2. Banach spaces

DEFINITION. Let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C} . A Banach space over \mathbb{K} is a normed \mathbb{K} -vector space $(\mathfrak{X}, \|.\|)$, which is complete with respect to the metric

$$d(x,y) = ||x - y||, \ x, y \in \mathfrak{X}.$$

Remark 2.1. Completeness for a normed vector space is a purely topological property. This means that, if $\|\cdot\|$ is a norm on \mathcal{X} , such that $(\mathcal{X}, \|\cdot\|)$ is a Banch space, then so is $(\mathcal{X}, \|\cdot\|')$, where $\|\cdot\|'$ is any norm equivalent to $\|\cdot\|$. This is due to the fact that, if $\|\cdot\|'$ is equivalent to $\|\cdot\|$, then one has

$$C||x|| \le ||x||' \le D||x||, \ \forall x \in \mathfrak{X},$$

for some constants C, D > 0. This clearly gives the fact that a sequence $(x_n)_{n=1}^{\infty} \subset \mathcal{X}$ is Cauchy with respect to $\|.\|$, if and only if it is Cauchy with respect to $\|.\|'$.

EXAMPLE 2.1. The field \mathbb{K} , equipped with the absolute value norm, is a Banach space. More generally, the vector space \mathbb{K}^n , equipped with the norm

$$\|(\lambda_1,\ldots,\lambda_n)\|_{\infty} = \max\{|\lambda_1|,\ldots,|\lambda_n|\},\$$

is a Banach space.

REMARK 2.2. Since any two norms on a finite dimensional space are equivalent, by Proposition 1.4, it follows that any finite dimensional normed vector space is a Banach space.

Below is an interesting application of this fact.

PROPOSITION 2.1. Let X be a normed vector space, and let $\mathcal{Y} \subset X$ be a finite dimensional linear subspace.

- (i) Y is closed.
- (ii) More generally, if $\mathcal{Z} \subset \mathcal{X}$ is a closed subspace, then the linear subspace $\mathcal{Y} + \mathcal{Z}$ is also closed.
- PROOF. (i). Start with some sequence $(y_n)_{n=1}^{\infty} \subset \mathcal{Y}$, which is convergent to some point $x \in \mathcal{X}$, and let us show that $x \in \mathcal{Y}$. By the above Remark, when equipped with the norm coming from \mathcal{X} , the normed vector space \mathcal{Y} is complete. Since obviously $(y_n)_{n=1}^{\infty}$ is Cauchy, it will converge in \mathcal{Y} to some vector $y \in \mathcal{Y}$. Of course, this forces x = y, and we are done.
- (ii). Let us consider the quotient space $\mathfrak{X}/\mathfrak{Z}$, equipped with the quotient norm $\|\cdot\|_{\mathfrak{X}/\mathfrak{Z}}$, and the quotient map $P: \mathfrak{X} \to \mathfrak{X}/\mathfrak{Z}$. By Proposition 1.5 we know that P is continuous. Since the linear subspace $\mathcal{V} = P(\mathcal{Y}) \subset \mathfrak{X}/\mathfrak{Z}$ is finite dimensional, by part (i) it follows that \mathcal{V} is closed in $\mathfrak{X}/\mathfrak{Z}$. By continuity, its preimage $P^{-1}(\mathcal{V})$ is closed in \mathfrak{X} . Now we are done since we obviously have the equality $P^{-1}(\mathcal{V}) = \mathcal{Y} + \mathcal{Z}$.

REMARK 2.3. Using the facts from the general theory of metric spaces, we know that for a normed vector space $(\mathfrak{X}, \|.\|)$, the following are equivalent:

- (i) X is a Banach space;
- (ii) given any sequence $(x_n)_{n\geq 1}\subset \mathfrak{X}$ with $\sum_{n=1}^{\infty}\|x_n\|<\infty$, the sequence $(y_n)_{n\geq 1}$ of partial sums, defined by $y_n=\sum_{k=1}^{n}x_k$, is convergent;

(iii) every Cauchy sequence in X has a convergent subsequence.

This is pretty obvious, since the sequence of partial sums has the property that

$$d(y_{n+1}, y_n) = ||y_{n+1} - y_n|| = ||x_{n+1}||, \ \forall n \ge 1.$$

There are several techniques for constructing new Banach space out of old ones. The result below is one example.

PROPOSITION 2.2. Let X be a Banach space, let Y be a normed vector space, and let $T: X \to Y$ be a surjective linear continuous map. Assume there exists some constant C > 0, such that

• for every $y \in \mathcal{Y}$, there exists $x \in \mathcal{X}$ with Tx = y, and $||x|| \leq C||y||$. Then \mathcal{Y} is a Banach space.

PROOF. We are going to use the above characterization. Start with some sequence $(y_n)_{n=1}^{\infty} \subset \mathcal{Y}$, with $\sum_{n=1}^{\infty} \|y_n\| < \infty$. Define the sequence $(w_n)_{n=1}^{\infty} \subset \mathcal{Y}$ of partial sums $w_n = \sum_{k=1}^n y_n$, and let us prove that $(w_n)_{n=1}^{\infty}$ is convergent to some element in \mathcal{Y} . Use the hypothesis to find, for each $n \geq 1$, an element $x_n \in \mathcal{X}$, with $Tx_n = y_n$, and $\|x_n\| \leq C\|y_n\|$. In particular, we clearly have $\sum_{n=1}^{\infty} \|x_n\| \leq \sum_{n=1}^{\infty} C\|y_n\| < \infty$. Using the fact that \mathcal{X} is a Banach space, it follows that the sequence $(z_n)_{n=1}^{\infty}$ defined by $z_n = \sum_{k=1}^n x_n$ is convergent to some $z \in \mathcal{X}$. Since we have $Tz_n = w_n$, $\forall n \geq 1$, by the continuity of T we get $\lim_{n \to \infty} w_n = Tz$.

COROLLARY 2.1. Let X be a Banach space, and let Y be a closed linear subspace of X. When equipped with the quotient norm, the quotient space X/Y is a Banach space.

PROOF. Use the notations from Section 1. Consider the quotient map

$$P: \mathfrak{X} \ni x \longmapsto [x] \in \mathfrak{X}/\mathcal{Y}.$$

We know that P is linear, continuous, and surjective. Let us check that P satisfies the hypothesis in Proposition 2.2, with C=2. Start with some vector $\mathbf{v} \in \mathcal{X}/\mathcal{Y}$, and let us show that there exists $x \in \mathcal{X}$ with $Px = \mathbf{v}$ (i.e. $x \in \mathbf{v}$), such that $\|x\| \leq 2\|\mathbf{v}\|_{\mathcal{X}/\mathcal{Y}}$. If $\mathbf{v} = 0$, there is nothing to prove, because we can take x = 0. If $\mathbf{v} \neq 0$, then we use the definition of the quotient norm

$$\|\boldsymbol{v}\|_{\mathfrak{X}/\mathcal{Y}} = \inf_{x \in \boldsymbol{v}} \|x\|,$$

combined with $2\|\boldsymbol{v}\|_{\mathcal{X}/\mathcal{Y}} > \|\boldsymbol{v}\|_{\mathcal{X}/\mathcal{Y}}$.

Exercise 1. Let \mathcal{X} and \mathcal{Y} be normed vector spaces. Consider the product $\mathcal{X} \times \mathcal{Y}$, equipped with the natural vector space structure.

(i) Prove that ||(x,y)|| = ||x|| + ||y||, $(x,y) \in \mathcal{X} \times \mathcal{Y}$ defines a norm on $\mathcal{X} \times \mathcal{Y}$.

(ii) Prove that, when equipped with the above norm, $\mathcal{X} \times \mathcal{Y}$ is a Banach space, if and only if both \mathcal{X} and \mathcal{Y} are Banach spaces.

PROPOSITION 2.3. Let X be a normed vector space, and let Y be a Banach space. Then $\mathcal{L}(X,Y)$ is a Banach space, when equipped with the operator norm.

PROOF. Start with a Cauchy sequence $(T_n)_{n\geq 1}\subset \mathcal{L}(\mathcal{X},\mathcal{Y})$. This means that for every $\varepsilon>0$, there exists some N_{ε} such that

(1)
$$||T_m - T_n|| < \varepsilon, \ \forall m, n \ge N_{\varepsilon}.$$

Notice that, if one takes for example $\varepsilon = 1$, and we define

$$C = 1 + \max\{||T_1||, ||T_2||, \dots, ||T_{N_1}||\},\$$

then we clearly have

$$||T_n|| \le C, \quad \forall n \ge 1.$$

Notice that, using (1), we have

(3)
$$||T_m x - T_n x|| \le \varepsilon ||x||, \ \forall m, n \ge N_{\varepsilon}, \ x \in \mathfrak{X},$$

which proves that

• for every $x \in \mathcal{X}$, the sequence $(T_n x)_{n>1} \subset \mathcal{Y}$ is Cauchy.

Since \mathcal{Y} is a Banach space, for each $x \in \mathcal{X}$, the sequence $(T_n)_{n\geq 1}$ will be convergent. We define the map $T: \mathcal{X} \to \mathcal{Y}$ by

$$Tx = \lim_{n \to \infty} T_n x, \ x \in \mathfrak{X}.$$

Using (2) we immediately get

$$||Tx|| \le C||x||, \ \forall x \in \mathfrak{X}.$$

Since T is obviously linear, this prove that T is continuous. Finally, if we fix $n \ge N_{\varepsilon}$ and we take $\lim_{m\to\infty}$ in (3), we get

$$||T_n x - Tx|| \le \varepsilon ||x||, \ \forall n \ge N_{\varepsilon}, \ x \in \mathfrak{X},$$

which proves precisely that we have the inequality

$$||T_n - T|| \le \varepsilon, \ \forall n \ge N_{\varepsilon},$$

hence $(T_n)_{n\geq 1}$ is convergent to T in the norm topology.

COROLLARY 2.2. If X is a normed vector space, then its topological dual $X^* = \mathcal{L}(X, \mathbb{K})$ is a Banach space.

PROOF. Immediate from the fact that \mathbb{K} is a Banach space.

EXAMPLE 2.2. Let \mathbb{K} be either \mathbb{R} or \mathbb{C} , and let J be a non-empty set. For every $p \in [1, \infty]$, the space $\ell^p_{\mathbb{K}}(J)$, introduced in Section 1, is a Banach space. This follows from the isometric linear isomorphisms $\ell^1 \simeq (c_0)^*$, and $\ell^p \simeq (\ell^q)^*$, where q is Hölder conjugate to p.

PROPOSITION 2.4. Let X be a Banach space, and let $Z \subset X$ be a linear subspace. The following are equivalent:

- (i) \mathcal{Z} is a Banach space, ehen equipped with the norm from \mathcal{X} ;
- (ii) \mathbb{Z} is closed in \mathbb{X} , in the norm topology.

PROOF. This is a particular case of a general result from the theory of complete metric spaces. \Box

EXAMPLE 2.3. Let J be a non-empty set, and let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C} . Then $c_0^{\mathbb{K}}(J)$ is a Banach space, since it is a closed linear subspace in $\ell_{\mathbb{K}}^{\infty}(J)$.

The following results give examples of Banach spaces coming from topology.

NOTATION. Let $\mathbb K$ be one of the fields $\mathbb R$ or $\mathbb C$, and let Ω be a topological space. We define

$$C_b^{\mathbb{K}}(\Omega) = \{ f : \Omega \to \mathbb{K} : f \text{ bounded and continuous} \}.$$

In the case when $\mathbb{K} = \mathbb{C}$ we use the notation $C_b(\Omega)$.

Proposition 2.5. With the notations above, if we define

$$||f|| = \sup_{p \in \Omega} |f(p)|, \ \forall f \in C_b^{\mathbb{K}}(\Omega),$$

then $C_h^{\mathbb{K}}(\Omega)$ is a Banach space.

PROOF. It is obvious that $C_b^{\mathbb{K}}(\Omega)$ is a linear subspace of $\ell_{\mathbb{K}}^{\infty}(\Omega)$, and the norm is precisely the one coming from $\ell_{\mathbb{K}}^{\infty}(\Omega)$. Therefore, it suffices to prove that $C_b^{\mathbb{K}}(\Omega)$ is closed in $\ell_{\mathbb{K}}^{\infty}(\Omega)$.

Start with some sequence $(f_n)_{n\geq 1}\subset C_b^{\mathbb{K}}(\Omega)$, which convergens in norm to some $f\in \ell_{\mathbb{K}}^{\infty}(\Omega)$, and let us prove that $f:\Omega\to\mathbb{K}$ is continuous (the fact that f is bounded is automatic).

Fix some point $p_0 \in \Omega$, and some $\varepsilon > 0$. We need to find some neighborhood V of p_0 , such that

$$|f(p) - f(p_0)| < \varepsilon, \ \forall p \in V.$$

Start by choosing n such that $||f_n - f|| < \frac{\varepsilon}{3}$. Use the fact that f_n is continuous, to find a neighborhood V of p_0 , such that

$$|f_n(p) - f_n(p_0)| < \frac{\varepsilon}{3}, \ \forall \Omega \in V.$$

Suppose now $\Omega \in V$. We have

$$|f(p) - f(p_0)| \le |f_n(p) - f(p)| + |f_n(p) - f_n(p_0)| + |f_n(p_0) - f(p_0)| \le |f_n(p) - f_n(p_0)| + 2 \left[\sup_{q \in \Omega} |f_n(q) - f(q)| \right] < 2 \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

NOTATION. If X is a compact Hausdorff space, then every continuous function $f: X \to \mathbb{K}$ is automatically bounded. In this case, the Banach space $C_b^{\mathbb{K}}(X)$ will simply be denoted by $C^{\mathbb{K}}(X)$, again with the convention that when $\mathbb{K} = \mathbb{C}$, the superscript will be ommitted.

EXAMPLE 2.4. Let \mathbb{K} be either \mathbb{R} or \mathbb{C} , and let Ω be a locally compact space, which is not compact. We define (see I.5) the space

$$C_0^{\mathbb{K}}(\Omega) = \big\{ f: X \to \mathbb{K} \, : \, f \text{ continuous, with limit } 0 \text{ at } \infty \big\}.$$

In other words, for a continuous function $f:\Omega\to\mathbb{K}$, the condition $f\in C_0^\mathbb{K}(\Omega)$ is equivalent to

• for every $\varepsilon > 0$, there exists some compact set $K_{\varepsilon} \subset \Omega$, such that

$$|f(x)| < \varepsilon, \ \forall x \in \Omega \setminus K_{\varepsilon}.$$

As before, when $\mathbb{K} = \mathbb{C}$, the superscript will be ommitted from the notation.

PROPOSITION 2.6. Let \mathbb{K} be either \mathbb{R} or \mathbb{C} , and let Ω be a locally compact space, which is not compact. Then $C_0^{\mathbb{K}}(\Omega)$ is a closed linear subspace of $C_b^{\mathbb{K}}(\Omega)$. In particular, when equipped with the supremum norm, $C_0^{\mathbb{K}}(\Omega)$ is a Banach space.

PROOF. Let $(f_n)_{n=1}^{\infty} \subset C_0^{\mathbb{K}}(\Omega)$ be a sequence, which converges in norm to some $f \in C_b^{\mathbb{K}}(\Omega)$, and let us show that $f \in C_0^{\mathbb{K}}(\Omega)$. Fix some $\varepsilon > 0$, and let us indicate how to construct a compact set K_{ε} , with the property (4). Start off by choosing $n \geq 1$, such that $||f_n - f|| < \varepsilon/2$, and then choose the compact set $K_{\varepsilon} \subset \Omega$, such that

$$|f_n(x)| < \varepsilon, \ \forall x \in \Omega \setminus K_{\varepsilon}.$$

Notice now that, if $x \in \Omega \setminus K_{\varepsilon}$, then

$$|f(x)| \le ||f(x) - f_n(x)| + |f_n(x)| \le ||f_n - f|| + |f_n(x)|,$$

and then using the choice of n, combined with (5), the desired property (4) immediately follows.

The Banach space $C_0^{\mathbb{K}}(\Omega)$ has several other equivalent descriptions. One of them is based on the following notion.

DEFINITIONS. Let Ω be a locally compact space. If \mathbb{K} is one of the fields \mathbb{R} or \mathbb{C} , and $f:\Omega\to\mathbb{K}$ is a continuous function, we define the *support of f* by

$$\operatorname{supp} f = \overline{\{\omega \in \Omega : f(\omega) \neq 0\}}.$$

We define the space

$$C_c^{\mathbb{K}}(\Omega) = \big\{ f : \Omega \to \mathbb{K} \, : \, f \text{ continuous, with compact support} \, \big\}.$$

When $\mathbb{K} = \mathbb{C}$, this space will be denoted simply by $C_c(\Omega)$. Remark that, when equipped with pointwise addition and multiplication, the space $C_c^{\mathbb{K}}(\Omega)$ becomes a \mathbb{K} -algebra. One has obviously the inclusion $C_c^{\mathbb{K}}(\Omega) \subset C_b^{\mathbb{K}}(\Omega)$.

PROPOSITION 2.7. With the notations above, the Banach space $C_0^{\mathbb{K}}(\Omega)$ is the closure of $C_c^{\mathbb{K}}(\Omega)$ in $C_b^{\mathbb{K}}(\Omega)$.

PROOF. Start with some function $f \in C_0^{\mathbb{K}}(\Omega)$, and let us construct a sequence $(f_n)_{n=1}^{\infty} \subset C_c^{\mathbb{K}}(\Omega)$, which converges to f in the norm topology. For every integer $n \geq 1$ we choose some compact set $K_n \subset \Omega$, such that

(6)
$$|f(x)| < \frac{1}{n}, \ \forall x \in \Omega \setminus K_n.$$

For each $n \geq 1$, we also choose some open set D_n with $D_n \supset K_n$, and \overline{D}_n compact, and we choose (use Urysohn Lemma for locally compact spaces; see I.7) some continuous function $h_n: \Omega \to [0,1]$, such that $h_n\big|_{K_n} = 1$ and $h_n\big|_{\Omega \smallsetminus D_n} = 0$. Put $f_n = fh_n, \, \forall \, n \geq 1$. It is obvious that, since $h_n\big|_{\Omega \smallsetminus D_n} = 0$, we have supp $h_n \subset \overline{D}_n$, and consequently we also have supp $f_n \subset \overline{D}_n$, so we have $f_n \in C_c^{\mathbb{K}}(\Omega), \, \forall \, n \geq 1$. Let us now estimate the norms $\|f - f_n\|, \, n \geq 1$. Fix for the moment n. On the one hand, we have $0 \leq 1 - h_n(x) \leq 1, \, \forall \, x \in \Omega$, which combined with (6), yields

$$|f(x) - f_n(x)| = |f(x)| \cdot |1 - h_n(x)| \le \frac{1}{n}, \ \forall x \in \Omega \setminus K_n.$$

On the other hand, we have $f(x) = f_n(x), \forall x \in K_n$, so the above estimate actually gives

$$||f - f_n|| = \sup_{x \in \Omega} |f(x) - f_n(x)| \le \frac{1}{n}, \ \forall n \ge 1,$$

which in particular gives the fact that $\lim_{n\to\infty} f_n = f$, in the norm topology. \square

At this point, based on the above result we shall adopt the following.

CONVENTION. If Ω is a compact Hausdorff space, the notation $C_0^{\mathbb{K}}(\Omega)$ designates the space $C^{\mathbb{K}}(\Omega)$. The reason for adopting this convention is the (trvial) fact that, when Ω is compact, every continuous function $f:\Omega\to\mathbb{K}$ has compact support. In this spirit, if we adopt the above characterization as the "working definition" of $C_0^{\mathbb{K}}(\Omega)$, then our convention is legitimate.

Exercise 2^* . Let \mathfrak{X} be an *infinite dimensional* Banach space, and let B be a linear basis for \mathfrak{X} . Prove that B is uncountable.

HINT: If B is countable, say $B = \{b_n : n \in \mathbb{N}\}$, then

$$\mathfrak{X} = \bigcup_{n=1}^{\infty} F_n,$$

where $F_n = \operatorname{Span}(b_1, b_2, \dots, b_n)$. Since the F_n 's are finite dimensional linear subspaces, they will be closed. Use Baire's Theorem to get a contradiction.

Comments. A third method of constructing Banach spaces is the completion. If we start with a normed \mathbb{K} -vector space \mathcal{X} , when we regard \mathcal{X} as a metric space, its completion $\tilde{\mathcal{X}}$ is constructed as follows. One defines

$$CS(\mathfrak{X}) = \{ \boldsymbol{x} = (x_n)_{n \ge 1} : (x_n)_{n \ge 1} \text{ Cauchy sequence in } \mathfrak{X} \}.$$

Two Cauchy sequences $\mathbf{x} = (x_n)_{n \geq 1}$ and $\mathbf{x}' = (x'_n)_{n \geq 1}$ are said to be equivalent, if $\lim_{n \to \infty} \|x_n - x'_n\| = 0$. In this case one writes $\mathbf{x} \sim \mathbf{x}'$. The completion $\tilde{\mathcal{X}}$ is then defined as the space

$$\tilde{\mathfrak{X}} = \operatorname{cs}(\mathfrak{X})/\sim$$

of equivalence classes. For $\boldsymbol{x} \in \mathrm{CS}(\mathcal{X})$, one denotes by $\tilde{\boldsymbol{x}}$ its equivalence class in $\tilde{\mathcal{X}}$. Finally for an element $x \in \mathcal{X}$ one denotes by $\langle x \rangle \in \tilde{\mathcal{X}}$ the equivalence class of the constant sequence x.

We know from general theory that $\tilde{\mathcal{X}}$ is a complete metric space, with the distance \tilde{d} (correctly) defined by

$$\tilde{d}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{x}}') = \lim_{n \to \infty} \|x_n - x_n'\|,$$

for any two Cauchy sequences $\boldsymbol{x}=(x_n)_{n\geq 1}$ and $\boldsymbol{x}'=(x_n')_{n\geq 1}$.

It turns out that, in our situation, the space CS(X) carries a natural vector space structure, defined by pointwise addition and scalar multiplication. Moreover, the space \tilde{X} is identified as a quotient vector space

$$\tilde{\mathfrak{X}} = \operatorname{CS}(\mathfrak{X})/\operatorname{NS}(\mathfrak{X}),$$

where

$$NS(\mathcal{X}) = \left\{ \boldsymbol{x} = (x_n)_{n \ge 1} : (x_n)_{n \ge 1} \text{ sequence in } \mathcal{X} \text{ with } \lim_{n \to \infty} x_n = 0 \right\}$$

is the linear subspace of null sequences. It then follows that $\tilde{\mathcal{X}}$ carries a natural vector space structure. More explicitly, if we start with a scalar $\lambda \in \mathbb{K}$, and with two elements $p, q \in \tilde{\mathcal{X}}$, which are represented as $p = \tilde{\boldsymbol{x}}$ and $q = \tilde{\boldsymbol{y}}$, for two Cauchy sequences $\boldsymbol{x} = (x_n)_{n \geq 1}$ and $\boldsymbol{y} = (y_n)_{n \geq 1}$ in \mathcal{X} , then the sequence

$$\mathbf{w} = (\lambda x_n + y_n)_{n \ge 1}$$

is Cauchy in \mathcal{X} , and the element $\lambda p + q \in \tilde{\mathcal{X}}$ is then defined as $\lambda p + q = \tilde{\boldsymbol{w}}$. Finally, there is a natural norm on $\tilde{\mathcal{X}}$, (correctly) defined by

$$\|\tilde{\boldsymbol{x}}\| = \tilde{d}(\tilde{\boldsymbol{x}}, \langle 0 \rangle) = \lim_{n \to \infty} \|x_n\|,$$

for all Cauchy sequences $\boldsymbol{x}=(x_n)_{n\geq 1}$. These considerations then prove that $\hat{\mathcal{X}}$ is a Banach space, and the map

$$\mathfrak{X} \ni x \longmapsto \langle x \rangle \in \tilde{\mathfrak{X}}$$

is linear and isometric, in the sense that

$$\|\langle x \rangle\| = \|x\|, \ \forall x \in \mathcal{X}.$$

In the context of normed vector spaces, the universality property of the completion is stated as follows:

PROPOSITION 2.8. Let X be a normed vector space, let \tilde{X} denote its completion, and let Y be a Banach space. For every linear continuous map $T: X \to Y$, there exists a unique linear continuous map $\tilde{T}: \tilde{X} \to Y$, such that

$$\tilde{T}\langle x\rangle = Tx, \ \forall x \in \mathfrak{X}.$$

Moreover the map

$$\mathcal{L}(\mathcal{X}, \mathcal{Y}) \ni T \longmapsto \tilde{T} \in \mathcal{L}(\tilde{\mathcal{X}}, \mathcal{Y})$$

 $is\ an\ isometric\ linear\ isomorphism.$

PROOF. If $T: \mathcal{X} \to \mathcal{Y}$ is linear an continuous, then T is a Lipschitz map with Lipschitz constant ||T||, because

$$||Tx - Tx'|| \le ||T|| \cdot ||x - x'||, \ \forall x, x' \in \mathfrak{X}.$$

We know, from the theory of metric spaces, that there exists a unique continuous map $\tilde{T}: \tilde{\mathcal{X}} \to \mathcal{Y}$, such that

$$\tilde{T}\langle x\rangle = Tx, \ \forall x \in \mathfrak{X}.$$

We also know that \tilde{T} is Lipschitz, with Lipschitz constant ||T||. The only thing we need to prove is the fact that \tilde{T} is linear. Start with two points $p,q \in \tilde{X}$, represented as $p = \tilde{x}$ and $q = \tilde{z}$, for some Cauchy sequences $x = (x_n)_{n \geq 1}$ and $z = (z_n)_{n \geq 1}$ in X. If $\lambda \in \mathbb{K}$, then $\lambda p + q = \tilde{w}$, where $w = (\lambda x_n + z_n)_{n \geq 1}$. We then have

$$\tilde{T}(\lambda p + q) = \lim_{n \to \infty} T(\lambda x_n + z + n) = \left[\lambda \cdot \lim_{n \to \infty} Tx_n\right] + \left[\lim_{n \to \infty} Tz_n\right] = \lambda \tilde{T}p + \tilde{T}q.$$

Let us prove now that $\|T\| = \|T\|$. Since T is Lipschitz, with Lipschitz constant $\|T\|$, we will have $\|\tilde{T}\| \leq \|T\|$. To prove the other inequality, let us consider the sets

$$\mathcal{B}_0 = \{ p \in \tilde{\mathcal{X}} : ||p|| \le 1 \},$$

$$\mathcal{B}_1 = \{ \langle x \rangle : x \in \mathcal{X}, ||x|| \le 1 \}.$$

By definition, we have

$$\|\tilde{T}\| = \sup_{p \in \mathcal{B}_0} \|\tilde{T}p\|.$$

Since we clearly have $\mathcal{B}_0 \supset \mathcal{B}_1$, we get

$$\|\tilde{T}\| = \sup_{p \in \mathcal{B}_1} \|\tilde{T}p\| \ge \sup \left\{ \|\tilde{T}\langle x \rangle\| : x \in \mathcal{X} \ \|x\| \le 1 \right\} = \\ = \sup \left\{ \|Tx\| : x \in \mathcal{X} \ \|x\| \le 1 \right\} = \|T\|.$$

The fact that the map $\mathcal{L}(\mathcal{X}, \mathcal{Y}) \ni T \longmapsto \tilde{T} \in \mathcal{L}(\tilde{X}, \mathcal{Y})$ is linear is obvious. To prove the surjectivity, start with some $S \in \mathcal{L}(\tilde{X}, \mathcal{Y})$. Consider the map

$$\iota: \mathfrak{X} \ni x \longmapsto \langle x \rangle \in \tilde{\mathfrak{X}}.$$

Since ι is linear and isometric, in particular it is continuous, so the composition $T = S \circ \iota$ is linear and continuous. Notice that

$$S\langle x\rangle = S(\iota(x)) = (S \circ \iota)x = Tx, \ \forall x \in \mathcal{X},$$

so by uniqueness we have $S = \tilde{T}$.

COROLLARY 2.3. Let X be a normed space, let Y be a Banach space, and let $T: X \to Y$ be an isometric linear map.

(i) Let $\tilde{T}: \tilde{X} \to \mathcal{Y}$ be the linear continuous map defined in the previous result. Then \tilde{T} is linear, isometric, and $\tilde{T}(\tilde{X}) = \overline{T(X)}$.

(ii) X is complete, if and only of T(X) is closed in Y.

PROOF. (i). The fact that \tilde{T} is isometric, and has the range equal to $\overline{T(\mathfrak{X})}$ is true in general (i.e. for \mathfrak{X} metric space, and \mathfrak{Y} complete metric space). The linearity follows from the previous result.

EXAMPLE 2.5. Let \mathcal{X} be a normed vector space. For every $x \in \mathcal{X}$ define the map $\epsilon_x : \mathcal{X}^* \to \mathbb{K}$ by

$$\epsilon_x(\phi) = \phi(x), \ \forall \phi \in \mathfrak{X}^*.$$

Then ϵ_x is a linear and continuous. This is an immediate consequence of the inequality

$$|\epsilon_x(\phi)| = |\phi(x)| \le ||x|| \cdot ||\phi||, \ \forall \phi \in \mathfrak{X}^*.$$

Notice that this also proves

$$\|\epsilon_x\| \le \|x\|, \ \forall x \in \mathfrak{X}.$$

Interestingly enough, we actually have

(7)
$$\|\epsilon_x\| = \|x\|, \ \forall x \in \mathfrak{X}.$$

To prove this fact, we start with an arbitrary $x \in \mathcal{X}$, and we consider the linear subspace

$$\mathcal{Y} = \mathbb{K}x = \{\lambda x : \lambda \in \mathbb{K}\}.$$

If we define $\phi_0: \mathcal{Y} \to \mathbb{K}$, by

$$\phi_0(\lambda x) = \lambda ||x||, \ \forall \lambda \in \mathbb{K},$$

then it is clear that $\phi_0(x) = ||x||$, and

$$|\phi_0(y)| \le ||y||, \ \forall y \in \mathcal{Y}.$$

Use then the Hahn-Banach Theorem to find $\phi: \mathfrak{X} \to \mathbb{K}$ such that $\phi|_{\mathfrak{Y}} = \phi_0$, and

$$|\phi(z)| \le ||z||, \ \forall z \in \mathfrak{X}.$$

This will clearly imply $\|\phi\| \le 1$, while the first condition will give $\phi(x) = \phi_0(x) = \|x\|$. In particular, we will have

$$||x|| = |\phi(x)| = |\epsilon_x(\phi)| \le ||\epsilon_x|| \cdot ||\phi|| \le ||\epsilon_x||.$$

Having proven (7), we now have a linear isometric map

$$E: \mathfrak{X} \ni x \longmapsto \epsilon_x \in \mathfrak{X}^{**}.$$

Since \mathcal{X}^{**} is a Banach space, we now see that $\tilde{E}: \tilde{\mathcal{X}} \to \overline{E(\mathcal{X})}$ is an isometric linear isomorphism. In particular, \mathcal{X} is Banach, if and only if $E(\mathcal{X})$ is closed in \mathcal{X}^{**} .

We continue with a series of results, which are often regarded as the "principles of Banach space theory." These results are consequences of Baire Theorem.

THEOREM 2.1 (Uniform Boundedness Principle). Let X be a Banach space, let Y be normed vector space, and let $M \subset \mathcal{L}(X, Y)$. The following are equivalent

(i) $\sup \{ ||T|| : T \in \mathcal{M} \} < \infty;$

(ii)
$$\sup \{ ||Tx|| : T \in \mathcal{M} \} < \infty, \forall x \in \mathcal{X}.$$

PROOF. The implication $(i) \Rightarrow (ii)$ is trivial, because if we define

$$M = \sup \{ ||T|| : T \in \mathcal{M} \},$$

then by the definition of the norm, we clearly have

$$\sup \{ ||Tx|| : T \in \mathcal{M} \} \le M ||x||, \ \forall x \in \mathcal{X}.$$

 $(ii)\Rightarrow (i).$ Assume M satisfies condition (ii). For each integer $n\geq 1,$ let us define the set

$$\mathfrak{F}_n = \big\{ x \in \mathfrak{X} : \|Tx\| \le n, \ \forall T \in \mathfrak{M} \big\}.$$

It is obvious that \mathcal{F}_n is a closed subset of \mathcal{X} , for each $n \geq 1$. Moreover, by (ii) we clearly have $\bigcup_{n=1}^{\infty} \mathcal{F}_n = \mathcal{X}$. Using Baire's Theorem, there exists some $n \geq 1$, such that $\operatorname{Int}(\mathcal{F}_n) \neq \emptyset$. This means that there exists some $x_0 \in \mathcal{X}$ and some r > 0, such that

$$\mathfrak{F}_n \supset \bar{\mathfrak{B}}_r(x_0) = \{ y \in \mathfrak{X} : ||x - x_0|| \le r \}.$$

Put $M_0 = \sup \{ ||Tx_0|| : T \in \mathcal{M} \}$. Fix for the moment some arbitrary $x \in \mathcal{X}$, with $||x|| \leq 1$, and some arbitrary element $T \in \mathcal{M}$. The vector $y = x_0 + rx$ clearly belongs to $\bar{\mathcal{B}}_r(x_0)$, so we have $||Ty|| \leq n$. We then get

$$||Tx|| = ||T(\frac{1}{r}(y-x_0))|| = \frac{1}{r}||Ty-Tx_0|| \le \frac{1}{r}(||Ty|| + ||Tx_0||) \le \frac{1}{r}(n+M_0).$$

Keep T fixed, and use the above estimate, which gives

$$\sup \{ \|Tx\| : x \in \mathcal{X}, \ \|x\| \le 1 \} \le \frac{n + M_0}{r},$$

to conclude that $||T|| \leq \frac{n+M_0}{r}$. Since $T \in \mathcal{M}$ is arbitrary, we finally get

$$\sup\left\{\|T\|\,:\,T\in\mathfrak{M}\right\}\leq\frac{n+M_0}{r}<\infty.\quad\Box$$

THEOREM 2.2 (Inverse Mapping Theorem). Let X and Y be Banach spaces, and let let $T: X \to Y$ be a bijective linear continuous map. Then the linear map $T^{-1}: Y \to X$ is also continuous.

PROOF. Let us denote by A the open unit ball in X centered at the origin, i.e.

$$\mathcal{A} = \big\{ x \in \mathcal{X} : \|x\| < 1 \big\}.$$

The first step in the proof is contained in the following.

Claim 1: The closure $\overline{T(A)}$ is a neighborhood of 0 in \mathcal{Y} .

Consider the sequence of closed sets $(k\overline{T(A)})_{k=1}^{\infty}$. (Here we use the notation $k\mathfrak{M}=\{kv:v\in\mathfrak{M}\}$.) Since the map $v\longmapsto kv$ is a homeomorphism, one has the equalities

$$k\overline{T(\mathcal{A})} = \overline{kT(\mathcal{A})} = \overline{T(k\mathcal{A})}, \ \forall k \ge 1.$$

In particular, we have

$$\bigcup_{k=1}^{\infty} k \overline{T(\mathcal{A})} = \bigcup_{k=1}^{\infty} \overline{T(k\mathcal{A})} \supset \bigcup_{k=1}^{\infty} T(k\mathcal{A}) = T\big(\bigcup_{k=1}^{\infty} [k\mathcal{A}]\big).$$

Since we obviously have $\bigcup_{k=1}^{\infty} [kA] = \mathcal{X}$, and T is surjective, the above equality shows that $\bigcup_{k=1}^{\infty} k\overline{T(A)} = \mathcal{Y}$. Using Baire's Theorem, there exists some $k \geq 1$, such that Int $\left(k\overline{T(A)}\right) \neq \emptyset$. Again using the fact that $v \longmapsto kv$ is a homeomorphism,

this gives $\operatorname{Int}\left(\overline{T(\mathcal{A})}\right) \neq \emptyset$. Fix now some point $y \in \operatorname{Int}\left(\overline{T(\mathcal{A})}\right)$, and some r > 0, such that $\overline{T(\mathcal{A})}$ contains the open ball

(8)
$$\mathcal{B}_r(y) = \{ z \in \mathcal{Y} : ||z - y|| < r \}.$$

The proof of the Claim is then finished, once we prove the inclusion

$$\overline{T(\mathcal{A})} \supset \mathcal{B}_{\frac{r}{2}}(0).$$

To prove this inclusion, start with some arbitrary $v \in \mathcal{B}_{\frac{r}{2}}(0)$, i.e. $v \in \mathcal{Y}$ and $\|v\| < \frac{r}{2}$. Since $\|(2v+y)-y\| = 2\|v\| < r$, using (8) it follows that $2v+y \in \overline{T(\mathcal{A})}$. i.e. there exists a sequence $(x_n)_{n=1}^{\infty} \subset \mathcal{X}$ with $\|x_n\| < 1$, $\forall n \geq 1$, and $2v+y = \lim_{n \to \infty} Tx_n$. Since y itself belongs to $\overline{T(\mathcal{A})}$, there also exists some sequence $(z_n)_{n=1}^{\infty} \subset \mathcal{X}$, with $\|z_n\| < 1$, $\forall n \geq 1$, and $y = \lim_{n \to \infty} Tz_n$. On the one hand, if we consider the sequence $(u_n)_{n=1}^{\infty} \subset \mathcal{X}$ given by $u_n = \frac{1}{2}(x_n - z_n)$, then it is clear that

$$||u_n|| \le \frac{1}{2} (||x_n|| + ||z_n||) < 1, \ \forall n \ge 1,$$

i.e. $(u_n)_{n=1}^{\infty} \subset \mathcal{A}$. On the other hand, we have

$$\lim_{n \to \infty} T u_n = \lim_{n \to \infty} \frac{1}{2} (T x_n - T z_n) = \frac{1}{2} (2v + y - y) = v,$$

so v indeed belongs to $\overline{T(A)}$.

The next step is a slight (but crucial) improvement of Claim 1.

Claim 2: T(A) is a neighborhood of 0.

Start off by choosing $\varepsilon > 0$, such that

(9)
$$\overline{T(\mathcal{A})} \supset \mathcal{B}_{\varepsilon}(0).$$

The Claim will follow, once we prove the inclusion

(10)
$$T(\mathcal{A}) \supset \mathcal{B}_{\frac{\epsilon}{2}}(0).$$

To prove this inclusion, we start with some arbitrary $y \in \mathcal{B}_{\varepsilon}(0)$. We want to construct a sequence of vectors $(x_n)_{n=1}^{\infty} \subset \mathcal{A}$, such that, for every $n \geq 1$, we have the inequality

(11)
$$\left\| y - \sum_{k=1}^{n} T\left(\frac{1}{2^k} x_k\right) \right\| \le \frac{\varepsilon}{2^{n+1}}.$$

This sequence is constructed inductively as follows. We start by using (9), and we pick $x_1 \in \mathcal{A}$ such that $||2y - Tx_1|| < \frac{\varepsilon}{2}$. Once x_1, \ldots, x_p are constructed, such that (11) holds with n = p, we consider the vector

$$z = 2^{p+1} \left[y - \sum_{k=1}^{p} T(\frac{1}{2^k} T x_k) \right] \in \mathcal{B}_{\varepsilon}(0),$$

and we use again (9) to find $x_{p+1} \in \mathcal{A}$, such that $||z - Tx_{p+1}|| \leq \frac{\varepsilon}{2}$. We then claerly have

$$\left\| y - \sum_{k=1}^{p+1} T\left(\frac{1}{2^k} x_k\right) \right\| = \frac{\left\| z - T x_{p+1} \right\|}{2^{p+1}} \le \frac{\varepsilon}{2^{p+2}},$$

Consider now the series $\sum_{k=1}^{\infty} \frac{1}{2^k} x_k$. Since $||x_k|| < 1$, $\forall k \ge 1$, and \mathcal{X} is a Banacch space, by Remark 3.1, the sequence of $(w_n)_{n=1}^{\infty} \subset \mathcal{X}$ of partial sums

$$w_n = \sum_{k=1}^n \frac{1}{2^k} x_k, \ n \ge 1,$$

is convergent to some point $x \in \mathcal{X}$. Moreover, since we have

$$||w_n|| \le \sum_{k=1}^n \frac{||x_k||}{2^k} \le \sum_{k=1}^\infty \frac{||x_k||}{2^k}, \ \forall n \ge 1,$$

we get the inequality

$$||x|| \le \sum_{k=1}^{\infty} \frac{||x_k||}{2^k} < 1,$$

which means that $x \in \mathcal{A}$. Note also that using these partial sums, the inequality (11) reads

$$||y - Tw_n|| \le \frac{\varepsilon}{2^{n+2}}, \ \forall n \ge 1,$$

so by the continuity of T, we have $y = Tx \in T(A)$.

Let us show now that T^{-1} is continuous. Use Claim 2, to find some r > 0 such that

(12)
$$T(\mathcal{A}) \supset \mathcal{B}_r(0),$$

and let $y \in \mathcal{Y}$ be an arbitrary vector with $\|y\| \le 1$. Consider the vector $v = \frac{r}{2}y$, which has $\|v\| \le \frac{r}{2} < r$. By (12), there exists $x \in \mathcal{A}$, such that Tx = v, which means that $T^{-1}y = \frac{2}{r}x$. This forces $\|T^{-1}y\| \le \frac{2}{r}$. This argument shows that

$$\sup \left\{ \|T^{-1}y\| : y \in \mathcal{Y}, \|y\| \le 1 \right\} \le \frac{2}{r} < \infty,$$

and the continuity of T^{-1} follows from Proposition 2.5.

The following two exercises deal with two more "principles of Banach space theory."

Exercise 3^{\diamondsuit} . (Closed Graph Theorem). Let \mathcal{X} and \mathcal{Y} be Banach spaces, and let $T: \mathcal{X} \to \mathcal{Y}$ be a linear map. Prove that the following are equivalent:

- (i) T is continuous.
- (ii) The graph of T

$$\mathfrak{G}_T = \big\{ (x, Tx) \, : \, x \in \mathfrak{X} \big\}$$

is a closed subset of $\mathfrak{X} \times \mathcal{Y}$, in the product topology.

HINT: For the implication $(ii) \Rightarrow (i)$, use Exercise 3, to get the fact that \mathcal{G}_T is a Banach space. Then T is exactly the inverse of $\pi_{\mathcal{X}}|_{\mathcal{G}_T}$, where $\pi_{\mathcal{X}}: \mathcal{X} \times \mathcal{Y} \to \mathcal{X}$ is the projection onto the first coordinate. Use Theorem 3.2.

Exercise 4^{\diamondsuit} . (Open Mapping Theorem). Let \mathcal{X} and \mathcal{Y} be Banach spaces, and let $T: \mathcal{X} \to \mathcal{Y}$ be a surjective linear continuous map. Prove that T is an open map, in the sense that

• whenver $\mathcal{D} \subset \mathcal{X}$ is open, it follows that $T(\mathcal{D})$ is open in \mathcal{Y} .

HINTS: There are two possible proofs available.

First proof. Consider the linear map

$$S: \mathcal{X} \times \mathcal{Y} \ni (x, y) \longmapsto (x, Tx + y) \in \mathcal{X} \times \mathcal{Y}.$$

Prove that S is linear, continuous, bijective, hence by Theorem 3.2, it is a homeomorphism. Use this fact to prove that for every open set $\mathcal{D} \subset \mathcal{X}$, there exists some open set $\mathcal{E} \subset \mathcal{X} \times \mathcal{Y}$, such that $T(\mathcal{D}) = P_{\mathcal{Y}}(\mathcal{E})$, where $P_{\mathcal{Y}}: \mathcal{X} \times \mathcal{Y} \to \mathcal{Y}$ is the projection onto the second coordinate. This reduces the problem to proving the fact that $P_{\mathcal{Y}}$ is an open map.

Second proof. Take $\mathbb{N} = \operatorname{Ker} T$, and use the Factorization Theorem (Proposition 1.5) to write $T = \hat{T} \circ Q$, where $Q : \mathcal{X} \to \mathcal{X}/\mathbb{N}$ is the quotient map, and $\hat{T} : \mathcal{X}/\mathbb{N} \to \mathcal{Y}$ is some linear continuous

map. Remark that \hat{T} is bijective (so we can apply the Theorem 3.2 to it). Use the fact that Q is open (Section 1, Exercise 12).

We conclude with two useful results concerning Banach spaces of the form $C^{\mathbb{K}}(X)$, with X compact Hausdorff space. Additional results for these Banach spaces will be given in Section 6.

The following is an interesting continuity result.

THEOREM 2.3. Let T be a topological space, let X be compact Hausdorff spaces, and let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C} . For a map $F: T \times X \to \mathbb{K}$, the following are equivalent.

- (i) F is continuous.
- (ii) For every $t \in T$, the map $\phi_t : X \ni p \longmapsto F(t,p) \in \mathbb{K}$ is continuous, and moreover, the map

$$\Phi: T \ni t \longmapsto \phi_t \in C^{\mathbb{K}}(X)$$

is continuous.

PROOF. (i) \Rightarrow (ii). Suppose F is continuous. The first assertion is clear, since, for $t \in T$, we can write $\phi_t = F \circ \iota_t$, where ι_t is the map

$$\iota_t: X \ni p \longmapsto (t,p) \in T \times X,$$

which is obviously continuous.

Next, we show that Φ is continuous, at every point $t \in T$. Fix $t \in T$. We need to prove that, for every $\varepsilon > 0$, there exists some neighborhood N of t in T, such that

$$\|\phi_v - \phi_t\| < \varepsilon, \ \forall v \in N.$$

By definition, the above condition reads:

(13)
$$\max_{p \in X} |F(v, p) - F(t, p)| < \varepsilon, \ \forall v \in N.$$

The neighborhood N is constructed as follows. Fix for the moment $p \in X$, and we use the continuity of $F: T \times X \to \mathbb{K}$ at the point (t,p), to find a neighborhood E_p of (t,p) in $T \times X$, such that

$$|F(v,q) - F(t,p)| < \frac{\varepsilon}{2}, \ \forall (v,q) \in E_p.$$

The using the definition of the product topology, there exist open sets $V_p \subset T$ and $D_p \subset X$, such that $(t,p) \subset V_p \times W_p \subset E_p$, so we have

$$|F(v,q) - F(t,p)| < \frac{\varepsilon}{2} \ \forall v \in V_p, \ q \in W_p.$$

Use now compactness to produce a finite sequence of points $p_1,\ldots,p_n\in X$, such that $X=W_{p_1}\cup\cdots\cup W_{p_n}$, and take $N=V_{p_1}\cap\cdots\cap V_{p_n}$. To check the desired property, we start with some arbitrary $v\in N$. For each $p\in X$, there exists some $k\in\{1,\ldots,n\}$ with $p\in W_{p_k}$, and then we have $N\times W_{p_k}\subset V_{p_k}\times W_{p_k}\subset E_{p_k}$. In particular, both (v,p) and (x,p) belong to E_{p_k} , so we get

$$|F(v,p) - F(t,p_k)| < \frac{\varepsilon}{2} \text{ and } |F(t,p) - F(t,p_k)| < \frac{\varepsilon}{2},$$

so we immediately get

$$|F(v,p) - F(t,p)| \le |F(v,p) - F(t,p_k)| + |F(t,p) - F(t,p_k)| < \varepsilon.$$

Since the above inequality holds for all $p \in X$, it will force (13).

 $(ii) \Rightarrow (i)$. Assume condition (ii), and let us prove that F is continuous at every point $(t,p) \in T \times X$. Fix $(t,p) \in T \times X$, as well as some $\varepsilon > 0$. We need to find two open sets $V \subset T$ and $W \subset X$, with $(t,p) \in V \times W$, such that

$$(14) |F(v,q) - F(t,q)| < \varepsilon, \ \forall (v,q) \in V \times W.$$

Using (ii), we find V such that

$$\max_{q \in X} |F(v,q) - F(t,q)| < \frac{\varepsilon}{2}, \ \forall v \in V,$$

so we get

$$(15) |F(v,q) - F(t,p)| \leq |F(v,q) - F(t,q)| + |F(t,q) - F(t,p)| < \frac{\varepsilon}{2} + |\phi_t(q) - \phi_t(p)|.$$

Using the continuity of $\phi_t: X \to \mathbb{K}$, we can then find an open neighborhood W of p in X with

$$|\phi_t(q) - \phi_t(p)| < \frac{\varepsilon}{2}, \ \forall q \in W,$$

and then (15) forces (14).

Exercise 5^{\diamondsuit} . Let X be a compact Hausdorff space. Prove that, when we equip $X \times C^{\mathbb{K}}(X)$ with the product topology, the map

$$X \times C^{\mathbb{K}}(X) \ni (p, f) \longmapsto f(p) \in \mathbb{K}$$

is continuous. .

The following is a technical result which illustrates perfectly the advantage of working with Banach spaces.

THEOREM 2.4 (Arzela-Ascoli Compactness Theorem). Let X be a compact Hausdorff space, let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C} . For a subset $\mathcal{A} \subset C^{\mathbb{K}}(X)$, the following are equivalent.

- (i) The closure \overline{A} is compact, in the norm topology.
- (ii) A is bounded and equicontinuous, in the sense that it satisfies the condition:
 (EC) for every p ∈ X, and every ε > 0, there exists a neighborhood N of p in X, such that

$$|f(q) - f(p)| < \varepsilon, \ \forall q \in \mathbb{N}, f \in \mathcal{A}.$$

PROOF. $(i) \Rightarrow (ii)$. Assume (ii). In order to prove (i), we are going to employ Corollary I.6.?? (the fact that we work in $C^{\mathbb{K}}(X)$, which is a Banach space, is crucial here) which states that condition (i) is equivalent to:

(i') For every $\varepsilon > 0$, all ε -discrete subsets of A are finite.

Recall that a set $\mathcal{F} \subset C^{\mathbb{K}}(X)$ is ε -discrete, if

$$||f - g|| \ge \varepsilon, \ \forall f, g \in \mathcal{F}, \ f \ne g.$$

Fix $\varepsilon > 0$, as well as a ε -discrete set $\mathcal{F} \subset \mathcal{A}$. Start off by using the equicontinuity condition (EC), to construct, for each $p \in X$, an open neighborhood D(p) of p in X, such that

(16)
$$|f(q) - f(p)| < \frac{\varepsilon}{3}, \ \forall q \in D(p), f \in \mathcal{A}.$$

Use compactness of X to find points p_1, \ldots, p_n , such that $X = D(p_1) \cup \cdots \cup D(p_n)$.

Consider the finite dimensional Banach space \mathbb{K}^n , equipped with the norm $\|.\|_{\infty}$, and the map

$$T: C^{\mathbb{K}}(X) \ni f \longmapsto (f(p_1), \dots, f(p_n)) \in \mathbb{K}^n.$$

It is obvious that T is linear, continuous, with $||T|| \leq 1$. Remark also that, if we put $M = \sup\{||f|| : f \in \mathcal{A}\}$, then we have the inclusion $T(\mathcal{A}) \subset B^n$, where $B = \{\lambda \in \mathbb{K} : |\lambda| \leq M\}$.

Claim: One has

$$||Tf - Tg||_{\infty} \ge \frac{\varepsilon}{3}, \ \forall f, g \in \mathcal{F}, \ f \ne g.$$

Start with $f, g \in \mathcal{F}$, with $f \neq g$. Since \mathcal{F} is ε -discrete, we have $||f - g|| \geq \varepsilon$, which means that there exists $q \in X$, with $|f(q) - g(q)| \geq \varepsilon$. If we choose $k \in \{1, \ldots, n\}$, such that $D(p_k) \ni p$, then using (16), we have

$$|f(q) - f(p_k)| < \frac{\varepsilon}{3} \text{ and } |g(q) - g(p_k)| < \frac{\varepsilon}{3}.$$

We now have

$$\varepsilon \le |f(q) - g(q)| \le |f(q) - f(p_k)| + |f(p_k) - g(p_k)| + |g(q) - g(p_k)| \le |f(p_k) - g(p_k)| + \frac{2\varepsilon}{3},$$

which forces $|f(p_k) - g(p_k)| \ge \frac{\varepsilon}{3}$, and we are done.

Having proven the Claim, let us observe that now we have the following features:

- the map $T|_{\mathfrak{F}}: \mathfrak{F} \to \mathbb{K}^n$ is injective;
- the set $T(\mathfrak{F})$ is $\frac{\varepsilon}{3}$ -discrete in \mathbb{K}^n .

Now we are done, since the fact that B^n is compact in \mathbb{K}^n , forces $T(\mathfrak{F})$ to be finite.

 $(i) \Rightarrow (ii)$. Assume \overline{A} is compact. Clearly this forces \overline{A} to be bounded, and so will be A. Let us show that A is equicontinuous. Replacing A with \overline{A} , we can assume that A itself is compact.

By Exercise 6, the map

$$X \times \mathcal{A} \ni (p, f) \longmapsto f(p) \in \mathbb{K}$$

is continuous, so by Theorem 2.3, for each $p \in X$, the map

$$\phi_p: \mathcal{A} \ni f \longmapsto f(p) \in \mathbb{K}$$

is continuous, and moreover, the map

$$\Phi: X \ni p \longmapsto \phi_p \in C^{\mathbb{K}}(\mathcal{A})$$

is also continuous.

Fix now $p \in X$, and $\varepsilon > 0$. By the continuity of Φ , there exists some open set $U \subset X$, such that

$$\|\Phi(q) - \Phi(p)\| < \varepsilon, \ \forall q \in U.$$

This reads

$$\sup_{f \in \mathcal{A}} |f(q) - f(p)| < \varepsilon, \ \forall \, q \in U,$$

which is precisely the equicontinuity condition.