CSC 320 - Tutorial

- 1. Deterministic Finite Automaton
- 2. Non-deterministic Finite Automaton

assume I = 80,13

Deterministic Finite Automaton (DFA)

- Is expressed as a **5-tuple** (Q, Σ , δ , q₀, F)
 - o Q: finite set of states
 - Σ: alphabet finite set
 - ∘ δ : transition function ($Q \times \Sigma$) $\rightarrow Q$
 - \circ q₀: start state q₀ \in Q
 - \circ F: sets of accept/final states $F \subseteq Q$

- The language L of a deterministic finite automata M, L(M) is $\underline{\text{exactly}}$ the set of all strings that M accepts \therefore M recognizes L(M)
- A given language L is regular iff it is recognized by some deterministic finite automaton

Non-deterministic Finite Automata (NFA)

- Is expressed as a **5-tuple** (Q, Σ , δ , q_0 , F)
 - a. Q: finite set of states
 - b. Σ : alphabet
 - c. δ : transition function $Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$
 - d. q_0 : start state $q_0 \in Q$
 - e. F: sets of accept/final states $F \subseteq Q$

- The language L of a non-deterministic finite automata N, L(N) is <u>exactly</u> the set of all strings that N accepts
- For every DFA M there exists an equivalent NFA N (ie. L(M) = L(N))
- For every NFA N there exists an equivalent DFA M

Questions

1. Give the formal specification of a DFA for the following languages:

a.
$$L_1 = \{0\}^* \text{ over } \Sigma = \{0\}$$

$$M = (Q, Z, 8, 9*, F)$$

 $M = (\xi_{9}, \xi_{9}, \xi_{9}, \xi_{9}, \xi_{9}, \xi_{9})$

+ always double check that every state in your DFA has one transition/Symbol in alphabet

b. $L_2 = \{w \in \{a, b\}^* \mid w \text{ is a string NOT in } L((ab^+)^*)\}$

$$Q = \{q_0, q_1, q_2, q_3\}$$

 $\Sigma = \{a, b\}$
 8
 $q^* = q_0$

F = 891,933

2. Consider the state diagram below:

a. Is this state machine a DFA or an NFA? How can you tell?

W = 110

b. Is the string 0011 accepted by this state machine? What about 1100?

oo11 is not accepted

[100 is accepted (B
$$\rightarrow$$
 C \rightarrow C \rightarrow C \rightarrow D)

c. What is the language of this machine?

3. Given an example of how regular languages L_1 and L_2 are closed under intersection using the DFAs M₁ and M₂ below (proof by construction) where $L_1 = L(M_1)$ and $L_2 = L(M_2)$

M, recognizes L, ... Li is regular M, = (Q, Z, &, q,*, Fi)

M2 recognizes Lz . L2 is regular M2=(Q2, B, &, q2*, F2)

$$M_2 = (Q_2, Z, \&_2, q_2^*, F_2)$$

Construct a DFA M where L(M) = L1 1 L2

$$M = (0, 2, 8, 9^*, F)$$

$$\Sigma = \Sigma$$

$$q^* = (q_1^*, q_2^*)$$

$$8((r_1, r_2), a) \rightarrow (S_1(r_1, a), S_2(r_2, a))$$

$$F = \mathcal{E}(r_1, r_2) \mid r_1 \in F_1 \text{ AND } r_2 \in F_2 \mathcal{F}$$

 Σ = the same as M₁ and M₂

 \bigcirc a. How would the state machine change for the union? Ie. if the new DFA is to recognize $L_1 \cup L_2$ instead.

any state containing a final state of M, or Mz will be a final state in M go in Mz and go e F, or 910 920 E F

- 4. Design an NFA state diagram for the following language:
 - a. $L = \{ w \in \{0, 1\} * | w \text{ contains } 00 \text{ or } 11 \text{ as a substring } \}$

b. Express the NFA as a 5-tuple (Q, Σ , δ , q0, F) and describe δ as a transition table

$$Q = \xi q_0, q_1, q_2, q_3 3$$
 $\Sigma = \xi 1, 0 3$
 S
 $Q^* = q_0$
 $F = \xi q_3 3$

don't forget