

# Performance Improvement Revisited

Jennifer Rexford

#### **Goals of this Lecture**



- Improve program performance by exploiting knowledge of the underlying system
  - Compiler capabilities
  - Hardware architecture
  - Program execution
- And thereby:
  - Help you to write efficient programs
  - Review material from the second half of the course



## **When to Optimize Performance**

### **Improving Program Performance**



- Most programs are already "fast enough"
  - No need to optimize performance at all
  - Save your time, and keep the program simple/readable
- Most parts of a program are already "fast enough"
  - Usually only a small part makes the program run slowly
  - Optimize only this portion of the program, as needed
- Steps to improve execution (time) efficiency
  - Do timing studies (e.g., gprof)
  - Identify hot spots
  - Optimize that part of the program
  - Repeat as needed

### **Two Main Outputs of Gprof**



- Call graph profile: detailed information per function
  - Which functions called it, and how much time was consumed?
  - Which functions it calls, how many times, and for how long?
  - We won't look at this output in any detail...
- Flat profile: one line per function
  - name: name of the function
  - %time: percentage of time spent executing this function
  - cumulative seconds: [skipping, as this isn't all that useful]
  - self seconds: time spent executing this function
  - calls: number of times function was called (excluding recursive)
  - self ms/call: average time per execution (excluding descendents)
  - total ms/call: average time per execution (including descendents)

### **Call Graph Output**



| .called/total<br>index %time | self descendents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | called, self1                                                                                                                            | name children index                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| [1] 59.7                     | <sup>1</sup> 8:87 8:88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/3                                                                                                                                      | <pre>internal mcount [1] atexit [35]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| [2] 40.3                     | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ½/3<br>2/3                                                                                                                               | _startt12]<br>_main [3]<br>atexit [35]                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| [3] 40.3                     | 8:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/1<br>1/1<br>1/7<br>1/7<br>1/7<br>1/7<br>6/7<br>1/7<br>1/7<br>1/7<br>1/7<br>1/7<br>1/7<br>1/7<br>1/7<br>1/7<br>1                        | main—l3 rt [2]  gamestate expandMove [6]  Move read [36]  Gamestate new [37]  Gamestate new [37]  Gamestate new [4]  Gamestate new [37]  Gamestate new [38]  Stromp [68]  Gamestate playerFromStr [68]  Move new [38]  Gamestate new [38] | 6                         |
| [4] 38.3                     | 8:88<br>8:80<br>8:80<br>8:80<br>8:80<br>8:80<br>8:80<br>8:80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/1<br>6/64713025<br>35/420451327<br>54/40451327<br>64/747139<br>2/1698871                                                               | getBestMove [4] GameState expandMove [6] Delta free [10] GameState genMoves [17] Move free [23] GameState applypeltas [25] GameState—unApplyDeltas [27] GameState—getPlayer [30]                                                                                                                                                                                                                                                                                                          | 1                         |
| [5] 38.3                     | 0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277 | 74712364771277447474747474747474747474747474747                                                                                          | minimax [5] minimax [5] minimax 51 Gamestate expandMove [6] Gamestate elimoves [17] Move free [23] yveltas [25] Gamestate dipplyDeltas [27] Gamestate dipplyDeltas [27] Gamestate destatus [31] Gamestate getstatus [31] Gamestate getstatus [32]                                                                                                                                                                                                                                         |                           |
| [6] 19.3                     | 8:00<br>8:00<br>8:00<br>8:00<br>8:00<br>8:00<br>8:00<br>8:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/747130<br>747123/747130<br>4755331/5700361<br>2360787/2360787                                                                          | main [3] getBestMove [4] main max 5] GameState expandMove [6] calloe .rem [28]                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| [7] 19.1                     | OCCUPATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/57003661<br>1/57003661<br>1/57003661<br>1/57003661<br>1/57003661<br>1/57003661<br>1/57003661<br>1/57003661<br>1/57003661<br>1/57003661 | Move read [36] GameState new [37] GameState new [37] GameState new [6] calloameState expandMove [6] multoc [18] multoc [18] munu [29] rudiv [29]                                                                                                                                                                                                                                                                                                                                          |                           |
| [8] 11.1                     | 8.90 9.80<br>8.32 2.62<br>8.62 0.62<br>8.22 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5700362/5700362<br>5700362/5700362<br>5700362/1140073                                                                                    | findbuf <sub>7</sub> [41] mallocation unlocked mutex_hock [15][14]                                                                                                                                                                                                                                                                                                                                                                                                                        | <cycle 1=""> [13]</cycle> |

Complex format at the beginning... let's skip for now.





| 용          | cumulative     |         |                   | self    | total   |                                          |                     |   |
|------------|----------------|---------|-------------------|---------|---------|------------------------------------------|---------------------|---|
| time       | seconds        | seconds | calls             | ms/call | ms/call |                                          |                     |   |
| 57.1       | 12.97          | 12.97   | F7000F0           | 0.00    | 0.00    | internal_mcount [1]                      |                     |   |
| 4.8<br>4.4 | 14.05<br>15.04 | 1.08    | 5700352           | 0.00    | 0.00    | _free_unlocked [12]<br>mcount (693)      |                     |   |
| 3.5        | 15.84          |         | 22801464          | 0.00    | 0.00    | return zero [16]                         |                     |   |
| 2.8        | 16.48          | 0.64    | 5700361           | 0.00    | 0.00    | .umul [18]                               |                     |   |
| 2.8        | 17.11          | 0.63    | 747130            | 0.00    | 0.01    | GameState expandMove [6]                 |                     |   |
| 2.5<br>2.1 | 17.67          | 0.56    | 5700361           | 0.00    | 0.00    | calloc [7]                               | Second part of      |   |
| 2.1        | 18.14          |         | 11400732          | 0.00    | 0.00    | _mutex_unlock [14]                       | decond part of      |   |
| 1.9        | 18.58          |         | 11400732          | 0.00    | 0.00    | mutex_lock [15]                          | profile looks like  |   |
| 1.9<br>1.9 | 19.01          | 0.43    | 5700361           | 0.00    | 0.00    | _memset [22]                             | profile looks like  | , |
| 1.9        | 19.44<br>19.85 | 0.43    | 1<br>5157853      | 430.00  | 0.00    | div [21] cleanfree [19]                  |                     |   |
| 1.4        | 20.17          | 0.32    | 5700366           | 0.00    | 0.00    | malloc unlocked [13]                     | this; it's the      |   |
| 1.4        | 20.49          | 0.32    | 5700362           | 0.00    | 0.00    | malloc [8]                               |                     |   |
| 1.3        | 20.79          | 0.30    | 5157847           | 0.00    | 0.00    | _smalloc [24]                            | simple              |   |
| 1.2        | 21.06          | 0.27    | 6                 | 45.00   | 1386.66 | minimax [5]                              | •                   |   |
| 1.1        | 21.31          | 0.25    | 4755325           | 0.00    | 0.00    | Delta_free [10]                          | (i.e.,useful) part, | • |
| 1.0        | 21.54          | 0.23    | 5700352           | 0.00    | 0.00    | free [9]                                 | (i.o., acciai) part | , |
| 1.0<br>1.0 | 21.77<br>21.99 | 0.23    | 747130<br>5157845 | 0.00    | 0.00    | GameState applyDeltas [25] realfree T26] | corresponds to      |   |
| 1.0        | 22.21          | 0.22    | 747129            | 0.00    | 0.00    | GameState unApplyDeltas [27]             | _                   |   |
| 0.5        | 22.32          | 0.11    | 2360787           | 0.00    | 0.00    | .rem [28]                                | the "prof" tool     |   |
| 0.4        | 22.42          | 0.10    | 5700363           | 0.00    | 0.00    | .udiv [29]                               | the profitoor       |   |
| 0.4        | 22.52          | 0.10    | 1698871           | 0.00    | 0.00    | <pre>GameState_getPlayer [30]</pre>      |                     |   |
| 0.4        | 22.61          | 0.09    | 747135            | 0.00    | 0.00    | GameState_getStatus [31]                 |                     |   |
| 0.3<br>0.1 | 22.68<br>22.70 | 0.07    | 204617<br>945027  | 0.00    | 0.00    | GameState_genMoves [17] Move free [23]   |                     |   |
| 0.0        | 22.70          | 0.02    | 542509            | 0.00    | 0.00    | GameState getValue [32]                  |                     |   |
| 0.0        | 22.71          | 0.00    | 104               | 0.00    | 0.00    | ferror unlocked [357]                    |                     |   |
| 0.0        | 22.71          | 0.00    | 64                | 0.00    | 0.00    | _realbufend [358]                        |                     |   |
| 0.0        | 22.71          | 0.00    | 54                | 0.00    | 0.00    | nvmatch [60]                             |                     |   |
| 0.0        | 22.71          | 0.00    | 52                | 0.00    | 0.00    | doprnt [42]                              |                     |   |
| 0.0        | 22.71<br>22.71 | 0.00    | 51<br>51          | 0.00    | 0.00    | memchr [61]<br>printf [43]               |                     |   |
| 0.0        | 22.71          | 0.00    | 13                | 0.00    | 0.00    | write [359]                              |                     |   |
| 0.0        | 22.71          | 0.00    | 10                | 0.00    | 0.00    | xflsbuf [360]                            |                     |   |
| 0.0        | 22.71          | 0.00    | 7                 | 0.00    | 0.00    |                                          |                     |   |
| 0.0        | 22.71          | 0.00    | 4                 | 0.00    | 0.00    | .mul [62]                                |                     |   |
| 0.0        | 22.71          | 0.00    | 4                 | 0.00    | 0.00    | errno [362]                              |                     |   |
| 0.0        | 22.71          | 0.00    | 4 3               | 0.00    | 0.00    | fflush_u [363]                           |                     | _ |
| 0.0        | 22.71<br>22.71 | 0.00    | 3                 | 0.00    | 0.00    | GameState_playerToStr [63] findbuf [41]  |                     | 7 |
| 0.0        | 22.11          | 0.00    | 3                 | 0.00    | 0.00    | [41]                                     |                     |   |

# **Overhead of Profiling**



| %    | cumulative | self    |          | self    | total   |                                         |
|------|------------|---------|----------|---------|---------|-----------------------------------------|
| time | seconds    | seconds | calls    | ms/call | ms/call | name                                    |
| 57.1 | 12.97      | 12.97   |          |         |         | internal mcount                         |
| 4.8  | 14.05      | 1.08    | 5700352  | 0.00    | 0.00    | free unlocked                           |
| 4.4  | 15.04      | 0.99    |          |         |         | mcount (693)                            |
| 3.5  | 15.84      | 0.80    | 22801464 | 0.00    | 0.00    | return zero                             |
| 2.8  | 16.48      | 0.64    | 5700361  | 0.00    | 0.00    | $\overline{.}$ umul [ $\overline{1}$ 8] |
| 2.8  | 17.11      | 0.63    | 747130   | 0.00    | 0.01    | GameState expa                          |
| 2.5  | 17.67      | 0.56    | 5700361  | 0.00    | 0.00    | calloc [7]                              |
| 2.1  | 18.14      | 0.47    | 11400732 | 0.00    | 0.00    | mutex unlock                            |
| 1.9  | 18.58      | 0.44    | 11400732 | 0.00    | 0.00    | mutex lock                              |
| 1.9  | 19.01      | 0.43    | 5700361  | 0.00    | 0.00    | memset [22]                             |
| 1.9  | 19.44      | 0.43    | 1        | 430.00  | 430.00  | _div [21]                               |
| 1.8  | 19.85      | 0.41    |          | 0.00    | 0.00    | cleanfree [19]                          |
| 1.4  | 20.17      | 0.32    | 5700366  | 0.00    | 0.00    | malloc unlo                             |
| 1.4  | 20.49      | 0.32    | 5700362  | 0.00    | 0.00    | malloc [8]                              |
| 1.3  | 20.79      | 0.30    | 5157847  | 0.00    | 0.00    | smalloc                                 |
| 1.2  | 21.06      | 0.27    | 6        | 45.00   | 1386.66 | minimax [5]                             |
| 1.1  | 21.31      | 0.25    | 4755325  | 0.00    | 0.00    | Delta free [10]                         |
| 1.0  | 21.54      | 0.23    |          | 0.00    | 0.00    | free [9]                                |
| 1.0  | 21.77      | 0.23    | 747130   | 0.00    | 0.00    | GameState appl                          |
| 1.0  | 21.99      | 0.22    | 5157845  | 0.00    | 0.00    | realfree [26]                           |
| 1.0  | 22.21      | 0.22    | 747129   | 0.00    | 0.00    | GameState unAp                          |
| 0.5  | 22.32      | 0.11    | 2360787  | 0.00    | 0.00    | .rem [28]                               |
| 0.4  | 22.42      | 0.10    | 5700363  | 0.00    | 0.00    | .udiv [29]                              |
| 0.4  | 22.52      | 0.10    | 1698871  | 0.00    | 0.00    | <pre>GameState_getPl</pre>              |
| 0.4  | 22.61      | 0.09    | 747135   | 0.00    | 0.00    | GameState_get&t                         |

### Malloc/calloc/free/...



| П | %             | cumulative | self  |          | self    | total   |                          |
|---|---------------|------------|-------|----------|---------|---------|--------------------------|
| 1 | time          | seconds    |       |          |         |         | name                     |
| 1 | 57 <b>.</b> 1 |            | 12.97 | Calls    | ms/call | ms/carr | internal mcount [1]      |
| 1 | 4.8           |            |       | 5700352  | 0.00    | 0 00    | _free unlocked [12]      |
| 1 |               |            | 0.99  | 3700332  | 0.00    | 0.00    | mcount (693)             |
| 1 | 3.5           |            |       | 22801464 | 0.00    | 0 00    | _return_zero [16]        |
| 1 | 2.8           |            |       | 5700361  |         |         |                          |
| 1 | 2.8           |            |       | 747130   |         |         |                          |
| 1 | 2.5           |            |       | 5700361  |         |         | <del>_</del>             |
| 1 | 2.1           |            |       | 11400732 |         |         | <del>-</del> -           |
| 1 | 1.9           |            |       | 11400732 |         |         | _                        |
| 1 | 1.9           | 19.01      |       | 5700361  |         |         |                          |
| 1 | 1.9           |            |       | 1        |         | 430.00  |                          |
| 1 | 1.8           |            |       | 5157853  |         |         |                          |
| 1 | 1.4           |            |       | 5700366  |         |         |                          |
| 1 | 1.4           | 20.17      |       | 5700362  |         |         | malloc [8]               |
| 1 | 1.3           | 20.79      |       | 5157847  |         |         | smalloc [24]             |
| 1 | 1.2           |            | 0.27  |          |         | 1386.66 | minimax [5]              |
| 1 | 1.1           |            |       | 4755325  |         |         |                          |
| 1 | 1.0           |            |       | 5700352  |         |         |                          |
| 1 | 1.0           |            | 0.23  |          | 0.00    |         |                          |
| 1 | 1.0           |            |       | 5157845  |         |         | _ + + +                  |
| 1 | 1.0           |            | 0.22  |          |         |         |                          |
| 1 | 0.5           |            |       | 2360787  |         |         | .rem [28]                |
| 1 | 0.4           |            | 0.10  | 5700363  | 0.00    |         | .udiv [29]               |
|   | 0.4           |            | 0.10  |          |         |         |                          |
|   | 0.4           |            |       | 747135   | 0.00    |         |                          |
| - | 0.3           | 22.68      | 0.03  |          | 0.00    | 0.00    | <del>_</del> -           |
| L | 0.5           | 22.00      | 0.07  | Z0401/   | 0.00    | 0.00    | James cace_genmoves [17] |

#### expandMove



```
cumulative
                     self
                                         self
                                                 total
time
                  seconds
                              calls
                                     ms/call
       seconds
                                               ms/call name
57.1
          12.97
                    12.97
                                                        internal mcount [1]
 4.8
          14.05
                     1.08
                            5700352
                                         0.00
                                                          free unlocked [12]
                                                  0.00
          15.04
                     0.99
                                                         mcount (693)
 3.5
          15.84
                     0.80 22801464
                                         0.00
                                                  0.00
                                                         return zero [16]
                     0.64
                                         0.00
                            5700361
                                                  0.00
 2.8
          17.11
                     0.63
                             747130
                                         0.00
                                                  0.01
                                                         GameState expandMove
          17.67
                     0.56
                           5700361
                                                  0.00
                                                         calloc [7]
                                        0.00
          18.14
                     0.47 11400732
                                        0.00
                                                  0.00
                                                         mutex unlock [14]
 1.9
          18.58
                     0.44 11400732
                                        0.00
                                                  0.00
                                                         mutex lock [15]
          19.01
                     0.43
                            5700361
                                        0.00
                                                  0.00
                                                         memset [22]
          19.44
                     0.43
                                      430.00
                                                430.00
                                                         .div [21]
          19.85
                     0.41
                           5157853
                                        0.00
                                                  0.00
                                                         cleanfree [19]
          20.17
                     0.32
                           5700366
                                        0.00
                                                  0.00
                                                         malloc unlocked [13]
                     0.32
                                                         malloc [8]
          20.49
                           5700362
                                        0.00
                                                  0.00
          20.79
                     0.30
                            5157847
                                        0.00
                                                  0.00
                                                        smalloc
                                                                         [24]
 1.2
          21.06
                     0.27
                                       45.00
                                               1386.66
                                                        minimax [5]
          21.31
                     0.25
                           4755325
                                        0.00
                                                  0.00
                                                         Delta free [10]
 1.1
          21.54
                     0.23
                           5700352
                                        0.00
                                                  0.00
                                                         free [9]
 1.0
                     0.23
                                                         GameState applyDeltas
 1.0
           21.77
                            747130
                                        0.00
                                                  0.00
             99
                     0.22
                                                         realfree [26]
 1.0
                           5157845
                                        0.00
                                                  0.00
```

May be worthwhile to optimize this routine





| time<br>57.1<br>4.8<br>4.4<br>3.5<br>2.8<br>2.8                           | ulative<br>seconds<br>12.97<br>14.05<br>15.04<br>15.84<br>16.48<br>17.11<br>17.67                                                                              | self<br>seconds<br>12.97<br>1.08<br>0.99<br>0.80<br>0.64<br>0.63<br>0.56                                     | calls<br>5700352<br>22801464<br>5700361<br>747130<br>5700361                                                     | 0.00<br>0.00<br>0.00<br>0.00                                            | total<br>ms/call<br>0.00<br>0.00<br>0.00<br>0.01<br>0.00                  | internal mcount [1] free unlocked [12] mcount (693) return zero [16] Tumul [T8] GameState expandMove [6] calloc [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1<br>1.9<br>1.9<br>1.8<br>1.4<br>1.3<br>1.2<br>1.1                      | 18.14<br>18.58<br>19.01<br>19.44<br>19.85<br>20.17<br>20.49<br>20.79<br>21.06<br>21.31<br>21.77                                                                | 0.47<br>0.44<br>0.43<br>0.41<br>0.32<br>0.32<br>0.27<br>0.25<br>0.23                                         | 11400732<br>11400732<br>5700361<br>5157853<br>5700366<br>5700362<br>5157847<br>4755325<br>5700352<br>5700352     | 0.00<br>0.00<br>0.00<br>430.00<br>0.00<br>0.00<br>0.00<br>45.00<br>0.00 | 0.00<br>0.00<br>0.00<br>430.00<br>0.00<br>0.00<br>0.00<br>1386.66<br>0.00 | <pre>Tight Tight T</pre> |
| 1.0<br>1.0<br>0.5<br>0.4<br>0.4<br>0.3<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0 | 21.77<br>21.99<br>22.21<br>22.32<br>22.42<br>22.52<br>22.61<br>22.68<br>22.70<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71 | 0.23<br>0.22<br>0.22<br>0.11<br>0.10<br>0.09<br>0.07<br>0.02<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 747130<br>5157845<br>747129<br>2360787<br>5700363<br>1698871<br>747135<br>204617<br>945027<br>542509<br>104<br>4 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0               | GameState applyDeltas [25] realfree [26] GameState unApplyDeltas [27] .rem [28] .udiv [29]  GameState getPlayer [30] GameState getStatus [31] GameState genMoves [17] Move free [23] GameState getValue [32] ferror unlocked [357] -thr main [367]  GameState playerToStr [63] strcmp [66] GameState getSearchDepth [67] GameState playerFromStr [68] GameState write [44] Move isVaTid [69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0                                                                       | 22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71<br>22.71                                                       | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                  | 3<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0             | 0.00<br>0.00<br>0.00<br>430.00<br>8319.99<br>8750.00<br>0.00<br>0.00      | Move_read [36] Move_write [59] check_nlspath_env [46] clock [20] exit [33] getBestMove [4] getenv [47] main [3] mem_init [70] number [71] scanf [53]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### **Ways to Optimize Performance**



- Better data structures and algorithms
  - Improves the "asymptotic complexity"
    - Better scaling of computation/storage as input grows
    - E.g., going from  $O(n^2)$  sorting algorithm to  $O(n \log n)$
  - Clearly important if large inputs are expected
  - Requires understanding data structures and algorithms
- Better source code the compiler can optimize
  - Improves the "constant factors"
    - Faster computation during each iteration of a loop
    - E.g., going from 1000n to 10n running time
  - Clearly important if a portion of code is running slowly
  - Requires understanding hardware, compiler, execution



### **Helping the Compiler Do Its Job**

### **Optimizing Compilers**



- Provide efficient mapping of program to machine
  - Register allocation
  - Code selection and ordering
  - Eliminating minor inefficiencies
- Don't (usually) improve asymptotic efficiency
  - Up to the programmer to select best overall algorithm
- Have difficulty overcoming "optimization blockers"
  - Potential function side-effects
  - Potential memory aliasing

# Limitations of Optimizing Compilers

- Fundamental constraint
  - Compiler must not change program behavior
  - Ever, even under rare pathological inputs
- Behavior that may be obvious to the programmer can be obfuscated by languages and coding styles
  - Data ranges more limited than variable types suggest
  - Array elements remain unchanged by function calls
- Most analysis is performed only within functions
  - Whole-program analysis is too expensive in most cases
- Most analysis is based only on static information
  - Compiler has difficulty anticipating run-time inputs

### **Avoiding Repeated Computation**



- A good compiler recognizes simple optimizations
  - Avoiding redundant computations in simple loops
  - Still, programmer may still want to make it explicit
- Example
  - Repetition of computation: n \* i

```
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

a[n*i + j] = b[j];
```

```
for (i = 0; i < n; i++) {
  ni = n * i;
  for (j = 0; j < n; j++)
    a[ni + j] = b[j];
}</pre>
```

### **Worrying About Side Effects**



- Compiler cannot always avoid repeated computation
  - May not know if the code has a "side effect"
  - ... that makes the transformation change the code's behavior
- Is this transformation okay?

```
int func1(int x) {
  return f(x) + f(x) + f(x) + f(x);
}
```

Not necessarily, if

```
int counter = 0;
int f(int x) {
  return counter++;
}
```

```
int func1(int x) {
  return 4 * f(x);
}
```

And this function may be defined in another file known only at link time!

### **Another Example on Side Effects**



Is this optimization okay?

```
for (i = 0; i < strlen(s); i++) {
   /* Do something with s[i] */
}</pre>
```



- Short answer: it depends
  - Compiler often cannot tell
  - Most compilers do not try to identify side effects
- Programmer knows best
  - And can decide whether the optimization is safe

### **Memory Aliasing**



Is this optimization okay?

```
void twiddle(int *xp, int *yp) {
    *xp += *yp;
    *xp += *yp;
}
```

```
void twiddle(int *xp, int *yp) {
    *xp += 2 * *yp;
}
```

- Not necessarily, what if xp and yp are equal?
  - First version: result is 4 times \*xp
  - Second version: result is 3 times \*xp

### **Memory Aliasing**



- Memory aliasing
  - Single data location accessed through multiple names
  - E.g., two pointers that point to the same memory location
- Modifying the data using one name
  - Implicitly modifies the values seen through other names

xp, yp →

- Blocks optimization by the compiler
  - The compiler cannot tell when aliasing may occur
  - ... and so must forgo optimizing the code
- Programmer often does know
  - And can optimize the code accordingly

### **Another Aliasing Example**



Is this optimization okay?

```
int *x, *y;
...
*x = 5;
*y = 10;
printf("x=%d\n", *x);
```

printf("x=5\n");

- Not necessarily
  - If y and x point to the same location in memory...
  - ... the correct output is "x = 10 n"

### **Summary: Helping the Compiler**



- Compiler can perform many optimizations
  - Register allocation
  - Code selection and ordering
  - Eliminating minor inefficiencies
- But often the compiler needs your help
  - Knowing if code is free of side effects
  - Knowing if memory aliasing will not happen
- Modifying the code can lead to better performance
  - Profile the code to identify the "hot spots"
  - Look at the assembly language the compiler produces
  - Rewrite the code to get the compiler to do the right thing



# **Exploiting the Hardware**

### **Underlying Hardware**



- Implements a collection of instructions
  - Instruction set varies from one architecture to another
  - Some instructions may be faster than others
- Registers and caches are faster than main memory
  - Number of registers and sizes of caches vary
  - Exploiting both spatial and temporal locality
- Exploits opportunities for parallelism
  - Pipelining: decoding one instruction while running another
    - Benefits from code that runs in a sequence
  - Superscalar: perform multiple operations per clock cycle
    - Benefits from operations that can run independently
  - Speculative execution: performing instructions before knowing they will be reached (e.g., without knowing outcome of a branch)

### Addition Faster Than Multiplication



- Adding instead of multiplying
  - Addition is faster than multiplication
- Recognize sequences of products
  - Replace multiplication with repeated addition

```
for (i = 0; i < n; i++) {
  ni = n * i;
  for (j = 0; j < n; j++)
    a[ni + j] = b[j];
}</pre>
```

```
ni = 0;
for (i = 0; i < n; i++) {
  for (j = 0; j < n; j++)
    a[ni + j] = b[j];
  ni += n;
}</pre>
```

#### **Bit Operations Faster Than Arithmetic**



- Shift operations to multiple/divide by powers of 2
  - "x >> 3" is faster than "x/8"
  - "x << 3" is faster than "x \* 8"</li>

53

53<<2

- Bit masking is faster than mod operation
  - "x & 15" is faster than "x % 16"

53

& 15

### **Caching: Matrix Multiplication**



#### Caches

- Slower than registers, but faster than main memory
- Both instruction caches and data caches

#### Locality

- Temporal locality: recently-referenced items are likely to be referenced in near future
- Spatial locality: Items with nearby addresses tend to be referenced close together in time

#### Matrix multiplication

- Multiply n-by-n matrices A and B, and store in matrix C
- Performance heavily depends on effective use of caches

### **Matrix Multiply: Cache Effects**



```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    for (k=0; k<n; k++)
      c[i][j] += a[i][k] * b[k][j];
  }
}</pre>
```

- Reasonable cache effects
  - Good spatial locality for A
  - Poor spatial locality for B
  - Good temporal locality for C





(\*,j)



В

 $\mathbf{C}$ 

### **Matrix Multiply: Cache Effects**



```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    for (i=0; i<n; i++)
       c[i][j] += a[i][k] * b[k][j];
  }
}</pre>
```

- Rather poor cache effects
  - Bad spatial locality for A
  - Good temporal locality for B
  - Bad spatial locality for C



### **Matrix Multiply: Cache Effects**



```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    for (j=0; j<n; j++)
      c[i][j] += a[i][k] * b[k][j];
  }
}</pre>
```

- Good cache effects
  - Good temporal locality for A
  - Good spatial locality for B
  - Good spatial locality for C



### Parallelism: Loop Unrolling



What limits the performance?

```
for (i = 0; i < length; i++)
  sum += data[i];</pre>
```

- Limited apparent parallelism
  - One main operation per iteration (plus book-keeping)
  - Not enough work to keep multiple functional units busy
  - Disruption of instruction pipeline from frequent branches

- Solution: unroll the loop
  - Perform multiple operations on each iteration

### Parallelism: After Loop Unrolling



Original code

```
for (i = 0; i < length; i++)
  sum += data[i];</pre>
```

After loop unrolling (by three)

```
/* Combine three elements at a time */
limit = length - 2;
for (i = 0; i < limit; i+=3)
   sum += data[i] + data[i+1] + data[i+2];

/* Finish any remaining elements */
for ( ; i < length; i++)
   sum += data[i];</pre>
```



# **Program Execution**

### **Avoiding Function Calls**



- Function calls are expensive
  - Caller saves registers and pushes arguments on stack
  - Callee saves registers and pushes local variables on stack
  - Call and return disrupt the sequence flow of the code
- Function inlining:

```
void g(void) {
    /* Some code */
}

void f(void) {
    ...
    g();
    ...
}
```

Some compilers support "inline" keyword directive.

```
void f(void) {
    ...
    /* Some code */
    ...
}
```

### Writing Your Own Malloc and Free



- Dynamic memory management
  - malloc() to allocate blocks of memory
  - free () to free blocks of memory
- Existing malloc() and free() implementations
  - Designed to handle a wide range of request sizes
  - Good most of the time, but rarely the best for all workloads
- Designing your own dynamic memory management
  - Forego using traditional malloc() and free(), and write your own
  - E.g., if you know all blocks will be the same size
  - E.g., if you know blocks will usually be freed in the order allocated
  - E.g., <insert your known special property here>

#### Conclusion



- Work smarter, not harder
  - No need to optimize a program that is "fast enough"
  - Optimize only when, and where, necessary
- Speeding up a program
  - Better data structures and algorithms: better asymptotic behavior (the "COS 226 way")
  - Optimized code: smaller constants (the "COS 217 way")
- Techniques for speeding up a program
  - Coax the compiler
  - Exploit capabilities of the hardware
  - Capitalize on knowledge of program execution