

Universidade Federal do Ceará – UFCDepartamento de Computação – DC

Introdução a Ciência da Computação Aula 04

Prof. Maurício Moreira Neto maumneto@gmail.com

Lógica Digital Sistema Binário de Numeração

 Ramo do conhecimento que trata da construção de circuitos elétricos capazes de reproduzir o comportamento de uma expressão desenvolvida a partir de argumentos da lógica (instruções lógicas)

- Motivação:
 - Interruptor elétrico, usado para acender ou apagar luzes
- Esses dispositivos, como o nome indica, servem para interromper ou liberar a passagem de corrente elétrica em um circuito
- Tais dispositivos são caracterizados por 2 estados:
 - "ligado" ou "desligado"
- Pelo fato do conjunto de estados possíveis de um dispositivo desse tipo conter somente 2 elementos, dizemos trata-se de um dispositivo binário

- Dispositivo binário
 - Qualquer objeto físico que pode encontrar-se em um de dois estados distintos possíveis
- Perguntas comuns:
 - Quais as maneiras que uma lâmpada elétrica pode ser vista por uma pessoa ?
 - Se uma moeda "honesta" foi atirada para o alto, o que será mostrado, depois que ela cair ?

Dispositivo Binário	Situações Possíveis
Interruptor elétrico	{ligado, desligado}
Moeda	{cara, coroa}
Lâmpada elétrica	{acesa, apagada}
Aluno de "Computação Aplicada"	{aprovado, reprovado}
Notícia	{verdadeira, falsa}

- Ambiente do computador
 - Inúmeras aplicações para o significado de dispositivo binário
- Chip
 - Pequena pastilha de silício, na qual está montado um circuito eletrônico digital
 - Circuito eletrônico digital
 - Conjunto de "chaves eletrônicas" interligadas de acordo com algum projeto

- Chave Eletrônica
 - Dispositivo que pode permitir ou impedir a passagem de corrente elétrica num condutor, sob o controle de estímulos de corrente elétrica
 - O comportamento de uma "chave eletrônica" é de natureza binária, visto que ela pode encontrar-se apenas em dois estados possíveis:
 - Ligada ou desligada

• Bit

- Cada um dos dois estados possíveis que pode assumir um dispositivo binário
- A unidade de informação binária usada pelo computador é o bit
 - Simplificação para dígito binário
 - Blnary digiT
 - Menor unidade de informação que pode ser armazenada ou transmitida
 - Este tem atribuições lógicas 0 ou 1

- Um único bit não consegue representar todas as letras, números e caracteres especiais com os quais o computador trabalha
- É necessário agrupá-los e cada grupo é chamado de byte

Byte

 Usualmente um grupo (conjunto) de 8 bits e equivale a um caractere

- Sistemas numéricos
 - Sistema de numeração
 - Conjunto de símbolos, palavras e regras que nos permite escrever e dar nomes a todos os números

```
-==\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fi
```


- Sistemas numéricos
 - Conceitos básicos
 - Base de um sistema de numeração
 - Quantidade de símbolos utilizada para representar as quantidades desse sistema
 - Dada uma base N qualquer, são necessários N símbolos diferentes para representar um número
 - Ex:

» Sistema decimal – 0 a 9

- Sistemas numéricos
 - Conceitos básicos
 - Posição
 - São numeradas da esquerda para a direita iniciando em zero

- Valor da Posição
 - Valor intrínseco do símbolo vezes a base elevado à posição
 - Ex:

$$30 = 3 \times 10^{1}$$

- Sistemas Numéricos
 - Sistema Decimal
 - Sistema Binário
 - Sistema Octal
 - Sistema Hexadecimal

- Sistema de Numeração Decimal (base 10)
 - Os símbolos ou dígitos do sistema de base decimal são os que usamos atualmente:
 - 0,1,2,3,4,5,6,7,8,9
 - Ex: número 1967

1000 +	1 x 1000 +	
900 +	9 x 100 +	4067 4 V 403 + 0 V 402 + C V 401 + 7 V 400
60 +	6 x 10 +	$1967 = 1 \times 10^3 + 9 \times 10^2 + 6 \times 10^1 + 7 \times 10^0$
7	7 x 1	

- Sistema de Numeração Binário (base 2)
 - Sistema mais natural de todos
 - Utiliza somente dois dígitos (0 e 1)
 - Exemplo:
 - 1968 em binário é 111101100000
 - 23 em binário é:
 - **10111=**
 - $-1 \times 2^4 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
 - -16+4+2+1=23

Sistema de Numeração Binário (base 2)

Conversão da base 10 para a base 2: Divide-se o número decimal sucessivamente por 2.

- Sistema de Numeração Octal (base 8)
 - Utiliza 8 dígitos:
 - 0,1,2,3,4,5,6,7

- Sistema de Numeração Hexadecimal
 - Base 16
 - Utiliza 16 dígitos:
 - 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

- Generalização:
 - De qualquer sistema de base B para decimal
 - XY = X * Bposição de x + Y * Bposição de y
 - De decimal para qualquer sistema de base B
 - Divisões sucessivas por B, até atingir o quociente menor que B
 - O quociente da última divisão representa o dígito mais à esquerda do número da base B
 - O resto da próxima divisão para o próximo dígito, e assim por diante

Calculador	a			
Editar Exibir A	juda			
				397.
Backs	pace	CE		С
MC 7	8	9	/	sqrt
MR 4	5	6	×	%
MS 1	2	3	·	1/x
M+ 0	+/-		+	=

Hexadecimal	Octal	Binário	Decimal
0	0	0	0
1	1	1	1
2	2	10	2
3	3	11	3
4	4	100	4
5	5	101	5
6	6	110	6
7	7	111	7
8	10	1000	8
9	11	1001	9
Α	12	1010	10
В	13	1011	11
С	14	1100	12
D	15	1101	13
E.	16	1110	14
F	17	1111	15

- Exercício 1 Converta os seguintes números da base decimal para a base binária:
 - -25
 - -40
 - -75
- Exercício 2 Converta os seguintes números da base binária para a base decimal:
 - -11001
 - -101000
 - -1001011

Em Lógica um conceito importante é o de "Proposição"

Você sabe o que é uma PROPOSIÇÃO?

- Proposição: é um enunciado verbal, ao qual deve ser atribuído, sem ambiguidade, um valor lógico verdadeiro (V) ou falso (F).
 - Exemplos de proposições:
 - Fulano de Tal é Professor (V)
 - 3 + 5 = 10 (F)
 - 5 < 8 (V)
 - Contra-exemplos de Proposições:
 - Onde você vai?
 - 3 + 5
 - Os estudantes jogam vôlei. (quais ?)

- Lógica Proposicional
 - Exemplo:
 - O quarto está fechado
 - Meu livro está no quarto
 - Proposições combinadas:
 - O quarto está fechado E meu livro está no quarto
 - O quarto está fechado OU meu livro está no quarto

- Lógica Proposicional
 - Pode-se pensar que a proposição levar guardachuva como um resultado que deve ser calculado pelo combinação dos resultados das proposições chovendo e previsão do tempo:

- Lógica Proposicional
 - Pode-se pensar que a proposição Sócrates é mortal como um resultado que deve ser calculado pelo combinação dos resultados das proposições todo homem é mortal e Sócrates é homem:

- Lógica Proposicional
 - Desde que as proposições possam assumir apenas dois valores, pode-se expressar todas as saídas possíveis através de uma tabela:

CHUVA	PREVISÃO	GUARDA- CHUVA
VERDADEIRO	VERDADEIRO	VERDADEIRO
VERDADEIRO	FALSO	VERDADEIRO
FALSO	VERDADEIRO	VERDADEIRO
FALSO	FALSO	FALSO

OU

Lógica Proposicional (Continuação)

CHUVA	PREVISÃO	GUARDA- CHUVA
VERDADEIRO	VERDADEIRO	VERDADEIRO
VERDADEIRO	FALSO	FALSO
FALSO	VERDADEIRO	FALSO
FALSO	FALSO	FALSO

- Lógica Proposicional
 - A lógica trata de formas de argumentos consistindo de letras sentenciais combinadas com as expressões:

Estas expressões são chamadas de operadores ou conectivos lógicos

- Operações Lógicas: são usadas para formar novas proposições a partir de proposições existentes.
 - Considerando p e q duas proposições genéricas, pode-se aplicar as seguintes operações lógicas básicas sobre elas

Operação	Símbolo	Significado
Negação	~	Não
Conjunção	^	E
Disjunção	V	OU

- Definindo a prioridade:
 - Usar parênteses Ex:((p v q)^(~q))

- Exemplos de aplicação das operações lógica
 - Considere:
 - p = 7 é primo = (V)
 - q = 4 é impar = (F)
 - Então:
 - 4 NÃO é impar = ~q = (~F) = (V)
 - 7 NÃO é primo = ~p = (~V) = (F)
 - 7 é primo E 4 NÃO é impar = p ^ ~q = (V ^ (~F)) = (V ^ V) = (V)
 - 7 é primo E 4 é impar = p ^ q = (V ^ F) = (F)
 - 4 é impar E 7 é primo = q ^ p = (F ^ V) = (F)
 - 4 é impar E 7 NÃO é primo = q ^ ~p = (F ^ (~V)) = (F ^ F) = (F)

- Exemplos de aplicação das operações lógica (Cont.)
 - Considere:
 - p = 7 é primo = (V)
 - q = 4 é impar = (F)
 - Então:
 - 7 é primo OU 4 NÃO é impar = p v ~q = (V v (~F)) = (V v V) =
 (V)
 - 7 é primo OU 4 é impar = p v q = (V v F) = (V)
 - 4 é impar OU 7 é primo = q v p = (F v V) = (V)
 - 4 é impar OU 7 NÃO é primo = q v ~p = (F v (~V)) = (F v F) =
 (F)

- Exemplos de aplicação das operações lógica
 - Resumindo:

р	q	~p	p ^ q	pvq
V	>	F	V	V
٧	F	F	F	V
F	٧	V	F	V
F	F	V	F	F

- Ou seja:
 - Não (~) troca o valor lógico. Se é F passa a ser V e vice-versa
 - E (^) só tem valor V quando as duas proposições forem V, basta uma proposição ser F para o resultado ser F
 - OU (v) só tem valor F quando as duas proposições forem F, basta uma proposição ser V para o resultado ser V

- Exercício 3 Considerando p = V e q = F, resolva as seguintes expressões lógicas
 - − ~p
 - ~q
 - p ^ q
 - -pvq
 - (~p) ^ q
 - $(^p) v q$
 - − p ^ (~q)
 - − p v (~q)
 - (~p) ^ (~q)
 - (~p) v (~q)

- Álgebra de Boole
 - Uma variável booleana só pode assumir apenas um dos valores possíveis:
 - 0 e 1
 - Uma ou mais variáveis e operadores podem ser combinados formando uma função lógica
 - Exemplo:
 - ((A e B) ou C)

- Álgebra de Boole
 - Utilizada em engenharia elétrica
 - 0 e 1 representam os dois diferentes estados de um bit em um circuito digital, tipicamente alta e baixa voltagem

Os circuitos são descritos por expressões contendo variáveis

- Álgebra de Boole
 - Tabela Verdade
 - Resultados de uma função lógica
 - Podem ser expressos numa tabela relacionando todas as combinações possíveis dos valores que suas variáveis podem assumir
 - Relaciona seus resultados correspondentes

Α	В	AND	OR
0	0	0	0
0	1	0	I.
1	0	0	L
1	10	1	T

Função

Lógica

Álgebra de Boole

Lista das combinações possíveis dos estados das variáveis de entrada

Α	В	Z=f(A, B)
0	0	0
0	1	1
1	0	1
1	1	1

Variáveis

Resultados da função lógica para cada combinação dos estados de entrada

Na **tabela-verdade** acima a função lógica **Z** possui duas variáveis:

A e **B**

E a função lógica:

$$Z = f(A, B) = A + B$$

- Álgebra de Boole
 - Porta Lógica OU (OR)
 - Necessita de duas ou mais entradas
 - Operador: + F = A + B
 - Símbolo

Tabela Verdade

Α	В	F=(A+B)
0	0	0
0	1	1
1	0	1
1	1	1

- Álgebra de Boole
 - Porta Lógica E (AND)
 - Necessita de duas ou mais entradas
 - Operador: $F = A \cdot B$

Tabela Verdade

A	В	F=(A.B)
0	0	0
0	1	0
1	0	0
1	1	1

- Álgebra de Boole
 - Porta Lógica NÃO (NOT)
 - Necessita de somente uma entrada (Operação unária)
 - Pode ser combinada aos operadores AND e OR
 - Operador: A'
 - Símbolo

Tabela Verdade

A	A'
0	1
1	0

Obrigado!

maumneto@gmail.com