Name: Jigar Siddhpura SAPID: 60004200155

DIV: C/C2 Branch: Computer Engineering

AI EXPERIMENT 5 - Genetic Algorithm

Aim: To study and implement Genetic Algorithm

Theory:

A genetic algorithm is a search heuristic that is inspired by Charles Darwin's theory of natural evolution. This algorithm reflects the process of natural selection where the fittest individuals are selected for reproduction in order toproduce offspring of the next generation.

ive phases are considered in a genetic algorithm.
1. Initial population
2. Fitness function
3. Selection
4. Crossover
5. Mutation
nitial Population
The process begins with a set of individuals which is called a Population. Eachindividual is a solution to the problem you want to solve. An individual is characterized by a set of parameters variables) known as Genes. Genes are joined into a string to form a Chromosome (solution).
itness Function
ne fitness function determines how fit an individual is (the ability of an individual to compete with her individuals). It gives a fitness score to each individual. The probability that an individual will a selected for reproduction isbased on its fitness score.
<u>election</u>
ne idea of selection phase is to select the fittest individuals and let them pass their genes to the ext generation.Two pairs of individuals (parents) are selectedbased on their fitness scores.

Crossover is the most significant phase in a genetic algorithm. For each pair ofparents to be mated,

a mutation with a low random probability. This implies that some of the bits inthe bit string can be

Individuals with high fitness have more chance to be selected for reproduction.

a crossover point is chosen at random from within the genes.

In certain new offspring formed, some of their genes can be subjected to

Crossover

Mutation

flipped.

Code:

```
import random
gene = ['000000','111111','101011','110110']
def selection(gene):
    x = [int(x,2) \text{ for } x \text{ in gene}]
    fx = [int(x)*int(x) for x in x]
    fx_{sum} = sum(fx)
    fx_avg = fx_sum/len(fx)
    excepted_count = [round((i/fx_avg),4) for i in fx]
    actual_count = [round(i) for i in excepted_count]
    mate_pool = []
    for i,j in zip(actual_count,gene):
        if i:
            for c in range(i):
                mate_pool.append(j)
   return x,fx, fx_sum,fx_avg,excepted_count,actual_count,mate_pool
def generate_mate(size,mate_element_size):
    if size % 2 != 0:
        return -1
    available_positions = list(range(size))
    random.shuffle(available_positions)
    mate = [-1] * size
    crossover =[-1] * size
    for i in range(size):
        if mate[i] == -1:
            j = random.choice(available_positions)
            while mate[j] != -1 or j == i:
                j = random.choice(available_positions)
            mate[i] = j
            mate[j] = i
            available_positions.remove(i)
            available_positions.remove(j)
    for i in mate:
        if crossover.count(-1) != 0:
            crossover[i] = crossover[mate[i]] = random.randint(1, mate_element_size-1)
    return mate, crossover
def crossover(mate_pool):
    mate, crossover_points = generate_mate(len(mate_pool),len(mate_pool[0]))
    new_poplu = [-1]*len(mate_pool)
    for i in mate:
        new_poplu[i] = mate_pool[i][:crossover_points[i]] + mate_pool[mate[i]][crossover_points[i]:]
    x = [int(x,2) \text{ for } x \text{ in } new\_poplu]
    fx = [int(x)*int(x) for x in x]
    return mate_pool,new_poplu,mate,crossover_points,x, fx
def GA(gene,iter,n):
    if iter == 0:
        return
    x,fx, fx_sum,fx_avg,excepted_count,actual_count,mate_pool = selection(gene)
```

```
if sum(actual_count)!=len(gene):
      print("Error dont know what to do at this situation ")
   print(f"\n-----
                        ------ GENERATION {n} --------
   print("Initial Population\tX Value\t\tFitness Value( f(x) )\tProbability(Expected Count)\tActual
Count")
   print(f"-----
   for i in range(len(gene)):
    print(f"{gene[i]}\t\t\t{x[i]}\t\t{fx[i]}\t\t\t{excepted_count[i]}\t\t\t\t{actual_count[i]}")
   mate_pool,new_poplu,mate,crossover_points,x, fx = crossover(mate_pool)
   print(f"\n-----
                                            ----- New Population {n} -----
          ·----")
   print("Mate Pool\tMate\t\tCrossover Points\tNew Population\t\tx value\t\tf(x)")
   print(f"-----
   for i in range(len(gene)):
     print(f"{mate_pool[i]}\t\t{mate[i]}\t\t{crossover_points[i]}\t\t{new_poplu[i]}\t\t\t{x[i]}\
t\t{fx[i]}")
   GA(new_poplu,iter-1,n+1)
GA(gene,4,0)
```

Output:

			GEN			<u> </u>	
Initial Popul	ation	X Value	Fitness Value	(f(x))	Probability(Expected Count)	Actual Count
000000		Θ	Θ		0.0		Θ
111111		63	3969		1.8181		2
101011		43	1849		0.847		î
110110		54	2916		1.3358		1
			New F				
Mate Pool	Mate	Cr	ossover Points	New Pop	oulation	x value	f(x)
111111	3	<u> </u>		111110		62	3844
111111	2	5		111111		63	3969
101011	1	5		101011		43	1849
110110	ō	5		110111		55	3025
		v v-1		ERATION 1			1.6
Initial Popul	ation 	X Value	Fitness Value	(+(x))	Probability(Expected Count)	Actual Count
111110		62	3844		1.2122		1
111111		63	3969		1.2517		1
101011		43	1849		0.5831		1
110111		55	3025		0.954		ī
Mate Pool	Mate		ossover Points		1 ulation	x value	f(x)
111110	3	1		110111		55	3025
111111	2	4		111111		63	3969
101011	1	4		101011		43	1849
110111	Θ	1		111110		62	3844
Toitial Dooul	-64-44	V Value	GEN			'Eveneted Count'	Actual Count
Initial Population		X Value Fitness Value((t(x))	Probability(Expected Count)		Actual Count
110111		55	3025		0.954		1
111111		63	3969		1.2517		1
101011		43	1849		0.5831		1
111110		62	3844		1.2122		i
 Mate Pool	Mate	C	ossover Points		2 ulation	x value	f(x)
THE POOL	nace	CI	OSSOVEL POLICES	men Pop	a care to li	vacue	
110111	1	4		110111		55	3025
111111	0	4		111111		63	3969
101011	3	5		101010		42	1764
111110	2	5		111111		63	3969
Initial Popul	ation	X Value		ERATION 3		Expected Count)	Actual Count
Iniciac Popul	acton	A value	FICHESS VALUE	((X))	Probability	expected count)	ACCUAL COUNT
110111		55	3025		0.951		1
111111		63	3969		1.2477		1
		42	1764		0.5545		1
101010		63	3969		1.2477		ī
101010 111111				1 - 1 - 1	3		
111111			New F			The second second	(6.3)
	Mate	Cr	ossover Points		oulation	x value	f(x)
111111	Mate 3	Cr 3				x value 55	f(x)
111111 Mate Pool				New Pop			
111111 Mate Pool 110111 111111	3 2	3 2		New Pop 110111 111010			3025 3364
111111 Mate Pool 110111	3	3		New Pop		55	3025

Conclusion:

Thus we successfully studied and applied Genetic Algorithm

