Лабораторная работа 5.8.1

Определение постоянных Стефана-Больцмана и Планка из анализа теплового излучения накаленного тела

При помощи модели АЧТ проводятся измерения температуры оптическим пирометром с исчезающей нитью и термопарой, исследуется излучение накаленных тел с различной испускательной способностью, определяются постоянные Планка и Стефана-Больцмана.

Теоретическая справка

Бозоны - частицы с целым спином и симметричными волновыми функциями. **Фермионы** - частицы с полуцелым спином и характеризующиеся антисимметричными волновыми функциями.

Формула распределения Бозе-Эйнштейна:

$$\bar{n} = \frac{1}{e^{\frac{h\omega}{2\pi k_{\rm B}T}} - 1}$$

Формула Планка:

$$u_{\omega}d\omega = \frac{\omega^2}{\pi^2 c^3} \cdot \frac{\omega}{\exp\frac{h\omega}{2\pi k_{\rm B}T} - 1} d\omega$$

Метод оптической пирометрии основан на использовании зависимости испускательной способности исследуемого тела от температуры. Различают три температуры: радиационную $T_{\rm pag}$, цветовую $T_{\rm цв}$ и яркостную $T_{\rm ярк}$.

Интегральная испукательная способность R тела - величина электромагнитной энергии W, испукаемая по всем направлениям единицей поверхности тела в единицу времени во всем интервале длин

волн:

$$R = \frac{W}{S}$$

Спектральная испускательная способность $r_{\lambda,T}$ тела - физическая величина, численно равная величине электромагнитной энергии, испускаемой единицей поверхности тела по всем направлениям в единицу времени в интервале длин волн от λ до $\lambda + d\lambda$:

$$r_{\lambda,T} = \frac{dR}{d\lambda}$$

Спектральная поглощательная способность тела $a_{\lambda,T}$ - величина, показывающая, какую долю монохроматического потока электромагнитной энегрии данное тело поглащает:

$$a_{\lambda,T} = \frac{\Phi_{\lambda_{\text{погл}}}}{\Phi_{\lambda_{\text{погл}}}}$$

Интегральная поглощательная способность:

$$A(T) = \frac{\Phi_{\text{погл}}}{\Phi_{\text{пал}}}$$

Закон Кирхгофа: отношение испускательной и поглощательной способностей не зависит от природы тела, а является для всех тел одной и той же функцией длины волны и температуры.

Радиационная температура - температура АЧТ, при которой его интегральная испускательная способность равна интегральной испускательной способности исследуемого тела. Цветовая температура - температура АЧТ, при которой отношение их спектральных исспускательных способностей для двух заданных длин волн одинаковы. Яркостная температура - температура АЧТ, при которой его спектральная исспускательная способность равная спектральной исспускательной способности исследуемого тела при той же длине волны. Её и будем измерять в работе.

Для черных тел:
$$W = \sigma S(T^4 - T_0^4)$$
.

Для серых тел: $W = \epsilon_T S \sigma T^4$.

Экспериментальная установка

Рис. 3. Схема экспериментальной установки: 1 — блок питания; 2 — тумблер включения питания пирометра и образцов; 3 — тумблер нагрева нити пирометра: «Быстро» — вверх, «Медленно» — вниз; 4 — кнопка «Нагрев нити»; 5 — кнопка «охлаж дение нити»; 6 — тумблер переключения образцов; 7 — регулятор мощности нагрева образцов; 8 — окуляр пирометра; 9 — корпус пирометра; 10 — объектив пирометра; 11 — переключение диапазонов: 700—1200°С — вниз, 1200—2000°С — вверх; 12 — ручка перемещения красного светофильтра; 13 — регулировочный винт; 14 — вольтметр (напряжение на лампе накаливания); 15 — амперметр (ток через образцы); 16 — вольтметр в цепи термопары; 17 — модель АЧТ; 18 — трубка с кольцами из материалов с разной излучательной способностью; 19 — лампа накаливания; 20 — неоновая лампочка

Модель АЧТ представляет собой керамическую трубку диметрром 3мм и длиной 50мм, закрытую с одного конца и окруженную для теплоизоляции внешним кожухом.

Отчет

І. Изучение работы оптического пирометра

Измеряется температуры АЧТ с помощью пирометра и сравнивается со значением, измеренным при помощи термопарного термометра. Измерения с помощью пирометра представлены в таблице:

Средняя температура равна:

$$\bar{T} = 1117.75^{\circ} C = 844.6 \text{K}$$

Показания вольтметра равны $43910\mathrm{B}$. Разделив это значение на коэффициент $k=41\frac{\mathrm{MKB}}{^{\circ}C}$ и прибавив комнатную температуру $T_{\mathrm{комн}}=23^{\circ}C$ получим:

$$T_{\text{термопара}} = 1093^{\circ} C = 819.85 \text{K}$$

Итак, температуры, измеренные разными способами, отличаются друг от друга примерно на 3. Следовсательно, оптический пирометр работает исправно.

II. Измерение яркостной температуры накаленных тел

Различные тела, накаленные до одинаковой термодинамической температуры, имеют различную яркостную температуру.

$$T_{\text{трубки}} = 770^{\circ} C$$

Однако приборы не позволяют измерить температуры колец. Из изображения видно, что их температура меньше температуры трубки и различается между собой. В эксперименте не удалочь полностью раскалить кольца.

Не каждое тело можно описать моделью АЧТ. У каждого тела различный коэффициент излучения ϵ_T . Отсюда же следует, что яркостная температура не равна термодинамической.

III. Проверка закона Стефана-Больцмана

Будем проводить измерения на вольфрамовой нити лампы накаливания. Результаты измерений представлены в таблице:

	$T_{\rm spk}$, ° C	<i>V</i> , B	<i>I</i> , мА	$T_{\rm spk}$, K	T, K	ϵ_T	W, BT	ln W	ln T	σ , $10^{-12} \frac{BT}{cm^2 K^4}$	h , эрг \cdot с
0	900	1.669	0.484	1173.15	1263.15	0.081	0.420911	-0.865334	7.141364	NaN	NaN
1	1000	1.946	0.511	1273.15	1363.15	0.105	0.740030	-0.301064	7.217553	NaN	NaN
2	1100	2.447	0.561	1373.15	1463.15	0.119	1.113238	0.107273	7.288347	NaN	NaN
3	1200	2.720	0.586	1473.15	1563.15	0.133	1.620839	0.482944	7.354458	5.67	6.619009
4	1300	3.145	0.624	1573.15	1663.15	0.144	2.248919	0.810449	7.416469	5.67	6.619009
5	1400	4.010	0.698	1673.15	1763.15	0.164	3.235091	1.174057	7.474857	5.67	6.619009
6	1500	4.580	0.743	1773.15	1863.15	0.179	4.402809	1.482243	7.530024	5.67	6.619009
7	1600	5.411	0.806	1873.15	1963.15	0.195	5.911996	1.776983	7.582306	5.67	6.619009
8	1700	6.095	0.855	1973.15	2063.15	0.209	7.729565	2.045053	7.631989	5.67	6.619009
9	1800	7.182	0.929	2073.15	2163.15	0.223	9.966369	2.299216	7.679321	5.67	6.619009
10	1900	8.311	1.001	2173.15	2263.15	0.236	12.637202	2.536645	7.724513	5.67	6.619009

Построим график W = F(T).

Для проверки закона Стефана-Больцмана построим тот же график в логарифмических координатах: $\ln W = \ln \left(\epsilon_T B \right) + n \ln T$.

Из графика:

$$n = 4.0$$

Для температур выше 1400К вычислим постоянные Стефана-Больцмана и Планка по формулам:

$$\sigma = \frac{W}{\epsilon_T S T^4}$$

где S = 0.36см²

$$h = \sqrt[3]{\frac{2\pi^5 k_{\rm B}^4}{15c^2 \sigma}}$$

Результаты приведены в таблице.

Табличные значения:

$$\sigma = 5.67 \cdot 10^{-12} \frac{\text{Bt}}{\text{cm}^2 \text{K}^4}$$
$$h = 6.626 \cdot 10^{-27} \text{эрг} \cdot \text{c}$$

$$h = 6.626 \cdot 10^{-27}$$
эрг · с

Экспериментальные значения с хорошей точностью совпали с табличными.

IV. Измерение яркостной температуры неоновой лампы

Яркостная температура неоновой лампы равна $844^{\circ}C$. Однако можно с легкостью дотронуться до самой лампы, то есть яркостная температура совершенно не соответстует термодинамической.

Данный эффект описывается непосредственно принципом работы неоновой лампы.

Внутри колбы неоновой лампы происходит такие процессы: двигаясь, электроны встречаются с нейтральными атомами газа – заполнителя полости трубки – и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии.

Вывод

Ознакомились с моделью АЧТ, экспериментально определили постоянные Стефана-Больцмана и Планка. Показали, что не все тела можно рассматривать как АЧТ. Также разобрались в принципе работы неоновой лампы.