

간편식 생산성 향상을 위한 데이터 분석

A1 김도현, 문정인, 박원영, 양가은, 유창선, 홍윤아

목차

Overview

0	フ	어	本	개
				< 11

1 추진배경

2 현상 및 개선기회

3 분석계획

5 개선안 및 적용방안

6 에피소드

7 Learned Lessons

8 Attachments

1. 추진배경

현재 시장은 업계 호황 및 시장경쟁 심화 중 매출 하락상황 경영환경 회복하여 매출액 향상

2. 현상 및 개선기회

불량 저감

불량 빈발 품목 발생

- Vital Few(불량발생 핵심근본원인) 도출
- Vital Few에 대한 최적조건 설정
- 최적조건 표준화 및 공정관리

현재 불량률: 7.2%

목표

- 24년 상반기: 4%
- 24년 하반기: 2%

대량 수주 대응

소스류 품목 추가생산으로 공정 효율 감소

- 불량 조치시간 감소 필요
- 고수요 품목 판별
- 수주량 예측 및 생산 계획 반영

현재 불량 조치 시간: 85.4분

목표

- 24년 상반기: 45분
- 24년 하반기: 35분

출하준수율 증대

최근 제품 생산기한 미준수건 급증

- 최근 제품 생산기한 미준수건 급증
- 미출고 제품 현황 및 납기지연 원인 파악
- 수주 조건별 출하준수 예측 필요

현재 제품 출하율 : 95.5%

목표

- 24년 상반기: 97%
- 24년 하반기: 98%

3. 분석계획 : 분석 목적 및 방법

목적	분석방법	주요 내용	담당자
	확률밀도함수 그래프, 히스토그램	불량발생 여부를 기준으로 공정조건별 분포 시각화	유창선, 홍윤아
	파레토차트	전체 불량 발생에 영향을 많이 끼치는 품목 확인	박원영
[불량] 공정 최적조건 도출 및	카이제곱 검정	생산라인별 품목별 불량발생여부 차이 확인	홍윤아
표준화	로지스틱 회귀, XGBoost, LightGBM	SMOTE 기법을 활용한 공정조건별 불량발생 예측 모델 구축	문정인, 박원영
	Boxplot, 관리도법	품목별 공정 최적조건에 대한 관리도법 및 Boxplot을 이용한 관리방안 도출	유창선, 홍윤아
확률밀도함수 그래프, 히스토그램, Boxplot		수주량 TOP3 품목 생산라인, 작업장별 불량유형과 불량 조치시간 확인 연도별, 불량유형별 불량조치시간 분포 시각화	문정인, 박원영, 유창선, 홍윤아
[수주량] 공장 가동효율성 향상	파레토차트	연도별 수주량 높은 품목 확인	양가은, 박원영
	시계열 분석(ARIMA, Prophet)	수주량 TOP3 품목별 분기별 수주량 예측	김도현, 양가은
	바그래프, 히스토그램	납기일수별, 연도, 월별 출하완료여부 빈도 확인	김도현, 양가은
[출하] 출하준수율 향상	로지스틱 회귀, XGBoost, LightGBM, RF	출하 미준수 TOP3 품목별 출하여부 예측 모델 구축	김도현, 양가은
	파레토차트, 바그래프, 히스토그램	불량조치시간이 오래 걸리는 품목의 불량 유형과 빈도 확인	김도현, 양가은

3. 분석계획 : 제조 Process & Data 구조

제조 Process

Data 구조

수주량 대응

4. 분석결과 : 수주량 대응

전체 수주량의 80% 이상이 소스, 샐러드, 밥에 해당

품목	SARIMA	Prophet
소스	189,237	171,281
샐러드	16,299	15,066
밥	50,685	49,963

품목별 수주 예측

제품품목별, 시기별 예측 시스템을 구축 생산계획에 반영하여 수주변동에 대한 유연성 확보

불량 저감

4. 분석결과 : 불량 현황 및 원인 파악

검정을 통한 품목별 핵심원인인자 Vital Few 도출: 실링압력, 쿠킹스팀압력, 생산라인, 작업장

4. 분석결과 : Vital Few 및 최적 조건 도출

품목	최적조건및 검정	실링압력 kgf/c㎡	쿠킹스팀압력 kgf/c㎡	생산라인	작업장
밥류	최적조건	208 ~213	24.5 ~ 25.9	D	W005
υπ	p-value	0.000	0.000	0.000	0.000
소스류	최적조건	208 ~ 213	24.2 ~ 25.8	٩	-
	p-value	0.000	0.000	0.000	0.000
마요	최적조건	208 ~ 213	24.5 ~ 25.8	D	2 5 0
네즈류	p-value	0.000	0.000	0.000	0.000

최적조건 도출 -> 최적 조건에 벗어난 공정이 센서로 감지되면 실시간 대응

밥류

- 실링압력 최적 범위: 208 ~213 (kgf/c㎡)
- 쿠킹스팀압력 최적 범위: 24.5 ~ 25.9 (kgf/c㎡)
- 작업장 W007로 분배생산 필요
- 생산라인 P로 분배생산 필요

4. 분석결과 : Vital Few 및 최적 조건 도출

- 밥류
- 실링압력 최적 범위: 208 ~213 (kgf/c㎡)
- 쿠킹스팀압력 최적 범위: 24.5 ~ 25.9 (kgf/c㎡)
- 작업장 W007로 분배생산 필요
- 생산라인 P로 분배생산 필요

품목	최적조건및 검정	실링압력 kgf/c㎡	쿠킹스팀압력 kgf/c㎡	생산라인	작업장
밥류	최적조건	208 ~213	24.5 ~ 25.9	D	W005
υπ	p-value	0.000	0.000	0.000	0.000
소스류	최적조건	208 ~ 213	24.2 ~ 25.8	٠	-
<u> </u>	p-value	0.000	0.000	0.000	0.000
마요	최적조건	208 ~ 213	24.5 ~ 25.8	D	
네즈류	p-value	0.000	0.000	0.000	0.000

최적조건 도출 -> 최적 조건에 벗어난 공정이 센서로 감지되면 실시간 대응

4. 분석결과 : 모델링 및 검정 - 불량

밥	帚	
	المناسب	1

모델명	테스트 정확도	불량 재현도	F1-score
XGBoost	0.99	0.99	0.99
Logitstic	0.81	0.82	0.89
RandomForest	0.99	0.97	0.98
	-11 4 - 71+1-		

모델명	테스트 정확도	불량 재현도	F1-score
XGBoost	0.97	0.98	0.99
Logitstic	0.80	0.79	0.88
RandomForest	0.99	0.97	0.99

모델명	테스트 정확도	불량 재현도	F1-score
XGBoost	0.98	0.99	0.99
Logitstic	0.83	0.84	0.91
RandomForest	0.99	0.99	0.99

출하 준수율 향상

4. 분석결과 : 출하 준수율 향상

4M에 따른 유형별 불량조치 시간 (분)

불량유형에 따른 해결방안

• Method : 소스류에 해당하는 공정라인에 대해 표준화된 공정조건 도출 및 준수

쌈장

기타

• Man : 작업자교육을 통해 공정이해도 및 수행능력 향상

마요네즈 가루 믹스

• Material : 품목별 수요예측 모델을 기반으로 원료 수급 안정화

4. 분석결과 : 모델링 및 검정 - 출하

출하 여부 예측

모델명	테스트 정확도	미출고(1) 재현도	F1-score
XGBoost	0.99	0.70	0.48
Logitstic	0.81	0.91	0.89
RandomForest	0.99	0.54	0.51

모델명	테스트 정확도	미출고(1) 재현도	F1-score
XGBoost	0.90	0.97	0.98
Logitstic	0.80	0.80	0.89
RandomForest	0.99	0.72	0.95

모델명	테스트 정확도	미출고(1) 재현도	F1-score
XGBoost	0.99	0.60	0.58
Logitstic	0.81	0.89	0.89
RandomForest	0.99	0.72	0.59

- 품목별 출하여부 예측 시스템으로 원자재 구매 주기 반영, 작업자의 숙련도별 인력 배치 등
- 생산 및 조달 계획에 주기적으로 반영

개선안 및 적용 방안

5. 개선안 및 적용방안 - 개선안 도출

AS - IS

급증하는 수주대응 필요

납기지연 발생

불량 빈발 품목 공정조건, 불량 빈발 유형 개선 필요

<소스 실링압력 관리도(전)>

수주량 예측

출하 예측 모델

불량 예측 모델

TO - BE

인력, 원자재 효율적 분배로 납기 지연을 방지해 주문 업체와 신뢰 형성 및 수주 대응 체계 확립

원자재 구매 주기 파악, 생산라인별 효율적 인력 배치 생산 및 조달계획에 반영

불량처리시간 감소를 통한 생산속도 증대 품질 개선에 따른 기업 경쟁우위 강화

