Calcul différentiel

14 octobre 2014

Table des matières

1	Calcul variationnel		
	1.1	Cas scalaire	2
	1.2	Courbes paramétrées	4
	1.3	Hamiltonien	4

Calcul variationnel 1

Cas scalaire 1.1

Ici : recherche d'optimum non plus dans un espace de réels, mais dans un espace de fonctions. On cherche y^* tel que :

$$I(y^*) = \min_{y \in \mathcal{F}} I(y)$$

Considérons $y:[x_1,x_2]\to\mathbb{R}$ et $L:[x_1,x_2]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$. Parmis tous les y, dérivable et tel que $y(x_1) = y_1$ et $y(x_2) = y_2$, trouver la courbe minimisant :

$$I(y) = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$$
 (P)

Théorème: Euler-Lagrange

Si $y \in \mathcal{C}^1[x_1, x_2]$ minimise $\int_{x_1}^{x_2} L(x, y, y') dx$ parmi toutes les fonctions telles que $y(x_1) = y_1$ et $y(x_2) = y_2$ où $L \in \mathcal{C}^2$, alors y satisfait : $\frac{\partial L}{\partial y} - \frac{d}{dx} \frac{\partial L}{\partial y'} = 0$

$$\frac{\partial L}{\partial y} - \frac{d}{dx} \frac{\partial L}{\partial y'} = 0$$

Idée de la démonstration : On prend y minimisant I, et on pose $Y = y + \varepsilon \eta$, avec $\eta(x_1) = \eta(x_2) = 0$, puis on reprend I dépendant de ε . I est minimal pour $\varepsilon = 0$, on dérive, on trouve ce qu'il faut!

g est une intégrale première de l'équation d'Euler-Lagrange si g est contante le long des solutions de l'équation d'Euler-Lagrange.

1. Si
$$L = L(x, y')$$
, alors $\frac{\partial L}{\partial y'} = C$

1. Si
$$L = L(x, y')$$
, alors $\frac{\partial L}{\partial y'} = C$
2. Si $L = L(y, y')$ alors $L - y' \frac{\partial L}{\partial y} = C$.

lacksquare $Definition: \overline{Topologie} \overline{dans} \; \mathcal{C}([x_1,x_2])$

On définit une topologie dans $C^0([x_1, x_2])$:

$$\forall y \in \mathcal{C}^0; ||y||_{\mathcal{C}^0} = \max_{x \in [x_1, x_2]} ||y(x)||_2$$

$$\forall y \in \mathcal{C}^{0}([x_{1}, x_{2}]), \ V_{\varepsilon}^{0}(y) = \{\tilde{y} \in \mathcal{C}^{0}([x_{1}, x_{2}]); \|y - \tilde{y}\|_{\mathcal{C}^{0}} < \varepsilon\}$$

On fait de même dans $\mathcal{C}^1([x_1,x_2])$:

$$\forall y \in \mathcal{C}^1; ||y||_{\mathcal{C}^1} = \max_{x \in [x_1, x_2]} ||y(x)||_2 + \max_{x \in [x_1, x_2]} ||y'(x)||_2$$

$$\forall y \in \mathcal{C}^1([x_1, x_2]), \ V_{\varepsilon}^1(y) = \left\{ \tilde{y} \in \mathcal{C}^1([x_1, x_2]); \|y - \tilde{y}\|_{\mathcal{C}^1} < \varepsilon \right\}$$

Définition:

On considère que le problème \mathbf{P} admet comme solution y^* . y^* est un minimum fort strict s'il existe un voisinage dans $\mathcal{C}^0([x_1,x_2])$ (ie $V_{\varepsilon}^0(y^*)$) tel que :

$$I(y^*) < I(y) \forall y \in V_{\varepsilon}^0(y^*)$$

C'est un maximum fort strict si :

$$I(y^*) > I(y) \forall y \in V_{\varepsilon}^0(y^*)$$

 $\exists V_{\varepsilon}^{1}(y^{*});\ I(y^{*}) < I(y) \Rightarrow y * \text{ minimum faible strict}$

 $\exists V_{\varepsilon}^{1}(y^{*}); \ I(y^{*}) > I(y) \Rightarrow y * \text{ maximum faible strict}$

Définition:

- Soit $D = [x_1, x_2] \times \mathbb{R}$. $y(x, C), C \in \mathbb{R}$ est un champ d'extrémales, si : 1. $(x, y(x, C)) \in D$, $\forall C \in \mathbb{R}$ 2. $\forall C \in \mathbb{R}$, y(x) satisfait les équations d'Euler-Lagrange.

Ce champ est dit propre si $\forall (x_0, y_0) \in D, \exists ! y(x, C)$ extrémale.

Ce champ est dit central si $y(X,C) = y_1, \ \forall C \in \mathbb{R}$ et $y(x,C) \neq y(x,\tilde{C}), \ \forall C \neq \tilde{C}, \ \forall x \neq \tilde{x}.$

⇔ Théorème: Jacobi-Weierstrass

Supposons $L \in \mathcal{C}^3$. Considérons toujours le même problème de minimisation P. Supposons $L \in \mathcal{C}$. Considerons reagons:

1. $y^*(x_1) = y_1$ et $y^*(x_2) = y_2$ 2. y^* peut être plongé dans un champ d'extrémale soit propre soit central

3. $\frac{\partial^2 L}{\partial y'^2}(x, y^*, (y^*)') > 0$ (resp < 0)

Alors y^* est un minimum (resp. maximum) faible

4. $\frac{\partial^2 L}{\partial y'^2}(x, y, y') > 0$ (resp < 0) $\forall y \in V_{\varepsilon}^0(y^*)$ Alors y^* est un minimum (resp. maximum) fort.

1.2 Courbes paramétrées

On prend à présent $y: [x_1, x_2] \to \mathbb{R}^n$, $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$, $y_i \in \mathbb{R}^n$, i = 1, 2

$$L: [x_1, x_2] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

On veut minimiser $I(y)=\int_{x_1}^{x_2}L(x,y(x),y'(x))dx$

héorème: Euler-Lagrange

Si $y \in \mathcal{C}^1[x_1, x_2]$ minimise $\int_{x_1}^{x_2} L(x, y, y') dx$ parmi toutes les fonctions telles que $y(x_1) = y_1$ et $y(x_2) = y_2$ où $L \in \mathcal{C}^2$, alors y satisfait : $\frac{\partial L}{\partial x_1} - \frac{d}{\partial x_2} \frac{\partial L}{\partial x_2} = 0, \ 1 \le i \le n$

$$\frac{\partial L}{\partial y_i} - \frac{d}{dx} \frac{\partial L}{\partial y_i'} = 0, \ 1 \le i \le n$$

1.3 Hamiltonien

On pose à présent :

$$p_{i} = \frac{\partial L}{\partial y_{i}}$$

$$H = -L + \sum_{i=1}^{n} y'_{i} p_{i}$$

En calculant dH, on arrive au système suivant :

$$\begin{cases} y_i' = \frac{\partial H}{\partial p_i} \\ p_i' = -\frac{\partial H}{\partial y_i} \end{cases}$$
 (SH)

ce qui est un système hamiltonnien.

1 Proposition:

 $I:\mathbb{R}\times\mathbb{R}^d\to\mathbb{R}$ est une intégrale première de $\dot{z}=f(z)$ si et seulement si

$$\frac{\partial I}{\partial t} + \sum_{i=1}^{d} \frac{\partial I}{\partial z_i} f_i \equiv 0$$

⇔ Corollaire:

Si I = I(z), alors la condition devient :

$$\sum_{i=1}^{d} \frac{\partial I}{\partial z_i} f_i = L_f I \equiv 0$$

IProposition:

Si $L = L(y_1, ..., x_n, y'_1, ..., y'_n)$ alors H est une intégrale première.

$\overline{ {1 \over 1} Proposition}:$

1. I=I(y,p) est une intégrale première de (SH) si :

$$L_f I = \underbrace{\sum_{i=1}^n \frac{\partial I}{\partial y_i} \frac{\partial H}{\partial p_i} - \frac{\partial I}{\partial p_i} \frac{\partial H}{\partial y_i}}_{=\{I,H\} \text{ crochet de Poisson de I et H}} = 0$$

2. I = I(x, y, p) est une intégrale première de (SH) si et seulement si

$$\frac{\partial I}{\partial x} + \{I, H\} \equiv 0$$

5

${f 1} Proposition:$

H est une intégrale première si et seulement si L est invariant par rapport à $x\mapsto x+\alpha,$

H est est une intégrale première si et seulement si $I = \int_{x_1}^{x_2} L(x, y, y') dx$ est invariant par rapport à $x \mapsto x + \alpha$, $\forall \alpha \in \mathbb{R}$.

Considérons la transformation

$$\tilde{x} = \phi_0(x, y_1, ..., y_n)$$

$$\tilde{y}_i = \phi_i(x, y_1, ..., y_n)$$

Définition:
$$I=\int_{x_1}^{x_2}L(x,y,y')dx \text{ est invariant par rapport à }\phi \text{ si}$$

$$I=\int_{x_1}^{x_2}L(x,y,y')dx=\int_{x_1}^{x_2}L(\tilde{x},\tilde{y},\tilde{y}')d\tilde{x}$$

On considère à présent une famille de transformation paramétré par α :

$$\tilde{x} = \phi_0(x, y_1, ..., y_n, \alpha), \ \phi_0(x, y_1, ..., y_n, 0) = x$$

 $\tilde{y}_i = \phi_i(x, y_1, ..., y_n, \alpha), \ \phi_i(x, y_1, ..., y_n, 0) = y_i$

⇔ Théorème: Emmy Noether

$$I(y) = \int_{x_1}^{x_2} L(x, y, y') dx$$

alors le système d'Euler-Lagrange (ou de façon équivalente, (SH)) possède une intégrale