Estructura de una neurona

Dado que en general trabajamos con vectores, podemos expresar la combinación lineal así:

$$\mathbf{a} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

Donde:

$$x = [1, x1, x2, ..., xn]^T$$

 $w = [w0, w1, w2, ..., wn]^T$

$$z = f(a)$$

Depende de la tarea. Por ejemplo, para la regresión ayuda reLu, para la clasificación ayuda sigmoide.

¿Para qué sirve una neurona?

Una neurona se puede entrenar para resolver un sistema de ecuaciones de **n** variables; donde **n** corresponde al número de entradas de la neurona. La diferencia entre una neurona y un modelo simple de regresión lineal está en la función de activación —que no está presente en la regresión lineal—.

Ejemplo: Predecir el precio de un carro a partir de su año de construcción, su kilometraje y el índice MMR.

La tarea ahora es entrenar la neurona. Es decir, encontrar wO, wI, w2 y w3 de manera que el error en la estimación sea mínimo

¿Para qué sirve una neurona?

Para entrenar la neurona necesitamos un conjunto de datos de entrenamiento —en este ejemplo estamos en el contexto de machine learning supervisado.

año	kilometraje	índice MMR	precio
2015	16,639	20,500	21,500 USD
2015	9,393	20,800	21,500 USD
2014	1,331	31,900	30,000 USD
2015	14,282	27,500	27,750 USD
2015	2,641	66,000	67,000 USD

El entrenamiento de la neurona usualmente se hace mediante el algoritmo de descenso de gradiente.

- Generar valores aleatorios para wO, wI, w2 y w3.
- Calcule el error.
- Derive la función de error en el punto actual, es decir en los valores actuales de wO, wI, w2 y w3
- Actualice los valores de wO, w1, w2 y w3 proponiendo nuevos valores en dirección de la derivada direccional que encontró en en paso anterior.
- Itere hasta que el criterio de salida se cumpla.

Note que hay hiperparámetros que se deben refinar. Ejemplo: taza de aprendizaje.

¿Para qué sirve una neurona?

Al ejecutar el algoritmo de descenso de gradiente, encontramos los valores para wO, wI, w2 y w3 y entonces podemos usar la neurona (entrenada) para predecir el valor de un carro a partir de sus características.

- Los valores de las variables independientes deben racionalizarse para que descenso gradiente funcione correctamente.
- Los valores de a tienen sentido como predicciones (no son necesariamente buenas, pero tienen sentido dado que están en el orden de magnitud correcto).
- El resultado luego de pasar la función de activación tiene sentido como predicción si se usa la función de activación apropiada.

Estructura de red neuronal Arquitectura en capas (una de las más utilizadas)

Entrenamiento de una red neuronal

Se usa el algoritmo de descenso de gradiente estocástico donde:

- Primero se calculan los zetas en un paso "forward".
- Luego se calculan los gradientes propagándolos de atrás hacia adelante. i.e., back-propagation

Entrenamiento de una red neuronal

Se usa el algoritmo de descenso de gradiente estocástico donde:

- Primero se calculan los zetas en un paso "forward".
- Luego se calculan los gradientes propagándolos de atrás hacia adelante. i.e., back-propagation

