SUMMARY

1. A set of vectors $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ in \mathbb{R}^n is linearly dependent if there exists a dependence relation

$$r_1\mathbf{w}_1 + r_2\mathbf{w}_2 + \cdots + r_k\mathbf{w}_k = \mathbf{0}$$
, with at least one $r_i \neq 0$.

The set is *linearly independent* if no such dependence relation exists, so that a linear combination of the \mathbf{w}_i is the zero vector only if all of the scalar coefficients are zero.

- 2. A set B of vectors in a subspace W of \mathbb{R}^n is a basis for W if and only if the set is independent and the vectors span W. Equivalently, each vector in W can be written uniquely as a linear combination of the vectors in B.
- 3. If $W = \operatorname{sp}(\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k)$, then the set $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ can be cut down, if necessary, to a basis for W by reducing the matrix A having \mathbf{w}_j as the jth column vector to row-echelon form H, and retaining \mathbf{w}_j if and only if the jth column of H contains a pivot.
- 4. Every subspace W of \mathbb{R}^n has a basis, and every independent set of vectors in W can be enlarged (if necessary) to a basis for W.
- 5. Let W be a subspace of \mathbb{R}^n . All bases of W contain the same number of vectors. The *dimension* of W, denoted by $\dim(W)$, is the number of vectors in any basis for W.
- 6. Let W be a subspace of \mathbb{R}^n and let $\dim(W) = k$. A subset S of W containing exactly k vectors is a basis for W if either
 - a. S is an independent set, or
 - **b.** S spans W.

That is, it is not necessary to check both conditions in Theorem 2.1 for a basis if S has the right number of elements for a basis.

EXERCISES

- Give a geometric criterion for a set of two distinct nonzero vectors in R² to be dependent.
- 2. Argue geometrically that any set of three distinct vectors in \mathbb{R}^2 is dependent.
- Give a geometric criterion for a set of two distinct nonzero vectors in R³ to be dependent.
- Give a geometric description of the subspace of R³ generated by an independent set of two vectors.
- Give a geometric criterion for a set of three distinct nonzero vectors in R³ to be dependent.

6. Argue geometrically that every set of four distinct vectors in \mathbb{R}^3 is dependent.

In Exercises 7-11, use the technique of Example 2, described in the box on page 129, to find a basis for the subspace spanned by the given vectors.

- 7. sp([-3, 1], [6, 4]) in \mathbb{R}^2
- 8. sp([-3, 1], [9, -3]) in \mathbb{R}^2
- 9. sp([2, 1], [-6, -3], [1, 4]) in \mathbb{R}^2
- 10. sp([-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4])in \mathbb{R}^3

- 11. sp([1, 2, 1, 2], [2, 1, 0, -1], [-1, 4, 3, 8], [0, 3, 2, 5]) in \mathbb{R}^4
- Find a basis for the column space of the matrix

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 2 & 1 \\ 1 & 7 & 2 \\ 6 & -2 & 0 \end{bmatrix}.$$

13. Find a basis for the row space of the matrix

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 0 & 4 & 2 \\ 3 & 2 & 8 & 7 \end{bmatrix}.$$

- Find a basis for the column space of the matrix A in Exercise 13.
- 15. Find a basis for the row space of the matrix A in Exercise 12.

In Exercises 16-25, use the technique illustrated in Example 3 to determine whether the given set of vectors is dependent or independent.

- 16. $\{[1, 3], [-2, -6]\}$ in \mathbb{R}^2
- 17. {[1, 3], [2, -4]} in \mathbb{R}^2
- 18. $\{[-3, 1], [6, 4]\}$ in \mathbb{R}^2
- 19. $\{[-3, 1], [9, -3]\}$ in \mathbb{R}^2
- **20.** {[2, 1], [-6, -3], [1, 4]} in \mathbb{R}^2
- 21. {[-1, 2, 1], [2, -4, 3]} in \mathbb{R}^3
- 22. {[1, -3, 2], [2, -5, 3], [4, 0, 1]} in \mathbb{R}^3
- 23. {[1, -4, 3], [3, -11, 2], [1, -3, -4]} in \mathbb{R}^3
- **24.** $\{[1, 4, -1, 3], [-1, 5, 6, 2], [1, 13, 4, 7]\}$ in
- **25.** {[-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4]} in \mathbb{R}^3

In Exercises 26 and 27, enlarge the given independent set to a basis for the entire space \mathbb{R}^n .

- 26. $\{[1, 2, 1]\}$ in \mathbb{R}^3
- 27. {[2, 1, 1, 1], [1, 0, 1, 1]} in \mathbb{R}^4
- 28. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a set of vectors in \mathbb{R}^n . Mark each of the following True or False.
- ___ a. A subset of Rⁿ containing two nonzero distinct parallel vectors is dependent.

- b. If a set of nonzero vectors in Rⁿ is dependent, then any two vectors in the set are parallel.
- c. Every subset of three vectors in R² is dependent.
- d. Every subset of two vectors in R² is independent.
- e. If a subset of two vectors in \mathbb{R}^2 spans \mathbb{R}^2 , then the subset is independent.
- f. Every subset of Rⁿ containing the zero vector is dependent.
- g. If S is independent, then each vector in Rⁿ can be expressed uniquely as a linear combination of vectors in S.
- h. If S is independent and spans Rⁿ, then each vector in Rⁿ can be expressed uniquely as a linear combination of vectors in S.
- i. If each vector in Rⁿ can be expressed uniquely as a linear combination of vectors in S, then S is an independent set.
- j. The subset S is independent if and only if each vector in sp(v₁, v₂, ..., v_k) has a unique expression as a linear combination of vectors in S.
- __ k. The zero subspace of Rⁿ has dimension 0.
- I. Any two bases of a subspace W of \mathbb{R}^n contain the same number of vectors.
- __m. Every independent subset of \mathbb{R}^n is a subset of every basis for \mathbb{R}^n .
- ___ n. Every independent subset of \mathbb{R}^n is a subset of some basis for \mathbb{R}^n .
- 29. Let u and v be two different vectors in ℝⁿ. Prove that {u, v} is linearly dependent if and only if one of the vectors is a multiple of the other.
- 30. Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be independent vectors in \mathbb{R}^n . Prove that $\mathbf{w}_1 = 3\mathbf{v}_1$, $\mathbf{w}_2 = 2\mathbf{v}_1 - \mathbf{v}_2$, and $\mathbf{w}_3 = \mathbf{v}_1 + \mathbf{v}_3$ are also independent.
- 31. Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be any vectors in \mathbb{R}^n . Prove that $\mathbf{w}_1 = 2\mathbf{v}_1 + 3\mathbf{v}_2$, $\mathbf{w}_2 = \mathbf{v}_2 2\mathbf{v}_3$, and $\mathbf{w}_3 = -\mathbf{v}_1 3\mathbf{v}_3$ are dependent.
- 32. Find all scalars s, if any exist, such that [1, 0, 1], [2, s, 3], [2, 3, 1] are independent.
- 33. Find all scalars s, if any exist, such that [1, 0, 1], [2, s, 3], [1, -s, 0] are independent.

- 130
- 34. Let v and w be independent column vectors in \mathbb{R}^3 , and let A be an invertible 3×3 matrix. Prove that the vectors Av and Aw are independent.
- 35. Give an example showing that the conclusion of the preceding exercise need not hold if A is nonzero but singular. Can you also find specific independent vectors v and w and a singular matrix A such that Av and Aw are still independent?
- 36. Let v and w be column vectors in \mathbb{R}^n , and let A be an $n \times n$ matrix. Prove that, if Av and Aw are independent, v and w are independent.
- 37. Generalizing Exercise 34, let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ be independent column vectors in \mathbb{R}^n , and let C be an invertible $n \times n$ matrix. Prove that the vectors $C\mathbf{v}_1, C\mathbf{v}_2, \ldots, C\mathbf{v}_k$ are independent.
- 38. Prove that if W is a subspace of \mathbb{R}^n and $\dim(W) = n$, then $W = \mathbb{R}^n$.

In Exercises 39-42, use LINTEK to find a basis for the space spanned by the given vectors in R*.

39.
$$\mathbf{v}_1 = [5, 4, 3],$$
 $\mathbf{v}_2 = [2, 1, 6],$ $\mathbf{v}_3 = [4, 5, -12],$ $\mathbf{v}_4 = [6, 1, 4],$ $\mathbf{v}_5 = [1, 1, 1]$

40.
$$a_1 = [0, 1, 1, 2],$$
 $a_4 = [-1, 4, 6, 11],$ $a_2 = [-3, -2, 4, 5],$ $a_5 = [1, 1, 1, 3],$ $a_6 = [3, 7, 3, 9]$

41.
$$u_1 = [3, 1, 2, 4, 1],$$

 $u_2 = [3, -2, 6, 7, -3],$
 $u_3 = [3, 4, -2, 1, 5],$
 $u_4 = [1, 2, 3, 2, 1],$
 $u_5 = [7, 1, 11, 13, -1],$
 $u_6 = [2, -1, 2, 3, 1]$

42.
$$\mathbf{w}_1 = [2, -1, 3, 4, 1, 2],$$

 $\mathbf{w}_2 = [-2, 5, 3, -2, 1, -4],$
 $\mathbf{w}_3 = [2, 4, 6, 5, 2, 1],$
 $\mathbf{w}_4 = [1, -1, 1, -1, 2, 2],$
 $\mathbf{w}_5 = [1, 8, 10, 2, 5, -1],$
 $\mathbf{w}_6 = [3, 0, 0, 2, 1, 5]$

MATLAB

Access MATLAB and work the indicated exercise. If the data files for the text are available, enter fbc2s1 for the vector data. Otherwise, enter the vector data by hand.

- M1. Exercise 39
- M2. Exercise 40
- M3. Exercise 41
- M4. Exercise 42

2.2 THE RANK OF A MATRIX

In Section 1.6 we discussed three subspaces associated with an $m \times n$ matrix A: its column space in \mathbb{R}^m , its row space in \mathbb{R}^n , and its nullspace (solution space of $A\mathbf{x} = \mathbf{0}$) in \mathbb{R}^n . In this section we consider how the dimensions of these subspaces are related.

We can find the dimension of the column space of A by row-reducing A to row-echelon form H. This dimension is the number of columns of H having pivots.

Turning to the row space, note that interchange of rows does not change the row space, and neither does multiplication of a row by a nonzero scalar. If we multiply the *i*th row vector \mathbf{v}_i by a scalar r and add it to the kth row vector \mathbf{v}_k , then the new kth row vector is $r\mathbf{v}_i + \mathbf{v}_k$, which is still in the row space of A