

- EWSB reconciles the W^{\pm} , Z masses with gauge invariance
- General description:

$$\begin{array}{c} SU(2)_L \times U(1)_Y \text{ gauge symmetry} \\ \text{Gauge bosons } W_\mu^i, B_\mu \\ \text{Some object } \Sigma \end{array} \end{array} \right\} \xrightarrow{\sum \text{ acquires } vev} \begin{cases} U(1)_Q \\ \text{Massive } W_\mu^\pm, Z_\mu \end{cases}$$

- EWSB reconciles the W^{\pm} , Z masses with gauge invariance
- General description and realisation in the SM:

- EWSB reconciles the W^{\pm} , Z masses with gauge invariance
- General description and realisation in the SM:

```
\left. \begin{array}{l} SU(2)_L \times U(1)_Y \text{ gauge symmetry} \\ \text{Gauge bosons } W_\mu^i, B_\mu \\ \text{Some object } \Sigma \sim \text{complex doublet } \phi \end{array} \right\} \underbrace{ \begin{array}{l} \Sigma \text{ acquires } vev \\ V(\phi) \text{:} \end{array}}_{} \begin{array}{l} U(1)_Q \\ \text{Massive } W_\mu^\pm, Z_\mu \\ \text{Scalar } H \end{array}
```

- Alternatives to a fundamental Higgs:
 - □ No Higgs (Technicolor, ...)
 - Composite Higgs (Little Higgs, Holographic Higgs, ...)

- EWSB reconciles the W^{\pm} , Z masses with gauge invariance
- General description and realisation in the SM:

```
\left. \begin{array}{l} SU(2)_L \times U(1)_Y \text{ gauge symmetry} \\ \text{Gauge bosons } W_\mu^i, B_\mu \\ \text{Some object } \Sigma \sim \text{complex doublet } \phi \end{array} \right\} \underbrace{ \begin{array}{l} \Sigma \text{ acquires } vev \\ V(\phi) \text{:} \end{array}}_{} \begin{array}{l} U(1)_Q \\ \text{Massive } W_\mu^\pm, Z_\mu \\ \text{Scalar } H \end{array}
```

- Alternatives after the Higgs discovery:
 - □ No Higgs (Technicolor, ...)
 - Composite Higgs (Little Higgs, Holographic Higgs, ...)

Contents

1. Polarisations

- 2. WW scattering at high energies
- 3. WW scattering at the Higgs pole
- 4. Results

■ Counting degrees of freedom:

■ Counting degrees of freedom:

Massive W^\pm Gauge boson Goldstone w_\pm 2+1=2+1 transverse longitudinal transverse scalar

Counting degrees of freedom:

Equivalence theorem:

[Cornwall et al., 1974; Lee at al., 1977]

Counting degrees of freedom:

Equivalence theorem:

$$W_L^{\pm} + \mathcal{O}\left(\frac{m_W}{E}\right)$$

[Cornwall et al., 1974; Lee at al., 1977]

Longitudinal modes dominate for high energies:

$$p^{\mu} = (E,0,0,p_3)^{\mu}$$
 $\varepsilon_T^{\mu} = \frac{1}{\sqrt{2}}(0,1,\pm i,0)^{\mu}$ $\varepsilon_L^{\mu} = \frac{1}{m_W}(p_3,0,0,E)^{\mu}$

Counting degrees of freedom:

Equivalence theorem:

$$V_{L}^{\pm} + \mathcal{O}\left(\frac{m_{W}}{E}\right)$$

[Cornwall et al., 1974; Lee at al., 1977]

Longitudinal modes dominate for high energies:

$$ho^{\mu} = (E,0,0,
ho_3)^{\mu} \qquad arepsilon_T^{\mu} = rac{1}{\sqrt{2}}(0,1,\pm i,0)^{\mu} \qquad arepsilon_L^{\mu} = rac{1}{m_W}(
ho_3,0,0,E)^{\mu}$$

■ New Physics can affect W_L , W_T differently

A simple model

- Idea: measure coupling of H to longitudinal and transverse W separately
- SM:

$$\mathcal{L}_{\mathsf{SM}}\supset \quad \mathit{g}_{\mathsf{SM}}\,\mathit{HW}_{\mathsf{L}\,\mu}^{+}\mathit{W}_{\mathsf{L}}^{-\,\mu} + \quad \, \mathit{g}_{\mathsf{SM}}\,\mathit{HW}_{\mathsf{T}\,\mu}^{+}\mathit{W}_{\mathsf{T}}^{-\,\mu}$$

Our model:

$$\mathcal{L}_{\mathsf{pol}} \supset \mathsf{a}_{\mathsf{L}} \, \mathsf{g}_{\mathsf{SM}} \, \mathsf{H} W_{\mathsf{L}\,\mu}^{+} W_{\mathsf{L}}^{-\,\mu} + \mathsf{a}_{\mathsf{T}} \, \mathsf{g}_{\mathsf{SM}} \, \mathsf{H} W_{\mathsf{T}\,\mu}^{+} W_{\mathsf{T}}^{-\,\mu}$$

with parameters $a_L, a_T \in \mathbb{R}$

Contents

- 1. Polarisations
- 2. WW scattering at high energies
- 3. WW scattering at the Higgs pole
- 4. Results

WW scattering and unitarity

 $lacksymbol{W}_L^+W_L^ightarrow W_L^+W_L^-$ scattering in the SM in the limit $s\gg m_H^2$:

$$+ \sum_{\gamma,Z} + \sum_{\gamma,Z} + \sum_{\gamma,Z} = i\frac{s+t}{v^2} + \dots$$

$$-\frac{1}{v^2} + \frac{1}{v^2} + \dots$$

■ Models with HW_LW_L coupling different from the SM: unitarity violation at $\sqrt{s} \gtrsim 1$ TeV

Classical approach: WW scattering at large energies

[Bagger et al., 94-95; Butterworth et al., 02; Ballestrero et al., 09-12; ...]

- Theoretically well motivated
 - \square W_L equivalent to Goldstones
- Measurement prospects dim
 - Low rates
 - □ Large scale uncertainties

[Han et al., 09]

Contents

- 1. Polarisations
- 2. WW scattering at high energies
- 3. WW scattering at the Higgs pole
- 4. Results

Our approach: WW scattering on the Higgs pole

■ Higgs production in weak boson fusion, $H o W^+ W^- o \ell^+ \nu \; \ell^- ar{\nu}$

Our approach: WW scattering on the Higgs pole

■ Higgs production in weak boson fusion, $H \to W^+W^- \to \ell^+\nu \ \ell^-\bar{\nu}$

- Choice of observables:
 - $\hfill\Box$ Leptons, $E_T^{\rm miss}$ sensitive to final polarisations. . . works and has been done

[Han et al., 09]

□ Tagging jets sensitive to initial polarisations (our focus)

Motivation: the effective W approximation (EWA)

[Kane et al., 84; Dawson, 85]

- Implication for WBF:
 - \square Hard tagging jets \leftrightarrow transverse initial W
 - \square Soft tagging jets \leftrightarrow longitudinal initial W

Simulation details

- LHC at $\sqrt{s} = 13$ TeV
- Processes (parton level):
 - □ WBF $H \rightarrow W^+W^- + 2$ jets at $\mathcal{O}(\alpha^4)$
 - □ Continuum $W^+W^- + 2$ jets at $\mathcal{O}(\alpha^4)$
 - \Box GF $H \to W^+W^- + 2$ jets at $\mathcal{O}(\alpha_{ggH}\alpha_s^2\alpha)$
 - □ Continuum $W^+W^- + 2$ jets at $\mathcal{O}(\alpha_S^2\alpha^2)$

Acceptance cuts:

Leptons	Tagging jets
$ \eta(\ell) < 2.5$ $p_T(\ell) > 10 \text{ GeV}$ $p_T(\ell_1) > 20 \text{ GeV}$	$ \eta(j) < 5.0$ $p_T(j) > 25$ GeV $m_{jj} > 500$ GeV $\eta(j_1) \cdot \eta(j_2) < 0$
$p_{T}^{ m miss} > 20~{ m GeV}$	$\Delta \eta_{jj} > 4.2$

Contents

- 1. Polarisations
- 2. WW scattering at high energies
- 3. WW scattering at the Higgs pole
- 4. Results

Higgs-resonance selection

■ Transverse mass m_T :

$$\begin{split} m_T^2 &= \left(E_{T,\ell\ell} + E_{T,\nu\nu}\right)^2 - \left(\mathbf{p}_{T,\ell\ell} + \mathbf{p}_T^{\text{miss}}\right)^2 \\ E_{T,\ell\ell} &= \sqrt{\mathbf{p}_{T,\ell\ell}^2 + m_{\ell\ell}^2} \end{split}$$

$$E_{T,\nu\nu} &= \sqrt{\mathbf{p}_T^{\text{miss}\,2} + m_{\ell\ell}^2}$$

■ Higgs-resonance cut: 50 GeV $< m_T < 130$ GeV

Resonance rate

Leading jet p_T

Leading jet p_T

Angular correlation between jets

Angular correlation between jets

$$A_{\phi} = \frac{\sigma(\Delta\phi_{jj} < \frac{\pi}{2}) - \sigma(\Delta\phi_{jj} > \frac{\pi}{2})}{\sigma(\Delta\phi_{jj} < \frac{\pi}{2}) + \sigma(\Delta\phi_{jj} > \frac{\pi}{2})}$$

[Eboli et al., 00; Plehn et al., 02, ...]

Significance at LHC Run II

Expected exclusion regions after 300 fb⁻¹, assuming no signal:

Conclusions

- W polarisations linked to structure of symmetry breaking
- WW scattering at Higgs resonance: tagging jets probe polarisations of initial WW pair
 - □ Jet *p_T*
 - \square $\Delta \phi$ between jets
- Longitudinal and transverse Higgs–gauge couplings can be probed at $\mathcal{O}(20\%)$ after 300 fb⁻¹ of data at 13 TeV

Contents

- 1. Polarisations
- 2. WW scattering at high energies
- 3. WW scattering at the Higgs pole
- 4. Results

Bonus material

Validity of the EWA

m_H < 2m_W: on-shell assumption not valid anymore
 ⇒ cannot use EWA at Higgs resonance

Effective field theory

- lacktriangle New physics at large energies o effective operators at low energies
- Models with composite Higgs can e.g. generate

$$\mathcal{L}_{\mathsf{eff}} = \mathcal{L}_{\mathsf{SM}} + rac{c_{W}}{\Lambda^{2}} \left(D_{\mu} \phi
ight)^{\dagger} \, \hat{W}^{\mu
u} \left(D_{
u} \phi
ight)$$

[Giudice et al., 07]

Modification of HWW vertex:

$$W_{\mu}^{+} = igm_{W} \left[\left(1 + rac{c_{W}}{2\Lambda^{2}} m_{H}^{2}
ight) \eta_{\mu
u} + rac{c_{W}}{2\Lambda^{2}} \left(p_{\mu}^{H} p_{
u}^{+} + p_{\mu}^{-} p_{
u}^{H}
ight)
ight] W_{
u}^{-}$$

□ First term scales SM vertex

- $\longleftrightarrow \quad a_L = a_T = 1 + \frac{c_W}{2\Lambda^2} m_H^2$
- $\ \square$ Second term only affects longitudinal W
 - \longrightarrow a_L is momentum-dependent, $a_T = 0$

Dimension-6 operator vs simple model

Polarisations and reference frames

