Homework 9 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

April 21, 2024

- 1. By observe, $\Delta(x) = \det(D^2 f(x)) \ge 0$.
 - (a) Since $\Delta(x) \ge 0$ and $f_{xx}(x) > 0$, $D^2 f(x)$ is positive semi-definite on $D(c, \delta)$. Thus, for any $x \in D(c, \delta)$,

$$Df(x) = Df(x) - Df(c)$$

$$= \int_0^1 D^2 f(c + t(x - c))(x - c) dt$$

$$\geq \int_0^1 0(x - c) dt$$

$$\geq 0$$

Then,

$$f(x) - f(c) = \int_0^1 Df(c + t(x - c))(x - c) dt$$
$$\ge \int_0^1 O(x - c) dt$$
$$\ge 0$$

Threrfore, c is a local minimum point of f.

(b) Since $f_{xx}(x) < 0$ and $\Delta(x) \ge 0$, $D^f(x)$ is negative semi-definite. Using the same argument as (a), we can get $f(x) - f(c) \le 0$ for all $x \in ||x - c|| < \delta$. Thus, c is local maximum point of f.

- 2. Since $f_x(x_0) = f_y(x_0) = 0$ and $f \in C^2(V, \mathbb{R})$, $Df(x_0) = 0$ and x_0 is a critical point. If $f_{xy}(x_0) \neq 0$, $\det(D^2f(x_0)) = -(f_{xy}(x_0))^2 < 0$, then $D^2f(x_0)$ is not positive definite and negative definite. Thus, x_0 will be saddle point.
- 3. Since $D^r f(x)$ is continuous, there exists a $M = \sup\{\|D^r f(x)\| \mid x \in E \text{ and in neighberhood of } x_0\}$. Thus, $\lim_{h \to 0} R_{r-1}(x_0, h) = \lim_{h \to 0} \frac{D^r f(x_0)(h, h, \dots, h)}{r! \|h\|^{r-1}} \leq \lim_{h \to 0} \frac{M \cdot \|h\|^r}{r! \|h\|^{r-1}} = \lim_{h \to 0} \frac{M}{r!} \|h\| = 0.$