Skaitinis apibrėžtinio integralo apskaičiavimas. Niutono ir Koteso formulės

http://oras.if.ktu.lt/moduliai/T170B115/Skaitiniai inzinerijos metodai su MATLAB (KP RG RB)2009

F11.pdf

http://oras.if.ktu.lt/moduliai/T170B115 /Skaitiniai inzinerijos metodai(RB) 2006

I.3.pdf

Apibrėžtinis integralas. *Apibrėžimas* ir geometrinė prasmė

Duotos funkcijos f(x) apibrėžtinis integralas intervale [a,b] – tai suminė reikšmė su ženklu imamo ploto, kurį apriboja funkcijos kreivė, Ox ašis ir vertikalios atkarpos, išvestos taškuose x=a ir x=b nuo Ox ašies iki funkcijos kreivės

Tai neformalus apibrėžimas, paremtas geometrine interpretacija

Apibrėžiant matematiškai, funkcijos f(x) apibrėžtinis integralas intervale [a,b] yra "apatinės" ir "viršutinės" integralinių sumų riba:

Integralas apibrėžtas *Rymano (Rieman) prasme,* kai abiejų sumų ribos sutampa

- Nagrinėsime tik Rymano prasme apibrėžtus integralus;
- Apsiribosime situacijomis, kai funkcijos reikšmės yra aprėžtos visame jos apibrėžimo intervale, o integralo reikšmės kaip figūros ploto interpretacija yra akivaizdi ir vienareikšmė;
- Siekiama, kad skaitiškai apskaičiuota integralo reikšmė būtų kiek galima artimesnė tiksliai jo reikšmei;
- Realiuose uždaviniuose tikslios reikšmės apskaičiuoti dažniausiai negalime. Ar metodas pakankamai tikslus, nustatome:
- -teoriškai analizuodami jo savybes;
- -spręsdami pavydžius, kurių tikslūs sprendiniai žinomi

Apibrėžtinio integralo skaitinis apskaičiavimas

 Apibrėžtinis integralas skaitiškai apskaičiuojamas, pakeičiant jį baigtinio funkcijos reikšmių skaičiaus su svoriniais koeficientais suma:

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} w_{i} f(x_{i}), \quad a \leq x_{i} \leq b$$

Bendruoju atveju, taškai gali būti išdėstyti netolygiai

a=x₀

 $X_i X_{i+1}$

Niutono ir Koteso formulės. *Hemingo išvedimo būdas*

•Intervale taikomas interpoliavimas vienanariais, parinkus tolygiai išdėstytus interpoliavimo mazgus žingsniu ∆x=(b-a)/(n-1):

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} w_{i} f(x_{i}), \ a \le x_{i} \le b$$

Pareikalaujame, kad formulė tiksliai integruotų daugianarius nuo 0 iki (n-1) eilės imtinai:

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{cases} \int_a^b 1 dx \\ \int_a^b x dx \\ \vdots \\ \vdots \\ \int_b^b x^{n-1} dx \end{cases} = \begin{bmatrix} b-a \\ \frac{1}{2}(b^2 - a^2) \\ \vdots \\ \frac{1}{n}(b^n - a^n) \end{bmatrix}$$

$$[G]\{w\} = \{m\}$$

$$x_{1} = a \qquad x_{2} = x_{1} + \Delta x \qquad \cdots \qquad x_{n} = x_{1} + (n-1)\Delta x = b$$

$$[\mathbf{G}]\{\mathbf{w}\} = \{\mathbf{m}\}$$

Koeficientų išraiškas apskaičiuojame iš lygčių sistemos. Tokiu būdu galime aprašyti bet kokios eilės skaitinio intergralo apskaičiavimo formulę (schemą)

Niutono ir Koteso formulės koeficientų apskaičiavimas panaudojant Lagranžo daugianarius

•Intervale taikomas interpoliavimas daugianariais (pvz. Lagranžo), parinkus tolygiai išdėstytus interpoliavimo mazgus žingsniu ∆x=(b-a)/(n-1):

Niutono-Koteso formulės koeficientai

$$\int_{a}^{a+(n-1)\Delta x} f(x)dx = \int_{a}^{a+(n-1)\Delta x} \left(\sum_{i=1}^{n} L_{i}(x)f(x_{i})\right) dx = \sum_{i=1}^{n} \left(\int_{a}^{a+(n-1)\Delta x} L_{i}(x)dx\right) f(x_{i}) = \sum_{i=1}^{n} w_{i}f(x_{i}),$$

$$a \le x_{i} \le a + (n-1)\Delta x$$

•Skaitinio integravimo formulės koeficientai gali būti apskaičiuoti, taikant simbolinio integravimo veiksmus :

- •Didinant interpoliavimo mazgų skaičių, gaunami aukštos eilės Lagranžo daugianariai. Jie labai banguoti, todėl didinant taškų skaičių integravimo tikslumas nedidėja;
- •Patogiau skaidyti intervalą [a,b] dalimis ir taikyti interpoliavimą daugianariu kiekvienoje dalyje, esant nedideliam mazgų skaičiui

Niutono ir Koteso formulės. *Tiesinis interpoliavimas* Lagranžo daugianariais kiekviename intervale

Trapecijų formulė:

$$\Delta x = x_{i+1} - x_i , i = \overline{1, n}$$

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{2} \Big(f(x_0) + 2f(x_1) + 2f(x_2) \dots + 2f(x_{n-1}) + f(x_n) \Big),$$

Niutono ir Koteso formulės. *Interpoliavimas antrosios* eilės Lagranžo daugianariais intervalų porose

Intervalų poros, kuriose funkcija interpoliuojama 2-os eilės daugianariu (parabole)

$$a=x_0 \quad x_i \qquad b=x_{2n}$$

$$\int_0^b f(x)dx = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + f(x_2) + f(x_2) + 4f(x_3) + f(x_4) + \dots + f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)),$$

Simpsono formulė:

$$\Delta x = x_{i+1} - x_i , i = \overline{1, n}$$

Intervalų skaičius n-1 turi būti lyginis

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{3} \Big(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 2f(x_{2n-2}) + 4f(x_{2n-1}) + f(x_{2n}) \Big),$$

Niutono ir Koteso formulės. *Interpoliavimas trečios* eilės Lagranžo daugianariais intervalų triadose:

Intervalų skaičius n-1 turi būti dalus iš 3

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{8} \left(3f(x_0) + 9f(x_1) + 9f(x_2) + 6f(x_3) + 9f(x_4) + \dots + 6f(x_{n-3}) + 9f(x_{n-2}) + 9f(x_{n-1}) + 3f(x_n) \right),$$

Niutono ir Koteso formulės. *Aukštesnių eilių interpoliavimas Lagranžo daugianariais:*

```
N=2:

[ 1/2, 1/2]*Δx

N=3:

[ 1/3, 4/3, 1/3] *Δx

N=4:

[ 3/8, 9/8, 9/8, 3/8] *Δx

N=5:

[ 14/45, 64/45, 8/15, 64/45, 14/45] *Δx
```

N=6:

[95/288, 125/96, 125/144, 125/144, 125/96, 95/288] *∆x

N=7:

[41/140, 54/35, 27/140, 68/35, 27/140, 54/35, 41/140] * Δx

N=8:

 $[5257/17280, 25039/17280, 343/640, 20923/17280, 20923/17280, 343/640, 25039/17280, 5257/17280] *\Delta x$

N=9:

 $[\ 3956/14175,\ 23552/14175,\ -3712/14175,\ 41984/14175,\ -3632/2835,\ 41984/14175,\ -3712/14175,\ 23552/14175,\ 3956/14175]\ *\Delta x$

Niutono ir Koteso formulių tikslumo eilė

- Formulės, kuri tiksliai apskaičiuoja k laipsnio daugianario integralą, tikslumo eilė yra k;
- Formulės sudarytos taip, kad n taškų panaudojanti formulės tikslumo eilė yra bent jau n-1;
- Iš principo, kai kurių formulių tikslumo eilė gali būti ir aukštesnė. <u>Patikrinkime</u>.

Ši sistemos dalis tikrai tenkinama

- •Kiek papildomų lygčių tenkinama, galime patikrinti kiekvienos konkrečios formulės atveju;
- •Jeigu tenkinama kuri nors iš šių lygčių, tai reiškia, kad formulė tiksliai integruoja tokį kintamojo laipsnį

Trapecijų formulės tikslumo eilės patikrinimas

- •Tenkinamos 2 lygtys (t.y. kiek buvo numatyta apskaičiuojant koeficientus)
- Trapecijų formulės tikslumo eilė yra 1

Simpsono formulės tikslumo eilės patikrinimas

- •Tenkinamos 4 lygtys (t.y. viena daugiau, nei buvo numatyta apskaičiuojant koeficientus)
- Simpsono formulės tikslumo eilė yra 3
- •Būtų galima pademonstruoti, kad visų Niutono ir Koteso formulių, panaudojančių *nelyginį taškų skaičių*, tikslumo eilė yra *lygi taškų skaičiui*;
- •visų Niutono ir Koteso formulių, panaudojančių *lyginį taškų skaičių*, tikslumo eilė yra *vienetu mažesnė už taškų skaičių*;

- Dažniausiai naudojama tiesinė arba antros eilės Lagranžo interpoliacija (t.y. trapecijų ir Simpsono formulės) dėl dviejų priežasčių:
- -tokios formulės paprastesnės;
- -aukštesnės eilės formulės įgalina padidinti tikslumą tik nežymiai, be to, ne visuomet;
- -kai intervalai tarp interpoliavimo mazgų vienodi, tikslumą galima pagerinti, panaudojant *Ričardsono ekstrapoliacijos formulę ir Rombergo metodą*

Niutono ir Koteso metodu apskaičiuotų integralo reikšmių tikslumo pagerinimas, panaudojant *Ričardsono ekstrapoliacijos forumulę*

Tarkime, kad tam tikru metodu galime apskaičiuoti integralo reikšmę su paklaida, proporcinga dizkretizavimo žingsnio ilgiui (t.y. formulė yra nulinės tikslumo eilės):

$$I_{0}(h) = I + c_{1}h + c_{2}h^{2} + \cdots,$$

$$I_{0}(h/2) = I + c_{1}h/2 + c_{2}h^{2}/4 + \cdots,$$

$$I_{1} = 2I_{0}(h/2) - I_{0}(h) = I - \frac{c_{2}}{2}h^{2} + \cdots,$$

Taip apskaičiuotos reikšmės paklaida yra proporcinga diskretizavimo žingsnio ilgio kvadratui. Tai reiškia, gavome aukštesnės tikslumo eilės reikšmę, panaudodami dvi reikšmes, apskaičiuotas pagal žemesnės tikslumo eilės formulę.

Jeigu reikšmę galime apskaičiuoti pagal pirmos tikslumo eilės formulę:

$$I_{1}(h) = I + c_{2}h^{2} + c_{3}h^{3} + \cdots,$$

$$I_{1}(h/2) = I + c_{2}h^{2}/4 + c_{3}h^{3}/8 + \cdots,$$

$$I_{2} = \left(4I_{1}(h/2) - I_{1}(h)\right)/3 = I - \frac{c_{3}}{6}h^{3} + \cdots,$$

$$\uparrow$$

Taip apskaičiuotos reikšmės paklaida yra proporcinga diskretizavimo žingsnio ilgio kubui. Tai reiškia, gavome aukštesnės tikslumo eilės reikšmę, panaudodami dvi reikšmes, apskaičiuotas pagal žemesnės tikslumo eilės formulę.

Pavyzdys. Trapecijų metodas yra 1 tikslumo eilės (t.y. jo paklaida proporcinga žingsnio kvadratui);

Apskaičiavę trapecijų metodu integralo reikšmes, esant tam tikram ir du kartus mažesniam žingsniui, pagal Ričardsono formulę gausime aukštesnės tikslumo eilės reikšmę

Pavyzdys. Simpsono metodas yra *3 tikslumo eilės* (t.y. jo paklaida proporcinga žingsnio ketvirtajam laipsniui);

Apskaičiavę Simpsono metodu integralo reikšmes, esant tam tikram ir du kartus mažesniam žingsniui, pagal Ričardsono formulę gausime aukštesnės tikslumo eilės reikšmę:

-0.2

0.2

Pavyzdys. Trapecijų metodas yra *1 tikslumo eilės* (t.y. jo paklaida proporcinga žingsnio kvadratui);

Apskaičiavę trapecijų metodu integralo reikšmes, esant tam tikram ir du kartus mažesniam žingsniui, pagal Ričardsono formulę gausime aukštesnės tikslumo eilės reikšmę

Pavyzdys. Simpsono metodas yra *3 tikslumo eilės* (t.y. jo paklaida proporcinga žingsnio ketvirtajam laipsniui);

Apskaičiavę Simpsono metodu integralo reikšmes, esant tam tikram ir du kartus mažesniam žingsniui, pagal Ričardsono formulę gausime aukštesnės tikslumo eilės reikšmę:

Ekstrapoliuotos reikšmės tikslumas pagerėjo.

Niutono ir Koteso metodu apskaičiuotų integralo reikšmių tikslumo pagerinimas, panaudojant

Rombergo metodą

Trapecijų metodas + Rombergo metodas:

$$\frac{\left(4I_1(h/2)-I_1(h)\right)}{3}$$

$$I_2(h) \underbrace{(8I_2(h/2)-I_2(h))}_{7}$$

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

 $J_2(h/4)$

$$(16I_2(h/2) - I_2(h))$$

Simpsono metodas + Rombergo metodas:

$$\frac{\left(16I_2(h/2)-I_2(h)\right)}{\left(16I_2(h/2)-I_2(h)\right)}$$

$$I_3(h) \underbrace{(32I_2(h/2)-I_2(h))}_{31}$$

$I_5(h)$

 $I_4(h)$

$$(64I_2(h/2)-I_2(h))$$

 $I_3(h/4)$

f=sin(2*x)+sqrt(abs(x))+0.5;

$$f(x) = \sin(2x) + \sqrt{|x|} + 0.5$$

