Econometria II - Séries Temporais

Prof. Dr. Pedro Costa Ferreira -pedro.guilherme@fgv.br

2ª Lista de Exercícios

- 1) Seja o modelo SARIMA $(0,d,2)(0,D,1)_{12}$ explicado à série amostral Z_T . Pede-se:
- a) A equação geral do modelo para $w_t = \nabla^d \nabla^D_{12} Z_t$
- b) A expressão exata da função de autocorrelação para todos os $lags\ k$ de w_t . Esboce a FAC.
- 2) Considere uma série temporal Y_t autorregressiva de ordem 1 com parâmetro ρ . No modelo: $Y_t Y_{t-1} = \delta Y_{t-1} + u_t$, em que u_t é um ruído branco e $\delta = \rho 1$, se δ for de fato igual a zero, a série Y_t será não estacionária? Mostre.
- 3) Considere o seguinte processo estocástico:

$$y_t = c + y_{t-1} + \theta_1 \epsilon_{t-1} + \epsilon_t \qquad \epsilon_t \sim NID(0, \sigma^2)$$

- a) Este processo é estacionário de 2^a ordem? Justifique a sua resposta (y0 = ϵ_0 = 0)
- b) A seguir apresentaremos os resultados de dois testes de raiz unitária, cada um efetuado em uma série temporal distinta. Em vistas da sua resposta em e dos resultados destes testes, qual destas séries tem chance de ter sido gerada por este processo estocástico estacionário, a série (A) ou a série (B)? Justifique a sua resposta (enuncie a hipótese nula e a alternativa do teste)

Teste para a série A:

		t-Statistic
Augmented Dickey-F	Fuller test statistic	-1.131373
Test critical values:	1% level	-2.372719
	5% level	-1.446657
	10% level	-1.757354

Teste para a série B:

		t-Statistic
Augmented Dickey-I	Fuller test statistic	-15.454365
Test critical values:	1% level	-2.572745
	5% level	-1.941892
	10% level	-1.615988

Obs: ambos os teste foram efetuados na estrutura ADF-II, que inclui intercepto.

- 4) De qual caraterística de ε_t tratam os modelos da família GARCH?
- 5) Comente as principais diferenças entre os modelos ARCH, GARCH e TARCH.
- 6) Prove que o modelo GARCH pode ser transformado em um modelo ARCH infinito.

7) As regressões abaixo são baseadas na SH do CPI (*consumer price index*) dos Estados Unidos para o período de 1960-2007.

Equação 1:

$$\Delta \widehat{CPI}_t = 0.033CPI_{t-1}$$
 $t = (12.37)$
 $R^2 = 0.07$
 $d = 0.33$
 $SQR = 206.6$

Equação 2:

$$\widehat{\Delta CPI}_t = 1.8662 + 0.019CPI_{t-1}$$

$$t = (3.27) \qquad (3.89)$$

$$R^2 = 0.24 \qquad d = 0.44 \qquad \text{SQR} = 166.9$$

Equação 3:

$$\widehat{\Delta CPI}_t = 1.1611 + 0.5344t - 0.1077CPI_{t-1}$$

 $t = (2.37)$ (4.80) (-4.02) $d = 0.61$ SQR = 109.6

- a) Observando as regressões o que você diria sobre a estacionariedade do CPI?
- b) Qual equação você escolheria entre os três modelos?
- c) A equação 1 é a equação 3 menos o intercepto e a tendência. Qual teste você usaria para decidir se as restrições do modelo 1 são válidas?
- 8) Para os dados do período de 1971-l a 1988-IV para a economia do Canada, as equações abaixo foram obtidas:

$$l\widehat{nM1}_t = -10.25 + 1.59 lnGDP_t$$
 equação 1
$$t = (-12.94) \ (25.88)$$

$$R^2 = 0.9463 \quad d = 0.3254$$

$$\Delta \widehat{lnM1}_t = 0.0095 + 0.583 \Delta lnGDP_t$$
 equação 2
$$t = (-2.494) \ (1.895)$$

 $R^2 = 0.085$ d = 1.7399

$$\widehat{\Delta\epsilon_t}=-0.1958\epsilon_{t-1}$$
 equação 3
$$(t=\tau)=(-2.494)$$

$$R^2=0.1118 \quad d=1.4767$$

onde M1 = M1 oferta de papel moeda, GDP = Produto Interno Bruto, ambos medidos em bilhões de dólares canadenses. In é o logaritmo natural, e ϵ_t representa a estimativa do resíduo da equação (1).

Obs: considere a estatística $\tau = -1.9495$ para um valor crítico de5% e $\tau = -2.6227$ para um valor crítico de 1%.

- (a) Interprete as regressões (1) e (2).
- (b) Você suspeita que a equação (1) é espúria? Por quê?
- (c) A regressão (2) é espúria? Como você sabe disso?
- (d) Baseado nos resultados da equação (3), você mudaria sua conclusão em (b)? Por quê?
- (e) Agora considere a seguinte regressão:

$$\Delta \widehat{lnM1}_t = 0.0084 + 0.734 \Delta lnGDP_t - 0.0811 \hat{\epsilon}_{t-1}$$
 equação 4
$$t = (2.049) \quad (2.063) \qquad (-0.8537)$$

$$R^2 = 0.1066 \quad d = 1.667$$

O que essa regressão diz para você? Essa informação te ajuda a decidir se a regressão (1) é espúria ou não?

9) Fatos estilizados são regularidades estatísticas observados em estudos empíricos feitos em séries de retornos financeiros a partir da década de 1960. Descreva 4 fatos estilizados das séries de retorno financeiro e mostre que o modelo GARCH (p,q) representa bem pelo menos dois fatos estilizados.

(e.g. média igual a zero. Prova:
$$E[r_t] = E[E(r_t|r_{t-1})] = 0$$
)

10) Veja os resultados abaixo para a série temporal P1 – Eco II e responda as questões.

- (i) O que você diria sobre a estacionariedade dessa série? Justifique sua resposta. Quais são as maneiras que você poderia utilizar para chegar a essa conclusão?
- (ii) Você concorda com o modelo ajustado na figura 4? Justifique.
- (iii) Qual modelo você escolheria para descrever a ST P1 ECO II (Fig 4 ou Fig 5)? Justifique sua resposta.
- (iv) Cite três métodos que podem ser utilizados para estimar os parâmetros do modelo descrito na Fig 5. Qual você escolheria sabendo que a ST é pequena? Por quê?
- (v) Com relação aos ruídos do modelo. O que você diria baseado nas figuras 6, 7 e 8?

- 11) Baseado em seus conhecimentos sobre R e econometria de séries temporais, defina 3 comandos do R que são usados na modelagem de Séries Temporais. Ainda, defina a utilidade desse comando, em qual fase da modelagem SARIMA ele é utilizado e caso seja um teste, defina a hipótese nula (e.g. comando: arima(); utilizado na fase de estimação dos parâmetros) *obs: serão aceitos apenas comandos relacionados com a modelagem.*
- 12) Uma estrutura particular dos modelos SARIMA é o modelo SARIMA(0,1,1) (0,1,1)₁₂, conhecido como modelo AIRLINE.
- a) Mostre a equação do modelo.
- b) Mostre a FAC teórica e esboce graficamente.

13) As regressões abaixo são baseadas na SH do CPI (*consumer price index*) dos Estados Unidos para o período de 1960-2007.

Equação 1:

$$\widehat{\Delta CPI}_t = 0.033CPI_{t-1}$$

$$t= (12.37)$$

$$R^2 = 0.07 \qquad \qquad d = 0.33 \qquad \text{SQR} = 206.6$$

Equação 2:

$$\widehat{\Delta CPI}_t = 1.8662 + 0.019 CPI_{t-1}$$

$$t = (3.27) \qquad (3.89)$$

$$R^2 = 0.24 \qquad \qquad d = 0.44 \qquad \text{SQR} = 166.9$$

Equação 3:

$$\Delta \widehat{CPI}_t = 1.1611 + 0.5344t + 0.1077CPI_{t-1}$$

$$t = (2.37) \qquad (4.80) \qquad (-4.02)$$

$$R^2 = 0.50 \qquad \qquad d = 0.61 \qquad \text{SQR} = 109.6$$

- a) Observando as regressões o que você diria sobre a estacionariedade do CPI?
- b) Qual equação você escolheria entre os três modelos?

14) Para uma série temporal com 72 observações foram ajustados três modelos ARMA, formando a tabela abaixo.

Modelo	Parâ	metros estim	ados		$\hat{\sigma}^2$
	Variable	Coefficient	Std. Error	=	
ARMA(2,0)	С	1.597939	0.166872	:	4,301
	AR(1)	-0.185191	0.034929		
	AR(2)	0.628166	0.034923		
	Variable	Coefficient	Std. Error	•	
	С	1.593803	0.104507	•	
ARMA(1,2)	AR(1)	-0.812738	0.036970		4,809
	MA(1)	0.579525	0.050398		
	MA(2)	0.349366	0.045218		
	Variable	Coefficient	Std. Error	:	
ARMA(1,1)	С	1.593890	0.087630	:	4,981
	AR(1)	-0.936036	0.021290		
	MA(1)	0.630584	0.046916		

- i. Baseado nos resultados desta tabela, qual entre os modelos acima é o mais indicado para a série temporal em questão? Justifique cuidadosamente a sua resposta.
- **ii.** Complemente a sua resposta dada em (i) utilizando os critérios de informação para selecionar o melhor modelo e comentando o resultados (neste caso admita que todos os modelos foram ajustados com o mesmo número de observações).
- **iii.** Os próximos resultados são diagnósticos obtidos a partir de um dos três modelos acima, não necessariamente o "mais adequado".

a) Utilizando os resultados da figura/tabela abaixo, teste a hipótese de que as autocorrelações dos resíduos, do lag 1 até o lag 20, são todas nulas. Estabeleça, detalhadamente, a hipótese nula e a alternativa, a estatística de teste, e o resultado da estatística de teste em termos do p-valor. Comente o resultado.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ıþ	ıþ	1	0.069	0.069	2.4046	
' 	' 	2	0.156	0.152	14.691	
' 	' 	3	0.268	0.255	50.690	
' P	ן יי	4	0.122	0.085	58.157	0.000
1)1	q '	5		-0.072	58.249	0.000
' p	'🌓 '	6		-0.034	60.444	0.000
1[1	"[['	7		-0.048	60.448	0.000
الا	<u> </u>	8	0.039	0.043	61.203	0.000
<u>"</u>	<u> "L</u> '	9		-0.095	65.243	0.000
יון י	' '	10	0.044	0.050	66.238	0.000
	<u>'</u> <u> </u>	11	0.026	0.044	66.585	0.000
. .		12	0.061	0.102	68.463	0.000
, ji	<u>'</u> '	13	0.038	0.031	69.198	0.000
' II']	14		-0.035	69.522	0.000
' µ'] ::	15		-0.020	70.064	0.000
://:] ']'	16		-0.013	70.522	0.000
11.	1 31	17	-0.022 0.032	0.025	70.781	0.000
:/:]]]	18 19	-0.032	-0.012	71.312 71.545	0.000
31	' '	20	0.021	0.038	71.753	0.000
ili		21	0.020	0.030	71.753	0.000
ili	l	22	0.000	0.016	71.793	0.000
ili	'#'	23	-0.005		72.010	0.000
.F.	l ''L'	123	-0.003	-0.020	72.010	0.000

Obs: (i) Q-Stat é a estatística Ljung-Box e prob é o p-valor da estatística (ii) L é o número k de defasagens da estatística Ljung-Box

b) Utilizando a informação abaixo, teste a hipótese de que os erros possuem distribuição normal. Estabeleça, detalhadamente a hipótese nula e a alternativa, a estatística de teste, e o resultado da estatística de teste em termos do p-valor. Comente o resultado.

Series: Residuals Sample 3 500 Observations 498			
Mean	0.000926		
Median	-0.163151		
Maximum	5.453197		
Minimum	-6.055921		
Std. Dev.	2.185958		
Skewness	0.026352		
Kurtosis	2.626887		
I	0.040040		
Jarque-Bera	2.946318		
Probability	0.229200		

Obs: (i) Jarque-Bera é o valor da estatística de teste

(ii) Probability é o p-valor da estatísitca

c) Qual a justificativa de se realizar os testes efetuados em (a) e (b)? Justifique a sua resposta.

15) Abaixo temos a ST de vendas de passagens aéreas, amplamente discutida em sala de aula. Nossa ideia é modelá-la. A seguir discutiremos características dessa famosa ST e o passo a passo de como modelá-la.

- a) Como econometrista de ST, descreva as principais características dessa série e como devo proceder para modelá-la utilizando o método proposto por Box & Jenkins? (1 ponto)
- b) Cite três possíveis métodos para verificar a estacionariedade da ST de passagens aéreas (1 ponto).
- 16) Um dos passos importantes na modelagem BJ é a fase de identificação.

- a) Observando a FAC e a FACP qual estrutura SARIMA você identificaria?
- b) Diga qual função do R você usou para fazer a FAC e a FACP. Qual é o valor do parâmetro "lag.max" que você sugere para identificar a ST de vendas de passagens aéreas? Por que?

17) Abaixo três resultados da modelagem da ST de vendas de passagens aéreas.

```
Modelo 1
ARIMA(1,1,1)(1,1,1)[12]
Coefficients:
ar1 ma1 sar1 sma1
0.1667 -0.5615 -0.099 -0.4973
s.e. 0.2459 0.2116 0.154 0.1360
sigma^2 estimated as 0.000252: log likelihood=354.41
AIC=-698.83 AICC=-698.35 BIC=-684.45
Training set error measures:
                               RMSE
                                          MAE
                                                     MPE
                                                              MAPE
                                                                        MASE
                                                                                   ACF1
Training set 0.0002709733 0.01515366 0.01127195 0.01199886 0.4696646 0.2144266 0.07971543
                                       Modelo 2
ARIMA(1,1,1)(0,1,1)[12]
Coefficients:
         ar1
                 ma1
                          sma1
      0.1960 -0.5784 -0.5643
s.e. 0.2475 0.2132 0.0747
sigma^2 estimated as 0.0002529: log likelihood=354.21
AIC=-700.42 AICC=-700.1 BIC=-688.92
Training set error measures:
                                RMSE
                                           MAE
                                                      MPE
                                                               MAPE
                                                                         MASE
                                                                                     ACF1
Training set 0.0002698963 0.01518236 0.0112353 0.01205362 0.4682204 0.2137293 0.08832819
                                       Modelo 3
ARIMA(0,1,1)(0,1,1)[12]
Coefficients:
          ma1
                  sma1
      -0.4018 -0.5569
s.e. 0.0896 0.0731
sigma^2 estimated as 0.0002543: log likelihood=353.96
AIC=-701.92 AICC=-701.73 BIC=-693.29
Training set error measures:
                        ME
                                 RMSE
                                             MAE
                                                         MPE
                                                                  MAPE
                                                                             MASE
                                                                                         ACI
Training set 0.0002488778 0.01522151 0.01140472 0.01098898 0.4752815 0.2169522 0.023528
```

- a) Qual modelo você escolheria? Justifique sua resposta com TODOS os possíveis argumentos.
- b) Olhando apenas para as métricas de desempenho (e.g. Mean Square Error) dos modelos, qual você escolheria? Por que?
- c) Defina o MAPE e o RMSE.

18) Veja os diagnósticos abaixo.

- a) Defina, teoricamente, as propriedades do resíduo na teoria BJ.
- b)Interprete os cinco testes esboçados acima. Defina a hipótese nula de cada um dos testes.
- c) Qual é o problema dos teste de Ljung Box apresentado nesse exercício? O que você faria para resolve-lo?

19) Considere as ST de lucro e dividendos de uma determinada empresa.

- a) Analise o teste ADF para a ST de dividendos.
 - i. Qual dos dois testes você escolheria? Por que?
 - Essa ST é estacionaria? Por que? (elabore sua argumentação baseado no resultado do teste ADF)

```
# Augmented Dickey-Fuller Test Unit Root Test #
                                             TESTE 01
Test regression drift
Call:
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
Residuals:
           1Q Median
                          3Q
   Min
                                Max
-49.438 -1.428 -0.153
                       1.381 93.913
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.193812 0.909645 -0.213 0.831502
z.lag.1
           0.083387
                      0.018229
                               4.574 8.52e-06 ***
z.diff.lag1 -0.552598
                      0.085336 -6.476 7.64e-10 ***
z.diff.lag2 -0.240657
                              -2.536 0.011993 *
                      0.094883
z.diff.lag3 -0.069175
                      0.093939 -0.736 0.462395
z.diff.lag4
           0.029132
                               0.327 0.744141
                      0.089132
z.diff.lag5
           0.048867
                      0.080850
                               0.604 0.546274
z.diff.lag6
           0.004625
                      0.077321
                               0.060 0.952360
z.diff.lag7 -0.037190
                      0.076694
                              -0.485 0.628284
z.diff.lag8 -0.089815
                      0.078051
                               -1.151 0.251274
           -0.101791
z.diff.lag9
                      0.084204
                               -1.209 0.228193
z.diff.lag10 -0.019718
                      0.084430
                               -0.234 0.815586
z.diff.lag11
            0.031545
                      0.089129
                                0.354 0.723784
z.diff.lag12
            0.149956
                      0.125115
                               1.199 0.232174
z.diff.lag13 -0.629288
                      0.293327
                              -2.145 0.033175 *
```

```
z.diff.lag15 -0.174482 0.303806 -0.574 0.566420
z.diff.lag16 0.230319 0.306848 0.751 0.453809
z.diff.lag17 -0.115752 0.306891 -0.377 0.706458
z.diff.lag18 0.052844 0.307000 0.172 0.863515
z.diff.lag19 -0.080655 0.306482 -0.263 0.792705
z.diff.lag20 -0.743859 0.305970 -2.431 0.015965 *
z.diff.lag21 -0.437494   0.312650   -1.399   0.163326
z.diff.lag22 -0.226812 0.311595 -0.728 0.467553
z.diff.lag24 0.506998 0.302474 1.676 0.095324 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 10.06 on 193 degrees of freedom
Multiple R-squared: 0.4282, Adjusted R-squared: 0.3541
F-statistic: 5.781 on 25 and 193 DF, p-value: 2.568e-13
Value of test-statistic is: 4.5745 10.4966
Critical values for test statistics:
    1pct 5pct 10pct
tau2 -3.46 -2.88 -2.57
phi1 6.52 4.63 3.81
#######################
# Augmented Dickey-Fuller Test Unit Root Test #
                                          TESTE 02
Test regression drift
Call:
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
Residuals:
  Min
         1Q Median 3Q
                             Max
-38.748 -1.981 -0.091 2.022 56.192
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.082852 0.849027 -0.098 0.92238
           0.101218
                   0.036460
                             2.776 0.00612 **
z.lag.1
z.diff.lag1 -0.409356 0.091072 -4.495 1.29e-05 ***
z.diff.lag2 -0.279490 0.097911 -2.855 0.00485 **
z.diff.lag3 -0.131124 0.101819 -1.288 0.19957
z.diff.lag4 -0.095355 0.102680 -0.929 0.35439
z.diff.lag5 -0.136394 0.103120 -1.323 0.18773
z.diff.lag6 -0.156432 0.103828 -1.507 0.13377
z.diff.lag7 -0.146712 0.104717 -1.401 0.16304
                    0.105590 -0.624 0.53324
z.diff.lag8 -0.065925
z.diff.lag9 -0.006019 0.113275 -0.053 0.95769
z.diff.lag10 0.174186 0.112594 1.547 0.12373
z.diff.lag11 -0.088060 0.115410 -0.763 0.44652
z.diff.lag12 0.061130 0.151268 0.404 0.68664
```

```
z.diff.lag14 0.449302 0.307055 1.463 0.14525
z.diff.lag18 -0.366567 0.308020 -1.190 0.23569
z.diff.lag20 -0.542389 0.298137 -1.819 0.07064 .
z.diff.lag24 0.639615 0.306943 2.084 0.03868 *
z.diff.lag25 -0.535994 0.315441 -1.699 0.09112 .
z.diff.lag26 -0.592164  0.326764 -1.812  0.07173 .
z.diff.lag27 -0.266533 0.331725 -0.803 0.42283
z.diff.lag28 -0.135395 0.331931 -0.408 0.68386
z.diff.lag29 0.241190 0.329718 0.732 0.46549
z.diff.lag30 -0.003860 0.330465 -0.012 0.99070
z.diff.lag31 0.163012 0.342902 0.475 0.63512 z.diff.lag32 0.225985 0.340362 0.664 0.50762
z.diff.lag33 0.594948 0.344198 1.729 0.08572 .
z.diff.lag34 -1.777573 0.346279 -5.133 7.76e-07 ***
z.diff.lag35 2.353464 0.368788 6.382 1.62e-09 ***
z.diff.lag36 -1.148841 0.374003 -3.072 0.00248 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 8.831 on 169 degrees of freedom
Multiple R-squared: 0.6122, Adjusted R-squared: 0.5273
F-statistic: 7.211 on 37 and 169 DF, p-value: < 2.2e-16
Value of test-statistic is: 2.7761 3.9135
Critical values for test statistics:
    1pct 5pct 10pct
tau2 -3.46 -2.88 -2.57
phi1 6.52 4.63 3.81
```

- b) Se você estivesse fazendo um modelo univariado de Box & Jenkins para a ST de dividendos, como você procederia caso "encontrasse" tendência determinística? E tendência estocástica?
- c) Dado que o montante de dividendos depende do lucro, considere o modelo simples abaixo:

$$LDIVIDENDOS_t = \beta_1 + \beta_2 LLUCRO_t + \mu_t$$

Seja o modelo estimado. Essa é uma regressão espúria? Por quê?

```
> reg<-lm(questao2$lucro ~questao2$dividendo)
> summary(reg)
call:
lm(formula = questao2$lucro ~ questao2$dividendo)
                   1Q
                         Median
                                                                           > dwtest(reg)
-157.742
                           0.711 11.876 218.744
             -6.378
                                                                                     Durbin-Watson test
Coefficients:
                         Estimate Std. Error t value Pr(>|t|) data: reg
                                        4.30885 1.909 0.0574 .DW = 0.33436, p-value < 2.2e-16
0.01875 89.892 <2e-16 *alternative hypothesis: true autocorrelation is greater th
(Intercept)
questao2$dividendo 1.68528
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 53.8 on 242 degrees of freedom Multiple R-squared: 0.9709, Adjusted R-squared: 0.9709, F-statistic: 8081 on 1 and 242 DF, p-value: < 2.2e-16
                                         Adjusted R-squared: 0.97
```

- d) As ST do log do lucro e de dividendos são cointegradas? Como você comprovaria sua informação?
- 20) Considere as ST de dividendos de uma determinada empresa.

Sobre o teste de Dickey-Fuller.

- Derive a equação geral do modelo.
- ii. Defina os passos do teste.
- iii. Explique porque os valores defasados de ΔY_{t-s} são incluídos na equação geral do modelo (Teste de Dickey Fuller Aumentado).
- 21) Dois economistas usam os modelos abaixo para analisar a relação entre demanda de moeda (m) e renda nacional (y). As variáveis estão todas em logaritmos e a periodicidade é mensal.

Economista A:

Economista B:

$$m_t = 1.099 \ y_t + \hat{u}_t$$
 (Equação 1)
$$\Delta m_t = 1.14 \ \Delta y_t + \hat{e}_t$$
 (Equação 2)

Os valores entre parênteses são os erros-padrão.

Testes Dickey-Fuller Aumentado (ADF), com número apropriado de defasagens maior que zero em todos os casos, para as variáveis e para os resíduos dos dois modelos geram os seguintes resultados:

Variável	mt	yt	ût	∆mt	∆yt	êt
Estatística-ADF	-2.191	-1,952	-2.993	-5.578	-6.312	-8.456

Seja:

- O valor crítico da tabela Dickey-Fuller a 5% é igual a –2,886.
- mt e yt são as estatísticas ADF para a ST em nível.
- Δmt e Δyt são as estatísticas ADF para a ST em para a ST em primeira diferença.
- ût e êt são as estatísticas ADF para o resíduo das regressões.

Responda se as afirmativas estão corretas e JUSTIFIQUE sua resposta.

- Tanto a série de demanda de moeda quanto a de renda nacional são integradas de primeira ordem.
- As séries de demanda de moeda e de renda nacional não são cointegradas ao nível de significância de 5%.
- ② Se as séries de demanda de moeda e de renda nacional forem cointegradas, o Economista B deve incluir o erro defasado ût-1 em seu modelo.
- ③ A série de renda nacional é um passeio aleatório puro (extra: vale 0.5).
- 22) Suponha que você tenha R\$ 1.000.000,00 aplicados em uma carteira de empresas do setor elétrico brasileiro. Qual é o Value at Risk (VaR) diário de 99%?

Hipóteses:

$$r_t = \mu_t + h_t^{1/2} e_t$$
 equação (1)

onde:

 μ_t é um processo AR(1) com drift

 $h_t^{1/2}$ é um processo GARCH(1,1) com drift

Base de dados e parâmetros estimados:

Base de dados	Parâmetros estimados
$r_t = 0.308$	Modelo AR(1) com drift
$r_{t-1} = 2.480$	$\hat{c} = 0.145$
$\widehat{h_t} = 4.317$	$\hat{\phi} = 0.053$
	Modelo GARCH(1,1) com drift
	$\widehat{\alpha_0} = 0.254$
	$\widehat{\alpha_1} = 0.167$
	$\widehat{\beta_1} = 0.794$

Obs: mostre na tabela da Normal padrão o valor escolhido.

23) [Enders, p. 172] Suponha que a sequência $\{\varepsilon_t\}$ seja um processo ARCH(q):

$$\varepsilon_t = v_t (\alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \dots + \alpha_q \varepsilon_{t-q}^2)^{1/2}$$
 (equação 2)

Mostre que o valor esperado condicional de $E(\varepsilon_t^2/\varepsilon_{t-1})$ apresenta a mesma forma que a esperança condicional da equação 3.

$$\widehat{\varepsilon_t^2} = \alpha_0 + \alpha_1 \widehat{\varepsilon_{t-1}^2} + \dots + \alpha_q \widehat{\varepsilon_{t-q}^2} + v_t$$
 (equação 3)

- 24) Refaça a questão 22 para um Value at Risk (VaR) diário de 90%.
- 25) (ANPEC 2008 Questão 15) Suponha que $y_t = \alpha + \beta y_{t-1} + u_t$, em que u_t é independente e igualmente distribuído, com distribuição normal de média zero e variância σ^2 . Sabe-se que $\alpha = 35$, $\beta = 3/5$ e $\sigma^2 = 2$. Você é informado de que $y_2 = 50$. Determine a melhor previsão para y_4 .

26) (ANPEC 2016 - Questão 9)Sejam p_{3t} e p_{4t} , respectivamente, os preços das ações ON e PN da Petrobrás, no período de janeiro de 2001 a fevereiro de 2015. Considere os resultados dos seguintes modelos de regressão estimados por Mínimos Quadrados Ordinários (MQO):

(1)
$$\widehat{\Delta p_{3t}} = 0.12 - 0.01 \ p_{3t-1}$$
 (2) $\widehat{\Delta p_{4t}} = 0.10 - 0.10 \ p_{4t-1}$ (0,007) (0,107) (0,007) (0,091)

Considere também os resultados p_{3t} de p_{4t} em:

(3)
$$p_{3t} = -0.333 - 1.207 p_{4t} + \hat{\varepsilon}_t$$
,
(0.900) (0.007)

Em que $\hat{\varepsilon}_t$ é o resíduo da regressão (3). Finalmente considere a seguinte regressão:

(4)
$$\widehat{\Delta \varepsilon}_t = -0.022 \, \widehat{\varepsilon}_{t-1}$$
 (0.012)

Os números entre parênteses são os valores do teste t de significância individual dos parâmetros. Dado que o valor crítico a 5% da estatística de Dickey-Fuller é -2,876, responda os seguintes perguntas:

- a) De acordo com a estatística do teste Dickey-Fuller, e p_{3t} e p_{4t} , pelas equações (1) e (2), são séries temporais estacionárias?
- b) A regressão de p_{3t} em p_{4t} (3) é espúria?
- c) A hipótese de cointegração entre p_{3t} e p_{4t} não é rejeitada, pois os resíduos da
- d) regressão de e p_{3t} em p_{4t} são estacionários;
- e) Para que duas variáveis sejam cointegradas é necessário que ambas tenham ordem de integração completamente diferentes;
- f) A rejeição da hipótese nula do teste Dickey-Fuller implica que a variável em questão é não-estacionária.

27) (ANPEC 2016 - Questão 5) Considere o modelo: $y_t = a + by_{t-1} + c_t + \varepsilon_t$ em que ε_t é um ruído branco com média 0 e variância σ^2 . Sabendo que a=5, b=0,5, c=5 e y_0 =0, determine a melhor previsão para y_3 .

28) (ANPEC 2013 - Questão 10) O passeio aleatório com *drift*, $y_t = c + y_{t-1} + \varepsilon_t$ em que $y_0 = 0$ e ε_t é um ruído branco com média 0 e variância σ^2 é estacionário de segunda ordem se c=0? Prove.

Tabela Z

Tabela III — Distribuição Normal Padrão $Z \sim N(0, 1)$ Corpo da tabela dá a probabilidade p, tal que p = P(0 < Z < Z)p Z, Ż Segunda decimal de Z parle inparte inteira e teira e primeira primeira decimal decimal de Z de Z p = 00.0 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0,4 0.4 0,5 0,5 0,6 0,6 0,7 0,7 0,8 0,8 0.9 0,9 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3 1,4 1,4 1,5 1,5 1,6 1,6 1,7 1,7 1,8 1,9 1,9 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,4 2,4 2,5 2,5 2,6 49573. 2,6 2.7 2,7 2.8 2,8 2,9 2,9 3,0 3,0 3.1 3,1 3,2 3.2 3,3 3,3 3,4 4996B 3,4 3,5 3,5 3,6 3,6 3,7 3,7 3,8 3,8 3,9 3.9 4,0 4,0 4,5 4,5

Fonte: Bussab et al. 2010

Referências

Walter Enders, Applied Econometric Time Series, Second Edition. Wiley. 2014

Morettin, P. A.; Toloi, C.M.C. **Análise de Séries Temporais**. São Paulo: Editora Blücher, 2006.

Fernandes, C. Notas de Aula. DEE, PUC-Rio, 2011.

Stock J, Watson MW. **Introduction to Econometrics**. New York: Prentice Hall; 2003.

Schmidt et al. **Estatística – Questões comentadas das provas de 2006 a 2015**. 5ª edição. Elsievier. 2015.

Provas da ANPEC. Disponíveis em: http://www.anpec.org.br/novosite/br/exame