

СПЕЦИФИКАЦИЯ

- 1. ПРОДУКЦИЯ
- 2. ОБЩАЯ ХАРАКТЕРИСТИКА
- 3. НАЗНАЧЕНИЕ И ПРИМЕНЕНИЕ
- 4. ВИДЫ СТЕКЛА ПРИМЕНЯЕМЫЕ В TPS СТЕКЛОПАКЕТЕ
- 5. ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ
 - 5.1 Допуски
 - 5.1.1 Ограничения по размеру
 - 5.1.2 Размеры контурного соединения
 - 5.2 Технические данные TPS стеклопакетов
 - 5.3 Сопротивление теплопередаче энергосберегающих TPS стеклопакетов
- 6. АРХИТЕКТОРУ, ПРОЕКТИРОВЩИКУ, ЗАКАЗЧИКУ
- 6.1 Обращение
- 6.2 Структурная функциональность
- 6.3 Тепловые характеристики
- 6.4. Литература

1. ПРОДУКЦИЯ

Стеклопакеты изготавливаются на специализированной линии по производству стеклопакетов ОАО «Гомельстекло» методом горячей экструзии. TPS-стеклопакеты соответствуют ГОСТ 24866-99 «Стеклопакеты клееные строительного назначения», ГОСТ Р 54175-2010 «Стеклопакеты клееные. Технические условия», ГОСТ Р 52172-2003 «Стеклопакеты для наземного транспорта. Технические условия.»

2. ОБЩАЯ ХАРАКТЕРИСТИКА

Термопластичные изолирующие TPS-стеклопакеты состоят из двух и более листов стекла, соединенных между собой по контуру термопластичной дистанционной рамкой черного цвета и вторичного герметика, образующих герметически замкнутые камеры. Камеры межстекольного пространства заполнены инертным газом (аргоном), либо осушенным воздухом.

TPS-дистанционная рамка — это система «теплый край» для изготовления стеклопакетов, при которой металлическая дистанционная рамка, осушитель и классическая герметизация бутилом в краевом соединении заменяются на один материал- TPS-дистанционную рамку с интегрированным осушителем, закрепленным в матрицу полиизобутилена, которая непроницаема для газов и влаги. Газонепроницаемость гарантируется техническими характеристиками TPS (5.1.3), а также глубоким слоем термопластичной рамки (5.1.2).

Способ производства нанесения дистанционной рамки – горячая экструзия специального органического материала

Для обеспечения герметизации стеклопакета TPS-дистанционная рамка одновременно выполняет несколько задач:

- барьер для проникающей влаги и утечки инертного газа (аргона) обеспечено герметизирующим роботом;
 - функция дистанционной рамки с теплотехнически улучшенными характеристиками;
 - осушение межстекольного пространства благодаря интегрированному осушителю.

tel: + 375 232 973369

www.gomelglass.by

3. НАЗНАЧЕНИЕ И ПРИМЕНЕНИЕ

TPS-стеклопакеты применяются:

- в условиях где требуется высокий уровень энергоэффективности. TPS-стеклопакет улучшает тепловое сопротивление светопрозрачной конструкции, что позволяет сократить потери тепла в зимний период и сокращает тепловое усиление (нагрузку) в летнее время;
- в транспорте применяются стеклопакеты TPS-технологии из безопасных стекол;
- специальные конструкции TPS-стеклопакетов применяются для производства пожаробезопасного, огнестойкого многослойного стекла.

4.ВИДЫ СТЕКЛА ПРИМЕНЯЕМЫЕ В ТРS-СТЕКЛОПАКЕТЕ

Стеклопакет с «теплой» дистанционной рамкой может быть изготовлен в различной конфигурации с различными типами стекол (ламинированное «триплекс», закаленное, бесцветное флоат-стекло, тонированное (цветное) стекло, стекла с покрытиями - теплосберегающее, мультифункциональное, огнестойкое и т.д.). Для изготовления TPS-стеклопакетов используются стекла как собственного производств ОАО «Гомельстекло», так и зарубежных производителей.

5. ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

5.1 Допуски.

5.1.1. Ограничения по размеру

Ограничениями являются следующие размеры: Максимальный размер:2500x1600мм Минимальный размер: 350x190мм Толщина стеклопакета: от 9мм до 60мм Толщина дистанционной рамки: от 3мм до 20мм Максимальная толщина стекла: от 3мм до 15мм Минимальные радиус закругления (на 4- углах стеклопакета): 9мм Минимальный радиус закругления (на 1-м углу стеклопакета): 25мм

Для размеров за пределами данных ограничений обращайтесь к менеджеру группы стеклопакетов.

5.1.2. Размеры контурного соединения

5.2 Технические данные TPS

Основа синтетический каучук (полиизобутилен), без растворителей

Цвет черный

Консистенция твердая масса, перерабатывается только при высоких

Устойчивость температурах с TPS-аппликатором функционирует в широком

температурном интервале от -20°C до +70°C

Плотность	1,26	г/см ³	DIN 53479, +23℃
Газопроницаемость <	0,001	г/м ² •ч	EN 1279.4
Диффузия паров < воды	0,01	г/м ² •д	EN 1279.4
Летучие вещества	0,5	%	EN 1279.6, приложение G
Испаряемость без в	видимог	о налета	EN 1279.6, приложение C
Влагопоглощение	3,9	%	EN 1279.2, приложение C4
Предел прочности при растяжении и сдвиге	0,6	МПа	стекло/стекло, толщина слоя 0,5 мм, +23°С
Эластограф-тест	375	Н•мм	эластограф при +80°С, DIN 53529 Т4
Теплопроводность	0,245	Вт/м•К	+23°C
Размер пор осушителя	3	Α	774

5.3 Сопротивление теплопередаче энергосберегающих ТРS-стеклопакетов ОАО «Гомельстекло»

Вид стеклопакета	Сопроти вление теплопередаче	Коэффициент направленного пропускания света	Звукоизоляция	Протокол сертификационных испытаний			
Общестроительного назначения однокамерный							
СПО 4M1-16-4M1	0,36 М ^{2 О} С/Вт	85%	26дБА	NºA-93/06			
СПО 4М1-20-4М1	0,38 М ^{2 О} С/Вт	82%	26дБА	№A-93/06			
СПО 4М1-18Ар-4М1	0,38 М ^{2 О} С/Вт	82%	27дБА	NºA-93/06			
СПО 4М1-20Ар-4М1	0,40 М ^{2 О} С/Вт	81,80%	27дБА	№A-93/06			
Общестроительного назначения двухкамерный							
СПД 4М1-10-4М1-10-4М1	0,51 М ^{2 О} С/Вт	77%	28дБА	№A-101/06			
СПД 4M1-10Ap-4M1-10Ap- 4M1	0,57 М ^{2 О} С/Вт	77%	29дБА	№А-101/06, П- 588/09			
СПД 4M1-12Ap-4M1-12Ap- 4M1	0,58 М ^{2 О} С/Вт	73%	29дБА	№A-101/06			
СПД 4M1-14Ap-4M1-14Ap- 4M1	0,60 М ^{2 О} С/Вт	73%	29дБА	№A-101/06			
Энергосберегающий однокамерный							
СПО 4И-16Ар-4М1	0,66 М ^{2 О} С/Вт	77%	29дБА	№A-725/08			
СПО 4И-20Ар-8М1	0,68-0,69 М ^{2 О} С/Вт	-	-	№A-636/11			
Энергосберегающий двухкамерный							
СПД 4И-10Ар-4М1-10Ар- 4М1	0,83 М ^{2 О} С/Вт	70%	31дБА	№A-725/08			
СПД 4И-10Ар-4М1-10Ар-4И	1,13-1,14 М ^{2 О} С/Вт	66%	28дБА	№A-430/09, П- 329/10			
СПД 4И-14Ар-4М1-14Ар- 4М1	0,94-0,95 М ^{2 О} С/Вт	69,20%	32дБА	№A-326/12			
СПД 4И-14-4М1-14-4М1	0,78-0,79 М ^{2 О} С/Вт	69,80%	31дБА	№A-326/12			
СПД 4И-14Ар-4М1-16Ар-4И	1,15-1,16 М ^{2 О} С/Вт	-	-	№A-709/10			
Строительного назначения со специальными свойствами							
СПД 83-14Ар-6М1-12Ар- 7СМ1	0,73-0,74 М ^{2 О} С/Вт	67%	36дБА	№A-997/11			
СП 4M1-6Ap-4M1-6Ap-4M1- 10Ap-4И	1,06-1,07 М ^{2 О} С/Вт	65%	-	№A-429/09			
СПО 43-8-6CM1	0,32 М ^{2 О} С/Вт	81%	28дБА	NºII-329/10			

6.1 Обращение

Архитектор, проектировщик и заказчик совместно с производителем при использовании преимуществ новых технологий и инноваций создают качественные и долговечные проекты. Качество, своеобразие и уникальность стеклопакетов, с дистанционной рамкой из TPS-материала, являются ключом к успешному проектированию светопрозрачных конструкций и воплощению их в реальные объекты.

Особенно в современный период заказчики, архитекторы и проектировщики, поставщики и производители оконной отрасли должны поддерживать друг друга и свою экономическую состоятельность, чтобы реализовывать проекты, готовясь к будущему развитию и росту. ОАО «Гомельстекло» в TPS-стеклопакетах использует компоненты, которые протестированы и качественно разработаны с учетом долгосрочной эксплуатации.

6.2 Структурная функциональность

В процессе своего жизненного цикла стеклопакеты подвергаются механическим напряжениям. Это перепады давления, которые возникают в межстекольном пространстве при воздействии внешней среды (атмосферы). Как правило, напряжения в стеклопакете возникают в процессе производства, при транспортировке, и особенно при эксплуатации, когда стеклопакет уже установлен на объект и подвергается воздействию окружающей среды (солнечной радиации, влажности, перепадам температур, ветровым нагрузкам, атмосферному давлению). Силы растяжения и сжатия особенно интенсивно воздействуют на краевую область стеклопакета.

tel: + 375 232 973369 www.gomelglass.by

с алюминиевой рамкой

ТРS-рамка и вторичный герметик обеспечивает достаточную прочность и надежно фиксирует листы стекла в стеклопакете относительно друг друга. Длительность срока службы и эксплуатации TPS-стеклопакетов обусловлена прочностью, герметичностью (адгезией к стеклу) и гибкостью TPS-материалов. В отличие от металлических или пластиковых дистанционных рамок вне зависимости от типа соединения их стыков (угловых паянных либо согнутых угловых соединений) TPS-рамка обеспечивает целостность, стабильность и герметичность конструкции стеклопакета.

6.3 Тепловые характеристики

Дистанционные рамки для стеклопакетов традиционно изготавливаются из алюминия или оцинкованной стали. Эти металлические рамки имеют высокую теплопроводность и таким образом создают «тепловой мостик» в краевой зоне стеклопакета, по которому идет повышенный сток тепла. Лабораторные эксперименты зарубежных специалистов [1] показали, что данная краевая область ограничена полосой 102 мм (4 дюйма) в ширину по периметру остекления.

При низких температурах в стеклопакетах с традиционными дистанционными рамками в краевой области стеклопакета повышена вероятность образования конденсата, которая негативным образом влияет на светопрозрачную конструкцию и может привести к образовании плесени, ухудшению состояния оконных рам и оконных уплотнителей, а также стеновых панелей/откосов

Новая конструкция дистанционной рамки TPS-стеклопакетов с улучшенными теплофизическими характеристиками в меньше степени подвержена конденсации.

Анализ результатов расчетов по оценке влияния материала дистанционных рамок на температурный режим стеклопакета отечественных [2] [3] и зарубежных специалистов [1] позволяет сделать следующие выводы:

- наилучшие результаты получаются при использовании дистанционных рамок из TPS-материала и позволяет повысить минимальную температуру в зоне сопряжения стеклопакетов с переплетами на 2,5...3,50C;
- применение дистанционных рамок из TPS-материала особенно эффективно в стеклопакетах с низкоэмиссионным покрытием внутреннего стекла;
- использование дистанционной рамки из TPS-материала влияет на показатель сопротивления теплопередаче окна в целом (стекло + дистанционная рамка + профиль оконного блока). Снижение теплопроводности дистанционной рамки от 0,25 до 0,1 Вт/м*К приводит к улучшению сопротивления теплопередаче оконного блока на 6%.

Экспериментальные и расчетные данные показали [1] что температурный режим современных окон в краевых зонах оказывает существенное влияние на сопротивление теплопередаче оконной конструкции. Результаты этих термических исследований дают понять, что оконные конструкции должны использовать дистанционные рамки с лучшим значением коэффициента теплопроводности.

6.4 Литература

- 1]. Ван Ден Берг, Р. Харт, Б. Петтер Йелле, А. Густавсен Оконные дистанционные рамки и контурное уплотнение в стеклопакетах: A State-of-the-Art Review and Future perspectives Опубликовано Energy and Buildings 58 (2013) 263-280
- [2]. Кривошеин А.Д., Харламов Д.А. «Температурный режим современных окон в краевых зонах.
- [3]. Д.А.Харламов «Температурный режим стеклопакетов в краевых зонах»
- [4]. A.H. Elmahdy, Effects of Improved Spacer Bar Design on Window Performance, Institute for Research in Construction/National Research Council of Canada, Construction Technology Update no. 58 (2003) 1-4.

tel: + 375 232 973369

www.gomelglass.by

