Microeconomics

September 20, 2017

Exercise: Lexicographic preferences

The preferences' rationality:

The completeness is immediate since \geq is a total order and if two elements of \mathbb{R} are different, one is greater than the other.

If $x \succeq y$ and $y \succeq z$, then we have to deal with several cases. If $x_1 > y_1 > z_1$, the result is immediate. If $x_1 = y_1 > z_1$ (or $x_1 > y_1 = z_1$), then $x_1 > z_1$ and we get the result. If the three terms are equal, by hypothesis we know that $x_2 \ge y_2 \ge z_2$ by hypothesis and we can conclude that the relation is transitive.

Proof of the non-continuity of the function:

Assume a function $u: \mathbb{R}^2_+ \to \mathbb{R}$ represents the lexicographic preferences.

Then,
$$u(x + \frac{1}{n}, y - 1) > u(x, y) > u(x - \frac{1}{n}, y + 1)$$

The sequences in \mathbb{R} $(x+\frac{1}{n})_n$ and $(x-\frac{1}{n})_n$ are convergent and both have the same limit x.

We notice that u(x, y - 1) < u(x, y) < u(x, y + 1).

We know that a function is continuous if and only if it preserves the limits of sequences. It is immediate that it is not the case here.

Proof of the non-existence of the function:

We want to show that a function does not exist, i.e. the function is not well-defined. In words, a function is a way to associate the elements of two sets. In order to show that a function is not well-defined is to emphasize an incoherence between the function properties and the sets properties. Here we use an associate function q to show that u is not well-defined.

Assume a function $u: \mathbb{R}^2_+ \to \mathbb{R}$ represents the lexicographic preferences.

For any $a \in [0,1]$, $(a,1) \succ (a,0)$ since $(a,1) \succeq (a,0)$ but $(a,0) \succ (a,1)$ is not true. Thus, if such a function u existed, we would have u(a,1) > u(a,0) what implies that the interval $I_a = (u(a,0), u(a,1))$ is non-empty.

Assume a function q from [0,1] into the set of the rational numbers \mathbb{Q} such that for any $b \in [0,1]$, $q(b) \in I_b = (u(b,0), u(b,1))$. Such a function exists since \mathbb{Q} is dense in \mathbb{R} .

By definition, we have that $I_a \cap I_b = \emptyset$, so $q(a) \neq q(b)$. Then we get that q is a one-to-one (injective) function, and that:

$$\forall a \neq b, \quad q(a) \neq q(b).$$

In words, there are as many q(a) as a. However, $|\mathbb{Q}| < |\mathbb{R}|$, what contradicts the fact that q is a one-to-one function.