DEFINITION 7 (BINARY OPERATION). A binary operation f on a set S is a mapping from the Cartesian product $S \times S$ to S:

$$f: S \times S \longrightarrow S$$
.

Definition 8 (Group). A group G is a set with a binary operation *, (called the "law of composition") which satisfies the group axioms:

Associativity: (a*b)*c = a*(b*c) for all $a,b,c \in G$.

IDENTITY: There exists an element $i_G \in G$ such that $a * i_G = a$ for all $a \in G$.

INVERSE: For every $a \in G$, there exists and element b such that $a * b = b * a = i_G$.

The sets with a binary operation which only partially fulfill the group axioms, have differnt names:

DEFINITION 9 (SEMIGROUP AND MONOID). If (G,*) only satisfies the Associativity axiom, we call G a semigroup. If a semigroup G has an identity element, we call G a monoid.

Definition 10 (Abelian Group). A group G with a commutative law of composition * (i.e. which satisfies the following axiom) is called a commutative or abelian* group:

Commutativity: $a * b = b * a \text{ for all } a, b \in G$.

DEFINITION 11 (RING). A ring is a set R equipped with two binary operations + and *, called "addition" and "multiplication", such that (R, +) is an abelian group, (R, *) is a monoid and the operation * is ditributive with respect to +:

DISTRIBUTIVITY: a*(b+c) = a*b+b*c and (b+c)*a = b*a+c*a for all $a,b,c \in G$.

By 0_R and 1_R , we denote the additive and the multipplicative identities of R, respectively. If * is commutative, then we call R a commutative ring.

DEFINITION 12 (FIELD). A field is a commutative ring F such that $F^* := F \setminus \{0\}$ is also an abelian group under multiplication.