Natham Lyayaw g = 10 m/s2 9) 0x = Vist + 2006 0x = 2.20m DX = Vix Store 1) T. x, = .011m BY = Virst + 2ast2 1,a=Q Viy = 0 Dy= 2ast? $\Delta X = \int \frac{k_{\lambda^2}}{m} \Delta t$ PE: + KE: = PEs + KEs $\left(\frac{\Delta x_i}{\Delta t}\right)^2 m = k$ PE: = Us = & Kx2 KE = 2 mu $V_{i,x} = \sqrt{\frac{k x^2}{m}} v_{i,x}^2$ x = 2.2m 347% (ompress By 2.065 cm) x= 0.02065

10)
$$R = .2m$$
 $m = 2ky$ $h = 3m$ $g = 10 m/s^{2}$
a) $u_{g} = mgh$ $mgh = 1/2 m V$ $v = \sqrt{2gh}$ $v = 7.75 m/s$
 $u_{c} = \frac{V^{2}}{r} = \frac{300 m/s^{2}}{2}$
b) $KE_{R} = \frac{1}{2} I \omega^{2} = \frac{1}{2} (\frac{1}{2} m R^{2}) \omega^{2} = \frac{1}{4} m R^{2} (\frac{1}{R})^{2} = \frac{300 J}{r}$
 $\omega = \frac{V}{r}$

$$\frac{PV}{T} = \frac{P'V'}{T'}$$

a)
$$T_c = 300 \text{ K}$$

$$P_c = 1 \text{ ATM}$$

$$V_c = 2 \text{ Likes}$$

$$\frac{1.10^{5}(2-10^{-3})}{200(8.31)} = 1$$

$$\frac{P_{c}V_{c}}{T_{c}} = \frac{P_{A}V_{A}}{T_{A}}$$

$$\frac{P_{c}V_{c}}{P_{c}V_{c}} = \frac{P_{B}V_{B}}{P_{B}V_{B}}$$

$$\frac{\rho_{c} V_{c}}{T_{c}} = \frac{\rho_{B} V_{B}}{T_{B}}$$

$$\frac{P_{c}V_{c}}{T_{c}} = \frac{P_{A}V_{A}}{T_{A}}$$

$$\frac{P_{c}V_{c}}{T_{c}} = \frac{P_{B}V_{B}}{T_{B}}$$

$$\frac{P_{c}V_{c}}{T_{c}} = \frac{P_{B}V_{B}}{T_{B}}$$

$$\frac{T_{A}}{P_{c}V_{c}} = \frac{P_{A}V_{A}T_{c}}{P_{c}V_{c}} = 300K$$

$$\frac{P_{c}V_{c}}{P_{c}V_{c}} = 1200K$$

b)
$$V_{Q_1 \in GS} = -nRT \ln \left(\frac{V_4}{V_i}\right)$$
 $n = .08$ $W_{on GGS} = -P\Delta V$
 $PV = nRT_0$ = $P(V_5 - V_i) = -600 \text{ J}$
 $\frac{1.10^5(2-10^{-3})}{300(8.31)} = 1$ $W_{R \to C} = -P(V_5 - V_i) = 0\text{ J}$
 $W_{C \to A} = -nRT \ln \left(\frac{V_5}{V_i}\right) = 277.26 \text{ J}$

c)
$$E_{in} + \frac{3}{2} n RT$$

$$E_{in} + A = \frac{3}{2} n R(T_B - T_A) = 900J$$

$$E_{in} + B = \frac{3}{2} n R(T_C - T_B) = -900J$$

$$E_{in} + C = \frac{3}{2} n R(T_A - T_C) = 0$$

$$E_{in} + C = \frac{3}{2} n R(T_A - T_C) = 0$$

d)
$$Q_{In} A \rightarrow B = T_B - T_A = 900 \text{ K}$$

 $Q_{In} B \rightarrow C = T_C - T_B = -900 \text{ K}$
 $Q_{In} C \rightarrow A = 0 \text{ K}$

$$e = \frac{W}{1QH} =$$

Nathan Eyayaw

12)
$$L = 10.8 \text{ Ly}$$
 $V = 0.3c$ $C = 3 \times 10^8$
 $X = \sqrt{1 + \frac{v^2}{c^2}}$ $X = \sqrt{1 - \frac{v^2}{c^2}} = 1.04828$

a) $X' = Y(x - vt)$ $t' = Y(t - \frac{v}{c^2}X)$
 $L = 10.8 \text{ Lp}$ $L = 10.04828$
 $L = 10.04828$