Rank-73798 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_0^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 73798

General information

Number of lines	1
Number of points	5
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	3
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3
Type of lines on points	$1^3, 0^2$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 1 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

Rank of lines: (34)

Rank of points on Klein quadric: (1)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 3 single points:

The single points on the surface are:

0 :
$$P_2 = (0,0,1,0)$$
 lies on line ℓ_0

1 : $P_3 = (0, 0, 0, 1)$ lies on line ℓ_0

The single points on the surface are:

2: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_0

Points on surface but on no line

The surface has 2 points not on any line:

The points on the surface but not on lines are:

$$0: P_5 = (1, 1, 0, 0)$$

$$1: P_{11} = (1, 1, 0, 1)$$

Line Intersection Graph

Neighbor sets in the line intersection graph:

Line 0 intersects

Line in point

The surface has 5 points:

The points on the surface are:

$$0: P_2 = (0, 0, 1, 0)$$

$$2: P_5 = (1, 1, 0, 0)$$

4:
$$P_{12} = (0, 0, 1, 1)$$

$$1: P_3 = (0, 0, 0, 1)$$

$$2: P_5 = (1, 1, 0, 0) 3: P_{11} = (1, 1, 0, 1)$$