

pythonで体験するベイズ推論

秋山研 M1 山澤まりな

ベイズの定理(復習)

$$P(A \mid X) = \frac{P(X \mid A) P(A)}{P(X)}$$

Where: データ: X

事象: A

P(A): 事象Aが成立する確率

P(X): データXが取れる確率

 $P(A \mid X)$: データXが与えられた時事象Aが起こる確率

 $P(X \mid A)$: 事象Aが成立する時データXが取れる確率

P(X)は事象Aによらないため

$$P(A \mid X) \propto P(X \mid A) P(A)$$

事後確率

事前確率

例題 (先週の続き)

あるユーザーの毎日のメールの受信数

* https://git.io/vXTVC

仮説:ある日を境にメールの受信数が増えているのではないか?

モデリング (事前分布の設定)

Step 1. モデリングする分布の設定

メールの受信数は自然数なので,ポアソン分布が妥当

Step 2. 事前分布の設定

- 受信メール数が増えた日 τ
- τ 日までのポアソン分布の母数 λ_1
- τ 日以降のポアソン分布の母数 λ_2

先週やったこと

 λ_1 , λ_2 , τ の事後分布を推定し,メール受信数増加日を推定した

今週やること その1

問題: 2つの λ は本当に統計的に異なるのか

先週の推定の結果, λ_1 , λ_2 の事後分布が異なることが分かったが,

統計的に異なることを示したい

解決法: $P(\lambda_1 < \lambda_2 \mid data)$ を計算する

すなわち, λ₁がλ₂ よりも小さい確率を考えるとよい

今週やること その2

問題:そもそもメール受信数の変化点は1点と仮定していいのか

解決法:変化点の個数についても事前分布を作り,

モデル推定を行えばよい

▶ 今回はλを3つ設定し、変化点を2点に拡張するのみにとどめる

今週やること その3

演習:メッセージ受信増加率の期待値を求める

(やることその1のコードの下に解答あり)