Geometría Proyectiva - 2° cuatrimestre 2016 PRÁCTICA 6

1. Ejercicio 1

Demostración Notemos que si X,Y son campos paralelos entonces $\langle X,Y\rangle=cte$ pues $\frac{d}{dt}(\langle X,Y\rangle)=\langle \dot{X},Y\rangle+\langle X,\dot{Y}\rangle=\langle \dot{X},Y\rangle+\langle \dot{X},Y\rangle+\langle \dot{X},Y\rangle+\langle \dot{X},\dot{Y},Y\rangle+\langle \dot{X},\dot{Y},Y\rangle+\langle \dot{X},\dot{Y},Y\rangle+\langle \dot{X},\dot{Y},Y\rangle+\langle \dot{X},\dot{Y},Y\rangle=0$. Por lo tanto $ang(X,Y)=\frac{\langle X,Y\rangle}{\sqrt{\langle X,X\rangle\langle Y,Y\rangle}}=cte$.

2. Ejercicio 2

Demostración Sea $p = c(t) \in M$ y (U, x) una carta centrada en p, luego si tomamos $X \in \mathcal{X}_c$ entonces $X = \sum_{i=1,2} X^i \partial x_i$ pues $\{\partial x_1, \partial x_2\}$ es una base de $T_p M$. Luego $\dot{X} = \sum_{i=1,2} \frac{dX^i}{dt} \partial x_i + \sum_{i=1,2} X^i \frac{d}{dt} (\partial x_i)$. Si llamamos $x^{-1} = f$ entonces ya probamos previamente que $\partial x_i|_{c(t)} = f_{u_i}(x \circ c(t))$ por lo que $\dot{X} = \sum_{i=1,2} \frac{dX^i}{dt}|_{t} f_{u_i}(x \circ c(t)) + \sum_{i=1,2} X^i(t) \sum_{j=1,2} f_{u_i u_j}(x \circ c(t)) \frac{d(x_j \circ c)}{dt}|_{t}$. Como por otro lado:

$$f_{u_i u_j} = \sum_{k=1,2} \Gamma_{i,j}^k f_{u_k} + l_{i,j} \circ f \eta$$

Concluímos que:

$$\dot{X} = \sum_{k=1,2} \left(\dot{X}^k + \sum_{i,j=1,2} X^i \frac{d(x_j \circ c)}{dt} \Gamma_{i,j}^k(c(t)) \right) \partial x_k$$
$$+ \sum_{i,j=1,2} X^i l_{i,j} \circ f N$$

Por lo que:

$$\nabla_D X = 0 \qquad \Longleftrightarrow \quad \dot{X}^k + \sum_{i,j=1,2} X^i \frac{d(x_j \circ c)}{dt} \Gamma^k_{i,j}(c(t)) = 0 \quad k = 1, 2$$

3. Ejercicio 3

Demostración Sean X,Y campos paralelos y $a \in \mathbb{R}$, luego $\nabla_D(X+aY)=(\dot{X}+a\dot{Y})^T=\nabla_DX+a\nabla_DY=0$.

4. Ejercicio 4

Demostración Sea $\alpha \in \pi \cap S$ y supongamos que esta parametrizada por longitud de arco, luego sea $\{\mathbf{t}, \mathbf{n} \times \mathbf{t}, \mathbf{n}\}$ al referencia móvil de α respecto de \mathbf{n} la normal de la superficie en una carta (U, x) de un punto $p \in S \cap \pi$. Por un lado sabemos que $\dot{\mathbf{t}} \perp \mathbf{t}$ por lo que $\dot{\mathbf{t}} = a\mathbf{n} + b\mathbf{n} \times \mathbf{t}$; pero por el otro lado α es una curva plana por lo que por Serret-Frenet tenemos que $\dot{\mathbf{t}} = \frac{e_2}{k_c} = \frac{\ddot{\alpha}}{k_c}$ el vector normal a la curva. Finalmente por simetría $\mathbf{n} \in \pi$ pues si reflejo π entonces \mathbf{n} debe ser igual; en conclusión tenemos que $\dot{\alpha}, \ddot{\alpha}, \mathbf{n}$ son generadores de π y por lo tanto $k_g = C \langle \ddot{\alpha}, \mathbf{n} \times \dot{\alpha} \rangle = 0$.

5. Ejercicio 5

Demostración • Sea $\phi(s, v) = (x(s)\cos(v), x(s)\sin(v), z(s))$ una parametrización de la superficie de revolución generada por α , donde asumamos que s es el parámetrod e longitud de arco. Luego notemos que los generadores de T_pS son:

$$\phi_s = (\dot{x}\cos(v), \dot{x}\sin(v), \dot{z})$$
$$\phi_v = (-x\sin(v), x\cos(v), 0)$$

Pero por el otro:

$$\phi(\dot{s}, v_0) = (\dot{x}\cos(v_0), \dot{x}\sin(v_0), \dot{z})$$

$$\ddot{\phi}(\dot{s}, v_0) = (\ddot{x}\cos(v_0), \ddot{x}\sin(v_0), \ddot{z})$$

Por lo que:

$$\left\langle \ddot{\phi}(s, v_0), \phi_s(s, v_0) \right\rangle = \dot{x}\ddot{x} + \dot{z}\ddot{z} = \left\langle \dot{\alpha}, \ddot{\alpha} \right\rangle = \frac{d\left(\|\dot{\alpha}\|^2\right)}{dt} = 0$$
$$\left\langle \ddot{\phi}(s, v_0), \phi_v(s, v_0) \right\rangle = 0$$

Concluímos que $\ddot{\gamma} = kN$ y por lo tanto $k_g = 0$.

Para ver los paralelos veamos la misma cuenta!

$$\dot{\phi}(s_0, v) = (-x(s_0)\sin(v), x(s_0)\cos(v), 0)$$
$$\ddot{\phi}(s_0, v) = (-x(s_0)\cos(v), -x(s_0)\sin(v), 0)$$

Por lo que:

$$\left\langle \ddot{\phi}(s_0, v), \phi_s(s_0, v) \right\rangle = -x(s_0)\dot{x}(s_0) = -\frac{d\left(\frac{x^2}{2}\right)}{dt}$$
$$\left\langle \ddot{\phi}(s_0, v), \phi_v(s_0, v) \right\rangle = 0$$

Por lo que para que un paralelo sea geodésica debemos tener que $x(s_0) = cte$.

6. Ejercicio 6

Demostración Sea $\alpha = at + b$ la recta recorrida a velocidad constante, trivialmente $\ddot{\alpha} = 0$ por lo que $k_g = 0$.

7. Ejercicio 7

Demostración Notemos que por definición α es línea de curvatura sii $dN_{\gamma(t)}(\mathbf{t}) = \frac{d}{dt} (N \circ \gamma) = \lambda \mathbf{t}$, pero por otro lado sabemos que γ es geodésica sii $k_g = 0$ sii $\mathbf{n} = N$. Por lo tanto $\tau_{\gamma} = \left\langle \frac{d\mathbf{n}}{dt}, \mathbf{b} \right\rangle = \langle \lambda \mathbf{t}, \mathbf{b} \rangle = 0$ por lo que γ es planar.

8. Ejercicio 8

Demostración Como todas las geodésicas son planares, entonces por 7 tenemos que todas las geodésicas son lineas de curvatura; no obstante dado $v \in T_pM$ entonces por el teorema de existencia y unicidad de geodésicas (asumimos conexión de M) se tiene que existe una geodésica γ_v tal que $\dot{\gamma}_v(0) = v$, luego $dN_p(v) = k_v v$ para todo $v \in T_pM$ por lo que p es umbílico.

Cmo segunda etapa veamos que el hecho que todo punto sea umbílico implica la conclusión. Tenemos que:

$$-N_u = k\sigma_u$$
$$-N_v = k\sigma_v$$

Para $\sigma(u, v)$ una parametrización de M alrededor de p, luego:

$$-N_{uv}(\sigma_u) = k_v \sigma_u + k \sigma_{uv}$$
$$-N_{vu}(\sigma_v) = k_u \sigma_v + k \sigma_{vu}$$

Y como $\sigma_{uv} = \sigma_{vu}$, $N_{uv} = N_{vu}$ y $\{\sigma_u, \sigma_v\}$ son base de T_pM tenemos que $k_u = k_v = 0$. Por lo tanto $N = k\sigma + c$ con $k \in \mathbb{R}, c \in \mathbb{R}^3$ constantes.

Por lo tanto si k = 0 tenemos que N es constante y por lo tanto $M \subset \pi$ o $\left\| \sigma + \frac{c}{|k|} \right\| = \left\| \frac{N}{k} \right\| = \frac{1}{|k|} = cte$ y entonces $M \subset S_{-c}(\frac{1}{|k|})$.