M624 HOMEWORKS- Spring 2009

Prof. Andrea R. Nahmod

SET 6: Problems to do before Final Exam-Do not turn in

From Folland's book # 6.1 pages 186, 187. Do problems: 1, 3, 6, 7, 9, 10, 12...

From Folland's book # 6.3 page 196. Do problem: 31.

From Folland's book # 6.4 page 199. Do problems 38, 39.

<u>Further Reading Suggestions:</u> Besides your class notes on Ch. 6, you may want to read: From Folland:

- (1) Section 6.1 (all), Prop. 6.17 in Section 6.3, Propositions 6.22, 6.23 and 6.24 in Section 6.4
 - (2) Page 238 (Lemma 8.4 and Poposition 8.5) in Section 8.1.

From W. Rudin's book, 'Real and Complex Analysis':

(3) Theorem 3.13, 3.14 and following Remarks on pages 70 and 71.

Folland's Problem 29-Reformulated

Consider $\ell^1(\mathbb{N})$, the space of sequences of real numbers $\{a_n\}_{n\geq 1}$ such that $\|\{a_n\}_{n\geq 1}\|_{\ell^1}:=\sum_{n=1}^{\infty}|a_n|<\infty$. Define $S:\ell^1(\mathbb{N})\to\ell^1(\mathbb{N})$ as

$$S(\{a_n\}_{n\geq 1}) = \{\frac{a_n}{n}\}_{n\geq 1}$$

- (a) Prove that S is linear and continuous (bounded) from ℓ^1 into ℓ^1 .
- (b) Prove that S is not onto. That is show that the range of S, $\mathcal{R}(S)$ which equals the set of all sequences of real numbers $\{b_n\}_{n\geq 1}$ such that $b_n=\frac{a_n}{n}$ for some $a_n\in \ell^1(\mathbb{N})$ (or equivalently such that $\{nb_n\}_{n\geq 1}\in \ell^1(\mathbb{N})$) is a proper subset of $\ell^1(\mathbb{N})$.
 - (c) Prove that $\mathcal{R}(S)$ is dense in $\ell^1(\mathbb{N})$.
 - (d) Prove that S is not open.

<u>Hint.</u> To do so consider $B := \{\{a_n\}_{n\geq 1} / \|\{a_n\}_{n\geq 1}\|_{\ell^1} < 1\}$ the open ball in $\ell^1(\mathbb{N})$ and prove that S(B) is not open. Note that since $0 \in S(B)$ (by linearity), it is enough to

show that there exists a sequence of sequences – say $\{a^{(k)}\}_{k\geq 1}$ where for each k, $a^{(k)} := \{a_n^{(k)}\}_{n\geq 1} \in \ell^1(\mathbb{N})$ – such that for each k, $a^{(k)} \notin S(B)$ but $a^{(k)} \to 0$ as $k \to \infty$ in $\ell^1(\mathbb{N})$.

(e) Consider now the space $\mathcal{R}(S)$ endowed with the $\ell^1(\mathbb{N})$ norm. This space, namely $\mathcal{X} := (\mathcal{R}(S), \ell^1(\mathbb{N}))$ is itself a normed space which by parts (b) and (c) is not complete. If we now view $S : \ell^1(\mathbb{N}) \to \mathcal{X}$ (i.e. we restrict the codomain to its range and call this map S as well) then S is bounded, surjective and one-to-one (check).

Hence $S^{-1}: \mathcal{X} \to \ell^1(\mathbb{N})$ exists and it is defined as $S^{-1}(\{b_n\}_{n\geq 1}) := \{nb_n\}_{n\geq 1}$. Let call this $S^{-1} =: T$. Prove that T is closed but not bounded.

Q. Why doesn't this problem contradict the open mapping and closed graph theorems?

From Folland's book # 5.5 page 177. Do problems 54, 55, 57b)d) - use 22) in conjunction with 57a)-, 58, 59, 60, 61.

From Folland's book # 5.1 page 155. Do problems 3, 6, 7, 9, 12a)-d) For this read the discussion in middle of page 153 first).

From Folland's book # 5.2 page 159. Do problems 17, 22 a).

From Folland's book # 3.5 page 107. Do problems 27, 28, 31, 32 33, 37, 42.

From Folland's book # 3.3 page 94. Do problem 20.

Extra Problem 2: Let μ be a positive measure over (X, \mathcal{M}) and let $f: X \to \mathbb{C}$ be a μ -integrable function on X;— i.e. $f \in L^1(\mu)$. Define

$$u(E) := \int_E f \, d\mu \qquad E \in \mathcal{M}$$

- (a) Show that ν is a complex measure on (X, \mathcal{M})
- **(b)** In particular, show that if $f \in L^1(\mu)$ takes only real values -i.e. $f: X \to \mathbb{R}$ then ν as defined here is a finite signed measure (here use the Extra Problem 1 above).

Extra Problem 3: Let μ and ν be two measures on (X, \mathcal{M}) defined by

$$\mu(A) := \int_A e^{-x^2} dx \qquad A \in \mathcal{M}$$

$$\nu(A) = \int_A e^{-x^2 + x} dx \qquad A \in \mathcal{M}.$$

Show that $\mu \ll \nu$ and compute the Radon-Nikodym derivative $\frac{d\mu}{d\nu}$.

From Folland's book # 3.4 page 100. Do problems 22, 23, 24, 25a).

SET 1: Due February 12th, 2009

From Folland's book # 3.1 page 88. Do problems 2, 3, 4.

From Folland's book # 3.2 page 92. Do problems 8, 9, 10, 13, 16 (correction: need both measures to be σ -finite), 17 (correction: need ν to be σ -finite also.

Extra Problem 1: Let μ be a positive measure over (X, \mathcal{M}) and let f real be an extended μ -integrable function on X. Define

$$u(E) := \int_E f \, d\mu \qquad E \in \mathcal{M}$$

Show that ν is a signed measure on (X, \mathcal{M})