Yao's Millionaires' problem

Marcin Ostrowski

2 lipca 2021

1 Wstęp

Problem dotyczy dwóch milionerów, Alice i Boba, którzy chcą wiedzieć, który z nich jest bogatszy, bez ujawniania ich rzeczywistego bogactwa. Ten problem jest analogiczny do bardziej ogólnego problemu, w którym występują dwie liczb a i b, a celem jest ustalenie, czy nierówność $a \ge b$ jest prawdziwa lub fałszywa bez ujawniania rzeczywistych wartości a i b.

2 Rozwiązanie Ioannidisa i Anantha

2.1 Transfer utajniony 1-2

W transferze utajnionym 1-2, nadawca ma dwie wiadomości m_0 i m_1 , a odbiorca posiada bit b. Odbiorca chce otrzymać wiadomość m_b , bez ujawniania nadawcy bitu b. Nadawca chce mieć pewność, że odbiorca otrzymuje tylko jedną z dwóch wiadomości.

Nadawca				Odbiorca		
Opis	Prywatne	Publiczne		Publiczne	Prywatne	Opis
Przygotuj wiadomości do wysłania	m_0, m_1					
Wygeneruj parę kluczy RSA i wyślij publiczną część	d	$N,\ e$	\rightarrow	$N,\ e$		Otrzymuje publiczny klucz
Wygeneruj i wyślij losowe wiadomości x_0 , x_1		x_0, x_1	→	x_0, x_1		Otrzymuje wiadomości
					k, b	Ustal bit $b \in \{0, 1\}$ oraz wygeneruj losowe k
Otrzymuje zaślepioną wiadomość v		υ	←	$v = (x_b + k^e) \mod N$		Dodaje czynnik losowy do wiadomości x _b tworząc zaślepioną wiadomość
Wygeneruj dwie wartości		$k_0 = (v - x_0)^d \mod N$ $k_1 = (v - x_1)^d \mod N$				
Połącz wiadomości z kluczami oraz wyślij je		$m_0' = m_0 + k_0$ $m_1' = m_1 + k_1$	→	m'_0, m'_1		Otrzymuje dwie wiadomości
					$m_b = m_b' - k$	Odejmuje czynnik losowy od zaślepionej wiadomości otrzymując wiadomość m _b

2.2 Protokół

W celu opisania protokołu liczba nadawcy jest oznaczona jako a, a liczba odbiorcy jest oznacza jako b. Długość binarnych reprezentacji a oraz b jest mniejsza od $d \in \mathbb{N}$. W każdej liczbie binarnej najbardziej znaczący bit jest na końcu w binarnej reprezentacji, tj. najmniej znaczący bit jest na pozycji 0.

- Nadawca tworzy macierz K o rozmiarze $d \times 2$. Składowa K_{ij} , dla $j \in \{0,1\}$ oraz $0 \le i < d$, to binarna liczba o długości k, gdzie k to długość klucza RSA wygenerowanego w transferze utajnionym.
- Nadawca losuje dwie liczby u oraz v, gdzie $0 \le u < 2k$, a $v \le k$.

- Niech K_{ijl} oznacza l-ty bit liczby w K_{ij} . Niech a_i oznacza i-ty bit liczby a. Dla każdego $0 \le i < d$ nadawca:
 - Dla każdego bitu o indeksie $j \geq v$ ustawia K_{i1j} oraz K_{i2j} do losowych wartości.
 - Jeśli $a_i=1$, to ustawiamy indeks l=0, w przeciwnym razie ustawiamy indeks l=1. Następnie dla każdego bitu o indeksie $0 \le j \le 2 \times i-1$ ustawiamy K_{ilj} do losowej wartości.
 - Ustawiamy indeks $m=2\times i$, a następnie ustawiamy $K_{il(m+1)}=1$ oraz $K_{ilm}=a_i$.
 - Generujemy losową k-bitową liczbę binarną S_i . Dla ostatniego indeksu i=d-1 dwa ostatnie bity w S_{d-1} zostaną ustawione następująco: $S_{(d-1)(k-1)}=1\oplus\bigoplus_{j=1}^{d-2}S_{j(k-1)}\oplus\bigoplus_{j=1}^{d-1}K_{j0(k-1)},$ $S_{(d-1)(k-2)}=1\oplus\bigoplus_{j=1}^{d-2}S_{j(k-2)}\oplus\bigoplus_{j=1}^{d-1}K_{j0(k-2)}.$
 - Dla każdego indeksu $l \in \{0,1\}$ ustawiamy $K'_{il} = \text{rot}(K_{il} \oplus S_i, \mathbf{u})$, gdzie rot(x,t) oznacza obrót bitowy x w lewo o t bitów.
- Dla każdego $0 \le i < d$ nadawca oraz odbiorca transferują K'_{il} , gdzie $l = b_i$, a b_i to i-ty bit w liczbie b.
- Nadawca wysyła do odbiorcy $N = \text{rot}(\bigoplus_{j=0}^{d-1} S_j, u)$.
- Odbiorca xoruje wszystkie przetransferowane wiadomości oraz otrzymane N. Odbiorca skanuje wynik od lewej do prawej szukając dużej sekwencji zer. Niech c oznacza bit na prawo od takiej sekwencji. Jeśli bit na prawo od c jest 1, to $a \ge b$, w przeciwnym razie a < b.