平成21年度 日本留学試験(第2回)

試験問題

平成21年度(2009年度)日本留学試験

理科

(80分)

【物理・化学・生物】

- ※ 3科目の中から、2科目を選んで解答してください。
- ※ 1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。
- I 試験全体に関する注意
 - 1. 係員の許可なしに、部屋の外に出ることはできません。
 - 2. この問題冊子を持ち帰ることはできません。
- Ⅱ 問題冊子に関する注意
 - 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
 - 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
 - 3. 各科目の問題は、以下のページにあります。

科目	1	<u>٠</u> ۶	· ·
物理	1	~	19
化学	21	~	31
生物	33	~	47

- 4. 足りないページがあったら手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。

Ⅲ 解答用紙に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 各問題には、その解答を記入する行の番号 **1**, **2**, **3**…がついています。解答は、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*		*			
名 前						

物理

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「物理」を解答する場合は、右のように、解答用紙の左上にある「解答科目」の「物理」を〇で囲み、その下のマーク欄をマークしてください。科目が正しくマークされていないと、採点されません。

 $oxed{I}$ $2 \sim 7$ ページの問い $oxed{A}$ (問 1), $oxed{B}$ (問 2), $oxed{C}$ (問 3, 問 4), $oxed{D}$ (問 5), $oxed{E}$ (問 6), $oxed{F}$ (問 7), に答えなさい。ただし,重力加速度(acceleration due to gravity)の大きさを $oxed{g}$ とし、空気の抵抗は無視できるものとする。

長さが 3ℓ ,質量 M の棒がある。棒の重心(center of mass)は,一方の端から ℓ の ところにある。次の図のように、この棒を、一方の端が床に接し、他方の端が床から ある高さになるように鉛直な (vertical) 糸でつるした。

問1 糸の張力 (tension) の大きさはいくらか。正しいものを、次の①~④の中から一つ 選びなさい。

- ① $\frac{1}{6}Mg$ ② $\frac{1}{3}Mg$ ③ $\frac{1}{2}Mg$ ④ $\frac{2}{3}Mg$

B 次の図のような、3つのすべり台(slide)(a) \sim (c)の上を小物体がすべり降りる。 小物体とすべり台の間には摩擦がないものとする。また小物体は、すべっている間, すべり台から離れないものとする。

問 2 小物体が、初速0で点Pから出発し、点Qに到達するまでの時間が最も短いすべり 台はどれか。正しいものを、次の①~④の中から一つ選びなさい。 2

- (I) (a)

- ② (b)③ (c)④ (a)~(c) すべて同じ

 $oldsymbol{C}$ 次の図のように、断面積が $5.0 \times 10^{-2}\,\mathrm{m}^2$ で、厚さが $1.00 \times 10^{-1}\,\mathrm{m}$ の円盤Aが、水面から上部を $4.0 \times 10^{-2}\,\mathrm{m}$ だけ出して水槽(water tank)中に浮いている。水の密度を $1.0 \times 10^3\,\mathrm{kg/m}^3$ とする。

問3 Aの質量はいくらか。最も適当なものを、次の①~⑥の中から一つ選びなさい。

3 kg

- ① 2.0×10^{-1}
- ② 2.0

(3) 2.0×10^1

- (4) 3.0 × 10⁻¹
- **(5)** 3.0

(6) 3.0×10^{1}

問4 Aと同じ材質、同じ断面積で、厚さが 5.0×10^{-2} m である円盤 B が、別の水槽中に浮いている。Aと B それぞれを少し沈めてから静かに手を離したところ、いずれも鉛直(vertical)方向に振動し始めた。B の振動の周期は A の振動の周期の何倍か。最も適当なものを、次の① \sim ⑤の中から一つ選びなさい。

- ① 0.50
- **②** 0.71
- ③ 1.0
- **4** 1.4
- **⑤** 2.0

 ${f D}$ 次の図のように、粗い斜面上の点 ${f P}$ に小物体 ${f A}$ を置いたところ、 ${f A}$ は初速 ${f 0}$ で斜面 上を距離 ${f d}$ すべって、斜面の下端 ${f Q}$ を通過後、なめらかな水平面 ${f Q}$ ${f R}$ 上をすべり、点 ${f R}$ から水平な床上の点 ${f S}$ に落下した。 ${f R}$ の床からの高さは ${f h}$ である。 ${f R}$ の真下の点 ${f T}$ から ${f S}$ までの距離を ${f x}$ とする。

- 1 4
- ② $2\sqrt{2}$
- 3 2
- (4) $\sqrt{2}$

 \mathbf{E} 次の図のように、半球(半径r)の内側のなめらかな面上を小物体が水平な面内で 等速円運動(uniform circular motion)をしている。小物体が運動をしている面と半球 の最下点との距離は $\frac{1}{5}r$ である。

小物体の速さはいくらか。正しいものを、次の①~④の中から一つ選びなさい。 問6

6

- ① $\frac{3\sqrt{5}}{10}\sqrt{gr}$ ② $\frac{2\sqrt{15}}{15}\sqrt{gr}$ ③ $\frac{\sqrt{15}}{10}\sqrt{gr}$ ④ $\frac{2\sqrt{5}}{15}\sqrt{gr}$

F 次の図のように、机の上に置かれた物体A(質量m)と、机に接して置いた台車 (wagon) B (質量 M) がある。机の面とBの上面は同じ高さである。A を机の上をす べらせて、速さvoでBの上にのせたところ、AはBの上面をすべり出すとともに、B も床の上を動き出した。しばらくすると、AはBに対して静止し、AとBは一定の速 さで動いた。AとBの上面の間の動摩擦係数 (coefficient of kinetic friction) をμ'とす る。Bは床の上をなめらかに動くものとする。Aの大きさは無視できるものとする。

AがBに対して静止した位置は、Bの左端からどれだけの距離にある位置か。正し 7 いものを、次の①~⑥の中から一つ選びなさい。

- ① $\frac{mv_0^2}{2n'(M+m)a}$ ⑤ $\frac{Mv_0^2}{2n'(M+m)a}$ ⑥ $\frac{mMv_0^2}{2\mu'(M+m)^2q}$

理科一8

A 質量 $200 \, \mathrm{g}$ のコップの中に水 $100 \, \mathrm{g}$ が入っており、温度はともに $10^{\circ}\mathrm{C}$ であった。このコップに、 $80^{\circ}\mathrm{C}$ の水 $100 \, \mathrm{g}$ を入れた。しばらくすると、水とコップは同じ温度 $t \, [^{\circ}\mathrm{C}]$ になった。水の比熱(specific heat)を $4.2 \, \mathrm{J/g}$ ·K,コップの比熱を $0.80 \, \mathrm{J/g}$ ·K とする。外部との熱のやりとりはないものとする。

① 24 ② 29 ③ 34 ④ 39 ⑤ 44 ⑥ 49

B 図1のように、シリンダー(cylinder)内に理想気体を閉じ込めた。ピストン(piston)の高さは h_0 、シリンダー内の理想気体の絶対温度(absolute temperature)は T_0 であった。質量Mのおもり(weight)を静かにのせ、この理想気体を絶対温度Tにしたところ、高さはhとなった(図 2)。大気圧(atmospheric pressure)を p_0 、ピストンの質量をm、ピストンの断面積をSとする。

問2 T はどう書けるか。正しいものを、次の① \sim ④の中から一つ選びなさい。ただし、 重力加速度(acceleration due to gravity)の大きさを g とする。

- ② $\frac{p_0S + (m+M)g}{p_0S + mg} \frac{h}{h_0} T_0$
- $\bigoplus \frac{p_0 S + mg}{p_0 S + (m+M)g} \frac{h}{h_0} T_0$

C 理想気体を使った熱機関 (heat engine) のサイクル (cycle) として、次の図を考える。

問3 このサイクルを表す p-V 図は、次の図 (a)、図 (b) のどちらか。また、状態 1 は図中の $A \sim D$ のどれか。正しい組み合わせを、下の① \sim ④の中から一つ選びなさい。 $\boxed{\mathbf{10}}$

	<i>p-V</i> 図	状態 1
1)	図 (a)	В
2	図 (a)	D
3	図 (b)	Α
4	図 (b)	С

A 次の図は、2.0 m/s の速さでx 軸の正の向きに伝わる正弦波(sinusoidal wave)の、原点(x=0 m)での変位(displacement)の時間変化を表したグラフである。

問1 時刻t=0sにおける変位yと位置xのグラフ(波形)として最も適当なものを、次の① \sim ④の中から一つ選びなさい。

B 次の図のように、一端を固定し、他端におもり(weight)をつけた弦(string)とその近くに置かれた閉管がある。コマ(bridge)A、Bが図の位置にあるとき、弦をAとBの間ではじいたら、閉管が基本振動数で共鳴した。図の(a) \sim (e)はこのときのAとBの間を6等分した位置である。

問2 A を固定して、B を A の方向へ少しずつ移動し、同時に閉管を A と B の中央になるように移動して、弦を A と B の間ではじいた。B がある位置のときに、閉管は基本振動数の次に高い振動数で共鳴した。このとき B は (a) \sim (e) のどの位置にあるか。最も適当なものを、次の① \sim ⑤の中から一つ選びなさい。ただし、弦の振動は基本振動のみであるとする。

① (a) ② (b) ③ (c) ④ (d) ⑤ (e)

C ある光線が媒質 (medium) Iから媒質 IIへと進んでいく。入射角 (angle of incidence) を θ_1 , 屈折角 (angle of refraction) を θ_2 とする。次の図は、 θ_1 がある値のときの光の 進路をグラフ用紙に写し取ったものである。x 軸は境界而上に、y 軸は境界而に垂直 な方向にとってある。

- 問3 $\theta_1 = 45^\circ$ としたとき、 $\sin \theta_2$ の値はいくらになるか。最も適当なものを、次の①~④ の中から一つ選びなさい。 13
- ② $\frac{\sqrt{2}}{3}$
- $\sqrt[3]{2}$
- $4) \frac{2\sqrt{2}}{3}$

理科-14

[IV] 次の問いA(問1), B(問2), C(問3), D(問4, 問5), E(問6)に答えなさい。

A 図1では、電気量 +q (> 0) の2つの電荷が直線上に固定されている。図2では、電気量 -q (< 0) の2つの電荷が一直線上に固定されている。図1、図2において直線をx軸とし、2つの電荷の位置の中点をその原点とする。

間1 原点から少し離れたx軸上の位置に正電荷を置いた。この正電荷に働く力の向きはどうなるか。正しい組み合わせを、次の① \sim ④の中から一つ選びなさい。 14

	図 1	図 2
①	原点に向かう方向	原点に向かう方向
2	原点に向かう方向	原点から離れる方向
3	原点から離れる方向	原点に向かう方向
4	原点から離れる方向	原点から離れる方向

B ある電場の中に帯電していない導体 (conductor) が置かれている。次の図は、この電場の等電位線 (equipotential line) である。図のような、この電場の中を通る2つの経路AとBに沿った電位 (electric potential) の変化を考える。経路A、Bに平行に x 軸をとり、x 座標で経路の位置を表す。

問2 経路 A での電位を実線 (—),経路 B での電位を破線 (---)で、同じ図に描くと どうなるか。最も適当なものを、次の①~⑥の中から一つ選びなさい。 **15**

理科-16

 ${f C}$ 次の図のような電池、抵抗、コンデンサー(capacitor)、スイッチ ${f S}$ からなる回路を考える。最初、 ${f S}$ は開いていて、コンデンサーは充電(charge)されていなかった。

	電荷の総量 (C)
①	-1.6×10^{-5}
2	-1.2×10^{-5}
3	-4.0×10^{-6}
4	0
5	4.0×10^{-6}
(6)	1.2×10^{-5}
Ī	1.6×10^{-5}

D 次の図のように、 $0 \le x \le 2\ell$ の領域に、向きが +z 方向で、磁束密度(magnetic flux density)の大きさが B の一様な磁場がある。コイル(coil)を一定の速さ v で +x 方向に動かした。コイルは一辺が ℓ の正方形で、各辺は x 軸、y 軸に平行である。コイルの抵抗は R である。ただし、コイルのつくる磁場は無視できるものとする。

問4 コイルの位置によってコイルに流れる電流はどう変化するか。正しいものを、次の \mathbb{O} \mathbb{O}

問5 コイルに流れる電流の大きさの最大値はいくらか。正しいものを、次の①~④の中から一つ選びなさい。 18

- ① $\frac{\ell R}{vB}$
- $\bigcirc \frac{vB}{\ell B}$
- $\Im \frac{R}{vB\ell}$
- $\frac{vB\ell}{R}$

E 図1のように、抵抗値 $6.0\,\Omega$ の抵抗、コイル(coil)、起電力(electromotive force) $3.0\,\mathrm{V}$ の電池をつないだ回路を作った。はじめ S は開いていたが、時間 $t=0\,\mathrm{s}$ に S を 閉じると回路に電流が流れた。その電流 I は、図 2 に示すように、はじめ $0.20\,\mathrm{A/s}$ で 増加し、やがて一定値 $0.50\,\mathrm{A}$ に近づいた。

- 問6 このコイルの自己インダクタンス (self-inductance) は何 H か。最も適当なものを、 次の①~⑥の中から一つ選びなさい。 **19** H
 - ① 0.20 ② 2.5 ③ 3.0 ④ 12 ⑤ 15 ⑥ 18

物理の問題はこれで終わりです。解答欄の 20~ 75 は空欄にしてください。

この問題冊子を持ち帰ることはできません。