

2025 年数理经济学笔记

授课: 杨佳楠老师

作者:徐靖 组织:PKU

时间: Febuary 28, 2025

声明:请勿用于个人学习外其他用途!

目录

第1草	Linear Algebra	1
第2章	Topology of \mathbb{R}^N	3
2.1	Metric Spaces	3
	2.1.1 Definition of Metric Spaces	3
	2.1.2 Examples of metrics in \mathbb{R}^N	3
2.2	Convergence of sequences	3
	2.2.1 Definition of Convergence	3
	2.2.2 Cauchy Sequences and Complete Metric Spaces	4
	2.2.3 Example: Cauchy Sequence Not Convergent in \mathbb{Q}	4
	2.2.4 Properties of Convergent Sequences in \mathbb{R}^N	4
	2.2.5 Properties of Sequences in \mathbb{R}^N	4
	2.2.6 Limit Superior and Limit Inferior	4
2.3	Topological properties	5
	2.3.1 Open and Closed Sets	5
	2.3.2 Interior, Closure, and Boundary of Sets	5
	2.3.3 Bounded Sets and Compact Sets in \mathbb{R}^N	5
2.4	Continuous functions	6
	2.4.1 Cluster Points in Metric Spaces	6
	2.4.2 Limits of Functions at Cluster Points	6
	2.4.3 Continuity of Functions	6
	2.4.4 Bolzano-Weierstrass Theorem	7
	2.4.5 Semicontinuity	7
	2.4.6 Lipschitz Continuity	7
第3章	Multi-Variable Calculus	8
3.1	introduction	8
	3.1.1 Motivation and Insight	8
第4章	Multi-Variable Unconstrained Optimization	9
4.1	First Order Condition	ç
4.2	Convex Optimization	ç
4.3	Numerical Optimization	10
	4.3.1 Bisection Method	10
第5章	Multi-Variable Optimization with Equality Constraints	13
ハ・干	And the Openinguism with Equality Constraints	1.
第6章	Comparative Statics and Envelope Theorem	15
6.1	Comparative Statics	15
	6.1.1 Comparative Statics for Unconstrained Optimization	15
	6.1.2 Comparative Statics for Equality Constrained Optimization	16
6.2	Envelope Theorem	16

			目录
第7章	Multi-	Variable Optimization with Inequality Constraints	18
7.1	Optim	ization with linear inequality constraints	18
	7.1.1	Geometric intuition for FOC	18
	7.1.2	KKT	19
7.2	Optim	ization with nonlinear inequality constraints	19
	7.2.1	General KKT	19
	7.2.2	Constraint Qualification	20
7.3	Conve	x Optimization	20
第8章	From	Thick to Thin	22

第1章 Linear Algebra¹

内容提要

□ Leading Principal Minor: 顺序主子式

□ Positive definite matrix:正定矩阵

□ Orthogonal matrix:正交矩阵

□ Positive semi-definite matrix: 半正定矩阵

■ Symmetric matrix: 对称矩阵

□ Determinant: 行列式

定义 1.1

For $N \times N$ matrix $A = (a_{ij})$, using any row or column:

$$\det A = \sum_{i=1}^{N} (-1)^{i+j} a_{ij} \det A_{ij}$$

where A_{ij} is the $(N-1) \times (N-1)$ matrix obtained by deleting the i-th row and j-th column of A.

定理 1.1

$$A^{-1} = \frac{1}{\det A}\tilde{A}$$

where $\tilde{a_{mn}} = (-1)^{m+n} \det A_{nm}$.

定义 1.2

Orthogonal matrix : $P^TP = I$.

Symmetric matrix : $A^T = A$.

Positive definite matrix : $x^T A x > 0$ for all $x \neq 0$. **Positive semi-definite** matrix : $x^T A x \ge 0$ for all x.

定义 1.3

Leading Principal Minor: determinant of the first $k \times k$ submatrix of A. For real symmetric matrix A, A is positive definite if and only if all its leading principal minors are positive.

定义 1.4

$$Av = \lambda v$$

where v is eigenvector, λ is eigenvalue. λ is a root of the characteristic polynomial $\det(A - \lambda I) = 0$.

定义 1.5

Complex inner product:

$$\langle x, y \rangle = x^* y = \sum_{i=1}^n \bar{x_i} y_i$$

where \bar{x} is the **complex conjugate** and x^* is the **conjugate transpose** (adjoint).

¹只记一些矩阵分解吧,以防忘了

定义 1.6

Hermitian matrix : $A^* = A$.

For real matrices, Hermitian matrix is symmetric.

For Hermitian matrix, all eigenvalues are real.

定理 1.2 (Diagonalization of Symmetric Matrices)

$$P^TAP = \operatorname{diag}\{\lambda_1, \dots, \lambda_n\}$$

where P is orthogonal matrix, λ_i are eigenvalues of A.

 \Diamond

第 2 章 Topology of \mathbb{R}^{N1}

Keywords □ Topology 拓扑 □ Lipschitz continuity 利普希茨连续 □ semicontinuity 半连续 ■ Metric Space 度量空间 ☐ Convergence 收敛 ■ Bolzano-Weierstrass Theorem 博尔扎诺-魏尔斯 ■ interior 内部 特拉斯定理 □ Heine-Borel Theorem 海涅-波雷尔定理 □ closure 闭包 ■ boundary 边界 □ Contraction Mapping Theorem 压缩映射定理 □ compact set 紧集 □ Intermediate Value Theorem 中值定理 □ cluster point 聚点

2.1 Metric Spaces

2.1.1 Definition of Metric Spaces

定义 2.1

Let X be a set. A function $d: X \times X \to \mathbb{R}$ is called a **metric** (or **distance**) on X if :

- 1. (positivity) $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 if and only if x = y.
- 2. (symmetry) d(x,y) = d(y,x) for all $x, y \in X$.
- 3. (triangle inequality) $d(x,y) \le d(x,z) + d(z,y)$ for all $x,y,z \in X$.

A set X together with a metric d is called a **metric space**, denoted by (X, d).

2.1.2 Examples of metrics in \mathbb{R}^N

- Euclidean metric: $d(x,y) = \sqrt{\sum_{i=1}^{N} (x_i y_i)^2}$.
- L^p metric (for $p \ge 1$): $d(x,y) = (\sum_{i=1}^N |x_i y_i|^p)^{1/p}$.
- Sup norm (when $p = \infty$): $d(x, y) = \max_{i=1}^{N} |x_i y_i|$.

2.2 Convergence of sequences

2.2.1 Definition of Convergence

定义 2.2

Let (X, d) be a metric space. A sequence $\{x_n\}$ in X is said to **converge** to a point $x \in X$ if for every $\epsilon > 0$, there exists an integer N such that $d(x_n, x) < \epsilon$ for all $n \ge N$. In this case, we write $\lim_{n \to \infty} x_n = x$. A sequence that converges is called **convergent**, otherwise it is called **divergent**.

 $^{^{1}}$ 点集拓扑对应数分高代这一级别的数学基础课,只有 $\,$ sms $\,$ 和图班的同学学过,所以我简单记一下,无需关注证明,数理经济学只用到结论

定义 2.3

When metric space is \mathbb{R}^N , we say that $\{x_n\}$ is **bounded** if there exists a real number M such that $||x_k|| \leq M$ for all n.

2.2.2 Cauchy Sequences and Complete Metric Spaces

- Cauchy sequence: A sequence $\{x_n\}$ in a metric space (X,d) is called a Cauchy sequence if for every $\epsilon > 0$, there exists an integer N such that $d(x_n, x_m) < \epsilon$ for all $n, m \ge N$.
- Complete metric space: A metric space (X, d) is called **complete** if every Cauchy sequence in X converges to a point in X.

定理 2.1

Any convergent sequence in a metric space is a Cauchy sequence.

\Diamond

2.2.3 Example: Cauchy Sequence Not Convergent in $\mathbb Q$

Consider the metric space (\mathbb{Q}, d) , where d(x, y) = |x - y|.

Fibonacci sequence: Let $\{F_k\}$ be the Fibonacci sequence, defined by

$$F_1 = F_2 = 1, F_{k+1} = F_k + F_{k-1}, k \ge 2$$

A Special Sequence: Define $a_k = \frac{F_{k+1}}{F_k}$. Then $\{a_k\}$ is a Cauchy sequence in \mathbb{Q} but does not converge in \mathbb{Q} .

2.2.4 Properties of Convergent Sequences in \mathbb{R}^N

Consider \mathbb{R}^N with the Euclidean metric. Let $\{x_n\}$ and $\{y_n\}$ be two sequences.

- Preservation of Addition/Subtraction: If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} (x_n \pm y_n) = x \pm y$.
- Preservation of Multiplication: If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} (x_n \cdot y_n) = x \cdot y$.
- Preservation of Division: If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y \neq 0$, then $\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{x}{y}$.
- Preservation of Inequality: If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $x_n \leq y_n$ for all n implies $x \leq y$.

2.2.5 Properties of Sequences in \mathbb{R}^N

性质 A convergent sequence in \mathbb{R}^N is bounded.

A sequence $\{x_{n_k}\}$ is called a **subsequence** of $\{x_n\}$ if $n_1 < n_2 < n_3 < \cdots$.

性质 subsequences of a convergent sequence in \mathbb{R}^N also converge to the same limit.

2.2.6 Limit Superior and Limit Inferior

定义 2.4

Let $\{x_n\}$ be a sequence in \mathbb{R}^N . The **limit superior** of $\{x_n\}$ is defined by

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right)$$

The **limit inferior** of $\{x_n\}$ is defined by

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left(\inf_{k \ge n} x_k \right)$$

2.3 Topological properties

2.3.1 Open and Closed Sets

定义 2.5

In a metric space (X,d), a set $U\subset X$ is called **open** if for every $x\in U$, there exists an $\epsilon>0$ such that $B(x,\epsilon)\subset U$. A set $F\subset X$ is called **closed** if its complement $F^c\stackrel{\mathrm{def}}{=} X\backslash F$ is open.

性质 For open sets:

- 1. The union of any collection of open sets is open.
- 2. The intersection of finitely many open sets is open.

For closed sets:

- 1. The intersection of any collection of closed sets is closed.
- 2. The union of finitely many closed sets is closed.

2.3.2 Interior, Closure, and Boundary of Sets

定义 2.6

The **interior** of a set $A \subset X$ is defined as:

$$\operatorname{int}(A) = \bigcup \{ U \subset A : U \text{ is open} \}$$

The **closure** of a set $A \subset X$ is defined as:

$$\overline{A} = \bigcap \{F \supset A : F \text{ is closed}\}\$$

The **boundary** of a set $A \subset X$ is defined as:

$$\partial A = \overline{A} \setminus \operatorname{int}(A)$$

命题 2.1

- $A \subset X$ is open if and only if $\partial A \subset A$.
- $A \subset X$ is closed if and only if $\partial A \subset A$.

2.3.3 Bounded Sets and Compact Sets in \mathbb{R}^N

定义 2.7

A set $A \subset \mathbb{R}^N$ is called **bounded** if there exists a real number M such that $||x|| \leq M$ for all $x \in A$.

A set $A \subset \mathbb{R}^N$ is called **compact** if for any sequence $\{x_n\}$ in A, there exists a subsequence $\{x_{n_k}\}$ that converges to a point in A.

定理 2.2 (Heine-Borel Theorem)

In \mathbb{R}^N , a set A is compact if and only if it is closed and bounded.

2.4 Continuous functions

2.4.1 Cluster Points in Metric Spaces

定义 2.8

Let (X,d) be a metric space and $A \subset X$. A point $x \in X$ is called a **cluster point** of A if for every $\epsilon > 0$, there exists a point $y \in A$ such that $d(x,y) < \epsilon$ and $x \neq y$.

Equivalently, x is a cluster point of A if there exists a sequence $\{x_n\}$ in A such that $\lim_{n\to\infty} x_n = x$ and $x_n \neq x$ for all n.

2.4.2 Limits of Functions at Cluster Points

定义 2.9

Let (X,d) and (Y,ρ) be metric spaces, $A\subset X$, $f:A\to Y$, and x be a cluster point of A. We say that f has a **limit** $y\in Y$ at x if for every $\epsilon>0$, there exists a $\delta>0$ such that $\rho(f(x_0),y)<\epsilon$ for all $x_0\in A$ such that $0< d(x_0,x)<\delta$.

Equivalently, using neighborhoods: f has a limit y at x if for every neighborhood V of y, there exists a neighborhood U of x such that $f(U \cap A) \subset V$.

性质

- 1. $\lim_{x\to \bar{x}} f(x) = f(\bar{x})$ if and only if for every sequence $\{x_n\}$ in A such that $\lim_{n\to\infty} x_n = \bar{x}$, we have $\lim_{n\to\infty} f(x_n) = f(\bar{x})$.
- 2. If f has a limit at x, then the limit is unique.

2.4.3 Continuity of Functions

定义 2.10

Let (X, d) and (Y, ρ) be metric spaces, and $f: X \to Y$.

ullet f is continuous at $\bar{x} \in X$ if:

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in X, d(x, \bar{x}) < \delta \Rightarrow \rho(f(x), f(\bar{x})) < \varepsilon$$

Equivalently:

$$\forall \varepsilon > 0, \exists \delta > 0 : f(B_{\delta}(\bar{x})) \subseteq B_{\varepsilon}(f(\bar{x}))$$

 \bullet f is **continuous on** X (or simply **continuous**) if:

 $\forall \bar{x} \in X, f \text{ is continuous at } \bar{x}$

命题 2.2

Let (X, d) and (Y, ρ) be metric spaces, $f: X \to Y$, and $x \in X$. The following are equivalent:

- 1. f is continuous at x.
- 2. For every sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} x_n = x$, we have $\lim_{n\to\infty} f(x_n) = f(x)$.
- 3. For every open set $V \subset Y$, $f^{-1}(V)$ is open in X.

2.4.4 Bolzano-Weierstrass Theorem

定理 2.3 (Bolzano-Weierstrass Theorem)

If $K \subset \mathbb{R}^N$ is compact and nonempty, and $f: K \to \mathbb{R}^M$ is continuous, then :

- 1. f(K) is compact.
- 2. f attains its maximum and minimum on K.

\odot

2.4.5 Semicontinuity

定义 2.11

For $f: \mathbb{R}^N \to \mathbb{R}^M$:

• f is upper semicontinuous at x if :

$$f(x) \le \limsup_{y \to x} f(y)$$
 for all $x \in \mathbb{R}^N$

• f is lower semicontinuous at x if :

$$f(x) \ge \liminf_{y \to x} f(y)$$
 for all $x \in \mathbb{R}^N$

*

注 f is upper semicontinuous $\Leftrightarrow -f$ is lower semicontinuous.

定理 2.4 (Extrema of semicontinuous Functions)

Let $K \subset \mathbb{R}^N$ be compact and $f: K \to \mathbb{R}$ be upper semicontinuous. Then f attains its maximum on K. If f is lower semicontinuous, then f attains its minimum on K.

\Diamond

2.4.6 Lipschitz Continuity

定义 2.12

A function $f: \mathbb{R}^N \to \mathbb{R}^M$ is called **Lipschitz continuous** if there exists a constant K > 0 such that:

$$||f(x) - f(y)|| \le K||x - y||$$
 for all $x, y \in \mathbb{R}^N$

where K is called the **Lipschitz constant** of f. If K < 1, then f is called a **contraction mapping**.

注 Lipschitz continuity implies uniform continuity, but the converse is not true. For example, $f(x) = x^2$.

定理 2.5 (Contraction Mapping Theorem)

Let (X, d) be a complete metric space and $f: X \to X$ be a contraction mapping. Then f has a unique fixed point $x^* \in X$, i.e., $f(x^*) = x^*$.

定理 2.6 (Intermediate Value Theorem)

Let $f:D\to\mathbb{R}$ be a continuous function and $D\subset\mathbb{R}$. If :

- $[a, b] \subset D$ (closed interval)
- y is between f(a) and f(b)

then there exists a point $c \in [a, b]$ such that f(c) = y.

第 3 章 Multi-Variable Calculus¹

Keywords

□ gradient 梯度

3.1 introduction

3.1.1 Motivation and Insight

- Many practical problems involve optimization with multple variables.
- Real-world applications often require optimizing several variables simultaneoutly.
- Linear functions are easy to understand and manipulate.
 - Not all interesting functions are linear, but many can be approximated by linear functions.
 - The gradient is a generalization of the derivative to functions of multiple variables.

¹多元微分还能有不会的吗,这真不用记了吧

第 4 章 Multi-Variable Unconstrained Optimization

Keywords

- □ First Order Condition 一阶条件
- □ Bisection Method 二分法
- Secant Method 割线法

- False Position Method 假位法
- □ Newton's Method 牛顿法

4.1 First Order Condition

An Unconstrained Optimization Problem is:

$$\min_{x \in \mathbb{R}^n} f(x)$$

定义 4.1

First Order Condition (FOC): $\nabla f(x^*) = 0$.

- x^* is a stationary point (驻点) of f.
- It is necessary but not sufficient.

global minimum: $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$.

local minimum: $f(x^*) \le f(x)$ for all $x \in B(x^*, \epsilon)$ for some $\epsilon > 0$.

命题 4.1

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function, and $\nabla f(x^*) = 0$. If $\nabla^2 f(x^*)$ is:

- ullet positive definite, then x^* is a local minimum.
- negative definite, then x^* is a local maximum.
- indefinite, then x^* is a **saddle point**. (鞍点)

4.2 Convex Optimization

定义 4.2 (Convex Function)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

定理 4.1

A twice continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^2 f(x)$ is positive semidefinite for all $x \in \mathbb{R}^n$.

命题 4.2

Let f be differentiable. Then f is (strictly) convex if and only if:

$$f(y) - f(x)(>) \ge \nabla f(x) \cdot (y - x)$$

for all $x, y \in \mathbb{R}^n$.

定理 4.2 (Minimum/maximum Characterization)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex (concave) function. Then x^* is a local minimum (maximum) if and only if:

$$\nabla f(x^*) = 0$$

- If f is strictly **convex**, then x^* is a global minimum.
- If f is strictly **concave**, then x^* is a global maximum.

\Diamond

4.3 Numerical Optimization

4.3.1 Bisection Method

定义 4.3 (Bisection Method)

A simple, robust method for finding roots of continuous functions on bounded intervals

- Start with an interval [a, b] such that f(a)f(b) < 0.
- Compute the midpoint $c = \frac{a+b}{2}$, and evaluate f(c).
- Replace a or b with c based on the sign of f(c).
- Iterate until desired precision.

定义 4.4 (Convergence Rate and Order 收敛速度和阶)

For iteration x_n approaching the root r, the convergence rate C and order ρ are defined as:

$$\lim_{n \to \infty} \frac{|x_{n+1} - r|}{|x_n - r|^{\rho}} = C$$

- Linear convergence: $\rho = 1, C < 1$.
- Quadratic convergence: $\rho = 2, C < 1$.
- Superlinear convergence: $\rho > 1$, C < 1.

-

Method	Definition	Rate	Order
Bisection	Iteratively bisects an interval	Linear ($C = 0.5$)	1
Disection	and selects a subinterval		1
Secant	Root approximation via secant line	Superlinear ($C \approx 1.618$)	1.618
Secant	through two points	Superimear ($C \sim 1.018$)	
False Position	Bisection variant with	Linear	1
raise rosition	linear interpolation updates	Linear	1
Newton-Raphson	Derivative-based iterative	Quadratic ($C \propto f''$)	2
Newton-Kapiison	root-finding	Quadratic (C \(\pri \)	2
Gradient method	Function minimization via	Linear $(C \propto \kappa)$	1
Gradient method	negative gradient direction	Linear (C & K)	1

表 **4.1:** Compact Comparison of Numerical Methods

定义 4.5 (Methods)

Secant Method:

- Compute the secant line through $(x_0, f(x_0))$ and $(x_1, f(x_1))$.
- Find the intersection with the x-axis to get the next approximation x_2 .
- Iterate until convergence.

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$
(4.1)

图 4.1: Secant Method

图 4.2: False Position Method

False Position Method:

- Similar to the secant method, but always keeps the interval [a, b] such that f(a)f(b) < 0.
- Update a or b based on the sign of f(c).
- Iterate until convergence.

$$\begin{split} c &= \frac{af(b) - bf(a)}{f(b) - f(a)}, \\ [a,b] &\leftarrow [a,c] \quad \text{if} \quad f(a)f(c) < 0, \\ [a,b] &\leftarrow [c,b] \quad \text{if} \quad f(b)f(c) < 0. \end{split}$$

笔记 若初始值足够接近根且函数光滑,则 Secant Method 收敛速度优于 False Position Method,但可能因迭代点跳出根的邻域而发散. False Position Method 保证收敛,但多一个异号的初始条件且速度较慢.

定义 4.6 (Newton-Raphson Method)

- Start with an initial guess x_0 .
- Compute the next approximation using the formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Iterate until convergence.

问题 4.1 为什么牛顿法是二阶收敛的?

解对 f(x) 在 x_n 处做泰勒展开, 对于 f(r) = 0:

$$f(r) = f(x_n) + f'(x_n)(r - x_n) + \frac{f''(x_n)}{2}(r - x_n)^2 + O((x - x_n)^3)$$

带入牛顿法迭代公式 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$:

$$x_{n+1} - r = (x_n - r)^2 \cdot \frac{f''(x_n)}{2f'(x_n)}$$

🕏 笔记 牛顿法初期可能出问题, 如果不满足足够接近根的假设.

牛顿法可以很好地应用到多变量上, 但过程中 Hessian 矩阵的逆矩阵计算量较大, 并且他是一个 local method. 例题 **4.1** 将牛顿法应用到求解二次可微函数的极值问题, 可以求解 first order condition:

$$x_{n+1} = x_n - [\nabla^2 f(x_n)]^{-1} \nabla f(x_n)$$

定义 4.7 (Gradient Method)

- Start with an initial guess x_0 and error tolerance ϵ .
- $\bullet \ \ \text{Iterate until } \|x_{n+1}-x_n\|<\epsilon :$
 - Compute the gradient $\nabla f(x_n)$.
 - Define $\phi(t) = f(x_n t\nabla f(x_n))$.
 - ullet Find the minimum of $\phi(t)$ using a one-variable optimization method (e.g., bisection, secant, or Newton's method).
 - Defint $x_{n+1} = x_n t^* \nabla f(x_n)$.

第5章 Multi-Variable Optimization with Equality Constraints

Keywords

□ Equality Constraints 等式约束

非退化约束条件

- □ Lagrange Multiplier 拉格朗日乘数法
- □ Cobb-Douglas Utility Function 柯布-道格拉斯
- ☐ Nondegenerate Constraint Qualification, NDCQ

效用函数

Ŷ 笔记 现在我们考虑有约束条件的优化问题, 这一关键是将约束视为函数方程并引入拉格朗日乘数法.

定义 5.1 (Optimization with Equality Constraints)

设 f(x) 是可微函数, g(x) = 0 是可微约束条件组, 那么我们要优化的问题可以表示为:

$$\max f(x) \quad s.t. \quad g(x) = 0 \tag{5.1}$$

设 f 是 n 维向量, g 是 m 维向量, x 是 k 维向量.

定义 5.2 (Lagrange Multiplier)

对于上述问题, 我们可以构造拉格朗日函数:

$$L(x,\lambda) = f(x) + \lambda^T g(x)$$
(5.2)

其中 λ 是拉格朗日乘数. 通过对L求导数, 我们可以得到一组方程:

$$\frac{\partial L}{\partial x} = 0, \quad \frac{\partial L}{\partial \lambda} = g(x) = 0$$
 (5.3)

其解 (x^*, λ^*) 就是我们要找的最优解.

定义 5.3 (NDCQ)

如果 g(x) 在 x^* 处可微, 且 $Dg(x^*)$ 的秩为 m, 那么我们称 g(x) 满足非退化约束条件 (NDCQ). 其中,

$$Dg(x^*) = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \dots & \frac{\partial g_1}{\partial x_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x_1} & \dots & \frac{\partial g_m}{\partial x_k} \end{pmatrix}$$

定理 5.1 (Lagrange Multiplier Theorem)

设 f(x) 和 g(x) 都是可微函数, 且 g(x) 满足非退化约束条件. 那么 (x^*, λ^*) 是上述优化问题的最优解.

🕏 笔记 我们需要进一步判断最大值还是最小值.

定义 5.4 (Borderde Hessian Matrix)

$$H = \begin{pmatrix} 0 & Dg(x^*) \\ Dg(x^*)^T & D^2f(x^*) \end{pmatrix}$$
 (5.4)

其中 $D^2f(x^*)$ 是 f(x) 在 x^* 处的 Hessian 矩阵, $Dg(x^*)$ 是 g(x) 在 x^* 处的 Jacobian 矩阵. 本质是求 Lagrange 函数的 Hessian 矩阵, 它是 k+m 维的.

定理 5.2 (Sufficient Condition for Maximum)

设 H 是上述的 Borderde Hessian 矩阵, 那么如果顺序主子式交替符号, 且 $\det H$ 的符号与 $(-1)^m$ 相同, 则 (x^*,λ^*) 是局部极大值, 若顺序主子式恒为负, 则 (x^*,λ^*) 是局部极小值.

🔮 笔记 这里我们不再用正定性来判断, 因为加边海色矩阵的左上 k 阶主子式是为 0.

第6章 Comparative Statics and Envelope Theorem

Keyword	s

- □ Generalized Comparative Statics 广义比较静态
- □ Cramer's Rule 克拉默法则

■ Envelope Theorem 包络定理

□ Shephard's Lemma 谢泼德引理

6.1 Comparative Statics

輸完 经济学中的比较静态分析是指在给定一个经济模型的情况下,研究当 exogenous variables 发生变化时, endogenous variables 的值如何变化. 比如当给定消费者收入去讨论市场供需模型中的均衡价格, 给定税率去讨论对 Monopoly 的影响, 前者作为外生变量 (经济模型的输入), 后者作为内生变量 (经济模型的输出).

定义 6.1 (Generalized Comparative Statics)

We have an economic model, the equilibrium solution of which is given by the form:

$$F(x^*, \alpha) = 0$$

where x^* is the equilibrium solution of endogenous variables x, and α is a vector of exogenous variables. The key objective is to find the derivative $\frac{\partial x_i^*}{\partial \alpha_j}$ and identify its sign.

 $\stackrel{ extstyle extstyle$

定理 6.1 (Cramer's Rule)

Let $F(x^*(\alpha), \alpha) = 0$ be a system of n equations in n unknowns. The Jacobian matrix of the system is given by:

$$\det J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

We have:

$$J\frac{\partial x^*}{\partial \alpha_i} + \frac{\partial F}{\partial \alpha_i} = 0, \forall j$$

The Cramer's Rule states that the derivative of the equilibrium solution with respect to the exogenous variable α_j is given by:

$$\frac{\partial x_i^*}{\partial \alpha_i} = -\frac{\det J_{ij}}{\det J}$$

where J_{ij} is the matrix obtained by replacing the *i*-th column of J with the vector $\frac{\partial F}{\partial \alpha_i}$.

6.1.1 Comparative Statics for Unconstrained Optimization

这时我们考虑一个最优化问题, 其形式为:

$$\max_{x} f(x; a)$$

其中 $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ 是一个可微函数¹. m 以下视为 1 (不考虑外生变量之间的影响).

 $^{^{1}}$ 请注意 $\nabla f = F$: 这里 $\nabla f = 0$ 是 1.1.1 小节中函数的 FOC, F 是广义比较静态的模型函数, 我们不是第一次用类似的记号

FOC $\nabla f = 0$ 可以这样写:

$$\frac{\partial f}{\partial x_i}(x_1^*, \dots, x_n^*; a) = 0, \forall i$$

 $f(\cdot)$ 的 FOC 的 Jacobian 矩阵也就是 $f(\cdot)$ 的 Hessian 矩阵:

$$\det J(x^*; a) = \frac{\partial^2 f}{\partial x^2}(x^*; a)$$

命题 6.1 (Implict Function Theorem)

If $\det J(x^*;a) \neq 0$, then the system implicitly defines differentiable functions:

$$x_i^*: a \to x_i^*(a), \forall i$$

And the derivatives of these functions are given by a:

$$\frac{\partial x_i^*}{\partial a} = -\frac{\det J_i(x^*; a)}{\det J(x^*; a)}$$

where J_i is the matrix obtained by replacing the *i*-th column of J with the vector $\frac{\partial f}{\partial a}$.

"这个式子和上面的 Cramer's Rule 的结论是一样的, 区别是在优化问题中, 我们将向量函数指定为被优化函数的梯度, 那么 Jacobian 矩阵成为了一个特例, 也就是 Hessian 矩阵.

笔记 隐函数定理揭示了二阶条件与比较静态的存在性的关联

6.1.2 Comparative Statics for Equality Constrained Optimization

在有约束优化中, 我们先做拉格朗日再用同样的隐函数定理方法来进行比较分析, 实际上还是一样的, 因为要对 Lagrangian 函数求一阶条件.

$$\begin{split} L &= f + \lambda h \\ \frac{\partial L}{\partial \lambda}(x^*, \lambda^*; a) &= h(x^*; a) = 0 \\ \frac{\partial L}{\partial x_i}(x^*, \lambda^*; a) &= \frac{\partial f}{\partial x_i}(x^*; a) + \lambda^* \frac{\partial h}{\partial x_i}(x^*; a) = 0 \quad \text{for } i = 1, 2, ..., n \end{split}$$

Jacobian 是 Bordered Hessian 矩阵:

$$\det J_L(x^*; a) = \begin{bmatrix} 0 & \frac{\partial h}{\partial x}(x^*; a) \\ \frac{\partial h}{\partial x}(x^*; a) & \frac{\partial^2 f}{\partial x^2}(x^*; a) \end{bmatrix}$$

利用隐函数定理:

$$\frac{\partial x_i^*}{\partial a} = -\frac{\det J_i(x^*; a)}{\det J(x^*; a)}$$

其中 J_i 是通过将 J_L 的第 i 列替换为 $\frac{\partial L}{\partial a}$ 得到的矩阵

6.2 Envelope Theorem

还是之前的最优化问题:

$$V(a) = \max_{x} f(x; a)$$

- $F: \mathbb{R}^n \times R^m \to \mathbb{R}$ is differentiable.
- \bullet a is an exogenous variable.
- $x^*(a)$ is a local solution with differentiable components $x_i^*(a): \mathbb{R} \to \mathbb{R}$.

定理 6.2 (Envelope Theorem)

The derivative of the value function with respect to the exogenous variable a is given by:

$$\begin{split} \frac{\partial V(a)}{\partial a} &= \frac{\partial f}{\partial a}(x^*(a);a) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x^*(a);a) \frac{\partial x_i^*(a)}{\partial a} \\ &= \underbrace{\frac{\partial f}{\partial a}}_{\text{$\underline{1}$} \ \underline{4} \ \underline{8} \ \underline{8} \ \underline{9}}_{\text{$\underline{1}$} \ \underline{4} \ \underline{8} \ \underline{9}} + \underbrace{\nabla_x f \cdot \frac{\partial x^*(a)}{\partial a}}_{\text{$\underline{1}$} \ \underline{4} \ \underline{8} \ \underline{9}} \end{split}$$

where $\nabla_x f$ is the gradient of the objective function with respect to the endogenous variables, and $\frac{\partial x^*(a)}{\partial a}$ is the derivative of the equilibrium solution with respect to the exogenous variable a.

 $\stackrel{\bigodot}{\mathbf{v}}$ 笔记 包络定理揭示了: 当外生参数变化时, 只需考虑该参数的直接影响, 而无需额外计算内生变量调整²带来的间接影响. 因为由一阶条件, $\nabla_x f$ 项在最优解处趋于零.

对于有约束优化也一样:

$$\frac{\partial V(a)}{\partial a} = \frac{\partial f}{\partial a} + \sum_{i=1}^{n} \lambda_i \frac{\partial g}{\partial a}$$

包络定理这一名称源于它在成本曲线上的应用:

- 长期总成本曲线是短期总成本曲线的包络线
- 短期总成本曲线是通过改变固定投入水平而产生的
- 包络定理为这种关系提供了严格的数学基础

命题 6.2 (Shephard's Lemma)

当要素的价格上涨1单位时,最小成本的边际增加量正好等于厂商对该要素的使用量.

$$\frac{\partial C(w_1, w_2, y)}{\partial w_i} = x_i(w_1, w_2, y)$$

17

 $^{^2}$ 如果是有约束优化, λ 的选取也包含在内

第7章 Multi-Variable Optimization with Inequality Constraints

Keywords

- ☐ Complementary slackness 互补松弛条件
- □ Karush-Kuhn-Tucker Theorem KKT 条件
- □ Constraints Qualification 约束资格条件
- □ Convex Optimization 凸优化

- □ Nondegenerate Constraint Qualification NDCQ 非退化约束资格条件
- □ Slater Condition SCQ 斯莱特条件

7.1 Optimization with linear inequality constraints

7.1.1 Geometric intuition for FOC

考虑一个优化问题:

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
 s.t.
$$Ax \le b$$

$$x \ge 0$$

我们的目标是去找到 x* 作为局部最小的必要条件.

定义 7.1 (Constraint Set)

$$\Omega = \{ x \in \mathbb{R}^n | Ax \le b \}$$

其中 $A \not\in m \times n$ 的矩阵, $b \not\in m$ 维向量.

先考虑一条直线作为约束, 即 $a^T x \leq c$.

- 如果 $a^Tx^* < c$, 那么满足 $\nabla f(x) = 0$ 的 x^* 是局部最优
- 如果 $a^T x^* = c$, 那么 x^* 是局部最优的充分必要条件是 $\nabla f(x^*)$ 和 a 线性相关. 这是因为对任意可行的方向 d, 有:

$$0 \le \lim_{t \to 0} \frac{f(x^* + td) - f(x^*)}{t} = \langle \nabla f(x^*), d \rangle$$

这意味着 $\nabla f(x^*)$ 和 d 线性相关, 实际上

$$\nabla f(x^*) + \lambda a = 0, \lambda \ge 0$$

定义 7.2 (feasible direction)

d 是可行的方向, 如果 $x^* + td \in \Omega$ 对任意小的 t > 0 都成立.

考虑两条直线的约束,对于其交点 x*, 其成为局部最优的直观的必要条件是:

$$\nabla f(x^*) + \lambda_1 a_1 + \lambda_2 a_2 = 0, \lambda_1, \lambda_2 \ge 0$$

图 7.1: $-\nabla f$ 只能延 a 的方向

图 **7.2:** $-\nabla f$ 可以延 a_1, a_2 所夹任意方向

7.1.2 KKT

因此,对于线性约束的优化问题,我们给出一个相对统一严谨的必要条件:

定理 7.1 (Modified Karush-Kuhn-Tucker Theorem)

对于优化问题:

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
 s.t.
$$g_i(x) \le 0, i \in [I]$$

$$h_i(x) = 0, j \in [J]$$

其中, f 可微, $g_i = \langle a_i, x \rangle - c_i$, $h_j = \langle b_j, x \rangle - d_j$ 均为线性函数, $a_i, b_j \neq 0$. 如果 x^* 是局部最优解, 那么存在 λ_i 和 μ_j 使得:

$$\nabla f(x^*) + \sum_{i=1}^{I} \lambda_i \nabla g_i(x^*) + \sum_{j=1}^{J} \mu_j \nabla h_j(x^*) = 0$$
$$\lambda_i \ge 0, g_i(x^*) \le 0, \lambda_i g_i(x^*) = 0$$
$$h_j(x^*) = 0$$

 \Diamond

笔记 KTT 条件可以由拉格朗日乘子法得到, 其中三个条件分别对应于: 一阶条件, 互补松弛, 等式约束.

7.2 Optimization with nonlinear inequality constraints

7.2.1 General KKT

线性约束的优化问题 (线性规划) 是简单的, 非线性是坏的性质. 一个直观的想法是用 Taylor 展开近似线性约束.

$$g_i(x) \approx g_i(x^*) + \langle \nabla g_i(x^*), x - x^* \rangle$$

因此我们引入一类条件, 统称约束资格条件 constraint qualigication (CQ). 使之代替原本的 g,h 线性条件. (本质是作近似) 然后重写 KTT ¹:

定理 7.2 (General Karush-Kuhn-Tucker Theorem)

对于优化问题:

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
 s.t.
$$g_i(x) \le 0, i \in [I]$$

$$h_i(x) = 0, j \in [J]$$

其中, f 可微, x^* 是局部最优解, 且约束资格条件 CQ 成立, 那么存在 λ_i 和 μ_j 使得:

$$\nabla f(x^*) + \sum_{i=1}^{I} \lambda_i \nabla g_i(x^*) + \sum_{j=1}^{J} \mu_j \nabla h_j(x^*) = 0$$
$$\lambda_i \ge 0, g_i(x^*) \le 0, \lambda_i g_i(x^*) = 0$$
$$h_j(x^*) = 0$$

7.2.2 Constraint Qualification

课堂上给出了两种:

定义 7.3 (Nondegenerate CQ (NDCQ))

令 $I(x^*)$ 为 x^* 积极约束的指标集 (set of active constraint indices), 即

$$I(x^*) = \{i | g_i(x^*) = 0\}$$

NDCQ:活跃约束的梯度线性无关,即:

rank
$$(\nabla g_i(x^*), i \in I(x^*)) = |I(x^*)|$$

 $\widehat{\mathbf{v}}$ 笔记 线性无关的意义在于, 保证了 λ 的唯一性. 且确保 ∇f 一定在这些梯度张成的空间. 几何上可以理解为, 可行方向 (\mathbf{f} 的梯度方向) 和起作用的/活跃的约束梯度方向正交

定义 7.4 (Slater Condition(SCQ))

- g_i' 是凸的
- 存在 x_0 使得 $g_i(x_0) < 0, i \in [I]$, 即 x_0 是严格可行的 (strictly feasible).

7.3 Convex Optimization

应用到凸优化问题上, 我们可以得到更强的结论.

定义 7.5 (Convex Optimization (无等式约束版))

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
 s.t. $g_i(x) \le 0, i \in [I]$

¹实际上, 课堂所展示的 General KKT 忽略了等式约束的函数组 h, CQ 条件也忽略. (从 g 扩充到 h 是显然的, 例如 NDCQ 中 h 自然在 $I(x^*)$ 中, 但 g 不一定在 $I(x^*)$ 中.)

其中 f,g_i' 可微且凸.

*

命题 7.1

Necessity: 如果 x^* 是局部最优解, 且存在 x_0 使得 $g_i(x_0) < 0, i \in [I]$, 那么存在拉格朗日乘子 λ_i 使得 KKT 条件成立.

Sufficiency: 如果存在拉格朗日乘子 λ_i 使得 KKT 条件成立. 则 x^* 是全局最优解.

笔记 必要性即以 SCQ 为假设的 KTT. 充分性证明不难: x^* 最小化 $L(x,\lambda)$, 从而对任意可行的 x, 有 $f(x^*) = L(x^*,\lambda) \le L(x,\lambda) \le f(x)$.

理论成立, 做题可以三步走:

- 1. Verify Condition
 - f, g'_i 可微且凸吗
 - · SCQ 成立吗
- 2. Form Lagrangian $L(x, \lambda)$
 - First-order condition
 - Complementary slackness
- 3. Solve System
 - $\bullet \ \, \text{Solve for } x^*, \lambda^*$
 - x^* 是原问题解, λ^* 提供灵敏度信息

第8章 From Thick to Thin

笔者的一些 insights, 便于理解和记忆数理经济学的体系, 也是考前的复习提纲

期中部分

前三章 介绍了前置数学工具,包括线性代数,欧式空间(的拓扑性质),以及多元微分.其中相对核心的有:

- 正定矩阵及其判定, 对角化的一系列结论
- Bolzano-Weierstrass Theorem
- Hessian, Jacobian, lagrange

1. 极值与零点

- 无约束优化: $f: \mathbb{R}^n \to \mathbb{R}$, 求 x^* 使 $f(x^*)$ 最小
- 函数组零点: $F: \mathbb{R}^n \to \mathbb{R}^n$, 求 x^* 使 $F(x^*) = 0$ 以上两个问题的交集在于 FOC:

$$F = \nabla f = 0$$

- 笔记 换句话说, 优化问题求解的第一步是零点问题, 零点问题的一些特例可以还原成优化问题 (显然不是所有的方程组都是某个函数的 FOC), 假如 $F = \nabla f$, 有:
 - f 的 Hessian 矩阵是 F 的 Jacobian 矩阵, 他们都是对称矩阵

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_n} \end{pmatrix}$$

1.1 零点求解方法

第四章 介绍了五种方法

- **Bisection**: 二分法, $x_{n+1} = \frac{x_n + x_{n-1}}{2}$
- Secant: 割线法, $x_{n+1} = x$ axis $\cap line(x_n, x_{n-1})$
- False Position: 假位法, 是割线法的变种, 每次都在 x_n 和 x_{n-1} 之间取一个点与 x_{n+1} 构成新区间, 保证区间 今根
- Newton Raphson: 牛顿法, $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- Gradient Descent: 梯度下降法, $x_{n+1} = x_n t\nabla f(x_n)$, 其中 $t = \arg\min_{t>0} f(x_n t\nabla f(x_n))$

1.2 极值点判定

规范方法: 判断 Hessian 矩阵的正定性, 本课程用顺序主子式法1来判断会比较快

H_f	H_i	x^*
正定	$H_i > 0$	极小值
负定	$H_i < 0$	极大值
不定	$H_i \neq 0$,但不属于以上两种	鞍点

实用技巧:

¹正小负大

- 正定矩阵的特征值都是正数, 负定矩阵的特征值都是负数
- 先代入临界点排除明显非极值情况
- 结合 f 的凹凸性判断, 如果严格凸或者严格凹, 则临界点一定是极小值或者极大值

2. 无约束优化与约束优化

约束优化是 第五章 的内容, 即在可微函数组 g(x)=0 上求 f 的极值, 沟通二者的桥梁是拉格拉日乘数法与 NDCO

$$L(x,\lambda) = f(x) + \lambda^{\top} g(x)$$

然后 (x^*, λ^*) 是一阶条件 $\nabla L(x^*, \lambda^*) = 0$ 的解, 我们似乎回到了无约束优化

2.1 非退化约束条件

NDCQ(非退化约束条件)是让拉格朗日乘数法成立的条件

定理 8.1

假设x 是 k 维向量, λ 是 m 维向量, 则 L 是 k+m 维向量, 考虑

$$Dg(x^*) = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x_1} & \cdots & \frac{\partial g_m}{\partial x_k} \end{pmatrix}$$

NDCQ: $\operatorname{rank}(Dg(x^*)) = m$

- 假如 NDCQ 得到满足,则 (x^*, λ^*) 可能是极值点
- 假如不满足, 即约束 g 是退化的, 此时可能仍然存在极值点, 但无法由拉格朗日乘数法得到

\odot

2.2 加边海色矩阵

加边海色矩阵是判断有约束优化问题极值点的工具:

$$\bar{H} = \begin{pmatrix} 0 & Dg(x^*) \\ Dg(x^*)^\top & H_f(x^*) \end{pmatrix}$$

加边后显然不正定了, 判断方法2也有变化:

\bar{H}	$H_i, i \in [2m+1, n+m]$	x^*
	$\operatorname{sgn} H_i = (-1)^m$	极小值
	$\operatorname{sgn} H_i = (-1)^{i-m}$	极大值
	$\operatorname{sgn} H_i \neq 0$,但不属于以上两种	鞍点

笔记 对加边海色矩阵的一个直观理解 3 :假如 f 在 g=0 这个 n-m 维的嵌入 \mathbb{R}^n 的流形上表现出了类似正定负定的性质,那么可以判断是极值还是鞍点,比如我们在 3 维空间中的球面上找极值.

做题时如果从几何解释出发,可以避免犯错

²判断方法和完整证明参考Northwestern University 的笔记. 实际上, 课堂上只讲了 m=1 的情形, 在此情形下极小值对应主子式恒负, 极大值对 应符号交替, 这样就不对称, 和无约束优化问题的海色矩阵对比起来显得不自然. 经济学中最简单的 m=1, n=2 的情形, 自然只需看 $|\bar{H}|$ 的符号, 正大负小

³这个直观理解来自于 CMU 的笔记

3. 外生变量

第六章 的内容探究外生变量的作用. 一是探究外生变量 (作为经济模型的输入) 对内生变量 (经济模型的输出) 的影响 (偏导数), 二是外生变量对最优值函数 $V = \max f$ 的影响 (包络定理).

打个比方, 企业的生产存在外部因素 (劳动力价格, 资本价格等), 决策得到的产量, 最终的成本/收益. 这三者分别对应外生变量, 内生变量, 最优值函数.

3.1 对内生变量的影响

无论无约束还是有约束,对于多元函数 f (或 $L = f + \lambda q$),和方程组 $F = \nabla f = 0$,对外生变量 α 求导有:

$$\sum_{i=1}^{n} \frac{\partial F_k}{\partial x_i} \frac{\partial x_i}{\partial \alpha} + \frac{\partial F_k}{\partial \alpha} = 0$$

整理得:

$$J\frac{\partial x^*}{\partial \alpha} + \frac{\partial F}{\partial \alpha} = 0$$

其中 J 是 f 的 Hessian 矩阵 (Bordered Hessian 矩阵), 也是 F 的 Jacobian 矩阵. 规定 J_i 是用 F 取代原本第 i 列后的矩阵. 利用隐函数定理和克拉默法则, 我们可以得到:

$$\frac{\partial x_i^*}{\partial \alpha} = -\frac{\det J_i}{\det J}$$

3.1 对最优值函数的影响

外生变量对最优值函数的影响, 包含直接影响和通过内生变量作用的间接影响两部分. 而包络定理揭示了后者在最优解处趋于零 (因为 $\nabla f = 0$), 因此只需考虑前者.

$$\frac{\partial V(a)}{\partial a} = \underbrace{\frac{\partial f}{\partial a}}_{\text{$\underline{1}$ $\Bar{k} \& \Bar{m}$}} + \underbrace{\nabla_x f \cdot \frac{\partial x^*(a)}{\partial a}}_{\text{$\|\Bar{k} \& \Bar{m}$}}$$

形象的经济学理解比如 Shephard's Lemma: 当要素的价格上涨 1 单位时, 最小成本的边际增加量正好等于厂商对该要素的使用量.

期末部分