Summer School in Structural Estimation GMM, Influence Functions, and Weight Matrices

University of Michigan Ross School of Business

Toni M. Whited

August 2021

Why am I bothering to go over something as basic as GMM?

Recall the definition of an SMM estimator

 \triangleright The simulated moments estimator of θ is defined as the solution to the minimization of

$$\hat{m{ heta}} = rg \min_{m{ heta}} m{Q}_n(m{ heta}) \equiv m{g}(m{w}_i, m{ heta})' \hat{m{\Xi}}_n m{g}(m{w}_i, m{ heta}),$$

ightharpoonup is a positive definite matrix that converges in probability to a deterministic positive definite matrix Ξ .

We want to find an estimate of the most efficient version of Ξ

It turns out that this estimator is also an example of a GMM estimator.

▶ But why do we care about the estimate of the weight matrix?

It is important to calculate the weight matrix correctly

- Far too many structural papers calculate weight matrices and standard errors incorrectly.
- Do not bootstrap the weight matrix. (Horowitz 2001). It is consistent but can be very biased in finite samples.
- Calculating the weight matrix from simulated data is in principle fine, but you are taking the model too seriously.

- I am going to use basic GMM theory to teach you how to calculate weight matrices correctly and easily.
- ▶ We will be stacking influence functions, and this will be new to most of you.

The Setup

- ► The following uses the notation in Wooldridge.
- Let
 - Let w_i be an $(M \times 1)$ be an i.i.d. vector of random variables for observation i.
 - \bullet be an $(P \times 1)$ vector of unknown coefficients.
 - ▶ $g(w_i, \theta)$ be an $(L \times 1)$ vector of functions $g: (\mathcal{R}^M \times \mathcal{R}^P) \to \mathcal{R}^L, \ L \ge P$
- ▶ The function $g(w_i, \theta)$ can be nonlinear.
- ▶ Let θ_0 be the true value of θ .
- Let $\hat{\theta}$ represent an estimate of θ .
- ▶ The "hat" and "naught" notation applies to anything we might want to estimate.

Moment Restrictions

 GMM is based on what are generally called moment restrictions and sometimes called orthogonality conditions (The latter terminology comes from the rational expectations literature.)

$$E\left(\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}_{0}\right)\right)=0$$

This condition is expressed in terms of the population. The corresponding sample moment restriction is

$$\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{g}\left(\boldsymbol{w}_{i}, \boldsymbol{\theta}\right) = 0$$

▶ What we want to do is choose $\hat{\theta}$ to get $N^{-1} \sum_{i=1}^{N} g(w_i, \theta)$ as close to zero as possible.

Examples of Moment Restrictions

- IV estimation:
 - Suppose you have a regression

$$y_i = x_i \beta + u_i,$$

and
$$E(u_i \mid x_i) \neq 0$$
.

► Or, suppose you have a nonlinear regression

$$u_i = f(x_i, \beta) + u_i$$

and
$$E(u_i \mid x_i) \neq 0$$
.

▶ In **either** case suppose also that you have a vector of instruments z_i , that is uncorrelated with u_i , and whose dimension is at least as great as β . Then the moment restriction is

$$E(z_i u_i) = 0$$

Criterion Function

The estimator, $\hat{\theta}$ minimizes a quadratic form:

$$Q_{N}(\boldsymbol{\theta}) = \left[N^{-1} \sum_{i=1}^{N} \boldsymbol{g}(\boldsymbol{w}_{i}, \boldsymbol{\theta})\right]' \widehat{\Xi} \left[N^{-1} \sum_{i=1}^{N} \boldsymbol{g}(\boldsymbol{w}_{i}, \boldsymbol{\theta})\right]$$

$$(1 \times L) \quad (L \times L) \quad (L \times 1)$$

where $\widehat{\Xi}$ is a positive definite matrix that converges in probability to Ξ_0

In this case, Q_N converges in probability to

$$\{E[\boldsymbol{g}(\boldsymbol{w}_i,\boldsymbol{\theta})]\}'\Xi\{E[\boldsymbol{g}(\boldsymbol{w}_i,\boldsymbol{\theta})]\}$$

Exact and Overidentification

If L = P, then the estimator is exactly identified, and we can find θ by solving

$$N^{-1}\sum_{i=1}^{N} \boldsymbol{g}\left(\boldsymbol{w}_{i}, \boldsymbol{ heta}
ight) = \mathbf{0}$$

- If L > P, the model is overidentified and if it is nonlinear, you usually have to use numerical techniques.
- ▶ If $g(w_i, \theta)$ has first derivatives with no closed form solutions, these numerical techniques can take a very long time.

Optimal Weighting Matrix

- ▶ The symbol ≡ represents any arbitrary, positive definite weighting matrix.
- lacktriangle The optimal weighting matrix is the inverse of the variance of $g(w_i, \theta)$. Call this variance

$$\mathbf{\Lambda} \equiv E\left(\mathbf{g}\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right) \mathbf{g}\left(\mathbf{w}_{i}, \boldsymbol{\theta}\right)'\right).$$

Estimating $\widehat{\Lambda}$. Doing GMM is usually a bit circular. We want to minimize

$$\boldsymbol{Q}_{N}\left(\boldsymbol{\theta}\right) = \left[N^{-1}\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right]^{\prime}\widehat{\boldsymbol{\Lambda}}^{-1}\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right]$$

to get an estimate of θ . But we need an estimate of θ to estimate $\widehat{\Lambda}$.

Estimating the Optimal Weighting Matrix

ightharpoonup You can estimate $\hat{\Lambda}$ by

$$\widehat{oldsymbol{\Lambda}} \equiv rac{1}{N} \sum_{i=1}^{N} \left[oldsymbol{g} \left(oldsymbol{w}_i, oldsymbol{ heta}
ight)
ight] \left[oldsymbol{g} \left(oldsymbol{w}_i, oldsymbol{ heta}
ight)
ight]'$$

- ► The usual procedure is as follows:
 - **E**stimate θ using $\widehat{\Lambda} \equiv I$. (This θ is consistent but not efficient.)
 - Use this estimate of θ to estimate $\widehat{\Lambda}$.
 - Re-estimate θ using the estimate of $\widehat{\Lambda}$.
 - Keep going until θ converges.

Estimating the Optimal Weighting Matrix

Researches used to use a two-step procedure.

- ▶ However, after many Monte Carlo studies over the years, most now iterate.
- ▶ Another possibility is just to minimize Q_N all at once.
- ► If the application permits, sometimes the optimal weighting matrix does not depend on unknown parameters, and no iteration is necessary.
- ▶ This is the case with the SMM estimators we are using in this class.

Define the following

$$G' = \frac{\partial g(w_i, \theta)}{\partial \theta'}$$

 $G'_0 = E(G')$

Note $G' \equiv \partial g(w_i, \theta) / \partial \theta'$ is the Jacobian matrix and is a function of the data

$$\partial oldsymbol{g} \left(oldsymbol{w}_i, oldsymbol{ heta}
ight)/\partial oldsymbol{ heta}' \equiv \left[egin{array}{cccc} \partial g_1/\partial heta_1 & \partial g_1/\partial heta_2 & \dots & \partial g_1/\partial heta_P \ dots & dots & \ddots & dots \ \partial g_L/\partial heta_1 & \partial g_L/\partial heta_2 & \dots & \partial g_L/\partial heta_P \end{array}
ight]$$

▶ G had dimension $P \times L$, and G' had dimension $L \times P$.

▶ Then the asymptotic distribution of $\sqrt{N}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right)$ is $N\left(0,\boldsymbol{V}\right)$, in which

$$V \equiv \left[\mathbf{G}_0 \mathbf{\Lambda}^{-1} \mathbf{G}_0' \right]^{-1}$$
$$(P \times L)(L \times L)(L \times P)$$

Derivation: Recall that we are trying to minimize:

$$\boldsymbol{Q}_{N}\left(\boldsymbol{\theta}\right) = \left[N^{-1}\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right]'\widehat{\boldsymbol{\Xi}}\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right]$$

 \triangleright How do you minimize anything? Take the derivative w.r.t θ and set the result equal to zero.

Take the derivative and set it to zero.

$$\partial \boldsymbol{Q}_{N}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)/\partial \boldsymbol{\theta} = 0$$

$$2\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{G}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right]\widehat{\boldsymbol{\Xi}}\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right] = 0$$

$$\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{G}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right]\widehat{\boldsymbol{\Xi}}\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right] = 0$$

Now take a **mean**-value (not Taylor) expansion of $\sum_{i=1}^{N} g(w_i, \theta)$

$$\sum_{i=1}^{N} g\left(oldsymbol{w}_{i}, oldsymbol{ heta}
ight) = \sum_{i=1}^{N} g\left(oldsymbol{w}_{i}, ar{oldsymbol{ heta}}
ight) + \sum_{i=1}^{N} oldsymbol{G}'\left(oldsymbol{ heta} - oldsymbol{ heta}_{0}
ight)$$

in which $\bar{\theta}$ is some vector between θ and θ_0 .

- Now we substitute this mean value expansion into the first order condition.
- First order condition

$$\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{G}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right]\widehat{\boldsymbol{\Xi}}\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right]=0$$

Mean value expansion

$$\sum_{i=1}^{N} g\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right) = \sum_{i=1}^{N} g\left(\boldsymbol{w}_{i},\bar{\boldsymbol{\theta}}\right) + \sum_{i=1}^{N} \boldsymbol{G}'\left(\boldsymbol{\theta} - \boldsymbol{\theta}_{0}\right)$$

Substitution

$$\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{G}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right]\widehat{\boldsymbol{\Xi}}\left[N^{-1}\left(\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\bar{\boldsymbol{\theta}}\right)+\sum_{i=1}^{N}\boldsymbol{G}'\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\right)\right]=0$$

Now replace random averages with their plims, so there should be an $o_p(1)$ term floating around.

$$\boldsymbol{G}_{0}\boldsymbol{\Xi}_{0}\left[N^{-1}\left(\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\bar{\boldsymbol{\theta}}\right)\right)+\boldsymbol{G}_{0}'\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\right]=o_{p}(1)$$

and solve away.

$$G_{0}\Xi_{0}G'_{0}(\theta - \theta_{0}) = -G_{0}\Xi_{0}\left[N^{-1}\sum_{i=1}^{N}g\left(\mathbf{w}_{i},\bar{\theta}\right)\right] + o_{p}(1)$$

$$(\theta - \theta_{0}) = -\left(G_{0}\Xi_{0}G'_{0}\right)^{-1}G_{0}\Xi_{0}\left[N^{-1}\sum_{i=1}^{N}g\left(\mathbf{w}_{i},\bar{\theta}\right)\right] + o_{p}(1)$$

$$\sqrt{N}(\theta - \theta_{0}) = -\left(G_{0}\Xi_{0}G'_{0}\right)^{-1}G_{0}\Xi_{0}\left[N^{-1/2}\sum_{i=1}^{N}g\left(\mathbf{w}_{i},\bar{\theta}\right)\right] + o_{p}(1)$$

The right-hand side of this last line contains what is called an "influence function."

So the variance of the GMM estimator can be obtained by (roughly) by covarying the influence functions!¹

$$E\left(\boldsymbol{G}_{0}\boldsymbol{\Xi}_{0}\boldsymbol{G}_{0}^{\prime}\right)^{-1}\boldsymbol{G}_{0}\boldsymbol{\Xi}_{0}\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{g}_{0}\left(\boldsymbol{w}_{i},\bar{\boldsymbol{\theta}}\right)\right]\left[N^{-1}\sum_{i=1}^{N}\boldsymbol{g}_{0}\left(\boldsymbol{w}_{i},\bar{\boldsymbol{\theta}}\right)\right]^{\prime}\boldsymbol{\Xi}_{0}\boldsymbol{G}_{0}^{\prime}\left(\boldsymbol{G}_{0}\boldsymbol{\Xi}_{0}\boldsymbol{G}_{0}^{\prime}\right)^{-1}\right\} = \left(\boldsymbol{G}_{0}\boldsymbol{\Xi}_{0}\boldsymbol{G}_{0}^{\prime}\right)^{-1}\boldsymbol{G}_{0}\boldsymbol{\Xi}_{0}\boldsymbol{\Lambda}\boldsymbol{\Xi}_{0}\boldsymbol{G}_{0}^{\prime}\left(\boldsymbol{G}_{0}\boldsymbol{\Xi}_{0}\boldsymbol{G}_{0}^{\prime}\right)^{-1}$$

Note that if we set $\Xi_0 \equiv \Lambda_0^{-1}$, then this mess reduces as follows:

$$\begin{split} \left(\boldsymbol{G}_0 \boldsymbol{\Lambda}_0^{-1} \boldsymbol{G}_0' \right)^{-1} \boldsymbol{G}_0 \boldsymbol{\Lambda}_0^{-1} \boldsymbol{\Lambda}_0 \boldsymbol{\Lambda}_0^{-1} \boldsymbol{G}_0' \left(\boldsymbol{G}_0 \boldsymbol{\Lambda}_0^{-1} \boldsymbol{G}_0' \right)^{-1} &= \\ \left(\boldsymbol{G}_0 \boldsymbol{\Lambda}_0^{-1} \boldsymbol{G}_0' \right)^{-1} \boldsymbol{G}_0 \boldsymbol{\Lambda}_0^{-1} \boldsymbol{G}_0' \left(\boldsymbol{G}_0 \boldsymbol{\Lambda}_0^{-1} \boldsymbol{G}_0' \right)^{-1} &= \\ \left(\boldsymbol{G}_0 \boldsymbol{\Lambda}_0^{-1} \boldsymbol{G}_0' \right)^{-1} \boldsymbol{G}_0' \boldsymbol{\Lambda}_0^{-1} \boldsymbol{G}_0' \right)^{-1} \end{split}$$

- $lackbrack (G_0\Xi_0G_0')^{-1}G_0\Xi_0\Lambda_0\Xi_0G_0'(G_0\Xi_0G_0')^{-1}$ is always greater than $(G_0\Lambda_0^{-1}G_0')^{-1}$, in the sense that the difference between the two is a positive definite matrix.
- So an efficient estimate of the variance of $\hat{\theta}$ is given by

$$\frac{1}{N} \left\{ \widehat{\boldsymbol{G}} \widehat{\boldsymbol{\Lambda}}^{-1} \widehat{\boldsymbol{G}}' \right\}^{-1}$$

- ▶ What if we want to calculate the variance of an $R \times 1$ dimensional function $r(\widehat{\theta})$, $R \leq P$?
- lacktriangle We can use the "delta-method," which gives the variance of $r\left(\widehat{ heta}
 ight)$ as

$$\left(\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\theta}}\right) \left\{\frac{1}{N} \left\{\boldsymbol{G}_0 \widehat{\boldsymbol{\Lambda}_0}^{-1} \boldsymbol{G}_0'\right\}^{-1}\right\} \left(\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\theta}}\right)'$$

GMM. Influence Functions, and Weight Matrices Copyright © Toni M. Whited

Overidentifying Restrictions

- ightharpoonup If L>P, the model is overidentified. We have more equations than unknowns.
- Presumably we could take different subsets of P equations and solve exactly for the P elements of θ .
- ► Testing the overidentifying restrictions intuitively is a matter of testing to see if different exactly identified subsets of moment restrictions have the same solution.
- If the model is correct, then each of these answers should be the same.
 - What does this idea tell you about an informal way to see if the overidentifying restrictions are rejected?

Hansen's J-Test

► The following statistic

$$N\left(\frac{1}{N}\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right)'\widehat{\boldsymbol{\Lambda}}^{-1}\left(\frac{1}{N}\sum_{i=1}^{N}\boldsymbol{g}\left(\boldsymbol{w}_{i},\boldsymbol{\theta}\right)\right)$$

converges to a χ^2 statistic with (L-P) degrees of freedom under the null that the overidentifying restrictions hold.

- ► This is what is called a portmanteau test. "Wearovercoat"
- It tests for general misspecification, not any specific sort.
- ▶ The GMM J-test therefore need not be very powerful to detect misspecification.
- ▶ I will talk about the power of the test in the context of SMM later.

Why am I torturing you with influence functions?

- Our GMM/SMM weight matrices will be very complicated. Example:
 - ▶ Moments = M = [Mean Variance RegressionSlope1 RegressionSlope2]
 - ▶ Optimal weight matrix = $cov(M)^{-1}$
 - ▶ How to estimate covariance between a mean and a variance?
 - How to estimate covariance between slopes from two separate regressions?
 - Etc.
 - Especially hard if we need to cluster by firm, etc.
- Influence functions give you a simple way to estimate cov(M)
- Beyond structural estimation, if you know how to use influence functions, you know how to estimate the standard error for anything!
 - ► Test for serial correlation of the residuals of a nonlinear panel model?
 - Hausman test when the Hausman assumptions are not satisfied.

General Definition of an Influence Function

► Consider any estimator $\hat{\theta}$, and suppose there is a function $\phi(w_i)$ such that

$$\sqrt{N}\left(\hat{\theta} - \theta_0\right) = \sum_{i=1}^N \phi(\boldsymbol{w}_i) / \sqrt{N} + o_p(1), \quad E(\phi(\boldsymbol{w}_i)) = 0, \quad E(\phi(\boldsymbol{w}_i) \phi(\boldsymbol{w}_i)') \text{ exists.}$$

- ▶ then $\phi(w_i)$ is called the influence function of $\hat{\theta}$.
- In words, it gives the effect of a single observation on the estimator, up to the $o_p(1)$ remainder term.
- In different words, an influence function is a function of the data whose mean has the same asymptotic variance as the estimator.
- ► An estimator that has an influence function is called an asymptotically linear estimator.

Influence Function for a GMM Estimator

Now reconsider the expression

$$\sqrt{N}\left(\boldsymbol{\theta} - \boldsymbol{\theta}_0\right) = -\left(\boldsymbol{G}_0 \boldsymbol{\Xi}_0 \boldsymbol{G}_0'\right)^{-1} \boldsymbol{G}_0 \boldsymbol{\Xi}_0 \left[N^{-1/2} \sum_{i=1}^{N} \boldsymbol{g}\left(\boldsymbol{w}_i, \bar{\boldsymbol{\theta}}\right)\right] + o_p(1)$$

and compare it to the general expression for an influence function:

$$\sqrt{N}\left(\hat{\theta} - \theta_0\right) = \sum_{i=1}^{n} \phi(\boldsymbol{w}_i) / \sqrt{N} + o_p(1)$$

So the influence function for a GMM estimator must be:

$$-\left(oldsymbol{G}_{0}oldsymbol{\Xi}_{0}oldsymbol{G}_{0}^{\prime}
ight)^{-1}oldsymbol{G}_{0}oldsymbol{\Xi}_{0}oldsymbol{g}\left(oldsymbol{w}_{i},ar{oldsymbol{ heta}}
ight)$$

► End of proof by staring. For a real, extremely brief, but logically similar proof, see Newey and McFadden (1994).

Example

Recall the definition of an influence function :

$$-\left(oldsymbol{G}_{0}oldsymbol{\Xi}_{0}oldsymbol{G}_{0}^{\prime}
ight)^{-1}oldsymbol{G}_{0}oldsymbol{\Xi}_{0}oldsymbol{g}\left(oldsymbol{w}_{i},ar{oldsymbol{ heta}}
ight)$$

What is the influence function for the estimate of the mean of a random variable z_i with mean μ ?

$$egin{array}{lll} oldsymbol{g} \left(oldsymbol{w}_i, ar{oldsymbol{ heta}}
ight) &\equiv z_i - \mu \ oldsymbol{\Xi} &\equiv 1 \ oldsymbol{G} &\equiv -1 \ \phi \left(oldsymbol{w}_i, ar{oldsymbol{ heta}}
ight) &\equiv \left(z_i - \mu
ight) \end{array}$$

The sample counterpart for observation i is

$$z_i - N^{-1} \sum_{i=1}^N z_i$$

Example

Recall the definition of an influence function :

$$-\left(oldsymbol{G}_{0}oldsymbol{\Xi}_{0}oldsymbol{G}_{0}^{\prime}
ight)^{-1}oldsymbol{G}_{0}oldsymbol{\Xi}_{0}oldsymbol{g}\left(oldsymbol{w}_{i},ar{oldsymbol{ heta}}
ight)$$

Consider a simple linear regression

$$y_i = x_i \beta + u_i$$

What is the influence function for β?

$$g(w_i, \bar{\theta}) \equiv x_i \cdot u_i = x_i \cdot (y_i - x_i \beta)$$

$$\Xi_0 = \Lambda_0^{-1} \equiv \sigma^{-2} E(x_i' x_i)^{-1}$$

$$G_0 \equiv -E(x_i' x_i)$$

$$\phi(w_i, \bar{\theta}) \equiv E(x_i' x_i)^{-1} (x_i \cdot (y_i - x_i \beta))$$

The sample counterpart for observation i is

$$\left(N^{-1}\sum_{i=1}^{N}\left(x_{i}'x_{i}\right)\right)^{-1}\left(x_{i}\cdot u_{i}\right)$$

where the operator · is the Hadamard element-by-element operator.

Copyright (© Toni M. Whited GMM, Influence Functions, and Weight Matrices 26/35

Stacking

- ▶ What if you estimate the mean μ and the OLS coefficient β , and you want to know the covariance between these two estimates?
- Option 1: Just estimate them jointly in a big GMM system.
 - This option can be cumbersome if you have many moments.
- ▶ Option 2: Stack the influence functions and take the inner product.²
- Let $\hat{\phi}_{\mu}$ be the $N \times 1$ sample influence function for μ .
- ▶ Let $\hat{\phi}_{\beta}$ be the $N \times k$ sample influence function for β .

²The reference for this is Erickson and Whited (2002).

Stacking

Let's define

$$\Phi_{\mu\beta} \equiv \left[\left(z - N^{-1} \sum_{i=1}^{N} z_i \right) \left(\left(N^{-1} \sum_{i=1}^{N} \left(x_i' x_i \right) \right)^{-1} \left(x \cdot u \right) \right) \right]$$

- Notice I dropped the i subscripts.
- ▶ The dimension of this matrix is $N \times (k+1)$.
- lacktriangle The sample covariance matrix for $\left(egin{array}{c} \mu \\ \beta \end{array} \right)$ is then

$$\Phi'_{\mu\beta}\Phi_{\mu\beta}N^{-2}$$

Copyright © Toni M. Whited

Sample Matlab Code

```
% Mean influence function
n = size(z):
meaninflnc = z - mean(z).*ones(n,1);
% OLS influence function
b=inv(x'*x)*x'*y;
uhat = v - x*b:
olsinflnc=inv((x'*x)./n)*((x.*uhat(:,ones(size(x,2),1))));
% Big influence function
biginflnc = zeros(n, size(x, 2) + 1);
biginflnc(:,1) = meaninflnc:
biginflnc(:,2:(size(x,2)+1)) = olsinflnc;
% Covary the influcence functions
avar = biginflnc'*biginflnc./(n^2):
```

Two-Step Estimation

- Suppose you are doing a GMM estimator, but you estimate one or more of the parameters separately via a different procedure, and then plug these estimates into your GMM moment equations.
- Why? Sometimes this type of exercise reduces the dimensionality of the problem substantially.
- How do you figure out the GMM covariance matrix?
- ▶ This is nontrivial because the GMM estimates inherit the sampling variability from the first step.

Two-Step Estimation

- Let δ be a parameter vector of dimension S that you estimate in a first step via a different procedure
- ▶ Then you plug δ into your moment vector to get

$$oldsymbol{g}(oldsymbol{ heta}, oldsymbol{w}_i, oldsymbol{\delta})$$

and use this moment vector to estimate θ .

► The variance of the two-step estimator is

$$\left(oldsymbol{G} oldsymbol{\Omega}^{-1} oldsymbol{G}'
ight)^{-1}$$

ightharpoonup You can estimate Ω by

$$\widehat{\boldsymbol{\Omega}} \equiv \frac{1}{N} \sum_{i=1}^{N} \left[\boldsymbol{g}\left(\boldsymbol{w}_{i}, \boldsymbol{\theta}\right) - \mathbb{E}\left(\frac{\partial \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{w}_{i}, \boldsymbol{\delta})}{\partial \boldsymbol{\delta}}\right) \phi^{\boldsymbol{\delta}}(\boldsymbol{\delta}, \boldsymbol{w}_{i}) \right] \left[\boldsymbol{g}\left(\boldsymbol{w}_{i}, \boldsymbol{\theta}\right) - \mathbb{E}\left(\frac{\partial \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{w}_{i}, \boldsymbol{\delta})}{\partial \boldsymbol{\delta}}\right) \phi^{\boldsymbol{\delta}}(\boldsymbol{\delta}, \boldsymbol{w}_{i}) \right]'$$

in which ϕ^{δ} is the influence function for δ .

▶ A clear derivation of this estimator is in Newey and McFadden's chapter in the 4th volume of the *Handbook of Econometrics*.

Clustered Weight Matrices

- Everything I have taught you thus far is for i.i.d. data. Data are almost never i.i.d. in corporate finance.
- So how do you calculate a weight matrix and get your standard errors right if the data are not i.i.d?
- We will consider the following case.
 - ▶ The sample consists of K groups (clusters) of n_k observations each $(N = n_1 + \cdots + n_K)$
 - Observations are independent across groups but dependent within groups
 - $ightharpoonup K o \infty$, and n_k fixed for each k.

Clustered Weight Matrices

▶ We order observations by groups and use double-index notation so that

$$\boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{w}) \equiv \{\boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{w}_{1,1}), \dots, \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{w}_{n_1,1}) \mid \dots \mid \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{w}_{1,K}), \dots, \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{w}_{n_k,K})\}$$

- ▶ Under cluster sampling, the observations $w_{n,k}$ might be dependent within a cluster, k.
- I'm going to simplify notation

$$egin{aligned} oldsymbol{g}_{1,1} \equiv & oldsymbol{g}(oldsymbol{ heta}, oldsymbol{w}_{1,1}) \ \hat{oldsymbol{g}}_{1,1} \equiv & oldsymbol{g}(\hat{oldsymbol{ heta}}, oldsymbol{w}_{1,1}) \end{aligned}$$

Clustered Weight Matrices

Let

$$ar{oldsymbol{g}} = \sum_{j=1}^{n_k} oldsymbol{g}_{j,k}$$

Then we can define Λ as:

$$\Lambda = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{K} E\left(\bar{\boldsymbol{g}}_{k} \bar{\boldsymbol{g}}'_{k}\right).$$

- Note that $E(\bar{g}_i\bar{g}'_i)=0$ only if i and j belong to different clusters.
- Define:

$$ilde{m{g}} = \sum_{j=1}^{n_k} \hat{m{g}}_{j,k}$$

A consistent estimate of Λ is therefore:

$$\hat{\Lambda} = \frac{1}{N} \sum_{k=1}^{K} \tilde{\boldsymbol{g}}_{k} \tilde{\boldsymbol{g}}'_{k}.$$

Sample Matlab code for a balanced panel

Consider a panel with dimensions T and N:

```
k = size(biginflnc,2);
vmx = zeros(k,k);
for qq=1:capN;
    phii = sum(biginflnc((qq-1)*(capT)+1:qq*(capT),:));
    vmx = vmx + phii'*phii;
end;

vmx = vmx./((capN*capT)^2);
```

- Erickson, T., Whited, T.M., 2002. Two-step GMM estimation of the errors-in-variables model using high-order moments. Econometric Theory 18, 776–799.
- Hansen, L.P., Singleton, K.J., 1982. Generalized instrumental variables estimation of nonlinear rational expectations models. Econometrica 50, 1269–1286.
- Horowitz, J.L., 2001. The bootstrap, in: Heckman, J.J., Leamer, E. (Eds.), Handbook of Econometrics. Elsevier. volume 5 of *Handbook of Econometrics*, pp. 3159 3228.
- Newey, W., McFadden, D., 1994. Large sample estimation and hypothesis testing, in: Engle, R., McFadden, D. (Eds.), Handbook of Econometrics. Vol. 4. North-Holland. Amsterdam. pp. 2111–2245.