EXP 1: R AS CALCULATOR APPLICATION

a. Using with and without R objects on console

```
> 3589+123
[1] 3712
> 3589*123
[1] 441447
> 3589-123
[1] 3466
> 3589/123
[1] 29.17886
> A=4500
> B=1250
> C=A+B
[1] 5750
> |
```

b. Using mathematical functions on console

```
> A=745
> class(A)
[1] "numeric"
> B=400
> CLASS(B)
Error in CLASS(B): could not find function "CLASS"
> class(B)
[1] "numeric"
> SUM<-A-B
> Summary
groupGenericFunction for "Summary" defined from package "base"
function (x, ..., na.rm = FALSE)
standardGeneric("Summary")
<bytecode: 0x000000010a93a68>
<environment: 0x000000007222270>
Methods may be defined for arguments: x, na.rm
Use showMethods("Summary") for currently available ones.
> SUM<A-B
[1] FALSE
> SUM
[1] 345
```

c. Write an R script, to create R objects for calculator application and save in a specified location in disk

EXP2 -DESCRIPTIVE STATISTICS IN R

a. Write an R script to find basic descriptive statistics using summary, str, quartile function on mtcars& cars datasets.

> mtcars

	mpg	cy1	disp	hp	drat	wt	qsec	٧S	am
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1
2	21.5		120.1	97	3.70	2.465	20.01	1	0
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0
Pontiac Firebird	19.2		400.0					0	0

```
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1
Porsche 914-2
                  26.0 4 120.3 91 4.43 2.140 16.70 0 1
                  30.4 4
                           95.1 113 3.77 1.513 16.90 1 1
Lotus Europa
Ford Pantera L
                  15.8 8 351.0 264 4.22 3.170 14.50 0 1
Ferrari Dino
                  19.7 6 145.0 175 3.62 2.770 15.50 0 1
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1
Volvo 142F
                  21.4 4 121.0 109 4.11 2.780 18.60 1 1
                  gear carb
Mazda RX4
                     4
Mazda RX4 Wag
Datsun 710
Hornet 4 Drive
Hornet Sportabout
Valiant
Duster 360
Merc 240D
Merc 230
Merc 280
Merc 280C
Merc 450SE
Merc 4505L
Merc 450SLC
Cadillac Fleetwood
Lincoln Continental
Chrysler Imperial
Fiat 128
                         1
Honda Civic
                         2
```

> summary(mtcars) disp cy1 mpg :10.40 Min. :4.000 : 71.1 Min. Min. 1st Qu.:120.8 1st Qu.:15.43 1st Qu.:4.000 Median :196.3 Median :19.20 Median :6.000 :20.09 :6.188 :230.7 Mean Mean Mean 3rd Qu.:22.80 3rd Qu.:326.0 3rd Qu.:8.000 :33.90 :8.000 Max. :472.0 Max. Max. drat hp WT :2.760 : 52.0 Min. Min. :1.513 Min. 1st Qu.: 96.5 1st Qu.:2.581 1st Qu.:3.080 Median :3.325 Median :123.0 Median :3.695 Mean :3.597 :146.7 :3.217 Mean Mean 3rd Qu.:180.0 3rd Qu.:3.610 3rd Qu.:3.920 :335.0 Max. :4.930 :5.424 Max. Max. qsec VS. am :0.0000 Min. :14.50 Min. Min. :0.0000 1st Qu.:16.89 1st Qu.:0.0000 1st Qu.: 0.0000 Median :17.71 Median :0.0000 Median :0.0000 :17.85 Mean : 0.4375 Mean : 0.4062 Mean 3rd Qu.:18.90 3rd Qu.:1.0000 3rd Qu.:1.0000 :22.90 :1.0000 :1.0000 Max. Max. Max. carb gear Min. Min. :3.000 :1.000 1st Qu.:3.000 1st Qu.:2.000 Median :4.000 Median :2.000 Mean :3.688 :2.812 Mean

```
> str(mtcars)
'data.frame': 32 obs. of 11 variables:
$ mpg : num    21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num    6 6 4 6 8 6 8 4 4 6 ...
$ disp: num    160 160 108 258 360 ...
$ hp : num    110 110 93 110 175 105 245 62 95 123 ...
$ drat: num    3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num    2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num    16.5 17 18.6 19.4 17 ...
$ vs : num    0 0 1 1 0 1 0 1 1 1 ...
$ am : num    1 1 1 0 0 0 0 0 0 ...
$ gear: num    4 4 4 3 3 3 3 3 4 4 4 ...
$ carb: num    4 4 1 1 2 1 4 2 2 4 ...
}
```

```
> quantile(mtcars$mpg)
     0% 25% 50% 75% 100%
10.400 15.425 19.200 22.800 33.900
>
```

> 0	ars	
	speed	dist
1	4	2
2	4 7	10
2 3	7	4
4	7	22
5	8	16
6 7	9	10
7	10	18
8	10	26
9	10	34
10	11	17
11	11	28
12	12	14
13	12	20
14	12	24
15	12	28
16	13	26
17	13	34
18	13	34
19	13	46
20	14	26
21	14	36
22	14	60
23	14	80
24	15	20

26	15	54
27	16	32
28	16	40
29	17	32
30	17	40
31	17	50
32	18	42
33	18	56
34	18	76
35	18	84
36	19	36
37	19	46
38	19	68
39	20	32
40	20	48
41	20	52
42	20	56
43	20	64
44	22	66
45	23	54
46	24	70
47	24	92
48	24	93
49	24	120
50	25	85
>		

```
> summary(cars)
    speed
                 dist.
Min. : 4.0
             Min. : 2.00
Mean : 42.98
Mean :15.4
3rd Qu.:19.0 3rd Qu.: 56.00
             Max. :120.00
Max.
      :25.0
> class(cars)
[1] "data.frame"
> dim(cars)
[1] 50 2
> quantile(cars$speed)
 0% 25% 50% 75% 100%
  4 12 15 19 25
```

b. Write an R script to find subset of dataset by using subset (), aggregate () functions on iris dataset.

```
> subset(iris,iris$Sepal.Length==5.0)
   Sepal.Length Sepal.Width Petal.Length Petal.Width
                                      1.4
5
                         3.6
                                                   0.2
              5
8
                         3.4
                                       1.5
                                                   0.2
26
                         3.0
                                      1.6
                                                   0.2
27
                         3.4
                                      1.6
                                                   0.4
              5
                         3.2
                                      1.2
36
                                                   0.2
              5
                         3.5
                                      1.3
41
                                                   0.3
              5
                         3.5
                                      1.6
44
                                                   0.6
              5
                         3.3
50
                                      1.4
                                                   0.2
                         2.0
                                      3.5
                                                   1.0
61
                         2.3
                                      3.3
                                                   1.0
94
      Species
5
       setosa
8
      setosa
26
       setosa
27
       setosa
36
      setosa
41
       setosa
44
       setosa
50
       setosa
61 versicolor
94 versicolor
>
```

```
> aggregate(. ~ Species, data = iris, mean)
    Species Sepal.Length Sepal.Width Petal.Length
             5.006 3.428
1 setosa
                                   1.462
2 versicolor 5.936 2.770
                                 4.260
3 virginica
              6.588 2.974
                                   5, 552
 Petal.Width
1
   0.246
2
   1.326
    2.026
```