函数与极限

习题 1-1

映射与函数

≥ 1. 求下列函数的自然定义域:

(1)
$$y = \sqrt{3x+2}$$
:

(2)
$$y = \frac{1}{1-x^2}$$
;

(3)
$$y = \frac{1}{x} \sqrt{1 - x^2}$$
;

(4)
$$y = \frac{1}{\sqrt{4-x^2}}$$
;

(5)
$$y = \sin \sqrt{x}$$
;

(6)
$$y = \tan(x+1)$$
;

(7)
$$y = \arcsin(x-3)$$
;

(8)
$$y = \sqrt{3-x} + \arctan \frac{1}{x}$$
;

(9)
$$y = \ln(x+1)$$
;

(10)
$$y = e^{\frac{1}{x}}$$
.

解 (1)
$$3x + 2 \ge 0 \Rightarrow x \ge -\frac{2}{3}$$
,即定义域为 $\left[-\frac{2}{3}, +\infty\right)$.

(2)
$$1-x^2 \neq 0$$
 ⇒ $x \neq \pm 1$, 即定义域为($-\infty$, -1) \cup (-1 ,1) \cup (1 , $+\infty$).

(3)
$$x \neq 0$$
 且 $1 - x^2 \ge 0$ ⇒ $x \neq 0$ 且 $|x| \le 1$,即定义域为 $[-1,0) \cup (0,1]$.

(4)
$$4-x^2 > 0 \Rightarrow |x| < 2$$
,即定义域为(-2,2).

(5) x≥0,即定义域为[0,+∞).

(6)
$$x+1\neq k\pi+\frac{\pi}{2}(k\in\mathbf{Z})$$
,即定义域为 $\left\{x\mid x\in\mathbf{R}\ \exists\ x\neq\left(k+\frac{1}{2}\right)\pi-1,k\in\mathbf{Z}\right\}$.

- (7) $|x-3| \le 1 \Rightarrow 2 \le x \le 4$,即定义域为[2,4].
- (8) $3-x \ge 0$ 且 $x \ne 0$, 即定义域为($-\infty$,0) ∪(0,3].
- (9) x+1>0 ⇒x>-1,即定义域为(-1,+∞).
- (10) x≠0,即定义域为(-∞,0)∪(0,+∞).

注 本题是求函数的自然定义域,一般方法是先写出构成所求函数的各个简单函数的定义域,再求出这些定义域的交集,即得所求定义域.下列简单函数及其定义域是经常用到的:

$$y = \frac{Q(x)}{P(x)}, P(x) \neq 0;$$

$$y = \sqrt[2n]{x}, x \geq 0;$$

$$y = \log_a x, x > 0;$$

$$y = \tan x, x \neq \left(k + \frac{1}{2}\right)\pi, k \in \mathbb{Z};$$

 $y = \cot x, x \neq k\pi, k \in \mathbb{Z}$;

 $y = \arcsin x, |x| \le 1$;

 $y = \arccos x, |x| \le 1.$

2. 下列各题中,函数 f(x)和 g(x)是否相同?为什么?

(1)
$$f(x) = \lg x^2, g(x) = 2\lg x$$
;

(2)
$$f(x) = x, g(x) = \sqrt{x^2}$$
;

(3)
$$f(x) = \sqrt[3]{x^4 - x^3}, g(x) = x \sqrt[3]{x - 1};$$

(4)
$$f(x) = 1, g(x) = \sec^2 x - \tan^2 x$$
.

解 (1) 不同,因为定义域不同.

(2) 不同,因为对应法则不同,
$$g(x) = \sqrt{x^2} = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases}$$

- (3) 相同,因为定义域、对应法则均相同.
- (4) 不同,因为定义域不同.

23. 设

$$\varphi(x) = \begin{cases} |\sin x|, & |x| < \frac{\pi}{3}, \\ 0, & |x| \ge \frac{\pi}{3}, \end{cases}$$

求
$$\varphi\left(\frac{\pi}{6}\right), \varphi\left(\frac{\pi}{4}\right), \varphi\left(-\frac{\pi}{4}\right), \varphi\left(-2\right)$$
,并作出函数 $y = \varphi(x)$ 的图形.

$$\varphi\left(\frac{\pi}{6}\right) = \left|\sin\frac{\pi}{6}\right| = \frac{1}{2}, \varphi\left(\frac{\pi}{4}\right) = \left|\sin\frac{\pi}{4}\right| = \frac{\sqrt{2}}{2},$$

$$\varphi\left(-\frac{\pi}{4}\right) = \left|\sin\left(-\frac{\pi}{4}\right)\right| = \frac{\sqrt{2}}{2}, \varphi\left(-2\right) = 0.$$

 $y = \varphi(x)$ 的图形如图 1 - 1 所示.

24. 试证下列函数在指定区间内的单调性:

(1)
$$y = \frac{x}{1-x}$$
, $(-\infty, 1)$;

(2) $y = x + \ln x$, (0, + ∞).

iE (1)
$$y = f(x) = \frac{x}{1-x} = -1 + \frac{1}{1-x}, (-\infty, 1).$$

设 x1 < x2 < 1. 因为

$$f(x_2) - f(x_1) = \frac{1}{1 - x_2} - \frac{1}{1 - x_1} = \frac{x_2 - x_1}{(1 - x_1)(1 - x_2)} > 0,$$

所以 $f(x_2) > f(x_1)$, 即 f(x) 在($-\infty$,1) 内单调增加.

(2)
$$y = f(x) = x + \ln x, (0, +\infty).$$

设 $0 < x_1 < x_2$,因为

$$f(x_2) - f(x_1) = x_2 + \ln x_2 - x_1 - \ln x_1 = x_2 - x_1 + \ln \frac{x_2}{x_1} > 0,$$

所以 $f(x_2) > f(x_1)$, 即 f(x) 在 $(0, +\infty)$ 内单调增加.

25. 设 f(x) 为定义在(-l,l) 内的奇函数,若 f(x) 在(0,l) 内单调增加,证明 f(x) 在(-l,0) 内也单调增加.

证 设 $-l < x_1 < x_2 < 0$,则 $0 < -x_2 < -x_1 < l$,由 f(x)是奇函数,得 $f(x_2) - f(x_1) = -f(-x_2) + f(-x_1)$.因为 f(x)在(0,l)内单调增加,所以 $f(-x_1) - f(-x_2) > 0$,从而 $f(x_2) > f(x_1)$,即f(x)在(-l,0)内也单调增加.

- ≥ 6. 设下面所考虑的函数都是定义在区间(-l,l)上的. 证明:
 - (1) 两个偶函数的和是偶函数,两个奇函数的和是奇函数;
 - (2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。

证 (1) 设 $f_1(x)$, $f_2(x)$ 均为偶函数,则 $f_1(-x) = f_1(x)$, $f_2(-x) = f_2(x)$. 令 $F(x) = f_1(x) + f_2(x)$, 于是

$$F(-x) = f_1(-x) + f_2(-x) = f_1(x) + f_2(x) = F(x)$$
,

故 F(x) 为偶函数.

设 $g_1(x)$, $g_2(x)$ 均为奇函数,则 $g_1(-x) = -g_1(x)$, $g_2(-x) = -g_2(x)$. 令 $G(x) = g_1(x) + g_2(x)$, 于是

$$G(-x) = g_1(-x) + g_2(-x) = -g_1(x) - g_2(x) = -G(x)$$

故 G(x) 为奇函数.

(2) 设 $f_1(x)$, $f_2(x)$ 均为偶函数,则 $f_1(-x) = f_1(x)$, $f_2(-x) = f_2(x)$. 令 $F(x) = f_1(x) \cdot f_2(x)$. 于是

$$F(-x) = f_1(-x) \cdot f_2(-x) = f_1(x)f_2(x) = F(x)$$
.

故 F(x) 为偶函数.

设 $g_1(x)$, $g_2(x)$ 均为奇函数,则 $g_1(-x) = -g_1(x)$, $g_2(-x) = -g_2(x)$. 令 $G(x) = g_1(x) \cdot g_2(x)$. 于是

$$G(-x) = g_1(-x) \cdot g_2(-x) = [-g_1(x)][-g_2(x)]$$

公 大学VIP

- (5) $y = \sin^2 x$.
- 解 (1) 是周期函数,周期 l=2π.
- (2) 是周期函数,周期 $l = \frac{\pi}{2}$.
- (3) 是周期函数,周期 l=2.
- (4) 不是周期函数.
- (5) 是周期函数,周期 l=π.
- 29. 求下列函数的反函数:

(1)
$$y = \sqrt[3]{x+1}$$
; (2) $y = \frac{1-x}{1+x}$;
(3) $y = \frac{ax+b}{cx+d}(ad-bc\neq 0)$; (4) $y = 2\sin 3x\left(-\frac{\pi}{6} \leqslant x \leqslant \frac{\pi}{6}\right)$;
(5) $y = 1 + \ln(x+2)$; (6) $y = \frac{2^x}{2^x+1}$.

分析 函数f存在反函数的前提条件为 $:f:D\rightarrow f(D)$ 是单射.本题中所给出的各函数易证均为单射,特别(1)、(4)、(5)、(6)中的函数均为单调函数,故都存在反函数.

解 (1) 由
$$y = \sqrt[3]{x+1}$$
解得 $x = y^3 - 1$,即反函数为 $y = x^3 - 1$.

(2) 由
$$y = \frac{1-x}{1+x}$$
解得 $x = \frac{1-y}{1+y}$,即反函数为 $y = \frac{1-x}{1+x}$.

(3) 由
$$y = \frac{ax+b}{cx+d}$$
解得 $x = \frac{-dy+b}{cy-a}$,即反函数为 $y = \frac{-dx+b}{cx-a}$.

(4) 由
$$y = 2\sin 3x \left(-\frac{\pi}{6} \le x \le \frac{\pi}{6}\right)$$
解得 $x = \frac{1}{3}\arcsin \frac{y}{2}$,即反函数为 $y = \frac{1}{3}\arcsin \frac{x}{2}$.

(5) 由
$$y = 1 + \ln(x + 2)$$
解得 $x = e^{y-1} - 2$,即反函数为 $y = e^{x-1} - 2$.

(6) 由
$$y = \frac{2^x}{2^x + 1}$$
解得 $x = \log_2 \frac{y}{1 - y}$,即反函数为 $y = \log_2 \frac{x}{1 - x}$.

20. 设函数 f(x) 在数集 X 上有定义,试证:函数 f(x) 在 X 上有界的充分必要条件是它在 X 上既有上界又有下界.

解 设f(x)在X上有界,即存在M>0,使得

$$|f(x)| \leq M, \quad x \in X,$$

故

$$-M \leq f(x) \leq M, \quad x \in X,$$

即 f(x) 在 X 上有上界 M, 下界 - M.

反之,设f(x)在X上有上界 K_1 ,下界 K_2 ,即

$$K_2 \leq f(x) \leq K_1$$
, $x \in X$.

取 $M = \max | |K_1|, |K_2||, 则有$

$$|f(x)| \leq M, \quad x \in X,$$

即 f(x) 在 X 上有界.

211. 在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值 x_1 和 x_2 的函数值:

(1)
$$y = u^2$$
, $u = \sin x$, $x_1 = \frac{\pi}{6}$, $x_2 = \frac{\pi}{3}$;

(2)
$$y = \sin u, u = 2x, x_1 = \frac{\pi}{8}, x_2 = \frac{\pi}{4};$$

(3)
$$y = \sqrt{u}, u = 1 + x^2, x_1 = 1, x_2 = 2$$
;

(4)
$$y = e^u$$
, $u = x^2$, $x_1 = 0$, $x_2 = 1$;

(5)
$$y = u^2$$
, $u = e^x$, $x_1 = 1$, $x_2 = -1$.

$$\Re$$
 (1) $y = \sin^2 x, y_1 = \frac{1}{4}, y_2 = \frac{3}{4}$

(2)
$$y = \sin 2x, y_1 = \frac{\sqrt{2}}{2}, y_2 = 1.$$

(3)
$$y = \sqrt{1 + x^2}$$
, $y_1 = \sqrt{2}$, $y_2 = \sqrt{5}$.

(4)
$$y = e^{x^2}$$
, $y_1 = 1$, $y_2 = e$.

(5)
$$y = e^{2x}$$
, $y_1 = e^2$, $y_2 = e^{-2}$.

22. 设 f(x) 的定义域 D = [0,1], 求下列各函数的定义域:

$$(1) f(x^2);$$

(2)
$$f(\sin x)$$
;

(3)
$$f(x+a)(a>0)$$
;

(4)
$$f(x+a) + f(x-a)(a>0)$$
.

$$M$$
 (1) $0 \le x^2 \le 1 \Rightarrow x \in [-1,1]$.

- (2) $0 \le \sin x \le 1 \Rightarrow x \in [2n\pi, (2n+1)\pi], n \in \mathbb{Z}$.
- (3) $0 \le x + a \le 1 \Rightarrow x \in [-a, 1-a]$.

$$(4) \begin{cases} 0 \leq x + a \leq 1, \\ 0 \leq x - a \leq 1 \end{cases} \Rightarrow \text{$ \leq 0 < a \leq \frac{1}{2}$ iff, $x \in [a, 1 - a]$; $\text{$ \leq a > \frac{1}{2}$ iff, $\text{$ \in \mathbb{Z}$ iff, $ iff, $\text{$ \in \mathbb{Z}$ iff, $\text{$$ iff, $\text{$ \in \mathbb{Z}$ iff, $\text{$ \in \mathbb{Z}$ iff, $\text{$$ iff, $\text{$ \in \mathbb{Z}$ iff, $\text{$$ iff, $\text{$$ iff, $$ iff, $\text{$$ iff, $ iff, $\text{$$ iff, $\text{$$ iff, $\text{$$ iff, $$ iff, $$ iff, $$ iff, $$ iff, $\text{$$ iff, $$ iff,$$

2 13. 设

$$f(x) = \begin{cases} 1, & |x| < 1, \\ 0, & |x| = 1, \ g(x) = e^x, \\ -1, & |x| > 1, \end{cases}$$

求 f[g(x)] 和 g[f(x)],并作出这两个函数的图形.

解 当
$$0 \le t \le 1$$
 时, $S(t) = \frac{1}{2}t^2$,

当
$$1 < t \le 2$$
 时, $S(t) = 1 - \frac{1}{2}(2 - t)^2 = -\frac{1}{2}t^2 + 2t - 1$,

当 t > 2 时, S(t) = 1.

故

$$S(t) = \begin{cases} \frac{1}{2}t^2, & 0 \le t \le 1, \\ -\frac{1}{2}t^2 + 2t - 1, & 1 < t \le 2, \\ 1, & t > 2. \end{cases}$$

- № 16. 求联系华氏温度(用 F 表示)和摄氏温度(用 C 表示)的转换公式,并求
 - (1) 90°F的等价摄氏温度和-5°C的等价华氏温度;
 - (2) 是否存在一个温度值,使华氏温度计和摄氏温度计的读数是一样的?如果存在,那么该温度值是多少?

解 设F = mC + b,其中m, b均为常数.

因为 F = 32°相当于 C = 0°, F = 212°相当于 C = 100°, 所以

$$b = 32$$
, $m = \frac{212 - 32}{100} = 1.8$.

故 F = 1.8C + 32 或 $C = \frac{5}{9}(F - 32)$.

(1)
$$F = 90^{\circ}$$
, $C = \frac{5}{9}(90 - 32) \approx 32.2^{\circ}$.

$$C = -5^{\circ}$$
, $F = 1.8 \times (-5) + 32 = 23^{\circ}$.

(2) 设温度值 t 符合题意,则有

$$t = 1.8t + 32$$
, $t = -40$.

即华氏-40°恰好也是摄氏-40°.

2017. 已知 $Rt \triangle ABC$ 中,直角边 AC、BC 的长度分别为 20、15,动点 P 从 C 出发,沿三角形边界按 $C \rightarrow B \rightarrow A$ 方向移动;动点 Q 从 C 出发,沿三角形边界按 $C \rightarrow A \rightarrow B$ 方向移动,移动到两动点相遇时为止,且点 Q 移动的速度是点 P 移动的速度的 2 倍. 设动点 P 移动的距离为 x, $\triangle CPQ$ 的面积为 y,试求 y 与 x 之间的函数关系.

解 因为
$$AC = 20$$
, $BC = 15$, 所以, $AB = \sqrt{20^2 + 15^2} = 25$.

由 20 < 2 · 15 < 20 + 25 可知,点 P,Q 在斜边 AB 上相遇.

令 x + 2x = 15 + 20 + 25, 得 x = 20. 即当 x = 20 时, 点 P Q 相遇. 因此, 所求函数的 定义域为(0,20).

(1) 当0<x<10时,点P在CB上,点Q在CA上(图1-5).

② 大学VIP

由|CP| = x, |CQ| = 2x,得

$$y = x^2$$
.

(2) 当10≤x≤15 时,点 P在CB上,点 Q在AB上(图1-6).

$$|CP| = x$$
, $|AQ| = 2x - 20$.

设点 Q 到 BC 的距离为 h,则

$$\frac{h}{20} = \frac{|BQ|}{25} = \frac{45 - 2x}{25}$$

得 $h = \frac{4}{5}(45-2x)$. 故

$$y = \frac{1}{2}xh = \frac{2}{5}x(45 - 2x) = -\frac{4}{5}x^2 + 18x.$$

(3) 当 15 < x < 20 时,点 P、Q 都在 AB 上(图 1-7).

|BP| = x - 15, |AQ| = 2x - 20, |PQ| = 60 - 3x.

设点 C 到 AB 的距离为 h',则

$$h' = \frac{15 \cdot 20}{25} = 12,$$

得

$$y = \frac{1}{2} |PQ| \cdot h' = -18x + 360.$$

综上可得

$$y = \begin{cases} x^2, & 0 < x < 10, \\ -\frac{4}{5}x^2 + 18x, & 10 \le x \le 15, \\ -18x + 360, & 15 < x < 20. \end{cases}$$

№ 18. 利用以下美国人口普查局提供的世界人口数据^①以及指数模型来推测 2020 年的世界人口。

① 这里世界人口数据是指每年年中的人口数。

(6) 收敛,
$$\lim_{n\to\infty} \frac{2^n-1}{3^n} = 0$$
.

$$(7) \left\{ n - \frac{1}{n} \right\}$$
发散.

(8)
$$\left\{ \left[(-1)^n + 1 \right] \frac{n+1}{n} \right\}$$
 发散.

- 2. (1) 数列的有界性是数列收敛的什么条件?
 - (2) 无界数列是否一定发散?
 - (3) 有界数列是否一定收敛?

解 (1) 必要条件.

- (2) 一定发散.
- (3) 未必一定收敛,如数列 (-1)" 有界,但它是发散的.
- **23.** 下列关于数列 $\{x_n\}$ 的极限是a的定义,哪些是对的,哪些是错的?如果是对的,试说明理由;如果是错的,试给出一个反例.
 - (1) 对于任意给定的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}_+$, 当 n > N 时, 不等式 $x_n a < \varepsilon$ 成立;
 - (2) 对于任意给定的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}_+$, 当 n > N 时, 有无穷多项 x_n , 使不等式 $|x_n a| < \varepsilon$ 成立;
 - (3) 对于任意给定的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}_+$, 当 n > N 时, 不等式 $|x_n a| < c\varepsilon$ 成立, 其中 c 为某个正常数;
 - (4) 对于任意给定的 $m \in \mathbb{N}_+$, 存在 $N \in \mathbb{N}_+$, 当 n > N 时 , 不等式 $|x_n a| < \frac{1}{m}$ 成立.

(2) 错误. 如对数列

$$x_n = \begin{cases} n \,, & n = 2k - 1 \,, \\ 1 \, - \, \frac{1}{n} \,, & n = 2k \,, \end{cases} \qquad k \in \mathbb{N}_+ \,, \quad a = 1 \,.$$

对任给的 $\varepsilon > 0$ (设 $\varepsilon < 1$), 存在 $N = \left[\frac{1}{\varepsilon}\right]$, 当 n > N 且 n 为偶数时, $|x_n - a| = \frac{1}{n} < \varepsilon$ 成立, 但 $|x_n|$ 的极限不存在.

(3) 正确. 对任给的 $\varepsilon > 0$, 取 $\frac{1}{c}\varepsilon > 0$, 按假设, 存在 $N \in \mathbb{N}_+$, 当 n > N 时, 不等式 $|x_n - a| < c \cdot \frac{1}{c}\varepsilon = \varepsilon$ 成立.

- (4) 正确. 对任给的 $\varepsilon > 0$, 取 $m \in \mathbb{N}_+$, 使 $\frac{1}{m} < \varepsilon$. 按假设, 存在 $N \in \mathbb{N}_+$, 当 n > N 时, 不等式 $|x_n a| < \frac{1}{m} < \varepsilon$ 成立.
- **2 *4.** 设数列 $|x_n|$ 的一般项 $x_n = \frac{1}{n}\cos\frac{n\pi}{2}$. 问 $\lim_{n\to\infty}x_n = ?$ 求出 N , 使当 n>N 时 , x_n 与其极限之差的绝对值小于正数 ε . 当 $\varepsilon=0$. 001 时 , 求出数 N.

解 $\lim_{n\to\infty} x_n = 0$. 证明如下: 因为

$$|x_n - 0| = \left| \frac{1}{n} \cos \frac{n\pi}{2} \right| \leq \frac{1}{n}$$

要使 $|x_n-0|<\varepsilon$, 只要 $\frac{1}{n}<\varepsilon$, 即 $n>\frac{1}{\varepsilon}$. 所以 $\forall \, \varepsilon>0$ (不妨设 $\varepsilon<1$), 取 $N=\left[\frac{1}{\varepsilon}\right]$, 则 当 n>N 时, 就有 $|x_n-0|<\varepsilon$.

当 $\varepsilon=0.001$ 时,取 $N=\left[\frac{1}{\varepsilon}\right]=1\,000$. 即 若 $\varepsilon=0.001$,只要 $n>1\,000$,就 有 $|x_n-0|<0.001$.

≥ *5. 根据数列极限的定义证明:

(1)
$$\lim_{n\to\infty} \frac{1}{n^2} = 0;$$
 (2) $\lim_{n\to\infty} \frac{3n+1}{2n+1} = \frac{3}{2};$

(3)
$$\lim_{n\to\infty} \frac{\sqrt{n^2 + a^2}}{n} = 1$$
; (4) $\lim_{n\to\infty} 0$. $\underbrace{999\cdots 9}_{n\uparrow} = 1$.

证 (1) 因为要使 $\left| \frac{1}{n^2} - 0 \right| = \frac{1}{n^2} \langle \varepsilon, 只要 n \rangle \frac{1}{\sqrt{\varepsilon}}$, 所以 $\forall \varepsilon > 0$ (不妨设 $\varepsilon < 1$),

取
$$N = \left[\frac{1}{\sqrt{\varepsilon}}\right]$$
,则当 $n > N$ 时,就有 $\left|\frac{1}{n^2} - 0\right| < \varepsilon$,即 $\lim_{n \to \infty} \frac{1}{n^2} = 0$.

(2) 因为
$$\left| \frac{3n+1}{2n+1} - \frac{3}{2} \right| = \frac{1}{2(2n+1)} < \frac{1}{4n}$$
,要使 $\left| \frac{3n+1}{2n+1} - \frac{3}{2} \right| < \varepsilon$,只要 $\frac{1}{4n} < \varepsilon$,即

$$n>\frac{1}{4\varepsilon}$$
, 所以 $\forall \varepsilon > 0$ (不妨设 $\varepsilon < \frac{1}{4}$), 取 $N=\left[\frac{1}{4\varepsilon}\right]$, 则 当 $n>N$ 时, 就 有

$$\left|\frac{3n+1}{2n+1}-\frac{3}{2}\right|<\varepsilon, \exists \lim_{n\to\infty}\frac{3n+1}{2n+1}=\frac{3}{2}.$$

注 本题中所采用的证明方法是: 先将 $|x_n-a|$ 等价变形, 然后适当放大, 使 N 容易由放大后的量小于 ε 的不等式中求出. 这在按定义证明极限的问题中是经常采用的.

(3) 当 a=0 时,所给数列为常数列,显然有此结论.以下设 $a\neq 0$. 因为

$$\left| \frac{\sqrt{n^2 + a^2}}{n} - 1 \right| = \frac{\sqrt{n^2 + a^2} - n}{n} = \frac{a^2}{n(\sqrt{n^2 + a^2} + n)} < \frac{a^2}{2n^2},$$

之 大学VIP

习题1-3

函数的极限

№ 1. 对图 1-8 所示的函数 f(x), 求下列极限, 如极限不存在, 说明理由.

- (1) $\lim f(x)$;
- (2) $\lim f(x)$;
- (3) $\lim_{x \to a} f(x)$.

解 (1) $\lim_{x \to \infty} f(x) = 0$.

- (2) $\lim_{x \to 0} f(x) = -1$.
- (3) $\lim_{x \to 0} f(x)$ 不存在,因为 $f(0^+) \neq f(0^-)$.

№ 2. 对图 1-9 所示的函数 f(x), 下列陈述中哪些是对的,哪些是错的?

- (1) lim f(x) 不存在;
- (2) $\lim f(x) = 0$;
- (3) $\lim_{x \to 0} f(x) = 1$;
- (4) $\lim f(x) = 0$;
- (5) lim f(x) 不存在;
- (6) 对每个 $x_0 \in (-1,1)$, $\lim_{x \to 0} f(x)$ 存在.

解 (1) 错, $\lim_{x \to \infty} f(x)$ 存在与否,与f(0)的值无关.事实上, $\lim_{x \to \infty} f(x) = 0$.

- (2) 对,因为f(0+)=f(0-)=0.
- (3) 错, $\lim f(x)$ 的值与f(0)的值无关.
- (4) 错, $f(1^+)=0$,但 $f(1^-)=-1$,故 $\lim f(x)$ 不存在.
- (5) 对,因为 $f(1^-) \neq f(1^+)$.
- (6) 对.

≥ 3. 对图 1-10 所示的函数,下列陈述中哪些是对的,哪些是错的?

文 大学VIP

- 图 1-10
- (1) $\lim f(x) = 1$;
- (2) lim f(x)不存在;
- (3) $\lim_{x \to 0} f(x) = 0$;
- (4) $\lim f(x) = 1$;
- (5) $\lim f(x) = 1$;
- (6) $\lim f(x) = 0$;
- (7) $\lim f(x) = 0$;
- (8) $\lim f(x) = 0$.
- 解 (1) 对.
- (2) 对,因为当x < -1时,f(x)无定义.
- (3) 对,因为f(0+)=f(0-)=0.
- (4) 错, lim f(x)的值与f(0)的值无关.
- (5) 对.
- (6) 对.
- (7) 对.
- (8) 错,因为当x>2时,f(x)无定义,f(2*)不存在.

2. 求 $f(x) = \frac{x}{x}$, $\varphi(x) = \frac{|x|}{x}$ 当 $x \to 0$ 时的左、右极限,并说明它们在 $x \to 0$ 时的极限是 否存在.

$$\underset{x\to 0^{-}}{\text{ im }} f(x) = \lim_{x\to 0^{+}} \frac{x}{x} = \lim_{x\to 0^{+}} 1 = 1, \lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{-}} \frac{x}{x} = \lim_{x\to 0^{-}} 1 = 1.$$

因为 $\lim_{x \to \infty} f(x) = 1 = \lim_{x \to \infty} f(x)$,所以 $\lim_{x \to \infty} f(x) = 1$.

$$\lim_{x\to 0^+} \varphi(x) = \lim_{x\to 0^+} \frac{|x|}{x} = \lim_{x\to 0^+} \frac{x}{x} = 1, \lim_{x\to 0^+} \varphi(x) = \lim_{x\to 0^+} \frac{|x|}{x} = \lim_{x\to 0^+} \frac{-x}{x} = -1.$$

因为 $\lim \varphi(x) \neq \lim \varphi(x)$,所以 $\lim \varphi(x)$ 不存在.

№ *5. 根据函数极限的定义证明:

$$(1) \lim_{x \to 3} (3x - 1) = 8$$

(1)
$$\lim_{x \to 1} (3x - 1) = 8;$$
 (2) $\lim_{x \to 2} (5x + 2) = 12;$

若 $f(x_0)<0$, 因为 f(x) 在 x_0 连续,所以取 $\varepsilon=-\frac{1}{2}f(x_0)>0$, $\exists \delta>0$, 当 $x\in$

$$U(x_0,\delta)$$
 时,有 | $f(x)$ - $f(x_0)$ | < - $\frac{1}{2}f(x_0)$,即

$$\frac{3}{2}f(x_0) < f(x) < \frac{1}{2}f(x_0) < 0.$$

因此,不论 $f(x_0)>0$ 或 $f(x_0)<0$,总存在 x_0 的某一邻域 $U(x_0)$,当 $x\in U(x_0)$ 时, $f(x)\neq 0$.

2 7. 设

$$f(x) = \begin{cases} x, & x \in \mathbf{Q}, \\ 0, & x \in \mathbf{R} \setminus \mathbf{Q}. \end{cases}$$

证明:(1) f(x) 在 x = 0 连续:

(2) f(x) 在非零的 x 处都不连续.

证 (1)
$$\forall \varepsilon > 0$$
, 取 $\delta = \varepsilon$, 则当 $|x - 0| = |x| < \delta$ 时,

$$|f(x) - f(0)| = |f(x)| \le |x| < \varepsilon,$$

故 $\lim_{x\to 0} f(x) = f(0)$,即 f(x) 在 x = 0 连续.

(2) 我们证明: $\forall x_0 \neq 0, f(x)$ 在 x_0 不连续.

若
$$x_0 = r \neq 0$$
, $r \in \mathbb{Q}$, 则 $f(x_0) = f(r) = r$.

分别取一有理数列 $|r_n|:r_n\to r(n\to\infty)$, $r_n\neq r$; 取一无理数列 $|s_n|:s_n\to r(n\to\infty)$, 则

$$\lim f(r_n) = \lim r_n = r, \lim f(s_n) = \lim 0 = 0,$$

而 $r\neq 0$,由函数极限与数列极限的关系知 $\lim f(x)$ 不存在,故f(x)在r处不连续.

若 $x_0 = s, s \in \mathbb{R} \setminus \mathbb{Q}$. 同理可证: $f(x_0) = f(s) = 0$, 但 $\lim_{x \to s} f(x)$ 不存在,故 f(x) 在 s 处不连续.

■ 8. 试举出具有以下性质的函数 f(x)的例子:

x=0, ± 1 , ± 2 , $\pm \frac{1}{2}$, \cdots , $\pm n$, $\pm \frac{1}{n}$, \cdots 是 f(x) 的所有间断点,且它们都是无穷间断点.

解 设 $f(x) = \cot(\pi x) + \cot\frac{\pi}{x}$, 显然f(x) 具有所要求的性质.

习题1-9

连续函数的运算与初等函数的连续性

2. 1. 求 函 数 $f(x) = \frac{x^3 + 3x^2 - x - 3}{x^2 + x - 6}$ 的 连 续 区 间, 并 求 极 限 $\lim_{x \to 0} f(x)$, $\lim_{x \to 0} f(x)$ 及 $\lim_{x \to 0} f(x)$.

公 大学VIP

解 f(x) 在 $x_1 = -3$, $x_2 = 2$ 处无意义, 所以这两个点为间断点, 此外函数到处 连续,连续区间为(-∞,-3),(-3,2),(2,+∞).

因为

$$f(x) = \frac{x^3 + 3x^2 - x - 3}{x^2 + x - 6} = \frac{(x^2 - 1)(x + 3)}{(x + 3)(x - 2)} = \frac{x^2 - 1}{x - 2},$$

所以

$$\lim_{x\to 0} f(x) = \frac{1}{2}, \quad \lim_{x\to -3} f(x) = -\frac{8}{5}, \quad \lim_{x\to 2} f(x) = \infty.$$

2. 设函数 f(x) 与 g(x) 在点 x₀ 连续,证明函数

$$\varphi(x) = \max |f(x),g(x)|, \quad \psi(x) = \min |f(x),g(x)|$$

在点 x_0 也连续.

$$\widetilde{w} = \varphi(x) = \max |f(x), g(x)| = \frac{1}{2} [f(x) + g(x) + |f(x) - g(x)|],$$

$$\psi(x) = \min |f(x), g(x)| = \frac{1}{2} [f(x) + g(x) - |f(x) - g(x)|].$$

又,若f(x)在点 x_0 连续,则|f(x)|在点 x_0 也连续;由连续函数的和、差仍连续, 故 $\varphi(x)$ 、 $\psi(x)$ 在点 x_0 也连续.

№ 3. 求下列极限:

(1)
$$\lim_{x \to 0} \sqrt{x^2 - 2x + 5}$$
;

求下列极限:
(1)
$$\lim_{x\to 0} \sqrt{x^2 - 2x + 5}$$
; (2) $\lim_{\alpha \to \frac{\pi}{4}} (\sin 2\alpha)^3$;

(3)
$$\lim_{x \to \frac{\pi}{6}} \ln(2\cos 2x);$$

(4)
$$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$$
;

(5)
$$\lim_{x\to 1} \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$$
;

(6)
$$\lim_{x\to a} \frac{\sin x - \sin \alpha}{x - \alpha}$$
;

(7)
$$\lim_{x\to +\infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x})$$
;

(7)
$$\lim_{x \to +\infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x});$$
 (8) $\lim_{x \to 0} \frac{\left(1 - \frac{1}{2}x^2\right)^{\frac{1}{3}} - 1}{x \ln(1 + x)}.$

fig. (1)
$$\lim_{x\to 0} \sqrt{x^2 - 2x + 5} = \sqrt{\lim_{x\to 0} (x^2 - 2x + 5)} = \sqrt{5}$$
.

(2)
$$\lim_{\alpha \to \frac{\pi}{4}} (\sin 2\alpha)^3 = (\lim_{\alpha \to \frac{\pi}{4}} \sin 2\alpha)^3 = (\sin \frac{\pi}{2})^3 = 1.$$

(3)
$$\lim_{x \to \frac{\pi}{6}} \ln(2\cos 2x) = \ln(\lim_{x \to \frac{\pi}{6}} 2\cos 2x) = \ln(2\cos \frac{\pi}{3}) = \ln 1 = 0.$$

(4)
$$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x} = \lim_{x\to 0} \frac{1}{\sqrt{x+1}+1} = \frac{1}{2}$$
.

(5)
$$\lim_{x \to 1} \frac{\sqrt{5x-4} - \sqrt{x}}{x-1} = \lim_{x \to 1} \frac{4}{\sqrt{5x-4} + \sqrt{x}} = 2.$$

 $|MK| \rightarrow 0 (x \rightarrow +\infty) \Rightarrow |MK_1| \rightarrow 0 (x \rightarrow +\infty)$,

即

$$\lim [f(x) - (kx + b)] = 0, \tag{1}$$

从而

$$\lim_{x \to \infty} [f(x) - kx] = \lim_{x \to \infty} [f(x) - (kx + b)] + b = 0 + b = b, \tag{2}$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} [f(x) - kx] + k = 0 + k = k.$$
 (3)

反之,若(2)、(3)成立,则(1)成立,即L:y=kx+b是曲线 y=f(x)的渐近线.

 2° 若 k=0,设 L:y=b 是曲线 y=f(x) 的水平渐近线,如图 1-19 所示. 按定义有 $|MK| \to 0$ $(x \to +\infty)$,而 |MK| = |f(x) - b|,故有

图 1-19

$$\lim_{x \to \infty} f(x) = b, \tag{4}$$

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{1}{x} \cdot \lim_{x \to \infty} f(x) = 0. \tag{5}$$

反之,若(4)、(5)成立,即有 $|MK| = |f(x) - b| \rightarrow 0(x \rightarrow + \infty)$,故 y = b 是曲线 y = f(x)的水平渐近线.

(2) 因为

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(2x-1)}{x} e^{\frac{1}{x}} = 2$$
,

$$b = \lim_{x \to \infty} [f(x) - 2x] = \lim_{x \to \infty} [(2x - 1)e^{\frac{1}{x}} - 2x] = \lim_{x \to \infty} 2x(e^{\frac{1}{x}} - 1) - \lim_{x \to \infty} e^{\frac{1}{x}}$$
$$= 2\lim_{x \to \infty} \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} - 1 = 2\lim_{x \to 0} \frac{e^{x} - 1}{x} - 1 = 2\ln e - 1 = 1,$$

所以,所求曲线的斜渐近线为 y = 2x + 1.