Postavka 4: Donja granica za asinhroni LE u prstenima

DISTRIBUIRANI ALGORITMI I SISTEMI

Autor izvorne prezentacije: Prof. Jennifer Welch

Donja granica za poruke za asinhrone LE algoritme

- \square $\Omega(n \log n)$ donja granica za bilo koji LE algoritam A koji
 - (1) radi u asinhronim prstenima potreban uslov da bi važio ovaj rezultat
 - (2) je uniforman (ne koristi veličinu prstena) potreban uslov za ovaj konkretan dokaz
 - (3) izabira najveći (max) id bez gubitka opštosti
 - (4) garantuje da će svi saznati id pobednika bez gubitka opštosti

Iskaz ključnog rezultata

- Teorema (6.5): Za svako n koje je stepen od 2 i svaki skup od n id-a, postoji prsten koji koristi te id-ove, i na kom bilo koji uniformni asinhroni LE algoritam ima raspored u kom se šalje barem M(n) poruka, gde je
 - \square M(2) = 1 i
 - $\square M(n) = 2M(n/2) + (n/2 1)/2, n > 2.$
- \square Zašto ovo daje rezultat $\Omega(n \log n)$?
 - $\square \text{ jer je } M(n) = \Theta(n \log n) \qquad \text{(po Master teoremi, 2-gi slučaj)}$

Diskusija ovog iskaza

- □ stepen od 2: može se adaptirati za druge slučajeve
- "raspored": sekvenca događaja (i samo događaja)
 izdvojena iz izvršenja, odbacivanjem konfiguracija
 - konfiguracija daje broj procesora
 - ali ćemo želeti da koristimo istu sekvencu događaja u prstenima različitih veličina
 - oslanja se na pretpost. o uniformnom algoritmu (veličina prstena je nepoznata)

ldeja o asinhronoj donjoj granici

- Donja granica za broj poruka, M(n), je opisana sa ovom rekurencijom:
 - \square M(n) = 2 M(n/2) + (n/2 1)/2
- Dokazati granicu pomoću indukcije
- Ako se veličina prstena udvostručava u svakom koraku
 - □ tada je indukcija na eksponentu od 2
- Konstruisati skupo izvršenje na većem prstenu polazeći od dva skupa izvršenja na manjim prstenima (2*M(n/2)) i onda izazivanje slanja oko n/4 dodatnih poruka

Otvoreni rasporedi

- Da bi napravili indukciju, skupa izvršenja moraju imati rasporede koji su "otvoreni"
- Definicija otvorenog rasporeda: Postoji neki luk po kom ni jedna poruka nije isporučena
- Luk po kom ni jedna poruka nije isporučena se naziva otvoren luk

Dokaz osnovnog slučaja

 \square Pretpostavimo n=2

- \square Pretpost. x > y
- Onda p₀ pobeđuje i p₁ mora doznati da je id lidera x
- Zato p₀ mora poslati barem jednu poruku ka p₁
- Skratiti izvršenje neposredno nakon što je prva poruka poslata (pre nego je isporučena) da bi se dobio željeni otvoren raspored sa M(2) = 1 por.

Dokaz induktivnog koraka

- \square Pretpostavimo n ≥ 4
- \square Podelimo S (skup id-a) u 2 polovine, S_1 i S_2
- \square Po induktivnoj hipotezi, postoje 2 prstena, R_1 i R_2 :

Primena induktivne hipoteze

 R_1 ima otvoren raspored α_1 u kom je poslato barem M(n/2) poruka i $e_1 = (p_1,q_1)$ je otvoreni luk

 R_2 ima otvoren raspored α_2 u kom je poslato barem M(n/2) poruka i $e_2 = (p_2, q_2)$ je otvoren luk

Spajanje dva prstena

- □ Zalepiti R_1 i R_2 preko njihovih otvorenih lukova da bi se napravio veliki prsten R.
- □ Zatim, napraviti izvršenje za R sa M(n) poruka...

Spajanje dva izvršenja

- Izvrši \(\alpha_1\): proc. na levo ne vide razliku kada su u \(R_1\) i kada
- lzvrši α_2 : proc. na desno ne vide razliku kada su u R_2 i kada su u R. Zato se ponašaju isto i šalju M(n/2) por. u R

Generisanje dodatnih poruka

- \square Sad imamo 2*M(n/2) poruka
- □ Kako se dobija (n/2 1)/2 dodatnih poruka?
- □ **Slučaj 1**: Bez deblokiranja (isporuke poruka na) e_p ili e_q , postoji proširenje $\alpha_1 \alpha_2$ na R u kom se šalje (n/2-1)/2 dodatnih poruka
- Onda je to željeni otvoreni raspored

Generisanje dodatnih poruka

- □ **Slučaj 2**: Bez deblokiranja (isporuke poruka na) e_p ili e_q , svako izvršenje $\alpha_1 \alpha_2$ na R vodi do **mirnog** stanja:
 - ni jedan proc. neće slati sledeću poruku ukoliko ne primi neku poruku
 - lacktriangle nema poruka u tranzitu osim na \mathbf{e}_p i \mathbf{e}_q
- \square Neka je α_3 bilo koje proširenje α_1 α_2 koje vodi do mirnog stanja bez deblokiranja $\mathbf{e_p}$ ili $\mathbf{e_q}$

Dobijanje n/2 dodatnih poruka

- \square Neka je ${\alpha_4}''$ proširenje ${\alpha_1}\,{\alpha_2}\,{\alpha_3}$ koje vodi do završetka
- \square Tvrdnja: Barem n/2 poruka se šalje u α_4 ". Zašto?
 - \square Svaki od n/2 proc. u polovini R, koja ne sadrži lidera, mora primiti por. da bi doznao id lidera
 - Do α_4'' nije bilo nikakve komunikacije između dve polovine R (setimo se otvorenih lukova)

- Setimo se, hoćemo da iskoristimo ovaj prsten R i ova skupa izvršenja kao gradivne blokove za sledeći veći stepen od 2, u kom ćemo zalepiti 2 otvorena izvršenja
- Zato moramo naći skupo otvoreno izvršenje (sa barem jednim lukom preko kog ni jedna por. nije isporučena)
- $\square \alpha_1 \alpha_2 \alpha_3 \alpha_4$ " ne mora biti otvoren
- □ Potrebno je još malo posla...

- □ Kako se isporučuju poruke po e_p i e_q u α_4 ", proc. "se bude" iz mirnog stanja i šalju još poruka
- □ Skupovi probuđenih proc. (P i Q) se šire prema spolja oko e_p i e_q :

- \square Neka je $\alpha_{\scriptscriptstyle A}$ prefiks od $\alpha_{\scriptscriptstyle A}$ nakon slanja n/2-1 poruka
- \square P i Q se ne mogu sresti u α_4 , je se u α_4 šalje manje od n/2 por.
- Predpostavimo da većinu ovih poruka šalju procesori u P (barem (n/2 1)/2 poruka)
- lacktriangledown Neka je $lpha_{4}$ deo sekvence $lpha_{4}$ koji se sastoji samo od događaja u koje su uključeni procesori u P

- □ Prilikom izvršenja $\alpha_1\alpha_2\alpha_3\alpha_4$, proc. u P se ponašaju isto kao prilikom izvršenja $\alpha_1\alpha_2\alpha_3\alpha_4$ ′. Zašto?
- \square Jedina razlika između α_{4} i α_{4}' je da u α_{4} nema događaja u kojim učestvuju proc. u Q
- \square Ali pošto u α_4 nema komunikacije između proc. u P i proc. u Q, proc. u P ne vide razliku

Zaokruživanje

- \blacksquare Razmotrimo raspored $\alpha_1 \alpha_2 \alpha_3 \alpha_4$
- □ Tokom α_1 , šalje se M(n/2) por., ni jedna nije isporučena preko e_p ili e_q
- □ Tokom α_2 , šalje se M(n/2) por., ni jedna nije isporučena preko e_p ili e_q
- □ Tokom α_3 , isporučene su sve por. osim onih preko e_p ili e_q ; moguće je slanje još nekih por.
- □ Tokom α_4 , šalje se (n/2-1)/2 por., ni jedna nije isporučena preko e_q (zašto??)
- Ovo je naš željeni raspored za indukciju!