COT 3100C: INTRODUCTION TO DISCRETE STRUCTURES

SUMMER 2024

Basic Structures: Sets and Functions

Part-2

Mesut Ozdag, Ph.D. mesut.ozdag@ucf.edu

Outline

Sets

- The Language of Sets.
- Set Operations.
- Set Identities.

Functions

- Types of Functions.
- Operations on Functions.
- Computability.

Section Summary

Definition of sets.

Describing Sets.

- Roster Method.
- Set-Builder Notation.

Some Important Sets in Mathematics.

Empty Set and Universal Set.

Subsets and Set Equality.

Cardinality of Sets.

Tuples.

Cartesian Product.

Subsets

Definition: The set *A* is a *subset* of *B*, if and only if every element of *A* is also an element of *B*.

- The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.
- $A \subseteq B$ holds if and only if $\forall x (x \in A \rightarrow x \in B)$ is true.
 - 1. Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set S.
 - 2. Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set S.

Showing a Set is or is not a Subset of Another Set

Showing that A is a Subset of B: To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.

Showing that A is not a Subset of B: To show that A is not a subset of B, $A \nsubseteq B$ find an element $x \in A$ with $x \notin B$.

(Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)

Examples:

- 1. The set of all computer science majors at your school is a subset of all students at your school.
- 2. The set of integers with squares less than 100 is not a subset of the set of nonnegative integers.

Another look at Equality of Sets

Recall that two sets A and B are equal, denoted by A = B, iff

$$\forall x (x \in A \longleftrightarrow x \in B)$$

Using logical equivalences, we have that A = B iff

$$\forall x \Big[\big(x \in A \to x \in B \big) \land \big(x \in B \to x \in A \big) \Big]$$

This is equivalent to

$$A \subseteq B$$
 and $B \subseteq A$

Proper Subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$.

If
$$A \subset B$$
, then

$$\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$$
 is true.

Venn Diagram

Set Cardinality

Definition: The *cardinality* of a finite set A, denoted by |A|, is the number of (distinct) elements of A.

Definition: If there are exactly n distinct elements in *S* where *n* is a nonnegative integer, we say that *S* is *finite*. Otherwise, it is *infinite*.

Examples:

- 1. $|\phi| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- 3. $|\{1,2,3\}| = 3$
- 4. $|\{\emptyset\}| = 1$
- 5. The set of integers is infinite.

Power Sets

Definition: The set of all subsets of a set A, denoted P(A), is called the *power set* of A.

Example: If
$$A = \{a,b\}$$
 then $P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

If a set has n elements, then the cardinality of the power set is 2^n .

Example:

```
Set A = \{1,2,3\}
Subsets of set A = \{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}
Power set P(A) = \{\{\},\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}
```

Tuples

Definition: The ordered n-tuple $(a_1, a_2,, a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.

- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called ordered pairs.
- The ordered pairs (a,b) and (c,d) are equal if and only if a=c and b=d.

```
PYTHON EXAMPLE:
mytuple = ("apple", "banana", "cherry", "apple", "cherry")
print(mytuple) # OUTPUT:

('apple', 'banana', 'cherry', 'apple', 'cherry')
```

Cartesian Product

Definition: The *Cartesian Product* of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

René Descartes (1596-1650)

Example:

$$A = \{a,b\} B = \{1,2,3\}$$

$$A \times B = \{(a,1),(a,2),(a,3), (b,1),(b,2),(b,3)\}$$

Definition: A subset R of the Cartesian product $A \times B$ is called a *relation* from the set A to the set B.

Example

Let A represent the set of all students at a university, and let B represent the set of all courses offered at the university. What is the Cartesian product A × B and how can it be used?

Solution:

(a, b), where a is a student at the university and b is a course offered at the university.

All possible enrollments of students in courses at the university.

Cartesian Product₂

Definition: The cartesian products of the sets A_1, A_2, \ldots, A_n , denoted by $A_1 \times A_2 \times \ldots \times A_n$, is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) where a_i belongs to A_i for $i = 1, \ldots, n$.

$$A_1 \times A_2 \times \cdots \times A_n =$$

$$\{(a_1, a_2, \cdots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}, B = \{1,2\}$ and $C = \{0,1,2\}$

Solution:

 $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$

Truth Sets of Quantifiers

Given a predicate P and a domain D, we define the *truth set* of P to be the set of elements in D for which P(x) is true. The truth set of P(x) is denoted by

$$\left\{ x \in D \mid P(x) \right\}$$

Example: What is the truth set of P(x) where the domain is the integers and P(x) is "|x| = 1"?

$$\{-1,1\}$$

Section Set Operations

Section Summary₂

Set Operations.

- Union.
- Intersection.
- Complementation.
- Difference.

More on Set Cardinality.

Set Identities.

Proving Identities.

Membership Tables.

Union

Definition: Let A and B be sets. The *union* of the sets A and B, denoted by $A \cup B$, is the set:

$$\{x \mid x \in A \lor x \in B\}$$

Example: What is $\{1,2,3\} \cup \{3, 4, 5\}$?

Solution: {1,2,3,4,5}

Venn Diagram for *A* ∪ *B*

Intersection

Definition: The *intersection* of sets A and B, denoted by $A \cap B$, is

$$\{x \mid x \in A \land x \in B\}.$$

Note if the intersection is empty, then A and B are said to be disjoint.

Example: What is? $\{1,2,3\} \cap \{3,4,5\}$?

Solution: $\{3\}$

Example: What is $\{1,2,3\} \cap \{4,5,6\}$?

Solution: Ø

Venn Diagram for A ∩B

Complement

Definition: If A is a set, then the *complement* of the A (with respect to U), denoted by \overline{A} is the set U - A

$$\overline{A} = \{x \mid x \in U \mid x \notin A\}$$

(The complement of A is sometimes denoted by A^c .)

Example: If *U* is the positive integers less than 100, what is the complement of $\{x \mid x > 70\}$

Solution: $\{x \mid x \le 70\}$

Venn Diagram for Complement

Difference

Definition: Let A and B be sets. The *difference* of A and B, denoted by A - B, or $A \setminus B$

is the set containing the elements of A that are not in B. The difference of A and B is also called:

the complement of B with respect to A.

$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$$

Venn Diagram for A - B

The Cardinality of the Union of Two Sets

Inclusion-Exclusion

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Example: Let A be the math majors in your class and B be the CS majors. To count the number of students who are either math majors or CS majors:

Add the number of math majors and the number of CS majors, and subtract the number of joint CS/math majors.

Example: A= $\{1, 3, 5\}$ and B = $\{1, 2, 3\}$. $|A \cup B| = ?$

Solution:

$$|A \cup B| = |A| + |B| - |A \cap B| = 3 + 3 - 2 = 4$$

Review Questions

```
Example: U = \{0,1,2,3,4,5,6,7,8,9,10\} A = \{1,2,3,4,5\}, B = \{4,5,6,7,8\}
```

- 1. $A \cup B$
 - **Solution:** {1,2,3,4,5,6,7,8}
- 2. $A \cap B$
 - **Solution: {4,5}**
- 3. <u>A</u>
 - **Solution:** {0,6,7,8,9,10}
- 4. B
 - **Solution:** {0,1,2,3,9,10}
- 5. A-B
 - **Solution:** {1,2,3}
- 6. B-A
 - **Solution:** {6,7,8}

Symmetric Difference

Definition: The *symmetric difference* of **A** and **B**, denoted by

$$A \oplus B$$
 is the set $(A-B) \cup (B-A)$

Example:

$$U = \{0,1,2,3,4,5,6,7,8,9,10\}$$

$$A = \{1,2,3,4,5\} B = \{4,5,6,7,8\}$$

What is $A \oplus B$:

Solution: $\{1,2,3,6,7,8\}$

Venn Diagram

Set Identities

Identity laws

$$A \cup \emptyset = A$$
 $A \cap U = A$

$$A \cap U = A$$

Domination laws

$$A \cup U = U$$

$$A \cup U = U$$
 $A \cap \emptyset = \emptyset$

Idempotent laws

$$A \cup A = A$$
 $A \cap A = A$

$$A \cap A = A$$

Complementation law

$$\left(\overline{\overline{A}}\right) = A$$

Set Identities₂

Commutative laws

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Associative laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Set Identities₃

De Morgan's laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Absorption laws

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

Complement laws

$$A \cup \overline{A} = U$$
 $A \cap \overline{A} = \emptyset$

$$A \cap \overline{A} = \emptyset$$

Set Identities

Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Proving Set Identities

Different ways to prove set identities:

- 1. Prove that each set (side of the identity) is a subset of the other.
- 2. Use set builder notation and propositional logic.
- 3. <u>Membership Tables</u>: Verify that elements in the same combination of sets always either belong or do not belong to the same side of the identity. Use 1 to indicate it is in the set and a 0 to indicate that it is not.

Proof of De Morgan Law₁

Example: Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Solution: We prove this identity by showing that:

1)
$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$$
 and

$$2)\overline{A}\cup\overline{B}\subseteq\overline{A\cap B}$$

Proof of De Morgan Law₂

The following steps are to show that: $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$

$x \in A \cap A$	В
------------------	---

$$x \notin A \cap B$$

$$\neg ((x \in A) \land (x \in B))$$

$$\neg (x \in A) \lor \neg (x \in B)$$

$$x \notin A \lor x \notin B$$

$$x \in \overline{A} \lor x \in \overline{B}$$

$$x \in \overline{A} \cup \overline{B}$$

by assumption

defn. of complement

by defn. of intersection

1st De Morgan law for Prop Logic

defn. of negation

defn. of complement

by defn. of union

Proof of De Morgan Law₃

The following steps are to show that: $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

$$x \in \overline{A} \cup \overline{B}$$

$$(x \in \overline{A}) \lor (x \in \overline{B})$$

$$(x \notin A) \lor (x \in \overline{B})$$

$$\neg (x \in A) \lor \neg (x \in B)$$

$$\neg ((x \in A) \land (x \in B))$$

$$\neg (x \in A \cap B)$$

$$x \in \overline{A \cap B}$$

by assumption

by defn. of union

defn. of complement

defn. of negation

1st De Morgan law for Prop Logic

defn. of intersection

defn. of complement

Set-Builder Notation: De Morgan Law

$$\overline{A \cap B} = x \in \overline{A \cap B}$$
 by defn. of complement
$$= \left\{x \mid \neg (x \in (A \cap B))\right\}$$
 by defn. of does not belong symbol
$$= \left\{x \mid \neg (x \in A \land x \in B)\right\}$$
 by defn. of intersection
$$= \left\{x \mid \neg (x \in A) \lor \neg (x \in B)\right\}$$
 by 1st De Morgan law for Prop Logic
$$= \left\{x \mid x \notin A \lor x \notin B\right\}$$
 by defn. of not belong symbol
$$= \left\{x \mid x \in \overline{A} \lor x \in \overline{B}\right\}$$
 by defn. of complement
$$= \left\{x \mid x \in \overline{A} \lor \overline{B}\right\}$$
 by defn. of union
$$= \overline{A} \cup \overline{B}$$
 by meaning of notation

Membership Table

Example: Construct a membership table to show that the distributive law holds.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Solution:

A	В	С	B ∩ C	A ∪ (B ∩ C)	A ∪ B	A ∪ C	<i>(A∪B)</i> ∩ <i>(A∪C)</i>
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

Example

Let A, B, and C be sets.

Show that
$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$
.

Solution: We have

$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B \cap C})$$
 by the first De Morgan law
$$= \overline{A} \cap (\overline{B} \cup \overline{C})$$
 by the second De Morgan law
$$= (\overline{B} \cup \overline{C}) \cap \overline{A}$$
 by the commutative law for intersections
$$= (\overline{C} \cup \overline{B}) \cap \overline{A}$$
 by the commutative law for unions.

Generalized Union and Intersection Operators

Let $A_1, A_2, ..., A_n$ be an indexed collection of sets.

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

$$\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \ldots \cap A_n$$

