AD-A14		DOOCE	DIEDE EL	D MII T	RATORY TARY RO VICKSB 4-9	(III) A	DMY FNO	INFER V	AATEDWA'		12-		
UNCLAS	SIFIED	JUL 8	4 WES/	IP/GL-8	4-9			F,	/G 13/2	NL			
		_· •										ದ್ವಾ	
<u> </u>													
i				,									
					. B)								
				,									
		ł											

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS (MEE 4)

MISCELLANEOUS PAPER GL-84-9

NONDESTRUCTIVE VIBRATORY TESTING AND EVALUATION PROCEDURE FOR MILITARY ROADS AND STREETS

by

David M. Coleman

Geotechnical Laboratory

DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers
PO Box 631
Vicksburg, Mississippi 39180

July 1984 Final Report

Approved For Public Release, Distribution Unlimited

Prepared for ..

Headquarters, US Army Facilities Engineering Support Agency Ft. Belvoir, Virginia 22060

84 08 20 16T

Destroy this report when no longer needed. Do not return lit to the originator.

The findings in this report are not to be construed as an official. Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

1. REPORT NUMBER 2. GOVT ACCESSION NO	READ INSTRUCTIONS BEFORE COMPLETING FORM					
	3. SECIPIENT'S CATALOG NUMBER					
Miscellaneous Paper GL-84-9	D1					
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED					
NONDESTRUCTIVE VIBRATORY TESTING AND EVALUATION	Final report					
PROCEDURE FOR MILITARY ROADS AND STREETS	5. PERFORMING ORG. REPORT NUMBER					
7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(+)					
David M. Coleman						
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Engineer Waterways Experiment Station Geotechnical Laboratory PO Box 631, Vicksburg, Mississippi 39180	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE					
US Army Facilities Engineering Support Agency Ft. Belvoir, Virginia 22060	July 1984					
LE. BELVOIL, VIIGINIA 22000	13. NUMBER OF PAGES					
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)					
	Unclassified					
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE					
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	om Report)					
18. SUPPLEMENTARY NOTES Available from National Technical Information Servi						
18. SUPPLEMENTARY NOTES Available from National Technical Information Servi						
Available from National Technical Information Servi Springfield, Virginia 22161. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number Highway pavements Pavement performa Military facilities Road Rater 2008	ce, 5285 Port Royal Road,					
Available from National Technical Information Servi Springfield, Virginia 22161. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number Highway pavements Military facilities Nondestructive testing Road Rater 2008 Roads and streets	ce, 5285 Port Royal Road,					

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (C	CONTINUED).
-----------------	-------------

-relationships to determine the number of allowable passes the pavement can support, and, if required, the overlay thickness.

This report also describes the testing equipment, testing techniques, data reduction procedures, and computational methodology used in developing the evaluation procedures. Detailed examples are presented in the Appendices to guide the users through the evaluation procedures for both flexible (AC) and rigid (PCC) highway pavements. An operator's guide describing the day-to-day maintenance and operation of the NODET is presented in Appendix C.

PREFACE

The investigation reported herein was sponsored by the U. S. Army Facilities Engineering Support Agency (FESA), Fort Belvoir, Virginia, the U. S. Army Forces Command (FORSCOM), Fort McPherson, Georgia, and the U. S. Army Training and Doctrine Command (TRADOC), Fort Monroe, Virginia.

The study was conducted at the U. S. Army Engineer Waterways Experiment Station (WES) during the period 1 October 1979 to 30 September 1982 by the Pavement Systems Division (PSD) of the Geotechnical Laboratory (GL). Personnel of the PSD involved in this study were Messrs. D. R. Alexander, A. J. Bush III, D. M. Coleman, D. E. Elsea, P. S. McCaffrey, Jr., and T. P. Williams. The work was conducted under the supervision of Mr. R. W. Grau, Chief, Prototype Testing and Evaluation Unit (PT & EU), and Mr. J. W. Hall, Jr., Chief, Engineering Investigations, Testing, and Validation Group (EITVG) of the PSD. The work was under the general direction of Mr. A. H. Joseph, Chief, PSD (Retired); Dr. T. D. White, Chief, PSD; and Dr. W. F. Marcuson III, Chief, GL. This report was prepared by Mr. Coleman.

COL Tilford C. Creel, CE, was Commander and Director of WES during the study and preparation of this report. Mr. F. R. Brown was the Technical Director.

CONTENTS

				Page
PREFACE			•	. 1
	ACTORS, U. S. CUSTOMARY TO METRIC (SI)			. 4
PART I: INT	RODUCTION			. 5
	ound			
Purpos	e			. 5
-	NDESTRUCTIVE TESTING EQUIPMENT			
Modifi	ption			. 8
Accura	cy Test and Calibration	 ٠		. 8
PART III: I	EVELOPMENT OF EVALUATION METHODOLOGY			. 11
Tests	Conducted			11
Determ	ination of Temperature and Seasonal Effects			. 12
	sions and Recommendations from Temperature Study			
Flexib	le Pavement Evaluation Methodology			19
	Pavement Evaluation Methodology			
Compos	ite Pavement Methodology	 •		31
	NDESTRUCTIVE EVALUATION AND OVERLAY DESIGN COCEDURES			34
Dralin	ninary Requirements			34
	Collection			
	deduction			
	tion and Overlay Design Procedures			_
	station of Data			
	CUSSION			59
	tions			59 59
Advant	le Uses			
	Improvements and Modifications			
	NCLUSIONS AND RECOMMENDATIONS			
	sions			
REFERENCES				62
TABLES 1-12				
APPENDIX A:	EXAMPLE EVALUATION AND OVERLAY DESIGN, FLEXIBLE			
TELEMPIA A.	PAVEMENTS			A 1
Danii	ed Information and Test Data			A 2
	tion of Existing Pavement, Section 1			

											Page
Evaluation of Existing Pavement, Section 2B Pavement Overlay Thickness Design, Section 2B											
APPENDIX B: EXAMPLE EVALUATION AND OVERLAY DESIGN, PAVEMENTS											B1
Required Information and Test Data Evaluation of Existing Pavement, Section 2 Pavement Overlay Thickness Design, Section 2		•									B2 B6 B8
APPENDIX C: INSTRUCTION MANUAL FOR THE NODET				. •	•						C1
Background											C2 C2
Purpose and Scope								•		•	C3
Operational Preparation								•	•	•	C8 C10
Velocity Sensor Calibration											C11 C12
Step-By-Step Setup Checklist				•	•	•	•	•	•	•	C12
Measuring Instrument	•				:	•	•		•	•	C13 C17
APPENDIX D: SOIL AND PAVEMENT DATA USED IN DEVELOR EVALUATION METHODOLOGIES	-										D1

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

 ${\tt U.~S.}$ customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	Ву	To Obtain							
degrees Fahrenheit	5/9	Celsius degrees*							
feet	0.3048	metres							
inches	25.4	millimetres							
kips (force) per inch	175.1268	kilonewtons per metre							
kips (mass)	4,448.222	newtons							
miles (U. S. statute)	1.609347	kilometres							
pounds (force)	4.448222	newtons							
pounds (force) per square inch	6,894.757	pascals							
pounds (mass)	0.4535924	kilograms							
pounds (mass) per cubic foot	16.01846	kilograms per cubic metre							
pounds (mass) per cubic inch	27,679.9	kilograms per cubic metre							
square inches	6.4516	square centimetres							

^{*} To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: C = (5/9)(F - 32). To obtain Kelvin (K) readings, use: K = (5/9)(F - 32) + 273.15.

NONDESTRUCTIVE VIBRATORY TESTING AND EVALUATION PROCEDURE FOR MILITARY ROADS AND STREETS

PART I: INTRODUCTION

Background

- 1. Nondestructive pavement testing (NDT) has drawn the attention of pavement researchers and managers in recent years as a useful tool for evaluating the load-carrying capabilities, predicting the rehabilitation requirements, and estimating the remaining life of pavement systems. The maintenance, repair, and rehabilitation of the pavement network (roads, streets, airfields, and parking areas, etc.) at Army installations remains one of the highest expenditures of the Facilities Engineer. Indications are that these expenditures will continue to increase since the majority of the pavement systems at Army installations have exceeded their 10- to 20-year design life. The ability of the Facilities Engineer to predict maintenance, repair, or rehabilitation requirements before the pavements fail is important to the installation operations and will result in improved efficiency through proper allocation of available fundings.
- 2. The U. S. Army Engineer Waterways Experiment Station (WES) was requested by the Facilities Engineering Support Agency (FESA), the U. S. Army Forces Command (FORSCOM), and the U. S. Army Training and Doctrine Command (TRADOC) to develop the test techniques and analytical methodology for non-destructive evaluation and overlay design of Army roads and streets.

Purpose

- 3. This study was conducted to develop the test techniques and analytical methodology required to evaluate the load-carrying capacity of roads and streets and design pavement overlays using the Road Rater 2008, which is referred to as the NODET. Specific objectives were to:
 - a. Evaluate NODET to determine the accuracy of the velocity sensors, the indicated vibrating frequencies, and the load applied to the pavement.
 - b. Develop a field operation manual for the NODET.

- c. Verify the applicability of temperature adjustment factors developed for other testing devices for use with the NODET.
- d. Develop correlations between the NODET load-deflection relations and the allowable load-carrying capacity of the pavement; or between the NODET load-deflection relations and the elastic properties of the pavement.
- e. Develop step-by-step evaluation and overlay design procedures using these correlations for flexible, rigid, and composite pavements.
- \underline{f} . Document the evaluation procedure in an interpretation manual that will guide the user in fully assessing the structural capacity of his pavements and provide the methodology for designing overlays to support the anticipated traffic.
- g. Develop a computer program to provide the user with a fast, accurate method of handling the data, correcting for temperatures, predicting allowable loads, and calculating the required overlays for the pavement system.

Scope

4. This report describes the NODET (commercial name: Road Rater 2008), modifications to the NODET made at WES, as well as the accuracy tests and calibrations performed. The development of the evaluation methodology is also explained. The nondestructive evaluation procedure is described in detail to instruct the user in evaluating highway pavements and designing overlays, where required. Examples of evaluations and overlay designs are given in Appendices A and B. An instruction manual for the NODET is included as Appendix C. Data used in the development of evaluation methodologies is included as Appendix D.

PART II: NONDESTRUCTIVE TESTING EQUIPMENT

Description

- 5. The NDT equipment used in this study was the Road Rater Model 2008. This device was purchased by FORSCOM then transferred to the FESA inventory, and is generally referred to as the NODET.
- 6. The NODET is an electrohydraulic (electronically controlled hydraulic force generator) nondestructive test device that applies a vibratory sinusoidal force to the pavement surface and measures the resulting deflection response. The force is measured with three load cells mounted on an 18-in.-diam* steel plate that contacts the pavement surface. Deflections are monitored with velocity transducers. These velocities are electronically integrated to produce deflections.
- 7. The NODET is housed in a tandem-axle trailer towed by a crew-cab pickup truck (Figure 1). A gasoline engine powers the hydraulic and electrical systems. The force-generating system consists of a 4000-lb reaction mass, three load cells, a hydraulic activator, and air springs for centering the reaction mass to provide for equal load distribution. The deflection

Figure 1. Model 2008 road rater nondestructive pavement test device (NODET)

^{*} A table of factors for converting U. S. customary units of measurement to metric (SI) units is presented on page 4.

measurement system consists of velocity transducers located in the center of the loading plate and at 18, 30, and 48 in. from the center of the plate. These transducers measure the velocity of the pavement surface movement which is then electronically integrated to read deflection in milliinches (mils). Figure 2 shows the loading plate and velocity transducers.

8. The NODET digital instrumentation system console (Figure 3) contains all the instrumentation controls and readouts necessary for operation. It is located in the cab of the tow vehicle in a floor bracket just to the right of the driver. After the initial setup, all equipment operations and data collection can be controlled from this console. The data collected are automatically recorded by the printer located in the lower right corner of the console. These data include: identification number or test location, force, frequency, and the four measured deflections.

Modifications to NODET

9. Several modifications to the NODET were required to improve the accuracy and efficiency of operation. These included designing, constructing, and mounting a mechanism to lower and place the velocity sensors; installing an air compressor to supply air for the air bags; and mounting the control box and cables in the tow vehicle. To accurately determine the locations of the test points a bidirectional distance-measuring meter was installed in the tow vehicle. The instrumentation system console was modified to improve the method of field calibrating the force-generating system. A fan was added to the console to help cool the instrumentation. During accuracy testing of the velocity transducers, the NODET transducers did not perform within the required ranges and new transducers were installed.

Accuracy Test and Calibration

Force calibration

10. The force calibration of the NODET is very important for accurate pavement load and displacement measurements. The NODET was calibrated at WES by using three Baldwin Lima Hamilton (BLH) load cells sandwiched between two 18-in.-diam steel plates. The NODET loading plate was placed over this sandwich construction and operated at frequency ranges of 5 to 50 Hz at a 3000-lb

Figure 2. Load plate and velocity transducers

Figure 3. Control and data acquisition unit for the NODET

peak-to-peak load. The value for force calibration was established from this test and is used in the daily calibration check of the NODET, as discussed later.

Velocity transducer calibration

11. The velocity transducers are calibrated using a calibrated shake table. Each transducer is placed on the shake table and vibrated at known deflections. The NODET electronics are then adjusted to correctly read that deflection.

Field calibration checks

- 12. Methods were developed to check the NODET's calibration in the field. These methods are fully described in Appendix C.
- 13. The load cells and velocity transducers must be properly calibrated to provide accurate collection of pavement load and deflection data. Both the force calibration value and the velocity transducers should be checked at WES at regular intervals of 6 months or 600 operating hours, whichever comes first.

PART III: DEVELOPMENT OF EVALUATION METHODOLOGY

Tests Conducted

- 14. The development of the nondestructive evaluation methodology described in this report is based on correlating nondestructive test results with the load-carrying capability of pavements. The NODET was used to collect the nondestructive load-deflection data while conventional procedures for in situ measurement of pavement properties were used to determine the load-carrying capacity of the pavements.
- 15. Data for this study were collected at 58 different sites on three U. S. Army installations (Ft. Polk, Ft. Eustis, and WES) in the United States during the period March 1980 through April 1981 and at 20 different sites on 10 airfields located in the Republic of Korea during the period May through July 1982. The pavements selected for testing were generally free of major surface defects with relative strengths ranging from weak to strong. The pavements tested were not under the influence of frost or subsequent thaw. The facilities where data were collected are listed in Table 1.
- 16. Before destructive testing was begun on the test pavements, a series of nondestructive tests were performed using the NODET operating at frequencies of 15, 20, and 25 Hz. Previous work with the NODET indicated that the equipment performed best and the force, velocity, and deflection output signals were nearest a sinusoidal wave at an operating frequency of 20 Hz. Only the 20-Hz data were used in development of the evaluation procedure; however, the additional data at 15- and 25-Hz data were collected to provide a comparison of the load-deflection outputs at different frequencies.

Destructive testing

Nondestructive testing

17. The destructive testing consisted of the determination of conventional soil-pavement parameters through in-place and laboratory tests on samples of the various pavement elements. In-place tests consisted of California bearing ratio (CBR) or plate-bearing tests as well as density and moisture content measurements. The test methods used in obtaining data at the Ft. Eustis, Ft. Polk, and WES test sites are described in Hall and Elsea (1974). The small aperture test method for CBR determination was used at the Ft. Eustis, Ft. Polk, and WES test sites. The CBR of a pavement layer tested by the

small aperture method is based on a single measurement determined in a 6-in.diam core hole. The moisture content was determined for each layer tested for CBR. Since the small-aperture-test method was used, in-place density determinations were not made. For rigid pavements, the modulus of soil reaction, k, of the pavement layer directly beneath the portland cement concrete (PCC) was determined by converting measured CBR values to k values as shown in Plate 4 of Hall and Elsea (1974). The data from the Korean airfields were obtained from conventional test pits. The CBR values measured on these flexible pavement sites and presented in this report are the average of three CBR tests performed on each pavement layer in these pits. In-place density and moisture content measurements were also performed at each test level. Platebearing tests were performed on the base course of the rigid pavements to determine the modulus of soil reaction, k . In-place density and moisture content determinations were also made on the base course in these test pits. Laboratory tensile splitting tests were performed on the PCC cores taken from each test site in accordance with ASTM C-496-71 (American Society for Testing and Materials 1980). The concrete tensile splitting strength was converted to flexural strength as described in Hall and Elsea (1974) using the empirical relationship developed by Hammitt (1971). Test procedures for the CBR, platebearing, density, and moisture content measurements made at the Korean test sites are given in Military Standard 621A (Department of Defense 1964).

Presentation of data

18. A summary of the physical property and nondestructive test data for each test site is presented in Tables 2, 3, and 4 for flexible, rigid, and composite pavements, respectively. Complete structural data from each test location are tabulated in Appendix D.

Determination of Temperature and Seasonal Effects

- 19. The stiffness, and therefore the deflection response, of pavements containing asphaltic concrete (AC) layers is directly related to the temperature of that asphalt layer. Presently most evaluation procedures using deflection measurements take into account the mean air temperature or some temperature-related factor so that pavements can be tested at varying temperatures and then adjusted to a common temperature for comparison purposes.
 - 20. During the development of the dynamic stiffness modulus (DSM)

evaluation procedure for airfield pavements (Green and Hall 1975), it was realized that the measured stiffness of a pavement must be corrected in order to evaluate flexible pavements during varying temperatures. A temperature test section consisting of 4, 8, and 14 in. of asphalt was constructed and tested with nondestructive testing equipment at various temperatures. This research led to the development of a set of correction factor curves which were used to correct the DSM data to a common mean pavement temperature of 70° F. Later research* resulted in the modification of these curves into the DSM temperature correction factor curves presently used. These temperature correction factor curves are presented in Figure 4.

Figure 4. DSM temperature correction factor curves for flexible pavements

21. The applicability of these temperature correction factors to the NODET had not been verified. Therefore, a series of tests were conducted to determine if the DSM temperature correction factors that have been developed

^{*} Bush, A. J. III. 1979 (Nov). "Correction Factors and Deflections Measured on Pavements Containing Asphaltic Concrete Layers," Memorandum for Record, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

for other pavement testing devices are applicable to the NODET. Temperature effects testing

- 22. Five pavements with varying thicknesses of AC were selected to be tested during different seasons and at various temperatures. These pavements are designated W-1 through W-5 in Table 2 which shows the physical properties of the test pavements. The thickness of the asphalt layer in these pavements varied from 2.0 to 4.75 in.
- 23. Data collection was begun in August 1980 and continued through May 1981. The DSM was calculated from the NODET load-deflection data taken at 20 Hz using the equation:

$$DSM = \left(\frac{F_7 - F_5}{D_7 - D_5}\right) \times 1000 \tag{1}$$

where

DSM = dynamic stiffness modulus, kips/in.

 F_7 = measured force at approximately 7.0-kip force, kips

 F_s = measured force at approximately 5.0-kip force, kips

 D_7 = measured plate deflection under the 7.0-kip force, mils

 D_5 = measured plate deflection under the 5.0-kip force, mils

Temperatures on the pavement surface were measured using an electronic digital thermometer. The mean pavement temperature (MPT) was calculated using the Asphalt Institute procedure as found in the Asphalt Institute Manual Series No. 17 (1969). This procedure requires that the maximum and minimum air temperatures for 5 days immediately preceding the day of test be known. Each of these daily air temperatures are averaged to obtain the mean daily air temperature. The mean daily air temperatures for the 5 days preceding the test are averaged to determine the "Previous 5-Day Mean Air Temperature." The measured pavement surface temperature at the time of the test and the previous 5-Day Mean Air Temperature are then summed to obtain the "Pavement Surface Plus 5-Day Mean Air Temperature." This "Pavement Surface Plus 5-Day Mean Temperature" is then used in Figure 5 (taken from the Asphalt Institute Manual Series No. 17, 1969) to determine the pavement temperature at the bottom and middepth of the AC layer. The MPT is then calculated as the average of the pavement temperatures at the surface, mid-depth, and bottom of the asphalt layer.

Figure 5. Prediction of pavement temperatures for bituminous layers

Test results

24. The DSM-MPT data obtained at each test site are presented in Table 5. For each test site the measured DSM values were plotted versus MPT. When possible, a "best fit" line was drawn through these data and DSM values were determined from this line for 5-deg increments of MPT ranging from 40° F to 140° F. Using 70° F MPT as the common temperature to which all DSM data are corrected, DSM correction factors were determined from:

$$CF_{T} = \frac{DSM_{70}}{DSM_{T}}$$
 (2)

where

 $CF_T = DSM$ correction factor for any MPT, T

DSM₇₀ = best-fit DSM from plot at 70° MPT

 DSM_T = best-fit DSM from plot at any MPT, T

25. The thickest pavement tested in this temperature study was at site W-1 which contained 4.75 in. of AC. The MPT-DSM plot for site W-1 is presented in Figure 6 and the best-fit DSM values and the calculated

Figure 6. MPT versus DSM for site W-1

temperature correction factors are presented in Table 6. The NODET temperature correction factors from Table 6 along with the currently used WES temperature correction factors were then plotted versus MPT. As seen in Figure 7 these correction factor curves are nearly identical to about 90° F MPT where the NODET correction factor begins to become slightly larger than the WES correction factor. The maximum difference occurs at 140° F MPT where the NODET correction factor is 6 percent higher than the WES correction factor.

- 26. Site W-3 contained 3.0 in. of asphalt and was the second thickest pavement used in the temperature study. The MPT-DSM data for site W-3 from Table 5 are plotted in Figure 8. Using the best-fit line from Figure 8, the best-fit DSM was used to calculate the temperature correction factors. These best-fit DSM values and calculated temperature correction factors are presented in Table 6. The calculated NODET correction factors and the currently used WES correction factors are then plotted versus MPT in Figure 9. These correction factors agree very well with the NODET correction factors being almost identical to the WES correction factors presently in use.
- 27. Sites W-2, W-4, and W-5 contained less than 3 in. of asphalt. Plots of the MPT-DSM data for these sites from Table 5 showed considerable scatter and no real trend could be seen. Due to the large amount of variation in these

Figure 7. Comparison of NODET and WES correction factors for 4.75 in. of AC

Figure 8. MPT versus DSM for site W-3

Figure 9. Comparison of NODET and WES correction factors for 3.0 in. of AC

data, no definitive relationship between MPT and DSM could be established. Previous experience with asphalt pavements less than 3 in. thick has shown that temperature changes have little significant effect on measured deflection values. This, along with other unmeasured values (such as strength changes due to moisture content, etc.), are a possible cause of the large amount of scatter in these data.

Conclusions and Recommendations from Temperature Study

28. Results of the temperature effects study indicate that the WES DSM correction factors presently in use (Figure 4) are applicable and should be used to correct DSM values obtained with the NODET to a common MPT of 70° F. Because temperature effects produce little significant change in the NODET deflection measurements when the AC thickness is less than 3 in., it is recommended that only those pavements with 3 in. or greater of AC surfacing be corrected for temperature effects.

Flexible Pavement Evaluation Methodology

- 29. The methodology described in the following paragraphs is used for the structural evaluation of flexible (AC) highway pavements and is based on the allowable load-carrying capability of the pavements. The major parameters affecting the structural performance of flexible pavements are pavement thickness, soil strength, number and configuration of wheels or axles, and number of load repetitions (U. S. Army Engineer Waterways Experiment Station 1951, 1961).
- 30. The nondestructive evaluation procedure described in Part IV uses a measurement of overall pavement rigidity in terms of the DSM. The DSM is a measurement of the rigidity of the total pavement system and not independent measurements of the major parameters listed above.
- 31. Development of the basic evaluation methodology for flexible highway pavements consisted of establishing a correlation between DSM and the allowable single-axle dual-wheel load. This correlation was developed by performing DSM tests on both highway and airfield pavements and correlating the results with the allowable load on a single axle determined from conventional evaluation procedures. After development of the DSM versus allowable load relationships for six different pass levels, the evaluation methodology was based on existing interrelationships between axle passes, vehicle operations, pavement thickness, soil strength, and axle load and configurations. Basic load and wheel configurations
- 32. An 18,000-lb, single-axle, dual-wheel load (Figure 10) was selected as the basic load and wheel configuration in accordance with TM 5-822-5 (Head-quarters, Department of the Army 1980).

Development of evaluation methodology

- 33. After collection of the data as described in paragraphs 15-17 the allowable single-axle load for a given pass level was calculated for each test site using the following procedure.
 - a. Convert the pavement to an "Equivalent Thickness of Subbase," T_S , in inches, using the equivalency factors in Table 7.
 - <u>b.</u> Using T_S from <u>a</u> above, determine the "Total Equivalent Pavement Thickness," T_{EQ} , in inches. The T_{EQ} is defined as a pavement section composed of: 3.5 in. of AC, 4.0 in. of 100 CBR crushed stone base, and a variable amount of subbase. The total equivalent pavement thickness is determined from:

DUAL WHEELS, PNEUMATIC TIRES

CONTACT PRESSURE 70 PSI CONTACT AREA 64.29 SQ IN.

Figure 10. Basic wheel configuration: 18,000-lb, single-axle, dual wheels

$$T_{EQ}$$
 = 3.5 AC + 4.0 base + (T_S - 16.05) subbase
 T_{EQ} = 7.5 + (T_S - 16.05)
 T_{EO} = T_S - 8.55 in. (3)

Note that the 16.05 in. above is the result of converting the required 3.5 in. of AC (equivalency factor 2.3) and 4.0 in. of crushed stone (equivalency factor 2.0) to equivalent subbase. If $\rm T_S$ were less than 16.05 in. the equation for computing $\rm T_{EO}$ would be

$$T_{EQ} = 3.5 + \frac{T_S - 8.05}{2.00}$$
 (4)

 $\underline{c}\,.$ Calculate the load repetition factor, α , for the specified pass level from the equation

$$\alpha = 0.23 \log \left(\frac{\text{Passes}}{2.64}\right) + 0.15 \tag{5}$$

where Passes = the equivalent number of 18,000-lb axle loads on a single traffic lane during a 20-year period.

 \underline{d} . Calculate $T_{EQ}/(\alpha\sqrt{A})$

where

 T_{EQ} = total equivalent pavement thickness from Step \underline{b} α = load repetition factor from Step \underline{c} A = tire contact area = 64.29 sq in.

e. Using $T_{EO}/(\alpha\sqrt{A})$ calculated in Step d, determine CBR/p from the CBR curve shown in Figure 11.

Figure 11. CBR curve

 $\underline{\mathbf{f}}$. Calculate the equivalent single-wheel load from the equation

$$P_{ESWL} = \frac{CBR}{\frac{CBR}{p}} \times A \tag{6}$$

where

 P_{ESWL} = equivalent single-wheel load, lb CBR = measured CBR at depth T_{EQ} $\frac{CBR}{p}$ = value determined from CBR curve in Step e A = tire contact area = 64.29 sq in.

The equivalent single-wheel load is defined as the load on a single wheel with the same contact area as one wheel of a multiple-wheel configuration that produces a maximum deflection equal to that beneath the multiple-wheel configuration.

g. Convert the equivalent single-wheel load to the single axle, basic load configuration

$$P_{axle} = \frac{P_{ESWL}}{percent ESWL}$$
 (7)

where

 P_{axle} = axle load, lb P_{ESWL} = equivalent single-wheel load, lb percent ESWL = percent equivalent single-wheel load determined at depth T_{EQ} from Figure 12 expressed as a decimal.

34. The procedure outlined above was repeated for each flexible pavement test site for 10, 100, 1,000, 10,000, 100,000, and 1,000,000 passes of the basic axle configurations. The measured DSM values were then plotted versus the allowable axle load, as seen in the typical plot shown in Figure 13, and a statistical analysis performed to determine the best-fit curve that can be placed through the data. The DSM value corresponding to an 18,000-lb axle load was determined from this best-fit curve. The DSM corresponding to the 18,000-lb axle load for each pass level was then plotted versus passes as seen in Figure 14, and the best-fit line through the points was determined. From this plot the DSM versus allowable 18,000-lb Single-Axle Load Passes (ASALP) relationship is defined by the equation

ASALP = antilog[
$$(0.0169 DSM) - 0.2919$$
] (8)

35. From this relationship the number of allowable passes of an 18,000-1b single-axle dual-wheel load which a pavement will support can be determined from the DSM value for that pavement.

Summary of evaluation procedure

- 36. The flexible pavement evaluation procedure basically consists of determining the allowable number of standard axle load passes (ASALP) the pavement can carry (allowable passes), converting this amount to daily traffic number, then comparing that amount with the current daily traffic number. A summary of the evaluation procedure is presented in the following paragraphs, with detailed instructions for performing the data collection, evaluation, and overlay design given in Part IV.
 - 37. The structural evaluation of a pavement section requires that

EQUIVALENT SINGLE-WHEEL LOAD IN PERCENT OF AXLE OR VEHICLE LOAD

Figure 12. Percent ESWL curve for 18,000-lb single-axle, dual wheels

Figure 13. DSM versus axle load for 10,000 passes

Figure 14. DSM versus 18,000-lb axle load passes

several things be known about the section before evaluation begins. This includes information on the pavement structure, current daily traffic, and estimated future traffic. Load deflection data are then collected with the NODET operating at 20-Hz frequency and 5,000- and 7,000-lb force. During this testing the pavement surface temperature should be measured at 1-hr intervals. On completion of the NDT the maximum and minimum air temperatures for 5 days preceding and each day during the testing should be obtained from the installation weather station.

38. After obtaining the NODET data, the DSM for each test is calculated and each of these DSM values is corrected for temperature effects to bring all of the tests to a common mean pavement temperature of 70° F. The corrected DSM values are then plotted to produce a DSM profile for each branch. From this DSM profile a representative DSM is determined for each section. For each section the ASALP is calculated from Equation 8. If the calculated number of allowable passes, in terms of daily traffic number (ADTN), is greater than the current daily traffic number (CDTN), the pavement is structurally adequate. The CDTN is determined from traffic data as described in paragraphs 51 and 52 and is the equivalent number of 18,000-lb single-axle load passes using a pavement each day. If the ADTN is less than the CDTN the section is structurally inadequate and some type of rehabilitation may be required. Step-by-step details of the flexible pavement evaluation and overlay design procedure are presented in Part IV.

Rigid Pavement Evaluation Methodology

- 39. Many parameters affect the load-carrying capacity of rigid pavements. The major parameters affecting the structural performance of rigid pavements include pavement thickness, concrete strength, strength of foundation, wheel or track configuration, and traffic volume during the design life.
- 40. The evaluation methodology for rigid or PCC pavements was developed in a manner similar to the flexible pavement methodology. As in the flexible pavement methodology, the DSM is used to measure the overall rigidity of the pavement system. However, in the rigid pavement procedure the radius of relative stiffness, ℓ , a measure of the stiffness of a PCC slab relative to that of the subgrade, is also determined from the NODET data, as discussed later.

Basic load and wheel configuration

- 41. The basic load and wheel configuration used in the rigid pavement evaluation methodology is the 18,000-lb single-axle dual-wheel load as specified in TM 5-822-6 (Headquarters, Department of the Army 1977).

 Development of evaluation methodology
- 42. The evaluation methodology for rigid pavements involves establishing a relationship between DSM, & , and passes of a standard axle load (SAL). The first step in developing this evaluation methodology was to modify the rigid pavement design chart from TM 5-822-6 to read passes of a SAL instead of design index. This modification, shown in Figure 15, amounted to constructing the Rigid Pavement Design Chart as described in "Development of Rigid Pavement Thickness Requirements for Military Roads and Streets" (Ohio River Division Laboratories 1961), replacing the rigid pavement design index with passes.
- 43. The next step was to develop the relationship between DSM, ℓ , and passes. This relationship should be such that both DSM and ℓ are used to determine the number of allowable passes. Several steps were involved in this development:
 - Calculate the modulus of subgrade reaction, k, for a range of PCC slab thicknesses, h, from the equation

$$k = 341005.97 \frac{h^3}{\rho^4}$$
 [units: 1b/cu in.] (9)

These calculations are made for radius of relative stiffness, ℓ , values ranging from 20 to 60 in. Equation 9 is a rearrangement of the radius of relative stiffness equation (Equation 10) (Ohio River Division Laboratories 1961) assuming the modulus of elasticity of concrete, E , to be 4×10^6 psi and Poisson's ratio of concrete, V , to be 0.15.

$$\ell = \left[\frac{Eh^3}{12(1 - v^2)k} \right]^{1/4}$$
 [units: in.] (10)

b. From each value of k determined above, along with its corresponding thickness, h, the interior stress in the slab under a 7,000-lb load and a 64.29-sq-in. area is calculated, along with the resulting deflection, using the Westergaard equations (Westergaard 1926).

Figure 15. Rigid pavement design chart

- The deflections calculated in Step b above were divided into the 7,000-lb load to yield a theoretical DSM value. This computation is allowed because the load-deflection response of rigid pavements is linear.
- d. Assuming a flexural strength, R, of 700 psi and using the h and the k values from Step a the rigid pavement design chart (Figure 15) was used to determine the number of axle load passes corresponding to the assumed l and theoretical DSM values.
- e. For each & value the number of passes was plotted versus theoretical DSM to produce the curves shown in Figure 16. This plot provides the basic relationship between DSM and passes for use in the evaluation of rigid pavements.
- After development of the basic theoretical relationship a comparison of the results obtained using the basic theoretical relationship and results obtained from the destructive data was made. To perform this comparison the number of allowable passes was determined for each test site from the destructive test results (Table 3) using Figure 15. The number of allowable passes was then determined for each test site from Figure 16 using the DSM and radius of relative stiffness, ℓ , values calculated from the nondestructive test data presented in Table 3. Details of the DSM and ℓ value calculations will be discussed in Part IV. The logarithms of the allowable passes determined from the destructive test data were then plotted versus the logarithms of the allowable passes determined from the nondestructive test data as shown in Figure 17. A best-fit line through zero was calculated for these data points, and the relationship between the number of allowable passes calculated from destructive testing and the number of allowable passes determined from NDT was found to be

$$log (ASALP_{DEST}) = 1.2 log (ASALP_{NDT})$$
 (11)

Rewriting this expression eliminating the log terms, the relationship becomes

$$ASALP_{DEST} = (ASALP_{NDT})^{1.2}$$
 (12)

where

ASALP_{DEST} = allowable standard axle load passes determined from destructive testing

ASALP_{NDT} = allowable standard axle load passes determined from nondestructive testing

g. The basic theoretical relationship in Figure 16 was then modified to account for the difference in results obtained when NDT procedures are used. This modification consisted of increasing the number of axle load passes calculated in Step d by raising

Figure 16. Passes-radius of relative stiffness-theoretical DSM relationship

Figure 17. Relationship between destructive testing and NDT for rigid pavements

the number of passes to the 1.2 power. The increased passes were then replotted as in Step \underline{e} to produce the rigid pavement NDT evaluation chart presented in Figure 18.

44. Using the NDT data obtained with the NODET and the rigid pavement NDT evaluation chart shown in Figure 18 the number of allowable passes of the standard axle can be determined.

Summary of rigid pavement evaluation procedure

45. The rigid pavement evaluation procedure basically consists of determining the number of allowable passes the pavement will carry (ASALP), converting the ASALP to the Allowable Daily Traffic Number (ADTN), then comparing the ADTN with the Current Daily Traffic Number (CDTN). The NODET load-deflection data obtained at 20-Hz frequency and the 5,000- and 7,000-lb force levels provide the information to calculate the DSM and ℓ values for each test. The DSM is calculated from the NODET load-deflection data using Equation 1. The radius of relative stiffness & of a rigid pavement is obtainable through deflection basin measurements (Bush 1979). The radius of relative stiffness, $m{\ell}$, is determined from Figure 19 which gives the relationship between a ratio of deflections measured at points 18 and 48 in. from the center of the load plate at a load of 7 kips and ℓ . The calculated DSM and ℓ values are plotted in profile form and a representative DSM and ℓ for each section is determined. The number of allowable passes for each section is then determined from Figure 18, converted to daily traffic number (ADTN), and compared with the Current Daily Traffic Number (CDTN) to determine the structural adequacy of the pavement section. Step-by-step details of the rigid pavement evaluation and overlay design procedure are presented in Part IV.

Composite Pavement Methodology

46. Although data were collected on composite (AC over PCC) pavements (Table 4), no definite relationships correlating the NODET DSM data to conventional evaluation procedures for these pavements could be established. Therefore no evaluation methodology for composite pavement evaluation using the NODET is presented.

Figure 18. Rigid pavement NDT evaluation chart

Figure 19. Deflection ration versus radius of relative stiffness

PART IV: NONDESTRUCTIVE EVALUATION AND OVERLAY DESIGN PROCEDURES

Preliminary Requirements

47. Before beginning data collection with the NODET, certain data must be obtained. These include determining the pavement structure, daily traffic number, and an estimate of the amount of traffic that will use the pavement in the future. If it has not been done previously the pavement network should be divided into branches and sections as outlined in TM 5-623 (Headquarters, Department of the Army 1982). Station numbers should also be assigned within the branches.

Determination of pavement structure

48. Both the flexible and rigid pavement evaluation procedures require that the type and thickness of each material in the pavement system be known. This information can often be obtained from existing facility records such as "as-built" drawings or maintenance records. In areas where information on the pavement structure is incomplete, out-of-date, or nonexistent, it will be necessary to determine the pavement structure by coring the pavements. This information should be updated when any rehabilitation, such as placement of an overlay or recycling, is performed or other changes in pavement structure occur.

Determination of current daily traffic and future traffic

49. Before the structural evaluation of a pavement can be performed, the current daily traffic must be known and an estimate of the future traffic expected to use the pavements must be made. The current daily traffic can be determined from existing records of recent traffic-volume studies or by conducting a traffic-volume study. The future traffic can be estimated from traffic-volume studies which include vehicle classification counts as described in "Transportation and Travel, Traffic Engineering Study Reference (Headquarters, Military Traffic Management Command 1976).

Conversion to the standard axle load

50. In this evaluation procedure all traffic should be in terms of passes of the 18,000-lb single-axle dual-wheel load or Standard Axle Load (SAL). Traffic data which are not in this form, such as design index (DI) or vehicles/day for each vehicle classification, must be converted to passes of the SAL as shown in the following paragraphs.

- 51. Conversion from DI to standard axle load passes. Often traffic data will be in terms of the DI. For flexible pavements the DI is an index representing all traffic expected to use the pavement during its life. It is based on typical magnitudes and compositions of traffic reduced to equivalents in terms of repetitions of an 18,000-lb single-axle dual-wheel load. The number of passes of the standard axle load corresponding to each flexible pavement DI is given in Table 8. For rigid pavements, the rigid pavement design index is used which is different from the DI used for flexible pavements. Table 9 gives the number of equivalent SAL passes corresponding to each of the rigid pavement DI's, along with a range of equivalent passes for each index (Ohio River Division Laboratories 1961). To convert from DI to SAL passes, simply find the DI in the appropriate table and read the number of equivalent SAL passes. The DI is based on a 20-year pavement life and the daily traffic number (DTN) can be obtained by dividing the number of SAL passes for a given DI by 7,300 which is the number of days in 20 years.
- Conversion from vehicles/day for each classification to standard axle load passes. To aid in evaluating vehicular traffic, TM's 5-822-5 and 5-822-6 (Headquarters, Department of the Army 1980, 1977) divide the various vehicles into six groups as shown in Table 10. If the axle load (or gross load for forklift trucks and track vehicles) is known for the vehicles, Table 11 is used to determine the equivalent operations factor as a function of vehicle group and load. The number of equivalent SAL passes per day is then calculated for each vehicle and the equivalent SAL passes are summed to determine the number of equivalent SAL passes/day. In some cases the trafficvolume data will contain only the number of vehicles/day for each group. If this is the case, the equivalent operations factors listed in Table 12 should be multiplied by the number of vehicles/day to obtain the number of equivalent SAL passes per day for each group. The number of equivalent SAL passes for each vehicle group is then summed to obtain the number of equivalent SAL passes/day which is the CDTN. The equivalent operations factors presented in Table 12 were determined from plots of equivalent operations factor versus load for each group. These plots are based on the data presented in Table 11. The equivalent operations factors for each group in Table 12 are the equivalent operations factors corresponding to 75 percent of the maximum load for that group.

Dividing streets into branches and sections

53. All pavements to be evaluated should be divided into manageable segments. TM 5-623 provides an excellent method for dividing the pavements into branches and sections. A branch is any identifiable part of the pavement network that is a single entity and has a distinct function such as an individual street or parking lot. A section is a subdivision of a branch that contains consistent characteristics in regard to pavement structure, construction history, traffic, and pavement condition. Division of the pavements into sections based on pavement structure and traffic is required to complete the evaluation of the pavement. These sections will also provide permanent references allowing the same sections to be tested repeatedly in later years. These sections can be further subdivided based on the results of the NDT, as discussed in paragraph 73.

Data Collection

Equipment setup and preparation

54. The procedures for preparing the NODET for data collection are detailed in Appendix C. These preparations include: attaching the control cables to the NODET and instrumentation control box, attaching the velocity transducers in their proper positions, system warmup, air spring pressurization, and force calibration. Upon completion of these preparations, data collection is ready to begin.

Data collection

- 55. <u>Test locations</u>. For roads and streets on military installations, data should be collected at 100-ft intervals on opposite sides of the center line. On flexible pavements, the test should be conducted in the outside wheel path of each lane. On rigid pavements, tests should be conducted at the center of the slab nearest the 100-ft distance.
- 56. The simplest and safest method for collecting the data is to test one lane of a street at 200-ft intervals going with the flow of traffic. The electronic distance measuring equipment in the tow vehicle is used to determine the station numbers of the test. When reaching the end of the branch the distance-measuring device should be put on HOLD, the NODET turned around, and the opposite lane tested at 200-ft intervals offset 100 ft from the last test performed in the adjacent lane. Care should be taken to reverse the

distance-measuring equipment and release the HOLD button after turning the NODET around so the stationing of the test locations will be consistent. Typical test patterns for roads and streets are shown in Figure 20.

Figure 20. Typical test patterns

- 57. In parking areas containing curbs, tests should be conducted in the wheel paths of the traffic lanes. In small parking areas where the 100-ft test spacing is not practical, the test should be spaced to obtain at least three tests per parking area. On large motorpools and open parking areas, tests should be conducted in a grid pattern to provide uniform coverage of the area. However, tests should not be spaced further than 200 ft apart.
- 58. <u>Data collection procedure</u>. The data used in this NDT evaluation procedure are obtained with the NODET operating at 20-Hz frequency and dynamic force levels of 5,000 and 7,000 lb.
- 59. After equipment setup, warmup period, and force calibration, the NODET is ready to begin the data collection. The procedure for collecting data at a test location is:
 - a. Stop the NODET with the load plate over the desired test location.
 - Set test number in the thumbwheel located on the instrumentation control console.
 - c. Check the operating frequency by pressing the FREQ switch on the control console (Figure 21). The panel meter should read 20.0. If the frequency is not set at 20 Hz the frequency control potentiometer (frequency knob) should be adjusted until the panel meter reads 20 Hz.

Figure 21. Layout of the control console

- d. Press the SAFE switch to engage the operating functions. This switch should now glow continuously green.
- e. Press and hold the LOWER switch to lower the force generator to the pavement. When the force generator is fully lowered, release the switch.
- $\underline{\mathbf{f}}$. Press the FORCE switch to display the force value on the panel meter.
- g. Press the VIBR switch to activate the hydraulic vibrator.
- h. Using the force control potentiometer (force knob), adjust the dynamic force to 5,000 lb. At this time the panel meter should read 5.00; however, some fluctuation of the meter on the order of ±0.05 is to be expected.
- i. Press the PRINT switch to record the test numbers, frequency, force, and deflections at this force level.
- j. Increase the dynamic force to 7,000 lb (panel meter reading 7.00) by rotating the force knob clockwise approximately two full turns.
- k. Press the PRINT switch to record these data.
- Release the VIBR switch to deactivate the hydraulic vibrator.
- m. Press the SAFE switch to raise the force generator and render all functions inactive. This switch should now be flashing green, indicating the force generator is fully elevated before the NODET is moved.

- n. Check the data for any obvious errors before moving to the next test location.
- 60. A record of the test number, test location (branch, section, station number, etc.), and time should be kept in a fieldbook or other permanent record. A typical fieldbook setup is shown in Figure 22.

Figure 22. Typical fieldbook setup

- 61. NODET output. The digital printer contained in the instrumentation system control console provides a permanent record of the test data on paper tape. The printout format is shown in Figure 23.
- 62. Locating data errors. Occasionally, errors will occur in the data; therefore, each set of data should be checked before moving to the next test location. This check should include making sure each channel printed correctly. Errors of this type include a channel with all zero readings (Figure 24a) or a missing channel (Figure 24b). These problems are usually minor printer malfunctions and can be corrected by repeating the test. If the

7	001.7
6	003.2
5	004.9
4	008.6
3	020.0
2	05.00
1	0063

	Channel		
Function	Number	Units	Data
I. D. Number	1		0063
Force	2	Kips, peak-to-peak	05.00
Frequency	3	Hertz	020.0
Deflection (center of plate)	4	Mils, peak-to-peak	008.6
Deflection (18-in. offset)	5	Mils, peak-to-peak	004.9
Deflection (30-in. offset)	6	Mils, peak-to-peak	003.2
Deflection (48-in. offset)	7	Mils, peak-to-peak	001.7

Figure 23. NODET printout format

7	001.4		7	002.5		7	001 3
6	0.00.0		5	007.6		6	005 6
5	003.6		4	012.9		5	003 5
4	006.4		3	020.0		4	006.4
3	020.0		2	07.00		3	020 0
2	04.99		1	2001		2	05 00
1	4001					1	0008
a. Char	nnel with all		b. Missi	ng channe	İ	c. False	e deflection
zero	readings						ading
		4	444.4	4	454.5		
		4	444.4	4	454.5		
		4	444.4	4	454.5		
		4	444.4	4	454.5		
		4	444.4	4	454.5		
		4	44.44	2	5.01		
		4	4444	1	0126		

d. Malfunctions caused by heat

Figure 24. Typical data errors

deflection data contain a reading higher than the reading that is next closest to the plate (Figure 24c) there is some problem with that velocity sensor. The sensor may be on a rock, crack, or other object causing a false reading to be produced. The sensor giving the false reading should be visually checked and any foreign objects underneath the transducer removed before the test is rerun.

- 63. The NODET printer is sensitive to high temperatures and will malfunction if the instrumentation control console is not kept cool. Temperatures greater than approximately 90° F in the area of the instrumentation console may result in malfunctions such as those seen in Figure 24d. Large fluctuations in the panel meter force readings that will not stabilize and/or large discrepancies between the panel meter force reading and tape output can also be caused by excessive heat. To prevent this malfunction from occurring the cab of the tow vehicle should be kept cool.
- 64. Large fluctuations in the panel meter force readings that will not stabilize may result from uneven pressure in the air bags or loss of pressure in one or more of the bags. If these fluctuations occur and cannot be attributed to heat, the pressure in the air bags should be checked and adjusted if necessary.
- 65. If there is any doubt as to the validity of the data recorded on the tape, each value of force, frequency, and deflection can be checked independently by depressing the appropriate switch on the instrumentation console and reading the resulting value on the panel meter. Should the automatic printer stop working for any reason, testing can continue with the data being recorded manually.
- 66. Pavement temperature measurements. When collecting NDT data on asphaltic concrete or composite pavements, the pavement surface temperature should be measured and recorded at 1-hr intervals. To obtain these data the thermometer probe is attached to the pavement, as shown in Figure 25, and shielded from direct sunlight until the temperature reading peaks. This value is then recorded along with the time and location in the fieldbook shown in Figure 22.

Data Reduction

DSM calculation

- 67. After completing the data collection the next step is to calculate the DSM for each test location. To simplify this procedure the data should be tabulated onto the NDT data sheets; sample sheets are shown in Figures 26 and 27. Figure 26 is the data sheet for recording flexible pavement data; while the rigid pavement data are recorded on the data sheet shown in Figure 27.
 - 68. The DSM is then calculated using the equation

Figure 25. Typical setup for pavement temperature measurements

$$DSM = \left(\frac{F_7 - F_5}{D_7 - D_5}\right) \times 1000$$
 (1 bis)

where

DSM = dynamic stiffness modulus, kips/in.

F₇ = measured force at approximately 7.0-kip force, kips (channel 2)

 F_5 = measured force at approximately 5.0-kip force, kips (channel 2)

D₇ = measured plate deflection under the 7.0-kip force, mils (channel 4)

D₅ = measured plate deflection under the 5.0-kip force, mils (channel 4)

The calculated DSM is then recorded in proper column of the appropriate data sheet.

Flexible pavements: correction for temperature effects

69. The DSM's measured on flexible pavements must be corrected to a mean pavement temperature of 70° F. This correction is necessary because the stiffness of pavements containing AC layers is directly related to the temperature of that AC layer. Therefore, for a DSM measured at one pavement temperature to be comparable to DSM's measured at other pavement temperatures, the

Facility:							O TON	NDT Data Sheet:	Flexible Pavements	ements		Q	1 1	
DI 411011								•	Pavement	Previous 5-Day	Surface +	-	Sol E	
Section	Station	Test	Load	0 10.	0 18 1n. in.		, mils, at 30 48 in. in.	Thickness in.	Temperature	Temperature	Temperature	DSM* kips/in.	Correction	DSM**
											: :			
							1							
							1							!
												, T		
							1		!	· · · · · · · · · · · · · · · · · · ·	•			
							: ;		i	i				
											*		-	
							· ·							
										:	•	i		
							1							
] 					•	<u> </u>
								1		1	₹ 1			1
									· i					. !
· :			:] -1			•	,	•		1	
													!	
				İ		T		!		•	•			
: ! !											•			
: :		.												
1		•			!					•	- ·• ·			
	· · · · · · · · · · · · · · · · · · ·						1 1							1
		:						I			•		•	
		-	1			!					-	·		
	•			•	,			: .			•			Τ

Figure 26. NDT data sheet for flexible pavements

* DSM = { (F, = F,)/(D, = D,) } × 1000 | px Corrected DSM = DSM × temperature correction factor. L.

					NDT D	NDT Data Sheet:	1 1	Rigid Pavement	ement		
racility:	\ \ \ \						١.			2 C	Date
pranch:										Pad	Page. of
				Deflec	tion /	Deflection A mile	÷		Deflection		
Section Number	Station Number	Test* Number	Load	o in.	18 in.	30	1,0	DSM**	A 48 in.	Kelative Stiffness, in.	
			- - +					N41/00/411	10 In.	K	Remarks
							1				
					1						
				1	1						
	1			1		1					
				+	1	1	+				
					1	+	+				
				+	+		+				
					-		+				
				\dagger	1	+					
				+	1	1	+				
	-				+	+	+	1			
ı		-		1	1		1				
* One t ** DSM =	One test requires two lines of this form, $DSM = \{(F_r - F_c)/(D_r - D_c)\} \times 1000$.	res two	lines - D.)}	of thi: × 1000	s form.						
+ Dof10	/	5 /	, , 5, ,		. 1	,					

Figure 27. NDT data sheet for rigid pavements

Deflection ratio is calculated for 7.0-kip load only.

DSM values should be corrected to a common mean pavement temperature. The correction factors used in correcting the measured DSM values to the common mean pavement temperature of 70° F for flexible pavements are presented in Figure 28 and the DSM correction factors for AC over PCC pavements are presented in Figure 29.

70. To correct the measured DSM, the DSM correction factor is determined from Figure 28 using the mean pavement temperature and thickness of the asphalt layer. The mean pavement temperature is calculated using the Asphalt Institute method as described in paragraph 23 and Figure 30. The correction factor obtained is then multiplied by the measured DSM to obtain the temperature corrected DSM.

Radius of relative stiffness calculation

71. For rigid pavements the radius of relative stiffness ℓ should be determined from the NODET data. The radius of relative stiffness is determined at the 7.0-kip-force level using the deflections measured at 18 and 48 in. from the center of the plate, and Figure 31. The deflection ratio Δ_{48}/Δ_{18} is calculated, then used in Figure 31 to determine ℓ . The NODET data sheet for rigid pavements (Figure 27) contains columns for recording the deflection ratio and ℓ value to simplify the calculations.

Selecting representative DSM values

- 72. To aid in determining the representative DSM value to use in evaluating a pavement section each corrected DSM value should be plotted in profile form. The best results are obtained when each DSM measured on a branch or street is plotted along the length of the branch or street. The locations of the pavement sections should be noted along the bottom of the profile.
- 73. Although a pavement section may supposedly be of the same type and construction, it should be subdivided and treated as more than one group when the DSM values measured in one area differ greatly from those measured in another area of the same section.
- 74. The DSM value assigned to a pavement group or section should be the statistical mean corrected DSM for the group (\bar{X}) minus one standard deviation (S). A minimum of three test points should be taken in each section.

DSM temperature correction factor curves for flexible pavements Figure 28.

Figure 29. DSM temperature correction factor curves for asphalt over Portland cement concrete pavements

Figure 30. Prediction of pavement temperatures for bituminous layers

Figure 31. Deflection ratio versus radius of relative stiffness

Evaluation and Overlay Design Procedures

Flexible pavements

- 75. Evaluation procedure. After determining the representative DSM of the pavement section we are ready to evaluate the section. The steps in the evaluation procedures are:
 - a. Determine the number of (ASALP) from Equation 8.

$$ASALP = antilog[0.0169(DSM) - 0.2919]$$
 (8 bis)

- b. Convert the allowable passes to allowable daily traffic number (ADTN) by dividing the number of allowable passes by 7,300, which is the number of days in a 20-year period. The ADTN is therefore the allowable average number of daily 18,000-16 axle load passes based on a 20-year period.
- c. Compare the allowable DTN (ADTN) obtained in Step b with the current DTN (CDTN). Is the ADTN greater than the CDTN?

Yes - The pavement is structurally adequate.

No - The pavement is not structurally adequate.

Caution must be used in interpreting the evaluation results. The evaluation is based on conditions existing at the time the NDT was performed and does not take into account strength changes resulting from frost or freeze/thaw effects or from extreme dry or wet periods.

- 76. Overlay design procedure. If the pavement is not structurally adequate, some type of rehabilitation is required. One type of rehabilitation is to overlay the existing pavement. The amount of overlay required to support the expected future traffic can be determined from the previously obtained NDT results. The steps in determining the required overlay thickness are:
 - $\underline{\underline{a}}$. Determine the total equivalent thickness, $T_{\underline{EQ}}$, of the pavement section:
 - (1) Convert the existing pavement section to an equivalent thickness of subbase, T_S , using the equivalency factors in Table 7. T_S is determined by multiplying the layer thickness by the proper equivalency factor to convert each layer to thickness of equivalent subbase, then summing each thickness to determine the total, T_S .
 - (2) Using T_S , determine the total equivalent pavement thickness, T_{EQ} , which is composed of 3.5 in. of AC, 4.0 in. of 100 CBR crushed stone base, and a variable amount of granular subbase. The T_{EO} is determined from

$$T_{EQ}$$
 = 3.5 AC + 4.0 base + (T_S - 16.05) subbase
 T_{EQ} = 7.5 + (T_S - 16.05)
 T_{EO} = T_S - 8.55 in. (3 bis)

Note that the 16.05-in, equivalent subbase is the result of converting the required 3.5-in, of AC (equivalency factor = 2.3) and 4.0-in, of crushed stone base (equivalency factor = 2.0) to equivalent subbase. If $\rm T_S$ were less than 16.05 in., the equation for computing $\rm T_{EQ}$ would be

$$T_{EQ} = 3.5 + \frac{T_S - 8.05}{2.00}$$
 (4 bis)

- b. Enter the flexible pavement design curves (Figure 32) with the number of allowable passes (ASALP) computed from Equation 8 and determine the subgrade CBR at the equivalent thickness, $\rm T_{EO}$.
- c. Reenter the design curves (Figure 32) with the estimated future traffic and move vertically to the subgrade CBR value determined in Step \underline{b} above then horizontally to determine the thickness required, $T_{\underline{r}}$.
- d. Determine the amount of asphaltic concrete overlay required:

$$t_{o} = \frac{T_{r} - T_{EQ}}{2.30} \tag{13}$$

where

 $t_o = overlay required, in.$

 $T_r = required thickness (from c)$

 $T_{EO} = equivalent thickness (from a)$

77. A complete example of the pavement evaluation and overlay design procedure is presented in Appendix A.

Rigid pavements

- 78. Evaluation procedure. After completing the data reduction the steps in evaluating rigid pavements are:
 - Determine the number of allowable passes of the standard axle load from Figure 33.
 - (1) Enter with the representative DSM for the pavement section.

Figure 32. Flexible pavement design curves

Figure 33. Rigid pavement NDT evaluation chart

- (2) Proceed vertically to the average $\,\ell\,$ value determined for the pavement section.
- (3) Read the number of allowable SAL passes from the left margin.
- b. Convert the number of allowable passes to ADTN by dividing the allowable passes by 7,300.
- C. Compare the allowable DTN (ADTN) with the current DTN (CDTN). Is the ADTN greater than the CDTN?

Yes - The pavement is structurally adequate. No - The pavement is not structurally adequate.

Caution must be used in interpreting the evaluation results. The evaluation is based on conditions existing at the time the NDT was performed and does not take into account strength changes resulting from frost or freeze/thaw effects of from extreme dry or wet periods.

- 79. Overlay design procedure. The overlay thickness required to support the design traffic can be determined from the following steps:
 - a. Determine the required pavement thickness, h_d, using the existing pavement thickness, h; the number of ASALP (from step a of the evaluation procedure); and the estimated future traffic level. Determine the required pavement thickness from the rigid pavement design chart (Figure 34) as follows:
 - (1) Enter with the pavement thickness, h, and go left to the allowable pass level (ASAL).
 - (2) Move vertically from this point to the estimated future pass level.
 - (3) Read the required pavement thickness, $h_{\rm d}$, to the nearest 1/10 in.
 - b. Check the flexural strength.
 - (1) Calculate the modulus of subgrade reaction, k .

$$k = 341005.97 \frac{h^3}{(\ell \times 0.7)^4}$$
 (14)

The 0.7 factor included in Equation 14 results from correlations between ℓ from deflection measurements and ℓ computed from pavement properties using Equation 9. These correlations were initially performed by Bush (1979) and confirmed in this study.

- (2) Enter the design chart (Figure 34) with the pavement thickness, h, and move left to the allowable pass level.
- (3) Move vertically to the $\,k\,$ value determined above, then left to determine the flexural strength, $\,R\,$.

Figure 34. Rigid pavement design chart

If the flexural strength is outside a 400- to 900-psi range a flexural strength within this range (usually 650 or 700) should be used to redetermine \boldsymbol{h}_d . The new value of \boldsymbol{h}_d is found by entering the design chart with the assumed flexural strength and moving right to the correct k, then vertically to the estimated future traffic level, then right to determine \boldsymbol{h}_d .

c. Determine the amount of flexible overlay required to the nearest 1/2 in.*

$$t = 2.5(Fh_d - C_bh)$$
 (15)

where

t = flexible pavement overlay thickness, in.

F = factor from Figure 35 determined for a rigid pavement design index (determined from Table 9 using expected future traffic) and k . This factor projects cracking that may be expected in existing PCC pavement.

h, = required thickness, in.

 c_h = condition factor for base pavement

C_b = 1.00 when rigid base pavement slabs contain only nominal initial cracking

C_b = 0.75 when the rigid base pavement slabs contain multiple cracks and numerous corner breaks

h = existing PCC pavement thickness

d. Determine amount of partially bonded rigid overlay required.*

$$h_o = {}^{1.4} \sqrt{(h_d)^{1.4} - C_r(h)^{1.4}}$$
 (16)

where

h = overlay thickness required, in.

h_d = required pavement thickness, in.

 c_{x} = condition factor for existing pavement

C_r = 1.00 when the slabs are in good condition, with little or no structural cracking

Cr = 0.75 when the slabs show initial cracking
 due to loading, but little or no multiple
 cracking

C = 0.50 when a larger number of slabs show
 multiple cracking, but the majority of slabs
 are intact or contain only single cracks

^{*} Reference: TM 5-822-6/AFM 88-7, Chapter 1, page 40, paragraph 13.8.2.

NOTES:

- (1) DETERMINE F FACTOR FROM ABOVE CHART USING MEASURED k. USE CURVE NUMBERED SAME AS RIGID PAVEMENT INDEX, i.e. FOR RPDI OF 3, USE CURVE 3
- (2) MINIMUM F VALUE = 0.40. FOR k > 400 USE F FOR k = 400
- (3) SOURCE: TM 5-822-6/AFM 88-7, Chapt 1

Figure 35. Determination of rigid pavement cracking factor F

 $C_r = 0.35$ when the majority of slabs show multiple cracking

h = existing PCC thickness

e. Determine the amount of rigid overlay with a leveling or bond breaking course required.*

$$h_o = \sqrt{(h_d)^2 - C_r(h^2)}$$
 (17)

Note: TM 5-822-6 (Department of the Army 1977) requires that the minimum rigid overlay pavement thickness be 6 in., while the minimum all-bituminous overlay be 4 in.

80. A complete example of the rigid pavement evaluation and overlay design procedure is presented in Appendix B.

Presentation of Data

- 81. Upon completion of the evaluation, a report should be prepared. The report should include:
 - a. Map showing the pavements tested.
 - b. Information on the pavement structure.
 - c. Traffic information.
 - d. A brief description of the surface condition for each section.
 - e. DSM plots for each branch.
 - f. Tables showing the results of the evaluation.
 - g. Conclusions and recommendations.

^{*} Reference: TM 5-822-6/AFM 88-7, Chapter 1, page 36, paragraph 13.4.2.

PART V: DISCUSSION

Limitations

82. Certain limitations or restrictions are inherent in the nondestructive test and evaluation procedures described in this report. These are: the testing must be performed with the Road Rater Model 2008 vibrator; the test to measure the DSM must be made at a frequency of 20 Hz with an 18-in.-diam contact load plate; the thickness of the pavement layers above the subgrade and the type of material comprising each layer must be known; the evaluation is based on conditions existing at the time of the evaluation, and the load-carrying capability may be considerably different than if the pavement were under the effect of frost or freezing conditions, spring thaw, or extremely wet or dry conditions; no evaluation procedure is available for composite pavements; and thick pavements (generally greater than 12 in.) can result in a large amount of scatter in the load-deflection data.

Advantages

83. The advantages of this method of pavement evaluation are the rapid, nondestructive capabilities that provide minimal interference with vehicle operations. Since the NODET testing requires only a small amount of time (about 2 min per test), a much more thorough investigation of pavement strength variability can be made than is practical using destructive testing.

Possible Uses

84. There are several possible alternatives for implementing the NODET evaluation procedures described herein. The first alternative would be to use the NODET evaluation on a project basis to evaluate an existing pavement and make rehabilitation recommendations. The advantages of this alternative are that the NODET could be used to recommend the amount of overlay required without extensive destructive testing and any extremely weak areas where complete reconstruction would be required could be pinpointed and corrected prior to application of the overlay. The major disadvantage of this alternative is the time and expense involved in transporting the equipment to perform only a

small amount of testing. A second alternative would be to use the NODET evaluation to determine test pit locations. This would be especially useful in failure investigations, evaluating thick pavements (generally greater than 12 in.), or evaluating composite pavements. The advantage of using the NODET in this manner is that the relative strengths of the pavement can be determined prior to excavating the test pits. The third alternative for implementing the NODET evaluation would be to test and evaluate pavements on a "wholesale" basis, that is, testing and evaluating the entire pavement system of an installation. This has the advantage of providing an evaluation of all the pavements so that the evaluations of different streets can be compared and maintenance priorities established. Disadvantages include the time and expense of a large-scale testing program as well as the manpower required to handle such a large amount of data.

Future Improvements and Modifications

- NODET equipment and evaluation procedures that, if adopted, would decrease the time required to collect and reduce the NODET data and improve the efficiency of the evaluation. One of these improvements would be the addition of an automatic data acquisition system to the instrumentation control panel. This system, presently available, would automatically collect, record, and reduce the load-deflection data, thus reducing the time required for the data collection and data reduction phases of the evaluation. Another improvement to the data collection procedure would be a statistical means for determining if sufficient data had been obtained within a given pavement section prior to leaving that section. This could be in the form of a nomograph or could be included in the automatic data acquisition system.
- 86. A major improvement in the evaluation of roads and streets would be the completion and implementation of the elastic layer evaluation procedure. The elastic layer evaluation procedure would enable the user to evaluate all types of pavement systems including flexible, rigid, and composite (asphalt over concrete) pavements using one basic procedure, as well as make the evaluation procedure easily adaptable to new loads and vehicles, different NDT devices, and new pavement materials.

PART VI: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 87. This report presents procedures for the nondestructive evaluation and overlay design of military roads and streets. The procedures are basically correlations of nondestructive vibratory test results to conventional pavement evaluation criteria. From this study it is concluded that:
 - a. The flexible and rigid pavement evaluation procedures presented in this report are applicable to the evaluation of military roads and streets using the NODET nondestructive testing equipment.
 - b. Results of the temperature effects study confirm that for AC pavements greater than 3 in. thick the WES DSM correction factors presently in use are applicable to the NODET and should be used to correct DSM values obtained with the NODET to a common mean pavement temperature of 70° F.
 - c. AC pavements less than 3 in. thick should not be corrected for temperature effects.
 - d. Although data were collected on composite pavements, a definite relationship correlating the NODET DSM to conventional evaluation procedures for these pavements was not established.

Recommendations

- 88. Based on the results of this study, it is recommended that:
 - a. The NODET evaluation procedures for flexible and rigid highway pavements be adopted for use in evaluating military roads and streets.
 - b. In the initial stages of implementation, additional test pit or core hole testing be conducted on flexible and rigid pavements and the data used to further develop and define the basic correlations.
 - c. Consideration be given to installing an automatic data acquisition system to the existing NODET instrumentation control panel.
 - d. A statistical means be developed to determine if sufficient load-deflection data have been obtained within a given pavement section.
 - e. The elastic layer method of evaluation be completed and implemented.

REFERENCES

- American Society for Testing and Materials. 1980. "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens," Designation: C 496-71, 1980 Book of ASTM Standards, Philadelphia, Pa.
- Bush, A. J. III. 1979 (Jun). "Comparison of Dynamic Surface Deflection Measurements on Rigid Pavements with the Model of an Infinite Plate on an Elastic Foundation," Masters Thesis, Mississippi State University, State College, Miss.
- Department of Defense. 1964 (Dec). "Military Standard Test Method for Pavement, Subgrade, Subbase, and Base-Course Materials," MIL-STD-621A, Washington, D. C.
- Green, J. L. and Hall, J. W., Jr. 1975 (Sep). "Nondestructive Vibratory Testing of Airport Pavements, Experimental Test Results, and Development of Evaluation Methodology and Procedure," Report No. FAA-RD-73-205-1, Vol I, Federal Aviation Administration, Washington, D. C.
- Hall, J. W., Jr., and Elsea, D. R. 1974 (Feb). "Small Aperture Testing for Airfield Pavement Evaluation," Miscellaneous Paper S-74-3, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- Hammitt, G. M. II. 1971 (Dec). "Concrete Strength Relationships," Research Paper, Texas A&M University, College Station, Tex.
- Headquarters, Department of the Army. 1977 (Apr). "Engineering and Design; Rigid Pavements for Roads, Streets, Walks, and Open Storage Areas," Technical Manual 5-822-6, Washington, D. C.
- . 1980 (May). "Engineering and Design, Flexible Pavement for Roads, Streets, Walks, and Open Storage Areas," Technical Manual 5-822-5, Washington, D. C.
- . 1982 (Nov). "Pavement Maintenance Management," Technical Manual 5-623, Washington, D. C.
- Headquarters, Military Traffic Management Command. 1976 (Apr). "Transportation and Travel, Traffic Engineering Study Reference," MTMC Pamphlet No. 55-8, Washington, D. C.
- Ohio River Division Laboratories, U. S. Army Engineer Division, Ohio River. 1961 (Jul). "Development of Rigid Pavement Thickness Requirements for Military Roads and Streets," Technical Report No. 4-18, Cincinnati, Ohio.
- The Asphalt Institute. 1969 (Nov). "Asphaltic Overlays and Pavement Rehabilitation," Manual Series No. 17, College Park, Md.
- U. S. Army Engineer Waterways Experiment Station, CE. 1951 (Jun). "Collection of Letter Reports on Flexible Pavement Design Curves," Miscellaneous Paper No. 4-61, Vicksburg, Miss.
- . 1961 (Aug). "Revised Method of Thickness Design for Flexible Highway Pavements at Military Installations," Technical Report No. 3~582, Vicksburg, Miss.
- Westergaard, H. M. 1926. "Stresses in Concrete Pavements Computed by Theoretical Analyses," Public Roads, Vol 7, No. 2.

Table 1
Data Collection Locations

		Letter		Number	of Tes	Number of Test Sites
Facility	Location	Designation	Test Dates	Flexible	Rigid	lexible Rigid Composite
Fort Eustis	Newport News, Virginia	凶	25-30 Apr 1980	17	ဧ	3
Fort Polk	Leesville, Louisiana	Д	14-19 Apr 1981	0	12	6
Waterways Experiment Station	Vicksburg, Missassippi	3	Feb 1980-June 1981	∞	9	0
Korean Airfields	Republic of Korea	×	10 May-31 July 1982	11	6	0
				!		
			Total	36	30	12

Τĥ

te unber	At Thickness in	Thickness	Layer 1 Material	(BK percent	Thickness in	Layer Z Material	CBR percent	Threkness	layet : Material	(B) percent	It , green	ege — e Hara	1 . 1
А	5 5	ч 5	Crushed stone	66	3 0	Sandy gravel	49	4 6	Sandy (lav			*** * * * * * * * * * * * * * * * * * *	٠
	3 75	1 25	Sandy gravei	68	2 0	Sandy clay		5/6	Lean clay	**		Amarin La Malan	
i A	1.25	1.35	Sandy gravel		11 0	Lean clay	ŝŧo	8:6	Lean cray	×			
	6 0	1 25	Surface treatment		2.5	Crushed Stone		2 f)	Sandy gravel	şi.		and the second	
A	6 ()	1 25	Surface treatment		. 5	Crushed stone	• •	3 -J	Sandy graves		16 .	Mark to the	
	8 0	12 0	Silty · lay	11	S/G	Silty sand	5.1						
	4 0	5.0	Crushed Stone	80	$S\cdot G$	Salty clay	24						
١	4.6	5 0	Crushed stone	NO.	4 5	Silty clay	i'•	5 0	Lean clay				
	8 0	5.0	Crushed stone	95	4.0	River run	5 °)	S 1G	Silty sant	1.			
)	10.0	2.0	River run	74	2.5	Silty sand		, G	River ran			50 4 - 1 · 1 · 1	
	4.0	1.5	Surface treatment			Crushed stone		+ 0					
					2.5				Sandy gravel	•		Bear	•
A	4 0	1.5	Surface treatment		4.0	Crushed Stone		1.5	Sandy gravel	* =	5 .	Stelland Light	
A	2 0	7.5	Crushed stone	91	2.5	Sandy gravel	24	4.0	Sandy (lay		•	• *	
A	1 0	2.0	Surface treatment		3.5	Sand	66	6.5	Silty sand		•	Cartino Lan	
	b .0	2.0	Clay gravel	25	3.0	Sand	1 3	576	Silty clay				
	3.0	1.75	Oil treated base		5 8	River run	42	2.5	Piganic	**	k	*****	
	4.5	6.0	Crushed stone	100+	8.5	River cun		SIG	Lean Clay				
	4.75	0.75	Clay grave!		7.5	Lean clay	40	S/G	Lean clay				
	2.0												
		5.0	Lime stabilized clay gravel	100+	2.0	Clay grave!		8, 0	Lean clay	. •			
	3.0	15.5	Sandy gravel	54	S/G	Lean clay	14						
	2.5	7.5	Sandy gravel	78	4.0	Lean clay		5/6	Lean + Lay				
	2.0	6.75	Sandy gravel	55	S/G	Lean clay	42						
	7.5	6.0	Crushed stone	100+	S/G	Lean clay	15						
	4.0	8.0	Crushed stone	100+	S/6	Lean clay	18						
	7.0	4.0	Crushed stone	100+	24 0	Clay gravel	45	87G	Lman clay	f.			
	3.5	4.0	Sandy gravel	126	22.5		41	S , G					
						Sandy gravel			Clayev san1				
	2.25	4.0	Sandy gravei	16	5.75	Silty gravel	20	\$76	Silty Sand Depth = 18 in	• 1			
	2.75	12.25	Sandy gravel	51	11.0	Gravelly sand	29	8/6	Gravelly sand	10			
	7.5	5.5	Sandy gravel	36	13.0	Sandy gravel Depth = 24 in.	48 13	S/G	Silty sand	10			
	15.0	4.5	Silty sand	40	11.5	Silty sandy gravel	100+	\$/G	Silty sand	3.1			
	9.5	6.5	Silty sand	35	4.0	AC	100+	6.0	Silty sand	68	S 6	Stiffy gravelity sand	
	3.5	8.0	Bituminous stab		4.5	Silty sandy gravel	75	7.0	Sandy ←lay	2.1	S 6	Septi tion	
	7.0	18.0	base Gravelly sand	94	S/G	Silty sand	20						
			Depth = 15 in. Depth = 21 in.	55 30	, 5	orrey same	20						
	6.0	12.0	Gravelly sand Depth = 13 in	90 18	3.0	Lean clay	14	\$/G	Silty sand				
)	2.25	6.5	Sandy gravel	85	61.2	Silty sand	47	8/6	Silty sand				
						Depth = 35 in. Depth = 21 in.	56 30						
	3.0	8.0	Sandy gravel	59	17.0	Gravelly sand Depth = 18 in.	50 17	11.0	Clay gravel	10	876	Lear - Lav	

^{*} If thickness <3.0 in:, CF = 1.00. ** P/U No. 2 not functioning.

Table 2. Data of Cashel from Slesson, our end of the con-

_												:.	-mjerature	lata Suta e •			
CBR	Thickness	Layer 4 Material	Bk perceut	this kness	Layer 5 Material	BR	in ad	4,	trintis Alm	·* 5.4		Surfa e	Heat. Sp	elas Hean	lemperature o rie t. s	Measure: Joh	lemperature Currented (NH
21	S. G	Heavy clay			13(1114)	Percent	· ()	19.0	14.4	t. 1		19.4	1.1	* F	Fact in	kups in uni	Kagisti ahi Aha
44		Depth + 28 + 40						19.	11 5		1 -			214.7	: :	2114	
8									1 **			,.		. · • •	: *		_ 46
30	2.2	Sandy salt	15	8 0	Silty lay			12.2	- 6 ° 1 ° •	2.6							
	16 2	Sandy - Lav	11	5.5	heavy clay	,	+ 44	1: `	15 4	9.1	- *	**.				. ***	* 5 %
							4 94	11.7	9 6				•-•	11 *		. **	*.
							4 48		*, ti	•			•. •			541	5.6
							4.95	h .	5 ·	1 +		*4. *		1. °4 •		4 16	••
5							+ 44	$\frac{1+1}{8}$	5 4			*	r. •	192 *	1.7.	- 11	**
12							5 65	8 1				B: 2	• •	142 >	1	* 0	114
24	8 6	Heavy clay	1.					1. 1		(y	• •	۲ŧ.	•	146.8	i -		· · .
45	S	Heavy clas	-1					12 4	5.5			h= 11		147.7	: *		4 1
	SG	Heavy (lav	×				e Ne	12 🗻	· .		: -	Kap is	ez e	; 4 * 4	1.4	4.9	.,
	9.5	Sand	*41	S 11	Heavy , lay			14 e		2 6 3 6	: 1	15 5	r. y	is K			
	4.0	Sandy + Lay	23	8 6	Heavy slay	15	5 05	8.7	a a L≟ ∧			٠		į -5. ·	: .	. • •	
								1. 5	* *	4 4	1 .		P. C	Lite :	1 1 .	**.	•
10	5 G	Heavy vlay	15				4 4¢.		4, *	4 1	1 4	24.8			1 1		
23			• •				1 (76)	20 1	11 -	5 .	1 8		ti. h	i=. (, * -	
8							5.11	5.8	5 ·		1 1	#c r	٠. ٠	145	: :	•	`*
							6 89 5 0 c	1. b 8 e	b b → b	2.8	1 5	к, т	17.4	1.5 €	1 0-2	461	4'4
24							6 47 5 00	12 4 8 4	8 8 5 8	4 4 5 0		* 5	C- 4	138 4	1 00	44.	•
							5.01	8 T 5 S	4 6 3 2	2 h 1 4	1 3	8. 4	5. 4	1-5 -	1	~ 5 · •	***
24							6.94 5.03	10 2	6.3	1.2	1 2	h* 4	4. 4	74 ⁶ 4	1 44	5 Gay	S. orași
							- 04 5 02		b B	3 4 2 3		8" 5	1,7 9	145 4	1.37	. 16	238
							7 oe	9.7		3 1	; 8	lut "	8 - 0	189 -	1.25	615	*1.
								11-7	٠. ،		1 4	10° t	83.0	196 (1 11	5; t	6.1
6							5 04	7 9 5 0	2.5	2 1	1 4	108-6	83.0	191 6	1.9	110e	142
3 .7							5 01	8 3	2 0 6.1	15	1.1	85 O	65.0	150 0	; ./e	8.15	g.*s
n							5.03	5 q 19 8	4.4	3.3	2.5	85 e					
7							4.98	12 9	7.4	3.6	1.8		n5 0	15 0 0	1 00	240	240
							5 05	7 7	7 (t 4.3	2.6		71.5	76.5	iu. A	1 (%)	469	ue:U
							6.99 5.00		8.5		3.0 2.0	71.5	70 5	142 (: .	411	442
							6.99 5.04	3 4 2.5	호수 실수	1.9	1.3	115 3	64.6	179 9	1.4	2167	2687
•	S /G	Silty gravelly sand Depth = 34 in.	29 22				7 02 4.99	3.6	ord Set	1 2 0.8	0.8	90 0	b+ +	154 4	: 68	2030	1192
	S/G	Sand (fine)	27				6 99 5.03	9 R 6.5	5 - 1 3 - 6	1,4	2 1	90.0	6. 6	157.6	1.26	544	642
							6.99 5.05	7.7	5.9		2.8	88 U	70.5	158.5	1 10	8-1	45.
-							7.03 4.99		9.1 6.4	6.4 4.5	4.0	90.0	*e 5	160 5	1 11	523	581
							7.02 5.08	17.9	9 3		1.6 2.4				1 00	313	111
	\$/G	Lean clay						15.6	10.6	6.8	3.7	108 0	23.8	181-8	1 14	139	180
								7.3	U. Z	4.,	2.0						

Table 3 Data Obtained from Rigid Pavement Test Sites

1	PCC Th	ckness				İ	:	1		: 1		!						Deflection	
		Correlated		Laver				Laver 2			Layer 3		Nondest	destruc	*	40		Δ,	of Relative
Site	Thickness	Strength	Thickness	Material	CBR+	* 10d	Thickness	Material	CBR	Thickness in.	Material	CBR	Load	^0 118 _0	A18 A30	248 1118	DSM k1ps/10.	5 4 81.8	Stiffness in.
្ន	7.0	116	s/6	Silty sand	٥	190												0.625	0.04
113	8.5	745	9/8	Sandy clay	\$	115							6.80		5.6 5.	6 2.8	953	969.0	6'29
£16	0.8	099	9/8	Sandy clay	9	130							5.12	6.2	4.9 4.1 3.6 2.9	1 3.0 9 2.1	1147	0.612	38.6
ĩ.	1.25	910	9/6	Sandy clay	01	200							5.07	3.7	3.0 2.3 2.1 1.6	3 1.8 6 1.3	1150	09 0	37.5
P2	6.5	1035	9/8	Sandy clay	o	190							6.96 5.15	5.1	3.4 2.6 2.5 1.8	6 2.0 8 1.4	1131	0.588	36.6
P3	7.5	516	9/8	Sandy clay	'n	115							7.04 5.18	6.6	4.9 4.1 3.5 3.0	3.5	1033	917.0	50.7
5d	8.0	211	15.0	Heavy clay	٥	165	9/8	Lean clay	9				5.06	6.7	5.5 4.7 4.0 3.4	7 3.9	1061	0.709	8.67
Σ.	8.0	830	9/8	Lean clay	œ	170							6.99	8.8 5	4.6	.6 3.8 .3 2.8	729	0.704	0.64
6	7.3	875	9/8	Lean clay	88	300							5.08	5.3	5.4 4.3 3.9 3.2	3 3.5	859	0.648	42.3
2	7.2	970	9/8	Lean clay	01	200							5.02	9.4 6.5 4	5.5 4.5 4.0 3.3	5 3.8 3 2.7	638	0.691	1.74
P10	7.5	076	9/8	Silty sand	•	25							5.21	7.7 5	7.7 6.8 5.8 5.0	8 5.7 0 4.3	685	0.740	53.8
P11	7.25	970	9/8	Lean clay	2	270							6.93	3.2	3.6 2. 2.1 2.	9 2.4	1331	0.667	9.45
P13	1.5	860	5/6	Lean clay	œ	170							6.96 5.10	8.2 5	2, 6,	5 3.6 2 2.6	608	0.655	63.0
P15	8.0	755	0.25	Asphalt slabjacking	;	ŀ	3/8	Silty sand	39 = 350				6.95	5.3 3	6 2.	9 2.3	1241	0.639	41.3
P21	7.2	780	S/G	Heavy clay	4	130							6.97	6.2 4.4.4	6 5 5 3	9 3.1 8 2.2	1100	0.633	1.04
ş	\$.75	579	0.9	Clay gravel	22	350	9/8	Lean clay	33				7 02 1	10 3 6	2 3	3 2.0	\$46	0.475	39.2
W10	\$.5	7 30	7 0	Clay gravel	75	450	9/8	Lean clay	23				7.00 5.04	6.0	1 2	3 1 5	613	787 0	29.9
<u>:</u>	0.9	800	10.0	Clay gravel	92	350	9/s	Lean clay	38				1.02	5.5 3.9 2	3.3 2.	8 1 7	1381	0.515	31.5
2 5	6.25	860	0.11	Clay gravel	18	007	5/6	Lean clay	7,				1 01	4 B 3	4. 2	8 2 0	1507	0.588	36.6
ŝ	9.6	875	2.0	Clay gravel	;	200	9/s	Silty clay	10				2 00 5 00	6.4	4 ~	0 2 4	1111	0.471	1.62
713	7.5	770	9/8	Silty clay	•	130							3 00	6 8 5	9.5	3 3 0	952	009 0	37.5
K 11	12.5	124	F111	Sandy gravel	;	097							6.98 5.01	3.4 1	- 8	7 0 6	0261	99.0	£ 13
3	15.2	163	Fill	Sandy gravel	;	340							6 94 5.06	2.8 I	~ c	0 0 6	2350	6 73	2 25
K. 3	13.0	\$95	12.0	Sandy gravel	;	220	13.0	Sandy gravel	;	9/s	Clayey sand	:	1.04	t 30	2 2.	8 2 3	1001	0.72	20.7
								(Cor	(Continued)										

* Test sites where both a CRR and is are given indicate locations where CRR measurements were taken and conserted to is values. Tocations where only is values are given indicate the results of take-berring resting.

	PCC Thickness	ickness																Def	- 1	Redius
		Correlated											2			į		aci		jo
		Flexural		Layer 1				Layer 2			Layer 3		2	ndestri	TOT ING		i			-
Site	Thickness	Strength	Thickness		CBR	<u>-</u>	Thickness		CES			1	Load	, o	۸ ا	ر ع0 √				116666
Manber	In.	Ps i	in.	Material	percent	pci	in.	Haterial	percent	, a	Material	percent	kips	kips mils mils mils	iils .	3)8	mils kap			10.
¥14	15.0	575	25.0	Sandy gravel	;	292	s/c	Clayey sand	;				6.97	1.4	9.	2.4	,			107
SII	13.0	541	16.0	13.0 541 16.0 Sandy gravel	;	340	9/8	Silty sand	:				7 00 7	. 80		7 7 6		2463 0	79.0	8.1.8
K 16	12.5	615	25.5	Gravelly sand	ŀ	370	9/8	Silty mand	:					, 21 c	2.7	9 - 9			.75	55.3
K 17	15.25	570	9 0.9	Gravelly sand	:	320	21.75	Sandy grave)	;	9/8	Silty sand	;		3.1 1.2	0.1.0	9 6 6			0.58	35.9
K 18	13.5	516	23.5	23.5 Gravelly sand	ł	450	9/8	Sand	:					7.7	, e.	0 710			69.0	0.74
K19	11.25	919	9/8	Sand	!	330							7.06		7 7 6	. se .			0.55	33.6
													5		٥	•	-			

		PCC P	avement					
	AC Pavement		Correlated Flexural		Layer 1			Layer 2_
Site Number	Thickness in.	Thickness in.	Strength psi	Thickness in.	Material	CBR percent	Thickness in.	Material
E4	5.0	6.0	770	Subgrade	Sandy clay	5		
E19	3.75	11.25	640	11.0	Lean clay	7	Subgrade	Heavy clay
E20	7.5	8.5	750	Subgrade	Heavy clay	3		
F21	4.75	8.0	750	3.25	Sand gravel	37	10.0	Crushed stone
P6	6.25	7.25	860	Subgrade	Sandy clay	47		
P8	1.25	7.7	915	Subgrade	Sandy clay	6		
P12	5.0	7.7	940	Subgrade	Sandy clay	4		
P14	4.0	7.0	940	1.5	Asphalt Slabjacking		Subgrade	Silty sand
P16	5.5	7.4	950	Subgrade	Silty sand	39		
P17	6.5	7.0	925	0.5	Asphalt		Subgrade	Heavy clay
P18	6.5	7.0	925	0.5	Asphalt		Subgrade	Heavy clay
P19	6.75	7.5	915	1.25	Asphalt		Subgrade	Heavy clay
P20	6.25	7.1	910	Subgrade	Heavy clay	1.0		

^{*} If thickness <3.0 in., correction factor = 1.0.

Table 4

Data Obtained from Composite Pavement Test Sites

	Layer 2			Layer 3			Layer 4	
ckness in.	Material	CBR percent	Thickness in.	Material	CBR percent	Thickness in.	Material	CBR percent
grade	Heavy clay	8						
0. 0	Crushed stone		5.0	Silty clay	42	Subgrade	Lean clay	11
rade	Silty sand	70+						
rade	Heavy clay	9						
rade	Heavy clay	5						
ra de	Heavy clay	1.0						

						Те	mperature				
 CBR percent	Load kips	$\frac{\Delta_0}{\Delta_0}$ mils	ructiv ^Δ 18 mils	e Data Δ_{30} mils	Δ ₄₈ mils	Surface oF	5-Day Mean °F	Surface + 5-Day Mean °F	Temperature Correction Factor*	Measured DSM kips/in.	Corrected
	6.87 5.09	8.7 6.0	5.8 4.0	4.2 2.9	2.1 1.5	95.0	61.7	156.7	1.07	659	⊍5
	6.86 5.04	4.5 3.1	4.2 2.9	3.0 2.2	2.4 1.7	86.7	63.7	150.4	1.05	1300	1 55
	7.08 5.08	7.4 4.9	4.7 3.3	3.5 2.5	2.2 1.6	66.0	62.4	128.4	0.97	800	. ; 6
11	6.86 4.98	3.8 2.7	3.1 2.2	2.7 1.9	2.0 1.5	73.0	62.4	135.4	1.01	1709	ϵ
	6.98 5.19	3.0 2.0	1.8 1.2	1.2 0.9	0.9 0.6	98.2	73.1	171.3	1.16	1790	2076
	6.95 5.21	5.8 4.2	5.1 3.7	4.2 3.0	3.5 2.5	89.5	73.1	162.6	1.00	1088	58
	6.99 5.07	4.1 2.8	2.9 2.0	2.5 1.7	2.1 1.5	103.0	73.1	176.1	1.17	1477	58
	7.04 5.13	5.0 3.5	3.7 2.6	2.9 2.0	2.3 1.6	92.4	73.1	165.5	1.11	1273	½13
	7.00 5.04	3.3 2.3	2.4 1.7	1.9 1.3	1.5 1.0	95.1	73.1	168.2	1.14	1960	°4
	7.13 5.13	5.5 3.8	4.3 3.0	3.6 2.5	2.9 2.0	97.5	73.1	170.6	1.16	1176	
	6.89 5.04	5.7 4.1	4.5 3.3	3.8 2.8	3.1 2.3	91.5	73.1	176.1	1.19	1156	~ 6
	6.98 5.14	7.7 5.4	6.3 4.4	5.4 3.9	4.6 3.3	114.0	73.1	187.1	1.26	800	[.] 8
	7.04 5.18	5.0 3.6	4.2 3.1	3.5 2.6	3.0 2.2	87.0	73.1	166.9	1.14	1329	. 5

Table 5 DSM-MPT Data from WES Temperature Study

	Site W-1	1	Site	e W-2	Sit		Sit	e W-4	Sit	Site W-5
	MPT	DSM	MPT	DSM	MPT		MPT	DSM	MPT	DSM
Dates	P.	kips/in.	-F	kips/in.	o _F		oF	kips/in.	P.	kips/in.
13 Aug 80	111.2	328	115.4	316	115.1		116.2	433	116.7	382
8 Sep 80	104.0	386	115.2	438	111.2		112.7	505	113.4	412
23 Sep 80	102.7	343	111.3	797	101.5		102.6	797	104.9	472
3 Oct 80	81.5	410	87.4	897	85.7		9.98	588	87.4	529
23 Oct 80	83.7	392	0.46	455	6.06		91.6	623	7.68	532
6 Nov 80	73.5	465	6.92	76.9 493	9.62		80.3	294	80.5	238
5 Dec 80	8.99	450	72.1	428	11.17		72.6	495	71.4	383
22 Jan 81	45.1	394	45.1	707	6.67		9.67	167	50.3	007
6 Feb 81	51.0	411	53.1	414	51.8		53.2	687	52.3	420
17 Mar 81	75.5	335	82.3	431	9.62		80.5	442	81.0	351
8 Apr 81	80.9	311	82.2	386	82.2		84.8 391	391	86.1	450
4 May 81	89.9	307	94.2	7/7	91.1	474 91.1 623	92.9	543	95.2	491
									·	

Table 6
Calculated DSM Temperature Correction Factors

Mean	"Best Fit"	DSM
Pavement	DSM	Temperature
Temperature, °F	kips/in.	Correction Factor
	Site W-1	
140	231.4	1.79
135	244.5	1.70
130	257.6	1.61
125	270.7	1.53
120	283.8	1.46
115	296.9	1.40
110	309.97	1.34
105	323.1	1.28
100	336.2	1.23
95	349.2	1.19
90	362.4	1.14
85	375.4	1.10
80	388.5	1.07
75	401.6	1.03
70	414.7	1.00
65	427.8	0.97
60	440.9	0.94
55	454.0	0.91
50	467.I	0.89
45	480.2	0.86
40	493.3	0.84
	Site W-3	
140	485.0	1.41
135	499.3	1.37
130	513.5	1.33
125	527.8	1.30
120	542.0	1.26
115	556.3	1.23
110	570.5	1.20
105	584.8	1.17
100	599.0	1.14
95	613.3	1.12
90	627.5	1.09
85	641.8	1.07
80	656.0	1.04
75	670.3	1.02
70	684.5	1.00
65	698.8	0.98
60	713.0	0.96
55	727.3	0.94
50	741.5	0.92
45	741.3	0.91
40	770.0	0.89

Table 7

Equivalency Factors to Convert Pavements
to Equivalent Subbase*

Material	Equivalency Factor
AC	2.30
Crushed stone (100 CBR)	2.00
Stabilized gravel	2.00
Stabilized sand	1.50
Unbound granular material	1.00
Subbase	1.00

^{*} Reference: TM 5-822-5, para 7-5.

Table 8

Relationship Between Flexible Pavement Design

Index and Equivalent Passes of the Standard

Axle Loading

Design Index	Equivalent 18,000-lb Axle Load Passes
1	3,100
2	13,500
3	59,000
4	260,000
5	1,150,000
6	5,000,000
7	22,500,000
8	100,000,000
9	440,000,000
10	2,000,000,000

Adapted from U. S. Army Engineer Waterways Experiment Experiment Station Technical Report 3-582, Aug 1961.

Table 9

Relationship Between Rigid Pavement Design Index and Equivalent Passes of the Standard Axle

Loading

Rigid Pavement	Equivalent	Range of Equi	valent Passes
Design Index	18,000-lb Axle Load Passes	Minimum	Maximum
1	26.4	1	119
2	475.2	119	1,584
3	8,580	1,584	34,320
4	125,400	34,320	343,200
5	924,000	343,200	2,112,000
6	4,752,000	2,112,000	9,240,000
7	19,536,000	9,240,000	36,960,000
8	66,000,000	36,960,000	105,600,000
9	184,800,000	105,600,000	290,400,000
10	501,600,000	290,400,000	792,000,000

(From: Table 6, Ohio River Division Laboratories, Technical Report No. 4-18, July 1961.)

Table 10 Vehicle Groups

Group Number	Vehicles
1	Passenger cars and panel and pickup trucks
2	Two-axle trucks and buses Forklift trucks, <5,000 lb Track vehicles, <20,000 lb
3	3-, 4-, and 5-axle trucks Forklift trucks, 5,000-10,000 lb Track vehicles, 20,000-40,000 lb
4	Forklift trucks, 10,000-15,000 lb Track vehicles, 40,000-60,000 lb
5	Forklift trucks, 15,000-20,000 lb Track vehicles, 60,000-90,000 lb
6	Forklift trucks, 20,000-35,000 lb Track vehicles, 90,000-120,000 lb

Table 11

Equivalent Operations Factors for Vehicle Groups by Axle Load or Gross Weight

	Group 1		Group 2			Group 3		Gro	Group 4	S group 5	ip 5	Group 6	9 0
	Passenger	2-Axle			3-, 4-								
	Cars and	Trucks	Fork-	Tracked	pue	:	Tracked		Tracked	P. 41166.	Tracked		Tracked
VX Ie	Fanel and Pickup	and Busses	lifts <5 kips	Vehicle <20 kips	5-Axle Trucks	Forklitts 5-10 kips	Venicle 20-40 kips	Forklifts 10-15 kips	Venicle 40-60 kips	Forkiits 15-10 kips	venicie 60-90 kips	20-35 kips	venicie 90-120 kips
kips	Trucks	0	٥	0	0	٧		٧		٥			
-	.00017		.00019	69000	.00023								
2	.00048		.0005	.0014	67000.								
4	.0022		.0022	.0052	.0017								
9	.010	.013		.0115	9700.	.0084							
∞	.029	.032		.026	8600.	.0218							
10	900.	.068		.048	.019	.057		.057					
12		. 15		. 104	.083			.143					
14		. 28		. 182	.055			.30		.30			
16		.56		.30	.14			.53		.54			
18		1.00		и.	.21					1.07			
50		1.76			.36		.28			1.79		1.73	
52		6.90			1.00		.71					5.70	
30		22.20			2.30		1.66					18.00	
36					07.9		6.38					61.5	
0,4					11.0		11.30		11.30			129.0	
20					43.0				41.00				
9											52.6		
20											134.5		
80											427.0		
90											1030.0		1030.0
100													2375.0
120													9500.0

Table 12
Equivalent Operations Factors for Vehicle Groups

Group	Vehicle	Equivalent Ope	rations Factor
1	Passenger cars and panel and pickup trucks	0.	025
2	Two-axle trucks and buses Forklift trucks, 5 kips Track vehicles, 20 kips	3.	5
3	3-, 4-, and 5-axle trucks Forklift trucks, 5-10 kips Track vehicles, 20-40 kips	8.	2
4	Forklift trucks, 10-15 kips Track vehicles, 40-60 kips	0.36 29.0	29.0∻
5	Forklift trucks, 15-20 kips Track vehicles, 60-90 kips	1.3 480.0	48 0.0 *
6	Forklift trucks, 20-35 kips Track vehicles, 90-120 kips	52.0 5,700.0	5,700.0*

^{*} If no breakdown between forklift trucks and track vehicles is available use the equivalent operations factor for the track vehicle.

APPENDIX A

EXAMPLE EVALUATION AND OVERLAY DESIGN, FLEXIBLE PAVEMENTS

Required Information and Test Data

1. A nondestructive pavement evaluation and overlay design are to be made on a section of roadway for the following conditions:

Pavement structure

Layer	Material	Thickness, in.
Surface	Asphaltic concrete	3.0
Base	Crushed stone	6.0
Subbase	Clay gravel	6.0
Subgrade	Lean clav	

Traffic data (Daily traffic obtained from traffic count)

Group	Vehicle Type	Average Daily Traffic/Lane
1	Passenger car and panel and pickup trucks	100
2	2-axle trucks and buses Forklift trucks, <5 kips Track vehicles, <20 kips	10 0 0
3	3-, 4-, and 5-axle trucks (40-kip gross weight)	35
	Forklift trucks, 5-10 kips	0
	Track vehicles, 20-40 kips (25-kip gross weight)	1
4	Forklift trucks, 10-15 kips (15-kip gross weight)	1
	Track vehicles, 40-60 kips	0

Convert current traffic to standard axle load passes

2. The current average daily traffic is converted to equivalent standard axle load passes using the equivalent operation factors in Tables 11 and 12, main text.

Group	Vehicle Type	Vehicles/Day	Equivalent Operations Factor	Standard Axle Load Passes
1	Passenger cars and panel and pickup trucks	100	0.025*	2.5
2	2-axle trucks	10	3.5*	35
3	3-, 4-, and 5-axle trucks (40-kip gross weight)	35	11.0*	385
	Forklift trucks, <5 kips Track vehicles, <20 kips	0 0		
4	Forklift trucks, 10-15 kips (15-kip gross weight)	1	0.43**	0.4
	Track vehicles, 40-60 kips	0		
Total e	quivalent standard axle load pa	sses		423
Current	daily traffic number = CDTN =	423.		

Estimate of future traffic for overlay design

3. Based on a recent traffic-volume study it is estimated that 5,000,000 equivalent standard axle load passes will use this roadway in the next 20 years.

Test data

4. The NODET test data obtained on the roadway are transferred from the data tape to the NODET flexible pavement data sheet as shown in Figure Al. Notice that two lines are required for each test location on this data sheet. The 7-kip load data are normally recorded on the first line and the 5-kip data recorded on the second line.

Calculation of temperature correction factor

5. The DSM temperature correction factor is calculated as shown in Figure A2 and placed in the appropriate column of the NDT data sheet.

DSM calculation and correction for temperature effects

6. The DSM is calculated from the NODET load-deflection data and recorded in the proper column of the data sheet. Each DSM value is then multiplied by the DSM temperature correction factor to obtain the corrected

^{*} Equivalent operations factor from Table 12.
** Equivalent operations factor from Table 11.

Test Load Deflection A, mils, at Number kins kins of the control o								LIQN	NDT Data Sheet:	heet:	Flexil	Flexible Pavements	ements					
Station Test Load Deficial Miles Substitute	1 ac111C		- 1														1	1
Station Stat	Branch:	Redu	- 1														ءً إ	1
	Section		Test			lection 18		1s, at	AC Thick	C kness	Pavem Surf Temper	nent ace ature	Previous 5-Day Mean Air Temperatur		rface + Day Mean mperature	Do#∻	Temperature Correction	3
1.66 175 2.14 2.3 2.1 11 0.6 12 12 13 13 14 0.4 14 15 14 14 14 14 14 1	1	6,000	421	1	1	4	1	In.	7	. 0	5-16		1	+		kips/in	Factor	kips/in.
1166 175 321 1.8 0.3				524	L'IL	\sqcup	Н	3,0						$\parallel \parallel$		743	6.75	706
\$2 \cdot \		1+66	175	7.14	\downarrow	~	4	6.3			1			+				
				5.69	-	\vdash	\sqcup	210						$\ \cdot\ $		67/		609
31.03 1.77 2.14 2.6 3.9 1.6 0.7		2164	121	205		- (┵					+	4				
31:13 177 27.4 2.6 1.6 0.7 47:00 176 6.7 6.7 6.7 6.7 47:00 176 6.7 6.7 6.7 6.7 51:03 27.7 27.4 17.5 6.7 6.7 61:03 27.7 27.7 6.7 6.7 6.7 61:03 27.7 27.7 27.7 6.7 6.7 71:04 27.7 27.7 77.7 6.7 77.7 81:05 27.7 27.7 77.7 77.7 77.7 81:05 27.7 27.7 77.7 77.7 77.7 77.7 81:05 27.7 27.7 27.7 77.7 77.7 77.7 77.7 81:05 27.7 27.7 27.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7				5.13	├	1 1	ш	Ц						$\left\{ \cdot \right\}$		25.7		484
\$\frac{\pi_{1}\tilde{\pi_{2}\tilde{\pi_{1}\tilde{\pi_{2}		3+69	121	7.14	↓	1		6.7		1				+	1			
\$1.02 1.76 2.77 2.4 1.9 1.0 0.5 6.6 6.6 5.7 5.6 1.3 0.6 5.7 5.6 5.7 <				515	.	1		0.5						$\ \cdot \ $		330		6.5 6.
5:03 224 7.7 5:04 6.4 5:04 6.4 5:04 6.4 <		4+00	341	11.7		⊥.		G		1	+			+	+			
6 7 6 3 2 2 4 3 4 2 1 1,3 C.6 6 7 6 5 179 2 6 2 1.2 C.6 C.6 C.7 C.6 C.7 C.6 C.7 C.6 C.7				5.17			\vdash	V						-		5 5.5		553
6 7 6 5 6 7 6 6 7 6 7 6 7 6 7 7 7 7 7 7		5,03	224	263	_1_	4	2	7,0	1									
\$7.02 \$2.23 \$7.14 \$1.2 \$6.6 \$1.3 \$6.6 \$7.02 \$2.23 \$7.14 \$1.3 \$6.6 \$1.3 \$6.6 \$7.02 \$2.23 \$7.14 \$1.2 \$6.6 \$1.3 \$6.6 \$7.02 \$2.02 \$7.06 \$1.0 \$1.0 \$1.0 \$1.0 \$7.02 \$2.02 \$2.06 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$7.02 \$2.02 \$2.06 \$1.0 \$1				5.61	<u></u>		Ш	0.4						\coprod		274		X 77
7+C2 223 7/4 7.3 4/4 6/8 6/8 6/8 6/8 6/8 6/8 6/8 6/8 6/8 6/8		6,00	173	200				ì		+	+			4				
3.1 6.2 6.2 6.4 6.3 6.6 6.4 6.3 6.6 6.4 6.4 6.3 6.6 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4				503	\perp			2.0						-		27,33		571
\$xe2 / 3c / 5c / 5c / 3c / 5c / 10 / 65 \$xe2 / 3c / 5c / 1c / 6c / 6c / 6c / 6c / 6c / 6c / 6		7.00	223	7.14	,	\perp	1	0.6			+			4		,		
3xe3 1ac 7cc 21 5.2 1.1 0.5 3xc2 2xc2 2xc2<				77.5	1,		\Box	2.4						\prod		6 4 3		5/5
3.1C 6.4 4.5 0.7 0.4 3.1C 2.3 1.2 0.6 4.7C 2.3 1.2 0.6 4.7 2.7 6.0 1.8 0.9 4.7 2.2 2.8 5.6 1.3 0.5 4.7 2.3 2.5 5.6 1.3 0.5 581 4.7 2.4 0.7 0.7 0.7 588 1 (6.4 - F.) (0, - D.)] x 1000		8 +63	180	700	1 !	11		0,5	+					+		2.10		777
34.62 2.62 6.34 7.7 6.3 6.6 6.6 4.65 1.7 6.3 6.3 6.6 6.6 6.6 4.6 6.3 6.3 6.6 6.6 6.6 6.6 16.7 2.21 2.32 2.5 5.6 1.3 6.5 6.6 16.7 2.21 2.32 2.3 2.6 1.4 0.7 4.0 1.0 6.6 4.0 4.0 6.6				5,16	- 1		0	6.4	\dagger	+	+	+						,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3,02	222	6.36	1 1	\perp	11	1 1						_				7 10 X
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1,76		1	\bot	J		+				\prod		1		4
$\frac{5.11}{4.21} \frac{4.9}{5.2} \frac{4.1}{4.21} \frac{6.9}{5.9} \frac{6.3}{6.1}$ $\frac{5.11}{4.21} \frac{4.9}{5.9} \frac{6.6}{6.1} \frac{6.9}{6.7} \frac{6.9}{6.7} \frac{6.9}{6.7}$ $\frac{6.99}{4.21} \frac{6.99}{5.9} \frac{6.99}{6.7} 6.$		\$34.37	181	6.26	7.7	44	38 '	6.9			+			1	+			2007
DSM = { (F, - F _c)/(0, - D _c)] × 1000				175	11.9	_ i	20	6.3		+					++			()
$DSM = \{ (F_2 - F_2)/(D_4 - D_4) \} \times 1000$		16122	221	7.32	1.5	5,6	1.3	6.5	+		\dagger			1		77/	1	
$DSM = [(F_7 - F_6)/(D_7 - D_1)]$				-4.73	2.	77	2.2	6.7	*		>		>	\prod	>	, , ,	•	77.3
		[(F, - F	,)/(p.		1000]_]	1		1		1]	1			

Figure Al. Example NDT flexible pavement data sheet

Facility:	V: WE						O TON	NDT Data Sheet:	Flexible Pavements	vements				
Branch:	1 1	8											Date: 2 MIAREM	n 1763
		oxdot										1	Page 2 of 4	
				De f 1	Deflection	ı∆, míls,	ls, at	A C	Pavement Surface	Previous 5-Day	Surface +			
Number	Station Number	Test Number	Load	o ii	18 in.	30 In.	48 in.	Thickness in.			J-Day nean Temperature	DSM*	Temperature Correction	Corrected DSM:
4	10.31	787	5.67	6.3	3.7	1	0.57	3,0	57.0	55, 3	112.3	Kips/in 532	Factor O. 15	kips/in.
	13.400	220	7.36		2	2								
			4.36	11	П	1,2	6.6					667		4:3
	14401	163	6.74		4.2	1.5	8.0	+						
			5.06	5.7	3,8	1"	40					6.27		5%
	14+82	612	2.34	25	2.1	1,3	6.7	+						
			375	47	7.3	6.3	5'0					354		116
	16+01	184	6.77	7.5	ri	1.3	20	1						
			5.00	5.5	ш		6.3				+	375		346
	167.72	218	20%	32	2.0	3.	100							
			4.99	4.5	077	1_1	6,3					528		252
	18103	165	200	6 "	0									
			4.97	2,3	7.7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0					548		51.2
	63467	11.0			ഥ							1		
	177.6	6/1	5.00	3.0	4.5	777	27.7					533		151
,					9		1							
4	20 + 60	186	5.02	6.5	6.4	1.2	0.5					31.5		470
	21+63	2/5	6.45	100	1	7	l i							
			5.17	3	2.67	2/3	6.3			+		533		566
† †	22+35	183	7.07	2	7.7	1					+			
			5.14	5,7	279	3',	*					7/5		623
	22+89	4/3	7.04	2.6	6.4	37	0.6	-	;					
	+		5.07	5.6	1.57	6.7	*:0		•	A	>	253	>	5-14
	(F F)/(p	,	1000	1	1	1							
** Correc	Corrected DSM = DSM % temperature correction factor.	P DSM 5:	tempera	ture c	orrect	ion fac	tor.							
														_

Figure A1. (Continued)

							Q TO	ata Sheet:	NDT Data Sheet: Flexible Pavements	vements				
Facility	SAM:											Ω	Date: 2 Margen	1983
Branch:	1	8										Δ.	Page 3 of 4	
Section	1 2	1		Defle 0	Deflection 0 18	Δ, mils,	s, at	AC Thickness	Pavement Surface Temperature	Pre S- Mea Temp	Surface + 5-Day Mean Temperature	DSH*	Temperature Correction	Corrected DSM**
Number	Number 24.	Number	kips	i.,	Ė	in.	in.	in.	57.0	55.2	1/2,3	K1P8/10	C.95	K1ps/1n.
4	77		5.0.5	20	4.6		0.7							
	24+36	2/3	7.39	2.0	67	7.3	2.7		57.0	65.3	112.3	188	56'0	787
			4.98	77	7.3	0.5	4.0							
	26+60	161	7.0.7	2.5	4.5	9%	6.7		57.6	55.3	112.9	661	0.36	635
			5,02	Ш	ш	11	510		-					
	27404	212	701	70 01	2.6	97	8			+		637		612
		3	1	2.4	L		0.6							
			717											
	28+05	192	6.93	10.1	6.8	2,6	1.4					668		149
			5.46	↦	11	97	6.0							
										- - - -	-			
	22175	511	2.05	3:7	_	1	6.3				+	600		576
			5.67	2.6	2,2	5.0	2.3		1		+			
			150		0 6	,	2.6				+		+	316
	20202	7.7	5,03	10.2	4.5	3,2	101		1	1		386		
	34+28	212	66 9	12.2	3.5	2.2	/:/					554		532
			5.6.5	5.7	2.8	*:/	0.3			+	1			
	20.00	461	200	0 3/	191	23	10,				+	11.77	-	39.5
	1000	Ш	5, "	2	4,3		0.8							× × ×
	33168	207	7.09	10.5	7.7	1.6	0.7					543		225
			4.35	9.3	5.5	2.7	5.0							
										1				
	3426.5	195	6.74	ľ	_ l	2.4	?;	-	+	+		422		453
			2.10	6.8	4.6	8 '	0.2							
	35100	208	6.17	#	3.2		01	*	->	>	7	533	>	512
			5.65	7.7	2.7	4.3	0.8							
1];].									

* DSM = [$(F_7 - F_5)/(D_7 - D_5)$] x 1000 ** Corrected DSM * Lemperature correction factor.

Figure Al. (Continued)

ature ition ition ition								NOT Da	NDT Data Sheet:	Flexible Pavements	vements				1 (
Redo R Review Previous	Facility	(-												2	N	(1763
Station Test Load Deflection 0, miles, at AC Surface Hoperature S-Day Hean Shean Shear Healbar S-Day Hean Born Correction Shearest Healbar State 1, 10 decision 0, miles, at Shearest Temperature Temp	Branch:	}	8							-				Pa	402	
Service Test Load Deflection 3, mils, at Manage Lure Imperature Than Single Confection Number Number (Alba Garden Confection Alba) and the military of the miller of the military of the military of the military of the milit					i					Pavement	Previous 5-Day	Surface +				
Number N	Section	Station	Test	Load	Def 1e				AC Thickness						Temperature Correction Factor	Corrected DSM**
1173 327 6.94 7.3 38 1.6 6.7	Number	Number 3/ 3/ 4/	Number	kips	513	in.	111:	in.	2.0 %	-1N	1,	112.4	†	1969	0,96	668
262 6.34 7.3 25 1/6 0.7 56.27 4.3 2.4 1/1 0.6 26.6 4.3 2.4 1/4 0.6 26.6 7.4 6.2 2.2 1.0 26.7 6.3 6.3 1.4 0.7 26.7 6.3 6.3 1.4 0.7 26.8 6.9 1.2 1.2 0.2 26.8 6.9 1.2 1.2 0.2 26.8 6.9 1.2 0.4 26.8 6.9 1.4 26.8 6.9 1.4 26.8 6.8 1.4 26.8 6.8 1.4 26.8 6.8 1.4 26.8 6.8 1.4	*	1// 87	37,	5.19	5.2	4.3	1,3	0,0	_	J			H			
26.6 6.96 6.3 3.8 1.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7									-							
\$\frac{6.25}{6.25} \frac{4.3}{2.5} 4.3		36128	267	6.96	ì	38	1.6	6.7						288		756
266. 7.14 62. 2.2 1.2 1.0 6.7 6.0 6.00 6.00 6.00 6.00 6.00 6.00				5.02	1	2.4	1	0.0		+	+	+	+	1		
246. 7.14 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2						}	1	1	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	+	1	1		100
266 7.14 62 4.0 2.0 1.0 266 7.14 62 4.0 2.0 1.0 267 6.13 6.2 3.4 1.4 6.4 268 7.23 3.4 1.4 6.4 268 7.23 3.4 7.4 6.4 268 7.23 3.4 7.4 6.4 260 7.03 3.5 3.4 7.7 7.3 260 7.03 3.5 3.4 7.7 7.3 260 7.03 3.5 3.4 7.7 7.3 261 7.03 3.5 3.4 7.7 7.3 262 7.03 3.5 3.4 7.7 7.3 263 7.11 1.07 6.1 7.0 1.4 264 7.03 3.5 3.7 7.1 1.2 265 7.11 1.07 6.1 7.0 1.4 267 7.11 1.07 6.1 7.0 1.4 268 7.11 1.07 7.1 7.2 268 7.11 1.07 7.1 7.2 269 7.11 1.07 7.1 7.2 260 7.11 1.07 7.1 7.2 261 7.11 1.07 7.1 7.2 262 7.11 1.07 7.1 7.2 263 7.11 1.07 7.1 7.2 264 7.11 1.07 7.1 7.1 7.1 265 7.11 1.07 7.1 7.1 7.1 267 7.11 1.07 7.1 7.1 7.1 268 7.11 1.07 7.1 7.1 7.1 268 7.11 1.07 7.1 7.1 7.1 269 7.11 1.07 7.1 7.1 7.1 260 7.11 1.07 7.1 7.1 7.1 260 7.11 1.07 7.1 7.1 7.1 260 7.11 1.07 7.1 7.1 260 7.11 1.07 7.1 7.1 260 7.11 1.07 7.1 7.1 260 7.11 1.07 7.1 7.1 260 7.11 1.07 7.1 7.1 260 7.11 1.07 7.1 7.1 260 7.11 1.07 7.1 7.1 260 7.11 1.07 7.1 7.1 260 7.11 1.07 7.1 7.1 260 7.11 1.07 7.1		35,15	197	6.35		2,3	07		+	+	1	+	1	300	-	350
226 7.14 6.2 6.0 6.0 1.0 1.0 5.74 1.29 6.3 1.1 6.5 3.4 1.2 225 7.03 2.6 4.7 2.0 1.1 225 7.03 2.6 4.7 2.0 1.1 226 7.03 2.6 4.7 2.0 1.1 227 7.03 2.8 2.4 2.7 1.2 228 7.03 2.8 2.4 2.7 1.2 220 7.03 2.8 2.4 2.7 1.2 220 7.03 2.8 2.4 2.7 1.2 220 7.03 2.8 2.4 2.7 1.2 220 7.03 2.8 2.4 2.7 1.2 220 7.03 2.8 2.4 2.7 1.3 220 7.03 2.8 2.8 2.8 1.3 220 7.03 2.8 2.8 2.8 1.3 220 7.03 2.8 2.8 2.8 1.3 220 7.03 2.8 2.8 2.8 1.3 220 7.03 2.8 2.8 2.8 1.3 220 7.03 2.8 2.8 2.8 1.3 220 7.03 2.8 2.8 2.8 2.8 1.3 230 7.03 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8				4.75		127		, , ,	-	-		+	-			
265		28+12	256	7.14		,	2.0	1.0	-	-	-	-	5	200		460
265				61.5		1 1	1.2				_					
265													-			
205 7.03 3.6 4.7 3.0 1.2 1.1 5.1 5.0 5.4 6.8 5.4 6.8 5.0 1.2 1.1 5.2 5.4 6.8 5.4 6.8 5.4 6.8 5.4 6.8 5.4 6.8 5.4 6.8 5.4 6.8 5.4 6.8 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4		40,000	861	66.3	۱٦	6.5	34	8"					1	274		55/
205 7.03 7.6 4.7 2.0 11 127 5.02 6.3 3.4 1.4 6.8 5.02 6.3 2.4 1.5 0.8 204 6.95 2.2 2.3 1.1 205 7.04 6.7 5.8 1.2 1.3 206 7.05 13.8 2.4 2.7 1.3 207 7.05 13.8 2.4 2.7 1.3 208 7.07 6.1 5.0 1.4 5.03 6.1 5.1 1.2 5.03 6.1 5.1 1.2 5.05 4.1 5.1 1.2 5.05 4.1 5.1 1.2 5.05 4.2 5.1 1.2 5.05 4.2 5.2 1.3 4 4.7 5.4 5.4 1.2 5.05 4.2 5.2 2.3 1.3 4 4.7 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4				5.04	: t	3.6	3.5	7.5	-			+	1	1	+	
205 7.03 7.6 4.7 2.0 4.1 172 6.93 7.6 4.7 2.0 4.1 5.04 6.95 9.8 7.3 2.3 7.1 5.04 6.95 9.8 7.3 2.3 7.1 207 7.05 7.2 7.8 7.0 208 7.05 7.0 7.0 7.0 7.0 5.05 7.1 7.2 7.2 7.3 5.05 7.1 7.2 7.3 7.2 7.3 5.05 7.1 7.2 7.3 7.2 7.3 5.05 7.1 7.2 7.3 7.2 7.3 5.05 7.1 7.2 7.3 7.3 7.4 5.05 7.1 7.2 7.3 7.3 7.4 5.05 7.1 7.2 7.3 7.3 7.4 5.05 7.1 7.2 7.3 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5					Į			1	+	+	+	+	+	1		
26.4 6.35 42.4 5.8 2.1 4.1 6.8 26.4 6.35 42.8 7.3 2.3 1.1 26.6 6.35 42.8 7.3 6.5 26.6 7.08 13.8 2.4 2.7 1.3 26.7 7.08 13.8 2.4 2.7 1.3 26.8 7.0 1.8 7.9 1.8 1.0 26.1 7.08 14.8 4.6 3.1 1.2 26.1 7.08 14.8 4.6 3.1 1.2 26.2 6.10 6.1 6.2 2.3 4 4 1.3 26.3 6.10 6.1 6.2 2.3 4 4 1.3 26.4 6.10 6.1 6.2 2.3 4 4 1.3 26.5 6.10 6.1 6.2 2.3 4 4 1.3 26.5 6.10 6.1 6.2 2.3 4 4 1.3 26.5 6.10 6.1 6.2 2.3 4 4 1.3 26.5 6.10 6.1 6.2 2.3 4 4 1.3 27.5 6.10 6.10 6.10 6.10 27.5 6.10 6.10 6.10 27.5 6.10 6.10 6.10 27.5 6.10 6.10 6.10 27.5 6.10 6.10 6.10 27.5 6.10 6.10 6.10 27.5 6.10 6.10 27.5 6.10 6.10 27.5 6.10 6.10 27.5 6.10 6.10 27.5 6.10 6.10 27.5 6.10 6.10 27.5 6.10 6.10 27.5 6.10 6.10 27.5 6		20126	205	7.03	- 1	47	377	1	+	+	+	+	1	27%		5.20
26.4 6.93 16.3 5.8 2.1 3.1 1.2 6.8 2.6 2.8 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7				5.02	4	37.4	1:4	6.8	1	+	-	+	+	1		
26.4 6.95 9.8 7.3 2.3 1.7 26.4 6.95 9.8 7.3 6.7 26.5 7.09 13.6 7.4 2.7 1.3 26.5 7.09 13.6 7.4 2.7 1.3 26.5 7.09 13.6 7.4 2.7 1.3 26.7 7.09 13.6 7.4 2.7 1.3 26.7 7.0 6.7 6.7 6.7 1.0 26.8 7.1 6.7 6.1 2.6 1.4 20.7 7.05 14.5 4.6 7.1 1.2 20.7 7.05 14.5 4.6 7.1 1.2 20.7 7.05 14.5 4.6 7.1 1.2 20.7 7.05 14.5 6.2 7.1 1.2 20.7 7.05 14.5 6.2 7.1 1.2 20.7 7.05 14.5 6.2 7.1 1.2 20.7 7.05 14.5 7.2 1.3 20.7 7.05 14.5 6.2 7.3 1.4 20.7 7.05 14.5 6.2 7.3 1.4 20.7 7.05 14.5 6.2 7.3 1.4 20.7 7.05 14.5 6.2 7.3 1.4 20.7 7.05 14.5 6.2 7.3 1.4 20.7 7.05 14.5 6.2 7.3 1.4 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 1.3 20.7 7.05 14.5 7.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14		100	56.	6.5.	- 1		T	T	-	+	-	+	+	777		120
204 6.95 9.8 7.3 2.3 1.7 205 7.08 13.8 2.4 2.7 1.3 205 7.09 13.8 2.4 2.7 1.3 207 7.09 13.8 2.4 2.7 1.4 20.0 5.05 14.8 2.6 1.4 20.0 5.05 14.8 2.6 1.4 20.0 5.05 14.8 2.6 1.4 20.0 5.05 14.8 2.6 1.4 20.0 5.05 14.8 2.6 1.7 20.0 6.90 14.9 5.0 1.7 20.0 6.90 14.9 2.5 1.5 1.7 20.0 6.90 14.9 2.5 1.5 1.7 20.0 6.90 14.9 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1		26163		27	۲	7	1	To	+		-	-	1	1		2002
200 7.08 13.8 2.4 2.7 1.3 1.1 200 2.00 2.00 2.00 2.00 2.00 2.00 2				2/6	4		43	6:3	-	+	-	-	-			
2cc 7.08 13.8 2.4 2.7 1.3		46.24	264	6.95	1	23		1.1						727		698
20.2 5.12 9.8 7.4 2.7 1.3 4 470 470 470 470 470 470 470 470 470 4				33.5	1 1	8.5	3"	0.7					+	1		
203 7.11 16.7 6.1 2.16 1.14 2.2			,	,	_ L		ſ	1	+	+	+	+	1	1		(1)
203 7.11 16.7 6.1 2.6 1.4 201 7.05 14.5 4.6 3.1 1.2 202 5.05 14.5 4.6 3.1 1.2 3.02 6.30 12.1 1.2 4.97 6.2 5.5 2.5 1.5 4.97 6.2 5.5 2.5 1.5 4.97 6.2 5.5 2.5 1.5		247.56	337	500	_1_	100	1		+	+	+	+	+	+ 22		77,5
203 7.11 16.7 6.1 2.6 1.4 201 705 14.5 4.6 3.1 1.2 202 5.05 12.2 3.7 2.1 1.2 3.02 6.30 12.1 4.97 6.2 5.5 1.3 4 4.95 8				3	₹.			3:	-	-	-	-	-			
201 705 14.5 4.6 3.1 4.2 5.04 6.16 12.1 4.2 5.04 6.16 12.1 5.3 4 4 45.6 = ENJ OF 18.9 8		44+35	203	71.2	10.7	6.7	2,6	11.4						242		565
201 705 14.5 4.6 3.1 1.2 5.202 6.10 12.1 1.2 5.302 6.10 12.1 1.2 4 4 45.60 5.5 4 50.80 8				5.03	6.3	7.3	37	7.0					+	1		
5 300 6.10 12.1 1.2 4 4.15 5.3 4 4 4.15 5.3 4 4 4.15 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.				1	1		1		+	+	+	+	+	1000		27.5
362 6.16 (21) 6.0 2.2 1.3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		13+32	707	4.05	3 6	30	2.1	17,	-	+	-	_	-			300
362 6.10 (21) 6.0 2.2 7.3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					,											
8.2 5.5 2.5 15 4 Keeg = EWIS OF SCHID		55+34	3.25	6.90	151	6.0		2.3	->	*	*	-3	1	435	*	
ETCC - EN LINE				4.77		5.5	1		},	370	ł		+	+		
									ŀ	1,1	ł		1		T	
		ברובה האו		radmon	ברת ב	רחונבו	not.	. 101 .								

Figure A1. (Concluded)

TEMPERATURE CORRECTION FACTOR COMPUTATION SHEET* Facility: WES Branch: RORD B Section: 1 Stations 0+00 to 20+00 AND 2 Stations 20+00 to 25+00 Date: 2 March 1983 Time: 0900 - 1000 55.3 °F 1. Previous 5-day mean air temperature: 57.0 °F 2. Pavement surface temperature: 3. Pavement surface plus previous 5-day //2.3 °F mean air temperature: <u>3.0</u>in. 4. Thickness of AC layer:* 5. Mid-depth of AC layer: <u>/.5</u>in. 57.0 °F 6. Temperature at surface of AC layer: 60.5 °F 7. Temperature at mid-depth of AC layer: 8. Temperature at bottom of AC layer: *585* °F *58.7* °F 9. Mean pavement temperature:

0.95

EQUATIONS: Line 3 = line 1 + line 2

10. DSM correction factor:

Line 5 = line $4 \div 2$ Line 9 = (line 6 + line 7 + line 8)/3

Line 10: Determine from DSM correction factor chart

(Figure 28, main text)

* Pavement thicknesses less than 3 in. are not corrected for temperature effects.

Figure A2. Example temperature correction factor calculation

DSM, which is recorded in the last column of the data sheet.

Selecting representative DSM values

7. The temperature corrected DSM values are plotted in profile form as shown in Figure A3. The mean DSM and standard deviation for Section 1 is calculated and marked on the DSM profile. The DSM values for Section 2 are variable, and this section was divided into four subsections based on the relative DSM values. The mean DSM and standard deviation for each subsection were calculated and marked on the DSM profile.

Evaluation of Existing Pavement, Section 1

Determine number of allowable standard axle load passes (ASALP)

8. The mean DSM minus one standard deviation $(\bar{x} - \sigma)$ for Section 1 is 525 kips/in.

ASALP = antilog
$$[0.0169 \times (DSM) - 0.2919]$$
 (8, main text)
ASALP = antilog $[0.0169 \times (525) - 0.2919]$
ASALP = antilog $[8.5806]$
ASALP = 3.81×10^8 passes

Convert to allowable daily traffic number (ADTN)

$$ADTN = \frac{ASALP}{7.300}$$

ADTN =
$$\frac{3.81 \times 10^8}{7,300}$$

$$ADTN = 52,153$$

Compare ADTN with current daily traffic number (CDTN)

Figure A3. Example DSM profile, flexible pavement

Evaluation of Existing Pavement, Section 2B

Determine the number of allowable standard axle load passes (ASALP)

9. The mean DSM minus one standard deviation $(\bar{x} - \sigma)$ for Section 2-B is 392 kips/in.

ASALP = antilog
$$[0.0169 \times (DSM) - 0.2919]$$
 (8, main text)
ASALP = antilog $[0.0169 \times (392) - 0.2919]$
ASALP = antilog $[6.3329]$
ASALP = 2.15×10^6 passes

Convert ASALP to allowable daily traffic number (ADTN)

$$ADTN = \frac{ASALP}{7,300}$$

ADTN =
$$\frac{2.15 \times 10^6}{7,300}$$

$$ADTN = 295$$

Compare ADTN with current daily traffic number (CDTN)

$$ADTN = 295 < CDTN = 423$$

No, pavement is not adequate

Pavement Overlay Thickness Design, Section 2B

10. Since the ADTN for Section 2B was less than the CDTN, a strengthening overlay is required.

Compute the total equivalent pavement thickness $T_{\mbox{EQ}}$

11. The existing pavement is first converted to total equivalent

subbase T_s , using the appropriate equivalency factors selected from Table 7 (main text).

Material	Thickness in.		Equivalency Factor		Equivalent Subbase Thickness in.
AC	3.0	×	2.30	=	6.90
Crushed stone	6.0	×	2.00	=	12.00
Clay gravel	6.0	×	1.00	=	6.00
			T	=	24.90

12. The total equivalent subbase thickness (inches), $T_s = 24.90$, is then converted to the total equivalent pavement section thickness T_{EO} .

$$T_{EQ} = T_s - 8.55$$
 (3, main text)
 $T_{EQ} = 24.90 - 8.55$
 $T_{EQ} = 16.35 in.$

Determine the required pavement thickness $T_{\mbox{\scriptsize R}}$

13. Enter the design curves (Figure 32) with the number of allowable SAL passes (ASALP = 2.15×10^6) and the equivalent thickness ($T_{EQ} = 16.35$ in.) to determine the effective subgrade CBR.

$$CBR = 5.7$$

14. Reenter the design curves (Figure 32) with the estimated future traffic (5,000,000 passes) and the 5.7 CBR to determine the required thickness $\rm T_{r}$.

$$T_{r} = 17.2 \text{ in.}$$

Compute the overlay thickness required

$$T_{o} = \frac{T_{r} - T_{EQ}}{2.30}$$

$$T_{o} = \frac{17.2 - 16.35}{2.30} = \frac{0.85}{2.3}$$

$$T_{o} = 0.37 \text{ in.}$$
(13)

Use $T_0 = 1.5$ in. minimum recommended overlay

APPENDIX B

EXAMPLE EVALUATION AND OVERLAY DESIGN, RIGID PAVEMENTS

Required Information and Test Data

1. A nondestructive pavement evaluation and overlay design are to be made on a section of roadway for the following conditions:

Pavement structure

<u>Layer</u>	<u>Material</u>	Thickness, in.
Surface	PCC	8
Base	Clay gravel	6
Subgrade	Sand clay	

Traffic data, (Daily traffic obtained from traffic count)

Group	Vehicle Type	Average Daily Traffic/Lane
1	Passenger car and panel and pickup trucks	100
2	2-axle trucks and buses Forklift trucks, <5 kips Track vehicles, <20 kips	10 0 0
3	3-, 4-, and 5-axle trucks Forklift trucks, 5-10 kips Track vehicles, 20-40 kips	35 0 1
4	Forklift trucks, 10-15 kips (15-kip gross weight) Track vehicles, 40-60 kips	1

Convert current traffic to standard axle load passes

2. The current average daily traffic is converted to equivalent standard axle load passes using the equivalent operation factors in Tables 11 and 12, main text.

Group	Vehicle Type	Vehicles/Day	Equivalent Operations Factors	Standard Axle Load Passes
1	Passenger cars and panel and pickup trucks	100	0.025*	2.5
2	2-axle trucks	10	3.5*	35
3	3-, 4-, and 5-axle trucks (40-kip gross weight)	35	11.0**	385
	Forklift trucks, <5 kips	0		
	Track vehicles, <20 kips	0		
4	Forklift trucks, 10-15 kips (15-kip gross weight)	1	0.42**	0.4
	Track vehicles, 40-60 kips	0		
Total e	quivalent standard axle load pa	sses		423
Current	daily traffic number = CDTN =	423		

^{*} Equivalent operations factor from Table 12.

Estimate of future traffic for overlay design

3. Based on a recent traffic-volume study it is estimated that 5,000,000 equivalent standard axle load passes will use this roadway in the next 20 years.

Test data

4. The NODET test data obtained on the roadway are transferred from the data tape to the NODET rigid pavement data sheet as shown in Figure B1. Notice that two lines are required for each test location on this data sheet to facilitate the radius of relative stiffness calculation. The 7-kip load data are normally recorded on the first line and the 5-kip data recorded on the second line.

Calculation of radius of relative stiffness, &

5. The radius of relative stiffness, ℓ , is determined from Figure 31 using the deflection ratio ($\Delta 48/\Delta 18$) calculated from the NODET load-deflection data, as described in paragraph 71, and recorded in the proper column of the NDT data sheet shown in Figure B1.

Selecting representative DSM and ℓ values

6. The DSM and ℓ values are plotted in profile form as shown in

^{**} Equivalent operations factor from Table 11.

MICROCOPY RESOLUTION TEST CHART NATIONAL HOLDER OF STANLAHOOD HOLDER

					NDT	NDI Data Sheet:	heet:	Rigid Pavement	/ement		
Facility:										Date:	10 MARCH 1983
Branch:	MISSOUR	JURE	80,00							Page: /	i
									Deflection	Radius of	
				Defle	Deflection	Δ, mils	sat		Ratio	Relative	
Section	Station	Test*	Load	0	18	30	87	DSM**	√85.	Stiffness, in.	
Number	Number	Number	kips	in.	in,	in.	in.	kips/in.	7 18"‡	x	Remarks
7	01/2	22	6.95	4.8	2.9	2.6	6.1	1307	0.66	43.0	
			4.99	3.3	2.1	1.8	1.3				
-											
}	1712	26	6.91	4.7	2.6	2.9	2.0	12/2	0.77	59.0	
			4.97	12	67	1.7	3.7				
}											
	2+12	22	6.93	3.9	2.6	4.5	2.1	1443	0.81	029	
			4.91	5.5	6.7	1.7	2.1				
}											
	3+12	28	6.95	5.0	3.0	2,6	6.1	3661	290	408	
			5.04	3.5	2.1	1.8	1.3		4		
	4112	29	6.85	3.5	80.13	2.5	2.0	1446	120	49.5	
			4.97	2.2	1.9	1.7	4.1				
2	5412	30	6.94	4.8	2.6	2.4	8/	168	0.69	47.0	
			4.98	2.6	1.8	1.6	77				
	2119	3/	6.89	6.0	2.2	2.0	1.5	899	0.68	46.0	
			5.02	1.4	1.7	1.4	//				
	7412	32	6.95	5.8	2.0	1.8	1.4	1021	0.70	48.0	
			5.01	3,9	6.7	7.7	1.0				
	8112	33	26.9	4.9	2.8	2.6	2.2	506	0.79	63.0	
			5.01	2.8	6.1	٠. 00	51				
	st re	ires two	Lines	of this	s form.	ند					
= WSO =	[(F,	$- F_{\varsigma})/(D_{\gamma}$	$((D_1 - D_2))$	× 1000							
1 + 100 + 1,	Deflection wat:		, ,	- 1 O C may be defined as	•						

Figure B1. Example NDT rigid pavement data sheet

t Deflection ratio is calculated for 7.0-kip load only.

	۲,	f 2				Remarks																					
Rigid Pavement Date:	`	Page: ≥ of	Radius of	Relative	ss, in.	8	37.9		24.6		29.3		27.9			44.8		33.0		43.9							
			Deflection	Ratio	₩ 7	△ 18"‡	0.60		0.38		0.48		0.45			0.67		0.54		0.66							
					DSM**	kips/in.	21/5		276		229		588			006		1010		887							
				s, at	87	in.	1.2	0.0	2.1	1.6	3.0	2.2	3.9	5.8		2.9	2.7	2.7	6.1	0.0	2,8						
NDT Data Sheet:				Δ, mils,	30	in.	1.7	1.2	5.7	2.7	4.5	3.6	6.3	4.5		5.0	3.5	4.0	2.8	5.3	3.7						
I DOL				Deflection	18	in.	2.0	1.4	5.5	3.8	6.3	4.5	6.2	6.2		5.8	4.1	5.0	3.5	6.1	4.3						
				Def1e	0	in.	2.0	4.3	8.3	5.8	10.6	4.7	9://	8.2		7.3	5.1	6.9	4.9	2.9	5.6						
		8000			Load	kips	6.94	5.01	66.9	5.05	7,03	5.04	7.07	5.07	L	2.08	5,10	2.06	5.04	7.01	5.06		_	_	-	_	_
		7			Test*	Number	34		35		3%		37			38		39		40							
	SAM	1			Station	Number	9+12		10+12		11412		12+12			13+12		14+12		15+12							
	Facility:	Branch:			Section	Number	7																				

* One test requires two lines of this form. ** DSM = $[(F_7 - F_5)/(D_7 - D_5)] \times 1000$.

† Deflection ratio is calculated for 7.0-kip load only.

Figure B1. (Concluded)

Figure B2. The mean DSM and standard deviation for each section were calculated and marked on the DSM profile. The average ℓ for each section was also calculated and noted on the plot.

Evaluation of Existing Pavement, Section 2

Determine the number of allowable standard axle load passes (ASALP)

- 7. The mean DSM minus one standard deviation $(\bar{x} \sigma)$ for Section 2 is 666 kips/in. The average ℓ $(\bar{\ell})$ is 40.5 in.
- 8. Enter the rigid pavement evaluation chart (Figure 33, main text) with the mean DSM and ℓ values.

Mean DSM = 666 kips/in.

Mean $\ell = 40.5$ in.

ASALP = 1×10^6 (from Figure 33, main text)

Convert ASALP to allowable daily traffic number (ADTN)

ADTN =
$$\frac{ASALP}{7,300}$$

$$ADTN = \frac{1 \times 10^6}{7,300}$$

ADTN = 137

Compare ADTN with current daily traffic number (CDTN)

Is ADTN > CDTN?

ADTN = 137 < CDTN = 423

No, pavement is not adequate

Figure B2. Example DSM profile, rigid pavement

Pavement Overlay Thickness Design, Section 2

9. Since the ADTN for Section 2 is less than the CDTN, a strengthening overlay is required. The overlay design may be for an AC overlay or a PCC overlay.

Determine the required pavement thickness, $h_{\ensuremath{d}}$

10. Enter the rigid pavement design chart (Figure 34, main text) with the existing thickness of 8 in. and the number of allowable passes, 1.0×10^6 . Move vertically to the estimated future pass level, 5×10^6 passes, and determine the required thickness, h_d .

$$h_{d} = 8.6 \text{ in.}$$

Check the flexural strength

11. Compute the modulus of subgrade reaction, k, for the 8-in. pavement thickness and the 40.5-in. radius of relative stiffness.

$$k = 341005.97 \frac{(h)^3}{(\ell \times 0.7)^4}$$
 (14, main text)

$$k = 341005.97 \frac{(8)^3}{(40.5 \times 0.7)^4}$$

$$k = 270 \text{ pci}$$

12. Use the rigid pavement design chart to check the flexural strength. Enter with the existing thickness, 8 in., move to the allowable pass level, 1.0×10^6 , then move vertically to the k determined above (270), then left to the flexural strength.

$$R = 512 psi$$

13. The flexural strength is within the expected ranges.

Compute thickness of flexible overlay

14. The required AC overlay (t_o) is computed as follows:

$$t_o = 2.5 \text{ (Fh}_d - C_b h)$$
 (15, main text)
 $t_o = 2.5 \text{ [(0.92)(8.6) - (0.90)(8.0)]}$
 $t_o = 2.5 \text{ [7.91 - 7.2]}$
 $t_o = 2.5 \text{ (0.71)}$
 $t_o = 1.8 \text{ in.}$

Use 4.0 in in accordance with TM 5-822-6, paragraph 13.8.3 (Headquarters, Department of the Army 1977).

where F = 0.92 from Figure 35 and $C_h = 0.90$.

Compute thickness of rigid overlay

15. The thickness of PCC overlay to be placed directly on the existing rigid pavement is computed in the following manner:

$$h_o = {}^{1.4}\sqrt{(h_d)^{1.4} - C_r(h)^{1.4}}$$

$$h_o = {}^{1.4}\sqrt{(8.6)^{1.4} - (0.75)(8)^{1.4}}$$

$$h_o = 3.8 \text{ in.}$$

Use 6.0 in. in accordance with TM 5-822-6, paragraph 13.4.2 (Headquarters, Department of the Army 1977).

where $C_r = 0.75$

Compute thickness of rigid overlay with a leveling or bond-breaking course

$$h_{o} = \sqrt{h_{d}^{2} - C_{r}h^{2}}$$

$$h_{o} = \sqrt{(8.6)^{2} - (0.75)(8)^{2}}$$

$$h_{o} = 5.1 \text{ in.}$$

Use 6.0 in accordance with TM 5-822-6, paragraph 13.4.2 (Headquarters, Department of the Army 1977).

APPENDIX C

INSTRUCTION MANUAL FOR THE NODET

by

Darrell E. Elsea, Patrick S. McCaffrey, Jr.

Pavement Systems Division
Geotechnical Laboratory
U. S. Army Engineer Waterways Experiment Station
Vicksburg, Mississippi

Background

- 1. Facility Engineers (FE's) are responsible for the maintenance, repair, and rehabilitation of roads, streets, and airfields on Army installations. The ability to predict maintenance requirements and to evaluate load-carrying capabilities of these pavements would improve the FE's efficiency through proper allocation of available fundings.
- 2. To determine the load-carrying capability of these pavements, the U. S. Army Facilities Engineering Support Agency has obtained a Model 2008 Road-Rater. The Road-Rator is an electrohydraulic (electronically controlled hydraulic force generator) nondestructive test device, generally referred to as the NODET. The NODET applies a vibratory sinusoidal force to the pavement surface and measures the resulting response. The force is measured with three load cells mounted on an 18-in.-diam plate that contacts the pavement surface. Deflections are monitored with velocity sensors that measure velocity of the pavement surface. These velocities are integrated electronically to produce deflections.
- 3. The NODET is contained in a tandem-axle trailer which is towed by a crew-cab pickup truck. A gasoline engine supports the hydraulic and electrical systems. The force-generating system consists of a 4000-lb reaction mass, three load cells, a hydraulic actuator, and air springs for equal load distribution. Figure C1 is a schematic diagram of the force-generating system. A digital control box is connected to the trailer with cables.
- 4. The NODET is designed to obtain load-deflection measurements of any pavement surface accessible to it and the tow vehicle. After initial setup, successive measurements can be made by the operator(s) without leaving the tow vehicle.

Purpose and Scope

5. This instruction manual describes the operation, calibration, and maintenance procedures for the NODET. It applies only to the operation of the NODET device and does not contain methods for analyzing the data collected. This manual is intended to supplement the owner's manuals for component parts of the NODET.

Figure C1. Schematic of the force-generating system

Digital Instrumentation System

- 6. The NODET digital instrumentation system console contains all the instrumentation controls and readouts necessary for operation. The console includes 16 pushbutton switches arranged in a four by four matrix. Each switch is labeled with an identification of its function. The switch faces are illuminated when active. A layout of the control console is shown in Figure C2, and a description of each control switch is listed below. SAFE
- 7. When depressed, this switch renders all operating functions inactive and will automatically raise the force generator to its fully elevated position. When depressed, the switch flashes green. When the switch is not depressed and the force generator is in the fully elevated position, the switch is lighted constantly green and a safety beeper within the console will sound to indicate the SAFE switch is not engaged. When the force generator is not fully elevated, this switch lamp is off, the UNSAFE switch glows red, and

Figure C2. Layout of instrumentation control console

the beeper frequency increases. The SAFE switch should be depressed when moving the tow vehicle. Just above the switch matrix, there is an on-off switch to make the beeper operational.

UNSAFE

8. This switch glows red any time the force generator is not fully elevated. Depressing this switch will stop the automatic cycle at any point and clear all system functions. When the UNSAFE switch is illuminated, the tow vehicle should <u>never</u> be moved.

POWER

9. This switch, when depressed, glows white indicating the system is active. When released, the system is off.

START

10. When depressed, this switch activates the engine starter.

DEFL. 1 through DEFL. 4

11. These switches, when depressed individually, glow white, indicating that the panel meter display is the peak-to-peak deflection, in mils, of the pavement surface at the location of the appropriate numbered velocity sensor.

PRINT

12. When depressed, this switch causes the system to scan and print the following seven functions: (a) identification number, (b) frequency, (c) force, (d) deflection 1, (e) deflection 2, (f) deflection 3, and (g) deflection 4.

FORCE

- 13. When depressed, this switch glows white indicating the peak-to-peak dynamic force, in kips, is displayed on the panel meter.

 FREQ.
- 14. When depressed, this switch glows white indicating that the frequency of dynamic loading, in Hertz, is displayed on the panel meter.

 AUTO MODE
- 15. When depressed, this switch is staged for automatic operation, and a cycle may then be initiated by depressing the CYCLE switch.

 CYCLE
- 16. When in the automatic mode, depressing the CYCLE switch starts the cycle sequence which (a) lowers the force generator, (b) activates the vibrator to the preset levels of force and frequency, (c) scans and prints, and (d) elevates the force generator to the safe (travel) position.

LOWER

- $\,$ 17. This switch, when depressed and held, lowers the force generator. RAISE
- 18. This switch, when depressed and held, raises the force generator. VIBR.
- 19. This switch, when depressed, activates the hydraulic vibrator to preset levels of force and frequency. It must be noted that before the VIBR. switch is depressed the FORCE CALIBRATION switch, located in the center of the console, must be in the RUN position.

Frequency knob (frequency control potentiometer)

20. When the FREQ. switch is active, the frequency of the dynamic loading is displayed on the panel meter. The force generator does not need to be lowered nor vibrating to change frequency levels. Clockwise rotation of the control increases frequency. The minimum frequency of the NODET is 5 Hz, and the maximum frequency is 50 Hz.

Force knob (force control potentiometer)

- 21. This control is used to adjust the dynamic force. When the FORCE switch is activated and the force generator is down and vibrating, the level of peak-to-peak dynamic force input to the pavement surface is displayed on the panel meter. Clockwise rotation of this control increases force. The peak-to-peak (P-P) force output of the NODET ranges from 0 to 8,000 lb. Digital printer
- 22. The printer provides a permanent record of the test data. The printout format includes function identification, by channel number, as shown below.

Function	Channel No.	Data	Units
I. D. number	1	0036	
Force	2	3.93	kips P-P
Frequency	3	15.0	Hertz
Deflection	4	19.3	mils P-P
Deflection	5	18.1	mils P-P
Deflection	6	14.7	mils P-P
Deflection	7	9.8	mils P-P

Printer ADVANCE-REMOTE-PRINT switch

23. The printer controls are operated by a toggle switch located on the face of the printer. The switch is spring-centered in REMOTE position. When in this position, the printer is controlled electronically from within the console. When the switch is held in the ADVANCE position, the recording paper advances to provide space for handwritten notes. When the switch is pushed into the PRINT position, the single function displayed on the panel meter will be printed.

Thumb-wheel switch

24. The four-digit thumb-wheel switch is set by the operator to provide an identification number on the data printout. The setting will be printed on channel 1 of the printout on activation of the PRINT switch.

Digital panel meter

25. The panel meter provides a visual display of any of the test data, except I. D. number, by depressing the switch identified with the parameter of interest.

Force calibration

26. The force calibration portion of the console was added by the Instrumentation Services Division of WES to aid in the calibration of the NODET. The force calibration will be discussed in detail later in this manual.

Master switch

- 27. The electrical power is routed through a master switch which must be turned ON to enable the engine ignition and starter operation. This switch is located inside the NODET trailer, in the front left corner near the engine hour meter. The master switch should be turned off whenever the operator leaves the NODET (with the engine off) for any long period of time. Failure to turn off the master switch may result in a dead battery.

 Test jacks
- 28. A monitor junction containing 19 test jacks is located on the lower left on the control console. After removal of the dust cover, the following parameters of interest can be monitored with the aid of a digital multimeter.

Test Jack	Identifi- cation	Description
Α	V1	Raw signal from velocity sensor No. 1
В	V2	Raw signal from velocity sensor No. 2
С	V3	Raw signal from velocity sensor No. 3
D	V4	Raw signal from velocity sensor No. 4
E	F (input)	Raw signal from load cells
F	F (DC)	Force signal to panel meter
G	OSC (HI)	Frequency signal from control box to the mass actuator
Н	f (DC)	DC frequency signal to panel meter
J	D1 (+)	
K	+5 VDC	Power supply output
L	GND	Ground
M	D1 (-)	
P	-15 VDC	Power supply output
T	+15 VDC	Power supply output
v	GND	Ground

Operational Preparation

29. All steps necessary to prepare the NODET for operation are described below. Before beginning operation the trailer must be attached to a properly prepared tow vehicle by hitch, safety chains, breakaway brakes, and electrical connections for trailer and brake lights.

Control console hookup

30. Remove the console cover and place the console on its stand in the floor of the tow vehicle. Attach the three control cables to their connectors on the back of the console. Remove the control cable receptacle covers from the rear of the tow vehicle and the front of the NODET and store them. (These covers must be in place at all times when the truck-trailer interconnect cables are not connected to prevent moisture from entering the NODET electrical system.) Attach the truck-trailer interconnect cables to the connectors near the truck bumper and the left front of the trailer, taking care to run the cable through the cable clamps on the trailer tongue.

Velocity sensor hookup

31. The four velocity sensors are marked to indicate their relative position on the NODET, with No. 1 being at the center of the force generator contact plate. Screw sensor No. 1 into the top of the contact plate. The remaining three velocity sensors are suspended from the sensor positioning device under the rear center of the trailer, at distances of 18, 30, and 48 in. from the center of the plate. Route the velocity sensor cables through the force generator opening in the bottom of the trailer in such a manner that they will not be damaged during the operation. A junction box is located in the rear of the trailer just forward of the left side of the fuel tank. Remove the dust covers from the connectors marked 1, 2, 3, and 4. Connect the velocity sensor cables to their respective connector.

Engine preparation

32. Normal engine checks should be made prior to starting the NODET engine. The fuel filler opening and fuel gage are both located on the tank at the rear of the trailer. The engine is located in the front of the trailer with the oil dipstick located on the right side of the engine. The hydraulic fluid reservoir is located in the right front of the trailer. Engine fuel and oil grades and hydraulic fluid specifications are given in the maintenance portion of this manual.

Starting the engine

33. Depress the POWER switch on the control console to its ON position. Move both the master switch and ignition switch on the engine control panel to the ON position. A choke control on the engine control panel can be used if necessary. Start the engine by depressing either the START switch on the control console or the starter button on the engine control panel. The choke control, if used, should be pushed into its run position as soon as possible. Allow the engine to run for 20 to 25 min to allow warmup of the hydraulic fluid and electronics before calibrating force.

Air springs

- 34. The NODET has eight air springs. Six of these are used to center the mass and transfer the dynamic force to the test surface. Figure Cl shows the position of the air springs. Three are located above and three below the mass. The upper air springs are manifolded together, as are the lower, to equalize the pressure and to provide only two valves for pressurization. Pressurize the lower set of air springs first, with the force generator in the raised position with all pressure off the upper air springs. The lower air springs are pressurized to 90 psi. After the lower air springs have been pressurized, lower the force generator to the ground. With the force generator in the down position, pressurize the upper air springs to 60 psi. Two automotive-type air valves for pressurizing the upper and lower air springs are located on the rear side of the force generator, along with an indicator for determining the mass position. After the lower and upper air springs have been pressurized to 90 and 60 psi, respectively, the reaction mass of the force generator should be in the center position. Recommended pressure should be maintained at all times for the NODET to work properly.
- 35. The two remaining air springs are located outboard of the force generator on the bottom left and right. These two air springs allow some of the trailer static weight to be transferred to the force generator and minimize vibrator feedback to the trailer. Each of these two air springs has its own air valve, located to the left and right of the force generator, and should be inflated at 40 to 50 psi (45 psi). Figure C3 shows the location of the air valves for pressurizing the air springs.
- 36. A 12-volt DC-powered air compressor is mounted in the rear of the trailer. It is switch-controlled directly off the engine battery. It

Figure C3. Location of air spring pressurization valves:
(1) left outboard, (2) upper mass, (3) lower mass,
(4) right outboard

should not be used unless the engine is running and should be turned off when pressurization of the air springs is complete.

Force Calibration

37. The force calibration of the NODET is very important for accurate pavement load and displacement measurements. The NODET was calibrated at WES by using three BLH load cells sandwiched between two 18-in.-diam steel plates. The NODET was then placed over this sandwich construction and run at frequency ranges of 5 to 50 Hz at 3,000 lb peak to peak. From these data, the value for force calibration is established.

Field force calibration procedures

38. The force calibration on the console has a three-position switch, which is labeled RUN, ZERO, and GAIN. To calibrate the force, the force generator must be in the SAFE position, and the engine should have been running 20 to 25 min. After the warmup period is complete, the following

steps must be taken for proper calibration:

- a. Depress the FORCE switch on the control console to display force calibration values on the panel meter.
- <u>b</u>. With the FORCE CAL. switch in the RUN position, the panel meter displays a value of 0.00 to 0.03. This value is the dynamic force output in the SAFE position.
- c. Set the FORCE CAL. switch to the ZERO position. The value on the panel meter should be the same as in Step b above. If there is a difference, a new ZERO value must be set. To do this, turn the ZERO trimpot one way or the other with a small screwdriver. Bring the panel meter reading toward 0.00; this is a nulling zero. The best calibration accuracy is with the trimpot turned as far clockwise as possible and still obtain a value of 0.00.
- d. Set the FORCE CAL. switch to the GAIN position. To set the force amplified gain, adjust the GAIN trimpot until the panel meter reads the laboratory calibration value of 9.70. This value is printed on the console above the panel meter. This value should be checked at WES annually.
- e. Set the FORCE CAL. switch to the RUN position.

After these steps have been completed, the force system is calibrated. These values should be checked several times a day, usually at midmorning, noon, and midafternoon.

Velocity Sensor Calibration

- 39. The velocity sensors were calibrated at WES by using a calibrated shake table. Each sensor was vibrated at known deflections, and the NODET electronics were adjusted to that deflection. The calibration of the velocity sensors should be checked at WES at regular intervals of 6 months or 600 operating hours, whichever comes first.
- 40. No field calibration procedure exists for the velocity sensors. One method of quickly checking the velocity sensors in the field is to place the sensors side by side on the contact plate. Then actuate the vibrator and monitor the deflection values. All velocity sensors should produce approximately the same deflections.
- 41. The velocity sensors are delicate instruments and should be detached and stored when the NODET is being transported.

Maintenance

Engine

42. The NODET is equipped with a Kohler Model K532, two-cylinder air-cooled engine. For details of the service schedule, the operator should consult the manufacturer's owner's manual. The operator should keep a log noting the date that maintenance or any other type of work is performed on the NODET. Original copies of the owner's manuals should be on file at the operators office, and copies of these manuals should be kept in the tow vehicle, assuming that the same tow vehicle will be used at all times.

Alternator

43. The NODET is equipped with an Onan alternator. For general information and the parts list, see the owner's manual.

Hydraulic fluid

- 44. The hydraulic fluid used in the NODET must meet the specification, Mil H5606. This is an aircraft hydraulic fluid with a red petroleum base. NO OTHER TYPE OF HYDRAULIC FLUID SHOULD BE USED. Damage will result if hydraulic fluid is substituted. Most airports or airfields have Mil H5606 hydraulic fluid.
- 45. The hydraulic system is equipped with a disposable filter and a pressure indicator located in the left front corner above the battery. The pressure indicator reads 0 psi when the filter is clean. As the pressure reaches 10 psi or after 100 hours of operation, the filter should be changed. The filter is the UCC brand, part No. UC-MS-1518-4-10.

Step-by-Step Setup Checklist

- 46. A step-by-step setup checklist is provided below for the convenience of the operator. Paragraph numbers indicate where detailed information may be found.
 - a. Connect the trailer to the tow vehicle and attach the safety chains, breakaway brakes, and electrical connections for the trailer and brake lights (paragraph 30).
 - b. Attach the three control cables to their connectors in the back of the control console (paragraph 30).
 - c. Attach the truck-trailer interconnect cables to the connectors on the truck bumper and the left front of the trailer (paragraph 30).

- d. Attach the four velocity transducers in their proper positions to the transducer positioning device under the rear center of the trailer. Connect the velocity transducer cables to the proper connector on the junction box located in the left rear of the trailer (paragraph 31).
- e. Make normal engine checks including fuel, engine oil, and hydraulic fluid (paragraph 32).
- f. Turn on NODET POWER switch and engine master switch (paragraph 33).
- g. Start the engine and run for 25 min to allow warmup of the hydraulic fluid and electronics (paragraph 33).
- h. Remove locking pins.
- \underline{i} . Pressurize outboard air springs to 45 psi (paragraphs 34-36).
- Release pressure from upper air springs (left valve) and pressurize lower air springs (right valve) to 90 psi (paragraphs 34-36).
- k. Lower force generator and pressurize upper air springs to 60 psi (paragraphs 34-36).
- 1. Perform force calibration with force generator fully elevated and in SAFE position (paragraphs 37-38).

Instructions for Using the Bidirectional Distance-Measuring Instrument

- 47. The NODET tow vehicle is equipped with a Nu-Metrics distance-measuring instrument (DMI) to accurately determine test locations. The DMI display and operating switches are located below the dash just to the right of the driver.
- 48. The DMI installed in the NODET tow vehicle is a precision electronic instrument designed for computing and displaying measurement data from mobile vehicles. To measure the distance traveled, sensing targets (which are attached to the tow vehicles front wheel rim) move past a sensing head creating electrical pulses. These pulses are conveyed to the DMI via an electrical cable where they are processed and displayed.

Functional controls

- 49. The DMI has four pushbutton switches, two toggle switches, and a series of four thumb-wheel switches. The functional control switches are:
 - ON/OFF Input power switch. This switch turns the unit on and off.
 - HOLD Holds all displayed data and stops the count.

- RESET Returns the display to zero.
- BI-DIR The bidirectional switch in the out position allows the unit to count additively. When the switch is depressed the unit counts subtractively.
 - DATA The data toggle switch is used for entering data via the thumb-wheel switches.
- SENSOR ON/OFF This toggle switch located on the lower dash to the left of the driver is used to activate the sensing head.
- THUMB-WHEEL SWITCHES The thumb-wheel switches located on the DMI unit are used for calibrating the DMI and for entering data.

Operation

- 50. <u>General</u>. The electronic distance-measuring instrument installed in the NODET tow vehicle is easy to operate. When using the DMI the distance, in feet, along the street can be measured starting from zero at some reference point, or a preestablished station number can be input into the system.
 - 51. The steps involved in using the DMI are:
 - <u>a</u>. Check to make sure the correct calibration program number is set in the thumb wheels (see Calibration).
 - b. Turn on the unit and sensing head switches.
 - \underline{c} . With the tow vehicle stationary, press the reset switch to clear the display.
 - d. Depress the HOLD switch to keep the display at zero.
 - e. Upon reaching the point where measurement is to begin, stop the front bumper, driver's door, center of the NODET wheels, or other convenient reference over the beginning point.
 - $\underline{\mathbf{f}}$. Release the HOLD switch and move forward. The display should now be counting additively.
 - g. When the end of the section to be measured is reached, depress the HOLD switch to stop the count.
- 52. <u>Using bidirectional switch</u>. The bidirectional switch permits distances to be subtracted from the displayed measurement. To activate the bidirectional feature press the BI-DIR switch. The display should now count subtractively as the vehicle moves forward. Remember to release the BI-DIR switch when you are ready to count additively again.
- 53. <u>Using data entry</u>. The data entry toggle switch along with the bidirectional switch allows arbitrary distances, such as a manually measured distance, to be added or subtracted from the display. The data entry function

is also used when measurements begin from some position other than zero. For example, to measure a road in stations, the starting station number is entered into the display; measurements are then made either forward or reverse to locate the next station number or to locate and display a point between stations. The procedure for adding a desired number in the display is:

- a. Stop the vehicle.
- b. Depress the HOLD switch.
- c. Dial the desired number into the thumb-wheel switches.
- d. Throw the toggle switch to the DATA position and then return to normal position. The sum of the initial display and the number entered in the thumb-wheel switches will now appear in the display.
- $\underline{\mathbf{e}}.$ Reenter the calibration program number into the thumb-wheel switches.
- f. Release the HOLD switch.
- g. Resume normal measurement.

To subtract a desired number, press the BI-DIR switch after Step \underline{b} above. Be sure to release the BI-DIR switch upon completing Step \underline{d} . Calibration

- 54. The DMI must be calibrated to ensure correct operation and accurate measurements. The tire pressure in the tow vehicle should be checked and, if necessary, adjusted to the optimum pressure recommended by the tire manufacturer. For accurate distance measurements, it is important that the tire pressure be maintained within ±2 lb of the tire pressure used to calibrate the DMI.
- 55. The first step in calibrating the DMI is to accurately measure a road course using a steel tape. For accurate calibration, the course distance should be a minimum of 1000 ft. It is recommended that permanent reference marks be established at the beginning and end of the course, to provide a permanent calibration course.
 - 56. The actual DMI calibration is performed as follows:
 - a. Drive the vehicle to the starting marker.
 - $\underline{\mathbf{b}}$. Depress the DMI power switch to ON and throw the sensing head toggle switch ON.
 - c. Set the thumb-wheel switch to 1000, with all the switches OUT except the power switch.
 - d. Depress the RESET button to zero the display.

- e. Drive the tow vehicle accurately along the measured course and stop exactly at the stop marker. Make positive starts and stops, DO NOT creep. Note the reading on the DMI, this is your calibration number. Drive the measured course several times. The calibration number should be the same each time. Remember to reset the display prior to driving the course.
- <u>f</u>. Using the 1000-ft calibration table (Table C1), find your calibration number and dial the corresponding Program Number into the thumb-wheel switches. The DMI is now calibrated and the Program Number should be posted on the vehicle dash for future reference. Greater accuracy can be achieved by measuring and driving a calibration course of more than 1000 ft, such as a course of 3000 ft. The calibration number is divided by 3 to enter the calibration chart.
- g. The DMI is now ready to measure distance in feet. Drive the calibration course a number of times. Be sure to start and stop positively without creeping. The DMI should display the actual footage of the course. If your count is 1 ft more or less than 1000 ft, reset the program number 1 digit higher for obtaining more footage, or 1 digit lower for less footage.

Example: Assume the program number is 0836 and over 1000 ft, you record 999 ft. Advance the program number 1 digit to 0837.

Speed is important in making measurements. Always try to measure within ±5 mph of the speed used in calibration.

57. The DMI can output units other than linear feet. To change the output to miles, meters, or square yards make the following modifications to the program numbers.

Miles and Ten-Thousandths of a Mile:

To measure in miles and ten-thousandths of a mile, divide the program number obtained for feet by 0.528. Dial the result into the thumb-wheel switches.

$$\frac{\text{Program No. (ft)}}{0.528} = \text{Prog. No. (miles and ten-thousandths of a mile)}$$

Meters:

To measure in meters multiply the program number obtained for feet by 0.3048. Enter the result into the thumb-wheel switches.

Program No. (ft) \times 0.3048 = Prog. No. (meters)

Square Yards:

Divide the width of the road by 9 and multiply times the program number obtained for feet.

$$\frac{\text{Road width (ft)}}{9} \times \text{Prog. No. (ft)} = \text{Prog. No. (sq yd)}$$

General Program Number:

$$\frac{\text{Desired reading} \times 1000}{\text{Actual DMI display}} = \text{Program Number (PRM)}$$

Installation and Troubleshooting

58. This section is intended only to be an introduction to the DMI and to give the user guidance in using the DMI that is installed in the NODET tow vehicle. Complete installation instructions, along with a troubleshooting guide, are contained in "Instruction Manual - Nu-Metrics Distance Measuring Instruments" by Nu-Metrics, Connellsville, PA.

Table C1

Calibration Table for DMI Programming (Computed for Calibration of Fixed Course Distance of 1000 ft)

Calibration	Program	Calibration	Program	Calibration	Program
75 ø	1.333	793	1.261	836	1.196
751	1.332	794	1.260	837	1.195
752	1.330	795	1.258	838	1.193
753	1.328	796	1.256	839	1.192
754	1.326	797	1.255	840	1.191
755	1.325	798	1.253	841	1.189
756	1.323	799	1.252	842	1.188
757	1.321	800	1.250	843	1.186
758	1.319	801	1.249	844	1.185
759	1.318	8#2	1.247	845	1.184
76 ø	1.316	8 ø 3	1.245	846	1.182
761	1.314	8Ø4	1.244	847	1.181
762	1.312	8Ø 5	1.242	848	1.179
763	1.311	8ø 6	1.241	849	1.178
764	1.3 # 9	8 ∮ 7	1.239	85₽	1.177
765	1.307	8#8	1.238	851	1.175
766	1.3∅6	8 ø 9	1.236	852	1.174
767	1.394	81 ø	1.235	853	1.172
768	1.302	811	1.233	854	1.171
769	1.300	812	1.232	855	1.170
779	1.299	813	1.23🛭	856	1.168
771	1.297	814	1.229	857	1.167
772	1.295	815	1.227	858	1.166
773	1.294	816	1.226	859	1.164
774	1.292	817	1.224	86₽	1.163
775	1.290	818	1.223	861	1.162
776	1.289	819	1.221	862	1.160
777	1.287	82 ø	1.22💋	863	1.159
778	1.285	821	1.218	864	1.158
779	1.284	822	1.217	865	1.156
78 ø	1.282	823	1.215	866	1.155
781	1.281	824	1.214	867	1.154
782 782	1.279	825	1.212	868	1.152
783	1.277	826	1.211	869	1.151
784	1.276	827	1.2 ø 9	87 ø	1.150
785	1.274	828	1.2Ø8	871	1.148
786	1.272	829	1.206	872	1.147
787	1.271	83 ø	1.205	873	1.146
788	1.269	831	1.203	874	1.144
789	1.268	832	1.202	875	1.143
79 ø	1.266	833	1.201	876	1.142
791	1.264	834	1.199	877	1.14\$
792	1.263	835	1.198	878	1.139

(Sheet 1 of 6)

Table C1 (Continued)

Calibration	Program	Calibration	Program	Calibration	Program
879	1.138	925	1.081	971	1.030
88₿	1.136	926	1.080	972	1. #29
881	1.135	927	1. Ø 79	973	1.#28
882	1.134	928	1. Ø 78	974	1.027
883	1.133	929	1.977	975	1.#26
884	1.131	93∅	1.\$75	976	1. #25
885	1.130	931	1.Ø74	977	1.024
886	1.129	932	1. Ø 73	978	1. Ø 23
887	1.127	933	1.Ø72	979	1. Ø 22
888	1.126	934	1.Ø71	98ø	1. Ø 21
889	1.125	935	1.Ø7Ø	981	1. Ø 19
89 ø	1.124	936	1.Ø68	982	1. Ø 18
891	1.122	937	1. Ø 67	983	1. Ø 17
892	1.121	938	1. Ø 66	984	1.Ø16
893	1.120	939	1. Ø 65	985	1. Ø 15
894	1.119	940	1.Ø64	986	1.Ø14
895	1.117	941	1. Ø 63	987	1.013
896	1.116	942	1.Ø62	988	1. Ø 12
897	1.115	943	1.Ø61	989	1. Ø 11
898	1.114	944	1. Ø 59	900	1.Ø1Ø
899	1.112	945	1.Ø58	991	1.009
9 øø	1.111	946	1. Ø 57	992	1.008
9 ø 1	1.110	947	1. Ø 56	993	1.007
9 ø 2	1.1Ø9	948	1. Ø 55	994	1.006
9 ø 3	1.198	949	1.Ø54	995	1.005
9 ø 4	1.1Ø6	95₿	1. Ø 53	996	1.994
9 ø 5	1.1Ø5	951	1.Ø52	997	1.003
9 ø 6	1.104	952	1.Ø51	998	1.002
9 ø 7	1.103	953	1.Ø49	999	1.001
9 ø 8	1.1 Ø 1	954	1.Ø48	1000	1.000
9 ø 9	1.100	955	1. Ø 47	1001	Ø .999
91 ø	1.Ø99	956	1. ø 46	1002	Ø .998
911	1.Ø98	957	1. Ø 45	1003	Ø .997
912	1. Ø 97	958	1.Ø44	1994	Ø .996
913	1.Ø95	959	1. Ø 43	1005	Ø .995
914	1.Ø94	96₿	1. Ø 42	1006	Ø .994
915	1.Ø93	961	1.Ø41	1997	Ø .993
916	1.Ø92	962	1.Ø4Ø	1008	Ø .992
917	1. Ø 91	963	1.Ø39	1009	Ø.991
818	1.Ø89	964	1.Ø37	1919	Ø.99Ø
819	1.Ø88	965	1.Ø36	1011	Ø .989
92 ø	1. Ø 87	966	1. Ø 35	1 Ø 12	Ø .988
921	1.Ø86	967	1.Ø34	1 Ø 13	Ø .987
922	1.\$85	968	1.033	1 Ø 14	Ø .986
923	1. Ø 84	969	1.032	1Ø15	Ø.985
924	1. Ø 82	970	1. Ø 31	1\$16	Ø .984

(Sheet 2 of 6)

Table C1 (Continued)

Calibration	Program	Calibration	Program	Calibration	Program
1 Ø 17	Ø .983	1063	Ø.941	1109	Ø.9Ø2
1 Ø 18	Ø .982	1064	Ø.94Ø	1119	Ø.9Ø1
1 Ø 19	∅ .981	1Ø65	Ø.939	1111	Ø.9ØØ
1929	ø.98ø	1066	Ø.938	1112	Ø.899
1921	Ø .98 Ø	1067	Ø.937	-113	Ø.899
1 Ø 22	Ø .979	1Ø68	ø.936	1114	Ø.898
1023	Ø .978	1069	Ø.936	1115	Ø.897
1 Ø 24	Ø.977	1070	Ø.935	1116	Ø.896
1 Ø 25	Ø.976	1971	Ø.934	1117	Ø.895
1 Ø 26	∅ .975	1072	Ø.933	1118	Ø.895
1 Ø 27	Ø.974	1073	Ø.932	1119	Ø.894
1 Ø 28	Ø .973	1074	Ø.931	1120	Ø.893
1 Ø 29	Ø.972	1Ø75	Ø.93Ø	1121	Ø.892
1939	Ø.971	1076	Ø.929	1122	Ø.891
1 Ø 31	Ø.97Ø	1077	Ø.929	1123	Ø.891
1 Ø 32	Ø .969	1078	Ø.928	1124	Ø.89Ø
1#33	Ø .968	1 Ø 79	Ø.927	1125	Ø.889
1034	Ø .967	1080	Ø.926	1126	Ø.888
1Ø35	Ø.966	1Ø81	Ø.925	1127	Ø.887
1#36	Ø .965	1Ø82	Ø.924	1128	Ø.887
1Ø37	Ø .964	1Ø83	Ø.923	1129	Ø.886
1938	Ø.963	1Ø84	Ø.923	1130	Ø.855
1039	Ø.963	1Ø85	Ø.922	1131	Ø.884
1949	Ø .962	1Ø86	Ø.921	1132	Ø.883
1041	Ø.961	1Ø87	Ø.92Ø	1133	Ø.883
1 Ø 42	Ø.96Ø	1Ø88	Ø.919	1134	Ø.882
1043	Ø.959	1Ø89	Ø.918	1135	Ø.881
1944	Ø.958	1090	Ø.918	1136	Ø.88Ø
1945	Ø.957	1Ø91	Ø.917	1137	Ø.88ø
1046	Ø.956	1Ø92	Ø.916	1138	Ø.879
1047	Ø.955	1Ø93	Ø.915	1139	Ø.878
1048	Ø.954	1Ø94	Ø.914	1140	Ø.877
1049	Ø.953	1Ø95	Ø.913	1141	Ø.877
1050	Ø.952	1096	Ø.913	1142	Ø.876
1951	Ø.952	1097	Ø.912	1143	Ø.875
1052	Ø.951	1Ø98	Ø.911	1144	Ø.874
1 Ø 53	Ø.95Ø	1Ø99	Ø.91Ø	1145	Ø.873
1054	Ø.949	1100	Ø.9Ø9	1146	Ø.873
1055	Ø.948	11Ø1	Ø.9 Ø 8	1147	Ø.872
1056	Ø.947	1102	Ø.9Ø8	1148	Ø.871
1057	Ø.946	1103	Ø.9Ø7	1149	Ø.87Ø
1058	Ø.945	1104	Ø.9Ø6	115Ø	Ø.87Ø
1059	Ø.944	1105	Ø.9Ø5	1151	Ø.869
1060	Ø.943	1106	Ø.9Ø4	1152	Ø.868
1961	Ø.943	1107	Ø.9Ø3	1153	Ø.867
1Ø62	Ø .942	11Ø8	Ø.9Ø3	1154	Ø.867

Table C1 (Continued)

Calibration	Program	Calibration	Program	Calibration	Program
1155	Ø.866	12Ø1	Ø.833	1247	Ø.8Ø2
1156	Ø.865	1202	Ø.832	1248	Ø.8Ø1
1157	Ø.864	12Ø3	Ø.831	1249	Ø.8Ø1
1158	Ø.864	12Ø4	Ø.831	125Ø	Ø.8ØØ
1159	Ø.863	12Ø5	Ø.83Ø	1251	Ø.799
116Ø	Ø.862	12Ø6	Ø.829	1252	Ø.799
1161	Ø.861	12Ø7	Ø.829	1253	Ø.798
1162	Ø.861	12Ø8	Ø.828	1254	Ø.798
1163	Ø.86Ø	12Ø9	Ø.827	1255	Ø.797
1164	Ø.859	121Ø	Ø.827	1256	Ø.796
1165	Ø.858	1211	Ø.826	1257	Ø.796
1166	Ø.858	1212	Ø.825	1258	Ø.795
1167	Ø.857	1213	Ø.825	1259	Ø.794
1168	Ø.856	1214	Ø.824	1260	Ø.794
1169	Ø.856	1215	Ø.823	1261	Ø.793
117Ø	Ø.855	1216	Ø.822	1262	Ø.792
1171	Ø.854	1217	Ø.822	1263	Ø.792
1172	Ø.853	1218	Ø.821	1264	Ø.791
1173	Ø.853	1219	Ø.82Ø	1265	Ø.791
1174	Ø.852	1220	Ø.82Ø	1266	Ø.79Ø
1175	Ø.851	1221	Ø.819	1267	Ø.789
1176	Ø.85Ø	1222	Ø.818	1268	Ø.789
1177	Ø.85Ø	1223	Ø.818	1269	Ø.788
1178	Ø.849	1224	Ø.817	1270	Ø.788
1179	Ø.848	1225	Ø.816	1271	Ø.787
1180	Ø.848	1226	Ø.816	1272	Ø.786
1181	Ø.847	1227	Ø.815	1273	Ø.786
1182	Ø.846	1228 1229	Ø.814	1274	Ø.785
1183	Ø.845	1230	Ø.814	1275	Ø.784
1184	Ø.845	1237	Ø.813 Ø.812	1276	Ø.784 Ø.783
1185 1186	Ø.844	1231	Ø.812 Ø.812	1277 1278	Ø.783 Ø.783
1187	Ø.843 Ø.843	1232	Ø.812 Ø.811	1278	Ø.783 Ø.782
1188	Ø.842	1234	Ø.81Ø	1280	Ø.782 Ø.781
1189	Ø.841	1235	Ø.81Ø	1281	Ø.781 Ø.781
1190	Ø.84Ø	1236	Ø.8Ø9	1282	Ø.78Ø
1191	Ø.84Ø	1237	Ø.8Ø9	1282	Ø.78Ø
1192	Ø.839	1238	Ø.8Ø8	1284	Ø.779
1193	Ø.838	1239	Ø.8Ø7	1285	Ø.778
1194	Ø.838	1240	Ø.8Ø7	1286	Ø.778
1195	Ø.837	1241	Ø.8Ø6	1287	Ø.777
1196	Ø.836	1242	Ø.8Ø5	1288	Ø.776
1197	Ø.836	1243	Ø.8Ø5	1289	Ø.776
1198	Ø.835	1244	Ø.8Ø4	1290	Ø.775
1199	Ø.834	1245	Ø.8Ø3	1291	Ø.775
1200	Ø.833	1246	Ø.8Ø3	1292	Ø.774

(Sheet 4 of 6)

Table C1 (Continued)

Calibration	Program	Calibration	Program	Calibration	Program
1293	Ø.773	1339	Ø.747	1385	Ø .722
1294	Ø.773	1340	Ø.746	1386	Ø.722
1295	Ø.772	1341	Ø.746	1387	Ø.721
1296	Ø.772	1342	Ø . 745	1388	Ø.721
1297	Ø.771	1343	Ø.745	1389	Ø.72Ø
1298	Ø.771	1344	Ø.744	1390	Ø.72Ø
1299	Ø.77Ø	1345	Ø.744	1391	Ø.719
1300	Ø.769	1345	Ø.743	1392	Ø.718
13Ø1	Ø.769	1347	Ø.742	1393	Ø.718
1302	Ø.768	1348	Ø.742	1394	Ø.717
13Ø3	Ø.768	1349	Ø.741	1395	Ø.717
1304	Ø.767	135Ø	Ø.741	1396	Ø.716
13Ø5	Ø.766	1351	Ø.74Ø	1397	Ø.716
13Ø6	Ø.766	1352	Ø.74Ø	1398	Ø.715
13Ø7	Ø.765	1353	Ø.739	1399	Ø.715
13Ø8	Ø.765	1354	Ø.739	1400	Ø.714
1309	Ø.764	1355	Ø.738	1401	Ø.714
1310	Ø.763	1356	Ø.738	1402	Ø.713
1311	Ø.763	1357	Ø.737	1403	Ø.713
1312	Ø.762	1358	Ø.736	1404	Ø.712
1313	Ø .762	1359	Ø.736	14Ø5	Ø.712
1314	Ø.761	1360	Ø.735	1406	Ø.711
1315	Ø.761	1361	Ø.735	1407	Ø.711
1316	Ø.76Ø	1362	Ø.734	14Ø8	Ø.71Ø
1317	Ø.759	1363	Ø.734	14Ø9	Ø.71Ø
1318	Ø.759	1364	Ø.733	1410	Ø.7Ø9
1319	Ø.758	1365	Ø.733	1411	Ø.7 Ø 9
132Ø	Ø.758	1366	Ø.732	1412	Ø.7Ø8
1321	Ø.757	1367	Ø.732	1413	Ø.7Ø8
1322	Ø.757	1368	Ø.731	1414	Ø.7 Ø 7
1323	Ø.756	1369	Ø.731	1415	Ø.7 Ø 7
1324	Ø.755	137Ø	Ø.73Ø	1416	Ø.7Ø6
1325	Ø.755	1371	Ø.729	1417	Ø.7Ø6
1326	Ø.754	1372	Ø.729	1418	Ø.7Ø5
1327	Ø.754	1373	Ø.728 (1419	Ø.7Ø5
1328	Ø.753	1374	Ø.728	1420	Ø.7 Ø 4
1329	Ø.753	1375	Ø.727	1421	Ø.7Ø4
133Ø	Ø.752	1376	Ø.727	1422	Ø.7Ø3
1331	Ø.751	1377	Ø.726	1423	Ø.7Ø3
1332	Ø.751	1378	Ø.726	1424	Ø.7 Ø 2
1333	Ø.752	1379	Ø.725	1425	Ø.7Ø2
1334	Ø.753	13 8 Ø	Ø.725	1426	Ø.7 Ø 1
1335	Ø.749	1381	Ø.724	1427	Ø.7 Ø 1
1336	Ø.749	1382	Ø.724	1428	Ø.7 Ø Ø
1337	Ø.748	1383	Ø.723	1429	Ø.7 Ø Ø
1338	Ø.747 (1384	Ø.723	1430	Ø.699

(Sheet 5 of 6)

Table C1 (Concluded)

Calibration	Program	Calibration	Program	Calibration	Program
1431	Ø.699	1477	Ø.677	1523	Ø.657
1432	Ø.698	1478	Ø.677	1524	Ø.656
1433	Ø.698	1479	Ø.676	1525	Ø.656
1434	Ø.697	148Ø	Ø.676	1526	Ø.655
1435	Ø.697	1481	Ø.675	1527	Ø.655
1436	Ø.696	1482	Ø.675	1528	Ø.655
1437	Ø.696	1483	Ø.674	152 9	Ø.654
1438	Ø.696	1484	Ø.674	1530	Ø.654
1439	Ø.695	1485	Ø.674	1531	Ø.653
1449	Ø.695	1486	Ø.673	1532	Ø.653
1441	Ø.694	1487	Ø.673	1533	Ø.652
1442	Ø.694	1488	Ø.672	1534	Ø.652
1443	Ø.693	1489	Ø.672	1535	Ø.652
1444	Ø.693	149Ø	Ø.671	1536	Ø.651
1445	Ø.692	1491	Ø.671	1537	Ø.651
1446	Ø.692	1492	Ø.67Ø	1538	Ø.65Ø
1447	Ø.691	1493	Ø.67Ø	1539	Ø.65Ø
1448	Ø.691	1494	Ø.669	1540	Ø.649
1449	Ø.69Ø	1495	Ø.669	1541	Ø.649
1450	Ø.69Ø	1496	Ø.669	1542	Ø.649
1451	Ø.689	1497	Ø.668	1543	Ø.648
1452	Ø.689	1498	Ø.668	1544	Ø.648
1453	Ø.688	1499	Ø.667	1545	Ø.647
1454	Ø.688	15 ø ø	Ø.667	1546	Ø.647
1455	Ø.687	15 Ø 1	Ø.666	1547	Ø.647
1456	Ø.687	15 Ø 2	Ø.666	1548	Ø.646
1457	Ø.686	15 ø 3	Ø.665	1549	Ø.646
1458	Ø.686	15 ø 4	Ø.665	ļ	
1459	Ø.686	15 Ø 5	Ø.665		
146Ø	Ø.685	15 ø 6	Ø.664	ĺ	
1461	Ø.685	15 Ø 7	Ø.664	ł	
1462	Ø.684	15 ø 8	Ø.663		
1463	Ø.684	15Ø9	Ø.663		
1464	Ø.683	151 ø	Ø.662		
1465	Ø.683	1511	Ø.662		
1466	Ø.682	1512	Ø.661	ł	
1467	Ø.682	1513	Ø.661]	
1468	Ø.681	1514	Ø.661		
1469	Ø.681	1515	Ø.662		
147Ø	Ø.682	1516	Ø.66Ø		
1471	Ø.68Ø	1517	Ø.659		
1472	Ø.679	1518	Ø.659		
1473	Ø.679	1519	Ø.658	ļ	
1474	Ø.679	1520	Ø.658		
1475	Ø.678	1521	Ø.658	j	
1476	Ø.678	1522	Ø.657	ļ.	

(Sheet 6 of 6)

APPENDIX D
SOIL AND PAVEMENT DATA USED IN DEVELOPMENT OF
EVALUATION METHODOLOGIES

Table D1 Flexible Pavements

Ft. Eustis Ft. Eustis Ft. Eustis	Base Location Washington Street 958 ft north of Madison Washington Street 1052 ft north of Madison Harrison Street 2303 ft north of Madison	7 1 1 2	Depth in. 0.0-5.5 5.5-10.0 10.0-13.0	Material Classification AC	Limits LL PL	Content	CBR percent	Density ocf
Ft. Eustis		7 7 7 7	in. 0-5.5 5-10.0 0-13.0	Classification	11 11	percent	percent	nct
	Washington Street 958 ft north of Mashington Street 1052 ft north of Harrison Street 2303 ft north of	7	.0-5.5 .5-10.0 .0-13.0 .0-17.0	AC				
	Washington Street 1052 ft north of Harrison Street 2303 ft north of	7	5-10.0 0-13.0 0-17.0				;	
	Washington Street 1052 ft north of Harrison Street 2303 ft north of	•	.0-13.0 .0-17.0	Crushed stone		;	99	
_	Washington Street 1052 ft north of Harrison Street 2303 ft north of		0-17.0	Sandy gravel		:	67	
-	Washington Street 1052 ft north of Harrison Street 2303 ft north of	2	•	Sandy clay		14.2	23	
-	Washington Street 1052 ft north of Harrison Street 2303 ft north of	2	.	Heavy clay		17.1	œ	
-	Washington Street 1052 ft north of Harrison Street 2303 ft north of		0	Heavy clay		18.3	3.3	
	1052 ft north of Harrison Street 2303 ft north of		0.0-3.75	AC				
4	Harrison Street 2303 ft north of	Madison	75-5.0	Sandy gravel		8.6	89	
	Harrison Street 2303 ft north of		5.0-7.0	Sandy clay		;	:	
-	Harrison Street 2303 ft north of	88	8.0	Lean clay		11.6	77	
-	Harrison Street 2303 ft north of	13.0	0	Lean clay		16.2	10	
	2303 ft north of	0.	0.0-3.75	AC				
		٣	3.75-5.0	Sandy gravel		;	:	
		5.	5.0-16.0	Lean clay		13.8	36	
		20.0	0	Silty clay		21.2	œ	
		26.5	2	Silty clay		21.5	10	
		31.0	0	Silty clay		70.4	6	
E6 Ft. Eustis	Wilson Avenue	0.	0.0-6.0	AC				
	560 ft from Mulberry		6.0-7.25	Surface treatment		:	:	
		7.2	7.25-9.75	Crushed stone		;	;	
		9.7	9.75-11.75	Sandy gravel		10.3	30	
		11.7	11.75-14.0	Sandy silt		14.7	15	
		14.0+	†	Silty clay		:	:	
E6A Ft. Eustis	Wilson Avenue	0.	0.0-6.0	AC				
		.9	6.0-7.25	Surface treatment				
		7.2	7.25-9.5	Crushed stone		:	;	
		9.	9.5-12.5	Sandy gravel		:	;	
		12.	12.5-28.7	Sandy clay		19.9	-	
		28.7	1	Heavy clay		19.2	3	
E7 Ft. Eustis	Goodman Road	0.	0.0-8.0	AC				
		œ	8.0-20.0	Silty clay		19.2	=	
		20.0	0	Silty sand		17.0	5.1	

(Sheet 2 of 6)

Site			Location	Depth	At Material I	Atterberg Limits	Water Content	In-Place CBR	Dry Density
Number		Base	Location	in.	Classification	II PL	percent	percent	pcf
83	Ft.	Ft. Eustis	Bullard Street 259 ft from McClain	0.0-4.0 4.0-9.0 9.0	AC Crushed stone Silty clay		3.1	80 23	
E8A	ਜ਼ੂ	Ft. Eustis	Wilson Avenue 560 ft from Mulberry	0.0-4.0 4.0-9.0 9.0-13.5 13.5	AC Crushed stone Silty clay Lean clay		 13.6 16.2	80 19 5	
63	#	Ft. Eustis	Jefferson Street 416 ft from Madison	0.0-8.0 8.0-13.0 13.0-17.0	AC Crushed stone River run Silty sand		8.7 19.5	95 35 12	
E10		Ft. Eustis	Jefferson Street 88 ft north of North Washington	0.0-10.0 10.0-12.0 12.0-14.5 14.5-17.5 17.5+	AC River run Silty sand River run Heavy clay		9.9	74 24 11	
£12	#	Ft. Eustis	Monroe Street 200 ft south of Dorsey	0.0-4.0 4.0-5.5 5.5-8.0 8.0-11.0	AC Surface treatment Crushed stone Sandy gravel Heavy clay		:::	45	
E12A	T.	Ft. Eustis	Monroe Street 195 ft south of Dorsey	0.0-4.0 4.0-5.5 5.5-9.5 9.5-13.0 13.0 21.0 26.5	AC Surface treatment Crushed stone Sandy gravel Heavy clay Heavy clay Heavy clay		23.2 28.9 25.3 25.9	1 8 00 6 7	
E13A	<u>.</u>	Ft. Eustis	PX parking lot 5 ft west of Hub No. 13	0.0-2.0 2.0-9.5 9.5-12.0	Ar Crushed stone Sandy gravel		; ;	91	

Table D1 (Continued)

16.0 25.5 25.5 5.0 6.0 11.0 11.0 11.0 11.0 13.0 13.0 13.0 13	Depth	Material	Atterberg Limits	1	In-Place CBR	In-Place Dry Density
True True		Classification	II PL	percent	percent	pcf
Ft. Eustis 28th Street 0.0-3.0 1351 ft north of 3.0-5.0 Jefferson 8.5-15.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 15.0-19.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0-8.0 16.0 16.0 16.0 16.0-10.5 16	12.0-16.0 16.0-25.5 25.5	Sandy clay Sand Heavy clay		25.8	30	
Ft. Eustis Sternburg 0.0-6.0 6.0-8.0 25th Street 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.	th of 1			23.3 17.0 19.6	66 27 15 6	
Ft. Eustis 13th Street south of 0.0-3.0 Patton 3.0-4.75 10.55 10.55-13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0	-	AC Clay gravel Sand Silty clay		9.8	25	
Ft. Eustis 11th Street 0.0-4.5 200 ft from Jackson 4.5-10.5 10.5-19.0 19.0 19.0 19.0 27.5 235 ft north of 4.75-5.5 Chesapeake Road 6.75-5.5 Chesapeake Road 14.25 WES Columbia Road 14.25 18.5 ft north from 2.0-7.0 Mississippi Road 7.0-9.0	1 1 2	AC Oil treated base S River run Organic Heavy Clay Heavy clay		4.8 22.4 17.9	 42 10 15	
WES Columbia Road 0.0-4.75 235 ft north of 4.75-5.5 Chesapeake Road 5.5-13.0 14.25 Columbia Road 0.0-2.0 185 ft north from 2.0-7.0 Mississippi Road 7.0-9.0	1 1 2	AC Crushed stone River run Lean clay Lean clay		 14.0 21.0	100+	
WES Columbia Road 0.0-2.0 185 ft north from 2.0-7.0 Mississippi Road 7.0-9.0	of 4 Soad 1	AC Clay gravel Lean clay Lean clay		16.3 18.6	07	
	from Road	AC Lime stabilized clay gravel Clay gravel Lean clay		21.3	100+	

Table D1 (Continued)

						Atterhere	In-Flace	In-Place	in-riace Drv
Site		-	Location	Depth	Material		٠	CBR	Density
Number		Base	Location	in.	Classification	TT br	percent	percent	bcf
£.	WES		Missouri Road 390 ft east of Soils Lab parking lot	0.0-3.0 3.0-18.5 18.5	AC Sandy gravel Lean clay		4.8 22.1	54 14	
7	WES		Missouri Road 480 ft east of Soils Lab parking lot	0.0-2.5 2.5-10.0 10.0-14.0 14.0	AC Sandy gravel Lean clay Lean clay		5.1	78	
8	WES		Missouri Road 580 ft east of Soils Lab parking lot	0.0-2.0 2.0-8.75 8.75 15.25	AC Sandy gravel Lean clay Lean clay		6.6 15.6 18.3	55 42 16	
94	VES		West end of asphalt strip	0.0-7.5 7.5-13.5 13.5 25.0	AC Crushed stone Lean clay Lean clay		;;;	100+ 15 6	
5	WES		Asphalt strip in front of PB-19	0.0-4.0 4.0-12.0 12.0 25.0	AC Crushed stone Lean clay Lean clay		;;;	100+ 18 23	
89	WES		Northwest corner of new Soils Lab parking lot	0.0-7.0 7.0-11.0 11.0-35.0 35.0	AC Crushed stone Clay gravel Lean clay		;;;	100+ 45 6	
Σ.	Seoul Ai	Seoul Airbase, Korea	Test pit 1	0.0-3.5 3.5-7.5 7.5-30.0 30.0+	AC Sandy gravel (GW-GM) Sandy gravel (GP) Clayey sand (SC)	NP NP NP NP 33 18	20 3	126 45 4	134.9 128.3 101.9
2	Seou! Ai	Seou! Airbase, Korea	Test pit 3	0.0-2.2 2.2-6.2 6.2-12.0 12.0-18.0	AC Sandy gravel (GP-GM) Silty gravel (GM) Gravelly sand (SW-SM) Silty sand (SM)	dn dn dn dn dn dn dn dn dn	φ σ·σ· σ	15 20 20 7	136.3 128.9 125.2 124.7
				(Continued)				(Sheet	(Sheet 4 of 6)

Table D1 (Continued)

							In-Place	1	In-Place
Site	507	Location	Depth	Material	Atterberg Limits	berg ts	Water Content	In-Place CBR	Dry Density
Number	Base	Location	in.	Classification	11	H	percent	percent	pcf
K3	Kumi Landing Strip,	Test pit 1	0.0-2.75	AC					
	Korea		2.75-8.0		2	a !	ლ (57	141.3
			8.0-15.0	Sandy gravel (GP)	d !	d i	ო ‹	80	141.3
			15.0-21.0	Gravelly sand	a.	Ž	٥	53	116.8
			21.0+	Gravelly sand	NP	NP	17	11	;
•			•	(BC-WC)					
X 4	Kumi Landing Strip,	Test pit 2	0.0-7.5	, v	•	9		č	
	Korea		7.5-13.0	Sandy gravel (GW-GM)	Z	ż	n	g G	131.0
			13.0-24.0	Sandy gravel	NP	ΝP	2	20	130.7
				(GW-GM)	•	Ş		,	
			24.0-26.0	Silty sand (SM)	Z Z	ž	ი ფ	7 01	110.1
X	Footsne Tandine Strin	Tect nit 1	0 51-0 0	AC		!		i	
•	Kores	יייי לייי	15 0-10 5	Silty sand (GP-GM)	ď	d N	٣	07	139.1
			19.5-26.0	Silty sandy gravel		Z.	9	100+	147.4
				(GP)					
			26.0+	Silty sand (GP)	NP	Ν	e	33	135.9
K6	Eonyang Landing Strip,	Test pit 2	0.0-9.5	AC					
	Korea	•	9.5-16.0	Silty sand (SP-SM)	NP	ΑN	7	35	134.7
			16.0-20.0	. AC	•	•	•	4	
			20.0-26.0	Silty sand (GP-GM)	ž	Ž.	7	89	137.1
			26.0-34.0	Silty gravelly	NP	Ν	S	29	127.3
				sand (GP)					
			34.0-46.0	Silty gravelly	NP	ğ	9	20	136.1
				Sand (GP)	;	ć	71		
			0.04	crayey sand (ac)	10	07	9		
К7	Pusan Airbase, Korea	Test pit 2	0.0-3.5	AC .	•	Ş	•	ç	
			3.5-11.5	Bituminous black	Z	Ž.	71	6	9.91
			11.5-16.0	Silty sandy gravel	NP	Ν	19	22	106.1
				(6¢)					
			16.0-23.0	Sandy clay (SP.SM)	S S	Z S	18	18	100.3
			23.0	Sand (SP)		Z.	30		
			(Continued)						
								(Sheet	(Sheet 5 of 6)

						In	In-Place		In-Place
					Atterberg	۵0	Water	In-Place	Dry
Site		Location	Depth	Material	Limits	, ,	Content	CBR	Density
Number	Base	Location	in.	Classification	LL	ات	percent	percent	pcf
К8	Cheong-Eup Landing Strip, Korea	Test pit 1	0.0-7.0	sand	NP	ď	2	76	138.9
			15.0-21.0	(SP-SM) Gravelly sand	N A	NP	9	55	124.9
			21.0-25.0	(SF-SM) Gravelly sand	NP	NP	9	30	118.3
			25.0	(Silty sand (SM)	- AN	ďN	12	20	117.6
К9	Cheong-Eup Landing Strip, Korea	Test pit 2	0.0-6.0 6.0-13.0	AC Gravelly sand	N N	NP	9	06	125.4
			13.0-18.0	Gravelly sand	NP	NP	2	18	113.7
			18.0-21.0	(SP-SM) Lean clay (CL)	38	19	13	14	:
			21.0	Silty sand (SM)	NP	NP	6	:	117.6
K10	Chinhae Airbase, Korea	Test pit 1	0.0-2.25	AC ACC	e e	Q.	u	90	120 5
			11.0-15.0	Silty sand (SM)	N A		. II	67	121.3
			15.0-21.0	Silty sand (SM)	Ν		12	26	125.0
			21.0-70.0	Silty sand (SM)	NP		14	30	115.3
			0.07	Silty sand (SP-SM)	Ν	NP.	;	:	!
K20	Yanggu Airbase, Korea	Test pit 1	0.0-3.0	AC			,	,	,
			3.0-11.0	Sandy gravel (GW)			0.0	59	128.5
			11.0-10.0	Gravelly sand (Sr)		¥ ;	0.6	3:	0.151
			18.0-28.0	Gravelly sand (SP)			10.0	17	125.6
			28.0-39.0	Gravelly clay (GC)	22 34		15.0	10	110.7
			39+	Silty clay (CL-ML)		70	0.01		

Rigid Pavements Table D2

						;		In-Place			PCC Cores	
					1	In-Place		Modulus of	In-Place	:	Splitting	Correlated
Site			Depth	Material	Limits	Water	In-Flace CBR	Soil Reaction k	Density	Unit	Tensile Strength	Strength
Number	Base	Location	<u>.</u>	Classification*	LL	percent	percentes	period	pcf	bct	psi	psı
ES	ft. Eustis	Patch Road 728 ft west of railroad		PCC Silty sand		17.6	6				700.4	911
E11	ft. Eustis	Walker Street 943 ft south of Jefferson	0.0-8.5	PCC Sandy clay		16.4	v n				532.1	743
£16	Ft. Eustrs	Madison Avenue at Bldg. 2732	0.0-8.0	PCC Sandy clay		15.6	٠				447.3	658
ã.	Ft. Polk	23rd Street 68 ft west of Georgia Avenue	0.0-7.2 7.2-13.0 13.0-20.0 20.0-25.0 25.0+	PCC Lean clay Lean clay Lean clay		13.2 18.5 18.1	7 9 16 10				757	896
P 2	ft. Polk	Vermont Street 75 ft west of Georgia Avenue	0.0-6.2 6.2-14.0 14.0-20.0 20.0+	PCC Lean clay Lean clay		16.5 20.5 20.2	9 11 7				823	1033
<u>2</u>	Ft. Polk	loth Street 90 ft west of Georgia Avenue	0.0-7.6 7.6-13.0 13.0-18.0 18.0-25.0 25.0-37.0 37.0+	PCC Sandy clay Sandy clay Sandy clay Lean ciay Lean clay		13.6 15.3 24.6 14.2	28787				763	416
7 4	Ft. Polk	Alabama Avenue 550 ft south of Vermont Street	0.0-7.8 7.8-16.0 16.0-23.0 23.0+	PCC Heavy clay Heavy clay Lean clay		18.9 15.5 15.7	219				565	27.5
£	ft. Polk	6th Street 75 ft west of Georgia Avenue	0.0-7.9 7.9-20.0 20.0-33.0 33.0+	PCC Lean clay Lean clay		9.8 10.3 16.0	6 8 10				622	832
4	Ft. Polk	Alabama Avenue 400 ft north of 4th St.	0.0-7.3 7.3-15.0 15.0-21.0 21.0+	PCC Lean clay Lean clay Lean clay		9.6 6.0 6.5	44 70 59				799	874
٤	ft. Polk	Mississippi Avenue 400 ft south of 4th St.	0 0-7.2 7.2-18 0 18.0-29.0 29 0+	PCC Lean clay Lean clay Lean clay		14.3 11.8 13.4	10 5 10				192	526
0	Ft Polk	Mississippi Avenue 290 ft west of Alahama Avenue	0 0-7.5 7 5-18.0 18 0-24 0 24 0+	PCC Silty sand Silty sand Silty sand		11.4 7.1 6.3	9 17 70				127	937

(Continued)

^{*} Where a implied but of california and a simple of self into a visual field classification.

** It misses a visual roution is vibrounded to be compared to a visual feel classification.

** It misses a visual roution is vibrounded to member of self roution is was determined from plate-hearing test. If only CR values its given, the member of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend to members of the case it is a feel recommend.

						. –	1	In-Place Modulus of	In-Place	. '	PCC Cores Splitting	
Site		Location	Depth	Material	Atterberg Limits	Content	In-Place CBR	Soil Reaction k	Dry Density	Verght	Strength	Flexural
PII	Ft. Polk	Mississippi Avenue		PCC	: :				1	:	757	967
		500 ft north of May 10	7.25-16.0 16.0-24.0 24.0+	Sandy clay Sandy clay Sandy clay		13.6 12.1 18.1	9 10 E					
F 13	Ft. Polk	Alabama Avenue 25 ft south of 23rd St.	0.0-7.5 7.5-16.0 16.0+	PCC Sandy clay Sandy clay		19.6	æű				651	862
P 15	ft. Polk	New Jersey Avenue 30 ft west of railroad	0.0-8.0 8.0-8.25 8.25-15.0 15.0-25.0 25.0+	PCC AC slabjacking Silty sand Silty sand Silty sand		16.3	76 29 19				543	753
P21	Ft. Polk	13th Street 100 ft east of "J" Avenue	0.0-7.2 7.2-19.0 19.0-26.0 26.0-36.0 36.0+	PCC Heavy clay Heavy clay Heavy clay		22.6 22.8 16.8 17.4	1.2				572	782
\$	WES	Missouri Road	0.0-5.75 5.75-13.0 13.0-18.0	PCC Clay gravel Silty clay Silty clay		6.2 17.3 18.6	25 25 16				433.2	779
01.0	WES	Yukon Street	0.0-5.5 5.5-13.0 13.0-21.0 21.0+	PCC Clay gravel Lean clay Lean clay		5.3 16.1 16.7	75 44 44				517.7	728
į,	N Sign	Yukon Street	0.0-6.0 6.0-14.0 14.0-16.0 16.0-24.0 24.0-30.0 30.0+	PCC Clay gravel Clay gravel Lean clay Lean clay		:::::	7 19 33 28 28				588.6	799
V12	VE S	Yukon Street	0.0-6.25 6.25-17.0 17.0-23.0 23.0+	PCC Clay gravel Lean clay Lean clay		5.6 16.1 17.3	81 27 24				647.5	858
W13	VES	Adjacent Bldg 3393	0.0-5.6 5.6-7.5 7.5-13.5 13.5+	PCC Sandy clay gravel Silty clay Silty clay		17.9	1 92 5				7.799	875
714	WES	Adjacent Bldg. 6010	0.0-7.5 7.5-14.5 14.5+	PCC Silty clay Silty clay		23.5	Ф.				558-2	169
<u> </u>	Seoul Airbase, Korea	rea Test pit 2	0.0-12 5 12.5-18 2 18 2-32 0 32.0*	PCC Sandy grave1 (GP-GH) Sandy grave1 (GP-GH) Sandy Crave1	AN AN AN AN AN	7 0 7 0 7 0 7 0	:	097	134 6	150.5	\$13.5	774
				(Continued)							(She	(Sheet 2 of 3)

				Table D2 (Concluded)	nclude	-								
Site	Location		Depth		Atterberg Limits		In-Place Water Content	In-Place CBR	In-Place Modulus of Soil Reaction k	In-Place Dry Density	Unit Weight	PCC Cores Splitting Tensile Strength	3 E &	
K12		Test pit 4	1n. 0.0-15.2 15.2+	Cidssification PCC Gravelly sand (SW)	3 3		5.0	1	340	120.1	149.2	552.5	76.5	
K13	Pohang Airbase, Korea	Test pit 1	0 0-13.0 13 0-25 0 25.0-38.0	PCC Sandy gravel (GP) Sandy gravel (GW-GN)	* * *	A A	6.0	:	220	132.6	150.7	354.5	595	
K14	Pohang Airbase, Korea	Test pit 2	38.0+ 0.0-15.0 15.0-40.0 40.0+	Sandy clay (SC) Sandy gravel (GP) Sandy clay (SC)	ž žž	ž ž ž	18.0 18.0	;	292	132.8	;	364.5	575	
K 15	Pohang Airbase, Korea	Test pit 3	0.0-13.0	PCC Silty sand (SM)	ž	Ā	6.0	;	340	132.4	150.0	330.5	541	
K 16	Chong-Ju Airbase, Korea Test pit l	Test pit 1	0.0-12.5	PCC Gravelly sand (SP-SM)	d i	å.	5.0	:	370	133.8	;	404.5	615	
K17	Chong-Ju Airbase, Korea Test pit 2	Test pit 2	38.0+ 0.0-15.25 15.25-21.0	Silty sand (SM) PCC Gravelly sand (SP-SM)	a a	<u> </u>	9.0	;	320	131.2	1	359.5	576	
K18	Kangnung Atrbase, Korea	Test pit 2	21.0-43.0 43.0+ 0.0-13.5 13.5-37.0 37.0-43.0	Sandy gravel (GP) Silty sand (SM) PCC Gravelly sand Gravelly sand	a a a a	N X N N N N N	5.0 9.0 5.0 6.0	†	450	126.8	1	305.5	516	
K19	Kangnung Airbase, Korea Test pit 3	Test pit 3	43.0+ 0.0-11.25 11.25+	Gravelly sand (SP) PCC Gravelly sand (SP)	<u>x</u> <u>x</u>	y y	12.0	;	330	125.1	:	403.5	71.9	

-

								In-Place			PCC Cores	_
							;	Hodulus of			Splitting	Correlated
		,			Atterberg		In-Place	Soil Reaction			Tensile	Flexural
		Location	Depth	Material	Limits		CBR	*			Strength	Strength
	Base	Base	in.	Classification	11 11	percent	percent	bc 1	, ăı) d	1 5 64	Ps1 ps1
Ft. Polk	_	9th Street	0.0-6.5	ΨC								Ì
		135 ft east of	6.5-13.5	PCC						:	2 717	5/6
		"A" Avenue	13.5-14.0	ΥC								
			14.0+	Heavy clay		;	٠					
Ft. Polk		9th Street	0.0-6.75	Ϋ́C								
		200 ft east of	6.75-14.25	PCC						:	7 107	710
		"D" Avenue	14.25-15.5	ΥC								<u>'</u>
			15.5-28.0	Heavy clay		32.5	1.2					
Ft. Polk		9th Street	0.0-6.25	S AC								
		235 ft west of	6.25-13.35	PCC							0 7 64	400
		"K" Avenue	13.35-20.0	Heavy clay		29.0	0.1				>	è
			20.04	Heavy clay		32.9	1.0					

