Math 126, Fall 2019 Introduction to Partial Differential Equation

Tim Laux, 3106 Etcheverry, 9-10AM

Contents

1	whe	ere PDEs Come From
	1.1	What is a partial differential equation?
	1.2	Review of Multivariable Calculus
	1.3	Differentiation
	1.4	Integration
	1.5	Derivatives of Integrals
	1.6	Integrals of derivatives
	1.7	Some First-order PDEs
		1.7.1 Constant Coefficient Linear Equation
		1.7.2 Variable Coefficient PDEs
	1.8	Motivation behind PDE
	1.9	Initial and boundary conditions, well-posed problems

Logistics

Question 0.1

Why study PDE?

Answer 0.2. TL;DR. It's useful.

Note 0.3. Office hour : MWF 9-10AM 895 Evans, GSI Office hour : MW 1-3 PM 1049 Evans

1 where PDEs Come From

1.1 What is a partial differential equation?

Example 1.1

This is an example of ODE:

$$u = u(x),$$
 $\frac{d}{dx}u = u.$

Example 1.2

A PDE consist of the form

$$u = u(x_1, x_2, \dots, x_d), \qquad u_{x_k} = \frac{\partial u}{\partial x_k}$$

Where x_i are scalars.

Example 1.3

The most general form of a PDE of first order in two dimension, say u = u(x, y) and of the form

$$F(x, y, u(x, y), u_x(x, y), u_y(x, y)) = 0$$
, or $F(x, y, u, u_x, u_y) = 0$

Example 1.4

The most general form of a PDE of second order in two dimension, say u = u(x, y) and of the form

$$G(x, y, u, u_x, u_y, u_{xx}, u_{yy}, u_{xy}) = 0$$

Definition 1.5

A vector x is defined as

$$x = \vec{x} = (x_1, x_2, \dots, x_n).$$

Definition 1.6

Let u be a function of vector x of n-dimension. The gradient of u is denoted as

$$\nabla u = (u_{x_1}, u_{x_2}, \dots, u_{x_n})$$

Example 1.7 1. Linear transport equation $u_t + bu_t = 0, b \in \mathbb{R}$

2. Burgher's Equation $u_t + u \cdot u_x = 0$

3. Laplace's Equation $u_{xx} + u_{yy} = 0$

4. Hermite Equation $-(u_{xx} + u_{yy}) = \lambda u, \quad \lambda \in \mathbb{R}$

5. Wave with interaction $u_{tt} - u_{xx} + u^3 = 0$

6. Linear diffusion with source $u_t - u_{xx} - f(x,t) = 0$

7. Schroedinger's equation $u_t - i \cdot u_{xx} = 0$

Example 1.8 (Cauchy-Riemann Equation)

$$\begin{cases} u_x = u_y \\ u_y = -u_x \end{cases}$$

Definition 1.9 (Digression to Linear Algebra)

Let ${\mathscr L}$ be a operator in a function space V. ${\mathscr L}$ is linear if

$$\mathscr{L}(u+v) = \mathscr{L}(u) + \mathscr{L}(v), \quad \mathscr{L}(cu) = c\mathscr{L}(u) \qquad \forall v,u \in V, \quad \forall c \in \mathbb{F}.$$

Definition 1.10

A PDE is called homogeneous linear PDE if it's of the form $\mathcal{L}(u) = 0$. If it's the form $\mathcal{L}(u) = f$, then it's called inhomogeneous PDE.

Remark 1.11

Things that we are interested in

- 1. Find analytical formulas for some specific PDE's
- 2. Well-possessedness
 - Existence (Does there exists a solution?)
 - Uniqueness (Is this the only solution?)
 - Stability (If I change the data slightly, does the solution changes just by a little bit?)
- 3. Predicting qualitative (and sometimes quantitative) behavior of the solution without having a solution formula.
- 4. Devise an analyze numerical algorithms to approximate solutions.

Example 1.12

Consider the equation

$$\cos(xy)u_x + \sin(e^x)u_y = e^{x^2\sin(y)}$$

Let

$$\mathscr{L}(u(x,y)) = \cos(xy)u_x + \sin(e^x)u_{yy}$$

 \mathscr{L} is a linear operator, so the PDE is an inhomogeneous linear PDE.

Theorem 1.13 (Principle of superposition)

Let u_1, u_2, \ldots, u_n be solutions of $\mathcal{L}(u_k) = 0$, and let c_1, c_2, \ldots, c_n be scalars. then

$$u(x) = \sum_{i=1}^{n} c_i u_i(x)$$
 solves $\mathscr{L}(u) = 0$

Example 1.14 (Cool problem)

$$\begin{cases} u_t + u \cdot \nabla u - \mu \triangle u = -\nabla p \\ \operatorname{div} u = 0 \end{cases}$$

where $u=u(x,y,z,t),\ u=\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}$ is a velocity field, where p is pressure and μ is the viscosity of the liquid.

1.2 Review of Multivariable Calculus

Definition 1.15

Let $\vec{x} \in \mathbb{R}^d$, the **Euclidean length** of \vec{x} is defined as

$$|\vec{x}| = \sqrt{\sum_{k=1}^d x_k^2}$$

Definition 1.16 (scalar product)

The dot product of two vectors x and \tilde{x} is defined as

$$x \cdot \tilde{x} = \sum_{k=1}^{d} x_k \cdot \tilde{x}_k$$

Remark 1.17

It's clear that $|x|^2 = x \cdot x$.

Definition 1.18

For r > 0 and $x_0 \in \mathbb{R}^d$ let

$$B_r = \{ x \in \mathbb{R}^d : |x - x_0| < r \}$$

This is a open ball of radius r centered at x_0 .

Definition 1.19

A set $A \subset \mathbb{R}^d$ is called **open** if for each $x \in A$, there exists r > 0 such that $B_r(x) \subset A$.

Definition 1.20

A set $V \subset \mathbb{R}^d$ is called closed if $\mathbb{R}^d \setminus V$ is open.

Definition 1.21

The **interior** of A, denoted as int A is are the points in A such that there exists r > 0 with $B_r(x) \subset A$.

Theorem 1.22

A set is open if and only if int A = A.

Definition 1.23

The closure of $A \subset \mathbb{R}^d$ is

$$A^- := A \cup \{ \text{ limit points of } A \}$$

Definition 1.24

The boundary of the set $A \subset \mathbb{R}^d$ is

$$\partial A := A^- \setminus \text{int} A$$

Theorem 1.25 (Heine-Borel Theorem)

A set is closed in \mathbb{R}^d if and only if it's closed and bounded.

1.3 Differentiation

Definition 1.26

For $u = u(\vec{x})$ we define the **gradient** of u as

$$\nabla u = \nabla u(x) := \left(\frac{\partial u}{\partial x_1}, \cdots, \frac{\partial u}{\partial x_d}\right)$$

Definition 1.27 (Laplace's operator)

$$\triangle u = \triangle u(\vec{x}) := \sum_{k=1}^d \frac{\partial^2 u}{\partial x_k^2} = \sum_{k=1}^d u x_k \cdot x_k.$$

Definition 1.28

For a vector field $F = F(\vec{x})$ we denote its divergence as

$$\operatorname{div}F(x) = \sum_{k=1}^{d} \frac{\partial F_k}{\partial x_k}$$

Remark 1.29

 $\triangle u = \operatorname{div} \nabla u$.

Exercise 1.30

Compute the divergence of $F(\vec{x}) = \frac{1}{2}\vec{x} = \frac{1}{2}(x_1, x_2), G(\vec{x}) = (-x_2, x_1).$

Solution. We have $\operatorname{div} F = 0$ and $\operatorname{div} G = 0$.

1.4 Integration

Definition 1.31

For $\omega \subset \mathbb{R}^2$, $\Omega \subset \mathbb{R}^3$ we definite the integral with respect to function f as

$$\int_{\omega} f(x,y) \, dx \, dy, \int_{\Omega} f(x,y,z) \, dx \, dy \, dz$$

Definition 1.32

We define the volume of $\Omega \subset \in \mathbb{R}^d$ as

$$\operatorname{vol}_d(\Omega) = \int_{\Omega} 1 d\vec{x}$$

Remark 1.33

If $|f(x)| \leq M$ for all $x \in \Omega$, then

$$\left| \int_{\Omega} f(\vec{x}) \, d\vec{x} \right| \le \int_{\Omega} |f(\vec{x})| \, d\vec{x} \le M \text{vol}_d(\Omega)$$

1.5 Derivatives of Integrals

Question 1.34

Let I(t) defined as

$$\int_{a(t)}^{b(t)} f(x,t) \, dx$$

What is $\frac{dI}{dt}$

Theorem 1.35

Suppose that a, b are independent of t. If both f and $\frac{\partial f}{\partial t}$ are continuous on the rectangle $[a, b] \times [c, d]$ then

$$\frac{d}{dt}I(t) = \int_{a}^{b} \frac{\partial t}{\partial t}(x,t) dx \quad \text{for} \quad t \in [c,d].$$

Theorem 1.36

If f and $\frac{\partial f}{\partial t}$ are continuous on the rectangle $[A, B] \times [c, d]$, where $[a(t), b(t)] \subset [A, B]$ for all $t \in [c, d]$, and if a(t), b(t) are differentiable functions on the interval [c, d] then

$$\frac{d}{dt}I(t) = \int_{a(t)}^{b(t)} \frac{\partial f}{\partial t}(x,t) dx + b'(t)f(b(t),t) - a'(t)f(a(t),t) \quad \text{for} \quad t \in [c,d]$$

Remark 1.37

Theorem 2.2 works for any dimensions. What about theorem 2.3?

1.6 Integrals of derivatives

Theorem 1.38 (Divergence theorem)

Let Ω be a "nice" open set in \mathbb{R}^d , let $n(\vec{x})$ denote the upward pointing normal of $\partial\Omega$. If F is continuously differentiable in Ω , and continuous in $\overline{\Omega}$, then

$$\int_{\Omega} \operatorname{div} F \, dx = \int_{\partial \Omega} F(\vec{x}) \cdot n(\vec{x}) dS(x).$$

Remark 1.39

When d=1, this is really the fundamental theorem of calculus.

$$\int_{a}^{n} F'(x) dx = F(b) - F(a)$$

Theorem 1.40 (The first vanishing Theorem)

If $f \geq 0$ in Ω and continuous and $\int_{\Omega} f(\vec{x}) d\vec{x} = 0$, then f = 0 in Ω

Theorem 1.41 (The second vanishing Theorem)

If f is continuous in Ω and for all $D \subset \Omega$ that

$$\int_D f(\vec{x}) \, d\vec{x} = 0$$

then f = 0 in Ω .

Proof. Suppose there exists a point x such that $f(x) \neq 0$. Pick a region D around x and we can see that $\int_D f(x) dx \neq 0$, a contradiction.

1.7 Some First-order PDEs

1.7.1 Constant Coefficient Linear Equation

Example 1.42

Find u = u(x, y) such that

$$au_x + bu_y = 0$$
 for $a, b \in \mathbb{R}$

Geometric Method. Notice that we can rewrite the equation as

$$(a,b) \cdot \nabla u = 0$$

Then u is constant in the direction $\vec{v} = (a, b)$. Let $\vec{w} = (b, -a)$ so that we can form a basis in \mathbb{R}^2 .

since u is constant on every one of the dashed lines. Then there exists $f: \mathbb{R} \to \mathbb{R}$ such that

$$u(x,y) = f(\vec{w} \cdot (x,y)) = f(bx - ay)$$

Brute Force Method. We can simply compute

$$x' = ax + by$$
$$y' = bx - ay$$

then we have

$$\frac{\partial x'}{\partial x} = a \qquad \qquad \frac{\partial x'}{\partial y} = b$$

$$\frac{\partial y'}{\partial x} = b \qquad \qquad \frac{\partial y'}{\partial y} = -b$$

By the chain rule we have

$$u_{x} = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial x} = au_{x'} + bu_{y'}$$
$$u_{y} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial y} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial y} = bu_{x'} - au_{y'}$$

Hence

$$0 = au_x + bu_y = a(au_{x'} + bu_{y'}) + b(bu_{x'} - au_{y'}) - (a^2 \cdot b^2)$$

Therefore $u_{x'} = 0$, so u(x', y') = f(y') = f(bx - ay), which gives us the same answer as the geometric method.

1.7.2 Variable Coefficient PDEs

Example 1.43

Find u = u(x, y) such that

$$u_x + yu_y = 0$$

Solution. Similar to the first PDE, we can rewrite the equation as

$$(x,y) \cdot \nabla u = 0$$

$$10 \quad y$$

$$5 \quad x$$

$$-5 \quad 3 \quad 4$$

The blue lines are called characteristic curves.

-10

Hence consider curves with slope y

$$\frac{dy}{dx} = y.$$

Solving for the ODE gives us

$$y = Ce^x$$
 $C \in \mathbb{R}$.

Notice that u is constant on the curves.

$$\frac{d}{dx}\left(u\left(x,Ce^{x}\right)\right) = u_{x} + u_{y} \cdot \frac{dy}{dx} = u_{x} + u_{y}y = 0.$$

Hence

$$u(x, Ce^x) = u(0, Ce^0) = u(0, C)$$

is independent of x. Now given (x, y) in the place, we compute

$$u(x,y) = u(x, Ce^x) = u(0, C) = u(0, e^{-x}y)$$

choose $C \in \mathbb{R}$, we have $C = e^{-x}y \iff y = Ce^{x}$. Hence

$$u(x,y) = f(e^{-x}y)$$

where f is a elementary function of one variable.

Exercise 1.44

Find the solution of the example above such that

$$u(0,y) = y^5$$

Solution.

$$u(0,y) = y^5 \implies u(x,y) = (e^{-x}y)^5 = y^5e^{-5x}$$

1.8 Motivation behind PDE

Example 1.45 (Transport)

Suppose a pipe with a pollutant suspend in the water and the water is moving along side the pipe to the right at a rate c, then the concentration of the pollution at time t and point x can be modeled as

$$u_t + cu_x = 0.$$

Example 1.46 (Vibrating String)

Check the derivation in textbook which gives the wave equation. Suppose a string is plucked, then the displacement of the string can be modeled as

$$u_{tt} = c^2 u_{xx}.$$

The three dimensional version, a vibrating drumhead can be expressed as

$$u_{tt} = c^2 \left(u_{xx} + u_{yy} \right)$$

Example 1.47 (Diffusion)

Suppose a chemical substance is diffusing through the liquid. The mass of the substance at time t in any given cross section $[x_0, x_1]$ is given by

$$M(t) = \int_{x_0}^{x_1} u(x, t) dx$$

We then have

$$\frac{dM}{dt} = \text{flow in } -\text{flow out} = ku_x(x_1, t) - ku_x(x_0, t) = \int_{x_0}^{x_1} u_t(x, t) dx.$$

Differentiating with respect to x gives

$$u_t = k u_{xx}$$
.

In $\dim d$ we have

$$\forall D \subset D_0 \qquad \int_D u_t(x,t) dx \stackrel{\text{Fick's Law}}{=} \int_{\partial D} k(n \cdot \nabla u) \, dX \stackrel{\text{div thm}}{=} \int_D \operatorname{div} \left(k \nabla u \right) dx = \int_D k \triangle u \, dx$$

By the second vanishing theorem we have

$$u_t - k \triangle u = 0$$
 in D_0

1.9 Initial and boundary conditions, well-posed problems

We have seen a couple of PDE's

- Convection $u_x + cu_y = 0$.
- Vibrating string $u_{tt} = c^2 u_{xx}$
- Vibrating drumhead $utt = c^2 (u_{xx} + u_{yy})$
- Diffusion $u_t = k \nabla u$
- Heat $\rho c u_t = \kappa \nabla u$
- Stationary heat flow or vibration $\nabla u = 0$

Initial Condition

Specify the physical data at a particular time t_0 .

$$u(x,t_0) = \phi(x)$$

where $\phi: \mathbb{R}^d \to \mathbb{R}$ is a given function.

Example 1.48

Let's consider the heat equation. We can set $\phi(x)$ as the initial condition.

Let's consider the wave equation. Since it's a second order DPE, we need a set of initial conditions

$$u(x,t_0) = \phi(x)$$
 initial position, $u_t(x,t_0) = \psi(x)$ initial velocity

Boundary Conditions

We have three important kind of boundary conditions

- *u* is specified ("*Dirichlet* condition")
- $\frac{\partial u}{\partial n}$ is specified ("Neumann Condition")
- $\frac{\partial u}{\partial n} + au$ is specified ("Robin condition")

By specified we mean the condition is equal to some f, where f is a function of time. In the special case of f = 0, this is the **homogeneous** condition.

Example 1.49

Take a vibrating string in a region $D = \{x \in \mathbb{R} : 0 \le x \le l\}$. We have the following

(D) u(0,t) = g(t), u(l,t) = l(t).

Keeping the end of the vibrating string fixed.

- (N) $u_x(0,t) = g(t), u_x(l,t) = l(t)$. The left end can move up and down.
- (R) $u_x(0,t) + a(t)u(0,t) = g(t), u_x(l,t) + a(t)u(l,t) = l(t).$

The left end is attached to a spring.

Example 1.50

Take the diffusion equation and suppose D is a container. Take $S = \partial D$. If no substance can exit or enter the container though S, then by Fick's Law we have

$$\vec{n} \cdot \nabla u = 0 \text{ on } S = \partial D = \frac{\partial u}{\partial n}$$

If the container is permeable and the substance leaving the container through ∂D is immediately washed away then u = 0 on $S = \partial D$, a homogeneous Dirichlet condition.

Example 1.51

Take th heat equation and let D to be the classroom. Suppose that it's perfectly insulated, then there is no heat flow through $\partial D = S \implies \frac{\partial u}{\partial n} = 0$ on S, a Neumann condition.

Example 1.52

Suppose D is immersed in a large heat bath of temperature g(t) and assume perfect conduction across $S = \partial D \implies u = g(t)$ on S, this is a Dirichlet condition.

Example 1.53

Take

$$u_t = u_{xx} + u_{yy} \text{ in } Dx(0, \infty)$$

Suppose the initial condition $\frac{\partial u}{\partial n} = 0$ on $\partial Dx(0, \infty)$ and $u = \phi$ on Dx(t = 0).

Well-posed

Definition 1.54 (informal)

A problem (of Solving PDE) with certian boundary conditions is well-posed if

- 1. Existence
- 2. Uniqueness
- 3. Stability

Example 1.55

From last lecture we had

$$\begin{cases} au_x bu_y = 0 \\ u(0,y) = f(y) \end{cases}$$

has the unique solution $u(x,y) = f(e^{-x}y)$, so existence and uniqueness is check. Let f, \tilde{f} be two initial conditions, then

$$|u(x,y)| - \tilde{u}(x,y)| = |f(e^{-x}y) - \tilde{f}(e^{-x}y)|$$

so for example

$$\max |u(x,y)| - \tilde{u}(x,y)| \le \max |f(e^{-x}y) - \tilde{f}(e^{-x}y)|$$

Then stability is satisfied as well.

Example 1.56 (A famous example)

Take $\triangle u = u_{xx} + u_{yy} = 0$.