Foundation of Cryptography, Fall 2011

Iftach Haitner

Problem set 1. Exercises 1-3

November 9, 2011 Due: Nov 20

- Send your solutions in a PDF format to foc.exc@gmail.com.
- Solution for each exercise should be emailed *separately*, title: Exe # (e.g., 3), Id (Israel id) (write the same details in the body of the attached file).
- Please don't write your name in the email/attached file.
- Write clearly and shortly using sub claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- The notation we use appear in the first lecture (www.cs.tau.ac.il/~iftachh/Courses/FOC/Fall11/Introduction_admin.pdf), section "Notation"

Exe 1 (basic probability): Let P and Q be distributions over a finite set \mathcal{U} .

- a. (2 points) Prove that $SD(P,Q) = \max_{S \subseteq \mathcal{U}} (P(S) Q(S))$ (recall that $SD(P,Q) := \frac{1}{2} \sum_{u \in \mathcal{U}} |P(u) Q(u)|)$).
- b. (3 points) Prove that $SD(P^2, Q^2) \leq 2 \cdot SD(P, Q)$ (see "Notation" in the first class slides for the definition of P^2, Q^2).

Let $Q = \{Q_n\}_{n \in \mathbb{N}}$, $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ and $\mathcal{R} = \{R_n\}_{n \in \mathbb{N}}$ be distribution ensembles.

- c. (2 points) Given that $\mathcal{Q} \stackrel{c}{\approx} \mathcal{P}$ (i.e., \mathcal{Q} is computationally indistinguishable from \mathcal{P}) and $\mathcal{P} \stackrel{c}{\approx} \mathcal{R}$, prove that $\mathcal{Q} \stackrel{c}{\approx} \mathcal{R}$.
- d. (3 points) Give an example for ensemble \mathcal{Q} and \mathcal{P} such that: (1) $\operatorname{Supp}(Q_n) = \operatorname{Supp}(P_n)$ for every $n \in \mathbb{N}$, and (2) $\operatorname{SD}(Q_n, P_n) = 1 \operatorname{neg}(n)$ (i.e., for every $p \in \operatorname{poly}$, exists $n' \in \mathbb{N}$ with $\operatorname{SD}(Q_n, P_n) > 1 \frac{1}{p(n)}$ for every n > n')

Exe 2 (one way functions):

a.(3 points) Give a simple example of a function f such that :

- Given y, it is easy to find $x \in f^{-1}(y)$ if such exists.
- Given f(x), it is hard to find x: for any algorithm A, it holds that $\Pr[A(1^n, f(U_n)) = U_n] = \text{neg}(n)$.

Is you function a one-way functions?

b.(4 points) Prove that OWFs cannot have polynomially-bounded cycles.

Namely, for every function $f: \{0,1\}^* \mapsto \{0,1\}^*$ and $x \in \{0,1\}^*$, define $\operatorname{cyc}_f(x)$ as the smallest *positive* integer i with $f^i(x) = x$, where $f^i(x) = f(f^{i-1}(x))$ and $f^0(x) = x$. Prove that if f is (even weakly) one-way, then for every $p \in \operatorname{poly}$ and large enough n (i.e., for every n > n'), it holds that $\operatorname{E}[\operatorname{cyc}_f(U_n)] > p(n)$ (i.e., the expected value of $\operatorname{cyc}_f(x)$ over $x \leftarrow \{0,1\}^n$ is large).

Hint: Recall Markov inequality: for any non-negative random variable X and a real number r > 0,

$$\Pr[X \ge r \cdot \mathrm{E}(X)] \le \frac{1}{r}.$$

b.(3 points) Let f be an efficiently computable function such that $E[\operatorname{cyc}_f(U_n)]$ is not polynomially-bounded. Is it necessary that f is (weakly) one-way? What if $\min_{x \in \{0,1\}^n}(\operatorname{cyc}_f(x))$ is not polynomially-bounded?

Exe 3 (efficient length preserving one way functions):

a.(3 points)

Definition 1 (pairwise independent hash functions). A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ (i.e., each $h \in \mathcal{H}$ is from $\{0,1\}^n$ to $\{0,1\}^m$) is pairwise independent, if for every $x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Let \mathcal{H} be the function family from $\{0,1\}^n$ to $\{0,1\}^m$, naturally defined by the set $\{(A,\bar{b}) \in \mathcal{F}_2^{m \times n} \times \mathcal{F}_2^m\}$. That is, the members of \mathcal{H} are all pairs of Boolean matrices of dimension $m \times n$ and Boolean vectors of dimension m, and $(A,b)(x) := Ax + b \mod 2$. Prove that \mathcal{H} is a pairwise independent family.

b.(7 points).

Definition 2 (efficient function family). An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n\in\mathbb{N}}$ is efficient, if the following hold:

Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. There exists a polynomial-time algorithm that given $x \in \{0,1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Let $f: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ be a OWF, and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient ensemble of function families, where each \mathcal{H}_n is a pairwise independent family form $\{0,1\}^{\ell(n)}$ to $\{0,1\}^{2n}$.

Prove that $g: \{0,1\}^{2n} \times \mathcal{H}_n \mapsto \{0,1\}^{2n} \times \mathcal{H}_n$, defined as $g(x,h) = (h(f(x_{1,\dots,n})),h)$, is a length-preserving OWF.

Hint: Given an "inverter" A for g, consider the following inverter for f:

Algorithm 3. (M)

Input: $1^n, y \in \{0, 1\}^{\ell(n)}$.

Operation:

- (a) Choose $h \leftarrow \mathcal{H}_n$.
- (b) Set $(x,h) = A(1^n, h(y), h)$.
- (c) Output $x_{1,\dots,n}$.

¹I.e., here we view \mathcal{H}_n as a set of strings – the function descriptions.