Package 'temStaR'

July 5, 2023

July 3, 2023
Title Tempered Stable Distribution
Version 0.90
Author Aaron Y.S. Kim [aut, cre]
Maintainer Aaron Y.S. Kim <aaron.kim@girininst.com></aaron.kim@girininst.com>
Description This package provides useful tools to use the multivariate normal tempered stable distribution and process
License `use_mit_license()`
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.1
Imports functional, nloptr, pracma, spatstat, evmix, Matrix, mvtnorm, doParallel, foreach Suggests functional,
nloptr, pracma,
spatstat,
evmix,
Matrix, mvtnorm, doParallel, foreach
R topics documented:
changeCovMtx2Rho 2 chf_NTS 3 chf_stdNTS 4 copulaStdNTS 5

2 changeCovMtx2Rho

evaretnts	
evarGauss	
evarmarginalmnts	
evarnts	
dBeta	3
dcopulaStdNTS	
dCVaRstdNTS_numint	
dCVaR_numint)
dinvCdf_stdNTS_int	
dmarginalmnts)
dmnts	
dnts	
fitmnts	
fitmnts_par	
fitnts	5
fitstdnts	
fitstdntsFixAlphaThata	3
gensamplepathnts	3
getGammaVec)
getPortNTSParam)
mportantSamplining	Ĺ
pnts	Ĺ
mctCVaR_MNTS	2
mctStdDev	ŀ
mctVaR_MNTS	ŀ
moments_NTS	5
moments_stdNTS	7
pmarginalmnts	
omnts	3
onts)
portfolioCVaRETmnts)
portfolioCVaRmnts	Ĺ
portfolioVaRETmnts	2
portfolioVaRmnts	2
qmarginalmnts	3
qnts	ŀ
rmnts	5
mts	ó
setPortfolioParam	7
VaRetnts	3
)

Description

Change covariance matrix to Rho matrix.

chf_NTS 3

Usage

changeCovMtx2Rho(CovMtx, alpha, theta, betaVec, PDflag = TRUE)

chf_NTS

chf_NTS

Description

chf_NTS calculates Ch.F of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If a time parameter value is given, it calculates Ch.F of the NTS profess $\phi(u) = E[\exp(iu(X(t+s)-X(s)))] = \exp(t\log(E[\exp(iuX(1))]))$, where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
chf_NTS(u, param)
```

Arguments

u An array of u

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For NTS process case it is a

vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$.

Value

Characteristic function of the NTS distribution

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_NTS(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
```

4 chf_stdNTS

```
ntsparam <- c(alpha, theta, beta, gamma, mu, dt) u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101) phi <- chf_NTS(u, ntsparam)
```

chf_stdNTS

chf stdNTS

Description

chf_stdNTS calculates Ch.F of the standard NTS distribution with parameters (α, θ, β) . If a time parameter value is given, it calculates Ch.F of the standard NTS profess $\phi(u) = E[\exp(iu(X(t+s)-X(s)))] = \exp(t\log(E[\exp(iuX(1))]))$, where X is the standard NTS process generated by the standard NTS distribution with parameters (α, θ, β) .

Usage

```
chf_stdNTS(u, param)
```

Arguments

u An array of u

ntsparam A vector of the standard NTS parameters (α, θ, β) . For the standard NTS pro-

cess case it is a vector of parameters $(\alpha, \theta, \beta, t)$.

Value

Characteristic function of the standard NTS distribution

```
#' library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)</pre>
```

copulaStdNTS 5

copulaStdNTS	copulaStdNTS
Coparastantis	copiiiasiaris

Description

copulaStdNTS calculates the stdNTS copula values

Usage

```
copulaStdNTS(u, st, subTS = NULL)
```

References

Y. S. Kim, D. Volkmann (2013), Normal Tempered Stable Copula, Applied Mathematics Letters, 26(7), 676-680 https://www.sciencedirect.com/science/article/pii/S0893965913000384

cvaretnts cvaretnts	cvaretnts	cvaretnts		
---------------------	-----------	-----------	--	--

Description

cvaretnts calculates Conditional Value at Risk (CVaR, or expected shortfall ES) of the NTS market model with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates CVaR of the standard NTS distribution with parameter (α, θ, β)

Usage

```
cvaretnts(eps, ntsparam)
```

Arguments

eps the significant level for CVaR. Real value between 0 and 1.

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. A vector of the standard NTS

parameters (α, θ, β) .

Value

CVaReturn of the NTS distribution.

References

- Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2010), Computing VaR and AVaR in infinitely divisible distributions, Probability and Mathematical Statistics, 30 (2), 223-245.
- S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011), Financial Models with Levy Processes and Volatility Clustering, John Wiley & Sons

6 cvarmarginalmnts

Examples

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow c(0.01, 0.05)
q <- cvaretnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05)
q <- cvaretnts(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow c(0.01, 0.05)
q <- cvaretnts(u, ntsparam)</pre>
```

cvarGauss

cvarGauss

Description

Calculate the CVaR for the normal distributed market model. Developer's version.

Usage

```
cvarGauss(eta, mu = 0, sigma = 1)
```

cvarmarginalmnts

cvarmarginalmnts

Description

cvarmarginalmnts calculates the CVaR of the n-th element of the multivariate NTS distributed random variable.

cvarnts 7

Usage

```
cvarmarginalmnts(eta, n, st)
```

Arguments

eta	the significant level for CVaR. Real value between 0 and 1.
n	the n -th element to be calculated.
st	Structure of parameters for the n-dimensional NTS distribution.

cvarnts *cvarnts*

Description

cvarnts calculates Conditional Value at Risk (CVaR, or expected shortfall ES) of the NTS market model with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates CVaR of the standard NTS distribution with parameter (α, θ, β)

Usage

```
cvarnts(eps, ntsparam)
```

Arguments

eps the significant level for CVaR. Real value between 0 and 1.

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. A vector of the standard NTS

parameters (α, θ, β) .

Value

CVaR of the NTS distribution.

References

- Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2010), Computing VaR and AVaR in infinitely divisible distributions, Probability and Mathematical Statistics, 30 (2), 223-245.
- S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011), Financial Models with Levy Processes and Volatility Clustering, John Wiley & Sons

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
u <- c(0.01,0.05)
q <- cvarnts(u, ntsparam)

alpha <- 1.2
theta <- 1</pre>
```

8 dcopulaStdNTS

```
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05)
q \leftarrow cvarnts(u, ntsparam)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
u <- c(0.01,0.05)
q <- cvarnts(u, ntsparam)</pre>
```

dBeta

dBeta

Description

The first derivative of the beta. Developer's version.

Usage

```
dBeta(n, w, betaArray, covMtx)
```

dcopulaStdNTS

dcopulaStdNTS

Description

 ${\tt dcopulaStdNTS}\ calculates\ density\ of\ the\ stdNTS\ copula.$

Usage

```
dcopulaStdNTS(u, st, subTS = NULL)
```

References

Y. S. Kim, D. Volkmann (2013), Normal Tempered Stable Copula, Applied Mathematics Letters, 26(7), 676-680 https://www.sciencedirect.com/science/article/pii/S0893965913000384

dCVaRstdNTS_numint

 ${\tt dCVaRstdNTS_numint}$

 $dCVaRstdNTS_numint$

Description

Calculate the marginal contribution to CVaR for the multivariate stdNTS Model. Developer's version.

Usage

```
dCVaRstdNTS_numint(
  eta,
  alpha,
  theta,
  beta,
  cv = NULL,
  v = NULL,
  N = 20,
  rho = 1e-04
)
```

dCVaR_numint

dCVaR_numint

Description

The first derivative of CVaR for the beta parameter of the stdNTS. Developer's version.

Usage

```
dCVaR_numint(eta, alpha, theta, beta, N = 200, rho = 0.1)
```

dinvCdf_stdNTS_int

 $dinvCdf_stdNTS_int$

Description

The first derivative of inverse CDF for the beta parameter of the stdNTS. Developer's version.

```
dinvCdf_stdNTS_int(eta, x = NULL, alpha, theta, beta)
```

10 dmnts

dmarginalmnts

dmarginalmnts

Description

dmarginalmnts calculates the marginal density of the n-th element of the multivariate NTS distributed random variable.

Usage

```
dmarginalmnts(x, n, st)
```

Arguments

x the x such that $f(x) = \frac{d}{dx}P(X_n < x)$

n the n-th element to be calculated.

st Structure of parameters for the n-dimensional NTS distribution.

dmnts dmnts

Description

dmnts calculates the density of the multivariate NTS distribution: $f(x_1, \cdots, x_n) = \frac{d^n}{dx_1 \cdots dx_n} P(x_n < R_1, \cdots, x_n < R_n)$. The multivariate NTS random vector $R = (R_1, \cdots, R_n)$ is defined

 $R = \mu + diag(\sigma)X$,

where

X follows $stdNTS_n(\alpha, \theta, \beta, \Sigma)$

Usage

```
dmnts(x, st, subTS = NULL)
```

Arguments

x array of the (x_1, \dots, x_n)

st Structure of parameters for the n-dimensional NTS distribution.

st\$ndim: dimension

 ${\tt st\$mu}$: μ mean vector (column vector) of the input data.

 ${\tt st\$sigma}: \sigma$ standard deviation vector (column vector) of the input data.

st\$alpha : α of the std NTS distribution (X). st\$theta : θ of the std NTS distribution (X).

st\$beta : β vector (column vector) of the std NTS distribution (X).

st\$Rho : ρ matrix of the std NTS distribution (X).

numofsample number of samples.

dnts 11

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library("temStaR")
library(mvtnorm)
strPMNTS <- list(ndim = 2,</pre>
              mu = c(0.5, -1.5),
              sigma = c(2, 3),
              alpha = 0.1,
              theta = 3,
              beta = c(0.1, -0.3),
              Rho = matrix( data = c(1.0, 0.75, 0.75, 1.0),
                            nrow = 2, ncol = 2)
dmnts(c(0.6, -1.0), st = strPMNTS)
strPMNTS <- list(ndim = 2,</pre>
                 mu = c(0, 0, 0),
                 sigma = c(1, 1, 1),
                 alpha = 0.1,
                 theta = 3,
                 beta = c(0.1, -0.3, 0),
                 Rho = matrix(
                     data = c(1.0, 0.75, 0.1, 0.75, 1.0, 0.2, 0.1, 0.2, 1.0),
                     nrow = 3, ncol = 3)
pmnts(c(0,0,0), st = strPMNTS)
dmnts(c(0,0,0), st = strPMNTS)
```

dnts

dnts

Description

dnts calculates pdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates pdf of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates pdf of the NTS profess f(x)dx = d(P((X(t+s) - X(s)) < x)), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

```
dnts(xdata, ntsparam)
```

12 dnts

Arguments

xdata An array of x

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a

vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of the standard NTS parameters

 (α, θ, β) .

Value

Density of NTS distribution

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam \leftarrow c(alpha, theta, beta)
x \leftarrow seq(from = -6, to = 6, length.out = 101)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
x <- seq(from = -2, to = 2, by = 0.01)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
x <- seq(from = -0.02, to = 0.02, length.out = 101)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
```

fitmnts 13

Description

```
fitmnts fit parameters of the n-dimensional NTS distribution.
```

```
r=\mu+diag(\sigma)X where X \mbox{ follows } stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
\code{res <- fitmnts(returndata, n)}
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta))}
\code{res <- fitmnts(returndata, n, stdflag = TRUE ) }
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta), stdflag = TRUE)}</pre>
```

Arguments

returndata Raw data to fit the parameters. The data must be given as a matrix form. Each column of the matrix contains a sequence of asset returns. The number of row of the matrix is the number of assets.

Dimension of the data. That is the number of assets.

If α and θ are given, then put those numbers in this parameter. The function fixes those parameters and fits other remaining parameters. If you set alphaNtheta = NULL, then the function fits all parameters including α and θ .

stdflag If you want only standard NTS parameter fit, set this value be TRUE.

Value

Structure of parameters for the n-dimensional NTS distribution.

resmu: μ mean vector of the input data.

 $\operatorname{res} sigma : \sigma$ standard deviation vector of the input data.

res\$alpha: α of the std NTS distribution (X). res\$theta: θ of the std NTS distribution (X). res\$beta: β vector of the std NTS distribution (X).

res\$Rho : ρ matrix of the std NTS distribution (X), which is correlation matrix of epsilon.

res\$CovMtx : Covariance matrix of return data r.

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

14 fitmnts_par

Examples

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(evmix)
library(Matrix)
library(quantmod)
library(temStaR)
getSymbols("^GSPC", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(GSPC$GSPC.Adjusted)</pre>
getSymbols("^DJI", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(DJI$DJI.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
res <- fitmnts( returndata = returndata, n=2 )</pre>
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTC parameter fit.
getSymbols("^DJI", src="yahoo", from = "2016-1-1", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTC", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTC$INTC.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
res <- fitmnts( returndata = returndata,</pre>
                 n = 2,
                 alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
```

fitmnts_par

fitmnts

Description

fitmnts fit parameters of the n-dimensional NTS distribution. A parallel version of fitmnts()

```
fitmnts_par(
  returndata,
  n,
  alphaNtheta = NULL,
  stdflag = FALSE,
  parallelSocketCluster = NULL,
  PDflag = TRUE
)
```

fitnts 15

Examples

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)]
library(evmix)
library(Matrix)
library(foreach)
library(doParallel)
library(quantmod)
library(temStaR)
getSymbols("^GSPC", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(GSPC$GSPC.Adjusted)</pre>
getSymbols("^DJI", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(DJI$DJI.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)),diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
numofcluster <- detectCores()</pre>
cl <- makePSOCKcluster(numofcluster)</pre>
registerDoParallel(cl)
res <- fitmnts_par( returndata = returndata, n=2, parallelSocketCluster = cl )</pre>
stopCluster(cl)
```

fitnts

fitnts

Description

fitnts fit parameters $(\alpha, \theta, \beta, \gamma, \mu)$ of the NTS distribution. This function using the curvefit method between the empirical cdf and the NTS cdf.

Usage

```
\code{fitnts(rawdat)}
\code{fitnts(rawdat), ksdensityflag = 1}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu))}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), ksdensityflag = 1}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), maxeval = 100, ksdensityflag
```

Arguments

rawdat Raw data to fit the parameters.

 $initial param \qquad A \ vector \ of \ initial \ NTS \ parameters. \ This \ function \ uses \ the \ nloptr \ package. \ If$

it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN, that is default. The function cffitnts() may be helpful to find the initial parameters.

maxeval Maximum evaluation number for nloptr. The iteration stops on this many func-

tion evaluations.

16 fitstdnts

ksdensityflag This

This function fit the parameters using the curvefit method between the empirical cdf and the NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = \emptyset , then the empirical cdf is calculated by the empirical cdf.

Value

Estimated parameters

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library(evmix)
library("temStaR")
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2013-1-1", to = "2023-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)</pre>
ret <- diff(log(pr))</pre>
ntsparam <- fitnts(ret)</pre>
Femp = ecdf(ret)
x = seq(from=min(ret), to = max(ret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(ntsparam))
plot(x,ncdf,type = 'l', col = "red")
points(x,cemp, type = '1', col = "blue")
a = density(ret)
p = dnts(x,ntsparam)
plot(x,p,type = 'l', col = "red")
lines(a,type = 'l', col = "blue")
```

fitstdnts

fitstdnts

Description

fitstdnts fit parameters (α, θ, β) of the standard NTS distribution. This function using the curvefit method between the empirical cdf and the standard NTS cdf.

```
\code{fitstdnts(rawdat)}
\code{fitstdnts(rawdat), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta))}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), maxeval = 100, ksdensityflag = 1}
```

fitstdnts 17

Arguments

rawdat Raw data to fit the parameters.

initialparam A vector of initial standard NTS parameters. This function uses the nloptr

package. If it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN,

that is default.

maxeval Maximum evaluation number for nloptr. The iteration stops on this many func-

tion evaluations.

ksdensityflag This function fit the parameters using the curvefit method between the empirical

cdf and the standard NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = 0,

then the empirical cdf is calculated by the empirical cdf.

Value

Estimated parameters

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(evmix)
library(Matrix)
library(quantmod)
library("temStaR")
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2013-1-1", to = "2023-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)</pre>
ret <- diff(log(pr))</pre>
stdret <- (ret-mean(ret))/sd(ret)</pre>
stdntsparam <- fitstdnts(stdret)</pre>
Femp = ecdf(stdret)
x = seq(from=min(stdret), to = max(stdret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(stdntsparam))
plot(x,ncdf,type = 'l', col = "red")
lines(x,cemp, type = 'l', col = "blue")
a = density(stdret)
p = dnts(x, stdntsparam)
plot(x,p,type = 'l', col = "red", ylim = c(0, max(a$y, p)))
lines(a,type = 'l', col = "blue")
```

18 gensamplepathnts

```
fitstdntsFixAlphaThata
```

fitstdntsFixAlphaThata

Description

Fit beta of stdNTS distribution with fixed alpha and theta.

Usage

```
fitstdntsFixAlphaThata(
  rawdat,
  alpha,
  theta,
  initialparam = NaN,
  maxeval = 100,
  ksdensityflag = 1
)
```

gensamplepathnts

gensamplepathnts

Description

gensamplepathnts generate sample paths of the NTS process with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it generate sample paths of the standard NTS process with parameters (α, θ, β) .

Usage

```
gensamplepathnts(npath, ntimestep, ntsparam, dt)
```

Arguments

npath	Number of sample paths
ntimestep	number of time step
ntsparam	A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. A vector of the standard NTS parameters (α, θ, β) .
dt	the time length of one time step by the year fraction. "dt=1" means 1-year.

Value

Structure of the sample path. Matrix of sample path. Column index is time.

getGammaVec 19

Examples

```
library("temStaR")
#standard NTS process sample path
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
npath <- 5
ntimestep <- 250
dt <- 1/250
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt)</pre>
matplot(colnames(simulation), t(simulation), type = 'l')
#NTS process sample path
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
npath <- 5
ntimestep <- 250
dt <- 1/250
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt)</pre>
matplot(colnames(simulation), t(simulation), type = 'l')
```

getGammaVec

getGammaVec

Description

beta to gamma in StdNTS

Usage

```
getGammaVec(alpha, theta, betaVec)
```

getPortNTSParam

getPortNTSParam

Description

Portfolio return with capital allocation weight is $R_p = \langle w, r \rangle$, which is a weighted sum of of elements in the N-dimensional NTS random vector. R_p becomes an 1-dimensional NTS random variable. getPortNTSParam find the parameters of R_p .

```
\code{res <- setPortfolioParam(strPMNTS,w)}
\code{res <- setPortfolioParam(strPMNTS,w, FALSE)}</pre>
```

20 getPortNTSParam

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $strPMNTS$mu: \mu mean vector (column vector) of the input data.$

strPMNTSsigma : σ standard deviation vector (column vector) of the input

data.

strPMNTS\$alpha : α of the std NTS distribution (X). strPMNTS\$theta : θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

res\$Rho : ρ matrix (Correlation) of the std NTS distribution (X).

resSigma: Covariance Σ matrix of return data r.

Capital allocation weight vector.

stdform If stdform is FALSE, then the re

If stdform is FALSE, then the return parameter has the following representation

 $R_p = \langle w, r \rangle = \mu + diag(\sigma)X,$

where

X follows $stdNTS_1(\alpha, \theta, \beta, 1)$.

If stdform is TRUE, then the return parameter has the following representation

 $R_p = \langle w, r \rangle$ follows $NTS_1(\alpha, \theta, \beta, \gamma, \mu, 1)$

Value

The weighted sum follows 1-dimensional NTS.

 $R_p = \langle w, r \rangle = \mu + diag(\sigma)X,$

where

X follows $stdNTS_1(\alpha, \theta, \beta, 1)$.

Hence we obtain

res\$mu : μ mean of R_p .

res $sigma: \sigma$ standard deviation of R_p .

 $\label{eq:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha} \alpha \mbox{ of } X.$ $\mbox{res\$beta:} \beta \mbox{ of } X.$

References

Proposition 2.1 of Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

importantSamplining 21

importantSamplining

importantSamplining

Description

importantSamplining do the important sampling for the TS Subordinator.

Usage

```
importantSamplining(alpha, theta)
```

ipnts

ipnts

Description

ipnts calculates inverse cdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates inverse cdf of the standard NTS distribution with parameter (α, θ, β)

Usage

```
ipnts(u, ntsparam, maxmin = c(-10, 10), du = 0.01)
```

Arguments

u Real value between 0 and 1

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. A vector of the standard NTS

parameters (α, θ, β) .

Value

Inverse cdf of the NTS distribution. It is the same as qnts function.

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

22 mctCVaR_MNTS

Examples

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u < - seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(u,q,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u < - seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(x,q,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u < - seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(x,q,type = 'l')
```

mctCVaR_MNTS

 $mctCVaR_MNTS$

Description

Calculate the marginal contribution to CVaR for the multivariate NTS market model: the random vector \boldsymbol{r} is

```
r=\mu+diag(\sigma)X where X \mbox{ follows } stdNTS_N(\alpha,\theta,\beta,\Sigma)
```

```
\code{mctCVaR_MNTS(eta, n, w, stmnts)}
```

mctCVaR_MNTS 23

Arguments

n	The targer stock to calculate the mctCVaR
eta	Significant level of CVaR.
W	The capital allocation rate vector for the current portfolio
stmnts	Structure of parameters for the N-dimensional NTS distribution.
CVaRstd	CVaR Value of StdNTS residual. If NULL, the function automatically find it. The default value is NULL
dCVaRstd	The first derivative of the stdNTS CVaR for beta. If NULL, the function automatically find it. The default value is NULL
iCDFstd	The inverst cdf of stdNTS at the significant level eta. If NULL, the function automatically find it. The default value is NULL
	st\$ndim: Dimension of the model. Here st\$ndim=N.
	st\$mu : μ mean vector (column vector) of the input data.
	stsigma: \sigma $ standard deviation vector (column vector) of the input data.
	st\$alpha : α of the std NTS distribution (X).
	st\$theta : θ of the std NTS distribution (X).
	st\$beta : β vector (column vector) of the std NTS distribution (X).
	st\$Rho : ρ matrix of the std NTS distribution (X), which is correlation matrix of epsilon.
	st\$CovMtx : Covariance matrix of return data r .

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
library(mvtnorm)
library("temStaR")
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)),diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
st <- fitmnts( returndata = returndata,</pre>
```

24 mctVaR_MNTS

 ${\tt mctStdDev}$

mctStdDev

Description

Morginal contribution to Risk for Standard Deviation.

Usage

```
mctStdDev(n, w, covMtx)
```

Arguments

n The targer stock to calculate the mctStdDev

w The capital allocation rate vector for the current portfolio

CovMtx Covariance matrix of return data.

mctVaR_MNTS

 $mctVaR_MNTS$

Description

Calculate the marginal contribution to VaR for the multivariate NTS market model: the random vector r is

```
r = \mu + diag(\sigma)X
```

where

X follows $stdNTS_N(\alpha, \theta, \beta, \Sigma)$

```
\code{mctVaR_MNTS(n, eta, w, st)}
```

mctVaR_MNTS 25

Arguments

n	The target stock to calculate the mctVaR
eta	Significant level of VaR.
W	The capital allocation rate vector for the current portfolio
iCDFstd	The inverst cdf of stdNTS at the significant level eta. If NULL, the function automatically find it. The default value is NULL
	st\$ndim: Dimension of the model. Here st\$ndim=N.
	${\tt st} = \mu$ mean vector (column vector) of the input data.
	st sigma : σ standard deviation vector (column vector) of the input data.
	st\$alpha : α of the std NTS distribution (X).
	st\$theta: θ of the std NTS distribution (X).
	st\$beta : β vector (column vector) of the std NTS distribution (X).
	st\$Rho : ρ matrix of the std NTS distribution (X), which is correlation matrix of epsilon.
	st\$CovMtx : Covariance matrix of return data r.
st	Structure of parameters for the N-dimensional NTS distribution.

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
library(mvtnorm)
library(temStaR)
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)),diff(log(pr2))),</pre>
                     ncol = 2, nrow = (length(pr1)-1))
st <- fitmnts( returndata = returndata,</pre>
                n = 2
                alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
w \leftarrow c(0.3, 0.7)
eta <- 0.01
```

26 moments_NTS

```
mctVaR_MNTS(1, eta, w, st) #MCT-VaR for IBM
mctVaR_MNTS(2, eta, w, st) #MCT-VaR for INTL
```

moments_NTS

moments_NTS

Description

moments_NTS calculates mean, variance, skewness, and excess kurtosis of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
moments_NTS(param)
```

Arguments

param

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. The mean is always the same as the parameter μ .

References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)
moments_NTS(param = ntsparam)</pre>
```

moments_stdNTS 27

moments_stdNTS

moments_stdNTS

Description

moments_stdNTS calculates mean, variance, skewness, and excess kurtosis of the standard NTS distribution with parameters (α, θ, β) .

Usage

```
moments_stdNTS(param)
```

Arguments

param

A vector of the standard NTS parameters (α, θ, β) .

Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. Of course, the mean and variance are always 0 and 1, respectively.

References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

Examples

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
moments_stdNTS(param = ntsparam)
```

pmarginalmnts

pmarginalmnts

Description

pmarginalmnts calculates the marginal cdf of the n-th element of the multivariate NTS distributed random variable.

Usage

```
pmarginalmnts(x, n, st)
```

Arguments

n

```
the x such that F(x) = P(X_n < x)
the n-th element to be calculated.
```

Structure of parameters for the n-dimensional NTS distribution. st

28 pmnts

pmnts pmnts

Description

```
pmnts calculates the cdf values of the multivariate NTS distribution: F(x_1,\cdots,x_n)=P(x_n< R_1,\cdots,x_n< R_n). The multivariate NTS random vector R=(R_1,\cdots,R_n) is defined R=\mu+diag(\sigma)X, where X follows stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
pmnts(x, st, subTS = NULL)
```

Arguments

```
x array of the (x_1,\cdots,x_n) st Structure of parameters for the n-dimensional NTS distribution. st$ndim: dimension st$mu: \mu mean vector (column vector) of the input data. st$sigma: \sigma standard deviation vector (column vector) of the input data. st$alpha: \alpha of the std NTS distribution (X). st$theta: \theta of the std NTS distribution (X). st$beta: \beta vector (column vector) of the std NTS distribution (X). st$Rho: \rho matrix of the std NTS distribution (X). number of samples.
```

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

pnts 29

pnts

pnts

Description

pnts calculates cdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates cdf of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates cdf of the profess F(x) = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
pnts(xdata, ntsparam, dz = 2^-8, m = 2^12)
```

Arguments

xdata

An array of x

ntsparam

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of the standard NTS parameters (α, θ, β) .

Value

Cumulative probability of the NTS distribution

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
x \leftarrow seq(from = -6, to = 6, length.out = 101)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
x \leftarrow seq(from = -2, to = 2, by = 0.01)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
x < - seq(from = -0.02, to = 0.02, length.out = 101)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
```

 $portfolio CVaRETmnts \\ portfolio CVaRETmnts$

Description

Calculate portfolio conditional value at Return on the NTS market model

```
portfolioCVaRETmnts(strPMNTS, w, eta)
```

portfolioCVaRmnts 31

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

 $\verb|strPMNTS| sime : dimension|$

strPMNTSmu : μ mean vector (column vector) of the input data.

strPMNTSsigma : σ standard deviation vector (column vector) of the input

data.

strPMNTS\$alpha : α of the std NTS distribution (X). strPMNTS\$theta : θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

res\$Rho : ρ matrix (Correlation) of the std NTS distribution (X).

resSigma: Covariance Σ matrix of return data r.

w Capital allocation weight vector.

eta significanlt level

Value

portfolio value at Return on the NTS market model

portfolioCVaRmnts

portfolioCVaRmnts

Description

Calculate portfolio conditional value at risk (expected shortfall) on the NTS market model

Usage

```
portfolioCVaRmnts(strPMNTS, w, eta)
```

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

 $\verb|strPMNTS| sime : dimension|$

 $trPMNTSmu: \mu$ mean vector (column vector) of the input data.

strPMNTS\$sigma : σ standard deviation vector (column vector) of the input

data.

 $\mbox{strPMNTS\$alpha}: \alpha \mbox{ of the std NTS distribution (X)}. \\ \mbox{strPMNTS\$theta}: \theta \mbox{ of the std NTS distribution (X)}. \\$

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

res\$Rho : ρ matrix (Correlation) of the std NTS distribution (X).

resSigma: Covariance Σ matrix of return data r.

w Capital allocation weight vector.

eta significanlt level

Value

portfolio value at risk on the NTS market model

32 portfolioVaRmnts

portfolioVaRETmnts

portfolioVaRETmnts

Description

Calculate portfolio value at return on the NTS market model

Usage

```
portfolioVaRETmnts(strPMNTS, w, eta)
```

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $trPMNTSmu: \mu$ mean vector (column vector) of the input data.

strPMNTSsigma : σ standard deviation vector (column vector) of the input

data.

strPMNTS\$alpha : α of the std NTS distribution (X). strPMNTS\$theta : θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

res\$Rho : ρ matrix (Correlation) of the std NTS distribution (X).

 $\verb"res$Sigma": Covariance Σ matrix of return data r.$

w Capital allocation weight vector.

eta significanlt level

Value

portfolio value at Return on the NTS market model

portfolioVaRmnts

portfolioVaRmnts

Description

Calculate portfolio value at risk on the NTS market model

```
portfolioVaRmnts(strPMNTS, w, eta)
```

qmarginalmnts 33

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $strPMNTS$mu: \mu mean vector (column vector) of the input data.$

strPMNTSsigma : σ standard deviation vector (column vector) of the input

data.

strPMNTS\$alpha : α of the std NTS distribution (X). strPMNTS\$theta : θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

res\$Rho : ρ matrix (Correlation) of the std NTS distribution (X).

resSigma: Covariance Σ matrix of return data r.

w Capital allocation weight vector.

eta significanlt level

Value

portfolio value at risk on the NTS market model

Description

qmarginalmnts calculates the quantile value of the n-th element of the multivariate NTS distributed random variable.

Usage

```
qmarginalmnts(u, n, st)
```

Arguments

u vector of probabilities.

n the n-th element to be calculated.

st Structure of parameters for the n-dimensional NTS distribution.

34 qnts

qnts qnts

Description

qnts calculates quantile of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates quantile of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates quantile of NTS profess. That is it finds x such that u = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
qnts(u, ntsparam)
```

Arguments

u vector of probabilities.

ntsparam

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of standard NTS parameters (α, θ, β) .

Value

The quantile function of the NTS distribution

Examples

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
```

#Annual based parameters

rmnts 35

```
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)
u <- c(0.01,0.05,0.25,0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
```

rmnts

rmnts

Description

rmnts generates random vector following the n dimensional NTS distribution using subordination.

```
r = \mu + diag(\sigma)X,
```

where

X follows $stdNTS_n(\alpha, \theta, \beta, \Sigma)$

Usage

```
rmnts(strPMNTS, numofsample, rW = NULL, rTau = NULL)
```

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

strPMNTS\$mu : μ mean vector (column vector) of the input data.

strPMNTS $sigma: \sigma$ standard deviation vector (column vector) of the input

data.

 ${\tt strPMNTS\$alpha}: \alpha \ {\tt of the std NTS \ distribution} \ ({\tt X}).$

 $\mathtt{strPMNTS\$theta}:\theta$ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

 ${\tt strPMNTS\$Rho}: \rho \ {\tt matrix} \ {\tt of} \ {\tt the} \ {\tt std} \ {\tt NTS} \ {\tt distribution} \ ({\tt X}).$

numofsample number of samples.

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

36 rnts

Examples

rnts

rnts

Description

rnts generates random numbers following NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it generates random numbers of standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it generates random numbers of increments of NTS profess for time interval t.

Usage

```
rnts(n, ntsparam, u = NULL)
```

Arguments

n number of random numbers to be generated.

ntsparam

A vector of NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For NTS process case it is a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of standard NTS parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$.

Value

NTS random numbers

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library("temStaR")

alpha <- 1.2
theta <- 1</pre>
```

setPortfolioParam 37

```
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
```

setPortfolioParam

setPortfolioParam

Description

Please use getPortNTSParam instead of setPortfolioParam.

Portfolio return with capital allocation weight is $R_p = \langle w, r \rangle$, which is a weighted sum of of elements in the N-dimensional NTS random vector. R_p becomes an 1-dimensional NTS random variable. setPortfolioParam find the parameters of R_p .

Usage

```
\code{res <- setPortfolioParam(strPMNTS,w)}</pre>
```

Arguments

```
StrPMNTS Structure of parameters for the n-dimensional NTS distribution.  \begin{split} & \mathsf{strPMNTS\$ndim}: \text{dimension} \\ & \mathsf{strPMNTS\$mu}: \mu \text{ mean vector (column vector) of the input data.} \\ & \mathsf{strPMNTS\$sigma}: \sigma \text{ standard deviation vector (column vector) of the input data.} \\ & \mathsf{strPMNTS\$alpha}: \alpha \text{ of the std NTS distribution (X).} \\ & \mathsf{strPMNTS\$theta}: \theta \text{ of the std NTS distribution (X).} \\ & \mathsf{strPMNTS\$beta}: \beta \text{ vector (column vector) of the std NTS distribution (X).} \\ & \mathsf{strPMNTS\$Rho}: \Sigma \text{ matrix of the std NTS distribution (X).} \\ & \mathsf{w} & \mathsf{Capital allocation weight vector.} \end{split}
```

38 VaRetnts

Value

```
The weighted sum follows 1-dimensional NTS. R_p = < w, r >= \mu + diag(\sigma)X, where X \text{ follows } stdNTS_1(\alpha, \theta, \beta, 1). Hence we obtain \operatorname{res\$mu}: \mu \text{ mean of } R_p. \operatorname{res\$sigma}: \sigma \text{ standard deviation of } R_p. \operatorname{res\$alpha}: \alpha \text{ of } X. \operatorname{res\$theta}: \theta \text{ of } X. \operatorname{res\$beta}: \beta X.
```

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

VaRetnts

VaRetnts

Description

VaRetnts calculates Conditional Value at Risk (CVaR, or expected shortfall ES) of the NTS market model with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates CVaR of the standard NTS distribution with parameter (α, θ, β)

```
VaRetnts(eps, ntsparam)
```

VaRetnts 39

Arguments

eps the significant level for CVaR. Real value between 0 and 1. $\text{A vector of the NTS parameters } (\alpha, \theta, \beta, \gamma, \mu). \text{ A vector of the standard NTS }$ parameters (α, θ, β) .

Value

Value at Return of the NTS distribution.

References

Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2010), Computing VaR and AVaR in infinitely divisible distributions, Probability and Mathematical Statistics, 30 (2), 223-245.

S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011), Financial Models with Levy Processes and Volatility Clustering, John Wiley & Sons

```
library("temStaR")
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u < -c(0.01, 0.05)
q <- VaRetnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05)
q \leftarrow VaRetnts(u, ntsparam)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow c(0.01, 0.05)
q <- VaRetnts(u, ntsparam)</pre>
```

Index

```
changeCovMtx2Rho, 2
                                                      qmarginalmnts, 33
chf_NTS, 3
                                                      qnts, 34
chf\_stdNTS, 4
                                                      rmnts, 35
copulaStdNTS, 5
                                                      rnts, 36
cvaretnts, 5
cvarGauss, 6
                                                      setPortfolioParam, 37
cvarmarginalmnts, 6
cvarnts, 7
                                                      VaRetnts, 38
dBeta, 8
{\tt dcopulaStdNTS}, \textcolor{red}{8}
dCVaR_numint, 9
dCVaRstdNTS_numint, 9
dinvCdf_stdNTS_int, 9
dmarginalmnts, 10
dmnts, 10
dnts, 11
fitmnts, 13
fitmnts_par, 14
fitnts, 15
{\it fitstdnts}, {\color{red} 16}
fitstdntsFixAlphaThata, 18
gensamplepathnts, 18
getGammaVec, 19
getPortNTSParam, 19
{\tt importantSamplining}, {\tt 21}
ipnts, 21
\verb|mctCVaR_MNTS|, \textcolor{red}{22}
mctStdDev, 24
mctVaR_MNTS, 24
moments_NTS, 26
moments_stdNTS, 27
pmarginalmnts, 27
pmnts, 28
pnts, 29
portfolioCVaRETmnts, 30
portfolioCVaRmnts, 31
portfolioVaRETmnts, 32
portfolioVaRmnts, 32
```