

نام درس: الكترونيك صنعتي

جلسه ۱۸: مبدلهای DC/AC (اینورترها)

ارائه دهنده: على دستفان

مقدمه

نواحی کارکرد

اینورتر نیم پل

اینورتر تمام پل

اینورتر تمام پل

اینور تر تمام پل

$$v_o(t) = \sum_{n \text{ odd}} \frac{4V_{dc}}{n \pi} \sin n\omega_0 t$$

روابط

$$v_o(t) = \sum_{n=1}^{\infty} V_n \sin(n\omega_0 t + \theta_n)$$

$$i_o(t) = \sum_{n=1}^{\infty} I_n \sin(n\omega_0 t + \phi_n)$$

$$I_{rms} = \sqrt{\sum_{n=1}^{\infty} I_{n,rms}^2} = \sqrt{\sum_{n=1}^{\infty} \left(\frac{I_n}{\sqrt{2}}\right)^2}$$

$$I_n = \frac{V_n}{Z_n}$$

$$P = \sum_{n=1}^{\infty} P_n = \sum_{n=1}^{\infty} I_{n,rms}^2 R$$

$$THD = \sqrt{\frac{\sum_{n=2}^{\infty} (V_{n,rms})^2}{V_{1,rms}}} = \frac{\sqrt{V_{rms}^2 - V_{1,rms}^2}}{V_{1,rms}}$$

RL بار

$$\begin{split} i_{o}(t) &= i_{f}(t) + i_{n}(t) \\ &= \frac{V_{dc}}{R} + Ae^{-t/\tau} \quad for \quad 0 \le t \le T/2 \\ i_{o}(t) &= \frac{-V_{dc}}{R} + Be^{-(t-T/2)/\tau} \quad for \quad T/2 \le t \le T \\ i_{o}(t) &= \frac{\left(V_{dc} + R \right)^{2} + Be^{-(t-T/2)/\tau}}{R} \quad for \quad T/2 \le t \le T \\ i_{o}(t) &= \begin{cases} \frac{V_{dc}}{R} + \left(I_{\min} - \frac{V_{dc}}{R} \right) e^{-t/\tau} & \text{if } 0 < t < \frac{T}{2} \\ \frac{-V_{dc}}{R} + \left(I_{\max} + \frac{V_{dc}}{R} \right) - e^{(t-T/2)/\tau} & \text{if } \frac{T}{2} < t < T \end{cases} \end{split}$$

$$i(T/2) = I_{\text{max}} = \frac{V_{dc}}{R} + \left(I_{\text{min}} - \frac{V_{dc}}{R}\right)e^{-(T/2\tau)}$$

$$I_{\text{max}} = -I_{\text{min}} = \frac{V_{dc}}{R} \left(\frac{1 - e^{-T/2\tau}}{1 + e^{-T/2\tau}} \right)$$

$$I_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d(t)} = \sqrt{\frac{2}{T} \int_{0}^{T/2} \left[\frac{V_{dc}}{R} + \left(I_{\min} - \frac{V_{dc}}{R} \right) e^{-t/\tau} \right]^{2} dt}$$

اینور تر پل تک فاز

$$v_o = \sum_{n=1,3,5,\dots}^{\infty} \frac{4V_s}{n\pi} \sin n\omega t$$

$$V_{o1} = \frac{4V_s}{\sqrt{2}\pi} = 0.90V_s$$
 $V_n = \frac{4V_{dc}}{n\pi}$

اینور تر پل تک فاز

S_1 and S_2 are on and S_4 and S_3 are off	1	10	$V_S/2$	$-V_S/2$	V_S	S_1 and S_2 if $i_o > 0$ D_1 and D_2 if $i_o < 0$
S_4 and S_3 are on and S_1 and S_2 are off	2	01	$-V_S/2$	$V_S/2$	$-V_S$	D_4 and D_3 if $i_o > 0$ S_4 and S_3 if $i_o < 0$
S_1 and S_3 are on and S_4 and S_2 are off	3	11	$V_S/2$	$V_S/2$	0	S_1 and D_3 if $i_o > 0$ D_1 and S_3 if $i_o < 0$
S_4 and S_2 are on and S_1 and S_3 are off	4	00	$-V_S/2$	$-V_S/2$	0	D_4 and S_2 if $i_o > 0$ S_4 and D_2 if $i_o < 0$
S_1 , S_2 , S_3 , and S_4 are all off	5	off	$-V_S/2$ $V_S/2$	$V_S/2$ $-V_S/2$	$-V_S \ V_S$	D_4 and D_3 if $i_o > 0$ D_1 and D_2 if $i_o < 0$
$=\sum_{n=1,3,5,\dots}^{\infty}\frac{4V_s}{n\pi\sqrt{\mathbf{R}^2+(n\omega L)^2}}$	= sin (<i>n</i> o	$\omega t - \theta_n$)	$I_n = \frac{V_n}{Z_n}$	$=\frac{1}{\sqrt{R^2}}$	$\frac{V_n}{+(n\omega_0 L)}$	$P_n = I_{n,rms}^2 R = \left(\frac{I_n}{\sqrt{2}}\right)$
$VD_{V} = \frac{\sqrt{V_{rms}^2 - V_{1,rms}^2}}{V_{1,rms}} = \frac{\sqrt{V_{dc}^2 - (4V_{dc}/\sqrt{2})}}{4V_{dc}/\sqrt{2}\pi}$					THD_I	$=\frac{\sqrt{\sum_{n=2}^{\infty}(I_{n,rms})^2}}{I_{1,rms}}$

الكترونيك صنعتى-ترم 4001

13

کنترل دامنه و هارمونیک با تغییر عرض پالس مربعی

$$V_{rms} = \sqrt{\frac{1}{\pi} \int_{\alpha}^{\pi - \alpha} V_{dc}^2 d(\omega t)} = V_{dc} \sqrt{1 - \frac{2\alpha}{\pi}}$$

$$V_n = \frac{2}{\pi} \int_{\alpha}^{\pi - \alpha} V_{dc} \sin(n\omega_0 t) d(\omega_0 t) = \frac{4V_{dc}}{n\pi} \cos(n\alpha)$$

کنترل دامنه و هارمونیک با تغییر عرض پالس مربعی

$$V_1 = \left(\frac{4V_{dc}}{\pi}\right) \cos \alpha$$

دامنه فرکانس اصلی (n=1) با تنظیم α قابل کنترل است

$$\alpha = \frac{90^{\circ}}{n}$$

هارمونیکها نیز می توانند با انتخاب مقادیر α حذف شوند به گونهای که

انتخاب $\alpha= ext{rs}^\circ$ برای حذف هارمونیک سوم، دامنه فرکانس اصلی خروجی $M= ext{rs}^\circ$ برای حذف $V_1=(4V_{dc}/\pi)\cos 30^\circ=1.1~V_{dc}$ البت می گردد و قابلیت کنترل آن از دست می رود.

حذف چند هارمونیک در ولتاژ خروجی

مدولاسیون پهنای پالس (PWM)

$$m_a = \frac{V_{m,reference}}{V_{m,carrier}} = \frac{V_{m,sine}}{V_{m,tri}}$$

$$m_f = \frac{f_{carrier}}{f_{reference}} = \frac{f_{tri}}{f_{sine}}$$

نسبت مدولاسيون دامنه ma

 m_f نسبت مدولاسيون فركانس

دارنی اصندی شامرود

دانشگاه صنعتی شاهرود- دانشکده مهندسی برق

PWM تک قطبی

 S_1 is on when $v_{\sin} > v_{tri}$ S_2 is on when $-v_{\sin} < v_{tri}$ S_3 is on when $-v_{\sin} > v_{tri}$ S_4 is on when $v_{\sin} < v_{tri}$

PWM تک قطبی

در یک روش کلیدزنی تک قطبی دیگر، فقط یک جفت از کلیدها در فرکانس حامل کار می-کنند در حالیکه جفت دیگر در فرکانس مرجع عمل میکنند، بنابراین دو کلید در فرکانس بالا و

PWM دو قطبی

 S_1 and S_2 are on when $v_{sin} > v_{tri}$ $(v_o = +V_{dc})$

$$S_1$$
 and S_2 are on when $v_{sin} > v_{tri}$ $(v_o = +V_{dc})$
 S_3 and S_4 are on when $v_{sin} < v_{tri}$ $(v_o = -V_{dc})$

هارمونیکها در PWM دو قطبی

$$V_{nk} = \frac{2}{\pi} \int_{0}^{T} v(t) \sin(n\omega_{0}t) d(\omega_{0}t)$$

$$= \frac{2}{\pi} \left[\int_{\alpha_{k}}^{\alpha_{k}+\delta_{k}} V_{dc} \sin(n\omega_{0}t) d(\omega_{0}t) + \int_{\alpha_{k}+\delta_{k}}^{\alpha_{k+1}} -(V_{dc}) \sin(n\omega_{0}t) (d(\omega_{0}t)) \right]$$

$$V_{nk} = \frac{2V_{dc}}{n\pi} \left[\cos n\alpha_{k} + \cos n\alpha_{k+1} - 2\cos n(\alpha_{k} + \delta_{k}) \right]$$

$$V_{o}(t) = \sum_{n=1}^{\infty} V_{n} \sin(n\omega_{0}t)$$

$$V_{n} = \sum_{k=1}^{p} V_{nk}$$

هارمونیکها در PWM دو قطبی

n	$M_a=1$	٠,٩	٠,٨	٠,٧	٠,٦	٠,٥	٠,٤	٠,٣	٠,٢	٠,1
1	١,٠٠	٠,٩٠	٠,٨٠	٠,٧٠	٠,٦٠	٠,٥٠	٠ ,٤ ٠	٠,٣٠	٠,٢٠	٠,١٠
m_f	٠,٦٠	٠,٧١	٠,٨٢	٠,٩٢	١,٠١	٠,٠٨	1,10	1,70	1,72	1,77
$m_f \pm r$	٠,٣٢	٠,٢٧	٠,٢٢	٠,١٧	٠,١٣	٠,٠٩	٠,٠٦	٠,٠٣	٠,٠٢	•,••

هارمونیکها در PWM تک قطبی

n	$M_a=1$	٠,٩	٠,٨	٠,٧	٠,٦	٠,٥	٠,٤	۰,۳	٠,٢	٠,1
١	١,٠٠	٠,٩٠	٠,٨٠	٠,٧٠	٠,٦٠	٠,٥٠	٠ ,٤ ٠	٠,٣٠	٠,٢٠	٠,١٠
ኘ m_f \pm ነ	٠,١٨	٠,٢٥	٠,٣١	٠,٣٥	٠,٣٧	٠,٣٦	٠,٣٣	·, rv	٠,١٩	٠,١٠
ኘ m_f ±ፕ	٠,٢١	٠,١٨	٤١,٠	٠,١٠	٠,٠٧	٤٠,٠٤	٠,٠٢	٠,٠١	•,••	•,••

مثال ۱

از یک اینورتر تمام پل برای تولید یک ولتاژ $m 7^{\circ}$ هرتزی در دو سر یک بار m RL سری با استفاده از PWM دوقطبی استفاده شده است. ورودی DC ،۱۰۰۷، نصبت مدولاسیون دامنه m PWM و نصبت مدولاسیون فرکانس $m m_{g}$ $m N^{\circ}$ $m N^{\circ$

$$V_1 = m_a V_{dc} = (0.8)(100) = 80V$$
 $I_1 = \frac{80}{\sqrt{10^2 + [(1)(2\pi60)(0.02)]^2}} = 6.39 \text{ A}$

 $[f_{tri} = (\Upsilon 1)(\Upsilon 1) = 1 \Upsilon 1 \Upsilon 1 Hz]$ نسبت مدولاسیون فرکانس m_f m_f د m_f نسبت مدولاسیون فرکانس

 $V_{21} = (0.82)(100) = 82 \text{ V}$ میباشند. $m_f = 71$ میباشند. اول در ۲۳ و ۱۹ و $m_f = 71$ میباشند. $m_f = 71$

$$V_{19} = V_{23} = (0.22)(100) = 22 \text{ V}$$

مثال ۱ (ادامه)

$$P_n = (I_{n,rms})^2 R = \left(\frac{I_n}{\sqrt{2}}\right)^2 R$$
 $P = \sum P_n \approx 204.0 + 0.1 + 1.3 + 0.1 = 205.5 \text{ W}$

THD (5)

$$THD_{I} = \frac{\sqrt{\sum_{n=2}^{\infty} I_{n,rms}^{2}}}{I_{1,rms}} \approx \frac{\sqrt{(0.11)^{2} + (0.36)^{2} + (0.09)^{2}}}{4.52} = 0.087 = 8.7\%$$

n	$f_n(Hz)$	$V_n(\mathbf{V})$	$Z_n(\Omega)$	$I_n(A)$	$I_{n,rms}$ (A)	$P_n(\mathbf{W})$
١	٦.	۸٠,٠	17,0	٦,٣٩	٤,٥٢	۲٠٤,٠
19	118.	۲۲,۰	124,7	٠,١٥	٠,١١	٠,١
71	177.	۸۱ ٫۸	101,1	٠,٥٢	٠,٣٦	١,٣
77	17%.	۲۲,۰	174,7	٠,١٣	٠,٠٩	٠,١

مثال ۲

یک اینورتر PWM دوقطبی را طراحی کنید که از یک منبع PWM دوقطبی را طراحی کنید که از یک منبع PWM دولتار R = R = 1 و R = 1 و R = 1 و R = 1 سری با R = 1 و R = 1 و R = 1 و R = 1 او R = 1 و R = 1 و R = 1 و R = 1 او R = 1 و R

$$m_a = \frac{V_1}{V_{dc}} = \frac{75\sqrt{2}}{150} = 0.707$$
 $I_1 = \frac{V_1}{Z_1} = \frac{75\sqrt{2}}{\sqrt{12^2 + [(2\pi60)(0.06)]^2}} = 4.14 \text{ A}$

$$\sqrt{\sum_{n=2}^{\infty} (I_{n,rms})^2} < 0.1 I_{1,rms} = 0.1 \left(\frac{4.14}{\sqrt{2}}\right) = 0.293 \text{ A}$$

با یک تقریب در نظر بگیرید که محتوای هارمونیکی جریان بار همان هارمونیک غالب در $\sqrt{\sum_{n,rms}^{\infty}(I_{n,rms})^2} \approx I_{mf,rms} = \frac{I_{mf}}{\sqrt{2}}$ فرکانس حامل است،

مثال ۲ (ادامه)

بنابراین دامنه هارمونیک جریان در فرکانس حامل به این صورت تخمین زده می شود

$$I_{mf} < (0.1)(4.14) = 0.414 \text{ A}$$

جدول ۸–۳ نشان می دهد که هارمونیک ولتاژ نرمالیزه شده برای $n=m_f$ و ۱/۹۲ می-

باشد. بنابراین دامنه و لتا برای $n=m_f$ به صورت زیر است:

$$V_{mf} = 0.92 V_{dc} = (0.92)(150) = 138 \text{ V}$$

پس حداقل امپدانس بار در فرکانس حامل به صورت زیر بدست می آید:

$$Z_{mf} = \frac{V_{mf}}{I_{mf}} = \frac{138}{0.414} = 333 \ \Omega$$

بنابراین امپدانس در فرکانس حامل باید خیلی بزرگتر از بار مقاومتی ۱۲۵ باشد. در نظر

بگیرید که امپدانس در فرکانس حامل به طور کامل راکتانس سلفی باشد:

$$Z_{mf}\approx \omega L=m_f\omega_0 L$$

مثال ۲ (ادامه)

$$m_f \omega_0 L > 333$$

برای اینکه امپدانس بار بزرگتر از ۳۳۳۸ باشد، داریم:

$$m_f > \frac{333}{(377)(0.06)} = 14.7$$

با انتخاب m_f به طوریکه حداقل ۱۵ باشد، خواسته های طراحی به صورت تقریبی برآورده می-شود. اما به هر حال تخمین محتوای هارمونیکی که در محاسبات استفاده شد کمتر از مقدار واقعی می باشد، بنابراین انتخاب یک فرکانس حامل بالاتر محتاطانه تر خواهد بود. فرض کنید که $m_f = 1$ به این صورت که ۱۷ می عدد صحیح فرد بعدی می باشد. حال فرکانس موج حامل به این صورت خواهد بود:

$$f_{tri} = m_f f_{ref} = (17)(60) = 1020$$
 Hz