Variant calling Detecting variants in NGS data

The Genome Analysis ToolKit (GATK)

University of Cambridge

Cambridge, UK 4th March 2014

Marta Bleda Latorre

mbleda@cipf.es

PhD Student at the Computational Genomics Institute Centro de Investigación Príncipe Felipe (CIPF) Valencia, Spain

The pipeline

Genomic variation

Terminology

- Variant: sequence data difference that exists between individuals in a population
- Mutation: molecular event that created a variant
- Allele: alternative state of a sequence variant
- Genotype: allelic state in a specific individual
 - AA homozygous or AT heterozygous at specific base
- Polymorphism: sequence variation that is common within a population
 - "SNP on chromosome 16 associated with obesity"

Types of Genome Sequence Variants

1. Single Nucleotide Variants (SNVs)

Single base changes, e.g., $A \rightarrow T$.

2. Insertions-Deletions (Indels)

Consisting of one or a few bases, e.g., +ATGA, ΔT .

3. Structural Variants (SVs)

Everything else: large deletions, insertions, duplications, inversions, translocations, mobile element insertions, horizontal gene transfer

Objective

- Some variation observed in BAM files is caused by mapping and sequencing artifacts
- Separate true variation from machine artifacts
- Balance between:
 - **Sensitivity:** minimize false negatives (i.e.: failing to identify real variants)
 - **Specificity:** minimize false positives (i.e.: failing to reject artifacts)

Processing pipeline

1. Mark duplicates

Duplicates shouldn't be counted as additional evidence

2. Local realignment around INDELS

Reads mapping on the edges of INDELS often get mapped with mismatching bases introducing false positives

3. Base quality score recalibration (BQSR)

Calling algorithms rely on the base quality score

Quality scores provided by sequencing machines are generally inaccurate and biased

4. Variant calling

Discover variants and their genotypes

- All NGS sequencing platforms are NOT single molecule sequencing → the same DNA molecule can be sequenced several times
- PCR → duplicate DNA fragments in the final library
- If there is a base variation it will have high depth support
- Can result in false variant calls

Tools

- Samtools: samtools rmdup or samtools rmdupse
- Picard/GATK: MarkDuplicates

The reason why duplicates are bad

× = sequencing error propagated in duplicates

... and thus be more likely to make the right call

Duplicate identification

Duplicates have the same starting position and the same CIGAR string

Duplicated induce biased SNP calls

But it is not perfect...

- Does not account for sequencing errors
- Does not account for natural duplicates
- Does not account for duplicate reads with different mapping locations

2. Local realignment around INDELS

- Alignment algorithms tend to produce some artifacts
- Reads near INDELS are mapped with mismatches
- Realignment can identify the most consistent placement for these reads
 - 1. Identify problematic regions
 - 2. Determine the optimal consensus sequence
- Minimizes mismatches with the reference sequence
- Refines location of INDELS

DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011 May;43(5):491-8. PMID: 21478889

2. Local realignment around INDELS

- Alignment algorithms tend to produce some artifacts
- Reads near INDELS are mapped with mismatches
- Realignment can identify the most consistent placement for these reads
 - 1. Identify problematic regions
 - 2. Determine the optimal consensus sequence
- Minimizes mismatches with the reference sequence
- Refines location of INDFLS

DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011 May;43(5):491-8. PMID: 21478889

3. Base quality score recalibration

- Calling algorithms rely heavily on the quality scores assigned to the individual base calls in each sequence read
- Unfortunately, the scores produced by the machines are subject to various sources of systematic error, leading to over- or under-estimated base quality scores in the data

How?

- 1. Analyse covariation among several features of a base:
 - Reported quality score
 - Position within the read
 - Preceding and current nucleotide
- 2. Use a set of **known variants** (i.e.: dbSNP) to model error properties of real polymorphism and determine the **probability that novel sites are real**
- 3. Adjust the quality scores of all reads in a BAM file
- Requires a reference genome and a catalog of known variable sites.

3. Base quality score recalibration

Phred Quality score:

$$Q_{\text{Phred}} = -10 \log_{10} P(\text{error}).$$

A score of 20 corresponds to 1% error rate in base calling

4. Variant calling

Variant discovery process

Steps

- 1. Variant calling: Identify the positions that differ from the reference
- 2. Genotype calling: calculate the genotypes for each sample at these sites

Initial approach

Independent base assumption

Counting the number of times each allele is observed

Evolved approach

Bayesian inference → Compute genotype likelihood

Advantages:

Provide statistical measure of uncertainty

Lead to higher accuracy of genotype calling

4. Variant calling Two different methods

UnifiedGenotyper

Call **SNPs and indels separately** by considering each variant locus independently

Accepts any ploidy

Pooled calling

High sample numbers

HaplotypeCaller

Call SNPs, indels, and some SVs simultaneously by performing a local de-novo assembly

More accurate, especially for indels

Will eventually replace UG

Somatic calling

Detenting somatic SNVs in cancer

Challenges:

- Somatic variants occur at low frequency in genome
- Most tumors are impure and heterogeneous

VCF file format

- Specification defined by the 1000 genomes (current version **4.2**): http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
- Commonly compressed and indexed with bgzip/tabix
- Single-sample or multi-sample VCF

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seg/references/1000GenomesPilot-NCBI36.fasta
\#"contiq=ID=20, length=62435964, assembly=B36, md5=f126cdf8a6e0c7f379d618ff66beb2da, species=\#Homo sapiens\#, taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50.Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS
                         REF
                                ALT
                                        QUAL FILTER INFO
                                                                                       FORMAT
                                                                                                   NA00001
                                                                                                                   NA00002
                                                                                                                                  NA00003
20
       14370
              rs6054257 G
                                                                                       GT:GO:DP:HO 0 0 0:48:1:51,51 1 0:48:8:51,51 1/1:43:5:...
                                Α
                                        29 PASS
                                                   NS=3;DP=14;AF=0.5;DB;H2
                                                    NS=3;DP=11;AF=0.017
                                                                                       GT:GO:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                                                                                                                  0/0:41:3
20
      17330
                                        3
                                             q10
                                G,T
20
      1110696 rs6040355 A
                                        67
                                                                                                                                  2/2:35:4
                                             PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GO:DP:HO 1|2:21:6:23,27 2|1:2:0:18,2
20
      1230237 .
                                             PASS
                                                    NS=3:DP=13:AA=T
                                                                                       GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
                                G,GTCT 50
       1234567 microsat1 GTC
                                             PASS
                                                   NS=3;DP=9;AA=G
                                                                                       GT:GO:DP
                                                                                                    0/1:35:4
                                                                                                                   0/2:17:2
                                                                                                                                  1/1:40:3
```

VCF file format

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=mvImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
\# contiq=ID=20, length=62435964, assembly=B36, M5=f126cdfBa660c7F379d6Ba660c3Ba660c3Ba660c3Ba660c3Ba660c3Ba660c3Ba660c3Ba660c3Ba660c3Ba660c3Ba660c4Ba660c4Ba660c5Ba660c5Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba660c7Ba6600c7Ba6600c7Ba6600c7Ba6600000000000000000000000000
##phasing=partial
##INFO=<ID=NS.Number=1.Type=Integer.Description="Number of Samples With Data">
##INFO=<ID=DP.Number=1.Type=Integer.Description="Total Depth">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50.Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HO.Number=2.Type=Integer.Description="Haplotype Quality">
#CHROM POS
                               ID
                                                                   ALT
                                                                                    QUAL FILTER INFO
                                                                                                                                                                                      FORMAT
                                                                                                                                                                                                               NA00001
                                                                                                                                                                                                                                                                               NA00003
                                                    REF
                                                                                                                                                                                                                                               NA00002
               14370
                              rs6054257 G
20
                                                                   Α
                                                                                    29
                                                                                              PASS
                                                                                                             NS=3;DP=14;AF=0.5;DB;H2
                                                                                                                                                                                      GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20
              17330
                                                                   Α
                                                                                    3
                                                                                              a10
                                                                                                             NS=3:DP=11:AF=0.017
                                                                                                                                                                                      GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                                                                                                                                                                                                                                                               0/0:41:3
20
              1110696 rs6040355 A
                                                                   G.T
                                                                                    67
                                                                                              PASS
                                                                                                          NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
                                                                                                                                                                                                                                                                               2/2:35:4
20
              1230237 .
                                                                                    47
                                                                                              PASS
                                                                                                             NS=3:DP=13:AA=T
                                                                                                                                                                                      GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
               1234567 microsat1 GTC
                                                                   G.GTCT 50
                                                                                              PASS
                                                                                                             NS=3;DP=9;AA=G
                                                                                                                                                                                      GT:GO:DP
                                                                                                                                                                                                               0/1:35:4
                                                                                                                                                                                                                                               0/2:17:2
                                                                                                                                                                                                                                                                               1/1:40:3
```

- CHROM: chromosome
- POS: position
- ID: identifier
- REF: reference base(s)
- ALT: non-reference allele(s)

- QUAL: quality score of the calls (phed scale)
- FILTER: "PASS" or a filtering tag
- INFO: additional information
- FORMAT: describes the information given by sample

INFO column

INFO column: semicolon-separated fields. **<key>=<data>[,data]** Some reserved (but optional) keys:

- AA ancestral allele
- AC allele count in genotypes, for each ALT allele, in the same order as listed
- AF allele frequency
- CIGAR cigar string describing how to align an alternate allele to the reference allele
- DB dbSNP membership
- MQ RMS mapping quality, e.g. MQ=52
- MQ0 Number of MAPQ == 0 reads covering this record
- NS Number of samples with data
- SB strand bias at this position
- SOMATIC indicates that the record is a somatic mutation, for cancer genomics
- VALIDATED validated by follow-up experiment

Software

Software	Available from	Calling method	Prerequisites	Comments	Refs
SOAP2	http://soap.genomics.org. cn/index.html	Single-sample	High-quality variant database (for example, dbSNP)	Package for NGS data analysis, which includes a single individual genotype caller (SOAPsnp)	15
realSFS	http://128.32.118.212/ thorfinn/realSFS/	Single-sample	Aligned reads	Software for SNP and genotype calling using single individuals and allele frequencies. Site frequency spectrum (SFS) estimation	-
Samtools	http://samtools. sourceforge.net/	Multi-sample	Aligned reads	Package for manipulation of NGS alignments, which includes a computation of genotype likelihoods (samtools) and SNP and genotype calling (bcftools)	53
GATK	http://www. broadinstitute.org/gsa/ wiki/index.php/The_ Genome_Analysis_Toolkit	Multi-sample	Aligned reads	Package for aligned NGS data analysis, which includes a SNP and genotype caller (Unifed Genotyper), SNP filtering (Variant Filtration) and SNP quality recalibration (Variant Recalibrator)	32,33
Beagle	http://faculty.washington. edu/browning/beagle/ beagle.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation, phasing and association that includes a mode for genotype calling	42
IMPUTE2	http://mathgen.stats. ox.ac.uk/impute/ impute_v2.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation and phasing, including a mode for genotype calling. Requires fine-scale linkage map	44
QCall	ftp://ftp.sanger.ac.uk/pub/ rd/QCALL	Multi-sample LD	'Feasible' genealogies at a dense set of loci, genotype likelihoods	Software for SNP and genotype calling, including a method for generating candidate SNPs without LD information (NLDA) and a method for incorporating LD information (LDA). The 'feasible' genealogies can be generated using Margarita (http://www.sanger.ac.uk/resources/software/margarita)	54
MaCH	http://genome.sph.umich. edu/wiki/Thunder	Multi-sample LD	Genotype likelihoods	Software for SNP and genotype calling, including a method (GPT_Freq) for generating candidate SNPs without LD information and a method (thunder_glf_freq) for incorporating LD information	-

A more complete list is available from http://seqanswers.com/wiki/Software/list, LD, linkage disequilibrium; NGS, next-generation sequencing.

GATK (Genome Analysis ToolKit)

http://www.broadinstitute.org/gatk/

- Probabilistic method: Bayesian estimation of the most likely genotype
- Calculates many parameters for each position of the genome.
- SNP and INDEL calling
- Used in many NGS projects, including the 1000 Genomes Project, The Cancer Genome Atlas, etc.
- Base quality recalibration
- INDEL realignment
- Uses standard input and output files
- Multi-sample calling

GATK prerequisites

- Requires Java (http://www.oracle.com/technetwork/java/javase/downloads/index.html)
 - Check your java version

```
java -version
```

GATK \geq 2.6 \rightarrow Requires Java version 1.7

- **Picard**
 - Website: http://picard.sourceforge.net/
 - Go to Download page and select Download picard-tools-1,108,zip (47,0 MB)
 - Testina:

```
java -jar AddOrReplaceReadGroups.jar -h
```

Usage

```
java -jar <ToolName> [options]
```

General Information

Download Page

Getting help

Picard SourceForge Project Page

SAMTools Home Page

SAM Format Specification

SAMTools mailing Lists

SVN Browse

Explain SAM Flags

Description of output of

metrics programs

GATK installation

GATK 2.8 download

http://www.broadinstitute.org/gatk/

- We need to register before download
- Go to Downloads and click

- Accept the license agreement
- Extract the file in the applications folder

You must be logged into the forums to proceed

You do not seem to be logged into the forums

Register

Login Here »

Check if GATK is working

Show GATK help

java -jar GenomeAnalysisTK.jar(-h

Usage

java –jar GenomeAnalysisTK.jar -T <ToolName> [arguments]

MuTect installation

MuTect download

http://www.broadinstitute.org/cancer/cga/mutect

- Click Log-in and go to the Create new account tab
- Fill the form
- Go to *How do I get mutect* and accept the license agreement
- Download the latest version

```
muTect-1.1.4-bin.zip
```

Extract the file in the applications folder

Check if MuTect is working

```
java -jar muTect-1.1.4.jar -h
```

Usage

java -jar muTect-1.1.4.jar --analysis_type MuTect [arguments]

