ADAMAS UNIVERSITY PURSUE EXCELLENCE	ADAMAS UNIVERSITY END-SEMESTER EXAMINATION: MAY 2021 (Academic Session: 2020 – 21)		
Name of the Program:	B.Tech	Semester:	VIII
Paper Title :	Elective VII (Renewable Energy Resources)	Paper Code:	EEE44116
Maximum Marks :	40	Time duration:	3 Hrs.
Total No of questions:	8	Total No of Pages:	2
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. 		

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- 1. a) What is the typical open circuit voltage of solar cell?
 - **b)** What is the energy payback period of wind generation?
 - c) What is the range of wind speed suitable for wind power generation?
 - **d)** Which turbine is used in a tidal range plant?
 - e) What is geothermal energy?

GROUP-B (Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

- 2. What are the salient features of vertical axis wind turbine?
- 3. Calculate the open circuit voltage and maximum power output of MHD engine with following specifications

Plate Area = 0.2 m^2

Distance between plates = 0.4 m

Flux density = 2 Wb/m^2

Average gas velocity = 1000 m/s

Conductivity of the gas = 10 mho/m

[5]

[5]

4. Derive the expression for total useful energy of dry rock.

[5]

5. A deep ocean wave of 2m peak to peak appears for a period of 8 s. Find the wavelength, phase velocity and power associated with the wave. At this power rate, what is the average annual wave energy in MWh/m? [5]

GROUP-C (Long Answer Type Questions)

Answer any two of the following

 $2 \times 10 = 20$

- a) With the help of block diagrams explain the operations of standalone and grid interactive Solar Photovoltaic System.
 - b) Describe the principle of MHD generating system.

[7+3]

- 7. a) A PV system feeds a dc motor to produce 1 hp power at the shaft. The motor efficiency is 85%. Each module has 36 multi crystalline silicon solar cells arranged in a 9 x 4 matrix. The cell size is 125mm x 125mm and the cell efficiency is 12%. Calculate the number of modules required in the array. Assume global radiation incident normally to the panel as 1 kW/ m².
 - b) What is PV cell? What is fill factor of a PV cell?

[5+5]

- 8. a) Explain heaving float type wave energy technology.
 - b) What are the merits of oscillating water-column type wave energy technology?
 - c) What are the limitations of tidal energy?

[6+2+2]