Package 'FWebs'

March 18, 2022

Type Package **Title** FWebs **Version** 0.1.1

Author Frederico Mestre

Maintainer Frederico Mestre <mestre.frederico@gmail.com></mestre.frederico@gmail.com>
Description This package allows downloading food web matrices from several online databases. It also provides the tools to process these matrices and derive basic structural metrics and degree distribution.
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
 Imports methods, Hmisc, stringr, NetIndices, RCurl, XML, ggplot2, igraph, plyr, random-coloR, rmangal, sf, sp, magrittr Depends R (>= 3.5.0)
R topics documented:
convert.to.graph.list convert2adjacency create.fw.list dd.fw exponent.removal fw.metrics is.adjacency.matrix is.sq.matrix iterate mg1 pl.removal rect2square remove.non.numeric remove.repeated.names robustness
Index 1

2 convert2adjacency

```
convert.to.graph.list Convert to a list of igraph objects
```

Description

Convert to a list of igraph objects

Usage

```
convert.to.graph.list(list1)
```

Arguments

list1

List produced by the function create.fw.list

Value

Returns a list of igraph objects.

Examples

```
data(mg1)
graph_list1 <- convert.to.graph.list(mg1)</pre>
```

convert2adjacency

Converts all matrices to adjacency matrices (0 and 1 values for interaction)

Description

Converts all matrices to adjacency matrices (0 and 1 values for interaction)

Usage

```
convert2adjacency(list1)
```

Arguments

list1

List with the interaction matrices

Value

A list of adjacency matrices.

```
data(mg1)
mg2 <- convert2adjacency(mg1)</pre>
```

create.fw.list 3

	_	_	
create	f'w	- 1	ict

Download datasets from online database

Description

Download datasets from online database

Usage

```
create.fw.list(
  db,
  folder = NULL,
  ecosyst = FALSE,
  ref = FALSE,
  spatial = FALSE,
  code = FALSE,
  mangal_types = NULL
)
```

Arguments

db	Database: eb (EcoBase), gw (GlobalWeb), wl (Web of Life) and mg (Mangal)
folder	Folder in the working directory to get the dataset files (db=gw and wl)
ecosyst	Getting ecosystem information (only for db=gw, db=eb)
ref	references information
spatial	get spatial info (only for)
code	To get the food web code
mangal_types	If db=mg the user should provide the type of interactions to be downloaded; if 'db=all' all mangal interaction types are used

Value

Returns a list that might have the following elements (depending on use options): 1. list of interaction matrices, 2. Reference data frame with FW code, first author of original publication, year of publication, full reference (if db='mg': FW code, type of interaction matrix, original ID in mangal, first author of original publication, year of publication); 3. Study site location (for db=wl, db=eb and db=mg); 4. FW code.

```
#mg2 <- create.fw.list(db="mg", ref=TRUE, spatial=TRUE)</pre>
```

4 exponent.removal

dd.fw

Derive and plot the degree distribution

Description

Derive and plot the degree distribution

Usage

```
dd.fw(list1, log = TRUE, cumulative = TRUE)
```

Arguments

list1 List with the interaction matrices

log Log-log scale

cumulative Show cumulative degree distribution

Value

A plot with the degree distribution for the full dataset

Examples

```
data(mg1)
dd.fw(mg1, log=TRUE, cumulative=TRUE)
```

exponent.removal

Computes de probability of removal of each node in the food web base on a exponential function

Description

Computes de probability of removal of each node in the food web base on a exponential function

Usage

```
exponent.removal(fw, i_index)
```

Arguments

fw Food web matrix to be attacked, a data frame.

i_index Parameter, between 0 and 1 defining the probability of attacking hubs.

```
data(mg1)
graph_list1 <- convert.to.graph.list(mg1)
#Create a vector with the values for the Intentionality Index (I)
i_index <- seq(from = 0, to = 1, by =0.01)
i_index <- head(i_index,-1)
fw1 <- graph_list1[[1]]
prob_exp <- exponent.removal(fw1, i_index)</pre>
```

fw.metrics 5

fw.metrics

Derives structural metrics to each food web matrix

Description

Derives structural metrics to each food web matrix

Usage

```
fw.metrics(list1)
```

Arguments

list1

List with the interaction matrices

Value

A list of vectors with each metric.

Examples

```
data(mg1)
metric_mg1 <- fw.metrics(mg1)</pre>
```

 $\verb"is.adjacency.matrix"$

Check which matrices are adjacency matrices (0 and 1 values for interaction)

Description

Check which matrices are adjacency matrices (0 and 1 values for interaction)

Usage

```
is.adjacency.matrix(list1)
```

Arguments

list1

List with the interaction matrices

Value

Information on whether each matrix is an adjacency matrix.

```
data(mg1)
is.adjacency.matrix(mg1)
```

6 iterate

is.sq.matrix

Check which matrices are square matrices (same number of columns and rows)

Description

Check which matrices are square matrices (same number of columns and rows)

Usage

```
is.sq.matrix(list1)
```

Arguments

list1

List with the interaction matrices

Value

Information on whether each matrix is square (same number of columns and rows).

Examples

```
data(mg1)
is.sq.matrix(mg1)
```

iterate

Iterate through species-removal robustness assessments in food webs

Description

Iterate through species-removal robustness assessments in food webs

Usage

```
iterate(
   fw_to_attack,
   probs_of_fw,
   alpha1,
   iter,
   i_index,
   plot = FALSE,
   export_plot = FALSE,
   plot_name = NULL
)
```

mg1 7

Arguments

fw_to_attack Food web matrix to be attacked, a matrix.

probs_of_fw Vector with the probability of attack to each node.

alpha1 Percentage of secondary extinctions after a primary extinction.

iter Number of iterations to simulate.

i_index Parameter, between 0 and 1 defining the probability of attacking hubs.

plot Plot the results of the simulation (TRUE/FALSE).

export_plot Should plots be exported to the working directory (TRUEFALSE)

plot_name Plot file naming.

Value

A list of vectors with each metric.

Examples

```
data(mg1)
graph_list1 <- convert.to.graph.list(mg1)
#Create a vector with the values for the Intentionality Index (I)
i_index <- seq(from = 0, to = 1, by =0.01)
i_index <- head(i_index,-1)
fw1 <- graph_list1[[1]]
prob_exp <- exponent.removal(fw1, i_index)
it1 <- iterate(fw_to_attack=fw1, prob_exp, alpha1=50, iter=10, i_index, plot = TRUE)</pre>
```

mg1

Mangal dataset (herbivory and predation types only)

Description

Mangal dataset (herbivory and predation types only)

Usage

mg1

Format

An object of class list of length 3.

Author(s)

Frederico Mestre <fmestre@uevora.pt>

References

```
https://mangal-wg.github.io/rmangal/articles/rmangal.html
```

```
data(mg1)
```

8 rect2square

pl.removal

Computes de probability of removal of each node in the food web base on a power-law function

Description

Computes de probability of removal of each node in the food web base on a power-law function

Usage

```
pl.removal(fw, i_index)
```

Arguments

fw Food web matrix to be attacked, a data frame.

i_index Parameter, between 0 and 1 defining the probability of attacking hubs.

Examples

```
data(mg1)
graph_list1 <- convert.to.graph.list(mg1)
#Create a vector with the values for the Intentionality Index (I)
i_index <- seq(from = 0, to = 1, by =0.01)
i_index <- head(i_index,-1)
fw1 <- graph_list1[[1]]
prob_pl <- pl.removal(fw1, i_index)</pre>
```

rect2square

Convert rectanguar matrices to square matrices (same number of columns and rows)

Description

Convert rectanguar matrices to square matrices (same number of columns and rows)

Usage

```
rect2square(list1, is.gw = FALSE)
```

Arguments

list1 List with the interaction matrices

is.gw Was the dataset downloaded from Globalweb? (TRUE/FALSE)

Value

A list of square matrices.

```
data(mg1)
mg3 <- rect2square(mg1)</pre>
```

remove.non.numeric 9

remove.non.numeric

Remove matrices with non-numeric values

Description

Remove matrices with non-numeric values

Usage

```
remove.non.numeric(list1)
```

Arguments

list1

List with the interaction matrices

Value

A list of matrices.

Examples

```
data(mg1)
mg4 <- remove.non.numeric(mg1)</pre>
```

 ${\it remove.repeated.names} \ \ {\it Remove food web matrices with repeated names, whether in columns} \\ or {\it rows}$

Description

Remove food web matrices with repeated names, whether in columns or rows

Usage

```
remove.repeated.names(list1)
```

Arguments

list1

List with the interaction matrices

Value

A list of matrices.

```
data(mg1)
mg5 <- remove.repeated.names(mg1)</pre>
```

10 robustness

robustness

Conducts species-removal robustness assessments on food webs

Description

Conducts species-removal robustness assessments on food webs

Usage

```
robustness(fw_to_attack, probs_of_fw, alpha1)
```

Arguments

fw_to_attackprobs_of_fwlead to each node.lead to each node.

```
data(mg1)
graph_list1 <- convert.to.graph.list(mg1)
#Create a vector with the values for the Intentionality Index (I)
i_index <- seq(from = 0, to = 1, by =0.01)
i_index <- head(i_index,-1)
fw1 <- graph_list1[[1]]
prob_exp <- exponent.removal(fw1, i_index)
r1 <- robustness(fw1, prob_exp, alpha1=50)</pre>
```

Index

```
*\ datasets
    mg1, 7
{\tt convert.to.graph.list, 2}
convert2adjacency, 2
create.fw.list,3
dd.fw, 4
exponent.removal, 4
fw.metrics, 5
\verb"is.adjacency.matrix", 5
\verb"is.sq.matrix", 6
iterate, 6
mg1, 7
pl.removal, 8
rect2square, 8
remove.non.numeric, 9
\verb|remove.repeated.names|, 9
\verb"robustness", 10\\
```