NOTAS DE CVV :: TEOREMA DE GREEN

TIAGO MACEDO

$\S 1.$ Curvas.

Lembrem que uma curva em \mathbb{R}^n é uma função contínua $\gamma\colon [a,b]\to\mathbb{R}^n$. (Na verdade, o que nós imaginamos intuitivamente que seja uma curva é $\operatorname{im}(\gamma)$.) Nessas notas, sempre vamos assumir que γ é diferenciável. Além disso, se n=2 (resp. n=3), vamos denotar $\gamma(t)=(\mathsf{x}(t),\mathsf{y}(t))$ (resp. $\gamma(t)=(\mathsf{x}(t),\mathsf{y}(t),\mathsf{z}(t))$). Nesses casos, dizer que γ é diferenciável significa dizer que as funções x , y e z são diferenciáveis.

Definição. Uma curva $\gamma \colon [a,b] \to \mathbb{R}^n$ é dita fechada quando $\gamma(a) = \gamma(b)$. Uma curva fechada $\gamma \colon [a,b] \to \mathbb{R}^n$ é dita simples quando os únicos $t,s \in [a,b]$ distintos, tais que $\gamma(t) = \gamma(s)$ são t=a e s=b.

Observe que, se $\gamma \subseteq \mathbb{R}^2$ for uma curva fechada então $\mathbb{R}^2 \setminus \operatorname{im}(\gamma)$ (ou seja, o plano \mathbb{R}^2 sem a curva) é separado em duas regiões: a que está dentro de γ (e que é limitada), e a que está fora de γ (e que não é limitada). Além disso, quando γ é uma curva fechada e simples, a região dentro da curva é conexa (ou seja, só tem um pedaço). Na verdade, esse fato é conhecido como Teorema da Curva de Jordan.

§2. Campos de vetores e integral de linha.

Considere um campo de vetores $V: X^{\circ} \subseteq \mathbb{R}^2 \to \mathbb{R}^2$. Nessas notas, sempre vamos assumir que V é diferenciável. Além disso, vamos denotar V(x,y) = (P(x,y),Q(x,y)). Assim, dizer que V é diferenciável significa dizer que as funções P e Q são diferenciáveis.

Agora, dados uma curva $\gamma \colon [a,b] \to \mathbb{R}^2$ e um campo de vetores $V \colon X^\circ \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ tal que im $(\gamma) \subseteq X^\circ$, lembre que podemos definir uma função $F \colon \operatorname{im}(\gamma) \to \mathbb{R}^2$ da seguinte forma:

$$F(\mathbf{x}(t),\mathbf{y}(t)) = V(\mathbf{x}(t),\mathbf{y}(t)) \bullet \frac{\gamma'(t)}{\|\gamma'(t)\|}, \qquad t \in [a,b].$$

Lembre também que:

$$\int V \bullet d\gamma = \int F d\gamma$$

$$= \int_a^b F(\mathbf{x}(t), \mathbf{y}(t)) \| (\mathbf{x}'(t), \mathbf{y}'(t)) \| dt$$

$$= \int_a^b V(\mathbf{x}(t), \mathbf{y}(t)) \bullet (\mathbf{x}'(t), \mathbf{y}'(t)) dt$$

$$= \int_{\gamma} P dx + Q dy.$$

Por fim, dado um campo de vetores $V : X^{\circ} \subseteq \mathbb{R}^2 \to \mathbb{R}^2$, lembre que o rotacional de V é a função $\operatorname{rot}(V) : X^{\circ} \subseteq \mathbb{R}^2 \to \mathbb{R}$ dada por $\operatorname{rot}(V)(x,y) = Q_x(x,y) - P_y(x,y)$.

§3. Teorema de Green.

Lembre do CUV que, dada uma função diferenciável $f:[a,b]\to\mathbb{R}$, o Teorema Fundamental do Cálculo dizia que

(3.1)
$$\int_{a}^{b} f'(x) dx = f(b) - f(a).$$

Ou seja, para se calcular a integral da função f', basta calcular f (a primitiva da f') na fronteira do intervalo [a,b]. O Teorema de Green é uma versão do Teorema Fundamental do Cálculo para integrais duplas. Para entender essa analogia, vamos reinterpretar os termos que aparecem na equação (3.1).

No lado esquerdo de (3.1), a integral simples no intervalo $[a,b] \subseteq \mathbb{R}$ será substituída por uma integral dupla em uma região $R \subseteq \mathbb{R}^2$. Assim, a função f' deverá ser substituída por uma função $\mathbb{R}^2 \to \mathbb{R}$. Agora, observe que a fronteira de R é uma curva. Assim, no lado direito, a avaliação da primitiva de f' na fronteira de [a,b] será substituído pela integral de um campo de vetores. Por fim, o análogo à derivada da função f, nesse caso, é o rotacional desse campo de vetores.

Teorema (de Green). Seja $R \subseteq \mathbb{R}^2$ uma região limitada cuja fronteira é uma curva γ fechada simples. Se $V \colon R \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ for um campo de vetores diferenciável, então

$$\iint_{R} \operatorname{rot}(V) \, dx \, dy = \int V \bullet \, d\gamma.$$

Denote o campo de vetores V=(P,Q) e a curva $\gamma=(\mathsf{x},\mathsf{y}).$ Nas hipóteses do Teorema de Green, temos que

$$\iint_{R} (Q_x - P_y) \, dx \, dy = \int_{\gamma} P \, dx + Q \, dy.$$

Exercícios. Use o Teorema de Green para calcular as seguintes integrais.

- (a) Denote por γ a fronteira do triângulo com vértices (0,0), (1,0), (0,1). Mostre que $\int_{\gamma} x^4 dx + (xy) dy = 1/6$.
- (b) Denote por α é a fronteira do anel semicircular $\{(x,y) \in \mathbb{R}^2 \mid y \geq 0, \ 1 \leq x^2 + y^2 \leq 4\}$. Mostre que $\oint_{\alpha} y^2 dx + (3xy) dy = 14/3$.
- (c) Mostre que $\oint_{C_3} (3y e^{\sin(x)}) dx + (7x + \sqrt{y^4 + 1}) dy = 36\pi$, onde C_3 é a circunferência de raio 3.
- (d) Denote por C_1 a circunferência de raio 1. Mostre que $\oint_{C_1} (x^4 y^3) dx + (x^3 + y^5) dy = 3\pi/2$.
- (e) Denote por C_1 a circunferência de raio 1. Mostre que $\oint_{C_1} -\frac{y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy = 2\pi$.
- (f) Dados a,b>0, calcule a área da elipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.$