

First we design a sequence detector using moore machine like below:

state table

transition table

state <	0	1) ω	V2 V1 V0 (0	1 }	ω
		~~					2
Α	B	A	(0	000	001	000	0
В) B	C	0	001	001	010	0
C	B	D	(0	010	001	011	0
D (В	E) 0	011	(001	100	0
E	B	F (0	100	001	101	O
F	B	6	0	101	001	110	0
G) +	A) 0	110	111	000	0
\mathcal{H}	B	C	2 1	111	001	010	1
	Sta	ate+			VZ	1-1-Vo+)

We write the Verilog using the designed states. The we wrote a testbench and we synthesis the Verilog code using quartus and by writing a testbench to compare pre and post synthesized code we can see the waveform below:

as we can see you can detect some timing differences because we have delays in the synthesized code.

We can acces the floor plan:

We can see the netlists in netlist viewer:

For part b we use the Quartus library and by changing the register and the counter we built a reg and bit counter.

same as the last part we observe the plan floor and the netlist.

