СУЛИМОВ АЛЕКСАНДР СТАНИСЛАВОВИЧ

ОПТИМИЗАЦИЯ ФОРМЫ МАГНИТА ДЛЯ УСКОРИТЕЛЕЙ ЗАРЯЖЕННЫХ ЧАСТИЦ С ПРИМЕНЕНИЕМ МЕТОДОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

Преддипломная практика

Направление подготовки (специальность): 14.05.04 Электроника и автоматика физических установок

Научный руководитель: к.ф.-м.н., доц.

Старостенко А.А.

Цель практики

Оптимизация параметров формы полюсов квадрупольного магнита для максимального подавления всех гармоник, кроме основной, при разложении тангенсального магнитного поля в ряд Фурье в области хорошего поля (на окружности радиуса 0.8 от радиуса апертуры) методами искусственного интеллекта.

Задачи практики

- 1) Построение моделей квадрупольных магнитов с различными параметрами формы;
- 2) Выполнение расчетов магнитостатики для накопления данных;
- 3) Автоматизация процесса сбора информации;
- 4) Анализ полученных данных;
- 5) Обучение модели искусственного интеллекта;
- 6) Подбор оптимальной формы.

Проблематика

Магнитное поле, создаваемое *квадрупольными* магнитами, можно разложить по гармоникам. Из них основной является 2я, а побочными: бя, 10я и т.д. — они могут качественно менять характер движения частиц. Необходимо подобрать форму полюсов так, чтобы как можно сильнее подавить побочные гармоники.

Выбранная форма для оптимизации

Схематичный рисунок

3d модель в Opera

Проверка на квадрупольность

Модуль полной магнитной индукции В

Модуль тангенсальной компоненты B_{θ}

Получение гармоник

Величина комоненты В

Величина комоненты B_{θ}

Информация о гармониках B_{θ}

Сбор данных

Анализ данных

Результат объединения таблиц

	321	199	11
id	3.210000000000000e+02	1.990000000000000e+02	1.100000000000000e+01
Rightchamfer	3.225874193548387e+00	1.935564516129032e+00	1.000000000000000e-04
Leftchamfer	6.452580645161290e-01	4.516206451612903e+00	7.096838709677419e+00
h0	9.446111427779959e-18	9.581636699340650e-18	6.857578740970819e-18
h1	2.032957819033580e-17	1.667567931388580e-17	3.333899244911680e-17
h2	1.338204564286490e-01	1.330293763509570e-01	1.338992916839650e-01
h3	2.895492201978110e-17	4.150024995633950e-17	2.795815852076480e-17
h4	1.446945391704250e-17	1.398960474999270e-17	8.654669323130510e-18
h5	4.533892175044330e-18	1.285681892171420e-17	2.146240968116860e-17
h6	1.117054406612580e-02	9.101818953198710e-03	1.150053845489950e-02
h7	3.941103534392750e-17	3.718962872312400e-17	3.109212921129420e-17
h8	1.484586506055100e-17	1.081510555352500e-17	1.222002192040060e-17
h9	3.117048148529790e-17	2.836491676036450e-17	4.884705901169670e-17
h10	7.283561354229580e-05	9.758515857899120e-04	1.181119158387660e-04
h11	1.698155776464340e-17	3.651331292913090e-18	9.603207329607590e-18
h12	2.190002215005180e-17	2.194906555553400e-17	1.716311520608190e-17
h13	1.366056724796640e-17	1.722953260144730e-17	1.153506302935730e-17
h14	2.727755796173380e-04	3.805530588712320e-04	2.231782603975640e-04

Пример 15 рассматриваемых сэмплов

	Rightchamfer	Leftchamfer	h6/h2	h10/h2	h14/h2
501	4.838761290322580	13.548419354838709	0.027578451469595	0.008749976226714	0.003292303444092
39	0.322677419354839	4.516206451612903	0.082204256593007	0.000875048345646	0.001946816062154
846	8.387112903225805	9.032312903225806	0.012595241264076	0.026106065720266	0.002019140719783
344	3.225874193548387	15.483893548387096	0.004383789307303	0.002459327183563	0.000142414454666
683	6.774225806451613	7.096838709677419	0.022359874698505	0.022352850986659	0.001965748075040
453	4.516183870967741	3.225890322580645	0.067450380579613	0.008406547260938	0.003413667365825
492	4.838761290322580	7.741996774193548	0.025735859825430	0.019914700737117	0.001354907237562
691	6.774225806451613	12.258103225806453	0.043417672729237	0.015167894666399	0.005445182260837
332	3.225874193548387	7.741996774193548	0.039541779010420	0.015539730772001	0.001560288584346
381	3.548451612903226	18.709683870967741	0.014866681949153	0.004366017532441	0.003137647072763
279	2.580719354838710	14.838735483870966	0.012694595575171	0.004256586038606	0.000300463720194
748	7.419380645161290	7.741996774193548	0.010971015578054	0.024392111265237	0.000849704375564
682	6.774225806451613	6.451680645161289	0.030260459810126	0.020914971667239	0.002674430466215
932	9.354845161290324	2.580732258064516	0.069501859326500	0.007644297602316	0.003444064836199
849	8.387112903225805	10.967787096774194	0.042012863817271	0.021892745548176	0.005647821429236

Визуализация данных

Обучение моделей искусственного интеллекта

Подбор оптимальной формы

$$F(R,L)=model_1(R,L)+model_2(R,L)+model_3(R,L)$$
; $R_0=3$, $L_0=16$; $R_N=2.938$, $L_N=16.196$ - конечная форма

Результаты

1 Information	on:			? ×						
Component:	Polynomial fitting to tabulated values on a line Component: BT Fourier coefficients									
Order	Sine term	Cosine term	Amplitude	Phase						
n	A n	B n	Ampireade	rnase						
0	0.0	-1.96511643762998E-18	1.96511643762998E-18	180.0						
1	1.18674349790486E-17	-1.90548531814327E-17	2.24482391903664E-17	-148.085192745348						
2	4.55607914264724E-17	0.126107866787626	0.126107866787626	-2.07000651625393E-14						
3	-1.68934090018867E-17	-6.23416249179165E-19	1.69049080306509E-17	92.1134229793513						
4	-2.27755494325519E-17	1.38506827535023E-17	2.66564638444934E-17	58.6946157857161						
5	7.47425108209082E-18	1.68322387278375E-17	1.84170760390744E-17	-23.9433168499931						
6	2.13923742107051E-18	1.06235810983472E-04	1.06235810983472E-04	-1.15374725781366E-12						
7	2.083102630183E-18	2.91921434941722E-17	2.9266372483658E-17	-4.08161269334356						
8	-3.91434730987151E-18	1.15196480826585E-17	1.21665281329801E-17	18.7676310614024						
9	2.26736732595096E-17	2.55058561077215E-17	3.41268831695306E-17	-41.6357994889207						
10	1.05608714974044E-17	-1.1800238425559E-04	1.1800238425559E-04	-179.99999999995						
11	-2.24999844180107E-18	7.94178091345632E-18	8.2543550363094E-18	15.8180398081267						
12	-1.53523607434246E-17	-1.26580603637683E-17	1.98977755683656E-17	129.505667606347						
13	3.1390397549684E-19	-1.09775469964157E-17	1.09820341360036E-17	-178.362068202619						
14	1.68948092259442E-18	-9.23917676122024E-05	9.23917676122024E-05	-179.99999999999						
		Close								

Заключение

- 1) Сделаны построения моделей квадрупольных магнитов с различными параметрами формы;
- 2) Выполнены расчеты магнитостатики для накопления данных;
- 3) Автоматизирован процесс сбора информации;
- 4) Произведен анализ полученных данных;
- 5) Обучены модели искусственного интеллекта;
- 6) Подобрана оптимальная форма полюса для данной геометрии.

Спасибо за внимание!