Probability with RSDs

Data Science for Quality Management: Sampling Distributions, Error and Estimation

with Wendy Martin

Learning objective:

Estimate probability using the Random Sampling Distribution of the mean

Estimating Probability Using the RSD of the Mean

•Note that when we use the Standard Error of the Estimate to find areas on the RSD of the means, the z-score employed becomes:

Estimating Probability Using the RSD of the Mean

$$Z_{\bar{X}} = \frac{X - \mu}{\sigma_{\bar{X}}} = \frac{X - \mu}{\sigma/\sqrt{n}}$$

•A process has historically manufactured parts at a mean, μ, of 1.325, with a standard deviation, σ, of 0.045.

•Drawing a random sample of 25 units, what is the probability of finding an \bar{X} of 1.433 or more for the sample if no change has occurred in the mean or dispersion of the process?

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{0.045}{\sqrt{25}} = 0.009$$

$$Z_{\bar{X}} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} = \frac{1.433 - 1.325}{0.009} = 12$$

 The probability associated with this Z score is....really, really small!

•A process has historically manufactured parts at a mean, μ, of 50, with a standard deviation, σ, of 14.4.

•Drawing a random sample of 16 units, what is the probability of finding an \bar{X} of 55 or more for the sample if no change has occurred in the mean or dispersion of the process?

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{14.4}{\sqrt{16}} = 3.6$$

$$Z_{\bar{X}} = \frac{X - \mu}{\sigma_{\bar{X}}} = \frac{55 - 50}{3.6} = 1.389$$

•The probability associated with this Z score = 0.0824

RSD Examples

Statistic	RSD	Standard Error
$ar{X}$	RSD of the mean	of the mean
\widetilde{X}	RSD of the median	of the median
p	RSD of the proportion	of the proportion
R	RSD of the range	of the range

Sources

 Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982