16.6 Quaternion Interpolation *

We are now going to derive a formula for interpolating between two quaternions. This formula is due to Ken Shoemake, once a Penn student and my TA! Since rotations in SO(3) can be defined by quaternions, this has applications to computer graphics, robotics, and computer vision.

First we observe that multiplication of quaternions can be expressed in terms of the inner product and the cross-product in \mathbb{R}^3 . Indeed, if $q_1 = [a, u_1]$ and $q_2 = [a_2, u_2]$, it can be verified that

$$q_1q_2 = [a_1, u_1][a_2, u_2] = [a_1a_2 - u_1 \cdot u_2, \ a_1u_2 + a_2u_1 + u_1 \times u_2]. \tag{*_{mult}}$$

We will also need the identity

$$u \times (u \times v) = (u \cdot v)u - (u \cdot u)v.$$

Given a quaternion q expressed as $q = [\cos \theta, \sin \theta u]$, where u is a unit vector, we can interpolate between I and q by finding the logs of I and q, interpolating in $\mathfrak{su}(2)$, and then exponentiating. We have

$$A = \log(I) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \log(q) = \theta \begin{pmatrix} iu_1 & u_2 + iu_3 \\ -u_2 + iu_3 & -iu_1 \end{pmatrix},$$

and so $q=e^B$. Since $\mathbf{SU}(2)$ is a compact Lie group and since the inner product on $\mathfrak{su}(2)$ given by

$$\langle X, Y \rangle = \operatorname{tr}(X^{\top}Y)$$

is Ad(SU(2))-invariant, it induces a biinvariant Riemannian metric on SU(2), and the curve

$$\lambda\mapsto e^{\lambda B},\quad \lambda\in[0,1]$$

is a geodesic from I to q in SU(2). We write $q^{\lambda} = e^{\lambda B}$. Given two quaternions q_1 and q_2 , because the metric is left invariant, the curve

$$\lambda \mapsto Z(\lambda) = q_1(q_1^{-1}q_2)^{\lambda}, \quad \lambda \in [0, 1]$$

is a geodesic from q_1 to q_2 . Remarkably, there is a closed-form formula for the interpolant $Z(\lambda)$.

Say $q_1 = [\cos \theta, \sin \theta u]$ and $q_2 = [\cos \varphi, \sin \varphi v]$, and assume that $q_1 \neq q_2$ and $q_1 \neq -q_2$. First, we compute $q^{-1}q_2$. Since $q^{-1} = [\cos \theta, -\sin \theta u]$, we have

$$q^{-1}q_2 = [\cos\theta\cos\varphi + \sin\theta\sin\varphi(u\cdot v), -\sin\theta\cos\varphi u + \cos\theta\sin\varphi v - \sin\theta\sin\varphi(u\times v)].$$

Define Ω by

$$\cos \Omega = \cos \theta \cos \varphi + \sin \theta \sin \varphi (u \cdot v). \tag{*}_{\Omega}$$