Группы 33501/1,3,4. Расчетное задание №3. Нелинейное программирование. Безусловная оптимизация

Дана задача нелинейного программирования:

$$\max \left(C_{11}x_1^2 + C_{22}x_2^2 + C_{12}x_1x_2 + C_1x_1 + C_2x_2 \right)$$

- 1) Записать необходимые условия оптимальности для задачи и решить задачу аналитически;
- 2) Решить задачу методом релаксации;
- 3) Решить задачу методом наискорейшего подъёма;
- 4) Решить задачу методом Ньютона;
- 5) Решить задачу методом сопряжённых градиентов;
- 6) Решить задачу методом Бройдена;

7 для сдающих после даты X) Решить задачу методом Дэвидена-Флетчера-Пауэлла.

Начальную точку выбрать таким образом, чтобы траектория поиска решения отражала особенности каждого метода.

 $8-13^{-10}$ ^{меланию}) Решить задачу методами 2-6, выбрав ещё 3 начальных точки. Графики сгруппировать по методам: на одном графике траектории поиска решения задачи из четырёх разных начальных точек одним методом, на другом графике — другим методом и т.д.

Отчет о решении задачи каждым методом должен содержать подробное описание каждой итерации с приведением промежуточных результатов, а также графическое изображение линий равного уровня целевой функции и траектории поиска решения. В каждой точке траектории (или в её непосредственной близости) должна быть проведена линия уровня. Масштаб графиков выбрать таким образом, чтобы траектория поиска решения занимала большую их часть. Траектории поиска решения каждым методом рекомендуется оформлять в виде таблицы вида:

T - F -		F 1 -		
X(1)	X(2)	f(X)		

Исходные данные:

33501/3	33501/3	33501/4	C_{11}	C_{22}	C_{12}	C_1	C_2
1	27		-6	-9	4	20	60
2	28		-16	-19	4	80	140
3	29		-7	-13	8	10	80
4		30	-13	-22	12	30	40
5		31	-21	-24	4	110	180
6		32	-31	-34	4	286	388
7		33	-22	-28	8	172	296
8		34	-39	-51	16	294	532
9		35	-16	-34	24	6	288
10		36	-50	-65	20	380	680
11		37	-8	-17	12	28	154
12		38	-14	-26	16	84	252
13		39	-17	-23	8	182	266
	14	40	-3	-3	2	10	18
	15	41	-7	-7	2	34	50
	16	42	-4	-4	4	8	20
43	17		-7	-7	6	18	38
	18		-9	-9	2	46	66
	19		-13	-13	2	118	146
	20		-10	-10	4	76	100
	21		-18	-18	8	132	176
	22		-10	-10	12	28	60
	23		-23	-23	10	170	226
	24		-5	-5	6	28	28
	25		-8	-8	8	56	56
	26		-8	-8	4	84	84