Sprawozdanie 4

Bogdan Tkachenko

December 2022

1 Zadanie

Napisać funkcję, która oblicza ilorazy różnicowe oparte na podanych węzłach funkcji nie korzystając z macierzy.

Rozwiązanie:

Ilorazy różnicowe można obliczyć na podstawie następującego wzoru:

1.
$$f[x_0] = f(x_0)$$

2.
$$f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i}$$

3.
$$f[x_0, x_1...x_n] = \frac{f[x_1...x_n] - f[x_0...x_{n-1}]}{x_n - x_0}$$

Jeżeli zaczniemy od tablicy wypełnionej wartościami węzłów funkcji, a przy kolejnych iteracjach rzędów tablicy dwuwymiarowej będziemy aktualizować obliczone ilorazy przeliczając je kolejny raz od dołu, uwzględnią one w ten sposób wcześniej wyliczone ilorazy różnicowe, od których sa zależne.

2 Zadanie

Napisać funkcję obliczającą wartość wielomianu interpolacyjnego stopnia n w postaci Newtona $N_n(x)$ za pomocą uogólnionego algorytmu Hornera

Rozwiązanie:

Wielomian interpolacyjny Newtona można zapisać w postaci sumy

$$N_n(x) = \sum_{i=0}^n f[x_0...x_i] \prod_{j=0}^{i-1} (x - x_j)$$

Gdzie $f[x_0...x_i]$ - iloraz różnicowy, x_i - węzły interpolacji

Powyższą zależność można przedstawić używając uogólnionego algorytmu Hornera:

1.
$$w_n(x) = f[x_0...x_n]$$

2.
$$w_k(x) = f[x_0...x_k] + (x - x_k)w_{k+1}(x)$$

3.
$$N_n(x) = w_0(x)$$

Korzystając z wyżej przedstawionego algorytmu została zaimplementowana funkcja wyznaczająca wartość wielomianu interpolacyjnego stopnia n w punkcie x=t

3 Zadanie

Napisać funkcję która dla wielomiana w postaci Newtona oblicza współczynniki postaci naturalnej

Rozwiązanie:

Współczynnik wielomianu interpolacyjnego w postaci Newtona można w sposób ogólny zapisać jako c_n jest on równy współczynnikowi a_n stojącemu przy najwyższej potędze wielomianu w postaci naturalnej. Korzystając z zaobserwowanej zależności można posłużyć się uogólnionym algorytmem Hornera, w który występuje podobna zależność pomiędzy w_n oraz a_n Algorytm korzystając z powyższych zależności będzie wykonywał kolejne kroki tworząc a_i w oparciu o uprzednio policzone współczynniki stojące przy najwyższych potęgach. Szukanie zależności pomiędzy a_i oraz w_i polega na przejściu po wszystkich w_i w dół i modyfikacji współczynników tak, aby dla każdego w_i przyjmować w danej chwili postać naturalną.

4 Zadanie

Napisać funkcję, która zinterpoluje zadaną funkcję f(x) w przedziale [a,b] za pomocą wielomianu interpolacyjnego stopnia n w postaci Newtona. Oraz zrobić wykres.

Rozwiazanie:

Na samym początku wyznaczamy węzły oraz wartości interpolowanej funkcji w węzłach, na podstawie, których wyliczamy ilorazy różnicowe za pomocy funkcji z zadania 1. Dla utrzymywania precyzji wykresów,mnożymy stopień wielomianów o stałą wartość.

W kolejnym kroku zostają również wyznaczone węzły i wartości funkcji w węzłach oraz wartości wielomianu interpolacyjnego przy pomocy funkcji z Zadania 2. Uzyskane w ten sposób dane służą do narysowania wykresu za pomocą pakietu PyPlot.

5 Zadanie

Przetestować funkcję rysujNnfx(f, a, b, n) na następujących przykładach:

1.
$$e^x$$
, $[0,1]$, $n=5,10,15$

2.
$$x^2 \sin x$$
, $[-1, 1]$, $n = 5, 10, 15$.

Wyniki:
$$e^x$$
, $[0, 1]$, $n = 5, 10, 15$

Figure 1: e^x , [0, 1], n = 5

Figure 2: e^x , [0, 1], n = 10

Figure 3: e^x , [0,1], n = 5

 $x^2 \sin x, [-1, 1], n = 5, 10, 15.$

Figure 4: $x^2 \sin x, [-1, 1], n = 5$

Wnioski:

Uzyskane powyżej wykresy pokrywają się dla każdego z podanych parametrów

Figure 5: $x^2 \sin x, [-1, 1], n = 10$

Figure 6: $x^2 \sin x, [-1, 1], n = 15$

 \boldsymbol{n} w przypadku obu funkcji. Na podstawie tego można stwierdzić,
że dla tych danych Metoda interpolacji działa bardzo dobrze.

6 Zadanie

Przetestować funkcję rysujNnfx(f, a, b, n) na następujących przykładach:

- 1. |x|, [-1, 1], n = 5, 10, 15
- 2. $\frac{1}{1+x^2}$, [-5, 5], n = 5, 10, 15.

Wyniki:

Figure 7: |x|, [-1, 1], n = 5

Wnioski: W przeciwieństwie do poprzedniego zadania, wykresy funkcji nie pokrywają się w obu przypadkach.

Dla funkcji |x| odchylenie wynika z nieróżniczkowalności funkcji. Natomiast dla funkcji $\frac{1}{1+x^2}$ wraz ze wzrostem paarametru n rośnie dokładność interpolacji. Natomiast na końcach przedziału błąd jest bardzo duży. Jest to zjawisko Rungego. Powodem tego jest stała odległość pomiędzy kolejnymi węzłami wielomianu interpolacyjnego wraz z wysokim stopniem wielomianu. Aby uniknąć tego efektu, stosuje się interpolację z węzłami coraz gęściej upakowanymi na krańcach przedziału interpolacji. Przykładem zbioru takich węzłów są węzły Czebyszewa

Figure 8: |x|, [-1, 1], n = 10

Figure 9: |x|, [-1, 1], n = 15

Figure 10: $\frac{1}{1+x^2}$, [-5, 5], n = 5

Figure 11: $\frac{1}{1+x^2}$, [-5, 5], n = 10

Figure 12: $\frac{1}{1+x^2}$, [-5, 5], n = 15