

MONASH BUSINESS SCHOOL

Forecasting: principles and practice

Rob J Hyndman

1.4 Exponential smoothing

##Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease

##Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease

##Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease

##Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease

Trend methods

##Holt's linear trend

Component form

Forecast
$$\begin{aligned} \hat{\mathbf{y}}_{t+h|t} &= \ell_t + hb_t \\ \text{Level} &\qquad \ell_t &= \alpha \mathbf{y}_t + (\mathbf{1} - \alpha)(\ell_{t-1} + b_{t-1}) \\ \text{Trend} &\qquad b_t &= \beta^*(\ell_t - \ell_{t-1}) + (\mathbf{1} - \beta^*)b_{t-1}, \end{aligned}$$

- Two smoothing parameters α and β^* (0 $\leq \alpha, \beta^* \leq$ 1).
- ℓ_t level: weighted average between y_t one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- b_t slope: weighted average of $(\ell_t \ell_{t-1})$ and b_{t-1} , current and previous estimate of slope.
- Choose $\alpha, \beta^*, \ell_0, b_0$ to minimise SSE.

Trend methods

##Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1},$

- Two smoothing parameters α and β^* (0 $\leq \alpha, \beta^* \leq$ 1).
- ℓ_t level: weighted average between y_t one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- b_t slope: weighted average of $(\ell_t \ell_{t-1})$ and b_{t-1} , current and previous estimate of slope.
- Choose $\alpha, \beta^*, \ell_0, b_0$ to minimise SSE.

Trend methods

##Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1},$

- Two smoothing parameters α and β^* (0 $\leq \alpha, \beta^* \leq$ 1).
- ℓ_t level: weighted average between y_t one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- b_t slope: weighted average of $(\ell_t \ell_{t-1})$ and b_{t-1} , current and previous estimate of slope.
- Choose $\alpha, \beta^*, \ell_0, b_0$ to minimise SSE.

methods

##Exponential smoothing methods

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method (A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method