Japanese Patent Laid-Open Publication No. 11-85101

(19)日本国特許庁(JP)·

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-85101

(43)公開日 平成11年(1999) 3月30日

(51) Int.Cl. ⁸		酸別記	手	ΓI		•	
G 0 9 G	3/28			G09G	3/28		· K
	3/20				3/20	•	K

審査請求 未請求 請求項の数5 OL (全 13 頁)

(21)出願番号	特願平9-248987	(71)出願人	000005223
			富士通株式会社
(22)出願日	平成9年(1997)9月12日		神奈川県川崎市中原区上小田中4丁目1番
			1号
•		(72)発明者	小川 清隆
•		•	神奈川県川崎市中原区上小田中4丁目1番
			1号 富士通株式会社内
		(72)発明者	乙部 幸男
	•		神奈川県川崎市中原区上小田中4丁目1番
			1号 富士通株式会社内
	•	(72)発明者	渡部 康弘
			神奈川県川崎市中原区上小田中4丁目1番
	•		1号 富士通株式会社内
		(74)代理人	弁理士 伊東 忠彦

(54) 【発明の名称】 ディスプレイ駆動装置の画像処理回路

(57)【要約】

【課題】 視覚上で疑似輪郭が目立つ領域をメインパスからサブパスに切り替え拡散誤差によるノイズを防止し、また、ノイズによる誤動作を防止するディスプレイ駆動装置の画像処理回路を提供することを目的とする。

【解決手段】 パス切替制御部に前記入力RGB信号から視覚特性上で疑似輪郭の目立ちやすい色空間領域を検出する色検出手段を有し、色検出手段で疑似輪郭の目立ちやすい色空間領域の検出時に前記動き領域を検出したときメインパス出力からサブパス出力への切り替えを行う。このように、視覚特性上で疑似輪郭の目立ちやすい色空間領域においてのみ動き領域を検出したときサブパスに切り替えるため、動きが検出された場合であっても疑似輪郭の目立たない色空間領域ではサブパスへの切り替えが行われず、上記切り替えで生じる拡散誤差によるノイズを防止できる。

本発明の画像処理四路のブロック図

【特許請求の範囲】

【請求項1】 発光時間長によって輝度表現を行うディスプレイの駆動装置で、

入力される所定階調数のRGB信号からそれ以下の階調 数のRGB信号を生成するメインパスと、

前記メインパスより少ない階調数のRGB信号を生成するサブパスと、

前記メインパスの生成信号とサブパスの生成信号とを切り替えて出力するスイッチと、

前記入力RGB信号から求めた動き量が所定値を越える 10 動き領域を検出し、前記動き領域では前記スイッチをメインパス出力からサブパス出力に切り替えるパス切替制 御部とを有するディスプレイ駆動装置の画像処理回路において、

前記パス切替制御部に前記入力RGB信号から視覚特性 上で疑似輪郭の目立ちやすい色空間領域を検出する色検 出手段を有し、

前記色検出手段で疑似輪郭の目立ちやすい色空間領域の 検出時に前記動き領域を検出したときメインパス出力か らサブパス出力への切り替えを行うことを特徴とするデ 20 ィスプレイ駆動装置の画像処理回路。

【請求項2】 請求項1記載のディスプレイ駆動装置の 画像処理装置において、

前記パス切替制御部に、前記入力RGB信号から前記視 覚特性上で疑似輪郭の目立ちやすい色に対して感度の高 い単一信号を生成するRGB演算手段を有し、

前記単一信号を用いて前記動き領域を検出することを特徴とするディスプレイ駆動装置の画像処理回路。

【請求項3】 請求項1又は2記載のディスプレイ駆動 装置の画像処理回路において、

前記パス切替制御部は、前記入力RGB信号から求めた 動き量を、前記色検出手段で疑似輪郭の目立ちやすい色 空間領域の検出時にのみ有効とし、有効とされた動き量 のノイズ除去フィルタ処理を行った後、前記所定値と比 較して動き領域を検出することを特徴とするディスプレ イ駆動装置の画像処理回路。

【請求項4】 請求項1又は2記載のディスプレイ駆動 装置の画像処理回路において、

前記パス切替制御部は、前記入力RGB信号から求めた 動き量のノイズ除去フィルタ処理を行った後、前記色検 40 出手段で疑似輪郭の目立ちやすい色空間領域の検出時に のみ有効とし、有効とされた動き量を前記所定値と比較 して動き領域を検出することを特徴とするディスプレイ 駆動装置の画像処理回路。

【請求項5】 請求項2乃至4のいずれかに記載のディスプレイ駆動装置の画像処理回路において、

前記メインパスの出力RGB信号の階調の前フィールドからの変移に基づいた重み量を求める重み演算手段を有

前記パス切替制御部は前記動き量に前記重み量で重み付 50 DPで動画像を表示する場合に、人間の目の残像効果等

けを行った後、前記所定値と比較して動き領域を検出することを特徴とするディスプレイ駆動装置の画像処理回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はディスプレイ駆動装置の画像処理回路に関し、特にプラズマディスプレイ (以下、単にPDPと言う)を駆動するのに適したディスプレイ駆動装置の画像処理回路に関する。

[0002]

【従来の技術】従来より、面放電を行うPDPが提案されており、これによると、画面上の全画素を表示データに応じて同時に発光させる。面放電を行うPDPは、前面ガラス基板の内面に1対の電極が形成され、内部に希ガスが封入された構造となっている。電極間に電圧を印加すると、電極面上に形成された誘電体層及び保護層の表面で面放電が起こり、紫外線が発生する。背面ガラス基板の内面には、3原色である赤色(R)、緑色(G)及び青色(B)の蛍光体が塗布されており、紫外線によりこれらの蛍光体を励起発光させることによりカラー表示を行う。つまり、R、G及びBの蛍光体が、画面を構成する各画素に対して割り当てられている。

【0003】図12は、例えば上記の如く面放電を行うPDPの階調駆動シーケンスの一例を説明する図である。同図に示すように、1枚の画像を表示する時間である1フィールド期間を複数のサブフィールド期間に分けて、各サブフィールド期間における発光時間(以下、サステイン期間と言う)を制御することにより画像の階調表現を行う。1サブフィールド期間は、そのサブフィールド期間内に発光させる全画素に対して壁電荷を形成させるアドレス期間と、輝度レベルを決定するサステイン期間とから構成される。このため、サブフィールド数を増やすとその数分だけアドレス期間が必要となり、相対的に発光に割り当てられるサステイン期間が短くなり、画面の輝度が低下することになる。

【0004】従って、PDPにおいて限られたサブフィールド数を用いて表現可能な階調数を稼ぐためには、図12に示すようにビットの重み付けに比例したサステイン期間でPDPを階調駆動するのが一般的である。同図に示す例では、1フィールド期間が6つのサブフィールド期間SF1~SF6からなり、各サブフィールドに対応させた6ビットの画素データにより64階調の表示を行う。サブフィールド期間SF1~SF6内のサステイン期間は便宜上夫々点灯するものとしてハッチングで示され、時間の比率(発光時間比)はSF1:SF2:SF3:SF4:SF5:SF6が1:2:4:8:16:32に設定されている。尚、1フィールド期間は約16.7msである。

【0005】上記の如き階調駆動シーケンスを用いるP DPで動画像を表示する場合に、人間の目の残像効果等

により、移動する物体の表面上に本来は存在しないはずの不自然な色の輪郭が発生する現象が生じる。この現象により発生する輪郭を、以下においては「疑似輪郭」と呼ぶ。疑似輪郭が特に顕著となるのは、画面上の人物が動いた場合であり、肌色である例えば顔の部分に緑色や赤色の帯が目に映ったりして、著しい画質の劣化を招いている。

【0006】本出願人は、このような疑似輪郭を抑圧す るものとして、例えば特願平8-263398号等のデ ィスプレイ駆動装置を提案した。このディスプレイ駆動 10 装置の画像処理回路の一例の構成図を図13に示す。こ の回路では発光時間比が1:2:4:4:8:8:1 2:12のサブフィールド構成をとっている。メインパ ス10は6ビット出力で52階調の実表示階調数を表現 する。サブパス12は4ビット出力で9階調の実表示階 調数を表現する。RGBマトリクス14は各RGB信号 から輝度信号Y(Y=0.30R+0.59G+0.11B)を生成 する。動き領域検出回路16は輝度信号から求めた1フ ィールド間の差分と2フィールド間の差分の最小値に基 づいて、画像中の動きを含む領域を検出する。エッジ検 20 出回路18は輝度信号から水平方向及び垂直方向のエッ ジを算出し、これらのエッジ量を求める。判定回路20 は上記の検出された動き領域とエッジ量とに基づいて、 疑似輪郭の発生しやすい画素を判定し、判定結果をレベ ル判定回路22に供給する。

【0007】また、レベル検出回路24はメインパス10からのRGB信号の各々に基づいて輝度レベルを検出する。レベル判定回路22は判定回路20の判定結果及びレベル検出回路24で検出された輝度レベルに基づいて、所定レベル以上となった疑似輪郭の発生しやすい画30素の画素データがサブパス12で処理されるようにパスを切り替える切り替え信号を生成してスイッチ24に供給し、これを切り替える。

【0008】これによって、通常はある程度の階調数が確保されたメインパス10により入力画像信号が処理され、疑似輪郭の発生しやすい画素のデータについてのみ入力画像信号をサブパス12で処理するようにパスを自動的に切り替える。

[0009]

【発明が解決しようとする課題】従来の画像処理回路で 40 はメインパスかサブパスかの判定レベルの調整により、動きによって疑似輪郭の生じる領域をサブパスに切り替えることが可能である。しかし、実際には疑似輪郭が生じない領域もサブパスに切り替えてしまうことがある。その原因としては、第1に源画像の画像信号自体にノイズが含まれており、動き検出回路16が誤動作する場合、第2に疑似輪郭が発生しても人間の視覚特性では認知できない色空間があり、そのような領域についても疑似輪郭として検出される場合である。

【0010】このような場合、サブパスに切り替えられ 50 への切り替えの頻度を小さくできる。請求項4に記載の

た部分では誤差拡散によるノイズ、つまり、階調が少なくなってノイズのように見えるという問題があった。本 発明は上記の点に鑑みなされたもので、視覚上で疑似輪 郭が目立つ領域をメインパスからサブパスに切り替え拡 散誤差によるノイズを防止し、また、ノイズによる誤動

作を防止するディスプレイ駆動装置の画像処理回路を提供することを目的とする。

[0011]

【課題を解決するための手段】請求項1に記載の発明 は、発光時間長によって輝度表現を行うディスプレイの 駆動装置で、入力される所定階調数のRGB信号からそ れ以下の階調数のRGB信号を生成するメインパスと、 前記メインパスより少ない階調数のRGB信号を生成す るサブパスと、前記メインパスの生成信号とサブパスの 生成信号とを切り替えて出力するスイッチと、前記入力 RGB信号から求めた動き量が所定値を越える動き領域 を検出し、前記動き領域では前記スイッチをメインパス 出力からサブパス出力に切り替えるパス切替制御部とを 有するディスプレイ駆動装置の画像処理回路において、 前記パス切替制御部に前記入力RGB信号から視覚特性 上で疑似輪郭の目立ちやすい色空間領域を検出する色検 出手段を有し、前記色検出手段で疑似輪郭の目立ちやす い色空間領域の検出時に前記動き領域を検出したときメ インパス出力からサブパス出力への切り替えを行う。 【0012】このように、視覚特性上で疑似輪郭の目立

ちやすい色空間領域においてのみ動き領域を検出したときサブパスに切り替えるため、動きが検出された場合であっても疑似輪郭の目立たない色空間領域ではサブパスへの切り替えが行われず、上記切り替えで生じる拡散誤差によるノイズを防止できる。請求項2に記載の発明は、請求項1記載のディスプレイ駆動装置の画像処理装置において、前記パス切替制御部に、前記入力RGB信号から前記視覚特性上で疑似輪郭の目立ちやすい色に対して感度の高い単一信号を生成するRGB演算手段を有し、前記単一信号を用いて前記動き領域を検出する。

【0013】このように、疑似輪郭の目立ちやすい色に対して感度の高い単一信号を生成して動き領域を検出するため、ノイズ除去フィルタの感度を上げることなく、疑似輪郭が目立つ動き領域を特定でき、疑似輪郭の目立たない動き領域は検出しないため、ノイズによるサブパスへの切り替えの誤動作を防止できる。請求項3に記載の発明は、請求項1又は2記載のディスプレイ駆動装置の画像処理回路において、前記パス切替制御部は、前記入力RGB信号から求めた動き量を、前記色検出手段で疑似輪郭の目立ちやすい色空間領域の検出時にのみ有効とし、有効とされた動き量のノイズ除去フィルタ処理を行った後、前記所定値と比較して動き領域を検出する。【0014】このため、動き量が滑らかに変化して動き

【0014】このため、勁さ重が肩らかに変化して勁さ 領域がブロック状にまとまり、メインパスからサブパス への切り替えの頻度を小さくできる。請求項4に記載の

発明は、請求項1又は2記載のディスプレイ駆動装置の 画像処理回路において、前記パス切替制御部は、前記入 力RGB信号から求めた動き量のノイズ除去フィルタ処 理を行った後、前記色検出手段で疑似輪郭の目立ちやす い色空間領域の検出時にのみ有効とし、有効とされた動 き量を前記所定値と比較して動き領域を前記所定値と比 較して動き領域を検出する。

【0015】このため、動き量は滑らかに変化しても、 疑似輪郭の目立ちやすい色空間領域か否かによって画素 単位で厳密にメインパスからサブパスへの切り替えが行 10 われる。請求項5に記載の発明は、請求項乃至4のいず れかに記載のディスプレイ駆動装置の画像処理回路にお いて、前記メインパスの出力RGB信号の階調の前フィ ールドからの変移に基づいた重み量を求める重み演算手 段を有し、前記パス切替制御部は前記動き量に前記重み 量で重み付けを行った後、前記所定値と比較して動き領 域を検出する。

【0016】このように、メインパス出力の階調の前フ ィールドからの変移に基づいて、疑似輪郭の発生しやす い変移で大きな重み量を発生させ、この重み量で動き量 20 の重み付けを行うため、疑似輪郭が発生しやすい変移が 発生すると、動き領域と検出されやすくなり、サブパス への切り替えによって、この場合の疑似輪郭の発生を防 止できる。

[0017]

【発明の実施の形態】図1は本発明の画像処理回路の第 1 実施例を示すブロック図である。同図中、RGB各色 の入力画像信号はメインパス30とサブパス32夫々に 供給されると共に、パス切替制御部35のRGBマトリ クス回路36及び色検出回路38に供給される。

【0018】メインパス30は、図1に示す如く接続さ れたゲイン制御回路30aと誤差拡散回路30bとから なる。他方、サブパス32は、同図に示す如く接続され た歪み補正回路32aと、ゲイン制御回路32bと、誤 差拡散回路32cと、データ整合回路32dとからな る。本実施例では、メインパス30は、6ビット出力で 52の実表示階調数を表現するものとする。この場合、 RGB信号の各輝度レベルにおける点灯サブフィールド 期間の配置は、図2に示す配置と同じであるものとす までの52階調である。

【0019】メインパス30を介してPDP上で表示で きる最高輝度レベルは、6ビット出力で51である。 又、入力画像信号の最高輝度レベルは、8ビット入力で 255である。このため、ゲイン制御回路30aは、入 力画像信号にゲイン係数51×2⁸⁻⁶ /255=204

/255を乗算する。このゲイン係数の乗算により、後 . 段の誤差拡散回路30bにおいて、入力画像信号の全域 にわたって誤差拡散処理を行うことができる。尚、ゲイ ン制御回路32bは、一般的な乗算器やROM、RAM 等で構成することができる。

【0020】誤差拡散回路30bは、ゲイン制御回路3 Oaを介して得られる画像信号に対して誤差拡散を行う ことにより、疑似的に中間調を生成し、あたかも階調数 が増えたかのような印象を与える。本実施例では、メイ ンパス30の表示階調数は52であるため、誤差拡散回 路30bの出力ビット数は6である。本実施例では、サ ブパス32は、4ビット出力で9の実表示階調数を表現 するものとする。この場合、RGB信号の各輝度レベル における点灯サブフィールド期間の配置は、図3に示す 配置と同じであるものとする。従って、単色あたりの表 示階調は、レベル0~8までの9階調である。

【0021】サブパス32においては、0~8までの9 ステップの階調を表現可能であるが、輝度量は0,1, 3, 7, 11, . . . といった具合に、均等には増加し ない。従って、誤差拡散後の表示特性と逆関数の補正を 行い、全体としては線形の表示特性を得る必要がある。 歪み補正回路32aでは、このような逆関数特性をRO M又はRAMテーブルに格納している。

【0022】サブパス32を介してPDP上で表示でき る最高輝度レベルは、4ビット出力で8である。又、入 力画像信号の最高輝度レベルは、8ビット入力で255 である。このため、ゲイン制御回路32bは、入力画像 信号にゲイン係数8×2⁸⁻⁴/255=128/255 を乗算する。このゲイン係数の乗算により、後段の誤差 30 拡散回路623において、入力画像信号の全域にわたっ て誤差拡散処理を行うことができる。尚、ゲイン制御回 路32bは、一般的な乗算器やROM、RAM等で構成 することができる。

【0023】誤差拡散回路32cは、ゲイン制御回路3 2 bを介して得られる画像信号に対して誤差拡散を行う ことにより、疑似的に中間調を生成し、あたかも階調数 が増えたかのような印象を与える。本実施例では、サブ パス32の表示階調数は9であるため、誤差拡散回路3 2 c の出力ビット数は4である。データ整合回路32 d る。従って、単色あたりの表示階調は、レベル0~51~40~は、サブパス32における輝度レベルを、メインパス3 0における輝度レベルに整合させるために設けられてい る。データ整合回路32dは、本実施例では表1の如き テーブルをROM又はRAMテーブルで構成されてい

[0024]

【表 1 】

サブバスでの輝度レベル	メインパスでの輝度レベル
0	0
1	1
2	3
3	7
4	1.1
. 5	1 9
6 .	2 7
7	3 9
8	5 1

【0025】スイッチ回路34は、パス切替制御部35の判定回路46からのパス選択/切り替え信号に基づいて、入力画像信号に応じて使用するパスを切り替える。従って、入力画像信号を構成するRGB信号に対しては、R,G,Bとで失々独立してパスの切り替えが行われる。このため、同一画素に関するRGB信号であっても、例えばR信号はメインパス30で処理され、G信号及びB信号が共にサブパス32で処理されるといったこともある。

【0026】動き検出を行う場合、フィールド単位のメモリが必要となるため、RGB3系統独立して検出を行うのは回路規模の増大をまねくため、本実施例ではRGBマトリクス回路(RGB演算手段)36によりY+I信号に変換する。輝度信号Yの生成式はY=0.30R+0.3059G+0.11Bである。図4(A),(B),(C)に示すカラーバー表示用の各RGB信号を入力したとき輝度信号Yは図4(D)に示すようになる。

【0027】実際にPDPで表示している場合、疑似輪郭が目立ちやすいのは肌色の部分である。これは人間の色に対する感度が高いことに起因している。カラーコンポジット信号であるNTSC規格でも色差を表わすI、Q軸で肌色方向のI軸はQ軸に対し3倍の帯域を割り当てられている。色差信号IはI=0.60R-0.28G-0.32Bと規格されている。

【0028】本実施例では3系統のRGB信号を輝度Yと色差Iとで合成したY+I軸に変換して動き検出を行う。輝度Yと色差Iの生成式はRGB空間からYIQ空間への変換ベクトルと考えることができ、Y+I=0.90R+0.31G-0.2Bとなる。この演算によるY+I信号の波形を図4(E)に示す。ここでは、視覚感度の高い肌色に近い黄色と赤のレベルが高くなり、視覚感度の低い青のレベルが低くなっている。

【0029】色検出回路(色検出手段)38は入力RG B信号からその画素が疑似輪郭の出やすい色領域にある50

場合に、それを検出する。図5は色検出回路38の一実 施例のブロック図を示す。同図中、セレクタ51,52 は各RGB信号とスレッショルドレベルT1とを独立に 選択するよう予め設定されており、ここで選択した信号 20 を比較器 5 7 に供給する。例えばセレクタ 5 1 はR信号 を選択し、セレクタ52はスレッショルドレベルT1を 選択するものとすると、比較器57はR<T1のときに ハイレベルR≧T1のときにローレベルの比較結果を出 力し、この出力信号は論理回路60に供給される。同様 にセレクタ53、54は各RGB信号とスレッショルド レベルT2とを独立に選択するよう予め設定されてお り、ここで選択された信号は比較器58で互いに比較さ れ、その比較結果が論理回路60に供給される。また、 セレクタ55,56は各RGB信号とスレッショルドレ ベルT3とを独立に選択するよう予め設定されており、 ここで選択された信号は比較器59で比較され、その比 較結果が論理回路61に供給される。論理回路60の出 力は論理回路61に供給される。

【0030】論理回路60,61夫々は比較器または論理回路からの2入力のアンド演算、オア演算を行って、いずれか一方の演算結果を選択して出力する。どちらを選択するかは選択信号により予め設定されている。このような構成とすることにより、RGB信号から疑似輪郭の出やすい肌色近傍の色空間領域にある場合に値1の検出信号を出力する。

【0031】なお、この他にも各RGB信号の上位数ビットをアドレスとして、肌色近傍の色空間領域のアドレスについて値1を予め書き込んだROM等で色検出回路28を構成しても良い。この場合もRGB信号から疑似輪郭の出やすい肌色近傍の色空間領域にある場合に値1の検出信号が出力される。スイッチ42は色検出回路28の出力する値1の検出信号を制御端子に供給されると動き検出回路40の出力する動き量を選択し、そうでないとき即ち疑似輪郭の出にくい青色等の色領域では動き

なしの動き量(固定値、例えば0)を選択してノイズ除 去時空間フィルタ44に供給する。

【0032】図6は、図1に示す動き検出回路40の一 実施例を示すブロック図である。図6中、エッジ検出回 路40aは、図示の如く接続された1H遅延回路81, 82、遅延回路83、減算回路84、85、絶対値回路 86,87、最大値検出回路88,89、乗算回路9 0,92,93及び加算回路92を有する。動き領域検 出回路643は、図示の如く接続された1 V遅延回路1 21, 122、減算回路123, 124、絶対値回路1 10 25,126及び最小値検出回路127を有する。尚、 1 Hは入力画像信号の1水平走査期間を示し、1 Vは入 力画像信号の1垂直走査期間を示す。

【0033】エッジ検出回路40aにおいて、減算回路 84は、現在の入力輝度信号Yと2H前の入力輝度信号 Yとの差分を求め、絶対値回路86は減算回路84から の差分の絶対値を求める。最大値検出回路88は、絶対 値回路86で求められた絶対値のうち、例えば最も大き い3つの絶対値を検出して乗算回路90に出力する。乗 る感度を決定する係数が入力されており、乗算回路90 の出力は加算回路92に出力される。他方、遅延回路8 3は、入力輝度信号Yを画素単位(D)で遅延するの で、減算回路85は入力画像信号の画素間の差分を求め る。絶対値回路87は減算回路85からの差分の絶対値 を求める。最大値検出回路89は、絶対値回路87で求 められた絶対値のうち、例えば最も大きい3つの絶対値 を検出して乗算回路91に出力する。乗算回路91に は、垂直方向に延在する縦エッジを検出する感度を決定 する係数が入力されており、乗算回路91の出力は加算 30 回路92に出力される。加算回路92の出力は乗算回路 93に供給され、全体としてのエッジ感度を決定する係 数を乗算される。これにより、乗算回路93は、エッジ 量を示す信号が出力して後述する除算回路131に供給

【0034】動き領域検出回路40bにおいて、減算回 路123は入力輝度信号Yの隣り合う2フィールド期間 の差分を求めて絶対値回路125に出力する。減算回路 124は入力輝度信号Yの隣り合う2フレーム期間の差 分を求めて絶対値回路126に出力する。従って、絶対 40 値回路125は、現在のフィールド期間と1フィールド 期間前の入力輝度信号Yの差分の絶対値を求めて最小値 検出回路127に出力する。他方、絶対値回路126 は、現在のフィールド期間と2フィールド期間前の入力 輝度信号Yの差分の絶対値を求めて最小値検出回路12 7に出力する。最小値検出回路127は、絶対値回路1 25, 126からの絶対値のうち、最小値を動き量を示 す信号として後述する除算回路131に供給する。ノン インターレイス方式を採用する場合、奇数番目のフィー ルド期間とその次の偶数番目のフィールド期間とでは、

実際には画像中に動きがないにも拘らず差分が検出され てしまう可能性がある。そこで、差分は、現在のフィー ルド期間の入力輝度信号Yと1フィールド期間前及び2 フィールド期間前の入力輝度信号Yとの夫々について求 め、その絶対値の最小値から動き量を求めるようにして いる。

10

【0035】尚、絶対値回路125,126から得られ る差分の絶対値の単位は例えば (レベル/フィールド) であり、最小値回路127から得られる動き量の単位は 例えば(ドット/フィールド)である。ここで、動き量 は、動き量(ドット/フィールド)=((「差分(最小 値) (レベル/フィールド) | } ÷ { | 傾き (レベル/ ドット) | で表される。

【0036】除算回路131は、最小値検出回路127 から得られる動き量を乗算回路93から得られるエッジ 量で除算することにより、画像中の動きの度合い、即 ち、動き量を正規化する。除算回路131で正規化され た動き量は、スイッチ44に供給される。スイッチ44 で選択された動き量は孤立点除去回路とテンポラリフィ 算回路90には、水平方向に延在する横エッジを検出す 20 ルタと2次元LPF(ローパスフィルタ)とよりなるノ イズ除去時空間フィルタ44に供給される。孤立点除去 回路は、ノイズ等の孤立した画像データを除去するため に設けられている。例えば、画像中の所定範囲内におい て、周囲の画素が動きを示していないのに中心部の1画 素だけが動いていれば、この1画素はノイズと見なせる の。従って、このような場合には、孤立点除去回路13 2で孤立点を除去する。具体的には、孤立点は、各ライ ンの画素の動き量をしきい値と比較し、しきい値以下の 動き量の画素については動きがない画素とみなすことで 除去可能である。

> 【0037】テンポラルフィルタは、動きを示す画素の データのレベルの立ち下がりを時間軸上緩やかに補正す るために設けられている。例えば、画像中、特定の画素 が動いていて急に止ると、画像データとしてはこの特定 画素が止っているが、人間の目には残像効果等で直ちに 止って見えない。そこで、テンポラルフィルタは、動き を示す画素のデータのレベルの立ち下がりを時間軸上緩 やかに補正することで、PDP上の画像の表示を人間の 目の特性に合わせて違和感を少なくする。具体的には、 テンポラルフィルタは、孤立点除去回路132から得ら れる動き量及び後述するメモリから読み出した値のうち 最大値を求め、最大値に1未満の係数を乗算してメモリ に格納する。求められた最大値は、テンポラルフィルタ 133の出力として2次元LPFに供給される。つま り、メモリに格納される動き量は、少しづつ減少するの で、実際の動き量がゼロになってもテンポラルフィルタ 133から出力される動き量は緩やかに減少する。

【0038】2次元LPFは、1つの画素のデータを、 その周辺の画素のデータに基づいて補正することで、あ 50 る範囲内の画素のデータを平均化して、1つの画素だけ

がその周辺の画素と極端に異なるレベルとなることを防止する。つまり、2次元LPF134は、動き量を2次元空間的に補正する。判定回路46はノイズ除去時空間フィルタ44から供給される動き量が所定の閾値以下の場合、スイッチ34にメインパス30を選択させ、動き量が閾値を越えるとスイッチ34にサブパス32を選択させるような切り替え信号を生成してスイッチ34に供給し、これを切り替える。

【0039】ここで、疑似輪郭の目立ち易い色とは、人間の視覚感度の高い肌色であり、逆に感度が低い色は青 10色である。源画像の画像信号自体にノイズが含まれている場合は、ノイズ除去フィルタの感度を上げることによって解決できるが、動き領域自体が減少してしまうため、肝心の疑似輪郭の発生している領域をカバーできなくなってしまう。具体的には、背景が青い空で人が移動しているような絵柄では、背景のノイズを除去するように感度を設定すると、移動している人の動き領域が減少する。

【0040】動き検出に使う信号を、肌色の時最大になり青色では最小になるような、RGB演算回路を用い、ノイズ除去フィルタの感度をあまり上げなくても疑似輪郭の生じている領域が特定できる。同じように移動している肌色の部分と青色の部分があった場合、前者では疑似輪郭が目立つが、後者では目立たないという現象については、本発明では肌色部分を検出し、その領域のみ動き検出を行うため、青色の部分では動き量が動きなしの値となり、この部分でサブパスへの切り替えが防止され誤差拡散によるノイズの発生を防止できる。

【0041】図7は本発明の画像処理装置の第2実施例を示すブロック図である。同図中、図1と同一部分には 30同一符号を付し、その説明を省略する。図7においては、動き検出回路40の出力する動き量を直接ノイズ除去時空間フィルタ44に供給して、この時空間フィルタ44の出力する動き量をスイッチ42に供給する。スイッチ42が色検出回路38の出力する検出信号によって上記の動き量と動きなしの動き量とを切り替え、スイッチ42の出力する動き量が判定回路46に供給される。

【0042】図1の第1実施例ではスイッチ42による切り替えの後にノイズ除去フィルタ44を通すため動き量が滑らかに変化するので、サブパス32で処理される40画素の領域がブロック状にまとまるが、上記の第2実施例ではノイズ除去時空間フィルタ44を通した動き量がスイッチ42で切り替えられて判定回路46に供給されるため、サブパス32で処理される画素はブロック状にまとまることが少なく画素単位で厳密に切り替えられる

【0043】図8は本発明の画像処理装置の第3実施例を示すブロック図である。同図中、図1と同一部分には同一符号を付し、その説明を省略する。図8においてはノイズ除去時空間フィルタ44の出力する動き量を、R 50

GBの各系に対して設けた判定部140に供給する。判定部140は階調変移検出回路142と加算器144と判定回路146とからなる。

【0044】階調変移検出回路(重み演算手段)142 は図9に示すように、メインパス30からの出力階調データと、フィールドメモリ146に格納された1フィールド前の階調データとを入力アドレスとしてアクセスされる変換テーブル148で構成される。この変換テーブル148は階調データが1フィールド期間で変化するとき疑似輪郭が発生しやすいような変移をした場合に値が大きく、疑似輪郭が発生しにくいような変移をした場合に値が小さくなる重み量が図10に示すように予め書き込まれている。

【0045】この階調変移検出回路142の出力する重み量は加算器14で動き量に加算され、判定回路146に供給される。判定回路146は重み量が加算された動き量を所定の閾値と比較して閾値を越えたときにサブパス34を選択させる切り替え信号を生成してスイッチ34に供給し、これを切り替える。ここで、疑似輪郭は微少な階調変移の画素において発生するため、このような疑似輪郭の発生しやすい階調の変移を検出して重み量を設定することにより、この第3実施例では更に疑似輪郭の発生を精度良く防止できる。

【0046】図11は本発明の画像処理回路を適用した ディスプレイ駆動装置の一実施例のブロック図を示す。 ディスプレイ駆動装置は、画像処理回路150と大略点 灯時刻制御回路151とPDP駆動回路152とからな る。 PDP駆動回路152は、大略フィールドメモリ1 53と、メモリコントローラ154と、スキャンコント ローラ155と、スキャンドライバ156と、アドレス ドライバ157とからなる。図10では、便宜上、PD P158がPDP駆動回路152内に図示されている。 【0047】点灯時刻制御回路151は、画像処理回路 150からRGB信号を供給され、どの階調がどの時刻 のサブフィールドで点灯するかを示す被変換データに変 換されてPDP駆動回路152に供給される。本実施例 では、フィールドメモリ153は、メモリコントローラ 154の制御下で上記被変換データの書き込み及び読み 出しを行う。アドレスドライバ157は、フィールドメ モリ153から読み出されたデータに基づいてPDP1 58を駆動する。スキャンコントローラ155は、スキ ャンドライバ156を制御することによりPDP158 の駆動を制御する。PDP158がスキャンドライバ1 56及びアドレスドライバ157に駆動されることによ り、各サブフィールド内で発光する画素に対して壁電荷 が形成されたり、サステイン (発光) パルスが生成され たりする。

[0048]

【発明の効果】上述の如く、請求項1に記載の発明は、 発光時間長によって輝度表現を行うディスプレイの駆動

装置で、入力される所定階調数のRGB信号からそれ以 下の階調数のRGB信号を生成するメインパスと、前記 メインパスより少ない階調数のRGB信号を生成するサ ブパスと、前記メインパスの生成信号とサブパスの生成 信号とを切り替えて出力するスイッチと、前記入力RG B信号から求めた動き量が所定値を越える動き領域を検 出し、前記動き領域では前記スイッチをメインパス出力 からサブパス出力に切り替えるパス切替制御部とを有す るディスプレイ駆動装置の画像処理回路において、前記 パス切替制御部に前記入力RGB信号から視覚特性上で 10 疑似輪郭の目立ちやすい色空間領域を検出する色検出手 、 段を有し、前記色検出手段で疑似輪郭の目立ちやすい色 空間領域の検出時に前記動き領域を検出したときメイン パス出力からサブパス出力への切り替えを行う。

【0049】このように、視覚特性上で疑似輪郭の目立 ちやすい色空間領域においてのみ動き領域を検出したと きサブパスに切り替えるため、動きが検出された場合で あっても疑似輪郭の目立たない色空間領域ではサブパス への切り替えが行われず、上記切り替えで生じる拡散誤 差によるノイズを防止できる。また、請求項2に記載の 20 発明は、請求項1記載のディスプレイ駆動装置の画像処 理装置において、前記パス切替制御部に、前記入力RG B信号から前記視覚特性上で疑似輪郭の目立ちやすい色 に対して感度の高い単一信号を生成するRGB演算手段 を有し、前記単一信号を用いて前記動き領域を検出す

【0050】このように、疑似輪郭の目立ちやすい色に 対して感度の高い単一信号を生成して動き領域を検出す るため、ノイズ除去フィルタの感度を上げることなく、 疑似輪郭が目立つ動き領域を特定でき、疑似輪郭の目立 30 たない動き領域は検出しないため、ノイズによるサブパ スへの切り替えの誤動作を防止できる。また、請求項3 に記載の発明は、請求項1又は2記載のディスプレイ駆 動装置の画像処理回路において、前記パス切替制御部 は、前記入力RGB信号から求めた動き量を、前記色検 出手段で疑似輪郭の目立ちやすい色空間領域の検出時に のみ有効とし、有効とされた動き量のノイズ除去フィル タ処理を行った後、前記所定値と比較して動き領域を検 出する。

【0051】このため、動き量が滑らかに変化して動き 40 領域がブロック状にまとまり、メインパスからサブパス への切り替えの頻度を小さくできる。また、請求項4に 記載の発明は、請求項1又は2記載のディスプレイ駆動 装置の画像処理回路において、前記パス切替制御部は、 前記入力RGB信号から求めた動き量のノイズ除去フィ ルタ処理を行った後、前記色検出手段で疑似輪郭の目立 ちやすい色空間領域の検出時にのみ有効とし、有効とさ れた動き量を前記所定値と比較して動き領域を前記所定 値と比較して動き領域を検出する。

【0052】このため、動き量は滑らかに変化しても、 50 46,146 判定回路

疑似輪郭の目立ちやすい色空間領域か否かによって画素 単位で厳密にメインパスからサブパスへの切り替えが行 われる。また、請求項5に記載の発明は、請求項乃至4 のいずれかに記載のディスプレイ駆動装置の画像処理回 路において、前記メインパスの出力RGB信号の階調の 前フィールドからの変移に基づいた重み量を求める重み 演算手段を有し、前記パス切替制御部は前記動き量に前 記重み量で重み付けを行った後、前記所定値と比較して 動き領域を検出する。

【0053】このように、メインパス出力の階調の前フ ィールドからの変移に基づいて、疑似輪郭の発生しやす い変移で大きな重み量を発生させ、この重み量で動き量 の重み付けを行うため、疑似輪郭が発生しやすい変移が 発生すると、動き領域と検出されやすくなり、サブパス への切り替えによって、この場合の疑似輪郭の発生を防 止できる。

【図面の簡単な説明】

【図1】本発明の画像処理回路のブロック図である。

【図2】サブパスにおける点灯サブフィールド期間の配 置を示す図である。

【図3】メインパスにおける点灯サブフィールド期間の 配置を示す図である。

【図4】RGBマトリクスの動作を説明するための図で ある。

【図5】色検出回路のブロック図である。

【図6】動き検出回路のブロック図である。

【図7】本発明の画像処理回路のブロック図である。

【図8】本発明の画像処理回路のブロック図である。

【図9】階調変移検出回路のブロック図である。

【図10】変換テーブルを説明するための図である。

【図11】本発明回路を適用したディスプレイ駆動装置 のブロック図である。

【図12】面放電を行うPDPの階調駆動シーケンスの 一例を説明するための図である。

【図13】従来回路のブロック図である。

【符号の説明】

30 メインパス

30a ゲイン制御回路

30b, 32c 誤差拡散回路

32 サブパス

32a 歪み補正回路

32b ゲイン制御回路

32d データ整合回路

34, 42 スイッチ

35 パス切替制御部

36 RGBマトリクス回路

38 色検出回路

40 動き検出回路

44 ノイズ除去時空間フィルタ

140 判定部

142 階調変移検出回路

【図1】

本発明の画像処理回路のブロック図

144 加算器

【図2】

サブパスにおける点灯サブフィールド期間の配置を示す図

【図3】

メインパスにおける点灯サブフィールド期間の配置を示す図

【図4】

【図5】

RGBマトリクスの動作を説明するための図

【図6】

動き検出回路のブロック図

色検出回路のブロック図

【図10】

変換テーブルを説明するための図

現フィールドの階割	33	1	m -	സമ	∞ 4	NJ ED	00	
	32	25	410	9	410	91~	00	
	31	60.4	5	8	00	90	۳- و	
	88	4 10	9	დ თ	0	90	டை	
	82	மை	9	e .5	0	0	RD-AL	
	82	82-	ಯರಾ	<u>e</u> =	90	00	400	
	12	00	00	0	==2	တထ	7	
	83	o-	o-	96	56	8	eo ru	
	22	1	00	10	66	7	NO 40	
	54	35	00	00	@ r-	60 FC	40	
		22	25	28 27	23 23	38	88	
	セフィーシェの数度							

作フィールドの段頭

【図7】

本発明の画像処理回路のブロック図

【図8】

本発明の画像処理回路のブロック図

[図12]

面放電を行うPDPの階間駆動シーケンスの一例を説明するための図

【図9】

【図11】

階間変移検出回路のブロック図

本発明回路を適用したディスプレイ駆動装置のブロック図

【図13】

従来回路のブロック図

