# Graph Algorithms with Sparse Linear Algebra

#### Tim Baer

C3.ai Platform Engineering University of Illinois at Urbana-Champaign

July 19, 2021

### Overview

Introduction

All Pairs Shortest Paths

Sparse Linear Algebra

Minimum Spanning Trees

Expanders

#### TODO:

- ► Introduce notation better/add notation slide?
- add pauses?
- ► Fix footnote numbers

### Motivation

Adjacency matrices<sup>3</sup> connect graph algorithms with linear algebra.

Designing graph algorithms?

- Leverage fast matrix multiplication algorithms.
- Associated matrices have surprising spectral properties.

Designing linear algebra algorithms? (Not discussed today)

► Leverage graph techniques<sup>3</sup>.

<sup>&</sup>lt;sup>3</sup>And Laplacian matrices!

<sup>&</sup>lt;sup>3</sup>See Nearly Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems by Spielman and Teng.

# Adjacency Matrices

Given a graph G=(V,E) with weights  $w:E\to\mathbb{R}$ , construct the adjacency matrix  $\mathbf{A}\in\mathbb{R}^{n\times n}$  where

$$a_{ij} \leftarrow \begin{cases} w(i,j) & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$



$$\mathbf{A} = \begin{bmatrix} 0 & 5 & 20 & 15 & 0 \\ 5 & 0 & 0 & 5 & 0 \\ 20 & 0 & 0 & 10 & 0 \\ 15 & 5 & 10 & 0 & 10 \\ 0 & 0 & 0 & 10 & 0 \end{bmatrix}$$

<sup>&</sup>lt;sup>1</sup>If G is undirected, store only upper-triangular part of A.

# Algebraic Structures

Monoids  $(\oplus)$  generalize addition.

$$(\text{``C3''}) + (\text{``.ai''}) \rightarrow (\text{``C3.ai''})$$

Semirings  $(\oplus, \otimes)$  generalize addition and multiplication.

$$x_1 \cdot y_1 + \cdots + x_n \cdot y_n \rightarrow \min\{(x_1 + y_1), \ldots, (x_n + y_n)\}$$

Monoids and semirings have several nice properties<sup>2</sup>:

- ► Identity elements
- Associativity
- **.**...

<sup>&</sup>lt;sup>2</sup>However, neither structure enforces the existence of inverses.

# Matrix Multiplication

#### Matrix-vector multiplication:

$$y \leftarrow \mathbf{A}x$$

Writing as an elementwise expression:

$$y_i \leftarrow \sum_k a_{ik} x_k$$

Generalizing to  $(\oplus, \otimes)$ :

$$y_i \leftarrow \bigoplus_k a_{ik} \otimes x_k$$

#### Matrix-matrix multiplication:

$$C \leftarrow AB$$

Writing as an elementwise expression:

$$c_{ij} \leftarrow \sum_{k} a_{ik} b_{kj}$$

Generalizing to  $(\oplus, \otimes)$ :

$$c_{ij} \leftarrow \bigoplus_{k} a_{ik} \otimes b_{kj}$$

# All Pairs Shortest Paths (APSP)

For each pair of vertices  $i, j \in V$ , compute the length of a shortest path from i to j.



Sample application: driving directions, where road junctions are vertices and road distances are edge weights.

### Bellman-Ford Algorithm

Fix a vertex i. Let  $\mathsf{d}_{ij}^{(\ell)}$  denote the length of a shortest path from i to another vertex j consisting of at most  $\ell$  edges.

An edge 
$$(i,j)$$
 is tense if  $d_{ij}^{(\ell)} > w(i,k) + d_{kj}^{(\ell)}$ .



For  $\ell \leftarrow 1$  to n-1, relax all tense edges:

$$d_{ij}^{(\ell+1)} \leftarrow \min_{k} \{ w(i,k) + d_{kj}^{(\ell)} \}$$

## A Linear Algebraic Algorithm

We store tentative shortest path distances in  $\mathbf{D}^{(\ell)} \in \mathbb{R}^{n \times n}$  where

$$\mathbf{D}^{(\ell+1)} \leftarrow \mathbf{D}^{(\ell)} \oplus \mathbf{A} \mathbf{D}^{(\ell)}$$
 on  $(\min, +)$ 

Writing as an elementwise expression:

$$d_{ij}^{(\ell+1)} \leftarrow d_{ij}^{(\ell)} \oplus (\bigoplus_{k} a_{ik} \otimes d_{kj}^{(\ell)})$$

Replacing the generic  $(\oplus, \otimes)$  with the tropical semiring  $(\min, +)$ :

$$d_{ij}^{(\ell+1)} \leftarrow \min\{d_{ij}^{(\ell)}, \min_{k}\{w(i, k) + d_{kj}^{(\ell)}\}\}$$

## Matrix Multiplication is Fast

Matrix multiplication has been studied from a variety of algorithmic lenses:

- ► Time complexity<sup>3</sup>
- Parallel and distributed
- With sparse data

 $<sup>^3</sup>$ The current best time complexity is  $O(n^{2.3728596})$  by Alman and Vassilevska via the laser method.

# Strassen's Algorithm

$$\begin{bmatrix} \boldsymbol{C}_{11} & \boldsymbol{C}_{12} \\ \boldsymbol{C}_{21} & \boldsymbol{C}_{22} \end{bmatrix} \leftarrow \begin{bmatrix} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{B}_{11} & \boldsymbol{B}_{12} \\ \boldsymbol{B}_{21} & \boldsymbol{B}_{22} \end{bmatrix}$$

$$egin{aligned} m{M}_1 &\leftarrow (m{A}_{11} + m{A}_{22}) \cdot (m{B}_{11} + m{B}_{22}) \ m{M}_2 &\leftarrow (m{A}_{21} + m{A}_{22}) \cdot m{B}_{11} \ m{M}_3 &\leftarrow m{A}_{11} \cdot (m{B}_{12} - m{B}_{22}) \ m{M}_4 &\leftarrow m{A}_{22} \cdot (m{B}_{21} - m{B}_{11}) \ m{M}_5 &\leftarrow (m{A}_{11} + m{A}_{12}) \cdot m{B}_{22} \ m{M}_6 &\leftarrow (m{A}_{21} - m{A}_{11}) \cdot (m{B}_{11} + m{B}_{12}) \ \end{pmatrix} & m{C}_{11} &\leftarrow m{M}_1 + m{M}_4 - m{M}_5 + m{M}_7 \ m{C}_{12} &\leftarrow m{M}_3 + m{M}_5 \ m{C}_{21} &\leftarrow m{M}_3 + m{M}_5 \ m{C}_{21} &\leftarrow m{M}_2 + m{M}_4 \ m{C}_{22} &\leftarrow m{M}_1 - m{M}_2 + m{M}_3 + m{M}_6 \ \end{pmatrix}$$

The time complexity recurrence is given by

 $M_7 \leftarrow (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$ 

$$T(n) = 7T(n/2) + O(n^2) = O(n^{\log_2 7}) \approx O(n^{2.807})$$

Requires the existence of an additive inverse.

# Many Real-World Graphs are Large

Real-world graphs are too large to process on a single machine.

| Graph                        | n     | m      |
|------------------------------|-------|--------|
| 2002 crawl of the .uk domain | 18.5M | 261.8M |
| Friendster                   | 65.6M | 1.8B   |
| Full USA road network        | 23.9M | 28.9M  |
| Orkut social network         | 3.1M  | 117M   |

Table: Publicly available large graphs

We may distribute computations across multiple machines<sup>3</sup>.

 $<sup>^3</sup>$ Using a cluster of commodity machines is much cheaper than building a large, specialized machine.

### Parallel Matrix Multiplication

#### TODO

3D Matrix Multiplication was poorly introduced... introduce data layout in another slide (alex what does process owns ... mean?) or introduce parallel/distribute matrix algorithms? Would be nice to show trivial matrix-matrix distribution and why it's bad for communication

### 3D Matrix Multiplication

TODO, also might create new ideas for multilinear distribution Organize processes into a 3D cube.

```
for i in range(n):
  for j in range(n):
    for k in range(n):
        c[i,j] += a[i,k] * b[k,j]
```



Process (r, s, t) owns  $\boldsymbol{A}^{(r,t)}$  and  $\boldsymbol{B}^{(t,s)}$  and contributes  $\boldsymbol{C}^{(r,s)}$  where  $\boldsymbol{C}^{(r,s)} \leftarrow \boldsymbol{A}^{(r,t)} \boldsymbol{B}^{(t,s)}$ .

Figure from CS 484: Parallel Programming. See Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms by Solomonik and Demmel (2011).

# Many Real-World Graphs are Very Sparse

Many real-world graphs have relatively few edges.

| Graph                        | n     | m      | sp     |
|------------------------------|-------|--------|--------|
| 2002 crawl of the .uk domain | 18.5M | 261.8M | 1.5e-6 |
| Friendster                   | 65.6M | 1.8B   | 8.4e-9 |
| Full USA road network        | 23.9M | 28.9M  | 1.0e-7 |
| Orkut social network         | 3.1M  | 117M   | 2.4e-5 |

Table: Publicly available large graphs

However, storing an adjacency matrix requires  $O(n^2)$  entries.

# Compressed Sparse Matrix Formats

We may store only the *nonzero* entries for sparse matrices.

Compressed sparse row<sup>4</sup> (CSR) stores 3 lists:

- ► Values (length *nnz*)
- ► Column indices (length *nnz*): column of value
- $\triangleright$  Row offsets (length n+1): number of values above this row

Values: 1, 2, 3, 4, 5, 6

Column indices: 1, 3, 2, 0, 0, 1

Row offset: 0, 2, 3, 4, 6

<sup>&</sup>lt;sup>4</sup>See also coordinate list and compressed sparse column (CSC) formats.

# Compressed Sparse Matrix Algorithms

### Sparse matrix-vector multiplication (SpMV):

$$y_i \leftarrow \sum_k a_{ik} x_k$$

```
for i in range(n):
  for t in range(row_off[i], row_off[i+1]):
    y[i] += val[t] * x[col_idx[t]]
```

#### Sparse matrix-matrix multiplication (SpMSpM):

 Communication-optimal algorithm is equivalent to partitioning a hypergraph<sup>5</sup>.

<sup>&</sup>lt;sup>5</sup> Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication by Ballard et al (2016).

## Cyclops Tensor Framework

Matrix multiplications can be generalized to tensors<sup>6</sup>:

$$u_{i_1r}^{(1)} \leftarrow \sum_{i_2...i_d} t_{i_1...i_d} u_{i_2r}^{(2)} \cdots u_{i_dr}^{(d)}$$

The Cyclops Tensor Framework<sup>7</sup> automatically parallelizes custom operations on tensors:

- Distributed memory
- Sparse tensors and operations
- Arbitrary semirings

Tensor algebra is a *framework* for expressing graph algorithms.

<sup>&</sup>lt;sup>6</sup>For example, MTTKRP is the main kernel for tensor decomposition.

<sup>&</sup>lt;sup>7</sup>A Massively Parallel Tensor Contraction Framework for Coupled-Cluster Computations by Solomonik et. al (2014).

# Hybrid Programming (OpenMP + MPI)

The Cyclops Tensor Framework uses hybrid programming to leverage parallelism at the *thread* and *process* level.

#### OpenMP

- Shared memory
- Fork, exec, wait model

#### MPI<sup>8</sup>

- Distributed memory
- Point-to-point and collectives
- Standard for HPC

```
#pragma omp parallel for
for (i = 0; i < n; i++) {
      // do something
}</pre>
```

```
// first node
MPI_Send(&send_data, ...)
// second node
MPI_Recv(&recv_data, ...)
```

<sup>&</sup>lt;sup>8</sup>In distributed deep learning, the *AllReduce* model often communicates via NCCL, which is modeled after MPI.

# Minimum Spanning Tree (MST)

Find a spanning tree whose total weight is as small as possible.



Sample application: a phone company laying cable in a neighborhood, where houses are vertices and cable lengths are edge weights.

### Minimum Spanning Tree Algorithms

Most<sup>9</sup> algorithms rely only on the cut property of MSTs.

Given a cut, the edge with the smallest weight that crosses the cut belongs to the mst.



 $<sup>^9</sup>$ Karger et. al's O(m) expected time algorithm also uses the cycle property.

## Awerbuch-Shiloach Parallel MST Algorithm

Maintain a forest of stars<sup>10</sup>, where each vertex has a parent.

At the first iteration, the forest consists of n vertices, each with a self-loop.

Repeat the following steps until convergence of the forest:

- Hooking: grows the MST by joining two stars together.
- ► Shortcutting: compresses trees into stars.



 $<sup>^{10}\</sup>text{A}$  star is a directed tree of height at most 1 and is intuitively a part of the minimum spanning tree.

#### Forest of Stars



The parent vector  $p \in \mathbb{R}^n$  stores the parent of each vertex.

The parent matrix  $\mathbf{P} \in \mathbb{R}^{n \times n}$  is defined

$$p_{ij} \leftarrow \begin{cases} 1 & \text{if } p_i = j \\ 0 & \text{otherwise} \end{cases}$$

## Hooking

Each star attempts<sup>11</sup> to hook with its *smallest cut edge*.



Hooking: joins two stars together.

$$p_i \leftarrow p[\underbrace{\underset{e \in \operatorname{cut}(S_i, V \setminus S_i)}{\operatorname{argmin}}}_{\operatorname{edges\ that\ cross\ cut}} w(e)]$$

 $<sup>^{11}\</sup>mbox{Need}$  to break ties to prevent cycles.

### Shortcut

Hooking may generate trees of arbitrary height.



Shortcutting<sup>12</sup>: reduces the height of each tree in the forest by a factor of nearly two.  $p_i \leftarrow p_{p_i}$ 

<sup>&</sup>lt;sup>12</sup>Until completion so that all trees become stars.

### Hooking as a Multilinear Operation

f computes for each pair of nodes (i,j), whether they belong to the same star.

$$f(p_i, a_{ij}, p_j) \leftarrow \begin{cases} a_{ij} : p_i \neq p_j \\ \infty : \text{otherwise} \end{cases}$$

Accumulating  $f(p_i, a_{ij}, p_j)$  over min computes for each node i, its smallest cut edge.

$$q_i \leftarrow \bigoplus_j f(p_i, a_{ij}, p_j)$$

For each star root i, we contract its children's smallest cut edges into itself.

$$r_{p_j} \underset{\text{MinWeight}}{\longleftarrow} q_j$$

#### Data Distribution

How can we leverage the structure of  $f(p_i, a_{ij}, p_i)$ ?

$$w_i \leftarrow \bigoplus_j f(x_i, a_{ij}, y_j)$$

Process (r, s) owns  $\mathbf{A}^{(r,s)}$  and needs  $x^{(r)}$  and  $y^{(s)}$ . Process (r, s) contributes  $w^{(r)}$  where  $w^{(r)} \leftarrow f(x^{(r)}, \mathbf{A}^{(r,s)}, y^{(s)})$ .



#### Contraction

To reduce the size of the graph in the next iteration, we may merge vertices via contraction.



 $\mathbf{C} \leftarrow \mathbf{P}^T \mathbf{A} \mathbf{P}$  on the (min, ·) semiring performs a contraction of  $\mathbf{A}$ .

$$c_{ij} \leftarrow \sum_{l} p_{il}^{T} \left( \sum_{k} a_{lk} p_{kj} \right)$$
$$= \sum_{l} p_{li} \left( \sum_{k} a_{lk} p_{kj} \right)$$
$$= \sum_{l,k} p_{li} a_{lk} p_{kj}$$

w(l, k) is projected onto  $w(p_l, p_k)$  if:

- ▶ The edge (I, k) exists
- ightharpoonup i is l's parent  $(p_{li}=1)$
- ightharpoonup j is k's parent  $(p_{kj}=1)$

### MST Strong Scaling Data

Strong scaling: fix the *total* problem size and vary the # of nodes.



(a) Social network graphs

### MST Weak Scaling Data

Weak scaling: fix the problem size on *each* node and vary the # of nodes & total problem size accordingly.



Figure 2: Edge weak scaling of uniform random graphs. Constant  $n^2/p = n_0^2$  and edge percentage  $f = 100 * m/n^2$ 

#### Markov Chains

Markov chain: Given a set of states S, if the current state is i then go to state j with probability  $p_{ii}$ .



 $\mathbf{P} = \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.2 & 0.3 & 0.5 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$ 

Figure from Stackoverflow: r - Creating Three-State Markov Chain Plot

#### Random Walks

We prove expectations of the below via analyzing random walks:

- ▶ Hitting time: number of steps to reach state *j* from state *i*?
- Cover time: number of steps to reach all states from state i?
- ► Stationary distribution: what is the probability of ending in state i in a walk with t steps as  $t \to \infty$ ?
- Mixing time: number of steps to approach the stationary distribution?

A vector  $\pi = (\pi)_{i \in S}$  is the stationary distribution if

$$\pi = \pi P$$

The stationary distribution is an eigenvector of  $\boldsymbol{P}$  with eigenvalue 1.

## Mixing Time

From a starting distribution  $\pi^{(0)}$ , take a random walk with t steps.

$$\boldsymbol{\pi^{(t)}} \leftarrow \boldsymbol{\pi^{(t-1)}} \boldsymbol{P}$$
 
$$\vdots$$
 
$$= \boldsymbol{\pi^{(0)}} \boldsymbol{P^t}$$

Mixing time: what is the expected number of steps to approach the stationary distribution?

The above algorithm is the same as power iteration <sup>13</sup>:

- $\triangleright$  Converges to the dominant eigenvector of **P** (namely,  $\pi$ )
- ► Convergence ratio is given by  $|\lambda_1/\lambda_2|$

<sup>&</sup>lt;sup>13</sup>Instead of normalization, enforce that  $\sum_i \pi_i = 1$ .

## **Expanders**

A *d*-regular graph is an  $\alpha$ -expander<sup>14</sup> if  $|\lambda_2| \leq \cdots \leq |\lambda_n| \leq \alpha$ .

Rapid mixing lemma: For an  $\alpha$ -expander,

$$(\pi^{(t)} - \pi) \le \alpha^t$$

Do good expanders  $(\alpha = O(\frac{1}{\sqrt{d}}))$  exist?

- Random graph (probabilistic method)
- Graph products (zig-zag product)
- Ramanujan graphs  $(\alpha = \frac{1}{\sqrt{d}})$

$$\frac{\partial S}{|S|} \ge \Omega(d(1-\alpha)) \quad \forall S \subseteq V \ (|S| \le n/2)$$

 $<sup>^{14}</sup> lpha < 1$ . Combinatorial definition: A d-regular graph is an lpha-expander if

# Applications of Expanders

Expanders are a very powerful tool in modern TCS:

- Derandomization (randomness is a resource)
- Error correcting codes
- Sorting networks



## Monte Carlo Algorithms

#### A Monte Carlo algorithm $\Pi$ for a decision problem:

- ightharpoonup Correctly outputs YES with probability  $\geq 1/2$
- Correctly outputs NO with probability 1

Is the polynomial  $P(x_1, \ldots, x_k)$  over  $\mathbb{Z}_P$  zero everywhere?



P has at most degree d roots:

- Pick a random vector  $x_1, \ldots, x_k \in \mathbb{Z}_P$ .
- $Pr[P(x_1,\ldots,x_k)=0] \leq \frac{d}{p}.$
- ► If YES, repeat?
- If NO, output NO.

<sup>&</sup>lt;sup>15</sup>For example,  $((x^2-1)(y^2-4)+x^2+y^2-5)/(x^2+y^2+1)^2$ . Figure from *Visualing Functions of Several Variables and Surfaces* by

## **Probability Amplification**

Consider a Monte Carlo algorithm  $\Pi$ :

- ▶ Error probability  $\leq 1/10$ .
- m random bits.

How can we *lower* the error probability?

Repeat t times  $\rightarrow$  error probability  $\leq (\frac{1}{10})^t$  and tm random bits.

Can we achieve a similar error probability with fewer random bits?

Expanders!

#### Derandomization

Construct a *d*-regular  $\alpha$ -expander G with  $n=2^m$  vertices<sup>16</sup>.

Fix a subset  $B \subseteq V$  with  $|B| = \beta n$ .

Take a random walk  $v_1, \ldots, v_t$  from a random starting vertex.

$$\Pr[v_1 \in B \land \cdots \land v_t \in B] \leq (\alpha + \beta)^t$$



 $<sup>^{16}</sup>$ Efficient representations have been designed to construct G "on the fly".

# Derandomization (cont.)

If G is a good expander, we are unlikely to get stuck in  $B^{17}$ .

#### Probability amplification:

- Each vertex corresponds to a *m* bit string.
- ▶ When evaluating  $\Pi$ , we randomly pick a m bit string.

B is the set of m bit strings that output a wrong answer to  $\Pi$ .

$$|B| \le \frac{1}{10}|n| \implies \beta \le \frac{1}{10}$$

- ► Error probability  $\leq (\alpha + \frac{1}{10})^t$ .
- $ightharpoonup m + t \log d$  random bits.

<sup>&</sup>lt;sup>17</sup>Can also be viewed from the combinatorial definition of expanders.

# Summary

Introduction

All Pairs Shortest Paths

Sparse Linear Algebra

Minimum Spanning Trees

Expanders

#### References

- Graph Algorithms in the Language of Linear Algebra by Kepner and Gilbert (2011)
- CS 554: Parallel Numerical Algorithms by Solomonik
- New Connectivity and MSF Algorithms for Shuffle-Exchange Network and PRAM by Awerbuch and Shiloach (1987)
- CS 574: Randomized Algorithms by Chan

Fin

Thanks. Questions?

#### Extra Slides

The following are cool related topics that I'd like to talk about at some point:

- $\triangleright$  Ball: given a vertex, compute its b closest neighbors.
- Probabilistic method: prove existence then derandomize for a construction.
- ightharpoonup Dimensionality reduction: does there exist an embedding from  $\ell_1$  to Hamming space? Take a random projection and use the probabilistic method.
- Convolution as matrix multiplication: use Toepltiz matrices.
- Tensor decomposition: generalizations of SVD.
- Tensor completion: Netflix Prize.
- Hardware accelerators for matrix multiplications.