Modelos e Aplicações - Aula 3

Caio Lopes, Henrique Lecco

ICMC - USP

22 de julho de 2020

O que vimos ontem...

Definimos com precisão o que é um modelo.

Vimos que alguns modelos satisfazem certas fórmulas e outros não.

Também falamos de modelos para determinadas teorias.

Queremos saber quando certas teorias determinam certas propriedades entre seus modelos. Vamos falar sobre *relações entre modelos*

Modelos quase iguais

Existem casos em que dois modelos são praticamente iguais: trata-se dos isomorfismos:

Definição

Um isomorfismo entre dois modelos \mathcal{M} e \mathcal{N} é uma função $f: \mathcal{M} \to \mathcal{N}$ bijetora tal que para toda fórmula $\varphi(x_1,...,x_r)$ e todo $m_1,...,m_r \in \mathcal{M}$:

$$\mathcal{M} \models \varphi(m_1,...,m_r) \Leftrightarrow \mathcal{N} \models \varphi(f(m_1),...,f(m_r))$$

Modelos quase iguais

Existem casos em que dois modelos são praticamente iguais: trata-se dos isomorfismos:

Definição

Um isomorfismo entre dois modelos \mathcal{M} e \mathcal{N} é uma função $f: \mathcal{M} \to \mathcal{N}$ bijetora tal que para toda fórmula $\varphi(x_1,...,x_r)$ e todo $m_1,...,m_r \in \mathcal{M}$:

$$\mathcal{M} \models \varphi(m_1,...,m_r) \Leftrightarrow \mathcal{N} \models \varphi(f(m_1),...,f(m_r))$$

Vejamos alguns exemplos:

Exemplos

 $\mathbb{Q} \leftrightarrow \mathbb{Q} + \mathbb{Q}$

Esses são dois modelos para a linguagem de ordens $\{<\}$. São modelos para DLO.

Leve $(-\infty, \sqrt{2})$ no "primeiro" $\mathbb Q$ e $(\sqrt{2}, +\infty)$ no "segundo" $\mathbb Q$.

Exemplos

$$\mathbb{Q} \leftrightarrow \mathbb{Q} + \mathbb{Q}$$

Esses são dois modelos para a linguagem de ordens $\{<\}$. São modelos para DLO.

Leve $(-\infty, \sqrt{2})$ no "primeiro" \mathbb{Q} e $(\sqrt{2}, +\infty)$ no "segundo" \mathbb{Q} . Isso é um isomorfismo: os fragmentos são "pequenos modelos" de DLO e um vem antes do outro.

Exemplos

$$\mathbb{Q} \leftrightarrow \mathbb{Q} + \mathbb{Q}$$

Esses são dois modelos para a linguagem de ordens $\{<\}$. São modelos para DLO.

Leve $(-\infty, \sqrt{2})$ no "primeiro" \mathbb{Q} e $(\sqrt{2}, +\infty)$ no "segundo" \mathbb{Q} . Isso é um isomorfismo: os fragmentos são "pequenos modelos" de DLO e um vem antes do outro.

$$\mathbb{Q}(e) \leftrightarrow \mathbb{Q}(\pi)$$

São dois modelos para a linguagens de anéis $\{0,1,+,\times\}$. São modelos para a teoria de corpos.

Basta pegar os termos em que e aparece e substituir por π . Vamos fazer isso em um pouco mais de detalhe.

Um elemento de $\mathbb{Q}(e)$ pode ser escrito como $\frac{a_0+a_1e+...+a_re^r}{b_0+b_1e+...+b_se^s}$. De igual modo, um elemento de $\mathbb{Q}(e)$ escreve-se como $\frac{a_0+a_1e+...+a_r\pi^r}{b_0+b_1\pi+...+b_s\pi^s}$.

Um elemento de $\mathbb{Q}(e)$ pode ser escrito como $\frac{a_0+a_1e+...+a_re^r}{b_0+b_1e+...+b_se^s}$. De igual modo, um elemento de $\mathbb{Q}(e)$ escreve-se como $\frac{a_0+a_1\pi+...+a_r\pi^r}{b_0+b_1\pi+...+b_s\pi^s}$

Veja que se
$$\frac{a_0+a_1e+...+a_re^r}{b_0+b_1e+...+b_se^s}=\frac{c_0+c_1e+...+c_re^r}{d_0+d_1e+...+d_se^s}$$
, então $\frac{a_0+a_1\pi+...+a_r\pi^r}{b_0+b_1\pi+...+b_s\pi^s}=\frac{c_0+c_1\pi+...+c_r\pi^r}{d_0+d_1\pi+...+d_s\pi^s}$.

Um elemento de $\mathbb{Q}(e)$ pode ser escrito como $\frac{a_0+a_1e+...+a_re^r}{b_0+b_1e+...+b_se^s}$. De igual modo, um elemento de $\mathbb{Q}(e)$ escreve-se como $\frac{a_0+a_1\pi+...+a_r\pi^r}{b_0+b_1\pi+...+b_s\pi^s}$

Veja que se
$$\frac{a_0+a_1e+...+a_re^r}{b_0+b_1e+...+b_se^s} = \frac{c_0+c_1e+...+c_re^r}{d_0+d_1e+...+d_se^s}$$
, então $\frac{a_0+a_1\pi+...+a_r\pi^r}{b_0+b_1\pi+...+b_s\pi^s} = \frac{c_0+c_1\pi+...+c_r\pi^r}{d_0+d_1\pi+...+d_s\pi^s}$.

Dada uma valoração α para $\mathbb{Q}(e)$, considere α' a valoração para $\mathbb{Q}(\pi)$ que troca e por π .

Assim,

$$\mathbb{Q}(e) \models t = s[\alpha] \Leftrightarrow \mathbb{Q}(\pi) \models t = s[\alpha']$$

Suponha que

$$\mathbb{Q}(e) \models \varphi(y, x_1, ..., x_n)[\alpha] \Leftrightarrow \mathbb{Q}(\pi) \models \varphi(y, x_1, ..., x_n)[\alpha'].$$

Então, $\mathbb{Q}(e) \models \exists y \varphi(y, x_1, ..., x_n)[\alpha]$ se e somente se existe um $a \in \mathbb{Q}$ tal que $\mathbb{Q}(e) \models \varphi(y, x_1, ..., x_n)[\alpha_y^a]$.

Por hipótese, teremos que $\mathbb{Q}(\pi) \models \varphi(y, x_1, ..., x_n)[\alpha_v^{a'}]$

Suponha que

$$\mathbb{Q}(e) \models \varphi(y, x_1, ..., x_n)[\alpha] \Leftrightarrow \mathbb{Q}(\pi) \models \varphi(y, x_1, ..., x_n)[\alpha'].$$

Então, $\mathbb{Q}(e) \models \exists y \varphi(y, x_1, ..., x_n)[\alpha]$ se e somente se existe um $a \in \mathbb{Q}$ tal que $\mathbb{Q}(e) \models \varphi(y, x_1, ..., x_n)[\alpha_v^a]$.

Por hipótese, teremos que $\mathbb{Q}(\pi) \models \varphi(y, x_1, ..., x_n)[\alpha_y^{a'}]$ Então, existe um $a' \in \mathbb{Q}(\pi)$ tal que $\mathbb{Q}(\pi) \models \varphi(y, x_1, ..., x_n)[\alpha_y'^{a'}]$, o que significa dizer que $\mathbb{Q}(\pi) \models \exists y \ \varphi(y, x_1, ..., x_n)[\alpha']$.

Suponha que

$$\mathbb{Q}(e) \models \varphi(y, x_1, ..., x_n)[\alpha] \Leftrightarrow \mathbb{Q}(\pi) \models \varphi(y, x_1, ..., x_n)[\alpha'].$$

Então, $\mathbb{Q}(e) \models \exists y \varphi(y, x_1, ..., x_n)[\alpha]$ se e somente se existe um $a \in \mathbb{Q}$ tal que $\mathbb{Q}(e) \models \varphi(y, x_1, ..., x_n)[\alpha_v^a]$.

Por hipótese, teremos que $\mathbb{Q}(\pi) \models \varphi(y, x_1, ..., x_n)[\alpha_y^{a'}]$ Então, existe um $a' \in \mathbb{Q}(\pi)$ tal que $\mathbb{Q}(\pi) \models \varphi(y, x_1, ..., x_n)[\alpha_y'^{a'}]$, o que significa dizer que $\mathbb{Q}(\pi) \models \exists y \ \varphi(y, x_1, ..., x_n)[\alpha']$.

Devemos fazer a mesma coisa para os casos \forall , \neg , \lor e \land .

Teorema

Dois corpos algebricamente fechados de mesma cardinalidade não enumerável e característica são isomorfos

Sejam F_1 e F_2 dois corpos algebricamente fechados, de mesma característica e de mesma cardinalidade. Considere P o fecho algébrico do corpo primo desses corpos.

Teorema

Dois corpos algebricamente fechados de mesma cardinalidade não enumerável e característica são isomorfos

Sejam F_1 e F_2 dois corpos algebricamente fechados, de mesma característica e de mesma cardinalidade. Considere P o fecho algébrico do corpo primo desses corpos.

Considere $L_1 \subset F_1$ e $L_2 \subset F_2$ bases transcendentes para F_1 e F_2 . Uma base transcendente de K/M é um subconjunto algebricamente independente maximal de K.

Teorema

Dois corpos algebricamente fechados de mesma cardinalidade não enumerável e característica são isomorfos

Sejam F_1 e F_2 dois corpos algebricamente fechados, de mesma característica e de mesma cardinalidade. Considere P o fecho algébrico do corpo primo desses corpos.

Considere $L_1 \subset F_1$ e $L_2 \subset F_2$ bases transcendentes para F_1 e F_2 . Uma base transcendente de K/M é um subconjunto algebricamente independente maximal de K.

 $|L_1| = |L_2|$. Logo, podemos estabelecer uma bijeção entre L_1 e L_2 .

Teorema

Dois corpos algebricamente fechados de mesma cardinalidade não enumerável e característica são isomorfos

Sejam F_1 e F_2 dois corpos algebricamente fechados, de mesma característica e de mesma cardinalidade. Considere P o fecho algébrico do corpo primo desses corpos.

Considere $L_1 \subset F_1$ e $L_2 \subset F_2$ bases transcendentes para F_1 e F_2 . Uma base transcendente de K/M é um subconjunto algebricamente independente maximal de K.

 $|L_1| = |L_2|$. Logo, podemos estabelecer uma bijeção entre L_1 e L_2 . Essa bijeção se estende unicamente a um P-isomorfismo $P(L_1) \leftrightarrow P(L_2)$, que por sua vez se estende a um isomorfismo entre os fechos algébricos de $P(L_1)$ e $P(L_2)$, que são F_1 e F_2 .

Por que
$$|L_1| = |L_2|$$
?

A cada elemento transcendente que adicionamos, só conseguimos mais enumeráveis elementos.

Se κ é um cardinal não enumerável, $\lambda<\kappa$ e X_ξ é enumerável para todo $\xi<\lambda$, então

$$\Big|\bigcup_{\xi<\lambda}X_{\xi}\Big|<\kappa$$

Por que
$$|L_1| = |L_2|$$
?

A cada elemento transcendente que adicionamos, só conseguimos mais enumeráveis elementos.

Se κ é um cardinal não enumerável, $\lambda<\kappa$ e X_ξ é enumerável para todo $\xi<\lambda$, então

$$\Big|\bigcup_{\xi<\lambda}X_{\xi}\Big|<\kappa$$

Portanto a cardinalidade deve ser a cardinalidade do corpo.

Caracterização para isomorfismos

Veja que é uma consequência da definição de isomorfismo que, se $f: M \to N$ é um isomorfismo, então:

- $f(\mathbf{c}^{\mathcal{M}}) = \mathbf{c}^{\mathcal{N}}$, para todo símbolo de constante \mathbf{c} ;
- **2** $\mathbf{R}^{\mathcal{M}}(m_1,...,m_n) \Leftrightarrow \mathbf{R}^{\mathcal{N}}(f(m_1),...,f(m_n))$, para todo símbolo de relação \mathbf{R} e elementos $m_1,...,m_n \in M$;

Caracterização para isomorfismos

Veja que é uma consequência da definição de isomorfismo que, se $f: M \to N$ é um isomorfismo, então:

- $f(\mathbf{c}^{\mathcal{M}}) = \mathbf{c}^{\mathcal{N}}$, para todo símbolo de constante \mathbf{c} ;
- ② $\mathbf{R}^{\mathcal{M}}(m_1,...,m_n) \Leftrightarrow \mathbf{R}^{\mathcal{N}}(f(m_1),...,f(m_n))$, para todo símbolo de relação \mathbf{R} e elementos $m_1,...,m_n \in M$;

Na verdade, uma bijeção que satisfaça essas três propriedades é um isomorfismo.

Exemplo

Considere a teoria de grafos completos:

Exemplo

Considere a teoria de grafos completos:

Ou seja, a teoria que diz que todo par de vértices diferentes está ligado por uma aresta.

Dados dois grafos completos \mathcal{G}_1 e \mathcal{G}_2 , se existe uma bijeção entre G_1 e G_2 , então são isomorfos.

Esticando a teoria

Considere T a teoria de grafos completos. Vamos adicionar a essa teoria as seguintes sentenças:

- $\exists x_1 \exists x_2 \ x_1 \neq x_2;$
- $\exists x_1 \exists x_2 \exists x_3 \ (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3);$
- **3** ...

Esticando a teoria

Considere T a teoria de grafos completos. Vamos adicionar a essa teoria as seguintes sentenças:

- $\exists x_1 \exists x_2 \ x_1 \neq x_2;$
- $\exists x_1 \exists x_2 \exists x_3 \ (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3);$
- **3** ...

Ou seja, para cada n, adicionamos a sentença:

$$\exists x_1...\exists x_n \bigwedge_{1\leq i< j\leq n} x_i \neq x_j$$

Isto é, "existem n elementos distintos". Considere T' a teoria T com essas sentenças adicionadas.

Modelos para essa teoria

Todo modelo para T' será infinito.

Dados dois modelos de mesma cardinalidade, serão isomorfos.

Modelos para essa teoria

Todo modelo para T' será infinito.

Dados dois modelos de mesma cardinalidade, serão isomorfos.

Definição

Dizemos que uma teoria é κ -categórica se todo modelo de cardinalidade κ é isomorfo

Teorema (Categoricidade de Morley)

Se uma teoria é κ -categórica para um cardinal não enumerável κ , então é λ -categórica, para todo λ não enumerável.

Modelos e Aplicações - Aula 3

Voltando aos grafos

Observe, então, que dois modelos de T' de mesma cardinalidade são sempre isomorfos.

Mas o que podemos dizer de dois modelos quaisquer dessa teoria? Vamos olhar para suas sentenças

Voltando aos grafos

Observe, então, que dois modelos de T^\prime de mesma cardinalidade são sempre isomorfos.

Mas o que podemos dizer de dois modelos quaisquer dessa teoria? Vamos olhar para suas sentenças

Seja $\mathcal{M} \models T'$ e $\mathcal{N} \models T'$.

Seja φ uma sentença com n quantificadores encadeados (podemos escrever as fórmulas de um jeito que os quantificadores fiquem todos à esquerda).

Voltando aos grafos

Observe, então, que dois modelos de T^\prime de mesma cardinalidade são sempre isomorfos.

Mas o que podemos dizer de dois modelos quaisquer dessa teoria? Vamos olhar para suas sentenças

Seja $\mathcal{M} \models \mathcal{T}'$ e $\mathcal{N} \models \mathcal{T}'$.

Seja φ uma sentença com n quantificadores encadeados (podemos escrever as fórmulas de um jeito que os quantificadores fiquem todos à esquerda).

Para verificar a fórmula, então, substituimos os quantificadores por elementos. Suponha que $\mathcal{M} \models \varphi$.

Para o primeiro quantificador "eliminado", escolhe-se um elemento m_1 de M. Escolha, portanto, um elemento qualquer n_1 de N.

Para o primeiro quantificador "eliminado", escolhe-se um elemento m_1 de M. Escolha, portanto, um elemento qualquer n_1 de N. Para o segundo quantificador "eliminado", escolhe-se um elemento m_2 de M. Escolha, portanto, um elemento de N da seguinte maneira: se $m_2=m_1$, então escolha $n_2=n_1$; caso contrário, escolha n_2 qualquer.

Para o primeiro quantificador "eliminado", escolhe-se um elemento m_1 de M. Escolha, portanto, um elemento qualquer n_1 de N. Para o segundo quantificador "eliminado", escolhe-se um elemento m_2 de M. Escolha, portanto, um elemento de N da seguinte maneira: se $m_2=m_1$, então escolha $n_2=n_1$; caso contrário, escolha n_2 qualquer.

Para o *i*-ésimo quantificador "eliminado", escolhe-se um elemento m_i de M. Se $m_i = m_j$ para algum j < i, escolha $n_i = n_j$. Caso contrário, escolha n_i qualquer, desde que diferente de todos os outros.

Nesse processo, se a fórmula restante for falsa em \mathcal{M} , então será falsa em \mathcal{N} . Se for verdadeira em \mathcal{M} , será verdadeira em \mathcal{N} .

Nesse processo, se a fórmula restante for falsa em \mathcal{M} , então será falsa em \mathcal{N} . Se for verdadeira em \mathcal{M} , será verdadeira em \mathcal{N} .

Isso nos diz que ${\mathcal M}$ e ${\mathcal N}$ satisfazem as mesmas sentenças.

Definição

Dois modelos \mathcal{A} e \mathcal{B} são equivalentes se satisfazem as mesmas sentenças. Denota-se $\mathcal{A} \equiv \mathcal{B}$. Se todos os modelos de uma teoria T são equivalentes, dizemos que T é completa.

Nesse processo, se a fórmula restante for falsa em \mathcal{M} , então será falsa em \mathcal{N} . Se for verdadeira em \mathcal{M} , será verdadeira em \mathcal{N} .

Isso nos diz que ${\mathcal M}$ e ${\mathcal N}$ satisfazem as mesmas sentenças.

Definição

Dois modelos \mathcal{A} e \mathcal{B} são equivalentes se satisfazem as mesmas sentenças. Denota-se $\mathcal{A} \equiv \mathcal{B}$. Se todos os modelos de uma teoria T são equivalentes, dizemos que T é completa.

DLO é completa.

Isomorfismo, equivalência

Teorema?

Se $\mathcal{M} \equiv \mathcal{N}$ e existe uma bijeção entre M e N, então \mathcal{M} e \mathcal{N} são isomorfos?

Isomorfismo, equivalência

Teorema?

Se $\mathcal{M} \equiv \mathcal{N}$ e existe uma bijeção entre M e N, então \mathcal{M} e \mathcal{N} são isomorfos?

Isso é falso!

Considere os seguintes modelos sobre o vocabulário $\{ \prec \}$:

- \bullet \mathbb{R} com a ordem usual;
- $\mathbb{R} \times \mathbb{R}$ com a ordem lexicográfica.

A ordem sobre $\mathbb{R} \times \mathbb{R}$ é: $(a_1, b_1) \prec (a_2, b_2)$ se $a_1 < a_2$ ou se $a_1 = a_2$ e $b_1 < b_2$.

Vamos mostrar que $\mathbb{R} \times \mathbb{R} \not\simeq \mathbb{R}$, em termos de ordem.

A ordem sobre $\mathbb{R} \times \mathbb{R}$ é: $(a_1, b_1) \prec (a_2, b_2)$ se $a_1 < a_2$ ou se $a_1 = a_2$ e $b_1 < b_2$.

Vamos mostrar que $\mathbb{R} \times \mathbb{R} \not\simeq \mathbb{R}$, em termos de ordem. Isso significa mostrar que não existe uma bijeção $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ tal que $f(x) < f(y) \Leftrightarrow x < y$. Suponha, então, que f seja uma função com essas propriedades.

Veja que, dado $a \in \mathbb{R}$, $f(\{(x,y): x,y \in \mathbb{R}, x \leq a\}) = (-\infty,m) \subset \mathbb{R}$, para algum m, pois trata-se de um segmento inicial sem elementos máximo e mínimo. No entanto, como f é bijeção, deve existir algum $(p,q) \in \mathbb{R} \times \mathbb{R}$ tal que f((p,q)) = m, com p > a. Mas, dado q' < q, teremos que $(p,q') \prec (p,q)$ e, portanto, f((p,q')) < m, pois f preserva a ordem.

Veja que, dado $a \in \mathbb{R}$, $f(\{(x,y): x,y \in \mathbb{R}, x \leq a\}) = (-\infty,m) \subset \mathbb{R}$, para algum m, pois trata-se de um segmento inicial sem elementos máximo e mínimo. No entanto, como f é bijeção, deve existir algum $(p,q) \in \mathbb{R} \times \mathbb{R}$ tal que f((p,q)) = m, com p > a. Mas, dado q' < q, teremos que $(p,q') \prec (p,q)$ e, portanto, f((p,q')) < m, pois f preserva a ordem.

Como f é injetiva, precisamos ter que $(p,q')\in f^{-1}((-\infty,m))=\{(x,y):x,y\in\mathbb{R},x\leq a\}$, mas isso é uma contradição.

Mas veja, ambos são modelos para *DLO*, portanto são equivalentes. Mas não são isomorfos, ainda que haja uma bijeção.

Submodelos

Definição

Dado um vocabulário L e um L-modelo \mathcal{M} , um submodelo de \mathcal{M} é um modelo \mathcal{N} tal que:

- \bigcirc $N \subset M$;
- \bullet $\mathbf{f}^{\mathcal{N}} = \mathbf{f}^{\mathcal{M}}|_{N}$;
- $\mathbf{0} \ \mathbf{c}^{\mathcal{N}} = \mathbf{c}^{\mathcal{M}};$
- $\mathbf{R}^{\mathcal{N}} = \mathbf{R}^{\mathcal{M}} \Big|_{\mathcal{N}}.$

Ou seja, é um subconjunto que preserva a interpretação.

Por exemplo, subgrupos, subcorpos e subanéis são submodelos.

Um subconjunto que é um modelo é um submodelo?

Um subconjunto que é um modelo é um submodelo? Não.

Exemplos, na linguagem de grupos:

lacksquare ($\mathbb{Q}\setminus\{0\}, imes,1$) não é submodelo de ($\mathbb{R},+,0$);

Um subconjunto que é um modelo é um submodelo? Não.

Exemplos, na linguagem de grupos:

- $\bullet \ (\mathbb{Q} \setminus \{0\}, \times, 1) \text{ n\~ao \'e submodelo de } (\mathbb{R}, +, 0);$
- $(\mathbb{Z}_n,+,0)$ não é submodelo de $(\mathbb{Z},+,0)$.

Um subconjunto que é um modelo é um submodelo? Não.

Exemplos, na linguagem de grupos:

- $\bullet \ (\mathbb{Q} \setminus \{0\}, \times, 1) \text{ n\~ao \'e submodelo de } (\mathbb{R}, +, 0);$
- $(\mathbb{Z}_n,+,0)$ não é submodelo de $(\mathbb{Z},+,0)$.
- $(n\mathbb{Z},+,0)$ é um submodelo de $(\mathbb{Z},+,0)$.

Submodelos elementares

Dados $\mathcal{N} \subset \mathcal{M}$, temos que, se $\varphi(x)$ é uma fórmula sem quantificadores, então, para todo $n \in \mathcal{N}$:

$$\mathcal{N} \models \varphi(\mathbf{n}) \Leftrightarrow \mathcal{M} \models \varphi(\mathbf{n})$$

Submodelos elementares

Dados $\mathcal{N} \subset \mathcal{M}$, temos que, se $\varphi(x)$ é uma fórmula sem quantificadores, então, para todo $n \in \mathcal{N}$:

$$\mathcal{N} \models \varphi(\mathbf{n}) \Leftrightarrow \mathcal{M} \models \varphi(\mathbf{n})$$

Se isso vale para qualquer fórmula, seja ela livre de quantificadores ou não, então dizemos que $\mathcal N$ é um submodelo elementar de $\mathcal M$.

Submodelos elementares

Dados $\mathcal{N} \subset \mathcal{M}$, temos que, se $\varphi(x)$ é uma fórmula sem quantificadores, então, para todo $n \in \mathcal{N}$:

$$\mathcal{N} \models \varphi(\mathbf{n}) \Leftrightarrow \mathcal{M} \models \varphi(\mathbf{n})$$

Se isso vale para qualquer fórmula, seja ela livre de quantificadores ou não, então dizemos que $\mathcal N$ é um submodelo elementar de $\mathcal M$.

Proposição

$$\mathcal{N} \prec \mathcal{M} \Rightarrow \mathcal{N} \equiv \mathcal{M}$$

Exemplos

Dado um grafo infinito completo G, todo subgrafo infinito é submodelo elementar.

Exemplos

Dado um grafo infinito completo G, todo subgrafo infinito é submodelo elementar.

Como anéis, $\mathbb Z$ é submodelo de $\mathbb Q$, mas não é elementar. Do mesmo jeito, $\mathbb Q$ é submodelo de $\mathbb R$, mas não elementar.

Exemplos

Dado um grafo infinito completo G, todo subgrafo infinito é submodelo elementar.

Como anéis, $\mathbb Z$ é submodelo de $\mathbb Q$, mas não é elementar. Do mesmo jeito, $\mathbb Q$ é submodelo de $\mathbb R$, mas não elementar.

Como grupos, com a soma, se n|m, então $m\mathbb{Z}$ é submodelo elementar de $n\mathbb{Z}$.

Submodelos equivlentes

Será que...

$$\mathcal{N} \subset \mathcal{M} \ \mathsf{e} \ \mathcal{N} \equiv \mathcal{M} \ \Rightarrow \mathcal{N} \prec \mathcal{M}$$

Submodelos equivlentes

Será que...

$$\mathcal{N} \subset \mathcal{M} \; \mathsf{e} \; \mathcal{N} \equiv \mathcal{M} \; \Rightarrow \mathcal{N} \prec \mathcal{M}$$

Não!

Submodelos equivlentes

Será que...

$$\mathcal{N} \subset \mathcal{M} \; \mathsf{e} \; \mathcal{N} \equiv \mathcal{M} \; \Rightarrow \mathcal{N} \prec \mathcal{M}$$

Não! Considere os intervalos $[-1,1] \subset [-2,2]$.

Eles são isomorfos, como ordens. Mas os elementos máximo e mínimo não são os mesmos.

Na próxima aula...

Veremos os teoremas de Löwenheim-Skolem-Tarski, que permitem construir submodelos abritrariamente pequenos ou supermodelos arbitrariamente grandes.

Até amanhã!