MAP55672 (2024-25) — Case studies 4

The Multigrid method

Yu Liu (liuy41@tcd.ie)

4.1 The Poisson Problem

We consider the 2D Poisson equation on the unit square with zero Dirichlet boundary conditions. Using central finite differences and a uniform grid with step size h=1/N, we discretize the Laplace operator with a 5-point stencil. This leads to a linear system Ay=b, where:

- ullet A is a sparse matrix of size $(N-1)^2 imes (N-1)^2$, built using Kronecker products,
- y is the vector of unknowns at interior grid points,
- b is constructed by evaluating the source function $f(x,y)=2\pi^2\sin(\pi x)\sin(\pi y)$ at each grid point and scaled by h^2 .
- We use row-major ordering to map 2D indices ((i,j)) to the 1D index

$$k = (j-1)(N-1) + (i-1). (1)$$

This setup is the same as in Case Study 3 (Section 3.1).

4.2 Serial implementation of a recursive V-cycle multigrid

We implemented a serial recursive V-cycle multigrid solver for the 2D Poisson problem. The grid levels are controlled by Imax, with the coarsest level fixed at 8×8 to avoid deep recursion.

The smoothing step uses weighted Jacobi with $\omega=2/3$ and $\nu=2$, which works well and is easy to implement. The residual restriction uses a 3×3 full-weighting stencil, and the correction is prolongated back to the fine grid by bilinear interpolation.

On the coarsest grid, we solve the error equation $A_c e_c = r_c$ using <code>spsolve</code>, so that remaining low-frequency error modes are removed before prolongation. The main loop stops when the residual norm satisfies $|r| < 10^{-7}$.

```
Cycle 0 residual = 1.54e-01

Cycle 1 residual = 1.13e-03

Cycle 2 residual = 4.28e-05

Cycle 3 residual = 3.63e-06

Cycle 4 residual = 3.09e-07

Cycle 5 residual = 2.62e-08

Converged.

Solution complete.
```

4.3 Convergence of MG.

Fix the grid size at N=128, we try different values of lmax=(2, 3, 4) to observe. The stopping condition is a residual norm less than 10^{-7} .

Since N=128, the coarsest grid we can reach is N=8, meaning the maximum valid lamx is 4.

Result

lmax		Time (s)		Coarse solves
2		0.4313		6
3		0.3831		6
4		0.3492		6

- All setups converge within 6 V-cycles, showing that the error reduction per cycle is high enough for each lmax.
- At N=128, Imax=4 has the fastest convergence. Although all methods eventually converge to 10^{-8} , larger Imax lead to faster residual reduction in the first few V-cycles, indicating that more levels help speed up convergence.

Comparison between 2-Level and max-Level

N	נ	Time(21v1)		Cycles(21v1)		Res(2lvl)		Time(max)		Cycles(max)		Res(max)
16		0.0265		9		2.89e-08		0.0268		9		2.89e-08
32		0.0422		9		8.17e-09		0.0375		7		1.33e-08
64		0.1144		9		3.43e-09		0.0887		7		2.22e-09
128		0.5768		9		1.64e-09		0.3560		6		4.63e-09
256		1.8829		9		8.14e-10		1.3378		6		8.19e-10
512		8.1373		9		4.06e-10		3.0369		5		1.70e-09

- For the 2-level MG, the number of iterations stays at 9, regardless of N, meaning the algorithm doesn't improve with larger grids.
- In contrast, the max-level MG shows a reduction in iterations and runtime as N increases, with the residuals reaching $\leq 10^{-7}$.
- Although the number of iterations in 2-level MG does not depend on N, the cost of the direct coarse-grid solve grows rapidly with grid size, making the overall runtime increase roughly like $\mathcal{O}(N^3)$.

Summary

Using a max-level MG setup is a better choice for this problem. It gives fast and stable convergence with lower runtime, while still reaching the same accuracy as the 2-level setup.