

By @kakashi_copiador

ESTATÍSTICA

CONCEITOS INICIAIS (MODA)

MODA

☐ É O VALOR COM MAIOR FREQUÊNCIA.

MODA PARA DADOS NÃO AGRUPADOS

MODA

☐ É O VALOR COM MAIOR FREQUÊNCIA.

4 4 4 8 8 9 9

66668899

MODA

2 2 2 2 3 3 4 5 5 5 6 6 6 6 9 9

ESTATÍSTICA Prof. JHONI ZINI

Estratégia Concursos

2 2 3 3 4 4 5 5 6 6 9 9

ESTATÍSTICA Prof. JHONI ZINI

MODA PARA DADOS AGRUPADOS SEM INTERVALOS DE CLASSE

idade	Frequência absoluta
20	2
25	8
30	10

MODA

Após a extração de uma amostra, as observações obtidas são tabuladas, gerando a seguinte distribuição de frequências:

Valor	3	5	9	13
Frequência	5	9	10	3

Considerando que E(X) = Média de X, Mo(X) = Moda de X e Me(X) = Mediana de X, é correto afirmar que:

- A. E(X) = 7 e Mo(X) = 10;
- B. Me(X) = 5 e E(X) = 6.3;
- C. Mo(X) = 9 e Me(X) = 9;
- D. Me(X) = 9 e E(X) = 6.3;
- E. Mo(X) = 9 e E(X) = 7.

MODA PARA DADOS AGRUPADOS EM CLASSE

MODA BRUTA

☐ A moda bruta é simplesmente o ponto médio da classe de maior freqüência, a classe modal.

MODA BRUTA

Xi	fi
70 74	7
74 78	19
78 82	13
82 86	11
86 90	6
90 94	4
Total	60

MÉTODO DE CZUBER

$$MODA = l_i + \frac{\Delta_1}{\Delta_1 + \Delta_2} \cdot h$$

MÉTODO DE CZUBER

Xi	fi
70 74	7
74 78	19
78 82	13
82 86	11
86 90	6
90 94	4
Total	60

MÉTODO DE KING

$$MODA = l_i + \frac{F_{post}}{F_{ant} + F_{post}} \cdot h$$

MÉTODO DE KING

Xi	fi
70 74	7
74 78	19
78 82	13
82 86	11
86 90	6
90 94	4
Total	60

MODA PARA DISTRIBUIÇÕES COM AMPLITUDES NÃO CONSTANTES

☐ UTILIZAMOS A DENSIDADE DE FREQUÊNCIA NO LUGAR DA FREQUÊNCIA.

FAIXA ETÁRIA	FA
10 ⊢ 20	30
20 ⊢ 35	60
35 ⊢ 55	80
55 ⊢ 60	75
60 ⊢ 70	10

QUESTÃO 1

A ideia de grupar as observações de uma população ou amostra constitui uma técnica bem antiga de condensar as informações e assim facilitar o seu tratamento. No passado essa técnica era empregada com sucesso, mas com a ressalva de que os resultados não eram tão precisos quanto aqueles obtidos com dados não grupados.

Classes	Frequências
10 20	50
20 30	28
30 40	24
Total	102

Considere a distribuição expressa em classes de frequências:

QUESTÃO 2

Mesmo sem dispor dos dados de forma desagregada, sobre as estatísticas exatas, é correto afirmar que:

- A. a moda não pertence à última classe;
- B. a média é superior a 28;
- C. a mediana é menor do que 23;
- D. a média é superior a 16;
- E. a moda é inferior a 20.

PROPRIEDADES DA MODA

PROPRIEDADES DA MODA

Somando-se (ou subtraindo-se) uma constante c a todos os valores de uma variável, a moda do conjunto fica aumentada (ou diminuída) dessa constante.

PROPRIEDADES DA MODA

 \square Multiplicando-se (ou dividindo-se) todos os valores de uma variável por uma constante c, a moda do conjunto fica multiplicada (ou dividida) por essa constante.

OBRIGADO

Prof. Ricardo Torques

