סיבוכיות- תרגול 11

 $.NP \subseteq RP$ אזי $NP \subseteq BPP$ תרגיל: הוכיחו כי אם

 $.SAT \in RP$ נראה כי $.SAT \in BPP$ ובפרט, ובפרט, ובפרט, ובפרט

x כך שלכל M כך שלכל, ולכן קיימת מ"ט פולינומית הסתברותית, ולכן קיימת מ

$$\Pr[M(x) = \chi_{SAT}(x)] \ge 2/3$$

x כך שלכל M^* כר ניתן להקטין את הסתברות השגיאה, כלומר, קיימת מ"ט פולינומית הסתברותית

$$\Pr[M^*(x) = \chi_{SAT}(x)] \ge 1 - \frac{1}{2(n+1)}$$

$:N(\phi)$

- .0 אם $M^*(\phi)$ החזירה 1.
- ϕ -ב נסמן ב-n את מספר המשתנים ב- ϕ .
 - n עבור i מ-1 עד.
- $.\phi_T$ וצמצם את ϕ ל- $x_i \leftarrow T$.a
- $.\phi_T$ אם $M^*(\phi_T)=1$ המשך עם .b
- ϕ_F עם ϕ_F והמשך עם , $x_i \leftarrow F$ אחרת, הצב .c
- .0 בדוק אם השמת האמת $x_1,...,x_n$ שהתקבלה מספקת את ϕ המקורית. אם כן החזר $x_1,...,x_n$ שהתקבלה .4

.0 אם ϕ ולכן N תמיד תחזיר ϕ ומיד תחזיר ϕ אם ϕ לא קיימת השמת אמת המספקת את

אם M^* אם M^* החזירה תשובה נכונה בכל הקריאות ש- ϕ , נשים לב כי אם M^* החזירה תשובה נכונה בכל הקריאות ש- ϕ קרימת השמה מספקת ותחזיר 1. לכן, ההסתברות ש-M טועה חסומה ע"י ההסתברות N קראה לה, אז N תמצא השמה מספקת ותחזיר 1. לכן, ההסתברות ש-N טועה חסומה ע"י ההסתברות שלפחות אחת מתוך n+1 הקריאות ל-m החזירה תשובה לא נכונה. הסתברות לטעות בכל קריאה כזאת היא לכל היותר $\frac{1}{2(n+1)}$, ולכן:

$$\Pr[N(\phi) = 0] \le (n+1) \cdot \frac{1}{2(n+1)} = \frac{1}{2}$$

 $NP \subseteq RP$ שלמה, קיבלנו כי N עומדת בדרישות של RP, ולכן $SAT \in RP$. מכיוון ש-SAT היא

כך M כך פולינומית מ"ט הסתברותית פולינומית מ"ט באופן הבא: נאמר כי $S \in ZPP$ אם קיימת מ"ט הסתברותית פולינומית מלכל באופן הבא:

$$.\Pr[M(x) = \chi_S(x)] \ge 1/2$$
 .1

$$.\Pr[M(x) \in \{\gamma_{S}(x), \bot\}] = 1$$
 .2

 $.ZPP = RP \cap coRP$ תרגיל: הוכיחו כי

פתרון:

N העונה על דרישות ZPP. נגדיר את המכונה M העונה על דרישות מ"ט הסתברותית פולינומית M החזירה $S \in ZPP$. נגדיר את המכונה N תחזיר N תחזיר N אם N אם N החזירה N תחזיר N אחרת תחזיר N מתקיים כי:

$$x \in S \Longrightarrow \Pr[N(x) = 1] = \Pr[M(x) = 1] \ge 1/2$$
$$x \notin S \Longrightarrow \Pr[N(x) = 0] = \Pr[M(x) \ne 1] = \Pr[M(x) \in \{0, \bot\}] = 1$$

 $S \in RP$ עונה לדרישות של N

באופן דומה ניתן להגדיר מכונה N' שתחזיר 0 אמ"ם M מחזירה 0. ניתוח דומה יראה כי N' עונה לדרישות של $S \in coRP$, ולכן coRP

 $.ZPP \subseteq RP \cap coRP$ סה"כ קיבלנו כי

בהתאמה. $S \in RP \cap coRP$ המכריעות את S לפי הדרישות של S ו-coRP בהתאמה. $S \in RP \cap coRP$ נגדיר את המכונה $S \in RP \cap coRP$ בהתאמה.

:N(x)

- .1 הרץ את M(x) ואם החזירה 1- החזר 1.
- .0 החזר -0 ואם החזירה M'(x) את .2
 - 3. החזר ⊥.

. נשים לב כי N אף פעם לא מחזירה תשובה לא נכונה, ולכן תנאי 2 של ZPP מתקיים.

מתקיים
$$x \notin S$$
 ועבור $Pr[N(x)=1] = Pr[M(x)=1] \geq 1/2$ מתקיים $x \in S$ מתקיים בנוסף, עבור

$$Pr[N(x) = 0] = Pr[M(x) = 0 \land M'(x) = 0] \ge 1/2$$

 $S \in ZPP$ אולכן ZPP ולכן פרישות של Pr $[N(x) = \chi_S(x)] \geq 1/2$ סה"כ סה"כ

ותוחלת זמן $\Pr[M(x) = \chi_S(x)] = 1$ אמ"ם קיימת מ"ט הסתברותית מ"ט המקיימת $S \in ZPP$ ותוחלת זמן הריצה שלה פולינומית.

<u>פתרון:</u>

את שתריץ את $S\in ZPP$. נגדיר מכונה N שתריץ את (\Leftarrow) : תהי $S\in ZPP$. נגדיר מכונה N שתריץ את שוב ושוב עד שתחזיר תשובה שאינה \bot . ברור כי N בסופו של דבר תחזיר תשובה נכונה. נסמן במשתנה M שוב ושוב עד שתספר הפעמים ש-N מריצה את M. נחשב את התוחלת של T:

$$\mathbb{E}[T] = \sum_{t=1}^{\infty} t \cdot \Pr[T = t] = \sum_{t=1}^{\infty} \Pr[T \ge t] \le \sum_{t=1}^{\infty} \left(\frac{1}{2}\right)^{t-1} \le 2$$

לכן, תוחלת זמן הריצה של N הוא פי 2 מזמן הריצה של M, ובפרט פולינומי.

עבור p(|x|): תהי M מ"ט הסתברותית המקיימת $p(|x|)=\chi_S(x)=1$, ותוחלת זמן הריצה שלה p(|x|) עבור p(|x|) מולינום p(|x|) בעדים. אם החזירה תשובה, תחזיר את p(|x|) שתריץ את p(|x|) את p(|x|) במשתנה המקרי p(|x|) את מס' הצעדים ש-תשובתה, אחרת תחזיר p(|x|) ברור כי p(|x|) ברור p(|x|). נסמן במשתנה המקרי p(|x|) את מס' הצעדים ש-p(|x|) מבצעת על קלט p(|x|). מתקיים כי p(|x|) ולכן לפי אי-שיוויון מרקוב:

$$\Pr[N(x) = \bot] = \Pr[M(x) \text{ doesn't halt in } 2p(|x|) \text{ steps}] = \Pr[T > 2\mathbb{E}[T]] \le 1/2$$