Cybersecurity Overview Gemini RPM Working Group

medcrypt

Axel Wirth
Chief Security Strategist

01-Sept.-2020

Agenda

- 1. Cybersecurity and Threat Landscape 2020
- 2. Cybersecurity Terminology
- 3. Cybersecurity Components
- 4. State of Security in Healthcare
- 5. Medical Device Security in Regulations and Standards
 - a. PHD initiative and IEEE 11073 (Christoph Fischer)
 - b. Regulatory context (Brian Fitzgerald)
 - c. RPM NCCoE Project (Sue Wang)
- 6. Applying security technology to medical devices
- 7. Wrap-up and Discussion
 - a. Q&A
 - b. Relevant topics for Gemini Technical Report

Cyber in Popular Culture

William Gibson, Neuromancer (1966) - Cyberspace:

"A consensual hallucination experienced daily by billions of legitimate operators, in every nation ... A graphic representation of data abstracted

from the banks of every computer in the human system.
Unthinkable complexity. Lines of light ranged in the non-space of the mind, clusters and constellations of data."

"There's a clear pattern here which suggests an analogy to an infectious disease process, spreading from one area to the next. ...

I must confess, I find it difficult to believe in a disease of machinery."

From the Movie Westworld (1973)

What is Cybersecurity?

Security is freedom from, or resilience against, potential harm caused by others.

Examples for security categories and capabilities:

		Capabilities		
		Protection & Response	Intelligence	Governance
Categories	National Security	Military, Tanks	Agencies, Radar	Laws, Treaties
	Physical Security	Fences, Dogs	Cameras, Sensors	Plans, Contracts
	Cybersecurity	Antivirus, Firewall	Threat Intelligence, Event Detection	Frameworks, Standards, Policies

Of course, all are related – doors to your data center, security cameras on your network, etc.

Elements of Cybersecurity

Cybersecurity spans across multiple disciplines and sciences, for example:

Engineering

software, network, ...

Physics

e.g., quantum research

Mathematics

cryptology, statistics, ...

Social Sciences

human condition and factors

Psychology

e.g., social engineering

Criminology

cyber crime, forensics, ...

Political Sciences

laws, regulations, world politics

Economics

supply & demand, P&L, ...

Military Sciences

strategy and tactics of warfare

Some areas of cybersecurity are well-defined, others more ambiguous and obscure. Consequently, teaching cybersecurity is in part facts-based, in part example-based.

Cybersecurity Timeline

The World we Live in Daily Headlines

Understanding Today's Threats

Changing Adversaries and Objectives:

Global Risk Landscape 2020

Information Infrastructure Breakdown:

Average Likelihood, above average Impact

Cyberattacks:

Above average Likelihood and Impact

World Economic Forum: The Global Risks Report 2020

http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf

The Cybersecurity (Un)Balance Sheet

Global Cybersecurity Investment: approaching \$100B

Losses due to Cyberattacks: est. several \$Trillion

Investment (Gartner):

- 2017: \$86.4 billion (up 7% over 2016)
- 2018: expected to reach \$93 billion

Growing at x% (x<10)

Losses (Cybersecurity Ventures):

- ~\$3 trillion today (others estimate at \$1T)
- 2021: expected to reach \$6 trillion

Growing by multiples

The World we Live in Nation States

The "Big Four" Nation State Cyber Adversaries - Objectives:

Russia:

- Advanced Cybercrime
- Cyber Warfare (infrastructure)
- Political Goals (election interference)
- Hacking and disinformation
- Supporting the "up and coming" elsewhere

China:

- Economic growth
- Intellectual Property theft / espionage
- Blurring line between HiTech companies and government objectives
- Hackers for Hire
- Supporter and enabler of NK

North Korea:

- Developed Cyber Capabilities in response to Global Boycotts
- Supporting Government and failing Economy
- Highly advanced Cyber Criminals

Iran:

- Developed advanced cyber capabilities in response to Stuxnet
- Highly developed
- Cyber Warfare defensive and offensive capabilities

If interested: https://www.dhs.gov/sites/default/files/publications/ia/ia_geopolitical-impact-cyber-threats-nation-state-actors.pdf

The World we Live in Nation States

The "Up and Coming" Nation State Cyber Adversaries - Objectives:

Vietnam:

- Modeled after China
- Political Intelligence
- Economic Advances
- Combination of State
 Sponsored and
 Independent Actors
- Very active
 Underground Economy
- International and National Activities

Other Cybercrime Actors:

- Pakistan (political, cybercrime)
- Brazil (crime, mainly local and national)
- Romania (cybercrime -"Hackerville")
- Ukraine (cybercrime)

Other Middle-Eastern Countries:

- Maturing Cyber Defense
- Aggressively buying Cyber Capabilities (US, EU, Israel)
- Espionage on Business and Government
- Fueling regional tensions

Terrorists and Activists:

- Political Goals
- Cyber Guerillas and Cyber Hacktivists
- Low Threshold
- Anything is Possible
- Example: "Anonymous" attack on Boston Children's Hospital

https://www.aspeninstitute.org/programs/cybersecurity-technology-program/threat-assessment-2019/

Example: Heartbleed and Shellshock Vulnerabilities

Adversaries can pivot fast to exploit new opportunities:

Heartbleed vulnerability exploited <u>less than 4 hours</u> <u>after becoming public!</u>

INTERNET SECURITY THREAT REPORT 2015, VOLUME 20

Example: Professionalization of Cybercrime

Dridex Gang – Number of Known Spam Runs Per Day

"2016 Internet Security Threat Report", Symantec Corp.

TeslaCrypt Ransomware – Technical Support Available

Agenda

- 1. Cybersecurity and Threat Landscape 2020
- 2. Cybersecurity Terminology
- 3. Cybersecurity Components
- 4. State of Security in Healthcare
- 5. Medical Device Security in Regulations and Standards
 - a. PHD initiative and IEEE 11073 (Christoph Fischer)
 - b. Regulatory context (Brian Fitzgerald)
 - c. RPM NCCoE Project (Sue Wang)
- 6. Applying security technology to medical devices
- 7. Wrap-up and Discussion
 - a. Q&A
 - b. Relevant topics for Gemini Technical Report

Security Terminology – Risk and Risk Components

Cyber Risk - Conceptual:

In order to have a Risk, all 3 conditions need to be fulfilled:

→ Threat + Vulnerability + Asset = Risk (risk is typically measured based on probability of occurrence and impact potential)

Reduction of Risk through implementation of Risk Controls:

→ Risk – Controls = (acceptable) Residual Risk

Note: Assets can be "hard" (computers, data, money) or "soft" (reputation, trust, safety)

Agenda

Cyber Risk – basic definitions:

- <u>Risk</u> The potential for an unwanted or adverse outcome resulting from an incident, event, or occurrence, as determined by the likelihood that a particular threat will exploit a particular vulnerability, with the associated consequences.
- <u>Threat</u> A circumstance or event that has or indicates the potential to exploit vulnerabilities and to adversely impact (create adverse consequences for) organizational operations, organizational assets (including information and information systems), individuals, other organizations, or society.
- <u>Vulnerability</u> A characteristic or specific weakness that renders an organization or asset (such as information or an information system) open to exploitation by a given threat or susceptible to a given hazard. Although most vulnerabilities are related to software, there are also hardware vulnerabilities.

• Asset:

- A person, structure, facility, information, and records, information technology systems and resources, material, process, relationships, or reputation that has value.
- Anything useful that contributes to the success of something, such as an organizational mission; assets are things of value or properties to which value can be assigned.

Security Terminology – Threat to Vulnerability

Cybersecurity – Enterprise View:

Understanding the difference: An <u>Exploit</u> takes advantage of a vulnerability, <u>Malware</u> is code that performs malicious action. An adversary may use an Exploit to deliver Malware, but there are other ways to do so as well as other purposes of an Exploit.

Security Terminology – Threat to Vulnerability

Enterprise View – basic definitions:

- <u>Threat Landscape</u>: An overview of threats, together with current and emerging trends and providing a view on observed threats, threat agents and threat trends. (derived from ENISA)
- <u>Adversary:</u> An individual, group, organization, or government that conducts or has the intent to conduct detrimental activities. May also be referred to as: threat agent, attacker.
- **Exploit**: A technique to breach the security of a network or information system in violation of security policy.
- Attack Surface: The set of ways in which an adversary can enter a system and potentially cause damage.
- <u>Attack Vector</u> (or: Attack Path): The steps that an adversary takes or may take to plan, prepare for, and execute an attack. *Note that an attack vector is not purely (or not always) technical and could include non-technical components as well (e.g., social engineering).*
- **Event**: An observable occurrence in an information system or network.
- <u>Incident:</u> An occurrence that actually or potentially results in adverse consequences to (adverse effects on) (poses a threat to) an information system or the information that the system processes, stores, or transmits and that may require a response action to mitigate the consequences.

Security Terminology – Threat to Vulnerability

- Requires new thinking and the combination of two approaches:
 - Traditional safety risk management
 - Traditional cyber risk management
 - Now under the umbrella of Medical Device Risk Management (see AAMI TIR 57)
- Key differences between safety and security risk management:
 - Cyber risks are, for the most, non-statistical
 - Threat (intentional) vs. Hazard (probabilistic)
 - Past experience is not a good predictor
 - Challenge: we need to operate in foresight rather than hindsight
- Yet, they are dependent on each other:
 - Security control affecting safety
 - Safety control affecting security
 - Security risks with safety impact potential

Traditional Safety Terminology	Traditional Cyber Terminology
Safety: Freedom from unacceptable risk	Security: Protection from or defense against damage, unauthorized use, or modification
Hazard	Threat
Susceptibility	Vulnerability
People, Property, Environment	Asset
Hazard (or Risk) Analysis	(Cyber) Security Risk Analysis
Misuse (reasonably foreseeable)	Exploit
Sequence of Events	Attack Vector
Hazardous Situation	Event, Incident (potential)
Harm	Incident (occurring), Consequence
Intended Use	Use Case
Probability	Exploitability
Severity	Impact

Safety vs. Cybersecurity Analogous Terminology

- These are comparable but not exact equivalent terms
- A cybersecurity safety risk analysis may require a combination

Agenda

- 1. Cybersecurity and Threat Landscape 2020
- 2. Cybersecurity Terminology
- 3. Cybersecurity Components
- 4. State of Security in Healthcare
- 5. Medical Device Security in Regulations and Standards
 - a. PHD initiative and IEEE 11073 (Christoph Fischer)
 - b. Regulatory context (Brian Fitzgerald)
 - c. RPM NCCoE Project (Sue Wang)
- 6. Applying security technology to medical devices
- 7. Wrap-up and Discussion
 - a. Q&A
 - b. Relevant topics for Gemini Technical Report

As Threats Evolve - Security has to, as well

Old Security
Somebody will alert you that danger is approaching

New Security uses, all stakehouses, all systems, all stakehouses.

Layered defenses, all systems, all stakeholder, test & train, automation, detection & alerting, mitigation, preparedness, response, recovery

Leave behind your "old security" mindset. Today we need a new approach ... and I assume tomorrow again. Protect: Data, infrastructure, operations, and business.

In Cybersecurity, we are operating in non-linear space. Although we can analyze trends and make predictions, any event can turn the status quo on its head.

Security Technologies and Use Cases (high level)

Technology	Use Case	Trade Off	Note
Antimalware	Protect commercial and application software	Resource impact, updates, false positives	Suitable for computer-like systems; generally accepted
HIDS/HIPS (Host Intrusion Detection / Prevention System)	Protect commercial and application software via allow / deny controls	Up-front engineering effort to develop policies; limited field flexibility	Suitable for commercial OS platforms, even resource-limited systems
Cryptography	Protecting confidentiality, integrity, and authenticity	Resource requirements; protection of keys / certificates	Requires some type of supporting infrastructure to manage keys
Network segmentation	Separation of critical systems	Effort to manage and maintain; does not prevent USB attack	May not deter sophisticated hacker; does provide incident containment
Firewalls (various types)	Separation of critical systems	Does not protect from USB attack; requires maintenance	May not deter sophisticated hacker; does provide incident containment
Anomaly Detection	Network-based security, traffic inspection	Relatively new technology but maturing	Reasonable alternative to secure legacy devices

Typical Tradeoffs – Endpoint Security

Anti-Malware	HIDS / HIPS
Reactive (mainly)	Proactive
Products are constantly evolving	Products are stable and future-proof
Signature-based	Behavior and policy-based
Requires Internet (updates)	Can run stand-alone
Small but not neglectable risk of false positives	Minimal risk of false positives
Less effective on zero-days	Effective on zero-days
Requires OS integrity	Reduce patch frequency
Requires OS currency	Can effectively protect EOL OS
Large footprint	Light footprint
Customization for medical devices could reduce security capability	Requires customization but will not compromise security posture
Integrates well with enterprise security tools	Limited integration capability (depends on implementation)

Main Categories of (IT) Security Tools

Compliance and Infrastructure Management Tools

• Compliance and Vulnerability Mgmt.

Risk Management

• Configuration Mgmt Database (CMDB)

Endpoint

- Endpoint Protection:
 - Anti-malware, SW firewall, HIDS/HIPS, Whitelisting
- "Modern" Endpoints:
 - Mobile and IoT Security
- Config. and Patch mgmt.
- Endpoint Detection & Response (EDR)

Network

- Intrusion Detection & Prevention (IDS/IPS)
- Network Access Control (NAC)
- Virtual Private Network (VPN)
- Deception (honey pots)
- Anomaly Detection

Perimeter

- Firewalls, Next Generation Firewalls
- Security Gateway
- Web Isolation
- Encrypted Traffic
 Inspection
- Security Analytics Recorder

Cloud

- CASB (cloud access and security broker)
- Zero Trust Platform
- Cloud-specific security solutions (server, protection, DLP, authentication, ...)

Enterprise Security Tools (on premise or hosted/managed)

- Authentication
- Access control

- User Behavior Analytics (UBA)
- Cryptography-based (PKI)

- Simulation & Awareness
- Data Loss Prevention (DLP)
- Email Security
- Web Security

Orchestration and Response Tools (on premise or hosted/managed)

- Security Information & Event Mgmt. (SIEM)
- Security Operations Center (SOC)
- Incident Response & Remediation

Agenda

- 1. Cybersecurity and Threat Landscape 2020
- 2. Cybersecurity Terminology
- 3. Cybersecurity Components
- 4. State of Security in Healthcare
- 5. Medical Device Security in Regulations and Standards
 - a. PHD initiative and IEEE 11073 (Christoph Fischer)
 - b. Regulatory context (Brian Fitzgerald)
 - c. RPM NCCoE Project (Sue Wang)
- 6. Applying security technology to medical devices
- 7. Wrap-up and Discussion
 - a. Q&A
 - b. Relevant topics for Gemini Technical Report

Against all Odds – Cyberthreats Today

Despite the risk of cybersecurity attacks, breaches, and other threats, healthcare organizations still have poor understandings of cybersecurity risks and best practices.

U.S. Department of Health and Human Services Office of Civil Rights, Report to Congress on HIPAA Privacy, Security, and Breach Notification Rule Compliance, Feb. 2019

National Health Security Strategy 2019-2022

ASPR (HHS Office of the Assistant Secretary for Preparedness and Response) Strategic Report:

U.S. National Health Security actions protect the nation's physical and psychological health, limit economic losses, and preserve confidence in government and the national will to pursue its interests when threatened by incidents that result in serious health consequences, whether natural, accidental, or deliberate.

- Identified Key Threat Areas:
 - Extreme Weather and Natural Disasters
 - Pandemic and Infectious Diseases
 - Technology and Cyber Threats
 - Chemical, Biological, Radiological, and Nuclear Threats

https://www.phe.gov/Preparedness/planning/authority/nhss/Documents/NHSS-Strategy-508.pdf

Securing Healthcare – Why is it so Hard?

- Enforcing compliance / security may conflict with care delivery (usability, ease of access, user acceptance, ...)
- Complex organizations with complex decision making
- Disparate technology platforms driven by:
 - Clinical preference
 - Vendor mandate
 - Regulatory mandates slow down change
- Conservative decision making err on the side of safety
- History and culture:
 - Compliance (HIPAA) viewed as security
 - Or even: compliance over security
- Traditionally:
 - Underinvested in cybersecurity
 - Lack of board and executive leadership on security
 - Security: hard costs, diffuse benefits

Understanding and Managing the Risks

Patient Safety

- Intentional or unintentional incidents
- Reliability, functionality, availability
- Misdiagnosis, treatment errors

Care Delivery

- Downtime due to system availability
- Impact on hospital operations
- Reduced ability to deliver care

Business & Financial

- Reputation
- Revenue / Referrals
- Law suits / fines
- Stock value

Privacy

- Confidentiality: breach of PHI, PII, credentials
- Intellectual property (clinical trials & research)
- Financial data, HR, contracts, M&A, etc.

Security

- Exploitation of a weak system beachhead attack
- Denial of Service (DDoS) attack (origin of or impacted by)
- May be targeted or purely opportunistic

Indirect Risks

- Patient trust
- Patient treatment decisions
- Staff morale
- National Security

Healthcare's Changing Risk Priorities

From "Business Critical" over "Mission Critical" to "Life Critical"

Confidentiality

- Patient Health Data
- But also PII & PCI
- Account Information
- Billing & Payment Data
- Intellectual Property
 - Clinical Trials
 - Research
 - Designs & Formularies
- Legal & HR Documents
- Identities & Credentials

Availability

- Clinical Systems
 - Electronic Record & Specialty
 - Ancillary (PACS, Lab, Pharma)
 - ePrescription / EPCS
- Medical Devices
 - Availability of clinical services and diagnostic results
- Business Systems
 - eMail
 - Financial Systems (e.g. billing)
 - Scheduling, ERP, etc.

Integrity

- Critical Patient Data
 - Prescriptions, Medications, Dosages
 - Allergies and History
 - Diagnosis and Therapy Data
 - Alarms
- Critical Technical Data
 - Calibration
 - Safety Limits
- Functionality & reliability
 - Risk of patient harm

Patient and Staff Experience: "Trust Zone"

Risk of Harm: "Patient Safety Zone"

HITECH Act / HIPAA Breach Notification Law:

- Since 2009, mandatory reporting of breaches over 500 records to Health and Human Services (HHS)
- Published at: https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf
- Breaches <500 records are to be reported annually but are not published

Notes:

- Dates are reporting dates and not incident dates, 60 day reporting window (reporting required within 60 days, but some report later)
- Analysis based on full-year data for 2010 2019
- 2009: partial reporting year (Sept-Dec)

Analysis of large (1m+ records) breaches

Year	1m+	
2009	0	Partial reporting year
2010	2	
2011	4	
2012	0	
2013	1	
2014	4	
2015	6	Including one 78m record breach
2016	3	
2017	0	
2018	3	
2019	5	2 nd highest, ranging 1.5m to 11.5m
Total	28	

Know Thy Enemy – Many Opportunities

Attack Complexity and Impact

WIRED

The Untold Story of NotPetya, the Most Devastating Cyberattack in History

The result was more than \$10 billion in total damages, according to a White House assessment confirmed to WIRED by former Homeland Security adviser Tom Bossert, who at the time of the attack was President Trump's most senior cybersecurity-focused official. Bossert and US intelligence agencies also confirmed in February that Russia's military—the prime suspect in any cyberwar attack targeting Ukraine—was responsible for launching the malicious code. (The Russian foreign ministry declined to answer repeated requests for comment.)

To get a sense of the scale of NotPetya's damage, consider the nightmarish but more typical ransomware attack that paralyzed the city government of Atlanta this past March: It cost up to \$10 million, a tenth of a percent of NotPetya's price. Even WannaCry, the more notorious worm that spread a month before NotPetya in May 2017, is estimated to have cost between \$4 billion and \$8 billion. Nothing since has come close. "While there was no loss of life, it was the equivalent of using a nuclear bomb to achieve a small tactical victory," Bossert says. "That's a degree of recklessness we can't tolerate on the world stage."

https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

Many Opportunities to Monetize

Cyber extortionists 'The Dark Overlord' offering celeb plastic surgery photos

The criminals' sophisticated PR strategy is designed to increase the pressure on victims to pay extortion demands.

10:43, UK Friday 04 January 2019

By Alexander J Martin, technology reporter

A cyber crime group calling itself "The Dark Overlord" is offering stolen celebrities' cosmetic surgery photographs to the media to bolster an extortion campaign targeting the celebs themselves.

https://news.sky.com/story/cyber-extortionists-the-dark-overlord-offering-celeb-plastic-surgery-photos-11597618/

The Healthcare Folly – Compliance over Security

Blame it on HIPAA (Security Rule):

- Compliance is not Security (although related)
- HIPAA is just the Baseline (says HIPAA)
- It's a Regulation, not a Framework or Best Practice
- C-I-A of ePHI = limiting our risk scope (think: medical devices)
- ... and it's so 2003, really

Main Requirement under HIPAA: Risk Analysis – often well-intended, but

- Incomplete: Assets, information, usage
- Infrequent: Annually ... really?
- Serving just one regulation (HIPAA, PCI, ...)
- Inconsistent: no traceability between RA's
- Lack of metrics and measurements
- Self-serving: Checklist approach, satisfy the auditor
- Manual: It's in a binder, somewhere
- Not followed through lack of mitigation!

Changing Risk Priorities

A New Balance Between Compliance and Security

Healthcare has undergone a Paradigm Shift. Traditionally:

- HIPAA-driven priorities: <u>Confidentiality</u>, Integrity, Availability
- Checklist approach satisfy the auditor

Over the past 3-5 years, Availability has become a growing concern

- Ransomware impacted information access and therefore clinical workflows
- WannaCry shut down of hospitals (UK NHS)
- Medical Device incidents have impacted care delivery

And we are starting to understand the Integrity problem

- Again, Medical Devices (hacks that could kill but research only so far)
- Risk to critical systems and data ... and Patient Trust
- Even just the perception of Loss of Integrity is a problem

Healthcare's Changing Risk Priorities

Strict Regulatory Controls need to be balanced with Nimble Security

Shifting Global Threats are leading to changing Security Priorities:

- From accidental incidents to targeted and malicious attacks
- Changing motivation: criminal attacks, political objectives
- Complex targets: devices, information, trust

	Confidentiality	Availability	Integrity
Past	Lost or stolen devices	Technical failure	Accidental alteration of data
Now	 Financially motivated Criminal intent (ransom, blackmail) Political attacks (nations, hacktivists) 	Care delivery, e.g.:RansomwareMedical Devices	 Targeted attacks: intent to harm Create doubt in data (and larger healthcare system)

"Compliance only works if your enemy is the compliance auditor"

Ted Harrington, Independent Security Evaluators

Compliance vs. Security

Traditionally, Healthcare has been a Compliance-driven Industry

Compliance
Occasional audit against well
defined regulations; failure may
result in fines – but you'll live

Today's Security
Any adversary, any type of conflict,
unknown attack, any time, anywhere, highly
skilled, no rules, any weapon – people die

Strict Compliance Controls ≠ Needs for Nimble Security

Agenda

- 1. Cybersecurity and Threat Landscape 2020
- 2. Cybersecurity Terminology
- 3. Cybersecurity Components
- 4. State of Security in Healthcare
- 5. Medical Device Security in Regulations and Standards
 - a. PHD initiative and IEEE 11073 (Christoph Fischer)
 - b. Regulatory context (Brian Fitzgerald)
 - c. RPM NCCoE Project (Sue Wang)
- 6. Applying security technology to medical devices
- 7. Wrap-up and Discussion
 - a. Q&A
 - b. Relevant topics for Gemini Technical Report

Agenda

- 1. Cybersecurity and Threat Landscape 2020
- 2. Cybersecurity Terminology
- 3. Cybersecurity Components
- 4. State of Security in Healthcare
- 5. Medical Device Security in Regulations and Standards
 - a. PHD initiative and IEEE 11073 (Christoph Fischer)
 - b. Regulatory context (Brian Fitzgerald)
 - c. RPM NCCoE Project (Sue Wang)
- 6. Applying security technology to medical devices

Postponed

- 7. Wrap-up and Discussion
 - a. Q&A
 - b. Relevant topics for Gemini Technical Report

Questions?

medcrypt.com/whitepapers

axel@medcrypt.co