Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #10-11

2023/05/07

Name:	
Student Number:	

True or false (and give a proof of your answer): there exists T ∈ L(R³) such that T is not self-adjoint (with respect to the usual inner product) and such that there is a basis of R³ consisting of eigenvectors of T.
判断正误 (并证明你的结论): 存在 T ∈ L(R³) 使得 T (关于通常的内积) 不是自伴的并且 R³ 有一个由 T 的本征向量构成的基.

Proof. Let e_1, e_2, e_3 be standard basis of \mathbb{R}^3 , we define $T \in \mathcal{L}(\mathbb{R}^3)$, $Te_1 = e_1$, $Te_2 = e_1 + 2e_2$, $Te_3 = 3e_3$, then

$$\mathcal{M}(T; e_1, e_2, e_3) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

T has three linearly independent eigenvectors which form a basis of \mathbb{R}^3 , but T is not self-adjoint.

2. Find the singular values of the differentiation operator $D \in \mathcal{P}(\mathbf{R}^2)$ defined by Dp = p', where the inner product on $\mathcal{P}(\mathbf{R}^2)$ is $\langle p(x), q(x) \rangle = \int_{-1}^1 p(x)q(x)dx$, $\forall p(x), q(x) \in \mathcal{P}(\mathbf{R}^2)$, and an orthonormal basis w.r.t this inner product of $\mathcal{P}(\mathbf{R}^2)$ is $\sqrt{\frac{1}{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{45}{8}}(x^2 - \frac{1}{3})$.

求由 Dp = p' 定义的微分算子 $D \in \mathcal{P}(\mathbf{R}^2)$ 的奇异值,这里 $\mathcal{P}(\mathbf{R}^2)$ 上的内积定义为 $\langle p(x), q(x) \rangle = \int_{-1}^1 p(x)q(x)dx$, $\forall p(x), q(x) \in \mathcal{P}(\mathbf{R}^2)$, 在此内积下的 $\mathcal{P}(\mathbf{R}^2)$ 的一组规范正交基是 $\mathcal{P}(\mathbf{R}^2)$ is $\sqrt{\frac{1}{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{45}{8}}(x^2 - \frac{1}{3})$.

Proof. Let
$$e_1 = \sqrt{\frac{1}{2}}$$
, $e_2 = \sqrt{\frac{3}{2}}x$, $e_3 = \sqrt{\frac{45}{8}}(x^2 - \frac{1}{3})$, then

$$De_1 = 0$$
, $De_2 = \sqrt{\frac{3}{2}} = \sqrt{3}e_1$, $De_3 = \sqrt{\frac{45}{8}} \cdot 2x = \sqrt{\frac{45}{2}}x = \sqrt{15}e_2$.

$$M = \mathcal{M}(D; e_1, e_2, e_3) = \begin{pmatrix} 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{15} \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow M^* = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{3} & 0 & 0 \\ 0 & \sqrt{15} & 0 \end{pmatrix}$$

so
$$M^*M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{pmatrix}$$
, the eigenvalues of T^*T are $0, 3, 15$, then the singular values of T are $0, \sqrt{3}, \sqrt{15}$.

3. Give an example of two self-adjoint operators $T_1, T_2 \in \mathcal{L}(\mathbf{F}^4)$ such that the eigenvalues of both operators are 2, 5, 7 but there does not exist an isometry $S \in \mathcal{L}(\mathbf{F}^4)$ such that $T_1 = S^*T_2S$. Be sure to explain why there is no isometry with the required property.

找出两个自伴算子 $T_1, T_2 \in \mathcal{L}(\mathbf{F}^4)$ 使得它们的本征值为 2,5,7, 但不存在等距同构 $S \in \mathcal{L}(\mathbf{F}^4)$ 使得 $T_1 = S^*T_2S$. 一定要解释为什么不存在满足条件的等距同构.

Proof. Let e_1, e_2, e_3, e_4 be an orthonormal basis of \mathbf{F}^4 ,

$$\mathcal{M}(T_1; e_1, e_2, e_3, e_4) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 7 \end{pmatrix}, \quad \mathcal{M}(T_2; e_1, e_2, e_3, e_4) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 7 \end{pmatrix}$$

we have $T_1e_1 = 2e_1, T_1e_2 = 2e_2, T_2e_1 = 2e_1$.

Suppose there exists an isometry $S \in \mathcal{L}(\mathbf{F}^4)$, s.t. $T_1 = S^*T_2S \Rightarrow ST_1 = T_2S$, then

$$ST_1e_1 = T_2Se_1 \Rightarrow T_2Se_1 = 2Se_1, \quad ST_1e_2 = T_2Se_2 \Rightarrow T_2Se_2 = 2Se_2$$

so Se_1, Se_2 are eigenvectors of T_2 corresponding to the eigenvalue 2. And S is an isometry, so Se_1, Se_2 are linearly independent, which contradicts T_2 has only one linearly independent eigenvector of 2.

Thus there does not exist an isometry $S \in \mathcal{L}(\mathbf{F}^4)$, s.t. $T_1 = S^*T_2S$.

4. Suppose $T \in \mathcal{L}(V)$ is normal. Prove that

null
$$T^k = \text{null } T$$
 and range $T^k = \text{range } T$

for every positive integer k.

设 $T \in \mathcal{L}(V)$ 是正规的. 证明: 对每个正整数 k 均有

null
$$T^k = \text{null } T$$
 \exists range $T^k = \text{range } T$.

Proof. Firstly, WTS: null T^2 = null T, since T is normal, then $V = E(0,T) \oplus E(\lambda_1,T) \oplus \cdots \oplus E(\lambda_l,T)$ (If T has no zero eigenvalue, then denote E(0,T) as $\{0\}$). Let $\lambda_0 = 0$, notice that $E(\lambda_i,T) \subseteq E(\lambda_i,T^2)$, and $V = E(0,T^2) \oplus E(\lambda_1^2,T^2) \oplus \cdots \oplus E(\lambda_l^2,T^2)$, so $E(0,T) = E(0,T^2)$, i.e. null $T^2 = \text{null } T$.

If $K \ge 3$, since T is normal, $V = E(0,T) \oplus E(\lambda_1,T) \oplus \cdots \oplus E(\lambda_k,T)$ (If T has no zero eigenvalue, then denote E(0,T) as $\{0\}$). And T^k is also normal, then $V = E(0,T^k) \oplus E(\lambda_1^k,T^k) \oplus \cdots \oplus E(\lambda_l^k,T^k)$, and we notice that $E(\lambda_i,T) \subseteq E(\lambda_i^k,T^k)$, $i=0,1,\cdots,l$, so $E(0,T) = E(0,T^k)$, i.e. null $T^k = \text{null } T$.

Next, WTS: range $T^k = \text{range } T$. We have range $T^k \subseteq \text{range } T$, dim $V = \text{dim null } T + \text{dim range } T = \text{dim null } T^k + \text{dim range } T^k$, null $T^k = \text{null } T$, so dim range $T = \text{dim range } T^k \Rightarrow \text{range } T = \text{range } T^k$.