

Bayesian Network: Car Insurance Company (1/2)

- A car insurance company:
 - Receive an application from an individual to insure a specific vehicle
 - Analyze information about the individual and its car
 - Decide on appropriate annual premium to charge
 - Pay out a claim, based on the type of claim
- Build a Bayesian network that captures the causal structure of the domain
 - Input information:
 - About the applicant: Age, YearsWithLicense, DrivingRecord, GoodStudent
 - About the vehicle: MakeModel, VehicleYear, Airbag, SafetyFeatures
 - About the driving situation: Mileage, HasGarage
 - Some input informations are important but not available:
 - RiskAversion
 - DrivingBehavior
 - Type of claims:
 - MedicalCost: injuries sustained by the applicant
 - LiabilityCost: lawsuits filed by other parties against applicant
 - PropertyCost: vehicle damage to either party and theft of the vehicle

Bayesian Network: Car Insurance Company (2/2)

- Blue nodes: information provided by the applicants
- Brown nodes: hidden variables (not observable)
- Violet nodes: target variables

- Exact Inference in Bayesian Networks
- Approximate Inference in Bayesian Networks

Exact Inference in Bayesian Networks

- Goal of exact inference
 - Compute the posterior $P(X|\underline{E} = \underline{e})$ for query variable X given evidence \underline{e}
- Variables involved
 - Query variable X
 - Evidence variables $\underline{\boldsymbol{E}} = \{E_1, \dots, E_m\}$
 - Hidden variables $\underline{Y} = \{Y_1, \dots, Y_\ell\}$
- Inference by Enumeration
 - Use full joint distribution and sum over all hidden variables:

$$P(X|e) = \alpha \sum_{Y} P(X, e, Y)$$

- Variable Elimination
 - Improves efficiency by caching intermediate results
 - Eliminates variables systematically to avoid redundant sums
 - Removing irrelevant variables
 - Variables not ancestors of query or evidence can be ignored
- Problems
 - Exact inference is efficient O(n) for trees, but intractable $O(2^n)$ in general
 - It doesn't work for continuous variables

Exact Inference in Bayesian Networks: Example

 You get a call from both John and Mary, what is the probability of the burglary?

$$P(Burglary|JohnCalls = True, MaryCalls = True)$$

 A conditional probability can be computed summing terms from the full joint distribution

$$\Pr(X|\underline{\boldsymbol{e}}) = \alpha \Pr(X,\underline{\boldsymbol{e}}) = \alpha \sum_{y} \Pr(X,\underline{\boldsymbol{e}},\underline{\boldsymbol{y}})$$

 Terms of the joint distribution can be written as products of conditional probabilities from the Bayesian network

$$Pr(b|j,m) = \alpha Pr(B,j,m) = \alpha \sum_{e} \sum_{a} Pr(B,j,m,e,a)$$

 Then the joint probability is written in terms of CPTs of the Bayesian network

$$Pr(b|j,m) = \alpha \sum_{a} \sum_{b} Pr(b) Pr(e) Pr(a|b,e) Pr(j|a) Pr(m|a)$$

- Exact Inference in Bayesian Networks
- Approximate Inference in Bayesian Networks

Monte Carlo Algorithms

- Monte Carlo algorithms are randomized sampling algorithms used to estimate quantities that are difficult to calculate exactly
 - E.g., samples from the posterior probability of a Bayes network
- Pros
 - The accuracy of the approximation depends on the number of samples generated
 - You can get arbitrarily close to the true probability distribution with enough samples
 - Is used in many branches of science
- Cons
 - Difficult to understand how the variables interact
 - Computationally intensive

Sampling from Arbitrary Distributions

- Goal: Sample from a discrete or continuous probability distribution
- Solution
 - Start with uniform random numbers $r \in [0,1]$
 - Construct CDF (cumulative distribution function) F(x)
 F(x) = Pr(X < x)
 - For discrete distributions:
 - Create table of outcomes and cumulative probabilities
 - Find smallest outcome where F(x) > r
 - For continuous distributions:
 - Use inverse transform: $x = F^{-1}(r)$, e.g.,

$$F(x) = 1 - e^{-\lambda x} \to x = F^{-1}(r) = -\frac{1}{\lambda} \ln(1 - r)$$

• If F^{-1} has no closed form, use numerical methods

Sampling Bayesian Network Without Evidence

- Goal: Generate events from a Bayesian network without evidence (prior sampling)
- Solution
 - Sample variables in topological order (to ensure parents have values)
 - Source nodes have known unconditional probability distribution

• E.g.,
$$Pr(Rain) = 0.5$$

- Conditional variable's probability distribution depends on parent's values
 - E.g., Pr(WetGrass|Rain = T) = 0.1
- Implement Bayesian network semantics, representing joint probability:

$$f_{PS}(x_1,...,x_n) = \prod_{i=1}^n \Pr(x_i|parents(X_i))$$

where PS means "Prior Sampling"

Consistency of Sampling

- Consistency of estimation: distribution from prior sampling converges to true probability as $N \to \infty$
- If N_{PS} is the number of times event $x_1, ..., x_n$ occurs:

$$\lim_{N\to\infty}\frac{N_{PS}(x_1,...,x_n)}{N}=\Pr(x_1,...,x_n)$$

• Estimate probability using:

$$Pr(x_1,...,x_n) \approx \frac{N_{PS}(x_1,...,x_n)}{N}$$

• Converges with rate $\frac{1}{\sqrt{N}}$

Rejection Sampling

- Rejection sampling is a method for sampling from a hard-to-sample distribution
- **Goal**: Compute Pr(X = x | E = e) when evidence e is rare
 - Generate samples from the prior distribution
 - Estimate Pr(x, e)
 - 2. Reject samples not matching evidence, i.e., $X \land E \neq e$
 - Remaining samples $X \wedge E = e$ estimate Pr(X, E = e)
 - 3. Count occurrences of X = x in remaining samples $X \wedge E = e$
 - Estimate Pr(X = x | E = e)

- You want to estimate Pr(Rain|Sprinkler = T)
- Sample 100 times
 - You get 73 samples with $\neg Sprinkler$ and they are rejected
 - You are left with 27 samples with Sprinkler
 - Out of them only 8 have Rain and 19 have ¬Rain

Rejection Sampling: Pros and Cons

- Pros
 - Consistent estimate
 - Converges to true value as number of samples increases
- Cons
 - Many samples are rejected, depending on rarity of Pr(E = e)
 - Fraction of samples matching evidence e decreases exponentially with more evidence variables
 - Curse of dimensionality
 - Not suitable for complex systems
 - Difficult with continuous variables
 - ullet E.g., $\Pr(E=e)$ is theoretically 0 due to limited floating-point precision

Importance Sampling

::: columns :::: {.column width=60%}

- Importance sampling
 - Draw samples from "easier" distribution Q(X)
 - Weight each sample by importance weight $w = \frac{\Pr(X)}{Q(X)}$
 - Estimate probability by averaging weighted samples:

$$E[f(X)] \approx \frac{1}{N} \sum_{i=1}^{N} w_i f(X_i)$$

:::: {::column width=35%}

Markov Chain Monte Carlo

- This is one of the top 10 most mind blowing algorithms in history
 - Euclide's GCD
 - Fundamental theorem of calculus
 - Quicksort
 - Fast Fourier Transform
 - Viterbi algorithm
 - MCMC sampling
 - Kalman filter
 - RSA Algorithm
 - . . .
- Invented by Ulam, Von Neumann, Metropolis and others during the Manhattan Project (1940)
 - Used to solve high-dimensional integrals, Bayesian inference, . . .
- Purpose: Approximate inference for Bayesian networks when exact inference is hard
 - MCMC differs from rejection and importance sampling
 - Make random changes to preceding sample instead of generating each sample independently
 - Magic: two very different objects (Markov Chains) and Bayesian Networks

Markov Chain Construction

- A Markov chain is a "random walk" through states, where the future depends only on the present
 - Sequence of states: $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$
 - *Initial state*: starting configuration
 - Transition probabilities: $Pr(\underline{x} \to \underline{x}')$
 - After t steps, distribution is $\pi_t(\underline{x})$
 - When $\pi_t(\underline{\mathbf{x}}) = \pi_{t+1}(\underline{\mathbf{x}})$, chain reaches stationary distribution
- Transition operator: moves from one state to another:
 - Gibbs sampling: resample one variable given its Markov blanket
 - Metropolis-Hastings: propose a new state, then accept/reject based on a probability ratio
- There are algorithms generate a Markov Chain from a Bayesian network
- Under certain conditions:
 - Ergodicity: chain can reach any state
 - Aperiodicity: chain does not get stuck in cycles stationary distribution equals the posterior distribution over non-evidence variables given

Markov Chain Monte Carlo: Mixing

- Mixing describes how quickly a Markov chain forgets its starting point and explores the whole state space efficiently
 - A well-mixed chain:
 - Moves between different high-probability regions often
 - Has low correlation between successive samples
 - Poor mixing:
 - Chain gets stuck in one mode for a long time
 - Leads to biased estimates and high variance
- In practice:
 - Discard initial samples as a burn-in period (before convergence)
 - After convergence, collected samples approximate the true posterior
- Example
 - If sampling from a bimodal distribution:
 - "Poor mixing" means the chain stays in one peak
 - "Good mixing" jumps between both

Variance is about right

Gibbs Sampling in Bayesian Networks

 Special case of Markov Chain Monte Carlo (MCMC) method that samples one variable at a time

• Algorithm:

- Start with an initial complete assignment to all non-evidence variables
- Keep evidence variables fixed at observed values
- For each non-evidence variable X_i:
 - Sample X_i from $P(X_i|MB(X_i))$ where $MB(X_i)$ is the Markov blanket, i.e., parents, children, spouse of a node

Example:

- Weather network: P(Cloudy|Sprinkler, Rain, WetGrass)
- Fix WetGrass = true, Sprinkler = true
- Sample Cloudy and Rain iteratively

Pros

- Simple to implement for any Bayesian network
- Handles large, complex graphs with local updates

CADEM Can mix slowly if variables are highly correlated

Metropolis-Hastings Sampling

More general Markov Chain Monte Carlo method than Gibbs sampling

• Algorithm

- Start at a current state x
- Propose a new state $\underline{\mathbf{x}}'$ from a proposal distribution q(x'|x), e.g.,
 - With 95% probability Gibbs sampling
 - Otherwise use importance sampling
- Compute the acceptance probability:
 - $A(x,x') = \min(1, \frac{\pi(x')q(x|x')}{\pi(x)q(x'|x)})$
- Move to x' with probability A(x,x'), otherwise stay at x

Intuition

- Propose local moves
- Accept if they lead to higher probability, or sometimes accept lower-probability states to explore
- Balances exploration and exploitation to avoid getting stuck in local modes

Pros

Very flexible: works with any proposal distribution

SCIENCECan handle high-dimensional spaces