Networking for Embedded Systems

- Why we use networks.
- Network abstractions.
- Example networks.

Network elements

distributed computing platform:

Overheads for *Computers as* Components 2nd ed.

Networks in embedded systems

Why distributed?

- Higher performance at lower cost.
- Physically distributed activities---time constants may not allow transmission to central site.
- Improved debugging---use one CPU in network to debug others.
- May buy subsystems that have embedded processors.

Network abstractions

- International Standards Organization (ISO) developed the Open Systems Interconnection (OSI) model to describe networks:
 - 7-layer model.
- Provides a standard way to classify network components and operations.

OSI model

application
presentation
session
transport
network
data link
physical

end-use interface data format application dialog control connections end-to-end service reliable data transport mechanical, electrical

OSI layers

- Physical: connectors, bit formats, etc.
- Data link: error detection and control across a single link (single hop).
- Network: end-to-end multi-hop data communication.
- Transport: provides connections; may optimize network resources.

OSI layers, cont'd.

- Session: services for end-user applications: data grouping, checkpointing, etc.
- Presentation: data formats, transformation services.
- Application: interface between network and end-user programs.

Hardware architectures

- Many different types of networks:
 - topology;
 - scheduling of communication;
 - routing.

Point-to-point networks

One source, one or more destinations, no data switching (serial port):

Bus networks

Common physical connection:

Bus arbitration

- Fixed: Same order of resolution every time.
- Fair: every PE has same access over long periods.
 - round-robin: rotate top priority among Pes.

Crossbar

Overheads for Computers as Components 2nd ed.

Crossbar characteristics

- Non-blocking.
- Can handle arbitrary multi-cast combinations.
- Size proportional to n².

Multi-stage networks

- Use several stages of switching elements.
- Often blocking.
- Often smaller than crossbar.

Message-based programming

Transport layer provides message-based programming interface:

```
send_msg(adrs,data1);
```

- Data must be broken into packets at source, reassembled at destination.
- Data-push programming: make things happen in network based on data transfers.

I²C bus

- Designed for low-cost, medium data rate applications.
- Characteristics:
 - serial;
 - multiple-master;
 - fixed-priority arbitration.
- Several microcontrollers come with built-in I²C controllers.

I²C physical layer

I²C data format

I²C electrical interface

I²C signaling

- Sender pulls down bus for 0.
- Sender listens to bus---if it tried to send a 1 and heard a 0, someone else is simultaneously transmitting.
- Transmissions occur in 8-bit bytes.

I²C data link layer

- Every device has an address (7 bits in standard, 10 bits in extension).
 - Bit 8 of address signals read or write.
- General call address allows broadcast.

I²C bus arbitration

- Sender listens while sending address.
- When sender hears a conflict, if its address is higher, it stops signaling.
- Low-priority senders relinquish control early enough in clock cycle to allow bit to be transmitted reliably.

I²C transmissions

read from slave

write, then read

Ethernet

- Dominant non-telephone LAN.
- Versions: 10 Mb/s, 100 Mb/s, 1 Gb/s
- Goal: reliable communication over an unreliable medium.

Ethernet topology

Bus-based system, several possible physical layers:

CSMA/CD

- Carrier sense multiple access with collision detection:
 - sense collisions;
 - exponentially back off in time;
 - retransmit.

Exponential back-off times

Overheads for *Computers as* Components 2nd ed.

Ethernet packet format

preamble	start frame	source adrs	dest adrs	length	data payload	padding	CRC
----------	----------------	----------------	--------------	--------	-----------------	---------	-----

Ethernet performance

- Quality-of-service tends to non-linearly decrease at high load levels.
- Can't guarantee real-time deadlines. However, may provide very good service at proper load levels.

Fieldbus

- Used for industrial control and instrumentation---factories, etc.
- H1 standard based on 31.25 MB/s twisted pair medium.
- High Speed Ethernet (HSE) standard based on 100 Mb/s Ethernet.