Version: 2024.2.0

1. GENERAL INFORMATION

Course title: Calculus II

Unit in charge Faculty of Mathematics and Informatics

Course ID: MI1124E
Course Units: 3(2-2-0-6)

Lecture: 30 hoursSeminar: 30 hours

Previous module: MI1114E Calculus I
Prerequisites: MI1114E Calculus I
Companion module: MI1134E Calculus III

2. DESCRIPTION

This course provides some applications of differential calculus in geometry, the basic ideas and techniques of parameter-dependent integrals, double integrals and triple integrals, line integrals of scalar fields and vector fields, surface integrals of scalar fields and vector fields, and vector fields.

3. OBJECTIVES AND EXPECTED OUTCOMES

Students who complete this module have the abilities to:

Objectives	Objectives description/Expected Outcomes	Outcome standard allocated for modules/ Levels (I/T/U)	
[1]	[2]	[3]	
M1	Master the basic knowledge of Caculus II and apply in practice to solve related exercises		
M1.1	Master the basic concepts such as: double integrals, triple integrals, line integrals, surface integrals, vector fields as well as applications of differential calculus	I/T	
M1.2	Be able to apply the knowledge to solve exercises	T/U	
M2	Achieve serious attitude and necessary skills for highly effective work		
M2.1	Be skilled at analyzing and solving problems with strong logical thinking; working independently and staying focused	T/U	
M2.2	Identify some practical problems that can be solved by using tools of calculus.	I/T/U	
M2.3	Gain serious working attitude, proactive creativity, adaptation to highly competitive working environment	I/T	

4. COURSE MATERIALS

Textbooks

- [1] James Stewart (2016). *Calculus: Concepts and Contexts, eighth edition*. Thomson, Brooks/Cole Publishing Company
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2015). *Toán học cao cấp tập 2.* NXB Giáo dục.

References

- [1] Trần Bình (2005). Giải tích II. NXB Khoa học và Kỹ thuật.
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2017). *Bài* tập Toán học cao cấp tập 2. NXB Giáo dục.
- [3] Trần Thị Kim Oanh, Phan Xuân Thành, Lê Chí Ngọc, Nguyễn Thị Thu Hương (2022), Giải tích II: Hàm số nhiều biến số (bài giảng dành cho sinh viên các trường kĩ thuật), NXB Bách Khoa Hà Nôi.
- [4] Khoa Toán Tin (2023), Slides bài giảng Giải tích 2 (tài liệu lưu hành nội bộ).

5. ASSESSMENT

Components	Evaluation method	Description	Assessed expected outcomes	Proportion
[1]	[2]	[3]	[4]	[5]
A1. The process mark				50%
A1.1. Attendance and performance*	Attendance and performance in class		M2.3	10%
A1.2. Continuous assessment	Continuous assessment test	Online multiple choice tests	M1.1, M1.2	10%
A1.3. Midterm exam	Midterm exam Content: From the 1st week to the 7th week	Multiple choice and constructed response test	M1.1, M1.2, M2.1, M2.2, M2.3	30%
A2. Final exam	Final exam	Essay	M1.1, M1.2, M2.1, M2.2, M2.3	50%

^{*}Attendance and performance in class are evaluated according to the Rule of Faculty of Mathematics and Informatics accompanied with the Regulations of Higher Education of Hanoi University of Science and Technology.

6. COURSE PLAN

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
1	Chapter 1: Applications of differential calculus in geometry 1.1. Applications in plane geometry - Normal vector and equations for tangent lines and normal lines of a curve at a point. - Curvature: mean curvature, curvature at a point, formula of curvature at a point (no proof) and examples. - Envelope of a family of parametric curves: definition, formula, examples. 1.2. Applications in spatial geometry - Vector functions, derivative of vector functions $(\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k})$ and properties.	M1.1 M1.2 M2.1 M2.2 M2.3	Lecturer: - Self- introduce - Introduce the course outline - Explain teaching and learning methods; and forms of subject assessment - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises according to the content and	5 A1.1
2	Curves: equations of tengent lines and	M1.1	progress of the subject	A 1 1
2	 Curves: equations of tangent lines and normal planes at a point of curves, curvature at a point of curves (formulas). Surfaces: equations of tangent planes and normal lines at a point of surfaces (formulas). Chapter 2. Multiple integrals Double integrals Definition, geometric meaning, properties. 	M1.1 M1.2 M2.1 M2.2 M2.3	Lecturer - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the	A1.1 A1.2 A.1.3 A2
	- Calculations of double integrals in the Cartesian coordinate system.		advance the next lesson	

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
3	- Change of variables in double	M1.1	- Master the	A1.1
	integrals: general change of variables	M1.2	basic concepts	A1.2
	formula, change of variables in polar	M2.1	and apply to solve exercises	A.1.3
	coordinate system.	M2.2	according to	A2
		M2.3	the content and	
4	- Applications of double integrals:	M1.1	progress of the	A1.1
	Calculate the volume of an object, the	M1.2	subject	A1.2
	area of a plane domain, the area of a	M2.1		A.1.3
	surface (formulas and examples).	M2.2		A2
	2.2. Triple integrals	M2.3		
	- Definition, geometric meaning, properties.			
5	- Calculations of triple integrals in the	M1.1		A1.1
	Cartesian coordinate system.	M1.2		A1.2
	- Change of variables in triple integrals:	M2.1		A.1.3
	general change of variables formula,	M2.2		A2
	change of variables in cylindrical coordinate system, change of variables	M2.3		
	in spherical coordinate system.			
6	- Applications: Calculate the volume of	M1.1		A1.1
	an object.	M1.2		A1.2
	Chapter 3. Parameter Dependent	M2.1		A.1.3
	Integrals	M2.2		A2
	3.1. Definite Integrals depending on	M2.3		
	parameters			
	- Definition			
	- Theorems on continuity.			
7	- Theorems on differentiation under	M1.1		A1.1
	integral sign, integration under integral	M1.2		A1.2
	sign. 3.2. Improper Integrals depending on	M2.1		A.1.3
	parameters	M2.2		A2
	- Definition	M2.3		
	- Uniform convergence, Weierstrass			
	theorem.			
8	- Properties: continuity, differentiation	M1.1		A1.1
	under integral sign, integration under	M1.2		A1.2
	integral sign.	M2.1		A2
	3.3. Euler's integrals	M2.2		
	- Introduce Gamma function ($\Gamma(p)$) and	M2.3		
	properties: definiteness, continuity,			
	infinite differentiability.			

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	$\Gamma(p+1) = p\Gamma(p) \forall p > 0,$			
	$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(p\pi)} (0$			
	(no proof).			
	- Beta function: Introduce Beta function			
	(B(p,q)) with its two types and			
	properties (no proof): symmetry.			
	$B(p,q) = \frac{p}{p+q-1}B(p,q-1),$			
	$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$			
	$\Gamma(p+q) = \frac{\Gamma(p+q)}{\Gamma(p+q)}$.			
9	Chapter 4. Line Integrals	M1.1	- Lecture,	A1.1
	4.1. Line integrals of scalar fields	M1.2	exchange	A1.2
	- Definition	M2.1	questions and	A2
	- Calculation	M2.2	answers with	
	4.2. Line integrals of vector fields	M2.3	students during	
	- Definition, physical meaning.		the lecture	
	- Properties		Student:	
10	- Relation of line integrals of scalar	M1.1	- Read in	A1.1
	fields and line integrals of vector fields.	M1.2	advance the next lesson	A1.2
	- Calculation	M2.1	- Master the	A2
	- Green's Theorem (proof for the case of	M2.2	basic concepts	112
	a simple region).	M2.3	and apply to	
11	- Path independence of line integrals (no	M1.1	solve exercises	A1.1
11	proof); find a function $u(x, y)$ such that	M1.2	according to the content and	A1.2
	du = Pdx + Qdy.	M2.1	progress of the	A2
	Chapter 5. Surface integrals	M2.2	subject	112
	5.1 Surface integrals of scalar fields	M2.3		
	- Definition	111210		
	- Calculation			
12	5.2 Surface integrals of vector fields	M1.1		A1.1
	- Definition, properties.	M1.2		A1.2
	- Relation of surface integrals of scalar	M2.1		A2
	fields and surface integrals of vector	M2.2		
	fields.	M2.3		
	- Calculation	_		
13	- Ostrogradsky's Theorem, Stoke's	M1.1		A1.1
	Theorem (no proof).	M1.2		A1.2
	Chapter 6. Field Theory	M2.1		A2
	6.1 Scalar Fields	M2.2		

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	 Notions of scalar fields and level surfaces. Directional derivative: Definition, Theorem on relation between directional derivative and partial derivative. 	M2.3		
14	 - Gradient: Definition of vector gradu and theorem ∂u/∂ℓ = chℓgradu (no proof) and properties. 6.2 Vector Fields - Notions of vector fields and flow lines, system of differential equations of flow lines. - The flux, div, incompressible fields: the flux of a vector field across oriented 	M1.1 M1.2 M2.1 M2.2 M2.3		A1.1 A1.2 A2
	surface <i>S</i> , div (divergence), properties, incompressible fields, source (point), sink (point).			
15	 Circulation and curl vector: the circulation of a vector field around an oriented closed curve, curl vector, curly point. Conservative vector fields: notions of conservative vector fields \$\vec{F}\$, the potential function for \$\vec{F}\$, conditions for a vector field to be conservative, conditions for an expression to be the total differential, path independence of spatial line integrals. 	M1.1 M1.2 M2.1 M2.2 M2.3		A1.1 A1.2 A2
16	Summary and revision			

7. RULES OF THE MODULE

(Regulations of the course if any)

8. DATE OF APPROVAL:

Faculty of Mathematics and Informatics