中山大学本科生期末考试

考试科目: 《计算机组成原理》(B卷)

学年学期: 2018 学年第一学期	姓 名:
学 院/系:数据科学与计算机学院	学 号:
考试方式: 闭卷	年级专业:
考试时长: 120 分钟	班 别:
任课老师: 周杰英	
警示《中山大学授予学士学位工作细则》	》第八条:"考试作弊者,不授予学士学位。
以下为试题区域, 共八道大题, 总	分 100 分, 考生请在答题纸上作答
一、选择题(共 10 小题,每小题 1 分, 共	共10 分)
1. 运算器的核心功能部件是()。	
A 数据总线 W ALU C 状态	系条件寄存器 D 通用寄存器
2. 下列数中最大的数是 ()。	142\
★ (10010101) ₂ B (227) ₈ C (96)₁₆ D (3. 某 SRAM 芯片, 其存储容量为 1K×8 位, 该芯,	
A 8,19 B 8,20 C 19,8	
4. 虚拟存储技术主要解决存储器的()问题。	70,0
A 速度 B 扩大存储容量 C	成本 D 前三者兼顾
5. 机器指令与微指令之间的关系是()。	
★ 用若干条微指令实现一条机器指令	B 用若干条机器指令实现一条微指令
C 用一条微指令实现一条机器指令	
6. 以下有关运算器的描述, ()是正确的。	
A 只做加法运算 B 只做算才	た运算
C 算术运算与逻辑运算 D 只做逻辑	津运算
7. 主存贮器和 CPU 之间增加 cache 的目的是() 。
→ 解决 CPU 和主存之间的速度匹配问题	B 扩大主存贮器容量
C 扩大 CPU 中通用寄存器的数量	
D 既扩大主存贮器容量,又扩大 CPU 中通月	
	色数为 256,则刷新存储器的容量为()。
A 512KB B 1MB C 256KB	D 2MB
9. 中断向量地址是()。	
A 子程序入口地址 C 中断服务程序入口地址指示器	→ 中断服务程序入口地址 D 例行程序入口地址
10. 某微机最大可寻址的内存空间为 1MB, 其 CPU	
10. 未版机取入可可址的内针上向为1mb, 共 010	

二、填空题(共 10 小空,每空 1 分,共 10 分)

- 1. 通常所说的 CPU 一般包括_器、____器和寄存器组。
- 2. 在以 8086 为 CPU 的微机系统中,已知 (DS)=5100H, (BX)=0100H,则指令 MOV AX,[BX]源操作数的物理地址为。
- 3. 在 T1 状态下,8086/8088CPU 用 信号将数据/地址线上出现的信息锁存下来。
- 4. 调用 DOS 软件中断的要点是: 首先根据要调用的功能确定子功能号并存入寄存器 ___中,然后设置各个入口参数的寄存器,再通过____指令调用该 DOS 中断功能,最后如果有出口参数的还要处理出口参数。
- 5. 8086CPU 是一个 16 位的微处理器,具有____位数据总线, 20 位地址总线, 可寻址空间为___字 节。
- 6. 8086/8088CPU 的地址锁存发生在总线周期的__时钟周期。此时控制线 ALE 应输出___电平以选通地址锁存器锁存地址。

三、简答题(共6小题,每小题 5分,共30分)

- 1、简述微型计算机系统的硬件组成及各部分的作用。
- 2.微型计算机中系统总线的作用是什么?按照传送信号的性质来分,系统总线又可分为哪三组总线?这三组总线的作用是什么?
- 3. 以8088为CPU的PC/XT机中,基本的输入输出方式有哪几种,简述各种方式的特点。
- 4. 8088 CPU 功能结构上可以分成哪两大部分? 各部分的作用是什么?
- 5. 根据易失性、高密度、存储元的晶体管、在系统中的可写性,比较各种存储器(SRAM、DRAM、ROM、PROM、EPROM、E²PROM、FLASH)的性能。
- 6. Describe the steps that transform a program written in a high-level language such as C into a representation that is directly executed by a computer processor.
- 四. (10 分)下图是一个存储器系统,地址总线共有 20 位,数据总线 8 位,试分析电路,回答问题。
- (1) 单片存储芯片地址线有多少根,数据线有多少根?该芯片的容量为多大?
- (2) 组成该存储系统需要 6 片存储芯片,两片为一组,试写出每一组的地址范围。

五、关于CACHE(共 1 小题,每小题10 分,共 10 分)

1. For a direct-mapped byte-addressed cache design with a 32-bit address, the following bits of the address are used to access the cache.

Tag	Index	Offset	
31–10	9–5	4–0	

- (1) What is the cache block size (in bytes)?
- (2) How many entries does the cache have?
- (3)Starting from power on, the following byte-addressed cache references are recorded. Please fill in the following table. How many blocks are replaced? What is the hit ratio?

Address	Binary Address	Line ID	Tag	Hit/miss	Replace
1025					
5					
17					
141	00 00100 01101B				
181	00 00101 10101B				
161	00 00101 00001B				
0					
31					
133	00 00100 00101B				
2181	10 00100 00101B				
233	00 00111 01001B				
310	00 01001 10110B				

六、关于虚存(共1小题,每小题10分,共10分)

Virtual memory uses a page table to track the mapping of virtual addresses to physical addresses. The following data constitutes a stream of virtual addresses as seen on a system. Assume 4 KiB pages, a 4-entry fully associative TLB, and true LRU replacement. If pages must be brought in from disk, increment the next largest page number.

2228, 48871, 34588, 13197, 4670, 49225, 12608

TLB

Valid	Tag	Physical Page Number
1	11	12
1	7	4
1	3	6
0	4	9

Page table

Index	Valid	Physical Page or in Disk
0	1	5
1	0	Disk
2	0	Disk
3	1	6
4	1	9
5	1	11
6	0	Disk
7	1	4
8	0	Disk
9	0	Disk
10	1	3
11	1	12

Given the address stream shown, and the initial TLB and page table states provided above, show the final state of the system. Also list for each reference if it is a hit in the TLB, a hit in the page table, or a page fault, fill in the following table.

Address Virtual Page	Virtual Page	TLB H/M		TLB			
		Valid	Tag	Physical Page			
2228							
(8B4H)							
48871							
(BEE7H)							
24500							
34588							
(871CH)							
13197							
(338DH)							
(330 D11)							
4670							
(123EH)							
49225							
(0C049H)							
12 500							
12608							
(3140H)							

七、 读程题(共1小题,每小题 10 分,共 10 分)

假设 DL 寄存器中放了一位 16 进制数,请分析下列子程序的功能,并给子程序作简明注释,画流程图。

SHOW_1 PROC

CMP DL, 9

JBE NEXT

ADD DL, 7

NEXT: ADD DL, 30H

MOV AH, 02H

INT 21H

RET

SHOW_1 ENDP

八、(10分)编写实现如下功能的8086汇编程序段:

- (1) 从地址为 520H 的端口中读入一个字节;
- (2) 如果该字节 D4 位为"1",则转向第(1)步,继续循环扫描;
- (3) 如果该字节 D4 位为 "0",则从地址为 110H 的端口中读入一个字节,再将该字节送到外设 120H 端口中。