Bacharelado em Sistemas de Informação

BANCOS DE DADOS

Aula 7

Modelo Relacional

Modelo Relacional

- ✓ Modelo Entidade-Relacionamento = conceitual → não há preocupação com como e onde será a implementação
- ✓ Modelo Relacional = físico → transformação dos conceitos presentes no DER em tabelas físicas que serão implementadas em SGBDs relacionais.
- ✓ SGBDR = SGBD Relacional → constrói o BD com base no paradigma relacional → tabelas se relacionam por meio de colunas em comum.

Modelo Relacional

✓ Como transformar DER em tabelas para obter o Modelo Relacional (modelo físico)

✓ Aspectos conceituais e nomenclaturas do Modelo Relacional resultante

✓ Conjunto de entidades → tabela com número de colunas = número de atributos.

✓ Entidades fortes:

- Se E é um conjunto de entidades fortes com atributos $a_1, a_2, ..., a_n$.
- E será representada por uma tabela chamada E com n
 colunas distintas, cada uma correspondendo a um
 atributo de E.
- Cada linha da tabela corresponde a uma entidade do conjunto de entidades *E*.

Exemplo:

número-conta	saldo
900	678,00
556	458,98
647	561,89
801	654,12
SISTEMAS	ÇÃO

✓ Entidades fracas:

- Se A é um conjunto de entidades <u>fracas</u> com atributos
 a₁,a₂, ..., a_r.
- Se B é um conjunto de entidades <u>fortes</u> do qual A é dependente.
- Se a chave primária B é constituída de atributos $b_1, b_2, ..., b_s$.
- A será representada por uma tabela chamada A com uma coluna para cada tributo do conjunto

$$\{a_1,a_2,...,a_r\} \cup \{b_1,b_2,...,b_s\}$$

Exemplo:

✓ Conjunto de relacionamentos → depende da cardinalidade máxima e do tipo de entidade.

✓ Relacionamentos "um para vários" – entidades fortes:

✓ Relacionamentos vários para um – entidades fortes:

chave estrangeira

<u>CPF</u>	nome	rua	Cidade	número- conta
123.456.765-55	João	Av. Rio Branco 67	Vera Cruz	900
544.443.965-66	José	R. Maria José 89	Ourinhos	556
975.365.876-11	Antonio	Av. das Rosas 987	Marília	647
120.332.436-23	Maria	Av. Tiradentes 43	Marília	801

✓ Relacionamentos um para um – entidades fortes: escolhe-se a melhor chave para ser chave estrangeira

chave estrangeira

CLIENTE

<u>CPF</u>	nome	rua	Cidade	número- conta
123.456.765-55	João	Av. Rio Branco 67	Vera Cruz	900
544.443.965-66	José	R. Maria José 89	Ourinhos	556
975.365.876-11	Antonio	Av. das Rosas 987	Marília	647
120.332.436-23	Maria	Av. Tiradentes 43	Marília	801

✓ Relacionamentos vários para vários:

- Se \mathbb{R} é um conjunto de relacionamentos envolvendo os conjuntos de entidades $E_1, E_2, ..., E_n$.
- Se (E_i) é o conjunto de atributos que forma a chave primária para o conjunto de entidades E_i
- Se R possui atributos descritivos chamados {r₁,r₂, ...,
 r_m}, R será representado por uma tabela com o seguinte conjunto de atributos:

$$\bigcup_{i=1}^n$$
 chave primária (E_i) U { $r_1, r_2, ..., r_m$ }

<u>CPF</u>	<u>número-</u> <u>conta</u>	data
123.456.765-55	900	01/02/99
544.443.965-66	556	08/02/00
975.365.876-11	647	30/03/02
120.332.436-23	801	05/11/99

<u>CPF</u>	<u>número-</u> <u>conta</u>	data
123.456.765-55	900	01/02/99
544.443.965-66	556	08/02/00
975.365.876-11	647	30/03/02
120.332.436-23	801	05/11/99

- ✓ Generalização e Especialização:
 - Trata-se de forma semelhante a relacionamento um-para-um, considerando:
 - chave primária da entidade superior torna-se a chave primária de todas entidades inferiores
 - Acrescenta-se <u>atributo na tabela resultante da</u> entidade superior para distinguir entidade inferior.

✓ Agregação:

- A agregação em geral é o resultado de um relacionamento com cardinalidade vários para vários:
 - o relacionamento é transformado em uma tabela, contendo: chaves primárias dos conjuntos de entidades envolvidos e os atributos descritivos do relacionamento.
- Se agregação possui cardinalidade 1:N ou 1:1, segue as regras vistas anteriormente.

✓ Agregação:

<u>codigof</u>	nome
10	Ana Júlia
20	João Pedro

- Relacionamentos com grau maior que 2:
 - relacionamento é transformado em uma entidade. Nova entidade é ligada através de relacionamento binário a cada entidade que participa do relacionamento no DER.
 - aplicam-se as regras anteriores

Relacionamentos com grau maior que 2:

✓ Relacionamentos com grau maior que 2: DISTRIBUIDOR

✓ Relacionamentos com grau maior que 2: DISTRIBUIDOR

Cod d	Cod c	Cod p	data
1	2	2	15/01/2005
2	1	1	25/02/2006
	CTEMAC DE		

Exercícios

Apresente o DER e o Modelo Relacional (tabelas resultantes) para as situações abaixo.

- 1) Em uma biblioteca há vários tipos de materiais (livros, revistas e audiovisual). Para os livros são armazenados a editora, ano de publicação e o número da edição; as revistas têm número, volume e data; os audiovisuais têm o nome do diretor e o tempo de duração. Um cliente pode retirar vários materiais e um material pode ser retirado por vários clientes. Para toda retirada devem ser armazenadas a data de retirada e a data de devolução. Um livro pode ter vários autores, que precisam ser armazenados. Os materiais devolvidos com atraso têm uma multa. Sobre a multa, devem ser armazenados a quantidade de dias e o valor.
- 2) Em uma construtora, os funcionários são classificados como administrativos ou engenheiros. Para todos os funcionários devem ser armazenados: nome, endereço e telefone. Para os engenheiros deve ser armazenado o número do CREA, o ano de formatura e a especialidade. Um engenheiro pode gerenciar vários projetos, sendo que cada projeto é gerenciado obrigatória e unicamente por um engenheiro. Os projetos são numerados sequencialmente para cada um dos engenheiros. Por exemplo: há os projetos 1,2,3 para o engenheiro Roberto; também há os projetos 1 e 2 para o engenheiro João. Um projeto pode envolver vários funcionários e um funcionário pode estar envolvido em vários projetos ao mesmo tempo. Devem ser armazenadas as datas de início e fim do envolvimento do funcionário com cada projeto.

Aspectos conceituais e nomenclaturas

✓ Modelo Relacional:

 Banco de Dados: coleção de relações → cada relação tem um nome único.

 Informalmente, uma relação é semelhante a uma tabela de valores.

Modelo Relacional

Modelo Relacional - Domínios

- ✓ Domínio → conjunto de valores atômicos cada valor é indivisível no que diz respeito ao modelo relacional.
- ✓ Em geral, o domínio é designado como tipo de dado
 - especificam valores possíveis
 - Exemplo:
 - número_do_cliente: conjunto de inteiros com quatro algarismos → números de 1 a 9999
 - nome_do_cliente: conjunto de caracteres alfanuméricos com 40 posições → formato String(50)
 - número_do_aluno: 2 letras indicando o curso + 3 dígitos → formato AA-999

Modelo Relacional - Relação

Definição formal de RELAÇÃO: Uma relação r(R) é uma relação matemática de grau n nos domínios dom(A₁), dom(A₂), ..., dom(A_n), que é um subconjunto de um produto cartesiano dos domínios que definem R

```
dom(A<sub>1</sub>): domínio do atributo a<sub>1</sub>
```

 $dom(A_2)$: domínio do atributo a_2

dom(A_n): domínio do atributo a_n

Produto Cartesiano = $dom(A_1) \times dom(A_2) \times ... \times dom(A_n)$:

- ightharpoonup Relação m R = subconjunto de dom($m A_1$) X dom($m A_2$) X ... X dom($m A_n$)
- ⇒Grau (ou arity) de R = n (número de atributos do esquema da relação)

Modelo Relacional - Relação

EXEMPLO

 $dom(A_1)$: domínio de número = conjunto de todos os números de conta

dom(A₂): domínio de agência = conjunto de todos os nomes de agência

dom(A₃): domínio de valor = conjunto de todos os valores possíveis

Produto Cartesiano = $dom(A_1) \times dom(A_2) \times dom(A_3)$

Número	Agência	Valor
2 5	Centro	236,99
6 7 8	V ila V e rd e	1598,70
4 3 3	Servidor	64,81
6 7	M a tã o	45,23
9 7 8	Nova Cidade	101,00

Grau de Conta = 3

Modelo Relacional - Acesso aos dados

- ✓ Acesso aos dados
- ✓ chamando de t a primeira tupla da relação:
 - t [número] = valor de t no atributo número
 - t[1] = valor de t no primeiro atributo (número)
 - t [agência] = t[2] = valor de t no atributo segundo atributo (agência).
 - E assim por diante...

Esquema de um BD

- ✓ Esquema de um Banco de Dados Relacional: conjunto de Esquemas de Relações EBD = {ER₁, ER₂, ..., ERn } e um conjunto de restrições de integridade
- ✓ Banco de Dados Relacional: conjunto de Relações BD = {R₁, R₂, ..., Rₙ}
 - cada R_i é uma instância de ER_i
 - cada R_i satisfaz todas as restrições de integridade.

- ✓ Esquema de relação R de grau n: R(A₁,A₂,...A_n)
- ✓ Tupla t em uma relação r(R): $t=<v_1,v_2,...,v_n>$, onde v_i é o o valor correspondente ao atributo A_i .

CLIENTE

<u>CPF</u>	nome
111.111.111	Eduardo
222.222.222	Lurdes
333.333.333	Mariana
444.444.444	João

Cliente(<u>CPF</u>, nome)

Transacao(<u>número conta</u>, <u>numero transação</u>, data, valor)

✓ Relacionamentos "um para vários" – entidades fortes:

Conta (número conta, saldo, CPF)

✓ Esquema do Banco de Dados Relacional:

Movimentação:

Cliente(<u>CPF</u>, nome)

Transacao(<u>número conta</u>, <u>numero transação</u>, data, valor)

Conta (número conta, saldo, CPF)

✓ Esquema do Banco de Dados Relacional:

Movimentação:

Nome do Banco de Dados

Cliente(<u>CPF</u>, nome)

Transacao(número conta, numero transação, data, valor)

Conta (número conta, saldo, CPF)

Esquema s das relações do BD

Restrições do Modelo Relacional

- ✓ Regras a respeito dos valores que podem ser armazenados nas relações
 - Garantem que mudanças feitas no BD por usuários não resultem em inconsistência dos dados.
 - Valores devem ser sempre satisfeitos em quaisquer das relações R de um banco de dados BD.

✓ Três categorias:

- Restrições inerentes baseadas em modelo.
 - Exemplo: relação não pode ter tuplas repetidas.
- Restrições baseadas em esquemas: que podem ser expressas diretamente nos esquemas do modelo de dados.
 - Exemplo: intervalo de um atributo, chave estrangeira.
- Restrições baseadas em aplicação: devem ser expressas e impostas nos programas de aplicação.
 - Exemplo: tuplas que um usuário pode acessar em uma relação.

Modelo Relacional - Restrições

- 1. Restrições de domínio
- 2. Restrições de chave
- 3. Restrições de valores nulos
- 4. Restrições de integridade de entidade
- 5. Restrições de integridade referencial

1. Restrições de domínio

 Dentro de cada tupla, o valor de cada atributo A deve ser um valor atômico do domínio dom(A).

2. Restrições de chave

 Duas tuplas distintas não podem ter valores idênticos para todos os atributos da chave primária e superchaves (unicidade de chave).

3. Restrições de valores nulos

 Especifica que um atributo da relação não pode ser nulo. Por exemplo: NOME is not null.

4. Restrições de integridade de entidade

Nenhum valor de chave primária pode ser nulo.

5. Restrições de integridade referencial

- o conceito de integridade referencial depende do conceito de chave estrangeira
- Chave estrangeira:
 - Dois conjuntos de atributos C e D <u>compatíveis</u> → existe uma ordem entre os atributos de ambos os domínios tal que o primeiro atributo de C tenha o mesmo domínio do primeiro atributo de D, o mesmo valendo para os segundos atributos, e assim por diante.
 - chave estrangeira → conjunto de atributos D ⊆ R1 que não é chave em R1, é compatível com outro conjunto de atributos C ⊆ Rk que é a chave primária da relação Rk.

- ✓ chave estrangeira → conjunto de atributos

 D ⊆ R1 que não é chave na relação R1, mas é compatível com a chave primária de uma outra relação.
- ✓ A restrição de integridade referencial determina que o valor dos atributos D numa tupla qualquer t(D) da relação R1 onde D não é chave:
 - ou é igual ao valor t(C) na relação Rk onde C
 é chave
 - -ou é *nulo*.

– Exemplo 1:

Professor (número-professor, nome, data-admissão)

Disciplina (código, nome-disc, prof-responsável)

Professor

número- professor	nome	data- admissão
<u>.</u> 213	Antônio	02/02/1999
400	José	02/04/2000
67	Joana	05/01/1998
43	João	10/11/1997
25	Maria	14/11/1996

Disciplina

código	nome-disc	prof- responsável	
CC876	Banco Dados	43	
CC566	Linguagem I	NULL	
AS654	Algoritmos	43	
AS543	Compiladores	400	

6. Outros tipos de restrições

- Restrições de integridade semântica
 - Exemplos:
 - salário do empregado deve ser menor que o do chefe
 - Número máximo de horas-extras é 35.
 - Feitas através dos programas de aplicação ou da linguagem de especificação de restrição (gatilhos e asserções)
- Restrições de dependência funcional
 - Estabelece relacionamento funcional entre dois conjuntos de atributos X e Y, sendo que X determina o valor de Y em todos os estados da relação.
 - Exemplo: o número 335432 determina sempre o nome da aluna Júlia Neme Delgado.

Exercícios

- 1. Defina:
 - Tupla
 - Domínio de atributo
 - Relação
- 2.O que é grau de uma relação? Dê um exemplo de relação com grau 4.
- 3. Por que uma relação é um subconjunto do produto cartesiano dos domínios de seus atributos?
- 4. Dado o esquema do BD Banco abaixo responda as questões:

Cliente (<u>codcli</u>, numcli, enderecocli, CPF) Conta(<u>numconta</u>, tipoconta, codcli,codag) Agencia(<u>codag</u>, nomeag,endecoag)

- a) Defina domínios para os atributos de Conta
- b) Dê um exemplo de instanciação da relação Agencia que fere a restrição de chave
- c) Dê 3 exemplos de superchave para a relação Conta
- d) Dê um exemplo e aplicação da restrição de valores nulos na relação Conta
- e) Dê um exemplo que fere a restrição de integridade da entidade na relação Conta
- f) Dê dois exemplos de restrição de integridade referencial no esquema do BD fornecido
- g) Dê um exemplo de restrição de integridade semântica

Exercícios

- 5. Dada a instância da relação Cliente em um dado momento, responda as questões considerando que t_i é a iésima tupla da relação.
 - a) Qual é o valor de t₂[nomecli]?
 - b) Qual é o valor de t₃ [3] ?
 - c) Qual é o valor de t₄?
 - d) Qual é o valor de $t_5[2]$?

Codcli	Nomecli	Enderecocli	CPF
10	Marcos	AV. ABC 34	40000
20	Fabio	Rua Bahia 567	50000
30	Rogerio	Av Rio Branco 351	60000
40	Vanessa	R Sergipe 40	70000
40	Aline	R João Silva 67	80000

6. Apresente o modelo relacional (esquema das relações) para os exercícios da aula 6 e para o Sistema da Fábrica de Confecções e da Emissora de Rádio, resolvidos anteriormente.

Exercícios

Apresente o DER e o Modelo Relacional para as situações abaixo.

- 1) Em um zoológico cada animal pode consumir determinados tipos de alimentos, sendo que um determinado alimento pode fazer parte da refeição de diversos animais. As informações das refeições diárias (quantidade e horário) devem ser armazenadas. Uma refeição tem um único funcionário responsável, sendo que um funcionário é responsável por várias refeições.
- 2) Em uma seguradora de automóveis, um cliente tem pelo menos um veículo e um veículo pertence a um único cliente. Os veículos são numerados sequencialmente para cada cliente. Cada veículo possui um número de acidentes associados a ele, devendo ser armazenados a data, o local e uma descrição do acidente.
- 3) Em um hospital, um paciente pode realizar consultas com vários médicos. Cada consulta pode ter vários exames realizados. Devem ser armazenados os dados da consulta (data, horário e motivo) e os dados dos exames (descrição e resultado). Cada consulta pode resultar também na indicação de vários medicamentos a serem ministrados ao paciente. Não é obrigatória a indicação de medicamentos, mas se ela existir, devem ser armazenadas a quantidade e a forma de consumo (periodicidade). Os exames e os medicamentos são numerados sequencialmente para cada consulta.

Bacharelado em Sistemas de Informação

BANCOS DE DADOS

Aula 7

Modelo Relacional

