DSP - MAC0317/5920 - Primeira lista de exercícios

Exercício 1.12: Verifique que o conjunto $L^2(\mathbb{N})$ do Exemplo 1.5 com as respectivas operações é um espaço vetorial. Explique também por que $L^2(\mathbb{N})$ é um sub-espaço de $L^\infty(\mathbb{N})$. Dica: use a desigualdade $(x-y)^2 \geq 0$ para provar que $(x+y)^2 \leq 2x^2 + 2y^2, \ \forall x,y$.

Exercício 1.13: o objetivo deste exercício é provar a Proposição 1.1 para um espaço vetorial abstrato V.

- (a) Mostre que o vetor $\mathbf{0} \in V$ é único. Para fazê-lo, suponha que existam dois vetores $\mathbf{0}_a \in V$ e $\mathbf{0}_b \in V$, que satisfazem o axioma do vetor nulo, e mostre que $\mathbf{0}_a = \mathbf{0}_b$. Dica: considere o vetor $\mathbf{0}_a + \mathbf{0}_b$.
- (b) Abaixo está uma demostração de $0\mathbf{u} = \mathbf{0}$ em qualquer espaço vetorial. Nesta demonstração, todos os escalares, inclusive o 0, estão escritos sem negrito, e $-\mathbf{u}$ representa o inverso aditivo de \mathbf{u} , logo $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$. Quais das propriedades listadas na Proposição 1.4.1 justificam cada passo?

$$(1+0)\mathbf{u} = 1\mathbf{u} + 0\mathbf{u}$$

 $1\mathbf{u} = \mathbf{u} + 0\mathbf{u}$
 $\mathbf{u} = \mathbf{u} + 0\mathbf{u}$
 $\mathbf{u} + (-\mathbf{u}) = (\mathbf{u} + (-\mathbf{u})) + 0\mathbf{u}$
 $\mathbf{0} = \mathbf{0} + 0\mathbf{u}$
 $\mathbf{0} = 0\mathbf{u}$.

(c) Mostre que se $\mathbf{u} + \mathbf{v} = \mathbf{0}$, então $\mathbf{v} = (-1)\mathbf{u}$ (Isto mostra que o inverso aditivo de $\mathbf{u} \in (-1)\mathbf{u}$).

Exercício 1.18: Mostre que é possível fatorar a forma de onda bidimensional básica $\mathcal{E}_{m,n,k,l}$ como:

$$\mathcal{E}_{m,n,k,l} = \mathbf{E}_{m,k} \mathbf{E}_{n,l}^T,$$

onde $\mathbf{E}_{m,k}$ e $\mathbf{E}_{n,l}$ são as formas de onda unidimensionais discretas básicas definidas na Equação 1.22, como vetores coluna (lembre-se que o sobrescrito T denota a operação de transposição de vetores e matrizes).

Exercício 1.19: Considere a forma de onda exponencial

$$f(x,y) = e^{2\pi i(px+qy)}$$

como descrita na Seção 1.5.2 ($p,q \in \mathbb{R}$ não precisam ser inteiros). A Figura 1.7 nesta seção indica que a forma de onda tem uma "direção" e um "comprimento de onda" naturais. O objetivo deste problema é compreender em que sentido isso é verdade, e em quanto esses valores dependem de p e q.

Defina $\mathbf{v} = (p,q)$, assim \mathbf{v} é um vetor bidimensional. Considere a reta L que passa por um ponto arbitrário $\mathbf{x}_0 = (x_0, y_0)$ na direção de um vetor unitário $\mathbf{u} = (u_1, u_2)$ (logo, $\|\mathbf{u}\| = 1$). A reta L pode ser parametrizada em função de \mathbf{x}_0 e \mathbf{u} como

$$x(t) = x_0 + tu_1, \quad y(t) = y_0 + tu_2$$

(a) mostre que a função g(t) = f(x(t), y(t)), com x(t) e y(t) como acima (ou seja, f avaliada sobre a reta L) é dada por

$$g(t) = Ae^{2\pi i \|\mathbf{v}\| \cos(\theta)t}$$

onde A é um número complexo que não depende de t, e θ é o ângulo entre \mathbf{u} e \mathbf{v} . Dica: Use a Equação 1.30.

- (b) Mostre que se L é ortogonal a \mathbf{v} então a função g (e também f) se mantém constante em L.
- (c) Encontre a frequência (oscilações por unidade de distância percorrida) de g como uma função de t, em termos de p,q e θ .
- (d) Encontre o valor de θ que maximiza a frequência em que g(t) oscila. Este θ dita a direção em que que deve-se mover, relativo a \mathbf{v} , para que f oscile o mais rápido possível. Como este valor de θ se compara com o valor de θ na questão (b)? Qual é a maior frequência de oscilação em termos de p e q?
- (e) Encontre a distância "pico-a-pico", ou o comprimento de onda, da forma de onda f(x,y), em termos de $p \in q$.

Exercício 1.21: Para uma forma de onda unidimensional pura de N amostras, mostre a relação de aliasing

$$\mathbf{E}_{N-k} = \overline{\mathbf{E}_k}$$

Exercício 1.22: Encontre todas as relações de *aliasing* que você conseguir (incluindo *aliasing* conjugado) para $\mathcal{E}_{m,n,k,l}$. Isto pode ser feito diretamente, ou utilizando a equação 1.26 e as relações de *aliasing* para $\mathbf{E}_{N,k}$.