

UNIVERSIDADE FEDERAL DE RORAIMA

Comportamento Assintótico

Aula Baseada nos slides da Prof^a. Dr. Rosiane Rodrigues e Prof^a. Eduardo Nakamura- UFAM

Prof. Dr. Herbert Oliveira Rocha herberthb12@gmail.com

Aplicações práticas de algoritmos:

- ✓ O projeto Genoma Humano Identificação de genes do DNA humano
- ✓ A internet Conexão entre pessoas
- ✓ Comércio eletrônico Segurança (Teoria do números)
- ✓ Na indústria Alocação de recursos
- ✓ Rotas e distâncias

Imagine que os computadores fossem infinitamente rápidos e que a memória fosse livre

✓ Você teria alguma razão para estudar algoritmos?

Imagine que os computadores fossem infinitamente rápidos e que a memória fosse livre

- ✓ Você teria alguma razão para estudar algoritmos?
- ✓ SIM para demonstrar que a sua solução termina e o faz com a resposta correta

Na REALIDADE

- ✓ Computadores podem ser rápidos, mas não são infinitamente rápidos
- ✓ A memória pode ser de baixo custo, mas não é gratuita

Analisar problemas e algoritmos do ponto de vista computacional, significa determinar como os mesmos se comportam para pequenas e, principalmente, grandes instâncias e para as casos mais comuns, os melhores casos e, principalmente, os casos mais difíceis de ocorrerem.

Algoritmos

INSTÂNCIA DE UM PROBLEMA

É obtida pela fixação de valores particulares de todos os parâmetros do problema.

Algoritmos

EXEMPLO:

Ordenar uma lista finita de n números inteiros.

PARÂMETROS: n números inteiros $(x_1, x_2, ..., x_n)$

INSTÂNCIA: (2, 31, 0, -7), n=4

SOLUÇÃO: os n inteiros em ordem crescente.

(-7, 0, 2, 31)

Resolução de Problemas por Computador

Dar uma solução para um problema computacional significa elaborar um **ALGORITMO** em **PSEUDO-CÓDIGO** (linguagem intermediária entre a linguagem natural e a linguagem de programação) e implementá-lo numa linguagem de programação, gerando um **PROGRAMA**.

CUSTO DE <u>UTILIZAÇÃO</u> DE UM ALGORITMO

0 custo de um algoritmo pode ser medido de várias formas:

- Através da execução do programa em um computador real (tempo de execução medido diretamente).
- Através do uso de um modelo matemático.

Algoritmos

ESTRUTURA GERAL DE UM ALGORITMO

- » Algoritmo (Nome-do-Algoritmo);
- » Declaração de constantes, tipos e variáveis;
- » Início
 - Atribuições;
 - Sequências de Comandos;
 - Estruturas de controle:
 - Seleção
 - Repetição
 - Comandos de E/S.
- » Fim.

Estruturas de Dados

ESTRUTURAS DE DADOS

São formas de organização da informação,
 com o objetivo de manipulá-la (inserir,
 retirar, alterar, consultar) mais
 eficientemente.

Ordem de crescimento

- ✓ Caracterização simples da eficiência do algoritmo
- ✓ Comparar desempenho relativo de algoritmos alternativos

Quando observamos a ordem de crescimento

- ✓ Estamos estudando a eficiência assintótica dos algoritmos
- ✓ Estamos preocupados como o tempo de execução aumenta com tamanho da entrada

A notação assintótica

- ✓ Usada para descrever o tempo de execução assintótica de um algoritmo
- ✓ Facilita a análise para valores de entrada grandes

Na análise

- ✓ Comportamento a ser observado em uma função **f(n)**, quando **n** tende ao infinito (análise do crescimento assintótico da função).
- ✓ O custo assintótico de uma função **f(n)** representa o limite do comportamento de custo quando **n** cresce.
- ✓ Em geral, o custo aumenta com o tamanho **n** do problema.

IMPORTANTE

Para **valores pequenos de n**, mesmo um algoritmo ineficiente não custa muito para ser executado.

NOTAÇÕES

O que significa $T(n) = \Theta(n^2)$?

DOMINAÇÃO ASSINTÓTICA

Para uma dada função g(n), denotamos por $\Theta(g(n))$ o conjunto de funções

$$\Theta(g(n)) = \{ f(n) : \exists \text{ constantes positivas } c_1, c_2 \in n_0, \text{ tais que} \}$$
$$0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n > n_0 \}$$

NOTAÇÃO Θ (teta)

- $f(n) = \Theta(g(n))$
 - Lê-se f(n) é da mesma ordem de g(n).
 - Θ limita a função por fatores constantes.
- g(n) é um limite assintótico superior e inferior para f(n)

ou

- g(n) é um limite assintótico firme para f(n).

Notação Θ

$$\Theta(g(n)) = \{f(n) : \exists \text{ constant} | \text{es positivas } c_1, c_2 \in n_0, \text{ tais que}$$

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n > n_0 \}$$

Mostre que se $T(n) = \frac{1}{2}n^2 - 4n$, então $T(n) = \Theta(n^2)$

Aplicando a definição de Θ temos:

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 4n \le c_2 n^2$$

 $\Theta(g(n)) = \{f(n) : \exists \text{ constantes positivas } c_1, c_2 \in n_0, \text{ tais que}$ $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n > n_0 \}$

Mostre que se $T(n) = \frac{1}{2}n^2 - 4n$, então $T(n) = \Theta(n^2)$

Escolhendo $n_0 = 16$, obtemos:

DICA: Dividir por 16²

$$0 \le c_1 \le \frac{1}{2} - \frac{4}{16} \le c_2 \qquad \Rightarrow \qquad 0 \le c_1 \le \frac{1}{4} \le c_2$$

$$\Theta(g(n)) = \{f(n) : \exists \text{ constantes positivas } c_1, c_2 \in n_0, \text{ tais que}$$

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n > n_0 \}$$

Mostre que se
$$T(n) = \frac{1}{2}n^2 - 4n$$
, então $T(n) = \Theta(n^2)$

Escolhendo $c_1 = \frac{1}{5} e c_2 = \frac{1}{2}$, obtemos:

$$0 \le c_1 \le \frac{1}{4} \le c_2 \qquad \Longrightarrow \qquad 0 \le \frac{1}{5} \le \frac{1}{4} \le \frac{1}{2}$$

$$\Theta(g(n)) = \{f(n) : \exists \text{ constantes positivas } c_1, c_2 \in n_0, \text{ tais que}$$

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n > n_0 \}$$

Mostre que se $T(n) = \frac{1}{2}n^2 - 4n$, então $T(n) = \Theta(n^2)$

Portanto, para n = 16, temos que

$$0 \le \frac{1}{5}n^2 \le \frac{1}{2}n^2 - 4n \le \frac{1}{2}n^2$$

 $\Theta(g(n)) = \{f(n) : \exists \text{ constantes positivas } c_1, c_2 \in n_0, \text{ tais que}$ $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n > n_0 \}$

Graficamente, temos:

Notação O

- ✓ Quando temos apenas um limite assintótico superior, usamos a notação O
- ✓ Usamos a notação O para darmos um limite superior

A definição formal é

$$O(g(n)) = \{f(n) : \exists \text{ constantes positivas } c \in n_0, \text{ tais que}$$

 $0 \le f(n) \le cg(n) \ \forall \ n > n_0 \}$

Notação O

$$O(g(n)) = \{f(n) : \exists \text{ constantes positivas } c \in n_0, \text{ tais que}$$

 $0 \le f(n) \le cg(n) \ \forall \ n > n_0 \}$

NOTAÇÃO O

A **notação O** é usada para expressar o limite superior do tempo de execução de cada algoritmo para resolver um problema específico (limite superior de cada algoritmo para um problema).

NOTAÇÃO O

REGRA DA SOMA O(f(n)) + O(g(n))

- Suponha 3 trechos de programas cujos tempos de execução sejam O(n), $O(n^2)$ e O(nlogn).
- O tempo de execução dos 2 primeiros trechos é $O(\max(n,n^2)$, que é $O(n^2)$.
- O tempo de execução de todos os 3 trechos é, então, O(max(n², nlogn)), que é O(n²)

NOTAÇÃO O

Exemplo:

$$f(n) = (n+1)^2$$
 e $g(n) = 2n^2$, $f(n) = O(n^2)$?

$$O(g(n)) = \{f(n) : \exists \text{ constantes positivas } c \in n_0, \text{ tais que} \}$$

 $0 \le f(n) \le cg(n) \ \forall \ n > n_0 \}$

NOTAÇÃO O

Exemplo:

Assim
$$f(n) = O(g(n^2))$$
 - Porquê?

$$(n + 1)^2 \le cn^2$$

 $n^2 + 2n + 1 \le cn^2$
 $2n + 1 \le (c - 1)n^2$

n	(n+1)^2	2n^2
0	1	0
1	4	2
2	9	8
3	16	18
4	25	32

NOTAÇÃO Ω (ômega grande)

$$\mathbf{f}(\mathbf{n}) = \Omega(\mathbf{g}(\mathbf{n}))$$

- Lê-se f(n) é de ordem no mínimo g(n)
- ullet Ω define um limite inferior para a função, por um fator constante.

f(n) é um limite assintótico inferior para g(n)

NOTAÇÃO Ω

Exemplo:

O limite inferior para qualquer algoritmo de ordenação que utiliza comparação entre elementos é $\Omega(n \log n)$.

Notação Ω

- \checkmark Quando temos apenas um **limite assintótico inferior**, usamos a notação Ω
- \checkmark Usamos a notação Ω para darmos um limite inferior

A definição formal é

$$\Omega(g(n)) = \{f(n) : \exists \text{ constantes positivas } c \in n_0, \text{ tais que}$$

 $0 \le cg(n) \le f(n) \ \forall \ n > n_0 \}$

Notação Ω

$$\Omega(g(n)) = \{f(n) : \exists \text{ constantes positivas } c \in n_0, \text{ tais que}$$

 $0 \le cg(n) \le f(n) \ \forall \ n > n_0 \}$

TEOREMA

Para duas funções quais f(n) e g(n), temos que $f(n) = \Theta(g(n))$ se e somente se, f(n) = O(g(n)) e $f(n) = \Omega(g(n))$.

Comportamento Assintótica

NOTAÇÃO o (little O ou "o" pequeno)

O limite assintótico superior definido pela notação O pode ser assintoticamente firme ou não.

EXEMPLO:

O limite $2n^2 = O(n^2)$ é assintoticamente firme

O limite $2n = O(n^2)$ não é assintoticamente firme.

A notação o é usada para definir um limite superior que não é assintoticamente firme.

NOTAÇÃO o (little O ou "o" pequeno)

Formalmente temos:

$$o(g(n)) = \{f(n) : \forall \text{ constante } c > 0, \exists \text{ uma constante } n_0 > 0,$$

 $tal \text{ que } 0 \le f(n) < cg(n) \ \forall \ n > n_0 \}$

$$o(g(n)) = \{f(n) : \forall \text{ constante } c > 0, \exists \text{ uma constante } n_0 > 0,$$

 $tal \text{ que } 0 \le f(n) < cg(n) \ \forall \ n > n_0 \}$

$$o(g(n)) = \{f(n) : \forall \text{ constante } c > 0, \exists \text{ uma constante } n_0 > 0,$$

 $tal \text{ que } 0 \le f(n) < cg(n) \ \forall \ n > n_0 \}$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Em matemática, o conceito de limite é usado para descrever o comportamento de uma função à medida que o seu argumento se aproxima de um determinado valor

NOTAÇÃO ω (ômega pequeno)

O limite assintótico inferior definido pela notação ω pode ser assintoticamente firme ou não.

EXEMPLO:

O limite $2n^2 = \omega(n^2)$ é assintoticamente firme

O limite $2n^2 = \omega(n)$ não é assintoticamente firme.

A notação ω é usada para definir um limite inferior que não é assintoticamente firme.

NOTAÇÃO ω (ômega pequeno)

Formalmente temos:

$$\omega(g(n)) = \{f(n) : \forall \text{ constante } c > 0, \exists \text{ uma constante } n_0 > 0,$$

 $\text{tal que } 0 \le cg(n) < f(n) \ \forall \ n > n_0 \}$

$$\omega(g(n)) = \{ f(n) : \forall \text{ constante } c > 0, \exists \text{ uma constante } n_0 > 0, \\ \text{tal que } 0 \le cg(n) < f(n) \ \forall \ n > n_0 \}$$

$$\omega(g(n)) = \{f(n) : \forall \text{ constante } c > 0, \exists \text{ uma constante } n_0 > 0,$$

 $\text{tal que } 0 \le cg(n) < f(n) \ \forall \ n > n_0 \}$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Usando as definições de Θ , O, Ω , o e ω , mostre que:

a)
$$n \log n + 5n = \Theta(n \log n)$$

b)
$$2^{n+1} = O(2^n)$$

c)
$$2n^2 - 1 = \Omega(n^2)$$

d)
$$n^2 = o(n^3)$$

e)
$$n^2 = \omega(n)$$

f)
$$n \log n = o(n^2)$$

g)
$$2n^2 \neq o(n^2)$$

Classes de Comportamento Assintótico

- ✓ Se **f** é uma função de complexidade para um **algoritmo F**, então **O**(**f**) é considerada a complexidade assintótica, ou o comportamento assintótico do algoritmo **F**.
- A relação de dominação assintótica permite comparar funções de complexidade

Classes de Comportamento Assintótico

f(n) = O(1) (complexidade constante)

- ✓ O uso do algoritmo independe do tamanho de **n**.
- Neste caso as instruções do algoritmo são executadas um número fixo de vezes.

$f(n) = O(\log n)$ (complexidade logarítmica)

✓ Ocorre tipicamente em algoritmos que resolvem um problema transformando-o em problemas menores.

f(n)=O(n) (complexidade de linear)

- ✓ Em geral um pequeno trabalho é realizado sobre cada elemento de entrada.
- ✓ Esta é a melhor situação possível para um algoritmo que tem que processar n elementos de entrada ou produzir n elementos de saída.
- Cada vez que n dobra de tamanho o tempo de execução dobra.

f(n)=O(n) (complexidade de linear)

$$f(n) = O(nlog n)$$

✓ Este tempo de execução ocorre tipicamente em algoritmos que resolvem um problema quebrando-o em problemas menores, resolvendo cada um deles independentemente e depois ajuntando as

soluções.

$f(n) = O(n^2)$ (complexidade quadrática)

✓ Algoritmos desta ordem de complexidade ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel (*loop*) dentro de outro.

Exemplo:

Quando n é mil, o número de operações é da ordem de 1 milhão.

Algoritmos deste tipo são úteis para resolver problemas de tamanhos relativamente pequenos.

 $f(n)=O(n^2)$ (complexidade quadrática)

 $f(n) = O(n^3)$ (complexidade cúbica)

✓ Algoritmos desta ordem de complexidade são úteis apenas para resolver pequenos problemas.

Exemplo: Quando n é cem, o número de operações é da ordem de 1 milhão.

 $f(n) = O(2^n)$ (complexidade exponencial)

✓ Algoritmos desta ordem de complexidade geralmente não são úteis sob o ponto de vista prático. Eles ocorrem na solução de problemas quando se usa força bruta para resolvê-los.

Exemplos: Quando n é vinte, o tempo de execução é cerca de um

milhão.

Ordens de Complexidade

Ordens de Complexidade - N = 5 para N = ∞

See you

Perguntas?