CAPÍTULO 7 Circuitos com Amplificadores Operacionais - Parte II

André Prado Procópio - 2022055556

Lucas Ribeiro da Silva - 2022055564

Mariana Pinho Barroso Sousa - 2022055793

7.1 Introdução

Os amplificadores operacionais possuem este nome porque podem ser usados como operadores matemáticos entre duas ou mais entradas. Para isso, o AmpOP deve estar trabalhando na região linear. Entre os tipos básicos de circuitos que podem ser construídos, incluem-se: o amplificador inversor, o somador, o amplificador não-inversor, o seguidor de tensão, o amplificador diferencial, o integrador, o diferenciador, dentre outros. Nesta prática, serão estudados os circuitos inversor e somador inversor.

Na Figura 7.1, apresenta-se o circuito amplificador inversor. A tensão de saída é dada pela equação

$$V_{out} = -\frac{R_f}{R_1} V_{in} \tag{7.1}$$

onde a razão entre o resistor de realimentação e o resistor de entrada é o fator de multiplicação, ou ganho, do amplificador.

Figura 7.1: Amplificador inversor.

Na Figura 7.2 apresenta-se um circuito amplificador somador inversor. A tensão de saída é dada pela seguinte equação:

$$V_{out} = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right),\tag{7.2}$$

onde o ganho de cada entrada é dado pela razão entre os resistores de realimentação e de entrada.

Figura 7.2: Amplificador somador inversor.

Um maior detalhamento sobre o assunto pode ser visto no Capítulo 5 do livro texto, seções 3 e 4.

Pré-relatório: Elabore uma introdução teórica sobre o amplificador operacional (AmpOp) com realimentação.

O AmpOp é um componente eletrônico com alta impedância de entrada, baixa impedância de saída e ganho muito elevado. Embora tenha ganho teórico quase infinito em malha aberta (10⁵-10⁶), raramente é usado assim.

A realimentação negativa é o conceito-chave que transforma o AmpOp em um dispositivo controlável, permitindo:

- Estabilizar o circuito
- Reduzir distorções

- Aumentar largura de banda
- Definir o ganho precisamente através de componentes externos

Dois princípios fundamentais para análise:

- 1. Em operação linear com realimentação negativa, as tensões nos terminais de entrada se igualam (terra virtual)
- 2. Praticamente não há corrente nos terminais de entrada devido à alta impedância

Com diferentes circuitos de realimentação, o AmpOp pode realizar diversas funções como amplificação, filtragem, integração e comparação. A maior vantagem é que o comportamento do circuito passa a depender principalmente dos componentes externos e não das características internas do AmpOp.

Objetivos

1. Utilização do amplificador operacional, na sua região de funcionamento linear, em algumas configurações básicas.

7.2 Materiais e Métodos

7.2.1 Pré-relatório: Memória de Cálculo e Simulação

Parte A - Amplificador inversor

- 1. Construa no LTspice o circuito do amplificador inversor mostrado na Figura 7.1 com ganho A=10. Use $R_f=1,2k\Omega$ e calcule o valor de R_1 . Não se esqueça de inserir as fontes de sinal, de alimentação e o aterramento.
- 2. Faça uma simulação de transferência DC ("DC sweep"), variando a tensão de entrada de -2V a +2V com intervalos de 0,01V. Identifique as regiões de saturação e linear, comparando esta curva com a obtido na prática anterior. (Apresente o gráfico discuta o resultado obtido na seção de "Resultados e Discussão").
- 3. Aplique uma onda senoidal de 1kHz na entrada, com amplitudes de 0,5V_P, 1V_P e 2V_P. Faça simulações de transitório ("Transient") durante 10ms. (Apresente os gráficos e discuta-os na seção de "Resultados e Discussão").

OBS: 1V de pico (1 V_P) é o mesmo que 2V pico a pico (2 V_{PP}), ou seja, correspondem a uma onda que vai de -1V até +1V.

Parte B - Somador inversor

- 1. Construa no LTspice o circuito somador inversor mostrado na Figura 7.2, utilizando os seguintes parâmetros:
 - Ganhos $A_1 = 10$, $A_2 = 2$ e $A_3 = 1$. Utilize $R_f = 1,2k\Omega$ e calcule os valores de R_1 , R_2 e R_3 .
 - Entrada V₁: senoide de 0,5V_P e frequência de 1kHz.
 Entrada V₂: onda quadrada com 0,5V_P, frequência de 1kHz e *Duty Cycle* de 50%.
 - Entrada V₃: tensão contínua de −2V.
- 2. Faça uma simulação de transitório ("Transient") durante 10ms. (Apresente o gráfico e discuta o resultado obtido na seção de "Resultados e Discussão").
- 3. Eleve o valor do ganho A₃ para 5, recalculando o valor de R₃. Refaça a simulação. (Apresente o gráfico e discuta o resultado obtido na seção de "Resultados e Discussão").

7.2.2 Parte prática

Material necessário: Circuito integrado LM741 ou TL071, gerador de sinais, osciloscópio, multímetro, resistores, capacitor e potenciômetro.

Parte A - Amplificador Inversor

1. Monte um amplificador inversor (Figura 7.3) com ganho A=10. Use $R_f=1,2k\Omega$ e calcule R_1 .

Figura 7.3: Amplificador Inversor

- (a) Levante a função de transferência V_{out} x V_{in} deste circuito, usando o mesmo procedimento da prática anterior (ver Figura 6.5).
- (b) Aplique uma onda senoidal de 1kHz na entrada V_{in} . Meça as formas de onda V_{in} e V_{out} com o osciloscópio para V_{in} =0,5 V_P , 1 V_P e 2 V_P . (Apresente os gráficos e discuta-os na seção de "Resultados e Discussão").
- (c) Com $V_{in} = 1V_P$, aumente a frequência da onda para 5kHz, 10kHz e 100kHz, registrando as formas de ondas de V_{in} e V_{out} . (Apresente os gráficos e discuta-os na seção de "Resultados e Discussão").

Parte B - Amplificador Somador

- 1. Monte um amplificador inversor operando como somador, como mostrado na Figura 7.4. Projete o ganho $A_1 = 10$, para a entrada V_1 , e $A_2 = 1$, para a entrada V_2 .
 - (a) Aplique uma senóide com $1V_{PP}$ e frequência de 1kHz na entrada V_1 , e ajuste o potenciômetro até obter um valor de $V_2 = 0V$. Meça as formas de onda de entrada. (Apresente os gráficos e discuta-os na seção de "Resultados e Discussão").

Figura 7.4: Amplificador Somador Inversor

- (b) Ajuste o potenciômetro até o limite da não saturação de V_{out} , para valores de V_2 positivo e negativo. Quais são os valores correspondentes de V_2 ? (Registre os valores de V_2 , apresente os gráficos das formas de onda de V_{in} e V_{out} e discuta-os na seção de "Resultados e Discussão").
- (c) Ajuste o potenciômetro de modo a obter V_2 máximo (15V) e mínimo (-15V) e meça as formas de onda de entrada e saída resultantes. (Apresente os gráficos das formas de onda de V_{in} e V_{out} e discuta-os na seção de "Resultados e Discussão").

7.3 Resultados e Discussão

7.3.1 Simulação

Parte A - Amplificador inversor

Gráfico da Função de Transferência do AmpOP obtida por simulação.

O amplificador inverteu a tensão de entrada com o ganho A=-10, o que era esperado da simulação.

Gráfico de V_{in} e V_{out} para senoide de 1kHz e V_{in} = 0,5 V_{P} obtido por simulação.

O amplificador inverteu a tensão de entrada senoidal com o ganho A=-10, o que era esperado da simulação com V_{out} variando de -5V a 5V a partir de V_{in} com -0,5V e 0,5V.

Gráfico de V_{in} e V_{out} para senoide de 1kHz e V_{in} = 1 V_{P} obtido por simulação.

O amplificador inverteu a tensão de entrada senoidal com o ganho A=-10, o que era esperado da simulação com V_{out} variando de -10V a 10V a partir de V_{in} com -1V e 1V.

Gráfico de V_{in} e V_{out} para senoide de 1kHz e V_{in} = $2V_P$ obtido por simulação.

O amplificador inverteu a tensão de entrada senoidal com o ganho A=-10, o que era esperado da simulação com V_{out} variando de -20V a 20V a partir de V_{in} com -2V e 2V.

Parte B - Somador inversor

O amplificador inverteu cada tensão de entrada com seu respectivo ganho e formato de onda e fez a posterior soma dos valores calculados para cada onda e seu formato, o que era esperado.

Gráfico da simulação 2 do amplificador inversor.

Com o ganho reorganizado para $A_3 = 5$, observa-se um deslocamento da função V_{out} no eixo horizontal, com a tensão V_3 deslocando em 8V positivos a função V_{out} calculada no item anterior.

7.3.2 Parte prática

Parte A - Amplificador inversor

Gráfico de V_{in} e V_{out} para senoide de 1kHz e V_{in} = 0,5 V_{P} obtido por medição.

Gráfico da função obtida em sala de aula para $1V_{pp}$, consistente com a simulação e com o esperado.

Gráfico de V_{in} e V_{out} para senoide de 1kHz e V_{in} = 1 V_{P} obtido por medição.

 $Gráfico\ da\ função\ obtida\ em\ sala\ de\ aula\ para\ 2V_{pp},$ consistente com a simulação e com o esperado.

Gráfico de V_{in} e V_{out} para senoide de 1kHz e V_{in} = 2 V_P obtido por medição.

Gráfico da função obtida em sala de aula para $4V_{pp}$, de certa forma consistente com a simulação e com o esperado, nesse caso, observa-se os limites de saturação de -15V e +15V para os valores da onda V_{out} . Isso acontece porque quando a amplitude de V_{in} aumenta, a tensão de saída V_{out} , resultado da multiplicação de V_{in} pelo ganho A=10 ultrapassa os limites de operação do amplificador operacional na sua região linear. Como o ganho inversor foi calculado para ser igual a 10 a saída ultrapassa o limite da saturação de 15V para valores de 1,5 V_{in} .

Gráfico de V_{in} e V_{out} para 5kHz e V_{in} = 1

Gráfico da função obtida para 5kHz, consistente com o esperado.

Gráfico de V_{in} e V_{out} para 10kHz.

Gráfico da função obtida para 10kHz, consistente com o esperado.

Gráfico de V_{in} e V_{out} para 100kHz.

Neste caso, foram observadas distorções significativas da onda para 100kHz, isto acontece porque o amplificador possui uma taxa de frequência limitada, o que torna seu funcionamento insatisfatório para valores de entrada de altas frequências e consequentemente as distorções visualizadas no formato da onda.

Parte B - Somador inversor

Como a função somada V_2 é nula, seu impacto na saída final V_{out} é o resultado da multiplicação $V_2 \cdot A = 0$, o resultado é, portanto, apenas a inversão com o ganho da função V_{in} .

Gráfico de V_{in} e V_{out} para V_2 configurado para o limite da não-saturação positiva.

Gráfico configurado para o limitada não saturação positiva $V_2 =$ -3,5V

Gráfico de V_{in} e V_{out} para V_2 =-15V.

 $Gr\'{a}fico\ configurado\ para\ V_2 = -15V,\ sendo\ observada\ a\ satura\~{c}\~{a}o\ negativa.$

Gráfico de V_{in} e V_{out} para V_2 configurado para o limite da não-saturação negativa.

Gráfico configurado para o limitada não saturação positiva $V_2 = +6V$

Gráfico de V_{in} e V_{out} para V_2 =+15V.

Gráfico configurado para $V_2 = +15V$, sendo observada a saturação negativa.

1. O que aconteceu quando foram aplicados valores elevados de V_{in} na Parte 1, letra B? Explique.

São observados os limites de saturação de -15V e +15V para os valores da onda $V_{\rm out}$. Isso acontece porque quando a amplitude de $V_{\rm in}$ aumenta, a tensão de saída $V_{\rm out}$, resultado da multiplicação de $V_{\rm in}$ pelo ganho A=10 ultrapassa os limites de operação do amplificador operacional na sua região linear. Como o ganho inversor foi calculado para ser igual a 10 a saída ultrapassa o limite da saturação de 15V para valores de 1,5 $V_{\rm in}$.

2. Explique os resultados obtidos na Parte 1, letra C.

Foram observadas distorções significativas da onda para 100kHz, isto acontece porque o amplificador possui uma taxa de frequência limitada, o que torna seu funcionamento insatisfatório para valores de entrada de altas frequências e consequentemente as distorções visualizadas no formato da onda.

3. Explique os resultados obtidos na Parte 2, letras B e C.

Como os limites de saturação operam em +15V e -15V, quaisquer valores que ultrapassem esses valores serão saturados e aproximados por estes valores, isso pode ser observado pelos gráficos de $V_2 = 15V$ e -15V, onde os limites de saturação ficam bem aparentes ao serem adicionados a onda de amplitude 10V configurada por $V_{\rm in}$ e o seu ganho. Os valores de saturação de V_2 para que $V_{\rm out}$ foram medidos para os gráficos de limite de saturação e configuram um limite entre -3,5 < V_2 < 6.

7.4 Pinagem dos Amplificadores Operacionais 741 e 071

Figura 7.5: Pinagem dos Amplificadores Operacionais LM741 e TL071.