FÍSICA I COMPLEMENTARIA (FISI-1518)

Taller 6 Semana 7 – Aplicaciones Leyes de Newton

Departamento de Física - Universidad de los Andes

Miércoles, 06 Marzo, 2024. Salón W-202

Tenga en cuenta las siguientes indicaciones:

- 1. El taller se debe entregar INDIVIDUAL ó EN PAREJAS ÚNICAMENTE.
- 2. USE BOLÍGRAFO (preferiblemente en tinta negra) para desarrollar los ejercicios.
- 3. El presente taller SERÁ EVALUADO USANDO LA RÚBRICA DE EVALUACIÓN que se dejó en la plataforma del curso en Bloque Neón (Contenido \rightarrow Información de Interés \rightarrow FI Metodología).

Integrant	$\mathrm{te}(\mathbf{s})$:			
1				
9				

Ejercicio-Ejemplo (15 min)

[E1] El bloque A, de peso 3w, se desliza con rapidez constante, bajando por un plano S inclinado 36.9° , mientras la tabla B, de peso w, descansa sobre A, estando sujeta con una cuerda a la pared Como se muestra en la figura.

- a) Dibuje un diagrama de todas las fuerzas que actúan sobre el bloque A.
- b) Si el coeficiente de fricción cinética es igual entre A y B, y 36.9° entre S y A, determine su valor.

Fig. 1: Prob. 1.

Ejercicios-Taller (60 min)

[1] Análisis-Operativo (15 min)

Los motores de un buque tanque se averiaron y el viento empuja la nave con rapidez constante de $1.5~\mathrm{m/s}$ directo hacia un arrecife como se observa en la figura. Cuando el barco está a $500~\mathrm{m}$ del arrecife, el viento cesa y el maquinista logra poner en marcha los motores. El timón está atorado, así que la única opción es intentar acelerar hacia atrás para alejarse del arrecife. La masa del buque y su

Fig. 2: Prob. 1.

carga es de 3.6 * 107 kg y los motores producen una fuerza horizontal neta de 8.0×10^4 N sobre el buque. ¿Colisionará el barco contra el arrecife? Si lo hace, ¿se derramará el petróleo? El casco puede resistir impactos a una rapidez de 0.2 m/s o menos. Puede despreciarse la fuerza de retardo que el agua ejerce sobre el casco del buque.

Solución:

Análisis-Operativo (15 min)

[2] Acelerómetro. El sistema que se ilustra en la figura puede usarse para medir la aceleración del mismo. Un observador que va sobre la plataforma puede medir el ángulo θ que el hilo forma con la vertical. No hay fricción en ningún lado.

- a) ¿Cómo se relaciona θ con la aceleración del sistema?
- b) Si $m_1 = 250$ kg y $m_2 = 1250$ kg, ¿cuál es el valor de θ ?
- c) Si usted puede modificar m_1 y m_2 , ¿cuál es el ángulo θ máximo que podría alcanzar? Explique cómo necesita ajustar m_1 y m_2 para lograrlo.

Solución:

Fig. 3: Prob. 2.

[3] Análisis-Operativo (15 min)

Los bloques A, B y C se colocan como se muestra en la figura y se conectan con cuerdas de masa despreciable. Tanto A como B pesan 25.0 N cada uno, y el coeficiente de fricción cinética entre cada bloque y la superficie es de 0.35. El bloque C desciende con velocidad constante.

- a) Dibuje dos diagramas de cuerpo libre que muestren las fuerzas que actúan sobre ${\cal A}$ y sobre ${\cal B}.$
- b) Calcule la tensión en la cuerda que une los bloques A y B.
- c) ¿Cuánto pesa el bloque C?
- d) Si se cortara la cuerda que une A y B, ¿qué aceleración tendría C?

Solución:

Fig. 4: Prob. 3.