Convergence of the maximum of a sample from a Uniform distribution

Objective: The primary purpose is to explore the convergence of $X_{(n)}$ for the Uniform distribution as the sample size (n) increases.

Task: Follow the subsequent steps to examine the convergence of $X_{(n)}$:

- 1. Open the shiny application given by the URL: https://fhernanb.shinyapps.io/Conv-Prob-Dist/
- 2. Using the shiny application, select the Uniform distribution, the sample size n, the parameter γ , and ϵ based on the information given by Table 1.
- 3. Fill the gaps of Table 1 by using the results from the shiny application in order to infer curves on Figure 1 (convergence quickness of $X_{(n)}$) with their respective color, which is associated to each value of ϵ .

			n = 3	n = 44	n = 101	n = 197
	$\epsilon = 0.1$	$F_{X_{(n)}}(\gamma - \epsilon) = P(X_{(n)} - \gamma \ge \epsilon)$	0.96			
y = 8.6	$\epsilon = 0.3$	$F_{X_{(n)}}(\gamma - \epsilon) = P(X_{(n)} - \gamma \ge \epsilon)$				0
	$\epsilon = 0.5$	$F_{X_{(n)}}(\gamma - \epsilon) = P(X_{(n)} - \gamma \ge \epsilon)$		0.07		

Table 1: Assessment of the empirical $F_{X_{(n)}}(\gamma - \epsilon)$ as n increases.

Figure 1: Template to illustrate the convergence quickness of $X_{(n)}$ for each value of ϵ .

n regard to the pattern obse	rved?
$_{n)}$ is close to $\gamma=8.6$ with high	gh probability (when n is large)?
about the convergence quick	chass of V as a rises?
about the convergence quick	Λ (n) as ϵ (1363:

4. In accordance with Table 1 and Figure 1:

Convergence of the minimum of a sample from a Shifted Exponential distribution

Objective: The primary purpose is to explore the convergence of $X_{(1)}$ for the Shifted Exponential distribution as the sample size (n) increases.

Task: Follow the subsequent steps to examine the convergence of $X_{(1)}$:

- 1. Open the shiny application given by the URL: https://fhernanb.shinyapps.io/Conv-Prob-Dist/
- 2. Using the shiny application, select the Shifted Exponential distribution, the sample size n, the parameter γ , and ϵ based on the information given by Table 2.
- 3. Fill the gaps of Table 2 by using the results from the shiny application in order to infer curves on Figure 2 (convergence quickness of $X_{(1)}$) with their respective color, which is associated to each value of ϵ .

			n = 2	n = 25	n = 115	n = 185
	$\epsilon = 0.1$	$F_{X_{(1)}}(\gamma + \epsilon) = P(X_{(1)} - \gamma < \epsilon)$			0.99	
$\gamma = 4.2$	$\epsilon = 0.3$	$F_{X_{(1)}}(\gamma + \epsilon) = P(X_{(1)} - \gamma < \epsilon)$	0.44			
	$\epsilon = 0.5$	$F_{X_{(1)}}(\gamma + \epsilon) = P(X_{(1)} - \gamma < \epsilon)$				0.99

Table 2: Assessment of the empirical $F_{X_{(1)}}(\gamma + \epsilon)$ as n increases.

Figure 2: Template to illustrate the convergence quickness of $X_{(1)}$ for each value of ϵ .

_	What can be inferred with regard to the pattern observed?
_	
ľ	t can be affirmed that $X_{(1)}$ is close to $\gamma=4.2$ with high probability (when n is large)?
V	What can be concluded about the convergence quickness of $X_{(1)}$ as ϵ rises?
_	

4. In accordance with Table 2 and Figure 2: