Algebraische Geometrie

Vorlesung von PROF. DR. KAY WINGBERG

gesetzt von YICHUAN SHEN

2014/2015 16. Juli 2015

Inhaltsverzeichnis

Inhaltsverzeichnis			3
1	Varietäten		
	1.1	Affine Varietäten	4
	1.2	Projektive Varietäten	5
	1.3	Morphismen	6
2	Schemata 8		
	2.1	Garben	8
	2.2	Schemata	15
	2.3	Erste Eigenschaften von Schemata	28
	2.4	Separierte & eigentliche Morphismen	
	2.5	Modulgarben	
	2.6	Divisoren	69
	2.7	Projektive Morphismen	80
	2.8	Differentiale	
3	Koh	nomologie	96
	3.1	Kohomologie von Garben	96
	3.2	Der Čech-Komplex	105
	3.3	Kohomologie des projektiven Raumes	106
	3.4	Ext-Gruppen	
	3.5	Die Serre-Dualität	113
	3.6	Der Satz von Riemann-Roch für Kurven	118
Index			122

1 Varietäten

Sei k ein algebraisch abgeschlossener Körper.

1.1 Affine Varietäten

Definition.

(i) Die Menge aller n-Tupeln über k

$$\mathbf{A}^n = \mathbf{A}_k^n = \{(a_1, \dots, a_n) \mid a_i \in k\}$$

heißt affiner n-dimensionaler Raum über k. Ein Element $P=(a_1,\ldots,a_n)\in \mathbf{A}^n$ heißt Punkt und die a_i heißen Koordinaten von P.

(ii) Der Polynomring über k in n Variablen bezeichnen wir mit $A = k[X_1, \ldots, X_n]$. Für $T \subset A$ definieren wir die Nullstellenmenge von T wie folgt:

$$Z(T) = \{ P \in \mathbf{A}^n \mid \forall f \in T \colon f(P) = 0 \}$$

Es gilt $Z(T) = Z(\mathfrak{a})$, wobei \mathfrak{a} das von T erzeugte Ideal in A ist.

(iii) Eine Teilmenge $Y \subset \mathbf{A}^n$ der Form Y = Z(T) für ein $T \subset A$ heißt affine algebraische Menge. Für algebraische Mengen $Y_i = Z(\mathfrak{a}_i)$ mit Ideale $\mathfrak{a}_i \subset A, \ i \in I$ gilt:

$$Y_1 \cup Y_2 = Z(\mathfrak{a}_1 \cap \mathfrak{a}_2), \quad \bigcap_{i \in I} Y_i = Z\Big(\sum_{i \in I} \mathfrak{a}_i\Big)$$

Ferner gilt $\mathbf{A}^n = Z(0)$ und $\emptyset = Z(1)$. Wir statten \mathbf{A}^n mit der sogenannten Zariski-Topologie aus, in dem wir eine Menge $U \subset \mathbf{A}^n$ genau dann offen nennen, wenn $\mathbf{A}^n \setminus U$ eine algebraische Menge ist.

- (iv) Eine affine Varietät V ist eine irreduzible abgeschlossene Menge in \mathbf{A}^n , d.h. aus $V = V_1 \cup V_2$ mit abgeschlossenen Mengen $V_1, V_2 \subset \mathbf{A}^n$ folgt $V_1 = \emptyset$ oder $V_2 = \emptyset$. Eine offene Teilmenge einer affinen Varietät bzgl. der induzierten Topologie nennt.
 - Eine offene Teilmenge einer affinen Varietät bzgl. der induzierten Topologie nennt man quasi-affine Varietät.
- (v) Sei $Y \subset \mathbf{A}^n$ eine algebraische Menge. Dann definieren wir das Ideal:

$$I(Y) = \{f \in A \mid \forall P \in Y \colon f(P) = 0\}$$

Der Koordinatenring von Y ist definiert als A(Y) = A/I(Y).

Definition. Sei $\mathfrak{a} \subset A$ ein Ideal. Das *Radikal* von \mathfrak{a} ist definiert als:

$$\operatorname{Rad}(\mathfrak{a}) = \{ f \in A \mid \exists r > 0 \colon f^r \in \mathfrak{a} \}$$

Ein Ideal $\mathfrak{a} \subset A$ heißt Radikalideal, wenn $\mathfrak{a} = \operatorname{Rad}(\mathfrak{a})$ gilt.

Satz. Es gibt eine inklusionsumkehrende Bijektion:

{Algebraische Mengen in
$$\mathbf{A}^n$$
} \rightarrow {Radikalideale in $k[X_1, \dots, X_n]$ }, $Y \mapsto I(Y)$

mit der Umkehrabbildung $\mathfrak{a} \mapsto Z(\mathfrak{a})$. Eine algebraische Menge Y ist genau dann irreduzibel, wenn $I(Y) \subset A$ ein Primideal ist.

1.2 Projektive Varietäten

Definition.

(i) Zwei Punkte $(a_0, \ldots, a_n), (b_0, \ldots, b_n) \in \mathbf{A}^{n+1}$ heißen äquivalent, wenn ein $\lambda \in k^{\times}$ existiert, so dass $a_i = \lambda b_i$ für alle i gilt. Die Äquivalenzklasse von (a_0, \ldots, a_n) wird mit $(a_0 : \ldots : a_n)$ bezeichnet. Der *projektiver n-dimensionaler Raum* über k wird definiert als:

$$\mathbf{P}^n = \mathbf{P}_k^n = \{(a_0 : \ldots : a_n) \mid a_i \in k \text{ nicht alle } 0\}$$

Ein Element $P = (a_0 : \ldots : a_n) \in \mathbf{P}^n$ heißt Punkt und die a_i heißen homogene Koordinaten von P.

(ii) Der Polynomring über k in n+1 Variablen $S=k[X_0,\ldots,X_n]$ wird mit der folgenden Zerlegung zu einem graduierten Ring:

$$S = \bigoplus_{d \ge 0} S_d, \quad S_d = \left\{ \sum_{i=0,\dots,i_n} X_0^{i_0} \cdots X_n^{i_n} \mid a_{i_0,\dots,i_n} \in k, \sum_{j=0}^n i_j = d \right\}$$

Die Elemente in S_d heißen homogene Elemente vom Grad d. Ein Ideal $\mathfrak{a} \subset S$ heißt homogenes Ideal, wenn $\mathfrak{a} = \bigoplus_{d>0} (S_d \cap \mathfrak{a})$ gilt.

(iii) Sei $\mathfrak{a} \subset S$ ein homogenes Ideal. Dann setzen wir:

$$Z(\mathfrak{a}) = \{ P \in \mathbf{P}^n \mid \forall f \in \mathfrak{a} \text{ homogen: } f(P) = 0 \}$$

Diese ist wohldefiniert, da $f(\lambda a_0, \ldots, \lambda a_n) = \lambda^d f(a_0, \ldots, a_n)$ für $f \in S_d$. Eine Menge $Y \subset \mathbf{P}^n$ heißt projektive algebraische Menge, wenn $Y = Z(\mathfrak{a})$ für ein homogenes Ideal $\mathfrak{a} \subset S$ gilt.

Analog wie im affinen Fall, können wir auch \mathbf{P}^n mit der Zariski-Topologie ausstatten, d.h. eine Menge $U \subset \mathbf{P}^n$ ist genau dann offen, wenn $\mathbf{P}^n \setminus U$ eine projektive algebraische Menge ist.

- (iv) Eine projektive Varietät V ist eine irreduzible abgeschlossene Menge in \mathbf{P}^n . Eine offene Teilmenge einer projektiven Varietät bzgl. der induzierten Topologie nennt man quasi-projektive Varietät.
- (v) Sei $Y \subset \mathbf{P}^n$ eine algebraische Menge. Dann setzen wir I(Y) als das Ideal in S, das von der folgenden Menge erzeugt wird:

$$\{f \in S \text{ homogen } | \forall P \in Y \colon f(P) = 0\}$$

I(Y) ist ein homogenes Ideal in S. Der homogene Koordinatenring von Y ist definiert als S(Y) = S/I(Y).

Satz. Wir haben eine inklusionsumkehrende Bijektion:

{Algebraische Mengen in \mathbf{P}^n } \rightarrow {Radikalideale in $k[X_0, \dots, X_n]$ }, $Y \mapsto I(Y)$

mit der Umkehrabbildung $\mathfrak{a} \mapsto Z(\mathfrak{a})$.

Satz. Sei Y eine (quasi-)projektive Varietät. Dann wird Y von offenen Mengen der Form $Y \cap U_i$, $i = 0, \ldots, n$ überdeckt mit:

$$U_i = \{(a_0 : \ldots : a_n) \in \mathbf{P}^n \mid a_i \neq 0\}$$

Die Abbildungen $\varphi_i: U_i \to \mathbf{A}^n$, $(a_0: \ldots: a_n) \mapsto \left(\frac{a_0}{a_i}, \ldots, \frac{\widehat{a_i}}{a_i}, \ldots, \frac{a_n}{a_i}\right)$ sind wohldefiniert und Homöomorphismen, d.h. die $Y \cap U_i$ sind (quasi-)affine Varietäten.

1.3 Morphismen

Definition.

(i) Sei $Y \subset \mathbf{A}^n$ eine quasi-affine Varietät. Eine Abbildung $f: Y \to k$ heißt reguläre Funktion in $P \in Y$, wenn eine offene Umgebung $U \subset Y$ mit $P \in U$ existiert, so dass $f = \frac{g}{h}$ auf U für gewisse $g, h \in A$ gilt.

Sei $Y \subset \mathbf{P}^n$ eine quasi-projektive Varietät. Eine Abbildung $f: Y \to k$ heißt reguläre Funktion in $P \in Y$, wenn eine offene Umgebung $U \subset Y$ mit $P \in U$ existiert, so dass $f = \frac{g}{h}$ auf U für gewisse homogene Polynome $g, h \in S$ vom gleichen Grad.

Identifizieren wir $k \cong \mathbf{A}^1$ so ist eine reguläre Funktion notwendigerweise stetig.

(ii) Eine stetige Abbildung $\varphi: X \to Y$ zwischen zwei (quasi-projektive) Varietäten heißt *Morphismus*, wenn für jede offene Menge $V \subset Y$ und reguläre Funktion $f: V \to k$ auch $f \circ \varphi: \varphi^{-1}(V) \to k$ regulär ist.

Damit erhält man die Kategorie Var(k) aller Varietäten auf k.

1.3. MORPHISMEN 7

Definition. Sei Y eine Varietät und $P \in Y$ ein Punkt.

(i) Wir bezeichnen den Ring aller regulären Funktionen auf Y mit $\mathcal{O}(Y)$.

(ii) $\mathcal{O}_{P,Y} = \{\langle U, f \rangle \mid P \in U \subset_{o} Y, f \text{ ist auf } U \text{ regulär} \}$ heißt der Ring der Keime regulärer Funktionen auf Y in P. Wir identifizieren zwei Keime $\langle U, f \rangle = \langle V, g \rangle$, wenn f = g auf $U \cap V$ gilt.

 $\mathcal{O}_{P,Y}$ ist ein lokaler Ring, dessen Maximalideal wir mit \mathfrak{m}_P bezeichnen.

(iii) $K(Y) = \{ \langle U, f \rangle \mid \varnothing \neq U \subset_{o} Y, f \text{ ist auf } U \text{ regulär} \}$ heißt der Funktionenkörper von Y. Die Elemente von K(Y) heißen rationale Funktionen auf Y.

Es gilt $\mathcal{O}(Y) \subset \mathcal{O}_{P,Y} \subset K(Y)$.

Theorem. Sei $Y \subset \mathbf{A}^n$ eine affine Varietät. Dann gilt:

- (i) $\mathcal{O}(Y) \cong A(Y)$
- (ii) Die Abbildung $Y \to \{\text{Maximale Ideale in } A(Y)\}, P \mapsto \mathfrak{m}_P \subset \mathcal{O}_{P,Y} \text{ ist eine Bijektion.}$
- (iii) $\mathcal{O}_{P,Y} \cong A(Y)_{\mathfrak{m}_P}$ und dim $\mathcal{O}_{P,Y} = \dim Y$.
- (iv) $K(Y) \cong \operatorname{Quot}(A(Y))$

Theorem. Sei $Y \subset \mathbf{P}^n$ eine projektive Varietät. Dann gilt:

- (i) $\mathcal{O}(Y) = k$
- (ii) $\mathcal{O}_{P,Y} \cong S(Y)_{(\mathfrak{m}_P)}$
- (iii) $K(Y) \cong S(Y)_{((0))}$

Theorem. Sei X eine beliebige Varietät und Y eine affine Varietät. Dann haben wir eine Bijektion:

$$\operatorname{Mor}_{\operatorname{\mathbf{Var}}}(X,Y) \to \operatorname{Hom}_{k\operatorname{\mathbf{-Alg}}}(A(Y),\mathcal{O}(X)), \ f \mapsto (\varphi \mapsto \varphi \circ f)$$

Ist X ebenfalls affin, so gilt $X \cong Y$, genau dann wenn $A(X) \cong A(Y)$. Der Funktor **affine Var** $(k) \to$ **nullteilerfreie** k-**Alg**, $X \mapsto A(X)$ ist eine pfeilumkehrende Äquivalenz von Kategorien.

2 Schemata

2.1 Garben

Definition 1.1. Sei X ein topologischer Raum.

- (i) Die Menge aller offenen Teilmengen in X bilden zusammen mit den natürlichen Inklusionen eine Kategorie $\mathbf{Top}(X)$.
- (ii) Eine $Pr\ddot{a}garbe\ F$ abelscher Gruppen ist nichts anderes als ein kontravarianter Funktor $F: \mathbf{Top}(X) \to \mathbf{Ab}$ mit $F(\varnothing) = 0$.

Bemerkung.

- 1. Eine Prägarbe besteht also aus abelschen Gruppen F(U), $U \subset_{o} X$ und Homomorphismen abelscher Gruppen $\operatorname{res}_{V}^{U}: F(U) \to F(V)$ für alle offenen $V \subset U$, so dass $\operatorname{res}_{U}^{U} = \operatorname{id}_{F(U)}$. Für offene Mengen $W \subset V \subset U$ gelte ferner $\operatorname{res}_{W}^{U} = \operatorname{res}_{W}^{V} \circ \operatorname{res}_{V}^{U}$.
- 2. Ebenso können Prägarben in eine beliebige Kategorie gebildet werden, z.B. **Ringe** und **Mengen**.
- 3. Die Elemente von F(U) heißen Schnitte von F über U. Manchmal schreiben wir auch $\Gamma(U,F)=F(U)$. Die res_V^U heißen Restriktionsabbildungen. Wir schreiben auch $\mathrm{res}_V^U(s)=s|_V$.

Definition 1.2. Eine Prägarbe F auf einem topologischen Raum X heißt Garbe, falls die folgenden Diagramme exakt sind:

$$0 \longrightarrow F(U) \xrightarrow{\operatorname{res}} \prod_{i} F(U_i) \xrightarrow{\operatorname{res}} \prod_{i,j} F(U_i \cap U_j)$$

für alle $U \subset_{\mathrm{o}} X$ und jede offene Überdeckung $U = \bigcup_{i} U_{i}$, d.h:

- (i) $s \mapsto (\operatorname{res}_{U_i}^U(s))_i$ ist injektiv, d.h. aus $s|_{U_i} = 0$ für alle i folgt s = 0.
- (ii) Sei $s_i \in F(U_i)$ für alle i gegeben, so dass $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ für alle i, j. Dann gibt es ein $s \in F(U)$ mit $s|_{U_i} = s_i$ für alle i.

2.1. GARBEN 9

Definition 1.3.

(i) Ein Morphismus $\varphi: F \to G$ von Prägarben auf X ist ein Morphismus kontravarianter Funktoren, d.h. eine Kollektion von Morphismen $(\varphi(U))_{U\subset_{o}X}$, so dass für alle offenen Mengen $V\subset U$ folgendes Diagramm kommutativ ist:

$$F(U) \xrightarrow{\varphi(U)} G(U)$$

$$res_{V}^{U} \downarrow \qquad \qquad \downarrow res_{V}^{U}$$

$$F(V) \xrightarrow{\varphi(V)} G(V)$$

(ii) Ein *Morphismus* von Garben ist ein Morphismus von Prägarben. Die (Prä-)Garben bilden eine Kategorie.

Beispiel 1.4.

- 1. Sei X eine Varietät über k. Betrachte den Funktor $\mathcal{O}: \mathbf{Top}(X) \to \mathbf{komm}$ Ringe mit den gewöhnlichen Restriktionsabbildungen $\mathrm{res}_V^U: \mathcal{O}(U) \to \mathcal{O}(V)$ ist offensichtlich eine Prägarbe von Ringen. Da ferner reguläre Funktionen 0 ist, wenn sie lokal 0 ist, und eine lokal reguläre Funktion auch global regulär ist, ist \mathcal{O} auch eine Garbe.
- 2. Sei X ein topologischer Raum und A eine abelsche Gruppe. Die konstante Garbe A auf X ist folgendermaßen definiert: Wir statten A mit der diskreten Topologie aus. Für jedes $U \subset_{0} X$ setze:

$$\mathcal{A}(U) = \{ f : U \to A \mid f \text{ stetig} \}$$

Ist U zusammenhängend, so gilt $\mathcal{A}(U) \stackrel{\sim}{\to} A$, $f \mapsto f(x)$, wobei $x \in U$ beliebig.

Definition 1.5. Sei F eine Prägarbe auf X und $P \in X$. Der $Halm\ F_P$ von F in P ist definiert als:

$$F_P = \varinjlim_{\substack{U \subset {}_{\circ}X \\ P \in U}} F(U) = \coprod_{\substack{U \subset {}_{\circ}X \\ P \in U}} F(U) / \sim$$

wobei zwei Elemente $s \in F(U)$, $t \in F(V)$ genau dann äquivalent $s \sim t$ sind, wenn es ein $\emptyset \neq W \subset_{o} X$ mit $W \subset U \cap V$ existiert, so dass $s|_{W} = t|_{W}$ gilt. Die Elemente eines Halms heißen Keime der Schnitte von F in P.

Beispiel. Sei X eine Varietät, $P \in X$ ein Punkt und \mathcal{O} die Garbe der regulären Funktionen. Dann ist der Halm in P gerade der lokale Ring $\mathcal{O}_{P,X}$.

Bemerkung. Ein Morphismus $\phi: F \to G$ von Prägarben induziert für alle $P \in X$ ein Gruppenhomomorphismus $\phi_P: F_P \to G_P$.

Satz 1.6. Sei $\phi: F \to G$ ein Morphismus von Garben auf einem topologischen Raum X. Dann gilt:

 $\phi: F \to G$ ist Isomorphismus $\iff \phi_P: F_P \to G_P$ ist Isomorphismus für alle $P \in X$

Für Prägarben gilt dieser Satz im Allgemeinen nicht.

Beweis. Ist ϕ ein Isomorphismus, so auch alle ϕ_P , $P \in X$. Sei umgekehrt ϕ_P Isomorphismen für alle $P \in X$. Es genügt zu zeigen, dass $\phi(U) : F(U) \to G(U)$ für alle $U \subset_{o} X$ ein Isomorphismus ist. Sei $U \subset_{o} X$ und setze $\varphi = \phi(U)$.

• Injektivität von φ : Sei $s \in F(U)$ mit $0 = \varphi(s) \in G(U)$. Dann gilt für das Bild $\varphi(s)_P$ von $\varphi(s)$ im Halm $0 = \varphi(s)_P \in F_P$. Wegen $\varphi(s)_P = \phi_P(s_P)$ für das Bild $s_P \in F_P$ von s, folgt wegen der Injektivität von ϕ_P nun $s_P = 0$ für alle $P \in U$.

Per Definition gibt es für jedes $P \in U$ eine offene Umgebung $W_P \subset_0 X$ von P mit $W_P \subset U$, so dass $s|_{W_P} = 0$ gilt. Dann bilden die W_P eine offene Überdeckung von $U = \bigcup_{P \in U} W_P$. Da F eine Garbe ist, folgt s = 0.

Wir haben gezeigt, dass $\phi(U)$ für alle $U \subset_{o} X$ injektiv ist, genau dann wenn ϕ_{P} für alle $P \in X$ injektiv ist.

• Surjektivität von φ : Sei $t \in G(U)$ ein Schnitt und $t_P \in G_P$ sein Keim in P. Da ϕ_P surjektiv ist, existiert ein $s_P \in F_P$ mit $\phi_P(s_P) = t_P$. Sei s_P durch den Schnitt $s(P) \in F(V_P)$ mit $V_P \subset_o U$, $P \in V_P$ repräsentiert. Dann sind $\phi(V_P)(s(P))$ und $t|_{V_P}$ zwei Elemente aus $G(V_P)$ mit demselben Keim. Durch das Verkleinern von V_P folgt $\phi(V_P)(s(P)) = t|_{V_P}$ in $G(V_P)$.

Dann bilden die V_P eine offene Überdeckung von $U = \bigcup_{P \in U} V_P$. Es gilt außerdem $s(P)|_{V_P \cap V_Q} = s(Q)|_{V_P \cap V_Q}$ für alle $P, Q \in U$, denn beide Elemente sind Schnitte aus $F(V_P \cap V_Q)$, die durch $\phi(V_P \cap V_Q)$ auf $t|_{V_P \cap V_Q}$ abgebildet werden, und $\phi(V_P \cap V_Q)$ aus dem ersten Teil injektiv ist.

Da F eine Garbe ist, existiert ein $s \in F(U)$ mit $s|_{V_P} = s(P)$ für alle $P \in U$. Schließlich gilt $\varphi(s)|_{V_P} = t|_{V_P}$ für alle $P \in U$, d.h. $(\varphi(s) - t)|_{V_P} = 0$. Da G eine Garbe ist, folgt $\varphi(s) = t$.

Definition 1.7. Sei $\varphi: F \to G$ ein Morphismus von Prägarben. Die Prägarben

$$U \mapsto \ker \varphi(U), \quad U \mapsto \operatorname{coker} \varphi(U), \quad U \mapsto \operatorname{im} \varphi(U)$$

heißen $Pr\ddot{a}garbenkern$, -kokern und -bild von φ . Sind F und G Garben, so sind Kokern und Bild nicht notwendig Garben.

2.1. GARBEN 11

Satz & Definition 1.8. Sei F eine Prägarbe. Dann existiert eine Garbe F^+ und ein Morphismus von Prägarben $\theta: F \to F^+$ mit folgender Universaleigenschaft:

Sei G eine Garbe und $\phi: F \to G$ ein Morphismus von Prägarben. Dann existiert ein eindeutig bestimmter Morphismus $\psi: F^+ \to G$, so dass das folgende Diagramm kommutiert:

$$\begin{array}{ccc}
F & \xrightarrow{\theta} & F^+ \\
\downarrow & & \downarrow \\
G & & \downarrow & & \downarrow
\end{array}$$

 F^+ ist somit eindeutig bestimmt und heißt die zu F assoziierte Garbe.

Beweis. Für jede offene Menge $U \subset X$ setze $F^+(U)$ als die Menge aller Abbildungen $s: U \to \coprod_{P \in U} F_P$, so dass:

- (i) Für alle $P \in U$ gilt $s(P) \in F_P$.
- (ii) Für alle $P \in U$ gibt es eine offene Umgebung V von P mit $V \subset U$ und ein Element $t \in F(V)$, so dass für alle $Q \in V$ der Keim t_Q von t in Q gleich s(Q) ist.

Somit wird F^+ zu einer Garbe bzgl. der natürlichen Restriktionsabbildungen und besitzt die verlangte Universaleigenschaft. Für jeden Punkt $P \in X$ gilt $F_P^+ = F_P$. Ist F eine Garbe, so ist $F^+ \cong F$ via θ .

Definition 1.9.

- (i) Eine Untergarbe von F ist eine Garbe F' derart, dass:
 - (a) $F'(U) \subset F(U)$ ist eine Untergruppe für alle $U \subset_{o} X$.
 - (b) Für offene Mengen $V \subset U$ gilt $\operatorname{res}'_V{}^U = \operatorname{res}_V{}^U|_{F'(U)}$.

Insbesondere ist $F_P' \subset F_P$ eine Untergruppe.

(ii) Der Kern von φ ist die Prägarbe $\ker(\varphi)$, die bereits eine Garbe ist. Grund:

Sei $U \subset_{o} X$ und $U = \bigcup U_{i}$ eine offene Überdeckung. Sei $s \in \ker \varphi(U)$ mit $s|_{U_{i}} = 0$ für alle i. Da F eine Garbe ist und $s \in F(U)$, folgt s = 0. Sei nun $s_{i} \in \ker \varphi(U_{i})$ für alle i gegeben mit $s_{i}|_{U_{i} \cap U_{j}} = s_{j}|_{U_{i} \cap U_{j}}$ für alle i, j. Da F eine Garbe ist, existiert ein $s \in F(U)$ mit $s|_{U_{i}} = s_{i}$ für alle i. Zu zeigen ist noch $s \in \ker \varphi(U)$. Es gilt für alle i:

$$0 = \varphi(U_i)(s_i) = \varphi(U_i)(s|_{U_i}) = \varphi(U)(s)|_{U_i} \in G(U_i)$$

Da nun auch G eine Garbe ist, folgt $\varphi(U)(s) = 0$.

- (iii) φ heißt *injektiv*, falls $\ker(\varphi) = 0$. Mit anderen Worten: φ ist genau dann injektiv, wenn $\varphi(U) : F(U) \to G(U)$ für alle $U \subset_{\mathbf{0}} X$ injektiv ist.
- (iv) Das Bild im (φ) von φ ist die assoziierte Garbe des Prägarbenbilds von φ . Nach der Universaleigenschaft gibt es einen natürlichen Morphismus $\psi : \operatorname{im}(\varphi) \to G$. Dieser ist injektiv, da $(\operatorname{im} \varphi)_P : \operatorname{im}(\varphi_P) \to G_P$ für alle $P \in X$ injektiv ist.
- (v) φ heißt *surjektiv*, wenn $im(\varphi) = G$.
- (vi) Eine Garbensequenz

$$\cdots \longrightarrow F^i \stackrel{\varphi^i}{\longrightarrow} F^{i+1} \stackrel{\varphi^{i+1}}{\longrightarrow} F^{i+2} \longrightarrow \cdots$$

heißt exakt, falls $ker(\varphi^{i+1}) = im(\varphi^i)$ für alle i gilt.

- (vii) Sei F' eine Untergarbe von F. Die Quotientengarbe F/F' ist die assoziierte Garbe zur Prägarbe $U \mapsto F(U)/F'(U)$. Offensichtlich gilt $(F/F')_P = F_P/F'_P$ für alle $P \in X$.
- (viii) Der Kokern von φ ist die assoziierte Garbe zum Prägarbenkokern von φ .

Regeln 1.10. Seien F, G Garben auf X und $\varphi : F \to G$ ein Morphismus von Garben.

- (i) φ ist genau dann injektiv, wenn $0 \to F \to G$ exakt ist und genau dann surjektiv, wenn $F \to G \to 0$ exakt ist.
- (ii) Eine Garbensequenz $\cdots \to F^i \to F^{i+1} \to F^{i+2} \to \cdots$ ist genau dann exakt, wenn ihre entsprechenden Halmsequenzen in allen Punkten $P \in X$ exakt ist. Grund:

$$(\operatorname{im} \varphi^i)_P = \operatorname{im}(\varphi_P^i), \quad (\ker \varphi^{i+1})_P = \ker(\varphi_P^{i+1})$$

Insbesondere ist ein Garbenmorphismus genau dann injektiv bzw. surjektiv falls alle Halmabbildungen injektiv bzw. surjektiv sind.

- (iii) φ ist genau dann surjektiv, wenn für alle $U \subset_{o} X$ und $s \in G(U)$ eine Überdeckung $U = \bigcup_{i \in I} U_i$ mit Schnitten $t_i \in F(U_i), \ i \in I$ existieren, so dass $\varphi(t_i) = s|_{U_i}$. Ist φ surjektiv, so muss im Allgemeinen $\varphi(U) : F(U) \to G(U)$ nicht surjektiv sein.
- (iv) Sei $0 \to F' \to F \to F''$ eine exakte Garbensequenz und $U \subset_{\mathbf{o}} X$. Dann ist auch die folgende Sequenz exakt:

$$0 \longrightarrow \Gamma(U, F') \longrightarrow \Gamma(U, F) \longrightarrow \Gamma(U, F'')$$

Der Funktor $\Gamma(U, -)$ ist linksexakt, aber nicht exakt.

(v) Sei $\varphi: F \to G$ ein injektiver Morphismus von Prägarben. Dann ist der induzierte Morphismus $\varphi^+: F^+ \to G^+$ der assoziierten Garben auch injektiv. Der Funktor $-^+$ ist sogar exakt.

2.1. GARBEN 13

Regeln 1.11.

(i) Sei F' eine Untergarbe von F. Dann ist die Sequenz $0 \to F' \to F \to F/F' \to 0$ exakt, da sie halmweise exakt ist.

(ii) Sei $\varphi: F \to G$ ein Garbenmorphismus. Dann gilt:

$$\operatorname{im}(\varphi) \cong F/\ker(\varphi), \quad \operatorname{coker}(\varphi) \cong G/\operatorname{im}(\varphi)$$

d.h. die Folgen $0 \to \ker(\varphi) \to F \to \operatorname{im}(\varphi) \to 0$ und $0 \to \operatorname{im}(\varphi) \to G \to \operatorname{coker}(\varphi) \to 0$ sind exakt.

Definition 1.12.

- (i) Seien F und G Garben auf X. Die $Summe\ F\oplus G$ von F und G ist die Garbe $U\mapsto F(U)\oplus G(U)$.
- (ii) Sei $(F_i, \varphi_{i,j})$ ein direktes System von Garben auf X. Der direkte Limes $(\varinjlim F_i, \varphi_i)$ ist die assoziierte Garbe zur Prägarbe $U \mapsto \varinjlim F_i(U)$.

Der direkte Limes besitzt die übliche Universaleigenschaft: Sei G eine Garbe und $\psi_i: F_i \to G$ Morphismen mit $\varphi_k \varphi_{ik} = \psi_i$ für alle $i \leq k$. Dann existiert ein eindeutig bestimmter Morphismus $\psi: \varinjlim F_i \to G$, so dass das folgende Diagramm kommutiert:

- (iii) Ebenso wird der *projektive Limes* definiert, wobei alle Pfeile umgedreht werden. Es ist außerdem $U \mapsto \underline{\lim} F_i(U)$ bereits eine Garbe.
- (iv) Sei F eine Garbe auf X und $s \in F(U)$ ein Schnitt über $U \subset_{o} X$. Dann heißt

$$\operatorname{supp}(s) = \{ P \in U \mid s_P \neq 0 \}$$

wobei $s_P \in F_P$ der Keim von s in P bezeichnet, der Support von s. supp(s) ist abgeschlossen in U.

$$\operatorname{supp}(F) = \{ P \in X \mid F_P \neq 0 \}$$

heißt Support von F. Dieser ist nicht notwendigerweise abgeschlossen.

(v) Seien F, G Garben abelscher Gruppen auf X. Für ein $U \subset_{o} X$ sei $F|_{U}$ die Einschränkung von F auf U, d.h. $F|_{U}(V) = F(V)$ für alle $V \subset_{o} U$. Dann ist die Menge $\operatorname{Hom}(F|_{U}, G|_{U})$ der Morphismen von $F|_{U}$ nach $G|_{U}$ eine abelsche Gruppe.

$$U \mapsto \operatorname{Hom}(F|_U, G|_U)$$

definiert eine Garbe und wird die *Hom-Garbe* genannt. Sie wird mit $\mathcal{H}om(F,G)$ bezeichnet.

Definition 1.13. Sei $f: X \to Y$ eine stetige Abbildung topologischer Räume, F eine Garbe auf X und G eine Garbe auf Y.

(i) Die direkte Bildgarbe f_*F von F auf Y ist die Garbe

$$V \mapsto (f_*F)(V) = F(f^{-1}(V))$$

(ii) Die Urbildgarbe $f^{-1}G$ von G auf X ist die assoziierte Garbe zur Prägarbe

$$U \mapsto (f^{-1}G)(U) = \varinjlim_{\substack{V \subset_0 Y \\ f(U) \subset V}} G(V)$$

Regeln 1.14. Seien X, Y topologische Räume.

(i) Sei $Z \subset X$ ein Teilraum mit der Inklusionsabbildung $i: Z \hookrightarrow X$ und F eine Garbe auf X. Dann gilt:

$$i^{-1}F = F|_Z$$

Offensichtlich gilt $(F|_Z)_P = F_P$ für $P \in Z$.

- (ii) Seien $\mathbf{Ab}(X)$ und $\mathbf{Ab}(Y)$ die Kategorien der Garben auf X bzw. Y. Dann sind $f_*: \mathbf{Ab}(X) \to \mathbf{Ab}(Y)$ und $f^{-1}: \mathbf{Ab}(Y) \to \mathbf{Ab}(X)$ Funktoren.
- (iii) Sei $f: X \to Y$ stetig. Dann sind die Adjunktionsabbildungen

ad:
$$f^{-1}f_*F \to F$$
, ad: $G \to f_*f^{-1}G$

für Garben F auf X bzw. G auf Y Garbenmorphismen und wie folgt definiert:

• Sei $U \subset_{o} X$ und $s \in (f^{-1}f_{*}F)(U)$ ein Schnitt, das durch $s' \in (f_{*}F)(V)$ mit $f(U) \subset V \subset_{o} Y$ repräsentiert wird, d.h. $s' \in F(f^{-1}(V))$ mit $U \subset f^{-1}(V)$. Dann setzen wir:

$$(f^{-1}f_*F)(U) \to F(U), \ s \mapsto \text{res}_U^{f^{-1}(V)} \ s' \in F(U)$$

• Sei $V \subset_{0} Y$. Es besteht $(f_{*}f^{-1}G)(V) = (f^{-1}G)(f^{-1}(V))$ aus Abbildungen der Form $f^{-1}(V) \to \coprod_{P \in f^{-1}(V)} (f^{-1}G)_{P}$. Setze nun:

$$G(V) \to (f_*f^{-1}G)(V), \ s \mapsto (s \circ f : f^{-1}(V) \to \prod f^{-1}(G)_P, \ P \mapsto s_{f(P)})$$

Es existiert eine natürliche Bijektion:

$$\operatorname{Hom}_X(f^{-1}G, F) \cong \operatorname{Hom}_Y(G, f_*F)$$

in dem wir ein $\varphi: f^{-1}(G) \to F$ auf $\psi: G \xrightarrow{\mathrm{ad}} f_* f^{-1} G \xrightarrow{f_*(\varphi)} f_* F$ schicken und ein $\psi: G \to f_* F$ auf $\varphi: f^{-1} G \xrightarrow{f^{-1}(\psi)} f^{-1} f_* F \xrightarrow{\mathrm{ad}} F$ schicken. Somit ist f^{-1} linksadjungiert zu f_* .

Definition 1.15. Sei X ein topologischer Raum mit $P \in X$ und A eine abelsche Gruppe. Sei A die konstante Garbe auf $\overline{\{P\}}$ und $i : \overline{\{P\}} \hookrightarrow X$ die natürliche Inklusion. Dann heißt die Garbe i_*A Wolkenkratzergarbe. Es gilt:

$$(i_*\mathcal{A})(U) = \begin{cases} A, & \text{wenn } P \in U \\ 0, & \text{sonst} \end{cases}, \quad (i_*\mathcal{A})_Q = \begin{cases} A, & \text{wenn } Q \in \overline{\{P\}} \\ 0, & \text{sonst} \end{cases}$$

Definition 1.16. Sei X ein topologischer Raum, $Z \subset X$ abgeschlossen und $U = X \setminus Z$. Seien $j: U \hookrightarrow X$, $i: Z \hookrightarrow X$ die Inklusionsabbildungen. Ist F eine Garbe auf Z, so gilt:

$$(i_*F)_P = \begin{cases} F_P, & \text{wenn } P \in \mathbb{Z} \\ 0, & \text{sonst} \end{cases}$$

Sei F eine Garbe auf U und $j_!(F)$ die Garbe auf X, die zur Prägarbe

$$V \mapsto \begin{cases} F(V), & \text{wenn } V \subset U \\ 0, & \text{sonst} \end{cases}$$

assoziiert ist. Sie heißt die außerhalb U durch Null fortgesetzte Garbe von F. Es gilt:

$$(j_!F)_P = \begin{cases} F_P, & \text{wenn } P \in U \\ 0, & \text{sonst} \end{cases}$$

Sei F eine Garbe auf X. Dann ist die folgende Sequenz exakt:

$$0 \longrightarrow j_!(F|_U) \longrightarrow F \longrightarrow i_*(F|_Z) \longrightarrow 0$$

2.2 Schemata

Sei A ein kommutativer Ring mit Eins und Spec(A) die Menge aller Primideale von A. Für ein Ideal $\mathfrak{a} \subset A$, setzen wir:

$$V(\mathfrak{a}) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{a} \subset \mathfrak{p} \}$$

Lemma 2.1.

- (i) Sind $\mathfrak{a}, \mathfrak{b}$ zwei Ideale von A, so gilt $V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.
- (ii) Sind $\mathfrak{a}_i \subset A$, $i \in I$ Ideale, so gilt $V(\sum \mathfrak{a}_i) = \bigcap V(\mathfrak{a}_i)$.
- (iii) Sind $\mathfrak{a},\mathfrak{b}\subset A$ Ideale, gilt: $V(\mathfrak{a})\subset V(\mathfrak{b})\iff \operatorname{Rad}(\mathfrak{a})\supset\operatorname{Rad}(\mathfrak{b})$

Wegen $V(A) = \emptyset$ und $V(0) = \operatorname{Spec}(A)$ sehen wir, dass wir Teilmengen der Form $V(\mathfrak{a})$ zu abgeschlossene Mengen in $\operatorname{Spec}(A)$ erklären können. Somit erhalten wir die Zariski-Topologie auf $\operatorname{Spec}(A)$.

Setzen wir $D(f) = \operatorname{Spec}(A) \setminus V(f)$ für $f \in A$, so bilden diese offene Mengen eine Basis der Topologie auf Spec.

Definition 2.2. Wir definieren eine Ringgarbe \mathcal{O} auf $\operatorname{Spec}(A)$ wie folgt: Sei $U \subset_{\operatorname{o}} \operatorname{Spec}(A)$. Setze $\mathcal{O}(U)$ als die Menge aller Abbildungen $s: U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}$, so dass:

- (i) Für alle $\mathfrak{p} \in U$ gilt $s(\mathfrak{p}) \in A_{\mathfrak{p}}$.
- (ii) Für alle $\mathfrak{p} \in U$ gibt es eine offene Umgebung V von \mathfrak{p} mit $V \subset U$ und Elemente $a, f \in A$, so dass für alle $\mathfrak{q} \in V$ stets $f \not\in \mathfrak{q}$ und $s(\mathfrak{q}) = \frac{a}{f}$ in $A_{\mathfrak{q}}$ gilt.

Offensichtlich ist mit $s, t \in \mathcal{O}(U)$ auch $s + t, st \in \mathcal{O}(U)$. Ferner ist für $V \subset U$ offen $\operatorname{res}_V^U : \mathcal{O}(U) \to \mathcal{O}(V)$ ein Ringhomomorphismus. \mathcal{O} heißt Strukturgarbe. Das Spektrum von A ist das Paar (Spec A, \mathcal{O}).

Satz 2.3. Sei A ein Ring und (Spec A, \mathcal{O}) sein Spektrum. Dann gilt:

- (i) Der Halm $\mathcal{O}_{\mathfrak{p}}$ ist isomorph zu $A_{\mathfrak{p}}$ für alle $\mathfrak{p} \in \operatorname{Spec}(A)$.
- (ii) $\mathcal{O}(D(f)) \cong A_f$ für alle $f \in A$
- (iii) $\Gamma(\operatorname{Spec}(A), \mathcal{O}) = A$

Beweis. (iii) folgt aus (ii) mit f = 1.

- (i) Die Abbildungen $\mathcal{O}(U) \to A_{\mathfrak{p}}, \ s \mapsto s(\mathfrak{p})$ mit $\mathfrak{p} \in U \subset_{o} \operatorname{Spec}(A)$ sind kompatibel und induzieren einen Homomorphismus $\varphi : \mathcal{O}_{\mathfrak{p}} \to A_{\mathfrak{p}}$.
 - Surjektivität: Sei $\frac{a}{f} \in A_{\mathfrak{p}}$ mit $a, f \in A, f \notin \mathfrak{p}$. Dann ist D(f) eine offene Umgebung von \mathfrak{p} und es gibt ein $s \in \mathcal{O}(D(f))$ mit $s(\mathfrak{p}) = \frac{a}{f}$.
 - Injektivität: Sei U eine Umgebung von \mathfrak{p} und $s,t\in\mathcal{O}(U)$ mit $s(\mathfrak{p})=t(\mathfrak{p})$. Verkleinern wir U wenn nötig, so können wir o.B.d.A. annehmen, dass:

$$s = \frac{a}{f}, \quad t = \frac{b}{g}$$
 für gewisse $a, b, g, f \in A, g, f \notin \mathfrak{p}$

Wegen $\frac{a}{f} = \frac{b}{g}$ in $A_{\mathfrak{p}}$, gibt es ein $h \notin \mathfrak{p}$, so dass h(ga - bf) = 0 in A. Insbesondere ist $\frac{a}{f} = \frac{b}{g}$ in $A_{\mathfrak{q}}$ für alle $\mathfrak{q} \in \operatorname{Spec}(A)$ mit $g, f, h \notin \mathfrak{q}$. Somit ist s = t auf der offenen Umgebung $D(f) \cap D(g) \cap D(h)$ von \mathfrak{p} und haben daher denselben Keim.

(ii) Sei $f \in A$ und $\mathfrak{p} \in D(f)$, d.h. $(f) \subset A \setminus \mathfrak{p}$. Betrachte die kanonische Abbildung $\lambda_{\mathfrak{p}}: A_f \to A_{\mathfrak{p}}$. Setze:

$$\psi: A_f \to \mathcal{O}(D(f)), \ \frac{a}{f^n} \mapsto \left(\mathfrak{p} \mapsto \lambda_{\mathfrak{p}}\left(\frac{a}{f^n}\right)\right)$$

• Injektivität: Sei $\psi\left(\frac{a}{f^n}\right) = \psi\left(\frac{b}{f^m}\right)$ und $\mathfrak{p} \in D(f)$. Dann ist $\frac{a}{f^n} = \frac{b}{f^m}$ in $A_{\mathfrak{p}}$, d.h. es gibt ein $h \notin \mathfrak{p}$ mit $h(f^m a - f^n b) = 0$. Setze $\mathfrak{a} = \operatorname{Ann}(f^m a - f^n b)$. Dann ist $\mathfrak{a} \not\subset \mathfrak{p}$, da $h \in \mathfrak{a}$, also folgt $\mathfrak{p} \notin V(\mathfrak{a})$. Wir haben also $V(\mathfrak{a}) \subset V(f)$ gezeigt. Nach Lemma 2.1 (iii) folgt $f \in \operatorname{Rad}(\mathfrak{a})$, d.h. $f^e \in \mathfrak{a}$ für ein e > 0. Per Definition gilt $f^e(f^n a - f^m b) = 0$, also $\frac{a}{f^n} = \frac{b}{f^m}$ in A_f .

• Surjektivität: Sei $s \in \mathcal{O}(D(f))$. Nach Definition von \mathcal{O} ist $D(f) = \bigcup V_i$ mit $s = \frac{a_i}{g_i}$ auf V_i für gewisse $a_i, g_i \in A$, $g_i \notin \mathfrak{p}$ für alle $\mathfrak{p} \in V_i$. Insbesondere gilt $V_i \subset D(g_i)$. Da die D(h) eine Basis der Topologie bilden, können wir o.B.d.A. $V_i = D(h_i)$ annehmen, also $D(h_i) \subset D(g_i)$. Es folgt $V(h_i) \supset V(g_i)$ und nach Lemma 2.1 (iii) auch $\operatorname{Rad}(h_i) \subset \operatorname{Rad}(g_i)$. Wähle ein n, so dass $h_i^n \in (g_i)$ für alle i, d.h. $h_i^n = c_i g_i$ für ein $c_i \in A$. Es folgt:

$$\frac{a_i}{g_i} = \frac{c_i a_i}{h_i^n}$$

Ersetzt man a_i durch $c_i a_i$ und h_i durch h_i^n , so können wir o.B.d.A. $D(f) \subset \bigcup D(h_i)$ und $s = \frac{a_i}{h_i}$ auf $D(h_i)$ annehmen.

Wir zeigen nun, dass D(f) durch endlich viele $D(h_i)$ überdeckt werden kann. Wir haben mit Lemma 2.1 Äquivalenzen:

$$D(f) \subset \bigcup_{i} D(h_{i}) \iff V(f) \supset \bigcap_{i} V(h_{i}) = V\left(\sum_{i} (h_{i})\right)$$

$$\iff f \in \operatorname{Rad}\left(\sum_{i} (h_{i})\right)$$

$$\iff \exists n \in \mathbb{N} \colon f^{n} \in \sum_{i} (h_{i})$$

Daher ist f^n eine endliche Summe der Form $f^n = \sum_{i=1}^r b_i h_i$ für gewisse $b_i \in A$, d.h. $D(f) \subset D(h_1) \cup \cdots \cup D(h_r)$.

Nun gilt:

$$D(h_i) \cap D(h_j) = \operatorname{Spec}(A) \setminus (V(h_i) \cup V(h_j)) = \operatorname{Spec}(A) \setminus V(h_i h_j) = D(h_i h_j)$$

Auf $D(h_i h_j)$ wird s repräsentiert durch $\frac{a_i}{h_i}$ und $\frac{a_j}{h_j}$ in $A_{h_i h_j}$. Wenden wir die Injektivität von ψ auf $D(h_i h_j)$ an, so erhalten wir $\frac{a_i}{h_i} = \frac{a_j}{h_j}$ in $A_{h_i h_j}$. Es folgt $(h_i h_j)^n (h_j a_i - h_i a_j) = 0$ für ein m. Sei m so groß, dass dies für alle endlich vielen i, j gilt, also gilt für alle i, j:

$$h_j^{m+1}(h_i^m a_i) - h_i^{m+1}(h_j^m a_j) = 0$$

Ersetzen wir nun h_i durch h_i^{m+1} und a_i durch $a_i h_i^m$, so wird s auf $D(h_i)$ immer noch durch $\frac{a_i}{h_i}$ repräsentiert und es gilt $h_j a_i = h_i a_j$ für alle i, j.

Schreibe nun $f^n = \sum b_i h_i$ für ein n und setze $a = \sum b_i a_i$. Es folgt für alle j:

$$h_j a = \sum_i b_i a_i h_j = \sum_i b_i h_i a_j = f^n a_j$$

Also gilt
$$\frac{a}{f^n} = \frac{a_j}{h_i}$$
 auf $D(h_j)$ für alle j , d.h. $\psi(\frac{a}{f^n}) = s$.

Definition 2.4.

(i) Ein geringter Raum (X, \mathcal{O}_X) besteht aus einem topologischen Raum X und einer Ringgarbe \mathcal{O}_X auf X. Ein Morphismus von geringten Räumen ist ein Paar

$$(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$$

wobei $f: X \to Y$ eine stetige Abbildung und $f^{\sharp}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ ein Morphismus von Ringgarben auf Y ist.

(ii) Ein geringter Raum (X, \mathcal{O}_X) heißt lokal, falls für alle $P \in X$ der Halm $\mathcal{O}_{X,P}$ ein lokaler Ring ist. Ein Morphismus von lokal geringten Räumen ist ein Morphismus (f, f^{\sharp}) von geringten Räumen derart, dass für alle $P \in X$ die induzierte Abbildung $f_P^{\sharp}: \mathcal{O}_{Y,f(P)} \to \mathcal{O}_{X,P}$ lokale Homomorphismen sind.

Bemerkung 2.5.

- Die (lokal) geringte Räume bilden eine Kategorie.
- Ein Morphismus (f, f^{\sharp}) von (lokal) geringten Räumen ist genau dann ein Isomorphismus, wenn f ein Homöomorphismus ist und f^{\sharp} ein Garbenisomorphismus ist.

Satz 2.6. Seien A, B Ringe.

- (i) (Spec A, \mathcal{O}) ist ein lokal geringter Raum.
- (ii) Sei $\varphi:A\to B$ ein Ringhomomorphismus. Dann induziert φ einen natürlichen Morphismus von lokal geringten Räumen:

$$(f, f^{\sharp}): (\operatorname{Spec} B, \mathcal{O}_B) \to (\operatorname{Spec} A, \mathcal{O}_A), \ f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$$

(iii) Jeder Morphismus (f, f^{\sharp}) : (Spec B, \mathcal{O}_B) \to (Spec A, \mathcal{O}_A) von lokal geringten Räumen ist induziert von einem Ringhomomorphismus $\varphi: A \to B$.

Beweis.

(i) folgt aus Satz 2.3 (i).

(ii) Definiere f durch $f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$ für alle $\mathfrak{p} \in \operatorname{Spec}(B)$. Sei $\mathfrak{a} \subset A$ ein Ideal. Dann ist $f^{-1}(V(\mathfrak{a})) = V(\varphi(\mathfrak{a}))$. Daher ist f stetig. Sei $\mathfrak{p} \in \operatorname{Spec}(B)$. Dann liefert φ einen lokalen Homomorphismus $\varphi_{\mathfrak{p}} : A_{\varphi^{-1}(\mathfrak{p})} \to B_{\mathfrak{p}}$. Das liefert für $V \subset_{o} \operatorname{Spec}(A)$ einen Ringhomomorphismus:

$$f^{\sharp}(V): \mathcal{O}_A(V) \to \mathcal{O}_B(f^{-1}(V))$$

indem man eine Abbildung $s:V\to\coprod_{\mathfrak{q}\in V}A_{\mathfrak{q}}$ auf die folgende Abbildung $f^\sharp(s):f^{-1}(V)\to\coprod_{\mathfrak{p}\in f^{-1}(V)}B_{\mathfrak{p}}$ schickt:

$$f^{-1}(V) \xrightarrow{f} V \xrightarrow{s} A_{\varphi^{-1}(\mathfrak{p})} \xrightarrow{\varphi_{\mathfrak{p}}} B_{\mathfrak{p}}$$

$$\mathfrak{p} \longmapsto f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p}) \longmapsto s(\varphi^{-1}(\mathfrak{p})) \longmapsto \varphi_{\mathfrak{p}}(s(\varphi^{-1}(\mathfrak{p})))$$

Die $f^{\sharp}(V)$ gibt uns einen Garbenmorphismus $f^{\sharp}: \mathcal{O}_A \to f_*\mathcal{O}_B$. Die durch f^{\sharp} induzierte Abbildungen auf den Halmen sind gerade die $\varphi_{\mathfrak{p}}$. Somit ist (f, f^{\sharp}) ein Morphismus lokal geringten Räumen.

(iii) Sei (f, f^{\sharp}) : (Spec B, \mathcal{O}_B) \to (Spec A, \mathcal{O}_A) ein Morphismus von lokal geringten Räumen. f^{\sharp} induziert einen Ringhomomorphismus:

$$\varphi: A = \Gamma(\operatorname{Spec} A, \mathcal{O}_A) \to \Gamma(\operatorname{Spec} B, \mathcal{O}_B) = B$$

Sei $\mathfrak{p} \in \operatorname{Spec}(B)$. Dann haben wir induzierte lokale Homomorphismen mit kommutativem Diagramm:

$$A_{f(\mathfrak{p})} = \mathcal{O}_{A,f(\mathfrak{p})} \xrightarrow{f_{\mathfrak{p}}^{\sharp}} \mathcal{O}_{B,\mathfrak{p}} = B_{\mathfrak{p}}$$

$$\uparrow \qquad \qquad \uparrow$$

$$A \xrightarrow{} B$$

Da die $f_{\mathfrak{p}}^{\sharp}$ lokale Homomorphismen sind, folgt $f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$. Somit ist f^{\sharp} von dem Ringhomomorphismus φ induziert.

Definition 2.7.

- (i) Ein affines Schema ist ein lokal geringter Raum (X, \mathcal{O}_X) , der als lokal geringter Raum isomorph zum Spektrum eines Rings ist.
- (ii) Ein Schema ist ein lokal geringter Raum (X, \mathcal{O}_X) derart, dass jeder Punkt $P \in X$ eine offene Umgebung $U \subset X$ besitzt, so dass $(U, \mathcal{O}_X|_U)$ ein affines Schema ist.

 \mathcal{O}_X heißt Strukturgarbe. Ein Morphismus von Schemata ist ein Morphismus von lokal geringten Räumen.

Beispiel 2.8.

1. Sei k ein Körper. Spec(k) ist ein affines Schema, dessen topologischer Raum aus einem Punkt besteht.

Definition 2.9. Sei K ein Körper. Eine diskrete Bewertung von K ist eine Abbildung $v: K \to \mathbb{Z} \cup \{\infty\}$, so dass für alle $x, y \in K$ gilt:

- (i) v(xy) = v(x) + v(y)
- (ii) $v(x+y) \ge \min\{v(x), v(y)\}$
- (iii) $v(x) = \infty \iff x = 0$

 $R = \{x \in K \mid v(x) \geq 0\}$ definiert einen Teilring von K und heißt diskreter Bewertungsring von v. R ist ein lokaler Hauptidealring mit Maximalideal $\mathfrak{m} = \{x \in K \mid v(x) > 0\}$. R/\mathfrak{m} heißt $Restklassenk\"{o}rper$ von v. Ein diskreter Bewertungsring A ist ein nullteilerfreier Ring, der diskreter Bewertungsring für eine Bewertungsring seines Quotientenk\"{o}rpers ist.

Beispiel 2.8

- 2. Sei R ein diskreter Bewertungsring. Es ist $T = \operatorname{Spec}(R)$ ein affines Schema, bestehend aus zwei Punkten:
 - Der Punkt $t_0 = \mathfrak{m} \in \operatorname{Spec}(R)$ ist abgeschlossen, da $V(\mathfrak{m}) = \{\mathfrak{m}\}$ und besitzt $R = R_{t_0}$ als lokalen Ring.
 - Der Punkt $t_1 = (0) \in \operatorname{Spec}(R)$ ist offen und dicht in $\operatorname{Spec}(R)$, da $V(0) = \operatorname{Spec}(R)$. t_1 besitzt $K = \operatorname{Quot}(R) = R_{t_1}$ als lokalen Ring.

$$\operatorname{Spec}(K) \longrightarrow \operatorname{Spec}(R) \longleftarrow \operatorname{Spec}(R/\mathfrak{m})$$

$$(0) \longmapsto t_1 \quad t_0 \longleftarrow (0)$$

- 3. Sei k ein Körper. Die affine Gerade \mathbf{A}_k^1 über k ist Spec k[X]. Sei ξ das Nullideal in Spec k[X]. Dann ist $\overline{\{\xi\}} = \mathbf{A}_k^1$. Ein solcher Punkt heißt generischer Punkt. Alle anderen Punkte sind abgeschlossen, da diese den maximalen Idealen in k[X] entsprechen. Es besteht eine Bijektion zwischen den irreduziblen, nicht-konstanten, normierten Polynomen aus k[X] und den abgeschlossenen Punkten von \mathbf{A}_k^1 .
 - Ist k algebraisch abgeschlossen, so besteht eine Bijektion zwischen den Elementen aus k und den abgeschlossenen Punkten von \mathbf{A}_k^1 .
- 4. Allgemeiner definieren wir den affinen n-dimensionalen Raum über k als:

$$\mathbf{A}_k^n = \operatorname{Spec} k[X_1, \dots, X_n]$$

5. Sei k algebraisch abgeschlossen. Dann entsprechen die abgeschlossenen Punkte von \mathbf{A}_k^n nach dem hilbertschen Nullstellensatz bijektiv den n-Tupeln von Elementen aus k. Ferner gibt es einen generischen Punkt ξ , der dem Nullideal in $k[X_1, \ldots, X_n]$ entspricht, d.h. $\overline{\{\xi\}} = \mathbf{A}_k^n$.

Definition 2.10. (Offene Unterschemata) Sei (X, \mathcal{O}_X) ein Schema und $U \subset X$ offen. Dann ist $(U, \mathcal{O}_X|_U)$ ein Schema. Diese Aussage ist nichttrivial und wir werden sie später zeigen. Die offene Menge U besitzt die induzierte Unterschemastruktur.

Definition 2.11. (Verkleben von Schemata) Sei $\{X_i\}$ eine Familie von Schemata und $U_{ij} \subset X_i$, $i \neq j$ offene Teilmengen mit induzierter Struktur. Ferner haben wir für $i \neq j$ Isomorphismen von Schemata:

$$\varphi_{ij}: (U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}}) \stackrel{\sim}{\to} (U_{ji}, \mathcal{O}_{X_j}|_{U_{ji}})$$

mit $\varphi_{ij} = \varphi_{ji}^{-1}$ und $\varphi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$ und $\varphi_{jk} = \varphi_{ik} \circ \varphi_{ij}$ auf $U_{ij} \cap U_{ik}$ für alle paarweise verschiedene i, j, k. Wir erhalten ein Schema X durch Verkleben der X_i längst U_{ij} bzgl. φ_{ij} :

$$X = \bigcup_{i=1}^{n} X_i / \sim, \quad x_i \sim \varphi_{ij}(x_i) \text{ für alle } x_i \in U_{ij}, \ i \neq j$$

X besitze die Quotiententopologie. Es existiert für jedes j ein Morphismus $\psi_j: X_j \to X$ von Schemata, das ein Isomorphismus auf einem offenen Unterschema in X induziert mit $X = \bigcup \psi_j(X_j)$ und $\psi_i(U_{ij}) = \psi_i(X_i) \cap \psi_j(X_j)$ und $\psi_i = \psi_j \circ \varphi_{ij}$ auf U_{ij} für alle $i \neq j$. Die Strukturgarbe auf X ist folgendermaßen gegeben: Sei $V \subset_{o} X$. Setze:

$$\mathcal{O}_X(V) = \left\{ (s_i) \in \prod_i \mathcal{O}_{X_i}(\psi_i^{-1}(V)) \mid \varphi_{ij}(s_i|_{\psi_i^{-1}(V) \cap U_{ij}}) = s_j|_{\psi_j^{-1}(V) \cap U_{ji}} \right\}$$

Somit ist (X, \mathcal{O}_X) ein lokal geringter Raum. Da alle X_i Schemata sind, besitzt jeder Punkt von X eine affine Umgebung. Also ist X ein Schema.

Beispiel 2.12. Sei k ein Körper, $X_1 = X_2 = \mathbf{A}_k^1$ und $U_1 = U_2 = \mathbf{A}_k^1 \setminus \{P\}$ mit einem abgeschlossenen Punkt P. Ist $\varphi : U_1 \to U_2$ die Identität, so ist die Verklebung X von X_1 und X_2 längst φ die affine Gerade, wobei der Punkt P verdoppelt wurde. X ist selbst nicht mehr affin.

Satz 2.13. Sei A ein Ring und (X, \mathcal{O}_X) ein Schema. Dann ist die Abbildung bijektiv:

$$\alpha: \operatorname{Hom}_{\mathbf{Sch}}(X, \operatorname{Spec} A) \to \operatorname{Hom}_{\mathbf{Ringe}}(A, \Gamma(X, \mathcal{O}_X))$$

wobei wir $(f: X \to \operatorname{Spec} A, f^{\sharp}: \mathcal{O}_A \to f_*\mathcal{O}_X)$ durch das Nehmen der globalen Schnitte auf den Ringhomomorphismus $A = \Gamma(\operatorname{Spec} A, \mathcal{O}_A) \to \Gamma(X, \mathcal{O}_X)$ schicken.

Beweis. Sei $X = \bigcup_{\nu} X_{\nu}$ eine affine Überdeckung. Ein Morphismus (f, f^{\sharp}) ist eindeutig durch seine Einschränkungen $(f_{\nu}, f_{\nu}^{\sharp})$ auf X_{ν} bestimmt. Diese sind nach Satz 2.6 wiederum eindeutig bestimmt durch $\alpha(f_{\nu})$. Ferner kommutiert das folgende Diagramm:

$$\begin{array}{ccc}
A & \xrightarrow{\alpha(f_{\nu})} & \Gamma(X_{\nu}, \mathcal{O}_{X_{\nu}}) \\
& & & & \\
\Gamma(X, \mathcal{O}_{X}) & & & & \\
\end{array}$$

weshalb $\alpha(f)$ schon alle $\alpha(f_{\nu})$ eindeutig bestimmt. Somit ist α injektiv. Sei nun ein Ringhomomorphismus $h:A\to \Gamma(X,\mathcal{O}_X)$ gegeben und $h_{\nu}:A\to \Gamma(X,\mathcal{O}_X)\to \Gamma(X_{\nu},\mathcal{O}_X)$. Nach Satz 2.6 (iii) existiert ein $f_{\nu}:X_{\nu}\to \operatorname{Spec}(A)$ mit $\alpha(f_{\nu})=h_{\nu}$. Für alle ν,μ ist das folgende Diagramm kommutativ:

Aus der Injektivität von α folgt $f_{\nu} = f_{\mu}$ auf $X_{\nu} \cap X_{\mu}$. Kleben wir die f_{ν} nun zusammen, so erhalten wir ein $f: X \to \operatorname{Spec}(A)$ mit $\alpha(f) = h$.

Korollar 2.14. Es gibt eine pfeilumkehrende Kategorienäquivalenz zwischen der Kategorie der affinen Schemata und der Kategorie der kommutativen Ringe mit 1.

Korollar 2.15. Spec(\mathbb{Z}) ist Endobjekt in der Kategorie der Schemata, d.h. für jedes SchemaX existiert ein eindeutiger Morphismus $f: X \to \operatorname{Spec}(\mathbb{Z})$.

Satz 2.16. Sei A ein Ring, $X = \operatorname{Spec}(A)$ und $f \in A$. Dann gilt:

$$(D(f), \mathcal{O}_X|_{D(f)}) \cong \operatorname{Spec}(A_f)$$

Beweis. Die natürliche Abbildung $\varphi: A \to A_f$ induziert einen Homöomorphismus:

$$\psi: \operatorname{Spec}(A_f) \to \{\mathfrak{p} \in \operatorname{Spec}(A) \mid f \notin \mathfrak{p}\} = D(f), \ \mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p})$$

Beweis zu Definition 2.10. Sei (X, \mathcal{O}_X) ein Schema und $U \subset X$ offen. Dann ist $(U, \mathcal{O}_X|_U)$ ein lokal geringter Raum. Sei $P \in U$. Wir zeigen, dass eine Umgebung $V \subset_0 U$ von P existiert, so dass $(V, \mathcal{O}_X|_V)$ affin ist. Da (X, \mathcal{O}_X) ein Schema ist, existiert ein $V' \subset_0 X$, $P \in V'$ mit $(V', \mathcal{O}_X|_{V'})$ affin. Sei also $V' = \operatorname{Spec}(A)$ für einen Ring A. Da die D(f), $f \in A$ eine Basis der Topologie auf X bilden, existiert ein $f \in A$, so dass $P \in D(f) \subset V' \cap U$. Wegen Satz 2.16 ist $(D(f), \mathcal{O}_X|_{D(f)}) \cong \operatorname{Spec}(A_f)$ affin. \square

Satz 2.17. Sei X ein Schema und $Z \subset X$ irreduzibel und abgeschlossen. Dann existiert genau ein Punkt $\xi \in Z$ derart, dass $\overline{\{\xi\}} = Z$. ξ heißt generischer Punkt von Z.

Beweis.

• Existenz: Sei $U \subset_{o} X$ affin mit $Z \cap U \neq \emptyset$. Da $Z \cap U$ abgeschlossen in U ist, gibt es ein Radikalideal \mathfrak{p} mit $Z \cap U = V(\mathfrak{p})$.

Nun ist $Z \cap U$ irreduzibel, da für offene Mengen $V_1, V_2 \subset_{o} Z \cap U$ stets $V_1, V_2 \subset_{o} Z$ gilt und aus der Irreduzibilität von Z stets $V_1 \cap V_2 \neq \emptyset$ folgt.

Ferner ist \mathfrak{p} ein Primideal, denn ist $\mathfrak{ab} \subset \mathfrak{p}$ für gewisse Ideale \mathfrak{a} und \mathfrak{b} , so folgt $\operatorname{Rad}(\mathfrak{ab}) \subset \operatorname{Rad}(\mathfrak{p}) = \mathfrak{p}$. Dies ist äquivalent zu $V(\mathfrak{p}) \subset V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$, daher:

$$Z\cap U=V(\mathfrak{p})=(V(\mathfrak{p})\cap V(\mathfrak{a}))\cup (V(\mathfrak{p})\cap V(\mathfrak{b}))$$

Da $Z \cap U$ irreduzibel ist, folgt o.B.d.A. $V(\mathfrak{p}) = V(\mathfrak{p}) \cap V(\mathfrak{a}) \subset V(\mathfrak{a})$, d.h. $\mathfrak{a} \subset \operatorname{Rad}(\mathfrak{a}) \subset \operatorname{Rad}(\mathfrak{p}) = \mathfrak{p}$.

 \mathfrak{p} ist nun generischer Punkt von $Z \cap U$, da:

$$\overline{\{\mathfrak{p}\}} = \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} V(\mathfrak{a}) = \bigcap_{\mathfrak{a} \subset \mathfrak{p}} V(\mathfrak{a}) \subset V(\mathfrak{p})$$

Die andere Inklusion folgt aus $\mathfrak{a} \subset \mathfrak{p}$. Da \mathfrak{p} prim ist, folgt $\operatorname{Rad}(\mathfrak{a}) \subset \mathfrak{p}$ und somit $V(\mathfrak{p}) \subset V(\mathfrak{a})$. Somit ist $Z \cap U = \overline{\{\mathfrak{p}\}}$.

Bezeichne mit $\overline{\{\mathfrak{p}\}}^X$ den topologischen Abschluss in X. Dann ist $Z \cap U \subset \overline{\{\mathfrak{p}\}}^X$. DaZ irreduzibel ist, gilt $Z = \overline{Z \cap U} \subset \overline{\{\mathfrak{p}\}}^X$, also $Z = \overline{\{\mathfrak{p}\}}^X$.

• Eindeutigkeit: Sei $\overline{\{\xi\}}^X = Z = \overline{\{\xi'\}}^X$. Sei $U \subset_{\mathbf{o}} X$ eine affine Umgebung von $\xi \in U$. Dann ist $\xi' \in U$, da aus $\xi' \in Z \setminus U$ der Widerspruch $\xi \in Z = \overline{\{\xi'\}}^X \subset X \setminus U$ folgt. Wähle nun Radikalideale \mathfrak{p}' und \mathfrak{p} mit:

$$V(\mathfrak{p}') = \overline{\{\xi'\}}^U = U \cap \overline{\{\xi'\}}^X = U \cap \overline{\{\xi\}}^X = \overline{\{\xi\}}^U = V(\mathfrak{p})$$

Es folgt $\xi' = \mathfrak{p}' = \operatorname{Rad}(\mathfrak{p}') = \operatorname{Rad}(\mathfrak{p}) = \mathfrak{p} = \xi$.

Satz 2.18. Sei X ein Schema und K ein Körper. Dann gibt es eine Bijektion:

 $\operatorname{Hom}_{\mathbf{Sch}}(\operatorname{Spec} K, X) \xrightarrow{\sim} \{(x, i) \mid x \in X, \ i : \kappa(x) \hookrightarrow K \text{ Ringhomomorphismus}\}$

wobei $\kappa(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$ der Restklassenkörper von $\mathcal{O}_{X,x}$ bezeichnet. Die Elemente heißen K-wertige Punkte von X.

Beweis. Sei ein Morphismus $f: \operatorname{Spec}(K) \to X$ gegeben. Setze $x = f((0)) \in X$. f^{\sharp} induziert einen lokalen Homomorphismus $\mathcal{O}_{X,x} \to \mathcal{O}_{K,(0)} = K$. f^{\sharp} faktorisiert daher über $\mathcal{O}_{X,x}/\mathfrak{m}_x = \kappa(x)$ und induziert einen Homomorphismus $i: \kappa(x) \hookrightarrow K$.

Sei nun umgekehrt ein $x \in X$ und $i : \kappa(x) \hookrightarrow K$ gegeben. i definiert nach Satz 2.6 ein Schemamorphismus:

$$f: \operatorname{Spec}(K) \to \operatorname{Spec}(\kappa(x)) \to \operatorname{Spec}(\mathcal{O}_{X,x}) \xrightarrow{\psi} X$$

wobei ψ die folgende kanonische Abbildung ist:

Sei $U \subset_{o} X$ eine affine Umgebung von x mit $U = \operatorname{Spec}(A)$. Nach Satz 2.3 (i) gilt $\mathcal{O}_{X,x} = \mathcal{O}_{U,x} = A_x$. Die kanonische Abbildung $A \to A_x$ induziert $\psi : \operatorname{Spec}(\mathcal{O}_{X,x}) \to U \hookrightarrow X$. Diese Abbildung ist unabhängig von U:

Sei $U' \subset_{o} X$ eine weitere affine Umgebung von x. Dann existiert eine affine Umgebung $U'' \subset_{o} U \cap U'$ mit $x \in U''$, also können wir o.B.d.A. $\operatorname{Spec}(A) = U \subset U' = \operatorname{Spec}(A')$ annehmen. Es existiert ein kanonischer Homomorphismus $A' \to A$ derart, dass das folgende Diagramm kommutiert:

$$A' \xrightarrow{A} A$$

$$A'_x = \mathcal{O}_{X,x} = A_x$$

Somit kommutiert:

$$X \longleftarrow U' \longleftarrow U$$

$$\uparrow \qquad \qquad \Box$$

$$\operatorname{Spec}(\mathcal{O}_{X,x})$$

Satz 2.19.

(i) Sei A ein Ring und $f \in A$. Dann gilt:

$$D(f) = \emptyset \iff f \text{ nilpotent}$$

- (ii) Sei $\varphi: A \to B$ ein Ringhomomorphismus und $f: Y = \operatorname{Spec}(B) \to \operatorname{Spec}(A) = X$ der durch φ induzierte Morphismus affiner Schemata. Dann gilt:
 - (a) φ ist genau dann injektiv, wenn $f^{\sharp}: \mathcal{O}_X \to f_*\mathcal{O}_Y$ injektiv ist. In diesem Fall ist f dominant, d.h. $f(Y) \subset X$ ist dicht.
 - (b) φ ist genau dann surjektiv, wenn f^{\sharp} surjektiv ist und f ein Homöomorphismus auf eine abgeschlossene Teilmenge von X ist.

Definition 2.20. Ein Schema (X, \mathcal{O}_X) heißt reduziert, falls $\mathcal{O}_X(U)$ für alle $U \subset_{\mathrm{o}} X$ reduziert sind, d.h. keine nilpotente Elemente besitzt.

Regeln 2.21. Sei (X, \mathcal{O}_X) ein Schema.

- (i) (X, \mathcal{O}_X) ist genau dann reduziert, wenn $\mathcal{O}_{X,P}$ für alle $P \in X$ keine nilpotente Elemente besitzt.
- (ii) Sei $\mathcal{O}_X^{\mathrm{red}}$ die assoziierte Garbe zur folgenden Prägarbe:

$$U \mapsto \mathcal{O}_X(U)/\mathfrak{N}_U$$

wobei \mathfrak{N}_U das Nilradikal von $\mathcal{O}_X(U)$ bezeichnet. Dann ist $(X, \mathcal{O}_X^{\mathrm{red}})$ ein Schema, das zu X assoziierte reduzierte Schema X_{red} . Es gibt einen Morphismus $f: X_{\mathrm{red}} \to X$ mit dem Homöomorphismus id auf den unterliegenden topologischen Räumen und $f^{\sharp}: \mathcal{O}_X \to f_*\mathcal{O}_X^{\mathrm{red}}$ gegeben durch:

$$\mathcal{O}_X(U) \to \mathcal{O}_X^{\mathrm{red}}(U), \ s \mapsto \left(U \stackrel{s}{\to} \coprod_{P \in U} \mathcal{O}_{X,P} \to \coprod_{P \in U} \mathcal{O}_{X,P}^{\mathrm{red}}\right)$$

(iii) Sei $f: X \to Y$ ein Morphismus von Schemata mit X reduziert. Setze g = f auf den unterliegenden topologischen Räumen. Da X reduziert ist, faktorisiert $f^{\sharp}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ über $\mathcal{O}_{Y}^{\mathrm{red}}$. f^{\sharp} induziert $g^{\sharp}: \mathcal{O}_{Y}^{\mathrm{red}} \to g_{*}\mathcal{O}_{X} = f_{*}\mathcal{O}_{X}$. Es gibt also einen eindeutig bestimmten Morphismus $g: X \to Y_{\mathrm{red}}$ mit kommutativem Diagramm:

$$X \xrightarrow{f} Y$$

$$\downarrow Y_{\text{red}}$$

Sei $S = \bigoplus_{d \geq 0} S_d$ ein graduierter Ring und $S_+ = \bigoplus_{d > 0} S_d$. Ein Primideal $\mathfrak{p} \subset S$ ist genau dann homogen, wenn aus $fg \in \mathfrak{p}$ für gewisse homogene Elemente $f, g \in S$ stets $f \in \mathfrak{p}$ oder $g \in \mathfrak{p}$ folgt. Für ein homogenes Ideal $\mathfrak{a} \subset S$ setze:

$$\operatorname{Proj}(S) = \{ \mathfrak{p} \subset S \text{ homogenes Primideal} \mid S_+ \not\subset \mathfrak{p} \}, \quad V(\mathfrak{a}) = \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{a} \subset \mathfrak{p} \}$$

Lemma 2.22.

- (i) Sind $\mathfrak{a}, \mathfrak{b} \subset S$ homogene Ideale, so gilt $V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.
- (ii) Ist $(\mathfrak{a}_i)_i$ eine Familie homogener Ideale in S, so folgt $V(\sum \mathfrak{a}_i) = \bigcap V(\mathfrak{a}_i)$.

Damit wird auf $\operatorname{Proj}(S)$ eine Topologie definiert. Die abgeschlossenen Mengen sind genau die Mengen der Form $V(\mathfrak{a})$ für ein homogenes Ideal $\mathfrak{a} \subset S$.

Beweis. Wie in Lemma 2.1 unter Beachtung, dass homogene Ideale von homogene Elemente erzeugt werden. \Box

Definition. Sei $T \subset S$ multiplikativ abgeschlossen, die aus homogenen Elementen besteht. Dann wird $T^{-1}S = \bigoplus_{i>0} (T^{-1}S)_i$ zu einem graduierten Ring:

$$(T^{-1}S)_i = \left\{ \frac{s}{t} \in T^{-1}S \mid s \in S \text{ homogen}, \ t \in T, \ \deg(s) - \deg(t) = i \right\}$$

Ist $\mathfrak{p} \subset S$ ein homogenes Primideal und $f \in S$ ein homogenes Element, so ist die homogene Lokalisierung bzgl. \mathfrak{p} bzw. f definiert als:

$$S_{(\mathfrak{p})} = (S_{\mathfrak{p}})_0, \quad S_{(f)} = (S_f)_0$$

Definition. Wir definieren eine Ringgarbe \mathcal{O} auf $\operatorname{Proj}(S)$ wie folgt: Sei $U \subset_{\operatorname{o}} \operatorname{Proj}(S)$ und setze $\mathcal{O}(U)$ als die Menge aller Abbildungen $s: U \to \coprod_{\mathfrak{p} \in U} S_{(\mathfrak{p})}$, so dass:

- (i) Für alle $\mathfrak{p} \in U$ gilt $s(\mathfrak{p}) \in S_{(\mathfrak{p})}$.
- (ii) Für alle $\mathfrak{p} \in U$ existiert eine offene Umgebung V von \mathfrak{p} mit $V \subset U$ und homogene Elemente $a, f \in S$ mit $\deg(a) = \deg(f)$ derart, dass für alle $\mathfrak{q} \in V$ stets $f \notin \mathfrak{q}$ und $s(\mathfrak{q}) = \frac{a}{f}$ in $S_{(\mathfrak{q})}$ gilt.

Satz 2.23. Sei S ein graduierter Ring. Dann gilt:

- (i) $\mathcal{O}_{\mathfrak{p}} \cong S_{(\mathfrak{p})}$ für alle $\mathfrak{p} \in \operatorname{Proj}(S)$.
- (ii) Für ein homogenes $f \in S_+$ setze $D_+(f) = \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid f \notin \mathfrak{p} \}$. Dann ist $D_+(f)$ offen in $\operatorname{Proj}(S)$ und es gilt:

$$\operatorname{Proj}(S) = \bigcup_{f \in S_+ \text{ homogen}} D_+(f)$$

Es gibt einen Isomorphismus lokal geringter Räume $(D_+(f), \mathcal{O}|_{D_+(f)}) \cong \operatorname{Spec} S_{(f)}$.

(iii) (Proj S, \mathcal{O}) ist ein Schema.

Beweis.

- (i) Die Abbildung $\mathcal{O}_{\mathfrak{p}} \to S_{(\mathfrak{p})}, \ s_{\mathfrak{p}} \mapsto s(\mathfrak{p}),$ wobei s ein Repräsentant von $s_{\mathfrak{p}}$ ist, ist ein Isomorphismus. Beweis analog wie Satz 2.3 (i).
- (ii) Da $D_+(f) = \operatorname{Proj}(S) \setminus V(f)$, ist $D_+(f)$ offen. Sei $\mathfrak{p} \in \operatorname{Proj}(S)$, d.h. $\mathfrak{p} \subset S$ ist ein homogenes Primideal mit $S_+ \not\subset \mathfrak{p}$. Sei $f \in S_+ \setminus \mathfrak{p}$. Dann ist $\mathfrak{p} \not\in V(f)$, also $\mathfrak{p} \in D_+(f)$. Daher ist $\operatorname{Proj}(S) = \bigcup D_+(f)$.

Sei $f \in S_+$. Wir definieren ein Morphismus lokal geringter Räume $(\phi, \phi^{\sharp}): D_+(f) \to \operatorname{Spec} S_{(f)}$ wie folgt: Sei $S \to S_f$ der natürliche Homomorphismus. Sei $\mathfrak{a} \subset S$ ein homogenes Ideal und setze $\phi(\mathfrak{a}) = \mathfrak{a} S_f \cap S_{(f)}$. Beachte, dass $S_{(f)} = (S_f)_0 \subset S_f$ ein Teilring ist. Für $\mathfrak{p} \in D_+(f)$ ist $\phi(\mathfrak{p}) \in \operatorname{Spec} S_{(f)}$, siehe Satz 2.16, und ϕ ist bijektiv. Sei $\mathfrak{a} \subset S$ ein homogenes Ideal. Dann ist $\mathfrak{p} \supset \mathfrak{a}$ genau dann, wenn $\phi(\mathfrak{p}) \supset \phi(\mathfrak{a})$. Daher ist ϕ ein Homöomorphismus.

 $\phi^{\sharp}: \mathcal{O}_{\operatorname{Spec} S_{(f)}} \to \phi_* \left(\mathcal{O}_{\operatorname{Proj}(S)}|_{D_+(f)} \right)$ wird wie folgt definiert:

$$\mathcal{O}_{\operatorname{Spec} S_{(f)}}(U) \to \mathcal{O}_{\operatorname{Proj}(S)}(\phi^{-1}(U)), \ s \mapsto \left(\phi^{-1}(U) \xrightarrow{s \circ \phi} \coprod (S_{(f)})_{\phi(\mathfrak{p})} \cong \coprod S_{(\mathfrak{p})}\right)$$

Dieses ist ein Isomorphismus.

Beispiel 2.24. Sei A ein Ring. Dann heißt

$$\mathbf{P}_A^n = \operatorname{Proj} A[X_0, \dots, X_n]$$

der n-dimensionaler projektiver Raum über A. Ist speziell A = k ein algebraisch abgeschlossener Körper, so ist \mathbf{P}_k^n ein Schema. Dessen Teilraum aller abgeschlossenen Punkte ist homöomorph zur projektiven n-dimensionalen Varietät.

Definition 2.25. Sei S ein beliebiges Schema. Ein Schema "über S ist ein Schema X zusammen mit einem Morphismus $X \to S$, der sogenannte Strukturmorphismus. Ein Morphismus zweier Schemata X und Y über S ist ein Morphismus $f: X \to X'$, so dass das folgende Diagramm kommutiert:

So ein Morphismus nennt man auch S-Morphismus. Bezeichne die Kategorie aller Schemata über S mit S-Morphismen mit $\mathbf{Sch}(S)$. Für einen Ring A setzen wir auch $\mathbf{Sch}(A) = \mathbf{Sch}(\operatorname{Spec} A)$.

 ${\bf Satz}$ 2.26. Sei kein algebraisch abgeschlossener Körper. Dann gibt es einen natürlichen Funktor

$$t: \mathbf{Var}(k) \to \mathbf{Sch}(k)$$

der volltreu ist, d.h. für zwei Varietäten V, W ist die durch t auf den Morphismen induzierte Abbildung $\operatorname{Hom}_{\mathbf{Var}(k)}(V,W) \to \operatorname{Hom}_{\mathbf{Sch}(k)}(tV,tW)$ bijektiv. Für eine Varietät V setze $\mathfrak{M}(V)$ als die Menge aller abgeschlossenen Punkte des Schemas tV mit der Teilraumtopologie. Es gibt einen Homöomorphismus topologischer Räume $V \cong \mathfrak{M}(V)$. Die Garbe der regulären Funktionen ist via diesen Homöomorphismus isomorph zu $\mathcal{O}_{tV}|_{\mathfrak{M}(V)}$.

Beweis. Siehe z.B. Hartshorne Kapitel II, Proposition 2.6 oder Mumford, Theorem 2 auf Seite 168.

2.3 Erste Eigenschaften von Schemata

Definition 3.1.

- (i) Ein Schema heißt *zusammenhängend*, falls es als topologischer Raum zusammenhängend ist.
- (ii) Ein Schema heißt *irreduzibel*, falls es als topologischer Raum irreduzibel ist.
- (iii) Ein Schema heißt reduziert falls für alle $U \subset_{o} X$ der Ring $\mathcal{O}_{X}(U)$ reduziert ist.
- (iv) Ein Schema heißt integer, falls für alle $U \subset_{o} X$ der Ring $\mathcal{O}_{X}(U)$ nullteilerfrei ist.

Beispiel 3.2. Sei $X = \operatorname{Spec}(A)$ ein affines Schema. Dann gilt:

- (i) X ist irreduzibel $\iff \mathfrak{N}(A)$ ist ein Primideal
- (ii) X ist reduziert \iff A ist reduziert $\iff \mathfrak{N}(A) = 0$
- (iii) X ist integer \iff A ist nullteilerfrei

Beweis. (i) und (ii) sind klar. Ist X integer, so ist $A = \mathcal{O}_X(X)$ nullteilerfrei. Sei nun umgekehrt A nullteilerfrei, d.h. $\mathfrak{N}(A) = 0$ ist ein Primideal. Nach (i) und (ii) ist X irreduzibel und reduziert. Daher folgt die Aussage aus dem nächsten Satz.

Satz 3.3. Ein Schema X ist genau dann integer, wenn X reduziert und irreduzibel ist.

Beweis. Sei X integer. Dann ist X offensichtlich reduziert. Wäre X nicht irreduzibel, so gäbe es $\emptyset \neq U_1, U_2 \subset_{o} X$ mit $U_1 \cap U_2 = \emptyset$. Dann ist:

$$\mathcal{O}_X(U_1 \cup U_2) = \mathcal{O}_X(U_1) \times \mathcal{O}_X(U_2)$$

Somit ist $\mathcal{O}_X(U_1 \cup U_2)$ nicht nullteilerfrei. Sei nun umgekehrt X irreduzibel und reduziert. Sei $V \subset_0 X$ affin mit $V = \operatorname{Spec}(A)$. Sei $a, b \in A$ mit ab = 0. Es folgt:

$$\operatorname{Spec}(A) = V(ab) = V(a) \cup V(b)$$

Da V irreduzibel ist, folgt o.B.d.A. $\operatorname{Spec}(A) = V(a)$. Da $A = \mathcal{O}_X(V)$ reduziert ist, folgt $\operatorname{Rad}(a) = (0)$, also a = 0. Daher ist $\mathcal{O}_X(V)$ für jedes affine $V \subset_{\operatorname{o}} X$ nullteilerfrei.

Sei nun $U \subset_{o} X$ beliebig und $f, g \in \mathcal{O}_{X}(U)$ mit fg = 0. Für $V \subset_{o} U$ affin, folgt aus $f|_{V} \cdot g|_{V} = 0$ o.B.d.A. $f|_{V} = 0$. Nun ist U der Abschluss von V in U. Sei $x \in U$ und

 $U(x) \subset_{o} U$ eine affine Umgebung von x mit $U(x) = \operatorname{Spec}(B)$. Sei $f(x) = \frac{a}{h} \in B_{x}$ für alle $x \in U(x)$. Es ist $U(x) \cap V \neq \emptyset$, da U irreduzibel ist. Wähle ein $y \in U(x) \cap V$; es folgt $0 = f(y) = \frac{a}{h} \in B_{y}$, also gibt es ein $k \in B \setminus y$ mit ka = 0. Da B nullteilerfrei ist, folgt a = 0 und f = 0 auf U(x). Somit folgt f = 0.

Definition.

- (i) Ein Schema X heißt quasikompakt, wenn sein unterliegender topologischer Raum quasikompakt ist.
- (ii) Ein topologischer Raum X heißt noethersch, wenn jede absteigende Kette von abgeschlossenen Teilmengen in X stationär wird.

Bemerkung. Sei X ein noetherscher Raum. Nach Zorns Lemma besitzt jede nichtleere Menge Σ von abgeschlossenen Mengen in X ein minimales Element, da jede Kette in Σ ein minimales Element besitzt.

Satz 3.4.

- (i) Sei X ein topologischer Raum. Dann ist X genau dann noethersch, wenn alle offenen Teilmengen $U \subset X$ quasikompakt sind.
- (ii) Sei X ein affines Schema. Dann ist X quasikompakt, aber nicht notwendig noethersch.
- (iii) Sei A ein noetherscher Ring. Dann ist der $\operatorname{Spec}(A)$ unterliegender Raum noethersch.

Beweis.

(i) Sei $U \subset_{o} X$ und $U = \bigcup_{i \in I} U_{i}$ eine offene Überdeckung. Für eine endliche Teilmenge $J \subset I$ setze $V_{J} = \bigcup_{i \in J} U_{i}$. Dann ist $V_{J} \subset X$ offen und es gilt:

$$U = \bigcup_{I \subset I \text{ endlich}} V_J$$

Wählt man aus $\Sigma = \{X \setminus V_J \mid J \subset I \text{ endlich}\}$ ein minimales Element $X \setminus V_{J'}$. Dann gilt $V_{J'} \supset V_J$ für alle J. Also ist $U = V_{J'} = \bigcup_{i \in J'} U_i$ eine endliche Teilüberdeckung. Sei umgekehrt $Y_1 \supset Y_2 \supset \ldots$ eine Kette abgeschlossener Mengen in X, so ist die Menge $U = \bigcup_{j \geq 1} X \setminus Y_j$ offen in X. Wir erhalten eine endliche Teilüberdeckung $U = \bigcup_{r \geq j \geq 1} X \setminus Y_j = X \setminus Y_r$, also folgt $Y_s = Y_r$ für alle $s \geq r$.

(ii) Sei $X = \operatorname{Spec}(A) = \bigcup_{i \in I} U_i$ eine offene Überdeckung. Wir können o.B.d.A. $U_i = D(f_i)$ für gewisse $f_i \in A$ annehmen. Sei $\mathfrak{a} = (f_i \mid i \in I) \subset A$. Dann gilt:

$$X = \bigcup_{i \in I} X \setminus V(f_i) = X \setminus \bigcap_{i \in I} V(f_i) = X \setminus V(\mathfrak{a})$$

Es folgt $V(\mathfrak{a}) = \emptyset$, also $1 \in \mathfrak{a}$. Somit gibt es endlich viele $g_j \in A$ und $i_j \in I$ mit $1 = \sum_j g_j f_{i_j}$. Wir erhalten die endliche Teilüberdeckung $X = \bigcup_j D(f_{i_j})$.

(iii) Sei $V(\mathfrak{a}_1) \supset V(\mathfrak{a}_2) \supset \ldots$ eine Kette abgeschlossener Mengen in Spec(A) mit Radikalidealen $\mathfrak{a}_i \subset A$. Sie wird stationär, da die Kette $\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \ldots$ stationär wird. \square

Definition 3.5. Sei X ein Schema.

- (i) X heißt lokal noethersch, falls X von offenen, affinen Teilmengen $\operatorname{Spec}(A_i)$ mit noetherschen Ringen A_i überdeckt werden kann.
- (ii) X heißt noethersch, falls X lokal noethersch und quasikompakt ist. Dies ist äquivalent dazu, dass X von endlich vielen offenen, affinen Teilmengen $\operatorname{Spec}(A_i)$ mit noetherschen Ringen A_i überdeckt werden kann.

Bemerkung. Ist ein Schema X noethersch, so ist nach Satz 3.4 (iii) der unterliegender Raum von X noethersch. Die Umkehrung gilt im Allgemeinen nicht.

Satz 3.6. Sei X ein Schema. Dann ist X genau dann lokal noethersch, wenn für alle offenen, affinen Teilmengen U = Spec(A) stets A ein noetherscher Ring ist.

Beweis. Die Rückrichtung ist trivial. Sei also X lokal noethersch und $U = \operatorname{Spec}(A)$ offen in X. Wir haben eine offene affine Überdeckung $X = \bigcup_i \operatorname{Spec}(B_i)$ mit noetherschen Ringen B_i . Da die offenen Mengen D(f) eine offene Basis der Topologie bilden, haben wir eine Darstellung:

$$U = \bigcup_{i,j} D(f_{ij}), \quad f_{ij} \in B_i, \ D(f_{ij}) \subset U \cap \operatorname{Spec}(B_i)$$

mit $D(f_{ij}) = \operatorname{Spec}(B_i)_{f_{ij}}$. Da B_i noethersch sind, sind die Lokalisierungen $(B_i)_{f_{ij}}$ ebenfalls noethersche Ringe. Da U affin und somit quasikompakt ist, kann U von endlich vielen Spektren noetherscher Ringe überdeckt werden.

Sei $V = \operatorname{Spec}(B)$ offen in U mit noetherschen Ring B. Sei $f \in A$ und betrachte $D(f) \subset V$. Die natürliche Inklusion $V \hookrightarrow U$ induziert einen Ringhomomorphismus $A \to B$. Sei \overline{f} das Bild von f in B. Es gilt:

$$\operatorname{Spec}(A_f) = D(f) = D(\overline{f}) = \operatorname{Spec}(B_{\overline{f}})$$

Es folgt $A_f \cong B_{\overline{f}}$ und A_f ist noethersch. Wir haben nun gezeigt, dass U von endlich vielen offenen Mengen der Form $D(f) = \operatorname{Spec}(A_f)$ überdeckt werden kann mit noetherschen Ringen A_f . Somit folgt die Aussage aus dem nächsten Lemma.

Lemma 1. Sei A ein Ring und $f_1, \ldots, f_r \in A$ mit $1 = (f_1, \ldots, f_r)$. Sind alle A_{f_i} noethersch, so ist auch A noethersch.

Lemma 2. Sei A ein Ring und $f_1, \ldots, f_r \in A$ mit $1 = (f_1, \ldots, f_r)$. Sei $\mathfrak{a} \subset A$ ein Ideal und $\varphi_i : A \to A_{f_i}$ die Lokalisierungsabbildung. Dann gilt:

$$\mathfrak{a} = \bigcap_{i=1}^r \varphi_i^{-1}(\varphi_i(\mathfrak{a})A_{f_i})$$

Beweis. Für die nichttriviale Inklusion sei $b \in A$ mit $\varphi_i(b) \in \varphi(\mathfrak{a})A_{f_i}$ für alle i. Schreibe:

$$\varphi_i(b) = \frac{a_i}{f_i^{n_i}} \in A_{f_i}, \quad a_i \in \mathfrak{a}, \ n_i > 0$$

Sei o.B.d.A. $n=n_1=\ldots=n_r$. Somit gibt es für alle i ein $m_i\geq 0$ mit:

$$f_i^{m_i}(f_i^n b - a_i) = 0$$

Sei o.B.d.A. $m = m_1 = \ldots = m_r$. Es folgt $f_i^{m+n}b \in \mathfrak{a}$ für alle i. Aus $1 = (f_1, \ldots, f_r)$ folgt $1 = (f_1^N, \ldots, f_r^N)$ für alle $N \geq 0$, insbesondere für N = m + n. Sei also $1 = \sum_{i=1}^r c_i f_i^N$ für gewisse $c_i \in A$. Dann gilt:

$$b = \sum_{i=1}^{r} c_i f_i^N b \in \mathfrak{a}$$

Beweis von Lemma 1. Sei $\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \ldots$ eine Kette von Idealen in A. Diese induziert für alle i eine Kette von Idealen in A_{f_i} :

$$\varphi_i(\mathfrak{a}_1)A_{f_i} \subset \varphi_i(\mathfrak{a}_2)A_{f_i} \subset \dots$$

Da A_{f_i} noethersch ist, wird diese Kette stationär für alle i. Es existiert also ein s mit $\varphi_i(\mathfrak{a}_s)A_{f_i}=\varphi(\mathfrak{a}_{s+1})A_{f_i}=\ldots$ für alle i. Mit Lemma 2 wird auch die ursprüngliche Kette von Idealen in A stationär.

Definition. Sei $f: X \to Y$ ein Morphismus von Schemata.

- (i) f heißt lokal von endlichem Typ, falls Y eine offene affine Überdeckung $\bigcup_i \operatorname{Spec}(B_i)$ besitzt, so dass $f^{-1}(\operatorname{Spec} B_i)$ für alle i eine offene affine Überdeckung $\bigcup_j \operatorname{Spec}(A_{ij})$ besitzt, wobei alle A_{ij} endlich erzeugte B_i -Algebren sind.
- (ii) f heißt $von\ endlichem\ Typ$, falls Y eine offene affine Überdeckung $\bigcup_i \operatorname{Spec}(B_i)$ besitzt, so dass $f^{-1}(\operatorname{Spec} B_i)$ für alle i eine endliche, offene affine Überdeckung $\bigcup_j \operatorname{Spec}(A_{ij})$ besitzt, wobei alle A_{ij} endlich erzeugte B_i -Algebren sind.
- (iii) f heißt endlich, falls eine offene affine Überdeckung $Y = \bigcup_i \operatorname{Spec}(B_i)$ existiert, so dass $f^{-1}(\operatorname{Spec} B_i) = \operatorname{Spec}(A_i)$ für alle i ist, wobei A_i eine B_i -Algebra ist, die als B_i -Modul endlich erzeugt ist.

Bemerkung 3.7. Sei $f: X \to Y$ ein Morphismus von Schemata.

- (i) f ist genau dann lokal von endlichem Typ, wenn für alle offene, affine $V = \operatorname{Spec}(B)$ in Y es eine offene affine Überdeckung $f^{-1}(V) = \bigcup_j \operatorname{Spec}(A_j)$ gibt, wobei A_j endlich erzeugte B-Algebren sind.
- (ii) f ist genau dann von endlichem Typ, wenn für alle offene, affine $V = \operatorname{Spec}(B)$ in Y es eine endliche, offene affine Überdeckung $f^{-1}(V) = \bigcup_j \operatorname{Spec}(A_j)$ gibt, wobei A_j endlich erzeugte B-Algebren sind.
- (iii) f ist genau dann endlich, wenn für alle offene, affine $V = \operatorname{Spec}(B)$ in Y die Menge $f^{-1}(V) = \operatorname{Spec}(A)$ affin ist, wobei A ein endlich erzeugter B-Modul ist.

Beweis. Dies werden wir später zeigen.

Beispiel 3.8. Sei V eine Varietät über einem algebraisch abgeschlossenen Körper k. Dann ist das Schema t(V) in Satz 2.26 ein integres, noethersches Schema von endlichem Typ über k.

Beispiel 3.9. Sei P ein Punkt einer Varietät und \mathcal{O}_P der zugehörige Halm. Dann ist $\operatorname{Spec}(\mathcal{O}_P)$ ein integres, noethersches Schema, aber nicht von endlichem Typ über k.

Definition 3.10. Ein offenes Unterschema eines Schemas X ist ein Schema U, dessen unterliegender topologischer Raum eine offene Teilmenge von X ist und dessen Strukturgarbe \mathcal{O}_U isomorph zu $\mathcal{O}_X|_U$ ist.

Ein Schemamorphismus $f: X \to Y$ heißt offene Immersion, falls f ein Isomorphismus auf ein offenes Unterschema in Y induziert.

Bemerkung. Jede offene Teilmenge eines Schemas X trägt eine eindeutig bestimmte Struktur als offenes Unterschema, siehe auch Definition 2.10.

Definition 3.11. Ein abgeschlossenes Unterschema eines Schemas X ist ein Schema Y, zusammen mit einem Morphismus $(i, i^{\sharp}): Y \to X$, so dass:

- (i) Der Y unterliegender Raum ist eine abgeschlossene Teilmenge von X.
- (ii) $i: Y \hookrightarrow X$ ist die natürliche Inklusion.
- (iii) $i^{\sharp}: \mathcal{O}_X \to i_*\mathcal{O}_Y$ ist surjektiv.

Ein Schemamorphismus $f: X \to Y$ heißt abgeschlossene Immersion, falls f ein Isomorphismus auf ein abgeschlossenes Unterschema in Y induziert.

Beispiel 3.12. Sei A ein Ring, $\mathfrak{a} \subset A$ ein Ideal und $X = \operatorname{Spec}(A)$, $Y = \operatorname{Spec}(A/\mathfrak{a})$. Der Ringhomomorphismus $\varphi : A \to A/\mathfrak{a}$ induziert $f : Y \to X$, $\mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p})$. Dies induziert ein Morphismus von Schemata. f ist ein Homöomorphismus von Y auf $V(\mathfrak{a})$ und die Abbildung $f^{\sharp} : \mathcal{O}_X \to f_*\mathcal{O}_Y$ induziert:

$$f_{\mathfrak{p}}^{\sharp}: \mathcal{O}_{X, f(\mathfrak{p})} = A_{\varphi^{-1}(\mathfrak{p})} \to (A/\mathfrak{a})_{\mathfrak{p}} = \mathcal{O}_{Y, \mathfrak{p}}$$

 $f_{\mathfrak{p}}^{\sharp}$ ist surjektiv für alle $\mathfrak{p} \in Y$, also ist nach 1.10 (ii) auch f^{\sharp} surjektiv. Somit erhält man für jedes $\mathfrak{a} \subset A$ auf $V(\mathfrak{a}) \subset X$ eine Struktur als abgeschlossenes Unterschema in X.

Bemerkung. Ist $Y \subset X = \operatorname{Spec}(A)$ eine abgeschlossene Teilmenge, so existieren auf Y viele abgeschlossene Unterschemastrukturen. Wir werden später sehen, das sie genau den Idealen $\mathfrak{a} \subset A$ mit $Y = V(\mathfrak{a})$ entsprechen.

Satz 3.14. Sei X ein Schema und Y eine abgeschlossene Teilmenge von X. Dann besitzt Y eine eindeutig bestimmte induzierte Struktur als reduziertes, abgeschlossenes Unterschema.

Lemma 3.15. Sei X ein topologischer Raum und $X = \bigcup_i U_i$ eine offene Überdeckung. Ferner sei für jedes i eine Garbe F_i auf U_i gegeben und für alle i, j seien Isomorphismen gegeben:

$$\varphi_{ij}: F_i|_{U_i \cap U_j} \stackrel{\sim}{\to} F_j|_{U_i \cap U_j}$$

so dass $\varphi_{ii} = \operatorname{id}$ und $\varphi_{ik} = \varphi_{jk}\varphi_{ij}$ auf $U_i \cap U_j \cap U_k$ gilt. Dann existiert eine eindeutig bestimmte Garbe F auf X und Isomorphismen $\psi_i : F|_{U_i} \stackrel{\sim}{\to} F_i$ mit $\psi_j = \varphi_{ij}\psi_i$ auf $U_i \cap U_j$. Wir sagen auch, dass F durch $\operatorname{Verkleben}$ der F_i längst φ_{ij} entsteht.

Beweis. Folgt direkt aus der Definition einer Garbe.

Definition 3.16.

(i) Die $Dimension \dim(X)$ eines Schemas X ist die Dimension von X als topologischer Raum, d.h:

$$\dim(X) = \sup\{n \mid \text{es gibt eine Kette } Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_n$$

von irreduziblen, abgeschlossenen Teilmengen in $X\}$

(ii) Sei Z eine irreduzible, abgeschlossene Teilmenge eines Schemas X. Dann ist die $Kodimension \operatorname{codim}(Z,X)$ von Z in X definiert als:

$$\operatorname{codim}(Z,X) = \sup\{n \mid \text{es gibt eine Kette } Z = Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_n$$

von irreduziblen, abgeschlossenen Teilmengen in $X\}$

Ist Y eine abgeschlossene Teilmenge von X, so setzen wir:

$$\operatorname{codim}(Y, X) = \inf\{\operatorname{codim}(Z, X) \mid Z \subset Y \text{ irreduzibel, abgeschlossen}\}\$$

Definition 3.17. Sei S ein Schema und X, Y S-Schemata. Das $Faserprodukt \ X \times_S Y$ von X und Y über S ist ein Schema, zusammen mit Projektionsmorphismen $p_1: X \times_S Y \to X$ und $p_2: X \times_S Y \to Y$ derart, dass:

(i) Das folgende Diagramm kommutiert:

$$\begin{array}{ccc}
X \times_S Y & \xrightarrow{p_2} Y \\
\downarrow & & \downarrow \\
X & \longrightarrow S
\end{array}$$

(ii) Ist Z ein S-Schema und $f:Z\to X,\ g:Z\to Y$ Morphismen derart, dass das folgende Diagramm kommutiert:

so existiert einen eindeutig bestimmten Morphismus $\theta: Z \to X \times_S Y$ mit $f = p_1 \theta$ und $g = p_2 \theta$.

Wird für Schemata X und Y kein Bezug zu einer Basis angegeben, so ist immer das Endobjekt $S = \operatorname{Spec}(\mathbb{Z})$ gemeint, d.h. $X \times Y = X \times_{\operatorname{Spec}(\mathbb{Z})} Y$.

Theorem 3.18. Seien X und Y S-Schemata. Dann existiert das Faserprodukt $X \times_S Y$ und ist auf Isomorphie eindeutig.

Lemma 3.19. (Verkleben von Morphismen, vgl. Satz 2.13) Seien X, Y Schemata und $\{U_i\}$ eine offene Überdeckung von X. Ferner seien $f_i: U_i \to Y$ Morphismen gegeben, wobei U_i mit der offenen Unterschemastruktur versehen ist. Es gelte $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ für alle i, j. Dann gibt es einen Morphismus $f: X \to Y$ mit $f|_{U_i} = f_i$ für alle i.

Beweis von Theorem 3.18. Die Eindeutigkeit ist klar.

1. Schritt: Seien $X = \operatorname{Spec}(A)$, $Y = \operatorname{Spec}(B)$, $S = \operatorname{Spec}(R)$ affin. Somit sind A und B R-Algebran. Wir zeigen $X \times_S Y = \operatorname{Spec}(A \otimes_R B)$. Die Projektionsabbildung $p_1 : \operatorname{Spec}(A \otimes_R B) \to \operatorname{Spec}(A)$ ist durch die natürliche Abbildung $\tilde{p}_1 : A \to A \otimes_R B$ gegeben, analog für p_2 . Offensichtlich kommutiert:

$$\begin{array}{ccc}
A & \xrightarrow{\tilde{p}_1} & A \otimes_R B \\
\uparrow & & \uparrow_{\tilde{p}_2} \\
R & \longrightarrow & B
\end{array}$$

Sei also Z ein S-Schema und Morphismen $f:Z\to X,\ g:Z\to Y$ gegeben, die über S gleich sind. Diese entsprechen Ringhomomorphismen $\tilde{f}:A\to \Gamma(Z,\mathcal{O}_Z)$ und $\tilde{g}:B\to \Gamma(Z,\mathcal{O}_Z)$ nach Satz 2.13. Es kommutiert:

Wegen der Universaleigenschaft des Tensorprodukts gibt es genau einen Ringhomomorphismus $\tilde{\theta}: A \otimes_R B \to \Gamma(Z, \mathcal{O}_Z)$ mit $\tilde{f}\tilde{\theta} = \tilde{p}_1$ und $\tilde{g}\tilde{\theta} = \tilde{p}_2$. Satz 2.13 liefert ein eindeutiges $\theta: Z \to \operatorname{Spec}(A \otimes_R B)$ mit $f = p_1\theta$ und $g = p_2\theta$.

2. Schritt: Seien X, Y beliebige S-Schemata und $U \subset_0 X$. Wir nehmen an, dass das Faserprodukt $X \times_S Y$ mit Projektionen p_1, p_2 existiert. Wir zeigen, dass für die offene Teilmenge $p_1^{-1}(U) \subset X \times_S Y$ stets $p_1^{-1}(U) = U \times_S Y$ gilt.

Da $p_1^{-1}(U) \subset X \times_S Y$, kommutiert das Diagramm:

$$\begin{array}{ccc} p_1^{-1}(U) & \stackrel{p_2}{\longrightarrow} Y \\ \downarrow & & \downarrow \\ U & \longrightarrow S \end{array}$$

Sei Z ein S-Schema und Morphismen $f:Z\to U,\ g:Z\to Y$ gegeben, so dass $(Z\stackrel{f}{\to}U\stackrel{i}{\hookrightarrow}X\to S)=(Z\stackrel{g}{\to}Y\to S)$. Nach der Universaleigenschaft von $X\times_S Y$ existiert ein eindeutiges $\theta:Z\to X\times_S Y$ mit $if=p_1\theta$ und $g=p_2\theta$. Insbesondere gilt $\theta(Z)\subset p_1^{-1}(U)$, also $\theta:Z\to p_1^{-1}(U)$. Somit erfüllt $p_1^{-1}(U)$ die Universaleigenschaft von $U\times_S Y$.

3. Schritt: Seien X, Y S-Schemata und $\{X_i\}$ eine offene Überdeckung von X. Wir nehmen an, dass alle Faserprodukte $X_i \times_S Y$ mit Projektionen p_{1i}, p_{2i} existieren. Wir zeigen, dass in diesem Fall auch $X \times_S Y$ existiert.

Setze $X_{ij} = X_i \cap X_j$ und $U_{ij} = p_{1i}^{-1}(X_{ij}) \subset X_i \times_S Y$. Nach Schritt 2 folgt nun $U_{ij} = X_{ij} \times_S Y$. Wegen Eindeutigkeit existieren nun Isomorphismen $\varphi_{ij} : U_{ij} \stackrel{\sim}{\to} U_{ji}$ mit $\varphi_{ij} = \varphi_{ji}^{-1}$, $\varphi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$ und $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ auf $U_{ij} \cap U_{jk}$. Mithilfe 2.11 verkleben wir die $X_i \times_S Y$ via φ_{ij} und erhalten so ein Schema Z mit Morphismen $\psi_j : X_j \times_S Y \to Z$, die Isomorphismen auf einem offenen Unterschema induzieren. Seien p_1, p_2 die Morphismen, die durch Verkleben der p_{1i} bzw. p_{2i} entstehen, siehe Lemma 3.19. Wir zeigen nun, dass Z gerade das Faserprodukt $X \times_S Y$ mit Projektionsmorphismen p_1, p_2 ist.

Es gilt $Z = \bigcup_j \psi_j(X_j \times_S Y)$. Also folgt die Kommutativität des zweiten Diagramms aus dem ersten:

Sei nun Z' ein weiteres S-Schema und $f: Z' \to X, \ g: Z' \to Y$ gegeben, die über S gleich sind. Setze $Z'_i = f^{-1}(X_i)$ für alle i. Zu jedem i existiert genau ein Morphismus $\theta_i: Z'_i \to X_i \times_S Y \hookrightarrow Z$ mit $f|_{Z'_i} = p_{1i} \circ \theta_i$ und $g|_{Z'_i} = p_{2i} \circ \theta_i$. Es kommutiert:

$$X_i \times_S Y \hookrightarrow Z$$

$$\downarrow^{p_1 \downarrow} \qquad \qquad \downarrow^{p_1}$$

$$X_i \hookrightarrow X$$

Es gilt $Z_i' \cap Z_j' = f^{-1}(X_i \cap X_j) = f^{-1}(X_{ij})$ und daher $f|_{Z_i' \cap Z_j'} = p_{1i} \circ \theta_i|_{Z_i' \cap Z_j'} = p_{1j} \circ \theta_j|_{Z_i' \cap Z_j'}$, entsprechend für g. Wegen Eindeutigkeit folgt $\theta_i|_{Z_i' \cap Z_j'} = \theta_j|_{Z_i' \cap Z_j'}$. Daher können wir die θ_i zu einem Morphismus $\theta: Z' \to Z$ verkleben mit $f = p_1\theta$ und $g = p_2\theta$. θ ist eindeutig, da $\theta|_{Z_i'} = \theta_i$ und alle θ_i eindeutig sind.

4. Schritt: Seien X, Y S-Schemata und S affin. Wir zeigen, dass $X \times_S Y$ existiert.

Seien $X = \bigcup_i X_i$ und $Y = \bigcup_j Y_j$ offene affine Überdeckungen. Nach Schritt 1 existieren $X_i \times_S Y_j$ für alle i, j. Nach Schritt 3 existieren $X \times_S Y_j$ für alle j. Wegen Symmetrie, existiert somit $X \times_S Y$ nach Schritt 3.

5. Schritt: Seien X, Y S-Schemata mit S beliebig. Wir zeigen, dass $X \times_S Y$ existiert.

Seien $q: X \to S$ und $r: Y \to S$ die Strukturmorphismen und $S = \bigcup_i S_i$ eine offene affine Überdeckung. Setze $X_i = q^{-1}(S_i)$ und $Y_i = r^{-1}(S_i)$. Nach Schritt 4 existieren $X_i \times_{S_i} Y_i$. Wir zeigen, dass $X_i \times_{S_i} Y_i$ die Universaleigenschaft von $X_i \times_S Y$ erfüllt.

Seien $f: Z \to X_i$ und $g: Z \to Y$ gegeben, die über S gleich sind. Dann gilt $rg(Z) = qf(Z) \subset q(X_i) \subset S_i$, also $g(Z) \subset Y_i$. Wir erhalten kommutatives Diagramm:

Es existiert genau ein $\theta: Z \to X_i \times_{S_i} Y_i$ mit $f = p_1 \theta$ und $g = p_2 \theta$. Somit existieren auch $X_i \times_S Y$. Nach Schritt 3 existiert auch $X \times_S Y$.

Lemma 3.20. Seien X, Y S-Schemata mit Strukturmorphismen $\xi : X \to S$, $\eta : Y \to S$ und U, V, W offen in X, Y bzw. S, so dass $\xi(U) \subset W$ und $\eta(V) \subset W$. Ferner seien p_1, p_2 die Projektionsmorphismen von $X \times_S Y$. Dann gibt es einen S-Schemaisomorphismus:

$$p_1^{-1}(U) \cap p_2^{-1}(V) \cong U \times_W V = U \times_S V$$

Beweis. $E = p_1^{-1}(U) \cap p_2^{-1}(V)$ ist offenes Unterschema von $X \times_S Y$. Die Projektionsmorphismen von $X \times_S Y$ induzieren $p_1 : E \to U, \ p_2 : E \to V$. Sei Z ein W-Schema und Morphismen $\varphi : Z \to U, \ \psi : Z \to V$ gegeben, die über W gleich sind. Wir erhalten Morphismen $\varphi' : Z \to U \hookrightarrow X, \ \psi' : Z \to V \hookrightarrow Y$, die über S gleich sind. Es existiert einen eindeutigen Morphismus $\theta : Z \to X \times_S Y$ mit $\varphi' = p_1 \theta$ und $\psi' = p_2 \theta$. Nun gilt $\theta(Z) \subset E$, da $p_1 \theta(Z) = \varphi'(Z) \subset U$ und $p_2 \theta(Z) = \psi'(Z) \subset V$. Somit ist $\theta : Z \to E$ mit $\varphi = p_1 \theta, \ \psi = p_2 \theta$. Es folgt $E \cong U \times_W V$. Da W beliebig war, folgt auch $E \cong U \times_S V$. \square

Definition. Ein *Unterschema Y* eines Schemas X ist ein abgeschlossenes Unterschema eines offenen Unterschemas von X. Mit anderen Worten haben wir eine abgeschlossene Immersion ϕ und eine offene Immersion ψ :

$$Y \stackrel{\phi}{\hookrightarrow} U \stackrel{\psi}{\hookrightarrow} X$$

Ein Morphismus $i: Y \to X$ heißt *Immersion*, wenn i einen Isomorphismus von Y auf ein Unterschema in X induziert.

Satz 3.21. Seien X, Y, Z S-Schemata und W ein Z-Schema. Dann gilt:

- (i) $X \times_S S \cong X$
- (ii) $X \times_S Y \cong Y \times_S X$
- (iii) $(X \times_S Y) \times_S Z \cong X \times_S (Y \times_S Z)$
- (iv) $(X \times_S Z) \times_Z W \cong X \times_S W$
- (v) $(X \times_S Y) \times_S Z \cong (X \times_S Z) \times_Z (Y \times_S Z)$
- (vi) Ist $\sigma: S \to T$ eine Immersion, so ist $X \times_S Y \cong X \times_T Y$.

Beweis. (i) bis (v) folgen direkt aus der Universaleigenschaft des Faserprodukts. Für (vi) seien $\varphi: Z \to X, \ \psi: Z \to Y$ Morphismen über T und $\xi: X \to S, \ \eta: Y \to S$ die Strukturmorphismen. Wir erhalten folgendes kommutative Diagramm:

Wegen der Injektivität von σ , folgt aus $\sigma \xi \varphi = \sigma \eta \psi$ stets $\xi \varphi = \eta \psi$. Es existiert ein eindeutiges, kompatibles $\theta: Z \to X \times_S Y$. Somit erfüllt $X \times_S Y$ die Universaleigenschaft von $X \times_T Y$.

Definition 3.22. Seien $f: X_1 \to X_2$ und $g: Y_1 \to Y_2$ S-Morphismen mit kommutativen Diagramm:

Es existiert genau ein Morphismus $f \times_S g : X_1 \times_S Y_1 \to X_2 \times_S Y_2$ mit $fp_1 = q_1(f \times_S g)$ und $gp_2 = q_2(f \times_S g)$.

Definition 3.23. Sei $f: X \to S$ ein Morphismus von Schemata. Für ein Morphismus $g: T \to S$ erhält man ein T-Schema $X_T = X \times_S T$ mit:

$$\begin{array}{ccc} X_T & \longrightarrow & T \\ \downarrow & & \downarrow g \\ X & \longrightarrow & S \end{array}$$

Man sagt, dass X_T durch Basiswechsel von X über S durch T erhalten bleibt.

Lemma 3.24. Sei $U \subset S$ ein offenes Unterschema. Dann gilt für den Basiswechsel X_U von $f: X \to S$:

$$X_U = X \times_S U \cong f^{-1}(U)$$

Beweis. Nach Satz 3.21 (i) ist die Projektion $p_1: X \times_S S \xrightarrow{\sim} X$ ein Isomorphismus. Sei in Lemma 3.20 Y = S und setze $f = p_2: X \to S$. Wir erhalten:

$$f^{-1}(U) = p_1^{-1}(U) \cap p_2^{-1}(U) \cong X \times_S U$$

Definition. Sei \mathcal{P} eine Eigenschaft eines Morphismus' $f: X \to S$. Man sagt, dass \mathcal{P} bei Basiswechsel *erhalten* bleibt, wenn $f_T: X_T \to T$ die Eigenschaft \mathcal{P} besitzt für alle Morphismen $g: T \to S$.

Bemerkung. Hat $f: X \to S$ eine Eigenschaft \mathcal{P} , die stabil unter Basiswechsel ist, so hat insbesondere $f|_{f^{-1}(U)}: f^{-1}(U) \to U$ für alle offenen $U \subset S$ die Eigenschaft \mathcal{P} .

Satz 3.25.

- (i) Die Eigenschaft (abgeschlossene, offene) Immersion zu sein bleibt bei Basiswechsel erhalten.
- (ii) Die Eigenschaft von endlichem Typ zu sein bleibt stabil unter Basiswechsel.

Beweis. Wird ausgelassen.

Bemerkung. Irreduzibilität, Reduziertheit und Integrität bleiben unter Basiswechsel nicht notwendig erhalten.

Lemma 3.26. Sei $\psi: A \to B$ ein Ringhomomorphismus, so dass $\alpha(\psi): \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ eine abgeschlossene Immersion ist. Sei ferner C ein beliebiger Ring. Dann ist $\alpha(\psi \otimes \operatorname{id}_C): \operatorname{Spec}(B \otimes_A C) \to \operatorname{Spec}(A \otimes_A C) = \operatorname{Spec}(C)$ eine abgeschlossene Immersion, wobei α die Abbildung aus Satz 2.13 bezeichnet.

Beweis. Da $\tilde{\psi} = \alpha(\psi)$ eine abgeschlossene Immersion ist, ist $\tilde{\psi}^{\sharp} : \mathcal{O}_A \to \tilde{\psi}_* \mathcal{O}_B$ surjektiv. $\tilde{\psi}$ ist Homöomorphismus auf eine abgeschlossene Teilmenge, daher ist $(\tilde{\psi}_* \mathcal{O}_B)_{\tilde{\psi}(\mathfrak{p})} = \mathcal{O}_{B,\mathfrak{p}}$ für alle $\mathfrak{p} \in \operatorname{Spec}(B)$. Nach Beispiel 3.12 ist die auf den Halmen induzierte Abbildung $\tilde{\psi}^{\sharp}_{\mathfrak{p}}$ surjektiv:

$$\tilde{\psi}_{\mathfrak{p}}^{\sharp}: A_{\psi^{-1}(\mathfrak{p})} = \mathcal{O}_{A,\tilde{\psi}(\mathfrak{p})} \to (\tilde{\psi}_{*}\mathcal{O}_{B})_{\tilde{\psi}(\mathfrak{p})} = B_{\mathfrak{p}}$$

Betrachte nun die exakte A-Modulsequenz $A \xrightarrow{\psi} B \to B/\psi(A) \to 0$. Diese induziert unter $-\otimes_A A_{\mathfrak{q}}$ für alle $\mathfrak{q} \in \operatorname{Spec}(A)$ die exakte Folge:

$$A_{\mathfrak{q}} \to B \otimes_A A_{\mathfrak{q}} \to B/\psi(A) \otimes_A A_{\mathfrak{q}} \to 0$$

Sei das Bild von $\tilde{\psi}$ von der Form $V(\mathfrak{a}) \cong \operatorname{Spec}(B)$ für ein Ideal $\mathfrak{a} \subset A$. Für ein Primideal $\mathfrak{q} \in \operatorname{Spec}(A)$ gilt:

$$B \otimes_A A_{\mathfrak{q}} \neq 0 \iff \mathfrak{q} \in \operatorname{supp}(B)$$
, wobei B als A -Modul aufgefasst wird $\iff \mathfrak{q} \supset \mathfrak{a}$ $\iff \mathfrak{q} \in \operatorname{im}(\tilde{\psi})$ $\iff \mathfrak{q} = \psi^{-1}(\mathfrak{p})$ für ein $\mathfrak{p} \in \operatorname{Spec}(B)$ $\implies B/\psi(A) \otimes_A A_{\mathfrak{q}} = 0$

Somit ist $A_{\mathfrak{q}} \to B \otimes A_{\mathfrak{q}}$ surjektiv für alle $\mathfrak{q} \in \operatorname{Spec}(A)$. Es folgt die Surjektivität von ψ . Wir erhalten unter $-\otimes_A C$ die surjektive Abbildung $C \to B \otimes_A C$. Nach Beispiel 3.12 folgt die Behauptung.

Lemma 3.27. Sei $f: X \to Y$ ein Morphismus und $Y = \bigcup_{\lambda} Y_{\lambda}$ eine offene Überdeckung. Dann ist f genau dann eine (abgeschlossene, offene) Immersion, wenn $f_{\lambda} = f|_{X_{\lambda}}: X_{\lambda} \to Y_{\lambda}$ mit $X_{\lambda} = f^{-1}(Y_{\lambda})$ die Eigenschaft hat.

Beweis. Kein Beweis.

Bemerkung 3.28. Sind Y_1, Y_2 Unterschemata von X, so ist $Y_1 \times_X Y_2 \to X$ ein Unterschema von X, d.h. eine Immersion.

Definition 3.29. Sei $f: X \to Y$ ein S-Morphismus von S-Schemata. Der Morphismus $\Gamma_f = (\mathrm{id}_X, f)_S : X \to X \times_S Y$ heißt S-Graph von f und $\Gamma_f(X)$ heißt Graph von f. Ist $f = \mathrm{id}_X$ die Identität, so heißt $\Delta_{X/S} = \Gamma_{\mathrm{id}_X}$ der Diagonalmorphismus.

Satz 3.30. Sei $f: X \to Y$ ein S-Morphismus von S-Schemata.

- (i) Sind Y und S affine Schemata, so ist Γ_f eine abgeschlossene Immersion. Insbesondere ist für X, S affin $\Delta_{X/S}$ eine abgeschlossene Immersion.
- (ii) Γ_f ist allgemein eine Immersion.

Beweis.

(i) Sei $X = \bigcup_{\alpha} X_{\alpha}$ eine offene affine Überdeckung und $X \times_S Y$ das Faserprodukt. Nach Lemma 3.24 ist $p_1^{-1}(X_{\alpha}) \cong X_{\alpha} \times_S Y$ affin. Da $p_1 \circ \Gamma_f = \operatorname{id}_X$, gilt $\Gamma_f^{-1}(p_1^{-1}(X_{\alpha})) = X_{\alpha}$. Da $\Gamma_f : \bigcup_{\alpha} \Gamma_f^{-1}(X_{\alpha} \times_S Y) \to \bigcup_{\alpha} (X_{\alpha} \times_S Y) = X \times_S Y$, können wir nach Lemma 3.27 o.B.d.A. annehmen, dass X affin ist.

Sei also $S = \operatorname{Spec}(R)$, $X = \operatorname{Spec}(B)$ und $Y = \operatorname{Spec}(A)$. Sei f induziert von $\varphi : A \to B$ und Γ_f induziert von $\psi : B \otimes_R A \to A$, $b \otimes a \mapsto b\varphi(a)$. ψ ist offensichtlich surjektiv, daher ist Γ_f nach Satz 2.19 (ii) eine abgeschlossene Immersion.

(ii) Sei zunächst S affin und $Y = \bigcup_{\alpha} Y_{\alpha}$ eine offene affine Überdeckung. Setze $X_{\alpha} = f^{-1}(Y_{\alpha})$, $\Gamma_{f\alpha} = \Gamma_f|_{X_{\alpha}}$ und $f_{\alpha} = f|_{X_{\alpha}} : X_{\alpha} \to Y_{\alpha}$. Es ist $\Gamma_f(X_{\alpha}) \subset X_{\alpha} \times_S Y_{\alpha}$ nach (i) ein abgeschlossenes Unterschema und $X_{\alpha} \times_S Y_{\alpha} \subset X \times_S Y_{\alpha}$ nach Satz 3.25 (i) ein offenes Unterschema ist. Nach (i) ist $\Gamma_{f\alpha} : X_{\alpha} \to X_{\alpha} \times_S Y_{\alpha}$ eine Immersion. Nach Lemma 3.27 ist auch Γ_f eine Immersion.

Sei nun S beliebig und $S = \bigcup_{\lambda} S_{\lambda}$ eine offene affine Überdeckung. Nach Satz 3.21 (v) ist $(X \times_S Y) \times_S S_{\lambda} = X_{\lambda} \times_{S_{\lambda}} Y_{\lambda}$, wobei $X_{\lambda} = X \times_S S_{\lambda}$ und $Y_{\lambda} = Y \times_S S_{\lambda}$. Ferner ist $\Gamma_{f_{\lambda}}$ der Graph von $f_{\lambda} : X_{\lambda} \to Y_{\lambda}$ eine Immersion. Nach Lemma 3.27 ist auch Γ_f eine Immersion.

Definition 3.31. Sei $f: X \to Y$ ein Morphismus von Schemata und $y \in Y$ ein Punkt mit Restklassenkörper $\kappa(y) = \mathcal{O}_{Y,y}/\mathfrak{m}_{Y,y}$. Sei weiter $i: \operatorname{Spec} \kappa(y) \to Y$ der natürliche Morphismus gegeben durch $(y, \operatorname{id}_{\kappa(y)})$ (siehe Satz 2.18). Dann heißt das Faserprodukt $X_y = X \times_Y \operatorname{Spec} \kappa(y)$ die Faser von f über dem Punkt y.

$$X_{y} \xrightarrow{p_{2}} \operatorname{Spec} \kappa(y)$$

$$\downarrow p_{1} \qquad \qquad \downarrow i$$

$$X \xrightarrow{f} Y$$

Satz. X_y ist ein $\kappa(y)$ -Schema mit $f^{-1}(y)$ als unterliegender topologischer Raum.

Beweis. Es ist $fp_1(X_y) = ip_2(X_y) = y$, also folgt $p_1(X_y) \subset f^{-1}(y)$ und somit $X_y = p_1^{-1}(f^{-1}(y))$. Sei $V \subset_0 X$ affin mit $V \cap f^{-1}(y) \neq \emptyset$. Dann gilt:

$$p_1^{-1}(V) = V_y \cong X \times_Y \operatorname{Spec} \kappa(y) \times_X V = X_y \times_X V$$

Wir können somit o.B.d.A. X und Y als affin annehmen, sei also $X = \operatorname{Spec}(B)$, $Y = \operatorname{Spec}(A)$, $y = \mathfrak{p}$. Sei $\varphi : A \to B$ assoziiert zu f. Setze $\varphi' : A_{\mathfrak{p}} \to B' = B \otimes_A A_{\mathfrak{p}} = B \otimes_A A_{\mathfrak{p}} = B \otimes_A A_{\mathfrak{p}} = B \otimes_A A_{\mathfrak{p}}$

 $\varphi(A \setminus \mathfrak{p})^{-1}B$. Es gibt eine Folge von Homö
omorphismen:

$$f^{-1}(y) = \{ \mathfrak{q} \in \operatorname{Spec}(B) \mid \varphi^{-1}(\mathfrak{q}) = \mathfrak{p} \}$$

$$\cong \{ \mathfrak{q} \in \operatorname{Spec}(B') \mid \varphi'^{-1}(\mathfrak{q}) = \mathfrak{p} A_{\mathfrak{p}} \}$$

$$\cong \{ \mathfrak{q} \in \operatorname{Spec}(B') \mid \mathfrak{q} \supset (\mathfrak{p} A_{\mathfrak{p}}) B' \}$$

$$= \operatorname{Spec}(B'/(\mathfrak{p} A_{\mathfrak{p}}) B')$$

$$= \operatorname{Spec}(B' \otimes_{A_{\mathfrak{p}}} A_{\mathfrak{p}}/\mathfrak{p} A_{\mathfrak{p}})$$

$$= \operatorname{Spec}((B \otimes_{A} A_{\mathfrak{p}}) \otimes_{A_{\mathfrak{p}}} A_{\mathfrak{p}}/\mathfrak{p} A_{\mathfrak{p}}) = \operatorname{Spec}(B \otimes_{A} \kappa(\mathfrak{p}))$$

Definition 3.32. Sei $f: X \to Y$ ein Morphismus von Schemata, so dass $f(X) \subset Y$ dicht liegt, und Y irreduzibel mit generischer Punkt ξ mit $\xi \in f(X)$. Dann heißt $f^{-1}(\xi)$ generische Faser von f.

Beispiel 3.33. Sei k ein algebraisch abgeschlossener Körper und:

$$X = \operatorname{Spec} k[X, Y, t]/(tY - X^2), \quad Y = \operatorname{Spec} k[T]$$

Sei $f: X \to Y$ gegeben durch die kanonische Abbildung $\varphi: k[t] \to k[X,Y,t]/(tY-X^2)$. X und Y sind integre Schemata von endlichem Typ über k. Ferner ist f surjektiv, da φ injektiv ist (vgl. Satz 2.19 (ii)). Abgeschlossene Punkte von Y entsprechen k. Sei $a \in Y$ ein abgeschlossener Punkt und betrachte die Faser:

$$X_a = X \times_Y \operatorname{Spec} \kappa(a) = \operatorname{Spec} k[X, Y]/(aY - X^2)$$

Im Fall $a \neq 0$ ist X_a eine ebene Kurve in \mathbf{A}_k^2 , die irreduzibel und reduziert ist. Für a = 0 ist $X_0 = \operatorname{Spec} k[X,Y]/(X^2)$ die Y-Achse. Diese ist nicht reduziert.

2.4 Separierte & eigentliche Morphismen

Definition 4.1. Sei $f: X \to Y$ ein Morphismus von Schemata. f heißt separiert, falls $\Delta_{X/Y}: X \to X \times_Y X$ eine abgeschlossene Immersion ist. In diesem Fall sagen wir auch, dass X über Y separiert ist.

Ein Schema X heißt separiert, falls $X \to \operatorname{Spec}(\mathbb{Z})$ separiert ist.

Beispiel 4.2. Sei k ein Körper und X die affine Gerade über k mit doppeltem Nullpunkt wie in Beispiel 2.12. Dann ist $X \times_k X$ die affine Ebene mit vierfachen Nullpunkt und $\Delta(X)$ die gewöhnliche Diagonale, die zwei Nullpunkte besitzt. $\Delta(X)$ ist nicht abgeschlossen, da $\overline{\Delta(X)}$ vier Nullpunkte besitzt.

Beispiel 4.3. Ist V eine Varietät über eine algebraisch abgeschlossenen Körper k, so ist t(V) separiert über k. Dies werden wir später zeigen.

Beispiel 4.4. Ist $f: X \to Y$ ein Morphismus affiner Schemata, so ist f separiert nach Satz 3.30 (i).

Beispiel 4.5. Ist $f: X \to Y$ eine Immersion, so ist f separiert, da nach Satz 3.21 (vi) $X \cong X \times_X X \cong X \times_Y X$ gilt, d.h. $\Delta_{X/Y}: X \to X$ ist ein Isomorphismus.

Satz 4.6. Sei $f: X \to Y$ ein Morphismus von Schemata. Dann ist f genau dann separiert, wenn $\Delta(X) \subset X \times_Y X$ abgeschlossen ist.

Beweis. Für die nicht-triviale Richtung sei $\Delta(X) \subset X \times_Y X$ abgeschlossen. Wir müssen zeigen, dass $X \to \Delta(X)$ ein Homöomorphismus ist, und dass der Morphismus $\mathcal{O}_{X \times_Y X} \to \Delta_* \mathcal{O}_X$ surjektiv ist.

- Sei $p_1: X \times_Y X \to X$ die erste Projektion. Da $p_1 \circ \Delta = \mathrm{id}_X$, induziert Δ ein Homöomorphismus auf sein Bild.
- Sei $P \in X$ und $V \subset_{o} Y$ affin. Wähle $U \subset_{o} X$ affin mit $P \in U$ und $f(U) \subset V$. Dann ist $U \times_{V} U$ eine offene, affine Umgebung von $\Delta(P)$. Nach Beispiel 4.4 ist $\Delta : U \to U \times_{V} U$ eine abgeschlossene Immersion. Somit ist $\mathcal{O}_{X \times_{V} X}|_{U \times_{V} U} \to \Delta_{*} \mathcal{O}_{X}|_{U}$ surjektiv. \square

Definition 4.7. Ein Ring R heißt Bewertungsring, wenn R nullteilerfrei ist, wenn von der folgenden Form ist:

$$R = \{ x \in K^{\times} \mid v(x) \ge 0 \}$$

wobei $v: K^{\times} \to G$ eine Bewertung ist, d.h. v(xy) = v(x) + v(y) und $v(x+y) \ge \min\{v(x), v(y)\}$, und G eine total geordnete abelsche Gruppe ist. R ist dann lokaler Ring mit Maximalideal $\mathfrak{m} = \{x \in K^{\times} \mid v(x) > 0\} \cup \{0\}$ und $K = \operatorname{Quot}(R)$.

Theorem 4.8. (Bewertungstheoretisches Kriterium für Separiertheit) Sei $f: X \to Y$ ein Morphismus von Schemata mit X noethersch. Es sind folgende Aussagen äquivalent:

- (i) f ist separiert.
- (ii) Sei R ein Bewertungsring des Körpers $K = \operatorname{Quot}(R)$ und $i: U = \operatorname{Spec}(K) \hookrightarrow T = \operatorname{Spec}(R)$ die kanonische Inklusion. Seien ferner Morphismen $T \to Y$, $U \to X$ derart gegeben, dass das folgende Diagramm kommutativ ist:

$$\begin{array}{ccc} U & \longrightarrow & X \\ \downarrow & & \downarrow f \\ T & \longrightarrow & Y \end{array}$$

Dann gibt es höchstens eine Abbildung $h: T \to X$, die das obige Diagramm kommutativ macht. Mit anderen Worten: Die folgende kanonische Abbildung ist für jeden Bewertungsring R über Y injektiv:

$$\operatorname{Hom}_Y(\operatorname{Spec}(R), X) \to \operatorname{Hom}_Y(\operatorname{Spec}(K), X), \ h \mapsto h \circ i$$

Definition 4.9. Sei X ein topologischer Raum und $x \in X$. Ein Punkt $x' \in X$ heißt Spezialisierung von x, wenn $x' \in \overline{\{x\}}$ gilt. Ist x'' Spezialisierung von x' und x' Spezialisierung von x, so ist x'' auch Spezialisierung von x.

Eine Teilmenge $Z \subset X$ heißt stabil unter Spezialisierungen, falls mit $x \in Z$ auch jede Spezialisierung in Z ist. Abgeschlossene Mengen sind stabil unter Spezialisierungen. Die Umkehrung gilt im Allgemeinen nicht.

Ein Morphismus von Schemata f heißt quasikompakt, falls es eine offene affine Überdeckung $Y = \bigcup_{\alpha} Y_{\alpha}$ existiert, so dass alle $f^{-1}(Y_{\alpha})$ quasikompakt sind. Es gilt:

$$f$$
 quasikompakt $\iff \forall V \subset_{o} Y \text{ affin: } f^{-1}(V) \text{ quasikompakt}$

Satz 4.10. Sei $f: X \to Y$ ein quasikompakter Morphismus von Schemata. Dann sind folgende Aussagen äquivalent:

- (i) f ist abgeschlossen.
- (ii) Ist $x \in X$ und y' eine Spezialisierung von y = f(x), so gibt es eine Spezialisierung x' von x mit f(x') = y'. Mit anderen Worten: $f(\overline{\{x\}})$ ist stabil unter Spezialisierungen für alle $x \in X$.

Beweis. (i) \Longrightarrow (ii) ist trivial. Sei also $X' \subset X$ abgeschlossen und setze $Y' = \overline{f(X')}$. Wir zeigen Y' = f(X'). Wir versehen X' und Y' mit der eindeutig bestimmten, reduzierte abgeschlossene Unterschemastruktur in X bzw. Y. Seien $i: X' \hookrightarrow X$ und $j: Y' \hookrightarrow Y$ die natürlichen Inklusionen. Das Urbildschema $(f \circ i)^{-1}(Y')$ ist reduziert, besitzt X' als unterliegender topologischer Raum und ist als Schema gleich X', da die reduzierte Unterschemastrukturen eindeutig sind. Somit existiert ein eindeutig bestimmter Morphismus $f': X' \to Y'$:

$$X' \xrightarrow{f'} Y'$$

$$\downarrow j$$

$$X \xrightarrow{f} Y$$

f' erfüllt ebenfalls die Voraussetzung (ii). Ferner ist f' quasikompakt. i ist als abgeschlossene Immersion quasikompakt, also auch $f \circ i = j \circ f' : X' \to Y$. Unter Basiswechsel sehen wir, dass $X' \times_Y Y' \to Y'$ quasikompakt ist. Da j eine Immersion ist, ist $X' \cong X' \times_{Y'} Y' = X' \times_Y Y'$, also ist $X' \to Y'$ quasikompakt.

Wir müssen noch zeigen: Ist $f: X \to Y$ ein quasikompakter, dominanter Morphismus reduzierter Schema, welcher (ii) erfüllt, so ist f surjektiv. Sei dazu $y' \in Y$ gegeben und y ein generischer Punkt der irreduziblen Komponente von Y, in der y' liegt. Somit ist y' eine Spezialisierung von y. Gilt nun $f^{-1}(y) \neq \emptyset$, so gibt es ein $x \in X$ mit f(x) = y. Wegen (ii) gibt es eine Spezialisierung x' von x mit f(x') = y' und wir sind fertig. Somit ist noch das nächste Lemma zu zeigen.

Lemma 4.12. Für einen quasikompakten Morphismus $f: X \to Y$ ist äquivalent:

- (i) f ist dominant.
- (ii) Für die generischen Punkte y von Y der irreduziblen Komponenten gilt $f^{-1}(y) \neq \emptyset$.

Korollar 4.13. Eine quasikompakte Immersion $f: X \to Y$ ist genau dann eine abgeschlossene Immersion, wenn f(X) in Y stabil unter Spezialisierungen ist.

Beweis. f faktorisiert in eindeutiger Weise in der Form $X \stackrel{\sim}{\to} Z \stackrel{i}{\hookrightarrow} Y$, wobei i die kanonische Inklusion des Unterschema $Z \subset Y$ ist. Es ist i quasikompakt. Ist f(X) = Z stabil unter Spezialisierungen, ist (ii) in Satz 4.10 erfüllt, daher ist $i: Z \to Y$ abgeschlossen und Z ein abgeschlossenes Unterschema in Y.

Lemma 4.14. Sei R ein Bewertungsring eines Körpers K und $T = \operatorname{Spec}(R)$, $U = \operatorname{Spec}(K)$. Sei X ein Schema. Dann gilt:

- (i) $\operatorname{Hom}(U,X)$ ist die Menge aller Paare (x,i) mit $x\in X$ und Körperhomomorphismus $i:\kappa(x)\hookrightarrow K$, wobei $\kappa(x)$ der Restklassenkörper in x bezeichnet.
- (ii) $\operatorname{Hom}(T,X)$ ist die Menge aller Tripel (x_0,x_1,i) mit $x_0,x_1\in X,\ x_0\in \overline{\{x_1\}}$ und Körperhomomorphismus $\kappa(x_1)\hookrightarrow K$, so dass R über $\mathcal{O}_{\overline{\{x_1\}},x_0}$ dominiert, wobei $\overline{\{x_1\}}$ mit der reduzierten Unterschemastruktur ausgestattet ist.

Definition 4.15. Seien $(A, \mathfrak{m}_A), (B, \mathfrak{m}_B)$ lokale Ringe, die in einem Körper K eingebettet sind. Wir sagen B dominiert A, wenn $A \subset B$ und $\mathfrak{m}_B \cap A = \mathfrak{m}_A$ gilt. Mit anderen Worten, wenn die natürliche Inklusion $A \hookrightarrow B$ ein lokaler Homomorphismus ist.

Beweis von Lemma 4.14. (i) ist gerade Satz 2.18. Setze $t_0 = \mathfrak{m}_R \in T$ und $t_1 = (0) \in T$. Für (ii) sei $f: T \to X$ ein Morphismus. Setze $x_i = f(t_i)$ und $Z = \overline{\{x_1\}}$ mit der reduzierten Unterschemastruktur. Dann gilt $f^{-1}(Z) = T$ als Mengen. Nach Regeln 2.21 (iii) faktorisiert f in der Form:

Beachte, dass für $U \subset_{o} Z$ mit $x_0 \in U$ auch $x_1 \in U$ gilt. Das induziert $\mathcal{O}_{Z,x_0} \to \mathcal{O}_{Z,x_1}$, analog haben wir $\mathcal{O}_{T,t_0} \to \mathcal{O}_{T,t_1}$. Wir erhalten folgendes kommutative Diagramm:

$$\mathcal{O}_{Z,x_1} \longrightarrow \mathcal{O}_{T,t_1} = K$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathcal{O}_{Z,x_0} \longrightarrow \mathcal{O}_{T,t_0} = R$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathfrak{m}_{Z,x_0} \longrightarrow \mathfrak{m}_{T,t_0}$$

Da Z reduziert und irreduzibel ist, ist Z integer. Daher ist $\mathcal{O}_{Z,x_1} = \kappa(x_1)$, alle Abbildungen sind injektiv und wir sehen, dass R über \mathcal{O}_{Z,x_0} dominiert.

Sei umgekehrt $x_0, x_1 \in X$ mit $x_0 \in \overline{\{x_1\}} = Z$ und $\mathcal{O}_{Z,x_0} \hookrightarrow R$ ein lokaler Homomorphismus. Das induziert $T = \operatorname{Spec}(R) \to \operatorname{Spec}(\mathcal{O}_{Z,x_0}) \to Z \to X$. Diese beiden Konstruktionen sind invers zueinander.

Beweis zu Theorem 4.8. Sei $f: X \to Y$ ein Morphismus von Schemata mit X noethersch.

• Sei zunächst f separiert und R ein Bewertungsring des Körpers $K = \operatorname{Quot}(R)$ mit Inklusion $i: U = \operatorname{Spec}(K) \hookrightarrow \operatorname{Spec}(R) = T$. Seien $T \to Y$, $U \to X$ gegeben und $h_1, h_2: T \to X$ mit kommutativem Diagramm:

$$U \xrightarrow{h_1} X$$

$$\downarrow \downarrow f$$

$$T \xrightarrow{h_2} Y$$

Setze $t_0 = \mathfrak{m}_R \in T$ und $t_1 = (0) \in T$. Aus der Kommutativität $h_1 i = h_2 i$ folgt insbesondere $h_1(t_1) = h_2(t_1)$. Setze $h'' = (h_1, h_2)_Y : T \to X \times_Y X$. Betrachte nun folgendes kommutative Diagramm:

Es gilt $\{h''(t_1)\} = h''i(U) \subset \Delta(X)$. Da f separiert ist, ist $\Delta(X)$ abgeschlossen und es folgt $h''(t_0) \in h''(\overline{\{t_1\}}) \subset \overline{\{h''(t_1)\}} \subset \Delta(X)$. Es folgt:

$$h_1(t_0) = p_1 h''(t_0) = p_2 h''(t_0) = h_2(t_0)$$

Aus der Kommutativität folgt, dass h_1^{\sharp} und h_2^{\sharp} dieselbe Abbildung $\kappa(x_1) \hookrightarrow K$ mit $x_1 = h_1(t_1) = h_2(t_1)$ induzieren. Mit Lemma 4.14 (ii) folgt $h_1 = h_2$.

• Für die andere Richtung genügt es nach Satz 4.6 zu zeigen, dass $\Delta(X) \subset X \times_Y X$ abgeschlossen ist. Nach Satz 3.30 (ii) ist Δ eine Immersion. Da X noethersch ist, ist Δ quasikompakt. Nach Korollar 4.13 genügt es zu zeigen, dass $\Delta(X)$ stabil unter Spezialisierungen ist.

Sei also $\xi_1 \in \Delta(X)$ und $\xi_0 \in \overline{\{\xi_1\}}$. Sei $K = \kappa(\xi_1)$ und $\mathcal{O} = \mathcal{O}_{\overline{\{\xi_1\}},\xi_0}$, wobei $\overline{\{\xi_1\}}$ mit der reduzierten Unterschemastruktur versehen ist, d.h. \mathcal{O} ist ein lokaler Ring in K. Mit Satz 4.16 und dem Lemma von Zorn sehen wir, dass für jeden lokalen Ring \mathcal{O} in K einen Bewertungsring R gibt, der \mathcal{O} dominiert. Sei R ein solcher Bewertungsring. Nach 4.14 (ii) haben wir einen Morphismus $h: T = \operatorname{Spec}(R) \to X \times_Y X$ mit $t_i \mapsto \xi_i$, wobei $t_0 = \mathfrak{m}_R \in T, \ t_1 = (0) \in T$. Betrachte das kommutative Diagramm:

Ist $x \in X$, so ist $\kappa(x) \cong \kappa(\Delta(x))$, wegen:

$$X \xrightarrow{\Delta} X \times_Y X$$

$$\downarrow^{p_i}$$

$$X$$

Betrachte nun das folgende Diagramm:

$$\operatorname{Spec}(K) \xrightarrow{hi} X$$

$$\downarrow^{\Delta}$$

$$X \times_{Y} X$$

Wähle ein $x_1 \in X$ mit $\Delta(x_1) = \xi_1$ und $j : \kappa(x_1) \hookrightarrow K$ als den von hi induzierten $\kappa(\Delta(x_1)) \hookrightarrow K$. Nach Lemma 4.14 (i) erhalten wir den zu (x_1, j) passenden Morphismus $g : \operatorname{Spec}(K) \to X$, das das obige Diagramm kommutativ macht. Also faktorisiert $\operatorname{Spec}(K) \to X \times_Y X$ über $\operatorname{Spec}(K) \to X \times_Y X$, d.h. $p_1hi = p_2hi$. Nach Voraussetzung folgt $p_1h = p_2h$, d.h. auch $T \to X \times_Y X$ faktorisiert über $T \to X \xrightarrow{\Delta} X \times_Y X$. Somit folgt $\xi_0 \in \Delta(X)$.

Satz 4.16. Sei K ein Körper und $R \subset K$ ein lokaler Ring. Dann ist R genau dann ein Bewertungsring, wenn für jeden lokalen Ring $R \subset S \subset K$ mit lokalen Homomorphismus $R \hookrightarrow S$ stets R = S folgt.

Beweis. Siehe z.B. Bourbaki, Algebra VI §13.

Satz 4.17. Alle involvierten Schemata seine noethersch. Dann gilt:

- (i) Offene und abgeschlossene Immersionen sind separiert.
- (ii) Die Komposition separierter Morphismen ist separiert.
- (iii) Separiertheit ist stabil unter Basiswechsel.
- (iv) Sind $f: X \to Y$, $f': X' \to Y'$ separierte Morphismen von S-Schemata, so ist auch $f \times_S f': X \times_S X' \to Y \times_S Y'$ separiert.
- (v) Ist $f \circ f$ separiert, so ist auch f separiert.
- (vi) $f: X \to Y$ ist genau dann separiert, wenn es eine offene Überdeckung $Y = \bigcup_{\alpha} Y_{\alpha}$ gibt, so dass alle $f^{-1}(Y_{\alpha}) \to Y_{\alpha}$ separiert sind.

Beweis. Folgt alles aus Theorem 4.8.

Definition 4.18. Ein Morphismus von Schemata $f: X \to Y$ heißt eigentlich, wenn gilt:

- (i) f ist von endlichem Typ.
- (ii) f ist separiert.
- (iii) f ist universell abgeschlossen, d.h. für jeden Morphismus $Y' \to Y$ ist der Morphismus $f': X' = X \times_Y Y' \to Y'$ abgeschlossen.

In diesem Fall heißt X auch eigentlich über Y.

Beispiel 4.19. Sei k ein Körper und $X = \mathbf{A}_k^1$ die affine Gerade. Dann ist X separiert und von endlichem Typ. Basiserweiterung mit $X \to k$ ergibt $X \times_k X \to X$, die Projektionsabbildung $\mathbf{A}_k^2 \to \mathbf{A}_k^1$. Sei $Y = \operatorname{Spec}(k[X,Y]/(XY-1))$ die hyperbolische Kurve in \mathbf{A}_k^2 . $Y \subset \mathbf{A}_k^2$. Diese ist abgeschlossen in \mathbf{A}_k^2 und projeziert sich in \mathbf{A}_k^1 auf $\mathbf{A}_k^1 \setminus \{0\}$, die in \mathbf{A}_k^1 nicht abgeschlossen ist. Daher ist die Projektionsabbildung nicht abgeschlossen. In diesem Beispiel fehlt der unendliche Punkt von Y. Wir werden später zeigen, dass X eigentlich über k ist, wenn X eine sogenannte projektive Varietät.

Theorem 4.20. (Bewertungstheoretisches Kriterium für Eigentlichkeit) Sei $f: X \to Y$ ein Morphismus von endlichem Typ mit X noethersch. Dann sind äquivalent:

- (i) f ist eigentlich.
- (ii) Sei R ein Bewertungsring des Körpers $K = \operatorname{Quot}(R)$ und $i: U = \operatorname{Spec}(K) \hookrightarrow T = \operatorname{Spec}(R)$ die kanonische Inklusion. Seien ferner Morphismen $T \to Y$ und $U \to X$ derart gegeben, dass das folgende Diagramm kommutativ ist:

$$U \xrightarrow{u} X$$

$$\downarrow \downarrow h \xrightarrow{\nearrow} \downarrow f$$

$$T \xrightarrow{t} Y$$

Dann existiert ein eindeutig bestimmter Morphismus $h: T \to X$, der das Diagramm kommutativ macht. Mit anderen worten ist die folgende Abbildung bijektiv:

$$\operatorname{Hom}_{Y}(T,X) \to \operatorname{Hom}_{Y}(U,X), h \mapsto h \circ i$$

Lemma 4.21.

- (i) Abgeschlossene Immersinoen sind von endlichem Typ. Quasikompakte offene Immersionen sind von endlichem Typ.
- (ii) Kompositum zweier Morphismen von endlichem Typ ist von endlichem Typ.
- (iii) Ein Morphismus $f: X \to Y$ ist genau dann von endlichem Typ, wenn f lokal von endlichem Typ und quasikompakt ist.
- (iv) Seien $X \xrightarrow{f} Y \xrightarrow{g} Z$ Morphismen mit f quasikompakt und $g \circ f$ von endlichem Typ. Dann ist f von endlichem Typ.

Beweis von Theorem 4.20.

• Sei f eigentlich. Nach Definition ist f separiert, somit ist ein Morphismus $h: T \to X$ wie oben eindeutig bestimmt nach Theorem 4.8. Es bleibt die Existenz zu zeigen. Betrachte die Basiserweiterung $X_T = X \times_Y T$ von X mit $T \to Y$:

Wir erhalten ein $\theta: U \to X_T$, so dass das obige Diagramm kommutiert. Sei $\xi_1 \in X_T$ das Bild des einzigen Punktes $t_1 \in U$ und $Z = \overline{\{\xi_1\}} \subset X_T$ mit der reduzierten Unterschemastruktur. Da f universell abgeschlossen ist, ist f' abgeschlossen, somit ist $f'(Z) \subset T$ abgeschlossen. Da $f'(\xi_1) = t_1$ und t_1 der generische Punkt von T ist, gilt f'(Z) = T. Es existiert also ein $\xi_0 \in Z$ mit $f'(\xi_0) = t_0$, wobei t_0 der abgeschlossene Punkt in T ist.

Betrachte den zu f' gehörigen lokalen Homomorphismus $R \hookrightarrow \mathcal{O}_{Z,\xi_0}$. Da ξ_1 der generische Punkt von Z ist, gilt $\kappa(\xi_1) = \mathcal{O}_{Z,\xi_1}$ und nach Lemma 4.14 (i) erhalten wir $\kappa(\xi_1) \subset K$, der durch $U \to Z$ induziert wird. Nach Satz 4.16 ist R als Bewertungsring maximal unter allen lokalen Ringen in K bzgl. Dominanz. Ferner gilt $\mathcal{O}_{Z,\xi_0} \subset \mathcal{O}_{Z,\xi_1} = \kappa(\xi_1) \subset K$ und $\mathcal{O}_{Z,\xi_0} \subsetneq K$, da $\xi_0 \neq \xi_1$. Wegen $f'(\xi_0) = t_0$ dominiert \mathcal{O}_{Z,ξ_0} den Ring R, d.h. $R \cong \mathcal{O}_{Z,\xi_0}$, insbesondere dominiert R über \mathcal{O}_{Z,ξ_0} . Nach Lemma 4.14 (ii) erhalten wir Morphismus $h': T \cong \operatorname{Spec}(\mathcal{O}_{Z,\xi_0}) \to X_T$, $t_i \mapsto \xi_i$. Wir erhalten $h: T \xrightarrow{h'} X_T \xrightarrow{p_1} X$ mit $fh = fp_1h' = tf'h' = t$ und $hi = p_1h'i = p_1h'f'\theta = p_1\theta = u$.

• Es gelte (ii). f ist nach Voraussetzung von endlichem Typ und separiert nach Theorem 4.8. Sei also $Y' \to Y$ ein Morphismus und $f' : X' = X \times_Y Y' \to Y'$ die Basiserweiterung von f. Wir zeigen, dass f' abgeschlossen ist. Sei $Z \subset X'$ abgeschlossen mit der reduzierten Unterschemastruktur. Betrachte das kommutative Diagramm:

$$Z \longleftrightarrow X' \longrightarrow X$$

$$\downarrow f' \qquad \downarrow f$$

$$Y' \longrightarrow Y$$

Da f von endlichem Typ ist, ist nach Satz 3.25 (ii) auch f' von endlichem Typ. Es folgt, dass $f'|_Z:Z\to Y'$ von endlichem Typ ist und somit quasikompakt. $f'|_Z$ faktorisiert über $Z\to f'(Z)\hookrightarrow Y'$. Wir sehen, dass $f'(Z)\hookrightarrow Y'$ quasikompakt ist. Nach Korollar 4.13 genügt es zu zeigen, dass f'(Z) stabil unter Spezialisierungen ist.

Sei also $z_1 \in Z$ und $y_1 = f'(z_1)$, $y_0 \in \overline{\{y_1\}}$. Wir versehen $\overline{\{y_1\}}$ mit der reduzierten Unterschemastruktur. Sei $\mathcal{O} = \mathcal{O}_{\overline{\{y_1\}},y_0}$. Dann ist $\mathrm{Quot}(\mathcal{O}) = \kappa(y_1) \hookrightarrow \kappa(z_1) =: K$. Sei R ein Bewertungsring von K, der \mathcal{O} dominiert. Nach Lemma 4.14 haben wir Morphismen:

$$U = \operatorname{Spec}(K) \to Z, \ t_1 \mapsto z_1$$

 $T = \operatorname{Spec}(R) \to Y', \ t_i \mapsto y_i$

Betrachte folgendes kommutative Diagramm:

$$U \longrightarrow Z \longrightarrow X' \longrightarrow X$$

$$\downarrow \downarrow \qquad \qquad \downarrow f$$

$$T \xrightarrow{===} Y' \longrightarrow Y' \longrightarrow Y$$

Nach Voraussetzung gibt es ein Morphismus $h: T \to X$, der das Diagramm kommutativ macht. Aus der Universaleigenschaft des Faserprodukts X' erhalten wir ein Morphismus $h': T \to X'$, der $h: T \to X$ liftet. Nach Voraussetzung ist Z abgeschlossen und da der generische Punkt $t_1 \in T$ auf $z_1 \in X'$ abgebildet wird, faktorisiert $h': T \to X'$ über $h': T \to Z \to X'$. Setze $z_0 = h'(t_0) \in Z$. Dann ist $f'(z_0) = y_0$, also $y_0 \in f'(Z)$.

Korollar 4.22. Alle vorkommenden Schemata seien noethersch.

- (i) Abgeschlossene Immersionen sind eigentlich.
- (ii) Kompositum zweier eigentlicher Morphismen ist eigentlich.
- (iii) Eigentliche Morphismen sind stabil unter Basiserweiterung.
- (iv) Seien $f: X \to Y$ und $f': X' \to Y'$ eigentliche Morphismen von S-Schemata. Dann ist $f \times f': X \times_S X' \to Y \times_S Y'$ eigentlich.
- (v) Seien $f:X\to Y,\ g:Y\to Z$ Morphismen. Ist $g\circ f$ eigentlich und g separabel, so ist f eigentlich.
- (vi) Ein Morphismus $f: X \to Y$ ist genau dann eigentlich, wenn es eine offene Überdeckung $Y = \bigcup_{\alpha} Y_{\alpha}$ gibt, so dass $f^{-1}(Y_{\alpha}) \to Y_{\alpha}$ für alle α eigentlich ist.

Beweis. Wir zeigen nur (v). Da X noethersch ist, ist f quasikompakt. Nach Lemma 4.21 ist f von endlichem Typ. Nach Satz 4.17 ist f separiert. Sei nun R ein Bewertungsring und seien Morphismen $U \to X$, $T \to Y$ gegeben mit kommutativem Diagramm:

Wir wollen ein $h: T \to X$ konstruieren mit fh = t und hi = u. Setze t' = gt. Da gf eigentlich ist, gibt es genau ein $h: T \to X$ mit gfh = t' und hi = u. Sei t'' = fh. Nun ist g separabel und ti = fu = fhi = t''i und gt = t' = gfh = gt''. Nach Theorem 4.8 folgt t = t'' und somit fh = t.

Ist $\varphi:A\to B$ ein Ringhomomorphismus und $\operatorname{Spec}(B)\to\operatorname{Spec}(A)$ der zugehörige Morphismus, so gilt:

$$\mathbf{P}_B^n \cong \mathbf{P}_A^n \times_{\operatorname{Spec}(A)} \operatorname{Spec}(B)$$

Insbesondere gilt $\mathbf{P}_A^n \cong \mathbf{P}_{\mathbb{Z}}^n \times_{\mathbb{Z}} A$.

Definition 4.23.

- (i) Sei Y ein Schema. Dann heißt $\mathbf{P}_Y^n = \mathbf{P}_{\mathbb{Z}}^n \times_{\mathbb{Z}} Y$ der n-dimensionale projektive Raum über Y.
- (ii) Ein Morphismus $f: X \to Y$ von Schemata heißt projektiv, wenn er eine Faktorisierung $f: X \stackrel{i}{\hookrightarrow} \mathbf{P}_{Y}^{n} \stackrel{p_{2}}{\to} Y$ besitzt, wobei i eine abgeschlossene Immersion ist.
- (iii) Ein Morphismus $f: X \to Y$ von Schemata heißt quasiprojektiv, falls er eine Faktorisierung der Form $f: X \stackrel{i}{\hookrightarrow} X' \stackrel{p}{\to} Y$ besitzt, wobei i eine offene Immersion und p projektiv ist.

Theorem 4.24. Ein projektiver Morphismus von noetherschen Schemata ist eigentlich. Ein quasiprojektiver Morphismus von noetherschen Schemata ist von endlichem Typ und separiert.

Beweis. Es reicht zu zeigen, dass $\mathbf{P}_{\mathbb{Z}}^n$ eigentlich über \mathbb{Z} ist, da der Basiswechsel nach Korollar 4.22 (iii) eigentlich über Y ist. Ist $f: X \hookrightarrow \mathbf{P}_Y^n \to Y$ projektiv, so ist er als Verkettung von eigentlichen Morphismen wieder eigentlich, siehe Korollar 4.22. Ist $f: X \hookrightarrow X' \to Y$ quasiprojektiv, so ist f als Verkettung separierter Morphismen separiert, siehe Korollar 4.17. Da X noethersch ist, ist $X \hookrightarrow X'$ eine quasikompakte offene Immersion, also nach Lemma 4.21 (i) vom endlichem Typ.

Sei also $X = \mathbf{P}_{\mathbb{Z}}^n$ und $X = \bigcup V_i$ eine offene affine Überdeckung mit $V_i = D_+(x_i) = \operatorname{Spec} \mathbb{Z}\left[\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right]$. Es ist also X von endlichem Typ. Sei nun R ein Bewertungsring mit Quotientenkörper $K = \operatorname{Quot}(R)$ und $U \to X$, $T \to \operatorname{Spec}(\mathbb{Z})$ Morphismen mit kommutativem Diagramm:

$$U \xrightarrow{u} X$$

$$\downarrow \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{t} \operatorname{Spec}(\mathbb{Z})$$

Wir zeigen nun per Induktion, dass genau ein Morphismus $h: T \to X$ existiert, der das obige Diagramm kommutativ ergänzt. Für n=0 ist $X=\operatorname{Spec}(\mathbb{Z})$ und die Aussage ist klar. Sei $n\geq 1$ und ξ_1 das Bild des einzigen Punktes aus U in X. Ist $\xi_1\in X\setminus V_i$ für ein i, so folgt die Behauptung nach Induktionsvoraussetzung, da die Hyperebene $X\setminus V_i$ isomorph zu $\mathbf{P}^{n-1}_{\mathbb{Z}}$ ist.

Sei also $\xi_1 \in \bigcap V_i$, d.h. alle Funktionen der Form $\frac{x_i}{x_j}$ sind invertierbar in \mathcal{O}_{ξ_1} . Der Morphismus $U \to X$ liefert Inklusion $\kappa(\xi_1) \hookrightarrow K$. Sei weiter $f_{ij} \in K^{\times}$ das Bild von $\frac{x_i}{x_j}$ unter $\mathcal{O}_{\xi_1} \to \kappa(\xi_1) \hookrightarrow K$. Dann folgt $f_{ik} = f_{ij}f_{jk}$ für alle i, j, k. Sei $v : K \to G$ die zu R gehörige Bewertung und setze $g_i = v(f_{i0})$ für alle i. Sei k derart, dass g_k minimal unter g_0, \ldots, g_n ist. Es gilt für alle i:

$$v(f_{ik}) = v(f_{i0}) - v(f_{k0}) = g_i - g_k \ge 0$$

Es folgt $f_{ik} \in R$ für alle i. Es gibt Homomorphismen:

$$\mathbb{Z}\left[\frac{x_0}{x_k}, \dots, \frac{x_n}{x_k}\right] \xrightarrow{\begin{array}{c} \varphi \\ \frac{x_i}{x_k} \mapsto f_{ik} \end{array}} R$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{\xi_1} \longrightarrow \kappa(\xi_1) \longrightarrow K$$

Wir erhalten den zu φ gehörige Morphismus $T \to V_k$ und somit $h: T \to V_k \hookrightarrow X$. Offensichtlich ist $T \to X \to \operatorname{Spec}(\mathbb{Z})$ der Morphismus t unt $U \to T \to X$ der Morphismus u. Ferner ist h eindeutig nach Konstruktion.

Satz 4.25. Sei k ein algebraisch abgeschlossener Körper. Das Bild des Funktors t: $\mathbf{Var}(k) \to \mathbf{Sch}(k)$ ist die Menge aller quasiprojektiven, integren Schemata über k. Insbesondere ist t(V) integer, separiert und von endlichem Typ für jede Varietät V.

Beweis. Ohne Beweis.

Satz 4.26. Sei X ein Schema von endlichem Typ über einem Körper k. Dann ist die Menge der abgeschlossenen Punkte in X dicht in X.

Definition 4.27. Eine (abstrakte) Varietät ist ein integres, separiertes Schema X von endlichem Typ über einem algebraisch abgeschlossenen Körper k. Ist X über k eigentlich, so heißt X vollständig. Quasiprojektive abstrakte Varietäten entsprechen den klassischen Varietäten.

Bemerkung 4.28.

- (i) Eine projektive, abstrakte Varietät ist vollständig nach Theorem 4.24.
- (ii) Es gibt vollständige Varietäten, die nicht projektiv sind, d.h. die Klasse der abstrakten Varietäten ist größer als die Klasse der klassischen Varietäten.
- (iii) Jede vollständige abstrakte Varietät der Dimension 1, d.h. eine vollständige Kurve, ist projektiv.
- (iv) Jede Varietät kann als offene Menge in eine vollständige Varietät eingebettet werden.

2.5 Modulgarben

Definition 5.1. Sei (X, \mathcal{O}_X) ein geringter Raum.

- (i) Eine Garbe von \mathcal{O}_X -Moduln bzw. \mathcal{O}_X -Modul ist eine Garbe \mathcal{F} auf X derart, dass $\mathcal{F}(U)$ ein $\mathcal{O}_X(U)$ -Modul für alle $U \subset_{\mathrm{o}} X$ ist und alle res : $\mathcal{F}(U) \to \mathcal{F}(V)$, $V \subset U$ verträglich mit den Modulstrukturen via res : $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ ist.
- (ii) Ein Morphismus $\mathcal{F} \to \mathcal{G}$ von \mathcal{O}_X -Moduln ist ein Garbenmorphismus, so dass $\mathcal{F}(U) \to \mathcal{G}(U)$ ein $\mathcal{O}_X(U)$ -Modulhomomorphismus für alle $U \subset_{\mathrm{o}} X$ ist.
- (iii) Eine Sequenz von \mathcal{O}_X -Moduln heißt exakt, wenn sie exakt als Garbensequenz abelscher Garben ist.
- (iv) Sind $\mathcal{F}, \mathcal{G} \mathcal{O}_X$ -Moduln, so bezeichnet $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ die Gruppe der Morphismen von \mathcal{F} nach \mathcal{G} .
- (v) Sind \mathcal{F}, \mathcal{G} \mathcal{O}_X -Moduln, so heißt die Garbe $U \mapsto \operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U, \mathcal{G}|_U)$ die Hom-Garbe und wird mit \mathcal{H} om $(\mathcal{F}, \mathcal{G})$ bezeichnet. Diese ist ein \mathcal{O}_X -Modul.
- (vi) Seien $\mathcal{F}, \mathcal{G} \mathcal{O}_X$ -Moduln. Dann heißt die zur Prägarbe $U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)$ assoziierte Garbe das *Tensorprodukt* von \mathcal{F} und \mathcal{G} . Diese wird mit $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ bezeichnet.
- (vii) Ein \mathcal{O}_X -Modul \mathcal{F} heißt frei, wenn \mathcal{F} isomorph zu einer direkten Summe von Exemplaren von \mathcal{O}_X ist.
- (viii) Ein \mathcal{O}_X -Modul \mathcal{F} heißt lokal frei, wenn X durch offene Mengen U überdeckt werden kann, so dass $\mathcal{F}|_U$ freier $\mathcal{O}_X|_U$ -Modul ist.
 - Der Rang r von \mathcal{F} auf U ist gerade die Anzahl der Kopien von $\mathcal{O}_X|_U$. Wir schreiben $\operatorname{rang}(\mathcal{F}|_U) = r$. Ist X zusammenhängend, so ist dieser Rang überall gleich.
- (ix) Ein lokal freier \mathcal{O}_X -Modul vom Rang 1 heißt invertierbare Garbe.
- (x) Eine *Idealgarbe* auf X ist ein \mathcal{O}_X -Modul \mathcal{J} , der Untergarbe von \mathcal{O}_X ist, d.h. $\mathcal{J}(U)$ ist ein Ideal von $\mathcal{O}_X(U)$ für $U \subset_{\mathrm{o}} X$.
- (xi) Sei $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ ein Morphismus von geringten Räumen und \mathcal{F} ein \mathcal{O}_X -Modul. Dann ist $f_*\mathcal{F}$ ein $f_*\mathcal{O}_X$ -Modul und somit auch ein \mathcal{O}_Y -Modul unter dem Garbenmorphismus $f^\sharp:\mathcal{O}_Y\to f_*\mathcal{O}_X$. $f_*\mathcal{F}$ heißt direktes Bild von \mathcal{F} unter f. Sei \mathcal{G} ein \mathcal{O}_Y -Modul. Dann ist $f^{-1}\mathcal{G}$ ein $f^{-1}\mathcal{O}_Y$ -Modul. Betrachte das Bild θ von f^\sharp unter dem Adjunktionsisomorphismus $\operatorname{Hom}_Y(\mathcal{O}_Y, f_*\mathcal{O}_X) \to \operatorname{Hom}_X(f^{-1}\mathcal{O}_Y, \mathcal{O}_X)$. Durch θ wird \mathcal{O}_X zu einem $f^{-1}\mathcal{O}_Y$ -Modul. Wir definieren:

$$f^*\mathcal{G} = f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$$

Somit ist $f^*\mathcal{G}$ ein \mathcal{O}_X -Modul, das *Urbild* von \mathcal{G} unter f.

Für jeden \mathcal{O}_X -Modul \mathcal{F} und \mathcal{O}_Y -Modul \mathcal{G} gilt:

$$\operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{G},f_*\mathcal{F})$$

Somit ist f^* linksadjungiert zu f_* .

Bemerkung.

- (i) Kern, Bild und Kokern eines Morphismus von \mathcal{O}_X -Moduln ist wieder ein \mathcal{O}_X -Modul.
- (ii) Sind $\mathcal{F}, \mathcal{F}'$ \mathcal{O}_X -Moduln und \mathcal{F}' eine Untergarbe von \mathcal{F} , so ist \mathcal{F}/\mathcal{F}' ein \mathcal{O}_X -Modul.
- (iii) Direkte Summen, direkte Produkte und projektive Limiten von \mathcal{O}_X -Moduln sind wieder \mathcal{O}_X -Moduln.

Definition. Sei A ein Ring und M ein A-Modul. Wir definieren die zu M assoziierte Garbe \widetilde{M} auf $\operatorname{Spec}(A)$ wie folgt: Für $U \subset_{\operatorname{o}} \operatorname{Spec}(A)$ setzen wir $\widetilde{M}(U)$ als die Menge aller Abbildungen $s: U \to \coprod_{\mathfrak{p} \in U} M_{\mathfrak{p}}$, so dass:

- (i) Für alle $\mathfrak{p} \in U$ gilt $s(\mathfrak{p}) \in M_{\mathfrak{p}}$.
- (ii) Für alle $\mathfrak{p} \in U$ gibt es eine offene Umgebung V von \mathfrak{p} mit $V \subset U$ und Elemente $m \in M, \ f \in A$, so dass für alle $\mathfrak{q} \in V$ stets $f \not\in \mathfrak{q}$ und $s(\mathfrak{q}) = \frac{m}{f} \in M_{\mathfrak{q}}$ gilt.

Dann ist \widetilde{M} mit den gewöhnlichen Restriktionsabbildungen eine Garbe.

Satz 5.2. Sei A ein Ring und M ein A-Modul mit der assoziierten Garbe \widetilde{M} auf $X = \operatorname{Spec}(A)$. Dann gilt:

- (i) \widetilde{M} ist ein \mathcal{O}_X -Modul.
- (ii) Für jedes $\mathfrak{p} \in X$ gilt für den Halm von \widetilde{M} in \mathfrak{p} stets $\widetilde{M}_{\mathfrak{p}} \cong M_{\mathfrak{p}}$.
- (iii) Für alle $f \in A$ gibt es einen A_f -Modulisomorphismus $\widetilde{M}(D(f)) \cong M_f$.
- (iv) Insbesondere gilt $\Gamma(X, \widetilde{M}) \cong M$.

Beweis. (i) ist klar. (iv) folgt aus (iii) mit f = 1. (ii) und (iii) gehen analog zu 2.3. \square

Satz 5.3. Sei A ein Ring und $X = \operatorname{Spec}(A)$. Ferner sei $\varphi : A \to B$ ein Ringhomomorphismus und $f : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ der entsprechende Morphismus. Dann gilt:

- (i) Die Abbildung $M \mapsto \widetilde{M}$ liefert einen exakten, volltreuen Funktor von der Kategorie der A-Moduln in die Kategorie der \mathcal{O}_X -Moduln.
- (ii) Seien M,N A-Moduln. Dann gilt $\widetilde{M\otimes_A N}\cong \widetilde{M}\otimes_{\mathcal{O}_X}\widetilde{N}.$
- (iii) Sei $(M_i)_i$ eine Familie von A-Moduln. Dann gilt $\bigoplus_i \widetilde{M_i} \cong \bigoplus_i \widetilde{M_i}$.
- (iv) Sei N ein B-Modul. Dann gilt $f_*\widetilde{N}\cong \widetilde{AN}$, wobei AN den Modul N als A-Modul via φ bezeichnet.
- (v) Sei M ein A-Modul. Dann gilt $f^*\widetilde{M}\cong \widetilde{M\otimes_A B}$.

Beweis. Für (i) zeigen wir:

• Funktorialität: Sei $\psi: M \to N$ ein A-Modulhomomorphismus. Dieser induziert für alle $f \in A$ einen A_f -Modulhomomorphismus $\psi_f: M_f \to N_f$. Ist $D(f) \supset D(g)$, so erhalten wir das folgende kommutative Diagramm:

$$M_f \xrightarrow{\psi_f} N_f$$

$$\downarrow \qquad \qquad \downarrow$$

$$M_g \xrightarrow{\psi_g} N_g$$

Da $D(f), f \in A$ eine Basis der Topologie bilden, induzieren $\psi_f, f \in A$ einen \widetilde{A} -Homomorphismus $\widetilde{\psi} : \widetilde{M} \to \widetilde{N}$ mit $\widetilde{\psi}|_{D(f)} = \psi_f$.

• Volltreu: Die Umkehrabbildung zu $\operatorname{Hom}_A(M,N) \to \operatorname{Hom}_{\widetilde{A}}(\widetilde{M},\widetilde{N})$ ist gegeben durch das Bilden der globalen Schnitte:

$$\operatorname{Hom}_{\widetilde{A}}(\widetilde{M},\widetilde{N}) \to \operatorname{Hom}_A(\Gamma(X,\widetilde{M}),\Gamma(X,\widetilde{N})) = \operatorname{Hom}_A(M,N)$$

• Exaktheit: Sei $0 \to M' \to M \to M'' \to 0$ eine kurze exakte Folge von A-Moduln. Da Lokalisierungen exakt sind, ist $0 \to M'_{\mathfrak{p}} \to M_{\mathfrak{p}} \to M''_{\mathfrak{p}} \to 0$ exakt. Nach Satz 5.2 (ii) ist $\widetilde{M}_{\mathfrak{p}} = M_{\mathfrak{p}}$. Da jede Halmsequenz exakt ist, folgt nach 1.10 die Exaktheit von $0 \to \widetilde{M}' \to \widetilde{M} \to \widetilde{M}'' \to 0$.

(ii) und (iii) folgen, da direkte Summen und Tensorprodukte mit Lokalisierungen kommutieren. Für (iv) sei $q \in A$. Es gilt:

$$\Gamma(D(g),f_*\widetilde{N}) = \Gamma(f^{-1}(D(g)),\widetilde{N}) = \Gamma(D(\varphi(g)),\widetilde{N}) \cong N_{\varphi(g)} = N_g \cong \Gamma(D(g),\widetilde{N})$$

Für (v) sei N ein B-Modul. Dann gilt:

$$\operatorname{Hom}_{\widetilde{B}}(f^*\widetilde{M},\widetilde{N}) = \operatorname{Hom}_{\widetilde{A}}(\widetilde{M}, f_*\widetilde{N}) \stackrel{\text{(iv)}}{=} \operatorname{Hom}_{\widetilde{A}}(\widetilde{M}, \widetilde{AN})$$
$$= \operatorname{Hom}_{A}(M, {}_{A}N) \stackrel{\star}{\cong} \operatorname{Hom}_{B}(M \otimes_{A} B, N) \cong \operatorname{Hom}_{\widetilde{B}}(\widetilde{M} \otimes_{A} B, \widetilde{N})$$

wobei \star durch die Abbildung $\eta \mapsto (m \otimes b \mapsto \eta(m)b)$ gegeben ist.

Definition 5.4.

- (i) Sei (X, \mathcal{O}_X) ein Schema. Ein \mathcal{O}_X -Modul \mathcal{F} heißt *quasikohärent*, falls es eine offene affine Überdeckung $U_i = \operatorname{Spec}(A_i)$, $i \in I$ von X gibt, so dass für jedes i ein A_i -Modul M_i existiert mit $\mathcal{F}|_{U_i} \cong \widetilde{M}_i$.
- (ii) \mathcal{F} heißt $koh\ddot{a}rent$, falls \mathcal{F} quasikohärent ist und alle vorkommenden M_i in (i) endlich erzeugte A_i -Moduln sind.

Beispiel 5.5. Für jedes Schema X ist \mathcal{O}_X kohärent, da $\mathcal{O}_X|_{\operatorname{Spec}(A)} = \widetilde{A}$.

Beispiel 5.6. Sei $X = \operatorname{Spec}(A)$ affin und $Y \subset X$ ein abgeschlossenes Unterschema, das durch das Ideal $\mathfrak{a} \subset A$ definiert ist. Sei $i: Y \hookrightarrow X$ die natürliche Inklusion. Es ist $\mathcal{O}_Y \cong \widetilde{A/\mathfrak{a}}$ und somit $i_*\mathcal{O}_Y = \widetilde{A/\mathfrak{a}}$, wobei hier A/\mathfrak{a} als A-Modul aufgefasst wird. Somit ist $i_*\mathcal{O}_Y$ ein kohärenter \mathcal{O}_X -Modul.

Beispiel 5.7. Sei $X = \operatorname{Spec}(A)$ affin und $U \subsetneq_{o} X$ mit der natürlichen Inklusion $j : U \hookrightarrow X$. Betrachte die Garbe $j_! \mathcal{O}_U$, die außerhalb U durch Null fortgesetzte Garbe von \mathcal{O}_U . $j_! \mathcal{O}_U$ ist nicht quasikohärent:

Sei X irreduzibel und $V = \operatorname{Spec}(A) \subset_{\operatorname{o}} X$ mit $V \subsetneq U$. Wäre $j_! \mathcal{O}_U|_V \cong \widetilde{M}$ für einen A-Modul M., so ist $(j_! \mathcal{O}_U|_V)(V) = M$, aber $(j_! \mathcal{O}_U|_V)(V) = 0$ und $j_! \mathcal{O}_U|_V \neq 0$.

Lemma 5.8. Sei $X = \operatorname{Spec}(A)$ ein affines Schema, $f \in A$ und \mathcal{F} ein quasikohärenter \mathcal{O}_X -Modul.

- (i) Sei $s \in \Gamma(X, \mathcal{F})$ mit $s|_{D(f)} = 0$. Dann existiert ein n > 0 mit $f^n s = 0$.
- (ii) Sei $t \in \Gamma(D(f), \mathcal{F})$. Dann existiert ein n > 0 und $t' \in \mathcal{F}(X)$ mit $f^n t = t'|_{D(f)}$.

Beweis. Wir zeigen zunächst, dass es eine Überdeckung der Form $X = \bigcup_{i=1}^m D(g_i)$ gibt, so dass $\mathcal{F}|_{D(g_i)} \cong \widetilde{M}_i$ für einen A_{g_i} -Modul M_i .

Da \mathcal{F} quasikohärent ist, existiert eine offene affine Überdeckung aus Mengen der Form $V = \operatorname{Spec}(B)$ mit $\mathcal{F}|_V = \widetilde{M}$ für einen B-Modul M. Wir schreiben $V = \bigcup_{\text{gewisse } g \in A} D(g)$. Die natürlichen Morphismen $D(g) \hookrightarrow V$ liefern Ringhomomorphismen $B \to A_g$. Nach Satz 5.3 (v) ist $\mathcal{F}|_{D(g)} \cong \widetilde{M} \otimes_B A_g$. Da X affin und somit quasikompakt ist, kann X durch solche Mengen endlich überdeckt werden.

- (i) Setze s_i als das Bild von $s|_{D(g_i)}$ unter $\Gamma(D(g_i), \mathcal{F}) = \Gamma(D(g_i), \widetilde{M_i}) \cong M_i$. Wegen $D(fg_i) = D(f) \cap D(g_i)$ folgt nach Satz 5.2 (iii) $\Gamma(D(fg_i), \mathcal{F}) = (M_i)_f$. Also ist $s_i = 0$ in $(M_i)_f$. Nach Definition gibt es ein $n_i \in \mathbb{N}$ mit $f^{n_i}s_i = 0$ in M_i . Sei n das Maximum aller n_i , $i = 1, \ldots, m$. Dann folgt $f^n s = 0$ aus der ersten Garbeneigenschaft.
- (ii) Betrachte die Einschränkungen $t \in \Gamma(D(fg_i), \mathcal{F}) = (M_i)_f$. Für alle i gibt es ein $n_i \in \mathbb{N}$, so dass $f^{n_i}t = t_i|_{D(fg_i)}$ für ein $t_i \in \Gamma(D(g_i), \mathcal{F}) = M_i$. Sei n das Maximum aller n_i , $i = 1, \ldots, m$. Dann gibt es für alle i ein $t_i \in \Gamma(D(g_i), \mathcal{F})$ mit $f^n t = t_i|_{D(fg_i)}$. Auf $D(g_i) \cap D(g_j) = D(g_ig_j)$ haben wir Schnitte t_i, t_j konstruiert, die auf $D(fg_ig_j)$ übereinstimmen. Nach (i) gibt es ein m_{ij} , so dass $f^{m_{ij}}(t_i t_j) = 0$ auf $D(g_ig_j)$ gilt. Sei m das Maximum aller m_{ij} , so dass $f^m(t_i t_j) = 0$ auf $D(g_ig_j)$ für alle i, j gilt. Die lokalen Schnitte $f^m t_i$ in $\Gamma(D(g_i), \mathcal{F})$ verkleben sich somit zu einem globalen Schnitt t' von \mathcal{F} zusammen mit $t'|_{D(f)} = f^{n+m}t$.

Satz 5.9. Sei X ein Schema und \mathcal{F} ein \mathcal{O}_X -Modul. Dann ist \mathcal{F} genau dann quasikohärent, wenn für alle affinen $U = \operatorname{Spec}(A) \subset_{o} X$ ein A-Modul M existiert mit $\mathcal{F}|_{U} \cong \widetilde{M}$.

Ist X noethersch, so ist \mathcal{F} genau dann kohärent, wenn für alle affinen $U = \operatorname{Spec}(A) \subset_{\operatorname{o}} X$ ein endlich erzeugter A-Modul M existiert mit $\mathcal{F}|_{U} \cong \widetilde{M}$.

Lemma. Sei $X = \operatorname{Spec}(A)$ affin, M ein A-Modul und \mathcal{F} ein \mathcal{O}_X -Modul. Dann ist

$$\operatorname{Hom}_A(M,\Gamma(X,\mathcal{F})) \to \operatorname{Hom}_{\widetilde{A}}(\widetilde{M},\mathcal{F}), \ \varphi \mapsto \widetilde{\varphi}$$

ein Isomorphismus mit Umkehrabbildung $\theta \mapsto \Gamma(X, \theta)$.

Beweis von Satz 5.9. Die Rückrichtungen der beiden Aussagen sind trivial. Sei $U \subset_{o} X$ affin. Nach dem Beweis von Lemma 5.8 gibt es eine Basis der Topologie von U, bestehend aus affinen Teilmengen V_i derart, dass $\mathcal{F}|_{V_i} \cong \widetilde{N_i}$ mit einem Modul N_i ist. Somit ist $\mathcal{F}|_{U}$ quasikohärent. Wir können somit o.B.d.A. $X = U = \operatorname{Spec}(A)$ als affin annehmen.

Setze $M = \Gamma(X, \mathcal{F})$ und $\alpha : \widetilde{M} \to \mathcal{F}$ als das Bild von id_M unter der Abbildung im vorherigen Lemma. Wie im Beweis von Lemma 5.8 gezeigt, gibt es eine Überdeckung der Form $X = \bigcup_{i=1}^m D(g_i)$ mit $\mathcal{F}|_{D(g_i)} \cong \widetilde{M}_i$ für einen A_{g_i} -Modul M_i . Es gilt $M_i = \mathcal{F}(D(g_i)) \cong M_{g_i}$ und wir haben ein kommutatives Diagramm:

Somit ist $\alpha|_{D(g_i)}$ ein Isomorphismus für alle *i*. Da die $D(g_i)$ ganz X überdecken, ist α ein Isomorphismus.

Sei nun X zusätzlich noethersch. Dann sind die A_{g_i} -Moduln M_{g_i} endlich erzeugt. Wir zeigen, dass M endlich erzeugt ist. Da A noethersch ist, sind alle A_{g_i} noethersch. Also sind die endlich erzeugten A_{g_i} -Moduln M_{g_i} noethersch. Analog zu Satz 3.6 folgt M noethersch. Insbesondere ist M endlich erzeugt.

Korollar 5.10. Sei A ein Ring und $X = \operatorname{Spec}(A)$. Dann ist

 $\{\text{Kategorie der }A\text{-Moduln}\} \to \{\text{Kategorie der quasikohärenten }\mathcal{O}_X\text{-Moduln}\},\ M \mapsto \widetilde{M}$

ist eine Kategorienäquivalenz mit der Umkehrabbildung $\mathcal{F} \mapsto \Gamma(X, \mathcal{F})$. Ist A noethersch, so geben dieselben Funktoren eine Kategorienäquivalenz zwischen den endlich erzeugten A-Moduln und den kohärenten \mathcal{O}_X -Moduln.

Beweis. Sei \mathcal{F} ein quasikohärenter \mathcal{O}_X -Modul. Nach Satz 5.9 existiert ein A-Modul M mit $\mathcal{F} \cong \widetilde{M}$. Nach Satz 5.2 (iv) ist $\Gamma(X, \mathcal{F}) = M$, also:

$$M \mapsto \widetilde{M} \mapsto \Gamma(X, \widetilde{M}) = M, \quad \mathcal{F} = \widetilde{M} \mapsto \Gamma(X, \widetilde{M}) = M \mapsto \widetilde{M}$$

Satz 5.11. Sei $X = \operatorname{Spec}(A)$ ein affines Schema und sei $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ eine exakte Sequenz von \mathcal{O}_X -Moduln, wobei \mathcal{F}' quasikohärent ist. Dann ist die Sequenz der globalen Schnitte ebenfalls exakt:

$$0 \to \Gamma(X, \mathcal{F}') \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}'') \to 0$$

Beweis. Da $\Gamma(X, -)$ linksexakt ist, bleibt nur die Surjektivität von $\Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}'')$ zu zeigen. Sei $s \in \Gamma(X, \mathcal{F}'')$ gegeben. Für $x \in X$ gibt es ein $f \in A$ mit $x \in D(f) \subset X$, so dass $s|_{D(f)}$ sich zu einem $t \in \mathcal{F}(D(f))$ liftet. Wir zeigen nun, dass es ein r > 0 existiert, so dass sich $f^r s$ zu einem $t'' \in \mathcal{F}(X)$ liftet.

Sei $X = \bigcup_i D(g_i)$ eine endliche offene Überdeckung, so dass sich $s|_{D(g_i)}$ zu einem $t_i \in \mathcal{F}(D(g_i))$ liftet. Auf $D(f) \cap D(g_i) = D(fg_i)$ liften $t_i, t \in \mathcal{F}(D(fg_i))$ beide s. Aus der Linksexaktheit von $\Gamma(D(fg_i), -)$ folgt $t - t_i \in \mathcal{F}'(D(fg_i))$. Da \mathcal{F}' quasikohärent ist, folgt aus Lemma 5.8 (ii) die Existenz eines n > 0 und $u_i \in \mathcal{F}'(D(g_i))$ mit $u_i|_{D(fg_i)} = f^n(t - t_i)$. Wir können n unabhängig von i wählen. Setze $t_i' = f^n t_i + u_i \in \mathcal{F}(D(g_i))$. Dann ist t_i' ein Lift von $f^n s|_{D(g_i)}$ und $\star t_i' = f^n t$ auf $\mathcal{F}(D(fg_i))$. Auf $D(g_ig_j)$ liften t_i' und t_j' beide $f^n s$, also $t_i' - t_j' \in \mathcal{F}'(D(g_ig_j))$ und daher $t_i' = t_j'$ auf $\mathcal{F}(D(fg_ig_j))$ wegen \star . Nach Lemma 5.8 (i) existiert ein m > 0, so dass $f^m(t_i' - t_j') = 0$ auf $\mathcal{F}(D(g_ig_j))$. Wir können m unabhängig von i, j wählen. Somit verkleben sich die $f^m t_i'$ zu einem $t'' \in \mathcal{F}(X)$ zusammen und t'' ist ein Lift von $f^{n+m}s$.

Sei nun $X = \bigcup_i D(f_i)$ eine endliche offene Überdeckung, so dass sich $s|_{D(f_i)}$ zu einem Schnitt aus $\mathcal{F}(D(f_i))$ liften lässt. Für alle i existiert ein n und ein Lift $t_i \in \Gamma(X, \mathcal{F})$ von $f_i^n s$. Wir können o.B.d.A. n unabhängig von i annehmen. Da $X = \bigcup_i D(f_i)$, gilt $(f_1^n, \ldots, f_k^n) = A$, also $1 = \sum_{i=1}^k a_i f_i^n$ für gewisse $a_i \in A$. Setze $t = \sum_{i=1}^k a_i t_i \in \mathcal{F}(X)$. Dann ist t ein Lift von $\sum_{i=1}^k a_i f_i^n s = s \in \mathcal{F}''(X)$.

Satz 5.12. Sei X ein Schema.

- (i) Kern, Kokern und Bild eines Morphismus von quasikohärenten Garben ist wieder quasikohärent.
- (ii) Ist $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ eine kurze exakte Sequenz von \mathcal{O}_X -Moduln und $\mathcal{F}', \mathcal{F}''$ quasikohärent, so ist \mathcal{F} quasikohärent.
- (iii) Ist X noethersch, so gilt (i) und (ii) auch für kohärente Garben.

Beweis. Da Quasikohärenz bzw. Kohärenz eine lokale Eigenschaft ist, können wir ohne Einschränkung $X = \operatorname{Spec}(A)$ als affin annehmen. Nach Korollar 5.10 gelten (i) und (ii) für Modulgarben der Form \widetilde{M} . Da $M \mapsto \widetilde{M}$ nach 5.3 (i) ein exakter, volltreuer Funktor ist, folgt die Aussage über Kern, Kokern und Bild.

Sei nun $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ eine kurze exakte Sequenz von \mathcal{O}_X -Moduln mit $\mathcal{F}', \mathcal{F}''$ quasikohärent. Nach Satz 5.11 ist die folgende Folge exakt:

$$0 \to \Gamma(X, \mathcal{F}') \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}'') \to 0$$

Da $M\mapsto \widetilde{M}$ ein exakter Funktor ist, folgt die Exaktheit von:

$$0 \longrightarrow \widetilde{\Gamma(X, \mathcal{F}')} \longrightarrow \widetilde{\Gamma(X, \mathcal{F})} \longrightarrow \widetilde{\Gamma(X, \mathcal{F}'')} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

Die vertikalen Pfeile links und rechts sind nach Korollar 5.10 Isomorphismen. Nach dem 5er Lemma ist somit auch der mittlere Pfeil ein Isomorphismus und \mathcal{F} ist quasikohärent.

Sei nun X noethersch und $\mathcal{F}', \mathcal{F}''$ kohärent. Dann sind $\Gamma(X, \mathcal{F}'), \Gamma(X, \mathcal{F}'')$ endlich erzeugt und somit auch $\Gamma(X, \mathcal{F})$. Es folgt die Kohärenz von \mathcal{F} .

Satz 5.13. Sei $f: X \to Y$ ein Morphismus von Schemata.

- (i) Sei \mathcal{G} ein quasikohärenter \mathcal{O}_Y -Modul. Dann ist $f^*\mathcal{G}$ quasikohärenter \mathcal{O}_X -Modul.
- (ii) Seien X, Y noethersch und \mathcal{G} kohärenter \mathcal{O}_Y -Modul. Dann ist $f^*\mathcal{G}$ kohärent.
- (iii) Sei X noethersch oder f quasikompakt und separiert. Ist \mathcal{F} ein quasikohärenter \mathcal{O}_X -Modul, so ist $f_*\mathcal{F}$ quasikohärenter \mathcal{O}_Y -Modul.

Lemma 5.14. Sei Y ein affines Schema, $f:X\to Y$ ein separierter Morphismus und $U,V\subset_{\mathrm{o}}X$ affin. Dann ist $U\cap V$ ein abgeschlossenes Unterschema eines affinen Schemas. Wir werden in Korollar 5.18 sehen, dass $U\cap V$ sogar affin ist. Insbesondere ist $U\cap V$ quasikompakt.

Beweis. Betrachte das kartesische Diagramm:

$$\begin{array}{ccc} X \times_Y X & \xrightarrow{p_2} & X \\ \downarrow^{p_1} & & \downarrow^f \\ X & \xrightarrow{f} & Y \end{array}$$

Nach Lemma 3.20 ist $p_1^{-1}(U) \cap p_2^{-1}(V) = U \times_Y V$ affin. Es gilt:

$$U \cap V \cong \Delta_{X/Y}(X) \cap U \times_Y V \subset U \times_Y V$$

Nun ist $\Delta_{X/Y}(X)$ abgeschlossen in $X \times_Y X$, d.h. $U \cap V$ ist ein abgeschlossenes Unterschema in $U \times_Y V$.

Beweis von Satz 5.13. Für (i) und (ii) ist die Aussage lokal in X und in Y. Daher können wir o.B.d.A. $X = \operatorname{Spec}(B)$ und $Y = \operatorname{Spec}(A)$ als affin annehmen. Dann folgt die Behauptung aus der Kategorienäquivalenz Korollar 5.10 und Satz 5.3 (v) $f^*\widetilde{M} = \widetilde{M} \otimes_A B$.

Für (iii) können wir nur Y als affin annehmen. Sei $X = \bigcup_i U_i$ eine endliche, offene affine Überdeckung, da in beiden Fällen X quasikompakt ist. Setze $U_{ij} = U_i \cap U_j$. In beiden Fällen sind U_{ij} quasikompakt, siehe Lemma 5.14 und 3.5, 3.4. Sei also $U_{ij} = \bigcup_k U_{ijk}$ eine endliche, offene affine Überdeckung. Nach der Garbeneigenschaft haben wir die folgende exakte Sequenz:

$$0 \to f_* \mathcal{F} \to \bigoplus_i f_*(\mathcal{F}|_{U_i}) \to \bigoplus_{i,j,k} f_*(\mathcal{F}|_{U_{ijk}})$$

Wegen Satz 5.3 (iv) sind $f_*(\mathcal{F}|_{U_i})$ und $f_*(\mathcal{F}|_{U_{ijk}})$ quasikohärent. Nach Satz 5.12 (ii) sind $\bigoplus_i f_*(\mathcal{F}|_{U_i})$ und $\bigoplus_{i,j,k} f_*(\mathcal{F}|_{U_{ijk}})$ quasikohärent. Nach 5.12 (i) ist daher auch $f_*\mathcal{F}$ quasikohärent.

Bemerkung. Sind X, Y noethersch und \mathcal{F} kohärent, so muss $f_*\mathcal{F}$ nicht notwendigerweise kohärent sein.

Definition 5.16. Sei Y ein abgeschlossenes Unterschema von X und $i:Y \hookrightarrow X$ der Inklusionsmorphismus. Dann ist die $zu\ Y$ gehörige Idealgarbe auf X, wie folgt definiert:

$$\mathcal{J}_Y = \ker(i^{\sharp}: \mathcal{O}_X \to i_* \mathcal{O}_Y)$$

Satz 5.17. Sei X ein Schema. Dann gilt:

- (i) Ist Y ein abgeschlossenes Unterschema von X, so ist \mathcal{J}_Y eine quasikohärente Idealgarbe auf X.
- (ii) Ist X zusätzlich noethersch, so ist \mathcal{J}_Y kohärent.
- (iii) Jede quasikohärente Idealgarbe auf X bestimmt in eindeutiger Weise ein abgeschlossenes Unterschema.

Beweis.

- (i) Sei $Y \subset X$ abgeschlossen. Dann ist $i: Y \hookrightarrow X$ ein quasikompakter Morphismus. Wegen Satz 4.17 (i) ist i separiert. Nach Satz 5.13 (iii) ist $i_*\mathcal{O}_Y$ quasikohärent, also \mathcal{J}_Y quasikohärent nach Satz 5.12 (i).
- (ii) Ist X noethersch und $U \subset_{o} X$ affin mit $U = \operatorname{Spec}(A)$, so ist auch A noethersch nach Satz 3.6. Daher ist $I = \Gamma(U, \mathcal{J}_Y|_U)$ ein endlich erzeugtes Ideal in A. Nach Satz 5.9 ist \mathcal{J}_Y kohärent.

(iii) Sei \mathcal{J} eine quasikohärente Idealgarbe auf X. Setze:

$$Y = \operatorname{supp}(\mathcal{O}_X/\mathcal{J}) = \{x \in X \mid (\mathcal{O}_X/\mathcal{J})_x \neq 0\} \subset X$$

Wir zeigen, dass $(Y, \mathcal{O}_X/\mathcal{J})$ ein abgeschlossenes Unterschema von X ist. Dies ist eine lokale Frage, sei o.B.d.A. $X = \operatorname{Spec}(A)$ affin. Da \mathcal{J} quasikohärent ist, folgt $\mathcal{J} = \widetilde{\mathfrak{a}}$ für ein Ideal $\mathfrak{a} \subset A$. Es gilt:

$$Y = \operatorname{supp}(\mathcal{O}_X/\mathcal{J}) = \operatorname{supp}(\widetilde{A/\mathfrak{a}})$$
$$= \{ \mathfrak{p} \in X \mid (A/\mathfrak{a})_{\mathfrak{p}} \neq 0 \}$$
$$= \{ \mathfrak{p} \in X \mid \mathfrak{a} \subset \mathfrak{p} \} = \operatorname{Spec}(A/\mathfrak{a})$$

Die Eindeutigkeit ist klar.

Korollar 5.18. Sei $X = \operatorname{Spec}(A)$ affin. Dann haben wir eine Bijektion:

$$\{\mathfrak{a}\mid \mathfrak{a}\subset A \text{ Ideal}\} \to \{Y\mid Y\subset X \text{ abgeschlossenes Unterschema}\},\ \mathfrak{a}\mapsto \operatorname{Spec}(A/\mathfrak{a})$$

Insbesondere ist jedes abgeschlossenes Unterschema eines affinen Schemas wieder affin.

Definition 5.19. Sei $S = \bigoplus_d S_d$ ein graduierter Ring. Ein S-Modul heißt graduierter S-Modul, falls $M = \bigoplus_d M_d$ mit $S_d \cdot M_e \subset S_{d+e}$ gilt. Sei $\ell \in \mathbb{Z}$. Dann definieren wir den getwisteten S-Modul $M(\ell)$ von M durch:

$$M(\ell)_d = M_{d+\ell}$$

Definition 5.20. Sei S ein graduierter Ring und M ein graduierter S-Modul. Die zu M assoziierte Garbe \widetilde{M} auf $\operatorname{Proj}(S)$ ist wie folgt definiert: Sei $U \subset_{\operatorname{o}} \operatorname{Proj}(S)$ und setze $\widetilde{M}(U)$ als die Menge aller Abbildungen $s: U \to \coprod_{\mathfrak{p} \in U} M_{(\mathfrak{p})}$, so dass:

- (i) Für alle $\mathfrak{p} \in U$ gilt $s(\mathfrak{p}) \in M_{(\mathfrak{p})}$.
- (ii) Für alle $\mathfrak{p} \in U$ existiert eine offene Umgebung V von \mathfrak{p} mit $V \subset U$ und homogene Elemente $m \in M, \ f \in S$ mit $\deg(m) = \deg(f)$ derart, dass für alle $\mathfrak{q} \in V$ stets $f \notin \mathfrak{q}$ und $s(\mathfrak{q}) = \frac{m}{f}$ in $M_{(\mathfrak{q})}$ gilt.

 \widetilde{M} wird zu einer Garbe mit den gewöhnlichen Restriktionsabbildungen.

Satz 5.21. Sei S ein graduierter Ring, M ein graduierter S-Modul und X = Proj(S). Dann gilt:

(i)
$$(\widetilde{M})_{\mathfrak{p}} = M_{(\mathfrak{p})}$$
 für alle $\mathfrak{p} \in X$.

63

- (ii) Für alle homogene Elemente $f \in S_+$ ist $\widetilde{M}|_{D_+(f)} \cong \widetilde{M}_{(f)}$ bzgl. des Isomorphismus' $D_+(f) \cong \operatorname{Spec} S_{(f)}$.
- (iii) \widetilde{M} ist ein quasikohärenter \mathcal{O}_X -Modul. Ist X noethersch und M endlich erzeugt, so ist \widetilde{M} kohärent.

Beweis. (i) und (ii) sind analog zu Satz 2.23. (iii) folgt aus (ii).

Definition 5.22. Sei S ein graduierter Ring, $X = \operatorname{Proj}(S)$ und \mathcal{F} ein \mathcal{O}_X -Modul. Für $n \in \mathbb{Z}$ definieren wir die *getwistete Garbe* $\mathcal{F}(n)$ von \mathcal{F} wie folgt:

$$\mathcal{F}(n) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n), \quad \mathcal{O}_X(n) = \widetilde{S(n)}$$

Satz 5.23. Sei S ein graduierter Ring und X = Proj(S), wobei S als S_0 -Algebra von S_1 erzeugt wird. Dann gilt:

- (i) $\mathcal{O}_X(n)$ ist eine invertierbare Garbe auf X.
- (ii) Sind M, N graduierte S-Moduln, so ist $\widetilde{M \otimes_S N} \cong \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N}$. Insbesondere gilt $\widetilde{M(n)} \cong \widetilde{M}(n)$ und $\mathcal{O}_X(n+m) \cong \mathcal{O}_X(n) \otimes \mathcal{O}_X(m)$.
- (iii) Sei T ein weiterer graduierter Ring, der von T_1 als T_0 -Algebra erzeugt wird und $\varphi: S \to T$ ein Homomorphismus graduierter Ringe. Sei $U \subset_{\mathbf{o}} Y = \operatorname{Proj}(T)$ und $f: U \to X$ der durch φ induzierte Morphismus. Dann gilt für jeder graduierte S-Modul M und jeder graduierte T-Modul N:

$$f^*(\widetilde{M}) \cong \widetilde{M \otimes_S} T|_U, \quad f_*(\widetilde{N}|_U) \cong (\widetilde{SN})$$

Insbesondere gilt $f^*(\mathcal{O}_X(n)) \cong \mathcal{O}_Y(n)|_U$ und $f_*(\mathcal{O}_X(n)|_U) = (f_*\mathcal{O}_U)(n)$.

Beweis.

- (i) Sei $f \in S_1$ und betrachte $\mathcal{O}_X(n)|_{D_+(f)} \cong \widetilde{S(n)}_{(f)}$ auf Spec $S_{(f)}$. Es ist $S(n)_{(f)}$ freier $S_{(f)}$ -Modul vom Rang 1 via dem Isomorphismus $(S_f)_0 \to (S_f)_n$, $s \mapsto f^n s$ für alle n. Da S von S_1 als S_0 -Algebra erzeugt wird, gilt $X = \bigcup_{f \in S_1} D_+(f)$. Daher ist $\mathcal{O}_X(n)$ invertierbar.
- (ii) Sei $f \in S_1$. Es gilt $(M \otimes_S N)_{(f)} = M_{(f)} \otimes_{S_{(f)}} N_{(f)}$. Da S von S_1 erzeugt wird, folgt $\widetilde{M \otimes_S N} \cong \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N}$.
- (iii) Analog wie im affinen Fall.

Definition 5.24. Sei S ein graduierter Ring, X = Proj(S) und \mathcal{F} ein \mathcal{O}_X -Modul. Der zu \mathcal{F} assoziierte graduierte S-Modul $\Gamma_*(\mathcal{F})$ ist definiert als die Gruppe

$$\Gamma_*(\mathcal{F}) = \bigoplus_{n \in \mathbb{Z}} \Gamma(X, \mathcal{F}(n))$$

mit der folgenden S-Wirkung: Ein $s \in S_d$ induziert ein $s \in \Gamma(X, \mathcal{O}_X(d))$. Für $t \in \Gamma(X, \mathcal{F}(n))$ setze $st = s \otimes t \in \Gamma(X, \mathcal{F}(n)) \otimes_{\mathcal{O}_X} \mathcal{O}_X(d) = \Gamma(X, \mathcal{F}(n+d))$.

Satz 5.25. Sei A ein Ring und $X = \mathbf{P}_A^r$ mit $r \ge 1$ und $S = A[X_0, \dots, X_r]$. Dann gilt:

$$\Gamma_*(\mathcal{O}_X) = S$$

Beweis. Sei $X = \bigcup_{i=0}^r D_+(X_i)$. Ein $t \in \Gamma(X, \mathcal{O}_X(n))$ entspricht eine Familie $t_i \in \Gamma(D_+(X_i), \mathcal{O}_X(n))$, $i = 1, \ldots, r$ mit $t_i = t_j$ auf $D_+(X_iX_j)$. t_i ist ein homogenes Element $s_i \in S_{X_i}$ vom Grad n und $t_i|_{D_+(X_iX_j)}$ entspricht dem Bild von s_i in $S_{X_iX_j}$. Es folgt:

$$\Gamma_*(\mathcal{O}_X) = \left\{ (t_0, \dots, t_r) \in \prod_{i=0}^r S_{X_i} \mid t_i = t_j \text{ auf } S_{X_i X_j} \text{ für alle } i, j \right\}$$

Da keine X_i Nullteiler sind, haben wir Inklusionen $S \hookrightarrow S_{X_i} \hookrightarrow S_{X_i X_j} \hookrightarrow S_{X_0 \cdots X_r}$ und:

$$\Gamma_*(\mathcal{O}_X) = \bigcap_{i=0}^r S_{X_i} \subset S_{X_0 \dots X_r}$$

Jedes homogene $t \in S_{X_0 \cdots X_r}$ lässt sich eindeutig in der folgenden Form schreiben:

$$t = X_0^{i_0} \cdots X_r^{i_r} f, \quad i_j \in \mathbb{Z}$$

wobei $f \in S$ ein homogenes Element ist, das durch kein X_i teilbar ist. Es ist t genau dann in S_{X_i} , wenn $i_j \geq 0$ für alle $j \neq i$ gilt. Also ist $\bigcap S_{X_i} = S$.

Lemma 5.26. Sei X ein Schema, \mathcal{L} eine invertierbare Garbe auf X und $f \in \Gamma(X, \mathcal{L})$. Setze $X_f = \{x \in X \mid f_x \notin \mathfrak{m}_x \mathcal{L}_x\} \subset_{o} X$ und sei \mathcal{F} eine quasikohärente Garbe auf X.

- (i) Sei X quasikompakt und $s \in \Gamma(X, \mathcal{F})$ mit $s|_{X_f} = 0$. Dann gibt es ein n > 0, so dass $f^n s = 0 \in \Gamma(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n})$.
- (ii) Sei $X = \bigcup U_i$ eine endliche, offene affine Überdeckung, so dass $\mathcal{L}|_{U_i}$ für alle i frei und $U_i \cap U_j$ für alle i, j quasikompakt sind. Zu $t \in \Gamma(X_f, \mathcal{F})$ gibt es ein n > 0, so dass sich $f^n t \in \Gamma(X_f, \mathcal{F} \otimes \mathcal{L}^{\otimes n})$ zu einem globalen Schnitt auf ganz X fortsetzen lässt.

Bemerkung 5.27. Voraussetzungen in Lemma 5.26 (i) und (ii) sind erfüllt, wenn X noethersch ist, oder wenn X quasikompakt und separiert ist.

Beweis von Lemma 5.26.

(i) Sei $X = \bigcup U_i$ eine endliche, offene affine Überdeckung mit $\mathcal{L}|_{U_i}$ frei. Betrachte $U = U_i$ und sei $\psi : \mathcal{L}|_U \stackrel{\sim}{\to} \mathcal{O}_U$ ein Isomorphismus. Da \mathcal{F} quasikohärent ist, folgt $\mathcal{F}|_U \cong \widetilde{M}$ für ein A-Modul M, wobei $U = \operatorname{Spec}(A)$. Für ein $s \in \Gamma(X, \mathcal{F})$ ist $s|_U \in M$. Setze $g := \psi(f|_U) \in A$. Es ist $X_f \cap U = D(g)$ und $s|_{X_f} = 0$. Nach Lemma 5.8 (i) gibt es ein n > 0 mit $g^n s = 0 \in M$. Der Isomorphismus

$$id \otimes \psi^{\otimes n} : \mathcal{F} \otimes \mathcal{L}^{\otimes n}|_U \to \mathcal{F}|_U$$

liefert $0 = f^n s = \Gamma(U, \mathcal{F} \otimes \mathcal{L}^{\otimes n})$ für alle $U = U_i$. Wählt man n so groß, dass die obige Aussage für alle U_i gilt, so folgt $f^n s = 0$ auf X.

(ii) Analog zu (i) mit Lemma 5.8 (ii).

Satz 5.28. Sei S ein graduierter Ring, der durch S_1 als S_0 -Algebra endlich erzeugt wird. Sei X = Proj(S) und \mathcal{F} ein quasikohärenter \mathcal{O}_X -Modul. Dann gibt es einen natürlichen Isomorphismus:

$$\beta: \widetilde{\Gamma_*(\mathcal{F})} \stackrel{\sim}{\to} \mathcal{F}$$

Beweis. Es ist $X = \bigcup_{f \in S_1} D_+(f)$ eine endliche Vereinigung. Für $f \in S_1$ definiere:

$$\beta_f : \widetilde{\Gamma_*(\mathcal{F})}_{(f)} = \widetilde{\Gamma_*(\mathcal{F})}|_{D_+(f)} \to \mathcal{F}|_{D_+(f)}$$

durch $\bigoplus_d \Gamma(D_+(f), \mathcal{F}(d)) \to \Gamma(D_+(f), \mathcal{F})$, das induziert wird durch:

$$\Gamma(D_+(f), \mathcal{F}(d)) \to \Gamma(D_+(f), \mathcal{F}(d) \otimes \mathcal{O}_X(-d)) = \Gamma(D_+(f), \mathcal{F}), \ \frac{m}{f^d} \mapsto m \otimes f^{-d}$$

Wir erhalten eine Abbildung $\beta: \Gamma_*(\mathcal{F}) \to \mathcal{F}$. Wir zeigen nun, dass alle β_f Isomorphismen sind. Es genügt zu zeigen, dass $\Gamma_*(\mathcal{F})_{(f)} \to \Gamma(D_+(f), \mathcal{F})$ Isomorphismen sind. Lemma 5.26 (i) liefert die Injektivität und Lemma 5.26 (ii) die Surjektivität.

Korollar 5.29. Sei A ein Ring. Dann gilt:

- (i) Ist $Y \hookrightarrow \mathbf{P}_A^r$ ein abgeschlossenes Unterschema, so existiert ein homogenes Ideal $I \subset S = A[X_0, \dots, X_r]$, so dass $Y = \operatorname{Proj}(S/I) \hookrightarrow \operatorname{Proj}(S) = X$.
- (ii) Sei Y ein Schema über $\operatorname{Spec}(A)$. Dann ist Y genau dann projektiv, wenn $Y \cong \operatorname{Proj}(S)$ für einen graduierten Ring S, der von S_1 als $S_0 = A$ -Algebra endlich erzeugt wird.

Beweis.

(i) Sei $\mathcal{J}_Y \subset \mathcal{O}_X$ die Idealgarbe von Y auf $X = \mathbf{P}_A^r$. Da $\mathcal{J}_Y(d) \subset \mathcal{O}_X(d)$, folgt $\Gamma_*(\mathcal{J}_Y) \subset \Gamma_*(\mathcal{O}_X)$. Nach Satz 5.25 ist $\Gamma_*(\mathcal{O}_X) = S$, d.h. $I = \Gamma_*(\mathcal{J}_Y)$ ist ein homogenes Ideal in S. Setze $Y' = \operatorname{Proj}(S/I)$. Y' ist ein abgeschlossenes Unterschema von X mit Idealgarbe $\mathcal{J}_{Y'} = \widetilde{I}$. Da \mathcal{J}_Y nach Satz 5.17 (i) quasikohärent ist, folgt $\mathcal{J}_Y \cong \Gamma_*(\mathcal{J}_Y)$ nach Satz 5.28. Nun gilt:

$$\mathcal{J}_Y \cong \widetilde{\Gamma_*(\mathcal{J}_Y)} = \widetilde{I} = \mathcal{J}_{Y'}$$

Nach Satz 5.17 folgt Y = Y', also ist Y das abgeschlossene Unterschema, das durch I definiert ist.

(ii) Es gilt:

Y projektiv $\iff Y$ ist abgeschlossenes Unterschema von \mathbf{P}_A^r für ein r $\iff Y \cong \operatorname{Proj}(S'/I)$ für ein homogenes Ideal $I \subset S' = A[X_0, \dots, X_r]$

Wir zeigen zunächst, dass I und $I' = \bigoplus_{d \geq d_0} I_d$ dasselbe abgeschlossene Unterschema bestimmen. Dafür zeigen wir $\mathfrak{p} \supset I$, wenn $\mathfrak{p} \supset I'$ für alle $\mathfrak{p} \in \operatorname{Proj}(S')$. Wegen $\mathfrak{p} \not\supset S_+$ gibt es ein $x_i \not\in \mathfrak{p}$. Sei nun $x \in I_r$, $r < d_0$, dann ist $x_i^{d_0 - r} x \in I_{d_0} \in \mathfrak{p}$. Da \mathfrak{p} ein Primideal ist, folgt $x \in \mathfrak{p}$.

Somit können wir o.B.d.A. $I \subset S'_+$ annehmen. Also ist $A = (S'/I)_0$ und S = S'/I wird als A-Algebra von S_1 endlich erzeugt.

Umgekehrt ist jeder graduierte Ring S, der von S_1 als $S_0 = A$ -Algebra endlich erzeugt ist, Quotient des Polynomrings und Proj(S) ist projektiv.

Definition 5.30. Sei Y ein Schema. Der kanonische Morphismus $g: \mathbf{P}_Y^r = \mathbf{P}_{\mathbb{Z}}^r \times Y \to \mathbf{P}_{\mathbb{Z}}^r$ definiert die getwistete Garbe $\mathcal{O}(1)$ auf \mathbf{P}_Y^r durch:

$$\mathcal{O}(1) = g^* \mathcal{O}(1)$$

Bemerkung. Ist Y = Spec(A) affin, so ist $\mathcal{O}(1)$ die bereits in Definition 5.22 definierte Garbe auf \mathbf{P}_A^r .

Definition 5.31. Sei X ein Schema über Y. Eine invertierbare Garbe \mathcal{L} auf X heißt sehr ampel bzgl. Y, wenn es eine Immersion $i: X \hookrightarrow \mathbf{P}_Y^r$ für ein r gibt, so dass $i^*(\mathcal{O}(1)) \cong \mathcal{L}$.

Satz 5.32. Sei Y ein noethersches Schema und X ein Schema über Y. Dann ist X genau dann projektiv über Y, wenn:

- (i) X ist eigentlich über Y.
- (ii) Es gibt eine sehr ample Garbe auf X bzgl. Y.

Beweis. Sei X projektiv. Dann folgt (i) aus Theorem 4.24 und es gibt eine abgeschlossene Immersion $i: X \to \mathbf{P}_V^r$ für ein r, so dass $i^*\mathcal{O}(1)$ sehr ampel ist.

Sei umgekehrt $i: X \hookrightarrow \mathbf{P}_Y^r$ eine Immersion und $\mathcal{L} \cong i^*(\mathcal{O}(1))$ eine sehr ample Garbe auf X bzgl. Y. Betrachte das kartesische Quadrat:

$$\mathbf{P}_{Y}^{r} = Y \times \mathbf{P}_{\mathbb{Z}}^{r} \longrightarrow Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{P}_{\mathbb{Z}}^{r} \longrightarrow \mathbb{Z}$$

 $\mathbf{P}_{\mathbb{Z}}^r \to \mathbb{Z}$ ist separiert, da projektiv, also ist auch der Basiswechsel $\mathbf{P}_Y^r \to Y$ separiert. Ferner ist $X \to Y$ eigentlich, nach Korollar 4.22 (v) ist auch $X \hookrightarrow \mathbf{P}_Y^r$ eigentlich, also insbesondere abgeschlossen.

Definition 5.33. Sei X ein Schema und \mathcal{F} ein \mathcal{O}_X -Modul. \mathcal{F} heißt von globalen Schnitten erzeugt, wenn es eine Familie von globalen Schnitten $s_i \in \Gamma(X, \mathcal{F}), i \in I$ gibt, so dass für alle $x \in X$ die Bilder der s_i den Halm \mathcal{F}_x als \mathcal{O}_X -Modul erzeugen. Dies ist äquivalent zu: Es gibt einen surjektiven Garbenmorphismus $\bigoplus_{i \in I} \mathcal{O}_X \to \mathcal{F}$.

Beispiel 5.34. Sei $X = \operatorname{Spec}(A)$ und $\mathcal{F} = \widetilde{M}$ für ein A-Modul M. Dann wird \mathcal{F} von globalen Schnitten erzeugt; jedes Erzeugendensystem von M als A-Modul liefern solche Schnitte. Die Surjektion $A^{(I)} \to M$ induziert surjektives $\mathcal{O}_X^{(I)} \to \mathcal{F}$.

Beispiel 5.35. Sei X = Proj(S) mit einem graduierten Ring S, der von S_1 als S_0 -Algebra erzeugt wird. Dann liefern die Elemente aus S_1 globale Schnitte von $\mathcal{O}_X(1)$ und erzeugen diesen quasikohärenten Modul.

Lemma 5.36.

- (i) Abgeschlossene Immersionen sind endliche Morphismen.
- (ii) Sei $f: X \to Y$ ein endlicher Morphismues noetherscher Schemata und \mathcal{F} ein kohärenter \mathcal{O}_X -Modul. Dann ist $f_*\mathcal{F}$ kohärent.

Beweis.

(i) Sei $f: X \to Y$ eine abgeschlossene Immersion. Sei $V = \operatorname{Spec}(B) \subset_{\operatorname{o}} Y$. Es ist $f^{-1}(V) = X \times_Y V \to V$ als Basiswechsel von f eine abgeschlossene Immersion. Somit ist $f^{-1}(V) \cong \operatorname{Spec}(B/I)$ für ein Ideal $I \subset B$ affin und ferner B/I ein endlich erzeugter B-Modul.

(ii) Nach Satz 5.13 (iii) ist $f_*\mathcal{F}$ quasikohärent. Sei $V = \operatorname{Spec}(B) \subset_{\operatorname{o}} Y$. Da f endlich ist, ist $f^{-1}(V) = \operatorname{Spec}(A)$ affin und es gilt $\mathcal{F}|_{f^{-1}(V)} = \widetilde{N}$ für ein endlich erzeugter A-Modul N. Nach Satz 5.3 (iv) gilt:

$$f_*\mathcal{F}|_V = f_*\widetilde{N} = \widetilde{_BN}$$

Da f endlich ist, ist A ein endlich erzeugter B-Modul und somit auch ${}_BN$.

Satz 5.37. (Serre) Sei X ein projektives Schema über Spec(A) mit A noethersch. Sei $\mathcal{O}_X(1)$ eine sehr ample Garbe auf X und \mathcal{F} ein kohärenter \mathcal{O}_X -Modul. Dann existiert ein $n_0 \in \mathbb{Z}$, so dass für alle $n \geq n_0$ der getwistete \mathcal{O}_X -Modul $\mathcal{F}(n)$ von endlich vielen globalen Schnitten erzeugt wird.

Beweis. Sei $i: X \hookrightarrow \mathbf{P}_A^r$ eine abgeschlossene Immersion mit $\mathcal{O}_X(1) \cong i^*(\mathcal{O}(1))$. Nach Lemma 5.36 ist $i_*\mathcal{F}$ kohärent auf \mathbf{P}_A^r und nach Satz 5.23 (iii) gilt $(i_*\mathcal{F})(n) = i_*(\mathcal{F}(n))$. Wird nun $i_*\mathcal{F}(n)$ von endlich vielen globalen Schnitten erzeugt, so ist dies auch für $\mathcal{F}(n)$ der Fall, betrachte dafür:

$$\Gamma(\mathbf{P}_A^r, i_* \mathcal{F}(n)) = \mathcal{F}(n)(i^{-1}(\mathbf{P}_A^r)) = \Gamma(X, \mathcal{F}(n))$$
$$(i_* \mathcal{F}(n))_x = \begin{cases} \mathcal{F}(n)_x, & x \in i(X) \\ 0, & \text{sonst} \end{cases}$$

Sei also o.B.d.A. $X = \mathbf{P}_A^r = \operatorname{Proj} A[X_0, \dots, X_r]$. Es ist $X = \bigcup_{i=0}^r D_+(X_i)$. Für jedes i ist $\mathcal{F}|_{D_+(X_i)} \cong \widetilde{M}_i$ für ein endlich erzeugter Modul M_i über $B_i = A\left[\frac{X_0}{X_i}, \dots, \frac{\widehat{X}_i}{X_i}, \dots, \frac{X_r}{X_i}\right]$. Sei $(s_{ij})_j$ ein Erzeugendensystem von M_i . Wegen Lemma 5.26 existiert ein $n_0 > 0$, so dass für alle $n \geq n_0$ die Schnitte $X_i^n s_{ij}$ sich zu globalen Schnitten t_{ij} von $\mathcal{F}(n)$ liften lassen. Wir können n_0 unabhängig von i und j wählen. Sei $\mathcal{F}(n)|_{D_+(X_i)} \cong \widetilde{M}_i'$ für ein B_i -Modul \widetilde{M}_i' . Die Abbildungen $X_i^n : \mathcal{F} \to \mathcal{F}(n)$ induzieren Isomorphismen $M_i \to M_i'$. Da $\{X_i^n s_{ij} \mid j\}$ ganz M_i' erzeugen, erzeugen $t_{ij} \in \Gamma(X, \mathcal{F}(n))$ als globale Schnitte ganz $\mathcal{F}(n)$.

Korollar 5.38. Sei X ein projektives Schema über $\operatorname{Spec}(A)$ mit A noethersch. Dann gibt es für jeden kohärenten \mathcal{O}_X -Modul \mathcal{F} eine Surjektion $\mathcal{O}_X(n)^N \to \mathcal{F}$ mit $n, N \in \mathbb{Z}$.

Beweis. Nach Satz 5.37 gibt es eine Surjektion $\mathcal{O}_X^N \to \mathcal{F}(n)$. Tensorieren mit $\mathcal{O}_X(-n)$ gibt die Behauptung.

Satz 5.39. Sei k ein Körper, A eine endlich erzeugte k-Algebra und X projektives Schema über Spec(A). Ferner sei \mathcal{F} ein kohärenter \mathcal{O}_X -Modul. Dann ist $\Gamma(X,\mathcal{F})$ ein endlich erzeugter A-Modul.

Beweis. Wir werden diesen Satz später kohomologisch beweisen.

2.6. DIVISOREN 69

Korollar 5.40. Sei $f: X \to Y$ ein projektiver Morphismus von Schemata von endlichem Typ über einem Körper k. Ist \mathcal{F} kohärent auf X, so ist auch $f_*\mathcal{F}$ kohärent auf Y. Insbesondere ist für A = k der Modul $\Gamma(X, \mathcal{F})$ ein endlich dimensionierter k-Vektorraum.

Beweis. Sei o.B.d.A. $Y = \operatorname{Spec}(A)$ affin, wobei A eine endlich erzeugte k-Algebra ist. Da f projektiv ist, ist f eigentlich und somit separiert und von endlichem Typ, also quasikompakt. Wegen Satz 5.13 (iii) ist $f_*\mathcal{F}$ quasikohärent. Es gilt:

$$f_*\mathcal{F} = \widetilde{\Gamma(Y, f_*\mathcal{F})} = \widetilde{\Gamma(X, \mathcal{F})}$$

Aber $\Gamma(X, \mathcal{F})$ ist endlich erzeugter A-Modul nach Satz 5.39.

2.6 Divisoren

Definition 6.1.

(i) Ein noetherscher lokaler Ring (R, \mathfrak{m}) heißt regulär, falls für $k = R/\mathfrak{m}$ gilt:

$$\dim(R) = \dim_k(\mathfrak{m}/\mathfrak{m}^2)$$

Ist R ein noetherscher lokaler Ring, so gilt stets $\dim(R) \leq \dim_k(\mathfrak{m}/\mathfrak{m}^2)$.

(ii) Ein Schema X heißt regulär in Kodimension 1, falls jeder Halm $\mathcal{O}_{X,x}$ von X mit $\dim(\mathcal{O}_{X,x}) = 1$ regulär ist.

Definition 6.3. Ein Ring heißt *normal*, wenn er ganzabgeschlossen und nullteilerfrei ist. Ein Schema heißt *normal*, wenn seine Halme normal sind.

Theorem 6.4. Sei R ein noetherscher, normaler Ring und \mathfrak{p} ein Primideal der Höhe 1. Dann ist $R_{\mathfrak{p}}$ regulär. Genauer: Sei (R,\mathfrak{m}) ein noetherscher lokaler Ring der Dimension 1. Dann sind folgende Aussagen äquivalent:

- (i) R ist ein diskreter Bewertungsring.
- (ii) R ist ganzabgeschlossen.
- (iii) R ist regulär.
- (iv) m ist ein Hauptideal.

Beweis. Siehe z.B. Matsumura: "Commutative Algebra", Theorem 3.9 und Atiyah-Mac-Donald: "Introduction to Commutative Algebra", Proposition 9.2. □

Definition. Ein Schema habe die Eigenschaft (\star) , wenn es noethersch, separiert, integer und regulär in Kodimension 1 ist.

Definition 6.5. Sei X ein Schema mit (\star) . Dann gilt:

- (i) Ein *Primdivisor* auf X ist ein abgeschlossenes, integres Unterschema der Kodimension 1.
- (ii) Ein Weil-Divisor ist ein Element der freien abelschen Gruppe $\mathrm{Div}(X)$, die von den Primdivisoren erzeugt wird. Wir schreiben ein Divisor als $D = \sum_i n_i Y_i$ mit Primdivisoren Y_i und $n_i \in \mathbb{Z}$ mit $n_i = 0$ für fast alle i. Ein solcher Divisor heißt effektiv, falls alle $n_i \geq 0$ sind.
- (iii) Sei Y ein Primdivisor auf X und η ein generischer Punkt in Y. Dann ist $\mathcal{O}_{X,\eta}$ nach Theorem 6.4 ein diskreter Bewertungsring mit Quotientenkörper K, der Funktionen-körper von X. Wir bezeichnen die zugehörige diskrete Bewertung mit $v_Y: K^\times \to \mathbb{Z}$. Sei $f \in K^\times$. Ist $v_Y(f) > 0$, so sagen wir, dass f eine Nullstelle entlang Y von der Ordnung $v_Y(f)$ hat. Ist $v_Y(f) < 0$, so sagen wir, dass f ein Pol entlang Y von der Ordnung $-v_Y(f)$ besitzt.

Lemma 6.6. Sei X ein Schema mit (\star) und $f \in K^{\times}$. Dann ist $v_Y(f) = 0$ für fast alle Primdivisoren Y.

Beweis. Sei $\emptyset \neq U = \operatorname{Spec}(A) \subset_{\operatorname{o}} X$ affin mit $f|_U$ regulär, d.h. $f|_U \in \mathcal{O}_X(U)$. Sei $Z = X \setminus U \subsetneq X$ abgeschlossen. Da X noethersch und irreduzibel ist, ist Z noethersch mit $\operatorname{codim}(Z,X) \geq 1$ und besitzt nur endlich viele irreduzible Komponenten. Daher enthält Z höchstens endlich viele Primdivisoren von X, alle anderen treffen U. Es genügt also zu zeigen, dass es nur endlich viele Primdivisoren Y in U gibt mit $v_Y(f) \neq 0$, d.h. $v_Y(f) > 0$. Es gilt mit $Y = \{\eta\}$:

$$v_Y(f) > 0 \iff f \notin \mathcal{O}_{U,\eta}^{\times} = A_{\eta}^{\times} \iff f \in \eta \iff Y = V(\eta) \subset V(f) \subset U$$

Da $f \neq 0$, ist $V(f) \subsetneq U$ eine echte abgeschlossene Teilmenge, und enthält daher nur endlich viele irreduzible Komponenten, also Primdivisoren in U.

Definition 6.7. Sei X ein Schema mit (\star) und $f \in K^{\times}$. Der Divisor $\operatorname{div}(f)$ von f ist definiert als:

$$\operatorname{div}(f) = \sum_{Y} v_Y(f)Y$$

wobei Y über die Primdivisoren in X läuft. Diese Summe ist nach Lemma 6.6 endlich und somit wohldefiniert. Jeder Divisor der Form $\operatorname{div}(f)$ heißt $\operatorname{Haupt divisor}$ oder $\operatorname{prinzipal}$.

2.6. DIVISOREN 71

Bemerkung 6.8. Sei $f, g \in K^{\times}$. Dann gilt:

$$\operatorname{div}\left(\frac{f}{g}\right) = \operatorname{div}(f) - \operatorname{div}(g)$$

Somit ist $K^{\times} \to \text{Div}(X)$, $f \mapsto \text{div}(f)$ ein Gruppenhomomorphismus, dessen Bild gerade die Gruppe der Hauptdivisoren in X sind.

Definition 6.9. Sei X ein Schema mit (\star) . Zwei Divisoren D, D' heißen *linear äquivalent* $D \sim D'$, wenn D - D' ein Hauptdivisor ist. Die Gruppe der zugehörigen Äquivalenzklassen Cl(X) heißt *Divisorenklassengruppe*. Wir haben eine exakte Folge:

$$K^{\times} \to \operatorname{Div}(X) \to \operatorname{Cl}(X) \to 0$$

Satz 6.10. Sei A ein noetherscher, nullteilerfreier Ring. Dann gilt:

$$A \text{ ist faktoriell} \iff \operatorname{Cl}(\operatorname{Spec}(A)) = 0$$

Beweis. Siehe z.B. Bourbaki: Algèbre Commutative, Chapitre 7 §3 Proposition 2.

Beispiel 6.11.

- 1. Sei $X = \mathbf{A}_k^n$ für ein Körper k. Dann gilt $\mathrm{Cl}(X) = 0$, da $k[X_1, \dots, X_n]$ faktoriell ist.
- 2. Sei A ein Dedekindring. Dann ist Cl(Spec(A)) gerade die Idealklassengruppe.

Satz 6.12. Sei k ein Körper.

(i) Sei $X = \mathbf{A}_k^n$ und $Y \subset X$ ein abgeschlossenes Unterschema. Dann ist Y genau dann ein Primdivisor, wenn:

$$Y = V(f)$$
 für ein irreduzibles, nicht-konstantes $f \in k[X_1, \dots, X_n]$

(ii) Sei $X=\mathbf{P}^n_k$ und $Y\subset X$ ein abgeschlossenes Unterschema. Dann ist Y genau dann ein Primdivisor, wenn:

$$Y = V_{+}(f)$$
 für ein homogenes, irreduzibles $f \in k[X_0, \dots, X_n], \deg(f) = r > 0$

Definition 6.13. Sei $X = \mathbf{P}_k^n$. Jeder Primdivisor Y in X hat die Form $Y = V_+(f_Y)$. Betrachte die Abbildung $Y \mapsto \deg(f_Y)$. Diese induziert ein Gruppenhomomorphismus $\operatorname{Div}(X) \to \mathbb{Z}$. Wir zeigen, dass dieser über $\operatorname{Cl}(X)$ faktorisiert. Sei $f \in K^{\times}$. Dann gilt:

$$\deg \operatorname{div}(f) = \sum_{Y} v_Y(f) \operatorname{deg}(Y) = \sum_{Y} v_Y(f) \operatorname{deg}(f_Y)$$

Sei $f = \frac{g}{h}$ mit homogenen g, h vom selben Grad d. Sei $g = g_1^{n_1} \cdots g_r^{n_r}$ eine Zerlegung in irreduzible Elemente g_i vom Grad d_i . Dann sind $Y_i = \text{div}(g_i)$ nach Satz 6.12 (ii) Primdivisoren. Es gilt:

$$\deg \operatorname{div}(g) = \sum_{i} n_i \operatorname{deg}(g_i) = \sum_{i} n_i d_i = d$$

Analog ist $\deg \operatorname{div}(h) = d$. Somit ist $\deg \operatorname{div}(f) = \deg \operatorname{div}(g) - \deg \operatorname{div}(h) = 0$.

Satz 6.15. Sei $X = \mathbf{P}_k^n$. Dann gilt:

- (i) Ist D ein Divisor auf X, so ist $D \sim \deg(D) \cdot V_+(T_0)$
- (ii) $\deg: \operatorname{Cl}(X) \to \mathbb{Z}$ ist ein Isomorphismus.

Beweis.

(i) Sei $D = \sum_Y n_Y Y$ ein Divisor mit Primdivisoren Y. Nach Satz 6.12 (ii) ist $Y = V_+(f_Y)$ mit irreduziblen, homogenen Polynomen f_Y vom Grad r_Y . Wir schreiben $f_Y = T_0^{r_Y} g_Y$, wobei g_Y ein Polynom in $\frac{T_1}{T_0}, \ldots, \frac{T_n}{T_0}$ ist. Die g_Y sind rationale Funktionen auf \mathbf{P}_k^n und es gilt:

$$\operatorname{div}(g_Y) = V_+(f_Y) - r_Y V_+(T_0) \implies V_+(f_Y) \sim r_Y V_+(T_0)$$

Also gilt $D = \sum_{Y} n_{Y} V_{+}(f_{Y}) \sim (\sum n_{Y} r_{Y}) V_{+}(T_{0}) = \deg(D) \cdot V_{+}(T_{0}).$

(ii) folgt aus (i) und wegen $\deg V_+(T_0) = 1$.

Satz 6.16. Sei X ein Schema mit (\star) , $Z \subsetneq X$ eine abgeschlossene Teilmenge und $U = X \setminus Z$. Dann gilt:

- (i) Es gibt einen surjektiven Homomorphismus $Cl(X) \to Cl(U)$, der durch $\sum n_i Y_i \mapsto \sum n_i (Y_i \cap U)$ gegeben ist, wobei wir die leeren $Y_i \cap U$ ignorieren.
- (ii) Ist $\operatorname{codim}(Z, X) \geq 2$, dann ist die obige Abbildung ein Isomorphismus.
- (iii) Ist Z irreduzibel und $\operatorname{codim}(Z, X) = 1$, so gibt es eine exakte Folge:

$$\mathbb{Z} \to \mathrm{Cl}(X) \to \mathrm{Cl}(U) \to 0$$

wobei die erste Abbildung durch $1 \mapsto Z$ gegeben ist.

2.6. DIVISOREN 73

Beweis.

(i) Ist Y ein Primdivisor auf X, so ist $Y \cap U$ leer oder ein Primdivisor auf U. Sei $f \in K^{\times}$ mit $\operatorname{div}(f) = \sum n_i Y_i$. Fassen wir f als rationale Funktion auf U auf, so erhalten wir $\operatorname{div}(f|_U) = \sum n_i (Y_i \cap U)$. Somit ist die Abbildung $\operatorname{Cl}(X) \to \operatorname{Cl}(U)$ wohldefiniert.

Die Surjektivität sieht man wie folgt: Sei Y ein Primdivisor auf U und \overline{Y} der Abschluss von Y in X. Dann ist \overline{Y} ein Primdivisor auf X mit $\overline{Y} \cap U = Y$.

- (ii) Div(X) bzw. Cl(X) hängen nur von Teilmengen der Kodimension 1 ab.
- (iii) Es ist $\ker(\operatorname{Cl}(X) \to \operatorname{Cl}(U)) = \{[D] \in \operatorname{Cl}(X) \mid \operatorname{supp}(D) \subset Z\} = \langle [Z] \rangle$, da Z irreduzibel ist.

Beispiel 6.17. Sei Y eine irreduzible Kurve vom Grad d in \mathbf{P}_k^2 . Wir haben ein kommutatives Diagramm:

$$\mathbb{Z} \longrightarrow \operatorname{Cl}(\mathbf{P}_k^2) \longrightarrow \operatorname{Cl}(\mathbf{P}_k^2 \setminus Y) \longrightarrow 0$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$d\mathbb{Z} \hookrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}/d\mathbb{Z} \longrightarrow 0$$

Definition 6.18. Sei k ein algebraisch abgeschlossener Körper. Eine Kurve über k ist ein integres, separiertes Schema X von endlichem Typ über k der Dimension 1.

- X heißt vollständig, wenn $X \to k$ eigentlich ist.
- X heißt nicht-singulär, falls alle lokalen Ringe von X regulär sind.

Satz 6.19. Sei X eine vollständige, nicht-singuläre Kurve über k und Y eine beliebige Kurve über k mit einem Morphismus $f: X \to Y$. Dann gilt:

$$f(X) = Pt$$
 oder $f(X) = Y$

Im zweiten Fall gilt:

- (i) Die Funktionenkörpererweiterung K(X)/K(Y) ist endlich.
- (ii) f ist endlich.
- (iii) Y ist vollständig.

Lemma 6.20. Sei $f: X \to Y$ surjektiv, $g: Y \to Z$ separiert und von endlichem Typ, und $g \circ f: X \to Z$ eigentlich. Dann ist g eigentlich.

Beweis von 6.19. Da X eigentlich über k ist, ist $f(X) \subset Y$ ein abgeschlossenes Unterschema. Da X irreduzibel ist, ist f(X) auch irreduzibel. Nun ist $\dim(Y) = 1$, folgt entweder $f(X) = \operatorname{Pt}$ oder f(X) = Y. Betrachte das folgende kommutative Diagramm:

Es ist $f(X) \hookrightarrow Y$ eine abgeschlossene Immersion, also separiert nach Satz 4.17 (i). Somit ist auch f(X)/k separiert. Nach Lemma 6.20 ist f(X)/k eigentlich.

Sei nun f(X) = Y, also ist Y vollständig. Sei $Y = \overline{\{\eta\}}$ und $X = \overline{\{\xi\}}$. Da $f: X \to Y$ dominant ist, folgt $f(\xi) = \eta$ und wir erhalten eine Inklusion $K(Y) = \mathcal{O}_{Y,\eta} \to \mathcal{O}_{X,\xi} = K(X)$. Da beide Körper endlich erzeugt über k vom Transzendenzgrad dim(X) = 1 sind, ist K(X)/K(Y) endlich.

Es bleibt zu zeigen, dass f endlich ist. Sei $V = \operatorname{Spec}(B) \subset_{o} Y$ affin. Dann ist $B = \mathcal{O}_{Y}(V) \subset K(Y) \subset K(X)$. Es ist zu zeigen, dass $f^{-1}(V) = \operatorname{Spec}(A)$ affin ist, wobei A ein endlich erzeugter B-Modul ist. In der Tat folgt aus der Normalität von X stets $f^{-1}(V) = \operatorname{Spec}(A)$, wobei A der Ganzabschluss von B in K(X) ist. Alles folgt nun aus dem folgenden Theorem 6.21.

Theorem 6.21. Sei B ein Integritätsring und eine endlich erzeugte Algebra über einem Körper k. Setze $K = \operatorname{Quot}(B)$ und sei L/K eine endliche Erweiterung. Dann ist der Ganzabschluss A von B in L ein endlich erzeugter B-Modul.

Beweis. Siehe z.B. Zariski-Samuel: Commutative Algebra I, Chapter V, Theorem 9. \square

Beweis von 6.20. Es reicht zu zeigen, dass g universell abgeschlossen ist. Sei $h: Y' \to Y$ ein beliebiger Morphismus und betrachte den Basiswechsel:

$$\begin{array}{ccc} X \times_Y Y' & \xrightarrow{f'} & Y' \\ \downarrow^{h'} & & \downarrow^{h} \\ X & \xrightarrow{f} & Y \end{array}$$

Wir zeigen nun, dass f' surjektiv ist. Sei $y' \in Y'$ und sei $x \in X$ mit f(x) = h(y') =: y. Behauptung: Es gibt ein $z \in X \times_Y Y'$ mit h'(z) = x und f'(z) = y'. Seien $i_x : \{x\} \hookrightarrow X$, $i_{y'} : \{y'\} \hookrightarrow Y'$ die Inklusionen. Diese liefern einen Y-Morphismus:

$$\delta : \operatorname{Spec} \kappa(x) \times_{\kappa(y)} \operatorname{Spec} \kappa(y') = \operatorname{Spec}(\kappa(x) \otimes_{\kappa(y)} \kappa(y')) \hookrightarrow X \times_Y Y'$$

Da $\kappa(x) \otimes_{\kappa(y)} \kappa(y') \neq 0$, gilt für jedes $z \in \text{im}(\delta)$ stets h'(z) = x und f'(z) = y'. Dies zeigt die Surjektivität von f'.

2.6. DIVISOREN 75

Also ist die Surjektivität von f stabil unter Basiswechsel. Da alle anderen Eigenschaften in den Voraussetzungen ebenfalls stabil unter Basiswechsel sind (siehe 4.17 (iii) und 4.22), reicht es zu zeigen, dass g abgeschlossen ist. Sei $Y' \subset Y$ eine abgeschlossene Teilmengen. Dann ist wegen der Surjektivität von f:

$$g(Y') = (g \circ f) \circ f^{-1}(Y')$$

g(Y') ist abgeschlossen, da $g \circ f$ abgeschlossen ist.

Definition 6.22. Sei $f: X \to Y$ ein dominanter Morphismus von Kurven. Dann heißt $\deg(f) = [K(X): K(Y)]$ der *Grad* von f. Sei X eine nicht-singuläre Kurve, erfüllt also insbesondere (\star) . Ein Primdivisor von X ist genau ein abgeschlossener Punkt. Ein Divisor D ist somit von der folgenden Form:

$$D = \sum_{i} n_i P_i, \quad n_i \in \mathbb{Z}, \ P_i \text{ abgeschlossene Punkte}$$

Der *Grad* von *D* ist definiert als $deg(D) = \sum n_i$.

Definition 6.23. Sei $f: X \to Y$ ein endlicher Morphismus nicht-singulärer Kurven. Wir definieren ein Homomorphismus $f^* : \text{Div}(Y) \to \text{Div}(X)$ wie folgt:

Sei $Q \in Y$ ein abgeschlossener Punkt und wähle ein $t \in \mathcal{O}_{Y,Q} \subset K(Y)$ mit $v_Q(t) = 1$, wobei v_Q die diskrete Bewertung zu $\mathcal{O}_{Y,Q}$ ist. t heißt lokaler Parameter an der Stelle Q. Wir setzen:

$$f^*(Q) = \sum_{P \in f^{-1}(Q)} v_P(t)P$$

Da f endlich ist, ist obige Summe nach Lemma 6.24 endlich.

Lemma 6.24.

- (i) Die Eigenschaft endlich zu sein ist stabil unter Basiswechsel.
- (ii) Ist $f: X \to Y$ ein endlicher Morphismus und $y \in Y$, so ist $f^{-1}(y)$ endlich.

Beweis.

(i) Sei $f:X\to Y$ ein endlicher Morphismus und $g:Z\to Y$ beliebig. Betrachte den folgenden Basiswechsel:

$$\begin{array}{ccc} X \times_Y Z & \xrightarrow{f_Z} & Z \\ \downarrow & & \downarrow^g \\ X & \xrightarrow{f} & Y \end{array}$$

Sei $V = \operatorname{Spec}(B) \subset_{o} Y$ affin. Dann existiert ein affines $W = \operatorname{Spec}(C) \subset_{o} Z$ mit $g(W) \subset V$. Es ist $f^{-1}(V) = \operatorname{Spec}(A)$ affin, wobei A ein endlich erzeugter B-Modul ist. Es gilt:

$$f_Z^{-1}(W) = (X \times_Y Z) \times_Z W \cong X \times_Y W$$

$$\cong (X \times_Y V) \times_V W$$

$$\cong f^{-1}(V) \times_V W = \operatorname{Spec}(A \otimes_B C)$$

und $A \otimes_B C$ ist ein endlich erzeugter C-Modul.

(ii) Sei $f^{-1}(y) \neq \emptyset$. Betrachte den Morphismus:

$$f^{-1}(y) = X \times_Y \operatorname{Spec} \kappa(y) \to \operatorname{Spec} \kappa(y)$$

Dieser ist endlich nach (i). Also ist $f^{-1}(y) = \operatorname{Spec}(A)$ affin, wobei A ein endlich dimensionierter $\kappa(y)$ -Vektorraum ist. Somit ist dim $f^{-1}(y) = \dim \kappa(y) = 0$, als topologischer Raum ist $f^{-1}(y)$ also eine endliche Menge an Punkten.

Bemerkung.

- (i) In Definition 6.23 ist f^*Q unabhängig von der Wahl des lokalen Parameters, da ein lokaler Parameter eindeutig bis auf eine Einheit in $\mathcal{O}_{Y,Q}$ bestimmt ist.
- (ii) f^* respektiert lineare Äquivalenz, d.h. für $h \in K(Y)^{\times}$, $\operatorname{div}(h) = \sum_{Q} v_{Q}(h)Q$ gilt:

$$f^*(\operatorname{div}(h)) = \sum_{Q} v_Q(h) \sum_{P \in f^{-1}(Q)} v_P(t)P = \sum_{P} v_P(h)P = \operatorname{div}(h)$$

da $v_P(h) = v_P(t) \cdot v_Q(h)$ ist. Somit induziert f^* eine Abbildung $\mathrm{Cl}(Y) \to \mathrm{Cl}(X)$. \square

Satz 6.25. Sei $f: X \to Y$ ein endlicher Morphismus nicht-singulärer Kurven. Dann:

$$\deg(f^*D) = \deg(f) \cdot \deg(D)$$

Korollar 6.26. Hauptdivisoren auf einer vollständigen, nicht-singulären Kurve haben Grad 0. Wir erhalten eine surjektive Gradabbildung:

$$\deg: \mathrm{Cl}(X) \to \mathbb{Z}$$

Lemma 6.27. Sei X eine normale Kurve über $k, U \subset X$ offen, $\varphi : X \to \mathbf{P}^n$ eine rationale Abbildung. Dann lässt sich φ zu einem einem Morphismus auf X fortsetzen.

2.6. DIVISOREN 77

Definition 6.28. Sei (X, \mathcal{O}) ein Schema.

(i) Sei $U = \operatorname{Spec}(A) \subset_{o} X$ affin und S die Menge aller Nicht-Nullteiler in A. Dann heißt $K(U) = A_{S}$ totaler Quotientenring von A.

- (ii) Sei \mathcal{K} die Ringgarbe, die zur Prägarbe $U \mapsto \varprojlim_{V \subset U \text{ affin}} K(V)$ assoziiert ist. \mathcal{K} heißt Garbe der totalen Quotientenringe von \mathcal{O} .
- (iii) $\mathcal{K}^{\times}: U \mapsto \mathcal{K}(U)^{\times}$ sei die Garbe von multiplikativen Gruppe der invertierbaren Elemente in \mathcal{K} . \mathcal{O}^{\times} sei die Garbe der invertierbaren Elemente in \mathcal{O} .

Definition 6.29. Sei (X, \mathcal{O}) ein Schema. Ein Element aus $\Gamma(X, \mathcal{K}^{\times}/\mathcal{O}^{\times})$ heißt *Cartier-Divisor*. Ein Cartier-Divisor kann also durch ein System $(U_i, f_i)_i$ beschrieben werden, wobei $(U_i)_i$ eine offene Überdeckung von X ist, und $f_i \in \Gamma(U_i, \mathcal{K}^{\times})$, so dass für alle i, j stets $\frac{f_i}{f_i} \in \Gamma(U_i \cap U_j, \mathcal{O}^{\times})$ gilt.

Ein Cartier-Divisor heißt prinzipal oder Haupt divisor, wenn er im Bild der kanonischen Abbildung $\Gamma(X, \mathcal{K}^{\times}) \to \Gamma(X, \mathcal{K}^{\times}/\mathcal{O}^{\times})$ ist. Zwei Cartier-Divisoren heißen $linear \ddot{a}quivalent$, falls ihre Differenz prinzipal ist.

Satz 6.30. Sei (X, \mathcal{O}) ein integres, separiertes, noethersches Schema. Ferner sei X lokal faktoriell, d.h. alle lokalen Ringe sind faktoriell. Dann ist die Gruppe Div(X) von Weil-Divisoren isomorph zur Gruppe der Cartier-Divisoren $\Gamma(X, \mathcal{K}^{\times}/\mathcal{O}^{\times})$. Prinzipale Weil-Divisoren entsprechen prinzipale Cartier-Divisoren.

Beweis. X ist normal, da faktorielle Ringe insbesondere ganzabgeschlossen sind. Nach Theorem 6.4 erfüllt X (\star). Also können wir von Weil-Divisoren sprechen. Da X integer ist, ist $K(U) = \operatorname{Quot}(A) = K$ der Funktionenkörper von X für alle $U = \operatorname{Spec}(A) \subset_{o} X$. Somit ist K konstante Garbe.

Sei $(U_i, f_i)_i$ ein Cartier-Divisor mit einer offenen Überdeckung $(U_i)_i$ von X und $f_i \in \Gamma(U_i, \mathcal{K}^{\times}) = K^{\times}$. Wir ordnen diesen Cartier-Divisor den folgenden Weil-Divisor zu:

$$D = \sum_{Y} v_Y(f_{i_Y})Y$$

wobei Y die Primdivisoren von X durchläuft und i_Y ein Index mit $U_i \cap Y \neq \emptyset$. Die Summe ist endlich, da X noethersch ist. D ist unabhängig von Wahl der Indizes i_Y :

Seien i, j mit $U_i \cap Y \neq \emptyset$ und $U_j \cap Y \neq \emptyset$. Dann ist $\frac{f_i}{f_j}$ auf $U_i \cap U_j$ invertierbar, d.h. $\frac{f_i}{f_j} \in \Gamma(U_i \cap U_j, \mathcal{O}^{\times})$. Es folgt $v_Y(\frac{f_i}{f_j}) = 0$, also $v_Y(f_i) = v_Y(f_j)$.

Sei nun umgekehrt $D = \sum_{Y} n_{Y} Y$ ein Weil-Divisor auf X und $x \in X$. Dann induziert D ein Weil-Divisor D_{x} auf $\operatorname{Spec}(\mathcal{O}_{x})$, nämlich:

$$D_x = \sum_{Y} n_Y(Y \cap \operatorname{Spec}(\mathcal{O}_x))$$

Da \mathcal{O}_x als faktoriell vorausgesetzt wird, ist nach Satz 6.10 Cl(Spec \mathcal{O}_x) = 0 und D_x ein Hauptdivisor, d.h. $D_x = (f_x)$ für ein $f_x \in K^{\times}$. Fassen wir (f_x) als Weil-Divisor in X auf, so sehen wir, dass sich (f_x) und D nur bei Primdivisoren, die nicht durch x gehen, unterscheiden. Davon gibt es nur endlich viele, deren Koeffizienten nicht verschwinden. Daher existiert eine offene Umgebung U_x von x mit $(f_x)|_{U_x} = D|_{U_x}$. Das System $(U_x, f_x)_{x \in X}$ liefert einen Cartier-Divisor.

Geben f, f' denselben Weil-Divisor auf $U \subset_{o} X$ offen, so ist $\frac{f}{f'} \in \Gamma(U, \mathcal{O}^{\times})$, da X normal ist. Daher ist die Konstruktion wohldefiniert. Die obigen Konstruktionen sind invers zueinander.

Satz 6.31. Seien \mathcal{L}, \mathcal{M} invertierbare Garben auf einem Schema X. Dann gilt:

- (i) $\mathcal{L} \otimes \mathcal{M}$ ist invertierbar.
- (ii) $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X)$ ist invertierbar und wird mit \mathcal{L}^{-1} bezeichnet.
- (iii) $\mathcal{L} \otimes \mathcal{L}^{-1} \cong \mathcal{O}_X$
- (iv) $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{L}, \mathcal{L}) = \mathcal{O}_X$

Definition 6.32.

(i) Wir setzen:

$$\mathcal{L}^{\otimes m} = \underbrace{\mathcal{L} \otimes \cdots \otimes \mathcal{L}}_{m\text{-mal}}, \qquad \mathcal{L}^{\otimes -m} = (\mathcal{L}^{-1})^{\otimes m}, \quad m \geq 0$$

Also gilt $\mathcal{L}^{\otimes n} \otimes \mathcal{L}^{\otimes m} = \mathcal{L}^{\otimes (n+m)}$ für alle $n, m \in \mathbb{Z}$.

(ii) Die Picard-Gruppe Pic(X) eines Schemas X ist die abelsche Gruppe von Isomorphie-klassen invertierbarer Garben auf X mit der Operation \otimes .

Definition 6.33. Sei D ein Cartier-Divisor auf X repräsentiert durch $(U_i, f_i)_i$. Dann ist die Untergarbe $\mathcal{L}(D)$ von \mathcal{K} definiert durch:

$$\mathcal{L}(D)|_{U_i} = \mathcal{O}_{U_i} f_i^{-1} \subset \mathcal{K}|_{U_i}$$

Diese ist wohldefiniert, denn auf $U_i \cap U_j$ haben wir $\mathcal{L}(D)|_{U_i \cap U_j} = \mathcal{O}_{U_i \cap U_j} f_i^{-1} = \mathcal{O}_{U_i \cap U_j} f_j^{-1}$, da $\frac{f_i}{f_i} \in \Gamma(U_i \cap U_j, \mathcal{O}^{\times})$. $\mathcal{L}(D)$ heißt die zum Divisor D assoziierte Garbe.

2.6. DIVISOREN 79

Satz 6.34. Sei X ein Schema.

(i) Für jeden Cartier-Divisor D ist $\mathcal{L}(D)$ eine invertierbare Garbe auf X. Die Abbildung $D \mapsto \mathcal{L}(D)$ induziert eine Bijektion:

 $\{\text{Cartier-Divisoren auf }X\} \to \{\text{Invertierbare Untergarben von }\mathcal{K}\}$

- (ii) $\mathcal{L}(D_1 D_2) \cong \mathcal{L}(D_1) \otimes \mathcal{L}(D_2)^{-1}$ für Cartier-Divisoren D_1, D_2
- (iii) $D_1 \sim D_2 \iff \mathcal{L}(D_1) \cong \mathcal{L}(D_2)$

Beweis.

- (i) Sei repräsentiert durch $(U_i, f_i)_i$ mit $f_i \in \Gamma(U_i, \mathcal{K}^{\times})$. Dann ist $\mathcal{O}_{U_i} \to \mathcal{L}(D)|_{U_i}$, $1 \mapsto f_i^{-1}$ ein Isomorphismus, also $\mathcal{L}(D)$ invertierbar. Sei umgekehrt $\varphi : \mathcal{L} \hookrightarrow \mathcal{K}$ eine invertierbare Untergarbe und $\{U_i\}$ eine Überdeckung von X mit $\tilde{\varphi} : \mathcal{O}_{U_i} \xrightarrow{\sim} \mathcal{L}|_{U_i} \hookrightarrow \mathcal{K}|_{U_i}$. Setze $f_i = \tilde{\varphi}(U_i)(1)^{-1}$. Dann definiert $(U_i, f_i)_i$ ein Cartier-Divisor D mit $\mathcal{L}(D) = \mathcal{L}$.
- (ii) Seien D_1, D_2 repräsentiert durch $(U_i, f_i)_i$ bzw. $(U_i, g_i)_i$. Dann wird $D_1 D_2$ repräsentiert durch $(U_i, f_i g_i^{-1})_i$. Also gilt:

$$\mathcal{L}(D_1 - D_2)|_{U_i} = \mathcal{O}_{U_i}(f_i^{-1}g_i) = \mathcal{L}(D_1)|_{U_i} \otimes \mathcal{L}(D_2)|_{U_i}^{-1} \subset \mathcal{K}|_{U_i}$$

Somit folgt $\mathcal{L}(D_1 - D_2) = \mathcal{L}(D_1) \otimes \mathcal{L}(D_2)^{-1}$.

(iii) Wegen (ii) reicht es zu zeigen, dass D genau dann ein Hauptdivisor ist, wenn $\mathcal{L}(D) \cong \mathcal{O}_X$. Sei D prinzipal, d.h. D = (f) für ein $f \in \Gamma(X, \mathcal{K}^{\times})$. Somit ist $\mathcal{L}(D) = \mathcal{O}_X f^{-1} \cong \mathcal{O}_X$. Sei umgekehrt $\varphi : \mathcal{O}_X \to \mathcal{L}(D)$ ein Isomorphismus. Setze f als das Bild von 1 der folgenden Komposition:

$$\Gamma(X, \mathcal{O}_X) \xrightarrow{\sim} \Gamma(X, \mathcal{L}(D)) \hookrightarrow \Gamma(X, \mathcal{K}^{\times})$$

Dann ist
$$\mathcal{L}(D) = \mathcal{L}((f^{-1}))$$
, also $D = (f^{-1})$.

Korollar 6.35. Sei X ein Schema. Dann induziert die Abbildung $D \mapsto \mathcal{L}(D)$ einen injektiven Gruppenhomomorphismus:

$$CaCl(X) \hookrightarrow Pic(X)$$

wobei $\operatorname{CaCl}(X)$ die Cartier-Divisorenklassengruppe bezeichnet. Im Allgemeinen ist diese Abbildung nicht surjektiv.

Satz 6.36. Sei X ein integres Schema. Dann ist die Abbildung $\operatorname{CaCl}(X) \to \operatorname{Pic}(X)$ ein Gruppenisomorphismus.

Beweis. Es genügt zu zeigen, dass jede invertierbare Garbe isomorph zu einer Untergarbe von \mathcal{K} ist. Da X integer ist, ist \mathcal{K} konstante Garbe mit $\mathcal{K}(U) = K$ der Funktionenkörper von X für alle U. Sei \mathcal{L} eine invertierbare Garbe auf X und betrachte $\mathcal{L} \otimes \mathcal{K}$. Sei $X = \bigcup_i U_i$ eine offene Überdeckung mit $\mathcal{L}|_{U_i} \cong \mathcal{O}_{U_i}$. Dann gilt:

$$(\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{K})|_{U_i} = \mathcal{L}|_{U_i} \otimes_{\mathcal{O}_{U_i}} \mathcal{K}|_{U_i} = \mathcal{K}|_{U_i}$$

Da X irreduzibel ist, folgt $\mathcal{L} \otimes \mathcal{K} \cong \mathcal{K}$. Die kanonische Abbildung $\mathcal{L} \to \mathcal{L} \otimes \mathcal{K} \cong \mathcal{K}$ zeigt, dass \mathcal{L} isomorph zu einer Untergarbe von \mathcal{K} ist.

Korollar 6.37. Sei X ein noethersches, integres, separiertes und lokal faktorielles Schema. Dann existiert ein Isomorphismus:

$$Cl(X) \cong Pic(X)$$

Beweis. Folgt aus Satz 6.30 und Satz 6.36.

Korollar 6.38. Sei k ein Körper und $X = \mathbf{P}_k^n$. Dann ist jede invertierbare Garbe auf X isomorph zu einem $\mathcal{O}(\ell)$ für ein $\ell \in \mathbb{Z}$.

Beweis. Nach Korollar 6.37 und Satz 6.15 ist $\operatorname{Pic}(X) \cong \operatorname{Cl}(X) \cong \mathbb{Z}$. Ferner wird $\operatorname{Cl}(X)$ von der Hyperebene $D = V_+(T_0)$ erzeugt. Dann gilt $\mathcal{L}(D)T_0 = \mathcal{O}(1)$, da $\mathcal{O}(1)|_{D_+(T_i)} = \mathcal{O}_{D_+(T_i)}T_i$ und $\mathcal{L}(D)|_{D_+(T_i)} = \mathcal{O}_{D_+(T_i)}\frac{T_i}{T_0}$.

2.7 Projektive Morphismen

Ample Garben

Satz 7.1. Sei A ein Ring, X ein Schema über A und $\mathbf{P}_A^n = \operatorname{Proj} A[x_0, \dots, x_n]$.

- (i) Ist $\varphi: X \to \mathbf{P}_A^n$ ein A-Morphismus. Dann ist $\varphi^*(\mathcal{O}(1))$ eine invertierbare Garbe auf X, die von globalen Schnitten $s_i = \varphi^*(x_i), i = 0, \ldots, n$ erzeugt wird, wobei $x_i \in \Gamma(\mathbf{P}_A^n, \mathcal{O}(1))$.
- (ii) Sei \mathcal{L} eine invertierbare Garbe auf X und $s_0, \ldots, s_n \in \Gamma(X, \mathcal{L})$ globale Schnitte, die \mathcal{L} erzeugen. Dann existiert ein eindeutig bestimmter A-Morphismus $\varphi : X \to \mathbf{P}_A^n$ derart, dass $\mathcal{L} \cong \varphi^*(\mathcal{O}(1))$ mit $s_i = \varphi^*(x_i)$.

Beweis.

(i) Nach Satz 5.25 erzeugen die globalen Schnitte x_0, \ldots, x_n die Garbe $\mathcal{O}(1)$. Ferner ist $\varphi^*(\mathcal{O}(1))$ invertierbar und werden von $\varphi^*(x_i) = s_i$ erzeugt.

- (ii) Setze $X_i = \{P \in X \mid (s_i)_P \notin \mathfrak{m}_P \mathcal{L}_P\} \subset_{o} X$. Da die s_i die Garbe \mathcal{L} erzeugen, gilt $X = \bigcup_i X_i$. Sei $U_i = D_+(x_i) \cong \operatorname{Spec} A[Y_0, \dots, \widehat{Y}_i, \dots, Y_n], \ Y_j = \frac{x_j}{x_i}$. Betrachte den Ringhomomorphismus $\phi : A[Y_0, \dots, \widehat{Y}_i, \dots, Y_n] \to \Gamma(X_i, \mathcal{O}_{X_i}), \ Y_j \mapsto \frac{s_j}{s_i}$. Dieser ist wohldefiniert, da $(s_i)_P \notin \mathfrak{m}_P \mathcal{L}_P \cong \mathfrak{m}_P \mathcal{O}_{X,P}$ für alle $P \in X_i$ gilt und daher $\frac{s_j}{s_i} \in \Gamma(X_i, \mathcal{O}_{X_i})$. Sei $X_i \to U_i$ der zu ϕ gehörige A-Morphismus von A-Schemata. Verkleben ergibt ein A-Morphismus $\varphi : X \to \mathbf{P}_A^n$. Nach Konstruktion ist φ eindeutig bestimmt durch $\mathcal{L} \cong \varphi^*(\mathcal{O}(1))$ und $s_i = \varphi^*(x_i)$.
- Satz 7.2. Sei $\varphi: X \to \mathbf{P}_A^n$ ein A-Morphismus, der zu einer invertierbaren Garbe \mathcal{L} auf X und globale Schnitte $s_0, \ldots, s_n \in \Gamma(X, \mathcal{L})$ gehört, die \mathcal{L} erzeugen. Dann ist φ genau dann eine abgeschlossene Immersion, wenn die folgenden Bedingungen gelten:
 - (i) Alle offenen Teilmengen X_i im Beweis von Satz 7.1 (ii) sind affin.
 - (ii) Für alle i ist die Abbildung $A[Y_0, \ldots, \widehat{Y}_i, \ldots, Y_n] \to \Gamma(X_i, \mathcal{O}_{X_i}), \ Y_j \mapsto \frac{s_j}{s_i}$ surjektiv.

Beweis. Sei φ eine abgeschlossene Immersion. Dann ist $X_i = U_i \cap X$ ein abgeschlossenes Unterschema von $U_i = D_+(x_i) \subset \mathbf{P}_A^n = \operatorname{Proj} A[x_0, \dots, x_n]$. Da U_i affin ist, ist nach Korollar 5.18 auch X_i affin und wir erhalten einen surjektiven Ringhomomorphismus $A[Y_0, \dots, \widehat{Y}_i, \dots, Y_n] \to \Gamma(X_i, \mathcal{O}_{X_i})$.

Sei nun umgekehrt (i) und (ii) erfüllt. Dann ist X_i nach (ii) ein abgeschlossenes Unterschema von U_i . Da $X = \bigcup_i X_i$ und $X_i = \varphi^{-1}(U_i)$, ist X ein abgeschlossenes Unterschema von \mathbf{P}_A^n .

Definition 7.3. Eine invertierbare Garbe \mathcal{L} auf einem noetherschen Schema X heißt ampel, falls für jede kohärente Garbe \mathcal{F} auf X ein $n_0 > 0$ existiert, so dass für alle $n \geq n_0$ der \mathcal{O}_X -Modul $\mathcal{F} \otimes \mathcal{L}^n$ von globalen Schnitten erzeugt wird.

Beispiel 7.4. Ist X affin, so ist jede invertierbare Garbe ampel: Jede kohärente Garbe wird von globalen Schnitten endlich erzeugt, vgl. Korollar 5.10.

Bemerkung 7.5. Serres Theorem 5.37 besagt, dass jede sehr ample Garbe \mathcal{L} auf einem Schema X über einem noetherschen Ring ampel ist. Die Umkehrung ist im Allgemeinen falsch.

Satz 7.6. Sei \mathcal{L} eine invertierbare Garbe auf einem noetherschen Schema X. Dann sind folgende Aussagen äquivalent:

- (i) \mathcal{L} ist ampel.
- (ii) \mathcal{L}^m ist ampel für alle m > 0.
- (iii) \mathcal{L}^m ist ampel für ein m > 0.

Beweis. (i) \Longrightarrow (ii) \Longrightarrow (iii) ist klar. Sei nun \mathcal{L}^m ampel für ein m > 0 und \mathcal{F} eine kohärente Garbe auf X. Nach Definition existiert ein $n_0 > 0$, so dass für alle $n \geq n_0$ die Garbe $\mathcal{F} \otimes (\mathcal{L}^m)^n$ von globalen Schnitten erzeugt wird. Betrachte die Garben $\mathcal{F} \otimes \mathcal{L}^k$ für $k = 1, \ldots, m-1$. Diese sind kohärent, d.h. es gibt für jedes k ein $n_k > 0$, so dass für alle $n \geq n_k$ die Garbe $\mathcal{F} \otimes \mathcal{L}^k \otimes (\mathcal{L}^m)^n$ von globalen Schnitten erzeugt wird. Setzen wir nun $N = m \cdot \max\{n_k \mid k = 1, \ldots, m-1\}$, so wird $\mathcal{F} \otimes \mathcal{L}^n$ von globalen Schnitten erzeugt für alle $n \geq N$. Somit ist \mathcal{L} ampel.

Satz 7.7. Sei X ein Schema von endlichem Typ über einem noetherschen Ring A und \mathcal{L} eine invertierbare Garbe auf X. Dann ist \mathcal{L} genau dann ampel, wenn \mathcal{L}^m sehr ampel bzgl. Spec(A) für ein m > 0 ist.

Lemma 7.8. Sei X ein noethersches Schema, $U \subset_{o} X$ und \mathcal{F} eine kohärente Garbe auf U. Dann existiert eine kohärente Garbe \mathcal{F}' auf X mit $\mathcal{F}'|_{U} = \mathcal{F}$.

Beweis. Sei o.B.d.A. X affin. Sei $j: U \hookrightarrow X$ die Immersion. Dann ist $\mathcal{F}' = j_*\mathcal{F}$ nach Satz 5.13 (iii) quasikohärent. Ferner sind quasikohärente Garben auf einem noetherschen Schema Vereinigung seiner kohärenten Untergarben. Daher gilt:

$$j_*\mathcal{F} = \mathcal{F}' = \bigcup_{\lambda} \mathcal{F}'_{\lambda}$$

mit kohärenten Untergarben \mathcal{F}'_{λ} . Nach Satz 5.13 (ii) sind $j^*\mathcal{F}'_{\lambda}$ kohärent. Somit ist $\mathcal{F} = \bigcup_{\lambda} j^*\mathcal{F}'_{\lambda}$, wobei $j^*\mathcal{F}'_{\lambda}$ die kohärenten Untergarben von \mathcal{F} durchläuft. Da \mathcal{F} kohärent ist, gilt $\mathcal{F} = j^*\mathcal{F}'_{\lambda}$ für ein λ . Somit ist $\mathcal{F}' = \mathcal{F}'_{\lambda}$ kohärent.

Beweis von Lemma 7.7. Sei zunächst \mathcal{L}^m sehr ampel für ein m > 0. Es existiert also eine Immersion $i: X \to \mathbf{P}_A^n$ mit $\mathcal{L}^m \cong i^*(\mathcal{O}(1))$. Sei \overline{X} der Abschluss von X in \mathbf{P}_A^n . Dann ist \overline{X} ein projektives Schema über $\operatorname{Spec}(A)$. Nach 7.5 ist $\mathcal{O}_{\overline{X}}(1)$ ampel auf \overline{X} . Sei \mathcal{F} eine kohärente Garbe auf X und $\overline{\mathcal{F}}$ die kohärente Garbe in Lemma 7.8 auf \overline{X} mit $\overline{F}|_X = \mathcal{F}$. Wird $\overline{\mathcal{F}} \otimes \mathcal{O}_{\overline{X}}(\ell)$ von globalen Schnitten erzeugt, so ist dies auch für $\mathcal{F} \otimes \mathcal{O}_X(\ell)$ der Fall. Daher ist \mathcal{L}^m ampel auf X und nach Satz 7.6 auch \mathcal{L} . Die andere Richtung ist schwierig.

Projektive Vektorbündel

Definition. Sei X ein Schema. Ein quasikohärenter \mathcal{O}_X -Modul \mathcal{S} habe die Eigenschaft (†), wenn X noethersch ist und wenn er eine Struktur einer graduierten \mathcal{O}_X -Algebra trägt, d.h. $\mathcal{S} = \bigoplus_{d>0} \mathcal{S}_d$ mit homogenen Teilen \mathcal{S}_d , so dass:

- (i) $S_0 = \mathcal{O}_X$
- (ii) S_1 ist ein kohärenter \mathcal{O}_X -Modul.
- (iii) S wird lokal von S_1 als \mathcal{O}_X -Modul erzeugt.

Definition 7.9. Sei X ein Schema und S ein graduierter \mathcal{O}_X -Modul mit (†). Sei $U = \operatorname{Spec}(A) \subset_{\operatorname{o}} X$, $S(U) = \Gamma(U, S|_U)$ die graduierte A-Algebra und $\pi_U : \operatorname{Proj} S(U) \to U$ der kanonische Morphismus. Für $U, V \subset_{\operatorname{o}} X$ affin gilt $\pi_U^{-1}(U \cap V) \cong \pi_V^{-1}(U \cap V)$. Verkleben von π_U liefert ein Schema $\operatorname{Proj}(S)$ und ein Morphismus $\pi : \operatorname{Proj}(S) \to X$, so dass für alle affinen $U \subset_{\operatorname{o}} X$ stets $\pi^{-1}(U) \cong \operatorname{Proj} S(U)$ gilt. Die invertierbaren Garben $\mathcal{O}(1)$ auf $\operatorname{Proj}(S)$ verkleben.

Beispiel 7.10. Sei $\mathcal{O}_X[T_0,\ldots,T_n]=\mathcal{S}$. Dann ist $\operatorname{\mathbf{Proj}}(\mathcal{S})=\mathbf{P}_X^n=\mathbf{P}_Z^n\times X$ mit der getwisteten Garbe $\mathcal{O}(1)$ wie in Definition 5.30.

Lemma 7.11. Sei \mathcal{S} eine Garbe graduierter Algebren mit (†) auf X. Sei \mathcal{L} eine invertierbare Garbe auf X und \mathcal{S}' die folgende Garbe graduierter Algebren:

$$\mathcal{S}'_d = \mathcal{S}_d \otimes \mathcal{L}^d, \quad d \ge 0$$

Dann erfüllt S' ebenfalls (†) und es gibt einen natürlichen Isomorphismus:

$$P' = \mathbf{Proj}(\mathcal{S}') \xrightarrow{\frac{\varphi}{\cong}} P = \mathbf{Proj}(\mathcal{S})$$

Es gilt $\mathcal{O}_{P'}(1) \cong \varphi^* \mathcal{O}_P(1) \otimes \pi'^* \mathcal{L}$. \mathcal{S}' wird auch mit $\mathcal{S} * \mathcal{L}$ bezeichnet.

Satz 7.12. Sei X und S mit (\dagger) . Sei $P = \mathbf{Proj}(S)$ mit $\pi : P \to X$. Dann gilt:

- (i) π ist eigentlicher Morphismus.
- (ii) Besitzt X eine ample Garbe \mathcal{L} , so ist π projektiv und $\mathcal{O}_P(1) \otimes \pi^* \mathcal{L}^n$ ist eine sehr ample invertierbare Garbe von P über X.

Definition 7.13.

(i) Sei A ein Ring und M ein A-Modul. Setze:

$$T^0(M) = A, \quad T^n(M) = M^{\otimes n}, \ n \ge 1$$

Dann ist $T(M) = \bigoplus_{n \geq 0} T^n(M)$ eine A-Algebra mit \otimes als Multiplikation, die sogenannte Tensor-Algebra von M.

(ii) Die symmetrische (Tensor-)Algebra von M ist definiert als der Quotient von T(M) nach dem Ideal, das von den Elementen $x \otimes y - y \otimes x$, $x, y \in M$ erzeugt wird. $S(M) = \bigoplus_{n \geq 0} S^n(M)$ ist dann eine kommutative, graduierte A-Algebra. $S^n(M)$ heißt n-tes symmetrisches Produkt von M.

(iii) Sei X ein Schema und \mathcal{F} ein \mathcal{O}_X -Modul. Dann wird die Tensor-Algebra $T(\mathcal{F})$ bzw. die symmetrische Algebra $S(\mathcal{F})$ von \mathcal{F} als assoziierte Garbe zur Prägarbe $U \mapsto T(\mathcal{F}(U))$ bzw. $U \mapsto S(\mathcal{F}(U))$ definiert. $T(\mathcal{F})$ und $S(\mathcal{F})$ sind \mathcal{O}_X -Algebra.

Beispiel. Sei M ein freier A-Modul vom Rang r. Dann gilt $S(M) \cong A[X_1, \dots, X_r]$.

Definition 7.14. Sei X ein noethersches Schema und \mathcal{E} eine lokal freie, kohärente Garbe auf X. Sei $\mathcal{S} = S(\mathcal{E})$ die symmetrische Algebra von \mathcal{E} und $\mathbf{P}(\mathcal{E}) = \mathbf{Proj}(\mathcal{S})$. Dann ist \mathcal{S} eine Garbe von graduierten \mathcal{O}_X -Algebren, die (†) erfüllt. $\pi : \mathbf{P}(\mathcal{E}) \to X$ heißt projektives Vektorbündel über X.

Bemerkung. Ist \mathcal{E} frei vom Rang n+1 über $U \subset_{o} X$, so ist $\pi^{-1}(U) \cong \mathbf{P}_{U}^{n}$.

Satz 7.15. Sei $\pi: \mathbf{P}(\mathcal{E}) \to X$ ein projektives Vektorbündel über X. Dann gilt mit $\mathcal{S} = S(\mathcal{E})$:

(i) Ist Rang von \mathcal{E} größer gleich 2, so gibt es einen kanonischen Isomorphismus von graduierten \mathcal{O}_X -Algebren:

$$\mathcal{S} \cong \bigoplus_{\ell \in \mathbb{Z}} \pi_* \mathcal{O}(\ell)$$

Insbesondere folgt $\pi_*(\mathcal{O}(\ell)) = 0$ für $\ell < 0$ und $\pi_*(\mathcal{O}) = \mathcal{O}_X$, $\pi_*(\mathcal{O}(1)) = \mathcal{E}$.

(ii) Es gibt einen natürliche surjektiven Morphismus:

$$\pi^* \mathcal{E} \to \mathcal{O}(1)$$

Satz 7.16. (Universaleigenschaft des projektiven Vektorbündels) Sei $\pi: \mathbf{P}(\mathcal{E}) \to X$ ein projektives Vektorbündel von X und $g: Y \to X$ ein Morphismus. Dann gibt es genau dann einen Morphismus f mit kommutativen Diagramm

$$Y \xrightarrow{f} \mathbf{P}(\mathcal{E})$$

$$g \downarrow \qquad \qquad \pi$$

$$X$$

wenn es eine invertierbare Garbe \mathcal{L} auf Y zusammen mit einem surjektiven Garbenmorphismus $g^*\mathcal{E} \to \mathcal{L}$ gibt.

Aufblasung

Definition 7.17. Sei X ein noethersches Schema und \mathcal{J} eine kohärente Idealgarbe auf X. Setze $\mathcal{J}^0 = \mathcal{O}_X$ und \mathcal{J}^d als das d-fache Produkt des Ideals \mathcal{J} . Sei $\mathcal{S} = \bigoplus_{d \geq 0} \mathcal{J}^d$. Dann erfüllen X und \mathcal{S} die Bedingung (\dagger). $\widetilde{X} = \mathbf{Proj}(\mathcal{S})$ heißt die Aufblasung von X bzgl. \mathcal{J} .

Ist Y das abgeschlossene Unterschema von X, das zu \mathcal{J} gehört, so sagen wir auch, dass \widetilde{X} die Aufblasung von X entlang Y ist.

Beispiel 7.18. Sei $X = \mathbf{A}_k^n$ und $P \in X$ der Nullpunkt, d.h. $X = \operatorname{Spec}(A)$, $A = k[X_1, \ldots, X_n]$, $I = (X_1, \ldots, X_n)$. Dann ist die Aufblasung von X bei P gegeben durch:

$$\widetilde{X} = \operatorname{Proj}(S), \quad S = \bigoplus_{d \geq 0} I^d$$

Betrachte die surjektive Abbildung $\psi: A[Y_1, \ldots, Y_n] \to S, \ Y_i \mapsto X_i$. Wir sehen, dass \widetilde{X} isomorph zu dem abgeschlossenen Unterschema von \mathbf{P}_A^{n-1} ist, das durch die homogenen Polynome in den Y_i , die $\ker(\psi)$ erzeugen, definiert ist:

$$\ker(\psi) = \langle X_i Y_j - X_j Y_i \mid i, j = 1, \dots, n \rangle$$

Definition 7.19. Sei $f: X \to Y$ ein Morphismus und $\mathcal{J} \subset \mathcal{O}_Y$ eine Idealgarbe auf Y. Wir definieren die *inverse Idealgarbe* $\mathcal{J}' \subset \mathcal{O}_X$ auf X wie folgt:

 $\mathcal{J} \hookrightarrow \mathcal{O}_Y \xrightarrow{f^{\sharp}} f_* \mathcal{O}_X$ liefert nach 5.1 (xi) ein \mathcal{O}_X -Modulmorphismus $f^* \mathcal{J} \to \mathcal{O}_X$. Setze $\mathcal{J}' = \operatorname{im}(f^* \mathcal{J} \to \mathcal{O}_X)$.

Alternativ: Betrachte die Idealgarbe $f^{-1}\mathcal{J}$ auf $f^{-1}\mathcal{O}_Y$ und den Morphismus $f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$, der zu f^{\sharp} adjungiert ist. Dann ist \mathcal{J}' die vom Bild von $f^{-1}\mathcal{J}$ in \mathcal{O}_X erzeugte Idealgarbe. Wir schreiben daher auch $\mathcal{J}' = f^{-1}\mathcal{J} \cdot \mathcal{O}_X$.

Bemerkung. Im Allgemeinen sind $f^*\mathcal{J}$ und $f^{-1}\mathcal{J}$ verschiedene Idealgarben.

Satz 7.20. Sei X ein noethersches Schema und \mathcal{J} eine kohärente Idealgarbe auf X. Sei $\pi: \widetilde{X} \to X$ die Aufblasung von X bzgl. \mathcal{J} . Dann gilt:

- (i) Die inverse Idealgarbe $\widetilde{\mathcal{J}} = \pi^{-1} \mathcal{J} \cdot \mathcal{O}_{\widetilde{X}}$ ist invertierbar auf $\mathcal{O}_{\widetilde{X}}$.
- (ii) Sei Y das zu \mathcal{J} gehörige abgeschlossene Unterschema und $U = X \setminus Y$. Dann ist $\pi : \pi^{-1}(U) \to U$ ein Isomorphismus.

Beweis.

(i) Sei $\widetilde{X} = \mathbf{Proj}(S)$, $S = \bigoplus_{d \geq 0} \mathcal{J}^d$ und $V \subset_{\mathbf{o}} X$ affin. Dann ist $\mathcal{O}(1)|_{\operatorname{Proj}S(V)}$ die assoziierte Garbe zum graduierten S(V)-Modul $S(V)(1) = \bigoplus_{d \geq 0} \mathcal{J}^{d+1}(V) = \mathcal{J}(V)$.

 $\mathcal{S}(V)$ das von $\mathcal{J}(V)$ in $\mathcal{S}(V)$ erzeugte Ideal. Es folgt $\widetilde{\mathcal{J}} = \pi^{-1}\mathcal{J} \cdot \mathcal{O}_{\widetilde{X}} = \mathcal{O}_{\widetilde{X}}(1)$, also invertierbar.

(ii) Es ist $\mathcal{J}|_U \cong \mathcal{O}_U$, da $0 \to \mathcal{J} \to \mathcal{O}_X \xrightarrow{i^{\sharp}} i_* \mathcal{O}_Y \to 0$ exakt ist. Daher gilt $\pi^{-1}(U) = \operatorname{\mathbf{Proj}} \mathcal{O}_U[T] = U$. Beachte, dass für ein allgemeines A stets $\operatorname{Proj} A[T] = D_+(T) = \operatorname{Spec} A[T]_{(T)} = \operatorname{Spec}(A)$ gilt. \square

Satz 7.21. (Universaleigenschaft des Aufblasens) Sei X ein noethersches Schema, \mathcal{J} eine kohärente Idealgarbe auf X und $\pi: \widetilde{X} \to X$ die Aufblasung von X bzgl. \mathcal{J} . Ist $f: Z \to X$ ein Morphismus, so dass $f^{-1}\mathcal{J} \cdot \mathcal{O}_Z$ eine invertierbare Idealgarbe auf Z ist, so existiert ein eindeutig bestimmter Morphismus $g: Z \to \widetilde{X}$ mit kommutativem Diagramm:

$$\begin{array}{ccc} Z & \stackrel{g}{----} & \widetilde{X} \\ & & \downarrow^{\pi} \\ & X \end{array}$$

Lemma 7.22. Sei X ein Schema, $f: \mathcal{L} \to \mathcal{M}$ ein surjektiver Morphismus invertierbarer Garben. Dann ist f ein Isomorphismus.

Beweis. Siehe Bourbaki: Commutative Algebra II, §3.2 Korollar zu Proposition 6. □

Korollar 7.23. Sei $f: Y \to X$ ein Morphismus noetherscher Schemata und \mathcal{J} eine kohärente Idealgarbe auf X. Sei \widetilde{X} die Aufblasung bzgl. \mathcal{J} und \widetilde{Y} die Aufblasung bzgl. $\mathcal{J}_Y = f^{-1}\mathcal{J} \cdot \mathcal{O}_Y$. Dann existiert ein eindeutig bestimmter Morphismus \widetilde{f} mit kommutativem Diagramm:

$$\begin{array}{ccc}
\widetilde{Y} & & \widetilde{f} & & \widetilde{X} \\
\pi_Y \downarrow & & & \downarrow \pi_X \\
Y & & & & X
\end{array}$$

Ist f eine abgeschlossene Immersion, so auch \widetilde{f} .

Beweis. \mathcal{J}_Y ist kohärent, da nach Satz 5.13 (ii) $f^*\mathcal{J}$ kohärent ist und nach Satz 5.12 (ii) auch im $(f^*\mathcal{J} \to \mathcal{O}_Y)$. Nach Satz 7.20 ist $\pi_Y^{-1}\mathcal{J}_Y \cdot \mathcal{O}_{\widetilde{Y}}$ eine invertierbare Garbe auf \widetilde{Y} . Nach Satz 7.21 existiert \widetilde{f} und ist eindeutig bestimmt.

Sei nun f eine abgeschlossene Immersion und:

$$\widetilde{X} = \mathbf{Proj}(\mathcal{S}), \quad \mathcal{S} = \bigoplus_{d \geq 0} \mathcal{J}^d, \qquad \widetilde{Y} = \mathbf{Proj}(\mathcal{S}_Y), \quad \mathcal{S}_Y = \bigoplus_{d \geq 0} \mathcal{J}_Y^d$$

Ist $Y \hookrightarrow X$ eine abgeschlossene Immersion, so ist $\mathcal{J} \to \mathcal{J}_Y$ surjektiv und somit ist auch $\mathcal{S} \to \mathcal{S}_Y$ als Homomorphismus graduierter Ringe surjektiv. Daher ist $\widetilde{Y} \hookrightarrow \widetilde{X}$ eine abgeschlossene Immersion.

Definition 7.24. Ist $Y \hookrightarrow X$ eine abgeschlossene Immersion noetherscher Schemata. Dann heißt das abgeschlossene Unterschema \widetilde{Y} von \widetilde{X} auch strikte Transformation von Y bzgl. der Aufblasung $\pi: \widetilde{X} \to X$.

2.8 Differentiale

Sei A ein Ring, B eine A-Algebra und M ein B-Modul.

Definition 8.1. Eine A-Derivation von B nach M ist eine Abbildung d: $B \to M$ mit:

- (i) d ist additiv
- (ii) $d(b \cdot b') = b \cdot d(b') + b' \cdot d(b)$
- (iii) d(a) = 0 für alle $a \in A$

Der B-Modul aller A-Derivationen von B nach M bezeichnen wir mit $D_A(B, M)$.

Definition 8.2. Der *B*-Modul $\Omega_{B/A}$ der *relativen Differentialformen* von *B* über *A* zusammen mit einer *A*-Derivation d : $B \to \Omega_{B/A}$ ist definiert durch folgende Universaleigenschaft:

Für alle B-Moduln M und A-Derivationen $d': B \to M$ gibt es genau ein B-Homomorphismus $f: \Omega_{B/A} \to M$, so dass folgendes Diagramm kommutiert:

$$B \xrightarrow{\mathrm{d}} \Omega_{B/A}$$

$$\downarrow^f$$

$$M$$

Die Eindeutigkeit von $\Omega_{B/A}$ ist klar. Für die Existenz betrachte den freien B-Modul F mit Basis $\{d_b \mid b \in B\}$. Dann gilt:

$$\Omega_{B/A} = F/\langle d_{b+b'} - d_b - d_{b'}, d_{bb'} - bd_{b'} - b'd_b, d_a \mid b, b' \in B, a \in A \rangle$$

Zusammen mit der A-Derivation d: $B \to \Omega_{B/A}, b \mapsto d_b$ erfüllt diese Konstruktion die Universaleigenschaft.

Satz 8.3. Sei B eine A-Algebra und $f: B \otimes_A B \to B$, $b \otimes b' \mapsto bb'$. Betrachte $B \otimes_A B$ als B-Modul via $b(b_1 \otimes b_2) = (bb_1) \otimes b_2$. $B \otimes_A B$ wird zur B-Algebra durch $(b_1 \otimes b'_1)(b_2 \otimes b'_2) = (b_1b_2) \otimes (b'_1b'_2)$. Sei $I = \ker(f)$. Dann ist I/I^2 ein B-Modul. Setze $d: B \to I/I^2$, $db = 1 \otimes b - b \otimes 1 \mod I^2$. Dann ist $\Omega_{B/A} = (I/I^2, d)$.

Beweis. Wir zeigen zunächst $I = \sum_{b \in B} B db$. Sei $\beta = \sum b_i \otimes c_i \in I$, also $\sum b_i c_i = 0$. Dann gilt:

$$\beta = \sum_{i} (b_i (1 \otimes c_i - c_i \otimes 1) + b_i c_i \otimes 1)$$
$$= \sum_{i} b_i dc_i + \left(\sum_{i} b_i c_i\right) \otimes 1 \in \sum_{b \in B} B db$$

Wir zeigen nun, dass d eine A-Derivation ist. d(A) = 0 und die Additivität ist klar.

$$dbdc = (1 \otimes b - b \otimes 1)(1 \otimes c - c \otimes 1)$$

$$= bc \otimes 1 - b \otimes c - c \otimes b + 1 \otimes bc$$

$$= d(bc) + 2bc \otimes 1 - b(dc + c \otimes 1) - c(db + b \otimes 1)$$

$$= d(bc) - bdc - cdb$$

Also ist $d(bc) \equiv bdc + cdb \mod I^2$. Somit müssen wir noch zeigen, dass $(I/I^2, d)$ die Universaleigenschaft von $\Omega_{B/A}$ erfüllt. Sei M ein B-Modul und $D: B \to M$ eine A-Derivation. Zu zeigen ist die Existenz und Eindeutigkeit von einem B-Homomorphismus $f: I/I^2 \to M$ mit $D = f \circ d$. Da $I = \sum Bdb$ ist, folgt die Eindeutigkeit.

Betrachte die triviale Erweiterung B*M von B mit M, d.h. $B \oplus M$ mit der Multiplikation $(b_1, m_1)(b_2, m_2) = (b_1b_2, b_1m_2 + b_2m_1)$. Dann ist B*M ein Ring mit Einselement (1,0). B*M trägt eine B-Modulstruktur via b'(b,m) = (bb',bm), d.h. B*M ist eine B-Algebra. Wir haben kanonische B-Homomorphismen:

- Die Einbettung $M \hookrightarrow B * M, m \mapsto (0, m)$
- Die Projektion $B * M \to B, (b, m) \mapsto b$

Betrachte den *B*-Algebrenhomomorphismus $\varphi: B \otimes_A B \to B * M, \ x \otimes y \mapsto (xy, x\mathrm{D}y)$. Es gilt $\varphi(I) \subset M \subset B * M,$ da $\varphi(\mathrm{d}b) = \varphi(1 \otimes b - b \otimes 1) = (b, \mathrm{D}b) - (b, b\mathrm{D}1) = (0, \mathrm{D}b)$. Da $M^2 = 0$ in B * M, induziert φ eine Abbildung $\varphi: B \otimes_A B/I^2 \to B * M$. Dann erfüllt $f = \varphi|_{I/I^2}: I/I^2 \to M$ die gewünschte Eigenschaft $f \circ \mathrm{d} = \mathrm{D}$.

Satz 8.4. Es gibt für jeden B-Modul M einen kanonischen B-Modulisomorphismus:

$$\operatorname{Hom}_B(\Omega_{B/A}, M) \to \operatorname{Der}_A(B, M), \ f \mapsto f \circ \operatorname{d}$$

Beweis. Folgt direkt aus der Universaleigenschaft.

Beispiel 8.5. Sei $B = A[X_1, ..., X_n]$. Dann ist $\Omega_{B/A} = \bigoplus_{i=1}^n B dX_i$ ein freier B-Modul vom Rang n. Allgemein gilt: Wird B als A-Algebra von $y_1, ..., y_m$ erzeugt, so ist $\Omega_{B/A} = \sum_{i=1}^m B dy_i$, da:

$$d\left(\prod_{i} y_i^{n_i}\right) = \sum_{i} n_i \prod_{j \neq i} y_j^{n_j} y_i^{n_i - 1} dy_i$$

Angenommen, $\sum_i b_i dX_i = 0$. Betrachte die Derivationen $\frac{\partial}{\partial X_i} \in \text{Der}_A(B)$. Nach Satz 8.4 existiert für jedes k ein $f_k \in \text{Hom}_B(\Omega_{B/A}, B)$ mit $\frac{\partial}{\partial X_k} = f_k \circ d$. Es gilt für alle k:

$$0 = f_k \left(\sum_{i=1}^n b_i dX_i \right) = \sum_{i=1}^n b_i f_k (dX_i) = \sum_{i=1}^n b_i \frac{\partial X_i}{\partial X_k} = \sum_{i=1}^n b_i \delta_{ik} = b_k$$

Somit ist $\Omega_{B/A} = \bigoplus_{i=1}^n B dX_i$

Satz 8.6.

(i) Sei S eine multiplikative Teilmenge der A-Algebra B. Dann gilt:

$$S^{-1}\Omega_{B/A} \cong \Omega_{S^{-1}B/A}$$

(ii) Seien A', B A-Algebren und $B' = B \otimes_A A'$. Dann gilt:

$$\Omega_{B'/A'} \cong \Omega_{B/A} \otimes_B B'$$

Satz 8.7. Seien $\phi: A \to B, \ \psi: B \to C$ Ringhomomorphismen. Dann gilt:

(i) (Erste fundamentale exakte Sequenz) Es gibt eine exakte Sequenz:

$$\Omega_{B/A} \otimes_B C \stackrel{v}{\longrightarrow} \Omega_{C/A} \stackrel{u}{\longrightarrow} \Omega_{C/B} \longrightarrow 0$$

(ii) v ist injektiv und die Sequenz zerfällt, genau dann wenn für alle C-Moduln M und jedes $D \in Der_A(B, M)$ zu einer Derivation aus $Der_A(C, M)$ fortgesetzt werden kann.

Beweis. Definiere u und v durch:

$$v(db \otimes c) = cd\psi(b), \quad u(cdc') = cdc', \qquad b \in B, \ c, c' \in C$$

Äquivalent zu (i) bzw. (ii) ist die Exaktheit der 4-Term- bzw. 5-Termsequenzen:

$$0 \longrightarrow \operatorname{Hom}_{C}(\Omega_{C/B}, M) \longrightarrow \operatorname{Hom}_{C}(\Omega_{C/A}, M) \longrightarrow \operatorname{Hom}_{C}(\Omega_{B/A} \otimes_{B} C, M) \dashrightarrow 0$$

Da $\operatorname{Hom}_C(\Omega_{B/A} \otimes_B C, M) \cong \operatorname{Hom}_B(\Omega_{B/A}, M)$, ist nach Satz 8.4 ist die Exaktheit nachzuweisen von:

$$0 \longrightarrow \mathrm{Der}_B(C,M) \longrightarrow \mathrm{Der}_A(C,M) \longrightarrow \mathrm{Der}_A(B,M) \dashrightarrow 0$$

Die vorletzte Abbildung ist gegeben durch $(\delta : C \to M) \mapsto (\delta \circ \psi : B \to M)$. Ohne die 0 rechts ist diese Folge per Definition exakt. Mit der 0 rechts ist die Folge genau dann exakt, wenn die Forderung in (ii) gilt.

Beispiel 8.8. Sei B eine A-Algebra und $C = B[x_1, \ldots, x_n]$. Sei M ein beliebiger C-Modul und $D \in \operatorname{Der}_A(B, M)$. Sei $\widetilde{D}: C \to M$ die einem Polynom F, den Polynom F^D zuordnet, wobei F^D das Polynom ist, das man durch Anwenden von D auf die Koeffizienten von F erhält. Dann ist \widetilde{D} eine Derivation mit $\widetilde{D}|_B = D$. Nach Satz 8.7 (ii) gilt:

$$\Omega_{C/A} \cong (\Omega_{B/A} \otimes_B C) \oplus C dx_1 \oplus \cdots \oplus C dx_n$$

Satz 8.9. (Zweite fundamentale exakte Sequenz) Sei B eine A-Algebra, I ein Ideal in B und C = B/I. Es gibt eine kanonische, exakte Folge von C-Moduln:

$$I/I^2 \xrightarrow{\delta} \Omega_{B/A} \otimes_B C \xrightarrow{v} \Omega_{C/A} \longrightarrow 0$$

wobei $v(\mathrm{d} b\otimes c)=c\mathrm{d} \overline{b}$ und δ die durch die Abbildung $I\to\Omega_{B/A}\otimes_B C,\ x\mapsto \mathrm{d} x\otimes 1$ induzierte C-lineare Abbildung ist.

Beweis. Für $x, x' \in I$ gilt:

$$d(xx') \otimes 1 = dx \otimes x' + dx' \otimes x = 0$$

Daher ist δ wohldefiniert. Nun ist für alle C-Moduln M die folgenden Folgen exakt:

$$0 \longrightarrow \operatorname{Hom}_{C}(\Omega_{C/A}, M) \longrightarrow \operatorname{Hom}_{C}(\Omega_{B/A} \otimes_{B} C, M) \longrightarrow \operatorname{Hom}_{C}(I/I^{2}, M)$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow \operatorname{Der}_{A}(B/I, M) \longrightarrow \operatorname{Der}_{A}(B, M) \longrightarrow \operatorname{Hom}_{B}(I, M)$$

wobei
$$\varphi(D: B \to M) = (D|_I: I \to M).$$

Korollar 8.10. Ist B eine endlich erzeugte A-Algebra oder Lokalisierung einer endlich erzeugten A-Algebra, so ist $\Omega_{B/A}$ endlich erzeugter B-Modul.

Beweis. Es ist $B \cong A[x_1, \ldots, x_n]/I$ für ein Ideal I. Wegen Beispiel 8.5 ist $\Omega_{A[x_1, \ldots, x_n]/A}$ ein endlich erzeugter $A[x_1, \ldots, x_n]$ -Modul. Nach Satz 8.9 ist $\Omega_{B/A}$ ein endlich erzeugter B-Modul. Die Aussage über die Lokalisierung folgt aus Satz 8.6 (i).

Definition 8.11. Eine Körpererweiterung K/k heißt separabel erzeugt, falls es eine Transzendenzbasis $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ für K/k gibt, so dass $K/k[x_{\lambda}\mid {\lambda}\in\Lambda]$ separabel ist.

Satz 8.12. Sei K/k eine endlich erzeugte Körpererweiterung. Dann gilt:

- (i) $\dim_K \Omega_{K/k} \ge \operatorname{trdeg}(K/k)$
- (ii) Gleichheit in (i) gilt genau dann, wenn K/k separabel erzeugt ist.

Korollar 8.13. Sei K/k eine endliche Erweiterung. Dann gilt:

$$\Omega_{K/k} = 0 \iff K/k \text{ ist separabel}$$

Satz 8.14. Sei B ein lokaler Ring mit Maximalideal \mathfrak{m} und Restklassenkörper k. Ferner gebe es einen Schnitt von $B \to k$, also ist B eine k-Algebra. Dann ist die Abbildung δ in der zweiten fundamentalen Sequenz ein Isomorphismus:

$$\delta: \mathfrak{m}/\mathfrak{m}^2 \to \Omega_{B/k} \otimes_B k$$

Beweis. Es ist $\operatorname{coker}(\delta) = \Omega_{k/k} = 0$. Die Injektivität von δ ist äquivalent zur Surjektivität von:

$$\delta^* : \operatorname{Hom}_k(\Omega_{B/k} \otimes_B k, k) \to \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$$

Nun ist $\operatorname{Hom}_k(\Omega_{B/k} \otimes_B k, k) = \operatorname{Hom}_B(\Omega_{B/k}, k) = \operatorname{Der}_k(B, k)$. Die Abbildung $\operatorname{Der}_k(B, k) \to \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k), \ (d: B \to k) \mapsto (d|_{\mathfrak{m}} : \mathfrak{m} \to k)$ kommutiert mit δ^* . Beachte, dass für $d \in \operatorname{Der}_k(B, k)$ stets $d(\mathfrak{m}^2) = 0 \in k$ gilt.

Sei nun $h \in \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$ und $b \in B$. Wegen des Schnitts $k \to B$, hat b eine eindeutige Darstellung $b = \lambda + c$, $\lambda \in k$, $c \in \mathfrak{m}$. Setze $d : B \to k$, $d(b) = h(\overline{c})$. Dann ist d(k) = 0, d additiv und es gilt:

$$d(bb') = d(\lambda \lambda' + \lambda c' + \lambda' c + cc')$$

$$= h(\overline{\lambda c' + \lambda' c})$$

$$= \lambda h(\overline{c'}) + \lambda' h(\overline{c})$$

$$= \lambda d(b') + \lambda' d(b) = bd(b') + b'd(b) \in k$$

für alle $b = \lambda + c$, $b' = \lambda' + c' \in B$. Es gilt $\delta^*(d) = h$.

Satz 8.15. Sei B ein lokaler Ring und es gebe einen Schnitt von $B \to k$. Ferner sei der Restklassenkörper k vollkommen. Sei B die Lokalisierung einer endlich erzeugten k-Algebra. Dann ist $\Omega_{B/k}$ genau dann ein freier B-Modul vom Rang dim(B), wenn B regulär ist.

Beweis. Sei $\Omega_{B/k}$ frei vom Rang dim(B). Nach Satz 8.14 ist dim $_k \mathfrak{m}/\mathfrak{m}^2 = \dim(B)$, also ist B per Definition regulär.

Sei umgekehrt B regulär von Dimension r. Nach Satz 8.14 gilt:

$$r = \dim_k \mathfrak{m}/\mathfrak{m}^2 = \dim_k \Omega_{B/k} \otimes_B k$$

Sei K der Quotientenkörper von B. Nach Satz 8.6 ist $\Omega_{B/k} \otimes_B K = \Omega_{K/k}$. Nun ist K/k separabel erzeugt, da k vollkommen (siehe z.B. Matsumura Chapter 10, Corollary p. 194). Nach Satz 8.12 gilt:

$$\dim_K \Omega_{K/k} = \operatorname{trdeg}(K/k) = \dim(B) = r$$

Nach Korollar 8.10 ist $\Omega_{B/k}$ endlich erzeugter $B\text{-}\mathrm{Modul}.$

Lemma 8.16. Sei A ein noetherscher, lokaler, nullteilerfreier Ring mit Restklassenkörper k und Quotientenkörper K. Sei M ein endlich erzeugter A-Modul mit:

$$\dim_k(M \otimes_A k) = \dim_K(M \otimes_A K) = r$$

Dann ist M frei vom Rang r.

Beweis. Wegen $\dim_k(M \otimes_A k) = r$, gibt es nach Nakayama eine Surjektion $\varphi : A^r \to M$. Setze $N = \ker(\varphi)$. Da K flach über A ist, haben wir eine kurze exakte Folge:

$$0 \longrightarrow N \otimes_A K \longrightarrow K^r \longrightarrow M \otimes_A K \longrightarrow 0$$

Da $\dim_K(M \otimes_A K) = \dim_K K^r$, folgt $N \otimes_A K = 0$, also N = 0, da $N \subset A^r$ und A torsionsfrei ist.

Differentialgarben

Sei $f: X \to Y$ ein Morphismus von Schemata und $\Delta: X \to X \times_Y X$ die Diagonale. Δ ist nach Satz 3.30 eine Immersion und liefert ein Isomorphismus auf $\Delta(X)$, wobei $\Delta(X)$ ein abgeschlossenes Unterschema eines offenen Unterschema $W \subset X \times_Y X$ ist.

Definition 8.17. Sei \mathcal{J} die Idealgarbe von $\Delta(X)$ in W. Dann heißt

$$\Omega_{X/Y} = \Delta^*(\mathcal{J}/\mathcal{J}^2)$$

die Garbe der relativen Differentiale von X über Y.

Bemerkung 8.18.

- (i) $\mathcal{J}/\mathcal{J}^2$ ist ein $\mathcal{O}_{\Delta(X)}$ -Modul und somit ist über den Isomorphismus $X \to \Delta(X)$ die Modulgarbe $\Omega_{X/Y}$ ein \mathcal{O}_X -Modul. Wegen Satz 5.13 (i) ist $\Omega_{X/Y}$ quasikohärent. Ist Y noethersch und $f: X \to Y$ von endlichem Typ, und somit X und $X \times_Y X$ noethersch, dann ist $\Omega_{X/Y}$ kohärent.
- (ii) Sei $U = \operatorname{Spec}(A) \subset_{\operatorname{o}} Y$ und $V = \operatorname{Spec}(B) \subset_{\operatorname{o}} X$ mit $f(V) \subset U$. Dann ist $V \times_{U} V$ affin offen in $X \times_{Y} X$ mit $V \times_{U} V = \operatorname{Spec}(B \otimes_{A} B)$. Es ist

$$\Delta(X) \cap V \times_U V = \operatorname{Spec}(B \otimes_A B / \ker(B \otimes_A B \to B))$$

ein abgeschlossenes Unterschema von $V \times_U V$. Sei $I = \ker(B \otimes_A B \to B)$, also gilt:

$$\mathcal{J}/\mathcal{J}^2|_{\Delta(X)\cap V\times_U V} = \widetilde{I/I^2}$$

Nach Satz 8.3 folgt $\Omega_{V/U} = \Omega_{B/A}$. Somit ist Definition 8.17 verträglich mit dem affinen Fall. Ist $X = \bigcup V$ eine Überdeckung durch affin offenen V und $Y = \bigcup U$ eine Überdeckung durch affin offenen U, so liefert die Verklebung von $\Omega_{B/A}$, $d: B \to \Omega_{B/A}$ gerade $\Omega_{X/Y}$, $d: \mathcal{O}_X \to \Omega_{X/Y}$. d ist ein Garbenmorphismus und ist in jedem Punkt eine Derivation von lokalen Ringen.

93

Satz 8.19. Sei $f: X \to Y$ ein Morphismus und $g: Y' \to Y$ ein weiterer Morphismus. Betrachte den Basiswechsel:

$$\begin{array}{ccc} X\times_Y Y' & \xrightarrow{f'} & Y' \\ \downarrow^{g'} & & \downarrow^g \\ X & \xrightarrow{f} & Y \end{array}$$

Dann gilt $\Omega_{X'/Y'} \cong (g')^*(\Omega_{X/Y}).$

Beweis. Folgt aus Bemerkung 8.18 (ii) und Satz 8.6 (ii).

Satz 8.20. Seien $f: X \to Y$ und $g: Y \to Z$ Morphismen. Dann gibt es eine exakte Garbensequenz auf X:

$$f^*\Omega_{Y/Z} \longrightarrow \Omega_{X/Z} \longrightarrow \Omega_{X/Y} \longrightarrow 0$$

Beweis. Es reicht, die Exaktheit lokal zu überprüfen. Dies folgt aus der ersten fundamentalen exakten Sequenz. \Box

Satz 8.21. Sei $f: X \to Y$ ein Morphismus und Z ein abgeschlossenes Unterschema von X zum Ideal \mathcal{J} . Dann gibt es eine exakte Sequenz von Garben auf Z:

$$\mathcal{J}/\mathcal{J}^2 \stackrel{\delta}{\longrightarrow} \Omega_{X/Y} \otimes_{\mathcal{O}_X} \mathcal{O}_Z \longrightarrow \Omega_{Z/Y} \longrightarrow 0$$

Beweis. Folgt aus der zweiten fundamentalen exakten Sequenz.

Satz 8.22. Sei $X = \mathbf{A}_Y^n$. Dann ist $\Omega_{X/Y}$ ein freier \mathcal{O}_X -Modul vom Rang n, erzeugt von globalen Schnitten $\mathrm{d} x_1, \ldots, \mathrm{d} x_n$, wobei x_1, \ldots, x_n die affinen Koordinaten von \mathbf{A}_Y^n sind.

Beweis. Folgt aus Beispiel 8.5.

Satz 8.23. Sei A ein Ring und $Y = \operatorname{Spec}(A)$. Sei $X = \mathbf{P}_A^n$. Dann gibt es eine exakte Sequenz von Garben auf X:

$$0 \longrightarrow \Omega_{X/Y} \longrightarrow \bigoplus_{i=0}^{n} \mathcal{O}_{X}(-1) \longrightarrow \mathcal{O}_{X} \longrightarrow 0$$

Beweis. Sei $S = A[x_0, \dots, x_n]$ der homogene Koordinatenring von X und setze:

$$E = \bigoplus_{i=0}^{n} S(-1)e_i$$

als den graduierten S-Modul mit Basis e_0, \ldots, e_n im Grad 1. Betrachte den S-Modulhomomorphismus $\varphi: E \to S, \ e_i \mapsto x_i$ im Grad 0 und $M = \ker(\varphi)$. Wir erhalten eine exakte Garbensequenz:

$$0 \longrightarrow \widetilde{M} \longrightarrow \bigoplus_{i=0}^{n} \mathcal{O}_{X}(-1) \stackrel{\widetilde{\varphi}}{\longrightarrow} \mathcal{O}_{X} \longrightarrow 0$$

 $\varphi: E \to S$ ist in allen Graden größer gleich 1 surjektiv, also ist $\widetilde{\varphi}$ surjektiv. Wir zeigen nun $\widetilde{M} = \Omega_{X/Y}$.

Lokalisierung nach x_i liefert eine Surjektion von freien S_{x_i} -Moduln $E_{x_i} \to S_{x_i}$. M_{x_i} ist frei vom Rang n mit Basis $\{e_j - \frac{x_j}{x_i}e_i \mid j \neq i\}$. Multiplikation mit $\frac{1}{x_i}$ liefert Elemente vom Grad 0 in M_{x_i} . Also ist $\widetilde{M}|_{D_+(x_i)}$ ein freier $\mathcal{O}_{D_+(x_i)}$ -Modul, der von den globalen Schnitten $\{\frac{1}{x_i}e_j - \frac{x_j}{x_i^2}e_i \mid j \neq i\}$ erzeugt wird. Definiere $\varphi_i: \Omega_{X/Y}|_{D_+(x_i)} \to \widetilde{M}|_{D_+(x_i)}$ wie folgt:

Es ist $D_+(x_i) = \operatorname{Spec} A[\frac{x_0}{x_i}, \dots, \frac{\widehat{x_i}}{x_i}, \dots, \frac{x_n}{x_i}]$. Nach Satz 8.22 gilt:

$$\Omega_{X/Y}|_{D_+(x_i)} = \bigoplus_{j \neq i} \mathcal{O}_{D_+(x_i)} d\frac{x_j}{x_i}$$

Setze nun $\varphi_i(\mathrm{d}\frac{x_j}{x_i}) = \frac{1}{x_i^2}(x_ie_j - x_je_i)$. φ_i ist ein Isomorphismus. Die φ_i lassen sich nun zu einem Isomorphismus $\varphi: \Omega_{X/Y} \to \widetilde{M}$ verkleben.

Nicht-singuläre Varietäten

Definition 8.24. Eine Varietät X über einem algebraisch abgeschlossenen Körper k, d.h. ein integres, separiertes Schema von endlichem Typ, heißt nicht-singulär, wenn alle lokalen Ringe regulär sind.

Satz 8.25. Sei X ein irreduzibles, separiertes Schema von endlichem Typ über einem algebraisch abgeschlossenen Körper k. Dann ist $\Omega_{X/k}$ genau dann lokal frei vom Rang $n = \dim(X)$, wenn X eine nicht-singuläre Varietät über k ist.

Lemma 8.26. Sei X ein noethersches Schema und \mathcal{F} eine kohärente Garbe. Dann ist \mathcal{F} genau dann lokal frei, wenn \mathcal{F}_x freier $\mathcal{O}_{X,x}$ -Modul für alle $x \in X$ ist.

Korollar 8.27. Sei X eine Varietät über k. Dann gibt es ein $U \subset_{o} X$, die nicht-singulär ist.

Satz 8.28. Sei X eine nicht-singuläre Varietät über k und $Y \subset X$ ein irreduzibles, abgeschlossenes Unterschema zur Idealgarbe \mathcal{J} . Dann ist Y genau dann nicht-singulär, wenn folgende Bedingungen erfüllt sind:

(i) $\Omega_{Y/k}$ ist lokal frei.

(ii) In der exakten Sequenz aus Satz 8.21 ist δ injektiv:

$$0 \longrightarrow \mathcal{J}/\mathcal{J}^2 \stackrel{\delta}{\longrightarrow} \Omega_{X/k} \otimes_{\mathcal{O}_X} \mathcal{O}_Y \longrightarrow \Omega_{Y/k} \longrightarrow 0$$

3 Kohomologie

Wir verwenden folgende Bezeichnungen für abelsche Kategorien:

- Ab, die Kategorie der abelschen Gruppen
- Mod(A), die Kategorie der Moduln über einem kommutativen Ring A mit Eins
- $\mathbf{Ab}(X)$, die Kategorie der Garben abelscher Gruppen über einem topologischen Raum X
- $\mathbf{Mod}(X)$ oder $\mathbf{Mod}(\mathcal{O}_X)$, die Kategorie der \mathcal{O}_X -Moduln auf einem geringten Raum X mit Strukturgarbe \mathcal{O}_X .
- $\mathbf{Qcoh}(X)$ oder $\mathbf{Qcoh}(\mathcal{O}_X)$, die Kategorie der quasikohärenten \mathcal{O}_X -Moduln auf einem Schema X
- $\mathbf{Coh}(X)$ oder $\mathbf{Coh}(\mathcal{O}_X)$, die Kategorie der kohärenten \mathcal{O}_X -Modulgarben auf einem noetherschen Schema X

3.1 Kohomologie von Garben

Satz 9.15. Sei A ein Ring. Dann ist jeder A-Modul isomorph zu einem Untermodul eines injektiven A-Moduls.

Satz 9.16. Sei (X, \mathcal{O}_X) ein geringter Raum. Dann hat die Kategorie $\mathbf{Mod}(\mathcal{O}_X)$ genügend viele Injektive.

Beweis. Sei $\mathcal{F} \in \mathbf{Mod}(\mathcal{O}_X)$. Dann ist $\mathcal{F}_x \in \mathbf{Mod}(\mathcal{O}_{X,x})$. Nach Satz 9.15 gibt es ein Monomorphismus $\mathcal{F}_x \to I_x$ mit einem injektiven $\mathcal{O}_{X,x}$ -Modul I_x . Sei $j: \{x\} \hookrightarrow X$ die kanonische Inklusion und betrachte die I_x als Garben auf $\{x\}$. Setze $\mathcal{J} = \prod_{x \in X} j_* I_x$. Dann gilt:

$$\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{J}) = \prod_{x \in X} \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, j_* I_x) = \prod_{x \in X} \operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x, I_x)$$

Die $\mathcal{F}_x \hookrightarrow I_x$ geben ein Monomorphismus $\mathcal{F} \hookrightarrow \mathcal{J}$. Ferner gilt:

$$\operatorname{Hom}_{\mathcal{O}_X}(-,\mathcal{J}) = \prod_{x \in X} \operatorname{Hom}_{\mathcal{O}_{X,x}}((-)_x, I_x)$$

Da Halmbildung exakt und I_x injektive Objekte sind, ist dies ein exakter Funktor. Somit ist \mathcal{J} ein injektiver \mathcal{O}_X -Modul.

Korollar 9.17. Sei X ein topologischer Raum. Dann besitzt $\mathbf{Ab}(X)$ genügend viele Injektive.

Beweis. Sei \mathcal{O}_X die konstante Garbe \mathbb{Z} auf X. Dann ist (X, \mathcal{O}_X) ein geringter Raum und es gilt $\mathbf{Mod}(\mathcal{O}_X) = \mathbf{Ab}(X)$.

Definition 9.18. Sei X ein topologischer Raum und $\Gamma(X, -) : \mathbf{Ab}(X) \to \mathbf{Ab}$ der globale Schnittfunktor. Wir definieren:

$$H^{i}(X, -) = R^{i}\Gamma(X, -)$$

 $\mathrm{H}^i(X,\mathcal{F})$ heißt *i-te Kohomologiegruppe* von der Garbe \mathcal{F} . Haben X und \mathcal{F} Zusatzstrukturen, z.B. X Schema oder $\mathcal{F} \in \mathbf{Qcoh}(X)$, so wird die Kohomologie trotzdem immer im obigen Sinne verstanden, d.h. $\mathcal{F} \in \mathbf{Ab}(X)$.

Sei (X, \mathcal{O}_X) ein geringter Raum und \mathcal{F} ein \mathcal{O}_X -Modul. \mathcal{F} heißtwelk, falls für alle offenen $V \subset U$ die Restriktionsabbildung $\mathcal{F}(U) \to \mathcal{F}(V)$ surjektiv ist.

Lemma 9.19. Ist (X, \mathcal{O}_X) ein geringter Raum, so ist jeder injektiver \mathcal{O}_X -Modul \mathcal{J} welk.

Beweis. Seien $i:U\hookrightarrow X$ und $j:V\hookrightarrow X$ die natürlichen Inklusionen. Betrachte die Inklusion $j_!\mathcal{O}_X|_V\hookrightarrow i_!\mathcal{O}_X|_U$ von \mathcal{O}_X -Moduln. Es folgt die Surjektivität von:

$$\mathcal{J}(U) = \operatorname{Hom}(i_! \mathcal{O}_X|_U, \mathcal{J}) \to \operatorname{Hom}(j_! \mathcal{O}_X|_V, \mathcal{J}) = \mathcal{J}(V)$$

Satz 9.20. Sei X ein topologischer Raum und \mathcal{F} eine welke Garbe auf X. Dann ist $\mathrm{H}^i(X,\mathcal{F})=0$ für alle i>0.

Lemma 9.21. Sei X ein topologischer Raum. Sei $0 \to \mathcal{G}' \to \mathcal{G} \to \mathcal{G}'' \to 0$ eine exakte Sequenz von Garben.

(i) Ist \mathcal{G}' eine welke Garbe, so ist für alle $U \subset_{\mathbf{0}} X$ die folgende Sequenz exakt:

$$0 \longrightarrow \mathcal{G}'(U) \longrightarrow \mathcal{G}(U) \longrightarrow \mathcal{G}''(U) \longrightarrow 0$$

(ii) Sind \mathcal{G}' und \mathcal{G} welk, so auch \mathcal{G}'' .

Beweis.

(i) Sei o.B.d.A. U = X und sei $s'' \in \mathcal{G}''(X)$. Setze:

$$E = \{(U, s) \mid U \subset_{o} X, \ s \in \mathcal{G}(U), \ s \mapsto s''|_{U}\}$$

E ist partiell geordnet bzgl. Inklusion. Jede Kette in E besitzt eine obere Schranke in E. Nach Zorns Lemma gibt es ein maximales Element $(U, s) \in E$.

Gibt es ein $x \in X \setminus U$, so existiert eine offene Umgebung V von x und $t \in \mathcal{G}(V)$ mit $t \mapsto s''|_V$, da $\mathcal{G} \to \mathcal{G}''$ surjektiv ist. Da \mathcal{G}' welk ist, so setzt sich $s-t \in \mathcal{G}'(U \cap V)$ zu einem Schnitt auf $\mathcal{G}'(V)$ fort. Ersetzen wir t durch $s-t \in \mathcal{G}'(V)$, können wir o.B.d.A. s=t auf V annehmen. Die Existenz von (V,s) ist ein Widerspruch zur Maximalität von (U,s) Somit folgt U=X.

(ii) Für $V \subset U$ offen in X kommutiert das folgende Diagramm mit exakten Zeilen:

Es folgt die Surjektivität von $\mathcal{G}''(U) \to \mathcal{G}''(V)$.

Beweis von 9.20. Sei $0 \to \mathcal{F} \to \mathcal{J} \to \mathcal{G} \to 0$ exakt mit \mathcal{J} injektiv. Nun sind \mathcal{F} und \mathcal{J} welk. Nach Lemma 9.21 ist auch \mathcal{G} welk und wir haben eine exakte Folge:

$$0 \longrightarrow \mathcal{F}(X) \longrightarrow \mathcal{J}(X) \longrightarrow \mathcal{G}(X) \longrightarrow 0$$

Da $H^i(X, \mathcal{J}) = 0$ für alle i > 0, gilt $H^1(X, \mathcal{F}) = 0$ und $H^i(X, \mathcal{F}) = H^{i-1}(X, \mathcal{G})$ für alle $i \geq 2$. Somit folgt die Aussage per Induktion nach i.

Satz 9.22. Sei (X, \mathcal{O}_X) ein geringter Raum. Dann sind die derivierten Funktoren von

$$\Gamma(X,-): \mathbf{Mod}(X) \to \mathbf{Ab}$$

gerade die Kohomologie-Funktoren.

Beweis. $R^i\Gamma(X,-)$ wird über eine injektive Auflösung in $\mathbf{Mod}(X)$ berechnet. Nun sind injektive Objekte in $\mathbf{Mod}(X)$ nach Lemma 9.19 welk und nach Satz 9.20 insbesondere azyklisch bzgl. $\Gamma(X,-)$. Somit ist $R^i\Gamma(X,-) = H^i(X,-)$.

Bemerkung 9.23. Sei (X, \mathcal{O}_X) ein geringter Raum und \mathcal{F} ein \mathcal{O}_X -Modul. Da die Kohomologie durch Auflösungen in der Kategorie $\mathbf{Mod}(X)$ berechnet werden kann, haben alle Kohomologiegruppen von \mathcal{F} eine A-Modulstruktur mit $A = \Gamma(X, \mathcal{O}_X)$.

Lemma 9.24. Sei X ein noetherscher topologischer Raum und $\mathcal{F} = \varinjlim_{\alpha} \mathcal{F}_{\alpha}$. Dann gilt:

- (i) $\mathcal{F}(X) = \underline{\lim}_{\alpha} \mathcal{F}_{\alpha}(X)$
- (ii) Sind alle \mathcal{F}_{α} welk, so auch \mathcal{F} .

Beweis.

(ii) Für alle α und $V \subset U$ offen in X ist $\mathcal{F}_{\alpha}(U) \to \mathcal{F}_{\alpha}(V)$ surjektiv. Da \varinjlim exakt ist, folgt mit (i) die Surjektivität von:

$$\mathcal{F}(U) = \varinjlim_{\alpha} \mathcal{F}_{\alpha}(U) \to \varinjlim_{\alpha} \mathcal{F}_{\alpha}(V) = \mathcal{F}(V)$$

(i) Der Funktor $\Gamma(X, -)$ vertauscht mit \varinjlim , siehe z.B. Godement, Topologie algébrique et théorie des faisceaux, p. 169.

Satz 9.25. Sei X ein noetherscher topologischer Raum und $(\mathcal{F}_{\alpha})_{\alpha \in A}$ ein induktives System in $\mathbf{Ab}(X)$. Dann gibt es einen natürlichen Isomorphismus:

$$\varinjlim H^i(X, \mathcal{F}_{\alpha}) \stackrel{\sim}{\to} H^i(X, \varinjlim \mathcal{F}_{\alpha})$$

Beweis. Für alle α haben wir natürliche Abbildungen $\mathcal{F}_{\alpha} \to \varinjlim \mathcal{F}_{\alpha}$. Wir erhalten $H^{i}(X, \mathcal{F}_{\alpha}) \to H^{i}(X, \varinjlim \mathcal{F}_{\alpha})$ und daher eine Abbildung:

$$\varinjlim H^i(X, \mathcal{F}_{\alpha}) \to H^i(X, \varinjlim \mathcal{F}_{\alpha})$$

Dies ist nach Lemma 9.24 (i) für i=0 ein Isomorphismus. Betrachte die abelsche Kategorie $\mathbf{Ind}_A(\mathbf{Ab}(X))$ der direkten Limiten von Objekten aus $\mathbf{Ab}(X)$ indiziert durch A. Da \varinjlim exakt ist, haben wir eine natürliche Transformation von δ -Funktoren $\mathbf{Ind}_A(\mathbf{Ab}(X)) \to \overline{\mathbf{Ab}}$

$$\varinjlim \mathrm{H}^i(X,-) \to \mathrm{H}^i(X,\varinjlim -)$$

die für i = 0 übereinstimmt. Jetzt genügt es zu zeigen, dass beide Funktoren auslöschbar sind. Dann sind beide universell und insbesondere gleich.

Sei $(\mathcal{F}_{\alpha}) \in \mathbf{Ind}_{A}(\mathbf{Ab}(X))$. Zu α definieren wir die Garbe \mathcal{G}_{α} wie folgt:

$$U \mapsto \left\{ s : U \to \coprod_{P \in U} (\mathcal{F}_{\alpha})_P \mid s(P) \in (\mathcal{F}_{\alpha})_P \right\}$$

Dann ist \mathcal{G}_{α} welk und $\mathcal{F}_{\alpha} \hookrightarrow \mathcal{G}_{\alpha}$. Nach Konstruktion bilden die \mathcal{G}_{α} ein induktives System und wir erhalten einen Monomorphismus $u: (\mathcal{F}_{\alpha}) \hookrightarrow (\mathcal{G}_{\alpha})$ in $\mathbf{Ind}_A(\mathbf{Ab}(X))$. Ferner gilt $H^i(X, \mathcal{G}_{\alpha}) = 0$ für alle i > 0 nach Satz 9.20, also $\varinjlim H^i(X, \mathcal{G}_{\alpha}) = 0$ für alle i > 0. Somit ist $\varinjlim H^i(X, -)$ auslöschbar.

Da $\varinjlim \mathcal{G}_{\alpha}$ nach Satz 9.24 (ii) welk ist, ist auch $H^{i}(X, \varinjlim \mathcal{G}_{\alpha}) = 0$ für alle i > 0, d.h. auch $H^{i}(X, \varinjlim -)$ ist auslöschbar.

Lemma 9.26. Sei $Y \subset X$ abgeschlossen mit natürlicher Inklusion $i: Y \hookrightarrow X$ und $\mathcal{F} \in \mathbf{Ab}(Y)$. Dann gilt:

$$H^i(Y, \mathcal{F}) = H^i(X, i_*\mathcal{F})$$

Beweis. Sei \mathcal{J}^{\bullet} eine injektive Auflösung von \mathcal{F} auf Y; insbesondere ist \mathcal{J}^{\bullet} eine welke Auflösung. Dann ist $i_*\mathcal{J}^{\bullet}$ eine welke Auflösung von $i_*\mathcal{F}$ auf X. Für alle i gilt:

$$\Gamma(Y, \mathcal{J}^i) = \Gamma(X, i_* \mathcal{J}^i)$$

Somit ergeben sich die gleichen Kohomologiegruppen.

Satz 9.27. (Verschwindungssatz von Grothendieck) Sei X ein noetherscher topologischer Raum der Dimension n. Dann gilt für alle abelschen Garben \mathcal{F} auf X:

$$\mathrm{H}^i(X,\mathcal{F}) = 0$$
 für alle $i > n$

Beweis. Sei \mathcal{F} eine Garbe abelscher Gruppen auf X.

1. Schritt: (Reduktion auf irreduzible X) Sei X reduzible und $Y \subset X$ eine irreduzible Komponente mit Einbettungen $i: Y \hookrightarrow X, \ j: U = X \setminus Y \hookrightarrow X$. Nach 1.16 ist die folgende Garbensequenz exakt:

$$0 \longrightarrow \mathcal{F}_U \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}_Y \longrightarrow 0$$

wobei $\mathcal{F}_U = j_!(\mathcal{F}|_U)$ und $\mathcal{F}_Y = i_*(\mathcal{F}|_Y)$ ist. Es genügt zu zeigen, dass $H^i(X, \mathcal{F}_U) = 0 = H^i(X, \mathcal{F}_Y)$ für alle i > n ist. Betrachte $g : \overline{U} \hookrightarrow X$. Nun hat \overline{U} weniger irreduzible Komponenten als X. Setze $\mathcal{F}_{\overline{U}} = g^* \mathcal{F}_U$. Es folgt nach Lemma 9.26:

$$\mathrm{H}^{i}(\overline{U},\mathcal{F}_{\overline{U}}) = \mathrm{H}^{i}(X,g_{*}\mathcal{F}_{\overline{U}}) = \mathrm{H}^{i}(X,\mathcal{F}_{U})$$

$$\mathrm{H}^{i}(X, \mathcal{F}_{Y}) = \mathrm{H}^{i}(X, i_{*}\mathcal{F}|_{Y}) = \mathrm{H}^{i}(Y, \mathcal{F}|_{Y})$$

Per Induktion nach Anzahl der irreduziblen Komponenten von X können wir ohne Einschränkung X als irreduzibel annehmen.

- 2. Schritt: Sei X irreduzibel und $\dim(X) = 0$. Die einzigen offenen Mengen von X sind \varnothing und X, d.h. $\Gamma(X, -) : \mathbf{Ab}(X) \to \mathbf{Ab}$ ist eine Äquivalenz von Kategorien. Insbesondere ist $\Gamma(X, -)$ exakt, d.h. $H^i(X, \mathcal{F}) = 0$ für alle i > 0.
- 3. Schritt: Sei X irreduzibel und $\dim(X) = n$. Sei $j: U \hookrightarrow X$ offen und $s \in \mathcal{F}(U)$. Da

$$\mathcal{F}(U) = \operatorname{Hom}(\mathbb{Z}, \mathcal{F}(U)) = \operatorname{Hom}_{U}(\mathbb{Z}|_{U}, \mathcal{F}|_{U}) = \operatorname{Hom}_{X}(j_{!}(\mathbb{Z}|_{U}), \mathcal{F})$$

wobei $\mathbb{Z}|_U$ die konstante Garbe bezeichnet, entspricht s einen Morphismus $j_!(\mathbb{Z}|_U) \to \mathcal{F}$. Setze $\mathcal{F}_s = \operatorname{im}(j_!(\mathbb{Z}|_U) \to \mathcal{F})$. \mathcal{F}_s heißt die von s erzeugte Untergarbe von \mathcal{F} . Sei $\alpha = (s_i)_{i \in I}, \ s_i \in \mathcal{F}(U_i)$ eine beliebige Familie von Schnitten. Setze:

$$\mathcal{F}_{\alpha} = \sum_{i \in I} \mathcal{F}_{s_i} \subset \mathcal{F}$$

Sei J die Menge aller endlichen Familien $\alpha = (s_i)$. J wird mit der folgenden partiellen Ordnung zu einem gerichteten System:

$$\alpha' \leq \alpha \iff \alpha'$$
 ist Unterfamilie von α

Für $\alpha' \leq \alpha$ gilt $\mathcal{F}_{\alpha'} \subset \mathcal{F}_{\alpha}$. Somit ist $\mathcal{F} = \varinjlim_{\alpha \in J} \mathcal{F}_{\alpha}$. Nach Satz 9.25 reicht es zu zeigen, dass $H^i(X, \mathcal{F}_{\alpha}) = 0$ für alle i > n und alle $\alpha \in J$.

Sei nun $\alpha' \leq \alpha$. Betrachte die exakte Sequenz $0 \to \mathcal{F}_{\alpha'} \to \mathcal{F}_{\alpha} \to \mathcal{G} \to 0$. \mathcal{G} ist erzeugt von $\#\alpha - \#\alpha'$ Schnitten über geeignete offenen Mengen. Per Induktion nach $\#\alpha$ können wir unter Betrachtung der langen exakten Kohomologiefolge o.B.d.A. annehmen, dass \mathcal{F} von einem Schnitt über einer geeigneten offenen Menge U erzeugt wird, d.h. $\mathcal{F} = \mathcal{F}_s$. Die zu s gehörige Morphismus $\mathbb{Z}_U = j_!(\mathbb{Z}|_U) \to \mathcal{F}$ ist surjektiv.

Definiere die Garbe \mathcal{R} durch die exakte Folge $0 \to \mathcal{R} \to \mathbb{Z}_U \to \mathcal{F} \to 0$. Unter Betrachtung der langen exakten Kohomologiefolge genügt es zu zeigen, dass $H^i(X,\mathcal{R}) = 0 = H^i(X,\mathbb{Z}_U)$ für alle i > n ist.

4. Schritt: Wir zeigen $\mathrm{H}^i(X,\mathcal{R})=0$ für alle i>n per Induktion über $n=\dim(X)$. Für $x\in U$ ist \mathcal{R}_x eine Untergruppe von \mathbb{Z} . Ist $\mathcal{R}=0$, so folgt $\mathcal{F}\cong\mathbb{Z}_U$. Sei nun $\mathcal{R}\neq 0$. Setze:

$$d = \min\{m > 0 \mid m \in \mathcal{R}_x, \ x \in U\}$$

Es existiert ein $\emptyset \neq V \subset_{o} U$ mit $\mathcal{R}|_{V} \cong d \cdot \mathbb{Z}|_{V} \subset \mathbb{Z}|_{V}$. Wir erhalten $\mathcal{R}_{V} = j_{!}(\mathcal{R}|_{V}) = \mathbb{Z}_{V}$, wobei $j: V \hookrightarrow X$ die kanonische Inklusion ist. Wir erhalten die exakte Sequenz:

$$0 \longrightarrow \mathbb{Z}_V \longrightarrow \mathcal{R} \longrightarrow \mathcal{R}/\mathbb{Z}_V \longrightarrow 0$$

Nun gilt supp $(\mathcal{R}/\mathbb{Z}_V) \subset \overline{U \setminus V} \subset X$. Da X irreduzibel ist, gilt dim $(\overline{U \setminus V}) < n$. Aus der Induktionsannahme folgt mit Lemma 9.26 für alle $i \geq n$:

$$\mathrm{H}^{i}(X, \mathcal{R}/\mathbb{Z}_{V}) = \mathrm{H}^{i}(\overline{U \setminus V}, \mathcal{R}/\mathbb{Z}_{V}|_{\overline{U \setminus V}}) = 0$$

Nach der langen exakten Kohomologiesequenz reicht es zu zeigen, dass $H^i(X, \mathbb{Z}_V) = 0$ für i > n gilt.

5. Schritt: Wir zeigen $\mathrm{H}^i(X,\mathbb{Z}_V)=0$ für alle i>n per Induktion über $n=\dim(X)$. Sei $U\subset_{\mathrm{o}}X$ und $Y=X\setminus U$. Dann ist $0\to\mathbb{Z}_U\to\mathbb{Z}\to\mathbb{Z}_Y\to 0$ exakt nach 1.16. Wegen $\dim(Y)<\dim(X)$ folgt nach der Induktionsannahme und Lemma 9.26 für alle $i\geq n$:

$$\mathrm{H}^{i}(X,\mathbb{Z}_{Y})=\mathrm{H}^{i}(Y,\mathbb{Z}|_{Y})=0$$

Ferner ist die konstante Garbe \mathbb{Z} welk. Nach Satz 9.20 folgt $\mathrm{H}^i(X,\mathbb{Z})=0$ für alle i>0. Die lange exakte Kohomologiesequenz liefert $\mathrm{H}^i(X,\mathbb{Z}_U)=0$ für i>n.

Satz 9.28. Sei $X = \operatorname{Spec}(A)$ noethersch. Dann ist $H^i(X, \mathcal{F}) = 0$ für alle i > 0 und alle quasikohärenten Garben \mathcal{F} .

Bemerkung. Dieser Satz gilt auch für nicht-noethersche Ringe A.

Satz von Krull. Sei A ein noetherscher Ring, $\mathfrak{a} \subset A$ ein Ideal und $M \subset N$ endlich erzeugte A-Moduln. Dann ist die \mathfrak{a} -adische Topologie auf M induziert von der \mathfrak{a} -adischen Topologie auf N, d.h:

$$\forall n \geq 0, \ \exists m \geq n: \ \mathfrak{a}^n M \supset \mathfrak{a}^m N \cap M$$

Beweis. Siehe beispielsweise Bosch: Algebraic Geometry and Commutative Algebra, 2.3. Lemma 1.

Definition. Sei A ein Ring, $\mathfrak{a} \subset A$ ein Ideal und M ein A-Modul. Wir definieren:

$$\Gamma_{\mathfrak{a}}(M) = \{ m \in M \mid \exists n > 0 : \, \mathfrak{a}^n m = 0 \}$$

Lemma 9.29. Sei A noethersch, $\mathfrak{a} \subset A$ ein Ideal und I ein injektiver A-Modul. Dann ist $\Gamma_{\mathfrak{a}}(I)$ ebenfalls injektiv.

Beweis. Setze $J = \Gamma_{\mathfrak{a}}(I)$. Wir zeigen zunächst: Für alle Ideale $\mathfrak{b} \subset A$ und alle A-Modulhomomorphismen $\varphi : \mathfrak{b} \to J$ gibt es einen A-Modulhomomorphismus $\psi : A \to J$ mit $\psi|_{\mathfrak{b}} = \varphi$.

Sei $\mathfrak{b} \subset A$ ein notwendigerweise endlich erzeugtes Ideal und $\varphi : \mathfrak{b} \to J$ ein A-Modulhomomorphismus. Zu $x \in J$ gibt es nach Definition ein n > 0 mit $\mathfrak{a}^n x = 0$. Da \mathfrak{b} endlich erzeugt ist, existiert ein n mit:

$$0 = \mathfrak{a}^n \varphi(\mathfrak{b}) = \varphi(\mathfrak{a}^n \mathfrak{b})$$

Nach dem Satz von Krull gibt es ein $m \ge n$ mit $\mathfrak{a}^n \mathfrak{b} \supset \mathfrak{b} \cap \mathfrak{a}^m$, also $\varphi(\mathfrak{b} \cap \mathfrak{a}^m) = 0$. Somit faktorisiert φ über $\mathfrak{b}/(\mathfrak{b} \cap \mathfrak{a}^m)$:

$$\begin{array}{cccc}
A & \longrightarrow & A/\mathfrak{a}^m \\
\uparrow & & \uparrow \\
\mathfrak{b} & \longrightarrow & \mathfrak{b}/(\mathfrak{b} \cap \mathfrak{a}^m) & \longrightarrow & J & \longrightarrow & I
\end{array}$$

Da I injektiv ist, gibt es eine Fortsetzung $\psi': A/\mathfrak{a}^m \to I$ von φ , das obiges Diagramm kommutativ macht. Nun gilt $\mathfrak{a}^m \psi'(A/\mathfrak{a}^m) = 0$, d.h. $\psi'(A/\mathfrak{a}^m) \subset J$. Somit ist $\psi: A \to A/\mathfrak{a}^m \to J$ eine Fortsetzung von $\varphi: \mathfrak{b} \to J$.

Sei nun X ein A-Modul, $X' \subset X$ ein Untermodul und $f: X' \to J$ ein Homomorphismus. Betrachte:

$$\Sigma = \{(Y, g) \mid Y \subset X \text{ Untermodul}, \ X' \subset Y, \ g : Y \to J, \ g|_{X'} = f\}$$

Dann ist $(X',f) \in \Sigma$ und Σ ist induktiv geordnet. Nach Zorn gibt es ein maximales Element $(Y,g) \in \Sigma$. Angenommen, $Y \neq X$. Dann gibt es ein $x \in X \setminus Y$. Betrachte das Ideal $\mathfrak{b} = \{\lambda \in A \mid \lambda x \in Y\} \subset A$ und den A-Modulhomomorphismus $\varphi : \mathfrak{b} \to J$, $\lambda \mapsto g(\lambda x)$. Diese können wir zu einem $\psi : A \to J$ fortsetzen. Definiere $g' : \langle Y, x \rangle \to J$ durch $g'|_Y = g$ und $g'(x) = \psi(1)$. Diese Abbildung ist ein wohldefinierter A-Modulhomomorphismus, da $g'(y + \lambda x) = g'(y) + \psi(\lambda)$ für $y \in Y$, $\lambda \in A$ und ist $\lambda x \in Y$, so folgt $\lambda \in \mathfrak{b}$, d.h. $\psi(\lambda) = \varphi(\lambda) = g(\lambda x) = g'(\lambda x)$. Dies ist ein Widerspruch zur Maximalität von (Y,g), daher folgt Y = X.

Satz 9.30. Sei A ein noetherscher Ring und I ein injektiver A-Modul. Dann ist die Garbe \widetilde{I} welk über $\operatorname{Spec}(A)$.

Lemma 9.31. Sei A ein noetherscher Ring und I ein injektiver A-Modul. Dann ist für jedes $f \in A$ die natürliche Abbildung $\theta : I \to I_f$ surjektiv.

Beweis. Betrachte die folgenden Ideale in A:

$$\mathfrak{b}_i = \operatorname{ann}(f^i) = \{ x \in A \mid f^i x = 0 \}$$

Dann gilt $\mathfrak{b}_1 \subset \mathfrak{b}_2 \subset \ldots \subset \mathfrak{b}_r = \mathfrak{b}_{r+1} = \ldots$ für ein r. Sei $x \in I_f$. Dann gibt es ein $y \in I$ und ein $n \geq 0$ mit $x = \frac{\theta(y)}{f^n}$. Definiere den A-Modulhomomorphismus:

$$\varphi: (f^{n+r}) \to I, \ f^{n+r} \mapsto f^r y$$

Dieser ist wohldefiniert, da ann $(f^{n+r}) = \mathfrak{b}_{n+r} = \mathfrak{b}_r = \operatorname{ann}(f^r) \subset \operatorname{ann}(f^ry)$. Da I injektiv ist, gibt es eine Fortsetzung $\psi: A \to I$ von φ . Sei $z = \psi(1)$. Dann gilt $f^{n+r}z = f^ry$, also $\theta(z) = \frac{\theta(y)}{f^n} = x$.

Beweis von 9.30. Sei $Y = \overline{\operatorname{supp}(\widetilde{I})}$. Besteht Y nur aus einem abgeschlossenen Punkt, so ist \widetilde{I} eine Wolkenkratzergarbe und somit welk.

Sei nun Y größer und die Aussage für alle kleineren Y bewiesen. Es genügt zu zeigen, dass alle Restriktionsabbildungen der Form $\Gamma(X,\widetilde{I}) \to \Gamma(U,\widetilde{I})$ surjektiv sind. Sei $U \subset_{o} X$. Ist $Y \cap U = \emptyset$, so ist nichts zu zeigen. Sei $Y \cap U \neq \emptyset$. Es existiert ein $f \in A$ mit $X_f = D(f) \subset U$ und $X_f \cap Y \neq \emptyset$. Setze $Z = X \setminus X_f$ und $\Gamma_Z(U,\widetilde{I}) = \{s \in \Gamma(U,\widetilde{I}) \mid \operatorname{supp}(s) \subset Z\}$. Betrachte:

$$\Gamma(X, \widetilde{I}) \longrightarrow \Gamma(U, \widetilde{I}) \longrightarrow \Gamma(X_f, \widetilde{I})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\Gamma_Z(X, \widetilde{I}) \longrightarrow \Gamma_Z(U, \widetilde{I})$$

Sei $s \in \Gamma(U, \widetilde{I})$ und betrachte die Restriktion $s' \in \Gamma(X_f, \widetilde{I}) = I_f$. Nach Lemma 9.31 gibt es ein $t \in I = \Gamma(X, \widetilde{I})$ mit $t|_{X_f} = s'$. Sein t' die Restriktion von t auf U. Dann ist $(s - t')|_{X_f} = 0$, also $\operatorname{supp}(s - t') \subset Z$. Bleibt noch zu zeigen, dass $\Gamma_Z(X, \widetilde{I}) \to \Gamma_Z(U, \widetilde{I})$ surjektiv ist. Dann existiert nämlich ein Urbild $x \in \Gamma_Z(X, \widetilde{I})$ von s - t' und daher:

$$(x+t)|_{U} = s - t' + t' = s$$

Sei $J = \Gamma_Z(X, \widetilde{I})$ und $\mathfrak{a} = (f) \subset A$. Dann ist $J = \Gamma_{\mathfrak{a}}(I)$. Nach Lemma 9.29 ist J ein injektiver A-Modul mit $\operatorname{supp}(\widetilde{J}) \subset Y \cap Z \subsetneq Y$. Nach Induktionsannahme ist \widetilde{J} welk, also ist die Restriktionsabbildung surjektiv:

$$\Gamma_Z(X,\widetilde{I}) = \Gamma(X,\widetilde{J}) \to \Gamma(U,\widetilde{J}) = \Gamma_Z(U,\widetilde{I})$$

Beweis von 9.28. Sei $\mathcal{F} = \widetilde{M}$ eine quasikohärente Garbe über einem noetherschen Ring A. Sei $0 \to M \to I^{\bullet}$ eine injektive Auflösung in $\mathbf{Mod}(A)$. Wir erhalten eine exakte Folge $0 \to \mathcal{F} \to \widetilde{I}^{\bullet}$. Nach Satz 9.30 sind alle \widetilde{I}^i welk und somit azyklisch für $\Gamma(X, -)$. Daher kann diese Auflösung zur Kohomologieberechnung benutzt werden. Anwendung von $\Gamma(X, -)$ gibt gerade die exakte Sequenz $0 \to M \to I^{\bullet}$. Also ist $H^i(X, \mathcal{F}) = 0$ für alle i > 0.

Korollar 9.32. Sei X ein noethersches Schema und $\mathcal{F} \in \mathbf{Qcoh}(X)$. Dann kann \mathcal{F} in eine welke quasikohärente Garbe eingebettet werden.

Beweis. Sei $X = \bigcup_i U_i$ eine endliche, offen affine Überdeckung mit $U_i = \operatorname{Spec}(A_i)$ und $\mathcal{F}|_{U_i} \cong \widetilde{M}_i$. Setze:

$$\mathcal{G} = \bigoplus_{i} f_{i*} \widetilde{I}_{i}$$

wobei $f_i: U_i \hookrightarrow X$ die kanonische Inklusion und $M_i \hookrightarrow I_i$ mit injektivem I_i . Es folgt $\mathcal{F}|_{U_i} = \widetilde{M}_i \hookrightarrow \widetilde{I}_i$. Betrachte den kanonischen Morphismus $\mathcal{F} \to f_{i*}f_i^*\mathcal{F} = f_{i*}\mathcal{F}|_{U_i} \to f_{i*}\widetilde{I}_i$. Dieser induziert einen Morphismus $\mathcal{F} \to \bigoplus_i f_{i*}\widetilde{I}_i = \mathcal{G}$. Betrachtet man die Halme, so sieht man, dass dieser Morphismus injektiv ist.

Nach Satz 9.30 sind \widetilde{I}_i alle welk, daher sind die $f_{i*}\widetilde{I}_i$ welk und somit auch \mathcal{G} . Da alle \widetilde{I}_i quasikohärent sind, sind auch alle $f_{i*}\widetilde{I}_i$ quasikohärent nach Satz 5.13 (iii) und somit ist auch \mathcal{G} quasikohärent.

Theorem 9.33. (Serre) Sei X ein noethersches Schema. Dann sind folgende Aussagen äquivalent:

- (i) X ist affin.
- (ii) $H^i(X, \mathcal{F}) = 0$ für alle quasikohärenten \mathcal{F} und i > 0.
- (iii) $H^1(X, \mathcal{J}) = 0$ für alle kohärenten Idealgarben \mathcal{J} .

Beweis. Siehe z.B. Hartshorne: Algebraic Geometry III 3.7.

3.2 Der Čech-Komplex

Definition 10 $-\varepsilon$ **.1.** Sei X ein topologischer Raum, \mathcal{F} eine Prägarbe abelscher Gruppen auf X, I eine total geordnete Indexmenge und $\mathcal{U} = (U_i)_{i \in I}$ eine offene Überdeckung von X. Wir definieren:

$$C^{k}(\mathcal{U}, \mathcal{F}) = \prod_{i_{0} < \dots < i_{k}} \mathcal{F}(U_{i_{0}} \cap \dots \cap U_{i_{k}}), \quad k \ge 0$$

mit Randoperatoren

$$d: C^k(\mathcal{U}, \mathcal{F}) \to C^{k+1}(\mathcal{U}, \mathcal{F})$$

wobei diese für $\alpha = (\alpha_{i_0,\dots,i_k})_{i_0 < \dots < i_k}$ durch

$$(d\alpha)_{i_0,\dots,i_{k+1}} = \sum_{j=0}^{k+1} (-1)^j \cdot \alpha_{i_0,\dots,\hat{i_j},\dots,i_{k+1}} |_{U_{i_0} \cap \dots \cap U_{i_{k+1}}}$$

definiert sind. Die Folge $C^{\bullet}(\mathcal{U}, \mathcal{F})$ heißt $\check{C}ech$ -Komplex von \mathcal{U} mit Koeffizienten in \mathcal{F} .

Satz 10- ε .2. Es gilt für $C^{\bullet}(\mathcal{U}, \mathcal{F})$:

- (i) $d \circ d = 0$
- (ii) Für eine Prägarbe \mathcal{F} auf X und eine offene Überdeckung \mathcal{U} setzen wir:

$$\check{\mathbf{H}}^{k}(\mathcal{U},\mathcal{F}) = \frac{\ker(C^{k}(\mathcal{U},\mathcal{F}) \to C^{k+1}(\mathcal{U},\mathcal{F}))}{\operatorname{im}(C^{k-1}(\mathcal{U},\mathcal{F}) \to C^{k}(\mathcal{U},\mathcal{F}))}, \quad k \ge 0$$

Dann ist $\check{\mathbf{H}}^k(\mathcal{U}, -)$ ein Funktor nach \mathbf{Ab} .

(iii) Es gilt
$$\check{\mathrm{H}}^0(\mathcal{U}, -) = \Gamma(X, -)$$
.

Definition 10 $-\varepsilon$ **.3.** $\check{\mathrm{H}}^k(\mathcal{U},\mathcal{F})$ heißt k-te $\check{C}ech$ -Kohomologiegruppe von \mathcal{U} mit Koeffizienten in \mathcal{F} .

Bemerkung 10- ε .4. Es lässt sich auch bilden:

$$\check{\mathrm{H}}^{\bullet}(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} \check{\mathrm{H}}^{\bullet}(\mathcal{U},\mathcal{F})$$

Es gilt stets $\check{\mathrm{H}}^1(X,\mathcal{F})\cong \mathrm{H}^1(X,\mathcal{F})$. Im Allgemeinen gibt es keine Isomorphie für höhere Kohomologiegruppen.

3.3 Kohomologie des projektiven Raumes

Satz 10.1. Sei A ein noetherscher Ring, $S = A[X_0, ..., X_r]$ für ein $r \ge 1$ und $X = \text{Proj}(S) = \mathbf{P}_A^r$. Dann gilt:

- (i) $\bigoplus_{n\in\mathbb{Z}} H^0(X,\mathcal{O}_X(n)) \cong S$ ist ein Isomorphismus von graduierten S-Moduln.
- (ii) $H^i(X, \mathcal{O}_X(n)) = 0$ für 0 < i < r und alle $n \in \mathbb{Z}$.
- (iii) $H^r(X, \mathcal{O}_X(-r-1)) \cong A$
- (iv) Für alle $n \in \mathbb{Z}$ ist die natürliche Paarung

$$\mathrm{H}^0(X,\mathcal{O}_X(n)) \times \mathrm{H}^r(X,\mathcal{O}_X(-n-r-1)) \to \mathrm{H}^r(X,\mathcal{O}_X(-r-1)) \cong A$$

eine perfekte Paarung freier A-Moduln, d.h. sie induziert einen Isomorphismus:

$$H^0(X, \mathcal{O}_X(n))' \cong H^r(X, \mathcal{O}_X(-n-r-1))$$

wobei ' den Dualraum bezeichnet. Diese Paarung stimmt mit dem Cup-Produkt überein.

Lemma 10.2. Sei X ein separiertes, noethersches Schema, \mathcal{U} eine offen affine Überdeckung und \mathcal{F} eine quasikohärente Garbe auf X. Dann gilt:

$$\check{\mathrm{H}}^{\bullet}(\mathcal{U},\mathcal{F}) = \mathrm{H}^{\bullet}(X,\mathcal{F})$$

Beweis von 10.1. Setze $\mathcal{F} = \bigoplus_{n \in \mathbb{Z}} \mathcal{O}_X(n)$. Da die Kohomologie mit direkten Summen vertauscht, liefert $H^{\bullet}(X,\mathcal{F})$ gerade alle nötigen Daten. Sei $\mathcal{U} = (U_i)_{i=0,\dots,r}$ mit $U_i = D_+(X_i)$. Nach Lemma 10.2 gilt $H^{\bullet}(X,\mathcal{F}) = \check{H}^{\bullet}(\mathcal{U},\mathcal{F})$. Nach Satz 5.21 gilt:

$$\mathcal{F}(U_{i_0} \cap \dots \cap U_{i_k}) = \mathcal{F}(D_+(X_{i_0} \dots X_{i_k})) \cong S_{X_{i_0} \dots X_{i_k}}$$

Somit ist:

$$C^{\bullet}(\mathcal{U}, \mathcal{F}) = \Big(\prod_{i_0 \in I} S_{X_{i_0}} \to \prod_{i_0 < i_1} S_{X_{i_0} X_{i_1}} \to \cdots \to S_{X_0 \cdots X_r} \to 0 \to \cdots\Big)$$

- (i) folgt aus Satz 5.25.
- (iii) Es gilt:

$$H^r(X, \mathcal{F}) = \operatorname{coker}\left(d: \prod_k S_{X_0 \cdots \widehat{X_k} \cdots X_r} \to S_{X_0 \cdots X_r}\right)$$

Wir betrachten $S_{X_0\cdots X_r}$ als freien A-Modul mit Basis $\{X_0^{e_0}\cdots X_r^{e_r}\mid e_i\in\mathbb{Z}\}$. Damit ist das Bild von d der freie Untermodul, der von den Monomen $X_0^{e_0}\cdots X_r^{e_r}$ mit $e_i\geq 0$

erzeugt wird. Somit ist $H^r(X, \mathcal{F})$ der freie A-Modul mit Basis $\{X_0^{e_0} \cdots X_r^{e_r} \mid e_i < 0\}$. Nun ist $H^r(X, \mathcal{O}_X(-r-1))$ gerade die Elemente vom Grad -r-1 in $H^r(X, \mathcal{F})$, d.h. gerade der Untermodul, der von den Monomen $\{X_0^{e_0} \cdots X_r^{e_r} \mid e_i < 0, \sum e_i = -r-1\}$ erzeugt wird. Somit ist:

$$H^r(X,\mathcal{F}) = \frac{1}{X_0 \cdots X_r} A \cong A$$

(iv) Sei zunächst n < 0. Dann ist $H^0(X, \mathcal{O}_X(n)) = 0$ nach (i). Da -n - r - 1 > -r - 1, folgt nach der Rechnung in (iii) auch $H^r(X, \mathcal{O}_X(-n - r - 1)) = 0$ und die Dualität ist trivial.

Sei nun $n \geq 0$. Dann ist $H^0(X, \mathcal{O}_X(n))$ ein freier A-Modul mit Basis $\{X_0^{m_0} \cdots X_r^{m_r} \mid m_i \geq 0, \sum m_i = n\}$ und $H^r(X, \mathcal{O}_X(-n-r-1))$ ein freier A-Modul mit Basis $\{X_0^{e_0} \cdots X_r^{e_r} \mid e_i < 0, \sum e_i = -n-r-1\}$. Auf Ebene der Čech-Kohomologie ist die Paarung gegeben durch:

$$H^{0}(X, \mathcal{O}_{X}(n)) \times H^{r}(X, \mathcal{O}_{X}(-n-r-1)) \to H^{r}(X, \mathcal{O}_{X}(-r-1)),$$

 $(X_{0}^{m_{0}} \cdots X_{r}^{m_{r}}, X_{0}^{e_{0}} \cdots X_{r}^{e_{r}}) \mapsto X_{0}^{m_{0}+e_{0}} \cdots X_{r}^{m_{r}+e_{r}}$

In $H^r(X, \mathcal{O}_X(-r-1))$ gilt $X_0^{m_0+e_0} \cdots X_r^{m_r+e_r} \neq 0$ genau dann, wenn $m_i + e_i = -1$, d.h. $e_i = -m_i - 1$, für alle i gilt. Somit bilden die dualen Elemente von $X_0^{-m_0-1} \cdots X_r^{-m_r-1}$, $m_i \geq 0$, $\sum m_i = n$ eine Basis von $H^r(X, \mathcal{O}_X(-n-r-1))^*$. Die Paarung ist somit perfekt.

(ii) Wir zeigen die Aussage per Induktion über r. Für r=1 ist die Aussage trivial. Wir lokalisieren $C^{\bullet}(\mathcal{U}, \mathcal{F})$ homogen nach X_r und setze $\mathcal{U}_r = (U_i \cap U_r)_{i=0,\dots,r}$. Dann gilt:

$$C^{\bullet}(\mathcal{U},\mathcal{F})_{(X_r)} = C^{\bullet}(\mathcal{U}_r,\mathcal{F}|_{U_r})$$

Insbesondere ist $U_r \in \mathcal{U}_r$, also folgt $\check{\mathbf{H}}^k(\mathcal{U}_r, \mathcal{F}|_{U_r}) = 0$ für k > 0. Ferner ist die homogene Lokalisierung ein exakter Funktor und vertauscht somit mit der Kohomologie. Es folgt:

$$0 = \check{\mathrm{H}}^{k}(\mathcal{U}_{r}, \mathcal{F}|_{U_{r}}) = \mathrm{H}^{k}(C^{\bullet}(\mathcal{U}_{r}, \mathcal{F}|_{U_{r}}))$$
$$= \mathrm{H}^{k}(C^{\bullet}(\mathcal{U}, \mathcal{F})_{(X_{r})}) = \check{\mathrm{H}}^{k}(\mathcal{U}, \mathcal{F})_{(X_{r})} = \mathrm{H}^{k}(X, \mathcal{F})_{(X_{r})}$$

Also wird für alle k > 0 jedes $\alpha \in H^k(X, \mathcal{F})$ durch eine Potenz von X_r annulliert. Wir zeigen nun, dass die X_r -Multiplikation $H^k(X, \mathcal{F}) \to H^k(X, \mathcal{F})$ für 0 < k < r injektiv ist. Daraus folgt die Behauptung.

Betrachte die exakte Sequenz von graduierten S-Moduln:

$$0 \longrightarrow S(-1) \xrightarrow{\cdot X_r} S \longrightarrow S/(X_r) \longrightarrow 0$$

Sie wird zu einer exakten Sequenz von Garben:

$$0 \longrightarrow \mathcal{O}_X(-1) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_H \longrightarrow 0$$

mit $H = V_+(X_r)$. Twiste diese Sequenz mit allen $\mathcal{O}_X(n)$ und bilde direkte Summe. Diese Operationen sind alle exakt, daher erhalten wir die exakte Sequenz:

$$0 \longrightarrow \mathcal{F}(-1) \xrightarrow{\cdot X_r} \mathcal{F} \longrightarrow \mathcal{F}_H = \bigoplus_{n \in \mathbb{Z}} \mathcal{O}_H(n) \longrightarrow 0$$

Betrachte die lange exakte Kohomologiesequenz:

$$\cdots \longrightarrow \mathrm{H}^{k-1}(X,\mathcal{F}_H) \longrightarrow \mathrm{H}^k(X,\mathcal{F}(-1)) \xrightarrow{\cdot X_r} \mathrm{H}^k(X,\mathcal{F}) \longrightarrow \mathrm{H}^k(X,\mathcal{F}_H) \longrightarrow \cdots$$

Nach Induktionsannahme ist $H^k(H, \mathcal{F}_H) = 0$ für 0 < k < r - 1, da $H \cong \mathbf{P}_A^{r-1}$. Nach Lemma 9.26 gilt $H^k(H, \mathcal{F}_H) = H^k(X, \mathcal{F}_H)$. Somit sind die X_r -Multiplikationen $H^k(X, \mathcal{F}(-1)) \to H^k(X, \mathcal{F})$ für 1 < k < r - 1 Isomorphismen.

Für k=1 betrachte die exakte Sequenz $0 \to S(-1) \to S \to S/(X_r) \to 0$:

$$0 \longrightarrow \mathrm{H}^0(X, \mathcal{F}(-1)) \longrightarrow \mathrm{H}^0(X, \mathcal{F}) \longrightarrow \mathrm{H}^0(X, \mathcal{F}_H) \longrightarrow 0$$

Wir erhalten die exakte Folge:

$$0 \longrightarrow \mathrm{H}^1(X, \mathcal{F}(-1)) \xrightarrow{\cdot X_r} \mathrm{H}^1(X, \mathcal{F}) \longrightarrow \mathrm{H}^1(X, \mathcal{F}_H) = 0 \longrightarrow \cdots$$

Für k = r - 1 betrachte die exakte Folge:

$$0 = \mathrm{H}^{r-2}(X, \mathcal{F}_H) \longrightarrow \mathrm{H}^{r-1}(X, \mathcal{F}(-1)) \xrightarrow{\cdot X_r} \mathrm{H}^{r-1}(X, \mathcal{F})$$

Satz 10.3. (Serre) Sei X ein projektives Schema über einem noetherschen Ring A, $\mathcal{O}_X(1)$ eine sehr ample Garbe auf X über $\operatorname{Spec}(A)$ und \mathcal{F} eine kohärente Garbe auf X. Dann gilt:

- (i) $H^{i}(X, \mathcal{F})$ ist endlich erzeugter A-Modul für alle $i \geq 0$.
- (ii) Es gibt ein n_0 , so dass $H^i(X, \mathcal{F}(n)) = 0$ für alle i > 0 und $n \ge n_0$.

Bemerkung 10.4. Als Spezialfall von (i) gilt Satz 5.39: $\Gamma(X, \mathcal{F})$ ist endlich erzeugter A-Modul für kohärente Garben \mathcal{F} .

Beweis. Da $\mathcal{O}_X(1)$ sehr ampel ist, gibt es eine Immersion $i: X \hookrightarrow \mathbf{P}_A^r$ für ein r mit $\mathcal{O}_X(1) = i^*\mathcal{O}(1)$. Aus der Projektivität folgt nach Theorem 4.24 die Eigentlichkeit von $X \to \operatorname{Spec}(A)$. Nun ist $\mathbf{P}_A^r \to \operatorname{Spec}(A)$ separiert, also folgt nach Korollar 4.22 (v) die Eigentlichkeit von $X \to \mathbf{P}_A^r$, insbesondere ist i abgeschlossen. Da \mathcal{F} kohärent ist, ist auch $i_*\mathcal{F}$ nach Lemma 5.36 (ii) kohärent auf \mathbf{P}_A^r und nach Lemma 9.26 gilt $H^i(X, \mathcal{F}(n)) = H^i(\mathbf{P}_A^r, i_*\mathcal{F}(n))$. Wir können also o.B.d.A. $X = \mathbf{P}_A^r$ annehmen.

Die Aussagen (i) und (ii) gelten für Garben der Form $\mathcal{O}_X(q), q \in \mathbb{Z}$ nach Satz 10.1, dem Verschwindungssatz und der Tatsache, dass für -q-r-1 < 0, also q > -r-1, gilt:

$$H^r(X, \mathcal{O}_X(q)) \cong \text{Hom}(H^0(X, \mathcal{O}_X(-q-r-1)), A) = 0$$

Es folgt (i) und (ii) für endliche direkte Summen von $\mathcal{O}_X(q)$, $q \in \mathbb{Z}$. Sei nun \mathcal{F} beliebig kohärent. Die allgemeine Aussage beweisen wir nun per absteigende Induktion über i. Für i > r folgt alles aus dem Verschwindungssatz. Sei nun $i \le r$ und die Aussage für höhere i bewiesen. Nach Korollar 5.38 gibt es eine exakte Sequenz:

$$0 \longrightarrow \mathcal{R} \longrightarrow \mathcal{O}_X(q)^N \longrightarrow \mathcal{F} \longrightarrow 0$$

 \mathcal{R} ist kohärent nach Satz 5.12. Betrachte die lange exakte Kohomologiesequenz:

$$\cdots \longrightarrow \mathrm{H}^i(X, \mathcal{O}_X(q)^N) \longrightarrow \mathrm{H}^i(X, \mathcal{F}) \longrightarrow \mathrm{H}^{i+1}(X, \mathcal{R}) \longrightarrow \cdots$$

Die äußeren beiden Gruppen sind endlich erzeugt. Da A noethersch ist, folgt die endliche Erzeugbarkeit von $H^i(X, \mathcal{F})$. Twisten wir die Folge um n ergibt:

$$\cdots \longrightarrow \mathrm{H}^i(X, \mathcal{O}_X(q+n)^N) \longrightarrow \mathrm{H}^i(X, \mathcal{F}(n)) \longrightarrow \mathrm{H}^{i+1}(X, \mathcal{R}(n)) \longrightarrow \cdots$$

Die äußeren beiden Gruppen verschwinden für hinreichend große n, daher verschwindet auch $\mathcal{H}^i(X,\mathcal{F}(n))$ für $n \geq n_0$. Da die Kohomologiegruppen für fast alle i komplett verschwinden, kann n_0 unabhängig von i gewählt werden.

Satz 10.5. Sei A ein noetherscher Ring und X eigentlich über $\operatorname{Spec}(A)$. Sei \mathcal{L} eine invertierbare Garbe. Dann sind äquivalent:

- (i) \mathcal{L} ist ampel.
- (ii) Für alle kohärenten Garben \mathcal{F} auf X gibt es ein n_0 , so dass $H^i(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n}) = 0$ für alle i > 0 und $n \ge n_0$.

Beweis.

• Sei \mathcal{L} ampel auf X. Nach Satz 7.7 existiert ein m > 0, so dass $\mathcal{L}^{\otimes m}$ sehr ampel auf X bzgl. Spec(A) ist. Da X eigentlich über A ist, folgt nach Satz 5.32 die Projektivität von $X \to \operatorname{Spec}(A)$. Wenden wir Satz 10.3 auf \mathcal{F} , $\mathcal{F} \otimes \mathcal{L}$, $\mathcal{F} \otimes \mathcal{L}^{\otimes 2}$, ..., $\mathcal{F} \otimes \mathcal{L}^{\otimes (m-1)}$ an, so erhalten wir (ii).

• Sei nun (ii) erfüllt und \mathcal{F} eine kohärente Garbe auf X. Wir zeigen, dass es ein n_0 existiert, so dass für alle $n \geq n_0$ die Garbe $\mathcal{F} \otimes \mathcal{L}^{\otimes n}$ von globalen Schnitten erzeugt wird.

3.4 Ext-Gruppen

Sei \mathcal{F} ein \mathcal{O}_X -Modul auf einem geringten Raum (X, \mathcal{O}_X) . Wir haben folgende linksexakte Funktoren:

$$\operatorname{Hom}(\mathcal{F}, -) : \operatorname{\mathbf{Mod}}(X) \to \operatorname{\mathbf{Ab}}, \quad \operatorname{\mathcal{H}om}(\mathcal{F}, -) : \operatorname{\mathbf{Mod}}(X) \to \operatorname{\mathbf{Mod}}(X)$$

Definition 11.1. Sei (X, \mathcal{O}_X) ein geringter Raum und $\mathcal{F} \in \mathbf{Mod}(X)$. Für $i \geq 0$ definieren wir:

$$\operatorname{Ext}^{i}(\mathcal{F}, -) = \operatorname{R}^{i} \operatorname{Hom}(\mathcal{F}, -), \quad \operatorname{\mathcal{E}xt}^{i}(\mathcal{F}, -) = \operatorname{R}^{i} \operatorname{\mathcal{H}om}(\mathcal{F}, -)$$

Bemerkung 11.2. Es gilt:

- (i) $\operatorname{Ext}^0 = \operatorname{Hom}, \ \mathcal{E}\operatorname{xt}^0 = \mathcal{H}\operatorname{om}$
- (ii) $\operatorname{Ext}^{i}(\mathcal{F}, \mathcal{J}) = 0$ und $\operatorname{\mathcal{E}xt}^{i}(\mathcal{F}, \mathcal{J}) = 0$ für alle i > 0 und injektive \mathcal{J} .

Lemma 11.3. Sei $\mathcal{J} \in \mathbf{Mod}(X)$ injektiv und $U \subset_{\mathbf{o}} X$. Dann ist $\mathcal{J}|_{U} \in \mathbf{Mod}(U)$ injektiv.

Beweis. Sei $j: U \hookrightarrow X$ die natürliche Inklusion. Sei $\mathcal{F} \subset \mathcal{G}$ in $\mathbf{Mod}(U)$ und $\mathcal{F} \to \mathcal{J}|_U$ gegeben. Es gilt $j_!\mathcal{F} \subset j_!\mathcal{G}$ und wir erhalten einen Morphismus $j_!\mathcal{F} \to j_!(\mathcal{J}|_U) \hookrightarrow \mathcal{J}$. Da \mathcal{J} injektiv ist, existiert eine Fortsetzung $j_!\mathcal{G} \to \mathcal{J}$. Somit ist $\mathcal{G} = (j_!\mathcal{G})|_U \to \mathcal{J}|_U$ eine Fortsetzung von $\mathcal{F} = (j_!\mathcal{F})|_U \to \mathcal{J}|_U$.

Satz 11.4. Sei (X, \mathcal{O}_X) ein geringter Raum und $U \subset_{\mathbf{o}} X$. Dann gilt für $\mathcal{F}, \mathcal{G} \in \mathbf{Mod}(X)$ und alle $i \geq 0$:

$$\mathcal{E}xt^{i}(\mathcal{F},\mathcal{G})|_{U} \cong \mathcal{E}xt^{i}(\mathcal{F}|_{U},\mathcal{G}|_{U})$$

Beweis. Beide Seiten sind δ -Funktoren $\mathbf{Mod}(X) \to \mathbf{Mod}(X)$ und gleich für i = 0. Sie verschwinden beide auf Injektiven, sind somit auslöschbar, also universell.

Satz 11.5. Sei \mathcal{G} ein \mathcal{O}_X -Modul. Dann gilt:

- (i) $\operatorname{\mathcal{E}xt}^0(\mathcal{O}_X,\mathcal{G}) \cong \mathcal{G}$
- (ii) $\operatorname{Ext}^{i}(\mathcal{O}_{X},\mathcal{G}) = 0$ für alle i > 0
- (iii) $\operatorname{Ext}^{i}(\mathcal{O}_{X},\mathcal{G}) \cong \operatorname{H}^{i}(X,\mathcal{G})$ für alle $i \geq 0$

3.4. EXT-GRUPPEN 111

Beweis. Es gilt
$$\mathcal{H}om(\mathcal{O}_X, -) = \mathrm{Id}$$
 und $\mathrm{Hom}(\mathcal{O}_X, -) = \Gamma(X, -)$.

Satz 11.6. Sei $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ eine exakte Folge in $\mathbf{Mod}(X)$ und $\mathcal{G} \in \mathbf{Mod}(X)$. Dann ist die folgende Folge exakt:

$$0 \to \operatorname{Hom}(\mathcal{F}'',\mathcal{G}) \to \operatorname{Hom}(\mathcal{F},\mathcal{G}) \to \operatorname{Hom}(\mathcal{F}',\mathcal{G}) \to \operatorname{Ext}^1(\mathcal{F}'',\mathcal{G}) \to \operatorname{Ext}^1(\mathcal{F},\mathcal{G}) \to \cdots$$

Analog für \mathcal{H} om und \mathcal{E} xt.

Beweis. Sei $0 \to \mathcal{G} \to \mathcal{J}^{\bullet}$ eine injektive Auflösung. Dann ist $\text{Hom}(-,\mathcal{J}^i)$ exakt. Es folgt daher die Exaktheit von:

$$0 \longrightarrow \operatorname{Hom}(\mathcal{F}'', \mathcal{J}^{\bullet}) \longrightarrow \operatorname{Hom}(\mathcal{F}, \mathcal{J}^{\bullet}) \longrightarrow \operatorname{Hom}(\mathcal{F}', \mathcal{J}^{\bullet}) \longrightarrow 0$$

Die lange exakte Kohomologiesequenz liefert die Aussage. Die Aussage für \mathcal{E} xt folgt analog mithilfe von Lemma 11.3.

Satz 11.7. Sei $\cdots \to \mathcal{L}_1 \to \mathcal{L}_0 \to \mathcal{F} \to 0$ eine exakte Sequenz von \mathcal{O}_X -Moduln, wobei alle \mathcal{L}_i lokal frei von endlichem Rang ist. Dann gilt für alle \mathcal{O}_X -Moduln \mathcal{G} :

$$\operatorname{\mathcal{E}xt}^{i}(\mathcal{F},\mathcal{G}) \cong \operatorname{H}^{i}(\operatorname{\mathcal{H}om}(\mathcal{L}_{\bullet},\mathcal{G}))$$

Beweis. Beide Seiten sind δ-Funktoren $\mathbf{Mod}(X) \to \mathbf{Mod}(X)$ in \mathcal{G} , die gleich für i = 0 sind. Beide Seiten verschwinden für injektive \mathcal{G} , also sind beide δ-Funktoren universell. \square

Beispiel 11.8. Sei X ein quasiprojektives Schema über $\operatorname{Spec}(A)$ mit A noethersch. Nach Korollar 5.38 ist jede kohärente Garbe von X ein Quotient von einer lokal freien Garbe von endlichem Rang. Somit besitzt jede kohärente Garbe eine lokal freie Auflösung $\mathcal{L}_{\bullet} \to \mathcal{F} \to 0$ von endlichem Rang. Somit kann $\operatorname{\mathcal{E}xt}^{\bullet}(\mathcal{F},-)$ durch eine lokal freie Auflösung von endlichem Rang in der ersten Variable berechnet werden. $\operatorname{\mathbf{Mod}}(X)$ besitzt aber nicht genügend viele Projektive.

Lemma 11.9. Sei $\mathcal{L} \in \mathbf{Mod}(X)$ lokal frei von endlichem Rang und $\mathcal{J} \in \mathbf{Mod}(X)$ injektiv. Dann ist $\mathcal{J} \otimes \mathcal{L}$ injektiv.

Beweis. Wir zeigen, dass $\text{Hom}(-, \mathcal{J} \otimes \mathcal{L})$ exakter Funktor ist. Nun gilt:

$$\operatorname{Hom}(-,\mathcal{J}\otimes\mathcal{L})=\operatorname{Hom}(-\otimes\mathcal{L}^{\vee},\mathcal{J})$$

mit $\mathcal{L}^{\vee} = \mathcal{H}om(\mathcal{L}, \mathcal{O}_X)$. Da \mathcal{J} injektiv und $-\otimes \mathcal{L}^{\vee}$ exakt ist, folgt die Behauptung. \square

Satz 11.10. Sei \mathcal{L} eine lokal freie Garbe von endlichem Rang und $\mathcal{L}^{\vee} = \mathcal{H}om(\mathcal{L}, \mathcal{O}_X)$ sein Dual. Dann gilt für alle $\mathcal{F}, \mathcal{G} \in \mathbf{Mod}(X)$:

$$\operatorname{Ext}^{i}(\mathcal{F} \otimes \mathcal{L}, \mathcal{G}) \cong \operatorname{Ext}^{i}(\mathcal{F}, \mathcal{L}^{\vee} \otimes \mathcal{G})$$
$$\operatorname{\mathcal{E}xt}^{i}(\mathcal{F} \otimes \mathcal{L}, \mathcal{G}) \cong \operatorname{\mathcal{E}xt}^{i}(\mathcal{F}, \mathcal{L}^{\vee} \otimes \mathcal{G})$$

Beweis. Für i = 0 sind die Aussagen klar. Es ist $- \otimes \mathcal{L}^{\vee}$ ein exakter Funktor. Somit sind beide Seiten δ-Funktoren in \mathcal{G} , die auf Injektive \mathcal{G} verschwinden und daher universell. \square

Satz 11.11. Sei X ein noethersches Schema, \mathcal{F} eine kohärente Garbe auf X, \mathcal{G} ein \mathcal{O}_X -Modul und $x \in X$. Dann gilt:

$$\operatorname{\mathcal{E}xt}^i(\mathcal{F},\mathcal{G})_x \cong \operatorname{Ext}^i_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{G}_x) = \operatorname{R}^i \operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x,-)(\mathcal{G}_x)$$

Beweis. Die Aussage ist lokal, sei also o.B.d.A. X affin. Dann besitzt \mathcal{F} eine lokal freie Auflösung von endlichem Rang $\mathcal{L}_{\bullet} \to \mathcal{F} \to 0$ nach 11.8. Somit ist $\mathcal{L}_{\bullet,x} \to \mathcal{F}_x \to 0$ eine freie Auflösung. Wir können diese Auflösung zur Berechnung der Kohomologie verwenden. Da $\mathcal{H}om(\mathcal{L},\mathcal{G})_x = \operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{L}_x,\mathcal{G}_x)$ für lokal freie Garben \mathcal{L} und Halmbildung exakt ist, folgt die Gleichheit der Ext-Gruppen.

Satz 11.12. Sei X ein projektives Schema über einem noetherschen Ring A, $\mathcal{O}_X(1)$ eine sehr ample Garbe auf X und \mathcal{F}, \mathcal{G} kohärente Garben auf X. Dann existiert ein $n_0 = n_0(\mathcal{F}, \mathcal{G}) > 0$, so dass für alle $n \geq n_0$ und alle $i \geq 0$ gilt:

$$\operatorname{Ext}^{i}(\mathcal{F},\mathcal{G}(n)) = \Gamma(X,\mathcal{E}\operatorname{xt}^{i}(\mathcal{F},\mathcal{G}(n)))$$

Lemma 11.13. Sei X ein projektives Schema über einem noetherschen Ring A, $\mathcal{O}_X(1)$ eine sehr ample Garbe auf X und $\mathcal{F}^1 \to \mathcal{F}^2 \to \cdots \to \mathcal{F}^r$ eine exakte Folge kohärenter Garben. Dann gibt es ein m_0 , so dass für alle $m \geq m_0$ die folgende Sequenz exakt ist:

$$\Gamma(X, \mathcal{F}^1(m)) \longrightarrow \Gamma(X, \mathcal{F}^2(m)) \longrightarrow \cdots \longrightarrow \Gamma(X, \mathcal{F}^r(m))$$

Beweis von 11.12. Für i=0 ist die Aussage klar. Sei zunächst $\mathcal{F}=\mathcal{O}_X$. Dann folgt aus Satz 11.5 und Satz 10.3 für alle i>0 und hinreichend großes n:

$$\operatorname{Ext}^{i}(\mathcal{O}_{X},\mathcal{G}(n)) = \operatorname{H}^{i}(X,\mathcal{G}(n)) = 0 = \Gamma(X,\mathcal{E}\operatorname{xt}^{i}(\mathcal{O}_{X},\mathcal{G}(n)))$$

Sei nun \mathcal{F} lokal frei von endlichem Rang. Nach Satz 11.10 gilt für hinreichend große n:

$$\operatorname{Ext}^{i}(\mathcal{F}, \mathcal{G}(n)) = \operatorname{Ext}^{i}(\mathcal{O}_{X}, \mathcal{F}^{\vee} \otimes \mathcal{G}(n)) = 0$$
$$= \Gamma(X, \mathcal{E}\operatorname{xt}^{i}(\mathcal{O}_{X}, \mathcal{F}^{\vee} \otimes \mathcal{G}(n))) = \Gamma(X, \mathcal{E}\operatorname{xt}^{i}(\mathcal{F}, \mathcal{G}(n)))$$

Sei nun \mathcal{F} beliebig kohärent. Nach Korollar 5.38 gibt es eine kurze exakte Folge $0 \to \mathcal{R} \to \mathcal{L} \to \mathcal{F} \to 0$ mit einem lokal freien \mathcal{L} von endlichem Rang. Wir erhalten für hinreichend große n die folgende exakte Folge:

$$0 \longrightarrow \operatorname{Hom}(\mathcal{F}, \mathcal{G}(n)) \longrightarrow \operatorname{Hom}(\mathcal{L}, \mathcal{G}(n)) \longrightarrow \operatorname{Hom}(\mathcal{R}, \mathcal{G}(n)) \longrightarrow \operatorname{Ext}^{1}(\mathcal{F}, \mathcal{G}(n)) \longrightarrow 0$$

Analog für \mathcal{H} om und \mathcal{E} xt:

$$0 \longrightarrow \mathcal{H}om(\mathcal{F}, \mathcal{G}(n)) \longrightarrow \mathcal{H}om(\mathcal{L}, \mathcal{G}(n)) \longrightarrow \mathcal{H}om(\mathcal{R}, \mathcal{G}(n)) \longrightarrow \mathcal{E}xt^{1}(\mathcal{F}, \mathcal{G}(n)) \longrightarrow 0$$

Beachte $\operatorname{Ext}^j(\mathcal{R},\mathcal{G}(n)) \cong \operatorname{Ext}^{j+1}(\mathcal{F},\mathcal{G}(n))$ und $\operatorname{\mathcal{E}xt}^j(\mathcal{R},\mathcal{G}(n)) \cong \operatorname{\mathcal{E}xt}^{j+1}(\mathcal{F},\mathcal{G}(n))$ für $j \geq 1$. Da \mathcal{R} kohärent ist, folgt die Aussage per Induktion über j. Für j = 0 twisten wir die obige Folge genug und wenden $\Gamma(X,-)$ an. Lemma 11.13 gibt uns ein m, so dass:

$$\Gamma(X, \mathcal{E}xt^{1}(\mathcal{F}, \mathcal{G}(n+m))) = \operatorname{Ext}^{1}(\mathcal{F}, \mathcal{G}(n+m))$$

3.5 Die Serre-Dualität

Satz 12.1. (Dualität für den projektiven Raum) Sei $X = \mathbf{P}_k^n$ und $\omega_X = \bigwedge^n \Omega_{X/k}$ die n-te äußere Potenz von $\Omega_{X/k}$, die sogenannte kanonische Garbe auf X. Dann ist ω_X eine invertierbare Garbe und es gilt:

- (i) $H^n(X, \omega_X) \cong k$
- (ii) Sei \mathcal{F} kohärent auf X. Dann ist

$$\operatorname{Hom}(\mathcal{F}, \omega_X) \times \operatorname{H}^n(X, \mathcal{F}) \to \operatorname{H}^n(X, \omega_X) \cong k$$

eine perfekte Paarung endlich-dimensionierter k-Vektorräume.

(iii) Für alle $i \geq 0$ gibt es eine natürliche Isomorphie von kontravarianten Funktoren $\mathbf{Coh}(X) \to \mathbf{Ab}$:

$$\operatorname{Ext}^{i}(-,\omega_{X}) \cong \operatorname{H}^{n-i}(X,-)'$$

wobei ' den Dualraum bezeichnet. Für i=0 ist diese gerade durh die Paarung von (ii) induziert.

Beweis. Da die Garbe der relativen Differentiale $\Omega_{X/k}$ lokal frei vom Rang n ist, ist ω_X vom Rang $\binom{n}{n} = 1$, also invertierbar.

(i) Aus der exakten Sequenz in Satz 8.23

$$0 \longrightarrow \Omega_{X/k} \longrightarrow \mathcal{O}_X(-1)^{n+1} \longrightarrow \mathcal{O}_X \longrightarrow 0$$

folgt $\omega_X = \bigwedge^n \Omega_{X/k} \cong \mathcal{O}_X(-n-1)$. Nach Satz 10.1 (iii) gilt $H^n(X, \mathcal{O}_X(-n-1)) \cong k$.

(ii) Ein $f \in \text{Hom}(\mathcal{F}, \omega_X)$ liefert $H^n(X, \mathcal{F}) \to H^n(X, \omega_X)$. Dies induziert eine Paarung:

$$\operatorname{Hom}(\mathcal{F}, \omega_X) \times \operatorname{H}^n(X, \mathcal{F}) \to \operatorname{H}^n(X, \omega_X), \ (f, a) \mapsto \operatorname{H}^n(f)(a)$$

Ist $\mathcal{F} \cong \mathcal{O}_X(q)$, so gilt $\operatorname{Hom}(\mathcal{O}_X(q), \omega_X) = \operatorname{Hom}(\mathcal{O}_X, \omega_X(-q)) \cong \operatorname{H}^0(X, \omega_X(-q))$ nach Satz 11.5 (iii). Betrachte das kommutative Diagramm:

$$\begin{split} \mathrm{H}^0(X,\omega_X(-q)) \times \mathrm{H}^n(X,\mathcal{O}_X(q)) & \longrightarrow & \mathrm{H}^n(X,\omega_X) \\ \cong & & & & & & & & \\ \cong & & & & & & & \\ \mathrm{H}^0(X,\mathcal{O}_X(-n-q-1)) \times \mathrm{H}^n(X,\mathcal{O}_X(q)) & \longrightarrow & \mathrm{H}^n(X,\mathcal{O}_X(-n-1)) \end{split}$$

Daher ist die Paarung nach Satz 10.1 (iv) nicht ausgeartet. Die Aussage folgt daher auch für endliche direkte Summen von $\mathcal{O}_X(q)$.

Sei nun \mathcal{F} beliebig kohärent. Nach Korollar 5.38 erhalten wir eine exakte Sequenz $\mathcal{E}_1 \to \mathcal{E}_2 \to \mathcal{F} \to 0$, wobei \mathcal{E}_i endliche direkte Summen von $\mathcal{O}_X(q)$ ist. Sei $0 \to \mathcal{G}' \to \mathcal{G} \to \mathcal{G}'' \to 0$ eine exakte Sequenz kohärenter Garben. Nach dem Verschwindungssatz und unter Betrachtung der langen exakten Kohomologiefolge folgt die Exaktheit von:

$$H^n(X, \mathcal{G}') \longrightarrow H^n(X, \mathcal{G}) \longrightarrow H^n(X, \mathcal{G}'') \longrightarrow 0$$

Nun sind $\operatorname{Hom}(-,\omega_X)$ und $\operatorname{Hom}(\operatorname{H}^n(X,-),k)$ linksexakte kontravariante Funktoren. Also folgt die Behauptung aus dem Fünferlemma:

$$0 \longrightarrow \operatorname{Hom}(\mathcal{F}, \omega_X) \longrightarrow \operatorname{Hom}(\mathcal{E}_2, \omega_X) \longrightarrow \operatorname{Hom}(\mathcal{E}_1, \omega_X)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow \operatorname{H}^n(X, \mathcal{F})' \longrightarrow \operatorname{H}^n(X, \mathcal{E}_2)' \longrightarrow \operatorname{H}^n(X, \mathcal{E}_1)'$$

(iii) Beide Seiten sind kontravariante δ -Funktoren $\mathbf{Coh}(X) \to \mathbf{Ab}$. Für i=0 sind sie isomorph nach (ii). Also reicht es zu zeigen, dass beide δ -Funktoren auslöschbar, also universell sind. Für $\mathcal{F} \in \mathbf{Coh}(X)$, existiert nach Korollar 5.38 für alle hinreichend große q eine Surjektion $\mathcal{E} \to \mathcal{F}$ mit $\mathcal{E} = \bigoplus_{i=1}^N \mathcal{O}_X(-q)$. Nach Satz 11.5 (iii) und Satz 10.3 gilt für i > 0 und hinreichend große q:

$$\operatorname{Ext}^{i}(\mathcal{E}, \omega_{X}) = \bigoplus_{i=1}^{N} \operatorname{H}^{i}(X, \omega_{X}(q)) = 0$$

Ferner gilt $H^{n-i}(X, \mathcal{E})' = \bigoplus_{i=1}^N H^{n-i}(X, \mathcal{O}_X(-q))' = 0$ für n > i > 0 nach Satz 10.1. Ist i = n, so gilt $H^0(X, \mathcal{O}_X(-q)) = 0$ für alle q > 0.

Definition 12.2. Sei X ein eigentliches Schema über einem Körper k der Dimension n. Eine dualisierende Garbe für X ist eine kohärente Garbe ω_X^0 auf X zusammen mit einer Spurabbildung

$$t: \mathrm{H}^n(X,\omega_X^0) \to k$$

derart, dass für alle kohärenten Garben $\mathcal F$ auf X die natürliche Paarung perfekt ist:

$$\operatorname{Hom}(\mathcal{F}, \omega_X^0) \times \operatorname{H}^n(X, \mathcal{F}) \longrightarrow \operatorname{H}^n(X, \omega_X^0) \xrightarrow{t} k$$

Satz 12.3. Sei X eigentlich über einem Körper k. Seien (ω_X^0, t) und (ω_X^1, t') dualisierende Garben für X. Dann existiert einen eindeutig bestimmten Isomorphismus $\varphi : \omega_X^0 \to \omega_X^1$, der mit der Spurabbildung verträglich ist, d.h. $t' \circ H^n(\varphi) = t$.

Beweis. Da ω_X^1 dualisierend und ω_X^0 kohärent ist, folgt:

$$\operatorname{Hom}(\operatorname{H}^n(X,\omega_X^0),k) \cong \operatorname{Hom}(\omega_X^0,\omega_X^1)$$

Sei φ das Bild von $t \in \operatorname{Hom}(\operatorname{H}^n(X,\omega_X^0),k)$ in $\operatorname{Hom}(\omega_X^0,\omega_X^1)$. Dann gilt $t' \circ \operatorname{H}^n(\varphi) = t$. Analog erhalten wir für ω_X^0 dualisierend und ω_X^1 kohärent einen Morphismus $\psi:\omega_X^1 \to \omega_X^0$ mit $t \circ \operatorname{H}^n(\psi) = t'$. Es folgt $t \circ \operatorname{H}^n(\psi \circ \varphi) = t$. Da ω_X^0 dualisierend ist, folgt $\psi \circ \varphi = \operatorname{id}$. Analog ist $\varphi \circ \psi = \operatorname{id}$.

Lemma 12.4. Sei X ein abgeschlossenes Unterschema von $P = \mathbf{P}_k^N$ der Kodimension r und $j: X \hookrightarrow P$ die kanonische Inklusion. Dann gilt für alle i < r:

$$\mathcal{E}xt_P^i(j_*\mathcal{O}_X,\omega_P)=0$$

Lemma 12.5. Sei X noethersch und $\mathcal{F}, \mathcal{G} \in \mathbf{Coh}(X)$. Dann ist die Garbe $\mathcal{E}\mathrm{xt}^i(\mathcal{F}, \mathcal{G})$ kohärent für alle $i \geq 0$.

Beweis von 12.4 Für alle i ist nach Lemma 12.5 $\mathcal{F}^i = \mathcal{E}xt_P^i(j_*\mathcal{O}_X,\omega_P)$ kohärent auf P, da $j_*\mathcal{O}_X$ kohärent nach Satz 5.13 (iii) ist. Nach Satz 5.37 wird $\mathcal{F}^i(q)$ von globalen Schnitten erzeugt für hinreichend große q. Somit reicht es zu zeigen, dass $\Gamma(P,\mathcal{F}^i(q)) = 0$ für hinreichend große q und alle i < r. Nun gilt mit Satz 11.12 und Satz 12.1 (iii) für hinreichend große q:

$$\Gamma(P, \mathcal{F}^{i}(q)) \cong \operatorname{Ext}_{P}^{i}(j_{*}\mathcal{O}_{X}, \omega_{P}(q))$$

$$\cong \operatorname{H}^{N-i}(P, j_{*}\mathcal{O}_{X}(-q))' = \operatorname{H}^{N-i}(X, \mathcal{O}_{X}(-q))'$$

Für $N-i>\dim(X)$ verschwinden diese nach dem Verschwindungssatz, d.h. $i< N-\dim(X)=r.$

Lemma 12.6. Sei X ein abgeschlossenes Unterschema von $P = \mathbf{P}_k^N$ der Kodimension r und $j: X \hookrightarrow P$ die kanonische Inklusion. Sei $\omega_X^0 = j^* \mathcal{E}\mathrm{xt}_P^r(j_*\mathcal{O}_X, \omega_P)$. Dann gibt es einen Isomorphismus von Funktoren $\mathbf{Mod}(X) \to \mathbf{Ab}$:

$$\operatorname{Hom}(-,\omega_X^0) \cong \operatorname{Ext}_P^r(j_*-,\omega_P)$$

Satz 12.7. Sei X/k ein projektives Schema. Dann besitzt X eine dualisierende Garbe.

Definition. Sei (A, \mathfrak{m}) ein lokaler, noetherscher Ring und M ein A-Modul. $x_1, \ldots, x_r \in A$ heißt reguläre Sequenz, wenn x_1 kein Nullteiler von M ist und für i > 1 das Element x_i kein Nullteiler von $M/(x_1, \ldots, x_{i-1})M$ ist. Die Tiefe von M ist definiert als:

$$\operatorname{depth}(M) = \sup\{r \mid \text{es existiert eine reguläre Sequenz } x_1, \dots, x_r \in \mathfrak{m}\}\$$

A heißt Cohen-Macaulay, falls seine Tiefe gerade $\dim(A)$ ist.

Satz 12.8. (Dualitätssatz für projektive Schemata) Sei X ein projektives Schema über einem algebraisch abgeschlossenen Körper k der Dimension n. Sei ω_X^0 die dualisierende Garbe auf X und $\mathcal{O}(1)$ eine sehr ample Garbe auf X. Dann gilt:

(i) Für alle $i \geq 0$ und alle kohärenten Garben $\mathcal F$ auf X gibt es natürliche, in $\mathcal F$ funktorielle Abbildungen:

$$\theta^i : \operatorname{Ext}^i(\mathcal{F}, \omega_X^0) \to \operatorname{H}^{n-i}(X, \mathcal{F})'$$

wobei θ^0 durch die Definition der dualisierende Garbe gegeben ist.

- (ii) Folgende Bedingungen sind äquivalent:
 - (a) X ist Cohen-Macaulay, d.h. alle lokalen Ringe sind Cohen-Macaulay, und äquidimensional, d.h. alle irreduziblen Komponenten haben dieselbe Dimension.
 - (b) Für alle lokal freien Garben \mathcal{F} auf X gilt $H^i(X,\mathcal{F}(-q)) = 0$ für alle i < n und hinreichend große q.
 - (c) Alle θ^i , $i \geq 0$ aus (i) sind Isomorphismen für alle $\mathcal{F} \in \mathbf{Coh}(X)$.

Bemerkung 12.9. Ist X/k nicht-singulär, so ist X Cohen-Macaulay, da reguläre Ringe stets Cohen-Macaulay sind.

Korollar 12.10. Sei X/k ein projektives, äquidimensionales Cohen-Macaulay Schema der Dimension n über einem algebraisch abgeschlossenen Körper k. Sei \mathcal{F} eine lokal freie Garbe von endlichem Rang auf X. Dann gibt es für $i \geq 0$ natürliche Isomorphismen:

$$\mathrm{H}^{i}(X,\mathcal{F}) \cong \mathrm{H}^{n-i}(X,\mathcal{F}^{\vee} \otimes \omega_{X}^{0})'$$

Beweis. Nach Satz 11.10 und Satz 11.5 (iii) gilt:

$$\mathrm{H}^{i}(X,\mathcal{F}) \cong \mathrm{Ext}^{n-i}(\mathcal{F},\omega_{X}^{0})' = \mathrm{Ext}^{n-i}(\mathcal{O}_{X},\mathcal{F}^{\vee}\otimes\omega_{X}^{0})' = \mathrm{H}^{n-i}(X,\mathcal{F}^{\vee}\otimes\omega_{X}^{0})'$$

Korollar 12.11. Sei X eine nicht-singuläre projektive Varietät der Dimension n über einem abgeschlossenen Körper k. Dann ist die dualisierende Garbe ω_X^0 isomorph zur kanonischen Garbe $\omega_X = \bigwedge^n \Omega_{X/k}$.

Definition. Sei A ein Ring und M ein A-Modul. Die *projektive Dimension* von M ist definiert als:

$$\operatorname{pd}_A(M)=\inf\{m\mid \text{es gibt eine projektive Auflösung }0\to P_m\to\cdots\to P_0\to M\to 0\}$$

Satz 12.12. Sei A ein Ring und M ein A-Modul. Dann gilt:

- (i) $\operatorname{pd}_A(M) \leq m \iff \operatorname{Ext}^i(M,N) = 0$ für i > m und alle A-Moduln N.
- (ii) Ist A regulär und M endlich erzeugter A-Modul, so gilt:

$$\operatorname{pd}_A(M) + \operatorname{depth}(M) = \dim(A)$$

Es ist $\operatorname{pd}_A(M) \leq m$ genau dann, wenn $\operatorname{Ext}^i(M,A) = 0$ für alle i > m.

Beweis von 12.8.

(i) Sei q hinreichend groß, so dass wir eine Surjektion $\mathcal{E} = \mathcal{O}_X(-q)^N \to \mathcal{F}$ erhalten. Nach Satz 11.5 (iii) und Satz 10.3 (ii) gilt für alle i > 0 und hinreichend große q:

$$\operatorname{Ext}^{i}(\mathcal{E}, \omega_{X}^{0}) \cong \bigoplus_{i=1}^{N} \operatorname{H}^{i}(X, \omega_{X}^{0}(q)) = 0$$

Somit ist $\operatorname{Ext}^i(-,\omega_X^0)$ auslöschbar für i>0 und somit ein universeller, kontravarianter δ -Funktor $\operatorname{\mathbf{Coh}}(X)\to\operatorname{\mathbf{Ab}}$. Da $\operatorname{H}^{n-i}(X,-)'$ auch kontravarianter δ -Funktor ist, gibt es nach der Universaleigenschaft einen eindeutigen Morphismus $(\theta^i)_{i\geq 0}$ von δ -Funktoren, wobei θ^0 der vorgegebene ist.

(ii) Sei (a) erfüllt. Sei $i:X\hookrightarrow P=\mathbf{P}_k^N$ eine abgeschlossene Immersion. Für alle lokal freien Garben $\mathcal F$ auf X und jedem abgeschlossenen Punkt $x\in X$ gilt wegen Cohen-Macaulay und Äquidimensionalität:

$$depth(\mathcal{F}_x) = dim(\mathcal{O}_{X,x}) = n$$

Sei $A = \mathcal{O}_{P,x}$. Dann ist A ein regulärer lokaler Ring mit $\dim(A) = N$, da P nichtsingulär ist. Nach Satz 12.12 (ii) gilt:

$$\operatorname{pd}_A(i_*\mathcal{F}_x) = \dim(A) - \operatorname{depth}(\mathcal{F}_x) = N - n$$

Aus Satz 11.11 und Satz 12.12 (ii) folgt für i > N - n:

$$\mathcal{E}xt_P^i(i_*\mathcal{F}, -)_x = Ext_{\mathcal{O}_{P,x}}^i(i_*\mathcal{F}_x, -_x) = 0$$

Für i < n gilt somit $\mathcal{E}xt_P^{N-i}(i_*\mathcal{F}, -) = 0$. Für hinreichend große q folgt nach Lemma 9.26, Satz 12.1 und Satz 11.12:

$$H^{i}(X, \mathcal{F}(-q))' = H^{i}(P, i_{*}\mathcal{F}(-q))'$$

$$= \operatorname{Ext}_{P}^{N-i}(i_{*}\mathcal{F}, \omega_{P}(q)) = \Gamma(P, \mathcal{E}\operatorname{xt}_{P}^{N-i}(i_{*}\mathcal{F}, \omega_{P}(q))) = 0$$

Sei nun (b) erfüllt. Wie oben mit $\mathcal{F} = \mathcal{O}_X$ folgt $\mathcal{E}xt_P^i(\mathcal{O}_X, \omega_P) = 0$ für i > N - n. Da $\omega_P = \mathcal{O}_P(-N-1)$, gilt für i > N - n:

$$\operatorname{\mathcal{E}xt}_P^i(\mathcal{O}_X, \omega_P) = \operatorname{\mathcal{E}xt}_P^i(\mathcal{O}_X, \mathcal{O}_P)(-N-1) = 0$$

Durch Halmbildung folgt $\operatorname{Ext}_A^i(\mathcal{O}_{X,x},A)=0$ für $A=\mathcal{O}_{P,x}$ und i>N-n. Somit gilt nach Satz 12.12 (ii) $\operatorname{pd}_A(\mathcal{O}_{X,x})\leq N-n$ und somit $\operatorname{depth}(\mathcal{O}_{X,x})\geq n=\dim(X)$. Da die andere Ungleichung stets gilt, folgt $\operatorname{depth}(\mathcal{O}_{X,x})=\dim(X)$ für alle abgeschlossenen Punkte $x\in X$. Somit ist X Cohen-Macaulay, da Lokalisierungen von Cohen-Macaulay Ringe bzgl. Primideale wieder Cohen-Macaulay sind. Es folgt (a).

Sei (b) erfüllt. Da $\operatorname{Ext}^i(-,\omega_X^0)$ universeller δ -Funktor ist, reicht es für (c) zu zeigen, dass auch $\operatorname{H}^{n-i}(X,-)'$ universeller δ -Funktor ist. Wir zeigen die Auslöschbarkeit. Sei $\mathcal F$ kohärent und $\mathcal E=\mathcal O_X(-q)^N\to \mathcal F$ für hinreichend große q eine Surjektion. Wegen (b) ist $\operatorname{H}^{n-i}(X,\mathcal E)'=0$ für i>0 und hinreichend große q.

Sei (c) erfüllt. Seien alle θ^i Isomorphismen und \mathcal{F} lokal frei. Dann gilt nach Satz 10.3 für n-i>0 und hinreichend große q:

$$\mathrm{H}^{i}(X,\mathcal{F}(-q)) \cong \mathrm{Ext}^{n-i}(\mathcal{F}(-q),\omega_{X}^{0})' = \mathrm{H}^{n-i}(X,\mathcal{F}^{\vee} \otimes \omega_{X}^{0}(q))' = 0$$

3.6 Der Satz von Riemann-Roch für Kurven

Eine Kurve ist ein eigentliches, nicht-singuläres, integres Schema X der Dimension 1 über einem algebraisch abgeschlossenen Körper k. Dann ist X notwendigerweise projektiv, siehe z.B. Hartshorne II Proposition 6.7. Da X nicht-singulär ist, sind alle lokalen Ringe regulär und insbesondere faktoriell. Ferner stimmen die Weil-Divisoren mit den Cartier-Divisoren überein:

$$\operatorname{Div}(X) \cong \Gamma(X, \mathcal{K}^{\times}/\mathcal{O}_X^{\times})$$

Wir haben einen Isomorphismus:

$$Cl(X) \xrightarrow{\sim} Pic(X), [D] \mapsto [\mathcal{L}(D)]$$

Es gibt nach Korollar 12.11 eine dualisierende Garbe $\omega_X = \Omega_{X/k}$. Diese ist invertierbar.

Definition 13.1. Sei X eine Kurve. Dann heißt

$$g = g(X) = \dim_k H^1(X, \mathcal{O}_X) = \dim_k H^0(X, \omega_X) < \infty$$

das Geschlecht von X, wobei die letzte Gleichung aus der Serre-Dualität folgt.

Definition 13.2.

- (i) Ein Divisor $D = \sum_{i} n_i P_i$ heißt effektiv, wenn $n_i \geq 0$ für alle i gilt.
- (ii) Für einen Divisor D_0 heißt die Menge $|D_0| = \{D \in \text{Div}(X) \mid D \sim D_0, D \text{ effektiv}\}\$ vollständiges lineares System auf X. Sie kann evtl. leer sein.

Bemerkung 13.3. Sei D ein Divisor auf einer nicht-singulären, projektiven Varietät X über einem algebraisch abgeschlossenen Körper k. Dann ist

$$(\mathrm{H}^0(X,\mathcal{L}(D))\setminus\{0\})/k^{\times}\to |D|,\ s\mapsto(s)_0$$

eine Bijektion von Mengen, wobei $(s)_0$ den Nullstellendivisor von s bezeichnet. Siehe z.B. Hartshorne II Proposition 7.7.

Definition 13.4. Sei $D \in Div(X)$. Wir definieren

$$\ell(D) = \dim_k H^0(X, \mathcal{L}(D))$$

und bezeichnen $\ell(D) - 1$ als die Dimension von |D|. Nach Satz 10.3 ist $\ell(D) < \infty$.

Lemma 13.5. Sei X eine Kurve und $D \in Div(X)$. Dann gilt:

- (i) $\ell(D) > 0 \implies \deg(D) \ge 0$
- (ii) Sind $\ell(D) > 0$ und $\deg(D) = 0$, so folgt $D \sim 0$, also $\mathcal{L}(D) \cong \mathcal{O}_X$.

Beweis. Ist $\ell(D) > 0$, so ist $|D| \neq \emptyset$. Sei $D \sim D'$ mit effektivem D'. Dann ist $\deg(D) = \deg(D') \geq 0$. Ist zusätzlich $\deg(D) = 0$, so auch $\deg(D') = 0$. Da D' effektiv ist, folgt D' = 0.

Definition 13.6. Ein Divisor $K \in \text{Div}(X)$ heißt kanonischer Divisor, falls $K \sim D$ mit $\mathcal{L}(D) \cong \omega_X$.

Definition. Sei X ein projektives Schema über einem Körper k und $\mathcal{F} \in \mathbf{Coh}(X)$. Die Euler-Charakteristik von \mathcal{F} ist definiert als:

$$\chi(\mathcal{F}) = \sum_{i>0} (-1)^i \dim_k \mathrm{H}^i(X, \mathcal{F})$$

Satz 13.7. (Riemann-Roch) Sei X eine Kurve vom Geschlecht g und $D \in Div(X)$. Dann gilt für einen kanonischen Divisor K:

$$\ell(D) - \ell(K - D) = \deg(D) + 1 - g$$

Beweis. Der Divisor K-D gehört zur invertierbaren Garbe $\omega_X \otimes \mathcal{L}(D)^{\vee}$. Serre-Dualität liefert nun:

$$\mathrm{H}^0(X,\omega\otimes\mathcal{L}(D)^\vee)'\cong\mathrm{H}^1(X,\mathcal{L}(D))$$

Es ist somit zu zeigen $\chi(\mathcal{L}(D)) = \deg(D) + 1 - g$. Sei zunächst D = 0. Dann gilt:

$$H^0(X, \mathcal{L}(D)) = H^0(X, \mathcal{O}_X) = k$$

Also $\dim_k H^0(X, \mathcal{L}(D)) = 1$. Per Definition gilt $\dim_k H^1(X, \mathcal{L}(D)) = \dim_k H^1(X, \mathcal{O}_X) = g$. Somit folgt $\chi(\mathcal{O}_X) = 0 + 1 - g$.

Sei nun $D \in \text{Div}(X)$ und $P \in X$ ein abgeschlossener Punkt. Sei $\{P\} \subset X$ das zu P gehörige abgeschlossene Unterschema von X mit konstanter Strukturgarbe $k(P) \cong k$. Sei \mathcal{J}_P die zughörige Idealgarbe von $\{P\}$. Es ist $\mathcal{J}_P = \mathcal{L}(-P)$. Nun ist $j_*k(P)$ eine Wolkenkratzergarbe auf X mit Support $\{P\}$, wobei $j: \{P\} \hookrightarrow X$ die kanonische Inklusion bezeichnet. Wir erhalten somit eine exakte Sequenz:

$$0 \longrightarrow \mathcal{L}(-P) \longrightarrow \mathcal{O}_X \longrightarrow j_*k(P) \longrightarrow 0$$

Tensorieren mit der lokal freien Garbe $\mathcal{L}(D+P)$ ergibt die exakte Sequenz:

$$0 \longrightarrow \mathcal{L}(D) \longrightarrow \mathcal{L}(D+P) \longrightarrow j_*k(P) \longrightarrow 0$$

da $j_*k(P)\otimes \mathcal{L}(D+P)=j_*k(P)$. Es folgt:

$$\chi(\mathcal{L}(D+P)) = \chi(\mathcal{L}(D)) + \chi(k(P)) = \chi(\mathcal{L}(D)) + 1$$

Andererseits gilt:

$$\deg(D) + 2 - g = \deg(D + P) + 1 - g$$

Somit gilt $\chi(\mathcal{L}(D)) = \deg(D) + 1 - g$ genau dann, wenn $\chi(\mathcal{L}(D+P)) = \deg(D+P) + 1 - g$. Da jeder Divisor von 0 aus aufgebaut werden kann, folgt die Aussage.

Korollar 13.8. Sei X eine Kurve vom Geschlecht g und $D \in Div(X)$. Für einen kanonischen Divisor K gilt:

- (i) $\ell(K) = g$, $\deg(K) = 2g 2$
- (ii) Ist $\deg(D) > 2g 2$, so folgt $\ell(D) = \deg(D) + 1 g$. Für eine elliptische Kurve gilt insbesondere $\ell(D) = \deg(D)$ für $\deg(D) > 0$.

Beweis.

(i) Für D = 0 bzw. D = K folgt aus Satz 13.7:

$$\ell(K) = -\deg(D) + g - 1 + \ell(D) = g, \quad \deg(K) = \ell(K) - \ell(0) + g - 1 = 2g - 2$$

(ii) Sei
$$D' \in \text{Div}(X)$$
 mit $\deg(D') < 0$. Nach Lemma 13.5 folgt $\ell(D') \le 0$, also $\ell(D') = 0$. Wegen $\deg(K - D) = 2g - 2 - \deg(D) < 0$ folgt $\ell(K - D) = 0$.

Beispiel 13.9. Sei X eine elliptische Kurve und $P_0 \in X$ ein abgeschlossener Punkt. Betrachte die Untergruppe:

$$\operatorname{Pic}^{0}(X) = \{ [\mathcal{L}(D)] \in \operatorname{Pic}(X) \mid \deg(D) = 0 \}$$

Dann ist die folgende Abbildung eine Bijektion:

$$X_0 \stackrel{\sim}{\to} \operatorname{Pic}^0(X), \ P \mapsto [\mathcal{L}(P - P_0)]$$

wobei $X_0 \subset X$ die Teilmenge aller abgeschlossenen Punkte von X bezeichnet. Wir erhalten durch Strukturtransport eine Gruppenstruktur auf X_0 mit P_0 als neutralem Element.

Beweis. Sei $D \in \text{Div}(X)$ mit $\deg(D) = 0$. Riemann-Roch liefert:

$$\ell(D+P_0) - \ell(K-D-P_0) = \deg(D+P_0) + 1 - g = 1$$

Wegen $\deg(K) = 2g - 2 = 0$ ist $\deg(K - D - P_0) = -1$. Nach Lemma 13.5 folgt $\ell(K - D - P_0) = 0$, also $\ell(D + P_0) = 1$ und die Dimension von $|D + P_0|$ ist 0. Daher existiert genau ein effektiver Divisor $D' \sim D + P_0$. Wegen $\deg(D') = \deg(D + P_0) = 1$ ist D' = P.

Index

\mathcal{O}_X -Modul, 54 ampel, 81 frei, 54 lokal frei, 54 quasikohärent, 56 sehr ampel, 66 von globalen Schnitten erzeugt, 67	relativ, 87, 92 Dimension, 33, 119 direkte Bildgarbe, 14 direktes Bild, 54 Divisor Cartier, 77 effektiv, 70, 119
welk, 97 Adjunktionsabbildung, 14 affine Gerade, 20 affiner Raum, 4, 20 algebraische Menge affin, 4	kanonisch, 119 prinzipal, 70, 77 Weil, 70 Divisorenklassengruppe, 71 dominant, 24 dominiert, 45
projektiv, 5 assoziierte Garbe Modul, 55 Prägarbe, 11 zum Divisor, 78 Aufblasung, 85	eigentlich, 48 endlich, 31 Euler-Charakteristik, 119 Exaktheit, 12, 54 Ext-Gruppen, 110
Basiswechsel, 39 Bewertung diskret, 20 Bewertungsring, 43 diskret, 20 Bewertungstheoretisches Kriterium, 43, 49 Bild, 10, 12	Faser, 41 Faserprodukt, 34 Fundamentale exakte Sequenz, 89, 90 Funktionenkörper, 7, 70 Garbe, 8 dualisierend, 115 Fortsetzung, 15
Cech-Kohomologie, 105 Cech-Komplex, 105 Cohen-Macaulay, 116 Derivation, 87 Diagonalmorphismus, 40 Differentialform	getwistet, 63 invertierbar, 54 kanonisch, 113 konstant, 9 Untergarbe, 11 generische Faser, 42 generischer Punkt, 20, 23
	501101101101 1 dillity, 20, 20

INDEX 123

geringter Raum, 18	assoziiert, 64
lokal, 18	getwistet, 62
Geschlecht, 119	graduiert, 62
Grad, 75	Morphismus
Graph, 40	S-Schemata, 27
1 /	\mathcal{O}_X -Moduln, 54
Halm, 9	Garben, 9
Hauptdivisor, 70, 77	geringte Räume, 18
Hom-Garbe, 13, 54	lokal geringte Räume, 18
homogene Elemente, 5	Prägarben, 9
homogene Lokalisierung, 26	Schemata, 19
homogenes Ideal, 5	Varietäten, 6
Idealgarbe, 54, 61	
invers, 85	nicht-singulär, 73, 94
Immersion, 37	noethersch, 29, 30
abgeschlossen, 32	lokal, 30
offen, 32	Nullstelle, 70
Injektivität, 12	Nullstellenmenge, 4
irreduzibel, 4	Picard-Gruppe, 78
	Pol, 70
Keim, 7, 9	Primdivisor, 70
Kern, 10, 11	projektive Dimension, 117
Kodimension, 33	projektive Raum, 5, 27, 52
Kohomologiegruppe, 97	
kohärent, 56	Prägarbe, 8
Kokern, 10, 12	Punkt, 4, 5
Koordinate, 4	K-wertig, 23
homogen, 5	quasikompakt, 29, 44
Koordinatenring, 4	quasiprojektiv, 52
homogen, 6	Quotientengarbe, 12
Kurve, 73	Quotientengarbe, 12
vollständig, 73	Radikal, 5
т.	Radikalideal, 5
Limes	Rang, 54
direkt, 13	rationale Funktion, 7
projektiv, 13	regulär, 69
linear äquivalent, 71, 77	reguläre Funktion, 6
lokal faktoriell, 77	reguläre Sequenz, 116
lokaler Parameter, 75	Restklassenkörper, 20
Modul	Restriktionsabbildung 8

124 INDEX

Ring	abstrakt, 53
normal, 69	affin, 4
,	eigentlich, 53
Satz von Krull, 102	projektiv, 6
Schema, 19	quasi-affin, 4
affin, 19	quasi-projektiv, 6
integer, 28	Vektorbündel
irreduzibel, 28	projektiv, 84
normal, 69	Verklebung
reduziert, 25, 28	Garbe, 33
Unterschema, 37	Morphismus, 34
abgeschlossen, 32	Schema, 21
offen, 21, 32	Verschwindungssatz, 100
zusammenhängend, 28	vollständiges lineares System, 119
über $S, 27$	volltreuer Funktor, 27
Schnitt, 8	von endlichem Typ, 31
separabel erzeugt, 90	lokal, 31
separiert, 42	,
Serre-Dualität, 113, 116	Wolkenkratzergarbe, 15
Spektrum, 16	Zavidki Tanalagia 4 5 15
Spezialisierung, 44	Zariski-Topologie, 4, 5, 15
Spurabbildung, 115	äquidimensional, 116
strikte Transformation, 87	•
Strukturgarbe, 16, 19	
Strukturmorphismus, 27	
Summe, 13	
Support, 13	
Surjektivität, 12	
symmetrisches Produkt, 83	
Tensor-Algebra, 83	
symmetrisch, 83	
Tensorprodukt, 54	
Tiefe, 116	
totaler Quotientenring, 77	
totaler guotientenning, 11	
universell abgeschlossen, 48	
Urbild, 54	
Urbildgarbe, 14	
Varietät	