Goal: 19 Total: 28

- 1. Prove that the point of concurrency of the angle bisectors of a triangle is always inside the triangle. (1)
- 2. Prove that if the incenter and circumcenter of a triangle are the same point, the triangle must be equilateral. (2)
- 3. Prove that in $\triangle ABC$ with medians AA', BB', CC' and centroid X, that [AB'X] = [AC'X] = [BA'X] = [BC'X] = [CA'X] = [CB'X]. (3)
- 4. Consider $\triangle ABC$ with $\overline{AB} = 5$, $\overline{BC} = 12$, and $\overline{AC} = 13$. Angle bisector AD and median \overline{AE} is drawn such that B, C, D, E are collinear. Find [ADE]. (2)
- 5. Consider $\triangle ABC$ such that $\overline{AB}=3$, $\overline{AC}=5$. Angle bisector AD exists such that $\overline{AD}^2=\frac{3[ABC]}{2\cdot\sin(A)}$. Find \overline{DB} . (4)
- 6. In trapezoid ABCD with $\overline{BC} \parallel \overline{AD}$, let BC = 1000 and AD = 2008. Let $\angle A = 37^{\circ}$, $\angle D = 53^{\circ}$, and M and N be the midpoints of \overline{BC} and \overline{AD} , respectively. Find the length MN. (3)
- 7. For a given triangle $\triangle ABC$, let H denote its orthocenter and O its circumcenter.
 - (a) Prove that $\angle HAB = \angle OAC$. (*4)
 - (b) Prove that $\angle HAO = |\angle B \angle C|$. (\star 4)
- 8. Let H_A, H_B, H_C be the feet of the A, B, C altitudes of acute $\triangle ABC$, respectively. Prove that the orthocenter H of $\triangle ABC$ is the incenter of orthic triangle $\triangle H_A H_B H_C$. (\star 5)