8/2/2018 top_drug

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
```

How does the code perform?

```
In [2]: pf = pd.read_csv('perf.csv')
    pf = pf[['nlines','processed_time']]

In [3]: lm = np.polyfit(pf.nlines, pf.processed_time, 1)
    lm

Out[3]: array([ 2.57848333e-05,  3.17044523e-02])

In [4]: x = np.arange(0,510000,100000)
    y = x*lm[0] + lm[1]

In [5]: pf.plot.scatter(x='nlines', y='processed_time', c='DarkBlue', s=35)
    plt.plot(x, y, '-', c='Red')

Out[5]: [<matplotlib.lines.Line2D at 0xa612da0>]
```


Because the performance scales linearly, one can split a large file into many smaller files, and process them in parallel and distributed way.

What is Harvoni for?

https://www.drugs.com/harvoni.html (https://www.drugs.com/harvoni.html)

8/2/2018 top_drug


```
In [6]: df = pd.read_csv('top_cost_drug-500k.txt')
```

In [7]: x=df.head(15)[['drug_name','total_cost']].sort_index(ascending=False)

In [8]: x

Out[8]:

	drug_name	total_cost
14	XARELTO	2.877651e+07
13	SENSIPAR	2.924247e+07
12	ABILIFY	3.029243e+07
11	LYRICA	3.199746e+07
10	ENBREL	3.524224e+07
9	NEXIUM	3.543758e+07
8	LANTUS	3.731856e+07
7	RENVELA	4.059754e+07
6	JANUVIA	4.090811e+07
5	ADVAIR DISKUS	4.659865e+07
4	SPIRIVA	4.790845e+07
3	LANTUS SOLOSTAR	4.904834e+07
2	REVLIMID	5.111972e+07
1	CRESTOR	5.272927e+07
0	HARVONI	1.503435e+08

8/2/2018 top_drug

```
In [9]: x.plot.barh(x='drug_name',y='total_cost')
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0xaa77780>

In []: