

You

Explain how ChatGPT works as if I was a 5 years old child.

ChatGPT

Alright, imagine you have a really smart friend who knows a lot of things. That friend is like a big, magical library with lots and lots of books. Now, this friend is called ChatGPT. When you ask ChatGPT a question or tell it something, it looks into all those books in its library (which are actually a huge amount of information it learned) and tries to give you the best answer or response it can find.

So, you can think of ChatGPT as a helpful buddy who loves to chat and share what it knows with you!

How does it really work?

What is Language Modeling?

Definition

- ullet A sequence of tokens (w_1,w_2,\ldots,w_n)
- For a position i, a language model (LM) predicts

$$P(w_i \mid (w_j)_{j
eq i}) \in \Delta^V$$

• In words: a LM predicts the probability of a token given its context

Example

I went to the ??? yesterday

P(park | I went to the ??? yesterday) = 0.1

P(zoo | I went to the ??? yesterday) = 0.07

• • •

P(under | I went to the ??? yesterday) = 0

Why is it hard?

- Large vocabularies: 170,000 English words
- Lots of possible contexts:
 - \circ For V possible tokens, there are V^L contexts of size L (in theory)
- Inherent uncertainty: not obvious even for humans

Basic approach - Unigram

• Learn the *non-contextual* probability (=frequency) of each token:

$$P(w_i \mid (w_j)_{j
eq i}) = f$$

Example

chart against operations at influence the surface plays crown a inaro the three @ but the court lewis on hand american of seamen mu role due roger executives

Include context - Bigram

Predict based on the last token only:

$$P(w_i \mid (w_j)_{j
eq i}) = P_ heta(w_i \mid w_{i-1})$$

• (MLE): Measure next token frequency

Example

the antiquamen lost to dios nominated former is carved stone oak were problematic, 1910. his willingness to receive this may have been seen anything

Include more context - n-gram

Predict based on the n last tokens only:

$$P(w_i \mid (w_j)_{j
eq i}) = P_{ heta}(w_i \mid w_{i-n} \dots w_{i-1})$$

• (MLE): Measure occurrences of tokens after $w_{i-n} \dots w_{i-1}$

Example (n=4)

eva gauthier performed large amounts of contemporary french music across the united states marshals service traveled to frankfurt, germany and took custody of the matthews

Statistical n-grams: pro/cons

- Strenghts:
 - Easy to train
 - Easy to interpret
 - Fast inference
- Limitations:
 - Very limited context
 - Unable to extrapolate: can only model what it has seen

The embedding paradigm

LM with RNNs

Course 3: Language Modeling

12

LM with RNNs - Training

- θ : parameters of the RNN
- (w_1,\ldots,w_n) : training sequence
- Cross-entropy loss \mathcal{L}_{ce} :

$$\mathcal{L}_{ce}(w, heta) = -\sum_{i=2}^n 1_{w_i} \cdot \log P_{ heta}(w_i | w_{i-1}, h_{i-1})$$

Train via back-propagation + SGD

Reminder - Back-propagation

Reminder - Stochastic Gradient Descent

• Goal : Minimize a loss function $\mathcal{L}(X,\theta)$ for given data X with respect to model parameters θ

Method:

- \circ Split X in smaller parts x^i (called mini-batches)
- \circ Compute $\mathcal{L}(x^i, heta)$ (forward) and $abla_{ heta} \mathcal{L}(x^i, heta)$ (back-prop)
- \circ Update: $heta \leftarrow heta \eta
 abla_{ heta} \mathcal{L}(x^i, heta)$ ($\eta \ll 1$, learning rate)

LM with RNNs: Generation

RNNs: pro/cons

- Strenghts
 - Still relatively fast to train
 - \circ ... and for inference (O(L))
 - Can extrapolate (works with continuous features)
- Limitations
 - Context dilution when information is far away

Extending RNNs: BiLSTMs

- LSTM: improves context capacity
- Read the sequence in both directions

Transformers

Information flow - RNN

How many steps between source of info and current position?

- What is the previous word? => O(L)
- What is the subject of verb X? => O(L)
- What are the other occurrences of current word? => $O(L^2)$

• ...

Information flow - Transformers

How many steps between source of info and current position?

- What is the previous word? => O(1)
- What is the subject of verb X? => O(1)
- What are the other occurrences of current word? => O(1)
- ... => *O*(1)

Outside Transformers

- ullet A Transformer network $T_{ heta}$
- ullet Input: Sequence of vectors $(e_1,\ldots,e_n)\in\mathbb{R}^D$
- ullet Output: Sequence of vectors $(h_1,\ldots,h_n)\in\mathbb{R}^D$
- Each h_i may depend on the whole input sequence (e_1, \ldots, e_n)

Inside Transformers

Course 3: Language Modeling Hello I love you 23

Inside Transformers: Embeddings

Before going in the network:

- Given an input token sequence (w_1,\ldots,w_n)
- ullet We retrieve token embeddings $(e_w(w_1),\ldots,e_w(w_n))\in\mathbb{R}^D$
- ullet We retrieve position embeddings $(e_p(1),\ldots,e_p(n))\in\mathbb{R}^D$
- ullet We compute input embeddings: $e_i = e_w(w_i) + e_p(i)$

24

Inside Transformers: Self-attention

Inside Transformers: Q and K

=> Model interactions between tokens:

Course 3: Language Modeling Queries 26

Inside Transformers: Q and K

- \bullet Each row of QK^T is then normalized using softmax
- Interpretable patterns:

Inside Transformers: Q and K

• Formally:

$$A_{i,j} = rac{1}{\sqrt{d_h}} \cdot rac{e^{(QK^T)_{i,j}}}{\sum_k e^{(QK^T)_{i,k}}}$$

where d_h is the hidden dimension of the model

Inside Transformers: A and V

Inside Transformers: Self-attention summary

- Inputs are mapped to Queries, Keys and Values
- Queries and Keys are used to measure interaction (A)
- Interaction weights are used to "select" relevant Values combinations
- Complexity: O(L^2)

30

Inside Transformers: Multi-head attention

Course 3: Language Modeling

31

Inside Transformers: LayerNorm

Avoids gradient explosion

Inside Transformers: Output layer

Encoder Models

Masked Language Models

BERT (Devlin et al., 2018)

- Pre-trained on 128B tokens from Wikipedia + BooksCorpus
- Additional Next Sentence Prediction (NSP) loss
- Two versions:
 - BERT-base (110M parameters)
 - BERT-large (350M parameters)
- Cost: ~1000 GPU hours

RoBERTa (Liu et al., 2019)

- Pre-trained on 128B 2T tokens from web data (BERT x10)
- No more Next Sentence Prediction (NSP) loss
- Two versions:
 - RoBERTa-base (110M parameters)
 - RoBERTa-large (350M parameters)
- Better results in downstream tasks
- **Cost**: ~25000 GPU hours

Multilingual BERT (mBERT)

- Pre-trained on 128B tokens from multilingual Wikipedia
- 104 languages
- One version:
 - mBERT-base (179M parameters)
- Cost: unknown

XLM-RoBERTa (Conneau et al., 2019)

- Pre-trained on 63T tokens from CommonCrawl
- 100 languages
- Two versions:
 - XLM-RoBERTa-base (279M parameters)
 - XLM-RoBERTa-large (561M parameters)
- **Cost**: ~75000 GPU hours

ELECTRA (Clark et al., 2020)

40

ELECTRA (Clark et al., 2020)

- Pre-trained on 63T tokens from CommonCrawl
- 100 languages
- Three versions:
 - ELECTRA-small (14M parameters)
 - ELECTRA-base (110M parameters)
 - ELECTRA-large (350M parameters)
- Really better than BERT/RoBERTa
- Cost: =BERT

Encoders: Fine-tuning

Encoders: Classical applications

- Natural Language Inference (NLI)
 - I like cake! / Cake is bad => same | neutral | opposite
- Text classification (+ clustering)
 - I'm so glad to be here! => joy
- Named Entity Recognition (NER)
 - I voted for Obama! => (Obama, pos:3, class:PER)
- and many others...

Decoders

Decoders - Motivation

- Models that are designed to generate text
- Next-word predictors:

$$P(w_i \mid (w_j)_{j
eq i}) = P_{ heta}(w_i \mid w_1 \ldots w_{i-1})$$

• **Problem**: How do we impede self-attention to consider future tokens?

Decoders - Attention mask

• Each attention input can only attend to previous positions

Decoders - Attention mask

• Each attention input can only attend to previous positions