WHAT IS CLAIMED IS:

A method for treating abnormal mucosa in an esophagus, said method 1 1. 2 comprising: 3 positioning an energy delivery device within the esophagus; and 4 delivering energy from the device under conditions selected to initiate re-5 growth of a mucosal layer without substantial injury to a submucosal layer underlying the 6 mucosal layer. 1 2. A method as in claim 1, wherein the energy is delivered at a total dosage in the range from 1 J/cm² to 50 J/cm². 2 1 3. A method as in claim 2, wherein the total energy dosage is delivered 2 over a time period below 5 seconds. 1 4. A method as in any of claims 1 to 3, wherein the energy delivery 2 device is positioned in the lower esophagus. 1 5. A method as in claim 4, wherein the energy delivery device is 2 positioned to deliver energy to the entire circumferential mucosal surface over a length in the 3 range from 1 cm to 15 cm, the mucosal surface located above the lower esophageal sphincter. 1 6. A method as in claim 4, wherein the abnormal mucosa is metaplastic. 1 7. A method as in claim 4, wherein the energy is delivered over a 2 circumferential treatment region of the mucosa. 1 8. A method as in claim 7, wherein the energy is delivered about the 2 entire circumferential treatment region at one time. 1 9. A method as in claim 7, wherein the energy is delivered sequentially to 2 two or more segments of the circumferential treatment region. 1 10. A method as in claim 4, wherein the energy is delivered under 2 conditions which substantially necrose the mucosal layer. 1 11. A method as in claim 4, wherein the energy is delivered under 2

conditions which injure the mucosal layer without substantial necrosis.

- 1 12. A method as in claim 4, wherein the energy delivered comprises at 2 least one form of energy selected from the group consisting of radiofrequency energy, 3 thermal energy, microwave energy, ultrasonic energy, infrared and ultraviolet radiation. 1 13. A method as in claim 12, wherein the energy delivered comprises 2 radiofrequency energy. 1 14. A method as in claim 13, wherein delivering radiofrequency energy 2 comprises deploying an array of bipolar electrode pairs from the device. 1 15. A method as in claim 14, wherein the electrodes have a width in the 2 range from 0.1 mm to 3 mm and are spaced apart by a distance in the range from 0.1 mm to 3 3 mm. 1 16. A method as in claim 15 wherein the electrode pairs are formed over a 2 dimensionally stable membrane so that interelectrode spacing remains constant as the 3 membrane is deployed. 1 17. A method as in claim 14, wherein the electrode pairs directly contact 2 the mucosal surface. 1 18. A method as in claim 14, wherein the electrode pairs are on a side of 2 the membrane which does not directly contact the mucosal surface. 1 19. A method as in claim 13, wherein delivering the radiofrequency energy 2 comprises attaching one pole of a radiofrequency power supply to the device and another 3 pole to a counter electrode placed on the patient's body remote from the energy delivery 4 device. 1 20. A method as in claim 13, wherein the device comprises an expandable 2 bladder which is filled with a conductive fluid to deliver the radiofrequency energy through
 - 21. A method as in claim 13, wherein the device comprises a monopolar array in or over an expandable structure for delivering the radiofrequency energy.

3

1

2

the bladder.

1		22.	A method as in claim 12, wherein the energy delivered comprises	
2	thermal energy.			
1		23.	A method as in claim 22, wherein the thermal energy is radiated	
2	radially outwa	ardly fro	om a thermal source in the esophageal lumen.	
1		24.	A method as in claim 23, wherein radiating thermal energy comprises	
2	heating a radi		aced radially inwardly from the mucosa to a temperature above 1000°C.	
	J			
1		25.	A method as in claim 24, wherein the radiator is selected from the	
2	group consisting of filaments, spherical radiators, cylindrical radiators, and polygonal			
3	radiators.			
1		26.	A method as in claim 24, wherein the radiator is positioned between	
2	two expansible supports.			
1		27.	A method as in claim 24, wherein the radiator is positioned in a	
2	balloon which is transparent to the radiated energy.			
1		28.	A system for treating mucosal tissue in an esophagus, said system	
2	comprising:			
3		an elongated member;		
4	an energy delivery structure deployable from the elongated member and			
5	adapted to deliver energy to at least a portion of a circumferential section of the mucosal			
6	lining of the esophagus; and			
7	means for delivering energy through the delivery structure under conditions			
8	selected to initiate regrowth of a mucosal layer without substantial injury to a submucosal			
9	layer underlying the mucosal layer.			
1		29.	A system as in claim 28, wherein the energy delivery structure	
2	comprises an	expanda	able structure deployable from the elongated member.	
1		30.	A system as in claim 29, wherein the expandable structure comprises	
2	an avnandable		•	
4	an expandable balloon.			
1		31.	A system as in claim 30, wherein the balloon is non-distensible and	
2	dimensionally	stable.		

1 32. A system as in claim 30, wherein the balloon is elastic. 1 33. A system as in any of claims 28 to 32, wherein the energy delivery 2 structure further comprises an electrode array. 1 34. A system as in claim 33, wherein the electrode array comprises bipolar 2 electrode pairs formed over at least a portion of the outer surface of the balloon, wherein the 3 spacing between the electrodes is no more than 3 mm. 1 35. A system as in claim 34, wherein the electrodes are aligned axially on 2 the balloon. 1 36. A system as in claim 34, wherein the electrodes are aligned 2 circumferentially over the balloon. 1 37. A system as in claim 33, wherein the balloon includes electrodes of a 2 common polarity formed over at least a portion of its exterior surface. 1 38. A system as in claim 33, wherein the balloon includes electrodes of a 2 common polarity formed over at least a portion of its inner surface. 1 39. A system as in any of claims 30 to 32, wherein the balloon is inflatable 2 with a conductive medium to form a monopolar electrode. 1 40. A system as in claim 29, wherein the expandable structure comprises a frame deployable from the elongated member and an electrode array formed over at least a 2 3 portion of the frame. 1 41. A system as in claim 40, wherein the frame comprises an arcuate 2 surface which carries the electrodes to engage a partial section of the circumference of the 3 esophagus. 1 42. A system as in claim 41, wherein the frame comprises two oppositely 2 facing arcuate surfaces. 1 43. A system as in claim 28, wherein the energy delivery structure

2

comprises a heating structure.

- 1 44. A system as in claim 43, wherein the heating structure comprises a radiation heat source.
- 1 45. A system as in claim 44, wherein the energy delivery structure further 2 comprises a pair of expandable centering elements disposed distally and proximally of the 3 radiation heat source.
- 1 46. A system as in any one of claims 43 to 45, wherein the radiation heat 2 source is a filament, spherical radiator, cylindrical radiator, or polygonal radiator.
- 1 47. A system as in claim 28 wherein the energy delivery means comprises 2 a photonic source.
- 1 48. A system as in claim 28, wherein the energy delivery means comprises 2 a radiofrequency power supply.
 - 49. A system as in claim 48, wherein the radiofrequency power supply is adaptable to deliver an energy dosage in the range from 1 J/cm² to 50 J/cm² over a time period less than 5 seconds.

1

2