Stochastic Unit Commitment Problem

David Ribes

Introduction 1

This document describes the formulation of a stochastic unit commitment problem under uncertainty in demand. The demand follows a multivariate normal distribution with varying correlation levels across time periods. The problem is mathematically formulated as deterministic with binary approximation.

$\mathbf{2}$ Problem Formulation

The goal is to minimize total operating costs while meeting demand with a high reliability level p. Demand scenarios are generated from a multivariate normal distribution $D \sim \mathcal{N}_T(\mu, \Sigma)$, with mean vector μ and covariance matrix Σ .

Objective Function

$$\min \sum_{t=1}^{T} \sum_{g=1}^{G} \left(z_{g,t}^{\text{on}} \cdot C_{\text{startup},g} + z_{g,t}^{\text{off}} \cdot C_{\text{shutdown},g} + b_g p_{g,t} + c_g u_{g,t} \right)$$

$$\tag{1}$$

Constraints

$$u_{g,t} - u_{g,t-1} = z_{g,t}^{\text{on}} - z_{g,t}^{\text{off}}$$

$$z_{g,t}^{\text{off}} + z_{g,t}^{\text{on}} \le 1$$

$$\forall g, t$$

$$\forall g, t$$

$$(3)$$

$$z_{q,t}^{\text{off}} + z_{q,t}^{\text{on}} \le 1 \tag{3}$$

$$P_g^{\min} \cdot u_{g,t} \le P_g^{\max} \cdot u_{g,t}$$

$$\forall g, t$$

$$(4)$$

$$p_{g,t} - p_{g,t-1} \le R_{\text{up},g} u_{g,t-1} + R_{\text{up},g}^{SU} z_{g,t}^{\text{on}}$$
 $\forall g, t$ (5)

$$p_{g,t} - p_{g,t-1} \le R_{\text{up},g} u_{g,t-1} + R_{\text{up},g}^{SU} z_{g,t}^{\text{on}} \qquad \forall g, t$$

$$p_{g,t-1} - p_{g,t} \le R_{\text{down},g} u_{g,t} + R_{\text{down},g}^{SD} z_{g,t}^{\text{off}} \qquad \forall g, t$$
(6)

$$\sum_{g=1}^{G} p_{g,t} \ge y_i D_t^i \tag{7}$$

$$\sum_{i=1}^{N} y_i \ge pN \tag{8}$$

3 Model Parameters

Generator Characteristics

Generating unit #	1	2	3
P_i^{\min}	50	80	40
P_i^{\max}	350	200	140
$R_{\mathrm{down},i}$	300	150	100
$R_{\mathrm{down},i}^{SD}$	300	150	100
$R_{\mathrm{up},i}$	200	100	100
$\mid R_{\text{up},i}^{SU} \mid$	200	100	100
C_i^{startup}	20	18	5
C_i^{shutdown}	0.5	0.3	1.0
b_i	0.1	0.125	0.150
c_i	5	7	6

Table 1: Parameters for each generator.

4 Demand Modeling

Demand is modeled as a multivariate normal random vector:

$$D \sim \mathcal{N}_T(\mu, \Sigma) \tag{9}$$

Time	1	2	3	
μ_t	225	630	400	
σ_t	25	40	28	

Table 2: Multivariate normal distribution parameters.

Correlation Structure

The covariance matrix Σ is computed as:

$$\Sigma_{i,j} = \rho_{ij} \cdot \sigma_i \cdot \sigma_j$$

We consider three different correlation cases, as shown in Table 3:

Case	ρ_{01}	ρ_{02}	ρ_{12}
Non-correlated	0.0	0.0	0.0
Moderately correlated	0.3	0.4	0.5
Highly correlated	0.6	0.7	0.8

Table 3: Correlation coefficients for demand across time periods.