$\frac{20}{21}$

 $\frac{45}{46}$

Synthesizing Safe Smart Contracts using Session Types

ANONYMOUS AUTHOR(S)

Abstract

CCS Concepts: •Software and its engineering \rightarrow General programming languages; •Social and professional topics \rightarrow History of programming languages;

Additional Key Words and Phrases: keyword1, keyword2, keyword3

ACM Reference format:

Anonymous Author(s). 2017. Synthesizing Safe Smart Contracts using Session Types. *PACM Progr. Lang.* 1, 1, Article 1 (January 2017), 3 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

E: Append-only list R_i : A Queue for actor i

$$\langle cmd \rangle$$
 ::= publish $\langle V \rangle$
| yield; take $\langle T \rangle$
| if * then $\langle cmdList \rangle$ else $\langle cmdList \rangle$
| while * do $\langle cmdList \rangle$

$$\frac{-}{(E,(i,L,M)::R,\Sigma,\mathsf{take}\; \mathsf{L}.P) \leadsto (E,R,\Sigma,P)} TAKE \quad \frac{\Sigma \vdash \upsilon \leadsto x}{(E,R,\Sigma,\mathsf{publish}\; \mathsf{v}.P) \leadsto (x::E,R,\Sigma,P)} PUB$$

$$\frac{L' \neq L}{(E, (i, L', M) :: R, \Sigma, \text{take L}.P)} DROP \qquad \frac{(E, R, \Sigma, \text{take L}.P)}{(E, R, \Sigma, \text{take L}.P)} YI$$

$$\langle cmd \rangle$$
 ::= send $\langle V \rangle$: $\langle T \rangle$
| read latest $\langle T \rangle$
| deq $\langle T \rangle$
| if * then $\langle cmdList \rangle$ else $\langle cmdList \rangle$
| while * do $\langle cmdList \rangle$

$$\frac{\forall M', (L, M') \notin E'}{(E'.(L, M).E, R_i, \Phi, \text{read latest L}.P) \leadsto (E, R_i, \Phi, P)} RL \qquad \frac{\Sigma \vdash \upsilon \leadsto x}{(E, R_i, \Phi, \text{send v: L}.P) \leadsto (E, (i, L, x) :: R_i, \Phi, P)} SEND(E'.(L, M).E, R_i, \Phi, \text{read latest L}.P) \leadsto (E, R_i, \Phi, P)$$

$$\frac{}{((T,M)::E,R_i,\Phi,\deg T.P)\rightsquigarrow (E,R_i,\Phi,P)}DEQ \quad \frac{}{-}YIELD$$

A note.

2017. 2475-1421/2017/1-ART1 \$15.00 DOI: 10.1145/nnnnnnnnnnnnnn

1:2 Anon.

1 NOTATIONS

We write _ to denote an immaterial value, which is implicitly existentially quantified, and \bot to denote the undefined value. We denote the *size* (number of elements) of a set A by |A|. We write $f:A\to B$ and $f:A\to B$ to denote a *total*, respectively, *partial*, function from A to B. We denote the *domain of definition* and *range* of a function $f:A\to B$ by $\mathrm{dom}(f)$ and $\mathrm{range}(f)$, respectively, i.e., $\mathrm{dom}(f)=\{a\in A\mid f(a)\ne\bot\}$ and $\mathrm{range}(f)=\{b\in B\mid \exists a.\ f(a)=b\}$. We write $f:A\to_{fin}B$ to denote that f has a finite domain. We denote the set of natural numbers (including zero) by $\mathbb N$. We write $\{m..n\}$, for some $m,n\in\mathbb N$, to denote the set of integers $\{i\in\mathbb N\mid m\le i\land i\le n\}$. A *sequence* $\pi=a_1,\ldots,a_n$ over a set A is a function $\pi:\{1..n\}\to A$, from $\{1..n\}$, for some $n\in\mathbb N$, to A. We denote the *length* of π by $|\pi|=|\operatorname{dom}(\pi)|$, and its *i*th element, for $i\in\{1..|\pi|\}$, by $\pi(i)$. We denote the *empty sequence* by ϵ , and the concatenation of sequences π_1 and π_2 by $\pi_1\cdot\pi_2$. We denote the set of sequences over a set A by \overline{A} .

REFERENCES