Segunda Lista de Matemática Discreta

Revisão 2ª Unidade

$$A = \{2,4,6\}; B = \{2,6\}; C = \{4,6\}; D = \{4,6,8\}$$

B está contido em A, pois todos os elementos de B existem em A. A mesma coisa acontece para C e D, onde C está contido em D.

Questão 2

$$A = \{3,5,9\}; B = \{2,3,5,9,0,\{3,5,9\},7,8\}$$

A está contido em B e também pertence a B, pois o conjunto A é um dos elementos do conjunto B.

Questão 3

$$A = \{a, b, c\}; B = \{x, y\}; C = \{0, 1\}$$

Letra A:

$$A \times B = M_1 = \{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)\}$$

$$M_1 \times C =$$

$$\{(a, x, 0), (a, x, 1), (a, y, 0), (a, y, 1), (b, x, 0), (b, x, 1), (b, y, 0), (b, y, 1), (c, x, 0), (c, x, 1), (c, y, 0), (c, y, 1)\}$$

Letra B:

$$C \times M_1 =$$

$$\{(0, a, x), (0, a, y), (1, a, x), (1, a, y), (0, b, x), (0, b, y), (1, b, x), (1, b, y), (0, c, x), (0, c, y), (1, c, x), (1, c, y)\}$$

Questão 4

$\exists \{A, B, C (A - B) - (B - C) = A - B\}$	
$(A \cap B') - (B \cap C') = A - B$	Inversão
$A \cap B' = A - B$	Definição

Questão 5

$$P(P(P(\phi))) =$$

 ϕ , Pois o conjunto das partes de um conjunto vazio, é sempre o conjunto vazio.

Ouestão 6

(a)
$$((A \cap (B \cup C)) \cap (A - B)) \cap (B \cup C);$$

 $(((A \cap B) \cup (A \cap C)) \cap (A \cap B')) \cap (B \cup C);$
 $((A \cap C) \cap (A \cap B')) \cap (B \cup C);$
 $((A \cap C) - B) \cap (B \cup C);$
 $((A \cap C) - B);$
(b) $(A - (A \cap B)) \cap (B - (A \cap B));$
 $(A \cap A) \cap (A - B)) \cap (B - A) \cap (B - B);$
 $(A \cap A) \cap (A - B)) \cap (B - A) \cap (A \cap B);$

φ;

$$A = \{1, 2, 3, 4\}$$

$$R_1 = \{(2; 2); (2; 3); (2; 4); (3; 2); (3; 3); (3; 4)\}$$

$$R_2 = \{(1; 1); (1; 2); (2; 1); (2; 2); (3; 3); (4; 4)\}$$

$$R_3 = \{(2; 4); (4; 2)\}$$

$$R_4 = \{(1; 2); (2; 3); (3; 4)\}$$

$$R_5 = \{(1; 1); (2; 2); (3; 3); (4; 4)\}$$

Reflexiva	R_1, R_3	
Simétrica	R_3, R_5	
Anti-Simétrica	R_2, R_4	
Transitiva	R_2	
Equivalência	R_{5}	
Ordem Parcial	R_4	

Questão 8

Complemento das funções

Reflexiva	R_4', R_5'
Simétrica	R_3', R_5'
Anti-Simétrica	R_1', R_4'
Transitiva	R_5', R_3'
Equivalência	R_3
Ordem Parcial	R_5'

Questão 9

$$A = \{2,4\}; B = \{6,8,10\};$$

$$\forall (x,y) \in A \times B, xRy \Leftrightarrow x|y,$$

$$\forall (x,y) \in A \times B, xSy \Leftrightarrow y-4=x$$

$A \times B = \{(2,6), (2,8), (2,10), (4,6), (4,8), (4,10)\}$
$R = \{(2,8), (4,8)\}$
$S = \{(2,6), (4,8)\}$
$R \cup S = \{(2,8), (2,6), (4,8)\}$
$R \cap S = \{(4,8)\}$

Questão 10

$$A = \{1,2,3\}; B = \{1,2,3,4\}; C = \{0,1,2\};$$

$$R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}$$

$$S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}$$

$$S^{\circ}R = \{(1.0), (1,1), (2,0), (3,1), (3,2)\}$$

$A = \{a, b, c\}$	$R = \{(a, a), (a, b), (b, c), (a, c)\}$	
Reflexivo	(a,a),(a,b),(b,c)	
Simétrico	(a,a)	
Transitivo	(a,b),(b,c),(a,c)	
$A = \{0,1,2,3\}$	$R = \{(0; 1); (1; 1); (1; 2); (2; 0); (2; 2); (3; 0)\}$	
Reflexivo	(2; 2); (1,1);	
Simétrico	Não há relação Simétrica	
Transitivo	Não há relação transitiva	

Questão 12

$$A = \{0,1,2,3,4,5\}$$

$$R = \{(1,2), (1,4), (3,3), (4,1)\}$$

$$R_a = \{(1,2), (1,4), (3,3), (4,1), (2,1)\}$$

$$R_b = \{(1,1), (1,2), (1,4), (3,3), (4,1), (3,1), (1,3), (4,4)\}$$

$$R_d = R_c = \{(1,1), (1,2), (1,4), (3,3), (4,1), (3,1), (2,1), (2,2), (1,3), (4,4)\}$$

Questão 13

$$C = \{a, b, c, d\}$$

R1	f(a) = b	f(b) = a	f(c) = c	f(d) = d
R2	f(a) = b	f(b) = b	f(c) = d	f(d) = c
R3	f(a) = d	f(b) = b	f(c) = c	f(d) = d

R1: Injetora e Sobrejetora

R2: Sobrejetora

R3: Sobrejetora

Questão 14 Sendo $y, x \in \mathbb{N}$

- A) $y = x^2 + 1$
- B) y = x 12, sendo x > 12
- C) y = x
- D) $y = x^2 + 18 z^2$, sendo $z \in \mathbb{N}$

Questão 15 Sendo, $x \in \mathbb{R}$

f(x) = -3x + 4	Injetora
$f(x) = x^5 + 1$	$Bijetora(\forall x \in \mathbb{R} \exists f(x))$
$f(x) = -3x^2 + 7$	Não é injetora nem sobrejetora
$f(x) = x^3$	Bijetora

$$f(x) = x^2 + 1; g(x) = x + 2, sendo x \in \mathbb{R}$$

$$f^{\circ}g = f(g(x)) = (x+2)^{2} + 1 = x^{2} + 4x + 5$$

$$g^{\circ}f = g(f(x)) = (x^{2} + 1) + 2 = x^{2} + 3$$

$$f + g = f(x) + g(x) = x^{2} + 1 + (x+2) = x^{2} + x + 3$$

$$fg = f(x)g(x) = (x^{2} + 1)(x+2) = x^{3} + 2x^{2} + x + 2$$

Questão 17

 $f(x) = x^2 \rightarrow f^{-1}(x) = \sqrt{x}$, sendo $x \in \mathbb{R}$ e f(x)com domíneo de \mathbb{R}^+ em \mathbb{R}^+

$f^{-1}(\{1\}) = \sqrt{1} = 1$
$f^{-1}(\{x x<4\}) = S^{-1} = (-\infty; 9[$
$f^{-1}(\{x 0 < x < 1\}) =]0;1[=S^{-1}$

Questão 18

 $f(S \cup T) = f(S) \cup f(T)$ Equivalente da lei de Morgan, entretanto a função da união é equivalente a união dos conjuntos soluções das funções dos respectivos conjuntos.

 $f(S \cap T) \subseteq f(S) \cap f(T)$ é verdadeira pois a função da intersecção dos dois conjuntos é equivalente a intersecção do conjunto solução da função de cada conjunto separado.