Mathematics Behind the Options Calculator

Pheneas Newman

October 2, 2025

1 European Call

$$C = Se^{-qT}\Phi(d_1) - Ke^{-rT}\Phi(d_2)$$
$$d_1 = \frac{\ln(\frac{S}{K}) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$
$$d_2 = d_1 - \sigma\sqrt{T}$$

- C Option price
- S Spot price
- K Strike price
- q Dividend rate
- T Time to maturity
- r Risk free rate
- σ Volatility
- Φ Standard normal CDF
- ϕ Standard normal pdf

1.1 Delta

$$\Delta = \frac{\partial C}{\partial S} = e^{-qT} \Phi(d_1)$$

$$\Delta = \frac{\partial C}{\partial S} = e^{-qT} \Phi(d_1) + Se^{-qT} \phi(d_1) \left(\frac{\partial d_1}{\partial S}\right) - Ke^{-rT} \phi(d_2) \left(\frac{\partial d_2}{\partial S}\right)$$

$$= e^{-qT} \Phi(d_1) + \underbrace{Se^{-qT} \phi(d_1) \frac{1}{S\sigma\sqrt{T}} - Ke^{-rT} \phi(d_2) \frac{1}{S\sigma\sqrt{T}}}_{=0}$$

$$\Delta = e^{-qT} \Phi(d_1)$$

1.5 Rho
2 European Put
2.1 Delta
2.2 Gamma
2.3 Vega
2.4 Theta
2.5 Rho

1.2 Gamma

1.3 Vega

Theta

1.4

3.3 Vega
3.4 Theta
3.5 Rho
4 Binary Put
4.1 Delta
4.2 Gamma
4.2 Gamma
4.3 Vega
4.4 Theta

3 Binary Call

3.1 Delta

3.2 Gamma

5	American Call
5.1	Delta
5.2	Gamma
5.3	m Vega
5.4	Theta
0.1	
F F	Dla
5.5	Rho
6	American Put
6.1	Delta
6.2	Gamma
6.3	m Vega

4.5 Rho

- 6.4 Theta
- 6.5 Rho