A Comparative Analysis of Algorithms for Identifying Cancer Driver Pathways

Facoltà di Ingegneria dell'informazione, informatica e statistica Corso di Laurea in Informatica

Candidato: Alessio Bandiera

Relatore: Ivano Salvo

Anno Accademico: 2023/2024

Il cancro è un gruppo di malattie caratterizzate dalla crescita incontrollata delle cellule.

Il cancro è un gruppo di malattie caratterizzate dalla crescita incontrollata delle cellule.

Esistono oltre 100 tipi di cancro, e.g. carcinomi, sarcomi e leucemie.

Il cancro è un gruppo di malattie caratterizzate dalla crescita incontrollata delle cellule.

Esistono oltre 100 tipi di cancro, e.g. carcinomi, sarcomi e leucemie.

Ogni anno i decessi per il cancro sono nell'ordine dei milioni.

Il cancro è un gruppo di malattie caratterizzate dalla crescita incontrollata delle cellule.

Esistono oltre 100 tipi di cancro, e.g. carcinomi, sarcomi e leucemie.

Ogni anno i decessi per il cancro sono nell'ordine dei milioni.

È importante trovare trattamenti efficaci contro questa malattia.

Cure attuali

Le cure ed i trattamenti per il cancro attualmente disponibili sono:

Chirurgia

Chemioterapia

Radioterapia

Terapie ormonali

Cure attuali

Le cure ed i trattamenti per il cancro attualmente disponibili sono:

Problema. Tutti i trattamenti attuali sono limitati, e possono portare a molteplici effetti collaterali.

Terapia a bersaglio

La **terapia a bersaglio** è un trattamento per il cancro che si concentra sulle proteine responsabili della crescita del tumore.

Terapia a bersaglio

La **terapia a bersaglio** è un trattamento per il cancro che si concentra sulle proteine responsabili della crescita del tumore.

La terapia a bersaglio offre maggiore selettività e può aiutare a ridurre gli effetti collaterali.

Terapia a bersaglio

La **terapia a bersaglio** è un trattamento per il cancro che si concentra sulle proteine responsabili della crescita del tumore.

$$\bigvee$$

La terapia a bersaglio offre maggiore selettività e può aiutare a ridurre gli effetti collaterali.

Cosa bersagliare?

Il ruolo delle mutazioni nel cancro

Lo sviluppo del cancro è un **processo di mutazione** e selezione di cellule con capacità sempre maggiori di proliferare.

Il ruolo delle mutazioni nel cancro

Lo sviluppo del cancro è un **processo di mutazione** e selezione di cellule con capacità sempre maggiori di proliferare.

Le **mutazioni** ricoprono un ruolo fondamentale per lo sviluppo e la progressione del cancro.

Definizione. (Mutazione passenger) Una mutazione passenger è una mutazione che non conferisce vantaggio diretto al cancro.

Definizione. (Mutazione *passenger*) Una mutazione *passenger* è una mutazione che non conferisce vantaggio diretto al cancro.

Definizione. (Mutazione driver) Una mutazione driver è una mutazione che contribuisce direttamente alla crescita tumorale.

Definizione. (Mutazione passenger) Una mutazione passenger è una mutazione che non conferisce vantaggio diretto al cancro.

Definizione. (Mutazione driver) Una mutazione driver è una mutazione che contribuisce direttamente alla crescita tumorale.

Colpendo le mutazioni *driver* con terapie a bersaglio è possibile ridurre lo sviluppo del cancro.

Definizione. (Mutazione *passenger*) Una mutazione *passenger* è una mutazione che non conferisce vantaggio diretto al cancro.

Definizione. (Mutazione driver) Una mutazione driver è una mutazione che contribuisce direttamente alla crescita tumorale.

Colpendo le mutazioni *driver* con terapie a bersaglio è possibile ridurre lo sviluppo del cancro.

Classificare le mutazioni tra driver e passenger è essenziale.

Pathway cellulari

Definizione. (Pathway) Un pathway cellulare è insieme di catene di processi biochimici che avvengono in una cellula.

Pathway cellulari

Definizione. (Pathway) Un pathway cellulare è insieme di catene di processi biochimici che avvengono in una cellula.

I pathway possono essere rappresentati da grafi diretti.

Pathway cellulari

Definizione. (Pathway) Un pathway cellulare è insieme di catene di processi biochimici che avvengono in una cellula.

I pathway possono essere rappresentati da grafi diretti.

Siamo interessati ai geni che compongono i pathway.

Cercare i pathway driver

I pathway sono importanti poiché nel loro contesto è possibile valutare la ricorrenza delle singole mutazioni.

Cercare i pathway driver

I pathway sono importanti poiché nel loro contesto è possibile valutare la ricorrenza delle singole mutazioni.

Più mutazioni driver in geni diversi possono portare a simili effetti downstream, dunque il vantaggio selettivo è distribuito tra le frequenze delle varie alterazioni.

Cercare i pathway driver

I pathway sono importanti poiché nel loro contesto è possibile valutare la ricorrenza delle singole mutazioni.

Più mutazioni driver in geni diversi possono portare a simili effetti downstream, dunque il vantaggio selettivo è distribuito tra le frequenze delle varie alterazioni.

Mutazioni diverse possono influenzare lo stesso pathway in vari campioni.

Problemi nel cercare i pathway

Problema. Cercare pathway *driver* è complesso, per via dell'enorme numero di pathway possibili da verificare, e.g. ci sono più di 10²⁶ insiemi possibili di 7 geni.

Problemi nel cercare i pathway

Problema. Cercare pathway driver è complesso, per via dell'enorme numero di pathway possibili da verificare, e.g. ci sono più di 10^{26} insiemi possibili di 7 geni.

Non è possibile controllare ogni pathway.

Problemi nel cercare i pathway

Problema. Cercare pathway *driver* è complesso, per via dell'enorme numero di pathway possibili da verificare, e.g. ci sono più di 10²⁶ insiemi possibili di 7 geni.

Non è possibile controllare ogni pathway.

Fortunatamente, statisticamente si sono osservate proprietà che permettono di ridurre il numero di pathway da controllare.

Pathway *driver*

Assunzione. (Copertura) I geni driver di pathway driver sono mutati nella maggior parte dei pazienti.

Assunzione. (Mutua esclusività) I geni driver all'interno dello stesso pathway sono approssimativamente mutuamente esclusivi.

Pathway *driver*

Assunzione. (Copertura) I geni driver di pathway driver sono mutati nella maggior parte dei pazienti.

Assunzione. (Mutua esclusività) I geni driver all'interno dello stesso pathway sono approssimativamente mutuamente esclusivi.

Definizione. (Pathway *driver*) Un pathway *driver* è un pathway costituito da geni mutati in numerosi pazienti, e le cui mutazioni sono approssimativamente mutualmente eslcusive all'interno del pathway.

Matrice di Mutazione

Definizione. (Matrice di mutazione) Una matrice di mutazione è una matrice binaria che descrive le mutazioni dei pazienti.

	$\mid g_1 \mid$	g_2	g_3	g_4	g_5
$\overline{p_1}$	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$a_{i,j} = 1 \iff i \text{ ha il gene } j \text{ mutato}$$

Copertura di un gene

Definizione. (Copertura di un gene) La copertura di un gene g è l'insieme dei pazienti che hanno g mutato.

	g_1	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$\Gamma(g) := \{i \mid a_{i,j} = 1\}$$

Copertura di un gene

Definizione. (Copertura di un gene) La copertura di un gene g è l'insieme dei pazienti che hanno g mutato.

_	g_1	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
p_2	$\mid 1 \mid$	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$\Gamma(g) := \{i \mid a_{i,j} = 1\}$$

Copertura di un insieme di geni

Definizione. (Copertura di un insieme di geni) La copertura di un insieme di geni M è l'unione delle coperture dei geni di M.

	g_1	g_2	g_3	g_4	g_5		
$\overline{p_1}$	0	1	0	0	1		
p_2	$\mid 1 \mid$	0	1	0	0		
p_3	0	1	1	0	0		
p_4	0	0	0	1	1		
$\Gamma(M) := \bigcup_{g \in M} \Gamma(g)$							

Copertura di un insieme di geni

Definizione. (Copertura di un insieme di geni) La copertura di un insieme di geni M è l'unione delle coperture dei geni di M.

	g_1	g_2	g_3	g_4	g_5	
p_1	0	1	0	0	1	
p_2	1	0	1	0	0	
p_3	0	1	1	0	0	
p_4	0	0	0	1	1	
$\Gamma(M) := \bigcup_{g \in M} \Gamma(g)$						

Mutua esclusività

Definizione. (Mutua esclusività) M è mutuamente esclusivo se non ci sono pazienti con più di una mutazione di geni di M.

	g_1	g_2	g_3	$ g_4 $	g_5
$\overline{p_1}$	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$\forall g, g' \in M \quad \Gamma(g) \cap \Gamma(g') = \varnothing$$

Sovrapposizione di un insieme di geni

Definizione. (Sovrapposizione) $\omega(M)$ rappresenta il numero di pazienti con più di un gene di M mutato.

	g_1	g_2	g_3	g_4	g_5		
$\overline{p_1}$	0	1	0	0	1		
p_2	1	0	1	0	0		
p_3	0	1	1	0	0		
p_4	0	0	0	1	1		
$\omega(M) := \sum_{g \in M} \Gamma(g) - \Gamma(M) $							

Sovrapposizione di un insieme di geni

Definizione. (Sovrapposizione) $\omega(M)$ rappresenta il numero di pazienti con più di un gene di M mutato.

		g_1	g_2	g_3	g_4	g_5
	p_1	0	1	0	0	$\overline{1}$
	p_2	1	0	1	0	0
	p_3	0	1	1	0	0
	p_4	0	0	0	1	1
ω	(M)	:= 2		$\Gamma(g)$	-	$\Gamma(M)$
		g	$\in M$			

Sovrapposizione di un insieme di geni

Definizione. (Sovrapposizione) $\omega(M)$ rappresenta il numero di pazienti con più di un gene di M mutato.

	g_1	g_2	g_3	g_4	g_5	
p_1	0	1	0	0	1	
$ p_2 $	1	0	1	0	0	
$ p_3 $	0	1	1	0	0	
$\overline{p_4}$	0	0	0	1	1	
$\omega(M)$:=	$\sum_{g \in M} $	$\Gamma(g)$		$\Gamma(M)$	

Sovrapposizione di un insieme di geni

Definizione. (Sovrapposizione) $\omega(M)$ rappresenta il numero di pazienti con più di un gene di M mutato.

	(g_1	g_2	g_3	g_4	g_5	
p_1		0	1	0	0	1	
p_2		1	0	1	0	0	
p_3		0	1	1	0	0	
p_4		0	0	0	1	1	
$\omega(M)$) :=		$\sum_{i \in M} i $	$\Gamma(g)$		$\Gamma(M$	

	g_1	g_2	g_3	g_4	g_5
$\overline{p_1}$	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$W(M) := |\Gamma(M)| - \omega(M)$$

	g_1	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
$ p_2 $	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$W(M) := |\Gamma(M)| - \omega(M)$$

	g_1	g_2	g_3	g_4	g_5
$ p_1 $	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$W(M) := |\Gamma(M)| - \omega(M)$$

	g_1	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
p_2	1	0	1	0	0
$ p_3 $	0	1	1	0	0
p_4	0	0	0	1	1

$$W(M) := |\Gamma(M)| - \omega(M)$$

Maximum Weight Submatrix Problem (MWSP)

Definizione. (MWSP) Data una matrice di mutazione A di dimensioni $m \times n$, ed un intero k > 0, si trovi una sottomatrice $m \times k$ di A tale da massimizzare W(M).

	g_1	g_2	g_3	$ g_4 $	g_5
$\overline{p_1}$	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

Teorema. (MWSP) L'MWSP è NP-completo.

Multiple Maximum Weight Submatrix Problem (MMWSP)

Definizione. (MMWSP) Data una matrice di mutazione A di dimensioni $m \times n$, ed un intero t > 0, si trovi la collezione $M = \{M_1, ..., M_t\}$ di sottomatrici colonna di A che massimizzi

$$W'(M) := \sum_{\rho=1}^{\iota} W(M_{\rho})$$

	g_1	g_2	g_3	$ g_4 $
$\overline{p_1}$	0	1	0	1
p_2	1	0	0	0
p_3	0	1	0	0
p_4	0	0	1	1

Approcci statistici

Problema. La metrica W(M) assume che i pathway driver abbiano i geni <u>esattamente</u> mutuamente esclusivi, ma la mutua esclusività <u>esatta</u> nei dati reali si verifica raramente

Approcci statistici

Problema. La metrica W(M) assume che i pathway driver abbiano i geni <u>esattamente</u> mutuamente esclusivi, ma la mutua esclusività esatta nei dati reali si verifica raramente.

Nonostante W(M) permetta di formulare facilmente problemi di ottimizzazione per trovare pathway driver, approcci statistici tendono a performare meglio su dati reali.

Ipotesi nulla

Definizione. (H_0) Dato un gruppo di geni M, un gene g di M è alterato indipendentemente dall'unione delle alterazioni dei geni in $M - \{g\}$.

Ipotesi nulla

Definizione. (H_0) Dato un gruppo di geni M, un gene g di M è alterato indipendentemente dall'unione delle alterazioni dei geni in $M - \{g\}$.

$$X \sim H(m, \Gamma(g), \Gamma(M - \{g\}))$$

$$X \sim H(m, \Gamma(g), \Gamma(M - \{g\}))$$

$$\downarrow \downarrow$$

$$p_g := P(X = \Gamma(g) \cap \Gamma(M - \{g\}))$$

$$X \sim H(m, \Gamma(g), \Gamma(M - \{g\}))$$

$$\downarrow \downarrow$$

$$p_g := P(X = \Gamma(g) \cap \Gamma(M - \{g\}))$$

$$\downarrow \downarrow$$

$$s_M := \max_{g \in M} p_g$$

Algoritmo genetico

L'algoritmo genetico utilizza la stessa funzione di fitness W(M).

	•
g_1	0111001100
g_2	1011011000
g_3	0001110011
g_4	0101010110
	• •
$g_n \mid$	0101010110

Definizione. (Membro) Un membro della popolazione è una stringa binaria che rappresenta un insieme di geni M.

Definizione. (Crossover) Un figlio eredita dai genitori i bit in comune, mentre gli altri sono casuali.

Algoritmo di clustering

Definizione. (Grafo di geni) Un grafo di geni è un grafo completamente connesso in cui ogni arco ha assegnati due pesi.

Definizione. (Peso negativo) Il peso negativo di un arco (u,v) è il costo di posizionare u e v nello stesso cluster.

$$w_{uv}^- := w_{uv}^-(e)$$

Definizione. (Peso positivo) Il peso positivo di un arco (u,v) è il costo di posizionare u e v in cluster diversi.

$$w_{uv}^+ := w_1 w_{uv}^+(c) + w_2 w_{uv}^+(n) + w_3 w_{uv}^+(x)$$

Lavori futuri

L'identificazione dei pathway driver offre prospettive promettenti per migliorare l'efficacia delle terapie a bersaglio.

Lavori futuri

L'identificazione dei pathway driver offre prospettive promettenti per migliorare l'efficacia delle terapie a bersaglio.

Lavori futuri potrebbero integrare tecnologie emergenti, come il single-cell sequencing.

Lavori futuri

L'identificazione dei pathway driver offre prospettive promettenti per migliorare l'efficacia delle terapie a bersaglio.

Lavori futuri potrebbero integrare tecnologie emergenti, come il *single-cell sequencing*.

Servono algoritmi che considerino l'*eterogeneità* tumorale ed i meccanismi di resistenza adattativa alle terapie a bersaglio.

Grazie per l'attenzione