Pluto A Distributed Heterogeneous Deep Learning Framework

Jun Yang, Yan Chen Large Scale Learning, Alibaba Cloud

Outline

- PAI(Platform of Artificial Intelligence)
 - PAI Overview
 - Deep Learning with PAI
 - Pluto
- PAI DL Application
 - Chatbot Engine
- Summary

Machine Learning Platforms

Microsoft Azure Machine Learning

PAI Overview

Tutorial: data.aliyun.com

PAI Project

Search
Experiment
Data Source
Component
Model
Serving

Machine Learning with PAI

Deep Learning with PAI

PAI TensorFlow

- Rich Data IO
- Distributed Job Optimization (Multi. GPU/CPUs)
- Easy model Serving
- Hyper Parameter Tuning

```
odps@ test8>pai -name tensorflow -Dscript="file:///tmp/hello tf.py";
ID = 20161209110921342g1j2sa
Sub Instance ID = 201612091909364c75f2fe 1457 4e93 bd96 05e63ac818e1
http://logview.odps.aliyun-inc.com:8080/logview/?h=http://100.81.182.94:54320/api&p=te
train: 2016-12-09 19:09:42 TensorflowTask job:0/0/0[0%]
train: 2016-12-09 19:09:47 TensorflowTask job:0/0/0[0%]
train: 2016-12-09 19:09:53 TensorflowTask job:1/0/1[0%]
train: 2016-12-09 19:09:58 TensorflowTask job:1/0/1[0%]
train: running
OK
```


Pluto

Single-card Optimization

- Compiler-oriented strategy
 - Fuse small ops into bigger one
 - Reduce CUDA kernel launch overhead
 - Prepare data layout friendly with low-level computation library
- Memory optimization
 - Here again compiler-oriented tactics
 - Dependency analysis
 - Lifetime analysis

- Heuristic-based Model Parallelism
 - Both model weights and feature map taken into consideration
 - Memory allocator strategy taken into consideration
 - A greedy allocation algorithm
 - With pre-run support

- Hybrid-parallelism
 - Mixture of data-parallelism and model-parallelism
 - For communication-intensive parts, consider model-parallelism
 - For computation-intensive parts, consider data-parallelism
 - Tricks
 - Integrate seamlessly with computation graph style
 - Happier with pyramid network

Hybrid-parallelism(cont.)

	Data-parallelism				
	1 GPU	2 GPUs	4 GPUs	8 GPUs	
Data size(MiB)	0	930	1861	3722]
T_{fake} (s)	2.297	2.906	3.672	5.466	
Speed-up	1X	0.79X	0.63X	0.42X	P
T_{real} (s)	2.615	2.861	3.574	5.882	
Speed-up	1X	0.91X	0.73X	0.44X	D
	Hybrid-parallelism				
	1 GPU	2 GPUs	4 GPUs	8 GPUs	
Data size(MiB)	0	54	89	161]
T_{fake} (s)	2.297	1.238	0.662	0.443	
Speed-up	1X	1.86X	3.47X	5.19X	
T_{real} (s)	2.615	1.500	0.831	0.552	
Speed-up	1X	1.74X	3.15X	4.74X	

	Data-parallelism			
	1 GPU	2 GPUs	4 GPUs	8 GPUs
Tfake (s)	2.95	3.517	5.737	7.169
Speed-up	1X	0.84X	0.51X	0.41X
T _{real} (s)	3.487	8.956	9.906	7.407
Speed-up	1X	0.39X	0.35X	0.47X
		Hybrid-p	arallelism	
	1 GPU	Hybrid-p 2 GPUs	arallelism 4 GPUs	8 GPUs
T _{fake} (s)	1 GPU 2.95			8 GPUs 0.681
T _{fake} (s) Speed-up		2 GPUs	4 GPUs	
	2.95	2 GPUs 1.615	4 GPUs 0.957	0.681

1.51X

M40 Result K40 Result

Speed-up

1X

4.49X

2.62X

- Late-multiply
 - Customized for fully-connected layers
 - Trade-off between computation and communication

Late-multiply(cont.)

	10 Gbps Ethernet				
	1 GPU	2 GPUs	4 GPUs		
T (ms)	0	894	1287		
T_{opt} (ms)	0	164	399		
	56 Gbps InfiniBand				
	1 GPU	2 GPUs	4 GPUs		
T (ms)	0	90	185		
T_{opt} (ms)	0	51	136		

- Heuristic-based MA
 - Automatic batch-size selection
 - Learning rate auto-tuning
 - Happier with sequential model

Heuristic-based MA(cont.)

Inference Optimization

- Quantization
 - Significantly reduce model size(4X)
 - Around 2X speed-up on average
- Binarized Neural Network
 - Binarize model weights
 - Convert floating point computation into bit manipulation
 - Both model size and computation speed significantly improved
 - Training process needs to be manipulated to compensate for accuracy
 - Happier with CNN, but for RNN...

PAI DL Application

AliMe – Personal Assistant Bot in E-commerce

AliMe for **Sellers**

AliMe for **Enterprises**

Open-Domain Conversations

Retrieval Model

- Generation Model
 - Sequence to Sequence (Seq2Seq) Model

Recurrent Neural Networks: LSTM, GRU (our choice)

A Hybrid Conversation Model based on Seq2Seq

Overview

Retrieval Module

Seq2Seq Based Rerank and Generation Modules

[AliMe Chat: Minghui Qiu et al., ACL 2017]

PAI DL Support for AliMe

- Both the offline training and online serving backed by PAI
- Through heuristic-based MA, the offline training task has 2.8X convergence speed-up with 4 cards setting
- Through quantization, the online serving task has 1.5X speed-up on commodity CPU servers.

Conclusion

- PAI DL
 - End2end machine learning platform
 - Support big data analytics
 - Optimized Deep learning algorithms
 - Scheduling on CPU / GPU cloud
 - More data intelligence...
- Pluto
 - Distributed optimization engine of PAI DL
- PAI DL Application
 - PAI DL makes it easy to build DL methods for industrial applications

数据智能 触手可及

SCAN BARCODE START YOUR TRIAL

We are hiring! ©

muzhuo.yj@alibaba-inc.com chenyan.cy@alibaba-inc.com

Reference

- AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine, Minghui Qiu et al., ACL 2017.
- Deep Learning with PAI: a Case Study of AliMe, Minghui Qiu et al., Deep Learning Summit 2017.
- TensorFlow in AliMe, Jun Yang et al., Shanghai GDG Mar., 2017.

