Clustering

Max Turgeon

DATA 2010–Tools and Techniques in Data Science

Lecture Objectives

- · Compare and contrast supervised and unsupervised learning.
- Fit k-means and hierarchical clustering models in R.

Motivation

- · So far we have focused on problems with a clear task:
 - · Predict a house price, classify a tumour.
- Sometimes we don't have a clear target for a prediction model, or we didn't measure it.
- Sometimes we feel like two models on two parts of the data would work best.
- Clustering is another class of methods to add to your toolkit, which complements prediction models.

Unsupervised vs Supervised Learning

- Supervised learning: There is a target variable, and we are trying to predict it.
- **Unsupervised learning**: There is no clear target variable. We want to study the structure of the data.
- · Methods include:
 - Clustering
 - · Dimension reduction
 - Score functions

Clustering i

- Clustering is about grouping similar observations together.
 - The output will be a discrete label for each observation, with each label corresponding to a different cluster.
- Similarity can be measured in multiple ways, but is usually based on a notion of distance.
 - E.g. Euclidean distance, graph distance, Manhattan distance.
- We naturally think of clusters as spherical (i.e. lying inside a ball), but they could also be nested, or linear etc.
- · Clustering is inherently ill-defined.
 - The clusters I see may be different than the ones you see!

Clustering ii

- As a result, we can't really say that a clustering of the data is correct, only that it's useful.
- · There are 4 main applications of clustering:
 - · Hypothesis development
 - Modelling over subsets
 - · Data reduction
 - · Outlier detection

K-means clustering i

- \cdot K-means clustering starts by randomly picking K points.
 - · These will be the "centres" of each cluster.
- Then each observation is assigned to the cluster corresponding to the nearest centre.
- The centres are re-calculated by taking the centroid of each cluster.
 - When using the Euclidean distance, the centroid is the sample mean.
 - In general, the centroid is not actually an observation!

K-means clustering ii

- Repeat: reassign each observation to the cluster corresponding to the nearest centre, and recompute the centroids.
- The algorithm stops when the cluster assignments stop changing.
 - There is no convergence guarantee!
- \cdot The number of clusters K is a hyper-parameter. Ideally, we want to choose K not too large, but large enough that within-cluster similarity is greater than between-cluster similarity.

Example i

```
library(dslabs)
dataset <- brca$x

results <- kmeans(dataset, centers = 5)
# How many observations per cluster?
results$size</pre>
```

[1] 237 13 69 71 179

Example ii

Example iii

Example iv

- How many clusters should we pick? There are different approaches:
 - · Elbow method
 - · Silhouette method
 - Gap statistic
- We will use the silhouette method: the silhouette measures how well a particular observation fits within a cluster.
- We can take the average silhouette. A higher number means a better fit.

Example v

Example vi

Example vii

 \cdot As we can see, the optimal K is 2. Let's refit K-means and visualize the new clusters.

Example viii

Exercise

The dataset tissue_gene_expression from the dslabs package is actually a list containing two slots:

- x: Gene expression measurements for 500 genes.
- y: A vector representing the tissue type of each sample.

Using the data in slot x, find the optimal number of clusters.

Bonus: How much agreement is there between the clusters you found and tissue type?

Solution i

Solution ii

Solution iii

Solution iv

Solution v

Solution vi

Solution vii

```
# Bonus
table(results$cluster,
      tissue_gene_expression$y)
##
## cerebellum colon endometrium hippocampus
kidney liver placenta
## 1 0 0 0 0 0 7 0
## 2 0 0 0 0 0 17 0
## 3 31 0 0 0 0 0 0
## 4 2 0 0 0 3 2 0
```

Solution viii

```
## 5 0 34 0 0 0 0 0 
## 6 5 0 0 31 0 0 0 
## 7 0 0 15 0 0 0 0 
## 8 0 0 0 0 0 0 3 
## 9 0 0 0 0 0 3 6 0 0
```

Hierarchical clustering

- In hierarchical (or agglomerative) clustering, we create a hierarchy of cluster by successively merging clusters together.
- · We start with every point being its own cluster.
- · At each step, we identify a pair of clusters to merge.
- · We stop when there is only a single cluster left.
- For a chosen K number of clusters, we "cut" the tree where K+1 clusters became K clusters.
 - This gives us our clustering.

Linkage Criteria

- We can choose between many linkage criteria to determine which clusters to merge. They all essentially measure the distance between clusters, and we merge the "closest" clusters.
 - Nearest neighbour: minimum distance between pairs of points.
 - · Average link: average distance between pairs of points.
 - Nearest centroid: compute the centroid of each cluster and measure distance between clusters as distance between centroids.
 - Furthest link: maximum distance between pairs of points.
- Note that for each criterion, we still need to choose a notion of distance between points
 - · E.g. Euclidean, Manhattan, etc.

Example i

```
# By default, use Ward's criterion for linkage
results <- hcut(dataset, k = 2)
fviz_dend(results, rect = TRUE)</pre>
```

Example ii

Example iii

Example iv

Exercise

Repeat the previous exercise using hierarchical clustering.

Solution i

Solution ii

Solution iii

```
results <- hcut(data_gene, k = 11)
fviz_dend(results, rect = TRUE)</pre>
```

Solution iv

Solution v

```
# Gene expression data is often represented
# using a heatmap
heatmap(data_gene)
```

Solution vi

Final remarks

- · Clustering is often seen as exploratory.
 - · We don't have a clear hypothesis.
- We can measure performance by comparing clusters.
 - Maximize within-cluster similarity, minimize between-cluster similarity.
 - E.g. Silhouette score, variance reduction.
- Other clustering methods can find non-spherical clusters.
 - · E.g. DBSCAN, spectral clustering.
- Clustering is often used in conjunction with dimension reduction.
 - Project data into lower dimensional space.
 - · Cluster the data.
- · This is especially useful for visualization.