

DATE
1) (b) MLE \Rightarrow $w = \max_{\omega_0, \omega_d} \frac{n}{n} P(Yi/Xi, \omega_0, \omega_d)$
$MAP \Rightarrow \omega = \max_{\omega_0, \dots, \omega_d} \frac{r}{r} P(Yi/xi, \omega_0, \dots, \omega_d) P(\omega_0, \dots, \omega_d)$
Assume Standard Gaussian poior N(0, I) Gradient Ascent?
let w= [wo, wd]
for Gaussian distribution wet
$P(X) = \frac{1}{e^{-1/2}} \left(x - \frac{H}{e} \right)^2$
0.02π
$P(\omega) = \underline{I} e^{-\frac{1}{2}(\omega - \frac{1}{10})^2}$ for $N(0, I)$.
TILOT
$= \frac{1}{1 - e^{-1/2}} \omega^2$
127
$\frac{\partial \omega}{\partial \omega} (P(\omega)) = -\omega$
Sm ,
FORMUE
$L(\omega) = \sum_{i} \left[y^{i} \ln P(y^{i} = 1/x_{i}, \omega) + (1-y^{i}) \ln P(y^{i} = 0/x_{i}, \omega) \right]$
+ ln P(w)
$\frac{\partial}{\partial \omega} L(\omega) = \begin{cases} \begin{cases} y^i & \nabla(\omega^T x_i)(1 - \sigma(\omega^T x_i) \cdot x_i) \\ \sigma(\omega^T x_i) \end{cases} \\ - (\underbrace{1 - y_i}_{1 - \sigma(\omega^T x_i)} (1 - \sigma(\omega^T x_i) \cdot \sigma(\omega^T x_i) - x_i) \\ \\ - (\underbrace{1 - y_i}_{1 - \sigma(\omega^T x_i)} (1 - \sigma(\omega^T x_i) \cdot \sigma(\omega^T x_i) - x_i) \end{cases}$
$\partial \omega$ $\partial \omega$ $\partial \omega$
$-(1-yi)(1-\sigma(\omega^{T}xi).\sigma(\omega^{T}xi)-xi$
$(1-\sigma(\omega^{T}xi))$
-10
$\frac{\partial}{\partial \omega} L(\omega) = \underbrace{\begin{cases} xi \left[yi - P(Y=1/X, \omega) \right] - \omega \end{cases}}_{i}$
Gradient Ascent formula: Wett = we + 7 [2 L(w)]
$\omega \leftarrow \omega + \eta \left[-\omega + \sum_{t=1}^{\infty} x_t \left[y_t - P(Y=1/X, \omega) \right] \right]$

classmate

PAGE

DATE label. Training data