# Testowanie temperatur i metod temperatury w algorytmie symulowanego wyżarzania dla problemu Subset Sum

Wykonał, Artur Szulist s23049

## 1. Eksperyment

#### 1.1 Cel eksperymentu

Celem eksperymentu, jest dobranie temperatury i metody dla algorytmu symuowanego wyżarzania, dla problemu Subset Sum.

#### 1.2 Problem

Problem Subset Sum brzmi:

Mając dany skończony zbiór liczb całkowitych rozstrzygnąć, czy istnieje niepusty jego podzbiór sumujący się do zera.

#### Zbiór skończony:

| •             |                                                                          |           |
|---------------|--------------------------------------------------------------------------|-----------|
|               | 3345678910111213345678910111213345                                       |           |
|               | 3456789101112133456789101112133456<br>4567891011121334567891011121334567 |           |
| 6789101112133 | 5678910111213345678910111213345678                                       | 910111213 |
| Cel:          |                                                                          |           |

Max iteracji:

1000

1000

#### 1.3 Dane testowane

W eksprymencie, będziemy testować 3 metody dobierania temperatury:

• 
$$T_k \cong \frac{1}{\log k}$$
  
•  $T_k \cong \frac{1}{k}$   
•  $T_k \cong a^k$  gdzie  $0 < a < 1$ 

W przypadku pierwszego i drugiego algorytmu, 1 zostało podmienione na 1000 W przypadku trzeciego algorytmu, a = 0.5

# 2. Przebieg eksperymentu:

Dzielenie przez K:





Dzielenie przez Log(k)





## 0.5 do potęgi K



## 3. Wnioski

Jak widzimy, dzielenie przez K, jest najlepszym, rozwiązaniem