

PCI-EK01 Register Level Application Guide (Ver1.1)

Windows, **Windows2000**, **Windows NT** and **Windows XP** are trademarks of **Microsoft**. We acknowledge that the trademarks or service names of all other organizations mentioned in this document as their own property.

Information furnished by DAQ system is believed to be accurate and reliable. However, no responsibility is assumed by DAQ system for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or copyrights of DAQ system.

The information in this document is subject to change without notice and no part of this document may be copied or reproduced without the prior written consent.

Copyrights © 2005 DAQ system, All rights reserved.

-- Contents --

1. PCI BUS Address Space
 2. PCI-EK01 Functional Block Diagram
 3. I/O Address Usage
 4. Memory Address Usage
 5. Counter Usage
 6. Timer Usage
 7. UART Usage
 8. VGA Usage
 9. ADC Usage
 10. DAC Usage
 11. Digital I/O(82C55) Usage
 12. Interrupt Controller Usage
- References

1. PCI BUS Address Space

As it uses CPU of the x86 system which we use mainly, it can classify greatly it to memory and I/O area. In order to support Plug & Play in case of PCI bus that has a special Configuration. It can save the resource and device state control register etc.

The PCI-EK01 use a memory and I/O that have been assigned to system for operation, the contents are as follows that they required.

Address Area	Requirements	Remark
Memory	Maximum 64MByte	
I/O	256 Byte	
Configuration	128 Byte	

2. PCI-EK01 Functional Block Diagram

An area of assigned address in PCI-EK01 is used like Figure 3-3. All peripheral device's control and status register located in I/O area, only high speed SRAM located in memory area.

This can not be used in most applications because of allocation of resources for the system at boot time only in Configuration area.

In the above picture, PCI-EK01 (A / B) is represented by the function block, and dotted lines feature of PCI-EK01 (A) has not been implemented yet.

(Notice) UART or VGA functionality is available for future upgrades.

3. I/O Address Usage

The below table, the address of the I / O area indicates the base address of the peripheral device. All I / O registers are 32-bit input / output processing.

I/O Address Offset Base	Function	Description	Comment
00h	Counter 0	32bit counter 0	
10h	Counter 1	32bit counter 1	PCI-EK01(B) Only
20h	Counter 2	32bit counter 2	PCI-EK01(B) Only
30h	Timer 0	32bit Timer 0	
40h	Timer 1	32bit Timer 1	PCI-EK01(B) Only
50h	Timer 2	32bit Timer 2	PCI-EK01(B) Only
60h	UART	Universal asynchronous receiver transmitter (RS232C)	PCI-EK01(B) Only
70h	VGA	VGA Display	PCI-EK01(B) Only
80h	ADC	Analog to Digital converter	
90h	DAC	Digital to Analog converter	
A0h	I/O (8255)	Digital Input/Output (82C55)	
B0h	Interrupt	Interrupt controller	
B0h-FFh	Reserved	Reserved space for future upgrade	

4. Memory Address Usage

Only high speed SRAM is located in the memory area, memory area is always 32-bit input/output. The memory is 32-bit processing in the PCI-EK01(A), the lower 16-bit is only memory value, the upper 16-bit is only displayed “0”. PCI-EK01(B) is 32-bit.

Memory read / write can operate up to maximum 33M cycles.

Memory Address Space	Model	Description	Comment
0h - 100000h	PCI-EK01(A)	16Bit Bus width (High 16bit space is not used)	Total 512K Byte
0h - 100000h	PCI-EK01(B)	32Bit Bus width	Total 1M Byte

5. Counter Usage

PCI-EK01 can use three 32-bit counter, can be reduced the overhead of the program in 16-bitcounter. The counter is increased rising edge of the counter (LOW → HIGH Transition), the interface is a 3.3V CMOS logic levels. The maximum count frequency is 20Mhz.

Function	I/O Address Offset	Register	Description
Counter 0	00h	CNT_CUR	Current 32bit counter value
	04h	CNT_TAR	Target 32bit counter value
	08h	COMMAND	Counter Control Command
	0Ch	STATUS	Counter Operation Status
Counter 1	10h	CNT_CUR	Current 32bit counter value
	14h	CNT_TAR	Target 32bit counter value
	18h	COMMAND	Counter Control Command
	1Ch	STATUS	Counter Operation Status
Counter 2	20h	CNT_CUR	Current 32bit counter value
	24h	CNT_TAR	Target 32bit counter value
	28h	COMMAND	Counter Control Command
	2Ch	STATUS	Counter Operation Status

(1) CNT_CUR

Save the current 32-bit counter value.

Init. Value : 0x00000000h

(2) CNT_TAR

The user set up 32-bit Counter value. If set the counter value is greater than or equal to the current value, a bit of the STATUS register will be displayed.

Init. Value : 0xFFFFFFFFh

(3) COMMAND

Counter COMMAND Register Bit Position & Usage			
31		2	1 0
Reserved			Use

Bit	Name	Description	Default Value
0	Enable	In case of ‘1’, should be Counter operation.	‘0’
1	Clear	In case of ‘1’, the CNT_CUR value initialize 0x00000000h.	‘0’
31 – 2	Reserved	For future use	All ‘0’

(4) STATUS

Counter STATUS Register Bit Position & Usage		
Bit	2 1 0	Use
31		Reserved

Bit	Name	Description	Default Value
0	CNT_IN	External counter pin indicates current port status value.	External
1	Over	CNT_CUR value is greater than or equal to CNT_TAR value, it will be ‘1’.	‘0’
31 – 2	Reserved	For future use	All ‘0’

6. Timer Usage

PCI-EK01 can use the three 32-bit Timer. The timer use 50MHz clock on the board, the resolution can be set in units 20nSEC. Therefore, from the minimum 40nSEC up to maximum 85,899,345,900nSEC (about 86 seconds) can be set.

Function	I/O Address Offset	Register	Description
Timer 0	30h	TMR_CUR	Current 32bit Timer value
	34h	TMR_SET	Setted 32bit Timer value
	38h	COMMAND	Counter Control Command
	3Ch	STATUS	Counter Operation Status
Timer 1	40h	TMR_CUR	Current 32bit Timer value
	44h	TMR_SET	Setted 32bit Timer value
	48h	COMMAND	Counter Control Command
	4Ch	STATUS	Counter Operation Status
Timer 2	50h	TMR_CUR	Current 32bit Timer value
	54h	TMR_SET	Setted 32bit Timer value
	58h	COMMAND	Counter Control Command
	5Ch	STATUS	Counter Operation Status

(1) TMR_CUR

The current 32-bit Timer value is stored. The Counter is Down Counter. If all bit is “0”, a timeout occurs. This can be found in the status register.

Init. Value : 0x00000000h

(2) TMR_SET

The user set the 32-bit Timer value. Set the Timer value is loaded to TMR_CUR register.

When a time out, output is reversed (ALT = 0) in Auto-reload mode. Represents in terms of frequency, are as follows:

$$\text{Frequency} = 25M / (\text{TMR_SET} + 1)$$

When a time out, output is 20nSEC pulse (ALT = 1) in Auto-reload mode. Represents in terms of frequency, are as follows:

$$\text{Frequency} = 50M / (\text{TMR_SET} + 1)$$

The TMR_SET value should be at least one or more.

Init. Value : 0xFFFFFFFFh

(3) COMMAND

Counter COMMAND Register Bit Position & Usage													
31					8	7	6	5	4	3	2	1	0
Reserved										Used			

Bit	Name	Description	Default Value
0	Enable	If it is ‘1’, the Timer operates. (Down Counter)	‘0’
1	Clear	If it is ‘1’, the TMR_CUR value initializes 0x00000000h.	‘0’
2	Auto	If it is ‘1’, the Timer value automatically reload the TMR_SET value when the timer occurs time-out.	‘0’
3	Alt	If it is ‘0’, the time-out output value will be inverted in every time time-out occurs. If it is ‘1’, 20nSEC High Active Pulse is caused to Timer output when time-out occurs.	‘0’
4	OutSel	If it is ‘1’, the time-out output can be used as the general I/O, and this time output is OutVal”. If it is ‘0’, send the one-shot or reversed output with depending on the timer value.	‘0’
5	OutVal	It is an output value when the time-out output can be used as the general I/O.	‘0’
6	Reserved	For future use	‘0’
7	Load	If it is ‘1’, the TMR_SET value will be loaded to TMR_CUR value. If it is ‘0’, the Timer can operate when the timer “Enable” set value is ‘1’.	‘0’
31 – 8	Reserved	For future use	All ‘0’

(4) STATUS

Counter STATUS Register Bit Position & Usage		
31		1 0
	Reserved	Use

Bit	Name	Description	Default Value
0	TimeOut	When time-out occurs(TMR_CUR value is '0'), it will be '1'.	'1'
31 - 1	Reserved	For future use	All '0'

7. UART Usage

This feature is not currently implemented, it will be supported to PCI-EK01 (B) model.

Function	I/O Address Offset	Register	Description
UART	60h	Register 0	For future use
	64h	Register 1	For future use
	68h	Register 2	For future use
	6Ch	Register 3	For future use

8. VGA Usage

This feature is not currently implemented, it will be supported to PCI-EK01 (B) model.

Function	I/O Address Offset	Register	Description
VGA	70h	Register 0	For future use
	74h	Register 1	For future use
	78h	Register 2	For future use
	7Ch	Register 3	For future use

9. ADC Usage

PCI-EK01 has 8 SE(Single Ended) ADC(Analog to Digital Converter) channels. If it use Differential method, it can be used 4 channels. The maximum sampling speed is 200Ksps, the input range is different to depending on the options, the value is from 0 to Vref or from -Vref/2 to + Vref/2, Vref value is 2.5V, it can select 3.3V. A resolution is 12-bit.

READ_POINTER, ADC_PRD, TRG_POS, TRG_LEVEL, CH_SEL0, CH_SEL1, CH_SEL2, CH_SEL3 is located in the same I/O address, however it can be accessed differently depending on the reg_sel value of COMMAND register.

Function	I/O Address Offset	Register	Description
ADC	80h	DATA	32Bit ADC data (Read/Write)
	84h	COMMAND	ADC Control command Register (Read/Write)
	88h	READ_POINTER	ADC FIFO READ Pointer (Read only) reg_sel = "000"
	88h	ADC_PRD	ADC sampling period register(Read/Write) reg_sel = "001"
	88h	TRG_POS	Read H/W Trigger position (Read only) reg_sel = "010"
	88h	TRG_LEVEL	Set H/W Trigger level (Read/ Write) reg_sel = "011"
	88h	CH_SEL0	ADC Channel Select register 0(Read /Write) reg_sel = "100"
	88h	CH_SEL1	ADC Channel Select register 1(Read / Write) reg_sel = "101"
	88h	CH_SEL2	ADC Channel Select register 2(Read /Write) reg_sel = "110"
	88h	CH_SEL3	ADC Channel Select register 3(Read / Write) reg_sel = "111"
	8Ch	STATUS	ADC Status register (Read only) reg_sel = "00"
	8Ch	READ_POINTER	Set FIFO READ point Address (Write only)

(1) DATA

The data value written to the data register directly control the ADC chip which is connected 16-bit data bus of ADC chip through local bus on the board. All I/O and memory access of PCI-EK01 is 32-bit, but upper 16-bit don't use it. When the ADC chip was controlled by the manual, ADC internal register can control to refer chip manual. The most used command is 0xE010, this is command to convert to the SE mode for 0 channel. After the conversion, when a read operation on DATA register, ADC conversion value can be read. Refer to chip (AD7859AS) manual for more information.

ADC Data Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	D15	ADC Data Bus														D0	

If you use an ADC chip as the manual, the Manual bit of COMMAND register should be set '1.

(2) COMMAND

ADC Command Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	R	TA	HC	LC	TP	Reg_sel	E	TLoad	A	D	O	M					

Bit	Name	Description	Default Value
0	Manual	If it is ‘1’, it control the ADC by Manual. If it is ‘0’, it is Free running <(Notice) 1.>	‘0’
1	Operation	‘1’ is Normal mode trigger, ‘0’ is Auto mode	‘0’
2	DIFF	If it is ‘1’, it is a Differential mode. If it is ‘0’, it is a Single Ended mode.	‘0’
3	AMODE	Setup the Input Range to Analog mode. Refer to chip manual	‘0’
6 – 4	Trg load	Trigger pace load	“000”
7	Ext	External trigger	‘0’
10–8	Reg sel	Register select	“000”
11	Trg Pol	Register select 아래 <(주) 2>	‘0’
12	Low Clear	Low RAM full clear(write only)	‘0’
13	High Clear	High RAM full clear(write only)	‘0’
14	Trg arm	Trigger Arm(write only)	‘0’
15	RESET	Initialize the ADC operation. (write only)	‘0’
31 – 16	Reserved	For future use	All ‘0’

(Notice) 1. Manual bit

ADC values that converted to automatic mode are stored high-speed RAM of internal chip. The RAM is composed two 1024WORD(16-bit). So, total 2048 16-bit WORD is stored. If the top-level address of the internal RAM is stored, it is saved by moving to the first address again, the value of the data that was previously recorded will be lost.

(Notice) 2. reg_sel

By reg_sel value of bit 10–8, reading/writing changes to a specific register at I/O offset address 88h. The table below shows the Register value selected by the reg_sel. For example, to write a value to CH_SEL0, reg_sel record "100". When read/write 88h, read/write to CH_SEL0.

Reg_sel	Selected Register
“000”	Read Pointer
“001”	ADC_PRD
“010”	TRG_POS
“011”	TRG_LEVEL
“100”	CH_SEL0
“101”	CH_SEL1
“110”	CH_SEL2
“111”	CH_SEL3

(3) STATUS

ADC indicates the operating status.

ADC STATUS Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	B	TD	HF	LF	TA	ADC FIFO Pointer											

Bit	Name	Description	Default Value
10-0	FIFO Ptr	Represents the ADC FIFO Pointer.(Read) Read pointer is set to high-speed RAM. (Write)<(Notice) 1>	‘0’
11	Trg Arm	If it is ‘1’, wait for Trigger occurrence.	‘0’
12	Low Full	If it is ‘1’, full lower-RAM	‘0’
13	High Full	If it is ‘1’, full upper-RAM	‘0’
14	Trg Done	If it is ‘1’, Trigger done	‘0’
15	Busy	If it is ‘1’, represents the ADC operation.	‘0’
31- 16	Reserved	For future use	All ‘0’

If it has write operation to the Status register, bits 10-0 of the program by setting the read pointer is to be read in a specific address.

(4) CH_SEL0/1/2/3

When ADC operates the Hardware SCAN(AUTO) mode, specific channel that want to get an analog value can convert selectively. This function is available through the Channel Select register. Each Channel Select register store the sampling channel number from 0 to 7.

Sample order, is performed repeatedly from SAM_CH0 to SAM_CH7.

Currently, only the lower three bits of each sample channel is used.

ADC CH_SEL0 Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	SAM_CH1										SAM_CH0						

ADC CH_SEL1 Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	SAM_CH3										SAM_CH2						

ADC CH_SEL2 Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	SAM_CH5										SAM_CH4						

ADC CH_SEL3 Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	SAM_CH7										SAM_CH6						

The structure of the 8-bit hardware SAM_CH indicates the channel number. In SE mode bit 0-2 means three bits, and bits 7-3 are available for up to add future capabilities. In Differential mode, bits 0 and 1 is meaningful only shows the channel number.

For example, if you want to convert the hardware channel only 0 and 6, SAM_CH0/2/4/6 will be written to “0”, SAM_CH1/3/5/7 will be written to “6”.

If you want to convert all of the channels, each SAM_CH will be written channel numbers that want to convert. The conversion order follow in order to record the number.

(5) ADC Read Pointer

Converted Chip ADC value is stored in the high-speed RAM. Two high-speed RAM size is 1K 16-bit words. (Previously method stored in the external RAM is not used in version 1.1.)

There are continuously sampling in version 1.1, to read the ADC address value can be known the ADC read pointer, to write the ADC pointer can be known the Status register.

ADC Read Pointer															
31	11 10 9 8 7 6 5 4 3 2 1 0										Read Pointer address				
Reserved	D15										Sampling Period Value				D0

(6) ADC_PRD

ADC Sampling period register Bit Position & meaning															
31	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Reserved	D15														

The maximum conversion rate of the ADC is 200KSPS (5uSEC cycle). If the ADC_PRD value of 0/1, it is successively ADC conversion by the maximum speed. However, if ADC_PRD has a another value than not '0' or '1', it can be used by decreasing sampling speed(period).

In case of '2', sampling period is 7.5uSEC, in case of '3', sampling period is 10uSEC, the sampling period represented by the equation is as follows:

$$\text{Sampling Period} = 5.0\text{uSEC} + (\text{ADC_PRD}-1) \times 2.5\text{uSEC}$$

When the ADC_PRD values 0 and 1, the maximum sampling period of the exception is 5.0uSEC.

(7) Trigger position

When H/W Trigger occurs, ADC address value is stored. (Future Function)

ADC Trigger position Register															
31	11 10 9 8 7 6 5 4 3 2 1 0														
Reserved	H/W Trigger position														

(8) Trigger control

H / W trigger level can be set. (Future Function)

ADC Trigger Level Register																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	SL	TRG_CH	H/W Trigger position														

Bit	Name	Description	Default Value
11-0	Trigger Level	Set the trigger level.	‘0’
14-12	TRG ch	Set the channel of the trigger.	“000”
15	Slope	If it is ‘0’, it is a rising edge. If it is ‘1’, it is a falling edge.	‘0’
31-16	Reserved	For future upgrade	All ‘0’

10. DAC Usage

PCI-EK01 has 4 DAC(Digital to Analog Converter). The maximum update speed is 1M sapling/sec, output range is form 0 to 3.3V, a resolution is 12-bit.

It has 1K word 16-bit FIFO for **Waveform Generation** function.

Function	I/O Address Offset	Register	Description
DAC	90h	DATA	32Bit DAC data
	94h	COMMAND	DAC Control command Register
	98h	DIV_VAL	DAC auto-reload interval value
	9Ch	LIMIT_ADDR	DAC auto-reload buffer limit address(Write only)
	9Ch	STATUS	DAC operation status Register(Read only)

(1) DATA

Data values that are written to the data register can be used Waveform generation in the automation mode by automatically written to the internal DAC output FIFO.

DAC Data Register Bit Position & meaning																
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
Reserved	A1	A0	PD	LD	D11	DAC DATA								D0		

DAC DATA : DAC data of 12-bit resolution

LD : Low Active Load ADC. In other words, if it is '1', simply store the value of the data in the DAC buffer. If it is '0', the value in the buffer outputs to the DAC. Thus, three DAC buffer record the value, if the record at the same time the last to '1', four DAC value can be output.

PD : Low Active Power Down. In other words, if it is '0', the DAC is a low-power mode. In normal operation it should be always '1'.

A1/A0 : It is an address to select one of the four DAC.

A1	A0	DAC Output
0	0	DAC 0
0	1	DAC 1
1	0	DAC 2
1	1	DAC 3

In read operation, it represents the value of the FIFO.

For more information, refer to chip(AD5324) manual.

(2) COMMAND

DAC Command Register Bit Position & meaning							
31			7	6	3	2	1 0
	Reserved	M	Reserved	R	I	A	

Bit	Name	Description	Default Value
0	Auto	If it is ‘1’, Waveform generation works. (Down Counter) At this time, DAC value uses the internal FIFO.	‘0’
1	Int_en	If it is ‘1’, Interrupt Enable works. When internal FIFO address value reaches the Limit value, Interrupt is generated. (Applied later, It should be set always ‘0’.)	‘0’
2	Reset	If it is ‘1’, it initializes the DAC. If it is ‘0’, it makes the normal operation mode. When reset, there was no change internal FIFO value, but you can record DAC value from the beginning because of initialization of FIFO pointer.	‘0’
6 – 3	Reserved	For future use	“1111”
7	Manual	If it is ‘1’, the value of DAC can be set for each channel by manual. (Refer to Data Register)	‘1’
31 – 8	Reserved	For future use	All ‘0’

[Reference] If Divide is ‘0’, the period of DAC update is 1uSEC. If it is ‘1’, it depends on DIV_VAL value.

(Notice) If the actions were changed from automatic mode to manual mode, the reset operation must be once operation.

(3) DIV_VAL

If DIV_VAL is ‘0’, the period is 2uSEC. If it is ‘1’, it is 4uSEC. If it is ‘2’, it is 6uSEC. If it is ‘3’, it is 8uSEC. That way, it represents equation, update cycle is 2uSEC x (DIV_VAL + 1).

DAC DIV_VAL Register Bit Position & meaning															
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1 0
Reserved	D11	Divide Value				D0									

Init. Value : 0x0000h

(4) LIMIT_ADDR

If you create the Waveform by using internal FIFO, a specific address should be move first address in order to make any periodic Waveform. Limit Address are to be used for this. In other words, if you only create a waveform at FIFO address from 0 to 233, and then LIMIT_ADDR value records 233, after that the DAC will be output only to address 233 and move to the first address 0.

DAC LIMIT_ADDR Register Bit Position & meaning										
31										0
Reserved										A9 FIFO Address limit value A0

Init. Value : 0x3E7h (999d)

(5) STATUS

DAC STATUS Register Bit Position & meaning										
31										0
Reserved										A9 FIFO Address A0

Bit	Name	Description	Default Value
9 – 0	FIFO Address	Represents the 10-bit FIFO address. If Auto bit of COMMAND register is ‘0’, it represents the Write address. If it is ‘1’, it represents the Read address (ADC output value).	All ‘0’
31-10	Reserved	For future use	All ‘0’

11. Digital I/O(82C55) Usage

PCI-EK01's Digital Input / Output functions are implemented using the 82C55. In case of the 82C55, the peripheral device control chip of early Intel x86 family have been used.

Function	I/O Address Offset	Register	Description
I/O(82C55)	A0h	PORTA	82C55 Port A Register
	A4h	PORTB	82C55 Port B Register
	A8h	PORTC	82C55 Port C Register
	ACh	CONTROL	82C55 Control Register (Write Only)

To control the 82C55 port, it must be all setup through the control register. For all setup, the most significant bit will be set to "1" and writes to the control register. If the most significant bit is "0", it is a command of PORTC bit description. (For more information, refer to 82C55 manual)

When the first power, all port will be input and the operation mode will be "0".

12. Interrupt Controller Usage

PCI-EK01 has the interrupt controller for each I/O device by using hardware.

When you use these interrupts, overhead of the process can be reduced.

Function	I/O Address Offset	Register	Description
INTERRUPT	B0h	INT_STA	Interrupt Status Register (Read)/ Interrupt Status Clear (Write)
	B4h	INT_SEL	Interrupt Select(Read/Write)
	B8h	INT_EN	Interrupt Enable Register (Read/Write)
	BCh	INT_SRC	Interrupt Source Indication(Read Only)

To control the 82C55 port, it must be all setup through the control register. For all setup, the most significant bit will be set to “1” and writes to the control register. If the most significant bit is “0”, it is a command of PORTC bit description. (For more information, refer to 82C55 manual)

When the first power, all port will be input and the operation mode will be “0”.

(1) INT_STA (Interrupt Status)

Indicates devices that are currently required Interrupt. To appear in the status register will have to make the handle. (Read)

The Status bit(INT_STA) of each devices that require the Interrupt are eliminated.(Write)
The interrupt handling device that requires a bit of a write operation must be one and the corresponding status bit is cleared (Edge-triggered Interrupt). For level-triggered interrupt, request for each device must be cleared directly.

INTERRUPT Status Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	G	S14	Status										S0				

Bit	Name	Description	Default Value
0	Counter 0	If it is ‘1’, the Counter 0 requests the Interrupt processing.	‘0’
1	Counter 1	If it is ‘1’, the Counter 1 requests the Interrupt processing.	‘0’
2	Counter 2	If it is ‘1’, the Counter 2 requests the Interrupt processing.	‘0’
3	Timer 0	If it is ‘1’, the Timer 0 requests the Interrupt processing.	‘0’
4	Timer 1	If it is ‘1’, the Timer 1 requests the Interrupt	‘0’

		processing.	
5	Timer 1	If it is ‘1’, the Timer 2 requests the Interrupt processing.	‘0’
6	UART	Reserved	‘0’
7	VGA	Reserved	‘0’
8	ADC	Reserved	‘0’
9	DAC	Reserved	‘0’
10	8255	Reserved	‘0’
11	Interrupt	Reserved	‘0’
12	EXT0	Reserved	‘0’
13	EXT1	Reserved	‘0’
14	EXT2	Reserved	‘0’
15	Global	When any of the above Interrupt sources need to process, it will be changed “1”.	‘0’
31-16	Reserved	For future use	All ‘0’

When the interrupt processing ends, the interrupt status bit for each corresponding bit should be cleared.

After the bit that want to be cleared write “1”, the Interrupt status of corresponding bit is cleared. After the bit that want to be cleared writes “1”, the Interrupt status of corresponding bit is cleared.

Bit 15 is reset (Reset), so all status bits are cleared at the same time.

(2) INT_SEL

Determines whether to an edge-triggered or level triggered interrupt for each device that requires the interrupt processing.

INTERRUPT Select Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	M14														M0		

The Interrupt mode selects until from bit 0 to 14.

If it is ‘0’, it is a Level Trigger. If it is ‘1’, it is a Edge trigger. All bit is ‘0’ by default.

(3) INT_EN

Each Interrupt source is to enable the Interrupt.

INTERRUPT Enable Register Bit Position & meaning																	
31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	G	E14	Enable												E0		

If each bit is '1', it is enabled the device Interrupt of corresponding bit. Because bit 15 is the Global Interrupt Enable bit, This bit is set '1' to enable all Interrupts.

(4) INT_SRC

INT_STA register represents that each interrupt request output of the device is latched at the rising edge of the signal. Thus, it is the display of Edge triggered rather than Level triggered. Therefore, it requests and cleares the Interrupt. On the other hand, INT_SRC represents that the state of the current output request Interrupt device.

INTERRUPT Source Indicator Bit Position & meaning																
31	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	S14	Interrupt Source												S0		

References

1. AD7859 Data Sheets Rev. A
-- Analog Device, Inc
2. AD5304/5314/5324 Data Sheets Rev. D
-- Analog Device, Inc
3. PCI-EK01(A/B) User's Manual
-- DAQ system
4. 82C55 chip manual
-- Intel corp.