Trees (I)

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

1/17

Outline

- Introduction
 - Representation of Trees
- Binary Trees
- Binary Tree Traversals

Outline

- Introduction
 - Representation of Trees
- 2 Binary Trees
- Binary Tree Traversals

3/17

Introduction

• Intuitively, a tree structure organized data in a hierarchical manner.

Example: Pedigree Chart

Example: Mathematical Genealogy Project

Figure reference: https://www.mathgenealogy.org/

6/17

Tree

- A tree is a finite set of one or more nodes such that:
 - There is a specially designated node called root.
 - The remaining nodes are partitioned into $n \ge 0$ disjoint sets, T_1, \ldots, T_n , where each of these sets is a tree.
 - T_1, \ldots, T_n : subtrees of the root.

Node

• A node stands for the item of information plus the branches to other nodes.

Degree

• The number of subtrees of a node is called its degree.

Degree

- The number of subtrees of a node is called its degree.
 - $\deg(A) = 3$, $\deg(C) = 1$, $\deg(F) = 0$.

Leaf, children, parent

• A node that has degree 0 is called a leaf or terminal.

Leaf, children, parent

- A node that has degree 0 is called a leaf or terminal.
- The roots of the subtrees of a node X are the children of X. X is the parent of its children.

Siblings, degree, ancestors

- Children of the same parent are said to be siblings.
 - Example: H, I and J are siblings; B, C and D are siblings.
- The degree of a tree is the maximum of the degree of the nodes in the tree.
 - The tree in this example has degree 3.
- The ancestors of a node are all the nodes along the path from the root to that node.
 - The ancestors of *M* are *A*, *D*, and *H*.

Level, height or depth

- The level of a node:
 - the root: 1.
 - if a node is at level k, then its children are at level k+1.
 - Example: level(A) = 1, level(H) = 3, level(L) = 4.
- The height or depth of a tree is defined to be the maximum level of any node in the tree.
 - The depth of the tree in this example is 4.

Representation of Trees

The tree in the example can be written as

$$(A(B(E(K, L), F), C(G), D(H(M), I, J))).$$

• **Rule:** root node \rightarrow list of its subtrees.

A Possible Node Structure of a Tree of Degree k

• The degree of each tree node may be different.

A Possible Node Structure of a Tree of Degree k

- The degree of each tree node may be different.
 - we may be tempted to use memory nodes with a varying number of pointer fields.
- However, one only uses nodes of a fixed size to represent tree nodes in practice.

data	child 1	child 2		child k
------	---------	---------	--	---------

Representation of Trees

A Possible Node Structure of a Tree of Degree k

- The degree of each tree node may be different.
 - we may be tempted to use memory nodes with a varying number of pointer fields.
- However, one only uses nodes of a fixed size to represent tree nodes in practice.

data	child 1	child 2	• • •	child k
------	---------	---------	-------	---------

• Then, how to choose such a fixed size?

Outline

- Introduction
 - Representation of Trees
- Binary Trees
- 3 Binary Tree Traversals

Outline

- Introduction
 - Representation of Trees
- 2 Binary Trees
- Binary Tree Traversals

Discussions

