LISTA 13

- 1) Să se arate că $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $f((x_1, x_2), (y_1, y_2)) = 2x_1y_1 + 3x_1y_2 + 4x_2y_1 x_2y_2$ este o formă biliniară și să se determine matricea lui f în baza canonică și în baza ((1, 1), (1, -1)).
- 2) Știind că $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ este forma biliniară care are în baza canonică matricea $A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ să se determine $f((x_1, x_2), (y_1, y_2))$.
- 3) Să se arate că $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $f((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_1 2x_1y_2 + x_2y_1 x_3y_3$ este biliniară și să se determine matricea lui f în baza ((1, 0, 1), (1, 0, -1), (0, 1, 0)).
- 4) Fie K un corp comutativ și V un spațiu vectorial peste K. O formă biliniară $f: V \times V \to K$ se numește simetrică, respectiv antisimetrică dacă f(x,y) = f(y,x), respectiv f(x,y) = -f(y,x) pentru orice $x,y \in V$. Dacă dim V = n $(n \in \mathbb{N}^*)$ să se arate că sunt echivalente următoarele condiții:
- i) forma biliniară $f: V \times V \to K$ este simetrică (antisimetrică);
- ii) pentru orice bază $v = (v_1, \ldots, v_n)$ a lui V matricea lui f în baza v este simetrică (antisimetrică);
- iii) există o bază $v = (v_1, \dots, v_n)$ a lui V în care matricea lui f este simetrică (antisimetrică).
- 5) Fie K unul dintre corpurile \mathbb{Q} , \mathbb{R} sau \mathbb{C} și V un K-spațiu vectorial cu dim $V = n \in \mathbb{N}^*$. Atunci:
- i) pentru orice formă biliniară $f: V \times V \to K$ există o formă biliniară simetrică $f_s: V \times V \to K$ și o formă biliniară antisimetrică $f_a: V \times V \to K$ astfel încât $f = f_s + f_a$;
- ii) pentru orice matrice $A \in M_n(K)$ există o matrice simetrică $A_s \in M_n(K)$ și o matrice antisimetrică $A_a \in M_n(K)$ astfel încât $A = A_s + A_a$.
- 6) Fie V un K-spaţiu vectorial. O funcţie $q:V\to K$ se numeşte formă pătratică dacă există o formă biliniară simetrică $f:V\times V\to K$ astfel încât

$$q(x) = f(x, x), \ \forall x \in V.$$

Să se arate că dacă $K \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$ atunci:

i) pentru orice formă pătratică $q:V\to K$ există o singură formă biliniară simetrică $f:V\times V\to K$ astfel încât q(x)=f(x,x) pentru orice $x\in V$; această formă este numită forma polară a lui q și este definită prin

(1)
$$f(x,y) = \frac{1}{2}[q(x+y) - q(x) - q(y)];$$

- ii) dacă $f:V\times V\to K$ este o formă biliniară simetrică și nenulă atunci forma pătratică q asociată lui f este nenulă.
- 7) Matricea unei forme pătratice este, prin definiție, matricea formei sale polare. Să se afle matricele următoarelor forme pătratice în bazele canonice:
- a) $q_1: \mathbb{R}^2 \to \mathbb{R}, \ q_1(x,y) = 2x^2 + 3xy + 6y^2;$
- b) $q_2: \mathbb{R}^2 \to \mathbb{R}, \ q_2(x,y) = 8xy + 4y^2;$
- c) $q_3: \mathbb{R}^3 \to \mathbb{R}$, $q_3(x, y, z) = x^2 + 2xy + 4xz + 3y^2 + yz + 7z^2$;
- d) $q_4: \mathbb{R}^2 \to \mathbb{R}, \ q_4(x,y) = 4xy;$
- e) $q_5: \mathbb{R}^3 \to \mathbb{R}, \ q_5(x, y, z) = x^2 + 4xy + 4y^2 + 2xz + z^2 + 2yz.$
- 8) Fie K un corp comutativ, V un K-spațiu vectorial de dimensiune finită n și $f: V \times V \to K$ o formă biliniară. Se spune că f este diagonalizabilă dacă există o bază a lui V în care matricea lui f are forma diagonală.

1

- i) Să se arate că dacă f este diagonalizabilă atunci f este simetrică;
- ii) Dacă corpul K este \mathbb{Q} , \mathbb{R} sau \mathbb{C} atunci adevărată și reciproca lui i), adică f este simetrică implică f este diagonalizabilă.
- iii) Să se arate că forma biliniară simetrică $f: \mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{Z}_2, \ f(x,y) = x_1y_2 + x_2y_1$ (unde $x = (x_1,x_2)$) şi $y = (y_1, y_2)$) nu este diagonalizabilă.

9) Fie
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
 și $B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & -1 & 3 \\ 2 & 3 & 4 \end{pmatrix}$. Să se diagonalizeze următoarele forme biliniare

i)
$$f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = {}^t x A y$, unde $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ şi $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$;

i)
$$f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = {}^t x A y$, unde $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ şi $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$;
ii) $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $f(x,y) = {}^t x B y$, unde $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ şi $y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$.

Să se diagonalizeze formele pătratice asociate transformărilor biliniare de mai sus.

10) Să se diagonalizeze formele pătratice din problema 7), prin completare la pătrate.