关于 Maple Algebra 的这一路

枫聆 (maplegra)

2022 年 7 月 14 日

目录

1	Equivalence of Program	2
	1.1 Reactive Systems	2

Equivalence of Program

Reactive Systems

Definition 1.1. A labelled transition system is a tuple (S, Λ, \to) where S is set of states, Λ is set of labels, and \to is relation of labelled transitions (i.e., a subset of $S \times \Lambda \times S$). A $(p, \alpha, q) \in \to$ is written as $p \xrightarrow{\alpha} q$.

Annotation 1.2. TODO: categorical semantics: F-coalgebra

Definition 1.3. Let $T = (S, \Lambda, \to)$ be a labelled transition system. The set of traces Tr(s), for $s \in S$ is the minimal set satisfying

- $\varepsilon \in Tr(s)$.
- $\alpha \ \sigma \in Tr(s)$ if $\{s' \in S \mid s \xrightarrow{\alpha} s' \text{ and } \sigma \in Tr(s')\}.$

Definition 1.4. Two states p, q are trace equivalent iff Tr(p) = Tr(q).

Definition 1.5. (Simultation) Given two labelled transition system (S_1, Λ, \to_1) and (S_2, Λ, \to_2) , relation $R \subseteq S_1 \times S_2$ is a simulation iff, for all $(p, q) \in R$ and $\alpha \in \lambda$ satisfies

for any $p \xrightarrow{\alpha}_1 p'$, then there exists q' such that $q \xrightarrow{\alpha}_2 q'$ and $(p', q') \in R$

Definition 1.6. We say q simulates p if there exists a simulation R includes (p,q) (i.e., $(p,q) \in R$).

Lemma 1.7. The simulation is reflexive and transitive.

Annotation 1.8. 最有意思的是我们应该如何找到这样 simulation 来满足 $(p,q) \in R$, 更一步我们更希望找到 the minimal relation.

Definition 1.9. (Bisimultation) Given two labelled transition system (S_1, Λ, \to_1) and (S_2, Λ, \to_2) , relation $R \subseteq S_1 \times S_2$ is a bisimulation iff both R and its converse \overline{R} are simulations, for all $(p, q) \in R$ and $\alpha \in \lambda$ satisfies

for any $p \xrightarrow{\alpha}_1 p'$, then there exists q' such that $q \xrightarrow{\alpha}_2 q'$ and $(p', q') \in R$ for any $q \xrightarrow{\alpha}_2 q'$, then there exists p' such that $p \xrightarrow{\alpha}_1 p'$ and $(p', q') \in R$

Example 1.10. 一些 bisimulation 的例子

关于上面两个 transition system 的 bisimultaion 为 $R = \{(p_1,q_1),(p_2,q_2),(p_3,q_2)\}$. 还有一个比较有点特别的例子

如果关于上图这样 bisimulation R 存在, 那么 $(p_i,q_1) \in R$ for every i.