해석학 이론 공지사항

1. 강의록

- 실해석학개론(개정4판, Bartle), 강수철 역
- 작년 교재에서 수정 보완 및 편집
- Bartle 기본서 교재가 없어도 강의록과 강의만으로도 공부가능
- 역대 기출문제(90초반~2018) 수록
- 모든 기출문제가 해결 가능하도록 구성

2. TEST

- 매주 그 전 주에 공부했던 내용에 대한 TEST 진행 (1주차는 9시부터 수업을 진행합니다.)
- 시간: 09:00~09:30
- 내용: 강의록에 없는 3~4문제
- 매주 첨삭진행
- mathhm.com에 성적 게시
- 7주차 내용에 대한 test의 첨삭은 이메일 발송, 8주차 내용에 대한 test는 문제 및 답안만 홈페이지 (mathhm.com)에 업로드

3. 자료

- 홈페이지 mathhm.com에서 다운가능 (기존 수강생도 등업 신청해야 게시판 사용가능)
 - (i) 보충자료
 - (ii) 확인학습(정의, 정리, 예제)
 - (iii) 필기노트(수업 당일 업데이트)

4. 시간표

시간	내용	
09:00~09:30	TEST	
09:45~10:55	1교시 수업	
11:10~12:20	2교시 수업	
12:20~13:30	점심시간	
13:30~14:30	3교시 수업	
14:45~15:45	4교시 수업	
16:00~17:00	5교시 수업	
17:00~18:00	질문시간	
18:00~19:00	저녁시간	
19:00~22:00	질문 및 상담	

상황에 따라 5:30~6:00까지 수업할 수도 있습니다

해석학 이론 공지사항

5. 예상진도

날짜	1/6	1/13	1/20	1/27
범위	2.1 R의 대수적 성질과 순서성질 2 2.2 절댓값과 실직선 2.3 R의 완비성 2.4 상한성의 응용 2.5 구간 3.1 수열과 수열의 극한 3.2 극한정리 3.3 단조수열 3.4 부분수열과 Bolzano-Weierstrass 정리	3.5 Cauchy 판정법 3.6 정발산수열 3.7 상극한, 하극한 3.8 무한급수: 개요 4.1 함수의 극한 4.2 극한정리	4.3 극한 개념의 확장 5.1 연속함수 5.2 연속함수의 합성 5.3 구간에서 연속함수 5.4 균등연속	5.6 단조함수와 역함수 6.1 미분 6.2 평균값 정리
날짜	2/3	2/10	2/17	2/24
범위	6.3 L'Hospital의 정리 6.4 Taylor의 정리 7.1 Riemann 적분	7.2 함수의 적분가능성 7.3 적분가능 함수공간 7.4 미적분학의 기본정리	7.5 특이적분 8.1 점별수렴과 균등수렴 8.2 극한의 교환 9.1 절대수렴	9.2 절대수렴에 대한 판정법 9.3 절대수렴하지 않는 급수에 대한 판정법 9.4 함수의 급수 10장 이중적분, 그린정리

제 그 장 실수계

2.1 IR의 대수적 성질과 순서성질

정리 고.1.1

Pf) ((1) (귀류)

Q≠0 가정하자.

⇒ a > o

⇒ 가정에 의하여 o≤a<a *

∴ a = 0

(2) (升류)

a > b 가정하자.

⇒ €0 = a-b >0

∴a≤b •

(3) (i) b=o 인 경우

가정에 의하여 $0 \le a \le b \cdot 2 = 0$ 이 성립

.: a = 0 ≤ b

(ii) b>0 인 경우

(귀류) a > b 가정하자.

 $\Rightarrow \frac{a}{b} > 1$

⇒ L₀ > 1 이므로 가정에 의하여

 $a \le b \cdot L_0 < b \cdot \frac{a}{b} = a \quad *$ $\therefore a \le b$

2.2 부등식

정리 2.2.1 [삼각부등식]

pf) - 1a1 ≤ a ≤ 1a1

+) - 161 & b & 161

 $-(101+161) \leq 0+6 \leq 101+161$

: | a+b| ≤ |a|+1b|

정리 2.2.2

(Pf) (1) $|a| = |a - b + b| \le |a - b| + |b|$

 $|b| = |b-a+a| \le |b-a| + |a|$

 \Rightarrow - $|a-b| \leq |a| - |b| \leq |a-b|$

 $\Rightarrow ||a|-|b|| \leq |a-b||$

 $(2) |a-b| \le |a+(-b)| \le |a|+|-b| = |a|+|b|$

정리 2.2.3 [Bernoulli 부등식]

Pf) (수학적 귀납법)

(i) n=1 인 경우

 $(1+x)^n = 1+x \ge 1+nx$

(ii) (i+ X)ⁿ ≥ l+ NX 가정하자.

 $(I+X)^{n+1} = (I+X)^{n} \cdot (I+X)^{0} \cdot (I+X)^{0}$

≥ (1+nx)(1+x)

= 1+ x + nx + nx

 $\geq 1 + (n+1) \times$

2.3 R의 완비성

정의 2.3.1

정리 2.3.1

(Pf) • (1) ⇒ (2)

٤ > 0 라 하자.

가정에 의하여 U는 S의 상한이므로

U-E: S의 상계가 아니다. (∵ 상한은 상계 중 가장 작은 값)

.. ∃_{Se} ∈ S s.t u-E < Se ≤ u

• (2) ⇒ (3)

V<u인 V고려

E0 = U-V0 >0

(2) 에 의 하여 ∃ S_E ∈ S s t U - E_o < S_E ≤ U

• (3) ⇒ (1)

(귀류) U: S의 상한이 아니라고 가정하자.

⇒ V< U 인 S의 상계 V가 존재

⇒ 3S€S s.t V<S by (3)

이는 V: S의 상계라는 사실에 모순!

∴ U: S의 상한.

예제 2.3.1

(1) (~) U.U. : A의 상한이라 하자.

(∵)· ∀a∈A, a∈A⊂B 이므로

Q≤ Sup B (∵ sup B 는 B의 상계)

⇒ sup B : A의 상계

⇒ sup A ≤ sup B

· ∀a∈A, a∈A c B 이므로

inf B ≤ Q 이 성립 (∵ inf B: B의 하계)

⇒ inf B : A의 하계

 \Rightarrow inf B \leq inf A

2.2.3 [R의 완비성공리]

정리 2.3.3

Pf) A : 아래로 유계이고 Ø 아닌 R의 부분집합이라 하자.

$-A = \{-\alpha \mid \alpha \in A \} \neq \emptyset$

A: 아래로 유계 , 즉 , =ueR s.t VaeA ,uea

⇒ ∀a∈A . -a≤(-u) -A의 상계

A≠Ø 이므로 -A≠Ø 이다.

⇒ 완비성 공리에 의해 ³ sup(-A) ^{iet} ๙

Claim: inf $A = -\alpha$

(i) - d : A의 하게임을 보이자 .

₹a∈A, -a≤ α 이므로 ₹a∈A, -d≤ a.

∴ - < : A의 하계

(ii) - x : A의 최소의 하계 임을 보이자.

t: A의 하계라 하자. 즉, $\forall a \in A$, $t \leq a$

⇒ ∀a∈A . -a ≤(-t) -A의 상계

: Sup(-A) = d ≤ -t

: t ≤ - d

고. 4 상한성의 응용

정리 2.4.1

pf) (1) A.B는 위로 유계이므로

Ju,veiR s.t Va∈A, a≤u, Vb∈B, b≤V

> ∀a∈A. b∈B, a+b ≤ u+V

· A+B : 위로 유계 #

∴ ∃sup(A+B)

 $\sup A = \alpha$, $\sup = \beta$, $\sup (A+B) = \gamma$ at $\forall \lambda$.

y d∈A . α ≤ α 이므로 ∀α∈A . b∈B . α+b ≤ α+β ∀ b∈B . b ≤ β A+B의 상격

 \Rightarrow sup(A+B) = $\forall \leq \alpha + \beta$

QEA 고정하자.

♥ b ∈ B , a + b ∈ A + B 이 므로 a + b ≤ sup(A + B) = イ

⇒ ∀b∈B , b≤ √-a ^{교정된 실수값} =B의 상계

> β = sup B ≤ 1-a

⇒ a ≤ n-β . 즉, ∀a∈A , a ≤ (1-β) A의 상계

∴ d = sup A ≤ 4-B

: d+ B ≤ 1

W214 d+B=1