Naive Bayes

P34 level	Prostate
	cancer
High	Y
Medium	Y
Low	Y
Low	N
Low	N
Medium	N
High	Y
High	N
Low	N
Medium	Y

A new patient has a blood test – his P34 level is HIGH.

what is our best guess for prostate cancer?

P34 level	Prostate
	cancer
High	Y
Medium	Y
Low	Y
Low	N
Low	N
Medium	N
High	Y
High	N
Low	N
Medium	Y

It's useful to know: P(cancer = Y)

P34 level	Prostate
	cancer
High	Y
Medium	Y
Low	Y
Low	N
Low	N
Medium	N
High	Y
High	N
Low	N
Medium	Y

It's useful to know: P(cancer = Y)

- on basis of this tiny dataset, P(c = Y) is 5/10 = 0.5

P34 level	Prostate
	cancer
High	Y
Medium	Y
Low	Y
Low	N
Low	N
Medium	N
High	Y
High	N
Low	N
Medium	Y

It's useful to know: P(cancer = Y)

- on basis of this tiny dataset, P(c = Y) is 5/10 = 0.5

P34 level	Prostate
	cancer
High	Y
Medium	Y
Low	Y
Low	N
Low	N
Medium	N
High	Y
High	N
Low	N
Medium	Y

So, with **no other info** you'd expect P(cancer=Y) to be 0.5

But we know that P34 =H, so actually we want:

 $P(\text{cancer=Y} \mid \text{P34} = \text{H})$

- the prob that cancer is Y, given that P34 is high

P34 level	Prostate
	cancer
High	Y
Medium	Y
Low	Y
Low	N
Low	N
Medium	N
High	Y
High	N
Low	N
Medium	Y

$$P(\text{cancer=Y} \mid \text{P34} = \text{H})$$

- the prob that cancer is Y, given that P34 is high

- this seems to be

$$2/3 = \sim 0.67$$

P34 level	Prostate cancer	
High	Y	
Medium	Y	
Low	Y	
Low	N	
Low	N	
Medium	N	
High	Y	
High	N	
Low	N	
Medium	Y	

So we have:

$$P (c=Y | P34 = H) = 0.67$$

 $P (c=N | P34 = H) = 0.33$

The class value with the highest probability is our best guess

P34 level	Prostate
	cancer
High	Y
Medium	Y
Low	Y
Low	N
Low	N
Medium	N
High	Y
High	N
Low	N
Medium	Y

In general we may have any number of class values

suppose again we know that

P34 is High;

here we have:

$$P (c=Y | P34 = H) = 0.5$$

 $P (c=N | P34 = H) = 0.25$
 $P(c=Maybe | H) = 0.25$

P34 level	Prostate cancer	
High	Y	
Medium	Y	
Low	Y	
Low	N	
Low	N	
Medium	N	
High	Y	
High	N	
High	Maybe	
Medium	Y	

... and again, Y is the winner

That is the essence of Naive Bayes, but:

the probability calculations are much trickier when there are >1 fields so we make a 'Naive' assumption that makes it simpler

Bayes' theorem

As we saw, on the right we are illustrating:

$$P(\text{cancer} = Y \mid P34 = H)$$

P34 level	Prostate	
	cancer	
High	Y	
Medium	Y	
Low	Y	
Low	N	
Low	N	
Medium	N	
High	Y	
High	N	
Low	N	
Medium	Y	

Bayes' theorem

And now we are illustrating

$$P(P34 = H \mid cancer = Y)$$

This is a different thing, that turns out as 2/5 = 0.4

P34 level	Prostate
	cancer
High	Y
Medium	Y
Low	Y
Low	N
Low	N
Medium	N
High	Y
High	N
Low	N
Medium	Y

Bayes' theorem is this:

$$P(A | B) = P(B | A)P(A)$$

$$P(B)$$

It is very useful when it is hard to get P(A | B) directly, but easier to get the things on the right

Bayes' theorem in 1-non-class-field DMML context:

```
P(Class=X | Fieldval = F) =
```

$$P ext{ (Fieldval = F | Class = X)} \times P(Class = X)$$

$$P(Fieldval = F)$$

Bayes' theorem in 1-non-class-field DMML context:

$$P(\text{Class}=X | \text{Fieldval} = F) =$$

We want to check this for each class and choose the class that gives the highest value.

Bayes' theorem in 1-non-class-field DMML context:

$$P(\text{Class}=X | \text{Fieldval} = F) =$$

$$P ext{ (Fieldval = F | Class = X)} \times P(Class = X)$$

$$P(Fieldval = F)$$

```
E.g. We compare: P(\text{Fieldval} \mid \text{Yes}) \times P(\text{Yes})

P(\text{Fieldval} \mid \text{No}) \times P(\text{No})

P(\text{Fieldval} \mid \text{Maybe}) \times P(\text{Maybe})
```

... we can ignore "P(Fieldval = F)" ... why?

and that was Exactly how we do Naive Bayes for a 1-field dataset

Deriving NB

Essence of Naive Bayes, with 1 non-class field, is to calc this for each class value, given some new instance with fieldval = F:

$$P(class = C \mid Fieldval = F)$$

For many fields, our new instance is (e.g.) (F1, F2, ...Fn), and the 'essence of Naive Bayes' is to calculate *this* for each class:

$$P(class = C \mid F1,F2,F3,...,Fn)$$

i.e. What is prob of class C, given all these field vals together?

Apply magic dust and Bayes theorem, and ...

```
... If we make the naive assumption that all of the fields are independent of each other

(e.g. P(F1| F2) = P(F1), etc ...) ... then
```

```
P(class = C \mid F1 \text{ and } F2 \text{ and } F3 \text{ and } ... \text{ Fn})
```

- $= P(F1 \text{ and } F2 \text{ and } ... \text{ and } Fn \mid C) \times P(C)$
- $= |P(F1|C) \times P(F2|C) \times \dots \times P(Fn|C) \times P(C)$

... which is what we calculate in NB

Nave-Bayes -- in general

N fields, q possible class values, New unclassified instance: F1 = v1, F2 = v2, ..., Fn = vn

what is the class value? i.e. Is it c1, c2, .. or cq?

calculate each of these q things – biggest one gives the class:

$$P(F1=v1 \mid c1) \times P(F2=v2 \mid c1) \times ... \times P(Fn=vn \mid c1) \times P(c1)$$

$$P(F1=v1 \mid c2) \times P(F2=v2 \mid c2) \times ... \times P(Fn=vn \mid c2) \times P(c2)$$

• • •

$$P(F1=v1 \mid cq) \times P(F2=v2 \mid cq) \times ... \times P(Fn=vn \mid cq) \times P(cq)$$

P34 level	P61 level	BMI	Prostate
			cancer
High	Low	Medium	Y
Medium	Low	Medium	Y
Low	Low	High	Y
Low	High	Low	N
Low	Low	Low	N
Medium	Medium	Low	N
High	Low	Medium	Y
High	Medium	Low	N
Low	Low	High	N
Medium	High	High	Y

New patient:

P34=M, P61=M, BMI = H

Best guess at cancer field?

P34 level	P61 level	BMI	Prostate
			cancer
High	Low	Medium	Y
Medium	Low	Medium	Y
Low	Low	High	Y
Low	High	High Low	
Low	Low	Low	N
Medium	Medium	Low	N
High	Low	Medium	Y
High	Medium	Low	N
Low	Low	High	N
Medium	High	High	Y

New patient:

P34=M, P61=M, BMI = H

Best guess at cancer field?

P34 level	P61 level	BMI	Prostate
			cancer
High	Low	Medium	Y
Medium	Low	Medium	Y
Low	Low	High	Y
Low	High	Low	N
Low	Low	Low	N
Medium	Medium	Low	N
High	Low	Medium	Y
High	Medium	Low	N
Low	Low	High	N
Medium	High	High	Y

$$P(p34=M \mid Y) \times P(p61=M \mid Y) \times P(BMI=H \mid Y) \times P(cancer = Y)$$

$$P(p34=M \mid N) \times P(p61=M \mid N) \times P(BMI=H \mid N) \times P(cancer = N)$$

New patient:

P34=M, P61=M, BMI = H

Best guess at cancer field?

P34 level	P61 level BMI		Prostate cancer
High	Low	Medium	Y
Medium	Low	Medium	Y
Low	Low	High	Y
Low	High	Low	N
Low	Low	Low	N
Medium	Medium	Low	N
High	Low	Medium	Y
High	Medium	Low	N
Low	Low	High	N
Medium	High	High	Y

$$P(p34=M \mid Y) \times P(p61=M \mid Y) \times P(BMI=H \mid Y) \times P(cancer = Y)$$

$$P(p34=M \mid N) \times P(p61=M \mid N) \times P(BMI=H \mid N) \times P(cancer = N)$$

New patient:

P34=M, P61=M, BMI = H

Best guess at cancer field?

P34 level	P61 level	BMI	Prostate cancer
High	Low	Medium	Y
Medium	Low	Medium	Y
Low	Low	High	Y
Low	High	Low	N
Low	Low	Low	N
Medium	Medium	Low	N
High	Low	Medium	Y
High	Medium	Low	N
Low	Low	High	N
Medium	High	High	Y

$$P(p34=M \mid Y) \times P(p61=M \mid Y) \times P(BMI=H \mid Y) \times P(cancer = Y)$$

$$P(p34=M \mid N) \times P(p61=M \mid N) \times P(BMI=H \mid N) \times P(cancer = N)$$

New patient:

P34=M, P61=M, BMI = H

Best guess at cancer field?

P34 level	P61 level	BMI	Prostate cancer
High	Low	Medium	Y
Medium	Low	Medium	Y
Low	Low	High	Y
Low	High	Low	N
Low	Low	Low	N
Medium	Medium	Low	N
High	Low	Medium	Y
High	Medium	Low	N
Low	Low	High	N
Medium	High	High	Y

$$P(p34=M \mid Y) \times P(p61=M \mid Y) \times P(BMI=H \mid Y) \times P(cancer = Y)$$

$$P(p34=M \mid N) \times P(p61=M \mid N) \times P(BMI=H \mid N) \times P(cancer = N)$$

Nave-Bayes with

New patient:

P34=M, P61=M, BMI = H

Best guess at cancer field?

P34 level	P61 level	BMI	Prostate
			cancer
High	Low	Medium	Y
Medium	Low	Medium	Y
Low	Low	High	Y
Low	High	Low	N
Low	Low	Low	N
Medium	Medium	Low	N
High	Low	Medium	Y
High	Medium	Low	N
Low	Low	High	N
Medium	High	High	Y

$$P(p34=M \mid Y) \times P(p61=M \mid Y) \times P(BMI=H \mid Y) \times P(cancer = Y)$$

$$P(p34=M \mid N) \times P(p61=M \mid N) \times P(BMI=H \mid N) \times P(cancer = N)$$

New patient:

P34=M, P61=M, BMI = H

Best guess at cancer field?

0.4	$\times 0$
0.2	$\times 0.4$

P34 level	P61 level	BMI	Prostate
			cancer
High	Low	Medium	Y
Medium	Low	Medium	Y
Low	Low	High	Y
Low	High	Low	N
Low	Low	Low	N
Medium	Medium	Low	N
High	Low	Medium	Y
High	Medium	Low	N
Low	Low	High	N
Medium	High	High	Y

$\times 0.4$	X	0.5 =	0
\times 0.2	X	0.5 =	0.008

In practice, we finesse the zeroes and use logs:

(note:
$$log(A \times B \times C \times D \times ...) = log(A) + log(B) + ...)$$

New patient:

P34=M, P61=M, BMI = H

Best guess at cancer field?

log(0.4)	$+\log(0.001)$
----------	----------------

$$\log(0.2)$$
 + $\log(0.4)$

P34 level	P61 level	BMI	Prostate
			cancer
High	Low	Medium	Y
Medium	Low	Medium	Y
Low	Low	High	Y
Low	High	Low	N
Low	Low	Low	N
Medium	Medium	Low	N
High	Low	Medium	Y
High	Medium	Low	N
Low	Low	High	N
Medium	High	High	Y

$$+\log(0.4)$$
 $+\log(0.5) = -4.09$

$$+ \log(0.2)$$

$$+\log(0.5) = -2.09$$

Nave-Bayes -- in general

As indicated, what we normally do, when there are more than a handful of fields, is this

Calculate:

$$log(P(F1=v1 | c1)) + ... + log(P(Fn=vn | c1)) + log(P(c1))$$

$$log(P(F1=v1 | c2)) + ... + log(P(Fn=vn | c2)) + log(P(c2))$$

and choose class based on highest of these.

Because ...?

Table 8.1 Class-Labeled Training Tuples from the *AllElectronics* Customer Database

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

 $X = (age = youth, income = medium, student = yes, credit_rating = fair)$

Predict if Bob will default his loan

Bob

Home owner: No

Marital status: Married

Job experience: 3

Home owner	Marital Status	Job experience (1-5)	Defaulted
Yes	Single	3	No
No	Married	4	No
No	Single	5	No
Yes	Married	4	No
No	Divorced	2	Yes
No	Married	4	No
Yes	Divorced	2	No
No	Married	3	Yes
No	Married	3	No
Yes	Single	2	Yes