Finite-State Automata - 9/8/2021

Definition

A finite-state automaton (automata for plural form) is a kind of finite-state machine that does not include outputs for each transition, but rather has a list of final states. I.e. a *finite-state automaton* $M=(S,I,f,s_0,F)$ consists of the following:

- ullet a finite set S of states
- a finite input alphabet I
- ullet a $oldsymbol{\mathsf{transition}}$ $oldsymbol{\mathsf{f}}$ that assigns each state and input pair a new state
- an initial state s_0
- (the difference between FSM and FSA) a set of **final states** $F\subseteq S$

Think of F as the set of all transitions whose output to get there is a 1 in a **Mealy machine**. Instead of using output, we just say that the machine recognizes a string that ends on that state. In a diagram, we'll represent a final state $s_f \in F$ with two circles around the state instead of one. E.g. see the following diagram:

To translate our FSM to an FSA, $S=\{s_0,s_1,s_2,s_3\},I,f$, and s_0 all remain the same, but we now have $F=\{s_1,s_3\}$.

Language Recognition

Definition

To formalize our definition:

A string x is said to be *recognized* or *accepted* by the FSA $M=(S,I,f,s_0,F)$, if it takes the initial state s_0 to a final state. That is, $f(s_0,x)$ is a state in F. The **language recognized** by the machine M, denoted L(M) is the set of all strings that are recognized by M.

Finite-State Automata Equivalence

Definition

Same as for FSMs; two FSAs are **equivalent** if they recognize the same language.

More examples:

FSM:

FSA:

