

# Contrôle périodique 1

LOG1810

Sigle du cours

# **SOLUTIONNAIRE**

| Sigle et titre du           | cours    | G      | iroupe | Trimestre   |  |
|-----------------------------|----------|--------|--------|-------------|--|
| LOG1810<br>Structures disci | rètes    |        | Tous   | Été 2025    |  |
| Professeu                   | ır       |        | Local  | Téléphone   |  |
| Aurel Randolph, Chargé      | de cours | ı      | A-410  |             |  |
| Jour                        | D        | ate    | Durée  | Heures      |  |
| Samedi                      | 17/05    | 5/2025 | 1h     | 10h30-11h30 |  |

LOG1810-É2025 Contrôle périodique 1 Matricule :

| a. <b>(1 pt)</b> Il n'est pas vrai que « 11 est un nombre premier ou 11 est pair ».  □ VRAI □ FAUX                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Réponse : FAUX  Explication : 11 est premier, donc la proposition interne « 11 est premier ou 11 est pair » est vraie. La négation est donc fausse. |
| b. (1 pt) Si 0 > 1 alors 1 > 0.  VRAI FAUX                                                                                                          |
| Réponse :VRAI  Explication : L'antécédent 0 > 1 est faux, donc l'implication est vraie.                                                             |
| c. <b>(1pt)</b> (3 <sup>2</sup> = 9) implique que 7 est divisible par 2.  VRAI FAUX                                                                 |
| <b>Réponse</b> : FAUX <b>Explication</b> : Premisse vraie, conséquence fausse → implication fausse.                                                 |
| d. <b>(1pt)</b> S'il neige à Montréal alors il neige à Montréal.  □ VRAI □ FAUX                                                                     |
| <b>Réponse</b> : VRAI<br><b>Explication</b> : Forme P → P , toujours vraie.                                                                         |

Exercice 2 (4 points) Traduisez les énoncés suivants à l'aide des prédicats proposés.

Soit U l'univers des voitures et les définitions suivantes :

C(x): « x est une voiture » E(x): « x est électrique »

V (x): « x possède la recharge rapide »

a : la voiture Audi Sedan

a. (1 pt) Toutes les voitures électriques possèdent la recharge rapide.

**Réponse** :  $\forall x$ ,  $(C(x) \land E(x)) \rightarrow V(x)$ 

b. (1,5 pt) Il existe au moins une voiture qui n'est pas électrique.

**Réponse** :  $\exists x$ , (C(x)  $\land \neg E(x)$ )

c. **(1,5 pt)** La Audi Sedan est une voiture électrique qui ne possède pas la recharge rapide.

**Réponse** :  $(C(a) \land E(a) \land \neg V(a))$ 

LOG1810-É2025 Contrôle périodique 1 Matricule :

<u>Exercice 3</u> (**4 points**) Prouvez les propositions suivantes en choisissant la méthode la plus appropriée parmi : preuve directe, preuve par contraposée ou preuve par cas.

a. (1 pt) 
$$(p \land (p \rightarrow q)) \rightarrow q$$

#### Réponse:

Prouvons l'implication par la technique de la preuve directe.

#### **Solution 1**

Supposons que  $(p \land (p \rightarrow q))$  est vrai, c'est à dire  $(p \land (p \rightarrow q)) \equiv VRAI$ Dérivons dans un premier temps  $(p \land (p \rightarrow q))$ .

 $p \land (p \rightarrow q) \equiv p \land (\neg p \lor q)$ 

Traductuction de l'implication en disjonction

 $p \wedge (p \rightarrow q) \equiv (p \wedge \neg p) \vee (p \wedge q)$ 

Loi de distributivité

 $(p \land (p \rightarrow q)) \equiv FAUX \lor (p \land q)$ 

Loi de négation

 $(p \land (p \rightarrow q)) \equiv (p \land q)$ 

Loi d'identité

En considérant l'hypothèse initiale, on a :  $(p \land q) \equiv VRAI$ 

Par conséquent, en appliquant la loi de simplification, nous obtenons :  $q \equiv VRAI$ .

**Conclusion** :  $[(p \land (p \rightarrow q)) \rightarrow q]$  est vrai

#### **Solution 2**

Supposons que  $(p \land (p \rightarrow q))$  est vrai, c'est à dire  $(p \land (p \rightarrow q)) \equiv VRAI$ 

 $[(p \land (p \rightarrow q)) \equiv VRAI] \rightarrow [(p \land (\neg p \lor q)) \equiv VRAI]$ 

Traductuction de l'implication en disjonction

 $[(p \land (p \rightarrow q)) \equiv VRAI] \rightarrow [(p \land \neg p) \lor (p \land q) \equiv VRAI]$ 

Loi de distributivité

 $[(p \land (p \rightarrow q)) \equiv VRAI] \rightarrow [FAUX \lor (p \land q) \equiv VRAI]$ 

Loi de négation

 $[(p \land (p \rightarrow q)) \equiv VRAI] \rightarrow [(p \land q) \equiv VRAI]$ 

Loi d'identité

 $[(p \land (p \rightarrow q)) \equiv VRAI] \rightarrow (q \equiv VRAI)$ 

Règle de simplification

**Conclusion**:  $[(p \land (p \rightarrow q)) \rightarrow q]$  est vrai

### b. (1 pt) $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$

#### Réponse:

Utilisons la technique de la preuve directe.

 $(p \rightarrow q) \equiv (\neg p \lor q)$ 

Traductuction de l'implication en disjonction

 $(p \rightarrow q) \equiv (q \lor \neg p)$ 

Commutativité

 $(p \rightarrow q) \equiv (\neg(\neg q) \lor \neg p)$ 

Loi de double négation

 $(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$ 

Traductuction de la disjonction en implication

Donc (p  $\rightarrow$  q)  $\leftrightarrow$  (¬q  $\rightarrow$  ¬p) est une tautologie. Elle est ainsi vraie.

**CQFD** 

LOG1810-É2025 Contrôle périodique 1 Matricule :

#### c. (1 pt) $[(p \lor r) \land (p \rightarrow q) \land (r \rightarrow s)] \rightarrow (q \lor s)$

#### Réponse:

Prouvons l'implication en combinant la technique de la preuve directe et la technique de la preuve par cas.

Supposons que [(p V r)  $\land$  (p  $\rightarrow$  q)  $\land$  (r  $\rightarrow$  s)] est Vrai.

D'après la règle de la simplification, (p V r) est Vrai et (p  $\rightarrow$  q) est vrai et (r  $\rightarrow$  s) est vrai

<u>Cas 1</u>:  $(p \equiv VRAI)$  (respectivement,  $r \equiv VRAI$ )

 $[(p \equiv VRAI) \land ((p \rightarrow q) \equiv VRAI)] \rightarrow (q \equiv VRAI)$  Règle du Modus Ponens

 $(q \equiv VRAI) \rightarrow ((q \lor s) \equiv VRAI))$  Règle de l'addition

Donc  $[(p \lor r) \land (p \rightarrow q) \land (r \rightarrow s)] \rightarrow (q \lor s)$ 

Cas 2 : (p  $\equiv$  FAUXI) (respectivement, r  $\equiv$  FAUX)

 $[(p \equiv FAUX) \land ((p \lor r) \equiv VRAI)] \rightarrow [(\neg p \equiv VRAI) \land ((p \lor r) \equiv VRAI)]$ 

 $[(\neg p \equiv VRAI) \land ((p \lor r) \equiv VRAI)] \rightarrow (r \equiv VRAI)$  Syllogisme disjonctif

 $[(p \equiv FAUX) \land ((p \lor r) \equiv VRAI)] \rightarrow (r \equiv VRAI)$  Syllogisme par hypothèse avec les 2 lignes ci-dessus

 $[(r \equiv VRAI) \land ((r \rightarrow s) \equiv VRAI)] \rightarrow (s \equiv VRAI)$  Règle du Modus Ponens

 $(s \equiv VRAI) \rightarrow ((q \lor s) \equiv VRAI))$  Règle de l'addition

Donc  $[(p \lor r) \land (p \rightarrow q) \land (r \rightarrow s)] \rightarrow (q \lor s)$ 

Conclusion :  $[(p \lor r) \land (p \rightarrow q) \land (r \rightarrow s)] \rightarrow (q \lor s)$ 

#### d. (1 pt) $\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$

#### Réponse:

Utilisons la technique de la preuve par cas pour les valeurs de verité de p et q. Cela revient à établir une table de vérité.

| р | q | ¬р | ¬q | рΛq | ¬(p ∧ q) | ¬p V ¬q | $\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$ |
|---|---|----|----|-----|----------|---------|--------------------------------------------------------|
| V | ٧ | F  | F  | V   | F        | F       | V                                                      |
| ٧ | F | F  | V  | F   | V        | V       | V                                                      |
| F | ٧ | V  | F  | F   | V        | V       | V                                                      |
| F | F | V  | V  | F   | V        | V       | V                                                      |

Conclusion : La table de vérité indique que  $\neg(p \land q) \leftrightarrow (\neg p \lor \neg q)$  est une tautologie. Ce qui prouve sa validité.

# Exercice 4 (3 points)

Pour chaque proposition suivante :

- (i) donnez sa négation,
- (ii) donnez sa réciproque,
- (iii) donnez sa contraposée,
- (iv) et, pour chacune de ces trois formes, vérifiez sa validité à l'aide d'une table de vérité (justifiez votre démarche).
- a. **(1,5 pt)**  $p \to (q \land r)$

# Réponse

- (i) **Négation** :  $p \land (\neg q \lor \neg r)$  **ou**  $p \land (q \rightarrow \neg r)$
- (ii) **Réciproque** :  $(q \land r) \rightarrow p$  ou  $\neg (q \land r) \lor p$  ou  $(\neg q \lor \neg r \lor p)$
- (iii) Contraposée :  $(\neg q \lor \neg r) \rightarrow \neg p ou \neg (\neg q \lor \neg r) \lor \neg p ou (q \land r) \lor \neg p$
- (iv) Table de vérité

|   |   |   |    |    |         |     |    | Négation      | Réciproque                  | Contraposée                               |
|---|---|---|----|----|---------|-----|----|---------------|-----------------------------|-------------------------------------------|
| р | q | r | ¬q | ¬r | ¬q V ¬r | qΛr | ¬р | p ∧ (¬q ∨ ¬r) | $(q \land r) \rightarrow p$ | $(\neg q \lor \neg r) \rightarrow \neg p$ |
| V | ٧ | ٧ | F  | F  | F       | V   | F  | F             | V                           | V                                         |
| V | ٧ | F | F  | V  | V       | F   | F  | V             | V                           | F                                         |
| V | F | ٧ | V  | F  | V       | F   | F  | V             | V                           | F                                         |
| V | F | F | V  | V  | V       | F   | F  | V             | V                           | F                                         |
| F | ٧ | ٧ | F  | F  | F       | V   | V  | F             | F                           | V                                         |
| F | ٧ | F | F  | V  | V       | F   | V  | F             | V                           | V                                         |
| F | F | ٧ | V  | F  | V       | F   | V  | F             | V                           | V                                         |
| F | F | F | V  | V  | V       | F   | V  | F             | V                           | V                                         |

b. **(1,5 pt)**  $(p \lor q) \to r$ 

#### Réponse

- (i) **Négation** :  $(p \lor q) \land \neg r$
- (ii) **Réciproque** :  $r \rightarrow (p \lor q)$  **ou**  $(\neg r \lor p \lor q)$
- (iii) Contraposée :  $\neg r \rightarrow (\neg p \land \neg q)$  ou  $r \lor (\neg p \land \neg q)$  ou  $r \lor \neg (p \lor q)$
- (iv) Table de vérité

|   |   |   |    |    |     |    |         | Négation     | Réciproque                 | Contraposée   |
|---|---|---|----|----|-----|----|---------|--------------|----------------------------|---------------|
| р | q | r | ¬q | ¬r | pVq | ¬р | ¬p ∧ ¬q | (p ∨ q) ∧ ¬r | $r \rightarrow (p \lor q)$ | ¬r→ (¬p ∧ ¬q) |
| V | ٧ | ٧ | F  | F  | V   | F  | F       | F            | V                          | V             |
| V | ٧ | F | F  | V  | V   | F  | F       | V            | V                          | F             |
| V | F | ٧ | V  | F  | V   | F  | F       | F            | V                          | V             |
| V | F | F | V  | V  | V   | F  | F       | V            | V                          | F             |
| F | ٧ | ٧ | F  | F  | V   | V  | F       | F            | V                          | V             |
| F | ٧ | F | F  | ٧  | V   | V  | F       | V            | V                          | F             |
| F | F | ٧ | V  | F  | F   | V  | V       | F            | F                          | V             |
| F | F | F | V  | ٧  | F   | V  | V       | F            | V                          | F             |

# Exercice 5 (5 points)

Utilisez les règles d'inférence du calcul des prédicats pour démontrer :

 $\exists x (R(x) \land \neg L(x))$ , à partir de :

- H1 : ∃x(C(x) ∧ ¬L(x))
- $H2: \forall x(C(x) \rightarrow R(x))$

#### Réponse :

- 1.  $\exists x(C(x) \land \neg L(x))$
- 2. C(a) ∧ ¬L(a)
- 3. C(a)
- 4.  $\forall x(C(x) \rightarrow R(x))$
- 5.  $C(a) \rightarrow R(a)$
- 6. R(a)
- 7. ¬L(a)
- 8.  $R(a) \wedge \neg L(a)$
- 9.  $\exists x (R(x) \land \neg L(x))$

# **Justification**

H1

Instanciation existentielle de l'étape 1

Simplification de l'étape 2

H2

Instanciation universelle de l'étape 4

Modus ponens & étapes 3 & 5

Simplification de l'étape 2

Conjonction des étapes 6 & 7

Généralisation existentielle de l'étape 8

CQFD