DSGA-1003 Machine Learning and Computational Statistics

March 1, 2017: Test 1

Answer the questions in the spaces provided. If you run out of room for an answer, use the blank page at the end of the test. Please **don't miss the last question**, on the back of the last test page.

Name:			
NYU NetID:			

Question	Points	Score
1	4	
2	4	
3	3	
4	1	
5	2	
6	4	
7	4	
8	5	
9	4	
Total:	31	

	$(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \{-1, +1\}$ be a given set of labeled training data.
(a)	(1 point) Give an expression for the (functional, i.e., non-geometric) margin on the data point (x_i, y_i) for an affine score function $f(x) = w^T x + b$ where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$.
	(x_i, y_i) for all alline score function $f(x) = w \cdot x + v$ where $w \in \mathbb{R}$ and $v \in \mathbb{R}$.
(b)	$(1\ \mathrm{point})$ Write the soft-margin SVM objective function in Tikhonov form (i.e., penalty form with no constraints) for the affine hypothesis space
	$H = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$
(c)	(2 points) Give an equivalent formulation of the soft-margin SVM optimization problem with a differentiable objective function and affine inequality constraints.

1.

2	Consider the variant of the Lasso regression problem given below:
۷.	minimize $w \in \mathbb{R}^d$ $\ Xw - y\ _2^2$ subject to $\ w - v\ _1 \le r$.
	Here $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, $v \in \mathbb{R}^d$, and $r \in \mathbb{R}_{>0}$ are given. (a) (1 point) Give the Lagrangian using λ as the dual variable.
	(b) (1 point) Prove that strong duality holds. [Recall Slater's condition: For a convex optimization problem, if there exists a $w \in \mathbb{R}^d$ that is strictly feasible, then strong duality holds.]
	(c) (1 point) Complementary slackness conditions specify a relation on the primal and dual optimal variables w^* and λ^* . Write the complementary slackness conditions for this problem.

(d) (1 point) Suppose d=2, r=1, $v=(1,1)^T$, and $\lambda^*=3$, where λ^* is an optimizing dual variable. Which of the following are possible values of w^* , an optimizing primal variable (select **all** that apply)?

 $\square \ w^* = (2,1)$

has a we as	$\mathcal{X} = \{1, 2, 3\}$, let $\mathcal{Y} = \{1, 2, 3, 4, 5\}$, and let $\mathcal{A} = \mathcal{Y}$. Suppose the data generating distribution, P , marginal $X \sim \text{Unif}\{1, 2, 3\}$ and conditional distribution $Y X = x \sim \text{Unif}\{x, x + 1, x + 2\}$. Assume re using the square loss $\ell(a, x) = (a - x)^2$. [Note: Unif denote the uniform distribution on the given
set.] (a)	(1 point) What is the Bayes decision function?
(b)	(2 points) What is the Bayes risk?

4.	(1 point) Which one of the following statements is least plausible (i.e., probably FALSE) about minibatches for gradient descent.
	\square Improved implementation or improved hardware can allow us to increase the minibatch size and simultaneously reduce convergence time (in seconds).
	\square In general, enlarging the minibatch size (chosen randomly, with replacement) lets us get a better estimate of the full training set gradient.
	☐ In general, if we increase the size of our training set by a factor of 1000, then the best minibatch size (with respect to convergence time, in seconds) should also increase by a factor of 1000.
5.	(2 points) Suppose we have a convex objective function (for regularized ERM) and we are currently not at a minimum. Which of the following are always descent directions (select all that apply)?
	\square Negative of a minibatch gradient.
	\square Negative of a minibatch subgradient.
	□ Negative of the full training set gradient.
	\Box Negative of the full training set subgradient.
6	Let $\mathcal{X} = \mathbb{R}^d$ and let $\mathcal{Y} = \mathcal{A} = \mathbb{R}$. Define the infinite collection of hypothesis spaces $\{\mathcal{F}_r \mid r \geq 0\}$ where
0.	Let $\mathcal{X}=\mathbb{R}^d$ and let $\mathcal{Y}=\mathcal{X}=\mathbb{R}^d$. Define the infinite conection of hypothesis spaces $\{\mathcal{F}_r\mid r\geq 0\}$ where $\mathcal{F}_r=\{f(x)=w^Tx+b\mid w\in\mathbb{R}^d,b\in\mathbb{R},\ w\ _2\leq r\}.$
	Define the additional hypothesis space
	$\mathcal{F}_{\infty} = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$
	Fix a training set $(x_1, y_1), \ldots, (x_n, y_n)$ where $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$. Throughout, assume we are using some arbitrary fixed loss function ℓ .
	(a) (1 point) Among all hypothesis spaces \mathcal{F}_r for $r \geq 0$, and \mathcal{F}_{∞} , give a hypothesis space that has empirical risk minimizer with the smallest empirical risk.
	(b) (1 point) Among all hypothesis spaces \mathcal{F}_r for $r \geq 0$, and \mathcal{F}_{∞} , give a hypothesis space that has the lowest approximation error.
	(c) (1 point) True or False : Let f_{∞} denote the empirical risk minimizer over \mathcal{F}_{∞} , and let f_c denote the empirical risk minimizer over \mathcal{F}_c , where c was chosen by minimizing the loss on a validation set. Then we always have $R(f_c) \leq R(f_{\infty})$.
	(d) (1 point) True or False: Let f_{∞} and f_c be as defined previously. Suppose, mistakenly, we reused the training set as the validation set when choosing c . Then we always have $\hat{R}(f_c) = \hat{R}(f_{\infty})$

(where \hat{R} still refers to the empirical risk on the training set).

7. Let $\mathcal{X} = [0,1]$ and $\mathcal{Y} = \mathcal{A} = \mathbb{R}$. Suppose you receive the (x,y) data points (0,0), (1,0), (1,1), (2,2), (3,5). Throughout assume we are using the 0-1 loss function $\ell(a,y) = \mathbf{1}(a \neq y)$.

(a) (1 point) Suppose we restrict to the hypothesis space \mathcal{F}_1 of constant functions. What is the empirical risk minimizer $\hat{f}(x)$?

(b) (1 point) Suppose we restrict to the hypothesis space \mathcal{F}_1 of constant functions. What is $\hat{R}(\hat{f})$, the empirical risk of \hat{f} , where \hat{f} is the empirical risk minimizer?

	e restrict to ssociated en		\mathcal{F}_2 of increasi	ng functions.	What is the

8.	Define	the	function	h	:	\mathbb{R}	\rightarrow	\mathbb{R}	by
----	--------	-----	----------	---	---	--------------	---------------	--------------	----

$$h(x) = \begin{cases} x^2/2 & \text{if } |x| \le 1, \\ |x| - 1/2 & \text{if } |x| > 1. \end{cases}$$

Consider the objective function

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} h(w^{T} x_{i} - y_{i}) + \lambda ||w||_{2}^{2}$$

	t-1
whei	re $(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$ and $\lambda > 0$ are given.
(a)	(1 point) Which one of the following is the most likely reason for using h as our loss function instead of the more standard square loss?
	☐ The above is the objective for a classification problem, so a different loss is necessary.
	☐ The square loss overemphasizes the effect of outliers.
<i>(</i> - \	\Box Using h will enable us to find sparse solutions.
(b)	(1 point) We want to minimize $J(w)$ using stochastic gradient descent. Assume the current data point is (x_i, y_i) . The SGD step direction is given by $v = -\nabla_w G(w)$, for some function $G(w)$. Give an explicit expression for $G(w)$ in terms of h , λ , and the given data. [Note: You do not have to expand the function h .]
(c)	(1 point) Assume $J(w)$ has a minimizer w^* . Give an expression for w^* in terms of a vector $\alpha \in \mathbb{R}^n$ that is guaranteed by the representer theorem. You may use the design matrix $X \in \mathbb{R}^{n \times d}$.

$n \times d$ is the matrix			

ONE MORE QUESTION ON THE BACK OF THIS PAGE

9. Consider the following version of the elastic-net objective:

$$J(w) = \frac{1}{n} ||Xw - y||_2^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2.$$

Here we have a training set $(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}, X \in \mathbb{R}^{n \times d}$ has x_i^T as its *i*th row, and $y \in \mathbb{R}^n$ has y_i as its ith coordinate. We fit our data 3 times with the following configurations:

- 1. Configuration A) $(\lambda_1, \lambda_2) = (0, 0)$
- 2. Configuration B) $(\lambda_1, \lambda_2) = (5, 0)$
- 3. Configuration C) $(\lambda_1, \lambda_2) = (0, 5)$

Answer the following questions based on the above information.

- (a) For each of the following, state one of the configurations that is most likely being described. Below w^* represents a minimizer of J.
 - i. (1 point) $\underline{\hspace{1cm}} w^*$ has several entries that are 0.
 - ii. (1 point) ____ The decision function corresponding to w^* has the lowest training error out of all of the configurations.
- (b) (2 points) Suppose each data point x has 2 features (x_1, x_2) , and that we are using Configuration C. We applied feature normalization which resulted in new scaled features

$$\tilde{x}^T = (\tilde{x}_1, \tilde{x}_2) = (2x_1, x_2/3).$$

This gives the new objective

$$J_s(\tilde{w}) = \frac{1}{n} ||\tilde{X}\tilde{w} - y||_2^2 + 5||\tilde{w}||_2^2$$

which when minimized gives decision function

$$f_{\tilde{w}}(\tilde{x}) = \tilde{w}^T \tilde{x} = 2\tilde{w}_1 x_1 + \tilde{w}_2 x_2 / 3.$$

Which one of the following unscaled objectives, when minimized, will yield the same decision function? Below we use the unscaled decision function

$$f_w(x) = w_1 x_1 + w_2 x_2$$

and want $f_w(x) = f_{\tilde{w}}(\tilde{x})$.

$$||J(w)|| = \frac{1}{n} ||Xw - y||_2^2 + 5w_1^2 + 5w_2^2$$

$$\Box J(w) = \frac{1}{2} ||Xw - y||_2^2 + 5w_1^2/4 + 45w_2^2$$

$$\Box J(w) = \frac{1}{n} ||Xw - y||_2^2 + 5w_1^2 + 5w_2^2$$

$$\Box J(w) = \frac{1}{n} ||Xw - y||_2^2 + 5w_1^2/4 + 45w_2^2$$

$$\Box J(w) = \frac{1}{n} ||Xw - y||_2^2 + 20w_1^2 + 5w_2^2/9$$