Exercise 6. Suppose that for each subset A of \mathbb{R}^2 and each real number x we denote the set $\{y \in \mathbb{R} \mid (x,y) \in A\}$ by A_x . Let \mathscr{A} consist of those subsets A of \mathbb{R}^2 that satisfy $A_x \in \mathscr{B}(\mathbb{R})$ for each x in \mathbb{R} , and define $\mu : \mathscr{A} \to [0, +\infty]$ by

$$\mu(A) = \begin{cases} \sum_{x} \lambda(A_x) & \text{if } A_x \neq \emptyset \text{ for only countably many } x \\ +\infty & \text{otherwise} \end{cases}$$

- (a) Show that \mathscr{A} is a σ -algebra on \mathbb{R}^2 and that μ is a measure on $(\mathbb{R}^2, \mathscr{A})$.
- (b) Show that $\{(x,y) \in \mathbb{R}^2 \mid y=0\}$ is locally μ -null but not μ -null.
- *Proof.* (a) First, note that $\emptyset \in \mathscr{A}$ since the property defining elements of \mathscr{A} is vacuously true for \emptyset , and that $\mathbb{R}^2 \in \mathscr{A}$ since the condition defining \mathbb{R}^2_x holds by definition.

Next, take A_1, A_2, \ldots a countable family of elements of \mathscr{A} , and consider $A = \bigcap_{i \in \mathbb{N}} A_i$. For each $x \in A$, and each $i \in \mathbb{N}$, $A_{i,x} \in \mathscr{B}(\mathbb{R})$, so that $A_x = \bigcap_{i \in \mathbb{N}} A_{i,x} \in \mathscr{B}(\mathbb{R})$ and thus $A \in \mathscr{A}$. Therefore \mathscr{A} is stable by countable intersection.

Let $A \in \mathscr{A}$ and $B = \mathbb{R}^2 - A$. Let $x \in \mathbb{R}$. For all $y \in \mathbb{R}$, either $(x,y) \in A$, and then $y \in A_x$, or $(x,y) \in B$, and then $y \in B_x$. From this we deduce that $B_x = \mathbb{R} - A_x \in \mathscr{B}(\mathbb{R})$. This last point is the definition of $B \in \mathscr{A}$, so \mathscr{A} is stable by complement.

From the above points we conclude that \mathscr{A} is a σ -algebra on \mathbb{R}^2 .

Let $A = \varnothing$. For all $x \in \mathbb{R}$, we have $\lambda(A_x) = \lambda(\varnothing) = 0$ so that $\mu(A) = 0$. Also, $\forall B \in \mathscr{B}(\mathbb{R}), \ \lambda(B) \geq 0$ so that $\mu(A) \geq 0$ for all $A \in \mathscr{A}$. Let $A \in \mathscr{A}$, we have $A = \bigcup_{x \in \mathbb{R}} \{x\} \times A_x$. Let A_1, A_2, \ldots be a countable sequence of disjoint sets in \mathscr{A} , and let, for all $x \in \mathbb{R}$, $C_x = \bigcup_{i \in \mathbb{N}} A_{i,x} \in \mathscr{B}(\mathbb{R})$. If for $x \in \mathbb{R}$ and $i, j \in \mathbb{N}$ distinct, there exists $z \in A_{i,x} \cap A_{j,x}$, then $(x,z) \in A_i \cap A_j$, which is impossible since the A_i are disjoint. Therefore $\lambda(C_x) = \sum_{i \in \mathbb{N}} A_{i,x}$. We also have

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right) = \mu\left(\bigcup_{i\in\mathbb{N}}\bigcup_{x\in\mathbb{R}}\{x\} \times A_{i,x}\right)$$

$$= \mu\left(\bigcup_{x\in\mathbb{R}}\{x\} \times C_x\right)$$

$$= \begin{cases} \sum_{x\in\mathbb{R}}\lambda\left(C_x\right) & \text{if } C_x \neq \varnothing \text{ for countably many } C_x \\ +\infty & \text{otherwise} \end{cases}$$

(1)

For countably many nonempty C_x , we get

$$\sum_{x \in \mathbb{R}} \lambda(C_x) = \sum_{x \in \mathbb{R}} \sum_{i \in \mathbb{N}} \lambda(A_{i,x}) = \sum_{i \in \mathbb{N}} \sum_{x \in \mathbb{R}} \lambda(A_{i,x}) = \sum_{i \in \mathbb{N}} \mu(A_i)$$

If countably many $A_{i,x}$ are nonempty, then countably many C_x are nonempty, so if uncountably many C_x are nonempty, we get from (1) $\mu(\cup_{i\in\mathbb{N}}A_i)=+\infty$. In that case, also, there is at least one A_j such that there are uncountably many nonempty $A_{j,x}$. This gives us $\mu(A_j)=+\infty$, from which we deduce that $\sum_{i\in\mathbb{N}}\mu(A_i)=+\infty$. We can then conclude that

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right) = \sum_{i\in\mathbb{N}}\mu(A_i)$$

and that μ is a measure on $(\mathbb{R}^2, \mathscr{A})$.

(b) Let $N = \{(x,y) \in \mathbb{R}^2 \mid y = 0\} = \mathbb{R} \times \{0\}$, and let $A \in \mathscr{A}$ such that $\mu(A)$ is finite. If $A = \varnothing$, then $\mu(N \cap A) = \mu(\varnothing) = 0$. Otherwise, for all $x \in A$, we have $N \cap \{x\} \times A_x \subset \{(x,0)\} \in \mathscr{A}$. Since $A_x \neq \varnothing$ for only countably many values of x, we have $\mu(N \cap A) = \sum_x \lambda(N \cap A_x) = 0$, from which we conclude that N is a locally μ -null set.