(3) CSMA/CD (CSMA with Collision Detection)

- In CSMA schemes, collisions involve entire frame transmissions
- The amount of the wasted bandwidth can be reduced by aborting the transmission as soon as a collision is detected
 - ▶ If a collision is detected during the transmission, the station
 - aborts the transmission
 - sends a short jamming signal to ensure that other stations know that a collision has occurred, and
 - use a backoff algorithm to schedule a future re-sensing time

Cpr E 489 -- D.Q.

IEEE 802.3 MAC Protocol

1-persistent CSMA/CD

- n random backoff
- @ How to detect collision?
- @ mun lammind;

IEEE 802.3 MAC Protocol

- Collision resolution: Truncated Binary Exponential Backoff
 - If a station has experienced the nth collision in a row for a frame, it selects an integer value (K) at random from {0, 1,, 2^m-1} where m = min(n, 10) and waits for K mini-slots (each mini-slot = (2t_{prop}) before sensing again

failure

Up to 16 re-transmission attempts will be allowed, after which the system gives up

choose K from
$$\{0,1,\dots,2^{m}-1\}$$

where $m=\min_{k=1}^{m}(n,10)$

where $m=\min_{k=1}^{m}(n,10)$

Cpr E 489 -- D.Q.

IEEE 802.3 MAC Protocol

- Collision resolution: Truncated Binary Exponential Backoff
 - → The increasing range of selection for backoff after each collision is intended to increase the likelihood that re-transmission will succeed.

Eq. 2 stations (A1B) have plot arrival at the Same time

1st round of attempt:
$$Pr(collision) = 1$$

2nd round: $Pr(collision) = 1$
 $Pr(collision) = \frac{2}{2+2} = 50\%$

3rd round: $Pr(collision) = \frac{2}{4+4} = 25\%$

IEEE 802.3 MAC Protocol

Collision Detection

Cpr E 489 -- D.Q.

CSMA/CD Reaction Time

 It takes A up to 2t_{prop} time to find out whether it has captured the channel successfully

Minimum Frame Size in IEEE 802.3 Ethernet

$$(atprop) * R \stackrel{\leq}{=} min frame size$$

charation of time to keep transmitting

(o Base 5

A Trepenter

throp =
$$\frac{500 \text{ m } \times 5}{24 \text{ lo m/s}} + 3 \text{ Ms} \times 4$$

(speed of signal prop) processing delay at repeater

= 34.5 Ms

min frame size = $(3 \text{ throp}) \times R$

= $49 \text{ Ms} \times (0 \text{ Mbps} = 490 \text{ bits})$

512 bits = 64 bites

Cpr E 489 -- D.Q.

Ion Mbps Ethernet:

R

bus
$$\rightarrow$$
 star

500 yr \rightarrow loom segment

Hub

- 100 m

1 prop = $\frac{100 + 2}{2 + 100} + 1 \mu s$

= 2 μs

(2 tyrop) * R = 400 bits < 512 bits

IEEE 802.3 MAC Frame

- Preamble helps receiver synchronize its clock to transmitter clock
 - ▶ 7 bytes of 10101010 generate a square wave

Start frame byte changes to "10101011"

Receiver looks for change in "10" pattern