OdimH5 User's Guide

Version 2.12 December 29, 2010

This document is a user's guide on how to use OdimH5. It's still under development.

OdimH5 is a console utility designed to work on radar data files. It provides XML descriptor handler, HDF5 converter, FTP and Baltrad feeder mode.

1 Introduction

1.1 Overview

The OdimH5 is a Java-based tool working on meteorological radar data. It allows users to create an XML descriptor which contains all major information require to create a HDF5 file. The application also allows users to convert specific radar data to HDF5 format based on the descriptor. For Baltrad users it provides automatic online mode which feeds BaltradDex with actual data.

The application was implemented using the Java $^{\rm TM}$ 2 Platform, which is machine-independent.

HDF libraries

This release was built and tested with HDF5-1.8.4 Patch 1 with HDF5 1.6 compatibility flag. For information on new features in HDF5 Release 1.8.0 and format compatibility considerations, please visit

http://www.hdfgroup.org/HDF5/doc/ADGuide/CompatFormat180.html.

Platforms

This release was built and tested for the following platforms:

- Linux
- Linux x86_64
- Windows

1.2 Supported radar systems

This version can work with limited radar systems and products listed below.

Platforms

• Gematronik RAINBOW

Type of product

- Polar Volume Scan (ver. 5.2x and 5.3x)
 - dBZ Reflectivity
 - uPhiDP Differential Phase Shift
 - KDP Specific Differential Phase Shift
 - RhoHV Correlation Coefficient
- Cartesian image and composite (ver. 5.2x)
 - PPI Plan Position Indicator
 - CAPPI Constant Altitude PPI
 - MAX Maximum Display
 - EHT Echo Height
 - SRI Surface Rainfall Intensity
 - PAC Precipitation Accumulation
 - VIL Vertical Integrated Liquid
 - HSHEAR Horizontal Shear
- Vertical profile (Not implemented)
- Range-height indicator
 - RHI Range Height Indicator

1.3 Features

- Convert a single file to HDF5.
- Convert a file from HDF5 to Rainbow format.
- Convert and send a file via FTP in continuous mode.
- Convert and send a file to Baltrad Dex in continuous mode.

2 Getting Started

2.1 Installation

To get newest version of OdimH5 use Git a distributed revision control system and clone project from baltrad server. To do this use following command

```
git clone gitosis@git.baltrad.eu:OdimH5.git
```

or download it from Opera FTP server (ftppro.knmi.nl) and extract. After downloading use Apache Ant to compile sources.

```
ant -Dprefix=/my/install/dir install
```

```
Administrator privileges might be needed
```

Program will be installed in /my/install/dir. If folder path parameter is not provided Odim will be installed in default folder /opt/OdimH5. Program uses HDF5 libraries, which are mostly included to the .jar file. However JNI interfaces files need separate installation.

In Linux: libjhdf.so and libjhdf5.so files which are provided with main program (lib/linux) must be included to the LD_LIBRARY_PATH.

In Windows: jhdf.dll and jhdf5.dll files which are provided with main program (lib/win) must be included to system environment variables.

2.2 Settings

The program reads options from options.xml file stored in the main folder. The following options can be provided:

<radar></radar>	Every radar is represented by this element. The attribute
	name should be 3-letter radar name, same as one stored in
	raw volume file e.g. name="SWI". This section contains one
	obligated tag: WMO_id, and following extra tags: file_name,
	directory and nrays
<wmo_id></wmo_id>	WMO block and station number
<file_name></file_name>	File name prefix compliant with ODIM file naming conven-
	tion: pflag_productidentifier_oflag_originator For
	details see Opera document WD-2010-02.
<directory></directory>	Path of the directory where radar volume data are stored.
	This directory will be watched in feeder mode by appli-
	cation, and every new file in the directory will awake the
	process of conversion.
<nrays></nrays>	Number of rays that are allowed, if volume contains more
	then that number, extra rays are discard.

<baltrad></baltrad>	Section containing BALTRAD options for server and
	sender.
<server></server>	Address of HTTP server.
<sender></sender>	Sender name.
<ftp></ftp>	Section containing FTP options for address, login and
	password.
<address></address>	Address of FTP server.
<login></login>	Login to FTP server.
<pre><password></password></pre>	Password to FTP server.

Example options.xml file:

```
<?xml version=\"1.0\" ?>
<!-- options -->
<options>
<radar name="BRZ">
<platform>RAINBOW</platform>
<WMO_id>12568</WMO_id>
<file_name>T_PAGZ46_C_SOWR_</file_name>
<directory>/home/volumes/BRZ_250_Z.vol</directory>
<nrays>360</nrays>
</radar>
<baltrad>
<server>http://172.30.9.34:8084/BaltradDex/transmitter.htm</server>
<sender>Baltrad.IMGW.pl</sender>
</baltrad>
<ftp>
<address>ftp.address</address>
<login>login</login>
<password>pass</password>
</ftp>
</options>
```

2.3 Convertion mode

 $\tt OdimH5$ provides two conversion modes. First one creates XML descriptor, that can be used later to create HDF file. Second mode converts raw data directly to HDF5.

Prepare descriptor

Descriptor is an XML file, which structure corresponds to HDF5 file. To prepare descriptor use the following parameters: $\frac{1}{2}$

-i Input file's path.

Program can work with only one file simultaneously.

-o Output file's path.

It is suggested to use .xml filename extension.

-p Radar platform's name.

At the moment only Gematronik's RAINBOW software is supported.

-f Product format.

Use one of the formats listed above according to input data type.

-v Verbose mode.

It is optional and displays status of progress of program work.

Example of use:

```
java -jar OdimH5.jar -i input.ppi -o ppi.xml -p RAINBOW -f IMAGE -v
```

Prepare HDF5 file from descriptor

It requires XML descriptor as an input file. To prepare HDF5 use the following parameters:

-i Input file's path.

Program can work with only one file simultaneously.

-o Output file's path.

It is suggested to use .h5 filename extension. If no output file name provided program will generate one using ODIM convention, or if no prefix in options.xml were set program will use input file name with .h5 filename extension.

-v Verbose mode.

It is optional and displays status of progress of program work.

Example of use:

```
java -jar OdimH5.jar -i ppi.xml -o output.h5
```

Prepare HDF5 file directly from raw file

It has the same parameters as descriptor preparation mode, but output file name has to end with .h5. For volumes -o parameter can be skipped, application will convert file directly to HDF5 using default name, which will be ODIM name when proper parameter will be provided in options.xml file or standard date-format name otherwise.

Examples of use:

```
java -jar OdimH5.jar -i input.ppi -o ppi.h5 -p RAINBOW -f IMAGE
java -jar OdimH5.jar -i input.vol -p RAINBOW -f PVOL
```

Prepare Rainbow volume file from HDF5 file

Input filename has to have a .h5 or .hdf extension, and output filename has to have .vol extension.

For example:

```
java -jar OdimH5.jar -i input.h5 -o output.vol -p RAINBOW -f PVOL
```

2.4 Baltrad Feeder

OdimH5 allows users to send HDF5 files into BaltradDex system. To send a file use following command:

```
java -jar OdimH5.jar -i input.h5 -r Brzuchania -s IMGW.pl
-a http://172.30.9.34:8084/BaltradDex/dispatch.htm
```

It sends a single HDF5 file to the server but it can work as a continuous Baltrad feeder as well with online conversion to HDF5 format. It works automatically with specific options provided by user.

To run feeder use -c option and provide Baltrad details in options.xml in

baltrad> section.

Example of use:

```
java -jar OdimH5.jar -c
```

2.5 Sending file by FTP

OdimH5 allows users to send HDF5 file using FTP. It works similar to Baltrad feeder. To run FTP feeder use -c option and provide FTP details in options.xml in <ftp> section.

2.6 Help

To display help menu in program use following parameter:

```
java -jar OdimH5.jar -h
```

3 Troubleshooting

Application is in its developing state and have not been tested thoroughly. To report a bug please send information to lukasz.wojtas@imgw.pl

4 Major Improvements and bug fixes

Version 2.6 (Release date: 2010-06-10)

- Added Baltrad feeder.
- Added direct HDF5 converter.

Version 2.11 (Release date: 2010-11-15)

- Sending files by FTP.
- $\bullet \,$ RAINBOW 5.31.1 format supported.

Version 2.12 (Release date: 2010-12-29)

• HDF5 to Rainbow format conversion.