

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 09-189566
 (43)Date of publication of application : 22.07.1997

(51)Int.CI. G01C 21/00
 G08G 1/0969
 G09B 29/10

(21)Application number : 08-354559 (71)Applicant : AQUEOUS RES:KK
 SHIN SANGYO KAIHATSU KK
 (22)Date of filing : 19.12.1996 (72)Inventor : SUZUKI SEIICHI

(54) NAVIGATION DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To rapidly start guiding a path by efficiently performing the setting processing of a destination.

SOLUTION: A navigation device 1 is arranged in a vehicle 13 and can be connected to such external terminal 2 as a personal computer 2a, an electronic pocketbook 2b, and a telephone machine 2c located outside the vehicle 13 by such radio communication as a car telephone or infrared rays. The navigation device 1 starts each part (current position detection device, path search program, path guide program etc.) related to navigation processing when it receives a start signal from the external terminal 2. Then, when it receives a destination code from the external terminal 2, it performs destination setting processing and path search processing so that it can immediately start path guide after a drive gets on the vehicle.

LEGAL STATUS

[Date of request for examination] 19.12.1996

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 2897000

[Date of registration] 12.03.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-189566

(43)公開日 平成9年(1997)7月22日

(51)Int.Cl.⁵
G 0 1 C 21/00
G 0 8 G 1/0969
G 0 9 B 29/10

識別記号 庁内整理番号
F I
G 0 1 C 21/00
G 0 8 G 1/0969
G 0 9 B 29/10

F I
G 0 1 C 21/00
G 0 8 G 1/0969
G 0 9 B 29/10

技術表示箇所
H
A

審査請求 有 請求項の数6 FD (全8頁)

(21)出願番号 特願平8-354559
(62)分割の表示 特願平5-49963の分割
(22)出願日 平成5年(1993)2月16日

(71)出願人 591261509
株式会社エクオス・リサーチ
東京都千代田区外神田2丁目19番12号
(71)出願人 000146700
株式会社新産業開発
東京都渋谷区幡ヶ谷1丁目33番3号
(72)発明者 鈴木 誠一
東京都千代田区外神田2丁目19番12号 株式会社エクオス・リサーチ内
(74)代理人 弁理士 川井 隆 (外1名)

(54)【発明の名称】 ナビゲーション装置

(57)【要約】

【課題】 目的地の設定処理を効率よく行い、経路案内を速やかに開始することが可能なナビゲーション装置を提供する。

【解決手段】 ナビゲーション装置1は車両13内に配置され、車両13の車外にあるパソコンコンピュータ2a、電子手帳2b、電話機2c等の外部端末2との間で、自動車電話や赤外線等の無線通信により接続可能になっている。ナビゲーション装置1は、車外にある外部端末2から起動信号を受信すると、ナビゲーション処理に関連する各部（現在位置検出装置3、経路探索プログラム、経路案内プログラム等）を起動する。そして、外部端末2から目的地コードを受信すると、目的地設定処理及び経路探索処理を行って、運転者が乗車後すぐに経路案内を開始できるようにする。

【特許請求の範囲】

【請求項 1】 地図データや交差点データ等の道路データを記憶している記憶部と、
車両の現在位置を確認する現在位置確認部と、
目的地情報を車外の外部装置から無線通信により受信する受信部と、
この受信部で受信した目的地を設定する目的地設定部と、
この目的地設定部で設定された目的地までの経路を案内する経路案内部と、
前記車外の外部装置から起動信号を受信して、少なくとも前記受信部と目的地設定部を起動する起動部と、を具備することを特徴とするナビゲーション装置。

【請求項 2】 前記起動部により起動され、前記目的地設定部による目的地設定の後直ちに、前記記憶部に記憶された道路データに基づいて前記設定部で設定した目的地までの経路探索を行う経路探索部を具備することを特徴とする請求項 1 に記載のナビゲーション装置。

【請求項 3】 前記受信部による目的地情報の受信が終了した後に、前記車外の外部装置との無線通信による回線を切断する回線切断部を具備することを特徴とする請求項 1 または請求項 2 に記載のナビゲーション装置。

【請求項 4】 前記経路探索部による経路探索が終了した後に、前記起動部により起動した各部の起動を停止する起動停止部を具備することを特徴とする請求項 2 に記載のナビゲーション装置。

【請求項 5】 前記受信部は、目的地までの経路データを受信し、
前記経路案内部は、前記受信部で受信した経路データと、前記現在位置確認部で確認した現在位置と、前記記憶部の道路データとから、目的地までの経路案内を行うことを特徴とする請求項 1 に記載のナビゲーション装置。

【請求項 6】 前記目的地設定部で設定した目的地、前記経路探索部で探索した経路、または、前記受信部で受信した目的地までの経路データによる経路、内の少なくとも 1 つを確認する確認部を有し、
前記経路案内部は、この経路確認部による確認がされた後に経路案内を行うことを特徴とする請求項 1 から請求項 5 のうちのいずれか 1 の請求項に記載されたナビゲーション装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、ナビゲーション装置に係り、詳細には、目的地の入力処理を効率的に行うナビゲーション装置に関する。

【0002】

【従来の技術】地理に不案内な運転者に対して目的地まで経路案内を行うための装置として、ナビゲーション装置があり、その開発が盛んに行われている。ナビゲーシ

ョン装置で経路案内を行う場合、まず、目的地や出発地の設定を行う設定処理と、設定された両地点間を自動車で移動する経路を設定する経路探索処理が行われる。設定処理では、運転者によって入力された目的地、出発地に対応する目的地データ、例えば座標データや近接する交差点のデータ等を検索し、その目的地データを記憶する。目的地等の入力は、運転者が自動車に搭載されたタッチパネル等の入力装置を操作することにより行われる。具体的には、目的地の地名を直接文字入力し、目的地の電話番号を入力し、または、メニュー方式により県名から町名へと順次ディスプレイ表示される目的地リストから目的地を選択することで入力している。なお、例えば、GPS（グローバル・ポジショニング・システム）等で車両の現在位置を検出し、その現在位置データを出発地として使用する場合もある。一方、経路探索処理では、設定処理で得られた目的地データ、出発地データで特定される両地点間の経路を、データベースに格納された経路探索用の地図データや交差点データ等の道路データから算出し、その経路を記憶する。ナビゲーション装置では、このようにした算出された経路に従って、順次目的地までの経路や車両の進路方向を示す矢印等を道路地図と共にディスプレイに表示して経路案内を行っている。

【0003】

【発明が解決しようとする課題】従来のナビゲーション装置では、車内に配置された入力装置により、起動処理と目的地の設定処理を行っていたため、操作性があまり良くなく、これに比例して入力時間も長くなっていた。そこで、本発明の目的は、目的地設定を効率よく行い、経路案内を速やかに開始することが可能なナビゲーション装置を提供することにある。

【0004】

【課題を解決するための手段】請求項 1 に記載の発明では、地図データや交差点データ等の道路データを記憶している記憶部と、車両の現在位置を確認する現在位置確認部と、目的地情報を車外の外部装置から無線通信により受信する受信部と、この受信部で受信した目的地を設定する目的地設定部と、この目的地設定部で設定された目的地までの経路を案内する経路案内部と、前記車外の外部装置から起動信号を受信して、少なくとも前記受信部と目的地設定部を起動する起動部と、ナビゲーション装置に具備させて、前記目的を達成する。請求項 2 に記載の発明では、請求項 1 に記載のナビゲーション装置において、前記起動部により起動され、前記目的地設定部による目的地設定の後直ちに、前記記憶部に記憶された道路データに基づいて前記設定部で設定した目的地までの経路探索を行う経路探索部を具備させる。請求項 3 に記載の発明では、請求項 1 または請求項 2 に記載のナビゲーション装置において、前記受信部による目的地情報の受信が終了した後に、前記車外の外部装置との無線通信

による回線を切断する回線切断部を具備させる。請求項4に記載の発明では、請求項2に記載のナビゲーション装置において、前記経路探索部による経路探索が終了した後に、前記起動部により起動した各部の起動を停止する起動停止部を具備させる。請求項5に記載の発明では、請求項1に記載のナビゲーション装置において、前記受信部は、目的地までの経路データを受信し、前記経路案内部は、前記受信部で受信した経路データと、前記現在位置確認部で確認した現在位置と、前記記憶部の道路データとから、目的地までの経路案内を行う。請求項6に記載の発明では、請求項1から請求項5のうちのいずれか1の請求項に記載されたナビゲーション装置において、前記目的地設定部で設定した目的地、前記経路探索部で探索した経路、または、前記受信部で受信した目的地までの経路データによる経路、の内の少なくとも1つを確認する確認部を有し、前記経路案内部は、この経路確認部による確認がされた後に経路案内を行う。

【0005】

【発明の実施の形態】以下、本発明のナビゲーション装置における実施の形態について図1から図8を参照して詳細に説明する。

(1) 各実施形態の概要

ナビゲーション装置1は車両13内に配置され、車両13の車外にあるパソコンコンピュータ2a、電子手帳2b、電話機2c等の外部端末2との間で、自動車電話や赤外線等の無線通信により接続可能になっている。ナビゲーション装置1は、外部端末2から起動信号を受信すると、ナビゲーション処理に関連する各部（現在位置検出装置3、経路探索プログラム等）を起動する。そして、外部端末2から目的地情報を受信すると、自動的に目的地設定処理及び経路探索処理が行われるので、運転者は、車内における煩わしい目的地の設定処理を行うことなくナビゲーション装置による経路案内を受けることができる。経路案内は、受信した目的地情報と探索した経路の確認、または、受信した目的地までの経路確認をした後に行われる。また、ナビゲーション装置1は、経路探索が終了した後に外部端末2との無線通信による回線を切断し、さらに、経路探索が終了した後に起動しているナビゲーション処理に関連する各部を停止する。これにより通信時間や、起動時間が短縮される。他の実施形態では、目的地までの経路探索を、独立した起動信号、又は起動信号としての目的地情報を受信した場合に開始する。

【0006】(2) 実施形態の詳細

図1は、第1の実施形態におけるナビゲーション装置1の構成をブロックで表したものである。このナビゲーション装置1は、目的地設定や経路探索や経路案内等を行う演算処理装置4を備えている。この演算処理装置4には、図示しない各種インターフェイスを介して、現在位置検出装置3、通信装置5、画像表示装置6、および、

入力装置30が接続されている。入力装置30は、本実施形態の機能を使用しない目的地等を入力する場合や、旅行先で新たな目的地等を入力するとき等の本実施形態の機能を使用できない場合等に使用される。

【0007】通信装置5およびアンテナ1aは、パソコンコンピュータ等の外部端末で設定され、送信される起動信号や目的地データを受信し、演算処理装置4に供給するようになっている。記憶装置7は、CD-ROMやICカード等の各種記憶媒体で構成されている。この記憶装置7には、目的地の設定のための各目的地データに対応した座標データ、目的地に近接した交差点のデータ及び経路探索のための地図データや道路データ等の経路探索に必要な各種道路情報が格納されている。現在位置検出装置3は、図示しないが、GPS衛星や路上に設置されたピーコンからの電波を受信するための受信装置や、光ジャイロセンサーや地磁気センサー等の各種方位センサー、また、車速センサー、ホイルセンサー、ステアリングセンサー等を備えている。この現在位置検出装置3は、主として、GPS受信装置によって自動車の現在（絶対）位置（緯度、経度によって決まる座標）を決定する。また、各種センサーから検出した実走行距離や方位データとを組み合わせることによって、精度の高い位置決定が行われるようになっている。なお、受信装置のアンテナ3aは、精度を高めるため車両の前後二ヶ所に配置されている。また、本実施形態では、経路探索に必要な出発地の設定は、この現在位置検出装置3による現在位置データを基に行われるようになっている。

【0008】演算処理装置4は、CPU（中央処理装置）10および、このCPU10にデータバス等のバスラインを介して接続されたROM（リード・オンリ・メモリ）8とRAM（ランダム・アクセス・メモリ）9を備えている。CPU10は、通信装置5で受信した目的地データと記憶装置7及び現在位置検出装置3からの各種データを基に、経路の算出や進路方向の判断等の経路案内に必要な各種処理を行う。またCPU10は、外部端末から送信される起動信号を通信装置5で受信したか否かを監視し、受信した場合には、各種装置を起動するようになっている。これらの処理をCPU10で行うための各種プログラムがROM8に格納されており、CPU10の処理におけるワーキングメモリとしてRAM9が使用されるようになっている。

【0009】画像表示装置6は、CRTディスプレイ、液晶ディスプレイ等で構成され、経路案内に必要な各種案内情報が表示される。例えば、CPU10を介して記憶装置7から送られた地図データ等を基に描画した地図が表示されると共に、この地図上にCPU10から送られてくる車両の現在位置やCPU10が算出した経路及び進路方向を指示する矢印等が画像表示されるようになっている。

【0010】図2は、本実施形態によるナビゲーション

装置1と、このナビゲーション装置1を外部から起動し、目的地の入力処理等を行うための外部端末2との関係を表したものである。外部端末2としては、パーソナルコンピュータ2aと電子手帳2b及び電話機2c等の各種入力装置が使用されるが、この実施形態では、パーソナルコンピュータ2aを用いた場合に従って説明する。図2に示されるように、ナビゲーション装置1は車両13に搭載されている。一方、パーソナルコンピュータ2aは、この車両13とは別の場所、例えば、家庭やオフィス等の車外に設置されており、これらの場所で、ナビゲーション装置1の起動および目的地の入力処理が行われるようになっている。ナビゲーション装置1と外部端末2とは、電話回線によって接続されている。なお、この電話回線の代わりに無線による専用回線を用いてもよい。

【0011】パーソナルコンピュータ2aは、ディスプレイDおよび、文字・数字を入力するキーボードK、図示しないマウス等の入力装置を備えている。目的地の入力はこの入力装置から目的地の地名や電話番号を直接入力することによって行われる。パーソナルコンピュータ2aは、階層構造の目的地リストで構成されるデータベースを備えており、キーボードKからの入力に対応する目的地をデータベースから検索する。検索により得られた目的地データは起動信号と共にナビゲーション装置1に送信するようになっている。ここで、目的地は目的地を示すコードで表され、データベース22には、この目的地のコードと、そのコードに対応した電話番号や住所、目的地名等が格納されている。

【0012】次に、このように構成された実施形態の動作について説明する。図3は、本実施形態におけるナビゲーション装置1とパーソナルコンピュータ2aとの機能分担について表したものである。パーソナルコンピュータ2aは、操作者によって目的地の地名や電話番号が入力されると(矢印A)、データベース22から目的地情報としての目的地コードを検索する目的地検索機能21を有する。また、検索した目的地コードを電話回線を介してナビゲーション装置1へと送信する(図3において矢印Bで示す)通信機能23を有する。一方、ナビゲーション装置1は、パーソナルコンピュータ2aから送られてきた目的地コードを受信する通信機能11と、受信した目的地コードを設定(記憶)する目的地設定機能12を有する。経路探索は、この設定された目的地コードを用いて行われる。

【0013】図4は、パーソナルコンピュータ2aにおける目的地コードの検索、送信の流れを示したものである。まずパーソナルコンピュータ2aは、操作者によってキーボードKから目的地や電話番号等の入力がされたか否かを監視している(ステップ1)。目的地が入力されると(ステップ1;Y)、このパーソナルコンピュータ2aは、目的地検索プログラムに従って、データベー

ス22の目的地リストから目的地コードを検索する(ステップ2)。検索が終了すると、パーソナルコンピュータ2aは、ナビゲーション装置1との間の電話回線を接続し(ステップ3)、データ送信可能な状態にする。そして、所定の起動信号と共に検索した目的地コードをナビゲーション装置1に送信して(ステップ4)、処理を終了する。

【0014】図5は、ナビゲーション装置1における目的地設定から経路探索までの事前設定処理の流れを表したものである。ナビゲーション装置1では、パーソナルコンピュータ2aからの起動信号を通信装置5で受信したか否かをCPU10で監視している(ステップ5)。なお、この監視プログラムが常時起動しており、目的地受信や目的地設定や経路探索等のためのプログラム、及び、現在位置検出装置3や画像表示装置6等の各装置は起動していない。CPU10は起動信号の受信を検出すると(ステップ5;Y)、ナビゲーション装置1全体を起動する(ステップ6)と共に、パーソナルコンピュータ2aからの目的地コードを受信する(ステップ7)。CPU10は目的地コードを受信すると、記憶装置7に格納された道路情報から、目的地コードで特定される目的地の座標データ等からなる目的地データを検索しRAM9の所定エリアに格納する。(ステップ8)。

【0015】一方、ナビゲーション装置1の起動により現在位置検出装置3は、各種センサで検出したデータや受信装置での受信データをCPU10に供給している。CPU10は、供給されるデータから車両の現在位置を特定し、RAM9に格納した目的地データに対応する目的地までの経路探索処理を行う(ステップ9)。経路探索による経路データは、RAM9の所定エリアに保存し(ステップ10)、現在位置検出装置3等の起動を停止すると共に、パーソナルコンピュータ2aに事前設定処理が終了したことを示すメッセージを送信した後に回線の切断して(ステップ11)、処理を終了する。なお、目的地コードの受信完了により、パーソナルコンピュータ2aにデータ受信完了のメッセージを送信し、その後に回線を切断するようにしてもよい。

【0016】図6は運転者が車両に乗車した後のナビゲーション装置の動作を表したものである。CPU10は、事前設定処理(ステップ5~11)の後に、イグニッショ�이ONされたか否かを監視している(ステップ12)。運転者が車両に乗車してイグニッショ�이ONになると(ステップ12;Y)、CPU10は、ナビゲーション装置全体を再び起動させる(ステップ13)。そして、ナビゲーション装置1では、事前設定処理においてRAM9の所定エリアに格納されている目的地データ、経路データに従って、画像表示装置6に目的地と経路を表示し(ステップ14)、運転者に対して確認を求める(ステップ15)。

【0017】目的地に変更があった場合等には(ステッ

プ15；N）、ナビゲーション装置1の入力装置30から再び目的地を入力し、再度経路探索を行う目的地変更処理を行う（ステップ16）。目的地の確認が取れた場合（ステップ15；Y）、および目的地変更処理（ステップ16）の後、ナビゲーション装置1は、現在位置検出装置3で検出した現在位置データと保存しておいた経路データから、車両の進路を判断して、経路案内を開始する（ステップ15）。すなわち、運転者の所望のスケールで描画した地図と共に探索した経路や進路方向を示す矢印等の案内情報を画像表示装置6に表示させる。運転者はこの表示された案内情報を確認することにより、経路案内される。

【0018】以上説明した実施形態では、外部端末2としてパーソナルコンピュータ2aを用いた場合について説明したが、図2に示すような電子手帳2bを用いてもよい。この場合にも、電子手帳2bにおいて目的地の入力と目的地検索とが行われ、そして目的地コードと起動信号をナビゲーション装置1に送信する。このように外部端末2として電子手帳2bを用いれば、電子手帳2bは携帯性に優れるので、携帯電話等と組み合わせることにより、パーソナルコンピュータ2aのように設置場所を限定されることなく、外出先等からもナビゲーション装置1を起動し、目的地コードを送信することができる。

【0019】また、外部端末2として電話機2cを用いた場合には、入力できる文字が数字に限定にされるので、目的地の入力は、目的地の電話番号を入力することにより行うか、あるいは目的地毎に予めコード番号を与えておいて、いきたい目的地のコード番号を入力する等して行うこととなる。電話機2cから電話番号が送信された場合には、目的地コードの検索をナビゲーション装置1が行う。このように外部端末2として広く普及している電話機2cを用いれば、パーソナルコンピュータ2aや電子手帳2bと比べて、さらに入力が容易になる。

【0020】以上説明したように、本実施形態のナビゲーション装置1によれば、目的地入力処理を車両とは別の場所に設けられた外部端末2によって行うので、車両に乗車しなくとも直ちに目的地の設定ができる。また、電話回線を介して受信した目的地コードから予め目的地の設定や経路探索をナビゲーション装置1において行うので、運転者は乗車後直ちにナビゲーション装置1による経路案内を受けることができる。また、本実施形態では、ナビゲーション装置1と外部端末2とを電話回線で接続するので、ナビゲーション装置1と外部端末2との間の距離が制限されず各所においてナビゲーション装置1を起動することができる。

【0021】また、外部端末2として、オフィスに設置されたパーソナルコンピュータ2aを用いた場合には、オフィスワークの一環として目的地の入力を行うことができる。また、このパーソナルコンピュータ2aはフル

キーボードKを有するので、従来のようにメニュー方式で目的地を選択する場合に比べて、単独で目的地の地名を文字入力することができ、入力処理が容易になる。

【0022】また、例えば、観光地巡り等において複数の目的地を設定する場合、パーソナルコンピュータ2aで各目的地毎の検索が終了する毎に目的地データをナビゲーション装置1に送信するようにしてもよい。ナビゲーション装置1では、パーソナルコンピュータ2aで次の目的地を検索を行う間に事前設定処理と経路探索処理を行うこととなる。このように、目的地入力処理と目的地設定及び経路探索の処理とを並行して行うことで、複数の目的地の設定や経路探索を効率よく行うことができる。

【0023】次に、本発明のナビゲーション装置の第2の実施形態について説明する。なお、第1の実施形態と同一の部分には同一の符号を付して、適宜その説明を省略することとする。この第2の実施形態では、目的地や出発地の入力、設定、経路探索及び探索した経路データのナビゲーション装置への転送等の処理が外部端末2で行われ、一方、ナビゲーション装置では、経路データの受信及び経路案内の処理が行われるようになっている。パーソナルコンピュータ2aは、目的地の検索、出発地の検索、設定及び経路探索、探索した経路データのナビゲーション装置への転送等のプログラムを備えている。パーソナルコンピュータ2aのデータベース22には、目的地の地名データやコードデータの他に、目的地の設定に必要な各目的地の座標データや交差点データ及び出発地の検索、設定に必要な特徴物データや交差点名データ等で構成される出発地リスト、更には経路探索に必要な道路データ等が含まれる。このデータベースは、CD-ROM等の大容量の記憶装置に格納されている。

【0024】図7は、このような本実施形態におけるパーソナルコンピュータ2aでの目的地の入力から経路データの送出までの処理の流れを表したものである。パーソナルコンピュータ2aのキーボードKから目的地が入力されると（ステップ12；Y）、データベース22の目的地リストから目的地の座標データや交差点データ等の目的地データを検索し（ステップ22）、図示しないRAMの所定領域に格納する（ステップ23）。次にパーソナルコンピュータ2aは、出発地が入力されたか否かを監視する（ステップ24）。車両の現在位置付近にある川や建物の名等の特徴物名や交差点名が出発地として入力されると（ステップ24；Y）、出発地リストからその出発地の座標データ等（出発地データ）を検索し（ステップ25）、RAMの所定領域に格納する（ステップ26）。

【0025】次に、パーソナルコンピュータ2aは、目的地データや出発地データ及びデータベース22の道路データを基に、経路探索プログラムに従って、目的地までの経路を探索する（ステップ27）。経路探索が終了

すると、パーソナルコンピュータ2aのディスプレイDにデータベースの地図データを基に所定のスケールで地図を描画すると共にこの地図上に経路を表示し、操作者に確認を求める(ステップ28)。経路が確認されると(ステップ28;Y)、ナビゲーション装置1との回線を接続し(ステップ29)、起動信号、出発地データ、目的地データおよび経路データを電話回線を介してナビゲーション装置1へと送信して(ステップ30)、処理を終了する。

【0026】図8は、本実施形態のナビゲーション装置1における処理の流れを表したものである。ナビゲーション装置1では、CPU10が通信装置5でパーソナルコンピュータ2aからの起動信号を受信したか否かを監視している(ステップ31)。なお、この監視プログラムのみが常時起動しており、(ステップ31)、経路探索のためのプログラムや現在位置検出装置3、画像表示装置6等は起動していない。CPU10は起動信号の受信を検出すると(ステップ31;Y)、ナビゲーション装置1全体を起動することなく、目的地データ、出発地データおよび経路データを受信して(ステップ32;Y)、RAM9の所定エリアに格納して(ステップ33)、処理を終了する。

【0027】運転者が車両に乗車した後のナビゲーション装置の動作は、第1の実施形態における図6のフローチャートと同様に行われる所以、説明を省略する。以上述べたように、本実施形態によるナビゲーション装置によれば、車両に乗車する前に外部端末2で経路探索まで行ってしまうので、家庭またはオフィス等で予め探索した経路を確認することが可能になる。

【0028】以上、本発明の各実施形態によるナビゲーション装置について説明したが、本発明はこの構成に限定されるものではない。例えば、ナビゲーション装置1とパーソナルコンピュータ2aとを結ぶ通信回線として、専用の通信回線やAMあるいはFM電波等による無線回線を用いてもよい。また、外部端末2として例えば、通信機能を有するワードプロセッサ等を用いてもよい。パーソナルコンピュータ2aによる目的地の入力については、ディスプレイDに県名から町名へと順にメニュー方式で地名リストを表示し、この順に表示される地名リストに従ってこの中から地名を選択することにより目的地の地名を入力するようにしてもよい。更に、以上説明した実施形態では、ナビゲーション装置を起動させるために、パーソナルコンピュータ2aから起動信号を送信することとしたが、目的地コードを起動信号と兼用するようにしてもよい。すなわち、CPU10は、目的地コードの受信を通信装置5で受信したことを検出すると、ナビゲーション装置を起動する。また、CPU10は、パーソナルコンピュータ2aからの回線接続要求を監視し、接続要求があった場合にナビゲーション装置を起動するようにしてもよい。

【0029】第1の実施形態では、出発地の設定は現在位置検出装置3で検出した現在位置データを基に行っており、第2の実施形態のように出発地をパーソナルコンピュータ2aで入力し、この出発地データを目的地データと共にパーソナルコンピュータ2aからナビゲーション装置1へと転送することによって、ナビゲーション装置1ではこの転送された出発地データを基に出発地の設定を行うようにしてもよい。

【0030】

【発明の効果】以上述べたように、本発明のナビゲーション装置によれば、車外の外部装置からの起動信号を受信して受信部と目的地設定部を起動し、目的地設定を行なうので、運転者は車内における煩わしい目的地の設定処理を行うことなくナビゲーション装置による経路案内を受けることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態によるナビゲーション装置の詳細を示すブロック図である。

【図2】同ナビゲーション装置と外部端末との関係を示した概略図である。

【図3】同ナビゲーション装置と外部端末との機能分担を示す概念図である。

【図4】第1の実施形態において外部端末としてパーソナルコンピュータを用いた場合のパーソナルコンピュータ上での目的地の入力処理の流れを示すフローチャートである。

【図5】第1の実施形態によるナビゲーション装置における目的地の設定及び経路探索の処理の流れを示すフローチャートである。

【図6】同ナビゲーション装置の車両乗車後の動作を示すフローチャートである。

【図7】本発明の第2の実施形態において外部端末としてパーソナルコンピュータを用いた場合のパーソナルコンピュータ上での処理の流れを示したフローチャートである。

【図8】同実施形態によるナビゲーション装置における処理の流れを示すフローチャートである。

【符号の説明】

- | | |
|-----|-------------|
| 1 | 装置本体 |
| 1 a | 受信アンテナ |
| 2 | パーソナルコンピュータ |
| 3 | 現在位置検出装置 |
| 3 a | アンテナ |
| 4 | 演算処理装置 |
| 5 | 通信装置 |
| 7 | 記憶装置 |
| 8 | ROM |
| 9 | RAM |
| 10 | CPU |

【図1】

【図4】

【図2】

【図3】

【図8】

【図5】

【図6】

【図7】

