

10/5691

WO 2005/011164

PCT/AU2004/001129

JAP20 Rec'd REC'D 20 21 FEB 2006

- 1 -

SEQUENCE LISTING

<110> Virax Development Pty Ltd

<120> A novel vector

<130> 12486620/JEH

<150> AU 2003904496

<151> 2003-08-21

<160> 11

<170> PatentIn version 3.0

<210> 1

<211> 3271

<212> DNA

<213> virus

<400> 1

atggatagaa atatcaattt tagtcctgta tttatagaac ctaggtttaa acacgagttt	60
ctattatctc ctcaaaggta ttttatata ttagttttg aagtaatagt agctttgatt	120
atattgaatt ttttctttaa ggaagaaata ttatatacat ttttccgtt agctaaggct	180
tctaaaaatt caataaatacg totgctggat agaactatgt taaaatgtga agaagatgga	240
tctttatgtca tttcgagacc ttccggatc tattccgcct tgagttttaga tggttcacccg	300
gtaaggattt ccgattttagt ttgcgttttca tcgtcaataa atggcgcata ctcataaca	360
tctccttact ctattttaa cagacgataa cggttttat tcttatctat ccgaabaaag	420
tgtatgtgaa gctcttgaag acataaatac tattaagaaa tatatggact ttattctaag	480
cgttcttata cgttctaaag agaaaactaga aaatatacgga tgttcttacg agcctatgag	540
tgaatcggtt aaggcttta taaaagtaaa ggatgtatgtt acttttagtaa aagcatttac	600
caagccattt taaaatctc attccgaaaa gatagttta gatagagggtt atacttcgga	660
ttttgcataa agcgtaataa gactatctatg taaaagcgtt tataatcttc ccgcaaatac	720
aaaatacata aatccaaacg agaatatgttataaaacaac ctaatatcac tactgaagcg	780
caactagatc ttccaaaccc acccgctttt tatagtaatgtt ttttcaccca taaaataataa	840
atacaataat taatttctcg taaaagtaga aaatataatttca taatttatttgc cacggcttag	900
aactatgttgc tccatgtaca ggatgcaact cctgtcttgc attgcactaa ttcttgact	960
tgtcacaaac agtgcaccta cttcaagttc gacaaagaaa acaaagaaaa cacagctaca	1020
actggagcat ttactgctgg atttacagat gattttgaat ggaattaata attacaagaa	1080

VO 2005000464

PL . AL2004/001129

- 2 -

tcccaaactc accaggatgc tcacatttia gtttacatg cccaagaagg ccacagaact	1140
gaaacagctt cagtgtcttg aagaagaact caaacctctg gaggaagtgc tgaatttagc	1200
tcaaagcaaa aactttcaact taagaccag ggacttaatc agcaatatca acgtaatagt	1260
tctggacta aaggatctg aaacaacatt catgtgtgaa tatgcagatg agacagcaac	1320
cattgttagaa ttctgaaca gatggattac ctttgtcaa agcatcatct caacactaac	1380
ttgattttg tagatctgtc gaccatttag tatcctaaaa ttgaattgta attatcgata	1440
ataaatgaga gctgtccctc tgcacctcgt cgggacagca agcctcaccc ttggcttctt	1500
gtccctgcta tctctccgcc tggaccagg ccaagccaag gagttgaagt ttgtgacatt	1560
ggtgttccgg catggagacc gaggtccat cgagacctt cctaattgacc ccattaagga	1620
atcctcgtgg ccacaaggat ttggccaact caccaagtgg ggcattggac agcactacga	1680
actcggaagt tatataagga gaagatacgg gagattcttg aacaactcct ataaacatga	1740
ccaggtttat atccgaagca cagatgttga caggactctg atgagcgcta tgacaaacct	1800
cgcagccctg ttccccctg agggatcag catctggaaat cccagactgc tctggcagcc	1860
catcccagtg cacaccgtgt ctctctctga ggatcggttg ctatacctgc cttcaggga	1920
ctgtcctcgc ttcaagaac tcaagagtga gactttaaa tctgaggagt tcctgaagag	1980
gttcaacca tataaaagct tcatagacac cttgccatcg ctgtcgggat tcgaggacca	2040
ggatctttt gaaatctgga gtaggctta cgacccttta tattgcgaga gtgttcacaa	2100
ttcaccttc cgcacctggg ccacagagga cgccatgact aagttgaagg agttgtcaga	2160
attatctctg ttatctcttt atgaaattca caagcagaaa gagaaatcta gactccaggg	2220
ggcgctcctg gtcaatgaaa ttctcaagaa catgaagctt gcaactcaac cacagaaggc	2280
caggaagttg atcatgtatt ctgcatatga cactactgtg agtggcctgc agatggcgct	2340
agagctttat aatggacttc tacctcccta cgcttctgc cacataatgg aattgtacca	2400
ggataatggg gggacccctcg tggagatgta ctaccggaaat gagacccaga acgagcccta	2460
cccactcactg ctgccccggct gtacccacag ctgccccttg gagaagtttg cagagctact	2520
ggacccctgtg atccccccagg actggccac agagtgtatg ggcacaagca accaccaagc	2580
gtcgctgtaa ttttctgtc gacccatggt tttaaaaag gaattgaaag aaaatattt	2640
atatcgtaat aaattaaata tgcataagg acatcaggag tctttaaag aacttgaat	2700
gacaaaacct tatatgttct tcaatgaact agtaggtgaa gaagactata acaaagagtt	2760
agaaaattct aatactaagt tcaaggaca gggccagctt aagctttat taggagaact	2820

WO 2005.019464

PCT/AU2004/001129

- 3 -

ttatccctta aatacattaa tcaagaataa aacgttatgt tcagatacag ttatcggtta	2880
tatagggtca gcaccaggaa gccatataaz ttatccat cattatatgg atgatcttaa	2940
aatagattta aaatggatat taatagatgg tagagatcat gatcgatctc tagaaagtct	3000
taaaaatgtg tctataatac atagggttg agatgaacaa tactgttta agctacgtaa	3060
tatgatttagg aaaaaccata aaattgtact gatacgat attagatcgc taagaggaaa	3120
agaacctact agcgaggacc tattacacga ttacgcgttg cagaatcaa tggttaagcat	3180
tcttaaacca atagcatcga gcctgaaatg gagatgtccg ttccggatc agtggataag	3240
agacttttac attccttgtg gagatgagtt t	3271

<210> 2
<211> 3271
<212> DNA
<213> virus

<400> 2 tacctatctt tatagttaaa atcaggacat aaatatcttg gatccaaatt tgtgtcaaa	60
gataatagag gagtttccat aaaaatataat aatcaaaaac ttcatatca tcgaaactaa	120
tataacttaa aaaagaaaatt ctttctttat aatataatgt aaaaaggcaa tcgattcgga	180
agatttttaa gtatattatc agacgaccta tcttgataca attttacact tcttctacct	240
agaaactact aaagctctgg aaggccatag ataagccgga actcaaactt accaagtggc	300
cattcctaaa ggtaaacatc aaacgaaaat agcagttatt taccgcgtag gagtagttgt	360
agaggaatga gataaaaatt gtctgttatt gcctaaaata agaataagata ggcttttttc	420
actactactt cgagaacttc ttttattatg ataattctt atatacctga aataagattc	480
gcaagaatat gcaagatttc tctttgtatct tttatatacct acaagaatgc tcggatactc	540
acttagcaaa ttccgagaat aatttcattt cctactacca tgaaatcatt ttctgtaaatg	600
gttcggtAAC aatttaggag taaggcttt ctatcaaattt ctatctccaa tatgaagcct	660
aaaacgatat tcgcattatt ctgatagatc attttcgta atatatgaag ggctttatgt	720
ttttatgtat ttaggtttgc tcttatacat atattgttg gattataatgt atgacttcgc	780
gttgcgttag aaggtttggg tgggcgaaaa atatcatca aaaagtgggt atttattatt	840
tatgttatta attaaagagc attttcatct ttatataag attaaataac gtgccagatc	900
ttgatcacct aggtacatgt cctacgttga ggacagaacg taacgtgatt aagaacgtga	960
acagtgtttg tcacgtggat gaagtcaag ctgtttcttt tgttatcttt gtgtcgatgt	1020

WO 2005 19464

PCT/AU2004/00112

- 4 -

tgacctcgta aatgacgacc taaaatgtcta ctaaaactta ccttaattat taatgttctt	1080
agggttttag gggccatcag agtgtaaatt caaaatgtac gggtttctcc ggtgtcttga	1140
cgtcgaa gtcacagatc ttcttcttga gttggagac ctcttcacg acttaaatcg	1200
agtttcgttt ttgaaagtga attctgggc cctgaatttag tcgttatagt tgcatatca	1260
agaccttgcat ttccctagac ttgttgtaa gtacacactt atacgtctac tctgtcgtrg	1320
gtaacatctt aaagacttgt ctacctaattt gaaaacagtt tcgttagtaga gttgtgattt	1380
aactaaaaac atctagacag ctggtaaattc ataggatttt aacttaacat taatagctat	1440
tatattactct cgacaggag acgtggagca gccctgtcggt tcggagtgaa aaccgaagaa	1500
cgaggacgtt agagaggcgg acctgggtcc gggtcggttc ctcaacttca aacactgtaa	1560
ccacaaggcc gtacctctgg ctccagggtt gctctggaaa ggattactgg ggttaattct	1620
taggacacc ggtgttccca aaccgggttga gtgggttccacc ccgttaccctg tcgtgtatgt	1680
tgagccttca atatatccctt ctttatgtcc ctctaaagaaat ttgttggagga tatrtgtact	1740
ggtccaaata taggcttcgt gtctacaact gtcctgagac tactcgcgtt actgtttgg	1800
gcgtcgggac aaagggggac tcccctagtc gttagaccca gggtctgacg agaccgtcg	1860
gtagggtcac gtgtggcaca gagagagact cctagccaac gatatggacg gaaagtccct	1920
gacaggagcg aaagttcttg agttctcaact ctgaaattttt agactccttca aggacttctc	1980
cgaagtttgtt atattttca agtatctgtt gaacggtagc gacagcccttta agctccttgtt	2040
cctagaaaaa ctttagaccc catccaaat gctggaaat ataacgtctt cacaagtgtt	2100
aaagtggaaag gcgtggaccc ggtgtctctt gcggtactga ttcaacttcc tcaacagtct	2160
taatagagac aatagagaaaa taccttaagt gtctgttctt ctcttttagat ctgaggtccc	2220
cccgcaggac cagttactttt aagagttctt gtacttcgaa cggtgagttt gtgtcttccg	2280
gtccttcaac tagtacataa gacgtataact gtgtatgacac tcaccggacg tctaccgca	2340
tctcgaaata ttacctgaag atggagggat gcaaggacg gtgtattacc ttaacatgg	2400
cctattaccc ccctggaaac acctctacat gatggcccttta ctctgggtct tgctcggtt	2460
gggtgagtgc gacggccccga catgggtgtc gacgggagac ctcttcaaaac gtctcgatga	2520
cctggggcac tagggggtcc tgaccgggtg tctcacatac ccgtgttcgt tggtggttcg	2580
cagcgacatt aaaaagacag ctgggtacca acaatttttc cttaacttcc ttttataaaaa	2640
tatagcatta tttaattttt acgtacttcc ttttttttttcc agaaaatttc ttgtacttta	2700

WO 2005/019464

PCT/HK 2004/00129

- 5 -

ctgttttggaa atatacaaga agttacitga tcatccactt cttctgatat tgtt-ctcaa 2760
tcttttaaga ttatgattca aagtccctgt cccggtcgaa ttcgacaata atcctcttga 2820
aataazsgaat ttatgttaatt agtttttattt ttgcatacata agtcataatgtc aatagcacat 2860
atatcccagt cggtggccctt cggttatattt aaaaatata gtaatataacc tactagaatt 2940
ttatctaatttttacctata attatctacc atctcttagta ctagctagag atctttcaga 3000
atttttacac agatattatgt tatccaaaca tctacttgtt atgaacaaat tcgatgcatt 3060
atactaatacc tttttggat tatcaacatga ctatagtcta taatctagcg attctccctt 3120
tcttggatga tcgctcctgg ataatgtgct aatgcgcAAC gtcttagttt accatctgta 3180
agaatttggt tatacgtagct cggactttac ctctacaggc aaaggcctAG tcacccatttc 3240
tctqaaaatgt taaggaacac ctctactcaa a 3271

<210> 3
<211> 3286
<212> DNA
<213> virus

<400> 3
atggatagaa atatcaattt tagtcctgta tttatagaac ctaggittaa acacgagttt 60
ctattatctc ctc当地ggta tttt当地ata ttagttttg aagtaatagt agctttgatt 120
atattgaatt ttttctttaa ggaagaaaata ttatatacat ttttccgtt agctaaggct 180
tctaaaaatt caataaaatag tctgctggat agaactatgt taaaatgtga agaagatgga 240
tctt当地gtga ttccgagacc ttccggatc tattccgcct tgagttttaga tggttcacccg 300
gtaaggattt ccgattgttag tttgcttttca tcgtcaataa atggcgcatc ctcatcaaca 360
tctccttact ctattttaa cagacgataa cgatcttat tcttatctat ccgaaaaaaag 420
tgatgatgaa gctcttgaag acataaaatac tattaagaaa tatatggact ttattctaaag 480
cgttcttata cgttcttaaag agaaactaga aaatatagga tgttcttacg agcctatgag 540
tgaatcgttt aaggcttta taaaagtaaa ggatgatggt acttttagtaa aagcatttac 600
caagccattt ttaaatcctc attccgaaaa gatagtttta gatagaggtt atacttcgg 660
ttttgctata agcgtataa gactatctag taaaagcagt tatatacttc ccccaaatac 720
aaaatacata aatccaaacg agaataatgta tataaacaac ctaatatcac tactgaagcg 780
caacttagatc ttccaaaccc acccgcttt tatagtaagt ttttcacccca taaataataa 840
atacaataat taatttctcg taaaagtaga aaatatattc taatttattg cacggtctag 900

WO 2005/019464

PCT/AU2004/001129

- 6 -

aactagtggatccatgtaca	gcatgcacactcctgtttgc	at:ycactaa	ttcttcact	960		
tgtcacaaac	agtgcaccta	tttcaagttc	gacaaagaaa	acaaagaaaa	cacagctaca	1020
actggagcat	ttactgctgg	atttacagat	gattttgaat	ggaatttaata	attacaagaa	1080
tcccaaactc	accaggatgc	tcacatcaa	gttttacatg	ccccaaagg	ccacagaact	1140
gaaacagctt	cagtgtctag	aagaagaact	caaacctctg	gaggaagtgc	tgaatttagc	1200
tcaaagcaaa	aactttcact	tsagacccag	ggacttaatc	agcaatatac	acgttaatgt	1260
tctggaaacta	aaggatctg	aaacaacatt	catgtgtgaa	tatgcagatg	agacagcaac	1320
cattgttggaa	tttctgaaca	gatggattac	cttttgtcaa	agcatcatct	caacactnac	1380
ttgatttttg	tagatctgtc	gaccatttag	tatcctaaaa	ttgaatttgc	attatcgata	1440
ataaaatgaga	gctgcacccc	tcctcctggc	cagggcagca	agccttagcc	ttggcttctt	1500
gtttctgctt	ttttctggc	tagaccgaag	tgtactagcc	aaggagtgt	agtttgcac	1560
tttgggtttt	cggcatggag	accgaagtcc	cattgacacc	tttcccactg	accccataaa	1620
ggaatcctca	tggccacaaag	gatttggcca	actcacccag	ctgggcatgg	agcagcatta	1680
tgaacttggatccatgtaca	gagtatataa	gaaagagata	tagaaaattc	ttgaatgagt	cctataaaca	1740
tgaacaggtt	tatattcgaa	gcacagacgt	tgaccggact	ttgatgagtg	ctatgacaaa	1800
cctggcagcc	ctgtttcccc	cagaagggtgt	cagcatctgg	aatcctatcc	tactctggca	1860
gccccatcccc	gtgcacacag	ttcccttttc	tgaagatcag	ttgctataacc	tgctttcag	1920
gaactgcctt	cgtttcaag	aacttgagag	tgagactttg	aaatcagagg	aattccagza	1980
gaggctgcac	ccttataagg	attttatagc	taccttggga	aaactttcag	gattacatgg	2040
ccaggacctt	tttggaaattt	ggagtaaagt	ctacgaccct	tttatattgt	agagttca	2100
caatttcact	ttacccctcct	gggccactga	ggacaccatg	actaagttga	gagaatttgc	2160
agaatttgcctt	ctccctgtccc	tctatggaaat	tcacaaggcag	aaagagaaaat	ctaggctcca	2220
aggggggtgtc	ctggcataatg	aaatcctcaa	tcacatgaag	agagcaactc	agataccaag	2280
ctacaaaaaaaa	cttatcatgtt	attctgcgc	tgacactact	gtgagtgcc	tacagatggc	2340
gctagatgtt	tacaacggac	tccttcctcc	ctatgcttct	tgccacttga	cggaatttga	2400
ctttgagaag	ggggagttact	ttgtggagat	gtactatcg	aatgagacgc	agcacgagcc	2460
gtatccctc	atgctacctg	gctgcagccc	tagctgtcct	ctggagaggt	ttgctgagct	2520
ggttggccct	gtgatccctc	aagactggc	cacggagtgt	atgaccacaa	acagccatca	2580
aggtaactgag	gacagtacag	attaattttt	ctgtcgaccc	atggttgtta	aaaaggaatt	2640

WO 2005/019461

PCT/AT/2004 001179

- 7 -

gaaagaaaaat attttatatac gtaataaaatt aaatatgcac gaaggacatc aggacgtt	2700
taaagaactt gaaatgacaa aacccatat gttttcaat gaacttagtag gtgaagaaga	2760
ctataacaaa gagtttagaaa attctaatac taagttcaa ggacaggccc agcttaagct	2820
gttatttagga gaactttatt tcttaatac attaatcaag aataaaacgt tatgttcaga	2880
tacagttatc gtgttatatacg ggtcagcacc aggaagccat atazatttt tatatcatta	2940
tatggatgt cttaaaatag atttaaaatg gatattaata gatggtagag atcatgatecg	3000
atctctagaa agtcttaaaa atgtgtctat aatacatagg tttgttagatg aacaatactt	3060
gtttaagcta cgttaatatga ttagaaaaaa ccataaaatt gtactgatat cagatattag	3120
atcgctaaga ggaaaagaac ctactagcga ggaccttata cacgattacg cggtgcagaa	3180
tcaaatggta agcatttta aaccaatagc atcgagcctg aaatggagat gtccgttcc	3240
ggatcagtgg ataagagact ttacattcc ttgtggagat gagttt	3286

<210> 4
<211> 3286
<212> DNA
<213> virus

<400> 4 tacctatctt tatagttaaa atcaggacat aaatatcttg gatccaaatt tgtgctcaas	60
gataatagag gagtttccat aaaaatatat aatcaaaaac ttcatatca tcgaaactaa	120
tataacttaa aaaagaaaatt ctttctttat aatatatgtt aaaaaggcaa tcgattcgga	180
agattttaa gttatttatac agacgaccta tcttgataca attttacact tcttctacct	240
agaaaactact aaagctctgg aaggccatag ataagccgga actcaaactc accaagtggc	300
cattcctaaa ggctaacatc aaacgaaaat agcagttatt taccgcgttag gagtagttgt	360
agaggaatga gataaaaatt gtctgttatt gcctaaaata agaatagata ggcttttcc	420
actactactt cgagaacttc tgtattttatg ataattctt atataacctga aataagattc	480
gcaagaatat gcaagatttc tcttigatct ttatatactt acaagaatgc tcggataactc	540
acttagcaaa ttccgagaat aatttcattt cctactacca tgaaatcatt ttctgttata	600
gttcggtaac aatttaggag taaggctttt ctatcaaaaat ctatctccaa tatgaagcct	660
aaaacgatat tcgcattatt ctgatagatc atttttgtca atatatgaag ggcgtttatg	720
ttttatgtat ttaggtttgc tcttatacat atatttgtt gattatagtg atgacttcgc	780
gttgcgttag aaggtttggg tggcgaaaaa atatcattca aaaagtgggt atttatttt	840

WGS 2005/019464

PCT AT 2004/001129

- 8 -

tatgttatta	ataaaagac	attttcatct	tttatataag	ccttaataac	gccccagatc	900
ttgatcaact	aggcacatgt	cctacgttga	ggacagaacg	taacgtgatt	aagaacgttga	960
acagtgttg	tcacgtggat	gaagttcaag	ctgtttcttt	tgtttctttt	gtgtcgatgt	1020
tgacctcg	aatgacgacc	taaatgtcta	ctaaaactta	ccttaattat	taatgttctt	1080
agggtttag	tggtcctacg	agtgtaaatt	caaaaatgtac	gggttcttcc	ggtgtcttga	1140
crrtgcgaa	gtcacagatc	ttcttcttga	gttggagac	ctccctcacg	acttaaattcg	1200
agtttcgtt	ttgaaagtga	attctgggc	cctgaatttag	tcgttatagt	tgcattatca	1260
agaccttgc	ttcccttagac	tttggtaaa	gtacacactt	atacgtctac	tctgtcgttg	1320
gtaacatctt	aaagacttgt	ctacctaatt	gaaaaacagt	tcgttagtaga	gttgtgattt	1380
aactaaaaac	atctagacag	ctggtaatc	ataggatttt	aacttaacat	taatagctat	1440
tatTTactct	cgacgtgggg	aggaggaccg	gtccccgtgt	tcggaatcgg	aaccgaagaa	1500
caaagacgaa	aaaaagacccg	atctgggttc	acatgatcgg	ttccctcaact	tcazacactg	1560
aaaccacaaa	gccgtacctc	tggcttcagg	gttaactgtgg	aaagggtgac	tgggttattt	1620
ccttaggagt	accgggtttc	ctaaaccgg	tgagtgggtc	gaccggtaacc	tcgtcgtaat	1680
acttgaacct	ctcatatatatt	cttctctat	atcttttaag	aacttactca	ggatattttgt	1740
acttgc当地	atataagctt	cgtgtctgca	actggcctga	aactactcac	gatactgttt	1800
ggaccgtcgg	gacaaagggg	gtcttccaca	gtcgttagacc	ttaggatagg	atgagaccgt	1860
cggtagggc	cacgtgtgtc	aggagaaag	acttctagtc	aacgatatgg	acggaaagtc	1920
cttgacggga	gcaaaagttc	ttgaactctc	actctgaaac	tttagtctcc	ttaaggtctt	1980
ctccgacgtg	ggaatattcc	taaaatatcg	atggaaccct	tttgaagtc	ctaattgtacc	2040
ggtcctggaa	aaaccttaaa	cctcattca	gatgctggga	aataaaacac	tctcacaagt	2100
gttaaagtga	aatgggagga	cccggtgact	cctgtggtac	tgattcaact	ctcttaacag	2160
tcttaacagg	gaggacaggg	agataacctt	agtgttcgtc	tttctcttta	gatccgaggt	2220
tcccccacag	gaccagttac	tttaggagtt	agtgtacttc	tctcggtgag	tctatggttc	2280
gatgtttttt	gaatagtaca	taagacgcgt	actgtgtatga	cactcaccgg	atgtctaccg	2340
cgatctacaa	atgtgcctg	aggaaggagg	gatacgaaga	acggtaact	gccttaacat	2400
gaaactcttc	cccctcatga	aacacctcta	catgatagcc	ttactctgcg	tcgtgctcgg	2460
cataggggag	tacgatggac	cgacgtcggg	atcgacagga	gacctctcca	aacgactcga	2520

W01205/019464

PCT/AU2004/001129

- 9 -

ccaaacggga cactagggag ttctgaccag gtgcctcaca tactggtgtt tgtcggttgt	2580
tccatgactc ctgtcatgtc taataaaaaa gacagctggg taccacaat ttcccttta	2640
ctttccctta taaaatatac cattatcaa tttatacgtta cttcctgttag tcctcaga&&	2700
atttcttgc aaatcttgc ttggaaatata caagaagtttta ctgtatc cacttcttct	2760
gatattgttt ctcaatcttta taagattatg attcaaagttt cctgtcccggtcgaattcga	2820
caataatccctt ctgaaataaa agaattatg taatgttc ttatgttgcatacgtct	2880
atgtcaatag cacatatac ccagtcgtgg tccctcggtt tattttaaaa atatagtaat	2940
ataccatcta gaattttatc taaatttac ctataattat ctaccatctc tagtactago	3000
tagagatctt tcagaatttt tacacagata ttatgtatcc aaacatctac ttgttatgaa	3060
caaattcgat gcattatact aatcctttttt ggtattttaa catgactataa gtctataatc	3120
tagcgattct cttttcttg gatgatcgct cctggataat gtgctaatgc gcaacgtctt	3180
agtttaccat tcgtaagaat ttgggtatcg tagctcgac tttacctcta caggcaaagg	3240
ccttagtacc tattctctga aaatgttaagg aacacctcta cttcaaa	3286

<210> 5
<211> 381
<212> PRT
<213> rat

<400> 5
Met Arg Ala Val Pro Leu His Leu Val Gly Thr Ala Ser Leu Thr Leu
1 5 10 15

Gly Phe Leu Leu Leu Ser Leu Arg Leu Asp Pro Gly Gln Ala Lys
20 25 30

Glu Leu Lys Phe Val Thr Leu Val Phe Arg His Gly Asp Arg Gly Pro
35 40 45

Ile Glu Thr Phe Pro Asn Asp Pro Ile Lys Glu Ser Ser Trp Pro Gln
50 55 60

Gly Phe Gly Gln Leu Thr Lys Trp Gly Met Gly Gln His Tyr Glu Leu
65 70 75 80

Gly Ser Tyr Ile Arg Arg Arg Tyr Gly Arg Phe Leu Asn Asn Ser Tyr
85 90 95

Lys His Asp Gln Val Tyr Ile Arg Ser Thr Asp Val Asp Arg Thr Leu
100 105 110

Met Ser Ala Met Thr Asn Leu Ala Ala Leu Phe Pro Pro Glu Gly Ile
115 120 125

WO 2005/019464

PCT/AL2004/001129

- 10 -

Ser Ile Trp Asn Pro Arg Leu Leu Trp Gln Pro Ile Pro Val His Thr
130 135 140

Val Ser Leu Ser Glu Asp Arg Leu Leu Tyr Leu Pro Phe Arg Asp Cys
145 150 155 160

Pro Arg Phe Gln Glu Leu Lys Ser Glu Thr Leu Lys Ser Glu Glu Phe
165 170 175

Leu Lys Arg Leu Gin Pro Tyr Lys Ser Phe Ile Asp Thr Leu Pro Ser
180 185 190

Leu Ser Gly Phe Glu Asp Gln Asp Leu Phe Glu Ile Trp Ser Arg Leu
195 200 205

Tyr Asp Pro Leu Tyr Cys Glu Ser Val His Asn Phe Thr Phe Arg Thr
210 215 220

Trp Ala Thr Glu Asp Ala Met Thr Lys Leu Lys Glu Leu Ser Glu Leu
225 230 235 240

Ser Leu Leu Ser Leu Tyr Gly Ile His Lys Gin Lys Glu Lys Ser Arg
245 250 255

Leu Gln Gly Gly Val Leu Val Asn Glu Ile Leu Lys Asn Met Lys Leu
260 265 270

Ala Thr Gln Pro Gln Lys Ala Arg Lys Leu Ile Met Tyr Ser Ala Tyr
275 280 285

Asp Thr Thr Val Ser Gly Leu Gln Met Ala Leu Glu Leu Tyr Asn Gly
290 295 300

Leu Leu Pro Pro Tyr Ala Ser Cys His Ile Met Glu Leu Tyr Gln Asp
305 310 315 320

Asn Gly Gly Thr Phe Val Glu Met Tyr Tyr Arg Asn Glu Thr Gln Asn
325 330 335

Glu Pro Tyr Pro Leu Thr Leu Pro Gly Cys Thr His Ser Cys Pro Leu
340 345 350

Glu Lys Phe Ala Glu Leu Leu Asp Pro Val Ile Pro Gln Asp Trp Ala
355 360 365

Thr Glu Cys Met Gly Thr Ser Asn His Gln Ala Ser Leu
370 375 380

<210> 6
<211> 386
<212> PRT
<213> human

<400> 6
Met Arg Ala Ala Pro Leu Leu Ala Arg Ala Ala Ser Leu Ser Leu
1 5 10 15

WO 2005/019464

PC1 AU2004-001129

- 11 -

Gly Phe Leu Phe Leu Leu Phe Phe Trp Leu Asp Arg Ser Val Leu Ala
20 25 30

Lys Glu Leu Lys Phe Val Thr Leu Val Phe Arg His Gly Asp Arg Ser
35 40 45

Pro Ile Asp Thr Phe Pro Thr Asp Pro Ile Lys Glu Ser Ser Trp Pro
50 55 60

Gln Gly Phe Gly Gln Leu Thr Gln Leu Gly Met Glu Gln His Tyr Glu
65 70 75 80

Leu Gly Glu Tyr Ile Arg Lys Arg Tyr Arg Lys Phe Leu Asn Glu Ser
85 90 95

Tyr Lys His Glu Gln Val Tyr Ile Arg Ser Thr Asp Val Asp Arg Thr
100 105 110

Leu Met Ser Ala Met Thr Asn Leu Ala Ala Leu Phe Pro Pro Glu Gly
115 120 125

Val Ser Ile Trp Asn Pro Ile Leu Leu Trp Gln Pro Ile Pro Val His
130 135 140

Thr Val Pro Leu Ser Glu Asp Gln Leu Leu Tyr Leu Pro Phe Arg Asn
145 150 155 160

Cys Pro Arg Phe Gln Glu Leu Glu Ser Glu Thr Leu Lys Ser Glu Glu
165 170 175

Phe Gln Lys Arg Leu His Pro Tyr Lys Asp Phe Ile Ala Thr Leu Gly
180 185 190

Lys Leu Ser Gly Leu His Gln Asp Leu Phe Gly Ile Trp Ser Lys
195 200 205

Val Tyr Asp Pro Leu Tyr Cys Glu Ser Val His Asn Phe Thr Leu Pro
210 215 220

Ser Trp Ala Thr Glu Asp Thr Met Thr Lys Leu Arg Glu Leu Ser Glu
225 230 235 240

Leu Ser Leu Leu Ser Leu Tyr Gly Ile His Lys Gln Lys Glu Lys Ser
245 250 255

Arg Leu Gln Gly Gly Val Leu Val Asn Glu Ile Leu Asn His Met Lys
260 265 270

Arg Ala Thr Gln Ile Pro Ser Tyr Lys Lys Leu Ile Met Tyr Ser Ala
275 280 285

His Asp Thr Thr Val Ser Gly Leu Gln Met Ala Leu Asp Val Tyr Asn
290 295 300

Gly Leu Leu Pro Pro Tyr Ala Ser Cys His Leu Thr Glu Leu Tyr Phe
305 310 315 320

WO 2005/019464

PCT/AT 2004/001122

- 12 -

Glu Lys Gly Glu Tyr Phe Val Glu Met Tyr Tyr Arg Asn Gln Thr Gln
325 330 335

His Glu Pro Tyr Pro Leu Met Leu Pro Gly Cys Ser Pro Ser Cys Pro
340 345 350

Leu Glu Arg Phe Ala Glu Leu Val Gly Pro Val Ile Pro Gln Asp Trp
355 360 365

Ser Thr Glu Cys Met Thr Thr Asn Ser His Gln Gly Thr Glu Asp Ser
370 375 380

Thr Asp
385

<210> 7
<211> 156
<212> PRT
<213> human

<400> 7
Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu
1 5 10 15

Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Lys Lys
20 25 30

Thr Gln Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu
35 40 45

Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr
50 55 60

Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys Gln Leu Gln
65 70 75 80

Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala
85 90 95

Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile
100 105 110

Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys
115 120 125

Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp
130 135 140

Ile Thr Phe Cys Gln Ser Ile Ile Ser Thr Leu Thr
145 150 155

<210> 8
<211> 30
<212> DNA
<213> rat

<400> 8

WO 2005/019464

PCT/AU2004/001129

- 13 -

ctctgaggat cggttgctat acctgccttt	30
<210> 9	
<211> 30	
<212> DNA	
<213> rat	
<400> 9	
acttagtcat ggcccccct gtggccagg	30
<210> 10	
<211> 30	
<212> DNA	
<213> human	
<400> 10	
ttcaggatta catggccagg accttttgg	30
<210> 11	
<211> 30	
<212> DNA	
<213> human	
<400> 11	
ctcagtacct ttagggctgt ttgtggtcat	30

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.