Návrh analogových integrovaných obvodů Ústav mikroelektroniky	Jméno Tomáš Vavrinec		ID 240893
FEKT VUT v Brně	Ročník	Obor MET	Skupina
Název zadání 1. Proudová zrcadla			Č. úlohy 2

ZADÁNÍ ÚLOHY

Simulacemi zjistěte tyto parametry tranzistorů NMOS a PMOS:

1. Navrhněte kaskodové proudové zrcadlo na výstupu proudové reference podle obr. 1. (schéma z LTspice je součástí zadání)

Obr. 1: Proudový zdroj s kaskádovým PZ

- (a) Vypočítejte rozměry tranzistorů M2 M5, výstupní odpor a výstupní rozsah proudového zrcadla (P výpočty ve formátu obecná rovnice, dosazení, výsledek).
- (b) Ověřte správný výpočet pomocí simulace .op (P schéma se zvýrazněnými U/I dle předlohy + printscreen pracovních bodů M2-M5 ze Spice Output Log)
- (c) Simulací .dc zjistěte výstupní odpor a ověřte výstupní rozsah (P křivka s kurzory + viditelnou tabulkou pozic kurzorů)
- 2. Navrhněte (popř. modifikované) Wilsonovo proudové zrcadlo s tranzistory NMOS s výstupním proudem $20\mu A$. Vstupní je $10\mu A$.
 - Vypočítejte parametry všech součástek, výstupní odpor a výstupní rozsah proudového zrcadla (P výpočty ve formátu obecná rovnice, dosazení, výsledek).
 - \bullet Ověřte správný výpočet pomocí simulace .op (P schéma se zvýrazněnými U/I + printscreen pracovní bodů tranzistorů ze Spice Output Log)
 - Simulací .dc zjistěte výstupní odpor a ověřte výstupní rozsah (P křivka s kurzory + viditelnou tabulkou pozic kurzorů)

1 Vypracování

1.1 Kaskodové proudové zrcadlo

Jako první určíme rozměry tranzistoru zrcadla. Volím délku kanálu $L=2[\mu m]$ jako kompromis mezi velikostí a parametrem λ , která pro $L=2\mu m$ nabývá hodnoty $\lambda=0.0787698[V^{-1}]$. Dále musíme zvolit napětí U_{OV} , které volím s ohledem na rozsah napájecího napětí $U_{OV}=0.2[V]$ Z toho následně můžeme určit šířku kanálu W, tranzistorů M2 a M3 jako:

$$W_{M2} = W_{M3} = L \cdot \frac{2 \cdot I_1}{KP \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 10\mu}{50\mu \cdot 0.2^2} = 20[\mu m]$$

Z toho snadno určíme W_{M4} a W_5 jako:

$$W_{M4} = W_{M5} = W_{M2} \cdot \frac{I_2}{I_1} = 20\mu \cdot \frac{20\mu}{10\mu} = 40[\mu m]$$

Výstupní odpor pak můžeme určit jako:

$$r_{out} = g_{m-M4} \cdot r_{DS-M4} \cdot r_{DS-M5} = g_{m-M4} \cdot \frac{1}{\lambda_{M4} \cdot I_{M4}} \cdot \frac{1}{\lambda_{M5} \cdot I_{M5}} = 73.2\mu \cdot \frac{1}{0.0787698 \cdot 20\mu} \cdot \frac{1}{0.0787698 \cdot 20\mu} = 29.5[M\Omega]$$

A výstupní rozsah jako:

$$U_{out} = U_{CC} - (U_{OV-M5} + U_{OV-M4} + U_{TH-M4}) = 1.8 - (0.2 + 0.2 + 0.427) = 0.97[V]$$

Obr. 2: zobrazení napětí a proudu ve schématu

--- BSIM3 MOSFETS --m1 m2 mЗ m5 Name: m4pchpchModel: nch pch pch 1.00e-05 -1.00e-05 -1.00e-05 -2.00e-05 -2.00e-05 Id: 5.24e-01 -5.90e-01 -5.90e-01 -5.94e-01 -5.90e-01 Vgs: Vds: 4.21e-01 -5.90e-01 -5.90e-01 -2.15e-01 -5.85e-01 Vbs: -2.00e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 Vth: 4.45e-01 -4.04e-01 -4.04e-01 -4.06e-01 -4.04e-01 8.14e-02 -1.57e-01 -1.57e-01 -1.58e-01 Vdsat: -1.60e-01 1.01e-04 Gm: 1.86e-04 1.01e-04 1.95e-04 2.02e-04 3.59e-07 8.32e-07 8.32e-07 7.21e-06 1.67e-06 Gds: Gmb 4.91e-05 3.19e-05 3.19e-05 6.23e-05 6.41e-05 Cbd: 0.00e+000.00e+000.00e+000.00e+000.00e+00Cbs: 0.00e+000.00e+000.00e+000.00e+000.00e+001.76e-14 1.37e-14 1.37e-14 2.74e-14 2.74e-14 Cqsov: 1.38e-14 2.75e-14 Cgdov: 1.74e-14 1.38e-14 2.75e-14 Cqbov: 1.98e-18 1.96e-18 1.96e-18 1.96e-18 1.96e-18 dQqdVqb: 3.50e-13 2.94e-13 2.94e-13 5.98e-13 5.89e-13 dQgdVdb: -1.76e-14 -1.33e-14 -2.66e-14 -1.33e-14 -3.66e-14 dQqdVsb: -3.04e-13 -2.69e-13 -2.69e-13 -5.40e-13 -5.37e-13 dQddVgb: -1.43e-13 -1.23e-13 -1.23e-13 -2.54e-13 -2.46e-13 dQddVdb: 1.76e-14 1.35e-14 1.35e-14 3.57e-14 2.71e-14 1.45e-13 dQddVsb: 1.62e-13 1.45e-13 2.92e-13 2.91e-13 dQbdVgb: -6.42e-14 -4.81e-14 -4.81e-14 -8.93e-14 -9.59e-14 dQbdVdb: -1.15e-16 -1.34e-17 -1.34e-17 -7.21e-15 -3.04e-17 dQbdVsb: -3.70e-14 -3.53e-14 -7.11e-14 -3.53e-14 -7.25e-14

Obr. 3: Pracovní body jednotlivých tranzistorů

Z grafu 5 můžeme odečíst pokles hodnoty proudu na obou stranách pracovního rozsahu a i přímo jejich změny $\Delta I=14.14[nA]$ při změně napětí $\Delta U=970.7[mV]$. Výstupní odpor tak můžeme určit jako:

$$r_{out} = \frac{\Delta U}{\Delta I} = \frac{970.7m}{14.14n} = 68.2[M\Omega]$$

Tato hodnota je cca poloviční ve srovnání s výpočtem, původně jsem předpokládal, že mám špatné hodnoty λ , ale ani po kontrole a opravě jsem nedošel k výsledkům podobným simulaci.

Výstupní rozsah odpovídá naproti tomu výpočtu velmi přesně a na průběhu je i vidět dvě místa, kde dochází ke změnám výstupního odporu. Nejdřív menší změna hned za koncem rozsahu, když začne M4 přecházet do lineárního režimu a následně větší změna, když začne vstupovat do lineárního režimu i M5.

Obr. 4: Simulovaná závislost výstupního proudu na výstupním napětí

Obr. 5: Simulovaná závislost výstupního proudu na výstupním napětí v detailu

1.2 Wilsonovo proudové zrcadlo

Jako první určíme rozměry tranzistoru zrcadla. Volím délku kanálu $L=2[\mu m]$ jako kompromis mezi velikostí a parametrem λ , která pro $L=2\mu m$ nabývá hodnoty $\lambda=0.0441692[V^{-1}]$. Dále musíme zvolit napětí U_{OV} , které volím s ohledem na rozsah napájecího napětí $U_{OV}=0.2[V]$ Z toho následně můžeme určit šířku kanálu W, tranzistorů M1 jako:

$$W_{M1} = L \cdot \frac{2 \cdot I_1}{KP \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 10\mu}{200\mu 0.2^2} = 5[\mu m]$$

Z toho snadno určíme W_{M4} a W_5 jako:

$$W_{M2} = W_{M3} = W_{M1} \cdot \frac{I_2}{I_1} = 5\mu \cdot \frac{20\mu}{10\mu} = 10[\mu m]$$

Při určování hodnoty odporu nastavujícího proud I_1 musíme vzít v potas bulk efekt tranzistoru a určíme jako:

$$R = \frac{V_{CC} - (U_{TH-M2} + U_{OV-M2} + U_{TH-M3} + U_{OV-M3})}{I_1} = \frac{1.8 - (0.384 + 0.2 + 0.541 + 2)}{10\mu} = 47.4[k\Omega]$$

Výstupní rozsah můžeme určit jako:

 $U_{out} = U_{CC} - (U_{TH-M2} + U_{OV-M2} + U_{OV-M3}) = 1.8 - (0.363 + 0.2 + 0.2) = 1.037[V]$ Následně můžeme určit výstupní odpor jako:

$$R_{out} = r_{ds3} \left[1 + g_{m1} \cdot \frac{r_{ds1} \cdot R}{r_{ds1} + R} \right] = \frac{1}{\lambda \cdot I_2} \left[1 + g_{m1} \cdot \frac{\frac{1}{\lambda \cdot I_1} \cdot R}{\frac{1}{\lambda \cdot I_1} + R} \right]$$

$$R_{out} = \frac{1}{0.0441692 \cdot 20\mu} \cdot \left[1 + 140.8\mu \cdot \frac{\frac{1}{0.0441692 \cdot 10\mu} \cdot 47.4k}{\frac{1}{0.0441692 \cdot 10\mu} + 47.4k} \right] = 8.532[M\Omega]$$

		BSIM3	MOSFETS
Name:	m1	m2	m3
Model:	nch	nch	nch
Id:	1.04e-05	2.01e-05	2.01e-05
Vgs:	5.81e-01	5.81e-01	7.27e-01
Vds:	1.31e+00	5.81e-01	1.22e+00
Vbs:	0.00e+00	0.00e+00	-5.81e-01
Vth:	3.80e-01	3.83e-01	5.46e-01
Vdsat:	1.56e-01	1.54e-01	1.59e-01
Gm:	1.07e-04	2.10e-04	2.15e-04
Gds:	4.70e-07	1.02e-06	3.43e-07
Gmb	1.53e-04	1.66e-04	4.92e-05
Cbd:	0.00e+00	0.00e+00	0.00e+00
Cbs:	0.00e+00	0.00e+00	0.00e+00
Cgsov:	3.50e-15	7.02e-15	7.02e-15
Cgdov:	3.48e-15	6.97e-15	6.97e-15
Cgbov:	1.98e-18	1.98e-18	1.98e-18
dQgdVgb:	7.51e-14	1.51e-13	1.47e-13
dQgdVdb:	-3.35e-15	-6.77e-15	-6.97e-15
dQgdVsb:	-1.24e-13	-1.85e-13	-1.32e-13
dQddVgb:	-3.11e-14	-6.23e-14	-6.22e-14
dQddVdb:	3.40e-15	6.88e-15	6.97e-15
dQddVsb:	6.89e-14	1.02e-13	6.88e-14
dQbdVgb:	-1.30e-14	-2.59e-14	-2.24e-14
dQbdVdb:	1.87e-17	-1.88e-17	-3.80e-18
dQbdVsb:	-1.77e-14	-2.59e-14	-1.25e-14

Obr. 6: Pracovní body jednotlivých tranzistorů

.op .dc VOUT 0 1.8 1m .inc cmos018.txt

Obr. 7: Výsledné schéma s vyznačenými proudy ${\cal I}_1$ a ${\cal I}_2$

Obr. 8: Závislost vstupního a výstupního proudu na výstupním napětí

Ze simulace můžeme určit výstupní odpor jako:

$$r_{out} = \frac{\Delta U}{\Delta I} = \frac{951.4m}{69.814474n} = 14.285[M\Omega]$$

Což je téměř dvojnásobek oproti výpočtu, výstupní rozsah naproti tomu sedí poměrně přesně.

2 Závěr

Podle zadání jsem provedl ruční návrh dvou proudových zrcadel (Kaskodové a Wilsonovo). Všechny tři zrcadla jsem následně odsimuloval a uvedl výsledky simulací.

Typ zrcadla	výpočet R_{out} [M Ω]	simulace R_{out} [M Ω]
Kaskodové	29.5	68.2
Wilsonovo	8.53	14.285

Tabulka 1: Porovnání výpočtu a simulace výstupního odporu zrcadel