Lab-2 Report

This report talks about the calculating the value of $Pi(\pi)$ using Wallis Method and Leibniz Series. I implement, both the ways of calculating $Pi(\pi)$ serially and in a multi-threaded fashion. Since, the precision of double or long double is limited, we expect not to see accuracy beyond 15 decimal digits when calculating π .

I have chosen Wallis and Leibniz Series to calculate the value of π , because these methods were slow in comparison to other methods such as Ramanujan formula. This will help me in studying the effects of using multi-threading more and garner experience out of speeding up the calculation using multi-threading.

Wallis Method

[Reference 1 - (19)]

$$\frac{\pi}{2} = \prod_{n=1}^{\infty} \frac{4n^2}{4n^2 - 1} = \prod_{n=1}^{\infty} \left(\frac{2n}{2n - 1} \cdot \frac{2n}{2n + 1} \right)$$
$$= \left(\frac{2}{1} \cdot \frac{2}{3} \right) \cdot \left(\frac{4}{3} \cdot \frac{4}{5} \right) \cdot \left(\frac{6}{5} \cdot \frac{6}{7} \right) \cdot \left(\frac{8}{7} \cdot \frac{8}{9} \right) \cdot \dots$$

This method calculates value of π using a product series. Shown below is an implementation in C.

```
long double CalPiFromWallisFormula(long int n)
{
    long double product=1.0;
    long double pi,term;
    for(long double i=1; ((long int)i)<n; i++){
            if(product == 0.0 ) break;
            term=(2*i)/(2*i-1);
            product=product*term;
            term=(2*i)/(2*i+1)*1.0;
            product=product*term;
    }
    long double pi = 2 * product;
    return pi;
}</pre>
```

Leibniz Series

[Reference 1 - (6)]

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}$$

It is derived from the taylor series and uses a sum series to calculate the value of π . Shown below is an implementation in C.

```
long double CalPiFromLeibnizFormula(long int n)
{
    long double pi;
    long double sum=0.0;
    long double term;
    for(long int i=0;i<n;i++){
        term= pow(-1,i)/(2*i+1);
        sum+= term;
    }
    pi = 4 * sum;
    return pi;
}</pre>
```

Approach for Multi-thread execution

Approach \underline{M} : Uses *mutex* as a synchronising medium.

Approach S: Uses *semaphore* as a synchronising medium.

For multi-thread execution, I divided the number of terms and gave each thread its share of computations to perform. After each thread computes its calculations, I then combine the results in a global variable.

I also found that Approach \underline{S} produced better timings on multi-threading executions than Approach \underline{M} , due to unknown reasons. Even though, general text on the web, mentions mutexes as being lightweight. At the end, I show results using Approach \underline{S} . A thread job for Wallis method is shown below.

```
void* ThreadJobWallis(void* threadCount)
{
        long tCount = (long) threadCount;
        long int startTerm = (gTermsLeibniz/gNumOfThreads)*tCount;
        long int endTerm = (gTermsLeibniz/gNumOfThreads)*(tCount+1);
        long double tProduct = GetProductWallis(startTerm,endTerm);
        pthread_mutex_lock(&gSumMutex);
        gThreadProductWallis = gThreadProductWallis*tProduct;
        pthread_mutex_unlock(&gSumMutex);
        return NULL;
}
```

Results

Values of (π) generated on 2000000000 terms of series :

```
Actual \pi = 3.141592653589793115997963468544 Leibniz \pi = 3.141592653089796551880985564509 Leibniz \pi (MT) = 3.141592653089795227853292525211 Wallis \pi = 3.141592653197101029250576376128 Wallis \pi (MT) = 3.141592653135968823832971374976 (MT : On multi-threading variant)
```

Accuracy

```
Leibniz Serial = 10 decimal digits

Leibniz MT = 10 decimal digits

Wallis Serial = 10 decimal digits

Wallis MT = 10 decimal digits
```

Accuracy (in bits)

```
Leibniz Serial = 25 decimal bits

Leibniz MT = 25 decimal bits

Wallis Serial = 25 decimal bits

Wallis MT = 25 decimal bits
```

Accuracy (in absolute percentage)

```
Leibniz Serial = 100.000000%
Leibniz MT = 100.000000%
Wallis Serial = 100.000000%
Wallis MT = 100.000000%
```

The below graph shows how accuracy of $Pi(\pi)$ increases with increase in number of terms for Wallis method and Leibniz Series.

In the below graphs , we observe:

- We can see, the Wallis Product Series method converges faster than the Leibniz Sum series.
- We see that in general as the thread count increases beyond a threshold it starts to increase the overall time curve.

(Please turn over)

(Please turn over for more graphs)

Data

Accuracy Decimal Digits Data.

Terms (10 ⁿ)	Leibniz Sum	Wallis Product
0	0	0
1	1	1
2	2	2
3	3	3
4	4	5
5	5	5
6	6	6
7	7	7
8	8	8
9	9	9
10	10	11

Threads vs Time Data. [Number of Terms=18018000]

Thread Count	Leibniz Series Time(s)	Wallis Product Time(s)
2	0.624821	0.340392
3	0.616579	0.335778
4	0.591496	0.336337
5	0.594485	0.348136
6	0.615681	0.327805
7	0.605916	0.334275
8	0.604995	0.368242
9	0.608686	0.34404
10	0.619177	0.360349
11	0.629382	0.377522
12	0.601677	0.350936
13	0.61084	0.369345
14	0.624493	0.385899
15	0.61142	0.360041
16	0.608412	0.360259
17	0.594425	0.357908

18	0.603122	0.358541
19	0.603539	0.383172
20	0.61109	0.371543
21	0.618275	0.36846
22	0.626238	0.356812
23	0.615725	0.357537
24	0.600143	0.353479
25	0.619685	0.362619
26	0.629676	0.366157
27	0.605075	0.345007
28	0.614825	0.361589
29	0.602213	0.362387
30	0.612929	0.362474
31	0.604804	0.351295
32	0.603494	0.350663

References:

- 1. The Calculation and Analysis of PI in Computer Numerical Simulation by ZENG Shengda, RUAN Zhiyi, CAI Jianwei, LIN Lixin, WU Lurong. 2012
- 2. <u>Implementation Example from CodeAnsar</u>.
- 3. Wikipedia PI
- 4. <u>Difference between Binary Semaphore and Mutex</u>.