Time Series Analysis Basics of Time Series Analysis

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

The Concept of Stationarity

About This Lesson

Time Series: Basics

Data: Y_t , where t indexes time, e.g. minute, hour, day, month

Model: $Y_t = m_t + s_t + X_t$

- m_t is a trend component;
- s_t is a seasonality component with known periodicity $d\left(s_t = s_{t+d}\right)$ such that $\sum_{i=1}^d s_i = 0$
- X_t is a stationary component, i.e. its probability distribution does not change when shifted in time

Approach: m_t and s_t are first estimated and subtracted from Y_t to have left the stationary process X_t to be model using time series modeling approaches.

Time Series: Stationarity

The *auto-covariance* of a time series $\{X_t, t \in \mathbb{Z}\}$:

$$\gamma_X(r,s) = \mathrm{E}[(X_r - \mathrm{E}[X_r]) \cdot (X_s - \mathrm{E}[X_s])].$$

 $\{X_t\}$ is (weakly) stationary if:

- 1. $E[X_t] = m$ for all $t \in \mathbb{Z}$
- 2. $E[X_t^2] < \infty$ for all $t \in \mathbb{Z}$, and
- 3. $\gamma_X(r,s) = \gamma_X(r+t,s+t)$ for all $r,s,t \in \mathbb{Z}$.

How realistic is the assumption of stationarity?

- Only when the system is tightly controlled; systems tend to drift away from stationarity.
- Changes (1st order difference) or changes of changes (2nd order difference) of the time series may instead behave stationary

Examples of Stationary Time Series

1. If $\{X_t\}$ is a sequence of random variables with

$$\gamma_X(r,s) = \begin{cases} \sigma^2, & r = s \\ 0, & otherwise \end{cases}$$

with $\sigma^2 < \infty$ and $E[X_t] = 0$, then $\{X_t\}$ is called *white noise* and we write $X_t \sim \mathsf{WN}(0, \sigma^2)$.

2. IID noise with finite second moment:

If $\{X_t\}$ is a sequence of independent identically distributed random variables with mean zero and second moment equal to $\sigma^2 < \infty$, we write $X_t \sim \mathsf{IID}(0, \sigma^2)$.

Examples of Stationary Time Series (cont'd)

What is the difference between $WN(0, \sigma^2)$ and $IID(0, \sigma^2)$?

Uncorrelated versus Independent

How to generate in the R statistical software?

Use rnorm, rpois, r...

Example of Non-Stationary Time Series

Random walk: Suppose $X_t \sim IID(0, \sigma^2) S_t = \sum_{j=1}^t X_j$.

 ${S_t, t = 1, 2, ...}$ is called a *random walk*.

 \rightarrow Not stationary because $V(S_t) = t \sigma^2$

Autocovariance Function

For a stationary time series $\{X_t\}$, the *autocovariance* function is $\gamma_X(h) = \text{Cov}(X_{t+h}, X_t)$ with the following properties:

- 1. $\gamma(0) \geq 0$,
- 2. $|\gamma(h)| \leq \gamma(0)$, and
- 3. $\gamma(h) = \gamma(-h)$.

The *autocorrelation* function of a stationary time series $\{X_t\}$ is

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} \,,$$

and has all the properties of the autocovariance function, except that $\rho_X(0) = 1$.

Autocovariance Function: Estimation

Objective: Given $\{x_1, \ldots, x_n\}$ observations of a stationary time series $\{X_t\}$, estimate the autocovariance $\gamma_X(\cdot)$ of $\{X_t\}$

The sample autocovariance function is

$$\hat{\gamma}_X(h) = \frac{1}{n} \sum_{j=1}^{n-n} (x_{j+h} - \bar{x})(x_j - \bar{x}), \qquad 0 \le h < n, \quad \longleftarrow \quad \text{Why n and not n-h?}$$

with
$$\hat{\gamma}_X(h) = \hat{\gamma}_X(-h)$$
, $-n < h \le 0$, where $\bar{x} = \frac{1}{n} \sum_{j=1}^n x_j$.

• The sample autocorrelation function is defined by

$$\hat{\rho}_X(h) = \frac{\hat{\gamma}_X(h)}{\hat{\gamma}_X(0)}, \qquad |h| < n.$$

Don't forget about the uncertainty!

Autocovariance & Stationarity

Do we need stationarity?

- <u>Autocovariance</u> applies generally to all time series, including nonstationary processes: $Cov(X_{t+h}, X_t)$ can depend on time and lag
- The <u>autocovariance function</u> applies only to stationary processes
- Autocovariance can be estimated using the sample autocovariance function for nonstationary processes: $\hat{\gamma}_X(h)$ can be used to evaluate (non)stationarity

Summary

