

Take the simplest of the integrals
So that it becomes easier
to solve for pand q.

Exil Solve $2zx - bx^2 - 2qxy + bq = 0$ Sol: Here $f = 2zx - bx^2 - 2qxy + bq = 0$ Charpits $A \cdot E \cdot \Rightarrow \frac{db}{\partial x} = \frac{dq}{\partial x} = \frac{dz}{\partial x} = \frac{dx}{\partial x} = \frac{dy}{\partial x} = \frac{dF}{\partial x}$ So: $\frac{df}{dx} = 2z - 2bx - 2qy$, $\frac{df}{dx} = -2qx$, $\frac{df}{dx} = 2x$, $\frac{df}{dx} = -x^2 + q$, $\frac{df}{dx} = -2xy + b$ Put these values in $E_1 \cdot 2$, We get: $\frac{dz}{dx} = \frac{dz}{dx} = \frac{dz}{dx}$

Put q= c in Eq. D (we get
$$2zx - bz^2 = acxy + bc = 0$$
)

$$\Rightarrow \frac{b}{b} = \frac{ax(z-c,y)}{x^2-c_1}$$

$$\Rightarrow dz = \frac{ax(z-c,y)}{x^2-c_1} dx + c_1 dy$$

or

$$\frac{dz-c_1dy}{z-c_1} = \frac{ax}{x^2-c_1} dx$$

$$\Rightarrow \frac{dz-c_1dy}{z-c_1} = \frac{ax}{x^2-c_1} dx$$

$$\Rightarrow \log(z-c_1y) = \log(x^2-c_1) + \log c_2$$

$$\Rightarrow 2-c_1y = c_2(x^2-c_1)$$

or

$$z = c_1y + c_2(x^2-c_1)$$

Ex.
$$D$$
 Solve $(b^2+q^2)y=q^2$

Here $f=(b^2+q^2)y-q^2=0$

Then charbit's $-4 \cdot E := \frac{dp}{dp} = \frac{dq}{dp} = \frac{dq$

$$\Rightarrow \frac{p^{2} + q^{2} = c}{2}$$
or $p^{2} + q^{2} = ac$
or $p^{2} + q^{2} = a^{2}$

$$equation of $p^{2} + q^{2} = a^{2}$

$$equa$$