $25^{\rm O}$ to $170^{\rm O}$ C. Also included are the experimental data of reference 9. Experimental data at 1 and 3 atmospheres are also reported in reference 9, but these data were not included in figure 1 because of space limitation, and the crossover of the data at high temperatures. This crossover of the experimental isobaric viscosity curves was not confirmed by either the $NO_2-N_2O_4$ or the $NO_2-N_2O_4-NO-O_2$ equilibrium calculations. Nor is it possible to explain this phenomenon by hypothesizing partial dissociation of the NO_2 to NO and O_2 ,

Figure 2. - Experimental and calculated thermal conductivity as a function of temperature at 1 atmosphere.

inasmuch as under the condition most favorable for dissociation (0.5 atm and 170°C) the dissociation at equilibrium would be only 2 percent, as mentioned previously. The calculations of table IV show this is not enough to produce a sufficient change in the viscosity to explain the crossover. Despite the fact that the calculated data did not show this experimentally observed crossover, the standard deviation, in terms of percent of the average experimental viscosity, for all the experimental data was only 0.54 percent. The maximum difference between the experimental and calculated data was 1.20 percent.

Figure 2 shows similar results for frozen and equilibrium thermal conductivities at 1 atmosphere. Included are the experimental data of Coffin and O'Neal (ref. 12). Their data have been corrected for two effects. First, Coffin and O'Neal used the helium conductivity data of Kannuluik and Carman (ref. 28) to calibrate their thermal conductivity cell. An analysis of viscosity and heat conductivity data of helium in terms of rigorous kinetic theory suggests (ref. 29) that Kannuluik and Carman's values are 3 to 5 percent too low. Consequently, the heat conductivities reported by Coffin and O'Neal were corrected as described in reference 21, using the smoothed helium thermal conductivities of reference 29. (The nitrogen thermal conductivities also used in the calibrations of the apparatus described in ref. 12 seem reasonable and were assumed to be correct.)

The second correction accounted for the fact that the reaction N_2O_4 =2NO $_2$ proceeds at a finite rate. The theoretical analysis of reference 27, which studies the effect of geometry, gas phase diffusion and relaxation times, surface reactions, and accommodation coefficients, was applied. Temperature jump at the surface was ignored, and surface reaction was assumed negligible. A discussion of the details of this correction is given in appendix B. Corrections were negligible above about 130° C, and the maximum total correction, which was just under 5 percent, occurred at the peak of the conductivity curve.

Above about 100° C the thermal conductivity curves calculated for the equilibrium $NO_2-N_2O_4$ and $NO_2-N_2O_4-NO-O_2$ curves separate because of the effect of the $NO_2=2NO+O_2$ reaction on the $NO_2-N_2O_4-NO-O_2$ system. The experimental data clearly tend to follow the $NO_2-N_2O_4$ equilibrium more closely. This would indicate that NO_2 decomposition did not occur rapidly either in the gas phase or on the surfaces. This result is consistent with the values of φ shown in table V of appendix B. Since φ is a measure of the contribution of the gas phase reaction to the thermal conductivity, comparison of φ for the $N_2O_4=2NO_2$ reaction to the value of φ for the $2NO_2=2NO+O_2$ reaction represents the relative contribution of each reaction to the reaction conductivity. Since φ for the $N_2O_4=2NO_2$ reaction is some four orders of magnitude greater than for the $2NO_2=2NO+O_2$ reaction, the experimental thermal conductivity should be closer to the equilibrium curve in the temperature range where the first reaction is predominant than it should be in the temperature range where the second reaction is predominant. This is observed in figure 2.

Figure 3. - Enthalpy as a function of temperature.

Figure 4. – Heat capacity ($c_{\rm p}$) as a function of temperature.

Figure 5. - Viscosity as a function of temperature.

Figure 6. - Thermal conductivity as a function of temperature.

Figure 8. - Lewis number as function of temperature.

Figures 3 to 8 (pp. 10 to 12) show the enthalpy, heat capacity, viscosity, thermal conductivity, Prandtl number, and Lewis number, respectively, at pressures of 0.01, 1, and 100 atmospheres for the NO_2 - N_2O_4 and NO_2 - N_2O_4 -NO- O_2 equilibria. Frozen properties are also included for the enthalpy, heat capacity, viscosity, and thermal conductivity for comparison. The shifting of the curves with changing pressure is caused by the composition changes associated with the pressure change. The curves for the equilibrium thermal conductivity and heat capacity clearly show where the chemical reaction contributes the most. The first peak is due primarily to the N_2O_4 =2 NO_2 reaction, whereas, the second peak corresponds to the $2NO_2$ =2NO+ O_2 reaction.

Because of these peaks the interpolation of the data for the equilibrium heat capacity and thermal conductivity, is rather difficult using standard interpolation equations. Therefore, an interpolation scheme, based on theoretical considerations, is described in appendix D for interpolation of c_{p_r} and λ_r . These two properties may then be added to c_{p_f} and λ_f to obtain c_{p_e} and λ_e , respectively. Properties other than c_{p_r} and λ_r do not show such serious variation with pressure and temperature, and standard interpolation equations may be used.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, December 2, 1965.

APPENDIX A

SYMBOLS

A	coefficient in equation (C2), dimensionless	N	Avogadro's number, 6.023×10 23 molecules/g-mole
$^{\mathrm{c}}\mathrm{_{p}}$	heat capacity at constant pressure, cal/(g)(OK)	Nu	Nusselt number, hd/λ , dimensionless
$\mathbf{c_p^*}$	effective 'heat capacity',	P	pressure, atm
-	cal/(g)(^O K)	Pr	Prandtl number, $c_p \eta/\lambda$, dimension-
$^{\mathrm{c}}_{\mathrm{p}_{\mathrm{r}}}$	$c_{p_e} - c_{p_f}$, $cal/(g)(^{O}K)$		less
D_{ik}	binary diffusion coefficient between	q	heat transfer rate, cal/(cm ²)(sec)
1K	molecules i and k, cm^2/sec	R	gas constant, 1.98726 cal/(g-mole)(^O K)
d	characteristic distance in Nusselt and Reynolds numbers, cm	R'	gas constant, 82.057 (cc)(atm)/(g-mole)(^O K)
ΔΗ	heat of reaction, cal	Re	Reynolds number, $du\rho/\eta$, dimen-
${ t H}_{f T}^{ m O}$	standard state enthalpy at tempera-		sionless
_	ture T, cal/g-mole	R	reaction rate, g-mole/(cc)(sec)
h	heat transfer coefficient, cal/(cm) ² (sec)(⁰ K)	${f r}$	radius, cm
К _р	equilibrium constant in terms of	s	entropy, cal/(g)(OK)
р	partial pressures	T	temperature, ^O K
${f K}_{ u}$	modified Bessel function of the	ŧ	time, sec
	second kind of order $ u$	u	linear flow velocity, cm/sec
k	Boltzmann constant, 1.38044×10 ⁻¹⁶ ergs/ ^o K	V	volume, cc
_		x	mole fraction, dimensionless
^k i	rate constant of reaction i, con- sistent units	γ	isentropic exponent,
Le			($\partial \ln P/\partial \ln ho)_{S}$, dimensionless
20	Lewis number, $(\lambda_r)(c_{p_f})/(\lambda_f)(c_{p_r})$, dimensionless	δ	correction to λ^* defined in eq. (B3), dimensionless
l	characteristic distance associated with parameter $arphi,$ cm	ϵ	force constant for Lennard-Jones (12-6) potential, ergs
M	molecular weight, g/g-mole		· · · · · · · · · · · · · · · · · · ·

- η viscosity, g/(cm)(sec)
- λ thermal conductivity, $cal/(cm)(sec)(^{O}K)$
- $\begin{array}{ll} \lambda^* & \text{ effective ''thermal conductivity'',} \\ & \text{ cal/(cm)(sec)(}^OK) \end{array}$
- ρ density, g/cc
- σ force constant in Lennard-Jones (12-6) potential, Å

 φ reaction rate parameter defined by eq. (4), cm⁻¹

Subscripts:

- b boiling point
- e equilibrium
- f frozen
- r reaction

APPENDIX B

EFFECT OF FINITE REACTION RATE ON THE EQUILIBRIUM THERMAL CONDUCTIVITY FOR THE $N_2O_4 \neq 2NO_2 \neq 2NO+O_2$ SYSTEM

In reference 27 the effective 'thermal conductivity' of a reacting gas, ignoring thermal diffusion, is examined for particular geometries that can be described by a single coordinate r. An equation of the following form is developed for a single reversible reaction:

$$\lambda^* = \frac{\lambda_e \lambda_f}{\lambda_f + F \lambda_f + G \lambda_r}$$
 (B1)

where λ^* is the effective 'thermal conductivity' and F and G are functions of the coordinate r, the accommodation coefficients, the surface catalysis, and the reaction rate.

Consider the application of equation (B1) to a hot wire thermal conductivity cell. Assume chemical reactions at the surfaces are negligible and that temperature jump can be ignored. Then, from the results of reference 27 for concentric cylinders, a good approximation of equation (B1) is given by

$$\lambda^* = \frac{\lambda_e}{1 + \frac{K_0(\varphi r_1)}{\varphi r_1 K_1(\varphi r_1) \ln(r_2/r_1)} \left(\frac{\lambda_r}{\lambda_f}\right)}$$
(B2)

where r_1 and r_2 are the respective radii of the hot wire and the inner wall of the cell, the K_{ν} are modified Bessel functions of the second kind of order ν , and φ is given by equation (4). Solving for λ_e results in

$$\lambda_{e} = \lambda^{*} \left[1 + \frac{K_{0}(\varphi r_{1})}{\varphi r_{1} K_{1}(\varphi r_{1}) \ln(r_{2}/r_{1})} \left(\frac{\lambda_{r}}{\lambda_{f}} \right) \right] = \lambda^{*} (1 + \delta)$$
 (B3)

where δ is a correction term. Equation (B3) was used to correct the data of Coffin and O'Neal (ref. 12) for finite reaction rate as follows. For each experimental datum point,

a value of δ was calculated. Then the experimental conductivity λ^* , together with δ , were used to calculate λ_e . These equilibrium thermal conductivity values are the ones shown in figure 2 (p. 8), referred to as experimental data.

For the apparatus of Coffin and O'Neal $r_1=6.48\times10^{-3}$ centimeter and $r_2/r_1=37.1$. The values of φ were calculated from equation (4). Data for λ_e , λ_f , and λ_r were obtained from table IV and the $\Delta H/RT$ were obtained from reference 26. The only other quantity needed to calculate φ was the reaction rate \Re . The calculation of \Re involved the following analysis of experimental kinetic data.

Since the reactions $N_2O_4 = 2NO_2 = 2NO+O_2$ occur simultaneously, the results of reference 27 are not strictly applicable. However, the thermodynamics of the system are such that the first reaction goes almost to completion before the second one becomes important, especially at lower pressure. Furthermore, the kinetics of the reactions (refs. 15, 16, 17, 30, 31, and 32) show that the first is much faster than the second. This means it is possible to ignore the second reaction when considering the first.

Experimental data of Carrington and Davidson on the first reaction (ref. 30) indicate that at high pressure the rate is first order with respect to N_2O_4 , whereas at low pressure the rate is second order. A mechanism for this is suggested from the Lindemann-Hinshelwood theory by the following pair of reactions:

(III)
$$N_2O_4 + M \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} N_2O_4^* + M$$

$$(IV) \qquad \qquad N_2O_4^* \underset{k_{-2}}{\overset{k_2}{\rightleftharpoons}} 2NO_2$$

where M is a second body, either a different kind of molecule or another N_2O_4 , and $N_2O_4^*$ is an activated N_2O_4 . The rate of disappearance of N_2O_4 is given by

$$\frac{-d[N_2O_4]}{dt} = k_1[N_2O_4][M] - k_{-1}[N_2O_4^*][M]$$
 (B4)

where the brackets around the chemical formulas signify concentrations.

If it is assumed that the rate of disappearance of $N_2O_4^*$ is much greater than the rate of formation, the steady state assumption $d\left[N_2O_4^*\right]/dt\cong 0$ may be applied, that is,

$$\frac{d[N_2O_4^*]}{dt} = k_1[N_2O_4][M] - k_{-1}[N_2O_4^*][M] - k_2[N_2O_4^*] + k_{-2}[NO_2]^2 = 0$$
 (B5)

Solving for $[N_2O_4^*]$, substituting into equation (B4), and then rearranging terms gives

$$-\frac{d\left[N_{2}O_{4}\right]}{dt} = \left(\frac{k_{1}}{\frac{k_{-1}}{k_{2}}\left[M\right] + 1}\right)\left[N_{2}O_{4}\right]\left[M\right] - \left(\frac{k_{-2}}{\left[M\right] + \frac{k_{2}}{k_{-1}}}\right)\left[NO_{2}\right]^{2}\left[M\right]$$
(B6)

Thus the rate of disappearance of N_2O_4 in the forward direction is

$$\Re = \left(\frac{\frac{k_1}{k_2}}{\left[M\right] + 1}\right) \left[N_2 O_4\right] \left[M\right] \tag{B7}$$

At low pressures the limiting rate is

$$\lim_{[M] \to 0} \Re = k_1 [N_2 O_4] [M] = k_{II} [N_2 O_4] [M]$$
(B8)

where $\mathbf{k}_{\mathbf{II}}$ is the second order rate constant. At high pressures the limiting rate is

$$\lim_{[M] \to \infty} \mathfrak{R} = \left(\frac{k_2}{k_{-1}} k_1\right) \left[N_2 O_4\right] = k_1 \left[N_2 O_4\right]$$
(B9)

where $\mathbf{k}_{\boldsymbol{I}}$ is the first order rate constant. Combining these results gives

$$\Re = \frac{k_{\text{II}} \left[N_2 O_4 \right] \left[M \right]}{\frac{k_{\text{II}}}{k_{\text{I}}} \left[M \right] + 1}$$
(B10)

Since the value of $\mathbb R$ in equation (4) is calculated at equilibrium, the values of [M], which is the total concentration, and $[N_2O_4]$ may be taken from table III. Shock tube studies of the rate of dissociation of N_2O_4 in a large excess of N_2 have given first and

second order rates of $-d[N_2O_4]/dt = 10^{16} \exp(-13\ 000/RT)[N_2O_4]$ and $-d[N_2O_4]/dt = 2\times10^{17} \exp(-11\ 000/RT)[N_2O_4][N_2]$ gram-moles per cubic centimeter per second, respectively (ref. 30). The reported first order rate constant was the value used herein. However, other workers have found that NO_2 and N_2O_4 are more efficient second bodies than N_2 (refs. 31 and 32). Their results show that the second order rate constant should be approximately two to three times that found by Carrington and Davidson when NO_2 and N_2O_4 are the second bodies. Furthermore, analysis of experimental thermal conductivity data (ref. 27) suggests a value of about 3.5 times that found in reference 30. In view of these findings a value of 2.5 times that of Carrington and Davidson, namely, 5×10^{17} exp(-11 000/RT) cubic centimeter per gram mole per second, was used as an average of the results of various investigators for the calculations herein.

TABLE V. - VALUES OF REACTION RATE PARAMETER $\,\, \varphi \,\,$ FOR VARIOUS PRESSURES $^{\rm a}$

(a)	N_2O_4	#	2NO ₂
٠,	2 4		

Tempera-		Pres	ssure, P, at	m							
ture, T,	0.01	0.1	10	100							
^o K		Reaction rate parameter $ \phi^{ m a}$									
300	0.365×10 ²	0.820×10 ³	1.29×10 ⁴	1.36×10 ⁵	0.853×10 ⁶						
320	.364	.766	1.52	1.86	1.24						
340	. 447	.710	1.55	2.32	1.71						
360	.605	.745	1.45	2.62	2.23						
380	.816	.890	1.37	2.69	2.74						
400		1.123	1.41	2.60	3.15						
500				3.23	2.46						
600					3.08						

(b)
$$2NO_2 \neq 2NO+O_2$$

400	0.0219×10^{-2}				
500	. 213	0.273×10^{-1}	0.334×10^{0}		
600	. 497	.905	1.34	1.74×10^{1}	
700	.560	1.27	2.53	4.09	5.68×10^2
800	.635	1.36	3.03	6.05	9.97
900	. 778	1.51	3.18	6.87	13.3
1000	.942	1.75	3.40	7.16	14.9
1100	1.108	2.01	3.75	7.47	15.6
1200	1.263	2.26	4.13	7.89	15.9

^aEq. (4),
$$\varphi = \left[\left(\frac{\lambda_e}{\lambda_f \lambda_r} \right) \left(\frac{\Delta H}{RT} \right)^2 RR \right]^{1/2}$$
, cm⁻¹.

At higher temperatures the predominant reaction is $2NO_2 \neq 2NO+O_2$. The rate of dissociation is second order and has been measured by Rosser and Wise (ref. 16) and confirmed by Ashmore and Burnett (ref. 17). Both are consistent with the recalculated work of Bodenstein cited in reference 17. The rate of decomposition of NO_2 is given by

$$-\frac{d[NO_2]}{dt} = 4 \times 10^{12} \exp\left(-\frac{26 900}{RT}\right) [NO_2]^2 \text{ g-mole/(cc)(sec)}$$
(B11)

Table V presents values of φ as calculated from equation (4) at various pressures. The lower temperature values are for the N₂O₄ \neq 2NO₂ reaction and the higher temperature values for the 2NO₂ \neq 2NO+O₂ reaction. Although the reactions are simultaneous, the first reaction is a much faster reaction than the second. Therefore, in most cases the appropriate value of φ is that for the N₂O₄ \neq 2NO₂ reaction up to temperatures at which the N₂O₄ is completely dissociated. This was the criterion used in making table V.

APPENDIX C

APPLICATION OF THE CHEMICAL KINETIC PARAMETER arphi TO CONVECTIVE HEAT TRANSFER

It is the purpose of this appendix to provide a specific example as to how the chemical kinetic parameter φ , defined in equation (4), may be useful in estimating heat transfer in convective flow where the chemistry is neither completely at equilibrium nor completely frozen.

Consider the Nusselt number formulated with the equilibrium thermal conductivity

$$Nu_{e} = \frac{hd}{\lambda_{e}} = \left(\frac{hd}{\lambda^{*}}\right) \left(\frac{\lambda^{*}}{\lambda_{e}}\right)$$
 (C1)

where h is the heat transfer coefficient, d is a characteristic dimension, and λ^* is the effective 'thermal conductivity' of a boundary layer with small temperature differences. It might reasonably be assumed that a heat transfer correlation applicable in the absence of reaction should be appropriate, so that

$$\frac{hd}{\lambda^*} = A Re^n Pr^m$$
 (C2)

(For example, if a turbulent pipe flow situation were being considered, n = 0.8 and m \simeq 0.3 to 0.4.) It may be argued that neither the frozen nor the equilibrium Prandtl number is appropriate for a reacting gas, but rather $\Pr \equiv c_p^* \, \eta/\lambda^*$ should be used. However, as can be seen from table IV, the equilibrium and frozen Prandtl numbers for a given pressure and temperature are very nearly the same for almost all conditions. Furthermore, the exponent on the Prandtl number is less than one, further reducing the uncertainty in hd/λ^* . Thus, the choice of Prandtl numbers is not critical.

If thermal accommodation occurs on the surface, F = 0 in equation (B1) and

$$\frac{\lambda^*}{\lambda_e} = \frac{\lambda_f}{\lambda_f + G\lambda_r} \tag{C3}$$

so that

$$Nu_{e} = \frac{A \operatorname{Re}^{n} \operatorname{Pr}^{m}}{1 + G\left(\frac{\lambda_{r}}{\lambda_{f}}\right)}$$
 (C4)

Let the boundary layer now be idealized as a stagnant film with heat transfer by conduction only. Then the equations for conduction between plane parallel plates can be applied. It will be assumed that one wall is fully catalytic and corresponds to the free stream or bulk flow, while the other wall is noncatalytic. In this event (ref. 27)

$$G = \frac{\tanh \varphi \ell}{\varphi \ell}$$
 (C5)

where ℓ is the boundary layer thickness. On the assumption that the heat transfer does occur by conduction through a stagnant film

$$q = h \Delta T = \lambda^* \frac{\Delta T}{\ell}$$
 (C6)

Equations (C2) and (C6) can be combined and solved for ℓ

$$\ell = \frac{d}{A \operatorname{Re}^{m} \operatorname{Pr}^{n}}$$
 (C7)

Thus, the heat transfer coefficient may be obtained through equations (C4), (C5), and (C7). This should be a good approximation for subsonic flows where temperature differences are not too large.

APPENDIX D

INTERPOLATION OF REACTION THERMAL CONDUCTIVITY AND HEAT CAPACITY FOR INTERMEDIATE PRESSURES

From the compositions of table III it is apparent that to a good approximation the reactions $N_2O_4 = 2NO_2 = 2NO+O_2$ can be treated separately. Then for the first reaction, $N_2O_4 = 2NO_2$, the thermal conductivity and heat capacity due to chemical reaction are given by (refs. 22 and 23)

$$\lambda_{r} = \left(\frac{\Delta H^{2}}{RT^{2}}\right) \left(\frac{PD_{NO_{2}} - N_{2}O_{4}}{R'T}\right) \left[\frac{x_{N_{2}O_{4}} x_{NO_{2}}}{\left(1 + x_{N_{2}O_{4}}\right)^{2}}\right]$$
(D1)

$$c_{p_{r}} = \left(\frac{\Delta H^{2}}{RT^{2}}\right) \frac{1}{M_{NO_{2}}} \left[\frac{x_{N_{2}O_{4}}^{X_{NO_{2}}}}{\left(1 + x_{N_{2}O_{4}}^{X_{2}O_{4}}\right)^{3}}\right]$$
(D2)

At constant temperature, ΔH and $PD_{NO_2-N_2O_4}$ are pressure independent. Therefore, to interpolate for intermediate pressures only the compositions at one known pressure are needed. These can be obtained by solving the following pair of equations:

$$x_{NO_2} + x_{N_2O_4} = 1$$
 (D3)

$$\frac{x_{NO_2}^2 P}{x_{N_2O_4}} = K_p$$
 (D4)

The equilibrium constant in equation (D4) may be calculated at each temperature from the results of table III.

Similar results can be obtained for the $2NO_2 \neq 2NO+O_2$ reaction but are considerably more complicated for λ_r . However, if it is assumed that all three binary diffusion coefficients are the same at each temperature, then

$$\lambda_{\mathbf{r}} \propto \frac{{}^{\mathbf{X}} N O_2 {}^{\mathbf{X}} N O}{\left(1 + 0.5 \times N O_2\right)^2}$$
 (D5)

$$c_{p_r}^{\infty} \frac{{}^{x_{NO_2}^{x_{NO}}}}{\left(1 + 0.5 \times {}^{x_{NO_2}}\right)^3}$$
 (D6)

Similarly, the compositions can be obtained from the following equations:

$$x_{NO_2} + \frac{3}{2} x_{NO} = 1$$
 (D7)

$$\frac{x_{NO}^3P}{x_{NO_2}^2} = 2K_p \tag{D8}$$

As an illustration consider the following: Find c_{p_r} at 600^{O} K and 0.3 atmosphere for the equilibrium $NO_2-N_2O_4-NO-O_2$ system.

The solution to this can be found directly from table IV(b), inasmuch as data for 0.3 atmosphere are already tabulated. However, to illustrate the calculating procedure this value will be calculated from the data at 0.1 atmosphere. From equation (D8)

$$2K_{p} = \frac{x_{NO}^{3}P}{x_{NO_{2}}^{2}} = \frac{(0.33028)^{3}(0.1)}{(0.50457)^{2}} = 1.41515 \times 10^{-2}$$
(D9)

Combining equations (D7) and (D8) gives

$$\frac{x_{NO}^{3}}{\left(1 - \frac{3}{2}x_{NO}\right)^{2}} = \frac{2K_{p}}{P}$$
 (D10)

To find the composition at 0.3 atmosphere and $600^{\rm O}$ K, the following is used:

$$\frac{x_{\text{NO}}^3}{\left(1 - \frac{3}{2}x_{\text{NO}}\right)^2} = \frac{1.41515 \times 10^{-2}}{0.3} = 0.047172$$
 (D11)

which is a cubic equation in x_{NO} . Equation (D11) may be solved rather easily by trial and error. For an initial guess, see table III(b). The mole fractions of NO at 0.1 and 1 atmosphere are 0.33028 and 0.19268, respectively. Thus, a first guess for x_{NO} at 0.3 atmosphere will be between these two, perhaps 0.25. By trial and error, it is found that $x_{NO} = 0.25992$, which agrees with that given in table III(b). From equation (D7), $x_{NO_2} = 1 - \frac{3}{2} x_{NO} = 0.61012$. The value of c_{p_r} at 0.1 atmosphere from table IV(b) is 1.3565 - 0.2424 = 1.1141 cal/(g)(O K). Then applying equation (D6) at 0.1 and 0.3 atmosphere and 600^{O} K, after taking ratios gives

$$\frac{c_{\mathbf{p_r}}(0.3 \text{ atm})}{1.1141} = \frac{(0.25992)(0.61012)}{\left[1 + 0.5(0.61012)\right]^3} \frac{\left[1 + 0.5(0.50457)\right]^3}{(0.33028)(0.50457)}$$
(D12)

or $c_{p_r} = 0.9367$, which agrees with the value in table IV(b).

REFERENCES

- 1. Callaghan, Michael J.; and Mason, David M.: Momentum and Heat Transfer Correlations for a Reacting Gas in Turbulent Pipe Flow. A.I.Ch.E. J., vol. 10, no. 1, Jan. 1964, pp. 52-55.
- 2. Furgason, R.R.; and Smith, J.M.: Heat Transfer in the Nitrogen Dioxide-Nitrogen Tetroxide System. A.I.Ch.E. J., vol. 8, no. 5, Nov. 1962, pp. 654-658.
- 3. Irving, J.P.; and Smith, J.M.: Heat Transfer in a Chemically Reacting System (Nitrogen Tetroxide-Dioxide). A.I.Ch.E. J., vol. 7, no. 1, Mar. 1961, pp. 91-96.
- Richardson, J.L.; Boynton, F.P.; Eng, K.Y.; and Mason, D.M.: Heat Transfer in Reacting Systems. Heat Transfer to N₂O₄ Gas Flowing Normal to a Heated Cylinder. Chem. Eng. Sci., vol. 13, 1961, pp. 130-142.
- 5. Schotte, William: Heat Transfer to a Gas-Phase Chemical Reaction. Ind. Eng. Chem., vol. 50, no. 4, Apr. 1958, pp. 683-690.
- 6. Brokaw, Richard S.: Correlation of Turbulent Heat Transfer in a Tube for the Dissociating System $N_2O_4 \neq 2NO_2$. NACA RM E57K19a, 1958.
- 7. Beal, John L.; and Lyerly, Ray L.: Influence of Gas Dissociation on Heat Transfer. WADC TR 56-494 (ASTIA No. AD 118074), Cornell Aeronautical Lab., Inc., Sept. 1956.
- 8. Fan, Stephen S.T.; and Mason, David M.: Properties of the System $N_2O_4 \neq 2NO_2 \neq 2NO+O_2$. J. Chem. Eng. Data, vol. 7, no. 2, Apr. 1962, pp. 183-186
- 9. Petker, Ira; and Mason, David M.: Viscosity of the $\rm N_2O_4$ -NO $_2$ Gas System. J. Chem. Eng. Data, vol. 9, no. 2, Apr. 1964, pp. 280-281.
- 10. Beer, Hans; Wärmeübergang in dissoziierenden Gasen. Doctoral Thesis, Institut Für Thermodynamik der Flugtriebwerke, Technische Hochschule, Stuttgart, Germany, Mar. 1963.
- 11. Thievon, William J.; Sterbutzel, Gerald A.; and Beal, John L.: The Influence of Gas Dissociation on Heat Transfer. WADC TR 59-450, Cornell Aeronautical Lab., Inc., June 1959.
- 12. Coffin, Kenneth P.; and O'Neal, Cleveland, Jr.: Experimental Thermal Conductivities of the $N_2O_4 \neq 2NO_2$ System. NACA TN 4209, 1958.
- 13. Hirschfelder, Joseph O.; Curtiss, Charles F.; and Bird, R. Byron: Molecular Theory of Gases and Liquids. John Wiley & Sons, Inc., 1954.

- 14. Svehla, Roger A.: Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures. NASA TR R-132, 1962.
- 15. Yost, Don M.; and Russell, Horace Jr.: Systematic Inorganic Chemistry. Prentice-Hall, Inc., 1946.
- 16. Rosser, Willis A. Jr.; and Wise, Henry: Thermal Decomposition of Nitrogen Dioxide. J. Chem. Phys., vol. 24, no. 2, Feb. 1956, pp. 493-494.
- 17. Ashmore, P.G.; and Burnett, M.G.: Concurrent Molecular and Free Radical Mechanisms in the Thermal Decomposition of Nitrogen Dioxide. Trans. Faraday Soc., vol. 58, 1962, pp. 253-261.
- 18. Gray, Peter; and Yoffe, A.D.: The Reactivity and Structure of Nitrogen Dioxide. Chem. Rev., vol. 55, 1955, pp. 1069-1154.
- 19. Reamer, H.H.; and Sage, B.H.: Volumetric Behavior of Nitrogen Dioxide in the Liquid Phase. Ind. Eng. Chem., vol. 44, no. 1, Jan. 1952, pp. 185-187.
- 20. Svehla, Roger A.: Thermodynamic and Transport Properties for the Hydrogen-Oxygen System. NASA SP-3011, 1964.
- 21. Brokaw, Richard S.; Svehla, Roger A.; and Baker, Charles E.: Transport Properties of Dilute Gas Mixtures. NASA TN D-2580, 1965.
- 22. Butler, James N.; and Brokaw, Richard S.: Thermal Conductivity of Gas Mixtures in Chemical Equilibrium. J. Chem. Phys., vol. 26, no. 6, June 1957, pp. 1636-1643.
- 23. Brokaw, Richard S.: Thermal Conductivity of Gas Mixtures in Chemical Equilibrium II. J. Chem. Phys., vol. 32, no. 4, Apr. 1960, pp. 1005-1006.
- 24. Zeleznik, Frank J.; and Gordon, Sanford: A General IBM 704 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions, Rocket Performance, and Chapman-Jouguet Detonations. NASA TN D-1454, 1962.
- 25. Gordon, Sanford; and Zeleznik, Frank J.: A General IBM 704 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions, Rocket Performance, and Chapman-Jouguet Detonations. Supplement 1 Assigned Area-Ratio Performance. NASA TN D-1737, 1963.
- 26. McBride, Bonnie J.; Heimel, Sheldon; Ehlers, Janet G.; and Gordon, Sanford: Thermodynamic Properties to 6000° K for 210 Substances Involving the First 18 Elements. NASA SP-3001, 1963.
- 27. Brokaw, Richard S.: 'Thermal Conductivity' and Chemical Kinetics. J. Chem. Phys., vol. 35, no. 5, Nov. 1961, pp. 1569-1580.

- 28. Kannuluik, W.G.; and Carman, E.H.: The Thermal Conductivity of Rare Gases. Proc. Phys. Soc. (London), vol. 65, sec. B, Sept. 1952, pp. 701-709.
- 29. Baker, Charles E.; and Brokaw, Richard S.: Thermal Conductivities of Gaseous H₂O, D₂O, and the Equimolar H₂O-D₂O Mixture. J. Chem. Phys., vol. 40, no. 6, Mar. 15, 1964, pp. 1523-1528.
- 30. Carrington, Tucker; and Davidson, Norman: Shock Waves in Chemical Kinetics: The Rate of Dissociation of N₂O₄. J. Phys. Chem., vol. 57, no. 4, Apr. 1953, pp. 418-427.
- 31. Cher, Mark: Rate of Dissociation of N_2O_4 by Ultrasonic Absorption Measurements. J. Chem. Phys., vol. 37, no. 11, Dec. 1, 1962, pp. 2564-2570.
- 32. Sessler, G.: Schallausbreitung in Teilweise dissoziiertem, gasförmigen Distickstofftetroxyd. Acustica, vol. 10, no. 1, 1960, pp. 44-59.

TABLE III. - THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

 $\begin{array}{l} \textbf{[P is pressure, T is temperature, H is enthalpy, S is entropy, (DLM/DLP)T} \equiv (\partial \ln M/\partial \ln P)_{T}, \ (DLM/DLT)P \equiv (\partial \ln M/\partial \ln T)_{P}, \ CP \ is heat capacity at constant pressure, and GAMMA is isentropic exponent <math>(\partial \ln P/\partial \ln \rho)_{S}$ where ρ is density.]

(a) NO_2 - N_2O_4 system

P, ATM		TIFS					·- +				
S, CAL/(G)(K) 1.3986 1.4471 1.4579 M, MOL MT	0.0100	340	3.80		420	440	460	0.0100	500		0.010
They for the properties They for the properties	185.9 1.4913			194.5 1.5045		203.1 1.5249	207.5 1.5347	211.9 1.5441	215.4 1.5533	221.0 1.5622	225. 1.570
TOLM/DITIP	46.069 0.00132			46.017			46.909	46.009	46.008 0.00001	45.008	
CP, CAL/(G)(K) 1.1792 0.4590 0.2598 GAMMA 1.1113 1.1632 0.2598 GAMMA 1.1113 1.1632 1.2726 MDLE FRACTIONS N1D2(G) 0.94633 0.98608 0.99593 N2D4(G) 0.05367 0.01392 0.00402 FQUILIBRIUM THERMODYNAMIC PROPERTIES P, ATM 0.0100 0.0100 0.0100 0.0100 T, DEG K 1.560 580 600 H, CAL/G 730.3 235.0 239.8 S, CAL/(G)(K) 1.5794 1.5877 1.5958 H, WDL HT 46.008 46.028 46.008 (DLM/DLP)T 0.00000 0.00000 0.000000 CP, CAL/(G)(X) 0.2350 0.2377 0.2403 CAMMA 1.2252 1.2221 1.2191 MOLE FRACTIONS N102(G) 1.00000 1.00000 1.00000 T, DEG K 800 820 860 H, CAL/G 290.1 295.3 300.5 S, CAL/(G)(K) 1.6680 1.6745 1.6893 M, MDL HT 46.008 46.008 46.008 H, CAL/G 290.1 295.3 300.5 S, CAL/(G)(K) 1.6680 1.6745 1.6893 M, MOL HT 46.008 46.008 0.0000 0.0000 CP, CAL/(G)(K) 0.2612 0.2628 0.2643 GAMMA 1.1982 1.1967 1.1964 MOLE FRACTIONS N102(G) 1.00000 1.00000 1.00000 1.00000 CP, CAL/(G)(K) 0.7612 0.2628 0.2643 GAMMA 1.1982 1.1967 1.1964 MOLE FRACTIONS N102(G) 1.00000 1.00000 0.0000 CP, CAL/(G)(K) 1.7439 1.7491 1.7542 H, MOL MT 46.009 46.008 46.008 H, CAL/G 360.3 365.8 371.4 H, MOL MT 46.009 46.008 46.008 H, CAL/G 360.3 365.8 371.4 H, MOL MT 46.009 46.008 46.008 H, CAL/G 360.3 365.8 371.4 H, MOL MT 46.009 46.008 46.008 H, CAL/G 360.3 365.8 371.4 H, MOL MT 46.009 46.008 46.008 H, CAL/G 360.3 365.8 371.4 H, MOL MT 46.009 46.008 46.008 H, CAL/G 360.3 365.8 371.4 H, MOL MT 46.009 46.008 46.008 H, CAL/G 360.3 365.8 371.4 H, MOL MT 46.009 46.008 46.008 H, MOL MT 46.009 46.008 H, MOL MT 46.008 H, MOL MT 46.009 H, MOL MT 46.009 H, MOL MT 46.009 H, M	-0.0250			-0.0034			-0.00002	-0.00001		-0.00000	0.000
MOLE FRACTIONS NID2(G)	0.2241		0.2138	0.2129	0.2147	0.2174	0.2203	0.2234		0.2293	0.23
NID2(G)	1.2514	1.2226	1.2579	1.2564	1.2526	1.2483	1.2440	1.2398	1.2358	1.2321	1.22
### PROPERTIES P. ATM											
P, ATM 0.0100 0.	0.99868			0.99980				0.99999	0.99999	1.00000	1.0000
P, ATM 0.0100 0.0100 0.0100 T, DEG K ,560 580 600 H, CAL/G 230.3 235.0 239.8 S, CAL/(G)(K) 1.5794 1.5877 1.5958 M, WOL WT 46.008 46.008 46.008 (DLM/DLP)T 0.00000 0.00000 0.00000 CP, CAL/(G)(K) 0.2350 0.2377 0.2403 GAMMA 1.2252 1.2221 1.2191 MOLE FRACTIONS N102(G) 1.00000 1.00000 1.00000 T, DEG K 800 820 840 H, CAL/G 290.1 295.3 300.5 S, CAL/(G)(K) 1.6680 1.6745 1.6803 M, MOL WT 46.008 46.008 46.008 (DLM/DLP)T 0.00000 0.0000 0.0000 CP, CAL/(G)(K) 0.2612 0.2628 0.2543 GAMMA 1.1982 1.1967 1.1954 MOLE FRACTIONS N102(G) 1.00000 1.00000 1.00000 DLM/DLP)T 0.00000 0.00000 0.00000 CP, CAL/(G)(K) 0.2612 0.2628 0.2543 GAMMA 1.1982 1.1967 1.1954 MOLE FRACTIONS N102(G) 1.00000 1.00000 1.00000 0.0000 T, DEG K 1060 1.00000 1.00000 0.00000 T, DEG K 1060 1.0000 1.00000 0.00000 T, DEG K 1060 1.0000 1.00000 0.00000 T, DEG K 1060 46.008 46.008 T, CAL/(G)(K) 0.2769 0.2777 0.2785											
T, DEG K											
H, CAL/G F, CAL/(G)(K) H, VOL H, VO	0.0100 620		0.0190 640	0.0100 660	0.0100 680	0.0100 700	0.0100 720	0.0100 740	0.0100	0.0100 780	
M, WOL MT	744.6	239.8	249.5	254.4	259.4	264.4	269.5	274.6	279.7	284.9	
InlinyTrip	1.6037	1.5958	1.6115	1.6191	1.6265	1.6338	1.6409	1.6479	1.6547	1.6614	
INITYPETP -0.0000 -0.000 -0.0000 CP, CAL/(G)(K) 0.2350 0.2377 0.2403 1.2252 1.2221 1.2191 MOLE FRACTIONS N102(G) 1.00000 1.00000 1.00000 1.00000 EQUILIBRIUM THERMODYNAMIC PROPERTIES P, ATH 0.0100 0.0100 0.0100 8.00 8.00 8.00 8.0	45.003		45.008	46.008	46.008	46.008	46.008	46.008	46.008	45.008	
CP. CAL/(G)(K) 0.2350 0.2377 0.7403 1.2257 1.2191 MOLE FRACTIONS	0.00000		1.12202	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
MOLE FRACTIONS MOLE FRACTIONS MOLE FRACTIONS N1021G) 1.00000 1.00000 1.00000 1.00000 EQUILIBRIUM THERMODYNAMIC PROPERTIES P, ATM 0.0100 0.0100 0.0100 0.0100 T, DEG K 800 820 840 H, CAL/G 290.1 295.3 300.5 S, CAL/(G)(K) 1.6680 1.6745 1.6899 M, MOL HT 46.008 46.008 46.008 TOLM/DLPIT 0.00000 0.00000 0.0000 CP, CAL/(G)(K) 0.2612 0.2648 0.2643 GAMMA 1.1982 1.1967 1.1954 MOLE FRACTIONS N102(G) 1.00000 1.00000 1.00000 1.00000 T, DEG K 1060 1080 1100 T, DEG K 1060 365.8 371.4 T, CAL/(G)(K) 1.7439 1.7491 1.7542 DLM/DLP)T 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	-0.0000 0.2428		-0.0000 0.2453	-0.0000 0.2476	-0.0000 0.2498	-0.0000 0.2519	-0.0000 0.2540	-0.0000 0.2559	-0.0000 0.2578	-0.0000 0.2595	
PRIDERIUM THERMODYNAMIC PROPERTIES P, ATH 10.0100 0.0100 0.0100 17.066 K 800 920 840 14.040/2 290.1 295.3 300.5 16.6469 1.6745 1.6899 17.066 K 800 920 18.0000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 0.0000 18.00000 0.0000 0.0000 0.0000 0.0000 18.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0	1.2164		1.2139	1.2113	1.2090	1.2069	1.2049	1.2031	1.2013	1.1997	
P. ATM 0.0100 0.					***************************************		-			***************************************	
P, ATM 0.0100 0.0100 0.0100 T, DEG K 800 820 840 H, CAL/G 290.1 295.3 300.5 S, CAL/(G)(K) 1.6680 1.6745 1.6899 M, MOL HT 46.008 46.008 46.008 IDLM/DLP)T 0.0000 0.0000 0.0000 CP, CAL/G(G)(K) 0.7612 0.2678 0.7643 GAMMA 1.1982 1.1967 1.1967 HOULINRIUM THERMODYNAMIC PROPERTIES P, ATM 0.0100 0.0100 0.0100 T, DEG K 1060 1.0000 1.0000 T, DEG K 1060 1.749 1.7542 H, MOL HT 46.009 46.008 46.008 T, CAL/(G)(K) 0.2769 0.2777 0.2785 GAMMA 1.1848 1.1842 1.1836	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	
T. DEG K 800 820 820 840 840 840 840 840 840 850 850 860 820 820 820 820 820 820 820 820 820 82		TIES			***************************************			***************************************			
H, CAL/G 290.1 295.3 300.5 S, CAL/(G)(K) 1.6680 1.6745 1.6809 M, MOL MT 46.008 46.008 46.008 0.0000 IDLM/DLP)T 0.00000 0.00000 -0.0000 CP, CAL/(G)(K) 0.7612 0.2628 0.2643 GAMMA 1.1982 1.1967 1.1967 MOLE FRACTIONS NIO2(G) 1.00000 1.00000 1.00000 EQUILIBRIUM THERMONYNAMIC PROPERTIES P, ATM 0.0100 0.0100 0.0100 T, DEG K 1060 1080 1100 H, CAL/(G)(K) 1.7439 1.7491 1.7542 M, MOL MT 46.009 46.008 46.008 OLDLM/DLP)T 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.0100	0.0100	0.0100	0.1101	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.010
S, CAL/(G)(K) 1.6680 1.6745 1.6899 M, MOL MT 46.008 46.008 46.008 (DLM/DLPIP 0.0000 0.0000 0.0000 CP, CAL/(G)(K) 0.2612 9.2628 0.2643 GAMMA 1.1982 1.1967 1.1964 MOLE FRACTIONS NIO2(G) 1.0000 1.00000 1.00000 EQUILIBRIUM THERMONYNAMIC PROPERTIES P. ATM 0.0100 0.0100 0.0100 T. DEG K 1060 1080 1100 T. CAL/(G)(K) 1.7439 1.7491 1.7542 M, MOL MT 46.009 46.008 46.008 TOLM/DLTIP 0.0000 1.0000 0.0000 TPLM/DLTIP 0.0000 0.2769 0.2777 0.2785 TAMMA 1.1848 1.1842 1.1846	943		CRB	900	920	940	960	980	1000	1020	104
M, MOL HT 46.008 46.008 46.008 10LM/DLP)F 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	305.9 1.6871	1.6829	311.2 1.6932	316.6 1.6992	372.0 1.7051	327.4 1.7110	332.8 1.7167	338.3 1.7223	343.7	349.2 1.7333	354. 1.738
IDEM/DLP)											
IDEM/DLTP	46.008		46.008	46.008 0.00000	46.008	46.008	46.008	46.008	46.008	46.008	46.00
MOLE FRACTIONS MOLE FRACTIONS NIO2(G) 1.00000 1.00000 1.00000 EQUILIBRIUM THERMONYNAMIC PROPERTIES P. ATM	-0.0000		0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000 -0.0000	0.00000 -0.0000	9.00900 -0.0090	0.000
MOLE FRACTIONS N102(G) 1.00000 1.00000 1.00000 EQUILIBRIUM THERMODYNAMIC PROPERTIES P. ATM 0.0100 0.0100 0.0100 1. DEG K 1060 1080 1100 1. CAL/G K 1.7439 1.7491 1.7542 1. CAL/GO(K) 1.7439 1.7491 1.7542 1. MOL WT 46.009 46.008 46.008 0. DLM/DLP)T 0. 0. 0. 0. DLM/DLP)T 0. 0. 0. 0. DLM/DLP)T 0. 0.000 0.0000 P., CAL/(G)(K) 0.2769 0.2777 0.2785 AMMA 1.1848 1.1842 1.1836	0.2557	0.2543	0.2671	0.2684	0.2697	0.2709	0.2720	0.2732	0.2743	0.2752	0.000
PRIOZEG) 1.00000 1.00000 1.00000 EQUILIBRIUM THERMONYNAMIC PROPERTIES P. ATM 0.0100 0.0100 0.0100 T. DÉG K 1060 1080 1100 T. CAL/G 360.3 365.8 371.4 S. CAL/(G)(K) 1.7439 1.7491 1.7542 (, MOL MT 46.009 46.008 46.008 DLM/DLP)T 0. 0. DLM/DLT)P 0.0000 0.0000 0.0000 P. CAL/(G)(K) 0.2769 0.2777 0.2785 EAMMA 1.1848 1.1842 1.1836	1.1941	1.1954	1.1929	1.1919	1.1907	1.1897	1.1887	1.1878	1.1869	1.1862	1.185
PROPERTIES 2. ATM 0.0100 0.0100 0.0100 1. DEG K 1060 1080 1100 1. CAL/G 360.3 365.8 371.4 1. CAL/G(K) 1.7439 1.7491 1.7492 1. MOL WT 46.009 46.008 46.008 DLM/DLP)T 0. 0. 0. DLM/DLT)P 0.0000 0.0000 0.0000 DLM/DLT)P 0.0000 0.2777 0.2785 DLM/AL/G(K) 0.2769 0.2777 0.2785 AMMA 1.1848 1.1842 1.1836											
7, ATH 0.0100 0.0100 0.0100 1, DEG K 1060 1080 1100 1, CAL/G 360.3 365.8 371.4 5, CAL/(G)(K) 1.7439 1.7491 1.7547 1.7439 1.7491 1.7547 1.7439 1.7491 0.000 0.0000	1.00000	1.00000	1.00000	1.77077	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000
T, DEC K 1060 1080 1100 1, CAL/G 360.3 365.8 371.4 1.7491 1.7492		TES									
1, CAL/G 360.3 365.8 371.4 G, CAL/G)(K) 1.7439 1.7491 1.7542 H, MOL WT 46.009 46.008 DLM/DLP)T 0. 0. DLM/DLT)P 0.0000 0.0000 0.0000 P, CAL/(G)(K) 0.2769 0.2777 0.2785 GAMMA 1.1848 1.1842 1.1836	0.0100		0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	
1.7439 1.7431 1.7542 (, MOL WT 46.009 46.008 46.008 DLM/DLF)F 0. 0. 0. DLM/DLT)P 0.0000 0.0000 0.0000 P, CAL/(G)(K) 0.2769 0.2777 0.2785 AMMA 1.1848 1.1842 1.1836	1120 377.0		1140 382.5	1160 388.2	1180 393.8	1200 399.4	1220 405.1	1240 410.7	1260 416.4	1280 422.1	
DLM/DLF)T	1.7592		1.7541	1.7690	1.7738	1.7786	1.7832	1.7978	1.7924	1.7969	
DLM/DLT1P	46.009		46.008	46.008	45.008	46.008	46.008	45.008	46.008	46.008	
P, CAL/(G)(K) 0.2769 0.2777 0.2785 GAMMA 1.1848 1.1842 1.1816	0.		Π.	0.	0.	0.	0.	0.	n.	0.	
SAMMA 1.1848 1.1842 1.1836	0.0000 0.2793		0.0000	0.0000 0.2808	0.0300 0.2815	0.0000	0.0000	0.0000 0.2836	0.0000 0.2842	0.0000	
DIE COLCETORS	1.1830		1.1824	1.1818	1.1813	1.1807	1.1802	1.1797	1.1792	1.1787	
IDLE FRACTIONS											
1102(G) 1.00000 1.00000	1.00000	1 . 00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

 $\begin{bmatrix} P \text{ is pressure, T is temperature, H is enthalpy, S is entropy, } (DLM/DLP)T = (\partial \ln M/\partial \ln P)_T, \\ (\partial \ln P)_T, (DLM/DLT)P = (\partial \ln M/\partial \ln T)_P, CP \text{ is heat capacity at constant pressure, and GAMMA is isentropic exponent } (\partial \ln P/\partial \ln \rho)_S \text{ where } \rho \text{ is density.} \end{bmatrix}$

(a) Continued. $NO_2-N_2O_4$ system

A.T. C. 1.00 0.1000 0.1000 0.1000 0.1000 0.1000 0.200 0.400 0.20			C PROPERT		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.100
	P, ATM									460	480	500		54
AME 1.1399 1.2110 1.3494 1.3794 1.3794 1.3795 1.3794 1.3995 1.4095 1.4092 1.4092 1.4092 1.4093 1.4094 1.4092 1.40	T, DEG K					189.0								
14. MILE T 59.651 51.194 0.1758 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	S. CAL/(G)(K)		1.2710	1.3419	1.3734	1.3909	1.4038	1.4149	1.4252	1.4551	1.4440	1.4220	1.4021	14411
THE MALE OF THE CALLED TO 1.0007 (1.0005) 0.00358 0.01274 0.00376 0.00		50 451	51.194	47.736	46.602	46.230	46.099	46.049	46.028					46.00
CEMPORT P. 2-8443 1.7335 0.4712 0.47						0.00476								
P. CAL/LOINS 2.9488 1.6430 0.7696 0.7995 1.798 1.2205 1.2200 1.2243 1.2257 1.2229 1.2393 1.2356 1.2320 1.222	(CLM/DLT)P		-1.7335	-0.6772										0.232
### WILE FRACTIONS Continue	CP, CAL/(G)(K)													1.228
NOTE NAME	GAMMA	1.0914	1.1059	1.1345	1.1170									
NIDIZICIO 0.10345 0.18728 0.96273 0.98710 0.99871 0.99872 0.99872 0.09872 0.00072 0.	MOLE FRACTIONS													
CALIFORNIA TREPARDYNAMIC PROPERTIES C. AITH C. 1000 C. 100	N102(G)													0.9999
CALTER C. 1000 C.1000 0.0000 0.00000 0.	N204(G)	0.29655	0.11271	0.03757	0.01290	0.00485	0.00148	0.00000	0.00042	0000022				
Company Comp	EQUILIBRIUM THE	RMODYNAMI	C PROPERT	IES										
T. DEE K 5-0 580 600 620 640 640 680 700 720 720 740 660 780 740 640 740 740 740 740 740 740 740 740 740 7	P. ATM	C.1000	0.1000	0.1000							0.1000			
CAL/(GIK) 1.4860 1.4882 1.4964 1.5933 1.5120 1.5120 1.5120 1.5270 1.5343 1.5414 1.5484 1.5553 1.5620	T, DEG K	560	580	600										
4, MQL WT 46,009 46,008 46,008 46,008 46,008 46,008 46,008 46,008 46,008 46,008 46,008 46,008 46,008 46,008 66,008	H, CAL/G S, CAL/(G)(K)						1.5196							
		46.009	46.008	46.008	46.008									
Control Cont	(DLM/DLP)T	0.00002	0.00001							0.00000	0.00000			
No. 1.252 1.272 1.272 1.212 1.212 1.213 1.213 1.200 1.2069 1.2049 1.2031 1.2031 1.1997	CEM/DLT IP													
NIUZIGI U.99958 0.99999 0.99999 0.99999 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.0000	GAMMA									1.2049	1.2031	1.2013	1.1997	
QUILITRIUM THERMOUYNAPIC PROPERTIES P, ATM	MULE FRACTIONS		.,,,											
EQUILIBRIUM THERMUOYNAMIC PROPERTIES P, ATM	N102(G)	0.99958	0.99999	0.99999	0.99999	0.99999	1.00000	1.00000			1			
P. ATM	N204(G)			0.00001	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
P. ATM	EQUILIBRIUM THE	KMUDYNAMI	C PROPERT	IES	·									
DEG K SUD R20 840 840 840 840 840 900 970 940 940 960 980 1000 1020 1040					0.1000	0.1000	0.1000	0.1000	0.1000					0.100
H, CAL/G 290.1 295.3 330.6 305.9 311.2 318.6 322.9 32.4 32.9 32.9 32.4 32.9 32.9 32.1 32.9 32.4 32.9 32.9 32.1 32.9 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1	T, DEG K				860	880								104
N, CAL/(G)(K) 1.5998 1.5930 1.5030 1.	H, CAL/G													1.63
CLUM/DLT C.00000 0.0000 0.00000 0	S. CAL/(G)(K)	1.5686	1.5750	1.5814	1.5070									
CLEMPDLTIP	M, MOL WT											46.008,		
CP, CAL/(G)(K) 0.2617 U.2628 0.2643 0.2657 0.2671 0.2684 0.2697 0.2709 0.2720 0.2732 0.2743 0.2752 0.27644 0.2697 0.27684 0.2697 0.2769 0.2769 0.2720 0.2732 0.2743 0.2752 0.27684 0.2697 0.2769 0.276	(DLM/DLP) T												-0.0000	-0.000
MOLE FRACTIONS WIU2(G) 1.00000 1.00000 1.00000					0.2657	0.2671	0.2684	0.2697					0.2752	0.276
PRODUCTION 1.00000 1.00000 1.00000 1.0	GAMM A	1.1982	1.1967	1.1954	1.1941	1.1929	1.1918	1.1907	1.1897	1.1887	1.1878	1.1869	1.1862	1.18
P, ATM C.1000 0.	MOLE FRACTIONS													
P, ATM	N102(G)	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000
TO DEG K 10:0 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260 1280 14. CAL/G 360.3 365.8 371.4 377.0 382.5 388.2 393.8 399.4 405.1 410.7 416.4 422.1 1. 65. CAL/GI(K) 1.6494 1.6696 1.6547 1.6697 1.	EQUILIBATUM THE	R MEDYNAM I	C PROPERT	I F S										
T, DLG K 1060 1080 1100 1120 1140 1160 1180 1200 1200 1240 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1240 1250 1250 1250 1250 1250 1250 1250 125	P, ATM												0.1000	
MULE FRACTIONS 1.6444 1.6496 1.6547 1.6697 1.6697 1.6697 1.6696 1.6744 1.6791 1.6838 1.6884 1.6929 1.6974 1.6444 1.6496 1.6547 1.6697 1.6697 1.6696 1.6744 1.6791 1.6838 1.6884 1.6929 1.6974 1.6974 1.6496 1.6547 1.6697 1.6697 1.6697 1.6696 1.6744 1.6791 1.6838 1.6884 1.6929 1.6974 1.6974 1.6974 1.6496 1.6547 1.6697 1.6697 1.6697 1.6696 1.6744 1.6791 1.6838 1.6884 1.6929 1.6974 1.6974 1.6	T, DEG K													
4. MUL HT 46.0C8 46.008	H, CAL/G S, CAL/(G)(K)													
CLM/ULT)	M, MUL WT	46.008												
CAMMA 1.1842 1.1836 1.1830 1.1824 1.1818 1.1813 1.1807 1.1802 1.1797 1.1797 1.1787	(ELM/DLP) T	0.00000												
AMMA 1.1848 1.1842 1.1836 1.1830 1.1824 1.1818 1.1813 1.1807 1.1802 1.1797 1.1792 1.1787 MULE FRACTIONS	(DLM/DLT)P													
	GAMMA				1.1830									
	MOLE FRACTIONS													
	MOLE FRACTIONS	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

[P is pressure, T is temperature, H is enthalpy, S is entropy, (DLM/DLP)T = $(\partial \ln M/\partial \ln P)_T$, (DLM/DLT)P = $(\partial \ln M/\partial \ln T)_p$, CP is heat capacity at constant pressure, and GAMMA is isentropic exponent $(\partial \ln P/\partial \ln \rho)_S$ where ρ is density.]

(a) Continued. $NO_2-N_2O_4$ system

T. DEC X 300 320 140 140 140 140 140 140 140 140 140 14	EQUILIBRIUM TH	ERMODYNAM	IC PROPER	TIES										
## CALFOO 5.6, 6 87.2 125.4 152.0 127.8 189.1 190.1 201.0 201.0 201.0 211.6 212.5 222.0 222.0 222.5 22	,													
S. CALFORK 0.4989 1.000 1.174 1.210 1.229 1.227 1.3104 1.232 1.234 1.3145 1.445 1.356 1.351 1.374 W. YOU MT 0.4800 0.1145 0.1800 0.1274 0.2389 0.2774 0.2389 0.2080 0.00416 0.00215 0.70118 0.00007 0.00000 0.00000 FOR TOWN PART 0.4800 0.1450 0.1800 0.1774 0.2389 0.1800 0.00007 0.00416 0.00215 0.70118 0.00007 0.00000 0.00000 EMBEL PART 1.0887 0.2450 0.2881 0.1890 0.1774 0.1890 0.1890 0.1890 0.1890 0.1890 0.1227 0.2381 0.2381 0.2391 0.2000 0.00000 0.0000 WE STAND WAR 0.1800 0.4846 0.2384 0.1800 0.1800 0.1800 0.1800 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000									301.0	460				
CRAYFIGENT 0.0800 0.11445 0.11899 0.07741 0.03399 0.18806 0.09847 0.00446 0.0016 0.00165 0.00007 0.0		0.8992	1.0009											
COLVINITY -1.844 -2.4520 -2.3813 -1.4712 -0.7003 -0.1075 -0.1084 -0.0165 -0.0165 -0.0000 -0.0002 -0.														
CP, CAL/GIKC 1, 1,095 1,095 1,095 1,1095 1,1095 1,1095 1,1199 1,1199 1,1199 1,1199 1,1299 1,2297 1,2														
MALE FRACTIONS MOLE FRACTION				-2.3913	-1.4712									
NID2(G)	GAMMA													1.227
NID2(G)	MOLE FRACTIONS													
## RECOMMEND C. C. C. C. C. C. C. C		0.33349	0.55656	0. 76356	0.89413	0.95549	0.98088	0.99131	0.99579	0.99783	0.99992	0 99932	0.000	0 0007
P, ATM														0.0002
T, BEG K	EQUILIBRIUM TH	ERM7DYN4M	IC PROPER	TIFS										
H, CAL/G	P, ATM													
S, CAL/IGHK) 1.3804 1.3807 1.3969 1.4063 1.4425 1.425 1.4261 1.4276 1.42														
CDM/NCIP)T														
CDMMORTIP														
CP, CAL/(GI(K) 0.2380 0.2383 0.2497 0.2481 0.2264 0.2477 0.2499 0.2520 0.2580 0.2589 0.2589 0.2599 0.45999 0.4														
MOLE FRACTIONS														
N102(G)	GAMMA													
NOTICE N	MOLE FRACTIONS													
P, ATM														
T. DEG K 800 820 840 860 880 880 990 970 960 980 1000 1100 1100 1100 1400 14 CALIGO 290.1 297.3 300.6 305.9 311.2 316.6 322.0 327.4 332.8 338.3 343.7 349.2 354.7 5. CALIGIKI 1.4691 1.4756 1.4819 1.4882 1.4943 1.5003 1.5062 1.5120 1.5178 1.5234 1.5289 1.5343 1.5393 1.5393 1.5003 1.5062 1.5100 1.5178 1.5224 1.5289 1.5343 1.5393 1.5393 1.5003 1.5062 1.5100 1.5178 1.5224 1.5289 1.5343 1.5393 1.5393 1.5003 1.5062 1.5100 1.5178 1.5224 1.5289 1.5343 1.5393 1.5	EQUILIBRIUM THE	IMANY CCMS	C PROPERT	TFS										,
H, CAL/G														1.000
5, CAL/(G)(X) 1.4691 1.4756 1.4819 1.4882 1.4943 1.5003 1.5062 1.5120 1.5178 1.5234 1.5289 1.5343 1.5389 M, MOL MT 46.008	H, CAL/G		295.3											
CDLYDLPIT	S, CAL/(G)(K)	1.4691												1.5397
(OLY/OLT)P -0.0000 -0.														46.008
CP, CAL/(G)(K) 0.2612 0.2628 0.2643 0.2657 0.2671 0.2684 0.2667 0.2709 0.2720 0.2732 0.2732 0.2753 0.2753 0.2753 0.2753 0.2753 0.2754 0.2671 0.2684 0.2667 0.2709 0.2720 0.2732 0.2732 0.2754 0.2752 0.2764 0.2684 0.2667 0.2709 0.2720 0.2732 0.2764 0.2752 0.2764 0.2684 0.2667 0.2709 0.2720 0.2732 0.2764 0.2752 0.2764 0.2684 0.2667 0.2709 0.2720 0.2732 0.2764 0.2684 0.2667 0.2709 0.2720 0.2732 0.2764 0.2684 0.2667 0.2709 0.2720 0.2732 0.2764 0.2684 0.2667 0.2709 0.2720 0.2732 0.2764 0.2684 0.2667 0.2709 0.2720 0.2732 0.2764 0.2697 0.2709 0.2000 0.20000 0.2														
GAMMA 1.1981 1.1967 1.1954 1.1341 1.1929 1.1918 1.1907 1.1897 1.1887 1.1878 1.1869 1.1862 1.1855 MOLE FRACTIONS	CP, CAL/(G)(K)													
NINIZIG) 0.9999 0.99999 1.00000 0.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00	GAMMA	1.1981	1.1967	1.1954										1.1855
N204(G) 0.0001 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0	MOLE FRACTIONS													
EQUILIBRIUM THERMODYNAMIC PROPERTIES P. ATM	N192(G) N294(S)													1.00000
P. ATM									7.00,7,7	01.70000	***************************************	0.0000	0.0000	0.00000
T. DEG K 1060 1080 1100 1120 1140 1160 1.0000 1.00000 1.00000 1.0														
H. CAL/G 360.3 365.8 371.4 376.9 382.5 388.2 393.8 399.4 405.1 410.7 416.4 422.1 1.55450 1.5552 1.5553 1.5603 1.5652 1.5701 1.5749 1.5766 1.5843 1.5889 1.5935 1.5979 1.59	P, ATM T, DEG K													
S, CAL/(G)(K) 1.5450 1.5572 1.5553 1.5603 1.5652 1.5701 1.5749 1.5796 1.5843 1.5843 1.5849 1.5935 1.5979 H, MOL MT 46.008 46.008 46.008 45.008 46.008 46.008 46.008 46.008 46.008 46.008 46.008 46.008 46.008 0.00000	H, CAL/G													
TOLM/DLF)T 0.00000 0.0000 0.00	S, CAL/(G)(K)													
IDL#/DLT1P -0.0000 -0.	M, MOL WY				45.008									
CP, CAL/(G)(K) 0.2769 0.2777 0.2785 0.2793 0.2800 0.2808 0.2815 0.2822 0.2822 0.2829 0.2836 0.2842 0.2849 0.2844 1.1848 1.1848 1.1842 1.1836 1.1830 1.1824 1.1818 1.1813 1.1807 1.1802 1.1797 1.1792 1.1797	[DEM/DET]P													
SAMMA 1.1848 1.1842 1.1836 1.1830 1.1824 1.1818 1.1813 1.1807 1.1802 1.1797 1.1792 1.1797 MOLE FRACTIONS	CP, CAL/(G)(K)													
	APPA										1.1797			
1102(6) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	OLE FRACTIONS													
	1102(6)	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

 $\begin{bmatrix} P \text{ is pressure, T is temperature, H is enthalpy, S is entropy, } (DLM/DLP)T \equiv (\partial \ln M/\partial \ln P)_T, & (DLM/DLT)P \equiv (\partial \ln M/\partial \ln T)_P, & CP \text{ is heat capacity at constant pressure, and GAMMA is isentropic exponent } (\partial \ln P/\partial \ln \rho)_S \text{ where } \rho \text{ is density.} \end{bmatrix}$

(a) Continued. $NO_2-N_2O_4$ system

CHOICIONION THE	RMODYNAMIO	C PROPERT	I E S							10.00	10.00	10.00	10.0
P, ATM	10.00	10.00 320	10.00 340	10.00 360	10.00 380	10.00 400	10.00 420	10.00 440	10.00 460	10.00 480	10.00 500	5 20	54
T, DEG K H, CAL/G	300 35.5	49.4	69.9	97.4	123.8	157.3	178.2	192.1	201.5	208.6	214.5 1.2514	219.8 1.2618	224 1.27
S, CAL/(G)(K)	C.7764	0.8213	C.8832	0.9618	1.0467	1.1198	1.1709	1.2032	1.2242	1.2393	1.2514	1.2010	
M. MOL WT	86.444	81.358	74.149	65.796	58.157	52.690	49.486	47.812	46.968	46.540	46.315 0.00654	46.192 0.00396	46.1
(CLM/ULP)T	0.03015	0.05692	0.09145	0.11985 -2.2779	0.12162 -2.1850	0.09465	0.06040 -0.9766	0.03488	0.01961	-0.1564	-0.0876	-0.0509	-0.030
(ELM/DLT)P CP, CAL/(G)(K)	-0.6911 0.5650	-1.2215 0.8465	1.2070	1.5207	1.5558	1.2499	0.8508	0.5619	0.3597	0.3174	0.2771	0.2576	0.24
GAMM A	1.0943	1.0935	1.0967	1.1032	1.1126	1.1250	1.1416	1.1625	1.1847	1.2030	1.2146	1.2202	1.22
MOLE FRACTIONS													
N102(G)	0.12110	0.23166	0.38835	0.56990	0.73595	0.85477		0.96080	0.97912	0.98844 0.01156	0.99333	0.99599	0.997
N204(G)	0.87890	0.76834	0.61164	0.43010	0.26405	0.14523	0.07559	0.03920	11. 92 006	0.01130	0.000		
EQUILIBRIUM THE	£ MODYNAMI	C PROPERT	1 E S							.,,			
P. ATM	10.00	10.00	10.00	10.00	10.00	10.000 660	10.00 680	10.000	10.000 720	10.00 740	10.00 760	10.000 780	
T, DEG K H, CAL/G	560 229.8	580 234 - 7	600 239•6	620 244.5	640 249.4	254.3	259.3	264.4	269.4	274.5	279.7	284.9	
S, CAL/(6)(K)	1.2803	1.2889	1.2971	1.3051	1.3130	1.3206	1.3280	1.3353	1.3425	1.3495	1.3563	1.3631	
M, MOL WT	46.082	46.057	46.042	46.032	46.025	46.021	46.017	46.015	46.014	46.012	46.011	46.011	
(CLM/DLP)T	0.00171	0.00107	0.00074	0.00052	0.00037	0.00027	0.00021	0.00016	0.00012	0.00010	0.00008 -0.0006	0.00006	
(CLM/DLT)P CP, CAL/(G)(K)	-0.0190 0.2448	-0.0122 C.2438	-0.0081 0.2442	-0.0055 0.2454	0.2470	0.2487	0.2506	0.2525	0.2544	0.2562	0.2580	0.2597	
GAMMA	1.2215	1.2199	1.2179	1.2156	1.2133	1.2110	1.2089	1.2068	1.2048	1.2030	1.2013	1.1996	
MOLE FRACTIONS													
N102(G) N204(G)	0.99838	0.99892	0.99926 0.00074	0.99948	0.99963	0.99972	0.99979 0.00021	0.99984 0.00016	0.99988 0.00012	0.00010	0.99992 0.00008	0.99994 0.00006	
P, ATM	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.0
T, DEG K H, CAL/G	860 290•1	820 205.3	840 300.6	860 305.9	880 311.2	316.6	322.0	327.4	332.8	338.3	343.7	349.2	354
S, CAL/(G)(K)	1.3695	1.3761	1.3825	1.3887	1.3948	1.4009	1.4068	1.4126	1.4193	1.4239	1.4294	1.4349	1.44
M. MOL WT	46.010	46.010	46.01C	46.009	46.009	46.009	46.009	46.009	46.009	46.008	46.008 0.00001	46.008	46.0
(CLM/DLP)1 (CLM/DLT)P	0.00005 -0.0004	0.00004 -0.0003	0.00003	-0.0003	0.00002	0.00002 -0.0001	0.00002 -0.0001	0.00002	0.00001	0.00001	-0.0001	-0.0001	-0.00
											0.2744	0.2752	
CP, CAL/(G)(K)		0.2629	0.2644	0.2658	0.2671	0.2684	0.2697	0.2709	0.2721	0.2732			0.27
GAMMA			0.2644	1.1941	0.2671 1.1929	0.2684 1.1918		0.2709 1.1897	0.2721 1.1887	0.2732 1.1878	1.1869	1.1862	
	0.2613 1.1981	0.2629 1.1967	1.1954	1.1941	1.1929	1.1918	0.2697 1.1907	1.1897	1.1897	1.1878	1.1869	1.1862	1.18
GAMMA	0.2613	0.2629				1.1918	0.2697 1.1907						0.999
MOLE FRACTIONS N102(G)	0.2613 1.1981 0.99955 0.00005	0.2629 1.1967 0.99996 0.00004	0.99996	0.99997	0.99997	0.99998	0.2697 1.1907	0.99998	0.99999	0.99998	0.99999	0.99999	0.999
GAMMA MOLE FRACTIONS N1U2(G) N2U4(G)	0.2613 1.1981 0.99995 0.00005	0.2629 1.1967 0.99996 0.00004	0.99996 0.00003	0.99997	0.99997 0.00002	0.99998 0.00002	0.2697 1.1907 0.99998 0.00002	0.99998	0.99999 0.00001	0.99998 0.00001	0.99999 0.00001	0.99999	0.999
GAMMA MOLE FRACTIONS NIU2(G) N2U4(G) EQUILIBRIUM TH. P, ATM T, DEG K	0.2613 1.1981 C.99955 0.00005 EUMDDYNAM1	0.2629 1.1967 0.99996 0.00004 IC PROPER' 10.00 1080	0.99946 0.00003	0.99997 0.00003	0.99997 0.00002	0.99998 0.00002	0.2697 1.1907 0.99998 0.00002	0.99998 0.00002	0.99999 0.00001	0.99998 0.00001	0.99999 0.00001	0.99999 0.00001	0.999
MOLE FRACTIONS NIU2(G) N204(G) EQUILIBRIUM TH	0.2613 1.1981 0.99995 0.00005	0.2629 1.1967 0.99996 0.00004	0.99996 0.00003	0.99997	0.99997 0.00002	0.99998 0.00002	0.2697 1.1907 0.99998 0.00002	0.99998	0.99999 0.00001	0.99998 0.00001	0.99999 0.00001	0.99999	0.999
GAMMA MOLE FRACTIONS NID2(G) N204(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G	0.2613 1.1981 0.99995 0.00005 EUMODYNAM1 10.00 1060 360.3	0.2629 1.1967 0.99996 0.00004 IC PROPER' 10.000 1080 365.8	1.1954 0.99996 0.00003 TIES 10.00 1100 371.4	1.1941 0.99997 0.00003 10.00 1120 376.9	1.1929 0.99997 0.00302 10.00 1140 382.5	1.1918 0.99998 0.00002 10.00 1160 388.1 1.4706 46.008	0.2697 1.1907 0.99998 0.00002 10.00 1180 393.8 1.4755 46.008	1.1897 0.99998 0.00002 10.00 1200 399-4 1.4802 46.008	1.1897 0.99999 0.00001 10.00 1220 405.1 1.4849 46.008	1.1878 0.99998 0.00001 10.00 1240 410.7 1.4895 46.008	1.1869 0.99999 0.00001 10.000 1760 416.4 1.4940 46.008	1.1862 0.99999 0.00001 10.00 1280 422.1 1.4985 46.008	0.999
GAMMA MOLE FRACTIONS N102(G) N204(G) EQUILIBRIUM TH. P. ATM T. DEG K H. CAL/G S. CAL/G)(K) M. MOL WT (CLM/DLP)T	0.2613 1.1981 0.99955 9.00005 ELMODYNAM1 10.00 10.00 360.3 1.4455 46.008 0.00061	0.2629 1.1967 0.99996 0.00004 IC PROPER' 10.00 1080 365.8 1.4507 46.008 0.00001	0.99996 0.00003 TIES 10.00 1100 371.4 1.4558 46.008 0.00001	1.1941 0.99997 0.00003 10.00 1120 376.9 1.46.008 0.00001	1.1929 0.99997 0.00002 10.00 1140 382.5 1.4658 46.008 0.00001	1.1918 0.99998 0.00002 10.00 1160 388.1 1.4706 46.008 0.00000	0.2697 1.1907 0.99998 0.00002 10.00 1180 393.8 1.4755 46.008 0.00000	1.1897 0.99998 0.00002 10.00 1200 399.4 1.4802 46.008	1.1887 0.99999 0.00001 10.00 1220 405.1 1.4849 46.008	1.1878 0.99998 0.00001 10.00 1240 410.7 1.4895 46.008 0.00000	1.1869 0.99999 0.00001 10.00 1260 416.4 1.4940 46.008 0.00000	1.1862 0.99999 0.00001 10.00 1280 422.1 1.4985 46.008 0.00000	0.999
GAMMA MOLE FRACTIONS NID2(G) N204(G) EQUILIBRIUM TH P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P	0.2613 1.1981 C.99955 0.00005 EUMDDYNAMM 10.00 1060 360.3 1.4455 46.008 0.00061	0.2629 1.1967 0.99996 0.00004 IC PROPER 10.00 1080 365.8 1.4507 46.008 0.00001 -0.0000	0.99996 0.00003 TIES 10.00 1100 371.4 1.4558 46.008 0.00001	1.1941 0.99997 0.00003 10.00 1120 376.9 1.4608 46.008 0.00001	1.1929 0.99997 0.00002 10.00 1140 382.5 1.4658 46.008 0.00001 -0.0000	1.1918 0.99998 0.00002 10.000 1160 398.1 1.4706 46.008 0.000000	0.2697 1.1907 0.99998 0.00002 1180 393.8 1.4755 46.008 0.000009	1.1897 0.99998 0.00002 1200 1200 399.4 1.4802 46.008 0.00000	1.1897 0.99999 0.00001 10.00 1220 405.1 1.4849 46.008	1.1878 0.99998 0.00001 10.00 1240 410.7 1.4895 46.008	1.1869 0.99999 0.00001 10.000 1760 416.4 1.4940 46.008	10.00 1280 422.1 1.4985 46.008 0.00000 -0.0000 0.2849	0.999
GAMMA MOLE FRACTIONS N102(G) N204(G) EQUILIBRIUM TH P, ATM T, DEG K H, CAL/G CAL/G KM, MOL WT (CLM/DLP)T	0.2613 1.1981 C.99955 9.00005 EUMDDYNAM1 10.00 1060 360.3 1.4455 46.008 0.00001	0.2629 1.1967 0.99996 0.00004 IC PROPER' 10.00 1080 365.8 1.4507 46.008 0.00001	0.99996 0.00003 TIES 10.00 1100 371.4 1.4558 46.008 0.00001	1.1941 0.99997 0.00003 10.00 1120 376.9 1.46.008 0.00001	1.1929 0.99997 0.00002 10.00 1140 382.5 1.4658 46.008 0.00001	1.1918 0.99998 0.00002 10.00 1160 388.1 1.4706 46.008 0.00000	0.2697 1.1907 0.99998 0.00002 10.00 1180 393.8 1.4755 46.008 0.00000	1.1897 0.99998 0.00002 10.00 1200 399.4 1.4802 46.008	1.1887 0.99999 0.00001 10.00 1220 405.1 1.4849 46.008 0.00000	1.1878 0.9999R 0.09001 10.00 1240 410.7 1.4895 46.008 0.00000	1.1869 0.99999 0.00001 10.00 1760 416.4 1.4940 46.008 0.00000	10.00 1280 422.1 1.4985 46.008 0.00000	0.999
GAMMA MOLE FRACTIONS N102(G) N204(G) EQUILIBRIUM TH. P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (CLM/DLP)T (CLM/DLT)P CP, CAL/(G)(K)	0.2613 1.1981 0.99955 0.00005 EUMODYNAM1 10.00 360.3 1.4455 46.008 0.00001 -0.0000 0.2769	0.2629 1.1967 0.99996 0.00004 10.00 1080 365.8 1.4507 46.008 0.00001 -0.0000 C.2777	1.1954 0.99996 0.00003 IIES 10.00 1100 371.4 1.4558 46.008 0.00001 -0.0000 0.2785	1.1941 0.99997 0.00003 10.00 1120 376.9 1.4608 46.008 0.00001 -0.0000 C.2793	1.1929 0.99997 0.00002 10.00 1140 382-5 1.4658 46.008 0.00001 -0.0000 0.2800	1.1918 0.99998 0.00002 10.00 1160 388.1 1.4706 46.008 0.00000 -0.0000 0.2808	0.2697 1.1907 0.99998 0.00002 1180 393.8 1.4755 46.008 0.00009 -0.0000 0.2815	1.1897 0.99998 0.00002 10.00 1200 399.4 1.4802 46.008 0.00000 -0.0000 0.2822	1.1887 0.99999 0.00001 10.00 1220 405.1 1.4849 46.008 0.00000 -0.0000 0.2829	1.1878 0.99998 0.00001 1240 410.7 1.4895 46.008 0.0000 0.2836 1.1797	1.1869 0.99999 0.00001 10.00 1260 416.4 1.4940 46.008 0.00000 -0.0000 0.2842 1.1792	10.00 1280 422.1 1.4985 46.008 0.00000 -0.0000 0.2849 1.1787	0.999
GAMMA MOLE FRACTIONS NIU2(G) EQUILIBRIUM TH. P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (CLM/DLT)P CP, CAL/(G)(K) GAMMA	0.2613 1.1981 C.99995 9.00005 EUMODYNAM1 10.00 1060 360.3 1.4455 46.008 0.03061 -0.0000 0.2769 1.1848	0.2629 1.1967 0.99996 0.00004 10.00 1080 365.8 1.4507 46.008 0.00001 -0.0000 C.2777	0.99996 0.00003 TIES 10.00 1100 371.4 1.4558 46.008 0.00001 -0.0000 0.2785 1.1836	1.1941 0.99997 0.00003 10.00 1120 376.9 1.4608 46.008 0.00001 -0.0000 C.2793 1.1830	1.1929 0.99997 0.00002 10.00 1140 382.5 1.4658 46.008 0.00001 -0.0000 0.2800 1.1824	1.1918 0.99998 0.00002 10.000 1160 398.1 1.4706 46.008 0.00000 0.2808 1.1818	0.2697 1.1907 0.99998 0.00002 1180 393.8 1.4755 46.008 0.00000 -0.0000 0.2815 1.1813	1.1897 0.99998 0.00002 10.00 1200 399.4 1.4802 46.008 0.00000 -0.0000 0.2822	1.1887 0.99999 0.00001 10.00 1220 405.1 1.4849 46.008 0.00000 0.2829 1.1892	1.1878 0.9999R 0.00001 10.00 1240 410.7 1.4895 46.0080 0.2836 1.1797	1.1869 0.99999 0.00001 10.00 1260 416.4 1.4940 46.008 0.00000 0.2842 1.1792	10.00 1280 422.1 1.4985 46.008 0.0000 0.2849 1.1787	0.999

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

[P is pressure, T is temperature, H is enthalpy, S is entropy, $(DLM/DLP)T = (\partial \ln M/\partial \ln P)_T$, $(DLM/DLT)P = (\partial \ln M/\partial \ln T)_P$, CP is heat capacity at constant pressure, and GAMMA is isentropic exponent $(\partial \ln P/\partial \ln \rho)_S$ where ρ is density.]

(a) Concluded. $NO_2-N_2O_4$ system

EQUILIBRIUM TH	IER MODYNA N	IC PROPER	TIES										
P, ATM	100.0				100.0	100.0	100.0			100.0	100.0	100.0	100.
T, DEG K	300 28.9				380 75.5	400 96.7	420 121.0			480 186.4	500 200.1	520 210.6	54 218
H, CAL/G S, CAL/(G)(K)	0.7029		0.7554	0.7921	0.8377	0.8918	0.9512	1.0091		1.0974	1.1255	1.1460	1.161
M, MOL WT	90.174			80.991	75.370	68.965	62.621	57.198		50.450	48.757	47.730	47.11
(DLM/DLP)T	0.01000				0.08504	0.11126	0.12453			0.07254	0.05003	0.03348	0.0222
(DEM/DET)P CP. CAL/(G)(K)	-0.2292 0.3170			-1.1175 0.7383	-1.5458 0.9530	-1.8941 1.1525	-2.0135 1.2580		-1.4422 1.0176	-1.0165 0.7887	-0.6706 0.5956	-0.4299 0.4611	-0.274 0.376
GAMMA	1.1050	1.1200		1.0992	1.1329	1.1088	1.1167	1.1263	1.1374	1.1501	1.1541	1.1781	1.190
MOLE FRACTIONS				-									
N102(G)	0.04002			0.23962	0.36181	0.50103	0.63890			0.90346	0.94024	0.96256	0.97606
1204(G)	0.95998	0.91984	0.85432	0.76038	0.63819	0.49897	0.36110	0.24322	0.15535	0.39654	0.05976	0.03744	0.02394
FOUTLIBRIUM TH	FRMNOYNAM	IC PROPER	TIFS										
P. ATM T. DEG K	100.0 560	100.0 580	100.0	100.0	100.0	100.0 660	100.0 680	100.0	100.0	100.0	100.0	100.0	
H. CAL/G	225.9	232.0	237.7	243.2	248.5	253.7	258.8	264.0	720 269 . 1	740 274.3	760 279.5	780 284.7	
S, CAL/(G)(K)	1.1744	1.1852	1.1949	1.2038	1.2122	1.227?	1.2279	1.2354	1.2426	1.2497	1.2567	1.2634	
M, MOL WT (DLM/DLP)T	46.730 0.01498	46.494 0.01023	46.343 0.00712	45.244 0.00505	46.179 0.00367	46.134 0.00271	46.102	46.080 0.00156	46.064	46.052	46.043	45.036	
(DLM/DLT)P	-0.1772	-0.1164	-0.0780	-0.0534	-0.0373	-0.0255	-0.0193	-0.0143	0.00121 -0.0107	0.00095 -0.0082	0.00075 -0.0063	0.00052 -0.0050	
CP, CAL/(G)(K)	0.3250	0.2949	0.2774	0.2674	0.2518	0.2590	0.2579	0.2577	0.2582	0.2590	0.2501	0.2513	
GAMMA	1.1995	1.2054	1.2085	1.2095	1.2095	1.2085	1.2072	1.2057	1.2041	1.2025	1.2009	1.1994	
MOLE FRACTIONS													
N102(G) N204(G)	0.98430 0.01570	0.98944	0.99272	0.99486	0.99629		0.99795	0.99843	0.99879 0.00121	0.99904	0.99924	0.99938	
EQUILIBRIUM TH	ERMODYNAM1	* PROPERT											
		3 - 321 (3)	163										
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.5	100.0	100.0
P, ATM T, DEG K H. CAL/G	100.0 800 290.0	100.0 820	100.0	960	880	900	920	940	960	980	1000	1020	1040
T. DEG K H. CAL/G	800	100.0	100.0										
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT	800 290.0 1.2701 46.031	100.0 820 295.2 1.2766 46.027	100.0 840 300.5 1.2829	860 305.8 1.2892 46.021	880 311.2 1.2953 46.019	900 316.5 1.3013 46.018	920 321.9 1.3073 46.016	940 327.3 1.3131 46.015	960 332.8 1.3188 46.014	980 338.2 1.3244 46.014	1000 343.7 1.3300 46.013	1020 349.2 1.3354 46.012	1040 354.7 1.3408 46.012
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DEM/DLP)T	800 290.0 1.2701 46.031 0.00050	100.0 820 295.2 1.2766 46.027 0.00042	100.0 840 300.5 1.2829 46.024 0.00035	960 305.8 1.2892 46.021 0.00029	880 311.2 1.2953 46.019 0.00025	900 316.5 1.3013 46.018 0.00021	920 321.9 1.3073 46.016 9.00018	940 327.3 1.3131 46.015 0.00016	960 332.8 1.3188 46.014 0.00014	980 338.2 1.3244 46.014 0.00012	1000 343.7 1.3300 46.013 0.00011	1020 349.2 1.3354 46.012 0.00010	1040 354.7 1.3408 46.012 0.00009
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P	800 290.0 1.2701 46.031	100.0 820 295.2 1.2766 46.027	100.0 840 300.5 1.2829	860 305.8 1.2892 46.021	880 311.2 1.2953 46.019	900 316.5 1.3013 46.018	920 321.9 1.3073 46.016	940 327.3 1.3131 46.015	960 332.8 1.3188 46.014	980 338.2 1.3244 46.014	1000 343.7 1.3300 46.013	1020 349.2 1.3354 46.012	1040 354.7 1.3408 46.012
T, DEG K H, CAL/G S, CAL/(G)(K)	800 290.0 1.2701 46.031 0.00050 -0.0039	100.0 820 295.2 1.2766 46.027 0.00042	109.0 840 300.5 1.2829 46.024 0.0035	960 305.8 1.2892 46.021 0.00029 -0.0021	880 311.2 1.2953 46.019 0.00025 -0.0017	900 316.5 1.3013 46.018 0.00021 -0.0014	920 321.9 1.3073 46.016 9.00018 -0.0012	940 327.3 1.3131 46.015 0.00016 -0.0010	960 332.8 1.3188 46.014 0.00014	980 338.2 1.3244 46.014 0.00012 -0.0008	1000 343.7 1.3300 46.013 0.00011 -0.0006	1020 349.2 1.3354 46.012 0.00010 -0.0005	1040 354.7 1.3408 46.012 0.00009 -0.0005
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K)	800 290.0 1.2701 46.031 0.0050 -0.0039 0.2625	100.0 820 295.2 1.2766 46.027 0.00042 -0.0032 0.2638	100.0 840 300.5 1.2829 46.024 0.00035 -0.0026 0.2651	960 305.8 1.2892 46.021 0.00029 -0.0021 0.2664	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676	900 316.5 1.3013 46.018 0.99021 -0.0014 0.2688	920 321.9 1.3073 46.016 9.00018 -0.0012 0.2700	940 327.3 1.3131 46.015 0.00016 -0.0010 0.2712	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2723	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734	1000 343.7 1.3300 46.013 0.00011 -0.0006 0.2745	1020 349-2 1.3354 46.012 0.00010 -0.0005 0.2754	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762
T, DEG K H, CAL/G KH, CAL/G K, CAL/IG)(K) M, MOL HT (DLM/DLP)T (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS N102(G)	800 290.0 1.2701 46.031 0.0050 -0.0039 0.2625	100.0 820 295.2 1.2766 46.027 0.00042 -0.0032 0.2638	100.0 840 300.5 1.2829 46.024 0.00035 -0.0026 0.2651	960 305.8 1.2892 46.021 0.00029 -0.0021 0.2664	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676	900 316.5 1.3013 46.018 0.99021 -0.0014 0.2688	920 321.9 1.3073 46.016 9.00018 -0.0012 0.2700	940 327.3 1.3131 46.015 0.00016 -0.0010 0.2712	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2723	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734	1000 343.7 1.3300 46.013 0.00011 -0.0006 0.2745	1020 349-2 1.3354 46.012 0.00010 -0.0005 0.2754	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA	800 290-0 1.2701 46.031 0.0050 -0.0039 0.2625 1.1979	100.0 820 295.2 1.2766 46.027 0.00042 -0.0032 0.2638 1.1966	100.0 840 300.5 1.2829 46.024 0.00035 -0.0026 0.2551 1.1953	960 305.8 1.2892 46.021 0.00029 -0.0021 0.2664 1.1940	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676 1.1929	900 316.5 1.3013 46.018 0.99921 -0.0014 0.2688 1.1917	920 321.9 1.3073 46.016 9.00018 -0.0012 0.2700 1.1907	940 327-3 1.3131 46.015 0.90016 -0.0010 0.2712 1.1897	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2723 1.1887	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878	1000 343.7 1.3300 46.013 0.00011 -0.0006 0.2745 1.1868	1020 349.2 1.3354 46.012 0.00010 -0.0005 0.2754 1.1861	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855
T, DEG K H, CAL/G H, CAL/G S, CAL/IG)(K) M, MOL HT IOLH/JOLT)P COLM/JOLT)P GO, CAL/IG)(K) GAMMA MOLE FRACTIONS N102(G) N204(G) FOUILIBRIUM THE P, ATM	800 290.0 1.2701 46.031 0.00050 0.2625 1.1979 0.99949 0.00050	100.0 820 295.2 1.2766 46.027 0.0032 0.2638 1.1966	100.0 840 300.5 1.2829 46.024 0.00035 -0.0026 0.2551 1.1953	960 305.8 1.2892 46.021 0.00029 -0.0021 0.2664 1.1940	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676 1.1929	900 316.5 1.3013 46.018 0.99921 -0.0014 0.2688 1.1917	920 321.9 1.3073 46.016 9.00018 -0.0012 0.2700 1.1907	940 327-3 1.3131 46.015 0.00016 -0.0010 0.2712 1.1897	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2773 1.1887	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878	1000 343.7 1.3300 46.013 0.0001 -0.0006 0.2745 1.1868	1020 349.2 1.3354 46.012 0.00010 -0.0005 0.2754 1.1861	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855
T, DEG K H, CAL/G H, CAL/G S, CAL/IG)(K) M, MOL MT IDLM/DLP)P COLM/DLP)P GAMMA MOLE FRACTIONS NIO2(G) N2O4(G) FQUILTBRTUM THE P, ATM T, DEG K	80.0 290.0 1.2701 46.031 0.0050 -0.0039 0.2625 1.1979 0.99949 0.00050	100.0 820 295.2 1.2766 46.027 0.0032 0.2638 1.1966	100.0 840 300.5 1.2829 46.024 0.0025 0.2651 1.1953	960 305.8 1.2892 46.021 0.00029 -0.0021 0.7664 1.1940	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676 1.1929	900 316.5 1.3013 46.018 0.99221 -0.0014 0.2688 1.1917	970 321.9 1.3073 46.016 0.00018 -0.0012 0.2700 1.1907 0.99982 0.00018	940 327-3 1.3131 46.015 0.90016 -0.0010 0.2712 1.1897	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2723 1.1887	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878	1000 343.7 1.3300 46.013 0.00011 -0.0006 0.2745 1.1868	1020 349.2 1.3354 46.012 0.00010 -0.0005 0.2754 1.1861	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855
T, DEG K H, CAL/G S, CAL//G)(K) M, MOL MT (DLM/DLP)T (DLM/DLP)T CP, CAL/(G)(K) GAMMA MOLE FRACTIONS N102(G) N204(G) FQUILIBRIUM THE P, ATM T, DEG K H, CAL/G	800 290.0 1.2701 46.031 0.00050 0.2625 1.1979 0.99949 0.00050	100.0 820 295.2 1.2766 46.027 0.0032 0.2638 1.1966	100.0 840 300.5 1.2829 46.024 0.0035 -0.0026 0.2551 1.1953	960 305.8 1.2892 46.021 0.00029 -0.0321 0.2664 1.1940	880 311.2 1.2753 46.019 0.00025 -0.0017 0.2676 1.1929 0.99975 0.00025	900 316.5 1.3013 46.018 0.99021 -0.0014 0.2688 1.1917	970 321.9 1.3073 46.016 9.00018 -0.0012 0.2700 1.1907 0.99982 0.00018	940 327-3 1.3131 46.015 0.90016 -0.0010 0.2712 1.1897	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2723 1.1887	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878	1000 343.7 1.3300 46.013 0.00011 -0.0006 0.2745 1.1869	1020 349.2 1.3354 46.012 0.00010 -0.0005 0.2754 1.1861	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855
T, DEG K H, CAL/G H, CAL/G S, CAL/IG)(K) M, MOL HT IOLH/DLT)P COLM/DLT)P GO, CAL/IG)(K) GAMMA MOLE FRACTIONS N102(G) N204(G) FOUILIBRIUM THE P, ATM T, DEG K H, CAL/IG)(K) H, MOL HT	800 290.0 1.2701 46.031 0.0050 -0.0039 0.2625 1.1979 0.99949 0.00050 FR MODYNAMI 100.0 1060 360.2 1.3460	100.0 820 295.2 1.2766 46.027 2.00042 -0.0037 0.2638 1.1966 0.99958 0.00042 C PROPERT 100.0 1080 365.8 1.3512 46.011	100.0 840 300.5 1.2829 46.024 0.0035 -0.0025 1.1953 0.2551 1.1953	960 305.8 1.2892 46.021 0.00029 -0.0021 0.7664 1.1940 0.99971 0.00029	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676 1.1929 0.99975 0.00025	900 316.5 1.3013 46.018 0.90021 -0.0014 0.2688 1.1917 0.99979 0.00021	970 321.9 1.3073 46.016 9.00018 -0.0012 0.2700 1.1907 0.99982 0.00018 100.0 1180 93.8 1.3760 46.010	940 327-3 1.3131 46.015 0.0010 -0.0010 0.2712 1.1897 0.99984 0.00016	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2723 1.1887 0.99986 0.00014	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878 0.99988 0.00012	1000 343.7 1.3300 46.013 0.00011 -0.0006 0.2745 1.1869 0.99989 0.00011	1020 349.2 1.3354 46.012 0.00010 -0.0005 0.2754 1.1861 0.99990 0.00010	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NID2(G) N204(G) FOUILIARTUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T	800 290.0 1.2701 46.031 0.0050 0.2625 1.1979 0.99949 0.00050 FR MODYNAMI 100.0 1060 360.2 1.3460 46.012 0.00008	100.0 820 295.2 1.2766 46.027 0.0032 0.2638 1.1966 0.00042 C PROPERT 100.0 1080 365.8 1.3512 0.0007	100.0 840 300.5 1.2829 46.024 0.0035 -0.0026 0.2651 1.1953 7.99965 7.00035 IES 100.0 371.4 1.3563	960 305.8 1.2892 46.021 0.00029 -0.0021 0.2664 1.1940 0.99971 0.00029	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676 1.1929 0.99975 0.00025	900 316.5 1.3013 46.018 0.99021 -0.0014 0.2688 1.1917 0.99979 0.00021	920 321.9 1.3073 46.016 0.00018 -0.0012 0.2700 1.1907 0.99982 0.00018 100.0 1180 393.8 1.3760 46.010 0.0004	940 327-3 1.3131 46.015 0.90016 -0.0010 0.2712 1.1897 0.99984 0.00016	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2773 1.1887 0.99986 0.00014	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878 0.99988 0.00012	1000 343.7 1.3300 46.013 0.0001 -0.0006 0.2745 1.1868 0.99989 0.00011	1020 349.2 1.3354 46.012 0.00010 -0.0006 0.2754 1.1861 0.99990 0.00010	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855
T, DEG K H, CAL/G S, CAL/IG)(K) M, MOL HT IDLH/DLT)P CP, CAL/IG)(K) GAMMA MOLE FRACTIONS N102(G) N204(S) FQUILIBRIUM THE P, ATM T, DEG K H, CAL/IG S, CAL/IG)(K) M, MOL HT IDLH/DL T)P TOLH/DL T)P	800 290.0 1.2701 46.031 0.0050 0.2625 1.1979 0.99949 0.00050 100.0 1060 360.2 1.3460 46.012 0.00008	100.0 820 295.2 1.2766 46.027 0.0032 0.2638 1.1966 0.99958 0.00042 C PROPERT 100.0 1080 365.8 1.3512 46.011 0.0007	100.0 840 300.5 1.2829 46.024 0.0035 -0.0026 0.2551 1.1953 0.99965 0.00035 IES 100.0 1100 371.4 1.3563 46.011 0.00006 -0.0003	960 305.8 1.2892 46.021 0.00029 -0.0321 0.2664 1.1940 0.99971 0.00029 1100.0 1120 376.9 1.3614 46.011 0.30006	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676 1.1929 0.99975 0.00025 100.0 1140 382.5 1.3563 46.010 0.00005 -0.0003	900 316.5 1.3013 46.018 0.99021 -0.0014 0.2688 1.1917 0.99079 0.00021 100.0 1160 388.1 1.3712 46.010 0.99005 -0.00007	920 321.9 1.3073 46.016 9.00018 -0.0012 0.2700 1.1907 0.99982 0.00018 100.0 1180 393.8 1.3760 46.010 0.90004 -0.9002	940 327-3 1.3131 46.015 0.00016 -0.0010 0.2712 1.1897 0.99984 0.00016	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2723 1.1887 0.99986 0.00014 100.0 1220 405.1 1.3854 46.010 0.00002	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878 0.99988 0.00012 100.0 1240 410.7 1.3900 46.010 0.00004 -0.0002	1000 343.7 1.3300 46.013 0.00011 -0.0006 0.2745 1.1869 0.99989 0.00011	1020 349.2 1.3354 46.012 0.00010 -0.0005 0.2754 1.1861 0.99990 0.00010 1280 422.1 1.3990 46.009 0.00003	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855
T, DEG K H, CAL/G H, CAL/G K, CAL/IG)(K) M, MOL HT IOLH/DIPT (OLH/DIPT) CP, CAL/IG)(K) GAMMA MOLE FRACTIONS NID2(G) NZO4(S) FQUILTBRIUM THE P, AIM T, DEG K M, CAL/G	800 290.0 1.2701 46.031 0.0050 0.2625 1.1979 0.99949 0.00050 FR MODYNAMI 100.0 1060 360.2 1.3460 46.012 0.00008	100.0 820 295.2 1.2766 46.027 0.0032 0.2638 1.1966 0.00042 C PROPERT 100.0 1080 365.8 1.3512 0.0007	100.0 840 300.5 1.2829 46.024 0.0035 -0.0026 0.2651 1.1953 7.99965 7.00035 IES 100.0 371.4 1.3563	960 305.8 1.2892 46.021 0.00029 -0.0021 0.2664 1.1940 0.99971 0.00029	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676 1.1929 0.99975 0.00025	900 316.5 1.3013 46.018 0.99021 -0.0014 0.2688 1.1917 0.99979 0.00021	920 321.9 1.3073 46.016 0.00018 -0.0012 0.2700 1.1907 0.99982 0.00018 100.0 1180 393.8 1.3760 46.010 0.0004	940 327-3 1.3131 46.015 0.90016 -0.0010 0.2712 1.1897 0.99984 0.00016	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2773 1.1887 0.99986 0.00014	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878 0.99988 0.00012	1000 343.7 1.3300 46.013 0.0001 -0.0006 0.2745 1.1868 0.99989 0.00011	1020 349.2 1.3354 46.012 0.00010 -0.0006 0.2754 1.1861 0.99990 0.00010	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855
T, DEG K H, CAL/G KH, CAL/G KH, CAL/G M, MOL HT IOLH/JOLPIT IOLH/JOLPIT CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO2(G) NZO4(G) FOUTLIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, CAL/G S, CAL/(G)(K) M, H, CAL/G CP, CAL/(G)(K) MANA MANA MANA MANA MANA MANA MANA MAN	800 290.0 1.2701 46.031 0.0050 -0.0039 0.2625 1.1979 0.99949 0.00050 FRMODYNAMI 100.0 1060 360.2 1.3460 46.012 0.00008 -0.0004 0.2770	100.0 820 295.2 1.2766 46.027 0.00042 -0.0032 0.2638 1.1966 0.00042 C PROPERT 100.0 1080 365.8 1.3512 46.011 0.0004 0.2778	100.0 840 300.5 1.2829 46.024 0.0035 -0.0026 0.2651 1.1953 0.99965 0.00035 IES 100.0 371.4 1.3563 46.011 0.00006 -0.0003 0.2786	960 305.8 1.2892 46.021 0.00029 -0.0021 0.7664 1.1940 0.99971 0.00029	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676 1.1929 0.99975 0.00025	900 316.5 1.3013 46.018 0.90921 -0.0014 0.2688 1.1917 0.99979 0.00021 100.0 1160 388.1 1.3712 46.010 0.99005 -0.0002	970 321.9 1.3073 46.016 9.00018 -0.0012 0.2700 1.1907 0.99982 0.00018 100.0 1180 393.8 1.3760 46.010 0.9004 -0.9004 -0.2004	940 327-3 1.3131 46.015 0.0010 0.2712 1.1897 0.99984 0.00016 100.0 1200 399.4 1.3807 46.010 0.00004 -0.0002 0.2822	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2723 1.1887 0.99986 0.00014 100.0 405.1 1.3854 46.012 0.00004 -0.0002 0.2829	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878 0.99988 0.00012 100.0 1240 410.7 1.3900 46.010 0.20004 -0.2836	1000 343.7 1.3300 46.013 0.0001 -0.0006 0.2745 1.1868 0.99989 0.00011	1020 349.2 1.3354 46.012 0.00010 -0.0005 0.2754 1.1861 0.99990 0.00010 100.0 1280 422.1 1.3990 46.009 0.0003 -0.0001 0.2849	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855
T, DEG K H, CAL/G K, CAL/IG)(K) M, MOL HT IOLH/DLT)P (DLM/DLT)P CP, CAL/IG)(K) GAMMA MOLE FRACTIONS N102(G) N204(S) FQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/IG)(K) M, MOL HT IOLM/DLE)T IOLM/DLE)T CDLM/OLT)P CP, CAL/IG)(K)	800 290.0 1.2701 46.031 0.0050 -0.0039 0.2625 1.1979 0.99949 0.00050 FRMODYNAMI 100.0 1060 360.2 1.3460 46.012 0.00008 -0.0004 0.2770	100.0 820 295.2 1.2766 46.027 0.00042 -0.0032 0.2638 1.1966 0.00042 C PROPERT 100.0 1080 365.8 1.3512 46.011 0.0004 0.2778	100.0 840 300.5 1.2829 46.024 0.0035 -0.0026 0.2651 1.1953 0.99965 0.00035 IES 100.0 371.4 1.3563 46.011 0.00006 -0.0003 0.2786	960 305.8 1.2892 46.021 0.00029 -0.0021 0.2664 1.1940 0.99971 0.00029 100.0 1120 376.9 1.3614 46.011 0.30006 -0.0003 0.2793 1.1830	880 311.2 1.2953 46.019 0.00025 -0.0017 0.2676 1.1929 0.99975 0.00025 100.0 1140 382.5 1.3563 46.010 0.00005 -0.0003 0.2801 1.1824	900 316.5 1.3013 46.018 0.90021 -0.0014 0.2688 1.1917 0.99979 0.00021 100.0 1160 388.1 1.3712 46.010 0.09005 -0.0002 0.2808 1.1818	970 321.9 1.3073 46.016 9.00018 -0.0012 0.2700 1.1907 0.99982 0.00018 100.0 1180 393.8 1.3760 46.010 0.92004 -	940 327-3 1.3131 46.015 0.0010 0.2712 1.1897 0.99984 0.00016 100.0 1200 399.4 1.3807 46.010 0.00004 -0.0002 0.2822	960 332.8 1.3188 46.014 0.00014 -0.0009 0.2723 1.1887 0.99986 0.00014 100.0 405.1 1.3854 46.010 0.2829 1.1802	980 338.2 1.3244 46.014 0.00012 -0.0008 0.2734 1.1878 0.99988 0.00012 100.0 1240 410.7 1.3900 46.010 0.20004 -0.0002 0.2836 1.1797	100.0 100.0 100.0 100.0 100.0 100.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0 1260 1160.0	1020 349.2 1.3354 46.012 0.00010 -0.0005 0.2754 1.1861 0.99990 0.00010 100.0 1280 422.1 1.3990 46.009 0.0003 -0.0001 0.2849	1040 354.7 1.3408 46.012 0.00009 -0.0005 0.2762 1.1855

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

 $\begin{bmatrix} P \text{ is pressure, T is temperature, H is enthalpy, S is entropy, } (DLM/DLP)T \equiv (\partial \ln M/\partial \ln P)_T, \\ (DLM/DLT)P \equiv (\partial \ln M/\partial \ln T)_P, CP \text{ is heat capacity at constant pressure, and GAMMA is isentropic exponent } (\partial \ln P/\partial \ln \rho)_S \text{ where } \rho \text{ is density.} \end{bmatrix}$

(b) $\mathrm{NO_2}\text{-}\mathrm{N_2}\mathrm{O_4}\text{-}\mathrm{NO}\text{-}\mathrm{O_2}$ system

T, DECK 300 320 340 350 360 360 360 360 360 360 360 360 360 36	T, DEG K H, CAL/G S, CAL/(G)(K M, MOL HT (DLM/OLP)T (DLM/OLT)P CP, CAL/(G)(300 159.4 () 1.3992 48.462	320 174.6			0.0100	0.0100	0.0100						
T, DEG K 300 320 340 362 340 400 400 400 400 300 320 320 340 400 400 400 400 320 320 320 320 320 320 320 320 320 3	T, DEG K H, CAL/G S, CAL/(G)(K M, MOL HT {DLM/DLP)T {DL4/DLT)P CP, CAL/{G}{	300 159.4 () 1.3992 48.462	320 174.6					0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.010
S. CALIFORIES 1.3992 1.4489 1.4799 1.4979 1.5934 1.5935 1.5941 1.5937 1.6975 1.6975 1.4975 1.7773 1 H. MOL ET ALCHOMOTER 1.000 1.0000 0.00000 0.00000 0.0000 0.0000 0.000	S, CAL/(G)(K M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(() 1.3992 48.462				380	400	420	440	460	480	500		54
COLLYDIT 0.0458 0.01355 0.00467 0.00239 0.00055 0.00259 0.00060 0.00050 0.00122 0.00122 0.00122 0.00125 0.00774 0.00398 0.00060 0.00	(DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(. 1.4404											336. 1.804
IOLYGOTIP -1.0522 -0.2959 -0.1009 -0.0556 -0.0554 -0.1350 -0.2132 -0.2122 -0.4572 -0.6129 -0.7175 -0.9094 -1.604 I.1910 II.1910 III.1910 II.1910 III.1910 III.1910 III.1910 III.1910 III.1910 III.1910 III.1910 III.1910 III.191	(DLM/DLT)P CP, CAL/(G)(38.83
COP, CAL, (CSI KI) 1.1871 1.1871 1.1895 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1995 1.1996 1.1996 1.1996 1.1996 1.1996 1.1997 1.	CP, CAL/(G)(-1-0524	-0.2959											-1.001
MOLE FARCTIONS MOLE FACTIONS MOLE	GAMMA													1.557
NIDIGO 0.00050 0.00130 0.00130 0.00055 0.01275 0.02313 0.03937 0.06325 0.09621 0.13892 0.19078 0.24960 0.110160 0.05656 0.49814 0.4981		1.1107	1.1583	1.1990	1.1982	1.1766	1.1528	1.1331	1.1187	1.1093	1.1037	1.1011	1.1007	1.102
NIDZEG)	MOLE FRACTIO	INS												
NOTICE 0.05359 0.01387 0.00397 0.00159 0.00128 0.00038 0.00169 0.00008 0.000														0.3118
EQUILIBRIUM THERMODYMANIC PROPERTIES P. ATM T. 0.65 K														0.5321
P, ATM														0.0000
T, DEC K 560 580 600 620 640 660 680 700 720 770 770 770 770 770 770 770 77	EQUIL IBRIUM	THERMODYNAM	IC PROPER	TIES										
H, CAL/G S, CAL/CGI(KI) L8617 1, 1973 1, 1993 1, 1993 1, 1995 2, CAL/GCI(KI) L8617 1, 1973 1, 1993 1, 1993 2, 1105 2, 1080 2, 1081 2,														
S. CAL/(GI(K) 1.8617 1.9173 1.9981 2.0125 2.0500 2.0810 2.1064 2.1272 2.1445 2.1590 2.1715 2.1824 M. MOL MT 37.418 36.107 34.962 34.013 33.247 32.653 32.109 31.895 31.593 31.295 31.245 31.130 (IDM/DLPT 0.04139 0.04128 0.03877 0.03462 0.02973 0.02482 0.02033 0.01044 0.01330 0.01072 0.00866 0.00703 0.01072 0.00866 0.00703 0.00870 0.00867 0.00870 0.00867 0.00870 0.00870 0.00870 0.00860 0.00703 0.00870 0.0														
COLMYOLE)														
CDLM/OLT P -1.0300														
CP, CAL/(G)(K) 1.5999 1.5540 1.4343 1.2701 1.0923 0.9245 0.7774 0.6609 0.5677 0.4960 0.4416 0.4006 0.4004 0.4016 0.4006 0.4016 0.4016 0.4006 0.4016 0														
MOLE FRACTIONS														
NID1(G)	GAMMA	1.1055			1.1249									
NIDZIG)	MOLE FRACTIO	NS .												
D2[G] 0.18671 0.21521 0.24010 0.26079 0.27736 0.29027 0.30015 0.30765 0.31332 0.31762 0.32088 0.32338 EQUILIBRIUM THERMODYNAMIC PROPERTIES P, ATM 0.0100 0.00140 0.0140 0.01410 0.									0.61530	0.62665	0.63524	0.64176	0.64676	
EQUILIBRIUM THERMODYNAMIC PROPERTIES P, ATM														
P, ATM								0.30013	0.30103	0.31332	0.31702	0.32000	0.32338	
T, DECK 800 820 840 880 880 880 900 900 900 900 900 1000 10	EQUIL IBRIUM	THERMODYNAM	IC PROPER	TIES										
H, CAL/G 580.6 587.8 594.5 501.0 607.2 613.2 619.1 625.0 630.7 636.4 642.0 647.6 625. CAL/(G)(K) 2.1921 2.2010 2.2091 2.2167 2.2238 2.2306 2.2371 2.2434 2.2494 2.2573 2.2609 2.2665 2. M, MOL WT 31.041 30.973 30.919 30.876 30.843 30.816 30.794 30.776 30.761 30.749 30.779 30.730 30.710 M/N/DP)T 0.00574 0.00471 0.00390 0.00252 3.00272 0.00230 0.00195 0.00167 0.00163 0.00124 0.00108 0.00094 0.C. CP, CAL/(G)(K) 0.3698 0.3466 0.3292 0.3160 0.30161 0.2995 0.2928 0.2884 0.2881 0.2805 0.2805 0.2791 0.0647 0.30898 0.3466 0.3292 0.3160 0.30161 0.2995 0.2928 0.2884 0.2881 0.2805 0.2805 0.2791 0.064M/MAL 1.2559 1.2678 1.2778 1.2860 1.2925 1.2976 1.3016 1.3045 1.3067 1.3083 1.3093 1.3101 1. MOLE FRACTIONS N101(G) 0.65060 0.65359 0.65593 0.65778 0.65925 0.66043 0.66138 0.66216 0.66280 0.66333 0.66377 0.66413 0.60 0.02(G) 0.32530 0.32680 0.32797 0.32889 0.32962 0.33021 0.33069 0.33108 0.33140 0.33166 0.33188 0.33207 0.3 EQUILIBRIUM THERMODYNAMIC PROPERTIES P, ATM 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.33069 0.33108 0.33140 0.33166 0.33188 0.33207 0.3 H, CAL/G 658.7 664.3 669.8 675.3 680.8 680.3 691.9 697.4 702.9 708.4 714.0 719.5 5, CAL/(G)(K) 2.2772 2.2824 2.2874 2.2924 2.2973 2.3021 2.3068 2.3115 2.3160 2.3205 2.3249 2.3293 M, MOL MT 30.717 30.712 30.708 30.704 30.701 30.698 30.695 30.693 30.691 30.690 30.688 30.687 (OLM/OLP)T 0.00073 0.00073 0.00056 0.00058 0.00059 0.00056 0.000058 0.00059 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00027 0.00026 0.														0.0100
S, CAL/(G)(K) 2.1921 2.2010 2.2091 2.2167 2.2238 2.2306 2.2371 2.2434 2.2494 2.2553 2.2609 2.2665 2. M, MOL MT 31.041 30.973 30.919 30.876 30.843 30.816 30.794 30.776 30.761 30.749 30.739 30.739 30.730 30 (DLM/OLP)T 0.00574 0.00471 0.00390 0.00325 3.00272 0.00230 0.00195 0.00167 0.00143 0.00124 0.00108 0.00094 0.0 (DLM/OLP)T 0.1001 -0.0802 -0.0647 -0.0526 -0.0431 -0.0355 -0.0295 -0.0247 -0.0208 -0.0176 -0.0150 -0.0126 -0.0150 -0.0126 -0.0160 -0.0160 0.00094 0.0 (CP, CAL/(G)(K) 0.3698 0.3466 0.3292 0.3160 0.3061 0.2985 0.2928 0.2884 0.2851 0.2825 0.2806 0.2791 0.00384 0.2559 1.2678 1.2778 1.2863 1.2925 1.2976 1.3016 1.3045 1.3067 1.3083 1.3093 1.3101 1. MOLE FRACTIONS NIO1(G)														1040
(DLM/DLP)T														653.2 2.2719
OLM/DLTIP					30.876	30.843	30.816	30.794	30.776		30.749	30.739	30.730	30.723
CP, CAL/(G)(K) 0.3698 0.3466 0.3292 0.3160 0.3061 0.2985 0.2928 0.2884 0.2851 0.2825 0.2806 0.2791 0. GAMMA 1.2559 1.2678 1.2778 1.2860 1.2925 1.2976 1.3016 1.3045 1.3067 1.3083 1.3093 1.3101 1. MOLE FRACTIONS N101(G)											0.00124	0.00108	0.00094	0.0008
GAMMA 1.2559 1.2678 1.2778 1.2863 1.2925 1.2976 1.3016 1.3045 1.3067 1.3083 1.3093 1.3101 1. MOLE FRACTIONS NIO1(G)														-0.0111
N101(G)														0.2780
NIO2(G)	MOLE FRACTIO	NS												
NID2(G)									0.66216	0.66280	0.66333	0.66377	0.66413	0.66444
P. ATM								0.00793	0.00676	0.00580	0.00501	0.00435	0.00380	0.00334
P, ATM	FOUTI TRR TUN	THEO MODYNAM	IC DECREES											
T, DEG K 1060 1080 1100 1120 1140 1160 1180 1200 0.01000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.01000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.01000 0.0100 0.0100 0.0100 0.0100 0.01000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.010					0.0100	0.0105	0.5:55							
H. CAL/G 658.7 664.3 669.8 675.3 680.8 686.3 691.9 697.4 702.9 708.4 714.0 719.5 708.4 714.0 719.5 708.4 714.0 719.5 708.4 714.0 719.5 708.4 714.0 719.5 719.5 714.0 719.5 714.0 719.5 719.5 714.0 719.5 719	T, DEG K													
S, CAL/(G)(K) 2.2772 2.2824 2.2874 2.2924 2.2973 2.3021 2.3068 2.3115 2.3160 2.3205 2.3205 2.3249 2.3293 M, MOL NT 30.717 30.712 30.708 30.704 30.701 30.698 30.695 30.693 30.691 30.690 30.688 30.687 (OLM/DLP)T 0.00073 0.00055 0.00055 0.00055 0.00056 0.00056 0.00042 0.00038 0.00034 0.00031 0.00029 0.00026 0.00024 (OLM/DLP)P -0.0096 -0.0083 -0.0073 -0.0073 -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 -0.0056 0.2761 0.2760 0.2767 0.2763 0.2761 0.2760 0.2764 0.2767 0.2763 0.2764 0.2767 0.2763 0.2764 0.2765 0.2764 0.2765	H, CAL/G	658.7												
(OLM/DLF)T 0.00073 0.00055 0.00058 0.00052 0.00046 0.00042 0.00038 0.00034 0.00031 0.00029 0.00026 0.00024 0.00028 0.00024 0.00031 0.00029 0.00026 0.00024 0.00026 0.00024 0.00031 0.00029 0.00026 0.00024 0.00031 0.00029 0.00026 0.00026 0.2762 0.2763 0.2763 0.2763 0.2763 0.2763 0.2763 0.2764 0.2763 0.2764 0.2767 0.2763 0.2764 0.2767 0.2769 0.2772 0.2763 0.2764 0.2767 0.2769 0.2772 0.2764 0.2767 0.2769 0.2772 0.2769 0.2772 0.2769 0.276		2.2772	2.2824											
CDLM/DLT1P										30.691	30.690	30.688	30.687	
CP, CAL/(G)(K) 0.2772 0.2767 0.2763 0.2761 0.2760 0.2760 0.2760 0.2761 0.2760 0.2761 0.2760 0.2761 0.2762 0.2761 0.2762 0.2763 0.2761 0.2762 0.2763 0.2763 0.2762 0.2763 0.2762 0.2763 0.2762 0.2763 0.2762 0.2763 0.2763 0.2762 0.2763 0.2762 0.2763 0.2762 0.2763 0.2763 0.2763 0.2762 0.2763 0									0.00034	0.00031	0.00029	0.00026	0.00024	
GAMMA 1.3109 1.3107 1.3105 1.3101 1.3097 1.3093 1.3087 1.3082 1.3076 1.3070 1.3064														
MOLE FRACTIONS														
	MOLE FRACTION	15												
NIO1(G)				0.66512	0.66528	0.66542	0.66555	0.66566	0.66575	0.66583	0.66590	0.66597	0.66602	
NIO2(G) 0.00294 0.00261 0.00232 0.00208 0.00186 0.00168 0.00152 0.00138 0.00125 0.00114 0.00105 0.00096				0.00232	0.00208	0.00186	0.00168	0.00152	0.00138		0.00114			
0.33235 0.33246 0.33256 0.33264 0.33271 0.33277 0.33283 0.33287 0.33292 0.33295 0.33298 0.33301	JC (0)	0. 33235	0.33246	U.33256	U.33264	0.33271	0.33277	0.33283	0.33287					

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

[P is pressure, T is temperature, H is enthalpy, S is entropy, (DLM/DLP)T = $(\partial \ln M/\partial \ln P)_T$, (DLM/DLT)P = $(\partial \ln M/\partial \ln T)_p$, CP is heat capacity at constant pressure, and GAMMA is isentropic exponent $(\partial \ln P/\partial \ln \rho)_S$ where ρ is density.]

P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL HT (DLM/DLP)T		MIC PROPE	TICC			•							
T. DEG K H. CAL/G S. CAL/(G)(K) M. MOL WT													
H, CAL/G S, CAL/(G)(K) M, MOL HT	0.030												
S, CAL/(G)(K) M, MOL HT	30												
	139. 1.288												
	52.18	9 47.80	5 46.50	45.08	2 45.86	9 45.66	3 45.383	3 44.984	44.427	43.686	42.75		
	0.0905					0.0032	5 0.00479						
(DLM/DLT1P	-2.077												
CP, CAL/(G)(R													
G AMM A	1.097	4 1.124	5 1.1689	1.195	2 1.189	1.1694	4 1.1491	1 1.1325	1.1204	1.1123	1.107	5 1.105	1.104
MOLE FRACTION	NS.												
NIDI(G)	0.0003					7 0.01615							
N102(G)	0.8649						0.95830						
N204(G)	0.1345						7 0.00024 7 0.01382						
02(G)	0.0001	0.0004.	0.0010	0.0022	1 3.0077	. 0.0000		. 000000					
EQUILIBRIUM 1	THER MODYNA	MIC PROPER	RTIES										
P, ATH	0.030	0.0300	0.0300	0.030									
T, DEG K	56												
H, CAL/G S, CAL/(G)(K)	336.0 1.747												
N, MOL WT	39.09	9 37.790	36.554	35.44	5 34.49	5 33.706	33.070	32.566	32.171	31.864	31.62	6 31.44	L
(DLM/DLP)T	0.0380							7 0.02401	0.02005	0.01661	0.0137		
(DLM/DLT)P	-0.947												
CP, CAL/(G)(K	() 1.436												
GAMMA	1.106	4 1.1093	3 1.1135	1.119	2 1.126.	1.1351	1 1.1454	+ 1.1575	1.1703	1.1040	,,		
MOLE FRACTION	15												
N101(G)	0.3003												
N102(G) 02(G)	0.54950												
P, ATM T, DEG K	0.0300	0.0300 820	0.0300 840	0.0300 860	0.0300 880	0.0300	0.0300	0.0300	0.0300 960	0.0300 980	0.0300 1000 640.6	0.0300 1020 646.4	0.0300 1040 652.1
H, CAL/G S, CAL/{G}{K}	573.4 2.1130	\$81.8 2.1234	589.5 2.1327	596.8 2.1413	603.7 2.1492	610.3 2.1566	616.6 2.1636	622.8 2.1702	628.8 2.1765	634.7 2.1827	2.1886	2.1943	2.1998
					30.964	30.918	30.881	30.850	30.825	30.804	30.787	30.773	30.760
1, MOL WT (DLM/DLP)T	31.296 0.00937	31.182 0.00778	31.092 0.00649	31.021 0.00544								0.00162	0.00142
CLM/OLT)P				-0.0881				-0.0420 -					-0.0190
P. CAL/(G)(K)	0.4391	0.4026	0.3745	0.3527	0.3359	0.3229	0.3128	0.3049	0.2988	0.2940	0.2902	0.2872	0.2849
AMMA	1.2291	1.2425	1.2546	1.2652	1.2742	1.2818	1.2879	1.2929	1.2969	1.2999	1.3023	1.304?	1.3056
OLE FRACTIONS													
		0.64449		0 45140								0.66230	. // 202
V101(G)			0.64839										0.66283
N101(G) N102(G)		0.03326	0.02741	0.02276	0.01904	0.01604	0.01361	0.01162 (.00999 (.00863 (0.00750	0.00655	0.00576
H101(G) H102(G) H2(G)	0.31978	0.03326	0.02741 0.32420	0.02276	0.01904	0.01604	0.01361	0.01162 (.00999 (.00863 (0.00750	0.00655	0.00576
V101(G) V102(G) J2(G)	0.31978	0.03326	0.02741 0.32420	0.02276 0.32575	0.01904	0.01604 0.32799	0.01361	0.01162 (0.33000	0.00863 (0.33046 (0.00750 n.33083	0.00655 0.33115	0.00576
(101(G) (102(G) 12(G) EQUILIBRIUM THE	0.31978 RMODYNAMIC C.0300	0.03326 0.32225 PROPERTI	0.02741 0.32420 ES 0.0300	0.02276	0.01904	0.01604	0.01361	0.0300	0.0300	0.0300 0.0300	0.00750	0.00655	0.00576
1101(G) 1102(G) 12(G) EQUILIBRIUM THE	0.31978 RMODYNAMIC C.0300 1060	0.03326 0.32225 PROPERTI 0.0300 1080	0.02741 0.32420 ES 0.0300 1100	0.02276 0.32575 0.0300 1120	0.01904 0.32699 0.0300 1140	0.01604 0.32799 0.0300 1160	0.01361 0.32880 0.0300 1180	0.01162 0.32946 0.0300 1200	0.0300 1220	0.00863 (0.33046 (0.0300	0.0300	0.00576
v101(G)	0.31978 RMODYNAMIC C.0300	0.03326 0.32225 PROPERTI	0.02741 0.32420 ES 0.0300	0.02276	0.01904	0.01604	0.01361	0.0300	0.0300	0.0300 1240	0.0300 1260	0.00655 0.33115 0.0300 1280	0.00576
NIO1(G) NIO2(G) D2(G) PQUILIBRIUM THE P, ATM I, DEG K	0.31978 RMODYNAMIC C.0300 1060 657.8	0.03326 0.32225 PROPERTI 0.0300 1080 663.4	0.02741 0.32420 ES 0.0300 1100 669.0	0.03276 0.32575 0.0300 1120 674.6	0.01904 0.32699 0.0300 1140 680.2 2.2257 30.721	0.01604 0.32799 0.0300 1160 685.8 2.2305 30.716	0.01361 0.32880 0.0300 1180 691.4 2.2353 30.712	0.01162 0.32946 0.0300 1200 696.9 2.2400 30.708	0.0300 1220 702.5 2.2446	0.0300 1240 708.1 2.2491 30.702	0.0300 1260 713.6 2.2535	0.03115 0.03115 0.0300 1280 719.2 2.2579 30.697	0.00576
HID1(G) HID2(G) HID2(G	0.31978 RMODYNAMIC C.0300 1060 657.8 2.2052 30.750 0.00126	PROPERTI 0.0300 1080 663.4 2.2105 30.741 0.00112	0.02741 0.32420 ES 0.0300 1100 669.0 2.2157 30.734 0.00100	0.03276 0.32575 0.0300 1120 674.6 2.2207 30.727 0.00089	0.01904 0.32699 0.0300 1140 680.2 2.2257 30.721 0.00080	0.01604 0.32799 0.0300 1160 685.8 2.2305 30.716 0.00072	0.01361 0.32880 0.0300 1180 691.4 2.2353 30.712 0.00065	0.01162 0.32946 0.32946 0.0300 1200 696.9 2.2400 30.708 0.00059	0.0300 1220 702.5 2.2446 30.705	0.0300 1240 708.1 2.2491 30.702	0.0300 1260 713.6 2.2535 30.700	0.0300 1280 719-2 2.2579 30.697 0.00041	0.00576
HIGHES HIGH THE PARTY OF THE PA	C.0300 1060 657.8 2.2052 30.750 0.00126 -0.0165	0.03326 0.32225 PROPERTI 0.0300 1080 663.4 2.2105 30.741 0.00112 -0.0143	0.02741 0.32420 ES 0.0300 1100 669.0 2.2157 30.734 0.00100 -0.0125	0.02276 0.32575 0.0300 1120 674.6 2.2207 30.727 0.00089	0.01904 0.32699 0.0300 1140 680.2 2.2257 30.721 0.00080 -0.0097	0.01604 0.32799 0.0300 1160 685.8 2.2305 30.716 0.00072 -0.0086	0.01361 0.32880 0.0300 1180 691.4 2.2353 30.712 0.00065 -0.0076	0.01162 0.32946 0.0300 1200 696.9 2.2400 30.708 0.00059 -0.0068	0.0300 1220 702.5 2.2446 30.705 0.00054	0.0300 1240 708.1 2.2491 30.702 0.00049	0.0300 1260 13.6 2.2535 30.700 0.0045 -0.0049	0.0300 1280 719.2 2.2579 30.697 0.00041	0.00576
HID1(G) HID2(G) HID2(G	0.31978 RMODYNAMIC C.0300 1060 657.8 2.2052 30.750 0.00126	PROPERTI 0.0300 1080 663.4 2.2105 30.741 0.00112	0.02741 0.32420 ES 0.0300 1100 669.0 2.2157 30.734 0.00100	0.03276 0.32575 0.0300 1120 674.6 2.2207 30.727 0.00089	0.01904 0.32699 0.0300 1140 680.2 2.2257 30.721 0.00080	0.01604 0.32799 0.0300 1160 685.8 2.2305 30.716 0.00072	0.01361 0.32880 0.0300 1180 691.4 2.2353 30.712 0.00065	0.01162 0.32946 0.32946 0.0300 1200 696.9 2.2400 30.708 0.00059	0.0300 1220 702.5 2.2446 30.705	0.0300 1240 708.1 2.2491 30.702	0.0300 1260 713.6 2.2535 30.700	0.0300 1280 719-2 2.2579 30.697 0.00041	0.00576
AID1(G) AID2(G) AID2(G) AID4 AID4 AID4 AID4 AID4 AID4 AID4 AID4	0.31978 RMOOYNAHIC 0.0300 657.8 2.2052 30.750 0.00126 -0.0165 0.2831	PROPERTI 0.0300 1080 663.4 2.2105 30.741 0.00112 -0.01143 0.2817	0.02741 0.32420 ES 0.0300 1100 669.0 2.2157 30.734 0.00100 -0.0125 0.2806	0.02276 0.32575 0.0300 1120 674.6 2.2207 30.727 0.00089 -0.0110 0.2798	0.01904 0.32699 0.0300 1140 680.2 2.2257 30.721 0.00080 -0.0097 0.2792	0.01604 0.32799 0.0300 1160 685.8 2.2305 30.716 0.00072 -0.0086 0.2788	0.01361 0.32880 0.0300 1180 691.4 2.2353 30.712 0.00065 -0.0076 0.2785	0.01162 0.32946 0.32946 0.0300 1200 696.9 2.2400 30.708 0.00059 -0.0068 0.2784	0.0300 1220 702.5 2.2446 30.705 1.00054 -0.0061 0.2783	0.0300 1240 708.1 2.2491 30.702 0.00049 -0.0055	0.00750 0.33083 0.0300 1260 713.6 2.2535 30.700 0.0045 -0.0049 0.2784	0.0300 1280 719.2 2.2579 30.697 0.00041 -0.0045 0.2785	0.00576
HOOIGO HOOZGO HO	0.31978 RMODYNAMIC C.0300 1060 657.8 2.2052 30.750 0.00126 -0.0165 0.2831 1.3065	PROPERTI 0.0300 1080 663.4 2.2105 30.741 0.00112 -0.0143 0.2817 1.3072	0.02741 0.32420 ES 0.0300 1100 669.0 2.2157 30.734 0.00100 -0.0125 0.2806 1.3076	0.02276 0.32575 0.0300 1120 674.6 2.2207 30.727 0.00089 -0.0110 0.2798 1.3078	0.01904 0.32699 0.0300 1140 680.2 2.2257 30.721 0.00080 -0.0097 0.2792 1.3079	0.01604 0.32799 0.0300 1160 685.8 2.2305 30.716 0.00072 -0.0086 0.2788 1.3078	0.01361 0.32880 0.0300 1180 691.4 2.2353 30.712 0.00065 -0.0076 0.2785 1.3076	0.01162 0.32946 0.0300 1200 696.9 2.2400 30.708 0.0059 -0.0068 0.2784 1.3073	0.0300 1220 702.5 2.2446 30.705 0.0054 -0.0061 0.2783 1.3069	0.0300 12491 30.702 2.00049 0.0783 1.3065	0.0300 1260 713.6 2.2535 30.700 0.00045 -0.0049 0.2784 1.3061	0.00655 0.33115 0.0300 1280 719.2 2.2579 30.697 0.00041 -0.0045 0.2785 1.3055	0.00576
AID1(G) AID2(G) AID2(G) AID4 AID4 AID4 AID4 AID4 AID4 AID4 AID4	0.31978 RMODYNAMIC C.0300 1060 657.8 2.2052 30.750 0.00126 -0.0165 0.2831 1.3065	PROPERTI 0.0300 1080 663.4 2.2105 30.741 0.00112 -0.01143 0.2817	0.02741 0.32420 ES 0.0300 1100 669.0 2.2157 30.734 0.00100 -0.0125 0.2806 1.3076	0.03276 0.32575 0.032575 0.0300 1120 674.6 2.2207 30.727 0.00089 -0.0110 0.2798 1.3078	0.01904 0.32699 0.0300 1140 680.2 2.2257 30.721 0.00080 -0.0097 0.2792 1.3079	0.01604 0.32799 0.0300 1160 685.8 2.2305 30.716 0.00072 -0.0086 0.2788 1.3078	0.01361 0.32880 0.0300 1180 691.4 2.2353 30.712 0.00065 -0.0076 0.2785 1.3076	0.01162 0.32946 0.32946 0.0300 1200 696.9 2.2400 30.708 0.00059 -0.0068 0.2784 1.3073	0.0300 1220 702.5 2.2446 30.705 0.00054 0.00054 0.2783 1.3069	0.0300 1240 708.1 2.2491 30.702 0.00049 0.0055 0.2783 1.3065	0.0300 1260 713.6 2.2535 30.700 0.00045 -0.0049 0.2784 1.3061	0.0300 1280 719.2 2.2579 30.697 0.00041 -0.0045 0.2785	0.00576

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

 $\left[\textbf{P} \text{ is pressure, T is temperature, H is enthalpy, S is entropy, } (DLM/DLP)\textbf{T} \equiv (\partial \ln M/\partial \ln P)_{\textbf{T}}, \\ (DLM/DLT)\textbf{P} \equiv (\partial \ln M/\partial \ln T)_{\textbf{P}}, \\ \textbf{CP} \text{ is heat capacity at constant pressure, and GAMMA is isentropic exponent } (\partial \ln P/\partial \ln \rho)_{\textbf{S}} \text{ where } \rho \text{ is density.} \right]$

EQUILIBRIUM THE	R MOD YNA N I	C PROPERT	I E S										
P, ATM	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.100
r, DEG K	300	320	340	360	380	400	420	440	460	480	500	5 2 0	54
H, CAL/G	106.5	148.4	172.0	183.5	190.8	197.3	204.2	212.3	221.9	233.7	247.9	264.9 1.5570	284.
S, CAL/(G)(K)	1.1362	1.2717	1.3433	1.3762	1.3960	1.4127	1.4296	1.4483	1.4697	1.4947	1.5237	1.5510	1.594
M. MOL WT	59.641	51.173	47.697	46.527	46.093	45.846	45.617	45.326	44.931	44.403	43.721	42.880	41.89
(DLM/DLP)T	0.12416	0.08086	0.03377	0.01287	0.00571	0.00374	0.00394	0.00539	0.00787	0.01132	0.01569	0.02081	0.0263
(DLM/DLT)P	-2.8471	-1.7383	-0.6866	-0.2550	-0.1211	-0.0955	-0.1157	-0.1635	-0.2343	-0.3261	-0.4355	-0.5565	-0.679
CP, CAL/(G)(K)	2.3729	1.6518	0.7867	0.4274	0.3299	0.3287	0.3701	0.4390 1.1492	0.5316 1.1349	0.6458 1.1243	0.7778 1.1170	0.9210 l.1125	1.064
GAMMA	1.0913	1.1055	1.1323	1.1599	1.1885	1.1828	1.1663	1.1472	1.1349	1.1243	1.11.0	1.1123	1.110
MOLE FRACTIONS													
N101(G)	0.00019	0.00058	0.00141	0.00303	0.00594	0.01086	0.01867	0.03040	0.04717	0.06998	0.09953	0.13603	0.1789
N102(G)	0.70330	0.88660	0.96047	0.98257	0.98634	0.98180	0.97117	0.95401	0.92905	0.89494	0.85065	0.79593	0.7315
N204(G)	0.29642	0.11254	0.03741 0.00070	0.01279	0.00474 0.00297	0.00192	0.00083	0.00039	0.00019	0.03499	0.00003	0.00003 0.05802	0.0894
02(6)	0.00010	0.00029	0.00070	0.00132	0.00291	0.00343	0.00,,,,	0.01,20	0.023	0.03.77		***************************************	•••
EQUILIBRIUM THE	RMDDYNAMI	C PROPERT	I E S										
P, ATM	0.1000	0.1000	0.1000	0.1000	0.1300	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	
T, DEG K	560	580	600	620	640	660	680	700 484.6	720 503.8	740 520.8	760 535.7	780 548.8	
H, CAL/G S, CAL/(G)(K)	307.4 1.6356	332.3 1.6794	359.0 1.7245	386.3 1.7693	413.3 1.8122	439.1 1.8519	463.0 1.8876	1.9189	1.9460	1.9693	1.9891	2.0062	
J, CAL/IUIIN)	1.0000	1.0174	101677	101073	1.0155	,		/10 /					
M, MOL WT	40.785	39.607	38.410	37.252	36.178	35.221	34.395	33.701	33.130	32.667	32.294	31.996	
(DLM/DLP)T	0.03176	0.03647	0.03985	0.04152	0.04135	0.03956	0.03655	0.03282	0.02884	0.02494	0.02133	0.01812	
(DLM/OLT)P	-0.7903	-0.8765	-0.9264	-0.9343	-0.9017 1.3268	-0.8365	-0.7502 1.1402	-0.6545 1.0216	-0.5591 0.9036	0.7944	0.6985	-0.3241 0.6173	
CP, CAL/(G)(K) Gamma	1.1952	1.2970	1.3565	1.3663	1.1215	1.2468	1.1347	1.1431	1.1528	1.1636	1.1755	1.1881	
UMIT M	1.1070	1.1100		11100									
NOLE FRACTIONS													
N101(G)	0.22704	0.27828	0.33028	0.38064	0.42731	0.46893	0.50483	0.53499	0.55981	0.57996	0.59616	0.60912	
N102(G)	0.65943	0.58257	0.50457	0.42904	0.35903	0.29661	0.24276	0.19752	0.16028	0.13006	0.10576 0.	0.08631	
N204(G) D2(G)	0.00001 0.11352	0.00000 0.13914	0.00000 0.16514	0.00000	0.00000 0.21366	0.00000 0.23446	0.25241	0.26749	0.27991	0.28998	0.29808	0.30456	
EQUILIBRIUM THE	RMODYNAMI	C PROPERT	IES		i								
P, ATM	C.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	
T, DEG K	800	820	840	860	880	900	920	940	960	980	1000	1020	104
T, DEG K H, CAL/G	800 560.5	820 570.9	840 580•4	860 589•1	880 597.1	900 604.7	920 611.8	940 618.7	960 625•3	980 631.6	1000 637.9	1020 644.0	104 650.
T, DEG K	800	820	840	860	880	900	920	940	960	980	1000	1020	104 650.
T, DEG K H, CAL/G S, CAL/(G)(K)	800 560.5	820 570.9	840 580•4	860 589•1	880 597.1	900 604.7	920 611.8 2.0811 31.047	940 618.7 2.0884 30.993	960 625.3 2.0954 30.948	980 631.6 2.1019 30.911	1000 637.9 2.1082 30.880	1020 644.0 2.1143 30.854	104 650. 2.120 30.83
T, DEG K H, CAL/G	800 560.5 2.0210 31.758 0.01534	820 570.9 2.0338 31.567 0.01297	840 580.4 2.0452 31.415 0.01098	860 589.1 2.0555 31.292 0.00932	880 597.1 2.0647 31.193 0.00793	900 604.7 2.0732 31.113 0.00678	920 611.8 2.0811 31.047 0.00582	940 618.7 2.0884 30.993 0.00502	960 625.3 2.0954 30.948 0.00434	980 631.6 2.1019 30.911 0.00378	1000 637.9 2.1082 30.880 0.00330	1020 644.0 2.1143 30.854 0.00290	104 650. 2.120 30.83 0.0025
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT {DLM/DLP)T {DLM/DLT}P	800 560.5 2.0210 31.758 0.01534 -0.2675	820 570.9 2.0338 31.567 0.01297 -0.2207	840 580.4 2.0452 31.415 0.01098 -0.1823	860 589.1 2.0555 31.292 0.00932 -0.1511	880 597.1 2.0647 31.193 0.00793 -0.1256	900 604.7 2.0732 31.113 0.00678 -0.1049	920 611.8 2.0811 31.047 0.00582 -0.0881	940 618.7 2.0884 30.993 0.00502 -0.0743	960 625.3 2.0954 30.948 0.00434 -0.0629	980 631.6 2.1019 30.911 0.00378 -0.0536	1000 637.9 2.1082 30.880 0.00330 -0.0459	1020 644.0 2.1143 30.854 0.00293 -0.0395	104 650. 2.120 30.83 0.0025 -0.034
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT {DLM/DLP)T {DLM/DLT}P CP, CAL/(G)(K)	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518	860 589.1 2.0555 31.292 0.00932 -0.1511 0.4168	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890	900 604.7 2.0732 31.113 0.00678 -0.1049 0.3669	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154	1000 637.9 2.1082 30.880 0.00330	1020 644.0 2.1143 30.854 0.00290	104 650. 2.120 30.83 0.0025 -0.034 0.297
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT {DLM/DLP)T {DLM/DLT}P CP, CAL/(G)(K)	800 560.5 2.0210 31.758 0.01534 -0.2675	820 570.9 2.0338 31.567 0.01297 -0.2207	840 580.4 2.0452 31.415 0.01098 -0.1823	860 589.1 2.0555 31.292 0.00932 -0.1511	880 597.1 2.0647 31.193 0.00793 -0.1256	900 604.7 2.0732 31.113 0.00678 -0.1049	920 611.8 2.0811 31.047 0.00582 -0.0881	940 618.7 2.0884 30.993 0.00502 -0.0743	960 625.3 2.0954 30.948 0.00434 -0.0629	980 631.6 2.1019 30.911 0.00378 -0.0536	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083	1020 644.0 2.1143 30.854 0.00290 -0.0395 0.3026	104 650. 2.120 30.83 0.0025 -0.034 0.297
T, DEG K H, CAL/G K, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266	860 589.1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493	900 604.7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904	1020 644.0 2.1143 30.854 0.00290 -0.0395 0.3026 1.2939	104 650. 2.120 30.83 0.0025 -0.034 0.297 1.296
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G)	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266	860 589-1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493	900 604.7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904	1020 644.0 2.1143 30.854 0.00290 -0.0395 0.3026 1.2939	104 650. 2.120 30.83 0.0025 -0.034 0.297 1.296
T, DEG K H, CAL/G S, CAL/G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS N101(G) N102(G)	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266	860 589.1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493	900 604.7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904	1020 644.0 2.1143 30.854 0.00290 -0.0395 0.3026 1.2939	0.100 104 650. 2.120 30.83 0.0025 -0.034 0.297 1.296
T, DEG K H, CAL/G H, CAL/G K, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G) N102(G) 02(G)	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266	860 589.1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493	900 604.7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590 0.64751 0.02873	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904	1020 644.0 2.1143 30.854 0.00290 -0.0395 0.3026 1.2939	104 650. 2.120 30.83 0.0025 -0.034 0.297 1.296
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL MT (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS N101(G) N102(G) 02(G) EQUILIBRIUM THE	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266	860 589-1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201	900 604.7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590 0.64751 0.02873 0.32376	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904 0.65762 0.01357 0.32881	1020 644.0 2.1143 30.854 0.00293 -0.0395 0.3026 1.2939 0.65875 0.01187 0.32938	0.6597 0.004
T, DEG K H, CAL/G K, CAL/G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G) NIO2(G) O2(G) EQUILIBRIUM THE P, ATM	8000 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 ERMODYNAMI	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719	860 589-1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201	900 604-7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590 0.64751 0.02873 0.32376	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904 0.65762 0.01357 0.32881	1020 644-0 2-1143 30.854 0.00290 -0.0395 0.3026 1.2939 0.65875 0.01187 0.32938	104 650. 2.120 30.83 0.0025 -0.034 0.297 1.296
T, DEG K H, CAL/G K, CAL/G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G) N102(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974	820 570.99 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719 IES	860 589.1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201	900 604.7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590 0.64751 0.02873 0.32376	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.45937 0.02444 0.32519	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904 0.65762 0.01357 0.32881	1020 644.0 2.1143 30.854 0.00293 -0.0395 0.3026 1.2939 0.65875 0.01187 0.32938	104 650. 2.120 30.83 0.0025 -0.034 0.297 1.296
T, DEG K H, CAL/G H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS N101(G) N102(G) 02(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G	8000 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 ERMODYNAMI	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719	860 589-1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201	900 604-7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590 0.64751 0.02873 0.32376	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814	1000 637.9 2.1082 30.880 0.90330 -0.0459 0.3083 1.2904 0.65762 0.01357 0.32881	1020 644.0 2.1143 30.854 0.00290 -0.0395 0.3026 1.2939 0.65875 0.01187 0.32938	0.6597 0.004
T, DEG K H, CAL/G K, CAL/G)(K) M, MOL WT (DLM/DLP)IT (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G) N102(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G)(K)	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 ERMODYNAMI	820 570.99 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387 C PROPERT 0.1000 1080 661.8	840 580-4 2.0452 31-415 0-01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719 IES 0-1000 1100 667-6	860 589-1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201 0.1000 1140 679.0 2.1468	900 604-7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590 0.64751 0.02873 0.32376	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519 0.1000 1180 690.4 2.1566	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636	960 625.3 2.9954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733 0.1000 1220 701.7 2.1660	980 631.6 2.1019 30.911 0.00378 -0.0556 0.3154 1.2862 0.65627 0.01559 0.32814 0.1000 1240 707.4 2.1706	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904 0.65762 0.01357 0.32881	1020 644-0 2-1143 30.854 0.00290 -0.0395 0.3026 1.2939 0.65875 0.01187 0.32938	0.6597 0.004
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G) N102(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 0.1000 1060 655.9 2.1258	820 570.99 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387 0.1000 1080 661.8 2.1312 30.797	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719 IES 0.1000 1100 667.6 2.1365	860 589.1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985 0.1000 1120 673.3 2.1417 30.772	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201 0.1000 1140 679.0 2.1468 30.762	900 604.7 2.0732 31.113 0.00678 -0.1049 1.2590 0.3669 1.2590 0.02873 0.32376 0.1000 1160 684.7 2.1518 30.753 0.00131	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519 0.1000 1180 690.4 2.1566	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636 0.1000 1200 696.1 2.1614 30.738 0.00107	960 625.3 2.9954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733 0.1000 1220 701.7 2.1660 30.733 0.0098	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814	1000 637.9 2.1082 30.880 0.90330 -0.0459 0.3083 1.2904 0.65762 0.01357 0.32881	1020 644.0 2.1143 30.854 0.00290 -0.0395 0.3026 1.2939 0.65875 0.01187 0.32938	104 650. 2.120 30.83 0.0025 -0.034 0.297 1.296
T, DEG K H, CAL/G K, CAL/G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS N101(G) N102(G) 02(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (OLM/DLP)T (OLM/DLT)P	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 0.1000 1060 655.9 2.1258 30.813 0.00226	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387 0.1000 1080 661.8 2.1312 30.797 0.00201	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719 IES 0.1000 1100 667.6 2.1365 30.784 0.00180 -0.0226	860 589-1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985 0.1000 1120 673-3 2.1417 30.772 0.00161 -0.0199	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201 0.1000 1140 679.0 2.1468 30.762 0.00145 -0.0176	0.00678 -0.1000 0.644.7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590 0.664751 0.02873 0.32376 0.1000 1160 684.7 2.1518 30.753 0.00131 -0.0156	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519 0.1000 1180 690.4 2.1566 30.745 0.0018 -0.0139	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636 0.1000 1200 1200 696.1 2.1614 30.738 0.00107 -0.0124	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733 0.1000 1220 701.7 2.1660 30.733 0.00098 -0.0111	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814 0.1000 1240 707.4 2.1706 30.727 0.00089 -0.0100	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 1260 713.0 2.1751 30.723 0.00082 -0.0090	0.65875 0.32938 0.1000 0.1000 1280 0.1000 1280 718.6 2.1795 30.718 0.00075 -0.0081	0.6597 0.004
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G) N102(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLP)T (DP, CAL/(G)(K)	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 ERMODYNAMI 0.1000 655.9 2.1258 30.813 0.00226 -0.0296 0.2942	820 570.99 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387 0.1000 1080 661.8 2.1312 30.797 0.00201 -0.0258 0.2912	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719 IES 0.1000 1100 667.6 2.1365 30.784 0.00180 -0.0226 0.2888	860 589.1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985 0.1000 1120 673.3 2.1417 30.772 0.00161 -0.0199 0.2869	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201 0.1000 1140 679.0 2.1468 30.762 0.00145 -0.0176 0.2854	0.0067 0.00678 -0.1049 0.3669 1.2590 0.64751 0.02873 0.32376 0.1000 1160 684.7 2.1518 30.753 0.00131 -0.0156 0.2842	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519 0.1000 1180 690.4 2.1566 30.745 0.00118 -0.0139 0.2833	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636 0.1000 1200 696.1 2.1614 30.738 0.00107 -0.0124 0.2825	960 625.3 2.9954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733 0.1000 1220 701.7 2.1660 30.733 0.00098 -0.011 0.2820	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814	0.1000 1260 71.92 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904 0.65762 0.01357 0.32881	1020 644.0 2.1143 30.854 0.00290 -0.0395 0.3026 1.2939 0.65875 0.01187 0.32938	0.6591 0.6591 0.6591 0.6591
T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G) N102(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLP)T (DP, CAL/(G)(K)	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 0.1000 1060 655.9 2.1258 30.813 0.00226	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387 0.1000 1080 661.8 2.1312 30.797 0.00201	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719 IES 0.1000 1100 667.6 2.1365 30.784 0.00180 -0.0226	860 589-1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985 0.1000 1120 673-3 2.1417 30.772 0.00161 -0.0199	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201 0.1000 1140 679.0 2.1468 30.762 0.00145 -0.0176	0.00678 -0.1000 0.644.7 2.0732 31.113 0.00678 -0.1049 0.3669 1.2590 0.664751 0.02873 0.32376 0.1000 1160 684.7 2.1518 30.753 0.00131 -0.0156	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519 0.1000 1180 690.4 2.1566 30.745 0.0018 -0.0139	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636 0.1000 1200 1200 696.1 2.1614 30.738 0.00107 -0.0124	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733 0.1000 1220 701.7 2.1660 30.733 0.00098 -0.0111	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814 0.1000 1240 707.4 2.1706 30.727 0.00089 -0.0100	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 1260 713.0 2.1751 30.723 0.00082 -0.0090	0.65875 0.32938 0.1000 0.1000 1280 0.1000 1280 718.6 2.1795 30.718 0.00075 -0.0081	0.6597 0.004
T, DEG K H, CAL/G K, CAL/G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G) NIO2(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G K, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 ERMODYNAMI 0.1000 655.9 2.1258 30.813 0.00226 -0.0296 0.2942	820 570.99 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387 0.1000 1080 661.8 2.1312 30.797 0.00201 -0.0258 0.2912	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719 IES 0.1000 1100 667.6 2.1365 30.784 0.00180 -0.0226 0.2888	860 589.1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985 0.1000 1120 673.3 2.1417 30.772 0.00161 -0.0199 0.2869	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201 0.1000 1140 679.0 2.1468 30.762 0.00145 -0.0176 0.2854	0.0067 0.00678 -0.1049 0.3669 1.2590 0.64751 0.02873 0.32376 0.1000 1160 684.7 2.1518 30.753 0.00131 -0.0156 0.2842	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519 0.1000 1180 690.4 2.1566 30.745 0.00118 -0.0139 0.2833	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636 0.1000 1200 696.1 2.1614 30.738 0.00107 -0.0124 0.2825	960 625.3 2.9954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733 0.1000 1220 701.7 2.1660 30.733 0.00098 -0.011 0.2820	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814	0.1000 1260 71.92 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904 0.65762 0.01357 0.32881	1020 644.0 2.1143 30.854 0.00290 -0.0395 0.3026 1.2939 0.65875 0.01187 0.32938	0.6591 0.6591 0.6591 0.6591
T, DEG K H, CAL/G K, CAL/G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS N101(G) N102(G) 02(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL MT (DLM/DLP)T (DLM/DLP)T (DLM/DLP)T CP, CAL/(G)(K) MOLE FRACTIONS N101(G)	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 0.1000 10600 655.9 2.1258 30.813 0.00226 0.2942 1.2989	820 570.9 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387 0.1000 1080 661.8 2.1312 30.797 0.00201 -0.0258 0.2912 1.3007	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719 IES 0.1000 1100 667.6 2.1365 30.784 0.00226 0.2888 1.3020	860 589-1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985 0.1000 1120 673-3 2.1417 30.7762 0.00161 1.3030	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.664402 0.03398 0.32201 0.1000 1140 679.0 2.1468 30.762 0.00145 -0.0176 0.2854 1.3037	0.00678 -0.1000 0.64751 0.02873 0.32376 0.1000 0.3669 1.2590 0.64751 0.02873 0.32376 0.1000 1160 684.7 2.1518 30.753 0.00131 -0.0156 0.2842 1.3041	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519 0.1000 1180 690.4 2.1566 30.745 0.00118 0.00118 0.0013 0.	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636 0.1000 1200 696.1 2.1614 30.738 0.00107 -0.0124 0.2825 1.3045	960 625.3 2.0954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733 0.1000 1220 701.7 2.1660 30.733 0.00038 -0.0111 0.2820 1.3045	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814 0.1000 1240 707.4 2.1706 30.727 0.00089 -0.0100 0.2816 1.3044	0.000 0.000 0.00330 0.00330 0.00459 0.3083 1.2904 0.65762 0.01357 0.32881 0.1000 1260 713.0 2.1751 30.723 0.00082 -0.0090 0.2813 1.3043	0.65875 0.30293 0.3026 1.2939 0.3026 1.2939 0.1000 1280 718.6 2.1795 30.718 0.2811 1.3040	0.6597 0.004
T, DEG K H, CAL/G K, CAL/G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NIO1(G) N102(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLP)T (CP, CAL/(G)(K) GAMMA MOLE FRACTIONS	800 560.5 2.0210 31.758 0.01534 -0.2675 0.5502 1.2010 0.61947 0.07079 0.30974 ERMODYNAMI 0.1000 655.9 2.1258 30.813 0.00226 -0.0296 0.2942 1.2989	820 570.99 2.0338 31.567 0.01297 -0.2207 0.4956 1.2140 0.62775 0.05838 0.31387 0.1000 1080 661.8 2.1312 30.797 0.00201 -0.0258 0.2912 1.3007	840 580.4 2.0452 31.415 0.01098 -0.1823 0.4518 1.2266 0.63438 0.04844 0.31719 IES 0.1000 1100 667.6 2.1365 30.784 0.00180 -0.0226 0.2888 1.3020	860 589.1 2.0555 31.292 0.00932 -0.1511 0.4168 1.2384 0.63971 0.04044 0.31985 0.1000 1120 673.3 2.1417 30.772 0.00161 -0.0199 0.2869 1.3030	880 597.1 2.0647 31.193 0.00793 -0.1256 0.3890 1.2493 0.64402 0.03398 0.32201 0.1000 1140 679.0 2.1468 30.762 0.00145 -0.0176 0.2854 1.3037	0.00678 -0.1000 0.64751 0.02873 0.32376 0.1000 0.3669 1.2590 0.64751 0.02873 0.32376 0.1000 1160 684.7 2.1518 30.753 0.00131 -0.0156 0.2842 1.3041	920 611.8 2.0811 31.047 0.00582 -0.0881 0.3494 1.2676 0.65037 0.02444 0.32519 0.1000 1180 690.4 2.1566 30.745 0.00118 -0.0139 0.2833 1.3044	940 618.7 2.0884 30.993 0.00502 -0.0743 0.3354 1.2749 0.65272 0.02092 0.32636 0.1000 1200 696.1 2.1614 30.738 0.00107 -0.0124 0.2825 1.3045	960 625.3 2.9954 30.948 0.00434 -0.0629 0.3243 1.2810 0.65466 0.01801 0.32733 0.1000 1220 701.7 2.1660 30.733 0.00098 -0.0111 0.2820 1.3045	980 631.6 2.1019 30.911 0.00378 -0.0536 0.3154 1.2862 0.65627 0.01559 0.32814 0.1000 1240 707.4 2.1706 30.727 0.00089 -0.0100 0.2816 1.3044	1000 637.9 2.1082 30.880 0.00330 -0.0459 0.3083 1.2904 0.65762 0.01357 0.32881	1020 644-0 2-1143 30.854 0.00290 -0.0395 0.3026 1.2939 0.65875 0.01187 0.32938 0.1000 1280 718-6 2.1795 30.718 0.00075 -0.0081 0.2811 1.3040	0.6597 0.004

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

[P is pressure, T is temperature, H is enthalpy, S is entropy, (DLM/DLP)T = ($\partial \ln M/\partial \ln P$)_T, (DLM/DLT)P = ($\partial \ln M/\partial \ln T$)_P, CP is heat capacity at constant pressure, and GAMMA is isentropic exponent ($\partial \ln P/\partial \ln \rho$)_S where ρ is density.]

		C PROPER	TIES										
EQUILIBRIUM THE	RMDOYNAM												
P, ATM	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.300
T, DEG K	300	320	340	360	380	400	420	440	460	480	500	520	54
H, CAL/G S, CAL/(G)(K)	77.8 1.0062	120.1 1.1425	155.9 1.2515	176.4 1.3102	187.5 1.3403	195.1 1.3598	202.0 1.3765	209.2	217.4 1.4116	227.1 1.4322	238.6 1.4556	252.2 1.4822	268 1.51
SY UNCTUOTED													
M, MOL WT	68.183 0.11371	57.257 0.11942	50.521 0.07389	47.545	46.560 0.01424	46.100 0.00699	45.826 0.00473	45.573 0.00474	45.272 0.00606	44.881 0.00838	44.376 0.01159	43.742 0.01561	42.97
(DLM/DLP)T (DLM/DLT)P	-2.6072	-2.5651	-1.4943	-0.6406	-0.2692	-0.1415	-0.1130	-0.1297	-0.1734	-0.2378	-0.3199	-0.4165	-0.522
CP, CAL/(G)(K)	1.9411	2.1142	1.3939	0.7241	0.4341	0.3477	0.3453	0.3823	0.4442	0.5257	0.6242	0.7360	0.856
GAMMA	1.0889	1.0980	1.1132	1.1386	1.1684	1.1828	1.1776	1.1639	1.1494	1.1372	1.1279	1.1214	1.117
MOLE FRACTIONS													
NIOI(G)	0.00011	0.00036	0.00094	0.00207	0.00410	0.00753	0.01300	0.02127		0.04961	0.07128	0.09869	0.1319
N102(G)	0.51780	0.75477	0.90004	0.96327	0.97981	0.98294	0.97796	0.96690	0.94963	0.92528	0.89292	0.85188	0.8020
N2O4(G) O2(G)	0.48203	0.24469	0.09856	0.03663	0.01404	0.00576	0.00254	0.00119	0.01659		0.03564	0.00007	
52.07		******	***************************************										
EQUILIBRIUM THE	R MODYNAM1	C PROPERT	TIES										
P, ATM	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	
T, DEG K	560	580	600	620	640 370 1	660	680	700 452-5	720 474.3	740 494.2	760 512.1	780 528.2	
H, CAL/G S, CAL/(G)(K)	286.4 1.5455	307.1 1.5817	329.8 1.6202	354.0 1.6600	379.1 1.6999	404.4 1.7387	429.1 1.7755	452.5 1.8095	1.8402	1.8674	1.8914	1.9123	
M. MOL WT	42.084	41.091	40.029	38.939	37.864	36.843	35.905	35.069	34.343	33.724	33.206	32.776	
(DLM/DLP)T	0.02533	0.03037	0.03493	0.03855	0.04086	0.04167	0.04101	0.03911	0.03631	0.03297	0.02942	0.02592	
(DLM/DLT)P CP, CAL/(G)(K)	-0.6298 0.9763	-0.7297 1.0874	-0.8119	-0.8674 1.2404	-0.8909 1.2660	-0.8812 1.2536	-0.8418 1.2068	-0.7799 1.1333	-0.7039 1.0431	-0.6218 0.9459	-0.5402 0.8498	0.7602	
GAMMA	1.1150	1.1145	1.1152	1.1172	1.1203	1.1243	1.1294	1.1355	1.1425	1.1506	1.1596	1.1695	
MOLE FRACTIONS			-										
	0.17062	0.21377	0.25992	0.30730	0.35403	0.39843	0.43920	0.47553	0.50710	0.53399	0.55652	0.57521	
N101(G) N102(G)	0.74405	0.67934	0.61011	0.53905	0.46895	0.40235	0.34120	0.28670	0.23934	0.19902	0.16521	0.13719	
N101(G)	0.74405 0.00003				0.46895								
N101(G) N102(G) N204(G) 02(G)	0.74405 0.00003 0.08531	0.67934 0.00001 0.10688	0.61011 0.00001 0.12996	0.53905	0.46895	0.40235	0.34120	0.28670	0.23934	0.19902 0.00000	0.16521 0.00000	0.13719 0.00000	
N101(G) N102(G) N204(G) O2(G)	0.74405 0.00003 0.08531 RMODYNAMI	0.67934 0.00001 0.10688 C PROPERT	0.61011 0.00001 0.12996	0.53905 0.00000 0.15365	0.46895 0.00000 0.17701	0.40235 0.00000 0.19921	0.34120 0.00000 0.21960	0.28670 0.00000 0.23777	0.23934 0.00000 0.25355	0.19902 0.00000 0.26699	0.16521 0.00000 0.27826	0.13719 0.00000 0.28760	0-3000
N101(G) N102(G) N204(G) O2(G) EQUILIBRIUM THE	0.74405 0.00003 0.08531 RMDDYNAMI	0.67934 0.00001 0.10688 C PROPERT 0.3000	0.61011 0.00001 0.12996 IES	0.53905 0.00000 0.15365	0.46895 0.00000 0.17701	0.40235 0.00000 0.19921	0.34120 0.00000 0.21960	0.28670	0.23934 0.00000 0.25355	0.19902 0.00000	0.16521 0.00000	0.13719 0.00000	
N101(G) N102(G) N204(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G	0.74405 0.00003 0.08531 RMODYNAMI C.3000 800 542.6	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5	0.61011 0.00001 0.12996 IES 0.3000 840 567.1	0.53905 0.00000 0.15365 0.3000 860 577.6	0.46895 0.00000 0.17701 0.3000 880 587.3	0.40235 0.00000 0.19921 0.3000 900 596-2	0.34120 0.00000 0.21960 0.3000 920 604.5	0.28670 0.00000 0.23777 0.3000 940 612.3	0.23934 0.00000 0.25355 0.3000 960 619.7	0.19902 0.00000 0.26699 0.3000 980 626.8	0.16521 0.00000 0.27826 0.3000 1000 633.6	0.13719 0.00000 0.28760 0.3000 1020 640.3	1040 646.7
NID1(G) N1D2(G) N2D4(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K	0.74405 0.00003 0.08531 RMODYNAMI	0.67934 0.00001 0.10688 C PROPERT 0.3000 820	0.61011 0.00001 0.12996 IES 0.3000 840	0.53905 0.00000 0.15365 0.3000 860	0.46895 0.00000 0.17701 0.3000 880	0.40235 0.00000 0.19921 0.3000 900	0.34120 0.00000 0.21960 0.3000 920	0.28670 0.00000 0.23777 0.3000 940	0.23934 0.00000 0.25355 0.3000 960	0.19902 0.00000 0.26699	0.16521 0.00000 0.27826 0.3000 1000	0.13719 0.00000 0.28760 0.3000 1020	1040 646.7
N101(G) N102(G) N204(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G	0.74405 0.00003 0.08531 RMDDYNAMI C.3000 800 542.6 1.9305	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412	0.34120 0.00000 0.21960 0.3000 920 604.5 2.0030 31.305	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983	1040 646.7 2.0463
N101(G) N102(G) N204(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T	0.74405 0.00003 0.08531 RMDDYNAMI C.3000 800 542.6 1.9305 32.422 0.02262	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095	0.34120 0.00000 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487	0.3000 1040 646.7 2.0463 30.946 0.00431
N101(G) N102(G) N204(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL HT (DLM/DLP)T (DLM/DLT)P	0.74405 0.00003 0.08531 RMDDYNAMI C.3000 800 542.6 1.9305	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412	0.34120 0.00000 0.21960 0.3000 920 604.5 2.0030 31.305	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260	1040 646.7 2.0463 30.946 0.00431 -0.0576 0.3180
N101(G) N102(G) N204(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T	0.74405 0.00003 0.08531 C.3000 800 542.6 1.9305 32.422 0.02262 -0.3945	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697 -0.2818	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01666 -0.2376	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695	0.34120 0.00000 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564	1040 646.7 2.0463 30.946 0.00431 -0.0576 0.3180
NID1(G) N1D2(G) N1D2(G) N2D4(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G H, CAL/G OLM/DLP)T (DLM/DLP)T (DLM/DLP)T (DLM/DLP)P (DP, CAL/G)(K)	0.74405 0.00003 0.08531 RMODYNAMI C.3000 800 542.6 1.9305 32.422 0.02262 -0.3945 0.6801	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697 -0.2818 0.5519	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029	0.46895 0.00000 0.17701 0.3000 880 887.3 1.9839 31.543 0.01266 -0.2005 0.4625	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436 0.4022	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260	1040 646.7 2.0463 30.946 0.00431 -0.0576 0.3180
NID1(G) NID2(G) NID2(G) NID2(G) POOLE CONTROL	0.74405 0.00003 0.08531 RMODYNAMI C.3000 542.6 1.9305 32.422 0.02262 -0.3945 0.6801 1.1801	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026	0.53905 0.00300 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355	0.34120 0.00000 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436 0.4022 1.2452	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623 1.2620	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.2802	1046 646.7 2.0463 30.946 0.00431 -0.0576 0.3180 1.2846
NID1(G) N1D2(G) N2D4(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G K H, CAL/G C, CAL/(G)(K) M, MOL HT (DLM/DLP)T (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) MOLE FRACTIONS N1D1(G) N1D2(G)	0.74405 0.0003 0.08531 RMODYNAMI C.3000 542.6 1.9305 32.422 0.02262 -0.3945 0.6801 1.1801	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436 0.4022 1.2452	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623 1.2620	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749	0.13719 0.00000 0.28760 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.2802	1040 646.7 2.0463
NIDI(G) NID2(G) NID2(G) NID2(G) NID2(G) POPER CONTROL OF CAL/(G)(K) MOLE FRACTIONS NIDI(G)	0.74405 0.00003 0.08531 RMODYNAMI C.3000 542.6 1.9305 32.422 0.02262 -0.3945 0.6801 1.1801	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912	0.61011 0.00001 0.12996 IES 0.3000 840 567-1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436 0.4022 1.2452	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623 1.2620	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.2802	1046 646.7 2.0463 30.946 0.00431 -0.0576 0.3180 1.2846
NID1(G) NID2(G) NID2(G) NID2(G) NID2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) MOL WT (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NID1(G) NID2(G) D2(G) EQUILIBRIUM THE	0.74405 0.00003 0.08531 RMODYNAMI C.3000 542.6 1.9305 32.422 0.02262 -0.3945 0.6801 1.1801 0.59058 0.11413 0.29529	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912 0.60318 0.09524 0.30159	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026	0.53905 0.00300 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.66714 0.31095	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436 0.4022 1.2452	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541 0.64305 0.03543 0.32152	0.23934 0.00000 0.25355 0.3000 960 619-7 2-0192 31-141 0.00719 -0.1043 1.2620 0.64627 0.03060 0.32313	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689	0.16521 0.0000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561	0.13719 0.00000 0.28760 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.2802	1046 646.2 2.046 30.946 0.0043 -0.0576 0.3186 1.2846
NIDI(G) NID2(G) NID2(G) NID2(G) NID2(G) NID2(G) P, AIM F, DEG K H, CAL/G H, CAL/G H, CAL/G CAL/G M, MOL HT (DLM/DLP)T (DLM/DLP)T (DLM/DLT)P CP, CAL/G GAMMA MOLE FRACTIONS NID1(G) NID1(G) NID1(G) NID1(G) REQUILIBRIUM THE P, AIM	0.74405 0.0003 0.08531 RMODYNAMI C.3000 542.6 1.9305 32.422 0.02262 -0.3945 0.6801 1.1801 0.59058 0.11413 0.29529 RMODYNAMI C.3000	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912	0.61011 0.00001 0.12996 IES 0.3000 840 567-1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.06714 0.31095	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250	0.40235 0.00000 0.19921 0.3000 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436 0.4022 1.2452	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623 1.2620	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.2802	1046 646.2 2.046 30.946 0.0043 -0.0576 0.3186 1.2846
NID1(G) NID2(G) NID2(G) NID2(G) NID2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLP)T (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) MOLE FRACTIONS NID1(G) NID2(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G	0.74405 0.00003 0.08531 RMODYNAMI C.3000 542.6 1.9305 32.422 0.02262 -0.3945 0.6801 1.1801 0.59058 0.11413 0.29529	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912 0.60318 0.09524 0.30159 C PRUPERT 0.3000 1080 659.2	0.61011 0.00001 0.12996 IES 0.3000 840 567-1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026	0.53905 0.00200 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.66714 0.31095	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250 0.62881 0.05678 0.31441	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355 0.63449 0.04827 0.31724	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436 0.4022 1.2452 0.63917 0.04124 0.31959	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541 0.64305 0.03543 0.32152	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623 1.2620 0.64627 0.03060 0.32313	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689 0.64896 0.02656 0.32448	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561	0.13719 0.00000 0.28760 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.2802	1046 646.2 2.046 30.946 0.0043 -0.0576 0.3186 1.2846
NID1(G) NID2(G) NID2(G) NID2(G) POOLE CONTROL	0.74405 0.0003 0.08531 RMODYNAMI C.3000 800 542.6 1.9305 32.422 0.02262 -0.3945 0.6861 1.1801 0.59958 0.11413 0.29529 RMODYNAMI C.3000 1060	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912 0.60318 0.09524 0.30159 C PRUPERT 0.3000 1080	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026	0.53905 0.00300 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.06714 0.31095	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250 0.62881 0.05678 0.31441	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436 0.4022 1.2452 0.63917 0.04124 0.31959	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541 0.64305 0.3543 0.32152	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623 1.2620 0.64627 0.03060 0.32313	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689 0.02656 0.32448	0.16521 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561	0.13719 0.00000 0.28760 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.7802 0.65313 0.02030 0.32657	1046 646.2 2.046 30.946 0.0043 -0.0576 0.3186 1.2846
NID1(G) N1D2(G) N1D2(G) N2D4(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G K H, CAL/G COMMON TO THE P, ATM OLH T (DLM/DLT)P COMMON TO THE P, CAL/G G MOLE FRACTIONS N1D1(G) N1D2(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G K, CAL/G)(K) M, MOL MT	0.74405 0.0003 0.08531 RMODYNAMI C.3000 542.6 1.9305 32.422 0.02262 -0.3945 0.6801 1.1801 0.59058 0.11413 0.29529 RMODYNAMI C.3000 653.0 2.0522	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912 C PRUPERT 0.3000 1080 659.2 2.0580	0.61011 0.00001 0.12996 IES 0.3000 840 567-1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.06714 0.31095	0.46895 0.00000 0.17701 0.3000 880 587.3 1.983 31.543 0.01266 -0.2005 0.4625 1.2250 0.62881 0.05678 0.31441	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355 0.63449 0.04827 0.31724	0.34120 0.0000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.4022 1.2452 0.63917 0.04124 0.31959	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541 0.64305 0.03543 0.32152	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 1.2620 0.64627 0.03060 0.32313	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689 0.64896 0.02656 0.32448	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.2802 0.65313 0.02030 0.32657	1046 646.2 2.046 30.946 0.0043 -0.0576 0.3186 1.2846
NID1(G) NID2(G) NID2(G) NID2(G) NID2(G) NID2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) MOL WT (DLM/DLT)P CP, CAL/(G)(K) MOLE FRACTIONS NID1(G) NID2(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/OLT)T	0.74405 0.00003 0.08531 RMODYNAMI C.3000 542.6 1.9305 32.422 0.02262 -0.3945 0.6860 1.1801 0.59958 0.11413 0.29529 RMODYNAMI C.3000 1060 653.0 2.0522 30.914 0.00383	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912 C PRUPERT 0.3000 1080 659.2 2.0580	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026 0.61348 0.07978 0.30674	0.53905 0.00300 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.06714 0.31095 0.3000 1120 671.2 2.0690 30.844 0.00274	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250 0.62881 0.05678 0.31441	0.40235 0.00000 0.19921 0.3000 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355 0.63449 0.04827 0.31724	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.40929 -0.1436 0.4022 1.2452 0.63917 0.4124 0.31959	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541 0.64305 0.3543 0.32152	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 1.2620 0.64627 0.03060 0.32313	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689 0.64896 0.02656 0.32448	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561	0.13719 0.00000 0.28760 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.7802 0.65313 0.02030 0.32657	1046 646.2 2.046 30.946 0.0043 -0.0576 0.3186 1.2846
NIDI(G) NID2(G) NID2(G) NID2(G) NID2(G) NID2(G) NID2(G) P, ATM P, ATM P, ATM P, ATM CAL/G P, CAL/(G)(K) M, MOL HT (DLM/DLP)T (DLM/DLP)T (DLM/DLT)P CAMMA MOLE FRACTIONS NID1(G) NID1(0.74405 0.00003 0.08531 RMODYNAMI C.3000 542.6 1.9305 32.422 0.02262 -0.3945 0.6860 1.1801 0.59958 0.11413 0.29529 RMODYNAMI C.3000 1060 653.0 2.0522 30.914 0.00383	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912 C PRUPERT 0.3000 1080 659.2 2.0580	0.61011 0.00001 0.12996 IES 0.3000 840 567-1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.06714 0.31095 0.3000 1120 671.2 2.0690 30.844 0.00274 -0.0339 0.2981	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250 0.62881 0.05678 0.31441 0.3000 1140 677.2 2.0742 30.827 0.00247 -0.0300 0.2952	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355 0.63449 0.04827 0.31724	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.4022 1.2452 0.63917 0.04124 0.31959 0.3000 1180 688.9 2.0843 30.798 0.00202 -0.0237 0.2907	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541 0.64305 0.03543 0.32152 0.3000 1200 694.7 2.0892 30.787 0.00184 -0.0212 0.2891	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623 1.2620 0.64627 0.03060 0.32313	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3447 1.2689 0.64896 0.02656 0.32448	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.2802 0.65313 0.02030 0.32657	1046 646.2 2.046 30.946 0.0043 -0.0576 0.3186 1.2846
NID1(G) NID2(G) NID2(G) NID2(G) NID2(G) NID2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) MOL WT (DLM/DLT)P CP, CAL/(G)(K) MOLE FRACTIONS NID1(G) NID2(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/OLT)T	0.74405 0.00033 0.08531 RMODYNAMI C.3000 800 542.6 1.9305 32.422 0.02262 -0.3945 0.6801 1.1801 0.59058 0.11413 0.29529 RMODYNAMI C.3000 1060 653.0 2.0522 30.914 0.00383 -0.0501	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912 0.60318 0.09524 0.30159 C PRUPERT 0.3000 1080 659.2 2.0580 30.887 0.00341 -0.00341	0.61011 0.00001 0.12996 IES 0.3000 840 567-1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026 0.61348 0.07978 0.30674 IES 0.3000 1100 665-2 2.0636	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.06714 0.31095 0.3000 1120 671.2 2.0690 30.844 0.00274 -0.0339	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250 0.62881 0.05678 0.31441	0.40235 0.00000 0.19921 0.3000 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355 0.63449 0.04827 0.31724	0.34120 0.0000 0.21960 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.00949 -0.1436 0.4022 1.2452 0.31959 0.3000 1180 688.9 2.0843 30.798 0.00202 -0.0237	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541 0.64305 0.03543 0.32152	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623 1.2620 0.64627 0.03060 0.32313	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689 0.02656 0.32448	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561	0.13719 0.00000 0.28760 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.7802 0.65313 0.02030 0.32657	1046 646.2 2.046 30.946 0.0043 -0.0576 0.3186 1.2846
NIDI(G) NID2(G) NID2(G) NID2(G) NID2(G) NID2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL MT (DLM/DLP)T (DLM/DLP)T (DLM/DLP)T (GAMMA MOLE FRACTIONS NID1(G) NID2(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL MT (DLM/DLT)P COLM/DLT)P (DLM/DLT)P (DLM/DLT)P (DLM/DLT)P (DLM/DLT)P (DP, CAL/(G)(K) GAMMA	0.74405 0.0003 0.08531 RMODYNAMI C.3000 800 542.6 1.9305 0.02262 -0.3945 0.6801 1.1801 0.59958 0.11413 0.29529 RMODYNAMI C.3000 1060 653.0 2.0522 30.914 0.00383 -0.0501 0.3115	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912 0.60318 0.09524 0.30159 C PRUPERT 0.3000 1080 659.2 2.0580 30.887 0.00341 -0.0438 0.3061	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026 0.61348 0.07978 0.30674 IES 0.3000 1100 665.2 2.0636 30.864 0.00305 -0.0385 0.3017	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.06714 0.31095 0.3000 1120 671.2 2.0690 30.844 0.00274 -0.0339 0.2981	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250 0.62881 0.05678 0.31441 0.3000 1140 677.2 2.0742 30.827 0.00247 -0.0300 0.2952	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355 0.63449 0.04827 0.31724	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.4022 1.2452 0.63917 0.04124 0.31959 0.3000 1180 688.9 2.0843 30.798 0.00202 -0.0237 0.2907	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541 0.64305 0.03543 0.32152 0.3000 1200 694.7 2.0892 30.787 0.00184 -0.0212 0.2891	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 1.2620 0.64627 0.03060 0.32313 0.3000 1220 700.4 2.0940 0.2878 1.3009	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3477 1.2689 0.32448 0.32448 0.3000 1240 706.2 2.0987 30.767.4 0.00153 -0.0171 0.2867 1.3012	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561 0.32561	0.13719 0.00000 0.28760 0.3000 1020 640.3 2.0400 30.983 0.00487 -0.0564 0.3260 1.2802 0.65313 0.02030 0.32657 0.3000 1280 717.6 2.1077 30.752 0.00129 -0.0139 0.2852 1.3015	1046 646.2.046 30.946 0.0043 -0.057 0.3186 1.2846
NID1(G) NID2(G) NID2(G) NID2(G) NID2(G) NID2(G) NID2(G) P, AIM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLT)P CP, CAL/(G)(K) MOLE FRACTIONS NID1(G) NID1	0.74405 0.0003 0.08531 RMODYNAMI C.3000 800 542.6 1.9305 0.02262 -0.3945 0.6801 1.1801 0.59958 0.11413 0.29529 RMODYNAMI C.3000 1060 653.0 2.0522 30.914 0.00383 -0.0501 0.3115	0.67934 0.00001 0.10688 C PROPERT 0.3000 820 555.5 1.9464 32.133 0.01963 -0.3339 0.6107 1.1912 0.60318 0.09524 0.30159 C PRUPERT 0.3000 1080 659.2 2.0580 30.887 0.00341 1.2913	0.61011 0.00001 0.12996 IES 0.3000 840 567.1 1.9604 31.896 0.01697 -0.2818 0.5519 1.2026 0.61348 0.07978 0.30674 IES 0.3000 1100 665.2 2.0636 30.864 0.00305 -0.0385 -0.0385 0.3017 1.2938	0.53905 0.00000 0.15365 0.3000 860 577.6 1.9728 31.702 0.01466 -0.2376 0.5029 1.2140 0.62191 0.66714 0.31095 0.3000 1120 671.2 2.0690 30.844 0.00274 -0.0339 0.2981 1.2958	0.46895 0.00000 0.17701 0.3000 880 587.3 1.9839 31.543 0.01266 -0.2005 0.4625 1.2250 0.62881 0.05678 0.31441 0.3000 1140 677.2 2.0742 30.827 0.00247 -0.0300 0.2952	0.40235 0.00000 0.19921 0.3000 900 596.2 1.9939 31.412 0.01095 -0.1695 0.4293 1.2355 0.63449 0.04827 0.31724	0.34120 0.00000 0.21960 0.21960 0.3000 920 604.5 2.0030 31.305 0.4022 1.2452 0.63917 0.04124 0.31959 0.3000 1180 688.9 2.0843 30.798 0.00202 -0.0237 0.2907	0.28670 0.00000 0.23777 0.3000 940 612.3 2.0114 31.215 0.00825 -0.1222 0.3802 1.2541 0.64305 0.03543 0.32152 0.3000 1200 694.7 2.0892 30.787 0.00184 -0.0212 0.2891	0.23934 0.00000 0.25355 0.3000 960 619.7 2.0192 31.141 0.00719 -0.1043 0.3623 1.2620 0.64627 0.03060 0.32313	0.19902 0.00000 0.26699 0.3000 980 626.8 2.0266 31.079 0.00629 -0.0893 0.3447 1.2689 0.64896 0.02656 0.32448	0.16521 0.00000 0.27826 0.3000 1000 633.6 2.0335 31.027 0.00553 -0.0768 0.3358 1.2749 0.65122 0.02316 0.32561 0.32561	0.13719 0.00000 0.28760 0.28760 0.3000 1023 2.0400 30.983 0.00487 -0.0564 0.3260 1.7802 0.65313 0.02030 0.32657 0.3000 1280 717.6 2.1077 30.752 0.00129 -0.0139 0.2852 1.3015	1046 646.2 2.046 30.946 0.0043 -0.0576 0.3186 1.2846

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

 $\begin{bmatrix} P \text{ is pressure, T is temperature, H is enthalpy, S is entropy, } (DLM/DLP)T \equiv (\partial \ln M/\partial \ln P)_T, \ (DLM/DLT)P \equiv (\partial \ln M/\partial \ln T)_P, \ CP \text{ is heat capacity at constant pressure, and GAMMA is isentropic exponent } (\partial \ln P/\partial \ln \rho)_S \text{ where } \rho \text{ is density.} \end{bmatrix}$

EQUILIBRIUM THE	RMODYNAMI	C PROPERT	1 E S										
P, ATH T, DEG K H, CAL/G	1.000 300 55.6	1.000 320 87.2	1.0000 340 125.8	1.0000 360 158.4	1.0000 380 178.7	1.000 400 190.6	1.000 420 198.9	1.000 440 206.2	1.000 460 213.7	1.000 480 221.9	1.000 500 231.3	1.000 520 242.2	1.0000 540 254.
S, CAL/(G)(K)	0.8993	1.0010	1.1180	1.2114	1.2663	1.2969	1.3172	1.3342	1.3508	1.3683	1.3874	1.4087	1.432
M. MOL WT	76.668	66.398	56.859 0.11824	50.831	47.978 0.03934	46.760 0.01879	46.197 0.00982	45.864 0.00645	45.585 0.00579	45.280 0.00665	44.910 0.00856	44.450 0.01133	43.88
(DLM/DLP)T (DLM/DLT)P	0.08007 -1.8356	0.11855 -2.5454	-2.3876	-1.4809	-0.7167	-0.3359	-0.1841	-0.1382	-0.1428	-0.1762	-0.2295 0.5040	-0.2985 0.5843	-0.379 0.675
CP, CAL/(G)(K) GAMMA	1.2907	1.8396	1.8917	1.3147	0.7555 1.1393	0.4766 1.1632	0.3774 1.1765	0.3622 1.1745	0.3878 1.1642	0.4373 1.1523	1.1417	1.1334	1.127
GANTA													
MOLE FRACTIONS								0.01431	0.03345	0.03376	0.04889	0.06838	0.0925
N101(G) N102(G)	0.00005	0.00020	0.00056 0.76304	0.00132	0.00269	0.00501 0.97364	0.00871	0.01431	0.02245 0.96431	0.94830	0.92608	0.89710	0.8609
N204(G)	0.66644	0.44328	0.23612	0.10549	0.04417	0.01884	0.00847	0.00403	0.00202	0.00106	0.00058	0.00033	0.0001
02(6)	0.00003	0.00010	0.00028	0.00066	0.00135	0.00251	0.00433	0.00110	0.01122				
EQUILIBRIUM THE	RMODYNAMI	C PROPERT	TES										
P, ATM	1.0000	1.0000	1.000	1.000	1.0000	1.000	1.0000	1.000	1.000 720	1.0000	1.0000 760	1.000	
T, DEG K H, CAL/G	560 269.2	580 285.6	600 304.0	324.1	345.7	368.3	391.4	414.6	437.1	458.7	479.0	497.9	
S. CAL/(G)(K)	1.4587	1.4875	1.5187	1.5516	1.5859	1.6207	1.6552	1.6897	1.7205	1.7501 35.243	1.7772	1.8016	
M, MOL WT (OLM/DLP)T	43.215 0.01892	42.441 0.02341	41.577 0.02801	40.545	39.676	38.698 0.03919	37.742 0.04104	36.836 0.04167	35.999 0.04115	0.03962	34.576 0.03733	0.03454	
(DLM/DLT)P	-0.4693	-0.5617	-0.6506	-0.7289 1.0457	-0.7900 1.1089	-0.8287 1.1482	-0.8423 1.1605	-0.8309 1.1459	-0.7977 1.1072	-0.7473 1.0498	-0.6855 0.9799	-0.6179 0.9038	
CP, CAL/(G)(K) GAMMA	0.7721 1.1232	0.8705 1.1208	0.9640 1.1199	1.1203	1.1217	1.1241	1.1273	1.1314	1.1363	1.1420	1.1485	1.1558	
MOLE FRACTIONS													
N101(G)	0.12161	0.15518	0.19268	0.23312	0.27528	0.31780	0.35933	0.39873	0.43512	0.46795	0.49697	0.52222	
N102(G) N204(G)	0.81747	0.76716	0.71095	0.65029	0.00001	0.52330 0.00001	0.46100 0.00000 0.17967	0.00000	0.00000	0.00000	0.00000	0.00000	
EQUILIBRIUM THE			1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.0000	1.000	1.000
P. ATM T, DEG K	1.000 800	1.000 820	840	860	880	900	920	940	960	980	1000	1020	1040 640
H, CAL/G S, CAL/(G)(K)	515.2 1.8236	531.0 1.8431	545.3 1.8604	558.4 1.8758	570.4 1.8895	581.4 1.9019	591.5 1.9130	600.9 1.9231	609.7 1.9323	617.9 1.9409	625.8 1.9488	633.3 1.9562	1.963
M. HOL WT	33.496	33.072	32.714	32.413	32.161	31.949	31.772	31.623	31.498	31.392	31.303	31.227	31.16
(DLM/DLP)T	0.03149	0.02839	0.02537	0.02253	0.01993	0.01759	0.01552	0.01368	0.01208 -0.1751	0.01068	0.00947 -0.1316	0.00841 -0.1145	-0.1000
(DLM/DLT)P CP, CAL/(G)(K)	-0.5492 0.8270	-0.4829 0.7533	-0.4211 0.6855	-0.3652 0.6248	-0.3157 0.5716	0.5258	0.4868	0.4538	0.4262	0.4030	0.3837	0.3675 1.2606	0.354
GAMMA	1.1637	1.1723	1.1815	1.1910	1.2007	1.2105	1.2201	1.2294	1.2382	1.2463	1.2538	1.2008	1.200
MOLE FRACTIONS													
N101(G)	0.54389	0.56232 0.15651	0.57789 0.13317	0.59097 0.11355	0.60194	0.61113	0.61884	0.62531	0.63076	0.63536 0.04697	0.63925 0.04113	0.64255	0.6453
N102(G) 02(G)	0.27195	0.28116	0.28894	0.29548	0.30097	0.30557		0.31266	0.31538	0.31768	0.31962	0.32128	0.3226
EQUILIBRIUM THE	RMODYNAMI	C PROPERT	TES										
P, ATM	1.0000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
T, DEG K	1060	1080	1100	1120 667.3	1140 673.6	1160 679.8	1180 685.9	1200 692.0	1220 698.0	1240 704.0	709.9	715.7	
H, CAL/G S, CAL/(G)(K)	647.5 1.9699	654.2 1.9762	660.8 1.9822	1.9880	1.9936	1.9990	2.0043	2.0094	2.0143	2.0192	2.0239	2.0285	
	31.106	31.059	31.017	30.982	30.951	30.924	30.900	30.879 0.00329	30.861 0.00300	30.845 0.00275	30.830 0.00253	30.818	
M. MOL WT	0.00669	0.00599 -0.0770	0.00538 -0.0678	0.00485 -0.0600	0.00438 -0.0532	0.00397 -0.0474	0.00361 -0.0423	-0.0379	-0.0340	-0.0307	-0.0277	-0.0251	
(DLM/DLP)T				0.3188	0.3133	0.3087	0.3048	0.3015 1.2930	0.2988 1.2944	0.2965 1.2954	0.2946 1.2963	0.2930 1.2969	
(DLM/DLT)P (DLM/DLT)P CP, CAL/(G)(K)	-0.0876 0.3427	0.3333	0.3254		1 2040								
(DLM/DLP)T (DLM/DLT)P	-0.0876		0.3254	1.2841	1.2869	1.2894							
(DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K)	-0.0876 0.3427	0.3333	1.2806	1.2841					0 (50)5	0.45014		0.66034	
(DLM/DLP)T (DLM/DLT)P CP+ CAL/(G)(K) GAMMA	-0.0876 0.3427	0.3333	0.65165	0.65320	0.65455	0.65572	0.65675 0.01487	0.65766 0.01351 0.32883	0.01232	0.01126	0.65978 0.01032	0.66034 0.00949 0.33017	

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

 $\begin{array}{l} \textbf{[P is pressure, T is temperature, H is enthalpy, S is entropy, $(DLM/DLP)T \equiv (\partial \ln M/\partial \ln P)_T$, $(DLM/DLT)P \equiv (\partial \ln M/\partial \ln T)_P$, CP is heat capacity at constant pressure, and $GAMMA$ is isentropic exponent $(\partial \ln P/\partial \ln \rho)_S$ where ρ is density.]} \end{array}$

(b) Continued. $NO_2-N_2O_4-NO-O_2$ system

EQUILIBRIUM THE	ERMODYNAM:	IC PROPER	TIES										
P, ATM T, DEG K H, CAL/G	3.000 300 43.3	3.000 320 64.8	3.000 340 95.4	3.000 360 130.5	3.000 380 160.7	3.000 400 180.7	3.000 420 193.5	3.000 440 202.6	3.000 460 210.4	3.000 480 218.1	3.000 500 226.4	3.000 520 235.6	3.000 540 246.0
S. CAL/(G)(K)	0.8307	0.9000	0.9927	1.0933	1.1746	1.2262	1.2573	1.2785	1.2959	1.3123	1.3292	1.3472	1.3668
M, MOL HT {DLM/DLP)T (DLM/DLT)P CP, CAL/{G}{K} GAMMA	82.367 0.05172 -1.1856 0.8562 1.0904	74.527 0.08982 -1.9284 1.3092 1.0927	65.107 0.12135 -2.4491 1.7175 1.0990	56.708 0.11784 -2.2444 1.7093 1.1086	51.217 0.08197 -1.4805 1.2521 1.1220	48.364 0.04602 -0.7958 0.7848 1.1400	47.010 0.02423 -0.4105 0.5200 1.1594	46.335 0.01347 -0.2354 0.4099 1.1713	45.931 0.00878 -0.1702 0.3818 1.1715	45.615 0.00727 -0.1609 0.3958 1.1642	45.300 0.00754 -0.1830 0.4339 1.1547	44.942 0.00899 -0.2255 0.4879 1.1456	44.515 0.01130 -0.2828 0.5534 1.1382
MOLE FRACTIONS													
N101(G)	0.00003	0.00010	0.00033	0.00082	0.00178	0.00340	0.00599	0.00991	0.01563	0.02362	0.03440	0.04844	0.06614
N102(G) N204(G) 02(G)	0.20966 0.79030 0.00001	0.37991 0.61993 0.00005	0.58423 0.41528 0.00016	0.76579 0.23298 0.00041	0.88324 0.11410 0.00089	0.94199 0.05291 0.00170	0.96624 0.02478 0.00299	0.97306 0.01206 0.00496	0.97041 0.00615 0.00781	0.96129 0.00328 0.01181	0.94559 0.00182 0.01720	0.92630 0.00104 0.02422	0.90018 0.00061 0.03307
EQUILIBRIUM THE	RMODYNAMI	C PROPERT	TES										
P, ATM	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	
T, DEG K H, CAL/G S, CAL/(G)(K)	560 257.8 1.3883	580 271.1 1.4117	600 286.1 1.4370	620 302.6 1.4641	640 320.6 1.4927	660 340.0 1.5225	680 360.4 1.5529	700 381.4 1.5834	720 402.8 1.6135	740 424.0 1.6426	760 444.8 1.6704	780 464.9 1.6964	
M, MOL HT (OLM/OLP)T (OLM/OLT)P CP, CAL/(G)(K) GAMMA	44.006 0.01432 -0.3512 0.6274 1.1326	43.410 0.01789 -0.4270 0.7066 1.1287	42.729 0.02186 -0.5063 0.7874 1.1263	41.972 0.02602 -0.5845 0.8656 1.1252	41.153 0.03014 -0.6564 0.9366 1.1253	40.291 0.03393 -0.7171 0.9958 1.1263	39.409 0.03716 -0.7625 1.0392 1.1281	38.531 0.03960 -0.7896 1.0639 1.1308	37.678 0.04112 -0.7972 1.0687 1.1341	36.868 0.04167 -0.7860 1.0542 1.1382	36.115 0.04129 -0.7582 1.0227 1.1429	35.429 0.04010 -0.7173 0.9776 1.1482	
MOLE FRACTIONS													
N101(G)	0.08776	0.11337	0.14280	0.17562	0.21118	0.24859	0.28689	0.32506	0.36215	0.39735	0.43006	0.45990	
N102(G) N204(G) O2(G)	0.86799 0.00037 0.04388	0.82972 0.00022 0.05669	0.78567 0.00014 0.07140	0.73648 0.30008 0.08781	0.68318 0.00005 0.10559	0.62708 0.00003 0.12430	0.56964 0.00002 0.14345	0.51240 0.00001 0.16253	0.45677 0.00001 0.18107	0.40397 0.00000 0.19867	0.35491 0.00000 0.21503	0.31015 0.00000 0.22995	
EQUILIBRIUM THE	D MOOVNA MI	r 800050T	155										
P, ATM	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3,000	3.000	3.000
T, DEG K	800	820	840	860	880	900	920	940	960	980	1000	1020 622.9	1040 631.2
H, CAL/G S, CAL/(G)(K)	483.9 1.7205	501.8 1.7425	518.4 1.7626	533.8 1.7808	548.1 1.7971	561.3 1.8119	573.4 1.8253	584.7 1.8374	595.2 1.8485	605.0 1.8586	614.2 1.8679	1.8766	1.8846
M. MOL WT (DLM/DLP)T (DLM/DLT)P CP. CAL/(G)(K)	34.813 0.03825 -0.6671 0.9231	34.267 0.03595 -0.6114 0.8633	33.789 0.03336 -0.5538 0.8019	33.374 0.03065 -0.4968 0.7417	33.016 0.02794 -0.4424 0.6848	32.708 0.02531 -0.3918 0.6324	32.444 0.02284 -0.3457 0.5853	32.219 0.02054 -0.3042 0.5435	32.025 0.01845 -0.2674 0.5069	31.860 0.01656 -0.2350 0.4751	31.719 0.01485 -0.2066 0.4478	31.597 0.01335 -0.1819 0.4242	31.492 0.01201 -0.1603 0.4041
GAMMA	1.1542	1.1607	1.1678	1.1754	1.1833	1.1916	1.2000	1.2085	1.2168	1.2250	1.2328	1.2403	1.2472
MOLE FRACTIONS													
N101(G) N102(G) 02(G)	0.48668 0.26999 0.24334	0.51039 0.23441 0.25520	0.53116 0.20326 0.26558	0.54921 0.17619 0.27460	0.56478 0.15283 0.28239	0.57816 0.13276 0.28908	0.58963 0.11556 0.29481	0.59944 0.10084 0.29972	0.60783 0.08825 0.30392	0.61502 0.07748 0.30751	0.62117 0.06824 0.31059	0.62646 0.06031 0.31323	0.63101 0.05348 0.31551
EQUILIBRIUM THE	RMODYNAMI	C PROPERT	IES					,					
P, ATM	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000 1200	3.000 1220	3.000 1240	3.000 1260	3.000 1280	
T, DEG K H, CAL/G S, CAL/(G)(K)	1060 639.1 1.8921	1080 646.7 1.8992	1100 654.0 1.9059	1120 661.1 1.9123	1140 668.0 1.9184	1160 674.7 1.9243	681.3 1.9299	687.8 1.9353	694.2 1.9406	700.4 1.9457	706.6 1.9506	712.7 1.9555	
M, MOL HT {DLM/OLP)T {DLM/DLT)P CP, CAL/(G)(K) GAMMA	31.402 0.01081 -0.1416 0.3870 1.2536	31.324 0.00975 -0.1253 0.3723 1.2595	31.256 0.00882 -0.1112 0.3599 1.2647		31.145 0.00725 -0.0881 0.3402 1.2735	31.100 0.00660 -0.0788 0.3325 1.2772	31.061 0.00602 -0.0706 0.3260 1.2803	31.026 0.00551 -0.0634 0.3204 1.2830	30.995 0.00505 -0.0572 0.3156 1.2853	30.968 0.00463 -0.0516 0.3115 1.2873	30.943 0.00427 -0.0467 0.3080 1.2890	30.921 0.00394 -0.0424 0.3050 1.2904	
MOLE FRACTIONS						•	21						
N101(G) N102(G) 02(G)	0.63494 0.04760 0.31747	0.04250	0 02000	A 63/33	A A2A97	0 02793	0.02535	0.65129 0.02307 0.32564	0.0/105	0.01921	0.65488 0.01768 0.32744	0.65582 0.01627 0.32791	

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

[P is pressure, T is temperature, H is enthalpy, S is entropy, (DLM/DLP)T = ($\partial \ln M/\partial \ln P$)_T, (DLM/DLT)P = ($\partial \ln M/\partial \ln T$)_P. CP is heat capacity at constant pressure, and GAMMA is isentropic exponent ($\partial \ln P/\partial \ln \rho$)_S where ρ is density.]

*** AFT CO.*** 10.00 10.759	1. CAL/COLK 39.5 49.6 79.7 129.2 119	EQUILIBRIUM THE	RMODYNAMI	C PROPERT	I E S							10.000	10.00	10.000	10.0
**************************************		P, ATM												520	54
1, CAL/FOIKE) 0.7764 0.0213 0.0833 0.0922 1.0976 1.1216 1.1141 1.1209 1.1209 1.1210 0.7764 0.0213 0.0929 1.0976 1.1218 0.0929 0.0921 0.0929 0.0921 0.0929 0.	1, CAL/GILKI 0.7764 0.9213 0.4883 0.9922 1.0976 1.1210 1.1741 1.1209 1.1209 1.1209 1.1209 1.1210 1.1741 1.1209 1.1209 1.1209 1.1209 1.1210 1.1209 1.1210 1.1						129.2	158.0	179.5	194.2					238
				0.8213	0.8833	0.9522	1.0476	1.1216	1.1741	1.2083	1.2319	1.2505	1.25/1	1.2034	1.500
INAMEDIST 0.09010 0.09059 0.09059 0.12006 0.12194 0.09050 0.09050 0.09071 0.	INAMERIST 0.09010 0.09050 0.09155 0.12006 0.12114 0.09193 0.09050 0.09186 0.	M. MO! WT	86.443	81.354	74.136	65.767	58.102	52.604	49.359						45.00
COLANDIA 1.0943 1.0943 1.0904 1.0905 1.1393 1.1222 0.6899 0.6133 0.6890 0.4138 0.4070 0.4278 0.4478 0.4478 1.1204 1.1204 1.1204 1.1205	Company Comp	(DLM/DLP)T	0.03016	0.05695	0.09155	0.12006	0.12194								
CAMPA	**************************************	(DLM/DLT)P													0.46
NAME 10.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000	INTERED 0.00001 0.00005 0.00015 0.00	CP, CAL/(G)(K) Gamma											1.1651	1.1584	1.15
		MOLE FRACTIONS													
NIDZIGI 0.12110 0.23165 0.38827 0.5983 3.75533 0.88227 0.41841 0.49317 0.48632		N101(G)	0.00001	0.00005	0.00017		0.00105								0.0452
REQUILIBRIUM THERMODYMANIC PROPERTIES P. AIM 10.00 10.000 10.000 10.000 10.00	Composition	N102(G)	0.12110		0.38829										
THE THE NOTE FRACTIONS 10.00 10.0	1. ATM	N204(G) 02(G)													0.022
THE THE NOTE FRACTIONS 10.00 10.0	1. ATM	FOUT TRRIUM THE	R MODYNA MI	C PROPERT	IES										
1. DELPO 2480 299.5 271.5 284.9 299.4 315.2 332.1 350.1 368.8 388.0 407.5 426.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	1. DELVO 2486 259.5 271.5 286.8 299.4 315.2 332.1 350.1 368.8 388.0 407.5 426.9 55.621/1611V 1.3180 1.3370 1.3370 1.3375 1.3737	P, ATM			10.00										
1. CAL/FOI(K)	1, CAL/GI(K)	T, DEG K													
Company Comp	TOTAL 10 10 10 10 10 10 10 1	H, CAL/G S, CAL/(G)(K)													
COMMON 10	IDMA/DIPT 0.01123 0.01353 0.01642 0.01974 0.02334 0.02706 0.03366 0.03409 0.03409 0.03419 0.	M. MOL WT	44.677	44.230	43.718										
COLVENITY Color	DAMPA 10	(DLM/DLP)T	0.01123	0.01353	0.01642										
NOLE FRACTIONS 1.1445 1.1393 1.1395 1.1315 1.1315 1.1315 1.1315 1.1318 1.1347 1.1373 1.1405 1.1442	**CALICINS*** **COLLIBRIUM THERMODYNAMIC PROPERTIES** **P. CALICINS*** **AMMA*** **INITION*** **COLLIBRIUM THERMODYNAMIC PROPERTIES** **P. CALICINS** **AMMA*** **INITION** **COLLIBRIUM THERMODYNAMIC PROPERTIES** **P. CALICINS** **AMMA** **INITION** **COLLIBRIUM THERMODYNAMIC PROPERTIES** **P. CALICINS** **COLLIBRIUM THERMODYNAMIC PROPERTIES** **P. CALICINS** **P.	(DLM/DLT)P				-0.4397 0.6967						0.9698	0.9755	0.9678	
NIDIGO	NOTICE FRACTIONS NIDIIG: 0.06054 0.0787 0.10063 0.12542 0.15512 0.18330 0.21544 0.24886 0.24886 0.31673 0.34879 0.38147 0.10161 0.070786 0.88771 0.88873 0.81122 0.77101 0.77469 0.47675 0.62765 0.57557 0.52468 0.476730 0.42778 0.20786 0.00071 0.00071 0.00073 0.00073 0.00074 0.0	GAMMA										1.1373	1.1405	1.1442	
		MOLE FRACTIONS													
NIDIGIS	VIDIGIO	N101(G)													
COULTIBRIUM THERMODYNAMIC PROPERTIES P, ATM 10.00 10.	Company Comp	N102(G)													
P, ATH 10.00	P, ATM 10.00										0.14143	0.15836	0.17489	0.19074	
T, DEG K	T, DEG K 800 820 840 840 840 840 840 840 840 840 840 84	P, ATM	10.00	10.00	10.00										10.0
MOLE FRACTIONS NIDI(G)	NOBLE FRACTIONS MOLE FRACTIONS MOLIGIA 0.41133 0.43903 0.46441 0.48738 0.50798 0.52631 0.54252 0.55679 0.56930 0.58025 0.58892 0.59818 0.60780 0.02161 0.00010 0.00000 0.00000 0.00000 0.000000 0.00											583.8			615.
M, HOL HT 36.546 35.909 35.325 34.796 34.322 33.901 3.901 0.03278 0.02498 0.02498 0.02498 0.03260 0.03171 0.032937 0.02793 0.02498 0.02498 0.02498 0.03260 0.016 (DLM/DLP)T 0.04163 0.04103 0.03984 0.03820 0.03821 0.03820 0.03171 0.02937 0.02937 0.02798 0.02498 0.02498 0.0279 (DLM/DLT)P -0.7259 -0.6978 -0.6613 -0.6194 0.5725 0.6959 0.6517 0.6104 0.5725 0.5381 0.5073 0.47 0.6614 0.5725 0.5981 0.5073 0.47 0.6614 0.6775 0.5881 0.5074 0.6614 0.6775 0.6781 0.678	M, MOL NT 36.546 35.909 35.325 34.796 34.322 33.401 0.3382 0.0361 0.0361 0.0371 0.02937 0.02788 0.02488 0.02279 0.0286 0.016 (DLM/DLP)T 0.04163 0.04103 0.03984 0.03820 0.03820 0.0361 0.03171 0.02937 0.02785 0.02380 0.0316 0.02937 0.02788 0.02488 0.02279 0.02860 7.02860	S, CAL/(G)(K)								1.7372	1.7505	1.7627			
(DLM/OLP)T	(ILM/OLIPIT	M. MOL WT	36.546	35.909	35.325										0.0190
(OLM/OLT)P -0.7259 -0.6978 0.6979 0.6979 0.6979 0.6979 0.6979 0.6959 0.69517 0.6104 0.5725 0.5381 0.5073 0.47 0.47 0.47 0.9779 0.8789 0.8358 0.7894 0.7422 0.6959 0.69517 0.6104 0.5725 0.5381 0.5073 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47	(OLM/OLT)P -0.7259 -0.09174 0.8793 0.8358 0.7894 0.7422 0.6959 0.6517 0.6104 0.5725 0.5381 0.5073 0.47 0.74 0.977 0.9174 0.8793 0.8358 0.7894 0.7422 0.6959 0.6517 0.6104 0.5725 0.5381 0.5073 0.47 0.6418 0.9777 0.9174 0.8793 0.8358 0.7894 0.7422 0.6959 0.6517 0.6104 0.5725 0.5381 0.5073 0.47 0.6418 0.4818 0.1532 1.1584 1.1641 1.1701 1.1765 1.1832 1.1901 1.1972 1.2044 1.2116 1.2187 1.2264 1.2187 1.2264 1.2116 1.2187 1.2264 1.2116 1.2187 1.2264 1.2116 1.2187 1.2264 1.2116 1.2187 1.2264 1.2116 1.2187 1.2264 1.2116 1.2187 1.2264 1.2116 1.2187 1.2264 1.2116 1.2187 1.2264 1.2116 1.2187 1.21	(DLM/DLP)T	0.04163												-0.25
MOLE FRACTIONS MIDII(G)	MOLE FRACTIONS MID1(G)									0.6517	0.6104	0.5725			0.479
NIDI(G)	NID1(G)	GAMMA					1.1701	1.1765	1.1832	1.1901	1.1972	1.2044	1.2116	1.2181	1.22
NID1(G)	NID1(G)	MOLE FRACTIONS											0 50003	0 50010	0.605
N102(G)	NID2(G)	NLO1(G)					0.50798							0.10274	0.091
N204(6) 0.20566 0.21952 0.23220 0.24369 0.25399 0.26316 0.27126 0.27839 0.28465 0.29012 0.29491 0.29909 0.30: EQUILIBRIUM THERMODYNAMIC PROPERTIES P, ATM	NZQ4(G)	N102(G)		0.34144							0.00000	0.00000	0.00000	0.00000	0.0000
P, ATH 10.00	P, ATM 10.00	02(6)								0.27839	0.28465	0.29012	0.29491	0.29909	0.302
P, ATM 10.00 10.00 10.00 11.00 11.20 1140 1160 1180 1200 1220 1240 1260 1280 T, DEG K 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260 1280 H, CAL/G 624.5 633.4 641.9 650.1 657.9 665.5 672.9 680.0 687.0 693.8 700.5 707.1 S, CAL/(G (K) 1.8027 1.8111 1.8189 1.8262 1.8331 1.8397 1.8460 1.8520 1.8578 1.8634 1.8687 1.8739 M, MOL MT 31.933 31.804 31.691 31.592 31.505 31.428 31.360 31.300 31.247 31.199 31.157 31.119 GLM/OLP)T 0.01740 0.01590 0.01453 0.01329 0.01217 0.01116 0.01025 0.00943 0.00869 0.00802 0.00741 0.00887 (DLM/OLT)P -0.2279 -0.2042 -0.1832 -0.1645 -0.1479 -0.1332 -0.1202 -0.1087 -0.0984 -0.0893 -0.0812 -0.0740 CP, CAL/(G)(K) 0.4557 0.4345 0.4159 0.3997 0.3856 0.3733 0.3626 0.3533 0.3452 0.3382 0.3321 0.3267 CP, CAL/(G)(K) 0.4557 0.4345 0.4159 0.3997 0.3856 0.3733 0.3626 0.3533 0.3452 0.3382 0.3321 0.3267 0.32740 CP, CAL/(G)(K) 0.4557 0.4345 0.4646 1.2502 1.2553 1.2600 1.2643 1.2682 1.2716 1.2747 1.2774 1.2777 MOLE FRACTIONS NIDIG 0.61186 0.61745 0.62235 0.62666 0.63045 0.63379 0.63674 0.63936 0.64168 0.64375 0.64560 0.64725 0.02912	P, ATM 10.00	EQUILIBRIUM THE	RMODYNAM	IC PROPERT	ries										
T. DEG K 1060 1080 1100 1120 1140 1180 1200 1220 1220 1220 1220 1220 122	T, DEG K 1060 1080 1100 1120 1140 1180 1200 1220 1220 1220 1220 1220 122	P, ATH	10.00												
H, CAL/G (K) 1.8027 1.8111 1.8189 1.8262 1.8331 1.8397 1.8460 1.8520 1.8578 1.8634 1.8687 1.8739 M, MOL HT 31.933 31.804 31.691 31.592 31.505 31.428 31.360 31.300 31.247 31.199 31.157 31.119 (DLM/OLP)T 0.01740 0.01590 0.01453 0.01329 0.01217 0.01116 0.01025 0.00943 0.00869 0.00802 0.00741 0.00887 (DLM/OLT)P -0.2279 -0.2042 -0.1832 -0.1645 -0.1479 -0.1332 -0.1202 -0.1087 -0.0984 -0.0893 -0.0812 -0.0740 (DLM/OLT)P -0.2233 1.2386 1.2446 1.2502 1.2553 1.2600 1.2643 1.2682 1.2716 1.2747 1.2774 1.2797 MOLE FRACTIONS NIDIG CO.61185 0.61745 0.62235 0.62666 0.63345 0.63379 0.63674 0.63936 0.64168 0.64375 0.64560 0.64725 0.02912	H, CAL/G (K) 1.8027 1.8011 1.8189 1.8262 1.8331 1.8397 1.8460 1.8520 1.8578 1.8634 1.8687 1.8739 M, HOL HT 31.933 31.804 31.691 31.592 31.505 31.428 31.360 31.300 31.247 31.199 31.157 31.119 (DLM/DLP)T 0.01740 0.01590 0.01453 0.01329 0.01217 0.01116 0.01025 0.00943 0.00869 0.00802 0.00741 0.00887 (DLM/DLT)P -0.2279 -0.2042 -0.1832 -0.1645 -0.1479 -0.1332 -0.1202 -0.1087 -0.0984 -0.0893 -0.0812 -0.0740 (DLM/DLT)P -0.2279 -0.2042 -0.1832 -0.1645 -0.1479 -0.1332 -0.1202 -0.1087 -0.0984 -0.0893 -0.3825 0.3321 0.3267 GAMHA 1.2323 1.2386 1.2446 1.2502 1.2553 1.2600 1.2643 1.2682 1.2716 1.2747 1.2774 1.2777 MOLE FRACTIONS NIDIG: 0.61185 0.61745 0.62235 0.62666 0.63345 0.63379 0.63674 0.63936 0.64168 0.64375 0.64560 0.64725 0.02912	T, DEG K													
MARCH MIDLE FRACTIONS NIDLIG 0.61185	MINUL MI 31.933 31.804 31.73 0.01329 0.01217 0.01116 0.01025 0.00943 0.00869 0.00802 0.00741 0.00887 (DLM/DLT)P 0.01740 0.01599 0.01453 0.01329 0.01217 0.01116 0.01025 0.00943 0.00869 0.00802 0.00741 0.00887 (DLM/DLT)P -0.2279 -0.2042 -0.1832 -0.1645 -0.1479 -0.1332 -0.1202 -0.1087 -0.0984 -0.0984 -0.0893 -0.0812 -0.0740 0.0087 (DLM/DLT)P -0.2279 -0.2042 -0.1832 -0.1645 -0.1479 -0.1332 -0.1202 -0.1087 -0.0984 -0.0984 -0.0893 -0.0812 -0.0740 0.3733 0.3626 0.3533 0.3452 0.3382 0.3321 0.3267 0.3733 0.3626 0.3533 0.3452 0.3382 0.3321 0.3267 0.3733 0.3862 0.3733 0.3452 0.3533 0.3452 0.3382 0.3321 0.3267 0.3733 0.3862 0.3733 0.3452 0.3533 0.3452 0.3382 0.3382 0.3321 0.3267 0.3733 0.03626 0.3533 0.3626 0.3533 0.3452 0.3382 0.3382 0.3321 0.3267 0.3733 0.03626 0.3533 0.3452 0.3533 0.3452 0.3382 0.3382 0.3321 0.3267 0.3733 0.03626 0.3533 0.3452 0.3382 0.3382 0.3382 0.3382 0.3321 0.3267 0.3733 0.03626 0.3533 0.3452 0.3382 0														
Colling Coll	OLITION O.01740 O.01590 O.01453 O.01329 O.01217 O.01116 O.01025 O.00943 O.00869 O.00802 O.00141 O.00887 O.01740 O.01812 O.01	M, MOL WT	31.933	31.804											
CP, CAL/(G)(K) 0.4557 0.4345 0.4159 0.3997 0.3856 0.3733 0.3626 0.3533 0.3452 0.3382 0.3321 0.3267 0.4557 0	CP, CAL/(G)(K) 0.4557 0.4345 0.4159 0.3997 0.3856 0.3733 0.3626 0.3533 0.3452 0.3382 0.3321 0.3267 CAMMA 1.2323 1.2386 1.2446 1.2502 1.2553 1.2600 1.2643 1.2682 1.2716 1.2747 1.2774 1.2797 MOLE FRACTIONS NIDIG: 0.61186 0.61745 0.62235 0.62666 0.63045 0.63379 0.63674 0.63936 0.64168 0.64375 0.64560 0.64725 0.6236 0.6237 0.6468 0.6482 0.0488 0.0488 0.0488 0.03378 0.03160 0.02912	(DLM/DLP)T	0.01740	0.01590	0.01453										
MOLE FRACTIONS NIDIG: 0.61185 0.61745 0.62235 0.62666 0.63045 0.63379 0.63674 0.63936 0.64168 0.64375 0.64560 0.64725	MOLE FRACTIONS NIDIG: 0.61185 0.61745 0.62235 0.62666 0.63045 0.63379 0.63674 0.63936 0.64168 0.64375 0.64560 0.64725												0.3321	0.3267	
NIDI(G) 0.61186 0.61745 0.62235 0.62666 0.63045 0.63379 0.63674 0.63936 0.64168 0.64375 0.64560 0.64725	NIDI(G) 0.61186 0.61745 0.62235 0.62666 0.63045 0.63379 0.63674 0.63936 0.64168 0.64375 0.64560 0.64725													1.2797	
		MOLE FRACTIONS													
										A 42024		0 44276	0 44540	A 64725	
	0.30593 0.30873 0.31118 0.31555 0.31522 0.31609 0.31500 0.31500 0.31500 0.31500 0.31500	N101(G)	0.61186	0.61745	0.62235	0.62666	0.63045	0.63379	0.63674	0.03930	0.64168	0.04515	0.04360		

TABLE III. - Continued. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

[P is pressure, T is temperature, H is enthalpy, S is entropy, (DLM/DLP)T = $(\partial \ln M/\partial \ln P)_T$, (DLM/DLT)P = $(\partial \ln M/\partial \ln T)_p$, CP is heat capacity at constant pressure, and GAMMA is isentropic exponent $(\partial \ln P/\partial \ln \rho)_S$ where ρ is density.]

EQUILIBRIUM THE	RMODYNAMI	C PROPERT	rtes										
P, ATM	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00 540
T, DEG K H. CAL/G	300 31.4	320 41.3	340 55.2	360 74.5	380 99.5	400 127.9	420 155.1	440 177.3	460 193.8	480 206.0	500 215.9	520 224.7	233.
S, CAL/(G)(K)	0.7380	0.7697	0.8119	0.8671	0.9344	1.0072	1.0737	1.1254	1.1620	1.1881	1.2083	1.2255	1.241
		05 500	00 676	73.990	66.539	59.544	54.130	50.573	48.459	47.236	46.493	45.988	45.58
M, MOL WT (DLM/DLP)T	88.710 0.01794	85.509 0.03516	80.575 0.06094	0.09220	0.11834	0.12449	0.10622	0.07636	0.04971	0.03153	0.02071	0.01488	0.0121
(DLM/DLT)P	-0.4113	-0.7547	-1.2293	-1.7543	-2.1296	-2.1263	-1.7287	-1.1915	-0.7522	-0.4728	-0.3195	-0.2466	-0.222
CP, CAL/(G)(K)	0.4123	0.5833	0.8235	1.1121	1.3636	1.4335	1.2572	0.9589	0.7007 1.1494	0.5390 1.1598	0.4581 1.1651	0.4295 1.1648	0.432
GAMMA	1.0992	1.0959	1.0964	1.1001	1.1064	1.1149	1.1251	1.1307	1.1474	1.1770	1.1071	1.1040	1.100
MOLE FRACTIONS													
N101(G)	0.00001	0.00002	0.00009	0.00024	0.00060	0.00130	0.00249	0.00434	0.00706	0.01089	0.01609	0.02294	0.0317
N102(G)	0.07185	0.14138	0.24851	0.39131	0.55255	0.70319 0.29486	0.81848 0.17779	0.89209 0.10139	0.93259	0.95154	0.95729	0.95455	0.9456
N204(G) 02(G)	0.92814	0.85858	0.75136 0.00004	0.60833	0.44655	0.00065	0.00124	0.00217	0.00353	0.00544	0.00804	0.01147	0.0158
02107	0.00000	0.00001	0.0000	3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
EQUILIBRIUM THE	RMODYNAMI	C PROPERT	TES										
P. ATM	30.00	30.00	30.00	30.00	30.00	30.00	30.00 680	30.00 700	30.00 720	30.00 740	30.00 760	30.00 780	
T, DEG K H, CAL/G	560 242.1	580 251.5	600 261.7	620 272.8	640 284.9	660 298.0	312.1	327.1	343.1	359.7	377.0	394.6	
S, CAL/(G)(K)	1.2578	1.2743	1.2916	1.3098	1.3290	1.3491	1.3701	1.3919	1.4144	1.4372	1.4602	1.4831	
M, MOL WT	45.220	44.842	44.432	43.977	43.473	42.919	42.318	41.678	41.007	40.317	39.618	38.923	
(DLM/DLP)T	0.01143	0.01200	0.01350	0.01566	0.01833	0.02134	0.02455	0.02783	0.03101	0.03397	0.03656	0.03869 -0.6914	
(DLM/DLT)P CP, CAL/(G)(K)	-0.2281 0.4546	-0.2531 0.4890	-0.2909 0.5314	-0.3376 0.5788	-0.3897 0.6290	-0.4446 0.6798	-0.4995 0.7292	-0.5518 0.7751	-0.5991 0.8156	-0.6392 0.8490	-0.6703 0.8740	0.8896	
GAMMA	1.1552	1.1498	1.1452	1.1415	1.1390	1.1374	1.1367	1.1368	1.1376	1.1390	1.1410	1.1435	
MOLE FRACTIONS													
·		0.05609	0.07204	0.09060	0.11175	0.13533	0.16110	0.18871	0.21771	0.24762	0.27792	0.30810	
N101(G)	0.04271	0.03003					0.75799	0.71670	0.67327	0.62846	0.58304	0.53780	
N102(G)	0.93172	0.91316	0.89019	0.86294	0.83161	0.79648						0.00005	
N102(G) N204(G)				0.86294 0.00116 0.04530	0.83161 0.00077 0.05587	0.79648 0.00052 0.06767	0.00035	0.00024 0.09435	0.00017 0.10885	0.00011 0.12381	0.00008 0.13896	0.00005 0.15405	
N101(G) N102(G) N204(G) O2(G) EQUILIBRIUM THE	0.93172 0.00422 0.02135	0.91316 0.00270 0.02805	0.89019 0.00175 0.03602	0.00116	0.00077	0.00052	0.00035	0.00024	0.00017	0.00011	0.00008		
N102(G) N204(G) D2(G)	0.93172 0.00422 0.02135	0.91316 0.00270 0.02805	0.89019 0.00175 0.03602	0.00116 0.04530 30.00	0.00077 0.05587	0.00052 0.06767	0.00035 0.08055	0.00024 0.09435	0.00017 0.10885	0.00011 0.12381	0.00008 0.13896	30.00	
N102(G) N204(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K	0.93172 0.00422 0.02135 RMODYNAMI 30.00 800	0.91316 0.00270 0.02805 C PROPERT 30.00 820	0.89019 0.00175 0.03602 TES 30.00 840	30.00 860	0.00077 0.05587 30.00 880	0.00052 0.06767 30.00 900	0.00035 0.08055 30.00 920	0.00024 0.09435 30.00 940	0.00017 0.10885 30.00 960	0.00011 0.12381 30.00 980	0.00008 0.13896 30.00 1000	30.00 1020	1040
N102(G) N204(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G	0.93172 0.00422 0.02135 RMODYNAMI 30.00 800 412.5	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4	0.89019 0.00175 0.03602 TES 30.00 840 448.1	30.00 860 465.5	0.00077 0.05587	0.00052 0.06767	0.00035 0.08055	0.00024 0.09435	0.00017 0.10885	0.00011 0.12381	0.00008 0.13896	30.00	1040 593.8
N102(G) N204(G) D2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	0.93172 0.00422 0.02135 RMODYNAMI 30.00 800 412.5 1.5057	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278	0.89019 0.00175 0.03602 TES 30.00 840 448.1 1.5492	30.00 860 465.5 1.5696	30.00 880 482.4 1.5891	30.00 900 498.8 1.6075	30.00 920 514.5 1.6247	30.00 940 529.5 1.6409	30.00 960 543.7 1.6559	30.00 980 557.3 1.6698	30.00 1000 570.1 1.6828	30.00 1020 582.3 1.6948	1040 593.8 1.7060
N102(G) N204(G) 02(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT	0.93172 0.00422 0.02135 ERMODYNAMI 30.00 800 412.5 1.5057 38.242	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278	0.89019 0.00175 0.03602 TES 30.00 840 448.1 1.5492 36.958	30.00 860 465.5 1.5696 36.368	30.00 880 482.4 1.5891 35.820	30.00 900 498.8 1.6075 35.314	30.00 920 514.5 1.6247 34.852	30.00 940 529.5 1.6409	30.00 960 543.7 1.6559	30.00 980 557.3 1.6698	30.00 13896	30.00 1020 582.3	1040 593.8 1.7060 32.898
N102(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T	0.93172 0.00422 0.02135 RMODYNAMI 30.00 800 412.5 1.5057	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278	0.89019 0.00175 0.03602 TES 30.00 840 448.1 1.5492	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163	30.00 920 514.5 1.6247 34.852 0.03840 -0.5812	30.00 940 529.5 1.6409 34.433 0.03673 -0.5438	30.00 960 543.7 1.6559 34.055 0.03487 -0.5054	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671	30.00 13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297	30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939	1040 593.8 1.7060 32.898 0.02697 -0.3601
N102(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, NOL HT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K)	0.93172 0.00422 0.02135 ERMODYNAMI 30.00 800 412.5 1.5057 38.242 0.04027 -0.7018 0.8956	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920	30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018	30.00 920 514.5 1.6247 34.852 0.03840 -0.5812 0.7675	30.00 940 529.5 1.6409 34.433 0.03673 -0.5438 0.7315	30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589	30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242	30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912	1040 593.8 1.7060 32.898 0.02697 -0.3601 0.5605
N102(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, NOL HT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K)	0.93172 0.00422 0.02135 RMODYNAMI 30.00 800 412.5 1.5057 38.242 0.04027 -0.7018	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017	0.89019 0.00175 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163	30.00 920 514.5 1.6247 34.852 0.03840 -0.5812	30.00 940 529.5 1.6409 34.433 0.03673 -0.5438	30.00 960 543.7 1.6559 34.055 0.03487 -0.5054	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671	30.00 13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297	30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939	1040 593.8 1.7060 32.898 0.02697 -0.3601 0.5605
N102(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA	0.93172 0.00422 0.02135 ERMODYNAMI 30.00 800 412.5 1.5057 38.242 0.04027 -0.7018 0.8956	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920	30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676	30.00 920 514.5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728	30.00 940 529.5 1.6409 34.433 0.03673 -0.5438 0.7315 1.1783	30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899	30.00 13896 30.00 1000 570.1 1.6828 33.411 0.03391 -0.4297 0.6242 1.1960	30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022	1040 593.1 1.7060 32.899 0.0269 -0.3601 0.5609 1.2083
N102(G) N204(G) 02(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G (S, CAL/(G)(K) M, MOL HT (DLM/DLT)P CP, CAL/(G)(K) MOLE FRACTIONS N101(G)	0.93172 0.00422 0.02135 ERMODYNAMI 30.00 800 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.9920 1.1499	0.89019 0.00176 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676	30.00 920 514.5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728	30.00 940 529.5 1.6409 34.433 0.3637 -0.5438 0.7315 1.1783	30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899	30.00 13896 30.00 1000 570.1 1.6828 33.41 0.03091 -0.4297 0.6242 1.1960	30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.55912 1.2022	1040 593.8 1.7060 32.898 0.02697 -0.3601 0.5608 1.2083
NID2(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G K H, CAL/G M, MOL HT (DLM/DLP)T (DLM/DLP)T (DLM/DLT)P CPP, CAL/(G)(K) MNOLE FRACTIONS NID1(G) N102(G)	0.93172 0.00422 0.02135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499	0.89019 0.00176 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676	30.00 920 514.5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728	30.00 940 529.5 1.6409 34.433 0.03673 -0.56438 0.7315 1.1783	30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899	30.00 13896 30.00 1000 570.1 1.6828 33.411 0.03391 -0.4297 0.6242 1.1960	30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022	1040 593.8 1.7060 32.898 0.02697 -0.3601 0.5608 1.2083
N102(G) N204(G) 02(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G COLM/DLP)I (DLM/DLP)I (DLM/DLP)I (DLM/DLT)P CP, CAL/(G)(K) MOLE FRACTIONS N101(G) N102(G) N102(G)	0.93172 0.00422 0.02135 ERMODYNAMI 30.00 800 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.9920 1.1499	0.89019 0.00176 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676	30.00 920 514.5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728	30.00 940 529.5 1.6409 34.433 0.3637 -0.5438 0.7315 1.1783	30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899	30.00 13896 30.00 1000 570.1 1.6828 33.411 0.03.091 -0.4297 0.6242 1.1960	30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022	30.00 1040 593.8 1.7060 32.898 0.02697 -0.3601 0.5605 1.2083
N102(G) N204(G) O2(G) EQUILIBRIUM THE	0.93172 0.00422 0.02135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499	0.89019 0.00176 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676	0.00035 0.08055 30.00 920 514.5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728	30.00 940 529.5 1.6409 34.433 0.03673 -0.5438 0.7315 1.1783	30.00 960 943.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899	30.00 13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000	1040 593.8 1.7060 32.898 0.02697 -0.3601 0.5605 1.2083 0.14516 0.00000
N102(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G K H, CAL/G CAL/GJ(K) M, MOL HT (DLM/DLT)P (DLM/DLT)P CP, CAL/(G)(K) MOLE FRACTIONS N101(G) N102(G) N204(G) N204(G) EQUILIBRIUM THE	0.93172 0.00422 0.02135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499	0.89019 0.00176 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676	0.00035 0.08055 30.00 920 514.5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728	30.00 940 529.5 1.6409 34.433 0.03673 -0.5438 0.7315 1.1783	30.00 960 943.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899	30.00 13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000	1046 593.8 1.7066 32.898 0.02697 -0.3601 0.5605 1.2083
NID2(G) N2O4(G) N2O4(G) N2O4(G) N2O4(G) P, ATM T, DEG K H, CAL/G K H, CAL/G M, MOL HT (DLM/DLP)T (DLM/DLP)T (DLM/DLT)P COP, CAL/(G)(K) MNOLE FRACTIONS NID1(G) N1D2(G) N2O4(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K	0.93172 0.00422 0.02135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499 0.36625 0.45060 0.00003 0.18312 C PROPERT	0.89019 0.00176 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538	30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580	0.00077 0.05587 30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626	0.00052 0.06767 30.00 900 98.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676	0.00035 0.08055 30.00 920 914-5 1.6247 34.852 0.7675 1.1728 0.48495 0.27258 0.00000 0.24247	0.00024 0.09435 30.00 940 529.5 1.6409 34.433 0.03673 -0.5438 0.7315 1.1783 0.50317 0.24524 0.00000 0.25158	0.00017 0.10885 30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840 0.51961 0.22058 0.00000 0.25981	0.00011 0.12381 30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899 0.93438 0.00000 0.26719	0.00008 0.13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960 0.27380	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000 0.27969	1046 593.1 1.7066 32.896 0.0269 -0.3607 0.5608 1.2083
N102(G) N204(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLM/DLP)T (DLM/DLM/DLP)T (DLM/DLM/DLM/DLM/DLM/DLM/DLM/DLM/DLM/DLM/	0.93172 0.00422 0.00135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 0.49344 0.00004 0.16884	0.91316 0.00270 0.02805 C PROPERT 30.00 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499 0.36625 0.45060 0.00003 0.18312 C PROPERT 30.00 1080 615.1	0.89019 0.00175 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538 0.40979 0.00002 0.19673	30.00 30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580 0.41907 0.37138 0.00001 0.20954	30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626 0.33563 0.00001 0.22145	30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676	0.00035 0.08055 30.00 920 514.5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728 0.48495 0.27258 0.00000 0.24247	30.00 940 529.5 1.6409 34.433 0.03673 -0.5438 0.7315 1.1783 0.50317 0.24524 0.0000 0.25158	30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840 0.51961 0.22058 0.00000 0.25981	30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899	0.00008 0.13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960 0.54759 0.17851 0.00000 0.27380	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000 0.27969	1046 593.8 1.7066 32.898 0.02697 -0.3601 0.5605 1.2083
N102(G) N204(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G K H, CAL/G S, CAL/(G)(K) M, MOL HT (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS N101(G) N204(G) N204(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	0.93172 0.00422 0.02135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465 0.33768 0.49344 0.00004 0.16884	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499 0.36625 0.45060 0.00003 0.18312 C PROPERT 30.00 1080 615.1 1.7261	0.89019 0.00176 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538 0.39346 0.40979 0.00002 0.19673	0.00116 0.04533 30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580 0.41907 0.37138 0.00001 0.20954	0.00077 0.05587 30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626 0.44290 0.33563 0.00001 0.22145	0.00052 0.06767 30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676 0.46487 0.30269 0.00001 0.23244	0.00035 0.08055 30.00 920 514.5 1.6247 34.852 0.7675 1.1728 0.27258 0.00000 0.24247	0.00024 0.09435 30.00 940 529.5 1.6409 34.433 0.03673 -0.5438 0.7315 1.1783 0.50317 0.24524 0.00000 0.25158	0.00017 0.10885 30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840 0.51961 0.22058 0.00000 0.25981	0.00011 0.12381 30.00 980 557.3 1.6698 33.715 0.03291 0.6589 1.1899 0.53438 0.19843 0.00000 0.26719	0.00008 0.13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960 0.27380 30.00 0.27380	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000 0.27969 30.00 1280 698.6 1.7974	1046 593.8 1.7066 32.898 0.02697 -0.3601 0.5605 1.2083
N102(G) N204(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLT)P (DLM/DLT)P (CP, CAL/(G)(K) MOLE FRACTIONS N101(G) N102(G) N204(G) OZ(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT	0.93172 0.00422 0.02135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465 0.33768 0.49344 0.00004 0.16884	0.91316 0.00270 0.02805 C PROPERT 30.00 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499 0.36625 0.45060 0.00003 0.18312 C PROPERT 30.00 1080 615.1 1.7261	0.89019 0.00176 0.003602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538 0.39346 0.40979 0.00002 0.19673	0.00116 0.04533 30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580 0.41907 0.37138 0.00001 0.20954	0.00077 0.05587 30.00 880 482.4 1.5891 35.820 0.04489 -0.6475 0.8330 1.1626 0.44290 0.33563 0.00001 0.22145	0.00052 0.06767 30.00 98.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676 0.46487 0.30269 0.00001 0.23244	0.00035 0.08055 30.00 920 514-5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728 0.48495 0.27258 0.00000 0.24247	0.00024 0.09435 30.00 529.5 1.6409 34.433 0.03673 -0.5438 0.7315 1.1783 0.50317 0.24524 0.00000 0.25158	0.00017 0.10885 30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840 0.51961 0.22058 0.00000 0.25981	0.00011 0.12381 30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899 0.13843 0.000000 0.26719 30.000 1240 684.0 1.7858	0.00008 0.13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960 0.54759 0.17851 0.000000 0.27380 30.00 1260 691.4 1.7917	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000 0.27969 30.00 1280 698.6 1.7974 31.422	1046 593.8 1.7066 32.898 0.02697 -0.3601 0.5605 1.2083
N102(G) N204(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLM/DLP)T (DLM/DLM/DLP)T (DLM/DLM/DLM/DLM/DLM/DLM/DLM/DLM/DLM/DLM/	0.93172 0.00422 0.02135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465 0.33768 0.49344 0.00004 0.16884	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499 0.36625 0.45060 0.00003 0.18312 C PROPERT 30.00 1080 615.1 1.7261	0.89019 0.00176 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538 0.39346 0.40979 0.00002 0.19673	0.00116 0.04533 30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580 0.41907 0.37138 0.00001 0.20954	0.00077 0.05587 30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626 0.44290 0.33563 0.00001 0.22145	0.00052 0.06767 30.00 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676 0.46487 0.30269 0.00001 0.23244	0.00035 0.08055 30.00 920 514.5 1.6247 34.852 0.7675 1.1728 0.27258 0.00000 0.24247	0.00024 0.09435 30.00 940 529.5 1.6409 34.433 0.03673 -0.5438 0.7315 1.1783 0.50317 0.24524 0.00000 0.25158	0.00017 0.10885 30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840 0.51961 0.22058 0.00000 0.25981	0.00011 0.12381 30.00 980 557.3 1.6698 33.715 0.03291 0.6589 1.1899 0.53438 0.19843 0.00000 0.26719	0.00008 0.13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960 0.27380 30.00 0.27380	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000 0.27969 30.00 1280 698.6 1.7974 31.422 0.01108 -0.1194	1046 593.1 1.7066 32.896 0.0269 -0.3607 0.5608 1.2083
NID2(G) N204(G) N204(G) PP, ATM T, DEG K H, CAL/G SS, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MOLE FRACTIONS NID1(G) NID2(G) N204(G) D2(G) PP, ATM T, DEG K H, CAL/G SS, CAL/(G)(K) M, MOL WT (DLM/DLP)T (DLM/DLT)P COLM/DLT)P COLM/DLT)P CP, CAL/(G)(K)	0.93172 0.00422 0.00135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465 0.33768 0.49344 0.00004 0.16884 RMODYNAMI 30.00 1060 604.7 1.7164 32.683 0.02509 -0.3285 0.5321	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499 0.36625 0.45060 0.00003 0.18312 C PROPERT 30.00 1080 615.1 1.7261 32.492 0.62330 -0.2993 0.5062	0.89019 0.00175 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538 0.39346 0.40979 0.00002 0.19673	0.00116 0.04533 30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580 0.41907 0.37138 0.00001 0.20954 30.00 1120 634.4 1.7437 32.171 0.02004 -0.2480 0.4616	0.00077 0.05587 30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626 0.44290 0.33563 0.00001 0.22145 30.00 1140 643.4 1.7517 32.037 0.01858 -0.2257 0.4427	0.00052 0.06767 30.00 900 498.8 1.6075 35.314 0.3982 -0.6163 0.8018 1.1676 0.46487 0.30269 0.00001 0.23244 30.00 1160 652.1 1.7592 31.917 0.01722 -0.2055 0.4258	0.00035 0.08055 30.00 920 514-5 1.6247 34.852 0.7675 1.1728 0.48495 0.27258 0.00000 0.24247 30.00 1180 660.5 1.7664 31.810 0.01597 -0.1872 0.4107	0.00024 0.09435 30.00 940 529.5 1.6409 34.433 0.03673 0.7315 1.1783 0.50317 0.24524 0.00000 0.25158	0.00017 0.10885 30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840 0.51961 0.22058 0.00070 0.25981 30.00 1270 676.4 1.7796 31.629 0.01376 -0.1558 0.3855	0.00011 0.12381 30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899 0.93438 0.109000 0.26719 30.00 1240 684.0 1.7858 31.553 0.01279 -0.1424 0.3750	0.00008 0.13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960 0.27380 30.00 1260 691.4 1.7917 31.484 0.01190 -0.1303 0.3657	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000 0.27969 30.00 1280 698.6 1.7974 31.422 0.0108 -0.1194 0.3574	1046 593.1 1.7066 32.899 0.0269 -0.360 0.5608 1.2089
NID2(G) N2O4(G) N2O4(G) N2O4(G) N2O4(G) P, ATM T, DEG K H, CAL/G M, MOL HT (DLM/DLP)IT (DLM/DLP)IT (DLM/DLT)P CP, CAL/(G)(K) MNOLE FRACTIONS NID1(G) NID1(G) NID2(G) NID4(G) N	0.93172 0.00422 0.02135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465 0.33768 0.49344 0.00004 0.16884 RMODYNAMI 30.00 1060 604.7 1.7164 32.683 0.02509 -0.3285	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499 0.36625 0.45060 0.0003 0.18312 C PROPERT 30.00 1080 615.1 1.7261 32.492 0.c2330 -0.2993	0.89019 0.00175 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538 0.39346 0.40979 0.00002 0.19673	0.00116 0.04533 30.00 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580 0.41907 0.37138 0.00001 0.20954	0.00077 0.05587 30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626 0.44290 0.33563 0.00001 0.22145	0.00052 0.06767 30.00 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676 0.46487 0.30269 0.00001 0.23244 30.00 1160 652.1 1.7592 31.917 0.01722 -0.2055	0.00035 0.08055 30.00 920 914-5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728 0.48495 0.27258 0.00000 0.24247 30.00 1180 660.5 1.7664 31.810 0.01597 -0.1872	0.00024 0.09435 30.00 940 529.5 1.6409 34.433 0.03673 -0.5438 0.7315 1.1783 0.50317 0.24524 0.00000 0.25158	0.00017 0.10885 30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840 0.51961 0.22058 0.00000 0.25981 30.00 1220 676.4 1.7796 31.629 0.01376 -0.1558	0.00011 0.12381 30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899 0.53438 0.10843 0.000 0.26719 30.00 1240 684.0 1.7858 31.553 0.01279 -0.1424	0.00008 0.13896 30.00 1000 570.1 1.6828 33.41 0.03091 -0.4297 0.6242 1.1960 0.54759 0.17851 0.00000 0.27380 30.00 1260 691.4 1.7917 31.484 0.01190 -0.1303	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000 0.27969 30.00 1280 698.6 1.7974 31.422 0.01108 -0.1194	1046 593.1 1.7066 32.896 0.0269 -0.3607 0.5608 1.2083
NID2(G) N204(G) O2(G) O2(G) P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, HOLD P)T (OLM/DLT)P GAMMA MOLE FRACTIONS NID2(G) N204(G) O2(G) EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G K, CAL/G)(K) M, MOL M CAL/G COL/G C	0.93172 0.00422 0.00135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465 0.33768 0.49344 0.00004 0.16884 RMODYNAMI 30.00 1060 604.7 1.7164 32.683 0.02509 -0.3285 0.5321	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499 0.36625 0.45060 0.00003 0.18312 C PROPERT 30.00 1080 615.1 1.7261 32.492 0.62330 -0.2993 0.5062	0.89019 0.00175 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538 0.39346 0.40979 0.00002 0.19673	0.00116 0.04533 30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580 0.41907 0.37138 0.00001 0.20954 30.00 1120 634.4 1.7437 32.171 0.02004 -0.2480 0.4616	0.00077 0.05587 30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626 0.44290 0.33563 0.00001 0.22145 30.00 1140 643.4 1.7517 32.037 0.01858 -0.2257 0.4427	0.00052 0.06767 30.00 900 498.8 1.6075 35.314 0.3982 -0.6163 0.8018 1.1676 0.46487 0.30269 0.00001 0.23244 30.00 1160 652.1 1.7592 31.917 0.01722 -0.2055 0.4258	0.00035 0.08055 30.00 920 514-5 1.6247 34.852 0.7675 1.1728 0.48495 0.27258 0.00000 0.24247 30.00 1180 660.5 1.7664 31.810 0.01597 -0.1872 0.4107	0.00024 0.09435 30.00 940 529.5 1.6409 34.433 0.03673 0.7315 1.1783 0.50317 0.24524 0.00000 0.25158	0.00017 0.10885 30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840 0.51961 0.22058 0.00070 0.25981 30.00 1270 676.4 1.7796 31.629 0.01376 -0.1558 0.3855	0.00011 0.12381 30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899 0.93438 0.109000 0.26719 30.00 1240 684.0 1.7858 31.553 0.01279 -0.1424 0.3750	0.00008 0.13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960 0.27380 30.00 1260 691.4 1.7917 31.484 0.01190 -0.1303 0.3657	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000 0.27969 30.00 1280 698.6 1.7974 31.422 0.0108 -0.1194 0.3574	1046 593.1 1.7066 32.896 0.0269 -0.3607 0.5608 1.2083
NID2(G) N204(G) N204(G) N204(G) N204(G) P, ATM T, DEG K H, CAL/G K H, CAL/G M, MOL HT (DLM/DLP)T (DLM/DLT)P COM/DLT)P COM/DLT)P COM/DLT)P COM/DLT)P COM/DLT)P COM/DLT)P COM/DLT)P EQUILIBRIUM THE P, ATM T, DEG K H, CAL/G S, CAL/(G)(K) M, MOL HT (DLM/DLP)T	0.93172 0.00422 0.00135 RMODYNAMI 30.00 412.5 1.5057 38.242 0.04027 -0.7018 0.8956 1.1465 0.33768 0.49344 0.00004 0.16884 RMODYNAMI 30.00 1060 604.7 1.7164 32.683 0.02509 -0.3285 0.5321	0.91316 0.00270 0.02805 C PROPERT 30.00 820 430.4 1.5278 37.584 0.04127 -0.7017 0.8920 1.1499 0.36625 0.45060 0.00003 0.18312 C PROPERT 30.00 1080 615.1 1.7261 32.492 0.62330 -0.2993 0.5062	0.89019 0.00175 0.03602 TES 30.00 840 448.1 1.5492 36.958 0.04169 -0.6917 0.8795 1.1538 0.39346 0.40979 0.00002 0.19673	0.00116 0.04533 30.00 860 465.5 1.5696 36.368 0.04154 -0.6732 0.8594 1.1580 0.41907 0.37138 0.00001 0.20954 30.00 1120 634.4 1.7437 32.171 0.02004 -0.2480 0.4616	0.00077 0.05587 30.00 880 482.4 1.5891 35.820 0.04089 -0.6475 0.8330 1.1626 0.44290 0.33563 0.00001 0.22145 30.00 1140 643.4 1.7517 32.037 0.01858 -0.2257 0.4427	0.00052 0.06767 30.00 900 900 498.8 1.6075 35.314 0.03982 -0.6163 0.8018 1.1676 0.46487 0.30269 0.00001 0.23244 30.00 1160 652.1 1.7592 31.917 0.01722 -0.2055 0.4258 1.2427	0.00035 0.08055 30.00 514.5 1.6247 34.852 0.03840 -0.5812 0.7675 1.1728 0.48495 0.27258 0.00000 0.24247 30.00 1180 660.5 1.7664 31.810 0.01597 -0.1872 0.4107 1.2475	0.00024 0.09435 30.00 940 529.5 1.6409 34.433 0.03673 0.7315 1.1783 0.50317 0.24524 0.00000 0.25158	0.00017 0.10885 30.00 960 543.7 1.6559 34.055 0.03487 -0.5054 0.6949 1.1840 0.51961 0.22058 0.00070 0.25981 30.00 1270 676.4 1.7796 31.629 0.01376 -0.1558 0.3855	0.00011 0.12381 30.00 980 557.3 1.6698 33.715 0.03291 -0.4671 0.6589 1.1899 0.93438 0.109000 0.26719 30.00 1240 684.0 1.7858 31.553 0.01279 -0.1424 0.3750	0.00008 0.13896 30.00 1000 570.1 1.6828 33.411 0.03091 -0.4297 0.6242 1.1960 0.27380 30.00 1260 691.4 1.7917 31.484 0.01190 -0.1303 0.3657	0.15405 30.00 1020 582.3 1.6948 33.140 0.02892 -0.3939 0.5912 1.2022 0.55939 0.15092 0.00000 0.27969 30.00 1280 698.6 1.7974 31.422 0.0108 -0.1194 0.3574	1046 593.1 1.7066 32.896 0.0269 -0.3607 0.5608 1.2083

TABLE III. - Concluded. THERMODYNAMIC PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES

 $\begin{bmatrix} P \text{ is pressure, T is temperature, H is enthalpy, S is entropy, } (DLM/DLP)T = (\partial \ln M/\partial \ln P)_T, \ (DLM/DLT)P = (\partial \ln M/\partial \ln T)_P, \ CP \text{ is heat capacity at constant pressure, and GAMMA is isentropic exponent } (\partial \ln P/\partial \ln \rho)_S \text{ where } \rho \text{ is density.} \end{bmatrix}$

EQUILIBRIUM THE	R MOD Y NA M I	C PROPERT	IES										
P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	100.0 300 28.9 0.7029	100.0 320 36.2 0.7263	100.0 340 45.8 0.7554	100.0 360 58.7 0.7922	100.0 380 75.6 0.8379	100.00 400 96.9 0.8924	100.0 420 121.5 0.9523	100.0 440 146.8 1.0112	100.0 460 169.8 1.0623	100.00 480 188.6 1.1026	100.0 500 203.5 1.1329	100.0 520 215.4 1.1562	100.0 540 225.1 1.175
M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA	90.174 0.01000 -0.2293 0.3171 1.1050	88.327 0.02001 -0.4295 0.4146 1.1000	85.333 0.03610 -0.7282 0.5547 1.0980	80.982 0.05887 -1.1197 0.7400 1.0991	75.347 0.08622 -1.5509 0.9571 1.1027	68.917 0.11162 -1.9043 1.1612 1.1084	62.537 0.12510 -2.0302 1.2740 1.1160	57.068 0.11981 -1.8558 1.2306 1.1248	52.972 0.09912 -1.4720 1.0532 1.1345	50.204 0.07353 -1.0545 0.8363 1.1445	48.434 0.05140 -0.7207 0.6581 1.1537	47.305 0.03551 -0.4971 0.5421 1.1603	46.55 0.0252 -0.363 0.479 1.163
MOLE FRACTIONS			4-1										
N101(G) N102(G) N204(G) 02(G)	0.00000 0.04002 0.95997 0.00000	0.00001 0.08015 0.91983 0.00000	0.00004 0.14518 0.85476 0.00002	0.00012 0.23963 0.76023 0.00006	0.00030 0.36171 0.63784 0.00015	0.00069 0.50068 0.49828 0.00035	0.00141 0.63791 0.35998 0.00071	0.00260 0.75441 0.24169 0.00130	0.00441 0.83981 0.15358 0.00220	0.00700 0.89480 0.09470 0.00350	0.01053 0.92621 0.05799 0.00527	0.01521 0.94137 0.03581 0.00761	0.0212 0.9456 0.0224 0.0106
EQUILIBRIUM THE	RMODYNAMI	C PROPERT	TES										
P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	100.00 560 234.8 1.1923	100.0 580 243.9 1.2082	100.00 600 253.1 1.2238	100.0 620 252.7 1.2396	100.00 640 272.9 1.2558	100.00 660 283.8 1.2725	100.0 680 295.5 1.2899	100.00 700 307.9 1.3079	100.0 720 321.0 1.3264	100.0 740 334.9 1.3454	100.00 760 349.5 1.3648	100.00 780 364.6 1.3844	
M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA	46.007 0.01919 -0.2933 0.4547 1.1624	45.564 0.01596 -0.2643 0.4542 1.1594	45.162 0.01466 -0.2622 0.4695 1.1556	44.765 0.01469 -0.2780 0.4950 1.1518	44.354 0.01566 -0.3058 0.5270 1.1485	43.915 0.01731 -0.3416 0.5630 1.1460	43.443 0.01946 -0.3824 0.6009 1.1442	42.938 0.02195 -0.4257 0.6392 1.1432	42.400 0.02465 -0.4693 0.6763 1.1428	41.834 0.02744 -0.5114 0.7110 1.1431	41.245 0.03020 -0.5502 0.7420 1.1440	40.642 0.03283 -0.5842 0.7684 1.1453	
MOLE FRACTIONS													
N101(G) N102(G) N204(G) 02(G)	0.02881 0.94240 0.01439 0.01440	0.03810 0.93345 0.00940 0.01905	0.04929 0.91982 0.00625 0.02464	0.06247 0.90207 0.00422 0.03124	0.07771 0.88054 0.00290 0.03886	0.09501 0.85547 0.00201 0.04751	0.11431 0.82713 0.00141 0.05715	0.13546 0.79582 0.00099 0.06773	0.15827 0.76189 0.00071 0.07913	0.18247 0.72580 0.00050 0.09123	0.20776 0.68800 0.00036 0.10388	0.23379 0.64905 0.00026 0.11690	
EQUILIBRIUM THE	RMODYNAMI	C PROPERT	IES								•		
P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	100.00 800 380.1 1.4042	100.00 820 396.1 1.4238	100.0 840 412.3 1.4433	100.0 860 428.5 1.4625	100.0 880 444.8 1.4812	100.00 900 460.9 1.4992	100.00 920 476.7 1.5167	100.0 940 492.3 1.5334	100.0 960 507.4 1.5492	100.0 980 522.0 1.5643	100.0 1000 536.1 1.5786	100.9 1020 549.7 1.5920	100.1 1046 562. 1.604
M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA	40.030 0.03524 -0.6123 0.7892 1.1472	39.419 0.03734 -0.6334 0.8039 1.1494	38.815 0.03906 -0.6472 0.8122 1.1520	38.225 0.04037 -0.6535 0.8141 1.1550	37.655 0.04124 -0.6524 0.8098 1.1584	37.109 0.04167 -0.6446 0.7998 1.1620	36.593 0.04169 -0.6307 0.7849 1.1659	36.107 0.04132 -0.6116 0.7658 1.1701	35.653 0.04061 -0.5884 0.7435 1.1744	35.233 0.03961 -0.5620 0.7188 1.1790	34.845 0.03838 -0.5335 0.6926 1.1838	34.489 0.03698 -0.5036 0.6655 1.1887	34.16 0.0354 -0.473 0.638 1.193
MOLE FRACTIONS													
N101(G) N102(G) N204(G) 02(G)	C.26023 O.60947 O.00019 O.13011	0.28671 0.56980 0.00014 0.14335	0.31289 0.53056 0.00010 0.15645	0.33849 0.49220 0.00007 0.16924	0.36323 0.45510 0.00005 0.18161	0.38690 0.41961 0.00004 0.19345	0.40935 0.38595 0.00003 0.20468	0.43046 0.35429 0.00002 0.21523	0.45016 0.32474 0.00001 0.22508	0.46843 0.29734 0.00001 0.23422	0.48529 0.27206 0.00001 0.24265	0.50076 3.24885 0.00001 0.25038	0.51492 0.22752 0.00000 0.25746
EQUILIBRIUM THE	ERMODYNAMI	C PROPERT	TES										
P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	100.0 1060 575.2 1.6166	100.0 1080 587.2 1.6278	100.00 1100 598.6 1.6383	100.0 1120 609.6 1.6482	100.00 1140 620.2 1.6575	100.00 1160 630.3 1.6663	100.00 1180 640.0 1.6746	100.0 1200 649.4 1.6825	100.0 1220 658.4 1.6900	100.0 1240 667.1 1.6971	100.0 1260 675.6 1.7038	100.0 1280 683.8 1.7103	
M, HOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA		33.596 0.03216 -0.4131 0.5857 1.2041	33.352 0.03049 -0.3844 0.5610 1.2093	33.130 0.02884 -0.3568 0.5376 1.2144	32.929 0.02722 -0.3307 0.5158 1.2195	32.747 0.02566 -0.3062 0.4955 1.2244	32.582 0.02416 -0.2833 0.4768 1.2293	32.433 0.02273 -0.2619 0.4596 1.2339	32.299 0.02138 -0.2421 0.4439 1.2383	32.177 0.02010 -0.2239 0.4296 1.2426	32.066 0.01890 -0.2070 0.4166 1.2465	31.966 0.01778 -0.1915 0.4049 1.2504	
MOLE FRACTIONS													
										0.60126			

Table IV. - transport properties at assigned pressure and temperatures $\mbox{(a) NO}_2\text{-N}_2\mbox{O}_4 \mbox{ system}$

Femper- ature,	Viscosity, poises	Т	hermal cond	uctivity, cal/	(cm)(sec)(^O K)		Heat cal/	apacity, c _p , (g)(^O K)	Pranc	itl number	Lewis number
°к		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
			<u> </u>	P	ressure, 0.0	l atm					
									0.7089	1.0312	0,6259
300	162.X10-6	25.X19-6	19. X10~5	44.X10-5	141.X10-6	185.X10-6 87.	0.1940	1.1792 0.4590	0.7089	0.9212	0.5925
320	174.	28.	21.	49. 52.	38.	63.	0.2002	0.2698	0.7072	0.7916	0.5863
340	185.	30. 32.	23.	56.	3.	59.	0.2036	0.2241	0.7080	0.7359	0.5855
360 380	195. 205.	33.	27.	60.	í.	61.	0.2070	0.2138	0.7090	0.7184	0.5882
200	'''	3 .				l		, i			
400	214.	35.	29.	63.	0.	64.	0.2104	0.2128	0.7098	0.7132	0.5925
420	223.	36.	31.	67.	n.	67.	0.2137	0.2147	0.7105	0.7119	0.592
440	232.	38.	33.	71.	ე.	71.	0.2169	0.2174	0.7113	0.7118	0.594
460	241.	39.	35.	74.	0.	75.	0.2201	0.2203	0.7119 0.7126	0.7122	0.586
480	249.	40.	38.	78.	າ.	78.	0.2233	0.2234	0. 7120	9.7121	
					_	82.	0.2263	0.2264	0.7132	0.7133	
500	258.	42.	40.	82. 86.	0.	86.	0.2293	0.2293	0.7138	0.7139	
520	266.	43. 44.	45.	89.	0.	89.	0.2322	0.2322	0.7144	n.7144	
540 560	274.	46.	47.	93.	ň.	93.	0.2350	0.2350	0.7149	0.7149	1
580	290.	47.	49.	96.	n.	96.	0.2377	0.2377	0.7154	0.7154	ļ
						1					
600	298.	48.	52.	100.	ာ.	100.	0.2403	0.2403	0.7155 0.7160	0.7155 0.7160	ł
620	306.	50.	54.	104.	2.	104.	0.2428	0.2428 0.2453	n. 7164	0.7164	
640	313.	51.	57.	107.	2.	107.	0.2476	0.2476	0.7168	0.7168	Ì
660	321.	52.	59.	111.	0. 1.	114.	0.2498	0.2498	0.7168	0.7168	
680	328.	53.	61.	114.	, ·	1.11					ľ
700	335.	54.	63.	118.	0.	118.	0.2519	0.2519	0.7172	0.7172	
720	342.	55.	66.	121.	n.	121.	0.2540	0.2540	0.7175	0.7175	1
740	350.	Ś7 .	68.	125.	0.	125.	0.2559	0.2559	0.7174	0.7174	l
760	357.	58.	70.	128.	0.	128.	0.2578	0.2578	0.7177	0.7177 0.7180	1
780	363.	59.	72.	131.	0.	131.	0.2595	0.2595	0.7180	7,.7100	
						125	0.2612	0.2612	0.7182	0.7182	
800	370. 377.	60.	75. 77.	135.	0.	135.	0.2628	0.2628	0.7185	0.7185	
820 840	383.	61. 62.	79.	141.	0.	141.	0.2643	0.2643	0.7183	0.7183	
860	390.	63.	81.	144.	0.	144.	0.2657	0.2657	0.7185	0.7185	
880	397.	64.	83.	147.	n.	147.	0.2671	0.2671	0.7187	0.7187	
900	403.	65.	85.	151.	ŋ .	151.	0.2684	0.2684	0.7185	0.7185	
920	409.	55.	87.	154.	ာ.	154.	0.2697	0.2697	0.7187 0.7189	0.7187 0.7189	
940	416.	67.	89.	157.	0.	157.	0.2709	0.2709 0.2720	0.7189	0.7187	1
960 980	422. 428.	68. 69.	91.	160.	7:	163.	0.2732	0.2732	0.7188	0.7188	
340	440.	0.7+	95.	137.	,•						ĺ
1000	434.	70.	95.	166.	n.	166.	0.2743	0.2743	0.7190	0.7190	
1020	440.	71.	97.	159.	o.	169.	0.2752	0.2752	0.7187	0.7187	1
1040	446.	72.	99.	171.	0.	171.	0.2761	0.2761	0.7188	0.7188	Į
1060	452.	73.	101.	174.	0.	174.	0.2769	0.2769	0.7189	0.7189	
1080	458.	74.	103.	177.	0.	177.	0.2777	0.2777	0.7190	0.7190	
							0.2785	0.2785	0.7191	0.7191	
1100	464. 470.	75.	104.	180.	0.	180.	0.2785	0.2783	0.7192	0.7192	1
1120 1140	475.	76. 77.	108.	185.	0.	185.	0.2800	0.2800	0.7190	0.7190	
1160	481.	78.	110.	188.	n.	189.	0.2808	0.2808	0.7191	0.7191	
1180	487.	79.	112.	191.	n.	191.	0.2815	0.2815	0.7191	0.7191	
						1			0.7100	0.7102	
1200	492.	BO.	113.	193.	0.	193.	0.2822	0.2822 0.2829	0.7192 0.7193	0.7192 0.7193	
1270	498.	81. 82.	115.	196.	0.	196. 199.	0.2829	0.2836	0.7190	0.7190	
1 240 1 260	503. 509.	82.	117.	201.	%:	201.	0.2842	0.2842	0.7191	0.7191	
1280	515.	83.	120.	204.	0.	204.	0.2849	0.2849	0.7192	0.7192	

TABLE IV. - Continued. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES $\text{(a) Continued.} \quad \text{NO}_2\text{-N}_2\text{O}_4 \text{ system}$

Temper- ature,	Viscosity,	Т	hermal cond	uctivity, cal/	(cm)(sec)(^O K)		Heat c	apacity, c _p , /(g)(^O K)	Prand	tl number	Lewis number
°К		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
	<u></u>		I		Pressure	, 0.1 atm	1	1			
300	149.X10-6	20.X10-6	21. X10-6	41.X10-6	382.X10-6	422.X10-6	0.1969 0.1989	2.3688 1.6430	0.7219 0.7148	0.8335 0.9929	0.8540 0.6813
320	168.	25.	22.	47. 52.	232. 90.	278.	0.1989	0.7696	0.7104	0.9917	0.6160
340 360	183.	29. 31.	25.	56.	31.	87.	0.2040	0.3952	0.7092	0.8812	0.5967
380	204.	33.	27.	60.	11.	71.	0.2072	0.2732	0.7095	0.7871	0.5920
400	214.	35.	29.	63.	4.	68.	0.2104	0.2350	0.7100	0.7417	0.5922
420	223.	36.	31.	67.	2.	69.	0.2137	0.2236	0.7106	0.7237	0.5932
440	232.	38.	33.	71.	1.	72.	0.2170	0.2213	0.7113	0.7170	0.5951
40 C	241.	39.	35.	74.	0.	75.	0.2201	0.2222	0.7120	0.7146 0.7139	0.5964 0.5976
480	249•	40.	38.	78.	0.	78.	0.2233	0.2243	9.7120	0.1137	0.55,10
500	258.	42.	40.	82.	0.	82.	0.2263	0.2268	0.7132	0.7139	0.5979 0.5940
520	266.	43.	42.	86.	0.	86.	0.2293	0.2296	0.7138	0.7142 0.7146	0.5940
540	274.	44.	45.	89. 93.	0.	93.	0.2350	0.2351	0.7149	0.7150	0.5803
560 580	282. 290.	46. 47.	49.	96.	ő.	96.	0.2377	0.2378	0.7154	0.7155	0.6055
	1					l		0.2404	0 7155	0.7154	
600	298.	48.	52 •	100.	0.	100.	0.2403	0.2404 0.2429	0.7155	0.7156 0.7160	
620	306.	50.	54. 57.	104.	0.	107.	0.2453	0.2453	0.7164	0.7164	
640 660	313. 321.	51. 52.	59.	111.	0.	111.	0.2476	0.2476	0.7168	0.7168	
68C	328.	53.	61.	114.	0.	114.	0.2498	0.2498	0.7168	0.7168	
==	\n.c	e.	63.	118.	0.	118.	0.2519	0.2519	0.7172	0.7172	ļ
700 720	335. 342.	54. 55.	66.	121.	0.	121.	0.2540	0.2540	0.7175	0.7175	i
740	350.	57.	68.	125.	0.	125.	0.2559	0.2559	0.7174	0.7174	
760	357.	58.	70.	128.	9.	128.	0.2578	0.2578	0.7177	0.7177 0.7180	
780	363.	59.	72.	131.	0.	131.	0.2595	0.2343	0.7180	0.7100	
800	370.	60.	75.	135.	0.	135.	0.2612	0.2612	0.7182	0.7182	
820	377.	61.	77.	138.	0.	138.	0.2628	0.2628	0.7185	0.7185 0.7183	ŀ
840	383. 390.	62. 63.	79. 81.	141.	0.	144.	0.2657	0.2657	0.7185	0.7185	
860 880	397.	64.	83.	147.	ŏ.	147.	0.2671	0.2671	0.7187	0.7187	
						1	0.2684	0.2684	0.7185	0.7185	
900 920	403. 409.	65. 66.	85. 87.	151.	0.	151. 154.	0.2697	0.2697	0.7187	0.7187	
940	416.	67.	89.	157.	ő.	157.	0.2709	0.2709	0.7189	0.7189	
960	422.	68.	91.	160.	0.	160.	0.2720	0.2720	0.7187	0.7187	
980	428.	69.	93.	163.	0.	163.	0.2732	0.2732	0.7188	0.7188	
1000	434.	70.	95.	166.	0.	166.	0.2743	0.2743	0.7190		
1020	441).	71.	97.	169.	0.	169.	0.2752	0.2752	0.7187	0.7187	
1040	446.	72.	99.	171.	ņ.	171.	0.2761	0.2761	0.7188	0.7188 0.7189	
1060 1080	452. 458.	73. 74.	101.	174.	0.	174. 177.	0.2769	0.2769	0.7190	0.7190	
1000	450.	'**	1,000	****	"	1					
1100	404.	75.	104.	180.	0.	180.	0.2785	0.2785 0.2793	0.7191	0.7192 0.7192	
1120	47C•	76.	106.	182.	0.	182.	0.2793	0.2793	0.7192	0.7190	1
1140 1160	475. 481.	77. 73.	108.	185.	0.	188.	0.2808	0.2898	0.7191	0.7191	1
1180	487.	79.	112.	191.	ŏ.	191.	0.2815	0.2815	0.7191	0.7191	
1200	402	80.	113.	193.	0.	193.	0.2822	0.2822	0.7192	0.7192	
1200 1220	492.	80.	115.	196.	0.	196.	0.2829	0.2829	0.7193	0.7193	l
1240	503.	82.	117.	199.	0.	199.	0.2836	0.2836	0.7190	0.7190	j
1260	509.	82.	119.	201.	0.	201.	0.2842		0.7191	0.7191	1
1280	515.	83.	120.	204.	0.	204.	0.2849	0.2849	0.7192	0.11,2	L

Table IV. - Continued. Transport properties at assigned pressure and temperatures $\hbox{(a) Continued. NO}_2\hbox{-}{}^{\rm N}{}_2{}^{\rm O}{}_4 \ {\rm system}$

Temper- ature,	Viscosity, poises		Thermal cond	uctivity, cal/	(cm)(sec)(OK)		Heat c	apacity, c _p ,	Pranc	ltl number	Lewis number
oк		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	i
			1		Pressure, 1 a	ıtm					
300 320 340 360 380	133.X10-6 151. 171. 188. 202.	14.X10-6 18. 23. 28. 32.	23.×10-5 ?4. 25. 26. ?7.	36.X10-6 42. 48. 54. 59.	246.X10-6 340. 317. 195. 92.	282.X10-6 382. 365. 249. 151.	0.1997 0.2034 0.2053 0.2066 0.2085	1.2895 1.8358 1.8827 1.2988 0.7288	0.7292 0.7289 0.7240 0.7176 0.7137	0.6056 0.7259 0.8804 0.9812 0.9723	1.2415 1.0047 0.8036 0.6805 0.6274
400 420 440 460 480	213. 222. 232. 241. 249.	34. 36. 37. 39. 40.	29. 31. 33. 36. 38.	63. 67. 71. 74. 78.	40. 18. 8. 4. 2.	103. 85. 79. 78. 80.	0.2111 0.2140 0.2171 0.2202 0.2233	0.4329 0.3088 0.2595 0.2402 0.2333	0.7119 0.7116 0.7118 0.7122 0.7127	0.8913 0.8111 0.7617 0.7368 0.7252	0.6074 0.6001 0.5985 0.5984 0.5990
500 520 540 560 580	258. 266. 274. 282. 290.	42. 43. 44. 46. 47.	40. 42. 45. 47. 49.	82. 86. 89. 93.	1. 1. 0. 0.	83. 86. 90. 93. 97.	0.2264 0.2293 0.2322 0.2350 0.2377	0.2316 0.2322 0.2338 0.2360 0.2383	0.7133 0.7138 0.7144 0.7149 0.7154	0.7198 0.7174 0.7154 0.7161 0.7161	0.6005 0.6019 0.6026 0.6023 0.6017
600 620 640 660 680	298. 306. 313. 321. 328.	48. 50. 51. 52. 53.	52. 54. 57. 59. 61.	100. 104. 107. 111.	0. 0. 0. 0.	100. 104. 107. 111. 114.	0.2403 0.2428 0.2453 0.2476 0.2498	0.2407 0.2431 0.2454 0.2477 0.2499	0.7155 0.7160 0.7164 0.7168 0.7168	0.7160 0.7163 0.7166 0.7169 0.7169	0.6004 0.6100 0.5888 0.6132 0.6123
700 720 740 760 780	335. 342. 350. 357. 363.	54. 55. 57. 58. 59.	63. 66. 68. 70.	118. 121. 125. 128.	0. 0. 0. 0.	118. 121. 125. 128. 131.	0.2519 0.2540 0.2559 0.2578 0.2595	0.2520 0.2540 0.2559 0.2578 0.2595	0.7172 0.7175 0.7174 0.7177 0.7180	0.7172 0.7175 0.7175 0.7177 0.7177	
800 820 840 860 880	370. 377. 383. 390.	60. 61. 62. 63.	75. 77. 79. 81.	135. 138. 141. 144.	0. 0. 0.	135. 138. 141. 144. 147.	0.2612 0.2628 0.2643 0.2657 0.2671	0.2612 0.2628 0.2643 0.2657 0.2671	0.7182 0.7185 0.7183 0.7185 0.7187	0.7182 0.7185 0.7183 0.7185 0.7187	
900 920 940 960 980	403. 409. 416. 422. 428.	65. 66. 67. 68.	85. 87. 89. 91.	151. 154. 157. 160.	0.	151. 154. 157. 160. 163.	0.2684 0.2697 0.2709 0.2720 0.2732	0.2684 0.2697 0.2709 0.2720 0.2732	0.7185 0.7187 0.7189 0.7187 0.7188	0.7185 0.7187 0.7189 0.7187 0.7188	
1000 1020 1040 1060 1080	434. 440. 446. 452. 458.	70. 71. 72. 73. 74.	95. 97. 99. 101.	166. 169. 171. 174. 177.	0. 0. 0.	166. 169. 171. 174.	0.2743 0.2752 0.2761 0.2769 0.2777	0.2743 0.2752 0.2761 0.2769 0.2777	0.7190 0.7187 0.7188 0.7189 0.7190	0.7190 0.7187 0.7188 0.7189 0.7191	
1100 1120 1140 1160 1180	464. 470. 475. 481. 487.	75. 76. 77. 78. 79.	104. 106. 108. 110.	187. 182. 195. 188.	0. 2. 0. 0.	180. 182. 185. 188.	0.2785 0.2793 0.2800 0.2808 0.2815	0.2785 0.2793 0.2800 0.2808 0.2815	0.7191 0.7192 0.7190 0.7191 0.7191	0.7192 0.7193 0.7190 0.7191 0.7192	
1200 1220 1240 1260 1280	492. 498. 503. 509.	80. 81. 82. 82.	113. 115. 117. 119.	193. 196. 199. 201. 204.	n. 0. n. 2.	193. 196. 199. 201. 204.	0.2822 0.2829 0.2836 0.2842 0.2849	0.2822 0.2829 0.2836 0.2842 0.2849	0.7192 0.7193 0.7190 0.7191 0.7192	0.7192 0.7193 0.7190 0.7191 0.7192	

TABLE IV. - Continued. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES $\text{(a) Continued.} \quad \text{NO}_2\text{-N}_2\text{O}_4 \text{ system}$

Temper-	Viscosity,	Т	hermal condu	ctivity, cal/(cm)(sec)(⁰ K)		Heat cap	pacity, c _p , g)(^O K)	Prandt	l number	Lewis number
°K		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
	<u></u>		L	<u></u>	Press	are, 10 atm			d		
300 320 340 360	125.X10-6 138. 152. 170.	11.X10-6 13. 16. 20.	23. X10-6 26. 28. 29.	34.X10-6 39. 44. 49.	93.X10-6 163. 245. 302.	127.X10-6 202. 289. 351.	0.2009 0.2062 0.2103 0.2130	0.5650 0.8465 1.2070 1.5207 1.5558	0.7293 0.7319 0.7332 0.7328 0.7290	0.5562 0.5767 0.6366 0.7356 0.8521	1.4827 1.3556 1.1838 0.9959 0.8326
380	188.	25.	30.	55.	288.	343.	0.2144				
400 420 440 460 480	204. 218. 229. 239. 249.	30. 33. 36. 38. 40.	31. 32. 34. 36. 38.	61. 66. 70. 74. 78.	211. 127. 69. 37. 20.	272. 193. 139. 111. 98.	0.2153 0.2167 0.2186 0.2211 0.2238	1.2499 0.8508 0.5619 0.3997 0.3174	0.7233 0.7186 0.7158 0.7145 0.7140	0.9392 0.9623 0.9250 0.8629 0.8073	0.722 0.660 0.629 0.615 0.608
500 520 540 560 580	257. 266. 274. 282. 290.	41. 43. 44. 46. 47.	40. 42. 45. 47. 49.	82 • 85 • 89 • 93 •	11. 6. 4. 2.	93. 92. 93. 95. 98.	0.2267 0.2295 0.2323 0.2351 0.2378	0.2771 0.2576 0.2486 0.2448 0.2438	0.7141 0.7143 0.7147 0.7151 0.7155	0.7692 0.7464 0.7336 0.7264 0.7225	0.606 0.605 0.605 0.606 0.607
600 620 640 660 680	298. 306. 313. 321. 328.	48. 50. 51. 52. 53.	52. 54. 57. 59.	100. 104. 107. 111.	1. 1. 0. 0.	101. 104. 108. 111.	0.2404 0.2429 0.2453 0.2476 0.2498	0.2442 0.2454 0.2470 0.2487 0.2506	0.7156 0.7160 0.7164 0.7168 0.7168	0.7200 0.7189 0.7183 0.7181 0.7177	0.608 0.608 0.611 0.612 0.613
70C 720 740 760 780	335. 342. 350. 350.	54. 55. 57. 58.	64. 66. 68. 70. 72.	118. 121. 125. 128. 131.	0. 0. 0.	118. 121. 125. 128. 131.	0.2520 0.2540 0.2559 0.2578 0.2595	0.2525 0.2544 0.2562 0.2580 0.2597	0.7172 0.7175 0.7174 0.7177 0.7180	0.7179 0.7178 0.7180	0.614 0.615 0.616 0.616
800 820 840 860 880	370. 377. 383. 390. 397.	60. 61. 62. 63.	75. 77. 79. 81. 83.	135. 138. 141. 144. 147.	0. 0. 0. 0.	135. 138. 141. 144. 147.	0.2612 0.2628 0.2643 0.2657 0.2671	0.2613 0.2629 0.2644 0.2658 0.2671	0.7182 0.7185 0.7183 0.7185 0.7187	0.7186 0.7184 0.7186	
900 920 940 960 980	403. 409. 416. 422. 428.	65. 06. 67. 08.	85. 87. 89. 91.	151 • 154 • 157 • 160 • 163 •	7. 0. 0. 0.	151. 154. 157. 160. 163.	0.2684 0.2697 0.2709 0.2720 0.2732	0.2697 0.2709 0.2721	0.7185 0.7187 0.7189 0.7187 0.7188	0.7188 0.7189 0.7187	
1000 1020 1040 1060 1080	434. 440. 446. 452. 458.	70. 71. 72. 73. 74.	95. 97. 99. 101. 103.	166. 169. 171. 174.	0. 0. 0. 0.	166. 169. 171. 174. 177.	0.2743 0.2752 0.2761 0.2769 0.2777	0.2761	0.7190 0.7187 0.7188 0.7189	0.7188	
1100 1120 1140 1160 1180	464. 470. 475. 481. 467.	75. 76. 77. 78. 79.	104. 106. 108. 110.	180. 182. 185. 188.	0. 0. 0. 0.	180. 182. 185. 188.	0.2785 0.2793 0.2800 0.2808 0.2815	0.2808	0.7192 0.7192 0.7193 0.7193	0.7193 0.7190 1 0.7191	
1200 1220 1240 1260 1280	492. 498. 503. 509. 515.	80. 81. 82. 62.	113. 115. 117. 119.	193. 196. 199. 201. 204.	0. 0. 0. 0.	193 • 196 • 199 • 201 • 204 •	0.2822 9.2829 9.2836 0.2842 0.2844	0.2829 0.2836 0.2842	0.7192 0.7193 0.7190 0.7193	0.7190	

TABLE IV. - Continued. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES $\hbox{(a) Concluded.} \quad \text{NO}_2\text{-N}_2\text{O}_4 \text{ system}$

Temper- ature,	Viscosity, poises	r	Chermal cond	luctivity, cal/	(cm)(sec)(OK)		Heat c	apacity, c _p , (g)(^O K)	Pranc	itl number	Lewis
°к		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
				I	Pressure, 100	atm					
300	123.×10-6	10.X10-6	24. X10-5	34.X10-5	31.X10-6	65.X10-6	0.2012	0.3170	0.7288	0.6018	1.5780
320	132.	11.	26.	37.	57.	95.	0.2072	0.4144	0.7310	0.5781	1.5292
340	143.	13.	29.	41.	97.	138.	0.2125	0.5541	0.7327	0.5729	1.4525
360	155.	15.	31.	46.	148.	194.	0.2172	0.7383	0.7350	0.5904	1.3468
380	169.	18.	33.	51.	203.	754.	0.2208	0.9530	0.7366	0.6326	1.2139
400	184.	21.	35.	56.	248.	304.	0.2234	1.1526	0.7371	0.6979	1.069
. 420	200.	25.	36.	61.	262.	323.	0.2249	1.2590	0.7356	9.7793	0.931
440	216.	29.	37.	67.	236.	303.	0.2258	1.2055	0.7317	0.8580	0.8190
460	230.	33.	38.	72.	184.	256.	0.2266	1.0176	0.7272	0.9135	0.737
490	242.	37.	40.	76.	129.	205.	0.2277	0.7887	0.7232	0.9321	0.6849
500	253.	39.	41.	RI.	84.	165.	0.2293	0.5956	0.7202	0.9153	0.6535
520	263.	41.	43.	85.	54.	138.	0.2313	0.4611	0.7184	0.8780	0.5352
540	273.	43.	45.	89.	34.	123.	0.2335	0.3762	0.7174	0.8364	0.6249
560 580	281. 289.	45. 47.	48. 50.	93.	22. 14.	114.	0.2359	0.3250 0.2949	0.7169 0.7167	0.8005 0.7737	0.6162
70.5		***	30.	~•		11	0.2307	,,,,,,,	.,. 1101	57 . (F 5 F	0.0102
600	298.	48.	52.	100.	9.	109.	0.2408	0.2774	0.7165	0.7549	0.614
620	305.	49.	54.	104.	6.	110.	0.2432	0.2674	0.7166	0.7426	0.613
640 660	313. 321.	51. 52.	57. 59.	107.	4.	112.	0.2455	0.2618	0.7169	0.7346	0.613
680	328.	53.	61.	111.	3.	114.	0.2478 0.2499	0.2590 0.2579	0.7171 0.7171	0.7294 0.7257	0.614
5.70	7.501				٠.		0.62477	0.2717	3, 1111	0.1231	0.015
700	335.	54.	64.	118.	2.	119.	0.2520	0.2577	0.7174	0.7235	0.615
720	342.	55.	66.	121.	1.	122.	0.2541	0.2582 0.2590	0.7176	0.7221	0.6163
740 760	349. 356.	57. 58.	68. 70.	125. 128.	1.	125. 129.	0.2560 0.2578	0.2590 0.2601	0.7176	0.7208	0.6164
780	363.	59.	73.	131.	1. 1.	132.	0.2596	0.2613	0.7181	0.7202 0.7199	0.6172 0.6185
-											
600	370.	60.	75.	135.	n.	135.	0.2612	0.2625	0.7183	0.7197	0.6192
R20	377.	61.	77.	138.	0.	139.	0.2628	0.2638	0.7185	0.7196	0.6277
840 860	383. 390.	62. 63.	79. 81.	141.	0. 0.	141.	0.2643 0.2657	0.2651 0.2664	0.7184	0.7192 0.7192	0.620
880	397.	64.	R3.	147.	ń.	148.	0.2671	0.2676	0.7188	0.7193	0.6224
										_	
900 920	403. 409.	65. 66.	85. 87.	151.	0.	151.	0.2684	0.2688	0.7186	0.7190	
940	416.	67.	89.	157.	0.	154. 157.	0.2709	0.2712	0.7189	0.7191 0.7192	
960	477.	68.	91.	160.	n.	160.	0.2721	0.2723	0.7187	0.7189	
980	428.	69.	93.	163.	7.	163.	0.2732	0.2734	0.7189	0.7191	
1000	434.	70.	95.	166.	0.	166.	0.2743	0.2745	0.7190	0.7192	
1020	440.	71.	97.	169.	o:	169.	0.2752	0.2754	0.7187	0.7189	
1040	446.	72.	99.	171.	0.	171.	0.2761	0.2762	0.7188	0.7190	
1060	452.	73.	101.	174.	2.	174.	0.2769	0.2770	1.7190	0.7191	
1080	458.	74.	103.	177.	0.	177.	0.2777	0.2778	0.7191	0.7191	
1100	464.	75.	104.	180.	0.	180.	0.2785	0.2786	9.7192	0.7192	
1120	470.	76.	106.	182.	n.	182.	0.2785 0.2793	0.2793	0.7193	0.7193	
1140	475.	77.	108.	185.	o.	185.	0.2800	0.2801	2. 71 90	0.7190	
1160 1180	481. 487.		110.	189.	0.	189. 191.	0.2808	0.2808 0.2815	0.7191 0.7192	0.7191 0.7192	
1									ŀ		
1200	49?.	80.	113.	193.	0.	193.	0.2822	0.2822	0.7192	0.7193	
1220	498.	81.	115.	195.	ი.	196.	0.2829	0.2829	0.7193	0.7194	
1240 1260	503. 509.		117.	199.	n.	199.	0.2836	0.2836	0.7190	0.7191	
1280	515.	83.	120.	204.	9.	204.	0.2849	0.2849	0.7192	0.7192	

TABLE IV. - Continued. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES (b) NO $_2$ -N $_2$ O $_4$ -NO -O $_2$ system

emper- ature,	Viscosity,	т	hermal cond	uctivity, cal/	(cm)(sec)(OK)	1	Heat c	apacity, c _p , (g)(^O K)	Prand	tl number	Lewis number
°к		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
				1	Pressure,), 01 atm		<u> </u>	1		L
	142 VIO 6	25.X10-6	19.X10-6	44.X10-6	143.X10-6	187.X10-6	0.1941	1.1871	0.7089	1.0255	0.6309
300 320	162.X10-6	28.	21.	49.	44.	92.	0.1970	0.4767	0.7068	0.8996	0.6346
340	185.	30.	22.	52.	23.	75.	0.2003	0.3064	0.7071	0.7552	0.815
360	195.	32.	24.	56.	27.	83.	0.2038	0.2934	0.7078	0.6880 0.6581	1.201
380	205.	33.	27.	60.	44.	104.	0.2073	0.3352	0.7007	0.0561	1.201
400	215.	35.	29.	64.	74.	138.	0.2109	0.4122	0.7092	0.6417	1.215
420	225.	37.	31.	68.	118.	186.	0.2145	0.5231	0.7096	0.6334 0.6320	1.204
440	235.	39.	33.	72.	177.	249.	0.2182	0.6691 0.8476	0.7100	0.6374	1.154
460 480	245. 256.	42. 45.	35. 36.	77. 81.	249. 332.	326. 413.	0.2255	1.0488	0.7099	0.6498	1.117
,											
500	267.	48.	38.	86.	414.	500.	0.2290	1.2536	0.7095	0.6682	1.075
520	278.	52.	39.	91.	484.	575.	0.2324	1.4338	0.7078	0.7195	0.980
540	288.	56.	40.	95.	528. 539.	624.	0.2386	1.5999	0.7067	0.7485	0.934
560 580	299. 310.	60. 65.	41.	101. 105.	514.	620.	0.2413	1.5540	0.7053	0.7758	0.892
							2 2/ 2/	1 4343	0.7039	0.7988	0.857
600	319.	69.	42.	111.	463.	574.	0.2436	1.4343	0.7026	0.1755	0.82
620	329.	73.	42.	115.	397. 328.	512. 447.	0.2475	1.0923	0.7014	0.8253	0.80
640	338.	76.	43.	119. 123.	263.	386.	0.2491	0.9245	0.7004	0.8285	0.78
660 680	346. 354.	79. 82.	44.	127.	208.	334.	0.2506	0.7794	0.6996	0.8252	0.77
						202	0.2520	0.6609	0.6990	0.8173	0.766
700	362.	85.	45.	130.	162. 126.	293. 260.	0.2533	0.5677	0.6986	0.8060	0.75
720	369.	87.	47. 48.	134. 137.	98.	235.	0.2546	0.4960	0.6983	0.7932	0.754
740 760	377. 384.	90. 92.	49.	141.	77.	217.	0.2558	0.4416	0.6980	0.7799	0.75
780	391.	94.	50.	144.	60.	204.	0.2569	0.4006	0.6979	0.7674	0.74
			E1	147.	47.	194.	0.2580	0.3698	0.6979	0.7560	0.74
800	398.	96. 97.	51. 53.	150.	38.	188.	0.2591	0.3466	0.6978	0.7460	0.74
820 840	404. 411.	99.	54.	153.	30.	183.	0.2602	0.3292	0.6978		0.74
860	418.	101.	55.	156.	24.	181.	0.2611	0.3160	0.6978		0.74
880	424.	103.	57.	159.	20.	179.	0.2621	0.3061	0.6978	0.7240	0.14
	430.	104.	58.	162.	16.	178.	0.2630	0.2985	0.6979	0.7200	0.74
900 920	437.	106.	59.	165.	13.	179.	0.2639	0.2928	0.6978	0.7160	0.74
940	443.	107.	61.	168.	11.	179.	0.2648	0.2884	0.6979		0.74
960	449.	109. 110.	62.	171.	9. 8.	180.	0.2656		0.6979		0.74
980	456.	110.	""	2.4.	"-		1				
1000	462.	112.	65.	177.	7.	183.	0.2672	0.2806	0.6980	0.7068	0.74
1000 1020	468.	113.	66.	179.	6.	185.	0.2678	0.2791	0.6980	0.7053	0.74
1040	474.	115.	67.	182.	5.	187.	0.2685		0.6981		0.74
1060	480.	116.	69.	185.	4.	189.	0.2691	0.2772	0.6982		0.74
1080	486.	118.	70.	188.	4.	191.	0.2097	0.2.37	""		
1100	491.	119.	n .	190.	3.	193.	0.2704	0.2763	0.6982	0.7020	0.74
1120	497.	121.	72.	193.	3.	196.	0.2710		0.6982	0.7016	0.74
1140	503.	122.	74.	196.	2.	198.	0.2716		0.6984		0.74
1160 1180	509. 514.	123. 125.	75. 76.	198.	2.	200.	0.2727		0.6984		0.74
		1								0.700/	, ,,
1200	520.	126.	77.	203.	2.	205.	0.2733	0.2762	0.6985		0.74
1220	526.	128.	78.	206.	1.	207.	0.2738		0.6986		0.74
1240	531.	129.	80.	209.	1.	210.	0.2744		0.6987	0.7000	0.74
1260	537.	130.	81.	211.	1.	1 616.	0.2754		0.6986		0.74

TABLE IV. - Continued. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES (b) Continued. $NO_2-N_2O_4-NO-O_2$ system

Temper- ature,	Viscosity, poises	ר	Thermal cond	luctivity, cal/	(cm)(sec)(^O K)	-	Heat c	apacity, c _p , /(g)(^O K)	Pranc	ltl number	Lewis numbe
°к		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
				F	ressure, 0.03	3 atm]
300	157.X10-6	23.X10-6	20.X10-6	43.X10-6	280.X10-6	323.X10-6	0.1952	2.0109	0.7142	0.9783	0.7011
320	173.	27.	21,	48.	105.	153.	0.1975	0.8835	0.7091	0.9984	0.6268
340	185.	30.	23.	52.	39.	91.	0.2005	0.4248	0.7079	0.8583	0.6680
360	195.	32.	25.	56.	26.	82.	0.2038	0.3123	0.7082	0.7389	0.8801
380	205.	33.	27.	60.	34.	94.	0.2073	0.3118	0.7089	0.6828	1.1139
400	215.	35.	29.	64.	53.	117.	0.2108	0.3570	0.7094	0.6564	1.1973
420	224.	37.	31.	68.	84.	151.	0.2143	0.4333	0.7099	0.6423	1.208
440	234.	39.	33.	72.	126.	198.	0.2178	0.5384	0.7103	0.5356	1.197
460	244.	41.	35.	76.	182.	258.	0.2213	0.6713	0.7106 0.7107	0.6351 0.6408	1.177
480	254.	44.	37.	80.	248.	328.	0.2246	0.0204	0.7107	0.5400	1.147
500	264.	47.	38.	85.	321.	406.	0.2283	1.0010	0.7106	0.6522	1.116
520	275.	50.	40.	90.	393.	482.	0.2316	1.1740	0.7102	0.6690	1.076
540	285.	53.	41.	94.	454. 496.	549. 595.	0.2348	1.3267	0.7097 0.7089	0.6901 0.7146	1.034
560 580	296. 306.	57. 61.	42. 43.	99. 104.	510.	614.	0.2405	1.4852	0.7078	0.7404	0.947
							0.2420	, ,,,,,,,	0.7066	0.7653	0.908
600	316.	65.	43.	109.	497. 460.	606. 574.	0.2430	1.4656	0.7052	0.7869	0.908
620	326. 335.	69. 73.	44. 45.	118.	408.	526.	0.2472	1.2603	0.7039	0.8042	0.844
640 660	344.	77.	45.	122.	348.	470.	0.2489	1.1152	0.7027	0.8152	0.821
680	353.	80.	46.	126.	290.	415.	0.2505	0.9688	0.7016	0.8220	0.802
700	361.	83.	47.	130.	236.	366.	0.2520	0.8345	0.7007	0.8225	0.787
720	368.	86.	48.	133.	190.	323.	0.2534	0.7187	0.7001	0.8182	0.777
740	376.	88.	49.	137.	152.	289.	0.2546	0.6232	0.6995	0.8105	0.768
760	383.	91.	50.	140.	121.	262.	0.2558	0.5465	0.6990	0.8003	0.762
780	390.	93.	51.	143.	97.	240.	0.2570	0.4861	0.6988	0.7891	0.151
800	397.	95.	52.	147.	77.	224.	0.2581	0.4391	0.6986	0.7777	0.7532
820	404.	97.	53.	150.	62.	212.	0.2592	0.4026	0.6984	0.7665	0.750
840	411.	99.	54.	153.	50.	203.	0.2602	0.3745 0.3527	0.6983	0.7564 0.7473	0.748
860 880	417. 424.	100. 102.	56. 57.	156. 159.	41. 33.	197. 193.	0.2612 0.2622	0.3359	0.6981	0.7394	0.745
										0.7330	0.745
900	430.	104.	58. 60.	162. 165.	27. 23.	190. 188.	0.2631 0.2640	0.3229	0.6982	0.7328 0.7270	0.745
920 940	437. 443.	105.	61.	168.	19.	187.	0.2648	0.3049	0.6981	0.7224	0.744
960	449.	109.	62.	171.	16.	187.	0.2656	0.2988	0.6982	0.7186	0.7440
980	455.	110.	64.	174.	13.	187.	0.2664	0.2940	0.6981	0.7152	0.744
1000	462.	112.	65.	177.	11.	188.	0.2672	0.2902	0.6982	0.7126	0.7446
1020	468.	113.	66.	179.	10.	189.	0.2679	0.2872	0.6981	0.7104	0.744
1040	474.	115.	67.	182.	8.	190.	0.2685	0.2849	0.6982	0.7086	0.744
1060	480.	116.	69.	185.	7.	192.	0.2691	0.2831	0.6982	0.7071	0.744
1080	485.	118.	70.	188.	6.	194.	0.2698	0.2817	0.6983	0.7059	U. [44]
1100	491.	119.	71.	190.	5.	196.	0.2704	0.2806	0.6983	0.7048	0.745
1120	497.	121.	72.	193.	5.	198.	0.2710	0.2798 0.2792	0.6983	0.7040 0.7033	0.745
1140 1160	503. 509.	122.	74. 75.	196.	4.	202.	0.2722	0.2788	0.6985	0.7027	0.7461
1180	514.	125.	76.	201.	3.	204.	0.2727	0.2785	0.6985	0.7022	0.746
1300	520.	126.	77.	203.	3.	206.	0.2733	0.2784	0.6986	0.7018	0.746
1200 1220	526.	128.	78.	206.	3.	209.	0.2738	0.2783	0.6987	0.7018 0.7015	0.747
1240	531.	129.	80.	209.	2.	211.	0.2744	0.2783	0.6986	0.7011	0.747
1260	537.	130.	81.	211.	2.	213.	0.2749	0.2784	0.6987	0.7009	0.747
1280	542.	132.	82.	214.	2.	216.	0.2754	0.2785	0.6987	0.7006	0.141

Table IV. - Continued. Transport properties at assigned pressure and temperatures $\mbox{(b) Continued.} \ \ \mbox{NO}_2\mbox{-N}_2\mbox{O}_4\mbox{-NO-O}_2 \mbox{ system}$

Temper-	Viscosity,	5	Thermal cond	ductivity, cal	/(cm)(sec)(^O K)	l	Heat c	apacity, c _p ,	Pranc	ltl number	Lewis number
°к		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
ł	I	i			Pressure,	0.1 atm		1		1	
300	149.X10-6	20.X10-6	21.X10-6	41.X10-6	383.X10-6	423.X10-6	0.1969	2.3729	0.7219	0.8328	0.8547
320	168.	25.	22.	47.	234.	281.	0.1989	1.6518	0.7147	0.9891	0.6846
340	183.	29.	23.	52.	96.	147.	0.2012	0.7867	0.7103	0.9756	0.6347
360	194.	31.	25.	56.	42.	98.	0.2041	0.4274	0.7091	0.8458 0.7388	0.6909
380	205.	33.	27.	60.	32.	91.	0.2073	0.3299	0.7093	0.7388	0.0921
400	214.	35.	29.	64.	39.	103.	0.2107	0.3287	0.7097	0.6848	1.1012
420	224.	37.	31.	67.	58.	126.	0.2141	0.3701	0.7102	0.6589	1.1848
440	233.	38.	33.	71.	87.	159.	0.2175	0.4390	0.7106	0.6454	1.2005
460	243.	40.	35.	75.	127.	202.	0.2209	0.5316	0.7110	0.6390	1.1928
480	253.	43.	37.	80.	176.	255.	0.2243	0.6458	0.7113	0.6365	1.1141
500	262.	45.	39.	84.	233.	317.	0.2277	0.7778	0.7114	0.6430	1.1504
520	272.	48.	41.	88.	296.	384.	0.2309	0.9210	0.7114	0.6527	1.1201
540	282.	51.	42.	93.	358.	451.	0.2340	1.0648	0.7112	0.6666	1.0857
560	293.	54.	43.	98.	413.	511.	0.2370	1.1952	0.7108	0.7056	1.0078
580	303.	58.	44.	102.	454.	557.	0.2376	1.2710	0	*************************************	
600	313.	62.	45.	107.	476.	583.	0.2424	1.3565	0.7092	0.7279	0.9686
620	323.	65.	46.	112.	476.	588.	0.2447	1.3663	0.7080	0.7500 0.7707	0.9318
640	332.	69.	47.	116.	456.	572.	0.2468	1.3268	0.7069	0.7887	0.8685
660	341.	73.	47.	120.	419. 373.	540. 498.	0.2487	1.2468	0.7044	0.8023	0.8436
680	350.	77.	48.	124.	313.	470	0.2304	111102	*****	1	
700	359.	80.	48.	128.	323.	451.	0.2520	1.0216	0.7033	0.8115	0.8229
720	367.	83.	49.	132.	274.	406.	0.2534	0.9036	0.7023	0.8160 0.8163	0.8064
740	374.	86.	50.	136.	228.	364. 328.	0.2547	0.7944	0.7007	0.8127	0.7825
760 780	382. 389.	89. 91.	51. 52.	139. 143.	189. 155.	298.	0.2571	0.6173	0.7002	0.8066	0.7740
800	396.	93.	53.	146.	127.	273.	0.2583	0.5502	0.6998	0.7984 0.7889	0.7672
820	403.	95.	54.	150. 153.	104. 85.	253. 238.	0.2593	0.4518	0.6992	0.7791	0.7580
840 860	410. 417.	98. 99.	55. 56.	156.	70.	226.	0.2613	0.4168	0.6990	0.7693	0.7552
880	423.	101.	58.	159.	58.	217.	0.2623	0.3890	0.6988	0.7600	0.7528
						210	0 2422	0.3669	0.6987	0.7517	0.7509
900	430.	103. 105.	59. 60.	162. 165.	48.	210.	0.2632	0.3494	0.6985	0.7440	0.7496
920 940	436. 443.	107.	61.	168.	33.	201.	0.2649	0.3354	0.6985	0.7375	0.7486
960	449.	108.	63.	171.	28.	199.	0.2657	0.3243	0.6985	0.7319	0.7477
980	455.	110.	64.	174.	24.	198.	0.2665	0.3154	0.6984	0.7269	0.7473
1000	461.	111.	65.	177.	20.	197.	0.2673	0.3083	0.6984	0.7228	0.7468
1020	468.	113.	66.	179.	17.	197.	0.2679	0.3026	0.6984	0.7192	0.7466
1040	474.	114.	68.	182.	15.	197.	0.2686	0.2979	0-6984	0.7163	0.7463
1060	479.	116.	69.	185.	13.	198.	0.2692	0.2942	0.6984	0.7138	0.7466
1080	485.	117.	70.	188.	11.	199.	0.2698	0.2912	0.6984	0.7117	"• "•"
1100	491.	119.	71.	190.	10.	200.	0.2704	0.2888	0.6984	0.7099	0.7466
1120	497.	120.	72.	193.	8.	201.	0.2710	0.2869	0.6985	0.7084	0.7466
1140	503.	122.	74.	196.	7.	203.	0.2716	0.2854	0.6985	0.7072 0.7062	0.7471
1160	509.	123. 125.	75. 76.	198. 201.	7.	205.	0.2728	0.2842	0.6986	0.7052	0.7474
1180	514.	1274	10.	201.	"	201.	3.27.20				
1200	520.	126.	77.	203.	5.	209.	0.2733	0.2825	0.6987	0.7045	0.7475
1220	526.	127.	79.	206.	5.	211.	0.2739	0.2820	0.6987	0.7038	0.7480
1240	531.	129.	80.	209.	4.	213.	0.2744	0.2816	0.6987	0.7032 0.7028	0.7483
1260	537. 542.	130. 132.	81. 82.	211.	4.	215.	0.2755	0.2811	0.6987	0.7023	0.7483
1280	246.	126.	02.	1	1		1			1	<u> </u>

TABLE IV. - Continued. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES (b) Continued. $NO_2-N_2O_4-NO-O_2$ system

Temper-	Viscosity, poises	Т	hermal cond	uctivity, cal/	(cm)(sec)(^O K)		Heat c: cal/	apacity, c _p ,	Prand	tl number	Lewis number
°K		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
				Р	ressure, 0.3	atm					
300 320 340 360 380	140.X10-6 161. 179. 193. 204.	16.×10-6 22. 27. 30.	22.X10-6 23. 24. 25. 27.	38.X10-6 45. 51. 55. 60.	350.X10-6 344. 202. 91. 46.	388.X10-6 389. 252. 146. 106.	0.1985 0.2010 0.2026 0.2047 0.2076	1.9411 2.1142 1.3939 0.7241 0.4341	0.7269 0.7223 0.7154 0.7116 0.7104	0.6997 0.8747 0.9880 0.9543 0.8358	1.0433 0.8074 0.6772 0.6454 0.7125
400 420 440 460 480	214. 223. 233. 242. 252.	35. 36. 38. 40. 42.	29. 31. 33. 35. 37.	63. 67. 71. 75.	37. 45. 63. 91. 127.	101. 112. 135. 166. 206.	0.2108 0.2141 0.2174 0.2207 0.2240	0.3477 0.3453 0.3823 0.4442 0.5257	0.7102 0.7105 0.7109 0.7114 0.7117	0.7391 0.6875 0.6618 0.6485 0.6425	0.9009 1.0880 1.1720 1.1925 1.1877
500 520 540 560 580	261. 271. 280. 290. 300.	44. 46. 49. 52.	39. 41. 43. 44.	83. 88. 92. 95.	171. 221. 275. 329. 378.	254. 309. 367. 426. 479.	0.2273 0.2304 0.2335 0.2365 0.2393	0.6242 0.7360 0.8560 0.9763 1.0874	0.7120 0.7121 0.7122 0.7120 0.7117	0.6417 0.6455 0.6535 0.6655 0.6809	1.1724 1.1502 1.1235 1.0922 1.0581
600 620 640 660 680	310. 319. 329. 338. 347.	58. 62. 66. 69. 73.	47. 48. 49. 49. 50.	105. 110. 114. 119. 123.	417. 442. 450. 442. 419.	523. 552. 565. 560. 542.	0.2419 0.2443 0.2465 0.2485 0.2503	1.1787 1.2404 1.2660 1.2536 1.2068	0.7111 0.7103 0.7094 0.7084 0.7071	0.6986 0.7178 0.7376 0.7568 0.7739	1.0224 0.9870 0.9526 0.9202 0.8912
700 720 740 760 780	356. 364. 372. 380. 388.	77. 80. 83. 86.	51. 51. 52. 53.	127. 131. 135. 139. 142.	385. 344. 302. 260. 222.	512. 476. 437. 399. 364.	0.2520 0.2535 0.2549 0.2561 0.2573	1.1333 1.0431 0.9459 0.8498 0.7602	0.7060 0.7049 0.7038 0.7029 0.7022	0.7884 0.7993 0.8067 0.8102 0.8106	0.8656 0.8440 0.8255 0.8104 0.7978
800 820 840 860 880	395. 402. 409. 416. 423.	91. 94. 96. 98.	54. 55. 56. 57. 58.	146. 149. 152. 155.	187. 157. 132. 110. 92.	333. 306. 284. 266. 251.	0.2585 0.2595 0.2605 0.2615 0.2624	0.6801 0.6107 0.5519 0.5029 0.4625	0.7015 0.7009 0.7005 0.7001 0.6998	0.8080 0.8028 0.7961 0.7880 0.7796	0.7875 0.7793 0.7726 0.7676 0.7633
900 920 940 960 980	429. 436. 442. 449.	102. 104. 106. 108.	60. 61. 62. 63.	162. 165. 168. 171.	77. 65. 55. 47. 40.	239. 230. 223. 217. 213.	0.2633 0.2642 0.2650 0.2658 0.2666	0.4293 0.4022 0.3802 0.3623 0.3477	0.6996 0.6993 0.6992 0.6991 0.6989	0.7712 0.7628 0.7551 0.7482 0.7417	0.7599 0.7573 0.7553 0.7535 0.7524
1000 1020 1040 1060 1080	461. 467. 473. 479. 485.	111. 112. 114. 116.	66. 67. 68. 69. 70.	176. 179. 182. 185.	34. 29. 25. 22. 19.	210. 208. 207. 206.	0.2674 0.2680 0.2686 0.2693 0.2699	0.3358 0.3260 0.3180 0.3115 0.3061	0.6989 0.6988 0.6988 0.6987 0.6987	0.7362 0.7312 0.7270 0.7232 0.7201	0.7512 0.7504 0.7498 0.7496 0.7492
1100 1120 1140 1160 1180	491. 497. 503. 508. 514.	119. 120. 122. 123. 124.	71. 73. 74. 75. 76.	190. 193. 195. 198. 201.	16. 14. 13. 11.	207. 207. 208. 209. 211.	0.2705 0.2711 0.2717 0.2722 0.2728	0.3017 0.2981 0.2952 0.2927 0.2907	0.6987 0.6987 0.6987 0.6988 0.6987	0.7173 0.7150 0.7130 0.7113 0.7097	0.7490 0.7487 0.7491 0.7489 0.7489
1200 1220 1240 1260 1280	520. 525. 531. 537. 542.	126. 127. 129. 130.	77. 79. 80. 81.	203. 206. 209. 211. 214.	9. 8. 7. 6.	212. 214. 216. 217. 219.	0.2734 0.2739 0.2744 0.2750 0.2755	0.2891 0.2878 0.2867 0.2859 0.2852	0.6988 0.6989 0.6988 0.6989 0.6988	0.7085 0.7074 0.7064 0.7056 0.7049	0.7489 0.7493 0.7494 0.7494 0.7493

Table IV. - Continued. Transport properties at assigned pressure and temperatures (b) Continued. $NO_2-N_2O_4-NO-O_2$ system

Temper- ature,	Viscosity,	Т	hermal cond	uctivity, cal/	(cm)(sec)(^O K)		Heat ca	apacity, c _p , (g)(^O K)	Prand	tl number	Lewis number
°к		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
	<u> </u>	d.	l		Pressure	, 1 atm					
300	133.X10-6	14.X10-6	23.X10-6	36.X10-6	246.X10-6 341.	283.X10-6 383.	0.1997 0.2034	1.2907	0.7291 0.7289	0.6053 0.7253	1.2420 1.0056
320 340	151.	18.	24. 25.	48.	320.	368.	0.2053	1.8917	0.7239	0.8782	0.8029
360	188.	28.	26.	54.	200.	254.	0.2066	1.3147	0.7176	0.9731	0.6884
380	202.	32.	27.	59.	102.	161.	0.2086	0.7555	0.7135	0.9488	0.6575
400	213.	34.	29.	63.	57.	120.	0.2112	0.4766 0.3774	0.7118	0.8478 0.7548	0.7120 0.8669
420	223.	36.	31.	67.	44.	111.	0.2142	0.3622	0.7114	0.5991	1.0442
440	232.	38. 40.	33. 35.	71. 75.	65.	140.	0.2206	0.3878	0.7118	0.6699	1.1449
460 480	242. 251.	41.	37.	79.	89.	168.	0.2238	0.4373	0.7121	0.6548	1.1792
500	240	43.	40.	83.	120.	202.	0.2270	0.5040	0.7125	0.6475	1.1826
500 520	260. 269.	45.	42.	87.	157.	244.	0.2301	0.5843	0.7127	0.6455	1.1718
540	279.	48.	43.	91.	199.	290.	0.2331	0.6750	0.7129	0.6476 0.6536	1.1541
560	288.	50.	45.	95.	245.	340. 390.	0.2360	0.7721 0.8705	0.7130	0.6629	1.1040
580	297.	53.	47.	100.	291.	390.	0.2300	0.070	0.1130	0.001	
600	307.	56.	48.	104.	334.	438.	0.2414	0.9640	0.7126	0.6749	1.0745
620	316.	59.	50.	108.	371.	480.	0.2439	1.0457	0.7122	0.6891	1.0437
640	326.	62.	51.	113.	399.	512. 532.	0.2462	1.1089 1.1482	0.7117	0.7051	0.9802
660 680	335. 344.	65. 69.	52. 52.	117. 121.	415. 419.	540.	0.2502	1.1605	0.7100	0.7390	0.9499
700	353.	72.	53.	125.	410.	535. 520.	0.2520	1.1459	0.7090	0.7552	0.9216
720	361.	76.	54. 54.	129. 133.	390. 363.	496.	0.2550	1.0498	0.7068	0.7822	0.8728
740 760	370. 378.	79. 82.	55.	137.	330.	468.	0.2564	0.9799	0.7058	0.7918	0.8528
780	386.	85.	56.	141.	295.	436.	0.2576	0.9038	0.7049	0.7990	0.8354
800	393.	88.	56.	145.	260.	405.	0.2588	0.8270	0.7040	0.8032	0.8204
820	401.	91.	57.	148.	227.	375.	0.2598	0.7533	0.7032	0.8044	0.8080
840	408.	94.	58.	151.	197.	348.	0.2608	0.6855	0.7026	0.8034	0.7976
860 880	415.	96.	59. 60.	155. 158.	169. 145.	324. 303.	0.2618 0.2627	0.6248 0.5716	0.7014	0.7950	0.7921
									ļ. .	0.7001	0.7762
900	429.	100.	61.	161.	124.	286. 271.	0.2636	0.5258	0.7011	0.7891	0.7715
920 940	435.	102.	62.	164.	91.	259.	0.2653	0.4538	0.7003	0.7752	0.7676
960	448.	106.	64.	170.	78.	249.	0.2661	0.4262	0.7001	0.7682	0.7643
980	454.	108.	65.	173.	67.	241.	0.2668	0.4030	0.6998	0.7611	0.7618
1000	461.	110.	66.	176.	58.	234.	0.2676	0.3837	0.6997	0.7546	0.7595
1020	467.	112.	67.	179.	50.	229.	0.2682	0.3675	0.6995	0.7485	0.7578
1040	473.	113.	68.	182.	44.	225.	0.2688	0.3540	0.6994	0.7430	0.7553
. 1060	479.	115.	70. 71.	185. 187.	38. 33.	222.	0.2700	0.3333	0.6992	0.7334	0.7543
1080	485.	116.	'''	101.	"						
1100	491.	118.	72.	190.	29.	219.	0.2706	0.3254	0.6991	0.7294 0.7259	0.7536
1120 1140	497. 503.	120.	73. 74.	193.	25.	218.	0.2718	0.3133	0.6991	0.7228	0.7528
1160	508.	123.	75.	198.	20.	218.	0.2723	0.3087	0.6991	0.7201	0.7523
1180	514.	124.	77.	201.	18.	218.	0.2729	0.3048	0.6990	0.7177	0.7520
1200	520.	125.	78.	203.	16.	219.	0.2734	0.3015	0.6991	0.7156	0.7517
1200	525.	127.	79.	206.	14.	220.	0.2740	0.2988	0.6991		0.7518
1240	531.	128.	80.	209.	13.	221.	0.2745	0.2965	0.6990	0.7122	0.7517
1260	537.	130.	81.	211.	11.	222.	0.2750	0.2930	0.6990		0.7512
1280	542.	131.	83.	214.	10.	467.	10.2.55	1 0.2.30		1	

TABLE IV. - Continued. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES $\text{(b) Continued.} \quad \text{NO}_2\text{-N}_2\text{O}_4\text{-NO-O}_2 \text{ system}$

Temper- ature,	Viscosity, poises	7	Thermal cond	ductivity, cal	/(cm)(sec)(^O K))	Heat c	apacity, c _p , /(g)(^O K)	Pranc	ltl number	Lewis number
°К		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
				•	Pressure, 3	atm					
300	128.X10-6	12.X10-6	23. X1 0-6	35.X10-6	159.X10-6	194.×10-6	0.2004	0.8562	0.7295	0.5647	1.3811
320	143.	15.	25.	40.	258.	298.	0.2051	1.3092	0.7315	0.6292	1,1926
340	161.	20.	26.	46.	327.	373.	0.2080	1.7175	0.7304	0.7436	0.9797
360	180.	25.	27.	52.	300.	352.	0.2095	1.7093	0.7257	0.8766	0.8039
380	197.	29.	28.	58.	200.	258.	0.2107	1.2521	0.7197	0.9578	0.7011
400	210.	33.	30.	62.	113.	175.	0.2124	0.7848	0.7154	0.9417	0.6705
420	222.	35.	31.	67.	68.	134.	0.2148	0.5200	0.7133	0.8580	0.7125
440	232.	37.	33.	71.	52.	123.	0.2177	0.4099	0.7125	0.7707	0.8390
460	241.	39.	35.	75.	55.	129.	0.2207	0.3818	0.7124	0.7124	1.0002
480	250.	41.	38.	79.	67.	146.	0.2238	0.3958	0.7126	0.6796	1.1117
500	259.	43.	40.	83.	87.	170.	0.2269	0.4339	0.7129	0.6619	1.1612
520	268.	45.	42.	85.	114.	200.	0.2299	0.4879	0.7132	0.6531	1.1738
540	277.	47.	44.	91.	146.	236.	0.2329	0.5534	0.7134	0.6497	1.1694
560	286.	49.	46.	95.	182.	276.	0.2357	0.6274	0.7136	0.6506	1.1553
580	295.	51.	48.	99.	220.	319.	0.2385	0.7066	0.7138	0.6548	1.1360
600	304.	54.	49.	103.	259.	362.	0.2411 0.2436	0.7874	0.7136	0.6617	1.1129
620	314.	56.	51.	107.	297.	404.	0.2436	0.8656	0.7134	0.6710	1.0880
640	323.	59.	52.	111.	332.	443.	0.2459	0.9366	0.7132	0.6825	1.0609
660 680	332. 341.	62. 65.	53.	115.	359. 379.	475. 499.	0.2481 0.2501	0.9958	0.7128	0.6959	1.0325
660	341.	07.	54.	120.	319.	499.	0.2501	1.0392	0.7121	0.7099	1.0040
700	350.	69.	55.	124.	389.	513.	0.2520	1.0639	0.7114	0.7247	0.9760
720	358.	72. 75.	56.	128.	390.	518.	0.2537	1.0687	0.7106	0.7391	0.9494
740	367.	75.	57.	132.	382.	513.	0.2552	1.0542	0.7096	0.7530	0.9240
760 780	375. 383.	78. 82.	57. 58.	136.	365. 343.	501. 482.	0.2566 0.2579	1.0227 0.9776	0.7086 0.7077	0.7653 0.7763	0.9010 0.8799
800	391. 399.	85. 88.	59 . 59.	143.	316.	460.	0.2591	0.9231 0.8633	0.7068	0.7853 0.7917	0.8611
820 840	406.	90.	60.	147.	288. 259.	435 • 409 •	0.2602 0.2612	0.8019	0.7051	0.7961	0.8305
860	413.	93.	61.	154.	230.	384.	0.2622	0.7417	0.7043	0.7979	0.8186
880	420.	96.	62.	157.	204.	361.	0.2631	0.6848	0.7036	0.7978	0.8082
900	427.	98.	62.	160.	179.	339.	0.2640	0.6324	0.7030	0.7961	0.7993
920	434.	100.	63.	164.	157.	320.	0.2648	0.5853	0.7023	0.7927	0.7919
940	441.	102.	64.	167.	137.	304.	0.2656	0.5435	0.7019	0.7883	0.7857
960	447.	105.	65.	170.	120.	289.	0.2664	0.5069	0.7016	0.7832	0.7803
980	454.	107.	66.	173.	104.	277.	0.2671	0.4751	0.7011	0.7773	0.7759
1000	460.	108.	67.	176.	91.	267.	0.2678	0.4478	0.7009	0.7715	0.7721
1020	466.	110.	68.	179.	80.	258.	0.2684	0.4242	0.7005	0.7655	0.7589
1040	472.	112.	69.	181.	70.	251.	0.2690	0.4041	0.7004	0.7597	0.7662
1060	479.	114.	70.	184.	61.	246.	0.2696	0.3870	0.7001	0.7540	0.7642
1080	485.	116.	72.	187.	54.	241.	0.2702	0.3723	0.7000	0.7488	0.7623
1100	490.	117.	73.	190.	47.	237.	0.2708	0.3599	0.6998	0.7439	0.7607
1120		119.	74.	192.	42.	234.	0.2714	0.3493	0.6997	0.7394	0.7593
1140	502.	120.	75.	195.	37.	232.	0.2719	0.3402	0.6997	0.7353	0.7586
1160	508.	122.	76.	198.	33.	231.	0.2725	0.3325	0.6996	0.7317	0.7576
1180	514.	123.	77.	201.	29•	230.	0.2730	0.3260	0.6995	0.7283	0.7568
1200	519.	125.	78.	203.	26.	229.	0.2736	0.3204	0.6995	0.7254	0.7561
1220		126.		206.	24.	229.	0.2741		0.6995	0.7227	0.7558
1240	531.	128.	81.	208.	21.	230.	0.2746	0.3115	0.6994	0.7203	0.7554
1260	536.	129.		211.	19.	230.	0.2751	0.3080	0.6994	0.7182	0.7549
1280	542.	131.	83.	214.	17.	231.	0.2756	0.3050	0.6993	0.7163	0.7544

TABLE IV. - Continued. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES (b) Continued. NO $_2$ -N $_2$ O $_4$ -NO-O $_2$ system

Femper-	Viscosity,	ī	Thermal cond	luctivity, cal,	(cm)(sec)(OK))	Heat ca cal/	apacity, c _p , (g)(^O K)	Prand	tl number	Lewis number
°K		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
		ii		ii	Pressure,	10 atm					
300	125.X10-6	11.X10-6	23.X10-5	34.X10-6	93.X10-6	127.X10-6	0.2009	0.5652	0.7293	0.5561	1.4831
300 320	138.	13.	26.	39.	164.	202.	0.2062	0.8474	0.7319	0.5764 0.6360	1.3565
340	153.	16.	28.	44.	246.	290 •	0.2103	1.2097	0.7332	0.7343	0.9976
360	170.	20.	29.	49.	304.	353. 347.	0.2130	1.5696	0.7289	0.8486	0.8366
380	188.	25.	30.	55.	292.	3414	0.2144	1.,,,,,	33,123		
400	204.	30.	31.	61.	219.	279.	0.2153	1.2722	0.7232	0.9297 0.9394	0.732
420	218.	34.	32.	66.	139.	205.	0.2167	0.8839	0.7185 0.7156	0.8829	0.704
440	230.	36.	34.	70.	88.	159.	0.2187	0.6103 0.4690	0.7142	0.8045	0.787
460	240.	38.	36.	74.	66.	140. 139.	0.2240	0.4138	0.7137	0.7404	0.921
480	249.	40.	38.	78.	61.	137.	0.22.40	*****			
500	250	42.	40.	82.	68.	150.	0.2269	0.4070	0.7136	0.6993	1.046
500 520	258. 267.	44.	42.	86.	83.	169.	0.2299	0.4278	0.7138	0.6756 0.6626	1.122
540	276.	46.	44.	90.	104.	194.	0.2327	0.4655 0.5145	0.7140	0.6565	1.162
560	285.	48.	46.	94.	129.	223. 256.	0.2356	0.5712	0.7144	0.6549	1.155
580	294.	50.	48.	98.	158.	256.	0.2303	0.3112			
		52	50.	102.	190.	292.	0.2409	0.6328	0.7143	0.6564	1.142
600	303.	52. 54.	52.	105.	222.	328.	0.2434	0.6967	0.7144	0.6606	1.125
620 640	311. 320.	57.	53.	110.	255.	365.	0.2458	0.7601	0.7144	0.6671 0.6757	1.104
660	329.	59.	55.	114.	285.	399.	0.2480	0.8200	0.7143	0.6855	1.057
680	338.	62.	56.	118.	312.	430.	0.2500	0.8735	0.7136	0.3033	1.00
	1		l		334.	456.	0.2520	0.9177	0.7134	0.6968	1.032
700	346.	65.	57.	122.	349.	476.	0.2537	0.9503	0.7129	0.7087	1.006
720	355.	68.	58. 59.	125.	358.	489.	0.2554	0.9698	0.7122	0.7211	0.983
740 760	363. 372.	71.	60.	134.	360.	494.	0.2569	0.9755	0.7114	0.7333	0.959
780	380.	77.	61.	138.	355.	493.	0.2582	0.9678	0.7107	0.7453	0.930
			.,	142.	344.	486.	0.2595	0.9477	0.7099	0.7564	0.915
800	388.	80.	62.	145.	328.	474.	0.2607	0.9174	0.7090	0.7662	0.895
820 840	396. 403.	86.	63.	149.	309.	458.	0.2617	0.8793	0.7082	0.7746	0.878
860	411.	89.	64.	153.	287.	440.	0.2627	0.8358	0.7073	0.7810 0.7859	0.848
880	418.	92.	64.	156.	264.	420.	0.2636	0.7894	0.7065	0.7839	0.040
	1				243	400.	0.2645	0.7422	0.7058	0.7892	0.835
900	425.	94.	65.	159.	241.	380.	0.2653	0.6959	0.7050	0.7906	0.825
920	432.	97. 99.	66. 67.	166.	196.	362.	0.2661	0.6517	0.7043	0.7906	0.815
940	439. 446.	102.	67.	169.	176.	345.	0.2669	0.6104	0.7038	0.7895	0.80
960 980	452.	104.	68.	172.	157.	329•	0.2676	0.5725	0.7032	0.7869	0.800
					1,,,	315.	0.2683	0.5381	0.7028	0.7838	0.793
1000	459.	106.	69.	175. 178.	140.	303.	0.2689	0.5073	0.7023	0.7798	0.78
1020	465.	108.	70. 71.	181.	111.	292.	0.2694	0.4799	0.7020	0.7754	0.78
1040	471.	110.	72.	184.	99.	282.	0.2700	0.4557	0.7016	0.7706	0.78
1060 1080	478. 484.	114.	73.	187.	88.	274.	0.2706	0.4345	0.7013	0.7658	0.77
						24.5	0 27	0.4159	0.7010	0.7610	0.77
1100	490.	116.	74.	189.	78.	268. 262.	0.2711		0.7009		0.77
1120	496.	117.	75.	192.	70. 62.	257.	0.2722		0.7007	0.7517	0.769
1140	502	119.	76. 77.	198.	56.	253.	0.2727	0.3733	0.7006	0.7474	0.76
1160 1180	507. 513.	121.	78.	200.	50.	250.	0.2733		0.7004	0.7433	0.76
1100										. 7205	
1200	519.	124.	79.	203.	45.	248.	0.2738		0.7003		0.76
1200 1220	525.	125.	80.	206.	41.	246.	0.2743	0.3452	0.7002		0.76
1240	530.	127.	81.	208.	37.	245.	0.2748	0.3382	0.7000		0.76
1260	536.	128.	82.	211.	33.	244.	0.2758		0.6999		0.76
1280	542.	130.	84.	213.	30.	1 27.7	1				

TABLE IV. - Continued. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES (b) Continued. $NO_2-N_2O_4-NO-O_2$ system

Temper- ature,	Viscosity, poises	Т	hermal cond	uctivity, cal/	(cm)(sec)(^O K)		Heat cal/	apacity, c _p ,	Pranc	itl number	Lewis number
°к		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
					Pressure, 30	atm					
300	124.X10-6	11.X10-6	24. X10-6	34.X10-6	55.X10-6	B9.X10-6	0.2011	0.4123	0.7290	0.5712	1.5396
320	134.	12.	26.	38.	101.	139.	0.2068	0.5833 0.8235	0.7315	0.5712 0.5643 0.5863	1.4590
340	147.	14.	28.	42.	164.	206.	0.2117	0.8235	0.7333	0.5863	1.3376
360 380	161.	17. 21.	30. 32.	47. 53.	233. 282.	280. 335.	0.2155	1.1121	0.7351	0.6403 0.7243	1.1837
360	170.	21.)	55.	202.	337.	0.2100	1.3030	0.1340	0.1243	1.0113
400	195.	26.	33.	58.	282.	340.	0.2193	1.4335	0.7317	0.8215	0.8710
420	211.	30.	34.	64.	231.	295.	0.2201	1.2572	0.7268 0.7218	0.9000 0.9267	0.7667 0.7126
440 460	225.	34. 37.	35. 37.	69.	164. 112.	233. 185.	0.2212	0.9589 0.7007	0.7218	0.8970	0.7126
480	248.	39.	38.	78.	82.	160.	0.2250	0.5390	0.7163	0.8345	0.7570
						1.53	0 2275	0.4581	0.7153	0.7710	0.8565
500 520	257. 266.	41. 43.	40. 42.	82.	71. 72.	153. 158.	0.2275 0.2301	0.4581 0.4295	0.7149	0.7710 0.7237	0.9736
540	275.	45.	44.	90.	82.	172.	0.2329	0.4324	0.7148	0.6933	1.0670
560	284.	47.	47.	94.	98.	191.	0.2356	0.4546	0.7149	0.6755	1.1210
580	293.	49.	49.	97.	117.	215.	0.2382	0.4890	0.7150	0.6657	1.1445
600	301.	51.	51.	101.	141.	242.	0.2408	0.5314	0.7149	0.6610	1.1491
620	310.	53.	53. 54.	105.	166. 193.	272. 302.	0.2433	0.5788 0.6290	0.7150 0.7151	0.5600 0.6619	1.1439
640 660	318.	55. 57.	56.	113.	220.	333.	0.2479	0.6798	0.7152	0.6661	1.1160
680	335.	60.	58.	117.	247.	364.	0.2500	0.7292	0.7149	0.5718	1.0976
700	344.	62.	59.	121.	271.	392.	0.2520	0.7751	0.7147	0.6793	1.0774
720	352.	65.	60.	125.	292.	417.	0.2538	0.8156	0.7145	0.6878	1.0563
720 740	360.	67.	62.	129.	310.	439.	0.2555	0.8490	0.7139	0.6973	1.0341
760 780	368. 377.	70. 73.	63. 64.	133.	323. 330.	455. 467.	0.2571 0.2585	0.8740 0.8896	0.7135 0.7130	0.7073 0.7180	1.0123 0.9902
800	385.	76.	64.	140.	333.	473.	0.2599	0.8956 0.8920	0.7124	0.7286 0.7386	0.9688
820 840	393. 400.	79. 82.	65. 66.	144.	330. 323.	474. 470.	0.2611 0.2622	0.8795	0.7117	0.7483	0.9290
860	408.	85.	67. 67.	151.	312.	463.	0.2632	0.8594	0.7101	0.7568	0.9112
880	415.	87.	67.	155.	298.	453.	0.2642	0.8330	0.7094	0.7644	0.8945
900	423.	90.	68.	158.	281.	440.	0.2651	0.8018	0.7086	0.7709	0.8793
920	430.	93.	69.	161.	281. 264.	425.	0.2659	0.7675	0.7078	0.7759	0.8656
940	437.	95.	69.	165.	245.	410.	0.2667	0.7315	0.7071	0.7798	0.8533
960 980	444. 450.	98. 100.	70. 71.	168. 171.	226. 208.	394. 379.	0.2675 0.2682	0.6949 0.6589	0.7064 0.7057	0.7825 0.7836	0.8420 0.8323
1000	457.	103.	72.	174.	190.	364. 350.	0.2689 0.2694	0.6242	0.7052	0.7839 0.7831	0.8234 0.8157
1020 1040	464. 470.	105.	72. 73.	177.	173. 157.	350. 337.	0.2694	0.5912	0.7045	0.7816	0.8087
1060	476.	109.	74.	183.	142.	325.	0.2705	0.5321	0.7035	0.7790	0.8029
1080	483.	111.	75.	186.	129.	315.	0.2711	0.5062	0.7032	0.7762	0.7975
1100	489.	113.	76.	189.	116.	305.	0.2716	0.4828	0.7027	0.7728	0.7928
1120	495.	115.	77.	192.	105.	297.	0.2721	0.4616	0.7024	0.7692	0.7886
1140	501.	117.	77. 78.	194.	95. 86.	290 • 283 •	0.2726	0.4427	0.7021	0.7653 0.7614	0.7853 0.7820
1160 1180	507. 513.	119. 121.	78. 79.	197. 200.	78.	278.	0.2736	0.4107	0.7016	0.7575	0.7792
								0.2074	2015	0.7537	0 77/7
1200	518.	122.	80.	203.	71. 64.	273. 269.	0.2741	0.3974 0.3855	0.7015	0.7537 0.7499	0.7767 0.7748
1220 1240	524. 530.	124. 125.	81. 82.	205.	58.	266.	0.2751	0.3750	0.7011	0.7462	0.7729
1260	536.	127.	83.	211.	53.	264.	0.2756	0.3657	0.7010	0.7429	0.7710
1280	541.	129.	85.	213.	48.	262.	0.2761	0.3574	0.7008	0.7396	0.7693

TABLE IV. - Concluded. TRANSPORT PROPERTIES AT ASSIGNED PRESSURE AND TEMPERATURES $\text{(b) Concluded.} \quad \text{NO}_2\text{-N}_2\text{O}_4\text{-NO-O}_2 \text{ system}$

emper-	Viscosity,	Т	hermal cond	uctivity, cal/	(cm)(sec)(^O K)		Heat ca	ipacity, c _p , (g)(^O K)	Prand	tl number	Lewis number
°K ´		Monatomic	Internal	Frozen	Reaction	Equilibrium	Frozen	Equilibrium	Frozen	Equilibrium	
	1	<u> </u>	<u> </u>		Press	sure, 100 atm					
200	123.X10-6	10.X10-6	24.X10-6	34.X10-6	31.110-6	65.X10-6	0.2012	0.3171	0.7288	0.6019	1.5773
300 320	132.	11.	26.	37.	57.	95.	0.2072	0.4146 0.5547 0.7400	0.7310	0.5783 0.5725	1.5278
340	143.	13.	29.	41.	97.	138.	0.2125	0.7400	0.7327	0.5898	1.3483
360 380	155.	15.	31.	46. 51.	149.	194. 256.	0.2208	0.9571	0.7366	0.6315	1.2163
380	169.	18.	33.	71.	207.	2301					
400	184.	21. 25.	35. 36.	56.	251. 267.	307.	0.2234	1.1612 1.2740 1.2306	0.7371 0.7356	0.6960 0.7755	1.0732
420	200.	25.	36.	61.	267.	329. 312.	0.2249	1.2306	0.7316	0.8502	0.829
440	216.	29.	37. 38.	67.	246. 198.	270.	0.2258	1.0532	0.7271	0.8976	0.8293
460 480	230. 243.	33. 37.	40.	76.	148.	225.	0.2277	0.8363	0.7271 0.7230	0.9028	0.7263
					.,,	192.	0.2293	0.6581	0.7199	0.8692	0.7363
500	254.	40.	41.	81. 85.	111.	175.	0.2313	0.6581	0.7180	0.8692 0.8171	0.7884
520	264.	42. 44.	43.	89.	82.	171.	0.2336	0.4796	0.7169	0.7663	0.874
540 560	283.	46.	45. 47.	93.	84.	177.	0.2360	0.4547	0.7164 0.7162	0.7269 0.7002	1.048
580	291.	48.	49.	97.	92.	189.	0.2385	0.4542	0.7102	0.1002	1.040
	300.	50.	51.	101.	105.	206.	0.2410	0.4695	0.7158	0.6831 0.6731 0.6680	1.098
600 620	308.	52.	53.	105.	122.	227.	0.2434	0.4950	0.7158 0.7159	0.6/31	1.134
640	317.	54. 55.	55.	109.	141.	250.	0.2457	0.5270	0.7160	0.6665	1.132
660	325.	55.	57. 59.	112.	162.	274. 300.	0.2479	0.6009	0.7158	0.6672	1.124
680	333.	58.	39.	110.	1011			ļ	1		1
700	341.	60.	60.	120.	205.	325.	0.2520	0.6392 0.6763	0.7158	0.6701 0.6745	1.112
720 740	349.	62.	62.	124.	226.	350. 374.	0.2557	0.7110	0.7157 0.7153	0.6802	1.080
740	357.	64. 67.	63.	128.	246. 263.	395.	0.2573	0.7420	0.7151	0.6868	1.063
760 780	365. 373.	69.	66.	135.	278.	413.	0.2588	0.7684	0.7149	0.6945	1.044
	381.	72.	67.	139.	289.	428.	0.2602	0.7892	0.7145	0.7028 0.7112	1.025
800 820	389.	74.	68.	143.	297.	440 •	0.2615	0.8039	0.7141	0.7112	1.006
840	397.	77.	69.	146.	302.	448.	0.2627	0.8122	0.7129	0.7281	0.969
860 880	404. 412.	80.	70. 71.	150. 153.	303. 300.	452. 453.	0.2648	0.8098	0.7123	0.7362	0.951
000			1						1	0.7440	0.934
900	419.	85.	71.	157.	294.	451.	0.2658	0.7998	0.7116	0.7508	0.919
920	427.	88.	72.	160.	286. 275.	446. 439.	0.2667	0.7658	0.7102	0.7571	0.904
940	434.	91. 93.	73. 73.	167.	263.	430.	0.2683	0.7435	0.7096	0.7626	0.891
960 980	441. 448.	96.	74.	167. 170.	250.	420.	0.2690	0.7188	0.7088	0.7669	0.878
			1,	172	225	409•	0.2697	0.6926	0.7082	0.7707. 0.7733	0.867
1000	455.	98.	75. 76.	173. 176.	235. 221.	397.	0.2702	0.6655	0.7075	0.7733	0.856
1020 1040	461. 468.	103.	76.	179.	206.	385.	0.2708	0.6383	0.7070	0.7752 0.7759	0.847
1060	474.	105.	77.	182.	192.	374.	0.2713	0.6116 0.5857	0.7058	0.7762	0.830
1080	481.	107.	78.	185.	178.	363.	0.2718	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	""		
1100	487.	110.	78.	188.	164.	352.	0.2723	0.5610	0.7053	0.7755 0.7745	0.823
1120	493.	110.	79.	1191.	151.	342.	0.2728	0.5376	0.7044		0.812
1140	499.	114.	80.	194.	140.	333. 325.	0.2738	0.4955	0.7041	0.7706	0.807
1160 1180	505. 511.	116.	81. 82.	196. 199.	118.	317.	0.2742		0.7037	0.7681	0.802
					1,,,,	310.	0.2747	0.4596	0.7034	0.7655	0.798
1200 1220	517.	119.	83.	202.	109.	304.	0.2752	0.4439	0.7031	0.7626	0.794
1220 1240	523. 529.	121. 123.	83.	207.	92.	299.	0.2756	0.4296	0.7027		0.791
1260	535.	125.	85.	210.	84.	294.	0.2761		0.7025	0.7535	0.785
1280	540.	126.	86.	213.	78.	290•	0.2100	V . 70 77			

NASA-Langley, 1966 E-3116

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546