## Il segnale NMR

Mauro A. Cremonini – Università di Bologna

mauro.cremonini@unibo.it

FID

Un FID è un insieme di punti che rappresenta il segnale ottenuto dal campione E' una sommatoria di segnali smorzati di diversa frequenza



**FID** 

#### La trasformata di Fourier (FT) della FID fornisce lo spettro



#### FID

#### Alcuni problemi da risolvere:

- 1) come funziona la FT? Perché ci fornisce lo spettro?
- 2) che tipo di segnale raccogliere (reale/complesso)?
- 3) come campionare il FID in modo appropriato?
- 4) come estrarre al meglio l'informazione contenuta nel segnale?

#### Come funziona la FT

ogni oscillazione complessa può essere espressa come somma di seni o di coseni

$$S_{spettro}(f) = \int_{0}^{+\infty} S_{FID}(t) \cos(2\pi ft) dt$$

in parole povere: l'intensità a f Hz = area sottesa da FID x  $cos(2\pi ft)$ 



#### Come funziona la FT

ogni oscillazione complessa può essere espressa come somma di seni o di coseni

$$S_{spettro}(f) = \int_{0}^{+\infty} S_{FID}(t) \cos(2\pi ft) dt$$

in parole povere: l'intensità a f Hz = area sottesa da FID x  $cos(2\pi ft)$ 



#### Come funziona la FT

ogni oscillazione complessa può essere espressa come somma di seni o di coseni

$$S_{spettro}(f) = \int_{0}^{+\infty} S_{FID}(t) \cos(2\pi ft) dt$$

in parole povere: l'intensità a f Hz = area sottesa da FID x  $cos(2\pi ft)$ 



#### Che tipo di segnale raccogliere?



$$\begin{aligned} v_{x} &= V\cos(\alpha) \quad v_{y} &= V\sin(\alpha) \quad \alpha = 2\pi ft = \omega t \\ S_{NMR} &= S_{R} + i S_{I} \quad \textbf{A}e^{i\omega t}e^{-t/T_{2}} &= \textbf{A}\left(\cos(\omega t) + i\sin(\omega t)\right) e^{-t/T_{2}} \\ &= SEGNALE \ COMPLESSO \end{aligned}$$

-cosa c'è dentro a A?

#### Se RX e TX non sono esattamente in fase



$$S_{NMR}/V = \cos(\alpha+\phi) + i \sin(\alpha+\phi) =$$

$$\cos(\alpha)\cos(\phi) - \sin(\alpha)\sin(\phi) + i (\sin(\alpha)\cos(\phi) + \sin(\phi)\cos(\alpha)) =$$

$$(\cos(\alpha) + i \sin(\alpha))(\cos(\phi) + i \sin(\phi)) = e^{i\alpha}e^{i\phi}$$

$$dunque$$

$$S_{NMR} = V e^{i\phi}e^{i\omega t}e^{-t/T_2} \text{ o in generale } \Sigma_i V_i e^{i\phi}e^{-i\omega_i t}e^{-t/T_2 i}$$

# FT di un segnale complesso

$$S_{spettro}(f) = \int_{0}^{+\infty} S_{FID}(t) \exp(i2\pi ft) dt$$





### Come campionare la FID in modo appropriato



## Come campionare la FID in modo appropriato





condizione di Nyquist:

DW = 1/SW

#### **FOLDING**



originale f = +10 Hz $T_2 = 0.2 \text{ s}$ 

$$f_{max} = 11 Hz$$
  
 $f_{c} = 22 Hz$ 

$$f_{max} = 7.5 \text{ Hz } f_{c} = 15 \text{ Hz}$$
 $f_{max} + F (7.5+2.5=10 \text{Hz})$ 
diviene
 $-f_{max} + F (-7.5+2.5=-5 \text{ Hz})$ 
 $+ f_{max} = 0$ 
 $-f_{max} = 7.5 \text{ Hz}$ 

### Campionamento e fasi: effetto del DE



DE = dead time qual è il suo effetto sullo spettro? Ammettiamo di avere 3 segnali:

$$S_1 = -10 \text{ Hz } (-f_{\text{max}}) S_2 = 0 \text{ Hz } S_3 = +10 \text{ Hz } (+f_{\text{max}})$$

#### Caso 1: DE è nullo.





Il primo punto della FID è a t=0 ove i segnali sono in fase. Le tre righe possono essere fasate in assorbimento.

### Campionamento e fasi: effetto del DE



DE = dead time qual è il suo effetto sullo spettro?

Caso 2: DE = DW/2



Ammettiamo di avere 3 segnali:

$$S_1 = -10 \text{ Hz } (-f_{\text{max}}) S_2 = 0 \text{ Hz } S_3 = +10 \text{ Hz } (+f_{\text{max}})$$



Durante DE S<sub>1</sub> e S<sub>3</sub> si sono sfasati di

$$(\pm)2\pi f_{\text{max}} DW/2 = (\pm) 2\pi f_{\text{max}} (1/4f_{\text{max}}) = (\pm) \pi/2$$

è necessario applicare una fasatura dipendente dalla frequenza o di primo ordine (lp o ph1)

### Campionamento e fasi: effetto del DE



DE = dead time qual è il suo effetto sullo spettro?

Caso 3: DE = DW



Ammettiamo di avere 3 segnali:

$$S_1 = -10 \text{ Hz } (-f_{\text{max}}) S_2 = 0 \text{ Hz } S_3 = +10 \text{ Hz } (+f_{\text{max}})$$



Durante DE S<sub>1</sub> e S<sub>3</sub> si sono sfasati di

$$(\pm)2\pi f_{\text{max}} DW = (\pm) 2\pi f_{\text{max}} (1/2f_{\text{max}}) = (\pm) \pi$$

è necessario applicare una fasatura dipendente dalla frequenza o di primo ordine (lp o ph1)

### Fase di ordine 1: problemi pratici

(una discussione recente di un problema antico...)

http://nmr-analysis.blogspot.com/2008/02/why-arent-bruker-fids-time-corrected.b

Le FID Bruker mostrano un ritardo di gruppo di circa 60-80 punti

Come visto prima oscemplice FT di tali dati e Pira uno sfasama si comprimo ordine di 60 sc x 360 ° cioè 2000 – 28800 °





### Effetto del numero di punti





sono un po' diversi, ma possono migliorare (con zero fill)





#### Zero fill



Aggiungiamo altri 2048-512 punti complessi con valore ZERO (fn=4096)



Poiché SW=1/DW=2834.47 Hz si ha:

con 512 punti 5.5 Hz/punto

con 2048 punti 1.4 Hz/punto

Vantaggio: si aumenta artificialmente la risoluzione, ma...

Svantaggio: si provocano delle discontinuità. Infatti...

#### Problemi con zero fill





#### Aumentando la discontinuità...





Perché si formano queste oscillazioni?

#### FT e convoluzione

La moltiplicazione nel dominio del tempo corrisponde alla convoluzione nel dominio delle frequenze...e viceversa.



#### Da http://mathworld.wolfram.com/Convolution.html

A convolution is an integral that expresses the amount of overlap of one function g as it is shifted over another function f. It therefore "blends" one function with another.

$$C(\omega_1) = f(\omega) \otimes g(\omega) = \int_0^{\omega_1} f(\omega) g(\omega_1 - \omega) d\omega$$





#### Tornando alla discontinuità...







*blends*  $f(\omega)$  with  $g(\omega)$ 

## Convoluzioni di tutti i giorni: apodizzazione



Vuol dire: caro strumento, moltiplica il FID punto a punto per quella funzione che corrisponde ad una lorenziana larga 0.2 Hz a metà altezza.

## Convoluzioni di tutti i giorni: apodizzazione



## Convoluzioni di tutti i giorni: apodizzazione



## L'apodizzazione migliora S/N (non gratis...)



- 1) Righe larghe dipendono da segnali molto smorzati
- 2) Se si riuscisse a togliere un po' di smorzamento (cioè ad allargare T2\*) si stringerebbe la riga
- 3) Si deve trovare una funzione appropriata per la quale moltiplicare la FID

Osserviamo il seguente multipletto contenente 16 righe



lw è circa 0.6 Hz. Significa che il segnale è pesato per  $\exp(-t*\pi*lw)$ 

Poniamo LB = -0.6 e eseguiamo wft



Ci sono correttamente 16 righe dovute a 4 J diverse.

Cos'è successo ? Cos'è successo al FID?





Matematicamente...o quasi



Si dimostra che se  $1/A = 1/T_2^*$  si ottiene un segnale estremamente stretto e enormemente rumoroso

QUESTA PROCEDURA EQUIVALE AD UNA DECONVOLUZIONE (si "toglie lorenzianità" ad una riga allargata)

Infine, come rendere lo spettro più "presentabile"?

#### Lorentian to Gaussian transformation

Ferrige AG, Lindon JC. Resolution enhancement in FT NMR through the use of a double exponential function. J Magn Reson 1978; 31:337-340.





# Perché il rumore aumenta comunque?



### E se la FID è tronca? (occhieggiando ai 2D)



FID generato con f=200 Hz, J=5 Hz T<sub>2</sub>\*= 0.5 sec dunque: lw = 0.64 Hz. np=1024 (512 + 512) dw = 352.8 ms 512 \* 352.8 » 0.18 sec



Dopo FT (fn='n'): SW = 1/dw = 2834.47

Risoluzione: SW/512 = 5.5 Hz/pt



Dopo FT con fn=16384 SW = 1/dw = 2834.47

Risoluzione: SW/8192 = 0.35 Hz/pt

ma...SINC!

#### Possiamo migliorare?

#### Prima strategia: apodizzazione



Si fa zero fill fino a 16384 punti dopo avere pesato con una gaussiana (perchè) ?

Meglio o peggio?

#### Seconda strategia: linear prediction. Si "creano" i punti mancanti!



$$p_n = a_1 \times p_{n-1} + a_2 \times p_{n-2} + a_3 \times p_{n-3} + \dots + a_m \times p_{n-m}$$

Si ipotizza che ogni punto dipenda dagli m precedenti m è il numero dei coefficienti da usarsi nel calcolo

#### Possiamo migliorare? LP!

#### Linear prediction: come si fa?





## Possiamo migliorare? Risultati della LP



#### Morale:

è possibile ottenere un buono spettro anche se il corrispondente FID è tronco!

#### **BIBLIOGRAFIA**

J. Keeler Understanding NMR Spectroscopy, Wiley

M. H. Levitt Spin Dynamics, Wiley

Stan Sykora, http://www.stan.it