Q2) Need
$$P(+5|++) \Rightarrow P(5|T=++)$$

We have $P(A)$, $P(D)$, $P(5|A.D)$, $P(T=++|S)$

A	D	<	fi(A,S,D)	5-1ep 2	A	s	f, (s, D)
+0	a	+5	012 x 016 = 012		a	45	0,12 +0116 = 0,28
+0	^	45	0,5 x0,5 = 0.3		0	45	0,3+0,28:0,58
+0	9	+ 5	2010 : 4,0x F.0		d	45	0,42,036=0,78
-0	a	+5	5 7 x 5 14 = 0.88		G.	~ 5	0,48,0,24=0,72
-0	۸	+5		==>	6	_	0,34012=0142
-0	d	→ 5	0,9 10,4 0,36		.,	. " 5	018+004=0,22
+ 0	a	- 4	0,8 x 0,4 , 0,48		O.	- 5	0118 + 8104=
+0	^	- 5	0 5 4016 = 0.5				
+0	d	75	2 2 10,6 m 0110				
-0	a	- 5	5 5 × 5 14 = 6 100				
- 0	3	-5	013 40,4 = 0,12				
- 0	al	-5	0,1 40,4 = 004				

$$\frac{D \leq f_3(\leq,D)}{Q + 5 \quad 0.28 \times 0.2 = 0.056}$$

$$\frac{Q + 5 \quad 0.78 \times 0.5 = 0.29}{Q + 5 \quad 0.78 \times 0.3 = 0.254}$$

$$\frac{Q + 5 \quad 0.78 \times 0.3 = 0.254}{Q + 5 \quad 0.78 \times 0.3 = 0.254}$$

$$\frac{Q + 5 \quad 0.78 \times 0.3 = 0.254}{Q + 5 \quad 0.78 \times 0.3 = 0.066}$$

$$\frac{Q + 5 \quad 0.78 \times 0.3 = 0.066}{Q + 5 \quad 0.21 \times 0.21}$$

Step 5:
$$S T f_5(T=+t,S)$$
 Step 6: $S f_5(T=+t,S)$
+S +t 0.95 x 0.58 = 0.551 => +S $\frac{0.551}{0.551+0.0798} = 0.8735$
-S +t 0.19 x 0.142 = 0.0798 -S $\frac{0.0798}{0.051+0.0798} = 0.1265$

$$Q3)$$
 $P(s=+s)$

- We have PCA), P(D), P(SIA,D), P(TIS)

So weed to get rid of A, D and T.

$$\frac{5 + 6}{5} = \frac{5}{5} =$$

=> We have to find P(5/T). We can use variable elimination and previous results.

In Q3, we computed for (TiS). We just have to normalize it.

Then:

 \Rightarrow We also need P(T). We can further continue on $f_5(T,S)$ and sum out S from T to get $f_3(T)$.

Sample:
$$\{A = -0, D = n, S = +s, T = -t\}$$

Eutridence: $\{A = -0, D = n, S = +s, T = -t\}$

$$= P(S) - 0, n, -t) = P(S, -0, n, -t)$$

$$= P(S) \cdot P(n) \cdot P(S \mid -0, n) \cdot P(-t \mid S)$$

$$= P(S) \cdot P(n) \cdot P(S \mid -0, n) \cdot P(-t \mid S)$$

$$= P(S) \cdot P(n) \cdot P(S \mid -0, n) \cdot P(-t \mid S)$$

$$= P(S \mid -0, n) \cdot P(-t \mid S)$$

$$= P(S \mid -0, n) \cdot P(-t \mid S)$$

$$= P(S \mid -0, n) \cdot P(-t \mid S)$$

$$= P(S \mid -0, n) \cdot P(-t \mid S)$$

$$= O(3S) \cdot O(3S) \cdot O(3S)$$

$$= O(3S) \cdot O(3S) \cdot O(3S) \cdot O(3S)$$