P&S Modern SSDs

Basics of NAND Flash-Based SSDs

Dr. Jisung Park

Prof. Onur Mutlu

ETH Zürich

Spring 2022

25 March 2021

Today's Agenda

SSD Organization & Request Handling

NAND Flash Organization

NAND Flash Operations

Modern SSD Architecture

 A modern SSD is a complicated system that consists of multiple cores, HW controllers, DRAM, and NAND flash memory packages

Samsung PM853T 960GB Enterprise SSD (from https://www.tweaktown.com/reviews/6695/samsung-pm853t-960gb-enterprise-ssd-review/index.html)

Another Overview

Host Interface Layer (HIL)

Flash Translation Layer (FTL)

Data Cache Management

Address Translation

GG/WL/Refresh/...

Flash Controller ECC Randomizer ... CFR NAND NAND Flash ... Flash Package Package

DRAM

Host Request Queue

Write Buffer

Logical-to-Physical Mappings

Host Interface Layer (HIL)

Flash Translation Layer (FTL)

Data Cache Management

Address Translation

GG/WL/Refresh/...

Flash Controller ECC Randomizer NAND NAND Flash Flash Flash Package Package

DRAM

Host Request Queue

Write Buffer

Logical-to-Physical Mappings

- Communication with the host operating system (receives & returns requests)
 - Via a certain interface (SATA or NVMe)
- A host I/O request includes
 - Request direction (read or write)
 - Offset (start sector address)
 - Size (number of sectors)
 - Typically aligned by 4 KiB

Host Interface Layer (HIL)

Flash Translation Layer (FTL)

Data Cache Management

Address Translation

GG/WL/Refresh/...

DRAM

Host Request Queue

Write Buffer

Logical-to-Physical Mappings

- Buffering data to write (read from NAND flash memory)
 - Essential to reducing write latency
 - Enables flexible I/O scheduling
 - Helpful for improving lifetime (not so likely)
- Limited size (e.g., tens of MBs)
 - Needs to ensure data integrity even under sudden power-off
 - Most DRAM capacity is used for L2P mappings

Host Interface Layer (HIL)

Flash Translation Layer (FTL)

Data Cache Management

Address Translation

GG/WL/Refresh/...

DRAM

Host Request Queue

Write Buffer

Logical-to-Physical Mappings

- Core functionality for out-of-place writes
 - To hide the erase-before-write property
- Needs to maintain L2P mappings
 - □ Logical Page Address (LPA)→ Physical Page Address (PPA)
- Mapping granularity: 4 KiB
 - □ 4 Bytes for 4 KiB \rightarrow 0.1% of SSD capacity

Host Interface Layer (HIL)

Flash Translation Layer (FTL)

Data Cache Management

Address Translation

GG/WL/Refresh/...

DRAM

Host Request Queue

Write Buffer

Logical-to-Physical Mappings

- Garbage collection (GC)
 - Reclaims free pages
 - Selects a victim block → copies all valid pages → erase the victim block
- Wear-leveling (WL)
 - Evenly distributes P/E cycles across NAND flash blocks
 - Hot/cold swapping
- Data refresh
 - Refresh pages with long retention ages

Host Request Queue Write Buffer Logical-to-Physical Mappings Metadata (e.g., P/E Cycles)

- Randomizer
 - Scrambling data to write
 - To avoid worst-case data patterns that can lead to significant errors
- Error-correcting codes (ECC)
 - Can detect/correct errors: e.g., 72 bits/1
 KiB error-correction capability
 - Stores additional parity information together with raw data
- Issues NAND flash commands

Request Handling: Read

Flash Translation Layer (FTL) Data Cache Management Address Translation GG/WL/Refresh/...

Host Request Queue Write Buffer Logical-to-Physical Mappings Metadata (e.g., P/E Cycles)

- First checks if the request data exists in the write buffer
 - If so, returns the corresponding request immediately with the data
- A host read request can be involved with several pages
 - Such a request can be returned only after all the requested data is ready

Request Handling: Read

 Finds the PPA where the request data is stored from the L2P mapping table

Request Handling: Read

Today's Agenda

SSD Organization & Request Handling

NAND Flash Organization

NAND Flash Operation

Basically, it is a transistor

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
 - Can hold electrons in a non-volatile manner

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
 - Can hold electrons in a non-volatile manner
 - Changes the cell's threshold voltage (V_{TH})

Flash Cell Characteristics

Multi-leveling: A flash cell can store multiple bits

Retention loss: A cell leaks electrons over time

Limited lifetime: A cell wears out after P/E cycling

A NAND String

Multiple (e.g., 128) flash cells are serially connected

Pages and Blocks

A large number (> 100,000) of cells operate concurrently

Pages and Blocks (Continued)

- Program and erase: Unidirectional
 - □ Programming a cell → Increasing the cell's V_{TH}
 - o Eraseing a cell o Decreasing the cell's V_{TH}
- Programming a page cannot change '0' cells to '1' cells
 - → Erase-before-write property
- Erase unit: Block
 - Increase erase bandwidth
 - □ Makes in-place write on a page very inefficient
 → Out-of-place write & GC

Planes

A large number (> 1,000) of blocks share bitlines in a plane

Planes

A large number (> 1,000) of blocks share bitlines in a plane

Planes and Dies

■ A die (or chip) contains multiple (e.g., 2 – 4) planes

A 21-nm 2D NAND Flash Die

 Planes share decoders: limits internal parallelism (only operations @ the same WL offset)

Today's Agenda

SSD Organization & Request Handling

NAND Flash Organization

NAND Flash Operation

Threshold Voltage Distribution

V_{TH} distribution of cells in a programmed page/block/chip

- Why distribution? Variations across the cells
 - Some cells are more easily programmed or erased
- Why (almost) the same shape?
 - Every data is stored after randomized for better reliability
 - In reality, V_{TH} states' shapes can be different, but there areas are almost the same

V_{TH} Distribution of MLC NAND Flash

- Multi-level cell (MLC) technique
 - \square 2^m V_{TH} states required to store m bits in a single flash cell

- Limited width of the V_{TH} window: Need to
 - Make each V_{TH} state narrow
 - Guarantee sufficient margins b/w adjacent V_{TH} states

V_{TH} Distribution of MLC NAND Flash

- Multi-level cell (MLC) technique
 - \square 2^m V_{TH} states required to store m bits in a single flash cell

- Limited width of the V_{TH} window: Need to
 - Make each V_{TH} state narrow
 - Guarantee sufficient margins b/w adjacent V_{TH} states
 - V_{TH} changes over time after programmed
 - Narrower margins → Lower reliability
 - More bits per cell → higher density but lower reliability

■ WL control – All other cells operate as a resistance

BL control – Inhibits cells to not be programmed

BL control – Inhibits cells to not be programmed

Incremental Step-Pulse Programming (ISPP)

Basic Operation: Page Program

Incremental Step-Pulse Programming (ISPP)

Basic Operation: Page Program

Incremental Step-Pulse Programming (ISPP)

Basic Operation: Page Program

Incremental Step-Pulse Programming (ISPP)

Basic Operation: Page Read

WL control – All other cells operate as a resistance

Basic Operation: Page Read

BL control – Charge all BLs

Basic Operation: Page Read

- MLC NAND flash memory requires an on-chip XOR logic
- Bit-encoding affects the read latency!
 - Compare # of sensing for LSB

- MLC NAND flash memory requires an on-chip XOR logic
- Bit-encoding affects the read latency!
 - Compare # of sensing for LSB

- MLC NAND flash memory requires an on-chip XOR logic
- Bit-encoding affects the read latency!
 - Compare # of sensing for LSB

- MLC NAND flash memory requires an on-chip XOR logic
- Bit-encoding affects the read latency!
 - Compare # of sensing for LSB

Required Material

 Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery,"

Invited Book Chapter in Inside Solid State Drives, 2018

- Introduction and Section 1
- Jisung Park, Myungsuk Kim, Myoungjun Chun, Lois Orosa,
 Jihong Kim, and Onur Mutlu,
 - "Reducing Solid-State Drive Read Latency by Optimizing Read-Retry," In ASPLOS, 2021

Recommended Material

- Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan Gómez Luna, and Onur Mutlu, "FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives," In ISCA, 2018
- Bryan S. Kim, Hyun Suk Yang, and Sang Lyul Min, <u>"AutoSSD: an Autonomic SSD Architecture,"</u>
 In USENIX ATC, 2018

P&S Modern SSDs

Basics of NAND Flash-Based SSDs

Dr. Jisung Park

Prof. Onur Mutlu

ETH Zürich

Spring 2022

25 March 2021