

Beyond Correlation
Counterfactual Reasoning &
Causal Inference

Tanmayee Narendra
IBM Research

Karl Pearson

- "Beyond such discarded fundamentals as 'matter' and 'force' lies still another fetish amidst the inscrutable arcana of modern science, namely, the category of cause and effect."
- He categorically denied the need for an independent concept of causal relation beyond correlation.

What is Causality? Why do we need it?

An Example

Gene A Gene B

An Example

Gene A Gene B

Statistical Inference Paradigm

Causal Paradigm

Causal Model

- Any causal model must be able to answer the following types of questions
 - 1. Observational questions What if we see A?
 - 2. Action questions (interventions) What if we do A?
 - 3. Counterfactual questions What if we *did things differently*?
- Parametric and Non-parametric

Causal Model

- Any Causal Model usually comprises of
 - Causal Graph
 - Distribution
 - Intervention Distributions
 - Counterfactuals

Prediction

Would the pavement be slippery if we find the sprinkler off?

Intervention

Would the pavement be slippery if we make sure the sprinkler is off?

Counterfactual

Would the pavement be slippery had the sprinkler been off, given that the pavement is in fact not slippery and the sprinkler is on?

Causal Bayesian Networks

Figure: Causal Bayesian Network

$$Pr(X) = Pr(X_1) Pr(X_2 \mid X_1) Pr(X_3 \mid X_1) Pr(X_4 \mid X_3, X_2) Pr(X_5 \mid X_4)$$

Intervention

Figure: Causal Bayesian Network

$$Pr(X)_{X_3=ON} = Pr(X_1) Pr(X_2 \mid X_1) Pr(X_4 \mid X_3 = ON, X_2) Pr(X_5 \mid X_4)$$

Markov Equivalent Class

Causal Bayesian Networks

Definition

Let $\mathcal{L}(\mathbf{X})$ be a probability distribution on a set \mathbf{X} of variables, and let $\mathcal{L}_{\nu}(\mathbf{X})$ denote the distribution resulting from the intervention $do(V=\nu)$ that sets a subset V of variables to constants ν . Denote by $\mathcal{L}*$ the set of all interventional distributions $\mathcal{L}_{\nu}(\mathbf{X})$, $V\subseteq\mathbf{X}$, including $\mathcal{L}(\mathbf{X})$, which represents no intervention (i.e., $X=\phi$).

Causal Bayesian Networks

Definition

A DAG G is said to be a causal Bayesian network compatible with $\mathcal{L}*$ if and only if the following three conditions hold for every $\mathcal{L}_{\nu} \in \mathcal{L}*$:

- **1** $\mathcal{L}_{\nu}(\mathbf{X})$ is Markov relative to G
- ② $\mathcal{L}_{\nu}(X_i) = 1$ for all $X_i \in \mathbf{X}$ whenever X_i is consistent with $V = \nu$
- 3 $\mathcal{L}_{\nu}(X_i \mid Pa_i) = \mathcal{L}(X_i \mid Pa_i)$ for all $X_i \notin \mathbf{X}$ whenever Pa_i is consistent with $V = \nu$ i.e., each $\mathcal{L}(X_i \mid Pa_i)$ remains invariant to interventions not involving X_i .

Structural Equation Models

Causal Bayesian Networks can also be formulated as Structural Equation Models (SEM).

Definition

A structural equation model is defined as a tuple $S := (S, \mathbb{P}^{N})$, where $S = (S_1, ..., S_p)$ is a collection of p equations

$$S_j: X_j = f_j(Pa_j, N_j), j = 1, ..., p$$

where $\mathbb{P}^{\mathbf{N}} = \mathbb{P}^{N_1,...,N_p}$ is the joint distribution of the noise variables, which are required to be jointly independent.

Is Causality useful?

Computational Advertising

- Complex system with several ML components, and actors with varied interests
- Traditionally modelled as Contextual Bandits
- Causal Modelling helps in design of the system, by making it principled and cheaper

Exoplanet Search

- Removing systemic noise from observations of the Kepler space observatory
- Systemic noise introduced from spacecraft and telescope (pointing jitter)
- New technique called Half-Sibling Regression

Gene Perturbation Experiments

- Improving experimental interventions like gene deletion
- Estimate causal relations between biochemical agents

Estimating the Effect of a Market Intervention

- Did a particular advertising campaign increase product sales?
- Bayesian Structural Time Series Model
- Brodersen KH, Gallusser F, Koehler J, Remy N, Scott SL. Inferring causal impact using Bayesian structural time-series models. *Annals of Applied Statistics*, 2015, Vol. 9, No. 1, 247-274.

App Store Analysis

- Estimate which app release is successful and which is not
- Simple application of Causal Impact paper

People in Causal Inference

- UCLA Judea Pearl
- CMU Peter Spirtes, Clark Glymour, Richard Scheines
- Harvard Donald Rubin
- ETH-Zurich Jonas Peters, Peter Buhlmann,
 Nicolai Meinshausen, Stefen Bauer
- MPI-Tubingen Dominik Janzing, Bernhard Scholkopf
- Others Joris Mooij, Patrik Hoyer and many others

Further Reading

- Pearl, Judea. *Causality*. Cambridge university press, 2009.
- Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning algorithms. MIT Press, 2017.
- Lectures on Causality https://youtu.be/zvrcyqcN9Wo
- And many more

Visit **triptoes1.github.io**

Twitter

@tanmayee_n