ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГИМНАЗИЯ №3 Г. ГРОДНО»

Секция «Алгебра, геометрия и математический анализ»

«Некоторые частные виды диофантовых уравнений»

Автор работы:

Екимова Мария Денисовна, 8 класс ГУО «Гимназия №3 г. Гродно»,

Руководители работы:

Разумов Евгений Владимирович, учитель математики, магистр педагогических наук, ГУО «Гимназия №3 г. Гродно»

ОГЛАВЛЕНИЕ

Введение	.3
Исследовательская часть	
Заключение	
Список использованных источников	

ВВЕДЕНИЕ

Диофантовые уравнения и их решения и по сей день остаются актуальной темой. Умение решать такие уравнения позволяют найти остроумные и сравнительно простые решения казалось бы «неразрешимых» задач, овладеть новыми математическими навыками, рассмотреть некоторые методы решения неопределенных уравнений.

Самые разные задачи практического применения часто приводят к уравнениям, в которых неизвестные по своему смыслу могут принимать только целочисленные или натуральные значения. Уравнения в целых числах рассматривались еще в глубой древности.

Диофантовыми уравнениями называют алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых необходимо найти целые или рациональные решения, содержащие не менее двух переменных. Мы часто встречаемся с линейными диофантовыми уравнениями с двумя переменными. Но что же делать, если уравнение не линейное или содержит более двух переменных? Диофантовые уравнения такого рода и будут рассмотрены в данной работе.

Объект исследования: теория чисел.

Предмет исследования: диофантовые уравнения.

Цель исследования — найти целые решения некоторых нестандартных иррациональных уравнения.

Задачи:

1) Решить уравнение $(1+\sqrt{2}+\sqrt{3}+\sqrt{6})(x+y\sqrt{2}+z\sqrt{3}+d\sqrt{6})=2020$

в натуральных числах;

- 2) Решить уравнение $\sqrt[5]{x} + \sqrt[5]{y} = \sqrt[5]{2020^2}$ в натуральных числах;
- 3) Рассмотреть общий вид уравнения $\sqrt[5]{x} + \sqrt[5]{y} = c$, $c \in \mathbb{R}$.

Все полученные результаты являются доказанными и могут быть применены в дальнейших исследованиях.

ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

Рассмотрим следующее уравнение в натуральных числах:

$$(1+\sqrt{2}+\sqrt{3}+\sqrt{6})(x+y\sqrt{2}+z\sqrt{3}+d\sqrt{6})=2020.$$

Для решения данного уравнения получена

Лемма 1.

Пусть $d_1,d_2\not\in N$, причем $\sqrt{d_1},\sqrt{d_2},\sqrt{d_1d_2}\not\in N$. Если $a+b\sqrt{d_1}+c\sqrt{d_2}+d\sqrt{d_1d_2}=0$ $(a,b,c,d\in Q)$, то a=b=c=d=0.

Доказательство.

Так как $d_1 \in N$, $\sqrt{d_1} \notin N$, то $\sqrt{d_1} \notin Q$ (действительно, если $\sqrt{d_1} = \frac{m}{n}$, НОД(m,n) = 1, где $m,n \in N$, то $m^2 = d_1 n^2$; так как НОД(m,n) = 1, то НОД $(m^2,n^2) = 1$, причем m^2 делится на n^2 (поскольку $m^2 = d_1 n^2$), следовательно, $n^2 = 1$, n = 1, т.е. $\sqrt{d_1} = \frac{m}{n} = m \in N$ — противоречие). Аналогично $\sqrt{d_2}$, $\sqrt{d_1 d_2} \notin Q$.

Имеем

$$a + b\sqrt{d_1} = -\sqrt{d_2}(c + d\sqrt{d_1}), (a + b\sqrt{d_1})^2 = d_2(c + d\sqrt{d_1})^2, a^2 + b^2d_1 - d_2(c^2 + d^2d_1) = -\sqrt{d_1}(2cdd_2 - 2ab),$$

следовательно, $2cdd_2-2ab=0$ (поскольку $\sqrt{d_1}\not\in Q$), поэтому $a^2+b^2d_1-d_2(c^2+d^2d_1)=0$, значит $a^2+b^2d_1-d_2(c^2+d^2d_1)=-\sqrt{d_1}(2cdd_2-2ab)$, т.е. $\left(a-b\sqrt{d_1}\right)^2=d_2\left(c-d\sqrt{d_1}\right)^2$, $a-b\sqrt{d_1}=\pm\sqrt{d_2}\left(c-d\sqrt{d_1}\right)$.

Имеем

$$2a=\left(a+b\sqrt{d_1}
ight)+\left(a-b\sqrt{d_1}
ight)=-\sqrt{d_2}\left(c+d\sqrt{d_1}
ight)\pm\sqrt{d_2}\left(c-d\sqrt{d_1}
ight),$$
 т.е. $2a=-2c\sqrt{d_2}$ или $2a=-2d\sqrt{d_1d_2}.$

Если $2a=-2c\sqrt{d_2}$, то c=0 (ибо $\sqrt{d_2}\notin Q$), значит $a=-c\sqrt{d_2}=0$, $0=a+b\sqrt{d_1}=-\sqrt{d_2}\big(c+d\sqrt{d_1}\big),c+d\sqrt{d_1}=0$, поэтому c=d=0 (ибо $\sqrt{d_1}\notin Q$), т.е. a=b=c=d=0.

Если $2a=-2d\sqrt{d_1d_2}$, то d=0 (ибо $\sqrt{d_1d_2}\not\in Q$), значит $a=-d\sqrt{d_1d_2}=0$, $b\sqrt{d_1}+c\sqrt{d_2}=-(a+d\sqrt{d_1d_2})=0$, $(b\sqrt{d_1}+c\sqrt{d_2})\sqrt{d_1}=0$, $bd_1=-c\sqrt{d_1d_2}$, значит c=0 (ибо $\sqrt{d_1d_2}\not\in Q$), $bd_1=-c\sqrt{d_1d_2}=0$, $bd_1=0$, b=0, то есть a=b=c=d=0.

Лемма 1 доказана.

Согласно условию, имеем $(x+2y+3z+6t-2020)+(x+y+3z+3t)\sqrt{2}+(x+2y+z+2t)\sqrt{3}+(x+y+z+t)\sqrt{6}=0$. Так как $\sqrt{2},\sqrt{3},-\sqrt{2\cdot 3}\notin N$, то, согласно лемме 1, имеем:

x + 2y + 3z + 6t - 2020 = 0, x + y + 3z + 3t = 0, x + 2y + z + 2t = 0, x + y + z + t = 0.

Значит

$$(x + y + 3z + 3t) - (x + y + z + t) = 0, (x + 2y + z + 2t) - (x + y + z + t) = 0,$$

T.e. $z = -t, y = -t,$

значит 0 = x + y + z + t = x - t - t + t = 0, т. е. x = t. Поэтому t + 2(-t) + 3(-t) + 6t - 2020 = 0, t = 1010, x = t = 1010, y = z = -t = -1010.

Ответ: {(1010, -1010, -1010, 1010)}.

Рассмотрим следующее уравнение в натуральных числах:

$$\sqrt[5]{x} + \sqrt[5]{y} = \sqrt[5]{2020^2}.$$

Выведена и доказана

Лемма 2. Если $a \in Q$, $\sqrt[5]{a} \notin Q$, то многочлен $x^5 - a$ неприводим над Q, т.е. не представим в виде произведения двух многочленов положительных степеней с рациональными коэффициентами.

Доказательство.

Пусть $f(x) = x^5 - a$. Предположим $f(x) = f_1(x)f_2(x)$, где $f_1(x) = a_m x^m + \cdots + a_1 x + a_0$, $f_2(x) = b_n x^n + \cdots + b_1 x + b_0$ ($a_0, \dots, a_m, b_0, \dots, b_n \in Q$; $a_m b_n \neq 0$; $n \notin N$), тогда, $f(x) = f_1(x)f_2(x) = (a_m b_n)x^{m+n} + \cdots$, следовательно, $a_m b_n = 1$, m + n = 5.

Можно считать, что $a_m = b_n = 1$ (действительно, если $a_m \neq 1$ или $b_n \neq 1$, то $f(x) = f_1(x)f_2(x) = \left(a_m\left(x^m + \dots + \frac{a_0}{a_m}\right)\right)\left(b_n\left(x^n + \dots + \frac{b_0}{b_n}\right)\right) = \left(x^m + \dots + \frac{a_0}{a_m}\right)\left(x^n + \dots + \frac{b_0}{b_n}\right)$, значит вместо многочленов $f_1(x)$ и $f_2(x)$ мы рассмотрим многочлены $x^m + \dots + \frac{a_0}{a_m}$, $x^n + \dots + \frac{b_0}{b_n}$ со старшими коэффициентами, равными 1).

Пусть для определенности $m \le n$, тогда m = 1, n = 4 или m = 2, n = 3 (поскольку m + n = 5).

Если m=1, n=4, то $x^5-a(x+a_0)(x^4+b_3x^3+b_2x^2+b_1x+b_0)$, значит $(-a_0)^5-a=0$, т. е. $\sqrt[5]{a}=-a_0\in Q$ — противоречие.

Если m = 2, n = 3,

$$x^5-a=(x^2+a_1x+a_0)(x^3+b_2x^2+b_1x+b_0)=x^5+(a_1+b_2)x^4+(a_0+a_1b_2+b_1)x^3+(a_0b_2+a_1b_1+b_0)x^2+(a_0b_1+a_1b_0)x+a_0b_0,$$
 значит

$$\begin{array}{l} a_1+b_2=0, a_0+a_1b_2+b_1=0, a_0b_2+a_1b_1+b_0=0, a_0b_1+a_1b_0=0, a_0b_0=-a. \\ \text{Поэтому} \ \ b_2=-a_1, \ b_1=-a_1b_2-a_0=a_1^2-a_0, b_0=-a_1b_1-a_0b_2=a_1^3+2a_1a_0. \\ \text{И так как } \ a_1b_0+a_0b_1=0, \text{то } a_1(-a_1^3+2a_1a_0)+a_0(a_1^2-a_0)=0, a_1^4-3a_1^2a_0+a_0=0, \left(a_1^2-\frac{3}{2}a_0\right)^2=5\left(\frac{a_0}{2}\right)^2, a_1^2-\frac{3}{2}a_0=\pm\sqrt{5}\cdot\frac{a_0}{2}, \end{array}$$

значит $a_0 = 0$ (ибо $\sqrt{5} \notin Q$), следовательно, $a = -a_0 b_0 = 0$, $\sqrt[5]{a} = 0 \in Q$ – противоречие. Что и требовалось доказать.

Лемма 2 доказана.

Лемма 3. $a, b, \sqrt[5]{a} + \sqrt[5]{b} \in Q \ (a, b > 0)$, то $\sqrt[5]{a}, \sqrt[5]{b} \in Q$. Доказательство.

Пусть $\sqrt[5]{a} + \sqrt[5]{b} = c$ ($c \in Q$), тогда $b = (c - \sqrt[5]{a})^5$, т.е. $(\sqrt[5]{a} - c)^5 + b = 0$.

Пусть $f(x) = x^5 - a$, $g(x) = (x - c)^5 + b$, тогда $\sqrt[5]{a}$ является корнем многочленов f(x) и g(x), т.е. $f(\sqrt[5]{a}) = 0$, $g(\sqrt[5]{a}) = 0$. Пусть d(x) = HOД(f(x), g(x)). Предположим $\sqrt[5]{a} \notin Q$. Так как d(x) делит $f(x) = x^5 - a$, то, согласно лемме 1, d(x) = 1 или f(x).

Рассмотрим случай, когда d(x)=1. Тогда существуют многочлены u(x), v(x), такие, что f(x)u(x)+g(x)v(x)=d(x). Значит $f(\sqrt[5]{a})u(\sqrt[5]{a})+g(\sqrt[5]{a})v(\sqrt[5]{a})=1,0\cdot u(\sqrt[5]{a})+0\cdot v(\sqrt[5]{a})=1,0=1$ – противоречие.

Рассмотрим случай, когда d(x) = f(x). Так как d(x) делит g(x), то f(x) делит g(x). И так как степени многочленов f(x) и g(x) равны, коэффициенты при старших степенях у многочленов f(x) и g(x) равны, то

$$f(x) = g(x), x^5 - a = (x - c)^5 + b, x^5 - 5x^4c + 10x^3c^2 - 10x^2c^3 + 5xc^4 - c^5 + b.$$

Приравнивая соответствующие коэффициенты, получаем c=0, $-a=-c^5+b$, значит a=-b, что невозможно, поскольку a,b>0.Итак $\sqrt[5]{a}\in Q$. Аналогично $\sqrt[5]{b}\in Q$.

Лемма 3 доказана.

Так как $\sqrt[5]{x} + \sqrt[5]{y} = \sqrt[5]{2020^2}$, то $\sqrt[5]{2020^3 x} + \sqrt[5]{2020^3 y} = 2020$.

Пусть $2020^3x = a$, $2020^3y = b$ ($a, b \in N$).

Так как $a, b, \sqrt[5]{a} + \sqrt[5]{b} \in N$, то $a, b, \sqrt[5]{a} + \sqrt[5]{b} \in Q$ (a, b, > 0), значит согласно **лемме 3**, $\sqrt[5]{a}, \sqrt[5]{b} \in Q$. И так как $a, b \in N$, то $\sqrt[5]{a}, \sqrt[5]{b} \in N$,

т.е. $\sqrt[5]{a} = c$, $\sqrt[5]{b} = d$ (c, $d \in N$). Имеем $2020^3 x = c^5$, $2020^3 y = d^5$,

т.е. $2^65^3101^3x = c^5$, $2^65^3101^3y = d^5$, причем 101 является простым числом, значит c, d делятся на $2^2 \cdot 5 \cdot 101$,

т. е. $c = 2^2 \cdot 5 \cdot 101m, d = 2^2 \cdot 5 \cdot 101n (m, n \in N),$

поэтому $x = 2^4 \cdot 5^2 \cdot 101^2 m^5$, $y = 2^4 \cdot 5^2 \cdot 101^2 n^5$,

 $\sqrt[5]{x} + \sqrt[5]{y} = (m+n)\sqrt[5]{2^4 \cdot 5^2 \cdot 101^2}.$

Учитывая $\sqrt[5]{x} + \sqrt[5]{y} = \sqrt[5]{2020^2} = \sqrt[5]{2^4 \cdot 5^2 \cdot 101^2}$, имеем m + n = 1, а так как m, n - 1 натуральные числа, то решений нет.

Ответ: нет корней.

Отметим, что если бы в разложении числа, стоящего в правой части уравнения, был делитель в третьей степени (например, $2008 = 2^3 \cdot 251$, 1928 =

 $2^3 \cdot 241$, $1971 = 3^3 \cdot 73$), то уравнение имело натуральные решения. Приведем пример такого уравнения.

$$\sqrt[5]{x} + \sqrt[5]{y} = \sqrt[5]{2008^2}$$
.

Аналогично решению, изложенному ранее, имеем:

 $\sqrt[5]{x} + \sqrt[5]{y} = \sqrt[5]{2008^2}$, to $\sqrt[5]{2008^3 x} + \sqrt[5]{2008^3 y} = 2008$.

Пусть $2008^3x = a$, $2008^3y = b$ ($a, b \in N$).

Так как $a, b, \sqrt[5]{a} + \sqrt[5]{b} \in N$, то $a, b, \sqrt[5]{a} + \sqrt[5]{b} \in Q$ (a, b, > 0), значит согласно **лемме** 3, $\sqrt[5]{a}, \sqrt[5]{b} \in Q$. И так как $a, b \in N$, то $\sqrt[5]{a}, \sqrt[5]{b} \in N$, т.е. $\sqrt[5]{a} = c, \sqrt[5]{b} = d$ $(c, d \in N)$.

Имеем $2008^3x=c^5$, $2008^3y=d^5$, т.е. $2^9251^3x=c^5$, $2^9251^3y=d^5$, причем 251 является простым числом, значит c, d делятся на $2^2\cdot 251$,

т. е. $c = 2^2 \cdot 251m$, $d = 2^2 \cdot 251n$ ($m, n \in N$),

поэтому $x = 2 \cdot 251^2 m^5$, $y = 2 \cdot 251^2 n^5$, $\sqrt[5]{x} + \sqrt[5]{y} = (m+n)\sqrt[5]{2 \cdot 251^2}$.

Учитывая $\sqrt[5]{x} + \sqrt[5]{y} = \sqrt[5]{2008^2} = 2\sqrt[5]{2 \cdot 251^2}$, имеем m + n = 2 ($m, n \in N$), значит $m = n = 1, x = y = 2 \cdot 251^2 = 126002$.

Ответ: {(126002; 126002)}.

Замечание. **Лемма 2** является частным случаем более общего утверждения: если p — простое число, $a \in Q$, $\sqrt[p]{a} \notin Q$, то многочлен $x^p - a$ неприводим над Q. Отметим также, что если p не является простым числом, то многочлен $x^p - a$, вообще говоря, не является неприводимым над Q.

Например, $x^4 - 4 = (x^2 - 2)(x^2 + 2)$.

ЗАКЛЮЧЕНИЕ

Выведены и доказаны леммы, позволяющие решать некоторые виды диофантовых уравнений:

Лемма 1. Пусть $d_1, d_2 \notin N$, причем $\sqrt{d_1}, \sqrt{d_2}, \sqrt{d_1d_2} \notin N$. Если $a + b\sqrt{d_1} + c\sqrt{d_2} + d\sqrt{d_1d_2} = 0$ ($a,b,c,d \in Q$), то a = b = c = d = 0. **Лемма 2.** Если $a \in Q, \sqrt[5]{a} \notin Q$, то многочлен $x^5 - a$ неприводим над Q, т.е.

Лемма 2. Если $a \in Q$, $\sqrt[5]{a} \notin Q$, то многочлен $x^5 - a$ неприводим над Q, т.е. не представим в виде произведения двух многочленов положительных степеней с рациональными коэффициентами.

Лемма 3. $a, b, \sqrt[5]{a} + \sqrt[5]{b} \in Q \ (a, b > 0)$, то $\sqrt[5]{a}, \sqrt[5]{b} \in Q$.

Получен алгоритм решения в натуральных числах уравнения $\sqrt[5]{x^2} + \sqrt[5]{y^2} = c, c \in \mathbb{N}$.

В дальнейшем планируем рассмотреть уравнения вида $\sqrt{x_1} + \dots + \sqrt{x_2} = c$, $c \in \mathbb{R}$.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Кноп, К. А. Азы теории чисел / К. А. Кноп. М.:МЦНМО, 2017. 80 с.
- 2. Шахмейстер, А. Х. Доказательства неравенств. Математическая индукция. Теория сравнений. Введение в криптографию / А. Х. Шахмейстер СПб.: «Петроглиф» : «Виктория плюс» : М.: Издательство МЦНМО, 2018. 396 с.