Series (Section 14)

Goal: make sense of infinite sums $\sum_{i=k_0}^{\infty} a_i = a_{k_0} + a_{k_0+1} + \dots$

Definition (p. 95 of textbook)

n-th partial sum: $s_n = \sum_{i=k_0}^n a_i$. The series $\sum_{j=k_0}^{\infty} a_j$ converges (diverges) if (s_n) does. $\sum_{i=k_0}^{\infty} a_i = \lim_n s_n$ (if $\lim s_n$ exists).

Example: $\sum_{i=0}^{\infty} r^{i}$. Partial sums: $s_n = \sum_{i=0}^{n} r^{i}$.

If r=1, then $s_n=n+1$, hence the series diverges. If $r\neq 1$, then $s_n=\frac{1-r^{n+1}}{1-r}$. If |r|<1, then $\lim s_n=\frac{1}{1-r}$. Otherwise, (s_n) diverges.

If $r \ge 1$, then $s_n \ge n$ for any n, hence $\lim s_n = +\infty$.

If $r \leq -1$, then $s_n \leq 0$ when *n* is odd (since $r^{n+1} \geq 1$). For *n* even, $-r^{n+1} \geqslant -r \geqslant 0$, hence $s_n \geqslant 1$. Thus, $\lim s_n$ does not exist.

Summary: $\sum_{i=0}^{\infty} r^{i} = \frac{1}{1-r}$ for |r| < 1; $\sum_{i=0}^{\infty} r^{i} = +\infty$ for $r \ge 1$; $\lim s_n$ does not exist if $r \leq -1$.

Cauchy Criterion for convergence

Definition (14.3)

A series $\sum_{j} a_{j}$ satisfies Cauchy Criterion if $\forall \varepsilon > 0 \ \exists N \ \text{s.t.} \ \left| \sum_{j=m}^{n} a_{j} \right| < \varepsilon$ whenever $n \geqslant m > N$.

Theorem (14.4)

A series converges iff it satisfies the Cauchy Criterion.

Proof. Let $s_n = \sum_{j=k_0}^n a_j$. $\sum_{j=k_0}^\infty a_j$ converges $\Leftrightarrow (s_n)$ converges $\Leftrightarrow (s_n)$ is Cauchy $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \ \text{s.t.} \ |s_n - s_k| < \varepsilon \ \text{when} \ n > k \geqslant N$. $s_n - s_k = \sum_{j=k_0}^n a_j - \sum_{j=k_0}^k a_j = \sum_{j=m}^n a_j$, where m = k+1. So: $\sum_j a_j$ satisfies Cauchy Criterion $\Leftrightarrow (s_n)$ is Cauchy $\Leftrightarrow (s_n)$ converges.

More about convergence

Corollary (14.5)

If $\sum_{j} a_{j}$ converges, then $\lim_{n} a_{n} = 0$.

Proof. Suppose $\sum_j a_j$ converges. Fix $\varepsilon > 0$. Need to find N s.t. $|a_n| < \varepsilon$ for n > N. Find N s.t. $\left|\sum_{j=m}^n a_j\right| < \varepsilon$ when $n \geqslant m > N$ (Cauchy Criterion). Now take m = n.

If $\lim_n a_n = 0$, does $\sum_j a_j$ converge? **No!** Let $a_n = \frac{1}{n}$; $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, since the sequence of partial sums (s_n) is unbounded (Lectures 6 and 7).

Comparison test for convergence (preview)

Theorem (14.6 – Comparison test)

- (i) If $a_n \geqslant |b_n|$ for any n, and $\sum_n a_n$ converges, then $\sum_n b_n$ converges.
- (ii) If $0 \leqslant a_n \leqslant b_n$ for any n, and $\sum_n a_n = +\infty$, then $\sum_n b_n = +\infty$.

Proof of (i). Need to check Cauchy Criterion for $\sum_{n} b_{n}$:

$$\forall \varepsilon > 0 \ \exists N \ \text{s.t.} \ \left| \sum_{j=m}^{n} b_{j} \right| < \varepsilon \ \text{if} \ n \geqslant m > N.$$

$$\sum_{n} a_{n}$$
 converges, hence $\exists N$ s.t. $\sum_{j=m}^{n} a_{j} < \varepsilon$ if $n \ge m > N$.

By Triangle Inequality,
$$\left|\sum_{i=m}^n b_i\right| \leqslant \sum_{i=m}^n |b_i| \leqslant \sum_{i=m}^n a_i < \varepsilon$$
.

Absolutely convergent series

Definition (P. 96 of textbook)

A series $\sum_n a_n$ converges absolutely if $\sum_n |a_n|$ converges.

Corollary (14.7)

Any absolutely convergent series converges.

Example: $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \dots$ converges, but not absolutely.

$$s_{2n}=\left(\frac{1}{1}-\frac{1}{2}
ight)+\ldots+\left(\frac{1}{2n-1}-\frac{1}{2n}
ight)$$
, so $s_2\leqslant s_4\leqslant s_6\leqslant\ldots$

$$s_{2n-1} = \frac{1}{1} - (\frac{1}{2} - \frac{1}{3}) - \ldots - (\frac{1}{2n-2} - \frac{1}{2n-1})$$
, so $s_1 \geqslant s_3 \geqslant s_5 \geqslant \ldots$

$$s_{2n}=s_{2n-1}-\frac{1}{2n}$$
, hence $s_1\geqslant s_3\geqslant s_5\geqslant\ldots\geqslant s_4\geqslant s_2$.

$$\lim_{n} s_{2n-1} = a$$
, $\lim_{n} s_{2n} = b$. $\lim_{n} (s_{2n-1} - s_{2n}) = 0$, hence $a = b$.

Can show:
$$\lim_n s_n = a$$
 (or b). In fact, $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \ln 2$.

Root Test for convergence

Theorem (14.9 – Root Test)

For a series $\sum_{n} a_n$ let $\alpha = \limsup_{n} |a_n|^{1/n}$. The series:

- Converges absolutely if $\alpha < 1$;
- **1** Diverges if $\alpha > 1$.
- **1** If $\alpha = 1$, the test gives no information.

Proof of (i). $\lim_N \sup_{n>N} |a_n|^{1/n} = \alpha < 1$. Pick $c \in (\alpha,1)$. Pick N s.t. $|a_n|^{1/n} < c$ for n > N. For n > N, $|a_n| < c^n$. $\sum_n c^n$ converges, hence so does $\sum_n |a_n|$ (Comparison Theorem).

Proof of (iii). $\sum_{n} \frac{1}{n}$ diverges (to $+\infty$).

On the other hand, let $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$. Then $\lim_n a_n^{1/n} = 1$, and $s_k = \sum_{n=1}^k a_n = 1 - \frac{1}{k+1} \to 1$.

Ratio Test for convergence

Theorem (14.8 – Ratio Test)

A series $\sum_{n} a_n$ of non-zero terms:

- Converges absolutely if $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$;
- ① Diverges if $\liminf \left| \frac{a_{n+1}}{a_n} \right| > 1$.
- If $\liminf \left| \frac{a_{n+1}}{a_n} \right| \leqslant 1 \leqslant \limsup \left| \frac{a_{n+1}}{a_n} \right|$, the test gives no information.

Partial proof, using Root Test. Let $\alpha = \limsup_{n} |a_n|^{1/n}$. We know:

 $\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \leqslant \alpha \leqslant \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$

Case (i): $\alpha < 1 \Rightarrow$ series converges.

Case (ii): $\alpha > 1 \Rightarrow$ series diverges.

Examples of series

Examples: (1) $\sum_{k=1}^{\infty} \frac{k^4}{2^k}$ converges (absolutely). $a_k = \frac{k^4}{2^k}$.

Can use Root Test: $a_k^{1/k} = \frac{(k^{1/k})^4}{2}$, hence $\lim_{k \to \infty} a_k^{1/k} = \frac{1}{2} < 1$.

Can also use Ratio Test: $\frac{a_{k+1}}{a_k} = \frac{1}{2} \left(1 + \frac{1}{k}\right)^2$, hence $\lim \frac{a_{k+1}}{a_k} = \frac{1}{2} < 1$.

- (2) $\sum_{k=1}^{\infty} \frac{2}{k(k+2)} = \frac{2}{1 \cdot 3} + \frac{2}{2 \cdot 4} + \dots$ converges. $\frac{2}{k(k+2)} = \frac{1}{k} \frac{1}{k+2}$. $s_n = \sum_{k=1}^n \frac{2}{k(k+2)} = \frac{1}{1} + \frac{1}{2} \frac{1}{n+1} \frac{1}{n+2}$, hence $\lim_n s_n = \frac{3}{2}$.
- (3) $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges (comparison with (2)). In fact, $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

Fact (*p*-series – p. 97)

 $\sum_{k} \frac{1}{k^p}$ converges iff p > 1.

Decimal expansions (Section 16) - almost no proofs!

For $x \in [0,\infty)$, we consider a decimal expansion $x = K.d_1d_2d_3\ldots = K + \sum_{j=1}^{\infty} \frac{d_j}{10^j}$, with $K = \{0,1,2,\ldots\}$ and $d_1,d_2,\ldots \in \{0,1,\ldots,9\}$. $\sum_j \frac{d_j}{10^j}$ converges (compare to $\sum_j \frac{1}{10^{j-1}}$).

Theorem (16.2)

Any real number has at least one decimal expansion.

The integer part of z $\lfloor z \rfloor =$ greatest integer $\leq z$. Let $S = \{n \in \mathbb{Z} : n \leq z\}$. Let $\lfloor z \rfloor = \sup S$. Clearly $\lfloor z \rfloor \leq z$. Can show: $\lfloor z \rfloor \in \mathbb{Z}$.

Idea of the proof: $K = \lfloor x \rfloor$. $d_1 = \lfloor 10(x - K) \rfloor$, $d_2 = \lfloor 10^2(x - K - \frac{d_1}{10}) \rfloor$, etc..

More about decimal expansions

Theorem (16.3)

Any $x\geqslant 0$ has either exactly one decimal expansion, or exactly two – one ending in $**d000\dots(d\in\{1,\dots,9\}$, another ending in $**[d-1]999\dots$

For instance, $\frac{1}{2}=0.5000\ldots=0.4999\ldots$

Definition (16.4)

A repeating decimal expansion is one of the form

 $K.d_1 \ldots d_\ell \overline{d_{\ell+1} \ldots d_{\ell+r}} = K.d_1 \ldots d_\ell d_{\ell+1} \ldots d_{\ell+r} d_{\ell+1} \ldots d_{\ell+r} \ldots$

Theorem (16.5)

 $x \in \mathbb{Q}$ iff the decimal explansion of x is repeating.

Repeating decimal expansions

Theorem (16.5)

 $x \in \mathbb{Q}$ iff the decimal explansion of x is repeating.

x has repeating expansion $\Rightarrow x \in \mathbb{Q}$.

Suppose
$$x = K.d_1 \dots d_{\ell} \overline{d_{\ell+1} \dots d_{\ell+r}}$$
. Let $y = 0.\overline{d_{\ell+1} \dots d_{\ell+r}} = \sum_{j=1}^r d_{\ell+j} 10^{-j} + 10^{-r} \cdot \sum_{j=1}^r d_{\ell+j} 10^{-j} + 10^{-2r} \sum_{j=1}^r d_{\ell+j} 10^{-j} + \dots = \sum_{i=0}^\infty 10^{-ir} z$, where $z = \sum_{j=1}^r d_{\ell+j} 10^{-j} \in \mathbb{Q}$. So, $y = \frac{z}{1-10^{-r}} \in \mathbb{Q}$. $x = K + \sum_{j=1}^\infty \frac{d_j}{10^j} = K + \sum_{j=1}^\ell \frac{d_j}{10^j} + 10^{-\ell} y \in \mathbb{Q}$.

 $x \in \mathbb{Q} \Rightarrow x$ has repeating expansion: uses long division (see textbook).