Neuromorphic Readout for Homogeneous Hadron Calorimeters

Enrico Lupi¹², Tommaso Dorigo¹³, Abhijit Das⁴, Abhishek⁵, Alexander Schilling⁶, Anders Mikkelsen⁴, Andrea De Vita^{1 2}, Fredrik Sandin³, Jan Kieseler⁷, Joseph Willmore¹, Max Aehle⁶, Muhammad Awais^{1 3}, Nicholas R. Gauger⁶, Ralf Keidel⁶, Tobias Kortus⁶, Xuan-Tung Nguyen^{1 6}

¹ Istituto Nazionale Fisica Nucleare, Sezione di Padova, Italy - ² University of Padova, Italy ³ Luleå University of Technology, Sweden - ⁴ Lund University, Sweden - ⁵ National Institute of Science and Research, India ⁶ University of Kaiserslautern-Landau, Germany - ⁷ Karlsruhe Institute of Technology, Germany

Objective

Investigating the readout of light signals from hadronic showers in a homogeneous calorimeter by a network of nanowires.

We aim to offer:

- fast, energy-efficient local computation
- generation of informative high-level primitives using neuromorphic computing.

Neuromorphic Computing

Computing approach that mimics the structure and function of the human brain using artificial neurons and synapses. [1]

Studies new **software** and **hardware** solutions to achieve:

- higher speed
- significantly lower energy consumption compared to traditional methods. [2]

Light Signals

Photons are collected for a total of 20 ns and the signal is discretized into 100 bins. Here is how one example event looks like:

Successive frames that show how the photons produced in the first two interactions in the event above propagate inside the detector.

Outlook

- First ever attempt to use neuromorphic solutions for calorimetry readout!
- Development of multi-nanowire photodetector for physical readout [3]

- Employ Spiking Neural Network for:
 - precise measurement of shower energy
 - particle species identification

References: [1] C. Mead. (1990). "Neuromorphic electronic systems." Proceedings of the IEEE, doi:10.1109/5.58356

- "Neuromorphic computing" available at www.humanbrainproject.eu. URL consulted on Sept. 19, 2024
- - David Winge et al. (2023). "Artificial nanophotonic neuron with internal memory for biologically inspired and reservoir network computing." Neuromorph. Comput. Eng. 3 034011, doi:10.1088/2634-4386/acf684

Conference Indico Page