

# Robotics Dojo 2024 Autonomous Mobile Robot (AMR)



#### **Joint Team 4**

Felix K. Ronoh, Jeremiah J. Onyapidi, Hillary M. Murimi, Omariba Collins and Lukundo Okemba (ROOK Droid, Mobile Platform) Nindo Emmanuel and Matiko Maroa (Team Echo, Navigation)

#### **Abstract**

This research presents the **development of an AMR** capable of autonomously navigating through complex maze environment. Utilizing ROS\_2, SLAM, and LiDAR, the robot successfully demonstrates

- ► Accurate mapping & localization,
- ► Path planning
- ▶ Obstacle avoidance.

This research contributes to advancements in autonomous robotics and has potential applications in fields of logistics, search and rescue, and industrial automation.

## 1. Introduction

**Objective:** To deepen and share knowledge on Robotics by building an Autonomous Mobile Robot using ROS2 for navigation.

#### **Main Contributions:**

- 1. Integrated real-world robotics with ROS2, Gazebo simulation, and hardware interfaces.
- 2. Developed robust teleoperation and autonomous navigation.
- 3. Designed and built a reliable hardware platform.



# 2. Design Strategy and Build Process

#### 2.1 Robot Design

- . Modular Approach: To facilitate easy assembly, testing, and modifications.
- . ROS 2 Framework: Used for its flexibility, scalability, and extensive community support.
- . **SLAM** and **Navigation**: Utilized the **SLAM Toolbox** and Nav2 packages for mapping and autonomous navigation.
- . LiDAR Integration: Integrated a LiDAR sensor for accurate environment perception and obstacle avoidance.

# 2.2 Build Process

- . Hardware Selection: Based on project requirements and budget constraints.
- . Chassis Construction: Designed and built a custom chas-

sis using acrylic sheets for a lightweight and durable structure.

. Assembly: Wired the components together, using proper power distribution and communication

#### 2.3 Software Integration

- . Development of ROS 2 nodes for control, navigation, and sensor processing.
- **ROS2 Setup:** Integration of ros2\_control for motor control and diff\_drive controller for navigation.
- . Simulation: Utilized Gazebo for robot motion validation and **SLAM** testing
- **Control**: Used Autonomous Nav2 stack for path planning and obstacle avoidance.

# 3. Control System Implementation

# 3.1 ROS2 Control Framework

- . Controller Manager: Handles communication between ROS and the robot.
- . Diff Drive Controller: Converts velocity commands into wheel speeds.
- . Hardware Interface: Translates commands to the motor controller, receiving encoder feedback.

## 3.2 Teleoperation & Naviga-<u>tion</u>

- . Teleoperation: Utilized teleop\_twist\_keyboard for initial tests.
- Autonomous Navigation: Implemented SLAM for mapping and used Nav2 stack for path planning.



# 4. Testing and Perfomance Evaluation

#### 4.1 Simulation Testing

- . Gazebo Simulation: Verified robot motion and tested SLAM capabilities.
- Virtual Environment: Simulated real-world scenarios for collision detection and navigation.

#### 4.2 Real-World Testing

- Teleoperation Testing: Conducted initial teleop tests using ros2 control and verified wheel velocities.
- Autonomous Navigation: Fine -tuned the Nav2 stack for smooth navigation and obstacle avoidance.



# 5. Results, Conclusion & Key Findings

- (1) ROS 2 proved to be a valuable tool for robot control, communication, and integration of various components.
- (2) The robot demonstrated robust obstacle avoidance capabilities, successfully navigating around obstacles without collisions.
- (3) The navigation algorithm via SLAM efficiently planned and executed paths, reaching the desired goal.

# **Simulation Model** 3D Concept **Actual Robot** (Gazebo) Design - Overall Build Process -

# 6. Future Works and Recommendations

- . Enhanced Perception: Using additional sensors ( cameras, depth sensors) for object recognition.
- . **Advanced Navigation**: More complex navigation algorithms, such as **SLAMP** for dynamic environments.
- **Environmental . Object Interaction**: Develop capabilities for interacting with objects, i.e. grasping, manipulating, or object tracking.
  - . Human-Robot Interaction: Implement features for humanrobot interaction, i.e. voice commands or gesture control.