RL Cheat Sheet

Definitions

State(S): Current Condition

Reward(R): Instant Return from environment to appraise the last action

Action-Value(Q): This is similar to Value, except, it takes extra parameter, action A

Policy(π): Approach of agent to determine next action based on current state

Exploitation is about using already known info to maximize rewards

Exploration is about exploring and capturing more information

Discount Factor (y)

Varies between 0 to 1

Closer to $0 \rightarrow$ Agent tend to consider immediate reward

Closer to $1 \rightarrow$ Agent tend to consider future reward with greater

Q-Learning

4. Create reward matrix R where R_{sa} = reward for taking action a in state s and set γ parameter.

5.Initialize Q matrix to 0

6.Set initial random state and assign this to current state

7. Select One among all possible actions of current state

a. Use this action to get new state

b.Get maximum Q value for this state based on all previous

c. Compute Q matrix using

$$Q_{sa} = R_{sa} + \gamma \times Max[Q_{s'a'}]$$

\(\forall s'accessible from s\)

 $\forall a'available in s'$

8.Repeat 4 until current state=goal state

Monte Carlo Policy Evaluation

1.To evaluate Value(s) $V_{\pi}(S)$

2. At any time step t when state s is visited in an episode

a. Increment Counter N(s) < -N(s) + 1

b. Increment total return $S(s) <- S(s) + G_t$

3. Value estimated is mean V(s) = S(s)/N(s)

Policy Gradients

 $p_{\theta}(s_1, a_1, s_2, a_2 \dots) = p(s_1) \times \prod_{t=1}^{T} p(s_{t+1} | s_t, a_t) \pi_{\theta}(s_t, a_t)$

Goal is to $\theta^* = \arg \max_{\alpha} E_{\tau \sim P_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right] = \arg \max_{\alpha} J(\theta)$

 $J(\theta) = \frac{1}{N} \sum_{i} \sum_{t} r(s_i, a_i)$

 $\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \times \nabla_{\theta} \log p_{\theta}(\tau)$

 $\nabla_{\theta} J_{\theta} = \frac{1}{N} \sum_{i=1}^{N} \{ \sum_{t=1} \nabla_{\theta} \log \pi_{\theta} (a_{i,t} | s_{i,t}) \sum_{t=1} r(s_{i,t}, a_{i,t}) \}$

 $\theta \leftarrow \theta + \nabla_{\theta} I(\theta)$

 $\log \pi_{\theta}(a_{i,t}|s_{i,t})$ is the log probability of action, defines how likely are we going to see $a_{i,t}$ as action

Actor Critic

Q-V = Advantage

 $Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} E_{\pi_0}[r(s_t, a_t)|s_t, a_t]$ Reward of action a_t in s_t

 $V^{\pi}(s_t) = E_{a_t \sim \pi_{\theta}(a_t|s_t)}[Q^{\pi}(s_t, a_t)]$ total reward from st

 $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$ how much better A_t is

 $\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{i,t} \middle| s_{i,t} \right) A^{\pi}(s_t, a_t)$

 $Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \sum_{t'=t+1}^{T} E_{\pi_{\theta}}[r(s'_t, a'_t)|s_t, a_t]$ $= r(s_t, a_t) + E_{\pi_{t+1} \sim p(s_{t+1}|s_t, a_t)}[V^{\pi}(s_{t+1})]$

 $A^{\pi}(s_t, a_t) = r(s_t, a_t) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$

Value Function V(s)

• Long term value of state S

State value function V(s) of a MRP is expected reward from state s

 $V(s) = E(G_t | S_t = s)$

Action Value Function q(s, a)

Value(V): Expected Long-term reward with discount, as opposed to short-term reward R $| \bullet | q_{\pi}(s, a) = E_{\pi}(G_t | S_t = s, A_t = a)$

Bellmen Equation

 $V(s) = R(s) + \gamma E_{s' \in s}[V(s')]$

 $V(s) = R(s) + \gamma \sum_{s' \in S} P_{ss'}(V(s'))$

 $V = R + \gamma PV \rightarrow V = (I - \gamma P)^{-1}R$

Markov Process

• Consists of $\langle s, p \rangle$ tuple where s are states and p is state transition matrix

 $P_{ss'} = P(s_{t+1} = s' | s_t = s)$

• $\mu_{t+1} = p^T \mu_t$ where $\mu_t = [\mu_{t+1} ... \mu_{t+n}]^T$

Markov Reward Process

• Consists of $\langle s, p, R, \gamma \rangle$ tuple where R is reward γ is discount

• $R = E[R_{t+1}|S_t = S] = R(s)$

• $G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$ is Total discounted reward

Discounted Reward cons: Uncertainty may not be fully represented. Immediate rewards values> delayed, Avoid ∞ rewards in cycle

Markov Decision Process

Consists of $\langle s, A, p, R, \gamma \rangle$ tuple where A is action

 $P_{ss'} = P(S_{t+1} = S' | S_t = S, A_t = a)$

Discounted Reward cons: Uncertainty may not be fully represented. Immediate rewards values> delayed, Avoid ∞ rewards in cycle

Policy

 $\bullet \ \pi(a|s) = P(a_t = a|s_t = s)$

• Either deterministic or stochastics. In deterministic P=1 for one a_t

• $P_{\pi}(s'|s) = \sum \pi(a|s) \times P(s'|s,a)$ for stochastic process.

• One step expected reward $r_{\pi} = \sum_{a} \pi(a|s) r(s,a)$

• For rewards as function of transition states

$$r_{\pi} = \sum_{a} \pi(a|s) \sum_{s} \pi(a|s) \times \sum_{s'} P(s'|s,a) \times r(s,a,s')$$

Relation Between V_{π} and q_{π}

 $V_{\pi}(s) = \sum_{a \in A} \pi(a|s_t = s) q_{\pi}(s, a)$

 $V_{\pi}(s) = \sum_{a \in A} \pi(a|s) \times \{r(s,a) + \gamma \times \sum_{s' \in S} P(s'|s,a) V_{\pi}(s)\}$

$$\label{eq:vpi} \begin{split} V_{\pi}(s) &= r(s) + \gamma \sum_{a \in A} \pi(a|s) \sum p(s'|s,a) \times V_{\pi}(s') \end{split}$$

 $q_{\pi}(s,a) = r(s,a) + \gamma \times \sum_{s' \in S} P(s'|s,a) V_{\pi}(s)$

 $q_{\pi}(s, a) = r(s, a) + \gamma \times \sum P(s'|s, a) \{ \sum_{a' \in A} \pi(a'|s') q_{\pi}(s', a') \}$

• $q_{\pi}(s, a) = r(s, a) + \sum_{s \in S'} p(s'|s, a) \sum_{a' \in A} q_{\pi}(s', a') \times P(a'|s')$

Optimality Condition

 $V_{\pi}^{*}(s) = \max_{\alpha} V_{\pi}(s) \ \forall s \in S$ similarly for $q_{\pi}^{*}(s, \alpha)$