Environmental and Development Economics

Week 1 - Introduction

Raahil Madhok UMN Applied Economics

2024-08-22

Introduce yourself

► First, lets do introductions

▶ Name, year, memorable summer activity, research interests

► Why are you taking this class?

Today

- Why study environmental economics in LMICs?
- ► Course overview + detailed outline

▶ Grade breakdown

- Course website: https://github.com/rmadhok/enviro-dev-grad
 - lectures, assignments, syllabus

Why study environmental economics in LMICs?

Why study environmental economics in LMICs?

- Environmental quality is worse and has worse consequences in LMICs
 - ► Highest pollution, highest deforestation
- ▶ New field: room for applied theory, empirical innovation
- Data breakthroughs
 - ► Measurement: remote sensing, DHS, etc.
 - Access: lower barriers to government access and experimentation
- Evidence needed; big implications for poverty alleviation

Environmental quality worse in LMICs

Disease burden higher in LMICs

Is environmental economics different in LMICs?

My answer: sometimes...

- Magnitudes
 - Same questions, but costs and benefits different
- Local environmental quality is more important
- Different topics
 - cookstoves, enforcement/corruption, ethnic favoritism
- Institutions and state capacity

Course Overview

Course Overview: There is no textbook

Instead, I am organizing around FOUR key questions:

- Why is environmental quality so bad in developing countries?
- What are the costs of poor environmental quality in developing countries?
- Why is WTP for environmental quality low in developing countries?
- What are the political economy barriers to environmental protection?

Course Approach

I will:

- Frame (almost) each topic with some theory
- ► Teach applied papers
 - research design, identification strategy, estimation techniques
- Emphasize recent JMPs

I will NOT:

- ▶ Teach econometrics
- ▶ Teach coding
- ► Teach every topic in environment/development

Course Goals

- Show you environment/development research frontier
- Inspire your thesis/JMP ideas
- Advance your training as applied microeconomists
- Show you what makes a top-tier research question

Course Structure

▶ This is a brand new class, so I give myself leeway to make changes

- ▶ You have the unique opportunity to determine direction of the course
 - Think about what topics do and don't interest you
 - ► And let me know!

▶ Please check the course website regularly for updates

Course Outline and Topics

Weeks 1 and 2

Week 1: Theory of Environment/Development

▶ How to use theory to ask the right questions (lecture 2)

Week 2: The effect of development on the environment

- ▶ air quality, water quality (lecture 3)
- ► forests, biodiversity (lecture 4)

Weeks 3 and 4

Week 3: The effect of the environment on development

- ▶ human capital (lecture 5)
- ▶ firms (lecture 6)

Week 4: WTP for Environmental Quality

- ► TBD (lecture 7)
- ► TBD (lecture 8)

Weeks 5, 6, and 7

Week 5: Environmental policy design

- ► Spillovers (lecture 9)
- ▶ Pollution markets in developing countries (lecture 10)

Week 6: Political economy of the environment

- ► Corruption and weak enforcement (lecture 11)
- Environmental justice (lecture 12)

Week 7: Research presentations

I will provide more details throughout the semester

Grade Breakdown

Breakdown

In-class presentations	10%
Problem Set	20%
Research Proposal	60 %
Participation	10%

In-class presentations (10%)

- ▶ At start of **first** lecture each week, you'll give a 15 min paper presentation
- ► Each student submits **seven** summary slides (5% of grade)
 - motivation, research question, methods, results
 - ▶ 10 mins presentation + 5 mins Q&A (5% of grade)
- I will select presenter on-the-spot
 - ► randomly with replacement**

** If you are never chosen, your grade is based on slides.

Problem Set (20%)

- ► You will replicate an environment/development paper
 - ► You will also **extend** the results
- ▶ You will become familiar with coding in publication-quality papers
- ► You will use R or Stata

Research Proposal (60%)

Written Proposal	30%
Peer Review	20%
Proposal Presentation	10%

- ► You will develop a research proposal for an original idea
 - You are NOT expected to actually do the analysis
 - ▶ I will provide small deadlines (outline, first draft, etc.) along the way
- You will peer review each others proposals
- ► You will present the proposal at the end of the semester (30 mins)

Participation (10%)

- ► I take this seriously
- ► Not enough to just show up to class
- Quality of questions/discussion count

Questions?

Today

Guiding question: Why is environmental quality so low in LMICs?

Your explanations

- Main goal: Conceptual framework
 - ► Four theory-informed explanations
 - Set the stage for rest of class

Week 1 - Introduction Raahil Madhok UMN Applied Economics

Remember from last time

Remember from last time

Why is environmental quality low in LMICs?

- ► MWTP is low (paradox)
 - ▶ Berkouwer and Dean (2022): \$12 for clean air
 - ► Kremer et al. (2013): ~ \$4 for clean water
 - ► Imply VSL \$USD 860 vs \$USD 8.6 million for USA
- Do we take this as given? Perhaps status quo is optimal
 - is bad environmental quality another dimension of poverty?
- ▶ Is welfare loss from pollution greater in rich countries, even though they're cleaner?
- ▶ What are your explanations?

Theory-informed Explanations

Greenstone and Jack (2013)

Aside: why is applied theory important?

- ▶ Builds structure for answering big (and small) questions
- Generates potentially unexpected insights w/ testable predictions
- In reverse: helps rationalize results
- Gets you into better journals (and better jobs)
- ► Field is headed that way (from my recent experience)

Conceptual Framework of Environmental and Development Economics

- ightharpoonup Social planner chooses optimal EQ where social $MWTP_e = MC$
 - ▶ Need to know MWTP for representative agent

Set up:

- \triangleright n identical agents with utility from consumption, EQ, and health
- ▶ Initial wealth y_0 , health h_0 , environmental equality e_0
- health depends on self-protection, s, and e
- Assume perfect markets (i.e. no externalities)

First Best

ightharpoonup Agent chooses c, Δe , and s to maximize:

$$U(e, h(s, e), c)$$
 s.t. $y \ge c_e(\Delta e) + c_s(s) + c$

▶ where wealth (endowment + income) and experienced EQ are:

$$y = y_0 + \Delta y(e, h(s, e))$$

$$e = e_0 + \Delta e + a(c,s)$$

ightharpoonup where a(c, s) captures impact of c and s on EQ

Model Particulars

- ► EQ affects utility directly through existence value
- ► EQ affects utility indirectly via health (which also affects income)
 - e.g. pollution exposure affects productivity
 - ightharpoonup This can be mitigated by self-protection, s (e.g. mask, air purifier)
- EQ affects income, which in turn affects utility via budget constraint
 - e.g. agricultural productivity
- \triangleright Experienced EQ depends directly on $\triangle e$, and indirectly via c, s
 - \triangleright a(c, s): defensive investments i.e. clean cookstove, bottled water, etc.

Week 1 - Introduction Raahil Madhok UMN Applied Economics

MWTP for improving environmental quality

- ▶ Let $\lambda_e = \frac{\partial u}{\partial \Delta e}$, $\lambda_y = \frac{\partial u}{\partial c}$
- ► Set up lagrangian and solve for *MWTP_e*:

$$MWTP_{e} = \frac{\lambda_{e}}{\lambda_{y}} = \frac{1}{\lambda_{y}} \left(\frac{\partial u}{\partial e} + \frac{\partial u}{\partial h} \frac{\partial h}{\partial e} \right) + \frac{\partial \Delta y}{\partial e} + \frac{\partial \Delta y}{\partial h} \frac{\partial h}{\partial e}$$

- aesthetic benefit from improved EQ (converted to dollars)
- ▶ indirect benefit of EQ for health (converted to dollars)
- direct impact of EQ on income and indirect impact via health

Note: if U''(c) < 0, low $y \to \text{high MUC } (\lambda_y)$ and low $MWTP_e$

MWTP for self-protection

Set up lagrangian and solve for MWTP_s

$$MWTP_{s} = \frac{\lambda_{s}}{\lambda_{y}}$$

$$= \frac{1}{\lambda_{y}} \left(\frac{\partial u}{\partial e} \frac{\partial a}{\partial s} + \frac{\partial u}{\partial h} \left(\frac{\partial h}{\partial s} + \frac{\partial h}{\partial e} \frac{\partial a}{\partial s} \right) \right) + \frac{\partial \Delta y}{\partial e} \frac{\partial a}{\partial s} + \frac{\partial \Delta y}{\partial h} \left(\frac{\partial h}{\partial s} + \frac{\partial h}{\partial e} \frac{\partial a}{\partial s} \right)$$

- ▶ indirect effect of s on EQ and health (converted to dollars)
- ▶ indirect effect of *s* on income via productivity and health

Note: if U''(c) < 0, high $y \to \text{low MUC } (\lambda_y)$ and high $MWTP_s$

Week 1 - Introduction Raahil Madhok UMN Applied Economics

The Social Planner

- ► In first best, social planner sets MB = MC
 - where $MC_e = \frac{\partial c_e}{\partial \Delta e}$ and $MC_s = \frac{\partial c_s}{\partial \Delta s}$
- ightharpoonup But to aggregate over n, we must assume:
 - No preferences of her own
 - ► No market failures
 - Can observe true MWTP
 - Anything else?

▶ Do these hold in LMICs?

Course Structure

- ► Set the stage:
 - how does environment affect development $(\frac{\partial h}{\partial e})$ (week 2)
 - ▶ how does development affect the environment (week 3)

- Bulk of course:
 - Explain why environmental quality low in LMICs
 - ▶ Identify as many parameters of the social planner problem as possible

Goal: where can you make a contribution?

Why is environmental quality so low in LMICs?

Four explanations informed by the model:

- High marginal utility of consumption
- High marginal abatement costs includes state capacity
- Political economy distortions (first best violation)
- Market failures (first best violation)
 - ightharpoonup frictions cause revealed MWTP \neq true MWTP

Preview of Answers

1. High marginal utility of consumption

- Intuitively, poor people care more about meeting basic consumption needs
- ightharpoonup Economically, agent trades off c and e by setting u'(c) = u'(e)
 - ▶ If u''(c) < 0, prefer c at lower levels of y
 - even if health benefits of e are large!
- Very few revealed preference studies on MWTP_e
 - Kremer et al. (2013) randomly clean up springs in Kenya
 - ▶ WTP USD 11/year for clean water; VSL of USD 860
- ▶ Larger literature on u'(h) also suggests low valuation (Berkouwer and Dean, 2022)

2. High MC

- High MAC suggests sub-optimal environmental quality. Why?
 - Upward sloping MAC suggests low MC in poor countries

- MC not only driven by MAC; also reflects weak state capacity
 - ► Enforcement (Duflo et al., 2013)
 - ► Incentives (Jagnani and Mahadevan, 2024; Gulzaar and Dipoppa, 2024)
 - ► Spillovers (Viera et al. 2024)

► High MC **does not** mean deviation from first best

3. Political economy

- Social planner includes own utility weights social welfare function
 - ▶ i.e. corruption

- Many examples from LMICs
 - ▶ pollution (Duflo et al., 2013)
 - deforestation (Burgess et al., 2012; Viera et al., 2024)
 - human-wildlife conflict (Madhok et al., 2024)
- Leads to second best policy (inefficient)

4. Market Failures

- ► This is partially a couse on development economics
 - ► About market failures: land, labor, credit, etc.

▶ Implication for us: revealed $MWTP_e \neq \text{first best } MWTP_e$

- lacktriangle Example: weak property rights ightarrow underinvestment in e
 - Underestimate MWTP_e from observed data
 - ▶ RCT evidence from crop-burning PES contracts: Jack et al. (2024)

Lots of room for research

- Environment and development economics is new
 - ► Challenge: find something unique about LMICs
- Goal: identify model parameters
- Evidence on many parameters are absent
- Barriers to research in LMICs are falling
 - remote sensing, administrtive/survey data, webscraping

Next week

- In-class presentations
- Impact of development on the environment (air, water)
- Impact of development on the environment (forests, biodiversity)